Итоговая работа, І вариант

 λ -исчисление, 2024

Ha 3:

1. Дайте определение множеств всех, свободных и связанных переменных для λ -выражения M (TV(M), FV(M), BV(M)). Правда ли, что

$$TV(M) = FV(M) \cup BV(M)$$

для любого $M \in \Lambda$?

- 2. Определите результат подстановки, $M[x \coloneqq N]$, для λ -выражений M,N и переменной $x \notin \mathrm{BV}(M)$.
- 3. Определите комбинаторы I, K, K, S. Покажите, что $KI = K_*$ и SKK = I.
- 4. Дайте определение *нормальной формы*. Покажите, что, если M нормальная форма, то для любого $N \in \Lambda$ редукция $M \twoheadrightarrow N$ влечёт $M \equiv N$.

Ha 4:

1. Докажите лемму о подстановке: если $M, N, L \in \Lambda, x \not\equiv y$ и $x \notin \mathrm{FV}(L)$, то тогда

$$(M[x := N])[y := L] \equiv (M[y := L])[x := N[y := L]]$$

- 2. Докажите теорему о неподвижной точке: $\forall F \in \Lambda: \exists X \in \Lambda: X = FX$. Дайте определение комбинатора неподвижной точки.
- 3. Рассмотрим бинарное отношение →, заданное рекурсивно следующими соотношениями:
 - 1. $M \rightsquigarrow M$;
 - 2. $M \rightsquigarrow M' \Rightarrow \lambda x. M \rightsquigarrow \lambda x. M'$;
 - 3. $M \rightsquigarrow M', N \rightsquigarrow N' \Rightarrow MN \rightsquigarrow M'N'$;
 - 4. $M \rightsquigarrow M', N \rightsquigarrow N' \Rightarrow (\lambda x. M)N \rightsquigarrow M'[x := N'].$

Покажите, что $\operatorname{Refl}(\underset{\beta}{\longleftrightarrow}) \subset \leadsto$. Докажите, если $M \rightsquigarrow M'$ и $N \rightsquigarrow N'$, то $M[x:=N] \rightsquigarrow M'[x:=N']$.

Ha 5:

- 1. Правда ли, что всякая произвольная комбинация выражений **S** и **K** (например, **S**(**KSK**)**SK**) будет иметь нормальную форму?
- 2. Докажите, что

$$\Big(\forall N \in \Lambda: N \underset{\beta\eta}{=} M \, \Rightarrow \, x \in \mathrm{FV}(N)\Big) \Longleftrightarrow \Big(\forall N \in \Lambda: M \underset{\beta\eta}{\twoheadrightarrow} N \, \Rightarrow \, x \in \mathrm{FV}(N)\Big).$$

3. Покажите, что для любого $M\in\Lambda$ существует нормальная форма $N\in\Lambda$, такая, что $N\mathbb{I} \twoheadrightarrow M.$