Литература

- 1. Ю. С. Богданов «Лекции по математическому анализу» ч. 2
- 2. Л. Д. Кудрявцев «Математический анализ» ч. 1, 2
- 3. С. М. Никольский «Курс математического анализа»
- 4. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов «Математический анализ»
- 5. В. А. Ильин, Э. Г. Позняк «Основы математического анализа»
- 6. Г. М. Фихтенгольц «Курс дифференциальных и интегральных исчислений»
- 7. Б. Л. Рождественский «Лекции по математическому анализу»
- 8. Б. П. Демидович «Сборник задач и упражнений по математическому анализу»

Лекция 1

1 Топология плоскости

Будем рассматривать множество всевозможных упорядоченных пар действительных чисел, то есть M=(x,y).

Это множество назывется декартовым произведением $\mathbb{R} \times \mathbb{R}$ и обозначается \mathbb{R}^2 .

Интерпретируем это множество как множество точек плоскости. Оно является арифметически двумерным пространством.

Под расстоянием между двумя точками M_1 и M_2 будем понимать обычное евклидово расстояние:

 $\rho(M_1, M_2) = \sqrt{(x_1 - x_2)^2 + (e_1 - y_2)^2}$

Отметим, что расстояние между точками можно вводить и по-другому. Например, часто используется ткая методика:

$$\rho_1(M_1, M_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

$$\rho_2(M_1, M_2) = |x_1 - x_2| + |y_1 - y_2|$$

Пусть множества $A \subset \mathbb{R}^2$ и $B \subset \mathbb{R}^2$.

Расстоянием между множествами A и B будем называть число $\rho\left(A,B\right)=\inf \, \rho(x,y),$ $x\in\overline{A},\ y\in B.$

Диаметром множества $A\subset \mathbb{R}^2$ называется число $\delta(A)=\sup \rho(x,y)$ $x,y\in A$

Множество A называют ограниченным, если $\delta(A)$ конечно.

Множества

$$B(M_0; r) ::= \{ M | M \in \mathbb{R}^2, \delta(V, V_0) < r \}$$

$$\bar{B}(M_0; r) ::= \{ M | M \in \mathbb{R}^2, \delta(V, V_0) \leqslant r \}$$

 $S(M_0; r) ::= \{ M | M \in \mathbb{R}^2, \delta(V, V_0) = r \}$

будем называть соответственно открытым кругом, замкнутым кругом и окружностью с центром в точке M_0 и радиусом r.

Точку M_0 называют внутренней точкой множества $E \subset \mathbb{R}^2$, если M_0 принадлежит множеству E вместе с некоторым открытым кругом $B(M_0, r)$ ненулевого радиуса.

Множество $E \subset \mathbb{R}^2$ называют <u>открытым,</u> если все точки его внутренние, то есть принадлежат множеству E вместе с некоторым кругом ненулевого радиуса. E открыто $\Leftrightarrow \forall M \in E, \quad \exists r > 0, \quad B(M,r) \subset E$

- открытые множества
- не открытые множества

Множество E^* называют дополнением множества E до всего пространства \mathbb{R}^2 , если $E^* = \mathbb{R}^2 \backslash E$, то есть если $E^* = \{M | M \in \mathbb{R}^2, M \notin E\}$.

Пишут $E^* = CE$, то есть дополнение E до \mathbb{R}^2 обозначает CE.

Множество E называют <u>замкнутым</u>, если дополнение этого множества до всего \mathbb{R}^2 , то есть $\mathbb{R}^2 \backslash E$, является открытым множеством.

Имеют место быть следующие свойства:

- 1. объединение любого числа открытых множеств открыто
- 2. пересечение конечного числа открытых множеств открыто
- 3. пересечение любого числа замкнутых множеств замкнуто
- 4. объединение конечного числа замкнутых множеств замкнуто

Множество V называется окрестностью точки M_0 , если M_0 — внутренняя точка для V.

Окрестность точки M_0 будем обозначать символами $V(M_0),\ U(M_0).$

Окрестность $V(M_0)$ называется открытой, если множество $V(M_0)$ открыто.

