

FCC REPORT

(WIFI)

Applicant: i-Mobile Technology Corporation

Address of Applicant: 3F #8 Alley 15 Lane 120 Sec. 1 Neihu Road, Neihu District,

Taipei City 114, Taiwan

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: IMT-8 PLUS

Trade mark: @mobile

FCC ID: XZO-IMT-8PLUS

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 July., 2016

Date of Test: 07 July., to 16 Aug., 2016

Date of report issued: 16 Aug., 2016

Test Result: PASS*

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	16 Aug., 2016	Original

Test Engineer

Reviewed by: Date: 16 Aug., 2016

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
		T SUMMARY	
4			
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	MEASUREMENT UNCERTAINTY	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	8
	5.7	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS ANDMEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	19
	6.5	POWER SPECTRAL DENSITY	28
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	62
7	TES	T SETUP PHOTO	70
Q	FIIT	CONSTRUCTIONAL DETAILS	71

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	i-Mobile Technology Corporation		
Address of Applicant:	3F #8 Alley 15 Lane 120 Sec. 1 Neihu Road, Neihu District, Taipei City 114, Taiwan		
Manufacturer and Factory:	i-Mobile Technology Corporation		
Address of Manufacturer and Factory:	3F #8 Alley 15 Lane 120 Sec. 1 Neihu Road, Neihu District, Taipei City 114, Taiwan		

5.2 General Description of E.U.T.

Product Name:	Tablet PC
Model No.:	IMT-8 PLUS
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.02dBi
Power supply:	Rechargeable Li-ion Battery DC10.8V-3400mAh
AC adapter:	Input: AC100-240V 50/60Hz 1.4A Output: DC 16.0V, 4.07A

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Operation Frequency each of channel For 802.11n(H40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
		5	2432MHz	8	2447MHz		
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure: 1010 mbar				
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps
802.11n(H40)	13.5Mbps

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Test Instruments list

Radia	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017	
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017	
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Project No.:CCISE1607024

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.02dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.4: 2014			
TestFrequencyRange:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kH	7		
Limit:	Frequency range	Limit (dBuV)	
LIIIII.	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the loga	arithm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:		Reference Plane		
	AUX Equipment Test table/Insula Remark: E.U.T: Equipment Under: LISN: Line Impedence State Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power	
Test Instruments:	Refer to section 5.6 for d	etails		
Test mode:	Refer to section 5.3 for d			
Test results:	Passed			

Measurement Data:

Neutral:

Trace: 13

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Tablet P.C FIIT : IMT-8 Plus Model Test Mode : Wifi mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Peter

Remark

CMark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	₫B	dBu₹	dBu√	dB	
1	0.166	15.57	0.13	10.77	26.47	55.16	-28.69	Average
2	0.194	33.62	0.15	10.76	44.53	63.84	-19.31	QP
3	0.299	27.30	0.19	10.74	38.23	60.28	-22.05	QP
4	0.299	16.02	0.19	10.74	26.95	50.28	-23.33	Average
4 5	0.595	22.24	0.29	10.77	33.30	56.00	-22.70	QP
6	0.614	12.76	0.30	10.77	23.83	46.00	-22.17	Average
7	1.810	20.73	0.26	10.95	31.94	56.00	-24.06	QP
6 7 8 9	2.809	21.51	0.30	10.93	32.74	56.00	-23.26	QP
9	15.885	21.93	0.26	10.91	33.10	50.00	-16.90	Average
10	17.383	29.93	0.27	10.91	41.11	60.00	-18.89	QP
11	17.383	21.71	0.27	10.91	32.89	50.00	-17.11	Average
12	20.594	18.17	0.27	10.92	29.36			Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Line:

Trace: 15

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT Tablet P.C Model IMT-8 Plus Test Mode : Wifi mode Power Rating : AC120/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Peter

