SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

·School of Electronics & Communication Engineering B. Tech. ECE (3rd Sem) (Course Code: ECL DC 203)

B.Tech. ECE Backlog (Course Code: ECL 2040)

Major - Examination (Odd) 2024-25,

Date: 19-12-2024

Entry No:

Total No. of Pages: [04]

Date: 19-12-2024

Total No. of Questions: [09]

Course Title: Electromagnetic Field Theory

Time Allowed: 3.0 Hours

Max Marks: [40]

Instructions / NOTE

- Attempt ANY FIVE (By selecting at least ONE QUESTION from EACH i. SECTION and Section-A is COMPULSORY).
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- iii. Assume an appropriate data / information, wherever necessary / missing.
- Use of IS Code (Mention Number) is permissible in examination. ív.

		Section - A (DO ANY EIGHT)	
Q1.	(i)	A lossy dielectric has an intrinsic impedance of 45 $\angle 30^{\circ}H = 15e^{-10x}\cos(\omega t - 0.5x)a_y$ A/m, then, electric field E will be kV/m.	01
	(ii)	Given a vector field $D = 2r\sin \phi a_r - \frac{12}{r}\sin\theta\cos\phi a_\theta + r^2a_\phi$. Then the tangential component of D to the spherical surface $r = 10$ at $P = (10, 150^\circ, 330^\circ)$ will be	01
ninga salah melapakan hida at melapakan kelaban salah sa	(iii)	If a non-ideal inductive load is connected to a lossless transmission line, then this load can be located in half of the Y-Smith Chart.	01
ng diakaganan sistem yan distrib	(iv)	For a perfectly match TL, Z _L will be located at in the YZ smith chart.	01
oolee Samoon (PA)	(v)	The input admittance of an open-circuited is $j = 0.25$ Ω^{-1} and that of short-circuited is $-j = 0.04$ Ω^{-1} , respectively. The characteristic impedance of the transmission line would be	01
c - 4i	(vi)	If $E = 10\cos(10^6t + 10z)\widehat{a_x} - 10\sin(10^6t +$	01

_	<u> </u>	$10z)\widehat{a_{\nu}}$, Then the EM wave is	
		polarized.	
	(vii)		01
	(viii)	If 50 Ω transmission has a standing wave ratio of 2.92 dB. The magnitude of maximum input impedance on the transmission line would be	01
	(ix)	If two media are separated by the z=0, where medium-1 has $\mu_r = 5$, $\varepsilon_r = 2$ and medium-2 has $\mu_r = 8$, $\varepsilon_r = 4$, the Brewester angle for parallel polarized wave for this combination of media would be	01
	(x)	The input impedance and standing wave ratio (s) of short circuited transmission line for $l = \frac{\lambda}{4}$ will be and , respectively.	01
		Section - B (DO ANY ONE)	!
Q2. (a) Calculate the circulation of $A = r^2 cos\theta a_r + rsin \emptyset a_\theta + 5$ for the closed loop abca shown in figure given below			4+4
	Ca ch	iven that $D = 2(z^2)\rho\cos^2\varphi a_z + \rho^2 a_\emptyset$ C/m2. alculate the charge density at $(1,-135^0,3)$ and the total arge enclosed by the closed body define by $2 \le \rho \le 4$, $-125 \le 2 \le 2$.	,
Q3.	(a) A	plane wave propagating through a medium with $= 8$, $\mu_r = 2$ has $E = 2.8e^{-z/6} \sin(10^6 t - 10^6 t)$	4+4

		T
	$(\beta z) a_x V/m$. Determine β , loss tangent, Intrinsic impedance, Wave velocity and H field.	,
	(b) The electric field in a certain region is: $E =$	
	$(z+1)\sin(\emptyset)a_0 + (z+1)\rho\cos(\emptyset)a_0 + \rho\sin(\emptyset)a_z$	
	V/m. Find the work done in moving a charge from	
	$A(4,30^{0},0)$ to $B(4,30^{0},-2)$	N. Contraction
	Section = C (DO ANY ONE)	4+4
04	(a) In a certain conducting medium, $H = y^2 z a_x + \frac{1}{2} a_x + \frac{1}$	4 + 4
Q4.	$2(x+1)yza_{x}-(x+1)z^{2}a_{z}$ A/m. Determine the	
	current density at (1,0-3) and the current passing	
	$x_1 = x_2 + x_1 = 1$ $0 < x < 1, 0 \le z \le 1$	
	(b) Given the potential $V = \frac{20}{r^3} \cos\theta \cdot \sin\emptyset$ Find the electric	
	α density at $(2, \pi/2, 0)$	4 + 4
Q5.	 (a) Evaluate both sides of the Stokes theorem for the field F = 3y²zax + 6x²yay + 9xz²az and the rectangular path around the edge of the region 0 < x < 2, -2 < y < 1, z = 1. Assume dS = dSaz. (b) A parallel polarized wave is incident with an angle 30° to the normal in medium -1 with η1 = 2 + j3 Ω and the 	• • •
	with $\eta_2 = 4 + JS \Omega 2$. This the transmission reflection coefficient (r) and the transmission	
	coefficient (τ).	
	Section – D (DO ANY ONE)	4 + 4
Q6.	(a) A 75 Ω lossless transmission line is terminated by a load of $40 - j35 \Omega$. Determine the reflection load of $40 - j35 \Omega$.	
	just before the load, then find the impedants (Solve	4
	quarter (CHART)	
i	quarter wave transformed (b) ANALYTICALLY, DO NOT USE SMITH CHART) ANALYTICALLY, DO NOT USE SMITH CHART) (b) Define equation of continuity and then derive the	

