1. Topologie Ubung

Ferdinand Szekeresch

24. Oktober 2007

Faserprodukt von Mengen

Definition

Seien A, B, S Mengen, $f_A: A \to S, f_B: B \to S$ Weiter sei F eine Menge mit Abb $\pi_A: F \to B \text{ mit } f_A \circ \pi_A = f_B \circ \pi_B$

F heißt Faserprodukt, von A und B über S (Symbol: $F = A \times_s B$), wenn für jede Menge M und jedes Paar von Abbildungen g_a, g_b von M nach A bzw. Bgenau eine Abbildung $h: M \to F$, so dass $g_a = \pi_A \circ h$, $g_b = \pi_B \circ h$.

Behauptung

Zwischen zwei Faserprodukten von A und B über S gibt es genau eine "sinnvolle" Bijektion.

Beweis

Seien F, F' Faserprodukte. Nach Definition des Faserprodukts:

$$\exists ! h : F' \to F\pi'_A = \pi_A \circ h, \pi'_B = \pi_B \circ h$$

$$\exists !h': F \rightarrow F'\pi_A = \pi'_A \circ h, \pi_B = \pi'_B \circ h$$

 $\exists ! h : F' \to F \pi'_A = \pi_A \circ h, \pi'_B = \pi_B \circ h$ $\exists ! h' : F \to F' \pi_A = \pi'_A \circ h, \pi_B = \pi'_B \circ h$ $\Rightarrow h \circ h' \text{ ist Abbildung von } F \text{ nach } F \text{ mit } \pi_A = \pi_A \circ (h \circ h'), \pi_B = \pi_B \circ (h \circ h')$ id_F ist aber auch eine Abbildung mit dieser Eigenschaft.

Def.Faserprodukt $h \circ h' = id_F$. Genauso: $h' \circ h = id_F$.

Bemerkung

Zu A, B, S, f_A, f_B wie oben existiert immer ein Faserprodukt.

Definiere $F := \{(a, b) \in A \times B | f_A(a) = f_B(b) \}.$

Zu M wie oben definiere $h: M \to F$, $m \mapsto (g_A(m), g_B(m))$.

Bemerkung

Es gilt:
$$F = \bigcup_{s \in S} \left(f_A^{-1}(s) \times f_B^{-1}(s) \right)$$

Beispiel eines metrischen Raums: Die Hasudorff - Metrik

 $M = \mathbb{R}^2$, d sei der euklidische Abstand.

Ziel

Messe den Abstand zwischen Teilmengen von M.

Definition

Sei $x \in M, S \subseteq M$. Definiere $d(x, S) := \inf\{d(x, y) | y \in S\}$.

Seien $S, S' \subseteq M$. Definiere $d(S', S) := \sup\{d(x, S) | x \in S'\}$.

Das definiert keine Metrik auf $\mathcal{P}(m)$, denn im Allgemeinen ist $d(S,S')\neq$ d(S', S)!

Definiere $H(M) := \{ S \subseteq M | S \text{ beschränkt und abgeschlossen} \}.$

Definiere nun $h: H(M) \times H(M) \to \mathbb{R}_{\geq 0}, h(S, S') := \max\{d(S, S'), d(S', S)\}.$

Satz

h ist eine Metrik auf H(M).

Beweis

Sei $S \in H(M).h(S,S)=0$ (da d(S;S)=0). Seien nun $S,S' \in H(M)$ mit $h(S,S')=0 \Rightarrow d(S,S')=0, d(S',S)=0.$

 $\Rightarrow S \subseteq S'$ und $S' \subseteq S$. Denn: $d(x,S) = 0 \Rightarrow x \in S$ oder x ist Häufungspunkt von S.

$$(x \notin S \Rightarrow \forall n \in \mathbb{N} \exists x_n \in S : d(x, x_n) < \frac{1}{n})$$

$$\Rightarrow S = S'.$$

Symmetrie: klar. Dreiecksungleichung gilt auch, denn:

- 1. $\forall S \in H(M), x, y \in M : d(x, S) \le d(x, y) + d(y; S) + \epsilon$ $\Rightarrow d(x, S) \le d(x, y') \le d(x, y) + d(y, S) + \epsilon$.
- 2. $\forall S, S' \in H(M), x \in M: d(x,S) \leq d(x,S') + d(S',S).$ Denn: Sei $y' \in S'$ mit $d(x,y') \leq d(x,S') + \epsilon + d(S',S).$

 $\Rightarrow \forall x \in S_1 : d(x, S_3) \leq d(x, S_2) + d(S_2, S_3) \Rightarrow \text{Beh.}$

Über wenig weitere Umformungen erhält man das Gewünschte, leider geht mir jetzt der Akku aus.