Mécanique du solide

Table des matières

I Introduction0.1 différence entre le mouvement d'un point et le mouvement d'un sol							
1	Rappels de mécanique du point						
	1.1	Objectif	3				
		referentiel	3				
		1.2.1 repère d'espace	3				
		1.2.2 repère de temps	3				
	1.3	degrès de liberté	3				
	1.4	cinématique du point	4				
	1.5	dynamique du point	4				
	1.6	l'aspect énergétique de la mécanique du point	4				
2	en r	en mécanique du solide					
II	Cl	hapitre 2 : Cinématique du solide	6				
		hapitre 2 : Cinématique du solide tème de points materiels - solide indéformable	6				
	Syst	•					
	Syst	tème de points materiels - solide indéformable Résultante cinétique	6				
	Syst 3.1	tème de points materiels - solide indéformable	6 7				
	Syst 3.1	tème de points materiels - solide indéformable Résultante cinétique	6 7 7				
3	Syst 3.1 3.2	tème de points materiels - solide indéformable Résultante cinétique	6 7 7 8				
3	Syst 3.1 3.2	tème de points materiels - solide indéformable Résultante cinétique	6 7 7 8 8				
3	Syst 3.1 3.2	tème de points materiels - solide indéformable Résultante cinétique	6 7 7 8 8 9				
3	Syst 3.1 3.2 Réfe 4.1	tème de points materiels - solide indéformable Résultante cinétique	6 7 7 8 8 9 9				
3	Syst 3.1 3.2 Réfe 4.1	tème de points materiels - solide indéformable Résultante cinétique	6 7 7 8 8 8 9 9				
II 3 4	Syst 3.1 3.2 Réfe 4.1 4.2	tème de points materiels - solide indéformable Résultante cinétique	6 7 7 8 8 8 9 9 9				

5	Cha		np des vitesses dans un solide indéformable		
	5.1 Degrès de liberté			10	
	5.2				
	5.3	Exem	ples de mouvements de solide	11	
		5.3.1	$\vec{v(A)} \neq \vec{0}, \ \vec{\Omega} = \vec{0}, \ \text{le mouvement est alors une translation} \ \dots$	11	
		5.3.2	$\exists A \mid \nu(A) = \vec{0}, \ \vec{\Omega} \neq \vec{0}, \text{ rotation autour d'un axe fixe } \dots \dots$	11	
		5.3.3	$\vec{\Omega} \neq \vec{0}$, $\exists A \ / \ \vec{v(A)} \neq \vec{0}$ et $\vec{v(A)}$ et $\vec{\Omega}$ sont colinéaires, il s'agit alors		
			d'un mouvement hélicoïdal	11	
		5.3.4 $\vec{\Omega} \neq \vec{0}$, $\vec{v(A)} \neq \vec{0}$, le mouvement est quelconque		11	
	5.4	ment donné			
5.5		Exem	ples de détermination de $\vec{\Omega}$	12	
		5.5.1	Le pendule	12	
		5.5.2	Cylindre qui roule	12	
		5.5.3	Tige qui tombe	12	
		5.5.4	Demi cylindre	12	
	5.6		ples de champs des vitesses	12	
		5.6.1	La roue qui roule sur le plan horizontal	12	
6	Cha	ngomo	ents de réferentiel	13	
U			tion d'un vecteur dans espace mobile	13	
	0.1	2011.	and the control of th	10	
7	Contact entre deux solides			13	
	7.1	Vitess	e de glissement	13	
II	13				
_	_				
8			exemples d'applications	14	
	8.1		ole du pendule	14	
	8.2	exemp	ole de la roue	14	
IV	D	ynam	ique du solide	14	
9	Actions Mécaniques				
J	9.1		els sur la notion de force (mécanique du point)	14 14	
	9.2		ns mécaniques sur un solide	14	
	J.Z		Force intérieures, forces extérieures	14	
			Forces réparties en volume, en surface, et de manière ponctuelle	15	
		9.2.3	Torseur des Forces	15	
	9.3		ples d'actions mécaniques	15	
	5.5	LVCIII	pies a actions inccamques	10	
10 Principe fondamental de la dynamique pour un solide					

Première partie

Introduction

La mécanique consiste à décrire le mouvement et le prédire. La cinématique consiste à décrire le mouvement tandis que la dynamique consiste à le prédire. chap 1 : rappels chap 2 : cinématique chap 3 : dynamique

Définition 1. *un solide est un ensemble de points. On s'interesse plus particulièrement au modèle du solide indéformable.*

0.1 différence entre le mouvement d'un point et le mouvement d'un solide

on ajoute des degrès de liberté dû au fait que le point d'application de la force influe sur le mouvement.

