

# Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики





### Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

#### ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ГРАФОВ

# **Лекция 5. Вычисление** минимального остовного дерева

Пирова А.Ю. Кафедра ВВиСП

### Содержание

- □ Предметные области
- □ Постановка задачи
- □ Последовательный Алгоритм Борувки
- □ Параллельный Алгоритм Борувки для общей памяти (GBBS)
- □ Параллельный Алгоритм Борувки для распределенной памяти (KAMSTA)
- □ Результаты экспериментов
- □ Заключение



### Постановка задачи

- Пусть дан связный неориентированный взвешенный граф G = (V, E, w(e)), |V| = n, |E| = m, веса ребер  $w: E \to \mathbb{R}^+$ .
- □ Найти: ациклическое подмножество ребер исходного графа, соединяющее все вершины графа, такое, что сумма весов ребер будет минимальна:

$$T^* = arg\min_{T \subseteq E} \sum_{e \in T} w(e)$$

здесь T — все возможные деревья-подграфы G, которые соединяют все вершины исходного графа (остовные деревья).

- $\square T^*$  называется минимальным остовным деревом (minimum spanning tree, MST)
- □ Для не связного графа можно найти минимальный остовный мере дес (minimum spanning forest, MSF).

# Постановка задачи









# Применение

- □ Построение сети, соединяющей все объекты, с наименьшими затратами (электрические, телекоммуникационные, транспортные, компьютерные сети)
- □ Как этап приближенного решения задач: задача коммивояжера (NP-трудная), поиск максимального потока в сети, идеальное паросочетание минимального веса (содержит все вершины), кластеризация и др.
- □ Регистрация и сегментация изображений, feature extraction в компьютерном зрении

**u** ...



### Свойства минимального остовного дерева

#### □ Связанные понятия:

- *Разрез* (*cut*) графа ( $S,V \setminus S$ ) разбиение множества вершин на два подмножества.
- Ребро (u, v) пересекает разрез  $(S, V \setminus S)$  (crossing edge), если его концы лежат в разных частях разреза:  $u \in S$  и  $v \notin S$ .



# Свойства минимального остовного дерева

- □ (уникальность) если веса всех ребер различны, то MST единственно
  - → если есть ребра с одинаковым весом, то MST не единственно. (например, все ребра графа одинакового веса)
- □ Если веса графа неотрицательные, то MST подграф минимального веса, содержащий все вершины графа.
- $\Box$  (свойство цикла) Для любого цикла C, если вес ребра  $e, e \in C$  больше, чем вес любого другого ребра из C, то ребро e не входит в MST.
- □ (свойство разреза) Пусть A подмножество ребер, которое входит в некоторое MST графа G. Для любого разреза  $(S, V \setminus S)$ , для которого ни одно из ребер A не пересекает разрез, если (u, v) ребро минимального веса среди ребер, пересекающих разрез,  $u \in S$  и  $v \notin S$ . Тогда ребро (u, v) входит в MST графа G. ( $\rightarrow$  его можно добавить в A)
  - $\rightarrow$  если все веса графа различны, то существует одно MST  $T^*$  графа G, которое содержит ребро (u, v).



# Свойства минимального остовного дерева







#### MST T:



Свойство разреза:

BC, EC, EF пересекают разрез EF имеет минимальный вес → EF входит в MST



# Алгоритмы нахождения MST

- □ Классические алгоритмы
  - Борувки (1926)
  - Краскала (1956)
  - Прима (1957). Он же алгоритм Ярника (1930)
- $\square$  Вычислительная сложность  $O(m \log n)$
- □ Жадный принцип
- □ Новые алгоритмы:
  - Яо (1975)  $O(m \log \log n)$
  - Черитон, Тарьян (1976)
  - Quick Kruskal, или алгоритм Краскала с фильтрацией (Осипов, Сандерс, Синглер, 2009)  $O(m+n\log n\log\log n)$



# Алгоритм Борувки

- □ Алгоритм использует свойство разреза графа.
- □ Идея: построим MST как объединение деревьев, «выращенных» из отдельных вершин графа путем добавления ребер минимального веса.

Вход: граф G(V, E, W)Выход: MST  $T(V_T, E_T)$ 

- 1. Пусть каждая вершина  $v \in V$  отдельная компонента связности.  $T = \emptyset$ .
- 2. Пока T содержит меньше, чем n-1 ребро (или пока больше одной компоненты связности):
  - 1. Для каждой компоненты связности  $C_x$ :
    - 1. Найти ребро минимального веса (u, v), соединяющее  $C_x$  с соседней компонентой связности  $C_y$ .
    - 2. Добавить (u, v) в T.
    - 3. Объединить компоненты связности  $C_x$  и  $C_y$ .