		4 . 4
Q7. (a) Th	te input admittance of a 75 Ω lossless transmission	4+4
lir	ne of length 450 m is $0.0056 + j0.01133 \Omega^{-1}$. The line	
op	berated at 30 MHz with wave velocity of 1.5×10^8 /sec. Find the load impedance (Z_L) connected to this	
lir	ne and also find the reflection coefficient (r), standing	7
	ave ratio (s) and 2^{nd} location of V_{max} from the load	
	d. (Using SMITH CHART ONLY) Do necessary	,
	lculations on answer sheet.	
	the transmission line considered in O7 (a) Find the	
(b) FO	r the transmission line considered in Q7 (a), Find the location (d _{stub})of an open-circuited stub inserted	
1 fm	om the load in meters, length of the inserted open-	
oi:	reuited stub (l_{stub}) in meters, input impedance	U
(7	$C_{\text{in stub}}$) of the stub inserted and the phase constant β	
in	radians per meter. (Using SMITH CHART ONLY)	,
De	o necessary calculations on answer sheet.	
	Section – E (DO ANY ONE)	
Q8. (a) De	rive the relation for input impedance and standing	4 + 4
W	ave ratio of a lossy transmission line	
(b) De	erive the relation for energy density in electrostatic	
fields.		
Q9. (a) Sta	to and daring the relation of Pounting's theorem.	3 + 4
$O_{\mathcal{I}}$. (a) Su	ate and derive the relation of Toyliting 5 theorem.	
(h) In	ate and derive the relation of Poynting's theorem. a nonmagnetic medium $E = 8\sin(2\pi \times 10^7 t -$	
(b) In	a nonmagnetic medium $E = 8\sin(2\pi \times 10^7 t - 6x)a_n$ V/m. Find ε_r and η for this medium. Find H	
(b) In	a nonmagnetic medium $E = 8\sin(2\pi \times 10^7 t - 6x)a_z$ V/m. Find ε_r and η for this medium. Find H eld and then calculate the total power crossing 100	

Course Outcomes

After Successful Completion of this Course, students shall be able to;

- 1) Apply vector calculus to static electric-magnetic fields in different engineering situations.
- 2) Analyze Maxwell's equation in different forms (differential and integral) and apply them to diverse engineering problems.
 - Examine the phenomena of wave propagation in different media and its interfaces and in applications of microwave engineering.
 - 4) Solve Electro Static and Magnetic to Static circuits using Basic relations.

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering

B. Tech. Major Examination, 2022-23

	, , ,	LA
Entry No: 0 0 0		
Entry No: 2 1 B E	7 1 0	_
Data: 12 a	0 1 2	17
Date: 12-05-2023		
Date: 12-05-2023		

Total Number of Pages: [01]

Total Number of Sections: [03]

Course Title: Electromagnetic Field Theory

Course Code: ECL 2040

Time Allowed: 03 Hours

Max Marks: [50]

Instructions / NOTE

- i. Attempt All Questions. Scientific Calculator and copy of smith chart is allowed. 11.
- Support your answer with neat freehand sketches/diagrams, wherever appropriate. 111
- Assume any appropriate data / information, wherever necessary / missing.

SECTION A (1X10)

- 1. A solenoidal field hasdivergence.
- 2. Gradient of any scalar function is always a.....function.
- 3. Curl of the gradient of any scalar function is always.......
- 4. The potential at any point inside a hollow conductor is......
- 5. Maxwell's third equation in integral form is..........
- 6. In magnetic boundary conditions, the tangential component of H is always...........
- 7. The propagation constant is represented as..... for a conducting medium.
- 8. The reciprocal of attenuation constant represents......
- 9. For free space, the value of intrinsic impedance is.........
- 10. For a lossless transmission line, the value of attenuation constant is always.......