Remark

tomath	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu∜	dB	
1	0.162	18.22	0.14	10.77	29.13	55.34	-26.21	Average
2	0.166	35.45	0.14	10.77	46.36	65.16	-18.80	QP
3	0.190	14.28	0.15	10.76	25.19	54.02	-28.83	Average
4	0.299	25.69	0.16	10.74	36.59	60.28	-23.69	QP
2 3 4 5 6 7 8 9	0.299	15.81	0.16	10.74	26.71	50.28	-23.57	Average
6	0.614	24.33	0.29	10.77	35.39	56.00	-20.61	QP
7	0.614	14.18	0.29	10.77	25.24	46.00	-20.76	Average
8	14.907	17.69	0.25	10.90	28.84	50.00	-21.16	Average
9	17.568	29.63	0.30	10.90	40.83	60.00	-19.17	QP
10	17.661	20.24	0.30	10.90	31.44	50.00	-18.56	Average
11	20.486	29.48	0.34	10.93	40.75	60.00	-19.25	QP
12	25.591	28.97	0.36	10.87	40.20	60.00	-19.80	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 9.2.2.2			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dDin)	rvesuit
Lowest	16.41	13.99	13.79	11.72		
Middle	16.83	15.25	15.31	13.99	30.00	Pass
Highest	17.29	14.53	14.51	12.27		

Test plot as follows:

Test mode:802.11b

Lowest channel

Middle channel

Test mode: 802.11g

Lowest channel

Middle channel

Test mode: 802.11n(H20)

Lowest channel

Middle channel

Test mode:802.11n(H40)

Lowest channel

Middle channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Measurement	<u> </u>					
Test CH		6dB Emission	Limit(kHz)	Result		
Test Off	802.11b	802.11g	802.11n(H20)	802.11n(H40)	LIIIII(KI IZ)	Nesuit
Lowest	10.24	16.00	17.20	35.68		
Middle	10.24	16.16	17.36	35.52	>500	Pass
Highest	10.24	15.92	17.44	35.52		
Test CH		99%Occupy	Limit(kHz)	Result		
1031 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(Kriz)	Nosuit
Lowest	13.12	16.48	17.60	35.84		
Middle	13.04	16.48	17.68	35.84	N/A	N/A
Highest	12.96	16.48	17.60	35.84		

Test plot as follows:

6dB EBW Test mode: 802.11b

Date: 21.JUL.2016 11:25:46 Lowest channel

Date: 21.JIII..2016 11:26:41 Middle channel

Date: 21.JUL.2016 11:33:52 Lowest channel

Middle channel

Date: 21.JUL.2016 11:30:33

Highest channel

Date: 21.JUL.2016 11:35:18 Lowest channel

Middle channel

Date: 21.JUL.2016 11:40:03 Highest channel

Date: 21.JUL.2016 11:42:20 Lowest channel

Middle channel

Date: 21.JUL.2016 11:44:20

Highest channel

99% OBW Test mode: 802.11b

Date: 21.JUI..2016 11:45:48

Lowest channel

Date: 21.JUL.2016 11:46:04 Middle channel

Date: 24.JUL.2016 11:01:46 Lowest channel

Middle channel

Date: 21.JUL.2016 11:49:31
Highest channel

Date: 21.JUL.2016 11:50:21 Lowest channel

Middle channel

Date: 21.JUL.2016 11:50:52
Highest channel

Test mode: 802.11n(H40)

Date: 21.JUL.2016 11:51:17 Lowest channel

Middle channel

Date: 21.JUL.2016 11:52:46
Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 10.2		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Test CH		Power Spec	Limit(dBm)	Result		
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Elithit(dBitt)	Nesuit
Lowest	3.82	-2.02	-1.55	-7.93		
Middle	4.61	-1.15	-0.69	-5.66	8.00	Pass
Highest	4.02	-1.87	-1.41	-7.68		

Test plot as follows:

Test mode: 802.11b

Date: 24..TIT..2016 09:30:11

Lowest channel

Middle channel

Date: 24.JUL.2016 09:29:34

Highest channel

Date: 24.7007..2016 09:31:12 Lowest channel

Middle channel

Date: 24..HH..2016 09:31:29

Date: 24.JIII..2016 09:31:47 Highest channel

Date: 24.7III..2016 09:33:01 Lowest channel

мiddle channel

Date: 24.JIII..2016 09:32:16 Highest channel

Test mode: 802.11n(H40)

