

Politécnico de Coimbra

Sistemas de Equações Diferenciais e MNSED

Autores:

Pedro Miguel Martins Jácome - 2022137038 Ricardo Rodrigues Duarte - 2022137878 Guilherme de Pinho Domingos - 2022136668

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

Coimbra, 05/2024

Índice

1. Introdução	4
1.1 Sistema de equações diferenciais: definição e propriedades	4
2. Pesquisa aplicação de equações diferenciais lineares de 2ª ordem	5
3. Métodos Numéricos para resolução de PVI	6
3.1 Método de Euler	6
3.1.1 Fórmulas	6
3.1.2 Algoritmo/Função	7
3.2 Método de Euler Melhorado	7
3.2.1 Fórmulas	7
3.1.2 Algoritmo/Função	8
3.3 Método de RK2	8
3.3.1 Fórmulas	8
3.3.2 Algoritmo/Função	9
3.4 Método de RK4	9
3.4.1 Fórmulas	9
3.4.2 Algoritmo/Função	. 10
4. Exemplos de aplicação e teste dos métodos	. 11
4.1 Problema do Pêndulo	. 11
4.2 Problema sistemas mecânicos mola-massa sem amortecimento	. 14
4.3 Problema sistemas mecânicos mola-massa com amortecimento	. 15
5. Conclusão	. 17
6. Bibliografia	. 18
6. Autoavaliacão e heteroavaliacão	. 19

Índice de Imagens	
Figura 1- Expressão em série de Taylor analiticamente	6
Figura 2 - Função Método Euler	7
Figura 3 - Função Método Euler Modificado	٤
Figura 4 - Intervalo RK2	٤
Figura 5 - Função Método RK2	g
Figura 6 - Função Método RK4	10
Figura 7 - Problema do Pêndulo	11
Figura 8 - Resolução Problema Pêndulo App	13
Figura 9 - Problema mola-massa sem amortecimento	14
Figura 10 - Resolução Problema mola-massa sem amortecimento App	15
Figura 11- Problema mola-massa com amortecimento App	15
Figura 12- Resolução Problema mola-massa com amortecimento App	16

1. Introdução

No seguimento das aulas teórico-práticas das 2ª e 3ª semanas de abril, vamos implementar em Matlab métodos numéricos para resolver sistemas de equações diferenciais ordinárias (*EDOs*) com condições iniciais. Esta atividade tem como objetivo aplicar e comparar diferentes métodos numéricos, nomeadamente:

- Método de Euler
- Método de Euler Melhorado
- Métodos de Runge-Kutta de ordem 2 (RK2) e de ordem 4 (RK4)

Esses métodos serão aplicados para resolver problemas de sistemas de EDOs e, sempre que possível, compararemos as soluções numéricas obtidas com a solução exata dos problemas de aplicação. Para testar e validar os métodos implementados, utilizaremos exemplos de problemas para resolver usando a *App*.

1.1Sistema de equações diferenciais: definição e propriedades

Os sistemas de equações diferenciais são conjuntos de duas ou mais equações envolvendo derivadas de duas ou mais variáveis dependentes relativamente a uma só variável independente. Características principais:

- Interdependência: As equações do sistema estão interligadas, significando que a solução de uma depende da solução das outras.
- Dimensão: A dimensão do sistema é dada pelo número de equações
 e, consequentemente, pelo número de funções desconhecidas.
- Lineares e Não Lineares: Sistemas de equações diferenciais podem ser lineares ou não lineares, dependendo da linearidade das equações em relação às funções desconhecidas e suas derivadas.

Pesquisa aplicação de equações diferenciais lineares de 2ª ordem

Realizamos uma pesquisa sobre as aplicações de equações diferenciais lineares de segunda ordem em diversas áreas do conhecimento, incluindo engenharia, biologia e economia. A pesquisa visou identificar como estas equações são utilizadas para modelar e resolver problemas reais, fornecendo uma base sólida para a implementação dos métodos numéricos em Matlab.

