Manipulation des series chronologiques

P. Hénaff

2/2021

Lecture d'une série

```
ts.zc <- get.ts(folder="SBF120", ticker="zc.pa")
```

Zodiac Aerospace

Figure 1: Zodiac Aerospace

Exercice 1

Obtenir le même graphique avec un titre du CAC40.

On commence par obtenir une liste des tickers du CAC40, puis on lit une série.

```
tickers <- get.tickers(folder = "CAC40")
knitr::kable(head(tickers), row.names=FALSE, booktabs=TRUE, col.names="Ticker", caption="Echantillon de")</pre>
```

Table 1: Echantillon de tickers du CAC40

Ticker
ac.pa
aca.pa
ai.pa
air.pa
alo.pa
alu.pa

```
ts.air <- get.ts(folder="CAC40", ticker="air.pa")</pre>
```


Figure 2: Airbus

Lecture de tous les composants de l'EuroStox
x $50\,$

On calcule ensuite le rendement moyen annuel et on présente les résultats sous forme de tableau.

Table 2: Rendement annuel moyen des actions de l'EuroStox
x $50\,$

Ticker	Exchange	Rendement (%)	Ticker	Exchange	Rendement (%)
ABI	BR	5.3	GLE	PA	-9.2
ADS	DE	8.3	GSZ	PA	-1.9
AI	PA	10.0	$_{\mathrm{IBE}}$	MC	-5.2
ALV	DE	3.7	ING		-14.1
ASML		16.4	ISP	MI	-0.6
BAS	DE	10.6	ITX	MC	23.2
BAYN	DE	13.0	MC	PA	9.9
BBVA	MC	-4.6	MUV2	DE	8.1
BMW	DE	10.5	OR	PA	8.5
BN	PA	3.4	PHG		-1.2
BNP	PA	-0.5	RWE	DE	-16.4
CA	PA	-4.2	SAN	MC	-2.9
CS	PA	4.8	SAN	PA	5.5
DAI	DE	7.9	SAP	DE	7.2
DBK	DE	-9.5	SGO	PA	-3.2
$\overline{\mathrm{DG}}$	PA	5.9	SIE	DE	4.8
DPW	DE	5.3	SU	PA	6.4
DTE	DE	7.5	TEF	MC	0.8
EI	PA	28.0	UCG	MI	-29.3
ENEL	MI	0.5	UL	AS	9.4
ENI	MI	1.7	UN		9.6
EOAN	DE	-8.6	VIV	PA	3.7
FP	PA	4.3	VOW	DE	4.3
G	MI	-5.7			

Exercice 2

Calculer la matrice de correlation des rendements quotidients des actions de l'Eurostoxx50.

```
ts.all <- get.all.ts(folder="EuroStoxx50", returns=TRUE, combine=TRUE)
```

On calcule la matrice de corrélation sur plusieurs intervalles de 1 an:

```
nb.obs <- 252
dt.start <- dmy("01Jan2009")
idx.start <- closest.index(ts.all, dt.start)
idx <- seq(idx.start, length.out=nb.obs)
cor.EX50 <- cor(ts.all[idx,])</pre>
```


Figure 3: Corrélation de l'EuroStoxx50, 2009

```
dt.start <- dmy("01Jan2012")
idx.start <- closest.index(ts.all, dt.start)
idx <- seq(idx.start, length.out=nb.obs)
cor.EX50 <- cor(ts.all[idx,])</pre>
```


Figure 4: Corrélation de l'EuroStoxx50, 2012

NASDAQ

Selection des séries NASDAQ avec au moins 7 ans de données, et calcul du rendement annuel moyen. Executez le code pas à pas pour comprendre ce que font sapply et do.call. Notez aussi l'utilisation de l'option cache=TRUE} pour éviter un re-calcul assez long.

```
min.length = 252*7
ts.all <- get.all.ts(</pre>
 folder='NASDAQ', tickers=NULL, returns = FALSE,
 dt.start = dmy('01Jan2007'), combine = F
)
dtStart1 = sapply(ts.all, function(t) time(t)[1])
dtStart = do.call(c, dtStart1)
dtEnd = sapply(ts.all, function(t) time(t)[length(t)])
dtEnd = do.call(c, dtEnd)
ts.days <- sapply(ts.all, function(t) length(t))</pre>
good.indices <- which(ts.days >= min.length)
good.ts.names <- sapply(ts.all[good.indices], names)</pre>
good.ts.ret <- sapply(ts.all[good.indices],</pre>
                       function(t) round(252*colMeans(returns(t)*100,
                                                        na.rm=TRUE),1))
good.df <- data.frame(ticker=toupper(good.ts.names), ret=good.ts.ret)</pre>
```

On imprime les dix meilleurs et les dix pires rendements moyens.

Table 3: NASDAQ: meilleurs et pires rendements annuels moyens

Ticker	Rendement (%)
EXXI	-32.5
CTCM	-26.9
ETFC	-23.6
ARNA	-21.6
GLCH	-21.4
EROC	-20.3
BBRY	-20.1
APOL	-19.5
BPOP	-19.1
SHLD	-19.1
ALXN	32.3
INCY	33.7
REGN	37.8
NFLX	38.0

Ticker	Rendement (%)
PCLN	39.7
PCYC	47.3
QCOR	54.6
HTWR	63.1
SNTS	117.0
BMC	146.2