# Data cleaning and visualization with R

#### Ecological and Epidemiological Modeling Madagascar (E2M2)

Institut Pasteur de Madagascar, Antananarivo, Madagascar ValBio, Ranomafana, Fianarantsoa, Madagascar 09-17 Décembre 2022

Hafaliana **Christian** Ranaivoson, PhD
Ecology and Evolution
University of Chicago, Illinois, USA
Laboratoire de Biologie des Populations Parasitaires
Mention of Zoology and Animal Biodiversity
Faculty of Sciences, University of Antananarivo

# Cleaning and visualizing data in R

- R and RStudio softwares
- Importing data
- Exploring and cleaning data
- Visualizing data
- Tutorial

Database: « e2m2\_FB.csv »

# R software (a statistical tool)

- It is free!
- Powerful analysis capability
- Versatile, flexible, open source



Other Software

#### **RSTUDIO**

#### An interface for R software



# Importing Data (loading data into R environment)

Set working directory (Where to put all files?)

```
getwd()
setwd("Folder path")
?getwd
```

Import data (read the data source and load it into RData)

```
e2m2_FB <- read.csv("e2m2_FB.csv", header=T, stringsAsFactors=F)
```

View(e2m2\_FB)





#### Consistent data

#### Give a sense to your data

- Important step for good data interpretation
- Need a good comprehension of each variables
- Should be reproductible
- Extreme values will affect the outcome
- Make a consistent link between each variable
- No cheating
- Cleaning is not inventing

#### Consistent data

#### What is wrong with this data?

| Id ÷   | Site <sup>‡</sup> | Date ‡ | Sex ‡ | Weight ‡ | Rainfall <sup>‡</sup> | gmam ÷ | stes ‡ |
|--------|-------------------|--------|-------|----------|-----------------------|--------|--------|
| bat_12 | Site_1            | 41586  | F     | 650      | 140mm                 | NA     | 3.90   |
| bat_13 | Site_1            | 41586  | f     | 70       | 140mm                 | NA     | 3.89   |
| bat_14 | Site_2            | 41593  | м     | 710      | 136mm                 | NA     | 10.05  |
| bat_15 | Site_2            | 41593  | м     | 690      | 136mm                 | NA     | 10.02  |
| bat_16 | Site_2            | 41593  | F     | 590      | 136mm                 | 3.88   | NA     |
| bat_17 | Site_2            | 41593  | м     | 125      | 136mm                 | NA     | 9.95   |
| bat_18 | Site_2            | 41593  | м     | 150      | 136mm                 | NA     | 9.64   |
| bat_19 | Site_2            | 41593  | F     | 530      | 136mm                 | 4.03   | NA     |
| bat_20 | SITE_2            | 41593  | м     | 130      | 136mm                 | NA     | 10.61  |
| bat_21 | Site_2            | 41594  | F     | 640      | 136mm                 | 4.26   | NA     |
| bat_22 | Site_2            | 41594  | F     | 590      | 136mm                 | 4.18   | NA     |
| bat_23 | Site_2            | 41594  | м     | 145      | 136mm                 | NA     | 10.02  |
| bat_23 | Site_2            | 41594  | F     | 520      | 136mm                 | 3.97   | NA     |
| bat_25 | Site_2            | 41594  | м     | 150      | 136mm                 | NA     | 10.00  |
| bat_26 | Site_2            | 41596  | f     | 650      | 136mm                 | 4.10   | NA     |
| bat_27 | Site_2            | 41596  | F     | 165      | 136mm                 | 4.14   | NA     |
| bat_28 | Site_2            | 41596  | м     | 130      | 136mm                 | NA     | 10.34  |

#### **Data overview**



> dim(e2m2\_FB)

[1] 100 6

How big is the data frame?

> names(e2m2\_FB)
[1] "Id" "Sex" "Forearm" "Weight" "Age" "Date"

What are the variables?

#### Accessing dataset contents (From Outside to Inside!)

```
> e2m2_FB$Id
[1] "fb_1" "fb_2" "fb_3" "fb_4"
[12] "fb_12" "fb_13" "fb_14"...
[100] "fb_100"
```

```
Data frame > Variables > Contents
```

Dataset name \$ Variable name

```
> e2m2_FB$Id[e2m2_FB$Forearm < 56]
[1] "fb_64" "fb_65"
```

```
Filter Contents [...]
```

Data frame name \$\footnote{Variable name [Filter]}\$

Get the Bat Id with Weight > 75

```
> length(e2m2_FB$Id[e2m2_FB$Forearm < 56])
```

1] 2

Get the count with length(...)

