Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild CVPR2020 Best paper

20.08.12 Leeminsoo

Introduction

- This paper proposes a method to learn 3D deformable object categories from raw single-view images, without external supervision.
- The method is based on an autoencoder that factors each input image into depth, albedo, viewpoint and light direction.
- In order to disentangle these components without supervision, it uses the fact that many object categories have a symmetric structure.

Demo

https://elliottwu.com/projects/unsup3d/

Background Knowledge

Depth Map

Albedo

Normal Map

Canonical View

Shading

Orginal Img

Detail – Confidence Map and Loss Function

$$\begin{split} &\Phi(\mathbf{I}) = (d, a, w, l, \sigma, \sigma') \\ &d: \Omega \to \mathbb{R}_{+} \quad a: \Omega \to \mathbb{R}^{3} \\ &\textit{light } l \in \mathbb{R}^{4} \quad \textit{viewpoint } w \in \mathbb{R}^{6} \\ &\hat{\mathbf{I}} = \Pi\left(\Lambda(a, d, l), d, w\right) \\ &\hat{\mathbf{I}}' = \Pi\left(\Lambda(a', d', l), d', w\right), \quad a' = \text{flip } a, \quad d' = \text{flip } d. \\ &\mathcal{L}(\hat{\mathbf{I}}, \mathbf{I}, \sigma) = -\frac{1}{|\Omega|} \sum_{uv \in \Omega} \ln \frac{1}{\sqrt{2}\sigma_{uv}} \exp -\frac{\sqrt{2}\ell_{1, uv}}{\sigma_{uv}}, \\ &\mathcal{E}(\Phi; \mathbf{I}) = \mathcal{L}(\hat{\mathbf{I}}, \mathbf{I}, \sigma) + \lambda_{f} \mathcal{L}(\hat{\mathbf{I}}', \mathbf{I}, \sigma'), \end{split}$$

- Assuming that depth and albedo, which are reconstructed in a canonical frame, are symmetric, the model can discover a canonical view for the object.
- By obtaining a second reconstruction \hat{I}' from the flipped depth and albedo, the model effectively incorporate the symmetry constraint in the depth and albedo.
- σ' can assign a higher reconstruction uncertainty where the symmetry assumption is not satisfied

Detail – Image formation model: Transformation

$$P = (P_x, P_y, P_z) \in \mathbb{R}^3$$
 $p = (u, v, 1)$

$$p \propto KP$$
, $K = \begin{bmatrix} f & 0 & c_u \\ 0 & f & c_v \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{cases} c_u = \frac{W-1}{2}, \\ c_v = \frac{H-1}{2}, \\ f = \frac{W-1}{2\tan\frac{\theta_{\text{FOV}}}{2}}. \end{cases}$

$$P = d_{uv} \cdot K^{-1}p.$$

warping function $\eta_{d,w}:(u,v)\mapsto(u',v')$ given by:

$$p' \propto K(d_{uv} \cdot RK^{-1}p + T),$$
 where $p' = (u', v', 1).$

- The (R,T) transforms 3D points from the canonical view to the actual view, thus a pixel (u,v) in canonical view is mapped to the pixel (u',v') in the actual view.
- The reprojection function Π takes as input the depth d and the viewpoint w and applies the resulting warp to the canonical image J to obtain the reconstruction image $\hat{I} = \Pi(J, d, w)$.

Detail - Image formation model: Canonical view

$$\begin{split} t^u_{uv} &= d_{u+1,v} \cdot K^{-1}(p+e_x) - d_{u-1,v} \cdot K^{-1}(p-e_x) \\ \text{where } p \text{ is defined above and } e_x = (1,0,0). \\ n_{uv} &\propto t^u_{uv} \times t^v_{uv}. \\ l &= (l_x, l_y, 1)^T / (l_x^2 + l_y^2 + 1)^{0.5} \\ \mathbf{J}_{uv} &= (k_s + k_d \max\{0, \langle l, n_{uv} \rangle\}) \cdot a_{uv}. \end{split}$$

- Given depth map d, we drive the normal map n by associating to each pixel (u,v) a vector normal to the underlying 3D surface.
- The normal n_{uv} is multiplied by the light direction l to obtain a value for the directional illumination and the latter is added to the ambient light.
- The result is multiplied by the albedo to obtain the illuminated texture.

Experiment – Ablation study

No	Method	SIDE ($\times 10^{-2}$) \downarrow	MAD (deg.) ↓
(1)	Ours full	$0.793{\scriptstyle~ \pm 0.140}$	16.51 ± 1.56
(2) (3) (4) (5) (6) (7)	w/o albedo flip w/o depth flip w/o light w/o perc. loss w/ self-sup. perc. loss w/o confidence	2.916 ± 0.300 1.139 ± 0.244 2.406 ± 0.676 0.931 ± 0.269 0.815 ± 0.145 0.829 ± 0.213	39.04 ± 1.80 27.06 ± 2.33 41.64 ± 8.48 17.90 ± 2.31 15.88 ± 1.57 16.39 ± 2.12

Table 3: **Ablation study.**

$$E_{\text{SIDE}}(\bar{d}, d^*) = \left(\frac{1}{WH} \sum_{uv} \Delta_{uv}^2 - \left(\frac{1}{WH} \sum_{uv} \Delta_{uv}\right)^2\right)^{\frac{1}{2}}$$

- In (2), the albedo is not encouraged to be symmetric in the canonical space, which fails to canonicalize the viewpoint of the object and to use cues from symmetry to recover shape.
- In (4), the model predicts a shading map instead of computing it from depth and light direction. This also harms performance significantly.
- In (7), The accuracy does not drop significantly, but it's because faces in BFM are highly symmetric (do not have hair).

