Formale Grundlagen der Informatik II 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. Ulrich Kohlenbach Alexander Kreuzer SS 2012

Gruppenübung

Pavol Safarik

Aufgabe G1

Wir betrachten die folgenden Formeln:

$$\varphi_1 := \forall x [\exists y (Rxy \land \neg \exists x Ryx) \lor \forall y \exists z (Rxz \land Rzy)]$$

$$\varphi_2 := \exists x [\forall y \neg Rxy \to \exists y \forall z (Rxy \land Rzy)]$$

$$\varphi_3 := \forall x \forall y [Rxy \to \exists z (Rxz \land Rzy \land \neg \exists x (Rzx \land Rxz))]$$

- (a) Geben Sie äquivalente Formeln in Pränex-Normalform an.
- (b) Wandeln Sie ihre Ergebnisse aus (a) in Skolem-Normalform um.
- (c) Betrachten Sie die Formel $\varphi := \forall x \exists y Rxy$ und die Skolem-Normalform $\psi := \forall x Rxsx$.
 - i. Beweisen Sie, daß $\psi \models \varphi$ gilt.
 - ii. Geben Sie ein Gegenbeispiel an, welches zeigt, dass $\varphi \not\models \psi$.

Aufgabe G2

- (a) Geben Sie für folgende FO-Formeln jeweils eine Skolem-Normalform an:
 - i. $\forall x \exists y Rxy$
 - ii. $\forall x (\forall y Ryy \rightarrow \exists y Ryf(x))$
- (b) Geben Sie einige verschiedene Herbrandmodelle für die Skolem-Normalformen aus (a) an.

Aufgabe G3

Zeigen Sie, dass wenn T_1 und T_2 zwei Theorien sind, so dass $T_1 \cup T_2$ keine Modelle hat, es ein Satz σ gibt, so dass $T_1 \models \sigma$ und $T_2 \models \neg \sigma$.

Aufgabe G4

Ein Pfad in einem Graph $\mathcal{G}=(V,E)$ ist eine Sequenz $\langle x_0,x_1,\ldots,x_n\rangle$ von Knoten, so dass

$$x_i E x_{i+1}$$

für alle i < n. Der Graph heißt *zusammenhängend*, wenn es für alle Paaren von Knoten (x, y) einen Pfad (x_0, x_1, \ldots, x_n) gibt, mit $x = x_0$ und $y = x_n$.

Zeigen Sie, dass es keine Formelmenge Γ in der Sprache der Graphen gibt, so dass $\mathcal{G} \models \Gamma$ genau dann wenn \mathcal{G} zusammenhängend ist.

Hausübung

Aufgabe H1 (6 Punkte)

Betrachte Sätze φ der Form $\varphi:=\forall x_1,\ldots,x_n\exists y_1,\ldots,y_m\,\varphi_{\mathrm{qf}}(x_1,\ldots,x_n,y_1,\ldots y_m)$, wobei φ_{qf} keine Quantoren und kein "=" und keine Funktionssymbole enthält. Geben Sie ein Entscheidungsverfahren für " $\models \varphi$ " an.

Gibt es ein Entscheidungsverfahren auch wenn $\varphi_{
m qf}$ Funktionssymbole enthält?

Aufgabe H2 (6 Punkte)

Betrache das Axiom $\Gamma := \forall x (S(x) \neq 0)$ in einer Sprache mit zwei 1-stelligen Funktionssymbolen S und f und einem Konstantensymbol 0.

- a) Zeigen Sie (informell): $\Gamma \models \exists x (f(S(f(x))) \neq x)$.
- b) Konstruieren Sie aus Ihrem Beweis von a) endliche viele nur aus 0, S, f aufgebaute geschlossene Terme t_1, \ldots, t_n mit $\Gamma \models \bigvee_{i=1}^n (f(S(f(t_i))) \neq t_i)$.

Hinweis

Man betrachte, ob f injektiv oder nicht-injektiv sein muss.