

MICROCOPY TEUCLOTION TEST CHART NATIONAL BUREAU OF STANDARDS -1963 - 4

The second of th

anno

GPS-85-156-00-030

AD-A166 499

RF LABORATORY

UE BENCH TEST PLANS AND REQUIREMENTS

VOLUME 3. STANDARD RECEIVER TESTS

AND

ANTENNA BENCH TESTS

N6226982-D-0059

SEPTEMBER 1984

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

UE BENCH TEST PLANS AND REQUIREMENTS

VOLUME 3. STANDARD RECEIVER TESTS AND ANTENNA BENCH TESTS

SEPTEMBER 1984

CEA-RFL-84-005

Prepared for:
Naval Air Development Center
Warminster, PA 18974

TABLE OF CONTENTS

<u>Section</u>		Page
1.0	PURPOSE	1 1
2.0	LIST OF REFERENCE DOCUMENTS	2
3.0	GENERAL TEST REQUIREMENTS	3 3
	3.1.1 Receiver Test Procedures	3
	3.1.1.1 Magnavox and Collins Standard. Receiver Test Procedures	4
	3.2 Antenna Test Requirements	41
	3.2.1 Antenna Test Procedures	41
	3.2.1.1 Collins/Magnavox Antenna Bench Test Procedures and Block Diagrams	42
4.0	SOFTWARE REQUIREMENTS	55
	4.1 Antenna Software Requirements	56
	4.1.1 Rockwell-Collins/Magnavox Antenna. Software Requirements	57
5.0	SPECIAL HARDWARE REQUIREMENTS	61

Acces	ion For	7
DTIC	ounced	
By Dist. ib	tr. on file	
A	vailability Codes	
Dist	Avail and/or Special	QUALITY INSPECTED
A-1		

GPS UE BENCH TEST PLANS AND REQUIREMENTS VOLUME 3

1.0 PURPOSE

The purpose of this report is to provide a basis for defining the hardware and software required to perform Standard Receiver test and Antenna bench tests in the RF Laboratory of the GPS Central Engineering Activity at NAVAIRDEVCEN. For additional background information, see Volume 1.

1.1 SCOPE

This report contains general test requirements for each test defining the:

level of test (UE, board, component),

test objective (parameter/function),

test inputs,

tests outputs,

equipment required for each input/output,

initial test procedure,

data reduction requirements,

summary list of test equipment (standard/special),

block diagram of test

It is divided into four sections. Sections 3.1 and 3.2 deal with Standard Receiver tests and Antenna Bench tests respectively for both the Magnavox and Rockwell-Collins UE sets. The Antenna Bench tests will be computer controlled and will require special software to control the conditions, parameters and data collection needs of the test.

A section on special software requirements is provided which defines the software needs of each test in terms of flowcharts.

A section on special hardware requirements defining special test hardware that will be required to perform these tests on both the Magnavox and Rockwell-Collins UE sets is also included. It is limited, however, by the amount of information currently available on design and performance of UE RF functions.

2.0 LIST OF REFERENCE DOCUMENTS

1.	ICD-GPS-204	GPS Instrumentation and Connector Standards	5 June	1981
2.	Harris	LRU Performance Test Procedures CRPA 1, 2, and 3	15 Apri	1 1982

3.0 GENERAL TEST REQUIREMENTS

This section contains test requirements and procedures for receiver and antenna testing for both Magnavox and Collins.

3.1 RECEIVER TEST REQUIREMENTS

The receiver tests are standard performance tests which will measure the receiver's ability to acquire, track and demodulate GPS signals and data under a variety of conditions. These tests can be performed before and after developmental testing in order to compare performance at later stages in development to a baseline performance level. These will be performed using the Satellite Signal Generator (SSG) as the stimulus equipment. Data collection will require special purpose hardware which will be discussed in Section 5.0, and will be collected via the Instrumentation Port where possible.

3.1.1 Receiver Test Procedures

Contraction of the section of the se

The following sheets contain the initial test requirements and procedures as listed in Section 1.1 for both the Magnavox and Collins receivers. These sheets will be refined and new sheets will be added as more information becomes available.

MAGNAVOX AND COLLINS STANDARD RECEIVER TEST PROCEDURES 3.1.1.1

Contractor:	Magnavox/Collins	
Board Tested:	Standard Receiver Tests 1-5	
Test Objective:	To measure time to acquire under	various conditions
of signal strength,	jamming, frequency choice, etc. (Tes	ts # 3, 4 for 5
channel sets only).		