Окрестность $V(M_0)$ называют замкнутой, если $V(M_0)$ замкнута.

Любые две точки $\in \mathbb{R}^2$ обладают непересекающимися окрестностями.

Круг в центре M_0 радиуса $\varepsilon > 0$, называют ε -окрестностью точки M_0 .

Множество $V(M_0)\backslash\{M_0\}$ называют <u>центрированной</u> или <u>проколотой</u> окрестностью точки M_0 и обозначают $\dot{V}(M_0)$.

Точку M_0 называют <u>граничной</u> для множества E, если в любой окрестности имеются как точки множества, так и точки дополнения E, то есть, не принадлежащие E.

Совокупность всех граничных точек множества E называется <u>границей</u> множества E и обозначается δE .

$$M_1, M_2, M_3, M_4 \in \delta E$$

$$M_5, M_7 \notin \delta E$$

Ни одна точка открытого множества не является граничной для этого множества. (следует ли отсюда, что у открытого множества нет граничных точек?)

$$E_o \Rightarrow \delta E \cap E = \emptyset$$
$$E_3 \Rightarrow \delta E \subset E$$
$$E_3 \Rightarrow \delta E \cap E = \delta E$$

Точка $M \in \mathbb{R}^2$ называется <u>предельной</u> точкой множества E, если \forall окрестность этой точки содержит бесконечное число точек множества E.

Предельная точка может как принадлежать, так и не принадлежать множеству E.

Совокупность точек E и его предельных точек называется замыканием множества E и обозначается \overline{E} .

Теорема. E замкнуто \iff $E = \overline{E}$

 \square . \Rightarrow E замкнуто \Rightarrow CE =:: $\mathfrak F$ открыто \Rightarrow $\forall M \in \mathfrak F$ $\exists B(M,r) \subset \mathfrak F \Rightarrow \forall M \notin E$ $\exists B(M,r), B(M,r) \cap E = \varnothing \Rightarrow$ все предельные точки E содержатся в E, то есть $E = \overline{E}$.

 \Leftarrow . $E=\overline{E}, \quad \forall M\in CE=\mathfrak{F}\quad \exists B(M,r)\subset \mathfrak{F}\Rightarrow CE$ открыто, то есть E замкнуто. \boxtimes

Замкнутое множество содержит все свои предельные точки.

Всегда
$$\overline{E} = E \cup \delta E$$

Множества \varnothing и \mathbb{R}^2 считают как открытыми, так и замкнутыми.

Множество E называется <u>линейно-связным</u>, если любые две его точки можно соеденить кривой (направленной), целиком лежащей в E.

В дальнейшем для краткости линейно-связное множество будем называть связным.

Открытое связное множество называют <u>областью</u>. Замыкание области называют <u>замкнутой</u> областью. Ограниченное замкнутое множество называется <u>компактным множеством</u> или компактом.

Все свойства множеств, которые в конечном счете выражаются через свойства окрестности называются <u>топологическими</u>.

1.1 Точечные последовательности

Отображение $f: \mathbb{N} \longrightarrow \mathbb{R}^2$ такое, что каждому $n \in \mathbb{N}$ ставится в соответствие элемент пространства \mathbb{R}^2 , то есть точка на плоскости, называется последовательностью в \mathbb{R}^2 . Обозначать последовательнось будем (M_n) .

Говорят, что последовательность точек (M_n) сходится к точке (M_0) , если

$$\lim_{n \to \infty} \rho(M_n, M_0) = 0 \qquad |M_n M_0| \xrightarrow[n \to \infty]{} 0$$

Записываем $\lim_{n\to\infty}M_n=M_0$ или $M_n\to M$ при $n\to\infty.$

Итак,
$$\lim_{n\to\infty} M_n = M_0 \iff \lim_{n\to\infty} |M_n M_0| = 0$$

 $\lim_{n\to\infty} M_n = M_0 \text{ означает, что } \forall \varepsilon > 0, \exists \nu_\varepsilon, \forall n \geqslant \nu(\varepsilon) \quad \Rightarrow \quad \rho(M_n, M_0) \leqslant \varepsilon \text{ или } |M_n M_0| \leqslant \varepsilon.$

