UNCLASSIFIED

AD NUMBER ADB285735 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Proprietary Information; Oct 2001. Other requests shall be referred to USAMRMC, Ft. Detrick, MD 21702 **AUTHORITY** USAMRMC ltr, dtd 28 Jul 2003

AD

Award Number: DAMD17-98-1-8172

TITLE: Novel Vector System for Breast Cancer Therapy

PRINCIPAL INVESTIGATOR: Robert I. Garver, Jr., M.D.

CONTRACTING ORGANIZATION: The University of Alabama at Birmingham

Birmingham, Alabama 35294-0111

REPORT DATE: October 2001

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Oct 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER GOVERNMENT PROCUREMENT DOES NOT IN ANY THE U.S. GOVERNMENT. THE FACT THAT THE OBLIGATE FORMULATED OR SUPPLIED THE DRAWINGS, GOVERNMENT SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-98-1-8172

Organization: The University of Alabama at Birmingham

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

12/03/02

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Artington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	October 2001	Final (1 Oct 9	8 - 30 Sep 01)
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Novel Vector System for Breast Cancer Therapy		DAMD17-98-1-8172	
6. AUTHOR(S)			
Robert I. Garver, Jr., M	.D.		
7. PERFORMING ORGANIZATION NAM	TE(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
The University of Alabam	a at Birmingham		
Birmingham, Alabama 352	-		
,			
E-Mail: rgarver@uab.edu			, '
9. SPONSORING / MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Army Medical Resear	ch and Materiel Comma	nd	
Fort Detrick, Maryland	21702-5012		

11. SUPPLEMENTARY NOTES

20030122 106

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution authorized to U.S. Government agencies only (proprietary information, Oct 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The funds from this proposal have been used to develop a novel, sustained-release delivery system for tumor necrosis factor alpha (TNF α). Coacervate microspheres were made to contain TNF α that was released over 3 days. Efficacy testing by administering a single intratumoral dose of the sustained release preparation showed that it was superior to free-TNF α as either a stand-alone therapy, or in combination with other anti-neoplastic modalities. Additional studies described within suggest that this formulation could also be used as a means of targeting other anti-neoplastic modalities into tumors masses.

14. SUBJECT TERMS breast cancer, drug delivery, controlled release, monoclonal			15. NUMBER OF PAGES 27
antibody			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

Table of Contents

Gover
SF 2982
Table of Contents3
Introduction4
Body4
Key Research Accomplishments8
Reportable Outcomes8
Conclusions8
References
Appendices 9-2

I. INTRODUCTION

This project was a breast carcinoma experimental therapeutics effort that examined the efficacy of a novel sustained release formulation of human recombinant tumor necrosis factor alpha (TNF α) in combination with adenovirus E1A products delivered by a conditionally replicative adenovirus. Shown here is an abbreviated version of the Statement of Work:

Task #1: Construct and characterize microspheres that contain and release tumor necrosis factor α (TNF α) over an extended period of time

Task #2: Identify a conditionally replicative adenovirus suitable for use in combination with the extended release TNFα formulation

Task #3: Evaluate individual and combined activity of dl338 virus and TNFα in vitro

Task #4: Evaluate the combined activity of dl338 virus and TNFα in vivo by intratumoral injection

Task #5: Evaluate combined activity of dl338 virus administered systemically and TNFα administered by intratumoral injection

BODY

For this final report, the progress towards completion of each task in the SOW will be described. Please refer to the figure legends that precede the figures themselves in the appendix.

Task 1

We have succeeded in demonstrating that can be encapsulated within a novel coacervate microsphere formulation comprised of human serum albumin and heparin, and released in a bioactive form over 3 days (refer to figs 1-3). The antitumor activity of these microspheres was assessed in human tumor xenografts on the flanks of nude mice by intratumoral injection of the microspheres. In experiments that assessed the dose response and compared tumor growth inhibition to the same doses of unencapsulated TNF α , it was repeatedly shown that the encapsulated TNF α was superior to the free, unencapsulated TNF α (refer to figs 4,5). These experiments completed Task 1.

