

2 Parcial - Bases de Datos - 25/11/2022

- Debe identificarse cada hoja con nombre, apellido, LU y su número de orden.
- Complete la primera hoja con la cantidad total de hojas entregadas y numere todas las hojas.
- Los pedidos de revisión se realizarán por escrito, antes de retirar el examen corregido del aula.
- Para que un ejercicio sume puntos no deben cometerse errores conceptuales graves.
- La interpretación del enunciado forma parte de la evaluación.

Criterio de Aprobación: Se aprueba con 7. Ejercicio 1 5ptos, Ejercicio 2 5ptos, Debe sumar al menos 3 en cada ejercicio.

NOSQL

Dado el siguiente DER que modela los datos para una aplicación que administra trabajos en vehículos

Se pide:

- (2,5) a) Document Database: dibujar el diagrama de interrelación de documentos, justificando las decisiones tomadas, sabiendo que:
 - Dado un service, se requiere conocer el año y la duración de los repuestos utilizados en el mismo.
 - Cada vez que se consulta por un mecánico se deben conocer todos los datos de los services en los que trabajó así también como la patente del vehículo.
 - Dado un vehículo se quiere conocer de los services que le fueron realizados y sus valores correspondientes

Especificar en JSON Schema el tipo de documento Repuesto.

- b) Realizar el diseño Column Family haciendo el diagrama de Chebotko para las siguientes consultas:
 - (i) Dado una patente, mostrar año y km del vehículo y los services que se fueron realizando, ordenados por valor, en forma descendiente.
 - (ii) Mostrar todos los repuestos y la razón social de los proveedores, ordenados por la duración del repuesto
- c) Diseñe una base de datos clave valor para el siguiente comportamiento: Se requiere que un mecánico pueda ingresar al sistema (login) y ver sus datos. También se desea que pueda acceder a la lista de todos los services en los que trabajó, poder acceder a los detalles de los mismos y a todos los datos del vehículo que se trabajó en cada caso.

2. Concurrencia y Recuperabilidad

(45) a) Dada la siguiente historia

- (i) Hacer el grafo de precedencia de H, indicar si es serializable y en caso afirmativo indicar todas las historias seriales equivalentes.
- (ii) Clasificar H con respecto a recuperabilidad: ¿Es recuperable? ¿Evita aborts en cascada? ¿Es estricta? Justificar las respuestas
- (2) b) Suponga la siguiente historia tentativa parcial sobre un planificador con timestamp monoversión:

$$H_2 = r_1(X); c_1; r_3(Y); r_2(Y); w_3(X); r_2(Z); r_3(Z); w_2(Z); c_3; w_2(X); c_2$$

- (i) Analice (JUSTIFIQUE) que pasaría en cada uno de los siguientes casos si los timestamps fueran los indicados:
 - (a) $T_1 = 100, T_2 = 200, T_3 = 300$
 - (b) $T_1 = 100, T_2 = 300, T_3 = 200$
- (ii) Para el punto anterior: ¿Cambiaría algo si el planificador fuera MVTO? JUSTIFIQUE
- (1,5) c) Luego de la caída de una base de datos, el registro de recuperación de tipo undo-log non-quiescent checkpoint contiene los siguientes datos:

<START T1>

<T1, X1, 1>

<START CKPT ???>

<START T2>

<T2, X2, 2>

<T1, X1, 3>

<START T3>

<COMMIT T1>

<END CKPT>

<START CKPT ???>

<T2, X2, 4>

<T3, X3, 5>

<START T4>

<COMMIT T2>

<T4, X4, 6>

<COMMIT T3>

<END CKPT>

<START T5>

<T5, X5, 7>

<START CKPT ???>

<T4, X4, 8>

CRASH !!!

- (i) ¿Cuáles son los valores correctos de los tres registros <START CKPT ???>? Es decir, completar con lo que corresponda donde dice ¿??".
- (ii) Suponiendo que los tres registros <START CKPT >están correctamente almacenados en el log, según su respuesta en el item anterior, muestre qué elementos son recuperados por el gestor de recuperación y calcular los valores tras la recuperación.
- (iii) Indicar qué fragmento del registro necesita leer el gestor de recuperación.
- (iv) ¿Qué modificaciones ocurren en el log si las hubiera?

