# Causal Modeling With GSS Data Using Multiple Approaches

## Andy Grogan-Kaylor

5 Jul 2020 13:15:16

## Research Question

What is the *possibly causal* association of *education* with *job satisfaction*, while accounting for factors that may possibly have an association with *level of education*?

## Causality

A variable x can only be considered to have causal association with y if the following conditions are met (Holland, 1986):

- 1. x is correlated with y.
- 2. x precedes y in time order.
- 3. The association between x and y can not be accounted for by any third variable z.

Hence, for this particular data, we are exploring:

What happens to the association of *education* and *job satisfaction* when we control for possible confounding variables z using various statistical strategies?

## To Be Added To Each Analysis

- Assumptions
- Equation
- Stata Command
- Conclusion

## Setup

```
. clear all
```

. cd "/Users/agrogan/Desktop/newstuff/causal-modeling"/Users/agrogan/Desktop/newstuff/causal-modeling

### Get Data

```
. use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Data/GSS_panel2
> 010w123_R6 - stata.dta", clear
( )
```

### **ID** Variable

. generate ID = id\_1

## Keep Only Relevant Variables

. keep ID satjob\_? educ\_? race\_? incom16\_?

### Describe Data

. describe

Contains data from /Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Dat > a/GSS\_panel2010w123\_R6 - stata.dta

obs: 2,044 vars: 13 size: 32,704

12 MAR 2018 16:24

| variable name                          | storage<br>type               | display<br>format                | value<br>label                   | variable label                                                                    |
|----------------------------------------|-------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| educ_1                                 | byte                          | %8.0g                            | EDUC_1                           | educ_1: HIGHEST YEAR OF SCHOOL COMPLETED educ_2: HIGHEST YEAR OF SCHOOL COMPLETED |
| educ_2                                 | byte                          | %8.0g                            | EDUC_2                           |                                                                                   |
| educ_3                                 | byte                          | %8.0g                            | EDUC_3                           | educ_3: HIGHEST YEAR OF SCHOOL COMPLETED                                          |
| incom16_1                              | byte                          | %8.0g                            | INCOM16                          | incom16_1: RS FAMILY INCOME WHEN 16 YRS OLD                                       |
| incom16 2                              | byte                          | %8.0g                            | V1318 A                          | incom16_2: RS FAMILY INCOME WHEN 16 YRS OLD                                       |
| incom16_3                              | byte                          | %8.0g                            | V1319_A                          | incom16_3: RS FAMILY INCOME WHEN 16 YRS OLD race_1: RACE OF RESPONDENT            |
| race_1                                 | byte                          | %8.0g                            | RACE_1                           |                                                                                   |
| race_2                                 | byte                          | %8.0g                            | RACE_2                           | race_2: RACE OF RESPONDENT race_3: RACE OF RESPONDENT satjob 1: JOB OR HOUSEWORK  |
| race_3                                 | byte                          | %8.0g                            | RACE_3                           |                                                                                   |
| satjob_1                               | byte                          | %8.0g                            | SATJOB 1                         |                                                                                   |
| satjob_1<br>satjob_2<br>satjob_3<br>ID | byte<br>byte<br>byte<br>float | %8.0g<br>%8.0g<br>%8.0g<br>%9.0g | SATJOB_1<br>SATJOB_2<br>SATJOB_3 | satjob_1: JUB OR HOUSEWORK<br>satjob_3: JUB OR HOUSEWORK                          |

Sorted by:

Note: Dataset has changed since last saved.

## Codebook For Selected Variable(s)

.  $codebook satjob_3$ 

satjob\_3 satjob\_3: JOB OR HOUSEWORK

type: numeric (byte)
label: SATJOB\_3

range: [1,4] units: 1
unique values: 4 missing .: 0/2,044
unique mv codes: 3 missing .\*: 1,086/2,044

tabulation: Freq. Numeric Label

483 1 VERY SATISFIED
367 2 MOD. SATISFIED
69 3 A LITTLE DISSAT
39 4 VERY DISSATISFIED
4 .d DK

1,073 .i IAP 9 .n NA

# Analyses Relying On Wide Data

### Correlation

. pwcorr satjob\_3 educ\_3, sig

|          | satjob_3          | educ_3 |
|----------|-------------------|--------|
| satjob_3 | 1.0000            |        |
| educ_3   | -0.0774<br>0.0166 | 1.0000 |

