PART 2: ENCLOSED SIMPLE DIAPHRAGM BUILDINGS WITH $h \le 160$ ft (48.8 m)

27.5 GENERAL REQUIREMENTS

27.5.1 Design Procedure

The procedure specified herein applies to the determination of MWFRS wind loads of enclosed simple diaphragm buildings, as defined in Section 26.2, with a mean roof height $h \le 160$ ft (48.8 m). The steps required for the determination of MWFRS wind loads on enclosed simple diaphragm buildings are shown in Table 27.5-1.

User Note: Part 2 of Chapter 27 is a simplified method for determining the wind pressures for the MWFRS of enclosed, simple diaphragm buildings whose height h is ≤ 160 ft (48.8 m). The wind pressures are obtained *directly from a table*. The building may be of any general plan shape and roof geometry that matches the specified figures. This method is a simplification of the traditional "all heights" method (Directional Procedure) contained in Part 1 of Chapter 27.

Table 27.5-1 Steps to Determine MWFRS Wind Loads Enclosed Simple Diaphragm Buildings ($h \le 160$ ft. (48.8 m))

- **Step 1:** Determine risk category of building or other structure, see Table 1.5-1
- **Step 2:** Determine the basic wind speed, *V*, for applicable risk category, see Figure 26.5-1A, B or C
- **Step 3:** Determine wind load parameters:
 - ➤ Wind directionality factor, K_{ϕ} see Section 26.6 and Table 26.6-1
 - ➤ Exposure category B, C or D, see Section 26.7
 - Topographic factor, K_{zt} , see Section 26.8 and Figure 26.8-1
 - > Enclosure classification, see Section 26.10
- Step 4: Enter table to determine net pressures on walls at top and base of building respectively, p_h , p_0 , Table 27.6-1
- **Step 5:** Enter table to determine net roof pressures, p_z , Table 27.6-2
- **Step 6:** Determine topographic factor, K_{zp} and apply factor to wall and roof pressures (if applicable), see Section 26.8
- Step 7: Apply loads to walls and roofs simultaneously.

27.5.2 Conditions

In addition to the requirements in Section 27.1.2, a building whose design wind loads are determined in accordance with this section shall meet all of the following conditions for either a Class 1 or Class 2 building (see Fig. 27.5-1):

Class 1 Buildings:

- 1. The building shall be an enclosed simple diaphragm building as defined in Section 26.2.
- 2. The building shall have a mean roof height $h \le 60$ ft (18.3 m).
- 3. The ratio of L/B shall not be less than 0.2 nor more than 5.0 (0.2 $\leq L/B \leq$ 5.0).
- 4. The topographic effect factor $K_{zt} = 1.0$ or the wind pressures determined from this section shall be multiplied by K_{zt} at each height z as determined from Section 26.8. It shall be permitted to use one value of K_{zt} for the building calculated at 0.33h. Alternatively it shall be permitted to enter the pressure table with a wind velocity equal to V $\sqrt{K_{zt}}$ where K_{zt} is determined at a height of 0.33h.

Class 2 Buildings:

- 1. The building shall be an enclosed simple diaphragm building as defined in Section 26.2.
- 2. The building shall have a mean roof height 60 ft < $h \le 160$ ft (18.3 m < h ≤ 48.8 m).
- 3. The ratio of L/B shall not be less than 0.5 nor more than 2.0 $(0.5 \le L/B \le 2.0)$.
- 4. The fundamental natural frequency (Hertz) of the building shall not be less 75/h where h is in feet.
- 5. The topographic effect factor K_z = 1.0 or the wind pressures determined from this section shall be multiplied by K_z at each height z as determined from Section 26.8. It shall be permitted to use one value of K_z for the building calculated at 0.33h. Alternatively it shall be permitted to enter the pressure table with a wind velocity equal to V √K_z where K_z is determined at a height of 0.33h.

27.5.3 Wind Load Parameters Specified in Chapter 26

Refer to Chapter 26 for determination of Basic Wind Speed V (Section 26.5) and exposure category (Section 26.7) and topographic factor K_{zt} (Section 26.8).

27.5.4 Diaphragm Flexibility

The design procedure specified herein applies to buildings having either rigid or flexible diaphragms. The structural analysis shall consider the relative