	Input Name	Input Level	Equipment Used		
1.	1575.42MHz (Test # 1,3,5)	1227.6MHz @ -163dBw	Satellite Signal Generator		
2.	1575.42MHz (Test # 2)	1227.6MHz @ -15CdBw	Satellite Signal Generator		
3.	1227.6MHz (Test # 4)	1575.42MHz @ -163dBw	Satellite Signal Generator		
4.	C/A Code (Test # 1,2,5)	TBD	Satellite Signal Generator		
5.	P Code (Test # 3,4)	TBD	Satellite Signal Generator		
6.	CPS Data (# 1-5)	TBD	Satellite Signal Generator		
7.	Noise Modulated Jammer (# 1)	-139dBw100kHz BW @ 1227.6MHz	Satellite Signal Generator		
8.	Noise Modulated Jammer (# 5)	-129dBw2MHz BW @ 1227.6MHz	Satellite Signal Generator		
9.	CW Jammer (# 3,4)	-139dBw1575.42MHz	Satellite Signal Generator		
10.	Dynamic Profile Attached	TBD	Satellite Signal Generator		
11.					
12.					

^{*} Test #5 requires that receiver undergo a cold soak at -40°C prior to testing.

	Output Name	<u>Ou</u>	tput Level		Equipment (Jsed
1.	Time to Acquire		TBD	_	TBD	•••
2.				_		
3.				_		_
4.						
5.				_		
•				_		
<u>Test</u>	: Procedure:I	nject signa	l from Satellite	Signal	Generator into	
rece	eiver front end (SSG si	ignal for ea	ach test will be	a comb	ination of GPS	
and	jamming signals, alter	red as neces	ssary to simulat	e host	vehicle dynamics	,
at t	the levels shown on pag	ge one for e	each test). Obs	erve an	d record time	
	acquire GPS signals. I					
succ	cessful code lock and l	HOW demodula	ation. Receiver	shall	operate in	
	te 1 for tests 1,2 and					
Data	Reduction: Time	e to acquire	e will be record	ed as w	ill all	
	ut levels and condition					
				<u>-</u>		
Equi	pment List:					
1.	Satellite Signal Gen.	4		7.		
2.	TBD	5.		8.		
3.		6.		9.		

Note: Jerk from SS-US-200, Table II, Category A
Acceleration from SS-US-200, 10.3.7.2.2.2
One sigma velocity from SS-US-200, 10.3.7.2.2
Position/time from SS-US-200, Table II, Category A
Time limited to 20 ms

FOR TESTS: 1,2,5

Dynamic Profile - One Channel Receiver Normal (C/A) Acquisition

Note: Jerk from SS-US-200, Table II, Category A
Acceleration from SS-US-200, Table II, Category A
Velocity (one sigma) from SS-US-200, Table II, Category A
Position from SS-US-200, Table II, Category A
Time limited to 20 ms

FOR TESTS: 1,2,5

Dynamic Profile — Two Channel Receiver Normal (C/A) Acquisition

Note: Jerk from 85-US-200, 30.3.7.2.2.1

Acceleration from 95-US-200, Table II, Category A

Velocity from SS-US-200, 30.3.7.2.2.1

Range from SS-US-200, Table II, Category A

Time limited to 20 ms

FOR TESTS: 1,2,5

Dynamic Profile - Five Channel Receiver Normal (C/A) Acquisition

Note: Jerk from SS-US-200, Table II, Category C
Acceleration from SS-US-200, Table II, Category C
Velocity (3 sigma) from SS-US-200, Table II, Category C
Range from SS-US-200, Table II, Category C
Time from SS-US-200, Table II, Category C

18 km = $\sqrt{10^2 \text{ km} + 15.3^2 \text{ km}}$

FOR TESTS: 3,4

Dynamic Profile - Five Channel Receiver Direct P Acquisition

Contractor:	Magnavox/Collins
Board Tested:	Standard Receiver Tests 6-12
Test Objective:	To measure tracking reliability under various con-
ditions of signal stre	ength, jamming, frequency choice, etc (5 channel
sets only)	

	Input Name	Input Level	Equipment Used
1.	1575.42MHz (Test # 6,7,8)	1227.6MHz @ -163dBw	Satellite Signal Cenerator
2.	1227.6MHz (Test # 9-12)	1575.42MHz @ -163dBw	Satellite Signal Generator
3.	C/A Code (Test # 8,9)	TBD	Satellite Signal Generator
4.	P Code (Test # 6,7,10-12)	TBD	Satellite Signal Generator
5.	GPS Data (Test # 6-12)	TBD	Satellite Signal Generator
6.	CW Jammer (Test # 6,10)	GPS frequency at -122dBw	Satellite Signal Generator
7.	CW Jammer (Test # 12)	1575.42MHz @ -116dBw	Satellite Signal Generator
8.	*Pulsed CW Jammer (Test # 7,11)	CPS frequency @ -122dBw	Satellite Signal Generator
9.	Noise Mod. Jammer (Test # 8,9)	-132dBw 100kHz BW @ CPS Freq.	Satellite Signal Generator
10.	Dynamic Profile Attached	TBD	Satellite Signal Generator
11.			
12.			

