

Form PTO-1390 (REV 11-98)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER 2000-22
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371		U.S. APPLICATION NO (if known, see 37 CFR 1.5)	
INTERNATIONAL APPLICATION NO. PCT/JP00/08284	INTERNATIONAL FILING DATE 24 November 2000	PRIORITY DATE CLAIMED 30 November 1999	
TITLE OF INVENTION POROUS SILICON CARBIDE SINTER AND SILICON CARBIDE-METAL COMPOSITE THAT ARE OPTIMAL FOR A WAFER GRINDER TABLE			
APPLICANT(S) FOR DO/EO/US Kazutaka MAJIMA, Hiroyuki YASUDA			
<p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:</p> <ol style="list-style-type: none"> <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371. <input checked="" type="checkbox"/> This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and PCT Articles 22 and 39(1). <input type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ul style="list-style-type: none"> a. <input type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau). b. <input checked="" type="checkbox"/> has been transmitted by the International Bureau. c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US) <input checked="" type="checkbox"/> A translation of the International Application into English (35 U.S.C. 371(c)(2)). <input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ul style="list-style-type: none"> a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). b. <input type="checkbox"/> have been transmitted by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input checked="" type="checkbox"/> have not been made and will not be made. <input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)). <input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)) (UNSIGNED) <input type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)). <p>Items 11. to 16. below concern document(s) or information included:</p> <ol style="list-style-type: none"> <input type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98. <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included. <input checked="" type="checkbox"/> A FIRST preliminary amendment. <input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment. <input type="checkbox"/> A substitute specification. <input type="checkbox"/> A change of power of attorney and/or address letter. <input checked="" type="checkbox"/> Other items or information: 2 Return receipt postcards 			

EXPRESS MAIL LABEL NO. EL649718751US

Express mail label No.
EL649718751US

U.S. APPLICATION NO. (If known, see 37 CFR 1.5) 09/890550	INTERNATIONAL APPLICATION NO. PCT/JPO0/08284	ATTORNEY'S DOCKET NUMBER 2000-22
17. <input checked="" type="checkbox"/> The following fees are submitted: BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):		CALCULATIONS PTO USE ONLY
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO		\$1000.00
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO		\$860.00
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO		\$710.00
International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)		\$690.00
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)		\$100.00
ENTER APPROPRIATE BASIC FEE AMOUNT =		
Surcharge of \$130.00 for furnishing the oath or declaration later than [] 20 [] 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$
CLAIMS	NUMBER FILED	NUMBER EXTRA
Total claims	27-20 =	7
Independent claims	7-3 =	4
MULTIPLE DEPENDENT CLAIM(S) (if applicable)		+\$270.00
TOTAL OF ABOVE CALCULATIONS =		
Reduction by 1/2 for filing by small entity, if applicable. A Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28).		\$
SUBTOTAL =		
Processing fee of \$130.00 for furnishing the English translation later than [] 20 [] 30 months from the earliest claimed priority date (37 CFR 1.429(f)).		+\$
TOTAL NATIONAL FEE =		
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property		+\$
TOTAL FEES ENCLOSED =		
		Amount to be: refunded
		\$
		Charged
<p>a. <input checked="" type="checkbox"/> A check in the amount of <u>\$ 1306.00</u> to cover the above fees is enclosed.</p> <p>b. <input type="checkbox"/> Please charge my Deposit Account No. <u>50-0951</u> in the amount of <u>00</u> to cover the above fees. A duplicate copy of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>50-0951</u>. A duplicate copy of this sheet is enclosed.</p>		
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</p>		
<p>SEND ALL CORRESPONDENCE TO:</p> <p>J. Rodman Steele, Jr. Akerman, Senterfitt & Eidson, P.A. Post Office Box 3188 West Palm Beach, FL 33402-3188</p>		
 <p><u>J. Rodman Steele, Jr.</u> NAME</p>		
<p><u>25,931</u> REGISTRATION NUMBER</p>		

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of MAJIMA et al

Application No.

Examiner:

Filed: (Herewith)

Group Art Unit:

For: POROUS SILICON CARBIDE SINTER AND SILICON CARBIDE-METAL
COMPOSITE THAT ARE OPTIMAL FOR A WAFER GRINDER TABLE

PRELIMINARY AMENDMENT

Box Patent Applications
Commissioner for Patents
Washington, D.C. 20231

Sir:

Prior to examination on the merits, please amend the above-identified
application as follows:

IN THE SPECIFICATION:

On page 1, line 1, delete the heading "SPECIFICATION"

On page 1, line 6 delete the heading "TECHNICAL AREA" and replace it with - - -
BACKGROUND OF THE INVENTION - -

On page 1, line 16, delete the heading "BACKGROUND ART"

On page 5, line 22, delete the heading "DISCLOSURE OF THE INVENTION" and
replace it with - - SUMMARY OF THE INVENTION - -

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1897
1898
1899
1899
1900
1901
1902
1903
1904

5 of the base materials.

1 24. (New) A porous silicon carbide sinter having a structure formed by
2 silicon carbide crystals that includes opened pores, wherein the porous sinter has a
3 silicon carbide crystal average grain diameter of 20 μ m to 100 μ m, a porosity of 5%
4 to 30%, and a thermal conductivity of 80W/m K or more.

1 25. (New) The porous silicon carbide sinter according to claim 24, wherein
2 the silicon carbide crystals include 10vol% to 50vol% of fine silicon carbide
3 crystals, which have an average grain diameter of 0.1 μ m to 1.0 μ m, and 50vol% to
4 90vol% of rough silicon carbide crystals, which have an average grain diameter of
5 25 μ m to 150 μ m.

10 26. (New) The porous silicon carbide sinter according to claim 24, wherein
15 the sinter forms a part of a wafer grinder.

20 27. (New) The porous silicon carbide sinter according to claim 24, wherein
25 the sinter forms a plurality of bonded base materials that are part of a wafer grinder
30 table, wherein the table is for grinding semiconductor wafers held on a wafer
35 holding plate, and the table includes a fluid passage formed in a bonding interface
40 of the base materials.

1 28. (New) A method for manufacturing a porous silicon carbide sinter
2 having a structure formed by silicon carbide crystals that includes opened pores,
3 wherein the porous silicon carbide sinter has a silicon carbide crystal average grain
4 diameter of 20 μ m or greater, a porosity of 30% or less, and a thermal conductivity
5 of 80W/m K or more, the method comprising:

6 adding 10 parts by weight to 100 parts by weight of a fine powder of α

7 silicon carbide having an average grain diameter of 0.1 μm to 1.0 μm to 100 parts
8 by weight of a rough powder of α silicon carbide having an average grain diameter
9 of 5 μm to 100 μm and uniformly mixing the rough powder and the fine powder;
10 and

11 molding a mixture obtained in the mixing step into a predetermined shape to
12 produce a molded product; and sintering the molded product within a temperature
13 range of 1700°C to 2400°C to produce a sinter.

1 29. (New) A silicon carbide-metal composite having a porous structure
2 formed by silicon carbide crystals that includes opened pores, wherein the opened
3 pores are impregnated with metal, wherein the silicon carbide-metal composite has
4 a silicon carbide crystal average grain diameter of 20 μ m or greater, a porosity of
5 30% or less, and a thermal conductivity of 160W/m K or more, and wherein 100
6 parts by weight of silicon carbide is impregnated with 15 parts by weight to 50
7 parts by weight of metal.

30. (New) The silicon carbide-metal composite according to claim 29, wherein 100 parts by weight of silicon carbide is impregnated with 15 parts by weight to 45 parts by weight of metal silicon to form the composite.

1 31. (New) The silicon carbide-metal composite according to claim 29,
2 wherein 100 parts by weight of silicon carbide is impregnated with 20 parts by
3 weight to 50 parts by weight of metal aluminum to form the composite.

1 32. (New) The silicon carbide-metal composite according to claim 29,
2 wherein the silicon carbide crystals include 10vol% to 50vol% of fine silicon
3 carbide crystals, which have an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$, and
4 50vol% to 90vol% of rough silicon carbide crystals, which have an average grain

5 diameter of 25 μm to 150 μm .

1 33. (New) The silicon carbide-metal composite according to claim 29,
2 wherein the composite forms a part of a wafer grinder.

1 34. (New) The silicon carbide-metal composite according to claim 29,
2 wherein the composite forms a plurality of bonded base materials that are part of a
3 wafer grinder table, wherein the table is for grinding semiconductor wafers held on
4 a wafer holding plate, and the table includes a fluid passage formed in a bonding
5 interface of the base materials.

2 35. (New) A silicon carbide-metal composite having a porous structure
3 formed by silicon carbide crystals that includes opened pores, wherein the opened
4 pores are impregnated with metal, wherein the silicon carbide-metal composite has
5 a silicon carbide crystal average grain diameter of 20 μm to 100 μm , a porosity of
6 5% to 30%, and a thermal conductivity of 160W/m K or more, and wherein 100
7 parts by weight of silicon carbide is impregnated with 15 parts by weight to 50
8 parts by weight of metal.

2 36. (New) The silicon carbide-metal composite according to claim 35,
3 wherein 100 parts by weight of silicon carbide is impregnated with 15 parts by
4 weight to 45 parts by weight of metal silicon to form the composite.

2 37. (New) The silicon carbide-metal composite according to claim 35,
3 wherein 100 parts by weight of silicon carbide is impregnated with 20 parts by
4 weight to 50 parts by weight of metal aluminum to form the composite.

1 38. (New) The silicon carbide-metal composite according to claim 35,

2 wherein the silicon carbide crystals include 10vol% to 50vol% of fine silicon
3 carbide crystals, which have an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$,, and
4 50vol% to 90vol% of rough silicon carbide crystals, which have an average grain
5 diameter of $25\mu\text{m}$ to $150\mu\text{m}$.

1 39. (New) The silicon carbide-metal composite according to claim 35,
2 wherein the composite forms a part of a wafer grinder.

1 40. (New) The silicon carbide-metal composite according to claim 35,
2 wherein the composite forms a plurality of bonded base materials that are part of a
3 wafer grinder table, wherein the table is for grinding semiconductor wafers held on
4 a wafer holding plate, and the table includes a fluid passage formed in a bonding
5 interface of the base materials.

1 41. (New) A method for manufacturing a silicon carbide-metal composite
2 having a porous structure formed by silicon carbide crystals that includes opened
3 pores, wherein 100 parts by weight of silicon carbide is impregnated with 15 parts
4 by weight to 50 parts by weight of metal in the opened pores, the average grain
5 diameter of the silicon carbide crystals is $20\mu\text{m}$ or greater, the porosity is 30% or
6 less, and the thermal conductivity is 160W/m K or greater, the method comprising
7 the steps of:

8 adding 10 parts by weight to 100 parts by weight of a fine powder of α
9 silicon carbide having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ to 100 parts by
10 weight of a rough powder of α silicon carbide having an average grain diameter of
11 $5\mu\text{m}$ to $100\mu\text{m}$ and uniformly mixing the rough powder and the fine powder;

12 molding a mixture produced in the mixing step into a predetermined shape to
13 produce a molded product;

14 sintering the molded product within a temperature range of 1700°C to

15 2400°C to produce a sinter; and
16 impregnating the molded product or the sinter with metal.

1 42. (New) The method for manufacturing a silicon carbide-metal composite
2 according to claim 41, wherein 1wt% to 10wt%, in carbon weight converted
3 value, of an organic substance serving as a carbide source is added to the molded
4 product.

1 43. (New) A wafer grinder table having a grinding surface for grinding a
2 semiconductor wafer held on a wafer holding plate, the table including:

3 a plurality of base materials, each of which is a ceramic-metal composite
4 formed by impregnating metal silicon in opened bores of a porous body made of
5 silicon-containing ceramic;

6 a bonding layer formed from the metal silicon to bond the base materials; and
7 a fluid passage formed in a bonding interface of the base materials.

