

	PCH - EF
CPU IO	PCIe Gen4, 4x Type-C (TBT, USB 4.0, DP), DDR4,LPDDR4x, LPDDR5, CSI, DSI, DDI, eDP
PCH-LP	12 lanes HSIO, USB2, USB 3.2, eSPI, SPI, LPSS, I2C, SMBus
Power Delivery	CPU FIVR/PCH FIVR w/discrete VR ROP USB-C PD Controller
Memory	DDR4 - Max 64GB @ 3200MT/s LPDDR4x - Max 32GB @ 4266MT/s
Storage	PCIe/SATA
Boot	SPI NOR
Discrete Graphics	Optional x4 PCIe – Hybrid Graphics support w/Hot Plug
Internal Display	eDP , MIPI DSI
External displays	4 Wired Type-C (DP/TBT) Wireless (Miracast2.0 r2) (Wi-Fi) DDI(DP, HDMI)
Wireless	Quasar CNVi w/Harrison Peak (Wi-Fi/BT) module WWAN - XMM 7560
Clocking	38.4MHz Platform Xtal
Wired COMMs	Integrated GbE w/ discrete Gbit Lan Phy

Feature	Description
Imaging	4x WF/UF 2D Camera – (13MP WF, 2MP UF, 2MP Others) Other Cameras: AutoFocus, Face Tracking, Image Biometrics
Docking/Walk-up-Port	4x Ports Max: Type-C/Type-A
Audio	3.5mm Headphone Jack, Integrated Speakers/Mic, Docking Soundwire, Intel HD Audio, I2S, USB
Sensors	Ambient Light Sensor, Gyroscope, Accelerometer, Compass, Proximity, Pressure
Misc, GPIO's	Power/Vol button/Indicator LEDs/Keyboard/Touchpad/etc

TIGER LAKE PCH:

Title <Title> Size A3 Document Number <Doc> Rev <RevCode> Monday, November 15, 2021 Sheet

MCP -DP\HDMI

5.3 Display Interfaces

Table 33. DDI Ports Availability

SKU	UP4 Processor Line	UP3 Processor Line
DDI A	eDP*/MIPI_0	eDP*/MIPI_0
DDI B	eDP*/DP*/HDMI*/MIPI_1	eDP*/DP*/HDMI*
TCP0	DP*/HDMI*	DP*/HDMI*
TCP1	DP*/HDMI*	DP*/HDMI*
TCP2	DP*/HDMI*	DP*/HDMI*
TCP3	N/A	DP*/HDMI*

Title

Size Document Number

A3 | Coc |

MEMORY CHANNEL A

DDR4/LP4/LP5/LP5 CMD Flin LP4-LP5(NIL)/DDR4 (NIL)/DDR4 (IL) DDR0_CLK_P1/IDR3_CLK_P/DDR3_CLK_P/DDR3_CLK_P
DDR0_CLK_N/IDDR3_CLK_N/DDR3_CLK_N/DDR3_CLK_P
NC/IDR2_CLK_P/DDR2_C DDR0_DQ0_7/DDR0_DQ0_7/DDR0_DQ0_ CP52 DDR0_DQ0_6/DDR0_DQ0_6/DDR0_DQ0_6 DDR0_DQ0_5/DDR0_DQ0_5/DDR0_DQ0_5 1.CKP and CKN differential signal swapping within a pair is not allowed. Also, differential clock pair to clock pair swapping within a channel is not allowed. DDR0_DQ0_4/DDR0_DQ0_4 NC/DDR2_CLK_N/DDR2_CLK_N/DDR2_CLK CU53 DDR0 DQ0 3/DDR0 DQ0 3/DDR0 DQ0 3 NC/DDR1 CLK P/DDR1 CLK P/DDR1 CLK P NC/DDR1_CLK_P/DDR1_CLK_P/DDR1_CLK_P

NC/DDR1_CLK_N/DDR1_CLK_N/DDR1_CLK

CC52 DDR0_DQ0_2/DDR0_DQ0_2 CC52
M_0_CLK_DDR0_DP
RANK 0 CLK
M_0_CLK_DDR0_DN DDR0 DQ0 1/DDR0 DQ0 1 /DDR0 DQ0 1 DDR0 CLK P0 DDR0 CLK P/DDR0 CLK P/DDR0 CLK P CU49 DDR0_DQ0_0/DDR0_DQ0_0/DDR0_DQ0_0 DDR0_CLK_N0/DDR0_CLK_N/DDR0_CLK_N/DDR0_CLK CH53

CH52

DDR0_DQ1_7/DDR0_DQ1_7/DDR0_DQ1_7

DDR0_DQ1_6/DDR0_DQ1_6/DDR0_DQ1_6 DDR4/LP4/LP5/LP5 CMD Flip NC/DDR3_CKE0/DDR3_WCK_P/DDR3_WCK_P NC/DDR3_CKE1/DDR3_WCK_P/DDR3_WCK_P

