

BACHELOR THESIS

Štěpán Klos

Web application for swimming competitions management

Department of Software Engineering

Supervisor of the bachelor thesis: doc. Mgr. Martin Nečaský, Ph.D.

Study programme: Computer Science

Study branch: Software and Data Engineering

I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In

Dedication.

Title: Web application for swimming competitions management

Author: Štěpán Klos

Department: Department of Software Engineering

Supervisor: doc. Mgr. Martin Nečaský, Ph.D., Software and Data Engineering

Abstract: The goal of this work is to create a system that facilitates management of swimming competitions in the Czech Republic. This system must contain necessary infrastructure with easy-to-use web interface that is also mobile friendly. SwimmPair is using MySQL database for storing data, extensible PHP managers for performing all backend tasks. Frontend is implemented via custom drag'n'drop DOM API in JavaScript.

Keywords: key web application, web, automation, catalogization, administration, cms, full stack, frontend, backend

Contents

In	Introduction 3		
1	Stat	us quo and solution	4
	1.1	Problem description	4
	1.2	Stakeholders	5
	1.3	Functional requirements	5
	1.4	Domain model	7
	1.5	Quality/Usability Requirements	10
2	Sys	em design	11
	2.1	Technologies	11
	2.2	Architecture overview	12
	2.3	Model Managers	12
	2.4	User Interface mockups	13
	2.5	Database design	15
	2.6	Administration tasks to API Functions	16
3	Imp	ementation Documentation	17
	3.1	Database	17
		3.1.1 Object tables	17
		3.1.2 Relation tables	19
		3.1.3 Content adjustment tables	20
	3.2	Managers documentation	22
		3.2.1 PostsManager.php	22
		3.2.2 UsersManager.php	22
		3.2.3 ClubsManager.php	23
		3.2.4 CupsManager.php	23
		3.2.5 PositionsManager.php	24
	3.3	Start file	25
	3.4	Application structure - files defined	26
	3.5	Templating of web and administration	28
	3.6	JavaScript functions documentation	29
		3.6.1 Previous post	29
		3.6.2 User statistics - year change	29
		3.6.3 Club statistics - year change	30
		3.6.4 Filtering referees	30
4	Test	ing	31
-	4.1	Performance evaluation	31
	4.2	System Usability Scale testing	$\frac{31}{32}$
	4.3	Unit testing	$\frac{32}{34}$
	4.0	4.3.1 Local execution of tests	34
		4.3.1 Local execution of tests	$\frac{34}{35}$
		4.5.2 GIGITUD ACTIONS WOLKHOW	აა
5	Der	ovment	36

Conclusion	37
Bibliography	38
List of Figures	39
List of Abbreviations	40

Introduction

Being born in mid 90s has given me the opportunity to observe development of personal computing and advent of internet first-hand. By the time I was three I was fortunate enough to experience my father's first computer running Windows 98. By the time I was five I already knew I wanted to be a programmer when I grow up. I realized that I could write some lines and make a public website. I've been fascinated by stories of Microsoft and Apple. These companies put computers on our tables and iPhones in our pockets. This is, however, just brief overview of my motivation about IT world.

Why web applications

Dot-com bubble crash was correction of overhyped optimism stemming from new technologies in early 2000s, subsequently helping whole industry to mature. It was year 2008 and financial crisis that brought the real opportunities in the web space. Despite having made an average American customer poorer, it has brought the world new trend of money saving services that were meant for cutting the cuts or making extra cash. To save money, one didn't call a taxi but UBER operated by another individual on the other side. To make extra money one started renting an extra room at Airbnb. Distrust in banking industry and monetary policy created Bitcoin. It is not hard to see that some of these things are not as technically complicated as one would think. A good software engineer should be able to deploy MVP of each thing previously mentioned in couple of weeks or months.

Motivation

This thesis is a fullstack web application meant for my fellow friend to save him time for more important tasks which he has to perform as a chief swimming referee and club manager. This is valuable training for me since I have to forge a solution of problem vaguely resembling one of the MVPs listed above. Having delved into this problem rewarded me with valuable experiences, insights and lessons. These lessons are hopefully going to help me in my future endeavors and career.

Software engineering is a crucial craftmanship for delivering positive changes in contemporary world. Building things is this modern adventure.

1. Status quo and solution

Section dedicated to description of problem and proposition of our application.

1.1 Problem description

A friend of mine reached out to me to ask me in order to ask if I could automate part of his agenda work agenda. Administration of swimming competitions and creating statistics is very repetitive and error-prone list of tasks. However, almost all the tasks are executed in same straightforward order.

The Czech Swimming Federation ¹ structure has to be modeled as objects in the application and database records as a storage. Thus, logical structure should be decided and implemented. Swimming referees belong to clubs, clubs are located in geographical regions. Swimming cup is hosted by club. Each club contains dozen of swimming referees and one of them is a club manager. When a cup is online each referee can sign himself or herself up as available for the cup. Club manager can also sign up members of his club for to attend a cup. At the end of the day, organizer of the cup assigns available referees to positions (dedicated task-related roles during cup) that he finds them suitable for. My friend, the chairman of referee committee should be able to perform additional administration related to the database as whole - such as adding and removing users, creating new clubs and modifying whole structure. Administrator can also notify all visitors by posting news displayed on homepage. The SwimmPair system

Figure 1.1: Preview of grouping Regions-Clubs-Users and Cup.

should deliver public listing of all **users**, **cups**, **news**, **individual statistics** and **club statistics**. System should allow to browse stats on a yearly basis. Structure from this image then has to be appropriately modeled with objects. Proposition of database schema will be shown further down.

¹https://www.czechswimming.cz

1.2 Stakeholders

Groups directly and indirectly interested in existence of this application and breakdown of its active/passive users.

Interest groups

There are several entities that are interested in existence of this application. All these stakeholders will have their job facilitated and organized better to some extent thanks to this application. Interested stakeholders are:

- Czech Swimming Federation organization for swimming,
- Olomouc Region, Zlin Region regions administered together,
- Lukas K manager who demanded this application.

Users of application

Our users are Czech Swimming Federation members. If their **region** is **participating in this application**, clubs and referees from this region must be in our system. With regards to referee's competence level within these clubs, one will have one of these roles:

- system administrator (\sim 1-3),
- club manager + also a referee ($\sim 10s$),
- referee (~ 100 s).

Roles are self-descriptive and previously casually mentioned. My friend, who came up with this idea is **system administrator** because he's been running all this agenda offline. Club managers are taking care of competitions on behalf of the club and referees are common people who have some degree of knowledge about competitions. Colected statistics will then be used for accreditation granting, activity monitoring and categorization overall.

