

Vu Nguyen

General ideas

Approach

- Tail color and white markings are not reliable features to identify whales
- Focus on shape of fluke edges to assess similarity between 2 pictures

Useful methods

- skimage.color.rgb2hsv
- skimage.filters.threshold_li
- skimage.measure.find_contours

Edge extraction (1/5)

HSV filter

- Convert the raw RGB image to HSV color system
- Keep only V (Value) channel
- Apply Li threshold on V channel, result is a masking to remove water background

Edge extraction (2/5)

Finding contour

- Apply contour function on image mask
- Take the largest contour found

4. Find contour on mask

Edge extraction (3/5)

Extracting edge line

- Find notch point, left & right tips on the contour line
- Edge line = contour limited by (left tip notch point right tip)

Edge extraction (4/5)

Rotating edge line horizontally

Normalize photo angle by rotating the edge line so that left and right tips align horizontally

Edge extraction (5/5)

Applying edge extraction on all images

- Apply edge extraction to all train & test_val images
- Save edge images to disk, keep the same folder structure

Embeddings and Similarity measure

- Follow Tutorial 2 Baseline model
- Fetch edge images instead of raw images
- Use MobileNet to encode all edge images to feature vectors
- Similarity measure: Cosine distance

