CS 228 : Logic in Computer Science

Krishna, S

▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!

2/1:

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- ► Every dad is older than his child $\forall x \forall y (F(x, y) \rightarrow Age(x) > Age(y))$

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- ► Every dad is older than his child $\forall x \forall y (F(x, y) \rightarrow Age(x) > Age(y))$
- ► There is a vertex with which is adjacent to all vertices $\exists x \forall y E(x, y)$

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- ► Every dad is older than his child $\forall x \forall y (F(x, y) \rightarrow Age(x) > Age(y))$
- ► There is a vertex with which is adjacent to all vertices $\exists x \forall y E(x, y)$
- \Rightarrow x is even $\exists v(x = v + v)$

- ▶ A formalism to specify properties of mathematical structures like graphs, partial orders, words, groups, rings, ..., and the world at large!
- ► Every dad is older than his child $\forall x \forall y (F(x, y) \rightarrow Age(x) > Age(y))$
- ► There is a vertex with which is adjacent to all vertices $\exists x \forall y E(x, y)$
- x is even $\exists y (x = y + y)$
- Each element in the group has a right inverse
- ▶ All words starting with the letter *a*, ending with the letter *b*, have even length

Signatures

- ▶ A vocabulary or signature τ is a set consisting of
 - ightharpoonup constants c_1, c_2, \dots
 - ▶ Relation symbols $R_1, R_2 \dots$, each with some arity k, denoted R_i^k
- We look at finite signatures
- $\tau = (E^2, F^3)$ is a finite signature with two relations, E with arity 2 and F with arity 3

Formulae of FO, over signature τ , are sequences of symbols, where each symbol is one of the following:

► The symbol ⊥ called false

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- ightharpoonup Constants and relations from au

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- ightharpoonup Constants and relations from au
- ► The symbol → called implication

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- ightharpoonup Constants and relations from au
- ► The symbol → called implication
- ► The symbol ∀ called the universal quantifier

- ► The symbol ⊥ called false
- ▶ An element of the infinite set $V = \{x_1, x_2, ...\}$ of variables
- ightharpoonup Constants and relations from au
- ► The symbol → called implication
- ► The symbol ∀ called the universal quantifier
- ► The symbols (and) called paranthesis

A well-formed formula (wff) over a signature τ is inductively defined as follows:

A well-formed formula (wff) over a signature τ is inductively defined as follows:

⊥ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ⊥ is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ⊥ is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ⊥ is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- If φ and ψ are wff, then $\varphi \to \psi$ is a wff

A well-formed formula (wff) over a signature τ is inductively defined as follows:

- ⊥ is a wff
- ▶ If t_1 , t_2 are either variables or constants in τ , then $t_1 = t_2$ is a wff
- ▶ If t_i is either a variable or a constant, for $1 \le i \le k$ and R is a k-ary relation symbol in τ , then $R(t_1, \ldots, t_k)$ is a wff
- If φ and ψ are wff, then $\varphi \to \psi$ is a wff
- ▶ If φ is a wff and x is a variable, then $(\forall x)\varphi$ is a wff

- $\blacktriangleright \ \neg \varphi = \varphi \to \bot$
- ▶ T = ¬⊥

- ▼ T = ¬⊥
- $\blacktriangleright \varphi \lor \psi = \neg \varphi \to \psi$

- ▼ T = ¬⊥

- $ightharpoonup
 eg \varphi \to \bot$
- ► T = ¬⊥

- $\exists x. \varphi = \neg (\forall x. \neg \varphi)$

- $ightharpoonup \neg \varphi = \varphi \rightarrow \bot$
- ▼ T = ¬⊥

- $\exists x. \varphi = \neg (\forall x. \neg \varphi)$
- ▶ Precedence of operators : $\neg > \land > \lor > \rightarrow > \forall$

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

 $ightharpoonup \forall x R(x,x)$

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

 $ightharpoonup \forall x R(x,x)$ Reflexivity

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- $ightharpoonup \forall x (R(x,x) \rightarrow \bot)$

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $\blacktriangleright \forall x R(x, x)$ Reflexivity
- $\blacktriangleright \ \forall x (R(x,x) \rightarrow \bot)$ Irreflexivity

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity
- $ightharpoonup \forall x \forall y (R(x,y) \rightarrow R(y,x))$

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ Symmetry

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x(R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry
- $\blacktriangleright \forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x, y) \rightarrow R(y, x))$ Symmetry
- $\forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$ Anti-symmetry

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x(R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry
- ▶ $\forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$ Anti-symmetry
- $\forall x \forall y \forall z (R(x,y) \rightarrow (R(y,z) \rightarrow R(x,z)))$

An Example

Consider the signature $\tau = \{R\}$ where R is a binary relation. The following are FO formulae over this signature.

