University of Southern California

Viterbi School of Engineering

CSCI 599: Content Detection and Analysis for Big Data

Instructor: Dr. Chris Mattmann

Assignment 1: MIME Diversity in the Text Retrieval Conference (TREC) Polar

Dynamic Domain Dataset

TEAM 22

GitHub repository: http://www.github.com/harshfatepuria/data-analysis-test

Github.io website: http://harshfatepuria.github.io

(All the visualizations with interactive capabilities available on this website)

Date: 03/03/2016

Report submitted by:

Harsh Fatepuria, fatepuri@usc.edu Warut Roadrungwasinkul, roadrung@usc.edu Rahul Agrawal, rahulagr@usc.edu (Graduate Students, Department of Computer Science)

I. File preparation

1. We created a D3 Pie Chart using existing JSON breakdown from Github.

Fig 1: Pie Chart of MIME diversity of TREC-DD-Polar dataset (JSON from Github)

- 2. We did some file preparation to work with the dataset files easily.
 - a. First, we used Apache Tika to detect file type, and then indexed file path by its MIME type in JSON format, by running a Java class **typedetect.runner.TypeDetectRunner**. This would help us when we would work on a specific file type.
 - b. To do the analysis, we separated files from each type to be training samples and test samples by the ratio of 75% to 25% except for the type *application/octet-stream* which uses 50,000 files each as training and test set by using Java class **typedetect.runner.SeparateTestTrainDataRunner**.

II. Byte Frequency Analysis on files of the selected 15 MIME types

- 1. We performed Byte Frequency Analysis on the chosen 15 MIME types (14 types + octet-stream). An automated script was written for this analysis.
- 2. The script generates 15 JSON files, one for each MIME type. The JSON files were used to generate D3 visualizations of the signatures. An example visualization is shown below.

Fig 2: Companded (μ-Law) BFC Signature of application/x-executable type

III. Byte Frequency Correlation and Byte Frequency Cross Correlation

- 1. We developed a program which computes the Byte Frequency correlation between an input file and its MIME type's BFA Signature. The input to this program is a file type (as described in Tika MIME taxonomy) and a file path (of the file to be analyzed).
- 2. [Extra Work] For all the files present in the test data, we calculated a correlation coefficient (Pearson Correlation). We stored the results for all the file types in separate text files. For each of the files, Pearson Coefficient gives a value in range [-1, 1], 1 meaning that the files are highly correlated and -1 meaning that they are not correlated at all.
- 3. We then developed two D3 visualizations. A multi-line chart depicting BFA signature for the MIME type, and Byte Frequency Distribution of the input file. Another visualization depicts the difference between the two (signature and BFD of a file) and shows areas of high and low correlation.

Fig 3: (Left) Multi line chart b/w BFA Signature (Blue Line) and BFD of File (Orange Line); (Right) Graph shows BFC (difference between BFA Signature and BFD of file). Also shows areas of high and Low correlation (Low Correlation= high difference, high Correlation= low difference)

4. We then performed BFC cross correlation on the test data to generate cross correlation matrix for the 15 MIME types. Also, we generated a D3 heat-map visualizing the same. Link to visualization: http://harshfatepuria.github.io/D3 Cross Correlation Signature HeatMap.html

IV. File Header trailer Analysis (First 4,8 and 16 bytes)

- 1. We developed a program which computes FHT analysis on the first 4, 8 and 16 bytes of all the files in the training set for all the 15 chosen MIME types using the training data.
- 2. We then generated a FHT heat map of size 256 x 16 which depict the overall data distribution of first 16 bytes of all the 15 chosen MIME types.

