JEGYZŐKÖNYV KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

ATOMERŐ MIKROSZKÓPIA

• Mérést végezte : Brindza Mátyás

• Mérőtársak : Kovács Benjamin, Németh Olivér

 $\bullet\,$ Mérés időpontja : 2023.04.28.

Tartalomjegyzék

1.	A mérés célja	
	A mérés elméleti háttere 2.1. Az STM működése	
3.	A mérés menete	
	Kiértékelés 4.1. Adathordozó információtartalma 4.2. A grafitrétegek vastagsága	

1. A mérés célja

A mérés során megismerkedünk az AFM (Atomic Force Microscopy) és az STM (Scanning Tunneling Microscopy) vizsgálati módszerekkel.

2. A mérés elméleti háttere

Az optikai mikroszkópok által elérhető legjobb felbontást limitálja a diffrakciós limit. A fény hullámhossza és az optika numerikus apertúrájának hányadosa szabja meg a térbeli felbontást. Fény esetén ez ~ 100 nm, mely nagyon messze (~ 3 nagyságrend) van az atomi felbontástól. Az elektronmikroszkóp volt az első műszer, mely képes volt az optikai mikroszkópoknál nagyobb, atomi felbontásra. A mikroszkópia ezóta sokat fejlődött, már a 20. században több mikroszkópiai módszer született az atomi felbontás elérésére, melyekkel különböző mennyiségek mérhetőek különböző módon. A technológia fejlődéséhez elengedhetetlen volt az anyagmegmunkálás és az elektronika fejlődése, ám ezek egymást elősegítő folyamatoknak bizonyultak.

AFM és STM esetén a vizsgálandó felület $\sim 0.1-1$ nm-es közelébe kell vinni az ugyanekkora méretű és ugyanekkora pontossággal irányítható mikroszkopikus szondát. Így biztosítjuk azt, hogy ténylegesen az atomi közelségben lévő kölcsönhatásokat mérjük¹. A szonda általában egy hegyes tű, ideális esetben egy atom alkotja a hegyét. A szonda mozgatását általában egy piezoelektromos effektust kihasználó eszköz végzi. A szondáról érekező jelek igen gyengék, ezért erősítésre is szükség van. A jelek digitalizálás után csak számítógéppel dolgozhatóak fel. Az adatok kinyerésekor ugyanis nem "képet látunk", sok számítást igényel az adatok feldolgozása.

2.1. Az STM működése

Pásztázó alagút mikroszkóppal (STM) pontonként végzünk mérést, az alagút-effektus segítségével szerzünk információt a felületről. Az STM fémes vagy félvezető felületek vizsgálatára alkalmas. A szonda és a minta között tipikusan $\sim 0.1 \sim nm$ távolság van, és a rájuk kapcsolt $\sim 10^{-5}V$ feszültség melletti alagútáramot mérjük, ugyanis az alagútáramot leíró exponenciális függvény karakteriszikus távolsága pont a $\sim 0.1 \sim nm$ távolság közelében van. Ahhoz, hogy jó minőségű képet kapjunk, a karakterisztikus távolságot el kell érnünk, és még pontosabban kell mozgatnunk a szondát (~ 0.1 nm). Ez a pontosság elérhető piezoelektromos kerámiákkal, ám a rájuk kapcsolt áramot is igen pontosan kell szabályozni (~ 1 nA)

Az állandó magasságú üzemmód használatához - csak az (x,y) síkban² kelljen mozgatni a tűt - elég sima mintára van szükség. Amennyiben nem elég sima a minta felülete, az állandó alagútáramú vagy topografikus üzemmódot ajánlatos használni. Ekkor egy visszacsatoló áramkör segítségével az alagútáramot próbáljuk állandó értéken tartani, miközben fel-le mozog a tű. Spektroszkópiás üzemmódban a felület áram-feszültség karakterisztikáját mérjük, mely további információt hordoz a felület elektromágneses tulajdonságairól³. Továbbá az STM segítségével képesek vagyunk a minta felületén lévő gyengén kötött atomokat felvenni, és tetszőleges helyen lerakni.

Ez a módszer megköveteli a majdnem atomi tűhegyességet. Ezt makroszkopikus eszközökkel is elérhetjük, ugyanis pl. az Pt/Ir drót elvágásakor mikrotüskék keletkeznek, melyek hossza elég gyakran különbözik annyira, hogy csak az egyik funkcionáljon tűként⁴.

Ugyanakkor biológiai minták és szigetelő minták nem vizsgálhatóak STM-mel, csak fémes vagy félvezeteő (felületű) anyagok. 5 évvel az STM feltalálása után született meg az atomerő mikroszkópia (AFM), mely nem követeli meg, hogy a minta vezető legyen.

