```
from google.colab import drive
drive.mount('/content/drive')
```

Mounted at /content/drive

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m

import numpy as np

import pandas as pd

path="/content/drive/MyDrive/ibm/Churn_Modelling.csv"

df=pd.read_csv(path)

df.describe

<pre><bound method="" ndframe.describe="" of<="" pre=""></bound></pre>					RowNumber	Surna	Surname	
Credi	tScore G	eography	Gende	er Age \				
0		1 15	634602	Hargrave	61	9 France	Female	42
1		2 15	647311	Hill	60	8 Spain	Female	41
2		3 15	619304	Onio	50	2 France	Female	42
3		4 15	701354	Boni	69	9 France	Female	39
4		5 15	737888	Mitchell	85	0 Spain	Female	43
• • •		• •					• • •	• • •
9995	99			0bijiaku	77	1 France	Male	39
9996	99	97 15	569892			6 France	Male	35
9997	99	98 15	584532	Liu	70	9 France	Female	36
9998	99	99 15	682355	Sabbatini	77	2 Germany	Male	42
9999	100	00 15	628319	Walker	79	2 France	Female	28
	Tenure	Balan				IsActiveMem		
0	2	0.		1	1		1	
1		83807.		1	0		1	
2	8	159660.		3	1		0	
3	1	0.		2	0		0	
4	2	125510.	82	1	1		1	
	• • •		• •	• • •	• • •		• • •	
9995	5	0.		2	1		0	
9996	10	57369.		1	1		1	
9997	7	0.		1	0		1	
9998	3			2	1		0	
9999	4	130142.	79	1	1		0	
	Ectimat	edSalary	Exite	v.d				
0		.01348.88	LVICE	1				
1		12542.58		0				
2		13931.57		1				
3				0				
3 4		93826.63		0				
4		79084.10		U				

	• • •	
9995	96270.64	0
9996	101699.77	0
9997	42085.58	1
9998	92888.52	1
9999	38190.78	0

[10000 rows x 14 columns]>

Visualization

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

8		RowNumber	CustomerId	CreditScore	Age	Tenure
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000

1. Univariate Analysis

sns.histplot(df.Geography,kde=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7eff780e6b10>

sns.countplot(df.Gender)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7eff78083890>

2.Bi - Variate Analysis

	RowNumber	CustomerId	CreditScore	Age	Tenure
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000

sns.scatterplot(df.CreditScore,df.Age)
plt.ylim(0,150)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass FutureWarning

3. Multivariate analysis

^

sns.pairplot(data=df[['CustomerId', 'Surname', 'CreditScore', 'Geography','Gender', 'Age',

<seaborn.axisgrid.PairGrid at 0x7eff77a28910>

4. Descriptive Statistics

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Ва
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0
4						•

df.dtypes

```
RowNumber
                     int64
CustomerId
                     int64
Surname
                    object
CreditScore
                     int64
Geography
                    object
Gender
                    object
Age
                     int64
Tenure
                     int64
Balance
                   float64
NumOfProducts
                     int64
HasCrCard
                     int64
IsActiveMember
                     int64
EstimatedSalary
                   float64
Exited
                     int64
```

37.0

dtype: object

5. Handling Missing Values

df.isna().any()

RowNumber False CustomerId False Surname False CreditScore False Geography False Gender False False Age False Tenure Balance False NumOfProducts False HasCrCard False IsActiveMember False EstimatedSalary False Exited False

dtype: bool

df.isnull().sum()

RowNumber 0 0 CustomerId Surname 0 CreditScore 0 0 Geography Gender 0 Age 0 Tenure 0 0 Balance NumOfProducts 0 HasCrCard 0 IsActiveMember 0 EstimatedSalary 0 Exited 0 dtype: int64

df.isnull()

df.

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenur
	0	False	False	False	False	False	False	False	Fals
	1	False	False	False	False	False	False	False	Fals
	2	False	False	False	False	False	False	False	Fals
	3	False	False	False	False	False	False	False	Fals
	4	False	False	False	False	False	False	False	Fals
. not	null()							
		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
	0	True	True	True	True	True	True	True	True
	1	True	True	True	True	True	True	True	True
	2	True	True	True	True	True	True	True	True
	3	True	True	True	True	True	True	True	True
	4	True	True	True	True	True	True	True	True
	9995	True	True	True	True	True	True	True	True
	9996	True	True	True	True	True	True	True	True
	9997	True	True	True	True	True	True	True	True
	9998	True	True	True	True	True	True	True	True
	9999	True	True	True	True	True	True	True	True

10000 rows × 14 columns

6. Find the outliers and replace the outliers

sns.boxplot(x=df['Age'])

<matplotlib.axes. subplots.AxesSubplot at 0x7eff74dba250>

sns.boxplot(x=df['Tenure'])

<matplotlib.axes._subplots.AxesSubplot at 0x7eff74d0a4d0>

7. Check for Categorical columns and perform encoding.

Split the data into dependent and independent variables.

```
x =df.drop('Exited',axis=1)
y=df['Exited']
x.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	1
2	3	15619304	Onio	502	France	Female	42	8	1!
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1:
4									•

```
y.head()

0  1
1  0
2  1
3  0
4  0
Name: Exited, dtype: int64
```

9. Scale the independent variables

```
from sklearn import linear_model

from sklearn.preprocessing import StandardScaler

scale = StandardScaler()

x=df[['Age','Tenure']]

scaledx = scale.fit_transform(x)

print(scaledx)

[[ 0.29351742 -1.04175968]
       [ 0.19816383 -1.38753759]
       [ 0.29351742   1.03290776]
       ...
       [-0.27860412   0.68712986]
       [ 0.29351742 -0.69598177]
       [-1.04143285 -0.35020386]]
```

10. Split the data into training and testing

```
from sklearn.model_selection import train_test_split
```

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
```

```
print('X Train shape:{},Y.Train SHape:{}'.format(x_train.shape,y_train.shape))

X Train shape:(8000, 2),Y.Train SHape:(8000,)

print('X Test Shape :{},Y Test SHape:{}'.format(x_test.shape,y_test.shape))

X Test Shape :(2000, 2),Y Test SHape:(2000,)
```

Colab paid products - Cancel contracts here