Lista 3: Análise II

A. Ramos *

11 de maio de 2017

Resumo

Lista em constante atualização.

- 1. Convergência pontual e uniforme
- 2. Série de potências

Notação: $\mathbb{N} := \{1, 2, \dots, \}$. A convergência uniforme é denotado como $f_n \xrightarrow{u} f$.

1 Convergência uniforme e séries de potências.

- 1. Enuncie e demonstre em detalhe, com as hipoteses suficientes, que:
 - (a) Uma sequencia de funções converge uniformemente se, e somente se a sequencia é de Cauchy
 - (b) O limite uniforme de funções contínua é contínua.
 - (c) O limite uniforme de funções integráveis é integrável e a integral do limite é o limite das integráveis
 - (d) O limite uniforme de funções deriváveis é derivável e a derivada do limite é o limite das derivadas.
 - (e) Mostre o Teorema de Dini.
- 2. Veja se as seguintes séries de funções convergem uniformemente no conjunto X.

(a)
$$\sum_{n \in \mathbb{N}} \frac{x}{x^2 + n^2}$$
, $X = \mathbb{R}$; $\sum_{n \in \mathbb{N}} \frac{\sin(nx)}{x^2 + n^{3/2}}$, $X = \mathbb{R}$; $\sum_{n \in \mathbb{N}} \frac{\cos(nx^3)}{n^3}$, $X = \mathbb{R}$

(b)
$$\sum_{n\in\mathbb{N}} \frac{x}{(1+nx^2)n^{\varepsilon}}$$
, $X=[-a,a]$, $a>0$, $\varepsilon>0$; $\sum_{n\in\mathbb{N}} \frac{1}{n^x}$, $X=[a,\infty)$, $a>1$

(c)
$$\sum_{n\in\mathbb{N}} (-1)^n \frac{\cos(nx)}{(2n^5+3)^{1/7}}$$
, $X = [\varepsilon, 2\pi - \varepsilon], \varepsilon > 0$ e $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{x+n}$, $X = [0, \infty)$

(d)
$$\sum_{n \in \mathbb{N}} x^{2^n + \sqrt{n}}$$
, $X = (0, 1)$ e $\sum_{n \in \mathbb{N}} \sqrt{n} \sin(x/n^2)$, $X = [-a, a]$

- 3. (Regras de cálculo para convergência uniforme) Sejam $f_n, g_n : X \to \mathbb{R}$ sequências de funções com $f_n \xrightarrow{u} f$ e $g_n \xrightarrow{u} g$. Então:
 - (a) Mostre que $f_n + g_n \xrightarrow{u} f + g$.
 - (b) Para qualquer sequência convergente de numeros reais $a_n \in \mathbb{R}$ com $a_n \to a$ tem-se $a_n f_n \xrightarrow{u} a f$.
 - (c) Mostre que $f_ng_n \to fg$ pontualmente. De um exemplo onde a convergência não é uniforme.
 - (d) Se f_n e g_n são uniformente limitadas (isto é, existe K > 0 tal que $\sup\{|f_n(x)| : x \in X\} \le K, n \in \mathbb{N}$. Similarmente para a sequência g_n). Então $f_n g_n \stackrel{u}{\to} fg$.
 - (e) Se existe K > 0 tal que $\inf\{|f_n(x)| : x \in X\} \ge K, n \in \mathbb{N}$. Então, $1/f_n \xrightarrow{u} 1/f$.
 - (f) Prove que $\phi \circ f_n \xrightarrow{u} \phi \circ f$, se $\phi : \mathbb{R} \to \mathbb{R}$ é uniformente contínua.
- 4. Considere $f_n(x) := (1 + \frac{x}{n})^n, x \in \mathbb{R}, n \in \mathbb{N}$.

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

- (a) Prove que $f_n \to \exp(x)$ pontualmente e a convergência uniforme em cada intervalo $[a, b] \in mathbb{R}$.
- (b) Mostre que $(\frac{n^2 + (n!)^{1/n}}{n^2})^n \to \exp(1/e)$ e $(\frac{n^{n+1} + (n+1)^n}{n^{n+1}})^n \to \exp(e)$, onde $e = \exp(1)$.
- 5. Sejam $f_n, f: X \to \mathbb{R}$ funções. Prove que $f_n \xrightarrow{u} f$ see $\sup\{|f_n(x) f(x)| : x \in X\} \to 0$ quando $n \to \infty$.
- 6. Seja $f_n : [a, b] \to \mathbb{R}$ uma sequencia de funções contínuas tal que $f_n \to f$ uniformente em $D \subset [a, b]$. Se D é denso, mostre que se f é uniformente contínua então $f_n \stackrel{u}{\to} f$ em [a, b].
- 7. Seja $f_n:[a,b]\to\mathbb{R}$ uma sequencia de funções uniformente Lipschitziana, isto é, existe K>0 tal que $|f_n(x)-f_n(y)|\leq K|x-y|, \, \forall x,y\in[a,b], \, n\in\mathbb{N}$. Mostre que se $f_n\to f$ então $f_n\xrightarrow{u}f$.
- 8. Seja $f_n:[a,b]\to\mathbb{R}$ uma sequencia de funções, tal que para toda sequencia $x_n\in[a,b]$ convergente tem-se que $f_n(x_n)\to 0$. Mostre que $f_n\stackrel{u}{\to} 0$.
- 9. Verfique as seguintes igualdades:

