

# The Introduction To Artificial Intelligence

Yuni Zeng yunizeng@zstu.edu.cn 2022-2023-1

# The Introduction to Artificial Intelligence

- Part I Brief Introduction to AI & Different AI tribes
- Part II Knowledge Representation & Reasoning
- Part III AI GAMES and Searching
- Part IV Model Evaluation and Selection
- Part V Machine Learning

#### Machine Learning

Supervised learning

Unsupervised learning

Reinforcement learning

■ What is regression?

Regression is to relate input variables to the output variable, to either predict outputs for new inputs and/or to interpret the effect of the input on the output.



Height is correlated with weight.

# Supervised learning

- Linear Regression
- Logistic Regression
- Classification
  - Distance-based algorithms
  - Linear classifiers
  - Other classifiers

•

- ☐ Linear Regression Model
  - Only **one** independent variable, x
  - Relationship between x and y is described by a linear function
  - Changes in y are assumed to be related to changes in x

#### ☐ Linear Regression Model

Linear relationships



Question: How to describe the linear relationships?



☐ Linear Regression Model



☐ Linear Regression Model



Question: How to obtain the best line?

■ The Least Squares Method

 $b_0$  and  $b_1$  are obtained by finding the values of that minimize the sum of the squared differences between  $y_i$  and  $\hat{y}_i$  for all i:

$$\min \sum (y_i - \widehat{y}_i)^2$$

$$\widehat{y}_i = b_0 + b_1 x_i$$

$$\min \sum (y_i - (b_0 + b_1 x_i))^2 \longrightarrow \text{Objective function}$$

Question: How to calculate  $b_0$  and  $b_1$ ?

derivative 
$$[\sum (y_i - (b_0 + b_1 x_i))^2] = 0$$
  $\rightarrow$  solve for  $b_0, b_1$ 

- ☐ The Least Squares Method
  - Considering the objective function:

$$J = \sum (y_i - (b_0 + b_1 x_i))^2$$

• Rewrite it in matrix form as:

$$J = ||Y - \theta^T X||_2^2$$

where 
$$Y = [y_1, \cdots, y_n], X = \begin{bmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \end{bmatrix}$$
, and  $\theta = \begin{bmatrix} b_0 \\ b_1 \end{bmatrix}$  
$$\frac{\partial J}{\partial \theta} = -2(Y - \theta^T X)X^T = 0$$
 
$$\theta^* = (XX^T)^{-1}XY^T$$

#### ■ An Example

• between temperature and ice cream sales:

| Temperature  | Sales |
|--------------|-------|
| $25^{\circ}$ | 110   |
| $27^{\circ}$ | 115   |
| $31^{\circ}$ | 155   |
| $33^{\circ}$ | 160   |
| $35^{\circ}$ | 180   |



Seems like a linear relationship

- An Example
- between temperature and ice cream sales:
- Set: y = ax + b

| Temperature  | Sales |          | i | $x$ |     |
|--------------|-------|----------|---|-----|-----|
| $25^{\circ}$ | 110   | -        |   | ı.  | y   |
| 20           | 110   | _        | 1 | 25  | 110 |
| $27^{\circ}$ | 115   | _        | 2 | 27  | 115 |
| $31^{\circ}$ | 155   | <b>←</b> | 3 | 31  | 155 |
| $33^{\circ}$ | 160   | _        | 4 | 33  | 160 |
| $35^{\circ}$ | 180   | -        | 5 | 35  | 180 |

#### ☐ An Example

- between temperature and ice cream sales:
- Set: y = ax + b

• 
$$J = \sum (f(x_i) - y_i)^2 = \sum (ax_i + b - y_i)^2$$

• 
$$J = \sum (f(x_i) - y_i)^2 = \sum (ax_i + b - y_i)^2$$
  
•  $\begin{cases} \frac{\partial}{\partial a} J = 2\sum (ax_i + b - y)x_i = 0 \\ \frac{\partial}{\partial b} J = 2\sum (ax_i + b - y) = 0 \end{cases}$ 

