

| 青月 | 风带你玩蓝牙 nRF52832 V2.0        | 淘宝地址: http://qfv5.taobao.com/ |
|----|-----------------------------|-------------------------------|
| 青月 | 气带你玩蓝牙 nRF52832 系列教程        | <br>2                         |
|    | 作者: 青风                      | <br>2                         |
|    | 作者: 青风                      | <br>3                         |
|    | 出品论坛: www.qfv8.com          | <br>3                         |
|    | 淘宝店: http://qfv5.taobao.com | <br>3                         |
|    | QQ 技术群: 346518370           | <br>3                         |
|    | 硬件平台: 青云 QY-nRF52832 开发板    | <br>3                         |
|    | 一: 蓝牙 5.0 基础概念以及学习规划        | <br>3                         |
|    | 1 蓝牙 5.0 基础概念普及             | <br>3                         |
|    | 1.1 蓝牙 5.0 的简介:             | <br>3                         |
|    | 1.2 蓝牙协议栈结构:                | <br>5                         |
|    | 1.3 蓝牙如何实现连接与通信:            | <br>6                         |
|    | 2 蓝牙学习规划                    | <br>9                         |
|    | 2.1 蓝牙外设程序学习:               | <br>10                        |
|    | 2.2 蓝牙 BLE 程序学习:            | <br>11                        |



# 青风带你玩蓝牙 nRF52832 系列教程

-----作者: 青风

出品论坛: www.qfv8.com 青风电子社区





作者: 青风

出品论坛: www.qfv8.com

淘宝店: http://qfv5.taobao.com

QQ 技术群: 346518370

硬件平台: 青云 QY-nRF52832 开发板

# 一: 蓝牙 5.0 基础概念以及学习规划

本章将讲解什么是蓝牙 5.0, 蓝牙是如何实现通信的?以及蓝牙协议栈是什么意思?蓝牙外设程序是什么意思?蓝牙 BLE 程序是什么意思?带这几个,我们进入本章的学习,本章将为蓝牙 5.0 的学习打开一扇门,让大家知道以后将如何学习。

## 1 蓝牙 5.0 基础概念普及

# 1.1 蓝牙 5.0 的简介:

蓝牙 5.0 是由蓝牙技术联盟在 2016 年提出的蓝牙技术标准,蓝牙 5.0 针对低功耗设备速度有相应提升和优化。

蓝牙 5.0 是在蓝牙 4.2 基础上进化而来,那么与蓝牙 4.2 相比,它有什么特点了?

蓝牙 5.0 的特色是它能在现有(蓝牙 4.2)的省电模式下,提供超过 4 倍的通讯范围(300 米)和 2 倍的传输速度(2Mbps),8 倍的数据量:



同时增添导航功能,配合无处不在的 Wi-Fi 可以实现精准度接近 1 米的蓝牙室内定位功能。下图为国外设计的室内导航演示:



蓝牙 5.0 不仅自身具备理论 300 米的有效信号通讯范围,同时还在开发物联网网状网络(mesh networking) 技术,它能使蓝牙 5.0 设备相互作为信号中继站,从而也能将信号传递到无限远。在国内, mesh 组网已经商用化,如下图所示的 mesh 智能灯光设备:



蓝牙 5.0 在低功耗方面的表现依旧有着无可匹敌的特性。物联网设备(比如传感器和可穿戴设备)体积一个比一个小,所能容纳的电池容量更是有限。因此,能做到超迷你级别的蓝牙芯片(接收器),而且能比 Wi-Fi 节省 25%到一倍电力的蓝牙 5.0,自然更受小型物联网设备青睐了。比如下图的防丢器,或者 ibeacon 的设备等。





# 1.2 蓝牙协议栈结构:

学习蓝牙 5.0 之前, 需要下载蓝牙核心规范以 5.0, 链接如下:

https://www.bluetooth.com/specifications/bluetooth-core-specification

蓝牙里把蓝牙协议的实现代码称为协议栈(protocol stack),BLE 协议栈就是实现低功耗蓝牙协议的代码,理解和掌握 BLE 协议是实现 BLE 协议栈的前提。在深入 BLE 协议栈各个组成部分之前,我们先看一下 BLE 协议栈整体架构。



从上图可知,一个蓝牙工程应用被分成三个层,分别为应用层,主协议层,控制层。这些层



中,涉及了一些蓝牙专业的术语,下面就先简单介绍下,当然后面会随着我们的教程进一步展开:

**PHY** 层(Physical layer 物理层)。PHY 层用来指定 BLE 所用的无线频段,调制解调方式和方法等。PHY 层做得好不好,直接决定整个 BLE 芯片的功耗,灵敏度以及 selectivity 等射频指标。

**LL** 层(Link Layer 链路层)。LL 层是整个 BLE 协议栈的核心,也是 BLE 协议栈的难点和重点。像 Nordic 的 BLE 协议栈能同时支持 20 个 link(连接),就是 LL 层的功劳。LL 层要做的事情非常多,比如具体选择哪个射频通道进行通信,怎么识别空中数据包,具体在哪个时间点把数据包发送出去,怎么保证数据的完整性,ACK 如何接收,如何进行重传,以及如何对链路进行管理和控制等等。LL 层只负责把数据发出去或者收回来,对数据进行怎样的解析则交给上面的 GAP 或者 ATT。

HCI(Host controller interface)。HCI 是可选的,HCI 主要用于 2 颗芯片实现 BLE 协议栈的场合,用来规范两者之间的通信协议和通信命令等。

**GAP** 层(Generic access profile)。GAP 是对 LL 层 payload(有效数据包)如何进行解析的两种方式中的一种,而且是最简单的那一种。GAP 简单的对 LL payload 进行一些规范和定义,因此 GAP 能实现的功能极其有限。GAP 目前主要用来进行广播,扫描和发起连接等。

**L2CAP** 层(Logic link control and adaptation protocol)。L2CAP 对 LL 进行了一次简单封装,LL 只关心传输的数据本身,L2CAP 就要区分是加密通道还是普通通道,同时还要对连接间隔进行管理。

**SMP**(Secure manager protocol)。SMP 用来管理 BLE 连接的加密和安全的,如何保证连接的安全性,同时不影响用户的体验,这些都是 SMP 要考虑的工作。

**ATT**(Attribute protocol)。简单来说,ATT 层用来定义用户命令及命令操作的数据,比如读取某个数据或者写某个数据。BLE 协议栈中,开发者接触最多的就是 ATT。BLE 引入了 attribute 概念,用来描述一条一条的数据。Attribute 除了定义数据,同时定义该数据可以使用的 ATT 命令,因此这一层被称为 ATT 层。

**GATT**(Generic attribute profile )。GATT 用来规范 attribute 中的数据内容,并运用 group(分组)的概念对 attribute 进行分类管理。没有 GATT,BLE 协议栈也能跑,但互联互通就会出问题,也正是因为有了 GATT 和各种各样的应用 profile,BLE 摆脱了 ZigBee 等无线协议的兼容性困境,成了出货量最大的 2.4G 无线通信产品。

最上层的 Profiles 层里,包含的公用任务和私有任务,其中公共任务是 SIG 蓝牙协议小组定义的蓝牙任务,私有任务是用户或者企业自定义的蓝牙任务。

蓝牙协议的三层结构的具体应用,我们会在蓝牙例程中,结合代码展开。

# 1.3 蓝牙如何实现连接与通信:

初学者在学习蓝牙的时候,大家首先肯定有一个疑问,蓝牙是怎么样通信的了?这个过程是如何实现的了?那么这一讲我们首先要搭建一个基础概念,和做楼房一样,先搭一个框架,后面的学习再往这个框架里填砖头(细节内容)。

通信是双向的,为了创建和维持一个BLE 通信连接,在蓝牙中引入了"角色"这一概念。一个BLE 设备不是主机(集中器)角色就是从机(外围设备)角色,这是根据是谁发起这个连接来确定的。主机(集中器)设备总是连接的发起者,而从机(外围设备)总是被连接者。整个访问与连接过程都在通用访问规范(Generic Access Profile,GAP)进行实现的。



#### 1.3.1 从机广播

从机(外围设备)要被主机连接,那么它就必须先被主机发现。这个时候,从机设备把自身信息以广播形式发射出去。

比如设备 A 需要先进行广播,即设备 A (Advertiser) 不断发送如下广播信号,t 为广播间隔。每发送一次广播包,我们称其为一次广播事件(advertising event),因此 t 也称为广播事件间隔,如下图所示。广播事件是一阵一阵的,每次会是有一个持续时间的,蓝牙芯片只有在广播事件期间才打开射频模块发射广播,这个时候功耗比较高,其余时间蓝牙芯片都处于 idle 待机状态,因此平均功耗就非常低。



当广播发出的时候,每一个广播事件包含三个广播包,即分别在 37/38/39 三个通道上同时广播相同的信息。下图 observer 为主机观察者,advertiser 就是从机广播。



