Chap. 3: Continuous Time Manhor Chains (Ross Chap6)

We now consider a class of etochastic processes that contains the Poisson Process, but is also an analog of the discrete time M-C, in continuous time

I Introduction

As a continuous-home analog of the Chap I, the following Markovian property characterizes
the process

Recall: In discrete time, the Markov property states that  $P(X_{n+1}=j|(X_n,X_{n-1},...)=(i_n,i_{n-1},...))$ 

 $= P(X_{n+1} = j \mid X_n = in)$ 

Def: Let  $f(X(t), t \ge 0)$  be a collection of f(x). S f(x), each taking values in f(x), f(x),



e In addition, To must be independent of the next state that the chain jups to (otherwise, the Markov property would be violated, as the waiting time in a state would affect the next jump outcome)

Conclusion: We can fully describe a CTHC by

Tin Exp(V;), V; >D (characterizes the sojourn
time in a state)







|      | Sini<br>eq. | larly,           | it salis     | fies the | Chapaa  | - Ko)u ogero | <b>.</b> (1) |
|------|-------------|------------------|--------------|----------|---------|--------------|--------------|
| Prop | (C- K-21    | 7.) ¥ s<br>Pij(s | (t70<br>ft)= | SP;      | k(s) (k | j (t)        |              |
| F    |             |                  |              |          |         |              |              |
|      |             |                  |              |          |         |              |              |
|      |             |                  |              |          |         |              |              |
|      |             |                  |              |          |         |              |              |
|      |             |                  |              |          |         |              |              |
|      |             |                  |              |          |         |              |              |