Math 6122: HW 6

Padmavathi Srinivasan

Due: Friday, Mar 15th, 5:00 P.M.

- 1. Let $d \geq 2$ be a square-free integer and let $K = \mathbb{Q}(\sqrt{-d})$. Compute \mathcal{O}_K and the multiplicative units in the ring \mathcal{O}_K .
- 2. Show that the ideal $\mathcal{P} = (2, 1 + \sqrt{-3})$ is a prime ideal in the ring $\mathbb{Z}[\sqrt{-3}] = \mathbb{Z}[x]/(x^2 + 3)$. Verify that $\mathcal{P}^2 = 2\mathcal{P}$ but $\mathcal{P} \neq (2)$. Why does this not contradict unique factorization of ideals into product of prime ideals?
- 3. Show that a PID that is not a field is a Dedekind domain.
- 4. Show that a Dedekind domain is a PID if and only if it is a UFD.
- 5. Find compatible \mathbb{Z} -bases for $\mathbb{Z}[i]$ and the ideal (1+i), i.e. find α_1 and α_2 in $\mathbb{Z}[i]$ such that $\mathbb{Z}[i] = \mathbb{Z}\alpha_1 + \mathbb{Z}\alpha_2$ such that $(1+i)\mathbb{Z}[i] = \mathbb{Z}(2\alpha_1) + \mathbb{Z}\alpha_2$. Use these bases to show that there is a fundamental domain for $\mathbb{C}/(1+i)\mathbb{Z}[i]$ (namely the region $S_{(1+i)} = \{2r_1\alpha_1 + r_2\alpha_2 \mid 0 \le r_1, r_2 \le 1\}$) can be tiled using two translates of the fundamental domain for $\mathbb{C}/\mathbb{Z}[i]$ (namely the region $S = \{r_1\alpha_1 + r_2\alpha_2 \mid 0 \le r_1, r_2 \le 1\}$). Draw a picture. What is the relation to $N_{\mathbb{Q}(i)/\mathbb{Q}}(1+i) = 2$? (Reading and understanding the proof of Theorem A.11 in the book might be helpful for this exercise if you cannot guess the correct answer. This is a change of basis algorithm but for integral lattices in place of vector spaces.)
- 6. Let $F = \mathbb{C}(x)$, let $p(y) = y^2 x(x-5)(x+5) \in F[y]$ and let E = F[y]/(p(y)). Let $R = \mathbb{C}[x]$. Show that the integral closure S of R in E is R[y]/(p(y)). Show that S is a Dedekind domain. (Hints: For Noetherian, you may use the fact polynomial rings over Noetherian rings are Noetherian and that the quotient of a Noetherian ring by an ideal is Noetherian. For showing S is integrally closed, mimic the proof of problem 1 with \mathbb{Z} replaced by $\mathbb{C}[x]$ and the squarefree integer d replaced by the squarefree polynomial x(x-5)(x+5). Show that the inverse image $\varphi^{-1}(\mathcal{P})$ of a nonzero prime ideal \mathcal{P} of S under the map $\varphi \colon \mathbb{C}[x] \to S$ is a nonzero prime ideal of $\mathbb{C}[x]$, and therefore of the form (x-a) for some $a \in \mathbb{C}$. Then use this to show $\mathcal{P} = (x-a,y-b)$ for $b \in \mathcal{C}$ such that $b^2 = a(a-5)(a+5)$. Conclude that $\mathcal{P} \to \varphi^{-1}(\mathcal{P})$ is a 2:1 surjective map from prime ideals of S to prime ideals of $\mathbb{C}[x]$ except over the ideals (x), (x-5), (x+5). It is a "2:1 branched covering map" can you draw a picture of the prime ideals?)

Math 6122 - Homework 6

Caitlin Beecham ()

March 15, 2019

1

Say we have $\omega \in O_K$. Namely, $\omega \in Q(\sqrt{-d})$ such that there exists monic $f(x) \in Z[x]$ such that $f(\omega) = 0$. Namely, we know $\omega = a + b\sqrt{-d}$ for some $a,b \in Q$. Write $a = \frac{p}{m}$ where $m \neq 0$ and gcd(p,m) = 1 (gcd exists since p,q are just integers) and $b = \frac{q}{r}$ with $r \neq 0$ and gcd(q,r) = 1. Then, $Q(\sqrt{-d})$ a quadratic extension and the fact that for any $\omega \in Q(\sqrt{-d})$ we have that $Q(\omega) \subseteq Q(\sqrt{-d})$ and the divisibility rule for towers of extensions, we know ω has degree 1 or 2 over Q. If we pick $\omega \notin Q$, it has degree 2. So, it's minimal polynomial is of degree 2. We note

$$\omega = a + b\sqrt{-d}$$

$$\omega^2 = a^2 + 2ab\sqrt{-d} + (-b^2d)$$

Then, note that

$$\omega^2 - 2a\omega = -a^2 + (-b^2d) \in Q.$$

So, we have that $m_{\omega}(x) = x^2 - 2ax + (a^2 + b^2d)$.

$$m_{\omega}(x) = x^2 - 2ax + (a^2 + b^2 d)$$

= $x^2 + \frac{-2p}{m}x + (\frac{p^2}{m^2} + \frac{q^2}{r^2}d)$

Now, $\omega \in O_K$ (as shown in class) if and only if $m_\omega \in Z[x]$. So, we know that $-2a = \frac{-2p}{m} \in Z$ and $a^2 + b^2d = \frac{p^2}{m^2} + \frac{q^2}{r^2}d \in Z$. Then, $4a^2 + 4b^2d \in Z$ and $4a^2 + 4b^2d = (-2a)^2 + 4b^2d \in Z$ implies that $4b^2d \in Z$. Then, $4b^2d = (2b)^2d = \frac{4q^2}{r^2}d \in Z$ implies that

