Exercici 3:

a) Es fàcil veure que M_2 és espai vectorial (és un subconjunt de $\mathbb{R}_2[x]$ tancat per la suma i el producte per escalars). Òbviament, la dimensió de M_2 ha de ser com a molt 2 (dim $\mathbb{R}_2[x] = 3$ i M_2 no és $\mathbb{R}_2[x]$). Comencem per buscar una base de M_2 : Si $p(x) = ax^2 + bx + c \in M_2$, llavors s'ha de verificar que $\int_0^1 (ax^2 + bx + c) dx = \frac{1}{3}a + \frac{1}{2}b + c = 0$ o, el que és el mateix, que 2a + 3b + 6c = 0. Per determinar una base senzilla, podem fer a = 0 i agafar b = 2, c = -1 per tenir $p_1(x) = 2x - 1$, i fer b = 0 i agafar a = 3, c = -1 per tenir $p_2(x) = 3x^2 - 1$. Clarament p_1 i p_2 són linealment independents, per tant dim $M_2 = 2$ i p_1 , p_2 són base. Podríem ara buscar una base ortogonal però com el sistema d'equacions normals serà 2×2 , no ho fem.

Abans d'escriure les equacions normals, calculem alguns productes escalars que ens faran falta:

$$\begin{split} \langle p_1, p_1 \rangle &= \int_0^1 (2x-1)^2 \, dx = \frac{1}{3}, \qquad \langle p_2, p_2 \rangle = \int_0^1 (3x^2-1)^2 \, dx = \frac{4}{5}, \\ \langle p_1, p_2 \rangle &= \int_0^1 (2x-1)(3x^2-1) \, dx = \frac{1}{2}, \\ \langle p_1, f \rangle &= \int_0^1 (2x-1)f(x) \, dx = 2 \int_0^1 x f(x) \, dx - \int_0^1 f(x) \, dx = 1, \\ \langle p_2, f \rangle &= \int_0^1 (3x^2-1)f(x) \, dx = 3 \int_0^1 x^2 f(x) \, df x - \int_0^1 f(x) \, dx = 1. \end{split}$$

Per tant, si la funció que busquem es $f^* = c_1p_1 + c_2p_2$, les equacions normals són

$$\frac{1}{3}c_1 + \frac{1}{2}c_2 = 1 \\ \frac{1}{2}c_1 + \frac{4}{5}c_2 = 1$$
 \Longrightarrow $\begin{cases} c_1 = 18 \\ c_2 = -10 \end{cases}$

Per tant, $f^*(x) = 18p_1(x) - 10p_2(x) = -30x^2 + 36x - 8$.

b) Noteu que D_2 no és un espai vectorial. Com estem buscant f^* tal que $||f - f^*||$ sigui mínima, podem fer $||f - f^*|| = ||(f - 1) - (f^* - 1)|| = ||g - g^*||$, on g = f - 1 i $g^* = f^* - 1$. Ara, $\int_0^1 g(x) dx = \int_0^1 f(x) dx - \int_0^1 1 dx = 0$ i $\int_0^1 g^*(x) dx = \int_0^1 f^*(x) dx - \int_0^1 1 dx = 0$. Per tant, el que volem és trobar la millor aproximació a g per una funció $g^* \in M_2$ (és el M_2 de l'apartat anterior). Per aplicar l'apartat anterior, fem els següents càlculs:

$$\int_{0}^{1} xg(x) dx = \int_{0}^{1} xf(x) dx - \int_{0}^{1} x dx = 0,$$

$$\int_{0}^{1} x^{2}g(x) dx = \int_{0}^{1} x^{2}g(x) dx - \int_{0}^{1} x^{2} dx = 0,$$

$$\langle p_{1}, g \rangle = \int_{0}^{1} (2x - 1)g(x) dx = 2 \int_{0}^{1} xg(x) dx - \int_{0}^{1} g(x) dx = 0,$$

$$\langle p_{2}, g \rangle = \int_{0}^{1} (3x^{2} - 1)g(x) dx = 3 \int_{0}^{1} x^{2}g(x) dx - \int_{0}^{1} g(x) dx = 0.$$

Les equacions normals són

$$\frac{1}{3}c_1 + \frac{1}{2}c_2 = 0 \\
\frac{1}{2}c_1 + \frac{4}{5}c_2 = 0$$
 \Longrightarrow $\begin{cases} c_1 = 0 \\ c_2 = 0 \end{cases}$

Per tant, $g^* = 0$, el que implica que $f^* = 1$.