1 Rappels de mécanique du point

1.1 Objectif

On veut décrire et prédire le mouvement d'un point.

1.2 referentiel

Il nous faut alors un réferentiel (repère d'espace et du temps)

1.2.1 repère d'espace

repère d'espace : une origine et une base

- coordonnées cartésiennes $\vec{OM} = x\vec{u}_x + y\vec{u}_y + z\vec{u}_z$
- coordonnées cylindriques $\vec{OM} = r \vec{u_r} + z \vec{u_z}$
- coodrdonnées sphériques $\vec{OM} = r \vec{u_r}$

1.2.2 repère de temps

on a la même horloge dans tous les réferentiels (on est en mécanique classique)

1.3 degrès de liberté

nombre de données indépendantes nécessaires pour définir de manière univoque la position d'un système, pour déterminer le nombre de degrès de liberté d'un système, on somme les ddl de chaque point auxquels on soustrait le nombre de contraintes.

1.4 cinématique du point

on souhaite décrire le mouvement $\vec{OM}(t)$ la vitesse $v=\frac{d\vec{OM}}{dt}_{\mathscr{R}}$ quantité de mouvement $\vec{p}=m\cdot\vec{v}$ l'expression de la vitesse dépend du réferentiel. en cartésien : $\vec{v}=$ en cylindrique : $\vec{v} = \dot{r} \vec{u}_r + r t \dot{h} \dot{e} t a \vec{u}_\theta + \dot{z} \vec{u}_z$ en sphérique : $\vec{v} = \dot{r} \vec{u}_r + r t \dot{h} \dot{e} t a \vec{u}_\theta + r \dot{\phi} \vec{u}_\omega$ expression de l'accélération:

On introduit alors la ... : $\vec{d} = m \cdot \vec{a}$

le moment cinétique : moment cinétique du point M par rapport au point A. $\vec{L_A} = \vec{AM} \wedge \vec{p}$

1.5 dynamique du point

principe fonda de la dynamique : $\sum_i F_i = \frac{d\vec{p}}{dt}$ où les forces F_i sont les forces appliquées au point. uniquement quand \mathcal{R} est galiléen th du moment cinétique : $\frac{d\vec{L}_A}{dt} = \sum_i \vec{\mathcal{M}}_A(\vec{F}_i)$

attention, ces équations sont des équations vectorielles quand on peut ne pas projeter, on ne projète pas

remarque : projection d'abord on écrit les équation vectorielles puis dans un second temps, si nécessaire, on projète

remarque : le PFD produit trois équations scalaires un point materiel possède trois degrès de libertés on peut alors décrire le mouvement d'un point avec le PFD

idem pour le th du moment cinétique (qui produit aussi trois équations scalaires)

ramarque : dans le théorème du moment cinétique, on fait aparaitre le moment des force, on peut le décrire formellemnt comme suit : $\vec{\mathcal{M}}_A(\vec{F}_i) = \vec{AM} \wedge \vec{F}_i$

remarque : l'intéret du th du moment cinétique : le moment en A est nul permet de montrer qu'une orbite est contenue dans un plan contenant lui même le centre de gravité.

