Verifying Bit-Manipulations of Floating-Point

Wonyeol Lee Rahul Sharma Alex Aiken Stanford University

This Talk

• Example:

floating-point implementation

- Goal: Bound the difference between spec and implementation
- Key contribution: Verify binaries that mix floating-point and bitlevel operations
 - Intel's implementations of transcendental functions

Floating-Point Numbers

- Automatic reasoning about floating-point is not easy
 - have rounding errors
 - don't obey some algebraic rules of real numbers
 - Associativity: $1 + (10^{30} 10^{30}) = 1 \neq 0 = (1 + 10^{30}) 10^{30}$
- It becomes much harder if bit-level operations are used

Bit-Level Operations

• Example: Given N (in int), compute 2^N (in double)

- Such bit-manipulations are ubiquitous in highly optimized floating-point implementations
- If a code mixes floating-point and bit-level operations, reasoning about the code is difficult

Problem Statement

binary *P* that mixes floating-point and bit-level operations

• Goal: Find a small $\Theta > 0$ such that

$$\left| \frac{f(x) - P(x)}{f(x)} \right| \le \Theta \text{ for all } x \in X$$

• i.e., prove a bound on the maximum precision loss

Possible Alternatives

- Exhaustive testing
 - feasible for 32-bit float: ~ 30 seconds (with 1 core for sinf)
 - infeasible for 64-bit double: > 4000 years (= 30 seconds $\times 2^{32}$)
 - infeasible even for input range X = [-1, 1] \therefore (# of doubles between -1 and 1) = $\frac{1}{2}$ (# of all doubles)
- Machine-checkable proofs
 - Harrison used HOL Light to prove Intel's transcendental functions are very accurate [FMCAD'00]
 - "The construction of these proofs often requires considerable persistence." [FMSD'00]

Possible Automatic Alternatives

- If only floating-point operations are used, various automatic techniques can be applied
 - e.g., Astree [PLDI'03], Fluctuat [FMICS'09], ROSA [POPL'14], FPTaylor [FM'15]
- Several commercial tools (e.g., Astree, Fluctuat) can handle certain bit-trick routines
- We are unaware of a general technique for verifying mixed floating-point and bit-level code

Our Method

e^x Explained

Goal: Find a small $\Theta > 0$ such that

$$\left| \frac{e^x - 2^N e^r}{e^x} \right| \le \Theta \text{ for all } x \in X$$

1) Abstract Floating-Point Operations

- Assume only floating-point operations are used
- $(1 + \epsilon)$ property
 - A standard way to model rounding errors

- For 64-bit doubles, $\epsilon = 2^{-53}$
- This property has been used in previous automatic techniques (FPTaylor, ROSA, ...) for verifying floating-point programs

1) Abstract Floating-Point Operations

- Compute a symbolic abstraction $A_{\vec{\delta}}(x)$ of a program P
 - Example:

$$A_{\vec{\delta}}(x) = ((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2)$$

• From $(1 + \epsilon)$ property, $A_{\vec{\delta}}(x)$ satisfies

$$P(x) \in \{A_{\overrightarrow{\delta}}(x) : |\delta_i| < \epsilon\}$$
 for all x

• Example:

$$P(x) \in \{((2 \times x)(1 + \delta_1) + 3)(1 + \delta_2) : |\delta_1|, |\delta_2| < \epsilon\}$$

Our Method: Overview

Our Method: Overview

2) Divide the Input Range

- Assume bit-level operations are used as well
- ullet To handle bit-level operations, divide X into intervals I_k ,

so that, on each I_k , we can statically know the result of each bit-level operation

• Example: $\frac{\text{input x}}{I_{-1}} \\
y \leftarrow x \times_f C \\
(C=0x3ff71547652b82fe)$ $\frac{\text{input x}}{V \leftarrow x \times_f C} \\
(C=0x3ff71547652b82fe)$

