Technical Mechanics HSLU, Semester 2

 ${\it Matteo\ Frongillo} \\ ({\it Adapted\ from\ TECHMECH_Notes.pdf})$

Last update: April 5, 2025

Contents

1	Static system	2
2	Dynamic system	2
3	Force directions and resultants	2
4	Ropes 4.1 Static vs. dynamic with wind	2
5	Moments and couples 5.1 Moment	3
6	Free Body Diagram (FBD)	3
7	Supports	3
8	Examples of Beams or Shelves	3
9	Multi-Body Systems	4
10	Constraints and Statical Determinacy	4
11	Internal Forces	4
12	Shear/Moment/Tension Diagrams	4
13	Stress and Bending	4
14	Some Young's Modulus Values	5
15	Safety Calculation	5

1 Static system

A body of mass m subject to gravity F_g and a normal reaction F_N on a flat surface. In the static case:

$$\sum F_y = F_N - F_g = 0, \quad \sum F_x = 0$$

2 Dynamic system

For a body of mass m under a resultant force $F_{\rm res}$, the acceleration is

$$a = \frac{F_{\text{res}}}{m}$$

Example with wind F_w acting horizontally and a rope tension or reaction F_R :

$$\sum F_y = 0$$
, $\sum F_x = F_w - F_R = 0$ (if static in the horizontal direction)

3 Force directions and resultants

Suppose there are three forces F_1, F_2, F_3 in different directions.

We can write equilibrium as

$$\sum F_x = -F_1 + F_2 \cos(\alpha), \quad \sum F_y = -F_3 + F_2 \sin(\alpha)$$

For instance, if $\alpha = 45^{\circ}$ and $F_2 = 100 \,\mathrm{N}$:

$$F_1 = F_2 \cos 45^\circ = 70.7 \,\text{N}, \quad F_3 = F_2 \sin 45^\circ = 70.7 \,\text{N}$$

2

4 Ropes

Key property: Ropes can only carry tensile forces, not compressive or bending forces.

4.1 Static vs. dynamic with wind

- In a static system with a rope supporting a mass $m, \sum F_y = 0, \sum F_x = 0$
- In a dynamic system with wind $F_w, \sum F_y = 0, \sum F_x = F_w$

5 Moments and couples

5.1 Moment

Moment (torque) is created by a force acting at a distance from a pivot (or reference point):

$$M_z = F_x d_x$$
 or $M_z = F_y d_y$.

5.2 Couple

Couple is formed by two equal and opposite forces whose lines of action do not coincide, creating a pure moment.

6 Free Body Diagram (FBD)

Procedure:

- Isolate the body from its surroundings.
- Replace each support or contact with the appropriate reaction forces (and possibly moments).
- Apply equilibrium equations:

$$\sum F_x = 0, \quad \sum F_y = 0, \quad \sum M = 0.$$

$$A_x^{A_y}$$

$$F$$

7 Supports

Every blocked degree of freedom (DOF) introduces a reaction (either a force or a moment). In 2D, each point can have up to 3 DOFs:

(1) Translation in x, (2) Translation in y, (3) Rotation about z.

Types of supports:

- Pin/Hinge: Fixes x and y, allows rotation. (Reactions: A_x, A_y)
- Roller: Often fixes y but allows translation in x and rotation. (Reaction: A_y)
- Fixed/Wall support: Fixes x, y, and rotation. (Reactions: A_x, A_y, M_A)

8 Examples of Beams or Shelves

(1) Simply supported beam with two pinned supports. (2) Cantilever with a fixed end and free end. (3) Beam with supports used for bending tests or balance boards.

Small FBD Exercises:

- (a) Two vertical forces F at different points, sum up in y-direction, etc.
- (b) Two horizontal forces, $\sum F_x = 2F$, $\sum M = 0$, etc.
- (c) Summation of vertical forces $F_1 + F_2 = 2F$, etc.
- (d) Force at 135° from horizontal, decompose into F_x and F_y , check moments.

9 Multi-Body Systems

Sometimes we have multiple bodies connected at joints, each with its own free-body diagram.

Example

Let $F = 2000 \,\mathrm{N}, \, a = 7 \,\mathrm{m}, \, b = 2 \,\mathrm{m}, \, c = 6 \,\mathrm{m}, \, d = 3 \,\mathrm{m}.$

- 1. Draw the FBD of the entire system.
- 2. Write equilibrium equations for the unknown reactions $F(A_x)$, $F(A_y)$, $F(B_x)$, $F(B_y)$, etc.
- 3. Solve for magnitudes and directions.
- 4. Calculate internal forces at the joints if needed.

10 Constraints and Statical Determinacy

- Statically determinate: Number of independent equilibrium equations = number of unknowns.
- Statically indeterminate: Equations < unknowns.
- Statically overdeterminate: Equations > unknowns.

Examples:

- A table with 4 legs on rollers (4 legs × 3 DOF each = 12 unknowns, but only 3 equilibrium equations in 2D) ⇒ statically indeterminate.
- A rod supported by a hinge and a rope (3 unknowns total, 3 equations in 2D) ⇒ statically determinate.
- A rod fixed on both ends (6 unknowns, but only 3 equations in 2D) ⇒ statically indeterminate.
- A shoe on the ground without slipping (3 DOF, 2 unknowns, friction plus normal) ⇒ possibly overdeterminate if friction is large, etc.

11 Internal Forces

To find internal forces (normal, shear, bending moment, etc.), we can make a virtual cut and apply equilibrium to one side of the cut:

 $N = \text{internal normal force}, \quad Q = \text{internal shear force}, \quad M = \text{bending moment}.$

12 Shear/Moment/Tension Diagrams

Procedure:

- 1. Draw the overall FBD, solve for external support reactions.
- 2. "Cut" the beam (or member) at various sections x and solve for the internal forces/moments at each cut to plot N(x), Q(x), M(x).

13 Stress and Bending

Stress (σ) is needed to evaluate safety. It differs for each load case:

$$\sigma_{\rm tensile} = \frac{F_{\rm int}}{A}, \quad \sigma_{\rm compressive}({\rm same\ formula,\ different\ sign}), \quad \tau_{\rm shear} = \frac{F_{\rm shear}}{A}.$$

Bending combines tensile, compressive, and possibly shear stress across a cross-section.

Strain (ε) is the internal shape change:

$$\varepsilon_{\mathrm{tensile}} = \frac{\Delta l}{l_0}, \quad \varepsilon_{\mathrm{compressive}} = \frac{\Delta l}{l_0}, \quad \gamma_{\mathrm{shear}} = \frac{\Delta s}{\Delta h}.$$

$$\sigma = E \, \varepsilon,$$

where E is Young's modulus (in MPa or GPa).

14 Some Young's Modulus Values

 $E_{\rm steel} \approx 210,\!000\,{\rm MPa} = 210\,{\rm GPa}, \quad E_{\rm aluminium} \approx 68,\!000\,{\rm MPa} = 68\,{\rm GPa}, \quad E_{\rm polymer} \approx 2,\!100\,{\rm MPa} = 2.1\,{\rm GPa}.$

15 Safety Calculation

A common requirement is:

 $\sigma_{\rm int} < \sigma_{\rm max,admissible}, \quad \varepsilon_{\rm int} < \varepsilon_{\rm max,admissible},$

where allowable (admissible) stresses and strains come from material data and/or a chosen safety factor.