ISA 401/501: Business Intelligence & Data Visualization

24: A Short Introduction to Exploratory Data Mining

Fadel M. Megahed, PhD

Enders Associate Professor Farmer School of Business Miami University

- @FadelMegahed
- fmegahed
- ✓ fmegahed@miamioh.edu
- ? Automated Scheduler for Office Hours

Fall 2022

A Recap of What we Learned Last Week

- Define a "business report" & its main functions
- Understand the importance of the right KPIs
- Automate traditional business reports
- Dashboards as real-time business reporting tools

Course Objectives Covered so Far

[Y]ou will be re-introduced to **how data should be explored** ... Instead, the focus is on understanding the underlying methodology and mindset of **how data should be approached**, **handled, explored, and incorporated back into the domain of interest.** ... You are expected to:

- ✓ Write basic

 R scripts to preprocess and clean the data.
- ✓ Explore the data using visualization approaches that are based on sound human factors (i.e. account for human cognition and perception of data).
- **Solution** Understand how data mining and other analytical tools can capitalize on the insights generated from the data viz process.
- ✓ Create interactive dashboards that can be used for business decision making, reporting and/or performance management.
- **Be able to apply the skills from this class in your future career.**

Learning Objectives for Today's Class

- Describe the goals & functions of data mining
- Understand the statistical limits on data mining
- Describe the data mining process
- What is "frequent itemsets" & the application of this concept
- Explain how and why "association rules" are constructed
- Use to populate both concepts

An Overview of Data Mining

What is Data Mining?

- The most common definition of data mining is the discovery of models from data.
- Discovery of patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern
- Subsidiary Issues:
 - Data cleansing: detection of bogus data
 - Data visualization: something better than MBs of output
 - Warehousing of data (for retrieval)

A Simplistic View of Data Mining Models

A simplistic summary of data mining models. Note that, in ISA 401, we will only briefly cover descriptive/exploratory data mining models

Data Mining is Hard

Data mining is hard since it has the following issues:

- Scalability
- Dimensionality
- Complex and Heterogeneous Data
- Data Quality
- Data Ownership and Distribution
- Privacy Preservation

Note that I have intentionally not included fitting/training a model since this is relatively easy if you understand the data, engineered/captured the important predictors, and have the data in the "correct" shape/quality.

```
## transactions as itemMatrix in sparse format with
   9835 rows (elements/itemsets/transactions) and
   169 columns (items) and a density of 0.02609146
##
  most frequent items:
         whole milk other vegetables
##
                                            rolls/buns
                                                                    soda
               2513
                                                  1809
##
                                 1903
                                                                    1715
             vogurt
                              (Other)
##
               1372
                                34055
##
## element (itemset/transaction) length distribution:
## sizes
                                                   10
                                                         11
                                                             12
                                                                        14
                                                                                  16
                          5
                                                                             15
                        855
                                                       182
                                                                             55
   2159 1643 1299 1005
                             645
                                   545 438
                                             350
                                                  246
                                                                  78
                                                                                  46
                                                         28
##
     17
          18
                    20
                         21
                                         24
                                              26
                                                                   32
               14
                         11
                                     6
                                        1
     29
          14
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                               Max.
     1.000
             2.000
                     3.000
                             4.409
                                      6.000
                                             32.000
```

```
##
      lhs
                                         rhs
                                                        support
  [1] {Instant food products, soda}
                                      => {hamburger meat} 0.001220132
     {soda, popcorn}
                                      => {salty snack} 0.001220132
                                      [3] {flour, baking powder}
  [4] {ham, processed cheese}
  [5] {whole milk, Instant food products} => {hamburger meat} 0.001525165
      confidence coverage lift
                                   count
  [1] 0.6315789 0.001931876 18.99565 12
     0.6315789 0.001931876 16.69779 12
      0.5555556 0.001830198 16.40807 10
  [4] 0.6333333 0.003050330 15.04549 19
  [5] 0.5000000 0.003050330 15.03823 15
```

04:00

Clustering of Traffic Volume on I-85

Data

04:00

Clustering of Traffic Volume on I-85

Data

Calendar Plot of Clustered Data

Insights from Chart?

Clustering of Traffic Volume on I-85

Data

Calendar Plot of Clustered Data

Insights from Chart?