NC/DDR3_CKE1/DDR3_WCK_N/DDR3_WCK
NC/DDR2_CKE0/DDR2_WCK_P/DDR2_WCK_P

BN51

BN51 CH50 DDR0_DQ1_5/DDR0_DQ1_ DDR0 DQ1 4/DDR0 DQ1 4/DDR0 DQ1 4 BN53 CD45 DDR0_DQ1_3/DDR0_DQ1_3 NC/DDR2_CKE1/DDR2_WCK_N/DDR2_WCK DDR0 DQ1 2/DDR0 DQ1 2/DDR0 DQ1 2 NC/DDR1 CKEN/DDR1 WCK P/DDR1 WCK P CL50 DDR0_DQ1_1/DDR0_DQ1_ /DDR0_DQ1_1 NC/DDR1_CKE1/DDR1_WCK_N/DDR1_WCK DDR0_DQ1_0/DDR0_DQ1_0/DDR0_DQ1_0 NC/DDR0 CKE0/DDR0 WCK P/DDR0 WCK P CT47 DDR1_DQ1_0/DDR1_DQ2_1/DDR1_DQ0_7
CV47 DDR1_DQ0_7/DDR0_DQ2_1/DDR1_DQ0_6 CA53 NC/DDR0_CKE1/DDR0_WCK_N/DDR0_WCK CV47 DDR1_DQ0_6/DDR0_DQ2_ /DDR1_DQ0_6 DDR4/LP4/LP5/LP5 CMD Flip BU52 M_0_CKE_1 M_0_CKE_0 CT45 DDR1_DQ0_5/DDR0_DQ2_5/DDR1_DQ0_5 DDR0 CKE1/DDR2 CA4/DDR2 CA5/DDR2 CA1 DDR1_DQ0_4/DDR0_DQ2_4 DDR0_CKE0/DDR2_CA5/DDR2_CA6/DDR2_CA0 DDR1 DQ0 3/DDR0 DQ2 3/DDR1 DQ0 3 DDR4/LP4/LP5/LP5 CMD Flip CV42 DDR1_DQ0_3/DDR0_DQ2_3/DDR1_DQ0_3
CT41 DDR1_DQ0_2/DDR0_DQ2_2/DDR1_DQ0_2 | DDR0_CSI|DDR1_CA1/DDR1_CA5|
| DDR0_CSI|NC/DDR1_CS1/DDR1_CA4|
| DDR0_CSI|NC/DDR1_CS1/DDR1_CA4| Chip Select: All commands are masked when CS n is registered HIGH. CS n provides for external Rank selection on systems with multiple Ranks. CS_n is considered part of the command code. DDR0_CS0/NC/DDR1_CS1/DDR1_CA4
DDR4/LP4/LP5/LP5 CMD Flip DDR1 DQ0 1/DDR0 DQ2 1/DDR1 DQ0 1 CV41 DDR1_DQ0_0/DDR0_DQ2_0/DDR1_DQ0_0 DDR1_DQ1_7/DDR0_DQ3_7/DDR1_DQ1_ NC/DDR0 CA0/DDR0 CA0/DDR0 CA6 CM47 DDR1_DQ1_6/DDR0_DQ3_6/DDR1_DQ1_6 NC/DDR0 CA1/DDR0 CA1/DDR0 CA5 DDR1_DQ1_5/DDR0_DQ3_5/DDR1_DQ1_5 NC/DDR2_CS0/DDR2_CA2/DDR2_CA2 DDR1 DQ1 4/DDR0 DQ3 4/DDR1 DQ1 4 CK42 DDR1_DQ1_3/DDR0_DQ3_3/DDR1_DQ1_3 CM42 DDR1 DQ1 2/DDR0 DQ3 2/DDR1 DQ1 2 CM41 DDR1_DQ1_1/DDR0_DQ3_/DDR1_DQ1_1
CK41 DDR1_DQ1_1/DDR0_DQ3_/DDR1_DQ1_1 DDR1_DQ1_0/DDR0_DQ3_0/DDR1_DQ1_0 BF53 DDR1_DQ1_0/DDR0_DQ4_1/DDR0_DQ2_7 BF52 DDR2_DQ0_6/DDR0_DQ4_6/DDR0_DQ2_6 DDR3 DQSP 0/DDR0 DQSP 6/DDR1 DQSP 2 DDR2 DQ0 5/DDR0 DQ4 5/DDR0 DQ2 5 DDR2_DQ0_4/DDR0_DQ4_4 Data Strobes: Differential data strobe pairs. The data is captured at the crossing point of DQS during reading and write transactions. DDR2 DO0 3/DDR0 DO4 3/DDR0 DO2 3 DDR2 DOSP 1/DDR0 DOSP 1/DDR0 DOSP 3 M 0 DQS 5 DF DDR2_DQ0_2/DDR0_DQ4_2/DDR0_DQ2_2 BH49 DDR2_DQ0_1/DDR0_DQ4_1/DDR0_DQ2_1
DDR2_DQ0_0/DDR0_DQ4_0/DDR0_DQ2_0 AY53 DDR2_DQ1_7/DDR0_DQ5_7/DDR0_DQ3_7 DDR1 DQSN 1/DDR0 DQSN 3/DDR1 DQSN 1 DDR2 DQ1 6/DDR0 DQ5 6/DDR0 DQ3 6 AY50 DDR2_DQ1_5/DDR0_DQ5_5/DDR0_DQ3_5 0/DDR0_DQSP_2/DDR1_DQSP_0 CV44 | M_0_DQS_2_DN | CK51 | M_0_DQS_1_DN | CK50 | CK50 | M_0_DQS_1_DN | CR51 | M_0_DQS_0_DP | CR50 | M_0_DQS_0_DN | CR50 | CK50 AY49 DDR2 DQ1 4/DDR0 DQ5 4/DDR0 DQ3 4 DDR1 DQSN 0/DDR0 DQSN 2/DDR1 DQSN 0 BC53 DDR2_DQ1_3/DDR0_DQ5_3/DDR0_DQ3_3 1/DDR0_DQSP_1/DDR0_DQSP_1 DDR0_DQSP_ DDR2 DO1 2/DDR0 DO5 1/DDR0 DO3 2 DDR0 DQSN 1/DDR0 DQSN 1/DDR0 DQSN 1 DDR2_DQ1_1/DDR0_DQ5_1/DDR0_DQ3_1 DDR0_DQSP_0/DDR0_DQSP_0/DDR0_DQSP_0 BC49 DDR0_DQSN_0/DDR0_DQSN_0/DDR0_DQSN_0 DDR4/LP4/LP5/LP5 CMD Flip DDR2_DQ1_0/DDR0_DQ5_ DDR0_DQSN_bidDR0_fileSo DDR3_DQ0_7/DDR0_DQ6_1/DDR1_DQ2_7 BK45 DDR3_DQ0_6/DDR0_DQ6_6/DDR1_DQ2_6 | DDR0_ODTI|DDR1_CS0/IDDR1_CA1
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA2/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CA3/IDDR1_CS0
| DDR0_MA15/IDDR1_CS0
| DDR0_MA15/IDD DDR3 DQ0 5/DDR0 DQ6 5/DDR1 DQ2 5 DDR3_DQ0_4/DDR0_DQ6_4/DDR1_DQ2_4 ignored if MR1 is programmed to disable RTT NOM. DDR3 DQ0 3/DDR0 DQ6 3/DDR1 DQ2 3 BK42 DDR3_DQ0_2/DDR0_DQ6_2/DDR1_DQ2_2 BK41 DDR3_DQ0_1/DDR0_DQ6_1/DDR1_DQ2_1 BH41 DDR3_DQ0_0/DDR0_DQ6_0/DDR1_DQ2_0 BD47 DDR3_DQ1_7/DDR0_DQ7_ BB47 DDR0_MA1[vNc/DDR2_CS1/DDR2_CA4 | BT51 | BV42 | DDR0_MA1[v]DDR3_CA1/DDR3_CA1/DDR3_CA5 | BU50 | BU50 DDR3 DQ1 6/DDR0 DQ7 6/DDR1 DQ3 6 DDR3_DQ1_5/DDR0_DQ7_5/DDR1_DQ3_5 M 0 MA10 DDR3 DQ1 4/DDR0 DQ7 4/DDR1 DQ3 4 M 0 MA9

