Proteomics and its applications

James Nyagwange, BHKi seminar 20/07/2022

Possibly, probably, actually and more

Proteomics study large sets of proteins

Protein analysis workflow

- Purification –chromatography based
- Analysis –ELISA, WB, protein microarray
- Characterization-gel based, mass spec
- Seq analysis-Edman
- Quantification-ICAT, SILAC, iTRAQ
- Structural analysis-X-ray crystallography, NMR spectro
- Bioinformatic analysis

Resources

Databases

- GenBank
- RefSeq
- nr
- UniProt
- UniRef
- UniParc
- TrEMBL
- SwissProt

Protein structure databases

- PDB
- SwissModel
- SCOP
- ModBase
- CATH
- MMDD

Alignments (BLAST)

- BLASTP BLAST
- TBLASTN
- PSI-BLAST Position Specific Iterated BLAST
- PHI-BLAST Pattern Hit Initiated BLAST
- DELTA-BLAST Domain Enhanced Lookup Time Accelerated BLAST

Protein structure prediction sever

- PredictProtein
- O-GlycoBase
- PhosphoBase
- SwissModel
- WhatIf
- ESyPred3D
- EBI

Protein structure analysis server

- ConSurf
- CASTp
- ProtSkin
- LigandProtein

Protein motif search tools

- PATTINPROT
- SIRW

Motif based alignment server

- Match Box
- MEME
- Dialign
- BlockMakei

Protein domain servers

- InterProScan
- CD server
- ProWleScan
- ScanProsite

Proteomic applications

- Delineation of altered protein expression in disease
- Development of novel biomarkers for diagnosis and early detection of disease
- Potential for accelerating drug development through more effective strategies to evaluate therapeutic effect and toxicity
- Identification of new targets for therapeutics and vaccines

Contents lists available at ScienceDirect

International Journal for Parasitology

journal homepage: www.elsevier.com/locate/ijpara

Characterization of the *Theileria parva* sporozoite proteome

^a International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya

^b Cell Biology and Immunology Group, Wageningen University, The Netherlands

^cThe Jenner Institute, Nuffield Department of Medicine, University of Oxford, UK

^d Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA

^e Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA

^f Department of Infection and Immunity, South Australian Health and Medical Research Institute, North Terrace, Adelaide 5000, South Australia, Australia

The problem

- East Coast fever (ECF) cattle diseases causing losses >\$300M/year in Africa
- Theileria parva (*Tp*)causes ECF
- The sporozoite stage of *Tp*, harbored and released from the salivary glands of the tick *Rhipicephalus* appendiculatus during feeding
- Sporozoites invades and establishes infection in bovine lymphocytes

Possible solution

- Block sporozoites from invading bovine lymphocytes by vaccine
- Vaccine require identification of surface proteins
- Proteins used to induce cattle immune response
- Proteomics can help

Workflow

Figure 1. Overview of experimental procedures. Infected ticks were dissected and salivary glands removed (a), homogenized, and passed through a DE-52 column (b). The resulting sporozoite-enriched suspension was lysed (c), and size fractionated by SDS-PAGE (d) followed by LC-MS/MS (e), and subsequent bioinformatical analysis (f).

Trypsinization

- Gel divided in 4 fractions, de-stained, dehydrated, reduced, alkylated, washed
- Proteolytic digestion by trypsin

LC-MS/MS

Data analysis

- Gel fractions separated by column (PepMap C18)
- Then introduced into mass spec (QExactive)

- Raw MS/MS files analysed with Peaks software using db with Tp (parasite) and R.app (tick)
- FDR of 1.2% applied and only proteins with unique peptide id included in proteome list
- Exponentially Modified Protein Abundance Index (emPAI) by Mascot
- Classification by subcellular localization (TargetP, TMHMM, SignalP, GPI-SOM)
- Classification by orthology with Pf3D7 (OrthoMCL)

Results

Identified proteins

Known *T. parva* antigens targeted by antibodies and CTLs

Predicted sporozoite surface molecules

Orthologs of *Plasmodium falciparum* invasion organelle proteins

Proteins that may contribute to the phenomenon of bovine lymphocyte transformation

Expected but not identified

Polymorphic Immunodorminant Molecule

Abundant *T. parva* sporozoite proteins

ORF locus tag	Description ^a	emPAI
TpMuguga_04g00404	Histone H2B.1	7228.34
TpMuguga_04g00071	Histone H2B	900.39
TpMuguga_04g00675	Histone H4	457.35
TpMuguga_04g00690	phosphoglycerate mutase 1 family	105.17
TpMuguga_04g00050	Ribosomal protein S19	99.38
TpMuguga_03g00655	hypothetical protein	96.5
TpMuguga_04g00036	AhpC/TSA family	84.68
TpMuguga_02g00487	Ribosomal protein S6e	67.36
TpMuguga_02g00903	Actin	60.62
TpMuguga_04g00322	Histone H2A	60.26
TpMuguga_03g00067	hypothetical protein	54.06
TpMuguga_01g00726	eIF-Tu GTP binding domain	52.64
TpMuguga_01g00541	hypothetical protein	52.36
TpMuguga_04g00383	GAPDH NAD binding domain	51.37
TpMuguga_01g00701	RAP-1	47.73
TpMuguga_02g00148	Heat shock 70 kDa protein	42.22
TpMuguga_04g00179	RanBP1 domain	41.34
TpMuguga_03g00700	hypothetical protein	40
TpMuguga_03g00287	Sporozoite P67 surface antigen	39.16
TpMuguga_01g00067	Acyl CoA binding protein	39.11

Proteins involved in metabolism identified

Identification of sporozoite antigens that mediate the infection process

Approach

In silico; GPI* and SP* predictions, conserved fragments of proteins

Protein subunit with adjuvant

Murine studies
- Good antibody titres
In vitro assays
-ELISA,
seroneutralization

#	Gene locus	Protein product	Signal P	Full length protein (kDa)	Expressed fragment	Identified by LC-MS
1	TpMuguga_01g00095	hypothetical protein	YES	29	29%	NO
2	TpMuguga_01g00876	hypothetical protein	YES	13	50%	YES
3	TpMuguga_04g00437	104 kDa antigen	YES	104	12%	YES
4	TpMuguga_01g00575	hypothetical protein	YES	198	10%	NO
5	TpMuguga_01g00972	hypothetical protein	YES	38	32%	YES
6	TpMuguga_01g00939	hypothetical protein (p34)	YES	34	40%	YES
7	TpMuguga_03g00136	hypothetical protein	YES	21	NO	NO
8	TpMuguga_04g02375	hypothetical protein	NO	40	NO	NO
9	TpMuguga_03g00844	hypothetical protein	YES	14	NO	YES
10	TpMuguga_02g00792	hypothetical protein	YES	15	NO	YES

^{*} Glycosylphosphatidylinositol (GPI), signal peptide (SP)

Expression of antigens and immunogenicity studies

✓. 4 promising vaccine candidate antigens identified

Recent times; pandemic response

1. Spike protein selection

2. Cloning and expression of Spike protein

3. Purification of proteins

Seroprevalence IgG antibodies in Kenya

Cumulative confirmed COVID-19 cases, Kenya

Summary

- Proteomics is useful in identifying targets for vaccines, therapeutics, and diagnosis
- Proteomics useful for elucidating protein structures and quantifying expression levels
- Preceding wet lab is as important as bioinformatic analysis
- You need genomics/transcriptomic databases to make sense of your data

Thanks for listening