1 44. (New) The wafer grinder table according to claim 43, wherein, in the
2 ceramic-metal composite, the porous body includes silicon carbide crystals with an
3 average grain diameter of 20 μ m to 100 μ m, has a porosity of 10% to 50%, and has
4 a thermal conductivity of 160W/m K or more, and wherein 100 parts by weight of
5 silicon carbide is impregnated with 15 parts by weight to 50 parts by weight of the
6 metal silicon.

1 45. (New) The wafer grinder table according to claim 44, wherein the
2 silicon carbide crystals include 10vol% to 50 vol% of fine silicon carbide crystals,
3 which have an average grain diameter of 0.1 μ m to 1.0 μ m and 50vol% to 90vol%
4 of rough silicon carbide crystals, which have an average grain diameter of 25 μ m to
5 150 μ m.

1 46. (New) The wafer grinder table according to claim 43, wherein the
2 bonding layer has a thickness of 10 μ m to 1500 μ m.

REMARKS

The foregoing Preliminary Amendment is made to present alternative definitions of the invention. No new matter is added. Examination on the merits is respectfully requested.

Respectfully submitted,

Date: 7/30/01

Docket No. 2000-22

J. Rodman Steele, Jr.
Registration No. 25,931
Akerman, Senterfitt & Eidson, P.A.
222 Lakeview Avenue, 4th Floor
Post Office Box 3188
West Palm Beach, FL 33402-3188
Telephone: (561) 653-5000

SPECIFICATION

POROUS SILICON CARBIDE SINTER AND SILICON CARBIDE-METAL
COMPOSITE THAT ARE OPTIMAL FOR A WAFER GRINDER TABLE

5

TECHNICAL AREA

The present invention relates to a porous silicon carbide sinter and a silicon carbide-metal composite, and
10 more particularly, to a silicon carbide sinter and a silicon carbide-metal composite that are optimal for a table that is used by an apparatus for grinding semiconductor wafers, and to a method for manufacturing a silicon carbide sinter and a silicon carbide-metal composite.

15

BACKGROUND ART

Many present-day electric products use semiconductor devices that are manufactured by forming microscopic semi-
20 conducting circuits on silicon chips. Such a semiconductor device is manufactured from a monocrystal silicon ingot through the procedure described below.

The monocrystal silicon ingot is first sliced into thin
25 pieces. The sliced pieces are ground in a lapping process and a polishing process. A bare wafer that has undergone these processes has a mirror surface and is thus referred to as a mirror wafer. Further, a bare wafer that has undergone an epitaxial layer forming process subsequent to the lapping
30 process and prior to the polishing process is specifically referred to as an epitaxial wafer.

In a following wafer treating process, the bare wafer

repetitively undergoes oxidation, etching, and impurity dispersion. After undergoing the above processes, the bare wafer undergoes a dicing process and is cut to an appropriate size thereby finally completing the desired

5 semiconductor device.

In the above processes, the surface of the semiconductor wafer on which a device is formed must be ground in one way or another. Accordingly, various wafer
10 grinders (lapping machines and polishing machines) have been proposed in the prior art as effective means for performing such grinding.

A typical wafer grinder includes a table, a pusher
15 plate, and a cooling jacket. The table is fixed to an upper portion of the cooling jacket. The table and the cooling jacket are both made of a metal material such as stainless steel. The cooling jacket includes a flow passage through which cooling water circulates to cool the table. A wafer
20 that is to be ground is adhered to a holding surface (lower surface) of the pusher plate, which is arranged above the table, by a thermoplastic wax. The wafer held by the pusher plate, which is rotated, is pressed against a grinding surface (top surface) of the table from above the table. As
25 a result, the wafer contacts the grinding surface and the surface on one side of the wafer is uniformly ground. The heat that is built up in the wafer in this state is transferred to the cooling jacket via the table and released from the grinder by the cooling water circulating through
30 the flow passage in the cooling jacket.

The wafer grinder table is often heated to a high temperature during a grinding operation. It is thus required

that the table be formed from a material that is heat
resistant and thermal impact resistant. Further, frictional
force is constantly applied to the grinding surface of the
table. Thus, it is also required that the table be formed
5 from a material that is abrasion resistant. Additionally,
the generation of thermal stress, which bends the wafer,
must be avoided to manufacture a wafer having a large
diameter and high quality. Thus, the temperature difference
within the table must be minimal. It is thus required that
10 the material also have high thermal conductance.

Due to the above circumstances, there are some ceramic
materials having superior physical and mechanical properties
(i.e., new ceramic and engineering ceramic) that are
15 recently drawing attention as materials that will take place
of the metal material that has been used to form the table.
Among these materials, silicon carbide (SiC) has been
receiving particular attention.

20 Silicon carbide has optimal characteristics such as
superior thermal conductance, heat resistance, thermal
impact resistance, abrasion resistance, hardness, oxidation
resistance, and corrosion resistance. Thus, silicon carbide
may be used as, for example, an abrasion resistant material
25 used in mechanical seals, bearings, or the like, a thermal
resistant structural material used in a fireproof element of
a high temperature furnace, a heat exchanger, a combustion
pipe, or the like, or a corrosion resistant material used in
pump components or the like, which tend to be exposed to
30 acids and alkalis. The characteristics of silicon carbide,
especially, high thermal conductance, have resulted in a
recent proposal to use silicon carbide in the table.
Additionally, the impregnation of metal in opened pores of a

porous silicon carbide body to produce a silicon carbide-metal composite having thermal conductance that is superior to a non-impregnated body has been proposed.

5 A silicon carbide sinter has an advantage in that temperature differences do not occur in the sinter due to its ability to efficiently transfer heat. Accordingly, the sinter has high thermal uniformity and thermal response. Further, since thermal stress is not produced and base
10 materials resist bending, the shape stability increases.

However, although the thermal conductivity of the silicon carbide sinter is higher than other ceramic sinters, the value of thermal conductivity of a porous body is only
15 about 10W/m·K to 70W/m·K. Further, although the thermal conductivity of the silicon carbide-metal composite is higher than a silicon carbide non-impregnated body, the value of thermal conductivity is presently only about 100W/m·K to 150W/m·K.

20 Accordingly, the heat conductivity must be further increased to produce a superior material having further thermal uniformity, thermal response, and shape stability. Further, if the material is used in the table, the thermal
25 conductance must be further increased in the same manner to manufacture wafers having larger diameters and higher quality.

When superimposing sheets of base materials, which are
30 made of silicon carbide-metal composite, and bonding the base materials with a resin adhesive, a table having a flow passage in the bonding interface has the shortcomings described below.

In the prior art, an adhesive, the thermal conductivity of which is low, is used to bond base materials. Thus, the adhesive increases the thermal resistance in the bonding 5 interface and decreases the thermal conductivity of the table as a whole. Accordingly, the actual thermal uniformity and thermal response are insufficient regardless of the employment of the silicon carbide-metal composite that has high thermal conductivity. Further, the coefficients of 10 thermal expansion differ significantly between the silicon carbide-metal composite and the adhesive. Thus, cracking and exfoliation are apt to occur at the bonding interface. Accordingly, the table was vulnerable to damage when subjected to a heat cycle, and the long-term reliability was 15 low. Further, when using a brazing material in lieu of the adhesive to bond base materials, the problem of the increased thermal resistance may be solved. However, cracking and exfoliation, which result from the difference in the coefficients of thermal expansion, cannot be 20 prevented.

DISCLOSURE OF THE INVENTION

It is a first object of the present invention to 25 provide a porous silicon carbide body, and a silicon carbide-metal composite having superior thermal conductivity, thermal response, and shape stability.

It is a second object of the present invention to 30 provide a method that ensures the manufacturing of such optimal sinter and composite.

It is a third object of the present invention to

provide a wafer grinder member and a wafer grinder table that is optimal for manufacturing large diameter, high quality wafers.

5 A first aspect of the present invention is a porous sinter having a structure formed by silicon carbide crystals that includes opened pores. The porous silicon carbide sinter has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ or greater, a porosity of 40% or less, and a thermal
10 conductivity of $80\text{W/m}\cdot\text{K}$ or more.

A second aspect of the present invention is a porous sinter having a structure formed by silicon carbide crystals that includes opened pores. The porous silicon carbide sinter has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ to $100\mu\text{m}$, a porosity of 5% to 30%, and a thermal
15 conductivity of $80\text{W/m}\cdot\text{K}$ or more.

A third aspect of the present invention is a method for
20 manufacturing a porous silicon carbide sinter having a structure formed by silicon carbide crystals that includes opened pores. The porous silicon carbide sinter has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ or greater, a porosity of 30% or less, and a thermal
25 conductivity of $80\text{W/m}\cdot\text{K}$ or more. The method includes adding 10 parts by weight to 100 parts by weight of a fine powder of α silicon carbide having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ to 100 parts by weight of a rough powder of α silicon carbide having an average grain diameter of $5\mu\text{m}$
30 to $100\mu\text{m}$ and uniformly mixing the rough powder and the fine powder. A molded product is produced by molding a mixture obtained in the mixing step into a predetermined shape. The molded product is sintered within a temperature range of

1700°C to 2400°C to produce a sinter.

A fourth aspect of the present invention is a table having a grinding surface for grinding a semiconductor wafer
5 held on a wafer holding plate. The table includes a plurality of bonded base materials, each formed from a porous silicon carbide sinter, and a fluid passage formed in a bonding interface of the base materials.

10 A fifth aspect of the present invention is a silicon carbide-metal composite having a porous structure formed by silicon carbide crystals that includes opened pores. The opened pores are impregnated with metal. The silicon carbide-metal composite has a silicon carbide crystal
15 average grain diameter of 20 μm or greater, a porosity of 30% or less, and a thermal conductivity of 160W/m·K or more. Further, 100 parts by weight of silicon carbide are impregnated with 15 parts by weight to 50 parts by weight of metal.

20 A sixth aspect of the present invention is a silicon carbide-metal composite having a porous structure formed by silicon carbide crystals that includes opened pores. The opened pores are impregnated with metal. The silicon carbide-metal composite has a silicon carbide crystal
25 average grain diameter of 20 μm to 100 μm , a porosity of 5% to 30%, and a thermal conductivity of 160W/m·K or more. Further, 100 parts by weight of silicon carbide are impregnated with 15 parts by weight to 50 parts by weight of
30 metal.

A seventh aspect of the present invention is a method for manufacturing a silicon carbide-metal composite having a

porous structure formed by silicon carbide crystals that includes opened pores. 100 parts by weight of silicon carbide are impregnated with 15 parts by weight to 50 parts by weight of metal in the opened pores. The average grain 5 diameter of the silicon carbide crystals is $20\mu\text{m}$ or greater, the porosity is 30% or less, and the thermal conductivity is $160\text{W/m}\cdot\text{K}$ or more. The method includes adding 10 parts by weight to 100 parts by weight of a fine powder of α silicon carbide having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ 10 to 100 parts by weight of a rough powder of α silicon carbide having an average grain diameter of $5\mu\text{m}$ to $100\mu\text{m}$ and uniformly mixing the rough powder and the fine powder. A mixture is produced in the mixing step into a predetermined shape to produce a molded product. The molded product is 15 sintered within a temperature range of 1700°C to 2400°C to produce a sinter. The molded product or the sinter is impregnated with metal.

An eighth aspect of the present invention is a table 20 having a grinding surface for grinding a semiconductor wafer held on a wafer holding plate. The table includes a plurality of bonded base materials, each formed from the silicon carbide-metal, and a fluid passage formed in a bonding interface of the base materials.

25

A ninth aspect of the present invention is a table having a grinding surface for grinding a semiconductor wafer held on a wafer holding plate. The table includes a plurality of base materials, each of which is a ceramic- 30 metal composite formed by impregnating metal silicon in opened bores of a porous body made of silicon-containing ceramic. A bonding layer is formed from the metal silicon to bond the base materials, and a fluid passage is formed in a

bonding interface of the base materials.

