# $12n_{0264} (K12n_{0264})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle 3.93403 \times 10^{149} u^{37} - 1.74178 \times 10^{149} u^{36} + \dots + 2.21546 \times 10^{152} b + 1.76661 \times 10^{154}, \\ &\quad 7.93734 \times 10^{149} u^{37} - 3.29411 \times 10^{149} u^{36} + \dots + 4.43092 \times 10^{152} a + 3.55362 \times 10^{154}, \\ &\quad u^{38} - u^{37} + \dots + 86016 u - 25088 \rangle \\ I_2^u &= \langle 8082115793 u^{16} + 864266486 u^{15} + \dots + 5782655035 b - 29654101499, \\ &\quad 682951511 u^{16} - 479427583 u^{15} + \dots + 5782655035 a - 12663191293, \ u^{17} + 6 u^{15} + \dots - 3 u + 1 \rangle \\ I_1^v &= \langle a, \ -579074 v^8 + 1101995 v^7 + \dots + 5353327 b + 7952402, \\ &\quad v^9 - v^8 - 8 v^7 + v^6 + 33 v^5 + 23 v^4 - 14 v^3 - 2 v^2 + 3 v - 7 \rangle \end{split}$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 64 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle 3.93 \times 10^{149} u^{37} - 1.74 \times 10^{149} u^{36} + \dots + 2.22 \times 10^{152} b + 1.77 \times 10^{154}, \ 7.94 \times 10^{149} u^{37} - 3.29 \times 10^{149} u^{36} + \dots + 4.43 \times 10^{152} a + 3.55 \times 10^{154}, \ u^{38} - u^{37} + \dots + 86016 u - 25088 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.00179135u^{37} + 0.000743437u^{36} + \dots + 147.911u - 80.2006 \\ -0.00177572u^{37} + 0.000786192u^{36} + \dots + 151.635u - 79.7401 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.00179135u^{37} + 0.000743437u^{36} + \dots + 147.911u - 80.2006 \\ -0.00247624u^{37} + 0.000743437u^{36} + \dots + 196.831u - 106.030 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0018938u^{37} + 0.000479390u^{36} + \dots + 86.4568u - 38.9386 \\ -0.00129295u^{37} + 0.000479390u^{36} + \dots + 89.7492u - 44.1198 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.00134130u^{37} + 0.000498496u^{36} + \dots + 100.346u - 57.3777 \\ -0.00207949u^{37} + 0.000498496u^{36} + \dots + 166.563u - 92.5692 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.00126938u^{37} + 0.000498496u^{36} + \dots + 166.563u - 92.5692 \\ -0.00261068u^{37} + 0.000412248u^{36} + \dots + 185.542u - 106.611 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.000219442u^{37} + 0.000183073u^{36} + \dots + 185.542u - 106.611 \\ -0.000132258u^{37} + 0.000107784u^{36} + \dots + 18.7525u - 7.96288 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0000871841u^{37} - 0.0000752884u^{36} + \dots + 11.2636u + 2.64124 \\ -0.000132258u^{37} + 0.000121946u^{36} + \dots + 19.9165u - 7.66444 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0000871841u^{37} + 0.0000752884u^{36} + \dots + 11.2636u - 2.64124 \\ -0.000132258u^{37} + 0.00017784u^{36} + \dots + 18.7525u - 7.96288 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $0.00823228u^{37} 0.00319378u^{36} + \cdots 645.161u + 373.502$

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing                  |
|-----------------------|-------------------------------------------------|
| $c_1$                 | $u^{38} + 46u^{36} + \dots + 6958u + 2401$      |
| $c_2, c_4$            | $u^{38} - 16u^{37} + \dots + 378u - 49$         |
| $c_{3}, c_{8}$        | $u^{38} - u^{37} + \dots + 86016u - 25088$      |
| $c_5, c_{10}$         | $u^{38} - 2u^{37} + \dots - 3904u - 5873$       |
| $c_6, c_{12}$         | $u^{38} - 3u^{37} + \dots - 446u + 44$          |
|                       | $u^{38} + u^{37} + \dots + 40881797u + 3617129$ |
| <i>c</i> <sub>9</sub> | $u^{38} + 4u^{37} + \dots - 114u - 17$          |
| $c_{11}$              | $u^{38} + u^{37} + \dots + 79046u - 14009$      |

