TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 - Innova Lee(이상훈) gcccompil3r@gmail.com 학생 - GJ (박현우) uc820@naver.com

목차

- 1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법
- 1) css 설치 (윈도우)
- 2) HalCoGen 설치 (윈도우)
- 3) css와 HalCoGen 연동
- 2. External LED GIO 기반 제어 예제

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - CSS

http://processors.wiki.ti.com/index.php/Download_CCS

Code Composer Studio Version 8 Downloads

There are two types of installers:

- Web installers allow you to download only the software components that you require.
- . Off-line installers will download a large compressed file (about 800MB) so you may then uncompress it then select what you require to install.

Release	Build #	Date	Download	Notes
8.0.0	8.0.0.00016	Mar 09, 2018	Web Installers: Windows ซี Linux ซี MacOS ซี Off-line Installers: Windows ซี MDS ซี Linux ซี MDS ซี - 64-bit only MacOS ซี MDS ซี Manifest ซี	New/Notable In This Release (8.0.0.00016): Release notes © Update to Eclipse 4.7 and CDT 9.3 Debugger Bug and stability fixes EMU18_M02 7.0.188.0 IDE Bug and stability fixes REX Robustness improvements
				Quarterly Device support updates Compilers • MSP GCC v6.4.0.32 • ARM GCC v7.2.1 • C6000 v8.2.x • MCU Compilers v18.1.1 LTS

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - CSS

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - CSS

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - HalCoGen

http://www.ti.com/tool/halcogen

Order Now

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - HalCoGen

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - 연동

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - 연동

1. Cortex-R5F Hercules Safety MCU를 위한 툴 다운로드 방법 - 연동

External_LED.dil
External_LED.hcg

2. External LED GIO 기반 제어 예제

```
★HL_sys_main.c 

☐ HL_gio.c
Getting Started
46 /* USER CODE END */
48 /* Include Files */
50 #include "HL sys common.h"
51 #include "HL gio.h"
52
53 /* USER CODE BEGIN (1) */
54 /* USER CODE END */
55
56 /** @fn void main(void)
      @brief Application main function
58 *
      @note This function is empty by default.
59 *
      This function is called after startup.
60 *
61 *
      The user can use this function to implement the application.
62 */
63
64 /* USER CODE BEGIN (2) */
65 /* USER CODE END */
67 uint8 emacAddress[6U] = {0xFFU, 0xFFU, 0xFFU, 0xFFU, 0xFFU};
68 uint32 emacPhyAddress = 1U;
69
70 int main(void)
72 /* USER CODE BEGIN (3) */
      gioInit();
      gioSetPort(gioPORTA, 0xFFU);
      gioSetDirection(gioPORTA, 0xFFU);
      gioSetBit(gioPORTA, 4, 1);
     USER CODE END */
78
79
      return 0;
80 }
```

F3 - 함수 in

Alt +<- 방향키 - 함수 out

```
/** bring GIO module out of reset */
gioREG->GCR0 = 1U;
gioREG->ENACLR = 0xFFU;
gioREG->LVLCLR = 0xFFU;
```

GIO Control Registers

www.ti.com

25.5.1 GIO Global Control Register (GIOGCR0)

The GIOGCR0 register contains one bit that controls the module reset status. Writing a 0 to this bit puts the module in a reset state. After system reset, this bit must be set to 1 before configuring any other register of the GIO module. Figure 25-5 and Table 25-2 describe this register.

Figure 25-5. GIO Global Control Register (GIOGCR0) [offset = 00h]

LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset

Table 25-2. GIO Global Control Register (GIOGCR0) Field Descriptions

Bit	Field	Value	Description	
31-1	Reserved	0	eads return 0. Writes have no effect.	
0	RESET		6IO reset.	
		0	The GIO is in reset state.	
		1	The GIO is operating normally.	

2. External LED GIO 기반 제어 예제

```
/** bring GIO module out of reset */
gioREG->GCR0 = 1U;
gioREG->ENACLR = 0xFFU;
gioREG->LVLCLR = 0xFFU;
```

GIO Control Registers www.ti.com

25.5.4.2 GIOENACLR Register

This register disables the interrupt. Figure 25-9 and Table 25-6 describe this register.

Figure 25-9. GIO Interrupt Enable Clear Register (GIOENACLR) [offset = 14h]

31		24	23		16
	GIOENACLR 3			GIOENACLR 2	
	R/W-0			R/W-0	
15		8	7		0
	GIOENACLR 1			GIOENACLR 0	
	R/W-0			R/W-0	

LEGEND: R/W = Read/Write; -n = value after reset

Table 25-6. GIO Interrupt Enable Clear Register (GIOENACLR) Field Descriptions

Bit	Field	Value	Description	
31-24	GIOENACLR 3		Interrupt disable for pins GIOD[7:0]	
		0	Read: The interrupt is disabled.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is enabled.	
			Write: Disables the interrupt.	
23-16	GIOENACLR 2		Interrupt disable for pins GIOC[7:0]	
		0	Read: The interrupt is disabled.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is enabled.	
			Write: Disables the interrupt.	
15-8	GIOENACLR 1		Interrupt disable for pins GIOB[7:0]	
		0	Read: The interrupt is disabled.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is enabled.	
			Write: Disables the interrupt.	
7-0	GIOENACLR 0		Interrupt disable for pins GIOA[7:0]	
		0	Read: The interrupt is disabled.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is enabled.	
			Write: Disables the interrupt.	

25.5.5.2 GIOLVLCLR Register

The GIOLVLCLR register is used to configure an interrupt as a low-level interrupt poing to the VIM. An interrupt can be configured as a low-level interrupt by writing a 1 into the corresponding bit of the GIOLVLCLR register. Writing a 0 has no effect. Figure 25-11 and Table 25-8 describe this register.

Figure 25-11. GIO Interrupt Priority Register (GIOLVLCLR) [offset = 1Ch]

31					16
	GIOLVLCLR 3			GIOLVLCLR 2	
•	R/W-0		•	R/W-0	
15		8	7		0
	GIOLVLCLR 1			GIOLVLCLR 0	
	R/W-0			R/W-0	

LEGEND: R/W = Read/Write; -n = value after reset

Table 25-8. GIO Interrupt Priority Register (GIOLVLCLR) Field Descriptions

Bit	Field	Value	Description	
31-24	GIOLVLCLR 3		GIO low-priority interrupt for pins GIOD[7:0]	
		0	Read: The interrupt is a low-level interrupt.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1.	
			Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2.	
23-16	GIOLVLCLR 2		GIO low-priority interrupt for pins GIOC[7:0]	
		0	Read: The interrupt is a low-level interrupt.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1.	
			Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2.	
15-8	GIOLVLCLR 1		GIO low-priority interrupt for pins GIOB[7:0]	
		0	Read: The interrupt is a low-level interrupt.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1.	
			Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2.	
7-0	GIOLVLCLR 0		GIO low-priority interrupt for pins GIOA[7:0]	
		0	Read: The interrupt is a low-level interrupt.	
			Write: Writing a 0 to this bit has no effect.	
		1	Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1.	
			Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2.	