10/200125

SEQUENCE LISTING AP20 RESCREWING 12 MAY 2006

- <110> James, David Cooney, Gregory J Molero-Navajas, Juan C
- <120> Methods of validating target for modulating insulin action, screening for modulators of insulin action and therapeutic uses thereof
- <130> 42-000500US
- <150> AU 2003906286
- <151> 2003-11-14
- <150> PCT/AU2004/001572
- <151> 2004-11-15
- <150> AU 2003906285
- <151> 2003-11-14
- <160> 268
- <170> PatentIn version 3.3
- <210> 1
- <211> 153
- <212> PRT
- <213> Mus musculus
- <400>. 1
- Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Gly Ser 1 5 10 15
- Gly Gly Ser Gly Ala Gly Gly Leu Ile Gly Leu Met Lys Asp Ala Phe 20 25 30
- Gln Pro His His His His His Leu Ser Pro His Pro Pro Cys Thr 35 40 45
- Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp Lys Val 50 55 60
- Val Arg Leu Cys Gln Asn Pro Asn Val Ala Leu Lys Asn Ser Pro Pro 65 70 75 80
- Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg Thr Val 85 90 95

Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn Glu Tyr

100 105 110

Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln Thr Ile 115 120 125

Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn Ser Gln 130 135 140

Pro Arg Arg Asn Leu Thr Lys Leu Ser 145 150

<210> 2

<211> 896

<212> PRT

<213> Mus musculus

<400> 2

Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Gly Ser 1 5 10 15

Gly Gly Ser Gly Ala Gly Gly Leu Ile Gly Leu Met Lys Asp Ala Phe 20 25 30

Gln Pro His His His His His Leu Ser Pro His Pro Pro Cys Thr 35 40 45

Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp Lys Val 50 55 60

Val Arg Leu Cys Gln Asn Pro Asn Val Ala Leu Lys Asn Ser Pro Pro 65 70 75 80

Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg Thr Val 85 90 95

Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn Glu Tyr 100 105 110

Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln Thr Ile 115 120 125

Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn Ser Gln 130 135 140

Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Ile Cys Ala Glu Asn

Asp Lys Asp Val Lys Ile Glu Pro Cys Gly His Leu Met Cys Thr Ser Cys Leu Thr Ser Trp Gln Glu Ser Glu Gly Gln Gly Cys Pro Phe Cys Arg Cys Glu Ile Lys Gly Thr Glu Pro Ile Val Val Asp Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp Asp Ser Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg Pro Ser Ser Pro Phe Ser Met Ala Pro Gln Ala Ser Leu Pro Pro Val Pro Pro Arg Leu Asp Leu Leu Gln Gln Arg Ala Pro Val Pro Ala Ser Thr Ser Val Leu Gly Thr Ala Ser Lys Ala Ala Ser Gly Ser Leu His Lys Asp Lys Pro Leu Pro Ile Pro Pro Thr Leu Arg Asp Leu Pro Pro Pro Pro Pro Pro Asp Arg Pro Tyr Ser Val Gly Ala Glu Thr Arg Pro Gln Arg Arg Pro Leu Pro Cys Thr Pro Gly Asp Cys Pro Ser Arg Asp Lys Leu Pro Pro Val Pro Ser Ser Arg Pro Gly Asp Ser Trp Leu Ser Arg Thr Ile Pro Lys Val Pro Val Ala Thr Pro Asn Pro Gly Asp Pro Trp Asn Gly Arg Glu Leu Thr Asn Arg His Ser Leu Pro Phe Ser Leu Pro Ser Gln 595 600 605

Met Glu Pro Arg Ala Asp Val Pro Arg Leu Gly Ser Thr Phe Ser Leu Asp Thr Ser Met Thr Met Asn Ser Ser Pro Val Ala Gly Pro Glu Ser Glu His Pro Lys Ile Lys Pro Ser Ser Ser Ala Asn Ala Ile Tyr Ser Leu Ala Ala Arg Pro Leu Pro Met Pro Lys Leu Pro Pro Gly Glu Gln Gly Glu Ser Glu Glu Asp Thr Glu Tyr Met Thr Pro Thr Ser Arg Pro Val Gly Val Gln Lys Pro Glu Pro Lys Arg Pro Leu Glu Ala Thr Gln Ser Ser Arg Ala Cys Asp Cys Asp Gln Gln Ile Asp Ser Cys Thr Tyr Glu Ala Met Tyr Thr Ile Gln Ser Gln Ala Leu Ser Val Ala Glu Asn Ser Ala Ser Gly Glu Gly Asn Leu Ala Thr Ala His Thr Ser Thr Gly Pro Glu Glu Ser Glu Asn Glu Asp Asp Gly Tyr Asp Val Pro Lys Pro Pro Val Pro Ala Val Leu Ala Arg Arg Thr Leu Ser Asp Ile Ser Asn Ala Ser Ser Ser Phe Gly Trp Leu Ser Leu Asp Gly Asp Pro Thr Asn Phe Asn Glu Gly Ser Gln Val Pro Glu Arg Pro Pro Lys Pro Phe Pro Arg Arg Ile Asn Ser Glu Arg Lys Ala Ser Ser Tyr Gln Gln Gly Gly

Gly Ala Thr Ala Asn Pro Val Ala Thr Ala Pro Ser Pro Gln Leu Ser 835 840 845

Ser Glu Ile Glu Arg Leu Met Ser Gln Gly Tyr Ser Tyr Gln Asp Ile 850 855 860

Gln Lys Ala Leu Val Ile Ala His Asn Asn Ile Glu Met Ala Lys Asn 865 870 875 880

Ile Leu Arg Glu Phe Val Ser Ile Ser Ser Pro Ala His Val Ala Thr 885 890 895

<210> 3

<211> 906

<212> PRT

<213> Homo sapiens

<400> 3

Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Gly Thr Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Gly Gly Ser Gly Ser Gly Leu Ile Gly Leu Met Lys Asp Ala 20 25 30

Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro 35 40 45

Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp 50 . 55 60

Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser 65 70 75 80

Pro Pro Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg 85 90 95

Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn 100 105 110

Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln 115 120 125

Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Glu Gln Tyr

Glu Leu Tyr Cys Glu Met Gly Ser Thr Phe Gln Leu Cys Lys Ile Cys Ala Glu Asn Asp Lys Asp Val Lys Ile Glu Pro Cys Gly His Leu Met Cys Thr Ser Cys Leu Thr Ser Trp Gln Glu Ser Glu Gly Gln Gly Cys Pro Phe Cys Arg Cys Glu Ile Lys Gly Thr Glu Pro Ile Val Val Asp Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp Asp Thr Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg Pro Pro Ser Pro Phe Ser Met Ala Pro Gln Ala Ser Leu Pro Pro Val Pro Pro Arg Leu Asp Leu Leu Pro Gln Arg Val Cys Val Pro Ser Ser Ala Ser Ala Leu Gly Thr Ala Ser Lys Ala Ala Ser Gly Ser Leu His Lys Asp Lys Pro Leu Pro Val Pro Pro Thr Leu Arg Asp Leu Pro Pro Pro Pro Pro Pro Asp Arg Pro Tyr Ser Val Gly Ala Glu Ser Arg Pro Gln Arg Arg Pro Leu Pro Cys Thr Pro Gly Asp Cys Pro Ser Arg Asp Lys Leu Pro Pro Val Pro Ser Ser Arg Leu Gly Asp Ser Trp Leu Pro

Arg Pro Ile Pro Lys Val Pro Val Ser Ala Pro Ser Ser Ser Asp Pro Trp Thr Gly Arg Glu Leu Thr Asn Arg His Ser Leu Pro Phe Ser Leu Pro Ser Gln Met Glu Pro Arg Pro Asp Val Pro Arg Leu Gly Ser Thr Phe Ser Leu Asp Thr Ser Met Ser Met Asn Ser Ser Pro Leu Val Gly Pro Glu Cys Asp His Pro Lys Ile Lys Pro Ser Ser Ala Asn Ala Ile Tyr Ser Leu Ala Ala Arg Pro Leu Pro Val Pro Lys Leu Pro Pro Gly Glu Gln Cys Glu Gly Glu Glu Asp Thr Glu Tyr Met Thr Pro Ser Ser Arg Pro Leu Arg Pro Leu Asp Thr Ser Gln Ser Ser Arg Ala Cys Asp Cys Asp Gln Gln Ile Asp Ser Cys Thr Tyr Glu Ala Met Tyr Asn Ile Gln Ser Gln Ala Pro Ser Ile Thr Glu Ser Ser Thr Phe Gly Glu Gly Asn Leu Ala Ala Ala His Ala Asn Thr Gly Pro Glu Glu Ser Glu Asn Glu Asp Asp Gly Tyr Asp Val Pro Lys Pro Pro Val Pro Ala Val . 775 Leu Ala Arg Arg Thr Leu Ser Asp Ile Ser Asn Ala Ser Ser Ser Phe Gly Trp Leu Ser Leu Asp Gly Asp Pro Thr Thr Asn Val Thr Glu Gly

Ser Gln Val Pro Glu Arg Pro Pro Lys Pro Phe Pro Arg Arg Ile Asn 820 825 830

Ser Glu Arg Lys Ala Gly Ser Cys Gln Gln Gly Ser Gly Pro Ala Ala 835 840 845

Ser Ala Ala Thr Ala Ser Pro Gln Leu Ser Ser Glu Ile Glu Asn Leu 850 855 860

Met Ser Gln Gly Tyr Ser Tyr Gln Asp Ile Gln Lys Ala Leu Val Ile 865 870 875 880

Ala Gln Asn Asn Ile Glu Met Ala Lys Asn Ile Leu Arg Glu Phe Val 885 890 895

Ser Ile Ser Ser Pro Ala His Val Ala Thr 900 905

<210> 4

<211> 2483

<212> PRT

<213> homo sapiens

<400> 4

Met Val Leu Leu Cys Leu Ser Cys Leu Ile Phe Ser Cys Leu Thr 1 5 10 15

Phe Ser Trp Leu Lys Ile Trp Glu Lys Met Thr Asp Ser Lys Pro Ile 20 25 30

Thr Lys Ser Lys Ser Glu Ala Asn Leu Ile Pro Ser Gln Glu Pro Phe 35 40 45

Pro Ala Ser Asp Asn Ser Gly Glu Thr Pro Gln Arg Asn Gly Glu Gly 50 55 60

His Thr Leu His Lys Asp Thr Gln Pro Gly Arg Ala Gln Pro Pro Thr 65 70 . 75 80

Lys Ala Gln Arg Ser Gly Arg Arg Arg Asn Ser Leu Pro Pro Ser Arg 85 90 95

Gln Lys Pro Pro Arg Asn Pro Leu Ser Ser Ser Asp Ala Ala Pro Ser

Pro	Glu	Leu 115	Gln	Ala	Asn	Gly	Thr 120	Gly	Thr	Gln	Gly	Leu 125	Glu	Ala	Thr
Asp	Thr 130	Asn	Gly	Leu	Ser	Ser 135	Ser	Ala	Arg	Pro	Gln 140	Gly	Ser	Lys	Leu
Val 145	Pro	Ser	Lys	Glu	Asp 150	Lys	Lys	Gln	Ala	Asn 155	Ile	Lys	Arg	Gln	Leu 160
Met	Thr	Asn	Phe	Ile 165	Leu	Gly	Ser	Phe	Asp 170	Asp	Tyr	Ser	Ser	Asp 175	Glu
Asp	Ser	Val	Ala 180	Gly	Ser	Ser	Arg	Glu 185	Ser	Thr	Arg	Lys	Gly 190	Ser	Arg
Ala	Ser	Leu 195	Gly	Ala	Leu	Ser	Leu 200	Glu	Ala	Tyr	Leu	Thr 205	Thr	Gly	Glu
Ala	Glu 210	Thr	Arg	Val	Pro	Thr 215	Met	Arg	Pro	Ser	Met 220	Ser	Gly	Leu	His
Leu 225	Val	Lys	Arg	Gly	Arg 230	Glu	His	Lys	Lys	Leu 235	Asp	Leu	His	Arg	Asp 240
Phe	Thr	Val	Ala	Ser 245	Pro	Ala	Glu	Phe	Val 250	Thr	Arg	Phe	Gly	Gly 255	Asp
Arg	Val	Ile	Glu 260	Lys	Val	Leu	Ile	Ala 265	Asn	Asn	Gly	Ile	Ala 270	Ala	Val
Lys	Cys	Met 275	Arg	Ser	Ile	Arg	Arg 280	Trp	Ala	Tyr	Glu	Met 285	Phe	Arg	Asr
Glu	Arg 290	Ala	Ile	Arg	Phe	Val 295	Arg	Met	Val	Thr	Pro 300	Glu	Asp	Leu	Lys
Ala 305	Asn	Ala	Glu	Tyr	Ile 310	Lys	Met	Ala	Asp	His 315	Tyr	Gly	Pro	Ala	Pro 320
Gly	Gly	Pro	Asn	Asn 325	Asn	Asn	Tyr	Ala	Asn 330	Val	Glu	Leu	Ile	Val 335	Asp

- Ile Ala Lys Arg Ile Pro Leu Gln Ala Val Trp Ala Gly Trp Gly His 340 345 350
- Ala Leu Glu Asn Pro Lys Leu Pro Glu Leu Leu Cys Lys Asn Gly Val 355 360 365
- Ala Phe Leu Gly Pro Pro Arg Leu Arg Pro Met Val Gly Leu Gly Asp 370 375 380
- Lys Ile Ala Ser Thr Val Val Ala Gln Thr Leu Gln Val Pro Thr Leu 385 390 395 400
- Pro Arg Ser Gly Ser Ala Leu Thr Val Glu Trp Thr Glu Asp Asp Leu 405 410 415
- Gln Gln Gly Lys Arg Ile Ser Val Pro Glu Asp Val Tyr Asp Lys Gly
 420 425 430
- Cys Val Lys Asp Val Asp Glu Gly Leu Glu Ala Ala Glu Arg Ile Gly
 435 440 445
- Phe Pro Leu Met Ile Lys Ala Ser Glu Gly Gly Gly Lys Gly Ile 450 455 460
- Arg Glu Thr Glu Ser Ala Glu Asp Phe Pro Ile Leu Phe Arg Gln Val 465 470 475 480
- Gln Ser Glu Ile Pro Gly Ser Pro Ile Phe Leu Met Lys Leu Ala Gln 485 490 495
- His Ala Arg His Leu Glu Val Gln Ile Leu Ala Asp Gln Tyr Gly Asn 500 505 510
- Ala Val Ser Leu Phe Gly Arg Asp Cys Ser Ile Gln Arg Arg His Gln 515 520 525
- Lys Ile Val Glu Glu Ala Pro Ala Thr Ile Ala Pro Leu Ala Ile Phe 530 540
- Glu Phe Met Glu Gln Cys Ala Ile Arg Leu Ala Lys Thr Val Gly Tyr 545 550 555 560

Val Ser Ala Gly Thr Val Glu Tyr Leu Tyr Ser Gln Asp Gly Ser Phe 565 570 575

His Phe Leu Glu Leu Asn Pro Arg Leu Gln Val Glu His Pro Cys Thr 580 585 590

Glu Met Ile Ala Asp Val Asn Leu Pro Ala Ala Gln Leu Gln Ile Ala 595 600 605

Met Gly Ala Pro Leu His Arg Leu Lys Asp Ile Arg Leu Leu Tyr Gly 610 620

Glu Ser Pro Trp Gly Asp Ser Pro Ile Ser Phe Glu Asn Ser Ala His 625 630 635 640

Leu Pro Cys Pro Arg Gly His Val Ile Ala Thr Arg Ile Thr Ser Glu 645 650 655

Asn Pro Asp Glu Gly Phe Lys Pro Ser Ser Gly Thr Val Gln Glu Leu 660 665 670

Asn Phe Arg Ser Ser Lys Asn Val Trp Gly Tyr Phe Thr Val Ala Ala 675 680 685

Thr Gly Gly Leu His Glu Phe Ala Ile Ser Gln Phe Gly His Cys Phe 690 695 700

Ser Trp Gly Glu Asn Arg Lys Glu Ala Ile Ser Asn Met Val Val Ala 705 710 715 720

Leu Lys Glu Leu Ser Leu Arg Gly Asp Phe Arg Thr Thr Val Glu Tyr .725 730 735

Leu Ile Asn Leu Leu Glu Thr Glu Ser Phe Gln Asn Asn Tyr Ile Asp 740 745 750

Thr Gly Trp Leu Asp Tyr Leu Ile Ala Glu Lys Val Gln Lys Lys Pro
755 760 765

Asn Ile Met Leu Gly Val Val Cys Gly Ala Leu Glu Arg Gly Asp Ala 770 780

Met Phe Arg Thr Cys Met Thr Asp Phe Leu His Ser Leu Glu Arg Gly Gln Val Leu Pro Ala Asp Ser Leu Leu Asn Leu Val Asp Val Glu Leu Ile Tyr Glu Gly Val Lys Tyr Ile Leu Lys Val Thr Arg Gln Ser Leu Thr Met Phe Val Leu Ile Met Asn Gly Cys His Ile Glu Ile Asp Ala His Arg Leu Asn Asp Gly Gly Leu Leu Leu Ser Tyr Asn Gly Asn Ser Tyr Thr Thr Tyr Met Lys Glu Glu Val Asp Ser Tyr Arg Thr Ile Gly Asn Lys Thr Cys Val Phe Glu Lys Glu Asn Asp Pro Thr Val Leu Arg Ser Pro Ser Ala Gly Lys Leu Thr Gln Ile Thr Val Glu Asp Gly Gly His Val Glu Ala Gly Arg Arg Tyr Ala Glu Met Glu Val Met Lys Met Ile Met Thr Leu Asn Val Gln Glu Arg Gly Arg Val Lys Tyr Ile Lys Arg Pro Gly Ala Val Leu Glu Ala Gly Cys Val Val Ala Arg Leu Glu Leu Asp Asp Pro Ser Lys Val His Pro Ala Glu Pro Phe Thr Gly Glu Leu Pro Ala Gln Gln Asn Thr Ala Asp Leu Gly Lys Lys Leu His Arg Val Phe His Ser Val Leu Gly Ser Leu Thr Asn Val Met Ser Gly Phe

