Information content of the alignments

	WNV NS3	HIV-1 env	SARS-CoV-2 spike
<u>Sequences</u>	19	16	118
Codons	619	288	1273
Tree Length MG94 model, subs/site	0.67	0.20	0.134

How do you expect these measures to correlate with the ability to detect selection?

Information content of the alignments

	WNV NS3	HIV-1 env	SARS-CoV-2 spike
<u>Sequences</u>	19	16	118
Codons	619	288	1273
Tree Length MG94 model, subs/site	0.67	0.20	0.134

How do you expect these measures to correlate with the ability to detect selection?

Alignment-wide estimates

- Using standard MLE approaches it is straightforward to obtain point estimates of $dN/dS := \beta/\alpha$
- Can also easily test whether or not dN/dS > 1, or < 1 using the likelihood ratio test (LRT)
- Codon models also support the concepts of synonymous and nonsynonymous distances between sequences using standard properties of Markov processes (exponentially distributed waiting times)