

Brojni sistemi

TEME

- ✓ Pozicioni brojni sistemi
- ✓ Binarni sistem
 - ✓ Konverzije brojeva
 - ✓ Aritmetičke operacije
- ✓ Heksadecimalni sistem
 - ✓ Konverzije brojeva

Pozicioni brojni sistemi

Pozicioni brojni sistemi su sistemi zapisivanja brojeva u kojima <u>vrednost broja zavisi od</u>:

- cifara korišćenih u zapisu broja
- pozicije svake cifre u broju.

Osnova brojnog sistema (q) je broj različitih cifara koje se mogu koristiti u zapisu broja.

Primer 1	
cifre: 2, 5 i 9	broj: 592
cifre: 1, 3 i 5	broj: 135
cifre: 1, 3 i 8	broj: 138

Primer 2

cifre: 2, 5 i 9 broj: 592

cifre: 2, 5 i 9 broj: 295

cifre: 2, 5 i 9 broj: 925

Primer 3

decimalni sistem

cifre: 0,1,2,3,4,5,6,7,8 i 9

q = 10

Vrednost broja u pozicionom sistemu

Prirodan broj *X* se u pozicionom brojnom sistemu može zapisati u obliku:

$$a_n a_{n-1} \dots a_1 a_0$$

Decimalna vrednost ovog broja se računa po formuli:

$$X = a_n \cdot q^n + a_{n-1} \cdot q^{n-1} + \dots + a_1 \cdot q^1 + a_0 \cdot q^0$$

Oznake:

 a_i , $0 \le i \le n$ – cifre u zapisu broja n+1 – broj cifara u zapisu q – osnova brojnog sistema

Primer 4

$$592 = 5 \cdot 10^2 + 9 \cdot 10^1 + 2 \cdot 10^0$$

$$a_0 = 2$$
, $a_1 = 9$, $a_2 = 5$, $n = 2$, $q = 10$

$$1486 = 1.10^3 + 4.10^2 + 8.10^1 + 6.10^0$$

$$a_0 = 6$$
, $a_1 = 8$, $a_2 = 4$, $a_3 = 1$, $n = 3$, $q = 10$

Primeri pozicionih sistema

Decimalni brojni sistem

q = 10, cifre: 0,1,2,3,4,5,6,7,8,9

Binarni brojni sistem

q = 2, cifre: 0,1

Heksadecimalni brojni sistem

q = 16, cifre: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Oktalni brojni sistem

q = 8, cifre: 0,1,2,3,4,5,6,7

Primer 5

74₍₁₀₎

$$10_{(2)} = 1 \cdot 2^1 + 0 \cdot 2^0 = 2_{(10)}$$

A6₍₁₆₎

1074₍₈₎

$$10_{(10)} = 1 \cdot 10^1 + 0 \cdot 10^0 = 10_{(10)}$$

$$10_{(16)} = 1.16^1 + 0.16^0 = 16_{(10)}$$

Binarni sistem

- Primenjuje se u računarskim i drugim digitalnim uređajima.
- Mogućnostima današnje elektronske tehnologije odgovara predstavljanje informacija sa samo dva stanja, na primer
 - "ima signala" (0) / "nema signala" (1)
 - uključen" (0) / "isključen" (1).
- □ Ljudima više odgovara decimalni sistem (DEC) od binarnog (BIN), pa je neophodna konverzija brojeva iz jednog u drugi sistem.

Konverzija BIN → DEC

Postupak konverzije:

a) primeniti sledeću formulu za računanje vrednosti decimalnog broja

$$X = a_n \cdot 2^n + a_{n-1} \cdot 2^{n-1} + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

Primer 6

Konvertovati binarni broj 10010110₍₂₎ u decimalni.

$$10010110_{(2)} =$$

$$= 1 \cdot 2^{7} + 0 \cdot 2^{6} + 0 \cdot 2^{5} + 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 1 \cdot 2^{1} + 0 \cdot 2^{0} =$$

$$= 1 \cdot 128 + 0 \cdot 64 + 0 \cdot 32 + 1 \cdot 16 + 0 \cdot 8 + 1 \cdot 4 + 1 \cdot 2 + 0 \cdot 1 =$$

$$= 128 + 16 + 4 + 2 = 150_{(10)}$$

Konverzija DEC → BIN

Primer 7

Konvertovati decimalni broj 169₍₁₀₎ u binarni.

Postupak konverzije:

- a) decimalni broj podeliti sa 2 i zapisati rezultat deljenja i dobijeni ostatak
- b) rezultate deljenja dalje deliti sa
 2 uz zapisivanje ostataka sve
 dok se ne dobije rezultat 0
- binarni broj formirati od dobijenih ostataka u obrnutom redosledu

 $169_{(10)} = 10101001_{(2)}$

Sabiranje binarnih brojeva

Sabiranje binarnih brojeva se vrši po istim pravilima kao i sabiranje decimalnih brojeva.

To znači:

- □ ako je zbir na nekoj poziciji veći od 1, javlja se prenos za narednu poziciju
- mesne vrednosti susednih pozicija se razlikuju 2 puta.

Prime	r 8				
	DEC	1	1		
	Α		5	7	
	В		6	9	
	A+B	1	2	6	
	BIN	1	1		
	Α			1	
	В		1	1	
	A+B	1	0	0	AN

VAŽNO!

Decimalni sistem: 0+0=0 0+1=1 1+0=1 1+1=2

1+1+1=3

Binarni sistem: 0+0

0+0=0 0+1=1 1+0=1 1+1=10

1+1+1=11

Sabiranje binarnih brojeva

Primer 9

Sabrati binarne brojeve $A = 10110111_{(2)}$ i $B = 10011010_{(2)}$.

