,

- outcomes for given sandanness or have psedictable actions, while stochastic envisonments involve envisonments Deterministic uncestainty
 - Static enisonments remain unchanged while the agent is acting, In episodic envisonments, each episode is independent of others, States influgee future while in sequential envisonments, actions
- Exisaments can have discorte states and actions as cartinuous whereas dynamic environments may change during execution
 - design of agents, affecting their perception, decision-making The characteristics of the enisonment heavily influence the and leasning mechanisms
 - the nature of the envisanment to actieve their objectives Agents must adopt their stadeges and behaviours effectively.
- deterministic, sequential, and discrete: Agents like chess playing programs white search algorithms to explose Chess: The game entronment is fully obstanded states and make optimal f. thise possible
- · Charlet de CHALLENGES:
- Willnowstainty- Dealing with incomplete or uncertain information W. Complexity-Now gating complex enisarments with numberus states and actions
- 3) Dynamics Adapting to changes in the christmant over time ATrade-offs-Balancing explosation (taying new actions) with existation (using known actions)
- (3) STRUCTURE OF INTELLIGENT AGENTS.
- Perception Receives inputs from the environment through sensors - Decision-Making: Processes information to select actions
 - Action: Executes actions to affect the envisonment.
- for decision-making - Knowledge Base: Stores information
 - aims to achieve -Goal: Objectives or tasks the agent
- 7 TYPES OF AGBNTS.
- Simple seflex agents: Act based solely on current prescept, mapping directly to actions
 - model based seflex agents: Maintain internal state to track aspects directly observable of the world that aske not

	Goal-Based agents: Plan actions to actieve specific goals,
	A
	t
	learning from experience.
	INTERACTION OF COMPONENTS.
	Peacephon gothers information from the envisconiant
,	thousedge base stores information used for decisions
	Decision-making processes inframation to select appropriate
	Arions are executed to affect the envisconment, leading
	apiens.
	X
3	ROLE OF PROBLEM-SOLVING AGENTS:
	-Am to find solutions to given tooks as abother
	•
	methods
27	PADMILLATION OF PROBLEMS:
7/02	formulated by a
/20	e, possible actions, toonsition model, grants
24	parsides a starchized acti
17:34	FOR EDUCATIONAL USE
3	

PROCESS OF PROBLEM - SOLVING BY SEARCHING: Formulation: They formulate the problem into a suitable Analysis: troblem-solving agents analyze the given problem Evaluation: They evaluate potential solutions based on cartain to explose postlem space and find solutions Seach: Padolem - solving oyents use various search algorithm sepresentation, such as a state space or a graph. understand its structure and requirements.

METHODS USED FOR SEARCHING:

Execution: Execute set of actions

to action goal

such as optimality, completeness, and efficiency.

-Adversagial search algorithms - Minimax, olpha-beta pouring -Uninformed seasch algorithms - BFS, DFS -Informed seasch algorithms -A* seasch, Houristic Local seasch algorithms - Hill Climbing, simulated arrading

By: Route Planning: Finding the stootest path between two locations using algorithms like Dijkstoo's or A* seasch