# Содержание

| 1 | Лекци    | я5    |                                                              | 2                  |  |
|---|----------|-------|--------------------------------------------------------------|--------------------|--|
|   | 1.1      | Интер | овальный статистический ряд                                  | 2                  |  |
|   |          |       |                                                              | рическая плотность |  |
|   | 1.3      | Полиг | он частот                                                    | 3                  |  |
|   | 1.4      | Некот | орые распределения, используемые в математической статистике | 3                  |  |
|   |          | 1.4.1 | Гамма-функция Эйлера                                         | 3                  |  |
|   |          | 1.4.2 | Гамма-распределение                                          | 4                  |  |
|   |          | 1.4.3 | Распределение Релея                                          | 5                  |  |
|   |          | 1.4.4 | Распределение хи-квадрат                                     | 5                  |  |
|   |          | 1.4.5 | Распределение Фишера                                         | 6                  |  |
| 2 | Лекция 6 |       |                                                              | 7                  |  |
|   | 2.1      | Переп | исать                                                        | 7                  |  |
| 3 | Лекци    | я7    |                                                              | 8                  |  |
|   | 3.1      | Нерав | венство Рао-Крамера                                          | g                  |  |

# 1 Лекция 5

## 1.1 Интервальный статистический ряд

Выше было понятие статистического ряда. Однако, если объем достаточно велик (n > 50), то элементы выборки группируют в так называемый интервальный статистический ряд. Для этого отрезок  $J = [x_{(1)}, x_{(n)}]$  разбивают на m равновеликих промежутков. Ширина каждого из них  $\Delta = \frac{|J|}{m} = \frac{x_{(1)} - x_{(n)}}{n}$ . Данные промежутки строятся по следующему правилу:

$$J_{i} = [x_{(1)} + (i-1)\Delta; x_{(i)} + i\Delta), i = \overline{1, m-1}$$

$$J_{m} = [x_{(1)} + (m-1)\Delta; x_{(n)}]$$



Определение интервального статистического ряда, отвечающего выборке x называется таблица следующего вида:



 $n_i$  - число элементов выблоки  $\overrightarrow{x}$ , попавших в промежуток  $J_i, i=\overline{1,m}$  Замечание:

$$1) \sum_{i=1}^{m} n_i = n$$

2) Для выбора m используют формулу:

$$m = [log_2 n] + 2$$

или

$$m = [log_2 n] + 1$$

#### 1.2 Эмпирическая плотность

Пусть для данной выборки  $\overrightarrow{x}$  построен интервальный статистический ряд  $(J_i, n_i), i = \overline{1, m}$  Определение:

Эмпирической плотностью распределения соответствующей выборки  $\overrightarrow{x}$  называется функция:

$$f_n(x) = \begin{cases} \frac{n_i}{n \cdot \Delta}, x \in J_i \\ 0 \end{cases}$$
 (1.1)

Замечание: 1) Очевидно, что 
$$\int_{-\infty}^{+\infty} f_n(x) dx = \int_{x_{(1)}}^{x_{(m)}} f_n(x) dx = \sum_{i=1}^m \frac{n_i}{n \cdot \Delta} \Delta = 1$$

Таким образом эмпирическая плотность распределения удовлетворяет условию нормировки. Легко показать, что она обладает всеми свойствами функции плотности распределения.

2)  $f_n(x)$  является кусочно-постоянной функцией:



3) Функция  $f_n(x)$  вяляется статистическим аналогом функции плотности распределения вероятности. Доказательство - аналогично доказанному выше результату для функции распределения.  $\hat{F}_n(x) \overrightarrow{x} \to \overrightarrow{\infty} F(x)$  на Р

 $f_n(x)$  примерно равна f(x) при n » 1.

Опредениение - график эмпирической функции плотности называется гистограммой.

#### 1.3 Полигон частот

Определение полигона частот - пусть для некоторой выборки  $\overrightarrow{x}$  построены гистограммы, по определению полигоном частот называется ломаная, звенья которой соединяют середины верних сторон соседних прямоугольников гистограммы.



