

- Number system
- **■** Different Number system
- **■** Base / Radix
- MSD / LSD
- **►** Number Conversion
- **■** Binary Arithmetic
- Representation of Numbers
- Representation of Characters
- Boolean Algebra
- Demorgan's Theorm

Number system

Systematic way to represent numbers in different ways

Hello world

72 101 108 108 111 32 87 111 114 108 100

Different types of Number system

- i. **Binary** Number system
 - -0,1
- ii. Octal Number system
 - 0, 1, 2, 3, 4, 5, 6, 7

- iii. Decimal Number system
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- iv. Hexadecimal Number system
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Base / Radix

■ The number of symbols used in a number system is called Base / Radix of a number system

■ Eg. (1301)₈

■ Identify the number system

 $(1102)_{16}$

Hexadecimal

 $(1101)_{10}$

Decimal

 $(6327)_8$

Octal

MSD & LSD

MSD: Left most digit of a number is called MSD
 (Most Significant Digit)

LSD: Right most digit of a number is called LSD
 (Least Significant Digit)

- Binary Number system

■ Base : 2

► Symbols: 0 1

→ Also called BIT

■ Eg: (1101)₂

■ Position Representation

- Binary Number system

Eg: (1101.11)₂

■ Position Representation

- Octal Number system

■ Base: 8

■ Symbols: 0 1234567

■ Eg: (1372)₈

→ Position Representation

- Octal Number system

■ Eg: (1372.25)₈

■ Position Representation

- Decimal Number system

■ Base: 10

■ Symbols: 0 123456789

■ Eg: (1902)₁₀

→ Position Representation

- Decimal Number system

■ Eg: (1902.18)₁₀

Position Representation

- Hexadecimal Number system

■ Base: 16

Symbols: 0 123456789 A B C D E F

► Eg: (1B04)₁₆

► Position Representation

- Hexadecimal Number system

■ Eg: (1B04.F6)₁₆

► Position Representation

Number Conversion

Convert one number system to another number system

- Binary to Decimal
- Octal to Decimal
- Hexadecimal to Decimal
- Decimal to Binary
- Decimal to Octal
- **■** Decimal to Hexadecimal

- Octal to Binary
- Hexadecimal to Binary
- Binary to Octal
- Binary to Hexadecimal
- Octal to Hexadecimal
- Hexadecimal to Octal

- Binary to Decimal
- Octal to Decimal
- **■** Hexadecimal to Decimal

- Multiplication Method

- **▶** Decimal to Binary
- Decimal to Octal
- **■** Decimal to Hexadecimal

- Repeated Division Method

■ Hexadecimal to Octal

- Covert to Binary then Binary to Number system

Number Conversion Lets Starts...

- Binary to Decimal Conversion

- Multiply each bits by its positional value and add
- **Eg**: convert $(1101.11)_2$ to Decimal.
- Position Representation

- Binary to Decimal Conversion

$$(1101.11)_2 = (13.75)_{10}$$

- Octal to Decimal Conversion

- Multiply each octal digit by its positional value and add
- **E** Eg: convert $(256.11)_8$ to Decimal.
- Position Representation

- Octal to Decimal Conversion

- Hexadecimal to Decimal Conversion

- Multiply each hexadecimal digit by its positional value and add
- **Eg**: convert $(3A6.13)_{16}$ to Decimal.
- Position Representation

- Hexadecimal to Decimal Conversion

- Decimal to Binary Conversion

- Repeatedly dividing it by 2, until the quotient is zero
- Reminder generate each division form binary number
- **■** Eg : convert $(25.28)_{10}$ to Binary.
- Position Representation

- Decimal to Binary Conversion

- Decimal to Binary Conversion

 Fractional part conversion by multiply with 2

B
$$0.28 \times 2 = 0.56 \rightarrow 0$$
 | MSB $0.56 \times 2 = 1.12 \rightarrow 1$ | $0.12 \times 2 = 0.24 \rightarrow 0$ | $0.24 \times 2 = 0.48 \rightarrow 0$ | $0.48 \times 2 = 0.96 \rightarrow 0$ | LSB

$$(25.28)_{10} = (11001.01000)_2$$

$$B = 01000$$

- Decimal to Octal Conversion

- Repeatedly dividing it by 8, until the quotient is zero
- Reminder generate each division form Octal number
- Eg: convert (163.253) $_{10}$ to Octal.
- Position Representation

