Studying the role of induction axioms in reverse mathematics

Paul Shafer
Universiteit Gent
Paul.Shafer@UGent.be
http://cage.ugent.be/~pshafer/

SLS 2014 February 21, 2014

Contents

- Introduction
- 2 The pigeonhole principle and induction
- $\ \ \Pi_1^1$ -conservativity
- 4 Back to pigeonhole principles
- Diagonally non-recursive functions and graph colorability

Let's begin with an old friend

The system RCA₀ is axiomatized by

- the axioms of a discretely ordered commutative semi-ring with 1 (or PA⁻ if you like);
- the Δ_1^0 comprehension scheme:

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$$

where φ is Σ^0_1 and ψ is Π^0_1 ; and

• the Σ_1^0 induction scheme:

$$(\varphi(0) \land \forall n(\varphi(n) \to \varphi(n+1))) \to \forall n\varphi(n),$$

where φ is Σ_1^0 .

Idea: To get new sets, you have to compute them from old sets.

Boy, lots of theorems say that certain kinds of sets exist!

RCA₀ gives you

- a little bit of comprehension and
- a little bit of induction.

In reverse mathematics, we typically analyze which theorems prove which other theorems over RCA_0 .

Often a theorem looks like a set-existence principle: for every this kind of set, there is a that kind of set. For example:

- ullet For every continuous function $[0,1] \to \mathbb{R}$ there is a maximum.
- For every commutative ring there is a prime ideal.
- For every coloring of pairs in two colors there is a homogeneous set.
- For every infinite subtree of $2^{<\mathbb{N}}$ there is an infinite path.

A closer look at induction

So reverse mathematics is often concerned with set-existence principles.

Almost as often, induction merits no special consideration. (But it can get tricky to make arguments work using only Σ_1^0 -induction.)

Today, we look at a few situations in which induction plays a more pronounced role, such as with

- pigeonhole principles,
- · conservativity results, and
- diagonally non-recursive functions.

It will be fun and interesting.

Induction and collection

The induction axiom for φ is (the universal closure of)

$$(\varphi(0) \wedge \forall n(\varphi(n) \to \varphi(n+1))) \to \forall n \varphi(n).$$

The collection (or bounding) axiom for φ is (the universal closure of)

$$(\forall n < t)(\exists m)\varphi(n,m) \to (\exists b)(\forall n < t)(\exists m < b)\varphi(n,m)$$

 $I_{\Sigma_n}^0$ (I_n^0) is the collection of induction axioms where the φ is Σ_n^0 (Π_n^0). Note RCA₀ includes $I_{\Sigma_n}^0$.

 $\mathsf{B}\Sigma_n^0$ ($\mathsf{B}\Pi_n^0$) is the collection of bounding axioms where the φ is Σ_n^0 (Π_n^0).

Induction and collection

Even though there is no such thing as a Δ_n^0 formula, we can still make sense of $\mathrm{I}\Delta_n^0$.

 $|\Delta_n^0|$ is the collection of universal closures of formulas of the form

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow ([\varphi(0) \land \forall n(\varphi(n) \rightarrow \varphi(n+1))] \rightarrow \forall n\varphi(n)),$$

where φ is Σ_n^0 and ψ is $\Pi_n^0.$

A summary of basic equivalences

Let $n \geq 1$. Over RCA₀:

- $\mathsf{I}\Sigma_n^0 \leftrightarrow \mathsf{I}\Pi_n^0$;
- $\mathsf{B}\Sigma_{n+1}^0 \leftrightarrow \mathsf{B}\Pi_n^0$;
- $\mathsf{I}\Sigma_{n+1}^0 \Rightarrow \mathsf{B}\Sigma_{n+1}^0 \Rightarrow \mathsf{I}\Sigma_n^0$ (Kirby & Paris);
- if $n \geq 2$, then $\mathsf{I}\Delta_n^0 \leftrightarrow \mathsf{B}\Sigma_n^0$ (Slaman).

