Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student

Version 2.9

Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student

[EPSA, 2018]

Écurie Piston Sport Auto – EPSA

Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student Département SEISM – Système Électronique Instrumenté Sécurisé et Monitoré

Directeur de PE:

Arthur RODRIGUEZ ARZ

Membres:

Corentin LEPAIS CLS

Romain MARTIN RMN

Bruno MOREIRA NABINGER BMR

Martin GOMEZ-VALCARCEL PINTADO MGV

Sommaire:

- I. L'Écurie Piston Sport Auto
- II. Le Formula Student
- III. La gestion d'un projet EPSA
- IV. Le projet Optimus
- V. Le projet Invictus

. Écurie Piston Sport Auto – EPSA

[EPSA, 2014]

MGV

[EPSA, 2017]

[EPSA, 2015]

[EPSA, 2018]

[EPSA, 2016]

[EPSA, 2019]

II. Le Formula Student La philosophie du championnat

"It's not about getting faster; it's about getting smarter"
Formula Student Germany

"Courses taught me theory, competitions made me an engineer"
Phillip Tischler [HAHN,2018]

[Formula Student Germany, 2013]

II. Le Formula StudentLes épreuves statiques

Design Event, 150 points Justification des choix d'ingénierie du véhicule

Cost and Manufacturing Event, 100 points Prise en compte du coup du véhicule en ce qui concerne les décisions techniques

Presentation Event, 75 points
Présentation d'un Business plan conçu autour du prototype

Scrutering

Vérification du respect du règlement

Braking test

Vérification des capacité de freinage du véhicule

Tilt test

Test de non retournement

[EPSA - Olympix, 2017]

FORMULA

Institution of MECHANICAL ENGINEERS

Le Formula Student Les épreuves dynamiques

Acceleration Event, 75 points Accélération du véhicule sur 75m

Skidpad Event, 75 points Evaluation de la manœuvrabilité du véhicule sur un circuit en 8

Autocross Event, 100 points Evaluation de la manœuvrabilité du véhicule sur un circuit de 1km environ

Endurance and Effiency Event, 325 et 100 points Evaluation de la fiabilité et de la consommation du véhicule sur une séance de 22km

[FSAE - SkidPad, 2012]

[OptimumLap -**Autocross Germany**]

ARZ

Soutenance de PE: PE 66

III. Écurie Piston Sport Auto – EPSA La gestion d'un projet EPSA

Travail intergénérationnel

III. Écurie Piston Sport Auto – EPSA L'organisation de l'équipe pour la saison 2020

IV. Le projet Optimus

[EPSA, 2019]

IV. Le projet Optimus Les secteurs d'activité du département SEISM

[EPSA, 2018]

IV. Le projet OptimusAcquisition de données

Exemples de capteurs présents : Pour le fonctionnement du véhicule

- Motorisation (TMAP, Guillotine, ...)

Pour le réglages du véhicule

- Liaison au sol (Débattement de suspension, ...)
- Motorisation (Lambda, pression d'essence, ...)

Pour l'entraînement des pilotes

- IHM (Angle du volant, TPS, pression de freins, ...)
- GPS

Enregistrement des données CAN

IV. Le projet Optimus Tableau du bord

[EPSA, 2019]

IV. Le projet Optimus Tableau du bord

RMN

Soutenance de PE: PE 66

IV. Le projet Optimus Passage de vitesse

IV. Le projet Optimus Bilan de connaissance

Bilan technique:

- Maitrise logiciel : CATIA, Arduino, Eagle
- Intégration :
 - Modéliser le faisceau sur CATIA
 - Soudure CMS
 - Réaliser des test unitaires du faisceau
- REX:
 - Tableau de bord
 - Passage de niveau
 - Acquisition de données

Bilan des essais:

- Mettre en place la télémétrie
- Préparer l'utilisation des capteurs

Bilan managérial:

- Gestion d'une équipe de 40 personnes
- Outils de travail collaboratifs :
 - GitHub
 - Slack
 - EPSABox

V. Le projet Invictus Les objectifs du véhicule

Epreuve	Meilleurs résultats		Prévision
Business Event	63/75	Atomix v1.0	50/75
Design Event	106/150	Dynamix v1.0	100/150
Cost Event	94/100	Vulcanix	90/100
Acceleration	60/100	Dynamix v2.0	50/100
Skid-Pad	45/75	Kinétix	35/75
Autocross	41/125	Atomix v2.0	40/125
Endurance	160/275	Dynamix v2.0	120/275
Efficiency	6/100	Atomix v1.0	15/100
	480/1000	Dynamix v2.0	
Total	575/1000	Composite	500/1000

V. Le projet Invictus Le concept

Configuration retenue lors du Top PréDim:

- Roue 13"
- Kit aérodynamique (ouïes, ailes avant et arrière)

Concept aérodynamique d'un véhicule de Formula Student (Optimus avec ailes avant et arrière)

V. Le projet Invictus Le cahier des charges du département

Fonctions Principales	Fonctions Contraintes	Critères	Niveau	Flexibilité
FP1: Respecter le CDCF de S0	FC1.1:Respecter le règlement	Règlement FS	n/a	0%
	FC1.2: Avoir une masse la plus faible possible	Budget Massique	9 kg	+/-500 g
	FC1.3: Avoir un prix le plus bas possible	Budget	4 k€	500€
FP2: Assurer la communication entre les différents organes de la voiture	CdCF 20_S21	Objectifs	n/a	0%
FP3: Permettre de changer de vitesse	CdCF 20_S23	Objectifs	n/a	0%
FP4: Assurer l'interface H/M	CdCF 20_S221 et CdCF 20_S222	Objectifs	n/a	0%
FP5: Acquérir des données pour valider les modèles	CdCF 20_S24	Objectifs	n/a	0%

[EPSA, 2019]

V. Le projet Invictus Passage de vitesse

Architecture choisi: Motoréducteur

Critères:

- Prix: 733,00€ TTC
- Temps de Conception
- Maîtrise par l'écurie
- Risques
- Points FS (Design Event)

—Motoreducteur (BG45x15 PI)

Pneumatique I : Geartronics Paddleshift

—Comparaison : shifter (solénoïde)

V. Le projet Invictus BSPD

[EPSA, 2019]

Carte:

- Composants CMS
- Circuit logique
- Fourni par la compétition

Fonctions:

 Couper le moteur en cas d'appui simultané de la pédale de frein et d'accélération

V. Le projet Invictus Acquisition de données

Capteurs prévus :

Reprise des capteurs d'Optimus (mutualisation de ces éléments)

Ajout de capteurs déjà possédés :

- Température de pneus
- Température de freins

Ajout de capteur en lien avec la configuration du véhicule (kit aérodynamique)

- Capteurs de garde au sol
- Sondes Pitots
- Jauges de contraintes
- ..

[OptimumG Seminar : Data Driven Performance Engineering (Claude Rouelle), 2019]

V. Le projet Invictus Bilan d'avancement

Etat du projet : sous contrôle

Top Appro: 27/06/2018

Franchi conditionnellement

Prochains objectifs:

Top Saison: 21 septembre 2018

Conception et réalisation de l'électronique embarquée et du cockpit d'un véhicule de compétition du Formula Student