- Biologia → as equações diferenciais de segunda ordem são utilizadas para modelar interações entre populações, como no caso das equações de Lotka-Volterra para sistemas predador-presa. Estas equações ajudam a entender a dinâmica populacional e a prever comportamentos em ecossistemas, sendo essenciais para estratégias de conservação;
- Economia → as equações diferenciais de segunda ordem são usadas para modelar ciclos econômicos e flutuações de mercado.

3. Métodos Numéricos para resolução de PVI

3.1 Método de Euler

O Método de Euler é um método numérico dos mais simples para resolver problemas de valor inicial (*PVI*) associados a equações diferenciais ordinárias (*EDOs*) de primeira ordem. Ele aproxima a solução da *EDO* por meio de uma linha reta tangente a partir de um ponto inicial, para então usar a reta para prever o próximo ponto na solução. Este processo é iterado ao longo do domínio da variável independente.

3.1.1 Fórmulas

$$y_{i+1} = y_i + hf(t_i, y_i)$$
; $i = 0,1, ..., n-1$

A fórmula deduz-se (analiticamente) pela expressão em série de Taylor de y(t) em torno de ponto $t=t_i$

Figura 1- Expressão em série de Taylor analiticamente

A equação da reta tangente á curva y(t) no ponto $t=t_i$: $y-y_i=m(t-t_i)$

Onde
$$m = \frac{dy}{dt}|_{t=t_i} <=> m = f(t_i, y_i) = m(t_{i+1} - t_i)$$

Para
$$t = t_i$$
 e $y = y_{i+1}$ tem: $y_{i+1} - y_i = m(t_{i+1} - t_i)$

3.1.2 Algoritmo/Função

```
function [t,y] = NEuler(f,a,b,n,y0)
%NEULER Método de Euler para resolução numérica de EDO/PVI
   y'=f(t,y), t=[a,b], y(a)=y0
%
   y(i+1)=y(i)+hf(t(i),y(i)), i=0,1,2,...,n
%INPUT:
% f - função da EDO y'=f(t,y)
  [a,b] - intervalo de valores da variável independente t
% n - núnmero de subintervalos ou iterações do método
% y0 - aproximação inicial y(a)=y0
%OUTPUT:
% t - vetor do intervalo [a,b] discretizado
  y - vetor das soluções aproximadas do PVI em cada um dos t(i)
%
% 05/03/2024 Arménio Correia armenioc@isec.pt
% 14/03/2024 Arménio Correia
h = (b-a)/n;
t = a:h:b;
y = zeros(1,n+1);
y(1) = y0;
for i = 1:n
    y(i+1) = y(i)+h*f(t(i),y(i));
end
```

Figura 2 - Função Método Euler

3.2 Método de Euler Melhorado

O Método de Euler Melhorado ou Método de Euler Modificado, é uma melhoria do Método de Euler básico. Ele oferece uma precisão um pouco melhor ao aproximar a solução de um *PVI* associado a uma *EDO*.

Enquanto o Método de Euler avança apenas um passo ao usar a derivada no ponto inicial para estimar o próximo valor, o Método de Euler Melhorado calcula uma média ponderada das derivadas em dois pontos diferentes para estimar o próximo valor. Isso proporciona uma melhor aproximação para a solução.

3.2.1 Fórmulas

$$k_1 = f(t^k, u^k),$$
 $k_2 = f(t^{(k+1)}, u^k, k_1),$
 $u^{(k+1)} = u^k + h \frac{k_1 + k_2}{2},$
 $u^1 = a, \quad condição inicial$

3.1.2 Algoritmo/Função

```
function y = NEulerM(f,a,b,n,y0)|
h=(b-a)/n;
t=a:h:b;
y=zeros(1,n+1);
y(1)=y0;

for i=1:n
     y(i+1)=y(i)+h*f(t(i),y(i));
     y(i+1)=y(i)+(h/2)*(f(t(i),y(i))+f(t(i+1),y(i+1)));
end
```

Figura 3 - Função Método Euler Modificado

3.3 Método de RK2

O Método de Runge-Kutta de Segunda Ordem (*RK2*) é um método numérico também utilizado para resolver *PVI* associados a *EDO*. É uma técnica de passo único que oferece uma precisão um pouco melhor que o Método de Euler.

