Transportation network with multiple lines

notes GG

April 25, 2022

1 Formalism

1.1 The transportation network with multiple lines

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a simple, oriented, and connected graph representing a transportation network between $|\mathcal{V}| = n$ nodes, having $|\mathcal{E}| = m$ edges, and possessing p different transportation lines. Each node belongs to only one line, i.e. $\mathcal{V} = \bigcup_{k=1}^p \mathcal{V}_k$ and $\mathcal{V}_k \cap \mathcal{V}_l = \emptyset$, $\forall k \neq l$, where \mathcal{V}_k represents the set of nodes in line k. The edge set \mathcal{E} , can also be decomposed with

$$\mathcal{E} = \mathcal{E}_{\mathrm{W}} \cup \mathcal{E}_{\mathrm{B}}, \qquad \mathcal{E}_{\mathrm{W}} := \bigcup_{k=1}^{p} \mathcal{E}_{k}, \qquad \mathcal{E}_{\mathrm{W}} \cap \mathcal{E}_{\mathrm{B}} = \emptyset, \quad \mathcal{E}_{k} \cap \mathcal{E}_{l} = \emptyset, \quad \forall k \neq l.$$
 (1)

where \mathcal{E}_k is the set of edges composing line k, \mathcal{E}_W the set containing all edges inside lines, and \mathcal{E}_B the set of transfer edges, connecting the different lines. The graph \mathcal{G} can be represented by its adjacency matrix $\mathbf{A} = (a_{ij})$, which can also be decomposed with

$$\mathbf{A} = \mathbf{A}_{\mathrm{W}} + \mathbf{A}_{\mathrm{B}}, \qquad \mathbf{A}_{\mathrm{W}} = \sum_{k=1}^{p} \mathbf{A}_{k}, \tag{2}$$

with $\mathbf{A}_k = (a_{ij}^k)$ are edges of line k, $\mathbf{A}_{\mathrm{W}} = (a_{ij}^{\mathrm{W}})$ edges of inside all lines, and $\mathbf{A}_{\mathrm{B}} = (a_{ij}^{\mathrm{B}})$ transfer edges. We suppose that there is an uniquely define route inside lines, i.e.

$$a_{i\bullet}^k \le 1 \text{ and } a_{\bullet i}^k \le 1, \qquad \forall i, k.$$
 (3)

where • designates a summation over the replaced index.

1.2 The origin-destination matrix

The $(n \times n)$ origin-destination matrix, denoted by $\mathbf{N} = (n_{st}), n_{st} \geq 0, \forall s, t$, contains the flow (e.g. the number of passengers) entering the network in source node s and leaving it in target node t. We can denote its margins with

$$\sigma_{\rm in} := \mathbf{N}\mathbf{e}_n \tag{4}$$

$$\boldsymbol{\sigma}_{\text{out}} := \mathbf{N}^{\top} \mathbf{e}_n \tag{5}$$

where \mathbf{e}_n is the vector of ones of size n. The vector $\boldsymbol{\sigma}_{\mathrm{in}} = (\sigma_i^{\mathrm{in}})$ is the vector of flow entering the network and $\sigma_{\rm in}=(\sigma_i^{\rm in})$ is the vector of flow leaving the network. We have

$$\sigma_{\bullet}^{\rm in} = \sigma_{\bullet}^{\rm out}. \tag{6}$$

Note that if only $\sigma_{\rm in}$ and $\sigma_{\rm out}$ are given, a flow matrix N can be computed relatively to an origin-destination affinity matrix $\mathbf{S} = (s_{st}), 0 \leq s_{st} \leq 1$, where $s_{st} = 1$ denote a perfect affinity and $s_{st} = 0$ no affinity, through

$$\mathbf{N} = \mathbf{Diag}(\mathbf{a})(\mathbf{S} + \epsilon)\mathbf{Diag}(\mathbf{b}),\tag{7}$$

where $\mathbf{Diag}(.)$ denote the diagonal matrix obtained from a vector, ϵ a very small quantity, and vectors a and b are found through proportional iterative fitting algorithm in order to have margin constraints (4) and (5) respected for \mathbf{N} (a small ϵ has to be added to $\sigma_{\rm in}$ and $\sigma_{\rm out}$ if they possess null components).

1.3 The flow matrix

A flow on edges is represented by the $(n \times n)$ flow matrix $\mathbf{X} = (x_{ij})$, verifying

$$x_{ij} \ge 0, \qquad \forall i, j,$$
 (8)

$$x_{ij} \ge 0, \quad \forall i, j,$$
 (8)
 $a_{ij} = 0 \Rightarrow x_{ij} = 0, \quad \forall i, j,$ (9)

$$x_{i\bullet} + \sigma_i^{\text{out}} = x_{\bullet i} + \sigma_i^{\text{in}}, \quad \forall i.$$
 (10)