We were iterating form and features of the web application with two future system administrators during time of development. We then tested usability on all three groups of users via. SUS 2 questionnaire.

1.3 Functional requirements

These are the tasks that have to be performed within in our application.

²System Usability Scale is a questionnaire to reveal how friendly tested system is to target audience. We carried on initial testing for 20 people belonging to one of these 3 categories to find out if we met at least an average score which was determined to be 68/100.

C - Cup administration

- 1. [club manager] needs to [create swimming cup] in order to [publish cup and invite others to participate],
- 2. [club manager] needs to [create pairing for swimming cup] in order to [finalize preparations of cup the day before it takes place],
- 3. [club manager] needs to [preview cup and print pairing] in order to [perform inspection and publish information offline],
- 4. [club manager] needs to [participate in cup or participate with teammates] in order to [help with swimming cup to happen],

R - Referees administration & overview

- 1. [club manager] needs to [manage swimming club] in order to [keep information and users up-to-date],
- 2. [club manager] needs to [perform referees managment] in order to [keep referees up-to-date],
- 3. [referee] needs to [view statistics of referees] in order to [have track record about participation],
- 4. [club manager] needs to [view statistics of clubs] in order to [have information about performance of own club],
- 5. [club manager] needs to [perform club managment] in order to [keep own club up-to-date],
- 6. [system administrator] needs to [manage referees] in order to [add, remove, update users in the application],
- 7. [system administrator] needs to [list referees overview] in order to [see activity of referees],

S - Stakeholders interest

- 1. [system administrator] needs to [have overview of clubs] in order to [be informed about happenings (within application)],
- 2. [stakeholder] needs to [have overall categorization of federation] in order to [use system for administrative purposes],
- 3. [stakeholder] needs to [have database archivation of federation] in order to [use system as archivation tool].
- 4. [stakeholder] needs to [have information about participations] in order to [grant accreditations to referees],
- 5. [system administrator] needs to [publish news] in order to [notify every-body about new things],

1.4 Domain model

Let's go through things that have to be represented in this system one by one starting from the most important ones. We will outlay objects, their relations and their relational connections. After that basic idea of entities and their relations will be established we continue to project specification for further implementation. We, however, worked more iteratively so this is just retrospective model for implementation that we were specifying during the time of development.

Cup

Cup is the most important object of SwimmPair. A swimming Cup contains name, description, date and is affiliated to organizing Club. Cup serves two purposes. Firstly - assigning referees for specific tasks (time tracking, computer support, head of the cup, etc.) has to be ready by the time the event takes place. Secondly - statistics summing up participations for Users and Clubs have to be calculated for each year over all cups in this time period. We also have to discriminate between upcoming and already past cups. Upcoming cups are displayed on the top, past cups should reside in the archive to be revisited for statistical purposes.

User

User is an entity modelling swimming referee. A referee participating in this system falls in one of three categories. These categories or levels if you wish are **referee**, **club manager** and **system administrator**. User has to be uniquely identifiable. A person i.e. User in the system is going to have profile information such as first name, family name, email address. Good practice of using email address as a login information is going to be used here. User must also contain SwimmPair hierarchy listed above³ and indicator of one's skill and knowledge in the swimming field⁴, i.e. referee category. User must also belong to exactly one club in our system.

Club

Club is an administrative unit grouping people (in the same city). Club has a specific name, abbrevation and ID in Czech Referee Federation. An image can be included as well. A club will be serving as a formal authority organising Cup by a User who is club manager. Club is unanimously affiliated to Region. Statistics regarding performance of members of Club at swimming competitions must be implemented. Statistics have informative characted and will save time in the current status quo - keeping track of presence and work descriptions in Excel spreadsheets.

³Rights - referee 0 / club manager 1 / system administrator 2

 $^{{}^4\}mathbf{Referee\ Rank}$ - $1/2/3/4/\mathrm{FINA}$ - https://www.czechswimming.cz/index.php/rozhodci

Region

One of the 13 regions of the Czech Republic in which this system is used. Clubs are located in one of these regions. When new Club starts using SwimmPair, new region has to be added and potential clubs created and attached to this Region. We list objects of our application model and describe their properties and purpose.

Schema of classes - their properties and connections

Majority of focus should be on tables **users** and **cups** in presented schema. Users belong to clubs that belong to regions. These two entities **user** and **cups** will then be brought together into table called **availability** which contains referees that are available for specific cups. Available users for cup are then paired in **pairing** where each record can be assigned a position from prescripted **positions**.

Figure 1.2: UML Class Diagram of situation

Availability

Takes track of **User** to **Cup** availability of who is signed either by their team manager or themselves for the cup. Availability has extra flag going - in case User is paired but can't suddenly go then flag is switched to zero, in order to keep him in pairing but mark him as not going.

Pairing

Record from **Availability** is then taken and **Positions** is assigned to it.

Position

Predefined list of tasks necessary to be done at each cup. This list is probably never going to change since there is a fixed set of roles. Referees are going to be assigned to these positions for each cup by drag'n'drop user interface in administration.

1.5 Quality/Usability Requirements

Several good practices have to be implemented to make SwimmPair easy to use. These practices are either well known or situation specific but they have one thing in common - they should make the application good to use.

Smooth frontend browsing

Frontend of SwimmPair should be easy to use. There are several options and use cases of JavaScript that can come in handy. Reduction of page reloads is definitely a good way to go. Therefore there are going to be asynchronous JavaScript calls for obtain semi-partial data. After, next function will modify the DOM based on data received from asynchronous call.

Multiple device types

Today is certain that there are users who want to browse our system from pc, tablet or smartphone and responsive design is a necessity. Since CSS3 supports media queries⁵ we are going to use them for creation of device specific styling.

Assigning referees to positions via. drag'n'drop

Assigning referees to positions for cups should be implemented via drag'n'drop. Dragging a referee, moving referee over the region specified for the positions and releasing mouse button. Double clicking this person is a good way of removing it.

Printouts of pairing

Upcoming Cup can be directly printed⁶ from website and hanged as data printout.

Appropriate design

Red blue and grey are colors that appear pretty much at a swimming pools. These colors will be used in our system as well. The elements should have fresh lightweave look and not appear heavy.

⁵https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries

⁶https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries#targeting_media_types

2. System design

Reader will be familiarized with architecture of our application. There are two logical parts, **public web** and **private administration**. Private administration is hidden behing **login/password**.