Date: 24.7007..2016 09:33:32 Lowest channel

Middle channel

Date: 24.JIII..2016 09:34:21
Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
·			
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
	Spectrum Analyzer		
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

802.11b

Date: 24.JUL.2016 11:26:57

Lowest channel

Date: 24.JUL.2016 11:28:13

Highest channel

Date: 24..TUT..2016 11:25:59

Lowest channel

Date: 24.JUI.2016 11:30:49

802.11n(H20)

Date: 24.JUL.2016 11:24:12 Lowest channel

Date: 24.JUL.2016 11:30:11
Highest channel

802.11n(H40)

Date: 24.JIII..2016 11:23:29

Lowest channel

Date: 24.JUL.2016 11:31:43
Highest channel

6.6.2 Radiated Emission Method

Test Method: ANSI C63.10: 2013and KDB 558074v03r05 section 12.1 TestFrequencyRange: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rema Above 1GHz Peak 1MHz 3MHz Peak Value	Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rema Above 1GHz Peak 1MHz 3MHz Peak VE RMS 1MHz 3MHz Average VE Above 1GHz 54.00 Average Value Above 1GHz 74.00 Peak Value 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height ante tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower to the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, queak or average method as specified andthen reported in a data sheet. Test setup:	, and the second									
Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Rema Above 1GHz Peak 1MHz 3MHz Peak VE RMS 1MHz 3MHz Average VE Above 1GHz 54.00 Average Value Above 1GHz 74.00 Peak Value 74.00 Peak Value Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height ante tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower to the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, queak or average method as specified andthen reported in a data sheet. Test setup:	TestFrequencvRange:									
Receiver setup: Frequency	, , ,									
Above 1GHz Peak 1MHz 3MHz Peak Verage Vera RMS 1MHz 3MHz Average Vera RMS 1MHz 2MHz Average Vera RMS 1MHz 2MHz 2MHz 2MHz 2MHz 2MHz 2MHz 2MHz 2										
Limit: Frequency	Receiver setup.							Peak Value		
Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height ante tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limitspecified, then testing could be stopped and the peak very of the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, que peak or average method as specified andthen reported in a data sheet. Test setup:				1	IMHz	3MHz		Average Value		
Test Procedure: 1. The EUT was placed on the top of a rotating table 1.5 meters at the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height ante tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limitspecified, then testing could be stopped and the peak varied of the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, queek or average method as specified andthen reported in a data sheet. Test setup:	Limit:	Frequency		1						
1. The EUT was placed on the top of a rotating table 1.5 meters at the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height ante tower. 3. The antenna height is varied from one meter to four meters abort the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degree to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limitspecified, then testing could be stopped and the peak varied of the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, queak or average method as specified andthen reported in a data sheet. Test setup:		Above 1GH	Hz –						•	
the groundat a 3 meter camber. The table was rotated 360 deg todetermine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height ante tower. 3. The antenna height is varied from one meter to four meters abore the ground to determine the maximum value of the field strength Both horizontal and vertical polarizations of the antenna are set make the measurement. 4. For each suspected emission, the EUT was arranged to its wors case and thenthe antenna was tuned to heights from 1 meter to meters and the rotatablewas turned from 0 degrees to 360 degrees and the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower the limitspecified, then testing could be stopped and the peak very of the EUT wouldbe reported. Otherwise the emissions that did have 10dB margin would bere-tested one by one using peak, quipeak or average method as specified andthen reported in a data sheet. Test setup:	Test Bereit es									
Horn Antenna Tower		the grounda todetermine 2. The EUT wantenna, watower. 3. The antennathe ground Both horizon make the make the make the maters and to find the materials. 5. The test-respective definition of the EUT have 10dB peak or average.	at a 3 meters the positives set 3 meters as the positives set 3 meters and hichwas meters and the rotate maximum ceiver systems and width with the rotate and with the rotate and width with the rotate and with the rotate	ter camber tion of the neters awaried in the neters awaried in the neters are tenna was ablewas in reading. Item was with Maxof the EUen testing reported. Ould bereficial of the statem was of the EUen testing reported.	er. The tage highest way from the top from one inaximum olarization, the EUT as tuned from turned from turned from the turned	meter value as of the mode as the mode as the mode as the mode as the me by	as rotation. erference variable to four of the fine antere egrees etect Function egrees etect arrange en was 1 ped and emissione usi	ted 360 deg ce-receiving e-height ant meters abored and strengt nna are set and to its worn of 1 meter to to 360 deg notion and odB lower to the peak vons that did ing peak, q	grees genna ove h. to st o 4 rees than alues not uasi-	
Ground Reference Plane Test Receiver Amplifier Controller	Test setup:		TAL H	Groun	3m	Pa		wer		
Test Instruments: Refer to section 5.6 for details	Test Instruments:	Refer to section 5.6 for details								
Test mode: Refer to section 5.3 for details	Test mode:	Refer to section 5.3 for details								
Test results: Passed	Test results:	Passed								

Page 36 of 71

Project No.:CCISE1607024

802.11b

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet P.C Model : IMT-8 Plus : Wifi-b-L Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

		Antenna							
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
MHz	dBu∜	$\overline{dB/m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB		-
2390.000 2390.000									

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet P.C : IMT-8 Plus : Wifi-b-L Mode EUT Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

idi	Read	Ant enna	Cable	Preamn		Limit	Over	
Fre	1 Level							
MH:	z dBuV	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000			(I)					Peak Average

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel:Highest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet P.C : IMT-8 Plus EUT Model Test mode : Wifi-B-H Mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: MT

REMARK

	Freq			ntenna Cable Factor Loss					
	MHz	dBu∜	<u>dB/m</u>	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet P.C : IMT-8 Plus EUT Model Test mode : Wifi-B-H Mode Power Rating : AC120V/60Hz Environment : Temp:25.5 C I

Huni:55%

Test Engineer: MT REMARK :

EMAR			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	$\overline{-dB/m}$	dB	<u>d</u> B	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel:Lowest

Horizontal:

Site

Condition

EUT : IMT-8 Plus : Wifi-G-L Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

_			Antenna Factor				Limit Line		
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	<u>dB</u>	
	2390.000 2390.000		23.68 23.68	6.63 6.63	0.00	51.13 40.12			

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet P.C : IMT-8 Plus EUT Model Test mode : Wifi-G-L Mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: MT

REMARK

Freq		Antenna Factor						
MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
2390.000 2390.000					53.61 39.93			

Remark:

1 2

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet_P.C Condition

EUT : IMT-8 Plus Model Test mode : Wifi-G-H Mode Power Rating : AC120V/60Hz

Environment : Temp:25.5 C Huni:55%

Test Engineer: MT REMARK :

$\pi\pi\sigma$									
			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
-	MHz	dBu∜	dB/m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
ee:	2483.500	22.45	23.70	6.85	0.00	53.00	74.00	-21.00	Peak
2	2483.500	9.07	23.70	6.85	0.00	39.62	54.00	-14.38	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet P.C

Model : IMT-8 Plus
Test mode : Wifi-G-H Mode
Power Rating : AC120V/60Hz
Environment : Temp: 25.5°C H

Huni:55%

Test Engineer: MT

REMARK

mu									
	Freq		Antenna Factor				Limit Line		
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	2483.500	27.01	23.70	6.85	0.00	57.56	74.00	-16.44	Peak
2	2483, 500	11.25	23, 70	6.85	0.00	41.80	54,00	-12.20	Average

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet P.C : INT-8 Plus Condition

EUT Model Test mode : Wifi-N20-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT REMARK :