## Regression With 1 Independent Variable

. regress satjob\_3 educ\_3

| 0               | , – –               |           |                |        |                  |      |                    |
|-----------------|---------------------|-----------|----------------|--------|------------------|------|--------------------|
| Source          | SS                  | df        | MS             | Numb   | er of obs        | =    | 957                |
|                 |                     |           |                | - F(1, | 955)             | =    | 5.76               |
| Model           | 3.53828635          | 1         | 3.53828635     | Prob   | > F              | =    | 0.0166             |
| Residual        | 586.493062          | 955       | .61412886      | R-sq   | uared            | =    | 0.0060             |
|                 |                     |           |                | Adj    | R-squared        | =    | 0.0050             |
| Total           | 590.031348          | 956       | .617187602     | 2 Root | MSE              | =    | .78366             |
|                 | I                   |           |                |        |                  |      |                    |
| satjob_3        | Coef.               | Std. Err. | t              | P> t   | [95% C           | onf. | Interval]          |
| educ_3<br>_cons | 0216864<br>1.954439 | .0090349  | -2.40<br>15.06 | 0.017  | 039410<br>1.6997 |      | 003956<br>2.209139 |
|                 |                     |           |                |        |                  |      |                    |

## Regression With Multiple Independent Variables

. regress satjob\_3 educ\_3 i.race\_3 incom16\_3

| Source    | SS         | df        | MS         | Number of obs | =   | 951                  |
|-----------|------------|-----------|------------|---------------|-----|----------------------|
|           |            |           |            | F(4, 946)     | =   | 2.36                 |
| Model     | 5.81703392 | 4         | 1.45425848 | Prob > F      | =   | 0.0517               |
| Residual  | 582.580442 | 946       | .615835563 | R-squared     | =   | 0.0099               |
|           |            |           |            | Adj R-squared | =   | 0.0057               |
| Total     | 588.397476 | 950       | .619365765 | Root MSE      | =   | .78475               |
|           | Γ          |           |            |               |     | <del></del>          |
| satjob_3  | Coef.      | Std. Err. | t          | P> t  [95% Co | nf. | <pre>Interval]</pre> |
| educ_3    | 0215151    | .0092674  | -2.32      | 0.020039702   | 1   | 0033281              |
| race 3    |            |           |            |               |     |                      |
| black     | .1267666   | .0708898  | 1.79       | 0.074012352   | 8   | .2658861             |
| other     | .0677238   | .0985112  | 0.69       | 0.492125601   | .9  | .2610495             |
| i16 2     | .0115275   | .0280601  | 0.41       | 0.681043539   |     | .0665947             |
| incom16_3 |            |           |            |               | -   |                      |
| _cons     | 1.89556    | .144649   | 13.10      | 0.000 1.6116  | 9   | 2.17943              |

## **Propensity Score**

### Data Wrangling Since Propensity Score Requires a Binary Treatment Variable

- . generate twelve\_years\_3 = educ\_3 >= 12 // 12 or more years of education
- . generate twelve\_years\_2 = educ\_2 >= 12 // 12 or more years of education

- . generate twelve\_years\_1 = educ\_1 >= 12 // 12 or more years of education
- . label variable twelve\_years\_3 "12 or more years of education"
- . label variable twelve\_years\_2 "12 or more years of education"
- . label variable twelve\_years\_1 "12 or more years of education"

#### Propensity Score Analysis

. teffects psmatch (satjob\_3) (twelve\_years\_3 incom16\_3 i.race\_3) Treatment-effects estimation Number of obs 952 Estimator : propensity-score matching Matches: requested = 1 Outcome model : matching min = 1 Treatment model: logit max = 296 AI Robust satjob\_3 Coef. Std. Err. z P>|z| [95% Conf. Interval] ATE twelve\_years\_3 -.0410168 .1083808 0.705 -.2534393 (1 vs 0) -0.38.1714057

