Statistical Methods for Analysis with Missing Data

Lecture 8: introduction to Bayesian inference

Mauricio Sadinle

Department of Biostatistics

W UNIVERSITY of WASHINGTON

Previous Lecture

EM algorithm for maximum likelihood estimation with missing data:

- Derivation and implementation of EM algorithm for categorical data
- For two categorical variables, EM under MAR is intuitive and simple

$$\pi_{kl}^{(t+1)} = \frac{1}{n} \left(n_{11kl} + \frac{\pi_{kl}^{(t)}}{\pi_{k+}^{(t)}} n_{10k+} + \frac{\pi_{kl}^{(t)}}{\pi_{+l}^{(t)}} n_{01+l} + \pi_{kl}^{(t)} n_{00++} \right),$$

where

$$n_{11kl} = \sum_{i} W_{ikl} I(r_i = 11), \quad n_{10k+} = \sum_{i} W_{ik+} I(r_i = 10),$$

 $n_{01+l} = \sum_{i} W_{i+l} I(r_i = 01), \quad n_{00++} = \sum_{i} I(r_i = 00)$

Bootstrap confidence intervals

Today's Lecture

- ▶ Introduction to Bayesian inference. Why?
 - Technique called multiple imputation is derived from a Bayesian point of view
 - Variation of multiple imputation called multiple imputation by chained equations imitates Gibbs sampling – a procedure commonly used for Bayesian inference
 - Bayesian inference has its own ways of handling missing data

Outline

Bayes' Theorem

Bayesian Inference

For events A and B:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- ▶ $P(A \mid B)$: conditional probability of event A given that B is true
- ▶ $P(B \mid A)$: conditional probability of event B given that A is true
- ► P(A) and P(B): unconditional/marginal probabilities of events A and B

Example: Using Bayes' Theorem

- ▶ A: person has a given condition
- ▶ *B*: person tests positive for condition using cheap test
- ▶ $P(B \mid A)$, $P(B \mid A^c)$: known from experimental testing
- \triangleright P(A): known from study based on gold standard
- ▶ $P(A \mid B) = P(B \mid A)P(A)/P(B)$: probability of having the condition given positive result in cheap test

Example: Using Bayes' Theorem

- ▶ A: person has a given condition
- ▶ B: person tests positive for condition using cheap test
- ▶ $P(B \mid A) = 0.99$: sensitivity of the test
- ▶ $P(B^c \mid A^c) = 0.99$: specificity of the test
- P(A) = 0.01: rare condition
- ▶ Given that a generic person tests positive, what is the probability that they have the condition?

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A^c)P(A^c)}$$
$$= \frac{.99 \times .01}{.99 \times .01 + .01 \times .99} = 0.5$$

In the above example, we are implicitly working with two binary variables

- ightharpoonup Y = I(having medical condition)
- ightharpoonup X = I(testing positive)

with a joint density p(X = x, Y = y)

▶ Bayes' theorem simply relates the conditional probabilities $p(X = x \mid Y = y)$ and $p(Y = y \mid X = x)$

In general

- ▶ Random vectors X and Y
- ▶ Joint density p(x, y)
- ▶ Relationship between conditionals is given by Bayes' theorem

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

- ▶ This is a mathematical fact about conditional probabilities/densities
- ▶ Applying Bayes' theorem doesn't make you *Bayesian*!
- ► The *Bayesian* approach arises from applying this theorem to obtain statistical inferences on model parameters!

In general

- ► Random vectors X and Y
- ▶ Joint density p(x, y)
- ▶ Relationship between conditionals is given by Bayes' theorem

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

- ▶ This is a mathematical fact about conditional probabilities/densities
- ▶ Applying Bayes' theorem doesn't make you Bayesian!
- ▶ The *Bayesian* approach arises from applying this theorem to obtain statistical inferences on model parameters!

In general

- ▶ Random vectors X and Y
- ▶ Joint density p(x, y)
- ▶ Relationship between conditionals is given by Bayes' theorem

$$p(x \mid y) = \frac{p(y \mid x)p(x)}{p(y)}$$

- ▶ This is a mathematical fact about conditional probabilities/densities
- ▶ Applying Bayes' theorem doesn't make you Bayesian!
- ► The *Bayesian* approach arises from applying this theorem to obtain statistical inferences on model parameters!

