Extended Midy's Theorem

Bassam Abdul-Baki July 12, 2005

Theorem (Original)

If the period of a repeating decimal for a/p, where p is prime and a/p is a reduced fraction, has an even number of digits, then dividing the repeating portion into halves and adding gives a string of 9s. For example, $1/7 = 0.\overline{142857}$, and 142 + 857 = 999.

Theorem (Extended)

If the period of a repeating decimal for a/p, where p is prime and a/p is a reduced fraction, is $h = m \times n$, then dividing the repeating portion into n parts and adding gives $c_n(a,p) \times 9$ m's, where c is a constant depending on p, a and n.

Proof

We will show some interesting properties for various types of primes p.

Let a/p have period h > 1 with a < p, and assume $a/p = 0.\overline{a_1 \dots a_{m \times n}}$. Thus, $p \neq 2, 5$.

Then,
$$10^i \times a/p - \lfloor 10^i \times a/p \rfloor = 0.\overline{a_{i+1} \dots a_{m \times n} a_1 \dots a_i} < 1$$
, since $a < p$.

Thus,
$$p \times (10^i \times a/p - \lfloor 10^i \times a/p \rfloor) = p \times 0.\overline{a_{i+1} \dots a_{m \times n} a_1 \dots a_i}$$

And,
$$\{a \times 10^i - \lfloor 10^i \times a/p \rfloor \times p, \forall i \ni 0 \le i \le m \times n - 1\} = \{a, a \times 10, a \times p \}$$

$$10^2, \dots, a \times 10^{m \times n - 1} \} \pmod{\mathbf{p}} \subseteq \{1, \dots, p - 1\}.$$

And hence, there exists $\frac{p-1}{h}$ distinct cyclic generators $(\{e=e_1,e_2,\ldots,e_{\frac{p-1}{h}}\})$

such that
$$\bigcup_{i=1}^{\frac{p-1}{h}} \{e_i, e_i^2, \dots, e_i^{m \times n-1}\} = \{1, \dots, p-1\}.$$

Let

$$S_n = \sum_{i=0}^{n-1} 0.\overline{a_{m \times i+1} \dots a_{m \times n}} a_1 \dots a_{m \times i}$$

$$= \sum_{i=0}^{n-1} 0.\overline{a_{m \times i+1} \dots a_{m \times (i+1)}}$$

$$= \sum_{i=0}^{n-1} a_{m \times i+1} \dots a_{m \times (i+1)} / (10^m - 1)$$

Example:

 $0.\overline{142857} + 0.\overline{571428} + 0.\overline{285714} = 0.\overline{141414} + 0.\overline{282828} + 0.\overline{575757} = 14/99 + 28/99 + 57/99.$

Thus,

$$p \times S_n = p \times \sum_{i=0}^{n-1} 0.\overline{a_{m \times i+1} \dots a_{m \times n} a_1 \dots a_{m \times i}}$$

$$= \sum_{i=0}^{n-1} ((a \times 10^{m \times i})(modp))$$

$$= p \times \sum_{i=0}^{n-1} a_{m \times i+1} \dots a_{m \times (i+1)} / (10^m - 1)$$

Thus,
$$c_n(a,p) = \sum_{i=0}^{n-1} a_{m \times i+1} \dots a_{m \times (i+1)} = \frac{10^m - 1}{p} \times \sum_{i=0}^{n-1} ((a \times 10^{m \times i}) \pmod{p})$$
.

Example:

$1/17 = 0.\overline{0588235294117647}$, and

	m	n	c_n
$0+5+8+8+2+3+5+2+9+4+1+1+7+6+4+7=72 \equiv 0$	1	16	8
$\pmod{9}$			
$05 + 88 + 23 + 52 + 94 + 11 + 76 + 47 = 396 \equiv 0 \pmod{6}$	2	8	4
99)			
$0588 + 2352 + 9411 + 7647 = 19998 \equiv 0 \pmod{9999}$	4	4	2
$05882352 + 94117647 = 999999999 \equiv 0 \pmod{999999999}$	8	2	1