- $ightharpoonup \forall x R(x,x)$ Reflexivity
- ▶ $\forall x (R(x,x) \rightarrow \bot)$ Irreflexivity
- ▶ $\forall x \forall y (R(x,y) \rightarrow R(y,x))$ Symmetry
- ▶ $\forall x \forall y (R(x,y) \rightarrow (R(y,x) \rightarrow (x=y)))$ Anti-symmetry
- ▶ $\forall x \forall y \forall z (R(x,y) \rightarrow (R(y,z) \rightarrow R(x,z)))$ Transitivity

First-Order Logic : Semantics

▶ A structure A of signature τ consists of

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ, a fixed element c_A is assigned from the universe A
 - For each k-ary relation \mathbb{R}^k in the signature τ , a set of k-tuples from A^k is assigned to \mathbb{R}^A

- ▶ A structure A of signature τ consists of
 - ▶ A non-empty set A or u(A) called the universe
 - For each constant c in the signature τ , a fixed element c_A is assigned from the universe A
 - For each k-ary relation \mathbb{R}^k in the signature τ , a set of k-tuples from A^k is assigned to \mathbb{R}^A
 - ▶ The structure \mathcal{A} is finite if A (or $u(\mathcal{A})$) is finite

Examples of Structures

A Graph

 $ightharpoonup au = \{E\}$, with E binary.

A Graph

- $ightharpoonup au = \{E\}$, with E binary.
 - ▶ A graph structure over τ is $\mathcal{G} = (V, E^{\mathcal{G}})$,
 - ▶ The universe $u(\mathcal{G})$ is the set of vertices V
 - ▶ The relation *E* is the edge relation

A Graph

- $ightharpoonup au = \{E\}$, with E binary.
 - ▶ A graph structure over τ is $\mathcal{G} = (V, E^{\mathcal{G}})$,
 - ▶ The universe u(G) is the set of vertices V
 - ▶ The relation *E* is the edge relation
 - ▶ $\mathcal{G} = (V = \{1, 2, 3, 4\}, E^{\mathcal{G}} = \{(1, 2), (2, 3), (3, 4), (1, 1)\})$. We could just as well draw the graph for convenience.

A Total Order

 $ightharpoonup au = \{<, S\}$ with <, S binary.

A Total Order

- $\tau = \{<, S\} \text{ with } <, S \text{ binary.}$
 - ▶ A finite order structure over τ is $\mathcal{O} = (O, <^{\mathcal{O}}, S^{\mathcal{O}})$
 - ▶ The universe $u(\mathcal{O})$ is the finite ordered set \mathcal{O}
 - \triangleright < $^{\circ}$ is the ordering on O and S° is the successor on O

A Total Order

- $\tau = \{<, S\} \text{ with } <, S \text{ binary.}$
 - ▶ A finite order structure over τ is $\mathcal{O} = (\mathcal{O}, <^{\mathcal{O}}, \mathcal{S}^{\mathcal{O}})$
 - ▶ The universe $u(\mathcal{O})$ is the finite ordered set \mathcal{O}
 - \triangleright < $^{\circ}$ is the ordering on O and S° is the successor on O
 - $\mathcal{O} = (O = \{1, 2, 4\}, <^{\mathcal{O}} = \{(1, 2), (1, 4), (2, 4)\}, S^{\mathcal{O}} = \{(1, 2)\})$
- ► Can you write a Partial Order as a structure, where the universe consists of all subsets of a given finite set?

▶ $\tau = \{<, S, Q_a, Q_b\}$, where <, S are binary, Q_a, Q_b are unary relations.

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - $lackbox{<}^{\mathcal{W}}$ is the ordering relation on the positions of W
 - \triangleright $S^{\mathcal{W}}$ is the successor relation on the positions of W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - A word structure $W = (u(W), <^{W}, S^{W}, Q_{a}^{W}, Q_{b}^{W})$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - $ightharpoonup S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $ightharpoonup Q_a^{\mathcal{W}}$ is the set of positions labeled a in W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - ▶ A word structure $W = (u(W), <^W, S^W, Q_a^W, Q_b^W)$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - \triangleright < $^{\mathcal{W}}$ is the ordering relation on the positions of W
 - $ightharpoonup S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $ightharpoonup Q_a^{\mathcal{W}}$ is the set of positions labeled a in W
 - \triangleright $Q_b^{\mathcal{W}}$ is the set of positions labeled b in W

- ▶ $\tau = \{\langle S, Q_a, Q_b \}$, where $\langle S$ are binary, Q_a, Q_b are unary relations.
 - ▶ A word structure $W = (u(W), <^W, S^W, Q_a^W, Q_b^W)$
 - The universe u(W) consists of the positions in a word W over symbols a, b
 - $lackbox{<}^{\mathcal{W}}$ is the ordering relation on the positions of W
 - $ightharpoonup S^{\mathcal{W}}$ is the successor relation on the positions of W
 - $Q_a^{\mathcal{W}}$ is the set of positions labeled a in W
 - \triangleright $Q_b^{\mathcal{W}}$ is the set of positions labeled b in W
 - ► The structure with $u(W) = \{0, 1, 2, ..., 8\}$, $Q_a^W = \{0, 1, 4, 6, 8\}$, $Q_b^W = \{2, 3, 5, 7\}$,
 - $< ^{\mathcal{W}} = \{(0,1), (0,2), \dots, (7,8)\}, S^{\mathcal{W}} = \{(0,1), (1,2), \dots, (7,8)\}$ uniquely defines the word W = aabbababa.
 - For convenience, we can just write the word instead of the structure.