10110111 + 10011010 101010001

	1	0	1	1	1	1	1	0		
Α		1	0	1	1	0	1	1	1	-
В		1	0	0	1	1	0	1	0	7 F
A+B	1	0	1	0	1	0	0	0	1	

Oduzimanje binarnih brojeva

Oduzimanje binarnih brojeva se vrši po <u>istim pravilima</u> kao i oduzimanje decimalnih brojeva.

To znači:

- ako se veća vrednost oduzima od manje, uzima se pozajmica sa naredne pozicije
- kada pređe na nižu poziciju, pozajmica vredi dvostruko.

Prime	r 10			
	DEC	7	10	
	Α	8	3	
	В	6	9	
·	A-B	1	4	
	BIN	0	2	
	Α	1	0	
KR	В		1	AN
	A-B	0	1	

Oduzimanje binarnih brojeva

Primer 11

Binarni broj $B = 10110111_{(2)}$ oduzeti od broja $A = 10011010_{(2)}$.

10110111 - 10011010 00011101

HK	1								
					2				
J				2	Z	0			
1	1	1	1	0	1	1	0	1	Α
O AT	0	1	0	1	1	0	0	1	В
1	1	0	1	1	1	0	0	0	A-B

Množenje binarnih brojeva

Množenje binarnih brojeva se vrši po <u>istim pravilima</u> kao i množenje decimalnih brojeva, s tim što se prilikom sabiranja međurezultata mora uzeti u obzir da se radi u brojnom sistemu sa osnovom 2.

Primer 12

Pomnožiti binarne brojeve 1100 (2) i 1101 (2).

															inc.
1	1	0	0	•	1	1	0	1		=		1	1	0	0
											0	0	0	0	
										1	1	0	0		
								+	1	1	0	0			
								1	0	0	1	1	1	0	0

Deljenje binarnih brojeva

Deljenje binarnih brojeva se vrši po istim pravilima kao i deljenje decimalnih brojeva, s tim što se mora uzeti u obzir da se radi u brojnom sistemu sa osnovom 2.

Pri	mer	13	Bir	Binarni broj 100010001 (2) podeliti binarnim brojem 1101 (2).															
1	0	0	0	1	0	0	0	1	:	1	1	0	1	=	1	0	1	0	1
-	1	1	0	1	 	1													
0	0	1	0	0	0	0													
		-	1	1	0	1													
		0	0	0	1	1	0	1											
				-	1	1	0	1											
					0	0	0	0											

Nedostatak

- Binarni zapis broja je često <u>predugačak.</u>
- Radi jednostavnosti, u računarstvu se koristi i heksadecimalni zapis.
- Računar radi sa binarnim podacima, iako se oni korisniku obično predstavljaju u heksadecimalnom obliku.
- Postoji pogodan odnos osnova binarnog i heksadecimalnog sistema (2⁴ = 16), pa je konverzija jednostavna.

Heksadecimalni sistem

Cifre heksadecimalnog sistema:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

DEC	HEX
10	А
11	В
12	С
13	D
14	E
15	F

DEC	HEX
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9

Konverzija HEX → DEC

Postupak konverzije:

a) primeniti sledeću formulu za računanje vrednosti decimalnog broja:

$$X = a_n \cdot 16^n + a_{n-1} \cdot 16^{n-1} + \dots + a_1 \cdot 16^1 + a_0 \cdot 16^0$$

Primer 14

Konvertovati heksadecimalni broj 5E3₍₁₆₎ u decimalni.

$$5E3_{(16)} =$$

$$= 5 \cdot 16^{2} + 14 \cdot 16^{1} + 3 \cdot 16^{0} =$$

$$= 5 \cdot 256 + 14 \cdot 16 + 3 \cdot 1 =$$

$$= 1280 + 224 + 3 = 1507_{(10)}$$

Konverzija DEC→ HEX

Postupak konverzije:

- a) decimalni broj deliti sa 16 uz zapisivanje ostataka dok se ne dobije rezultat 0
- b) heksadecimalni broj formirati od dobijenih ostataka u obrnutom redosledu

Primer 15

Konvertovati decimalni broj 4328₍₁₀₎ u heksadecimalni.

$$4328_{(10)} = 10E8_{(16)}$$

Konverzija BIN → HEX

Postupak konverzije:

- a) grupisati po 4 cifre binarnog broja počevši sa desne strane
- b) dobijene grupe predstaviti u heksadecimalnom brojnom sistemu

Primer 16

Konvertovati binarni broj 110111110₍₂₎ u heksadecimalni.

$$1110_{(2)} = 14_{(10)} = E_{(16)}$$

 $1011_{(2)} = 11_{(10)} = B_{(16)}$
 $1_{(2)} = 1_{(10)} = 1_{(16)}$

$$1101111110_{(2)} = 1BE_{(16)}$$

Konverzija HEX→ BIN

Postupak konverzije:

- a) svaka cifra heksadecimalnog broja se predstavi pomoću odgovarajuće grupe od 4 binarne cifre
- b) dobijene grupe se spoje i formiraju binarni broj

Primer 17

Konvertovati heksadecimalni broj 3A9₍₁₆₎ u binarni.

$$9_{(16)} = 9_{(10)} = 1001_{(2)}$$

$$A_{(16)} = 10_{(10)} = 1010_{(2)}$$

$$3_{(16)} = 3_{(10)} = 0011_{(2)}$$

$$3A9_{(16)} = 0011\ 1010\ 1001_{(2)} = 11\ 1010\ 1001_{(2)}$$