Json Schema de Repuesto. type: "object", bubertucz: { raleposto: [type:"91+"}, description: { type: "string"} , 270 : [type: "Port"] deración: { type: "ent"}, proveedora: [type: "array", 9tems: [type: "ant"]] componentes: { type: "array", Hens: { type: "object", properties: { nroComponente: { type: " ant "}, especificación: { type: "strang"}, peso: { type: "9nt" }, moternal: { type: "string"}

Sogue Ejeruso 1

b) (i) NET ->	MR2		MR3
patente	potente	K	ď
ลักง	340	5	
kms	kms	3	
9d Service	20strice		
fechalareso fechalareso	fechalagress fechalagress valor	0	

→ MR4		→ M25	
patente	k	potente	K
valor	C1	volor	CA
910	2	9d Vehtour	CT
kns	3	9 d Servece	01
39 Servis	e	ลุภัจ	3 V
fechaling	~c20	km5	S
fechally	L620	fechoIngraso	
		FechoEgreso	

0

C) Agregamos adMecansco y password como atrabatos al DER a la entratad Mecansco.

NOT

Exercice 2

o) ai)

Es servalazable por ser acicheo. Hestoron servalen equavalentes:

· ta, T3, T2, T4, T5

FALTA 71, +3, ty +2 +5

ii) No es recuperable parque T2 lee A de T1 pero C2 ocurse antes

que C1.

Como no es recuperable tampoco es ACA no ST. V

				1 1161 - 10	45d 27d 24 10 15
b) i) (a) T1 100	T ₂ 200	T ₃	X 21=0 X	PT+0 Vr=0	5 51=0 M1=0
RHI F2(X)			2T=400		
C _A					
		·r3(Y)		PT=300	
	12(4)			Mantengo Z	T
		M ² (X)	WT=300	4111	
	r2(3)				RT=200
		r3(2)			PT = 300
	W2(Z)				Wrote too tote /
		c ₃	C=True		#B470 12 ·
	W ₂ (×)				
	C		1		114 14 14 14

T ₁	Tz	T ₃	X M=0	ETTO	£ 27.50	
100	300	200	WT=U	wr.o	0=n	
n(K)			RT=100			
C1						
		13(4)		RT=200	South	
	12(4)			RT = 300		
	12(1)	141 (14)	V.T- 200	17/4-		
		M3(X)	WT= 200 C=Folse		27 2-13	
	r2(3)				RT-300	
		r3(2)			and a very a	
	W2(2)			WT=300		
		c ₃	C=True			4
	W2(X)		WT=300			
	W2(C)	11111	C=FOISC			
day of the last	Cz	1 de la e	C=Truc	1/		
ii) W M	cambrouta	en el pri	rmer Caso 1	porque mult.	overstanodo nos	
alvo de los		en el pro	rmer Caso 1	porque multi	eversionado nos	
alvo de los	cambrouta	en el pri lote y no	rmer Caso 1	porque mult.	overstanted nos	
alvo de los	cambrouta	en el pri lote y no	rmer Caso 1	porque mult.	quersianted nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque mult.	eversionado nos	
alvo de los	cambrouta	en el pro	rmer Caso 1	porque mult.	eversionado nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque mult.	eversionado nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque mult.	eversionado nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque mult.	eversionado nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque multi	quersianted nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque multi	eversionado nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque multi	eversionado nos	
alvo de los	cambrouta	en el pri	rmer Caso 1	porque multi	eversionado nos	
ii) WWW Je 105	cambrouta	ble y no	rmer Caso 1	porque multi	eversionado nos	

oct

A STATE OF THE PARTY OF THE PAR

(ii) Como es UNDO-log, tenemos que proces undo de los trasaciones no comptendas o abortadas empezando o mesor alesde el último statet experando los que empezando antes y no terminarion para el statet CKPT, es deues, tos que escribiemos en (i).

Vemos que solamente T4 y T5 no terminason, entoncos desde el final al principio approximos & UNDO: V

×4 - 8

X5 47

x4 ← 6

(iii) Respondedo en (ii).

(iv) Agragamor abort a los transacciones que hacamos UNDO.

en el log AGORY (Ty) (ABORY (Ts)

* fol que exesta un END CKPT , 1