Combining SA+DO

How to start with Python toolboxes?

Aircraft Design

Fluid x control x physics x applied maths x structures

Range = $Vt_f = V \times$

Strong coupling Aero elastic group Power plant group Empennage group Hydraulies group Materials group Between anding gear Stress group **Disciplines** 9 10 11 12 13 14 15 16 Avionics group Electrical group Escape system Armament Landing gear Hydraulies group Flight control system Environment and control 8 Power plant group Fatigue group 10 Aero elastic group 11 Stress group 12 Materials gruop 13 Empennage group 14 Wing group 15 Rear fuselage Fuselage group

Topology x Material x Process

&materials

aircraft designer

propulsion system designer

Structures/materials

Advanced assembling

• Replacing rivets/bolts with bonding in aeronautical assemblies

Advanced Structures for H2 tank

Al predictive maintenance

Worst case design

ALM and topogy optimization

Advanced materials/processes

· Composite materials + advanced airframe design and optimization → ~13t (~12%) airframe weight savings → ~20t (~8%) MEW weight savings → 6% fuel savings

FSI/Load Alleviation / HARW

First MDO example!

4 disciplines

- Low cost satellite
- HALE: No propulsion
- →Only CO2 footprint PP (no Fuel Burn)

scientific reports

OPEN

CO₂ footprint minimization of solar-powered HALE using MDO and eco-material selection

Edouard Duriez^{1,3}, Víctor Manuel Guadaño Martín^{2,3} & Joseph Morlier^{1,3}

Embodied carbon (kgCO₂e) =
$$\sum_{\substack{\text{Sum for all} \\ \text{materials}}} \left(\boxed{\text{Quantity (kg)}} \times \boxed{\text{Carbon factor (kgCO2e/kg)}} \right)$$

Discipline	Method	Implementation	References
Aerodynamics	VLM	OAS	28
Structure	Wingbox beams	OAS	17
Energy	Simple in-house method	Section "OpenAeroStruct to Eco-HALE"	Data from ¹⁴
Environmental	Proportional to mass	Section "MDO framework summary"	Data from ^{29,30}

CO2 footprint minimization

(a) Objective function: total CO2 emitted:

(b) Material density for skins and spars:

CAD model of the optimal HALE obtained

A slight increase in the total weight of the drone leads to an increase in the weight of the battery and the solar panel in order to propel a heavier drone,

But also to: an increase in the weight of the wing structure that induces a more important lift to compensate \rightarrow increase in the overall weight of the drone.

→ "snowball" effect.

Second MDO example!

Welcome in space;)

https://hal.science/hal-03888108/

Objective function: GLOW

Design variables : $X_{eng}, m_{pl}, X_{traj}, d_{stage}$

Constraints : $\Delta V_{final} \geq 0$

73rd International Astronautical Congress (IAC) 2022 – Paris, France Copyright 2022 by Mr. Thomas Bellier. Published by the IAF, with permission and released to the IAF to publish in all forms.

IAC-22,D2,IPB,26,x71719

Impact of Life Cycle Assessment Considerations on Launch Vehicle Design

Thomas Bellier^{1, 2, *}, Annafederica Urbano¹, Joseph Morlier¹, Cees Bil², and Adrian Pudsey²

¹ Institut Supérieur de l'Aéronautique et de l'Espace SUPAERO, Université de Toulouse, Toulouse, France
² Royal Melbourne Institute of Technology (RMIT), Melbourne, Australia

*Corresponding author Email: thomas.bellier@isae-supaero.fr

X* and LCA (X*)

And avoid Greenwashing!!!

Early LCA results demonstrate that manufacturing take into account 20% of Global Warming Potential (wrt 1% in Aircraft)

Before the Third MDO example!