BRIEF DESCRIPTION OF THE DRAWINGS

5 Fig. 1 is a schematic view showing a wafer grinder according to a first embodiment of the present invention.

Fig. 2 is an enlarged cross-sectional view showing the main portion of a table used in the wafer grinder of Fig. 1.

10 Fig. 3 is an enlarged schematic cross-sectional view of the table of Fig. 2.

Figs. 4A, 4B, and 4C are graphs showing the grit distribution of porous silicon carbide sinters that form the table of Fig. 2.

15 Fig. 5 is an enlarged schematic cross-sectional view showing a table according to a second embodiment of the present invention.

20 Fig. 6A is an enlarged cross-sectional view showing the main portion of a table according to a third embodiment of the present invention, and Fig. 6B is an enlarged schematic cross-sectional view showing the table of Fig. 6A.

Figs. 7A, 7B, and 7C are schematic cross-sectional views illustrating a process for manufacturing the table of Fig. 6A.

25 BEST MODE FOR CARRYING OUT THE INVENTION

(First Embodiment)

30 A wafer grinder 1 according to a first embodiment will now be discussed with reference to Figs. 1 to 4.

Fig. 1 schematically shows the wafer grinder 1 of the present embodiment. A table 2, which forms the wafer grinder

1, is disk-like. A grinding surface 2a for grinding a semiconductor wafer 5 is defined on the top surface of the table 2. A grinding cloth (not shown) is adhered to the grinding surface 2a. The table 2 of the present embodiment 5 does not use a cooling jacket and is horizontally and directly fixed to the upper end surface of a cylindrical rotary shaft 4. Accordingly, rotation of the rotary shaft 4 rotates the table 2 integrally with the rotary shaft 4.

10 As shown in Fig. 1, the wafer grinder 1 includes a plurality of wafer holding plates 6 (two shown in Fig. 1 to facilitate illustration). The plates 6 may be formed from, for example, a ceramic material, such as glass or alumina, or a metal material, such as stainless. A pusher rod 7 is 15 fixed to the center of one side (non-holding surface 6b) of each wafer holding plate. Each pusher rod 7 is located above the table 2 and connected to a driving means (not shown). Further, each pusher rod 7 horizontally supports the wafer holding plate 6. In this state, the holding surface 6a is 20 opposed to the grinding surface 2a of the table 2. In addition to rotating integrally with the wafer holding plate 6, each pusher rod 7 moves vertically within a predetermined range. Instead of moving the plate 6 vertically, a structure that moves the table 2 vertically may be employed. A 25 semiconductor wafer 5 is adhered to the holding surface 6a of the wafer holding plate 6 by, for example, an adhesive such as thermoplastic wax. The semiconductor wafer 5 may be attracted to the holding surface 6a by vacuum suction or static electricity. In this state, it is required that a 30 ground surface 5a of the semiconductor wafer 5 face the grinding surface 2a of the table 2.

The structure of the table 2 will now be discussed in

detail.

As shown in Figs. 1 and 2, the table 2 of the present embodiment is a superimposed ceramic structure formed by two base materials 11A, 11B, which are made of porous silicon carbide sinter. Grooves 13 arranged in a predetermined pattern and defining part of a coolant passage 12, which is a fluid passage, are formed in the lower surface of the upper base material 11A. The two base materials 11A, 11B are integrally connected to each other by a silver brazing material layer 14. This forms the coolant passage 12 in the bonding interface of the base materials 11A, 11B. Bores 15 are formed in the central portion of the lower substrate 11B. The bores 15 connect flow passages 4a, which extend through the rotary shaft 4, to the coolant passage 12.

The grooves 13, which form part of the coolant passage 12, are ground grooves that are formed by roughly machining the rear surface of the upper base material 11A and then grinding the rear surface before undergoing sintering. It is preferred that the grooves 13 have a depth of about 3mm to 10mm and a width of about 5mm to 20mm.

In the present embodiment, the average grain diameter of the silicon carbide crystals forming a porous structure is set at a relatively large value of $20\mu\text{m}$ or greater. The efficiency of heat transfer within crystals is generally higher than the efficiency of heat transfer between crystals. Thus, the thermal conductivity increases as the average grain diameter increases. Further, the porosity is set at a small value of 40% or less. This also contributes to increasing the thermal conductivity. In other words, the gaps in a sinter decrease as the porosity decreases. This

facilitates the transfer of heat.

Therefore, the temperature difference in the sinter becomes less in comparison to the conventional porous body, 5 the thermal conductivity of which is much smaller than 80W/m·K. As a result, the sinter has significantly high thermal uniformity and thermal response. Further, since the production of thermal stress is avoided and the base materials resist bending, the sinter has extremely high 10 shape stability.

In this case, if the average grain diameter of the silicon carbide crystal is less than 20 μm or if the porosity exceeds 30%, it is difficult for the thermal conductivity to 15 be a value that is 80W/m·K or higher. Accordingly, the thermal uniformity, thermal response, and shape stability cannot be sufficiently improved. It is required that the value of thermal conductivity be 80W/m·K or greater, preferably 100W/m or more, and most preferably 100W/m·K to 20 180W/m·K.

It is preferred that the average grain diameter of the silicon carbide crystals be 20 μm to 100 μm , more preferred that the average grain diameter be 30 μm to 90 μm , and most 25 preferred that the average grain diameter be 40 μm to 70 μm . When the average grain diameter becomes excessively large, the gaps increase and may decrease the density of the sinter.

30 It is preferred that the opened pore porosity be 5% to 30%, more preferred that the porosity be 10% to 25%, and most preferred that the porosity be 10% to 20%.

Further, it is preferred that the sinter includes 10vol% to 50vol% of fine silicon carbide crystals (hereafter referred to as fine crystals 21) having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ and 50vol% to 5 90vol% of rough silicon carbide crystals (hereafter referred to as rough crystals 22) having an average grain diameter of $25\mu\text{m}$ to $65\mu\text{m}$.

When the fine crystals 21 and the rough crystals 22 are 10 included in the sinter at an appropriate ratio as described above, the gaps formed between the rough crystals 22 tend to be filled with the fine crystals 21. This decreases the 15 actual ratio of the gaps. As a result, the thermal resistance of the sinter is further decreased. This significantly contributes to improving the thermal conductance.

It is preferred that the average grain diameter of the fine crystals 21 be $0.1\mu\text{m}$ to $1.0\mu\text{m}$, more preferred that the 20 average grain diameter be $0.1\mu\text{m}$ to $0.9\mu\text{m}$, and most preferred that the average grain diameter be $0.1\mu\text{m}$ to $0.7\mu\text{m}$. To make the average grain diameter of the fine crystals 21 extremely small, expensive fine powder must be used. This may increase the material cost. On the other 25 hand, if the average grain diameter of the fine particles 21 becomes too large, the gaps formed between rough crystals 22 cannot be sufficiently filled. The decrease in the thermal resistance of the sinter may thus be insufficient.

30 It is preferred that the sinter include 10vol% to 50vol% of the fine crystals 21, more preferred that the sinter include 15vol% to 40vol% of the fine crystals 21, and most preferred that the sinter include 20vol% to 40vol% of

the fine crystals 21. If the content ratio of the fine crystals 21 is too small, the amount of the fine crystals 21 that fill the space formed between the rough crystals 22 is insufficient. The thermal resistance of the sinter may thus 5 not be decreased. On the other hand, if the content ratio of the fine crystals 21 is too large, the fine crystals 21 that fill the gaps is excessive and the amount of rough crystals 22 that is required to improve the thermal conductance is insufficient. This may increases the thermal conductance of 10 the sinter.

Further, it is preferred that the average grain diameter of the rough crystals 22 in the sinter be $25\mu\text{m}$ to $150\mu\text{m}$, more preferred that the average grain diameter be 15 $40\mu\text{m}$ to $100\mu\text{m}$, and most preferred that the average grain diameter be $60\mu\text{m}$ to $100\mu\text{m}$. When the average grain diameter of the rough crystal 22 is extremely small, the difference between the grain diameters of the rough crystals 22 and the fine crystals 21 is small. As a result, the desired thermal 20 resistance decreasing effect may not be obtained from the mixture of the fine crystals 21 and the rough crystals 22. On the other hand, if the average grain diameter of the rough crystals 22 is too large, the gaps formed between the rough crystals are large. Thus, even if the amount of fine 25 crystals 21 is sufficient, the gaps may not be sufficiently filled. Accordingly, the decrease in the thermal resistance of the sinter may be insufficient.

It is preferred that the sinter includes 50vol% to 30 90vol% of the rough crystals 22, more preferred that the sinter includes 60vol% to 85vol% of the rough crystals 22, and most preferred that the sinter includes 60vol% to 80vol% of the rough crystals 22. If the content ratio of the rough

crystals 22 is too small, the amount of the rough crystals 22 required to increase the thermal conductivity is too small. This may increase the thermal resistance of the sinter. On the other hand, if the content ratio of the rough 5 crystals 22 is too large, the content ratio 21 of the fine crystals 21 relatively decreases. Thus, the gaps formed between the rough crystals 22 cannot be filled. Accordingly, the decrease in the thermal resistance of the sinter may be insufficient.

10

A method for manufacturing the porous silicon carbide sinter, which forms the table 2, will now be discussed.

15 The porous silicon carbide sinter is manufactured through a material preparing process, in which fine powder is mixed with rough powder at a predetermined ratio, a molding process, and a sintering process.

20 In the material preparing process, 10 parts by weight to 100 parts by weight of a fine powder of α silicon carbide having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ is uniformly mixed with 100 parts by weight of a rough powder of α silicon carbide having an average grain diameter of $5\mu\text{m}$ to $100\mu\text{m}$.

25

It is preferred that the average grain diameter of the rough powder of α silicon carbide be $5\mu\text{m}$ to $100\mu\text{m}$, more preferred that the average grain diameter be $15\mu\text{m}$ to $75\mu\text{m}$, and most preferred that the average grain diameter be $25\mu\text{m}$ to $60\mu\text{m}$. If the average grain diameter of the α silicon carbide is less than $5\mu\text{m}$, abnormal grain growth may not be effectively suppressed. On the other hand, if the average grain diameter of the rough powder of α silicon carbide

exceeds $60\mu\text{m}$, in addition to decreased moldability, the strength of the obtained porous decreases.

It is preferred that the average grain diameter of the fine powder of α silicon carbide be $0.1\mu\text{m}$ to $1.0\mu\text{m}$, more preferred that the average grain diameter be $0.1\mu\text{m}$ to $0.8\mu\text{m}$, and most preferred that the average grain diameter be $0.2\mu\text{m}$ to $0.5\mu\text{m}$. If the average grain diameter of the α silicon carbide is less than $0.1\mu\text{m}$, it becomes difficult to control grain growth and material costs inevitably becomes high. On the other hand, if the average grain diameter of the α silicon carbide exceeds $1.0\mu\text{m}$, it may become difficult to fill the gaps formed between the rough crystals 22. The alpha type is selected as the fine powder because, compared with the beta type, the crystal orientation is improved and the thermal conductivity is increased.

It is preferred that the mixed amount of the fine powder be 10 parts by weight to 100 parts by weight, more preferred that the mixed amount be 15 parts by weight to 65 parts by weight, and most preferred that the mixed amount be 20 parts by weight to 60 parts by weight. If the mixed amount of the fine powder is too small, the amount of fine crystals 21 that fill the space formed between the rough crystals 22 is insufficient. Thus, the decrease of the thermal resistance of the sinter may be insufficient. Further, this results in the necessity to set the sintering temperature at an extremely high temperature to obtain the desired pore diameter of $20\mu\text{m}$ or larger and is disadvantageous from the viewpoint of cost. On the other hand, if the mixed amount of the fine powder is too large, the amount of the rough crystals 22 required to improve thermal conductance is insufficient. Thus, the decrease of

the thermal resistance of the sinter may be insufficient. Further, it becomes difficult to manufacture a sinter that has superior strength.