Only floating-point operations are left \rightarrow Can compute $A_{\vec{k}}(x)$ on each I_k

partial evaluation

2) Divide the Input Range

- How to find such intervals?
 - Use symbolic abstractions

- Example:
 - $N = \text{round}(x \times_f C)$
 - (symbolic abstraction of $x \times_f C$) = $(x \times C)(1 + \delta)$

• Let I_k = largest interval contained in

$${x \in X : S(x) \subset (k - 0.5, k + 0.5)}$$

ullet Then N is evaluated to k for every input in I_k

3) Compute a Bound on Precision Loss

- ullet Precision loss on each interval I_k
 - Let $A_{\overrightarrow{\delta}}(x)$ be a symbolic abstraction on I_k
 - Analytical optimization:

$$\max_{x \in I_k, |\delta_i| < \epsilon} \left| \frac{e^x - A_{\overrightarrow{\delta}}(x)}{e^x} \right|$$

• Use Mathematica to solve optimization problems analytically

Are We Done?

- No. The constructed intervals do not cover X in general
 - Because we made sound approximations

Are We Done?

• Example: $N = \text{round}(x \times_f C)$

For $x = \frac{1}{2c}$, we can't statically know if N would be 0 or 1

- Let $H = \{\text{floating-point numbers in the "gaps"}\}$
 - We observe that |H| is small in experiment

3) Compute a Bound on Precision Loss

- ullet Precision loss on each interval I_k
 - Let $A_{\overrightarrow{\delta}}(x)$ be a symbolic abstraction on I_k
 - Analytical optimization:

take maximum

$$\max_{x \in I_k, |\delta_i| < \epsilon} \left| \frac{e^x - A_{\overrightarrow{\delta}}(x)}{e^x} \right| \longrightarrow \text{answerl}$$

- Use Mathematica to solve optimization problems analytically
- Precision loss on H
 - For each $x \in H$, obtain P(x) by executing the binary
 - Brute force:

$$\max_{x \in H} \left| \frac{e^x - P(x)}{e^x} \right|$$

ullet Use Mathematica to compute e^x and precision loss exactly

Case Studies

Settings

- Benchmarks
 - exp: from S3D (a combustion simulation engine)
 - sin, log: from Intel's <math.h>
- Measures of precision loss
 - Relative error: RelErr $(a,b) = \left| \frac{a-b}{a} \right|$
 - ULP error:
 - Rounding errors of numeric libraries are typically measured by ULPs
 - ULPErr(a, b) = (# of floating-point numbers between a and b)
 - Example: 5 ULPs b
 - ULPErr $(a, b) \le 2 \cdot \text{RelErr}(a, b)/\epsilon$

Results

	Interval	Bound on ULP error	# of intervals	# of $oldsymbol{\delta}$'s	Size of ''gaps''
exp	[-4, 4]	14	13	29	36
sin	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	9	33	53	110
log	$(0,4) \setminus \left[\frac{4095}{4096}, 1\right)$	21	2 ²¹	25	0
	$\left[\frac{4095}{4096},1\right)$	1×10^{14}	1	25	0

best illustrates the power of our method

Results: sin, log

Limitations of Our Method

- May construct a large number of intervals
 - Example: 0x5fe6eb50c7b537a9 (x >> 1)
 - ullet For this example, our method constructs 2^{63} intervals
- May produce loose error bounds
 - Example: 10^{14} ULPs for log on $\left[\frac{4095}{4096},1\right)$
 - Sometimes $(1 + \epsilon)$ property provides an imprecise abstraction
 - Proving a precise error bound requires more sophisticated error analysis beyond $(1+\epsilon)$ property
 - Our recent result: 6 ULPs for for log on (0,4)

Summary

- First systematic method for verifying binaries that mix floating-point and bit-level operations
- Use abstraction, analytical optimization, and testing
- Directly applicable to highly optimized binaries of transcendental functions

Questions?