Organische Chemie II

Für Studierende der Biologie, der Pharmazeutischen Wissenschaften sowie der Gesundheitswissenschaften und Technologie

2. Semester, FS 2017

Prof. Dr. Carlo Thilgen

Diese Unterlagen sind nur für den ETH-internen Gebrauch durch die Studierenden der Vorlesung OC II gedacht. Sie dürfen ohne ausdrückliche schriftliche Genehmigung des Dozenten nicht an Aussenstehende weitergegeben werden.

© Carlo Thilgen, ETH Zürich.

Lernziele

- Strukturelle Klassifizierung von gesättigten Kohlenwasserstoffen (Alkane, Cycloalkane) und nichtaromatischen organischen Verbindungen (aliphatische und alicyclische Verbindungen).
- ➤ Ein Blick auf Vorkommen, Gewinnung und Verwendung von Alkanen.
- ➤ Ein paar **physikalische Eingenschaften** von Alkanen und ihre Variation als Funktion der Struktur innerhalb von homologen Reihen.

C. Schmuck, Kap. 4

Alkane - Definition

• **Alkane**: Acyclische (= offenkettige), unverzweigte oder verzweigte gesättigte Kohlenwasserstoffe (KW) der allg. Formel C_nH_{2n+2} . Früher auch als *Paraffine* bezeichnet.

Kurz: "gesättigte offenkettige KW".

- Cycloalkane: gesättigte (= ohne Mehrfachbindungen)
 monocyclische KW (mit oder ohne Seitenketten).
 Kurz: "gesättigte KW mit Ring".
- Aliphatische Verbindungen (gr. αλειφαρ, 'aleiphar' = fettig):
 acyclische oder cyclische, gesättigte oder ungesättigte
 Kohlenstoffverbindungen mit Ausnahme von aromatischen
 Verbindungen. Kurz: "nichtaromatische KW".
- Alicyclische Verbindungen: aliphatische Verbindungen mit einer gesättigten oder ungesättigten aber nicht aromatischen carbocyclischen Struktur. Kurz: "nichtaromatische KW mit Ring".

Alkane – Vorkommen und Gewinnung

- Vorkommen: wie andere KW in Erdöl und Erdgas.
- Gewinnung:
 - fraktionierte Destillation von Erdöl, ggf. nach "Cracken" der höhersiedenden Fraktionen;
 - Hydrierung von Olefinen oder Aromaten.
- Cracken: katalysierte thermische Zersetzung grosser KW-Moleküle zu kleineren Bruchstücken (über Homolyse von C–C-Bindungen und Folgereaktionen der resultierenden radikalischen Bruchstücke).

Energiegehalt und CO₂-Werte fossiler Brennstoffe

Energiequelle	Energiegehalt [kJ/g]	CO ₂ -Emission [mg] pro kJ gewonnene Energie
Erdgas	52	53
Erdöl	43	71
Kohle	24	93

CO₂ wird hauptsächlich bei folgenden menschlichen Aktivitäten freigesetzt:

- Verbrennung von Erdgas, Erdöl und Kohle für die Energiegewinnung (≈30% der Emissionen)
- **Verkehr** (≈30% der Emissionen)
- **Heizen**, Industrieprozesse, veränderte Landnutzung

n-Alkane – physikalische Daten

n-Alkane = unverzweigte Alkane

KW-Name	Formel	Schmp [°C]	Sdp. [°C]	d ²⁰	Δ H _{Schm.} [kcal/kg]	Δ H ° _f [kcal/mol]
Methan	CH ₄	-182	-164		14.0	-17.9
Ethan	C_2H_6	-183	-89		22.7	-20.2
Propan	C ₃ H ₈	-182	-42		19.1	-24.8
<i>n</i> -Butan	C ₄ H ₁₀	-138	-0.5		19.2	-30.4
<i>n</i> -Pentan	C ₅ H ₁₂	-130	36	0.56	27.9	-35.1
<i>n</i> -Hexan	C ₆ H ₁₄	-95	69	0.66	36.3	-39.9
<i>n</i> -Heptan	C ₇ H ₁₆	-91	98	0.68	33.8	