Cys Leu Pro Glu Pro Phe Phe Ser Ile Lys Leu Lys Glu Trp Val

1010 1015 1020

Gln	Lys 1025	Leu	Met	Met	Thr	Leu 1030	Arg	His	Pro	Ser	Leu 1035	Leu	Leu	Asp
Val	Gln 1040	Glu	Ile	Met		Ser 1045	Arg	Ala	Gly	Arg	Ile 1050	Pro	Pro	Pro
Val	Glu 1055	Lys	Ser	Val		Lys 1060	Val	Met	Ala	Gln	Tyr 1065	Ala	Ser	Asn
Ile	Thr 1070		Val	Leu		Gln 1075		Pro	Ser	Gln	Gln 1080		Ala	Thr
Ile	Leu 1085	Asp	Cys	His	Ala	Ala 1090		Leu	Gln	Arg	Lys 1095	Ala	Asp	Arg
Glu	Val 1100		Phe	Ile	Asn	Thr 1105	Gln	Ser	Met	Val	Gln 1110	Leu	Val	Gln
Arg	Tyr 1115		Ser	Gly	Ile	Arg 1120		His	Met	Lys	Thr 1125	Val	Val	Ile
Asp	Leu 1130		Arg	Arg	Tyr	Leu 1135		Val	Glu	Thr	Ile 1140		Gly	Lys
Ala	Arg 1145		Ala	Asp	Ala	Asn 1150		Ser	Gly	Met	Val 1155	Gly	Gly	Val
Arg	Ser 1160	Leu	Ser	Phe	Thr	Ser 1165	Val	Trp	Val	Val	Leu 1170	Ser	Pro	Pro
Ala	His 1175		Asp	Lys	Cys	Val 1180		Asn	Leu	Arg	Glu 1185		Phe	Lys
Pro	Asp 1190		Ser	Gln	Val	Leu 1195	Asp	Cys	Ile	Phe	Ser 1200	His	Ala	Gln
Val	Thr 1205		Lys	Asn	Gln	Leu 1210	Val	Ile	Met	Leu	Ile 1215		Glu	Leu
Cys	Gly 1220		Asp	Pro	Ser	Leu 1225		Asp	Glu	Leu	Ile 1230		Ile	Leu

Asn Glu Leu Thr Gln Leu Ser Lys Ser Glu His Cys Lys Val Ala 1235 1240 1245

Leu Arg Ala Arg Gln Ile Leu Ile Ala Ser Pro Ser Tyr Glu Leu 1250 1255 1260

Arg His Asn Gln Val Glu Ser Ile Phe Leu Ser Ala Ile Asp Met 1265 1270 1275

Tyr Gly His Gln Phe Cys Pro Glu Asn Leu Gln Lys Leu Ile Leu 1280 1285 1290

Ser Glu Thr Thr Ile Phe Asp Val Leu Asn Thr Phe Phe Tyr His 1295 1300 1305

Ala Asn Lys Val Val Cys Met Ala Ser Leu Glu Val Tyr Val Gly 1310 1315 1320

Gly Ala Tyr Ile Ala Tyr Val Leu Asn Ser Leu Gln His Arg Gln 1325 1330 1335

Leu Pro Asp Gly Thr Cys Val Val Glu Phe Gln Phe Met Leu Pro 1340 1345 1350

Ser Ser His Pro Asn Arg Met Thr Val Pro Ile Ser Ile Thr Asn 1355 1360 1365

Pro Asp Leu Leu Arg His Thr Thr Glu Leu Phe Met Asp Ser Gly 1370 1375 1380

Phe Ser Pro Leu Cys Gln Arg Met Gly Ala Met Val Ala Phe Arg 1385 1390 1395

Arg Phe Glu Asp Phe Thr Arg Asn Phe Asp Glu Val Ile Ser Cys 1400 1405 1410

Phe Ala Asn Val Pro Lys Asp Pro Pro Leu Phe Ser Glu Ala Arg 1415 1420 1425

Thr Ser Leu Tyr Ser Glu Asp Asp Cys Lys Ser Leu Arg Glu Glu 1430 1440

- Pro Ile His Ile Leu Asn Val Ser Ile Gln Cys Ala Asp His Leu 1445 1450 1455
- Glu Asp Glu Ala Leu Val Pro $\,$ Ile Leu Arg Thr Phe $\,$ Val Gln Ser $\,$ 1460 $\,$ 1465 $\,$ 1470
- Lys Lys Asn Ile Leu Val Asp Tyr Gly Leu Arg Arg Ile Pro Phe 1475 1480 1485
- Leu Ile Ala Gln Glu Lys Glu Phe Pro Lys Phe Phe Thr Phe Arg 1490 1495 1500
- Ala Arg Asp Glu Phe Ala Glu Asp Arg Ile Tyr Arg His Leu Glu 1505 1510 1515
- Pro Ala Leu Ala Phe Gln Leu Glu Leu Asn Arg Met Arg Asn Phe 1520 1530
- Asp Leu Thr Ala Val Pro Cys Ala Asn His Lys Met His Leu Tyr 1535 1540 1545
- Leu Gly Ala Ala Lys Val Glu Gly Arg Tyr Glu Val Thr Asp His 1550 1560
- Arg Phe Phe Ile Arg Ala Ile Ile Arg His Ser Asp Leu Ile Thr 1565 1570 1575
- Lys Glu Ala Ser Phe Glu Tyr Leu Gln Asn Glu Gly Glu Arg Leu 1580 1585 1590
- Leu Leu Glu Ala Met Asp Glu Leu Glu Val Ala Phe Asn Asn Thr 1595 1600 1605
- Asn Val Arg Thr Asp Cys Asn His Ile Phe Leu Asn Phe Val Pro 1610 1615 1620
- Thr Val Ile Met Asp Pro Asn Lys Ile Glu Glu Ser Val Arg Tyr 1625 1630 1635
- Met Val Met Arg Tyr Gly Ser Arg Leu Trp Lys Leu Arg Val Leu 1640 1645 1650

- Gln Ala Glu Val Lys Ile Asn Ile Arg Gln Thr Thr Thr Gly Ser 1655 1660 1665
- Ala Val· Pro Ile Arg Leu Phe Ile Thr Asn Glu Ser Gly Tyr Tyr 1670 1680
- Leu Asp Ile Ser Leu Tyr Lys Glu Val Thr Asp Ser Arg Ser Gly 1685 1690 1695
- Asn Ile Met Phe His Ser Phe Gly Asn Lys Gln Gly Pro Gln His 1700 1705 1710
- Gly Met Leu Ile Asn Thr Pro Tyr Val Thr Lys Asp Leu Leu Gln 1715 1720 1725
- Ala Lys Arg Phe Gln Ala Gln Thr Leu Gly Thr Thr Tyr Ile Tyr 1730 1735 1740
- Asp Phe Pro Glu Met Phe Arg Gln Ala Leu Phe Lys Leu Trp Gly 1745 1750 1755
- Ser Pro Asp Lys Tyr Pro Lys Asp Ile Leu Thr Tyr Thr Glu Leu 1760 1765 1770
- Val Leu Asp Ser Gln Gly Gln Leu Val Glu Met Asn Arg Leu Pro 1775 1780 1785
- Gly Gly Asn Glu Val Gly Met Val Ala Phe Lys Met Arg Phe Lys 1790 1795 1800
- Thr Gln Glu Tyr Pro Glu Gly Arg Asp Val Ile Val Ile Gly Asn 1805 1810 1815
- Asp Ile Thr Phe Arg Ile Gly Ser Phe Gly Pro Gly Glu Asp Leu 1820 1825 1830
- Leu Tyr Leu Arg Ala Ser Glu Met Ala Arg Ala Glu Ala Ile Pro 1835 1840 1845
- Lys Ile Tyr Val Ala Ala Asn Ser Gly Ala Arg Ile Gly Met Ala 1850 1855 1860
- Glu Glu Ile Lys His Met Phe His Val Ala Trp Val Asp Pro Glu

1865 1870 1875

Asp	Pro 1880	His	Lys	Gly	Phe	Lys 1885	Tyr	Leu	Tyr	Leu	Thr 1890	Pro	Gln	Asp
Tyr	Thr 1895	_	Ile	Ser	Ser	Leu 1900	Asn	Ser	Val	His	Cys 1905	Lys	His	Ile
Glu	Glu 1910	Gly	Gly	Glu	Ser	Arg 1915		Met	Ile	Thr	Asp 1920	Ile	Ile	Gly
Lys	Asp 1925	Asp	Gly	Leu	Gly	Val 1930	Glu	Asn	Leu	Arg	Gly 1935	Ser	Gly	Met
Ile	Ala 1940	Gly	Glu	Ser	Ser	Leu 1945	Ala	Tyr	Glu	Glu	Ile 1950	Val	Thr	Ile
Ser	Leu 1955	Val	Thr	Cys		Ala 1960		Gly	Ile		Ala ,1965	Tyr	Leu	Val
Arg	Leu 1970	Gly	Gln	Arg	Val	Ile 1975		Val	Glu		Ser 1980	His	Ile	Ile
Leu	Thr 1985	Gly	Ala	Ser	Ala	Leu 1990		Lys	Val	Leu	Gly 1995	Arg	Glu	Val
Tyr	Thr 2000	Ser	Asn	Asn	Gln	Leu 2005	Gly	Gly	Val	Gln	Ile 2010	Met	His	Tyr
Asn	Gly 2015	Val	Ser	His	Ile	Thr 2020	Val	Pro	Asp	Asp	Phe 2025	Glu	Gly	Val
Tyr	Thr 2030	Ile	Leu	Glu	Trp	Leu 2035	Ser	Tyr.	Met	Pro	Lys 2040	Asp	Asn	His
Ser	Pro 2045	Val	Pro	Ile	Ile	Thr 2050	Pro	Thr	Asp	Pro	Ile 2055	Asp	Arg	Glu
Ile	Glu 2060	Phe	Leu	Pro	Ser	Arg 2065	Ala	Pro	Tyr	Asp	Pro 2070	Arg	Trp	Met
Leu	Ala 2075	Gly	Arg	Pro	His	Pro 2080	Thr	Leu	Lys	Gly	Thr 2085	Trp	Gln	Ser

- Gly Phe Phe Asp His Gly Ser Phe Lys Glu Ile Met Ala Pro Trp 2090 2095 2100
- Ala Gln Thr Val Val Thr Gly Arg Ala Arg Leu Gly Gly Ile Pro 2105 2110 2115
- Val Gly Val Ile Ala Val Glu Thr Arg Thr Val Glu Val Ala Val 2120 2125 2130
- Pro Ala Asp Pro Ala Asn Leu Asp Ser Glu Ala Lys Ile Ile Gln 2135 2140 2145
- Gln Ala Gly Gln Val Trp Phe Pro Asp Ser Ala Tyr Lys Thr Ala 2150 2155 2160
- Gln Ala Ile Lys Asp Phe Asn Arg Glu Lys Leu Pro Leu Met Ile 2165 2170 2175
- Phe Ala Asn Trp Arg Gly Phe Ser Gly Gly Met Lys Asp Met Tyr 2180 2185 2190
- Asp Gln Val Leu Lys Phe Gly Ala Tyr Ile Val Asp Gly Leu Arg 2195 2200 2205
- Leu Arg Gly Gly Ser Trp Val Val Ile Asp Ala Thr Ile Asn Pro 2225 2230 2235
- Leu Cys Ile Glu Met Tyr Ala Asp Lys Glu Ser Arg Gly Gly Val 2240 2245 2250
- Leu Glu Pro Glu Gly Thr Val Glu Ile Lys Phe Arg Lys Glu Asp 2255 2260 2265
- Leu Ile Lys Ser Met Arg Arg Ile Asp Pro Ala Tyr Lys Lys Leu 2270 2275 2280
- Met Glu Gln Leu Gly Glu Pro Asp Leu Ser Asp Lys Asp Arg Lys 2285 2290 2295

Asp Leu Glu Gly Arg Leu Lys Ala Arg Glu Asp Leu Leu Pro 2300 2305 2310

Ile Tyr His Gln Val Ala Val Gln Phe Ala Asp Phe His Asp Thr 2315 2320 2325

Pro Gly Arg Met Leu Glu Lys Gly Val Ile Ser Asp Ile Leu Glu 2330 2335 2340

Trp Lys Thr Ala Arg Thr Phe Leu Tyr Trp Arg Leu Arg Arg Leu 2345 2350 2355

Leu Leu Glu Asp Gln Val Lys Gln Glu Ile Leu Gln Ala Ser Gly 2360 2365 2370

Glu Leu Ser His Val His Ile Gln Ser Met Leu Arg Arg Trp Phe 2375 2380 2385

Val Glu Thr Glu Gly Ala Val Lys Ala Tyr Leu Trp Asp Asn Asn 2390 2395 2400

Gln Val Val Gln Trp Leu Glu Gln His Trp Gln Ala Gly Asp 2405 2410 2415

Gly Pro Arg Ser Thr Ile Arg Glu Asn Ile Thr Tyr Leu Lys His 2420 2425 2430

Asp Ser Val Leu Lys Thr Ile Arg Gly Leu Val Glu Glu Asn Pro 2435 2440 2445

Glu Val Ala Val Asp Cys Val Ile Tyr Leu Ser Gln His Ile Ser 2450 2455 2460

Pro Ala Glu Arg Ala Gln Val Val His Leu Leu Ser Thr Met Asp 2465 2470 2475

Ser Pro Ala Ser Thr 2480

<210> 5

<211> 552

<212> PRT

<213> homo sapiens

Met Ala Glu Lys Gln Lys His Asp Gly Arg Val Lys Ile Gly His Tyr 1 5 10 15

Val Leu Gly Asp Thr Leu Gly Val Gly Thr Phe Gly Lys Val Lys Ile
20 25 30

Gly Glu His Gln Leu Thr Gly His Lys Val Ala Val Lys Ile Leu Asn 35 40 . 45

Arg Gln Lys Ile Arg Ser Leu Asp Val Val Gly Lys Ile Lys Arg Glu 50 55 60

Ile Gln Asn Leu Lys Leu Phe Arg His Pro His Ile Ile Lys Leu Tyr 65 70 75 80

Gln Val Ile Ser Thr Pro Thr Asp Phe Phe Met Val Met Glu Tyr Val 85 90 95

Ser Gly Glu Leu Phe Asp Tyr Ile Cys Lys His Gly Arg Val Glu 100 105 110

Glu Met Glu Ala Arg Arg Leu Phe Gln Gln Ile Leu Ser Ala Val Asp 115 120 125

Tyr Cys His Arg His Met Val Val His Arg Asp Leu Lys Pro Glu Asn 130 135 140

Val Leu Leu Asp Ala His Met Asn Ala Lys Ile Ala Asp Phe Gly Leu 145 150 155 160

Ser Asn Met Met Ser Asp Gly Glu Phe Leu Arg Thr Ser Cys Gly Ser 165 170 175

Pro Asn Tyr Ala Ala Pro Glu Val Ile Ser Gly Arg Leu Tyr Ala Gly
. 180 185 190

Pro Glu Val Asp.Ile Trp Ser Cys Gly Val Ile Leu Tyr Ala Leu Leu 195 200 205

Cys Gly Thr Leu Pro Phe Asp Asp Glu His Val Pro Thr Leu Phe Lys 210 215 220

Lys 225	Ile	Arg	Gly	Gly	Val 230	Phe	Tyr	Ile	Pro	Glu 235	Tyr	Leu	Asn	Arg	Ser 240
Val	Ala	Thr	Leu	Leu 245	Met	His	Met	Leu	Gln 250	Val	Asp	Pro	Leu	Lys 255	Arg
Ala	Thr	Ile	Lys 260	Asp	Ile	Arg	Glu	His 265	Glu	Trp	Phe	Lys	Gln 270	Asp	Leu
Pro	Ser	Туг 275	Leu	Phe	Pro	Glu	Asp 280	Pro	Ser	Tyr	Asp	Ala 285	Asn	Val	Ile
Asp	Asp 290	Glu	Ala	Val	Lys	Glu 295	Val	Суѕ	Glu	Lys	Phe 300	Glu	Cys	Thr	Glu
305					Ser 310					315					320
				325					330					335	Gln
			340		•			345					350		Met
_		355					360					365			Glu
	370					375					380				Leu
385					390					395					Ala 400
				405	Ile				410					415	
		•	420			•		425					430		Val
Val	Asn	Ala 435		His	Leu	Arg	Val 440	Arg	Arg	Lys	Asn	Pro 445	Val	Thr	Gly

Asn Tyr Val Lys Met Ser Leu Gln Leu Tyr Leu Val Asp Asn Arg Ser 455 450 Tyr Leu Leu Asp Phe Lys Ser Ile Asp Asp Glu Val Val Glu Gln Arg 475 470 465 Ser Gly Ser Ser Thr Pro Gln Arg Ser Cys Ser Ala Ala Gly Leu His 490 485 Arg Pro Arg Ser Ser Phe Asp Ser Thr Thr Ala Glu Ser His Ser Leu 500 505 Ser Gly Ser Leu Thr Gly Ser Leu Thr Gly Ser Thr Leu Ser Ser Val 515 520 Ser Pro Arg Leu Gly Ser His Thr Met Asp Phe Phe Glu Met Cys Ala 535 Ser Leu Ile Thr Thr Leu Ala Arg 545 550 <210> 6 <211> 21 <212> DNA <213> Artificial <220> <223> siRNA sense strand oligonucleotide <400> 6 21 cgtgaagaag agctctgggt t <210> 7 <211> 21 <212> DNA <213> Artificial <220> <223> siRNA sense strand oligonucleotide <400> 7 21 gaagatggtg gagaagtgct t <210> 8 <211> 21

<212> DNA

<213> Artificial

<220> <223>	siRNA sense strand oligonucleotide	
<400> gatggt	8 ggag aagtgctggt t	21
	9 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> gtgctg	9 gaag ctcatggact t	21
<210><211><211><212><213>	10 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> gctcate	10 ggac aaggtggtgt t	21
<210><211><211><212><213>		
<220> <223>	siRNA sense strand oligonucleotide	
<400> ggtggt	11 gcgg ttgtgtcagt t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> cccaaa	12 gctg gcgctaaagt t	21

<210> 13

<211> <212> <213>	21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
	13 gctg gcgctaaagt t	21 .
<212>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> agctgg	14 cgct aaagaatagt t	21
<220> <223>	siRNA sense strand oligonucleotide	
<400> agaata	15 gccc accttatatt t	21
<210><211><212><213>	16 21 DNA Artificial	
<220>		
<400> tagccc	16 acct tatatcttat t	21
<210><211><212><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
	17 aggg gaagatggat t	21

.

