STAT 241 - Business Statistics Case Study: Quality Control

Case Problem:

Quality Associates, Inc., a consulting firm, advises its clients about sampling and statistical procedures that can be used to control their manufacturing processes.

In one particular application, a client gave Quality Associates a vast sample of 10,000 observations taken during a time in which the client's process was operating satisfactorily. The standard deviation of this sample was 0.21; hence with so much data, the **population standard deviation** was assumed to be 0.21.

Quality Associates then suggested that random samples of size 30 be taken hourly to monitor the process on an ongoing basis. By analyzing the new samples, the client could quickly learn whether the process was operating satisfactorily. When the process was not operating satisfactorily, corrective action could be taken to eliminate the problem.

Risto Rushford STAT 241-A01

We are testing to determine if the manufacturing processes are operating satisfactorily as per design specifications. The summarized data given is:

$$\sigma = 0.21$$
 $n_{1,2,3,4}=30$

And our hypothesis statement for each sample tested is:

$$H_0: \mu = 12$$

Let
$$\alpha = .01$$

$$H_1: \mu \neq 12$$

1) Conduct a hypothesis test for each sample at the $\,\alpha$ = .01 significance level. Determine if $\,H_0$ should be rejected. Determine what action, if any, should be taken.

Conclusions below are made from referencing the data tables in Appendix Ai

8:00 AM Sample 1	9:00 AM Sample 2	10:00 AM Sample 3	11:00 AM Sample 4
Conclusion:	Conclusion:	Conclusion:	Conclusion:
$H_{\scriptscriptstyle 0}$ should not be	$H_{\scriptscriptstyle 0}$ should not be	H_0 should be	$H_{\scriptscriptstyle 0}$ should not be
rejected, there is insufficient evidence to conclude $\mu \neq 12$	rejected, there is insufficient evidence to conclude $\mu \neq 12$	rejected, there is sufficient evidence to conclude $\mu \neq 12$	rejected, there is insufficient evidence to conclude $\mu \neq 12$

Decision: While three of the four samples taken had no statistically significant difference between the sample and population means, the 10AM sample was significantly different given our testing. Thus, I must conclude that the manufacturing processes must be reevaluated to determine the source of the variation.

The p-value for this	The p-value for this	The p-value for this	The p-value for this
test is 0.2621	test is 0.3572	test is <mark>0.0041</mark>	test is 0.0325

2) Check if the assumption that $\sigma = 0.21$ is valid:

$$H_0: \sigma = 0.21$$
 verses $H_1: \sigma \neq 0.21$

Let
$$\alpha = .01$$

Expressed in terms of variance (for software calculations):

$$\sigma^2 = 0.0441$$

Conclusions below are made from referencing the data tables in Appendix B^{ii}

8:00 AM Sample 1	9:00 AM Sample 2	10:00 AM Sample 3	11:00 AM Sample 4
Conclusion:	Conclusion:	Conclusion:	Conclusion:
$\sigma = 0.21$	$\sigma = 0.21$	$\sigma = 0.21$	$\sigma = 0.21$
Fail to reject, there			
is insufficient	is insufficient	is insufficient	is insufficient
evidence to	evidence to	evidence to	evidence to
conclude $\sigma \neq 0.21$			

Decision: As per the data of the analysis for σ , no further tests are needed to verify the appropriate value of the standard deviation.

		_	
The p-value for this			
test is 0.3211	test is 0.4181	test is 0.4959	test is 0.4858

3) Compute limits for the sample mean, \bar{x} , around $\mu=12$ such that if a new sample mean is within these limits, the process will be operating satisfactorily.ⁱⁱⁱ

Our z-scores will be ±2.576, so:

LCL =
$$12 - 2.576 \frac{\sigma}{\sqrt{n}}$$
 = 11.901 UCL = $12 + 2.576 \frac{\sigma}{\sqrt{n}}$ = 12.099

Conclusions below are made from referencing the data table in Appendix C

8:00 AM Sample 1	9:00 AM Sample 2	10:00 AM Sample 3	11:00 AM Sample 4
Conclusion:	Conclusion:	Conclusion:	Conclusion:
$\bar{x}_1 = 11.9570$	\bar{x}_2 = 12.0353	$\bar{x}_3 = \frac{11.8900}{1}$	$\bar{x}_4 = 12.0820$
This value is within	This value is within	This value falls	This value is within
the critical limits.	the critical limits.	below the lower	the critical limits.
		critical limit.	

Decision: As with the first test, we find that the 8, 9 and 11 AM samples fall within the expectations of the control procedure being used. However, the 10 AM sample falls outside of the lower critical limit, thus lending weight to my conclusion that the manufacturing processes should be reevaluated to determine the source of the error.

4) Throughout this analysis we have used the α = .01 significance level. This is considered to be small, and to some extent tolerances are acceptable. If we were to adjust the significance level for this analysis to α = .05 or .10 then we would have to change our conclusions about the 11 AM sample as well because the sample mean would r outside of the critical limits of the population mean. In order to determine if a higher significance level would be ideal, we need to examine, based on the product being made, how much error is acceptable in a finished product, and how expensive would it be to either fix those errors or allow a certain proportion of them through?

