Двумерные массивы

Нередко приходится иметь дело с различными данными, которые должны обрабатываться одинаковым образом. Если для каждого значения отвести свою переменную, то и обрабатывать их придется индивидуально. Если, например, необходимо обработать таблицу, состоящую из нескольких сотен ячеек, то создание такой программы практически невозможно.

Решить эту проблему позволяют *массивы*. *Массив* представляет собой набор однотипных переменных, объединенных одним именем и различающихся по числовому индексу. Этот индекс записывается после имени переменной в скобках. Обращение к элементам массива осуществляется путем указания индексов элемента. Количество индексов определяет размерность массива. Любая таблица чисел или символов по определению является *двумерным массивом*. Двумерный массив A(N, M) соответствует понятию прямоугольной матрицы (таблицы), состоящей из m строк и n столбцов.

$$A_{ij} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1m} \\ A_{21} & A_{22} & \cdots & A_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ A_{n1} & A_{n2} & \cdots & A_{nm} \end{pmatrix}.$$

Другим примером двумерных массивов могут быть любые данные (числа или символы), представленные в табличной форме, т.е. любая таблица чисел или символов по определению является двумерным массивом.

В редакторе Visual Basic for Application двумерный массив задается с помощью оператора **Dim**:

Dim A(N,M)

Здесь оператором **Dim** переменная A объявляется двумерным массивом размерностью NxM, где переменная N определяет количество строк (первый индекс массива), а переменная M – количество столбцов (второй индекс). Значения переменных N и M, определяющие размер массива, должны быть заданы до оператора **Dim**. Сам оператор **Dim** должен находится до первого обращения к элементам массива, т.е. как правило — в начале программы. Размер массива можно задать также явно, если вместо переменных N и M поставить конкретные числа, например

Так будет объявлен массив, состоящий из 10 строк и 5 столбцов.

В качестве имени массива можно использовать любое допустимое на языке VBA имя переменной. В одном операторе **Dim** можно объявить несколько массивов. Можно также использовать несколько операторов **Dim**.

Элементами массива могут быть не только числа (целые или вещественные), но и символьные данные. В этом случае в команду описания массива следует вставить определение типа, например

Dim A(10, 5) As String,

где часть As String, говорит о том, что элементы массива представляют собой символьные (строковые) переменные.

Массив может быть не только двумерным, но трехмерным, четырехмерным и большей размерности (до 8 индексов). Длина массива (количество элементов по каждому индексу) может быть разной (в несколько тысяч элементов) и ограничивается только размером памяти компьютера, отводимых под данные.

Поскольку элементы двумерного массива задаются двумя индексами — номером строки и номером столбца — для перебора всех строк и столбцов необходимо использование двойного цикла, один из которых будет внешним, а другой — внутренним. Такие циклы называются вложенными.

Присвоить значения элементам двумерного массива можно теми же способами, что и для одномерного массива.

Однако если массив большой, эта процедура становится долгой и неудобной, так как он требует ввода данных с клавиатуры каждый раз при новом появлении диалогового окна.

2) С помощью функции Cells. Например:

Этот способ наиболее удобен и имеет важное преимущество — данные не теряются при повторном выполнении программы. Пользователь вводит значения элементов массива в ячейки рабочего листа Excel, из которого после запуска программы VBA считывает заданные значения и присваивает очередной переменной текущее значение из списка.

3) Можно воспользоваться стандартной функцией RND (если значение массива не задано):

Dim A(3, 4) As Single For I = 1 To 3 For J = 1 To 4 A(I, J) = Rnd Next J Next I

Sub primer()

.

[продолжение программы]

Ввод, а так же вывод двумерного массива, производится с использованием двойного цикла. В зависимости от условий задачи ввод и вывод можно организовывать по строкам или по столбцам. При вводе и выводе по строкам параметром внешнего цикла является индекс обозначающий номер строки, параметром внутреннего цикла — индекс (номер) столбца. При вводе по столбцам — внешний цикл по столбцам, внутренний — по строкам.

Итак, ввод и выгод элементов двумерного массива осуществляется с помощью двух вложенных циклов For. Таким же образом (с помощью

вложенного цикла) можно проводить обработку массива — находить максимальный (минимальный) элемент, вычислять сумму элементов и т.д. (см. раздел «Массивы»). Все это можно делать отдельно для каждой строки (столбца) или для всех элементов данного массива.