Task 2

Our original proposal called for the use of an adenovirus partially deleted in the E1B region, dl338, as a conditionally replicative adenovirus. However, we established a collaboration with Dr. Paul Reynolds for the use of adenoviruses he had designed that were even more selective in replication within neoplastic tissues as opposed to normal tissue. These adenoviruses used the midkine (MK) promoter region to transcriptionally direct the E1 region, and he had data that indicated the MK promoter was more active in neoplastic tissues with the consequence that replication was better limited to neoplastic tissues as desired. Our earlier work (Garver et al, Cancer 1994) had shown that MK was strongly expressed in breast carcinomas, and this was another rationale for selecting these series of viruses. Three different MK viruses were selected:

"AdMKE1" which contained an intact E1 under transcriptional direction of MK, "AdMKE4/E1" that contained both E1 and E4 under transcriptional control of MK, and "AdMKE1/del19kd" that was similar to the *dl338* virus in that the 19kd E1B was deleted but the remaining E1 was under transcriptional control of MK. By obtaining these viruses for use in this project, Task 2 was completed.

Task 3

Since adenovirus E1A products had been shown in earlier studies to enhance the toxicity of TNF α , we performed in vitro experiments that examined the effects of combining adenovirus infection with TNF α exposure on subsequent tumor cell line growth as quantified by the MTS colorimetric assay. These experiments were disappointing, finding little enhancement of TNF α -mediated killing in the A549 cell line with the AdMKE1, AdMKE4/E1 or the AdMKE1/19kd del. Note that all of these viruses replicated within these cells as evidenced by the marked reduction in viable cell number at higher MOIs, but the addition of TNF α over a wide dose range did not enhance the killing (figs 6-8). We also tried different schedules of virus and TNF α addition (figs 9-11) which failed to elicit any augmentation of killing by the combination of cytokine and virus. We also tried a second cell line, H1299 (fig 12-14) that also failed to show any benefit of combining the TNF α with the three different viruses. These experiments completed Task 3.

Tasks 4 and 5

These Tasks were animal experiments initially intended to confirm the anticipated positive in vitro results of combining TNF α with the conditionally replicative adenoviruses. We felt that the results did not justify the animal experiments as originally planned. Therefore, we modified our animal experiment plans to examine the combination of ionizing radiation with the sustained release TNF α . Following dose ranging pilot experiments that identified the appropriate TNF α intratumoral doing, we performed duplicate experiments on both A549 and H1299 tumor nodules that did show a significant enhancement of tumor nodule growth delay in groups treated with both radiation and TNF α compared with either treatment alone.

II. FIGURE LEGENDS

- Fig. 1. Time-dependent release of TNF α from heparin-albumin coacervate microspheres in vitro from one representative lot. Ordinate: release of TNF α from microspheres as a percent of the total amount of cytokine encapsulated, abscissa: incubation time in days.
- Fig. 2: Time-dependent release of TNF α from a different lot of heparin-albumin coacervate microspheres than shown in fig. 1.
- Fig. 3. Time-dependent release of TNF α from another lot of heparin-albumin coacervate microspheres than shown in figs 1 and 2. In this case, the release is quantified on the ordinate in micrograms.

