Notes on survival analysis

Erwann Rogard 2022-04-04

Abstract

These are renovated notes from 2007. Some parts are commented out in the source file until I get a grasp of what I was up to.

1 Conventions

The most general framework that we will consider is that of staggered entry, static covariate and right censoring. Let's begin with the following definitions

Conventions			
t^{cal}		calendar time	
t^{in}		entry time	
$t^{ m out}$		exit time	
t^{\dagger}		failure time	
$t^+(t)$	$(t - t^{\rm in})^+$	time on study	
$t^{c}(t)$	$t^{\mathrm{out}} \wedge t^{+}(t)$	censoring time	
$t^*(t)$	$t^{\dagger} \wedge t^{\mathrm{c}}(t)$	first event time	
$\delta(t)$	$1\{t^{\dagger} < t^{c}(t)\}$	failure observed	
R(t,s)	$1\{s \le t^*(t)\}$	at risk	
N(t,s)	$\delta(t)1\{t^{\dagger} \le s\}$	observed failure prior to	
$x^{\text{nuis}}(t)$		nuisance covariate	
z(t)		treatment indicator	
x(t)	$(z(t), x^{\text{nuis}}(t))$	covariate	
y(t)	$(t^*(t),\delta(t))$	response	
n		index for order of entry	
$n_*(t)$		count of entries	
$n_{\dagger}(t)$	$\sum_{\{n \leq n_*(t)\}} \delta_n(t)$	count of observed failures	
$\mathbf{x}(t)$	$(x_1,, x_{n_*(t)})$	covariate data	
$\mathbf{y}(t)$	$(y_1,, y_{n_*(t)})$	response data	
D(t)	$D(t) = (\mathbf{x}(t), \mathbf{y}(t))$	data	
$\beta_{ m nuis}$		effect of nuisance covariate	
θ		treatment effect	
β	$(\theta, \beta_{ m nuis})$	covariate effect	
ϕ		baseline hazard parameter	
ξ		all parameters	

Note that t^{in} is measured on the same scale as t^{cal} whereas t^{out} and t^{\dagger} are clocks that are started at t^{in} . In principle, we need to define a joint distribution for $(t^{\text{in}}, t^{\dagger}, t^{\text{out}})$, but in the definition of D we are implicitly treating $(t^{\text{in}}, t^{\text{out}})$ as ancillary variables. The staggered entry and static covariate assumptions imply $x(t) = x(t^{\text{in}}), t \geq t^{\text{in}}$, which justifies our definition of D. When the context specifies that we fix $t^{\text{cal}} = t$, we ommit t in all expressions that depend on it, e.g. we write D instead of D(t).

1.1 Likelihood and derived quantities

We restrict the class of model, either parametric or semi-parametric, to the proportional hazard. It is standard convention that f(.), F(.), S(.), h(.) and H(.) denote the PDF and CDF of time-to-event, survival, hazard and cumulative hazard functions, respectively. The relations between them are given by

$$S(t) = 1 - F(t) = \exp\left(-\int_0^t h(u)\right) du = \exp(-H(t))$$
 (1)

and $F(t) = \int_0^t f(u)du$. The proportional hazard assumption made at the beginning is given by $h(t|x) = h_0(t) \exp(x'\beta)$, which together with (1), implies $S(t) = S_0(t)^{\exp(x'\beta)}$. The name derives from the property that $h(t|x_0)/h(t|x_1)$, $x_0 \neq x_1$, is independent of t. For the particular case x = z, $\forall t$,

$$\theta = \log(h(t|z=1)/h(t|z=0)) \tag{2}$$

$$= \log(\log(S(t|z=1)) / \log(S(t|z=0)))$$
 (3)

From the first equality θ is often referred to as the log hazard ratio. The second is useful in the Bayesian process of prior elicitation from expert knowledge.

Suppose we postulate a parametric family for F(.) indexed by $\xi \in \Xi$. For example, in the case $t \sim \mathcal{W}(t|\alpha,\gamma)$, $F(t) = 1 - \exp(-\gamma t^{\alpha})$, and $h(t) = \alpha \gamma t^{\alpha-1}$, so that $\xi = (\alpha, \gamma)$. Furthermore, if $\gamma = \exp(x'\beta)$, then $h(.|\xi, x)$ is a proportional hazard with baseline $h_0(t|\phi) = \alpha t^{\alpha-1}$, $\phi \equiv \alpha$. Suppose we fix $t^{\text{cal}} = t$. The likelihood, in terms of ξ is

$$L(D|\xi) = \prod_{\{n:\delta_n = 1\}} f(t_n^{\dagger}|\xi) \prod_{\{n:\delta_n = 0\}} S(t_n^{c}|\xi)$$
(4)

The proportional hazard also permits an important semi-parametric formulaulation under which $h_0(.)$ is unspecified and the following partial likelihood[1] may be justified:

$$l_{\text{Cox}}(t|\beta) = \sum_{n} \int_{[0,t]} \log \left(\frac{\exp(x_n'\beta)}{\sum_{l} R_l(t,s) \exp(x_l\beta)} \right) N_n(t,ds)$$
 (5)

$$= \sum_{n} \delta_{n}(t) \left(x_{n}' \beta - \log \left(\sum_{l} R_{l}(t, t_{n}^{\dagger}) \exp(x_{n}' \beta) \right) \right)$$
 (6)