Outline

Bayes' Theorem

Bayesian Inference

- Bayesian paradigm: model parameters are treated as random variables to represent uncertainty about their true values
- Compare with the frequentist paradigm: model parameters are unknown constants
- Bayesian analysis requires
 - Likelihood function, coming from a model for the distribution of the data
 - Prior distribution on model parameters, coming from previous knowledge about the phenomenon under study
- Prior distribution is updated using the likelihood via Bayes' theorem resulting in a posterior distribution
- ▶ Bayesian inferences are drawn from posterior distribution (updated knowledge)

- Bayesian paradigm: model parameters are treated as random variables to represent uncertainty about their true values
- Compare with the frequentist paradigm: model parameters are unknown constants
- Bayesian analysis requires:
 - Likelihood function, coming from a model for the distribution of the data
 - Prior distribution on model parameters, coming from previous knowledge about the phenomenon under study
- ▶ Prior distribution is *updated* using the likelihood via *Bayes' theorem* resulting in a *posterior distribution*
- ▶ Bayesian inferences are drawn from posterior distribution (updated knowledge)

- Bayesian paradigm: model parameters are treated as random variables to represent uncertainty about their true values
- Compare with the frequentist paradigm: model parameters are unknown constants
- Bayesian analysis requires:
 - Likelihood function, coming from a model for the distribution of the data
 - Prior distribution on model parameters, coming from previous knowledge about the phenomenon under study
- Prior distribution is updated using the likelihood via Bayes' theorem, resulting in a posterior distribution
- ▶ Bayesian inferences are drawn from posterior distribution (updated knowledge)

- Bayesian paradigm: model parameters are treated as random variables to represent uncertainty about their true values
- Compare with the frequentist paradigm: model parameters are unknown constants
- Bayesian analysis requires:
 - Likelihood function, coming from a model for the distribution of the data
 - Prior distribution on model parameters, coming from previous knowledge about the phenomenon under study
- Prior distribution is updated using the likelihood via Bayes' theorem, resulting in a posterior distribution
- ▶ Bayesian inferences are drawn from posterior distribution (updated knowledge)

- Bayesian paradigm: model parameters are treated as random variables to represent uncertainty about their true values
- Compare with the frequentist paradigm: model parameters are unknown constants
- Bayesian analysis requires:
 - Likelihood function, coming from a model for the distribution of the data
 - Prior distribution on model parameters, coming from previous knowledge about the phenomenon under study
- ▶ Prior distribution is *updated* using the likelihood via *Bayes' theorem*, resulting in a *posterior distribution*
- ► Bayesian inferences are drawn from posterior distribution (updated knowledge)

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - Binary vectors of variable inclusion in regression model selection
 - ▶ Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - ► Graphs in graphical models
 - Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement thar deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - ► Graphs in graphical models
 - ▶ Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - ▶ Binary vectors of variable inclusion in regression model selection
 - ► Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - ▶ Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - ▶ Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - ▶ Binary vectors of variable inclusion in regression model selection
 - ▶ Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- ► Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

- Quantification of uncertainty in large discrete parameter spaces
 - Partitions in clustering problems
 - Graphs in graphical models
 - ▶ Binary vectors of variable inclusion in regression model selection
 - Bipartite matchings in record linkage
- Frequentist approach calls for constructing confidence sets, whereas Bayesian approach works with a posterior distribution from which we can sample to approximate summaries of interest
- Under some conditions, posteriors behave like sampling distribution of MLEs, but Bayesian machinery might be easier to implement than deriving estimate of asymptotic covariance matrix of MLE
- ▶ Implementing a Monte Carlo EM algorithm to obtain MLEs is similar to implementing Data Augmentation (coming soon), but the latter readily provide you with measures of uncertainty
- Convenient in hierarchical/multilevel models priors just add another level to the hierarchy

The Likelihood Function

Same as before:

- $ightharpoonup Z = (Z_1, \dots, Z_K)$: generic vector of study variables
- ▶ We work under a parametric model for the distribution of Z

$$\{p(z \mid \theta)\}_{\theta}, \quad \theta = (\theta_1, \theta_2, \dots, \theta_d)$$

- ▶ Data from random i.i.d. vectors $\{Z_i\}_{i=1}^n \equiv \mathbf{Z}$
- ▶ Under our parametric model, the joint distribution of $\{Z_i\}_{i=1}^n$ has a density function

$$p(\mathbf{z} \mid \theta) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

 \blacktriangleright This, seen as a function of θ , is the likelihood function

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

The Likelihood Function

Same as before:

- $ightharpoonup Z = (Z_1, \dots, Z_K)$: generic vector of study variables
- ▶ We work under a *parametric model* for the distribution of *Z*

$$\{p(z \mid \theta)\}_{\theta}, \quad \theta = (\theta_1, \theta_2, \dots, \theta_d)$$

- ▶ Data from random i.i.d. vectors ${Z_i}_{i=1}^n \equiv \mathbf{Z}$
- ▶ Under our parametric model, the joint distribution of $\{Z_i\}_{i=1}^n$ has a density function

$$p(\mathbf{z} \mid \theta) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

 \triangleright This, seen as a function of θ , is the likelihood function

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

The Likelihood Function

Same as before:

- $ightharpoonup Z = (Z_1, \dots, Z_K)$: generic vector of study variables
- ▶ We work under a *parametric model* for the distribution of *Z*

$$\{p(z \mid \theta)\}_{\theta}, \quad \theta = (\theta_1, \theta_2, \dots, \theta_d)$$

- ▶ Data from random i.i.d. vectors $\{Z_i\}_{i=1}^n \equiv \mathbf{Z}$
- ▶ Under our parametric model, the joint distribution of $\{Z_i\}_{i=1}^n$ has a density function

$$p(\mathbf{z} \mid \theta) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

 \triangleright This, seen as a function of θ , is the likelihood function

$$L(\theta \mid \mathbf{z}) = \prod_{i=1}^{n} p(z_i \mid \theta)$$

The Prior Distribution

- ▶ Prior to observing the realizations of $\mathbf{Z} = \{Z_i\}_{i=1}^n$, do we have any information on the parameters θ ?
- ▶ Represent this prior information in terms of a distribution

$$p(\theta)$$

The Posterior Distribution

Now, "simply" use Bayes' theorem

$$p(\theta \mid \mathbf{z}) = \frac{L(\theta \mid \mathbf{z})p(\theta)}{p(\mathbf{z})}$$
$$= \frac{L(\theta \mid \mathbf{z})p(\theta)}{\int L(\theta \mid \mathbf{z})p(\theta)d\theta}$$
$$\propto L(\theta \mid \mathbf{z})p(\theta)$$

"That's it!"

The Posterior Distribution

For simple problems, we typically have two ways of computing the posterior $p(\theta \mid \mathbf{z})$

▶ Compute the integral $\int L(\theta \mid \mathbf{z})p(\theta)d\theta$, and then compute

$$p(\theta \mid \mathbf{z}) = \frac{L(\theta \mid \mathbf{z})p(\theta)}{\int L(\theta \mid \mathbf{z})p(\theta)d\theta}$$

- ▶ Stare at / manipulate the expression $L(\theta \mid \mathbf{z})p(\theta)$ seen as a function of θ alone
 - ▶ If $L(\theta \mid \mathbf{z})p(\theta) = a(\theta, \mathbf{z})b(\mathbf{z})$, then $p(\theta \mid \mathbf{z}) \propto a(\theta, \mathbf{z})$
 - ▶ If $a(\theta, \mathbf{z})$ looks like a known distribution except for a constant, then we have identified the posterior

The Posterior Distribution

For simple problems, we typically have two ways of computing the posterior $p(\theta \mid \mathbf{z})$

▶ Compute the integral $\int L(\theta \mid \mathbf{z})p(\theta)d\theta$, and then compute

$$p(\theta \mid \mathbf{z}) = \frac{L(\theta \mid \mathbf{z})p(\theta)}{\int L(\theta \mid \mathbf{z})p(\theta)d\theta}$$

- ▶ Stare at / manipulate the expression $L(\theta \mid \mathbf{z})p(\theta)$ seen as a function of θ alone
 - ▶ If $L(\theta \mid \mathbf{z})p(\theta) = a(\theta, \mathbf{z})b(\mathbf{z})$, then $p(\theta \mid \mathbf{z}) \propto a(\theta, \mathbf{z})$
 - ▶ If $a(\theta, \mathbf{z})$ looks like a known distribution except for a constant, then we have identified the posterior

Example: Binomial Data, Beta Prior

Let $Z \mid \theta \sim \mathsf{Binom}(n, \theta)$, and $\theta \sim \mathsf{Beta}(a, b)$

$$L(\theta \mid z) = \binom{n}{z} \theta^z (1-\theta)^{n-z}, \qquad p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

▶ The proportionality constant is

$$\int L(\theta \mid z)p(\theta)d\theta = \frac{\binom{n}{z}}{B(a,b)} \int \theta^{z+a-1} (1-\theta)^{n-z+b-1} d\theta$$
$$= \binom{n}{z} \frac{B(z+a,n-z+b)}{B(a,b)}$$

And the posterior is

$$p(\theta \mid z) = \frac{L(\theta \mid z)p(\theta)}{\int L(\theta \mid z)p(\theta)d\theta}$$
$$= \frac{1}{B(z+a, n-z+b)} \theta^{z+a-1} (1-\theta)^{n-z+b-1}$$

▶ Therefore, $\theta \mid z \sim \text{Beta}(z + a, n - z + b)$

Example: Binomial Data, Beta Prior

Let $Z \mid \theta \sim \mathsf{Binom}(n, \theta)$, and $\theta \sim \mathsf{Beta}(a, b)$

$$L(\theta \mid z) = \binom{n}{z} \theta^z (1-\theta)^{n-z}, \qquad p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

▶ The proportionality constant is

$$\int L(\theta \mid z)p(\theta)d\theta = \frac{\binom{n}{z}}{B(a,b)} \int \theta^{z+a-1} (1-\theta)^{n-z+b-1} d\theta$$
$$= \binom{n}{z} \frac{B(z+a,n-z+b)}{B(a,b)}$$