O Método de *RK2* é baseado na ideia de usar a inclinação da curva em dois pontos para prever o próximo valor da solução. Ele calcula uma média ponderada das inclinações em dois pontos para melhorar a precisão em relação ao Método de Euler.

3.3.1 Fórmulas

• 1º Passo: Discretização de [a, b]

Figura 4 - Intervalo RK2

Com
$$h = \frac{b-a}{n} \to t_{i+1} = t_i + h$$
 $i = 0, 1, ..., n-1$

- 2º Passo: Para i = 0, 1, ..., n 1 fazer
 - (1) Calcular $k_1 = hf(t_i, y_i)$
 - (2) Calcular $k_2 = hf(t_{i+1}, y_i + k_1)$
 - (3) $y_{i+1} = y_i + \frac{1}{2}(k_1 + k_2)$

3.3.2 Algoritmo/Função

```
function [t,y] = NRK2(f,a,b,n,y0)
%NRK2 Método de Runge-Kutta de ordem 2 para resolução numérica de EDO/PVI
  y'=f(t,y), t=[a,b], y(a)=y0
  y(i+1)=y(i)+1/2(k1+k2)
%INPUT:
% f - função da EDO y'=f(t,y)
% [a,b] - intervalo de valores da variável independente t
% n - núnmero de subintervalos ou iterações do método
% y0 - aproximação inicial y(a)=y0
%OUTPUT:
% t - vetor do intervalo [a,b] discretizado
   y - vetor das soluções aproximadas do PVI em cada um dos t(i)
% 05/03/2024 Arménio Correia armenioc@isec.pt
  14/03/2024 Arménio Correia
h = (b-a)/n;
t = a:h:b;
y = zeros(1,n+1);
y(1) = y0;
for i = 1:n
    k1 = h*f(t(i),y(i));
    k2 = h*f(t(i+1),y(i)+k1);
    y(i+1) = y(i)+(k1+k2)/2;
end
end
```

Figura 5 - Função Método RK2

3.4 Método de RK4

O Método de Runge-Kutta de Quarta Ordem (*RK4*) é um dos métodos numéricos mais amplamente utilizados para resolver *PVI* associados a *EDO*. É um método de alta precisão que oferece uma boa combinação entre simplicidade e eficácia computacional.

O RK4 é uma técnica de passo único que calcula a solução da EDO avançando através do domínio da variável independente em pequenos passos, usando uma combinação ponderada de inclinações da curva em vários pontos.

3.4.1 Fórmulas

A aproximação do método de *RK4* para a solução y(x) é dada por:

$$k_1 = h * f(t(i), y(i)), \qquad k_2 = h * f(t(i) + \left(\frac{h}{2}\right), y(i) + \left(\frac{1}{2}\right)k_1)$$

$$k_3 = h * f(t(i) + \left(\frac{h}{2}\right), y(i) + \left(\frac{1}{2}\right)k_2, \qquad k_4 = h * f(t(i+1), y(i) + k_3)$$

$$y(i+1) = y(i) + \frac{(k_1 + 2 * k_2 + 2 * k_3 + k_4)}{6}$$

3.4.2 Algoritmo/Função

```
function [t,y] = NRK4(f,a,b,n,y0)
h = (b-a)/n;
t = a:h:b;
y = zeros(1,n+1);
y(1) = y0;
for i =1:n
        k1 = h*f(t(i),y(i));
        k2 = h*f(t(i)+(h/2),y(i)+k1/2);
        k3 = h*f(t(i)+(h/2),y(i)+k2/2);
        k4 = h*f(t(i+1),y(i)+k3);
        y(i+1) = y(i)+(k1+2*k2+2*k3+k4)/6;
end
end
```