- Decimal to Octal Conversion

- Decimal to Octal Conversion

- Decimal to Hexadecimal Conversion

- Repeatedly dividing it by 16, until the quotient is zero
- Reminder generate each division form Hexadecimal number
- Eg: convert (298.653) $_{10}$ to Octal.
- Position Representation

- Decimal to Hexadecimal Conversion

↑ LSB

- Decimal to Hexadecimal Conversion

- Octal to Binary Conversion

■ Covert each Octal digit into its 3 bit binary equivalent

Octal	Binary Equivalent	
0	000	
1	001	
2	010	
3	011	
4	100	
5	101	
6	110	
7	111	

- Octal to Binary Conversion

 \blacksquare Eg: Convert (35.10) $_8$ to Binary

- Hexadecimal to Binary Conversion

■ Covert each Hexadecimal digit into its 4 bit binary equivalent

Hexadecimal	Binary Equivalent	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	

	1000	
8	1000	
9	1001	
A	1010	
В	1011	
С	1100	
D	1101	
E	1110	
F	1111	

- Hexadecimal to Binary Conversion

■ Eg: Convert (6A . 21)₁₆ to Binary

- Binary to Octal Conversion

■ Covert 3 bit Binary number into corresponding Octal equivalent

Binary	Octal Equivalent	
000	0	
001	1	
010	2	
011	3	
100	4	
101	5	
110	6	
111	7	

- Binary to Octal Conversion

■ Eg: Convert (1100110 . 01)₂ to Octal

$$(1100110 .01)_2 = (146.2)_8$$

- Binary to Hexadecimal Conversion

■ Covert 3 bit Binary number into corresponding Octal equivalent

Binary	Hexadecimal Equivalent	
0000	0	
0001	1	
0010	2	
0011	3	
0100	4	
0101	5	
0110	6	
0111	7	

1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

- Binary to Hexadecimal Conversion

E Eg: Convert (1100110 . 01) $_2$ to Hexadecimal

$$(1100110 . 01)_2 = (66.4)_{16}$$

- Octal to Hexadecimal Conversion

- **■** Convert octal number into equivalent binary,
- then convert binary to hexadecimal
- \blacksquare Eg: Convert (67. 4)₈ to Hexadecimal
 - **■** Octal to Binary

6	7	•	4
110	111	•	100

Binary to Hexadecimal

$$(67.4)_8 = (37.8)_{16}$$

- Hexadecimal to Octal Conversion

- **■** Convert Hexadecimal number into equivalent binary,
- then convert binary to Octal
- **■** Eg : Convert (B6. F) 16 to Octal
 - Hexadecimal to Binary

В	6	•	F
1011	0110	•	111

Binary to Octal

$$(B6.F)_{16} = (266.74)_{8}$$

Binary Arithmetic

- Binary Addition

- Carry bit 1 is created only two 1s are added
- Three 1s are added ,then sum is 1 and carry is 1

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

0 +	0 +	
0	_1	
0	1	1 +
		1
		1
1 +	1+	11
0	1	• •
1	10	

■ Eg: Find sum of binary numbers 1011 and 1001

■ Eg: Find sum of binary numbers 110111 and 111

- Binary Subtraction

■ Borrow bit 1 is created only 1 subtracted from 0

Α	В	Difference	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

■ Eg : Subtract 10101 from 11111

11111-10101 01010 **►** Eg : Subtract 011 from 101

■ Eg : Subtract 10111 from 101000

Representation of Numbers

■ Numbers or integers represented in computer are

- Sign and Magnitude Representation (SM)
- 1's Compliment Representation
- 2's Compliment Representation

- Sign and Magnitude Representation

- **■** It is used to represent signed numbers
- **■** It consist of sign part and magnitude part
- **Example:** -32 +51 -7
- **■** A Computer word size is 1 byte (8 bit)

Sign Part | Magnitude Part

■ The 7th bit (MSD) is used for representing sign of a number

■ If 7th bit is One , it indicate the number is -ve

+5

- 1's Compliment Representation

- **■** Another method of representing Negative numbers
- -ve number indicate its compliment

