Why Multilingual NLP?

Because we want to understand and model the meaning of texts in...

[Image from: epthinktank.eu]

- ...without manual (i.e., human) input and without perfect MT!
- How many different languages are there in the world?
 - How many have more than 10M speakers?

Why Multilingual NLP?

According to Ethnologue (2020) there are 7,117 living languages

70	Hejazi Arabic	14.5	0.188%	Afroasiatic	Semitic
71	Nigerian Fulfulde	14.5	0.188%	Niger-Congo	Senegambian
72	Bavarian	14.1	0.183%	Indo-European	Germanic
73	South Azerbaijani	13.8	0.179%	Turkic	Oghuz
74	Greek	13.1	0.170%	Indo-European	Hellenic
75	Chittagonian	13.0	0.169%	Indo-European	Indo-Aryan
76	Kazakh	12.9	0.168%	Turkic	Kipchak
77	Deccan	12.8	0.166%	Indo-European	Indo-Aryan
78	Hungarian	12.6	0.164%	Uralic	Ugric
79	Kinyarwanda	12.1	0.157%	Niger-Congo	Bantu
80	Zulu	12.1	0.157%	Niger-Congo	Bantu
81	South Levantine Arabic	11.6	0.151%	Afroasiatic	Semitic
82	Tunisian Arabic	11.6	0.151%	Afroasiatic	Semitic
83	Sanaani Spoken Arabic	11.4	0.148%	Afroasiatic	Semitic
84	Min Bei Chinese	11.0	0.143%	Sino-Tibetan	Sinitic
85	Southern Pashto	10.9	0.142%	Indo-European	Iranian
86	Rundi	10.8	0.140%	Niger-Congo	Bantu
87	Czech	10.7	0.139%	Indo-European	Balto-Slavic
88	Ta'izzi-Adeni Arabic	10.5	0.136%	Afroasiatic	Semitic
89	Uyghur	10.4	0.135%	Turkic	Karluk
90	Min Dong Chinese	10.3	0.134%	Sino-Tibetan	Sinitic
91	Sylheti	10.3	0.134%	Indo-European	Indo-Aryan

Language variety

 Language family: group of languages that originate from the same ancestral/parental language (proto-language)

[Image from: Wikipedia]

- Language isolates: no known/demonstrable genealogical relationship with any other language:
 - Basque, Korean
 - Indo-European language isolates: Albanian, Armenian, Greek

Why Cross-Lingual NLP?

- Because we want to transfer supervised models for NLP tasks...
 - Trained on annotated datasets we have in resource-rich languages
 - Make predictions in resource-lean target languages

Language Transfer

Image from [Ruder, 2019]

Crossing the Language Chasm

Old paradigm:

- Language-specific NLP models
- Language-specific feature computation (i.e., preprocessing)

- Representation learning: semantic vectors (embeddings)
- Multilingual / cross-lingual representation learning

Crossing the Language Chasm: symbolic approaches

1. Full-Blown MT (SMT or NMT)

- Parallel data needed, critical for under-resourced languages
- Translate everything from the target language to the source language

2. Multilingual KBs

- Texts represented using entities from a multilingual KB
- Same entity ID for same concepts across languages
- Issues: coverage, entity linking

Crossing the Language Chasm: representation learning

3. Multilingual / Cross-lingual representations of meaning

Word-level

- Cross-lingual word embeddings
- Words with similar meaning across languages have similar vectors

Text encoding

- Multilingual unsupervised pretraining
 - Multilingual BERT [Devlin et al., '19]
 - XLM(-R) [Conneau & Lample, '19, Conneau et al., 2020]
 - mT5 [Xue et al., 2020]

