Formale Herleitung und Auswertung von Verschränkungs- und Schnittmetriken auf dem Sierpinski-Tetraeder-Graphen (L=4)

antaris (Projekt ST-Graph PoC)

19. August 2025

Zusammenfassung

Wir formalisieren die in den beigefügten Auswertungen beobachteten Größen (Verschränkungsentropie, Mutual Information, intra- und interregionale Korrelationsstärken, Schnittkanten und minimale Graphdistanzen) auf dem Sierpinski-Tetraeder-Graphen der Stufe L=4. Die globalen Zustände sind freie fermionische Gaußzustände (Grundzustand eines Tight-Binding/Laplacian-Hamiltonians bei halber Füllung), vollständig beschrieben durch die Einteilchen-Korrelationsmatrix C. Wir beweisen die verwendeten Beziehungen, insbesondere $S(\rho_A) = -\text{Tr}\left[C_A\log C_A + (I-C_A)\log(I-C_A)\right]$ und für den reinen Gesamtzustand $\text{MI}(A:\overline{A}) = 2S(\rho_A)$ sowie $\text{MI}(A:B) = S(\rho_A) + S(\rho_B) - S(\rho_{AB})$ für disjunkte A,B. Die Messwerte werden anschließend tabellarisch dokumentiert und durch zwei Abbildungen (farbcodierte 3D-Darstellung und Layer-Skalenkurve) ergänzt.

1 Konstruktion des ST-Graphen

Definition 1.1 (Sierpinski-Tetraeder-Graph G_L). Fixiere $L \in \mathbb{N}$. Sei $V_0 = \{(0,0,0), (2^L,0,0), (0,2^L,0), (0,0,2^L)\}$ \mathbb{R}^3 . Für $i \in \{0,1,2,3\}$ definiere Kontraktionen $F_i(x) = \frac{1}{2}(x+v_i)$ mit $v_i \in V_0$. Die Menge der Wörter der Länge L ist $\mathcal{W}_L = \{(i_1,\ldots,i_L) \mid i_k \in \{0,1,2,3\}\}$. Die *Eckenmenge* V_L ist die Vereinigung aller Bilder der vier Ecken unter allen Präfixen der Wörter aus \mathcal{W}_L . Zwei unterschiedliche Ecken $u,v \in V_L$ sind durch eine Kante verbunden, falls sie zu demselben Bild eines Tetraeders (für ein gemeinsames Präfix) gehören. Der Graph sei $G_L = (V_L, E_L)$.

Bemerkung 1.2. Die obige algorithmische Definition ist äquivalent zur üblichen IFS-Konstruktion des Sierpinski-Tetraeders. Die Kantenmenge entsteht als Vereinigung der 6 Tetraederkanten auf allen Skalen.

2 Fermionisches Modell und Korrelationsmatrix

Definition 2.1 (Hamiltonoperator und Grundzustand). Sei A die Adjazenzmatrix von G_L und $L_G := D - A$ der Graph-Laplacian mit Gradmatrix $D := \operatorname{diag}(A\mathbf{1})$. Wir betrachten spinlose Fermionen auf V_L mit Einteilchen-Hamiltonian $H := L_G$. Bei Füllung $f = \frac{1}{2}$ ist der viele-Teilchen-Grundzustand ein reiner Gaußzustand $|\Psi\rangle$, eindeutig bestimmt durch die Einteilchen-Korrelationsmatrix

$$C := \langle c^{\dagger} c \rangle = U_{\text{occ}} U_{\text{occ}}^{\top}$$

wobei U_{occ} die Matrix der $M=\lfloor \frac{1}{2} |V_L| \rfloor$ niedrigsten Eigenmoden von H ist.