# (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing                               |
|-----------------------|------------------------------------------------------------------|
| $c_1$                 | $y^{38} + 92y^{37} + \dots + 262856678y + 5764801$               |
| $c_2, c_4$            | $y^{38} + 46y^{36} + \dots - 6958y + 2401$                       |
| $c_3, c_8$            | $y^{38} + 69y^{37} + \dots + 3750756352y + 629407744$            |
| $c_5, c_{10}$         | $y^{38} - 12y^{37} + \dots - 781291844y + 34492129$              |
| $c_6,c_{12}$          | $y^{38} + 35y^{37} + \dots - 111884y + 1936$                     |
|                       | $y^{38} - 107y^{37} + \dots - 346184004395873y + 13083622202641$ |
| <i>c</i> <sub>9</sub> | $y^{38} - 6y^{37} + \dots - 8270y + 289$                         |
| c <sub>11</sub>       | $y^{38} - 69y^{37} + \dots - 9544952050y + 196252081$            |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.542649 + 0.614305I |                                       |                      |
| a = 0.515994 + 1.233570I  | 1.68943 + 7.69679I                    | -0.16453 - 13.04445I |
| b = -0.104502 + 0.163985I |                                       |                      |
| u = -0.542649 - 0.614305I |                                       |                      |
| a = 0.515994 - 1.233570I  | 1.68943 - 7.69679I                    | -0.16453 + 13.04445I |
| b = -0.104502 - 0.163985I |                                       |                      |
| u = 0.072090 + 0.744709I  |                                       |                      |
| a = 0.81163 - 1.20274I    | 3.31755 + 0.54950I                    | 6.15791 + 2.31967I   |
| b = 0.230747 + 0.056669I  |                                       |                      |
| u = 0.072090 - 0.744709I  |                                       |                      |
| a = 0.81163 + 1.20274I    | 3.31755 - 0.54950I                    | 6.15791 - 2.31967I   |
| b = 0.230747 - 0.056669I  |                                       |                      |
| u = -0.554003 + 0.499646I |                                       |                      |
| a = 0.259417 + 1.163440I  | -1.38624 + 1.33481I                   | -2.97345 - 3.66862I  |
| b = 0.126830 + 0.775649I  |                                       |                      |
| u = -0.554003 - 0.499646I |                                       |                      |
| a = 0.259417 - 1.163440I  | -1.38624 - 1.33481I                   | -2.97345 + 3.66862I  |
| b = 0.126830 - 0.775649I  |                                       |                      |
| u = 0.434969 + 0.601443I  |                                       |                      |
| a = 1.185780 - 0.546611I  | 1.48961 + 0.57943I                    | 5.02569 - 0.39325I   |
| b = 0.144861 + 0.163719I  |                                       |                      |
| u = 0.434969 - 0.601443I  |                                       |                      |
| a = 1.185780 + 0.546611I  | 1.48961 - 0.57943I                    | 5.02569 + 0.39325I   |
| b = 0.144861 - 0.163719I  |                                       |                      |
| u = 0.606671 + 0.412287I  |                                       |                      |
| a = -1.202140 + 0.417819I | -4.47346 + 0.84284I                   | -11.66035 - 0.97344I |
| b = -1.72769 - 0.34007I   |                                       |                      |
| u = 0.606671 - 0.412287I  |                                       |                      |
| a = -1.202140 - 0.417819I | -4.47346 - 0.84284I                   | -11.66035 + 0.97344I |
| b = -1.72769 + 0.34007I   |                                       |                      |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.185752 + 1.318190I  |                                       |                     |
| a = 0.519872 + 0.356267I  | -2.12322 - 4.24125I                   | -4.26882 + 3.51292I |
| b = -0.524833 + 0.069232I |                                       |                     |
| u = 0.185752 - 1.318190I  |                                       |                     |
| a = 0.519872 - 0.356267I  | -2.12322 + 4.24125I                   | -4.26882 - 3.51292I |
| b = -0.524833 - 0.069232I |                                       | _                   |
| u = 0.626028 + 0.000453I  |                                       |                     |
| a = 0.99835 + 1.48871I    | 0.61462 + 3.26287I                    | -1.84851 - 7.14359I |
| b = 1.84598 + 1.42085I    |                                       |                     |
| u = 0.626028 - 0.000453I  |                                       |                     |
| a = 0.99835 - 1.48871I    | 0.61462 - 3.26287I                    | -1.84851 + 7.14359I |
| b = 1.84598 - 1.42085I    |                                       |                     |
| u = 0.220678 + 0.522522I  |                                       |                     |
| a = -0.299614 - 0.840555I | -0.41969 - 2.46857I                   | 5.02234 + 6.21524I  |
| b = -2.25916 - 0.15809I   |                                       |                     |
| u = 0.220678 - 0.522522I  |                                       |                     |
| a = -0.299614 + 0.840555I | -0.41969 + 2.46857I                   | 5.02234 - 6.21524I  |
| b = -2.25916 + 0.15809I   |                                       |                     |
| u = 0.134435 + 0.540176I  |                                       |                     |