Pin Name	Description	Pin Name	Description
A0-A16	SDRAM address bus	SCL	I ² C serial bus clock for SPD/TS and register
BAO, BA1	Regsiter bank select input	SDA	I ² C serial data line for SPD/TS and register
BG0, BG1	Regsiter bank group select input	SA0-SA2	I ² C slave address select for SPD/TS and register
RAS_n ²	Register row address strobe input	PAR	Register parity input
CAS_n ³	Register column address strobe input	VDD	SDRAM core power
WE_n ⁴	Register write enable input		
CS0_n, CS1_n, CS2_n, CS3_n	DIMM Rank Select Lines input	12V	Optional Power Supply on socket but not used on RDIMM
CKE0, CEK1	Register clock enable lines input	VREFCA	SDRAM command/address reference supply
ODT0, ODT1	Register on-die termination control lines input	VSS	Power supply return (ground)
ACT_n	Register input for activate input	VDDSPD	Serial SPD/TS positive power supply
DQ0-DQ63	DIMM memory data bus	ALERT_n	Register ALERT_n output
CB0-CB7	DIMM ECC check bits	VPP	SDRAM Supply
TDQS9_t-TDQS17_t TDQS_c-TDQS17_c	Dummy loads for mixed populations of x4 based and x8 based RDIMMs.		
DQS0_t-DQS17_t	Data Buffer data strobes (positive line of differential pair)	RESET_n	Set Register and SDRAMs to a Known State
DBI0_n-DBI8_n	Data Bus Inversion	EVENT_n	SPD signals a thermal event has occurred
CK0_t, CK1_t	Register clock input (positive line of dif- ferential pair)	VIT	SDRAM I/O termination supply
CK0_c, CK1_c	Register clock input (negative line of differential pair)	RFU	Reserved for future use

