INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Department of Mathematics

Date: February, 2012 Time: 2 Hrs Full Marks: 30 No. of Students: 40 MID (SPRING) SEMESTER EXAMINATION (2011–2012)

Sub. No. MA 30108/MA61002

Subject Name: Swaitching and Finite Automate / Switching and Automata Theory

Answer ALL QUESTIONS. Marks are indicated at the end of each question.

- 1. Using the basic identities of Boolean algebra, show that:
 - a) $x(\bar{x} + y) = xy$
 - b) $x + \bar{x}y = x + y$

c)
$$xy + \bar{x}z + yz = xy + \bar{x}z$$
 [3]

- 2. Given the function $F(x, y, z) = x\bar{y}z + \bar{x}\bar{y}z + xyz$
 - a) Draw the logic diagram using the original Boolean expression.
 - b) Simplify the expression using Boolean algebra and identities.
 - c) Draw the logic diagram for the simplified expression in part b. [3]
- 3. Draw the combinational circuit that directly implements the following Boolean expression:

a)
$$F(x,y,z) = \bar{x}yz + yz + x\bar{y}$$

b) $F(x,y,z) = (xy XOR \overline{(y+\bar{z})}) + \bar{x}z$ [3]

- 4. a) Construct the XOR operator using only AND, OR, and NOT gates.
 - b) Construct the XOR operator using only NAND gates. [3]
- 5. Assume you have the following truth tables for functions $F_1(x,y,z)$ and $F_2(x,y,z)$:

\boldsymbol{x}	y	z	F_1	F_2
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	1
1	0	0	, 0	0
1	0	1	0	0
1	1	0	0	1
1	_1_	1	0	1

- a) Simplify F_1 and F_2 using Boolean algebra and identities.
- b) Draw one combinational logic circuit to implement the above two function. [3]

- 6. a) Draw a half-adder using only NAND gates.
 - b) Draw a full-adder using only NAND gates.

[2]

7. Create the Kmaps and then simplify for the following functions:

a)
$$F(x, y_{\bar{z}}z) = \bar{x}\bar{y}\bar{z} + \bar{x}y\bar{z} + x\bar{y}\bar{z} + xy\bar{z}$$

b)
$$F(w,x,y,z) = \bar{y}z + w\bar{y} + \bar{w}xy + \bar{w}\bar{x}y\bar{z} + w\bar{x}y\bar{z}$$
 [4]

- 8. Describe how each of the following circuits works and indicate typical inputs and outputs. Also provide a carefully labeled black box diagram for each.
 - a) Decoder (3×8)

b) Multiplexer
$$(8 \times 1)$$

9. Find the truth table that describes the following circuit:

[2]

10. Complete the truth table for the following sequential circuit:

[4]

			Nent State	
A	ß	X	A B	
0	0	. 0	,	
0	0	ŀ	÷ .	
0	1-	0		
0	, ř,	j		
Ţ	0	0		
1	0	1		
Ĭ,	Ti.	0		
1	. Is '	i	100	