Uniwersytet Ekonomiczny w Poznaniu Instytut Informatyki i Ekonomii Ilościowej Katedra Statystyki

Język macierzowy w R

Materiały dydaktyczne dr hab. Marcin Szymkowiak, prof. UEP

Spis treści

1.	Zadania	2
2.	Lista funkcji operujących na macierzach	-

1. Zadania

Zadanie 1. Zadeklaruj w programie R następujące macierze:

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 3 & -2 & 4 & 5 \\ 2 & 6 & 5 & -3 \\ 0 & 1 & 5 & -4 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 & 6 \\ 4 & 0 \\ 2 & -1 \\ 1 & 1 \end{pmatrix}.$$

- 1. Oblicz wyznacznik macierzy A.
- 2. Znajdź iloczyn $\mathbf{A} \cdot \mathbf{B}$.
- 3. Znajdź macierz transponowaną \mathbf{B}^T .
- 4. Znajdź macierz odwrotną A^{-1} ,
- 5. Znajdź A^3 .

Zadanie 2. Zadeklaruj w programie R następujące macierze:

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & -2 \\ -3 & 2 & 1 \\ -2 & 6 & 3 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 & -2 \\ 0 & 2 & -1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

- 1. Oblicz wyznaczniki macierzy A i C.
- 2. Znajdź iloczyn $\mathbf{A}\mathbf{B}^T$.
- 3. Znajdź macierz transponowaną \mathbf{C}^T .
- 4. Znajdź macierz odwrotną \mathbf{C}^{-1} .
- 5. Znajdź $\mathbf{A}^{-1}\mathbf{B}^T\mathbf{C}^2$.

Zadanie 3. Dana jest macierz A:

$$\mathbf{A} = \left(\begin{array}{cc} 2 & 3 \\ 1 & 4 \end{array}\right).$$

Obliczyć $\mathbf{A}^2-6\mathbf{A}+4\mathbf{I},$ gdzie **I** jest macierzą jednostkową postaci:

$$\mathbf{I} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).$$

Zadanie 4. Oblicz $\mathbf{A} + \mathbf{B}, \mathbf{A} - \mathbf{B}, 2\mathbf{A} + 3\mathbf{B}, \mathbf{A}^T - 4\mathbf{B}^T, (\mathbf{A} + \mathbf{B})^T \mathbf{C}$, jeżeli:

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 5 \\ 2 & 1 & -4 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -2 & -1 & 2 \\ 3 & 1 & 4 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 0 & -3 & 9 \\ 3 & 18 & -6 \end{pmatrix}.$$

Zadanie 5. W programie R na 3 różne sposoby zadeklaruj macierz postaci:

2

Zadanie 6. W programie R na 3 różne sposoby zadeklaruj macierz postaci:

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right).$$

Korzystając z funkcji wbudowanych w R:

- 1. Wyznacz liczbę wierszy i kolumn macierzy ${\bf A}$.
- 2. Wyznacz sumę wszystkich elementów macierzy A.
- 3. Wyznacz sumy wszystkich elementów w poszczególnych kolumnach macierzy ${\bf A}.$
- 4. Wyznacz sumy wszystkich elementów w poszczególnych wierszach macierzy **A**.
- 5. Wyznacz średnie wszystkich elementów w poszczególnych kolumnach macierzy ${\bf A}.$
- 6. Wyznacz średnie wszystkich elementów w poszczególnych wierszach macierzy ${\bf A}.$
- 7. Oblicz $A_{11} + A_{32}$.
- 8. Wyświetl zawartość drugiej kolumny.
- 9. Wyświetl zawartość pierwszego wiersza.

Zadanie 7. W programie R na 3 różne sposoby zadeklaruj macierz jednostkową postaci:

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right).$$

Zadanie 8. W celu zbadania zależności między wydajnością pracy (w sztukach na godzinę) i stażem pracy pracowników (w latach) pewnego zakładu przemysłowego wylosowano próbę 10 pracowników i otrzymano dla nich następujące dane:

Staż pracy - x	1	2	3	4	5	6	7	8	9	10
Wydajność pracy - y	10	15	13	22	23	20	18	25	27	22

Źródło: Dane umowne

- 1. Sporządź wykres punktowy i na tej podstawie oceń czy można przyjąć, że zależność między wydajnością pracy a stażem pracy jest liniowa.
- 2. Oblicz i zinterpretuj współczynnik korelacji liniowej Pearsona.
- 3. Oszacuj parametry liniowej funkcji regresji wydajności pracy względem stażu pracy pracownika.