n-Alkane – Dispersionskräfte

- Auch völlig unpolare Moleküle (Alkane) lassen sich verflüssigen und verfestigen.
- <u>Grund</u>: die Elektronenbewegung relativ zu den Atomkernen führt auch bei Molekülen ohne permanentes Dipolmoment zur Ausbildung von **zeitlich und räumlich fluktuierenden Dipolen**.
- intermolekulare WW zwischen diesen fluktuierenden Dipolen =
 sog. van-der-Waals-Kräfte oder London-Dispersionskräfte
 ∞ Polarisierbarkeit der Moleküle; ∞ d⁻⁶ (Lennard-Jones-Potential).
- Entspr. Energiebeträge sind klein aber additiv (ca. –2 kcal/mol pro CH₂-Gruppe in n-Alkanen) und summieren sich somit bei grösseren Molekülen zu ansehnlichen Beträgen.

London- oder van-der-Waals-WW zwischen zwei Methanmolekülen

Isomere Alkane – physikalische Daten

KW-Name	Formel	Schmp [°C]	Sdp. [°C]	a ²⁰	Δ <i>H</i> _{Schm.} [kcal/kg]	$\Delta H_{\mathrm{f}}^{\circ}$ [kcal/mol]
<i>n</i> -Butan	C ₄ H ₁₀	-138	-0.5	0.60	19.2	-30.4
Isobutan	C ₄ H ₁₀	-159	-12.0	0.56	19.0	-32.4
<i>n</i> -Pentan	C ₅ H ₁₂	-130	36	0.56	27.9	-35.1
Isopentan	C ₅ H ₁₂	-160	30	0.62	17.2	-36.9
Neopentan	C ₅ H ₁₂	-17	9	0.56	10.8	-40.3

Verzweigte Moleküle: die einzelnen Zweige können sich aus sterischen Gründen nicht so gut aneinander "schmiegen":

- → wirksame *van-der-Waals-*Anziehung ist geringer (geringere Oberfläche);
- → **niedrigere Siedepunkte** und Verdampfungsenthalpien als bei *n-*Alkanen gleicher Molekülmasse.

Cycloalkane – Spannung

KW-Name	Formel	Schmp [°C]	Sdp. [°C]	∆ <i>H</i> ° _f [kcal/mol]	Spannungs- energie [kcal/mol]
Cyclopropan	C_3H_6	-128	-33	+12.7	27
Cyclobutan	C ₄ H ₈	-50	13	+6.8	26
Cyclopentan	C ₅ H ₁₀	-94	49	-18.4	6
Cyclohexan	C ₆ H ₁₂	7	81	-29.5	0
Cycloheptan	C ₇ H ₁₄	-12	119	-28.2	6
Cyclooctan	C ₈ H ₁₆	14	150	-29.7	10
Cyclononan	C ₉ H ₁₈			-31.7	13
Cyclodecan	C ₁₀ H ₂₀			-36.9	12

Cycloalkane – Spannung

Ringglieder- zahl <i>n</i>	Δ <i>H</i> _{Verbrennung} [kcal/mol]	Δ <i>H</i> _{Spannung} [kcal/mol]	$\Delta H_{\text{Spannung}}$ pro $\text{CH}_2\text{-Gr.}$ [kcal/mol]
3	499.8	28.1	9.37
4	656.1	27.1	6.78
5	793.4	6.2	1.24
6	944.8	1.3	0.02
7	1108.3	7.6	1.09
8	1269.2	11.3	1.41
9	1429.6	14.4	1.60
10	1586.8	14.4	1.44
11	1743.1	13.5	1.23
12	1893.4	6.5	0.46
13	2051.9	7.8	0.60
14	2206.1	4.7	0.34
15	2363.5	4.9	0.33
16	2521.0	5.2	0.33
17	2673.2	0.1	0.006

Spannung in mittleren Ringen: Transannulare WW in Cyclononan

Lernziele

- Funktionalisierung der apolaren Alkane durch radikalische Halogenierung (Radikalkettenreaktion).
- Für die Produkte der **Chlorierung** und **Bromierung** findet man **unterschiedliche Isomerenverteilungen**:
 - Erklärung anhand unterschiedlicher Stabilitäten der intermediär gebildeten Alkylradikale sowie unterschiedlicher Reaktivitäten der Halogene. Voraussetzung für diese Betrachtung ist das über diese Reaktion hinaus bedeutsame *Hammond*-Postulat.
 - ⇒ Reaktivitäts-/Selektivitäts-Prinzip.

