2. Интерполирование по значениям функции. Интерполяционный многочлен в форме Ньютона. Интерполяционный многочлен в форме Лагранжа

2.1. Постановка задачи интерполирования

Пусть на промежутке [a,b] задана таблица значений вещественной функции y=f(x):

x	f(x)
x_0	$f(x_0)$
x_1	$f(x_1)$
x_2	$f(x_2)$
x_n	$f(x_n)$

Узлы предполагаются попарно различными: $x_i \neq x_j, i \neq j$.

Требуется найти значение функции в точке $x = \overline{x}$, не совпадающей с узлами.

Приближенное значение функции $f(\overline{x})$ может быть найдено как значение интерполяционного многочлена: $f(\overline{x}) \approx P_n(\overline{x})$, где $P_n(x)$ строится единственным образом из условий $P_n(x_i) = f(x_i), \ i = 0, 1, \ldots, n$.

Погрешность интерполирования находится из теоремы:

Теорема 1. Пусть функция f(x) имеет конечную непрерывную производную $f^{(n+1)}(x)$ на наименьшем отрезке [c,d], содержащем узлы интерполирования x_0, x_1, \ldots, x_n и точку интерполирования \overline{x} , так что $c = \min\{x_0, x_1, \ldots, x_n, \overline{x}\}, \quad d = \max\{x_0, x_1, \ldots, x_n, \overline{x}\}.$

Тогда существует такая точка $\xi = \xi(\overline{x}), \quad c < \xi < d,$ что

$$R_n(f,\overline{x}) = f(\overline{x}) - P_n(\overline{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \,\omega_{n+1}(\overline{x}), \quad \omega_{n+1}(x) = \prod_{i=0}^n (x - x_i). \tag{1}$$

Оценка погрешности вычисляется следующим образом:

$$|R_n(\overline{x})| \le M_{n+1} \cdot \frac{|(\overline{x} - x_0)(\overline{x} - x_1) \cdot \cdot \cdot (\overline{x} - x_n)|}{(n+1)!}, \tag{2}$$

где

$$M_{n+1} = \max |f^{(n+1)}(x)|, \ x \in [c, d].$$

Часто практически строится многочлен $P_m(x)$, где m < n, по m+1 узлу. Очевидно, что из n+1 узла следует выбрать такие m+1, которые обеспечивают наименьшую погрешность, т.е. узлы, ближайшие к точке интерполирования \overline{x} .

При построении интерполяционного многочлена в виде $P_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ коэффициенты a_i являются решением системы $P_n(x_i) = f(x_i), i = 0, 1, \dots, n$. Определитель этой системы — определитель Вандермонда. Он отличен от нуля, так как узлы попарно различны.

Удобнее строить многочлен в форме Ньютона или в форме Лагранжа.

2.2. Интерполяционный многочлен в форме Ньютона. Разделенные разности

Интерполяционный многочлен в форме Ньютона имеет вид:

$$P_n(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots + A_n(x - x_0) + \dots + (x - x_{n-1}).$$
 (3)

Преимуществом этой формы является простота нахождения коэффициентов:

$$A_0=f(x_0),\;A_1=rac{f(x_1)-f(x_0)}{x_1-x_0}$$
 и т. д., а также тот факт, что

$$P_k(x) = P_{k-1}(x) + A_k(x - x_0) \cdots (x - x_{k-1}).$$

Если узлы интерполирования x_0, x_1, \ldots, x_n выбраны в порядке близости к точке интерполирования \overline{x} , то можно утверждать, что многочлен любой степени $P_0(x), P_1(x), \ldots, P_n(x)$ обеспечивает минимум погрешности $|f(\overline{x}) - P_i(\overline{x})|$ среди всех многочленов данной степени, построенных по данной таблице узлов.

Разделенные разности вычисляются по формулам:

р.р. 1-го пор.
$$f(x_i, x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$
,
р.р. 2-го пор. $f(x_i, x_{i+1}, x_{i+2}) = \frac{f(x_{i+1}, x_{i+2}) - f(x_i, x_{i+1})}{x_{i+2} - x_i}$, (4)
р.р. n-го пор. $f(x_0, x_1, \dots, x_n) = \frac{f(x_1, \dots, x_n) - f(x_0, \dots, x_{n-1})}{x_n - x_0}$.

Можно доказать, что

$$f(x_0, x_1, \dots, x_n) = \frac{f^{(n)}(\xi)}{n!}, \ \xi \in (a, b), \ a = \min(x_0, x_1, \dots, x_n), \ b = \max(x_0, x_1, \dots, x_n),$$

$$P_n(x_0, x_1, \dots, x_n) \equiv \text{const}.$$

Можно показать, что коэффициенты A_i в интерполяционном многочлене в форме Ньютона являются разделенными разностями i-го порядка: $A_i = f(x_0, x_1, \dots, x_i)$.

Заметим, что если целью построения интерполяционного многочлена является не минимизация погрешности в точке интерполирования, а минимизация погрешности на всем промежутке [a,b], то в качестве узлов надо брать корни многочлена Чебышева первого рода, сведенные к промежутку [a,b].

2.3. Задание

Дана функция y = f(x), узлы.

Требуется построить аналитическое выражение интерполяционного многочлена для функции f(x) в форме Ньютона 0-ой, 1-ой, 2-ой, 3-ей степени по заданным узлам. Вычислить приближенное значение функции в заданной точке, фактическую погрешность, оценить теоретическую.

Образец выполнения задания

Пусть $f(x)=x^3+2$, узлы: -2, 0, 1, 3, 4, 5. Точка интерполирования $\overline{x}=2$. Точное значение функции f(2)=10.

Построение интерполяционного многочлена в форме Ньютона с использованием разделенных разностей

1) Заполняем таблицу 1 разделенных разностей.

