

AGENDA

- 1 ORDER PROCESS FLOW CHART
- 2 KPIs
- 3 OUR PROCESS
- 4 OUR FINDINGS
- 5 CONCLUSIONS

AGENDA

- 1 ORDER PROCESS FLOW CHART
- 2 KPIs
- 3 OUR PROCESS
- OUR FINDINGS
- 5 CONCLUSIONS

1 ORDER PROCESS FLOW CHART

AGENDA

- 1 ORDER PROCESS FLOW CHART
- 2 KPIs
- 3 OUR PROCESS
- OUR FINDINGS
- 5 CONCLUSIONS

KPI 1 : Order Fulfillment Time

- Measures time from "Order received" to "Order Ready to Ship" in days
- Calculation: "Ready to Ship Date" - "Order Date"
- Validate:Order preparation time takes 2 days

KPI 2 : Order Loading Time

- Measures time from "Order Ready to Ship" to "On Truck Scan Date" in days
- Calculation:

"On Truck Scan Date" - "Ready to Ship Date"

Validate:
 Order loading time takes 1 day for
 Standard Processing and same day for
 Express Processing

KPI 3 : Order Delivery Time

- Measures time from "Order on Truck" to "Order Delivered" in days
- Calculation:
 "Arrival Scan Date" "On Truck Scan Date"
- Validate:
 Order delivery time takes 3 days as
 Logistics Company calculated

KPI 4 : Order Processing Time

- Measures time from "Order Date" to "Arrival Scan Date" in days
- Calculation:

"Arrival Scan Date" - "Order Date"

 Validate:
 Order processing time takes 6 days for standard processing and 5 days for express processing

AGENDA

- 1 ORDER PROCESS FLOW CHART
- 2 KPIs

5

- 3 OUR PROCESS
- 4 OUR FINDINGS
 - CONCLUSIONS

Data examination

Data cleaning

Merging data


```
# read all the worksheets form the data excel file
df = pd.read_excel('data/Muesli Project raw data - group 3.xlsx', header=1)
df1 = pd.read_excel('data/Muesli Project raw data - group 3.xlsx', sheet_name=1)
df2 = pd.read_excel('data/Muesli Project raw data - group 3.xlsx', sheet_name=2)
df3 = pd.read_excel('data/Muesli Project raw data - group 3.xlsx', sheet_name=3)

2.4s
```

```
1  # check the df headers
2  print(df.columns)
3  print(df1.columns)
4  print(df2.columns)
5  print(df3.columns)
```

Data examination

Orders

Index

Order ID

Order Date

Ship Mode

Customer ID

Customer Name

Origin Channel

Country/Region

City

State

Postal Code

Region

Category

Sub-Category

Product ID

Sales

Quantity

Discount

Profit

Campaign Data

Order ID
Arrival Scan Date
Customer Name

Order Process Data

Row ID
Order ID
Order Date
On Truck Scan Date
Ship Mode

Internal Data Study

Order ID Ready to Ship Date Pickup Date

Data examination

Orders Campaign Data Order Process Data Internal Data Study Index Order ID Row ID Order ID Arrival Scan Date Order ID Order ID Ready to Ship Date Order Date **Customer Name** Order Date Pickup Date Ship Mode On Truck Scan Date **Customer ID** Ship Mode **Customer Name** Origin Channel Country/Region City Standard State Processing Postal Code Express Region First Class Category Second Class Sub-Category Standard Class Product ID Sales Quantity Discount Profit