Again, we can decompose the flow matrix with

$$\mathbf{X} = \mathbf{X}_{\mathrm{W}} + \mathbf{X}_{\mathrm{B}} \qquad \mathbf{X}_{\mathrm{W}} := \sum_{k=1}^{p} \mathbf{X}_{k}$$
 (11)

where \mathbf{X}_k represent the flow inside line $k,~\mathbf{X}_{\mathrm{W}}$ is the flow inside all lines, and \mathbf{X}_{B} the flow between lines. This decomposition allows us to define the *vector of* flow entering lines $\rho_{\rm in} = (\rho_i^{\rm in})$ and the vector of flow leaving lines $\rho_{\rm out} = (\rho_i^{\rm out})$, with

$$\boldsymbol{\rho}_{\text{in}} := \boldsymbol{\sigma}_{\text{in}} + \mathbf{X}_{\text{B}}^{\top} \mathbf{e}_{n}, \tag{12}$$

$$\rho_{\text{out}} := \sigma_{\text{out}} + \mathbf{X}_{\mathbf{B}} \mathbf{e}_n, \tag{13}$$

where \mathbf{e}_n is the vector of ones of size n. It is easy to see that we still have $\rho_{\bullet}^{\rm in} = \rho_{\bullet}^{\rm out}.$

Shortest-paths flow

Let \mathcal{P}_{st} be the set of admissible shortest-paths between s and t on \mathcal{G} . We can denote by $P_{st}(i,j)$ the probability of having edge $(i,j) \in \wp$ when drawing a path \wp from \mathcal{P}_{st} . We have

$$P_{st}(i,j) := \frac{1}{|\mathcal{P}_{st}|} \sum_{\wp \in \mathcal{P}_{st}} \delta((i,j) \in \wp), \tag{14}$$

where $\delta(.)$ designate the indicator function. Note that if there is an unique shortest-path between node s and t, noted \wp_{st} , we have $P_{st}(i,j) = 1$ if $(i,j) \in \wp_{st}$, $P_{st}(i,j) = 0$ otherwise.

If we are given an origin-destination matrix $\mathbf{N} = (n_{st})$, we can compute the shortest-path flow matrix, noted $\mathbf{X}_{sp} = (x_{ij}^{sp})$, with

$$x_{ij}^{\text{sp}} = \sum_{st} P_{st}(i,j)n_{st}. \tag{15}$$

This matrix contains the flow on each edge if we suppose that the flow follows shortest-paths from origin to destination.

We can rewrite equation (15) by defining the $(n^2 \times n^2)$ shortest-path - edge matrix $\mathbf{P} = (p_{\alpha\beta})$ with

$$p_{\alpha\beta} = \begin{cases} P_{st}(i,j) & \text{if } \alpha = s + n(t-1) \text{ and } \beta = i + n(j-1), \\ 0 & \text{otherwise.} \end{cases}$$
 (16)

Then (15) writes

$$\mathbf{vec}(\mathbf{X}_{\text{sd}}) = \mathbf{P}^{\top} \mathbf{vec}(\mathbf{N}), \tag{17}$$

where **vec**(.) denotes the vectorization function of a matrix, obtained by stacking matrix columns on top of one another.

From equation (15), we see that

$$\frac{\partial x_{ij}^{\rm sp}}{\partial n_{st}} = P_{st}(i,j), \tag{18}$$

which equal to 1 if there is a unique shortest-path between s and t and (i,j) belongs to this path. This equation means that if we multiply n_{st} by a factor $\alpha \geq 0$ on each s,t which contains (i,j) on their shortest-paths, the resulting flow on (i,j) will also be multiplied by α .

1.5 Problem definition

The problem: We suppose that we know the flow entering and leaving each line, i.e. ρ_{in} and ρ_{out} , and we want to find origin-destination trajectories n_{st} .

By setting the problem like that, we easily see that it is ill posed. Several solutions exists, with some of them trival (e.g. units remain on the same line and follow a first-in/first-out scheme), and we need to add some hypotheses to restrain it.

Hypothesis 1: Trajectories in the network follow shortest-paths from origin s to destination t.

Hypothesis 2: The number of trajectories $\mathbf{N} = (n_{st})$ should be as close as possible to s_{st} , where $\mathbf{S} = (s_{st})$ is a given affinity matrix between origin and destination nodes, in the sens that

$$K(\mathbf{N}|\mathbf{S}) := \sum_{st} \frac{n_{st}}{n_{\bullet\bullet}} \log \left(\frac{n_{st}/n_{\bullet\bullet}}{s_{st}/s_{\bullet\bullet}} \right), \tag{19}$$

i.e. the Kullback-Leibler divergence between the probability of selecting an origin-destination path according to \mathbf{N} relatively to the probability of selecting an origin-destination path according to \mathbf{S} , is minimum. Note that the divergence (19) is well defined only if $s_{st} > 0$, $\forall s, t$.

With these two additional hypotheses, we can find a solution with the following algorithm.