5 In the material preparing process, a molding binder and a dispersing solvent are mixed with the two types of powder as required. These substances are mixed and kneaded uniformly and the viscosity is adjusted as required to produce raw slurry. The raw slurry may be mixed by means of
10 a vibrating mill, an attriter, a ball mill, a colloid mill, a high speed mixer, or the like. The mixed raw slurry may be kneaded by means of a, for example, a kneader.

Polyvinyl alcohol, methyl cellulose, carboxymethyl
15 cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, epoxy resin, acrylic resin, or the like may be used as the molding binder. It is preferred that the content ratio of the molding binder normally be within the range of 1 part by weight to 10 parts by weight with respect to a
20 total of 100 parts by weight of the silicon carbide powder. If the ratio is less than 1 part by weight, the strength of the manufactured molding product is insufficient, which makes handling difficult. On the other hand, if the ratio exceeds 10 parts by weight, cracks may be produced in the
25 molded product when eliminating the molding binder through dehydration or the like. This would decrease yield.

An organic solvent, such as benzene or cyclohexene, an alcohol, such as methanol, and water, or the like may be
30 used as the dispersing solvent.

Then, the raw slurry is used to form granules of silicon carbide. To granulate the silicon carbide powder, a

commonly used technique that is known in the art, such as a mist-dry granulation process (the so-called spray-dry process), may be employed. In other words, a process that aerifies and quickly dries the raw slurry, which is

5 accommodated in a container in a hot state, may be employed.

It is preferred that the granule moisture rate be 0.1wt% to 2.0wt% and further preferred that the granule moisture rate be 0.2wt% to 1.0wt%. This is because the
10 thermal conductivity increases since the molding product density and the sinter density increase when the granule moisture rate is in the above range. If the granule moisture rate is less than 0.1wt%, the molding product density and the sinter density do not increase sufficiently. Thus, it
15 becomes difficult for the thermal conductivity to increase. On the other hand, if the granule moisture rate exceeds 2.0wt%, the molding product may crack during dehydration. This would decrease yield.

20 In the following molding process, the granules, which are formed from the mixture obtained in the material preparing process, are molded into a predetermined shape to produce a molded product.

25 In this state, it is preferred that the molding pressure be $1.0t/cm^2$ to $1.5t/cm^2$, and more preferred that the molding pressure be $1.1t/cm^2$ to $1.4t/cm^2$. This is because the thermal conductivity increases since the molding product groove and sinter density increases. If the molding pressure
30 is less than $1.0t/cm^2$ to $1.5t/cm^2$, the molding product density and the sinter density do not increase sufficiently. Thus, it becomes difficult for the thermal conductivity to increase. On the other hand, if molding is performed by

applying a pressure that is greater than 1.5t/cm², the molding product density, or the like, may be sufficiently increased. However, an exclusive press would be necessary thus increasing equipment costs and complicating
5 manufacturing.

It is preferred that the density of the molding product be 2.0g/cm³ or more, and especially preferred that the density be 2.2g/cm³ to 2.7g/cm³. This is because the number
10 of locations where the silicon carbide grains are connected to one another is too small when the density of the molded product is too small. As a result, the strength of the manufactured porous body decreases and makes it difficult to handle. On the other hand, if the density of the molded
15 product is increased, an exclusive press becomes necessary thus increasing equipment costs and complicating manufacturing.

In the following sintering process, the sinter is
20 formed by sintering the molded body obtained in the molding process in a temperature range of 1700°C to 2400°C, preferably in the temperature range of 2000°C to 2300°C, and most preferably in the temperature range of 2000°C to 2300°C.
25

If the sintering temperature is too low, it is difficult for necks, which bond silicon carbide grains to one another, to grow sufficiently. Thus, high thermal conductivity and high strength may not be obtained. On the
30 other hand, if the sintering temperature is too high, thermal decomposition of the silicon carbide occurs and decreases the strength of the sinter. In addition, the amount of thermal energy used by a sintering furnace

increases. This is disadvantageous from the viewpoint of costs.

The interior of the sintering furnace during sintering
5 should be maintained in a gas atmosphere (i.e., non-
oxidation atmosphere, inert atmosphere) that contains at
least one selected from, for example, argon, helium, neon,
nitrogen, hydrogen, and carbon monoxide. The interior of the
sintering surface may also be in a vacuum state.

10

It is advantageous that volatilization of the silicon carbide from the molded product be suppressed to improve the growth of the necks during sintering. Volatilization of the silicon carbide from the molded product is effectively
15 suppressed by putting the molded body in an insulative container that can be sealed from ambient air. Graphite or silicon carbide are the preferred material for forming the insulative container.

20 By performing each of the above steps, the manufacturing of a porous silicon carbide sinter having superior thermal conductivity, thermal response, and shape stability is guaranteed.

25 Referential examples specifically employing the present embodiment will now be discussed.

[Referential Example 1-1]

30 In referential example 1-1, a rough powder (#400) of a silicon carbide having an average grain diameter of $30\mu\text{m}$ and a fine powder (GMF-15H2) of a silicon carbide having an average grain diameter of $0.3\mu\text{m}$ were prepared. Then, 30

parts by weight of the fine powder was added to 100 parts by weight of the rough powder and uniformly mixed.

Then, 5 parts by weight of polyvinyl alcohol and 50 parts by weight of water were added to 100 parts by weight of the mixture and mixed in a ball mill for five hours to obtain a uniform mixture. After drying the mixture for a predetermined time to eliminate a certain amount of moisture, an appropriate amount of the dried mixture was granulated. In this state, the moisture rate of the granules was adjusted to about 0.8wt%. Subsequently, the granules of the mixture were molded by a metal mold by applying a pressure of $1.3t/cm^2$. The disk-like molded product (50mmΦ, 5mm t) had a density of $2.6g/cm^3$.

15

Then, the lower surface of the molded product, which was subsequently formed into the upper base material 11A, was ground to form the grooves 13, which have a depth of 5mm and a width of 10mm, on the entire lower surface.

20

The molded product was then put into a crucible and sintered with a Tammann sintering furnace. The sintering was performed in an argon gas atmosphere of one atmosphere. During the sintering, the temperature was raised to $2200^{\circ}C$ at a temperature rising rate of $10^{\circ}C/min$ and maintained at this temperature for four hours.

In the manufactured base materials 11A, 11B, which were made of porous silicon carbide sinter, the porosity of the opened pores 23 was 20%, the thermal conductivity was $130W/m\cdot K$, and the density was $2.5g/cm^3$. Further, the average grain diameter of the silicon carbide crystals was $30\mu m$. More specifically, the base materials 11A, 11B included

20vol% of the fine crystals 21 having an average grain diameter of $1.0\mu\text{m}$ and 80vol% of the rough crystals 22 having an average grain diameter of $40\mu\text{m}$. The graph of Fig. 4C shows the grit distribution of the sinter of referential example 1-1.

A shaping process was then performed using a technique known in the art. Afterward, the two base materials 11A, 11B were integrally bonded with each other using a silver brazing material. Further, the upper surface of the upper base material 11A was ground to complete the table 2.

The table 2 of the referential example 1-1 that was manufactured in this manner was set on various types of the grinder 1 and the semiconductor wafers 5 of varied sizes were ground while constantly circulating the cooling water W in the coolant passage 12. The semiconductor wafers 5, which were ground by the various types of the grinder 1, were observed. There was no damage to the wafers 5 regardless of size. Further, the wafers 5 were not bent. In other words, it was confirmed that the semiconductor wafers 5 having very large diameters and high quality were manufactured when using the table 2 of this referential example.

Fig. 3 is an enlarged schematic cross-sectional view showing the table 2 of referential example 1-1. The porous silicon carbide sinter forming the table 2 includes the fine crystals 21 and the rough crystals 22. The gaps formed between the rough crystals 22 are substantially filled with the fine crystals 21. Accordingly, it can be considered that the actual ratio of the gaps, or the porosity of the opened pores 23 is very small.

[Referential Example 1-2]

In referential example 1-2, a rough powder (#360) of α silicon carbide having an average grain diameter of $35\mu\text{m}$ was used, and 30 parts by weight of fine powder was added to 100 parts by weight of rough powder and uniformly mixed. The other conditions were basically the same as referential example 1-1.

10 As a result, in the manufactured base materials 11A, 11B, which were made of porous silicon carbide sinter, the porosity of the opened pores 23 was 17%, the thermal conductivity was $145\text{W/m}\cdot\text{K}$, and the density was 2.55g/cm^3 . Further, the average grain diameter of the silicon carbide 15 crystals was $36\mu\text{m}$. More specifically, the base materials 11A, 11B included 20vol% of the fine crystals 21 having an average grain diameter of $1.0\mu\text{m}$ and 80vol% of the rough crystals 22 having an average grain diameter of $45\mu\text{m}$. The graph of Fig. 4B shows the grit distribution of the sinter 20 of referential example 1-2.

After completing the table 2 through the same procedure as referential example 1, the table 2 was set on the various types of the grinder 1 and the semiconductor wafers 5 of 25 various sizes were ground. Like referential example 1-1, excellent results were obtained.

[Referential Example 1-3]

30 In referential example 1-3, a rough powder (#240) of α silicon carbide having an average grain diameter of $57\mu\text{m}$ was used, and 30 parts by weight of fine powder was added to 100 parts by weight of the rough powder and uniformly mixed. The

other conditions were basically the same as referential example 1-1.

As a result, in the manufactured base materials 11A,
5 11B, which were made of porous silicon carbide sinter, the porosity of the opened pores 23 was 15%, the thermal conductivity was 150W/m·K, and the density was 2.6g/cm³. Further, the average grain diameter of the silicon carbide crystals was 65μm. More specifically, the base materials
10 11A, 11B included 20vol% of the fine crystals 21 having an average grain diameter of 1.0μm and 80vol% of the rough crystals 22 having an average grain diameter of 80μm. The graph of Fig. 4A shows the grit distribution of the sinter of referential example 1-3.

15

After completing the table 2 through the same procedure as referential example 1, the table 2 was set on the various types of the grinder 1 and the semiconductor wafers 5 of various sizes were ground. Like referential example 1-1,
20 excellent results were obtained.

[Comparative Example 1]

In comparative example 1, a rough powder of α silicon carbide having an average grain diameter of 10μm was used,
25 and 45 parts by weight of fine powder having an average grain diameter of 0.7μm was added to 100 parts by weight of the rough powder and uniformly mixed. The other conditions were basically the same as those of referential example 1-1.

30

Then, 5 parts by weight of polyvinyl alcohol and 50 parts by weight of water was added to 100 parts by weight of the mixture and mixed in a ball mill for five hours to

obtain a uniform mixture. After drying the mixture for a predetermined time to eliminate a certain amount of moisture, an appropriate amount of the dried mixture was granulated. Subsequently, the granules of the mixture were 5 molded by a metal mold by applying a pressure of $0.6 \text{t}/\text{cm}^2$. The disk-like molded product had a density of $2.0 \text{g}/\text{cm}^3$.

Then, the lower surface of the molded product, which was subsequently formed into the upper base material 11A, was ground to form the grooves 13, which have a depth of 5mm and a width of 10mm, on substantially the entire lower surface.

The molded product was then put into a graphite crucible that seals out ambient air and sintered in a Tammann sintering furnace. The sintering was performed in an argon gas atmosphere of one atmosphere. During the sintering, the temperature was raised to 1700°C at a temperature rising rate of 10°C/min and maintained at this temperature for four hours.

As a result, in the manufactured base materials 11A, 11B, which were made of porous silicon carbide sinter, the porosity of the opened pores 23 was 38%, the thermal conductivity was $50\text{W}/\text{m}\cdot\text{K}$, and the density was $2.0\text{g}/\text{cm}^3$. Further, the average grain diameter of the silicon carbide crystals was $10\mu\text{m}$.

Each of the referential examples in the present embodiment has the advantages described below.