Each lane of 8bits (Byte) of Data has it's own Data Strobe

DDR0_MA1/(DDR3_CA1/IDDR3_CA5_DDR0_MA1/(DDR2_CA0/IDDR0_CA5/IDDR0_CA6_DDR0_MA1/(DDR0_CA2/IDDR0_CA5/IDDR0_CA5_DDR0 DDRU_MA[is:U]
Address: These signals are used to provide the multiplexed row and column address to the SDRAM. BB42 DDR3_DQ1_3/DDR0_DQ7_3/DDR1_DQ3_3 Pin Descriptions BB41 BB41 DDR3_DQ1_2/DDR0_DQ7_2/DDR1_DQ3_2 DDR3_DQ1_1/DDR0_DQ7_1/DDR1_DQ3_1 DDR3_DQ1_1/DDR0_DQ7_1/DDR1_DQ3_1 DDR0_MAT/DDR0_CA4/DDR0_CA5/DDR0_CA1 BY52 DDR0_MA6/DDR0_CA3/DDR0_CA4/DDR0_CS1 DDR3_DQ1_0/DDR0_DQ7_0/DDR1_DQ3_0 DDR0_MA3/DDR0_CS1/DDR0_CS0/DDR0_CA3 DDR0 MA2/DDR3 CS0/DDR3 CA2/DDR3 CA2 DDR0_MA1/NC/DDR0_CS1/DDR0_CA4 DDR0_MA0/NC/DDR3_CS1/DDR3_CA4 BN50 M_0_BG1 M_0_BG0 DDR0_BG /DDR2_CA2/DDR2_CA3/DDR2_CS0 DDR0_BG)/DDR2_CA3/DDR2_CA4/DDR2_CS1 DDR4/LP4/LP5/LP5 CMD Flip CB42 M_0_BA1 M_0_BA0 DDR0 BA1/DDR1 CA5/DDR1 CA6/DDR1 CA0 DDR0_BA0/DDR3_CA0/DDR3_CA0/DDR3_CA6 DDR4/LP4/LP5/LP5 CMD Flip BT53 M_0_ACT_N (CTRL) DDR0_ACT#/DDR2_CS1/DDR2_CS0/DDR2_CA3 DDR4/LP4/LP5/LP5 CMD Flip BV45 >> M_0_PARITY ---> R3 Command and Address Parity Input : DDR4 Supports Even Parity check in DRAMs with MR 475R setting. Once it's enabled via Register in MR5, then DRAM calculates Parity with ACT n, RAS_n/A16, CAS_n/A15, WE n/A14, BG0-BG1, BAO-BA1, A17-A0. Input parity should maintain the rising edge of the clock and at the same time with command & address with CS_n LOW. DDR0_PAR/DDR3_CS1/DDR3_CS0/DDR3_CA3 AU49 +V_D4CH0_CA_VREE DDR0_VREF_CA eference voltage for control, command, and address pins. 0R4 O201 DRAM_RESET_N_R DV47 DRAM RESET# DDR RCOMP Place R541 as close as possible to MCP TGL UP3 IP EXT/BGA 1. RAS n is a multiplexed function with A16. 2. CAS_n is a multiplexed function with A15. Document Number 3. WE_n is a multiplexed function with A14.

MEMORY CHANNEL B

Title

Size Document Number

A3 CDoc> Rev

Rev

Rev

Rev

Rev

Rev

A 1

CATERR#

Catastrophic Error: This signal indicates that the system has experienced a catastrophic error and cannot continue to operate. The processor will set this signal for nonrecoverable machine check errors or other unrecoverable internal errors. CATERR# is used for signaling the following types of errors: Legacy MCERRs, CATERR# is asserted for 16 BCLKs. Legacy IERRs, CATERR# remains asserted until warm or cold reset.

PROCHOT#

The PROCHOT# (processor hot) signal is asserted by the processor when the TCC is active. Only a single PROCHOT# pin exists at a package level. When any DTS temperature reaches the TCC activation temperature, the PROCHOT# signal will be asserted. PROCHOT# assertion policies are independent of Adaptive Thermal Monitor enabling. The PROCHOT# signal can be configured to the following modes:

- Input Only: PROCHOT is driven by an external device.
 Output Only: PROCHOT is driven by processor.
 Bi-Directional: Both Processor and external device can drive PROCHOT signal

Time Synchronization: Used for synchronization both input (latch time when pin asserted) and output (toggle pin when programmed time is hit).

until de-asserted:
- 1 = (Default) Normal
Operation; No stall. - 0 = Stall

U1D

RSVD 2 RSVD_3 RSVD_4

RSVD_5

DV24 DW4? DW49 A48

4 OF 21

TGL_UP3_IP_EXT/BGA

TIME SYNC:
The PCH supports two Timed GPIOs as native function (TIME SYNC) that is muxed on GPIO pins. The intent usage of the Timed GPIO function is for time synchronization purpose.
Timed GPIO can be an input or an output.