#### Assess Balance of Propensity Score Model <sup>1</sup>

```
. logit twelve_years_3 incom16_3 i.race_3 // logit model of propensity score
Iteration 0:
               log likelihood = -459.6128
               log likelihood = -434.38973
Iteration 1:
Iteration 2:
               log likelihood = -432.70848
Iteration 3:
               \log likelihood = -432.7023
Iteration 4:
               log likelihood = -432.7023
Logistic regression
                                                 Number of obs
                                                                          1,290
                                                 LR chi2(3)
                                                                          53.82
                                                 Prob > chi2
                                                                         0.0000
Log likelihood = -432.7023
                                                 Pseudo R2
                                                                         0.0586
twelve_years_3
                      Coef.
                              Std. Err.
                                                   P>|z|
                                                             [95% Conf. Interval]
     incom16_3
                   .6675118
                               .1012923
                                           6.59
                                                   0.000
                                                             .4689826
                                                                           .866041
        race_3
                  -.3700999
                               .2235376
                                           -1.66
                                                   0.098
                                                            -.8082255
                                                                          .0680258
        black
                    .335468
        other
                               .3787325
                                           0.89
                                                   0.376
                                                            -.4068342
                                                                          1.07777
                   .3873589
                               .2695467
                                           1.44
                                                   0.151
                                                             -.140943
                                                                          .9156608
         cons
```

```
. predict pscore // predict propensity score
(option pr assumed; Pr(twelve_years_3))
(754 missing values generated)
```

- . twoway (kdensity pscore if twelve\_years\_3 == 1, bwidth(.05)) ///
- > (kdensity pscore if twelve\_years\_3 == 0, bwidth(.05)), ///
- > title("Assessing Balance of Propensity Score") ///
- > xtitle("Propensity Score") ///
- > ytitle("Density") ///
- > legend(order(1 "12 or more years of education" 2 "< 12 years of education")) ///
- > scheme(michigan)

<sup>.</sup> graph export mydensity.png, width(500) replace (file mydensity.png written in PNG format)

<sup>&</sup>lt;sup>1</sup>With many thanks to Jorge Cuartas for the idea for the this code.



Figure 1: Density Plot of Propensity Score

# Analyses Relying On Long Data

## Reshape The Data

```
. reshape long satjob_ educ_ twelve_years_ incom16_ race_, i(ID) j(wave)
(note: j = 1 \ 2 \ 3)
Data
                                    wide
                                                long
                                    2044
Number of obs.
                                           ->
                                                 6132
Number of variables
j variable (3 values)
                                           ->
                                                wave
xij variables:
             satjob_1 satjob_2 satjob_3
                                                satjob_
                   educ_1 educ_2 educ_3
                                                educ_
twelve_years_1 twelve_years_2 twelve_years_3->
                                                twelve_years_
          incom16_1 incom16_2 incom16_3
                                           ->
                                                incom16_
                   race_1 race_2 race_3
                                                race_
```

## Clean Up Variable Names

- . rename satjob\_ satjob
- . rename educ\_ educ
- . rename incom16\_ incom16
- . rename race\_ race
- . rename twelve\_years\_ twelve\_years

## Multilevel Model

. mixed satjob wave educ incom16 i.race  $\mid\mid$  ID:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -4161.775
Iteration 1: log likelihood = -4161.7476
Iteration 2: log likelihood = -4161.7476

Computing standard errors:

Mixed-effects ML regression Number of obs 3,595 Group variable: ID Number of groups = 1,661 Obs per group: avg = 2.2 max = 3 Wald chi2(5) 42.38 Log likelihood = -4161.7476Prob > chi2 0.0000

| satjob                  | Coef.                       | Std. Err.                       | z                       | P> z                    | [95% Conf.                    | Interval]                     |
|-------------------------|-----------------------------|---------------------------------|-------------------------|-------------------------|-------------------------------|-------------------------------|
| wave<br>educ<br>incom16 | 018625<br>018976<br>0350535 | .014015<br>.0054133<br>.0154559 | -1.33<br>-3.51<br>-2.27 | 0.184<br>0.000<br>0.023 | 0460938<br>0295859<br>0653465 | .0088439<br>008366<br>0047606 |
| race<br>black<br>other  | .1695589<br>.035975         | .0451171<br>.0543135            | 3.76<br>0.66            | 0.000<br>0.508          | .0811311<br>0704776           | . 2579868<br>. 1424276        |
| _cons                   | 2.049073                    | .0843019                        | 24.31                   | 0.000                   | 1.883845                      | 2.214302                      |

| Random-effects Parameters |               | Estimate | Std. Err. | [95% Conf. | Interval] |  |
|---------------------------|---------------|----------|-----------|------------|-----------|--|
| ID: Identity              | var(_cons)    | .2305185 | .0161162  | . 2009999  | .2643722  |  |
|                           | var(Residual) | .4174209 | .0131143  | . 3924927  | .4439323  |  |