• 
$$\begin{cases} a \approx 7.2 \\ b \approx -73 \end{cases}$$

| i | x  | y   |
|---|----|-----|
| 1 | 25 | 110 |
| 2 | 27 | 115 |
| 3 | 31 | 155 |
| 4 | 33 | 160 |
| 5 | 35 | 180 |

- Another Example
  - A real estate agent wishes to examine the relationship between the selling price of a houses and its size (measured in square feet)
  - A random sample of 10 houses is selected
    - Dependent variable (y) = house price in \$1000s
    - Independent variable (x) = square feet



#### ■ An Example

| House Price (y) in \$1000s | Square Feet (x) |
|----------------------------|-----------------|
| 245                        | 1400            |
| 312                        | 1600            |
| 279                        | 1700            |
| 308                        | 1875            |
| 199                        | 1100            |
| 219                        | 1550            |
| 405                        | 2350            |
| 324                        | 2450            |
| 319                        | 1425            |
| 255                        | 1700            |

An Example

$$\theta^* = (XX^T)^{-1}XY^T$$



>> theta = inv(X\*X')\*X\*Y' theta = 98. 2483 0.1098 >> [epsilon, b1, b0] = regression(X, Y) epsilon =0.7621 b1 =0.1098 b0 =98. 2483



- Conclusion: Linear Regression
- Uses least squares estimation to estimate parameters
  - Finds the line that minimizes total squared error around the line:
  - Sum of Squared Error (SSE)=  $\Sigma (y_i (b_0 + b_1 x))^2$
  - Minimize the squared error function:  $\frac{\text{derivative}}{[\Sigma(y_i - (b_0 + b_1 x))^2]} = 0 \rightarrow \text{ solve for } b_0, b_1$

#### □ Thinking...

The probability of lung cancer (p)



Could model probability of lung cancer...

$$P \leftarrow b_0 + b_1 x_i$$

But why might this not be best modeled as linear?

# Supervised learning

- Linear Regression
- Logistic Regression
- Classification
  - Distance-based algorithms
  - Linear classifiers
  - Other classifiers

•

- Logistic Regression Model
- In medical research, it is often necessary to analyze which factors are related to the outcome of a certain outcome.
- How do we find out which factors have a significant impact on the outcome?
- Logistic regression analysis can solve these problems better.

Linear regression is written as:

$$y = b_0 + b_1 X$$
  $-\infty \le y \le +\infty$ 

- If we define y as disease or normal, it can not be modeled by the above equation.
- How about apply the probability to represent it?

$$p \leftarrow b_0 + b_1 X$$

■ Logistic Regression Model

Think about the probability...

probability of disease: p

 $0 \le p \le 1$ 

probability of no-disease: 1-p

 $0 \le p \le 1$ 

odds:  $\frac{p}{1-p}$ 

 $0 \le \frac{p}{1-p} < +\infty$ 

 $\ln(\frac{p}{1-p})$ 

 $-\infty < \ln(\frac{p}{1-p}) < +\infty$ 

#### ■ Logistic Regression Model

Define logistic model as

$$\ln\frac{p}{1-p} = b_0 + b_1 X$$

We obtained that,

$$p = \frac{1}{1 + e^{-(b_0 + b_1 X)}}$$

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}}$$

Therefore,

$$P(class = 1|x; \theta) = h_{\theta}(X)$$

$$P(class = 0|x; \theta) = 1 - h_{\theta}(X)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$



The output of sigmoid function could be used to indicate the probability.

