class16

Hyeonseok Jang (PID# A59011126)

11/19/2021

Background

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

THe authors report an differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1.

1. Data Import

Read in the countdata and coldata that we need, and have a wee look.

```
metaFile <- "GSE37704_metadata.csv"</pre>
countFile <- "GSE37704_featurecounts.csv"</pre>
# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)
##
                  condition
## SRR493366 control_sirna
## SRR493367 control_sirna
## SRR493368 control sirna
## SRR493369
                  hoxa1 kd
## SRR493370
                  hoxa1_kd
## SRR493371
                  hoxa1_kd
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
                    length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
##
```

```
##
                    SRR493371
## ENSG0000186092
                             0
## ENSG00000279928
                             0
## ENSG00000279457
                            46
## ENSG0000278566
                             0
## ENSG00000273547
                             0
## ENSG0000187634
                           258
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])</pre>
head(countData)
##
                    SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371
                                       0
## ENSG0000186092
                             0
                                                  0
                                                             0
                                                                        0
                                                                                   0
## ENSG00000279928
                             0
                                       0
                                                  0
                                                             0
                                                                        0
                                                                                   0
## ENSG00000279457
                            23
                                       28
                                                 29
                                                            29
                                                                       28
                                                                                  46
## ENSG0000278566
                             0
                                       0
                                                  0
                                                                                   0
                                                             0
                                                                        0
## ENSG00000273547
                             0
                                       0
                                                  0
                                                             0
                                                                        0
                                                                                   0
## ENSG0000187634
                           124
                                     123
                                                205
                                                           207
                                                                      212
                                                                                 258
# Filter count data where you have 0 read count across all samples.
counts <- countData[rowSums(countData)!=0,]</pre>
head(counts)
                    SRR493366 SRR493367 SRR493368 SRR493369 SRR493370 SRR493371
##
## ENSG00000279457
                                       28
                                                            29
                                                                       28
                            23
                                                 29
                                                                                  46
## ENSG0000187634
                           124
                                     123
                                                205
                                                           207
                                                                      212
                                                                                 258
                                                                     1326
## ENSG0000188976
                          1637
                                    1831
                                               2383
                                                          1226
                                                                                1504
## ENSG00000187961
                           120
                                     153
                                                180
                                                           236
                                                                      255
                                                                                 357
```

2. PCA for Quality Control

ENSG0000187583

ENSG0000187642

I am going to use the base R 'prcomp()' function for PCA of our counts data (form which I have removed the zero count genes).

```
pca <- prcomp(t(counts))</pre>
summary(pca)
## Importance of components:
                                                                PC4
##
                                 PC1
                                           PC2
                                                      PC3
                                                                         PC5
                           1.852e+05 1.001e+05 1.998e+04 6.886e+03 5.15e+03
## Standard deviation
## Proportion of Variance 7.659e-01 2.235e-01 8.920e-03 1.060e-03 5.90e-04
## Cumulative Proportion 7.659e-01 9.894e-01 9.983e-01 9.994e-01 1.00e+00
                                 PC6
## Standard deviation
                           9.558e-10
## Proportion of Variance 0.000e+00
## Cumulative Proportion 1.000e+00
```

Quick plot

```
plot(pca$x[,1:2])
```



```
plot(pca$x[,1:2], pch=16, col=as.factor(colData$condition))
text(pca$x[,1:2], labels = colData$condition)
```


Or a ggplot version

```
library(ggplot2)

x <- as.data.frame(pca$x)
x$condition <- colData$condition

ggplot(x) +
  aes(PC1, PC2, col=condition) +
  geom_point()</pre>
```


This looks fine - the first PC separates the control group and experimental group well.