^{*} Pulse width equals 1 $\mu sec.$ Pulse interval 0.1 to 10 msec.

	Output Name	Out	put Level		Equipment Use	<u>}d</u>
1.	Delta Range		TBD		TBD (inst. Por	:)
2.	Pseudo Range		TBD		TBD	
3.	Loss of Track				TBD	
4.				·		
5.						
•				•		
rest	: Procedure: Inject	signal from	n Satellite Sign	al Gen	erator into re-	
cei	ver front end (SSG sign	al for each	test will be a	combin	ation of GPS	
and	jamming signals, alter	ed as necess	sary to simulate	host	vehicle dynamics,	
	the levels shown on page					
	Loss of Lock. Receive					
	ic profile for tests 8,					
	files for other tests a					
Data	a Reduction: DR, P	R, any loss	of lock and all	input	levels and	
	ditions will be recorde					
			····			
Faut	ipment List:					
<u>Equ</u>	ipment bist:					
1.	SSG	4.		7.		_
2.	TBD	5	<u></u>	8.		_
3.		6.		9.		

FOR TESTS: 6,7,9,11

THE STREET, WHENEX SERVICE STREET, WHITE WAS AND WAS AND THE

WANTED ROPPIES GREENERS

Dynamic Profile - Five Channel Receiver Tracking Tests

Contractor:	Magnavox/Collins
Board Tested:	Standard Receiver Tests 13-16
Test Objective:	To measure the pseudo range and delta range
accuracy for one and	two channel sets under various conditions.

and socious socious descriptions arranges sections and sections arranges arranges because the

	Input Name	Input Level	Equipment Used
1.	1575.42MHz (Test # 13, 14)	1227.6MHz @ -163dBw	Satellite Signal Generator
2.	1227.6MHz (Test # 15, 16)	1575.42MHz @ -163dBw	Satellite Signal Generator
3.	C/A Code (Test # 14, 15)	TBD	Satellite Signal Generator
4.	P Code (Test # 13, 16)	TBD	Satellite Signal Generator
5.	GPS data (Test # 13-16)	TBD	Satellite Signal Generator
6.	CW Jammer (13, 16)	GPS frequency @ -123dBw	Satellite Signal Generator
7.	Noise Mod. Jammer (14)	1227.6MHz at -133dBw (10MHz BW)	Satellite Signal Generator
8.	Noise Mod. Jammer (15)	1575.42MHz @ -133dBw (100kHz BW)	Satellite Signal Generator
9.	Dynamic Profile Attached	TBD	Satellite Signal Generator
10.			
11.			
12.	· · · · · · · · · · · · · · · · · · ·	· 	

cold consists, especies acresion

A CONTROL OF THE PRODUCT OF THE PRODUCT OF THE PROPURTY OF THE

	Output Name	Output Level		Equipment Used
1.	PR	TBD	_	TBD (Inst Port)
2.	DR	TBD		TBD (Inst Port)
3.			_	
4.			_	
5.				
red GPS dyn red	ceiver front end (SSG sometimes of some signals, namics, at the levels some sord DR and PR. Received tests. Dynamic Profi	ignal from Satellite Signal for each test will be altered as necessary to simple mown on page one for each test shall operate in substate te for tests 13 and 15 will ther tests are attached.	a combinate horizontal combina	ost vehicle Observe and
	Reduction: DR, P	R and all input levels and o	onditic	ons will be
Equi	pment List: SSG	4.	7.	
2.	TBD	5.	8.	
3.		6.	9.	

Note: Jerk from SS-US-200, Table II, Category A Accleration from SS-US-200, Table I-IV Velocity from SS-US-200, Table I-IV

and the property because the property of the p

Dynamic Profile - One Channel Receiver Sequencing Tests

Note: Jerk from SS-US-200, Table II-IV Accleration from SS-US-200, 20.3.2.1.11 Velocity from SS-US-200, Table II-V

Dynamic Profile - Two Channel Receiver Sequencing Tests

Contractor:	Magnavox/Collins
Board Tested:	Standard Receiver Tests 17-20
Test Objective:	To measure reacquisition time for five channel sets
under various condit	ions.

geen kronner beenem storen serves viries debrind events serves parado l'estere dos B

