CBM414 - Procesamiento digital de señales biomédicas Clase 02 - Muestreo, aliasing y reconstrucción

David Ortiz, Ph.D.
Escuela de Ingeniería Biomédica
Universidad de Valparaíso

Expectativas de aprendizaje

El estudiante será capaz de analizar el efecto del muestreo en una señal analógica, identificar aliasing y comprender las condiciones necesarias para su reconstrucción exacta.

Clase anterior:

- Repaso de señales analógicas 1.2
- Teoréma del muestreo 1.3

Clase de hoy:

• Muestreo, aliasing y reconstrucción 1.3.1, 1.4

Esta presentación es una recopilación del texto guía de Orfanidis y no contiene todos los temas abordados en clase. Por favor, reportar posibles errores al correo david.ortiz@uv.cl.

Teorema de muestreo (Shannon-Nyguist)

Si la frecuencia más alta contenida en una señal analógica x(t) es f_{max} , y la señal es muestreada con una frecuencia de muestreo $f_s \geq 2f_{max}$, entonces es posible reconstruir x(t) en forma exacta a partir de las muestras de $x(nT), n \in \mathbb{Z}^+$, con $T = \frac{1}{f_n}$

Para tener una representación precisa se debe cumplir

$$f_s \geq 2f_{max}, \quad T \leq rac{1}{2f_{max}}$$

¿Cuales son las unidades?

Y nombramos

- 1. $(f_s)_{max} = 2f_{max} := \text{Raz\'on de Nyquist}$
- 2. $\frac{f_s}{2}$:= Frecuencia de Nyquist (*Cutoff* frequency)
- 3. $\left[-\frac{f_s}{2}, \frac{f_s}{2}\right] := \text{Intervalo de Nyquist}$

Teorema de muestreo

Considere la sinusoide $x(t)=cos(2\pi ft)$ de frecuencia f y el requerimiento del teorema del muestreo $f_s \geq 2f_{max}$

¿Qué pasa con una suma de senoidales?

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t) + \dots + A_{\mathsf{max}} \cos(2\pi f_{\mathsf{max}} t),$$

entonces,

$$2f_1 \le 2f_2 \le \cdots \le 2f_{\mathsf{max}} \le f_s$$

Teorema de muestreo

Un mal muestreo de la señal analógica produce un efecto conocido como *alias*. **Ver ejemplo**.

Aplicación	\mathbf{f}_{max}	fs	
Geofísica	500 Hz	1 kHz	
Biomédica	1 kHz	2 kHz	
Mecánica	2 kHz	4 kHz	
Voz	4 kHz	8 kHz	
Audio	20 kHz	40 kHz	
Video	4 MHz	8 MHz	

Table 1: Frecuencia "máxima" y frecuencia de muestreo para diferentes aplicaciones.

Nota: Acceder a la versión virtual de este documento para ver el video.

Aliasing

¿Qué pasa si no se cumple el teorema de muestreo? Consideremos nuevamente la exponencial compleja $x(t) = e^{2\pi jft}$. Definamos una familia de sinusoides complejas y sus veriones muestreadas

$$x_m(t) = e^{2\pi j(J+mJ_s)t}, \quad m = 0, \pm 1, \pm 2... \quad \Rightarrow \quad x_m(nT) = e^{2\pi j(J+mJ_s)nT}$$

veriones muestreadas
$$x_m(t)=e^{2\pi j(f+mf_s)t},\quad m=0,\pm 1,\pm 2...\quad \Rightarrow \quad x_m(nT)=e^{2\pi j(f+mf_s)nT}$$
 entonces, considerando $f_sT=1$, tenemos
$$x_m(nT)=e^{2\pi j(f+mf_s)Tn}$$

$$=e^{2\pi jfTn}e^{2\pi jmf_sTn}$$

$$=e^{2\pi jfTn}\cdot 1\quad (\text{con}\quad e^{2\pi jmf_sTn}=e^{2\pi jmn}=1)$$

$$=x(nT)$$

Esto significa que $x_m(nT)=x(nT), m=0,\pm 1,\pm 2...$ y que las frecuencias $f \pm f_s, f \pm 2f_s, ..., f \pm mf_s$ serán equivalentes a f o alias de la frecuencia verdadera.

