Oscillazioni accoppiate

Francesco Tarantelli, Francesco Sacco, Giovanni Sucamelo

3 Aprile 2017

1 Scopo dell'esperienza

lo scopo di questa esperienza é lo studi del moto di due pendoli accoppiati e, in particolare, del fenomeno dei battimenti

2 Cenni Teorici

2.1 Pendolo singolo

In questa prima parte si cerca di verificare semplicemente che la pulsazione angolare ω_o del pendolo fisico senza attrito sia uguale a

$$\omega_o = \sqrt{\frac{mgl}{I}} \tag{1}$$

In seguito con lo smorzatore si \tilde{A} Í stimato il decadimento τ dell'ampiezza si oscillazione

$$\theta_o(t) = \theta_o(0)e^{-\frac{t}{\tau}} \tag{2}$$

2.2 Oscillazioni in fase e in controfase

Nelle oscillazioni in fase e in controfase si é in sostanza verificato l'equazione del moto dei pendoli nei due modi normali ottenuti dal sistema per un pendolo semplice:

$$\begin{cases}
 mx_1'' = -\frac{mg}{l}x_1 + k(x_2 - x_1) - \frac{m}{\tau}x_1' \\
 mx_2'' = -\frac{mg}{l}x_2 - k(x_2 - x_1) - \frac{m}{\tau}x_2'
\end{cases}$$
(3)

che equivale a:

$$\begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \mathbf{q}'' = - \begin{bmatrix} \frac{mg}{l} + k & -k \\ -k & \frac{mg}{l} + k \end{bmatrix} \mathbf{q} - \begin{bmatrix} \frac{m}{\tau} & 0 \\ 0 & \frac{m}{\tau} \end{bmatrix} \mathbf{q}'$$
 (4)

dove $q = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. La soluzione generale di questa equzione puó essere scritta nella forma:

$$x(t) = A_0 e^{-\frac{t}{\tau}} [\cos(\omega_1 t + \phi_1) + \sin(\omega_2 t + \phi_2)]$$
(5)

in particolare trascurando l'attrito, ω_1 e ω_2 sono uguali alle pulsioni angolari dei modi normali $(\omega_{fase}^2 = \frac{g}{l}\omega_{contro}^2 = \frac{g}{l} + 2\frac{k}{m})$. L'equazione 5 é molto importante perché viene utilizzata per descrivere i battimenti

3 Apparato sperimentale

- Due pendoli
- \bullet Molla
- $\bullet\,$ Due smorzatori
- Sistema di acquisizione

4 Analisi dati

Per prima misurazione abbiamo analizzato il moto di un pendolo con galleggiante per trovare la costante di

	Α	В	С
smorzamento τ	1	2	3
	4	5	6

A	В	\mathbf{C}
1	2	3
4	5	6