

Medis

Panagrinėkime **medį** iš N **viršūnių**, sunumeruotų nuo 0 iki N-1. Viršūnė, kurios numeris 0, vadinama **šaknine viršūne**. Kiekviena viršūnė, išskyrus šakninę, turi vieną **tėvinę viršūnę**. Kiekvienam i, kuriam $1 \leq i < N$, viršūnės i tėvinė viršūnė yra viršūnė P[i], kur P[i] < i. Taip pat pažymime P[0] = -1.

Kiekvienai viršūnei i ($0 \le i < N$), jos **pomedis** yra šių viršūnių rinkinys:

- *i*, ir
- bet kuri viršūnė, kurios tėvinė viršūnė yra i, ir
- bet kuri viršūnė, kurios tėvinės viršūnės tėvinė viršūnė yra i, ir
- bet kuri viršūnė, kurios tėvinės viršūnės tėvinės viršūnės tėvinė viršūnė yra i, ir
- t t

Žemiau esančiame paveikslėlyje pateiktas medis iš N=6 viršūnių. Kiekviena rodyklė jungia viršūnę su jos tėvine viršūne, išskyrus šakninę, kuri neturi tėvinės viršūnės. Viršūnės 2 pomedžiui priklauso viršūnės 2,3,4 ir 5. Viršūnės 0 pomedžiui priklauso visos 6-ios medžio viršūnės, o viršūnės 4 pomedj sudaro tik pati viršūnė 4.

Kiekvienai viršūnei priskirtas neneigiamas sveikasis skaičius **svoris**. Pažymėkime viršūnės i $(0 \le i < N)$ svorį W[i].

Parašykite programą, kuri atsakys į Q užklausų. Kiekvieną užklausą nusako teigiamų sveikųjų skaičių pora (L,R). Užklausos atsakymas randamas tokiu būdu.

Kiekvienai medžio viršūnei priskirkite sveikąjį skaičių, pavadintą **koeficientu**. Tokį priskyrimą nusako seka $C[0],\ldots,C[N-1]$, kur C[i] ($0\leq i< N$) yra viršūnės i koeficientas. Pavadinkime šią seką **koeficientų seka**. Atkreipkite dėmesį, kad koeficientų sekos nariai gali būti neigiami, lygūs 0 ar teigiami.

Užklausai (L,R), koeficientų seka vadinama **leistina**, jei kiekvienos viršūnės i ($0 \le i < N$) pomedžio viršūnių koeficientų suma yra ne mažesnė už L ir ne didesnė už R.

Duotai koeficientų sekai $C[0], \ldots, C[N-1]$, viršūnės i kaina lygi $|C[i]| \cdot W[i]$, kur |C[i]| žymi C[i] modulį. Galiausiai, **bendra kaina** lygi visų viršūnių kainų sumai. Kiekvienai užklausai apskaičiuokite, **mažiausią bendrą kainą**, kurią įmanoma pasiekti su kažkuria leistina koeficientų seka.

Galima įrodyti, kad bet kuriai užklausai egzistuoja bent viena leistina koeficientų seka.

Realizacija

Parašykite šias dvi procedūras:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: masyvai, kurių ilgis N, nusakantys viršūnių tėvines viršūnes ir svorius.
- Ši procedūra kiekvienam testui iškviečiama lygiai vieną kartą, vertinimo programos sąveikavimo su jūsų programa pradžioje.

```
long long query(int L, int R)
```

- *L*, *R*: užklausą nusakantys sveikieji skaičiai.
- Ši procedūra kiekvienam testui iškviečiama Q kartų po procedūros init iškvietimo.
- Ši procedūra gražina duotos užklausos atsakymą.

Ribojimai

- $1 \le N \le 200\,000$
- 1 < Q < 100000
- P[0] = -1
- $0 \le P[i] < i$ kiekvienam i, kuriam $1 \le i < N$
- $0 \leq W[i] \leq 1\,000\,000$ kiekvienam i, kuriam $0 \leq i < N$
- $1 \le L \le R \le 1\,000\,000$ kiekvienai užklausai

Dalinės užduotys

Dalinė užduotis	Taškai	Ribojimai	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ kiekvienam i , kur $1 \leq i < N$	
2	13	$Q \leq 10$; $N \leq 2000$	
3	18	$Q \leq$ 10; $N \leq 60000$	
4	7	$W[i] = 1$ kiekvienam i , kur $0 \leq i < N$	
5	11	$W[i] \leq 1$ kiekvienam i , kur $0 \leq i < N$	
6	22	L=1	
7	19	Papildomų ribojimų nėra.	

Pavyzdžiai

Panagrinėkime tokias užklausas:

Medį sudaro 3 viršūnės: šakninė viršūnė ir jos 2 vaikai. Visų viršūnių svoriai lygūs 1.

Šioje užklausoje L=R=1. Tai reiškia, kad kiekvieno pomedžio koeficientų suma turi būti lygi 1. Panagrinėkite tokią koeficientų seką [-1,1,1]. Žemiau pavaizduotas medis ir atitinkami koeficientai (užtušuotuose stačiakampiuose).

Kiekvienai viršūnei i ($0 \le i < 3$), pomedžio i visų viršūnių koeficientų suma lygi 1. Taigi, ši koeficientų seka yra leistina. Bendra suma skaičiuojama taip:

Viršūnė	Svoris	Koeficientas	Kaina
0	1	-1	$ -1 \cdot 1=1$
1	1	1	1 ·1 = 1
2	1	1	1 ·1 = 1

Taigi, bendra kaina lygi 3. Ši koeficientų seka yra vienintelė leistina, tad turi būti grąžinamas užklausos atsakymas 3.

```
query(1, 2)
```

Šiai užklausiai mažiausia bendra kaina lygi 2. Ji gaunama su koeficientų seka $\left[0,1,1\right]$.

Pavyzdinė vertinimo programa

Pradinių duomenų formatas:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

kur L[j] ir R[j] (visiems $0 \le j < Q$) yra argumentai j-ajam query iškvietimui. Atkreipkite dėmesį, kad antrojoje pradinių duomenų eilutėje yra **tik** N-1 **sveikųjų skaičių**, nes pavyzdinė vertinimo programa neskaito P[0] vertės.

Rezultatų formatas:

```
A[0]
A[1]
...
A[Q-1]
```

kur A[j] (visiems $0 \leq j < Q$) yra vertė, kuri grąžinama j-ąjį kartą iškvietus query.