Homework 7

Due: May 9th, 2025 (in class)

Problem 1

Consider the problem

$$\label{eq:constraints} \begin{array}{ll} \text{maximize} & x_1 + \log x_2 - \frac{1}{2x_3^2} \\ \\ \text{subject to} & x_1 + p_2 x_2 + p_3 x_3 \leq w, \end{array}$$

where $x_2, x_3 > 0$ but x_1 is unconstrained and $p_2, p_3, w > 0$ are constants.

- 1. Show that the objective function is concave.
- 2. Write down the Lagrangian.
- 3. Are the Karush-Kuhn-Tucker conditions sufficient for a solution? Write down the KKT conditions and find the solution.

Problem 2

Solve

maximize
$$\langle b, x \rangle$$

subject to $\langle x, Ax \rangle \leq r^2$,

where $0 \neq b \in \mathbb{R}^N$, A is an $N \times N$ symmetric positive definite matrix, and r > 0.