Based on the previous tab, what are 2-3 main insights you have learned about the traffic volume in Montgomery, AL? Write them down below

Edit me and insert your solution here

Regression vs Classification

An Overview of Common Data Mining Models

Limits on Data Mining

Meaningfulness of Answers from DM Models

- A big risk when data mining is that you will discover patterns that are meaningless.
- Bonferroni's Principle: (roughly) if you look in more places for interesting patterns than your amount of data will support, you are bound to find.

Rhines Paradox: An Example of Overzealous DM?

- Joseph Rhine was a parapsychologist in the 1950s who hypothesized that some people had **Extra-Sensory Perception**.
- He devised an experiment where subjects were asked to guess 10 hidden cards red or blue.
- He discovered that almost 1 in 1000 had ESP they were able to get all 10 right!
- He told these people they had ESP and called them in for another test of the same type.
- · Alas, he discovered that almost all of them had lost their ESP.
- What did he conclude?
 - He concluded that you should not tell people they have ESP; it causes them to lose it.
 - Why is this an incorrect conclusion?

Ethical Issues with Data Mining

In the News: AI Implementation Scandals

FROM POLITICO

Dutch scandal serves as a warning for Europe over risks of using algorithms

The Dutch tax authority ruined thousands of lives after using an algorithm to spot suspected benefits fraud – and critics say there is little stopping it from happening again.

As the world turns to AI to automate their systems, the Dutch scandal shows how devastating they can be | Dean Mouhtaropoulos/Getty Images

BY MELISSA HEIKKILÄ

March 29, 2022 | 6:14 pm

The Data Mining Process

Frameworks for Data Mining Projects

The CRISP-DM Process

- You are expected to read the original CRISP-DM paper
- Each step has several substeps
- Most of the project time is typically spent in steps 1-3

Frequent Itemsets, Market Basket Analysis and Association Rule Mining

Association Rule Discovery

Supermarket shelf management – Market-basket model:

- Goal: Identify items that are bought together by sufficiently many customers
- Approach: Process the sales data collected with barcode scanners to find dependencies among items
- A classic rule:
 - If someone buys diaper and milk, then he/she is likely to buy beer
 - Don't be surprised if you find six-packs next to diapers!

The Market-Basket Model

- A large set of items
 - · e.g., things sold in a supermarket
- A large set of baskets
- Each basket is a small subset of items
 - e.g., the things one customer buys on one day
- Want to discover association rules
 - People who bought {x,y,z} tend to buy {v,w}
 - Amazon!

Input:

Basket #	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output: Discovered Rules

Definitions: Support & Support Threshold

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support for itemset I: Number of baskets containing all items in I
 - Often expressed as a fraction of the total number of baskets
- Given a support threshold s, then sets
 of items that appear in at least s
 baskets are called frequent itemsets

Input:

Basket #	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Support of {Beer, Bread}: = 2

Non-graded Activity: Frequent Itemsets

Activity

Your Solution

Items = {Milk, Coke, Pepsi, Beer, Juice}

With a support threshold of 3 baskets, find all frequent itemsets based on these 8 baskets:

- $B_1 = \{Milk, Coke, Beer\}$
- $B_3 = \{Milk, Beer\}$
- $B_5 = \{Milk, Pepsi, Beer\}$
- $B_6 = \{ \text{Coke, Beer, Juice} \}$

- $B_2 = \{Milk, Pepsi, Juice\}$
- $B_4 = \{ Coke, Juice \}$
- $B_6 = \{ Milk, Coke, Beer, Juice \}$
- $B_8 = \{ Coke, Beer \}$

04:00

Non-graded Activity: Frequent Itemsets

Activity

Your Solution

Identify all frequent singletons, doubles, triples, etc.

