Classificiação de vinhos brancos usando SMOTE, hot-encoding e redimensionamento da qualidade para alta, média e baixa

```
In [55]:
          #Desabilita logs e mantém apenas logs críticos (para evitar o libcuda ficar me avisando qu
          import logging
          logger = logging.getLogger()
          logger.setLevel(logging.CRITICAL)
In [56]:
          %config Completer.use_jedi = False
          import pandas as pd
          import numpy as np
          import seaborn as sb
          import matplotlib.pyplot as plt
          import scipy as spy
          import keras
          from sklearn.metrics import accuracy_score, recall_score, confusion_matrix
          from sklearn.model_selection import train_test_split
          from keras.models import Sequential
          from keras.layers import Dense, Dropout, Input
          from keras.optimizers import Adam, RMSprop
In [57]:
          import os
          for dirname, _, filenames in os.walk('/kaggle/input'):
              for filename in filenames:
                  print(os.path.join(dirname, filename))
          df = pd.read_csv('datasets/winequality-white.csv', sep = ',')
          df.head()
```

Out[57]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	6
	1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	6
	2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	6
	3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6
	4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	6

Olhando abaixo, não temos nenhum valor N/A, então não precisamos tratar isso.

```
In [58]:
          df.isna().sum()
         fixed acidity
Out[58]:
         volatile acidity
                                   0
         citric acid
                                   0
         residual sugar
         chlorides
         free sulfur dioxide
         total sulfur dioxide
                                   0
         density
                                   0
         sulphates
                                   0
         alcohol
                                   0
```

```
quality
         dtype: int64
In [59]:
          print(len(df))
         4898
In [60]:
          df['quality'].value_counts()
              2198
Out[60]:
         5
              1457
         7
               880
               175
         8
         4
               163
         3
                20
         9
                 5
         Name: quality, dtype: int64
In [61]:
          df.hist(figsize = (10, 10))
         array([[<AxesSubplot:title={'center':'fixed acidity'}>,
Out[61]:
                 <AxesSubplot:title={'center':'volatile acidity'}>,
                 <AxesSubplot:title={'center':'citric acid'}>],
                 [<AxesSubplot:title={'center':'residual sugar'}>,
                 <AxesSubplot:title={'center':'chlorides'}>,
                 <AxesSubplot:title={'center':'free sulfur dioxide'}>],
                 [<AxesSubplot:title={'center':'total sulfur dioxide'}>,
                 <AxesSubplot:title={'center':'density'}>,
                 <AxesSubplot:title={'center':'pH'}>],
                 [<AxesSubplot:title={'center':'sulphates'}>,
                 <AxesSubplot:title={'center':'alcohol'}>,
                 <AxesSubplot:title={'center':'quality'}>]], dtype=object)
```


Matriz de correlação:

```
In [62]: corr=df.corr()
  plt.figure(figsize=(20,10))
  sb.heatmap(corr,annot=True, cmap='coolwarm')
```

Out[62]: <AxesSubplot:>

SMOTE

Podemos ver acima que temos um desbalanceamento na quantidade de amostras. Temos muitas regulares e poucas ruins e ótimas. Vamos usar uma técnica chamada SMOTE que consiste em fazer o oversampling das amostras minoritária}s, deixando assim o dataset balanceado. Essa técnica foi descrita no artigo.

```
In [63]:
          X=df.drop(columns=['quality'])
          y=df['quality']
In [64]:
                  6
Out[64]:
          1
                  6
          2
                  6
          3
                  6
          4
                  6
          4893
                  6
          4894
                  5
          4895
                  6
                  7
          4896
          4897
          Name: quality, Length: 4898, dtype: int64
In [65]:
          from imblearn.over_sampling import SMOTE
          oversample = SMOTE(k_neighbors=4)
          X, y = oversample.fit_resample(X, y)
```

Vemos abaixo que as classificações agora estão igualmente distribuiídas:

```
print(y.dtypes)
print(y.count())
```

```
y.value_counts()
          int64
          15386
               2198
Out[66]:
               2198
          7
               2198
          8
               2198
          4
               2198
          3
               2198
          9
               2198
          Name: quality, dtype: int64
In [67]:
```

Out[67]:

In [68]:

:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
_	0	7.000000	0.270000	0.360000	20.700000	0.045000	45.000000	170.000000	1.001000	3.000000	0.450000
	1	6.300000	0.300000	0.340000	1.600000	0.049000	14.000000	132.000000	0.994000	3.300000	0.490000
	2	8.100000	0.280000	0.400000	6.900000	0.050000	30.000000	97.000000	0.995100	3.260000	0.440000
	3	7.200000	0.230000	0.320000	8.500000	0.058000	47.000000	186.000000	0.995600	3.190000	0.400000
	4	7.200000	0.230000	0.320000	8.500000	0.058000	47.000000	186.000000	0.995600	3.190000	0.400000
	15381	7.095248	0.313141	0.347810	3.340911	0.023076	45.285144	126.809904	0.990093	3.280000	0.406859
	15382	8.398567	0.257622	0.412865	7.051574	0.033350	27.587392	130.189115	0.994339	3.233009	0.468252
	15383	7.222164	0.251856	0.437062	2.118558	0.031593	29.371150	123.587523	0.990402	3.333351	0.444433
	15384	8.525219	0.290692	0.413214	8.530789	0.031781	27.080351	115.033419	0.995310	3.248282	0.494487
	15385	8.572814	0.267364	0.460544	8.385819	0.034209	28.790779	121.100477	0.995234	3.244811	0.449456

15386 rows × 11 columns

Pronto, agora temos todas as amostras em quantias iguais.

Hot encoding

Primeiro vamos separar a qualificações que vão de 6 à 9 (no caso desse dataset) em 0 1 e 2. Sendo 0 a qualidade mais baixa, 1 a média e 2 a alta, como vamos configurar para o hot encoding posteriormente.

```
y[y \le 4] = 0
          y[((y>=5) & (y<=7))] = 1
          y[y>=8] = 2
          y.value_counts()
               6594
Out[68]:
              4396
              4396
         Name: quality, dtype: int64
In [69]:
          df = pd.concat([X, y.reindex(X.index)], axis=1)
          df
Out[69]:
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates
0	7.000000	0.270000	0.360000	20.700000	0.045000	45.000000	170.000000	1.001000	3.000000	0.450000
1	6.300000	0.300000	0.340000	1.600000	0.049000	14.000000	132.000000	0.994000	3.300000	0.490000
2	8.100000	0.280000	0.400000	6.900000	0.050000	30.000000	97.000000	0.995100	3.260000	0.440000
3	7.200000	0.230000	0.320000	8.500000	0.058000	47.000000	186.000000	0.995600	3.190000	0.400000
4	7.200000	0.230000	0.320000	8.500000	0.058000	47.000000	186.000000	0.995600	3.190000	0.400000
15381	7.095248	0.313141	0.347810	3.340911	0.023076	45.285144	126.809904	0.990093	3.280000	0.406859
15382	8.398567	0.257622	0.412865	7.051574	0.033350	27.587392	130.189115	0.994339	3.233009	0.468252
15383	7.222164	0.251856	0.437062	2.118558	0.031593	29.371150	123.587523	0.990402	3.333351	0.444433
15384	8.525219	0.290692	0.413214	8.530789	0.031781	27.080351	115.033419	0.995310	3.248282	0.494487
15385	8.572814	0.267364	0.460544	8.385819	0.034209	28.790779	121.100477	0.995234	3.244811	0.449456

15386 rows × 12 columns

No trecho de código abaixo, vou converter as varíaveis categóricas (0 1 e 2) em uma tabela. Essa tabela tem 3 colunas, onde cada uma corresponde à uma das classificações possíveis. Sempre apenas um dos items dessa coluna vai ser 1 e o resto 0. O nosso modelo ira tentar prever o valor dessas 3 colunas para assim prever a qualidade do vinho.

Substituindo as faixas de qualidade por 0 (baixa), 1 (média) e 2 (alta):

```
one_hot_encoded_data = pd.get_dummies(df, columns = ['quality'])
df = one_hot_encoded_data.rename(columns={'quality_0': 'baixa', 'quality_1': 'media', 'quality_df.head()
```

Out[70]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	baixa	media
	0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	0.45	8.8	0	1
	1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	0.49	9.5	0	1
	2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	0.44	10.1	0	1
	3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	0	1
	4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	0.40	9.9	0	1

```
In [71]: y = df[['baixa','media', 'alta']]
```

Separando o dataset de treinamento e o de predição