3. DESeq analysis

```
library(DESeq2)
```

```
dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
##
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:base':
##
##
       expand.grid, I, unname
## Loading required package: IRanges
##
## Attaching package: 'IRanges'
## The following object is masked from 'package:grDevices':
##
##
       windows
## Loading required package: GenomicRanges
## Loading required package: GenomeInfoDb
## Loading required package: SummarizedExperiment
## Loading required package: MatrixGenerics
## Loading required package: matrixStats
##
## Attaching package: 'MatrixGenerics'
## The following objects are masked from 'package:matrixStats':
##
       colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
##
##
       colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
##
       colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
##
       colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
       colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
##
       colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
##
##
       colWeightedMeans, colWeightedMedians, colWeightedSds,
##
       colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
##
       rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
##
       rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
##
       rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
##
       rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
       rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
##
##
       rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
       rowWeightedSds, rowWeightedVars
##
```

```
## Loading required package: Biobase
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
       'browseVignettes()'. To cite Bioconductor, see
##
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:MatrixGenerics':
##
##
       rowMedians
## The following objects are masked from 'package:matrixStats':
##
##
       anyMissing, rowMedians
dds = DESeqDataSetFromMatrix(countData=counts,
                             colData=colData,
                             design=~condition)
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
And run the results.
dds <- DESeq(dds)
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
res <- results(dds)</pre>
summary(res)
## out of 15975 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up)
                     : 4349, 27%
## LFC < 0 (down)
                     : 4396, 28%
## outliers [1]
                      : 0, 0%
## low counts [2]
                      : 1237, 7.7%
## (mean count < 0)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results
```

4. Volcano Plot

Let's make a volcano plot.

```
plot(res$log2FoldChange, -log(res$padj))
```


I can improve this plot by the below code, which adds color and axis labels.

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res))

# Color red the genes with absolute fold change above 2
mycols[abs(res$log2FoldChange)>2] <- "red"

# Color blue those with adjusted p-value less than 0.01

# and absolute fold change more than 2
inds <- ((res$pvalue)<0.01) & (abs(res$log2FoldChange)>2)
mycols[inds] <- "blue"

plot(res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(P-value)")</pre>
```


5. Annotation

library("AnnotationDbi")

I can use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by the code below.

```
library("org.Hs.eg.db")
##
columns(org.Hs.eg.db)
    [1] "ACCNUM"
                        "ALIAS"
                                        "ENSEMBL"
                                                        "ENSEMBLPROT"
                                                                        "ENSEMBLTRANS"
##
                        "ENZYME"
                                        "EVIDENCE"
                                                        "EVIDENCEALL"
                                                                        "GENENAME"
        "ENTREZID"
##
                        "GO"
                                                        "IPI"
                                                                        "MAP"
   [11]
        "GENETYPE"
                                        "GOALL"
   [16]
        "OMIM"
                        "ONTOLOGY"
                                        "ONTOLOGYALL"
                                                        "PATH"
                                                                        "PFAM"
##
        "PMID"
                        "PROSITE"
                                        "REFSEQ"
                                                        "SYMBOL"
                                                                        "UCSCKG"
   [21]
   [26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                     keys=row.names(res),
                     keytype="ENSEMBL",
                     column="SYMBOL",
```

multiVals="first")

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

```
## log2 fold change (MLE): condition hoxa1 kd vs control sirna
## Wald test p-value: condition hoxa1 kd vs control sirna
## DataFrame with 10 rows and 9 columns
##
                      baseMean log2FoldChange
                                                   lfcSE
                                                               stat
                                                                         pvalue
##
                     <numeric>
                                     <numeric> <numeric>
                                                                      <numeric>
                                                          <numeric>
## ENSG0000279457
                     29.913579
                                    0.1792571 0.3248216
                                                           0.551863 5.81042e-01
## ENSG0000187634
                   183.229650
                                    0.4264571 0.1402658
                                                           3.040350 2.36304e-03
## ENSG00000188976 1651.188076
                                   -0.6927205 0.0548465 -12.630158 1.43990e-36
## ENSG0000187961
                   209.637938
                                    0.7297556 0.1318599
                                                           5.534326 3.12428e-08
## ENSG0000187583
                     47.255123
                                    0.0405765 0.2718928
                                                           0.149237 8.81366e-01
## ENSG0000187642
                     11.979750
                                    0.5428105 0.5215598
                                                           1.040744 2.97994e-01
## ENSG0000188290
                    108.922128
                                    2.0570638 0.1969053
                                                          10.446970 1.51282e-25
                                    0.2573837 0.1027266
                                                           2.505522 1.22271e-02
## ENSG0000187608
                    350.716868
## ENSG00000188157 9128.439422
                                    0.3899088 0.0467163
                                                           8.346304 7.04321e-17
## ENSG00000237330
                      0.158192
                                    0.7859552 4.0804729
                                                           0.192614 8.47261e-01
##
                          padj
                                    symbol
                                                 entrez
                                                                          name
##
                     <numeric> <character> <character>
                                                                   <character>
## ENSG00000279457 6.86555e-01
                                    WASH9P
                                              102723897 WAS protein family h..
## ENSG00000187634 5.15718e-03
                                                 148398 sterile alpha motif ...
                                    SAMD11
                                                  26155 NOC2 like nucleolar ...
## ENSG00000188976 1.76549e-35
                                      NOC2L
## ENSG00000187961 1.13413e-07
                                    KLHL17
                                                 339451 kelch like family me..
## ENSG00000187583 9.19031e-01
                                   PLEKHN1
                                                  84069 pleckstrin homology ...
## ENSG00000187642 4.03379e-01
                                      PERM1
                                                  84808 PPARGC1 and ESRR ind..
## ENSG00000188290 1.30538e-24
                                      HES4
                                                  57801 hes family bHLH tran..
## ENSG00000187608 2.37452e-02
                                                   9636 ISG15 ubiquitin like..
                                      ISG15
## ENSG00000188157 4.21963e-16
                                       AGRN
## ENSG00000237330
                            NΔ
                                    RNF223
                                                 401934 ring finger protein ...
```

Let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

6. Pathway Analysis

I can load the packages and setup the KEGG data-sets we need.