Data examination

Orders

Index

Order ID

Order Date

Ship Mode

Customer ID

Customer Name

Origin Channel

Country/Region

City

State

Postal Code

Region

Category

Sub-Category

Product ID

Sales

Quantity

Discount

Profit

Campaign Data

Order ID Arrival Scan Date Customer Name

Order Process Data

Row ID Order ID

Order Date

On Truck Scan Date Ship Mode

Internal Data Study

Order ID Ready to Ship Date Pickup Date

```
# delete unneeded columns
df = df.drop(['Index','Origin Channel', 'Category', 'Sub-Category'], axis=1)
df1 = df1.drop(['Customer Name'], axis=1)
df2 = df2.drop(['Row ID', 'Order Date'], axis=1)
```

```
# check for duplicates
print('df=',df.duplicated().value_counts())
print('-' * 30)
print('df1=',df1.duplicated().value_counts())
print('-' * 30)
print('df2=',df2.duplicated().value_counts())
print('-' * 30)
print('df3=',df3.duplicated().value_counts())
```

```
# drop the duplicates
df_no_dups = df.drop_duplicates()
df2_no_dups = df2.drop_duplicates()
df3_no_dups = df3.drop_duplicates()

    0.0s
```

```
df_no_dups= (9993, 15)
df1= (333, 2)
df2_no_dups= (3003, 3)
df3_no_dups= (204, 3)
```

```
df= False 9993
True 1
Name: count, dtype: int64

df1= False 333
Name: count, dtype: int64

df2= False 3003
True 2896
Name: count, dtype: int64

df3= False 204
True 86
Name: count, dtype: int64
```

```
df_no_dups= 9993 15)
df1= (333, 2)
df2_no_dups= 3003 3)
df3_no_dups= (204, 3)
```

```
1 # check the df headers and decide what to merge with what
      print(df_no_dups.columns)
   3 print(df1.columns)
   4 print(df2_no_dups.columns)
      print(df3_no_dups.columns)
Index(['Order ID', 'Order Date', 'Ship Mode', 'Customer ID', 'Customer Name',
       'Country/Region', 'City', 'State', 'Postal Code', 'Region',
       'Product ID', 'Sales', 'Quantity', 'Discount', 'Profit'],
      dtype='object')
Index(['Order ID', 'Arrival Scan Date'], dtype='object')
Index( 'Order ID',
                  'On Truck Scan Date', 'Ship Mode'], dtype='object')
Index(['Order ID'], 'Ready to Ship Date', 'Pickup Date'], dtype='object')
```

Data cleaning

Order Fulfillment Process - add the dates we want to compare

1ST KPI - ORDER FULFILLMENT PROCESS

```
# merge df and df3
  df_prep_dur_ver = pd.merge(df_no_dups, df3_no_dups, on='Order ID', how='inner')

√ 0.0s

  # calculate the preparation duration and print it in a new column
  df prep dur ver['prep duration'] = df prep dur ver['Ready to Ship Date']-df prep dur ver['Order Date']

√ 0.0s

   # check the data type
   df_prep_dur_ver['prep duration'].dtype
 ✓ 0.0s
dtype('<m8[ns]')
```

Ready to Ship Date' 'Pickup Date'],

dtype='object')

KPI 1 - Order Fulfillment Time

```
1  # merge df and df3
2
3  df_prep_dur_ver = pd.merge(df_no_dups, df3_no_dups, on='Order ID', how='inner')

1  # verify the headers of the merged dataframe
2  df_prep_dur_ver.columns

Index(['Order ID', 'Order Date'] 'Ship Mode', 'Customer ID', 'Customer Name', 'Country/Region', 'City', 'State', 'Postal Code', 'Region', 'Product ID', 'Sales', 'Quantity', 'Discount', 'Profit',
```


KPI 1 - Order Fulfillment Time

```
1 # verify
2
3 df_prep_dur_ver.sample(5)

$\sim$ 0.0s
```

	Order ID	Order Date	Customer ID	Customer Name	Ready to Ship Date	Pickup Date
138	US-2020-155425	2020-11-10	AB-10600	Ann Blume	2020-11-11	2020-11-12
64	CA-2020-150266	2020-11-25	RO-19780	Rose O'Brian	2020-11-30	2020-12-02
193	US-2020-132444	2020-11-18	CD-12280	Christina DeMoss	2020-11-23	2020-11-23
376	CA-2019-123120	2019-09-04	CV-12295	Christina VanderZanden	2019-09-09	2019-09-11
88	CA-2019-130267	2019-09-19	SW-20245	Scot Wooten	2019-09-23	2019-09-25

