The Extended Keal not. It The extended real nos. R* are the real nos. with two elements adjoint. R'=RU[tox,-0]. Algebraic spos for the two infinities are: $1. \quad 0 + 10 = 00, \quad -\infty - \infty = -\infty.$ 2. (± 0) . $0 = \pm 0$, $(\pm \infty) \cdot (-\infty) = \mp 0$. 3. $2 + 0 = \infty$, $x - 0 = -\infty$ for each $x \in \mathbb{R}$. 4. $x \cdot (\pm \infty) = \pm \infty$ if 2 > 0, $(\infty - \infty)$ undefined $x \cdot (\pm \infty) = \mp \infty$ if $x \cdot (\infty - \infty)$ undefined $x \cdot (\pm \infty) = \mp \infty$ if $x \cdot (\infty - \infty)$ undefined Robert, and - so the largest element. 5. 0· D = D Every requence of real nos. has a limit superior and limit infortor in R. That . Every increasing requence of the converges to a seal no. for a requence of real non Erny, the regions $\sum_{k=1}^{\infty} x_k$ is convergent, if the requence of partial sums $\sum_{k=1}^{\infty} x_k y$ converges in \mathbb{R} .

A nexies Z xn of real numbers is rearrangement verticul if for every 1-ho-1
and onto for 6: N-N (called a permutation
of N), the vertex $\sum_{n\geq 1}^{\infty} \chi_{0n}$ converges; (in \mathbb{R}^n ?)
and moreover $\sum_{n\geq 1}^{\infty} \chi_{0n}$. Thm. If fry is a sequence of.

Rt, then the series 22n is rearrangement vouriount. fan, my is a double requence with 0 ≤ an, m ≤ ∞ for each pair n, m. $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} = \lim_{k \to \infty} \sum_{m=1}^{k} \left(\sum_{m=1}^{\infty} a_{n,m} \right).$ Thm. If $0 \le a_{n,m} \le \infty$ $\forall m,n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{n,m} = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{n,m}$ thm. Let $0 \le a_{n,m} \le \infty$ $\forall m,n \in \mathbb{N}$. If $\sigma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is injective then $\sum_{n=1}^{\infty} a_{n,m} = \sum_{m=1}^{\infty} a_{n,m}$

The Roof and Radio Tests:	
Thun (Roof Lest). Given Zan, put	
No lim sub Stant Then	
Converges on 11	
(B) if $\alpha > 1$, $\sum a_n$ diverges just ; (C) if $\alpha = 1$, the dest gives no information.	
Thim (Raho test) The series 2 an, a converges if lim sup ant <1, n-sed an <1,	
(a) diverges if $\frac{a_{n+1}}{a_n} \geqslant 1$ for $n \geqslant n_0$, $n_0 \in \mathbb{N}$ (convergence in \mathbb{R})	
Carolina	
Consider the nexies (i) $\frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$	
(ii) $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \cdots$	