And the posterior is

$$\rho(\theta \mid z) = \frac{L(\theta \mid z)p(\theta)}{\int L(\theta \mid z)p(\theta)d\theta}$$
$$= \frac{1}{B(z+a, n-z+b)} \theta^{z+a-1} (1-\theta)^{n-z+b-1}$$

▶ Therefore, $\theta \mid z \sim \text{Beta}(z + a, n - z + b)$

Let $Z \mid \theta \sim \mathsf{Binom}(n, \theta)$, and $\theta \sim \mathsf{Beta}(a, b)$

$$L(\theta \mid z) = \binom{n}{z} \theta^z (1-\theta)^{n-z}, \qquad p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

The proportionality constant is

$$\int L(\theta \mid z)p(\theta)d\theta = \frac{\binom{n}{z}}{B(a,b)} \int \theta^{z+a-1} (1-\theta)^{n-z+b-1} d\theta$$
$$= \binom{n}{z} \frac{B(z+a,n-z+b)}{B(a,b)}$$

And the posterior is

$$p(\theta \mid z) = \frac{L(\theta \mid z)p(\theta)}{\int L(\theta \mid z)p(\theta)d\theta}$$
$$= \frac{1}{B(z+a, n-z+b)} \theta^{z+a-1} (1-\theta)^{n-z+b-1}$$

▶ Therefore, $\theta \mid z \sim \text{Beta}(z + a, n - z + b)$

Let $Z \mid \theta \sim \mathsf{Binom}(n, \theta)$, and $\theta \sim \mathsf{Beta}(a, b)$

$$L(\theta \mid z) = \binom{n}{z} \theta^z (1 - \theta)^{n-z}, \qquad p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1 - \theta)^{b-1}$$

▶ The proportionality constant is

$$\int L(\theta \mid z)p(\theta)d\theta = \frac{\binom{n}{z}}{B(a,b)} \int \theta^{z+a-1} (1-\theta)^{n-z+b-1} d\theta$$
$$= \binom{n}{z} \frac{B(z+a,n-z+b)}{B(a,b)}$$

And the posterior is

$$p(\theta \mid z) = \frac{L(\theta \mid z)p(\theta)}{\int L(\theta \mid z)p(\theta)d\theta}$$
$$= \frac{1}{B(z+a, n-z+b)} \theta^{z+a-1} (1-\theta)^{n-z+b-1}$$

▶ Therefore, $\theta \mid z \sim \text{Beta}(z + a, n - z + b)$

Let $Z \mid \theta \sim \mathsf{Binom}(n, \theta)$ and $\theta \sim \mathsf{Beta}(a, b)$

$$L(\theta \mid z) = \binom{n}{z} \theta^{z} (1-\theta)^{n-z}, \qquad p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

We could also have noticed

$$p(\theta \mid z) \propto L(\theta \mid z)p(\theta)$$

 $\propto \theta^{z+a-1}(1-\theta)^{n-z+b-1}$

► This is the non-constant part (the kernel) of the density function of a beta random variable with parameters z + a and n - z + b, therefore $\theta \mid z \sim \text{Beta}(z + a, n - z + b)$

Let $Z \mid \theta \sim \mathsf{Binom}(n, \theta)$ and $\theta \sim \mathsf{Beta}(a, b)$

$$L(\theta \mid z) = \binom{n}{z} \theta^{z} (1-\theta)^{n-z}, \qquad p(\theta) = \frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1}$$

We could also have noticed

$$p(\theta \mid z) \propto L(\theta \mid z)p(\theta)$$

 $\propto \theta^{z+a-1}(1-\theta)^{n-z+b-1}$

This is the non-constant part (the kernel) of the density function of a beta random variable with parameters z + a and n - z + b, therefore $\theta \mid z \sim \text{Beta}(z + a, n - z + b)$

To illustrate the idea, say:

- ▶ Someone is flipping a coin n = 10 times in an independent and identical fashion
- ▶ Number of heads $Z \sim \mathsf{Binomial}(n, \theta)$
- ▶ What is the value of θ ?
- We use a Beta(a,b) to express our *prior belief* on θ
- ▶ We observe Z = 8

Possible scenarios of prior information on θ ; posteriors with Z=8:

▶ No idea of what θ could be: Beta(1,1)

► The person flipping the coin looks like a trickster: Beta(9,1)

► Coin flipping usually has 50/50 chance of heads/tails: Beta(100,100)

Possible scenarios of prior information on θ ; posteriors with Z=8:

▶ No idea of what θ could be: Beta(1,1)

▶ The person flipping the coin looks like a trickster: Beta(9,1)

► Coin flipping usually has 50/50 chance of heads/tails: Beta(100,100)

