Monday, April 4, 2022 10:04 AM

Component: Each connected subgraph of a disconnected graph are called

Connected Components (Parts)

Discomeded _______

No. of Components = 1 Connected graph.

Component of Connected graph is One i.e graph itself

25) The number of connected component of the given graph is

Art-7. Matrix Representation of Graphs

A graph can be represented by a matrix in two ways:

- (i) Adjacency matrix
- (ii) Incidence matrix.

Adjacency Matrix (for undirected graph):

Let G be an undirected graph with n vertices. Further suppose G has no multiple edges. Then G is represented by $n \times n$ matrix defined as $M = [a_{ij}]_{n \times n}$

$$a_{ij} = \begin{cases} 1 & \text{if } a_i \text{ and } a_j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$

i.e. an entry is 1 if there is an edge between a_i and a_j .

 $M = [a_{ij}]_{n \times n}$ n = No. of Vertres

						Symmeters Matrix
					•	M'=M
_		α	b		_d	AL MEN
	a	-1		0		
	Ь		0		1	M = 0000
	C,	\cap		0		(a) (b) (c) (c)

Adjacency matrix of multi-graph (undirected)

Let G be undirected graph of n vertices that may contain parallel edges. Then adjacency matrix M is $n \times n$ matrix defined by $M = [a_{ij}]_{n \times n}$

where
$$a_{ij} = \begin{cases} n_i m \text{ is number of edges between } a_i \text{ and } a_j \\ 0 \text{ otherwise} \end{cases}$$

Adjacency matrix of Directed Graph.

Let G be digraph with n vertices having no multiple edges. Then G can be represented by $n \times n$ adjacency matrix m defined by

$$a_{ij} = \begin{cases} 1 & \text{if there is edge } \underline{\text{from } a_i \text{ to } a_j} \\ 0 & \text{otherwise} \end{cases}$$

	a	Ь	C	d	
a	0	1	0	0	
5	O	0	1	0	
Ç	0	0	1	1	
d	ŀ	1	0	0	

Incidence matrix:

Let G be a graph have m vertices and n edges. Then incidence matrix of graph is $m \times n$ matrix written as $A(G) = [a_{ij}]_{m \times n}$ defined by

$$a_{ij} = \begin{cases} 1 & \text{if } j \text{th edge } e_j \text{ is incident on } i \text{th vertex } v_i \\ 0 & \text{otherwise.} \end{cases}$$

ices and nedges. Then incidence matrix of graph:

$$No. of Vertres = m$$
 $No. of Vertres = m$
 $No. of edges = n$
 $No. of edges = n$
 $No. of edges = n$
 $No. of vertres = n$
 $No. of$

	×	\mathcal{H}_2	x_3	\mathcal{H}_{y}	75	N	χ_{7}
a	1	1	0	٥	0	D	0
Ь	l	0	1	1	0	0	0
C	0	D	Ō	1	l		6
d	0	0	ð	ی	ව	1	1
el						0	

