(1) Offenlegungsschrift

DEUTSCHES PATENTAMT (21) Aktenzeichen: P.38 43 117.3 22. 12. 88 (2) Anmeldetag: 28. 6.90 (43) Offenlegungstag:

⑤ Int. Cl. 5:

C 07 D 473/06

C 07 D 473/08 C 07 D 519/00 A 61 K 31/55 A 61 K 31/52 A 61 K 31/495 A 61 K 31/535 A 61 K 31/54 // (C07D 473/06, 493:08,319:18,317:48, 333:04,307:34,307:04, 307:32,309:02,339:06, 339:08,295:00)

(7) Anmelder:

Boehringer Ingelheim KG, 6507 Ingelheim, DE

(72) Erfinder:

Küfner-Mühl, Ulrike, Dipl.-Chem. Dr., 6500 Mainz, DE, Weber, Karl-Heinz, Dipl.-Chem. Dr., 6535 Gau-Algesheim, DE; Walther, Gerhard, Dipl.-Chem. Dr., 6530 Bingen, DE; Stransky, Werner, Dipl.-Chem. Dr., 6535 Gau-Algesheim, DE; Ensinger, Helmut, Dipl.-Chem. Dr., 6507 Ingelheim, DE; Schingnitz, Günter, Dr., 6550 Bad Kreuznach, DE; Kuhn, Franz Josef, Dr., 6535 Gau-Algesheim, DE; Lehr, Erich, Dr., 6531 Waldalgesheim, DE

(54) Neue Xanthinderivate mit Adenosin-antagonistischer Wirkung

Die Erfindung betrifft neue Xanthinderivate der allgemeinen Formel I, Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel.

reference lacks vingla Hacked to avel

DE 38 43 117

Beschreibung

Die Erfindung betrifft neue Xanthinderivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel.

5 Die neuen Xanthine besitzen die Struktur der allgemeinen Formel I

R₁ eine Alkylgruppe mit 1 bis 6, bevorzugt 1 bis 4 Kohlenstoffatomen, eine Alkenylgruppe mit 3 oder 4 Kohlenstoffatomen; eine Alkinylgruppe mit 3 oder 4 Kohlenstoffatomen;

R₂ Wasserstoff, eine Alkenylgruppe mit 3 oder 4 Kohlenstoffatomen, eine Alkylgruppe mit 1 bis 6, bevorzugt 1 bis 4 Kohlenstoffatomen, eine gegebenenfalls substituierte Benzylgruppe, eine Alkyinylgruppe mit 3 oder 4 Kohlenstoffatomen;

R3 einen C-verknüpften gesättigten oder ungesättigten fünf-, sechs- oder siebengliedrigen heterocyclischen Ring, der ein oder mehrere Heteroatome ausgewählt aus der Gruppe Sauerstoff oder Schwefel enthält und gegebenenfalls einen der folgenden Reste tragen kann,

C₁- bis C₆-, bevorzugt C₁- bis C₄-Alkyl, -CHO, -CH₂OR₄, -CH₂OR₇, COOR₄, CONR₅R₆, wobei ein Furanoder Thiophenrest auch einen der Reste

-CH=CH-CONR₅R₆,

 $-CH = C(COOR_4)_2(R_4 \text{ gleich oder verschieden}),$

 $-CH = C(COOR_4)(CONR_5R_6),$

 $-CH = C(COOR_4)(CH_2OR_4)(R_4 \text{ gleich oder verschieden}),$

 $-CH = C(COOR_4)(CH_2OR_7),$

 $-CH = C(CH_2OR_4)_2,$ $-CH = C(CH_2OR_7)_2,$

 $-CH = C(CONR_5R_6)CH_2OR_4$

-CH = C (CONR₅R₆)CH₂OR₇ oder Nitro und der Tetrahydrofuranrest auch einen Rest

-(CH₂)₂-CONR₅R₆ tragen kann;

R₃ ein C₄ bis C₈ Cycloalken, das durch C₂ bis C₄ Alkenylsubstituiert sein kann,

R₃ ein C₄- bis C₈- bevorzugt C₅- und C₆-Cycloalkanon oder ein C₄- bis C₈- bevorzugt C₅- und C₆-Cycloalkanol, die in in α-Position durch C₂- bis C₆-, bevorzugt C₂- bis C₄-Alkenyl, C₂- bis C₆-, bevorzugt C₂- bis C₄-Alkinyl, gegebenenfalls substituiertes Benzyl, CH2OR4, CH2COOR7, (CH2)2CN substituiert sein können. R₃ ein C₃- bis C₈-, bevorzugt C₅- oder C₆-Cycloalkan, das gegebenenfalls durch C₁- bis C₆-, bevorzugt C₁- bis

 C_4 -Alkyl, = CH_2 , OR_4 , OR_7 , $-(CH_2)/-COOR_4$, $-(CH_2)/-NR_4R_4$ (R_4 gleich oder verschieden), $-(CH_2)_i-CONR_5R_6$, $-(CH_2)_i-OR_4$, $-(CH_2)_i-OR_7$,

wobei / eine der Zahlen 0, 1, 2, 3 oder 4 bedeutet, oder einen Rest = CAH - wobei A die Bedeutung von COOR4, CN, CONR₅R₆, CH=CH-COOR₄, CH=CH-CONR₅R₆, CH₂OR₄ oder CH₂OR₇ aufweisen kann - substitu-

oder durch C1 bis C4 Alkyl, Vinyl, Allyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Benzyl substituiert ist und als zweiten Substituenten eine Hydroxylgruppe in geminaler Position zum ersten Substituenten trägt;

R₃ einen gegebenenfalls substituierten Rest der Formel

R₃ einen Rest der Formel

$$CH_3$$
 CH_3 CH_3

15

20

25

30

35

45

50

55

60

65

und

 R_4 Wasserstoff, eine Alkylgruppe mit 1 bis 13 — bevorzugt 1 bis 6 und 11 bis 13 — Kohlenstoffatomen, eine gegebenenfalls substituierte Cycloalkylgruppe mit 3 bis 6 Kohlenstoffatomen, eine gegebenenfalls substituierte Benzylgruppe, eine Alkenylgruppe mit 3 bis 13 — bevorzugt 3 bis 6 — Kohlenstoffatomen, ein Propargylrest; R_5 Wasserstoff, eine Alkylgruppe mit 1 bis 6 — bevorzugt 1 bis 4 — Kohlenstoffatomen, eine gegebenenfalls substituierte Cycloalkylgruppe mit 3 bis 6 Kohlenstoffatomen;

R₆ Wasserstoff, eine Alkylgruppe mit 1 bis 6 — bevorzugt 1 bis 4 — Kohlenstoffatomen, eine gegebenenfalls substituierte Benzylgruppe, einen Rest der allgemeinen Formeln

$$-(CH_2)_n - NR_5R_5$$
,
 $-(CH_2)_n - O - (CH_2)_m - O)_k - (CH_2)_n - NR_5R_5$) (R₅ gleich oder verschieden)

mit n=2, 3, 4, 5, 6, 7 oder 8, m=2, 3, 4, 5 oder 6 und k=0 oder 1,

$$-(CH_2)_n - N N - (CH_2)_n - NR_5R_5$$

(R₅ gleich oder verschieden),

wobei der Piperazinring durch $C_1 - C_4$ Alkyl — bevorzugt Methyl — substituiert sein kann, einen Piperidinylrest, der gegebenenfalls durch C_1 bis C_4 -Alkyl oder einen N-verknüpften Benzylrest substituiert ist oder

 R_5 und R_6 bilden zusammen mit dem Stickstoffatomen einen gegebenenfalls durch C_1-C_4 -Alkyl substituierten fünf- oder sechs- oder siebengliedrigen Ring, der ein weiteres Heteroatom aus der Gruppe Sauerstoff, Schwefel oder Stickstoff enthalten kann, wobei das Stickstoffatom durch den Res R_4 substituiert sein kann;

 R_7 eine C-verknüpfte natürlich vorkommende Aminosäure, $-CO-(CH_2)_p-CH_3$ mit p=0 bis 13, bevorzugt 1, 2 oder 3, Menthoxyacetyl, über eine Carbonylgruppe verknüpfter Camphansäurerest, Abietinoyl, 4-Aminobutyroyl, gegebenenfalls substituiertes Benzoyl, einen Rest der allgemeinen Formel CO-B, wobei B ein gegebenenfalls substituierter, C-verknüpfter, 5, 6 oder 7-gliedriger Heterocyclus ist,

bedeuten können sowie gegebenenfalls deren Racemate, deren optisch aktive Verbindungen wie auch deren pharmakologisch unbedenkliche Säureadditionssalze.