Appendix A: Data for Part 1: QA Data Descriptive Summary

	8:00 AM	9:00 AM	10:00 AM	11:00 AM
Mean	<mark>11.9570</mark>	<mark>12.0353</mark>	<mark>11.8900</mark>	<mark>12.0820</mark>
Median	11.9450	12.0250	11.9350	12.0800
Mode	11.9300	12.0000	11.9500	12.0200
Minimum	11.5200	11.5900	11.3600	11.6400
Maximum	12.3200	12.3900	12.2200	12.4700
Range	0.8	0.8	0.86	0.83
Variance	0.0486	0.0455	0.0430	0.0427
Standard Deviation	<mark>0.2205</mark>	<mark>0.2133</mark>	<mark>0.2073</mark>	<mark>0.2066</mark>
Coeff. of Variation	1.84%	1.77%	1.74%	1.71%
Skewness	-0.2108	-0.2428	-0.5362	-0.3907
Kurtosis	-0.6370	-0.4257	0.1133	-0.1355
Count	30	30	30	30
Standard Error	0.0403	0.0389	0.0379	0.0377

Appendix A (continued) Z Tests For each sample:

8:00 AM Sample:

Z Test of Hypothesis for the Mean

Data			
Null Hypothesis μ=	12		
Level of Significance	0.01		
Population Standard Deviation	0.21		
Sample Size	30		
Sample Mean	11.957		
Intermediate Calculations			
Standard Error of the Mean	0.0383		
Z Test Statistic	-1.1215		
Two-Tail Test			
Lower Critical Value	-2.5758		
Upper Critical Value	2.5758		
<i>p</i> -Value	0.2621		
Do not reject the null hypothesis			

10:00 AM Sample:

Z Test of Hypothesis for the Mean

Data		
Null Hypothesis μ=	12	
Level of Significance	0.01	
Population Standard Deviation	0.21	
Sample Size	30	
Sample Mean	11.89	
Intermediate Calculation	ıs	
Standard Error of the Mean	0.0383	
Z Test Statistic	-2.8690	
Two-Tail Test		
Lower Critical Value	-2.5758	
Upper Critical Value	2.5758	
<i>p</i> -Value	0.0041	
Reject the null hypothesis		

9:00 AM Sample:

Z Test of Hypothesis for the Mean

12 0.01
0.01
0.01
0.21
30
12.0353
0.0383
0.9207
-2.5758
2.5758
0.3572

11:00 AM Sample:

Z Test of Hypothesis for the Mean

Data		
Null Hypothesis μ=	12	
Level of Significance	0.01	
Population Standard Deviation	0.21	
Sample Size	30	
Sample Mean	12.082	
Later and Pater Called Later and		

Intermediate Calculations	
Standard Error of the Mean	0.0383
Z Test Statistic	2.1387
Two-Tail Test	
Lower Critical Value	-2.5758
Upper Critical Value	2.5758
<i>p</i> -Value	0.0325
Do not reject the null hypothesis	

"Appendix B: Data for Part 2

8:00 AM Sample:

Chi-Square Test of Variance

Data	
Null Hypothesis σ^2=	0.0441
Level of Significance	0.01
Sample Size	30
Sample Standard Deviation	0.2205

Intermediate Calculations

Degrees of Freedom	29
Half Area	0.005
Chi-Square Statistic	31.9725
Two-Tail Test	
Lower Critical Value	13.1211
Upper Critical Value	52.3356
<i>p</i> -Value	0.3211
Do not reject the null hypothesis	

10:00 AM Sample:

Chi-Square Test of Variance

Data		
Null Hypothesis	σ^2=	0.0441
Level of Significance		0.01
Sample Size		30
Sample Standard Deviation	l	0.2073

Intermediate Calculations

Degrees of Freedom	29
Half Area	0.005
Chi-Square Statistic	28.2591
Two-Tail Test	
Lower Critical Value	13.1211
Upper Critical Value	52.3356
<i>p</i> -Value	0.4959
Do not reject the null hypothesis	

9:00 AM Sample:

Chi-Square Test of Variance

Data		
Null Hypothesis	σ^2=	0.0441
Level of Significance		0.01
Sample Size		30
Sample Standard Deviation		0.2133

Intermediate Calculations

Degrees of Freedom	29
Half Area	0.005
Chi-Square Statistic	29.9186

Two-Tail Test	
Lower Critical Value	13.1211
Upper Critical Value	52.3356
<i>p</i> -Value	0.4181
Do not reject the null hypothesis	

11:00 AM Sample:

Chi-Square Test of Variance

Data		
Null Hypothesis	σ^2=	0.0441
Level of Significance		0.01
Sample Size		30
Sample Standard Deviation		0.2066

Intermediate Calculations

Chi-Square Statistic	28.0686
Half Area	0.005
Degrees of Freedom	29

Two-Tail Test	
Lower Critical Value	13.1211
Upper Critical Value	52.3356
<i>p</i> -Value	0.4858
Do not reject the null hypothesis	

Appendix C: Data for Part 3Confidence Interval Estimate for the Mean

Data	
Population Standard Deviation	0.21
Sample Mean	12
Sample Size	30
Confidence Level	99%

Intermediate Calculations	
Standard Error of the Mean	0.0383
Z Value	-2.5758
Interval Half Width	0.0988

Confidence Interval	
Interval Lower Limit	11.90
Interval Upper Limit	12.10