Austin Smothers

Professor Bustamante

CSC 137

July 3, 2019

Assignment 5

State Diagram:

State Assignment:

 $\{ A = 00 \qquad C = 10 \}$

{ B = 01 D = 11}

State Table:

Q_1	Q_0	X (input)	Q_1^+	Q_0^+	Y (output)
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	1	0
1	1	1	0	0	0

K-Map Minimization: Q_1^+ :

Q_1	Q ₀ X	00	01	11	10
()	0	0	1	0
-	1	1	0	0	0

 $\overline{Q_1}^+ = (Q_1 \overline{Q0X}) + (\overline{Q1}Q_0X)$

Q₀⁺:

Q_1	Q ₀ X	00	01	11	10
()	1	0	0	1
1	l	1	0	0	1

 $Q_0^+ = \overline{X}$

y:

Q_1	$Q_0 X$	00	01	11	10
()	0	0	0	0
	1	1	0	0	0

 $y = Q_1 \overline{Q0X}$

Circuit Diagram:

