divides the data in two equal parts. Median is a special type of partition value because it divides the data in 2 equal parts. The median, quartiles, deciles and percentiles etc. are termed as partition values, since they divide the given data in equal parts.

We are going to study 3 types of partition values namely quartiles, deciles and percentiles.

1.2 Quartiles:

Quartiles divide the observations in 4 equal parts when arranged in ascending order of magnitude. There are three quartiles, namely Q_1,Q_2 and Q_3 .

Fig. 1.1

 Q_1 is the first or lower quartile. 25% observations are below Q_1 and 75% are above Q_1 .

 $\rm Q_2$ is the second quartile (median) which divides data into two equal parts 50% observations are above and 50% below it

 Q_3 is the third or upper quartile. 75% of the observations are below Q_3 and 25% are above Q_3 .

The formula for quartiles for raw data is as follows:

$$i^{\text{th}}$$
 Quartile = Q_i = value of $\left[i\left(\frac{n+1}{4}\right)\right]^{th}$ observation, $i = 1, 2, 3$

where n is the total number of observations.

In particular, if the value of $i\left(\frac{n+1}{4}\right)$ is 6.25, the value of i^{th} quartile is calculated as follows:

 i^{th} Quartile = value of 6^{th} observation + 0.25 (value of 7^{th} observation – value of 6^{th} observation)

The formula of quartiles for grouped data is as follows:

$$Q_i = L + \frac{h}{f} \left(\frac{iN}{4} - c.f. \right), \quad i = 1, 2, 3$$

 i^{th} Quartile class is the class in which $\left(\frac{iN}{4}\right)^{th}$ observation lies.

Where L = lower boundary of i^{th} quartile

h = class width of ith quartile class

f = frequency of ith quartile class

c.f.= less than cumulative frequency of the class just preceding i^{th} quartile class

N = total frequency.

SOLVED EXAMPLES

Ex.1: The marks of 19 students are given below: 41, 21, 38, 27,31,45,23,26,29,30,28,25,35, 42,47,50,29,31,35.

Calculate all the quartiles for the above data.

Solution: First arrange the data in ascending order as follows:

21, 23, 25, 26, 27, 28, 29, 29, 30, 31, 31, 35, 35, 38, 41, 42, 45, 47, 50.

Here, n = 19

$$Q_1 = \text{value of } \left(\frac{19+1}{4}\right)^{th} \text{ observation}$$

= value of 5th observation

$$Q_1 = 27$$

$$Q_2$$
 = value of $\left[2\left(\frac{19+1}{4}\right)\right]^{th}$ observation

= value of 10th observation

$$Q_2 = \square$$

$$Q_3$$
 = value of $\left[3\left(\frac{19+1}{4}\right)\right]^{th}$ observation

= value of 15th observation

$$Q_3 = 41$$

Ex.2: Calculate the quartiles for daily wages (₹)by 12 workers: 200,280,310,180,190,170, 320,330,220,210,380,400.

Solution: First arrange the data in ascending order as follows:

170,180,190,200,210,220,280,310,320,330, 380,400

Here, n = 12

$$Q_1 = \text{value of } \left(\frac{12+1}{4}\right)^{th} \text{ observation}$$

= value of 3.25th observation

= value of 3rd observation + 0.25 (value of 4th observation – Value of 3rd observation)

$$= 190 + 0.25(200-190)$$

$$Q_1 = 192.5.$$

$$Q_2$$
 = value of $\left[2\left(\frac{12+1}{4}\right)\right]^{th}$ observation

= value of 6.5th observation

= value of 6th observation + 0.5 (value of 7th observation – value of 6th observation)

$$= 220 + 0.5(280 - 220)$$

$$= 220 + 0.5(60)$$

$$Q_2 = 250$$

$$Q_3$$
 = value of $\left[3\left(\frac{12+1}{4}\right)\right]^{th}$ observation

= value of 9.75th observation

= value of 9th observation + 0.75 (value of 10th observation – value of 9th observation)

$$= 320+0.75(330-320)$$

$$= 327.5$$

Ex.3: Calculate the quartiles for the following data:

Height (in inches)	4.8	4.9	5.0	5.1	5.2	5.3	5.4	5.5	5.6	5.7
No. of Stu- dents	5	7	13	16	25	14	9	6	3	2

Solution: Construct the less than cumulative frequency table as follows:

Height (in inches)	No. of students (<i>f</i>)	Less than cumulative frequency
(III IIICIIES)	students ()	rrequency
4.8	5	5
4.9	7	12
5.0	13	25
5.1	16	$41 \leftarrow Q_1$
5.2	25	66 ← Q ₂
5.3	14	$80 \leftarrow Q_3$
5.4	9	89
5.5	6	95
5.6	3	98
5.7	2	100
Total	100	-

Here, n = 100,

By comparing $\left[i\left(\frac{n+1}{4}\right)\right]^{th}$ with cumulative frequencies, one can easily locate the quartiles.

$$Q_1 = \text{ value of } \left[1 \left(\frac{100+1}{4} \right) \right]^{th} \text{ observation}$$

= value of 25.25th observation

$$Q_1 = 25^{th}$$
 observation + 0.25 (26th observation - 25th observation)

$$= 5 + 0.25 (5.1-5)$$

$$= 5 + 0.025$$

$$Q_1 = 5.025$$

$$Q_2 = \text{ value of } \left[2 \left(\frac{100+1}{4} \right) \right]^{th} \text{ observation}$$

= value of 50.5th observation

$$Q_2 = 5.2$$

$$Q_3$$
 = value of $\left[3\left(\frac{100+1}{4}\right)\right]^{th}$ observation

= value of 75.75th observation

$$Q_3 = 5.3$$

Ex.4: A highway police department conducted a survey and clocked the speeds of number of cars on a highway. The following distribution was obtained:

Speed below (in kms/hour)	Number of cars
65	19
70	44
75	99
80	184
85	194
90	200

Compute the speed (in kms / hour) below which 75% cars have their speed.

Solution: First, construct classes and frequency table as follows:

Speed (in km / hour)	Number of cars	Less than cumulative frequency
Below 65	19	19
65-70	44-== 34	44
	= 55	99
		$184 \leftarrow Q_3$
80-85	<u></u> -□-10	194
85-90		200

Compute the speed in km/hour below which 75% cars have their speed that is, we have to calculate the value of Q_3 .

Here N =
$$\sum f = \square$$

$$\left(\frac{3N}{4}\right) = 150$$

 \therefore Q₃ lies in the class 75-80

L =
$$\square$$
, $c.f. = 99$, $h = 5$, $f = \square$

$$Q_3 = L + \frac{h}{f} \left(\frac{3N}{4} - c.f \right)$$

$$Q_3 = 75 + \frac{5}{85} (\square - 99)$$

$$Q_3 = 75 + \frac{255}{85}$$

$$Q_3 = 75 + 3$$

$$Q_3 = \square$$

- ... There are 75% cars passing the highway with speed less than 78 km per hour.
- **Note:** 1) For partition values it is not mandatory to convert discontinuous classes into continuous form. The answer may differ by some decimal figure, which is still correct.
 - 2) If the missing frequency value is in decimal, then approximate it to nearest whole number.