Ensemble Learning and the Heritage Health Prize

Jonathan Stroud, Igii Enverga, Tiffany Silverstein, Brian Song, and Taylor Rogers

iCAMP 2012

University of California, Irvine

Advisors: Dr. Max Welling, Dr. Alexander Ihler, Sungjin Ahn, and Qiang Liu

December 4, 2013

Outline

- ► Heritage Health Prize
 - Data
 - Evaluation
- Our Approach
 - Motivation
 - Models
 - Blending
- Results

The Heritage Health Prize

Improve Healthcare, Win \$3,000,000.

- ► Goal: Identify patients who will be admitted to a hospital within the next year, using historical claims data.[1]
- ▶ 1,659 teams

Purpose

- Reduce cost of unnecessary hospital admissions per year
- Identify at-risk patients earlier

Evaluation

Root Mean Squared Logarithmic Error (RMSLE)

$$arepsilon = \sqrt{rac{1}{n}\sum_{i}^{n}[log(p_i+1)-log(a_i+1)]^2}$$

Threshold: $\varepsilon \leq .4$

Our Approach

- Motivation
- Individual Models
- Optimized Ensemble

Blending

Blend several predictors to create a more accurate predictor Motivated by solution to the Netflix Prize [3]

Prediction Models

- Preprocessing: Feature Selection
- K-Nearest Neighbors
- Random Forests
- Gradient Boosting Machines
- Logistic Regression
- Support Vector Regression
- Neural Networks

Feature Selection

- Used Market Makers method [2]
- ▶ Reduced each patient to vector of 139 features

Kitchen Sink

- Generate large number of features
- Need method for eliminating useless features
 - ▶ Compare distributions of feature in test and training sets
 - Basis pursuit

Basis Pursuit

- Find best generated features (reduces error the most)
- Add to feature set
- Repeat until enough useful features are found

K-Nearest Neighbors

- Weighted average of closest neighbors
- Very slow

Neighbors: k = 1000RMSLE: 0.475197 (996th place)

Decision Trees

Random Forests

RMSLE: 0.464918 (469th place)

Gradient Boosting Machines

Trees = 8000 Shrinkage = 0.002 Depth = 7 Minimum Observations = 100 RMSLE: 0.462998 (325th place)

Logistic Regression

Optimized with gradient descent

RMSLE: 0.466726 (580th place)

Support Vector Regression

 $\varepsilon = .02$ RMSLE: 0.467152 (629th place)

Neural Networks

Number of hidden neurons = 7 Number of cycles = 3000 RMSLE: 0.465705 (511th place)

Individual Predictors (Summary)

K-Nearest Neighbors	0.475197 (996th place)
► Support Vector Regression	0.467152 (629th place)
► Logistic Regression	0.466726 (580th place)
► Neural Networks	0.465705 (511th place)
► Random Forests	0.464918 (469th place)
► Gradient Boosting Machines	0.462998 (325th place)

The Blending Equation

X as a combination of predictors

$$\tilde{X} = Xw$$

Minimize cost function

$$C = \frac{1}{n} \sum_{i=1}^{N} (Y_i - \tilde{X}_i)^2$$

The Blending Equation

Optimizing predictors' weights

$$\begin{aligned} w_c &= (Y^TX)(X^TX)^{-1} \\ Y^TX &= \sum_i X_{ic}^2 + \sum_{i=1}^n (X_i - Y_i)^2 - \sum_{i=1}^n Y_i^2 \\ Y^TX &= \sum_i X_{ic}^2 + n\varepsilon_0^2 - n\varepsilon_c^2 \\ Y &= \text{Actual values (Unknown)} \\ X &= \text{Our predictions (Known)} \\ \varepsilon &= \text{Feedback (Known)} \end{aligned}$$

Blending Results

RMSLE: 0.461432 88th place on the final milestone leaderboard

Results(Summary)

► Blending	0.461432 (88th place)
Gradient Boosting Machines	0.462998 (325th place)
► Random Forests	0.464918 (469th place)
Neural Networks	0.465705 (511th place)
► Logistic Regression	0.466726 (580th place)
Support Vector Regression	0.467152 (629th place)
K-Nearest Neighbors	0.475197 (996th place)

Observations and Problems

- Fewer repeated classifiers worked better
- Overfitting based on feedback
- ► Test and Training data were inconsistent

Future Work

Optimizing Blending Equation with Regularization Constant

$$w_c = (Y^T X)(X^T X + \lambda I)^{-1}$$

- More predictors
- Adjust for changes over time

Questions

References

- Heritage provider network health prize, 2012. http://www.heritagehealthprize.com/c/hhp.
- David Vogel Phil Brierley and Randy Axelrod.

 Market makers milestone 1 description.

 September 2011.
- Andreas Töscher and Michael Jahrer.
 The bigchaos solution to the netflix grand prize.
 September 2009.