Figura 6 - Função Método RK4

4. Exemplos de aplicação e teste dos métodos

4.1 Problema do Pêndulo

Example 13-A Motion of a Nonlinear Pendulum

The motion of a pendulum of length L subject to damping can be described by the angular displacement of the pendulum from the vertical, θ , as a function of time. (See Fig. 13.1.) If we let m be the mass of the pendulum, g the gravitational constant, and c the damping coefficient (i.e., the damping force is $F = -c\theta'$), then the ODE initial-value problem describing this motion is

$$\theta^{s} + \frac{c}{mL}\theta' + \frac{g}{L}\sin\theta = 0.$$

The initial conditions give the angular displacement and velocity at time zero; for example, if $\theta(0) = a$ and $\theta'(0) = 0$, the pendulum has an initial displacement, but is released with 0 initial velocity.

Analytic (closed-form) solutions rely on approximating $\sin \theta$; the exact solutions to this approximated system do not have the characteristics of the physical pendulum, namely, a decreasing amplitude and a decreasing period. (See Greenspan, 1974, for further discussion.)

FIGURE 13.1a 5imple pendulum.

FIGURE 13.1b The motion of a pendulum given by ODE above (solid line) and linearized ODE (dashed line).

Figura 7 - Problema do Pêndulo

Dados do problema:

$$\theta^{\prime\prime} + \frac{c}{mL}\theta^{\prime} + \frac{g}{L}\sin\theta = 0$$

L → comprimento do pêndulo

m → massa

c → coeficiente amortecimento

g -> constante gravitacional

 $\theta \rightarrow$ deslocamento angular do pêndulo

Sabendo que trata-se de uma equação diferencial de ordem 2 homogénea e não linear e que $t \in [0,15]$

$$a_2y'' + a_1y' + a_0y = b(t)$$

De acordo com os valores obtidos durante a aula podemos concluir que:

$$\frac{g}{L} = 1$$
 , $\frac{c}{mL} = 0.3$, $y(0) = \frac{\pi}{2}$, $y'(0) = 0$

O próximo passo consiste em trocamos os valores na função,

$$y^{\prime\prime} = -0.3y^{\prime} - \sin(y)$$

de seguida, isolamos a derivada de maior ordem e mudamos as variáveis para poder ficar com duas *EDO* lineares de primeira ordem.

$$\begin{cases} u = y \\ v = y' \end{cases} (=)$$
$$\begin{cases} u' = v \\ v' = -0.3y' - \sin(y) \end{cases}$$

$$PVI \begin{cases} v' = -0.3v - \sin(u) \\ t \in [0,15] \\ u(0) = \frac{\pi}{2} \\ v(0) = 0 \end{cases}$$

Por fim, usando a App podemos verificar os resultados que nos dão.

Figura 8 - Resolução Problema Pêndulo App

4.2 Problema sistemas mecânicos mola-massa sem amortecimento

b) A equação mx'' + kx = 0 descreve o movimento harmónico simples, ou movimento livre não amortecido, e está sujeita às condições iniciais x(0) = a e x'(0) = b representando, respectivamente, a medida do deslocamento inicial e a velocidade inicial.

Use este conhecimento para dar uma interpretação física do problema de Cauchy x'' + 16x = 0 x(0) = 9 x'(0) = 0

e resolva-o

Figura 9 - Problema mola-massa sem amortecimento

Retirando os dados do problema temos que:

$$\begin{cases} x'' + 16x = 0 \\ t \in [0,4] \\ \{x(0) = 9 \\ x'(0) = 0 \end{cases}$$

Voltando a fazer os passos que fizemos no exercicio anterior obtemos estes resultados,

$$x'' + 16x = 0$$

$$x'' = -16x$$

$$\begin{cases} u = x \\ v = x' \end{cases} (=)$$

$$\begin{cases} u' = v \\ v' = -16x \end{cases}$$

Com estes dados obtemos o seguinte sistema para a resolução do exercício:

$$\begin{cases} u' = v \\ v' = -16u \\ t \in [0,4] \\ \{u(0) = 9 \\ v(0) = 0 \end{cases}$$

Por fim, usando a *App* podemos verificar os resultados que nos dão.

