Quantum Transport Clustering

The package quantum_transport_clustering (written in python-3.6) contains three major class objects:

- GraphMethods: construct undirected graphs, and compute and encapsulate their graph Laplacians
- SpectralClustering: perform correct spectral clustering on undirected graph Laplacians
- QuantumTransportClustering: perform quantum transport clustering on undirected graph Laplacians

Usage example

Graph Methods

```
quantum_transport_clustering.GraphMethods(data_,
    graph_embedded=True, edt_tau=None, eps_quant=None,
    normed=True, compute_lap=True)
```

The Class GraphMethods is able to

- Generate Gaussian RBF adjacency matrix using Euclidean distances of the data distribution
- Compute Graph Lapalcian (symmetrically normalized by default)
- Store the raw data as well as adjacency matrix and graph Laplacian

PARAMETERS

```
data_ If graph\_embedded = True, data\_ is a numpy array of shape (n_{feature}, m_{sample}), or m_{sample} points in \mathbb{R}^{n_{feature}}. If graph\_embedded = False, data\_ is a numpy array
```

	of shape ($m_{ m sample}$, $m_{ m sample}$) representing the adjacency of a graph with $m_{ m sample}$ nodes.
graph_embedded	bool , optional. If True , assume the graph is embedded in a Euclidean space. If False , assume the input data set is an adjacency matrix not <i>a priori</i> embedded in a Euclidean space.
edt_tau	int $, \tau > 0$, optional. If specified, it is the number of iterations of effective dissimilarity transformation (EDT). Neglected if <code>graph_embedded = False</code> .
eps_quant	float , in range $0<\varepsilon<100$, optional. The the quantile of distance distribution. If not specified, $\varepsilon=1$. Neglected if <code>graph_embedded = False</code> .
normed	bool , optional. If False , graph Laplacian is $L=D-A$ where D is degree diagonal matrix, and A the adjacency matrix. If True , graph Laplacian will be normalized $H=D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$.
compute_lap	bool, optional. If True, graph Laplacian will be computed upon initialization.

RETURNS

Lap_ numpy array of shape (m_{sample} , m_{sample}). The graph Laplacian matrix L or H.

Example:

```
graph_ = qtc.GraphMethods(data)
laplacian_matrix_ = graph_.Lap_
```

Spectral Clustering

```
quantum_transport_clustering.SpectralClustering(n_cl
usters, norm_method='row', is_exact=True)
```

Perform correct spectral clustering on undirected graph Laplacians. Requires numpy >= 1.13 .

PARAMETERS

```
n_clusters int , n_{\rm cluster} > 0 , the number of clusters.  
None , "row" , or "deg" . If None , the spectral embedding is not normalized. If "row" , the spectral embedding is L^2-normalized by row where each row represent a node. If "deg" , the spectral embedding is normalized by degree vector.  
is_exact bool . If True , exact eigenvalues and eigenvectors will be computed. If False , first (small) n_{\rm cluster} eigenvalues and eigenvectors will be computed.
```

METHODS

fit(Lap_) Lap_ is the symmetric graph Laplacian. First, the eigenvalues and eigenstates are computed. Next, perform spectral embedding and *k*-means.

RETURNS

labels An integer-valued numpy array of shape (m_{sample}). The class labels associated with each node.

Example:

```
spec = qtc.SpectralClustering(n_clusters=3,
    norm_method='row')
spec.fit(laplacian_matrix)
spec_labels_ = spec.labels_
```

Quantum Transport Clustering

```
quantum_transport_clustering.QuantumTransportCluster
ing(n_clusters, Hamiltonian, s=1.0, is_exact=True,
n_eigs=None)
```

Perform quantum transport clustering on undirected graph Laplacians.

```
PARAMETERSn_clustersint , n_{cluster} > 0 , the number of clusters.Hamiltoniannumpy array of shape (m_{sample}, m_{sample}). The symmetric
```

graph l	[nn]	lagion	matrix	IJ
grapiri	Lap!	lacian	IIIauix	п.

 $ilde{s}$ float , $ilde{s} > 0$, optional. The actual s-parameter of Laplace transform will be

 $s = \tilde{s} \times (E_{n_{\text{cluster}}-1} - E_0)/(n_{\text{cluster}} - 1)$, where E_n are eigenvalues of H.

is_exact bool , optional. If True , exact eigenvalues and

eigenvectors of \boldsymbol{H} will be computed. If False , first n_eigs low energy states will be computed

approximated.

n_eigs int , $n_{
m eigs} > 0$, optional. If n_eigs not specified and

is_exact = False , $n_{\rm eigs} = 10 \times n_{\rm cluster}$. If n_eigs is specified and is_exact = True , then first $n_{\rm eigs}$ low exact energy state will be used to perform quantum transport clustering. The latter case can be used to speed up the

clustering processes.

METHODS

Grind()
Grind(s=None, grind='medium', method='diff',

init_nodes_=None) Option grind can be "coarse",
"medium", "fine", "micro", or "custom" . Option

method can be "diff" or "kmeans" corresponding to

direct difference and k-means methods. If

grind="custom" , then init_nodes_ is the custom

python list of initialization nodes. Method Grind() produces the array omega or the Ω -matrix which

contains the raw class labels.

Espresso() Perform "direct extraction method" on Ω . This method

creates attribute labels_ as the predicted class labels.

Coldbrew() Compute "consensus matrix" $oldsymbol{C}$ based on $oldsymbol{\Omega}$. This method

creates attribute consensus_matrix_ .

RETURNS

Omega_	An integer-valued numpy array of shape ($m_{ m sample}$,
--------	--

 $m_{
m initialization}$). The raw class labels of $m_{
m samples}$ from quantum transport from $m_{
m initialization}$ nodes.

labels_ An integer-valued numpy array of shape (m_{sample}) .

The final prediction by Espresso().

consensus_matrix_ A float-valued numpy array of shape (m_{sample} ,

 $m_{
m sample}$). The consensus matrix computed by

Coldbrew() .

Example:

```
shot = qtc.QuantumTransportClustering(n_clusters=3,
    Hamiltonian=Lap_) # initialization

Omg_ = shot.Grind() # generate raw class label

# One may extract the eigevalues by attribute
    shot.Heigval

shot.Espresso() # direct extraction method

class_labels_ = shot.labels_

shot.Coldbrew() # generate consensus matrix

C_matrix_ = shot.consensus_matrix_
```

More in-depth discussions about the spectral clustering and QTC algorithms, including the interpretations of the parameters and variables, can be found at Quantum Transport Senses Community Structure in Networks.