

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

AYUDANTES: FRANCISCA CAPRILE, CATALINA ORTEGA, MATÍAS FERNÁNDEZ E

Ignacio Vergara

Ayudantía 5

15 de septiembre

 2° semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado- B. Barías

Resumen

Conceptos importantes:

- Conjunto: es una colección bien definida de obejtos, estos objetos se llaman elementos del conjunto y diremos que pertenecen a él.
- Subconjunto: Sean A y B conjuntos. Diremos que A es subconjunto de B ($A \subseteq B$) si

 $\forall x(x \in A \rightarrow x \in B)$ (esto es si cada elemento de A está en B)

- Diremos que dos conjuntos A y B son iguales si y solo si $A \subseteq B$ y $B \subseteq A$.
- Conjunto potencia: Dado un conjunto A, el conjunto de todos los subconjuntos de A corresponde a su conjunto potencia, $\mathcal{P}(A) := \{X | X \subseteq A\}$
- Complemento: Dado un conjunto $A \subseteq \mathcal{U}$, el complemento de A (relativo a \mathcal{U}) es

$$A^c = \mathcal{U} \backslash A = \{x | x \in \mathcal{U} \land x \notin A\}$$

Axioma de extensión: $\forall A \forall B, A = B \iff \forall x (x \in A \iff x \in B)$. Observación: $\{x, x\} = \{x\}$

Axioma del conjunto vacío: $\exists X$ tal que $\forall x, x \notin X$. $X = \emptyset$.

Teoremas importantes:

- Para todo conjunto A se tiene que $\emptyset \subseteq A$.
- Existe un único conjunto vacío.

Operaciones:

■ Unión: dados dos conjuntos A y B, el conjunto de los elementos que están en A o en B corresponde a la unión de A y B ($A \cup B$),

$$A \cup B = \{x | x \in A \lor x \in B\}$$

Dado un conjunto de conjuntos S se define la **unión generalizada** como

$$\bigcup S = \{x | \exists A \in S \text{ tal que } x \in A\}$$

■ Intersección: dados dos conjuntos A y B, el conjunto de los elementos que están en A y en B corresponde a la intersección de A y B ($A \cap B$),

$$A \cap B = \{x | x \in A \land x \in B\}$$

Dado un conjunto de conjuntos S se define la **intersección generalizada** como

$$\bigcap S = \{x | \forall A \in S \text{ se cumple que } x \in A\}$$

■ Diferencia: dados dos conjuntos A y B, el conjunto de los elementos que están en A pero no en B corresponde a la diferencia de A y B ($A \setminus B$),

$$A \backslash B = \{ x | x \in A \land x \notin B \}$$

Leyes

1. Absorción:

$$A \cup (A \cap B) = A$$
$$A \cap (A \cup B) = A$$

4. Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

7. Leyes de De Morgan:

$$(A \cup B)^c = A^c \cap B^c$$
$$(A \cap B)^c = A^c \cup B^c$$

2. Elemento neutro:

$$A \cup \emptyset = A$$
$$A \cap \mathcal{U} = A$$

5. Conmutatividad:

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

8. Elemento inverso:

$$A \cup A^c = \mathcal{U}$$
$$A \cap A^c = \emptyset$$

3. Distributividad:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

6. Idempotencia:

$$A \cup A = A$$
$$A \cap A = A$$

9. Dominación:

$$A \cup \mathcal{U} = \mathcal{U}$$
$$A \cap \emptyset = \emptyset$$

Ejercicio 1 — Conjuntos nociones básicas

Sean A, B, C y D conjuntos. Para las siguientes afirmaciones, demuestre o de un contra-ejemplo.