1.4 Некоторые распределения, используемые в математической статистике

## 1.4.1 Гамма-функция Эйлера

По определению гамма-функцией Эйлера называется выражение  $\Gamma: R^+ \to R$ , определённое правилом:

$$\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$$

Замечание:

1) Интерграл является несобственным первого рода при  $x \ge 1$ ;

при  $x \in (0;1)$  этот интеграл является несобственным и имеет следующие особенности: в t=0 - подинтегральная функция имеет разрыв второго рода, верхний предел равен бесконечности. Легко проверить, что данный интеграл сходится при x>0, при остальных вещественных x он расходится.

Некоторые свойства гамма-функции:

1.  $\Gamma(x)$  - является бесконечное число раз дифференцируемой функцией, при этом её к-ая производная задаётся следующей формулой:

$$\Gamma^{k}(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} (\ln t)^{k} dt$$

2. 
$$\Gamma(x+1) = x\Gamma(x), x > 0$$

3. 
$$\Gamma(1) = 1$$

4.  $\Gamma(n+1) = n!, n \in N$ , по этой причине часто говорят, что гамма-функция является обобщением понятия факториала на вещественные числа.

5. 
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
, вывод через интеграл Пуассона. 6.  $\Gamma(\frac{n+1}{2}) = \left|\text{по второму свойству}\right| = \frac{n-1}{2}\Gamma(\frac{n-1}{2}) = \dots = \frac{n-1}{2}\frac{n-2}{2}\dots\frac{1}{2}\Gamma(\frac{n-1}{2}) = \frac{1\cdot3\cdot5\dots\cdot(n-1)}{2^n}\sqrt{\pi}$ 

7. Эскиз графика  $\Gamma(x)$ 



## 1.4.2 Гамма-распределение

Определение: говорят, что случайная величина  $\xi$  имеет гамма-распределение, ели её функция плотности распределения вероятности имеет вид:

$$f_{\xi}(x) = \left\{ \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, x > 0 \right\}$$
 (1.2)

Обозначаеся как  $\xi$   $\Gamma(\lambda, \alpha)$ 

Замечание:

1) Экспоненциальное распределение:

$$f_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, x > 0\\ 0 \end{cases} \tag{1.3}$$

$$Exp(\lambda) = \Gamma(\lambda, 1)$$

Теорема:

Пусть случайная величина  $\xi_1$   $\Gamma(\lambda,\alpha_1)$ , а  $\xi_1$   $\Gamma(\lambda,\alpha_1)$ ,  $\xi_1$  и  $\xi_2$  - независимы. Тогда:  $\xi_1+\xi_2$   $\Gamma(\lambda,\alpha_1+\alpha_2)$ 

Следствие:

Если случайные величины  $\xi_1, \xi_2, ..., \xi_n$  независимы, причём  $\xi_i$   $\Gamma(\lambda, \alpha_i), i = \overline{1, n}$ , то:  $\xi_1 + ... + \xi_n$   $\Gamma(\lambda, \alpha_1 + ... + \alpha_n)$ 

## 1.4.3 Распределение Релея

Пусть  $\xi \mathcal{N}(0, \sigma^2)$ 

Говорят, что случайная величина  $\xi$  имеет распределения Релея с параметром  $\sigma$ .

Замечание:

1) Несложно показать, что:

$$f_y(x) = \begin{cases} \frac{1}{\sigma\sqrt{2\pi x}} e^{\frac{-x}{2b^2}}, x > 0\\ 0 \end{cases}$$
 (1.4)

2) Распределение Релея является частным случаем гамма-распределения для  $\lambda = \frac{1}{2\sigma^2}$  и  $\lambda = \frac{1}{2}$ , то есть  $\nu$   $\Gamma(\frac{1}{2\sigma^2}, \frac{1}{2})$ 

## 1.4.4 Распределение хи-квадрат

Пусть:

Если случайные величины  $\xi_1,\xi_2,...,\xi_n$  независимы,  $\xi_i$   $N(0,1),i=\overline{1,n},$   $\nu=\xi_1^2+...+\xi_n^2$ 

Определение: в этом случае говорят, что случайная величина  $\nu$  имеет распределение хи-квадрат с n степенями свободы. Обозначается как  $\nu$   $X^2(n)$ 

Замечание:

1)  $\xi_i \ N(0,1) \Rightarrow \xi_i^2$  имеет распределение Релея с параметром  $\sigma=1$ , то есть  $\xi_i^2 \ \Gamma(\frac{1}{2},\frac{1}{2})$ . Так как случайные величины  $\xi_1...\xi_n$  - независимы с учётом свойства гамма-распределения:  $\nu=\xi_1^2+...+\xi_n^2 \ \Gamma(\frac{1}{2},\frac{n}{2})$ , то  $X^2=\Gamma(\frac{1}{2},\frac{n}{2})$ 

2) Очевидно, что если независимые случайные величины  $\nu_1,...\nu_m$  имеют распределения  $X^2(\nu_i\,X^2(k_i),i)$  $\overline{1,m}$ ), to  $\nu_1 + ... + \nu_n \ X^2(k_1 + ... k_m)$ 

3) График функции плотности  $\nu$   $X^2(n)$ 



# Распределение Фишера

Пусть:

1)  $\xi_1,\xi_2$  - независимы 2)  $\xi_i~X^2(n_i),i=\overline{1,\!2}$ 

3) 
$$\nu = \frac{n_1 \xi_1}{n_2 \xi_2}$$

Определение: в этом случае говорят, что случайная величина  $\nu$  имеет распределение Фишера со степенями свободы  $n_1n_2$ ,  $\nu$   $F(n_1,n_2)$ 

## Замечания:

1) Можно показать, что:

$$f_{\nu}(x) = \begin{cases} C \frac{x^{\frac{n_1}{2} - 1}}{(1 + \frac{n_1 x}{n_2})^{\frac{n_1 + n_2}{2}}}, x > 0\\ 0 \end{cases}$$
 (1.5)

$$C = \frac{(\frac{n_1}{n_2})^{\frac{n_1}{2}}}{B(\frac{n_1}{2}, \frac{n_2}{2})}$$

 $B(x,y)=\int\limits_0^1 t^{x-1}(1-t)^{y-1}dt$  - бета-функция Эйлера. 2) Если u  $F(n_1,n_2),$  то  $\frac{1}{\nu}$   $F(n_2,n_1)$ 

- 2 Лекция 6
- 2.1 Переписать

# 3 Лекция 7

По определению оценка  $\hat{\theta}$  называется эффективной оценкой параметра  $\theta$ , если:

- 1)  $\hat{\theta}$  является наименьшей оценкой для теты
- 2) оценка  $\hat{\theta}$  обладает наименьшей дисперсией среди всех несмещённых  $\theta$

Замечание: иногда говорят не об эффективной вообще точечной оценке, а об оценке, эффективной в некотором классе. Пусть  $\Theta$  - некоторый класс несмещённых оценок для параметра  $\theta$ . По определению оценка  $\hat{\theta}$  называется эффективной в классе  $\Theta$ , если она имеет наименьшую дисперсию среди всех оценок этого класса, т.е. -  $(\forall \hat{\theta})(D\hat{\theta} \leqslant D\tilde{\theta})$ .

## Пример:

Пусть X - случайная величина, обладающая MX = m и  $DX = b^2$ . Покажем, что оценка  $\hat{m_1}(\overrightarrow{X}) = \overline{X}$  является эффективной оценкой для m и b в классе линейных оценок.