l'aspect énergétique de la mécanique du point

$$\begin{split} \frac{d\vec{p}}{dt} &= \sum_{i} F_{i} \\ \vec{v} \cdot \frac{d\vec{p}}{dt} &= \vec{v} \cdot \sum_{i} F_{i} \\ \frac{d}{dt} (\frac{1}{2}m\vec{v}^{2}) &= \cdot \sum_{i} F_{i} \cdot \frac{d}{dt} \vec{l} \\ \frac{d}{dt} (\frac{1}{2}m\vec{v}^{2}) &= \cdot \sum_{i} F_{i} \cdot \frac{d}{dt} \vec{l} \\ \frac{d}{dt} (\frac{1}{2}m\vec{v}^{2}) &= \cdot \sum_{i} F_{i} \cdot \frac{d}{dt} \vec{l} \\ \frac{2mv^{2}}{\delta W} &= \sum_{i} \vec{F}_{i} d\vec{l} \end{split}$$

jusqu'à la fin de l'exemple du pendule

2 en mécanique du solide

pour résoudre des problèmes : d'abord, la cinématique puis soit de la dynamique avec le pfd soit un étude énergétique

Deuxième partie

Chapitre 2 : Cinématique du solide

3 Système de points materiels - solide indéformable

Définition 2. système de points materiels

avec un système de n points notés $M_i = (x_i, y_i, z_i)$ avec $i \in \{1, n\}$ on veut connaître le mouvement de chaque points

Exemple. exemple du modèle terre lune, utilisation du module fictif

nombre de degrès de liberté = 3n (n points de 3 coordonnées) une contrainte indépendante des précédentes retire un degrès de liberté exemples des points liés

Définition 3. solide : ensemble continu de points materiels

Définition 4. solide indéformable : modèle un solide est dit indéformable si la distance entre deux quelconques de ses points est indépendante du temps.

Définition 5. Centre de masse : Soit un système de points matériels :

$$\vec{OG} = \frac{\sum_{i} m_{i} \vec{OM}_{i}}{\sum_{i} m_{i}}$$

$$\vec{G}: \sum_{i} m_{i} \vec{GM}_{i} = \vec{0}$$

Où G est le centre de masse, barycentre, ou centre d'inertie

Remarque 1. le centre de masse est différent du centre de gravité, qui est le point d'application du poids

Exemple. sur un nuage:

Définition 6. expression du centre de masse pour un solide :

$$\vec{OG} = \frac{\iiint \rho(M)\vec{OM}dV}{\iiint \rho(M)dV}$$

où $\rho(M)$ est la masse volumique au point M la masse totale M_t s'exprimant alors :

$$M_t = \iiint \rho(M) dV$$

Remarque 2. lien entre intégrale et somme : (en 1D)

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(a + (\frac{b-a}{n})i)(\frac{b-a}{n})$$

Remarque 3. formule vraie pour tout O:

$$\iiint \rho(M)\vec{GM}dV = \vec{0}$$

Remarque 4. G peut ne pas appartenir au solide

3.1 Résultante cinétique

Définition 7.

$$\vec{P(t)} = \iiint \rho(M)\vec{v}(M,t)/_R dV$$

pour un solide

Définition 8. Champs de vitesses:

 $v(\vec{M},t)$ est la vitesse d'un point situé en M à l'instant t.

Propriété 1. propriétés de \vec{P} :

Pour un système de points materiels :

$$\vec{P} = \sum_{i} m_{i} v(\vec{M}_{i})$$

$$= \sum_{i} m_{i} \frac{d}{dt} \vec{OM}_{i}$$

$$= \frac{d}{dt}$$

3.2 Moment cinétique, torseur cinétique

Définition 9. Soit un système de points materiels :

$$\vec{L_A} = \sum_i \vec{AM_i} \wedge m_i v(\vec{M}_i)$$

$$\vec{L_A} = \iiint \vec{AM} \wedge \rho(M) v(\vec{M}) dV$$

 $\vec{L_A}$ est alors le moment cinétique en un point A. A appartient ou pas au solide

 $ec{L_A}$ est un champ de vecteurs, à chaque point A de l'espace, je peux calculer $ec{L_A}$

Propriété 2. quelles relations y-a-t'il entre $\vec{L_A}$ et $\vec{L_B}$?

