浙江大学 2013-2014 学年 秋冬 学期

《计算理论》课程期末考试试卷答案

课程号: <u>21120520</u> 开课学院: 计算机学院

考试试卷: ☑ A卷 □ B卷

考试形式: 🗹 闭卷 🗆 开卷,允许带 _____入场

考试日期: 2014 年 1 月 15 日, 考试时间: 120 分钟

诚信考试、沉着应考、杜绝违纪

考生姓名			学	号	所属院系				
	BE C	1	0	0	4		0	以 八	П
	题序	1	2	3	4	5	б	总分	
	得分								
	评卷人								

Zhejiang University Theory of Computation, Fall-Winter 2013 Final Exam (Solution)

- 1. (24%) Determine whether the following statements are true or false. If it is true fill a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) () Language $\{a^mb^nc^j|m,n,j\in\mathbb{N} \text{ and } m+n+j\geq 2014\}$ is regular.
 - (b) (×) Let L be a regular language, so is $\{ww^R | \ w \in \Sigma^* \text{ and } w \in L\}.$
 - (c) (\times) Let L_1 and L_2 be two languages. If L_1L_2 is regular, then either L_1 or L_2 is regular.
 - (d) (\bigcirc) Let L be a context-free language, then L^* is also context-free.
 - (e) () Language $\{w_1 \# w_2 \# \cdots \# w_n | n \in \mathbb{N}, \text{ for each } i, w_i \in \{a, b\}^* \text{ and for some } i, w_i \text{ is a palindrome}\}$ is context-free.
 - (f) (×) Let L be a context-free language, then so is $H(L) = \{x | \exists y \in \Sigma^*, |x| = |y| \text{ and } xy \in L\}.$
 - (g) (\times) Language {" M_1 " " M_2 " | M_1 and M_2 are two finite automata, $L(M_1) \subseteq L(M_2)$ } is undecidable.
 - (h) (\bigcirc) There's a function φ such that φ can be computed by some Turing machines, yet φ is not a primitive recursive function.
 - (i) (\bigcirc) If L_1, L_2 , and L_3 are all recursively enumerable, then $L_1 \cap (L_2 \cup L_3)$ must be recursively enumerable.
 - (j) (\bigcirc) Let L_1 and L_2 be two recursively enumerable languages. If $L_1 \cup L_2$ and $L_1 \cap L_2$ are recursive, then both L_1 and L_2 are recursive.
 - (k) () Let L be a recursively enumerable language and $L \leq_{\tau} \overline{H}$, then L is recursive, where $H = \{ M'' W'' \mid \text{Turing machine } M \text{ halts on } w \}$.
 - (l) () The set of undecidable languages is uncountable.

- 2. (20%) Decide whether the following languages are regular or not and provide a formal proof for your answer.
 - (a) $L_1 = \{uvu^R | u, v \in \{a, b\}^+\}$
 - (b) $L_2 = \{uvu|u, v \in \{a, b\}^+\}$

where $L^+ = LL^*$.

Solution:

(a) L_1 is regular. $\cdots 5$ pt

There is no reason to let u be more than one character. So all that is required is that the string have at least two characters and the first and last must be the same. $L = (a\{a \cup b\}\{a,b\}^*a) \cup (b\{a \cup b\}\{a,b\}^*b)$.

 $\cdots 5pt$

(b) L_1 is not regular. $\cdots 5$ pt

Assume L_2 is regular, let n be the constant whose existence the pumping theorem guarantees.

Let $w = a^n b a a^n b$ that is $u = a^n b$ and v = a, so $w \in L_2$. So the pumping theorem must hold.

- Let w = xyz such that $|xy| \le n$ and $y \ne e$, then $y = a^i$ where i > 0. But then $xy^2z = a^{n+i}baa^nb \notin L_2$.

The theorem fails, therefore L_2 is not regular. $\cdots 5$ pt

- 3. (20%) Let $L_3 = \{ab^m c^n a^{m+2n} c | m, n \in \mathbb{N}\}.$
 - (a) Give a context-free grammar for the language L_3 .
 - (b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

Solution: (a)