.

```
<210> 18
 <211>
       21
 <212> DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
 <400> 18
                                                                       21
 gatggagaca cttggagaat t
 <210> 19
 <211>
        21
 <212> DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
 <400> 19
                                                                       21
 ctaagcaaac cataagcctt t
 <210>
        20
 <211>
        21
 <212> DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
 <400> 20
                                                                       21
 gcaaaccata agcctcttct t
 <210> 21
 <211> 21
 <212>
       DNA
 <213> Artificial
· <220>
 <223> siRNA sense strand oligonucleotide
 <400> 21
                                                                       21
 accataagcc tcttcaaggt t
 <210> 22
 <211> 21
 <212> DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
```

<400>	22	
gcctct	ccaa ggagggaaat t	21
010		
<210>		
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
~2237	SIMMA Selise Straing Origonacteotrae	
<400>	23	
	atgt atgaggagat t	21
gaaaga		
<210>	24	
<211>		
<212>		
<213>	Artificial	
<220>	·	
<223>	siRNA sense strand oligonucleotide	
<400>	24	
agaatg	tatg aggagaattt t	21
<210>	25	
<211>	21	
<212> <213>	DNA Artificial	
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
1223	Dillin bondo bondin Ollgentolere	
<400>	25	
	agga gaattctcat t	21
5 5		
<210>	26	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	26	21
ttctca	gcct aggcgaaact t	21
J210-	27	
<210><211>	27	
<211> <212>	21 DNA	
~414/	אווע	

<213> Artificial

<220> <223>	siRNA sense strand oligonucleotide	
	27 ccaa actgtccctt t	21
<211> <212>	21	
<220> <223>	siRNA sense strand oligonucleotide	
	28 Egtc cctcatcttt t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> actgtco	29 cete atetteaget t	21
<210><211><211><212><213>	21	
<220> . <223>	siRNA sense strand oligonucleotide	
<400> ggaatct	30 . tttc caagtggact t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> tctttcc	31 caag tggactcttt t	21

<210> 32

<211> <212> <213>	21 DNA Artificial	
<220>		
	siRNA sense strand oligonucleotide	·
<400> gtggac	32 tctt tcagggagat t	21
<210><211><211><212><213>	33 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> agcaga	33 tgct gcggaatttt t	21
	34 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> gacaat	34 agtc ccttggaagt t	21
<210><211><211><212><213>	35 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> tagtcc	35 cttg gaagagcttt t	21
<210><211><211><212><213>		
<220> <223>	siRNA sense strand oligonucleotide	
<400>	36 tcga caggetetat t	21

•

```
<210> 37
      21
<211>
<212>
      DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 37
                                                                     21
gtgcatccca tcagttctgt t
<210>
      38
<211>
      21
<212>
      DNA
<213> Artificial
<220>
<223>
     siRNA sense strand oligonucleotide
<400> 38
                                                                     21
atccactatt gatctgacct t
<210> 39
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 39
                                                                     21
tttgacatct ttacccgact t
<210> 40
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 40
                                                                     21
ttggaacagc cttgctgtat t
<210> 41
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
```

<400> cagcctt	41 cgct gtaactcatt t	21
010	40	
<210>		
<211>	21	
<212>	Artificial	
<213>	Artificial	
<220>		
	siRNA sense strand oligonucleotide	
1220		
<400>	42	
	ctgg ctacatggct t	21
	,	
<210>	43	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	42	
	43 gete ggetecagat t	21
gryaaa	gete gyeteeagat t	
<210>	44	
<211>	21	
<212>		
	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	44	21
agctcg	gctc cagaaattct t	21
.010.	45	
<210>	45	
<211> <212>	21	
	DNA Artificial	
<213>	Aftilitial	
<220>		
<223>	siRNA sense strand oligonucleotide	
12237	Diana Bonbe Borana Orrgonacroscor	
<400>	45	
attcat	tcac aaacctggct t	21
<210>	46	
<211>	21	
<212>	DNA	
<213>	Artificial	

<220> <223>	siRNA sense strand oligonucleotide	
<400> acctggd	46 cagt tatatettet t	21
<210> <211> <212>	DNA	
<213> <220>	Artificial	
	siRNA sense strand oligonucleotide	
	47 ccag acaatccctt t	21
<210>	48 '	
<211> <211> <212>	21	
	Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400>	48	0.1
tccctca	acaa taaacctctt t	21
<210>		
<211> <212>	21 DNA	
<213>	Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400>		21
caaacc	toto ttocaagoat t	<i>-</i> 1
<210> <211>		
<212> <213>	DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	•
<400>	50 cttc caagcactgt t	21

<210> 51

<211> <212> <213>	21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> gcactga	51 attg atggcttcat t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ggcttc	52 tatt tgtttcctgt t	21
<210><211><212><212><213>	21	
-2205		
<220> <223>	siRNA sense strand oligonucleotide	
	53	21
atcaga	atcc tgatctgact t	21
<210><211><211><212><213>	21	
<220>		
	siRNA sense strand oligonucleotide	
<400> tcctga	54 totg actggottat t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ccaact	55 cccc aagaccatat t	21

٠

.

```
<210> 56
      21
<211>
<212>
      DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 56
                                                                     21
ctccccaaga ccatatcaat t
<210> 57
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 57
                                                                     21
gaccatatca aagtgaccct t
<210>
      58
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 58
                                                                      21
agtgacccag gaacaatatt t
<210> 59
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 59
                                                                      21
caatatgaat tatactgtgt t
<210> 60
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
```

<400> tatgaat	60 tat actgtgagat t	21
-010-	C1	
	61 21	
<211>		
	Artificial	
-2	······································	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	61	0.1
ttatactgtg agatgggctt t 21		
<210>	62	
<211>	21	
<212>		
	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	62	21
tgataag	ggat gtaaagattt t	21
<210>	63	
<211>		
<212>		
	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	63	21
ggatgtaaag attgagccct t		
<210>	64	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
.400.		
<400>	64	21
agattgagcc ctgtggacat t		
<210>	65	
<211>	21	
<212>	DNA	
<213>	Artificial	

<220> <223>	siRNA sense strand oligonucleotide	
<400> tcagaag	65 ggtc agggctgtct t	21
<210> <211> <212> <213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ggtcagg	66 ggct gtcctttctt t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> attaaag	67 ggta ctgaacccat t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
	68 tgaa cccatcgtgt t	21
<210><211><211><212><213>	69 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> cccatc	69 gtgg tagatccgtt t	21

<211> <212> <213>	21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> attatg	70 atga tgatgatgat t	21
<210><211><212><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> cgagct	71 gatg atactctctt t	21
<210><211><211><212><213>	21 DNA	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ggaatt	72 ggct ggtgccaagt t	21
<211> <212>	73 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ttggct	73 ggtg ccaaggtggt t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400>	74 geett etecattett t	21

```
<210> 75
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 75
                                                                     21
gtgcttctgc tcttggaact t
<210> 76
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 76
                                                                     21
ctgcttctaa ggctgcttct t
<210> 77
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 77
                                                                     21
ggctgcttct ggctcccttt t
<210> 78
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 78
                                                                     21
agacaaacca ttgccagtat t
<210> 79
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
```

<400> accatt	79 gcca gtacctccct t	21
<210><211><211><212><213>		
<220> <223>	siRNA sense strand oligonucleotide	
<400> tcccga	80 cctc aaagacgcct t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> agacgc	81 ccct tgccttgtat t	21
<210><211><211><212><213>	21	
<220>	siRNA sense strand oligonucleotide	
	82 aagt accagtatct t	21
<210><211><211><212><213>	DNA	
<220> <223>	siRNA sense strand oligonucleotide	
<400> agtacc	83 agta tetgececat t	21
<210><211><211><212><213>	84 21 DNA Artificial	

<220> <223>	siRNA sense strand oligonucleotide	
<400> gttccag	84 gtga tccctggact t	21
<210><211><212><212><213>	85 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> gagaatt	85 taac caaccggcat t	21
<210><211><211><212><213>	86 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ttaacca	86 macc ggcactcact t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ccaacc	87 ggca ctcacttcct t	21
<210><211><211><212><213>	88 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ccggca	88 ctca cttccatttt t	21

<211> <212> <213>	21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> atggage	89 ccca gaccagatgt t	21
	90 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> gcacgt	90 tcag tctggatact t	21
<220> <223>	siRNA sense strand oligonucleotide	
<400> tagcag	91 ccca ttagtaggtt t	21
<210><211><211><212><213>	92 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> tcaaac	92 cttc ctcatctgct t	21
<210><211><212><212><213>	21	·
<220> <223>	siRNA sense strand oligonucleotide	
<400> accttc	93 ctca tctgccaatt t	21

```
<210> 94
<211>
      21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 94
                                                                     21
tgccatttat tctctggctt t
<210> 95
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 95
                                                                   . 21
ctgccacctg gggagcaatt t
<210> 96
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 96
                                                                     21
tgtgagggtg aagaggacat t
<210> 97
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
<400> 97
                                                                     21
gaggacacag agtacatgat t
<210>
      98
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA sense strand oligonucleotide
```

	98 uta atattcagtt t	21
<211> 2 <212> D	99 21 ONA Artificial	
<220> <223> s	siRNA sense strand oligonucleotide	
	eat tcagtcccat t	21
<211> 2 <212> D	000 21 DNA Artificial	
<220> <223> s	siRNA sense strand oligonucleotide	
	100 ccc caggegeeat t	21
<211> 2 <212> D	101 21 ONA Artificial	
<220> <223> s	siRNA sense strand oligonucleotide	
	L01 .ccc gaggagtcat t	21
<211> 2 <212> D	102 21 DNA Artificial	
<220> <223> s	siRNA sense strand oligonucleotide	
	102 gat gggtatgatt t	21
<211> 2 <212> D	103 21 DNA Artificial	

<220> <223>	siRNA sense strand oligonucleotide	
<400> ctctctc	103 caga tatctctaat t	21
<210><211><211><212><213>		
<220> <223>		
<400> tgccage	104 ctcc tcctttggct t	21
	105 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> caaatg	105 tcac tgaaggttct t	21
<210><211><211><212><213>	106 21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400> atgtca	106 ctga aggttcccat t	21
<210><211><212><212><213>	21	
<220> <223>	siRNA sense strand oligonucleotide	
<400> ggttcc	107 caag ttcccgagat t	21

<211> <212> <213>	21 DNA Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400>	108	
gttcccq	gaga ggcctccaat t	21
<210> <211>		
<212>	DNA	
	Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400>	109	21
ccattco	ccgc ggagaatcat t	21
<210>	110	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>	1	
<223>	siRNA sense strand oligonucleotide	
<400>	110	21
tcaact	ctga acggaaagct t	21
<210>	111	
<211>	21	
<212>	DNA	•
<213>	Artificial	
<220>	siRNA sense strand oligonucleotide	
<400>		21
ctctgaacgg aaagctggct t 21		
<210>	112	
<211>		
<212>		
	Artificial	
<220> <223>	siRNA sense strand oligonucleotide	
<400>	112	
	gctg gcagctgtct t	21

```
<210> 113
 <211>
       21
 <212>
       DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
 <400> 113
                                                                      21
 agctggcagc tgtcagcaat t
 <210> 114
 <211>
        21
 <212>
       DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
 <400> 114
                                                                       21
 cctcatgagt caggggtact t
 <210> 115
 <211>
       21
 <212>
       DNA
 <213> Artificial
 <220>
 <223> siRNA sense strand oligonucleotide
 <400> 115
                                                                       21
 agctttggtc attgcccagt t
 <210>
       116
 <211>
        21
 <212>
       DNA
 <213> Artificial
 <220>
 <223>
        siRNA sense strand oligonucleotide
 <400> 116
                                                                       21
 caacatcgag atggccaaat t
 <210> 117
 <211>
        21
 <212>
       DNA
 <213> Artificial
· <220>
 <223> siRNA sense strand oligonucleotide
```

<400> acatcct	117 cccg ggaatttgtt t	21
<210>	118	
<211>	21	
	DNA	
	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	118	
tttgttt	cca tttcttctct t	21
<210>	119	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	119	
	ccta gaagggcagt t	21
<210>	120	
<211> <212>	21	
<213>		
<220> <223>	siRNA sense strand oligonucleotide	
<400>	120	21
gggcagg	gagt tcctttggtt t	21
<210>	121	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA sense strand oligonucleotide	
<400>	121	
gtcttg	cct ctctgtgggt t	21
-01 O:	122	
<210> <211>	122	
<211> <212>	21 DNA	
	Artificial	

<220> <223>	siRNA sense strand oligonucleotide	
	122 naag tggtgaaatt t	21
<210> <211>		
<212>		
<220> <223>	siRNA sense strand oligonucleotide	
<400>		21
<210><211><211><212><213>	21	
<220>	ALCILICIAL	
	siRNA antisense strand oligonucleotide	
<400> cccagag	124 gctc ttcttcacgt t	21
	125	
<211> <212>	DNA	
	Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> gcactto	125 etcc accatettet t	21
<210>	126	
<211> <212>	21 DNA	
<213>	Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400>	126	
	cttc tccaccatct t	21
-		

	21 DNA Artificial	
\213/	ALCITICIAL	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	127	21
grecare	gage ttecageact t	21
<210>		
<211>	21	
<212>		
<213>	Artificial	ų
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	128	
	cttg tccatgagct t	21
<210>	129	
<211>		
	DNA	
<213>	Artificial	
.000-		
<220>	siRNA antisense strand oligonucleotide	
12257	bitan andibono borana orrgonabrotat	
<400>	129	
ctgaca	caac cgcaccacct t	21
<210>	130	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		•
	siRNA antisense strand oligonucleotide	
<400>		21
ctttage	cgcc agctttgggt t	21
<210>	131	
<211>	21	
<212>	DNA Artificial	
~4137	VICITICIAL	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	131	
	egec agetttgggt t	21

```
<210> 132
<211>
       21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 132
                                                                       21
ctattcttta gcgccagctt t
<210>
      133
<211>
       21
<212>
       DNA
<213>
      Artificial
<220>
<223>
      siRNA antisense strand oligonucleotide
<400> 133
                                                                     . 21
atataaggtg ggctattctt t
<210>
      134
<211>
       21
<212>
      DNA
<213> Artificial
<220>
      siRNA antisense strand oligonucleotide
<223>
<400> 134
                                                                       21
taagatataa ggtgggctat t
<210> 135
<211>
       21
<212>
       DNA
<213> Artificial
<220>
      siRNA antisense strand oligonucleotide
<223>
<400> 135
                                                                       21
tccatcttcc cctcatatct t
<210> 136
<211>
       21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
```

<400> ttctcc	136 aagt gtctccatct t	21
<210> <211> ,<212> <213>	21	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> aggctt	137 atgg tttgcttagt t	21
<210><211><211><212><213>	21	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> gaagag	138 gctt atggtttgct t	21
<210><211><212><213>	21	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> ccttga	139 agag gcttatggtt t	21
<210><211><211><212><213>	21 DNA	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> tttccc	140 tcct tgaagaggct t	21
<210><211><212><212><213>	21	

<220> <223>	siRNA antisense strand oligonucleotide	
<400> tctcctc	141 cata cattettet t	21
<210><211><211><212>	DNA	
<220>	Artificial siRNA antisense strand oligonucleotide	
<400>	142 cctc atacattctt t	21
	143 21 DNA Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> tgagaa	143 ttct cctcatacat t	21
<210><211><211><212><213>	144 21 DNA Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> gtttcg	144 ccta ggctgagaat t	21
<210><211><212><213>	145 21 DNA Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> agggac	145 agtt tggttaggtt t	21
<210>	146	

```
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 146
                                                                     21
aagatgaggg acagtttggt t
<210> 147
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 147
                                                                     21
gctgaagatg agggacagtt t
<210> 148
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 148
                                                                     21
gtccacttgg aaagattcct t
<210> 149
<211> 21
<212> DNA
<213> Artificial
<223> siRNA antisense strand oligonucleotide
<400> 149
                                                                     21
aagagtccac ttggaaagat t
<210> 150
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 150
                                                                     21
tctccctgaa agagtccact t
```

```
<210> 151
       21
 <211>
 <212>
       DNA
 <213> Artificial
 <220>
 <223> siRNA antisense strand oligonucleotide
 <400> 151
                                                                      21
 aaattccgca gcatctgctt t
 <210>
       152
 <211>
        21
 <212>
       DNA
 <213> Artificial
 <220>
       siRNA antisense strand oligonucleotide
 <223>
 <400> 152
                                                                      21
 cttccaaggg actattgtct t
 <210> 153
 <211>
        21
 <212> DNA
 <213> Artificial
 <220>
<223> siRNA antisense strand oligonucleotide
 <400> 153
                                                                      21
 aagctcttcc aagggactat t
 <210> 154
 <211>
       21
 <212>
       DNA
 <213> Artificial
 <220>
        siRNA antisense strand oligonucleotide
 <223>
 <400> 154
                                                                       21
 tagagcctgt cgaaagctct t
 <210> 155
 <211>
        21
 <212> DNA
 <213> Artificial
 <220>
 <223> siRNA antisense strand oligonucleotide
```

<400>	155	
cagaact	tgat gggatgcact t	21
	·	
<210>	156	
<211>	21	
	DNA	
<213>	Artificial	
<220>	•	
<223>	siRNA antisense strand oligonucleotide	
<400>	156	
ggtcaga	atca atagtggatt t	21
	157	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	157 ⁻	
gtcgggt	taaa gatgtcaaat t	21
5 555	•	
<210>	.158	
<211>		
<212>	T .	
	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	158	
	aagg ctgttccaat t	21
<210>	159	
<211>	21	
<212>	DNA	
<213>	Artificial	
-213-	111 02220202	
<220>	·	
<223>	siRNA antisense strand oligonucleotide	
-223		
<400>	159	
	taca gcaaggctgt t	21
~-9~9~	y	
<210>	160	
<211>	21	
<211>	DNA	
	Artificial	
	+	

