Cloud Workload Analysis Study

D. Arroyo, M. Steinder, and A. Tantawi IBM TJ Watson Research Center

June 2011

Outline

- Goal of study
- Description of data
- Analysis methodology
- Workload characterization
- Over-commitment analysis
- Conclusions

Goal of study

- Help make recommendations in managing cloud provisioning so as to maximize resource usage while providing good quality-of-service,
- based on realistic workload,
- characterized through the analysis of vast amount of collected data,
- regarding cloud service request distributions, and resource usage patterns.

Description of data

- Source of data: TDW CCMP
- Number of months: 13
 - (May 25, 2010 to June 5, 2011)
- Number of data centers: 7
- Number of PMs: 463
 - Datacenters range from 138 hosts in Raleigh to 15 hosts in Japan
- Types of VM requests: 9
- Number of VMs: 28,137

PM Counts

Datacenter	DB Analysis Count	Actual Count
All	463	646
Canada	111	141
Germany	113	114
Japan	15	81
Singapore	17	17
US-Boulder	69	107
US-Raleigh	138	138

Database Source

Table 1: K43_Virtual_Machine

CPU Usage records

	_	Timestamp	Node	UUID	VM_Name	CPU_Count	CPU_Time	Memory_Max
_ (0 min						
298		15 min						
		30 min						
36,998,								

Table 2: K43_Volume

Disk Usage records

	Timestamp	Node	Volume_Name	Path	Capacity	Allocation
066,258 rows	0 min					
	15 min					
	30 min					
48,(
-						

Identifying VM Types

9 VM types

Copper32/64, Bronze32/64, Silver32/64, Gold32/64, Platinum64

From CPU table

- Using CPU_Count and Memory_Max
- ➤ Gold32, Silver64, Gold64, Platinum64

From CPU table and storage table

- CPU = 1, Memory = 2G, with storage Capacity from Storage table
 Copper32, Bronze32
- CPU = 2, Memory = 4G, with storage Capacity from Storage table
 Silver32, Copper64, Bronze64

Defining Storage Capacities

- Paths considered
 - Image files
 - e.g. /var/lib/libvirt/images/vhost1390/vhost1390.img;
 /var/lib/libvirt/images/vhost0593/vhost0593_DataDisk4.img
- Paths ignored
 - -ISO
 - Floppy
 - Swap
 - UserDisk
 - e.g. /storage/prod/persistent/userdisks/iU4roWdBRoiWHCEFT@1I7

Data Inconsistencies

- Scrubbing details
 - UUID same PM different
- Gaps in the data

gap size	numRecords	percentage		
g > 15 min	71,069	0.2294 %		
g > 1 hr	2,513	0.0081 %		
1 hr < g < 1 day	1,041	0.0034 %		
1 day < g < 30 days	1,362	0.0044 %		
g > 30 days	110	0.0004 %		

Limitations

- Lack of memory usage records
- No distinction between internal and customer VMs
- No correction for failed/rejected requests
- 20% of VMs can not be classified due to missing storage data (Analysis includes 80% of all VMs)
- Swap file growth ignored

Analysis methodology

- Retrieve data via DB2 queries to database of logs
- Clean anomalies of records from database
- Develop workload characterization models based on visual observation of data
- Analyze data and estimate model parameters
- Parameterize models to drive cloud simulator and conduct further performance analysis

Workload characterization

- For each VM type
 - Request inter-arrival time distribution
 - VM lifetime distribution
 - Resource usage pattern
 - CPU
 - Storage
- VM types Mix
- Per Datacenter Analysis

Arrival and Lifetime Analysis

Characterization of VM inter-arrival and lifetime distributions

- No dependence found in subsequent values
- Exponential distribution assumption is naïve
 - Underestimates VM request rejections (by about 10%)
 - Overestimates CPU usage (by about 10%)
- Gamma distribution is a very good fit
 - Large variation results in a small shape parameter (about 0.2)

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Interarrival Time (hrs)									
Average	0.66	6.41	16.69	6.37	0.99	7.05	2.64	6.39	9.53
StdDev	13.31	38.21	115.76	37.37	15.48	42.73	23.68	39.00	47.06
LifeTime (days)									
Average	10.34	36.49	23.21	14.57	12.45	37.67	14.29	22.67	12.75
StdDev	26.65	82.59	39.61	36.96	29.01	72.83	32.10	42.43	30.56
Number VMs	10,749	1,319	523	1,352	7,507	1,207	3,204	1,354	922

Modeling VM request inter-arrival times

(days) 6.39 avg stdev 39.02 6.11 COV median 0.00 25.65 skew 0.00 min 1260.00 max 1,352 count

Modeling VM life times

CPU Usage Analysis

Modeling VM CPU usage

CPU usage model

Model parameters:

For each state

- residence time period (avg, stdev)
- utilization (avg, stdev)

Steady state probabilities

Gold 64

CPU usage analysis

All Datacenters

CPU usage analysis

All Datacenters

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.930	0.939	0.936	0.929	0.918	0.961	0.881	0.925	0.887
Period (hrs)									
Average	31.247	52.595	32.194	31.993	33.963	41.046	32.707	52.127	58.028
StdDev	157.021	376.646	166.590	114.848	147.975	262.384	166.067	282.032	302.205
Utilization (%)									
Average	0.289	0.240	0.302	0.319	0.285	0.263	0.219	0.175	0.164
StdDev	0.403	0.405	0.335	0.386	0.386	0.391	0.322	0.275	0.282
Mid usago									
Mid-usage (2% - 95%)									
Probability	0.060	0.057	0.060	0.064	0.061	0.036	0.064	0.060	0.098
Period (hrs)	0.000	0.037	0.000	0.004	0.001	0.030	0.004	0.000	0.030
Average	1.962	2.858	2.180	2.141	2.224	1.592	2.048	3.019	4.988
StdDev	30.963	52.107	25.039	29.469	37.615	22.050	32.231	30.002	42.858
Utilization(%)	00.000	0	_0.000		0.10.0		5	55.552	
Average	6.809	9.147	14.827	14.881	12.258	11.714	22.099	20.901	26.629
StdDev	10.193	14.413	19.413	15.913	17.575	16.915	25.144	24.015	27.693
High-usage									
(95% - 100%)									
Probability	0.010	0.004	0.004	0.008	0.022	0.003	0.055	0.015	0.016
Period (hrs)									
Average	30.386	3.585	5.338	201.676	104.374	24.987	9.557	5.309	3.780
StdDev	149.611	22.321	48.780	250.091	359.136	83.121	29.780	27.087	13.988
Utilization(%)	00.000	00.704	00.040	00.004	00.074	00.000	00.000	00 500	00.000
Average	99.966 0.290	99.784 0.656	99.810 0.830	99.884 0.237	99.874 0.489	99.822 0.472	99.886 0.460	99.503 1.079	98.833 1.066
StdDev	0.290	0.000	0.030	0.237	0.409	0.472	0.460	1.079	1.000
numCores	1	1	2	4	2	2	4	8	16
					,				
numVmProcessed	10749	1318	522	1352	7507	1207	3204	1354	922

