rGMAP

August 24, 2018

Type Package
Title Call hierarchical chromatin domains from HiC matrix by GMAP
Version 1.3.1
Date 08-23-2018
Author Wenbao Yu
Maintainer Wenbao Yu <yuw1@email.chop.edu></yuw1@email.chop.edu>
Description Call hierarchical chromatin domains from HiC contact map by Gaussian Mixture model And Proportion test
BugReports https://github.com/wbaopaul/rGMAP/issues
License GPL (>= 2)
LazyData TRUE
Imports data.table, ggplot2, mclust, EMD, caTools, Matrix, Rcpp (>= 0.12.5)
LinkingTo Rcpp
RoxygenNote 6.1.0
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
data_simu 2 hic_rao_IMR90_chr15 2 plotdom 3 rGMAP 3
Index 6

data_simu

generate simulated hic_mat and true tads

Description

generate simulated hic_mat and true tads

Usage

```
data_simu(stype = "poisson-dist", nratio = 2.5, mu0 = 200,
  resl = 1)
```

Arguments

One of four types of simulated data in the manuscript: poission-dist, poission-dist-hier, nb-dist, nb-dist-hier; poission- or nb- indicates poission distribution or negative bionomial distribution -hier indicated subtads are generated nestly

The effect size between intra- and inter domain, larger means higher intra-tad contacts

The mean parameter, default 200

Resolution, default set to 1

Value

A list includes following elements:

hic_mat n by n contact matrix
hierTads True heirarchical domains

```
hic_rao_IMR90_chr15
```

Normalized Hi-C data for IMR90, chr15 with resolution 10kb.

Description

Normalized Hi-C data for IMR90, chr15 with resolution 10kb.

Usage

```
hic_rao_IMR90_chr15
```

Format

A data table with 3 variables:

n1 bin 1

n2 bin 2

count normalized counts

plotdom 3

Source

Rao et al., Cell 2014, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping

plotdom

visualize hierarchical domains

Description

visualize hierarchical domains

Usage

```
plotdom(hic_dat, hiertads_gmap, start_bin, end_bin, cthr = 20,
    resl = 10000)
```

Arguments

hic_dat hic contact matrix for a given chromosome, either a n by n matrix, or a 3 columns

data.frame <bin1> <bin2> <counts>

hiertads_gmap

the hierarchical domains called by GMAP

start_bin the start bin of the genome end_bin the end bin of the genome

cthr the upper bound count threshold for color, default 20

reslution of Hi-C data, default 10000

rGMAP

Detect hierarchical choromotin domains by GMAP

Description

Detect hierarchical choromotin domains by GMAP

Usage

```
rGMAP(hic_mat, index_file = NULL, resl = 10 * 10^3, logt = T, dom_order = 2, maxDistInBin = min(200, 2 * 10^6/resl), min_d = 25, max_d = 100, min_dp = 5, max_dp = 10, hthr = 0.95, t1thr = 0.5)
```

4 rGMAP

Arguments

hic_mat • For single chromosome, supports three types of format: - a 3-column Hi-C contact matrix, with columns the i_th, j_th bin of a chromosom and the corresponding contact number - a n by n matrix, with <i,j>th element corresponding to contact number between the i_th and j_th bin of the chromosome - a text file of the above two types of data • For multiple chromosomes, a index file indicates genomic coordinate for each hic bin should be provided A 4-columns tab/space delimited text file indicates the genomic coordinates for index_file each bin (compatible with HiC-Pro); with columns bin_chr bin_start bin_end bin id The resolution (bin size), default 10kb resl logt Do log-transformation or not, default TRUE dom_order Maximum level of hierarchical structures, default 2 (call TADs and subTADs) maxDistInBin Only consider contact whose distance is not greater than maxDistInBIn bins, default 200 bins (or 2Mb) The minimum d (d: window size), default 25 min_d The maximum d (d: window size), default 100 max_d The minmum dp (dp: lower bound of tad size), defalt 5 min dp The maximum dp (dp: lower bound of tad size), defalt 10. min_d, max_d, max_dp min_dp and max_dp should be specified in number of bins hthr The lower bound cutoff for posterior probability, default 0.95 Lower bound for t1 for calling TAD, default 0.5 quantile of test statistics of t.1t.hr TADs, 0.9 of subTADs

Value

A list includes following elements:

A data frame with columns start, end indicates the start and end coordinates of each domain, respectively

A data frame with columns start, end, dom_order, where dom_order indicates the hierarchical status of a domain, 1 indicates tads, 2 indicates subtads, and so on

Params

A data frame gives the final parameters for calling TADs

Examples

```
## On simulated data:
library(rGMAP)
simu_res = data_simu('poisson-dist-hier')
true_domains = simu_res$hierTads
simu_mat = simu_res$hic_mat
predicted_domains = rGMAP(simu_mat, resl = 1)$hierTads
true_domains
predicted_domains
## On an real data example
```

rGMAP 5

```
hic_rao_IMR90_chr15  # normalized Hi-C data for IMR90, chr15 with resolution 10kb
res = rGMAP(hic_rao_IMR90_chr15, resl = 10 * 1000, dom_order = 2)
names(res)
#quickly visualize some hierarchical domains
pp = plotdom(hic_rao_IMR90_chr15, res$hierTads, 6000, 7000, 30, 10)
pp$p2
```

Index

```
*Topic datasets
hic_rao_IMR90_chr15,2
data_simu,2
hic_rao_IMR90_chr15,2
plotdom,3
rGMAP,3
```