Spring 2015 6 May 2015

## Synthesis Modulo Bisimulation

Guides: Prof. Madhavan Mukund Guna Prasaad, Vipul Venkataraman

In this report we describe the results we have obtained during the project. The descriptions are brief, kindly contact the authors for any queries.

### 1 Introduction

Let us begin with the definition of bisimulation.

**Definition 1.** A bisimulation between a pair of transition systems  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  is a relation  $R \subseteq (Q_1 \times Q_2)$  such that:

- $\bullet \ (q_1^{in}, q_2^{in}) \in R$
- If  $(q_1, q_2) \in R$  and  $q_1 \xrightarrow{a}_1 q'_1$ , there exists  $q'_2, q_2 \xrightarrow{a}_2 q'_2$  and  $(q'_1, q'_2) \in R$
- If  $(q_1, q_2) \in R$  and  $q_2 \xrightarrow{a}_2 q'_2$ , there exists  $q'_1, q_1 \xrightarrow{a}_1 q'_1$  and  $(q'_1, q'_2) \in R$

**Definition 2.** We call a pair of transition systems  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  bisimilar to each other if there exists a bisimulation relation R between them. We denote this as  $TS_1 \cong_B TS_2$ .

#### 1.1 The synthesis problem modulo bisimilarity

The systhesis problem modulo bisimilarity can now be defined as follows. If  $TS = (Q, \rightarrow, q^{in})$  is a transition system over  $\Sigma$ , and  $\widetilde{\Sigma} = \langle \Sigma_1, ..., \Sigma_k \rangle$  is a distribution of  $\Sigma$ , does there exist a product system  $||_{i \in \{1...k\}} TS_i|$  over  $\widetilde{\Sigma}$  such that  $||_{i \in \{1...k\}} TS_i| \cong_B TS$ ?

We worked on the sub-problem that has the following setting:

$$\Sigma = \{a, b, c\}, \Sigma_1 = \{a, c\}, \Sigma_2 = \{b, c\}$$

**Theorem 3.** Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  be finite state transition systems over  $\Sigma_1$  such that  $TS_1 \cong_B TS_2$  and let  $TS_3 = (Q_3, \rightarrow_3, q_3^{in})$  be a finite state transition system over  $\Sigma_2$ , then  $TS_1||TS_3 \cong_B TS_2||TS_3$ .

**Proof:** Let  $R_1 \subseteq (Q_1 \times Q_2)$  be a bisimulation relation over  $TS_1$  and  $TS_2$ . Such an  $R_1$  exists by Definition 2. We consider a relation  $R_2 \subseteq ((Q_1 \times Q_3) \times (Q_2 \times Q_3))$  such that  $((q_1, q_3), (q_2, q_4)) \in R_2$  if and only if:

- (i)  $q_3 = q_4$
- (ii)  $(q_1, q_2) \in R_1$

Constructing such an  $R_2$  is trivial. We wish to show that  $R_2$  is a bisimulation relation between  $TS_1||TS_3$  and  $TS_2||TS_3$ . It is easy to see that  $((q_1^{in}, q_3^{in}), (q_2^{in}, q_3^{in})) \in R_2$ , where  $(q_1^{in}, q_3^{in})$  is the initial state of  $TS_1||TS_3$  and  $(q_2^{in}, q_3^{in})$  is the initial state of  $TS_2||TS_3$ .

Now let's consider  $((q_1, q_3), (q_2, q_3)) \in R_2$ , and  $(q_1, q_3) \stackrel{a}{\to} (q'_1, q'_3)$ . If the a-move is disabled in  $TS_1$  (in other words,  $(q'_1 = q_1)$ ),  $(q_2, q_3) \stackrel{a}{\to} (q_2, q'_3)$ , and  $((q_1, q'_3), (q_2, q'_3)) \in R_2$ . If the a-move is enabled in  $TS_1$ , we have  $q_1 \stackrel{a}{\to} q'_1$ . Using  $R_1$ , we know that there exists  $q'_2$ , such that  $q_2 \stackrel{a}{\to} q'_2$  and  $(q'_1, q'_2) \in R_1$ . Therefore there exists  $q'_2$ , such that  $(q_2, q_3) \stackrel{a}{\to} (q'_2, q'_3)$  and  $((q'_1, q'_3), (q'_2, q'_3)) \in R_2$ .

