- 1. Determinar x para que Re(z)=Im(z) con $z = \frac{x+2i}{4-3i}$
- 2. Demostrar: $\forall z \in \mathbb{C} z * \overline{z} = |z|^2$ (Para todo z perteneciente a enteros, $z * \overline{z} = |z|^2$)
- 3. Dado $A=\{a,b,c,d\}$ y la relacion $R=\{(a,a),(a,c),(c,a),(b,b),(c,c)\}$, decidir y justificar si R cumple con las propiedades
- 4. Dado A={(3,17),(12,8),(32,16),(8,1),(20,24)}, dar por extension R definida como $((x,y),(z,w)) \in R \Leftrightarrow mcd(x,y) = mcd(z,w)$
- 5. Demostrar que si (a,b)=d, a|c y b|c entonces ab|cd.
- 6. Dado m como un numero impar, probar que
- 7. Dado $m \in \mathbb{Z}$, probar que la suma entre elementos \mathbb{Z}_m (Clases de equivalencia modulo m) es conmutativa.

Construir la tabla de suma de enteros modulo 3.