Другими словами:

$$M_n \to M_0 \implies \forall V(M_0) \exists \nu_V \implies M_n \in V(M_0)$$

или

$$M_n \to M_0$$
 если $\forall \varepsilon > 0 \exists \nu_{\varepsilon} \Rightarrow M_n \in B(M_0; \varepsilon)$

Сходящиеся последовательности в \mathbb{R}^2 обладают основными свойствами сходящихся последовательностей. Эти свойства вытекают из определения, а также могут быть доказаны аналогичным методом, как и для обычных последовательностей. Ограничимся перечислением этих свойств.

- 1. Сходящаяся последовательность может иметь только один предел.
- 2. Если последовательность точек (M_n) сходится к M_0 , то и любая ее подпоследовательность также сходится к M_0 .
- 3. Сходящаяся точечная последовательность ограничена, то есть расположена в круге конечного радиуса с центром в точке M_0 .
- 4. Для сходимости последовательности $M_n = (x_n, y_n)$ к $M_0 = (x_0, y_0)$ необходимо и достаточно, чтобы $x_n \to x_0, \quad y_n \to y_0$ одновременно.

$$\square \Rightarrow . \quad M_n \to M_0 \quad \Rightarrow \quad \rho(M_n, M_0) \to 0 \quad \Rightarrow \quad \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} \to 0 \quad \Rightarrow \quad \forall \varepsilon > 0, \quad \exists \nu_{\varepsilon}, \quad \forall n \geqslant \nu_{\varepsilon}$$

$$\sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} \leqslant \varepsilon \quad \Rightarrow \quad \sqrt{(x_n - x_0)^2} \leqslant \varepsilon \quad \Rightarrow \quad |x_n - x_0| \leqslant \varepsilon.$$

Аналогично $|y_n - y_0| \leq \varepsilon$.

$$\Leftarrow . \quad |x_n - x_0| \leqslant \varepsilon, \quad |y_n - y_0| \leqslant \varepsilon \quad \Rightarrow \quad \rho(M_n, M_0) = \sqrt{(x_n - x_0)^2 + (y_n - y_0)^2} \leqslant \sqrt{\varepsilon^2 + \varepsilon^2} = \varepsilon \sqrt{2} \quad \boxtimes$$

5. Принцип выбора: из всякой ограниченной последовательности можно извлечь сходящуюся подпоследовательность.

6. <u>Критерий Коши сходимости</u>: для сходимости последовательности (M_n) необходимо и достаточно, чтобы (M_n) была фундаментальной, то есть

$$\forall \varepsilon > 0, \quad \exists \nu_{\varepsilon}, \quad \forall k, p \geqslant \nu_{\varepsilon} \Rightarrow \rho(M_k, M_p) \leqslant \varepsilon \qquad (|M_k M_p| \leqslant \varepsilon)$$

- 7. Если все $M_n \in E$ и E замкнуто $(E = \overline{E})$, то и $M_0 \in E$, где $M_0 = \lim_{n \to \infty} M_n$.
- 8. Если E открыто и $M_0 \in E$, то $\exists \nu, \forall n \geqslant \nu$ $M_n \in E$

1.2 Предел функции двух переменных

Пусть $E \subset \mathbb{R}^2$ и рассмотрим отображение

$$f: E \to \mathbb{R}$$
,

то есть $\forall M \in E$ сопоставляется отображение действительных чисел. Такое отображение называется функцией двух переменных.

Записываем: u = f(M) = f(x, y)

Градиентом функции f Γ_f называют множество точек

$$\Gamma_f = \{(x, y, z) | , (x, y) \in E, z = f(x, y) \}$$

 Γ_f в пространстве представляет собой некоторое множество точек (очень часто поверхность).

