

## Révisions



*Exercice 1.* Soit  $n \in \mathbb{N}^*$ . Montrer que le produit de n matrices triangulaires supérieures strictes de  $\mathcal{M}_n(\mathbb{R})$  est nul.

*Exercice 2.* On pose  $f: x \mapsto [(x^2 - 1)^n]^{(n)}$ .

- 1. Calculer f(1) et f(-1).
- 2. Montrer que f possède exactement n racines distinctes toutes dans ]-1;1[.

*Exercice 3.* Soient  $f: [0;1] \to \mathbb{R}$  une application de classe  $C^2$  et  $S_n = \sum_{k=1}^n f(k/n^2) - nf(0)$ .

Déterminer la limite de la suite  $(S_n)$ .

*Exercice 4.* Former le développement asymptotique à la précision  $\frac{1}{n}$  de

$$I_n = \int_0^1 \frac{\mathrm{d}x}{1 + x^n}$$

quand l'entier *n* tend vers l'infini.

*Exercice 5.* Soient  $f \in \mathcal{C}([0,1])$  et  $n \in \mathbb{N}^*$  tels que  $\forall k \in \{0...n-1\}$ ,  $\int_0^1 x^k f(x) dx = 0$ . Montrer que f s'annule au moins n fois sur [0,1[.

*Exercice 6.* Soient  $A, B \in \mathcal{M}_n(\mathbb{R})$  et  $\varphi$  l'endomorphisme de  $\mathcal{M}_n(\mathbb{R})$  défini par

$$\varphi(M) = AMB$$

Exprimer la trace de  $\varphi$  en fonction des traces de A et B.

Exercice 7. Pour tout entier naturel n on pose  $L_n = \frac{n!}{(2n)!} ((X^2 - 1)^n)^{(n)}$ 

- 1. Montrer que  $L_n$  est un polynôme unitaire de degré n.
- 2. Montrer que  $\forall Q \in \mathbb{R}_{n-1}[X]$ ,  $\int_{-1}^{1} L_n(t)Q(t) dt = 0$
- 3. En déduire que  $L_n$  possède n racines simples toutes dans ]-1;1[. *Indication*: On pourra raisonner sur les racines d'ordres impaires de  $L_n$ .

Exercice 8. Soit  $(u_n)_{n\geq 1}$  une suite de réels positifs. On considère la suite  $(v_n)$  définie par

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^n k u_k$$

Montrer que les séries  $\sum u_n$  et  $\sum v_n$  ont même nature et même somme.

*Exercice 9.* Montrer qu'il existe  $(a,b) \in \mathbb{R}^2$ , que l'on calculera, tel que, lorsque l'entier n tend vers l'infini

$$\int_{0}^{1} (1+x^{2})^{\frac{1}{n}} dx = a + \frac{b}{n} + \mathcal{O}\left(\frac{1}{n^{2}}\right)$$