Distributed Quality Control at ESO

Reinhard Hanuschik

ESO, Data Management Division

- 1. Data at ESO
- 2. Data quality
- 3. From QA to QC
- 4. Critical components

1. Data at ESO

- VLT Cerro Paranal/Chile:
 - 9 instruments on 4 UTs (8.2m each)
 - VLT-interferometer: 2 instruments
 - survey telescopes

 all instruments have data processing pipelines enabled for automatic mode

- pipeline processing:
 - on-site (automatic, background; staff and visiting astronomers)
 - off-line (supervised, optimized;
 Garching headquarters, QC group)

- quality control, instrument status
- data reduction

2. Data quality

- good data?
 - good science data: best possible performance (ambient conditions, S/N, resolution, background etc.)
 - good calibration data: record of instrument and atmosphere conditions, no degradation of science quality

- good calibrations:
 - sufficiently accurate
 (e.g. no increased noise after flattening)
 - close to observing conditions (close in time)
- challenges on the ground:
 - atmosphere challenging (rapid variations)
 - calibrate instrument \(\Lipha \) calibrate science
 - calibration plan required (Service Mode)

- QC group:
 - -8 astronomers
 - data processing
 - data QC
 - data packages
 - located at ESO headquarters (Garching, Germany)

- The task
 - per month: roughly 400 GB raw data
 - 11,500 processing jobs
 - 80 data packages to Service Mode P.I.s
- http://www.eso.org/qc

3. From QA to QC

- QA: quality measure and assessment
- QC: quality control

- QC: shared process between Paranal and HQ
- requires to close the loop
- provides feedback to enable corrections

Components:

- pipelines (QC parameters → QC database)
- on-site QC
- Health Check monitor:
 comparison new data ⇔ old data
- QC group
- QC processing and certification
- trending

- QC aspects on-site:
 - formal compliance of file format
 - compliance with user constraints (OB grading)
 - check against reference files ("check if different from yesterday")
- off-line (QC Garching):
 - check pipeline products
 - optimized association, optimized processing
 - measure quality: extract QC parameters
 - compare to similar data (trending)

Health Check monitor

- on-site pipelines: measure QC parameters
- fed into database, transferred to HQ
- compared to previous data: trending
- web-based trending reports
- main QC interface between the mountain and QC

Trending

- provided and maintained by QC group
 - set of current and history trending plots
 - customized for each product type and instrument component
- memory about the instrument performance

FLAMES/Giraffe, grating shifts 2005/2006

QC database

- interfaces to browse and plot QC parameters
- dynamic plots for research
 - http://archive/bin/qc1_cgi

zeropoints VIMOS 2003-2006

4. Critical components, challenges

- information exchange
 - setup procedures for information exchange
 - instrument operating teams
 - Health Check monitor

- control complexity
 - automatic evaluation whenever possible
 - flag outliers, set alerts, trigger actions
 - TBD: provide automatic assessment, scoring