As an input, a GPIO input event triggers the HW to capture the PCH Always Running Timer (ART) time in the Time Capture register. The GPIO input event must be asserted for at least two crystal oscillator clocks period in order for the event to be recognized.

As an output, a match between the ART time and the software programmed time value triggers the HW to generate a GPIO output event and capture the ART time in the Time Capture register. If periodic mode is enabled, HW generates the periodic GPIO events based on the programmed interval. The GPIO output event is asserted by HW for at least two crystal oscillator clocks period.

Document Number <Doc> Size A3 <RevCode> Sheet

U1H 8 OF 21 PCIE4_M.2_SSD_TX_P3 PCIE4_M.2_SSD_TX_N3 PCIE4_M.2_SSD_RX_P3 PCIE4_M2_SSD_TX_P1 PCIE4_M2_SSD_TX_N1 PCIE4_M2_SSD_RX_P1 PCIE4_M2_SSD_RX_N1 PCIE4 TX P 3 PCIE4 TX P 1 P7 PCIE4_TX_N_3 PCIE4_RX_P_3 PCIE4_TX_N_1 PCIE4 RX P 1 N2 PCIE4_RX_N_3 PCIE4_RX_N_1 PCIE4_M.2_SSD_TX_P0 PCIE4_M.2_SSD_TX_N0 PCIE4_M.2_SSD_RX_P0 PCIE4_M.2_SSD_RX_N0 PCIE4_M.2_SSD_TX_P2 PCIE4_M.2_SSD_TX_N2 PCIE4_M.2_SSD_RX_P2 PCIE4_TX_P_2 PCIE4_TX_P_0 T7 PCIE4_TX_N_2 PCIE4_RX_P_2 PCIE4_TX_N_0 PCIE4 RX P 0 PCIE4_RX_N_0 Y12 PCIE4_RCOMP_P_R23 2.21K PCIE4_RCOMP Capacitance on RCOMP nets (PCIe4 RCOMP P/N) cannot exceed 2.5pF each. This includes routing and via caps TGL_UP3_IP_EXT/BGA

12.2 PCIe4 Gen4 Interface Signals

Signal Name	Description	Dir	Buffer Type	Link Type	Availability
PCIE4_RCOMP_P PCIE4_RCOMP_N	Resistance Compensation for PEG channel	I	Analog	Diff	UP3/UP4/H Processor Lines
PCIE4_TX_P[3:0] PCIE4_TX_N[3:0]	PCIe Transmit Differential Pairs	0	PCIE	Diff	UP3/UP4/H Processor Lines
PCIE4_RX_P[3:0] PCIE4_RX_N[3:0]	PCIe Receive Differential Pairs	1	PCIE	Diff	UP3/UP4/H Processor Lines

Title

Size Document Number

A3 Code>

Date: Monday, November 15, 2021 Sheet 9 of 41

Document Number Monday, November 15, 2021 Sheet

Size A3

Rev <RevCode>

PCI Express* Clock Output: Serial Reference 100 MHz PCIe* specification compliant differential output clocks to PCIe* devices

