Theorem. Let k be a field. Then the following statements are equivalent:

- (a) k is algebraically closed.
- (b) For any ideal \mathfrak{a} in $k[x_1,\ldots,x_n]$, $I(V(\mathfrak{a}))=\sqrt{\mathfrak{a}}$.
- (c) For every proper ideal \mathfrak{a} of $k[x_1,\ldots,x_n]$, $V(\mathfrak{a}) \neq \emptyset$.
- (d) The maximal ideals of $k[x_1, ..., x_n]$ are precisely of the form $(x_1 a_1, ..., x_n a_n)$, where $a_i \in k$.

PROOF. (a) \Rightarrow (b): This is the strong form of Hilbert Nullstellensatz.

- (b) \Rightarrow (c): Let \mathfrak{a} be a proper ideal of $k[x_1, \ldots, x_n]$. If $V(\mathfrak{a}) = \emptyset$, then $I(V(\mathfrak{a})) = I(\emptyset) = (1)$. But this is contradicts part (a) as $\sqrt{\mathfrak{a}}$ is a proper ideal as well.
- (c) \Rightarrow (d): Note that for any $a=(a_1,\ldots,a_n)\in\mathbb{A}^n$ the ideal $\mathfrak{m}_a=(x_1-a_1,\ldots,x_n-a_n)$ is a maximal ideal since it is the kernel of the evaluation homomorphism $e_a:k[x_1,\ldots,x_n]\to k$ defined as $e_a(f)=f(a)$.

To see why every maximal ideal of $k[x_1, \ldots, x_n]$ is of the form \mathfrak{m}_a for some $a \in \mathbb{A}^n$ let \mathfrak{m} be a maximal ideal of $k[x_1, \ldots, x_n]$. By part (c) we have $V(\mathfrak{m}) \neq \emptyset$. Let $a \in V(\mathfrak{m})$. Then we have $\{a\} \subset V(\mathfrak{m})$ and so $\mathfrak{m} \subset I(V(\mathfrak{m})) \subset I(a) = \mathfrak{m}_a$. Because \mathfrak{m} is maximal we deduce that $\mathfrak{m} = \mathfrak{m}_a$.

(d) \Rightarrow (a): Let $f \in k[x_1]$ be a nonconstant polynomial. Then f is contained in some maximal ideal \mathfrak{m}_a of $k[x_1,\ldots,x_n]$, where $a=(a_1,\ldots,a_n)\in\mathbb{A}^n$. Now note that $V(f)\supset V(\mathfrak{m}_a)=\{a\}$ and so $f(a_1)=0$. Hence, k is algebraically closed.