When designing such system, object oriented approach and grouping of similar functions together is a must. There are objects that have to be moved around the web application described in previous chapter. These objects are Post, User, Club, Cup, Position and Region. Therefore we came up with a concept of managers. Each page of SwimmPair is composed of same headerer, menu, footer. The content part is filled with page's specific results of manager call used to construct data UI page layout. These managers are included and used in all pages via **start file**.

2.1 Technologies

Following technologies are used to implement SwimmPair application:

- **HTML** is HyperText Markup Language ¹ application pages are templated in HTML by PHP,
- CSS is Cascading Style Sheets ²,
- PHP is a general-purpose scripting language geared toward web development ³ object model and backend services are provided by it,
- **JavaScript** is a general-purpose scripting language that conforms to the ECMAScript specification ⁴,
- MySQL is an open-source relational database management system ⁵,
- **Git** is a distributed version control system: tracking changes in any set of files this project is versioned and kept in public GitHub repository ⁶,
- Docker is a set of platform as a service products that use OS-level virtualization to deliver software in packages called containers 7 used for deployment of out application,
- **Kubernetes** is an open-source container orchestration system for automating software deployment, scaling, and management ⁸ used for production deployment of our application into cluster.

¹[WHATWG, 26 December 2022]

²[W3C, 31 December 2022]

³[The PHP Group, 28 November 2019]

⁴[INTERNATIONAL, June 2022]

⁵[Oracle, 2023]

⁶https://github.com/KlosStepan/SwimmPair-Www

⁷[Inc, 2023]

⁸[The Kubernetes Authors, 2023]

2.2 Architecture overview

Visitor comes to **app page**, where **managers** are included. From page there are API calls on Managers that retrieve and store data data as follows.

Figure 2.1: From page to manager, database, function, database and back.

2.3 Model Managers

Managers are written to provide API functionality for system administration. These managers are populating pages or taking new input from them and administer process of storing them. Each object has a manager handling it and accommodates database loads and stores controlled by transactions.

- Cup / CupsManager
- User / UsersManager
- Club / ClubsManager
- Page / PagesManager
- Post / PostsManager
- Position / PositionsManager
- Region / RegionsManager

Managers are implemented to extract and store data of class by which they are named after.

2.4 User Interface mockups

In this chapter we present UI mockups of both public and private parts of our application. They serve as an initial virtualization mockups on which the real UI will be made. These mockups are not 1:1 guidances, rather an idea for reader and stakeholders in the beginning.

Public website mockups

Figure 2.2: Mockup of public pages - homepage and listing of users.

Figure 2.3: Mockup of public pages - cups listing and cup preview.

Administration mockups

Figure 2.4: Administration - menu gets assembled on rights, page edit.

Figure 2.5: Cup add and drag'n'drop pairing.

2.5 Database design

While designing such, system a well defined database schema modelled on functional requirements is a necessity. We will show basic database schema, which should be understandable after knowledge of UML schema (Figure 1.2).

Basic preview schema

Figure 2.6: Simplified schema without all information just for idea.

Full database schema used for out application

Figure 2.7: Full database schema for the SwimmPair application.

2.6 Administration tasks to API Functions

We will show how specific functional requirements administrative tasks are realized via model api functions⁹.

Table has following structure: **Task** / **Role** / **Function(s)**.

Table has following service		(-) -
Add Post	system admin	InsertNewPost
Edit Post	system admin	UpdatePost
Approve New Users	system admin	SetApprovedForUser
Create Pairing For Cup	system admin	DeleteOldPairing
		InsertNewPairing
Add User	system admin	RegisterUser
Edit User	system admin	SetLoginEmailForUser
		SetRefereeRankForUser
		SetPasswordForUser
Add Club	system admin	InsertNewClub
Edit Club	system admin	UpdateClub
Add Region	system admin	InsertNewRegion
Edit Region	system admin	UpdateRegion
Configure Stats	system admin	DeleteOldStatsPositions
		InsertNewStatPosition
Edit Contacts	system admin	UpdatePage
Add Cup	club manager	InsertNewCup
Sign People From My	club manager	DeleteOldAvailability
Club Available For Cup		InsertNewAvailability
Sign Myself As	referee	SetAvailabilityRegister
Available For Cup		SetAvailabilityCantGo
		SetAvailabilityCanGo

These functions are used for retrieving data to navigate across the administration.

• Posts: FindAllPostsOrderByIDDesc

• Approve Users: FindAllInactiveUsersOrderByLastNameAsc

• Cups For Pairings: FindAllUpcomingCupsEarliestFirst

• Users: FindAllUsers

• Clubs: FindAllClubs

• Regions: FindAllRegions

• Stats: FindAllPositions, DisplayedLiveStatsConfiguredPositions

• Pages: GetPageByID

• Sign People From My Club Available For Cup: FindAllUpcomingCupsEarliestFirst, GetCupByID, FindAllTeamMembers, FindAllRegisteredTeamMembersForTheCup

• Sign Myself As Available For Cup: FindAllUpcomingCupsEarliestFirst, GetCupByID, IsUserAvailableForTheCup, IsComing

⁹http://docu.swimmpair.cz/functions_func.html

3. Implementation Documentation

Detailed description of database and backend components and functions.

3.1 Database

Full database schema of the application was already shown in previous chapter (Figure 2.7). This chapter will introduce reader to detailed description of tables and their relations.

Each database table is accompanied with example table preview, where:

- abbreviated column name: (a),
- contracted/ommitted info: ...,

followed by full listing of attributes - datatypes, keys, etc.

3.1.1 Object tables

These are the tables in database modeling the object to satisfy the primary motivation defined as the (Figure 1.2). These rows are then being converted to **Object** or **Array<Object>** (Club, Cup, Page, PairPositionUser, Position, Post, RefereeRank, Region, StatPositionCnt, StatUserCnt, User) and returned to application page by appropriate Manager.

sp_posts

Post is a static snippet of news for homepage of web application. Table preview

id	timestamp	title	content	d_flag(a)	auth_id(a)	sign(a)
1	2023-01	Running	SwimmPair	1	21	0
2	2023-03	Updates	This web	1	21	0
				•••		

Columns description

- 1. id|PK, int(11) Auto Increment
- 2. timestamp, datetime NULL [CURRENT_TIMESTAMP]
- 3. **title**, text
- 4. content, text
- 5. **display_flag**, tinyint(1)
- 6. author_user_id|FK, int(11) NULL
- 7. **signature_flag**, tinyint(1)

sp_users

User is referee in the system. User is affiliated to Club has one of UserRights and one of tier from RefereeRank. His statistics are presented via StatUserCnt in public sites via PositionsManager.