Possible scenarios of prior information on θ ; posteriors with Z=8:

▶ No idea of what θ could be: Beta(1,1)

▶ The person flipping the coin looks like a trickster: Beta(9,1)

► Coin flipping usually has 50/50 chance of heads/tails: Beta(100,100)

Prior

Comments So Far

- Bayesian approach allows you to incorporate side information based on context
 - ▶ Do you know what "flipping a coin" means?
 - ▶ Is the person flipping the coin someone you trust?
- It seems expressing prior information works nicely with some parametric families
- Quantification of prior information can be tricky, especially for complicated models

Comments So Far

- Bayesian approach allows you to incorporate side information based on context
 - ▶ Do you know what "flipping a coin" means?
 - Is the person flipping the coin someone you trust?
- It seems expressing prior information works nicely with some parametric families
- Quantification of prior information can be tricky, especially for complicated models

Comments So Far

- Bayesian approach allows you to incorporate side information based on context
 - ▶ Do you know what "flipping a coin" means?
 - Is the person flipping the coin someone you trust?
- It seems expressing prior information works nicely with some parametric families
- Quantification of prior information can be tricky, especially for complicated models

Continuing our example from the previous class:

▶ Let
$$Z_i = (Z_{i1}, Z_{i2})$$
, $Z_{i1}, Z_{i2} \in \{1, 2\}$, Z_i 's are i.i.d.,
$$p(Z_{i1} = k, Z_{i2} = l \mid \theta) = \pi_{kl}$$

▶
$$\theta = (..., \pi_{kl}, ...),$$
 $W_{ikl} = I(Z_{i1} = k, Z_{i2} = I)$

► The likelihood of the study variables is

$$L(\theta \mid \mathbf{z}) = \prod_{i} \left[\prod_{k,l} \pi_{kl}^{W_{ikl}} \right]$$
$$= \prod_{k,l} \pi_{kl}^{n_{kl}}$$

where

$$n_{kl} = \sum W_{ikl}, \quad k, l \in \{1, 2\}$$

Continuing our example from the previous class:

▶ Let
$$Z_i = (Z_{i1}, Z_{i2}), \quad Z_{i1}, Z_{i2} \in \{1, 2\}, \quad Z_i$$
's are i.i.d.,
$$p(Z_{i1} = k, Z_{i2} = l \mid \theta) = \pi_{kl}$$

•
$$\theta = (..., \pi_{kl}, ...),$$
 $W_{ikl} = I(Z_{i1} = k, Z_{i2} = l)$

▶ The likelihood of the study variables is

$$L(\theta \mid \mathbf{z}) = \prod_{i} \left[\prod_{k,l} \pi_{kl}^{W_{ikl}} \right]$$
$$= \prod_{k,l} \pi_{kl}^{n_{kl}}$$

where

$$n_{kl} = \sum_{i} W_{ikl}, \quad k, l \in \{1, 2\}$$

► Inference on multinomial parameters is convenient using the *Dirichlet* prior

$$\theta = (\dots, \pi_{kl}, \dots) \sim \mathsf{Dirichlet}(\alpha), \quad \alpha = (\dots, \alpha_{kl}, \dots),$$

$$p(\theta) = \frac{\Gamma(\sum \alpha_{kl})}{\prod_{k,l} \Gamma(\alpha_{kl})} \prod_{k,l} \pi_{kl}^{\alpha_{kl}-1}$$

The posterior is given by

$$p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$$

 $\propto \prod_{k,l} \pi_{kl}^{n_{kl} + \alpha_{kl} - 1}$

Therefore, $\theta \mid \mathbf{z} \sim \mathsf{Dirichlet}(\alpha')$, $\alpha' = (\dots, \alpha_{kl} + n_{kl}, \dots)$

► Inference on multinomial parameters is convenient using the *Dirichlet* prior

$$\theta = (\dots, \pi_{kl}, \dots) \sim \mathsf{Dirichlet}(\alpha), \quad \alpha = (\dots, \alpha_{kl}, \dots),$$

$$p(\theta) = \frac{\Gamma(\sum \alpha_{kl})}{\prod_{k,l} \Gamma(\alpha_{kl})} \prod_{k,l} \pi_{kl}^{\alpha_{kl}-1}$$

► The posterior is given by

$$p(\theta \mid \mathbf{z}) \propto L(\theta \mid \mathbf{z})p(\theta)$$

$$\propto \prod_{k,l} \pi_{kl}^{n_{kl} + \alpha_{kl} - 1}$$

▶ Therefore, $\theta \mid \mathbf{z} \sim \mathsf{Dirichlet}(\alpha')$, $\alpha' = (\dots, \alpha_{kl} + n_{kl}, \dots)$

