Statistical explorations, data preparation, and correlations

Andri Setiyawan Benedikt Meyer Niri Gala Yosep Dwi Kristanto

```
library(tidyverse)
library(haven)
library(labelled)
library(rvest)
library(knitr)
library(kableExtra)
```

What is your favorite song? How old is the song relative to your year of birth? Do you think others might have similar answers to the latter question?

Through this report, we will present the results of our investigation into the relationship between the age of a song and its average rating. The age of the song we refer to is the difference between the release year of a song and the year of birth of the person listening to that song. The dataset we used is provided by a study published in *Marketing Letters*.

The study surveyed 1,036 residents of the US aged between 18 and 84 years. They were asked to listen to and rate 34 songs. All the songs were selected from the Billboard Top 10 charts from 1950 to 2016. Table 1 presents the list of songs.

```
# Read the webpage
url <- "https://link.springer.com/article/10.1007/s11002-022-09626-7/tables/2"
webpage <- read_html(url)

# Extract the table
music_table <- webpage |>
    html_node("table") |>
    html_table() |>
    rename(
    song_year = 'Song Year',
```

```
song_title = 'Song Title',
   performers = 'Performer/s'
)
music_table |>
   kbl() |>
   kable_styling(
   full_width = TRUE,
   bootstrap_options = c("striped", "condensed")
)
```

Data preparation

The dataset we used initially had 74 variables. We added two variables, time_music_last_week and rating_avg, using the existing variables. A summary of the 76 variables formed is presented in Table 2.

```
# Import data
hw2_data <- read_sav("11002_2022_9626_MOESM1_ESM.sav") |>
  mutate(
    across(everything(), ~ na_if(., 99))
  ) |>
  mutate(
    time_music_last_week = Q6ax1_1 + Q6ax2_1 / 60,
    Q19_avg = rowMeans(across(starts_with("Q19_1_")), na.rm = TRUE)
  )
# Make a table of variable names and labels
variable_names <- names(hw2_data)</pre>
variable_labels <- sapply(hw2_data, var_label)</pre>
variable_table <- tibble(</pre>
  variable = variable_names,
  label = variable_labels
variable_table |>
  kbl() |>
 kable_styling(
    full_width = TRUE,
    bootstrap_options = c("striped", "condensed")
```

Table 1: Music stimuli used in the survey and their respective year in the Billboard charts

song_ye	ar	song_title	performers
198	50	Play a Simple Melody	Bing and Gary Crosby
198	52	You Belong to Me	Jo Stafford
198	54	Sh Boom Sh Boom	The Crew Cuts
198	56	My Prayer	The Platters
198	58	Patricia	Perez Prado
190	60	Running Bear	Johnny Preston
190	62	Roses are Red	Bobby Vinton
190	64	I Get Around	Beach Boys
190	66	The Last Train to	The Monkees
		Clarksville	
190		People Got to be Free	The Rascals
19'	70	Raindrops Keep Fallin' on	B.J. Thomas
19'	79	My Head Lean on Me	Bill Withers
19'		The Sound of Philadelphia Play that Funky Music	MFSB ft. Three Degrees
19		Stayin' Alive	Wild Cherry Bee Gees
198		Crazy Little Thing Called	Queen
190	00	Love Love	Queen
198	82	Don't You Want Me	Human League
198	84	Footloose	Kenny Loggins
198	86	Party All the Time	Eddie Murphy
198	88	Sweet Child O' Mine	Guns N' Roses
199	90	Vogue	Madonna
199	92	Under the Bridge	Red Hot Chilli Peppers
199	94	All She Wants	Ace of Base
199	96	Missing	Everything but the Girl
199		Crush	Jennifer Paige
200	00	Say My Name	Destiny's Child
200	02	Dilemma	Nelly ft. Kelly Rowland
200	04	Hey Ya	OutKast
200	06	Sexy Back	Justin Timberlake
200	08	Lollipop	Lil Wayne
20:	10	California Gurls	Katy Perry
20:	12	Payphone	Maroon 5
20:	14	Counting Stars	One Republic
20	16	Work	Rihanna

