Programming Language

Instructor:

Min-Chun Hu anita_hu@mail.ncku.edu.tw

Concepts of Programming Languages

Tenth Edition

Robert W. Sebesta

ALWAYS LEARNING

PEARSON

Lecture 6 Logic Programming Languages

- Introduction
- ☐ A Brief Introduction to Predicate Calculus
- Predicate Calculus and Proving Theorems
- ☐ An Overview of Logic Programming
- ☐ The Origins of Prolog
- ☐ The Basic Elements of Prolog
- Deficiencies of Prolog
- Applications of Logic Programming

Introduction

Intro To Logic

$$\Rightarrow$$
 & \forall \exists \neg \equiv \lor

An Introduction

www.IntroToLogic.com

Online Course Materials By Jessica Mefford Katz

Introduction

- Programs in logic languages are expressed in a form of symbolic logic
- Use a logical inferencing process to produce results
- Declarative rather that procedural:
 - Only specification of *results* are stated, not detailed *procedures* for producing them
- Programs in logic programming languages are collections of facts and rules.
 - The program is used by asking it questions, and the program answers the question by consulting the facts and rules.

Introduction

- Example: Sorting a list using a logic language
 - Describe the characteristics of a sorted list, not the process of rearranging a list

```
sort(old_list, new_list) \subset permute (old_list, new_list) \cap sorted (new_list) sorted (list) \subset \forall_i such that 1 \le j < n, list(j) \le list (j+1)
```

Predicate Calculus

Predicate calculus

- A particular form of symbolic logic used for logic programming
- Formally expresses logic statements

Proposition

- A logic statement that is either true or false
- Consists of objects and relationships of objects to each other
- Translate logic statements into predicate calculus:
 - □ 0 is a natural number → Natural(0)
 - □ 2 is a natural number → Natural(2)
 - For all x, if x is a natural number, then so is the successor of x. \rightarrow For all x, natural (x) \supset natural (successor (x))

Logic and Logic Programs

- Axioms are logic statements that are assumed to be true
 - Natural (2)
- Symbolic logic is used for the basic needs of formal logic:
 - Express propositions
 - Express relationships between propositions
 - Describe how new propositions can be inferred from other propositions

Objects and Connectives

- Objects in propositions are represented by simple terms: either constants or variables
 - Constant: A symbol that represents an object
 - > natural(0): constants are 0 and natural
 - Variable: A symbol that can represent different objects at different times (different from variables in imperative languages)
 - > successor(x): x is a variable
- Connectives: indicate Boolean operations such as and, or, imply

Compound Terms

- *Compound term*: one element of a mathematical relation, written like a mathematical function
 - □ Composed of function symbol (functor) that names the relationship and ordered list of parameters (tuple)
- Examples:

```
student(jon)
man(jake)
like(nick, linux)
```

Forms of a Proposition

- Propositions can be stated in two forms:
 - □ *Fact*: proposition is assumed to be true
 - ➤ Eg: father(bob, bill).
 - Query: truth of proposition is to be determined
 - ➤ Eg: ?-father(bob, bill).

Compound Propositions

- Atomic propositions: consists of compound terms, and the truth or falsity of the proposition does not depend on that of any other proposition.
 - man(jake) : 1-tuple compound terms
 - □ likes(bill, flower) : 2-tuple compound terms
- Compound propositions: two or more atomic propositions connected by logic connectors.
 - **□** For all x, natural (x) ⊃ natural (successor (x))
 - □ likes(john, trout) ⊂ likes(john,fish) ∩ fish(trout)

Logical Connectors/Operators

Name	Symbol	Example	Meaning
negation			not a
conjunction	\cap	a ∩ b	a and b
disjunction	\cup	a∪b	a or b
equivalence	=	$a \equiv b$	a is equivalent to b
implication	\supset	$a \supset b$	a implies b
		$a \subset b$	b implies a

Ex: $a \cap b \subset c$

Ex: $a \cap \neg b \subset d$

Quantifiers

Name	Example	Meaning
universal	∀X.P	For all X, P is true
existential	∃Х.Р	There exists a value of X such that P is true