LCA in a nutshell

Life Cycle Assessment

ISO norm:

- Proper goal and scope definition, including functional unit
- Inventory analysis and the database problem
- Selection of impacts, and difference between raw flux, midpoint, and endpoint impacts

A simple example

P2

Production of electricity:

- expressed in flow diagram terms:

- expressed in mathematical terms:

$$\begin{pmatrix}
-2 \\
10 \\
1 \\
0.1 \\
0
\end{pmatrix}$$

Production of fuel:

- expressed in flow diagram terms:

expressed in mathematical terms:

Minus (-) need Plus (+) produce

Need X2 liters of fuel to produce Y2 kWh of electricity and Z21 kg of CO2 and Z22 kg of SO₂

But to produce *Y1* liters of fuel, You need *X1* liters of crude oil and you produce *Z11* kg of CO2 and *Z12* kg of SO₂

A simple LCA

We need to match supply and demand.

```
%process=['fuel production'; 'electricity production'];
                                                                                           200 liter 200 liter
                                                                                                                          1000 kWh
                                                                                                                                       1000 kWh
%econflow=['litre of fuel'; 'kWh of electricity'];
%envflow=['kg of carbon dioxide'; 'kg of sulphur
dioxide'; 'litre of crude oil'];
%definition of the system:
                                                                                      20 kg CO<sub>2</sub>
                                                                                                                      100 kg CO<sub>2</sub>
%the technology matrix
A=[-2 \ 100;10 \ 0];
                                              Need 2*50=100L Crude oil
                                                                                                      Produce 120kg CO<sub>2</sub>
%the intervention matrix
                                                                                                      120 kg CO<sub>2</sub>
                                              Produce 2*2+100*0.1=14Kg S0<sub>2</sub>
B=[1 \ 10;0.1 \ 2;0 \ -50];
%the final demand vector
f=[0; 1000];
                                                                                              Production of electricity:
                                         Production of fuel:
                                                                                               - expressed in flow diagram terms:

expressed in flow diagram terms:

                                                                                               2 liters of fuel
                                                                                                                                  10 kWh of electricity
                                                                               100 liters of fuel
LCAcalc
                                                                               10 kg of CO<sub>2</sub>
                                                                                                                                  1 kg of CO<sub>2</sub>
                                         50 liters of crude oil
                                                                               2 kg of SO<sub>2</sub>
                                                                                                                                  0.1 kg of SO<sub>2</sub>
```

Phases of an LCA

- Goal and scope definition
- Inventory
- Impact assessment
- Interpretation

UTM Summer 2025

Figure: ISO 14040

Third MDO example!

MOO

%f1=Minimize (f_sellar) and f2=minimise (GWP)

f1=Minimize (-range) and f2=minimise (GWP) % second problem

$$f = \alpha * f1 + (1 - \alpha) * f2$$

https://pymoo.org

Hybrid Aircraft Problem (MDOlab)

- Hybridised King Air C90GT from <u>OpenConcept</u>, built in *OpenMDAO* format
- Four disciplines:
 - Aero (wing geometry)
 - Propulsion (with hybrid system)
 - Structure
 - Trajectory simulation
- 6 variables converted into LCA database entries

Model parameter	Ecoinvent entry
Battery weight	battery cell production, Li-ion
Motor weight	electric motor production, vehicle
Engine weight	internal combustion engine production, passenger car
Empty weight	aluminium production, primary, ingot
Fuel used	market for kerosene
Electricity used	market group for electricity, low voltage

Benjamin J. Brelje and Joaquim R. R. A. Martins, "Development of a Conceptual Design Model for Aircraft Electric Propulsion with Efficient Gradients", 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, AIAA Propulsion and Energy Forum, (AIAA 2018-4979) DOI: 10.2514/6.2018-4979

Eytan J. Adler and Joaquim R. R. A. Martins, "Efficient Aerostructural Wing Optimization Considering Mission Analysis", Journal of Aircraft, 2022.

DOI: 10.2514/1.c037096

Design Variables

Table 3 presents the design variables values and results after optimisation for this problem, with the range fixed at 400NM and using the GWP as the sole objective, using COBYLA [41]. Figure 6 presents the resulting trajectory and energy consumption for this 400 nautical miles range solution.