| a = 1.65614 + 0.96243I    | 0.34862 + 2.64648I                    | 0.38453 - 4.62015I  |
| b = 0.467042 + 0.770777I  |                                       |                     |
| u = 0.134435 - 0.540176I  |                                       |                     |
| a = 1.65614 - 0.96243I    | 0.34862 - 2.64648I                    | 0.38453 + 4.62015I  |
| b = 0.467042 - 0.770777I  |                                       |                     |
| u = -0.487313             |                                       |                     |
| a = -0.299932             | -1.21395                              | -9.56810            |
| b = -0.879403             |                                       |                     |
| u = -1.68632 + 0.08026I   |                                       |                     |
| a = 0.014317 + 0.422528I  | 1.94242 + 0.25898I                    | 0                   |
| b = -0.16420 + 1.88746I   |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -1.68632 - 0.08026I   |                                       |            |
| a = 0.014317 - 0.422528I  | 1.94242 - 0.25898I                    | 0          |
| b = -0.16420 - 1.88746I   |                                       |            |
| u = 1.86202               |                                       |            |
| a = -0.669370             | -6.81012                              | 0          |
| b = 1.04021               |                                       |            |
| u = -0.78573 + 1.74324I   |                                       |            |
| a = -1.105090 - 0.592834I | 6.33444 - 4.25779I                    | 0          |
| b = -0.214357 - 0.763758I |                                       |            |
| u = -0.78573 - 1.74324I   |                                       |            |
| a = -1.105090 + 0.592834I | 6.33444 + 4.25779I                    | 0          |
| b = -0.214357 + 0.763758I |                                       |            |
| u = 0.36940 + 1.96319I    |                                       |            |
| a = -0.015181 - 1.352630I | 10.56750 - 4.02468I                   | 0          |
| b = 0.05084 - 2.20969I    |                                       |            |
| u = 0.36940 - 1.96319I    |                                       |            |
| a = -0.015181 + 1.352630I | 10.56750 + 4.02468I                   | 0          |
| b = 0.05084 + 2.20969I    |                                       |            |
| u = 1.13922 + 2.02195I    |                                       |            |
| a = -0.145900 + 0.974160I | 17.0081 - 15.1515I                    | 0          |
| b = -0.03782 + 2.28437I   |                                       |            |
| u = 1.13922 - 2.02195I    |                                       |            |
| a = -0.145900 - 0.974160I | 17.0081 + 15.1515I                    | 0          |
| b = -0.03782 - 2.28437I   |                                       |            |
| u = -1.07898 + 2.08221I   |                                       |            |
| a = -0.003796 - 0.816704I | 16.6139 + 6.3485I                     | 0          |
| b = -0.37487 - 1.96325I   |                                       |            |
| u = -1.07898 - 2.08221I   |                                       |            |
| a = -0.003796 + 0.816704I | 16.6139 - 6.3485I                     | 0          |
| b = -0.37487 + 1.96325I   |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 1.95530 + 1.96183I    |                                       |            |
| a = -0.665322 + 0.086310I | 8.32107 - 2.64989I                    | 0          |
| b = 0.704808 + 0.014037I  |                                       |            |
| u = 1.95530 - 1.96183I    |                                       |            |
| a = -0.665322 - 0.086310I | 8.32107 + 2.64989I                    | 0          |
| b = 0.704808 - 0.014037I  |                                       |            |
| u = -0.18789 + 2.88116I   |                                       |            |
| a = -0.176028 - 0.917819I | 18.1843 + 3.4592I                     | 0          |
| b = 0.20196 - 2.09465I    |                                       |            |
| u = -0.18789 - 2.88116I   |                                       |            |
| a = -0.176028 + 0.917819I | 18.1843 - 3.4592I                     | 0          |
| b = 0.20196 + 2.09465I    |                                       |            |
| u = -0.89301 + 2.76858I   |                                       |            |
| a = 0.023279 + 0.734216I  | 12.09730 + 5.36685I                   | 0          |
| b = 0.04287 + 2.25868I    |                                       |            |
| u = -0.89301 - 2.76858I   |                                       |            |
| a =  0.023279 - 0.734216I | 12.09730 - 5.36685I                   | 0          |
| b = 0.04287 - 2.25868I    |                                       |            |
| u = -0.20333 + 3.10034I   |                                       |            |
| a = 0.041511 + 0.844710I  | 19.1617 + 5.3151I                     | 0          |
| b = -0.13176 + 2.19457I   |                                       |            |
| u = -0.20333 - 3.10034I   |                                       |            |
| a = 0.041511 - 0.844710I  | 19.1617 - 5.3151I                     | 0          |
| b = -0.13176 - 2.19457I   |                                       |            |

