$$B(i,j) = (A(i,j) - B(i,1:j-1)*B(j,1:j-1)')/B(j,j);$$
 end end
$$end$$

$$B(n,n) = sqrt(A(n,n) - B(n,1:n-1)*B(n,1:n-1)');$$
 end

If we run the above algorithm on the following matrix

$$A = \begin{pmatrix} 4 & 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 & 0 \\ 0 & 1 & 4 & 1 & 0 \\ 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix},$$

we obtain

$$B = \begin{pmatrix} 2.0000 & 0 & 0 & 0 & 0 \\ 0.5000 & 1.9365 & 0 & 0 & 0 \\ 0 & 0.5164 & 1.9322 & 0 & 0 \\ 0 & 0 & 0.5175 & 1.9319 & 0 \\ 0 & 0 & 0 & 0.5176 & 1.9319 \end{pmatrix}.$$

The Cholesky factorization can be used to solve linear systems Ax = b where A is symmetric positive definite: Solve the two systems Bw = b and $B^{T}x = w$.

Remark: It can be shown that this method requires $n^3/6 + O(n^2)$ additions, $n^3/6 + O(n^2)$ multiplications, $n^2/2 + O(n)$ divisions, and O(n) square root extractions. Thus, the Cholesky method requires half of the number of operations required by Gaussian elimination (since Gaussian elimination requires $n^3/3 + O(n^2)$ additions, $n^3/3 + O(n^2)$ multiplications, and $n^2/2 + O(n)$ divisions). It also requires half of the space (only B is needed, as opposed to both L and U). Furthermore, it can be shown that Cholesky's method is numerically stable (see Trefethen and Bau [176], Lecture 23). In Matlab the function chol returns the lower-triangular matrix B such that $A = BB^{\top}$ using the call B = chol(A, 'lower').

Remark: If $A = BB^{\top}$, where B is any invertible matrix, then A is symmetric positive definite.

Proof. Obviously, BB^{\top} is symmetric, and since B is invertible, B^{\top} is invertible, and from

$$x^{\mathsf{T}}Ax = x^{\mathsf{T}}BB^{\mathsf{T}}x = (B^{\mathsf{T}}x)^{\mathsf{T}}B^{\mathsf{T}}x,$$

it is clear that $x^{\top}Ax > 0$ if $x \neq 0$.

We now give three more criteria for a symmetric matrix to be positive definite.