- 2's Compliment Representation

- **■** Another method of representing Negative numbers
- **■** Just add 1 with 1's compliment

2's Compliment

Representation of Characters

- **■** Symbolic way to represent characters in computers are called character representation
 - ASCII
 - EBCDIC
 - ISCII
 - Unicode

ASCII

- **■** ASCII
- **►** American Standard Code for Information interchange
- **■** Use 7 bit to represent a character
- Example: A 97 (1100001)
- **■** It can represent 128 characters
- $-2^7 = 128$

EBCDIC

- **■** EBCDIC
- **■** Extended Binary Coded Decimal Interchange Code
- **■** Similar to ASCII
- **■** Use 8 bit to represent a character
- **■** It can represent 256 characters
- $-2^8 = 256$

ISCII

- **■** ISCII
- **■** Indian Standard Code for Information Interchange
- **■** Or Indian Script Code for Information Interchange
- **■** Use 8 bit to represent a character
- **■** It can be used to represent various writing system of india

Unicode

- **■** Unicode
- **16 bit** Code represent up to 65,536 characters
- **■** Used to represent almost all written languages of the world
- **■** Now a days Unicode represent more than 16 bit codes

Boolean Algebra

Boolean Algebra

- Boolean algebra is a form of mathematics that deals with statements and their values.
- It can have only two values: true or false. (0 or 1)
- The operation performed by Boolean values are called Boolean operations / logical operations
- Logical gate: physical device that perform logical operations
- It is implemented using diodes and transistors

Boolean Operations and logical gates

- 3 basic Boolean operations in Boolean algebra
 - 1. OR \rightarrow Logical Addition
 - 2. AND \rightarrow Logical Multiplication
 - 3. NOT → Logical Negation

Logical OR

- OR operation performs logical addition
- → + Plus symbol used for this operation
- ► A + B read as A OR B
- Truth table : (All possible operations and results)

Input A	Input B	Y = A + B (A OR B)	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Logical AND

- **►** AND operation performs logical Multiplication
- . Dot symbol used for this operation
- A. B read as A AND B
- Truth table : (All possible operations and results)

Input A	Input B	Y = A . B (A AND B)
0	0	0
0	1	0
1	0	0
1	1	1

Logical NOT

- NOT operation performs logical Nagation
- over bar symbol used for this operation
- → A read as A NOT
- Truth table : (All possible operations and results)

Input A	$Y = \overline{A}$	
0	1	
1	0	

■ Also called inverter

Principle of Duality

- A Boolean relation can be written to another Boolean relation by changing each OR operation to AND operation vice versa
- ightharpoonup Example : A (B + C) = AB . AC

■ If the statement is true for an expression, then it is also true for the dual of the expression

Operator / Variable	Dual
AND	OR
OR	AND
1	0
0	1
A	Ā
Ā	A

Basic theorems of Boolean Algebra

- Standard and accepted rules in Boolean algebra
- The rules are known as axioms
 - Identity law
 - Idempotent law
 - Involution law
 - Complimentary law

- Commutative law
- Associative law
- Distributive law
- Absorption law

Identity law

■ Additive identity

$$0 + x = x$$
 $1 + x = 1$

0 + x = x	1 + x = 1
0 + 0 = 0	1 + 0 = 1
0 + 1 = 1	1 + 1 = 1

■ Multiplicative identity

$$0.x = 0$$
 $1.x = x$

$$0.x = 0$$
 $1.x = x$
 $0.0 = 0$ $1.0 = 0$
 $0.1 = 0$ $1.1 = 1$

Idempotent law

$$x + x = x$$

$$x \cdot x = x$$

if
$$x = 0$$
, if $x = 0$
 $x + x = x$
 $0 + 0 = 0$

if
$$x = 0$$
,
 $x \cdot x = x$
 $0 \cdot 0 = 0$

Involution law

$$\overline{\overline{X}} = X$$

if
$$x = 0$$
,
$$\overline{X} = X$$

$$\overline{0} = 1$$

$$\overline{0} = 0$$

if
$$x = 1$$
,
$$\overline{\overline{X}} = X$$

$$\overline{\overline{1}} = 0$$

$$\overline{\overline{1}} = 1$$

Complimentary law

$$\overline{X} + X = 1$$

$$\overline{X} \cdot X = 0$$

if
$$x = 0$$
,
 $x \cdot x = 0$
 $0 \cdot 0$
 $1 \cdot 0 = 0$

Commutative law

$$x + y = y + x$$

X	Υ	X + Y	Y + X
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

X		V	=	V		X
/	•	y		y	•	

X	Υ	X . Y	Y . X
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Associative law

