ENGR 3421:Robotics I

Encoder

A Robot Needs to Feel

A Robot Needs to Sense Velocity

What is A (Rotary) Encoder

- (Rotary) Encoder measures angular movement.
- a common sensor for motors and other rotational devices.
- Provides closed-loop/feedback controls

Incremental vs. Absolute

Incremental	Absolute
Simple	Complicated
Cheap	Expensive
Measures angular displacement	Measures absolute position
Floating origin	Fixed origin

Types of Encoders

Optical

Hall Effect

Quadrature Encoder

PPR & CPR

Pulses Per Revolution:

describes the number of high pulses an encoder will have on either of its square wave outputs A or B over a single revolution.

Counts Per Revolution:

refers to the number of quadrature decoded states that exist between the two outputs A and B

Encoder Wiring

Color	Function
Red	motor power
Black	encoder power +
Yellow	encoder A signal
Green	Encoder B signal
Blue	encoder power - (GND)
White	motor power

Encoder Counts -> Wheel Revolutions

 C_{enc} Revs

$$Revs = \frac{C_{enc}}{CPR \cdot i} = \frac{C_{enc}}{28 \cdot 100}$$

<u> 100:1 Micro Metal Gearmotor</u> Erata

- 28 counts per revolution
- **98.5:1** gear ratio

Coding Examples