Ex: $\forall X.(woman(X) \supset human(X))$

 $\exists X.(mother(Mary, X) \cap male(X))$

Example

Logic Statement	Predicate Calculus
A horse is a mammal.	mammal(horse)
A human is a mammal.	mammal(human)
A horse has no arms.	arms (horse,0)
Mammals have four legs and no arm, or two legs and two arms.	mammal(x) \supset (legs(x,4) \cap arm (x,0)) \cup (legs(x,2) \cap arm (x,2))

Clausal Form

- All predicate calculus propositions can be converted to *Clausal form*:
 - $B_1 \cup B_2 \cup ... \cup B_n \subset A_1 \cap A_2 \cap ... \cap A_m$ means that if all the A's are true, then at least one B is true
 - Antecedent. right side; Consequent. left side
 - B is the head of the clause, and A's are the body of the clause
 - **■** Example:

```
father(louis,al) ∪ father(louis,violet) ⊂
father(al,bob) ∩ mother(violet,bob) ∩ grandfather(louis,bob)
```

Horn Clauses

- Horn clauses:
 - Headed: single atomic proposition on left side (used to state relationship)
 - likes(bob, trout) ⊂ likes(bob, fish) ∩
 fish(trout)
 - Headless: empty left side (used to state facts)
 - father(bob, jake)
 - Most, but not all propositions can be stated as Horn clauses

Predicate Calculus and Proving Theorems

- A use of propositions is to discover new theorems that can be inferred from known axioms and theorems
- Resolution: an inference principle that allows inferred propositions to be computed from given propositions

```
□ P1\subsetP2 Q1\subsetQ2
If (P1==Q2) => Q1\subset P2
```

□ Example:

```
older(joanne, jake) ⊂ mother(joanne, jake)
wiser(joanne, jake) ⊂ older(joanne, jake)
=> wiser(joanne, jake) ⊂ mother(joanne, jake)
```

Predicate Calculus and Proving Theorems

• Example of resolution:

```
father(bob, jake) ∪ mother(bob, jake) ⊂
parent(bob, jake)
grandfather(bob, fred) ⊂ father(bob, jake) ∩
father(jake, fred)

mother(bob, jake) ∪ grandfather(bob, fred) ⊂
parent(bob, jake) ∩ father(jake, fred)
```

Unification

 Unification: find values for variables in propositions that allows matching process to succeed

```
eats(Frank, apple)
?-eats(Frank,X)
X=apple
Yes
```

- Instantiation: assign temporary values to variables to allow unification to succeed
- After instantiating a variable with a value, if matching fails, may need to backtrack and instantiate with a different value

Example

```
likes (jake, chocolate) .
likes (jake, apricots).
                                               Call
                                                                     Fail
likes (darcie, licorice).
likes (darcie, apricots).
                                                  likes (jake, X)
trace.
likes (jake, X), likes (darcie, X).
                                               Exit
                                                                     Redo
 (1) 1 Call: likes(jake, 0)?
 (1) 1 Exit: likes(jake, chocolate)
 (2) 1 Call: likes(darcie, chocolate)?
                                               Call
                                                                     Fail
 (2) 1 Fail: likes(darcie, chocolate)
 (1) 1 Redo: likes(jake, 0)?
 (1) 1 Exit: likes(jake, apricots)
                                                 likes (darcie, X)
 (3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: likes(darcie, apricots)
X = apricots
                                               Exit
                                                                     Redo
```

Proof by Contradiction

- Hypotheses:
 - **a** a set of pertinent propositions
- Goal:
 - negation of theorem stated as a proposition
- Theorem is proved by finding an inconsistency
- Proving a theorem by contradiction results in high time complexity.

Introduction of Prolog

- The origins of Prolog:
 - □ University of Aix-Marseille (Calmerauer & Roussel)
 - ➤ Natural language processing
 - University of Edinburgh (Kowalski)
 - > Automated theorem proving

Terms

- *Term*: a constant, variable, or structure
- Constant: an atom or an integer
- Atom: symbolic value of Prolog (similar to atom in LISP)
 - a string of letters, digits, and underscores beginning with a lowercase letter
 - a string of printable ASCII characters delimited by apostrophes

Terms (Cont.)