Two points:

- (1) RCA₀ proves Π_1^0 .
- (2) The bounding axioms are equivalent to induction axioms.

Contents

- Introduction
- 2 The pigeonhole principle and induction
- Π_1^1 -conservativity
- 4 Back to pigeonhole principles
- 5 Diagonally non-recursive functions and graph colorability

Equivalence between a theorem and an induction scheme

 $\mathsf{RT}^1_{<\mathbb{N}}$ is the following statement (it's the infinite pigeonhole principle):

For every k>0 and every $f\colon \mathbb{N}\to k$, there is an infinite $H\subseteq \mathbb{N}$ and a c< k such that $(\forall n\in H)(f(n)=c)$.

Theorem (Hirst)

 $\mathsf{B}\Sigma^0_2$ and $\mathsf{R}\mathsf{T}^1_{<\mathbb{N}}$ are equivalent over RCA_0 .

Remember that $\mathsf{B}\Sigma^0_2 \leftrightarrow \mathsf{B}\Pi^0_1$ over RCA_0 (from the previous slide).

So Hirst's theorem also means that $\mathsf{B}\Pi^0_1$ and $\mathsf{RT}^1_{<\mathbb{N}}$ are equivalent over $\mathsf{RCA}_0.$

$$\mathsf{RCA}_0 + \mathsf{B}\Pi^0_1 \vdash \mathsf{RT}^1_{<\mathbb{N}}$$

Let $f: \mathbb{N} \to k$.

Suppose for a contradiction that no color c < k appears infinitely often:

$$(\forall c < k)(\exists n)(\forall m)(m > n \to f(m) \neq c).$$

Then by $\mathrm{B}\Pi^0_1$ there is a b such that

$$(\forall c < k)(\exists n < b)(\forall m)(m > n \to f(m) \neq c).$$

This means that $f(b+1) \not < k$, a contradiction. So in fact some color c < k appears infinitely often.

Let
$$H = \{n : f(n) = c\}.$$

$$\mathsf{RCA}_0 + \mathsf{RT}^1_{<\mathbb{N}} \vdash \mathsf{B}\Pi^0_1$$

Suppose

$$(\forall n < t)(\exists m)(\forall z)\varphi(n, m, z)$$

(where φ has only bounded quantifiers).

Define $f \colon \mathbb{N} \to \mathbb{N}$ by

$$f(\ell) = \begin{cases} (\mu b < \ell)(\forall n < t)(\exists m < b)(\forall z < \ell)\varphi(n, m, z) & \text{if a b exists} \\ \ell & \text{otherwise} \end{cases}$$

 $f(\ell)$ is the least b that witnesses bounding when only looking up to $\ell.$

$$\mathsf{RCA}_0 + \mathsf{RT}^1_{<\mathbb{N}} \vdash \mathsf{B}\Pi^0_1$$

Reminder:

$$f(\ell) = \begin{cases} (\mu b < \ell)(\forall n < t)(\exists m < b)(\forall z < \ell)\varphi(n, m, z) & \text{if a b exists} \\ \ell & \text{otherwise} \end{cases}$$

If $\operatorname{ran}(f)$ is bounded, then $\operatorname{RT}^1_{<\mathbb{N}}$ applies, and there is a b and an infinite H such that $(\forall \ell \in H)(f(\ell) = b)$.

In this case, one proves that b is the desired bound:

$$(\forall n < t)(\exists m < b)(\forall z)\varphi(n, m, z)$$

Otherwise $\operatorname{ran}(f)$ is unbounded. Define a sequence $(\ell_i:i\in\mathbb{N})$ so that $\ell_i<\ell_{i+1}$ and $f(\ell_i)< f(\ell_{i+1})$.

