ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 16 luglio 2012

Esercizio A

$R_1 = 3.3 \text{ k}\Omega$	$R_9 = 20 \text{ k}\Omega$
$R_2 = 3 k \Omega$	$R_{10} = 100 \ \Omega$
$R_3 = 2 k\Omega$	$C_1 = 10 \mu F$
$R_5 = 7 \text{ k}\Omega$	$C_2=1 \mu F$
$R_6 = 4.5 \text{ k}\Omega$	$C_3=1 \text{ nF}$
$R_7 = 1.9 \text{ k}\Omega$	$V_Z = 4.7 \text{ V}$
$R_8 = 100 \Omega$	$V_{CC} = 18 \text{ V}$

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$. Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = 1$ V. D è un diodo zener ideale con Vz = 4.7 V.

Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_4 in modo che, in condizioni di riposo, la tensione di drain di Q_2 sia 9 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_4 = 2 \text{ k}\Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -6.297$)
- 3) (Solo per 12 CFU) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 7.579$ Hz; $f_{p1} = 9.009$ Hz; $f_{z2} = 83.766$ Hz; $f_{p2} = 349.024$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 6496.12$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (\overline{A+B})(\overline{A}C + \overline{D}B) + (\overline{C+D})(AB\overline{C} + \overline{D}B + \overline{AB})$$

con in totale, non più di 12 transistori e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i 12 transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 300 \Omega$	$R_5 = 900 \Omega$
$R_2 = 500 \Omega$	$C = 2 \mu F$
$R_3 = 4 \text{ k}\Omega$	$V_{CC} = 5 \text{ V}$
$R_4 = 100 \Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 5V$, Q_1 ha una $R_{on} = 0$ e $V_T = -1$ V. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 282.54 Hz)

$$(V_{68}-V_{7}) = + V_{R}^{ID} = 2V = 3V_{68} = 2+1 = 3V_{68}^{I} = 2V_{68}^{I} = 2V_$$

$$\overline{LRS} = \frac{V_0}{RS} = \frac{2}{2 \times 10^3} = 1 \text{ mA} = \overline{L}_{R4}$$

$$R_4 = \frac{V_{C1} - V_6}{T_{RC}} = \frac{3 - 7}{10^{-3}} = \frac{2 \, \text{KB}}{10^{-3}}$$

$$\frac{1}{4000} = \frac{1}{2\pi c_2} R_{12} = \frac{1}{343.024} + 8 = \frac{1}{2\pi c_2} R_{12} = \frac{1}{2\pi$$

$$V_{+}(A \cdot B)(A \cdot C \cdot D \cdot B) + (C \cdot D)(A \cdot B \cdot C \cdot D \cdot A \cdot B \cdot B) = A \cdot B \cdot C \cdot A \cdot B \cdot B \cdot C \cdot B \cdot C \cdot A \cdot B \cdot B \cdot C \cdot B \cdot C \cdot A \cdot B \cdot B \cdot C \cdot B \cdot C$$