

Contrôle continu de cinématique

La représentation graphique de la vitesse v (t) d'un mobile est donnée à la figure ci-contre.

1) A l'aide de sa représentation graphique déterminez les équations de la vitesse v (t) pour chacune des 3 phases du mouvement.

2) Calculer les accélérations du mobile au cours des trois phases du mouvement.

Déterminez les équations de l'accélération γ (t) Tracer la représentation graphique γ (t) de l'accélération en fonction du temps, avec t ε [0; 12] en secondes.

3) Déterminez les équations de l'espace x(t) Déterminez l'espace total parcouru par le mobile au cours du mouvement sachant qu'à t=0, $x_0=0$. Tracer la représentation graphique x (t) de l'espace en fonction du temps, avec $t \in [0; 12]$ en secondes. Indiquer la valeur maximale de x

Exercice 2

La représentation graphique de la vitesse v (t) d'un mobile est donnée à la figure ci-dessous

- 1) A l'aide du graphique indiquer si l'équation de V(t) est $V(t) = -V_0.sin(\omega t)$ ou $V(t) = -V_0.cos(\omega t)$
- 2) A l'aide du graphique déterminer les valeurs numériques de $V_0\,$ et $\omega\,$
- 3) Tracer (sur la page suivante) les courbes de $V_0(t)$, V(t) et $\omega(t)$
- 4) Déterminer l'équation de $\theta(t)$, tracer le diagramme correspondant. Indiquer la valeur de θ pour t=72s
- 5) Déterminer l'équation de l'accélération $\Upsilon(t)$, tracer le diagramme correspondant Indiquer la valeur maximale de Υ en m/s²
- 6) Déterminer l'équation de la position x(t), tracer le diagramme correspondant (à t=0, x=0) Indiquer la valeur maximale de x en m

7) Parmi les mécanismes ci-dessous, préciser lequel est concerné l'étude réalisée (préciser le point concerné)