1.6 Algorithm

Set $\sigma_{\rm in}^{(1)} = \rho_{\rm in}$, $\sigma_{\rm out}^{(1)} = \rho_{\rm out}$, and ${\bf S}^{(1)} = {\bf S}$. Until convergence, do:

1. Compute

$$\mathbf{N}^{(\tau)} = \mathbf{Diag}(\mathbf{a}^{(\tau)})(\mathbf{S}^{(\tau)} + \epsilon)\mathbf{Diag}(\mathbf{b}^{(\tau)}), \tag{20}$$

with proportional iterative fitting, such that $\mathbf{N}^{(\tau)}\mathbf{e}_n = \boldsymbol{\sigma}_{\text{in}}^{(\tau)} + \epsilon$ and $(\mathbf{N}^{(\tau)})^{\top}\mathbf{e}_n = \boldsymbol{\sigma}_{\text{out}}^{(\tau)} + \epsilon$.

2. Compute the associated shortest-path flow matrix $\mathbf{X}^{(\tau)}$ with

$$\mathbf{vec}(\mathbf{X}^{(\tau)}) = \mathbf{P}^{\top}\mathbf{vec}(\mathbf{N}^{(\tau)}). \tag{21}$$

3. Compute the vectors of between-lines flow entering and leaving each nodes, i.e.

$$\mathbf{x}_{\mathrm{R in}}^{(\tau)} = (\mathbf{X}_{\mathrm{R}}^{(\tau)})^{\top} \mathbf{e}_n \tag{22}$$

$$\mathbf{x}_{\mathrm{B,out}}^{(\tau)} = \mathbf{X}_{\mathrm{B}}^{(\tau)} \mathbf{e}_n \tag{23}$$

4. Compute the vectors of between-line allowed flow entering and leaving each nodes, written resp. $\tilde{\mathbf{x}}_{\mathrm{B,in}}^{(\tau)} = (\tilde{x}_i^{\mathrm{B,in},(\tau)})$ and $\tilde{\mathbf{x}}_{\mathrm{B,out}}^{(\tau)} = (\tilde{x}_i^{\mathrm{B,out},(\tau)})$, with

$$\tilde{x}_i^{\mathrm{B,in},(\tau)} = \rho_i^{\mathrm{in}} \phi \left(\frac{x_i^{\mathrm{B,in},(\tau)}}{\rho_i^{\mathrm{in}}} \right), \tag{24}$$

$$\tilde{x}_{i}^{\mathrm{B,out},(\tau)} = \rho_{i}^{\mathrm{out}} \phi \left(\frac{x_{i}^{\mathrm{B,out},(\tau)}}{\rho_{i}^{\mathrm{out}}} \right),$$
 (25)

where $\phi(x)$ is a positive increasing function which should be the identity when $x \to 0$ and with $\phi(x) \le 1$, $\forall x$. For example

- (a) $\phi(x) = \min(x, 1)$,
- (b) $\phi(x) = \min(x, 1 \exp(-\lambda x))$, with $\lambda > 0$ a parameter.
- 5. Compute the between-lines allowed flow on edges, noted $\widetilde{\mathbf{X}}_{\mathrm{B}}^{(\tau)}=(\widetilde{x}_{ij}^{\mathrm{B},(\tau)})$

$$\widetilde{x}_{ij}^{\mathrm{B},(\tau)} = \begin{cases} \min\left(\frac{\widetilde{x}_{i}^{\mathrm{B,out},(\tau)}}{x_{i}^{\mathrm{B,out},(\tau)}}, \frac{\widetilde{x}_{j}^{\mathrm{B,in},(\tau)}}{x_{j}^{\mathrm{B,in},(\tau)}}\right) x_{ij}^{\mathrm{B},(\tau)} & \text{if } x_{ij}^{\mathrm{B},(\tau)} > 0\\ 0 & \text{otherwise} \end{cases}$$
(26)

6. Update the flow entering and leaving the network with

$$\sigma_{\text{in}}^{(\tau+1)} = \rho_{\text{in}} - (\widetilde{\mathbf{X}}_{\text{B}}^{(\tau)})^{\top} \mathbf{e}_{n}, \qquad (27)$$

$$\sigma_{\text{out}}^{(\tau+1)} = \rho_{\text{out}} - \widetilde{\mathbf{X}}_{\text{B}}^{(\tau)} \mathbf{e}_{n}. \qquad (28)$$

$$\sigma_{\text{out}}^{(\tau+1)} = \rho_{\text{out}} - \widetilde{\mathbf{X}}_{\mathbf{B}}^{(\tau)} \mathbf{e}_{n}. \tag{28}$$

7. Compute the reducing factor matrix $\mathbf{R}^{(\tau)} = (r_{st}^{(\tau)})$ with

$$r_{st}^{(\tau)} = 1 - \max_{ij} \left(P_{st}(i,j) \frac{x_{ij}^{B,(\tau)} - \tilde{x}_{ij}^{B,(\tau)}}{x_{ij}^{B,(\tau)} + \epsilon} \right).$$
 (29)

8. Update the origin-destination affinity matrix with

$$\mathbf{S}^{(\tau+1)} = \mathbf{S}^{(\tau)} \odot \mathbf{R}^{(\tau)},\tag{30}$$

where \odot designates the Hadamard (component-wise) product of matrices.