KPI 1 - Order Fulfillment Time

```
1  # check the type of data in the columns
2
3  df_prep_dur_ver.dtypes
```

```
Order ID object
Order Date datetime64[ns]
Customer ID object
Customer Name object
Ready to Ship Date datetime64[ns]
Pickup Date datetime64[ns]
```

dtype: object

```
1  # calculate the preparation duration and print it in a new column
2
3  df_prep_dur_ver['prep_duration'] = df_prep_dur_ver['Ready to Ship Date']-df_prep_dur_ver['Order Date']
```



```
KPI 1 - Order Fulfillment Time
```

1 # verify
2
3 df_prep_dur_ver.sample(10)

	Muesli Company				
Order Posts Order received	Ready to Ship Order Order Preparation				
	2 days				

	CA-2020-121615 CA-2019-123176	2020-11-03	DL-12925	Daniel Lacy			
319 C	CA-2019-123176			Daniel Lacy	2020-11-09	2020-11-12	6 days
		2019-09-27	JG-15160	James Galang	2019-09-30	2019-10-02	3 days
166 CA	A-2020-150266	2020-11-25	RO-19780	Rose O'Brian	2020-11-30	2020-12-02	5 days
180 C/	A-2020-127782	2020-11-02	TH-21115	Thea Hudgings	2020-11-06	2020-11-09	4 days
37 U	JS-2020-168116	2020-11-04	GT-14635	Grant Thornton	2020-11-04	2020-11-04	0 days
18 US	S-2020-153948	2020-11-06	FM-14290	Frank Merwin	2020-11-06	2020-11-06	0 days
74 C	A-2019-165918	2019-09-10	BD-11770	Bryan Davis	2019-09-16	2019-09-18	6 days
152 C	A-2020-119746	2020-11-23	CM-12385	Christopher Martinez	2020-11-27	2020-11-30	4 days
45 CA	A-2020-103380	2020-11-21	BF-11005	Barry Franz	2020-11-27	2020-11-30	6 days
355 U	IS-2020-110576	2020-11-28	RB-19795	Ross Baird	2020-12-04	2020-12-07	6 days

KPI 1 - Order Fulfillment Time

```
1 # check the data type
2
3 df_prep_dur_ver['prep duration'].dtype

$\sqrt{0.0s}$
```

what?...

dtype('<m8[ns]') indicates that the data type of the object is a datetime64, representing date and time information with nanosecond precision.

ok, now I get it!

dtype('<m8[ns]')

4 days 03:47:22.105263157

Order Fulfillment Process

Muesli Company

KPI 1 - Order Fulfillment Time

Order Fulfillment Process

```
Muesli Company

Grier Date

Grier Preparation

Order Preparation

2 days
```

```
# calculate the mean prep duration
mean duration days = df_prep_dur_ver['prep duration'].mean()

# Round the mean duration to the nearest days and hours
rounded_duration = mean_duration_days.round('h') # Round to the nearest hour

# Convert the rounded duration to days and hours
rounded_days = rounded_duration.days
rounded_hours = rounded_duration.seconds // 3600 # Convert seconds to hours

print(f"{rounded_days} days {rounded_hours} hours")
```

4 days 4 hours

KPI 2 - Order Loading Time

```
1  # verify the merged dataframe
2
3  df_dur_readytoship_truck.sample(5)

✓ 0.0s
```

	Order ID	On Truck Scan Date	Ship Mode	Ready to Ship Date	Pickup Date
103	CA-2020-163874	2020-11-13	Standard Processing	2020-11-12	2020-11-13
67	CA-2020-167227	2020-11-06	Express	2020-11-05	2020-11-06
137	US-2020-153633	2020-11-20	Standard Processing	2020-11-18	2020-11-20
158	CA-2020-137022	2020-11-25	Standard Processing	2020-11-23	2020-11-25
54	CA-2019-134516	2019-09-27	Standard Processing	2019-09-25	2019-09-27

