

CLAIMS

1 1. (currently amended) An ~~network manager apparatus~~-implemented method for determining
2 primary and restoration paths for a new service in a mesh network having a plurality of nodes
3 interconnected by a plurality of links, the method comprising:

4 for each of a plurality of candidate path pairs for the new service, each candidate path pair
5 comprising a candidate primary path and a candidate restoration path for the new service,
6 generating a path cost associated with said each candidate path pair, wherein the path cost for a
7 candidate path pair is a function of two or more link costs, wherein each link cost is a function of
8 sharability of a different corresponding link within the corresponding candidate restoration path,
9 wherein the sharability of the corresponding link corresponds to the ability of the corresponding
10 link to reserve protection bandwidth that is shared between restoration paths of two or more
11 primary paths; and

12 selecting the primary and restoration paths for the new service from the plurality of candidate
13 path pairs based on the path cost of each candidate path pair, wherein:

14 generating the path cost for each candidate path pair comprises:

15 generating a link cost associated with each link in the corresponding candidate
16 restoration path; and

17 generating the path cost as a function of a sum of the link costs for all links in the
18 candidate restoration path; and

19 for each link, generating the link cost comprises:

20 determining whether sharing is available on the link; and

21 if sharing is available, then generating the link cost as a function of a sharing degree
22 for the link, wherein the sharing degree is the maximum number of additional unit-bandwidth
23 primary services that can be added to the candidate primary path without increasing restoration
24 bandwidth reserved on the link.

1 2-3. (canceled)

1 4. (previously presented) The invention of claim 1, wherein, if sharing is not available, then:
2 determining whether utilization of the link is greater than a specified threshold;

3 if the link utilization is greater than the specified threshold, then generating the link cost as a
4 function of an administrative weight for the link and available capacity on the link; and
5 if the link utilization is less than the specified threshold, then generating the link cost as a
6 function of the administrative weight for the link.

1 5. (previously presented) The invention of claim 1, wherein the link cost is also generated as
2 a function of an administrative weight for the link.

1 6. (previously presented) The invention of claim 1, wherein the link cost is also generated as
2 a function of a form of a sharing degree.

1 7. (previously presented) The invention of claim 1, wherein the sharing degree is calculated
2 using a binary representation of a node-link vector and a binary representation of a primary path
3 node-link vector, wherein the calculation of the sharing degree comprises:

4 computing the bitwise AND of the binary representation of the node-link vector and the
5 binary representation of the primary path node-link vector, and
6 computing the OR of all elements of the resulting vector to determine whether sharing is
7 possible.

1 8. (original) The invention of claim 1, wherein the sharability of a link in a candidate
2 restoration path is represented by a sharing degree for the link, wherein the sharing degree is a
3 maximum number of additional unit-bandwidth primary services that can be added to the
4 candidate primary path without increasing restoration bandwidth reserved on the link.

1 9. (original) The invention of claim 8, wherein the sharing degree SD for a link is given by:

$$SD = \text{the maximum value } m \text{ for which } \max\{m \cdot V_{pnl} + V_{nla}\} = RB,$$

3 wherein:

4 V_{pnl} is a primary path node-link vector for the corresponding candidate primary path;

5 V_{nla} is an aggregate node-link vector for the link; and

6 RB is current reservation bandwidth on the link.

1 10. (original) The invention of claim 8, wherein the sharing degree SD for a link is given by:

2 SD = the maximum value m for which $\max\{ m \cdot V_{pn} + V_{na} \} = RB$,

3 wherein:

4 V_{pn} is a primary path node vector for the corresponding candidate primary path;

5 V_{na} is a node-aggregate vector for the link; and

6 RB is current reservation bandwidth on the link.

1 11. (currently amended) An ~~network manager apparatus~~ for a mesh network having a
2 plurality of nodes interconnected by a plurality of links, the ~~network manager apparatus~~ adapted
3 to determine primary and restoration paths for a new service in a mesh network, wherein:

4 for each of a plurality of candidate path pairs for the new service, each candidate path pair
5 comprising a candidate primary path and a candidate restoration path for the new service, the
6 ~~network manager apparatus~~ is adapted to generate a path cost associated with said each candidate
7 path pair, wherein the path cost for a candidate path pair is a function of two or more link costs,
8 wherein each link cost is a function of sharability of a different corresponding link within the
9 corresponding candidate restoration path, wherein the sharability of the corresponding link
10 corresponds to the ability of the corresponding link to reserve protection bandwidth that is shared
11 between restoration paths of two or more primary paths;

12 the ~~network manager apparatus~~ is adapted to select the primary and restoration paths for the
13 new service from the plurality of candidate path pairs based on the path cost of each candidate
14 path pair;

15 generating the path cost for each candidate path pair comprises:

16 generating a link cost associated with each link in the corresponding candidate restoration
17 path; and

18 generating the path cost as a function of a sum of the link costs for all links in the
19 candidate restoration path; and

20 for each link, generating the link cost comprises:

21 determining whether sharing is available on the link; and

22 if sharing is available, then generating the link cost as a function of a sharing degree for
23 the link, wherein the sharing degree is the maximum number of additional unit-bandwidth
24 primary services that can be added to the candidate primary path without increasing restoration
25 bandwidth reserved on the link.

