DESHYDRATATION AIGUE

N.Boukhedouma

DESHYDRATATION AIGUE

• Définition:

C'est une perte d'eau et d'électrolytes sans perte de tissu de soutien

DESHYDRATATION AIGUE (DHA)

DEFICIT HYDRO-ELECTROLYTIQUE AIGU

- MOTIF FREQUENT DE CONSULTATION
- CAUSES DOMINEES PAR LES ENTERITES AIGUES
- LA DHA ISOTONIQUE RESTE LA PLUS FREQUENTE,
 MAIS ATTENTION A L'HYPERNATREMIQUE
- GRAVITE : COLLAPSUS et DECES
- PREVENTION: utilisation précoce des SRO +++ / diarrhées

DESHYDRATATION AIGUE (DHA)

RAPPEL

PHYSIOLOGIQUE

PHYSIOLOGIE

- L'eau représente environ 70% du poids du corps.
- L'eau et les électrolytes sont répartis en deux secteurs :
 - 1. Extracellulaire(EC) : 20% (15% interstitiel et 5% plasmatique)

PHYSIOLOGIE

- Le sodium: L'ion extracellulaire prédominant, détermine la pression osmotique
- Le potassium : ion intracellulaire
- NRS :Entrées ou sorties=50% du secteur extra cellulaire
- Adulte: 15%

Problème du nourrisson

- Plus l'enfant est jeune, plus il est à risque de déshydratation, surface corporelle grande /masse corporelle
- Dépend des autres pour s'hydrater
- Incidence élevée de la fièvre, de la diarrhée et des vomissements.

LOI DE L'OSMOSE

OSMOLARITE DU PLASMA = SODIUM ++++, UREE, GLYCEMIE

DESHYDRATATION AIGUE (DHA)

RAPPEL

PHYSIOPATHOLOGIQUE

PHYSIOPATHOLOGIE DE LA DHA ISOTONIQUE

PHYSIOPATHOLOGIE DE LA DHA ISOTONIQUE

PHYSIOPATHOLOGIE DE LA DHA HYPOTONIQUE

DHA EXTRACELLULAIRE + HYPERHYDRATATION INTRACELLULAIRE

PHYSIOPATHOLOGIE DE LA DHA HYPERTONIQUE

PHYSIOPATHOLOGIE DE LA DHA RECAPITULATIF

PERTES

ISOTONIQUES

HYPERTONIQUES

DHA EXTRAC. +++
AVEC
HYPERHYD. INTRAC.

PHYSIOPATHOLOGIE DE LA DHA RECAPITULATIF (SUITE)

PHYSIOPATHOLOGIE DE LA DHA EXTRACELLULAIRE

PHYSIOPATHOLOGIE DE LA DHA

EXTRAC FROIDEUR DES EXTREMITES **HYPOTENSION** DHA EXTRACELLULAIRE TRC SUP OU EGAL A 3 SEC I. REN. FONCTIONNELLE **HYPOVOLEMIE COLLAPSUS OU CHOC ORGANIQUE POLYPNEE MYOSIS ACIDOSE** MARBRURES METABOLIQUE **HYPERKALIEMIE**

PHYSIOPATHOLOGIE DE LA DHA- SUITE

DIAGNOSTIC

• Diagnostic positif

- Le meilleur élément est la perte aigue de poids.
 Elle permet de chiffrer de façon précise le degré de D.H.A.
- signes cliniques évocateurs :
 - fontanelle antérieure déprimée
 - globes oculaires excavés et hypotoniques
 - absence de larmes
 - perte de la turgescence normale de la peau, voire un pli cutané franc
 - +/- signes de choc , signes d'acidose, signes neurologiques

CONDUITE A TENIR

- APPRECIER L'IMPORTANCE DE LA DHA:
 - POIDS
 - SCORE CLINIQUE
- CONFIRMER LE TYPE ISOTONIQUE DE LA DHA:
 - NATREMIE, SI POSSIBLE
- RECHERCHER LA CAUSE

