Training Neural Networks

By: Romerico David and Alazar Tekeba

Faculty Mentor: Dr. Weixian Liao

What is our project about?

Objective: Mathematical understanding of artificial neural networks, how to tune the parameters to improve the performance of each neural network.

Method: Train 3 types of Neural Networks:

- Feed-Forward Neural Networks
- Convolution Neural Networks
- Recurrent Neural Networks

Background

1943

Warren McCulloch proposed how neurons may work by creating a simple neural network using electrical circuits.

1950s:

Advancement within computers enabled simulation of neural networks.

1960s:

Frank Rosenblatt introduces
the first practical
implementation of neural
networks that used supervised
learning algorithms.

1980s:

David Rumelhart, Geoffrey
Hinton, and Ronald Williams
maximized the efficiency of the
backpropagation learning
algorithm.

1980s to present:

Continuous expansion and evolution of the field of neural networks

2012:

AlexNet, a convolutional neural network architecture wins the ILSVRC competition for the first time.

Applications

Forward-Feed Neural Networks (FNNs):

Fraud detection

Medical diagnosis

Handwriting recognition

Convolutional Neural Networks (CNNs):

Image classification

Object detection and recognition

Facial recognition

Video analysis

Recurrent Neural Networks (RNNs):

Prediction problems

Language modeling

Text generation

Speech recognition and translation

Forecasting

FNN Model & Architecture

Findings for FNN Model

Learning Rate: 0.1

Iterations: 5000

Learning Rate: 0.2

Learning Rate: 0.01 Iterations: 5000

CNN Model & Architecture

Findings for CNN Model

	ACCURACY
Airplane	0.882
Automobile	0.828
Bird	0.548
Cat	0.458
Deer	0.654
Dog	0.750
Frog	0.579
Horse	0.889
Ship	0.733
Truck	0.833
Avg Accuracy & Loss:	76.3% and 0.69 loss

Confusion Matrix

Findings for CNN Model

Precision: The fraction of identified positive cases correctly predicted

Recall: The fraction of actual positive cases that are correctly predicted

RNN Architecture

An unrolled recurrent neural network.

LSTM (Long Short Term Memory)

Findings for RNN Model

22 timestep + 1000 epoch

Canberra

Monthly Temperatures

18 timestep + 2000 epoch

Future Work

Continue evaluating the mathematical concepts of our neural networks and determining how to best tune the hyperparameters of our model

Thank you!

References

- 1. A. K. Jain, Jianchang Mao and K. M. Mohiuddin, "Artificial neural networks: a tutorial," in Computer, vol. 29, no. 3, pp. 31-44, March 1996, doi: 10.1109/2.485891.
- 2. Introduction to Artificial Neutral Networks | Set 1. (2018, January 21). GeeksforGeeks. https://www.geeksforgeeks.org/introduction-to-artificial-neutral-networks/
- 3. Roy, R. (2022, November 17). Neural Networks: Forward pass and Backpropagation. Medium. https://towardsdatascience.com/neural-networks-forward-pass-and-backpropagation-be3b75a1cfcc
- 4. Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques, third edition (3rd ed.). Morgan Kaufmann Publishers.
- 5. What is Gradient Descent? | IBM. (n.d.). Retrieved June 30, 2023, from https://www.ibm.com/topics/gradient-descent
- 6. Kamali, K. (2023, January 24). Deep Learning (Part 3) Convolutional neural networks (CNN) [Text]. Galaxy Training Network. https://training.galaxyproject.org/training-material/topics/statistics/tutorials/CNN/tutorial.html
- 7. Brandon Rohrer. (2018, October 17). How convolutional neural networks work, in depth. https://www.youtube.com/watch?v=JB8T_zN7ZC0
- 8. Flores, T. (2023, February 14). Intro to PyTorch 2: Convolutional Neural Networks. Medium. https://towardsdatascience.com/intro-to-pytorch-2-convolutional-neural-networks-487d8a35139a
- 9. Narkhede, S. (2021, June 15). Understanding Confusion Matrix. Medium. https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
- 10. Classification: Precision and Recall | Machine Learning. (n.d.). Google for Developers. Retrieved July 12, 2023, from https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
- 11. Mittal, A. (2019, October 12). Understanding RNN and LSTM. Medium. https://aditi-mittal.medium.com/understanding-rnn-and-lstm-f7cdf6dfc14e