Las isometrías en la Mecánica Celeste

Minia Bermúdez de la Puente García Francisco David Charte Luque José Ángel Garrido Calvo

7 de octubre de 2016

Índice

1.	Repaso de las isometrías de \mathbb{R}^3			2
	1.1.	Isomet	rías lineales	2
	1.2.	Clasificación de isometrías lineales		
		1.2.1.	Identidad	2
		1.2.2.	Simetría respecto de un plano	3
		1.2.3.	Rotación respecto de una recta	3
			Composición de una rotación y una simetría	4
	1.3.		rías afines (Movimientos rígidos)	4
			Isometrías	4
		1.3.2.	Traslaciones	5
			Movimiento helicoidal	5
			Simetría deslizante	5
			Composición de rotación y simetría	5
2.	Uso	en la	teoría de Mecánica Celeste	5
	2.1.	Demos	stración de un pequeño lema	5
3.	Refe	erencia	ıs	6

1. Repaso de las isometrías de \mathbb{R}^3

1.1. Isometrías lineales

Notación. Dada una aplicación lineal T notaremos indistintamente T tanto a la aplicación como a su matriz asociada en la base usual de \mathbb{R}^3 .

Entre dos espacios vectoriales euclídeos abstractos se definen las isometrías como aquellas biyecciones que conservan la distancia, y las isometrías lineales son los isomorfismos que preservan el producto escalar. En estos apuntes realizamos una definición más concreta para el caso de \mathbb{R}^3 .

Definición 1.1. Una isometría de \mathbb{R}^3 es una aplicación lineal $A: \mathbb{R}^3 \to \mathbb{R}^3$, $A(x) = Ax \ \forall x \in \mathbb{R}^3$, verificando $\langle Ax, Ay \rangle = \langle x, y \rangle \ \forall x, y \in \mathbb{R}^3$. Equivalentemente, A conserva módulos, es decir, $|Ax| = |x| \ \forall x \in \mathbb{R}^3$.

Como consecuencia directa de la definición tenemos que el determinante de la matriz asociada a una isometría es 1 o -1. Llamaremos a la isometría directa o inversa respectivamente.

Proposición 1.1. Una aplicación lineal $A : \mathbb{R}^3 \to \mathbb{R}^3$ es una isometría lineal \Leftrightarrow su matriz asociada es ortogonal (es decir, $AA^t = I$).

Proposición 1.2. El conjunto de todas las aplicaciones lineales de un espacio vectorial euclídeo V, O(V), tiene estructura de grupo con la composición.

A continuación se clasifican las isometrías de \mathbb{R}^3 y se dan algunos ejemplos.

1.2. Clasificación de isometrías lineales

Sea $A:\mathbb{R}^3\to\mathbb{R}^3$ una isometría lineal. Consideremos el subespacio de vectores fijos que genera:

$$V_A = \left\{ x \in \mathbb{R}^3 / Ax = x \right\},\,$$

Observamos que este subespacio se corresponde con el conjunto de vectores propios asociados al valor propio 1 de A. Para estudiar su dimensión, la podemos obtener de la forma: $\dim(V_A) = 3 - \operatorname{rango}(A - I)$. Asi, tendremos los siguientes casos.

1.2.1. Identidad

Si dim $(V_A)=3$, entonces A deja fijo todo \mathbb{R}^3 . Por tanto, se trata de la identidad, $A=I:\mathbb{R}^3\to\mathbb{R}^3, I(x)=x\ \forall x\in\mathbb{R}^3$.

1.2.2. Simetría respecto de un plano

Si $\dim(V_A) = 2$, A tiene el plano V_A como subespacio de vectores fijos. En este caso, si $B = \{v_1, v_2\}$ es una base ortonormal de dicho plano y v_3 es un vector unitario ortogonal al plano, tenemos la base de \mathbb{R}^3 $B' = \{v_1, v_2, v_3\}$ de forma que

$$M(A, B') = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Por tanto, A lleva cada vector de \mathbb{R}^3 en su simétrico por el plano V_A .