Bevorzugte Verbindungen der allgemeinen Formel I sind solche worin

R₁ eine unverzweigte Alkylgruppe mit 3 bis 4 Kohlenstoffatomen, eine Allylgruppe, eine Propargylgruppe; R₂ Wasserstoff, eine Allylgruppe, eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, eine Propargylgruppe; R₃ einen Rest, ausgewählt aus der Gruppe Furan, Tetrahydrofuran, Tetrahydrofuranon, Thiophen, Dithiol, Dithian oder Tetrahydropyran der einen der folgenden Substituenten tragen kann Methyl, Ethyl, Propyl, Butyl, CHO, CH₂OR₄, CH₂OR₇, COOR₄, CONR₅R₆, R₃ ein durch

 $-CH = CH - CONR_5R_6$, $-CH = C(COOR_4)_2(R_4 \text{ gleich oder verschieden})$,

 $-CH = C(COOR_4)(CONR_5R_6),$

-CH = C (COOR₄) (CH₂OR₄) (R₄ gleich oder verschieden),

 $-CH = C(COOR_4)(CH_2OR_7),$

 $-CH = C(CH_2OR_4)_2$

 $-CH = C(CH_2OR_1)_2,$

 $-CH = C(CONR_5R_6)CH_2OR_4$ oder

-CH = C (CONR₅R₆)CH₂OR₇ substituiertes Furan;

 R_3 ein Cyclopentan oder Cyclohexan, gegebenenfalls substituiert durch Methyl, Ethyl, Propyl, iso-Propyl, t-Butyl, Allyl, Vinyl, Phenyl oder Benzyl, wobei als geminaler Substituent eine Hydroxygruppe vorhanden sein kann; R_3 ein Cyclopentan oder Cyclohexan, substituiert durch Hydroxy, Methoxy, Ethoxy, Propyloxy, iso-Propyloxy, gegebenenfalls substituiertes Benzyloxy, Allyloxy, Propargyloxy, OR₇ worin R_7 COCH₃, COC₂H₅, COC₃H₇, CO t-Butyl, COCH₂-Phenyl — gegebenenfalls substituiert, CO-Pyridyl, —CO-(N-Methyl-4H-pyridyl), —CO-(Methyl-yridyl), —CO-(H₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₃-COCH₃, =C-CO-

OCH₃,

R₃ ein Cycloalkan oder Cycloalken mit 4-8 Kohlenstoffatomen, welches gegebenenfalls durch eine geradkettige oder verzweigte Alkenylgruppe mit 2 bis 4 Kohlenstoffatomen substituiert sein kann, ein Cyclopentanon oder Cyclopentanon oder Cyclohexanol, die in α-Position zur Keto- oder Hydroxygruppe durch C₂ bis C₄ Alkenyl, C₃ oder C₄ Alkinyl, Benzyl, -CH₂CH₂CN, (CH₂)₃NR₅R₅ gleich oder verschieden), CH₂CO-OR₄, CH₂OR₄ substituiert sein können, wobei R₄ Wasserstoff, Methyl, Ethyl oder Propyl bedeuten können; R₄ Wasserstoff, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen, eine Cyclopropylgruppe, eine Cyclopentylgruppe, Benzyl eine Allylgruppe, eine Propargylgruppe;

R₅ Wasserstoff, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen; eine Cyclopropylgruppe, eine Benzyl;

R₆ Wasserstoff, Methyl, Ethyl, Propyl, $-(CH_2)_n - NH_2$ (n=2-8), $-(CH_2)_n NEt_2(n=2,3)$ oder $-(CH_2)_3 - O - (CH_2)_4 - O - (CH_2)_3 - NH_2$, N-Benzyl-piperidin-4-yl-, oder R₅ und R₆ zusammen mit dem Stickstoffatom einen Piperidin-, Piperazin-, Morpholinrest, der gegebenenalls durch C₁ - C₄ Alkylrest - bevorzugt Methyl substituiert sein kann;

R₇ Prolinoyl, CO-(CH₂)₀₋₃-CH₃, (-) — Menthoxyacetyl, ein über eine Carbonylgruppe verknüpfter Camphansäurerest, Abietinoyl, Benzoyl, 4-Aminobutyroyl, 3,4,5-Trihydroxybenzoyl, ein Nicotinsäure-, Isonicotinsäure- oder Picolinsäurerest, N-Methylnicotinsäurerest, N-Methyl-4H-Nicotinsäurerest bedeuten können, sowie gegebenenfalls deren Säureadditionssalze.

Als Alkylgruppen werden beispielsweise — auch als Bestandteil anderer Substituenten — Methyl, Ethyl, Propyl, Isopropyl, Butyl, iso-Butyl, tert.-Butyl, Pentyl, iso-Pentyl, und als Beispiele für längerkettige Alkylreste Dekanyl, Undecanyl, Dodecanyl und Tridecanyl sowie deren Isomere genannt. Als Alkenylreste werden beispielsweise Allyl (soweit sie keine Enamine bilden), Propenyl, iso-Propenyl, Butenyl und iso-Butenyl genannt. (Et = Ethyl).

Als Cycloalkylreste werden beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl bezeichnet, die durch Alkyl mit 1 bis 4 Kohlenstoffatomen substituiert sein können. Ein Benzylrest wie auch eine Phenylgruppe können ein oder mehrfach durch Alkyl mit 1 bis 4 Kohlenstoffatomen — bevorzugt Methyl —, durch Alkoxy mit 1 bis 4 Kohlenstoffatomen — bevorzugt Methoxy-, Hydroxy, und/oder Halogen — wie z.B. Fluor, Chlor, oder Brom — subsituiert sein.

Als Beispiele für cyclische Reste der allgemeinen Formel NR_5R_6 seien genannt: Pyrrol, Pyrrolin, Pyrrolidin, 2-Methylpyrrolidin, 3-Methylpyrrolidin, Piperidin — gegebenenfalls durch C_1-C_4 Alkyl ein- oder mehrfach substituiert — Piperazin, N-Methylpiperazin, N-Ethylpiperazin, N-n-Propylpiperazin, N-Benzylpiperazin, Morpholin, Thiomorpholin, Imidazol, Imidazolin, Imidazolidin, Pyrazol, Pyrazolin, Pyrazolidin — wobei die genannten Heterocyclen durch Alkyl mit 1 bis 4 Kohlenstoffatomen — bevorzugt Methyl — substituiert sein können.

Als heterocyclische Reste, die über ein Kohlenstoffatom verknüpft sein können, werden beispielsweise Thiophen, 2-Methylthiophen, 2-Nitrothiophen, Furan, 2-Nitrofuran, Tetrahydrofuran, 2-Methyltetrahydrofuran, 2-Hydroxymethylfuran, Tetrahydrofuranon (γ -Butyrolacton, α -Pyran, γ -Pyran, 1,3-Dioxolan, 1,2-Oxathiolan, 1,2-Oxathiepan, tetrahydro-Pyran, Thiolan, 1,3-Dithian, 1,3-Dithiolan, 1,3-Dithiolen Furfural genannt, wobei der Heterocyclus wie in den Definitionen angegeben substituiert, sein kann.

Als Beispiele für natürlich vorkommende Aminosäuren gelten Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Tryptophan, Methionin, Glycin, Serin, Threonin, Cystein, Tyrosin, Asparagin, Glutamin, Histidin, Arginin, Lysin.

Die erfindungsgemäßen Verbindungen sind Adenosinantagonisten; sie besitzen insbesondere hohe Affinität (bis zu 1,6 nM) zum A₁-Rezeptor und hohe Selektivität (bis zu 100 000fach) für diesen Rezeptor-Subtyp.

Die Substanzen antagonisieren in Hippocampusschnitten die Adenosin-induzierte Unterdrückung des Summenspikes nach elektrischer Stimulation. In vivo kann im Gehirn der Ratte ein erhöhter Acetylcholingehalt festgestellt werden.

Diese Ergebnisse deuten darauf hin, daß die beschriebenen Xanthinderivate die natürliche Zellaktivität cholinerger Neurone im Gehirn verstärken und sich somit als funktionelle Cholinoimetika mit zentralem Angriff erweisen.

EEG-Untersuchungen an Katzen zeigen eine deutliche Vigilanzsteigerung an.
Derartige Substanzenstad für die symptomatische Therapie degenerativer Alterserkrankungen wie Dementia senilis und Morbus Alzheimer von großem Interesse.

Die hohe Rezeptoraffinität sollte es erlauben, mit niedrigen Dosen zu therapieren, so daß kaum mit Nebenwirkungen zu rechnen ist, die nicht auf die Blockade von Adenosinrezeptoren zurückzuführen sind. Gleichermaßen sollten aufgrund der hohen A₁-Selektivität der Verbindungen A₂-abhängige Nebeneffekte ausbleiben. Über ihre Verwendung als Gerontopsychopharmaka und Nootropica hinaus könnten die beschriebenen Adenosinantagonisten zur Behandlung von Herz- und Kreislauferkrankungen von Nutzen sein.

Weitere mögliche Indikationen sind degenerative Erkrankungen wie z.B. organisches Hirnsyndrom, Parkinson, traumatische ZNS-Schädigungen, post stroke neurological deficit, respiratory depression (intoxication, post op).

