КОМПОНЕНТЫ ДЛЯ ЭЛЕКТРОННОЙ АППАРАТУРЫ

К. т. н. В. А. ЗАВАДСКИЙ, к. т. н. Б. П. МАСЕНКО

Украина, Одесская гос. морская академия, Херсонский гос. технический ун-т E-mail: ogma@tm.odessa.ua Дата поступления в редакцию 19.02 2001 г. Оппоненты ∂ . т. и. С. А. МИХАЙЛОВ, к. т. и. В. Г. ВЕРБИЦКИЙ

ВЛИЯНИЕ РАДИАЦИОННОГО ОБЛУЧЕНИЯ НА ХАРАКТЕРИСТИКИ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ ИЗ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ

В сравнении с монокристаллическим показана возможность изготовления из поликристаллического кремния солнечных элементов с приемлемыми характеристиками.

Исследование влияния облучения кремниевых солнечных элементов (СЭ) представляет интерес в связи с вопросами их деградации при использовании в космических аппаратах, а также из-за проблем, связанных с применением ионной бомбардировки в технологии получения планарных p-n-переходов для некоторых типов полупроводниковых приборов.

В настоящей работе исследовались СЭ, изготовленные из монокристаллического кремния марки КСД-3, поликристаллического профилированного (в виде полых кремниевых призм — Π K Π) и перепрофилированного кремния p-типа, полученного при последующей пластической деформации таких призм [1].

Фоточувствительные p-n-переходы получали путем нанесения фосфорной композиции КФК-50 на рабочую сторону подложек p-кремния, последующей деструкции и термической диффузии фосфора на глубину 0,6-0,8 мкм. На рабочую сторону напыляли контакты из титана, никеля и меди через титановую маску. На тыльную сторону наносили трехслойные контакты, состоящие из алюминия, никеля и меди. Общая толщина контактов составляла 0,12-0,15 мкм. Ширина токосъемных контактов на рабочей стороне составляла 280-300 мкм. Для уменьшения сопротивления контактов проводили их облуживание путем погружения подложек в оловянно-свинцовый расплав ПОС-61 при температуре 240° С. В качестве антиотражающего покрытия применяли слой сернистого цинка толщиной 70-80 мкм. Эффективная пло-

щадь каждого СЭ составляла 18 см². До облучения образцы из монокремния имели КПД=12,5%, из ПКП — до 9,5%, а из перепрофилированного кремния — менее 8% в условиях АМ 1,5 при 25°C.

Исследовалось влияние облучения быстрыми нейтронами и последующего отжига на световые и темновые BAX, спектральную чувствительность и КПД солнечных элементов.

Элементы облучались быстрыми нейтронами со средней энергией 2,2 МэВ флюенсами 10¹¹, 10¹², 10¹³ и 10¹⁴ н/см² в реакторе ВВРМ-10. Все образцы облучались в едином цикле, что позволяло повысить достоверность результатов при сравнении параметров СЭ из разных материалов. Приборы были разделены на группы, одна из групп каждого типа СЭ использовалась в качестве контрольной.

Обработка образцов проводилась на лабораторной установке на основе вакуумного поста типа ВУП, снабженной источником Кауфмана, установкой палладиевой очистки водорода и подогреваемым столиком для регулирования температуры образца. Обрабатываемый образец располагался на кремниевой пластине над подогреваемым столиком и для улучшения теплоотвода приклеивался к ней токопроводящим клеем. Образцы пассивировались в одном режиме: энергия протонов 1,7 кэВ, плотность тока пучка 0,7 мА·см⁻², температура образцов 350°С, время обработки 2 мин [2, 3].

Анализ световых ВАХ (**рис. 1**) показывает, что в СЭ из перепрофилированного кремния основные параметры — напряжение холостого хода (U_{xx}), ток короткого замыкания ($I_{к3}$) и КПД — зависят от воздействия радиации незначительно. Вычисление отношений параметров облученных СЭ к параметрам контрольных образцов показало, что величины

 $U_{\rm xx}, I_{\rm K3}$ и КПД уменьшаются после облучения.

