Na	ime:Edward Yaroslavsky	Date:	9/18/19	_
l pl	ledge my honor that I have abided by the Stevens Honor System.			
Ро	int values are assigned for each question.	Points earned:	_ / 100, =	_ %
1.	Find an upper bound for $f(n) = n^4 + 10n^2 + 5$. Write your answer here:O(n ⁴) (4 points)			
	Prove your answer by giving values for the constants c and n_0 . possible for c . (4 points) $c = 2$ $n_0 = 4$	Choose the smallest	integral value	è
2.	Find an asymptotically tight bound for $f(n) = 3n^3 - 2n$. Writ points)	e your answer here:	θ(n³)	(4
	Prove your answer by giving values for the constants c_1 , c_2 , and values possible for c_1 and c_2 . (6 points) $c_1=2$ $c_2=3$ $n_0=2$	d $n_{ m 0}$. Choose the tigh	itest integral	
3.	Is $3n-4 \in \Omega(n^2)$? Circle your answer: yes /no) (2 points)			
	If yes, prove your answer by giving values for the constants c at value possible for c . If no, derive a contradiction. (4 points) $cn^2 \le 3n - 4 \le 3n$ $cn^2 \le 3n$ $c \le 3/n$ $n \le 3/c$ This is a contradiction since n^2 is not a lower bound for $n \le 3/c$.	nd $n_{ m 0}$. Choose the sn	nallest integra	al
4.	Write the following asymptotic efficiency classes in increasing $O(n^2)$, $O(2^n)$, $O(1)$, $O(n \lg n)$, $O(n)$, $O(n!)$, $O(n^3)$, $O(\lg n)$, $O(n!)$		ooints each)	
	O(1), O(lg n), O(n), O(n lg n), O(n ²), O(n ² lg n), O(n ³), O(2 ⁿ), O(n!), O(n ⁿ)		
5.	Determine the largest size n of a problem that can be solved in takes $f(n)$ milliseconds. n must be an integer. (2 points each)	time t, assuming tha	t the algorithr	n
	a. $f(n) = n$, $t = 1$ second1000			
	b. $f(n) = n \lg n$, $t = 1$ hour204094			

c. $f(n) = n^2$, t = 1 hour ____1897_____

d. $f(n) = n^3$, t = 1 day ____442____

e. f(n) = n!, t = 1 minute ____8___

6. Suppose we are comparing two sorting algorithms and that for all inputs of size n the first algorithm runs in $4n^3$ seconds, while the second algorithm runs in 64n lg n seconds. For which integral values of n does the first algorithm beat the second algorithm? ____2 through 6______ (4 points) Explain how you got your answer or paste code that solves the problem (2 point):

I graphed the two functions and observed the intersection points. From there I checked for the range where 4n³ was more efficient and took less time to complete. This was the range between 2 and 6, inclusive.

7. Give the complexity of the following methods. Choose the most appropriate notation from among O, Θ , and Ω . (8 points each)

```
int function3(int n) {
     int count = 0;
     for (int i = 1; i <= n; i++) {</pre>
          for (int j = 1; j <= n; j++) {</pre>
                for (int k = 1; k <= n; k++) {
                     count++;
           }
     }
     return count;
Answer: \underline{\hspace{0.5cm}} \Theta(n^3)
int function4(int n) {
     int count = 0;
     for (int i = 1; i <= n; i++) {</pre>
          for (int j = 1; j <= n; j++) {</pre>
                count++;
                break;
           }
     return count;
}
Answer: \underline{\hspace{1cm}} \Theta(n) \underline{\hspace{1cm}}
int function5(int n) {
     int count = 0;
     for (int i = 1; i <= n; i++) {</pre>
          count++;
     for (int j = 1; j <= n; j++) {</pre>
          count++;
     return count;
}
Answer: \underline{\hspace{1cm}} \Theta(n) \underline{\hspace{1cm}}
```