

Grundzüge der Informatik 1

Vorlesung 19

Überblick Vorlesung

- Direkte Adressierung
- Hash-Tabellen
 - Auflösen von Kollisionen
 - Wahl der Hash-Funktion
 - Offene Adressierung
- Graphalgorithmen
 - Grundlegende Begriffe der Graphentheorie
 - Datenstrukturen zum Speichern von Graphen
 - Beginn: Kürzeste Wege in ungewichteten Graphen

Frage

 Gibt es effizientere Datenstrukturen für unser Datenverwaltungsproblem als Rot-Schwarz-Bäume?

Felder mit direkter Adressierung

Prof. Dr. Christian Sohler | Abteilung für Informatik | Universität zu Köln | 15.6.2022

DirectAddressSearch(k)

1. return T[k]

DirectAddressInsert(x)

1. T[key[x]] = x

DirectAddressDelete(k)

1. T[k] = NIL

Direkte Adressierung

- Suchen, Einfügen und Löschen in O(1) Zeit
- Schlüssel müssen aus bekanntem Universum U={0,...,|U|-1} stammen
- Speicherbedarf Ω(|U|)

Hash-Tabellen

- Speicherbedarf von direkter Adressierung ist unrealistisch und ineffizient
- Wir nutzen Hashfunktion h, die Universum U auf eine Hash-Tabelle T[0...m-1] abbildet
- h: $U \to \{0,...,m-1\}$
- Für einen Schlüssel k nennen wir h(k) den Hash-Wert von k

Hash-Tabellen

- Speicherbedarf von direkter Adressierung ist unrealistisch und ineffizient
- Wir nutzen Hashfunktion h, die Universum U auf eine Hash-Tabelle T[0...m-1] abbildet
- h: $U \to \{0,...,m-1\}$
- Für einen Schlüssel k nennen wir h(k) den Hash-Wert von k

Problem

- Es kann sein, dass mehrere Schlüssel aus der Schlüsselmenge denselben Hash-Wert haben (Kollision)
- Hash-Tabellen mit Verkettung: Jede Zelle der Hash-Tabellen enthält einen Zeiger auf eine Liste; Die Schlüssel mit Hash-Wert i werden in der Liste T[i] abgespeichert

Einfaches Beispiel

• $h(k) = \lfloor k/10 \rfloor$

Beispiel

Schlüsselmenge aus Universum {0,..,79}8, 13, 15, 30, 41, 56, 58

Problem

13, 15 und 56, 58 liegen im selben Bereich

ChainedHashSearch(k)

1. Suche nach Schlüssel k in Liste T[h(k)]

ChainedHashInsert(k)

1. Füge k am Kopf der Liste T[h(k)] ein

Chained HashDelete(k)

1. Lösche k aus der Liste T[h(k)]

Wahl der Hash-Funktion

- Idee: Wähle die Funktion zufällig
- Beispiel: Wenn jeder Schlüssel auf einen zufälligen Hash-Wert abgebildet wird, erwarten wir wenig Kollisionen
- Leider benötigt die Speicherung einer vollständig zufälligen Hashfunktion viel Speicher
- Abhilfe: Wähle Hashfunktion aus einer geeigneten Menge zufällig, so dass sich die Hash-Funktion ähnlich wie eine vollständig zufällige Hashfunktion verhält

Wahl von Hash-Funktionen

- Die Divisionsmethode
 - Definiere h(k) = k mod m
 - Häufig wählt man m als Primzahl nicht zu nah an einer Zweierpotenz
- Die Multiplikationsmethode
 - $h(k) = \lfloor m(kA \lfloor kA \rfloor) \rfloor$ für 0<A<1
 - Wahl von m unkritisch
- Universelles Hashing
 - $h_{a,b}(k) = ((ak+b) \mod p) \mod m$
 - Wähle a zufällig aus {1,...,p-1} und b aus {0,...,p-1}
- Analyse nicht Stoff dieser Vorlesung!