TUNK			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
	MHz	dBu∀	dB/m	<u>dB</u>	<u>db</u>	dBuV/m	dBuV/m	<u>db</u>	
1	2390.000	23.37	23.68	6.63	0.00	53.68	74.00	-20.32	Peak
2	2390.000	8.02	23.68	6.63	0.00	38.33	54.00	-15.67	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet P.C Condition

EUT : IMT-8 Plus Model Test mode : Wifi-N20-L Mode Power Rating : AC120V/60Hz Environment : Temp:25.5 C Hur

Huni:55%

Test Engineer: MT REMARK :

шинч	540		Antenna Factor						Remark
	MHz	dBu∜	<u>dB</u> /m	<u>dB</u>	<u>ab</u>	dBuV/m	dBu√/m	dB	
	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet P.C : IMT-8 Plus : Wifi-N20-H Mode Model Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT

REMARK

CHEAT		Read.	Ant enna	Cable	Preamn		Limit	Over	
	Freq		Factor						
	MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBu√/m	<u>dB</u>	
1	2483.500	21.19	23.70	6.85	0.00	51.74	74.00	-22.26	Peak
2	2483.500	8.85	23.70	6.85	0.00	39.40	54.00	-14.60	Average

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1607024

Frequency (MHz)

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet P.C Condition

EUT Model : IMT-8 Plus : Wifi-N20-H Mode Test mode Power Rating : AC120V/60Hz Environment : Temp:25.5°C

Huni:55%

Test Engineer: MT REMARK :

-		Read	Ant enna	Cable	Preamo		Limit	Over	
	Freq		Factor						
		dBu₹	-dB/m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
	2483.500 2483.500								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet P.C Condition

EUT : IMT-8 Plus Model Test mode : Wifi-N40-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: MT

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
-	MHz	dBu∜	dB/m	<u>ab</u>	<u>dB</u>	dBu√/m	dBuV/m	dB		
1	2390.000	25.02	23.68	6.63	0.00	55.33	74.00	-18.67	Peak	
2	2390.000	9.41	23.68	6.63	0.00	39.72	54.00	-14.28	Average	

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet P.C Condition

EUT : IMT-8 Plus Model Test mode : Wifi-N40-L Mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5 C Huni:55%

Test Engineer: MT REMARK :

	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390,000 2390,000								Peak Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Tablet P.C : IMT-8 Plus Model Test mode : Wifi-N40-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						
-	MHz	dBu₹	$\overline{-dB/m}$	āĒ	āĒ	$\overline{dBuV/m}$	dBuV/m	āB	
1 2	2483.500 2483.500								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet P.C Model : IMT-8 Plus Test mode : Wifi-N40-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C

Test Engineer: MT REMARK :

Freq	Antenna Factor				
MHz					-
2483.500 2483.500					

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074v03r05 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmittercomplies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Test mode: 802.11b Lowest channel

Date: 24.JUL.2016 11:33:31

30MHz~25GHz

Middle channel

Date: 24.JUL.2016 11:34:14

Highest channel

Date: 24.JUL.2016 11:34:50

Test mode: 802.11g Lowest channel

Date: 24.JUL.2016 11:37:33

30MHz~25GHz

Middle channel

Date: 24.JUL.2016 11:37:02

Highest channel

Date: 24.JUL.2016 11:36:08

Test mode: 802.11n(H20)

Lowest channel

Date: 24.JUL.2016 11:40:51

30MHz~25GHz

Middle channel

Date: 24.JUL.2016 11:38:56

Highest channel

Date: 24.JUL.2016 11:40:10

Test mode: 802.11n(H40)