Pharmakologische Ergebnisse sind in der Tabelle Ia dargestellt. Die Untersuchungsmethoden entsprechen denen den in den nachfolgenden Literaturzitaten angegebenen:

Lohse M.J., V. Lenschow and U. Schwabe (1984) Mol. Pharmacol. 26, 1-9;

Virus, M.R., T. Baglajewski and M. Rachelovacki (1984) Neurotiology of Agenig 5, 61-62;

Daly, J.W., W. Padgett, M.T. Shamin, P. Butts-Lamb and J. Waters (1985) J. Med. Chem. 28, 487 – 492; Bruns, R.F., G.H. Lu and T.A. Pugsley (1986) Mol. Pharmacol. 29, 331 – 346

Tabelle la

			`
Beispiele gemäß Tabelle I	K¡[nMol] (A₁)	K _i [nMol] (A ₂)	5
22	8 · 10-9	>1 · 10 ⁻⁴	
23	$3 \cdot 10^{-9}$	/	
28	$6 \cdot 10^{-9}$	$> 1 \cdot 10^{-5}$	
33	$3 \cdot 10^{-9}$	$3 \cdot 10^{-5}$	10
39	$4 \cdot 10^{-9}$	$9 \cdot 10^{-5}$	
40	$2 \cdot 10^{-9}$	$>1 \cdot 10^{-5}$	
45	$2 \cdot 19^{-9}$	$>1 \cdot 10^{-5}$	
49	2 · 10 ⁻⁹	$> 1 \cdot 10^{-5}$	
50	$2 \cdot 10^{-9}$	$>1 \cdot 10^{-5}$	15

Die erfindungsgemäßen Verbindungen können nach an sich bekannten Analogieverfahren hergestellt werden. Im allgemeinen werden 8 — substituierte 1,3-Dialkylxanthine durch Umsetzung von 1,3-Dialkyldiaminouracilen mit Aldehyden, Carbonsäuren oder Carbonsäurechloriden oder durch Umsetzung von 1,3-Dialkyl-6-amino-5-nitrosouracilen mit Aldehyden erhalten.

5,6-Diamino-1,3-dimethylxanthin ist käuflich; mit anderen Resten substituierte Derivate werden durch Reaktion des entsprechenden Dialkylharnstoffs mit Cyanessigsäure, nachfolgende Nitrosierung und gegebenenfalls Hydrierung zum Diamin hergestellt (J. Org. Chem. 16, 1879 (1951) und Can. J. Chem. 46, 3413 (1968)).

(la)
$$\begin{bmatrix} R_3CHO \\ (CH_1)_2N-NH_2 \end{bmatrix}$$

25

35

50

*) Diethylazodicarboxylat

(Die römischen Zissern nehmen bezug auf die im experimentellen Teil angegebenen Arbeitsvorschriften)

Xanthine, mit einem Benzylrest in 3-Position und einem davon verschiedenen Rest in 1-Position erhält man durch 1-Alkylierung entsprechender Vorläufermoleküle die in 3-Stellung mit einer Benzylgruppe und in 8-Stellung entsprechend substituiert sind.

Diese sind über Umsetzung von Monobenzylharnstoff und Cyanessigsäure zum 6-Amino-1-benzyluracil (L.-F. Tietze und Th. Eicher, Reaktionen und Synthesen, Georg Thieme Verlag, Stuttgart 1981, S. 322), Alkylierung mit dem gewünschten Rest in 3-Position (XIV), Nitrosierung der 5-Stellung (XV) und Hydrierung zum 3-substuierten 1-Benzyl-5,6-Diaminouracil (XVI) zugänglich. Aldehyde, Carbonsäuren und Säurechloride, die zur Umsetzung mit 5,6-Diaminouracilen verwendet werden, können nach literaturbekannten Verfahren hergestellt werden.

Nach den so beschriebenen Verfahren können Xanthinderivate hergestellt werden, in denen R₃ beispielsweise die nachfolgende Bedeutung aufweist:

Thiophen, 2-Methylthiophen, 2-Nitrothiophen Furan, Cyclohexan, Cyclohexanon, Tetrahydrofuranon, 1,3-Dithian, Pyran, Cyclohexan, Norbonen und andere, soweit die entsprechenden Aldehyde R₃CO, Carbonsäuren R₃COOH oder deren reaktive Derivate bereits funktionalisiert mit dem entsprechenden Diaminouracil umgesetzt werden können.

An den so erhaltenen "Xanthin-Grundkörpern" können dann weitere synthetische Variationen durchgeführt werden.

Reaktive funktionelle Gruppen sind dabei ggf. auf übliche Weise zu schützen.

Ausgehend von den entsprechenden 8-Cycloalkanonen können die entsprechenden Alkohole durch Reduktion hergestellt werden, die sich wiederum mit Carbonsäuren oder Säurechloriden verestern lassen. Die entsprechenden Ether erhält man durch Umsetzung der Alkohole mit Halogenderivaten, Tosylaten oder Mesylaten, wobei X auch an dem der Carbonylgruppe bzw. dem der Hydroxygruppe tragenden Kohlenstoffatom benachbarten C-Atom sitzen kann. (In allen nachfolgenden Formeln sind deshalb die Positionen der Reste als beispielhaft zu verstehen ohne die erfindungsgemäßen Verbindungen auf die angegebenen Positionen einzuschränken).

n=1-5; X = "Xanthin"

Mit Hilfe der Stork-Reaktion können Cycloalkanone in α -alkylierte Derivate umgewandelt werden, indem das Keton zuerst mit Pyrrolidin zum Enamin umgesetzt und dann mit reaktiven Alkylhalogeniden, α -Halogenestern oder -ethern zur Reaktion gebracht wird.

$$X \xrightarrow{(CH_2)_n} O \longrightarrow X \xrightarrow{(CH_2)_m} O$$

$$m, n = 0-6$$

m, n = 0-6 m+n = 0-6

20

25

35

Wittig-Horner-Umsetzungen an den Ketofunktionen mit Phosphonsäureestern führen zu substituierten Olefinen. Durch Veresterung der Carboxylgruppen, Amidbildung sowie Reduktion zum Alkohol und nachfolgende Veresterung oder Veretherung sind substituierte Verbindungen unten genannten Typs zugänglich, die einer nachfolgenden Hydrierung unterworfen werden können.

$$X \xrightarrow{(CH_2)_n} O \xrightarrow{(CH_2)_n} CH - COOR^4 \xrightarrow{(CH_2)_n} CH - CONR^5R^6$$
und hydrierte Derivate

$$(CH_2)_n$$

$$\longrightarrow X \longrightarrow CH - CH_2OR^4 \text{ oder } R^7$$
und hydrierte Derivate

$$(CH_2)_n \qquad (CH_2)_n$$

$$\longrightarrow X \longrightarrow CH - CN \longrightarrow X \longrightarrow (CH_2)_2NR^4R^4 \text{ oder NHR}^7$$

$$(CH_2)_n$$

$$\longrightarrow X \longrightarrow CH - CH = CH - CH_2OR^4$$
oder R^7
und hydrierte Derivate

8-Furyl- oder 8-Thiophenylderivate können nach Vilsmeier (IV) formyliert werden. Dies so erhaltene Aldehyde dienen als Ausgangsstufen für Wittig-Horner-Reaktionen (X) mit Phosphonaten; die Produkte können entsprechend den oben angegebenen Verfahren weiter derivatisiert werden.

65

50

55

60

$$X$$
 A
 $CHO \rightarrow X$
 A
 $CH=CH-Z \rightarrow Wittig-Horner-Produkte aus Cycloalkanonen$

A = O, S; Z = ziehender Rest, X = "Xanthin"

Die Aldehyde sind Knoevenagel-Reaktionen (XI) mit Malonestern zugänglich. Die Estergruppen können zu Alkoholen reduziert und diese verestert oder verethert werden. Die Verseifung einer der Estergruppen liefert die Monocarbonsäure. Diese dient als Ausgangsstufe für die Synthese von "gemischtfunktionellen" Derivaten.

5

10

60

65

So können die Kombinationen Ester (Amid, Alkohol (auch verestert oder verethert)/Carbonsäure, Alkohol (auch verestert oder verethert)/Amid, Alkohol (auch verestert oder verethert)/Ester, gemischte Ester erhalten werden.

$$X \longrightarrow CH = C \longrightarrow X \longrightarrow CH = C \longrightarrow X \longrightarrow CH_2OR^4 \text{ oder } R^7 \longrightarrow X \longrightarrow CH = C \longrightarrow X \longrightarrow COOR^4 \longrightarrow X \longrightarrow CH = C \longrightarrow X \longrightarrow COOR^4 \longrightarrow X \longrightarrow CH = C \longrightarrow X \longrightarrow COOR^4 \longrightarrow X \longrightarrow CH = C \longrightarrow X \longrightarrow COOR^4 \longrightarrow X \longrightarrow CH = C \longrightarrow X \longrightarrow COOR^4 \longrightarrow X \longrightarrow CH = C \longrightarrow CH_2OR^4 \text{ oder } R^7 \longrightarrow X \longrightarrow CH = C \longrightarrow CH_2OR^4 \text{ oder } R^7 \longrightarrow X \longrightarrow CH = C \longrightarrow CH_2OR^4 \text{ oder } R^7 \longrightarrow X \longrightarrow CH = C \longrightarrow COOR^4 \longrightarrow X \longrightarrow CH = C \longrightarrow COOR^4 \longrightarrow$$

X = Xanthin

A = 0, S;

Durch Reduktion sind aus den Aldehyden die entsprechenden Alkohole zugänglich, die verestert und verethert werden können.

Oxidationsreaktionen ergeben Carbonsäuren, die ihrerseits in die Ester und Amide umgewandelt werden können.

$$X \longrightarrow CHO \longrightarrow X \longrightarrow COOH \longrightarrow X \longrightarrow COOR' oder X \longrightarrow CONR'R'$$

Die Doppelbindung in 8-Norbornenylderivaten kann durch Umsetzung mit KMnO4 zum cis-Diol umgewandelt werden. Reaktion mit m-Chlorperbenzoesäure ergibt das Epoxid das sich um trans-Diol öffnen, mit Natri-

umazid zum Azidoalkohol umsetzen oder mit Lithiumtetrahydridoalanat zum entsprechenden Alkohol reduzieren läßt. Der α -Aminoalkohol ist durch Hydrierung erhältlich.

