

BAYESIAN NETWORKS AND CAUSALITY

ANDRÉ E. DOS SANTOS

andreeds.github.io
dossantos@ualberta.ca

BAYESIAN NETWORKS

PROBABILISTIC GRAPHICAL MODEL

CONDITIONAL PROBABILISTIC TABLES

CPTs

Pearl **1988**

BAYESIAN NETWORKS

PROBABILISTIC GRAPHICAL MODEL

CONDITIONAL PROBABILISTIC TABLES

CPTs

Pearl **1988**

U = { fire, burglar, smoke, app }

CPT EXAMPLE

арр	fire	burglar	ρ(app fire , burglar)
Т	Т	Т	1.0
F	Т	Т	0.0
Т	F	Т	0.8
F	F	Т	0.2
Т	Т	F	0.9
F	Т	F	0.1
Т	F	F	0.01
F	F	F	0.99

The Π of the CPTs is a **joint probability distribution** $\rho(U)$

 $\rho(\mathbf{U}) = \rho(\mathbf{fire}) \cdot \rho(\mathbf{burglar}) \cdot \rho(\mathbf{smoke} \mid \mathbf{fire}) \cdot \rho(\mathbf{app} \mid \mathbf{fire}, \mathbf{burglar})$

DARWINIAN NETWORKS

DARWINIAN NETWORKS

(CAI 2015, CI 2016)

CLEVER WAY TO VIEW CPTs

DARWINIAN NETWORKS

POPULATION OF MICROORGANISMS

MULTIPLICATION IS

MERGE

$$\bullet$$
 black + \bullet black = \bullet black

$$\circ$$
 white $+ \circ$ white $= \bullet$ black

$$P(c|h) \cdot P(e|c,d) = P(c,e|d,h)$$

MARGINALIZATION IS REPLICATION AND NATURAL SELECTION

$$\sum_{e} P(c, e|d, h) = P(e|d, h)$$

BayesFraud Predictive Analytics

Identify Fraud, **improve efficiency** and **reduce losses** with the advanced computing power of **BayesFraud Analytics**. The results of implementing BayesFraud are compelling: more attempted fraud is exposed, and claims costs and premiums are kept at a minimum.

READ MORE

GET FREE DEMO

NP-hard Inference

Inference in BNs is a NP-hard task

SUM-PRODUCT NETWORKS

GENERATIVE DEEP LEARNING MODEL

PROBABILISTIC REASONING

Poon and Domingos 2011

SUM-PRODUCT NETWORKS

SUM-PRODUCT NETWORKS

DIFFERENTIAL APPROACH

SPN can represent a network polynomial

BACK PROPAGATION

derivatives can be evaluated for all random variables of the model

$$\frac{\partial \mathcal{S}(\mathbf{e})}{\partial \lambda_{X=x}} = \mathcal{S}(X=x,\mathbf{e} \setminus X)$$

tractable inference

SPNs follows a rigorous probabilistic structure with the benet of tractable inference in the size of the network

RELATED WORK

NNFs

Darwiche 1999, 2001 Darwiche and Marquis 2002

AND/OR graphs

Dechter and Mateescu 2007

ACs

Darwiche 2003

NNs

Poon and Domingos

2011

Vergari et al.

201

Sharir et al.

2018

Butz et al.

RELATED WORK

NNFs

Darwiche 1999, 2001 Darwiche and Marquis 2002

AND/OR graphs

Dechter and Mateescu 2007

ACs

Darwiche 2003

NNs

Poon and Domingos

2011

Vergari et al.

2015

Sharir et al.

2018

Butz et al.

BAYESIAN NETWORKS AND CAUSALITY

ANDRÉ E. DOS SANTOS

andreeds.github.io
dossantos@ualberta.ca

Does smoking cause cancer?

Does smoking cause cancer?

Causality

Causality

- Gives proper vocabulary for causation
- Difference with correlation
- Ladder of Causation: Association, Intervention, and Counterfactuals
- seeing vs doing

Does smoking cause cancer?

Does smoking cause cancer?

smoking does cause cancer!

data are profoundly dumb

The Book of Why Pearl & Mackenzie, 2018