# Алгоритм Борувки. Пример









# Алгоритм Борувки

Вход: граф G(V, E, W)Выход: MST  $T(V_T, E_T)$ 

- 1. Пусть каждая вершина  $v \in V$  отдельная компонента связности.  $T = \emptyset$ .
- 2. Пока T содержит меньше, чем n-1 ребро (или пока больше одной компоненты связности):
  - 1. Для каждой компоненты связности  $C_x$ :
    - 1. Найти ребро минимального веса (u, v), соединяющее  $C_x$  с соседней компонентой связности  $C_v$ .
    - 2. Добавить (u, v) в T.
    - 3. Объединить компоненты связности  $C_x$  и  $C_y$ .
      - 1. Определить новые индексы вершин (relabeling)
      - 2. Объединить списки смежности вершин ИЛИ перенумеровать список ребер
      - 3. Удалить повторяющиеся ребра



# Структура данных Union-Find

### □ Структуры данных:

- Граф хранится как список ребер (чаще всего) или в виде списков смежности
- Для хранения информации о компонентах связности используются разделенные множества (disjoint sets, union-find).
- Каждая компонента связности хранится как дерево. Корень дерева «представитель» компоненты
- Базовые операции:
  - Создание множества
  - Найти, какому множеству принадлежит вершина
  - Объединение множеств







# Структура данных Union-Find

```
MAKE\_SET(x)
  p[x] \leftarrow x
2 \quad rank[x] \leftarrow 0
UNION(x, y)
    Link(Find\_Set(x), Find\_Set(y))
Link(x, y)
    if rank[x] > rank[y]
        then p[y] \leftarrow x
       else p[x] \leftarrow y
              if rank[x] = rank[y]
                 then rank[y] \leftarrow rank[y] + 1
FIND\_SET(x)
    if x \neq p[x]
        then p[x] \leftarrow \text{FIND\_SET}(p[x])
    return p[x]
```

- □ Хранение:
- p[x] родитель в дереве-компоненте rank[x] верхняя граница высоты дерева-компоненты
- □ Объединение деревьев:
- Дерево с бОльшим rank становится родителем
- «Сжатие пути»: все вершины вдоль пути поиска родителя X становятся потомками корня дерева





# Параллельный алгоритм базовый

Вход: граф G(V, E, W)Выход: MST  $T(V_T, E_T)$ 

- 1. Пусть каждая вершина  $v \in V$  отдельная компонента связности.  $T = \emptyset$ .
- 2. Пока T содержит меньше, чем n-1 ребро (или пока больше одной компоненты связности):
  - **1.** Параллельно для каждой компоненты связности  $C_{\chi}$ :
    - 1. найдем ребро минимального веса (u, v), соединяющее  $C_x$  с соседней компонентой связности  $C_y$ .  $\rightarrow$  Получим множество ребер  $E_T$
  - 2. Удалить дубликаты в  $E_T$ . Добавить  $E_T$  в T.
  - 3. Объединяем компоненты связности:
    - 1. Параллельно Определить новые индексы вершин (relabeling)
    - 2. Параллельно Объединить списки смежности вершин ИЛИ перенумеровать список ребер
    - **3.** Параллельно Удалить повторяющиеся ребра



# Параллельный алгоритм, GBBS Шаг алгоритма Борувки

```
1: Parents[0, ..., n) := 0
 2: procedure Borůvka(n, E)
                                                    \triangleright E is aprefix of minimum weight inter-component edges
       Forest := \{\}
 3:
       while |E| > 0 do
 4:
           P[0,\ldots,n) := (\infty,\infty)
 5:
                                                               > array of (weight, index) pairs for each vertex
           for i \in [0, |E|) in parallel do
 6:
               (u, v, w) := E[i]
                                                                                            \triangleright the i-th edge in E
 7:
               PRIORITYWRITE(&P[u], (w, i), <)
                                                     8:
               PRIORITYWRITE(&P[v], (w, i), <)
 9:
           for u \in [0, n) where P[u] \neq (\infty, \infty) in parallel do
10:
               (w,i) := P[u]
                                                         \triangleright the index and weight of the MSF edge incident to u
11:
12:
               v := the neighbor of u along the E[i] edge
               if v > u and P[v] = (w, i) then
                                                         \triangleright v also chose E[i] as its MSF edge; symmetry break
13:
                   Parents[u] := u
                                                                             \triangleright make u the root of a component
14:
               else
15:
                   Parents[u] := v
                                                                        \triangleright otherwise v < u; join v's component
16:
           Forest := Forest \cup {edges that won on either endpoint in P}

    □ add new MSF edges

17:
           PointerJump(Parents) СЖатие Пути
18:
                                                        > compress the parents array (see Section 3)
           E := \text{map}(E, \text{fn}(u, v, w) \rightarrow \text{return}(Parents[u], Parents[v], w))
19:
                                                                                                 E := \text{filter}(E, \text{fn } (u, v, w) \rightarrow \text{return } u \neq v)
                                                                                            20:
       return Forest
21:
```