Ausgehend von Xanthinderivaten in denen, R₃ ein Cycloalkanon bedeutet, erhält man durch Grignard-Reaktion Derivate der allgemeinen Formel

$$X \longrightarrow (CH_2)_n OH$$

$$m, n = 0-6$$

 $m + n = 0-6$

5

10

worin R₈ Methyl, Ethyl, Vinyl, Phenyl und Benzyl bedeuten.

Oben genannte Cycloalkanone können mit dem sogenannten Tebbe-Reagenz in die entsprechenden Methylenderivate überführt werden, die anschließend zu den Methylverbindungen reduziert werden können (J. Org. Chem. 50 (8), 1212 (1985).

Reduktion der Carbonylgruppe in – gegebenenfalls substituierten – Cycloalkanonen, z.B. mit Natriumtetrahydridoboranat, führt zu den entsprechenden Alkoholen die in den nachfolgenden Reaktionsschritten verestert oder verethert werden können.

Die Herstellung enantiomerenreiner Xanthinderivate, die als Substituenten R₃ einen Cyclopentanrest tragen kann gemäß folgendem Syntheseschema erfolgen:

1 HOOC
$$\longrightarrow$$
 OH

TosOH/
MeOH

30 \downarrow TosOH/
MeOH

35 II MeOOC \longrightarrow O \downarrow HOCH₂CH₂OH \downarrow MeOOC \bigcirc O

 \downarrow NaBH₄

40 III MeOOC \longrightarrow OH

 \downarrow DIBAH₄
 \downarrow P₂O₃/DMSO

50 IV OHC \longrightarrow OH

 \downarrow 1 od. 1a

 \downarrow 1. 1 od. 1a/2. H[®]

55 \downarrow OH

 \downarrow Pyridiniumdichromat \downarrow X \longrightarrow O

(Enantiomerenreine) 3-Oxo-cyclopentancarbonsäure wird nach den üblichen Methoden verestert (z.B. in Methanol unter Zusatz von p-Toluolsulfonsäure am Wasserabscheider) [K. Toki, Bull. Chem. Soc. Jpn. 31 (1958) 333]. Die Ketofunktion des Produktes wird zum Dioxolan ketalisiert, indem z.B. der 3-Oxo-cyclopentancarbonsäureester in Toluol mit einem leichten Überschuß an Ethylenglycol und katalyt. Mengen p-Toluolfulfonsäure versetzt und am Wasserabscheider gekocht wird.

Die Esterfunktion kann mit gängigen Methoden (z.B. durch Reduktion mit Lithiumtetrahydridoalanat in Tetrahydrofuran) zum Alkohol reduziert werden, der sich wiederum auf übliche Weise (z.B. Dimethylsulfoxid/Phosphorpentoxid in Methylenchlorid, dann Triethylamin) zum Aldehyd oxidieren läßt.

Der Aldehyd wird nach Vorschrift I oder Ia mit einem Dialkyluracilderivat umgesetzt, im Verlauf der Aufarbei-

38 43 117 A1 DE tung wird mit verdünnter HCl die Ketalfunktion hydrolysiert. Alternativ kann der 3-Oxo-cylopentancarbonsäureester an der Ketofunktion zum Alkohol reduziert werden (z.B. mit Natriumborhydrid in Methanol oder mit Reduktionsmitteln, die diastereoselektiv wirken, z.B. K-SelectrideR). Die Estergruppe des 3-Hydroxy-cyclopentancarbonsäureesters wird mit Diisobutylaluminiumhydrid in Toluol direkt zum Aldehyd reduziert, der sich analog Vorschrift I oder Ia mit umsetzen läßt. Die Oxidation der Alkoholfunktion zum Keton läßt sich z.B. mit Pyridiniumdichromat in Methylenchlorid durchführen. Die erfindungsgemäßen Verbindungen können nach an sich bekannten Verfahren in ihre Säureadditionssalze überführt werden. Zur Salzbildung geeignete Säuren sind beispielsweise Salzsäure, Bromwasserstoffsäure, Jodwasserstoffsäure, Fluorwasserstoffsäure, Schwefelsäure, Phosphorsäure, Essigsäure, Propionsäure, Buttersäure, Capronsäure, Valeriansäure, Oxalsäure, Malonsäure, Bernsteinsäure, Maleinsäure, Fumarsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Benzoesäure, p-Hydroxybenzoesäure, p-Aminobenzoesäure, Phthalsäure, Zimtsäure, Salicylsäure, Ascorbinsäure, Methansulfonsäure, 8-Chlortheophyllin und dergleichen. Bevorzugte Säureadditionssalze sind die Hydrochloride sowie Hydrobromide. 15 Allgemeine Vorschrift I: Ringschluß mit Aldehyd Beispiel 1 20 1,3-Dipropyl-8-(1,4-benzodioxan-6-yl)xanthin 2,18 g (0,013 Mol) 1,4-Benzodioxan-6-aldehyd, 80 ml Ethanol und 2,4 ml Eisessig werden gemischt und mit 2,8 g (0,012 Mol) 5,6-Diamino-1,3-dipropyluracil versetzt. Die klare Lösung wird 21/4 Stunden am Rückfluß gekocht und dann auf 60°C abgekühlt. Bei dieser Temperatur werden 2,1 ml (0,013 Mol) Azodicarbonsäurediethylester zugetropft, und die entstehende zähe Suspension wird mit 80 ml Ethanol versetzt und 2 Stunden am Rückfluß gekocht. Nach weiteren 20 Stunden bei Raumtemperatur wird das Gemisch auf 5°C gekühlt, der Feststoff abgesaugt und mit Ethanol und Ether gewaschen. Man erhält 4,1 g der Titelverbindung als grauen Feststoff (=92% d. Th), Fp = 280-282°C. 30 Allgemeine Arbeitsvorschrift Ia: Ringschluß mit Aldehyden Beispiel 1a 1-Propyl-3-benzyl-8-(1,4-benzodioxan-6-yl)xanthin 35 2,9 g (0,01 Mol) 1-Benzyl-3-propyl-5-nitroso-6-aminouracil werden mit 2,3 g (0,014 Mol) 1,4-Benzodioxan-6-aldehyd in 60 ml Dimethylformamid vorgelegt, anschließend werden 0,5 g (0,014 Mol) 1,1-Dimethylhydrazin zugegeben und die Mischung wird 8 Stunden am Rückfluß erhitzt. Nach üblicher Aufarbeitung wird der kristalline 40 Rückstand mit Ethanol verrieben und abgesaugt. Man erhält 1,0 g der Titelverbindung als gelbe Kristalle vom Fp. = 290°C. Allgemeine Vorschrift II: Ringschluß mit Carbonsäure Beispiel 2 45 1,3-Dipropyl-8-(tetrahydropyran-4-yl)xanthin 3,2 g (0,025 Mol) Tetrahydropyran-4-carbonsäure, 4,0 g (0,025 Mol) Carbonyldiimidazol und 85 ml abs. Methylenchlorid werden 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 5,7 g (0,025 Mol) 5,6-Diamino-

3,2 g (0,025 Mol) Tetrahydropyran-4-carbonsäure, 4,0 g (0,025 Mol) Carbonyldiimidazol und 85 ml abs. Methylenchlorid werden 30 Minuten bei Raumtemperatur gerührt. Nach Zugabe von 5,7 g (0,025 Mol) 5,6-Diamino-1,3-dipropyluracil wird die Mischung 4 Stunden bei Raumtemperatur gerührt und dann im Vakuum eingeengt. Der Rückstand wird mit 130 ml Wasser und 11,6 g Calciumhydroxid versetzt, 30 Minuten bei 80°C gerührt und nach dem Abkühlen unter Eiskühlung mit konz. HCl sauer gestellt. Das Gemisch wird mit Ethylacetat extrahiert und die organische Phase wird getrocknet und eingeengt. Chromatographie des kristallinen Rückstands an Kieselgel (CH₂Cl₂/CH₃OH 99:1) liefert 1,7 g der Titelverbindung als weiße Kristalle (15% d. Th.), Fp. 171–172°C.

Allgemeine Vorschrift III: Ringschluß mit Säurechlorid

Beispiel 3

60

1,3-Dipropyl-8-(4,7,7-trimethyl-2-oxa-bicyclo[2.2.1]-heptan-3-on-1-yl)xanthin

1.2 g (5,4 mMol) 5,6-Diamino-1,3-dipropyluracil und 1,0 g Triethylamin (10 mmol) werden in 50 ml abs. Methylenchlorid gelöst. Nach Zutropfen von 1,2 g (5,5 mmol) Camphansäurechlorid wird 20 Stunden bei Raumtemperatur gerührt und im Vakuum eingeengt. Der Rückstand wird mit 28 ml Wasser und 1,7 g Calciumhydroxid versetzt und 3 Stunden bei 80°C gerührt. Die abgekühlte Suspension wird unter Eiskühlung sauer gestellt und mit Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden getrocknet und eingeengt, der

Rückstand wird durch Chromatographie an Kieselgel (CH₂Cl₂/CH₃OH 99:1) gereinigt. Man erhält 200 mg der Titelverbindung als weiße Kristalle (10% d. Th.), Fp. 200–201°C.