So, $\frac{-2p}{m} \in Z$ implies that m|-2p iff there exists $u \in Z$ such that um = -2p. Now Z is a UFD, so $um = -2p = (-1)^{e_1} 2^{e_2} p_3^{e_3} \dots p_k^{e_k}$. Also, 2 divides RHS implies that 2 divides LHS. So, then 2 prime means 2|m or 2|u. If 2|m, then m = 2m' so that um = 2um' = -2p or p = -um', then $\frac{p}{m} = \frac{-um'}{2m'}$, a contradiction to $\gcd(p,m) = 1$ if $m' \notin \{1,-1\}$. So, we get a contradiction unless $m' = \pm 1$ or equivalently $m = 2m' = \pm 2$. If 2|u and 2 does not divide m = 2u' so that 2u'm = -2p or u'm = -p so then $\frac{p}{m} = \frac{-u'm}{m}$, a contradiction to $\gcd(p,m) = 1$ unless $m = \pm 1$. So, we know that unless $m \in \{\pm 1, \pm 2\}$, we certainly get a contradiction. So, one must have that $m \in \{\pm 1, \pm 2\}$.

Next, we recall that $(\frac{p^2}{m^2} + \frac{q^2}{r^2}d) \in Z$. So,

$$\frac{p^2}{m^2} + \frac{q^2}{r^2}d \in \{ (\frac{p}{m})^2 + \frac{q^2}{r^2}d : m \in \{\pm 1, \pm 2\}, p, q \in Z, r, d \in Z^{\times} \}$$

$$\subseteq \{ (\frac{p'}{2})^2 + \frac{q^2}{r^2}d : p', q \in Z, r, d \in Z^{\times} \}$$

where to get from the above line to here we set p' = p if m = 2, or p' = -p if m = -2, or p' = 2p if m = 1 and p' = -2p if m = -1.

Continuing on we have

$$\begin{split} \frac{p^2}{m^2} + \frac{q^2}{r^2} d &\in \{ (\frac{p}{m})^2 + \frac{q^2}{r^2} d : m \in \{ \pm 1, \pm 2 \}, p, q \in Z, r, d \in Z^\times \} \\ &\subseteq \{ (\frac{p'}{2})^2 + \frac{q^2}{r^2} d : p', q \in Z, r, d \in Z^\times \} \\ &\subseteq \{ \frac{p'^2}{4} + \frac{q^2}{r^2} d : p', q \in Z, r, d \in Z^\times \} \end{split}$$

Then, note that $\frac{p'^2}{4}+\frac{q^2}{r^2}d=\frac{p'^2r^2+4q^2d}{4r^2}\in Z$ implies that $p'^2r^2+4q^2d\in (4r^2)Z\subseteq 4Z$ which implies that 4 divides $p'^2r^2+4q^2d$ and then 4 divides p'^2r^2

 $4r^2$ divides $p'^2r^2 + 4q^2d$. Then, r^2 divides p'^2r^2 and r^2 divides $p'^2r^2 + 4q^2d$ implies that r^2 divides $4q^2d$ or there exists $M \in Z$ such that $Mr^2 = 4q^2d$. Then, gcd(q,r) = 1 implies that r^2 divides 4d UNLESS q = 0. Assume for contradiction $q \neq 0$. So, there exists r' such that $r^2r' = 4d$. Then, by UFDness of Z, 2 divides r' or 2 divides r. If 2 divides r then r = 2k and $r^2 = 4k^2$, and then $r^2 = 4k^2$ divides 4d so that $4k^2r' = 4d$ or $k^2r' = d$, but then that's a contradiction to d square free UNLESS k = 1 which would imply that r = 2. So, 2 does not divide r' UNLESS r = 2, but then we must have 2 divides r' so r' = 2k' so that $r^2r' = 4d = 2r^2k'$ which gives $2d = r^2k'$. Then UFDness of Z says (and PRIMENESS of 2) 2 divides r' or 2 divides r'. We just showed one cannot have 2 divides r' UNLESS r = 2. So, necessarily, 2 divides r' so that r'' is r' then this is a contradiction to d squarefree. So, assuming r' 1 leads to a contradiction, unless r' 2, so r' 2.

$$\omega = \frac{p'}{2} + \frac{q'}{2}\sqrt{d}$$
 for some $p', q' \in Z$

where to get from the above line to here we set p' = p if m = 2, or p' = -p if m = -2, or p' = 2p if m = 1 and p' = -2p if m = -1 and similarly for q'.

