Stanford CS224W: Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Traditional ML for Graphs

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

Graph Representation Learning

Graph Representation Learning alleviates the need to do feature engineering every single time.

Graph Representation Learning

Goal: Efficient task-independent feature learning for machine learning with graphs!

Why Embedding?

- Task: Map nodes into an embedding space
 - Similarity of embeddings between nodes indicates their similarity in the network. For example:
 - Both nodes are close to each other (connected by an edge)
 - Encode network information
 - Potentially used for many downstream predictions

Example Node Embedding

2D embedding of nodes of the Zachary's Karate Club network:

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014.

Stanford CS224W: Node Embeddings: Encoder and Decoder

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

"Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

"Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector

(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Note on Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings.
 - We are **not** utilizing node labels
 - We are **not** utilizing node features
 - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- These embeddings are task independent
 - They are not trained for a specific task but can be used for any task.

Stanford CS224W: Random Walk Approaches for Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Random Walk

Random-Walk Embeddings

1. Estimate probability of visiting node $m{v}$ on a random walk starting from node $m{u}$ using some random walk strategy $m{R}$

2. Optimize embeddings to encode these random walk statistics: z_i

Similarity in embedding space (Here: dot product= $cos(\theta)$) encodes random walk "similarity"

 $\propto P_R(v|u)$

Unsupervised Feature Learning

- Intuition: Find embedding of nodes in d-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node u, how do we define nearby nodes?
 - $N_R(u)$... neighbourhood of u obtained by some random walk strategy R

Random Walks: Summary

- Run short fixed-length random walks starting from each node on the graph
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.
- 3. Optimize embeddings using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

Node2vec = Random walks + Word2vec

Summary so far

- Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
 - Naïve: similar if two nodes are connected
 - Neighborhood overlap (covered in Lecture 2)
 - Random walk approaches (covered today)

Stanford CS224W: Embedding Entire Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Embedding Entire Graphs

Goal: Want to embed a subgraph or an entire graph G. Graph embedding: \mathbf{z}_G .

- Tasks:
 - Classifying toxic vs. non-toxic molecules
 - Identifying anomalous graphs

Simple (but effective) approach 1:

- Run a standard graph embedding technique on the (sub)graph G.
- Then just sum (or average) the node embeddings in the (sub)graph G.

$$z_G = \sum_{v \in G} z_v$$

 Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure

How to Use Embeddings

- How to use embeddings z_i of nodes:
 - Clustering/community detection: Cluster points z_i
 - Node classification: Predict label of node i based on z_i
 - Link prediction: Predict edge (i, j) based on (z_i, z_j)
 - Where we can: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(\mathbf{z}_i, \mathbf{z}_i) = g([\mathbf{z}_i, \mathbf{z}_i])$
 - Hadamard: $f(\mathbf{z}_i, \mathbf{z}_j) = g(\mathbf{z}_i * \mathbf{z}_j)$ (per coordinate product)
 - Sum/Avg: $f(\mathbf{z}_i, \mathbf{z}_i) = g(\mathbf{z}_i + \mathbf{z}_i)$
 - Distance: $f(\mathbf{z}_i, \mathbf{z}_j) = g(||\mathbf{z}_i \mathbf{z}_j||_2)$
 - **Graph classification**: Graph embedding z_G via aggregating node embeddings or anonymous random walks. Predict label based on graph embedding z_G .