CPU Usage Analysis

(per Datacenter)

CPU Usage per Datacenter

 No significant difference observed when statistical samples are sufficient.

Storage Usage Analysis

Modeling VM Storage Usage

Storage usage analysis

All Datacenters

Storage usage analysis

All Datacenters

	C32	B32	S32	G32	C64	B64	S64	G64	P64
initAlloc									
(GB)									
Average	8.0	10.6	12.7	9.7	9.4	29.4	19.0	51.3	20.9
StdDev	16.4	30.6	10.6	9.7	17.1	66.1	46.7	128.1	77.8
growth Pata									
growthRate (GB / 15 min)									
Average	0.02	0.01	0.03	0.03	0.04	0.08	0.12	0.37	0.27
StdDev	3.52	2.77	2.10	3.63	2.78	26.42	68.90	19.77	12.01
diskUtilization									
(%)									
Average	14.73	6.27	5.41	10.74	19.47	7.84	9.19	17.44	6.82
StdDev	11.71	5.67	7.25	12.41	16.08	16.12	17.19	27.72	9.58
Min	0.09	0.37	0.31	0.20	0.19	0.25	0.16	0.23	0.12
Max	99.80	95.77	97.15	97.42	99.42	99.62	99.31	100.00	97.82
storageSize (GB)	60	175	350	350	60	850	1,024	1,024	2,048
StorageSize (GD)	00	1/5	350	330	00	000	1,024	1,024	2,040
numVmProcessed	10715	1317	520	1100	7475	1205	2847	925	809

Storage Usage Analysis

(per Datacenter)

Storage Usage per Datacenter

- Larger VMs tend to use more disk.
- Growth rate variance is within 1G.

Over-commitment Analysis

- Simulation description
- Simulation results

Overcommitment

(Simulation)

Simulation Description

- PMs (150)
 - 16 Cores Capacity
 - 64G Memory Capacity
 - 4.2T Storage Capacity
- Simulation Time
 - 400 Days
 - 240 Warmup & Shutdown
 - 160 Reporting

Simulation Description

Simulation Runs

Over-commitment values 1.0, 1.2, 1.4. 1.6, 1.8 2.0.

Evaluations

 Frequency (Number initial over loads on a PM/Total VM deploys)

Overload Frequency

Overload Frequency

Overcommitment

(Analysis)

Impact of CPU over commitment

 Iow
 mid
 high

 1/lambda
 39.0
 2.4
 56.9

 mu
 0.0027
 0.123
 0.9813

 sigma
 0.004
 0.16
 0.004

n	avgDemand	stDevDemand	saturationProb
1	0.0274	0.1294	0.0000
2	0.0543	0.1818	0.0012
3	0.0820	0.2249	0.0037
4	0.1063	0.2523	0.0064
5	0.1313	0.2833	0.0114
6	0.1550	0.3031	0.0155
7	0.1866	0.3359	0.0230
8	0.2114	0.3588	0.0300
9	0.2421	0.3852	0.0392
10	0.2652	0.4019	0.0467

Predicting CPU over commitment

Conclusions

- Able to derive analytic models for an analysis
- Need thorough analysis of data
 - Relying on average measures may be misleading
 - Does not capture significant variations
 - Leads to underestimation of contention
- Consistencies among Datacenters
- Over-commitment levels up to 2 has no significant impact
 - CPU not a bottleneck
 - Slight and rare storage overload
- Unable to study memory due to lack of memory usage reporting

Recommendations

- A staged approach to over-commitment deployment
 - In Stage 1
 - Enable MOM in the production environment for a period of 1-2 months
 - Repeat the study including memory measurements with MOM enabled
 - Based on the study, determine a safe over-commitment factor and validate overload resolution mechanisms
 - Effect over-commitment with a configurable over-commitment factor
 - Periodically repeat the analysis to verify that the chosen overcommitment factor is still a valid one
 - Accelerated plan for Stage 2
 - Include resource-usage-aware VM placement
- Reconsider storage options since overload is infrequent

Backup

VM Counts

Datacenter	C32	B32	S32	G32	C64	B64	S64	G64	P64
All	1074 9	1319	523	1352	7507	1207	3204	1354	922
Canada	1269	52	72	180	828	201	372	199	251
Germany	3550	214	115	406	2605	382	456	330	149
Japan	445	12	15	7	207	8	41	2	15
Singapore	68	10	2	5	56	12	13	6	8
US-Boulder	1518	99	100	168	1202	100	733	144	90
US-Raleigh	3899	932	219	586	2609	504	1589	673	409

VM Mix

Datacenter	C32	B32	S32	G32	C64	B64	S64	G64	P64
All	38.2%	4.7%	1.9%	4.8%	26.7%	4.3%	11.4%	4.8%	3.3%
Canada	37.1%	1.5%	2.1%	5.3%	24.2%	5.9%	10.9%	5.8%	7.3%
Germany	43.3%	2.6%	1.4%	4.9%	31.7%	4.7%	5.6%	4.0%	1.8%
Japan	59.2%	1.6%	2.0%	0.9%	27.5%	1.1%	5.5%	0.3%	2.0%
Singapore	37.8%	5.6%	1.1%	2.8%	31.1%	6.7%	7.2%	3.3%	4.4%
US-Boulder	36.5%	2.4%	2.4%	4.0%	28.9%	2.4%	17.6%	3.5%	2.2%
US-Raleigh	34.1%	8.2%	1.9%	5.1%	22.8%	4.4%	13.9%	5.9%	3.6%

Modeling Inter-Arrival Times

Autocorrelation in inte-rarrival times

Insignificant autocorrelation, suggesting independent observations

Modeling Lifetimes

Autocorrelation in lifetimes

Insignificant autocorrelation, suggesting independent observations

Inter-Arrival and Lifetime

(Histograms)

CPU Usage Analysis

(per Datacenter)

Note: Log scale used.