Lowest channel

Date: 24.JUL.2016 11:41:26

30MHz~25GHz

Middle channel

Date: 24.JUL.2016 11:42:06

Highest channel

Date: 24.JUL.2016 11:42:45

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15,209	and 15.205						
Test Method:	ANSI C63.10:201		4.14 10.200						
TestFrequencyRange:	9kHz to 25GHz	<u> </u>							
. , ,									
Test site:	Measurement Dis	stance: 3m		1					
Receiver setup:	Frequency	Detector	RBW		BW	Remark			
	30MHz-1GHz	Quasi-peak)KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz		ИHz ИНТ	Peak Value			
Limit:	Frequency	RMS	1MHz nit (dBuV/m @3		ЛHz	Average Value			
LIIIII.	30MHz-88MH		40.0	111)	Oı	Remark Quasi-peak Value			
	88MHz-216MH		43.5			uasi-peak Value			
	216MHz-960M		46.0			uasi-peak Value			
	960MHz-1GH			uasi-peak Value					
	Above 1GHz		54.0		A	Average Value			
			74.0			Peak Value			
Test Procedure:	1GHz)/1.5m chamber.The position of th 2. The EUT wa antenna, wh tower. 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and the meters and the for ind the m 5. The test-reco SpecifiedBar 6. If the emission the limitspect of the EUT w have 10dB n	(above 1GH; e table was refer table was refer to highest rands and vertice as a set of the table and vertice as the table and vertice as the table and vertice as the table and with the rotatable aximum reactiver system and width with the table of the table argin would be reported to the table and the table and the table and the table and table	rs away from to the don the top ried from one of the maximum scal polarization assion, the EUT as was turned from the maximum Hole EUT in peak sting could be rted. Otherwis	roundagrees he into of a verter value as of the decomposition of the control of t	at a 3 r todete erferen variable to four of the ine ante errangents fror egrees tect Fulle. e was 1 ed ance emissione us	meter rmine the rmine the receiving e-height antenna meters above field strength. enna are set to ed to its worst in 1 meter to 4 to 360 degrees unction and 10dB lower than is the peak values ons that did not sing peak, quasi-			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Tablet P.C Condition

Tablet P.C

Model : IMT-8 Plus

Test mode : Wifi Mode

Power Rating : AC120V/60Hz

Environment : Temp:25.5°C

Test Engineer: MT

REMARK

Huni:55%

EMARK	:								
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	<u>dB</u> /m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	121.549	40.16	11.89	2.19	29.38	24.86	43.50	-18.64	QP
2	148.441	44.45	10.84	2.50	29.23	28.56	43.50	-14.94	QP
2	230.907	56.89	11.62	2.83	28.64	42.70	46.00	-3.30	QP
4	322.189	47.45	13.34	3.01	28.50	35.30	46.00	-10.70	QP
5	530.101	36.84	17.60	3.78	29.04	29.18	46.00	-16.82	QP
6	881.407	37.88	21.37	3.89	27.92	35.22	46.00	-10.78	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL Condition

EUT : Tablet P.C : IMT-8 Plus : Wifi Mode Model Test mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: MT REMARK:

Huni:55%

DIEDIUT.									
	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	dB	dBuV/m	dBu√/m	<u>dB</u>	
1	85.598	44.47	7.61	1.87	29.60	24.35	40.00	-15.65	QP
2	149.486	49.57	10.70	2.51	29.22	33.56	43.50	-9.94	QP
3	228.490	53.43	11.59	2.84	28.66	39.20	46.00	-6.80	QP
4	266.609	48.88	11.95	2.85	28.51	35.17	46.00	-10.83	QP
5	321.061	42.72	13.34	3.01	28.50	30.57	46.00	-15.43	QP
6	633.907	34.40	18.69	3.89	28.83	28.15	46.00	-17.85	QP

Above 1GHz

Test mode: 80	02.11b		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.16	36.12	10.60	40.22	51.66	74.00	-22.34	Vertical	
4824.00	45.59	36.12	10.60	40.22	52.09	74.00	-21.91	Horizontal	
						Remark: Average			
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
Test mode: 80 Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.	