We constructed an  $R_2$  that satisfies all the three properties of a bisimulation relation mentioned in Definition 1. We proved the first two conditions and the third is symmetrical to the second. Since we have found a bisimulation relation  $R_2$  between  $TS_1||TS_3|$  and  $TS_2||TS_3|$ , both these transition systems are bisimilar.

**Lemma 4.** Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$ ,  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$ ,  $TS_3 = (Q_3, \rightarrow_3, q_3^{in})$  and  $TS_4 = (Q_4, \rightarrow_4, q_4^{in})$  be four finite state transition systems such that  $TS_1 \cong_B TS_3$  and  $TS_2 \cong_B TS_4$ . Then  $TS_1 ||TS_2 \cong_B TS_3||TS_4$ .

**Proof:** The proof of the lemma follows from Theorem 3. Since  $TS_1 \cong_B TS_3$ , we can say  $TS_1||TS_2 \cong_B TS_3||TS_2$ . Similarly,  $TS_3||TS_2 \cong_B TS_3||TS_4$  follows because  $TS_2 \cong_B TS_4$ .

Using the above two observations and the transitivity of bisimulation, we can conclude that  $TS_1||TS_2 \cong_B TS_3||TS_4$ .

**Definition 5.** Let us consider a transition system  $TS = (Q, \rightarrow, q^{in})$  over  $\Sigma$  and  $a \in \Sigma$ . We define another transition system  $TS_{[a]} = (Q_{[a]}, \rightarrow_{[a]}, q^{in})$  as follows:

- (i)  $q^{in} \in Q_{[a]}$
- (ii)  $q_1 \to_{[a]} q_2 \text{ iff } q_1, q_2 \in Q, q_1 \xrightarrow{a} q_2, q_1 \in Q_{[a]}$

Notice that  $TS_{[a]}$  is essentially the original transition system TS with only the a-moves enabled. It can be constructed through a BFS over TS from the start node and traversing only through the a-moves.

**Theorem 6.** Let  $TS = (Q, \rightarrow, q^{in})$  be a finite state transition system over  $\Sigma = \{a, b\}$ . Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  be finite state transition systems over  $\Sigma_1 = \{a\}$  and  $\Sigma_2 = \{b\}$  respectively, such that  $TS \cong_B TS_1 || TS_2$ . Then  $TS_1 \cong_B TS_{[a]}$  and  $TS_2 \cong_B TS_{[b]}$ .

**Proof:** Let  $R \subseteq (Q \times (Q_1 \times Q_2))$  be a bisimulation relation over TS and  $TS_1||TS_2$ . Such an R exists by Definition 2. Consider  $TS_{[a]} = (Q_{[a]}, \rightarrow_{[a]}, q^{in})$  and  $TS_{[b]} = (Q_{[b]}, \rightarrow_{[b]}, q^{in})$ . We construct a relation  $R_1 \subseteq (Q_1 \times Q_{[a]})$  such that  $(q_1, q_2) \in R_1$  if and only if:

- (i)  $q_1 \in Q_1$  and  $q_2 \in Q_{[a]}$
- (ii)  $(q_2, (q_1, q_2^{in})) \in R$

We notice that constructing such an  $R_1$  is trivial. We wish to show that  $R_1$  is a bisimulation relation between  $TS_1$  and  $TS_{[a]}$ . It is easy to see that  $(q_1^{in}, q^{in}) \in R_1$ , where  $q_1^{in}$  is the initial state of  $TS_1$  and  $q^{in}$  is the initial state of  $TS_{[a]}$ .

Now let's consider  $(q_1, q_2) \in R_1$ . This means  $(q_2, (q_1, q_2^{in})) \in R$ . Let  $q_1 \xrightarrow{a} q_1'$ . This implies  $(q_1, q_2^{in}) \xrightarrow{a} (q_1', q_2^{in})$ . Therefore,  $\exists q_2' \in Q$ , such that  $q_2 \xrightarrow{a} q_2'$  and  $(q_2', (q_1', q_2^{in})) \in R$ . Since  $q_2' \in Q_{[a]}$  and  $(q_2', (q_1', q_2^{in})) \in R$ , we have  $(q_2', q_1') \in R_1$ .

