Chomsky-Normalform

Überführen Sie jeweils die angegebene kontextfreie Grammatik in Chomsky-Normalform.

(a)
$$G = (\{S, A, B, C, X\}, \{a, b, c\}, P, S)$$
 mit P :
$$P = \{ S \rightarrow XAB \mid \epsilon \\ A \rightarrow aAB \mid AB \mid c \\ B \rightarrow BB \mid C \mid a \\ C \rightarrow CC \mid c \mid \epsilon \\ X \rightarrow A \mid b$$

(b)
$$G = (\{S, T\}, \{a, b, c\}, P, S)$$
 mit P :
$$P = \{$$

$$S \to aSbS \mid T$$

$$T \to cT \mid c$$

$$\}$$

(i) Elimination der ϵ -Regeln

— Alle Regeln der Form $A \to \epsilon$ werden eliminiert. Die Ersetzung von A wird durch ϵ in allen anderen Regeln vorweggenommen.

 $\ \ \, \square$ Nichts zu tun

(ii) Elimination von Kettenregeln

— Jede Produktion der Form $A \to B$ mit $A,B \in S$ wird als Kettenregel bezeichnet. Diese tragen nicht zur Produktion von Terminalzeichen bei und lassen sich ebenfalls eliminieren.

$$P = \{$$

$$S \rightarrow aSbS \mid cT \mid c$$

$$T \rightarrow cT \mid c$$
 $\}$

(iii) Separation von Terminalzeichen

— Jedes Terminalzeichen σ , das in Kombination mit anderen Symbolen auftaucht, wird durch ein neues Nonterminal S_{σ} ersetzt und die Menge der Produktionen durch die Regel $S_{\sigma} \to \sigma$ ergänzt.

$$P = \{ \\ S \rightarrow ASAS \mid CT \mid c \\ T \rightarrow CT \mid c \\ A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c \\ \}$$

}

(iv) Elimination von mehrelementigen Nonterminalketten

— Alle Produktionen der Form $A \to B_1B_2 \dots B_n$ werden in die Produktionen $A \to A_{n-1}B_n, A_{n-1} \to A_{n-2}B_{n-1}, \dots, A_2 \to B_1B_2$ zerteilt. Nach der Ersetzung sind alle längeren Nonterminalketten vollständig heruntergebrochen und die Chomsky-Normalform erreicht.

$$P = \{ \\ S \rightarrow AU \mid CT \mid c \\ T \rightarrow CT \mid c \\ A \rightarrow a \\ B \rightarrow b \\ C \rightarrow c \\ U \rightarrow SVV \\ \rightarrow AS \\ \}$$

(c)
$$G = (\{S, A, B\}, \{a, b, c\}, P, S)$$
 mit P : $P = \{$

$$S \to AB$$

$$A \to aAA \mid \epsilon$$

$$B \to bBB \mid \epsilon$$

}