EXERCICE 3A.1

- **1.** On considère la suite (u_n) définie par récurrence $u_{n+1} = 2u_n + 1$ Calculer u_1 , u_5 et u_{10} .
- **2.** On considère la suite (u_n) définie par récurrence $\begin{cases} u_0 30 \\ u_{n+1} = 0,6u_n + 10 \end{cases}$

Calculer u₁, u₅ et u₁₀ (on donnera si nécessaire une valeur approchée au centième)

- **3.** Dans tous les exercices qui suivent, (u_n) est une suite géométrique de raison q.
- **a.** On donne $u_0 = -1$ et q = 2. \rightarrow Calculer u_7 .
- **b.** On donne $u_0 = 7$ et $q = \frac{1}{2}$. **c.** On donne $u_0 = 243$ et $q = \frac{-1}{3}$.
 - → Calculer u₅.

 \rightarrow Calculer u_5 .

- \rightarrow Calculer u_6 .
- \rightarrow Calculer u_{Q} .
- **d.** On donne $u_3 = 2$ et q = 3. **e.** On donne $u_5 = 2$ et q = -5. **f.** On donne $u_8 = 512$ et q = 2. → Calculer u₃.

EXERCICE 3A.2

On considère l'algorithme :

```
U prend la valeur 5
N prend la valeur 0
Saisir P
Boucle :
 Tant que U est strictement inférieur à 10^P :
 N prend la valeur N+1
 U prend la valeur 7*N^2-3*N+5
Fin de boucle
Afficher N
```

- 1. Une valeur est entrée par l'utilisateur, laquelle? Dans quelle variable cette valeur est-elle stockée?
- **2.** Quelle est la suite (u_n) considérée dans cet algorithme? Donner une expression de u_n en fonction de n.
- **3.** On a exécuté l'algorithme suivant avec p = 6, on a obtenu 1196. Que cela signifie-t-il pour la suite u_n ?
- **4.** Quelle que soit la valeur de p entrée, l'algorithme affiche-t-il nécessairement une valeur de n ? Pourquoi?

EXERCICE 3A.3

L'unité d'intensité du son utilisé dans cet exercice est le décibel (symbole dB). Une source sonore émet un son d'intensité 100 décibels ($u_0 = 100$).

On appelle u_n l'intensité du son mesuré après la traversée de n plaques d'isolation phonique, sachant que chaque plaque d'isolation absorbe 10% de l'intensité du son qui lui parvient.

- **1.** Calculer u_1 , l'intensité du son mesuré après la traversée d'une plaque d'isolation phonique.
- **2.** Calculer de même u_2 et u_3 .
- **3. a.** Déterminer la relation entre u_{n+1} et u_n .
 - **b.** Exprimer u_n en fonction de u_0 et de n.
- 4. Quelle intensité sonore obtient-t-on avec 10 plagues d'isolation phonique?
- 5. Déterminer le nombre de plaques nécessaires pour que l'intensité du son mesuré soit inférieure à 10 dB.

EXERCICE 3A.4

On dispose d'un échantillon d'os fossiles contenant initialement une masse de 10 grammes de carbone 14. On considère que la masse de carbone 14 dans un tel échantillon diminue à raison de 1,2% par siècle.

- 1. Quelle masse de carbone 14 contiendra l'échantillon :
 - a. dans un siècle?
 - **b.** deux siècles plus tard?
- **2.** On note M_n la masse de carbone 14 contenue dans l'échantillon au bout de n siècles, où n est un entier naturel.
 - **a.** Démontrer que la suite (M_n) est une suite géométrique de raison 0,988.
 - **b.** Exprimer M_n en fonction de n.
- 3. Déterminer la masse de carbone 14 restante au bout de 5 siècles.
- 4. Déterminer au bout de combien de siècles, la masse de carbone 14 contenue dans l'échantillon sera inférieure à 5 grammes.