	Input Name	Input Level	Equipment Used
1.	1575.42MHz (17, 18)	1227.6MHz at -163dBw	Satellite Signal Generator
2.	1227.6MHz (19, 20)	1575.42MHz @ -163dBw	Satellite Signal Generator
3.	C/A Code (18, 20)	TBD	Satellite Signal Generator
4.	P Code (17, 19)	TBD	Satellite Signal Generator
5.	GPS Data (17-20)	TBD	Satellite Signal Generator
6.	CW Jammer (17, 19)	GPS freq. @ -123dBw	Satellite Signal Generator
7.	Noise Mod. Jammer (18)	1227.6MHz at -133dBw (2MHz BW)	Satellite Signal Generator
8.	Noise Mod. Jammer (20)	1575.42MHz @ -133dBw (10MHz BW)	Satellite Signal Generator
9.	Dynamic Profile Attached	TBD	Satellite Signal Generator
0.			•
1.			
2.			

SOCIAL ESCRETA SOCIAL MANAGER (OSCRETA) ESCRETA CONTROL CONTRO

	Output Name	Output Level	Equipment Used
l .	Reacquisition Time	TBD	TBD
2.			
3.			
4.			
5.			
rest	Procedure: Inject si	gnal from Satellite Signal Ge	enerator into re-
		for each test will be a combi	
		as necessary to simulate host	
		ne for each test). Receiver	
		h test. When all channels ar	=
re	ceiver shall be turned off	for 10 seconds and then back	on again.
Me	asure and record reacquisit	ion time for each channel.	<u> </u>
Data	Reduction: Input le	vels and conditions, and read	equisition times
wi.	ll be recorded.		
Equi	pment List:		
1.	SSG4.	7.	
2.	5.	8.	
3.	6.	9.	

10-sec signal outage is asynchronous with dynamic profile.

Note: Dynamic factors exceed one sigma values of SS-US-200, Table XI-V, so that the range offset achieved during signal outage will be consistent with the required statistical position uncertainty.

AND AND SECOND OF SECOND SECOND SECOND

Dynamic Profile — Five Channel Receiver Reacquisition Test (State 5 Track)

Contractor:	Magnavox/Collins
Board Tested:	Standard Receiver Tests 21-22
Test Objective:	To determine receiver ability to measure ionospheric
delay (Test 21 for 5	channel set. Test 22 for all other sets).

tant homena, mences tresces spaces series series despite despite lasteres costate Notation escitate Notation

	Input Name	Input Level	Equipment Used
l.	1575.42MHz (21, 22)	1227.6MHz @ -163dBw	Satellite Signal Generator
2.	1227.6MHz (21, 22)	1575.42MHz @ -166dBw	Satellite Signal Generator
3.	P Code (21, 22)	TBD	Satellite Signal Generator
4.	GPS Data (21, 22)	TBD	Satellite Signal Generator
5.	CW Jammer	GPS freq. @ −126dBw to −122dBw	Satellite Signal Generator
6.	Dynamic Profile Attached	TBD	Satellite Signal Generator
7.			
8.			
9.			
10.			
11.			
12.			

	Output Name	Output Level	Equipment Used
1.	Ionospheric Delay	TBD	TBD
2.			
3.			
4.			
5.			
GF dy	eceiver front end (SSG esceiver front end (SSG esceive	signal from Satellite Signal for each test will be altered as necessary to simulations on page one for each to and -200 nsec. Continuous sequentially tracking receivants	a combination of ulate host vehicle est). Delays will s tracking receivers
		. Ionospheric delays will be	
ar		red delays will be compared to	
Equ	ipment List: SSG	4.	7.
 2. 	TBD	5.	8.
3.		6.	9.

Note: Jerk from SS-US-200, Table II, Category A Accieration from SS-US-200, Table I-IV Velocity from SS-US-200, Table I-IV

Dynamic Profile — One channel receiver Ionospheric Delay tests.

Note: Jerk from SS-US-200, Table II-IV
Accieration from SS-US-200, 20.3.2.1.11
Velocity from SS-US-200, Table II-V

Dynamic Profile — Two channel reciever Ionospheric Delay tests

energy analysis, reservation represents consecutive probabilities

Dynamic Profile — Five channel receiver Ionospheric Delay tests

Contractor:	Magna	vox/Coll	ins				
Board Tested:	Standard	Receiver	Tests	<u> 23-24</u>			
Test Objective:	Measure	receiver	calibr	ration	repeatabil	ity in	elimi-
nating channel to	channel pseud	o range	biases	(2 and	l 5 channel	sets o	nly).
	· · · · · · · · · · · · · · · · · · ·						·

STATES STATES STATES SECTION SECTION (SECTION SECTION

	Input Name	Input Level	Equipment Used
1.	1575,42MHz (23)	1227.6MHz @ -163dBw	Satellite Signal Generator
2.	1227.6MHz (24)	1575.42MHz @ -163dBw	Satellite Signal Cenerator
3.	P Code (23, 24)	TBD	Satellite Signal Cenerator
4.	* Dynamics (HV)	TBD	Satellite Signal Cenerator
5.	GPS Data (23, 24)	TBD	Satellite Signal Generator
6.			
7.			
8.			
9.		·	
10.			
11.			
12.			