- ► There is no guarantee that the combination of arbitrary likelihoods and priors will lead to posteriors that are easy to work with
- Conjugate priors are distributions that lead to posteriors in the same family, as in the previous examples – typically easier to work with, but not always available
- Non-conjugate priors can be used, but we require more advanced techniques for handling them
- Lists of conjugate priors are available in multiple books and online resources

- ► There is no guarantee that the combination of arbitrary likelihoods and priors will lead to posteriors that are easy to work with
- Conjugate priors are distributions that lead to posteriors in the same family, as in the previous examples – typically easier to work with, but not always available
- Non-conjugate priors can be used, but we require more advanced techniques for handling them
- Lists of conjugate priors are available in multiple books and online resources

- ► There is no guarantee that the combination of arbitrary likelihoods and priors will lead to posteriors that are easy to work with
- Conjugate priors are distributions that lead to posteriors in the same family, as in the previous examples – typically easier to work with, but not always available
- Non-conjugate priors can be used, but we require more advanced techniques for handling them
- Lists of conjugate priors are available in multiple books and online resources

- ► There is no guarantee that the combination of arbitrary likelihoods and priors will lead to posteriors that are easy to work with
- Conjugate priors are distributions that lead to posteriors in the same family, as in the previous examples – typically easier to work with, but not always available
- Non-conjugate priors can be used, but we require more advanced techniques for handling them
- Lists of conjugate priors are available in multiple books and online resources

Example: Multivariate Normal

Distribution of the data

$$\mathbf{Z} = \{Z_i\}_{i=1}^n \mid \mu, \Lambda \stackrel{i.i.d.}{\sim} \text{Normal}(\mu, \Lambda^{-1})$$

where $Z_i \in \mathbb{R}^K$, μ is the vector of means, Λ^{-1} is the covariance matrix, and Λ is the inverse covariance matrix (the *precision matrix*)

Conjugate prior is constructed in two steps

$$\mu \mid \Lambda \sim \text{Normal}(\mu_0, (\kappa_0 \Lambda)^{-1})$$

 $\Lambda \sim \text{Wishart}(\nu_0, W_0)$

Joint distribution of (μ, Λ) is called *Normal-Wishart*. The parameterization is such that $E(\Lambda) = v_0 W_0$.

Example: Multivariate Normal

Distribution of the data

$$\mathbf{Z} = \{Z_i\}_{i=1}^n \mid \mu, \Lambda \stackrel{i.i.d.}{\sim} \mathsf{Normal}(\mu, \Lambda^{-1})$$

where $Z_i \in \mathbb{R}^K$, μ is the vector of means, Λ^{-1} is the covariance matrix, and Λ is the inverse covariance matrix (the *precision matrix*)

Conjugate prior is constructed in two steps

$$\mu \mid \Lambda \sim \mathsf{Normal}(\mu_0, (\kappa_0 \Lambda)^{-1})$$

 $\Lambda \sim \mathsf{Wishart}(v_0, W_0)$

Joint distribution of (μ, Λ) is called *Normal-Wishart*. The parameterization is such that $E(\Lambda) = v_0 W_0$.

Example: Multivariate Normal

Posterior is also Normal-Wishart

$$\mu \mid \Lambda, \mathbf{z} \sim \mathsf{Normal}(\mu', (\kappa'\Lambda)^{-1})$$

 $\Lambda \mid \mathbf{z} \sim \mathsf{Wishart}(\upsilon', W')$

where

$$\mu' = (\kappa_0 \mu_0 + n\bar{z})/\kappa'$$

$$\kappa' = \kappa_0 + n$$

$$v' = v_0 + n$$

$$W' = \{W_0^{-1} + n[\hat{\Sigma} + \frac{\kappa_0}{\kappa'}(\bar{z} - \mu_0)(\bar{z} - \mu_0)^T]\}^{-1}$$

$$\bar{z} = \sum_{i=1}^{n} z_i/n$$

$$\hat{\Sigma} = \sum_{i=1}^{n} (z_i - \bar{z})(z_i - \bar{z})^T/n$$

Bayesian Point Estimation

- \triangleright $\mathcal{L}(\theta, \theta')$: loss of estimating a parameter to be θ' when the true value is θ
- Bayes estimator minimizes the expected posterior loss

$$\hat{ heta}_{\mathsf{Bayes}} = \operatorname*{\mathsf{arg\,min}}_{ heta'} \int \mathcal{L}(heta, heta') p(heta \mid \mathbf{z}) d heta$$

 \blacktriangleright For univariate θ it is common to choose

$$ightharpoonup \mathcal{L}(heta, heta') = (heta- heta')^2 \implies \hat{ heta}_{\mathsf{Bayes}}$$
 is posterior mean

$$\blacktriangleright \mathcal{L}(\theta, \theta') = |\theta - \theta'| \implies \hat{\theta}_{\mathsf{Bayes}}$$
 is posterior median

$$\blacktriangleright$$
 $\mathcal{L}(\theta, \theta') = I(\theta \neq \theta') \implies \hat{\theta}_{\mathsf{Bayes}}$ is posterior mode

