

Algorithms: Design and Analysis, Part II

Greedy Algorithms

A Scheduling Application: Handling Ties

Correctness Claim

Claim: Algorithm #2 (order jobs in nonincreasing order of ratio w_j/l_j) is always correct. [Even with ties]

New Proof Plan: Fix arbitrary input of n jobs. Let $\sigma =$ greedy schedule, let $\sigma^* =$ any other schedule.

Will show σ at least as good as $\sigma^* \Rightarrow$ Implies that greedy schedule is optimal.

Correctness Proof

Assume: [Just by renaming jobs] Greedy schedule σ is just 1, 2, 3, ..., n (and so $w_1/l_1 > w_2/l_2 > ... > w_n/l_n$).

Consider arbitrary schedule σ^* . If $\sigma^* = \sigma$, done.

Else recall \exists consecutive jobs i, j in σ^* with i > j. (From last time)

Note: $i > j \Rightarrow w_i/l_i \le w_j/l_j \Rightarrow w_il_j \le w_jl_i$.

Recall: Exchanging i&j in σ^* has net benefit of $w_jl_i - w_il_j \ge 0$.

Correctness Proof

Upshot: Exchanging an "adjacent inversion" like i, j only makes σ^* better, and it decreases the number of inverted pairs .

Jobs i, j with i > j and i scheduled earlier

- \Rightarrow After at most $\binom{n}{2}$ such exchanges, can transform σ^* into σ .
- $\Rightarrow \sigma$ at least as good as σ^* .
- \Rightarrow Greedy is optimal.

QED!