<220> <223>	siRNA antisense strand oligonucleotide			
<400> gccatgt	160 cagc caggatgagt t	21		
<210><211><211><212>	161 21 DNA			
	Artificial			
<220> <223>	siRNA antisense strand oligonucleotide			
<400>	161	21		
tetggag	gccg agctttcact t	21		
	162 21 DNA Artificial			
<220> <223>	siRNA antisense strand oligonucleotide			
<400> gaattto	162 ctgg agccgagctt t	21		
<210> <211>	163 21			
<212> <213>	DNA Artificial			
<220> <223>	siRNA antisense strand oligonucleotide			
<400>	163			
gccaggtttg tgaatgaatt t 21				
<210> <211>	164 21			
<212>	DNA			
<213>	Artificial			
<220> <223>	siRNA antisense strand oligonucleotide			
<400>	164	۰.		
gaagata	ataa ctgccaggtt t	21		
	•			

<211> <212> <213>	21 DNA Artificial			
<220> <223>	siRNA antisense strand oligonucleotide			
	165 tgtc tggagaatgt t	21		
<210><211><211><212>	166 21 DNA Artificial			
<213>	Artificial			
<220> <223>	siRNA antisense strand oligonucleotide			
	166 ttat tgtgagggat t	21		
<210><211><212>	167 21			
<213>	DNA Artificial			
<220>	riman antiques atmend alicenselection			
<223>	siRNA antisense strand oligonucleotide	•		
<400>	167			
tgcttg	gaag agaggtttat t	21		
<210>	168			
<211>	21			
<212> <213>	DNA Artificial			
<213>	Aftilicial			
<220>				
<223>	siRNA antisense strand oligonucleotide			
<400>	168	•		
	ttgg aagagaggtt t	21	,	
<210>	169			
<211>	21			
<212>				
<213>	Artificial			
<220>	•			
<223>	siRNA antisense strand oligonucleotide			
<400>	169			
	gaagccatc aatcagtgct t 21			

.

```
<210> 170
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 170
                                                                     21
caggaaacaa atagaagcct t
<210>
      171
<211>
       21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 171
                                                                     21
gtcagatcag gattctgatt t
<210> 172
       21
<211>
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 172
                                                                      21
taagccagtc agatcaggat t
<210> 173
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 173
                                                                      21
tatggtcttg gggagttggt t
<210> 174
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
```

	174 Eggt cttggggagt t	21
<210>	175	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	175	0.1
gggtcad	cttt gatatggtct t	21
	176	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	176	
atattg	ttcc tgggtcactt t	21
<210>	177	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	177 .	
	ataa ttcatattgt t	21
<210>	178	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>	•	
<223>	siRNA antisense strand oligonucleotide	
<400>	178	
	agta taattcatat t	21
<210>	179	
<211>	21	
<212>	DNA	
<213>		

<220> <223>	siRNA antisense strand oligonucleotide	
	179 . ctc acagtataat t	21
agoooac	·	
<210>	180	
<211>	·	
<212>		
	Artificial	
<220>		
	siRNA antisense strand oligonucleotide	
-400-	100	
-	180 aca teettateat t	21
aacccc		
<210>	101	
<211>		
<212>		
	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	181	
gggctca	atc tttacatcct t	21
<210>	182	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	182	
	cagg gctcaatctt t	21
<210>	102	
	21	
<212>		
	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	183	
	cctg accttctgat t	21

	<211>	21		
	<212>	DNA		
	<213>	Artificial		
	<220>	·		
		siRNA antisense strand oligonucleotide	•	
		•		
	<400>	184	•	
		gaca gccctgacct t	21	
	55.	January 5 - 1 - 1 - 5 - 1 - 1 - 1 - 1 - 1 - 1 -		
	<210>	185		
	<211>			
•	<212>			
		Artificial		
	12137	AL CILICIAI		
	<220>			
		siRNA antisense strand oligonucleotide		
	12237	SINA antisense strana originacicotrac		
	<400>	105		
		cagt acctttaatt t	21	
	tgggtt	dage acceptance t	2 ±	
	<210>	106		
	<211>			
	<212>			
	<213>	Artificial		
	.000-			
	<220>	ainwa subinsuna stuand alimanualeetide		
	<223>	siRNA antisense strand oligonucleotide		
	- 4 0 0 5	106		
	<400>		21	
	cacgat	gggt tcagtacctt t	21	
	010	105	·	
	<210>			
	<211>			
		DNA		
	<213>	Artificial		
	000			
	<220>	· • • • • • • • • • • • • • • • • • • •		
	<223>	siRNA antisense strand oligonucleotide		
		405		
	<400>		2.1	
	acggat	ctac cacgatgggt t	21	
	•			
	<210>			
	<211>			
	<212>			
	<213>	Artificial		
	_			
	<220>			
	<223>	siRNA antisense strand oligonucleotide		
	<400>		0.1	
	tcatca	tcat catcataatt t	21	

```
<210> 189
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 189
                                                                     21
agagagtatc atcagctcgt t
<210> 190
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 190
                                                                     21
cttggcacca gccaattcct t
<210> 191
      21
<211>
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 191
                                                                     21
ccaccttggc accagccaat t
<210> 192
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 192
                                                                     21
agaatggaga aggcggccgt t
<210> 193
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
```

	193	21
gttccaa	agag cagaagcact t	21
<210>	194	
<211>	21	
	DNA	
	Artificial	
12137	Altiticial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
12237	Silva difficulte Strand Originational	
<400>	194	
	gcct tagaagcagt t	21
gaagcag	geet tagaageagt t	
<210>	195	
<211>	21	
	DNA	
	Artificial	
\213/	AICIIICIAI	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<223>	SIRVA antisense strand origonatreotide	
<400>	195	
		21
aayyyay	gcca gaagcagcct t	21
<210>	196 ·	
<211>	21	
<211>		
	Artificial	
<213>	Arcilicial	
<220>	•	
<223>	siRNA antisense strand oligonucleotide	
<223>	SIRVA antisense strand origonacreotide	
-1005	106	
<400>	196	21
Lactyge	caat ggtttgtctt t	2 _
-210 >	107	
<210>	197	
<211>	21	
<212>		
<213>	Artificial	
4220s		
<220>	sinum subinance atmend eligenupleatide	•
<223>	siRNA antisense strand oligonucleotide	
-100-	107	
<400>	197	21
gggagg	tact ggcaatggtt t	
Z210s	198	
<210>		
<211>	21	
<212>		
<7T?>	Artificial	

<220> <223>	siRNA antisense strand oligonucleotide	
<400>	198	
	ttg aggtcgggat t	21
ggcgccc	ctg aggtegggat t	
<210>	199	
	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>		21
tacaagg	gcaa ggggcgtctt t	21
.010-	200	
<210>		
<211>	21	
	DNA	
<213>	Artificial	
<220>		
	siRNA antisense strand oligonucleotide	
~2237	STANA difference Schala Offgondereocide	
<400>	200	
	ggta ctttggggat t	21
3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<210>	201	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	201	21
tggggca	agat actggtactt t	21
-210-	202	
<210> <211>	202 21	
<211>		
	Artificial	
~413/	AI CILICIUI .	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	202	•
	ggat cactggaact t	21
. 3.		

<211>	21	,
<212>		
	Artificial	
\213/	Arctificial	
.000		
<220>		•
<223>	siRNA antisense strand oligonucleotide	
<400>	203	
tgccgg	ttgg ttaattctct t	21
	·	
<210>	204	
<211>		
<212>		
	Artificial	
<213>	Artificial	
	•	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	204	
gtgagt	gccg gttggttaat t	21
<210>	205	
<211>		
<212>		
	Artificial	
<213>	Aftificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	205	
ggaagt	gagt gccggttggt t	21
<210>	206	
<211>		
<212>		
	Artificial	
\ 2137	Altificial	
.000		
<220>	teres and a second seco	
<223>	siRNA antisense strand oligonucleotide	
<400>		
aaatgg	aagt gagtgeeggt t	21
<210>	207	
<211>		•
<212>		
	Artificial	
~ZIJ/	ULCITICIAL	•
200n-	·.	
<220>	miDVA subinous should slive and socials	
<223>	siRNA antisense strand oligonucleotide	
<400>		
catctg	gtct gggctccatt t	21

.

```
<210> 208
<211>
      21
<212>
      DNA
<213>
      Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 208
                                                                      21
gtatccagac tgaacgtgct t
<210> 209
<211>
      21
<212>
      DNA
<213> Artificial
<220>
<223>
      siRNA antisense strand oligonucleotide
<400> 209
                                                                      21
acctactaat gggctgctat t
<210> 210
<211>
      21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 210
                                                                      21
gcagatgagg aaggtttgat t
<210> 211
<211>
      21
<212> DNA
<213> Artificial
<220>
<223>
      siRNA antisense strand oligonucleotide
<400> 211
                                                                      21
attggcagat gaggaaggtt t
<210>
      212
<211>
       21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
```

<400>	212	
agccaga	lgaa taaatggcat t	21
•		
	213	
	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
	•	
	213	
attgcto	ccc aggtggcagt t	21
<210>	214	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	214	
tgtcctc	ette acceteacat t	21
•		
<210>	215	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	215	
tcatgta	actc tgtgtcctct t	21
_		
<210>	216	
<211>	21	
<212>		
	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
	•	
<400>	216	
	catt atacattgct t	21
J	-	
<210>	217	
<211>	21	
<212>	DNA	
	Artificial	

<220> <223>	siRNA antisense strand oligonucleotide	
<400> tgggact	217 Egaa tattatacat t	21
<210>	218	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
400		
<400>	218	21
tggcgct	ctgg gactgaatat t	21
<210>	219	
<211>	21	
<212>	DNA Artificial	
<213 <i>></i>	Arciliciai	
<220>		
<223>	siRNA antisense strand oligonucleotide	
400		
<400>	219 ctcg ggaccagtgt t	21
cyacte	steg ggaccagege c	
<210>	220	
<211>	21	
<212>	DNA Artificial	
\2137	Alciliciai	
<220>		
<223>	siRNA antisense strand oligonucleotide	
-100-	220	
<400>	220 ccca tcatcctcat t	21
accacac		
<210>	221	
<211>	21	
<212>	DNA Artificial	
~4±J/	AI CILICIAI .	
<220>		
<223>	siRNA antisense strand oligonucleotide	
-100-	221	
<400>	221 atat ctgagagagt t	21
ccayaya	acut Ceguguguge c	

<211> <212> <213>	21 DNA Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> gccaaag	222 ggag gagctggcat t	21
<210><211><212><212><213>	223 21 DNA Artificial	
<220>		
	siRNA antisense strand oligonucleotide	
<400> gaacct	223 tcag tgacatttgt t	21
<210><211><212><213>	21	
<220>	•	
	siRNA antisense strand oligonucleotide	
<400> tgggaa	224 cctt cagtgacatt t	21
<210><211><212>	21	
<213>	Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400> tctcgg	225 gaac ttgggaacct t	21
	•	
<210> <211> <212>	21 DNA	
<213>	Artificial	
<220> <223>	siRNA antisense strand oligonucleotide	
<400>	226 gcct ctcgggaact t	21

.

```
<210> 227
<211>
      21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 227
                                                                     21
tgattctccg cgggaatggt t
<210>
      228
<211>
      21
<212>
      DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 228
                                                                     21
gctttccgtt cagagttgat t
<210>
       229
<211>
       21
<212>
      DNA
      Artificial
<213>
<220>
<223> siRNA antisense strand oligonucleotide
<400> 229
                                                                      21
gccagctttc cgttcagagt t
<210> 230
<211>
      21
<212> DNA
<213> Artificial
<220>
      siRNA antisense strand oligonucleotide
<223>
<400> 230
                                                                      21
gacagctgcc agctttccgt t
<210> 231
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
```

```
<400> 231
                                                                    21
ttgctgacag ctgccagctt t
<210> 232
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 232
                                                                    21
gtacccctga ctcatgaggt t
<210> 233
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 233
                                                                    21
ctgggcaatg accaaagctt t
<210>
      234
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 234
                                                                    21
tttggccatc tcgatgttgt t
<210> 235
<211>
      21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 235
                                                                    21
acaaattccc ggaggatgtt t
<210> 236
<211> 21
<212> DNA
<213> Artificial
```

<220>		
<223>	siRNA antisense strand oligonucleotide	
<400>	236	
gagaaga	aaat ggaaacaaat t	21
<210>	237	
<211>	21	
<212>		
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
12201	bitani anozbando bozana ozogonaczosoba	
<400>	237	
ctgccct	ttct aggtgccact t	21
.•		
<210>	238	
<211>	21	
<212>	•	
<213>	Artificial	
<220>	·	
	siRNA antisense strand oligonucleotide	
<400>	238	21
accaaa	ggaa ctcctgccct t	21
<210>	239	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
400	020	
<400>		21
CCCaca	gaga gggcaagact t	2 _
<210>	240	
<211>	21	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	siRNA antisense strand oligonucleotide	
-A00-	240	
<400>	ccac tttgaaatct t	21
accida	con congadated t	

<210> 241

```
<211> 21
<212> DNA
<213> Artificial
<220>
<223> siRNA antisense strand oligonucleotide
<400> 241
                                                                      21
aaacatacta gctgctccat t
<210> 242
<211>
      3
<212> DNA
<213> Artificial
<220>
<223>
      shRNA loop sequence
<400>
       242
                                                                       3
CCC
<210> 243
<211>
<212>
      DNA
<213>
      Artificial
<220>
<223>
      shRNA loop sequence
<400>
      243
ttcg
<210>
       244
<211>
<212>
      DNA
<213> Artificial
<220>
<223>
      shRNA loop sequence
       244
<400>
                                                                       5
ccacc
<210>
       245
<211>
      6
<212>
      DNA
<213>
      Artificial
<220>
<223> shRNA loop sequence
<400> 245
                                                                       6 .
ctcgag
```

```
<210>
       246
<211>
       6
<212>
       DNA
<213>
       Artificial
<220>
<223>
       shRNA loop sequence
<400>
       246
                                                                          6
aagctt
<210>
       247
<211>
       7
<212>
       DNA
<213>
       Artificial
<220>
<223>
       shRNA loop sequence
<400>
       247
                                                                          7
ccacacc
<210>
       248
<211>
       9
<212>
       DNA
<213>
       Artificial
<220>
<223>
       shRNA loop sequence
<400> 248
                                                                          9 .
ttcaagaga
<210>
       249
<211>
       2721·
<212>
       DNA
<213>
       Artificial
<220>
<223> c-Cbl G306E
<220>
<221>
       CDS
<222>
       (1)..(2718)
<400> 249
                                                                         48
atg gcc ggc aac gtg aag aag agc tct ggg gcc ggg ggc ggc acg ggc
Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Thr Gly
                                     10
                                                                         96
tcc ggg ggc tcg ggt tcg ggt ggc ctg att ggg ctc atg aag gac gcc
```

Ser	Gly	Gly	Ser 20	Gly	Ser	Gly	Gly	Leu 25	Ile	Gly	Leu	Met	Lys 30	Asp	Ala	
														ccg Pro		144
										Cys				atg Met		192
														aat Asn		240
														ctc Leu 95		288
														gaa Glu		336
														aag Lys		384
														gag Glu		432
tct Ser 145	cag Gln	cct Pro	agg Arg	cga Arg	aac Asn 150	cta Leu	acc Thr	aaa Lys	ctg Leu	tcc Ser 155	ctc Leu	atc Ile	ttc Phe	agc Ser	cac His 160	480
atg Met	ctg Leu	gca Ala	gaa Glu	cta Leu 165	aaa Lys	gga Gly	atc Ile	ttt Phe	cca Pro 170	agt Ser	gga Gly	ctc Leu	ttt Phe	cag Gln 175	gga Gly	528
														aga Arg		576
gct Ala	ttt Phe	ggg Gly 195	gaa Glu	aag Lys	aca Thr	ata Ile	gtc Val 200	cct Pro	tgg Trp	aag Lys	agc Ser	ttt Phe 205	cga Arg	cag Gln	gct Ala	624
														gct Ala		672
														ttt Phe		720
ttt Phe	gac Asp	atc Ile	ttt Phe	acc Thr	cga Arg	ctc Leu	ttt Phe	cag Gln	ccc Pro	tgg Trp	tcc Ser	tct Ser	ttg Leu	ctc Leu	agg Arg	768

245 250 255

					gct Ala											816
					aaa Lys											864
ggc					cgg Arg											912
					gct Ala 310											960
					caa Gln	_	_									1008
					gga Gly											1056
					caa Gln											1104
					atg Met											1152
					gat Asp 390											1200
		Ser	Cys	Leu	aca Thr	Ser	Trp	Gln	Glu	Ser	Glu	Gly	Gln	Gly	Cys	1248
					gaa Glu											1296
ccg Pro	ttt Phe	gat Asp 435	cct Pro	aga Arg	ggg Gly	agt Ser	ggc Gly 440	agc Ser	ctg Leu	ttg Leu	agg Arg	caa Gln 445	gga Gly	gca Ala	gag Glu	1344
					aat Asn											1392
					atg Met 470											1440

_								cca Pro								1488	
								cag Gln 505								1536	
								aag Lys								1584	
								ccc Pro								1632	
								tct Ser								1680	
								cca Pro								1728	
								cgc Arg 585								1776	
								tct Ser								1824	
								cgg Arg								1872	
								gat Asp								1920	
								atg Met								1968	
								aaa Lys 665								2016	
								ctt Leu								2064	
ggg Gly	gag Glu 690	caa Gln	tgt Cys	gag Glu	ggt Gly	gaa Glu 695	gag Glu	gac Asp	aca Thr	gag Glu	tac Tyr 700	atg Met	act Thr	ccc Pro	tct Ser	2112	

.

		cgg Arg		_	_		_				2160
		cag Gln 725									2208
		gcg Ala								٠	2256
		gca Ala									2304
		ggg Gly									2352
		act Thr									2400
		ctg Leu 805									2448
		gag Glu									2496
		gct Ala									2544
		gcc Ala									2592
		tac Tyr									2640
		atc Ile 885									2688
		cct Pro	_				tag				2721

