

CSE211 – Formal Languages and Automata Theory

U1L19 – Closure Properties of RL

Dr. P. Saravanan

School of Computing SASTRA Deemed University

Agenda

- Recap of previous class
- Closure properties of RL
- Decision properties of RL
 - Emptiness
 - Membership

Closure Properties of RL's

- The term "closure" means "being closed" in the same type of language domain, such as RL's.
- Ex: Addition of integer is closure.
 - Integer+integer=integer
- We will prove a set of "closure" theorems of the form

 "if certain languages are regular, and a language L is formed from them by certain operations, then L is also regular."

Operations on Languages

- Language operations for the above statement to be true include:
 - Union
 - Concatenation
 - Closure (star)
 - Intersection
 - Complementation
 - Difference
 - Reversal
 - Homomorphism
 - Inverse homomorphism

- The union of two regular languages is regular
- The concatenation of regular languages is regular
- The closure (star) of a regular language is regular
- The intersection of two regular languages is regular
- The complement of a regular language is regular
- The difference of two regular languages is regular
- The reversal of a regular language is regular
- A homomorphism(substitution of strings for symbols) of a regular language is regular
- The inverse homomorphism of a regular language is regular

Bu definition of Regular Language

Closure of Regular Languages Under Boolean Operations

The three Boolean operations are union, intersection and complementation

- Let L and M be languages over alphabet Σ. Then LUM is the language that contains all strings that are in either or both of L and M
- Let L and M be languages over alphabet Σ. Then L∩M is the language that contains all strings that are in both L and M
- Let L be a language over alphabet Σ. Then L the complement of L is the set of strings in Σ^* (universal Language) that are not in L

Closed Under Complementation

■ Theorem 4.5: If L is a regular language over alphabet then the complement $= \Sigma^* - L$ is also an RL (Σ^* is the universal language)

PROOF: Let L = L(A) for some DFA $A = (Q, \Sigma, \delta, q_0, F)$. Then $\overline{L} = L(B)$, where B is the DFA $(Q, \Sigma, \delta, q_0, Q - F)$. That is, B is exactly like A, but the accepting states of A have become nonaccepting states of B, and vice versa. Then w is in L(B) if and only if $\hat{\delta}(q_0, w)$ is in Q - F, which occurs if and only if w is not in L(A). \square

Closed Under Complementation

Let A be the automaton of Fig.

- Recall that DFA A accepts all and only the strings of 0s and 1s and ends with
 01. In regular expression terms (0+1)*01.
- The Complement is

Closed Under Intersection

- If L and M are regular languages, then so is $L \cap M$.
- Proof:
- Using Demargon's Law

```
■ L ∩ M = (L 'U M')'
```


DFA for Intersection (Product Automaton)

- Let A and B be DFA's whose languages are L and M, respectively.
- Construct C, the product automaton of A and B.
- Make the final states of C be the pairs consisting of final states of both A and B.

Example: Product DFA for

Intersection

Closed Under Difference

- Theorem 4.10: If L and M are regular languages then so is L - M = strings in L but not M
- Proof:

```
 L-M = (L \cap M)'
```

- $= (RE \cap RE)'$
- = (RE)'
- = RE

Closed under Reversal

- The **reversal** of a string $w = a_1 a_2$, ... a_n is $w^R = a_n a_{n-1} ... a_2 a_1$.
- The **reversal** *L*^R of a language *L* is the language consisting of the reversals of all its strings.
- Theorem 4.11: the reversal L^R of an RL L is also an RL.

Closure under Homomorphism

- A (string) homomorphism is a function h which substitutes a particular string for each symbol. That is, h(a) = x, where a is a symbol and x is a string.
- Given $w = a_1 a_2 ... a_n$, define $h(w) = h(a_1)h(a_2)...h(a_n)$.
- Given a language, define

$$h(L) = \{h(w) \mid w \in L\}.$$

■ Theorem 4.14 - If L is an RL, then h(L) is also an RL where h is a homomorphism.

Closure under Homomorphism

- Example 4.13
 - Let function h be defined as

$$h(0)=ab$$
 and $h(1)=\varepsilon$,

then *h* is a string homomorphism.

For examples,

1.
$$h(0011) = h(0)h(0)h(1)h(1)$$

= $abab\epsilon\epsilon = abab$.

2. If RE
$$r = 10^*1$$
, then $h(L(r)) = L((ab)^*)$.

Closed under inverse homomorphism

Inverse homomorphism:

Let h be a homomorphism from some alphabet Σ to strings in another alphabet T. Let L be an RL over T. Then $h^{-1}(L)$ is the set of strings w such that h(w) is in L.

- $h^{-1}(L)$ is read "h inverse of L."
- Theorem 4.16 If h is a homomorphism from alphabet Σ to alphabet T, and L is an RL, then $h^{-1}(L)$ is also an RL.

Closed under inverse homomorphism

Example

- Let $L = L((\mathbf{00} + \mathbf{1})^*)$
- Let (string) homomorphism h be defined as h(a) = 00, h(b) = 1.
- It can be proved that

$$h^{-1}(L) = \{\varepsilon, a, b, aa, bb, ab, ba, \dots \}$$

- Converting among Representations
 - Assume #symbols = constant and #states = n.
 - From an RE to an automaton (ε-NFA) --- requiring linear time in the size of the RE
 - Conversion from an ε -NFA to a DFA --- requiring $O(n^32^n)$ time in the worse cases
 - Conversion from a DFA to an NFA --- requiring O(n) time
 - From an automaton (DFA) to an RE --- requiring $O(n^34^n)$ time

- Testing Emptiness of RL's
 - Testing if a regular language generated by an automaton is empty:
 - Equivalent to testing if there exists no path from the start state to an accepting state.
 - Requiring $O(n^2)$ time in the worse case.
 - Why? Time proportional to #arcs
 - \Rightarrow each state has at most *n* arcs (to the *n* states)
 - \Rightarrow at most n^2 arcs
 - \Rightarrow at most O(n^2) time

- Testing Emptiness of RL's
 - A 2-step method for testing if a language generated by an RE is empty:
 - Convert the RE to an ε -NFA --requiring O(s) time as said previously, where s = |RE| (length of RE).
 - Test if the language of the ε -NFA is empty --- requiring $O(n^2)$ time as said above.
 - The overall time requirement is $O(s) + O(n^2)$

- Testing Membership in an RL
 - Membership Problem:

given an RL L and a string w, is $w \in L$?

- If L is represented by a DFA, the algorithm to answer the problem requires O(n) time, where n = |w| (# symbols in the string instead of #states of the automaton).
- Why? Just processing input symbols one by one to see if an accepting state is reached.

Summary

- Closure properties of RL
 - Closed Union, Concatenation, Closure (star),
 Intersection, Complementation, Difference, Reversal,
 Homomorphism, Inverse homomorphism

- John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, *Introduction to Automata Theory*, Languages, and Computation, Pearson, 3rd Edition, 2011.
- Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class:

Minimization of DFA THANK YOU.