FHT Sparse Matrix Heat Map for file type: application_x-sh

Fig 4: FHT heat map of application/x-sh type

3. [Extra Work] We calculated the Correlation Coefficient for the first 4, 8 and 16 header bytes for each file in the test data compared to FHT Signature procured in the previous step. The Analysis shows some interesting observations. For example, the first 16 bytes in all the files (in test set) of application/xml, and the first 8 bytes of application/x-sh match their respective FHT Signatures 100%, i.e. they all have the same exact Magic Bytes. Visualization: http://harshfatepuria.github.io/D3 FHT Signature heatMap.html

V. Important Observations and Updation of Tika MIME repository based on above analyses

- 1. We chose a set of 15 MIME types for our analysis because of the following reasons:
 - a. These form the most diverse set from the given MIME types. Overall, our chosen types cover Messages, Applications, Audio, Video and Image files apart from scripts etc.
 - b. These types contain the large amount of data such that our analysis covers almost 800,000 files.
- 2. We found out the first 16 bytes of all the non-empty files (total files=323) classified as application/octet-stream. This information can be found in 'octet_stream_first_16_Bytes.txt'. We did some research on this data, and as per our BFA and FHT analysis, we can modify the tika-mimetypes.xml to detect more file types. We found new MIME magic byte fingerprints for the following:

c. We found a new MIME type 'application/x-git-index', which is a Git Index file. We believe this file can have a classification in Apache Tika

Key Observations:

- 1. Some files did not have the entire content (truncated unusually), and this might be the reason for Tika not detecting these files correctly.
- 2. Some Magic Bytes were missing from text/html which led to these files being classified as text/plain or application/octet stream. We tried to fix this issue by adding new magic bytes.
- 3. We also found some new MIME types, results for which have been indicated above (V.2). These new MIME types were added to the tika-mimetypes.xml and dataset was analyzed again. The relevant files were now correctly detected as CAB, HTML or GIT Index files. Visualizations for the previous run of Tika (On unchanged MIME type file) v/s the new run on Tika (on changed MIME types file) are available at: http://harshfatepuria.github.io/completeDataPieChart_downloadedFiles.html and http://harshfatepuria.github.io/completeDataPieChart_usingModifiedMIME.html

- 4. While adding the new magic bytes for text/html we tried it for offsets "0" and "0:64". It turns out that with offset "0", we get a better classification of files, whereas for offset "0:64", some non html files were getting classified as text/html.
- 5. D3 visualizations helped us a lot to identify byte patterns from files for various forms of analyses, especially finding the magic bytes using FHT heat map.
- 6. Overall, we found that Tika is easy to use, and classifies most of the files correctly. Some new MIME types can be added to classify the undetected/ wrongly-detected types.
- 7. [Tika v/s Mac] We analyzed the non-empty files in application/octet-stream classification, and checked their classification in Apple Mac OS X 10.11.3 using the command: *file --mime-type -b <file_name>*

It turns out that some files were classified differently than Apache Tika:

Files detected as application/octet-stream by Tika	MIME type detected by Apple Mac OS X 10.11.3	If one of our 15 chosen types, the Pearson correlation coefficient for BFA
cn/sh/library/dlpwd/E1EA0A0DD0B36651C58A0E3C8E14F30B426 38D7D110533E8018DDC06A71F9A87	text/plain	0.68
org/w3/www/273EA7C3C3E22540167271B06B9A86EC8F07AF55 728E9A8FF33C2FCAB4353CFF	text/x-po	
org/translationproject/FC7CCC7E7DCA55833B393D54CDA1A6A AAB2290ECD5986BF2B1719B601463D12F	text/x-po	
org/translationproject/C0419E6BC6518647A59573AEB6BE07684B C50C08279E5E1E437844C4A321A9C8	text/x-po	
org/translationproject/BD0CAE3F6DC334998AB3B424380C9756A 9957892F36338BA6161E7E900D34751	text/x-po	
org/translationproject/A4138B5F803E0E4B25A70B5FA1D2C73B1 E557DC3C6FD547140252FF3E0934AF9	text/x-po	
net/cnki/wuxizazhi/0229541219032066874F666EAE7D16A7DA6F5 965EDB9C2F71B80CCE8845E20EC	text/html	0.69
jp/ac/tsukuba/www/7ECEA6E465699A482F9C50BFFD3C2DAA26 7C1076572D75BB765E2D6AC63BB2AF	text/x-c	
jp/ac/tsukuba/www/43C3D961B7626D9C0930AD61322FFEAD95B 7FC65103C9D908288FF1770A1F05B	text/x-c	
gov/noaa/arh/aprfc/62464DACBE1BA9486210FA7B09FB868FAB A84084C8977826276336051058D9B0	text/plain	0.04
gov/nasa/jpl/mls/9B81C7A56AC3C6E6836EF97D9A06463EB277F B37E28227E1966F806BB7F34B25	text/plain	0.81
gov/nasa/jpl/mls/80BC2238611041B040B057801EA25E43FC517C9 D014B6B61E9EA2D5F7F683914	text/plain	0.68
gov/nasa/jpl/mls/392A51636B31FAF5CC1F13D19F66DCE65A588 1354BD88DD9872A9150111B4C0C	text/plain	0.68
gov/nasa/jpl/mls/0D38EC54631D967C0371C54108DFE6860A04A B26DD6CD8350DEF094F4051B40C	text/plain	0.69
com/accuweather/vwidget/17EB685A4E92D69041CB1BCA6CD77 DC14502D7268F26AE2D5553E1A6FD119F7C	application/vnd.ms-cab- compressed	
cn/sh/library/www/04B0FA20E767A6ED01E63132395CA26A8BA 5D243928124BB0CB4B6100D07890A	text/html	0.72
cn/sh/library/www/E1BC0070D8B0768AC5FC9E61738EB2441AD BB61C0C10298C49DD35494AC5ED98	text/html	0.82
cn/sh/library/www/BE408B3FD9BFD5C5D8F0FB3FCE48CEF7DE B1369D3F05F400309109521ABB3397	text/html	0.86
cn/gov/nstl/www/8D8C5E9A1E377E6F3992246F573340D9B424CF B8E9ED38538568EB2A59980ABF	text/html	0.54