Logistic Regression Model

$$P(class = 1|x; \theta) = h_{\theta}(X)$$

$$P(class = 0|x; \theta) = 1 - h_{\theta}(X)$$

$$P(class = y|x; \theta) = h_{\theta}(X)^{y} (1 - h_{\theta}(X))^{1-y}$$

Considering all the given data (training set):

$$X = [x_1, \cdots, x_n], \qquad Y = [y_1, \cdots, y_n],$$

$$L(\theta) = \prod_{i=1}^{n} h_{\theta}(x_{i})^{y_{i}} (1 - h_{\theta}(x_{i}))^{1 - y_{i}}$$

The cost function : 
$$J = -\frac{1}{n} \log (L(\theta))$$

#### Conclusion

- Logistic regression
- Uses sigmoid and log function and to estimate the parameters
- According to the Maximum Likelihood Estimate, construct the loss function:

$$J = -\frac{1}{m} \log \left( L(\theta) \right)$$

where,

$$L(\theta) = \prod_{i=1}^{n} h_{\theta}(x_i)^{y_i} \left(1 - h_{\theta}(x_i)\right)^{1 - y_i}$$

• Minimize the cost:

$$\frac{\partial J}{\partial \theta} = 0$$
 solve for  $\theta$  HOW?

Try to solve it by yourself<sub>26</sub>

# Supervised learning

- Linear Regression
- Logistic Regression
- Classification
  - Distance-based algorithms
  - Linear classifiers
  - Other classifiers

•

Multi-class classification assigns test samples to a certain class.







#### Training data:

$$X = \left\{ x^{(1)}, x^{(2)}, \dots, x^{(N)} \right\}$$

and training labels:

$$L = \{l^{(1)}, l^{(2)}, \dots, l^{(N)}\}$$

*N*: the number of training data

■ Nearest neighbor



How to decide which is the nearest one?

The distance  $d(\mathbf{x}, \mathbf{y})$  between two points  $\mathbf{x} \in \mathbb{R}^n$  and  $\mathbf{y} \in \mathbb{R}^n$ can for example be measured by the Euclidean distance.

$$d(x^{(1)}, x^{(2)}) = \sqrt{\sum_{i=1}^{n} (x_i^{(1)} - x_i^{(2)})^2}$$

#### ■ Nearest neighbor



How to decide which is the nearest

$$d^{j}(x^{(y)}, y) = \sqrt{\sum_{i=1}^{n} (x_{i}^{(j)} - y)^{2}}$$

Calculate all the distances from the training data to the test data y, and we obtain:

$$D = [d^{(1)}, d^{(2)}, ..., d^{(N)}]$$

$$s = argmin_i d^{(i)}$$

$$label(y) = label(x^{(s)}) = \blacksquare$$

■ Nearest neighbor



 $\Box$   $\epsilon$ -ball Nearest neighbor



Select a value  $\epsilon$ , then draw a ball in R<sup>n</sup> with y as the center and  $\epsilon$  as the radius.

The label of y is decided by majority labels of points in this ball.

In this ball:

**▲**: 3

: 1

belongs to

■ K Nearest neighbor



Select a value *k*, then find y's k nearest neighbor.

The label of y is decided by majority labels of y's k neighbors.

Let k be 5,

**▲**: 5

: 1

belongs to



■ K Nearest neighbor



#### Question:

How to decide k? Which algorithm achieve better performance?

- **\( \)**: 5
- : 1
- belongs to

#### Distance Metrics

Euclidean distance

• 
$$d_e(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

• Sum of squared distance

• 
$$d_q(x, y) = \sum_{i=1}^n (x_i - y_i)^2$$

- Manhattan distance
- $d_m(x,y) = \sum_{i=1}^n |x_i y_i|$
- Chebyshev distance
- $d_c(x, y) \max_{i=1,\dots,n} |x_i y_i|$



■ Nearest neighbor classifier

#### Problem:

- Need to determine value of parameter K
- Distance based learning is not clear which type of distance to use and which attribute to use to produce the best results.
- Computation cost is quite high because we need to compute distance of each query instance to all training samples.

#### Example

• Each image is represented by a vector of dimension 784.

