北京工业大学 2015——2016 学年第二学期 《解析几何》期初补考试卷

考试说明: 考试时长 95 分钟; 闭卷; 解题必须给出必要的步骤, 否则无分承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:			学号:				班号:			
	试卷共 <u>七</u> 草稿纸。	 <u>C</u> 大题,	共 <u>六</u> 〕	页,满久		·····分,考			用卷后附加的	······· 统一答
			卷 面)	成 绩 氵	匚 总 君	長 (阅卷	教师填	(写)		
	题号	-		三	四	五.	六	七	总成绩	
	满分	30	10	20	10	10	10	10		
	得分									
									E、F 分别是 _, EF =	
2、已知	向量α=	{1,1,1}	, $\beta = \{$	1, -1, 2}	,则 α	· β =		, c	$\alpha \times \beta = \underline{\hspace{1cm}}$	0
	和点 A(0,	,				`			A <i>BCD</i> 所成的[。	四面体
2、平瓦		2z = 6	的法	向量为	J		, 点(0,0,0)	到此平面的	的距离
	. (2									
3、直约	$\xi \begin{cases} 2x + y \\ 2x + y \end{cases}$	+ z - 3	= U 1 = O	的方向	数为		,核	示准方和	呈为	

5、在直	I 角坐标系下,	球面方程为 $x^2 + y^2 + z^2 - 6x + 8y - 4z +$	4=0,则该球
面的球	心坐标为	, 半径为	
6、二次	X 曲线 $x^2-y^2=1$	有个渐近方向。	
得 分	二、利用向量的	的运算证明三角形的三条中线交于一点	(10分)

三、1、求过M(3,-5,1)和N(4,1,2)且垂直于平面x-8y+3z-1=0的平面方程

2、求通过点M(1,0,-2)且与两直线 $\frac{x-1}{1} = \frac{y}{1} = \frac{z}{-1}$ 和 $\frac{x}{1} = \frac{y+2}{-1} = \frac{z}{0}$ 都垂直的直线方程 (20分)

四、给定两异面直线

$$\frac{x-3}{1} = \frac{y}{1} = \frac{z-1}{0}$$

$$\frac{x-3}{1} = \frac{y}{1} = \frac{z-1}{0}$$
 $= \frac{x+1}{1} = \frac{y-2}{0} = \frac{z}{1}$,

求它们的公垂线方程

(10分)

五、设动点与(4,0,0)的距离等于这点到平面x-1=0的距离的两倍,试 求此动点的轨迹方程,并说明这是一个什么曲面 (10分)

六、求顶点为原点,准线为 $\begin{cases} x^2 + y^2 = 1 \\ z - 1 = 0 \end{cases}$ 的锥面方程 (10 分)

七、求直线 $\frac{x-1}{1} = \frac{y}{-3} = \frac{z}{3}$ 绕 z 轴旋转所得旋转曲面的方程 (10 分)