CSCE 411: Design and Analysis of Algorithms

Lecture 9: Intro to Graph Algorithms

1 Graph Notation and Terminology	
An (undirected) graph $G = (V, E)$ is defined by	
An edge between nodes i and j is denoted by	
We can also denote an edge by	
If $(i, j) \in E$, we say i and j are set of nodes adjacent to it:	. The neighborhood of node i is the
The $degree$ of i is the number of neighbors it has:	

1.1 Generalized graph classes

• Weighted:

• Directed:

1.2 Basic graphs and edge structures

• A complete graph is a graph in which

• A bipartite graph is a graph in which

• Triangle: set of three nodes that all share edges:

$$\{i, j, k\} \subseteq V$$
 such that $\{(i, j), (i, k), (j, k)\} \in E$

• Path: is a sequence of edges joining a sequence of vertices:

$$\{i_1, i_2, \dots i_k\} \subseteq V$$
 where $(i_1, i_2) \in E, (i_2, i_3) \in E, \dots, (i_{k-1}, i_k) \in E$.

• Matching: is a set of edges without common vertices

$$\mathcal{M} \subseteq E$$
 such that for all $e_i, e_j \in \mathcal{M}$ with $e_i \neq e_j, e_i \cap e_j = \emptyset$.

• Connected component: a maximal subgraph in which there is a path between every pair of nodes in the subgraph.

1.3	Optimization	Problems	on	Graph	เร
-----	--------------	-----------------	----	-------	----

Many graph analysis problems amount to optimizing an objective function over a graph.

Example 1. Shortest path. Given a source node $s \in V$ and target node $t \in V$, find the shortest path of edges between s and t.

Example 2. Maximum bipartite matching. Let G = (V, E) be a bipartite graph. Find a matching \mathcal{M} with maximum sum of edge weights.

Example 3. Find connected components. Return the connected components of a graph:

1.4 Encoding a Graph

Consider a graph G=(V,E) with a fixed node ordering $V=\{1,2,\ldots,n\}.$

Adjacency Matrix The adjacency matrix A of G is defined so that

Adjacency List The adjacency list Adj of G is