$$x + (y + z) = (x + y) + z$$

$$x.(y.z) = (x.y).z$$

$$x + (y + z) = (x + y) + z$$

Χ	Υ	Z	Y + Z	X + (Y + Z)	X + Y	(X + Y) + Z
0	0	0	0	0	0	0
0	0	1	1	1	0	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

x.(y.z) = (x.y).z

 /							
X	Υ	Z	Y . Z	X . (Y . Z)	X . Y	(X . Y) . Z	
0	0	0	0	0	0	0	
0	0	1	0	0	0	0	
0	1	0	0	0	0	0	
0	1	1	1	0	0	0	
1	0	0	0	0	0	0	
1	0	1	0	0	0	0	
1	1	0	0	0	1	0	
1	1	1	1	1	1	1	

Distributive law

$$x.(y+z) = (x.y) + (x.z)$$

$$x + (y.z) = (x + y).(x + z)$$

$$x.(y+z)=(x.y)+(x.z)$$

X	Υ	Z	Y + Z	X . (Y + Z)	X . Y	X . Z	(X . Y) + (X . Z)
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

$$x + (y.z) = (x + y).(x + z)$$

	X	Υ	Z	Y . Z	X + (Y . Z)	X + Y	X + Z	(X + Y) . (X + Z)
	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	1	0
/	0	1	0	0	0	1	0	0
/	0	1	1	1	1	1	1	1
	1	0	0	0	1	1	1	1
	1	0	1	0	1	1	1	1
	1	1	0	0	1	1	1	1
	1	1	1	1	1	1	1	1

Absorption law

$$x + (x.y) = x$$

Χ	. ((x	+ \	/)	=	X
•	•	′ ′ ′		, ,		•

Х	Υ	X . Y	X + (Y . X)
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

X	Υ	X + Y	X . (Y + X)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

De Morgan's theorems

■ The Complement of sum of Boolean variable is equal to product of their individual complements.

$$\overline{X + Y} = \overline{X}.\overline{Y}$$

■ The Complement of product of Boolean variable is equal to sum of their individual complements.

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

■ Proof of 1st theorem

We have to prove that, $\overline{X+Y} = \overline{X} \cdot \overline{Y}$

Let us assume that, Z = X + Y _____(1)

Then,
$$\overline{Z} = \overline{X + Y}$$
 (2)

We know that, by complimentary law, the equations (3) and (4) are true.

$$Z + \overline{Z} = 1$$
 _____(3)

$$Z \cdot \bar{Z} = 0$$
 ____(4)

Substituting expressions (1) in (3) and (2) in (4), we will get equations (5) and (6).

$$(X + Y) + (\overline{X + Y}) = 1$$
 _____(5)

$$(X + Y) \cdot (\overline{X + Y}) = 0$$
 _____(6)

$$\overline{X + Y} = \overline{X} \cdot \overline{Y}$$

$$(X+Y) + (\overline{X} \cdot \overline{Y}) = 1$$
 _____(7)

$$(X + Y) \cdot (\overline{X} \cdot \overline{Y}) = 0$$
 _____(8)

Equation 7:

$$(X + Y) + (\overline{X} \cdot \overline{Y}) = (X + Y + \overline{X}) \cdot (X + Y + \overline{Y}) \qquad (Distributive Law)$$

$$= (X + \overline{X} + Y) \cdot (X + Y + \overline{Y}) \qquad (Associative Law)$$

$$= (1 + Y) \cdot (X + 1) \qquad (Complimentary Law)$$

$$= 1 \cdot 1 \qquad (Additive Identity)$$

$$= 1$$

$$(X+Y) + (\overline{X} \cdot \overline{Y}) = 1$$
 _____(7)