 $II. \\ I_2^u = \langle 8.08 \times 10^9 u^{16} + 8.64 \times 10^8 u^{15} + \dots + 5.78 \times 10^9 b - 2.97 \times 10^{10}, \ 6.83 \times 10^8 u^{16} - 4.79 \times 10^8 u^{15} + \dots + 5.78 \times 10^9 a - 1.27 \times 10^{10}, \ u^{17} + 6 u^{15} + \dots - 3 u + 1 \rangle$ 

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.118103u^{16} + 0.0829079u^{15} + \cdots - 0.587774u + 2.18986 \\ -1.39765u^{16} - 0.149458u^{15} + \cdots - 5.69145u + 5.12811 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.118103u^{16} + 0.0829079u^{15} + \cdots - 0.587774u + 2.18986 \\ -1.29814u^{16} - 0.108155u^{15} + \cdots - 5.32462u + 5.04520 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.446141u^{16} + 0.123421u^{15} + \cdots - 0.579812u + 2.45214 \\ -1.49333u^{16} - 0.286083u^{15} + \cdots - 6.76385u + 4.74588 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.165246u^{16} + 0.188150u^{15} + \cdots + 0.228629u + 2.06644 \\ -0.948386u^{16} + 0.0348973u^{15} + \cdots - 3.47584u + 4.81654 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.833403u^{16} + 0.355787u^{15} + \cdots + 4.52387u - 0.486115 \\ 0.998649u^{16} + 0.543937u^{15} + \cdots + 4.75250u + 1.58032 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0889186u^{16} - 0.141079u^{15} + \cdots + 0.611062u - 0.716020 \\ 0.114263u^{16} - 0.0409080u^{15} + \cdots + 0.312606u - 1.08969 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0253442u^{16} - 0.100171u^{15} + \cdots + 0.298457u + 0.373667 \\ -0.118103u^{16} + 0.0829079u^{15} + \cdots - 0.587774u + 1.18986 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0253442u^{16} - 0.100171u^{15} + \cdots + 0.298457u + 0.373667 \\ 0.114263u^{16} - 0.0409080u^{15} + \cdots + 0.312606u - 1.08969 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =  $\frac{45091796106}{5782655035}u^{16} + \frac{12435236787}{5782655035}u^{15} + \cdots + \frac{43331514147}{1156531007}u - \frac{96632179643}{5782655035}u^{15} + \cdots + \frac{12435236787}{1156531007}u^{16} + \frac{1243523677}{1156531007}u^{16} + \frac{1243523677}{1156531007}u^{16} + \frac{1243523677}{1156531007}u^{16} + \frac{124352367}{1156531007}u^{16} + \frac{12435267}{115653$ 

(iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing        |
|-----------------------|---------------------------------------|
| $c_1$                 | $u^{17} - 8u^{16} + \dots + 3u - 1$   |
| $c_2$                 | $u^{17} + 6u^{16} + \dots + u + 1$    |
| $c_3$                 | $u^{17} + 6u^{15} + \dots - 3u + 1$   |
| $c_4$                 | $u^{17} - 6u^{16} + \dots + u - 1$    |
| <i>C</i> <sub>5</sub> | $u^{17} + 6u^{15} + \dots + 3u - 1$   |
|                       | $u^{17} + 3u^{16} + \dots + 6u^2 + 1$ |
| $c_7$                 | $u^{17} + 3u^{16} + \dots + 6u + 1$   |
| c <sub>8</sub>        | $u^{17} + 6u^{15} + \dots - 3u - 1$   |
| $c_9$                 | $u^{17} - 6u^{16} + \dots + 3u - 1$   |
| $c_{10}$              | $u^{17} + 6u^{15} + \dots + 3u + 1$   |
| $c_{11}$              | $u^{17} - 5u^{16} + \dots + 5u - 1$   |
| $c_{12}$              | $u^{17} - 3u^{16} + \dots - 6u^2 - 1$ |

#### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing   |
|-----------------------|--------------------------------------|
| $c_1$                 | $y^{17} + 8y^{16} + \dots - 25y - 1$ |
| $c_2, c_4$            | $y^{17} - 8y^{16} + \dots + 3y - 1$  |
| $c_{3}, c_{8}$        | $y^{17} + 12y^{16} + \dots + 3y - 1$ |
| $c_5,c_{10}$          | $y^{17} + 12y^{16} + \dots - 3y - 1$ |
| $c_6, c_{12}$         | $y^{17} + 3y^{16} + \dots - 12y - 1$ |
|                       | $y^{17} - 19y^{16} + \dots - 2y - 1$ |
| <i>c</i> <sub>9</sub> | $y^{17} + 2y^{16} + \dots + 19y - 1$ |
| $c_{11}$              | $y^{17} - 17y^{16} + \dots + 7y - 1$ |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.123817 + 0.916477I |                                       |                      |
| a = 0.468487 - 0.527233I  | 2.61790 + 2.40485I                    | 3.33881 - 2.22795I   |
| b = 0.848975 + 0.187757I  |                                       |                      |
| u = -0.123817 - 0.916477I |                                       |                      |
| a = 0.468487 + 0.527233I  | 2.61790 - 2.40485I                    | 3.33881 + 2.22795I   |
| b = 0.848975 - 0.187757I  |                                       |                      |
| u = 0.519605 + 0.973810I  |                                       |                      |
| a = -0.045901 - 0.497479I | 1.04490 - 6.61108I                    | -1.52634 + 5.44334I  |
| b = -0.642933 - 0.280867I |                                       |                      |
| u = 0.519605 - 0.973810I  |                                       |                      |
| a = -0.045901 + 0.497479I | 1.04490 + 6.61108I                    | -1.52634 - 5.44334I  |
| b = -0.642933 + 0.280867I |                                       |                      |
| u = 0.718697 + 0.273065I  |                                       |                      |
| a = 1.301770 + 0.430364I  | 1.14952 + 2.21103I                    | 2.23770 - 3.38646I   |
| b = -0.061570 + 1.362440I |                                       |                      |
| u = 0.718697 - 0.273065I  |                                       |                      |
| a = 1.301770 - 0.430364I  | 1.14952 - 2.21103I                    | 2.23770 + 3.38646I   |
| b = -0.061570 - 1.362440I |                                       |                      |
| u = -0.535223 + 1.162140I |                                       |                      |
| a = -0.064866 + 0.614609I | -1.12324 + 5.07181I                   | -0.31929 - 6.91281I  |
| b = 0.405304 + 0.608509I  |                                       |                      |
| u = -0.535223 - 1.162140I |                                       |                      |
| a = -0.064866 - 0.614609I | -1.12324 - 5.07181I                   | -0.31929 + 6.91281I  |
| b = 0.405304 - 0.608509I  |                                       |                      |
| u = 0.259361 + 1.266310I  |                                       |                      |
| a = 0.449036 + 0.835046I  | 0.516364 + 0.300871I                  | 0.207427 - 0.470649I |
| b = -0.176709 + 1.029420I |                                       |                      |
| u = 0.259361 - 1.266310I  |                                       |                      |
| a = 0.449036 - 0.835046I  | 0.516364 - 0.300871I                  | 0.207427 + 0.470649I |
| b = -0.176709 - 1.029420I |                                       |                      |

