University of British Columbia Department of Mechanical Engineering

MECH468 Modern Control Engineering MECH522 Foundations in Control Engineering Midterm exam

Examiner: Dr. Ryozo Nagamune October 19 (Monday), 2015, 9:00am-9:50am

Last name, First name	
Name:	Student #:
Signature:	

Exam policies

- Allowed: Lecture note print-outs, hand-written notes, homework, books.
- Not-allowed: PC, calculators.
- Write all your answers on this booklet. No extra sheet will be provided.
- Motivate your answers properly. (No chance to defend your answers orally.)
- 20 points in total. Mark will be scaled later.

Before you start ...

- Use washroom before the exam.
- Turn off your mobile phone.
- No eating.
- Questions are NOT allowed.

If you finish early ...

• Please stay at your seat until the end of exam, i.e., 9:50am. (You are not allowed to leave the room before the end of exam, except going to washroom.)

To be filled in by the instructor/marker

Problem #	Mark	Full mark
1		5
2		5
3		10
Total		20

Extra page. Write the problem number before writing your answer.

- 1. Answer the following true-or-false questions. Write (T) (meaning true) or (F) (meaning false). No need to motivate your answers. (0.5pt each) Below, x, u and y denote respectively state, input and output vectors.
 - (a) The system $y(t) = \sin(t) \cdot u(t)$ is a nonlinear system.
 - (b) The system $y(t) = \sin(t) \cdot u(t)$ is a memoryless system.
 - (c) The system $y(t) = \sin(t) \cdot u(t)$ is a time-varying system.
 - (d) Kernel space of a matrix $\begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \end{bmatrix}$ is of one-dimensional (i.e., the basis of the kernel space consists of one vector).
 - (e) An uncontrollable and unobservable system is always unstable.
 - (f) For a discrete-time system $x[k+1] = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} x[k] + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u[k]$, it is possible to transfer state from $x[0] = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ to $x[2] = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$.
 - (g) It is possible to asymptotically stabilize an unstable system without feedback control.
 - (h) If all the element of a symmetric matrix is positive, then the matrix is always positive definite.
 - (i) If we apply a state coordinate transformation (z = Tx) to an unstable system, then the resulting new state-space model is always unstable.
 - (j) If a state-space model is asymptotically stable, then it is always BIBO stable.

Question	Write your answer here
(a)	
(b)	
(c)	
(d)	
(e)	
(f)	
(g)	
(h)	
(i)	
(j)	

- 2. For the continuous-time system $\dot{x} = Ax$ and the discrete-time system x[k+1] = Ax[k] with the following A matrices, determine if it is asymptotically stable, marginally stable, or unstable. Fill out the following table, with abbreviations:
 - "AS" meaning "asymptotically stable",
 - "MS" meaning "marginally stable", or
 - \bullet "UN" meaning "unstable".

No need to motivate your answers.

(0.5pt each)

	Continuous-time	Discrete-time
A	$\dot{x} = Ax$	x[k+1] = Ax[k]
0 1 0		
0 0 1		
0 0 0		
$\begin{bmatrix} -1 & 0 & 0 \end{bmatrix}$		
0 0 0		
0 0 0		

3. Consider the following continuous-time state-space model:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x + \begin{bmatrix} 2 \\ -3 \end{bmatrix} u, \\ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x. \end{cases}$$

Below, you need to motivate your answers. Do not just write "Yes" or "No".

- (a) Verify that the system is asymptotically stable, using:
 - eigenvalue criteria (1pt)
 - Lyapunov theorem (2pt)
- (b) Is the system BIBO stable? (1pt)

- (c) Is the system controllable? (1pt)
- (d) Is the system observable? (1pt)
- (e) Obtain Kalman decomposition. Indicate which state is controllable / uncontrollable and observable / unobservable. (2pt)

(f) Compute the A-matrix of the zero-order-hold discretized system, with the sampling period T>0. (2pt)

Hint: You may want to use the Laplace transform:

$$\mathcal{L}\left\{e^{-t}\right\} = \frac{1}{s+1}, \ \mathcal{L}\left\{te^{-t}\right\} = \frac{1}{(s+1)^2}.$$

Extra page. Write the problem number before writing your answer.