^{*} Dynamics will be constant 900m/sec velocity.

	Output Name	Output Level	Equipment Used
1.	Pseudo Range	TBD	·TBD
 3. 			
4.			
5.			
		signal from Satellite Signal al for each test will be a c	
		ed as necessary to simulate one for each test). Recei	
		sets) or State 6 substate 5	
Ps	seudo range will be measu	red for each channel.	
Dat	a Reduction: Pseudo	ranges for each channel will	be compared to
d€	etermine channel to channe	el bias. Data and input levo	els and conditions
wi	ill be recorded.		
Equ	ipment List:		
1.	SSG 4	7	•
2.	TBD 5	8	•
3.	6	9	•

Contractor:	Magnavox/Collins	
Board Tested:	Standard Receiver Tests 25-28	
Test Objective:	Measure the ability of receiver to demodulate 50 bps	_
navigation data under	various conditions.	

SECOND SOCIED PLANTAGE SOCIED SOCIED

	Input Name	Input Level	Equipment Used
1.	1575.42MHz (25, 26)	1227.6MHz @ -163dBw	Satellite Signal Generator
2.	1227.6MHz (27, 28)	1575.42MHz @ -163dBw	Satellite Signal Generator
3.	C/A Code (26, 28)	TBD	Satellite Signal Generator
4.	P Code (25, 27)	TBD	Satellite Signal Generator
5.	GPS Data (25-28)	TBD	Satellite Signal Generator
6.	CW Jammer (25, 27)	GPS freq. @ -122dBw	Satellite Signal Generator
7.	Noise Mod. Jammer (26)	1227.6MHz @ -132dBw (100kHz BW)	Satellite Signal Generator
8.	Noise Mod. Jammer (28)	1575.42MHz @ -132dBw (2MHz BW)	Satellite Signal Generator
9.	Dynamic Profiles Attached	TBD	Satellite Signal Generator
10.	<u> </u>		
11.			
12.			

	Output Name	Output Level	Equipment Used
1.	UBER	TBD	TBD
2.			
3.			
4.			
5.			
<u>Test</u>	Procedure: Inject	signal from Satellite Si	gnal Generator into
re	ceiver front end (SSG si	gnal for each test will b	e a combination of
GP	S and jamming signals, a	altered as necessary to si	mulate host vehicle
dy	namics, at the levels sh	nown on page one for each	test). Receiver shall
be	operating in State 5.	UBER will be recorded. R	epeat test for re-
ce	iver operating in Substa	ite 5 of State 6.	
Data	Reduction: Undete	ected BIT Error Rate (UBER) will be recorded.
In	put levels and condition	s will be recorded also.	
Equi	pment List:		
1.	SSG	4	7
2.	TBD	5	8.
3.		6	9.

Note: Jerk from SS-US-200, Table II, Category A Accleration from SS-US-200, Table I-IV Velocity from SS-US-200, Table I-IV

Dynamic Profile - One Channel Receiver Sequencing Tests

Note: Jerk from SS-US-200, Table II-IV Accieration from SS-US-200, 20.3.2.1,11 Velocity from SS-US-200, Table II-V

Dynamic Profile - Two Channel Receiver Sequencing Tests

Dynamic Profile - Five Channel Receiver Tracking Tests

Contractor:	Magnayox/Collins
Board Tested:	Standard Receiver Tests (29-30)
Test Objective:	Measure ability of receiver to estimate C/No level
for various conditi	ons.

Inputs

	Input Name	Input Level	Equipment Used
1.	1575.42MHz (29)	1227.614Hz @ various levels	Satellite Signal Generator
2.	1227.6MHz (30)	1575.42MHz @ various levels	Satellite Signal Generator
3.	C/A Code (30)	TBD	Satellite Signal Generator
4.	P Code (29)	TBD	Satellite Signal Generator
5.	GPS Data (29-30)	TBD	Satellite Signal Generator
6.	CW Jammer (29)	1227.6Mz @ various levels	Satellite Signal Cenerator
7.	Noise Mod. Jammer (30)	1575.42MHz @ various levels	Satellite Signal Generator
8.	Dynamic Profiles Attached	(10MHz BW) TBD	Satellite Signal Cenerator
9.			
1C.			
11.			
12.			

