(b) Amendments to the Claims:

Please amend claim 1 as follows. A detailed listing of the claims follows which replaces all earlier listings:

 (Currently Amended) A method for making a piezoelectric element comprising a piezoelectric film formed on a substrate by a gas deposition technique, the method comprising the steps of:

ejecting ultra-fine particles of a piezoelectric material having a

perovskite structure from an ejecting device toward the substrate; and

applying a potential difference (a) between the ejecting device and the

substrate or (b) in the vicinity of the ejecting device and the substrate, to apply an electric field to the ultra-fine particles traveling to the substrate.

- (Original) A method for making a piezoelectric element according to Claim 1, wherein the electric field applied has an intensity in the range of 0.5 to 3 kV/mm.
- (Original) A method for making a piezoelectric element according to Claim 2, wherein the electric field applied has an intensity in the range of 1 to 2 kV/mm.
- (Original) A method for making a piezoelectric element according to
 Claim 1, wherein the substrate comprises a metal.

:	5. (Or	iginal) A met	hod for making	a piezoelectric	element according	to
Claim 1, wherein the substrate comprises a resin.						