Ejemplo 1.1. Sea $B = \{e1, e2, e3\}$ la base usual de \mathbb{R}^3 . La simetría respecto al plano generado por los ejes X e Y tiene por matriz asociada:

$$M(S_{X,Y},B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

1.2.3. Rotación respecto de una recta

En el caso en que $\dim(V_A) = 1$, el subespacio V_A es una recta vectorial. Sea v un vector unitario director de la recta, y sean u_1, u_2 dos vectores unitarios ortogonales entre sí y a v, consideramos la base $B = \{u_1, u_2, v\}$ de \mathbb{R}^3 en la que la matriz asociada a A se expresa:

$$M(A,B) = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Por la condición de ortogonalidad de la matriz, es fácil comprobar que tendrá una expresión del tipo

$$\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & 1
\end{pmatrix}$$

para conveniente $\alpha \in \mathbb{R} \setminus \{0\}$. Se trata, por tanto, de la rotación de ángulo α alrededor del eje de giro dado por la recta V_A .

Ejemplo 1.2. Sea $B = \{e1, e2, e3\}$ la base usual de \mathbb{R}^3 . La rotación de $\frac{\pi}{2}$ respecto del eje Z tiene por matriz asociada:

$$M(R_{\pi/2}, B) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Observación. Las simetrías respecto de una recta son un caso particular de rotaciones para $\alpha = \pi$.

1.2.4. Composición de una rotación y una simetría

Si $\dim(V_A) = 0$, entonces A tiene al 0 como único vector fijo. es una composición de una rotación y una simetría con eje de giro y plano de simetría perpendiculares entre sí. Si u_1, u_2 forman una base ortonormal del plano y v es un vector unitario director del eje, la isometría tendrá la siguiente matriz en la base $B = \{u_1, u_2, v\}$:

$$M(A,B) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix},$$

donde α es el ángulo de giro.

Ejemplo 1.3. Sea $B = \{e1, e2, e3\}$ la base usual de \mathbb{R}^3 . La simetría respecto del origen se corresponde con la rotación de π alrededor del eje Z seguido por la simetría respecto del plano formado por los ejes X, Y:

$$M(S_0, B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Observación. En general, las simetrías respecto de un punto en \mathbb{R}^3 son casos particulares de esta situación.

1.3. Isometrías afines (Movimientos rígidos)

Definición 1.2. Un movimiento rígido es una aplicación $\phi : \mathbb{R}^3 \to \mathbb{R}^3$ que conserva las distancias.

Lema 1.1. Todo movimiento rígido ϕ viene determinado por una isometría lineal $A: \mathbb{R}^3 \to \mathbb{R}^3$ y un vector $b \in \mathbb{R}^3$ de la siguiente forma: $\phi(x) = Ax + b \ \forall x \in \mathbb{R}^3$. Llamamos a A isometría (lineal) asociada a ϕ .

1.3.1. Isometrías

La identidad, las rotaciones y las simetrías son movimientos rígidos trivialmente.

1.3.2. Traslaciones

Las traslaciones son los movimientos rígidos tales que la isometría asociada es la identidad.

1.3.3. Movimiento helicoidal

Un movimiento helicoidal es una composición de una rotación y una traslación.

1.3.4. Simetría deslizante

Una simetría deslizante es una composición de una simetría y una traslación.

1.3.5. Composición de rotación y simetría

Las composiciones de rotación y simetría son un movimiento rígido, cuya isometría asociada es la composición de rotación y simetría (no deslizantes).

Proposición 1.3. Cualquier movimiento rígido es de uno de los tipos mencionados.

2. Uso en la teoría de Mecánica Celeste

2.1. Demostración de un pequeño lema

Lema 2.1. Sea $A \in \mathbb{M}_3(\mathbb{R})$ una isometría y $x \in \mathbb{R}^3$ una solución del problema de fuerzas centrales

$$\ddot{x} = f(|x(t)|) \frac{x(t)}{|x(t)|},\tag{1}$$

entonces Ax también es solución.

Demostración. Para que Ax sea solución, debe cumplir la ecuación dada en 1:

$$\frac{d^2}{dt^2}\left(Ax\right) = A\ddot{x} = Af(|x(t)|)\frac{x(t)}{|x(t)|} \stackrel{(*)}{=} f(|Ax(t)|)\frac{Ax(t)}{|Ax(t)|} \quad \forall t \in \mathbb{R}^+,$$

donde en (*) se usa que la isometría preserva los módulos.

3. Referencias

- Geometría Carlos Ivorra http://www.uv.es/ivorra/Libros/ Geometria2.pdf
- Repaso de aspectos de geometría afín euclídea César Rosales http://www.ugr.es/~crosales/1516/cys/tema0.pdf