So, going back to a previous equation $a^2+b^2d=\frac{p'^2}{4}+\frac{q'^2}{4}d\in Z$. Or equivalently, $p'^2+q'^2d\in 4Z$. So, $p'^2+q'^2d\equiv 0mod4$. Cases: d=1,2,3 mod 4 (can't have d=0 mod 4 since d squarefree). Say d=1 mod 4. Then, $p'^2+q'^2\equiv 0mod4$ which means that 4 divides $p'^2+q'^2$. $p'^2+q'^2=4v$ for some $v\in Z$. This happens exactly when p', q' both even. Otherwise if exactly one is odd, then the sum is odd. IF both are odd we have $(2k+1)^2+(2h+1)^2=4k^2+4k+1+4h^2+4h+1\equiv 2$ mod 4. So, both are even if d=1 mod 4. If d=2 mod 4, then $p'^2+2q'^2\equiv 0$ mod 4. So that if both p', q' even we get $(4k^2+2(4h^2)\equiv 0)mod4$. If both are odd we get $4k^2+4k+1+8h^2+8h+2\equiv 3$ mod 4. If p' even, q' odd then, $4k^2+8h^2+8h+2\equiv 3$ mod 4. If p' odd and q' even then, $4k^2+4h+1+4h^2\equiv 1$ mod 4 a contradiction. If d=3 mod 4, then $p'^2+q'^2d=p'^2+3q'^2\equiv 0$ mod 4. So, both even gives $p'^2+q'^2d=4k^2+3(4h^2)\equiv 0mod4$, so that works. If both odd we have $4k^2+4k+1+(3)(4h^2+4h+1)=4k^2+4k+1+12h^2+12h+3\equiv 0$ mod 4, so that works. If p' even q' odd then $p'^2+q'^2d=4k^2+(3)(4h^2+4h+1)=4k^2+12h+3\equiv 0$ mod 4, so that works. If p' even p' odd, p' even, then $p'^2+q'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. If p' odd, p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work. To summarize: if p' even, then $p'^2+p'^2d=4k^2+4k+1+(3)(4h^2)\equiv 1mod4$ so that doesnt work.

So, if $d = 1, 2 \mod 4$, then

$$O_k \subseteq \{\frac{p'}{2} + \frac{q'}{2}\sqrt{-d} \text{ for some } p', q' \in Z \text{ such that } p' \equiv q' \equiv 0 \bmod 2\}$$

$$= \{p'' + q''\sqrt{-d} \text{ for some } p'', q'' \in Z\}$$

$$= Z + Z\sqrt{-d}$$

If $d = 3 \mod 4$, then

$$\begin{split} O_k &\subseteq \{\frac{p'}{2} + \frac{q'}{2}\sqrt{-d} \text{ for some } p', q' \in Z \text{ such that } p' \equiv q' \text{ mod } 2\} \\ &= Z + Z\sqrt{-d} + \frac{1}{2}Z + \frac{1}{2}Z\sqrt{-d} \\ &= \frac{1}{2}Z + \frac{1}{2}Z\sqrt{-d} \end{split}$$

Finally, we note that $Z + Z\sqrt{-d} \subseteq O_K$ when $d = 1, 2 \mod 4$ and $\frac{1}{2}Z + \frac{1}{2}Z\sqrt{-d} \subseteq O_K$ when $d = 3 \mod 4$. Why? Because given $\omega = a + b\sqrt{-d} \in Z + Z\sqrt{-d}$ (resp $\in \frac{1}{2}Z + \frac{1}{2}Z\sqrt{-d}$), the minimal polynomial $m_{\omega}(x) = x^2 - 2ax + (a^2 + b^2d) \in Z[x]$ is an integral polynomial by construction. So those containments are actually equalities.

Now, what are the units in O_K in these cases? They are elements which have inverses in O_K . Say d=1,2 mod 4. Then, take $a+b\sqrt{-d}\in O_K$. What is $(a+b\sqrt{-d})^-1$? Assume it belongs to O_K (it exists in K since K is a field). Then, $(a+b\sqrt{-d})^-1=c+e\sqrt{-d}$ for some $c,e\in Z$. So, $(a+b\sqrt{-d})(c+e\sqrt{-d})=ac-bed+(ae+bc)\sqrt{-d}=1$ implies that ae+bc=0 and ac-bed=1. So, ac=1+bed and then either a=0 or $c=\frac{1+bed}{a}$. Then, if $a\neq 0$, we plug in $ad+bc=ae+b(\frac{1+bed}{a})=0=\frac{a^2e+b+b^2e}{a}$ which implies that $a^2e+b+b^2e=0$ or $e(a^2+b^2)+b=0$ or $e(a^2+b^2)=-b$ and then $a\neq 0$ implies $a^2+b^2\neq 0$ so $e=\frac{-b}{a^2+b^2}$. So, if $a\neq 0$, then $c+ei=\frac{1+bed}{a}+\frac{-b}{a^2+b^2}i=(a+bi)^{-1}$. By assumption $c+ei=\frac{1+be}{a}+\frac{-b}{a^2+b^2}i\in O_K$ which means $\frac{1+bed}{a}+\frac{-b}{a^2+b^2}\in Z$. So, $(a^2+b^2)e=-b$ so $ea^2+eb^2=-b$ which means $eb^2+b+ea^2=0$ or $b=\frac{-1\pm\sqrt{1-4e^2a^2}}{2e}$. Also, ca=1+bed. Then, $1+bed=1+(-ea^2-eb^2)ed=ca=1-ea^2ed-eb^2ed=-e^2d(a^2+b^2)+1=-ea^2ed+(1-eb^2ed)$. Now, Z a UFD implies that a divides $1-b^2e^2d$. So $af=1-b^2e^2d$ for some $f\in Z$. Also ca=1+bed. So, $cabe=be+b^2e^2d$. Then, ca+fa=1+be=(c+f)a=1+be or 1+be=0 mod a. Now, ca=1+bed=1+be+be+(d-1) which gives $be(d-1)\equiv 0$ mod a. Then, be=1 mod a and $cabe=be+b^2e^2d\equiv -1+b^2e^2d\equiv 0$ mod a implies that $b^2e^2d\equiv 1$ mod a. So, a divides b^2e^2d-1 . Namely, $aa'=b^2e^2d-1$.

Also, if $a \neq 0$, then $e = \frac{-bc}{a}$. So, now $1 + bed = 1 + \frac{-b^2cd}{a} = ca$ and $\frac{-bc}{a} \in \mathbb{Z}$. Then, $e = \frac{-b^2cd}{a} \equiv -1 \mod a$. Also, $ca \equiv 1 \mod b$ unless a does not divide -bcd. So, e = ca - 1.