	Output Name	Output Level	Equipment Used
1.	C/No	TBD	TBD
2.			
3.			
4.			
5.			
Test	Procedure: Injec	t signal from Satellite Si	gnal Generator into re-
cei	iver front end (SSG sig	mal for each test will be	a combination of GPS
_and	d jamming signals, alte	red as necessary to simula	te host vehicle dy-
nan	nics, at the levels sho	wn on page one for each te	st). C/No test levels
are	e attached. Tests shal	l be conducted for receive	r operating in State 5
and	d in Substate 5 of Stat	e 6. C/No measurements wi	ll be recorded for
var	rious levels of signal	and jammer power.	
Data	Reduction: Measu	red C/No will be compared	with theoretical
val		t levels and conditions wi	
Egui	pment List:		
1.	SSG	4.	7.
2.	TBD	5	8.
3.		6	9.

C/No TEST LEVELS

Signal Power Referenced to Preamp Input (dBW)	L ₁ (P) J/S (dB)	L ₂ (C/A) J/S (dB)
1150	0	0
2156	0	0
3163	0	0
4163	30	20
5163	35	25
6163	40	30

Note: Jerk from SS-US-200, Table II, Category A Accieration from SS-US-200, Table I-IV Velocity from SS-US-200, Table I-IV

tions adoption were in the contraction of the contr

Dynamic Profile - One Channel Receiver Sequencing Tests

Note: Jerk from SS-US-200, Table II-IV Accleration from SS-US-200, 20.3.2.1.11 Velocity from SS-US-200, Table II-V

Dynamic Profile - Two Channel Receiver Sequencing Tests

Note: Jerk from SS-US-200, 40.3.2.1.11
Acceleration from SS-US-200, 40.3.2.1.11
Velocity from SS-US-200, Table IV-IV, plus SV max velocity of 940 m/s

Dynamic Profile - Five Channel Receiver Tracking Tests

<pre>Contractor: Board Tested: Test Objective:</pre>		Magnavox/Collins	
		Receiver	
		To test receiver operation un	der various
	onditions of multipat	h propagation.	
	Inputs		
	Input Name	Input Level	Equipment Used
:.	1575.42MHz	1227.6MHz @ -163dBw	Satellite Signal Generator
2.	1227.6MHz	1575.42MHz @ -163dBw	Satellite Signal Cenerator
j.	P Code	TBD	Satellite Signal Cenerator
÷.	C/A Code	TBD	Satellite Signal Generator
5.	GPS Data	TBD	Satellite Signal Generator
6.			
7.			
8.			····
<u> </u>			
i٩.			
1:.			

AND THE STATE OF T

	Output Name	Output Level	Equipment Used
1.	DR	TBT	TBC
2.	PR	TBC	TBD
3.			
4.		**************************************	
5.			
fro ce: de:	Procedure: Inject om Satellite Sig al Gen iver operation and abil termine proper delta ra ta. Perform this test	ity to a just or	· · · · · · · · · · · · · · · · · · ·
wì	th various amounts of i	elay.	•,
Data	Reduction: Input	.eve.: .v.	
	iver measurements of DF		
	th "truth" values.		
Equi	pment List:		
1.	SSG	4.	
2.	TBD	5	3.
3.		6)

3.2 ANTENNA TEST REQUIREMENTS

This section contains the antenna test requirements for the Fixed Reception Pattern Antenna (FRPA) and the Controlled Reception Pattern Antenna (CRPA) for both Magnavox and Rockwell-Collins. Most of the antenna tests will be performed in the Anechoic Chamber. This section is limited to the bench tests that will be performed on the antenna.

3.2.1 Antenna Test Procedures

The following sheets contain the initial test requirements and procedures as listed in Section 1.1 for both Magnavox and Rockwell-Collins antennas. These sheets will be refined and new sheets will be added as more information becomes available.

3.2.1.1 COLLINS/MAGNAVOX ANTENNA BENCH TEST PROCEDURES AND BLOCK DIAGRAMS

Contra	actor:	Collins/Magnavox				
Board	Tested:	FRPA Antenna				
Test (Objective:	Measure aperature VSWR of Fixed	Reception Pattern			
Antenna	i		· · · · · · · · · · · · · · · · · · ·			
	Inputs					
	Input Name	Input Level	Equipment Used			
1. <u>s</u>	-Par Test Set	<u>L1 (1575 ⁺ 10MHz) @ TBD</u>	Sweep Generator (HP-8340A)			
2. <u>s</u>	-Par Test Set	L2 (1228 10MHz) @ TBD	Sweep Generator (HP-8340A)			
3. <u>s</u>	-Par Test Set	1070 to 1735 @ TBD	Sweep Generator (HP-8340A)			
4			Microwave Ctr. (HP-5342A)			
5. <u> </u>						
6						
7						
8						
9						
10						
11.						

12.

