Question	Scheme	Marks
2(a)	$\frac{2}{\sqrt{1+3x}} = 2(1+3x)^{(-\frac{1}{2})}$	B1
	$\{2\} \left(1 + \left(-\frac{1}{2}\right)(3x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)(3x)^{2}}{2!} + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)(3x)^{3}}{3!} + \dots\right)$	M1A1
	$2-3x+\frac{27x^2}{4}-\frac{135x^3}{8}+\dots$	A1 [4]
(b)	1 11	B1
	$-\frac{1}{3} < x < \frac{1}{3} \qquad (Accept x < \frac{1}{3})$	[1]
	Total	l 5 marks

Part	Mark	Notes		
(a)	B 1	Correct simplification of the given expression.		
		This mark may be implied by a correct expansion.		
	M1	Attempts at the binomial expansion $(1+3x)^{\pm \frac{1}{2}}$ or $2(1+3x)^{\pm \frac{1}{2}}$		
		For an attempt at the binomial expansion.		
		• The first term is 1 or 2		
		• The powers of $3x$ are correct in all terms, e.g. $(3x)^2$		
		• The correct denominators are used, 2! and 3! oe		
	A1	Allow this mark for at least 1 correct algebraic term, correctly simplified, from		
		$-3x + \frac{27x^2}{4} - \frac{135x^3}{8}$ or $-\frac{3}{2}x + \frac{27x^2}{8} - \frac{135x^3}{16}$		
		$\frac{-3x + {4} - {8} \text{ or } -{2}x + {8} - {16}}{16}$		
	A1	Correct simplified expansion in ascending order, coefficients must be in simplest		
		fractions . (Ignore extra terms with powers > 3) Do not isw		
(b)	B1	For the correct range of values of x. $-\frac{1}{3} < x < \frac{1}{3}$ or $ x < \frac{1}{3}$, do not accept $ 3x < 1$		

ALT for (a) Uses Maclaurin's expansion (If seen send to review)

$$f(x) = f(0) + f'(0)x + \frac{f''(x)}{2!}x^2 + \frac{f'''(x)}{3!}x^3 + \dots$$

B1 Correct simplification of the given expression.

M1 Achieves $f'(x) = P(1+3x)^{-\frac{3}{2}}$, $f''(x) = Q(1+3x)^{-\frac{5}{2}}$, $f'''(x) = R(1+3x)^{-\frac{7}{2}}$, $P, Q, R \neq 0$ and attempts to find the values of f'(0), f''(0) and f'''(0)

A1 Correct unsimplified expansion OR at least 2 correct simplified terms

A1 Fully correct simplified expansion. (Ignore extra terms with powers higher than 3)

For reference, the correct derivatives are:

$$f'(x) = -3(1+3x)^{-\frac{3}{2}}, f''(x) = \frac{27}{2}(1+3x)^{-\frac{5}{2}}, f'''(x) = \frac{-405}{4}(1+3x)^{-\frac{7}{2}}$$