Policy Gradient

Farnaz Adib Yaghmaie

Linkoping University, Sweden farnaz.adib.yaghmaie@liu.se

March 12, 2021

What is Policy Gradient?

The most ambitious way of solving an RL problem

- Policy: The agent's decision
- Value function: how good the agent does in a state
- Model: The agent's interpretation of the environment

Agent's goal: To learn the policy by directly optimizing the total reward.

$$J = \mathbf{E}_{\tau \sim \pi_{\theta}}[R(T)]$$

How?

Optimization by perturbation:

- lacktriangle Consider a stochastic parametric policy with parameter heta
- Observe the total reward as a result of perturbation
- lacksquare Optimize the parameters of the policy by finding $abla_{ heta}J$

A simple math rule based on $\nabla_p \log p = \frac{1}{p}$

$$\nabla_{\theta} \log p = \nabla_{p} \log p \nabla_{\theta} p = \frac{1}{p} \nabla_{\theta} p.$$

$$\boxed{\nabla_{\theta} p = p \nabla_{\theta} \log p} \tag{1}$$

We will have a closer look at the following components in J

$$J = \mathbf{E}_{\tau \sim \pi_{\theta}}[R(T)]$$

- \blacksquare π_{θ} : The parametric pdf of the policy
- au: A sampled trajectory and the expectation is defined over the probability of the trajectory
- \blacksquare R(T): The total reward

Why to consider a stochastic policy instead of a deterministic one?

- To enable learning by deviating from the deterministic policy
- If a deterministic policy is considered, the agents remains in a local optimum forever.

How to define the pdf?

Photo Credit: @ https://towardsdatascience.com/probability-distributions-discrete-and-continuous-7a94ede66dc0

- Defining a parameteric probability density function for the policy
 - └─Discrete action space

Generates the pdf $\pi_{\theta} = network(s)$


```
network = keras.Sequential([
    keras.layers.Dense(30, input_dim=n_s, activation='relu'),
    keras.layers.Dense(30, activation='relu'),
    keras.layers.Dense(n_a, activation='softmax')])
```

Continuous action space

Continuous action space

Select a Gaussian distribution as the pdf π_{θ} and generate the mean

$$\pi_{\theta} = \frac{1}{\sqrt{(2\pi\sigma^2)^{n_a}}} \exp\left[-\frac{1}{2\sigma^2}(a - \mu_{\theta}(s))^T(a - \mu_{\theta}(s))\right]$$

For example, for a linear policy

$$\mu_{\theta}(s) = \theta s$$

Policy Gradient

Defining a parameteric probability density function for the policy

└─Discrete vs. continuous

Discrete:

Parameterize the pdf

Continuous:

Parameterize the mean of a Gaussian pdf

Sampling a trajectory

Select $a_t \sim \pi_\theta, \ t=1,...,T$ and step the environment

$$\tau = (s_1, a_1, r_1, s_2, a_2, r_2..., s_{T+1})$$

The probability of the trajectory

$$P(\tau|\theta) = \prod_{t=1}^{T} p(s_{t+1}|s_t, a_t) p(a_t|\theta).$$

- $p(s_{t+1}|s_t,a_t)$: the model of the environment
- $p(a_t|\theta)$: The pdf π_θ evaluated at a_t .
 - Discrete action space: $\pi_{\theta} = network(s)$. So, $p(a_t|\theta)$ is obtained by indexing into the output vector network(state).
 - Continuous action space:

$$p(a_t|\theta) = \frac{1}{\sqrt{(2\pi\sigma^2)^{n_a}}} \exp[-\frac{1}{2\sigma^2}(a_t - \mu_{\theta}(s_t))^T(a_t - \mu_{\theta}(s_t))]$$

Love math? Dive in!