Edit me and insert your solution here

- Association Rules: If-then rules about the contents of baskets
- $\{i_1, i_2,...,i_k\} \rightarrow j$ means: "if a basket contains all of i_1, \ldots, i_k then it is likely to contain j"
- In practice there are many rules, want to find significant/interesting ones!
- Confidence of this association rule is the probability of j given $I = \{i_1,...,i_k\}$

$$conf(I
ightarrow j) = P(j \mid I) = rac{support(I \cap j)}{support(I)}$$

- Not all high-confidence rules are interesting
 - The rule $X \to milk$ may have high confidence for many itemsets X, because milk is just purchased very often (independent of X) and the confidence will be high
- Lift of an association rule $I \to J$ is the ratio between its confidence and the fraction of baskets containing j: $lift(I \to j) = \frac{conf(I \to j)}{Pr(j)}$

04:00

Non-Graded Activity: Confidence and Lift

Activity

Your Solution

```
egin{aligned} \bullet B_1 &= \{ 	ext{Milk, Coke, Beer} \} \ &= \{ 	ext{Milk, Pepsi, Juice} \} \ &= \{ 	ext{Milk, Beer} \} \ &= \{ 	ext{Coke, Juice} \} \ &= \{ 	ext{Milk, Pepsi, Beer} \} \ &= \{ 	ext{Milk, Coke, Beer, Juice} \} \ &= \{ 	ext{Coke, Beer, Juice} \} \ &= \{ 	ext{Coke, Beer, Juice} \} \ &= \{ 	ext{Coke, Beer} \} \ &= \{ 	ext{Coke, Beer} \} \end{aligned}
```

For the association rule: {Milk, Beer} → Coke, compute both its confidence and lift.

04:00

Non-Graded Activity: Confidence and Lift

Activity

Your Solution

Computing the confidence and lift for the association rule {Milk, Beer} → Coke

Edit me and insert your solution here

Finding Association Rules

- Problem: Find all association rules with support ≥ s and confidence ≥ c
 - Note: Support of an association rule is the support of the set of items on the left side
- Hard part: Finding the frequent itemsets!
 - If $\{i_1, i_2,...,i_k\} \rightarrow j$ has high support and confidence, then:
 - both {i₁, i₂,...,i_k} and both {i₁, i₂,...,i_k, j} will be "frequent"

Naïve Approach to Counting Frequent Itemsets

- Naïve approach to finding frequent pairs
- · Read file once, counting in main memorythe occurrences of each pair:
 - From each basket of n items, generate its $\frac{n(n-1)}{2}$ pairs by two nested loops
- Fails if (#items)² exceeds main memory
 - Remember: #items can be 100K (Wal-Mart) or 10B (Web pages)
 - Suppose 10^5 items, counts are 4-byte integers
 - Number of pairs of items: $\frac{10^5(10^5-1)}{2}=5*10^9$
 - Therefore, $2 * 10^{10}$ (20 gigabytes) of memory needed

A-Priori Algorithm

- A two-pass approach called A-Priori limits the need for main memory
- Key idea: monotonicity
 - If a set of items I appears at least s times, so does every subset J of I
- Contrapositive for pairs: If item i does not appear in s baskets, then no pair including i can appear in s baskets

So, how does A-Priori find frequent pairs?

A-Priori Algorithm

- Pass 1: Read baskets and count in main memory the occurrences of each individual item
 - Requires only memory proportional to #items
- Items that appear $\geq s$ times are the frequent items
- Pass 2: Read baskets again and count in main memory only those pairs where both elements are frequent (from Pass 1)

Using to Mine Association Rules

In class, we will go through this R code, explaining: (a) what each function is doing, and (b) the outputs from each step.

```
if(require(pacman) == FALSE) install.packages('pacman')
pacman::p load(arules, tidyverse)
data('Groceries') # note its class
summary(Groceries)
itemFrequency(Groceries) # returns frequency in alphabetic order
itemFrequency(Groceries) %>% sort(decreasing = T)
itemFrequencyPlot(Groceries, support = 0.1)
itemFrequencyPlot(Groceries, topN = 20)
# mine association rules with a certain min support and confidence
grocery rules = apriori(
  Groceries. parameter = list(
    support = 0.01, confidence = 0.5, minlen = 2, maxlen = 5)
summary(grocery_rules)
inspect(grocery rules)
sort(grocery rules, by ='lift', decreasing = T)[1:3] %>% inspect()
```

Recap

Summary of Main Points

- Describe the goals & functions of data mining
- Understand the statistical limits on data mining
- Describe the data mining process
- What is "frequent itemsets" & the application of this concept
- Explain how and why "association rules" are constructed
- Use to populate both concepts