PROBLEM SET 2

- 1. Let X be a (absolutely) continuous random variable with probability density f_X . What is the density of $Y = X^2$?
- 2. A certain river floods every year. Suppose that the low-water mark is set at 1 and the high-water mark Y has distribution function

$$F_Y(y) = 1 - \frac{1}{y^2}, \ 1 \le y < \infty.$$

- (a) Verify that $F_Y(y)$ is a probability distribution function.
- (b) Find $f_Y(y)$, the pdf of Y.
- (c) If the low-water mark is reset at 0 and we use a unit of measurement that is $\frac{1}{10}$ of that given previously, the high-water mark become Z = 10(Y 1). Find $F_Z(z)$.
- 3. (Geometric Distribution) Consider a random experiment where we do Bernoulli trial independently with P(success) = p until the first success occurs.
- (a) Construct a proper probability space (Ω, \mathcal{A}, P) and define a proper random variable X so to induce a proper pmf for it.
 - (b) Compute the mean and variance of X.
 - (c) Prove that X satisfies the memoryless property: $P(X>s\mid X>t)=P(X>s-t),\ s>t.$
- (d) Suppose that the probability is 0.001 that a light bulb will fail on any given day, then what is the probability that it will last at least 3 days.
 - 4. Let X be a random variable having the geometric distribution with P(success) = p.
 - (a) Obtain the pdf for the random variable Y defined as

$$Y = \frac{1}{X}.$$

1

(b) Obtain E[Y] and compare it to E[X].

- 5. Given a random variable X with pdf $f_X = 1$ for 0 < x < 1 and any two points a_1 , a_2 in the interval (0,1), such that $a_1 < a_2$ and $a_1 + a_2 \le 1$,
 - (a) show that

$$P[a_1 < X < (a_1 + a_2)] = a_2.$$

(b) In general, if f(x) is uniform in the interval (a, b), and if $a \le a_1$, $a_1 < a_2$, and $a_1 + a_2 \le b$, show that

$$P[a_1 < X < (a_1 + a_2)] = \frac{a_2}{(b - a)}.$$

6. Compute the variance Var(X) of a random variable X following binomial distribution.