Now define $g \colon \mathbb{N} \to t$ by

$$g(i) = (\mu n < t)(\forall m < f(\ell_i) - 1)(\exists z < \ell_i)(\neg \varphi(n, m, z)).$$

$$\mathsf{RCA}_0 + \mathsf{RT}^1_{<\mathbb{N}} \vdash \mathsf{B}\Pi^0_1$$

Reminder:

$$g(i) = (\mu n < t)(\forall m < f(\ell_i) - 1)(\exists z < \ell_i)(\neg \varphi(n, m, z)).$$

By $\mathsf{RT}^1_{<\mathbb{N}}$ applied to g, there is an n < t and an infinite H such that $(\forall i \in H)(g(i) = n).$

Let m be such that $\forall z \varphi(n, m, z)$.

Let $i \in H$ be such that $f(\ell_i) - 1 > m$.

Then g(i) = n, so $\exists z (\neg \varphi(n, m, z))$. Contradiction!

Contents

- Introduction
- 2 The pigeonhole principle and induction
- $\ \, {\bf 3} \ \, \Pi^1_1 \hbox{-conservativity}$
- 4 Back to pigeonhole principles
- 5 Diagonally non-recursive functions and graph colorability

Π_1^1 -conservativity

Definition (Π_1^1 -conservativity)

Let S and T be theories with S \subseteq T. Then T is Π_1^1 -conservative over S if $\varphi \in T \leftrightarrow \varphi \in S$ whenever φ is a Π_1^1 sentence.

So although T may be stronger than S, this additional strength is not witnessed by a Π_1^1 sentence.

(Of course you can study conservativity for other formula classes too.)

Classic examples:

- WKL₀ is Π_1^1 -conservative over RCA₀ (Harrington).
- WKL₀ + B Σ_2^0 is Π_1^1 -conservative over RCA₀ + B Σ_2^0 (Hájek).

Why study conservativity?

Conservativity gives a way to express that T is stronger than S but not too much stronger than S.

Conservativity is useful for studying the first-order consequences of a theory.

For example, RCA_0 and WKL_0 have the same first-order part because WKL_0 is Π^1_1 -conservative over RCA_0 .

How do you prove conservativity results?

Proving that T is Π^1_1 -conservative over S is about proving that every countable model of S can be extended to a model of T with the same first-order part.

For example:

Theorem (Harrington)

Every countable model of RCA_0 is a submodel of a countable model of WKL_0 with the same first-order part.

How do you prove conservativity results?

Suppose $\mathsf{RCA}_0 \nvdash \forall X \varphi(X)$, where φ is arithmetic.

Then there is a countable model $M=(\mathbb{N},\mathcal{S})$ such that $M \models \mathsf{RCA}_0$ and $M \models \exists X(\neg \varphi(X)).$

Let $X \in \mathcal{S}$ witness $M \vDash \neg \varphi(X)$.

M is a submodel of a countable model $N=(\mathbb{N},\mathcal{T})$ of WKL₀, where $\mathcal{S}\subseteq\mathcal{T}$.

Thus $X \in \mathcal{T}$ and so $N \models \neg \varphi(X)$. This is because φ is arithmetic, so the truth of $\varphi(X)$ depends only on $\mathbb N$ and X.

So $N \vDash \mathsf{WKL}_0$ and $N \vDash \exists X(\neg \varphi(X))$.

So WKL₀ $\nvdash \forall X \varphi(X)$.

Extending models while preserving induction

Suppose φ and ψ are two theorems, and we want to prove that $\mathsf{RCA}_0 + \varphi \nvdash \psi.$

So we have to build a model of $RCA_0 + \varphi$ that is not a model of ψ .

In many cases, this can be done by working over ω and proving that you can add sets witnessing φ that do not compute sets witnessing ψ .

Induction is never a problem. With ω , you have as much induction as you could ever want, and you can never add a set that breaks $I\Sigma_1^0$.

When extending models, the situation is different. You are given a model $(\mathbb{N}, \mathcal{S})$ of RCA₀, and all you know is that $I\Sigma^0_1$ holds relative to the $X \in \mathcal{S}$.

