

ZMDr 使用指南

武汉大学智能机器人研究室 武汉大学机器人队

概述

ZMDr (ZJZ Motor Driver),由作者 ZJZ 完成软硬件开发,武汉大学机器人智能研究室 (A9307)提供支持,由武汉大学机器人队开展实验测试。该无刷电机驱动器开发的目的在于降低 FOC 硬件的成本,实现国产替代,同时,在软件上尽量降低用户使用门槛,推进FOC 电机矢量控制技术的应用。

目前的 ZMDr 通用型号包含小功率 (30A) 和大功率 (100A) 版本,适应不同场合的需求,接受 PCB 定制。驱动器可以实现对合适功率的无刷电机电流(扭矩)、速度、位置控制,包含无编码器速度控制、轨迹规划算法。

ZMDr 正处于开发和更新的状态,将会根据实验测试和用户反馈不断改讲。

声明

在使用之前,请仔细阅读本声明,请严格遵守使用指南。驱动器为强电设备,作者对认为过激参数不负责任。

ZMDr 开源软件原理图,闭源 PCB、软件、上位机。严禁任何作者未允的商用行为。软件仅授权于武汉大学机器人队。

致谢

ZMDr 开发从零做起,起始于 2020 年,开发过程极为艰难,作者对开发过程中提供过帮助的朋友表示衷心的感谢:

FOC 启蒙参考: ODrive, VESC

硬件开发支持:矛盾聚合体、滚筒洗衣机

软件开发支持: Turing、AMO、Jdhfusk

1 ZMDr 硬件

1、开源原理图

原理图开源给用户参考,主控制器采用国产 AT32F403ACGT7, 栅极驱动器采用 FD6288Q, TX4137 电源方案 (图示为低压同步 RY 8411 的通用电路),使用低噪声运算放大器 (721 系列) 做电流采样, HYG025N06 高压 MOS 管。

2、硬件接口电路

ZMDr 通信接口包含 USB 虚拟串口、CAN、串口、SPI 编码器接口。虚拟串口需要用于与上位机通信,进行调试和校准。CAN 通信为嵌入式运用的主要通信方式¹,另外提供 UART 接口²,SPI 连接磁

¹ ZMDr CAN 通信具备最高的优先级,若运用于轨迹跟踪等通信准确性要求较高的场合,请采用 CAN 通信。

编码器, ZMDr 可以板载 MT6816 磁编码器。

LED1³: 快闪——错误; 慢闪——释放; 常亮——使能; LDE2: 3.3V 指示灯; LED3: 12V 指示灯;

ZMDr_P 控制层

ZMDr_P 电源层

ZMDr_P 功率层

接口定义

 名称	线序名称
UART VTRG	VCC TX RX GND
UART(_P) ⁴ VTRG	VCC TX(DP) ⁵ RX(DM) GND
SPI VSKOIG	VCC CS SCK MISO MOSI GND
SPI(_P) SKOI	(VCC) CS SCK MISO MOSI (GND)
SWD G5KO	GND 5V SWK SWDIO
SWD(_P) VKOG	VCC SWK SWDIO GND
FAN 风扇 ⁶	GNC 12V FAN_PWM

² 当前 UART 通信未启用,用户不能使用。

³ 高功率版本无 LED1,有 RGB,呼吸表示正常,停止呼吸表示错误。

⁴ P表示高功率版本对应的接口。

⁵ 高功率版本 USB 和串口通过跳线电阻复用。

⁶ 高功率版本无风扇接口。

2 ZMDr 软件

1、软件接口参数

ZMDr接口参数包含了电机的用户参数、校准参数、状态参数。 用户参数需要用户给定,包含电机的特性,校准的阈值、控制的PID、控制阈值等。状态参数是驱动器通过自生校准获取的参数,不需要给定。状态参数反映电机的运行参数,方便用户调试,其不会被保存到FLASH,包含用户设置的目标、实际运行的值等。

