

Universidad Tecnológica Nacional – Facultad Regional Villa María

Ingeniería en Sistemas de Información

Sintaxis y semántica de los lenguajes

Trabajo Práctico N°3

"AFN-AFD"

Docentes:

Ing. Rinaldi, Mario
Ing. Palombarini, Jorge

Grupo K

Integrantes:

Alvarez, Darío Joaquín - Bazán, Matías - Berardo, Alan - Scienza, Gaspar

Año 2020

1) Autómata M1:

a) Estado inicial: q1

b) Estado de aceptación: {q2}

c) Secuencia de estados para la cadena "aabb":

$$q1 \rightarrow q2 \rightarrow q3 \rightarrow q1 \rightarrow q1$$

d) Definición formal de AFD:

Estados: {q1, q2, q3}

Alfabeto: {a, b}

• Función transición:

	А	В
Q1	Q2	Q1
Q2	Q3	Q3
Q3	Q2	Q1

Estado inicial: q1

• Estado final: {q2}

2)

3)

a-

b-

c-

d-

f-

g-

h-

i-

j-

4)

a- Descripción formal:

• Estados: {q1, q2, q3, q4}

Alfabeto: {0, 1}

• Función transición:

	0	1	ε
Q1	{q1}	{q1, q2}	{}
Q2	{q3}	{}	{q3}
Q3	{}	{q4}	{}
Q4	{q4}	{q4}	{}

• Estado inicial: q1

• Estado final: {q4}

b- L = {w/w contenga el substring 101 o 11}

- a- El autómata es no determinístico.
- b- L = {w/w comienza con n cantidad de "a" y termina con "b" o comienza con una "a" y termina con n cantidad de b, o contiene solo una "b" al inicio}

Autómata B

Autómata A

- a- El autómata es no determinístico.
- b- L = {w/w contiene el substring "aa" o "bb"}

Autómata C

- a- El autómata es no determinístico.
- b- L = {w/w contiene solo una "a" o contiene n veces el substring "ab"}

7)

a-

Estado inicial: q1

- Estado final: {q5}
- Alfabeto: {a, b}
- b- Ejemplos de cadenas reconocidas por el automata:
 - "abaa"
 - "abbbaa"
 - "ababaa"

El lenguaje que reconoce es:

L= {w/w comienza con el substring "ab" y termina con el substring "baa"}

8)

a-

9)

a-

b-

10)

A continuación, se presentan dos autómatas A1 y A2 que reconocen los lenguajes L1 y L2 respectivamente; los lenguajes están definidos como:

L1= {w/w contiene un número par de 0}

L2= {w/w contiene un número impar de 1}

La cadena vacía no tiene un número impar de 1s

a- L1 U L2: {w/w contiene un número par de 0 o un número impar de 1}

b- L1 \cap L2: {w/w contiene una cantidad par de 0 y una cantidad impar de 1}

c- L1 – L2: {w/w contiene una cantidad par de 0 pero no una cantidad impar de 1}

Cuál es la operación que se realiza?
Cuál es la metodología que se emplea?