Двумерные массивы, у которых значения индексов одинаковые, т.е. число строк равно числу столбцов, называют *квадратной матрицей*. При работе с квадратными матрицами используются специальные математические понятия, значение которых рассмотрим на примере матрицы размерами 4x4 - A(4,4):

$$A_{ij} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}$$

В зависимости от соотношения между первым и вторым индексами элемента определяется расположение этого элемента в матрице, если:

- 1) i=j- элемент находится на главной диагонали ($a_{11,}$ $a_{22,}$ $a_{33,}$ a_{44});
- 2) i+j=n+1 (n- размерность матрицы) элемент находится на второй главной диагонали ($^{\mathcal{C}_{41}}$, $^{\mathcal{C}_{32}}$, $^{\mathcal{C}_{23}}$, $^{\mathcal{C}_{14}}$);
 - 3) i < j элемент находится над главной диагональю

$$(a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34});$$

4) i > j – элемент находится под главной диагональю

$$(a_{21}, a_{31}, a_{41}, a_{42}, a_{43}, a_{32}).$$

Tранспонированной матрицей B(N,N) называется такая квадратная матрица, у которой столбцы соответствуют строкам исходной квадратной матрицы A(N,N):

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}; \qquad B = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Элементы главной диагонали у матриц A и B одни и те же. Следовательно операция транспортирования матрицы A сводится к перестановке строк матрицы A на столбцы матрицы B. При этом диагональные элементы у матриц A и B одни и те же. Это реализуется с помощью соотношения: B(j,i) = A(i,j).

При работе с двумерными массивами наиболее часто встречаются задачи какой-либо обработки элементов массива, расположенных в строках или столбцах. Такие задачи решаются конкретным обращением к соответствующим элементам массива, т.е. перебором индексов в определенной последовательности.

Пример 11.Ввести массив A(N, N). Транспонировать эту матрицу, т.е. заменить строки столбцами. Вывести на печать исходный и преобразованный массивы в виде матриц.

Sub primer_11()

N = 3

ReDim A(N, N), B(N, N) As Integer

For I = 1 To N

For J = 1 To N

A(I, J) = Cells(I, J)

B(J, I) = A(I, J) 'транспонирование матрицы

Next J

Next I

For I = 1 To N

For J = 1 To N

Cells(N+1+I,J) = B(I,J) 'вывод преобразованной матрицы

Next J

Next I

End Sub

Результат программы:

	A	В	С	D
1	1	2	3	
2	-1	-2	-3	
3	1	2	3	
4				
5	1	-1	1	
5 6	2	-2	2	
7	3	-3	3	
8				

Пример 12. Дан массив A(N, M). Составить программу для подсчета количества положительных элементов массива.

Sub primer_12()

N = 3: M = 3

ReDim A(N, N) As Integer

For I = 1 To N

For J = 1 To M

A(I, J) = Cells(I, J)

Next J

Next I

k = 0 ' счетчик числа положительных элементов

For I = 1 To N

For J = 1 To M

If A(I, J) > 0 Then k = k + 1:

Next J

Next I

If k = 0 Then

MsgBox "Положительных элементов нет", , "Решение задачи"

Else: MsgBox "Количество положительных элементов =" & k, , "Решение задачи"

End If

End Sub

Результат программы:

Пример 13. Дана квадратная матрица D(N, N). Вычислить суммы элементов в каждом столбце и произведение элементов главной диагонали.

Решение. Поскольку необходимо получить суммы элементов в столбцах, то после ввода значений элементов массива, на этапе решения для накопления суммы внешний цикл открывается по индексу столбца, а во внутреннем цикле (индекс по строке) перебираются все элементы сначала первого столбца, затем второго и т.д. При этом подсчитывается сумма по каждому столбцу. Одновременно во внутреннем цикле каждый элемент матрицы проверяется на принадлежность к главной диагонали, для которых подсчитывается произведение.

Sub primer_13()

N = 3

ReDim D(N, N), S(N) As Integer

For I = 1 To N ' ввод элементов массива D(N,N)

For J = 1 To N

D(I, J) = Cells(I, J)

Next J, I 'одновременное закрытие вложенных циклов

Pr = 1

For J = 1 To N

S(J) = 0

For I = 1 To N

S(J) = S(J) + D(I, J) 'накопление суммы по столбцам

If I = J Then Pr = Pr * D(I, J)

Next I 'закрытие внутреннего цикла Cells(5, J) = S(J)

Next J ' закрытие внешнего цикла

MsgBox "Произведение элементов главной диагонали =" & Pr, , "Решение задачи"

End Sub

Результат программы:

	А	В	С	D	Е	F	G	Н	
1	1	2	3						
2	1	2	3	Решение задачи					
3	1	2	3	Произведение элементов главной диагонали =6					
4		3.0							
5	3	6	9						
6							12	- 2	
7								ок	
8							-		

Самостоятельная работа

Написать программу согласно варианту.

