Formulario

Tipo de problema	Intervalo
IC para la media μ con σ conocida	$\left[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$
IC para la media μ con σ desconocida	$\left[\bar{X} - t_{n-1,\alpha/2} \frac{S'}{\sqrt{n}}, \ \bar{X} + t_{n-1,\alpha/2} \frac{S'}{\sqrt{n}}\right]$
IC para la diferencia de medias $\mu_1 - \mu_2$ con σ_1, σ_2 conocidas	$ \begin{bmatrix} \bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \end{bmatrix} $ $ \bar{X} - t_{n-1,\alpha/2} \frac{S'}{\sqrt{n}}, \ \bar{X} + t_{n-1,\alpha/2} \frac{S'}{\sqrt{n}} \end{bmatrix} $ $ \bar{X}_1 - \bar{X}_2 \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}} $
IC para $\mu_1 - \mu_2$ en poblaciones normales con varianzas desconocidas pero iguales $\sigma_1^2 = \sigma_2^2$	$\left[\bar{X}_1 - \bar{X}_2 \pm t_{n+m-2,\alpha/2} \cdot S_c \cdot \sqrt{\frac{1}{n} + \frac{1}{m}} \right]$
IC para $\mu_1 - \mu_2$ en poblaciones normales con varianzas desconocidas y distintas $\sigma_1^2 \neq \sigma_2^2$	$\left[\bar{X}_1 - \bar{X}_2 \pm t_{k,\alpha/2} \cdot \sqrt{\frac{S_1'^2}{n} + \frac{S_2'^2}{m}} \right]$
IC para la varianza de una población normal	
IC para el cociente de varianzas en poblaciones normales	$\left[\frac{S_1'^2}{S_2'^2} \cdot \frac{1}{F_{n-1,m-1,\alpha/2}}, \frac{S_1'^2}{S_2'^2} \cdot \frac{1}{F_{n-1,m-1,1-\alpha/2}}\right]$
IC para la media con datos pareados en poblaciones normales	$\left[\bar{D} \pm t_{n-1,\alpha/2} \cdot \frac{S_D'}{\sqrt{n}}\right]$
IC para la proporción	$\left[\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$
IC para la diferencia de proporciones	$ [(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}] $

Donde:

$$S_c = \sqrt{\frac{(n-1) \cdot S_1'^2 + (m-1) \cdot S_2'^2}{n+m-2}}$$

$$k = \frac{\left(\frac{S_1'^2}{n} + \frac{S_2'^2}{m}\right)^2}{\frac{\left(\frac{S_1'^2}{n}\right)^2}{n-1} + \frac{\left(\frac{S_2'^2}{m}\right)^2}{m-1}}$$

$$P\left[\chi^2(n-1) > k_1\right] = 1 - \frac{\alpha}{2}, \qquad P\left[\chi^2(n-1) > k_2\right] = \frac{\alpha}{2}$$

Tipo de problema	Contraste	Estadístico	Región crítica
Media en poblaciones normales con varianza conocida	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$T = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$	$\left\{ T > z_{\alpha/2} \right\}$
Media en poblaciones normales con varianza desconocida	$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	$T = \frac{\bar{X} - \mu_0}{S'/\sqrt{n}} \sim t(n-1)$	$\left\{ T > t_{n-1,\alpha/2} \right\}$
Varianza en pobla- ciones normales	$H_0: \sigma^2 = \sigma_0^2$ $H_1: \sigma^2 \neq \sigma_0^2$	$T = \frac{(n-1)S'^2}{\sigma_0^2} \sim \chi^2(n-1)$	$ \left\{ \begin{array}{l} T < \chi^2_{n-1,1-\alpha/2} \\ \text{o } T > \chi^2_{n-1,\alpha/2} \end{array} \right\} $
Igualdad de medias con varianzas conocidas	$H_0: \mu_1 = \mu_2 \\ H_1: \mu_1 \neq \mu_2$	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim \mathcal{N}(0, 1)$	$\left\{ T > z_{\alpha/2} \right\}$
Igualdad de me- dias con varian- zas desconocidas e iguales	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$T = \frac{\bar{X}_1 - \bar{X}_2}{S_c \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t(n + m - 2)$	$\left\{ T > t_{n+m-2,\alpha/2} \right\}$
Igualdad de medias con varianzas desconocidas y distintas	$H_0: \mu_1 = \mu_2$ $H_1: \mu_1 \neq \mu_2$	$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1'^2}{n} + \frac{S_2'^2}{m}}} \sim t(k)$	$\left\{ T > t_{k,\alpha/2} \right\}$
Media con datos pareados	$H_0: \mu_D = 0$ $H_1: \mu_D \neq 0$	$T = \frac{\bar{D}}{S'_D/\sqrt{n}} \sim t(n-1)$	$\left\{ T > t_{n-1,\alpha/2} \right\}$
Igualdad de vari- anzas	$H_0: \sigma_1^2 = \sigma_2^2 \ H_1: \sigma_1^2 eq \sigma_2^2$	$T = \frac{S_1^{\prime 2}}{S_2^{\prime 2}} \sim F(n-1, m-1)$	$ \left\{ \begin{array}{l} T < F_{n-1,m-1,1-\alpha/2} \\ \text{o } T > F_{n-1,m-1,\alpha/2} \end{array} \right\} $
Proporción	$H_0: p = p_0$ $H_1: p \neq p_0$	$T = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} \sim \mathcal{N}(0, 1)$	$\left\{ T > z_{\alpha/2} \right\}$
Igualdad de proporciones	$H_0: p_1 = p_2$ $H_1: p_1 \neq p_2$	$T = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}} \sim \mathcal{N}(0,1)$	$\left\{ T > z_{\alpha/2} \right\}$

Table 1: Contrastes de hipótesis para diferentes tipos de problemas estadísticos