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.642620 + 0.176331I |                                       |                     |
| a = 1.82999 + 0.22284I    | -3.99885 - 0.50220I                   | -2.39894 - 6.28246I |
| b = 2.02895 - 0.99762I    |                                       |                     |
| u = -0.642620 - 0.176331I |                                       |                     |
| a = 1.82999 - 0.22284I    | -3.99885 + 0.50220I                   | -2.39894 + 6.28246I |
| b = 2.02895 + 0.99762I    |                                       |                     |
| u = 0.314004 + 0.270023I  |                                       |                     |
| a = 1.99812 - 0.08558I    | -0.26934 + 3.00568I                   | -3.5088 + 14.7647I  |
| b = 3.08746 - 2.37905I    |                                       |                     |
| u = 0.314004 - 0.270023I  |                                       |                     |
| a = 1.99812 + 0.08558I    | -0.26934 - 3.00568I                   | -3.5088 - 14.7647I  |
| b = 3.08746 + 2.37905I    |                                       |                     |
| u = -1.73212              |                                       |                     |
| a = -0.671734             | -6.94010                              | -36.0810            |
| b = 0.989401              |                                       |                     |
| u = 0.35606 + 2.09120I    |                                       |                     |
| a = -0.100766 - 1.164660I | 10.11250 - 4.21829I                   | -4.98986 + 4.99941I |
| b = 0.01582 - 2.10159I    |                                       |                     |
| u = 0.35606 - 2.09120I    |                                       |                     |
| a = -0.100766 + 1.164660I | 10.11250 + 4.21829I                   | -4.98986 - 4.99941I |
| b = 0.01582 + 2.10159I    |                                       |                     |

III. 
$$I_1^v = \langle a, -5.79 \times 10^5 v^8 + 1.10 \times 10^6 v^7 + \dots + 5.35 \times 10^6 b + 7.95 \times 10^6, \ v^9 - v^8 + \dots + 3v - 7 \rangle$$

#### (i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.108171v^{8} - 0.205852v^{7} + \dots + 0.000774472v - 1.48551 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.102023v^{8} + 0.224509v^{7} + \dots - 1.05024v + 0.683770 \\ 0.108171v^{8} - 0.205852v^{7} + \dots + 0.000774472v - 1.48551 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.159020v^{8} + 0.294157v^{7} + \dots - 0.0933167v + 0.754991 \\ 0.109964v^{8} - 0.217820v^{7} + \dots + 1.73167v - 1.00939 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0944713v^{8} + 0.166302v^{7} + \dots + 0.644723v + 0.337094 \\ -0.0798487v^{8} + 0.139548v^{7} + \dots - 0.391226v - 0.126428 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.159020v^{8} + 0.294157v^{7} + \dots - 0.0933167v + 0.754991 \\ 0.0798487v^{8} - 0.139548v^{7} + \dots + 0.391226v + 0.126428 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.163153v^{8} - 0.314762v^{7} + \dots + 0.866612v - 1.49020 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.163153v^{8} + 0.314762v^{7} + \dots + 0.866612v + 1.49020 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.163153v^{8} - 0.314762v^{7} + \dots + 0.866612v - 0.490203 \\ -1 \end{pmatrix}$$

#### (ii) Obstruction class = 1

(iii) Cusp Shapes = 
$$\frac{41627955}{37473289}v^8 - \frac{61862036}{37473289}v^7 - \frac{282471299}{37473289}v^6 + \frac{146298199}{37473289}v^5 + \frac{1154392026}{37473289}v^4 + \frac{495537892}{37473289}v^3 - \frac{23961352}{5353327}v^2 + \frac{145490692}{37473289}v - \frac{344731995}{37473289}v^3 - \frac{23961352}{37473289}v^3 - \frac{23961352}{37473289}v$$