Offene Adressierung mit linearem Ausprobieren

- Alle Schlüssel werden in der Hash-Tabelle selber gespeichert
- Versuche zunächst, den Schlüssel in T[h(k)] einzufügen, wenn das nicht geht, in T[h(k)+1], T[h(k)+2], usw. bis ein Platz gefunden wurde. Dabei werden die Indizes modulo m genommen.
- Beim Suchen wird auf die gleiche Weise vorgegangen. Die Suche hört auf, wenn der Schlüssel gefunden wird oder eine leere Zelle oder alle Zellen durchgegangen wurden

Markierung leerer Zellen

- Wir verwenden -1 (oder allgemeiner einen Wert, der kein Schlüssel ist), um eine leere Zelle zu markieren
- Annahme: Zu Beginn ist die Tabelle mit -1 ausgefüllt

Hash-Einfügen(T,k)

- 1. i=0
- 2. while i<m do
- 3. $j=(h(k)+i) \mod m$
- 4. if T[j] = -1 then T[j]=k else i=i+1
- 5. if i=m then output << "Zu viele Schlüssel in der Hash-Tabelle"

Hash-Suche(T,k)

- 1. i=0
- 2. while i<m and T[j]≠-1 do
- 3. $j=(h(k)+i) \mod m$
- 4. if T[j] = k then return j
- 5. i=i+1
- 6. return -1

Aufgabe

- Fügen Sie die Schlüssel 2,4,7,1,11 in eine Hash-Tabelle mit offener Adressierung mit linearem Ausprobieren ein
- Die Hash-Funktion ist h(k) = k mod 7
- Die Tabelle hat Größe 7

Aufgabe

- Fügen Sie die Schlüssel 2,4,7,1,11 in eine Hash-Tabelle mit offener Adressierung mit linearem Ausprobieren ein
- Die Hash-Funktion ist h(k) = k mod 7
- Die Tabelle hat Größe 7

Löschen in Hash-Tabellen mit Linearem Ausprobieren

- Schwierig: Wir können nicht einfach einen gelöschten Schlüssel mit -1 markieren
- Eine Lösung: Markiere gelöschte Elemente mit DELETED (bzw. -2)
- Einfügen kann dann in Stellen schreiben, in denen DELETED steht
- Suche ist wie bisher (läuft weiter, wenn eine Zelle mit DELETED gefunden wird)

Hash-Tabellen

- Hash-Funktion bildet Universum auf kleine Hash-Tabelle ab
- Kollisionen können mit Verkettung aufgelöst werden
- Verschiedene Möglichkeiten, Hash-Funktion zu wählen
- Offene Adressierung vermeidet Zeiger

Hier keine Analyse

 Universelles Hashing: Durchschnittliche (erwartete) Laufzeit für Suchen, Einfügen und Löschen ist O(1+n/m), wobei n die Anzahl gespeicherter Schlüssel und m die Größe der Hash-Tabelle ist

Zusammenfassung

- Elementare Datenstrukturen
 - Feld
 - Sortiertes Feld
 - Liste
- Binäre Suchbäume
- Rot-Schwarz Bäume
- Hashing

Definition (gerichteter Graph)

- Ein gerichteter Graph ist ein Paar (V,E), wobei V eine endliche Menge ist und E⊆V×V.
- V heißt Knotenmenge des Graphen
- Die Elemente aus V sind die Knoten des Graphen
- E heißt Kantenmenge des Graphen
- Die Elemente aus E sind die Kanten des Graphen

Beispiel: Repräsentation des Webgraph

Definition (ungerichteter Graph)

- Ein ungerichteter Graph ist ein Paar (V,E), wobei V eine endliche Menge ist und E Teilmenge der Menge aller Paare von Elementen aus V ist
- V heißt Knotenmenge des Graphen
- Die Elemente aus V sind die Knoten des Graphen
- E heißt Kantenmenge des Graphen
- Die Elemente aus E sind die Kanten des Graphen
- Wir stellen Kanten aus V wie im gerichteten Fall durch (u,v) dar und nehmen an, dass die Kante (u,v) gleich der Kante (v,u) ist
- Manchmal repräsentieren wir einen ungerichteten Graph durch einen gerichteten, indem wir jede Kante (u,v) durch die gerichteten Kanten (u,v) und (v,u) ersetzen

Beispiel: Kürzeste Strecke zwischen zwei Orten

Definition (Weg)

