8. Za pomocą metody anihilatorów oblicz $s_n = \sum_{i=1}^n i 2^i$ rozwiązując zależność $s_n = s_{n-1} + n2^n$.

$$S_{n} - S_{n-1} = n2^{n}$$
 $S_{n} - S_{n-1} = 0$
 $S_{n+1} - S_{n} = 0$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $(E - 2)^{2}$
 $(E - 1) < S_{n} > = < 0 >$
 $(E - 1) < S_{n} > = < 0 >$
 $(E - 1) < (E - 2)^{2} < S_{n} > = (E - 2)^{2} < n2^{n} > = < 0 >$

many $(E - 1) (E - 2)^{2} < S_{n} > = (E - 2)^{2} < n2^{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > = < 0 >$
 $E < S_{n} > - < S_{n} > =$