Таблица 1

				таолица т
x	f(x)	р.р. 1-го п.	р.р. 2-го п.	р.р. 3-го п.
-2	-6			
		4		
0	2		-1	
		1		1
1	3		4	
		13		1
3	29		8	
		37		1
4	66		12	
		61		
5	127			
2	?			

2) Получаем аналитические выражения для интерполяционных многочленов и погрешности по следующим формулам:

$$\begin{split} P_0(\overline{x}) &= f(x_0). \\ P_1(\overline{x}) &= P_0(\overline{x}) + f(x_0, x_1)(\overline{x} - x_0). \\ P_2(\overline{x}) &= P_1(\overline{x}) + f(x_0, x_1, x_2)(\overline{x} - x_0)(\overline{x} - x_1). \\ P_3(\overline{x}) &= P_2(\overline{x}) + f(x_0, x_1, x_2, x_3)(\overline{x} - x_0)(\overline{x} - x_1)(\overline{x} - x_2). \\ M_{i+1} &= \max |f^{(i+1)}(x)|, x \in [c, d], \text{ где} \\ c &= \min(x_0, x_1, \dots, x_i, \overline{x}), d = \max(x_0, x_1, \dots, x_i, \overline{x}). \\ |R_i(\overline{x})| <= M_{i+1} \cdot \frac{|(\overline{x} - x_0)(\overline{x} - x_1) \cdots (\overline{x} - x_i)|}{(i+1)!}. \end{split}$$

3) Заполняем таблицу результатов 2.

Таблица 2

				1
i	0	1	2	3
Узлы в порядке очередности их использования	1	3	0	4
$P_i(2)$ — значение многочлена в точке интерполирования	3	16	12	10
$f(\overline{2}) - P_i(2)$ — фактическая погр.	7	-6	-2	0
M_{i+1} — оценка модуля произв.	12	18	6	0
$R_i(2)$ — оценка погрешности	12	9	2	0

2.4. Интерполяционный многочлен в форме Лагранжа

Интерполяционный многочлен в форме Лагранжа имеет вид:

$$P_n(x) = \sum_{k=0}^n \frac{\omega_{n+1}(x)}{(x - x_k)\omega'_{n+1}(x_k)} f(x_k) = \sum_{k=0}^n \frac{\prod_{i \neq k} (x - x_i)}{\prod_{i \neq k} (x_k - x_i)} f(x_k).$$
 (5)

2.5. Задание

1) Дана функция y=f(x), узлы, значение функции \overline{y} . Получить таблицу значений функции в узлах.

Требуется приближенно найти такое \overline{x} , что $f(\overline{x}) = \overline{y}$ тремя способами:

- а) "точно", используя аналитическое выражение обратной функции. Обозначим x^* .
- б) аппроксимацией функции f(x) интерполяционным многочленом $P_n(x)$ (n >= 2) в форме Лагранжа и приближенным решением уравнения $P_n(x) = \overline{y}$ методом итераций или методом секущих. Обозначим решение уравнения $P_n(x) = \overline{y}$ через x_{iter} .
- в) если существует однозначная обратная функция $f^{-1}(y)$, то поменять ролями узлы и значения функции и приближенно заменить обратную функцию интерполяционным многочленом $Q_m(y)$ $(m=0, 1, 2, \ldots)$ в форме Лагранжа и вычислить $x_m = Q_m(\overline{y})$.

Результаты привести в таблицах вида

\overline{m}	x_m	$x_m - x_{m-1}$	$x_m - x^*$
0			
1			
2			

 2^* Дана функция y = f(x), [a, b] = [-1, 1].

Требуется построить при различных n интерполяционные многочлены $P_n(x)$ в форме Лагранжа по равноотстоящим узлам и по узлам многочлена Чебышева. Сравнить на графике с функцией в одних осях координат.

Указание

В программе Maple составить подпрограмму с параметрами:

- интерполируемая функция;
- степень многочлена;
- массив узлов.

Подпрограмма должна возвращать аналитическое выражение интерполяционного многочлена в форме Лагранжа заданной степени по заданной таблице узлов для заданной функции.

Рассмотреть функции: a)
$$\sin(x)$$
; б) $|x|$; в) $\frac{1}{1+25x^2}$.

2.6. Варианты заданий на прямое и обратное интерполирование

Номер	Функция	Узлы	Точка интер-	Значение
варианта			полирования	функции
1	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.2	-0.4	-0.56
2	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.35	0.75
3	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	3	1.6
4	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.4	-0.6
5	$\cos(x)$	-0.6, -0.5, -0.3, -0.2, -0.1, 0	-0.4	0.8
6	$\sqrt[4]{x+2}$	0, 3, 5, 7, 8, 9	4	1.3
7	$\arcsin(x)$	-0.6, -0.5, -0.4, -0.2, 0, 0.1	-0.3	-0.8
8	e^x	-0.30.2, -0.1, 0, 0.1, 0.3	0.2	0.8
9	$\ln(x)$	1, 3, 5, 6, 8, 10	4	2
10	ln(x)	1, 3, 5, 6, 8, 10	7	2.5
11	$\arcsin(x)$	-0.6, -0.5, -0.30.2, 0, 0.2	0.6	0.8
12	$\sin(x)$	0, 0.1, 0.2, 0.4, 0.5, 0.8	0.4	0.56
13	$\arccos(x)$	0, 0.1, 0.2, 0.3, 0.5, 0.6	0.35	0.75
14	$\sqrt[4]{x+2}$	0, 2, 4, 5, 7, 10	3	1.6
15	$\sin(x)$	-0.6, -0.5, -0.3, -0.2, 0, 0.1	-0.4	-0.6