

Exercise 5

Introduction to Computational Astrophysics, SoSe 2024

Seha Lee

Task 1. Euler method for the harmonic oscillator

Solution. (a) The result is shown in 1.

Figure 1: Task 1(a)

Solution. (b) It can be observed that the calculation using Euler method start to deviate from the analytic solution. \Box

Solution. (c) The calculation using Euler-Cromer method, which is shown with yellow dots, is closer to the analytic solution than that of Euler method. \Box

Task 2. The Kepler problem

Solution. (a) The equations for x and y are coupled by the term $r = \sqrt{x^2 + y^2}$.

Figure 2: Task 1(b)

Figure 3: Task 1(c)

Solution. (a) & (b) See attached source code.

Solution. (c) & (d) The time step size should be at least 0.01 for Euler-Cromer method and 0.00001 for Euler method. \Box

Solution. The Euler-Cromer method is better in conserving the energy. □

All the executable files from the source code are named as "output" (or in a similar way).

Table 1: Task 2 (c) & (d)

Table 2: Task 2 (e) 4