Table 1: MIME detection difference b/w Tika and Mac OS X MIME detector

8. We found the correlation coefficient in comparing the test files (25%) with BFA signatures and FHT signatures. The following table shows the best method to identify the files of respective types:

MIME type	Best method to identify
application/zip	FHT(4 bytes)
application/x-executable	FHT(16 bytes)
application/pdf	FHT(8 bytes)
application/xhtml+xml	BFC
application/x-sh	FHT(8 bytes)
application/xml	FHT(16 bytes)

image/jpeg	FHT(16 bytes)
image/png	FHT(16 bytes)
audio/mpeg	FHT(8 bytes)
video/quicktime	FHT(4 bytes)
text/html	BFC
text/plain	BFC
text/x-matlab	BFC
message/rfc822	BFC

Table 2: FHT v/s BFC- Best ways to classify MIME types

VI. [Extra Credit] Tika Similarity using Cosine Distance and Edit Distance

A workflow of clustering and visualization using Tika Similarity is as follows:

Fig 5: Workflow of clustering and visualization using Tika Similarity

- 1. By default, Tika Similarity uses Jaccard similarity. However, there is no such concept using Cosine similarity and Edit distance. There is an implementation of K-means clustering already in the project which can be modified to suit our needs.
- 2. K-means clustering uses Euclidean distance (existing) and outputs the clusters.json file. It transforms each file to a feature vector and calculates distance between each two vectors during the clustering process. We do the following to complete the modification.
 - a. Add a function to calculate Edit distance between two vectors. Also modify the feature structure to contain enough data to calculate the distance.
 - b. Modify the code that does K-mean clustering so we can specify which distance measure to use. Also modify centroid selection when using distance measure other than Euclidean.
 - c. Add a script to create circle.json by taking clusters.json (output from 2.b) as an input.

Fig 6: Workflow of clustering and visualization after adding Cosine and Edit Distance

Analysis on clustering was done using 2 datasets, a smaller one containing about 50 files and the larger containing about 500 files. Screenshots of clusters and circle packing of smaller dataset are as follows:

Fig 7: Clustering and Circle Packing of smaller dataset

Some Observations:

- 1. Jaccard similarity resemblance value of each file is calculated from metadata key, so a file type that has the same metadata key should produce similar resemblance, thus will be in the same cluster. Clustering using Euclidean and Cosine distance should be quite the same because both of them use the length of metadata values as features. Edit distance use actual metadata values so the cluster might be different.
- 2. If we consider the type detected from Tika as each file's actual type and try to classify each file type in each cluster to be the same type as its cluster majority. For smaller dataset we can see that each cluster indicates its type neatly. For larger dataset, although it is not as neat as in smaller dataset but it still resembles the type. The detailed results are as follows.