	Output Name		Output Level		Equipment Used
l.	FRPA Input (L1)	_	1.5:1		S-Par Test Set (HP-8515A)
2.	FRPA Input (L2)	-	1.5:1		Network Analyzer (HP-8510A)
3.	FRPA Input (range)	_	2.0:1		
1.		_			
5.		_			
<u> rest</u>	t Procedure: Tur	n on t	test equipment. Set me	asurer	ment equipment
:0 pi	roper ranges. Set Swe	ep Ger	nerator to sweep through	h fred	quency range
ith	markers at L1 and L2.	Meas	sure VSWR with Network A	Analyz	er.
Data	a Reduction: Ser	nd inn	ut levels to printer.	Outpu	t data from
			ed on a Smith Chart.		
ive c	WOLK MIGLIGATION WILL OC	proce	ed on a sarsii onar s.		,
F~	inment list.				
<u>EGU.</u>	ipment List:				
1.	Computer (HP-9836S)	4.	Sweep Gen. (HP-8340A)	7.	Network Anal. (HP-8510A)
2.	Printer (HP-2671G)	5.	Microwave Ctr (HP-5342A)	8.	
3.	Plotter (HP-7475A)	6.	S-Par Test Set (HP-8515A)	9.	

Contractor:		Collins/Magnavox	
Board Tested:		CRPA Antenna	
Test Objective:		Measure aperature VSWR of Contro	olled Reception
Patt	tern Antenna.		
	Inputs		
	Input Name	Input Level	Equipment Used
1.	S-Par Test Set	<u>L1 (1575 + 10MHz) @ TBD</u>	Sweep Generator (HP-8340A)
2.	S-Par Test Set	L2 (1227 ± 10MHz) @ TBD	Sweep Cenerator (HP-8340A)
3.	S-Par Test Set	1070-1735MHz @ TBD	Sweep Cenerator (HP-8340A)
4.			Microwave Ctr. (HP-5342A)
5.			
6.			
7.			
8.			
9.			
10.			
11.			
12.			

	Output Name		Output Level		Equipment	Used
1.	Reference Input (L1)		1.5:1		S-Par Test Set (H	P -8 515A)
2.	Reference Input (L2)	_	1.5:1		Network Analyzer	
3.	Auxiliary Inputs (L1)		3.0:1	_		<u></u>
4.	Auxiliary Inputs (L2)		3.0:1			
5.	Aux. Inputs (entire range)	_	5.0:1			
Tes	t Procedure: Tur	n on 1	test equipment. Set me	easureme	ent equipment	_
<u>o p</u>	roper ranges. Set Swe	ep Ger	nerator to sweep L1. 1	Measure	VSWR vs.	<u></u>
reg	uency of Reference Cha	nnel a	and Auxiliary Channel	Inputs.	Repeat for L2.	_
						_
						_
				•		-
						_
- a+	a Reduction:Sen	id inn	ut levels to printer.	Sutbut	data from	
	work Analyzer will be			очерие	THE THE TENT	_
	SWOLK HINATYZEL WITT DE	Proce	ed on a smith chart.			_
	N-1					_
<u>Equ</u>	ipment List:					
1.	Computer (HP-9836S)	4.	Sweep Gen. (HP-8340A)	7.	Network Anal. (HP-	<u>8510A</u>)
2.	Printer (HP-26713)	5 .	Microwave Ctr. (HP-5342A)	8.		
3.	Plotter (HP-7475A)	€.	S-Par. Test Set (HP-3515A) 9.		

KANANA BESESTED MANANA SUSSESSI

Cont	ractor:	Coll	ins/Marnavox		
Boar	d Tested:	FR	PA Antenna		
Test	Objective:	Contin	uity Test for Fixed	Reception	n Pattern Antenna.
	Inputs				
	Input Name		Input Level		Equipment Tsed
1.	Inner Conductor	<u> </u>			Digital Multi. (HP-3478B)
2.					
3.				···-	
4.					
5.					
6.					
7.					
8.					
9.				 .	
1 C.					
11.					
12.					

CONTRACTOR OF THE PROPERTY OF

	Output Name	Output 1	Level	Equipment Used
1.	Outer Conductor	TE	BD ·	Digital Multi. (HP-3478B)
2.				
3.				
4.				
5.				
Tes	t Procedure: Turn	on test equipmen	t. Set measurem	ent equipment
o pi	roper ranges. Short me	ter leads togethe	r and adjust zer	o. Attach one
ead	to the inner conductor	of each of the to	est connector(s)	and the other
ead	to the outer conductor	of the <u>antenna.</u>	If the meter de	flects, there
	C Continuity between in			

_				
Da ti	a Reduction: Send	data from Digital	Multimeter to p	rinter.
		<u> </u>		
<u>Equ</u>	ipment List:			
1.	Computer (HP-9836S)	4.	7.	
2.	Printer (HP-2671G)	5.	٥	
3.	Digital Multi. (HP-3478B)	6.	9.	