# Параллельный алгоритм, GBBS Основной цикл

□ Оптимизация - Фильтрация: основной алгоритм выполняется за несколько итераций, каждая – на подмножестве ребер минимального веса.

```
22: procedure MinimumSpanningForest(G(V, E, w))
        Forest := \{\}
23:
        Rounds := 0
24:
        VERTEXMAP(V, fn u \rightarrow Parents[u] = u)
                                                                    ⊳ initially each vertex is in its own component
25:
        while G.NUMEDGES() > 0 do
26:
            T := \text{select min}(3n/2, m)-th smallest edge weight in G
27:
            if Rounds = 5 then T := largest edge weight in G
28:
            E_F := \text{EXTRACTEDGES}(G, \text{fn } (u, v, w_{uv}) \rightarrow \text{return } w_{uv} \leq T)
29:
            Forest := Forest \cup Borůvka(|V|, E_F)
30:
            PACKGRAPH(G, fn (u, v, w_{uv}) \rightarrow \mathbf{return} \ Parents[u] \neq Parents[v])
                                                                                                  > remove self-loops
31:
            Rounds := Rounds + 1
32:
        return Forest
33:
```

Изменить граф: удалить все ребра, не удовлетворяющие условию



- □ Авторы: Сандерс, Шимек, 2023
- □ <a href="https://github.com/mschimek/kamsta">https://github.com/mschimek/kamsta</a>
- □ Хранение графа: распределенный массив ребер. Ребра упорядочены лексикографически
- □ Дополнительно на каждом процессе хранится массив первых в списке ребер с каждого процесса (для бинарного поиска)
  - Обозначения:
    - Peбpo e = (src(e), dist(e)).
    - $V_i = \{src(e) : e \in E_i\}$ . локальная вершина





### □ Базовая версия

**Algorithm 1** High-level overview of our distributed Borůvka-MST algorithm. By i we denote the rank of a PE. The set  $T_i$  stores the MST edges.

локально

коммуникация

```
function MST(G_i = (V_i, E_i))
                                                                  построить MST из локальных
    G_i, T_i \leftarrow \text{LOCALPREPROCESSING}(G_i) \leftarrow
                                                                  ребер -> останутся только ребра
    while \sum |V_i| > \text{threshold do}
                                                                  между разными процессами
         E_i^{\min} \leftarrow \text{MINEDGES}(G_i)
         L_i^{\text{local}}, T_i \leftarrow \text{CONTRACTCOMPONENTS}(E_i^{\min}, T_i)
         L_i^{\text{ghost}} \leftarrow \text{EXCHANGELABELS}(L_i^{\text{local}}, G_i) \leftarrow \text{Обменяться} названиями вершин,
         G'_i \leftarrow \text{RELABEL}(L_i^{\text{local}}, L_i^{\text{ghost}}, G_i)
                                                                    локальных для другого процесса
         G_i \leftarrow \text{REDISTRIBUTE}(G_i') \leftarrow
                                                               — Отсортировать ребра, убрать
                                                                    петли, разослать первое ребро
    T_i \leftarrow \text{BASECASE}(G_i, T_i)
                                                                    (allgather)
    return REDISTRIBUTEMST(T_i)
```



 $E_i^{min}$  - локальное ребро,  $L_i^{local}$  - локальная компонента связности

### □ Базовая версия

**Algorithm 1** High-level overview of our distributed Borůvka-MST algorithm. By i we denote the rank of a PE. The set  $T_i$  stores the MST edges.