<210> 250

<211> 906 <212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 250

Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Gly Thr Gly
1 5 10 15

Ser Gly Gly Ser Gly Ser Gly Leu Ile Gly Leu Met Lys Asp Ala 20 25 30

Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro 35 40 45

Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp 50 60

Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser 65 70 75 80

Pro Pro Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg 85 90 95

Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn 100 105 110

Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln 115 120 125

Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn 130 135 140

Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His 145 150 155 160

Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly 165 170 175

Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys 180 185 190

Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala 195 200 205

Leu	His 210	Glu	Val	His	Pro	Ile 215	Ser	Ser	Gly	Leu	Glu 220	Ala	Met	Ala	Leu
Lys 225	Ser	Thr	Ile	Asp	Leu 230	Thr	Cys	Asn	Asp	Tyr 235	Ile	Ser	Val	Phe	Glu 240
Phe	Asp	Ile	Phe	Thr 245	Arg	Leu	Phe	Gln	Pro 250	Trp	Ser	Ser	Leu	Leu 255	Arg
Asn	Trp	Asn	Ser 260	Leu	Ala	Val	Thr	His 265	Pro	Gly	Tyr	Met	Ala 270	Phe	Leu
Thr	Tyr	Asp 275	Glu	Val	Lys	Ala	Arg 280	Leu	Gln	Lys	Phe	Ile 285	His	Lys	Pro
Gly	Ser 290	Tyr	Ile	Phe	Arg	Leu 295	Ser	Cys	Thr	Arg	Leu 300	Gly	Gln	Trp	Ala
Ile 305	Glu	Tyr	Val	Thr	Ala 310	Asp	Gly	Asn	Ile	Leu 315	Gln	Thr	Ile	Pro	His 320
Asn	Lys	Pro	Leu	Phe 325	Gln	Ala	Leu	Ile	Asp 330	Gly	Phe	Arg	Glu	Gly 335	Phe
Tyr	Leu	Phe	Pro 340	Asp	Gly	Arg	Asn	Gln 345	Asn	Pro	Asp	Leu	Thr 350	Gly	Leu
Cys	Glu	Pro 355	Thr	Pro	Gln	Asp	His 360	Ile	Lys	Val	Thr	Gln 365	Glu	Gln	Tyr
Glu	Leu 370	Tyr	Cys	Glu	Met	Gly 375	Ser	Thr	Phe	Gln	Leu 380	Cys	Lys	Ile	Cys
Ala 385	Glu	Asn	Asp	Lys	Asp 390	Val	Lys	Ile	Glu	Pro 395	Cys	Gly	His	Leu	Met 400
Cys	Thr	Ser	Cys	Leu 405	Thr	Ser	Trp	Gln	Glu 410	Ser	Glu	Gly	Gln	Gly 415	Cys
Pro	Phe	Cys	Arg 420	Cys	Glu	Ile	Lys	Gly 425	Thr	Glu	Pro	Ile	Val 430	Val	Asp

Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp Asp Thr Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg Pro Pro Ser Pro Phe Ser Met Ala Pro Gln Ala Ser Leu Pro Pro Val Pro Pro Arg Leu Asp Leu Leu Pro Gln Arg Val Cys Val Pro Ser Ser Ala Ser Ala Leu Gly Thr Ala Ser Lys Ala Ala Ser Gly Ser Leu His Lys Asp Lys Pro Leu Pro Val Pro Pro Thr Leu Arg Asp Leu Pro Pro Pro Pro Pro Pro Asp Arg Pro Tyr Ser Val Gly Ala Glu Ser Arg Pro Gln Arg Arg Pro Leu Pro Cys Thr Pro Gly Asp Cys Pro Ser Arg Asp Lys Leu Pro Pro Val Pro Ser Ser Arg Leu Gly Asp Ser Trp Leu Pro Arg Pro Ile Pro Lys Val Pro Val Ser Ala Pro Ser Ser Ser Asp Pro Trp Thr Gly Arg Glu Leu Thr Asn Arg His Ser Leu Pro Phe Ser Leu Pro Ser Gln Met Glu Pro Arg Pro Asp Val Pro Arg Leu Gly Ser Thr Phe Ser Leu Asp Thr Ser Met Ser Met Asn Ser Ser Pro Leu Val Gly Pro Glu Cys Asp His Pro Lys Ile Lys Pro Ser Ser Ala Asn Ala

Ile Tyr Ser Leu Ala Ala Arg Pro Leu Pro Val Pro Lys Leu Pro Pro Gly Glu Gln Cys Glu Gly Glu Glu Asp Thr Glu Tyr Met Thr Pro Ser Ser Arg Pro Leu Arg Pro Leu Asp Thr Ser Gln Ser Ser Arg Ala Cys Asp Cys Asp Gln Gln Ile Asp Ser Cys Thr Tyr Glu Ala Met Tyr Asn Ile Gln Ser Gln Ala Pro Ser Ile Thr Glu Ser Ser Thr Phe Gly Glu Gly Asn Leu Ala Ala Ala His Ala Asn Thr Gly Pro Glu Glu Ser Glu Asn Glu Asp Asp Gly Tyr Asp Val Pro Lys Pro Pro Val Pro Ala Val Leu Ala Arg Arg Thr Leu Ser Asp Ile Ser Asn Ala Ser Ser Ser Phe Gly Trp Leu Ser Leu Asp Gly Asp Pro Thr Thr Asn Val Thr Glu Gly Ser Gln Val Pro Glu Arg Pro Pro Lys Pro Phe Pro Arg Arg Ile Asn Ser Glu Arg Lys Ala Gly Ser Cys Gln Gln Gly Ser Gly Pro Ala Ala Ser Ala Ala Thr Ala Ser Pro Gln Leu Ser Ser Glu Ile Glu Asn Leu Met Ser Gln Gly Tyr Ser Tyr Gln Asp Ile Gln Lys Ala Leu Val Ile

Ala Gln Asn Asn Ile Glu Met Ala Lys Asn Ile Leu Arg Glu Phe Val

Ser Ile Ser Ser Pro Ala His Val Ala Thr 900 905

<210 <211 <212 <213	> : > :	251 2721 DNA Artif	icia	ıl	,					٠						
<220 <223		c-Cbl	. C38	31A												
<220 <221 <222	>	CDS (1)	. (271	L8)									•			
<400 atg Met 1	gcc	251 .ggc Gly	aac Asn	gtg Val 5	aag Lys	aag Lys	agc Ser	tct Ser	ggg Gly 10	gcc Ala	gly ggg	ggc Gly	ggc Gly	acg Thr 15	ggc Gly	48
tcc Ser	ggg Gly	ggc Gly	tcg Ser 20	ggt Gly	tcg Ser	ggt Gly	ggc Gly	ctg Leu 25	att Ile	ggg Gly	ctc Leu	atg Met	aag Lys 30	gac Asp	gcc Ala	96
ttc Phe	cag Gln	ccg Pro 35	cac His	cac His	cac His	cac His	cac His 40	cac His	cac His	ctc Leu	agc Ser	ccc Pro 45	cac His	ccg Pro	ccg Pro	144
ggg	acg Thr 50	gtg Val	gac Asp	aag Lys	aag Lys	atg Met 55	gtg Val	gag Glu	aag Lys	tgc Cys	tgg Trp 60	aag Lys	ctc Leu	atg Met	gac Asp	192
aag Lys 65	gtg Val	gtg Val	cgg Arg	ttg Leu	tgt Cys 70	cag Gln	aac Asn	cca Pro	aag Lys	ctg Leu 75	gcg Ala	cta Leu	aag Lys	aat Asn	agc Ser 80	240
cca Pro	cct Pro	tat Tyr	atc Ile	tta Leu 85	gac Asp	ctg Leu	cta Leu	cca Pro	gat Asp 90	acc Thr	tac Tyr	cag Gln	cat His	ctc Leu 95	cgt Arg	288
		ttg Leu														336
gag Glu	tat Tyr	ttt Phe 115	agg Arg	gtg Val	ttt Phe	atg Met	gag Glu 120	aat Asn	ttg Leu	atg Met	aag Lys	aaa Lys 125	act Thr	aag Lys	caa Gln	384
acc Thr	ata Ile 130	agc Ser	ctc Leu	ttc Phe	aag Lys	gag Glu 135	gga Gly	aaa Lys	gaa Glu	aga Arg	atg Met 140	tat Tyr	gag Glu	gag Glu	aat Asn	432
tct	cag	cct	agg	cga	aac	cta	acc	aaa	ctg	tcc	ctc	atc	ttc	agc	cac	480

	Ser 145	Gln	Pro	Arg	Arg	Asn 150	Leu	Thr	Lys	Leu	Ser 155	Leu	Ile	Phe	Ser	His 160		,		
					cta Leu 165												52	8		
					att Ile												57	6		
·					aag Lys												62	4		
					cat His												67	2		
					gat Asp												72	0		
					acc Thr 245												76	8		
					ctt Leu												81	6		
	acg Thr	tat Tyr	gac Asp 275	gaa Glu	gtg Val	aaa Lys	gct Ala	cgg Arg 280	ctc Leu	cag Gln	aaa Lys	ttc Phe	att Ile 285	cac His	aaa Lys	cct Pro	86	4		
·					ttc Phe												91	.2		
					act Thr												96	0		
					ttc Phe 325												100	8		
					gat Asp												105	66		
					ccc Pro												110	14		
					gag Glu												115	52		

370 375 380

			aag Lys					1:	200
			tgg Trp					1	248
			aaa Lys					1:	296
			ggc Gly 440					1	344
			gat Asp					1	392
			gaa Glu					1	440
			gcc Ala					1	488
			ccg Pro					1	536
			tct Ser 520					1	584
			cct Pro					1	632
			tat Tyr					1	680
			aca Thr					1	728
			agc Ser						776 ,
			gta Val 600					1	824

							ttt Phe		1872
							gga Gly		1920
							tta Leu		1968
							gcc Ala 670		2016
							ctg Leu		2064
							act Thr		2112
			_	-			cga Arg		2160
							atg Met		2208
							ttt Phe 750		2256
							gag Glu		2304
							ccg Pro		2352
							tcc Ser		2400
							act Thr		2448
							aga Arg 830		2496

.

•

.

													cct Pro			2544
													gag Glu			2592
													ttg Leu			2640
													gaa Glu			2688
	att Ile				-		-			tag						2721
<210 <211 <212 <213	L> 9 2> I		ficia	al												
<220 <223		Syntl	netio	c Cor	nstri	ıct										
<400)> 2	252														
			Asn	Val 5	Lys	Lys	Ser	Ser	Gly 10	Ala	Gly	Gly	Gly	Thr 15	Gly	
Met 1	Ala	Gly		5	_				10				Gly Lys 30	15		
Met 1 Ser	Ala Gly	Gly Gly	Ser 20	5 Gly	Ser	Gly	Gly	Leu 25	10	Gly	Leu	Met	Lys	15 Asp	Ala	
Met 1 Ser Phe	Ala Gly Gln	Gly Gly Pro 35	Ser 20 His	5 Gly His	Ser	Gly	Gly His 40	Leu 25 His	10 Ile His	Gly Leu	Leu	Met Pro 45	Lys 30	15 Asp Pro	Ala Pro	
Met 1 Ser Phe Gly	Ala Gly Gln Thr	Gly Gly Pro 35	Ser 20 His	5 Gly His Lys	Ser His	Gly His Met 55	Gly His 40 Val	Leu 25 His Glu	10 Ile His Lys	Gly Leu Cys	Leu Ser Trp	Met Pro 45 Lys	Lys 30 His	15 Asp Pro Met	Ala Pro Asp	
Met 1 Ser Phe Gly Lys 65	Ala Gly Gln Thr 50 Val	Gly Pro 35 Val	Ser 20 His Asp	Gly His Lys	Ser His Lys Cys 70	Gly His Met 55	Gly His 40 Val	Leu 25 His Glu	10 Ile His Lys	Gly Leu Cys Leu 75	Leu Ser Trp 60	Met Pro 45 Lys	Lys 30 His Leu	Asp Pro Met	Ala Pro Asp Ser 80	

Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe

Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Glu Gln Tyr Glu Leu Tyr Cys Glu Met Gly Ser Thr Phe Gln Leu Ala Lys Ile Cys Ala Glu Asn Asp Lys Asp Val Lys Ile Glu Pro Cys Gly His Leu Met Cys Thr Ser Cys Leu Thr Ser Trp Gln Glu Ser Glu Gly Gln Gly Cys Pro Phe Cys Arg Cys Glu Ile Lys Gly Thr Glu Pro Ile Val Val Asp Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp Asp Thr Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg Pro Pro Ser Pro Phe Ser Met Ala Pro Gln Ala Ser Leu Pro Pro Val Pro Pro Arg Leu Asp Leu Leu Pro Gln Arg Val Cys Val Pro Ser Ser Ala Ser Ala Leu Gly Thr Ala Ser Lys Ala Ala Ser Gly Ser Leu His Lys Asp Lys Pro Leu Pro Val Pro Pro Thr Leu Arg Asp Leu Pro Pro Pro Pro Pro Pro Asp Arg Pro Tyr Ser Val Gly Ala Glu Ser Arg Pro

Gln Arg Arg Pro Leu Pro Cys Thr Pro Gly Asp Cys Pro Ser Arg Asp Lys Leu Pro Pro Val Pro Ser Ser Arg Leu Gly Asp Ser Trp Leu Pro Arg Pro Ile Pro Lys Val Pro Val Ser Ala Pro Ser Ser Ser Asp Pro Trp Thr Gly Arg Glu Leu Thr Asn Arg His Ser Leu Pro Phe Ser Leu Pro Ser Gln Met Glu Pro Arg Pro Asp Val Pro Arg Leu Gly Ser Thr Phe Ser Leu Asp Thr Ser Met Ser Met Asn Ser Ser Pro Leu Val Gly Pro Glu Cys Asp His Pro Lys Ile Lys Pro Ser Ser Ser Ala Asn Ala Ile Tyr Ser Leu Ala Ala Arg Pro Leu Pro Val Pro Lys Leu Pro Pro Gly Glu Gln Cys Glu Gly Glu Glu Asp Thr Glu Tyr Met Thr Pro Ser Ser Arg Pro Leu Arg Pro Leu Asp Thr Ser Gln Ser Ser Arg Ala Cys Asp Cys Asp Gln Gln Ile Asp Ser Cys Thr Tyr Glu Ala Met Tyr Asn Ile Gln Ser Gln Ala Pro Ser Ile Thr Glu Ser Ser Thr Phe Gly Glu Gly Asn Leu Ala Ala Ala His Ala Asn Thr Gly Pro Glu Glu Ser Glu Asn Glu Asp Asp Gly Tyr Asp Val Pro Lys Pro Pro Val Pro Ala Val 775 ·

Leu Ala Arg Arg Thr Leu Ser Asp Ile Ser Asn Ala Ser Ser Phe

785	790	795	800

Gly Trp Leu Ser Leu Asp Gly Asp Pro Thr Thr Asn Val Thr Glu Gly 805 810 815

Ser Gln Val Pro Glu Arg Pro Pro Lys Pro Phe Pro Arg Arg Ile Asn 820 825 830

Ser Glu Arg Lys Ala Gly Ser Cys Gln Gln Gly Ser Gly Pro Ala Ala 835 840 845

Ser Ala Ala Thr Ala Ser Pro Gln Leu Ser Ser Glu Ile Glu Asn Leu 850 855 860

Met Ser Gln Gly Tyr Ser Tyr Gln Asp Ile Gln Lys Ala Leu Val Ile 865 870 875 880

Ala Gln Asn Asn Ile Glu Met Ala Lys Asn Ile Leu Arg Glu Phe Val 885 890 895

Ser Ile Ser Ser Pro Ala His Val Ala Thr 900 905

<210> 253

<211> 2721

<212> DNA

<213> Artificial

<220>

<223> c-Cbl Y700F

<220>

<221> CDS

<222> (1)..(2718)

<400> 253

atg gcc ggc aac gtg aag aag agc tct ggg gcc ggg ggc ggc acg ggc
Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Thr Gly
1 5 10 15

48

96

tcc ggg ggc tcg ggt tcg ggt ggc ctg att ggg ctc atg aag gac gcc Ser Gly Gly Ser Gly Ser Gly Gly Leu Ile Gly Leu Met Lys Asp Ala 20 25 30

ttc cag ccg cac cac cac cac cac cac ctc agc ccc cac ccg ccg
Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro
35 40 45

	acg Thr 50															192		
	gtg Val															240		
	cct Pro															288	,	
act Thr	atc Ile	ttg Leu	tca Ser 100	aga Arg	tat Tyr	gag Glu	Gly ggg	aag Lys 105	atg Met	gag Glu	aca Thr	ctt Leu	gga Gly 110	gaa Glu	aat Asn	336		
gag Glu	tat Tyr	ttt Phe 115	agg Arg	gtg Val	ttt Phe	atg Met	gag Glu 120	aat Asn	ttg Leu	atg Met	aag Lys	aaa Lys 125	act Thr	aag Lys	caa Gln	384		
	ata Ile 130															432		
	cag Gln															480		
	ctg Leu															528		
	aca Thr															576		
gct Ala	ttt Phe	ggg Gly 195	gaa Glu	aag Lys	aca Thr	ata Ile	gtc Val 200	cct Pro	tgg Trp	aag Lys	agc Ser	ttt Phe 205	cga Arg	cag Gln	gct Ala	624		
cta Leu	cat His 210	gaa Glu	gtg Val	cat His	ccc Pro	atc Ile 215	agt Ser	tct Ser	ggg	ctg Leu	gag Glu 220	gcc Ala	atg Met	gct Ala	ctg Leu	672		
	tcc Ser															720		
	gac Asp															768		
aat Asn	tgg Trp	aac Asn	agc Ser 260	ctt Leu	gct Ala	gta Val	act Thr	cat His 265	cct Pro	ggc Gly	tac Tyr	atg Met	gct Ala 270	ttt Phe	ttg Leu	816		
acg	tat	gac	gaa	gtg	aaa	gct	cgg	ctc	cag	aaa	ttc	att	cac	aaa	cct	864		

Thr	Tyr	Asp 275	Glu	Val	Lys	Ala	Arg 280	Leu	Gln	Lys	Phe	Ile 285	His	Lys	Pro	
									act Thr							912
									att Ile							960
						_	_		gat Asp 330					_		1008
									aat Asn							1056
									aaa Lys							1104
									ttc Phe							1152
									gag Glu							1200
									gaa Glu 410							1248
									act Thr							1296
									ctg Leu							1344
									gat Asp							1392
									gct Ala							1440
ccg Pro	cct Pro	tct Ser	cca Pro	ttc Phe 485	tcc Ser	atg Met	gcc Ala	cca Pro	caa Gln 490	gct Ala	tcc Ser	ctt Leu	ccc Pro	ccg Pro 495	gtg Val	1488
									cga Arg							1536

