# FM225: Fixed Income Securities, Debt Markets and the Macro Economy

Yunan Ronan Ding

Class 12: FSE Revision

London School of Economics

July 31, 2025

Trees

- 3 recipes to price a security/derivative
  - ▶ Replication (one period! Without intermediate CF!)

$$N_1 \times 100 + N_2 \times P_{1,u}(2) = V_{1,u}(1)$$

$$N_1 \times 100 + N_2 \times P_{1,d}(2) = V_{1,d}(1)$$

Risk premium & market price of risk

$$\lambda_0 = \frac{e^{-r_0 \times \Delta} \times \mathbb{E}[P_1(2)] - P_0(2)}{P_{1,u}(2) - P_{1,d}(2)} = \frac{e^{-r_0 \times \Delta} \times \mathbb{E}[V_1(2)] - V_0(2)}{V_{1,u}(2) - V_{1,d}(2)}$$

Risk-neutral pricing

$$p^* = \frac{e^{r_0 \times \Delta} P_0(2) - P_{1,d}(2)}{P_{1,u}(2) - P_{1,d}(2)}$$

Trees 0000000

- Check tree structures first! (parameters, combining tree?)
- Risk-neutral probability is not always 0.5. It should be larger than the real probability (risk-averse, bad states)
- Coupon bond, cap, floor, swap, European option

$$CF_{i,j}(i+1) = \Delta \times N \times \max[r_n(i,j) - r_k, 0]$$

$$CF_{i,j}(i+1) = \Delta \times N \times \max[r_k - r_n(i,j), 0]$$

$$CF_{i,j}(i+1) = \Delta \times N \times [r_n(i,j) - c]$$

Trees 00•0000

# • Step 1: Understand the payoff (reference rate should have the

same compounding frequency as the payment frequency)

$$r_n(i,j) = n \times (e^{r_{i,j} \times \Delta} - 1)$$

- Step 2: Draw a CF tree
- Step 3: Draw a pricing tree

$$P_{i,j} = e^{-r_{i,j} \times \Delta} \times \left[ \frac{1}{2} P_{i+1,j} + \frac{1}{2} P_{i+1,j+1} + C F_{i,j}(i+1) \right]$$

Trees

- FV (Notional) = 100
- Compounding frequency & discount factors
- Time intervals  $(n = 1/\Delta)$ !!!
- Price notations
- CF time (one period after)
- No dynamic replication, no American option, no swaption, no callable bond (but negative convexity!!!)

Trees 0000•00

# Forward Rates & Risk-Neutral Expectation

- Forward rates are not equal to the expectation of future interest rates  $f(0,0.5,1) > \mathbb{E}[r_1]$ . High forward rates may be because of two possibilities:
  - Market participants expect higher future interest rates;
  - Market participants are strongly averse to risk, and thus the price of long-term bonds is low today.
- The forward rate is not even equal to the risk neutral expected future interest rate  $\mathbb{E}^*[r_1]$  because of non-linearity.
  - ▶ They are very close;
  - ➤ The divergence between rates is due to a missing convexity adjustment.

## Comparison between HL & BDT Models

## • Ho-Lee Model:

Trees

- gives non-zero probability to negative interest rates, and small probability to high interest rates.
- approximately normal distribution in the limit

## • BDT Model:

- gives essentially zero probability to interest rates below 1%, but it assigns a much higher probability to high interest rates.
- generates an asymmetric, positively skewed distribution of interest rates, that looks like a log-normal distribution.
- Make sure you understand the general process of calibration (conceptual questions)

## Risk-Neutral Trees

Trees

- The only purpose of risk-neutral tree is to compute the the **price** of the interest rate securities through no-arbitrage law.
  - Risk aversion is embedded in the level of  $\theta_i$
  - Derivative security prices are sensitive to the interest rate distributional difference: BDT model performs badly in the low interest rate environment.

# US Treasury Debt Securities

• Treasury Bills, Notes, Bonds

## • TIPS

- Fixed interest rate; Principal adjusted by changes in CPI (3-month lag)
- Protection against both inflation and deflation (only adjusted when inflation)
- ▶ Show credibility by Treasury to keep inflation low
- Difference between nominal and real bonds represents expected inflation and inflation risk premium.

## STRIPS

- ▶ Created by dealer firm as long-term "treasury ZCB";
- Split into coupon ZCB and principal ZCB; reconstitution if STRIPS are cheap.

