Logistic Regression

(gustavoc@msu.edu)

Many outcomes of interest are binary, implying that they can take two values (say, 0/1). Disease is a typical example of this.

Binary random variables follow Bernoulli distributions: $p(Y_i = 1) = \theta$ or ; $p(Y_i = 0) = 1 - \theta$, or,

$$p(Y_i = y_i | \theta) = \theta^{y_i} (1 - \theta)^{1 - y_i}$$

(Note: above, Y_i denotes the random variable and y_i represents the realized value)

The odds of success are defined as $\frac{p(Y_i=1)}{p(Y_i=0)} = \frac{\theta}{1-\theta}$.

Maximum likelihood estimation of the success probability

The likelihood function is the joint probability of the data given the parameters, evaluated at the observed values of the data $S = \{Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n\}$ viewed as a function of the parameters (θ). In the case of a random sample, the joint probability of the data is simply the product of the probability of each of the data points, thus

$$\begin{aligned} \mathsf{p}(Y_1 &= y_1, Y_2 = y_2, \dots, Y_n = y_n | \theta) = \mathsf{p}(Y_1 | \theta) \times \mathsf{p}(Y_2 | \theta) \times \dots \times \mathsf{p}(Y_n | \theta) \\ &= \prod_{i=1}^n \theta^{y_i} (1 - \theta)^{1 - y_i} \\ &= \theta^{\sum_i y_i} (1 - \theta)^{\sum_i 1 - y_i} = \theta^{n\bar{y}} (1 - \theta)^{n(1 - \bar{y})} \end{aligned}$$

Thus, the likelihood function is

$$L(\theta | y_1, ..., y_n) = \theta^{n\bar{y}} (1 - \theta)^{n(1 - \bar{y})}$$

The Maximum Likelihood estimator (MLE) is obtained by maximizing $L(\theta | y_1, ..., y_n)$ with respect to θ ; the same estimate can be obtained by maximizing the log-likelihood

$$l(\theta | y_1, ..., y_n) = \log\{L(\theta | y_1, ..., y_n)\} = n\bar{y}\log(\theta) + n(1 - \bar{y})\log(1 - \theta)$$

Differentiating with respect to θ we get

$$\frac{dl(\theta | y_1, \dots, y_n)}{d\theta} = \frac{n\bar{y}}{\theta} - \frac{n(1-\bar{y})}{(1-\theta)}$$

Setting the derivative equal to zero we get maximum the MLE

$$\begin{split} \frac{n\bar{y}}{\hat{\theta}} &= \frac{n(1-\bar{y})}{\left(1-\hat{\theta}\right)} \\ \frac{\bar{y}}{(1-\bar{y})} &= \frac{\hat{\theta}}{(1-\hat{\theta})} \text{ (assuming } \bar{y} \neq 1\text{)} \\ \hat{\theta} &= \bar{y} \end{split}$$

Thus, the MLE of the success probability is simply the sample mean of the data, which is not surprising considering that $E[Y_i] = \theta$.

Logistic Regression

We are often interested on learning the effects of some factors (e.g., sex) and covariates (e.g., age) on the probability of a binary outcome (θ , e.g., a disease probability). In the previous example this probability was assumed to be the same for all individuals. To model effects of covariates on θ , in logistic regression, we make θ a function of covariates.

Since $\theta \in [0,1]$ we cannot model θ directly using linear regression because a linear function can take any value in the real line. To deal with this problem we introduce a "link" function (e.g., probit, logit). A link function maps from the real line onto the [0,1]. The most commonly used link is the logit which is the logarithm of the odds of success, that is: $log\left(\frac{\theta_i}{1-\theta_i}\right)$. This function can take values in the real line, thus, we can model the logit using linear methods

$$\log\left(\frac{\theta_i}{1-\theta_i}\right) = \mu + X_{i1}\beta_1 + \dots + X_{ip}\beta_p.$$
 [1]

Note that the above regression is a regression for the probability, not for the data, thus, it typically does not include an error term (in some over-dispersed models it may contain an error).

From regression to probabilities

Solving [1] for θ_i gives

$$\theta_i = \frac{\exp\{\mu + X_{i1}\beta_1 + \dots + X_{ip}\beta_p\}}{1 + \exp\{\mu + X_{i1}\beta_1 + \dots + X_{ip}\beta_p\}}.$$
 [2]

Letting the right-hand side of [1], i.e., the regression function, be $\eta_i = \mu + X_{i1}\beta_1 + \dots + X_{ip}\beta_p$ then we have: $\theta_i = \frac{e^{\eta_i}}{1+e^{\eta_i}}$.

Odd-ratios: From expression [1] we have that $\frac{\theta_i}{1-\theta_i} = \exp\{\mu + X_{i1}\beta_1 + X_{i2}\beta_2 + \dots + X_{ip}\beta_p\}$.