500 505 510

			gct Ala						1	L584
			gta Val 535						1	L632
			cca Pro						1	L680
			tgt Cys						1	1728
_		_	tct Ser	-	_				1	L776
			cca Pro						1	1824
			acc Thr 615						1	L872 ·
			aga Arg						1	1920
			atg Met						1	1968
			aaa Lys						2	2016
			aga Arg						2	2064
			gaa Glu 695						2	2112
			ttg Leu						2	2160
			gat Asp						2	2208

			cag Gln 740													2256
			gcc Ala													2304
aat Asn	gag Glu 770	gat Asp	gat Asp	Gly ggg	tat Tyr	gat Asp 775	gtc Val	cca Pro	aag Lys	cca Pro	cct Pro 780	gtg Val	ccg Pro	gcc Ala	gtg Val	2352
ctg Leu 785	gcc Ala	cgc Arg	cga Arg	act Thr	ctc Leu 790	tca Ser	gat Asp	atc Ile	tct Ser	aat Asn 795	gcc Ala	agc Ser	tcc Ser	tcc Ser	ttt Phe 800	2400
ggc Gly	tgg Trp	ttg Leu	tct Ser	ctg Leu 805	gat Asp	ggt Gly	gat Asp	cct Pro	aca Thr 810	aca Thr	aat Asn	gtc Val	act Thr	gaa Glu 815	ggt Gly	2448
tcc Ser	caa Gln	gtt Val	ccc Pro 820	gag Glu	agg Arg	cct Pro	cca Pro	aaa Lys 825	cca Pro	ttc Phe	ccg Pro	cgg Arg	aga Arg 830	atc Ile	aac Asn	2496
tct Ser	gaa Glu	cgg Arg 835	aaa Lys	gct Ala	ggc Gly	agc Ser	tgt Cys 840	cag Gln	caa Gln	ggt Gly	agt Ser	ggt Gly 845	cct Pro	gcc Ala	gcc Ala	2544
tct Ser	gct Ala 850	gcc Ala	acc Thr	gcc Ala	tca Ser	cct Pro 855	cag Gln	ctc Leu	tcc Ser	agt Ser	gag Glu 860	atc Ile	gag Glu	aac Asn	ctc Leu	2592
atg Met 865	Ser	cag Gln	ggg Gly	tac Tyr	tcc Ser 870	tac Tyr	cag Gln	gac Asp	atc Ile	cag Gln 875	aaa Lys	gct Ala	ttg Leu	gtc Val	att Ile 880	2640
gcc Ala	cag Gln	aac Asn	aac Asn	atc Ile 885	Glu	atg Met	gcc Ala	aaa Lys	aac Asn 890	atc Ile	ctc Leu	cgg Arg	gaa Glu	ttt Phe 895	gtt Val	2688
			tct Ser 900							tag						2721
<21 <21 <21 <21	1> 2>	254 906 PRT Arti	ficí	al												
<22 <22		Synt	heti	c Co	nstr	uct										

Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Thr Gly

<400> 254

Ser Gly Gly Ser Gly Ser Gly Leu Ile Gly Leu Met Lys Asp Ala 20 25 30

Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro 35 40 45

Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp 50 55 60

Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser 65 70 75 80

Pro Pro Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg 85 90 95

Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn 100 105 110

Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln
115 120 125

Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn . 130 $\,$ 135 $\,$ 140

Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His 145 150 155 160

Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly 165 170 175

Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys 180 185 190

Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala 195 200 205

Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu 210 215 220

Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu 225 230 235 240

Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg 245 250 255

Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu 260 265 270

Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro 275 280 285

Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala 290 295 300

Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His 305 310 315 320

Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe 325 330 335

Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu 340 345 350

Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Glu Gln Tyr 355 360 365

Glu Leu Tyr Cys Glu Met Gly Ser Thr Phe Gln Leu Cys Lys Ile Cys 370 375 380

Ala Glu Asn Asp Lys Asp Val Lys Ile Glu Pro Cys Gly His Leu Met 385 390 395 400

Cys Thr Ser Cys Leu Thr Ser Trp Gln Glu Ser Glu Gly Gln Gly Cys 405 410 415

Pro Phe Cys Arg Cys Glu Ile Lys Gly Thr Glu Pro Ile Val Val Asp 420 425 430

Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu 435 440 445

Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp 450 455 460

Asp Thr Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg . Pro Pro Ser Pro Phe Ser Met Ala Pro Gln Ala Ser Leu Pro Pro Val Pro Pro Arg Leu Asp Leu Leu Pro Gln Arg Val Cys Val Pro Ser Ser Ala Ser Ala Leu Gly Thr Ala Ser Lys Ala Ala Ser Gly Ser Leu His Lys Asp Lys Pro Leu Pro Val Pro Pro Thr Leu Arg Asp Leu Pro Pro Pro Pro Pro Pro Asp Arg Pro Tyr Ser Val Gly Ala Glu Ser Arg Pro Gln Arg Arg Pro Leu Pro Cys Thr Pro Gly Asp Cys Pro Ser Arg Asp Lys Leu Pro Pro Val Pro Ser Ser Arg Leu Gly Asp Ser Trp Leu Pro Arg Pro Ile Pro Lys Val Pro Val Ser Ala Pro Ser Ser Ser Asp Pro Trp Thr Gly Arg Glu Leu Thr Asn Arg His Ser Leu Pro Phe Ser Leu Pro Ser Gln Met Glu Pro Arg Pro Asp Val Pro Arg Leu Gly Ser Thr Phe Ser Leu Asp Thr Ser Met Ser Met Asn Ser Ser Pro Leu Val Gly Pro Glu Cys Asp His Pro Lys Ile Lys Pro Ser Ser Ser Ala Asn Ala Ile Tyr Ser Leu Ala Ala Arg Pro Leu Pro Val Pro Lys Leu Pro Pro

Gly Glu Gln Cys Glu Gly Glu Glu Asp Thr Glu Phe Met Thr Pro Ser Ser Arg Pro Leu Arg Pro Leu Asp Thr Ser Gln Ser Ser Arg Ala Cys Asp Cys Asp Gln Gln Ile Asp Ser Cys Thr Tyr Glu Ala Met Tyr Asn Ile Gln Ser Gln Ala Pro Ser Ile Thr Glu Ser Ser Thr Phe Gly Glu Gly Asn Leu Ala Ala Ala His Ala Asn Thr Gly Pro Glu Glu Ser Glu Asn Glu Asp Asp Gly Tyr Asp Val Pro Lys Pro Pro Val Pro Ala Val Leu Ala Arg Arg Thr Leu Ser Asp Ile Ser Asn Ala Ser Ser Ser Phe Gly Trp Leu Ser Leu Asp Gly Asp Pro Thr Thr Asn Val Thr Glu Gly Ser Gln Val Pro Glu Arg Pro Pro Lys Pro Phe Pro Arg Arg Ile Asn Ser Glu Arg Lys Ala Gly Ser Cys Gln Gln Gly Ser Gly Pro Ala Ala Ser Ala Ala Thr Ala Ser Pro Gln Leu Ser Ser Glu Ile Glu Asn Leu Met Ser Gln Gly Tyr Ser Tyr Gln Asp Ile Gln Lys Ala Leu Val Ile Ala Gln Asn Asn Ile Glu Met Ala Lys Asn Ile Leu Arg Glu Phe Val

Ser Ile Ser Ser Pro Ala His Val Ala Thr

<211> 2721 <212> DNA <213> Artificial <220> <223> c-Cbl Y731F <220> <221> CDS <222> (1)..(2718) <400> 255 atg gcc ggc aac gtg aag aag atc tct ggg gcc ggg ggc ggc acg ggc 48 Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Thr Gly 10 tcc ggg ggc tcg ggt tcg ggt ggc ctg att ggg ctc atg aag gac gcc 96 Ser Gly Gly Ser Gly Ser Gly Leu Ile Gly Leu Met Lys Asp Ala 144 ttc cag ccg cac cac cac cac cac cac ctc agc ccc cac ccg ccg Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro 35 ggg acg gtg gac aag atg gtg gag aag tgc tgg aag ctc atg gac 192 Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp 50 55 240 aag gtg gtg cgg ttg tgt cag aac cca aag ctg gcg cta aag aat agc Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser 70 75 cca cct tat atc tta gac ctg cta cca gat acc tac cag cat ctc cgt 288 Pro Pro Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg 90 336 act atc ttg tca aga tat gag ggg aag atg gag aca ctt gga gaa aat Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn 100 105 384 Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln 120 115 432 Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn 140 135 130 480 tct cag cct agg cga aac cta acc aaa ctg tcc ctc atc ttc agc cac Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His 160 145 150 atg ctg gca gaa cta aaa gga atc ttt cca agt gga ctc ttt cag gga 528 Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly 165

							aaa Lys										576	
	_			_	_		ata Ile	_			_	-					624	
							atc Ile 215										672	
							acc Thr										720	
•							ctc Leu										768	
							gta Val										816	
							gct Ala										864	
							ctg Leu 295										912	
							gat Asp										960	·-
							gca Ala										`1008	
		_			-		cga Arg		_								1056	
							gac Asp										` 1104	
	_			_		_	ggc Gly 375						_			_	1152	
							gta Val										1200	
	tgc	aca	tcc	tgt	ctt	aca	tcc	tgg	cag	gaa	tca	gaa	ggt	cag	ggc	tgt	1248	

•

•

	Cys	Thr	Ser	Cys	Leu 405	Thr	Ser	Trp	Gln	Glu 410	Ser	Glu	Gly	Gln	Gly 415	Cys			
										act Thr							1296		
										ctg Leu							1344		
						Asn				gat Asp							1392		
										gct Ala							1440		
										caa Gln 490							1488		
										cga Arg							1536		
	_		_				-		-	gct Ala	-						1584		
										aca Thr							1632		
		_			_					gtt Val							1680		
·	caa .Gln									ggc Gly 570							1728		
										ctt Leu							1776		
										gcc Ala							1824		
										cac His							1872		
										gtg Val							1920		

.

•

625	630	635	640
ttc agt ctg gat acc Phe Ser Leu Asp Thr 645		n Ser Ser Pro Leu V	
cca gag tgt gac cac Pro Glu Cys Asp His 660			
att tat tct ctg gct Ile Tyr Ser Leu Ala 675			
ggg gag caa tgt gag Gly Glu Gln Cys Glu 690			
tcc agg cct cta cgg Ser Arg Pro Leu Arg 705			
gat tgc gac cag cag Asp Cys Asp Gln Gln 725		r Phe Glu Ala Met T	
att cag tcc cag gcg Ile Gln Ser Gln Ala 740			
ggg aat ttg gcc gca Gly Asn Leu Ala Ala 755			
aat gag gat gat ggg Asn Glu Asp Asp Gly 770			
ctg gcc cgc cga act Leu Ala Arg Arg Thr 785			
ggc tgg ttg tct ctg Gly Trp Leu Ser Leu 805		r Thr Asn Val Thr G	
tcc caa gtt ccc gag Ser Gln Val Pro Glu 820			
tct gaa cgg aaa gct Ser Glu Arg Lys Ala 835			
tct gct gcc acc gcc Ser Ala Ala Thr Ala 850			

atg Met 865	agt Ser	cag Gln	ggg Gly	tac Tyr	tcc Ser 870	tac Tyr	cag Gln	gac Asp	atc Ile	cag Gln 875	aaa Lys	gct Ala	ttg Leu	gtc Val	att Ile 880	2640
gcc Ala	cag Gln	aac Asn	aac Asn	atc Ile 885	gag Glu	atg Met	gcc Ala	aaa Lys	aac Asn 890	atc Ile	ctc Leu	cgg Arg	gaa Glu	ttt Phe 895	gtt Val	2688
			tct Ser 900							tag						2721
<210 <211 <212 <213	.> 9 !> I	256 906 PRT Artif	icia	al												
<220 <223		Synth	netio	c Cor	nstru	ıct										
<400)> 2	256														
Met 1	Ala	Gly	Asn	Val 5	Lys	Lys	Ser	Ser	Gly 10	Ala	Gly	Gly	Gly	Thr 15	Gly	
Ser	Gly	Gly	Ser 20	Gly	Ser	Gly	Gly	Leu 25	Ile	Gly	Leu	Meţ	Lys 30	Asp	Ala	
Phe	Gln	Pro 35	His	His	His	His	His 40	His	His	Leu	Ser	Pro 45	His	Pro	Pro	
Gly	Thr 50	Val	Asp	Lys	Lys	Met 55	Val	Glu	Lys	Cys	Trp 60	Lys	Leu	Met	Asp	
Lys 65	Val	Val	Arg	Leu	Cys 70	Gln	Asn	Pro	Lys	Leu 75	Ala	Leu	Lys	Asn	Ser 80	
Pro	Pro	Tyr	Ile	Leu 85	Asp	Leu	Leu	Pro	Asp 90	Thr	Tyr	Gln	His	Leu 95	Arg	
Thr	Ile	Leu	Ser 100	Arg	Tyr	Glu	Gly	Lys 105	Met	Glu	Thr	Leu	Gly 110	Glu	Asn	
Glu	Tyr	Phe 115	Arg	Val	Phe	Met	Glu 120	Asn	Leu	Met	Lys	Lys 125	Thr	Lys	Gln	
														_		

Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn

Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu . 215 Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Glu Gln Tyr

Glu	Leu 370	Tyr	Cys	Glu	Met	Gly 375	Ser	Thr	Phe	Gln	Leu 380	Cys	Lys	Ile	Cys
Ala 385	Glu	Asn	Asp	Lys	Asp 390	Val	Lys	Ile	Glu	Pro 395	Cys	Gly	His	Leu	Met 400
Cys	Thr	Ser	Cys	Leu 405	Thr	Ser	Trp	Gln	Glu 410	Ser	Glu	Gly	Gln	Gly 415	Cys ,
Pro	Phe	Cys	Arg 420	Cys	Glu	Ile	Lys	Gly 425	Thr	Glu	Pro	Ile	Val 430	Val	Asp
Pro	Phe	Asp 435	Pro	Arg	Gly	Ser	Gly 440	Ser	Leu	Leu	Arg	Gln 445	Gly	Ala	Glu
Gly	Ala 450	Pro	Ser	Pro	Asn	Tyr 455	Asp	Asp	Asp	Asp	Asp 460	Glu	Arg	Ala	Asp
Asp 465	Thr	Leu	Phe	Met	Met 470	Lys	Glu	Leu	Ala	Gly 475	Ala	Lys	Val	Glu	Arg 480
Pro	Pro	Ser	Pro	Phe 485	Ser	Met	Ala	Pro	Gln 490	Ala	Ser	Leu	Pro	Pro 495	Val
Pro	Pro	Arg	Leu 500	Asp	Leu	Leu ,	Pro	Gln 505	Arg	Val	Cys	Val	Pro 510	Ser	Ser
Ala	Ser	Ala 515	Leu	Gly	Thr	Ala	Ser 520	Lys	Ala	Ala	Ser	Gly 525	Ser	Leu	His
Lys	Asp 530	Lys	Pro	Leu	Pro	Val 535	Pro	Pro	Thr	Leu	Arg 540	Asp	Leu	Pro	Pro
Pro 545	Pro	Pro	Pro	Asp	Arg 550	Pro	Tyŗ	Ser	Val	Gly 555	Ala	Glu	Ser	Arg	Pro 560
Gln	Arg	Arg	Pro	Leu 565	Pro	Cys	Thr	Pro	Gly 570	Asp	Cys	Pro	Ser	Arg 575	Asp
Lys	Leu	Pro	Pro 580	Val	Pro	Ser	Ser	Arg 585	Leu	Gly	Asp	Ser	Trp 590	Leu	Pro

Arg	Pro	595	Pro	гуs	Val	PIO	600	ser	Ala	PIO	ser	605	ser	Asp	PIO .			
Trp	Thr 610	Gly	Arg	Glu	Leu	Thr 615	Asn	Arg	His	Ser	Leu 620	Pro	Phe	Ser	Leu			
Pro 625	Ser	Gln	Met	Glu	Pro 630	Arg	Pro	Asp	Val	Pro 635	Arg	Leu	Gly	Ser	Thr 640			
Phe	Ser	Leu	Asp	Thr 645	Ser	Met	Ser	Met	Asn 650	Ser	Ser	Pro	Leu	Val 655	Gly.			
Pro	Glu	Cys	Asp 660	His	Pro	Lys	Ile	Lys 665	Pro	Ser	Ser	Ser	Ala 670	Asn	Ala			
Ile	Tyr	Ser 675	Leu	Ala	Ala	Arg	Pro 680	Leu	Pro	Val	Pro	Lys 685	Leu	Pro	Pro			
Gly	Glu 690	Gln	Cys	Glu ,	Gly	Glu 695	Glu	Asp	Thr	Glu	Tyr 700	Met	Thr	Pro	Ser			
Ser 705	Arg	Pro	Leu	Arg	Pro 710	Leu	Asp	Thr	Ser	Gln 715	Ser	Ser	Arg	Ala	Cys 720			
Asp	Cys	Asp	Gln	Gln 725	Ile	Asp	Ser	Cys	Thr 730	Phe	Glu	Ala	Met	Tyr 735	Asn			
Ile	Gln	Ser	Gln 740	Ala	Pro	Ser	Ile	Thr 745	Glu	Ser	Ser	Thr	Phe 750	Gly	Glu	,		
Gly	Asn	Leu 755	Ala	Ala	Ala	His	Ala 760	Asn	Thr	Gly	Pro	Glu 765	Glu	Ser	Glu			
Asn	Glu 770	Asp	Asp	Gly	Tyr	Asp 775	Val	Pro	Lys	Pro	Pro 780	Val	Pro	Ala	Val			
Leu 785	Ala	Arg	Arg	Thr	Leu 790	Ser	Asp	Ile	Ser	Asn 795	Ala	Ser	Ser	Ser	Phe 800			
Gly	Trp	Leu	Ser	Leu 805	Asp	Gly	Asp	Pro	Thr 810	Thr	Asn	Val	Thr	Glu 815	Gly			