2.2. Az AFM működése

Az AFM szondája nagyobb, a tű hegyének görbületi sugara $\sim 10-100$ nm. A tűk általában szilikonból vagy szilikon-nitridből készülnek, ám kísérlettől függően más anyagokból is készültek tűk⁵. A tű egy rugólapkához van rögzítve, melynek meghajlásából következtethetünk a minta és a tű között ható erőre.

Az STM-hez hasonlóan, a szondát egy piezoelektromos kristály segítségével mozgathatjuk a tér minden irányába⁶. A csőszkennerek 4 szegmens segítségével mozgatják a tűt, a szegmensekre kapcsolt feszültség

¹Ez egyben limitálja a mérés hatótávolságát. Kizárólag felületi információt szerezhetünk a mintáról.

 $^{^2}$ Konvenció, hogy a mérendő felületre merőleges irányba mutat a z tengely.

³Pl. vezető vagy félvezető-e a minta, és mennyire.

 $^{^4\}mathrm{Az}$ alagútáram erős távolságfüggése miatt. Könnyen megállapítható, ha több tüskén is folyik áram

⁵Akár egy egyfalú szén-nanocső is használható tűként.

 $^{^6\}mathrm{Egyes}$ méréseknél a mintát mozgatják, ez nem jelent érdemi különbséget.

segítségével különböző irányokba hajlítható a tű, a le-fel mozgatáshoz mind a négy szegmensre azonos feszültséget kell kapcsolni, illetve ezek tetszőleges szuperpozíciójával tetszőleges pontba vihető a tű hegye. A tripod szkennerekben 3 egymásra merőleges irányban elhelyezett piezokerámia végzi a tű pozíciónálását.

A rugólap elhajlását optikai úton állapítjuk meg. Az AFM mérőfejében lévő lézerdióda sugarát a rugólap tűvel ellentétes oldalára fókuszáljuk, majd a visszavert fényből egy négyszegmenső fotodióda segítségével megállapítható az elhajlás. A fotodióda négy szegmense a bejövő fény intenzitását méri, a szegmensekre eső intenzitások eloszlásából meghatározható a fényfolt közepe, azaz a rugólapon történő reflexió iránya. Ez a módszer akkor pontos, ha a folt közepe a szegmensek elrendeződésének közepe körül van. A mérés során megjeleníthető a felső (T) és alsó (B), illetve a bal (L) és jobb (R) szegmenspárokon mért áramkülönbség.

$$T - B = (A + B) - (C + D)$$

$$L - R = (A + C) - (B + D)$$
(1)

A rugólapka meghajlása a T-B mennyiséggel arányos, azaz ebből határozhatjuk meg felületre merőlegesen ható erőt. Az L-R mennyiség a rugólapka csavarodásával arányos, így a felülettel párhuzamos irányban ható erővel is, azaz a surlódási erővel. Ezekkel a mennyiségekkel mérhetünk ún. meghaljási képet. Ekkor a szonda a z-tengelyre merőleges irányokban pásztázza a mintát. Ehhez azonban igen sima felületre van szükség, ellenkező esetben a tű is és a minta is károsulhat.

Amennyiben nem elég sima a minta, visszacsatoló áramkörre van szükség, mely a fotodióda és a peizoszkenner jele alapján dinamikusan mozgatja a tűt.

Alapesetben a tű és a minta közti kölcsönhatást egy Van der Waals potenciál írja le. A kis távolságon lévő taszító tartományban mérünk kontakt módban, a távolabb lévő minimum körényékén mérünk non-kontakt módban, és a kettő között tapping módban. A kontakt és a non-kontakt tartományai között nincs átfedés, ám a tapping és a kontakt, illetve a tapping és a non-kontakt tartományai között van.

A kontakt, azaz az állandó erejű üzemmód használata a legeltejedtebb. A tű és a minta között ható erőt (\sim nN) tartjuk állandó értéken a tű fel-le mozgatásával. Beállítjuk a T-B értéket, majd az ettől való eltéréssel $-1\times$ arányosan küldünk jelet a piezokristálynak, így minimalizálva az eltérést. A visszacsatolás stabilitása érdekében szokás a hibajel időbeli integrálját és differenciálját is minimalizálni. Az integrál minimalizálásával elkerülhető a gerjedés, a differeciál minimalizálásával pedig gyorsabbá tehető a mérés. Ez az ún. PID (proportional-integral-derivative) szabályzás elve, mely számos helyen használatos. Ezzel letapogatható a minta felülete, a felület 3D topográfiájáról kapunk képet. Az üzemmód hátránya a nagy súrlódás, illetve károsodhat a minta, ha nem elég sima.

