- 1. Рассмотрим стационарную ARCH(1) модель $u_t = \sigma_t \nu_t$, где $\nu_t \sim \mathcal{N}(0;1)$ и независимы, а $\sigma_t^2 = 4 + 0.5 u_{t-1}^2$.
 - (a) Постройте 95%-й предиктивный интервал для u_{101} , u_{102} , если $u_{100}=2$.
 - (b) Найдите автокорреляционную функцию процесса u_t^2 .
- 2. Посчитайте DTW расстояние между рядами a=(0,1,3,1) и b=(1,2,0). Отличие двух конкретных наблюдений измеряйте с помощью $|a_i-b_j|$.
- 3. Функция f(x) описывается гауссовским процессом с нулевым ожиданием GP(0,K). Задающая ковариации ядерная функция K имеет вид $K(a,b) = \exp(-(a-b)^2)$.

Постройте 95%-й интервал для f(1), если f(0)=0 и f(3)=1.

На всякий: $\exp(-1) = 0.368$, $\exp(-2) = 0.135$.

4. Винни-Пух использует тест Диболда-Мариано для сравнения доходности двух стратегий добычи мёда. Каждый день он добывает мёд у правильных пчёл и у неправильных пчёл, обозначим d_t разницу добытого количества.

Помогите Винни-Пуху проверить гипотезу об одинаковой эффективности стратегий против гипотезы о разной эффективности.

Известно, что стационарная AR(1) модель для d_t дала оценки $\hat{d}_t = 0.3 + 0.7 d_{t-1}$ с оценкой дисперсии случайной составляющей $\hat{\sigma}_u^2 = 1$.

5. В байесовской авторегрессии априорное распределение параматра имеет вид $\beta \sim \mathcal{N}(1,1)$. Модель предполагает первое наблюдение фиксированным, а далее $y_t = \beta y_{t-1} + u_t$, где $u_t \sim \mathcal{N}(0;1)$ и независимы.

Ряд короткий: $y_1 = 5$, $y_2 = 6$, $y_3 = 7$.

- (a) Найдите апостериорное распределение $\beta.$
- (b) Постройте апостериорный 95% предиктивный интервал для y_4 .
- 6. Структура иерархического временного ряда описывается матрицей S. Мы хотим найти оптимальную матрицу согласования G, преобразующую вектор всех рядов в вектор рядов нижнего уровня. Выполнено естественное требование SGS=S.

Вспомним задачу минимизации суммы всех дисперсий ошибок согласованных прогнозов, tr $\mathrm{Var}(y-\hat{y}\mid\mathcal{F}_T)\to \min$ при известной матрице $W=\mathrm{Var}(y-\hat{y}\mid\mathcal{F}_T)$.

Докажите, что она полностью эквивалентна задаче нахождения вектора $\hat{\beta}$ оценок с наименьшими дисперсиями вида $\hat{\beta}=Ga$ в модели $a=S\beta+u$, при $\mathrm{E}(u)=0$, $\mathrm{Var}(u)=W$.

Здесь y — вектор всех рядов иерархии, \hat{y} — вектор несогласованных прогнозов, \tilde{y} — вектор согласованных прогнозов.