1 12. (currently amended) The invention of claim 11, wherein the ~~network manager apparatus~~
2 is distributed over the network.

1 13. (currently amended) The invention of claim 11, wherein the ~~network manager apparatus~~
2 is located at a single node of the network.

1 14. (previously presented) The invention of claim 1, wherein the path cost is independent of
2 the sharability of any link within the corresponding candidate primary path.

1 15. (currently amended) The invention of claim [[2]]1, wherein the candidate restoration path
2 comprises at least two links.

1 16. (previously presented) The invention of claim 4, wherein:
2 if the link utilization is greater than the specified threshold, then generating the link cost in
3 accordance with the formula $\omega^{NS} = \frac{AW \cdot MWC}{AC^f}$, wherein ω^{NS} is the link cost when sharing is not
4 considered, AW is an administrative weight for the link, MWC is a maximum weight coefficient,
5 AC is available capacity for the link, and f is an exponentiation factor; and
6 if the link utilization is less than the specified threshold, then generating the link cost in
7 accordance with the formula $\omega^{NS} = AW$.

1 17. (previously presented) The invention of claim 7, wherein the binary representation of the
2 node-link vector and the binary representation of the primary path node-link vector each have a
3 plurality of entries corresponding to the nodes and links in the network and each entry of each
4 vector identifies whether failure of the corresponding node or link will cause activation of all the
5 bandwidth that was reserved for restoration paths on the link.

1 18. (currently amended) An ~~apparatus~~-network manager-implemented method for determining
2 primary and restoration paths for a new service in a mesh network having a plurality of nodes
3 interconnected by a plurality of links, the method comprising:

4 for each of a plurality of candidate path pairs for the new service, each candidate path pair
5 comprising a candidate primary path and a candidate restoration path for the new service,
6 generating a path cost associated with said each candidate path pair, wherein the path cost for a
7 candidate path pair is a function of sharability of one or more links within the corresponding
8 candidate restoration path, wherein generating the path cost for each candidate path pair
9 comprises:

10 generating a link cost associated with each link in the corresponding candidate restoration
11 path, wherein, for each link, generating the link cost comprises:

12 determining whether sharing is available on the link;

13 if sharing is available, then generating the link cost as a function of a sharing degree
14 for the link; and

15 if sharing is not available, then:

16 determining whether utilization of the link is greater than a specified threshold;

17 if the link utilization is greater than the specified threshold, then generating the
18 link cost as a function of an administrative weight for the link and available capacity on the link,

19 in accordance with the formula $\omega^{NS} = \frac{AW \cdot MWC}{AC^f}$, wherein ω^{NS} is the link cost when sharing is
not considered, AW is an administrative weight for the link, MWC is a maximum weight

20 coefficient, AC is available capacity for the link, and f is an exponentiation factor; and

21 if the link utilization is less than the specified threshold, then generating the link
22 cost as a function of the administrative weight for the link, in accordance with the formula $\omega^{NS} =$
23 AW ; and

24 generating the path cost as a function of a sum of the link costs for all links in the
25 candidate restoration path; and

26 selecting the primary and restoration paths for the new service from the plurality of candidate
27 path pairs based on the path cost of each candidate path pair.

1 19. (currently amended) An ~~apparatus~~~~network manager~~-implemented method for determining
2 primary and restoration paths for a new service in a mesh network having a plurality of nodes
3 interconnected by a plurality of links, the method comprising:

4 for each of a plurality of candidate path pairs for the new service, each candidate path pair
5 comprising a candidate primary path and a candidate restoration path for the new service,
6 generating a path cost associated with said each candidate path pair, wherein the path cost for a
7 candidate path pair is a function of two or more link costs, wherein each link cost is a function of
8 sharability of a different corresponding link within the corresponding candidate restoration path,
9 wherein the sharability of the corresponding link corresponds to the ability of the corresponding
10 link to reserve protection bandwidth that is shared between restoration paths of two or more
11 primary paths; and

12 selecting the primary and restoration paths for the new service from the plurality of candidate
13 path pairs based on the path cost of each candidate path pair, wherein:

14 the sharability of a link in a candidate restoration path is represented by a sharing degree
15 for the link; and

16 the sharing degree is a maximum number of additional unit-bandwidth primary services
17 that can be added to the candidate primary path without increasing restoration bandwidth
18 reserved on the link.

1 20. (previously presented) The invention of claim 19, wherein the sharing degree SD for a link is
2 given by:

3
$$SD = \text{the maximum value } m \text{ for which } \max\{m \cdot V_{pnl} + V_{nla}\} = RB,$$

4 wherein:

5 V_{pnl} is a primary path node-link vector for the corresponding candidate primary path;

6 V_{nla} is an aggregate node-link vector for the link; and

7 RB is current reservation bandwidth on the link.

1 21. (previously presented) The invention of claim 19, wherein the sharing degree SD for a link is
2 given by:

3
$$SD = \text{the maximum value } m \text{ for which } \max\{m \cdot V_{pn} + V_{na}\} = RB,$$

- 4 wherein:
- 5 V_{pn} is a primary path node vector for the corresponding candidate primary path;
- 6 V_{na} is a node-aggregate vector for the link; and
- 7 RB is current reservation bandwidth on the link.