Now, if $b \neq 0$, then $c = \frac{-ae}{b}$. So, if $a, b \neq 0$, then $c = \frac{-ca^2 - a}{b}$ or equivalently $cb = -ca^2 - a$ which gives $ca^2 + a + cb = 0$ or $c(a^2 + b) = -a$ or PROVIDED $a^2 + b \neq 0$ (iff $b \neq -a^2$) then $c = \frac{-a}{a^2 + b}$ and then $e = \frac{-a^2}{a^2 + b} - 1 = \frac{-a^2 - b + b}{a^2 + b} = -1 + \frac{b}{a^2 + b} - 1 = -2 + \frac{b}{a^2 + b}$. So, we get that $a^2 + b$ divides both b and a^2 . So, there exist $r', r'' \in Z$ such that $r'a^2 + r'b = b$ and $r''a^2 + r''b = a^2$ or $r'a^2 = b(1 - r')$ and $r''b = a^2(1 - r'')$. Then, provided $r'' \neq 0$ and $1 - r' \neq 0$ we have $b = \frac{a^2(1 - r'')}{r''} = \frac{r'a^2}{1 - r'} = a^2\frac{1 - r''}{r''} = a^2\frac{r'}{1 - r'}$. So, since we are still assuming $a \neq 0$, we have $\frac{1 - r''}{r''} = \frac{r'}{1 - r'}$.

Hmmm... here's a resource:

https://en.wikipedia.org/wiki/Dirichlet\%27s_unit_theoremso $r=r_1+r_2-1$ where r_1 is number of conjugates of $\sqrt{-d}$ that are real and r_2 is half the number of conjugates which are complex. So, $r_1=0$ and $r_2=1$. Then, $r=r_1+r_2-1$. So, this has multiplicative rank 0 (we're looking for a multiplicative set of generators for the group of units).

TODO: go ask about this.

This is not a contradiction because we used every condition for a Dedekind domain in our proof of unique factorization into prime ideals. So, namely, we only proved the statement for Dedekind domains.

I claim the ring $\mathbb{Z}[\sqrt{-3}]$ is not a Dedekind domain. Namely, I claim that it is not integrally closed. Namely, one notes that $S:=\{\alpha\in Frac(\mathbb{Z}[\sqrt{-3}]): f(\alpha)=0 \text{ for some monic } f(x)\in \mathbb{Z}[\sqrt{-3}][x]\}\supseteq \mathbb{Z}[\sqrt{-3}].$ We show that this inclusion is proper by producing some $\alpha\in S\setminus \mathbb{Z}[\sqrt{-3}].$ Namely, take the monic polynomial $f(x)=x^2+(2+2\sqrt{-3})x+(-2-\sqrt{-3}).$ The quadratic formula tells us a root is $\alpha=\frac{-2-2\sqrt{-3}+\sqrt{4+4\sqrt{-3}-12+4*2+4\sqrt{-3}}}{2}=\frac{-2-2\sqrt{-3}+\sqrt{8\sqrt{-3}}}{2}=-1-\sqrt{-3}+\sqrt{2}(-3)^{\frac{1}{4}}.$ Now, $\alpha\in \mathbb{Z}[\sqrt{-3}]$ if and only if $\sqrt{2}(-3)^{\frac{1}{4}}\in \mathbb{Z}[\sqrt{-3}]$ (because $-1-\sqrt{-3}\in \mathbb{Z}[\sqrt{-3}]$). However, $\sqrt{2}(-3)^{\frac{1}{4}}\notin \mathbb{Z}[\sqrt{-3}]$ which means that we have produced $\alpha\in S\setminus \mathbb{Z}[\sqrt{-3}]$, which means that $\mathbb{Z}[\sqrt{-3}]$ is not integrally closed and thus not a Dedekind domain. We only proved unique factorization of ideals into prime ideals for Dedekind domains.

3

Show that any PID, R, that is not a field is a Dedekind domain.

We need to show (1) R Noetherian, (2) R is height 1, (3) R integrally closed.

- (1) Equivalently, one needs to show that every ideal is finitely generated. In a PID every ideal is principal and therefore finitely generated.
- (2) We need to show that every non-zero prime ideal is maximal, and that there exist non-zero prime ideals. To start, we wish to show existence of a non-zero prime ideal. Take an irreducible element $x \in R$. I first show that it generates a prime ideal.

$$I := \langle x \rangle$$

Say $yz \in I$. Then, I wish to show that $y \in I$ or $z \in I$. Well, $yz \in I$ if and only if yz = cx for some $c \in R$. Now, R a PID implies that R is a UFD. So, any two different factorizations differ by units and reordering only. So, (WLOG, about the reordering part; we can just rename y and z if the order is switched) there exist units $u, v \in R$ such that y = cu and z = vx. Then, z = vx implies that $z \in I$ and we are done. So, any irreducible element generates a non-zero prime ideal. (Also, irreducible elements exist since a PID is a UFD and in a UFD any element factors as a product of irreducibles).

Now, we need to show that every non-zero prime ideal is maximal. Take a non-zero prime ideal I. Since R is a PID, we know that there exists $x \in R$ such that $I = \langle x \rangle$. Now, I prime implies that whenever $yz \in I$, $y \in I$ or $z \in I$. Now, we wish to show that if J is an ideal such that $I \subseteq I \subseteq J \subseteq R$ and $I \neq J$, then J = R. We know there exists $w \in R$ such that $J = \langle w \rangle$ since this ring is a PID. Now, $I \subseteq J$ if and only if w divides x. So, there exists $c \in R$ such that x = cw. Now, $x \in I$ and $x \in I$ are ideal implies that $x \in I$ or $x \in I$.

