ELEG 305 Spring 2019

Math Practice Problems

Extra Credit (20 points)

1. Find the roots of

(a)
$$x^2 + 2x - 15$$

(b)
$$x^3 + 12x^2 + 27x$$

2. Evaluate (please, no calculators)

- (a) $\tan 30^{\circ}$
- (b) If $\sin \theta = \frac{1}{3}$, what is $\cos \theta$?
- (c) $\cos 45^{\circ}$

3. Multiply the following (with $j = \sqrt{-1}$)

- (a) (3+4j)(1-2j)
- (b) $(3+4j)(1-2j)^*$, where * denotes conjugate
- (c) $\frac{1}{2+j}(\frac{3+4j}{1+j})$ rationalize denominator after multiplying

4. Convert to polar coordinates (i.e., $re^{j\theta}$)

- (a) 1 j
- (b) -2 + j
- $(c) \frac{4+3j}{1-j}$

5. Convert to rectangular coordinates (use Euler's Relation)

- (a) $e^{j\frac{\pi}{3}}$
- (b) $3e^{j\frac{\pi}{6}}$
- (c) $2e^{j\frac{\pi}{2}} + 3e^{-j\frac{\pi}{2}}$

- 6. Compute the absolute value of
 - (a) $e^{j\frac{\pi}{3}}$
 - (b) 3 + 4j
 - (c) $2e^{j\frac{\pi}{2}}$
- 7. Compute the real part of
 - (a) $2e^{j\frac{\pi}{2}} + 3e^{-j\frac{\pi}{2}}$
 - (b) (3+4j)(1-2j)
 - (c) $5e^{j\frac{\pi}{3}}$
- 8. Differentiate
 - (a) $\sin^2 \theta \cos \theta$
 - (b) $x^2\sqrt{1-x^2} + \frac{3}{1-x}$
 - (c) $\frac{x \sin x}{\sqrt{1+x}}$
- 9. Integrate (please do not use tables)
 - (a) $\int_0^{\pi} \cos 2\theta \, d\theta$
 - (b) $\int_0^4 e^{-4x} dx$
 - (c) $\int_0^\infty xe^{-x} dx$
 - (d) $\int_1^2 \frac{1}{(x+a)(x+b)} dx$, $a \neq -1$ or -2, $b \neq -1$ or -2. Use partial fraction expansion.
- 10. Compute the sum
 - (a) $\sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k$
 - (b) $\sum_{k=0}^{\infty} z^k, |z| < 1$
 - (c) $\sum_{k=0}^{4} (-3)^k$
 - (d) $\sum_{n=0}^{5} (-2)^{n-1}$