

Concours d'entrée 2014 – 2015

Chimie

Durée : 1H

Premier exercice (9 points) Préparation d'un ester

On dispose d'un composé organique (A), à chaîne carbonée saturée <u>non cyclique</u>, de formule brute $C_xH_v\mathbf{O}$.

On se propose de réaliser plusieurs réactions chimiques, à partir de ce composé, produisant un ester (E). Dans toutes les réactions demandées dans cet exercice, représenter les composés organiques par leurs formules semi-développées.

Donnée:

- Masses molaires en g.mol⁻¹: M(H) = 1; M(C) = 12 et M(O) = 16.

1- Identification du composé (A)

Une analyse quantitative réalisée sur le composé (A) a donné les résultats suivants : % massique du carbone = 66,67 et % massique d'hydrogène = 11,11.

- 1.1- Montrer que x = 4 et y = 8.
- 1.2- Un échantillon de (A) réagit avec la 2,4-D.N.P.H donnant un précipité jaune. En précisant le groupe fonctionnel de (A), écrire ses formules semi-développées possibles.
- 1.3- Un échantillon de (A) réagit avec la liqueur de Fehling donne un précipité rouge-brique. Déduire la famille chimique de (A) et donner son nom, sachant que sa chaîne carbonée est non ramifiée.

2-Réactions chimiques à partir de (A)

On divise la quantité disponible de (A) en deux parties.

On mélange la première partie avec un excès d'une solution acidifiée de permanganate de potassium ; puis on recueille le composé organique formé, noté (X).

La deuxième partie est chauffée, en présence d'un catalyseur d'hydrogénation ; puis on recueille le composé organique formé, noté (Y).

- 2.1- Donner le nom et la formule semi-développée de (X).
- 2.2-. Donner le nom et la formule semi-développée de (Y).

3- Préparation d'un ester

On laisse réagir, un mélange équimolaire des deux composés (X) et (Y), jusqu'à avoir une quantité d'ester constante égale à 0,4 mol. L'équation de la réaction correspondante est :

$$X + Y \Rightarrow E + H_2O$$

- 3.1- Écrire la formule semi-développée de l'ester E. Donner son nom.
- 3.2- Montrer que la quantité initiale de X (ou de Y) est n=0,6 mol, sachant que la constante associée à cet équilibre est $K_c=4,0$.
- 3.3- On utilise à la place de X la même quantité de son dérivé chloré pour préparer l'ester E.
 - 3.3.1- Écrire la formule semi-développée de ce dérivé et donner son nom.
 - 3.3.2- Calculer, alors, la quantité de l'ester formé à la fin de cette réaction.

Deuxième exercice (11 points) Solution tampon

À partir d'une solution d'acide chlorhydrique (S) de concentration molaire $C = 1,0 \times 10^{-2}$ mol. L^{-1} , on veut préparer un litre d'une solution tampon de pH = 3,5 en ajoutant une masse m de méthanoate de sodium solide $HCO_2Na(s)$ qui se dissocie totalement dans l'eau selon l'équation suivante :

$$HCO_2Na(s) \rightarrow Na^+_{(aq)} + HCO^-_2(aq)$$
:

On suppose qu'il n'y a aucune variation de volume lors de cette préparation.

Donnée:

- Constante du couple (HCO_2H/HCO_2^-): pKa = 3,75.
- Masse molaire en g.mol⁻¹: M(H) = 1; M(C) = 12; M(O) = 16; M(Na) = 23.
- 1- Calculer le pH de la solution (S).
- 2- Écrire l'équation de la réaction de l'acide chlorhydrique H₃O⁺ et de l'ion HCO₂ (aq) et déterminer sa constante Kr. (On admet que cette réaction est totale).
- 3- Justifier que l'acide chlorhydrique est le réactif limitant pour préparer la solution tampon de pH = 3,5.
- 4- L'acide méthanoïque est un acide faible.
 - 4.1- Écrire l'équation de la réaction entre cet acide et l'eau.
 - 4.2- Donner l'expression de la constante d'acidité Ka du couple $HCO_2H(aq)/HCO_2^-(aq)$.

- 5- Sachant que la quantité de matière apportée par HCO_2Na (s) se retrouve dans HCO_2H (aq) et HCO_2^- (aq).
 - 5.1- Exprimer $[HCO_2^-(aq)]_f + [HCO_2H(aq)]_f$ en fonction de la masse m de méthanoate de sodium.
 - 5.2- Déterminer la valeur de la concentration [HCO₂ (aq)]_f en fonction de m.
- **6** La solution est électriquement neutre.
 - 6.1- Établir la relation entre les concentrations des différentes espèces chargées en solution.
 - 6.2- Calculer m.

Concours d'entrée 2014 – 2015

Solution de Chimie

Durée: 1H

Premier exercice (9 points) Préparation d'un ester

1- Identification du composé (A)

1.1- La loi des proportions définies permet d'écrire :

$$\frac{M}{100} = \frac{12 x}{66,67} = \frac{y}{11,11} = \frac{16}{22,22}$$
On tire $x = \frac{16x \ 66,67}{22,2x \ 12} = 4$; $y = \frac{11,11x \ 16}{22,22} = 8$ (1 point)

1.2- Le précipité jaune identifie la présence du groupement carbonyle (0,25 point). La chaîne carbonée saturée et <u>non cyclique</u>. Les formules semi-développées possibles de (A) sont alors :

1.3- Puisque (A) a réagi avec la liqueur de Fehling, il est un aldéhyde (0,25 point), sa chaîne carbonée est non ramifiée ; (A) est donc le butanal (0,25 point)

2-Réactions chimiques à partir de (A)

2.1- (X) dérive de l'oxydation ménagée d'un aldéhyde, (X) est un acide carboxylique c'est l'acide butanoïque de formule CH₃ – CH₂ – CH₂ – CH₂ – CH₀ (0.75 point)

2.2- (Y) dérive de l'hydrogénation catalytique d'un aldéhyde, (Y) est un alcool primaire c'est le butano-1-ol de formule $CH_3 - CH_2 - CH_2 - CH_2OH$. (0.75 point)

3- Préparation d'un ester

$$X + Y = E + H_2O$$

3.1- E est un ester dérivant de l'acide butanoïque et du butan-1-ol de formule

C'est le butanoate de butyle.