However, we know that $w \notin I$. Why? Otherwise if $w \in I$, then that means that x divides w, but then we have the fact that x divides w AND w divides x so that namely, there exist $c, d \in R$ such that w = cx and x = dw. Then, that implies w = cdw or w(1 - cd) = 0, but then R a PID implies that R is an integral domain (by definition), so then $I \neq 0$ implies $J \neq 0$ implies $w \neq 0$ which implies that cd = 1 so that c, d are units (and inverses of each other) in R. So, really $c = d^{-1}$. Then, $I = \langle x \rangle = \langle dw \rangle$ and RI = I means that $d^{-1}I \subseteq I$ but $d^{-1}dw = w \in d^{-1}I \subseteq I$. Now, we have that $w \in I$, but then that implies that $J = \langle w \rangle \subseteq I$, which together with $I \subseteq J$ means that I = J, a contradiction. So, $w \notin I$.

Then, that means that $c \in I$ which means that x divides c. So, there exists $d \in R$ such that c = xd. Then, we recall that x = cw = xdw, which means that x(1 - dw) = 0, and since $I \neq 0$, $x \neq 0$, which means that (since R is an integral domain) 1 = dw. Now, J an ideal means that JR = J and in particular that $dJ = w^{-1}J = w^{-1}\langle w \rangle \subseteq J$, which implies that $ww^{-1} = 1 \in J$, but then $JR \subseteq J$ and $1 \in J$ implies that JR = R and we are done with (2).

(3) Finally, we need to show that R is integrally closed. Namely, that if K = Frac(R), then we need to show that $O_K = R$. What is O_K ? Well,

$$O_K = \{ \alpha \in K : \text{ there exists } f \in R[x] \text{ monic such that } f(\alpha) = 0 \}.$$

Namely, we need to show that $O_K \subseteq R$ and $R \subseteq O_K$. Clearly, $R \subseteq O_K$, since for any $r \in R$ the polynomial $f(x) = x - r \in R[x]$ is monic and has r as a root. Then, it remains to show that $O_K \subseteq R$. We assume for contradiction that there exists $\alpha \in O_K \setminus R$ or equivalently that there exists $\alpha \in K \setminus R$ with polynomial $f \in R[x]$ monic such that $f(\alpha) = 0$. So, $\alpha inFrac(R) \setminus R$. That means there exist $p, q \in R$ such that $\alpha = (p, q) \in Frac(R)$. Now, R a UFD implies that g := gcd(p, q) exists (it may not be unique). Then, let g := gcd(p, q) and g := gcd(p, q). Now g := gcd(p, q) since by the equivalence relation which defines Frac(R) we have g := gcd(p, q) if and only if g := gcd(p, q) = gcd(p, q). So, we verify g := gcd(p, q) = gcd(p, q) which means that g := gcd(p, q) = gcd(p, q).

We recall the definition of a gcd. If y = gcd(p, q), then for any common divisor w with w|p and w|q, one has that w|y.

Ok, now, one has that $f(\alpha) = 0$. Say that

$$f(x) = x^n + \sum_{i=0}^{n-1} a_i x^i$$

where $a_i \in R$ for all i. So, we see that

$$f(\alpha) = \alpha^n + \sum_{i=0}^{n-1} a_i \alpha^i$$

Now, $f((p',q')) \in f(\alpha)$ (here I am thinking of $f(\alpha)$ as the (element of Frac(R)) or equivalence class of $R \times R$ containing (p',q')). Then, the polynomial $\hat{f}(p',q') \in R \times R[x]$ satisfies

$$\hat{f}((p',q')) = (p',q')^n + \sum_{i=0}^{n-1} a_i(p',q')^i,$$

and

$$(q',1)^n \hat{f}((p',q')) = (p',1)^n + \sum_{i=0}^{n-1} a_i (q'^{n-i}p^i,1).$$

Then, one considers the polynomial $g(x) \in R[x]$ defined by

$$g(x) = x^n + \sum_{i=0}^{n-1} a_i q'^{n-i} x^i.$$

One sees that g(p')=0. In particular, $p'^n=-\sum_{i=0}^{n-1}a_iq'^{n-i}p'^i$ which means that $q'|p'^n$. Now, we show gcd(p',q')=1.

(Why? Well, say not, say gcd(p', q') is not a unit for any gcd (any gcd being a unit is what we really mean by gcd = 1 (since gcds are only unique up to units)). Then, any common divisor u of

p' and q' is not a unit. Say u|p' and u|q' where u is not a unit. Then, p'=mu and q'=nu. Recall $p'=py^{-1}=mu$ and $q'=qy^{-1}=nu$. Then, p=muy and q=nuy implies that uy is a common divisor of both p and q, but then by the definition of a gcd, uy|y, so that y=xuy) that means that xu=1, so that $u\in R^{\times}$ is a unit, a contradiction. So, gcd(p',q')=1 (all the gcds are units, in particular 1 is one of the gcds)).

Now, since gcd(p',q')=1, the fact that $q'|p'^n$ implies that q'|p'. But then q'|q',p' implies that q' is a common divisor, but then by the definition of a gcd, if 1=y'=gcd(p',q'), then for any common divisor w with w|p' and w|q', one has that w|y'=1. So, q'|1 which implies that q' is a unit, but then (p',q') can be embedded canonically into R as $p'q'^{-1}$, which means that in fact $\alpha \in R$, so we see that R is integrally closed since for any $\alpha \in O_K$, we have that $\alpha \in R$. Thus, R is a Dedekind domain.