$$\vec{L_B} = \iiint \vec{BM} \wedge \rho(M) \, \nu(\vec{M}) \, dV$$

$$= \iiint (\vec{BA} + \vec{AM}) \wedge \rho(M) \, \vec{v}(M) \, dV$$

$$= \vec{BA} \wedge \iiint \rho(M) \, \nu(\vec{M}) \, dV + \iiint \vec{AM} \wedge \rho(M) \, \nu(\vec{M}) \, dV$$

$$= \vec{BA} \wedge \vec{P} + \vec{L_A}$$

on a donc les deux formules suivantes (équivalentes, en connaître une par coeur)

$$\vec{L_B} = \vec{L_A} + \vec{P} \wedge \vec{AB}$$

$$\vec{L_B} = \vec{L_A} + \vec{BA} \wedge \vec{P}$$

On peut calculer $\vec{L_B}$ sur tout les B de l'espace en sachant $\vec{L_A}$ et \vec{P}

Définition 10. $(\vec{L_A}, \vec{P})$ est un torseur cinétique un torseur est un champ de vecteurs avec la propriété d'équiprojectivité :

$$\vec{L_A} \cdot \vec{AB} = \vec{L_B} \cdot \vec{AB}$$

$$\exists \vec{P} \mid \vec{L_B} = \vec{L_A} + \vec{P} \wedge \vec{AB}$$

3.2.1 Moment cinétique par rapport a un axe

$$L_{\Lambda} = \vec{L_A} \cdot \vec{u_{\Lambda}}$$

avec Δ , un axe orienté, et $\vec{u_{\Delta}}$, le vecteur unitaire de cet axe.

3.2.2 Energie cinétique

$$E_c = \iiint \frac{\rho(M)}{2} v(\vec{M})^2 dV$$

Remarque 5. memo:

— barycentre:

$$\vec{OG} = \frac{\iiint \rho(M)\vec{OM}dV}{\iiint \rho(M)dV}$$

$$\vec{OG} = \iiint \rho(M) \vec{GM} dV$$

— torseur cinétique :

$$\vec{P} = \iiint \rho(M) \vec{V(\rho)}$$

$$\vec{L_A} = \iiint \vec{AM} \wedge \rho(M) \vec{v(M)} dV$$

$$\vec{L_B} = \vec{L_A} + \vec{P} \wedge \vec{AB}$$

— torseur dynamique:

$$\vec{D} = \iiint \rho M a(\vec{M}) dV$$

$$\vec{\delta_A} \iiint \vec{AM} \wedge \rho(M) a(\vec{M}) dV$$

$$\vec{\delta_B} = \vec{\delta_A} + \vec{D} \wedge \vec{AB}$$

— passage du torseur cinétique au torseur dynamique :

$$\vec{D} = \frac{d}{dt}\vec{P}$$

$$\vec{\delta_A} = \frac{d}{dt}\vec{L_A} + \vec{V_A} \wedge \vec{P}$$

4 Réferenciel barycentrique, théorème de Koenig

notion spécifique aux systèmes de points materiels et aux solides . n'a pas d'intérêt pour un système d'un point materiel.

4.1 Réferentiel Barycentrique

4.1.1 Définitions

Définition 11. Le réferenciel barycentrique R^* a pour origine, même horloge et même repère d'espace que $R(R^*)$ possédant les mêmes axes que (R), il est en translation par rapport à (R)

Notation. La vitesse de M dans le réferenciel (R^*) se note $v^*(M) = \frac{d}{dt}(\vec{GM})$

4.2 Resultante cinétique et dynamique dans (R^*)

Définition 12.

$$\vec{P}^* = \iiint \rho(M) v^* \vec{(}M) dV$$

$$= \iiint \rho(M) \frac{d}{dt} \vec{G} M dV$$

$$= \frac{d}{dt} (\iiint \rho(M) \vec{G} M dV)$$

$$= \vec{0}$$

Propriété 3. $\vec{P}^* = \vec{0}$

$$\vec{D}^* = \iiint \rho(M) \, a^* \vec{(}M) \, dV$$
$$\vec{D}^* = \vec{0}$$

4.3 Moments cinétique et dynamique dans R^*

Définition 13.

$$\vec{L_A} = \iiint \vec{AM} \wedge \rho(M) v^* \vec{(M)} dV$$
$$\vec{\delta_A^*} = \iiint \vec{AM} \wedge \rho(M) a^* \vec{(M)} dV$$

