Lenguajes, Computación y Sistemas Inteligentes

Grado en Ingeniería Informática de Gestión y Sistemas de Información Escuela de Ingeniería de Bilbao (UPV/EHU) Departamento de Lenguajes y Sistemas Informáticos

2º curso

Curso académico: 2021-2022

Grupo 16

Tema 7: Los AF – Lenguajes regulares

 2^a parte

1,000 puntos

Solución

16-12-2021

Índice

7.5	Calcular la gramática regular correspondiente a un AF (0,400 puntos)	1
7.6	Calcular el AF correspondiente a una gramática regular (0,400 puntos)	2
7.7	Árbol correspondiente a una gramática regular (0,200 puntos)	2

7.5 Calcular la gramática regular correspondiente a un AF (0,400 puntos)

En la figura 2, se muestra el diagrama de transiciones de un autómata finito (AF) definido sobre el alfabeto $A = \{a, b, c\}$. Aplicar el procedimiento presentado en clase y obtener la gramática regular correspondiente al AF.

Figura 1: Diagrama de transiciones correspondiente a un AF definido sobre el alfabeto $\mathbb{A}=\{a,b,c\}$.

Solución:

La gramática regular (N, T, P, S) correspondiente es la siguiente:

•
$$N = \{Q_0, Q_1, Q_2, Q_3, Q_4, Q_5\}.$$

- $T = \{a, b, c\}.$
- P es el conjunto formado por las siguientes reglas de producción:

$$\begin{array}{llll} 1. \ Q_0 \to Q_1 & 7. \ Q_2 \to cQ_3 & 13. \ Q_5 \to aQ_4 \\ 2. \ Q_0 \to Q_4 & 8. \ Q_2 \to Q_3 & 14. \ Q_5 \to \varepsilon \\ 3. \ Q_1 \to aQ_1 & 9. \ Q_3 \to aQ_3 \\ 4. \ Q_1 \to bQ_1 & 10. \ Q_3 \to bQ_3 \\ 5. \ Q_1 \to cQ_2 & 11. \ Q_3 \to \varepsilon \\ 6. \ Q_1 \to Q_2 & 12. \ Q_4 \to aQ_5 \end{array}$$

• S es Q_0 .

7.6 Calcular el AF correspondiente a una gramática regular (0,400 puntos)

Diseñar el AF correspondiente a la siguiente gramática regular G = (N, T, P, S):

- $N = \{Z_0, Z_1, Z_2, Z_3, Z_4, Z_5\}.$
- $T = \{a, b, c\}.$
- P es el conjunto formado por las siguientes reglas de producción:

1. $Z_0 \rightarrow aZ_0$	7. $Z_2 \rightarrow bZ_2$	13. $Z_4 \to Z_5$
$2. Z_0 \rightarrow aZ_1$	8. $Z_2 \rightarrow bZ_3$	14. $Z_4 \rightarrow cZ_5$
3. $Z_0 \to Z_4$	9. $Z_3 \rightarrow cZ_1$	15. $Z_5 \to \varepsilon$
$4. Z_1 \rightarrow Z_2$	10. $Z_3 \rightarrow cZ_5$	
$5. Z_1 \rightarrow Z_4$	11. $Z_3 \to \varepsilon$	
6. $Z_1 \rightarrow cZ_4$	12. $Z_4 \rightarrow cZ_4$	

• S es Z_0 .

Solución:

El AF correspondiente es el siguiente:

Figura 2: Diagrama de transiciones del AF correspondiente a la gramática regular G.

7.7 Árbol correspondiente a una gramática regular (0,200 puntos)

Desarrollar, hasta el nivel 4 inclusive, el árbol correspondiente a la gramática regular del ejercicio anterior, es decir, del ejercicio 7.6.