Table preview

id	$first_name$	last_name	email	password	hash	
1	Lukáš	Kousal	lukas@swim.cz	-PASS-	-HASH-	
	•••		•••		•••	
N	•••	•••	•••	•••		

Columns description

- 1. id|PK, int(11) Auto Increment
- 2. **first_name**, varchar(50)
- 3. last_name, varchar(50)
- 4. email, varchar(100) //unique identifier
- 5. **password**, varchar(100)
- 6. **hash**, varchar(32)
- 7. **active_flag**, tinyint(1) [0]
- 8. approved_flag, tinyint(1) [0]
- 9. **rights**, tinyint(1)
- 10. referee_rank_id|FK, int(11)
- 11. **affiliation_club_id**|**FK**, int(11)

sp_clubs

Club is an administrative unit of swimming club grouping bunch of users. One User is ClubManager/1 from UserRights, the rest is Referee/0. It can organize. Table preview

id	name	abbrev(a)	club_id	img
1	Klub plaveckých sportů Vyškov	KPSVy	614	vyskov.jpg
	•••			
14	TJ Rožnov pod Radhoštěm	TJRo	0	roznov.jpg

Columns description

- 1. id|PK, int(11) Auto Increment
- 2. **name**, varchar(80)
- 3. abbreviation, text
- 4. \mathbf{code} int(11) NULL
- 5. img, text NULL
- 6. affiliation_region_id|FK, int(11)

sp_cups

Cups are stored in this table.

Table preview

id	t_st(a)	$t_e(a)$	name	desc(a)	org_c_id(a)
1	2023	2023	GJW Cup I.	Cup organized by	2

Columns description

- 1. id|PK, int(11) Auto Increment
- 2. time_start, date
- 3. time_end, date
- 4. name, text
- 5. **description**, text
- 6. organizer_club_id|FK, int(11)

$sp_positions$

Position is object representing task for Cup that has to be performed by User. It has internal id based on which it is wired through the system internally. Table preview

id	name
1	Vrchní rozhodčí
19	Ostatní

Columns description

- 1. id|PK, int(11), Auto Increment
- 2. **name**, varchar(45)

3.1.2 Relation tables

Relation tables hold the most important information stored in the SwimmPair system - the **pairings** and **data for underlying statistics**. Both availability for cups and pairings to positions are represented here.

sp_user_cup_availability

This table stores relationships between referees/<u>users</u> and <u>cups</u> called availability. Referees are signed up by their team manager or themselves as available for the cup. In case of sudden inability to participate, the attendance_flag is switched to 0 in case the user is already assigned to some position. In that case the administrator is going to see the user in red box.

Table preview

id	cup_id	user_id	attendance_flag
1	3	21	1
2	3	1	1
7	3	19	0

Columns description

- 1. id|PK, int(11) Auto Increment
- 2. $\operatorname{\mathbf{cup_id}}|\mathbf{FK}, \operatorname{int}(11)$
- 3. **user_id**|**FK**, int(11)
- 4. attendance_flag, tinyint(1) [1]

sp_user_position_pairing

This table stores pairing information about available referees/users on positions for each cup. This is the most time saving utility of the SwimmPair. Table preview

id	cup_id	position_id	user_id
46	5	5	21
484	3	1	21
485	3	1	22
486	3	2	7
487	3	3	15
487	3	5	12
487	3	7	14
	•••	•••	•••

Columns description

- 1. id|PK, bigint(20) Auto Increment
- 2. $\operatorname{cup_id}|\mathbf{FK}, \operatorname{int}(11)|$
- 3. $position_id|FK$, int(11)
- 4. **user_id**|**FK**, int(11)

3.1.3 Content adjustment tables

sp_public_stats_config

Configuration table of which positions in what order should be displayed in statistics on frontend. For frontend then LEFT-JOIN **position_id** from table **sp_positions** ON **id** and display **sp_positions.name**.

Table preview

id	position_id
148	1
149	8
150	2
151	4
152	6

Columns description

- 1. id|PK, int(11) Auto Increment
- 2. $position_id|FK$, int(11)

sp_pages

Page is static website page with information in web application. It has some title and content.

Table preview

id	title	content
1	Kontakty	<h1>Title</h1> Contact information +420

Columns description

- 1. id|, int(11) Auto Increment
- 2. **title**, text
- 3. **content**, text

3.2 Managers documentation

These five managers work with objects and provide views and functions (i.e. joining more tables in varios ways to achieve all functionality). We're providing an overview of which API functions are calling which internal functions (plain, in cycle) and what are desired return values.

Documentation of model - classes and public functions is available ¹.

3.2.1 PostsManager.php

- $\underline{Post} \mid null \leftarrow \mathbf{GetPostById}(\$id)$

 - ✓ _CreatePostFromRow(\$row)
- $Post[] \mid null \leftarrow FindLastNPosts($N)$
 - $\overline{\setminus}$ _CreatePostsFromStatement(\$stmt)
 - \hookrightarrow _CreatePostFromRow(\$row)
- <u>true</u> | false ← **InsertNewPost**(\$title, \$content, \$d_flag, \$auth_id, \$sign)
- Post[] | false \leftarrow FindAllPostsOrderedByIdDesc()
- \(\subseteq \text{C}\) reatePostsFromStatement(\$stmt)
- \hookrightarrow _CreatePostFromRow(\$row)
- $\underline{\text{true}} \mid \text{false} \leftarrow \mathbf{UpdatePost}(\$id, \$title, \$content, \$d_flag, \$sign)$

3.2.2 UsersManager.php

- $\underline{\text{User}} \mid \text{null} \leftarrow \mathbf{GetUserById}(\$id)$

 - √ _CreateUserFromRow(\$row)
- User $[| null \leftarrow FindAllActiveUsersOrderByLastNameAsc()]$

 - \hookrightarrow _CreateUserFromRow (\$row)
- User $[\mid \text{null} \leftarrow \text{FindAllInactiveUsersOrderByLastNameAsc}()]$
 - CreateUsersFromStatement(\$stmt)
 - \hookrightarrow _CreateUserFromRow (\$row)
- $\underline{\text{User}[]} \mid \text{null} \leftarrow \mathbf{FindAllRegisteredTeamMembersForTheCup}(\text{\$cupId}, \text{\$teamId})$

 - \hookrightarrow _CreateUserFromRow (\$row)
- User $[| \text{null} \leftarrow \text{FindAllTeamMembers}(\text{\$teamId})]$
 - $\sqrt{\text{CreateUsersFromStatement(\$stmt)}}$
 - \hookrightarrow _CreateUserFromRow(\$row)
- User | | null ← FindAllRegisteredUsersForTheCup(\$cupId)
 - ∠CreateUsersFromStatement(\$stmt)
 - \hookrightarrow _CreateUserFromRow(\$row)