## Решение:

1) Линейная оценка имеет вид:  $\hat{m}(\overline{X}) = \sum_{i=1}^n \lambda_i X_i = \lambda_1 X_1 + ... + \lambda_n X_n(*)$  где  $\lambda_i \in R, i = \overline{1,n}$ , тогда матожидание линейной оценки (\*): а)  $M[\hat{m}] = \lambda_1 M X_1 + ... + \lambda_n M X_n = \left|X_i \ X_j, MX = m\right| = (\lambda_1 + ... + \lambda_n)m$ . Так как оценка является несмещённой, то  $M[\hat{m}] = m \Rightarrow \sum_{i=1}^n = 1$  b) Дисперсия оценки (\*):

 $D[\hat{m}] = \sum_{i=1}^n \lambda_i^2 DX_i = \lambda^2 \sum_{i=1}^n \lambda_i^2$  - аналогично матожиданию.

2) Попробуем подобрать коэффициент  $\lambda_i, i = \overline{1, n},$  и (\*) так, чтобы:

$$\begin{cases} D[\hat{m}] \to min \\ \sum_{i=1}^{n} \lambda_i = 1 \end{cases}$$
 (3.1)

Для этого нужно решить задачу условной оптимизации:

$$\begin{cases} \phi(\lambda_1...\lambda_n) = \lambda_1^2 + ... + \lambda_n^2 \to min \\ \sum \lambda_i = 1 \end{cases}$$
 (3.2)

Запишем функцию Лагранжа:

$$L(\lambda_1...\lambda_n,\mu) = \lambda_1^2 + ... + \lambda_n^2 - \mu \sum_i \lambda_i - \mu$$

$$\begin{cases} \frac{dL}{d\lambda_i} = 0\\ \frac{dL}{d\mu} = 0 \end{cases} \tag{3.3}$$

Следовательно:

$$\begin{cases} \frac{dL}{d\lambda_i} = 2\lambda_i - \mu = 0\\ \frac{dL}{d\mu} = -(\sum_{i=1}^n \lambda_i - 1) = 0 \end{cases}$$
(3.4)

Из <br/> <br/> п первых уравнений -  $\lambda_i = \frac{\mu}{2}, i = \overline{1,n}$ 

Покажем, что найденное решение соответствует точке условного минимума целевой функции, таким образом, подставляя  $\lambda_i$  в \* получаем искомую оценку с минимальной дисперсией в классе линейных оценок.

$$\hat{m}(\overrightarrow{X}) = \frac{1}{n}X_1 + \dots + \frac{1}{n}X_n = \overline{X}$$

Дисперсия этой оценке:

$$D[\hat{m}] = \sigma^2 \sum_{i=1}^n \lambda_i^2 = \frac{\sigma^2}{n}$$

Теорема:

Теорема о единственности эффективной оценки:

Пусть  $\tilde{\theta_1}(\overline{X})$  и  $\tilde{\theta_2}(\overline{X})$  - эффективные оценки некой оценки параметра  $\theta$ , тогда  $\tilde{\theta_1}(\overline{X}) = \tilde{\theta_2}(\overline{X})$ 

# 3.1 Неравенство Рао-Крамера

Пусть X - случайная величина, закон распределения которой зависит от вектора  $\overrightarrow{\theta} = (\theta_1, ..., \theta_n)$  параметров.

Пусть  $\overrightarrow{X} = (X_1,...,X_n)$  - случайная выборка из генеральной совокупности X.

Опеределение - функцией правдоподобия, отвечающей случайной выборке  $\overrightarrow{X}$  называется функция  $L(\overrightarrow{X},\overrightarrow{\theta})=p(X_1,\overrightarrow{\theta})...p(X_1,\overrightarrow{\theta})$ 

где:

$$p(X_i, \overrightarrow{\theta}) = \begin{cases} f(X_i, \overrightarrow{\theta}), \text{если X - непрерывная случайная величина} \\ P(X = X_i), \text{если X - дискретная случайная величина} \end{cases}$$
 (3.5)

Пусть r=1, т.е.  $\overrightarrow{\theta}=(\theta_1)=(\theta)$ 

Определение - количество информации по Фишеру, содержащееся в случайной величине  $\overrightarrow{X}$ , называется число  $I(\theta)=M[(\frac{dlnL}{d\theta})^2]$ 

Теорема:

Неравенство Рао-Крамера:

Пусть рассматриваемая модель является регулярной,  $\hat{\theta}(\overrightarrow{X})$  - несмещённая оценка параметра тета. Тогда:

 $D[\hat{\theta}]\geqslant \frac{1}{I(\theta)}$  - неравенство Рао-Крамера.