(1) In the porous silicon carbide sinter that forms the table 2 in each of the referential examples, the average

grain diameter of the silicon carbide crystals is 20 μm to 100 μm , the porosity is 5% to 30%, and the thermal conductivity is 80W/m·K or greater. Further, each of the sinters include 10vol% to 50vol% of the fine crystals 21 having an average grain diameter of 0.1 μm to 1.0 μm and 50vol% to 90vol% of the rough crystals 22 having an average grain diameter of 25 μm to 65 μm .

Thus, the value of the thermal conductivity exceeds 100W/m·K and the table 2 has very high thermal conductance. Thus, the temperature difference in the sinter is smaller than the conventional products. As a result, the sinter has very high thermal uniformity and thermal response. Further, the production of thermal stress is avoided and the base materials 11A, 11B resist bending. Thus, the shape stability of the sinter is extremely high. Further, this enables the wafers 5 to have larger diameters and high quality.

(2) In the table 2, the cooling water W flows through 20 the coolant passage 12, which is arranged in the bonding interface of the base materials 11A, 11B. Thus, the heat produced when grinding the semiconductor wafers 5 is directly and efficiently released from the table 2. In addition, fine control of the temperature is enabled. Thus, 25 compared with a conventional apparatus that arranges a cooling jacket on the table to perform indirect cooling, the temperature difference in the table 2 is very small and the thermal uniformity and thermal response are improved drastically. Thus, the wafers 5 do not affect the apparatus 30 1 in an undesirable manner and enlargement of the diameters of the wafers 5 is enabled. In addition, since the wafers 5 are ground with high accuracy, the quality of the wafers 5 is high.

The present embodiment may be modified as described below.

5 In addition to a metal bonding material such as a brazing material, the base materials 11A, 11B may be bonded with each other by a resin adhesive (e.g., epoxy resin).

10 The base materials 11A, 11B do not necessarily have to bond by the brazing material layer 14. For example, the base materials 11A, 11B may be fastened to each other by nuts and bolts.

15 In the present embodiment, the table 2 may have a three-layer structure instead of the two-layer structure. A table may also have a superimposed structure with four or more layers.

20 Instead of forming the grooves 13 only in the upper base material 11A, the grooves 13 may be formed only in the lower base material 11B. Alternatively, the grooves 13 may be formed in both base materials 11A, 11B.

25 When using the table 2 of the present embodiment, a liquid other than water may be circulated in the coolant passage 12. Further, a gas may also be circulated.

30 In addition to the table 2 of the wafer grinder, the porous silicon carbide sinter according to the present invention may be employed in a member other than the table (e.g., wafer top plate). Of course, the application of the present invention is not restricted to an element that forms a semiconductor manufacturing apparatus such as the wafer

grinder table 2. For example, the sinter may be used in a heat radiating body of a substrate to which electronic components are connected. Further, the sinter may of course be used as an abrasion resistant material for mechanical seals, bearings, or the like, a fireproof material for high temperature furnaces, a heat resistant structural material for heat exchangers, combustions pipes, or the like, and a corrosion resistant material for pumps or the like.

10 (Second Embodiment)

A table 2 according to a second embodiment will now be described with reference to Fig. 5. Parts that are the same as the first embodiment will not be described in detail.

15 In the silicon carbide-metal composite of the present embodiment, the average grain diameter of the silicon carbide crystals is $20\mu\text{m}$ or greater, the porosity is 30% or less, and the thermal conductivity is $160\text{W/m}\cdot\text{K}$ or greater.
20 Further, 100 parts by weight of silicon carbide is impregnated with 15 parts by weight to 50 parts by weight of metal.

The average grain diameter of the silicon carbide crystals forming the porous structure is a relatively large value that is $20\mu\text{m}$ or greater. The efficiency of heat transfer within crystals is generally higher than the efficiency of heat transfer between crystals. Thus, the thermal conductivity increases as the average grain diameter increases. Further, the porosity is set at a small value of 30% or less. This also contributes to increasing the thermal conductivity. In other words, the gaps in the porous structure decrease as the porosity decreases. This

facilitates the transfer of heat. The impregnation of 100 parts by weight of silicon carbide with 15 parts by weight to 50 parts by weight of metal improves the thermal conductivity.

5

Further, in comparison to a conventional composite having thermal conductivity that is much lower than 160W/m·K, the temperature difference in the composite is small. As a result, the composite has high thermal 10 uniformity and thermal response. Further, since thermal stress is not produced and the base materials 11A, 11B resist bending, the shape stability of the composite increases.

15 In this case, if the average grain diameter of the silicon carbide crystals is less than 20 μ m or the porosity exceeds 30%, it is difficult for the thermal conductivity to have a large value of 160W/m·K or greater even if 20 impregnation is performed. Accordingly, the thermal uniformity, thermal response, and shape stability are not sufficiently improved. It is required that the value of thermal conductivity be 160W/m·K or greater, preferably 180W/m·K to 260W/m·K, and most preferably 200W/m·K to 260W/m·K.

25

In the present embodiment, it is required that 100 parts by weight of silicon carbide be impregnated with 15 parts by weight to 50 parts by weight of metal. By 30 performing metal impregnation, the opened pores 23 in the sinter are filled with metal. This virtually forms a dense body and increases the thermal conductivity and strength.

It is preferred that metal silicon 24 be selected as

the impregnation metal. The metal silicon 24 adapts well to silicon carbide and has a high thermal conductivity. Thus, by filling the opened pores in the sinter with the metal silicon 24, an improvement in the thermal conductance and 5 strength is guaranteed.

In this case, it is preferred that 100 parts by weight of silicon carbide be impregnated with 15 to 45 parts by weight of the metal silicon 24, and further preferred that 10 the silicon carbide be impregnated with 15 to 30 parts by weight of the metal silicon 24. If the impregnated amount is less than 15 parts by weight, the thermal resistance of the composite may not be decreased. On the other hand, if the 15 impregnated amount exceeds 30 parts by weight, the proportion of the crystal may relatively decrease and, in some cases, decrease thermal conductivity.

When selecting a material other than metal silicon 24 such as metal aluminum, 100 parts by weight of silicon 20 carbide may be impregnated with 20 to 50 parts by weight of the metal aluminum. If the impregnated amount is not included in the above range, the thermal conductivity may decrease.

25 A method for manufacturing the porous silicon carbide sinter, which forms the table 2, will now be discussed.

The porous silicon carbide sinter of this embodiment is manufactured through a material preparing process, in which 30 fine powder is mixed with rough powder at a predetermined ratio, a molding process, a sintering process, and a metal impregnating process. The metal impregnating process may be performed either before or after the sintering process. The

material preparing process, the molding process, and the sintering process have been described in the first embodiment and will thus not be discussed below.

5 In a metal impregnating process that is performed after the sintering process, metal is impregnated in the sinter (i.e., non-impregnated composite) as described below.

For example, when impregnating the metal silicon 24, it
10 is preferred that the sinter be impregnated with a carbonaceous substance beforehand. Such a carbonaceous substance includes an organic substance, such as furfural resin, phenol resin, lignin sulfonic acid, polyvinyl alcohol, cornstarch, molasses, coal-tar pitch, and alginate.
15 Pyrolytic carbon such as carbon black and acetylene may also be used.

A carbonaceous substance is impregnated beforehand because it forms a new silicon carbide film on the surface
20 of the opened pores 23 of the sinter and strengthens the bonding between the molten silicon and the porous body. Further, the impregnation of the carbonaceous substance increases the strength of the sinter.

25 The metal silicon 24 may be filled in the opened pores 23, for example, by heating and melting the metal silicon 24 and impregnating the melted silicon. Further, fine grains of the metal silicon 24 may be dispersed in a dispersion liquid. Then, a porous body may be impregnated with the
30 dispersion liquid and heated to a metal silicon melting temperature or higher.

The metal impregnating process may be performed on a

molded product, or before the sintering process. This would save power and thus decrease cost although the quality of the obtained product would slightly deteriorate.

5 A few referential examples specifically employing the present embodiment will now be discussed.

[Referential Example 2-1]

10 In referential example 2-1, a rough powder (#400) of a silicon carbide having an average grain diameter of $30\mu\text{m}$ and a fine powder (GMF-15H2) of a silicon carbide having an average grain diameter of $0.3\mu\text{m}$ were prepared. Then, 30 parts by weight of the fine powder was added to 100 parts by 15 weight of the rough powder and uniformly mixed.

Then, 5 parts by weight of polyvinyl alcohol, 3 parts by weight of phenolic resin, and 50 parts by weight of water were added to 100 parts by weight of the mixture and mixed 20 in a ball mill for five hours to obtain a uniform mixture. After drying the mixture for a predetermined time to eliminate a certain amount of moisture, an appropriate amount of the dried mixture was granulated. In this state, the moisture rate of the granules was adjusted to about 25 0.8wt%. Subsequently, the granules of the mixture were molded by a metal mold by applying a pressure of $1.3\text{t}/\text{cm}^2$. The disk-like molded product (50mmΦ, 5mmt) had a density of $2.6\text{g}/\text{cm}^3$.

30 Then, the lower surface of the molded product, which was subsequently formed into the upper base material 11A, was ground to form the grooves 13, which have a depth of 5mm and a width of 10mm, on the entire lower surface.

The molded product was then put into a graphite crucible and sintered with a Tammann sintering furnace. The sintering was performed in an argon gas atmosphere of one atmosphere. During the sintering, the temperature was raised to 2200°C at a temperature rising rate of 10°C/min and maintained at this temperature for four hours.

The produced porous sinter was vacuum impregnated with phenolic resin (carbonization rate 30wt%) and then dried. Subsequently, the surface of the porous sinter was coated with slurry including the metal silicon 24. The mixture of 100 parts by weight of metal silicon powder, which had an average grain diameter of 20 μ m and a purity of 99.9999wt%, and 60 parts by weight of 5% acrylic acid ester benzene solution was used as the slurry. The porous sinter coated with metal silicon 24 was then heated in an argon gas current at a temperature rising rate of 450°C/hour and maintained at the maximum temperature of 1450°C for about one hour. This treatment impregnated the porous sinter with metal silicon and produced a silicon carbide-metal composite. The impregnation amount of the metal silicon 24 relative to 100 parts by weight of silicon carbide was 30 parts by weight.

25

In the manufactured base materials 11A, 11B, which were made of a silicon carbide-metal composite, the porosity of opened pores 23 in the porous structure was 20%, the thermal conductivity as a whole was 210W/m·K, and the density as a whole was 3.0g/cm³. Further, the average grain diameter of the silicon carbide crystals was 30 μ m. More specifically, the base materials 11A, 11B included 20vol% of the fine crystals 21 having an average grain diameter of 1.0 μ m and

80vol% of the rough crystals 22 having an average grain diameter of $40\mu\text{m}$. The graph of Fig. 4C shows the grit distribution in referential example 2-1.

5 A shaping process was then performed using a technique known in the art. Afterward, the two base materials 11A, 11B were integrally bonded with each other using a silver brazing material. Further, the upper surface of the upper base material 11A was ground to complete the table 2.

10

The table 2 of the example 2-1 that was manufactured in this manner was set on various types of the grinder 1 and the semiconductor wafers 5 of varied sizes were ground while constantly circulating the cooling water W in the coolant passage 12. The semiconductor wafers 5, which were ground by the various types of the grinder 1, were observed. There were no damages to the wafers 5 regardless of size. Further, the wafers 5 were not bent. In other words, it was confirmed that the semiconductor wafers 5 having very large diameters 20 and high quality were manufactured when using the table 2 of this referential example.

Fig. 5 is an enlarged schematic cross-sectional view showing the table 2 of referential example 2-1. The silicon carbide-metal composite forming the table 2 includes the fine crystals 21 and the rough crystals 22. The gaps formed between the rough crystals 22 are substantially filled with the fine crystals 21. Accordingly, it can be considered that the actual ratio of the gaps, or the porosity of the opened pores 23, is very small. In addition, the metal silicon 24 is embedded in the remaining gaps.