	•																
							•						•	•			
Ser	Gln	Val	Pro 820	Glu	Arg	Pro	Pro	Lys 825	Pro	Phe	Pro	Arg	Arg 830	Ile	Asn		
Ser	Glu	Arg 835	Lys	Ala	Gly	Ser	Cys 840	Gln	Gln	Gly	Ser	Gly 845	Pro	Ala	Ala		
Ser	Ala 850		. Thr	Ala	Ser	Pro 855	Gln	Leu	Ser	Ser	Glu 860	Ile	Glu	Asn	Leu		
Met 865		Glr	Gly	Tyr	Ser 870	Tyr	Gln	Asp	Ile	Gln 875	Lys	Ala	Leu	Val	Ile 880		
Ala	Glr	ı Asr	Asn	Ile 885	Glu	Met	Ala	Lys	Asn 890	Ile	Leu	Arg	Glu	Phe 895	Val		
Ser	Ιlε	e Ser	Ser 900		Ala	His	Val	Ala 905	Thr						-		
<21 <21 <21 <22 <22	2> 3> 0>		fici ol Y7														
	3>	c-Ch	ol Y7	74F												·	
<22 <22		CDS (1)	. (27	18)													
atg	gco	257 ggq a Gly	aac Asn	gtg Val 5	aag Lys	aag Lys	agc Ser	tct Ser	ggg Gly 10	gcc Ala	Gly ggg	ggc Gly	ggc Gly	acg Thr 15	ggc Gly	48	
tcc Ser	ggg Gly	Gly g ggd	tcg Ser 20	ggt Gly	tcg Ser	ggt Gly	ggc Gly	ctg Leu 25	att Ile	ggg.	ctc Leu	atg Met	aag Lys 30	gac Asp	gcc Ala	96	
ttc	caç Glı	g ccg n Pro 35	g cac His	cac His	cac His	cac His	cac His 40	cac His	cac His	ctc Leu	agc Ser	ccc Pro 45	cac His	ccg Pro	ccg Pro	144	
Phe			r gac	aag							Trp					192	
ggg			. Asp	Lys	пуs	55					60						

	cca	cct	tat	atc	tta	gac	ctg	cta	cca	gat	acc	tac	cag	cat	ctc	cgt	288	
	Pro	Pro	Tyr	Ile	Leu 85	Asp	Leu	Leu	Pro	Asp 90	Thr	Tyr	Gln	His	Leu 95	Arg		
	act Thr	atc Ile	ttg Leu	tca Ser 100	aga Arg	tat Tyr	gag Glu	ggg Gly	aag Lys 105	atg Met	gag Glu	aca Thr	ctt Leu	gga Gly 110	gaa Glu	aat Asn	336	
															aag Lys		384	
															gag Glu		432	
															agc Ser		480	
,	_	_	_	_							_	-			cag Gln 175		528	
															aga Arg		576	
															cag Gln		624	
															gct Ala		672	
					Asp		Thr	Cys	Asn	Asp					ttt Phe		720	
															ctc Leu 255		768	
															ttt Phe		816	
	acg Thr	tat Tyr	gac Asp 275	gaa Glu	gtg Val	aaa Lys	gct Ala	cgg Arg 280	ctc Leu	cag Gln	aaa Lys	ttc Phe	att Ile 285	cac His	aaa Lys	cct Pro	864	
	ggc Gly	agt Ser 290	tat Tyr	atc Ile	ttc Phe	cgg Arg	ctg Leu 295	agc Ser	tgt Cys	act Thr	cgt Arg	ctg Leu 300	ggt Gly	cag Gln	tgg Trp	gct Ala	912	

att gg Ile Gl 305	_	-		_	-					_					960
aat aa Asn Ly								-							1008
tat tt Tyr Le															1056
tgt ga Cys Gl															1104
gaa tt Glu Le 37	u Tyr														1152
gct ga Ala Gl 385															1200
tgc ac															1248
cct tt Pro Ph															1296
ccg tt Pro Ph															1344
gga gc Gly Al 45	a Pro														1392
gat ac Asp Th 465															1440
ccg cc Pro Pr															1488
cca co Pro Pr															1536
gct to Ala Se															1584
aaa ga	ac aaa	cca	ttg	cca	gta	cct	ccc	aca	ctt	cga	gat	ctt	cca	cca	1632

Lys	Asp 530	Lys	Pro	Leu	Pro	Val 535	Pro	Pro	Thr	Leu	Arg 540	Asp	Leu	Pro	Pro	
													tcc Ser			1680
													tcc Ser			1728
													tgg Trp 590			1776
													agt Ser			1824
													ttt Phe			1872
													gga Gly			1920
													tta Leu			1968
													gcc Ala 670			2016
			Leu										ctg Leu			2064
Gly aaa	gag Glu 690	caa Gln	tgt Cys	gag Glu	ggt Gly	gaa Glu 695	gag Glu	gac Asp	aca Thr	gag Glu	tac Tyr 700	atg Met	act Thr	ccc Pro	tct Ser	2112
													cga Arg			2160
													atg Met			2208
att Ile	cag Gln	tcc Ser	cag Gln 740	gcg Ala	cca Pro	tct Ser	atc Ile	acc Thr 745	gag Glu	agc Ser	agc Ser	acc Thr	ttt Phe 750	ggt Gly	gaa Glu	2256 .
													gag Glu			2304

.

755	760	765

			•								
				ttt Phe							2352
	_	_	_	ctc Leu 790	_			_	-		2400
				gat Asp							2448
		_		 agg Arg							2496
				ggc Gly							2544
				tca Ser							2592
				tcc Ser 870							2640
				gag Glu							2688
				gcc Ala	-		tag				2721

<210> 258

<211> 906

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 258

Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Gly Thr Gly 1 5 10 15

Ser Gly Gly Ser Gly Ser Gly Gly Leu Ile Gly Leu Met Lys Asp Ala 20 25 30

Pne	GIN	35	нıs	HIS	nis	nis	40	nis	nis	ьeu	ser	45	HIS	PIO	PIO
Gly	Thr 50	Val	Asp	Lys	Lys	Met 55	Val	Glu	Lys	Cys	Trp 60	Lys	Leu	Met	Asp
Lys 65	Val	Val	Arg	Leu	Cys 70	Gln	Asn	Pro	Lys	Leu 75	Ala	Leu	Lys	Asn	Ser 80
Pro	Pro	Tyr	Ile	Leu 85	Asp	Leu	Leu	Pro	Asp 90	Thr	Tyr	Gln	His	Leu 95	Arg
Thr	Ile	Leu	Ser 100	Arg	Tyr	Glu	Gly	Lys 105	Met	Glu	Thr	Leu	Gly 110	Glu	Asn
Glu	Tyr	Phe 115	Arg	Val	Phe	Met	Glu 120	Asn	Leu	Met	Lys	Lys 125	Thr	Lys	Gln
Thr	Ile 130	Ser	Leu	Phe	Lys	Glu 135	Gly	Lys	Glu	Arg	Met 140	Tyr	Glu	Glu	Asn
Ser 145	Gln	Pro	Arg	Arg	Asn 150	Leu	Thr	Lys	Leu	Ser 155	Leu	Ile	Phe	Ser	His 160
Met	Leu	Ala	Glu	Leu 165	Lys	Gly	Ile	Phe	Pro 170	Ser	Gly	Leu	Phe	Gln 175	Gly
Asp	Thr	Phe	Arg 180	Ile	Thr	Lys	Ala	Asp 185	Ala	Ala	Glu	Phe	Trp 190	Arg	Lys
Ala	Phe	Gly 195	Glu	Lys	Thr	Ile	Val 200	Pro	Trp	Lys	Ser	Phe 205	Arg	Gln	Ala
Leu	His 210	Glu	Val	His	Pro	Ile 215	Ser	Ser	Gly	Leu	Glu 220	Ala	Met	Ala	Leu
Lys 225	Ser	Thr	Ile	Asp	Leu 230	Thr	Cys	Asn	Asp	Tyr 235	Ile	Ser	Val	Phe	Glu 240
Phe	Asp	Ile	Phe	Thr 245	Arg	Leu	Phe	Gln	Pro 250	Trp	Ser	Ser	Leu	Leu 255	Arg
Asn	Trp	Asn	Ser	Leu	Ala	Val	Thr	His	Pro	Gly	Tyr	Met	Ala	Phe	Leu

260 265 270

Thr	Tyr	Asp 275	Glu	Val	Lys	Ala	Arg 280	Leu	Gln	Lys	Phe	Ile 285	His	Lys	Pro
Gly	Ser 290	Tyr	Ile	Phe	Arg	Leu 295	Ser	Cys	Thr	Arg	Leu 300	Gly	Gln	Trp	Ala
Ile 305	Gly	Tyr	Val	Thr	Ala 310	Asp	Gly	Asn	Ile	Leu 315	Gln	Thr	Ile	Pro	His 320
Asn	Lys	Pro	Leu	Phe 325	Gln	Ala	Leu	Ile	Asp 330	Gly	Phe	Arg	Glu	Gly 335	Phe
Tyr	Leu	Phe	Pro 340	Asp	Gly	Arg	Asn	Gln 345	Asn	Pro	Asp	Leu	Thr 350	Gly	Leu
Cys	Glu	Pro 355	Thr	Pro	Gln	Asp	His 360	Ile	Lys	Val	Thr	Gln 365	Glu	Gln	Туг
Glu	Leu 370	Tyr	Cys	Glu	Met	Gly 375	Ser	Thr	Phe	Gln	Leu 380	Cys	Lys	Ile	Суз
Ala 385	Glu	Asn	Asp	Lys	Asp 390	Val	Lys	Ile	Glu	Pro 395	Cys	Gly	His	Leu	Met 400
Cys	Thr	Ser	Cys	Leu 405	Thr	Ser	Trp	Gln	Glu 410	Ser	Glu	Gly	Gln	Gly 415	
Pro	Phe	Cys	Arg 420	Cys	Glu	Ile	Lys	Gly 425	Thr	Glu	Pro	Ile	Val 430	Val	Ası
Pro	Phe	Asp 435	Pro	Arg	Gly	Ser	Gly 440	Ser	Leu	Leu •	Arg	Gln 445	Gly	Ala	Glu
Gly	Ala 450	Pro	Ser	Pro	Asn	Tyr 455	Asp	Asp	Asp	Asp	Asp 460	Glu	Arg	Ala	Asp
Asp 465	Thr	Leu	Phe	Met	Met 470	Lys	Glu	Leu	Ala	Gly 475.		Lys	Val	Glu	Arg 480
Pro	Pro	Ser	Pro	Phe 485	Ser	Met	Ala	Pro	Gln 490	Ala	Ser	Leu	Pro	Pro 495	Va]

Pro	Pro	Arg	Leu 500	Asp	Leu	Leu	Pro	Gln 505	Arg	Val	Cys	Val	Pro 510	Ser	Ser
Ala	Ser	Ala 515	Leu	Gly	Thr	Ala	Ser 520	Lys	Ala	Ala	Ser	Gly 525	Ser	Leu	His
Lys	Asp 530	Lys	Pro	Leu	Pro	Val 535	Pro	Pro	Thr	Leu	Arg 540	Asp	Leu	Pro	Pro
Pro 545	Pro	Pro	Pro	Asp	Arg 550	Pro	Tyr	Ser	Val	Gly 555	Ala	Glu	Ser	Arg	Pro 560
Gln	Arg	Arg	Pro	Leu 565	Pro	Cys	Thr	Pro	Gly 570	Asp	Cys	Pro	Ser	Arg 575	Asp
Lys	Leu	Pro	Pro 580	Val	Pro	Ser	Ser	Arg 585	Leu	Gly	Asp	Ser	Trp 590	Leu	Pro
Arg	Pro	Ile 595	Pro	Lys	Val	Pro	Val 600	Ser	Ala	Pro	Ser	Ser 605	Ser	Asp	Pro
Trp	Thr 610	Gly	Arg	Glu	Leu	Thr 615	Asn	Arg	His	Ser	Leu 620	Pro	Phe	Ser	Leu
Pro 625	Ser	Gln	Met	Glu	Pro 630	Arg	Pro	Asp	Val	Pro 635	Arg	Leu	Gly	Ser	Thr 640
Phe	Ser	Leu	Asp	Thr 645	Ser	Met	Ser	Met	Asn 650	Ser	Ser	Pro	Leu	Val 655	Gly
Pro	Glu	Cys	Asp 660	His	Pro	Lys	Ile	Lys 665	Pro	Ser	Ser	Ser	Ala 670	Asn	Ala
Ile	Tyr	Ser 675	Leu	Ála	Ala	Arg	Pro 680	Leu	Pro	Val	Pro	Lys 685	Leu	Pro	Pro
Gly	Glu 690	Gln	Cys	Glu	Gly	Glu 695	Glu	Asp	Thr	Glu	Tyr 700	Met	Thr	Pro	Ser
Ser 705	Arg	Pro	Leu	Arg	Pro 710	Leu	Asp	Thr	Ser	Gln 715	Ser	Ser	Arg	Ala	Cys 720

•

Asp Cys Asp Gln Gln Ile Asp Ser Cys Thr Tyr Glu Ala Met Tyr Asn 725 730 735

Ile Gln Ser Gln Ala Pro Ser Ile Thr Glu Ser Ser Thr Phe Gly Glu 740 745 750

Gly Asn Leu Ala Ala Ala His Ala Asn Thr Gly Pro Glu Glu Ser Glu 755 760 765

Asn Glu Asp Asp Gly Phe Asp Val Pro Lys Pro Pro Val Pro Ala Val 770 775 780

Leu Ala Arg Arg Thr Leu Ser Asp Ile Ser Asn Ala Ser Ser Ser Phe 785 790 . 795 800

Gly Trp Leu Ser Leu Asp Gly Asp Pro Thr Thr Asn Val Thr Glu Gly 805 810 815

Ser Gln Val Pro Glu Arg Pro Pro Lys Pro Phe Pro Arg Arg Ile Asn 820 825 830

Ser Glu Arg Lys Ala Gly Ser Cys Gln Gln Gly Ser Gly Pro Ala Ala 835 840 845

Ser Ala Ala Thr Ala Ser Pro Gln Leu Ser Ser Glu Ile Glu Asn Leu 850 855 860

Met Ser Gln Gly Tyr Ser Tyr Gln Asp Ile Gln Lys Ala Leu Val Ile 865 870 875 880

Ala Gln Asn Asn Ile Glu Met Ala Lys Asn Ile Leu Arg Glu Phe Val 885 890 895

Ser Ile Ser Ser Pro Ala His Val Ala Thr 900 905

<210> 259

<211> 2721

<212> DNA

<213> Artificial

<220>

<223> c-Cbl_Y700F/Y731F/Y774F

<220> <221> CDS <222> (1)..(2718)<400> 259 48 atq qcc qqc aac qtg aag aag agc tct ggg gcc ggg ggc acg ggc Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Thr Gly 10 96 tcc ggg ggc tcg ggt tcg ggt ggc ctg att ggg ctc atg aag gac gcc Ser Gly Gly Ser Gly Ser Gly Gly Leu Ile Gly Leu Met Lys Asp Ala 20 25 ttc cag ccg cac cac cac cac cac cac ctc agc ccc cac ccg ccg 144 Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro 40 192 ggg acg gtg gac aag atg gtg gag aag tgc tgg aag ctc atg gac Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp 55 50 aag gtg gtg cgg ttg tgt cag aac cca aag ctg gcg cta aag aat agc 240 Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser 70 cca cct tat atc tta gac ctg cta cca gat acc tac cag cat ctc cgt 288 Pro Pro Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg 90 336 act atc ttg tca aga tat gag ggg aag atg gag aca ctt gga gaa aat Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn 110 100 105 384 Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln 120 115 432 acc ata agc ctc ttc aag gag gga aaa gaa atg tat gag gag aat Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn 130 135 tct cag cct agg cga aac cta acc aaa ctg tcc ctc atc ttc agc cac 480 Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His 150 155 145 atg ctg gca gaa cta aaa gga atc ttt cca agt gga ctc ttt cag gga 528 Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly 170 gac aca ttt cgg att act aaa gca gat gct gcg gaa ttt tgg aga aaa 576 Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys 185 180 gct ttt ggg gaa aag aca ata gtc cct tgg aag agc ttt cga cag gct 624 Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala 200 205 195

		_				atc Ile 215	-			_						672	
						acc Thr										720	
						ctc Leu										768	
						gta Val										816	
						gct Ala										864	
						ctg Leu 295										912	
						gat Asp										960	
						gca Ala										1008	
						cga Arg										1056	
						gac Asp										1104	
						ggc Gly 375										1152	
						gta Val										1200	
						tcc Ser										1248	
cct Pro	ttc Phe	tgc Cys	cga Arg 420	tgt Cys	gaa Glu	att Ile	aaa Lys	ggt Gly 425	act Thr	gaa Glu	ccc Pro	atc Ile	gtg Val 430	gta Val	gat Asp	1296	

.

						agt Ser										1344
						tat Tyr 455										1392
						aag Lys										1440
						atg Met										1488
						ctg Leu										1536
						gct Ala										1584
						gta Val 535										1632
						cca Pro										1680
caa Gln	aga Arg	cgc Arg	ccc Pro	ttg Leu 565	cct Pro	tgt Cys	aca Thr	cca Pro	ggc Gly 570	gac Asp	tgt Cys	ccc Pro	tcc Ser	aga Arg 575	gac Asp	1728
						tct Ser										1776
						cca Pro										1824
						acc Thr 615										1872
						aga Arg										1920
						atg Met										1968
cca	gag	tgt	gac	cac	ccc	aaa	atc	aaa	cct	tcc	tca	tct	gcc	aat	gcc	2016