$1/19 = 0.\overline{052631578947368421}$, and

	m	n	c_n
0+5+2+6+3+1+5+7+8+9+4+7+3+6+8+4+2+1 = 0	1	18	9
$81 \equiv 0 \pmod{9}$			
$05 + 26 + 31 + 57 + 89 + 47 + 36 + 84 + 21 = 396 \equiv 0$	2	9	4
$\pmod{99}$			
$052+631+578+947+368+421=2997 \equiv 0 \pmod{999}$	3	6	3
$052631 + 578947 + 368421 = 9999999 \equiv 0 \pmod{999999}$	6	3	1
$052631578 + 947368421 = 9999999999 \equiv 0 \pmod{8}$	9	2	1
99999999)			

$1/757 = 0.\overline{001321003963011889035667107}$, and

	m	n	c_n
0+0+1+3+2+1+0+0+3+9+6+3+0+1+1+	1	27	10
$8+8+9+0+3+5+6+6+7+1+0+7=90 \equiv 0$			
$\pmod{9}$			
001 + 321 + 003 + 963 + 011 + 889 + 035 + 667 + 107 =	3	9	3
$2997 \equiv 0 \pmod{99}$			
$001321003 + 963011889 + 035667107 = 9999999999 \equiv 0$	9	3	1
$\pmod{999}$			

Trivia:

The decimal expansion of 1/19 is equal to the sum of the powers of 2 in reverse.

$$1/19 = 0.\overline{052631578947368421}$$

Compare it to 1/49.

Summary

Assuming $n \mid h$, where $10^h \equiv 1 \pmod{p}$ and $1 \le a \le p-1$.

If
$$p = 3$$
, then $c_n(a,3) = a \times n/3$.

If
$$n = 1$$
, then $c_1(a, p) = 1/p$.

If
$$n = 2$$
, then $c_n(a, p) \times p < (p - 1) + (p - 2) = 2 \times p - 3 < 2 \times p$.
Thus, $c_2(a, p) = 1$ (Midy's Theorem).

If n = 3 and a = 1, then $c_n(1,p) \times p < 1 + (p-2) + (p-3) = 2 \times p - 2 < 2 \times p$. Thus, $c_3(1,p) = c_3(2,p) = c_3(3,p) = c_3(4,p) = 1$. However, these may not be unique.

If
$$n = p - 1$$
, then $c_n(a, p) \times p = \sum_{i=1}^{p-1} i$. Thus, $c_{p-1}(a, p) = \frac{p-1}{2}$ (Full Reptend Prime).

If we replaced p with any number $b \neq \{2,5\}$, then adding the n equal partitions of the repeating decimal of a/b is also equal to $c_n(a,b) \times 9$ m's, where $c_n(a,b)$ is a rational number.

Open Questions

- 1. $c_n(1,p) = \left\lfloor \frac{c_h(1,p)}{h/n} \right\rfloor, \forall n \mid h.$ When p is a full reptend prime, $c_n(a,p) = c_n(1,p), \forall a \neq 1.$
- 2. If $2 \mid h$, then $h/2 \le c_h(a, p) \le C$, where $C = \{\sup x \ni \left| \frac{x}{h/2} \right| = 1\}$.

If
$$3 \mid h$$
, then $h/3 \le c_h(a,p) \le C$, where $C = \{\sup x \ni \left\lfloor \frac{x}{h/3} \right\rfloor = 1\}$.
If $6 \mid h$, then $h/2 \le c_h(a,p) \le C$, where $C = \{\sup x \ni \left\lfloor \frac{x}{h/3} \right\rfloor = 1\}$.
Examples: $9 \le c_{27}(a,757) \le 17$, $9 \le c_{18}(a,19) \le 11$ and $3 \le c_6(a,7) \le 3$.

3.
$$c_n(1,p) \le c_n(a,p), \forall 1 < a < p.$$

This is equivalent to $\sum_{i=0}^{n-1} (10^{m \times i} \pmod{p}) \le \sum_{i=0}^{n-1} ((a \times 10^{m \times i}) \pmod{p}).$

References

- 1. Eric W. Weisstein. "Midy's Theorem." From *MathWorld*–A Wolfram Web Resource. http://mathworld.wolfram.com/MidysTheorem.html
- 2. Eric W. Weisstein. "Full Reptend Prime." From *MathWorld*—A Wolfram Web Resource. http://mathworld.wolfram.com/FullReptendPrime.html