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing                                     |
|-----------------------|--------------------------------------------------------------------|
| $c_1, c_2$            | $(u-1)^9$                                                          |
| $c_3, c_8$            | $u^9$                                                              |
| C4                    | $(u+1)^9$                                                          |
| <i>C</i> <sub>5</sub> | $u^9 - u^8 + 2u^7 - u^6 + 3u^5 - u^4 + 2u^3 + u + 1$               |
| $c_6$                 | $u^9 - 3u^8 + 8u^7 - 13u^6 + 17u^5 - 17u^4 + 12u^3 - 6u^2 + u + 1$ |
|                       | $u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1$              |
| <i>c</i> 9            | $u^9 - 5u^8 + 12u^7 - 15u^6 + 9u^5 + u^4 - 4u^3 + 2u^2 + u - 1$    |
| $c_{10}$              | $u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1$               |
| $c_{11}$              | $u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1$              |
| $c_{12}$              | $u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 17u^4 + 12u^3 + 6u^2 + u - 1$ |

# (v) Riley Polynomials at the component

| Crossings       | Riley Polynomials at each crossing                                 |
|-----------------|--------------------------------------------------------------------|
| $c_1, c_2, c_4$ | $(y-1)^9$                                                          |
| $c_3, c_8$      | $y^9$                                                              |
| $c_5, c_{10}$   | $y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1$ |
| $c_6, c_{12}$   | $y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1$      |
| $c_7, c_{11}$   | $y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1$    |
| <i>c</i> 9      | $y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1$          |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| v = -1.094310 + 0.114265I |                                       |                     |
| a = 0                     | -3.42837 + 2.09337I                   | -6.52230 - 4.24226I |
| b = -0.650520 - 0.534295I |                                       |                     |
| v = -1.094310 - 0.114265I |                                       |                     |
| a = 0                     | -3.42837 - 2.09337I                   | -6.52230 + 4.24226I |
| b = -0.650520 + 0.534295I |                                       |                     |
| v = 0.703774              |                                       |                     |
| a = 0                     | -0.446489                             | 3.16660             |
| b = -1.17358              |                                       |                     |
| v = 0.187998 + 0.564097I  |                                       |                     |
| a = 0                     | -1.02799 + 2.45442I                   | -8.21790 - 4.39771I |
| b = -1.104930 - 0.619057I |                                       |                     |
| v = 0.187998 - 0.564097I  |                                       |                     |
| a = 0                     | -1.02799 - 2.45442I                   | -8.21790 + 4.39771I |
| b = -1.104930 + 0.619057I |                                       |                     |
| v = -1.51733 + 0.93950I   |                                       |                     |
| a = 0                     | 2.72642 + 1.33617I                    | 0.84367 - 3.27176I  |
| b = 0.443756 + 0.532821I  |                                       |                     |
| v = -1.51733 - 0.93950I   |                                       |                     |
| a = 0                     | 2.72642 - 1.33617I                    | 0.84367 + 3.27176I  |
| b = 0.443756 - 0.532821I  |                                       |                     |
| v = 2.57175 + 0.82630I    |                                       |                     |
| a = 0                     | 1.95319 + 7.08493I                    | 3.61934 - 1.74309I  |
| b = 0.469909 + 0.043588I  |                                       |                     |
| v = 2.57175 - 0.82630I    |                                       |                     |
| a = 0                     | 1.95319 - 7.08493I                    | 3.61934 + 1.74309I  |
| b = 0.469909 - 0.043588I  |                                       |                     |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                                                                                                             |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$                 | $((u-1)^9)(u^{17} - 8u^{16} + \dots + 3u - 1)(u^{38} + 46u^{36} + \dots + 6958u + 2401)$                                                                                   |
| $c_2$                 | $((u-1)^9)(u^{17} + 6u^{16} + \dots + u + 1)(u^{38} - 16u^{37} + \dots + 378u - 49)$                                                                                       |
| $c_3$                 | $u^{9}(u^{17} + 6u^{15} + \dots - 3u + 1)(u^{38} - u^{37} + \dots + 86016u - 25088)$                                                                                       |
| $c_4$                 | $((u+1)^9)(u^{17} - 6u^{16} + \dots + u - 1)(u^{38} - 16u^{37} + \dots + 378u - 49)$                                                                                       |
| $c_5$                 | $(u^9 - u^8 + \dots + u + 1)(u^{17} + 6u^{15} + \dots + 3u - 1)$ $\cdot (u^{38} - 2u^{37} + \dots - 3904u - 5873)$                                                         |
| $c_6$                 | $(u^{9} - 3u^{8} + 8u^{7} - 13u^{6} + 17u^{5} - 17u^{4} + 12u^{3} - 6u^{2} + u + 1)$ $\cdot (u^{17} + 3u^{16} + \dots + 6u^{2} + 1)(u^{38} - 3u^{37} + \dots - 446u + 44)$ |
| <i>C</i> <sub>7</sub> | $(u^9 - u^8 + \dots - u + 1)(u^{17} + 3u^{16} + \dots + 6u + 1)$ $\cdot (u^{38} + u^{37} + \dots + 40881797u + 3617129)$                                                   |
| $c_8$                 | $u^{9}(u^{17} + 6u^{15} + \dots - 3u - 1)(u^{38} - u^{37} + \dots + 86016u - 25088)$                                                                                       |
| <i>c</i> <sub>9</sub> | $(u^{9} - 5u^{8} + 12u^{7} - 15u^{6} + 9u^{5} + u^{4} - 4u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{17} - 6u^{16} + \dots + 3u - 1)(u^{38} + 4u^{37} + \dots - 114u - 17)$        |
| c <sub>10</sub>       | $(u^9 + u^8 + \dots + u - 1)(u^{17} + 6u^{15} + \dots + 3u + 1)$ $\cdot (u^{38} - 2u^{37} + \dots - 3904u - 5873)$                                                         |
| $c_{11}$              | $(u^9 + u^8 + \dots - u - 1)(u^{17} - 5u^{16} + \dots + 5u - 1)$ $\cdot (u^{38} + u^{37} + \dots + 79046u - 14009)$                                                        |
| $c_{12}$              | $(u^{9} + 3u^{8} + 8u^{7} + 13u^{6} + 17u^{5} + 17u^{4} + 12u^{3} + 6u^{2} + u - 1)$ $\cdot (u^{17} - 3u^{16} + \dots - 6u^{2} - 1)(u^{38} - 3u^{37} + \dots - 446u + 44)$ |