CPU Usage Analysis

(Histograms)

Copper 32

Bronze 32

Silver 32

Gold 32

Copper 64

Bronze 64

Silver 64

Gold 64

Platinum64

CPU statistics

(per Datacenter)

Canada Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.940	0.897	0.884	0.893	0.959	0.965	0.928	0.889	0.644
Period (hrs)									
Average	23.775	20.947	26.319	50.056	50.441	42.633	39.637	111.729	55.742
StdDev Utilization (%)	111.004	86.176	82.416	110.759	152.819	108.113	115.546	263.205	259.547
Average	0.367	0.383	0.300	0.110	0.276	0.242	0.391	0.259	0.100
StdDev	0.402	0.424	0.393	0.212	0.334	0.308	0.440	0.366	0.239
Mid-usage									
(2% - 95%)									
Probability	0.045	0.103	0.116	0.064	0.038	0.035	0.039	0.100	0.311
Period (hrs)							4		
Average	1.198	2.249	3.412	3.225	2.086	1.493	1.708	11.357	9.709
StdDev Utilization(%)	16.831	42.673	43.104	11.660	32.434	22.358	19.841	79.673	24.727
Average	10.299	15.021	7.794	17.435	17.461	11.787	12.528	12.458	48.496
StdDev	17.606	13.196	11.116	11.766	18.094	15.116	14.228	5.463	22.851
High-usage									
(95% - 100%)									
Probability	0.014	0.000	0.000	0.043	0.003	0.000	0.033	0.011	0.045
Period (hrs)	40.000	0.005	0.000	007.750	04.040	0.700	000 407	404.047	0.500
Average StdDev	19.002 103.394	0.625 0.375	0.000 0.000	697.750 67.500	81.042 116.927	3.792 7.369	390.167 200.562	104.917 142.751	2.520 2.365
Utilization(%)	103.354	0.375	0.000	67.500	110.927	7.309	200.562	142.751	2.365
Average	99.928	99.942	0.000	99.805	99.991	99.918	99.782	100.000	98.911
StdDev	0.467	0.116	0.000	0.093	0.111	0.394	0.257	0.000	1.235
numCores	1	1	2	4	2	2	4	8	16
	4000	=-	70	400		004	070	400	054
numVmProcessed	1269	52	72	180	828	201	372	199	251

Germany Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.923	0.855	0.941	0.938	0.926	0.928	0.911	0.935	0.954
Period (hrs)									
Average	29.134	16.278	18.696	51.166	29.540	18.612	25.193	28.721	92.343
StdDev	100.858	128.556	81.735	140.979	131.724	107.929	89.674	178.116	447.579
Utilization (%)		0.404	0.040	0.450			0.000	0.400	0.444
Average	0.265	0.181	0.346	0.178	0.228	0.323	0.339	0.193	0.141
StdDev	0.383	0.350	0.401	0.236	0.330	0.439	0.396	0.312	0.324
Mid-usage									
(2% - 95%)									
Probability	0.067	0.134	0.058	0.062	0.065	0.072	0.088	0.057	0.043
Period (hrs)									
Average	2.095	2.202	1.133	3.284	2.058	1.425	2.419	1.615	3.181
StdDev	34.493	43.832	18.267	19.170	29.496	27.110	42.145	7.815	7.225
Utilization(%)									
Average	4.993	7.773	5.049	8.475	15.268	11.127	16.774	20.147	17.415
StdDev	8.004	13.474	9.295	9.014	21.124	14.663	18.346	22.927	24.663
High-usage									
(95% - 100%)									
Probability	0.010	0.012	0.000	0.000	0.009	0.000	0.001	0.008	0.002
Period (hrs)									
Average	30.235	1.322	3.700	5.250	39.998	1.205	4.380	3.498	0.621
StdDev	145.115	1.214	6.528	0.000	113.183	1.641	13.579	8.267	1.120
Utilization(%)									
Average	99.979	99.169	99.972	99.983	99.806	99.702	99.611	99.425	97.862
StdDev	0.186	1.044	0.239	0.002	0.440	0.773	1.159	1.261	0.852
numCores	1	1	2	4	2	2	4	8	16
					`				
numVmProcessed	3550	214	115	406	2605	382	456	330	149

Japan Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.728	0.485	0.759	0.994	0.922	0.997	0.978	0.332	0.831
Period (hrs)					44.000	440.004			242.42=
Average	4.182	0.664	38.893	52.500	11.309	112.881	50.005	21.750	310.167
StdDev Utilization (%)	28.242	2.913	96.751	117.341	36.971	66.830	79.631	28.088	108.390
Average	0.455	1.168	0.609	0.415	0.707	0.182	0.142	0.407	0.044
StdDev	0.605	0.777	0.542	0.430	0.617	0.329	0.262	0.111	0.057
Glazor	0.000	0.777	0.0-12	0.400	0.011	0.020	0.202	0.111	0.001
Mid-usage									
(2% - 95%)									
Probability	0.256	0.515	0.241	0.006	0.078	0.003	0.022	0.668	0.037
Period (hrs)									
Average	1.467	0.878	12.523	0.310	0.964	0.325	1.115	26.306	4.100
StdDev	11.092	1.639	59.607	0.128	8.836	0.275	5.024	72.461	4.108
Utilization(%)			40 -00						
Average	4.663	2.521	13.789	5.449	4.271	5.617	3.743	4.641	92.715
StdDev	6.832	2.243	4.495	5.744	4.589	3.016	4.449	0.810	7.561
High-usage									
(95% - 100%)									
Probability	0.016	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.132
Period (hrs)	0.010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.102
Average	38.786	0.250	0.000	0.000	0.000	0.000	0.000	0.000	16.225
StdDev	134.284	0.000	0.000	0.000	0.000	0.000	0.000	0.000	26.262
Utilization(%)									
Average	99.984	95.744	0.000	0.000	0.000	0.000	0.000	0.000	99.109
StdDev	0.211	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.912
numCores	1	1	2	4	2	2	A	8	16
numcores	1		2	4	2	2	4	8	10
numVmProcessed	446	12	15	7	207	8	41	2	15

