MARKOV DYNAMIC PROGRAMMING

QUANTITATIVE ECONOMICS 2024

Piotr Żoch

January 10, 2025

A TYPICAL PROBLEM

• The planner chooses a path of actions $(A_t)_{t>0}$ to maximize

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t r(X_t, A_t)$$

where $(X_t)_{t>0}$ is a state process $(X_0$ is given).

- X is a finite set: state space.
- A is a finite set: action space.
- Γ is a correspondence from X to A. Intuitively: the set of actions feasible given the state.

MDP

- Given A and X a finite Markov decision process (MDP) is a tuple $\mathcal{M} = (\Gamma, P, r, \beta)$ where
 - 1. $\Gamma: X \to A$ is a nonempty correspondence from X to A defining feasible state-action pairs

$$G := \{(x, a) \in X \times A : a \in \Gamma(x)\}$$

2. a stochastic kernel P from G to X:

$$\sum_{x' \in X} P(x, a, x') = 1 \text{ for all } (x, a) \in G.$$

- 3. a function r from G to \mathbb{R} is a reward function
- 4. $\beta \in (0,1)$ is a discount factor.

• The Bellman equation associated with ${\mathfrak M}$ is

$$v(x) = \max_{\alpha \in \Gamma(x)} \left\{ r(x, \alpha) + \beta \sum_{x' \in X} P(x, \alpha, x') v(x') \right\} \text{ for all } x \in X.$$

- This is an equation in the unknown function $v \in \mathbb{R}^X$ (\mathbb{R}^X is a set of all functions from X to R).
- We will show that the solution to the Bellman equation equals to the largest possible value of the objective function in the sequence problem:

$$\max \mathbb{E} \sum_{t=0}^{\infty} \beta^t r(X_t, A_t)$$
, subject to $A_t \in \Gamma(X_t)$ for all $t \ge 0$.

POLICIES

• Let Σ be the set of all feasible policies given \mathfrak{M} :

$$\Sigma \coloneqq \left\{ \sigma \in \mathsf{A}^\mathsf{X} : \sigma(x) \in \Gamma(x) \text{ for all } x \in \mathsf{X} \right\}.$$

• For any $\sigma \in \Sigma$ we have P_{σ} is a stochastic kernel from X to X:

$$P_{\sigma}(x,x') := P(x,\sigma(x),x') \text{ for all } (x,x') \in X \text{ so } P_{\sigma} \in \mathcal{M}(\mathbb{R}^X).$$

Note: notational issue - \mathfrak{M} here is not MDP, it is a set of Markov operators.

• Similarly, for any $\sigma \in \Sigma$ we have r_{σ} , a function from X to \mathbb{R} :

$$r_{\sigma}(x) := r(x, \sigma(x)) \text{ for all } x \in X \text{ so } r_{\sigma} \in \mathbb{R}^{X}.$$

POLICIES

• Define $\mathbb{E}_{X_0}[\cdot] := \mathbb{E}[\cdot \mid X_0 = x_0]$. The lifetime value of following $\sigma \in \Sigma$ from x is

$$v_{\sigma}(x) := \mathbb{E}_{x} \left[\sum_{t=0}^{\infty} \beta^{t} r_{\sigma}(X_{t}) \right]$$

where X_t is P_{σ} -Markov with $X_0 = x$.

• Since $\beta \in (0,1)$, we can calculate

$$v_{\sigma}(x) = \sum_{t=0}^{\infty} \beta^{t} P_{\sigma}^{t} r_{\sigma} = (I - \beta P_{\sigma})^{-1} r_{\sigma}.$$

POLICY OPERATOR

• Define the policy operator T_{σ} :

$$(T_{\sigma}v)(x) := r(x, \sigma(x)) + \beta \sum_{x' \in X} v(x') P(x, \sigma(x), x') \text{ for all } x \in X.$$

- We denote a fixed point of T_{σ} by v_{σ} .
- We will now prove T_{σ} is a contraction of modulus β on \mathbb{R}^{X} under norm $\|\cdot\|_{\infty}$.
- We will also show that T_{σ} is order-preserving: if $v \leq w$ then $T_{\sigma}v \leq T_{\sigma}w$.