4

Show that a Dedekind domain is a PID if and only if it's a UFD. https://en.wikipedia.org/wiki/Unique_factorization_domain Well, any PID is a UFD. Now it remains to show that any Dedekind domain which is a UFD is a PID. Well,

Lemma (1): In a Dedekind domain which is a UFD, every (height one) prime ideal is principal. Proof: Say $I \subseteq R$ is a prime ideal. Namely, this means that $xy \in I$ implies that $x \in I$ or $y \in I$. Now, R Noetherian implies that every ideal is finitely generated. So, $I = \langle x_1, x_2, \ldots, x_k \rangle$. Now, consider $I_j = \langle x_j \rangle$. Clearly, $\bigcap_{j \in [k]} I_j = \langle x_1 x_2 x_3 \ldots x_k \rangle$. We then note that $\langle x_1 x_2 x_3 \ldots x_k \rangle \subseteq I$. Clearly, $I_1 \subseteq I$. Is I_1 prime? Well, it's prime if and only if for all $xy \in I_1$ one has $x \in I_1$ or $y \in I_1$. Clearly, if x_1 is irreducible, then since R is a UFD, it is also prime, which means I_1 is a prime ideal.

So, say x_1 is reducible, namely $x_1 = y_1 z_1$ for $y_1, z_1 \in R \setminus R^{\times}$. Without loss of generality, one may assume that y_1 is irreducible.

(Otherwise,

- Initialize $y_1^0 := y_1$;
- While y_1^i is reducible:
 - Then $y_1^i=y_2^iy_3^i$ for some non-units $y_2^i,y_3^i.$
 - Update $z_1^{i+1} := z_1^i y_3^i$;
 - Update $y_1^{i+1} := y_2^i$;
 - Update i := i + 1;

Then, one knows this process will eventually stop. Why? If it doesn't, we have constructed an infinite chain of strictly increasing ideals $\langle y_1^0 := y_1 \rangle \subseteq \langle y_1^1 \rangle \subseteq \langle y_1^2 \rangle \subseteq \langle y_1^3 \rangle \cdots \subseteq \langle y_1^i \rangle \subseteq \langle y_1^{i+1} \rangle \ldots$ but then since R is Noetherian, every ascending chain stabilizes, which gives us a contradiction).

So, we have $x_1 = y_1 z_1$ with y_1 irreducible. Then, $x_1 = y_1 z_1 \in I$ and I prime implies that $y_1 \in I$ or $z_1 \in I$.

Case (1): Say that $y_1 \in I$. Then, $\langle x_1 \rangle \subseteq \langle y_1 \rangle \subseteq I$. Now, y_1 irreducible implies that y_1 is prime since R is a UFD which means $\langle y_1 \rangle$ is a prime ideal which is also non-zero (since $x_1 = y_1 z_1$ and R is an integral domain). Now, R height 1 implies that $\langle y_1 \rangle = I$ which means that I is principal and we're done.

Case (2): $z_1 \in I$ and $y_1 \notin I$. Then, still $\langle y_1 \rangle$ is a prime ideal and $\langle x_1 \rangle \subseteq \langle y_1 \rangle$ and $\langle x_1 \rangle \subseteq I$. Now, consider the intersection $I \cap \langle y_1 \rangle$. We have that $\langle x_1 \rangle \subseteq (\langle y_1 \rangle \cap I)$. We wish to show that $(\langle y_1 \rangle \cap I)$ is a prime ideal. We recall that in a Dedekind domain an ideal is prime if and only if it is maximal. Also, R a Dedekind domain implies that there exist nonzero prime ideals P_1, \ldots, P_r such that $(\langle y_1 \rangle \cap I) = \prod_{i=1}^r P_i$. Then, $I \supseteq (\langle y_1 \rangle \cap I) = \prod_{i=1}^r P_i$, and as we showed in class, in a Dedekind domain, $(\langle y_1 \rangle \cap I) \supseteq \prod_{i=1}^r P_i$ implies $(\langle y_1 \rangle \cap I) \supseteq P_i$ for some $i \in [r]$.

Now, recall that in a Dedekind domain every nonzero ideal can be factored uniquely into a product of nonzero prime ideals, up to reordering. So, $(\langle y_1 \rangle \cap I) = \prod_{i=1}^s Q_i$ and $(\langle y_1 \rangle \cap I) = \prod_{i=1}^s Q_i \supseteq P_i$. Now, as shown in class, $(\langle y_1 \rangle \cap I) = \prod_{i=1}^s Q_i \supseteq P_i$ implies that there exists an ideal C such that $P_i = C \prod_{i=1}^s Q_i = \prod_{i=1}^t W_i \prod_{i=1}^s Q_i = (\prod_{i=1}^t W_i)(\langle y_1 \rangle \cap I)$. In particular, this implies that t+s=1, which means that s=1,t=0. (Otherwise, if s=0,t=1 then $\prod_{i=1}^s Q_i = (\langle y_1 \rangle \cap I) = R$ which implies that I=R, a contradiction since R is not a prime ideal by definition). So, s=1,t=0 and $Q_1=P_i$. Finally, we get $(\langle y_1 \rangle \cap I) = \prod_{j=1}^s Q_j = P_i$. So, $(\langle y_1 \rangle \cap I)$ is prime and nonzero since $P_i \neq 0$ since $P_i=0$ would imply that . Since any non zero prime ideal is maximal in a Dedekind domain, $(\langle y_1 \rangle \cap I)$ is maximal. Then, $(\langle y_1 \rangle \cap I) \subseteq I$ and $I \neq R$ implies that $I=(\langle y_1 \rangle \cap I)$. Then, $(\langle y_1 \rangle \cap I) \subseteq \langle y_1 \rangle$ and $\langle y_1 \rangle \neq R$ (Why? Since y_1 irreducible implies $\langle y_1 \rangle$ contains no units, which implies $\langle y_1 \rangle \neq R$. Why does it contain no units? Assume it did. Then, $y_1x=u$ with u a unit, and then $y_1xu^{-1}=1$ but then y_1 is a unit, a contradiction, by definition of an irreducible element). So, $(\langle y_1 \rangle \cap I) \subseteq \langle y_1 \rangle$ and $\langle y_1 \rangle \neq R$ implies that I is principal and we're done.

