Predicting NBA Center Rebounds

Mario Hage

Introduction

This project is an attempt to answer the below questions, and to discover answers for currently unknown questions.

- Can compiling individual game data from all the NBA Centers in the league tell us something that can be used to our advantage whilst sports betting?
- What hints at players having big games?
- What hints at players falling short?
- Can I come up with data points that can be fed into a model that predicts accurate enough to profit whilst sports betting?
- What is the significance of a player or team "being on a roll?"
- What about the opposite of "being on a roll?"

Data

nba_api: https://github.com/swar/nba_api

Distance data: https://www.rostrum.blog/2018/12/24/nba-travel/

The nba_api contained player box score history, which was filtered for centers. It also contained the Match-Up column, which was split into Team & Opponent; later joined with the Distance data on Start/End Routes.

Data

Left Join On Start and End Columns

(join process)

MATCHUP Nba_api original column LAC @ OKC

Nba_api (after data wrangling)

Home/Away	PreviousHome/Away	PreviousOpp	start	end	
Away	Away	HOU	HOU	ОКС	
Away	Away	CHA	CHA	HOU	
Away	Away	TOR	TOR	СНА	
Away	Home	NYK	LAC	TOR	

Distance Data

End	Duration (mins)		
POR	3459		
MIA	3457		
BOS	3311		
GSW	3307		
BOS	3302		
	POR MIA BOS GSW		

Rebounds Distribution

Rebounds vs Rolling Average Rebounds & vs Travel Time

Average Player Rebounds by Opponent

Feature Correlation

Feature Target Analysis

Modeling

Grid Search CV was used on all models to find optimal parameters

Model	Params	AUC Score	Precision	Recall	F1
Random Forest	criterion: entropy, max_depth: 8, n_estimators: 500	0.87	0.78	0.75	0.76
KNN	n_neighbors: 24	0.86	0.78	0.75	0.76
Logistic Regression	C: 0.05179	0.76			

Modeling - RF Confusion Matrix

All of the models performed worse at accurately classifying scenarios where a player grabs more than 10 rebounds, however the RF model was the most accurate out of the 3

Modeling - ROC_AUC curves

Conclusion

Mario Hage

Takeaways

- Random Forest Model is the optimal choice between the 3 models. All 3 struggle at predicting positive classifications, however the RF Model can accurately predict Negative classifications (91%)
- Model can be utilized to bet under scenarios
- EDA portion provided useful notifications/alerts

Looking Forward

- Spend time collecting data/ quantifying more features
- Integrate betting odds
- Test and optimize