The term inside the parenthesis of (6) can be interpreted as the probability that failure is on individual n, conditional on failure time equating t_n^{\dagger} and the risk set $\{l: R_l(t, t_n^{\dagger}) = 1\}$. The score and information matrix (adapted from [3], Chapter 7) are

$$U_{\text{Cox}}(t|\beta) = \nabla_{\beta} l_{\text{Cox}}(t|\beta) \tag{7}$$

$$= \sum_{n} \delta_n(t)(x_n - \bar{x}(t, t_n^{\dagger}|\beta)) \tag{8}$$

$$I_{\text{Cox}}(t|\beta) = -\partial_{\beta\beta'}^2 l_{\text{Cox}}(t|\beta) \tag{9}$$

$$= \sum_{n} \delta_{n}(t) \frac{\sum_{l} R_{l}(t, t_{n}^{\dagger}) \exp(x_{l}^{\prime}\beta)(x_{l} - \bar{x}(t, t_{n}^{\dagger}|\beta))(x_{l} - \bar{x}(t, t_{n}^{\dagger}|\beta))^{\prime}}{\sum_{l} R_{l}(t, t_{n}^{\dagger}) \exp(x_{l}^{\prime}\beta)}$$

$$(10)$$

where

$$\bar{x}(t, t_n^{\dagger} | \beta) = \frac{\sum_l R_l(t, t_n^{\dagger}) x_l \exp(x_l^{\prime} \beta)}{\sum_l R_l(t, t_n^{\dagger}) \exp(x_l^{\prime} \beta)}$$
(11)

For practical purposes, we may treat the partial likelihood as a standard likelihood so that for fixed t but sufficiently large n_* , the following approximations hold:

$$n^{-1/2}U_{\text{Cox}}(t|\beta) \sim N(0, n^{-1}I_{\text{Cox}}(t|\beta))$$
 (12)

$$\hat{\beta}_{\text{Cox}}(t|\beta) \sim N(\beta, I_{\text{Cox}}^{-1}(t|\hat{\beta}_{\text{Cox}}))$$
(13)

where $\hat{\beta}_{\text{Cox}}$ solves the estimating equation $U_{\text{Cox}}(t|\hat{\beta}_{\text{Cox}}) = 0$. The second line follows from $U_{\text{Cox}}(t|\hat{\beta}_{\text{Cox}}) \approx U_{\text{Cox}}(t|\beta) + (\hat{\beta} - \beta)I_{\text{Cox}}(t|\beta)$.

For the particular case $x \equiv z$, $U_{\text{Cox}}(t|\theta=0)$ is an estimate for the observed–expected number of events in a treatment group, and it is called the log–rank test statistic. Let $\tilde{U}_{\text{Cox}}(t|\theta) = I_{\text{Cox}}^{-1/2}(t|\theta)U_{\text{Cox}}(t|\theta)$. It underpins the popular test of equality between two lifetime distributions: reject if $|\tilde{U}_{\text{Cox}}(t|\theta=0)| > c_{\alpha}$. Let $\tilde{U}_{\theta_*,\text{Cox}}(t|\theta) = I_{\text{Cox}}^{-1/2}(t|\theta_*)U_{\text{Cox}}(t|\theta)$. This quantity is useful for sequential analysis. Specifically, if $i=1,...,i_*$ indexes interim analyses, according to Chapter 9 of [4], for θ close to 0, $\tilde{U}_{\theta_*,\text{Cox}}(t_1,....,t_{i_*}|\theta) = {\tilde{U}_{\theta_*,\text{Cox}}(t_1|\theta),...,\tilde{U}_{\theta_*,\text{Cox}}(t_{i_*}|\theta)}$ is a normal vector such that

$$\tilde{U}_{\theta_*, \text{Cox}}(t_i|\theta) \sim N(I_{\text{Cox}}^{1/2}(t_i|\theta_*)\theta, 1))$$
 (14)

$$Cov(\tilde{U}_{\theta_*,Cox}(t_i|\theta),\tilde{U}_{\theta_*,Cox}(t_{i+k}|\theta))|\theta_* = I_{Cox}^{1/2}(t_i|\theta_*)I_{Cox}^{-1/2}(t_{i+k}|\theta_*)$$
(15)

todo: make contiguity argument precise (Chapters 7&9[Vaart1998] and [2]) **todo**Although [4] use $\theta_* = 0$ would it not be better to take $\theta_* = \hat{\theta}$, the mle?

Formulations that are intermediary between the fully parameterized version of $L(.|\xi)$ and the partial likelihood $L_{\text{Cox}}(.|\beta)$ include the piecewise constant hazard model, such that $\xi = (\lambda, \beta)$ where λ is a vector of constants.

Revisions

The commits referred to are at https://github.com/erwannr/statistics/survanal/survanal.tex

Date	Comment	Commit
2007 - 05 - 14	First version; section of a larger document	3811ec4
2022-04-04	Added headers and bibliography; commented out some	
	parts	

Bibliography

- [1] T. Sellke and D. Siegmund. "Sequential analysis of the proportional hazards model". In: *Biometrika* 70.2 (Aug. 1983), pp. 315–326. ISSN: 0006-3444. DOI: 10.1093/biomet/70.2.315. eprint: https://academic.oup.com/biomet/article-pdf/70/2/315/632076/70-2-315.pdf.
- [2] Yannis Bilias, Mingao Gu, and Zhiliang Ying. "Towards A General Asymptotic Theory For Cox Model With Staggered Entry". In: *Annals of Statistics* 25.2 (1997), pp. 662–682.
- [3] Jerald F. Lawless. Statistical Models and Methods for Lifetime Data, Second Edition. Wiley Series in Probability and Statistics. Wiley, Nov. 2002. ISBN: 9781118033005. DOI: 10.1002/9781118033005.
- [4] Joseph G. Ibrahim, Ming-Hui Chen, and Debajyoti Sinha. *Bayesian Survival Analysis*. Springer, Dec. 2004. ISBN: 9780387952772.