Figura 10 - Resolução Problema mola-massa sem amortecimento App

8.7696

4.3 Problema sistemas mecânicos mola-massa com amortecimento

8.5407

0 2265

0.0024

0.0024

2.9182e-06

c) Um peso de 6.4 lb provoca, numa mola, um alongamento de 1.28 ft. O sistema está sujeito à acção duma força amortecedora, numericamente igual ao dobro da sua velocidade instantânea. Determine a equação do movimento do peso, supondo que ele parte da posição de equilíbrio com uma velocidade dirigida para cima de 4 ft/s.

Resolução:

Sabe-se, pela lei de Hooke, que W=ks

No caso em estudo
$$k=\frac{6.4}{1.28}\Leftrightarrow k=5$$
 lb/ft . Como $W=mg$, tem-se $m=\frac{6.4}{32}\Leftrightarrow m=0.2$

A equação que descreve o movimento livre amortecido é

$$m\frac{d^2x}{dt^2} = -Kx - b\frac{dx}{dt}$$

Executar

Reset

onde b é uma constante positiva e o sinal "-" indica que as forças amortecedoras actuam na direcção oposta ao movimento.

Então a equação diferencial de movimento de peco é 0.2x'' = -5x - 2x' $\Leftrightarrow x'' + 10x' + 25x = 0$ com x(0) = 0 e x'(0) = -4

Figura 11- Problema mola-massa com amortecimento App

Como fizemos no exercicio anterior voltamos a retirar os dados do problema. Temos que:

$$y'' + 10y' + 25y = 0$$

$$y(0) = 0$$

$$y'(0) = -4$$

Com estes dados obtemos o seguinte sistema para a resolução do exercício:

$$\begin{cases} u' = v \\ v' = -10v - 25u \\ t \in [0,2] \\ u(0) = 0 \\ v(0) = -4 \end{cases}$$

Por fim, usando a App podemos verificar os resultados que nos dão.

Figura 12- Resolução Problema mola-massa com amortecimento App

5. Conclusão

Concluímos que os métodos numéricos desempenham um papel crucial na resolução de sistemas de equações diferenciais, especialmente em problemas complexos do mundo real. A implementação prática destes métodos permitiu observar a variação dos erros associados a cada abordagem.

Este estudo evidenciou que, adaptando métodos já conhecidos para resolver problemas de valor inicial, é possível solucionar equações diferenciais de 2º grau com eficácia. Além disso, durante o desenvolvimento deste trabalho, aprimoramos habilidades essenciais, incluindo comunicação, trabalho em equipe, pesquisa, programação em MATLAB e desenvolvimento de aplicações. Estas competências são fundamentais para a aplicação prática dos métodos numéricos em diversas áreas da ciência e engenharia, demonstrando a relevância e aplicabilidade dos conhecimentos adquiridos.

6. Bibliografia

- Disciplina Moodle https://moodle.isec.pt/moodle/course/view.php?id=20386
- ➤ ECT/UFRN https://cn.ect.ufrn.br/index.php?r=conteudo%2Fedo-heun
- Math Tecnico https://www.math.tecnico.ulisboa.pt/~calves/cursos/Eqdiford.htm
- Wikipédia https://pt.wikipedia.org/wiki/Sistema de equa%C3%A7%C3%B5es difer enciais

6. Autoavaliação e heteroavaliação

Como parte desta atividade, realizamos uma análise crítica do nosso desempenho e aprendizado, e com isto consideramos que o nosso trabalho deverá ser autoavaliado em 4.