Table 3: Example of hybrid aircraft optimisation for a range of 400NM

variable	min	init	max	value	units
MTOW	4000	5000	5700	5700	kg
wing surface	15	25	40	34	m ²
engine power	0	1000	3000	298	kW
motor power	450	1000	3000	652	kW
battery weight	20	1000	3000	1607	kg
fuel capacity	500	1000	3000	500	kg
cruise hybridisation	0	0.5	1	0.71	
climb hybridisation	0	1	1	0.785	
descent hybridisation	0	0.5	1	0.337	
GWP				0.712	$kgCO_2eq/km$

minimise (GWP) wrt range=400NM

Figure 6: Optimal trajectory and energy utilisation for a hybrid aircraft with 400 nautical miles range

Results MOO

- LCA scope include building the aircraft and flying 1000 cycles at max range with fuel and electricity
- Functional unit is a kilometre flown

+1.66x

LCA4MDAO

LCA4MDAO

https://github.com/mid2SUPAERO/LCA4MDAO

LCA database ecoinvent

https://ecoinvent.org/database

• Brightway2

https://github.com/brightway-lca

OpenMDAO

https://github.com/OpenMDAO

Agenda for today

- Sustainable Aviation (SA) With one eye open / With two eyes open
- 2. Design Optimization (DO)
- 3. Combining SA+DO

4. Conclusions

Conclusion

In Aircraft Design:

min {mass} is proportional to min {CO2PP}

Manufacturing < 1% of total aircraft emissions

Meaning it is an energetic problem

Uncertainties CO₂ versus nonCO₂

But what about others flying vehicules? Wind turbine?

Some airline projects are sunseting...

Ohter projects are progressing...

It's up to YOU!!!!!!!

https://drawdown.org/

Scenario 1

Overall Ranking	Solution	Total CO ₂ -eq (Gt) Reduced/Sequestered (2020-2050)	Net First Cost to implement solution (Billions \$U\$)	Net Lifetime Cost to operate solution (Billions \$US)	Net Lifetime Profit after implementation and operation (Billions \$US)
1	Reduced Food Waste	87.4	-	-	-
2	Health & Education	85.4	-	-	-
3	Plant-Rich Diets	65.0	-	-	-
4	Refrigerant Management	57.7	-	600	-
5	Tropical Forest Restoration	54.4	-	-	-
6	Onshore Wind Turbines	47.2	800	-3,800	-
	Alternative Refrigerants	43.5	-	-	-
8	Utility-Scale Solar Photovoltaics	42.3	-200	-12,900	-
9	Improved Clean Cookstoves	31.3	100	1,900	-
10	Distributed Solar Photovoltaics	27.9	400	-7,800	-
11	Silvopasture	26.5	200	2,300	1,700
12	Peatland Protection & Rewetting	26.0	-	-	-
13	Tree Plantations (on Degraded Land)	22.2	16	100	2,100
14	Temperate Forest Restoration	19.4	-	-	-
15	Concentrated Solar Power	18.6	400	800	-
16	Insulation	16.9	700	-21,700	-
17	Managed Grazing	16.4	33	-600	2,100
18	LED Lighting	16.0	-1,700	-4,500	-
19	Perennial Staple Crops	15.4	83	800	1,400
20	Tree Intercropping	15.0	100	600	200
21	Regenerative Annual Cropping	14.5	77	-2,300	100
22	Conservation Agriculture	13.4	91	-2,800	100
23	Abandoned Farmland Restoration	12.4	98	3,200	2,600
24	Flectric Cars	11.8	4,400	-15,200	-

The rankings shown here are based on projected emissions impact globally. The relative importance of a given solution can differ significantly depending on context and particular ecological, eco-nomic, political, or social conditions.

