

A Comparative Inference Evaluation of Deep Neural Network Compression Methods

Desiana Dien Nurchalifah, Deebul Nair, Paul G. Plöger June 22, 2020

Introduction

Figure 1. Illustration of Image Classification in Autonomous Driving¹

False action execution caused by:

- Incorrect classification
- Slow response time

¹Image adapted from: A. Balakrishnan. (2019).

Why are we doing this?

- With increasing performance, the number of parameters is also increased up to 8 times.
- Increasing number of parameters leads to expansion of memory usage.

Figure 2. Number of Operations Versus Accuracy of DNN Architecture²

²Image reference: Bianco et al. (2018).

Challenges

- Restriction of embedded system resources:
 - Implementation without GPU
 - Limited memory space
- Multiply-accumulate operations
 (MACs) and floating point operations
 (FLOPs) are not sufficient to define faster inference

Figure 3. MAC vs Latency on MobileNet³

Methods Comparison

Review of Methods: Pruning

Unstructured Pruning

- Pruning based on rank of weights
- Network has cluttered **sparse** representation

Training	Pruning	Fine Tuning
Train the data	Prune based on saliency criteria	Fine tune the model after sparsity has been induced

Figure 4. Unstructured Pruning Illustration⁴

A Comparative Inference Evaluation of DNN Compression...

6/18

Review of Methods: Pruning

Structured Pruning

- Prune based on grouped penalty (layers, channels, filters)
- Effective representation on CPU

L1 Pruning based on the work (Liu et al., 2018), pruning filters algorithm is as follows:

- 1. Train deep network
- 2. For each convolution layer, calculate sum value
- 3. Sort sum values
- 4. Remove smallest m and corresponding feature maps
- 5. Create new layer by copying non-pruned filters

$$\triangle_c = \sum \| weights \|$$

Review of Methods: Pruning

Fisher Pruning (Theis et al., 2018)

- Greedily remove parameters one by one where delta loss is the smallest
- With:
 - *N*: number of examples
 - W: channel spatial width
 - *H*: channel spatial height
 - o g: gradients of parameters w.r.t nth data
 - A: activation of nth data point

$$\Delta_c = rac{1}{2N} \sum_{n}^{N} \left(-\sum_{i}^{W} \sum_{j}^{H} A_{nij} g_{nij} \right)^2$$

Review of Methods: Low-Rank Approximations

Approximation of weights matrix by decompose and reconstruct the weight matrix such that matrix consists of lower rank than its original value. With S as the rank approximated, reconstruction is done as follows:

$$y = Wx + b$$

$$\downarrow \qquad \qquad \downarrow$$

$$y = USV^{T}x + b$$

Review of Methods: Quantization

- Weights represented with fixed value
- With M bit precision and N vector to be quantized, orientation of weights vector should be preserved in the formula:

$$2^M \gg \sqrt{2ln(N)}$$

In ResNet-50, 1024 examples yield to:

$$2^8 >> \sqrt{2 \ln(3 \times 3 \times 2048 \times 1024)}$$

 $256 >> 5.788$

Review of Methods: Model Distillation

- Main idea: transfer knowledge of model function into smaller model⁶
- Distillation: extraction of the most important aspect or the imperative meaning in teacher network by student network.

cow	dog	cat	car	
0	1	0	0	original hard targets
cow	dog	cat	car	output of
10 ⁻⁶	.9	.1	10 ⁻⁹	geometric ensemble
cow	dog	cat	car	
.05	.3	.2	.005	softened output of ensemble

Review of Methods: Knowledge Distillation

Figure 6. Knowledge Distillation Illustration

 With z as logits, obtain knowledge by using softmax temperature:

$$S(i) = \frac{e^{z_i/T}}{\sum_j e^{z_j/T}}$$

 With H as cross-entropy loss and λ as turn-able parameters, distillation loss calculated by:

$$L_{KD}(W_s) = H(y, S(z_s; T = 1)) + \lambda H(S(z_t; T = \tau), S(z_s, T = \tau))$$

Review of Methods: Knowledge Distillation

Feature-based

- Contain intermediate layer hints
- With r as regressor and u_h as teacher function and v_g as student function, the loss is minimized as follows:

Figure 6. Knowledge Distillation Summary⁷

$$L_{HT}(W_{Guided}, W_r) = \frac{1}{2} \| u_h(x; W_{Hint}) - r(v_g(x; W_{Guided}); W_r) \|^2$$

Experiments: Model Compression

Settings:

- 100 iterations each method
- MLMark benchmark⁸

Table 1. Model Compression Accuracy and Parameters Results

Method	Number of Parameters	Reduction Ratio	Top-1 Accuracy
	ResNet-	56	
Baseline	869530	1	93.13
Weight Pruning	613349	0.705	93.17
L1-Norm 773336		0.889	93.24
Fisher	855770	0.984	86.64
	PreResNet	-110	
Baseline	1146842	1	94.99
Weight Pruning	808408	0.704	94.97
L1-Norm 1088618		0.949	93.51

Figure 7. Speedup vs Compression Comparison

A Comparative Inference Evaluation of DNN Compression...

14/18

Experiments: Model Compression

Figure 8. Accuracy vs Speedup Comparison

Evaluation: Model Distillation

Table 2. Model Distillation Accuracy and Parameters Results

Student	Number of	Reduction Ratio	Top-1 Accuracy	
Parameters			KD	FitNets
	1	ResNet-56 Teacher		
ResNet8	78042	0.089	60.61	63.63
ResNet18	175258	0.201	72.42	77.89
ResNet26	272474	0.313	74.74	78.0
	Pre	eResNet-110 Teacher		
ResNet26	272474	0.024	62.10	76.01

Figure 9. Model Distillation Latency Results

Conclusion

- L1 Regularization provides the fastest inference among model compression methods
- Unstructured sparsity in neural network without accelerators is proved to behave slower than the original model itself (reverified the work of Liu, et al. 2018)
- Distillation method based on feature of the teacher leads to better accuracy-latency trade off than distillation based on the output
- Exact metrics such as latency needed to measure performance

Future Work

 Software: Neural Architecture Search (NAS)

Figure 10. NAS Illustration9

- Hardware: Utilization of accelerators
 - a. Specialty in addressing weight sparsity: Eyeriss, cerebras
 - Reduced precision: Nvidia Pascal,
 Intel NNP-L

Figure 11. Nvidia Pascal, Intel NNP-L¹⁰

⁹Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. 2018. ¹⁰Thttps://en.wikipedia.org/wiki/Pascal_(microarchitecture);, https://www.intel.ai/nervana-nnp/.