Singapore Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.954	0.996	0.981	0.986	0.979	0.984	0.960	0.999	0.997
Period (hrs)									
Average	10.232	88.812	45.321	1.250	26.531	34.896	27.325	237.125	112.107
StdDev	35.758	80.531	68.131	0.000	52.458	53.907	58.861	82.875	185.551
Utilization (%)	2 422	0.454	0.400		0.500		0.400	0.440	0.040
Average	0.402	0.151	0.132	0.207	0.508	0.692	0.466	0.442	0.019
StdDev	0.481	0.174	0.268	0.293	0.514	0.493	0.464	0.225	0.097
Mid-usage									
(2% - 95%)									
Probability	0.046	0.004	0.019	0.014	0.021	0.016	0.040	0.001	0.003
Period (hrs)									
Average	0.507	0.333	0.906	0.250	0.579	0.554	1.640	0.250	0.321
StdDev	0.633	0.212	0.838	0.000	3.142	0.707	6.152	0.000	0.113
Utilization(%)									
Average	3.295	10.019	3.495	7.808	32.526	24.696	5.760	3.017	4.094
StdDev	4.615	6.823	1.360	5.731	32.570	23.440	5.159	0.133	2.222
High-usage									
(95% - 100%)									
Probability	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Period (hrs)									
Average	0.000	0.000	0.000	0.000	0.250	0.000	0.000	0.000	0.000
StdDev	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Utilization(%)									
Average	0.000	0.000	0.000	0.000	99.222	0.000	0.000	0.000	0.000
StdDev	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
numCores	1	1	2	4	2	2	4	8	16
numVmProcessed	69	10	2	5	56	12	13	6	8

US Boulder Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.955	0.669	0.940	0.945	0.909	0.943	0.866	0.786	0.955
Period (hrs)									
Average	37.481	17.878	43.659	46.472	31.100	19.736	36.395	31.206	204.814
StdDev	111.999	72.222	113.289	149.731	96.719	46.131	153.433	103.442	560.351
Utilization (%)	0.040	0.547	0.070	0.405	0.040	0.000	0.000	0.440	0.440
Average StdDev	0.312 0.367	0.547 0.433	0.273 0.300	0.185 0.289	0.312 0.352	0.332 0.407	0.292 0.350	0.113 0.212	0.148 0.237
Slapev	0.367	0.433	0.300	0.209	0.352	0.407	0.350	0.212	0.237
Mid-usage									
(2% - 95%)									
Probability	0.040	0.331	0.059	0.055	0.058	0.056	0.112	0.177	0.042
Period (hrs)									
Average	1.462	8.468	3.608	2.548	1.980	2.037	4.745	5.727	9.883
StdDev	14.987	84.434	19.043	25.588	24.453	10.630	61.909	38.672	78.031
Utilization(%)									
Average	8.934	3.471	9.891	5.800	10.534	12.761	12.403	25.911	16.649
StdDev	11.165	2.583	15.484	5.791	13.652	17.773	16.527	25.869	16.991
High-usage									
(95% - 100%)									
Probability	0.004	0.000	0.001	0.000	0.034	0.000	0.021	0.037	0.003
Period (hrs)									
Average	7.565	0.292	0.546	0.667	80.423	0.721	51.470	2.891	14.893
StdDev	17.819	0.093	0.791	0.312	150.328	1.127	188.008	3.304	22.855
Utilization(%)									
Average	99.918	99.613	96.300	99.525	99.710	99.207	99.717	99.096	98.853
StdDev	0.522	0.455	1.744	1.258	0.651	1.367	0.408	1.425	0.872
numCores	1	1	2	4	2	2	4	8	16
					•				
numVmProcessed	1518	99	100	168	1202	100	733	144	90

US Raleigh Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Low-usage									
(0% - 2%)									
Probability	0.934	0.955	0.936	0.927	0.904	0.970	0.868	0.952	0.900
Period (hrs)									
Average	43.289	75.640	45.133	27.533	40.208	59.423	35.798	74.609	48.522
StdDev	227.921	468.479	252.896	107.785	186.510	354.313	202.371	375.289	272.173
Utilization (%)	0.075	0.000	0.004	0.205	0.000	0.047	0.442	0.470	0.470
Average StdDev	0.275 0.409	0.236 0.404	0.284 0.292	0.385 0.415	0.298 0.411	0.247 0.383	0.143 0.238	0.172 0.260	0.179 0.288
Stapev	0.409	0.404	0.292	0.415	0.411	0.303	0.236	0.260	0.200
Mid-usage									
(2% - 95%)									
Probability	0.055	0.042	0.056	0.066	0.062	0.026	0.046	0.035	0.085
Period (hrs)									
Average	2.503	2.997	2.573	1.919	2.771	1.623	1.493	2.390	3.953
StdDev	39.385	55.502	27.926	31.414	51.323	20.106	17.919	31.456	45.703
Utilization(%)									
Average	7.544	10.566	22.293	16.967	10.084	11.883	31.744	18.849	16.113
StdDev	10.025	15.803	22.974	17.324	14.995	18.152	29.995	24.468	23.654
High upogo									
High-usage									
(95% - 100%) Probability	0.011	0.004	0.008	0.007	0.034	0.004	0.086	0.013	0.015
Period (hrs)	0.011	0.004	0.000	0.007	0.034	0.004	0.000	0.013	0.015
Average	52.322	7.305	8.039	184.159	178.182	49.969	8.997	10.707	5.253
StdDev	212.306	35.887	61.313	190.409	541.269	113.825	21.008	48.876	19.972
Utilization(%)									
Average	99.973	99.963	99.942	99.926	99.932	99.827	99.898	99.707	98.803
StdDev	0.245	0.310	0.340	0.273	0.433	0.452	0.458	0.732	0.988
numCores	1	1	2	4	2	2	4	8	16
numVmProcessed	3899	932	219	586	2609	504	1589	673	409