[Referential Example 2-2]

In referential example 2-2, a rough powder (#360) of α silicon carbide having an average grain diameter of $35\mu\text{m}$ was used, and 40 parts by weight of fine powder was added to 100 parts by weight of the rough powder and uniformly mixed. The other conditions were basically the same as referential example 2-1.

As a result, in the manufactured base materials 11A, 11B, which were made of silicon carbide-metal composite, the porosity of the opened pores of the porous structure was 17%, the entire thermal conductivity was $220\text{W/m}\cdot\text{K}$, and the density was 3.0g/cm^3 . Further, the average grain diameter of the silicon carbide crystals was $36\mu\text{m}$. More specifically, the base materials 11A, 11B included 20vol% of the fine crystals 21 having an average grain diameter of $1.0\mu\text{m}$ and 80vol% of the rough crystals 22 having an average grain diameter of $45\mu\text{m}$. The graph of Fig. 4B shows the grit distribution of the sinter of referential example 2-2.

After completing the table 2 through the same procedure as referential example 2-1, the table 2 was set on the various types of the grinder 1 and the semiconductor wafers 5 of various sizes were ground. Like referential example 2-1, excellent results were obtained.

[Referential Example 2-3]

In referential example 2-3, a rough powder (#240) of α silicon carbide having an average grain diameter of $57\mu\text{m}$ was used, and 40 parts by weight of fine powder was added to 100 parts by weight of the rough powder and uniformly mixed. The other conditions were basically the same as referential

example 2-1.

As a result, in the manufactured base materials 11A, 11B, which were made of silicon carbide-metal composite, the 5 porosity of the opened pores 23 was 15%, the thermal conductivity was 230W/m·K, and the density was 3.1g/cm³. Further, the average grain diameter of the silicon carbide crystals was 65μm. More specifically, the base materials 11A, 11B included 20vol% of the fine crystals 21 having an 10 average grain diameter of 1.0μm and 80vol% of the rough crystals 22 having an average grain diameter of 80μm. The graph of Fig. 4A shows the grit distribution of the sinter of referential example 2-3.

15 After completing the table 2 through the same procedure as referential example 2-1, the table 2 was set on the various types of the grinder 1 and the semiconductor wafers 5 of various sizes were ground. Like referential example 2-1, excellent results were obtained.

20

[Comparative Example 2]

In comparative example 2, a rough powder of a silicon carbide having an average grain diameter of 10μm was used, 25 and 45 parts by weight of fine powder having an average grain diameter of 0.7μm was added to 100 parts by weight of the rough powder and uniformly mixed. The other conditions were basically the same as referential example 1-1.

30 Then, 5 parts by weight of polyvinyl alcohol and 50 parts by weight of water was added to 100 parts by weight of the mixture and mixed in a ball mill for five hours to obtain a uniform mixture. After drying the mixture for a

predetermined time to eliminate a certain amount of moisture, an appropriate amount of the dried mixture was granulated. Subsequently, the granules of the mixture were molded by a metal mold by applying a pressure of $0.6t/cm^2$.

5 The disk-like molded product had a density of $2.0g/cm^3$. Then, the metal silicon 24 was impregnated under the same conditions as referential example 1-1.

Then, the lower surface of the molded product, which 10 was subsequently formed into the upper base material 11A, was ground to form the grooves 13, which have a depth of 5mm and a width of 10mm, on substantially the entire lower surface.

15 The molded product was then put into a graphite crucible that seals out ambient air and sintered in a Tammann sintering furnace. The sintering was performed in an argon gas atmosphere of one atmosphere. During the sintering, the temperature was raised to $1700^{\circ}C$ at a 20 temperature rising rate of $10^{\circ}C/min$ and maintained at this temperature for four hours.

As a result, in the manufactured base materials 11A, 11B, which were made of silicon carbide-metal composite, the 25 porosity of the opened pores 23 was 38%, the thermal conductivity was $130W/m\cdot K$, and the density was $2.8g/cm^3$. Further, the average grain diameter of the silicon carbide crystals was $10\mu m$.

30 Each of the referential examples in the present embodiment has the advantages described below.

(1) In the composite that forms the table 2 in each of

the referential examples, the average grain diameter of the silicon carbide crystals is $20\mu\text{m}$ to $100\mu\text{m}$, the porosity of the porous structure is 5% to 30%, and the thermal conductivity as a whole is $160\text{W/m}\cdot\text{K}$ or greater. Further, 100 parts by weight of silicon carbide is impregnated with 15 parts by weight to 45 parts by weight of the metal silicon 24.

In addition, each of the composites include 10vol% to 10 50vol% of fine crystals having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ and 50vol% to 90vol% of rough crystals having an average grain diameter of $25\mu\text{m}$ to $150\mu\text{m}$.

Thus, the value of the thermal conductivity exceeds 15 $160\text{W/m}\cdot\text{K}$ and the table 2 has very high thermal conductance. Thus, the temperature difference in the composite is smaller than the conventional products. As a result, the composite has very high thermal uniformity and thermal response. Further, the production of thermal stress is avoided and the 20 base materials 11A, 11B resist bending. Thus, the shape stability of the composite is extremely high. Further, this enables the wafers 5 to have larger diameters and high quality.

25 (2) In the table 2, the cooling water W flows through the coolant passage 12, which is arranged in the bonding interface of the base materials 11A, 11B. Thus, the heat produced when grinding the semiconductor wafers 5 is directly and efficiently released from the table 2. In 30 addition, fine control of the temperature is enabled. Thus, compared with a conventional apparatus that arranges a cooling jacket on the table to perform indirect cooling, the temperature difference in the table 2 is very small and the

thermal uniformity and thermal response are improved drastically. Thus, the wafers 5 do not affect the apparatus 1 in an undesirable manner and enlargement of the diameters of the wafers 5 is possible. In addition, since the wafers 5 are ground with high accuracy, the quality of the wafers 5 is high.

The present embodiment may be modified as described below.

10

The impregnation metal impregnated in the sinter is not limited to the metal silicon 24, which is employed in this embodiment. Impregnation may be performed using a conductive metal material, such as aluminum, gold, silver, copper, or 15 titanium.

(Third Embodiment)

A table 2 according to a third embodiment will now be 20 described with reference to Figs. 6 and 7. Parts that are the same as the above embodiments will not be described in detail.

In the table 2 of this embodiment, silicon carbide-metal composites 18 are adhered to each other by means of a bonding layer 31, which is made of metal silicon 24, and not 25 the brazing material layer 14.

The difference in coefficient of thermal expansion 30 between silicon carbide-metal composites 18 and the adhering layer 31, which is made of the metal silicon 24, is extremely small. This structure prevents the formation of cracks and exfoliation in the bonding interface. Thus, the

P
A
T
E
N
T
E
D
U
S
A

composites 18 resists being damaged when subjected to a heat cycle and has superior long-term reliability. Further, the thermal conductivity of the metal silicon 24 is much higher than a typical adhesive. Thus, the metal silicon 24 does not 5 increase thermal resistance in the bonding interface. Accordingly, the composites 18 have superior thermal conductivity.

It is preferred that the thickness of the bonding layer 10 31, which is made of metal silicon 24, be $10\mu\text{m}$ to $1500\mu\text{m}$, and further preferred that the thickness be $100\mu\text{m}$ to $1500\mu\text{m}$. This is because if the thickness of the bonding layer 31 is less than $10\mu\text{m}$, the bonding strength may be insufficient. On the other hand, if the thickness of the 15 bonding layer 31 is greater than $1500\mu\text{m}$, it becomes difficult to set the conditions of impregnation such as temperature and time. This may cause the bonding to become difficult.

20 The reason for selecting metal silicon 24 as the impregnation metal is because metal silicon 24 easily adapts to silicon carbide and has high thermal conductivity. Thus, charging the metal silicon 24 in opened pores 23 of porous bodies 17 increases the thermal conductivity and strength. 25 Further, unlike a resin material such as an adhesive, the coefficient of thermal expansion of the metal silicon 24 is approximate to silicon carbide. Thus, the metal silicon 24 is optimal for use as the material of the bonding layer 31.

30 The procedure for manufacturing the table 2 will now be discussed with reference to Fig. 3.

The silicon carbide porous body 17 is manufactured

through a material preparing process, in which fine powder is mixed with rough powder at a predetermined ratio, a molding process, a sintering process, and a metal impregnating/base material bonding process. The material preparing process, the molding process, and the sintering process have already been described in detail in the above embodiments and thus will not be discussed below.

In the metal impregnating/base material bonding process that follows the sintering process, the non-impregnated porous bodies 17 are impregnated with the metal silicon 24 in the manner described below. When impregnating the metal silicon 24, it is preferred that the porous bodies 17 be impregnated with a carbonaceous substance.

First, multiple sheets of the porous bodies 17 are superimposed. Then, solid metal silicon 24 is placed on the uppermost portion of the superimposition (refer to Figs. 7A and B). In this embodiment, the solid metal silicon 24 is block-like. However, the metal silicon 24 may be powder-like, grain-like, or sheet like. Further, paste-like silicon 24 may be used in lieu of the solid metal silicon 24 and may be applied to the uppermost portion of the superimposition structure.

Then, the superimposition is set in a furnace and heated for a predetermined time at a predetermined temperature (refer to Fig. 7C). As a result, the solid or paste-like metal silicon 24 melts and falls through and out of the opened pores 23 of the porous bodies 17. This impregnates the metal silicon 24 in the porous bodies 17 and produces the desired silicon carbide-metal composites 18.

Simultaneously, the bonding layer 31, which is made of metal

silicon 24, bonds the composites 18 to one another.

It is preferred that the heating temperature be set at 1500°C to 2000°C. This is because if the temperature is 5 lower than 1500°C, the metal silicon 24 does not completely melt and flow down. This may produce non-impregnation portions in the composites 18 or non-bonded portions in the bonding interface. On the other hand, if the temperature is higher than 2000°C, the metal silicon 24 vaporizes 10 (sublimates). This may cause the amount of metal silicon 24 in the bonding interface to be insufficient and thus decrease the bonding strength. Further, since heat energy is wasted during the heating, economic efficiency and productivity may decrease.

15 It is preferred that the heating time be one hour or longer. This is because if the heating time is less than one hour, non-impregnated portions may be produced in the composites 18 and non-bonded portions may be produced in the 20 bonding interface.

It is preferred that the superimposure be heated in a state in which pressure is reduced, and especially, under the condition of 5 torr or less. This is because in a state 25 in which the pressure is reduced, the air in the porous bodies 17 is easily released from the opened pores. This enables smooth impregnation of the metal silicon 24. Further, by producing an environment in which the amount of oxygen is small, oxidation of the metal silicon 24 is 30 prevented.

A few referential examples specifically employing the present embodiment will now be discussed.

[Referential Example 3-1]

In referential example 3-1, a rough powder (#400) of a silicon carbide having an average grain diameter of $30\mu\text{m}$ and a fine powder (GMF-15H2) of a silicon carbide having an average grain diameter of $0.3\mu\text{m}$ were prepared. Then, 30 parts by weight of the fine powder was added to 100 parts by weight of the rough powder and uniformly mixed.

10

Then, 5 parts by weight of polyvinyl alcohol, 3 parts by weight of phenolic resin, and 50 parts by weight of water were added to 100 parts by weight of the mixture and mixed in a ball mill for five hours to obtain a uniform mixture.

15

After drying the mixture for a predetermined time to eliminate a certain amount of moisture, an appropriate amount of the dried mixture was granulated. In this state, the moisture rate of the granules was adjusted to about 0.8wt%. Subsequently, the granules of the mixture were 20 molded by a metal mold by applying a pressure of $1.3\text{t}/\text{cm}^2$. The disk-like molded product (50mmΦ, 5mm thickness) had a density of $2.6\text{g}/\text{cm}^3$.

Then, the lower surface of the molded product, which 25 was subsequently formed into the upper base material 11A, was ground to form the grooves 13, which have a depth of 5mm and a width of 10mm, on the entire lower surface.