POLICY OPERATOR

- Take any $v, w \in \mathbb{R}^X$ and $\sigma \in \Sigma$.
- Fix $x \in X$. We have

$$\begin{aligned} \left| \left(T_{\sigma} v \right) \left(x \right) - \left(T_{\sigma} w \right) \left(x \right) \right| &= \beta \left| \sum_{x' \in \mathsf{X}} \left(v \left(x' \right) - w \left(x' \right) \right) P \left(x, \sigma(x), x' \right) \right| \\ &\leq \beta \sum_{x' \in \mathsf{X}} \left| v \left(x' \right) - w \left(x' \right) \right| P \left(x, \sigma(x), x' \right) \\ &\leq \beta \left\| v - w \right\|_{\infty} \end{aligned}$$

Since it is true regardless of x, we have

$$||T_{\sigma}v - T_{\sigma}w||_{\infty} \leq \beta ||v - w||_{\infty}$$
.

POLICY OPERATOR

- To show that it is order preserving take any $v, w \in \mathbb{R}^X$ and $\sigma \in \Sigma$.
- $v \le w$ implies $P_{\sigma}v \le P_{\sigma}w$. We can write

$$Tv = r_{\sigma} + \beta P_{\sigma} v$$
 and $Tw = r_{\sigma} + \beta P_{\sigma} w$.

so $Tv \leq Tw$.

GREEDY POLICIES

• Given MDP $\mathfrak M$ the value function is

$$v^*(x) := \max_{\sigma \in \Sigma} v_{\sigma}(x) \text{ for all } x \in X.$$

- We call a policy $\sigma \in \Sigma$ optimal if $v_{\sigma} = v^*$.
- We call a policy v-greedy if

$$\sigma(x) \in \operatorname*{argmax}_{\alpha \in \Gamma(x)} \left\{ r(x, \alpha) + \beta \sum_{x' \in \mathsf{X}} v(x') P(x, \alpha, x') \right\} \text{ for all } x \in \mathsf{X}.$$

BELLMAN

- We say that Bellman's principle of optimality holds for MDP $\ensuremath{\mathfrak{M}}$ if

$$\sigma \in \Sigma$$
 is optimal for $\mathfrak{M} \iff \sigma$ is v^* -greedy.

• The Bellman operator corresponding to \mathfrak{M} is a self-map T on \mathbb{R}^X defined by

$$Tv(x) := \max_{a \in \Gamma(x)} \left\{ r(x, a) + \beta \sum_{x' \in X} v(x') P(x, a, x') \right\} \text{ for all } x \in X.$$

Theorem

Let \mathcal{M} be an MDP with Bellman operator T. Then

- 1. v^* is the unique solution to the Bellman equation v = Tv in \mathbb{R}^X ,
- 2. $\lim_{k\to\infty} T^k v = v^* \text{ for all } v \in \mathbb{R}^X$,
- 3. Bellman's principle of optimality holds for \mathfrak{M} ,
- 4. at least one optimal policy exists.

- Instead of solving the (possibly hard) sequence problem we can solve the (possibly easier) functional equation v = Tv.
- Finding v-greedy policies is easier than looking at the entire set of feasible policies Σ .
- The required conditions are pretty weak. Important and somewhat hidden: sets are finite and $r: G \to \mathbb{R}$.

- We will prove (1) and (2).
- Two parts of the proof:
 - 1. Show there exists the unique fixed point of T.
 - 2. Show that the fixed point is v^* .