#### Замечание:

1) При доказательстве теоремы Рао используются дифференциальные параметры под знаком интеграла:

$$\frac{d}{d\phi} \int_{G} \phi(\overrightarrow{X}, \theta) dx = \int_{G} \frac{d\phi(\overrightarrow{X}, \theta)}{d\theta} dx$$

T.е. параметрические модели, для которых справедливо это равенство, будем называть регулярными.

- 2) Неравенство Рао даёт нижнюю границу для дисперсии для всех возможных оценок параметра  $\theta$ .
- 3) Величина  $e(\hat{\theta})=\frac{1}{I(\theta)D(\hat{\theta})}$  называется показателем эффективности по Рао точечной оценки  $\hat{\theta}$   $0\leqslant e(\hat{\theta})\leqslant 1$

Очевидно, что оценка эффективная по Рао будет "просто" эффективной. Вопрос в том, для каких параметричесих моделей существует эффективная по Рао оценка (то есть существует оценка, дисперсия которой равна  $\frac{1}{I(\theta)}$ ) мы оставим без рассмотрения.

4) В некоторых случаях вводят в рассмотрение величину  $I_0(\theta) = M[(\frac{dp(X,\theta)}{d\theta})^2]$  где  $p(X,\theta)$  имеет тот же смысл, что и функция правдоподобия.

Данную величину можно назваь количеством информации по Фишеру в одном испытании. Для некоторых параметрических моделей справедливо:

$$I(\theta) = nI_0(\theta),$$

где n - объём случайной информации.

## Пример:

Пусть X  $N(m, \sigma^2)$ , где m - неизвестна,  $\sigma$  - известна. Докажем, что оценка  $\hat{m_1}(\overrightarrow{X}) = \overline{X}$  для m является эффективной по Pao.

- 1) Необходимо найти показатель эффективности оценки  $\hat{m}_1$ :
- $e(\hat{m}) = \frac{1}{I(m)D(\hat{m})}$ , если данная величина равна 1, то оценка эффективна по Рао, иначе не является эффективной по Рао. 2)  $D[\hat{m}] = D[\overline{X}] = \dots = \frac{\sigma^2}{n}$
- 3)  $I(\hat{m}) = ?$

 $I(\hat{m}) = M[(\frac{dlnL}{dn})^2],$  составим функцию L правдоподобия:

$$L(\overline{X},m) = p(X,m) \cdot \dots \cdot p(X_n,m) = \frac{1}{(\sqrt{2\pi})^n \sigma^n} e^{-\frac{1}{2\sigma^2} \sum (x_i - m)^2}$$

Тогда:

$$lnL(\overline{X}, n) = -\frac{n}{2}ln2\pi - nln\sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (m - X_i)^2$$

$$\frac{dlnL(\overline{X}, m)}{dm} = -\frac{2}{2\sigma^2} \sum_{i=1}^{n} (m - X_i) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - m)$$

$$(\frac{dlnL(\overline{X}, m)}{dm})^2 = \frac{1}{\sigma^4} [(X_1 - m) + \dots + (X_n - m)]^2$$

 $T_{0}$ :

$$I(m) = M[(\frac{d\ln L(\overline{X},m)}{dm})^2] = \frac{1}{\sigma^4} \left[ \sum_{i=1}^n M[(X_i - m)^2 + 2 \sum_{1 \le i < j \le n} M[(X_i - m)(X_j - m)] \right] = \frac{1}{\sigma^4} \left[ \sum_{i=1}^n \sigma^2 + 0 \right] = \frac{1}{\sigma^4} n\sigma^2 = \frac{n}{\sigma^2}$$

4) Получаем  $e(\hat{m})$