参数定义78

		 解释		UART	CAN
		州午 个 工		ID	ID
	pol	电机极对数	[2, 42]	pol	0x01
	ses_en	无感标志位	[0, 1](int)	ses	0x03
	enl_en	编码器标志位 [0, 2](int)		enl	0x05
	can_id	CAN id	[0, 7](int)	cid	0x07
	can_bit	CAN 心跳信息	CAN 心跳信息 73 77 79 85 87		0x 5F
	start_en	上电进入状态	状态 [0, 3](int)		0x09
用	i_cl	电机校准电流	[5, i_limit]	icl	0x0B
户	a_cl	KV 校准加速度	[0.1, 2]	acl	0x0D
参 数	i_ses	无感强托电流	[0.1, 0.5*i_limit]	ies	0x0F
釵	p_p	位置环 P	[0.01, 10]	p_p	0x11
	p_i	位置环I	[0, 10]	p_i	0x13
	v_p	速度环 P	[0.1, 10]	v_p	0x15
	v_i	速度环I	[0, 10]	v_i	0x17
	i_limit	最大电流限制	$[0, 40 120]^9$	ili	0x19
	v_limit	最大的转速限制	$[0, 10^6]$	vli	0x1B
	a_trp_up	运行加速度	[0, 1000]	acu	0x1D

⁷ 单位: 电阻 (mR), 电感 (uH), 电流 (A), 速度 (转/s), 位置 (圈)。

⁸ 读写:蓝色参数仅读取,禁止写入,黑色参数可读可写。

⁹ 标准版为 40A, 高功率版为 120A, 此值为峰值电流, 最大持续电流依散热条件而定。

	a_trp_down	运行减速度	[0, 1000]	acd	0x1F
		PVT 模式末速度	[0, v_limit]	pvd	0x21
	vel_f	速度滤波系数	[0.001, 1]	vef	0x23
	filter_v	滤波截速	[0, v_limit]	fvk	0x25
	flk_k	磁链增益	[0.1, 10]	fkk	0x27
	rsi	电机电阻	[10, 20000]	rsi	0x29
校	ind	电机电感	[10, 3000]	ind	0x2B
准	kv	电机 KV	$[10, 10^4]$	k_v	0x2D
参	enc_dir	编码器方向	1, -1	dir	0x2F
数	enc_of	编码器偏移量	[-2*PI, -2*PI]	eof	0x31
	cal_ok	校准状态	[0, 4](int)	cla	0x33
	i_set	设置电流 (扭矩)	[-i_limit, i_limit]	iin	0x35
	v_in	设定速度	[-v_limit, v_limit]	vin	0x37
	p_in	设定位置	[-∞, +∞]	pin	0x39
	ia	A 相电流	[-i_lim, i_lim]	i_a	0x3B
	ib	B相电流	[-i_lim, i_lim]	i_b	0x3D
	ic	C相电流	[-i_lim, i_lim]	i_c	0x3F
	id	直轴电流	[-0, +0]	i_d	0x41
状	iq	交轴电流	[0, i_limit]	i_q	0x43
态	vd	角度超前量	[0, 0.5*PI] v_d [0, 4096](int) v_q		0x45
参	vq	输出占空比			0x47
数	i_max	当前 id+iq	[0, i_limit]	i_m	0x49
	enc_raw	编码器值	[0, CPR](int) ¹⁰	ecr	0x4B
	vel_usr	当前速度	[0, v_limit]	vel	0x4D
	p_usr	当前位置	[-∞, +∞]	pos	0x4F
	flk_est	估计磁链	$[0.5*flk, 1.5*flk]^{11}$	flk	0x51
	vbus	供电电压	[0, 25.2]	vbs	0x53
	mode	当前模式	[0, 12](int)	mod	0x55
	err	当前错误	[0, 13](int)	err	0x57

参数说明:

¹⁰ CPR 为编码器的分辨率,例如 14 位编码器位 16384。

¹¹ flk 为根据 KV 计算的大致内部参数。

pol: 电机的极对数,为电机的磁铁个数除以 2,填写错误编码器校准无法通过。

ses_en、enl_en:无感、编码器标志位,两个标志位相互配合实现不同的控制模式,无感相较于有感可以得到更加平滑的速度控制。

ses enl	0	1	2
0	非法模式	纯有感模式	有感编码器补偿模式
1	纯无感模式	有感启动无感模式	有感补偿启动无感模式

start_en: 启动自动进入的模式,如需要上电自动进入位置模式,则令 start_en=3.设置该参数<mark>务必完成校准</mark>,更换驱动电机时务必重置此值。否则可能引起参数不正确导致电机跑飞。