So, that concludes the proof that in a Dedekind domain which is a UFD, every prime ideal is principal. \Box

Now, it remains to show that non-prime ideals in R are principal. Well, take I an ideal in R. As shown in class, since R is a Dedekind domain, we can uniquely factor $I = \prod_{i=1}^r P_i$. Then, recall $P_i = \langle x_i \rangle$ by the lemma we just proved. So, $I = \prod_{i=1}^r \langle x_i \rangle = \langle \prod_{i=1}^r x_i \rangle$ and we see that I is generated by one element, which concludes this problem.

5

Take $\alpha_1 = 1$ and $\alpha_2 = 1+i$. Then, one notes that $\alpha_2 - \alpha_1 = i$ so that $Z[i] = Z + Zi = Z\alpha_1 + Z(\alpha_2 - i)$ $\alpha_1) = Z\alpha_1 + Z\alpha_2 - Z\alpha_1 = \{a\alpha_1 + b\alpha_2 + (-c)\alpha_1 : a, b, c \in Z\} = \{a'\alpha_1 + b'\alpha_2 + : a', b' \in Z\}.$ Why? Obviously, $\{a'\alpha_1 + b'\alpha_2 + : a', b' \in Z\} \subseteq \{a\alpha_1 + b\alpha_2 + (-c)\alpha_1 : a, b, c \in Z\}$ by taking a:=a',b:=b' and c:=0. Now for the reverse, we wish to show $\{a\alpha_1+b\alpha_2+(-c)\alpha_1:a,b,c\in a:=a',b':=b'\}$ $Z\}\subseteq\{a'\alpha_1+b'\alpha_2+:a',b'\in Z\}$. Namely, given a,b,c, we wish to produce $a',b'\in Z$ such that $a\alpha_1 + b\alpha_2 + (-c)\alpha_1 = a'\alpha_1 + b'\alpha_2 \in \{a'\alpha_1 + b'\alpha_2 + : a', b' \in Z\}.$ Let a' := a - c and b' := b. Then, we are done. So, $Z[i]=Z+Zi=Z\alpha_1+Z(\alpha_2-\alpha_1)=\{a'\alpha_1+b'\alpha_2+:a',b'\in Z\}=Z\alpha_1+Z\alpha_2.$ Then, we note that $(1+i)Z[i] = (2\alpha_1)Z + \alpha_2 Z$. Why? $(1+i)Z[i] = \{(1+i)(a+bi) : a, b \in Z\}$. We wish to show that $(1+i)Z[i]=(2\alpha_1)Z+\alpha_2Z$. We need to show $(1+i)Z[i]\subseteq (2\alpha_1)Z+\alpha_2Z$ and $(2\alpha_1)Z + \alpha_2 Z \subseteq (1+i)Z[i]$. To show that $(1+i)Z[i] \subseteq (2\alpha_1)Z + \alpha_2 Z$, we need to show that for all $a, b \in Z$, there exists $r, s \in Z$ such that $(1+i)(a+bi) = r(2\alpha_1) + s(\alpha_2) = 2r + s(1+i)$. Note (1+i)(a+bi) = (a-b) + (a+b)i = (2r+s) + si implies that a+b = s and a-b = 2r + swhich implies that 2r = (a-b) - (a+b) = -2b so that r = -b. Then, a-b = 2r + s = -2b + simplies that a + b = s. So, set r := -b and s := a + b. For the reverse inclusion we need to show that $(2\alpha_1)Z + \alpha_2Z \subseteq (1+i)Z[i]$. Namely, given any $r, s \in Z$, we wish to show that there exists $a, b \in Z$ such that $r(2\alpha_1) + s(\alpha_2) = 2r + s(1+i) = (1+i)(a+bi)$. Namely, one notes that as above this implies that a-b=2r+s and a+b=s. So, 2a=2r+2sor a = r + s and b = s - a = s - r - s = -r. So, take a = r + s and b = -r. Then, $(1+i)(a+bi) = a-b+(a+b)i = 2r+s+si = 2(r)+s(1+i) \in 2\alpha_1 Z + \alpha_2 Z.$ Then, $S_{(1+i)} = S \cup (S + \alpha_1)$.

Then, the relation to the norm is that $N_{Q(i)/Q}(1+i)=N((1+i))=|O_K/(1+i)|=|Z[i]/(1+i)|$. Then, $Z[i]/(1+i)\cong Z\alpha_1+Z\alpha_2/(Z2\alpha_1+Z\alpha_2)\cong Z/2Z$ which means that |Z[i]/(1+i)|=2.