a)
$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$$

b)
$$(A \cup B) \times (C \cup D) = (A \times C) \cup (B \times D)$$

Solución:

a) Verdadero

Para demostrar que esta afirmación es verdadera, hay que demostrar que

$$(A \setminus B) \cup (B \setminus A) \subseteq (A \cup B) \setminus (A \cap B)$$

y que

$$(A \cup B) \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)$$

Para la primera parte de la demostración, tenemos lo siguiente

Si
$$x \in (A \setminus B) \cup (B \setminus A) \rightarrow$$

$$(x \in A \land x \notin B) \lor (x \in B \land x \notin A) \rightarrow (por definición)$$

$$(x \in A \lor x \in B) \land (x \in A \lor x \notin A) \land (x \notin B \lor x \in B) \land (x \notin B \lor x \notin A) \rightarrow (por distribución)$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \rightarrow (por tautología)$$

$$(x \in (A \vee B)) \wedge \neg (x \in (B \wedge A)) \rightarrow (agrupando términos y por de morgan)$$

$$x \in (A \cup B) \ \backslash (A \cap B) \to (por \ definición)$$

Por lo tanto se concluye que si x pertenece a $(A \setminus B) \cup (B \setminus A)$ entonces x pertenece a $(A \cup B) \setminus (A \cap B)$ Por lo que

$$(A \setminus B) \cup (B \setminus A) \subseteq (A \cup B) \setminus (A \cap B)$$

Para la segunda parte de la demostración, tenemos lo siguiente

$$Si x \in (A \cup B) \setminus (A \cap B) \rightarrow$$

$$(x \in A \lor x \in B) \land \neg (x \in B \land x \in A) \rightarrow (por definición)$$

$$(x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \rightarrow (por de morgan)$$

$$(x \in A \land x \notin B) \lor (x \in A \land x \notin A) \lor (x \in B \land x \notin B) \lor (x \in B \land x \notin A) \to (por distribución)$$

$$(x \in A \land x \notin B) \lor (x \in B \land x \notin A) \rightarrow (por contradicción)$$

$$x \in (A \setminus B) \cup (B \setminus A) \rightarrow (por definición)$$

Por lo tanto se concluye que si x pertenece a $(A \cup B) \setminus (A \cap B)$ entonces x pertenece a $(A \setminus B) \cup (B \setminus A)$ Por lo que

$$(A \cup B) \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)$$

Por lo tanto, como sabemos que

$$(A \setminus B) \cup (B \setminus A) \subseteq (A \cup B) \setminus (A \cap B)$$

y que

$$(A \cup B) \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)$$

Hemos demostrado que (A \B) \cup (B \A) = (A \cup B) \((A \cap B)

b) Falso

Para demostrar que esta afirmación es falsa, encontraremos un contraejemplo.

Sea A =
$$\{1,2\}$$
 B = $\{3\}$, C = $\{4,6\}$ y D = $\{7\}$

$$(A \cup B) \times (C \cup D) = \{(1,4), (1,6), (1,7), (2,4), (2,6), (2,7), (3,4), (3,6), (3,7)\}$$

Luego,

$$(A \times C) \cup (B \times D) = \{ (1,4), (1,6), (2,4), (2,6), (3,7) \}$$

Se puede observar que estos dos conjuntos son distintos. Por ejemplo, (1,7) pertenece al primer conjunto y no al segundo.

Ejercicio 2 — Conjuntos

Dada una secuencia de N de conjuntos $A_1, A_2, \ldots A_N$, defina la secuencia $B_1 = A_1$ y $B_i = A_1^c \cap A_2^c \cap \cdots \cap A_{i-1}^c \cap A_i$ para $i = 2, 3, \ldots, N$. Pruebe que:

I)
$$B_i \cap B_j = \emptyset \, \forall i \neq j, \text{ con } i, j \leq N.$$

II)
$$\bigcup_{i=1}^{N} B_i = \bigcup_{i=1}^{N} A_i$$
.

Solución:

I) Sin pérdida de generalidad podemos decir que i < j.

Luego cualquier elemento b tal que $b \in B_i$ implica que $b \in A_i$ ya que A_i está dentro de la conjunción que define a B_i . Ahora supongamos que $b \in B_j$, entonces por el mismo argumento anterior $b \in A_i^c$.

Pero llegamos a que $b \in A_i$ y $b \in A_i^c$, lo cual es contradictorio. Así, todo elemento que pertenece a B_i no pertenece a B_j , por lo que $B_i \cap B_j = \emptyset$.

II) Llamaremos $A = \bigcup_{i=1}^{N} A_i$ y $B = \bigcup_{i=1}^{N} B_i$. Demostraremos lo pedido por doble contención.