- Variable: any string of letters, digits, and underscores beginning with an uppercase letter or an underscore (_)
- Instantiation: binding of a variable to a value
 - Lasts only as long as it takes to satisfy one complete goal, involving proof or disproof of one proposition
- Structure: represents atomic proposition
 - State relationships among terms
 - **□** General form:

functor (parameter list)

Fact Statements

- Used for the hypotheses
- Headless Horn clauses

```
female(shelley).
male(bill).
father(bill, jake).
```

Rule Statements

- Used for the hypotheses
- Headed Horn clause
 - Right side: *antecedent* (*if* part)
 - ➤ May be single term or conjunction
 - Left side: *consequent* (*then* part)
 - ➤ Must be single term
 - □ *Conjunction*: multiple terms separated by logical AND operations (implied)
 - > Example: Female (shelly), child (shelly).
- General form:
 - Consequence :- antecedent_expression.
 - > Example:

```
ancestor(mary, shelley):- mother(mary, shelley).
```

Example Rules

 Can use variables (universal objects) to generalize meaning:

```
parent(X,Y):- mother(X,Y).

parent(X,Y):- father(X,Y).

grandparent(X,Z):- parent(X,Y), parent(Y,Z).
```

Goal Statements

- For theorem proving, theorem is in form of proposition that we want the system to prove or disprove – goal statement
- Same format as headless Horn man (fred).
- Conjunctive propositions and propositions with variables are also legal goals

```
father (X, mike).
```

Inferencing Process of Prolog

- Queries are called goals
- If a goal is a compound proposition, each of the facts is a subgoal
- To prove a goal is true, must find a chain of inference rules and/or facts.
 - For goal Q:

```
P_{2} : - P_{1}
P_{3} : - P_{2}
Q : - P_{n}
```

 Process of proving a subgoal called matching, satisfying, or resolution

Inferencing Process of Prolog

- Consider the following query: man (bob).
 - □ If the database includes the same fact, the proof is trivial.
 - □ If the database contains:

```
father(bob).
man(X):-father(X).
```

Prolog would use them to infer the truth of the goal and this would instantiate x temporarily to bob.

Approaches of Matching

- Bottom-up resolution, forward chaining
 - Begin with facts and rules of database and attempt to find sequence that leads to goal
 - Works well with a large set of possibly correct answers
- Top-down resolution, backward chaining
 - Begin with goal and attempt to find sequence that leads to set of facts in database
 - Works well with a small set of possibly correct answers
- Prolog implementations use backward chaining

Backtracking

- Backtracking: With a goal with multiple subgoals, if fail to show the truth of one of subgoals, reconsider previous subgoal to find an alternative solution
- Begin search where previous search left off
- Can take lots of time and space because may find all possible proofs to every subgoal

Subgoal Strategies

- When goal has more than one subgoal, can use either
 - Depth-first search: find a complete proof for the first subgoal before working on others
 - Breadth-first search: work on all subgoals in parallel
- Prolog uses depth-first search
 - □ Can be done with fewer computer resources

Trace

- Built-in structure that displays instantiations at each step
- Tracing model of execution four events:
 - □ *Call* (beginning of attempt to satisfy goal)
 - **□** *Exit* (when a goal has been satisfied)
 - **□** *Redo* (when backtrack occurs)
 - **□** *Fail* (when goal fails)

Example: Factorial

```
Clause 1 (a unit clause)
factorial (0,1).
factorial(N, Result) :-
   N>0
                      Body
    N1 is N-1,
                                   Clause 2 (a rule)
    factorial (N1, Result1),
    Result is N * Result1.
?- factorial(3,W).
W=6
?- factorial(3,6).
yes
?- factorial(5,2).
no
```

Trace Example

Simple Arithmetic

- Prolog supports integer variables and integer arithmetic
 - **Eg.** sum of 7 and the variable x: +(7,X)
- is operator: takes an arithmetic expression as right operand and variable as left operand

```
A is B / 17 + C.
```

- Not the same as an assignment statement!
 - □ The following is illegal:

```
Sum is Sum + Number.
```

Example

```
speed (ford, 100).
speed (chevy, 105).
speed (dodge, 95).
speed (volvo, 80).
time (ford, 20).
time (chevy, 21).
time (dodge, 24).
time (volvo, 24).
distance(X,Y) :- speed(X,Speed),
                        time (X, Time),
                        Y is Speed * Time.
```

A query: distance(chevy, Chevy_Distance).