KPI 2 - Order Loading Time


```
# calculate the duration of the process from "Ready to Ship" to "on Truck" and print it in a new column

df_dur_readytoship_truck['ship to truck'] = df_dur_readytoship_truck['On Truck Scan Date']-df_dur_readytoship_truck['Ready to Ship Date']

0.0s
```

```
1 # verify
2
3 df_dur_readytoship_truck.sample(5)

$\square$ 0.0s
```

	Order ID	On Truck Scan Date	Ship Mode	Ready to Ship Date	Pickup Date	ship to truck
126	CA-2020-154137	2020-11-18	Standard Processing	2020-11-17	2020-11-18	1 days
174	CA-2020-146724	2020-11-30	Standard Processing	2020-11-27	2020-11-30	3 days
50	CA-2019-126284	2019-09-25	Standard Processing	2019-09-24	2019-09-25	1 days
190	CA-2020-124765	2020-12-02	Standard Processing	2020-11-30	2020-12-02	2 days
125	CA-2020-110842	2020-11-18	Standard Processing	2020-11-16	2020-11-18	2 days

KPI 2

Order Loading Time

calculate the duration of the process from "Ready to Ship" to "on Truck" and print it in a new column

df_dur_readytoship_truck['ship to truck'] = df_dur_readytoship_truck['On Truck Scan Date']-df_dur_readytoship_truck['Ready to Ship Date']

...that's more than the claimed one day

KPI 2 - Order Loading Time

Standard Processing

```
# filter for the standard processing

df_dur_readytoship_truck_standard = df_dur_readytoship_truck[df_dur_readytoship_truck['Ship Mode']

Python
```

```
Ready to Ship Date Order Ready to Ship Date On Truck

2 days

2 days
```

```
# calculate the mean prep duration for the standard processing
mean_to_truck_days_standard = df_dur_readytoship_truck_standard['ship to truck'].mean()

# Round the mean duration to the nearest days and hours
rounded_to_truck_dur_standard = mean_to_truck_days_standard.round('h') # Round to the nearest hour

# Convert the rounded duration to days and hours
rounded_to_truck_days_standard = rounded_to_truck_dur_standard.days
rounded_to_truck_hours_standard = rounded_to_truck_dur_standard.seconds // 3600 # Convert seconds to hours

print(f"{rounded_to_truck_days_standard} days {rounded_to_truck_hours_standard} hours")
```

2 days 0 hours

...that's more than the claimed one day

KPI 2 - Order Loading Time

filter for the express processing

Express Processing

```
Ready to
                                                                                                                                                    Ship Date
                                                                                                                                                     Order
                                                                                                                                                                          Order
                                                                                                                                                  Ready to Ship
                                                                                                                                                                         On Truck
                                                                                                                                                                          1 day
                                                                                                                                                       2 days
df_dur_readytoship_truck_xpress = df_dur_readytoship_truck[df_dur_readytoship_truck['Ship Mode'] == 'Express']
```

Muesli Company

```
# calculate the mean prep duration for the express processing
    mean_to_truck_days_xpress = df_dur_readytoship_truck_xpress['ship to truck'].mean()
    # Round the mean duration to the nearest days and hours
    rounded to truck dur xpress = mean to truck days xpress.round('h') # Round to the nearest hour
 6
    # Convert the rounded duration to days and hours
    rounded_to_truck_days_xpress = rounded_to_truck_dur_xpress.days
    rounded to truck hours xpress = rounded to truck dur xpress.seconds // 3600 # Convert seconds to hours
10
    print(f"{rounded to truck days xpress} days {rounded to truck hours xpress} hours")
```