- Fig. 4. Dose-response curve of H1299 tumor growth following intratumoral administration of free or encapsulated TNF α . Shown are the results of one representative experiment (n=6/grp) in which tumors received a single intratumoral administration of TNF α . The formulation and amount administered in micrograms is shown in the legend above.
- Fig. 5. Dose-response curve of A549 tumor growth following intratumoral administration of free or encapsulated TNF α . Shown are the results of one representative experiment (n=6/grp) in which tumors received a single intratumoral administration of TNF α . The formulation and amount administered in micrograms is shown in the legend above.
- Fig. 6. Effects of combined TNF α and adenovirus AdMKE1 infection on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNF α in the amount in micrograms shown in the legend above and infection with the AdMKE1 adenovirus containing a complete E1 transcription unit under control of the midkine promoter region. Cells with replicating virus would contain the viral E1A proteins that were expected to act synergistically with the TNF α to inhibit carcinoma growth. Data here is the average of two experiments, each data point performed in quadruplicate.
- Fig. 7. Effects of combined TNF α and adenovirus AdMKE4/E1 infection on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNF α in the amount in micrograms shown in the legend above and infection with the AdMKE4/E1 adenovirus containing the E1 and E4 transcription units under control of the midkine promoter with a deletion of the E4 region. Data here is the average of two experiments, each data point performed in quadruplicate.
- Fig. 8. Effects of combined TNFα and adenovirus AdMKE1/19kd-del infection on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNFα in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.
- Fig. 9. Effects of combined TNF α and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNF α 24 hrs later ("Seq 1") on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNF α in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.
- Fig. 10. Effects of combined TNF α and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNF α 4 hrs later ("Seq 2") on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNF α in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.

- Fig. 11. Effects of combined TNF α and adenovirus AdMKE1/19kd-del infection when TNF α was added 48 hrs prior to virus infection for 4 hrs, followed by the addition of TNF α after infection ("Seq 3") on growth of A549 cells. Shown is the relative growth of cells 5 days after the addition of TNF α (second addition) in the amount in micrograms shown in the legend above and infection with the AdMKE1/19kd-del adenovirus containing the E1 transcription unit under control of the midkine promoter with a deletion of the 19 kd E1B region. Data here is the average of two experiments, each data point performed in quadruplicate.
- Fig. 12. Effects of combined TNF α and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNF α 24 hrs later ("Seq 1") on growth of H1299 cells. This is similar to Fig. 9, except the cell line is changed.
- Fig. 13. Effects of combined TNF α and adenovirus AdMKE1/19kd-del infection when virus infection is followed by the addition of TNF α 4 hrs later ("Seq 2") on growth of H1299 cells. This is similar to Fig. 10, except the cell line is changed.
- Fig. 14. Effects of combined TNF α and adenovirus AdMKE1/19kd-del infection when TNF α was added 48 hrs prior to virus infection for 4 hrs, followed by the addition of TNF α after infection ("Seq 3") on growth of H1299 cells. This is similar to Fig. 11, except the cell line is changed.
- Fig. 15. H1299 tumor nodule growth following combined intratumoral TNF α plus radiation therapy. H1299 tumor nodules were treated with radiation only ("H-XRT"), radiation plus free TNF α ("H-XRT+Free"), or radiation plus encapsulated TNF α ("H-XRT-encap"). Both TNF α groups employed 10 µg of TNF α . Growth is shown on the ordinate as the percentage of the starting tumor volume on day 0 ± SEM (n=6 mice/grp).
- Fig. 16. H1299 tumor nodule growth following combined intratumoral TNF α plus radiation therapy. Duplicate experiment of that shown in fig. 15.
- Fig. 17. A549 tumor nodule growth following combined intratumoral TNF α plus radiation therapy. Same as fig. 15, except the cell line is changed.
- Fig. 18.A549 tumor nodule growth following combined intratumoral TNF α plus radiation therapy. Duplicate experiment of that shown in fig. 17.

III. BIBLIOGRAPHY

- 1. Abstract presented at Era of Hope Meeting: "Progress Towards Developing a Novel Strategy for Intratumoral Breast Cancer Therapy"
- 2. Abstract submitted for 2002 AACR meeting: Intratumoral Sustained Release TNFα As a Novel Radiosensitizing Agent"

