CSEN 140L - Lab 9

Nolan Anderson

Lab 9 High-Level Objectives

- Use PCA on the MNIST dataset
- Complete the tasks on the lab assignment PDF a single Jupyter notebook (.ipynb) file
- Use only the NumPy and Matplotlib libraries for your implementation
 - No machine learning libraries (except for the data retrieval part given by professor)
- Demo to me and submit your notebook to Camino before leaving the lab section

Review: The Data Explained

- The MNIST dataset consists of 28 x 28 grayscale images of handwritten digits (0 – 9).
 - Since the images are 28 x 28, each image has 784 pixels.
 - Each pixel counts as a feature.
 - Because the dataset is quite large, we will just be using the first 2000 samples.
 - \circ As such, your subset of the data should be (2000 x 784).

Principal Component Analysis (PCA)

- Principal Component Analysis is dimensionality reduction method
- The goal is of PCA is preserve the maximum amount of variance by choosing the appropriate axes (i.e. the principal components)
- There are at most as many principal components (PCs) as there are features
 - Usually, we want to use enough PCs to at least cover
 50% of the variance
 - However, less coverage is okay when plotting since we can only easily interpret plots of 2 or 3 dimensions

The Algorithm (1)

- Prepare the data
 - Load the image data X from the MNIST dataset
 - This should be the first 2000 images
 - Center the data X by subtracting off the mean
- Compute the covariance matrix for all the features
 - Ensure the matrix is (784, 784), transposing if needed
- Find the eigenvectors and eigenvalues of the covariance matrix with np.linalg.eigh()
 - You should then transpose your eigenvector result since the columns are the actual eigenvectors

The Algorithm (2)

- Sort the eigenvalues and eigenvectors based on the eigenvalues
 - Should be largest to smallest (descending order)
 - You can find the sorted indices with np.argsort(), but you'll need to reverse the order somehow
 - Once sorted, the eigenvectors are the principal components
- Compute how how much variance of the data is explained by having 1, 2, and 3 principal components
 - Your result should between 0 and 1 for each
 - See tips for additional details

The Algorithm (3)

- To actually perform dimensionality reduction, compute the dot product of principal components with the image data
 - For the 2D plot, use the first two PCs for the dot product, result = (784, 2)
 - For the 3D plot, use the first three PCs for the dot product, result = (784, 3)
- Use Matplotlib to construct 2D and 3D scatter plots of the dimensionality-reduced data
 - Use the MNIST target values to have 10 distinct colors
 - Provide a legend to reference which color is which digit
 - See tips for additional details

Tips

- Computing Explained Variance
 - When computing the explained variance, first compute the total sum of all the eigenvalues
 - Then, you can divide the cumulative sum of the eigenvalues by the total to get an array of explained variance
 - You can also use a sum variable and a for loop to do a similar computation, your choice
 - Since we divided a partial sum by the total, we get values between 0 and 1.

Tips

- Plotting in Color
 - To get the target labels (the digits), use mnist["target"].
 - Then, I suggest you construct a numpy array with those labels with *dtype=int* since scatter expects an array of integers, not strings
 - To actually implement the different colors, use the c field of scatter() and set that equal to your array for the digits. Then use the cmap field to specify a color map string (e.g. "gist_rainbow")
 - For more details, consult the following links:
 - <u>pyplot.scatter</u> | <u>colormap reference</u>

Lab Outcomes | What I Need To See

- Print out the amount of variance covered by having 1, 2, and 3 principal components (three values)
- Display two plots: a 2D plot and 3D plot
 - Your plots must have legends and different colors for different digits

Helpful NumPy Functions

- np.linalg.eigh()
 - Compute the eigenvalues and eigenvectors
- np.argsort()
 - Get sorted indices in ascending order
- np.cumsum()
 - Cumulative sums of an array
- np.mean()
- np.sum()
- np.dot()

Sample 2D Plot

Sample 3D Plot