Table 2: Summary of variables and their labels

variable	label
	S1 - Have you listened to music of your
	choosing in the last week?
Q1	Q1 - What year were you born in? Please
	enter in 'YYYY' format e.g. 1984
Q2	Q2 - What is your gender?
Q3	Q3 - Which state do you currently live in?
Q6ax1_1	Q6AX1 - In the last week, roughly how
	many hours did you spend listening to ANY
	music of your choosing? - Hour/s
Q6ax2_1	Q6AX2 - In the last week, roughly how
	many hours did you spend listening to ANY
	music of your choosing? - Minutes
Q19x1_1	Q19X1 - 1950_PlayASimpleMelody -
	Please click to play Have you heard this
	song before?
Q19_1_1	Q19 - 1950_PlayASimpleMelody - Please
	rate this piece of music.
Q19x1_2	$Q19X1 - 1952_YouBelongToMe - Please$
	click to play Have you heard this song
O10 1 9	before?
Q19_1_2	Q19 - 1952_YouBelongToMe - Please rate
Q19x1_3	this piece of music. Q19X1 - 1954_ShBoomSheBoom - Please
Q13X1_3	click to play Have you heard this song
	before?
Q19_1_3	Q19 - 1954_ShBoomSheBoom - Please rate
v = =	this piece of music.
Q19x1_4	Q19X1 - 1956_MyPrayer - Please click to
	play Have you heard this song before?
Q19_1_4	Q19 - 1956 _MyPrayer - Please rate this
	piece of music.
Q19x1_5	Q19X1 - 1958_Patricia - Please click to
010.1	play Have you heard this song before?
Q19_1_5	Q19 - 1958_Patricia - Please rate this piece
Q19x1_6	of music. Q19X1 - 1960_RunningBear - Please click
Q19X1_0	to play Have you heard this song before?
Q19_1_6	Q19 - 1960_RunningBear - Please rate this
410_1_0	piece of music.
Q19x1 7	Q19X1 - 1962 RosesAreRed - Please click
• –	to play Have you heard this song before?
Q19_1_7	Q19 - 1962_RosesAreRed - Please rate this
	piece of music.
Q19x1_8	Q19X1 - 1964_IGetAround - Please click to
	play Have you heard this song before?
Q19_1_8	$_4$ Q 19 - 1964_IGetAround - Please rate this
	piece of music.
$Q19x1_9$	Q19X1 - 1966_LastTrainToClarksville -
	Please click to play Have you heard this
010 1 0	song before?
Q19_1_9	Q19 - 1966_LastTrainToClarksville - Please
010 1 10	rate this piece of music.
Q19x1_10	Q19X1 - 1968_PeopleGotToBeFree - Please

We processed the dataset to produce two sets of data. The first data, time_rating_data, contains information on how long respondents listened to their chosen songs (time_music_last_week) and their average ratings (rating_avg). This data will later be used to conduct a correlation analysis between time_music_last_week and rating_avg. A summary of the first data set is presented in the Table 3.

```
# Data of time spend on music and rating
time_rating_data <- hw2_data |>
    select(time_music_last_week, Q19_avg) |>
    rename(rating_avg = Q19_avg) |>
    drop_na()

time_rating_data |>
    kbl() |>
    kable_styling(
    full_width = TRUE,
    bootstrap_options = c("striped", "condensed")
)
```

