臺灣大學數學系 104 學年度碩士班甄試試題

科目:高等微積分 2014.10.24

- 1. (10%) Determine whether $\int_0^\infty x^{-\frac{1}{3}} e^{-x} dx$ converges or not. Justify your answer.
- 2. (20% = 10% + 10%) For the following functions, determine whether they are uniformly continuous or not. Justify your answer.
 - (a) $f(x) = \log(2014 + x^{10})$ for $x \in \mathbb{R}$, where log is the natural logarithm function.
 - (b) For $(x, y) \in [-1, 1] \times [-1, 1]$,

$$g(x,y) = egin{cases} x \sin(rac{y}{x}) & ext{ when } x
eq 0 \ 0 & ext{ when } x = 0 \ . \end{cases}$$

- 3. (20% = 10% + 10%) For the following sequences of continuous functions on \mathbb{R}^1 , determine whether they have a *uniformly convergent* subsequence or not. Justify your answer.
 - (a) $f_n(x) = \exp(-(x-n)^2), n \in \mathbb{N}.$
 - (b) $g_n(x) = \sin(x-n), n \in \mathbb{N}.$
- 4. (20% = 10% + 10%) Consider the system of equations:

$$x + yu + z^{2} + x^{3} = 0$$
,
 $z + x^{2} + z^{2}u - y^{3} = 0$.

It is clear that x = y = z = u = 0 is a solution.

- (a) Near (0,0,0,0), can the system be solved for x,z as continuously differentiable functions of $y,u\in(-\varepsilon,\varepsilon)$ for some $\varepsilon>0$? Justify your answer.
- (b) Near (0,0,0,0), can the system be solved for y,u as continuously differentiable functions of $x,z\in(-\varepsilon,\varepsilon)$ for some $\varepsilon>0$? Justify your answer.
- 5. (20% = 10% + 10%) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence such that $\sum_{n=1}^{\infty} n|a_n|$ converges.
 - (a) Show that both $\sum_{n=1}^{\infty} a_n \sin(nx)$ and $\sum_{n=1}^{\infty} na_n \cos(nx)$ converges uniformly for all $x \in \mathbb{R}$.
 - (b) Let $f(x) = \sum_{n=1}^{\infty} a_n \sin(nx)$, and $g(x) = \sum_{n=1}^{\infty} na_n \cos(nx)$. Prove that the derivative of f(x) is g(x).
- 6. (10%) Let f(x, y, z) be a smooth function on \mathbb{R}^3 , and κ be a constant within (0,3). Prove that

$$(3-\kappa)\iiint_{|\mathbf{x}|\leq r} f^2 \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z \leq r \iiint_{|\mathbf{x}|=r} f^2 \,\mathrm{d}S + \frac{1}{\kappa} \iiint_{|\mathbf{x}|\leq r} |\mathbf{x}|^2 |\nabla f|^2 \,\mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z$$

for any r > 0. Here, $\mathbf{x} = (x, y, z)$ and ∇f is the gradient of f.

Hint: Apply the divergence theorem and the Cauchy-Schwarz inequality.