Zadanie 9. Mając informacje o tygodniowych płacach (w zł) i stażu pracy 10 pracowników (w latach) zatrudnionych w pewnym zakładzie i bazując na języku macierzowym w programie R:

Staż pracy - x	1	5	3	3	7	4	10	10	8	6
Płace - y	300	500	405	400	505	500	605	600	600	500

Źródło: Dane umowne

- 1. Sporządź wykres punktowy i na tej podstawie oceń czy można przyjąć, że zależność między płacami a stażem pracy jest liniowa.
- 2. Ustal siłę i kierunek związku korelacyjnego między tymi zmiennymi.
- 3. Oszacuj parametry liniowej funkcji regresji tygodniowej płacy względem stażu pracy pracownika.

Zadanie 10. Na podstawie informacji o wartościach trzech zmiennych przedstawionych w tabeli:

Lp.	Spożycie dobra y [kg]	Cena dobra x_1 [zł]	Cena substytutu x_2 [zł]
1	4	8	4
2	12	8	4
3	16	12	8
4	20	16	12
5	28	16	12

Źródło: Dane umowne

- 1. Wyznacz macierz współczynników korelacji liniowej Pearsona pomiędzy wszystkimi zmiennymi.
- 2. Oszacuj parametry liniowej funkcji regresji spożycia na pewne dobro względem jego ceny i ceny dobra substytucyjnego.

2. Lista funkcji operujących na macierzach

$sum(\mathbf{A})$	Funkcja zwracająca sumę wszystkich elementów macierzy ${\bf A}.$
$\mathrm{t}(\mathbf{A})$	Transpozycja macierzy A .
$\det(\mathbf{A})$	Wyznacznik macierzy A.
$solve(\mathbf{A})$	Macierz odwrotna do macierzy A.
$\operatorname{ginv}(\mathbf{A})$	Uogólniona macierz odwrotna do macierzy ${\bf A}$ w pakiecie $MASS$.
+ (-)	Operator dodawania (odejmowania) macierzy.
%*%	Operator mnożenia macierzy.
*	Operator mnożenia macierzy po elementach.
$\operatorname{diag}(n)$	Funkcja tworząca macierz jednostkową rzędu $n.$
matrix(k, m, n)	Funkcja tworząca macierz o wymiarach $m \times n$, której wszystkimi elementami są liczby k .
$nrow(\mathbf{A})$	Funkcja zwracająca liczbę wierszy macierzy A .
$\operatorname{ncol}(\mathbf{A})$	Funkcja zwracająca liczbę kolumn macierzy A .
$\operatorname{diag}(c)$	Funkcja tworząca macierz ${\bf A}$, której elementami diagonalnymi są elementy wektora c.
$\operatorname{colSums}(\mathbf{A})$	Funkcja zwracająca sumy elementów w poszczególnych kolumnach macierzy ${\bf A}.$
$rowSums(\mathbf{A})$	Funkcja zwracająca sumy elementów w poszczególnych wierszach macierzy ${\bf A}.$
$\operatorname{colMeans}(\mathbf{A})$	Funkcja zwracająca średnie elementów w poszczególnych kolumnach macierzy ${\bf A}.$
$\operatorname{rowMeans}(\mathbf{A})$	Funkcja zwracająca średnie elementów w poszczególnych wierszach macierzy ${\bf A}.$
$\operatorname{colMaxs}(\mathbf{A}), \operatorname{colMins}(\mathbf{A})$	Funkcja zwracająca odpowiednio elementy maksymalne (minimalne) w poszczególnych kolumnach macierzy ${\bf A}$ z pakietu $matrixStats$.
$rowMaxs(\mathbf{A}), rowMins(\mathbf{A})$	Funkcja zwracająca odpowiednio elementy maksymalne (minimalne) w poszczególnych wierszach macierzy ${\bf A}$.
$\operatorname{rbind}(\mathbf{A},\mathbf{B})$	Funkcja służąca do konkatenacji poziomej macierzy A i B . Zwraca nową macierz powstałą z poziomego połączenia macierzy A i B .
$\mathrm{cbind}(\mathbf{A},\mathbf{B})$	Funkcja służąca do konkatenacji pionowej macierzy ${\bf A}$ i ${\bf B}$. Zwraca nową macierz powstałą z pionowego połączenia macierzy ${\bf A}$ i ${\bf B}$.
$eigen(\mathbf{A})$	Funkcja zwracająca wartości własne macierzy A .
$\mathrm{tr}(\mathbf{A})$	Funkcja z pakietu $psych$ zwracająca ślad macierzy ${\bf A}.$
$\mathbf{A}[i,j]$	Odwołanie się do elementu leżącego na przecięciu i —tego wiersza i j —kolumny macierzy ${\bf A}.$

Źródło: Opracowanie własne