$$\nabla_{\theta} J = \nabla_{\theta} \mathbf{E} [R(T)]$$

$$= \int_{\tau} \nabla_{\theta} P(\tau | \theta) R(T)$$

$$= \int_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) R(T), \quad \text{using log-derivative trick}$$

$$= \mathbf{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \log P(\tau | \theta) R(T)]$$

$$= \mathbf{E}_{\tau \sim \pi_{\theta}} [(\nabla_{\theta} \sum_{t=1}^{T} \log \underbrace{P(s_{t+1} | s_{t}, a_{t})}_{Dynamics} + \nabla_{\theta} \sum_{t=1}^{T} \log p(a_{t} | \theta)) R(T)]$$

$$= \mathbf{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \sum_{t=1}^{T} \log p(a_{t} | \theta) R(T)]$$

$$= \mathbf{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \sum_{t=1}^{T} \log p(a_{t} | \theta) R(T)]$$

$$(2)$$

But how to compute?

Use pre-built cost functions for the classification task in ML.

Policy Gradient:

$$J = \sum_{t=1}^{T} R(T) \log p(a_t | \theta)$$

$$J = \sum_{t=1}^{T} R(T) \log p(a_t | \theta) \qquad J_{wcec} = -\frac{1}{M} \sum_{m=1}^{M} \sum_{c=1}^{C} w_c y_m^c \log h_{\theta}(x_m, c)$$

- Number of actions n_a
- Trajectory length T
- Weight R(T)
- \blacksquare State s_t
- Target label for state s_t and action a
- $p(a_t|\theta)$: probability of a_t by the network at state st

- Number of classes C
- Data length M
- Weight w_c
 - Image x_m
 - Target label for x_m for class c; y_m^c
- $h_{\theta}(x_m, c)$: The probability of x_m belongs to class c by the network -----

Summary of optimizing the parameters in the discrete action space

PG is similar to the classification task!

- The network should produce probability
- The cost to be optimized is a weighted cross entropy cost
- The weights are R(T)

We can compute $\mathbf{E}_{\tau \sim \pi_{\theta}} [\nabla_{\theta} \sum_{t=1}^{T} \log p(a_{t}|\theta) R(T)]$ easily!

$$\nabla_{\theta} J = \frac{1}{\sigma^2 |\mathcal{D}|} \sum_{\tau \in \mathcal{D}} \sum_{t=1}^{T} (a_t - \mu_{\theta}(s_t)) \frac{d\mu_{\theta}(s_t)}{d\theta}^{\dagger} R(T).$$

If we consider a linear policy $\mu_{\theta}(s_t) = \theta \ s_t$

$$abla_{ heta}J = rac{1}{\sigma^2|\mathcal{D}|}\sum_{ au\in\mathcal{D}}\sum_{t=1}^{I}(a_t- heta\,s_t)s_t^{\dagger}R(T).$$

Discrete:

Assign a cross entropy cost function and let the ML library optimize the parameter!

Continuous:

Use

$$abla_{ heta}J = rac{1}{\sigma^2|\mathcal{D}|}\sum_{ au\in\mathcal{D}}\sum_{t=1}^T(a_t-\theta\;s_t)s_t^\dagger R(T)$$

and optimize θ with a gradient algorithm, e.g.

$$\theta = \theta + \alpha \nabla_{\theta} J.$$

Putting all together

We build/consider a parametric pdf $\pi_{\theta}(s)$. Then, we iterate:

- Collect data
 - Observe *s* and sample $a \sim \pi_{\theta}(s)$.
 - Apply a and observe r.
 - Add s, a, r to the history.
- **2** Update the parameter θ
 - We calculate the total reward.
 - We optimize the policy by a gradient algorithm.

PG: The most ambitious way of solving an RL problem

- Directly optimizes the reward for MDP
- No model, no bellman equation
- Random search is a special case
- Can be extremely good or bad
- Take a look at implementation on my github

Crash_course_on_RL/pg_notebook.ipynb

Email your questions to

farnaz.adib.yaghmaie@liu.se