

MAREANO seabed mapping programme, Norway

Data and maps

- Bathymetry
- Geology
- Biology
- Environmental status

MAREANO – into the deep Norwegian Sea

Figure from MAREANO activity plan 2021 (Norwegian)

Shift focus from shelf/slope to deep sea

Varied terrain, environment and seabed habitats

- abyssal plain
- Mid-Atlantic Ridge
- Molloy Deep
- seamounts
- etc.

Knowledge needed for update to management plan

- rich minerals
- unique and vulnerable ecosystems
- geo/bio diversity
- the unknown...

<< 100% mapping

Pre-survey characterisation the deep Norwegian Sea

Survey strategy based on statistical analysis and expert assessments

Continuous and categorical data from Emodnet, IMR, NGU and other sources were combined with expert advice from UiB (K.G. Jebsen Centre), HI and NGU

Bathymetry

errain variation

alinity

Temperature

Current velocity

~40 'representative' boxes

Lithology, Emodnet

Biogeographical regions, OSPAR

Age, Emodnet

Landscape, MAREANO

MAREANO in the deep sea

Relative relief

- Common metric in nature-type mapping
- Depth range within 1 km²
- Overview & context cf. mainland based on 100 m bathymetry

Adapting tools & methods for deep sea surveys (acoustic, video, sampling)

Towed video

Image: MAREANO

Grabs and other sampling gear

AUV

ROV

'VAMS'

Shallow → **Deep**

 $fast \rightarrow slow$

 $\epsilon \rightarrow \mathbf{f}$

> Cost effective survey suited to terrain and info needs

How can terrain attributes help plan underwater seabed mapping and sampling surveys?

- Intuitive terrain attributes that will help assess accessibility with underwater vehicles etc.
- Which attributes are helpful? At what scales?

Survey planning examples Rugged vs. flat box

	Complex rugged site at MAR	'Flat' site with mounds/craters
min	1579	2564
max	3564	2996
mean	2457	2822
s.d.	355	76
median	2386	2829
mode	2186	2839

Rugged vs. flat box : Relative Relief

Bathymetry grid: 20 m Method: focal statistics

Flat vs. rugged box: Slope

Bathymetry grid: 20 m Method: r.param.scale

Flat vs. rugged box: Slope

Bathymetry grid: 20 m Method: r.param.scale

Flat vs. rugged box: Local Topographic Position

Bathymetry grid: 20 m

- ~BPI common in marine applications [BTM toolbox for ArcGIS (Wallbridge et al. 2018)]
- Finer scale analysis captures mostly noise/artefacts multiscale analysis options important. Alternatives...?

Alternative metrics – use relative LTP? e.g. Newman et al. 2018

Flat vs. rugged box: Roughness/ruggedness

- Lindsay et al.
 (2019)
 multiscale
 roughness
 based on
 dispersion of
 surface normal
- Magnitude and scale ouputs
- Max scale
 ~1km relevant to
 AUV/ROV
 operations
- Bathy grid 20m

Alternative roughness/ruggedness metrics...

Vector ruggedness measure ~1km Sappington et al. 2007 (BTM toolbox ++)

Neighbourhood effects vs. intuitive values vs. interpretability

s.d. slope (WhiteboxTools) ~1km

e,g, Grohmann et al. 2010

Multiscale roughness (magnitude & scale) – combine?

Conclusions and further work

- Terrain attributes useful for quantitative characterisation
- Intuitive metrics preferred for survey planning
- Find thresholds for safe operation of different gear
- Improve multibeam DTMs for geomorphometric analysis & fuse with regional data?
- Follow up surveys and characterisation of seabed geo/bio/environmental status