Overall Ranking	Solution	Total CO ₂ -eq (Gt) Reduced/Sequestered (2020-2050)	Net First Cost to implement solution (Billions \$U\$)	Net Lifetime Cost to operate solution (Billions \$US)	Net Lifetime Profit after implementation and operation (Billions \$US)
25	Multistrata Agroforestry	11.2	54	100	1,700
26	Offshore Wind Turbines	10.4	600	-600	-
27	High-Performance Glass	10.0	9,000	-3,300	-
28	Methane Digesters	9.8	200	2	-
29	Improved Rice Production	9.4	-	-400	200
30	Indigenous Peoples' Forest Tenure	8.6	-	-	-
31	Bamboo Production	8.2	52	500	1,700
32	Alternative Cement	7.9	-63	-	-
300	Hybrid Cars	7.8	3,400	-6,100	-
34	Carpooling	7.7	-	-5,300	-
25	Public Transit	7.5	-	-2,100	-
36	Smart Thermostats	6.9	100	-1,800	-
37	Building Automation Systems	6.4	200	-1,700	-
38	District Heating	6.2	200	-1,500	-
90	Efficient Aviation	6.2	800	-2,400	-
40	Geothermal Power	6.1	80	-800	-
41	Forest Protection	5.5	-	-	-
42	Recycling	5.5	10	-200	-
43	Biogas for Cooking	4.6	23	100	-
44	Efficient Trucks	4.6	400	-3,400	-
45	Efficient Ocean Shipping	4.3	500	-600	-
46	High-Efficiency Heat Pumps	4.1	76	-1,000	-
47	Perennial Biomass Production	3.9	200	1,500	900
48	Solar Hot Water	3.5	700	-200	-
49	Grassland Protection	3.3	-	-	-
50	System of Rice Intensification	2.7	-	-14	500
51	Nuclear Power	2.6	100	-300	-
52	Bicycle Infrastructure	2.5	-2,600	-800	-
53	Biomass Power	2.5	51	-200	-
54	Nutrient Management	2.3	-	-23	-
55	Biochar Production	2.2	100	700	-
56	Landfill Methane Capture	2.1	-4	6	-
57	Composting	2.1	-60	100	-
58	Waste-to-Energy	2.0	100	96	-

UTM Summer 20

NOTE: Where a cost is a negative number, it indicates savings. Where a dash is shown, results are not available.

It's up to YOU!!!!!!!!!!

Theme	Discussion subtopics		
	How might your work most effectively respond to the UNSDGs?		
Individuals	How do you plan to help others in the industry to achieve more change?		
	What makes you proudest about your job?		
Institution	What aspects of broader sustainability should the Institution be prioritising?		
	How can the Institution help the membership to think in terms of 'more good' rather than 'less harm'?		
	What might the Institution do to overcome key barriers to better UNSDG alignment?		
	How will the structural engineer's role have changed 20 years from now?		
Future	What 'norms' will be extinct 20 years from now that lead to a more positive future?		
	What can we do today to accelerate this change?		

My Advice: Fly Less! Travel Better Try to reach collectively 2t/y per individual https://en.2tonnes.org

Moy. nationale - Moy: 9.81 tCO2e Evolution des empreintes carbone + Moy, nationale · Moy, participants - Bruno L. + Carla P. - Jade L. 1.5-- Public C. - Sonia M. + Objectif Moy. participants - Moy: 11.26 tCO2e Equipements - Boissons Autres services Autres Sorties Big Diabelau Céréales Oeufs et laitiers Wandes et 2025 2028 2031 2035 2039 2042 2046 2050 polissons

joseph.morlier@isae-supaero.fr

http://mdolab.engin.umich.edu

Optimization [MDO] for connecting people?

https://www.linkedin.com/pulse/opt imization-mdo-connecting-peoplejoseph-morlier/

Design Optimization, ... any idea?

2 articles

https://www.tripadvisor.fr/LocationPhotoDirectLink-g187529-d574612-i349532022-Museum of Natural Science Museo de Ciencias Naturales-Valencia Province o.html

Is it possible to build an aircraft wing in LEGO®?

Publié le 17 février 2020

Modifier l'article

∠ Voir les stats

Professor in Structural and Multidisciplinary Design Optimization, ... any

5 articles

https://www.linkedin.com/pulse/possible-buildaircraft-wing-lego-josephmorlier/?articleId=6627240732975480832