Number of VMs

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	1269	52	72	180	828	201	372	199	251	3424
Germany	3550	214	115	406	2605	382	456	330	149	8207
Japan	446	12	15	7	207	8	41	2	15	753
Singapore	69	10	2	5	56	12	13	6	8	181
US Boulder	1518	99	100	168	1202	100	733	144	90	4154
US Raleigh	3899	932	219	586	2609	504	1589	673	409	11420
_										
	10751	1319	523	1352	7507	1207	3204	1354	922	28139

VM Type % Mix

		C32	B32	S32	G32	C64	B64	S64	G64	P64	
Ca	nada	37.1%	1.5%	2.1%	5.3%	24.2%	5.9%	10.9%	5.8%	7.3%	100%
Gerr	many	43.3%	2.6%	1.4%	4.9%	31.7%	4.7%	5.6%	4.0%	1.8%	100%
J	apan	59.2%	1.6%	2.0%	0.9%	27.5%	1.1%	5.4%	0.3%	2.0%	100%
Singa	pore	38.1%	5.5%	1.1%	2.8%	30.9%	6.6%	7.2%	3.3%	4.4%	100%
US Bo	ulder	36.5%	2.4%	2.4%	4.0%	28.9%	2.4%	17.6%	3.5%	2.2%	100%
US Ra	leigh	34.1%	8.2%	1.9%	5.1%	22.8%	4.4%	13.9%	5.9%	3.6%	100%
		38.2%	4.7%	1.9%	4.8%	26.7%	4.3%	11.4%	4.8%	3.3%	100.0%

Prob Low CPU

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	0.940	0.897	0.884	0.893	0.959	0.965	0.928	0.889	0.644	0.916
Germany	0.923	0.855	0.941	0.938	0.926	0.928	0.911	0.935	0.954	0.924
Japan	0.728	0.485	0.759	0.994	0.922	0.997	0.978	0.332	0.831	0.798
Singapore	0.954	0.996	0.981	0.986	0.979	0.984	0.960	0.999	0.997	0.971
US Boulder	0.955	0.669	0.940	0.945	0.909	0.943	0.866	0.786	0.955	0.912
US Raleigh	0.934	0.955	0.936	0.927	0.904	0.970	0.868	0.952	0.900	0.921
_										
	0.926	0.911	0.926	0.929	0.919	0.954	0.883	0.920	0.844	0.917

Avg Period Low CPU (hrs)

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	23.8	20.9	26.3	50.1	50.4	42.6	39.6	111.7	55.7	41.9
Germany	29.1	16.3	18.7	51.2	29.5	18.6	25.2	28.7	92.3	30.3
Japan	4.2	0.7	38.9	52.5	11.3	112.9	50.0	21.8	310.2	17.0
Singapore	10.2	88.8	45.3	1.3	26.5	34.9	27.3	237.1	112.1	34.6
US Boulder	37.5	17.9	43.7	46.5	31.1	19.7	36.4	31.2	204.8	38.5
US Raleigh	43.3	75.6	45.1	27.5	40.2	59.4	35.8	74.6	48.5	46.2
_										
	33.7	58.9	36.3	40.0	35.3	40.5	35.0	64.9	77.6	39.0

Avg Util Low CPU

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	0.37	0.38	0.30	0.11	0.28	0.24	0.39	0.26	0.10	0.23
Germany	0.26	0.18	0.35	0.18	0.23	0.32	0.34	0.19	0.14	0.23
Japan	0.46	1.17	0.61	0.42	0.71	0.18	0.14	0.41	0.04	0.43
Singapore	0.40	0.15	0.13	0.21	0.51	0.69	0.47	0.44	0.02	0.33
US Boulder	0.31	0.55	0.27	0.18	0.31	0.33	0.29	0.11	0.15	0.26
US Raleigh	0.27	0.24	0.28	0.39	0.30	0.25	0.14	0.17	0.18	0.22
	0.30	0.26	0.31	0.26	0.29	0.28	0.24	0.19	0.14	0.292

Note: Aggregate values obtained through a weighted average based on numVMs.

Prob Mid CPU

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	0.045	0.103	0.116	0.064	0.038	0.035	0.039	0.100	0.311	0.068
Germany	0.067	0.134	0.058	0.062	0.065	0.072	0.088	0.057	0.043	0.068
Japan	0.256	0.515	0.241	0.006	0.078	0.003	0.022	0.668	0.037	0.190
Singapore	0.046	0.004	0.019	0.014	0.021	0.016	0.040	0.001	0.003	0.029
US Boulder	0.040	0.331	0.059	0.055	0.058	0.056	0.112	0.177	0.042	0.071
US Raleigh	0.055	0.042	0.056	0.066	0.062	0.026	0.046	0.035	0.085	0.054
_										
	0.064	0.085	0.071	0.062	0.060	0.044	0.066	0.066	0.134	0.066

Avg Period Mid CPU (hrs)

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	1.2	2.2	3.4	3.2	2.1	1.5	1.7	11.4	9.7	2.9
Germany	2.1	2.2	1.1	3.3	2.1	1.4	2.4	1.6	3.2	2.1
Japan	1.5	0.9	12.5	0.3	1.0	0.3	1.1	26.3	4.1	1.6
Singapore	0.5	0.3	0.9	0.3	0.6	0.6	1.6	0.3	0.3	0.6
US Boulder	1.5	8.5	3.6	2.5	2.0	2.0	4.7	5.7	9.9	2.8
US Raleigh	2.5	3.0	2.6	1.9	2.8	1.6	1.5	2.4	4.0	2.4
	2.0	3.2	2.8	2.6	2.3	1.6	2.4	3.9	5.9	2.4

