18 de dezembro de 2024

Nota:

Instruções:

- Justifique todas as suas respostas com cálculos, argumentos lógicos e clareza.
- É permitido usar qualquer resultado apresentado em sala. Contudo, não é permitido qualquer tipo de consulta.
- Será considerado apenas o que for escrito a caneta. Traceje o que deve ser ignorado.
- A prova tem duração de 75 minutos. Dica: não gaste mais do que 5 minutos para cada 1 ponto.

Problema 1. (3 pontos)

Calcule os seguintes limites:

(a)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$

(b)
$$\lim_{x \to -\infty} \frac{5x^4 + x^2 - 7}{3x^4 + 2x + 1}$$
 (c) $\lim_{x \to 1} \frac{1 - x}{2 - \sqrt{x^2 + 3}}$

(c)
$$\lim_{x \to 1} \frac{1-x}{2-\sqrt{x^2+3}}$$

Problema 2. (3 pontos)

Determine a equação da reta tangente ao gráfico das seguintes funções no ponto x_0 indicado:

(a)
$$f(x) = e^{x^2 - x}$$
, $x_0 = 0$

(a)
$$f(x) = e^{x^2 - x}$$
, $x_0 = 0$ (b) $g(x) = \sqrt[3]{x^2 - x}$, $x_0 = 2$ (c) $h(x) = \csc(x)$, $x_0 = \pi/2$

(c)
$$h(x) = \csc(x), \quad x_0 = \pi/2$$

Problema 3. (6 pontos)

Calcule a derivada das seguintes funções:

(a)
$$f(x) = \frac{x^2}{1+x}$$

(c)
$$h(x) = \frac{1}{x} + x^2$$
 (e) $n(x) = e^{x^2}$

(e)
$$n(x) = e^{x^2}$$

(b)
$$g(x) = \ln(x)\cos(x)$$
 (d) $m(x) = e^x \ln(x)$

(d)
$$m(x) = e^x \ln(x)$$

(f)
$$p(x) = \sqrt{x^3 - 1}$$

Problema 4. (3 pontos)

Encontre $\frac{dy}{dx}$ por derivação implícita para cada uma das equações abaixo:

(a)
$$x^4(x+y) = y^2(3x-y)$$
 (b) $e^{xy} = x-y$

(b)
$$e^{xy} = x - y$$

(c)
$$x^2y^2 + x\cos(y) = 4$$

Para uso do professor

Problema:	1	2	3	4	Total
Pontos:	3	3	6	3	15
Obtidos:					