• CLKOUT_PCIE_P/N [6:0] = Can be used for PCIe* Gen1, Gen2, and Gen3 support

• CLKOUT_PCIE_P/N [4, 3, 0] = Must be used for PCIe* Gen4 support +3<u>V3</u>S +3<u>V3</u>S 48/270 U1K NOP R28 R29 11 OF 21 > 10K/1% 10K/1% TRIP #2 CLKOUT_PCIE_P6 CLKOUT_PCIE_N6 CLKOUT_PCIE_P6 CLKOUT_PCIE_N6 100 MHz PCIe CLK GPP_F19/SRCCLKREQ6# GPP_H11/SRCCLKREQ5# BW2 GPP_H10/SRCCLKREQ4# GPP_D8/SRCCLKREQ3# CLKOUT_PCIE_P5 CLKOUT_PCIE_P5 << LAN 2 - EB-TI22A I211 CLKOUT_PCIE_N5
100 MHz PCIe CLK GPP_D7/SRCCLKREQ2# GPP D6/SRCCLKREQ1# GPP_D5/SRCCLKREQ0# BW4
CLKOUT_PCIE_P4
CLKOUT_PCIE_N4
100 MHz PCIe CLK ->> M.2_SSD_SUS_CLK XTAL_OUT Suspend Clock: This clock is a digitally buffered version of the RTC clock. XTAL_IN CL7 CLKOUT_PCIE_P3 CLKOUT PCIE P3 << CL8 CLKOUT_PCIE_P3
CLKOUT_PCIE_N3
100 MHz PCIe CLK TRIP #1 CLKOUT_PCIE_N3 (->> M.2_BTWIFI_SUS_CLK GPD8/SUSCLK XTAL_RTC_32K_OUT M.2 - Key B CLKOUT_PCIE_P2 CLKOUT_PCIE_N2 CB4 CLKOUT_PCIE_P2
CLKOUT_PCIE_N2
100 MHz PCIe CLK DR47 XTAL RTC 32K IN R15 1K, 1%, 0201 RTCX1 BY4
CLKOUT_PCIE_P1
CLKOUT_PCIE_N1
100 MHz PCIe CLK RTCRST# SRTCRST# M.2 - Key E CLKOUT_PCIE_P1 CLKOUT_PCIE_N1 NOP DK37 CN7 CLKOUT_PCIE_P0 CLKOUT_PCIE_P0 << M.2 - Key M CLKOUT_PCIE_10 CLKOUT_PCIE_P0
CLKOUT_PCIE_N0
100 MHz PCIe CLK DJ5 XCLK_BIASREF X2 32.768KHz TGL_UP3_IP_EXT/BGA VCCPRTC_3P3 RTC Battery RTC RESET BUTTON BATT_HOLDER_2032 1uF

Rev <RevCode> Document Number

U1P 16 OF 21 VSS 223 VSS 289 A32 B2 B23 VSS_224 VSS_290 A45 VSS_225 VSS_291 A49 B27 VSS 226 VSS 292 AA41 AA48 B32 B36 VSS_227 VSS_293 VSS_228 VSS 294 B39 B42 AB5 AB7 VSS_229 VSS_295 VSS_230 VSS_231 VSS_296 VSS_297 AB8 AC44 AC49 B52 B8 VSS_232 VSS_233 VSS_298 VSS_299 AD4 AD48 BA48 VSS_234 VSS_300 BA53 VSS 235 VSS 301 AD8 AF4 BB4 BB8 VSS_236 VSS_302 VSS_237 VSS_238 VSS 303 BC1 BC2 BD12 AF8 VSS_304 AG41 VSS_305 VSS_306 VSS_239 AG42 VSS 240 AG44 AG45 BD4 BD48 VSS_241 VSS_242 VSS_307 VSS 308 AG47 AG48 BD8 BF39 VSS_243 VSS_309 VSS_244 VSS_245 VSS_310 VSS_311 VSS_312 VSS_313 VSS_314 BF44 BF42 BF42 BF44 BF44 VSS 310 AG53 AH4 AH8 VSS_246 VSS_247 AK12 VSS_314 BF45 VSS_248 VSS_249 AK4 BF47 BF5 AK48 VSS_250 VSS_316 AK5 VSS_251 VSS_252 VSS 317 AK7 AK8 BF7 BF8 VSS_318 VSS_253 VSS_254 VSS_319 VSS_320 BG48 AM1 AM2 AM4 BG53 BH1 VSS_255 VSS_256 VSS_321 VSS 322 AM8 AN41 BH2 BH4 VSS_257 VSS_323 VSS_324 VSS 258 AN42 BH8 BK12 VSS_259 VSS_325 AN44 VSS_260 VSS_261 VSS_326 VSS_327 BK4 BK48 AN45 AN47 VSS_262 VSS_263 VSS_328 AN48 BK8 VSS 329 AN53 AP4 BL49 BM1 VSS_264 VSS_330 VSS 265 VSS 331 AP8 AT4 BM4 BM41 VSS_266 VSS_332 VSS_267 VSS_268 VSS 333 AT48 BM42 VSS_334 BM44 AT51 VSS_269 VSS_270 VSS_335 VSS_336 AT8 AV12 AV39 BM47 VSS_271 VSS_272 VSS_337 VSS_338 BM8 AV4 AV5 BN48 BP41 VSS_273 VSS_339 VSS_274 VSS_275 VSS 340 BP49 BP5 BP50 BP7 AV7 VSS_341 AV8 VSS_276 VSS_277 VSS 342 AW1 VSS_343 AW2 VSS_344 VSS_345 VSS_278 AW48 BT44 VSS 279 AY4 AY41 BT48 BU49 VSS_346 VSS_347 VSS_280 VSS 281 AY42 AY44 BV3 BV48 VSS_282 VSS_348 VSS_283 VSS_284 VSS_349 VSS_350 AY45 BV5 AY47 BW10 VSS_285 VSS_286 VSS_351 VSS_352 AY8 BY41 AY9 BY42 VSS_287 VSS_353 B13 VSS 288 TGL_UP3_IP_EXT/BGA

Title

Size | Document Number | Rev |
A3 | <Doc> | <Rev |
Code:

Date: | Monday, November 15, 2021 | Sheet 17 of 41 |

U1S 19 OF 21 RSVD_23
RSVD_24
RSVD_25
RSVD_25
RSVD_27
RSVD_27
RSVD_28
RSVD_29
RSVD_31

RSVD_19
RSVD_19
RSVD_1P_30
RSVD_1P_30
RSVD_1P_30
RSVD_1P_30
RSVD_1P_31
RSVD_1P_32
RSVD_1P_33
RSVD_1P_34
RSVD_1P_35
RSVD_1P_35
RSVD_1P_36
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_39
RSVD_1P_39
RSVD_1P_39
RSVD_1P_36
RSVD_1P_36
RSVD_1P_37
RSVD_1P_38
RSVD_1P_38
RSVD_1P_39
RSVD_1P_39 DF53_RSVD_19 DF52 RSVD_20 DT52 DU53 PCH_IST_TP_1 PCH_IST_TP_0 DF50 DF49 RSVD_21 RSVD_22 CY30 CY15 RSVD_TP_25 RSVD_TP_26 RSVD_TP_27

A6 IST_TP_1
IST_TP_0 TGL_UP3_IP_EXT/BGA Document Number <Doc> Rev <RevCode>

	Configuration Signals: The CFG signals have a default				
CFG[17:0]	value of '1' if not terminated on the board. Refer to the appropriate platform design guide for pull-down recommendations when a logic low is desired. Intel recommends placing test points on the board for CFG pins. • CFG[3], CFG[0]: Reserved configuration lane. • CFG[2]: H_PCI Express* Static x16 Lanes Numbering Reversal. — 1 - (Default) Normal — 0 - Reversed • CFG[4]: eDP enable: — 1 = Disabled. — 0 = Enabled. • CFG[6:5]: H_PCI Express* Bifurcation — 00 = 1 x8, 2 x4 PCI Express* — 11 = 1 x16 PCI Express* — 11 = 1 x16 PCI Express* • CFG[13:7]: Reserved configuration lanes. • CFG[13:7]: Reserved configuration lanes. • CFG[14]: PEGGO (PCIE4) Lane Reversal: — 1 - (Default) Normal — 0 - Reversed • CFG[17:151: Reserved configuration lanes.	I	GTL	SE	UP3/UP4/H Processor Lines

BPM#[3:0]
Breakpoint and Performance Monitor Signals: Outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance.

Processor Internal Pull-Up / Pull-Down Terminations

Signal Name	Pull Up/Pull Down	Rail	Value
BPM#[3:0]	Pull Up/Pull Down	VCC _{IO} OUT	16-60 Ω
PROC_PREQ#	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TDI	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TMS	Pull Up	VCC _{STG}	3 ΚΩ
PROC_TRST#	Pull Down	VCC _{STG}	3 ΚΩ
PROC_TCK	Pull Down	VCC _{STG}	3 ΚΩ
CFG[17:0]	Pull Up	VCC _{IO} OUT	3 КΩ

Title

Size Document Number

A3 | Document Number | Rev |

Code>

Date: Monday, November 15, 2021 | Sheet 19 of 41

p.143/187 TL-EDS

12.6.3 Digital Display Interface (DDI) Signals

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability
DDIA_TXP[3:0] DDIA_TXN[3:0] DDIB_TXP[3:0] TX DDIB_TXN[3:0]	Digital Display Interface Transmit: DisplayPort and HDMI Differential Pairs	0	DP*/HDMI	Diff	All Processor
DDIA_AUX_P DDIA_AUX_N DDIB_AUX_P AU DDIB_AUX_N	Digital Display Interface Display Port Auxiliary: Half-duplex, bidirectional channel consist of one differential pair for each channel.	I/O	DP*	Diff	Lines.

p.103/507 TL-TDG

	Signal Mapping				
Description	Tiger Lake Processor	Tiger Lake PCH	CRB DisplayPort* Mapping	Note	
	DDIx_TXP/N[3:0]	N/A	N/A	1	
Main Link (Tx)	TCPx_TX_P/N[1:0] and TCPx_TXRX_P/N[1:0]	N/A	N/A	2	
Aux Channel	DDIx_AUXP/N	N/A	N/A	1	
AUX Channel AUX	TCPx_AUX_P/N	N/A	N/A	2	
Hot Plug Detect	N/A	DDSP_HPD_x	N/A		
DISP_UTILS	Recommend 50 ohm n	ominal trace impedance. Req	uires level shifting on the platform.		
DDIA_RCOMP	150 ohm +/-1% pull-d	own to VSS		3	
TC_RCOMP	150 ohm +/-1% conne	cted between TC_RCOMP_P a	and TC_RCOMP_N	4	

- 1. Signals names apply for DDI A/B ports.
 2. Signals names apply for TCP ports.
 3. Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented.
- Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented.