Variable types and error

```
str(...)
```

```
> str(e2m2_FB)

$ Id : chr "fb_1" "fb_2" "fb_3" "fb_4"...
$ Sex : chr "f" "f" "F" "f "...
$ Weight : num 34.8 36.1 36.5 36.6 38.9 ...
$ Age : chr "one" "6.65" "6.77" "seven" ...
$ Date : chr "1/11/2015" "1/12/2015"...
```

```
Categorical: Factor (n levels)
Continuous: Numeric (Range)
Time: Date (Range)
Binary: logic (T,F)
Missing Value: NA
```

```
> as.factor(e2m2_FB$Sex)
Levels: f F f m
> as.numeric(e2m2_FB$Age)
Warning message:
NAs introduced by coercion
> as.Date(e2m2_FB$Date,"%m/%d/%Y")
```

```
as.factor(...)
as.Date(...) "%Y-%m-%d"
as.numeric(...)
```

```
Needed format
Value error ->
Missing error ->
```

Re-formatCorrect valueHandle NA values

Correcting Values (Wrong value ← Right Value)

```
> e2m2_FB$Age[e2m2$Age== "one"] <- "1" >
                                                   > as.factor(e2m2_FB$Sex)
                                                    Levels: f m
e2m2_FB$Sex[e2m2$Sex== "F"] <- "f"
> e2m2_FB$Sex[e2m2$Sex== "f"] <- "f"
                                                   > as.numeric (e2m2_FB$Age)
                                                    [1] 4.80 6.65 6.77 7.00
Save the format to the variable
> e2m2_FB$Sex <- as.factor(e2m2_FB$Sex)
```

```
> str(e2m2_FB)
$ Id : chr "fb_1" "fb_2" "fb_3" "fb_4" ...
$ Sex : Factor w/ 2 levels "f","m": 1 1 1 1 2
$ Age: num 4.8 6.65 6.77 7 8.89 ...
$ Date : Date, format: "2015-01-11"
```

> e2m2\_FB\$Age <- as.numeric(e2m2\_FB\$Age)

> e2m2\_FB\$Date <- as.Date(e2m2\_FB\$Date,''%m/%d/%Y'')

> e2m2\_FB\$NewVar <- as.factor(e2m2\_FB\$Sex) > e2m2\_FB\$NewVar <- e2m2\_FB\$Forearm/2

Or create new variable

# Visualizing Data (Play with data)

#### **Install and Load Library**

Install.packages("...")
Installed.packages()

```
> library(dplyr)
```

> require (ggplot2)

#### Data summarizing ("dplyr")

- > fb\_male <-filter(e2m2\_FB,Sex=="m")
- > range(fb\_male\$Forearm)
- > mean(fb\_male\$Forearm)
- > sd(fb\_male\$Forearm)

```
Sex mean_forearm sd_forearm nbr

(fctr) (dbl) (dbl) (int)

1 f 59.6040 11.90278 60

2 m 60.9985 14.12073 40
```

# Visualizing Data (Play with data)

#### R base graphical function



PLoad <- tapply(e2m2\$ParLoad,factor(format(e2m2\$Date,"%m")),mean)

barplot(PLoad)



#### R plot() function

```
plot(e2m2$ Forearm~ e2m2$Age,
     main = "Forearm/Age",
    ylab ="Forearm (mm)", xlab = "Age (year)",
     col=Sex
fitfem <- lowess(datfem$Forearm~datfem$Age)
fitmal <- lowess (datmal $ Forearm ~ datmal $ Age)
plot(e2m2$Forearm~e2m2$Age,
  main="Forearm/Age, lowess fitting",
  xlab="Age (year)",ylab="Forearm (mm)",
  type="p",pch=3,cex=0.7,
  col=e2m2$Sex
lines(fitfem,col="black",lwd=3)
lines(fitmal,col="red",lwd=3)
<mark>legend(</mark>x=0, y=95,legend=c("Males","Females"),
    col=c("red","black"),title="Lowess fit",
    Ity=1,x.intersp = .5,y.intersp = .8
```



Data Plotting with (ggplo2)



#### Mapping aesthetic vs fixed value

ggplot(e2m2\_FB,aes(Forearm,Weight)) + geom\_point(color="blue", shape=3)

ggplot(e2m2\_FB,aes(Forearm,Weight)) +
geom\_point(aes(color=Sex, shape=Sex))





#### Polish the plot

```
ggtitle ("Weight by Forearm of male and female")+
scale_x_continuous(name="Length forearm (mm)",
           limits=c(20,85))+
scale_y_continuous(name="Weight (g)",
           limits=c(0,85))+
scale_color_discrete(name="Sex",
             breaks=c("f","m"),
             label=c("female","male"))+
scale_shape_discrete(name="Sex",
             breaks=c("f","m"),
             label=c("female","male"))
```



#### Conclusion

#### R software:

- Powerful data management

- Simple syntax

- Large graphic vocabularies

- Packages to fit needs