Universidad de la República.

Facultad de Ingeniería.

Solución Examen de Matemática Discreta II

30 de julio de 2013

Ejercicio 1 (28 puntos) Sea $a \in \mathbb{N}$ tal que el resto de dividir a entre 12 es 5.

- a) (10 puntos) Probar que $a^3 + 4 \equiv 21 \mod(36)$
- b) (8 puntos) Hallar y el resto de dividir $53^3 + 11$ entre 36.
- c) (10 puntos) Siendo y el hallado en la parte anterior, resolver:

$$\begin{cases} x \equiv -1 \mod (10) \\ x + 3 \equiv y \mod (8) \\ x \equiv 4 \mod (9) \end{cases}$$

Solución Ejercicio 1 (28 puntos)

- a) (10 puntos) Como a es congruente con 5 módulo 12, entonces exite $t \in \mathbb{Z}$ tal que 12.t = a 5. Luego $(12t)^3 = (a 5)^3 = a^3 3a^25 + 3a5^2 5^3 = a^3 5^3 3a5(a 5)$. Esto implica que $a^3 5^3 = (12t)^3 + 3a5(a 5)$. Como (a 5) es múltiplo de 12, el segundo término de la igualdad es múltiplo de 36. Esto implica que $a^3 5^3 \equiv 0 \mod(36)$, o sea $a^3 \equiv 125 \mod(36)$ por lo tanto $a^3 \equiv 17 \mod(36)$.
- b) (8 puntos) Como 53 verifica la hipótesis del ejercicio, tenemos que $53^3 \equiv 17 \mod (36)$. Luego $53^3 + 11 \equiv 28 \mod (36)$, o sea que el resto de dividir $53^3 + 11$ entre 36, es 28.
- c) (10 puntos)

El sistema queda:

$$\begin{cases} x \equiv -1 \mod (10) \\ x + 3 \equiv 28 \mod (8) \\ x \equiv 4 \mod (9) \end{cases}$$

Este sistema es equivalente a

$$\begin{cases} x \equiv -1 \mod (10) \\ x \equiv 1 \mod (8) \\ x \equiv 4 \mod (9) \end{cases}$$

y éste, a su vez, es equivalente a:

$$\begin{cases} x \equiv 1 \mod (2) \\ x \equiv -1 \mod (5) \\ x \equiv 1 \mod (8) \\ x \equiv 4 \mod (9) \end{cases}$$

Este último sistema es compatible y equivalente a:

$$\begin{cases} x \equiv 4 \mod (5) \\ x \equiv 1 \mod (8) \\ x \equiv 4 \mod (9) \end{cases}$$

Por el Teorema chino del resto, hav solución: 49, única módulo $5 \times 8 \times 9 = 360$.

Ejercicio 2 (22 puntos)

Sea $G := \{e, a, b, c, d\}$ y una operación binaria $\star : G \times G \to G$, tal que:

$$a \star b = d$$

$$b \star c = e$$

$$d \star a = e$$

- a) (6 puntos) Hallar la tabla de Cayley de la operación, sabiendo que (G, \star) es un grupo y e es su neutro.
- b) (4 puntos) Demostrar que (G, \star) es abeliano.
- c) (7 puntos) Describir todos los morfismos de grupos $f:(G,\star)\longrightarrow (\mathbb{Z}_{12},+)$.
- d) (5 puntos) Demostrar que existe $n \in \mathbb{N}$ tal que (G, \star) es isomorfo a $(\mathbb{Z}_n, +)$. Justificar.

