

Mesh, k-points and SCF convergence: hands on Catalina Coll

13th March 2023

Quality/accuracy/precision

Time (CET)	Topic
09:00-09:45	SIESTA basics
09:45-10:30	A first contact with SIESTA: inputs, execution and outputs
10:30-10:45	Break
10:45-11:30	Basis sets
11:30-12.00	Basis set optimization
12:00-13:00	Convergence (K points, Mesh, Mixing)

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- A First Encounter Part 1: Running SIESTA
- A First Encounter Part 2: Choosing your level of theory
- Basis set optimization
- · Basis sets Tips and tricks
- The real-space grid
- · Sampling of the BZ with k-points
- The self-consistent-field cycle
- · Structural optimization using forces and stresses
- Vibration modes and phonons
- · Spin Polarization and Magnetism
- · First crystals

cp /leonardo_work/EUHPC_TD02_030/siesta-tutorials/day3-wed/04* ./

Sampling

Sampling

Real space

- Potentials
- Densities
- Basis

Reciprocal space

- Density of states
- Bandstructure

Real space grid

$$\Delta x$$
 Δx Δm_e

Fineness ↔ Maxim energy avoiding aliasing

$$\Delta x \leftrightarrow E_c$$
 MeshCutoff Energy units (Ry)

- What is it set by the user?
 - Mesh.Cutoff 300 Ry (default)

Mesh.Cutoff 100 Ry

- What is set by siesta?
 - MESH = $18 \times 18 \times 30 = 9720$
 - Mesh cutoff (required, used = 100.000 101.039 Ry
- How can one decide the good value?
 - Minimize the total energy.
 - Total force to zero.
 - Reasonable time (relatively small systems)

Time

TIMES file

Results for methane (CH4)

Force

siesta: Atomic forces (eV/Ang):

Energy

```
siesta: Final energy (eV):
```


Results for methane (CH4)

Egg-box effect

Invariant under any translation?

$$\delta z_{shift} = \left(\frac{1}{M_z}\right) \frac{1}{10}$$

Solutions:

- Increase Meshcutoff
- Use "grid-cell-sampling"

Results for magnesium oxide (MgO)

Let's try it

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

• Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

Day3-wed/04a-GridConvergence

- A First Encounter Part 1: Running SIESTA
- A First Encounter Part 2: Choosing your level of theory
- · Basis set optimization
- · Basis sets Tips and tricks
- The real-space grid
- Sampling of the BZ with k-points
- The self-consistent-field cycle
- · Structural optimization using forces and stresses
- Vibration modes and phonons
- Spin Polarization and Magnetism
- First crystals

Reciprocal space grid

Crystals

 $\psi(\mathbf{r})$ Infinite matrix

Periodicity

Reciprocal space $\psi_{n,\mathbf{k}+\mathbf{G}}(\mathbf{r}) = \psi_{n,\mathbf{k}}(\mathbf{r})$

Finite matrix

Reciprocal space grid: k-mesh

- What is it set by the user?
 - k grid cut off

Input structure — Lattice vectors

Monkhorst Pack grid

- What is set by siesta?
 - SystemLabel.KP
- How can one decide the good value?
 - Must consider the ratio between the lattice vectors.
 - Check: Energy
 - DOS
 - Bandstructure
 - For metallic systems more k points will be needed.

```
kgrid_cutoff 10.0 Ang

%block kgrid_Monkhorst_Pack
6 0 0 0.0
0 6 0 0.0
0 0 1 0.0
%endblock kgrid_Monkhorst_Pack
```

Coordinates (Bohr⁻¹) Weight

SystemLabel.KP

k sampling

Gamma-point calculation with interaction between periodic images Some features might not work optimally

Metallic systems

Results for gold (Au)

Let's try it

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

· Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- A First Encounter Part 1: Running SIESTA
- A First Encounter Part 2: Choosing your level of theory
- Basis set optimization
- · Basis sets Tips and tricks
- · The real-space grid
- Sampling of the BZ with k-points

day3-wed/04b-KpointConvergence

- The self-consistent-field cycle
- · Structural optimization using forces and stresses
- Vibration modes and phonons
- Spin Polarization and Magnetism
- First crystals

- The physical quantity that is mixed:
 - Density matrix
 - Hamiltonian matrix
- Mixing algorithm:
 - Linear
 - Broyden
 - Pulay

N previous steps

- SCF.Mix [default Hamiltonian]:
 Density -> for systems hard to con rg
 - Hamiltonian
- SCF.MixerMethod [deficient on Linear
 - Linear
 - Pulay
 - Broyden
- SCF.Mixer.Weight [default 0.25]
 - 0.001 systems hard to converge ->a lot of steps
 - 0.4 systems easy to converge -> reduce steps
- SCF.Mixer.History [default 2]
- Max.SCF.Iterations [default 1000]
- SCF.DM.Converge F [default T]
- SCF.H.Converge F [default T]

SCF.Mix Hamiltonian

Max.SCF.Iterations 75

SCF.MixerMethod pulay SCF.Mixer.Weight 0.2

SCF.Mixer.History 5

More advanced options ... (manual)

Systems hard to converge

Results for sodium (Na)

Let's try it

Tutorials

This set of tutorials will guide you in the exploration of Siesta's features.

Before you do anything else, start here. You need to set up your local working environment to follow the tutorial.

Setting up the local working environment for the tutorial exercises

Basics of Siesta

This section is recommended for all beginners, and also as a refresher for more experienced users.

- · A First Encounter Part 1: Running SIESTA
- A First Encounter Part 2: Choosing your level of theory
- Basis set optimization
- Basis sets Tips and tricks
- · The real-space grid
- Sampling of the BZ with k-points
- The self-consistent-field cycle

day3-wed/04c-SCF

- Structural optimization using forces and stresses
- Vibration modes and phonons
- Spin Polarization and Magnetism
- First crystals

How do I converge the whole calculation?

Thank you for your attention