Smaller Dataset ("/com/ytimg")					Larger Dataset ("/info")				
Jaccard					Jaccard				
Cluster	Type	Majority	Size	Accuracy	Cluster	Туре	Majority	Size	Accui
cluster0	text/plain	13	15	86.66667	cluster0	application/xhtml+xml	1	1	100
cluster1	image/gif	2	2	100	cluster1	image/gif	9	10	90
cluster2	image/jpeg	31	31	100	cluster2	application/xhtml+xml	288	521	55.278
Overall		46	48	95.83333	Overall		298	532	56.015
Euclidean					Euclidean				
Cluster	Type	Majority	Size	Accuracy	Cluster	Туре	Majority	Size	Accur
cluster0	text/plain	13	15	86.66667	cluster0	application/xhtml+xml	7	8	87.5
cluster1	image/gif	2	2	100	cluster1	application/xhtml+xml	218	253	86.166
cluster2	image/jpeg	31	31	100	cluster2	text/html	29	44	65.909
Overall		46	48	95.83333	cluster3	text/html	97	227	42.731
					Overall		351	532	65.977
Cosine	Cosine					Cosine			
Cluster	Type	Majority	Size	Accuracy	Cluster	Туре	Majority	Size	Accur
cluster0	image/jpeg	31	31	100	cluster0	text/html	45	85	52.941
cluster1	text/plain	13	15	86.66667	cluster1	application/xhtml+xml	226	262	86.259

cluster2	image/gif	2	2	100	cluster2	text/html	81	185	43.78378
Overall		46	48	95.83333	Overall		352	532	66.16541
Edit Distance					Edit Distance				
Cluster	Туре	Majority	Size	Accuracy	Cluster	Туре	Majority	Size	Accuracy
cluster0	image/jpeg	31	31	100	cluster0	text/html	62	135	45.92593
cluster1	text/plain	13	13	100	cluster1	text/html	99	192	51.5625
cluster2	image/vnd.microsoft.icon	2	4	50	cluster2	application/xhtml+xml	199	205	97.07317
Overall		46	48	95.83333	Overall		360	532	67.66917

Table 3: Accuracy in Tika Similarity using various distance measures (Edit Distance gives highest accuracy in the larger dataset)

VII. [Extra Credit] Content Based MIME Detector

- 1. In "filetypeDetection" project, the author used R scripts to train a neural network model to classify whether a file is from a specific type or not by using its byte frequency distribution. Classes to read this model and do type prediction based on the model are also implemented in Tika.
- 2. To train a model, first we prepare the training dataset. We built the model to classify "application/xhtml+xml" type. We select 50,000 files of this type to be positive examples. We also select 10,000 files from each other 5 file type ("application/pdf", "image/jpeg", "image/gif", "text/html", "text/plain") to be negative examples. The validation and test dataset are built the same way.
- 3. Byte frequency distribution of each file is calculated as feature vector and also labelled positive or negative according to its type. We feed this data to our modified R script and a trained neural network model. We then feed the model into Tika (using *org.apache.tika.detect.NNExampleModelDetector*) and compare the result against Tika default MIME detector.
- 4. The accuracy of training, validation and test dataset are 95.645, 88.033 and 84.027 percent respectively which conform to the result of training script. Detailed result is as follows:

Train Dataset		Actual	Accuracy		
		application/xhtml+xml	others	(%)	
Predicted	application/xhtml+xml	48567	2922	97.134	
	others	1433	47078	94.156	
			•	95.645	
Validate I	Dataset	Actual	Accuracy		
		application/xhtml+xml	others	(%)	
Predicted	application/xhtml+xml	45610	7577	91.22	
	others	4390	42423	84.846	
				88.033	
Test Dataset		Actual	Accuracy		
		application/xhtml+xml other		(%)	
Predicted	application/xhtml+xml	41176	7149	82.352	
	others	8824	42851	85.702	
			•	84.027	

Table 4: Content based MIME Detector