Suppose that X_{i1} is a dummy variable defining a group (e.g., treatment, $X_{i1} = 1$ versus control, $X_{i1} = 0$). The odds of success for treatment and controls are:

Treatment
$$(X_{i1}=1)$$
: $\exp\{\mu+\beta_1+X_{i2}\beta_2+\cdots+X_{ip}\beta_p\}$, and Control $(X_{i1}=0)$: $\exp\{\mu+X_{i2}\beta_2+\cdots+X_{ip}\beta_p\}$, respectively.

Therefore, the treatment/control odds-ratio is:

$$\frac{\left[\frac{\theta_{i}}{1-\theta_{i}}\mid Treatment\right]}{\left[\frac{\theta_{i}}{1-\theta_{i}}\mid Control\right]} = \frac{\exp\{\mu+\beta_{1}+X_{i2}\beta_{2}+\cdots+X_{ip}\beta_{p}\}}{\exp\{\mu+X_{i2}\beta_{2}+\cdots+X_{ip}\beta_{p}\}} = \exp\{\beta_{1}\}$$

The above result provides a clear interpretation of $\exp\{\beta_1\}$ in terms of odds ratios for coefficients linked to dummy variables.

Likelihood function for the logistic regression model

The likelihood function is the probability of the data given the parameters. As before, we will assume conditional independence, meaning that

$$p(Y_1, Y_2, ..., Y_n | \mu, \beta_1, ..., \beta_p, X) = p(Y_1 | \mu, \beta_1, ..., \beta_p, X) \times p(Y_2 | \mu, \beta_1, ..., \beta_p, X) \times ... \times p(Y_n | \mu, \beta_1, ..., \beta_p, X)$$

The probability of the *i*th data-point is:

$$p(Y_i = 1) = \theta_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$
; $p(Y_i = 0) = 1 - \theta_i = 1 - \frac{e^{\eta_i}}{1 + e^{\eta_i}} = \frac{1}{1 + e^{\eta_i}}$

or,
$$p(Y_i = y_i) = \left[\frac{e^{\eta_i}}{1 + e^{\eta_i}}\right]^{y_i} \left[\frac{1}{1 + e^{\eta_i}}\right]^{1 - y_i}$$

Therefore, assuming conditional independence, the joint likelihood becomes

Likelihood:
$$L(\mu, \beta_1, ..., \beta_p | Y_1 = y_1, ..., Y_n = y_n) = \prod_{i=1}^n \left[\frac{e^{\eta_i}}{1 + e^{\eta_i}} \right]^{y_i} \left[\frac{1}{1 + e^{\eta_i}} \right]^{1 - y_i}$$
 [3]

Note that above: (i) y_i is a realized value of the corresponding Bernoulli random variable (Y_i) , therefore, y_i can take values either 0 or 1. (ii) $\eta_i = \mu + X_{i1}\beta_1 + \dots + X_{ip}\beta_p$ is a function of both covariates $(X_{ij}, j = 1, \dots, p)$ and parameters (μ, β_i) .

Therefore, the log-likelihood function is

$$l(\mu, \beta_1, \dots, \beta_p | y_1, y_2, \dots, y_n) = \sum_{i=1}^n y_i \log(\theta_i) + (1 - y_i) \log(1 - \theta_i)$$
 [4]

where
$$\theta_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$$
 and $1 - \theta_i = \frac{1}{1 + e^{\eta_i}}$.

The entry logisticRegression.md in our gitHub repository implements this function in R.

Maximum Likelihood estimation

Maximum likelihood estimates are obtained by maximizing [4] with respect to the parameters $(\mu, \beta_1, ..., \beta_p)$. The function glm in R fits logistic regression via maximum likelihood. We can also fit a logistic regression using a general-purpose optimization algorithm (e.g., optim in R). The entry <u>logisticRegression.md</u> in in our gitHub repository shows how to fit logistic regression using glm and optim.

Inference

Under regularity conditions, in large samples, maximum likelihood estimates (MLEs) follow multivariate normal distribution with mean equal to the true parameter values (i.e., MLEs are asymptotically unbiased) and variance-covariance matrix equal to the inverse of Fisher's Information Matrix, that is

$$Cov(\hat{\theta}) = I(\theta)^{-1} = \left[-E\left\{ \frac{\partial logLik(\theta)}{\partial \theta \partial \theta'} \right\} \right]^{-1}$$

In practice we approximate Fisher's Information matrix with the Observed Information, which is the matrix of 2nd order derivatives of the log-likelihood evaluated at the MLE:

$$Cov(\hat{\theta}) \approx \left[\left\{ \frac{\partial - logLik(\theta)}{\partial \theta \partial \theta'} \right\}_{\theta = \hat{\theta}} \right]^{-1}$$

We can obtain this matrix by numerical evaluation of the 2nd order derivatives of the log-likelihood (aka the Hessian matrix) at the MLE. We present examples of this in the entry logisticRegression.md.

Hypothesis testing

For **1-DF** test, in large samples, we can form a z-statistic by taking the ratio between the parameter estimate and the SE (i.e., the square-root of the corresponding diagonal entry in $Cov(\widehat{\theta})$) and calculate a two-sided pvalue using pnorm(abs(zstat),lower.tail=FALSE)*2.

For tests involving more than 1DF we can use Wald's test or Likelihood Ratio tests.