Propriété 4.

$$\vec{L_B^*} = \vec{L_A^*} + \vec{P^*} \wedge \vec{AB}$$

$$\vec{L_B^*} = \vec{L_A^*} = \vec{L^*}$$

le moment cinétique est indépendant du point dans R*

$$\vec{\delta_B^*} = \vec{\delta_A^*} + \vec{D^*} \wedge \vec{AB}$$
$$\vec{\delta_B^*} = \vec{\delta_A^*} = \vec{\delta^*}$$

le moment dynamique est indépendant du point dans R*

4.4 Théorèmes de Koenig

Théorème 1. Relations entre :

- $\begin{array}{ll} & L_{\vec{A}|(R)} \ et \ \vec{L^*} \\ & L_{\vec{\delta}|(R)} \ et \ \vec{\delta^*} \\ & E_{c|(R)} \ et \ E_c^* = \iiint \frac{1}{2} \rho(M) \ \vec{v^*}(M) \ dV \end{array}$

4.4.1 Moment cinétique:

$$\vec{L_A}|_{(R)}$$

Champ des vitesses dans un solide indéformable

Rappel 1. Pour connaitre le mouvement d'un solide, il faut connaitre sa trajectoire et sa vitesse en chacuns de ses points.

On définit alors le champ des vitesses

Définition 14. $v(\vec{M})$, la vitesse du point situé en M au temps t

5.1 Degrès de liberté

tout solide (points matériels dont la distance entre eux est fixée) possède 6 degrès de liberté.

on utilise la position du barycentre (qui fixe 3 degrès de liberté) ainsi que trois angles (qui fixe les 3 autres degrès de liberté)

valable uniquement pour les solides indéformables

5.2 Torseur des vitesses

définition du solide indéformable, pour tout points A et B du solide, la distance AB étant constante, \vec{AB}^2 est aussi constant, d'où,

$$\vec{AB} \cdot [\vec{v(B)} - \vec{v(A)}] = 0 \Rightarrow \vec{v(B)} \cdot \vec{AB} = \vec{v(A)} \cdot \vec{AB}$$

Le champ des vitesses est équiprojectif, i.e. en trois dimensions, $\exists!\vec{\Omega} \ / \ \vec{v(B)} = \vec{v(A)} + \vec{\Omega} \land \vec{AB}$

Définition 15. On définit alors un couple avec le champs des vitesses et un torseur des vitesses (ou torseur cinématique)

$$(\nu(\vec{A}), \vec{\Omega})$$

Remarque 6.

$$\begin{aligned} \vec{v(B)} &= \vec{v(A)} + \vec{\Omega} \wedge \vec{AB} \\ \vec{v(B)} \cdot \vec{AB} &= \vec{v(A)} \cdot \vec{AB} + (\vec{\Omega} \wedge \vec{AB}) \cdot \vec{AB} \end{aligned}$$

Remarque 7. Le champ des vitesses peut varier en fonction du temps, à t donné, $(v(\vec{A}, t), \vec{\Omega(t)})$

Remarque 8. $\vec{\Omega}$ est homogène à l'inverse d'un temps.

5.3 Exemples de mouvements de solide

On se donne $(\vec{v}(A), \vec{\Omega})$, on souhaite alors connaitre la nature du mouvement.

5.3.1 $v(\vec{A}) \neq \vec{0}$, $\vec{\Omega} = \vec{0}$, le mouvement est alors une translation

Pour tout point B du solide, $\vec{v(B)} = \vec{v(A)}$, il s'agit alors d'une translation

5.3.2 $\exists A / \vec{v(A)} = \vec{0}, \vec{\Omega} \neq \vec{0}$, rotation autour d'un axe fixe

Pour tout point M du solide, $v(\vec{M}) = v(\vec{A}) + \vec{\Omega} \wedge \vec{AM} = \vec{\Omega} \wedge \vec{AM}$

- **5.3.3** $\vec{\Omega} \neq \vec{0}$, $\exists A \ / \ v(\vec{A}) \neq \vec{0}$ et $\vec{v(A)}$ et $\vec{\Omega}$ sont colinéaires, il s'agit alors d'un mouvement hélicoïdal
- **5.3.4** $\vec{\Omega} \neq \vec{0}$, $\vec{v(A)} \neq \vec{0}$, le mouvement est quelconque

