« Ontologies in action»

présentation d'Anabasis, ses outils et activités

Clément SIPIETER Visio, 06/04/2021

Sommaire

- 1. Introduction
 - 1.Équipe
 - 2. Historique
 - 3.Axes principaux
- 2. Semantic Software
- 3. Semantic Interoperability
- 4. Semantic Data
- 5. Karnyx : suite logicielle Anabasis

Moi

Clément Sipieter
Directeur technique

- 2011-2013 Master DECOL à Montpellier
- 2013-2014 Ingénieur Informatique en ESN
- 2014-2017 Ingénieur de recherche dans l'équipe GraphIK (INRIA)
- 2017-2019 Ingénieur de recherche dans l'équipe ICO (INRA)
- 2017-2019 Activité d'ingénierie en tant qu'Auto-entrepreneur
- Depuis 2020 Directeur technique d'Anabasis

Équipe Anabasis

Richard Roll Fondateur et gérant

- ESSEC
- Ex associé PwC et IBM
- 31 ans dans les SI

Clément Sipieter
Directeur technique

- 8 ans d'expérience SI
- Expert logique formelle et ingénierie système

Sattisvar Tandabany Directeur R&D

- Normalien, 10 ans d'expérience
- Doctorat informatique ENS
- Expert IA (numérique et symbolique)

Sabrina
Ouazzani
Ingénieure de la connaissance

- Doctorat LIRMM, labo Ecole Polytechnique
- Prix Unesco Femmes pour lascience
- 7 ans d'expérience

Léa Guizol
Ingénieure de la
connaissance en chef

- Doctorat LIRMM
- 8 ans d'expérience

Antoine Spicher Expert scientifique

- Docteur. 20 ans d'expérience
- Maître de conférence Paris-Est Créteil

Fabien Givors Ingénieur de la connaissance

- Doctorat LIRMM
- 8 ans d'expérience

Nicolas Gros Ingénieur de recherche

 Ingénieur / Développeur en ingénierie de la connaissance

Franck Petit Chef de projet / Analyste métier

- 30 ans expérience métier maintenance
- Analyste données

anabasis

= INTELLIGENCE EXPLAINED

+ appui par des experts métier sur des processus clés

Historique

2010 - 2015

Service d'ingénierie d'exigence et de vérification/validation de systèmes complexes Service d'expertise métier opérationnelle, notamment pour la défense. Projets avec Airbus, Capgemini, la DGA.

2016 - 2019

Collaboration avec un partenaire industriel sur des applications métier basées sur les ontologies. Projets de prototypes logiciels avec le ministère de la défense (France) autour de l'interopérabilité sémantique.

Depuis fin 2019

Recrutement d'une équipe interne.

Refondation de la technologie et création de produits commercialisables.

Projets d'ingénierie systèmes et maintenance aéronautique pour le ministère des armées.

3 axes principaux

Semantic Software

Semantic Interoperability

Semantic Data

Semantic Software

MOA Métier

The hardest part of the software task is arriving at a complete and consistent specification, and much of the essence of building a program is in fact the debugging of the specification. Frederick P. Brooks Jr.

MOE Technique

Semantic Software Architecture

Métier
Ontologies
Concepts - relations
- règles

Semantic Software Architecture

Métier
Ontologies
Concepts - relations
- règles
Web services, API Java

Semantic Interoperability

Semantic Interoperability

Semantic InteroperabilityOntoSIOC

Objectif:

Traduction de « messages opérationnels » dans différents schémas.

Démo

Semantic Interoperability Résolution des ambiguïté

Semantic Data

Traitement de données

- Explicable :

- quelles sont les règles ayant permis de produire une information/décision ?
- à partir de quelles données ?

- Justifiable :

- d'où proviennent les règles utilisées ?
- À partir de quelles sources on-t-elles étaient produites ?

Semantic Data OntoMCOA

Objectif:

Détermination de la nature comptable (charge, stock, immobilisation) d'articles dans le cadre de la maintenance aéronautique.

Démo

Suite logicielle Karnyx

Interface web

Consultation de la modélisation Visualisation des données Exécution du modèle

API Interconnexion applicative

n

Moteur de raisonnement

Exécutabilité du modèle Extraction, Validation, Transformation

Bases de données Web, XML, JSON CSV, Excel

Réversible

Une suite logicielle pensée dans une optique d'ouverture (composants opensource) et de préservation du capital de connaissance des clients (réversibilité).

Un langage : Kalamar

Datalog

- + existentielles (créer de nouveaux individus)
- + builtins (>, <, ==,..., swrlb:strConcat...)
- + gestion d'aggrégats (sum, avg, min, max...)
- + Negation As Failure

Merci de votre attention

Contact:

Clément SIPIETER sipieter@anabasis-assets.com 06 75 17 76 31

www.anabasis-assets.com