IMPORTANCE DE LA DHA

	5%	7%	10%	15%
GLOBES OCULAIRES. FONT. ANT.	+	+	++	+++
PLI CUTANE	0	+	++	++
COLLAPSUS	0	0	+	++
CONSCIENCE	N	N	N	*

TYPER LA DHA

Seule la natrémie permet de classer le type de déshydratation

- natrémie < 130 mEq /l : D.H.A hyponatrémique.
- natrémie entre 130 mEq /l et 150 mEq /l : D.H.A isonatrémique.
- natrémie > 150 mEq /l : D.H.A hypernatrémique.
- En l'absence de natrémie, toute D.H.A doit être considérée comme isotonique et traitée en conséquence.

ETIOLOGIES A.PERTES EXCESSIVES+++

✓ Causes digestives:90%

✓ Causes rénales :

diabète insipide, diabète sucré, hyperplasie congénitale des surrénales

Causes pulmonaires

✓ Causes cutanées

B.CARENCE D'APPORT

C. PAR DÉPLACEMENTS DES LIQUIDES Œdèmes, ascite

PRISE EN CHARGE

• DHA DE MOINS DE 10 %:

REHYDRATATION PAR VOIE ORALE

• DHA DE 10 %:

HOSPITALISATION
VOIE D'ABORD
BILAN CLINIQUE ET PARACLINIQUE
FICHE DE SURVEILLANCE CLINIQUE++
REHYDRATATION INTRAVEINEUSE

Prise en charge

Buts:

- Rétablir la volémie
- Eviter les complications
- Traiter l'étiologie

Armes:

SSI à 9 %0 :Na153meq/L,153meq/L(306mosm/l

SBI 14%0 :HCO3168meq/l (336mosm/l)

SG5% , SG10%

SRH (ClMg 0,5g/l + ClNa 3g/l+ GCa1g/l+ ClK 2g/l + glucose5% 1litre)

- Nacl à 10% 1amp=10 cc=17meqNa+17meqCl
- Kcl à10% 1amp=10cc=13meqK+13meqCl
- Clca10% 1amp=10cc=1g=9meq de Ca
- Gca10% 1amp=10cc=1g=4,5meq de Ca
- Smg15% 1amp=10cc=12,5meq Mg=1,5g

REHYDRATATION INTRAVEINEUSE SELON LE SCHEMA NATIONAL

• 0 - 20 A 30 MN: 20 CC/KG SSI OU

PLASMAGEL

20-30 MN - 2 H: 30 CC/KG SSI

DIURESE +++

• 2 H - 6 H : 50 CC/KG SRI

6 H - 24H: 100cc/KG SRI

Remplacement des pertes en cours

⇒ Cette phase dure 6 heures (6 à 12h)

Dans le cas de la diarrhée, elles seront estimées en fonction du nombre de selles

- »moins de 6 selles / 24 h : 25 cc / Kg
- »entre 6 et 10 selles / 24 h : 50 cc / Kg
- »plus de 10 selles / 24 h : 75 cc / Kg.
- ⇒ Si cette donnée n'est pas disponible, on peut l'estimer à 50 cc / Kg
- ⇒ Le liquide utilisé est le SIR; à défaut , les liquides de remplacement de la diarrhée ou des vomissements (selon la cause de la D.H.A) peuvent être utilisés (voir tableau).

TABLEAU VII Liquide de remplacement de la diarrhée

Composition	Reconstitution
- 40 mEq/l Na - 40 mEq/l HCO3 - 40 mEq/l K - 40 mEq/l Cl	720 cc de SG à 5% 240 cc de SBI 40ccdeKCl molaire

Liquide de remplacement des vomissements			
Composition	Reconstitution		
-140 mEq/l Na	900 cc de SSI		
-15 mEq/l K	15 cc de KCl molaire		
-155 mEq/l Cl	85 cc de SG à 5%		

PRISE EN CHARGE

- Schéma national de réhydratation
 - Il n'est prévu que pour une D.H.A à 10 %, certes la plus fréquente.
 - Selon le schéma suivant (mis au point en 1989): +++

```
- 0 – 20 mn : 20 cc / Kg de SSI
```