Proposition 2.2 (Entropie aus C). Für jede Teilmenge $A \subseteq V_L$ bezeichne C_A den $A \times A$ -Block von C. Die von-Neumann-Entropie der reduzierten Dichtematrix ρ_A ist

$$S(\rho_A) = -\text{Tr}[C_A \log C_A + (I - C_A) \log(I - C_A)]. \tag{2.1}$$

Beweis. Der Grundzustand ist ein reiner freier Gaußzustand. Die Reduktion auf A ist erneut Gauß-förmig mit Einteilchen-Kovarianz C_A . Diagonalisiere $C_A = W\Lambda W^{\top}$ mit Eigenwerten $\lambda_j \in (0,1)$. Dann faktorisiert ρ_A in lokale fermionische Moden mit Spektrum $\{\lambda_j, 1 - \lambda_j\}$; somit $S(\rho_A) = \sum_j h(\lambda_j)$ mit $h(x) = -x \log x - (1-x) \log(1-x)$, was (2.1) ergibt.

Proposition 2.3 (Mutual Information). Für disjunkte Teilmengen $A, B \subseteq V_L$ gilt

$$MI(A:B) = S(\rho_A) + S(\rho_B) - S(\rho_{AB}), \tag{2.2}$$

$$MI(A : \overline{A}) = 2 S(\rho_A)$$
 (reiner Gesamtzustand). (2.3)

Beweis. Die erste Gleichung ist die Definition der Mutual Information in der Quanteninformationstheorie und folgt aus Subadditivität. Für den reinen Gesamtzustand gilt $S(\rho_A) = S(\rho_{\overline{A}})$ und $S(\rho_{A\overline{A}}) = 0$, woraus die zweite Gleichung unmittelbar folgt.

3 Regionen, Exklusivzuweisung und Schnittmetriken

Definition 3.1 (Regionen über Präfixe und Exklusivregel). Sei $\pi: \mathcal{W}_{\leq L} \to 2^{V_L}$ die Abbildung, die einem Präfix die zugehörigen vier Tetraederecken (auf der entsprechenden Skala) zuordnet. Wir wählen die Präfixe

GREEN: L0-Ecken, YELLOW:
$$(1,0)$$
, RED: $(0,1,2,3)$.

Die Exklusivregel ordnet jedem Vertex höchstens eine Region zu, und zwar in der Priorität RED>YELLOW>GREEN.

Lemma 3.2 (Disjunktheit und Totalität). Die so konstruierten Mengen $A_R, A_Y, A_G \subseteq V_L$ sind paarweise disjunkt; ihre Vereinigung ist die Menge aller den drei Präfixfamilien zugeordneten Vertices.

Beweis. Die Exklusivregel implementiert eine wohldefinierte partielle Funktion $e:V_L\to\{R,Y,G\}$, die jedem Vertex den "höchsten" passenden Präfixtyp zuweist; unterschiedliche Bilder sind disjunkt. Die Vereinigung deckt genau die Vertices, die zu mindestens einem Präfix gehören.

Definition 3.3 (Schnittmetriken). Für disjunkte $A, B \subseteq V_L$ definieren wir:

- 1. Schnittkantenzahl $\operatorname{cut}(A, B) := |\{\{u, v\} \in E_L \mid u \in A, v \in B\}|.$
- 2. mittlere Kreuzkorrelation $\langle |C| \rangle_{\text{cross}}(A, B) := \frac{1}{|A||B|} \sum_{u \in A, v \in B} |C_{uv}|$.
- 3. minimale Graphdistanz $d_{\min}(A, B) := \min\{\operatorname{dist}(u, v) \mid u \in A, v \in B\}.$

4 Messwerte (L=4)

Die folgenden Tabellen fassen die aus regions_observables_exclusive.csv, pairs_observables_exclusive und levels_observables.csv extrahierten Werte zusammen.

Tabelle 1: Größen pro Region.

Region	# Vert.	S(A)	$\mathrm{MI}(A:\overline{A})$	$\langle C \rangle_{\mathrm{intra}}$
GREEN YELLOW RED	4 63	1.1933 30.2059 1.8920	2.3865 60.4118 3.7839	0.0255 0.0080 0.1250

Tabelle 2: Paarweise Metriken zwischen den Regionen.