When adding sets to S, you need to make sure that $I\Sigma_1^0$ holds relative to them.

Weak Ramsey principles

Definition (RT₂, ADS, and CAC)

- RT $_2^2$: For every $f: [\mathbb{N}]^2 \to 2$, there is an infinite H such that $|f([H]^2)| = 1$.
- CAC: In every partial order, there is either an infinite chain or an infinite antichain.
- ADS: In every linear order, there is either an infinite increasing sequence or an infinite decreasing sequence.

 ${\rm RT}_2^2$ is strictly stronger than CAC over ${\rm RCA}_0$ (Hirschfeldt & Shore). CAC is strictly stronger than ADS over ${\rm RCA}_0$ (Lerman, Solomon, Towsner).

 RT_2^2 proves $\mathsf{B}\Sigma_2^0$ over RCA_0 (Hirst). CAC and ADS both prove $\mathsf{B}\Sigma_2^0$ over RCA_0 (Chong, Lempp, Yang).

What about $I\Sigma_2^0$?

Question

Does RT_2^2 imply $I\Sigma_2^0$ over RCA_0 ? Does CAC? Does ADS?

Answer: None of these principles implies $I\Sigma_2^0$ over RCA₀ (Chong, Slaman, Yang).

Theorem (Chong, Slaman, Yang)

Both ADS and CAC are Π^1_1 -conservative over RCA₀ + B Σ^0_2 .

It follows that neither ADS nor CAC proves I Σ^0_2 over RCA $_0$ because I Σ^0_2 consists of arithmetical axioms, and RCA $_0$ + B Σ^0_2 \nvdash I Σ^0_2 .

Contents

- Introduction
- 2 The pigeonhole principle and induction
- Π_1^1 -conservativity
- 4 Back to pigeonhole principles
- Diagonally non-recursive functions and graph colorability

The pigeonhole principle for trees

Definition (TT¹)

 TT^1 : For every k>0 and every $f\colon 2^{<\mathbb{N}}\to k$, there is an infinite $T\subseteq 2^{<\mathbb{N}}$ that is order-isomorphic to $2^{<\mathbb{N}}$ and a c< k such that $(\forall \sigma\in T)(f(\sigma)=c).$

Theorem

- $RCA_0 + I\Sigma_2^0 \vdash TT^1$ (Chubb, Hirst, McNicholl).
- $RCA_0 + TT^1 \vdash B\Sigma_2^0$ (Chubb, Hirst, McNicholl).
- $RCA_0 + B\Sigma_2^0 \nvdash TT^1$ (Corduan, Groszek, Mileti).

Theorem (Breaking news! Chong and Li)

$$\mathsf{RCA}_0 + \mathsf{TT}^1 \vdash \mathsf{I}\Sigma_2^0$$

$\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 \nvdash \mathsf{TT}^1$

Theorem (Corduan, Groszek, Mileti)

If S is an extension of RCA₀ by Π_1^1 axioms, then $S \vdash TT^1$ if and only if $S \vdash I\Sigma_2^0$.

Thus $RCA_0 + B\Sigma_2^0 \not\vdash TT^1$ because $RCA_0 + B\Sigma_2^0$ is strictly weaker than $RCA_0 + I\Sigma_2^0$.

The idea here is to prove that if $M \vDash \mathsf{RCA}_0$ but $M \nvDash \mathsf{I}\Sigma^0_2$, then there is a coloring $f \colon 2^{<\mathbb{N}} \to k$ such that no $T \leq_\mathsf{T} f$ is a monochromatic subtree of $2^{<\mathbb{N}}$ isomorphic to $2^{<\mathbb{N}}$.

Thus if $M \models \mathsf{RCA}_0$ and $M \not\models \mathsf{I}\Sigma^0_2$, then there is a submodel N of M with the same first-order part that satisfies all the Π^1_1 sentences true in M but not TT^1 .