¹http://docu.swimmpair.cz

- User[] | $null \leftarrow FindPairedUsersOnCupForPosition(\$cupId, \$posId)$
 - $\sqrt{\text{_-C}}$ reateUsersFromStatement(\$stmt)
 - \hookrightarrow _CreateUserFromRow(\$row)
- $\bullet \ \underline{\mathrm{string}} \ | \ \mathrm{null} \leftarrow \mathbf{GetClubAbbreviationByAffiliationId}(\$\mathrm{id})$

 \searrow _GetSingleResultFromStatement(\$stmt)

- $\underline{\text{string}} \mid \text{null} \leftarrow \mathbf{GetUserFullNameById}(\$id)$
 - $\overline{\setminus}_{\underline{\mathsf{G}}}$ etSingleResultFromTwoColsStatement(\$stmt)
- $\underline{\text{true}} \mid \underline{\text{false}} \leftarrow \mathbf{IsEmailPresentAlready}(\$\text{email})$
- <u>true</u> | false ← RegisterUserFromAdmin(\$first_name, \$last_name, \$email, \$password, \$rights, \$klubaffil)
- <u>true</u> | false ← EmailNewPersonRegistered(\$email, \$password)
- $\underline{\text{true}} \mid \text{false} \leftarrow \mathbf{SetApprovedForUser}(\$userId)$

3.2.3 ClubsManager.php

- $\underline{\text{Club}} \mid \text{null} \leftarrow \mathbf{GetClubById}(\$id)$
- $Club[] \mid null \leftarrow FindAllClubs()$

 - \hookrightarrow _CreateClubFromRow(\$row)

3.2.4 CupsManager.php

- $Cup[] \mid null \leftarrow FindAllUpcomingCupsEarliestFirst()$
 - \searrow _CreateCupsFromStatement(\$stmt)
 - \hookrightarrow _CreateCupFromRow(\$row)
- $Cup[] \mid null \leftarrow FindAllPastCupsMostRecentFirst()$
 - $\sqrt{\ \ \ \ \ }$ _CreateCupsFromStatement(\$stmt)
 - \hookrightarrow _CreateCupFromRow(\$row)
- Cup | null $\leftarrow \mathbf{GetCupById}(\$id)$
 - \ _CreateCupOrNullFromStatement(\\$stmt)
- Pair[] | null ← FindPairingsForThisCup(\$id)
 - $\overline{\setminus}$ _CreatePairsFromStatement(\$stmt)
 - \hookrightarrow _CreatePairFromRow(\$row)
- true | false ← InsertNewCup(\$name, \$t_st, \$t_end, \$club, \$content)
- true | false ← IsUserAvailableForTheCup(\$userId, \$cupId)

Called together in XMLHttpRequest/update_availability.php in transaction.

- <u>true</u> | false ← **DeleteOldAvailability**(\$cupId)
- true | false ← InsertNewAvailability(\$cupId, \$userId, 1)

Called together in XMLHttpRequest/update_pairing.php in transaction.

- $\underline{\text{hash}} \mid \text{null} \leftarrow \mathbf{GetPairingHashForThisCup}(\$\text{cupId})$ $\searrow \underline{\text{GetSingleResultFromStatement}(\$\text{stmt})}$
- $\underline{\text{true}} \mid \text{false} \leftarrow \mathbf{DeleteOldPairing}(\$\text{cupId})$
- <u>true</u> | false ← **InsertNewPairing**(\$cupId, \$posId, \$userId)

3.2.5 PositionsManager.php

- Position[] | $null \leftarrow FindAllPositions()$
 - $\sqrt{\text{Creat}}$ ePositionsFromStatement(\$stmt)
 - \hookrightarrow _CreatePositionFromRow(\$row)
- $string \mid null \leftarrow GetPositionNameById(\$id)$
 - $\overline{\searrow}$ _GetSingleResultFromStatement(\$stmt)

3.3 Start file

Start file is included the in beginning of each page. It serves for **connection** to database, sanitization of input, definition of error handling and most importantly includes objects and managers and subsequently instantiates all managers by passing reference to live database connection \$mysqli - their only constructor argument.

```
/*Database credentials from environment*/
$host = getenv("DATABASE_HOST");
$user = getenv("DATABASE_USER");
$pass = getenv("DATABASE_PASS");
db = getenv("DATABASE.NAME");
/*Database connection and charset set*/
$mysqli = new mysqli($host, $user, $pass, $db) or die($mysqli->error
$mysqli->set_charset('utf8');
/* Sanitization function */
function h($string)
  return htmlspecialchars ($string);
}
/* Exception handling*/
error_reporting (E_ALL);
ini_set("display_errors", 1);
set_exception_handler(function () {
  echo "<h3_style=\"color:_red;\">INVALID_REQUEST</h3>";
  exit();
});
/* Objects and Managers inclusion */
require __DIR__ . '/model/Sanitizer.php';
require __DIR__ . '/model/Auth.php';
require __DIR__ . '/model/Post.php';
require __DIR__ . '/model/PostsManager.php';
require __DIR__ . '/model/Page.php';
require __DIR__ . '/model/PagesManager.php';
require __DIR__ . '/model/StatUserCnt.php';
require __DIR__ . '/model/StatPositionCnt.php';
require __DIR__ . '/model/RefereeRank.php';
require __DIR__ . '/model/Region.php';
require __DIR__ . '/model/RegionsManager.php';
                 '/model/User.php';
require __DIR__ .
                  '/model/UsersManager.php';
require __DIR__ .
                  '/model/Cup.php';
require __DIR__ .
                  '/model/PairPositionUser.php';
require __DIR__ .
                  '/model/CupsManager.php';
require __DIR__ .
                 '/model/Position.php';
require __DIR__ .
require __DIR__ . '/model/PositionsManager.php';
require __DIR__ . '/model/Club.php';
require __DIR__ . '/model/ClubsManager.php';
/* Construction of Managers w/ reference to $mysqli */
$postsManager = new PostsManager($mysqli);
$pagesManager = new PagesManager($mysqli);
$usersManager = new UsersManager($mysqli);
$clubsManager = new ClubsManager($mysqli);
$cupsManager = new CupsManager($mysqli);
$positionsManager = new PositionsManager($mysqli);
$regionsManager = new RegionsManager($mysqli);
```

3.4 Application structure - files defined

User part of the system

The system is running on Czech URLs for convinience reasons of browsing. English equivalents of route pages are attached in brackets to demonstrate what the pages do for non-czech speaker. There is no client side routing with traditional LAMP stack.

