Descending, lifting or smoothing: Secrets of robust cost optimization

TOSHIBA
Leading Innovation >>>

université → BORDEAUX

Christopher Zach (christopher.m.zach@gmail.com)

Guillaume Bourmaud (guillaume.bourmaud@u-bordeaux.fr)

Toshiba Research Europe, Cambridge, UK University of Bordeaux, France

1) Introduction

Problem statement

Minimize a cost function involving robust data terms

$$\min_{\boldsymbol{\theta}} \ \Psi(\boldsymbol{\theta}) \qquad \text{with} \qquad \Psi(\boldsymbol{\theta}) = \sum_{i} \psi(\|\mathbf{f}_{i}(\boldsymbol{\theta})\|)$$

where $\mathbf{f}_i(\boldsymbol{\theta}) : \mathbb{R}^p \to \mathbb{R}^d$ and $\psi(\cdot)$ is a robust kernel function.

Challenges

- large number of local minima
- large number of parameters to estimate

How to obtain an efficient algorithm able to escape poor local minima?

	Direct methods	Lifting methods	Graduated optimization
Speed of convergence	++	+	-
Ability to escape			
local minima	-	+	++

2) Direct methods

Minimize $\Psi(\theta)$ directly using an NLLS solver:

1. First order approximation of $\mathbf{f}_i(\boldsymbol{\theta})$ at $\boldsymbol{\theta} = \bar{\boldsymbol{\theta}}$:

$$\mathbf{f}_i(ar{oldsymbol{ heta}} + \Deltaoldsymbol{ heta}) pprox ar{\mathbf{f}}_i + \mathtt{J}_i\Deltaoldsymbol{ heta}$$

2. Approximate $\psi(\|\overline{\mathbf{f}}_i + \mathbf{J}_i \Delta \boldsymbol{\theta})\|)$ with a quadratic model ψ s.t.

Quadratic surrogate models used by different direct approaches at $\bar{\theta}=1$ (the x-axis corresponds to $\theta=\bar{\theta}+\Delta\theta$)

Our contribution The underlying quadratic models are very different and the IRLS model has desirable properties.

3) Half-quadratic lifting-based methods

1. Use a quadratic basis kernel to lift $\psi(x)$: $\psi(x) = \min_{v \in [0,1]} \frac{v}{2} x^2 + \gamma(v)$

Half-quadratic lifting [1] of $\psi_{\text{Wel},1}(x)$,

2. Rewrite $\Psi(\theta)$ to obtain an NLLS problem:

$$\min_{\boldsymbol{\theta}} \sum_{i} \psi(\|\mathbf{f}_{i}(\boldsymbol{\theta})\|) = \min_{\boldsymbol{\theta}, \{v_{i}\}_{i}} \sum_{i} \left\| \frac{\sqrt{v_{i}}}{\sqrt{2}} \mathbf{f}_{i}(\boldsymbol{\theta}) \right\|^{2}$$

Our contribution A convexified Newton approximation to replace the Gauss-Newton approximation [1] in the NLLS solver.

[1] Christopher Zach. Robust bundle adjustment revisited. ECCV 2014.

4) Graduated optimization

1. Build a sequence of objectives $(\Psi^0, \dots, \Psi^{k_{\max}})$ s.t. $\Psi^0 = \Psi$ and Ψ^{k+1} is "easier" to optimize than Ψ^k

Natural approach: $(s_k)_{k=0}^{k_{\text{max}}}$ s.t. $s_0 = 1$ and $s_k < s_{k+1}$,

$$\Psi^k(\boldsymbol{\theta}) := \sum_i \psi^k(\|\mathbf{f}_i(\boldsymbol{\theta})\|) \text{ with } \psi^k(r) := s_k^2 \psi(r/s_k)$$

Sequence of smoothed kernels (ψ^k)

Sequence of objectives (Ψ^k)

2. Successively optimize the sequence of cost functions using for instance a direct solver

Our contribution A novel stopping criterion to speed-up graduated optimization methods.

5) Results

Robust mean

Average objective (and standard deviation) reached by the different methods for the "robust mean" problem

Image smoothing

$$\min_{\boldsymbol{\theta}} \sum_{i \in \mathcal{V}} \psi^{\text{data}}(\theta_i - u_i) + \sum_{(i,j) \in \mathcal{E}} \psi^{\text{smooth}}(\theta_i - \theta_j)$$

Visual results for the "image smoothing" problem using random init

Bundle adjustment

$$\min_{\{\mathbf{R}_{i},\mathbf{t}_{i}\}_{i},\{\mathbf{X}_{j}\}_{j}} \sum_{i,j} \psi(\|\pi(\mathbf{R}_{i}\mathbf{X}_{j}+\mathbf{t}_{i})-\mathbf{q}_{ij}\|)$$

$$\mathbb{RLS}_{1\text{-I-G-N: }\Psi}$$

$$\mathbb{RLS}_{1\text{-I-Newton: }\Psi}$$

$$\mathbb{RLS}_{1\text{-I-Newton: }\Psi}$$

$$\mathbb{RCGM}_{1\text{-Newton: }\Psi}$$

$$\mathbb{RCS}_{1\text{-I-Newton: }\Psi}$$

$$\mathbb{RCS}_{1\text{-I-Newto$$

Objective values reached by the different methods for metric BA

Dense stereo

$$\min_{\boldsymbol{\theta}} \frac{\lambda}{2} \sum_{i \in \mathcal{V}} \sum_{k=1}^{K} \psi^{\text{data}}(\theta_i - d_{i,k}) + \sum_{(i,j) \in \mathcal{E}} \psi^{\text{smooth}}(\theta_i - \theta_j)$$

Local stereo l-G-N (K = 1) l-G-N (K = 5) GOM+ (K = 1) GOM+ (K = 5)

Visual results for the "variational stereo" problem using random init