Вариант 1.

Даны две матрицы A(3x4) и B(3x3). Программа находит и выводит на экран сумму элементов последнего столбца матрицы A и сумму элементов 2-й строки матрицы B.

Вариант 2.

Даны матрицы A(3x4). Программа определяет, сколько положительных элементов в матрице.

Вариант 3.

Даны две матрицы A(3x3) и B(3x3). Программа находит и распечатывает сумму элементов 5-го столбца матрицы A и сумму элементов последней строки матрицы B.

Вариант 4.

Дана матрица A(3х4. Программа находит максимальный элемент I-ой строки и выводит его на экран.

Вариант 5.

Даны матрицы A(3x3) и B(3x3). Программа выводит матрицу C=A+B

Вариант 6.

Программа вводит целую матрицу A(3x4) и выводит транспонированную к ней матрицу A', все элементы которой уменьшены в 2 раза.

Вариант 7.

Написать программу, которая вводит целочисленную матрицу A(4x4), находит сумму элементов главной диагонали и количество четных элементов матрицы.

Вариант 8.

Дана матрица A(4x3). Программа находит и распечатывает сумму элементов 2-го столбца матрицы A.

Вариант 9.

Программа находит среднее арифметическое вещественной матрицы A(2x2).

Вариант 10.

Дана матрица A(3x4). Программа находит максимальный элемент 2-го столбца.

Вариант 11.

Даны матрицы A(4x3) и B(2x2). Программа определяет, сколько нулей в матрице A и сколько единиц в матрице B, результат выводит на экран.

Вариант 12.

Дана матрица A(3x4). Определить количество положительных элементов каждого столбца матрицы A и сформировать из них одномерный массив B(4).

Вариант 13.

Найти минимальный элемент матрицы X(4x4) и вывести на экран номер строки и столбца, в которых он находится.

Вариант 14.

Даны матрицы A[3x3] и B[2x2]. Сформировать одномерный массив C, который содержит все элементы двумерного массива A, меньшие максимального элемента матрицы B.

Вариант 15.

Даны матрицы A[4x4], B [4x4] и q. Вывести на экран все элементы массива A, которые меньше, чем максимальный элемент столбца матрицы B, номер которого задается значением q.

Вариант 16.

Вычислить сумму чисел в каждой строке матрицы A(3x4).

Вариант 17.

Вычислить произведение чисел в каждом столбце матрицы А(3х4).

Вариант 18.

Вычислить количество положительных чисел в каждом столбце матрицы A(3x4).

Вариант 19.

Дана матрица A(4x4).Вычислить сумму чисел для каждого столбца, удовлетворяющих условию a[i,j] > x. Здесь x- произвольная величина.

Вариант 20.

Дана матрица A(4x4).Вычислить значение наибольшего элемента для каждой строки массива.

Вариант 21.

Дана матрица А(3х4).Вычислить значение наименьшего элемента для каждого столбца массива.

Вариант 22.

Дана матрица A(3x4).Вычислить значение наибольшего элемента и его индекс для каждого столбца массива

Вариант 23.

Дана матрица A(3х4).Вычислить сумму элементов для каждого столбца. Поменять местами столбцы с максимальным и минимальным значением суммы.

Вариант 24.

Дана матрица A(3x4).Вычислить сумму отрицательных чисел в каждой строке.

Вариант 25.

Дана матрица A(3х4).Вычислить среднее значение чисел в каждой строке массива.

Вариант 26.

Дана матрица размера 3 × 4. Преобразовать матрицу, поменяв местами минимальный и максимальный элемент в каждой строке.

Вариант 27.

Дана матрица размера 4 × 4. Найти количество ее строк, элементы которых упорядочены по возрастанию.

Вариант 28.

Дана целочисленная матрица размера 4 × 4. Найти количество ее столбцов, все элементы которых различны

Вариант 29.

Дана целочисленная матрица размера 3×4 . Найти номер первого из ее столбцов, содержащих только нечетные числа. Если таких столбцов нет, то вывести 0.

Вариант 30.

Дана матрица размера 4 × 4. Преобразовать матрицу, поменяв местами минимальный и максимальный элемент в каждом столбце.

Вариант 31.

Дана матрица размера 3 × 4. Поменять местами строки, содержащие минимальный и максимальный элементы матрицы.