i cl: 电机电阻、电感校准时的电流、尽量取额定电流的 50%。

a_cl: KV 校准为电机加速旋转的过程,该值越大加速越快相应校准的精度会有所降低,校准时间缩短。

i_ses: 无感启动时的电流, 启动过程为强制拖动电机达到一定速度后进入无感观测器, 该值过小会导致无法启动, 过大会导致目标转速过大而失速。

p_p, **p_i**, **v_p**, **v_i**: 速度环、位置环的 PI 参数, 电流环参数 通过校准获得, 无需用户给定, 参照表格范围给定。其中位置环 I 应较小, 用于消除位置锁定的误差, 在点对点运行时较大的 I 会导致严重的过冲, 轨迹跟踪下不会。

i_limit, v_limit: 电机的电流、速度限制, 电流限制最好不超过电机的额定电流, 短时工况可以适当提高, 速度限制最好不超过电

机所能达到的最大转速。

a_trp_up, a_trp_down, p_vel_end: 梯形轨迹下电机运行的加速度和减速度,位置模式默认走梯形轨迹。值得注意的是,较大的减速度会回收能量,如何电源不具备充电能力(开关电源)容易导致供电电压急剧升高,损坏电源或者驱动器。可以通过 a_trp_up=0开启 PVT 轨迹,此时 a_trp_down 表示时间间隔,配合 p_vel_end(到达目标点的速度)实现 PVT 规划。

vel_f: 速度滤波系数,速度为编码器的值微分,其含有较大的噪声,降低滤波系数可以获得更平滑的速度,同时更容易产生控制上的震荡。

filter_v: 滤波截速,位置和电流的滤波强度和速度呈线性关系,最小为 0.1,最大为 1,当速度达到 filter_v 时候,则不进行滤波。同时该值在有感、无感混合模式下作为切换转速,当速度低于 filter_v 时为有感,当速度大于 filter_v 的两倍时切换到无感。

flk_k: 磁链观测器的参数, 其越大观测其收敛越快同时越容易产生观测震荡, 加减速较大时, 适当增大该值。

rsi, ind, kv, enc_dir, enc_of, cal_ok: 校准参数,包括电流环参数、编码器对齐和磁链观测参数,这些参数直接决定电机的控制效果。其中 cal_ok 表示当前的校准状态,对应模式 1 到 3 的不同合法性。

cal ok 值

含义

1	仅校准编码器偏移,仅能在 ses=0 和 enl=1 的条件下进入模式 1 到 3
2	仅校准 KV,仅能在 ses=1 和 enl=0 的 条件下进入模式 2(无感速度模式)
3	已校准编码器偏移和补偿值, 能在 ses=0 的条件下进入模式 1 到 3
4	校准了编码器偏移和 KV , enl=2 非法,其余状态合法
5	完成所有校准,所有状态合法

i_set, v_in, p_in: 电流环、速度环、位置环的输入,分别在电流模式、速度模式、位置模式下有效。

ia, **ib**, **ic**, **id**, **iq**, **i_max**: ia, ib, ic 为电机三相的实时电流, id 为直轴电流, 应该接近于 0, iq 为交轴电流, 反映了电机输出力的大小。i_max 为 id 和 iq 的矢量合成。

vd, vq: vd 为角度超前量速度越快其越大,但是维持在一个较小值, vq 反映了当前输出电压的大小,当 vq 等于 4096 时,输出的相间最大电压约等于供电电压,达到满功率运行状态。

enc_raw:对于绝对编码器,其值是0到编码器分辨率的整数,为编码器的原始数据。

 vel_usr , p_usr : 电机运行的实际转速和位置, 其中 p_usr 可以用户修改, 即设定当前位置为用户所需位置, 达到修改位置 0 点的目的, 上电时刻, 其为 0。

flk_est:磁链的估计值,启用无感后有效。当无感观测器收敛时,磁链估计会收敛到某一值。

vbus: 供电电压,标准版允许 16V 到 30V 的供电范围,大功率

版本允许 16V 到 50V 的供电范围,超出范围将报错。

mode, err: 当前模式和错误,具体如下表所示。模式 4 为强行拖动模式,用户尽量不调用。模式 6、7、8 为驱动器根据编码器标志位和无感标志位自动选择,用户只需要进入模式 5 即可完成一键校准。模式 9 将参数保存到 FLASH,模式 10 将参数恢复默认值,模式12 在位置模式下有效,可以迅速锁定当前位置,防止机器人撞击。