#### 1.3.2 主机扫描

设备 A 不断发送广播信号给主机(**Observer**),如果手机不开启扫描窗口,主机是收不到设备 A 的广播的,如下图所示,不仅手机要开启射频接收窗口,而且只有主机的射频接收窗口跟广播发送的发射窗口匹配成功,手机才能收到设备 A 的广播信号。由于这种匹配成功是一个概率事件,因此手机扫到设备 A 也是一个概率事件,也就是说,主机有时会很快扫到设备 A,比如只需要一个广播事件,主机有时又会很慢才能扫到设备 A,比如需要 10 个广播事件甚至更多。

下面图表示了主机主动扫描广播的过程:

控制器收到扫描数据包后将向主机发送一个广播报告事件(adv\_report),该事件同样包括了链路层数据包的广播类型。因此,主机能够判断对端设备是否可以连接或者扫描,并且区分出广播数据包和扫描响应数据包。



### 1.3.3 建立连接

如图所示,手机在收到 A1 广播包 ADV\_IND 后,以此为初始点,T\_IFS 后给 Advertiser 发送一个 connection request 命令,即 A2 数据包,告诉 advertiser 我将要过来连你,请做好准备。Advertiser 根据 connect\_req 命令信息做好接收准备。connect\_req 其实是在告诉 advertiser,手机将在 Transmit Window 期间发送第一个同步包(P1)给你,请在这段时间里把你的射频接收窗口打开。设备 B 收到 P1 后,T\_IFS 时间后将给手机回复数据包 P2。一旦手机收到数据包 P2,连接即可认为建立成功。后续手机将以 P1 为锚点(原点),Connection Interval 为周期,周期性地给设备 B 发送 Packet。



### 1.3.4 发送与接收数据



连接成功后,master 和 slave 在每一个 connection interval 开始的时候,都必须交互一次,即 master 给 slave 发一个包,slave 再给 master 发一个包,整个交互过程称为一个 connection event。蓝牙芯片只有在 connection event 期间才把射频模块打开,此时功耗比较高,其余时间蓝牙芯片都是处于 idle 状态的,因此蓝牙芯片平均功耗就非常低。Master 不可能时时刻刻都有数据发给 slave,所以 master 大部分时候都是发的空包(empty packet)给 slave。同样 slave 也不是时时刻刻都有数据给 master,因此 slave 回复给 master 的包大部分时候也是空包。另外在一个 connection event 期间,master 也可以发多个包给 slave,以提高吞吐率。综上所述,连接成功后的通信时序图应该如下所示:



图中,主从数据发送的数据包 TX 和 RX 表示方向性的数据通道,也就是蓝牙的空中属性,空中操作事件都是采用蓝牙操作句柄来进行的,因为句柄能够唯一表示各个属性。空中特性的性质包括:

#### 主机 RX 从机 TX 方向:

◎通知: 从机端上传数据给主机,不需要主机回复一个响应

◎指示: 从机端上传数据给主机,需要主机端发一个确认给服务器 通知和指示之间不同之处在于指示有应用层上的确认,而通知没有。

主机 TX 从机 RX 方向:

◎写 ◎没有回应的写 ◎读

# 2 蓝牙学习规划



# 2.1 蓝牙外设程序学习:

我们知道 nrf52 的处理器是内核 arm cortex M4 内核的一个蓝牙芯片,也就是说,nrf5x 处理器本身就是一个 arm 芯片,可以作为单片机来处理相关任务。单片机就具有对应的外设,学习外设功能以及编程,是我们了解芯片,灵活使用芯片功能的第一步,也为我们后面 BLE 开发打下基础。下图为 nrf52832 包含的功能模块:



| GPI0              | 32 configurable                                                                                                                         |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Digital I/O       | 3 x Hardware SPI master, 3 x Hardware SPI<br>slave, 2 x 2-wire master, 2 x 2-wire slave, UART,<br>Quadrature demodulator, 1x I2S, 1xPDM |  |  |
| Peripherals       | 12-bit/200KSPS ADC, RNG, Temperature sensor, general compararator, low power comparator                                                 |  |  |
| PPI               | 20-channel                                                                                                                              |  |  |
| Voltage regulator | LDO (1.7 to 3.6V), Buck DC/DC (1.7 to 3.6V)                                                                                             |  |  |
| Timers/counters   | 5 x 32bit, 3 x 24bit RTC                                                                                                                |  |  |

外设程序下载注意事项:

外设代码是不带协议栈的,下载之前,需要使用 nrfgo-studio 把协议栈删除后,再下载。 外设教程规划如下所示:

参考教程: 《SDK15 蓝牙 5.0 笔记 6: (蓝牙外设硬件篇) 蓝牙外设例子详解》更新内容,目录如下所示:



| 6.1 GPIO 的应用       | 3  |
|--------------------|----|
| 6.1.1 原理分析:        | 3  |
| 6.1.2 软件编写:        |    |
| 6.2 GPIOTE 与外部中断   |    |
| 6.2.1 原理分析         | 11 |
| 6.2.2 应用实例编写       | 13 |
| 6.3 定时器 TIME       | 19 |
| 6.3.1 原理分析         | 19 |
| 6.3.2 应用实例编写       | 21 |
| 6.4 串口外设应用         | 28 |
| 6.4.1 原理分析         | 28 |
| 6.4.2 应用实例编写       | 29 |
| 6.5 PPI 模块的使用      |    |
| 6.5.1 原理分析         | 37 |
| 6.5.2 应用实例编写       | 38 |
| 6.6 定时器输入捕获        | 44 |
| 6.6.1 原理分析:        | 44 |
| 6.6.2 应用实例编写       | 46 |
| 6.7 RTC 实时时钟       |    |
| 6.7.1 原理分析         | 50 |
| 6.7.2 应用实例编写       |    |
| 6.8 SAADC 采集       |    |
| 6.8.1 原理分析         | 61 |
| 6.8.2 应用实例编写       |    |
| 6.9 SPI 读写外部 FLASH | 82 |
| 6.9.1 原理分析         | 82 |
| 6.9.2 硬件准备:        | 83 |
| 6.9.3 应用实例编写       | 83 |

学习过程中,应该对照芯片手册,认真阅读教程和手册内容,深入理解代码,不断的实践操作,才能够深入理解相关内容

# 2.2 蓝牙 BLE 程序学习:

蓝牙学习是我们的重点内容,如何让读者容易理解蓝牙的概念?如何做到理论结合实际了?下面根据多年的教学经验,我们把蓝牙的讲解分为下面 5 个步骤,如下图所示:





### 2.2.1 第一步: 蓝牙 BLE 基础工程搭建

本讲以解析蓝牙工程样例模板为目标,同时结合蓝牙协议栈进行讲解,做到的目标上让读者能够知道蓝牙工程的基本构造,以及蓝牙的协议栈在蓝牙工程中如何调用的。整个结构如下图所示:



如图所示,上图中绿色框框所搭建的内容是蓝牙协议栈的基础部分,也就是从机广播的基础。 灰色框框的内容为设备管理内容,包括硬件的初始化,比如定时器,按键设备等,还包括了内 存管理,配对,人机交互 LOG 打印等功能。

黄色框框为服务初始化,为后面讲的蓝牙服务建立的主要内容。



### 2.2.2 第二步: 蓝牙任务的建立

蓝牙服务包含了两个方面,第一个方面也就是 SIG 蓝牙兴趣小组定义的公有服务,该服务使用一组 UUID,这些服务的属性结构有严格规定,在建立该服务的时候需要严格按照 SIG 协议小组的定义来实现,关于公有服务特征属性与特征值定义可以参考下载相关手册,链接如下:

### https://www.bluetooth.com/specifications/gatt/services

第二个就是私有服务,私有服务,顾名思义,就是公司或者个人组织定义的自己使用的服务,因为是自有服务,所有特征属性只需要满足蓝牙的空中属性定义就可以,比如 读,写,通知等。

因此,针对蓝牙任务的建立,主要以下面五个例子进行讲解,私有服务和公共服务各两个实例:



### 2.2.3 第三步: 蓝牙数据传输

蓝牙作为数据传输通道,主要的目标就是进行数据传输,这步将通过蓝牙串口透传的两个方向, 主机--》从机 ,从机---》主机,搭建一个数据传输通道。以这个通道为基础,可以延伸出多个应用, 同时还讲讨论下数据传输速度。



### 2.2.4 第四步: 蓝牙参数及安全设置

这个步骤讲详细讨论蓝牙的一些基本参数如何设置,比如说 MAC 地址,发送功率,接收信号强度 rssi 等。同时会提出蓝牙安全的概率,绑定配对以及秘钥连接,整体规划如下图所示:



### 2.2.5 第五步: 蓝牙综合应用。

蓝牙综合应用,主要以下面几个方面进行介绍:蓝牙 ibeacon 的介绍、蓝牙 DFU 空中升级方法、蓝牙主机部分:下图绿色框框表述的内容、最后规划为 mesh 组网。

|         |                | , ,         |  |
|---------|----------------|-------------|--|
|         | 蓝牙综合应          | <b>拉用实例</b> |  |
| 蓝牙 ibea | con 应用         | 蓝牙主机串口      |  |
| 蓝牙 DFU  | J升级教程一         | 蓝牙主机扫描      |  |
| 蓝牙 DFU  | J <b>升级教程二</b> | 蓝牙主机心电      |  |
| 蓝牙 mes  | h 组网           | 蓝牙主机 1 带多从机 |  |