

CPE/EE 695: Applied Machine Learning

Lecture 4 - 1: Evaluating Models

Dr. Shucheng Yu, Associate Professor

Department of Electrical and Computer Engineering

Stevens Institute of Technology

Model Evaluation

Cross-validation

Evaluation methods

- Leave-one-out cross-validation: This method is used when the data set is very small.
 - It is a special case of cross-validation
- Each fold of the cross validation has only a single test example and all the rest of the data is used in training.
- If the original data has m examples, this is m-fold cross-validation

1870

Classification measures

Accuracy is only one measure (error = 1-accuracy).

Accuracy is not always suitable

- In text mining, we may only be interested in the documents of a particular topic, which are only a small portion of a big document collection.
- In classification involving skewed or highly imbalanced data, e.g., network intrusion and financial fraud detections, we are interested only in the minority class.
 - High accuracy does not mean any intrusion is detected.
 - E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.
- The class of interest is commonly called the positive class, and the rest negative classes.

Precision and recall measures

confusion matrix

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

where

TP: the number of correct classifications of the positive examples (true positive),

FN: the number of incorrect classifications of positive examples (false negative),

FP: the number of incorrect classifications of negative examples (false positive), and

TN: the number of correct classifications of negative examples (true negative).

FP: Type I error , false alarm

FN: Type II error

Precision and recall measures (cont...)

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

$$p = \frac{TP}{TP + FP}. \qquad r = \frac{TP}{TP + FN}.$$

Precision *p* is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.

Recall *r* is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.

An example

	Classified Positive	Classified Negative
Actual Positive	1	99
Actual Negative	0	1000

- This confusion matrix gives
 - precision *p* = 100% and
 - recall r = 1%

because we only classified one positive example correctly and no negative examples wrongly.

 Note: precision and recall only measure classification on the positive class.

It is hard to compare two classifiers using two measures. F₁ score combines
precision and recall into one measure

$$F_1 = \frac{2pr}{p+r}$$

F₁-score is the harmonic mean of precision and recall.

$$F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

- The harmonic mean of two numbers tends to be closer to the smaller of the two.
- For F₁-value to be large, both p and r must be large.

ROC(Receiver Operating Characteristic) curve

Sensitivity: the proportion of positives which are correctly identified . recall rate, True Positive Rate

specificity: the proportion of negatives which are correctly identified. True Negative Rate

- It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will be accompanied by a decrease in specificity).
- The closer the curve follows the left-hand border and then the top border of the ROC space, the more accurate the test.
- The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test.
- The area under the curve (AUC) is a measure of accuracy.

Acknowledgement

Significant part of the slides were based on Dr. Christopher M. Bishop's material at https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book?from=http%3A%2F%2Fresearch.microsoft.com%2F%7Ecmbishop%2Fprml;

Part of the slide materials were based on Dr. Rong Duan's Fall 2016 course CPE/EE 695A Applied Machine Learning at Stevens Institute of Technology.

stevens.edu