Contents

- Introduction
- 2 The pigeonhole principle and induction
- Π_1^1 -conservativity
- 4 Back to pigeonhole principles
- 5 Diagonally non-recursive functions and graph colorability

Diagonally non-recursive functions

Definition

Let $f, g \colon \mathbb{N} \to \mathbb{N}$, and let $k \geq 2$.

- f is diagonally non-recursive relative to g (i.e., $\mathsf{DNR}(g)$) if $\forall e(f(e) \neq \Phi_e^g(e)).$
- f is k-bounded diagonally non-recursive relative to g (i.e., $\mathsf{DNR}(k,g)$) if f is $\mathsf{DNR}(g)$ and $\mathsf{ran}(f) \subseteq \{0,1,\ldots,k-1\}$.

(In the case g = 0, we just write DNR and DNR(k).)

Notice that every $\mathsf{DNR}(k)$ function is also a $\mathsf{DNR}(k+1)$ function.

Does every $\mathsf{DNR}(k+1)$ function compute a $\mathsf{DNR}(k)$ function?

Classical theorems concerning DNR(k) functions

Theorem (Jockusch attributes to Friedberg)

For every $k \geq 2$, every $\mathsf{DNR}(k)$ function computes some $\mathsf{DNR}(2)$ function.

Theorem (Jockusch)

The reduction from $\mathsf{DNR}(k)$ to $\mathsf{DNR}(2)$ is not uniform. That is, for each $k \geq 2$, there is no Turing functional Φ such that $(\forall f \in \mathsf{DNR}(k+1))(\Phi^f \in \mathsf{DNR}(k)).$

Theorem (Jockusch & Soare)

Every $\mathsf{DNR}(2)$ function computes an infinite path through every infinite, computable tree $T\subseteq 2^{<\mathbb{N}}$.

Reverse math and DNR functions

Here we overload the 'DNR' notation:

- ullet DNR(g) also denotes the statement "there is an f that is DNR(g)."
- $\mathsf{DNR}(k,g)$ also denotes the statement "there is an f that is $\mathsf{DNR}(k,g)$."

Theorem

- $\mathsf{RCA}_0 \vdash \mathsf{WKL} \leftrightarrow \forall g(\mathsf{DNR}(2,g)).$
- For each standard $k \geq 2$, $RCA_0 \vdash WKL \leftrightarrow \forall g(DNR(k, g))$.

Theorem (Ambos-Spies, Kjos-Hanssen, Lempp, Slaman)

 $\forall g(\mathsf{DNR}(g))$ is strictly weaker than WWKL over RCA₀.

$\exists k \forall g(\mathsf{DNR}(k,g))$ versus WKL

What if you know that there are $\mathsf{DNR}(k,g)$ functions for some $k \geq 2$, but you do not know which k?

This is essentially a question of Simpson, who asked:

Question (Simpson, 2001)

Is $\exists k \forall g(\mathsf{DNR}(k,g))$ equivalent to WKL over RCA_0 ?

Of course, we could ask the same question about the (formally weaker) statement $\forall g \exists k (\mathsf{DNR}(k,g))$.

Connection to graph colorability

By compactness, every locally ℓ -colorable graph is ℓ -colorable.

There has been considerable work analyzing the computability-theoretic content of this fact, culminating (for our purposes) in a theorem of Schmerl:

Theorem (Schmerl)

Fix standard ℓ and k such that $2 \le \ell \le k$. Then the following are equivalent over RCA₀:

- (i) WKL
- (ii) Every locally ℓ -colorable graph is k-colorable.

The content of this theorem is that the ability to color a graph with a fixed sub-optimal number of colors is as strong as the ability to color the graph with the optimal number of colors.

Connection to graph colorability

Denote by $\mathsf{COL}(\ell, k, G)$ the statement "if G is a locally ℓ -colorable graph, then G is k-colorable."