The second data is age_rating_data. This data contains information on the age of the song (song_age) and its average rating (rating_avg). We will use this data to investigate the relationship between song_age and rating_avg. Table 4 shows the data.

```
# Data of age and song_age
age_data <- hw2_data |>
 select(Q1, starts_with("Q19_1_")) |>
 rename(birth_year = Q1) |>
 pivot_longer(
    cols = starts_with("Q19_1_"),
   names_to = "release",
   values_to = "rating"
 ) |>
 mutate(
   release = as.numeric(gsub("Q19_1_", "", release)) * 2 + 1948,
    song_age = release - birth_year
 )
# Data of song_age vs rating average
age_rating_data <- age_data |>
  select(song_age, rating) |>
 group_by(song_age) |>
 summarise(
```

Table 3: Respondent listening time and tatings data

time_music_last_week	rating_avg
2.4166667	8.2647059
2.0000000	4.9411765
5.5833333	7.6470588
15.0000000	5.8529412
24.0000000	3.9117647
4.0000000	2.2058824
6.3500000	7.4117647
6.5000000	3.1818182
10.0000000	5.0303030
5.0000000	5.6764706
21.4166667	8.8529412
21.4166667	8.5294118
2.0500000	3.8235294
6.0000000	7.1176471
14.0000000	7.5000000
3.9333333	9.5294118
8.0000000	1.2647059
6.0000000	6.2000000
8.2500000	9.8823529
1.0000000	9.5588235
15.0833333	2.2352941
2.4166667	9.4117647
5.5000000	6.5294118
5.5000000	5.6969697
1.0166667	9.5882353
12.5000000	8.8529412
1.5000000	5.0000000
3.0000000	6.0000000
10.0500000	0.6470588
2.0000000	6.5588235
2.5000000	9.1470588
2.0000000	7.8750000
7.0000000	4.2058824
6.5000000	9.6470588
4.0000000	6.1764706
12.0833333	7.6666667
5.7500000	9.7352941
3.0000000	5.0588235
4.000000	7.7058824
2.5000000	6.5151515
10.5000000	5.6764706
5.5000000	9.4705882
4.5000000	8.8823529
2.1000000	2.5312500
10.0000000	5.8823529
5.0000000	6.5588235
5.0000000	4.6470588
4.0500000	8.1764706
2.0000000	8.2352941

```
rating_avg = mean(rating, na.rm = TRUE),
    .groups = "drop"
) |>
    drop_na()

age_rating_data |>
    kbl() |>
    kable_styling(
    full_width = TRUE,
    bootstrap_options = c("striped", "condensed")
)
```

Analysis

In Section , we will report our analysis results on the relationship between the duration of listening to chosen music and its ratings, as well as the relationship between the age of the song and its average ratings.

Time spend on music vs. rating

The relationship between the duration of listening to chosen music and the average ratings given can be observed using a scatter plot. Figure 1 presents this scatter plot.

```
time_rating_data |>
    ggplot(aes(x = time_music_last_week, y = rating_avg)) +
    geom_point(
        alpha = .4
    ) +
    geom_smooth(
        method = "lm",
        formula = y ~ x
    ) +
    theme_minimal()
```

Table 4: Song age and average ratings

song_age	rating_avg
-51	6.000000
-50	4.400000
-49	4.153846
-48	4.214286
-47	4.500000
-46	5.097561
-45	5.081967
-44	4.647059
-43	5.027778
-42	4.384615
-41	4.604938
-40	4.308642
-39	4.577320
-38	4.283019
-37	4.632479
-36	4.948718
-35	4.969466
-34	4.708029
-33	5.246835
-32	5.036364
-31	4.928994
-30	5.043478
-29	5.306011
-28	5.199005
-27	5.005076
-26	5.333333
-25	5.427230
-24	5.107296
-23	5.380342
-22	5.547325
-21	5.490272
-20	5.671533
-19	5.568266
-18	5.638796
-17	5.540351
-16	5.677019
-15	5.336667
-14	5.539394
-13	5.424051
-12	5.725146
-11	5.677914
-10 -9 8	5.635328
	5.366864
	5.613079
-7 6	5.610028
<u>-6</u>	5.831579
	5.702186
-4	5.633588
-3	5.682170

