Bases de données : REQUÊTES de MISE À JOUR => CORRECTION

On considère une base de données contenant trois tables x y et z dont une vue est présentée ci-dessous.

table x		
a	b	
1	1	
2	2	
3	2	
4	2	
5	1	
6	9	
7	1	

table y	
С	d
9	9
10	10
11	9
12	20
13	30
14	9
15	1
16	10
17	10

table z			
a	С	е	
1	11	30	
2	14	9	
5	15	1	
7	17	3	
1	10	50	
2	9	8	
2	15	15	
3	17	19	
4	16	12	
5	10	20	
2	11	30	
7	14	9	
7	9	12	

Dans la table x : a est une clé primaire

Dans la table y : c est une clé primaire

Dans la table z : a est une clé étrangère qui fait référence à x(a)

c est une clé étrangère qui fait référence à y(c)

Pour chacune des requêtes ci-dessous, dire si elle réussit ou si elle échoue. Si elle réussit, donner l'état final de la table ; si elle échoue, expliquer pourquoi.

On suppose que la base de donnée est toujours dans l'état représenté ci-dessus au début de chacune des requêtes :

1. UPDATE x SET b = b+a;

applique à TOUTES les lignes de la table x la transformation de la valeur b en b+a

15

6

2. UPDATE x SET a = b+a;

essaie d'appliquer à TOUTES les lignes de la table x la transformation de la valeur a en

a+b

a est une clé primaire donc il est impossible que deux lignes contiennent la même valeur pour ce champ => la requête échoue et

aucune modification n'est effectuée!

3. INSERT INTO x(a,b) VALUES (5,5);

échoue car une ligne contient déjà la valeur 5 pour le champ **a** qui est une **clé primaire**

=> duplicata impossible

4. INSERT INTO x(a,b) VALUES (8,8);

Possible : ajoute simplement une nouvelle ligne à la table x

5. INSERT INTO y(c,d) VALUES (8,8);

Possible : ajoute simplement une nouvelle ligne à la table y

6. INSERT INTO z(a,c,e) VALUES (1,17,1);

possible car:

- il n'y a pas de clé primaire sur z (rien n'empêche une valeur de figurer deux fois dans une même colonne)
- la valeur 1 du champ a figure bien dans la table x
- la valeur 17 du champ c figure bien dans la table y
- les contraintes de clé étrangère sont satisfaites
- => ajoute une ligne à la table z.
 - INSERT INTO z(a,c,e) VALUES (1,18,1);

la valeur 18 ne figure pas dans la colonne \mathbf{c} de la table y => la contrainte de clé étrangère de <math>z, qui fait référence à $y(\mathbf{c})$ empêche l'exécution de la requête.

- => la requête échoue, la table z n'est pas modifiée.
 - 8. DELETE FROM x WHERE a = 5;

le champ a de la table x est référencé par la clé étrangère de z.

Puisque z contient des lignes pour lesquelles **a** vaut 5, cette contrainte de clé étrangère empêche la suppression de la ligne correspondante dans la table x

=> la requête échoue, x n'est pas modifiée

9. DELETE FROM x WHERE a = 6;

le champ **a** de la table x est référencée par la clé étrangère de z.

mais la colonne a de z ne contient pas la valeur 6 : cette contrainte de clé étrangère n'empêche pas de supprimer la ligne où a=6 dans x

=> la requête est éxécutée, et la ligne où a = 6 est supprimée de la table x

10. DELETE FROM z WHERE e < 4;

=> la requête est exécutée, et deux lignes de la table z sont supprimées.