Bayesian Point Estimation

- \blacktriangleright $\mathcal{L}(\theta, \theta')$: loss of estimating a parameter to be θ' when the true value is θ
- Bayes estimator minimizes the expected posterior loss

$$\hat{ heta}_{\mathsf{Bayes}} = \operatorname*{\mathsf{arg\,min}}_{ heta'} \int \mathcal{L}(heta, heta') p(heta \mid \mathbf{z}) d heta$$

 \blacktriangleright For univariate θ it is common to choose

$$ightharpoonup \mathcal{L}(heta, heta') = (heta- heta')^2 \implies \hat{ heta}_{ ext{Bayes}}$$
 is posterior mean

$$ightharpoonup \mathcal{L}(heta, heta') = | heta - heta'| \implies \hat{ heta}_{\mathsf{Bayes}}$$
 is posterior median

$$\blacktriangleright$$
 $\mathcal{L}(\theta, \theta') = I(\theta \neq \theta') \implies \hat{\theta}_{\mathsf{Bayes}}$ is posterior model.

Bayesian Point Estimation

- \blacktriangleright $\mathcal{L}(\theta, \theta')$: loss of estimating a parameter to be θ' when the true value is θ
- Bayes estimator minimizes the expected posterior loss

$$\hat{ heta}_{\mathsf{Bayes}} = \operatorname*{\mathsf{arg\,min}}_{ heta'} \int \mathcal{L}(heta, heta') p(heta \mid \mathbf{z}) d heta$$

- \blacktriangleright For univariate θ it is common to choose
 - $ightharpoonup \mathcal{L}(heta, heta') = (heta- heta')^2 \implies \hat{ heta}_{\mathsf{Bayes}}$ is posterior mean
 - $\mathcal{L}(\theta, \theta') = |\theta \theta'| \implies \hat{\theta}_{\mathsf{Bayes}}$ is posterior median
 - $\mathcal{L}(\theta, \theta') = I(\theta \neq \theta') \implies \hat{\theta}_{\mathsf{Bayes}}$ is posterior mode

Bayesian Credible Sets/Intervals

▶ *C* is a $(1 - \alpha)100\%$ credible set if

$$\int_{C} p(\theta \mid \mathbf{z}) d\theta \ge 1 - \alpha$$

▶ For univariate θ , define the $(1-\alpha)100\%$ credible interval C as the interval within the $\alpha/2$ and $1-\alpha/2$ quantiles of the posterior $p(\theta \mid \mathbf{z})$

Bayesian Credible Sets/Intervals

• C is a $(1-\alpha)100\%$ credible set if

$$\int_{C} p(\theta \mid \mathbf{z}) d\theta \ge 1 - \alpha$$

▶ For univariate θ , define the $(1-\alpha)100\%$ credible interval C as the interval within the $\alpha/2$ and $1-\alpha/2$ quantiles of the posterior $p(\theta \mid \mathbf{z})$

Asymptotic Behavior of Posteriors: Bernstein - von Mises

Bernstein - von Mises theorem¹

- ► Under some conditions, the posterior distribution asymptotically behaves like the sampling distribution of the MLE
- Heuristically, we say

$$p(\theta \mid \mathbf{z}) pprox \mathcal{N}(\hat{ heta}_{\mathsf{MLE}}, \mathcal{I}(\hat{ heta}_{\mathsf{MLE}})^{-1}/n)$$

► Therefore, for well-behaved models and with a good amount of data Bayesian and frequentist inferences will be similar

¹For details, see lecture notes of Richard Nickl:

Asymptotic Behavior of Posteriors: Bernstein - von Mises

Bernstein - von Mises theorem¹

- ► Under some conditions, the posterior distribution asymptotically behaves like the sampling distribution of the MLE
- Heuristically, we say

$$p(\theta \mid \mathbf{z}) pprox \mathcal{N}(\hat{ heta}_{\mathsf{MLE}}, \mathcal{I}(\hat{ heta}_{\mathsf{MLE}})^{-1}/n)$$

► Therefore, for well-behaved models and with a good amount of data Bayesian and frequentist inferences will be similar

¹For details, see lecture notes of Richard Nickl:

Asymptotic Behavior of Posteriors: Bernstein - von Mises

Bernstein - von Mises theorem¹

- ► Under some conditions, the posterior distribution asymptotically behaves like the sampling distribution of the MLE
- Heuristically, we say

$$p(\theta \mid \mathbf{z}) pprox \mathcal{N}(\hat{ heta}_{\mathsf{MLE}}, \mathcal{I}(\hat{ heta}_{\mathsf{MLE}})^{-1}/n)$$

► Therefore, for well-behaved models and with a good amount of data, Bayesian and frequentist inferences will be similar