6

Ok, F = C(t) and $p(y) = y^2 - x(x - 5)(x + 5)$. Let E := F[y]/(p(y)) and R := C[t]. Say we denote the integral closure of R in E, namely the set of all elements $\alpha \in E$ such that $f(\alpha) = 0$ for some monic $f(x) \in R[x]$, by S. So,

$$S := \{ \alpha \in E : f(\alpha) = 0 \text{ for some monic } f(x) \in R[x] \}.$$

We wish to show that S=R[y]/(p(y)). Say $\alpha\in F[y]/(p(y))$. We wish to construct $f\in R[x]$ monic such that $f(\alpha)=0$.

THIS IS SCRATCH: Well, we know that there is some minimal polynomial of α over F=C(t). Let it be

$$m_{\alpha/F}(x) = \sum_{i=0}^{N} \frac{a_i(t)}{b_i(t)} x^i$$

where $N \leq deg(p)$. Now, we know

$$m_{\alpha/F}(\alpha) = \sum_{i=0}^{N} \frac{a_i(t)}{b_i(t)} (\alpha)^i = 0$$

Pick some coset representative $a \in C(t)[y] = F[y]$ so that $\alpha = a + (p(y))$. Then,

$$m_{\alpha/F}(\alpha) = \sum_{i=0}^{N} \frac{a_i(t)}{b_i(t)} (a(y) + (p(y)))^i = (p(y)) = 0 \in E$$
$$= \left(\sum_{i=0}^{N} \frac{a_i(t)}{b_i(t)} (a(y))^i\right) + (p(y))$$

So, we wish to construct $g \in R[x]$ such that there is some coset representative $a' \in \alpha$ such that g(a') = 0. We let $B(t) = (lcm_{i \in \{0,\dots,N\}}(b_i(t)))$ and $\hat{B}(t) = B(t)^N$. Then, define $B_i(t) = B^N(t)/b_i(t) = (B(t)/b_i(t))B^{N-1}(t)$ for all i. Note that $b_N(t) = 1$ so that $B_N(t) = B^N(t)$. Finally, note that for $i \in \{1,\dots,n-1\}$ one has that $B_i(t) = (B(t)/b_i(t))B^{N-1-i}(t)B^i(t)$.

$$B^{N}(t) * m_{\alpha/F}(\alpha) = \sum_{i=0}^{N} B_{i}(t)a_{i}(t)(a(y) + (p(y)))^{i} = B^{N}(t)(p(y)) = 0 \in E$$

$$= \left(\sum_{i=0}^{N} B_{i}(t)a_{i}(t)(a(y))^{i}\right) + (p(y))$$

$$= B^{N}(t)(a(y))^{N} + \sum_{i=0}^{N-1} B_{i}(t)a_{i}(t)(a(y))^{i} + (p(y))$$

$$= (B(t)a(y))^{N} + \sum_{i=0}^{N-1} (a_{i}(t))(B(t)/b_{i}(t))B^{N-1-i}(t)B^{i}(t)a^{i}(y) + (p(y))$$

$$= (B(t)a(y))^{N} + \sum_{i=0}^{N-1} (a_{i}(t))(B(t)/b_{i}(t))B^{N-1-i}(t)(B(t)a(y))^{i} + (p(y))$$

Now, we wish to show that S is a dedekind domain. We need to show Noetherian, Height 1 and Integrally closed. Now, by the hint if one can show that C is noetherian, then C[x] is noetherian, then C[x][y] is noetherian. Then S is noetherian. So, I show that C is noetherian. This is simple. We need to show every ideal is finitely generated. However C a field implies that the only ideals are 0 and C. Then $0 = \langle 0 \rangle$ and $C = \langle 1 \rangle$. For height 1, we need to show that

For showing S=R[y]/(p(y)), say we have some prime ideal of S. Then, the inverse image of a nonzero prime ideal under a ring homomorphism is a nonzero prime ideal. So say $\phi:R=C[x]\to S$. Take a prime ideal $P\in S$. Then, we know that $\phi^{-1}(P)=P'$ a prime ideal $P'\leq R=C[x]$. Since C is a field, C[x] is a PID, which means that elements are irreducible if and only if prime, so P' some ideal in this PID means it is generated by one element f which is irreducible so that $P'=\langle f\rangle$ and C algebraically closed means that the only irreducible polynomials are linear ones, so f=x-a for some a in C. Then, just using ϕ the natural embedding of R into S. One notes that $\phi((x-a))=P=\langle (x-a)+(p(y))\rangle$. However, one then notes that if one picks $b\in E$ such that $b^2=a(a-5)(a+5)$ then, $(y-b)(y+b)=y^2-b^2=y^2-a(a-5)(a+5)\in (p(y))$ so that $P=\langle (x-a)+(p(y))\rangle$. Then, the fact that R[y]/(p(y)) is an integral domain means that (p(y)) is a prime ideal. So, $y-b\in (p(y))$ or $y+b\in (p(y))$. Say $y-b\in (p(y))$. Then, $P=\langle (x-a)+(p(y))\rangle=\langle (x-a)+(p(y)), (y-b)+(p(y))\rangle$. Also, $b^2=a(a-5)(a+5)$ implies that $(-b)^2=a(a-5)(a+5)$. So, applying the same argument to -b gives that $P=\langle (x-a)+(p(y))\rangle=\langle (x-a)+(p(y)), (y+b)+(p(y))\rangle$. So, $\phi^{-1}(\langle (x-a)+(p(y)), (y+b)+(p(y))\rangle)=\langle (x-a)+(p(y)), (y-b)+(p(y))\rangle=\langle (x-a)+(p(y$

Then, the integral closure of a set R in E is always integrally closed in E. So, S is integrally closed.

https://proofwiki.org/wiki/Transitivity_of_Integralityhttps://proofwiki.org/wiki/Integral_Closure_is_Integrally_Closed