Avg Util Mid CPU

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	10.3	15.0	7.8	17.4	17.5	11.8	12.5	12.5	48.5	26.0
Germany	5.0	7.8	5.0	8.5	15.3	11.1	16.8	20.1	17.4	13.4
Japan	4.7	2.5	13.8	5.4	4.3	5.6	3.7	4.6	92.7	20.1
Singapore	3.3	10.0	3.5	7.8	32.5	24.7	5.8	3.0	4.1	12.2
US Boulder	8.9	3.5	9.9	5.8	10.5	12.8	12.4	25.9	16.6	13.0
US Raleigh	7.5	10.6	22.3	17.0	10.1	11.9	31.7	18.8	16.1	17.5
_										
	7.1	9.7	13.8	13.0	12.8	11.8	22.5	18.9	26.3	17.2

Prob High CPU

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	0.014	0.000		0.043	0.003	0.000	0.033	0.011	0.045	0.016
Germany	0.010	0.012	0.000	0.000	0.009	0.000	0.001	0.008	0.002	0.008
Japan	0.016	0.000							0.132	0.012
Singapore					0.000					0.000
US Boulder	0.004	0.000	0.001	0.000	0.034	0.000	0.021	0.037	0.003	0.017
US Raleigh	0.011	0.004	0.008	0.007	0.034	0.004	0.086	0.013	0.015	0.026
	0.010	0.004	0.003	0.009	0.021	0.002	0.052	0.014	0.022	0.017
	0.010	0.00-1						01014	0.022	0.011
	Avg Period High CPU (hrs)									
	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	19.0	0.6		697.8	81.0	3.8	390.2	104.9	2.5	112.2
Germany	30.2	1.3	3.7	5.3	40.0	1.2	4.4	3.5	0.6	26.6
Japan	38.8	0.3							16.2	23.3
Singapore					0.3					0.1
US Boulder	7.6	0.3	0.5	0.7	80.4	0.7	51.5	2.9	14.9	35.6
US Raleigh	52.3	7.3	8.0	184.2	178.2	50.0	9.0	10.7	5.3	73.0
	33.9	5.4	4.3	174.4	97.6	21.9	62.2	21.9	4.8	56.9
	33.9	3.4	4.3	174.4	97.0	21.5	02.2	21.9	4.0	30.9
			1	Avg Util	High C	PU				
	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	99.93	99.94		99.80	99.99	99.92	99.78	100.00	98.91	99.56
Germany	99.98	99.17	99.97	99.98	99.81	99.70	99.61	99.43	97.86	99.52
Japan	99.98	95.74							99.11	99.61
Singapore					99.22					99.22
US Boulder	99.92	99.61	96.30	99.52	99.71	99.21	99.72	99.10	98.85	99.47
US Raleigh	99.97	99.96	99.94	99.93	99.93	99.83	99.90	99.71	98.80	99.66
	99.32	99.01	82.24	98.99	97.10	98.10	98.12	99.03	97.83	98 98.02
	33.32	33.01	02.24	30.33	97.10	30.10	30.12	33.03	31.03	90.02

Storage Analysis

(Histograms)

Copper 32

Bronze 32

Silver 32

Gold 32

Copper 64

Bronze 64

Silver 64

Gold 64

Platinum64

Storage Analysis

(per Datacenter)

Canada Datacenter

	C32	B32	S32	G32	C64	B64	S64	P64	P64
initAlloc									
(GB)									
Average	7.2	8.6	11.8	7.0	9.4	25.1	15.7	6.5	20.9
StdDev	2.8	3.8	6.8	7.1	8.6	67.6	62.6	5.0	77.8
awayuth Data									
growthRate (GB / 15 min)									
Average	0.01	0.01	0.02	0.01	0.03	0.20	0.21	0.07	0.27
StdDev	0.57	0.61	0.89	0.70	2.08	4.38	8.12	2.70	12.01
diskUtilization									
(%)									
Average	12.94	3.94	2.97	6.98	16.45	15.12	7.65	4.18	6.82
StdDev	7.79	2.60	2.10	5.63	12.08	23.10	15.99	4.90	9.58
Min	0.38	0.99	0.58	1.06	0.26	0.26	0.16	0.12	0.12
Max	99.32	12.78	12.98	95.04	99.27	95.39	97.11	76.81	97.82
1 0: (OD)		4==	0.50	0.50		0.50	4.004	4.004	0.040
storageSize (GB)	60	175	350	350	60	850	1,024	1,024	2,048
numVmProcessed	1263	51	71	175	835	202	333	250	809
Hullivilli 10Cesseu	1203	JI	11	173	000	202	333	230	009

Germany Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
initAlloc (GB)									
Average	8.1	8.6	14.2	7.5	10.3	34.6	34.5	77.0	17.0
StdDev	14.4	4.0	19.3	5.1	19.9	86.0	51.1	182.3	32.3
growthRate (GB / 15 min)									
Average	0.02	0.02	0.01	0.04	0.08	0.17	0.15	0.74	0.64
StdDev	2.21	1.55	1.50	3.76	3.83	6.52	133.67	35.28	21.36
diskUtilization									
(%)									
Average	14.88	5.08	4.23	9.71	22.90	11.89	12.05	17.04	10.54
StdDev	12.57	3.52	6.32	15.01	18.89	21.85	15.84	25.03	13.60
Min	0.09	0.58	0.42	0.42	0.21	0.25	0.25	0.23	0.16
Max	99.16	89.23	96.32	97.42	99.36	97.48	98.91	99.71	97.82
storageSize (GB)	60	175	350	350	60	850	1,024	1,024	2,048
numVmProcessed	3536	215	115	400	2592	382	447	321	146

