PS₁

Assignment 01 Report

Name: XU JUNPENG (许俊鹏) SID: 12532726

1. Flowchart

Method

The function $Print_values$ was implemented according to the conditional logic specified in the flowchart. A helper function, $purple_operator(x, y, z)$, was defined to execute the terminal operation x + y - 10*z.

A key implementation detail, based on class instruction. the branch corresponding to a > b being False (a <= b) and b > c being True was coded to return None immediately. This differs from the flowchart diagram, which shows this path leading to the [c, b, a] operation.

Result

As required by the assignment, the function was called with a=5, b=15, c=10.

- 1. The first condition a > b (5 > 15) is False.
- 2. The program enters the else block and evaluates the second condition b > c (15 > 10), which is True.
- 3. Following the specific implementation logic mentioned above, the function immediately returns None.

The final output is: Print_values(5, 15, 10): None

2. Continuous Ceiling Function

Method

The recursive function F(x) = F(ceil(x/3)) + 2x with the base case F(1) = 1, was implemented. To optimize performance and prevent re-computation of identical subproblems, **memoization** was employed. A global dictionary memo was used to store

the results of F(x) once computed. The base case F(1) = 1 was used to initialize this dictionary.

Result

The function was tested using the list [1, 2, 3, 5, 7, 10].

The corresponding outputs are: [1, 5, 7, 15, 21, 33]

3. Dice Rolling

Method

3.1 Find_number_of_ways

A function get_dice_table(n_dice, n_faces) was created to build a 2D DP table, dp[i][j], which stores the number of ways to obtain a sum j using exactly i dice.

- 1. Base Case: dp[0][0] = 1 (There is one way to get a sum of 0 with 0 dice).
- 2. **State Transition:** The number of ways to get sum j with i dice is the sum of ways to get j-k with i-1 dice, for all possible face values $k \in [1,6]$.

The formula is:

$$dp[i][j] = \sum_{k=1}^{6} dp[i-1][j-k]$$

3. The Find_number_of_ways(x) function simply returns the pre-computed value $dice_dp_table[10][x]$.

3.2 Maximum Number of Ways

To find the sum x with the maximum number of ways, the slice of the DP table corresponding to 10 dice (dice_dp_table[10]) was examined for all possible sums from 10 to 60. The np.max and np.argmax functions were used on this slice (Number_of_ways).

Result

The analysis of the DP table for 10 dice yielded the following results:

The sum x with the maximum number of ways = 35

Maximum number of ways = 4395456

4. Dynamic Programming (Subset Averages)

Method

4.1 Random_integer

The function Random_integer(N) was implemented using np.random.randint(1, 11, size=N) to generate an array of size N with random integers between 1 and 10 (inclusive).

4.2 Sum_averages

A brute-force calculation of all $2^N - 1$ subset averages is computationally infeasible for N=100. Therefore, a highly efficient mathematical formula was derived and implemented. The sum of all subset averages is equivalent to the total sum of all elements multiplied by a factor related to N. The formula is:

$$Total = \left(\sum_{i=0}^{N-1} A[i]\right) \times \frac{2^{N}-1}{N}$$

The Sum_averages function implements this formula directly.

4.3 Plotting and Analysis

A loop was executed for **N** from 1 to 100. In each iteration, a random array was generated, and Sum_averages was computed. The results were stored in Total_sum_averages and plotted.

Result

- The function was validated with the example [1, 2, 3], which correctly produced the result [14.0].
- Plot Analysis:

Fig.1 | Total Sum Averages vs. N. The generated plot of Total Sum Averages vs. N clearly shows exponential growth. The value of the sum grows slowly for small N but

increases dramatically as N grows, reaching values on the order of 10^{29} by N=100. This behavior is consistent with the $O(2^N)$ term in the mathematical formula.

5. Path Counting

Method

5.1 create_matrix

The create_matrix(N, M) function was implemented to generate an $N \times M$ grid of random 0s and 1s. It specifically sets the top-left mat[0, 0] and bottom-right mat[N-1, M-1] cells to 1, as required.

5.2 count_path

The count_path function uses dynamic programming to find the number of valid paths. A paths grid of the same size is used to store the number of ways to reach cell (i,j).

• Base Case: paths [0, 0] is set to 1 if matrix [0, 0] is 1, otherwise 0.

- **First Row/Column:** The first row and column are filled. A cell paths [i, 0] receives the value from paths [i-1, 0] only if matrix [i, 0] is 1 (not a blockage); otherwise, it's 0. The same logic applies to the first column paths [0, j].
- State Transition: For any other cell (i, j), if it is a blockage (matrix[i, j] == 0), paths[i, j] = 0. If it is passable (matrix[i, j] == 1), the number of paths is the sum of paths from the cell above and the cell to the left: paths[i, j] = paths[i-1, j] + paths[i, j-1].

The final answer is the value in the bottom-right corner, paths [N-1, M-1] .

5.3 Simulation

A simulation was run 1000 times for a grid of size N=10, M=8. For each run, a new random matrix was generated and count_path was called. The mean of these 1000 results was calculated.

Result

The average number of paths found over the 1000 simulation runs is:

```
N=10, M=8, 随机运行 1000 次,路径总数的平均值: 0.221.
```

Collaboration

- I discussed Problem 1 (Flowchart) with my classmate Nuowen Zhou (周诺文). We debated the behavior when a > b? is False and subsequently b > c? is True:
 - **Zhou's view:** proceed to the next test **a > c?**.
 - My view: directly compute the purple-operator result on the ordered triple (c, a, b).

During the following class, Prof. Zhu clarified that **b > c? = True** leads to termination with no output. We adopted the instructor's guidance accordingly to complete this assignment.

- Concern. By standard flowchart conventions, termination should be indicated with a
 terminal (ellipse) symbol. In the provided diagram, the arrow from b > c? = True does
 not point to a terminal symbol, which I believe is a diagrammatic inconsistency.
- Apart from the discussion above, I also used ChatGPT to help me translate this report from Chinese to English.