```
In [72]:
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.20,random_state=21)
    print('Formato do dataset de treinamento Xs:{}'.format(X_train.shape))
    print('Formato do dataset de teste Xs:{}'.format(X_test.shape))
    print('Formato do dataset de treino y:{}'.format(y_train.shape))
    print('Formato do dataset de test y:{}'.format(y_test.shape))
```

Formato do dataset de treinamento Xs:(12308, 11)

```
Formato do dataset de teste Xs:(3078, 11)
Formato do dataset de treino y:(12308, 3)
Formato do dataset de test y:(3078, 3)
```

Construção do modelo

O artigo utilizou relu e tanh. Aqui abaixo vamos usar relu.

```
In [73]:
     dimension = X_{train.shape[1]}
     from keras import backend as K
     def create_model():
       model = Sequential()
       model.add(Dense(10, input_dim = dimension, activation='relu'))
       model.add(Dense(60, input_dim = dimension, activation='relu'))
       model.add(Dense(3, activation='softmax'))
       model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
       return model
     model = create_model()
     model.summary()
     Model: "sequential_1"
     Layer (type)
                     Output Shape
                                   Param #
     ______
     dense_3 (Dense)
                     (None, 10)
                                    120
     dense_4 (Dense)
                     (None, 60)
                                    660
     dense_5 (Dense)
                     (None, 3)
                                    183
     ______
     Total params: 963
     Trainable params: 963
     Non-trainable params: 0
In [74]:
     history=model.fit(X_train, y_train, validation_data=(X_test, y_test),epochs=50, batch_size
     93 - val_loss: 0.8258 - val_accuracy: 0.5968
     Epoch 2/50
     69 - val_loss: 0.8015 - val_accuracy: 0.6244
     Epoch 3/50
     58 - val_loss: 0.8040 - val_accuracy: 0.6173
     Epoch 4/50
     92 - val_loss: 0.7496 - val_accuracy: 0.6550
     56 - val_loss: 0.8489 - val_accuracy: 0.5884
     Epoch 6/50
     45 - val_loss: 0.7965 - val_accuracy: 0.6238
     Epoch 7/50
     84 - val_loss: 0.7756 - val_accuracy: 0.6274
     71 - val_loss: 0.7102 - val_accuracy: 0.6839
     Epoch 9/50
```

```
80 - val_loss: 0.6987 - val_accuracy: 0.6940
Epoch 10/50
04 - val_loss: 0.6955 - val_accuracy: 0.6992
Epoch 11/50
49 - val_loss: 0.6768 - val_accuracy: 0.6946
Epoch 12/50
86 - val_loss: 0.6404 - val_accuracy: 0.7212
Epoch 13/50
12 - val_loss: 0.7046 - val_accuracy: 0.7031
Epoch 14/50
35 - val_loss: 0.6279 - val_accuracy: 0.7248
Epoch 15/50
43 - val_loss: 0.7205 - val_accuracy: 0.6540
Epoch 16/50
12 - val_loss: 0.6654 - val_accuracy: 0.6904
Epoch 17/50
31 - val_loss: 0.6226 - val_accuracy: 0.7186
Epoch 18/50
40 - val_loss: 0.6316 - val_accuracy: 0.7034
Epoch 19/50
08 - val_loss: 0.6428 - val_accuracy: 0.7151
Epoch 20/50
25 - val_loss: 0.6215 - val_accuracy: 0.7190
Epoch 21/50
38 - val_loss: 0.6126 - val_accuracy: 0.7417
Epoch 22/50
21 - val_loss: 0.6020 - val_accuracy: 0.7349
Epoch 23/50
10 - val_loss: 0.6107 - val_accuracy: 0.7316
Epoch 24/50
28 - val_loss: 0.5924 - val_accuracy: 0.7326
Epoch 25/50
91 - val_loss: 0.6038 - val_accuracy: 0.7401
Epoch 26/50
47 - val_loss: 0.5885 - val_accuracy: 0.7310
Epoch 27/50
19 - val_loss: 0.5896 - val_accuracy: 0.7238
Epoch 28/50
14 - val_loss: 0.5959 - val_accuracy: 0.7355
Epoch 29/50
99 - val_loss: 0.5706 - val_accuracy: 0.7404
Epoch 30/50
55 - val_loss: 0.5724 - val_accuracy: 0.7394
Epoch 31/50
```