On montre qu'il existe un point P tel que $\vec{v(P)}$ et $\vec{\Omega}$ sont colinéaires, de manière à se rapporter à un mouvement hélicoïdal autour d'un axe passant par P appelé axe instantané de rotation.

l'axe instantané de rotation peut varier dans le temps

5.4 Comment déterminer le vecteur rotation d'un solide pour un mouvement donné

On prend deux points quelconques M_1 et M_2 . On s'intéresse alors à $\overrightarrow{M_1M_2}(t)$ et $\overrightarrow{M_1M_2}(t+dt)$ S'ils sont égaux, il s'agit d'un mouvement de translation

On se place alors dans (R^*) ,

 $\vec{\Omega}$, est le même dans (R) et (R^*) $v^*\vec{(G)} = \vec{0}$ On tante alors de determiner un axe de rotation tel que $\{\Omega \mid v^*\vec{(M)} = \vec{0}\}$

On prend M_1 dans un plan perpendiculaire à l'axe passand par G

$$\vec{GM}_1(t+dt) - \vec{GM}_1(t) = v(\vec{M}_1)dt = \vec{\Omega} \wedge \vec{GM}_1dt$$

5.5 Exemples de détermination de $\vec{\Omega}$

5.5.1 Le pendule

Des systèmes comme le pendule :

- le crayon qui tombe
- la machine à laver

5.5.2 Cylindre qui roule

On cherche à determiner $\vec{\Omega}$ et \vec{P} . Il n'existe *a priori* pas de point de vitesse nulle. Dans le ref. barycentrique, $v^*\vec{(G)} = \vec{0}$.

5.5.3 Tige qui tombe

pas de point dont la vitesse est nulle, on se place donc dans le ref barycentrique. Dans \mathcal{R}^* , on se ramène au cas du pendule d'où $\vec{\Omega} = \dot{\theta} \vec{u}_z$

5.5.4 Demi cylindre

Dans le réferenciel barycentrique, on retrouve encore le cas du pendule

5.6 Exemples de champs des vitesses

5.6.1 La roue qui roule sur le plan horizontal

$$\begin{aligned} \vec{V(A)} &= \vec{V(G)} + \vec{\Omega} \wedge \vec{GA} \\ &= \dot{x}\vec{u_x} + \left(0, 0, \dot{\theta}\right) \wedge (r\cos\alpha, r\sin\alpha, 0) \\ &= \dot{x}\vec{u_x} - r\dot{\theta}\sin\alpha\vec{u_x} + r\dot{\theta}\cos\alpha\vec{u_y} \\ \vec{V(M)} &= \vec{V(G)} + \vec{\Omega} \wedge \vec{GM} = \left(\dot{x} - R\dot{\theta}\sin\theta, R\dot{\theta}\cos\theta, 0\right) \end{aligned}$$

où M est à la périphérie

6 Changements de réferentiel

On se donne donc deux réferentiel (R) et (R') de même horloge et de bases respectives ($\vec{u}_x, \vec{u}_y, \vec{u}_z$) et

6.1 Dérivtion d'un vecteur dans espace mobile

7 Contact entre deux solides

7.1 Vitesse de glissement

Soient deux solides S_1 et S_2 en contact en un point I au temps t. On définit I_1 et I_2 , appartenant respectivement aux solides 1 et 2, qui coïncident avec le point I à l'instant t.

vitesse de glisement de S_1 par rapport à S_2 :

$$V_g(\vec{S_1}/S_2) = V(\vec{I_1}) - V(\vec{I_2})$$

Si cette vitesse est nulle, on dit qu'il n'y a pas de glissements, sinon, on dit qu'il y a du glissement.

exemples de la roue qui tourne sur le sol et de deux roues en contact

Troisième partie

Moment d'inertie

Définition 16. *Moment d'inertie par rapport à un axe :*

$$J_{\Delta} = \iiint \rho(M) H M^2 dv$$

où J_Δ est le moment d'inertie du solide S constitué de points M H est le projeté de M sur Δ