Admin part of the system

The administration has following structure. After going to /admin/index.php user gets logs in and goes to /administration/profile.php. Regarding user's rights (that are passed around along with other information in SESSION, retrievable like \$SESSION_['rights']) one has following structure (Administration, My Club, Me). Each user has profile settings for reseting password and other stuff. www.SwimmPair.cz/administration/profile.php

```
pridat_aktualitu.php (add_post.php)
  editovat_aktuality.php (edit_posts.php)
  editovat_aktualitu.php (edit_post.php)
  nove_registrovani.php (newly_registered.php)
  rozhodci_zavody.php (referees_cups.php)
  pairing.php (pairing.php)
  zaregistrovat_uzivatele.php (register_user.php)
  editovat_profily.php (edit_profiles.php)
  editovat_profil.php (edit_profile.php)
  novy_klub.php (add_club.php)
  sprava_klubu.php (edit_clubs.php)
  editovat_klub.php (edit_club.php)
 - novy_kraj.php (new_region.php)
  sprava_kraju.php (edit_regions.php)
  editovat_kraj.php (edit_region.php)
konfigurace_statistik.php (configure_stats.php)
editovat_stranku.php (edit_page.php)
My Club
pridat_zavod.php (add_cup.php)
prihlasit_moje_lidi.php (sign_availability_mates.php)
  prihlasit_moje_lidi_na.php (sign_availability_mates_for.php)
Me
sebe_na_zavod.php (myself_for_cup.php)
  prihlasit_se_na.php (sign_myself_for.php)
```

3.5 Templating of web and administration

Each page layout of public website has common characteristics such as header, menu and footer. These sections are unified and included everywhere, therfore they are included everywhere. They are:

- HEADER,
- MENU,
- Generated from result obtained by one or more manager calls. this section might be further updated via XMLHttpRequest calls & DOM modifications of newly delivered data,
- FOOTER.

Homepage of administration panel /admin/profile.php after login gets assembled with regards to the rights of logged user. Ordering is following: Admin (2) > Club manager (1) > Swimming referee (0) and each user gets snippet of his and lower role snippets:

- SUPERUSER menu snippet 2,
- CLUB MANAGER menu snippet 1,
- SWIMMING REFEREE menu snippet 0.

Access to different pages is then discriminated based on rights code on each page. Rights check on each page in administration

```
<?php
  require __DIR__ . '/../start.php';
  session_start();
  Auth::requireRole(UserRights::SuperUser);
  ...
?>
```

Static requireRole function on Auth class for access permission

```
class Auth
{
   public static function requireRole($role)
   {
      if (!isset($\section['rights']))
      {
        header('Location:\_/prihlaseni.php');
        exit();
      }
      //Rights sharply lower that user has, throw RuntimeException
      if ($\section['rights'] < $\section['rights'] < $\section['\section['rights'];
        echo $\section['rights'];
        echo $\section['rights'] \textit{'};
        echo $\section['rights'] \textit{'};
```

3.6 JavaScript functions documentation

Several features of public website implemented for interactive browsing.

Library js/SwimmPairFrontendJSLib.js

This library is created to support Ajax calls and DOM operations on frontend. Functions are self-descriptive and **this** means reference to caller DOM element.

- GetPostAppendPost(PushLastId())
 - \ ConstructNextPost(id, timestamp, title, content, author, signed)
- ProcessClubForTheSeason(clubId, this)
 - \(\sum \) CommunicateClubStatsXhrAndUpdateTable(clubId, year)
 \(\sum \) CommunicateClubStatsXhrAndUpdateTable(club Id, year)
 \(\sum \) CommunicateClubStatsXhrAndUpdateTable(club Id, year)
 \(\sum \) CommunicateClub
 - ∨ UpdateClubStatsTable(returnedJSON)
- ProcessPersonForTheSeason(userId, this)
 - CommunicateUserStatsXhrAndUpdateTable(userId, year)
 - \(\sum_\text{UpdateUserStatsTable(cnt, arr_str)}\)

XMLHttpRequest endpoints

- get_post_following.php, **GET args**: id
- get_person_statistics_for_the_season.php, GET args: user_id, year
- get_club_statistics_for_the_season.php, GET args: club_id, year

3.6.1 Previous post

This button on the main page serves as a tool for loading next post. It has onclick="GetPostAppendPost(PushLastId())". Both are JavaScript functions, PushLastId() detects id <article class="post" id="X"... of last article class="post" from DOM by querySelector and returns it. This value is then used as an argument of call GetPostAppendPost(id). This function requests article by GET request XMLHttpRequest/get_following_post.php?id=X. If the result is

- i) **null** button is deleted since there are no other articles to pull from DB,
- ii) **post** next article is constructed and appended from response.

3.6.2 User statistics - year change

All individual referees have seasons years picker when opened. Default season is the current season. Clicking different season visibily changes selected year and obtains appropriate statistics and updates the stats table. Clicking <span onclick="ProcessPersonForTheSeason(userId, this)"... calls inside CommunicateStatsXhrAndPopulateStats(userId, year) gets data from XMLHttpRequest/call_get_person_statistics_for_the_season.php ?id=userId&year=YYYY and updates table. Also via this reference in call the button is marked as selected.

3.6.3 Club statistics - year change

Club statistics are updated by clicking appropriate year that gets switched. Year onclick calls ProcessClubForTheSeason(clubId, this) which gets statistics by calling CommunicateClubStatsXhrAndUpdateTable(clubId, year) by calling XMLHttpRequest/get_club_statistics_for_the_season.php ?id=clubId&year=Year and subsequently calling UpdateClubStatsTable(returnedGetJSON) which literally updates stats.

3.6.4 Filtering referees

This function is triggered by one of these:

- i) RegionPickerChanged(this),
- ii) RefereeRankPickerChanged(this),
- iii) SearchBarChanged().

Registrovaní rozhodčí

Figure 3.1: Filtering of users ui preview.

FilterQueriedReferees("kraje", "tridy", "inputTrida", "nopplfound") is called every time one of 3 controlls is changed. We then loop all users visible/hidden and check if this one's Region IsOptionPermissible(raid, args[]) (referee area id), Rank IsOptionPermissible(rrid, args[]) (referee rank id) and then if one's Name IsNamePermissible(args[]). We then set one's element style to style="" and continue cycle execution. If we fail one of these three conditions we proceed to code below which sets element style to style="display:none".

```
//Querying
if (IsOptionPermissible(raid, krajeIDs)) {
  if (IsOptionPermissible(rrid, tridyIDs)) {
    if (IsNamePermissible(jmeno, first_name, last_name)) {
      articlePerson.setAttribute("style", "");
      empty = false;
      continue;
    }
}
//Some Condition Fails - Not Permissible
articlePerson.setAttribute("style", "display:none;");
}
```

4. Testing

There are two main ways to make sure that a web application works properly and fulfills its role. On one hand there is a code performance testing, performing test on backend level with dummy data insertion and performance benchmarking. On the other hand there is testing to assure that users are able to use system and to get inspiration for future UX improvements via SUS.