THE STATE STATES AND THE STATES AND

Contractor:		Col.	lins/Magnavox	-	
Board Tested:		CRPA Antenna			
Test Objective:		Continuity test for Controlle		lled Reception Pattern	
Antenna.					
	Inputs				
	Input Name		Input Level	Equipment Used	
1.	Inner Conductor			<u>Digital Multi. (HP-3478B)</u>	
2.					
3.					
4.					
5.					
6.					
7.					
8.		 			
ġ.					
10.		•			
11.					
12.					
14.					

	Output Name	Output Le	<u>evel</u>	Equipment Used
1.	Outer Conductor	TBD		Digital Multi. (HP-3478B)
2.			· - · · · · · · ·	
3.				
4.		-		
5.				
Test	t Procedure: Turr	on test equipment	. Set measurem	ent equipment
to pi	roper ranges. Short me	eter leads together	and adjust zer	o. Attach one
lead	to the inner conductor	of each of the Te	st Connector(s)	and the other
lead	to the Outer Conductor	of the antenna.	If the meter de	flects, there
is DO	C Continuity between Ir	nner Conductor and	Antenna Base (O	uter Conductor).
		······································		
Data	Reduction: Outpu	t data from Digital	Multimeter to	printer.

Equ:	ipment List:			
1.	Computer (HP-9836S)	4.	7.	
2.	Printer (HP-2671G)	5.	8.	
7	Digital Multi. (HP-3478B)	6.	9.	

4.0 SOFTWARE REQUIREMENTS

This sections contains the software requirements for the Antenna bench test procedures defined in Section 3.2. These software requirements are defined in terms of flowcharts.

The software requirements contained herein are written at the functional level. There is a flowchart for each test procedure that illustrates the sequence of events that will be required in order to perform these tests by computer. In addition to these requirements, all tests will include the following capabilities:

- o menu driven testing will prompt operator through:
 - l. test set-ups
 - testing
 - 3. data reduction/storage/hardcopy
- o Each test will have a program module number and will be contained in a testing menu. All tests with the same set-ups can be grouped together to be run one after the other.
- o Each test will incorporate a full error-checking capability during operator inputs so that no manual error can be entered into the system.
- O Data reduction based on baseline data and/or range limits. The specified range values and/or tolerance will be stored and compared to the results obtained from the actual test. The values will be displayed and any differences can quickly be seen.
- o There will be real-time monitoring for any bus available information during testing.
- o There will be off-line storage or transfer of data for interfacing with the DPSSF/NSL system capabilities. This capability will be used for any information that is needed for the DPSSF, NSL or for RFL data reduction requirements.

- o All software will be stored including back-up disks and hardcopy listings in a library which will contain as a minimum the following information in its catalog:
 - program module name and number (disk #)
 - 2. back-up copy # (disk #)
 - 3. date written, by whom
 - 4. date last revised, by whom

There are two floppy disk drives which have a memory of 170k each built into the computer. All information will be stored on either of these floppy disks. There is also a Winchester hard disk provided. This can be used as a temporary storage for data and information obtained while testing, if needed. For example, if a series of tests are being run and many data points are needed to be stored and all of the memory is being used in the computer, this information is stored temporarily on the Winchester disk until processing is complete and then archived onto the floppy disks.

4.1 ANTENNA SOFTWARE REQUIREMENTS

The following sheets contain the software requirements for the Antenna bench test procedures defined in Section 3.2. These software requirements will also be refined and expanded as more detailed information becomes available for the bench tests.

4.1.1 ROCKWELL-COLLINS/MAGNAVOX ANTENNA SOFTWARE REQUIREMENTS

APERTURE VSWR MEASUREMENT

PROGRAM MODULE NAME: _____

5.0 SPECIAL HARDWARE REQUIREMENTS

This section contains the special purpose hardware requirements needed to perform the bench tests on the GPS UE. This section is limited in detail due to the lack of information currently available. This section will be expanded as more detailed information becomes available.

The GPS signal simulation will be produced by the Satellite Signal Generator (SSG). The SSG is capable of generating numerous signals. For example, the SSG can generate in addition to the composite GPS signal, the P-code, C/A code, square waves at the P and C/A chip rates, IF frequencies, etc. Any combination of these may also be selected. With this capability there is no need to purchase any special coders and generators.

It will be necessary to buy some attenuators to control the output level, combiners, and mixers to provide some of the various signal combinations. Several breakout boards will be needed to provide various signal levels from one input.

DT/C 5-86