## Cameroon

```
## [1] "Census Females"
## # A tibble: 86 x 2
       age `2005`
##
            <dbl>
      <dbl>
##
##
   1
         0 337748
##
   2
         1 306850.
##
   3
          2 289908.
##
          3 282849.
##
   5
        4 274259.
##
   6
          5 265117.
##
   7
          6 254493.
##
         7 245594.
## 9
          8 239763.
## 10
          9 232630.
## # ... with 76 more rows
## [1] "Census Females 5-year"
## # A tibble: 18 x 2
##
        age `1976`
##
      <dbl>
             <dbl>
##
   1
        0 605118.
##
   2
         5 512635.
##
   3
        10 411125.
##
   4
        15 345677.
##
   5
         20 305370.
         25 269228.
##
   6
##
   7
         30 240773.
##
  8
         35 215240.
## 9
         40 183224.
## 10
         45 149331.
## 11
         50 118695.
## 12
         55 92248.
## 13
         60 69672.
## 14
         65 48846.
## 15
         70 34361.
## 16
         75 23450.
## 17
         80 15762.
## 18
         85 16650.
## [1] "Census Males"
## # A tibble: 86 x 2
##
        age `2005`
##
      <dbl>
              <dbl>
##
   1
          0 343296
   2
##
          1 315010.
##
   3
          2 296499.
##
   4
          3 290401
##
   5
          4 281627.
```

5 272737.

##

6

```
##
   7
          6 262914.
## 8
          7 254492.
## 9
          8 249144.
## 10
          9 241906.
## # ... with 76 more rows
## [1] "Census Males 5-year"
## # A tibble: 18 x 2
##
        age `1976`
##
      <dbl>
              <dbl>
##
   1
          0 611324.
##
   2
          5 530589.
##
   3
         10 431534.
         15 336850.
##
   4
##
   5
         20 266002.
##
   6
         25 221801.
##
   7
         30 198387.
##
   8
         35 184225.
## 9
         40 165759.
## 10
         45 142701.
## 11
         50 117673.
## 12
         55 93580.
         60 71082.
## 13
## 14
         65 48797.
## 15
         70 32937.
## 16
         75 22064.
## 17
         80 14288.
## 18
         85 17413.
```

## $Thiele\ log\text{-}Normal\ Hump\ Spline$

## [1] "false convergence (8)"

| ## | log_tau2_logpop    | log_tau2_logpop | log_tau2_logpop   | log_tau2_logpop | 10     |
|----|--------------------|-----------------|-------------------|-----------------|--------|
| ## | 3.151330e+00       | 2.078915e+00    | 3.151330e+00      | 2.078915e+00    | 4      |
| ## | log_dispersion     | log_dispersion  | $log\_lambda\_tp$ | tp_slope        | -      |
| ## | 1.300000e+00       | 1.300000e+00    | 5.00000e+00       | -8.889256e-12   | 3      |
| ## | log_lambda_phi     | log_lambda_psi  | log_lambda_A      | log_lambda_B    | log_la |
| ## | 8.356928e+00       | 8.356928e+00    | 8.356928e+00      | 8.356928e+00    | 4      |
| ## | log_lambda_epsilon |                 |                   |                 |        |
| ## | 4.764865e+00       |                 |                   |                 |        |



Figure 1: Estimated TiPS



Figure 2: Estimated parameters



Figure 3: Thiele Decomposed



Figure 4: Thiele Decomposed



Figure 5: Estimated  $_5q_0$ 



Figure 6: Estimated  $_{45}q_{15}$ 



Figure 7: Mortality Schedules



Figure 8: Mortality Schedules



Figure 9: Mortality Schedules



Figure 10: Population



Figure 11: Population



Figure 12: Population



Figure 13: Population



vear

Figure 14: Population



Figure 15: Migration



Figure 16: Migration



Figure 17: Migration



Figure 18: Migration



Figure 19: Total Fertility



Figure 20: Mean age at births



Figure 21: Fertility



Figure 22: Fertility