Lernziele

- Für die **Bromierung** in **AllyI-Stellung** eignet sich besonders die radikalische Bromierung mit *N*-Bromsuccinimid (NBS) (*Wohl-Ziegler*-Reaktion):
 - Zurückdrängen der konkurrierenden Addition von Br₂ an die Doppelbindung (s. Skript, Kap. 4.3.4).
 - Sie bietet praktische experimentelle Vorteile und wird auch gern für Bromierungen in Benzyl-Stellung verwendet.

Halognierung von Alkanen

- Nutzen → Halogenalkane (Alkylhalogenide): sind im Ggs. zu apolaren Alkanen reaktiv aufgrund polarer C(δ+)-Hal(δ-)-Bindung → Ausgangsmaterialien für viele [industrielle] Synthesen.
- Mechanismus: Radikalkettenreaktion.

Initiierung:
$$Cl_2 \xrightarrow{hv} 2 Cl \cdot \Delta H^\circ = +58$$

Kettenreaktion: $Cl \cdot + CH_4 \longrightarrow CH_3 \cdot + HCl \Delta H^\circ = +2$
 $CH_3 \cdot + Cl_2 \longrightarrow CH_3Cl + Cl \cdot \Delta H^\circ = -26.7$
 $CH_4 + Cl_2 \longrightarrow CH_3Cl + HCl \Delta H^\circ = -24.7$

Kettenabbruch: durch Rekombination von 2 Radikalen (Wahrscheinlichkeit ≈ 1:10'000)

Das gebildete CH₃Cl kann weiterreagieren, wobei CH₂Cl₂, CHCl₃ und CCl₄ als Nebenprodukte obiger Reaktion entstehen.

Regioselektivität der Radikalkettenhalogenierung Reaktivitäts-/Selektivitätsprinzip

Regioselektivität der Radikalkettenchlorierung $k_{\text{konk}} = 1.33 \Rightarrow \Delta \Delta H^{\ddagger} \approx 1 \text{ kcal/mol}$ zugunsten der Bildung des sekundären Radikals

Regioselektivität der Radikalketten**bromierung** $k_{\text{konk}} = 11.5 \Rightarrow \Delta \Delta H^{\ddagger} \approx 2 \text{ kcal/mol}$ zugunsten der Bildung des sekundären Radikals

Generell gilt: je reaktiver, d.h. energiereicher ein Reagenz, umso weniger selektiv ist es! → Hier: Cl· reaktiver als Br·

Regioselektivität der Radikalkettenchlorierung

Radikalen (Gasphase Von **Carbenium-Ionen** Stabilitäten Relative

aus: Morrison / Boyd, "Lehrbuch der Organischen 183 Ś Chemie", VCH 1974,

Zur Erinnerung.

Produktverhältnisse bei kinetisch kontrollierten Konkurrenzreaktionen

Konkurrenz -konstante
$$k_{konk} = \frac{k_1}{k_2} = \frac{[Produkt 1]}{[Produkt 2]} = e^{\frac{-\Delta \Delta G^{\ddagger}}{R \cdot T}}$$

$$k_{\text{konk.}} = f(\Delta \Delta G^{\ddagger}) !$$

mit $\Delta \Delta G^{\ddagger} = \Delta G^{\ddagger}_{1} - \Delta G^{\ddagger}_{2}$

Bei 25 °C: $\log k_{\text{konk.}} = -\frac{\Delta \Delta G^{\ddagger}}{1.4}$ (<i>G</i> in kcal/mol)				
$\Delta \Delta G^{\ddagger}$	$k_{\text{konk.}} = \frac{[\text{Produkt 1}]}{[\text{Produkt 1}]}$			
[kcal/mol]	[Produkt 2]			
-1.4	10			
- 2.8	100			
-4.2	1'000			
-5.6	10'000			
- 7.0	100'000			