Paar	MI(A:B)	cut(A,B)	$\langle C \rangle_{\rm cross}$	d_{\min}
RED:YELLOW	0.1649	3	0.0022	1
RED:GREEN	-0.0033	0	0.0001	7
YELLOW:GREEN	-0.1586	1	0.0020	1

Regionale Observablen

Paarmetriken

Layer-weise Observablen

5 Abbildungen

6 Beobachtungen und Konsistenzprüfungen

- Konsistenz mit Proposition 2.3: In der Tabelle ist jeweils $MI(A : \overline{A}) = 2S(A)$ zu sehen (numerisch bis auf Rundungsfehler).
- Die Werte $\langle |C| \rangle_{\text{intra}}$ unterscheiden sich deutlich zwischen kleinen, hochlokalen Regionen (rot, grün) und der größeren gelben Region; dies reflektiert die Lokalität der Laplace-Moden.
- Die paarweisen Größen (cut, $\langle |C| \rangle_{cross}, d_{min}$) sind kompatibel: größere cut und kleinere d_{min} korrelieren mit leicht erhöhten Kreuzkorrelationen.
- Die starke Zunahme von $S(\ell)$ ab $\ell \geq 3$ deckt sich mit der wachsenden Anzahl von Vertices in den späten Geburts-Leveln.

7 Reproduzierbarkeit

Alle Zahlen stammen aus den beigefügten CSVs (regions_observables_exclusive.csv, pairs_observables_levels_observables.csv), erzeugt durch das Python-Skript ST.py (bzw. Pipeline-Variante). Die korrespondierenden Visualisierungen sind static_colored_obs_exclusive-scaled.png, levels_S_MI.png sowie die animierte Darstellung static_colored_obs_exclusive_rotate.gif (für LaTeX als externe Zusatzdatei).

Lizenzhinweis: Code: MIT License. Nicht-Code (z. B. CSV/PNG/GIF): CC BY 4.0. © 2025 antaris.

Tabelle 3: Verschränkung pro Geburts-Level ℓ (Ausspuren des ℓ -ten Layers).

$\overline{\ell}$	$\#V(\ell)$	$S(\ell)$	$MI(\ell:Rest)$
0	4	1.1933	2.3865
1	6	4.1250	8.2500
2	24	16.4996	32.9992
3	96	65.9888	131.9776
4	384	198.4328	396.8655

Sierpinski-Tetraeder L=4 - EXKLUSIV + Schnitt-Metriken (GREEN L0, YELLOW L2, RED L4)

GREEN: |A|=4, S=0.7871, M|(A:Rest)=1.5741, |(C|)_intra=0.0232 | YELLOW: |A|=63, S=26.5109, M|(A:Rest)=53.0218, |(C|)_intra=0.076 | RED: |A|=4, S=1.6644, M|(A:Rest)=3.288, |(C|)_intra=0.099! | RED: YELLOW: |A|=63, S=26.5109, M|(A:Rest)=53.0218, |(C|)_intra=0.076 | RED: |A|=4, S=1.6644, M|(A:Rest)=3.288, |(C|)_intra=0.099! | RED: YELLOW: |A|=63, S=26.5109, M|(A:Rest)=53.0218, |(C|)_intra=0.076 | RED: |A|=4, S=1.6644, M|(A:Rest)=3.288, |(C|)_intra=0.099! | RED: YELLOW: |A|=63, S=26.5109, M|(A:Rest)=30.0218, |(C|)_intra=0.076 | RED: |A|=63, S=26.5109, M|(A:Rest)=30.0218, |(C|)_intra=0.078 | RED: |A|=63, S=26.5109, M|(A:Rest)=30.0218, |(C|)_intra=0.0218, |(C|)_intra=0.0218, |(C|)_intra=0.0218, |(C|

Abbildung 1: Farbcodierte 3D-Darstellung (grünes Drahtgitter: L=0, gelb: Präfix (1,0), rot: Präfix (0,1,2,3)) inkl. Annotation der Messgrößen.

8 Literatur (Auswahl)

Literatur

- [1] J. Eisert, M. Cramer, M. B. Plenio: Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82 (2010) 277–306.
- [2] I. Peschel: Calculation of reduced density matrices from correlation functions. J. Phys. A **36** (2003) L205.
- [3] I. Peschel, V. Eisler: Reduced density matrices and entanglement entropy in free lattice models. J. Phys. A 42 (2009) 504003.

Abbildung 2: Skalierung von $S(\ell)$ und $\mathrm{MI}(\ell : \mathrm{Rest})$ über die Konstruktionslevel.