3. Manuscript in preparation: "Novel Intratumoral Therapy for Non-Small Cell Lung Cancer: Sustained Release TNFα"

IV. PERSONNEL SUPPORTED DURING GRANT DURATION

UAB: R.Garver

JHU: R.J. Song S.O. Liu

V. <u>KEY RESEARCH ACCOMPLISHMENTS</u>

- development of novel sustained-release delivery system for TNF α
- demonstrating enhanced efficacy of the sustained release formulation of TNFα compared with free TNFα for the direct inhibition of tumor nodule growth
- demonstrating enhanced efficacy of the sustained release formulation of TNF α compared with free TNF α as a radiosensitization agent
- demonstrating that the sustained release formulation of TNF α can enhance the delivery of therapeutic agents into tumor masses

VI. REPORTABLE OUTCOMES

- a. Era of Hope Abstract Presentation 6/00
- b. AACR abstract submitted 11/01: Administration of Sustained-Release TNFα into Human Lung Cancer Xenografts Radiosensitizes and Enhances Tumor Permeability
- c. Manuscript in preparation based on data used for abstract described in VI.b.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The pivotal experiments in Task 3 did not substantiate our original hypothesis: that combination of TNF α with adenovirus E1 products would enhance tumoricidal effects of either agent alone. The animal experiments showed that the sustained release TNF α was more efficacious than the free TNF α alone, and was additive when used in combination with external beam radiotherapy.

Since conclusion of this grant, we have extended the TNF α animal experiments, and also performed mechanistic experiments to explore the means by which TNF α and radiotherapy act more effectively. Further funding is being sought to extend these observations.

Encap v Free TNF alpha

Encap v Free TNF alpha

Dose Response (A549 Tumor Nodule)

AdMKE1 + TNF

AdMKE4/E1 + TNF

100.0ng TN 550ng TNF

10ng TNF

0.0ng TNF

moi 1.0

moi 0.0

moi 10. 250.0ug TNF moi 1.0 100.001 A549 SEQ 3 moi 0.1 ∭ moi 0.5 10.0ug TNF moi 0.0 0.0ug TNF 100

AdMKE1//19kd del+ TNF H1299 SEQ 1

H1299 SEQ 3

200

moi 1.0 moi 0.1 [[[]]] moi 0.5 [[]] moi 0.0

250.0ug TNF

100.00g TNF

10.0ug TNF

0.0ug TNF

TNF alpha +/- XRT #1

H1299 Tumor Nodule (minus NT grp)

TNF alpha +/- XRT #2

H1299 Tumor Nodule (minus NT grp)

A549 Tumor Nodule (minus NT grp)

TNF alpha +/- XRT #2

A549 Tumor Nodule (minus NT grp)

DEPARTMENT OF THE ARMY

LS ARMY MEDICAL RESEARCH AND MATERIEL COMMAND 504 SCOTT STREET FORT DETRICK MARYLAND 21702-5012

REPLY TO ATTENTION OF:

MCMR-RMI-S (70-1y)

28 July 03

MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

- 1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for this Command. Request the limited distribution statement for the enclosed accession numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.
- 2. Point of contact for this request is Ms. Kristin Morrow at DSN 343-7327 or by e-mail at Kristin.Morrow@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART

Deputy Chief of Staff for Information Management

ADB233865	ADB264750
ADB265530	ADB282776
ADB244706	ADB286264
ADB285843	ADB260563
ADB240902	ADB277918
ADB264038	ADB286365
ADB285885	ADB275327
ADB274458	ADB286736
ADB285735	ADB286137
ADB286597	ADB286146
ADB285707	ADB286100
ADB274521	ADB286266
ADB259955	ADB286308
ADB274793	ADB285832
ADB285914	
ADB260288	
ADB254419	
ADB282347	
ADB286860	
ADB262052	
ADB286348	
ADB264839	
ADB275123	
ADB286590	
ADB264002	
ADB281670	
ADB281622	
ADB263720	
ADB285876	
ADB262660	
ADB282191	
ADB283518	
ADB285797	
ADB269339	
ADB264584	
ADB282777	
ADB286185	
ADB262261	
ADB282896	
ADB286247	
ADB286127	
ADB274629	
ADB284370	
ADB264652	
ADB281790	
ADB286578	

مور**و**ي أ