A non-kontakt és tapping üzemmódok hasonlóan működnek, de különböző (átfedő) tartományokon. A tűt kHz-100kHz frekvenciával és \sim nm amplitúdóval kényszerrezgetjük. A rezgés amplitúdóját vagy fázistolását tartva állandó értéken a minta és a tű között ható erő gradiensének z-komponensét mérjük. Ebben az esetben a hibajel az amplitúdó és a fázistolás eltérése a nominális értéktől, melyre szintén alkalmazható a PID szabályzás elve.

A non-kontakt üzemmódhoz erősebb rugóállandójú rugólapkát szokás használni, ugyanis a rézgés jósági tényezőjének a keményebb rugó kedvez, míg kontakt üzemmódban puhább rugólapka használatos, mert ezzel érzékenyebb mérés végezhető.

A tűvel z-irányban is pásztázhatunk, a minta felületének egy pontja felett kimérhetjük a kölcsönhatás erősségét a távolság függvényében. Ezt nevezzük spektroszkópiai üzemmódnak. Ebben az üzemmódban individuális kémiai kötéseket is mérni tudunk, a tű hegyére egy kívánt molekulát rögzítve individuális molekulák közti kölcsönhatás is feltérépezhető, illetve makromolekulák (belső) szerkezete is vizsgálható.

3. A mérés menete

A mérés során egy pásztázó mikrószkóppal mérünk, mely AFM és STM mérőfejjel is kompatibilis. Elsőként egy szilícium kalibrációs rácsról készítünk felvételeket az AFM mérőfejjel, majd egy DVD felszínét vizsgáljuk, a rá írt biteket letapogatjuk. A bitek longitudinális sűrűségéből és a transzverzális irányú gap-ek távolságából meghatározható az adathordozó információsűrűsége. A 4 szegmensű fotodiódára eső intenzitásokat is láthatjuk, a bejövő intenzitások alapján egy szoftver leszimumlálja a fényfolt alakját. Ezután az STM mérőfej segítségéfel készítettünk felvételt egy grafit mintáról. A mintát úgy állítottuk elő, hogy egy makroszkópikus méretű grafittömb felszínéről eltávolítottunk egy réteget ragasztószalaggal. Erre azért van szükség, mert az STM kifejezetten érzékeny a felület elektromos tulajdonságaira, melyet az idővel lecsapódó, néhány molekula vastag vízréteg megváltoztat, így elmosódik a kapott kép.

4. Kiértékelés

4.1. Adathordozó információtartalma

A mérés során tapping módban használjuk az AFM mérőfejet. Végigszkenneljünk a frekvencia-tartományt, a maximális amplítúdónál megtaláljuk a megfelelő módust. A sajátfrekvencián sokkal kisebb erőket is lehet mérni, mert kevesebb a zaj. Ha túl messze vagyunk a rezonancia frekvenciától, akkor nem elég érzékeny a műszer, ha azonban túl közel vagyunk hozzá, berezonálhat. A durva fel-le mozgatással vigyázni kell, mert letörhet a tű.

Az üres DVD-nek sima és homogén a felülete. Amikor információt írunk, lézerrel világítjuk meg a megfelelő pontokat a lemezen, ezzel fázisátalakulást okozva, mely amorf szerkezetű kitüremkedéseket okoz a felületetn. A kitüremkedések elrendeződése határozza meg kiolvasott biteket. A lemezen az azimutális irányban egymás után következő amorf (a) és nem amorf (n) tartományok hosszaiban vannak kódolva az 1-esek és a 0-k. A különböző tartományok határai felelnek meg az 1-nek, és az azonos tartományok határai felelnek meg a 0-nak. Így az annanaaa sorozat 101100-nak felel meg. A Gwyddion nevű szoftvert használtam az adatok feldolgozására. Az első mérés felvétele, miután a "Shift minimum data value to zero" és a "Level data by mean plane subtraction" transzformációkat végrahajtottam rajta, az ??. ábrán látható.

Ezután közelebb visszük a tűt a mintához, és pontosabb mérést végzük.

A pacák határai el vannak mosódva. Ennek oka, hogy minden bizonnyal egy porszem ragadt a tű hegyére. Ez letörölhető sima pásztázással, ha a mintába picit erősebb benyomjuk a tűt. Ekkor az következő eredményt kapjuk.