Question (essentially of Simpson)

Are either of the following statements equivalent to WKL over RCA₀?

- $\forall \ell \exists k \forall G(\mathsf{COL}(\ell, k, G))$
- $\forall \ell \forall G \exists k (\mathsf{COL}(\ell, k, G))$

$\mathsf{DNR}(k)$ and induction

Recall: every $\mathsf{DNR}(k)$ function computes a $\mathsf{DNR}(2)$ function.

With a little work, the proof can be implemented using $I\Sigma_2^0$.

Hence the following are equivalent over $\mathsf{RCA}_0 + \mathsf{I}\Sigma^0_2$:

- (i) WKL
- (ii) $\exists k \forall g(\mathsf{DNR}(k,g))$
- (iii) $\forall g \exists k (\mathsf{DNR}(k,g))$

Dorais, Hirst, and I show that the three equivalences fail if you only assume ${\sf RCA}_0 + {\sf B}\Sigma^0_2.$

The strength of DNR(k) functions

We show that, over $RCA_0 + B\Sigma_2^0$,

$$\begin{split} \mathsf{WKL} &\Rightarrow \exists k \forall g (\mathsf{DNR}(k,g)) \Rightarrow \forall g \exists k (\mathsf{DNR}(k,g)), \text{ and} \\ \mathsf{WKL} &\Rightarrow \forall \ell \exists k \forall G (\mathsf{COL}(\ell,k,G)), \text{ and} \\ \forall \ell \forall G \exists k (\mathsf{COL}(\ell,k,G)) \not\rightarrow \exists k \forall g (\mathsf{DNR}(k,g)) \end{split}$$

The results rewritten in an authoritative purple box:

Theorem (Dorais, Hirst, S)

- (i) $\mathsf{RCA}_0 + \mathsf{B}\Sigma^0_2 + \exists k \forall g(\mathsf{DNR}(k,g)) \nvdash \mathsf{WKL}$
- $(\mathrm{ii}) \ \mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \forall g \exists k (\mathsf{DNR}(k,g)) \nvdash \exists k \forall g (\mathsf{DNR}(k,g))$
- (iii) $\mathsf{RCA}_0 + \mathsf{B}\Sigma^0_2 + \forall \ell \exists k \forall G(\mathsf{COL}(\ell, k, G)) \nvdash \mathsf{WKL}$
- (iv) $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0 + \forall \ell \forall G \exists k (\mathsf{COL}(\ell, k, G)) \nvdash \exists k \forall g (\mathsf{DNR}(k, g))$

Remaining questions

Are $\exists k \forall g(\mathsf{DNR}(k,g))$ and $\exists k \forall G(\mathsf{COL}(k,G))$ equivalent over RCA₀?

 ${\sf Are}\ \forall g \exists k({\sf DNR}(k,g))\ {\sf and}\ \forall \ell \forall G \exists k({\sf COL}(\ell,k,G))\ {\sf equivalent}\ {\sf over}\ {\sf RCA}_0?$

Does $\forall \ell \exists k \forall G (\mathsf{COL}(\ell, k, G))$ (or $\forall \ell \forall G \exists k (\mathsf{COL}(\ell, k, G))$) imply WKL over $\mathsf{RCA}_0 + \mathsf{I}\Sigma^0_2$?

Is $\forall \ell \forall G \exists k (\mathsf{COL}(\ell, k, G))$ strictly weaker than $\forall \ell \exists k \forall G (\mathsf{COL}(\ell, k, G))$ over RCA_0 (or over $\mathsf{RCA}_0 + \mathsf{B}\Sigma^0_2$)?

Best question:

Does $\exists k \forall g(\mathsf{DNR}(k,g))$ imply WWKL over RCA $_0$ (or over RCA $_0+\mathsf{B}\Sigma_2^0$)?

Thank you!

Thank you for coming to my talk! Do you have a question about it?