Математический анализ данных и машинное обучение

Лекция 2

Саркисян Вероника

План на сегодня

13:30 - 14:30	Лекция 1: Задача классификации
14:45 - 16:00	Лекция 2: Логистическая регрессия, KNN, SVM.
16:00 - 17:00	Перерыв
17:00 - 18:00	Семинар 1: Предобработка данных
18:15 - 19:30	Семинар 2: Методы классификации

Задача классификации

Бинарная классификация: Y = {0,1}

Пример: классификация спама (спам / не спам)

Многоклассовая классификация: Y = {0,1, ..., n}

Пример: Определение языка текста (русский / украинский / белорусский / ...)

Классификация с пересекающимися классами: Y = {(1,0,..,1,0), ...}

Пример: определение жанра фильма. Фильм может относиться сразу к нескольким жанрам (триллер, драма, криминал, детектив и т.д.)

Метрики качества в задаче классификации

Самая простая и интуитивная метрика - accuracy (доля правильных ответов):

$$accuracy(a, x) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i].$$

Чем она плоха? Рассмотрим задачу с сильно несбалансированными классами: распределение классов 90/10.

Ассигасу у константного классификатора (a(x) = 0) = 90%.

Матрица ошибок (Confusion matrix)

Реальные метки классов

Прогноз модели

	y = 1	y = 0
a(x) = 1	True Positive	False Positive
a(x) = 0	False Negative	True Negative

	X 1	X 2	X 3	X 4	X 5	X 6	X 7
y i	0	1	0	0	1	0	1
a(x _i)	0	0	1	1	0	1	1

TP = ?

FP = ?

TN = ?

FN = ?

	X 1	X 2	X 3	X 4	X 5	X 6	X 7
y i	0	1	0	0	1	0	1
a(xi)	0	0	1	1	0	1	1

TP = 1

FP = 3

TN = 1

FN = 2

Точность, полнота, F-мера

$$ext{accuracy} = rac{TP + TN}{TP + FP + FN + TN}$$

Доля верно классифицированных объектов

precision =
$$\frac{TP}{TP+FP}$$

Доля положительных объектов относительно всех положительно определенных алгоритмом объектов

$$recall = \frac{TP}{TP+FN}$$

Доля всех найденных положительных объектов

$$F = \frac{2*precision*recall}{precision+recall}$$

	X 1	X 2	X 3	X 4	X 5	X 6	X 7
y i	0	1	0	0	1	0	1
a(x _i)	0	0	1	1	0	1	1

Accuracy = 2/7

Precision = 1 / 4

Recall = 1/3

AUC-ROC

Строим кривую в координатах False Positive Rate / True Positive Rate:

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}.$$

	X 1	X 2	X 3	X 4	X 5
y i	0	1	0	1	1
a(x _i)	0.2	0.4	0.1	0.7	0.05

Многоклассовая классификация

Сводим задачу с серии бинарных задач:

- Один против всех (one-vs-all): обучаем К (К = число классов) бинарных классификаторов, каждый из которых отделяет свой класс ото всех прочих. Итоговый класс = ответ самого "уверенного" классификатора.
- Все против всех (**all-vs-all**): обучаем столько же классификаторов, сколько пар классов (C_K^2). Новый объект подаем на вход каждому из классификаторов, итоговый класс = тот, за который больше всего "голосов".

Метрики качества многоклассовой классификации

Микро-усреднение

Усредняем микро-метрики по каждому классу:

$$\overline{\mathrm{TP}} = \frac{1}{K} \sum_{k=1}^{K} \mathrm{TP}_k.$$

Вычисляем итоговые метрики:

$$\operatorname{precision}(a, X) = \frac{\overline{TP}}{\overline{TP} + \overline{FP}},$$

Макро-усреднение

Вычисляем метрики для каждого из классов:

$$\operatorname{precision}_{k}(a, X) = \frac{\operatorname{TP}_{k}}{\operatorname{TP}_{k} + \operatorname{FP}_{k}}.$$

Итоговые метрики = среднее по метрикам всех классов:

$$\operatorname{precision}(a, X) = \frac{1}{K} \sum_{k=1}^{K} \operatorname{precision}_{k}(a, X)$$

Тест

1) Вычислите матрицу ошибок, accuracy, precision, recall:

	X 1	X 2	X 3	X 4	X 5	X 6
y i	0	1	0	1	1	0
a(xi)	1	1	0	0	1	1

2) Вычислите AUC-ROC:

	X 1	X 2	X 3	X 4	X 5
y i	0	0	0	1	1
a(xi)	0.1	0.3	0.6	0.7	0.4

Перерыв

Логистическая регрессия

Возьмем уже привычную нам линейную регрессию и обучим ее отличать положительный класс от отрицательного:

$$a(x) = \operatorname{sign}(\langle w, x \rangle + w_0) = \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j + w_0\right)$$

Для обучения модели в качестве метрики качества попробуем использовать долю правильных ответов:

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Оценки для функции потерь:

- 1. $\tilde{L}(M) = \log (1 + e^{-M})$ логистическая функция потерь
- 2. $\tilde{L}(M) = (1-M)_+ = \max(0, 1-M)$ кусочно-линейная функция потерь (используется в методе опорных векторов)
- 3. $\tilde{L}(M) = (-M)_+ = \max(0, -M)$ кусочно-линейная функция потерь (соответствует персептрону Розенблатта)
- 4. $\tilde{L}(M) = e^{-M}$ экспоненциальная функция потерь
- 5. $\tilde{L}(M) = 2/(1 + e^M)$ сигмоидная функция потерь

Разделяем виды алкоголя

Метод Опорных Векторов

Метод опорных векторов: разделимый случай

Будем рассматривать классификаторы вида:

$$a(x) = sign(\langle w, x \rangle + b), \qquad w \in \mathbb{R}^d, b \in \mathbb{R}.$$

Расстояние от объекта до разделяющей гиперплоскости:

$$\rho(x_0, a) = \frac{|\langle w, x \rangle + b|}{\|w\|}.$$

Расстояние от гиперплоскости до ближайшего объекта выборки:

$$\min_{x\in X^\ell}\frac{|\langle w,x\rangle+b|}{\|w\|}=\frac{1}{\|w\|}\min_{x\in X}|\langle w,x\rangle+b|=\frac{1}{\|w\|}.$$

(здесь воспользовались тем, что можно одновременно умножать w и b на положительную константу)

Оптимизационная задача:

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w,b} \\ y_i (\langle w, x_i \rangle + b) \geqslant 1, \quad i = 1, \dots, \ell. \end{cases}$$

Метод опорных векторов: неразделимый случай

Введем штраф за попадание объектов внутрь разделяющей полосы:

$$y_i(\langle w, x_i \rangle + b) \geqslant 1 - \xi_i, \quad i = 1, \dots, \ell.$$

Новая оптимизационная задача:

Новая оптимизационная задача: параметр C отвечает за то, как сильно мы штрафуем за попадание внутрь полосы.
$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^\ell \xi_i \to \min_{w,b,\xi} \\ y_i \left(\langle w, x_i \rangle + b \right) \geqslant 1 - \xi_i, \quad i = 1, \dots, \ell, \\ \xi_i \geqslant 0, \quad i = 1, \dots, \ell. \end{cases}$$

k-NN (метод k ближайших соседей)

- Вычисляем расстояние до каждого из объектов обучающей выборки.
- Выбираем к объектов обучающей выборки, расстояние до которых минимально.
- 3. Класс классифицируемого объекта это класс, наиболее часто встречающийся среди k ближайших соседей.