The matrix indicates the pairwise distances.

|    | 7      | 2      | 1      | Ø      | 4      | 7      | ч      | ٩      | 5      | 9      |
|----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 7  | 0      | 2.8735 | 2.1766 | 2.6559 | 2.2201 | 2.2500 | 2.0893 | 2.4795 | 2.8443 | 2.1202 |
| 2  | 2.8735 | 0      | 2.5055 | 2.8681 | 2.9475 | 2.6062 | 2.8493 | 2.8330 | 2.9434 | 3.1619 |
| 7  | 2.1766 | 2.5055 | 0      | 2.9024 | 2.3556 | 0.7858 | 2.3561 | 2.2060 | 2.5274 | 2.4331 |
| 0  | 2.6559 | 2.8681 | 2.9024 | 0      | 2.7428 | 2.9531 | 3.0539 | 2.8362 | 2.8488 | 2.6425 |
| 27 | 2.2201 | 2.9475 | 2.3556 | 2.7428 | 0      | 2.5284 | 2.1733 | 2.4262 | 2.3432 | 2.5895 |
| 7  | 2.2500 | 2.6062 | 0.7858 | 2.9531 | 2.5284 | 0      | 2.4679 | 2.2906 | 2.5549 | 2.3900 |
| 7  | 2.0893 | 2.8493 | 2.3561 | 3.0539 | 2.1733 | 2.4679 | 0      | 2.5580 | 2.7456 | 2.3759 |
| ~  | 2.4795 | 2.8330 | 2.2060 | 2.8362 | 2.4262 | 2.2906 | 2.5580 | 0      | 2.8885 | 2.5823 |
| 5  | 2.8443 | 2.9434 | 2.5274 | 2.8488 | 2.3432 | 2.5549 | 2.7456 | 2.8885 | 0      | 2.9773 |
| 2  | 2.1202 | 3.1619 | 2.4331 | 2.6425 | 2.5895 | 2.3900 | 2.3759 | 2.5823 | 2.9773 | 0      |

The distance between the data is inconsistent with similarity of the content of the image.

■ Nearest subspace classifier

#### What is subspace?

Let *K* be a field (such as the real numbers), V be a vector space over K, and let W be a subset of V. Then W is a **subspace** if: 1. The zero vector,  $\mathbf{0}$ , is in W. 2. If **u** and **v** are elements of W, then the sum  $\mathbf{u} + \mathbf{v}$  is an element of W. 3. If **u** is an element of W and c is a scalar from K, then the scalar product  $c\mathbf{u}$  is an element of W.



■ Nearest subspace classifier

Assume that data in  $\mathbb{R}^n$  which belong to the same class lie on the same subspace of  $\mathbb{R}^n$ 

$$X \in \mathbb{R}^n$$



■ Nearest subspace classifier

Assume that data in  $\mathbb{R}^n$  which belong to the same class lie on the same subspace of  $\mathbb{R}^n$ 



■ Nearest subspace classifier

Assume that data points in each class lie in the same subspace, nearest subspace classifier assign the given data to the class whose related subspace is nearest.



#### ■ Nearest subspace classifier

Assume that data in  $\mathbb{R}^n$  which belong to the same class lie on the same subspace of  $\mathbb{R}^n$ 

How to calculate the distance between a point and a certain subspace?



The test sample  $y \in R^n$  can be represented by the give data  $X \in R^m$ , which is a subspace of  $R^n$ . The distance between y and the subspace  $R^m$  can be calculated as the reconstruction error:

$$d_{NS} = \|y - Xa\|_2$$

where a is the coefficient of representing y by X linearly.

■ Nearest subspace classifier

Therefore, the algorithm of nearest subspace classifier is described as:

1. Calculate the distances from *y* to each subspace composed by data points that belong to different class.

$$d_{NS}(i) = \|y - X_i a_i\|_2$$

2. Find the smallest distance, and assign y to the related class.

$$classify(y) = argmin_i d_{NS}(i)$$



#### □ Other distance based algorithm

Some other distance based methods use different similarity measurement.



• e.g. Nearest convex hull classifier