Allgemeine Vorschrift IV: Vilsmeier-Reaktion

5

Beispiel 4

1,3-Dipropyl-8-(2-formylfuran-5-yl)xanthin

Zu 400 ml absolutem Dimethylformamid werden bei 0-10°C 16,4 g (0,11 Mol) Phosphoroxychlorid zugetropft. Bei 5-15°C wird eine Lösung von 15,0 g (0,05 Mol) 1,3-Dipropyl-8-furanylxanthin in 330 ml Dimethylformamid zugegeben. Der Ansatz wird 1 Stunde bei Raumtemperatur und 7 Stunden bei 85°C gerührt. Die Mischung wird auf 500 ml Eis gegeben und mit Methylenchlorid extrahiert. Die vereinigten organischen Extrakte werden getrocknet und im Vakuum eingeengt, der Rückstand wird aus Ether kristallisiert.

Man erhält 12,1 g der Titelverbindung als braune Kristalle (73% d. Th.), Fp. 215-217°C.

Allgemeine Vorschrift V: Oxidation eines Aldehyds zur Säure

Beispiel 5

20

1,3-Dipropyl-8-(2-carboxyfuran-5-yl)xanthin

Eine Lösung von 0,26 g (1,5 mmol) Silbernitrat in 2 ml Wasser wird mit einer Lösung von 0,4 g Natriumhydroxid in 1 ml Wasser 5 Minuten geschüttelt. Der grauschwarze Silberoxid-Niederschlag wird abgesaugt und mit Wasser gewaschen, anschließend in 5 ml Wasser aufgenommen und mit 1,3-Dipropyl-8-[5-formyl-(2-furanyl)]Xanthin versetzt. Die Mischung wird auf 50°C erhitzt, und eine Lösung von 0,1 g Natriumhydroxid in 2 ml Wasser wird langsam zugetropft. Der Zusatz wird 15 Minuten bei 50°C und 1 Stunde bei Raumtemperatur gerührt und filtriert. Das Filtrat wird sauer gestellt und mit Methylenchlorid versetzt, der ausgefallene Niederschlag abgesaugt und mit Methylenchlorid und Ether gewaschen.

Man erhält 0,4 g der Titelverbindung als hellbraune Kristalle (77% d. Th.)

Allgemeine Vorschrift VI: Knoevenagel-Reaktion

Beispiel

35

1,3-Dipropyl-8-[2-(2,2'-bis(ethoxycarbonyl)vinyl)-furan-5-yl]xanthin

2,5 g (7,6 mmol) 1,3-Dipropyl-8-[5-formyl-(2-furanyl)]-xanthin, 1,2 g (7,6 mmol) Malonsäurediethylester, 0,03 g (0,3 mmol) Piperidin, 0,09 g (1,5 mmol) Eisessig und 5 ml Benzol p.a. werden zusammengegeben und 6 Stunden am Wasserabscheider gekocht.

Nach dem Abkühlen wird der Ansatz mit 10 ml. Toluol verdünnt, der Feststoff abgesaugt und in 100 ml warmem Methylenchlorid gelöst. Die Lösung wird filtriert, das Filtrat im Vakuum eingeengt und der Rückstand aus 2-Propanol umkristallisiert.

Man erhält 1,0 g Titelverbindung als gelbe Kristalle (28% d. Th.), Fp. = 220 - 222° C.

45

Allgemeine Vorschrift VII: allgemeine Darstellung von Amiden

Beispiel 7

50

1,3-Dipropyl-8-[2-(N,N-diethylaminocarbonyl)furan-5-yl]-xanthin

1,0 g (2,9 mmol) 1,3-Dipropyl-8-[2-carboxy-furan-5-yl)]xanthin werden in absolutem Dimethylformamid gelöst und bei 0-5°C mit 0,38 g Triethylamin und 0,45 g (3,3 mol) Isobutylchloroformat versetzt. Der Ansatz wird 2 Stunden bei 0-5°C gerührt, dann werden 0,34 g (2,9 mmol) N,N-Diethylamino-ethylamin zugegeben, und die Mischung wird ca. 12 Stunden im auftauenden Eisbad weitergerührt. Der Ansatz wird im Hochvakuum eingeengt, mit Methylenchlorid und Wasser versetzt, alkalisch gestellt und mit Methylenchlorid extrahiert. Die organischen Phasen werden jeweils verworfen, die wäßrige Phase sauer gestellt und erneut extrahiert. Die vereinigten organischen Extrakte werden getrocknet, filtriert und eingeengt, der Rückstand wird aus Ethylacetat kristallisiert.

Man erhält 0,25 g der Titelverbindung als gelbliche Kristalle, Fp. 247 – 250° C.

Allgemeine Vorschrift VIII: Reduktion eines Ketons oder Aldehyds zum Alkohol

Beispiel 8

65

1,3-Dipropyl-8-(1-hydroxycyclopent-3-yl)xanthin

0,5 g (1,6 mmol) 1,3-Dipropyl-8-(1-oxo-3-cyclopentyl)xanthin, 10 ml Ethanol und 0,1 g (2,6 mmol) Natriumte-

trahydridoboranat werden bei Raumtemperatur 2 ¹ / ₂ Tage gerührt. Der Ansatz wird im Vakuum eingeengt und mit Wasser und Methylenchlorid versetzt, die wäßrige Phase wird sauer gestellt und extrahiert. Die vereinigten organischen Extrakte werden getrocknet und im Vakuum eingeengt. Der Rückstand wird durch Chromatographie an Kieselgel in die Isomeren getrennt (CH ₂ Cl ₂ /CH ₃ OH 95:5). Man erhält aus der	
1. Fraktion: 0,4 g der Titelverbindung als weiße Kristalle (39% d. Th.) Fp. 174 – 176° C und aus der 2. Fraktion: 0,4 g der Titelverbindung als weiße Kristalle (39% d. Th.) Fp. 191 – 193° C.	
Allgemeine Vorschrift IX: Acylierung eines Alkohols	10
Beispiel 9	10
1,3-Dipropyl-8-[1-((4,7,7-trimethyl-2-oxa-bicyclo[2.2.1]-heptan-3-on-1-yl)carbonyloxy)cyclopentan-3-yl]xanthin	
0,2 g (0,6 mmol) 1,3-Dipropyl-8-(1-hydroxy-3-cyclopentyl)xanthin und 0,24 g (3 mmol) Pyridin werden in 10 ml abs. Methylenchlorid gemischt und nach Zugabe von 0,2 g (0,9 mmol) Camphansäurechlorid 4 Stunden bei Raumtemperatur gerührt. Der Ansatz wird mit Wasser versetzt und die wäßrige Phase wird abgetrennt. Die organische Phase wird getrocknet und im Vakuum eingeengt, der Rückstand wird anschließend durch Chromatographie an Kieselgel (CH ₂ Cl ₂ /CH ₃ OH 95:5) gereinigt. Man erhält 50 mg der Titelverbindung als gelbliches Öl.	
Allgemeine Vorschrift X: Wittig-Horner-Reaktion	
Beispiel 10	
1,3-Dipropyl-8-(1-cyanomethylencyclopent-3-yl)xanthin	25
0,28 g (1,6 mmol) Cyanmethanphosphonsäure-diethylester werden in 20 ml absolutem Benzol gelöst und mit 0,13 g (3,2 mmol) einer 60% igen Natriumhydrid-Dispersion 5 Stunden am Rückfluß gekocht. Der Ansatz wird im Vakuum eingeengt und in Methylenchlorid und Wasser aufgenommen und anschließend sauer gestellt. Die wäßrige Phase wird extrahiert und die vereinigten organischen Extrakte werden getrocknet und eingeengt. Die nachfolgende Chromatographie des Rückstands an Kieselgel (CH ₂ Cl ₂ /CH ₃ OH 97:3) liefert 0,1 g der Titelverbindung als farbloses Öl (18% d. Th.).	30
Allgemeine Vorschrift X1: Hydrierung von Doppelbindungen	35
Beispiel 11	
1,3-Dipropyl-8-(norbornen-2-yl)xanthin	
1,0 g (3,1 mmol) 1,3-Dipropyl-8-(5-norbornen-2-yl)xanthin wird in 30 ml Ethanol unter Zusatz von Palladium/ Kohle unter Druck hydriert bis keine Wasserstoffaufnahme mehr zu beobachten ist. Der Katalysator wird abfiltriert, das Filtrat eingeengt und der Rückstand an Kieselgel (CH ₂ Cl ₂ /CH ₃ OH 99: 1) chromatographiert. Man erhält 0,4 g der Titelverbindung als weiße Kristalle (39% d. Th.), Fp. 136-138°C.	40
Allgemeine Vorschrift XII: Verseifung eines Esters	45
Beispiel 12	
1,3-Dipropyl-8-(2-(2'-ethoxycarbonyl-2'-carboxyvinyl)-furan-5-yl)xanthin	50
Zu einer Lösung von 0,8 g (1,4 mmol) Kaliumhydroxid in 20 ml Ethanol werden 3,2 g (6,8 mmol) 1,3-Dipropyl-8-[2-(2'-2'-bis(ethoxycarbonyl)vinyl)-furan-5-yl]xanthin zugegeben und die Mischung 4 Stunden am Rückfluß gekocht. Nach dem Abkühlen wird mit 50 ml Wasser verdünnt und mit Methylenchlorid extrahiert. Die wässerige Phase wird unter Eiskühlung sauer gestellt, der entstehende Niederschlag abfiltriert und mit Wasser gewaschen.	55
Man erhält 2,2 g der Titelverbindung als gelbe Kristalle (73% d. Th.), Fp. 252—253°C.	
Allgemeine Vorschrift XIII: Reduktion eines Esters zum Alkohol	60
Der Ester 1,7 mmol wird in 5 ml Tetrahydrofuran gelöst und zu einer Suspension von Lithiumalanat (0,04 g, 1,1 mmol) in 5 ml Tetrahydrofuran zugetropft. Die Mischung wird 36 Stunden bei Raumtemperatur gerührt und mit gesättigter Diammoniumtartratlösung versetzt. Die wäßrige Phase wird mit Ethylacetat extrahiert, die vereinigten organischen Extrakte werden getrocknet und im Vakuum eingeengt.	w
Das Produkt wird durch Kristallisation oder durch Chromatographie an Kieselgel gereinigt.	65