— Dans un solide S (cf fig 51)

$$\vec{L}_0 = [I] \vec{Omega}$$

$$I = \left[\begin{array}{c} \iiint (y^2 + z^2) \rho dV - \iiint \rho xy dV - \iiint \rho xz dV \\ \iiint (x^2 + z^2) \rho dV - \iiint \rho yz dV \\ \iiint (x^2 + y^2) \rho dV \end{array} \right]$$

où les coordonnées sont données dans la base $(\vec{i}_s, \vec{f}_s, \vec{k}_s)$

— théorème de Huygens

$$J_{\Lambda'} = J_{\Delta} + md^2$$

- calcul du moment dynamique

$$\frac{d\vec{L_0}}{dt}$$

8 Quelques exemples d'applications

- 8.1 exemple du pendule
- 8.2 exemple de la roue

Quatrième partie

Dynamique du solide

9 Actions Mécaniques

9.1 Rappels sur la notion de force (mécanique du point)

Une force est une interaction entre deux points (ou entre un point et un autre système)

Exemple. — Force electrostatique — Force de Lorentz — Force de gravitation —

Une force est définie par un vecteur et un point d'application.

Dans le PFD, on seul le vecteur intervient

tandis que dans le théorème du moment cinétique, on utilise le vecteur et son point d'application.

Dans la plupart des cas, un utilisera le couple $(\vec{F}, \vec{\mathcal{M}}_A(\vec{F}))$ Il n'est donc pas nécessaire de connaître le point d'application si l'on connaît le moment de la force en $A \vec{\mathcal{M}}_A(\vec{F})$

9.2 Actions mécaniques sur un solide

9.2.1 Force intérieures, forces extérieures

Définition 17. Les forces intérieures interviennent dans les interactions entre les points du solide.

Les forces extérieures interviennent dans les interactions entre des points du solide et des éléments extérieurs.

Pour décrire le mouvement d'un solide indéformable, on ne s'occupe que des forces extérieures.

Par ailleurs, les forces intérieures ne travaillent pas.

Remarque 9. Si on considère plusieurs solides, il faut considérer les forces entre les solides.

9.2.2 Forces réparties en volume, en surface, et de manière ponctuelle

Exemple. — force répartie en volume : force de gravité

- force répartie en surface : forces de pression
- force répartie de manière ponctuelle : forces exercée par le sol sur une toupie en rotation

9.2.3 Torseur des Forces

Une Action mécanique sur un solide est définie par le couple $(\vec{F}, \vec{\mathcal{M}}_A(\vec{F}))$

- Pour des forces réparties en volume :

$$\vec{F} = \iiint f_{vol}(M) \, dV$$

$$\vec{\mathcal{M}}_A(\vec{F}) = \iiint \vec{AM} \wedge f_{vol}(M) \, dV$$

- Pour des forces réparties en volume :

$$\vec{F} = \iint f_s(\vec{M}) dS$$

$$\vec{\mathcal{M}}_A(\vec{F}) = \iint \vec{AM} \wedge f_s(\vec{M}) dS$$

$$\vec{\mathcal{M}}_B(\vec{F}) = \iiint \vec{BM} \wedge f_{vol}(M) dV$$

$$= \iiint \vec{BA} \wedge f_{vol}(M) dV + \iiint \vec{AM} \wedge f_{vol}(M) dV$$

$$= \vec{BA} \wedge \vec{F} + \vec{\mathcal{M}}_A(\vec{F})$$

Ainsi,

$$\vec{\mathcal{M}}_B(\vec{F}) = \vec{\mathcal{M}}_A(\vec{F}) + \vec{F} \wedge \vec{AB}$$

On a donc un torseur de forces $(\mathcal{M}_A(\vec{F}), \vec{F})$

9.3 Exemples d'actions mécaniques

10 Principe fondamental de la dynamique pour un solide

Théorème 2. Le torseur dynamique est égal à la résultante des torseurs de force du système.

$$(\vec{\delta_A}, \vec{D}) = \sum_i (\vec{\mathcal{M}}_A(\vec{F}_i), \vec{F}_i)$$