p.103/507 TL-TDG

December 1	Signa	al Mapping	Note
Description	Processor	РСН	Note
Main Link (Tx)	DDIx_TXP/N[3:0]	N/A	1
TX	TCPx_TX_P/N[0:1] and TCPx_TXRX_P/N[0:1]	N/A	2
DDC DDC	N/A	DDPx_CTRLCLK and DDPx_CTRLDATA	
Hot Plug Detect	N/A	DDSP_HPD_x	
DDIA_RCOMP	150 ohm +/-1% pull-down to VSS Ohm	, Provide good noise isolation, Rdc<0.2	3
TC_RCOMP	150 ohm +/-1% connected between	en TC_RCOMP_P and TC_RCOMP_N	4

12.6.3 Digital Display Interface (DDI) Signals

Signal Name	Description	Dir.	Buffer Type	Link Type	Availability
DDIA_TXP[3:0] DDIA_TXN[3:0] DDIB_TXP[3:0] DDIB_TXN[3:0]	Digital Display Interface Transmit: DisplayPort and HDMI Differential Pairs	0	DP*/HDMI	Diff	All Processor
DDIA_AUX_P DDIA_AUX_N DDIB_AUX_P DDIB_AUX_N	Digital Display Interface Display Port Auxiliary: Half-duplex, bidirectional channel consist of one differential pair for each channel.	I/O	DP*	Diff	Lines.

	Signal Mapping			
Description	Tiger Lake Processor	Tiger Lake PCH	CRB DisplayPort* Mapping	Note
	DDIx_TXP/N[3:0]	N/A	N/A	1
Main Link (Tx)	TCPx_TX_P/N[1:0] and TCPx_TXRX_P/N[1:0]	N/A	N/A	2
	DDIx_AUXP/N	N/A	N/A	1
Aux Channel AUX	TCPx_AUX_P/N	N/A	N/A	2
Hot Plug Detect	N/A	DDSP_HPD_x	N/A	
DISP_UTILS	Recommend 50 ohm no	ominal trace impedance. Require	es level shifting on the platform.	
DDIA_RCOMP	150 ohm +/-1% pull-d	own to VSS		3
TC RCOMP	150 ohm +/-1% conne	cted between TC RCOMP P and	TC RCOMP N	4

- 1. Signals names apply for DDI A/B ports.
- Signals names apply for TCP ports.
 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented.
 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented.

- Table 47. HDMI* Signals TCPx_TX_P/N[0:1] and TCPx_TXRX_P/N[0:1] DDC DDC Hot Plua Detec DDSP_HPD_x DDIA_RCOMP
 - . Signal names apply for DDI A/B ports.
 - Signal names apply for TCP ports.

 Signal names apply for TCP ports.

 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any DDI implemented

 Provide good noise isolation, Platform Rdc<0.2 Ohm, require if any TCP implemented

<Title> Document Number Rev <RevCode>

VCCIN POWER CONVERSION PHASE I

VCCIN POWER CONVERSION PHASE II

VCCIN_AUX POWER CONVERSION PHASE I

3V3S\3V3A\VCCCST PWRGD

Config_0 Config_1 Config_2 Config_3 Module type and (Pin 21) (Pin 69) (Pin 75) (Pin 1) main host interface GND GND GND GND SSD-SATA GND NC GND GND SSD-PCIe NC GND GND GND WWAN-SSIC
NC NC NC NC NC No Module Present

Communication Equipment, Cellular Modem, 5G/LTE/HSPA+/WCDMA/GNSS, Global-Band, M.2 3052 (Key B), Sierra EM9191

+3.3V

+3.3V CARD_PWR_OFF#(1.8V/3.3V)

GPIO9/DAS/DSS#(3.3V)

GPIO5(1.8V)

22 GPIO6(1.8V)
GPIO7(1.8V)
GPIO7(1.8V)

26 GPIO7(1.8V)

28 GPIO7(1.8V)

GND USB D+

GND

CONFIG_0

GPIO_11(1.8V) DPR(1.8V)

-SM.2-B_USB2N_8

M2B_WAKE_ON_WAN#

NOP R21 8.25K,1%,0402

NOP

R497

1uF

NOP

Spacers for Key-B & Key-M Heatsink M3 Spacer SMT 2.5mm M3 Spacer SMT 2.5mm

Size Document Number	Re

M.2 M (SSD)

Document Number

Rev <RevCode>

Connect

Connect

Disconnect

SPI FLASH/TPM Document Numbe

L

Н

H

 $A_0 - A_4$

HIGH-Z State

HIGH-Z State

A₅-A₉

HIGH-Z State

Title

TRIP 1&2

Size | Document Number | Rev | < Rev

Figure 247. Premium PWROK Generation Flow Diagram

UN-IMPELEMNTED (VCCSTG CPU & VCCST CPU WERE MERGED TOGETHER):

Document Number

IN VOLUME: VccSTG gated by SLP S3#

IN Premium, VccSTG gated by {CPU_C10_GATE#}