Определенные из измерений спектральной чувствительности значения диффузионной длины (**puc. 2**) свидетельствуют о том, что радиационная стойкость СЭ из поликремния выше, чем из монокристаллического. Рассчитанные по методике, изложенной в [2], константы повреждаемости составили: для монокремния $K_{\text{пКП}} = (4...6) \cdot 10^{-7}$, для СЭ из ПКП $K_{\text{ПКП}} = (0.8...1, 1) \cdot 10^{-7}$ и для пере-

Рис. 1. Световые ВАХ СЭ монокристаллического (a), профилированного (b) и перепрофилированного (b) кремния: t -до облучения; t - после облучения флюенсом $t \cdot 10^{14}$ н/см²; t - после отжига

L, MKM 40 20 10 6 4 2 10¹¹ 10¹² 10¹³ Φ, cm⁻²

Рис. 2. Изменение диффузионной длины (*L*) неравновесных носителей заряда в базе СЭ от дозы облучения (*Ф*):

— монокремний; О — профилирован-

Рис. 3. Спектральная чувствительность СЭ до (a) и после (б) водородной пассивации:

профилированного кремния $K_{\text{пер}}$ =(0,4...0,6)·10⁻⁷. Поскольку диффузионная длина неосновных носителей заряда (ННЗ) в базовой области связана с временем жизни ННЗ, то полученные результаты указывают на меньшую скорость введения центров рекомбинации радиационного происхождения в образцах из поликремния. Это можно объяснить наличием в таком кремнии большого количества внутренних дефектов, являющихся стоками для подвижных радиационных дефектов (РД), а разупорядоченные области характеризуются меньшей примесно-дефектной оболочкой по сравнению с СЭ из монокремния.

Результаты измерения темновых ВАХ исследованных групп СЭ свидетельствуют об увеличении рекомбинационного тока с увеличением флюенса нейтронов, что связано с накоплением РД [4].

Отжиг как облученных, так и не облученных образцов осуществлялся в течение 30 мин на воздухе при температуре не ниже 500°С. Как видно из рис. 1, световая ВАХ восстанавливается наиболее интенсивно в СЭ на основе поликремния. Наблюдаемое различие в восстановлении ВАХ, вероятно, обусловлено дополнительным поглощением вакансий, освобождающихся из разупорядоченных областей при отжиге, дефектами структуры в поликристаллическом кремнии.

Следует отметить, что КПД СЭ из перепрофилированного кремния был на 0.8-1.0% ниже КПД элементов из ПКП. Кроме того, при измерении прямых темновых ВАХ в СЭ из перепрофилированного кремния обратный рекомбинационный ток насыщения был выше, чем в СЭ, изготовленных из ПКП.

Измеренные спектральные характеристики до и после водородной пассивации СЭ (рис. 3) показывают, что возрастание тока существенно на длинноволновом участке. Ток в этой области зависит от величины диффузионной длины в базе прибора. Следовательно, положительный эффект при пассивации водородом достигается за счет подавления электрической активности дефектов в базе СЭ. При этом пассивация дефектов в перепрофилированном

кремнии происходит на глубине более 100 мкм от поверхности, на что указывает возросший вклад спектральной части поглощаемого света с длиной волны $\lambda \approx 1000$ нм. (Значительная глубина пассивации обусловлена высокой скоростью диффузии водорода вдоль дополнительных протяженных дефектов, образованных при пластической деформации в процессе получения перепрофилированного кремния.)

Таким образом, при облучении быстрыми нейтронами кремниевых солнечных элементов относительное снижение эффективности преобразования солнечной энергии у приборов из ПКП и перепрофилированного кремния меньше, чем у СЭ на основе монокремния, что связано с наличием в поликристаллическом кремнии, полученном вышеуказанными способами, большего количества структурных дефектов, являющихся активными стоками для РД.

Результаты радиационной обработки приборов подтверждают возможность изготовления из поликристаллического кремния солнечных элементов с приемлемыми характеристиками.

ИСПОЛЬЗОВАННЫЕ ИСТОЧНИКИ

- 1. Масенко Б. П., Онищук С. А., Солодуха О. И. Способ изготовления подложек из кремния / А. с. 1656915 СССР. 1990.
- 2. Брайловский Е. Ю., Масенко Б. П., Онищук С. А. Влияние нейтронного облучения на характеристики солнечных элементов из профилированного и монокристаллического кремния // Оптоэлектроника и полупроводниковая техника. 1991. Вып. 20. С. 37—40.
- 3. Кац Е. А., Онищук С. А. Протонная обработка СЭ на основе пластически деформированного профилированного кремния // Изв. АН РФ. Сер. Физ. 1994. Т. 58, № 9. С. 133-137.
- 4. Завадский В. А., Масенко Б. П. Влияние облучения на параметры кремниевых элементов / В сб.: Молодежь третьего тысячелетия: гуманитарные проблемы и пути их решения. Сер. Экономика, моделирование технических и общественных процессов, информациология, экология. Т. 3. Одесса. 2000. С. 236—241.