LR test vs. linear model: chibar2(01) = 322.95

Prob >= chibar2 = 0.0000

## Fixed effects regression

| . xtreg satjob wave educ incom16 i.race, i(ID)          | fe                                |     |                |
|---------------------------------------------------------|-----------------------------------|-----|----------------|
| Fixed-effects (within) regression<br>Group variable: ID | Number of obs<br>Number of groups |     | 3,595<br>1,661 |
| R-sq:                                                   | Obs per group:                    |     |                |
| within = 0.0052                                         | min                               | ı = | 1              |
| between = 0.0148                                        | avg                               | g = | 2.2            |
| overall = 0.0122                                        | max                               | ζ = | 3              |
|                                                         | F(5,1929)                         | =   | 2.03           |
| $corr(u_i, Xb) = -0.0714$                               | Prob > F                          | =   | 0.0711         |
|                                                         |                                   |     |                |

| satjob  | Coef.    | Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|---------|----------|-----------|-------|-------|------------|-----------|
| wave    | 0237842  | .0152551  | -1.56 | 0.119 | 0537023    | .006134   |
| educ    | 0087664  | .0158008  | -0.55 | 0.579 | 0397548    | .022222   |
| incom16 | 047186   | .0228265  | -2.07 | 0.039 | 0919531    | 0024189   |
|         |          |           |       |       |            |           |
| race    |          |           |       |       |            |           |
| black   | .3226033 | .2025604  | 1.59  | 0.111 | 0746572    | .7198637  |
| other   | .0383663 | .104807   | 0.37  | 0.714 | 1671806    | .2439132  |
|         |          |           |       |       |            |           |
| _cons   | 1.928458 | .227991   | 8.46  | 0.000 | 1.481323   | 2.375593  |
|         |          |           |       |       |            |           |

```
.6861769
sigma_u
            .64822634
sigma_e
    rho
            .52841711
                        (fraction of variance due to u_i)
```

F test that all  $u_i=0$ : F(1660, 1929) = 2.18

Prob > F = 0.0000

## "Hybrid" Model

The contention here is that the between person coefficient replicates the effect of the fixed effects regression coefficient while the within person coefficient is simultaneously estimated.

#### Generate Within And Between Variables

```
. bysort ID: egen educ_mean = mean(educ)
(6 missing values generated)
. generate educ_deviation = educ - educ_mean
(1,240 missing values generated)
```

#### Estimate The Model

```
. mixed satjob wave educ_mean educ_deviation incom16 i.race || ID:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0:
              log likelihood = -4161.3224
               \log likelihood = -4161.2951
Iteration 1:
               \log likelihood = -4161.2951
Iteration 2:
Computing standard errors:
Mixed-effects ML regression
                                                                            3,595
                                                  Number of obs
Group variable: ID
                                                  Number of groups
                                                                            1,661
                                                  Obs per group:
                                                                 min =
                                                                              2.2
                                                                 avg =
                                                                                3
                                                                 max =
                                                                            43.30
                                                  Wald chi2(6)
Log likelihood = -4161.2951
                                                  Prob > chi2
                                                                           0.0000
        satjob
                       Coef.
                               Std. Err.
                                                    P>|z|
                                                               [95% Conf. Interval]
                  -.0197009
                               .0140588
                                           -1.40
                                                    0.161
                                                              -.0472556
                                                                           .0078537
          wave
     educ_mean
                  -.0208983
                               .0057775
                                            -3.62
                                                    0.000
                                                              -.0322221
                                                                          -.0095745
                   -.0054971
                               .0151667
                                                              -.0352233
                                                                           .0242292
educ_deviation
                                            -0.36
                                                    0.717
                                                                          -.0040349
       incom16
                  -.0343579
                               .0154712
                                            -2.22
                                                    0.026
                                                              -.0646809
          race
        black
                    .1684699
                               .0451261
                                            3.73
                                                    0.000
                                                               .0800245
                                                                           .2569154
        other
                    .0342568
                               .0543368
                                            0.63
                                                    0.528
                                                              -.0722414
                                                                            .140755
                    2.075849
                                .088866
                                            23.36
                                                              1.901675
                                                                           2.250023
         _cons
                                                    0.000
                                                             [95% Conf. Interval]
  Random-effects Parameters
                                  Estimate
                                             Std. Err.
ID: Identity
                  var(_cons)
                                  .2304651
                                              .0161097
                                                             .2009581
                                                                         .2643046
```

.4173132

var(Residual)

.4438157

.3923934

.0131099

# References

 $\label{eq:holland} Holland, P. W. (1986). Statistics and Causal Inference. \ \textit{Journal of the American Statistical Association}, \\ 81(396), 945–960. \ https://doi.org/10.1080/01621459.1986.10478354$