Frecuencia alias

Adicionalmente, de las frecuencias *alias* únicamente una estará en el intervalo de Nyquist $[-\frac{f_s}{2},\frac{f_s}{2}]$ y esta se podrá obtener a partir de la expresión

$$f_a = f \mod(f_s) \Rightarrow egin{cases} f_a = f \pm mf_s & ext{La fase es importante,} \ f_a = |f - mf_s| & ext{La fase no importa.} \end{cases}$$

La operación \mod consiste en *restar* o *sumar* suficientes multiplos de f_s a la frecuencia f, hasta que f_a se encuentre en el intervalo de Nyquist.

La función \mod para este caso, difiere de la función módulo (%) utilizada en matemáticas. La función \mod para este caso hace referencia al paso a paso de encontrar la frecuencia dentro del intervalo de Nyquist, al considerar $x_m(nT) = x(nT), m = 0, \pm 1, \pm 2...$

Frecuencia alias

Ejercicio en clase

Ejemplo 1: Señal con $f_s=8$ Hz y conjunto de frecuencias $\{\boxed{1},\boxed{3},5,7,9,11,13,...\}$

		Frecuencias (f)				
		f = 1	f = 3	f = 5	f = 7	
\overline{m}	0	$f_a = 1 \pm 0 \cdot 8 = \boxed{1}$	$f_a = 3 \pm 0 \cdot 8 = \boxed{3}$	$f_a = 5 \pm 0 \cdot 8 = 5$	$f_a = 7 \pm 0 \cdot 8 = 7$	
	1	$f_a = 1 \pm 1 \cdot 8 = \begin{cases} 9 \\ -7 \end{cases}$	$f_a = 3 \pm 1 \cdot 8 = \begin{cases} 11 \\ -5 \end{cases}$	$f_a = 5 \pm 1 \cdot 8 = \begin{cases} 13 \\ \hline -3 \end{cases}$	$f_a = 7 \pm 1 \cdot 8 = \begin{cases} 15 \\ \boxed{-1} \end{cases}$	
	2	$f_a = 1 \pm 2 \cdot 8 = \begin{cases} 17 \\ -15 \end{cases}$	$f_a = 3 \pm 2 \cdot 8 = \begin{cases} 19 \\ -13 \end{cases}$	$f_a = 5 \pm 2 \cdot 8 = \begin{cases} 21 \\ -11 \end{cases}$	$f_a = 7 \pm 2 \cdot 8 = \begin{cases} 23 \\ -9 \end{cases}$	

Ejercicio: Una señal senoidal de frecuencia $f=10~{\rm Hz}$ es muestreada a una razón de $f_s=12~{\rm Hz}.$

- a) ¿Qué frecuencias replicadas se generan en el espectro de la señal muestreada?
- b) ¿Cuál de esas réplicas aparece dentro del intervalo de Nyquist [-6,6] Hz?
- c) ¿Qué frecuencia se observará en la señal reconstruida?
- d) ¿Qué ocurriría si en cambio la señal se muestrea a $f_s=22~{\rm Hz}$?

Eiercicio en clase

Respuesta:

a) Las réplicas aparecen en:

$$f + mf_s = 10 + 12m, \quad m \in \mathbb{Z} \tag{1}$$

- b) Solo la réplica -2 Hz cae dentro del intervalo de Nyquist [-6, 6] Hz.
- $f+mf_s=10+12m,\quad m\in\mathbb{Z}$ Es decir: $\dots,-26,\ -14,\ -2,\ 10,\ 22,\ 34,\ \dots$ plo la réplica -2 Hz cae dentro del interval· eñal reconstruida será interval· eg. c) La señal reconstruida será interpretada como una senoidal de -2 Hz debido al
- d) Si $f_s = 22$ Hz, el intervalo de Nyquist es [-11, 11] Hz. En este caso, la frecuencia original de 10 Hz cae dentro del intervalo, por lo tanto no hay aliasing y la señal se recupera correctamente.

Ejercicios (Orfanidis)

- 1. Demostración vista en clase sobre aliasing. Otra versión aquí.
- 2. Ejemplos del libro: 1.4.1, 1.4.2, 1.4.3, 1.4.4, 1.4.5
- 3. Ejercicios con solución sección 1.8: 1.1 a 1.8

Objetivo general

Profundizar en el teorema de muestreo, conocer su necesidad, y reconstrucción de señales

Clase de hoy:

• Reconstrucción analógica y aliasing (sinusoides) 1.3.1,1.4

Próxima clase:

- Espectro de señales muestreadas (DTFT) 1.5
- Replicación del espectro 1.5.2

Referencias:

 S. J. Orfanidis, <u>Introduction to signal processing</u>. Rutgers University, 1st edition, 1995. Disponible en https://rutgers.app.box.com/s/5vsu06pp556g9dfsdvayh4k50wqpataw.