Final Results of Machine Learning Tasks STAT639

John M. Niehaus Department of Political Science Texas A&M University

Unsupervised Learning

Summary:

- 4 clustering algorithms, all on various PC subspaces.
 - 1. K-means
 - 2. GMM
 - 3. Hierarchical
 - 4. Density-based

Notes:

- 1. Normality assumptions likely not met
- 2. Euclidean distance in high dimension breaks down

Unsupervised: Normality Assumptions

A necessary but insufficient condition:

$$\mathbf{y}_j \sim N(\mu_j, \sigma_j) \quad \forall \quad j \in (1, 2, \dots, p)$$

Unsupervised: Dimension Reduction

Unsupervised: Choosing K

1. CH Index:

$$CH(K) = \frac{BSS/K - 1}{TWSS/n - k}$$

Choose arg $\max_K CH(K)$ to

- Maximize between cluster distance
- Minimize within cluster distance
- 2. Use BIC for GMM due to being fit by MLE

Unsupervised: Complete Linkage

Unsupervised: DBSCAN Results

	Eps	Min. Points	N Clusters
5 PCs	595	40	2
20 PCs	1255	40	2
40 PCs	1455	25	3

Table: CH Maximizing Parameters to DBSCAN

Supervised Learning Task

Summary:

- ► Considered 6 algorithms
 - 1. KNN
 - 2. Naive Bayes
 - 3. Logistic Elastic Net
 - 4. SVM
 - 5. Random Forest
 - 6. Stochastic Gradient Boosting

Supervised: Repeat, Nested CV

Nested CV:

Repeat this process 5 times, getting 5 CV estimates of the risk. Average these estimates.

Image source: https://weina.me/nested-cross-validation/

Supervised: Stochastic Boosting

Stochastic boosting wins all inner CV loops by roughly 10 percentage points.

What is it?

- Stochastic Allows random subsamples of observations and features to be considered in each boosting round (like RF)
- ► Requires some minimal loss reduction to honor a split. Thus, depth of tree is an upper bound, not a certainty.
- ▶ The rest is the same as the boosting we've learned about

Supervised: Test Error

	λ	Depth	Col. Sample	γ	Trees	CV
Outer Fold 1	0.0001	9	0.25	0.01	137	0.1993
Outer Fold 2	0.01	9	0.5	0	44	0.1972
Outer Fold 3	0.01	7	0.25	0	71	0.1841
Outer Fold 4	0.001	9	0.25	0.5	32	0.2055
Outer Fold 5	0.01	7	0.25	1	24	0.2009
Outer Fold 6	0.01	7	0.5	1	28	0.1668

Table: Optimal Inner Nested CV Errors for One Repitition

Supervised: Optimal Parameters

Repeated CV Error for Optimal and Random Boosting Parameters

Supervised: Conclusion

Optimal tuning parameters are:

- 1. Boosting
- 2. 55 trees
- 3. Learning rate .0001
- 4. Max depth of 9
- 5. feature sampling ratio of 0.25
- 6. minimum loss reduction of 0.5

which has an estimated test error rate of 21.6%.

References I

- Caliński, Tadeusz and Jerzy Harabasz. 1974. "A dendrite method for cluster analysis." *Communications in Statistics-theory and Methods* 3(1):1–27.
- Charrad, Malika, Nadia Ghazzali, Veronique Boiteau and Azam Niknafs. 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set." *Journal of Statistical Software*.
- Friedman, Jerome H. 2002. "Stochastic gradient boosting." Computational statistics & data analysis 38(4):367–378.