# US Treasury derivatives

- US Treasury Futures
  - Very liquid (large scale of open interest)
  - Cash settled for T-bill futures
  - ▶ Deliver notes/bonds for T-note/bond futures
  - Quoted on bank discount yield basis for T-bill futures
- Eurodollar Futures
  - ▶ Reference rate: 3-month LIBOR

# Originator 1 Originator 2 Originator n Asset Pooling Special Purpose Vehicle Asset Backed Securities Investors

| Security's Name                             | Collateral Asset                                                          |
|---------------------------------------------|---------------------------------------------------------------------------|
| Residential Mortgage-Backed Security (RMBS) | Residential mortgages with similar characteristics                        |
| Commercial Mortgage-Backed Security (CMBS)  | Commercial mortgages with similar characteristics                         |
| Asset-Backed Securities (ABS)               | Receivables, such as auto loans, credit cards, and so on                  |
| Collateralized Debt Obligations (CDO)       | Investment and high yield corporate bonds, other structured products, CDS |
| Collateralized Loan Obligations (CLO)       | Corporate loans                                                           |

## Benefit & Risk Considerations

## • Benefit:

- Diversification
- ▶ Off-balance sheet financing
- Liquidity
- Credit enhancing
- Risk consideration:
  - ▶ Default Risk: agency MBS is default free because it is backed by the government and it has more restrictions on the assets.
  - ▶ Prepayment Risk: receive CF too early compared to the expected life of the mortgage (especially when interest rate declines).

• Mortgage coupon payment & valuation:

$$\begin{split} L &= \sum_{i=1}^{30 \times 12} \frac{C}{\left(1 + \frac{\bar{r}_{12}^m}{12}\right)^i} \\ \Rightarrow C &= \frac{L}{\sum_{i=1}^{30 \times 12} A^i} \text{ where } A = \frac{1}{1 + \frac{\bar{r}_{12}^m}{12}} \end{split}$$

Securitization & MBS 0000000

• Interest and Principal paid each period:

$$I_t = \frac{\overline{r}_{12}^m}{12} \times L_t$$
 
$$L_t^{paid} = C - I_t$$
 
$$L_{t+1} = L_t - L_t^{paid}$$

# Negative Convexity (Conceptual Questions)



- Point 1: Interest rate ↓, prepayment ↑
- Point 2: Prepayment ↑, Duration ↓, negative convexity
- Point 3: Hedge the prepayment option

• Effective Duration:

$$D = -\frac{1}{P} \frac{P(+x \text{ bps}) - P(-x \text{ bps})}{2x \text{ bps}}$$

• Effective Convexity:

$$C = \frac{1}{P} \frac{P(+x \text{ bps}) + P(-x \text{ bps}) - 2P}{(x \text{ bps})^2}$$

# RMBS Market Players

- Agency Market:
  - Ginnie Mae (GNMA), Fannie Mae (FNMA), Freddie Mac (FHLMC)
- Non-agency Market (conceptual question):
  - Private Label Markets for mortgages which do NOT satisfy the requirement of government-sponsored agencies

# Monetary Policy (Conceptual Questions)

- Open Market Operations
- Discount Window (primary, secondary, seasonal)
- Reserve Requirements (10% of deposit, interest)
- Federal Funds Rate:
  - ▶ Interest rate at which depository institutions lend balances at the Federal Reserve to other depository institutions overnight;
  - ▶ Fed sets target rate at FOMC meetings and pursue the goal through monetary policies.

- Credibility
- Key economic info/data is only available with a lag
- State of the economy need to be estimated
- Unclear about the economy response
- Other factors influence:
  - ▶ Fiscal Policies (tax & government spending)
  - ▶ Forward-looking financial market
  - ▶ Unpredictable aggregated demand and supply

## Credit Crisis

## Points to review:

- Monetary policy goals (price, economy, employment, etc.)
- Conventional & Unconventional Tools (credit easing, quantitative easing) pay attention to the unconventional tools!

## Final Exam & End of Session 2

- Office Hour:
  - $\blacktriangleright$  LSE Library LG2 9:50am 12:00pm
- Final Exam:
  - ▶ Pay attention to what Cameron said on Thursday!
  - ▶ LSE ID, Exam Room, Question numbers, Answer partial steps
  - ▶ Try to use a pen instead of a pencil
- End of Session 2:
  - ▶ Check the end of session activities on your email
  - ▶ Provide Feedback !!!