• Fix v, w in \mathbb{R}^X . We have

$$|(Tv)(x) - (Tw)(x)| = \left| \max_{\sigma \in \Sigma} (T_{\sigma}v)(x) - \max_{\sigma \in \Sigma} (T_{\sigma}w)(x) \right|$$

$$\leq \max_{\sigma \in \Sigma} |(T_{\sigma}v)(x) - (T_{\sigma}w)(x)|$$

$$= ||T_{\sigma}v - T_{\sigma}w||_{\infty}$$

- We have $||Tv Tw||_{\infty} \le ||T_{\sigma}v T_{\sigma}w||_{\infty}$ for all $\sigma \in \Sigma$.
- We showed earlier that T_{σ} is a contraction: $\|T_{\sigma}v T_{\sigma}w\|_{\infty} \le \beta \|v w\|_{\infty}$.
- We thus have

$$||Tv - Tw||_{\infty} \le \beta ||v - w||_{\infty}$$
 for all $v, w \in \mathbb{R}^{X}$.

- By the Banach fixed point theorem T has a unique fixed point \bar{v} .
- We will now show that $\bar{v} = v^*$.
- Pick $\sigma \in \Sigma$ that is \bar{v} -greedy. By definition we have $T_{\sigma}\bar{v} = \bar{v} = T\bar{v}$. So \bar{v} is a fixed point of T_{σ} . Because we defined v^* as $\max_{\sigma \in \Sigma} v_{\sigma}$ We have $\bar{v} \le v^*$.
- Pick any $\sigma \in \Sigma$, We must have $T_{\sigma}v \leq Tv$ for any v. We know that T_{σ} is order preserving, so it must be that $v_{\sigma} \leq \bar{v}$. This is true for any σ , so $v^* \leq \bar{v}$.

- We can use T_{σ} to look for the value function (instead of value function iteration).
- Start with a guess v_0 , find a greedy policy σ_0 and calculate the fixed point of T_{σ_0} :

$$v_{\sigma_0} = \left(I - \beta P_{\sigma_0}\right)^{-1} r_{\sigma_0}.$$

- Repeat the process with v_{σ_0} find a greedy policy and calculate the new fixed point.
- Do it until convergence.
- This algorithm is known as policy iteration or Howard's policy iteration

HPI

Algorithm Howard's Policy Iteration

- 1: procedure HPI
- 2: $k \leftarrow 1, \epsilon \leftarrow \tau + 1, v_k \leftarrow v_{\text{init}}$
- 3: while $\epsilon > \tau$ do
- 4: $\sigma_k \leftarrow v_k$ -greedy policy
- 5: $v_{k+1} = \left(I \beta P_{\sigma_k}\right)^{-1} r_{\sigma_k}$
- 6: $\epsilon \leftarrow \|v_{k+1} v_k\|_{\infty}, k \leftarrow k+1$
- 7: end while
- 8: end procedure

EXAMPLE

- HPI converges at a faster rate than VFI.
- In a finite state setting, the algorithm always converges to an exact optimal policy in a finite number of steps, regardless of the initial condition.
- Drawback: computing v_{σ} can be expensive.

OPTIMISTIC POLICY ITERATION

- This is a variant of HPI.
- Key difference: do not compute v_{σ} exactly.
- Instead, apply the policy operator T_{σ} to v_k for a fixed number of iterations, m.
- For $m \to \infty$ we have HPI; for m = 1 we have VFI.
- Often outperforms HPI and VFI, but this requires choosing m.

OPI

Algorithm Optimistic Policy Iteration

- 1: procedure OPI
- $k \leftarrow 1, \epsilon \leftarrow \tau + 1, v_k \leftarrow v_{\text{init}}$
- while $\epsilon > \tau$ do 3:
- $\sigma_k \leftarrow v_k$ -greedy policy 4:
- $V_{k+1} = T_{\sigma_k}^m V_k$ 5:
- $\epsilon \leftarrow \|v_{k+1} v_k\|_{\infty}, k \leftarrow k+1$
- 6:
- end while 7:
- 8: end procedure