Пусть f определена на проколотой окрестности $\dot{V}(M_0)$ точки M_0 . Число A называют пределом функции f при $M \to M_0$, если

$$\forall \varepsilon > 0, \quad \exists \delta = \delta(\varepsilon), \quad \forall M \in V(M_0), \quad 0 < \rho(M, M_0) \leqslant \delta \quad \Rightarrow \quad |f(M) - A| \leqslant \varepsilon$$

Непосредственно из определения предела вытекает, что $\lim_{M \to M_0} f(M) = A$ тогда и только тогда, когда

$$orall U(A)$$
 $\exists \dot{V}(M_0)$ такая, что $f(\dot{V}(M_0)) \subset U(A)$

Критерий Гейне:

$$\lim_{M_0} f = A \iff \forall (M_n), \quad M_n \in E, \quad M_n \neq M_0, \quad M_n \to M_0 \implies f(M_n) \to A \text{ при } n \to \infty.$$

Доказательство аналогично доказательству для случая одной переменной. Критерий Гейне позволяет перенести на случай функции двух переменных основные свойства предела функции одной переменной.

Более подробно $\lim_{M\to M_0} f(M) = A$ записывают так:

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A$$

Для функции двух переменных вводят и понятие повторных пределов.

А именно, если мы зафиксируем y, то можем поставить вопрос о существовании предела $\lim_{x\to x_0} f(x,y) = \varphi(y)$.

После этого, если указанный предел существует, попробуем найти $\lim_{y \to y_0} \varphi(y)$.

Получаем

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y).$$

Это выражение и называют повторным пределом. Аналогичным образом строится и такой повторный предел

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y)$$

Для того, чтобы различать эти понятия, $\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x,y)$ называют ещё двойным пределом.

Теорема. Если существует $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$, и для $\forall x,x\neq x_0$ существует конечный предел $\lim_{y\to y_0} f(x,y)$, то существует и повторный предел $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$, причём

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{(x, y) \to (x_0, y_0)} f(x, y)$$

 \square Так как $\exists \lim_{(x,y) \to (x_0,y_0)} f(x,y) = :: A,$ то

$$\forall \varepsilon > 0, \ \exists \delta(\varepsilon) > 0, \ \forall M \ \rho(M, M_0) \leqslant \delta \ \Rightarrow \ |f(x, y) - A| \leqslant \varepsilon$$

Где $M = (x, y), M_0 = (x_0, y_0).$ Из $\rho(M, M_0) \leqslant \delta \implies |x - x_0| \leqslant \delta, |y - y_0| \leqslant \delta.$

Зафиксируем теперь x так, чтобы $|x-x_0| \le \delta$ и перейдем в $|f(x,y)-A| \le \varepsilon$ к пределу при $y \to y_0$ так как $\exists \lim_{y \to y_0} f(x,y) = :: \varphi(x)$, то в результате перехода к пределу получим

$$|\varphi(x) - A| \leqslant \varepsilon$$

Так как $|x-x_0| \le \delta$, то это неравенство означает, что

$$\lim_{x \to x_0} \varphi(x) = A$$
 или $\lim_{x \to x_0} \lim_{y \to y_0} f(x,y) = A$ \boxtimes

Следствие (о совпадении повторных пределов):

Если существует $\lim_{\substack{x\to x_0\\y\to y_0}} f(x,y)$ и $\forall x,x\neq x_0$, существует конечный предел $\lim_{y\to y_0} f(x,y)$, а для $\forall y,y\neq y_0$ существует конечный предел $\lim_{x\to x_0} f(x,y)$, то существуют оба повторных предела, причём

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = \lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y).$$

1.3 Функции трех переменных

Для функции трёх переменных всё строится по аналогичной схеме, как и для функции двух переменных. Сохраняются все те же определения что и для плоскости, но говорим уже о пространстве.

Рассматриваются не пары чисел M = (x, y), а тройки M = (x, y, z);

$$\rho(M, M_0) = \sqrt{(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2}$$
 и так далее.

В остальном все определения переносятся почти дословно.

$$f: E \to \mathbb{R}, \quad E \subset \mathbb{R}^3$$

$$u = f(M) = f(x, y, z)$$

Вместо слов «круг», «окружность» будет «шар», «сфера».

Полагаю, что для вас не составит труда проделать всё аналогично.

В дальнейшем будем говорить о функции двух переменных, предполагая, что всё автоматически переносится на функции трёх переменных