0 days 10 hours

no comments

KPI 3 - Order Delivery Time

```
Order Delivered
                                                                                            On Truck
                                                                                                           Delivery
    # merge df1 and df2
                                                                                             1 day
                                                                                                                3 days
                                                                                                                3 days
    df_order_del_time = pd.merge(df2_no_dups, df1, on='Order ID', how='inner')
    df_order_del_time['delivery time']=df_order_del_time['Arrival Scan Date'] - df_order_del_time['On Truck Scan Date']
    # calculate the mean prep duration for the standard processing
    mean order del time = df order del time['delivery time'].mean()
 3
    # Round the mean duration to the nearest days and hours
    rounded_mean_del_time = mean_order_del_time.round('h') # Round to the nearest hour
    # Convert the rounded duration to days and hours
    rounded mean del days = rounded mean del time.days
    rounded mean del hours = rounded mean del time.seconds // 3600 # Convert seconds to hours
10
    print(f"{rounded mean del days} days {rounded mean del hours} hours")
```

4 days 14 hours

Logistics Company

Truck leaves -

On Truck Scan Date

Order

KPI 4 - Order Processing Time

```
Ready to Ship
                                                                                                               On Truck
                                                                                                                1 day
1 # merge df and df1
                                                                                                    2 days
  df_order_del_total = pd.merge(df1, df_no_dups, on='Order_ID', how='inner')
  df_order_del_total = df_order_del_total.drop(['Ship Mode', 'Country/Region', 'City', 'State',
                                      'Postal Code', 'Region', 'Product ID',
                                      'Sales', 'Quantity', 'Discount', 'Profit', axis=1)
1 df_order_del_total['total delivery time']=df_order_del_total['Arrival Scan Date'] - df_order_del_total['Order Date']
      # calculate the mean prep duration for the standard processing
      mean order del total = df order del total['total delivery time'].mean()
  3
      # Round the mean duration to the nearest days and hours
      rounded mean del total = mean order del total.round('h') # Round to the nearest hour
      # Convert the rounded duration to days and hours
      rounded mean del total days = rounded mean del total.days
      rounded mean del total hours = rounded mean del total.seconds // 3600 # Convert seconds to hours
 10
      print(f"{rounded mean del total days} days {rounded mean del total hours} hours")
```

Muesli Company

Order Date

Ready to

Ship Date

Scan Date

Order

10 days 21 hours

Logistics Company

3 days

Truck leaves

Date

Order Delivered

AGENDA

- 1 ORDER PROCESS FLOW CHART
- 2 KPIs

5

- OUR PROCESS
- OUR FINDINGS
- CONCLUSIONS

KPI 1 - Order Fulfillment Time

Average Preparation Time 4,5 Days

KPI 1 - Order Fulfillment Time

Preparation Time:

69% late 20% on time 11% early

KPI 2 - Order Loading Time

KPI 3 - Order Delivery Time

KPI 4 - Order Processing Time

AGENDA

- 1 ORDER PROCESS FLOW CHART
- 2 KPIs
- 3 OUR PROCESS
- OUR FINDINGS
- 5 CONCLUSIONS

5 CONCLUSIONS

- preparation of orders in warehouse much longer than 2 days
 - only 20% of orders are prepared in 2 days, 69% are late
 - → decrease preparation time in warehouse
- express in order loading process takes desired time
 - \(\square \) decrease loading time for standard to express time
- difference in delivery time: average 4 days instead of 3 days
 - o no accurate data get real data from delivery company

5 CONCLUSIONS

overall process:

- • no consistency for preparation time for orders
 - > same time period for every weekday

5 CONCLUSIONS

overall process:

- • no consistency for preparation time for orders
 - \(\sqrt{\text{same time period for every weekday}}\)
- in summary express delivery is faster than standard, though no difference in loading time (as assumed)
 - → apparently faster in warehouse

5 OVERALL CONCLUSIONS

- check efficiency of workflow (warehouse and loading)
- increase the amount of measurements in warehouse process

5 OVERALL CONCLUSIONS

- check efficiency of workflow (warehouse and loading)
- increase the amount of measurements in warehouse process

Overall Conclusions

- check efficiency of workflow (warehouse and loading)
- increase the amount of measurements in warehouse process
- increase workforce
- something with the delivery company