¹For details, see lecture notes of Richard Nickl:

With missing data, things get complicated

$$L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) = \prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(r_i \mid z_i, \psi) p(z_i \mid \theta) \ dz_{i(\bar{r_i})}$$

$$\stackrel{\mathsf{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{\mathsf{Can be ignored}} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(z_i \mid \theta) \ dz_{i(\bar{r_i})}\right]}_{\mathsf{Likelihood for } \theta \ \mathsf{under MAR}}$$

$$p(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) p(\theta, \psi)$$

$$p(\theta \mid \mathbf{z_{(r)}}) \propto L_{obs}(\theta \mid \mathbf{z_{(r)}})p(\theta)$$

▶ Integrals in $L_{obs}(\theta \mid \mathbf{z}_{(\mathbf{r})})$ complicate things — what to do?

With missing data, things get complicated

$$L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) = \prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(r_i \mid z_i, \psi) p(z_i \mid \theta) \ dz_{i(\bar{r_i})}$$

$$\stackrel{\mathsf{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{\mathsf{Can be ignored}} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(z_i \mid \theta) \ dz_{i(\bar{r_i})}\right]}_{\mathsf{Likelihood for } \theta \ \mathsf{under MAR}}$$

Under a Bayesian approach, we need to obtain

$$p(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) p(\theta, \psi)$$

▶ Integrals in $L_{obs}(\theta \mid \mathbf{z_{(r)}})$ complicate things — what to do?

With missing data, things get complicated

$$L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) = \prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(r_i \mid z_i, \psi) p(z_i \mid \theta) \ dz_{i(\bar{r_i})}$$

$$\stackrel{\mathsf{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{\mathsf{Can be ignored}} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(z_i \mid \theta) \ dz_{i(\bar{r_i})}\right]}_{\mathsf{Likelihood for } \theta \ \mathsf{under MAR}}$$

Under a Bayesian approach, we need to obtain

$$p(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) p(\theta, \psi)$$

▶ Under ignorability (MAR + separability + $\theta \perp \!\!\! \perp \psi$ a priori), we need

$$p(\theta \mid \mathbf{z_{(r)}}) \propto L_{obs}(\theta \mid \mathbf{z_{(r)}})p(\theta)$$

▶ Integrals in $L_{obs}(\theta \mid \mathbf{z}_{(r)})$ complicate things — what to do?

With missing data, things get complicated

$$L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) = \prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(r_i \mid z_i, \psi) p(z_i \mid \theta) \ dz_{i(\bar{r_i})}$$

$$\stackrel{\mathsf{MAR}}{=} \underbrace{\left[\prod_{i=1}^{n} p(r_i \mid z_{i(r_i)}, \psi)\right]}_{\mathsf{Can be ignored}} \underbrace{\left[\prod_{i=1}^{n} \int_{\mathcal{Z}_{(\bar{r_i})}} p(z_i \mid \theta) \ dz_{i(\bar{r_i})}\right]}_{\mathsf{Likelihood for } \theta \ \mathsf{under MAR}}$$

Under a Bayesian approach, we need to obtain

$$p(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) \propto L_{obs}(\theta, \psi \mid \mathbf{z_{(r)}}, \mathbf{r}) p(\theta, \psi)$$

▶ Under ignorability (MAR + separability + $\theta \perp \!\!\! \perp \psi$ a priori), we need

$$p(\theta \mid \mathbf{z_{(r)}}) \propto L_{obs}(\theta \mid \mathbf{z_{(r)}})p(\theta)$$

▶ Integrals in $L_{obs}(\theta \mid \mathbf{z_{(r)}})$ complicate things — what to do?

Summary

Main take-aways from today's lecture:

- Using Bayes' theorem doesn't make you a Bayesian
- Bayesian inference offers alternative framework for deriving inferences from data
 - Philosophical motivation: inclusion of prior belief or knowledge, uncertainty quantification in terms of distributions for parameters
 - Practical motivation: convenient in some problems, might lead to good frequentist performance
 - Complex problems are computationally challenging posterior needs to be approximated (e.g., Markov chain Monte Carlo)

Next lecture

- Gibbs sampling
- ► Data augmentation
- ▶ Introduction to multiple imputation

Summary

Main take-aways from today's lecture:

- Using Bayes' theorem doesn't make you a Bayesian
- Bayesian inference offers alternative framework for deriving inferences from data
 - Philosophical motivation: inclusion of prior belief or knowledge, uncertainty quantification in terms of distributions for parameters
 - Practical motivation: convenient in some problems, might lead to good frequentist performance
 - Complex problems are computationally challenging posterior needs to be approximated (e.g., Markov chain Monte Carlo)

Next lecture:

- Gibbs sampling
- ► Data augmentation
- ▶ Introduction to multiple imputation

