Języki skryptowe Liczby zaprzyjaźnione

Joanna Janiszewska Informatyka, Rok 2 semestr 3 wydział Matematyki Stosowanej Politechnika Śląska

Gliwice 2017

1. Treść zadania

Za Wikipedią: "Liczby zaprzyjaźnione to para różnych liczb naturalnych, takich, że suma dzielników każdej z tych liczb równa się drugiej (nie uwzględniając tych dwóch liczb jako dzielników)." Np. liczba 284 ma dzielniki: 1, 2, 4, 71, 142, których suma daje 220, a liczba 220 ma dzielniki: 1, 2, 4, 5, 10,11, 20, 22, 44, 55, 110, których suma daje 284. Zatem liczby 220 i 284 tworzą, parę liczb zaprzyjaźnionych. Należy napisać program, który dla dowolnej pary różnych liczb naturalnych będzie rozstrzygał, czy para ta tworzy liczby zaprzyjaźnione.

2. Model matematyczny

Program szuka dzielników wczytanych liczb a i b w zakresie odpowiednio od 1 do a/2 i od 1 do b/2. Następnie sumuje znalezione dzielniki i porównuje sumę dzielników właściwych liczby a z liczbą b, oraz sumę dzielników właściwych liczby b z liczbą a.

2.1

Przykładowe rozwiązanie I

Weźmy liczby a=9 I b=4. Dzielnikami właściwymi liczby 9 są liczby 1,3, natomiast dzielnikami właściwymi liczby 4 są liczby 1,2.

1+3=4

1+2=3

Tak więc liczby 9 I 4 nie są parą liczb zaprzyjaźnionych.

Przykładowe rozwiązanie II

Weźmy liczby: a=220 i b=284. Dzielnikami właściwymi liczby a są 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, a dzielnikami właściwymi liczby b są 1, 2, 4, 71, 142.

$$1 + 2 + 4 + 71 + 142 = 220$$

 $1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284$

Tak więc liczby 220 i 284 są parą liczb zaprzyjaźnionych.

3. Schemat blokowy

4. Pseudokod

- 1. Wczytaj liczby a,b.
- 2. i=0, sumaA=0, sumaB=0
- 3. Dopóki i<=a/2
 - 3.1 Jeśli a mod i = 0 to: sumaA+=i

$$3.2 i += 1$$

- 4. i = 0
- 5. Dopóki i<=b/2
 - 5.1 Jeśli b mod I = 0 to:

$$sumaB+=I$$

$$5.2 i+=1$$

6. Jeśli sumaA=b I sumaB=a to liczby są zaprzyjaźnione

5. Implementacja

5.1 Bash:

```
#!/bin/bash
function cpp {
     if test '-d "in"; then
       if test ! -d "out"; then
            mkdir "out"
       fi
       pliczki=(./in/*.txt)
       count=${#pliczki[@]}
       for ((number=1; number<=count; number++)); do</pre>
          ./liczbyzaprzyjaznione $(pwd)/in/l$number.txt > ./out/lout$number.txt
       echo "zakonczono przetwarzanie plikow"
function generujraport {
  if test -r "generator.py"; then
       if test -d "in"; then
          if test ! -d "out"; then
            cpp
          fi
          python3 "./generator.py"
          echo "wygenerowano raport"
       fi
    else
               echo "nie mam pliku .py. koncze prace."
  fi
function backup {
  if test -r "./raport.html"; then
     if test ! -d "backup"; then
       mkdir "backup"
     cp "raport.html" "./backup/backup_`date +%Y_%m_%d_%H_%M_%S`"
     echo "Utworzono backup"
  fi
function pokazraport {
  if test -r "./raport.html"; then
               echo "otwieram raport..."
     xdg-open "raport.html"
  fi
}
function pause(){
 read -p "$*"
wybor=666
while [ $wybor -ne 0 ]; do
  case $wybor in
  1)
     # cpp
     cpp
     wybor=666;
     #python
     generujraport
     wybor=666;
     #backup
     backup
```

```
wvbor=666:
  ;;
4)
     #otworz raport
    pokazraport
     wybor=666;
     #menu
     echo "Menu"
     echo "1. Uruchom program"
    echo "2. Wygeneruj raport"
     echo "3. Stworz backup"
     echo "4. Otwórz istniejacy raport"
     echo "0. wyjście"
    read wybor
  ;;
  esac
done
exit
```


Skrypt bash wyświetla menu, z którego możemy wybrać jedną z pięciu opcji.