```
library(pathview)
library(gage)
```

##

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Examine the first 3 pathways
head(kegg.sets.hs, 3)
```

```
## $'hsa00232 Caffeine metabolism'
               "1544" "1548" "1549" "1553" "7498" "9"
## [1] "10"
##
## $'hsa00983 Drug metabolism - other enzymes'
                                               "151531" "1548"
##
    [1] "10"
                  "1066"
                           "10720"
                                     "10941"
                                                                  "1549"
                                                                            "1551"
   [9] "1553"
                  "1576"
                           "1577"
                                     "1806"
                                               "1807"
                                                         "1890"
                                                                  "221223" "2990"
##
## [17] "3251"
                  "3614"
                           "3615"
                                     "3704"
                                               "51733"
                                                         "54490"
                                                                  "54575"
                                                                            "54576"
##
   [25] "54577"
                  "54578"
                           "54579"
                                     "54600"
                                               "54657"
                                                         "54658"
                                                                  "54659"
                                                                            "54963"
   [33] "574537" "64816"
                                               "7172"
                                                         "7363"
                                                                  "7364"
##
                           "7083"
                                     "7084"
                                                                            "7365"
   [41] "7366"
                  "7367"
                           "7371"
                                     "7372"
                                               "7378"
                                                         "7498"
                                                                  "79799"
                                                                            "83549"
   [49] "8824"
                  "8833"
                           "9"
                                     "978"
##
##
## $'hsa00230 Purine metabolism'
##
     [1] "100"
                   "10201"
                             "10606"
                                      "10621"
                                                "10622"
                                                         "10623"
                                                                   "107"
                                                                             "10714"
                                                                             "113"
     [9] "108"
                   "10846"
                             "109"
                                      "111"
                                                "11128"
                                                          "11164"
                                                                   "112"
##
                                                                             "159"
##
    [17] "114"
                   "115"
                             "122481" "122622" "124583" "132"
                                                                   "158"
                   "171568" "1716"
                                      "196883" "203"
                                                          "204"
                                                                   "205"
##
    [25] "1633"
                                                                             "221823"
    [33] "2272"
                   "22978"
                             "23649"
                                      "246721" "25885"
                                                          "2618"
                                                                   "26289"
                                                                             "270"
##
##
    [41] "271"
                   "27115"
                             "272"
                                      "2766"
                                                "2977"
                                                          "2982"
                                                                   "2983"
                                                                             "2984"
    [49] "2986"
                   "2987"
                            "29922"
                                      "3000"
                                                "30833"
                                                         "30834"
                                                                   "318"
                                                                             "3251"
##
##
    [57] "353"
                   "3614"
                             "3615"
                                      "3704"
                                                "377841" "471"
                                                                   "4830"
                                                                             "4831"
    [65] "4832"
                   "4833"
                             "4860"
                                      "4881"
                                                "4882"
                                                          "4907"
                                                                   "50484"
                                                                             "50940"
##
##
    [73] "51082"
                   "51251"
                             "51292"
                                      "5136"
                                                "5137"
                                                          "5138"
                                                                   "5139"
                                                                             "5140"
                                      "5144"
##
    [81] "5141"
                   "5142"
                             "5143"
                                                "5145"
                                                         "5146"
                                                                   "5147"
                                                                             "5148"
    [89] "5149"
                   "5150"
                             "5151"
                                      "5152"
                                                "5153"
                                                          "5158"
                                                                   "5167"
                                                                             "5169"
    [97] "51728"
                             "5236"
                                      "5313"
                                                "5315"
                                                                   "54107"
                                                                             "5422"
##
                   "5198"
                                                          "53343"
```

```
"5427"
## [105] "5424" "5425"
                         "5426"
                                         "5430"
                                                  "5431"
                                                          "5432"
                                                                   "5433"
                "5435"
                                                                   "5441"
## [113] "5434"
                        "5436"
                                 "5437"
                                         "5438"
                                                  "5439"
                                                          "5440"
                                 "5557"
## [121] "5471" "548644" "55276"
                                         "5558"
                                                  "55703" "55811"
                                                                  "55821"
## [129] "5631"
                "5634"
                         "56655"
                                 "56953"
                                         "56985" "57804"
                                                          "58497"
                                                                  "6240"
## [137] "6241"
                "64425"
                        "646625" "654364" "661"
                                                  "7498"
                                                          "8382"
                                                                   "84172"
## [145] "84265" "84284" "84618"
                                 "8622"
                                         "8654"
                                                  "87178" "8833"
                                                                   "9060"
## [153] "9061"
                "93034"
                         "953"
                                 "9533"
                                         "954"
                                                  "955"
                                                          "956"
                                                                   "957"
## [161] "9583"
                "9615"
```