(a) The CFG for L_3 is $G = (V, \Sigma, S, R)$, where $V = \{S, S_1, S_2, a, b, c\}$, $\Sigma = \{a, b, c\}$, and \cdots 3pt

$$R = \{S \to aS_1c, S_1 \to bS_1a, S_1 \to S_2, S_2 \to cS_2a^2, S_2 \to e\}.$$

 $\cdots 7pt$

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

$K = \{\underline{p}, \underline{q}\}$	$\begin{array}{ c c c c c }\hline (q,\sigma,\beta) & (p,\gamma) \\\hline (p,e,e) & (q,S) \\\hline \end{array}$
$\Sigma = \{a, b, c\}$	(q,e,S) (q,aS_1c)
$\Gamma = \{S, S_1, S_2, a, b, c\}$	(q, e, S_1) (q, bS_1a) (q, e, S_1) (q, S_2)
$\Gamma = (\underline{\wp, \wp_1, \wp_2, u, o, e})$	$(q, e, S_2) (q, cS_2a^2) $ $(q, e, S_2) (q, e)$
$s = \underline{p}$	(q,e,a) (q,a)
$F = \underline{\{q\}}$	$ \begin{array}{c c} (q,e,b) & (q,b) \\ (q,e,c) & (q,c) \end{array} $

4. (12%) Try to construct a Turing Machine to decide the following language

$$L = \{ww^R | w \in \{0, 1\}^*\}.$$

Where w^R is the inverse of w. Always assume that the Turing machines start computation from the configuration $\triangleright \underline{\sqcup} w$. When describing the Turing machines, you can use the elementary Turing machines described in textbook.

Solution: We can design the following Turing Machine to decide L:

$$\begin{array}{cccc}
& \downarrow & & \\
& \rightarrow R & \xrightarrow{d \in \{0,1\}} & \sqcup R \sqcup L & \xrightarrow{d \in \{0,1\}} & \sqcup L \sqcup \\
& \downarrow \sqcup & & \downarrow \neq d \\
& y & & n
\end{array}$$

 $\cdots 12pt$

5. (12%) Show that the function: $\varphi: \mathbb{N} \to \mathbb{N}$ given by

$$\varphi(x) = \begin{cases} x \mod 3, & \text{if } x \text{ is a composite number;} \\ x^2 + 1, & \text{otherwise.} \end{cases}$$

Solution: Since

$$\varphi(x) = \operatorname{rem}(x,3) \cdot (1 \sim \operatorname{prime}(x)) + (x^2 + 1) \cdot \operatorname{prime}(x)$$

and rem(x,3), $x^2 + 1$ are primitive recursive functions, prime(x) is a primitive recursive predicate, hence $\varphi(x)$ is primitive recursive.

 $\cdots 12pt$

6. (12%) Consider the problem

 $L_{even} = \{$ "M" | M is a TM and L(M) contains at least one string of even number of b's $\}$

- (a) Show that L_{even} is recursively enumerable.
- (b) Show that L_{even} is non-recursive.

Solution:

(a) L_{even} is recursively enumerable.

We can use **the Universal Turing machine** U to simulate Turing M on string of even length. $\cdots \cdot \cdot \cdot \cdot 4pt$

- 1. Do 1 step of M's computation on w_0
- 2. Do 2 steps of M's computation on w_0 and w_1
- 3. Do 3 steps of M's computation on w_0 , w_1 , w_2

.

Here w_0, w_1, \cdots is the lexicographic enumeration of \sum^* and w_0, w_1, \cdots are of even number of b's.

If the Universal Turing machine U discover the halting computation of both M on one input of even length then halts, otherwise U still simulate the computation of Turing machine M. $\cdots \cdots 4\mathbf{pt}$

(b) L_{even} is **non-recursive**. We will show this by reducing H to L_{even} . Since H is undecidable, it follows that L_{even} is undecidable. Assume there is a TM D that decides L_{even} . The Turing machine T_H deciding $H = \{\text{"}M\text{"} | \text{Turing Machine halts on } e\}$.

Turing machine T_H as follows:

- 1. On input "M", We build the TM M_{even} as follows:
- 2. If $x \neq e$, reject; otherwise, Simulate M on e.
- 3. If M halts on e, then accept; if M does not halt on e, then reject.
- 4. Simulate D on " M_{even} ".
- 5. If D accepts " M_{even} ", accept; If D rejects " M_{even} ", reject.

We know that if M halts on e, $L(M_{even}) = \{e\}$ and accepts at least one string of even length; Otherwise,if M halts on e, $L(M_{even}) = \emptyset$. Hence if M halts on e, D accepts " M_{even} "; Otherwise,if M halts on e, D accepts " M_{even} ". Therefore, Turing machine T_H above decides H. But the halting language H is known to be undecidable, this is a contradiction. Thus our assumption that there was a machine D deciding M_{even} must have been incorrect. M_{even} is not recursive.

 $\cdots \cdot \cdot \cdot 4pt$