(1 point)

3.2-

Etat		Avancement (mol)	X +	Y =	E +	H ₂ O
Initial		x =0	n	N	0	0
Intermédiaire		X	n –x	n-x	X	X
Equilibre		xeq	n -0,4	n-0,4	0,4	0,4

$$Kc = \frac{[ester][eau]}{[acide][al cool]} = \frac{\frac{x}{v} \times \frac{x}{v}}{\frac{n-x}{v} \times \frac{n-x}{v}} = \frac{0.4 \times 0.4}{\frac{(n-0.4)(n-0.4)}{(n-0.4)}} = 4. \text{ On tire : } \frac{0.4}{n-0.4} = 2.$$

$$D'où n = 0.6.$$
(2 points)

3.3-.

3.3.1-

Le dérivé chloré pour préparer l'ester E est le chlorure de butanoyle de formule semi-développée

$$CH_3 - CH_2 - CH_2 - C - C1$$

$$\parallel$$
O
$$(1 point)$$

3.3.2-

La réaction d'estérification devient totale, le mélange est équimolaire, les réactifs se transforment totalement et le nombre de moles de l'ester formé est 0,6 mol. (1 point)

Deuxième exercice (11 points) Solution tampon

1- pH = - log [H₃O⁺] et comme l'aide chlorhydrique est fort [H₃O⁺] =C= 1×10^{-2} mol.L⁻¹ et pH= 2 (1 point)

2- L'équation de la réaction de l'acide chlorhydrique H₃O⁺ et de l'ion HCO₂ (aq)

$$H_3O^+(aq) + HCO_2^-(aq) \rightarrow H_2O_{(1)} + HCO_2H_{(aq)}$$
 (0,5 point)

$$kr = \frac{\{HCO_2H\}}{\{H_2O^+\}\{HCOO^-\}} = \frac{1}{Ka} = 10^{3.75} = 5,623 \times 10^3$$
 (1 point)

3- La valeur du rapport $[HCO_2^-]_f/[HCO_2H(aq)]_f$ dans la solution tampon de pH=3,5. pH = pKa + $log \frac{[base]}{[actde]}$, 3,5 = 3,75 + $log \frac{[base]}{[actde]}$, $\frac{[base]}{[actde]}$ = 0,56, donc HCO_2^- n'a pas réagi totalement et l'acide chlorhydrique est le réactif limitant. (1.5 points)

4-

4.1- L'équation de la réaction entre l'acide méthanoïque et l'eau.

$$H_2O_{(1)} + HCO_2H_{(aq)} = H_3O^+(aq) + HCO_2^-(aq)$$
 (0,5 point)

4.2- L'expression de la constante d'acidité Ka du couple HCO₂H(aq)/HCO₂ (aq).

$$Ka = \frac{[H_3O^+][HCO_2^-]}{[HCO_2H]}$$
 (0,5 point)

5-

5.1- [HCO₂ (aq)]_f + [HCO₂H (aq)]_f en fonction de la masse m de méthanoate de sodium est

telle que :
$$C_{apport\'ee} = [HCO_{2}^{-}(aq)]_{f} + [HCO_{2}H(aq)]_{f} = \frac{n}{V} = \frac{m}{M \times v} \frac{m}{M \times 1} = \frac{m}{68}$$
. (1,5 point)

5.2- Valeur de la concentration de $[HCO_{2}^{-}(aq)]_{f}$ en fonction de m.

$$[HCO_{2}^{-}(aq)]_{f} + [HCO_{2}H(aq)]_{f} = [[HCO_{2}^{-}(aq)]_{f} + \frac{[HCO_{2}^{-}]_{(aq)f}}{0,56}] = \frac{m}{68} ; d'où :$$

$$[[HCO_{2}^{-}(aq)]_{f} = 5,28 \times 10^{-3} \text{ m mol.L}^{-1}. \tag{2 points}$$

6-

6.1- La relation entre les concentrations des différentes espèces chargées en solution. Les espèces chargées en solution sont : Na⁺, H₃O⁺, Cl⁻ et HCO₂ tel que $[Na^+] + [H_3O^+] = [HCO_2^-] + [Cl^-]$. On néglige $[HO^-]$

(1 point)

6.2- Calcul de m.

$$[Na^+] = C_{apport\acute{e}} = \frac{m}{68} \; ; \; [H_3O^+] = 10^{-pH} = 10^{-3.5} \; ; \; [C1^-] = C = 1,0 \times 10^{-2}. \; On \; a \; alors \; ; \\ \frac{m}{68} \; + \; 10^{-3.5} = 5,28 \times 10^{-3} \; m \; + \; 1,0 \times 10^{-2}. \; D'où \; m = 1,028 \; g. \tag{1.5 point}$$