Hammond-Postulat (1)

Nach G. S. Hammond und J. E. Leffler (Hammond-Postulat) gilt:

Bei **exergonischen Reaktionsschritten** ähnelt der ÜZ <u>strukturell und energetisch</u> stärker dem **Reaktanten** [hier: **Propan**] \rightarrow "**früher**" ÜZ. Dieser Fall entspricht auf den folgenden Folien dem Reaktionsschritt CI• + n-Propan \rightarrow HCI + C_3H_7 •

Hammond-Postulat (2)

Nach G. S. Hammond und J. E. Leffler (Hammond-Postulat) gilt:

Bei **endergonischen Reaktionsschritten** ähnelt der ÜZ <u>strukturell</u> <u>und energetisch</u> dem **Produkt** bzw. Zwischenprodukt (**ZP**) [hier: **Propylradikal**] \rightarrow "**später** ÜZ". Dieser Fall entspricht auf den folgenden Folien dem Reaktionsschritt **Br•** + n-Propan \rightarrow H**Br** + C_3H_7 •

Chlorierung

egioselekti

Energiebilanz des Schritts Hal· + PrH → Pr· + HHal Vergleich Chlor vs. Brom

Warum ist der Schritt bei Cl exotherm, bei Br endotherm?

Energiebilanz für die Bildung des Isopropylradikals anhand der Bindungsdissoziationsenthalpien (s. Tab. 2, Anhang OC1-Skript):

1) Chlor

- Energieaufwand (gebrochene Bindung iPr–H): +95 kcal/mol (BDE)
- Energiegewinn (gebildete Bindung H–Cl): –103 kcal/mol (BDE)
- Σ : **-8** kcal/mol

2) Brom

- Energieaufwand (gebrochene Bindung iPr–H): +95 kcal/mol (BDE)
- Energiegewinn (gebildete Bindung H–Br): –87 kcal/mol (BDE)
- Σ : +8 kcal/mol

Vergleich Chlorierung vs. Bromierung

Chlorierung: $\Delta \Delta G^{\dagger} \approx 1 \text{ kcal/mol } \Box$

Bromierung: $\Delta \Delta G^{\dagger} \approx 2 \text{ kcal/mol } \Box$

Generell gilt:

je reaktiver, d.h energiereicher ein Reagenz, umso weniger selektiv ist es!

(*Hier:* Cl· reaktiver als Br·)

C. Thilgen, OC II, 28.2.17

Regioselektivität der Radikalkettenchlorierung

= f(Substitutionsgrad des Reaktionszentrums, Statistik)

Elektronischer Faktor: Auswirkung der relativen Stabilität der intermediären C-Radikale auf die davorliegenden ÜZ.

Vergleich Experiment vs. Statistik: statistisches Verhältnis × Reaktivitätsverhältnis = exp. Verhältnis relative Reaktionsgeschwindigkeitskonstanten für 1°CH vs. 2°CH vs. 3°CH $k_{\rm rel.}$

sek.

tert.

Regioselektivität der Radikalkettenchlorierung

Reaktivitäts-/Selektivitätsprinzip

NBS-Bromierung (Wohl-Ziegler-Reaktion)

Radikalstarter (z.B. AlBN oder DBPO) oder
$$hv$$
 O oder hv N-H + CCI_4 , Δ Succinimid (NBS)

Vorteile:

- Erfordert keinen Einsatz von elementarem Brom (flüssig, leicht flüchtig, stark ätzend): dieses wird im Verlauf der Wohl-Ziegler-Reaktion kontinuierlich in geringer Konz. aus NBS gebildet.
- Mit der Substitution konkurrierende Addition von Br₂ an evtl. vorhandene DB (Skript, Kap. 5.1.4) wird zurückgedrängt.
- Es wird unter dem Strich kein HBr freigesetzt.
- Verwendung eines apolaren LM (Tetrachlorkohlenstoff, CCl₄) für die radikalische Reaktion → Umsetzungsprodukt Succinimid kristallisiert aus CCl₄ aus und kann einfach durch Filtration abgetrennt werden.