The molded product was then put into a graphite 30 crucible and sintered with a Tammann sintering furnace. The sintering was performed in an argon gas atmosphere of one atmosphere. During the sintering, the temperature was raised to 2200°C at a temperature rising rate of $10^\circ\text{C}/\text{min}$ and

maintained at this temperature for four hours.

In the following metal impregnating/base material bonding process, the produced porous sinter was vacuum impregnated with phenolic resin (carbonization rate 30wt%) and then dried. Subsequently, two sheets of the porous bodies 17 were superimposed, and blocks of the metal silicon 24 were placed on the uppermost portion of the superimposure. The purity of the blocks of metal silicon 24 was 99.99wt% or greater. The superimposure on which the blocks of metal silicon 24 were placed was put in a furnace and heated under a reduced pressure environment of 1torr and maintained at a maximum temperature of 1800°C for about three hours. As a result, the solid metal silicon 24 was melted, and the metal silicon 24 was impregnated in the porous bodies 17. Simultaneously, the composites 18 were bonded to each other by means of the bonding layer 31. The impregnation amount of the metal silicon 24 relative to 100 parts by weight of silicon carbide was 30 parts by weight. Further, the thickness of the bonding layer 31, which was made of the metal silicon 24, was 150 μ m.

In the manufactured base materials 11A, 11B, which were made of the silicon carbide-metal composite, the porosity of the opened pores 23 in the porous structure was 20%, the thermal conductivity as a whole was 210W/m·K, and the density as a whole was 3.0g/cm³. Further, the average grain diameter of the silicon carbide crystals 21, 22 was 30 μ m. More specifically, the base materials 11A, 11B included 20vol% of the fine crystals 21 having an average grain diameter of 1.0 μ m and 80vol% of the rough crystals 22 having an average grain diameter of 40 μ m.

The coefficient of thermal expansion of the porous bodies 17 in this embodiment was $4.0 \times 10^{-6}/^{\circ}\text{C}$. The coefficient of thermal expansion of the bonding layer 31 made of metal silicon 24 was $4.2 \times 10^{-6}/^{\circ}\text{C}$ and extremely 5 approximate to that of the metal silicon 24. The thermal conductivity of the bonding layer 31, which is made of the metal silicon 24, was $150\text{W/m}\cdot\text{K}$. Thus, the bonding layer 31 was a highly thermal conductive body.

10 Subsequently, the surface of the upper base material 11A was ground to finally complete the table 2.

The flexural strength of the table 2 of referential example 3-1 that was produced in this manner was measured a 15 number of times using a technique known in the art. The result indicated an average value of about 550MPa.

As schematically shown in Fig. 6B, the metal silicon 24 impregnated in the porous bodies 17 and the metal silicon 24 20 forming the bonding layer are continuous and have no boundaries. It is believed that this somewhat increases the flexural strength.

Further, after performing a heat cycle for a certain 25 period of time, the table 2 was cut vertically, and the cut surface was observed by the naked eye or with a microscope. The result showed that cracks or exfoliation were not found in the bonding interface.

30 The table 2 of the example 3-1 that was manufactured in this manner was set on various types of the grinder 1 and the semiconductor wafers 5 of varied sizes were ground while constantly circulating the cooling water W in the coolant

passage 12. The semiconductor wafers 5, which were ground by the various types of the grinder 1, were observed. There were no damages to the wafers 5 regardless of size. Further, the wafers 5 were not bent. In other words, it was confirmed 5 that the semiconductor wafers 5 having large diameters and high quality were manufactured when using the table 2 of referential example 3-1.

[Referential Example 3-2]

10

In referential example 3-2, the table 2 was manufactured with the bonding layer 31 having a thickness of 50 μm . The other conditions were basically the same as those of referential example 3-1.

15

The flexural strength of the produced table 2 was measured a number of times, and the average value was about 550MPa. Further, after performing a heat cycle for a certain period of time, the cut surface of the table 2 was observed. 20 The result showed that cracks or exfoliation were not found at all in the bonding interface.

The table 2 was set on various types of the grinder 1 and the semiconductor wafers 5 of varied sizes were ground. 25 Excellent results similar to those of referential example 3-1 were obtained. That is, there were no damages to or bending of the wafers 5, and it was confirmed that the semiconductor wafers 5 having large diameters and high quality were manufactured.

30

[Referential Example 3-3]

In referential example 3-3, the table 2 was

manufactured with the bonding layer 31 having a thickness of 1500 μm . The other conditions were basically the same as those of referential example 3-1.

5 The flexural strength of the produced table 2 was measured a number of times, and the average value was about 550MPa. Further, after performing a heat cycle for a certain period of time, the cut surface of the table 2 was observed. The result showed that cracks or exfoliation were not found
10 at all in the bonding interface.

The table 2 was set on various types of the grinder 1 and the semiconductor wafers 5 of varied sizes were ground. Excellent results similar to those of referential example 3-1 were obtained. That is, there were no damages to or bending of the wafers 5, and it was confirmed that the semiconductor wafers 5 having large diameters and high quality were manufactured.

20 [Comparative Example 3-1]

In comparative example 3, the base substrates 11A, 11B were manufactured by impregnating each porous body 17 with the metal silicon 24. Then, a brazing material made of Ag-Cu-Ti was used to braze and bond the base materials 11A, 11B to each other. The other conditions were basically the same as referential example 3-1 when producing the table 2. The thermal conductivity of the brazing material was 170W/m·K and slightly higher than the metal silicon 24. The coefficient of thermal expansion of the brazing material was $18.5 \times 10^{-6}/^\circ\text{C}$ and somewhat greater than the metal silicon 24.

In comparative example 3-1, the impregnation of the

metal silicon 24 and the bonding of the base materials 11A, 11B were performed in different processes. Thus, comparative example 3-1 was inferior to the three referential examples from the viewpoint of productivity and cost.

5

Then, the flexural strength of the produced table 2 was measured a number of times, and the average value was about 400MPa, which is a value lower than the three referential examples. Further, after performing a heat cycle for a 10 certain period of time, the cut surface of the table 2 was observed. The result showed that cracks or exfoliation were found in the bonding interface.

[Comparative Example 3-2]

15

In referential example 3-2, the base substrates 11A, 11B were manufactured by impregnating each porous body 17 with the metal silicon 24. Then, a resin adhesive (manufactured by Cemedine) was used to adhere the base 20 materials 11A, 11B to each other. The other conditions were basically the same as referential example 3-1 when producing the table 2. The thermal conductivity of the adhesive was 0.162W/m·K and much lower than the metal silicon 24. The coefficient of thermal expansion of the adhesive was 25 $65 \times 10^{-6}/^{\circ}\text{C}$ and much greater than the metal silicon 24.

In comparative example 3-2, the impregnation of the metal silicon 24 and the bonding of the base materials 11A, 11B were performed in different processes. Thus, comparative 30 example 3-2 was inferior to the three referential examples from the viewpoints of productivity and cost.

Then, the flexural strength of the produced table 2 was

measured a number of times, and the average value was about 50MPa, which is a value further lower than comparative example 3-1. Further, after performing a heat cycle for a certain period of time, the cut surface of the table 2 was observed. The result showed that cracks or exfoliation were found in the bonding interface.

Each of the referential examples in this embodiment has the advantages described below.

10

(1) In the table 2 of each referential example, two sheets of the silicon carbide-metal composite 18 are bonded to each other by the bonding layer 31, which is made of the metal silicon 24. The difference between the coefficient of thermal expansion of the bonding layer 31 and the coefficient of thermal expansion of the composites 18 (which is substantially the same as the coefficient of thermal expansion of silicon carbide) is about $0.2 \times 10^{-6} / ^\circ\text{C}$ and extremely small. Thus, thermal stress is not produced by the coefficient of thermal expansion difference and the formation of cracks and exfoliation is prevented. Thus, the table 2 resists being damaged when subjected to a heat cycle and has superior long-term reliability. Further, the thermal conductivity of the metal silicon 24 is much higher than an adhesive. Thus, the metal silicon 24 does not increase thermal resistance in the bonding interface. Accordingly, the table 2 has superior thermal conductivity.

(2) In the referential examples, when manufacturing the table 2, the impregnation of the metal silicon 24 and the bonding of the composites 18 are performed simultaneously. Accordingly, in comparison to when performing each process separately, the table 2 is efficiently produced. This

ensures that the optimal table 2 is produced inexpensively.

(3) In the referential examples, the formation of cracks and exfoliation in the bonding interface is prevented, and damages do not occur when a heat cycle is performed. This prevents water from leaking from the coolant passage 12, and the table 2 has long-term reliability. Further, the bonding layer 31, which is made of the metal silicon 24, does not increase thermal resistance in the bonding interface. Thus, the table has superior thermal conductivity. Accordingly, the temperature difference in the table 2 is low, and the table 2 has extremely high thermal uniformity and thermal response. Therefore, a large diameter, high quality wafer 5 is manufactured by using the table 2 in the wafer grinder 1.

This embodiment may be modified as described below.

The porous body 17, which is made of a silicon-containing ceramic, may be made of a material other than silicon carbide, such as silicon nitride, to produce the table 2. Further, instead of employing composites 18 formed from the same type of ceramic, the composites 18 may be formed from different types of ceramics (e.g., a combination of silicon carbide and silicon nitride).

The present invention is not to be limited to the first to third embodiments. Further, the present invention is not to be limited to the details given herein, but may be modified within the scope of the appended claims.

CLAIMS

1. A porous silicon carbide sinter having a structure formed by silicon carbide crystals (21, 22) that includes 5 opened pores (23), wherein the porous sinter has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ or greater, a porosity of 40% or less, and a thermal conductivity of $80\text{W/m}\cdot\text{K}$ or more.

10 2. A porous silicon carbide sinter having a structure formed by silicon carbide crystals (21, 22) that includes opened pores (23), wherein the porous sinter has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ to $100\mu\text{m}$, a porosity of 5% to 30%, and a thermal conductivity of $80\text{W/m}\cdot\text{K}$ 15 or more.

3. The porous silicon carbide sinter according to claim 1 or 2, characterized in that the silicon carbide crystals include 10vol% to 50vol% of fine silicon carbide 20 crystals (21) having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ and 50vol% to 90vol% of rough silicon carbide crystals (22) having an average grain diameter of $25\mu\text{m}$ to $150\mu\text{m}$.

4. A method for manufacturing a porous silicon carbide sinter having a structure formed by silicon carbide crystals (21, 22) that includes opened pores (23), wherein the porous silicon carbide sinter has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ or greater, a porosity of 30% or less, and a thermal conductivity of 25 $80\text{W/m}\cdot\text{K}$ or more, the method comprising the steps of:

adding 10 parts by weight to 100 parts by weight of a fine powder of α silicon carbide having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ to 100 parts by weight of a

rough powder of a silicon carbide having an average grain diameter of $5\mu\text{m}$ to $100\mu\text{m}$ and uniformly mixing the rough powder and the fine powder;

5 molding a mixture obtained in the mixing step into a predetermined shape to produce a molded product; and
sintering the molded product within a temperature range of 1700°C to 2400°C to produce a sinter.

10 5. A member (2) used in a wafer grinder, wherein the wafer grinder member is formed from the porous silicon carbide sinter according to any one of claims 1 to 3.

15 6. A wafer grinder table having a grinding surface (2a) for grinding a semiconductor wafer held on a wafer holding plate, the table including:

a plurality of bonded base materials (11A, 11B), each formed from the porous silicon carbide sinter according to any one of claims 1 to 3; and
20 a fluid passage (12) formed in a bonding interface of the base materials.

25 7. A silicon carbide-metal composite having a porous structure formed by silicon carbide crystals (21, 22) that includes opened pores (23), wherein the opened pores are impregnated with metal, wherein the silicon carbide-metal composite has a silicon carbide crystal average grain diameter of $20\mu\text{m}$ or greater, a porosity of 30% or less, and a thermal conductivity of $160\text{W/m}\cdot\text{K}$ or more, and wherein 100 parts by weight of silicon carbide are impregnated with 15 parts by weight to 50 parts by weight of metal.

