

Detecția Coliziunii Pentru Obiecte Deformabile

Raport de Cercetare - Februarie 2017

Autor

Florin Cristian Hurezeanu cristian.hurezeanu@gmail.com

Conducător(i) științific(i)

Şl.dr.ing Victor Asavei Dr.ing. Mihai Francu

Detecția Coliziunii (CD)

- Narrow Phase
- Discret (CD) vs. Continuu (CCD)
- Objecte deformabile → Self-collision

Reprezentarea Obiectelor

- Meshe triunghiulare
- 3 tipuri de feature-uri:
 - Vertecși
 - Muchii
 - Fețe
- Incidență

Teste Elementare

- Vertex Față (VF)
- Muchie Muchie (Edge-Edge, EE)

Structuri Ierarhice

- Construcție Top-Down / Bottom-Up
- Parcurgere pentru test

Ierarhii de Volume Încadratoare (BVH)

Volume Încadratoare Pentru CCD

- Se construiește o "prismă"
- Se încadrează cu un BV
- Se construiesc arbori din aceste volume

Ierarhii de Feature-uri

- 3 arbori: vertex, edge, face BVHs
- Dezavantaj: 3 arbori...
 - Ocupă memorie
 - Toți trebuie updatați la fiecare pas al simulării

Representative Triangles (RTs)

- Feature-urile sunt asignate triunghiurilor
 - Fiecare feature reprezentat de exact un triunghi
 - Feature-urile sunt incidente triunghiurilor lor
- Ierarhii de volume, formate din RT la frunze.

Conuri de Normale

- Arbori de conuri
- Folosiți pentru self-collision
- Zona este ignorată dacă α < п

Conuri de Normale Pentru CCD

•
$$\delta = (\overrightarrow{v_b} - \overrightarrow{v_a}) \times (\overrightarrow{v_c} - \overrightarrow{v_a}), \overrightarrow{v_a} = a_1 - a_0, \overrightarrow{v_b} = b_1 - b_0, \overrightarrow{v_c} = c_1 - c_0$$

După ce a fost construit, conul se folosește la fel

Spatial Hashing - Construire

Spatial Hashing - Test Coliziune

- Pentru fiecare primitivă, se află celulele cu care se intersectează BV-ul ei
- Se găsesc bucketurile, se testeaza primitiva cu toate

9

Concluzii

- Acuratețe vs. viteză
- Evitarea a cât mai multor teste redundante