Primero $B \subseteq A$. Sea $b \in B$, luego por principio del buen orden existe i minimal tal que $b \in B_i$. Como $B_i = \left(\cap_{j=1}^{i-1} A_j^c \right) \cap A_i$ entonces $b \in A_i$. Así, $b \in A$.

Ahora demostraremos $A \subseteq B$. Por principio del buen orden existe i minimal tal que $a \in A_i$. Luego nos gustaría que $a \in B_i = \left(\bigcap_{j=1}^{i-1} A_j^c\right) \cap A_i$. Supongamos que no, entonces necesariamente $a \notin \bigcap_{j=1}^{i-1} A_j^c$ pero por Ley De Morgan esto implica que $a \in \bigcup_{j=1}^{i-1} A_j$ pero esto quiere decir que existe un j < i tal que $a \in A_j$, lo cual es contradictorio ya que habíamos establecido que i era el menor que cumplía dicha propiedad. Así $a \in B_i$, por lo que $a \in B$.

Como demostramos que $B \subseteq A$ y $A \subseteq B$ entonces A = B.

Ejercicio 3 — Conjuntos

Sea $\Omega \neq \emptyset$, diremos que $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ es un sigma-álgebra sobre Ω si,

- $\Omega \in \mathcal{F}$
- Si $B \in \mathcal{F}$, entonces $B^c \in \mathcal{F}$
- Si $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}$, entonces $\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{F}$
- a) Dé un ejemplo de un sigma álgebra, si es necesario especificar Ω .
- b) Suponga que \mathcal{F} es un sigma álgebra sobre Ω . Considerando $A \subseteq \Omega$, demuestre que

$$\mathcal{F}_A := \{ B \cap A : B \in \mathcal{F} \}$$

es un sigma álgebra sobre A.

Solución:

- a) Para cualquier Ω basta con tomar $\mathcal{F} = 2^{\Omega}$ o $\mathcal{F} = \{\Omega, \emptyset\}$. Sea $\Omega = \{0, 1, 2\}$, luego podemos definir $\mathcal{F} = \{\emptyset, \{0\}, \{1, 2\}, \Omega\}$.
- b) Se debe verificar cada propiedad del sigma álgebra,
 - P.D: $A \in \mathcal{F}_A$

Sabemos que $\Omega \in \mathcal{F}$, luego como $\Omega \cap A = A$ se tiene (por definición de \mathcal{F}_A) que $A \in \mathcal{F}_A$.

■ P.D: Si $B \in \mathcal{F}_A$, entonces $B^c \in \mathcal{F}_A$ (considerando el complemento con respecto a A)

Supongamos que $B \in \mathcal{F}_A$, luego (por definicion de \mathcal{F}_A) existe $C \in \mathcal{F}$ tal que $B = C \cap A$. \mathcal{F} es un sigma álgebra sobre Ω , por lo cual $C^c \in \mathcal{F}$, luego $C^c \cap A \in \mathcal{F}_A$, i.e, $B^c \in \mathcal{F}_A$ (con B^c el complemento de B con respecto a A, $B^c = C^c \cap A$).

■ P.D: Si $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}_A$, entonces $\bigcup_{n\in\mathbb{N}}B_n\in\mathcal{F}_A$

Supongamos que existe $(B_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}_A$, luego (por definición de \mathcal{F}_A) existe $(C_n)_{n\in\mathbb{N}}\subseteq\mathcal{F}$ tal que $B_n=C_n\cap A\ \forall n\in\mathbb{N}$. \mathcal{F} es un sigma álgebra sobre Ω , por lo cual $\bigcup_{n\in\mathbb{N}}C_n\in\mathcal{F}$ luego $\bigcup_{n\in\mathbb{N}}C_n\cap A\in\mathcal{F}_A$, entonces $\bigcup_{n\in\mathbb{N}}(C_n\cap A)\in\mathcal{F}_A$, y como $B_n=C_n\cap A\ \forall n\in\mathbb{N}$ obtenemos finalmente que, $\bigcup_{n\in\mathbb{N}}(B_n)\in\mathcal{F}_A$.