4.1 Performance evaluation

Performance script **dummy_data_benchmark.php** ¹ is located in main swimm-pair folder. It is performed on default database installation (with 2 admin users, with already existing clubs administered by application requesters, and with default referee positions).

The script has several tasks (tests) which are performed and benchmarked.

- 1. <u>Create 98 Users</u> (no. 3-100) each random affiliation to existing Club (no. 1-15).
- 2. Create 12 Cups each random affiliation to existing Club (no. 1-15).
- 3. <u>Fetch new Users</u>, fetch new Cups (+ <u>fetch static Positions</u>).
- 4. <u>Create Availabilities</u> (20 Users available per Cup).
- 5. Create Pairings (each Availability gets 1 random position).
- 6. <u>Call stats queries</u> (20 randomly either Clubs or Users stats w/ random club_id or user_id).

Docker Compose - 2.3 GHz Core i5 (I5-8259U) RAM 16GB Storage 512GB

T/rep no.	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Test #1	7.02	7.04	6.61	7.89	6.73	6.62	6.66	7.34	7.19	6.54
Test #2	0.08	0.06	0.06	0.06	0.06	0.10	0.58	0.60	0.50	0.15
Test #3	7.02	7.05	6.61	7.90	6.74	6.63	6.66	7.35	7.20	6.55
Test #4	1.24	1.05	1.14	1.05	1.18	1.17	1.24	1.15	0.96	1.59
Test #5	8.02	7.87	7.39	8.95	7.70	7.81	7.44	8.12	7.98	7.36
Test #6	1.29	1.10	1.19	1.12	1.23	1.22	1.28	1.19	1.00	1.62
TOTAL	<u>9.31</u>	<u>8.97</u>	8.59	<u>10.06</u>	<u>8.93</u>	<u>9.03</u>	<u>8.72</u>	<u>9.31</u>	<u>8.98</u>	<u>8.98</u>

Kubernetes - DOKS Kubernetes v 1.25.4-do.0, s-1vcpu-2gb-intel

T/rep no.	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Test #1	7.08	6.87	6.79	6.85	7.20	7.10	6.77	6.85	6.81	6.79
Test #2	0.04	0.03	0.04	0.04	0.04	0.03	0.05	0.05	0.03	0.04
Test #3	7.08	6.88	6.79	6.86	7.20	7.10	6.77	6.85	6.81	6.79
Test #4	0.84	0.59	0.68	0.81	0.60	0.55	0.70	0.82	0.60	0.67
Test #5	7.72	7.40	7.55	7.56	7.69	7.60	7.35	7.56	7.33	7.40
Test #6	0.86	0.61	0.70	0.84	0.62	0.57	0.72	0.84	0.62	0.69
TOTAL	8.57	8.01	8.25	8.40	<u>8.31</u>	8.17	8.07	8.39	<u>7.95</u>	<u>8.09</u>

¹In https://github.com/KlosStepan/SwimmPair-Www dummy_data_benchmark.php

4.2 System Usability Scale testing

We carried on testing of our application by handing SUS question are to 20 respondents. We then evaluated the scores in order to find out how our application stands. These people are are either managers or common referees 2 .

Questionare is made of 10 questions scored 1-5.

- 1. I think that I would like to use this system frequently.
- 2. I found the system unnecessarily complex.
- 3. I thought the system was easy to use.
- 4. I think that I would need the support of a technical person to be able to use this system.
- 5. I found the various functions in this system were well integrated.
- 6. I thought there was too much inconsistency in this system.
- 7. I would imagine that most people would learn to use this system very quickly.
- 8. I found the system very cumbersome to use.
- 9. I felt very confident using the system.
- 10. I needed to learn a lot of things before I could get going with this system.

We calculated³ SUS feedbacks based on responses from 20 people.

Respondent / Q. no.	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Petr A - 87.5	5	1	3	1	5	1	3	1	5	2
Olga A - 72.5	2	1	3	2	4	1	5	1	3	3
Marin H - 75	3	1	4	2	5	1	3	2	3	2
Michaela H - 60	2	3	3	4	3	2	4	2	5	2
Stepan K - 85	5	2	4	1	3	1	3	1	5	1
Matylda K - 80	4	1	4	2	4	1	4	2	4	2
Lukas Kour 67.5	2	2	5	2	4	1	4	2	2	3
Jana K - 60	1	2	3	2	5	2	3	2	2	2
Lukas Kous 92.5	5	1	4	1	5	1	4	1	5	2
Zuzana K - 70	3	2	5	1	3	1	3	2	3	3
Eva K - 80	3	2	5	1	3	1	3	1	4	$\mid 1 \mid$
Michael P - 75	2	1	4	3	4	1	4	1	3	1
Lenka P - 70	3	2	5	1	3	2	3	2	3	2
Daniela S - 77.5	3	2	5	2	3	1	4	2	4	1
Magdalena S - 85	4	1	4	1	4	1	5	1	3	2
Jiri S - 62.5	3	3	5	3	4	2	3	3	2	1
Hana S - 80	2	2	4	1	5	1	4	1	4	2
Alena T - 90	4	1	5	1	3	1	4	1	5	1
Magda Z - 85	3	2	5	2	4	1	4	1	5	$\mid 1 \mid$
Vera Z - 75	3	3	4	1	3	1	3	1	4	1

²John Brooke [1995]

 $^{^{3}((}A1-1)+(5-A2)+(A3-1)+(5-A4)+(A5-1)+(5-A6)+(A7-1)+(5-A8)+(A9-1)+(5-A10))*2,5$

So we plotted our tes results for further investivation. We can compare results and it's distribution in boxplot or look further into specific questions.

Figure 4.1: Boxplot of scores.

Figure 4.2: Breakdown of single questions.

4.3 Unit testing

Testing serves two puposes.

- i) **Firstly**, to ensure that functionality works as intended.
- ii) **Secondly**, not only that new functionaly works as intended but also that any previous stuff or functions were not broken either.

We wrote bunch of PHPUnit tests for each Manager called ManagerTest.php in folder tests/Unit in our project. These tests test ordinry CRUD ⁴ functionalities.