Let's say  $q_2 \xrightarrow{a} q_2'$ . Therefore,  $\exists q_1' \in Q_1$ , such that  $(q_1, q_2^{in}) \xrightarrow{a} (q_1', q_2^{in})$  and  $(q_2', (q_1', q_2^{in})) \in R$ . This is due to the bisimulation relation R. Clearly,  $q_2' \in Q_{[a]}$  since  $q_2 \in Q_{[a]}$ . We also know,  $q_1' \in Q_1$  and  $(q_2', (q_1', q_2^{in})) \in R$ , therefore  $(q_2', q_1') \in R$ .

We constructed an  $R_1$  that satisfies all the three properties of a bisimulation relation mentioned in Definition 1. We proved all the three conditions. This bisimulation relation  $R_1$  between  $TS_1$  and  $TS_{[a]}$  implies  $TS_1 \cong_B TS_{[a]}$ .

The proof of  $TS_2 \cong_B TS_{[b]}$  is very similar to that of  $TS_1 \cong_B TS_{[a]}$  and is hence omitted.

**Lemma 7.** Let  $TS = (Q, \rightarrow, q^{in})$  be a finite state transition system over  $\Sigma = \{a, b\}$ . Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  be finite state transition systems over  $\Sigma_1 = \{a\}$  and  $\Sigma_2 = \{b\}$  respectively, such that  $TS \cong_B TS_1 || TS_2$ . Then  $TS \cong_B TS_{[a]} || TS_{[b]}$ .

**Proof:** The proof of the lemma follows directly from Lemma 4 and Theorem 6. Since  $TS_1 \cong_B TS_{[a]}$  and  $TS_2 \cong_B TS_{[b]}$ , we have  $TS_1||TS_2 \cong_B TS_{[a]}||TS_{[b]}$ . We know that  $TS \cong_B TS_1||TS_2$ .

Using the above observations and the transitivity of bisimulation, we can conclude that  $TS \cong_B TS_{[a]}||TS_{[b]}|$ .

**Definition 8.** Let us consider an alphabet set  $\Sigma$ . We call  $\widetilde{\Sigma} = \langle \Sigma_1, ..., \Sigma_k \rangle$  a partition of  $\Sigma$  if:

- (i)  $\bigcup_{i=1}^{i=k} \Sigma_i = \Sigma$
- (ii)  $\Sigma_i \cap \Sigma_j = \emptyset$ , for all  $i, j \in [1..k]$  and  $i \neq j$

**Corollary 9.** Notice that if  $TS = (Q, \rightarrow, q^{in})$  is a finite state transition system over  $\Sigma$ , and if  $\widetilde{\Sigma} = \langle \Sigma_1, ..., \Sigma_k \rangle$  is a partition of  $\Sigma$ , we can effectively determine whether there exists a product system  $||_{i \in \{1...k\}} TS_i|$  over  $\widetilde{\Sigma}$  such that  $||_{i \in \{1...k\}} TS_i| \cong_B TS$  using Lemma 7.

Figure 1: TS1



Figure 2: TS2



#### 1.2 Quotient transition system

Let  $TS = (Q, \to, q^{in})$  be a finite state transition system and let R be a bisimulation relation between TS and itself. The relation R defines an equivalence relation over Q. For  $q \in Q$ , let [q] denote the R-equivalence class containing q. The quotient of TS is the transition system  $TS/_R = (\hat{Q}, \leadsto, [q^{in}])$  where

- (i)  $\hat{Q} = \{ [q] \mid q \in Q \}$
- (ii)  $[q] \leadsto [q']$  if there exists  $q_1 \in [q]$  and  $q_2 \in [q']$  such that  $q_1 \leadsto q_2$

**Definition 10.** Let  $TS = (Q, \rightarrow, q^{in})$  be a finite state transition system and let  $\sim_{TS}$  be the largest bisimulation relation between TS and itself. Then the transition system  $TS/_{\sim_{TS}} = (\hat{Q}, \leadsto, [q^{in}])$  is called the bisimulation quotient of TS.

