Filename: _3_naive_bayes.ipynb
Title: Naive Bayes model building

Author: Raghava | GitHub: @raghavtwenty

Date Created: June 10, 2023 | Last Updated: May 13, 2024

Language: Python | Version: 3.10.14, 64-bit

Importing Required Libraries

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report
from _1_confus_mat_display import display_confus_matrix
from _2_scale_transform import transform_new_input
```

Importing Preprocessed Dataset

```
In [14]: data_frame = pd.read_csv("../datasets/cleaned_dataset.csv")
```

Train Test split

Naive Bayes classifier

```
In [16]: nb_classifier = GaussianNB()
    nb_classifier.fit(X_train, y_train)

# Predicting on the test set
    y_pred_nb = nb_classifier.predict(X_test)
```

```
In [17]: X_test
```

		Port Number	Received Packets	Received Bytes	Sent Bytes	Sent Packets	alive Duration (S)	Delta Received Bytes	D S By
	2390	0.333333	0.004799	0.162585	0.106062	0.005434	0.341841	0.000000	0.000
	196	1.000000	0.992862	0.054801	0.450012	0.378980	0.900638	0.000088	0.000
	2307	0.666667	0.007368	0.023744	0.026935	0.006087	0.050137	0.000919	0.000
	1731	0.333333	0.000391	0.000035	0.026388	0.000596	0.027347	0.000000	0.000
	1100	0.333333	0.000306	0.000054	0.000041	0.000183	0.030386	0.000051	0.000
	•••								
	2443	1.000000	0.988916	0.054103	0.116169	0.500759	0.252507	0.000044	0.000
	381	1.000000	0.037919	0.002676	0.000008	0.000033	0.004558	0.000095	0.000
	1780	0.333333	0.000437	0.000076	0.046867	0.215582	0.048617	0.000044	0.043
	962	0.333333	0.007549	0.000572	0.000059	0.000235	0.044060	0.000859	0.000
	1939	1.000000	0.990634	0.054398	0.264988	0.373173	0.532969	0.000088	0.000

586 rows × 13 columns

Classification Metrics

In [18]: classifi_report = classification_report(y_test, y_pred_nb)
 print(classifi_report)

	precision	recall	f1-score	support
0 1 2 3 4	0.98 0.80 0.52 0.97 0.56	1.00 0.50 0.96 0.45 0.71	0.99 0.62 0.68 0.62 0.63	144 117 113 139 73
accuracy macro avg weighted avg	0.77 0.80	0.73 0.73	0.73 0.71 0.72	586 586 586

Confusion Matrix

In [19]: display_confus_matrix(y_test, y_pred_nb)

Evaluating accuracy

```
In [20]: accuracy_nb = accuracy_score(y_test, y_pred_nb)
print(f"Naive Bayes Accuracy: {accuracy_nb:.4f}")
```

Naive Bayes Accuracy: 0.7270

Save the model

```
In [21]: from joblib import dump
dump(nb_classifier, "../models/m1_naive_bayes.joblib")
```

Out[21]: ['../models/m1_naive_bayes.joblib']

Test data for each category with new user input

```
In [22]: 10_x = [[4, 350188, 14877116, 101354648, 159524, 2910, 278, 280, 5, 4, 0, 6, 11_x = [[2, 2326, 12856942, 31777516, 2998, 2497, 560, 560, 5, 2, 0, 4, 7259 12_x = [[4, 150, 19774, 6475473, 3054, 166, 556, 6068, 5, 4, 502, 6, 7418]] 13_x = [[2, 209, 20671, 6316631, 274, 96, 3527, 2757949, 5, 2, 183877, 8, 90 14_x = [[2, 1733, 37865130, 38063670, 3187, 2152, 0, 556, 5, 3, 0, 4, 14864]]
```

New input prediction

```
In [23]: # Importing required libraries
import numpy as np
from joblib import load
from _2_scale_transform import transform_new_input

# Load the model
model = load("../models/m1_naive_bayes.joblib")

# Preprocessing input
user_input = np.array(l1_x) # Change values and try changing "l1_x"
user_input = transform_new_input(user_input)

# Prediction
predict = model.predict(user_input)

# Final Show
print(f"Predicted label: {predict[0]}")
```

Predicted label: 1

/Users/raghav/miniconda3/envs/ids/lib/python3.10/site-packages/sklearn/base.py:493: UserWarning: X does not have valid feature names, but GaussianNB was fitted with feature names warnings.warn(