Equation 8:

$$\begin{array}{ll} (X+Y) \cdot (\ \overline{X} \cdot \overline{Y}\) &= (X \cdot \ \overline{X} \cdot \overline{Y}\) + (Y \cdot \overline{X} \cdot \overline{Y}\) & (\textit{Distributive Law}) \\ &= (X \cdot \overline{X} \cdot \overline{Y}\) + (Y \cdot \overline{Y} \cdot \overline{X}\) & (\textit{Associative Law}) \\ &= (0 \cdot \overline{Y}) + (0 \cdot \overline{X}) & (\textit{Complimentary Law}) \\ &= 0 + 0 & (\textit{Multiplicative Identity}) \\ &= 0 \end{array}$$

$$(X + Y) \cdot (\overline{X} \cdot \overline{Y}) = 0$$
 _____(8)

■ Proof of 2nd theorem

We have to prove that, $\overline{X}.\overline{Y} = \overline{X} + \overline{Y}$

Let us assume that, $Z = X \cdot Y$ _____(1)

Then,
$$\overline{Z} = \overline{X.Y}$$
 _____(2)

We know that, by complimentary laws the equations (3) and (4) are true.

$$Z + \overline{Z} = 1$$
 _____(3)

$$Z \cdot \bar{Z} = 0$$
 _____(4)

Substituting expressions (1) in (3) and (2) in (4), we will get the expressions (5) and (6).

$$(X \cdot Y) + (\overline{X \cdot Y}) = 1$$
 _____(5)

$$(X \cdot Y) \cdot (\overline{X \cdot Y}) = 0$$
 (6)

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

$$(X \cdot Y) + (\overline{X} + \overline{Y}) = 1$$
 (7)

$$(X \cdot Y) \cdot (\overline{X} + \overline{Y}) = 0$$
 (8)

Equation 7:

$$\begin{array}{lll} (X\,.\,Y) + (\,\,\overline{X} + \overline{Y}\,\,) &= (\,\overline{X} + \overline{Y}\,\,) + (X\,.\,Y) & (\textit{Commutative Law}) \\ &= (\,\,\overline{X} + \overline{Y}\,\, + X\,)\,.\,(\,\,\overline{X} + \overline{Y}\,\, + Y\,) & (\textit{Distributive Law}) \\ &= (\,\,\overline{X} + X + \overline{Y}\,\,)\,.\,(\,\,\overline{X} + \overline{Y}\,\, + Y\,) & (\textit{Associative Law}) \\ &= (1 + \overline{Y}\,\,)\,.\,(\,\,\overline{X} + 1\,) & (\textit{Complimentary Law}) \\ &= 1\,.\,1 & (\textit{Additive Identity}) \\ &= 1 \end{array}$$

$$(X \cdot Y) + (\overline{X} + \overline{Y}) = 1$$
 (7)

Equation 8:

$$\begin{array}{lll} (X\,.\,Y)\,.\,(\,\,\overline{X}\,+\,\overline{Y}\,\,) &= (X\,.\,Y\,.\,\overline{X}\,\,) + (X\,.\,Y\,.\,\overline{Y}\,\,) & (\textit{Distributive Law}) \\ &= (X\,.\,\,\overline{X}\,.\,Y\,) + (X\,.\,Y\,.\,\,\overline{Y}\,\,) & (\textit{Associative Law}) \\ &= (0\,.\,Y) + (X\,.\,0) & (\textit{Complimentary Law}) \\ &= 0 + 0 & (\textit{Multiplicative Identity}) \\ &= 0 \end{array}$$

$$(X \cdot Y) \cdot (\overline{X} + \overline{Y}) = 0$$
 (8)

Logic Circuits

 $\overline{A} + \overline{B}$

Universal gate

- Universal gate is a gate which can implement any other Boolean function without using any other gates
- NAND gate and NOR gate are called universal gate.

► NAND = Noted AND gate

Universal gate

► NOR = Noted OR gate

Fig. 2.20 : NOT gate using NAND gate

Fig. 2.21: AND gate using NAND gate

Fig. 2.22 : OR gate using NAND gate

Fig 2.23: NOT gate using NOR gate

Fig 2.24: OR gate using NOR gate

Teaching materials Prepared by

RIDHUN DEV

Lecture IHRD College

+1 / +2 Computer Science

8089552581