(a)
$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}; \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, x \in \mathbb{R}; \cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, x \in \mathbb{R};$$

(b)
$$\log(\frac{1+x}{1-x}) = 2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}, x \in (-1,1); \frac{1}{(1-x)^4} = \sum_{n=0}^{\infty} \frac{(n+1)(n+2)(n+3)}{6} x^n, x \in (-1,1)$$

- 10. Expanda as funções em série de potências ao redor do ponto x^* . Determine o raio de convergência da série obtida
 - (a) $f(x) = \frac{x-1}{x^2-4}$, $x^* \neq \pm 2$; $f(x) = \frac{x}{x-3}$, $x^* \neq 3$; $f(x) = \tan(x)$, $x^* \neq 0$.
- 11. Determine o intervalo de convergência de cada uma das séries de potências
 - (a) df
- 12. (Critério de Raabe) Seja

$$L := \lim_{n \to \infty} n(1 - \frac{a_{n+1}}{a_n}).$$

- (a) Se L > 1 ou $L = \infty$, então a série $\sum_{n=1}^{\infty} a_n$ converge.
- (b) Se $L \in [0,1)$, a série $\sum_{n=1}^{\infty} a_n$ diverge.
- 13. Mostre que se $\sum_{n=1}^{\infty} |a_n| < \infty$, então as séries $\sum_{n=1}^{\infty} a_n \cos(nx)$ e $\sum_{n=1}^{\infty} a_n \sin(nx)$ convergem uniformemente em \mathbb{R} .
- 14. Prove que para todo $x \in (-1,1]$, tem-se que

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n.$$

Em particular, $\log(2) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

15. Seja $g : \mathbb{R} \to \mathbb{R}$ uma função periódica de periodo 2, tal que g(x) = x, $x \in [0,1]$ e g(x) = 2 - x, $x \in [1,2]$. Defina a série formal

$$f(x) := \sum_{n=0}^{\infty} (\frac{3}{4})^n g(4^n x).$$

Mostre que f está bem definido que é uma função contínua em $\mathbb R$ mas não é derivável em nenhum ponto.

- 16. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função definida como $f(x) = \exp(-1/x)$, x > 0 e f(x) = 0, $x \ge 0$. Mostre que f é de clase C^{∞} em \mathbb{R} mas não é analítica em x = 0.
- 17. Determine o intervalo de convergência de cada uma das séries de potências:

(a)
$$\sum_{n=1}^{\infty} \frac{n}{4^n} x^n$$
; $\sum_{n=1}^{\infty} \frac{(3n)!}{(2n)!} x^n$; $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$.

(b)
$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{a^n + b^n}, b > a > 0$$
; $\sum_{n=1}^{\infty} (\frac{3n+2}{5n+7})^n x^n$; $\sum_{n=1}^{\infty} (-1)^n \sin(\frac{1}{n}) x^n$.

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^{1/n}}$$
, ; $\sum_{n=1}^{\infty} \frac{2^n \log(n)}{3^n n^{1/n}} x^n$; $\sum_{n=1}^{\infty} \frac{(-2)^n n!}{e^{n^2}} x^n$.

18. Assuma que $\sum_{n=0}^{\infty} a_n x^n$ converge para x=-4 e diverge para x=6. Quais das seguintes séries divergem ou convergem?

(a)
$$\sum_{n=0}^{\infty} a_n$$
; (b) $\sum_{n=0}^{\infty} (-3)^n a_n$ e (c) $\sum_{n=0}^{\infty} (-1)^n a_n 9^n$.

19. Usando a derivação e integração termo a termo, calcule as seguintes somas de séries de potências.

$$(a) \sum_{n=1}^{\infty} \frac{x^n}{n}; \quad (b) \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}; \quad (c) \sum_{n=0}^{\infty} n x^{2n-1}; \quad (d) \sum_{n=1}^{\infty} n^3 x^n; \quad (e) \sum_{n=0}^{\infty} \frac{x^{4n}}{4n}.$$

20. Desenvolva as sequiente funções em séries de potências ao redor do origem (série de Maclaurin). Indique os intervalos de convergência.

$$(a)f(x) = x^2 e^x;$$
 $(b)f(x) = \sin(x^2);$ $(c)f(x) = \sin^2(x);$ $(d)f(x) = \frac{\exp(x^2) - 1}{x};$ $(e)f(x) = \int_0^x \frac{\sin t}{t} dt.$

21. Considere a função

$$f(x) := \sum_{n=1}^{\infty} \exp(-2^{n/2}) \cos(2^n x).$$

Mostre que f é de clase $C^{\infty}(\mathbb{R})$ mas não é analítica em nenhum ponto.

22. Faça os primeiros 42 problemas do capítulo X do livro texto.