Experiment – Ablation study

Figure 9: Qualitative results of the ablated models.

Input

Experiment – Asymmetric perturbation

	SIDE ($\times 10^{-2}$) \downarrow	MAD (deg.) ↓
No perturb, no conf. No perturb, conf.	$\begin{array}{c} 0.829 \pm 0.213 \\ 0.793 \pm 0.140 \end{array}$	$16.39 \pm 2.12 \\ 16.51 \pm 1.56$
Perturb, no conf. Perturb, conf.	$\begin{array}{c} 2.141 \pm 0.842 \\ 0.878 \pm 0.169 \end{array}$	$26.61 \pm 5.39 \\ 17.14 \pm 1.90$

Table 4: Asymmetric perturbation.

- In order to demonstrate the uncertainty modelling allows the model to handle asymmetry, the authors add asymmetric perturbations to BFM.
- Without the confidence maps, the model always predicts a symmetric albedo and geometry reconstruction often fails.
- With the confidence estimates, the model is able to reconstruct the asymmetric faces correctly.

Experiment – Qualitative results

Figure 4: Reconstruction of faces, cats and cars.

Figure 5: Reconstruction of faces in paintings.

Figure 6: **Symmetry plane and asymmetry detection.** (a): our model can reconstruct the "intrinsic" symmetry plane of an in-the-wild object even though the appearance is highly asymmetric. (b): asymmetries (highlighted in red) are detected and visualized using confidence map σ' .

- The reconstructed 3D face contain fine details of the nose, eyes and mouth even in the presence of extreme facial expression.
- Since the model predicts a canonical view of the objects that is symmetric, we can easily find the symmetry plane, which is otherwise non-trivial to detect from in-the-wild images.
- ullet Overlaying the predicted σ' onto the image, the model can detect asymmetric regions.

Experiment – Comparison with other models

Figure 7: **Qualitative comparison to SOTA.** Our method recovers much higher quality shapes compared to [49, 56].

	Depth Corr. ↑
Ground truth AIGN [61] (supervised, from [40]) DepthNetGAN [40] (supervised, from [40])	66 50.81 58.68
MOFA [57] (model-based, from [40]) DepthNet [40] (from [40]) DepthNet [40] (from GitHub)	15.97 26.32 35.77
Ours Ours (w/ CelebA pre-training)	48.98 54.65

Table 5: 3DFAW keypoint depth evaluation.

^[49] Unsupervised learning of a fully-disentangled 3d morphable model using deep non-figid structure from motion. ICCV Workshop 2019

^[56] Unsupervised generative 3d shape learning from natural images. arXiv 2019

Appendix

Encoder	Output size
Conv(3, 32, 4, 2, 1) + ReLU	32
Conv(32, 64, 4, 2, 1) + ReLU	16
Conv(64, 128, 4, 2, 1) + ReLU	8
Conv(128, 256, 4, 2, 1) + ReLU	4
Conv(256, 256, 4, 1, 0) + ReLU	1
$Conv(256, c_{out}, 1, 1, 0) + Tanh \to output$	1

Table 7: Network architecture for viewpoint and lighting. The output channel size c_{out} is 6 for viewpoint, corresponding to rotation angles $w_{1:3}$ and translations $w_{4:6}$ in x, y and z axes, and 4 for lighting, corresponding to k_s , k_d , l_x and l_y .

Encoder	Output size
Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2)	32
Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2)	16
Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2)	8
Conv(256, 512, 4, 2, 1) + LReLU(0.2)	4
Conv(512, 256, 4, 1, 0) + ReLU	1
Decoder	Output size
Deconv(256, 512, 4, 1, 0) + ReLU	4
Conv(512, 512, 3, 1, 1) + ReLU	4
Deconv(512, 256, 4, 2, 1) + GN(64) + ReLU	8
Conv(256, 256, 3, 1, 1) + GN(64) + ReLU	8
Deconv(256, 128, 4, 2, 1) + GN(32) + ReLU	16
Conv(128, 128, 3, 1, 1) + GN(32) + ReLU	16
Deconv(128, 64, 4, 2, 1) + GN(16) + ReLU	32
Conv(64, 64, 3, 1, 1) + GN(16) + ReLU	32
Upsample(2)	64
Conv(64, 64, 3, 1, 1) + GN(16) + ReLU	64
Conv(64, 64, 5, 1, 2) + GN(16) + ReLU	64
$Conv(64, c_{out}, 5, 1, 2) + Tanh \rightarrow output$	64

Table 8: Network architecture for depth and albedo. The output channel size c_{out} is 1 for depth and 3 for albedo.

Encoder	Output size
Conv(3, 64, 4, 2, 1) + GN(16) + LReLU(0.2)	32
Conv(64, 128, 4, 2, 1) + GN(32) + LReLU(0.2)	16
Conv(128, 256, 4, 2, 1) + GN(64) + LReLU(0.2)	8
Conv(256, 512, 4, 2, 1) + LReLU(0.2)	4
Conv(512, 128, 4, 1, 0) + ReLU	1
Decoder	Output size
Deconv(128, 512, 4, 1, 0) + ReLU	4
Deconv(512, 256, 4, 2, 1) + GN(64) + ReLU	8
Deconv(256, 128, 4, 2, 1) + GN(32) + ReLU	16
$4 \text{ Conv}(128, 2, 3, 1, 1) + \text{SoftPlus} \rightarrow output$	16
Deconv(128, 64, 4, 2, 1) + GN(16) + ReLU	32
Deconv(64, 64, 4, 2, 1) + GN(16) + ReLU	64
$Conv(64, 2, 5, 1, 2) + SoftPlus \rightarrow output$	64

Table 9: Network architecture for confidence maps. The network outputs two pairs of confidence maps at different spatial resolutions for photometric and perceptual losses.