List Structures

- Other basic data structure (besides atomic propositions we have already seen): list
- List is a sequence of any number of elements
- Elements can be atoms, atomic propositions, or other terms (including other lists)

Member Example

No

```
member(X, [X|List]).
                                                         ?- member(X,[1,2,3]).
member(X,[Y|List]) :- member(X,List).
                                                        X = 1;
                                                        X = 2;
or
                                                        X = 3;
member(X,[X|]).
                                                        No
member(X, [ |R]) :- member(X,R).
(Not having to bind values to anonymous variables saves a little run-space and run-time.)
?- member([3,Y], [[1,a],[2,m],[3,z],[4,v],[3,p]]).
Y = z:
Y = p;
No
?- member(X,[23,45,67,12,222,19,9,6]), Y is X*X, Y < 100.
X = 9 \quad Y = 81;
X = 6 \quad Y = 36;
```

Append Example

```
append([], List, List).
append([Head | List 1], List 2, [Head | List 3]) :-
            append (List 1, List 2, List 3).
?- append([1,2,3],[4,5],[1,2,3,4,5]).
Yes
?- append([1,2,3],[4,5],A).
A = [1,2,3,4,5]
?- append([1,2,3], W,[1,2,3,4,5]).
W = [4,5]
```

Append Example

```
append([], List, List).
append([Head | List_1], List_2, [Head | List_3]) :-
           append (List_1, List_2, List_3).
?- append([1,2,3],[4,5],A).
A = [1,2,3,4,5]
                                          G4=[4,5]
                               append([],[4,5],[4,5]) T
append([1,2,3],[4,5], G1)
                                           G3=[3,4,5]
append([2,3],[4,5], G2)
                               append([3],[4,5],[3,4,5]) T
           G1=[1] G2
                                          G2=[2,3,4,5]
append([3],[4,5], G3)
                               append([2,3],[4,5],[2,3,4,5]) T
           G2=[2] G3
                                           G1=[1,2,3,4,5]
                               append([1,2,3],[4,5],[1,2,3,4,5]) T
append([],[4,5], G4)
           G3=[3] G4]
```

Reverse Example

or

Reverse using an accumulator

```
reverse([H|T],A,R):-reverse(T,[H|A],R).

reverse([],A,A).

List: [a,b,c,d] Accumulator: []

List: [b,c,d] Accumulator: [a]

List: [c,d] Accumulator: [b,a]

List: [d] Accumulator: [c,b,a]

List: [] Accumulator: [d,c,b,a]
```

Additional Prolog Examples

Defining Max:

```
max(X,Y,M) := X > Y, M \text{ is } X.

max(X,Y,M) := Y >= X, M \text{ is } Y.
```

Defining GCD:

```
gcd(X,Y,D) :- X=Y, D is X.
gcd(X,Y,D) :- X<Y, Y1 is Y - X, gcd(X, Y1, D).
gcd(X,Y,D) :- X>Y, gcd(Y, X, D).
```

Two List examples

Defining Length:

```
length([ ], 0). // empty list has a length of 0 length([ \_ | Tail, N) :- length(Tail, N1), N is 1 + N1. // a list that has an // item \_ and a Tail is length N if the length of Tail is N1 where N = 1 + N1
```

Sum of the items in a list:

```
sum([], 0). // sum of an empty list is 0 <math>sum([X | Tail], S) := sum(Tail, S1), S is X + S1.
```

Deficiencies of Prolog

- Resolution order control
 - In a pure logic programming environment, the order of attempted matches is nondeterministic and all matches would be attempted concurrently
- The closed-world assumption
 - □ The only knowledge is what is in the database
- The negation problem
 - Anything not stated in the database is assumed to be false
- Intrinsic limitations
 - It is easy to state a sort process in logic, but difficult to actually do—it doesn't know how to sort

Applications of Logic Programming

- Relational database management systems
- Expert systems
- Natural language processing