- Ein Weg der Länge k von Knoten u zu Knoten v in einem Graph G=(V,E) ist eine Sequenz von k+1 Knoten (v₀,..., v_k) mit u=v₀ und v = v_k und (v_{i-1}, v_i)∈E für i=1,...,k.
- Wir sagen, dass v von u erreichbar ist, wenn es einen Weg von v nach u gibt
- Ein Weg heißt einfach, wenn kein Knoten auf dem Weg mehrfach vorkommt

Definition (Kreis)

- Ein Weg (v₀,..., v_k) in einem ungerichteten (gerichteten) Graph heißt Kreis, falls v₀=v_k
- Ein Kreis $(v_0, ..., v_k)$ heißt *einfach*, wenn $(v_0, ..., v_{k-1})$ ein einfacher Weg ist

Definition (Zusammenhang)

- Ein gerichteter Graph heißt stark zusammenhängend, wenn es von jedem Knoten einen Weg zu jedem anderen Knoten im Graph gibt
- Ein ungerichteter Graph heißt zusammenhängend, wenn es von jedem Knoten einen Weg zu jedem anderen Knoten im Graph gibt

Definition (Zusammenhangskomponenten)

- Die starken Zusammenhangskomponenten eines Graphen sind die Äquivalenzklassen der Relation "ist beidseitig erreichbar"
- Die Zusammenhangskomponenten eines Graphen sind die Äquivalenzklassen der Relation "ist erreichbar"

Definition (Baum und Wald)

- Ein kreisfreier ungerichteter Graph heißt Wald
- Ein ungerichteter, zusammenhängender, kreisfreier Graph heißt Baum

Definition (Nachbar)

Ein Knoten u ist Nachbar eines Knotens v in einem gerichteten (ungerichteten) Graph G=(V,E), wenn es eine Kante (v,u)∈E gibt

Definition (Knotengrad)

- Der Ausgangsgrad eines Knotens in einem gerichteten Graph ist die Anzahl Kanten, die den Knoten verlassen
- Der Eingangsgrad eines Knotens in einem gerichteten Graph ist die Anzahl Kanten, die auf den Knoten zeigen
- Der Grad eines Knotens v in einem ungerichteten Graph ist die Anzahl Kanten die an v anliegen

Aufgabe

 Bestimmen Sie die starken Zusammenhangskomponenten des folgenden Graphen

Datenstrukturen zur Repräsentation eines Graphen

- Adjazenzlisten: Dünn besetzen Graphen (|E|<< n²)
- Adjazenzmatrix: Dicht besetzte Graphen (|E| nah an n²)

Arten von Graphen

- Ungerichtet, gerichtet
- Ungewichtet, gewichtet (Knoten und/oder Kanten haben Gewichte)

Adjazenzmatrixdarstellung

- Knoten sind nummeriert von 1 bis |V|
- $|V| \times |V|$ Matrix A = (a_{ij}) mit
- a_{ij} = 1, wenn (i,j)∈E und a_{ij} = 0, sonst
- Bei ungerichteten Graphen gilt A = A^T

Adjazenzlistendarstellung

- Feld Adj mit |V| Listen (eine pro Knoten)
- Für Knoten v enthält Adj[v] eine Liste aller Knoten u mit (v,u)∈E
- Die Knoten in Adj[v] heißen zu v benachbart
- Ist G ungerichtet, so gilt: v∈Adj[u] ⇔ u∈Adj[v]

Graphen mit Kantengewichten

- Adjazenzmatrix: Gewicht einer Kante steht in der Adjazenzmatrix
- Adjazenzlisten: Gewicht w(u,v) von Kante (u,v) wird mit Knoten v in u's Adjazenzliste gespeichert

Zusammenfassung

- Direkte Adressierung
- Hash-Tabellen
 - Auflösen von Kollisionen
 - Wahl der Hash-Funktion
 - Offene Adressierung
- Graphalgorithmen
 - Grundlegende Begriffe der Graphentheorie
 - Datenstrukturen zum Speichern von Graphen

Referenzen

T. Cormen, C. Leisserson, R. Rivest, C. Stein. Introduction to Algorithms.
The MIT press. Second edition, 2001.