4.3.1 Local execution of tests

See results of test during local development by following these steps: attach VS Code to running Container ⁵ and see results in PHP Tools by DEVSENSE ⁶. We can open command line - **docker@6bd3d752da84:/var/www/html** and run tests by typing **phpunit** to the command line.

Figure 4.3: Attached VS Code to container and run tests via PHP Tools.

⁴CRUD = Create, Read, Update, Delete

⁵Volume . : /var/www/html is, in fact, our working folder.

⁶https://www.devsense.com/en/features#vscode

4.3.2 GitHub Actions workflow

We then load our project repository with folder with tests and proceed to let automated testing be done upon code push into the repository. After testing is done, we can see results of all steps and if nothing failed green checkbox gets added to our repository header next to hash as a bonus.

Our testing pipeline works as follows:

- code gets pushed into master brach of repository,
- GitHub Action workload gets triggered,
- creates database, fill it with dummy data, app connects to it,
- then **phpunit** command is run.

Result of all these steps are visible on GitHub website. All steps are openable for more deliberate investigation.

Figure 4.4: GitHub Actions workflows - steps of execution, opened phpunit.

After all tests are run successfully and nothing fails along the way also, checkbox is placed next to commit hash.

Figure 4.5: Check next to commit hash after successful test pipeline.

5. Deployment

Development of our application was done locally - using **Docker compose** to glue up three components necessary to sufficiently run our system - PHP runtime for web application, MySQL Database and Adminer. We have to, however, run our application in Kubernetes Cluster. **Service** and **Deployment** have to be written, Service for purposes of routing and taking care of container spawn addresses and Deployment to describe container replicas and appropriate images. **Database** is run as separate entity within the Cluster.

Running SwimmPair in Kubernetes Cluster:

Dockerization of SwimmPair

File called **Dockerfile** has to be created in the project folder.

```
FROM the coding machine/php:7.4-v4-apache COPY—chown=docker . /var/www/html
```

This image of Apache/PHP¹ was chosen because it correctly dockerizes part of socalled LAMP stack. In order to build this image and push it into Dockerhub.com we run these commands:

```
docker build -t stepanklos/swimmpair . docker push stepanklos/swimmpair
```

This image is then pullable as stepanklos/swimmpair from Deployment.

Kubernetes

We run 2 replicas on 2 Nodes in order to ensure reliability and uptime.

Database and Redis

As mentioned before, our application doesn't come with Database and Adminer, which have to be set up separately using persistent storage PV on which we write PVC and reference from deployment.

Redis - !TODO

¹Image **thecodingmachine/php:7.4-v4-apache** by TheCodingMachine - https://github.com/thecodingmachine/docker-images-php

Conclusion

Endeavor of designing, development and shipping of this web application was overally successful. There are some parts, that can be improved or extended in the future, however, our system is ready for this and lessons have been learned.

Speaking of lessons, design/development part was not as straightforward as theoretics would have appreciated, but rather it was done iteratively with cooperation of system requester.

The stages of iterations are roughly:

- 1. Problem description + basic pages layouts programming (homepage, cup, user, club).
- 2. Model formalization and proper division of code into system objects and task functions.
- 3. Statistics on data (user, club), additional pages for categorization purposes.
- 4. Addition of Regions for futher extensible hierarchisation.
- 5. Major final refactoring of database, backend and testing with dummy data insertion and querying.
- 6. Cloud ready, Docker image of web application and Kubernetes Deployment.

Further system extesions might be related to adding **new public pages**, **statistical queries**, **administrative tasks addition** - these are pages addition, model adjustment and minor design changes. All types of modifications can be accommodated thanks to divided code and the changes might consist of modifying style, model classes enhancement, database procedures addition etc. Future modifications will reside in the the project GitHub repository ².

²https://github.com/KlosStepan/SwimmPair-Www

Bibliography

- Docker Inc. Docker Documentation. on-line, 2023. URL https://docs.docker.com/desktop/. Accessed: 2022-12-27.
- ECMA INTERNATIONAL. ECMA-262 ECMAScript® 2022 language specification. on-line, June 2022. URL https://www.ecma-international.org/publications-and-standards/standards/ecma-262/. Accessed: 2023-01-03.
- John Brooke. SUS: A quick and dirty usability scale. on-line, 1995. URL https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale. Accessed: 2023-02-28.
- Oracle. MySQL Documentation. on-line, 2023. URL https://dev.mysql.com/doc/. Accessed: 2022-12-27.
- The Kubernetes Authors. Kubernetes Documentation. on-line, 2023. URL https://kubernetes.io/docs/home/. Accessed: 2023-01-03.
- The PHP Group. PHP 7.4 Specification. on-line, 28 November 2019. URL https://www.php.net/releases/7_4_0.php. Accessed: 2022-12-27.
- W3C. CSS Specifications. on-line, 31 December 2022. URL https://www.w3.org/Style/CSS/specs.en.html. Accessed: 2022-12-27.
- WHATWG. HTML Living Standard. on-line, 26 December 2022. URL https://html.spec.whatwg.org/. Accessed: 2022-12-27.

List of Figures

1.1	Preview of grouping Regions-Clubs-Users and Cup	4
1.2	UML Class Diagram of situation	8
2.1	From page to manager, database, function, database and back	12
2.2	Mockup of public pages - homepage and listing of users	13
2.3	Mockup of public pages - cups listing and cup preview	13
2.4	Administration - menu gets assembled on rights, page edit	14
2.5	Cup add and drag'n'drop pairing	14
2.6	Simplified schema without all information just for idea	15
2.7	Full database schema for the SwimmPair application	15
3.1	Filtering of users ui preview	30
4.1	Boxplot of scores	33
4.2	Breakdown of single questions	33
4.3	Attached VS Code to container and run tests via PHP Tools	34
4.4	GitHub Actions workflows - steps of execution, opened phpunit	35
4.5	Check next to commit hash after successful test pipeline	35

List of Abbreviations

- **CSPS** Cesky Svaz Plaveckych Sportu, *Czech Swimming Federation* unites swimming clubs in the Czech Republic and provides competitions infrastructure and operations.
- **LAMP** Linux Apache MySQL PHP, standard stack for running web applications.
- **SUS** System usability scale, standard 10 questions questionare evaluating on scale 0-100 how good to use the web application is.
- **DOKS** Digital Ocean Kubernetes, managed Kubernetes service provided by https://www.digitalocean.com with various scaling and functional options.
- **SwimmPair** Swimming Pairing, application that we developer and abbreviated and branded it like this *SwimmPair*.
- **UML** Unified Modeling Language, style of represent class relations between modelled objects in functional design.