Final Exam Guide

This material, if not specified, guides you at the level covered at lectures.

Final Exam Specification

- 1 hour long
- Closed book, closed sheet
 - No reference sheet
- Question types:
 - 10 Short answer questions (ex. definitions)
 - 3 points each
 - 10 Yes/no questions
 - 3 points each
 - 10 Multiple choice questions
 - 3 points each
 - 1 Long answer questions
 - 10 points each
 - Each question can be made up of several small questions
 - All the answers written on the exam papers

- Network vulnerabilities and penetration
 - the dangerous jungle
 - Basic understanding of network security and its importance
 - Virus, Worm, DDoS
 - major network attacks
 - Passive attack vs. active attack
 - The various attack weapons
 - Intrusion penetration (Lab 2 and Lab 3)
 - Attack weapons, intrusion tools, penetration steps
 - The big picture
 - Penetration tools
 - The function of the tools and their simple usage examples

- Internet malware
 - Worm (strongly suggested to read the worm paper discussed in class)
 - Morris, Code Red I v1 and v2, Code RedII, Nimda, Slammer, Blast and Welchia, Walhol worm, flash worm, stealth worm
 - Hit-list scanning, Permutation scanning, Topological scanning
 - Buffer Overflow (Lab 1)
 - Stack buffer overflow
 - Manipulating return address
 - How to prevent buffer overflow
 - Methods
 - StackGuard, PointGuard

- Firewall
 - Firewall basics
 - Packet filtering
 - Use the example to understand how to use the TCP 3way handshake to deny traffic
 - Proxying vs. Packet Filtering (difference)
 - Stateful Packet Filtering
 - Architectures
 - iptables

- Intrusion detection system (IDS)
 - Intrusion types
 - Idea of HIDS, NIDS, AIDS
 - HIDS
 - Session Level Intrusion Detection
 - The haystack algorithm
 - System Call Level Intrusion Detection
 - NIDS
 - Signature-based NIDS: Snort and rules
 - Anomaly detection vs. signature-based detection

- Authentication
 - passwords (one time password, challengeresponse authentications)

Labs

- Lab 1 (buffer overflow)
- Lab 2 (metasploitable)
- Lab 3 (pentesting)
- Lab 4 (heartbleed)
- Lab 5 (SQL injection) (understand what is called SQL)
- Lab 6 (XSS attack) (understand what is called XSS)

Part 1: Short-answer questions (4 points each)

— What is done by this iptables rule: "iptables -A INPUT -s 127.0.0.1 -p icmp -j DROP"? Can we still ping localhost?

– Why do we need to use keyed hash function, not just normal hash function, in AH protocol?

 Part 2: True/False questions (4 points each). If false, please also explain why.

 Packet filter firewalls check both the header information and content of a packet.

Fragmentation attacks may bypass packet filter firewalls.

- Part 3: Multiple-choice questions (4 points each)
 - Given A =Alice; KpubA = Alice's public Key; KprivA =Alice's private Key; KprivCA = Private Key of a Certification Authority. KpubCA = Public Key of the Certification Authority. In the following notation X{Y} means using X to perform an operation (encryption/decryption/signing/verification) on Y. Which of the following cryptographic notations most closely represents what Alice's certificate is like?
 - a. KprivA., A, CA, KprivCA {KpubA., A, CA}
 - b. KpubA., A, CA, KprivCA {KpubA., A, CA}
 - c. KpubA., A, CA, KpubCA {KpubA., A, CA}
 - d. KprivA., A, CA, KprivCA {KprivA., A, CA}

- Part 4: Long-answer questions (20 points each)
 - Based on the following figure, please carefully design a set of rules for a packet filter firewall, so that 1) no incoming telnet service should be processed; 2) outgoing telnet request are OK; 3) Computer 132.28.6.4 can NOT do Telnet; 4) UDP packets are not allowed. Please also give a brief explanation what's the rationale that you design each rule.
 - Ex: For each rule, you should have: Direction (incoming/outgoing), Source Addresses,
 Destination Addresses, Type (TCP/UDP), Source Port, Destination Port, ACK (1/0), Action (Deny/Permit)