Figure 1: Scatter plot of listening duration vs. average ratings

To determine whether there is a correlation between the duration of listening to songs and the average ratings, a correlation hypothesis test needs to be conducted. The results are as follows.

```
cor_test_1 <- cor.test(
    x = time_rating_data$time_music_last_week,
    y = time_rating_data$rating_avg,
    method = "pearson"
)
print(cor_test_1)</pre>
```

Pearson's product-moment correlation

```
data: time_rating_data$time_music_last_week and time_rating_data$rating_avg
t = 2.2186, df = 1034, p-value = 0.02673
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.007959534 0.129196529
sample estimates:
        cor
0.06883216
```

Since we obtained a relatively large p-value, namely 0.0267291, we can conclude that there is not enough evidence to suggest a correlation.

Song age vs. rating average

Is there a relationship between the age of the song and its average rating? To observe this, first, please take a look at Figure 2.

```
age_rating_data |>
  ggplot(aes(x = song_age, rating_avg)) +
  geom_point() +
  geom_smooth(
    method = "lm",
    formula = y ~ x
) +
  theme_minimal()
```


Figure 2: Scatter plot of song age vs. average ratings

To determine whether there is a correlation between the age of the song and its average rating, we need to conduct a correlation hypothesis test. Here are the results.

```
cor.test(
  x = age_rating_data$song_age,
  y = age_rating_data$rating_avg,
  method = "pearson"
)
```

Pearson's product-moment correlation

```
data: age_rating_data$song_age and age_rating_data$rating_avg
t = -6.2962, df = 131, p-value = 4.254e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
   -0.6027608 -0.3396278
sample estimates:
        cor
   -0.481989
```

Since we obtained a very small p-value, there is enough evidence from the sample data to suggest that a correlation exists.

Is the correlation hypothesis test conducted appropriate? We performed a Pearson correlation hypothesis test on a non-linear relationship. This does not meet the assumptions of the hypothesis test. Therefore, we will analyze it further in the next section.

Song-age vs. rating average (revisited)

Although the data is not linear, we can split the data into two parts, resulting in two sections with a linear relationship. This division uses a song age threshold of 16.66 years. See Figure 3.

```
age_rating_data_1 <- age_rating_data |>
  filter(song_age <= 16.66)
age_rating_data_2 <- age_rating_data |>
  filter(song_age > 16.66)
age_rating_data_group <- age_rating_data |>
  mutate(
    group = if_else(song_age <= 16.66, "lower", "upper")
)
age_rating_data_group |>
  ggplot(aes(x = song_age, y = rating_avg, color = group)) +
```

```
geom_point() +
geom_smooth(
  method = "lm",
  formula = y ~ x
) +
theme_minimal()
```


Figure 3: Scatter plot of song age vs. average ratings in grouped data

The results of the correlation hypothesis test for the first group are as follows. This test shows a significant correlation.

```
cor.test(
    x = age_rating_data_1$song_age,
    y = age_rating_data_1$rating_avg,
    method = "pearson"
)
```

Pearson's product-moment correlation

```
data: age_rating_data_1$song_age and age_rating_data_1$rating_avg
t = 17.664, df = 66, p-value < 2.2e-16</pre>
```

```
alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.8553808 0.9427346 sample estimates: cor 0.9085187
```

The second group also yields a significant correlation.

```
cor.test(
  x = age_rating_data_2$song_age,
  y = age_rating_data_2$rating_avg,
  method = "pearson"
)
```

Pearson's product-moment correlation

Key takeaways

We have conducted a correlation analysis on data related to music preferences. First, we found that there is not enough evidence from our sample data to suggest a correlation between the duration of listening to music and its average ratings.

Second, we found sufficient evidence to conclude that there is a correlation between the age of the song and its average rating. Furthermore, we showed that a song age of 16.66 years is associated with the highest average rating. This means that, generally, a person tends to prefer hit songs released around 17 years after their birth.