Japan Datacenter

C32	B32	S32	G32	C64	B64	S64	G64	P64
								10.8
4.6	3.5	5.3	5.1	4.4	85.6	8.2	11.5	15.1
0.02	0.05	0.03	0.01	0.03	0.02	0.03	0.01	0.01
1.31	2.38	0.85	0.15	1.50	0.58	5.61	0.29	0.19
14.90	3.82	3.53	3.08	18.61	5.02	3.18	1.40	2.40
		2.63			4.54			3.76
								0.28
99.28	55.45	46.55	12.97	99.40	91.48	98.45	3.50	15.90
	475	250	250	60	050	4 004	4.004	0.040
60	1/5	350	350	60	850	1,024	1,024	2,048
446	13	16	8	207	9	42	3	16
	8.4 4.6 0.02 1.31 14.90 8.27 0.48 99.28	8.4 7.0 4.6 3.5 0.02 0.05 1.31 2.38 14.90 3.82 8.27 3.28 0.48 1.12 99.28 55.45 60 175	8.4 7.0 11.5 4.6 3.5 5.3 0.02 0.05 0.03 1.31 2.38 0.85 14.90 3.82 3.53 8.27 3.28 2.63 0.48 1.12 0.82 99.28 55.45 46.55 60 175 350	8.4 7.0 11.5 9.9 4.6 3.5 5.3 5.1 0.02 0.05 0.03 0.01 1.31 2.38 0.85 0.15 14.90 3.82 3.53 3.08 8.27 3.28 2.63 3.20 0.48 1.12 0.82 0.63 99.28 55.45 46.55 12.97 60 175 350 350	8.4 7.0 11.5 9.9 10.1 4.6 3.5 5.3 5.1 4.4 0.02 0.05 0.03 0.01 0.03 1.31 2.38 0.85 0.15 1.50 14.90 3.82 3.53 3.08 18.61 8.27 3.28 2.63 3.20 11.08 0.48 1.12 0.82 0.63 0.49 99.28 55.45 46.55 12.97 99.40 60 175 350 350 60	8.4 7.0 11.5 9.9 10.1 49.3 4.6 3.5 5.3 5.1 4.4 85.6 0.02 0.05 0.03 0.01 0.03 0.02 1.31 2.38 0.85 0.15 1.50 0.58 14.90 3.82 3.53 3.08 18.61 5.02 8.27 3.28 2.63 3.20 11.08 4.54 0.48 1.12 0.82 0.63 0.49 0.83 99.28 55.45 46.55 12.97 99.40 91.48 60 175 350 350 60 850	8.4 7.0 11.5 9.9 10.1 49.3 8.3 4.6 3.5 5.3 5.1 4.4 85.6 8.2 0.02 0.05 0.03 0.01 0.03 0.02 0.03 1.31 2.38 0.85 0.15 1.50 0.58 5.61 14.90 3.82 3.53 3.08 18.61 5.02 3.18 8.27 3.28 2.63 3.20 11.08 4.54 6.24 0.48 1.12 0.82 0.63 0.49 0.83 0.51 99.28 55.45 46.55 12.97 99.40 91.48 98.45 60 175 350 350 60 850 1,024	8.4 7.0 11.5 9.9 10.1 49.3 8.3 22.3 4.6 3.5 5.3 5.1 4.4 85.6 8.2 11.5 0.02 0.05 0.03 0.01 0.03 0.02 0.03 0.01 1.31 2.38 0.85 0.15 1.50 0.58 5.61 0.29 14.90 3.82 3.53 3.08 18.61 5.02 3.18 1.40 8.27 3.28 2.63 3.20 11.08 4.54 6.24 0.14 0.48 1.12 0.82 0.63 0.49 0.83 0.51 0.91 99.28 55.45 46.55 12.97 99.40 91.48 98.45 3.50 60 175 350 350 60 850 1,024 1,024

Singapore Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
initAlloc									
(GB)									
Average	8.8	10.8	8.5	7.6	7.8	14.5	16.1	12.0	16.4
StdDev	8.6	3.7	6.3	3.5	3.2	10.7	14.5	3.4	19.8
growthRate									
(GB / 15 min)									
Average	0.01	0.01	0.05	0.00	0.06	0.02	0.09	0.04	0.07
StdDev	0.47	0.31	0.82	0.12	3.01	0.26	2.43	1.66	1.57
diskUtilization									
(%)									
Average	11.94	4.12	3.91	9.27	14.33	2.12	4.62	4.56	2.91
StdDev	4.70	1.08	0.74	3.23	6.69	1.89	3.70	7.16	3.92
Min	0.27	2.26	0.57	1.21	0.90	0.40	0.59	0.32	0.24
Max	96.32	6.49	4.11	82.16	99.30	10.00	89.23	22.73	12.92
storageSize (GB)	60	175	350	350	60	850	1,024	1,024	2,048
Storageoize (GD)	60	173	350	350	00	000	1,024	1,024	2,040
numVmProcessed	70	10	3	6	56	12	14	7	9

US Boulder Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
initAlloc									
(GB)									
Average	8.5	8.7	10.9	7.8	9.1	15.0	9.5	42.4	11.9
StdDev	28.0	3.3	5.3	4.0	7.8	10.3	15.6	95.1	15.7
amanudla Dodo									
growthRate									
(GB / 15 min)	0.04	0.01	0.02	0.03	0.04	0.37	0.09	0.62	0.26
Average StdDev	8.67	0.50	0.02	8.79	1.73	102.01	6.85	7.46	12.21
Olubev	0.07	0.00	0.00	0.73	1.70	102.01	0.00	7.40	12.21
diskUtilization									
(%)									
Average	16.23	3.92	3.66	6.68	16.66	24.56	14.27	50.26	3.96
StdDev	16.23	2.25	2.82	4.29	10.88	36.01	23.84	43.53	6.98
Min	0.38	1.20	0.48	0.42	0.26	0.32	0.18	0.36	0.16
Max	99.80	39.33	36.63	95.50	99.34	93.86	98.66	100.00	89.23
storageSize (GB)	60	175	350	350	60	850	1,024	1,024	2,048
num\/mDraggad	4544	100	00	470	4400	404	74.4	444	04
numVmProcessed	1514	100	99	170	1199	101	714	144	91

US Raleigh Datacenter

	C32	B32	S32	G32	C64	B64	S64	G64	P64
initAlloc (GB)									
Average	7.9	11.4	13.1	14.7	8.7	29.9	20.2	58.1	38.3
StdDev	15.5	36.2	6.0	14.7	19.7	52.6	51.1	108.0	122.7
growthRate (GB / 15 min)									
Average	0.01	0.01	0.04	0.03	0.02	0.02	0.10	0.08	0.24
StdDev	1.58	2.96	2.76	1.50	2.17	1.86	4.34	5.23	10.15
diskUtilization									
(%)									
Average	14.56	6.56	7.11	12.27	18.31	4.34	6.74	8.10	7.48
StdDev	10.39	5.97	8.89	12.83	15.49	4.36	15.43	9.01	9.56
Min	0.31	0.37	0.31	0.20	0.19	0.32	0.19	0.25	0.20
Max	99.41	95.77	97.15	97.02	99.42	99.62	99.31	97.04	97.24
storageSize (GB)	60	175	350	350	60	850	1,024	1,024	2,048
numVmProcessed	3891	933	220	351	2591	504	1306	281	303

