1. Team Assignment

Members in each sublayer

- 1.1. RRC
- 1.2. SDAP
- 1.3. PDCP
- 1.4. RLC
- 1.5. MAC

1. RRC

- a. Overview Presentation of the layer
- b. Introduction to .ASN1
- c. Protocol data units, formats and parameters (ASN.1)
 - i. RRC messages
- d. System Information Acquisition
 - i. MIB, SIB1
 - ii. SIB 2 9
- e. RRC connection establishment
- f. RRC reconfiguration
 - i. Cell group configuration
 - ii. Radio Bearer configuration
- g. Timers

2. SDAP

- a. Figure out the QoS flow to DRB mapping rules
 - i. Default mapping
 - ii. Configured mapping
 - iii. Reflective mapping

3. MAC

a. List of configuration Parameters

^{*} RLC and PDCP work is already assigned to people.

- b. Understanding UE MAC architecture, elements present
- c. Multiplexing and assembly
 - i. Logical Channel prioritization
- d. DL-SCH data transfer
- e. UL-SCH data transfer
- f. Protocol Data Units, formats and parameters
 - i. MAC PDU
 - ii. MAC CE

DPDK (Data plane development kit)

It's a library for faster packet processing. Ultimate objective is to convert the C code we write into dpdk to achieve low latency.

1.1. Getting Started

http://doc.dpdk.org/guides/linux_gsg/ http://doc.dpdk.org/guides/prog_guide/index.html - Programmer's guide http://doc.dpdk.org/api/ - API guide

1.2. Core components

- 1. Rte_eal + libc
- 2. Rte malloc
- 3. Rte_timer
- 4. Rte_mempool
- 5. Rte_membuf
- 6. Rte_ring
- 7. rte_debug

1.3. Tasks

- 1. Proper installation guide
- 2. A running example

Interfaces

- 1. NG
- 2. FAPI
- 3. F1 and E1