локально

коммуникация

```
function \operatorname{MST}(G_i = (V_i, E_i)) G_i, T_i \leftarrow \operatorname{LOCALPREPROCESSING}(G_i) while \sum |V_i| > \operatorname{threshold} \operatorname{do} E_i^{\min} \leftarrow \operatorname{MINEDGES}(G_i) L_i^{\operatorname{local}}, T_i \leftarrow \operatorname{CONTRACTCOMPONENTS}(E_i^{\min}, T_i) L_i^{\operatorname{ghost}} \leftarrow \operatorname{EXCHANGELABELS}(L_i^{\operatorname{local}}, G_i) G_i' \leftarrow \operatorname{RELABEL}(L_i^{\operatorname{local}}, L_i^{\operatorname{ghost}}, G_i) G_i \leftarrow \operatorname{REDISTRIBUTE}(G_i') На каждом процессе дублировать граф, продолжить вычисления T_i \leftarrow \operatorname{BASECASE}(G_i, T_i) T_i \leftarrow \operatorname{Coff}(G_i') Собрать дерево
```



# □ Алгоритм с фильтрацией

```
function FILTER-MST(G_i = (V_i, E_i))
              G_i, T_i \leftarrow \text{LOCALPREPROCESSING}(G_i)
начало
               REC-FILTER-MST(G_i, T_i, P)
              return (REDISTRIBUTEMST(T_i))
           function FILTER(G_i = (V_i, E_i), P)
```

```
L_i^{\text{local}} \leftarrow \text{REQUESTLABELS}(V_i, P)
L_i^{\text{ghost}} \leftarrow \text{EXCHANGELABELS}(L_i^{\text{local}}, G_i)
E'_i \leftarrow \text{RELABEL}(L_i^{\text{local}}, L_i^{\text{ghost}}, G_i)
E_i'' \leftarrow \{(u, v) \in E_i' \mid u \neq v\}
return REDISTRIBUTE((V_i, E_i''))
```

function REC-FILTER-MST $(G_i = (V_i, E_i), T_i, P)$ if  $ISSPARSE(G_i, |P|)$  then

return  $MST(G_i, P)$ 

```
w_{\text{pivot}} \leftarrow \text{PIVOTSELECTION}(G_i)
E_i^{\leq} \leftarrow \{ (u, v, w) \in E_i \mid w \leq w_{\text{pivot}} \}
E_i^> \leftarrow \{(u, v, w) \in E_i \mid w > w_{\text{pivot}}\}
T_i \leftarrow \text{REC-FILTER-MST}((V_i, E_i^{\leq}), T_i, P)
(V_i', E_i^{>'}) \leftarrow \text{FILTER}(E_i^{>}, P)
return REC-FILTER-MST((V_i', E_i^{>'}), T_i, P)
```

Запрашиваем представителя компоненты связности для каждой вершины  $V_i$  из распределенного массива Р

Случайно выбранные ребра сортируются с помощью алгоритма распределенной сортировки. Рассылается медиана  $w_{nivot}$ 



### Результаты экспериментов

### □ Влияние локальной предобработки



Fig. 4. Running time of our algorithms without local preprocessing on highly-local graphs with  $2^{17}$  vertices and  $2^{23}$  edges per core. Our fastest variant with local preprocessing enabled  $-\log 1-\log 1-\log 2$  is given as a baseline.



### Результаты экспериментов

#### □ Время работы алгоритма по фазам



Fig. 6. Normalized running times to the range [0,1] of different steps of our algorithms with respect to the slowest variant in each graph×number-of-cores configuration.

Для RMAT и GNM локальная предобработка была пропущена, Большую часть времени заняли коммуникации между процессами



# **GBBS**

| VertexSubset Interface |                                           |                                                            | Work           | Depth       |
|------------------------|-------------------------------------------|------------------------------------------------------------|----------------|-------------|
|                        | size                                      | $: unit \to int$                                           | O(1)           | O(1)        |
|                        | vertexMap<br>vertexMapVal<br>vertexFilter |                                                            | O( U )         | $O(\log n)$ |
|                        |                                           | : (vtxid→ bool) → vset<br>: (vset * vtxid sequence) → unit | O(1) amortized | $O(\log n)$ |

| Bucketing In                | iterface                                                                                                                         | Work                       | Depth                  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
| makeBuckets                 | : int $*$ (identifier $	o$ bktid) $*$ bktorder $	o$ buckets                                                                      | $O(n)^\dagger$             | $O(\log n)^{\ddagger}$ |
| getBucket                   | : (bktid $*$ bktid) $\rightarrow$ bktdest                                                                                        | O(1)                       | O(1)                   |
| nextBucket<br>updateBuckets | <ul> <li>: buckets → (bktid, identifier sequence)</li> <li>: buckets * (identifier, bktdest) sequence</li> <li>→ unit</li> </ul> | } presented in Theorem 4.1 | $O(\log n)^{\ddagger}$ |