Make the input foldchange vector for KEGG and GO etc.

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
## 1266 54855 1465 51232 2034 2317
## -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Now, let's run the gage pathway analysis.

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

```
attributes(keggres)
```

```
# Look at the first few down (less) pathways
head(keggres$less)
```

```
##
                                           p.geomean stat.mean
                                                                      p.val
                                        8.995727e-06 -4.378644 8.995727e-06
## hsa04110 Cell cycle
## hsa03030 DNA replication
                                        9.424076e-05 -3.951803 9.424076e-05
## hsa03013 RNA transport
                                        1.375901e-03 -3.028500 1.375901e-03
## hsa03440 Homologous recombination
                                        3.066756e-03 -2.852899 3.066756e-03
## hsa04114 Oocyte meiosis
                                        3.784520e-03 -2.698128 3.784520e-03
## hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                              q.val set.size
##
                                                                     exp1
## hsa04110 Cell cycle
                                        0.001448312 121 8.995727e-06
## hsa03030 DNA replication
                                        0.007586381
                                                         36 9.424076e-05
## hsa03013 RNA transport
                                        0.073840037
                                                       144 1.375901e-03
## hsa03440 Homologous recombination
                                        0.121861535
                                                         28 3.066756e-03
## hsa04114 Oocyte meiosis
                                        0.121861535
                                                         102 3.784520e-03
## hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                          53 8.961413e-03
```

Let's try out the **pathview()** function from the pathview package to make a pathway plot with our RNA-Seq expression results shown in color.

```
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

```
## 'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16

Info: Writing image file hsa04110.pathview.png

A different PDF based output of the same data

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
- ## Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
- ## Info: Writing image file hsa04640.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns

- ## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
- ## Info: Writing image file hsa04630.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
- ## Info: Writing image file hsa00140.pathview.png
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
- ## Info: Writing image file hsa04142.pathview.png
- ## Info: some node width is different from others, and hence adjusted!
- ## 'select()' returned 1:1 mapping between keys and columns
- ## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
- ## Info: Writing image file hsa04330.pathview.png

I can do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways.

```
keggrespathways.down <- rownames(keggres$less)[1:5]</pre>
keggresids.down = substr(keggrespathways.down, start=1, stop=8)
keggresids.down
## [1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
pathview(gene.data=foldchanges, pathway.id=keggresids.down, species="hsa")
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
## Info: Writing image file hsa04110.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
## Info: Writing image file hsa03030.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
## Info: Writing image file hsa03013.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
## Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16
## Info: Writing image file hsa03440.pathview.png
## 'select()' returned 1:1 mapping between keys and columns
```

Info: Working in directory C:/Users/Hyeonseok/Desktop/BGGN213/BGGN213_GitHub/class16

Info: Writing image file hsa04114.pathview.png

