Module 7 Graded Homework

Due Nov 19, 2021 at 11:59pm Points 3 Questions 3

Available Nov 6, 2021 at 12am - Jan 21 at 11:59pm 3 months

Time Limit None

Instructions

Question 1

For each of the two questions below, decide whether the answer is (i) "Yes," (ii) "No," or (iii) "Unknown, because it would resolve the question of whether P = NP." Give a brief explanation of your answer.

- a.) Let's define the decision version of the Interval Scheduling Problem from Chapter 4 as follows: Given a collection of intervals on a time-line, and a bound k, does the collection contain a subset of non-overlapping intervals of size at least k? Question: Is it the case that Interval Scheduling ≤P Vertex Cover?
- b.) Question: Is it the case that Independent Set polynomially reduces to Interval Scheduling?

Question 2

Consider a set A = $\{a(1),..., a(n)\}$ and a collection B(1),..., B(m) of subsets of A (i.e., B(i) \subseteq A for each i).

We now define the Hitting Set Problem as follows. We are given a set $A = \{a(1),..., a(n)\}$, a collection B(1),..., B(m) of subsets of A, and a number k. We are asked: Is there a hitting set $H \subseteq A$ for B(1),..., B(m) so that the size of H is at most k?

Prove that Hitting Set is NP-complete.

Question 3

The Subgraph Isomorphism problem takes two undirected graphs G=(V,E) and H=(V',E') and asks whether H appears as an induced subgraph of G--i.e.,

whether there exists a one-to-one mapping $f: V' \to V$ such that for every pair of nodes $u,v \in V'$, the edge (u,v) exists in E' if and only if the edge (f(u),f(v)) also exists in E. Show that the Subgraph Isomorphism problem is NP-complete.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	22 minutes	3 out of 3

Score for this quiz: 3 out of 3

Submitted Nov 19, 2021 at 6:35pm

This attempt took 22 minutes.

	Question 1	1 / 1 pts	
	Regarding question 1(a) in this week's graded assignment, identify the correct answer?		
	Unknown		
	○ No		
Correct!	Yes		

Question 2	1 / 1 pts
Regarding question 2 in this week's graded assignment, what reduction to Hitting Set?	is a valid
From 3SAT, by constructing a formula for each of the elements in hitting set.	the

	Question 3	1 pts		
	Regarding question 3 in this week's graded homework, what would be the most precise runtime of the certifier, if the given graph G has n nodes?			
	O(n)			
Correct!	O(n²)			
	The answer depends on the graph.			
	O Polynomial in n			

Quiz Score: 3 out of 3