ISEN LILLE - AP3

PHYSIQUE TD 2: MÉCANIQUE

EXERCICE 1: FREINAGE D'UN TRAMWAY (MOUVEMENT RECTILIGNE VARIÉ)

Une fois ses passagers installés, un tramway quitte l'arrêt en direction du centre-ville. Le tramway accélère tout d'abord avec une accélération $a_1 = 1,3\,\mathrm{m.s}^{-2}$ pendant $10\,\mathrm{s}$ jusqu'à atteindre sa vitesse de déplacement v_0 . Il se déplace alors avec cette vitesse constante v_0 pendant une minute lorsque le conducteur aperçoit devant lui un obstacle sur les voies situé à environ $50\,\mathrm{m}$.

- 1. Quelle est la distance parcourue par le tramway au moment où le conducteur aperçoit l'obstacle?
- 2. Sachant que le freinage d'urgence correspond à une décélération $a_2 = 3 \,\mathrm{m.s}^{-2}$ et que le temps de réaction du conducteur est de 2s , le tramway pourra-t-il s'arrêter avant de heurter l'obstacle?
- 3. Tracer sur un graphique la vitesse en fonction du temps.

Réponses: 1. 845 m 2. non, il manque 4,2 m

EXERCICE 2: VITESSE ET ACCÉLÉRATION D'UN CD.

Une platine CD fait deux tours avant d'atteindre la vitesse angulaire de $300 \, \mathrm{trs.\,min^{-1}}$ (vitesse de fonctionnement normal). On admet que l'accélération angulaire $\frac{d^2\theta}{dt^2}$ est constante pendant la phase accélératrice (c'est à dire pendant les deux premiers tours).

- 1. Quelle est la durée de la phase accélératrice ? Quelle est la valeur de $\frac{d^2\theta}{dt^2}$?
- 2. Déterminer les composantes tangentielle et radiale de l'accélération d'un point situe à 4 cm de l'axe de rotation de la platine quand celle-ci a effectué un tour après le démarrage.
- 3. Que devient l'accélération de ce même point quand la platine a atteint son régime normal de rotation ?
- 4. Donner la vitesse et l'accélération d'un point situe sur le bord d'un CD-ROM lu par un lecteur $40 \times$ sachant qu'un lecteur CD audio fonctionne à $150 \, \mathrm{trs. \, min}^{-1}$ et qu'un CD fait $12 \, \mathrm{cm}$ de diamètre.

EXERCICE 3: PROBLÈME DU NAGEUR (COMPOSITION DES VITESSES)

Un nageur parti de A , se déplace à une vitesse constante V par rapport à l'eau d'une rivière de largeur d dont les eaux sont animées d'un courant de vitesse constante v (v < V).

- 1. Le nageur effectue les trajets aller et retour : AA_1A en un temps t_1 et AA_2A en un temps t_2 .
 - 1.a. Exprimer le rapport $\begin{pmatrix} t_2 \\ t_1 \end{pmatrix}$ en fonction du rapport des vitesses $\begin{pmatrix} v \\ V \end{pmatrix}$.
- 1.b. Sachant que $t_2=2t_1=7\,\mathrm{mn}$, déterminer la direction de la vitesse V du nageur qui se déplace à contre-courant pour atteindre A, et le temps t_0 qu'aurait mis le nageur pour parcourir l'aller-retour (2d) sur un lac (v=0).
- 2. Le nageur quitte le bord A, au moment où il se trouve à la distance d de l'avant du bateau à moteur de largeur l qui se déplace à la vitesse constante u par rapport à l'eau, en suivant le bord de la rivière, dans le sens de A vers A_2 .
- 2.a. Déterminer la direction et la grandeur de la vitesse absolue minimale du nageur pour ne pas être heurté par le bateau.
 - 2.b. Application numérique : $l=20\,\mathrm{m}$, $d=98\,\mathrm{m}$, $u=19.8\,\mathrm{km}$. h^{-1} et la vitesse du courant est $v=1.8\,\mathrm{km}$. h^{-1} .
- 2.c. Déterminer alors la direction et la grandeur de la vitesse $\,V\,$ du nageur par rapport à l'eau. On rappelle les formules :

$$\cos\theta = \frac{1}{\sqrt{1 + \tan^2\theta}}$$

EXERCICE 4: ROUE DE VÉLO

On étudie la roue avant d'un vélo (de centre G et de rayon a) qui se déplace sur un sol horizontal à la vitesse constante $v_0 = 20 \,\mathrm{km} \cdot \mathrm{h}^{-1}$ par rapport au sol. On repère un point M de la roue (de centre G et de rayon $a = 350 \,\mathrm{mm}$).

- 1. Déterminer l'expression de la vitesse du point M par rapport au sol.
- 2. Pour que la roue ne dérape pas, il faut que la vitesse de tout point M de la roue soit nulle lorsqu'il passe au niveau du sol. Donner la relation qui existe dans ce cas entre v_0 et θ .