Course code	Course Title				Р	С
BCSE332P Deep Learning Lab				0	2	1
Pre-requisite	NIL	Syllabus version				
		1.0				

Course Objectives

- 1. Introduce major deep neural network frameworks and issues in basic neural networks
- 2. To solve real world applications using Deep learning.

Course Outcomes

At the end of this course, student will be able to:

- 1. Understand the methods and terminologies involved in deep neural network, differentiate the learning methods used in Deep-nets.
- 2. Identify and apply suitable deep learning approaches for given application.
- 3. Design and develop custom Deep-nets for human intuitive applications
- 4. Design of test procedures to assess the efficiency of the developed model.

To understand the need for Reinforcement learning in real – time problems.

	To underetaind the field for item forcement learning in roar time problems.						
Indi	Indicative Experiments						
1.	Demonstration and implementation of Shallow architecture, using Python, Tensorflow and Keras • Google Colaboratory - Cloning GitHub repository, Upload Data, Importing Kaggle's dataset, Basic File operations • Implementing Perceptron, • Digit Classification : Neural network to classify MNIST dataset	10 hours					
2.	 Hyper parameter tuning and regularization practice - Multilayer Perceptron (BPN) Mini-batch gradient descent, 	4 hours					
3.	Convolution Neural Network application using Tensorflow and Keras, • Classification of MNIST Dataset using CNN • Face recognition using CNN	4 hours					
4.	Object detection using Transfer Learning of CNN architectures	2 hours					
5.	 Image denoising (Fashion dataset) using Auto Encoders Handling Color Image in Neural Network aka Stacked Auto Encoders (Denoising) 	2 hours					
6.	Text processing, Language Modeling using RNN	2 hours					
7.	Transfer Learning models for classification problems	2 hours					
8.	Sentiment Analysis using LSTM	2 hours					
9.	Image generation using GAN	2 hours					
	Total Laboratory Hours	30 hours					
Tex	t Book(s)						
1.	Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017						
2	Neural Networks and Deep Learning, Michael Nielsen,, Determination Press						
Ref	Reference Books						
1.	Deep Learning Step by Step with Python, N D Lewis, 2016						

2.	Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017						
3	Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks, Umberto Michelucci, Apress, 2018.						
4	Deep Learning with TensorFlow: Explore neural networks with Python, Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy, Packt Publisher, 2017.						
Mode of Evaluation: CAT / Mid-Term Lab/ FAT							
Reco	mmended by Board of Studies	09-05-2022					
Approved by Academic Council		No. 66	Date	16-06-2022			