Így a kiértékelő szoftver segítségével megmérhetjük több helyen is a bitek longitudinális és transzverz távolságát, melyet a 1. és az 2. jelenít meg. Két bit szélét jobb mérni, ugyanis az amorf tartományok konvexak, a nem amorfak konkávok. A megfelelő irány megtalálásához segít, ha két távoli bit szélére illesztünk vonalat, majd ezt, az irányát nem választatva rövidítjük mindkét irányból, ameddig nem lesz két bit hosszú. Két bit+gap sáv távolságát mértem, ugyanis egy bit "effektív szélességébe" beletartozik a gap is, amely nem

feltétlen ugyanolyan széles, mint maga az amorf tartomány.

1. ábra. A bitek távolsága $\left(l\right)$

2. ábra. A sávok szélessége $\left(d\right)$

A mért távolságok :

 \bullet $2\times l$ [nm] : 968.0711 , 969.2322 , 994.9186 , 977.3215 , 1079.5493 , 915.525 , 1040.1327 , 1165.8016 , 874.3512 , 1070.0816

• $2 \times d$ [nm] : 1066.0198 , 1045.3716 , 1139.2202 , 1118.5347 , 1131.957 , 1162.9037 , 1119.492 , 1141.4746 , 1132.8557 , 1132.8557

A "Read horizontal and/or vertical profile" fukcióval bármely vonal mentén ábrázolhatjuk a pixelek értékét, és a szélek elmosódásai is jobban látszanak. Ez az elmosódás kisebb, mint a kapott adatsor szórása, ezért az utóbbi alapján határoztam meg a hibát. Így egy bit hossza és a sávok szélessége releváns tizedesig kerekítve :

$$l = 503 \text{ nm} \pm 43 \text{ nm}$$

 $d = 721 \text{ nm} \pm 65 \text{ nm}$ (2)

Így az egy bit által elfoglalt terület⁷:

$$T_{1 \text{ bit}} = 362402 \text{ nm}^2 \pm 78 \text{ nm}^2$$
 (3)

A DVD méretbeli specifikációi a 3. ábrán⁸ láthatóak.

3. ábra. A DVD paraméterei

Így az effektív terület :

$$T_{\text{eff}} = (58 \text{ mm} \pm 0.5 \text{ mm} - 25 \text{ mm} \pm 0.5 \text{ mm})^2 \pi = 3421.2 \text{ mm}^2 \pm 0.7 \text{ mm}^2$$
 (4)

Így kiszámolható a DVD információ tartalma is.

$$\frac{T_{\text{eff}}}{T_{1 \text{ bit}}} = (8.7920 \pm 0.0026) \cdot (1024)^3 \tag{5}$$

Így a lemez ≈ 8.8 GB adat tárolására képes.

4.2. A grafitrétegek vastagsága

A mérést az STM mérőfejjel végezzük. Grafittömbről ragasztószalaggal leválasztunk egy réteg grafitot, majd ezt helyezzük a mintatartóra. Először kerestünk olyan régiókat, ahol jobban látszódnak a rétegek, ahogy a 4. ábrán is.

Végeztünk egy részletesebb mérést is (5. ábra).

⁷Az összeg szórásnégyzete az összeadandók szórásának négyzetösszege.

4. ábra. A grafit grafénrétegei - $5\times 5~\mu\mathrm{m}$

5. ábra. A grafit grafénrétegei - $1\times1~\mu\mathrm{m}$

Megmértem Gwyddion segítségével egy-egy grafitsík vastagságát.

l ₂	[mm]	27 6107	22 2262	20 2442	25 275	20.794	21.6596
$\mid n_1 \mid$	nm	27.0107	22.3262	28.3443	25.375	30.784	1 21.0590

1. táblázat. Grafit réteg vastagsága

6. ábra. Grafitsík

A grafén síkok vastagsága 9 néveleg 0.335 nm. Így kiszámolható, hogy nagyjából mennyi grafénsíkot tartalmaz a vizsgált grafitsík.

$$\langle h_1 \rangle = 26.016 \text{nm} \approx 77 \cdot d_{\text{graphene}}$$
 (6)

 $^{^9\}mathrm{A}$ kötési távolságot is beleszámolva.

7. ábra. Grafitsík

$h_2 \text{ [nm]} = 25$	5.3519 31.9983	36.0487	32.9375	27.0745	25.3519	21.3322	22.9479
-------------------------	------------------	---------	---------	---------	---------	---------	---------

2. táblázat. Grafit réteg vastagsága

Hasonlóképp járunk el a másik sík esetén is.

$$\langle h_2 \rangle = 27.88 \text{nm} \approx 83 \cdot d_{\text{graphene}}$$
 (7)