模式		错误	
0	失能	0	
1	电流模式	1	低电压
2	速度模式	2	过电压
3	位置模式	3	电流不稳
4	测试模式	4	过电流
5	电阻电感校准	5	超速
6	编码器线性补偿	6	电阻过大
7	编码器偏移校准	7	电感过大
8	VK 校准	8	编码器错误
9	保存配置	9	极对数不匹配
10	擦除配置	10	KV 校准失败
11	清除错误	11	模式不合法
12	刹车	12	参数保存错误
		13	高温

2、USB 协议

USB 协议采用 ASCII 通信,格式为

读写段+ID 段+数据段+结束符

读写段含读和写两种字符指令,分别为 "r_" (read) 和 "w_" (write);

ID 段为对应读写参数的 UART ID;

数据段为对应读写参数的值,前加 "=",读指令无数据段;结束符为 "\r\n"。

例如写极对数为 14,则发送 "w_pol=14\r\n",驱动器反馈 "pol=14", 读当前电压,则发送 "r vbs\r\n",驱动器反馈 "24.33621"。

所有数据应遵循参数表格所给出的参数范围,禁止写入的数据吸入指令无效。如果参数超过范围或者指令格式不正确,将会收到错误指令的反馈,Not read or write! Err command! Err parameter! 等错误提示。

3、CAN 协议

CAN 协议采用指令 ID 与节点 ID 复合模式,格式为

节点 ID 可取 0 到 7, 指令 ID 为奇数, 对应写指令, 相应的 ID 减 1 (偶数)则对应读指令,读指令不需要跟数据段(数据段无效)。协议数据段均为 float 格式。

数据同样要满足 usb 协议的数据合法性要求, 否则, 驱动器将反馈指令 id 为 0x00, 数据为-1 的错误提示。

例如,驱动器的节点 id 为 4,写极对数 14,则 can 发送如下

CAN ID 段: 0x401 CAN 数据段: 1(float)

读当前电压,则 can 发送如下:

此时可以得到驱动器反馈:

3 ZMDr 上位机

上位机为用户调试电机提供跟简单的交互方式,可以方便完成对驱动器的参数给定,校准,状态参数的监测。上位机浮点协议兼容 Vofa,其具备更强大的数据存储功能。如果需要长时间高速数据监测,可以采用 vofa, ZMDr 上位机的数据存储深度有限。

驱动器可以同时以约 20khz 的速度打印三个数据,控制可是为

例如,通道 a 打印速度,

"w pwa=
$$77\r\n$$
"

三个通道分别为 pwa、pwb、pwc, 77 为 0x4D (vel_usr) 的十进制格式。值得注意的是,在开启高速打印的条件下,读取其他数据无效,关闭通道的方式为令通道 can id 为 0。

上位机界面如下图所示:

- 1区:下拉选择启动器设备,设备连接后会有匹配检测,连接到错误设备将会自动断开。连接成功后会自动更新当前的模式和错误新信息。
- 2 区: 用户参数区, 所有用户需要给定的参数, 用户根据自己需求调节, 可以通过三角按钮单独发送该数据。
- 3 区: 功能区,可以设置当前模式,批量操作用户参数。右侧显示当前的模式和错误,可以查询无需示波的状态参数。在连接设备后,强烈建议一键读取参数后操作,防止尚未机默认参数把驱动器参数覆盖。
- 4区: 绘图区,包含三个通道,可以下拉选择对应示波的参数,单击三角按钮开始示波,再次单击停止。同时可以控制示波频率,100Hz 可以实时更新模式和错误,高于 100Hz 时不允许请求数据,从而无法及时更新当前状态。频率越高数据储存的时间越短,越能翻译细微的参数变化。
- 5 区: 动作区, 在进入闭环控制后, 可以拖动滑条设置目标参数, 也可以直接在输入框输入后单击按钮发送。滑条的最大最小值可以用户更改。