LITERATURE SURVEY

Team ID	PNT2022TMID40249
Project Name	SKILLS AND JOB RECOMMENDAER

PAPER TITLE	AUTHOR	DISCRIPTION	
A survey of job	Shaha T Al-Otaibi,	In this section, we	
recommendation system	Mourad Ykhlef	describe our framework	
		for job recommendation.	
		We narrow down the	
		scope and	
		focus on recommendation	
		of job vacancies for	
		Information Technology	
		(IT) professionals acting	
		in the	
		Brazilian market. The	
		proposed framework is	
		composed by three stages:	
		data collection, data	
		preparation and	
		recommendation.	
Taxonomy-based job	M Diaby,	we select a group of the	
recommender systems on	E Viennet	nearest job offers based	
Facebook and LinkedIn		on the distance to that	
profiles"		profile (job matching). In	
		the	
		case of TF-IDF	
		representation, we use the	
		cosine distance while for	
		word embeddings, we use	
		the	
		relatively new Word	
		Mover's Distance (WMD)	
		[Kus15]. Once retrieved	
		the top "k" job offers for	
		the	
		profile, we sort them in	
		descending order based	
		on the inverse of this	

		distance (ranking)	
Efficient estimation of word representations in vector space	T Mikolov et al	To perform job offers scraping, we created a list of keywords from the IT industry and used them as search terms. For each keyword, we search all the related job offers using Catho's search engine and save the retrieved results in our database; thus, the content's quality is highly related to the quality of the Catho's search engine.	
Distributed representation of words and phrases and their compositionality	Mikolov et al	we retrieved data from job search sites using only IT keywords, there were still some job offers that do not correspond to this field, then, this phase is filtering out job offers that do not belong to the IT field. To achieve this, we use a dictionary of weighted IT terms to match each job offer in its document-like format.	
Term-weighting approaches in automatic text retrieval	G Salton, C Buckley	The feature representation, aims to represent these documents (job offers and profiles) as vector space models. For this purpose, we adopted two approaches: word embeddings and TF-IDF.	

The
latter technique does not
require so much effort to
be implemented unlike
the former.