30 8. A silicon carbide-metal composite having a porous structure formed by silicon carbide crystals (21, 22) that

includes opened pores (23), wherein the opened pores are impregnated with metal, wherein the silicon carbide-metal composite has a silicon carbide crystal average grain diameter of 20 μm to 100 μm , a porosity of 5% to 30%, and a 5 thermal conductivity of 160W/m·K or more, and wherein 100 parts by weight of silicon carbide are impregnated with 15 parts by weight to 50 parts by weight of metal.

9. The silicon carbide-metal composite according to 10 claim 7 or 8, characterized in that 100 parts by weight of silicon carbide is impregnated with 15 parts by weight to 45 parts by weight of metal silicon.

10. The silicon carbide-metal composite according to 15 claim 7 or 8, characterized in that 100 parts by weight of silicon carbide is impregnated with 20 parts by weight to 50 parts by weight of metal aluminum.

11. The silicon carbide-metal composite according to 20 any one of claims 7 to 10, characterized in that the silicon carbide crystals include 10vol% to 50vol% of fine silicon carbide crystals (21) having an average grain diameter of 0.1 μm to 1.0 μm and 50vol% to 90vol% of rough silicon carbide crystals (22) having an average grain diameter of 25 μm to 150 μm .

12. A method for manufacturing a silicon carbide-metal composite having a porous structure formed by silicon carbide crystals (21, 22) that includes opened pores (23), 30 wherein 100 parts by weight of silicon carbide is impregnated with 15 parts by weight to 50 parts by weight of metal in the opened pores, the average grain diameter of the silicon carbide crystals is 20 μm or greater, the porosity is

30% or less, and the thermal conductivity is 160W/m·K or greater, the method comprising the steps of:

adding 10 parts by weight to 100 parts by weight of a fine powder of a silicon carbide having an average grain 5 diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ to 100 parts by weight of a rough powder of a silicon carbide having an average grain diameter of $5\mu\text{m}$ to $100\mu\text{m}$ and uniformly mixing the rough powder and the fine powder;

10 molding a mixture produced in the mixing step into a predetermined shape to produce a molded product;

sintering the molded product within a temperature range of 1700°C to 2400°C to produce a sinter; and

15 impregnating the molded product or the sinter with metal.

15

13. The method for manufacturing a silicon carbide-metal composite according to claim 12, characterized in that 1wt% to 10wt%, in carbon weight converted value, of an 20 organic substance serving as a carbide source is added to the molded product.

14. A member (2) used in a wafer grinder, wherein the wafer grinder member is formed from the silicon carbide-metal composite according to any one of claims 7 to 11.

25

15. A wafer grinder table having a grinding surface (2a) for grinding a semiconductor wafer held on a wafer holding plate, the table (2) including:

30 a plurality of bonded base materials (11A, 11B), each formed from the silicon carbide-metal composite according to any one of claims 7 to 11; and

a fluid passage formed in a bonding interface of the base materials.

16. A wafer grinder table having a grinding surface (2a) for grinding a semiconductor wafer held on a wafer holding plate, the table (2) including:

5 a plurality of base materials (11A, 11B), each of which is a ceramic-metal composite formed by impregnating metal silicon in opened bores of a porous body made of silicon-containing ceramic;

10 a bonding layer (14) formed from the metal silicon to bond the base materials; and

 a fluid passage (12) formed in a bonding interface of the base materials.

17. The wafer grinder table according to claim 16, characterized in that, in the ceramic-metal composite, the porous body includes silicon carbide crystals with an average grain diameter of $20\mu\text{m}$ to $100\mu\text{m}$, has a porosity of 10% to 50%, and has a thermal conductivity of $160\text{W/m}\cdot\text{K}$ or more, and wherein 100 parts by weight of silicon carbide is 20 impregnated with 15 parts by weight to 50 parts by weight of the metal silicon.

18. The wafer grinder table according to claim 17, characterized in that the silicon carbide crystals include 25 10vol% to 50vol% of fine silicon carbide crystals (21) having an average grain diameter of $0.1\mu\text{m}$ to $1.0\mu\text{m}$ and 50vol% to 90vol% of rough silicon carbide crystals (22) having an average grain diameter of $25\mu\text{m}$ to $150\mu\text{m}$.

30 19. The wafer grinder table according to any one of claims 15 to 18, characterized in that the bonding layer has a thickness of $10\mu\text{m}$ to $1500\mu\text{m}$.

Fig.1

Fig.2**Fig.3**

09/890550

Fig. 4A
Mixture Grit Distribution
Grit Distribution
(Referential Examples 1-3, 2-3)

Fig. 4B

Fig. 4C

09/29/2020

Fig.5

Fig.6A**Fig. 6B**

Fig.7A**Fig.7B****Fig.7C**

Declaration and Power of Attorney for Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration

日本語宣言書

私は、以下に記名された発明者として、ここに下記の通り宣言する： As a below named inventor, I hereby declare that

私の住所、郵便の宛先そして国籍は、私の氏名の後に記載された通りである。

下記の名称の発明について、特許請求範囲に記載され、且つ特許が求められている発明主題に関して、私は、最初、最先且つ唯一の発明者である（唯一の氏名が記載されている場合）か、或いは最初、最先且つ共同発明者である（複数の氏名が記載されている場合）と信じている。

My residence, post office address and citizenship are as stated next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled
POROUS SILICON CARBIDE SINTER AND
 SILICON CARBIDE-METAL COMPOSITE THAT
 ARE OPTIMAL FOR A WAFER GRINDER TABLE

上記発明の明細書はここに添付されているが、下記の額がチェックされている場合は、この限りでない：

the specification of which is attached hereto unless the following box is checked:

□ の日に出願され、
 この出願の米国出願番号またはPCT国際出願番号は、
 であり、且つ
 の日に補正された出願（該当する場合）

was filed on November 24, 2000
 as United States Application Number or
 PCT International Application Number
PCT/JP00/08284 and was amended on
 (if applicable)

私は、上記の補正書によって補正された、特許請求範囲を含む上記明細書を検討し、且つ内容を理解していることをここに表明する。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編規則1.56に定義されている、特許性について重要な情報を開示する義務があることを認める。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Burden Hour Statement: This form is estimated to take 0.4 hours to complete. Time will vary depending upon the need of the individual case. Any comments on the amount of time you are required to complete this form should be sent to Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner of Patents and Trademarks, Washington, DC 20231

Japanese Language Declaration (日本語宣言書)

私は、ここに、以下に記載した外国での特許出願または発明者証の出願、或いは米国以外の少なくとも一国を指定している米国法典第35編第365条(a)によるPCT国際出願について、同第119条(a)-(d)項又は第365条(b)項に基づいて優先権を主張するとともに、優先権を主張する本出願の出願日よりも前の出願日を有する外国での特許出願または発明者証の出願、或いはPCT国際出願については、いかなる出願も、下記の枠内をチェックすることにより示した。

Prior Foreign Application(s)

外国での先行出願

Pat. Appln. No. 11-340408	Japan	30 / 11 / 1999	<input type="checkbox"/>
(Number)	(Country)	(Day/Month/Year Filed)	
(番号)	(国名)	(出願日／月／年)	
Pat. Appln. No. 11-340409		Japan	30 / 11 / 1999
(Number)	(Country)	(Day/Month/Year Filed)	
(番号)	(国名)	(出願日／月／年)	

私は、ここに、下記のいかなる米国仮特許出願についても、その米国法典第35編119条(e)項の利益を主張する。

(Application No.) (出願番号)	(Filing Date) (出願日)	(Application No.) (出願番号)	(Filing Date) (出願日)
<p><input type="checkbox"/>私は、ここに、下記のいかなる米国出願についても、その米国法典第35編第120条に基づく利益を主張し、又米国を指定するいかなるPCT国際出願についても、その同第365条(c)に基づく利益を主張する。また、本出願の各特許請求の範囲の主題が、米国法典第35編第112条第1段に規定された様で、先行する米国出願又はPCT国際出願に開示されていない場合においては、その先行出願の出願日と本国内出願日またはPCT国際出願日との間の期間中に入手された情報で、連邦規則法典第37編規則1.56に定義された特許性に関する重要な情報について開示義務があることを承認する。</p>			
<p>(Application No.) (出願番号)</p>		<p>(Status: Patented, Pending, Abandoned) (現況: 特許許可、係属中、放棄)</p>	
<p>(Application No.) (出願番号)</p>		<p>(Status: Patented, Pending, Abandoned) (現況: 特許許可、係属中、放棄)</p>	

私は、ここに表明された私自身の知識に係わる陳述が真実であり、且つ情報と信ずることに基づく陳述が、真実であると信じられることを宣言し、さらに、故意に虚偽の陳述などを行った場合は、米国法典第18編第1001条に基づき、罰金または拘禁、若しくはその両方により処罰され、またそのような故意による虚偽の陳述は、本出願またはそれに対して発行されるいかなる特許も、その有効性に問題が生することを理解した上で陳述が行われたことを、ここに宣言する。

I hereby claim foreign priority under Title 35, United States Code, Section 119(a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application for which priority is claimed.

Priority Not Claimed
優先権主張なし

SEE ATTACHED SUPPLEMENTAL SHEET

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Status: Patented, Pending, Abandoned)
(現況: 特許許可、係属中、放棄)

(Status: Patented, Pending, Abandoned)
(現況: 特許許可、係属中、放棄)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Japanese Language Declaration
(日本語宣言書)

委任状： 私は本出願を審査する手続を行い、且つ米国特許商標庁との全ての業務を遂行するために、記名された発明者として、下記の弁護士及び／または弁理士を任命する。（氏名及び登録番号を記載すること）

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

書類送付先

Akerman, Senterfitt & Eidson, P.A., P.O. Box 3188, West Palm Beach, FL 33402-3188
Attorneys/Agents: J. Rodman Steele, Jr., Reg. No. 25,931; Gregory A. Nelson, Reg. No. 30,577; Joseph W. Bain, Reg. No. 34,290; Robert J. Sacco, Reg. No. 35,667; Stanley A. Kim, Reg. No. 42,730; Mark D. Passler, Reg. No. 40,764; Steven M. Greenberg, Reg. No. 44,725; Neil R. Jetter, Reg. No. 46,803.

直通電話連絡先：（氏名及び電話番号）

Send Correspondence to: J. Rodman Steele, Jr.
Direct Telephone Calls to: (name and telephone number)
J. Rodman Steele, Jr.
561-653-5000

唯一または第一発明者氏名

Full name of sole or first inventor

Kazutaka MAJIMA

発明者の署名

日付

Inventor's signature

Date

Kazutaka Majima July 27, 2001

住所

Residence

Gifu, Japan JPV

国籍

Citizenship

Japan

郵便の宛先

Post Office Address

c/o IBIDEN CO., LTD.
OGAKI-KITA PLANT1-1, Kitagata, Ibigawa-cho, Ibi-gun,
Gifu 501-0695 Japan

第二共同発明者がいる場合、その氏名

Full name of second joint inventor, if any

Hiroyuki YASUDA

第二共同発明者の署名

日付

Second inventor's signature

Date

Hiroyuki Yasuda

July 27, 2001

住所

Residence

Gifu, Japan JPX

国籍

Citizenship

Japan

郵便の宛先

Post Office Address

c/o IBIDEN CO., LTD.
OGAKI-KITA PLANT1-1, Kitagata, Ibigawa-cho, Ibi-gun,
Gifu 501-0695 Japan

（第三以下の共同発明者についても同様に記載し、署名をすること）

(Supply similar information and signature for third and subsequent joint inventors.)

SUPPLEMENTAL SHEET

ADDITIONAL PRIOR FOREIGN APPLICATION(S)

Number	Country	Day/Month/Year	Priority Benefits Claimed?
Pat. Appln. No. 2000-126085	Japan	26 / 04 / 2000	Yes