Test mode: 80	02.11b		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.65	36.32	10.64	40.15	55.46	74.00	-18.54	Vertical
4874.00	45.12	36.32	10.64	40.15	51.93	74.00	-22.07	Horizontal
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	39.45	36.32	10.64	40.15	46.26	54.00	-7.74	Vertical
4874.00	36.37	36.32	10.64	40.15	43.18	54.00	-10.82	Horizontal

Test mode: 80	02.11b		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.32	36.58	10.70	40.08	53.52	74.00	-20.48	Vertical
4924.00	46.21	36.58	10.70	40.08	53.41	74.00	-20.59	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.47	36.58	10.70	40.08	44.67	54.00	-9.33	Vertical
4924.00	36.98	36.58	10.70	40.08	44.18	54.00	-9.82	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80)2.11g		Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	45.23	36.12	10.60	40.22	51.73	74.00	-22.27	Vertical	
4824.00	45.31	36.12	10.60	40.22	51.81	74.00	-22.19	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.62	36.12	10.60	40.22	43.12	54.00	-10.88	Vertical	
4824.00	36.13	36.12	10.60	40.22	42.63	54.00	-11.37	Horizontal	

Test mode: 802.11g			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	48.72	36.32	10.64	40.15	55.53	74.00	-18.47	Vertical
4874.00	45.66	36.32	10.64	40.15	52.47	74.00	-21.53	Horizontal
Test mode: 80	02.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	38.95	36.32	10.64	40.15	45.76	54.00	-8.24	Vertical
4874.00	36.13	36.32	10.64	40.15	42.94	54.00	-11.06	Horizontal

Test mode: 8	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.21	36.58	10.70	40.08	53.41	74.00	-20.59	Vertical
4924.00	46.17	36.58	10.70	40.08	53.37	74.00	-20.63	Horizontal
Test mode: 8	02.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.52	36.58	10.70	40.08	44.72	54.00	-9.28	Vertical
4924.00	36.78	36.58	10.70	40.08	43.98	54.00	-10.02	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.
4824.00	45.03	36.12	10.60	40.22	51.53	74.00	-22.47	Vertical
4824.00	45.27	36.12	10.60	40.22	51.77	74.00	-22.23	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4824.00	35.85	36.12	10.60	40.22	42.35	54.00	-11.65	Vertical
4824.00	36.14	36.12	10.60	40.22	42.64	54.00	-11.36	Horizontal

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.96	36.32	10.64	40.15	54.77	74.00	-19.23	Vertical	
4874.00	45.43	36.32	10.64	40.15	52.24	74.00	-21.76	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	38.76	36.32	10.64	40.15	45.57	54.00	-8.43	Vertical	
4874.00	36.32	36.32	10.64	40.15	43.13	54.00	-10.87	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	46.12	36.58	10.70	40.08	53.32	74.00	-20.68	Vertical
4924.00	46.24	36.58	10.70	40.08	53.44	74.00	-20.56	Horizontal
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.25	36.58	10.70	40.08	44.45	54.00	-9.55	Vertical
4924.00	36.07	36.58	10.70	40.08	43.27	54.00	-10.73	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	45.11	36.19	10.61	40.19	51.72	74.00	-22.28	Vertical
4844.00	42.17	36.19	10.61	40.19	48.78	74.00	-25.22	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4844.00	35.85	36.19	10.61	40.19	42.46	54.00	-11.54	Vertical
4844.00	36.27	36.19	10.61	40.19	42.88	54.00	-11.12	Horizontal

Test mode: 80	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	47.72	36.25	10.64	40.17	54.44	74.00	-19.56	Vertical	
4874.00	45.03	36.25	10.64	40.17	51.75	74.00	-22.25	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.78	36.25	10.64	40.17	44.50	54.00	-9.50	Vertical	
4874.00	36.24	36.25	10.64	40.17	42.96	54.00	-11.04	Horizontal	

Test mode: 80	Test mode: 802.11n(H40)		Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	46.03	36.51	10.69	40.10	53.13	74.00	-20.87	Vertical
4904.00	46.15	36.51	10.69	40.10	53.25	74.00	-20.75	Horizontal
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4904.00	37.23	36.51	10.69	40.10	44.33	54.00	-9.67	Vertical
4904.00	35.58	36.51	10.69	40.10	42.68	54.00	-11.32	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.