Allgemeine Vorschrift XIV; N-Alkylierung

Beispiel 13

1-Benzyl-3-propyl-6-aminouracil

3,0 g (0,014 Mol) 1-Benzyl-6-aminouracil werden mit 2,2 g (0,018 Mol) n-Propylbromid, 4,2 ml 15%iger Natronlauge und 7 ml Ethanol 3 Stunden bei 70°C gerührt. Die Mischung wird auf Eis gegossen und mit Methylenchlorid extrahiert. Die organischen Phasen werden getrocknet und eingeengt. Das zurückbleibende Öl wird aus einer Mischung aus Methylenchlorid und Methanol kristallisiert.

Man erhält 1,62 g der Titelverbindung als weiße Kristalle (47% d. Th.), Fp. 189—192°C.

Allgemeine Vorschrift XV: Nitrosierung

Beispiel 14

1-Benzyl-3-propyl-5-nitroso-6-aminouracil

2,0 g (7,7 mmol) 6-Amino-1-benzyl-3-propyluracil werden in 15 ml Wasser auf 80°C erwärmt und mit einer Lösung von 0,55 g Natriumnitrit in 3 ml Wasser versetzt. Nach Zugabe von 1 ml Eisessig fällt ein roter Feststoff aus. Der pH wird auf 4 eingestellt, die Suspension noch 30 Minuten bei 80°C gerührt. Nach dem Abkühlen werden die Kristalle abgesaugt und mit Wasser gewaschen.

Man erhält 1,9 g der Titelverbindung als rotviolette Kristalle (86% d. Th.), Fp. 208–212°C/Zers.

Allgemeine Vorschrift XVI: Hydrierung der Nitrosoverbindung

Das 3-substituierte 6-Amino-1-benzyl-5-nitrosouracil wird in Methanol aufgenommen und nach Zugabe von Raneynickel unter Druck hydriert.

Der Katalysator wird abfiltriert, das Filtrat eingeengt und der Rückstand durch Kristallisation oder Chromatographie gereinigt.

Allgemeine Vorschrift XVII: Veretherung

Veretherungen von Alkoholen erfolgten durch Deprotonierung der Hydroxyfunktion mit einer starken Base (z.B. Natriumhydrid in Tetrahydrofuran oder Dimethylformamid, Natriumhydroxid) und Umsetzung mit einem Elektrophil der Art R—X, wobei X Halogen, Tosyl, Mesyl o.ä. sein kann.

In Analogie zu den beschriebenen Arbeitsvorschriften, oder nach bekannten Analogieverfahren können die in Tabelle I aufgeführten Verbindungen hergestellt werden.

40

15

25

45

50

55

60

65

Tabelle I

Nr.	R ¹	R ²	R ³	Fp (°C)
1	n-C ₃ H ₇	n-C ₃ H ₇	$ \stackrel{>}{\sim}$	272–274
2	n-C ₃ H ₇	n-C ₃ H ₇	CH ₃	276-277
3	n-C ₃ H ₇	n-C ₃ H ₇	→NO₂	258-259
4	n-C ₃ H ₇	n-C ₃ H ₇	NO ₂	283-284
5	n-C ₃ H ₇	n-C ₃ H ₇	S	262-263
6	n-C ₃ H ₇	n•C₃H₁	-CH = C $COOE$	220–222
7	n-C ₃ H ₇	n-C ₃ H,	-CH = C $COOEt$ $CON O$	252–253
8	n-C3H7	n-C₃H₁	-CH = C $COOEt$ $COOH$	252-253
9	n-C ₃ H ₇	n-C ₃ H ₇		255
10	n-C ₃ H ₇	n-C ₃ H ₇	-CH=CH-CON 0	253-255
11	n-C ₃ H ₇	n-C ₃ H ₇	$- \bigcirc CONH - (CH_2)_2NEt_2$	247250
12	n-C ₃ H ₇	n-C ₃ H ₇	-CONH $-$ CH ₂ $-$ CH	210-217
13	n-C₃H₁	n-C ₃ H ₁	О СН,ОН	235-236
14	n-C ₃ H ₇	n-C3H7		280-282

DE 38 43 117 A1

Nr.	R ¹	R ²	R ³	Fp (°C)
15	n-C ₃ H ₇	n-C ₃ H ₇		291–294
16	n-C ₃ H ₇	n-C ₃ H ₇		>300
17	n-C ₃ H ₇	n-C ₃ H ₁		228229
18	CH ₃	CH ₃	$\stackrel{\circ}{\longrightarrow}$	228-230
19	CH_3	CH ₃	CH_3	148-150
20	n-C ₃ H ₇	n-C ₃ H ₇	$ CH_2CH_2-CON$ O	135137
21	n-C ₃ H ₇	n-C ₃ H ₇	0	195–196
22	n-C ₃ H ₇	n-C ₃ H ₇	— <u></u> 0	171–172
23	CH ₃	CH ₃	$\stackrel{\circ}{\longrightarrow}$	275–277
24	n-C ₃ H ₇	n-C ₃ H ₇	$\stackrel{s}{\underset{s}{\longleftarrow}}$	213-213
25	n-C ₃ H ₇	n-C ₃ H ₇	$\overline{}$	205-207
26	n-C ₃ H ₇	n-C ₃ H ₇		197–198
27	n-C ₃ H ₇	n-C ₃ H ₇		80-83
28	n-C ₃ H ₇	n-C ₃ H ₇	\rightarrow	186-187
29	CH ₃	CH ₃	$\overline{}$	260
30	n-C ₃ H ₇	n-C ₃ H ₇		179-181
31	n-C ₃ H ₇	n-C ₃ H ₇	$\stackrel{S}{\underset{S}{\longrightarrow}}$	197-198
32	CH ₁	CH ₃	$\overline{}$	273–275

Nr.	R ¹	R ²	R¹ `	Fp (°C)
33	n-C ₃ H ₇	n-C ₃ H ₇	— <u> </u>	165-167
34	n-C ₃ H ₇	n-C ₃ H ₇	0	138-140
35	CH ₃	CH3		292
36	CH ₃	CH ₃		210-220
37	n-C₄H ₇	n-C₄H₁	$\overline{}$	142-150
38	CH ₃	CH ₃	0 0	292
39	n-C ₃ H ₇	n-C ₃ H ₇	— он	174-176
40	n-C ₃ H ₇	n-C ₃ H ₇	———он	191-193
41	CH ₃	CH ₃	— он	277-280
42	n-C ₃ H ₇	n-C ₃ H ₇	CH-COOCH ₁	213216
43	n-C ₃ H ₇	n-C ₃ H ₇	O OC Camphansäure	101-112
44	n-C ₁ H ₁	n-C ₃ H ₇		156–157
45	n-C ₃ H ₇	n-C ₃ H ₇		166-168
46	n-C ₃ H ₇	n-C ₃ H ₇	—————————————————————————————————————	144-148
47	n-C ₃ H ₇	n-C ₃ H ₇	− CH 1	151–152
48	n-C ₃ H ₇ :	n-C ₃ H ₇	—Сн,соосн,	146–147

	Nr.	R ¹	K ²	R ³	Fp (°C)
5	49	n-C ₃ H ₇	n-C ₃ H ₇		137–139
10	50	n-C ₃ H ₇	n-C ₃ H ₇		136-138
15				CH ₃ CH ₃ CH ₃	
	51	n-C ₃ H ₇	n-C ₃ H ₇	0	200-201
20	52	n-C ₃ H ₇	n-C ₃ H ₇	$\stackrel{\circ}{\longrightarrow}$	162
25	53	n-C ₃ H ₇	n-C₃H₁		180
30	54	n-C ₃ H ₇	n-C ₃ H ₇	−CH ₂ CH ₂ OH	164-165
35	55	n-C₃H ₇	n-C ₃ H ₇	O H ₁ C OCCH ₂ O CH(CH ₁) ₂	134–135
40	56	n-C ₃ H ₇	n-C₃H ₇		148-151
45	57	n-C ₃ H ₇	n-C ₃ H ₇	OCC H ₃	144-148

Die Verbindungen der allgemeinen Formel I können allein oder in Kombination mit anderen erfindungsgemäßen Wirkstoffen, gegebenenfalls auch in Kombination mit weiteren pharmakologisch aktiven Wirkstoffen, zur Anwendung gelangen. Geeignete Anwendungsformen sind beispielsweise Tabletten, Kapseln, Zäpfchen, Lösungen, Säfte, Emulsionen oder dispersible Pulver. Entsprechende Tabletten können beispielsweise durch Mischen des oder der Wirkstoffe mit bekannten Hilfssstoffen, beispielsweise inerten Verdünnungsmitteln, wie Calciumcarbonat, Calciumphosphat oder Milchzucker, Sprengmitteln, wie Maisstärke oder Alginsäure, Bindemitteln, wie Stärke oder Gelatine, Schmiermitteln, wie Magnesiumstearat oder Talk, und/oder Mitteln zur Erzielung des Depoteffektes, wie Carboxymethylcellulose, Celluloseacetatphthalat, oder Polyvinylacetat erhalten werden. Die Tabletten können auch aus mehreren Schichten bestehen.

