To address this deficiency, we can turn to a class of methods known as manifold learning—a class of unsupervised estimators that seeks to describe datasets as lowdimensional manifolds embedded in high-dimensional spaces. When you think of a manifold, I'd suggest imagining a sheet of paper: this is a two-dimensional object that lives in our familiar three-dimensional world, and can be bent or rolled in two dimensions. In the parlance of manifold learning, we can think of this sheet as a twodimensional manifold embedded in three-dimensional space.

Rotating, reorienting, or stretching the piece of paper in three-dimensional space doesn't change the flat geometry of the paper: such operations are akin to linear embeddings. If you bend, curl, or crumple the paper, it is still a two-dimensional manifold, but the embedding into the three-dimensional space is no longer linear. Manifold learning algorithms would seek to learn about the fundamental twodimensional nature of the paper, even as it is contorted to fill the three-dimensional space.

Here we will demonstrate a number of manifold methods, going most deeply into a couple techniques: multidimensional scaling (MDS), locally linear embedding (LLE), and isometric mapping (Isomap). We begin with the standard imports:

```
In[1]: %matplotlib inline
      import matplotlib.pyplot as plt
       import seaborn as sns; sns.set()
      import numpy as np
```

Manifold Learning: "HELLO"

To make these concepts more clear, let's start by generating some two-dimensional data that we can use to define a manifold. Here is a function that will create data in the shape of the word "HELLO":

```
In[2]:
def make_hello(N=1000, rseed=42):
    # Make a plot with "HELLO" text; save as PNG
    fig, ax = plt.subplots(figsize=(4, 1))
    fig.subplots adjust(left=0, right=1, bottom=0, top=1)
    ax.axis('off')
    ax.text(0.5, 0.4, 'HELLO', va='center', ha='center', weight='bold', size=85)
    fig.savefig('hello.png')
    plt.close(fig)
    # Open this PNG and draw random points from it
    from matplotlib.image import imread
    data = imread('hello.png')[::-1, :, 0].T
    rng = np.random.RandomState(rseed)
    X = rng.rand(4 * N, 2)
    i, j = (X * data.shape).astype(int).T
    mask = (data[i, j] < 1)
    X = X[mask]
```

```
X[:, 0] *= (data.shape[0] / data.shape[1])
X = X[:N]
return X[np.argsort(X[:, 0])]
```

Let's call the function and visualize the resulting data (Figure 5-94):

Figure 5-94. Data for use with manifold learning

The output is two dimensional, and consists of points drawn in the shape of the word "HELLO". This data form will help us to see visually what these algorithms are doing.

Multidimensional Scaling (MDS)

Looking at data like this, we can see that the particular choice of x and y values of the dataset are not the most fundamental description of the data: we can scale, shrink, or rotate the data, and the "HELLO" will still be apparent. For example, if we use a rotation matrix to rotate the data, the x and y values change, but the data is still fundamentally the same (Figure 5-95):