Synthesizing realistic surgical images with sim2real GANs

Sebastian Bodenstedt Translational Surgical Oncology

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Motivation: Example applications of ML in surgery

Surgical Training

Data Analysis

Human-Machine Interaction

Motivation: Annotation of data

- Machine learning relies on large amounts of annotated training examples
- Annotation often requires expert knowledge is time consuming

Motivation: Synthetic Data Generation

- Generating ground truth data for synthetic scenes is trivial
- Apply realistic textures to synthetic scenes

Pfeiffer,...,Weitz, Speidel MICCAI 2019: "Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation"

Motivation: Synthetic Data Generation

Apply realistic textures to synthetic scenes

Pfeiffer,...,Weitz, Speidel MICCAI 2019: "Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation"

Example Deep Fakes

Image: https://github.com/iperov/DeepFaceLive

Image: Chris Ume

Image: https://this-person-does-not-exist.com

Image: https://thenextweb.com

Overview lecture

- Introduction to Generative Adversarial Networks (GANs)
 - What are generative models
 - Different modes of learning
 - Components of GANs
- Example usages of GANs
 - Image2Image translation

Supervised vs unsupervised learning

Supervised learning (concept learning)

- Learning by labeled example, i.e. we "tell" the algorithm what to learn
- Two forms of output
 - Symbolic (classification)
 - Output is a discrete value/category, e.g. "tumor"/"no tumor"

- Subsymbolic/regression
 - Output is continuous value, e.g. age or temperature

Supervised vs unsupervised learning

Unsupervised learning

- Detect previously unknown patterns in unlabeled data
 - No desired output!
- Example applications
 - Find anomalies in data, e.g. credit card usage
 - Find clusters, e.g. grouping pictures

Discriminative vs generative learning

Discriminative learning a.k.a classification

- Supervised learning problem
- A class label is assigned to an input
- => can be used to **discriminate** between given examples

Generative Learning

- Unsupervised learning problem
- A model learns the distribution of input data
- => can be used to generate new examples of that distribution

Both play a role in Generative Adversarial Networks!

Generative Adversarial Networks (GANs)

Generative models based on Deep Neural Networks

- An approach for training generative models
 - Introduced by Goodfellow et al. Generative Adversarial Networks
- Generally consists of two separate models
 - Generator: generates new samples from a target domain
 - **Discriminator:** determines whether a sample is real (from domain) or generated
- Training a GAN is comparable to an arms race between the separate models
 - Example: art forger vs. detective

Example: Teaching an art style

Monet-like paintings

Monet's paintings

Example: Teaching an art style

Generator

- Learns distribution of a target domain
 - Given a random input vector, generates a sample
 - Points in vector (latent) space correspond to points in target domain
 - Latent space => compression of the target domain
 - Often a Convolutional Neural Network (CNN)

Discriminator

- Distinguishes real from fake (generated) examples
 - Real examples come from training set
 - Generated examples come from generator
 - Indirectly connects generator to target domain
 - Often a Convolutional Neural Network (CNN)

Binary classifier

Monet's paintings

Training a GAN

- Two step process
 - Generator and discriminator are trained simultaneously
- Training discriminator parameters D

Training a GAN

- Two step process
 - Generator and discriminator are trained simultaneously
- Training discriminator parameters *D*

Training a GAN

- Two step process
 - Generator and discriminator are trained simultaneously
- Training discriminator parameters D
- Training generator parameters G
- Formulated as a minimax game
 - The discriminator aims to maximize its reward, i.e. its fake/real accuracy
 - The generator aims to minimize the reward of the discriminator

Some examples

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*.

Some examples

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*.

Some examples

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. *arXiv preprint arXiv:1511.06434*.

So far

Image generation from noise

Next: Image to Image translation

Image to image translation (with paired data)

- Generally based on conditional GANs
 - Example: Map to aerial photo

Image to image translation (with unpaired data)

- Dataset with no corresponding classes
- Generally based on Cycle GANs

Multimodal image to image translation

- Assumption:
 - An image can be decomposed into a content code and a style code
 - Image translation through combining a content code with a different style code

Multimodal image to image translation

- Trained in similar manner as unpaired image to image
- Additional loss terms for:
 - Reconstruction of images with original codes
 - Reconstruction of codes by decomposing image with know codes

Image to image translation for surgical images

Unpaired image-to-image translation for generating realistic images

Image to image translation for surgical images

Different styles extracted from data

Image to image translation for surgical images

Random styles

Pfeiffer,..,Weitz, Speidel MICCAI 2019: "Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation"

Applying image to image translation to sequences can lead to temporal inconsistencies

- Applying image to image translation to sequences can lead to temporal inconsistencies
- Enforce consistency via neural textures

Temporally Consistent Unpaired Video Translation from Simulated Surgical 3D Data"

Summary

- Introduction into the basics of GANs
 - How to train a GAN to generate images
- GANs for image to image transition
 - Paired
 - Unpaired
- GANs for simulation to video transition
 - Using neural textures

Supported by:

German Cancer Research Center University Hospital Carl Gustav Carus Dresden Carl Gustav Carus Faculty of Medicine, TU Dresden

DEUTSCHES KREBSFORSCHUNGSZENTRUM

UniversitätsKlinikum Heidelberg

Contact: sebastian.bodenstedt@nct-dresden.de

Universitätsklinikum Carl Gustav Carus

Federal Ministry of Education and Research

Federal Ministry for Economic Affairs and Energy

Federal Ministry of Health