Entsprechend können Dragees durch Überziehen von analog den Tabletten hergestellten Kernen mit üblicherweise in Drageeüberzügen verwendeten Mitteln, beispielsweise Kollidon oder Schellack, Gummi arabicum, Talk Titandioxid oder Zucker, hergestellt werden. Zur Erzielung eines Depoteffektes oder zur Vermeidung von Inkompatibilitäten kann der Kern auch aus mehreren Schichten bestehen. Desgleichen kann auch die Drageehülle zur Erzielung eines Depoteffektes aus mehreren Schichten bestehen wobei die oben bei den Tabletten erwähnten Hilfsstoffe verwendet werden können.

Säfte der der erfindungsgemäßen Wirkstoffe beziehungsweise Wirkstoffkombinationen können zusätzlich noch ein Süßungsmittel, wie Saccharin, Cyclamat, Glycerin oder Zucker sowie ein geschmacksverbesserndes Mittel, z.B. Aromastoffe, wie Vanillin oder Orangenextrakt, enthalten.

Sie können außerdem Suspendierhilfsstoffe oder Dickungsmittel, wie Natriumcarboxymethylcellulose, Netzmittel, beispielsweise Kondensationsprodukte von Fettalkoholen mit Ethylenoxid, oder Schutzstoffe, wie p-Hydroxybenzoate, enthalten.

Injektionslösungen werden in üblicher Weise, z.B. unter Zusatz von Konservierungsmitteln, wie p-Hydroxybenzoaten, oder Stabilisatoren, wie Alkalisalzen der Ethylendiamintetraessigsäure hergestellt und in Injektionsflaschen oder Ampullen abgefüllt.

Die eine oder mehrere Wirkstoffe beziehungsweise Wirkstoffkombinationen enthaltenden Kapseln können beispielsweise hergestellt werden, indem man die Wirkstoffe mit inerten Trägern, wie Milchzucker oder Sorbit, mischt und in Gelatinekapseln einkapselt.

Geignete Zäpfchen lassen sich beispielsweise durch Vermischen mit dafür vorgesehenen Trägermitteln, wie Neutralfetten oder Polyäthylenglykol beziehungsweise dessen Derivaten, herstellen.

Die nachfolgenden Beispiele illustrieren die vorliegende Erfindung ohne sie jedoch in ihrem Umfang zu beschränken:

Pharmazeutische Formulierungsbeispiele

A) Tabletten	pro Tablette	
		15
Wirkstoff	100 mg	
Milchzucker	140 mg	
Maisstärke	240 mg	
Polyvinylpyrrolidon	15 mg	
Magnesiumstearat	5 mg	20
-	500 mg	

10

45

50

55

60

65

Der feingemahlene Wirkstoff, Milchzucker und ein Teil der Maisstärke werden miteinander vermischt. Die Mischung wird gesiebt, worauf man sie mit einer Lösung von Polyvinylpyrrolidon in Wasser befeuchtet, knetet, feuchtgranuliert und trocknet. Das Granulat, der Rest der Maisstärke und das Magnesiumstearat werden gesiebt und miteinander vermischt. Das Gemisch wird zu Tabletten geeigneter Form und Größe verpreßt.

B) Tabletten pro Tablette 30 Wirkstoff 80 mg Maisstärke 190 mg 55 mg Milchzucker Mikrokristalline Cellulose 35 mg Polyvinylpyrrolidon 15 mg 35 Natrium-carboxymethylstärke 23 mg Magnesiumstearat 2 mg 400 mg

Der feingemahlene Wirkstoff, ein Teil der Maisstärke, Milchzucker, mikrokristalline Cellulose und Polyvinylpyrrolidon werden miteinander vermischt, die Mischung gesiebt und mit dem Rest der Maisstärke und Wasser zu einem Granulat verarbeitet, welches getrocknet und gesiebt wird. Dazu gibt man die Natrium-carboxy-methylstärke und das Magnesiumstearat, vermischt und verpreßt das Gemisch zu Tabletten geeigneter Größe.

C) Ampullen

Wirkstoff	50 mg
Natriumchlorid	10 mg
bidestilliertes Wasser, q.s. ad	1,0 ml

Herstellung

Der Wirkstoff und das Natriumchlorid werden in bidestilliertem Wasser gelöst und die Lösung in Ampullen steril abgefüllt.

D) Tropfen

Wirkstoff	5,0 g	
p-Hydroxybenzoesäuremethylester	0,1 g	
p-Hydroxybenzoesäurepropylester	0,1 g	
entmineralisiertes Wasser, q.s. ad	100,0 ml	

Herstellung

Der Wirkstoff und die Konservierungsmittel werden in demineralisiertem Wasser gelöst und die Lösung filtriert und in Flaschen zu je 100 ml abgefüllt.

Patentansprüche

1. Neue Xanthine der allgemeinen Formel I

worin

15

20

25

30

35

45

50

55

60

R₁ eine Alkylgruppe mit 1 bis 6, bevorzugt 1 bis 4 Kohlenstoffatomen, eine Alkenylgruppe mit 3 oder 4 Kohlenstoffatomen; eine Alkinylgruppe mit 3 oder 4 Kohlenstoffatomen;

R₂ Wasserstoff, eine Alkenylgruppe mit 3 oder 4 Kohlenstoffatomen, eine Alkylgruppe mit 1 bis 6, bevorzugt 1 bis 4 Kohlenstoffatomen, eine gegebenenfalls substituierte Benzylgruppe, eine Alkyinylgruppe mit 3 oder 4 Kohlenstoffatomen:

R₃ einen C-verknüpften gesättigten oder ungesättigten fünf-, sechs- oder siebengliedrigen heterocyclischen Ring, der ein oder mehrere Heteroatome ausgewählt aus der Gruppe Sauerstoff oder Schwefel enthält und gegebenenfalls einen der folgenden Reste tragen kann,

C₁- bis C₆-, bevorzugt C₁- bis C₄-Alkyl, -CHO, -CH₂OR₄, -CH₂OR₇, COOR₄, CONR₅R₆, wobei ein Furan- oder Thiophenrest auch einen der Reste

-CH=CH-CONR₅R₆,

-CH=C (COOR₄)₂ (R₄ gleich oder verschieden),

 $-CH = C(COOR_4)(CONR_5R_6),$

-CH = C (COOR₄) (CH₂OR₄) (R₄ gleich oder verschieden),

 $-CH = C(COOR_4)(CH_2OR_7),$

 $-CH = C(CH_2OR_4)_2$

 $-CH = C(CH_2OR_1)_2$

 $-CH = C(CONR_5R_6)CH_2OR_4$

-CH=C(CONR₅R₆)CH₂OR₇ oder Nitro und der Tetrahydrofuranrest auch einen Rest

-(CH₂)₂-CONR₅R₆ tragen kann;

R₃ ein C₄ bis C₈ Cycloalken, das durch C₂ bis C₄ Alkenyl substituiert sein kann,

R₃ ein C₄- bis C₈- bevorzugt C₅- und C₆-Cycloalkanon oder ein C₄- bis C₈- bevorzugt C₅- und C₆-Cycloalkanol, die in in α -Position durch C₂- bis C₆-, bevorzugt C₂- bis C₄-Alkenyl, C₂- bis C₆-, bevorzugt C₂- bis C₄-Alkinyl, gegebenenfalls substituiertes Benzyl, CH₂OR₄, CH₂COOR₇, (CH₂)₂CN substituiert sein können,

 R_3 ein C_3 - bis C_8 -, bevorzugt C_5 - oder C_6 -Cycloalkan, das gegebenenfalls durch C_1 - bis C_6 -, bevorzugt C_1 - bis C_4 -Alkyl, = CH_2 , OR₄, OR₇, -(CH_2)₁-COOR₄, -(CH_2)₁-NR₄R₄ (R₄ gleich oder verschieden), -(CH_2)₁-CONR₅R₆, -(CH_2)₁-OR₄, -(CH_2)₁-OR₇, wobei I eine der Zahlen 0, 1, 2, 3 oder 4 bedeutet, oder einen Rest = CAH_1 - wobei A die Bedeutung von

wobei I eine der Zahlen 0, 1, 2, 3 oder 4 bedeutet, oder einen Rest = CAH — wobei A die Bedeutung von COOR₄, CN, CONR₅R₆, CH=CH-COOR₄, CH=CH-CONR₅R₆, CH₂OR₄ oder CH₂OR₇ aufweisen kann — substituiert ist.