Pro	Glu	Суѕ	Asp 660	His	Pro	Lys	Ile	Lys 665	Pro	Ser	Ser	Ser	Ala 670	Asn	Ala		
								ctt Leu								2064	
Gly	gag Glu 690	caa Gln	tgt Cys	gag Glu	ggt Gly	gaa Glu 695	gag Glu	gac Asp	aca Thr	gag Glu	ttc Phe 700	atg Met	act Thr	ccc Pro	tct Ser	2112	
								aca Thr								2160	
								tgt Cys								2208	
								acc Thr 745								2256	
								aac Asn								2304	
								cca Pro								2352	
ctg Leu 785	gcc Ala	cgc Arg	cga Arg	act Thr	ctc Leu 790	tca Ser	gat Asp	atc Ile	tct Ser	aat Asn 795	gcc Ala	agc Ser	tcc Ser	tcc Ser	ttt Phe 800	2400	·
ggc Gly	tgg Trp	ttg Leu	tct Ser	ctg Leu 805	gat Asp	ggt Gly	gat Asp	cct Pro	aca Thr 810	aca Thr	aat Asn	gtc Val	act Thr	gaa Glu 815	ggt Gly	2448	
								aaa Lys 825								2496	
tct Ser	gaa Glu	cgg Arg 835	aaa Lys	gct Ala	ggc Gly	agc Ser	tgt Cys 840	cag Gln	caa Gln	ggt Gly	agt Ser	ggt Gly 845	cct Pro	gcc Ala	gcc Ala	2544	
tct Ser	gct Ala 850	gcc Ala	acc Thr	gcc Ala	tca Ser	cct Pro 855	cag Gln	ctc Leu	tcc Ser	agt Ser	gag Glu 860	atc Ile	gag Glu	aac Asn	ctc Leu	2592	
atg Met 865	agt Ser	cag Gln	ggg Gly	tac Tyr	tcc Ser 870	tac Tyr	cag Gln	gac Asp	atc Ile	cag Gln 875	aaa Lys	gct Ala	ttg Leu	gtc Val	att Ile 880	2640	
gcc Ala	cag Gln	aac Asn	aac Asn	atc Ile	gag Glu	atg Met	gcc Ala	aaa Lys	aac Asn	atc Ile	ctc Leu	cgg Arg	gaa Glu	ttt Phe	gtt Val	2688	

tcc att tct tct cct gcc cat gta gct acc tag Ser Ile Ser Ser Pro Ala His Val Ala Thr 900

2721

<210> 260

<211> 906

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 260

Met Ala Gly Asn Val Lys Lys Ser Ser Gly Ala Gly Gly Thr Gly 5

Ser Gly Gly Ser Gly Ser Gly Leu Ile Gly Leu Met Lys Asp Ala 25 20

Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro 40

Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp 60

Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser 70 65

Pro Pro Tyr Ile Leu Asp Leu Pro Asp Thr Tyr Gln His Leu Arg 90 85

Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn 105 100

Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln 120

Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn 130 135

Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His 150 155 145

Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly 165 170 175

Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys 180 185 190

Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala 195 200 205

Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu 210 215 .220

Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu 225 230 235 240

Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg 245 250 255

Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu 260 265 270

Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro 275 280 285

Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala 290 295 300

Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His 305 310 315

Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe 325 330 335

Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu 340 345 350

Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Glu Gln Tyr 355 360 365

Glu Leu Tyr Cys Glu Met Gly Ser Thr Phe Gln Leu Cys Lys Ile Cys 370 375 380

Ala Glu Asn Asp Lys Asp Val Lys Ile Glu Pro Cys Gly His Leu Met

Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu 435 440 445

Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp 450 460

Asp Thr Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg 465 470 475 480

Pro Pro Ser Pro Phe Ser Met Ala Pro Gln Ala Ser Leu Pro Pro Val 485 490 495

Pro Pro Arg Leu Asp Leu Leu Pro Gln Arg Val Cys Val Pro Ser Ser .500 505 510

Ala Ser Ala Leu Gly Thr Ala Ser Lys Ala Ala Ser Gly Ser Leu His 515 520 525

Lys Asp Lys Pro Leu Pro Val Pro Pro Thr Leu Arg Asp Leu Pro Pro 530 540

Pro Pro Pro Pro Asp Arg Pro Tyr Ser Val Gly Ala Glu Ser Arg Pro 545 550 555 560

Gln Arg Arg Pro Leu Pro Cys Thr Pro Gly Asp Cys Pro Ser Arg Asp 565 570 575

Lys Leu Pro Pro Val Pro Ser Ser Arg Leu Gly Asp Ser Trp Leu Pro 580 585 590

Arg Pro Ile Pro Lys Val Pro Val Ser Ala Pro Ser Ser Ser Asp Pro 595 600 605

Trp Thr Gly Arg Glu Leu Thr Asn Arg His Ser Leu Pro Phe Ser Leu 610 615 620

Pro 625	Ser	Gln	Met	Glu	Pro 630	Arg	Pro	Asp	Val	Pro 635	Arg	Leu	Gly	Ser	Thr 640
Phe	Ser	Leu	Asp	Thr 645	Ser	Met	Ser	Met	Asn 650	Ser	Ser	Pro	Leu	Val 655	Gly
Pro	Glu	Cys	Asp 660	His	Pro	Lys	Ile	Lys 665	Pro	Ser	Ser	Ser	Ala 670	Asn	Ala
Ile	Tyr	Ser 675	Leu	Ala	Ala	Arg	Pro 680	Leu	Pro	Val	Pro	Lys 685	Leu	Pro	Pro
Gly	Glu 690	Gln	Суѕ	Glu	Gly	Glu 695	Glu	Asp	Thr	Glu	Phe 700	Met	Thr	Pro	Ser
Ser 705	Arg	Pro	Leu	Arg	Pro 710	Leu	Asp	Thr	Ser	Gln 715	Ser	Ser	Arg	Ala	Cys 720
Asp	Cys	Asp	Gln	Gln 725	Ile	Asp	Ser	Cys	Thr 730	Phe	Glu	Ala	Met	Tyr 735	Asn
Ile	Gln	Ser	Gln 740	Ala	Pro	Ser	Ile	Thr 745	Glu	Ser	Ser	Thr	Phe 750	Gly	Glu
Gly	Asn	Leu 755	Ala	Ala	Ala	His	Ala 760	Asn	Thr	Gly	Pro	Glu 765	Glu	Ser	Glu
Asn	Gļu 770	Asp	Asp	Gly	Phe	Asp 775	Val	Pro	Lys	Pro	Pro 780	Val	Pro	Ala	Val
Leu 785	Ala	Arg	Arg	Thr	Leu 790	Ser	Asp	Ile	Ser	Asn 795	Ala	Ser	Ser	Ser	Phe 800
Gly	Trp	Leu	Ser	Leu 805	Asp	Gly	Asp	Pro	Thr 810	Thr	Asn	Val	Thr	Glu 815	Gly
Ser	Gln	Val	Pro 820	Glu	Arg	Pro	Pro	Lys 825	Pro	Phe	Pro	Arg	Arg 830	Ile	Asn
Ser	Glu	Arg 835	Lys	Ala	Gly	Ser	Cys 840	Gln	Gln	Gly	Ser	Gly 845	Pro	Ala	Ala

Ser Ala Ala 850	Thr Ala Ser	Pro Gln Leu 855	Ser Ser Glu 860		Asn Leu
Met Ser Gln 865	Gly Tyr Ser 870	Tyr Gln Asp	lle Gln Lys 875	Ala Leu	Val Ile 880
Ala Gln Asn	Asn Ile Glu 885	Met Ala Lys	Asn Ile Leu 890		Phe Val 895
Ser Ile Ser	Ser Pro Ala	His Val Ala			
<210> 261 <211> 1443 <212> DNA <213> Artis	ficial				
<220> <223> c-Cb	1 480				
<220> <221> CDS <222> (1).	. (1440)		•		
		aag agc tct Lys Ser Ser		Gly Gly	
		ggt ggc ctg Gly Gly Leu 25			
		cac cac cac His His His			
		atg gtg gag Met Val Glu 55			
		cag aac cca Gln Asn Pro			
		ctg cta cca Leu Leu Pro		Gln His	
		gag ggg aag Glu Gly Lys			

100 105 110

				gtg Val							384
				ttc Phe							432
				cga Arg							480
				cta Leu 165							528
				att Ile							576
_			_	aag Lys							624
		_	-	cat His							672
				gat Asp							720
	_			acc Thr 245	-						768
				ctt Leu							816
				gtg Val							864
				ttc Phe							912
				act Thr							960
				ttc Phe 325							1008

tat ttg Tyr Leu	Phe Pi	_		-		_			-	-		-		1056
tgt gaa Cys Glu				-						_	_			1104
gaa tta Glu Leu 370	-									_			-	1152
gct gaa Ala Glu 385														1200
tgc aca Cys Thr	_	_				_	_		_				-	1248
cct ttc Pro Phe	Cys A		_					-						1296
ccg ttt Pro Phe	_	-		_		_	_	_				-		1344
gga gct Gly Ala 450					-	-	_	_	_	-				1392
gat act Asp Thr 465		-	_	_	_	_	_		_	-		_		1440
tag											•			1443
<211> 4 <212> H	262 180 PRT Artific	cial												
<220> <223>	Synthet	cic Co	nstru	ıct										
<400> 2	262													
Met Ala 1	Gly As	sn Val 5	Lys	Lys	Ser	Ser	Gly 10	Ala	Gly	Gly	Gly	Thr 15	Gly	

Ser Gly Gly Ser Gly Ser Gly Gly Leu Ile Gly Leu Met Lys Asp Ala 20 2530

Phe Gln Pro His His His His His His Leu Ser Pro His Pro Pro Gly Thr Val Asp Lys Lys Met Val Glu Lys Cys Trp Lys Leu Met Asp Lys Val Val Arg Leu Cys Gln Asn Pro Lys Leu Ala Leu Lys Asn Ser Pro Pro Tyr Ile Leu Asp Leu Leu Pro Asp Thr Tyr Gln His Leu Arg Thr Ile Leu Ser Arg Tyr Glu Gly Lys Met Glu Thr Leu Gly Glu Asn Glu Tyr Phe Arg Val Phe Met Glu Asn Leu Met Lys Lys Thr Lys Gln Thr Ile Ser Leu Phe Lys Glu Gly Lys Glu Arg Met Tyr Glu Glu Asn Ser Gln Pro Arg Arg Asn Leu Thr Lys Leu Ser Leu Ile Phe Ser His Met Leu Ala Glu Leu Lys Gly Ile Phe Pro Ser Gly Leu Phe Gln Gly 165 · Asp Thr Phe Arg Ile Thr Lys Ala Asp Ala Ala Glu Phe Trp Arg Lys Ala Phe Gly Glu Lys Thr Ile Val Pro Trp Lys Ser Phe Arg Gln Ala Leu His Glu Val His Pro Ile Ser Ser Gly Leu Glu Ala Met Ala Leu Lys Ser Thr Ile Asp Leu Thr Cys Asn Asp Tyr Ile Ser Val Phe Glu Phe Asp Ile Phe Thr Arg Leu Phe Gln Pro Trp Ser Ser Leu Leu Arg

Asn Trp Asn Ser Leu Ala Val Thr His Pro Gly Tyr Met Ala Phe Leu Thr Tyr Asp Glu Val Lys Ala Arg Leu Gln Lys Phe Ile His Lys Pro Gly Ser Tyr Ile Phe Arg Leu Ser Cys Thr Arg Leu Gly Gln Trp Ala Ile Gly Tyr Val Thr Ala Asp Gly Asn Ile Leu Gln Thr Ile Pro His Asn Lys Pro Leu Phe Gln Ala Leu Ile Asp Gly Phe Arg Glu Gly Phe Tyr Leu Phe Pro Asp Gly Arg Asn Gln Asn Pro Asp Leu Thr Gly Leu Cys Glu Pro Thr Pro Gln Asp His Ile Lys Val Thr Gln Glu Gln Tyr Glu Leu Tyr Cys Glu Met Gly Ser Thr Phe Gln Leu Cys Lys Ile Cys Ala Glu Asn Asp Lys Asp Val Lys Ile Glu Pro Cys Gly His Leu Met Cys Thr Ser Cys Leu Thr Ser Trp Gln Glu Ser Glu Gly Gln Gly Cys Pro Phe Cys Arg Cys Glu Ile Lys Gly Thr Glu Pro Ile Val Val Asp Pro Phe Asp Pro Arg Gly Ser Gly Ser Leu Leu Arg Gln Gly Ala Glu Gly Ala Pro Ser Pro Asn Tyr Asp Asp Asp Asp Glu Arg Ala Asp Asp Thr Leu Phe Met Met Lys Glu Leu Ala Gly Ala Lys Val Glu Arg

<211> 2721

<212> DNA

<213> Homo sapiens

<400> 263 atggccggca acgtgaagaa gagctctggg gccgggggcg gcacgggctc cgggggctcg 60 120 ggttcgggtg gcctgattgg gctcatgaag gacgccttcc agccgcacca ccaccaccac 180 caccacctca qccccaccc gccggggacg gtggacaaga agatggtgga gaagtgctgg 240 aagctcatgg acaaggtggt gcggttgtgt cagaacccaa agctggcgct aaagaatagc 300 ccaccttata tottagacct gctaccagat acctaccagc atctccgtac tatcttgtca agatatgagg ggaagatgga gacacttgga gaaaatgagt attttagggt gtttatggag 360 aatttgatga agaaaactaa gcaaaccata agcctcttca aggagggaaa agaaagaatg 420 480 tatgaggaga attctcagcc taggcgaaac ctaaccaaac tgtccctcat cttcagccac atgctggcag aactaaaagg aatctttcca agtggactct ttcagggaga cacatttcgg 540 600 attactaaag cagatgctgc ggaattttgg agaaaagctt ttggggaaaa gacaatagtc 660 ccttggaaga gctttcgaca ggctctacat gaagtgcatc ccatcagttc tgggctggag 720 gccatggctc tgaaatccac tattgatctg acctgcaatg attatatttc ggtttttgaa 780 tttgacatct ttacccgact ctttcagccc tggtcctctt tgctcaggaa ttggaacagc cttgctgtaa ctcatcctgg ctacatggct tttttgacgt atgacgaagt gaaagctcgg 840 900 ctccagaaat tcattcacaa acctggcagt tatatcttcc ggctgagctg tactcgtctg 960 ggtcagtggg ctattgggta tgttactgct gatgggaaca ttctccagac aatccctcac 1020 aataaacctc tcttccaagc actgattgat ggcttcaggg aaggcttcta tttgtttcct 1080 gatggacgaa atcagaatcc tgatctgact ggcttatgtg aaccaactcc ccaagaccat atcaaagtga cccaggaaca atatgaatta tactgtgaga tgggctccac attccaacta 1140 1200 tgtaaaatat gtgctgaaaa tgataaggat gtaaagattg agccctgtgg acacctcatg 1260 tgcacatcct gtcttacatc ctggcaggaa tcagaaggtc agggctgtcc tttctgccga tgtgaaatta aaggtactga acccatcgtg gtagatccgt ttgatcctag agggagtggc 1320 1380 agcctgttga ggcaaggagc agagggagct ccctccccaa attatgatga tgatgatgat 1440 gaacgagctg atgatactct cttcatgatg aaggaattgg ctggtgccaa ggtggaacgg 1500 ccgccttctc cattctccat ggccccacaa gcttcccttc ccccggtgcc accacgactt gaccttctgc cgcagcgagt atgtgttccc tcaagtgctt ctgctcttgg aactgcttct 1560

1620 aaggetgett etggeteect teataaagae aaaceattge eagtacetee caeaettega 1680 gatcttccac caccaccgcc tccagaccgg ccatattctg ttggagcaga atcccgacct 1740 caaagacgcc ccttgccttg tacaccaggc gactgtccct ccagagacaa actgccccct 1800 gtcccctcta gccgccttgg agactcatgg ctgccccggc caatccccaa agtaccagta 1860 tctgccccaa gttccagtga tccctggaca ggaagagaat taaccaaccg gcactcactt 1920 ccattttcat tgccctcaca aatggagccc agaccagatg tgcctaggct cggaagcacg 1980 ttcagtctgg atacctccat gagtatgaat agcagcccat tagtaggtcc agagtgtgac caccccaaaa tcaaaccttc ctcatctgcc aatgccattt attctctggc tgccagacct 2040 2100 cttcctgtgc caaaactgcc acctggggag caatgtgagg gtgaagagga cacagagtac 2160 atgactccct cttccaggcc tctacggcct ttggatacat cccagagttc acgagcatgt qattqcqacc aqcaqattqa taqctqtacq tatgaagcaa tgtataatat tcagtcccag 2220 2280 gcgccatcta tcaccgagag cagcaccttt ggtgaaggga atttggccgc agcccatgcc 2340 aacactggtc ccgaggagtc agaaaatgag gatgatgggt atgatgtccc aaagccacct gtgccggccg tgctggcccg ccgaactctc tcagatatct ctaatgccag ctcctccttt 2400 2460 ggctggttgt ctctggatgg tgatcctaca acaaatgtca ctgaaggttc ccaagttccc gagaggcctc caaaaccatt cccgcggaga atcaactctg aacggaaagc tggcagctgt 2520 cagcaaggta gtggtcctgc cgcctctgct gccaccgcct cacctcagct ctccagtgag 2580 2640 atcgagaacc tcatgagtca ggggtactcc taccaggaca tccagaaagc tttggtcatt 2700 qcccaqaaca acatcqaqat qgccaaaaac atcctccggg aatttgtttc catttcttct 2721 cctgcccatg tagctaccta g

<210> 264

<211> 42

<212> DNA

<213> artificial

<220>

<223> synthetic oligonucleotide probe for detecting mouse NPY mRNA

42

<400> 264

gagggtcagt ccaçacagcc ccattcgctt gttacctagc at

<210> 265

<211> 45

<212> DNA

<213> artificial

<220> <223>	synthetic oligonucleotide probe for detecting mouse coca	ine- and
12201	amphetamine-regulated transcript mRNA	
<400>	265	
tccttc	tcgt gggacgcatc atccacggca gagtagatgt ccagg	45
<210>	266	
<211>	45	
<212>	DNA	
<213>	artificial	
<220>		
<223>	synthetic oligonucleotide probe for detecting mouse corticotropin-releasing hormone mRNA	
<400>	266	
	atct ccatcagttt cctgttgctg tgagcttgct gagct	45
<210>		
<211>	•	
<212>		
<213>	artificial	
<220>		
<223>	synthetic oligonucleotide probe for detecting mouse thyrotropin-releasing hormone mRNA	
<400>	267	
aacctt	actc ctccagaggt tccctgaccc aggcttccag ttgtg	45
<210>	268	
<211>		
<212>		
	artificial	
<220>		
	synthetic oligonucleotide for knocking down mouse Cbl ex	rpression
<223>		•
<223> <400>	268 ttcc ggattacta	19

* •