The bisimulation quotient becomes very useful while expressing a class of transition systems bisimilar to each other, owing to the absence of any redundant states. Henceforth, we denote the bisimulation quotient of a transition system TS by  $[TS]_{BQ}$ .

A trivial but important property is to note that the bisimulation quotient need not necessary be a product all the time. This property is captured in figures 1, 2, 3 and 4.

The following lemma shows us that there can't be redundant states in a bisimulation quotient.

**Lemma 11.** Let  $TS = (Q, \rightarrow, q^{in})$  be a finite state transition system over  $\Sigma = \{a, b, c\}$ . Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  be finite state transition systems over  $\Sigma_1 = \{a, c\}$  and  $\Sigma_2 = \{b, c\}$  respectively, such that  $TS \cong_B TS_1 || TS_2$ . Consider the bisimulation quotient  $[TS]_{BQ} = (\hat{Q}, \rightsquigarrow, [q^{in}])$ . Let  $R \subseteq (\hat{Q} \times (Q_1 \times Q_2))$ 

Figure 3: TS1||TS2|



Figure 4:  $[TS1||TS2]_{BQ}$ 



be a bisimulation relation between  $[TS]_{BQ}$  and  $TS_1||TS_2$ . Now  $(q_0, (q_1, q_2)) \in R$  and  $(q'_0, (q_1, q_2)) \in R$  iff  $q_0 = q'_0$ .

**Proof:** Clearly, if  $TS \cong_B TS_1||TS_2$ , then  $[TS]_{BQ} \cong_B TS_1||TS_2$ . Therefore, such an R exists through Definition 2. Consider a relation  $C \subseteq (\hat{Q} \times \hat{Q})$  such that:

- (i)  $(q^{in}, q^{in}) \in C$
- (ii)  $(q_i, q_i) \in C$  iff  $\exists q_k \in (Q_1 \times Q_2)$  such that  $(q_i, q_k) \in R$  and  $(q_i, q_k) \in R$

Let  $(q_i, q_j) \in C$ . This means  $\exists q_k \in (Q_1 \times Q_2)$  such that  $(q_i, q_k) \in R$  and  $(q_j, q_k) \in R$ . Let  $q_i \stackrel{a}{\to} q_i'$ . We can necessitate that  $\exists q_k' \in (Q_1 \times Q_2)$  such that  $(q_i', q_k') \in R$  and  $q_k \stackrel{a}{\to} q_k'$ . Now since  $(q_j, q_k) \in R$ , there exists  $q_j' \in \hat{Q}$  such that  $(q_j', q_k') \in R$  and  $q_j \stackrel{a}{\to} q_j'$ . This implies  $(q_i', q_j') \in C$ . Therefore, it is easy to see that C is a bisimulation relation between  $[TS]_{BQ}$  and itself.

Notice that if  $q_i$  and  $q_j$  are related in the bisimulation relation C between  $[TS]_{BQ}$  and itself, then  $q_i = q_j$  because we quotient all states that are related into a single state in the bisimulation quotient (see Definition 13). In other words,  $q_i = q_j$  since there are no redundant states in the bisimulation quotient.

**Theorem 12.** Let  $TS = (Q, \rightarrow, q^{in})$  be a finite state transition system over  $\Sigma = \{a, b, c\}$ . Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  be finite state transition systems over  $\Sigma_1 = \{a, c\}$  and  $\Sigma_2 = \{b, c\}$  respectively, such that  $TS \cong_B TS_1 || TS_2$ . Consider the bisimulation quotient  $[TS]_{BQ} = (\hat{Q}, \rightsquigarrow, [q^{in}])$ . Let  $R \subseteq (\hat{Q} \times (Q_1 \times Q_2))$  be a bisimulation relation between  $[TS]_{BQ}$  and  $TS_1 || TS_2$ . Consider  $(q_0, (q_1, q_2)) \in R$ ,  $q_0 \xrightarrow{a} q_3$ ,  $q_0 \xrightarrow{b} q_4$ . Then there exists  $q_5 \in \hat{Q}$ , such that  $q_3 \xrightarrow{b} q_5$ ,  $q_4 \xrightarrow{a} q_5$ .