Solución Ejercicio 2 (22 puntos)

a) (6 puntos) La tabla de Cayley es:

*	e	a	b	\mathbf{c}	d
\mathbf{e}	е	a	b	c	d
a	a	c	d	b	е
b	b	d	a	е	c
c	С	b	е	d	a
\mathbf{d}	d	е	С	a	b

- b) (4 puntos) Basta observar que la tabla de Cayley es simétrica.
- c) (7 puntos) Como |G| = 5 y $|\mathbb{Z}_{12}| = 12$, entonces la Im(f) solo puede tener un elemento (recordar que |Im(f)| divide a al orden del grupo dominio y al orden del grupo codominio, si todos son finitos).
- d) (5 puntos) Como |G| = 5 el único n posible es n = 5. Ahora bien, definiendo $g: (G,\star) \longrightarrow (\mathbb{Z}_5,+)$, tal que g(a) = 1, g(c) = 2, g(b) = 3, g(d) = 4, g(e) = 0, se obtiene una función biyectiva, que se puede comprobar revisando las tablas de ambos grupos que es un morfismo.

Ejercicio 3 (30 puntos)

A	В	С	D	Е	F	G	Н	I	J	K	L	М	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Dos interlocutores A y B acuerdan comunicarse estableciendo una clave privada mediante el método de Diffie-Hellman. Acuerdan usar el módulo primo p = 97 y como base g = 5. A elige además el entero m = 3, enviándole a B g^m y recibiendo de éste 36.

- a) (5 puntos) ¿Cuál es la clave privada que acuerdan?
- b) (8 puntos) Usando la correspondencia de la tabla inicial del ejercicio, la clave privada escrita en base 27 determina una palabra. ¿Cuál es esa palabra?

- c) (α puntos) B envía a A el siguiente mensaje: H CVDHROPTOCQ, el cuál está encriptado mediante el método de Vigenère, usando la palabra hallada en b). Determinar el mensaje original encriptado por B.
- d) (β puntos) A responderá a B: LO CONOZCO. Encriptar este mensaje mediante el mismo método usado por A.

(De tal manera que $\alpha + \beta = 17$ y ambos son menores o iguales a 12).

Solución Ejercicio 3 (30 puntos)

- a) (5 puntos) En este caso, la forma de hallar la clave es resolver 36^3 mód (97) = 96.
- b) (8 puntos) Como $96 = 3 \times 27^1 + 15 \times 27^0$, entonces la palabara es DP (ver en la tabla D=3, y P=15).
- c) (α puntos) Empecemos observando que el opuesto de D es Y (el opuesto de 3 es 24), y el opuesto de P es M (el opuesto de 15 es 12) en \mathbb{Z}_{27} . Se arma la tabla de desencriptado Vigenère:

Н		С	V	D	Н	R	О	Р	Т	О	С	Q
7	26	2	21	3	7	17	14	15	19	17	2	16
24	12	24	12	24	12	24	12	24	12	24	12	24
4	11	26	6	0	19	14	26	12	4	11	14	13
Е	L		G	A	Т	О		М	E	L	Ó	N

d) (β puntos) Para encriptar hay que usar la palabra hallada en b): DP, que, usando la tabla inicial, es 3 15.

L	О		С	О	N	О	Z	С	О
11	14	26	2	14	13	14	25	2	14
3	15	3	15	3	15	3	15	3	15
14	2	2	17	17	1	17	13	5	2
О	С	С	R	R	В	R	N	F	С

Ejercicio 4 (20 puntos)

- a) (15 **puntos**) Enunciar y demostrar el Teorema de Lagrange. Ver Teórico.
- b) (5 puntos) Obtener el Teorema de Fermat como corolario del Teorema de Lagrange. Simplemente aplicar el Teorema de Lagrange para el grupo (U(p),.) con p primo. Dado un elemento $a \in U(p)$, sabemos que $o(a) = |\langle a \rangle|$, o sea el orden de un elemento coinicide con el orden (cardinal) del grupo que elemento genera. Por el Teorema de Lagrange tenemos entones que $o(a) = |\langle a \rangle|$ divide a |U(p)| = p 1. O sea p 1 = o(a).t, con $t \in \mathbb{Z}^+$. Por lo tanto $a^{p-1} = (a^{o(a)})^t \equiv 1 \mod (p)$.