 (N_2)

mBE(O-O) = 35 kcal/mol

2 Ph• +

2 CO₂

IN

C. Thilgen, OC II, 28.2.17

NBS-Bromierung – Mechanismus

Kettenreaktion (Fortpflanzung, Propagierung)

NBS-Bromierung – Mechanismus

Kettenreaktion (Fortpflanzung, Propagierung)

NBS-Bromierung – Mechanismus

Kettenabbruch (Terminierung)

Rekombination von Radikalen

Konkurrenzreaktion

radikalische Addition an eine Doppelbindung

Lernziele

- ➤ **Ein paar Betrachtungen zur Verbrennung** (radikalische Reaktion mit gasförmigem O₂).
- ➤ Die **Initiierung** ist durch eine hohe Aktivierungsbarriere ausgezeichnet und erfolgt meist thermisch (**Zündquelle**).
- ➤ Biologische "Verbrennungen" erfolgen i.d.R. über viele katalysierte Schritte mit niedrigeren Aktivierungsbarrieren.
- ▶ Die biologische "Verbrennung" von Nährstoffen ist oft mit dem Aufbau des energiereichen Moleküls ATP (Adenosintriphosphat) gekoppelt, das anschliessend bei vielen energieaufwändigen biologischen Synthesen als Energielieferant genutzt wird. Anschl. wird es durch "Verbrennung" weiterer Nährstoffe recycliert.

Verbrennung

- *Allg*.: Umsetzung von chemischen Verbindungen mit **O**₂.
- Stark exothermer Vorgang:

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O \mid \Delta H^0 = -186 \text{ kcal/mol}$$

Aber: die Aktivierungsbarriere ist hoch!

Zur Erinnerung: O₂ hat im Gegensatz zu den meisten Molekülen einen Triplett-Grundzustand mit 2 ungepaarten e⁻.

Zur Erinnerung: Sauerstoff hat einen Triplett-Grundzustand

Die meisten unter Normalbedingungen stabilen Moleküle haben einen Singulett-Grundzustand (\rightarrow alle e $^-$ gepaart mit jeweils antiparallelen Spins).

Spinerhaltungsgebot verlangsamt Reakt. mit O₂

Der Gesamtspin der Reaktionspartner muss bei der Reaktion erhalten bleiben !

Kettenreaktionen bei der Autoxidation

Autoxidation von verzweigten Alkanen durch Luftsauerstoff:

Exergone, vielstufige Reaktion mit hoher Aktivierungsbarriere
$$()$$
 langsame Reaktionen) $()$ Reaktion mit hoher Aktivierungsbarriere $()$ $()$ Reaktivierungsbarriere $()$ Reaktivierungsba

39

C-H-Funktionalisierung mit Sauerstoff. Der Trick der Natur: Cytochrom P450

C. Thilgen, OC II, 28.2.17

Biologische Verbrennung

Die **Verbrennung von Glucose** in der Zelle erfolgt über die **Atmungskette** und liefert **Adenosintriphosphat (ATP)** als energiereichen "Brennstoff" für energieaufwändige biochemische Prozesse. Bei der Spaltung von ATP in ADP + PO₄³⁻ werden 7.3 kcal/mol frei.

Glucose

Atmung
(aerobe Glucose-Oxidation)

$$+ 36 P + 36 ADP + 6 O_2$$

Glycolyse
(anaerobe Vergärung)

 $+ 2 P + 2 ADP$
 -263 kcal/mol
 $-263 \text{ kcal/$

ATP (Adenosintriphosphat, protonierte Form)

Kugel-Stab-Modell von ATP, beruhend auf einer Röntgen-Strukturanalyse:

O. Kennard, N. W. Isaacs, W. D. S. Motherwell, J. C. Coppola, D. L. Wampler, A. C. Larson, D. G. Watson. "The Crystal and Molecular Structure of Adenosine Triphosphate". *Proc. R. Soc. A (Math. and Phys. Sci.)* 1971,

325: 401-436.

DOI:10.1098/rspa.1971.0177