**Proof:** Since  $q_0 \xrightarrow{a} q_3$  and  $q_0 \xrightarrow{b} q_4$ , there exists  $q_6 \in Q_1$ ,  $q_1 \xrightarrow{a} q_6$  and  $q_7 \in Q_2$ ,  $q_2 \xrightarrow{a} q_7$  since  $[TS]_{BQ}$  and  $TS_1||TS_2$  are bisimilar. We now know the following:

- (i)  $(q_0, (q_1, q_2)) \in R$
- (ii)  $(q_3, (q_6, q_2)) \in R$
- (iii)  $(q_4, (q_1, q_7)) \in R$

Since  $(q_6, q_2) \xrightarrow{b} (q_6, q_7)$  and  $(q_3, (q_6, q_2)) \in R$ , there exists  $q_5 \in \hat{Q}$ ,  $q_3 \xrightarrow{b} q_5$  and  $(q_5, (q_6, q_7)) \in R$ . Similarly since  $(q_1, q_7) \xrightarrow{a} (q_6, q_7)$  and  $(q_4, (q_1, q_7)) \in R$ , there exists  $q_8 \in \hat{Q}$ ,  $q_4 \xrightarrow{a} q_8$  and  $(q_8, (q_6, q_7)) \in R$ . We now have two states  $q_5$  and  $q_8$  that is related to the same state  $(q_6, q_7) \in (Q_1 \times Q_2)$ . Therefore, using Lemma 11 we have  $q_5 = q_8$ .

We call theorem 12 as the *diamond closure* property and this is one of the fundamental results of this report. This does not hold when TS is not the bisimulation quotient. Consider TS1 from figure 5 and TS2 from figure 6. TS3 from figure 7 doesn't satisfy the diamond closure property.

Figure 5: TS1



**Figure 6**: *TS*2



Figure 7:  $TS3, TS3 \cong_B [TS1||TS2]_{BQ}$ 



**Figure 8**: *TS*1



**Figure 9**: *TS*2



**Definition 13.** Let  $TS_1 = (Q_1, \rightarrow_1, q_1^{in})$  and  $TS_2 = (Q_2, \rightarrow_2, q_2^{in})$  be two finite state transition systems. Let  $TS = (Q, \rightarrow, q^{in})$  represent the product system  $TS_1||TS_2$ . Let R represent the largest bisimulation relation between TS and itself. Then we say that given  $q_1, q'_1 \in Q_1$ ,  $q_1 \cong_P q'_1$  iff  $\forall q_2 \in Q_2$ ,  $((q_1, q_2), (q'_1, q_2)) \in R$ .

**Lemma 14.** It is easy to show that  $\cong_P$  is an equivalence relation on  $Q_1$ .

Consider  $TS_1' = (Q_1', \rightarrow_1', q_1^{in'})$ , where  $Q_1' = Q_1/\cong_P$ . An interesting problem that naturally arises from lemma 14 is if to check if  $\rightarrow_1'$  is well defined i.e.  $([q_1], a, [q_1']) \in \rightarrow_1'$  if  $(q_1, a, q_1') \in \rightarrow_1$ .

**Theorem 15.**  $\rightarrow'_1$  as defined above is not well defined.

**Proof:** We prove the theorem through a counter example. Figures 8 and 9 completes the proof. Upon inspection, you will find that the two nodes in  $TS_1$  having c transitions are  $\cong_P$  equivalent. But the c transitions do not lead to nodes of the same class.

# References

- [1] I Castellani, M Mukund and P S Thiagarajan: Synthesizing distributed transition systems from global specifications, Proc. FSTTCS 19, Springer LNCS 1739 (1999) 219-231.
- [2] M Mukund: From global specifications to distributed implementations, Synthesis and Control of Discrete Event Systems, B Caillaud, P Darondeau, L Lavagno (eds), Kluwer (2002) 19-34.