oder durch C₁ bis C₄ Alkyl, Vinyl, Allyl, gegebenenfalls substituiertes Phenyl, gegebenenfalls substituiertes Benzyl substituiert ist und als zweiten Substituenten eine Hydroxylgruppe in geminaler Position zum ersten Substituenten trägt;

R₃ einen gegebenenfalls substituierten Rest der Formel

O(CH₂)_{1,2}

R₃ einen Rest der Formel

65

A1 38 43 117 DE

$$CH_3$$
 CH_3
 CH_3

und

R₄ Wasserstoff, eine Alkylgruppe mit 1 bis 13 - bevorzugt 1 bis 6 und 11 bis 13 - Kohlenstoffatomen, eine gegebenenfalls substituierte Cycloalkylgruppe mit 3 bis 6 Kohlenstoffatomen, eine gegebenenfalls substituierte Benzylgruppe, eine Alkenylgruppe mit 3 bis 13 - bevorzugt 3 bis 6 - Kohlenstoffatomen, ein Propargylrest;

 R_5 Wasserstoff, eine Alkylgruppe mit 1 bis 6 - bevorzugt 1 bis 4 - Kohlenstoffatomen, eine gegebenenfalls substituierte Cycloalkylgruppe mit 3 bis 6 Kohlenstoffatomen;

R₆ Wasserstoff, eine Alkylgruppe mit 1 bis 6 - bevorzugt 1 bis 4 - Kohlenstoffatomen, eine gegebenenfalls substituierte Benzylgruppe, einen Rest der allgemeinen Formeln

25

35

45

50

55

60

$$-(CH_2)_n - NR_5R_5$$
,
 $-(CH_2)_n - O - (CH_2)_m - O$ _k $-(CH_2)_n - NR_5R_5$) (R₅ gleich oder verschieden)

mit
$$n=2,3,4,5,6,7$$
 oder 8, $m=2,3,4,5$ oder 6 und $k=0$ oder 1,

$$-(CH_2)_n - N N - (CH_2)_n - NR_5R_5$$

(R5 gleich oder verschieden),

wobei der Piperazinring durch C₁-C₄ Alkyl - bevorzugt Methyl - substituiert sein kann,

einen Piperidinylrest, der gegebenenfalls durch C1 bis C4-Alkyl oder einen N-verknüpften Benzylrest substituiert ist oder

R₅ und R₆ bilden zusammen mit dem Stickstoffatomen einen gegebenenfalls durch C₁-C₄-Alkyl substituierten fünf- oder sechs- oder siebengliedrigen Ring, der ein weiteres Heteroatom aus der Gruppe Sauerstoff, Schwefel oder Stickstoff enthalten kann, wobei das Stickstoffatom durch den Rest R4 substituiert sein

kann: R_7 eine C-verknüpfte natürlich vorkommende Aminosäure, $-CO-(CH_2)_p-CH_3$ mit p=0 bis 13, bevorzugt 1, 2 oder 3, Menthoxyacetyl, über eine Carbonylgruppe verknüpfter Camphansäurerest, Abietinoyl, 4-Aminobutyroyl, gegebenenfalls substituiertes Benzoyl, einen Rest der allgemeinen Formel CO-B, wobei B ein gegebenenfalls substituierter, C-verknüpfter, 5, 6 oder 7-gliedriger Heterocyclus ist,

bedeuten können sowie gegebenenfalls deren Racemate, deren optisch aktive Verbindungen wie auch deren pharmakologisch unbedenkliche Säureadditionssalze.

2. Xanthine der allgemeinen Formel I, worin

R₁ eine unverzweigte Alkylgruppe mit 3 bis 4 Kohlenstoffatomen, eine Allylgruppe, eine Propargylgruppe; R₂ Wasserstoff, eine Allylgruppe, eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, eine Propargylgruppe; R3 einen Rest, ausgewählt aus der Gruppe Furan, Tetrahydrofuran, Tetrahydrofuranon, Thiophen, Dithiol, Dithian oder Tetrahydropyran der einen der folgenden Substituenten tragen kann Methyl, Ethyl, Propyl, Butyl, CHO, CH2OR4, CH2OR7, COOR4, CONR5R6,

R₃ ein durch

- $-CH = CH CONR_5R_6$, $-CH = C(COOR_4)_2(R_4 \text{ gleich oder verschieden})$,
- $-CH = C(COOR_4)(CONR_5R_6),$
- -CH = C(COOR₄)(CH₂OR₄)(R₄ gleich oder verschieden),
- $-CH = C(COOR_4)(CH_2OR_7),$
- $-CH=C(CH_2OR_4)_2$
- $-CH = C(CH_2OR_7)_2$
- $-CH = C(CONR_5R_6)CH_2OR_4$ oder
- -CH=C(CONR₅R₆)CH₂OR₇ substituiertes Furan;

R₃ ein Cyclopentan oder Cyclohexan, gegebenenfalls substituiert durch Methyl, Ethyl, Propyl, iso-Propyl, t-Butyl, Allyl, Vinyl, Phenyl oder Benzyl, wobei als geminaler Substituent eine Hydroxygruppe vorhanden sein kann;

R₃ ein Cyclopentan oder Cyclohexan, substituiert durch Hydroxy, Methoxy, Ethoxy, Propyloxy, iso-Propy-

loxy, gegebenenfalls substituiertes Benzyloxy, Allyloxy, Propargyloxy, OR_7 worin R_7 $COCH_3$, COC_2H_5 , COC_3H_7 , CO t-Butyl, $COCH_2$ -Phenyl — gegebenenfalls substituiert, CO-Pyridyl, —CO-(N-Methyl-4H-pyridyl), —CO-(Methylpyridyl), — $COCH_2$ -CH= CH_2 , — $COCH_2$ -C=CH, — CH_2 - CH_2 -CH, — CH_2 - CH_2 - CH_3 , =C-CO- OCH_3 , =C-CO- OCH_3 ,

R₃ ein Cycloalkan oder Cycloalken mit 4-8 Kohlenstoffatomen, welches gegebenenfalls durch eine geradkettige oder verzweigte Alkenylgruppe mit 2 bis 4 Kohlenstoffatomen substituiert sein kann, ein Cyclopentanon oder Cyclopentanon oder Cyclohexanon oder Cyclohexanol, die in α-Position zur Keto- oder Hydroxygruppe durch C₂ bis C₄ Alkenyl, C₃ oder C₄ Alkinyl, Benzyl, -CH₂CH₂CN, (CH₂)₃NR₅R₅ gleich oder verschieden), CH₂COOR₄, CH₂OR₄ substituiert sein können, wobei R₄ Wasserstoff, Methyl, Ethyl oder Propyl bedeuten können;

R₄ Wasserstoff, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen, eine Cyclopropylgruppe, eine Cyclopentylgruppe, Benzyl eine Alkylgruppe, eine Propargylgruppe;

R₅ Wasserstoff, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen; eine Cyclopropylgruppe, eine Benzyl;
R₆ Wasserstoff, Methyl, Ethyl, Propyl, $-(CH_2)_n - NH_2$ (n=2-8), $-(CH_2)_n NEt_2$ (n=2,3) oder $-(CH_2)_3 - O - (CH_2)_4 - O - (CH_2)_3 - NH_2$, N-Benzyl-piperidin-4-yl-, oder R₅ und R₆ zusammen mit dem
Stickstoffatom einen Piperidin-, Piperazin-, Morpholinrest, der gegebenenalls durch C₁ - C₄ Alkylrest bevorzugt Methyl substituiert sein kann;

R₇ Prolinoyl, CO-(CH₂)₀₋₃-CH₃, (-) — Menthoxyacetyl, ein über eine Carbonylgruppe verknüpfter Camphansäurerest, Abietinoyl, Benzoyl, 4-Aminobutyroyl, 3,4,5-Trihydroxybenzoyl, ein Nicotinsäure-, Isonicotinsäure- oder Picolinsäurerest, N-Methylnicotinsäurerest, N-Methyl-4H-Nicotinsäurerest bedeuten können, sowie gegebenenfalls deren Säureadditionssalze.

3. Verfahren zur Herstellung von Xanthinen der allgemeinen Formel I gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß man ein Uracil der allgemeinen Formel

5

10

15

20

25

30

35

40

45

50

55

60

65

worin R₁ und R₂ die zuvor genannte Bedeutung aufweisen mit einem Aldehyd R₃CHO, eine Carbonsäure R₃COOH oder deren reaktives Derivat umsetzt und gegebenenfalls in ihre unbedenkliche pharmakologische Säureadditionssalze überführt.

4. Verwendung einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 oder 2, als Arzneimittel.

5. Verwendung einer Verbindung der allgemeinen Formel I gemäß Anspruch 1 oder 2 als Arzneimittel mit adenosienantagonistischer Wirkung.

6. Pharmazeutische Zubereitungen, enthaltend als Wirkstoff eine oder mehrere Verbindungen der allgemeinen Formel I oder deren physiologisch verträgliche Säureadditionssalze in Kombination mit üblichen Hilfsund/oder Trägerstoffen.

7. Verfahren zur Herstellung von pharmazeutischen Präparaten gemäß Anspruch 6, dadurch gekennzeichnet, daß man Verbindungen der allgemeinen Formel I mit üblichen galenischen Hilfs- und/oder Trägerstoffen zu üblichen pharmazeutischen Anwendungsformen verarbeitet.