Table of Contents

xercise 1: Solve a simple linear regression problem	1
)	1
)	
)	
)	2
))	
)	
)	c
,	
1	1

Exercise 1: Solve a simple linear regression problem

Farzad Rezazadeh Pilehdarboni, 25.05.2022

% to obtain a column vector.

X = linspace(1,100,N);

% By default, linspace() generates a row vector. Use the transpose X = X'

b)

N = 50;

X = X';

% Using the randn() function, create a vector, eps, containing 100

% generate equidistant vector of length N

```
\mbox{\ensuremath{\$}} observations drawn from N(0,30^2) distribution, i.e., a normal distribution
% with mean zero and standard deviation 30.
sd = sdAll(li);
eps = sd*randn(N,1);
c)
% Using x and eps, generate a vector y according to the model
% Y0 = 50 + 7*X
% and add the noise to obtain the disturbed output Y = Y0 + eps.
% What is the length of the vector y? What are the values of \beta_0 and
% \beta_1 in this linear model?
beta_0 = 50;
beta 1 = 7;
Y0 = beta_0 + beta_1*X;
Y = Y0 + eps;
                    % generate disturbed output
d)
% Using scatter(), create a scatterplot displaying the relationship
% between x and y. Comment on what you observe.
figure(i)
scatter(X,Y, '.')
```


e)

```
% Using the backslash operator, fit a least squares linear model to
\mbox{\ensuremath{\upsigma}} predict y using x. First, create the regression matrix using
 Phi=[ones(size(x)) x]. Comment on the model obtained. How do
% \hat{\beta}_0 and \hat{\beta}_1 compare to \beta_0 and \beta_1?
Phi = [ones(size(X)) X];
theta = Phi\Y;
f)
least
% squares line on the scatterplot obtained in d) using hold all. Additonally,
draw the
% population regression line on the plot.
Y_hat = Phi*theta;
hold all
plot(X,Y_hat)
plot(X,Y0)
legend('Data','LS estimate','Y0')
title('y vs. x1')
xlabel('x1')
ylabel('y')
```


g)

```
% Alternatively, use the Matlab function fitlm to generate a linear
% regression model object. Plot the results by the use of plot(myModel) in a
new figure.
myModel = fitlm(X,Y)
% By default, LinearModel assumes that you want to model the relationship
% as a straight line with an intercept term. The expression "y \sim 1 + x1"
% describes this model. Formally, this expression translates as "Y is
% modeled as a linear function which includes an intercept and a variable".
% Once again note that we are representing a model of the form Y = mX + B...
% The next block of text includes estimates for the coefficients, along
% with basic information regarding the reliability of those estimates.
% Finally, we have basic information about the goodness-of-fit including
% the R-square, the adjusted R-square and the Root Mean Squared Error.
figure(i+1)
plot(myModel)
% Notice that this simple command creates a plot with a wealth of information
 including
     - A scatter plot of the original dataset
     - A line showing our fit
```

% - Confidence intervals for the fit

%

% MATLAB has also automatically labelled our axes and added a legend.

myModel =

Linear regression model:

 $y \sim 1 + x1$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
				
(Intercept)	55.482	13.781	4.0261	0.00020074
<i>x</i> 1	6.7941	0.23632	28.749	6.5799e-32

Number of observations: 50, Error degrees of freedom: 48

Root Mean Squared Error: 48.7

R-squared: 0.945, Adjusted R-Squared: 0.944

F-statistic vs. constant model: 827, p-value = 6.58e-32

myModel =

Linear regression model:

$$y \sim 1 + x1$$

Estimated Coefficients:

	Estimate	Estimate SE	tStat	pValue
(Intercept)	41.469	16.216	2.5573	0.013764
<i>x</i> 1	7.0716	0.27808	25.43	1.6633e-29

Number of observations: 50, Error degrees of freedom: 48

Root Mean Squared Error: 57.3

R-squared: 0.931, Adjusted R-Squared: 0.929

F-statistic vs. constant model: 647, p-value = 1.66e-29

myModel =

Linear regression model:

$$y \sim 1 + x1$$

Estimated Coefficients:

Estimate SE tStat pValue

(Intercept)	97.501	29.086	3.3522	0.0015707
x1	6.2622	0.4988	12.555	8.9228e-17

Number of observations: 50, Error degrees of freedom: 48
Root Mean Squared Error: 103
R-squared: 0.767, Adjusted R-Squared: 0.762
F-statistic vs. constant model: 158, p-value = 8.92e-17

h)

- % Now fit a polynomial regression model that prdicts y using x and x^2.
- % Is ther evidence that the quadratic term improves the model fit? Explain % your answer.
- % your answer.

myModel2 = fitlm(X,Y,'poly2')

myModel2 =

Linear regression model: $y \sim 1 + x1 + x1^2$ Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	49.108	20.859	2.3542	0.022792
<i>x</i> 1	7.1728	0.95413	7.5176	1.3481e-09
x1^2	-0.0037491	0.0091472	-0.40986	0.68377

Number of observations: 50, Error degrees of freedom: 47

Root Mean Squared Error: 49.1

R-squared: 0.945, Adjusted R-Squared: 0.943

F-statistic vs. constant model: 406, p-value = 2.19e-30

myModel2 =

Linear regression model:

 $y \sim 1 + x1 + x1^2$

Estimated Coefficients:

	Estimate	Estimate SE		tStat	pValue
					
(Intercept)	19.225	24.201	0.79437	0.43097	
x1	8.3931	1.107	7.5819	1.0784e-09	
x1^2	-0.013084	0.010613	-1.2328	0.22377	

Number of observations: 50, Error degrees of freedom: 47

Root Mean Squared Error: 57

R-squared: 0.933, Adjusted R-Squared: 0.93

F-statistic vs. constant model: 328, p-value = 2.53e-28

myModel2 =

Linear regression model:

 $y \sim 1 + x1 + x1^2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	107.71	44.06	2.4445	0.01831
<i>x</i> 1	5.656	2.0154	2.8064	0.0072676
x1^2	0.0060022	0.019321	0.31065	0.75744

Number of observations: 50, Error degrees of freedom: 47

Root Mean Squared Error: 104

R-squared: 0.767, Adjusted R-Squared: 0.757

F-statistic vs. constant model: 77.4, p-value = 1.35e-15

% Repeat a)-g) with different noise levels by sampling from $N=(0,\sigma^2)$ % with $\sigma=\{30,60,100\}$ to generate different \eps. Describe your results.

end

Published with MATLAB® R2022a