Zawiera funkcje cpp(), generujraport(), backup(), pokazraport().

Cpp() tworzy folder out w katalogu projektu, a następnie uruchamia program c++ dla każdego pliku znajdującego się w folderze in. Każdy plik w folderze in zawiera parę liczb, a program c++ określa, czy jest to para liczb zaprzyjaźnionych, czy nie.

Funkcja generujraport() uruchamia skrypt python, który generuje raport z wynikami programu C++. Jeśli w katalogu projektu nie ma folderu out, to funkcja generujraport() wywołuje funkcję cpp().

Funkcja backup() tworzy folder backup I kopiuje do niego istniejący już raport. W nazwie pliku kopii zapasowej znajduje się bieżąca data i godzina. Funkcja pokazraport() otwiera istniejący raport w przeglądarce.

```
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;
bool czy_zaprzyjaznione(int a, int b)
  int sumaA=0;
  int sumaB=0;
   for(int i=1; i <= a/2; i++)
     if(a\%i==0)
       sumaA+=i;
     }
  for(int i=1; i <= b/2; i++)
     if(b\%i==0)
       sumaB+=i;
  if(sumaA==b && sumaB==a)
  {
     return true;
  }
  else
     return false;
int main(int argc, char *argv[])
  int a,b;
        if(argc!=2)
        {
                cout << "Nieprawidlowa ilosc parametrow.\n";</pre>
                exit(0);
        }
        else
                ifstream file;
     file.open(argv[1], ios_base::in);
     if (!file.is_open())
        cout << "Wystapil blad. Nie mozna otworzyc pliku.\n";</pre>
       exit(1);
     while(!file.eof())
        file >> a;
        file >> b;
        if(czy_zaprzyjaznione(a,b))
          cout << "zaprzyjaznione\n";</pre>
        }
        else
          cout << "niezaprzyjaznione\n";</pre>
   }
}
```

Program C++ wczytuje plik podany jako argument wejściowy, w którym znajduje się para liczb. Następnie wczytane liczby przekazuje do funkcji czyzaprzyjaznione(), która sprawdza, czy wczytane liczby są zaprzyjaznione. Funkcja zwraca wartość true lub false.

5.3 Python

```
import sys, os, glob
output = open('raport.html', 'w')
output.write( "<!doctype html>\n\
          <html>\n\
          <head>\n\
          {\rm charset=\"utf-8\">\n\}
          <link rel=\"stylesheet\" href=\"style.css\"type=\"text/css\"/>\n\
          <title>Raport</title>\n\
          </head>\n\
          <body>\n\
          <h1>Raport</h1>\n\
          <div class=\"wrap\">"
os.chdir("./in")
number=1
strlp="L.p<br>"
strliczby="liczby<br><"
str_czyzaprzyjaznione="Zaprzyjaznione?<br>"
for i in range (1, len(glob.glob("l*.txt"))+1):
       strlp+=str(i)
       strlp+="<br>"
while number <= len(glob.glob("l*.txt")):
  os.chdir("../in")
  tempIn = open("l"+str(number)+".txt",'r')
  strg = tempIn.read()
  strg+="<br>"
  strliczby+=strg
  tempIn.close()
  os.chdir("../out")
  tempOut = open("lout"+str(number)+".txt",'r')
  str czyzaprzyjaznione+=tempOut.read()
  str_czyzaprzyjaznione+="<br>"
  tempOut.close()
  number += 1
output.write("<div class=\"lewv\">"+strlp+"</div>")
output.write("<div class=\"content\"> "+strliczby+"</div>")
output.write("<div class=\"prawy\"> "+str_czyzaprzyjaznione+"</div>")
output.write( "</body>\n\
           </html>\n"
output.close()
```


6. Podsumowanie

Program sprawdza, czy liczby zawarte w katalogu in są liczbami zaprzyjaźnionymi. Następnie skrypt python generuje raport z wynikami programu. Skrypt bash w razie potrzeby tworzy backup raportu. Plik style.css odpowiada za estetyczny wygląd raportu.

Program był testowany pod systemami operacyjnymi Windows i Linux. Działa wyłącznie na systemie operacyjnym Linux (32bit i 64bit). Do uruchomienia programu wymagany jest Python w wersji 3.2+.

Projekt można usprawnić poprzez sprawdzanie, czy w katalogu in nie ma duplikatów danych, dodać możliwosć posortowania liczb w raporcie.