Theory of some important Transducers

Measurement of Displacement

Measurement of Displacement by Potentiometer

Potentiometer Construction

Analysis of Potentiometer Circuit

$$\frac{e_o}{e_{ex}} = \frac{1}{1/(x_i/x_t) + R_p/R_m)(1 - x_i/x_t)}$$

For an ideal meter, Rm will be infinite then one may have Rp/Rm will be almost zero

Then one may write

$$\frac{e_o}{e_{ex}} = \frac{x_i}{x_t}$$

Application of Potentiometer

To detect the changes in the chest (Thoracic) circumference, rotary potentiometer is attached to a chest band on a person.

In this setup, the transducer acts as a pivot to the caliper arms.

Strain Gauge

Measurement of Strain by Resistance Strain Gauge

Consider a conductor of uniform cross-sectional area A and length L, made of a material with resistivity ρ . The resistance R of such a conductor is given by

$$R = \frac{\rho L}{A}$$

Partially differentiating the above equation w.r.t ρ , L and A , we have

$$dR = \frac{L d\rho}{A} + \frac{\rho dL}{A} - \frac{\rho L dA}{A^2}$$

Dividing dR with R one may have

$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \frac{dA}{A}$$

As $A = \pi D^2$

Thus one may write the above equation as

$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - 2\frac{dD}{D}$$

Since the change is very small, one can modify the equation as

$$\frac{\triangle R}{R} = \frac{\triangle \rho}{\rho} + \frac{\triangle L}{L} - 2 \frac{\triangle D}{D}$$

Gauge factor G can be defined as

$$G = \frac{\frac{\triangle R}{R}}{\frac{\triangle L}{L}} = (1 + 2v) \quad \text{Poisson's Ratio } v = -\frac{\frac{\triangle D}{D}}{\frac{\triangle L}{L}}$$

Here Piezoresistive effect is neglected

Types of Strain Gauge

Unbonded strain gage

and semico in claims bestflist

Foil strain gages.

Circuit with one active Strain Gauge

Gauge in tension
$$(R_0 + \Delta R)$$
 V_{EX} V_{O} V_{O}

Temperature Compensation

Strain-gage temperature compensation.

Circuit with two active Strain Gauges

Circuit with four active Strain Gauges

Application of Strain Gauge

- Strain gauge measures the blood pressure inside the heart or blood vessels to diagnose cardiovascular abnormalities.
- The strain gauge is attached to the tip of the catheter
- The catheter is injected into the heart through veins
- On the front side of strain gauge diaphragm is mounted which undergoes deflection due to the applied force due to blood
- Therefore, when blood pressure inside the heart varies, it deflects the diaphragm that in turn changes the strain gauge resistance.

Measurement of displacement by LVDT

LVDT Construction

Core in null position

Output Vs Input of LVDT

Circuit Analysis of LVDT

Applying Kirchhoff's voltage-loop law, if the output is an open circuit (no voltage-measuring device attached), we get

$$i_p R_p + L_p \frac{di_p}{dt} - e_{ex} = 0 (1)$$

Now the voltage induced in the secondary coils is given by

$$e_{s1} = M_1 \frac{di_p}{dt}$$

$$e_{s2} = M_2 \frac{di_p}{dt}$$
(2)

 M_1 and M_2 are the respective mutual inductances. The net secondary voltage e, is then given by

$$e_s = e_{s1} - e_{s2} = (M_1 - M_2) \frac{di_p}{dt}$$
 (3)

The net mutual inductance $M_1 - M_2$ is the quantity that varies linearly with core motion. We have for a fixed core position

$$e_o = e_s = (M_1 - M_2) \frac{D}{L_p D + R_p} e_{ex}$$
 (4)

and thus

$$e_{o} = e_{s} = (M_{1} - M_{2}) \frac{D}{L_{p}D + R_{p}} e_{ex}$$

$$\frac{e_{o}}{e_{ex}}(D) = \frac{[(M_{1} - M_{2})/R_{p}]D}{\tau_{p}D + 1} \qquad \tau_{p} \triangleq \frac{L_{p}}{R_{p}}$$
(5)

In terms of frequency response,

$$\frac{e_o}{e_{ex}}(i\omega) = \frac{\omega(M_1 - M_2)/R_p}{\sqrt{(\omega \tau_p)^2 + 1}} \angle \phi \qquad \phi = 90^\circ - \tan^{-1} \omega \tau_p \qquad (6)$$

If a voltage-measuring

device of input resistance R_m is attached to the output terminals, a current i_s will flow, and we can write

$$i_p R_p + L_p D i_p - (M_1 - M_2) D i_s - e_{ex} = 0 (7)$$

$$(M_1 - M_2)Di_p + (R_s + R_m)i_s + L_sDi_s = 0$$
 (8)

which lead to

$$\frac{e_o}{e_{ex}}(D) = \frac{R_m(\dot{M_2} - M_1)D}{[(M_1 - M_2)^2 + L_p L_s]D^2 + [L_p(R_s + R_m) + L_s R_p]D + (R_s + R_m)R_p}$$
(9)

Requirement of Phase Sensitive Demodulation in LVDT

Phase Sensitive Demodulator Circuit of LVDT

Low pass Filtering of Demodulator output

1st Order LPF response

2nd Order LPF response

Application of LVDT

☐ Transduction of respiration through changes in chest volume

☐ Measuring dimensional change of internal organ