## V. Riley Polynomials

| Crossings     | Riley Polynomials at each crossing                                                                                                                                                                      |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_1$         | $((y-1)^9)(y^{17} + 8y^{16} + \dots - 25y - 1)$ $\cdot (y^{38} + 92y^{37} + \dots + 262856678y + 5764801)$                                                                                              |
| $c_2, c_4$    | $((y-1)^9)(y^{17} - 8y^{16} + \dots + 3y - 1)(y^{38} + 46y^{36} + \dots - 6958y + 2401)$                                                                                                                |
| $c_3, c_8$    | $y^{9}(y^{17} + 12y^{16} + \dots + 3y - 1)$ $\cdot (y^{38} + 69y^{37} + \dots + 3750756352y + 629407744)$                                                                                               |
| $c_5, c_{10}$ | $(y^{9} + 3y^{8} + 8y^{7} + 13y^{6} + 17y^{5} + 17y^{4} + 12y^{3} + 6y^{2} + y - 1)$ $\cdot (y^{17} + 12y^{16} + \dots - 3y - 1)$ $\cdot (y^{38} - 12y^{37} + \dots - 781291844y + 34492129)$           |
| $c_6, c_{12}$ | $(y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1)$ $\cdot (y^{17} + 3y^{16} + \dots - 12y - 1)(y^{38} + 35y^{37} + \dots - 111884y + 1936)$                                                |
| $c_7$         | $(y^{9} - 5y^{8} + 12y^{7} - 15y^{6} + 9y^{5} + y^{4} - 4y^{3} + 2y^{2} + y - 1)$ $\cdot (y^{17} - 19y^{16} + \dots - 2y - 1)$ $\cdot (y^{38} - 107y^{37} + \dots - 346184004395873y + 13083622202641)$ |
| $c_9$         | $(y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1)$ $\cdot (y^{17} + 2y^{16} + \dots + 19y - 1)(y^{38} - 6y^{37} + \dots - 8270y + 289)$                                                        |
| $c_{11}$      | $(y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1)$ $\cdot (y^{17} - 17y^{16} + \dots + 7y - 1)$ $\cdot (y^{38} - 69y^{37} + \dots - 9544952050y + 196252081)$                            |