# **GBBS**

| Vertex Interface            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Work                           | Depth                          |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------|--------------------------------|
| Neighborhood<br>operators:  | map : (edge $\rightarrow$ unit) $\rightarrow$ unit reduce : (edge $\rightarrow$ R) * R monoid $\rightarrow$ R scan : (edge $\rightarrow$ R) * R monoid $\rightarrow$ R count : (edge $\rightarrow$ bool) $\rightarrow$ int filter : (edge $\rightarrow$ bool) $\rightarrow$ edge sequence pack : (edge $\rightarrow$ bool) $\rightarrow$ unit iterate : (edge $\rightarrow$ bool) $\rightarrow$ unit i-th : int $\rightarrow$ edge degree : unit $\rightarrow$ int getNeighbors : unit $\rightarrow$ nghlist | } | $O( N(v) )$ $O(d_{it})$ $O(1)$ | $O(\log n)$ $O(d_{it})$ $O(1)$ |
| Vertex-Vertex<br>operators: | $\begin{array}{lll} \text{intersection} & : & (\text{nghlist} * \text{nghlist}) \rightarrow & \text{int} \\ \text{union} & : & (\text{nghlist} * \text{nghlist}) \rightarrow & \text{int} \\ \text{difference} & : & (\text{nghlist} * \text{nghlist}) \rightarrow & \text{int} \\ \end{array}$                                                                                                                                                                                                              | } | $O(l\log{(h/l+1)})$            | $O(\log n)$                    |



| Graph Interface |                         |                                      |                                                                                                                                                                                                                                                                                           | Work | Depth                                       |                        |
|-----------------|-------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------|------------------------|
| -               | Graph                   | numVertices<br>numEdges<br>getVertex | : unit → int  : unit → int  : int → vertex                                                                                                                                                                                                                                                | }    | O(1)                                        | O(1)                   |
|                 | operators:              |                                      | $: (edge 	o bool) 	o graph \ : (edge 	o bool) 	o unit \ : (edge 	o bool) \ 	o edge 	o sequence$                                                                                                                                                                                           | }    | O(n+m)                                      | $O(\log n)$            |
|                 |                         | contractGrapl                        | n : int sequence → graph                                                                                                                                                                                                                                                                  |      | $O(n+m)^{\dagger}$                          | $O(\log n)^{\ddagger}$ |
|                 |                         |                                      | $ \begin{array}{l} \text{: vset } * (edge \to bool) \\ * (vtxid \to bool) \to vset \\ \text{: vset } * (edge \to O \ option) \\ * (vtxid \to bool) \to O \ vset \\ \end{array} $                                                                                                          | }    | $O\left(\sum_{u\in U}d(u) ight)$            | $O(\log n)$            |
|                 | VertexSubset operators: | srcCount                             | : vset * (edge $\rightarrow$ O) * O monoid<br>* (vtxid $\rightarrow$ bool) $\rightarrow$ O vset<br>: vset * (edge $\rightarrow$ bool)<br>* (vtxid $\rightarrow$ bool) $\rightarrow$ int vset<br>: vset * (edge $\rightarrow$ bool)<br>* (vtxid $\rightarrow$ bool) $\rightarrow$ int vset |      | $O\left( U  + \sum_{u \in U'} d(u) ight)$   | $O(\log n)$            |
| ВС              |                         | nghReduce<br>nghCount                | : vset * (edge $\rightarrow$ R) * R monoid<br>* (vtxid $\rightarrow$ bool)<br>* (R $\rightarrow$ O option) $\rightarrow$ O vset<br>: vset * (edge $\rightarrow$ bool)<br>* (vtxid $\rightarrow$ bool)<br>* (int $\rightarrow$ O option) $\rightarrow$ O vset                              | }    | $O\left(\sum_{u\in U'}d(u) ight)^{\dagger}$ | $O(\log n)^{\ddagger}$ |

# Литература

- 1. Т. Кормен, Ч. Лейзерсон, Р. Ривест, К. Штайн. Алгоритмы: построение и анализ, 3-е издание. –М.: «Вильямс», 2013. –1328 с.
- Dhulipala L., Blelloch G. E., Shun J. Theoretically efficient parallel graph algorithms can be fast and scalable //ACM Transactions on Parallel Computing (TOPC). – 2021. – T. 8. – №. 1. – C. 1-70.
- 3. Sanders P., Schimek M. Engineering Massively Parallel MST Algorithms //arXiv preprint arXiv:2302.12199. 2023.
- 4. Erciyes K. Guide to graph algorithms: sequential, parallel and distributed. Springer, 2018.



### Контакты

# Нижегородский государственный университет http://www.unn.ru

Институт информационных технологий, математики и механики http://www.itmm.unn.ru

Пирова А.Ю. anna.pirova@itmm.unn.ru

