Project Development Phase Model Performance Test

Date	10 November 2022		
Team ID	PNT2022TMID35610		
Project Name	Project - A Novel Method For Handwritten Digit		
	Recognition System.		
Maximum Marks	10 Marks		

Model Performance Testing:

S.No.	Parameter	Values	Screenshot			
1.	Model Summary		[12]:	<pre>model.summary() Model: "sequential_2"</pre>		
			į	Layer (type)	Output Shape	Param #
				conv2d_4 (Conv2D)	(None, 26, 26, 28)	280
		i	max_pooling2d_4 (MaxPooling2	(None, 13, 13, 28)	0	
			conv2d_5 (Conv2D)	(None, 11, 11, 28)	7084	
		i	max_pooling2d_5 (MaxPooling2	(None, 5, 5, 28)	0	
		:	flatten_2 (Flatten)	(None, 700)	0	
			·	dense_6 (Dense)	(None, 512)	358912
			dropout_4 (Dropout)	(None, 512)	0	
				dense_7 (Dense)	(None, 128)	65664
				dropout_5 (Dropout)	(None, 128)	0
				dense_8 (Dense)	(None, 10)	1290
				Total params: 433,230 Trainable params: 433,230 Non-trainable params: 0 + Code		

2. Accuracy Training Accuracy – 99.81% def accuracy(x_train, y_train, model): loss,acc = model.evaluate(train_samples, train_labels,verbose=0) Validation Accuracy - 98.91% return acc acc = accuracy(train_samples, train_labels, model) Testing Accuracy-99.04% print('Train accuracy is, ', acc*100, '%') Train accuracy is, 99.81666803359985 % Validation Accuracy Training Accuracy Validation Loss Training Loss Epoch 0.978500 0.906852 0.074422 0.308299 0.987500 0.975963 0.047910 0.078035 2 2 0.987833 0.984593 0.043793 0.051941 3 3 0.988500 0.988389 0.041744 0.038774 4 0.989000 0.990778 0.041208 0.029460 5 4 0.992185 5 0.990167 0.036659 0.024544 6 6 0.988833 0.993389 0.037043 0.020551 0.989667 0.994778 0.039521 0.016402 8 0.991167 0.995241 0.041283 0.014158 9 8 0.995148 0.037630 0.013622 9 0.990000 10 10 0.991000 0.996463 0.038866 0.011439 11 0.996315 0.036490 0.011447 11 0.991333 12 12 0.992500 0.996574 0.037629 0.009888 13 13 0.991500 0.997574 0.043673 0.007542 14 0.991500 0.997167 0.042455 0.008863 15 14 0.996944 0.041079 15 0.990833 0.008768 16 0.990333 0.997389 17 16 0.053278 0.007346 17 0.990667 0.997370 0.046048 0.007472 18 18 0.992167 0.997426 0.041623 0.007897 19 19 0.989167 0.997370 0.050672 0.007211 20 [48]: def accuracy(x_test, y_test, model): loss,acc = model.evaluate(test_samples, test_labels,verbose=0) return acc acc = accuracy(test_samples, test_labels, model) print('Test accuracy is, ', acc*100, '%') Test accuracy is, 99.04000163078308 %

