

August 20, 2021

In addition to Part I (General Handout for all courses appended to the time table) portion:

Course Number : MATH F420

Course Title : MATHEMATICAL MODELING

Instructor-In charge : Santanu Koley Instructors : Santanu Koley

1. Scope and objective of the course:

This course introduces students to fundamentals and various approaches of mathematical modeling applicable to physical systems. This course covers most of the basic aspects of modeling from theory to the application part. A wide variety of mathematical approaches associated with the modeling that are covered in the course can be characterized into statistical models and mechanistic models. This course is interdisciplinary in nature and each topic is followed by many examples from different disciplines like biology, physics and engineering. This course provides detailed concepts and framework to model and solve various physical problems arise in different branches of science and engineering.

2. Text Books:

- 1. Edwards and Penney, Elementary Differential Equations with Boundary Value Problems, Pearson Edu. Inc., Sixth Edition.
- 2. Steven M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, 1993

3. Reference Books:

- 1. Kai Velten, Mathematical Modeling and Simulation; Introduction for Scientists and Engineers, WI-LEY-VCH, 2009.
- 2. Adriaan van den Bos, Parameter Estimation for Scientists and Engineers, Wiley Pub, 2007.

4. Lecture Plan:

Lecture	Learning Objectives	Topics to be covered	Chapter in the Text Book
1-2	To learn basic	Basic concepts of Systems and	1.1-1.7 (R1)
	concepts behind	Models; Classification of	
	mathematical	mathematical models; Introductory	
	modelling	examples from various fields.	
3-6	To learn the	Population Modelling: Linear Model,	7.1,7.4 (T1)
	mathematical	Nonlinear Model and Predator- Prey	
	concepts and	Model	
	associated		
	formulation of the		
	population modelling.		
7-8	To learn the concepts	Equilibrium solutions and stability of	7.1 (T1)
	of equilibrium	ordinary differential equation with an	
	solution and stability	example of harvesting and stocking in	
	of ODE	non-linear population modelling.	
9-14	To gain knowledge on	Linear Autonomous System,	7.2-7.3 (T1)
	linear autonomous	Eigenvalues and Eigenvectors,	
	system and its	Solution methodologies with real life	
	applications to real	examples, sketching solutions and	
	life problems.	analyse the system.	
15-23	To gain knowledge on	Nonlinear autonomous system,	7.4-7.5 (T1)
	nonlinear autonomous	analysis of critical points, linearization	
	system and its	of the system around the critical	

	applications to real		
24-29	life problems. To learn the application of estimation theory in real engineering problems	Wireless Sensor Networks: Basics– Sensor Network and Noisy	1-2, 7.1-7.5 (T2)
30-32	To determine the minimum variance achievable by an unbiased estimator	Cramer Rao Bound (CRB) for parameter estimation with examples from Wireless Sensor Network	3.1-3.6 (T2)
33-36	To learn the vector parameter estimation and its application to wireless communication system	Framework for vector parameter estimation, System Model for Multi Antenna Downlink Channel Estimation, Likelihood Function and Least Squares Cost Function for Vector Parameter Estimation	3.7, 7.8, 8.1-8.3 (T2)
36-40	To learn least square estimate of vector parameter and its application to wireless communication system		8.4-8.7 (T2)

5. Evaluation Scheme:

Evaluation	Duration	Weightage	Date & Time	Nature of Component
Component				
Quiz 1	To be announced in	15%	To be announced in the	Open Book
	the class		class	
Mid Semester	90 mins	30%	19/10/2021 1.30 - 3.00PM	Open book
Test				
Quiz 2	To be announced in	15%	To be announced in the	Open Book
	the class		class	
Comprehensive	120 mins	40%	15/12 AN	Open Book
Examination				

- **6. Chamber consultation hour:** To be announced in the class.
- **7. Notices:** The notices concerning this course will be displayed on the CMS Notice Board only.
- **8. Make-up Policy**: Make-up will be given only for very genuine cases and prior permission has to be obtained from the I/C.
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.