Number of VMs

	C32	B32	S32	G32	C64	B64	S64	P64	P64	
Canada	1263	51	71	175	835	202	333	250	809	3989
Germany	3536	215	115	400	2592	382	447	321	146	8154
Japan	446	13	16	8	207	9	42	3	16	760
Singapore	70	10	3	6	56	12	14	7	9	187
US Boulder	1514	100	99	170	1199	101	714	144	91	4132
US Raleigh	3891	933	220	351	2591	504	1306	281	303	10380
	10720	1322	524	1110	7480	1210	2856	1006	1374	27602

VM Type % Mix

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	31.7%	1.3%	1.8%	4.4%	20.9%	5.1%	8.3%	6.3%	20.3%	100%
Germany	43.4%	2.6%	1.4%	4.9%	31.8%	4.7%	5.5%	3.9%	1.8%	100%
Japan	58.7%	1.7%	2.1%	1.1%	27.2%	1.2%	5.5%	0.4%	2.1%	100%
Singapore	37.4%	5.3%	1.6%	3.2%	29.9%	6.4%	7.5%	3.7%	4.8%	100%
US Boulder	36.6%	2.4%	2.4%	4.1%	29.0%	2.4%	17.3%	3.5%	2.2%	100%
US Raleigh	37.5%	9.0%	2.1%	3.4%	25.0%	4.9%	12.6%	2.7%	2.9%	100%
	38.8%	4.8%	1.9%	4.0%	27.1%	4.4%	10.3%	3.6%	5.0%	100.0%

Avg Initial Allocation (GB)

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	7.2	8.6	11.8	7.0	9.4	25.1	15.7	6.5	20.9	12.1
Germany	8.1	8.6	14.2	7.5	10.3	34.6	34.5	77.0	17.0	14.4
Japan	8.4	7.0	11.5	9.9	10.1	49.3	8.3	22.3	10.8	9.5
Singapore	8.8	10.8	8.5	7.6	7.8	14.5	16.1	12.0	16.4	10.0
US Boulder	8.5	8.7	10.9	7.8	9.1	15.0	9.5	42.4	11.9	10.3
US Raleigh	7.9	11.4	13.1	14.7	8.7	29.9	20.2	58.1	38.3	13.6
_										
	8.0	10.6	12.7	9.8	9.4	29.3	19.0	48.7	23.6	13.0

Avg Growth Rate (GB/15min)

	C32	B32	S32	G32	C64	B64	S64	G64	P64	
Canada	0.01	0.01	0.02	0.01	0.03	0.20	0.21	0.07	0.27	0.10
Germany	0.02	0.02	0.01	0.04	0.08	0.17	0.15	0.74	0.64	0.09
Japan	0.02	0.05	0.03	0.01	0.03	0.02	0.03	0.01	0.01	0.02
Singapore	0.01	0.01	0.05	0.00	0.06	0.02	0.09	0.04	0.07	0.03
US Boulder	0.04	0.01	0.02	0.03	0.04	0.37	0.09	0.62	0.26	0.08
US Raleigh	0.01	0.01	0.04	0.03	0.02	0.02	0.10	0.08	0.24	0.04
_										
	0.02	0.01	0.03	0.03	0.05	0.13	0.12	0.37	0.30	0.07

Avg Storage Utilization (%)

7.5 13.3 6.8 4.8 16.8

10.2

	C32	B32	S32	G32	C64	B64	S64	G64	P64
Canada	12.9	3.9	3.0	7.0	16.4	15.1	7.7	4.2	6.8
Germany	14.9	5.1	4.2	9.7	22.9	11.9	12.1	17.0	10.5
Japan	14.9	3.8	3.5	3.1	18.6	5.0	3.2	1.4	2.4
Singapore	11.9	4.1	3.9	9.3	14.3	2.1	4.6	4.6	2.9
US Boulder	16.2	3.9	3.7	6.7	16.7	24.6	14.3	50.3	4.0
US Raleigh	14.6	6.6	7.1	12.3	18.3	4.3	6.7	8.1	7.5
	14.7	6.0	5.1	9.6	19.4	10.2	9.5	16.0	7.1

Overcommitment

(Simulation)

Simulation Description

VMs

	C32	B32	S32	G32	C64	B64	S64	G64	P64
vCPU(s)	1	1	2	4	2	2	4	8	16
Memory (GB)	2	2	4	4	4	4	8	16	16
Storage (GB)	60	175	350	350	60	850	1(TB)	1(TB)	2(TB)
Mix (%)	38.2	4.7	1.9	4.8	26.7	4.3	11.4	4.8	3.3
Lifetimes (days)	10.34	36.49	23.21	14.57	12.45	37.67	14.29	22.67	12.75

Cpu Time

- The CPU time from the DB is the number of CPU seconds the guest has used within the 15 minutes window. The maximum number of seconds used by a guest in the 15 minute window is calculated as
 - #vCPUs x 15 Minutes x 60 Seconds.
- So for a Copper32, max = 900 since it has 1vCPU. For Platinum64, max = 900 x 16
 = 14,400. Percentages are then calculated as:
 - # of CPU seconds/max
 - for each 15 minute period. Note that the CPU time is cumulative so we have to diff the times between records to get the usage within a time period.
- Documented description of CPU: "Zero if guest is stopped. Otherwise, the number of CPU seconds that the guest has used. Example: if a 4CPU machine is running at a constant 33% utilization for 15 minutes, CPU Time is 4 x 33% x (15 x 60) = 1188. This is a cumulative number. It is not reset every 15 minutes. So, next CPU time would be 1,188 + whatever CPU was consumed during next 15 minutes."