SECTION B

- Q1. If V=x-y+xy+z, find electric field at (1,2,4) and electrostatic energy stored in a cube of side 2m centered at the origin.
- Q2. Derive an expression to show conservative nature of magnetic flux density and hence deduce Maxwell's fourth equation.
- Q3. Calculate the circulation of vector field, $\vec{F} = r^2 Cos\phi \vec{a_r} + zSin\phi \vec{a_z}$ around the path L defined

by $0 \le r \le 3$, $0 \le \Phi \le 45^0$ and z=0 as shown in figure. (04)

Q4. Deduce an expression for input impedance of a transmission line. How input impedance of a shorted line varies with characteristic impedance? Q5. State and explain Poynting's theorem. Why is it important to study the Poynting theorem? (04)

SECTION C

Q1. Derive suitable equations governing propagation of electromagnetic waves in lossless as well as lossy medium. Define skin depth and hence show values of attenuation coefficient, phase constant and skin depth in a lossy medium.

(10)

- Ω2. A 100 + j150- Ω load is connected to a 75-Ω lossless line. Find:
- (x) Reflection coefficient
- (b) Standing wave ratio
- (c) The load admittance YL
- (d) Zin at 0.6λ from the load
- (9) The locations of Vmax and Vmin with respect to the load if the line is 0.5λ long
- (A) Zin at the generator end.

Use a Smith chart to evaluate the problem and then verify your answers.

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech. Mid Term Examination, 2022-23

Entry No: Total Number of Pages: [01]
Date: 21-02-2423
Total Number of Questions: [05]

Course Title: Electromagnetic Field Theory Course Code: ECL 2040

Time Allowed: 1.5 Hours

Max Marks: [20]

Instructions / NOTE

Attempt All Questions. Scientific Calculator is allowed in this paper.

Support your 60 swer with neat freehand sketches/diagrams, wherever appropriate

III. Assume any appropriate data / information, wherever necessary / missing.

iv. All answers should be brief and to the point.

Q 1.	Express $\cot B = \frac{10}{r} a_r + r \cos \theta a_{\theta} + a_{\phi}$ in Cartesian and cylindrical coordinates Find B (-3, 4, 0) and B (5, π /2, -2).	[03]
(0.2):	Given that $\vec{F} = x^2 a - xza_y - y^2 a_z$, calculate the circulation of F around the closed path shown in fig. Also verify the results using stoke's theorem.	[05]
0/3	The temps ature in an auditorium is given by $T \cdot x^2 + y^2 - z$. A mosquito located $\Re\{1, 1, 2\}$ in the auditorium desires to fly in such a direction that it will get warm as soon as possible. In what direction must it fly?	[03]
0/4.	Determine the flux of $\overline{D} = r^2 \cos^2 \phi a_i + z \sin \phi a_i$ over the closed surface of the cylinder $C \le z \le 1$, $r \ge 4$. Verify the results using Divergence theorem	[05]
Q 5	Planes $\kappa = 2$ and $\kappa = 3$ respectively, earry charges 10 nC/m2 and 15 nC m2. If the line $\kappa = 0$, $z = 1$ carries charge $fO\pi$ nC/m, calculate E at $(1, 1, -1)$ due to the three charge distributions	[04]

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA School of Electronics & Communication Engineering B. Tech. Minor-II Examination, 2022-23

Entry No: 2 1 B E C 1 2 7

Total Number of Pages: [01]

Total Number of Questions: [05]

Date: 27-03-2023 Total Nui
Course Title: Electromagnetic Field Theory

Course Code: ECL 2040

Time Allowed: 1.5 Hours

Max Marks: [20]

Instructions / NOTE

i. Attempt All Questions. Scientific Calculator is allowed in this paper.

ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.

iii. Assume any appropriate data / information, wherever necessary / missing.

iv. All answers should be brief and to the point.

Q.1.	Derive suitable expression for electric field intensity E due to infinite line charge and hence find electric field at P(6,8,5) due to uniform line charge, infinite in extent with λ =20nc/m and lies along the z-axis.	[05]
Q.2.	A point charge of 6nC is located at origin in free space, find potential of point P if P is located at (0.2,-0.4,0.4) and i) V=0 at infinity ii) V=0 at (1,0,0) iii) V=20v at (-0.5,1,-1)	[03]
Q.3.	a) Discuss the concept of potential difference for a closed path and hence deduce Maxwell's second equation showing conservative nature of electric field.b) Elaborate boundary conditions in electrostatics for conductor-free space	[02]
	interface.	
Q,A.	a)State Ampere's law and deduce associated Maxwell's equations.	[02]
	b) Apply Ampere's law to calculate magnetic field intensity due to an infinite sheet of current.	[02]
9.5.	Derive expression for energy density in magnetostatics.	[04]