

EL-2207 ELEMENTOS ACTIVOS

ITCR - Elementos Activos

SEMICONDUCTORES

ELEMENTOS ACTIVOS EL-2207

Semiconductores (2 semanas)

- Conceptos básicos: niveles de energía, cristal, bandas de conducción, valencia, nivel de Fermi, ecuación estadística de Fermi-Dirac.
- Clasificación de los materiales de acuerdo con la conducción eléctrica: semiconductores, aislantes y conductores.
- Semiconductores intrínsecos y extrínsecos, dopado, el concepto de hueco, corriente de huecos, generación y recombinación.
- Transporte de portadores de carga: movilidad, conductividad, corriente de difusión, corriente de arrastre, relación de Einstein.
- Modelo de bandas de energía: nivel de Fermi, afinidad electrónica, función de trabajo, nivel de vacío, concentración de portadores de carga en función de la energía y deformación de bandas.

Semiconductores

Objetivo

 Conocer los conceptos básicos de física de semiconductores que llevan al modelo de bandas de energía y el transporte de portadores de carga en materiales semiconductores.

¿Qué es Electrónica?

La **electrónica** es la rama de la ingeniería y la física aplicada, enfocada al diseño y aplicación de dispositivos cuya operación depende del flujo de electrones para la generación, transmisión, recepción y almacenamiento de información.

¿Qué es ingeniería electrónica?

Ingeniería electrónica es una disciplina de la ingeniería que utiliza componentes activos y no lineales (tales como dispositivos semiconductores, especialmente transistores, diodos y circuitos integrados) para diseñar circuitos, dispositivos y sistemas electrónicos.

ITCR - Elementos Activos

Elementos Activos

- Elementos pasivos:
 - No pueden otorgar energía en un tiempo infinito
 - No permiten amplificación de voltaje o corriente
- Elementos activos
 - Elementos que pueden otorgar energía en un tiempo infinito (por ejemplo, fuentes) o bien
 - Elementos que permiten la amplificación de voltaje o corriente (por ejemplo, transistores)
- EL-2207 Elementos Activos:
 - Conceptos básicos de física de dispositivos semiconductores
 - Principales dispositivos semiconductores
 - Aplicaciones básicas de dichos dispositivos
 - Fabricación de circuitos integrados y el flujo de back-end (diseño físico)

Modelo Electrónico

• Fundamentos:

- Ecuación de Schrödinger
 - Relaciona la probabilidad de encontrar un electrón en un lugar del espacio
- Principio de exclusión de Pauli
 - Dos e- no pueden tener los mismos números cuánticos
 - Se cumple siempre (átomos aislados o conjuntos)

El átomo de Silicio aislado

Orbitales en Silicio

Modelo Electrónico

• Fundamentos:

- Cuando los átomos se acercan sus niveles de energía se desdoblan en niveles de energía muy próximos (bandas de energía)
- Bandas: conjuntos de niveles de energía electrónicos
 - Regiones de probabilidad (electrón)
 - Conducción, valencia y prohibida

Estructura atómica del Silicio (estructura cristalina)

Modelo Electrónico

- Fundamentos:
 - Conductores, aislantes y semiconductores

Modelo de Bandas de Energía

Banda de valencia:

- nivel de energía más alto que está lleno a OK
- electrones no participan en conducción
- Electrones de esta banda forman enlaces con otros átomos

• Banda prohibida:

- Brecha energética (energy gap)
- banda de estados prohibidos para el electrón
- energía necesaria para mover un electrón de la banda de valencia a la banda de conducción

Banda de conducción:

- nivel de energía separado de la banda de valencia por la banda prohibida
- electrones participan en conducción

Clasificación de Materiales – Modelo de Bandas

- Bandas de energía del material definen propiedades eléctricas, ópticas y térmicas
 - Clasificación de acuerdo con propiedades eléctricas

Conducción

Conductores

- Ancho de banda prohibida muy pequeño o traslape de bandas
- Cobre, Aluminio, Oro

- Banda prohibida= 1-3 eV
- Silicio, Germanio, compuestos como GaAs, InP

Randa prohibida

- Banda prohibida= 8-9 eV
- Diamante, dióxido de silicio (SiO₂), nitruro de silicio (Si₃N₄)