```
59 - val_loss: 0.6289 - val_accuracy: 0.7128
Epoch 32/50
00 - val_loss: 0.5563 - val_accuracy: 0.7602
Epoch 33/50
37 - val_loss: 0.5951 - val_accuracy: 0.7359
Epoch 34/50
88 - val_loss: 0.5676 - val_accuracy: 0.7398
Epoch 35/50
79 - val_loss: 0.6705 - val_accuracy: 0.6966
Epoch 36/50
18 - val_loss: 0.6189 - val_accuracy: 0.7144
Epoch 37/50
32 - val_loss: 0.5565 - val_accuracy: 0.7524
Epoch 38/50
55 - val_loss: 0.5602 - val_accuracy: 0.7476
Epoch 39/50
76 - val_loss: 0.5720 - val_accuracy: 0.7593
Epoch 40/50
53 - val_loss: 0.6257 - val_accuracy: 0.7212
Epoch 41/50
85 - val_loss: 0.5444 - val_accuracy: 0.7729
Epoch 42/50
82 - val_loss: 0.5550 - val_accuracy: 0.7446
Epoch 43/50
30 - val_loss: 0.5515 - val_accuracy: 0.7710
Epoch 44/50
07 - val_loss: 0.5446 - val_accuracy: 0.7615
Epoch 45/50
38 - val_loss: 0.5665 - val_accuracy: 0.7641
Epoch 46/50
65 - val_loss: 0.6486 - val_accuracy: 0.6998
Epoch 47/50
92 - val_loss: 0.5532 - val_accuracy: 0.7596
Epoch 48/50
12 - val_loss: 0.5380 - val_accuracy: 0.7693
Epoch 49/50
75 - val_loss: 0.5874 - val_accuracy: 0.7485
Epoch 50/50
22 - val_loss: 0.5876 - val_accuracy: 0.7544
```

Sobre val accuracy e accuracy:

Quando ambos crescem na mesma proporção quer dizer que o modelo não causou nem overfitting nem underfitting.

Se o accuracy cresce mais que o val_accuracy, quer dizer que temos overfitting.

Se o accuracy cresce menos que o val accuracy, quer dizer que temos underfitting.

avaliação do resultado:

Out[78]:

```
In [75]:
          y_pred = model.predict(X_test)
          def max_probs(array):
              parsed\_pred = np.empty((0,3))
              for idx, x in enumerate(array):
                  idx_max = x.argmax()
                  x = np.zeros((3,))
                  x[idx_max] = 1
                  array[idx] = x
          max_probs(y_pred)
In [76]:
          def to_category(array):
              categories = []
              for idx, x in enumerate(array):
                  idx_max = x.argmax()
                  x = 0
                  if idx_max == 0: x = 0
                  if idx_max == 1: x = 1
                  if idx_max == 2: x = 2
                  categories.append(x)
              return categories
          categorical_y_pred = to_category(y_pred)
          categorical_y_test = to_category(y_test.to_numpy())
          data = confusion_matrix(categorical_y_test, categorical_y_pred)
In [77]:
          len(categorical_y_test)
         3078
Out[77]:
         Matriz de confusão:
In [78]:
          df_cm = pd.DataFrame(data, columns=np.unique(categorical_y_test), index = np.unique(categorical_y_test)
          df_cm.index.name = 'Actual'
          df_cm.columns.name = 'Predicted'
          plt.figure(figsize = (10,7))
          sb.set(font_scale=1.4)#for label size
          sb.heatmap(df_cm, cmap="Blues", annot=True, annot_kws={"size": 16})# font size
         <AxesSubplot:xlabel='Predicted', ylabel='Actual'>
```


Verificação de acurácia geral

```
correct = 0
          total = 0
          for i in range(len(categorical_y_test)):
              if(categorical_y_test[i] == categorical_y_pred[i]):
                  correct += 1
              total += 1
          accuracy = (correct/total)
In [80]:
          accuracy
```

0.7543859649122807 Out[80]:

In [79]:

Conclusão

Usando a divisão em 3 categorias e SMOTE, o modelo tem uma acurácia mais elevada. Isso acontece porque a classificação nessas 3 categorias apenas que definimios, requer menos exatidão no valor a ser previsto, então facilita para o MLP fazer uma previsão correta.