DATA ANALYSIS PYTHON PROJECT - BLINKIT ANALYSIS

Import Libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Import Raw Data

```
In [4]: df = pd.read_csv('blinkit_data.csv')
```

Sample Data

In [6]: df.head(10)

Out[6]:

	Item Fat Content	Item Identifier	Item Type	Outlet Establishment Year	Outlet Identifier	Outlet Location Type	Outlet Size	Outlet Type	lı Visib
0	Regular	FDX32	Fruits and Vegetables	2012	OUT049	Tier 1	Medium	Supermarket Type1	0.100
1	Low Fat	NCB42	Health and Hygiene	2022	OUT018	Tier 3	Medium	Supermarket Type2	0.008
2	Regular	FDR28	Frozen Foods	2010	OUT046	Tier 1	Small	Supermarket Type1	0.025
3	Regular	FDL50	Canned	2000	OUT013	Tier 3	High	Supermarket Type1	0.042
4	Low Fat	DRI25	Soft Drinks	2015	OUT045	Tier 2	Small	Supermarket Type1	0.033
5	low fat	FDS52	Frozen Foods	2020	OUT017	Tier 2	Small	Supermarket Type1	0.005
6	Low Fat	NCU05	Health and Hygiene	2011	OUT010	Tier 3	Small	Grocery Store	0.098
7	Low Fat	NCD30	Household	2015	OUT045	Tier 2	Small	Supermarket Type1	0.026
8	Low Fat	FDW20	Fruits and Vegetables	2000	OUT013	Tier 3	High	Supermarket Type1	0.024
9	Low Fat	FDX25	Canned	1998	OUT027	Tier 3	Medium	Supermarket Type3	0.101

```
In [9]: print("Size of Data: ",df.shape)
         Size of Data: (8523, 12)
In [10]: df.columns
Out[10]: Index(['Item Fat Content', 'Item Identifier', 'Item Type',
                 'Outlet Establishment Year', 'Outlet Identifier',
                 'Outlet Location Type', 'Outlet Size', 'Outlet Type', 'Item Visibilit
         у',
                 'Item Weight', 'Sales', 'Rating'],
               dtype='object')
In [11]: df.dtypes
Out[11]: Item Fat Content
                                        object
         Item Identifier
                                        object
         Item Type
                                        object
         Outlet Establishment Year
                                        int64
         Outlet Identifier
                                        object
         Outlet Location Type
                                        object
         Outlet Size
                                        object
         Outlet Type
                                        object
         Item Visibility
                                       float64
         Item Weight
                                       float64
                                       float64
         Sales
                                       float64
         Rating
         dtype: object
```

Data Cleaning

Business Requirements

KPI Requirements

```
In [19]: # Total Sales
    total_sales = df['Sales'].sum()

#Average Sales
    avg_sales = df['Sales'].mean()

#Number of items sold
    no_of_items_sold = df['Sales'].count()

#Average Ratings
    avg_ratings = df['Rating'].mean()

#Display
    print(f"Total Sales: ${total_sales:,.1f}")
    print(f"Average Sales: ${avg_sales:,.0f}")
    print(f"Number of Items sold: {no_of_items_sold:,.0f}")
    print(f"Average Ratings: {avg_ratings:,.1f}")
```

Total Sales: \$1,201,681.5 Average Sales: \$141 Number of Items sold: 8,523 Average Ratings: 4.0

Charts Requirements

Total Sales by Fat Content

Sales by Fat content

Total Sales by Item Type

Fat Content by Outlet for Total Sales

```
In [26]: grouped = df.groupby(['Outlet Location Type', 'Item Fat Content'])['Sales'].su
grouped = grouped[['Regular', 'Low Fat']]

ax = grouped.plot(kind='bar',figsize=(8,5), title='Outlet Tier by Item Fat Con
plt.xlabel('Outlet Location Tier')
plt.ylabel('Total Sales')
plt.legend(title='Item Fat Content')
plt.tight_layout()
plt.show()
```


Total Sales by Outlet Establishment

```
In [30]: sales_by_year = df.groupby('Outlet Establishment Year')['Sales'].sum().sort_in
    plt.figure(figsize=(9,5))
    plt.plot(sales_by_year.index, sales_by_year.values, marker="o", linestyle="-")
    plt.xlabel('Outlet Establishment Year')
    plt.ylabel('Total Sales')
    plt.title('Outlet Etsbalishment')

for x,y in zip(sales_by_year.index, sales_by_year.values):
        plt.text(x,y,f'{y:,.0f}', ha='center', va='bottom', fontsize=8)

plt.tight_layout()
    plt.show()
```


Sales by Outlet Size

```
In [32]: sales_by_size = df.groupby('Outlet Size')['Sales'].sum()

plt.figure(figsize=(4,4))
plt.pie(sales_by_size, labels=sales_by_size.index, autopct='%1.1f%%', startang
plt.title('Outlet Size')
plt.tight_layout()
plt.show()
```

Outlet Size

Sales by Outlet Location

```
In [35]: sales_by_location = df.groupby('Outlet Location Type')['Sales'].sum().reset_in
    sales_by_location = sales_by_location.sort_values('Sales',ascending=False)

plt.figure(figsize=(8,3))
    ax = sns.barplot(x='Sales',y='Outlet Location Type', data=sales_by_location)

plt.title('Total Sales by Outlet Location Type')
    plt.xlabel('Total Sales')
    plt.ylabel('Outlet Location Type')

plt.tight_layout()
    plt.show()
```