- 20 mn - 2 h : 30 cc / Kg de SSI

- 2 h - 6 h : 50 cc / Kg de SIR

- 6 h - 24 h : 100 cc / Kg de SIR

PRISE EN CHARGE

• Cas particuliers:

- a. Absence de diurèse à la 2 ème heure :
 - Vérifier qu'il n'y a pas de globe vésical ;
 - Ajouter 10 cc / Kg de SSI en une heure ;
 - A renouveler si toujours pas de diurèse ;
 - Injection en IVD de 1 mg / Kg de furosémide ;
 - Si au bout de 6 heures, pas de diurèse suffisante (≥ 6 cc / Kg), et si réhydratation sûre, adresser l'enfant en réanimation.

- b. D.H.A de moins de 10 % :

• La réhydratation se fait par voie orale selon les plans A ou B de la compagne nationale contre la diarrhée (Voir cours diarrhée aiguë) ..

Sels de réhydratation orale(SRO)

Chaque sachet de SRO contient:

- Glucose: 13.5 g/l

- Chlorure de sodium : 2.6g/l

- Bicarbonate de sodium : 2.5g/l ou

- Citrate trisodique dihydraté : 2.9g/l

- Chlorure de potassium : 1.5g/l

Techniques de préparation des sels de réhydratation

- 1- Il faut diluer 1 sachet de SRO dans 1litre d'eau potable bouillie puis refroidie, le laisser au froid
- 2- Le donner par petite gorgées ou avec une petite cuillère (ne pas donner de biberon).
- 3- Si l'enfant vomit, on attend 5 ou 10 mn, puis on recommence à administrer la solution mais plus lentement par exemple une cuillère toutes les 2 à 3 mn.
- 4- La préparation ne doit pas être conservée plus de 24h.

DHA hyponatrémique

Phase 1 :H0-H2 : réparation de la moitié des pertes antérieures période critique (risque collapsus)

0-30min : 20cc/Kg d e SSI

30min –H2: 30cc/kg SSI

Point à H2 : (état circulatoire, conscience)

Phase 2: H2-H24

H2 –H6: réparation de l'autre moitié des pertes antérieures et correction de l'hypo Namie 50cc/Kg de SRH + la Q de Na pour corriger (135-Na malade)X 0.3Xpds

Point à H6

H6-H24: idem à l'isonatrémique

DHA hypernatrémique

Phase 1:

H0-H2: 20 à 30cc/Kg ½SSI à 9‰+½SGI. Point a H2

Phase 2:

H2 à H24: Réparation de la moitié des pertes antérieures 20 à 30cc/Kg ¹/₄ SSI + ³/₄SGI + 20meq/l KCl+ ca . correction

les perte en cours à H6: SRO ou SRH

H24 à H48: correction de l'autre moitié des pertes antérieures:

50cc/Kg 1/4 SSI+ 3/4SGI

Faire le point à H48

Chute de la natrémie ne doit pas dépasser 10meq à15meq/J la correction des pertes antérieures se déroule sur 48H(au lieu de 6 heures comme dans la DHA isonatrémique

Cas particuliers

- La réhydratation chez le **malnutri** se fait sur 48 h au lieu de 24h
- Chez le **nouveau-né**, en raison du risque d'hypoglycémie ,le SSI sera remplacé par 2/3 SG 5% ou 10% + 1/3 SSI 9 %°

. Traitement de la cause

. Suivi et traitement des complications:

Le plus souvent guérison sans séquelles

- •Complications rénales: thromboses des veines rénales, nécrose corticale, tubulopathies aigues
- •Complications neurologiques: convulsions par hypocalcémie, œdème cérébral, hématome sous dural.

Prévention

Bonne prise en charge de la diarrhée aigue de nourrisson dès le début par :

- l'administration correcte des SRO et un régime adéquat au nourrisson
- l'éducation sanitaire des mères.