Quan Guo, Ph.D

Office: Jesse W. Mason Building, Room 2230, 790 Atlantic Dr NW, Atlanta, GA 30332.

Email: qguo48@gatech.edu

Website: https://quanguo.github.io
LinkedIn | GitHub | Publications

Objectives

I am a passionate **cross-disciplinary** researcher in **geophysics** and **machine learning**, dedicated to utilizing AI to solve civil engineering problems and construct **digital twins**. My current research focuses on several key areas:

- **Physics-Informed Neural Networks**: Developing neural networks with combining physics-based knowledge to enhance predictive robustness.
- **Neural Operators and Surrogate Forward Models**: Exploring the use of neural operators to efficiently simulate complex physical processes.
- AI Generative Modeling: Implementing AI generative model for encoding complicated subsurface structures. Combine AI generative model and traditional sampling and optimization of inverse estimation.
- **Bayesian Analysis and Random Fields**: Employing Bayesian analysis and random fields to model uncertainty and variability in geospatial data.
- **High-Performance Computing**: Utilizing high-performance computing resources to expedite data processing and model training.

Education

•	Georgia Institute of Technology	Ph.D	Civil Engineering	January 2019 – May 2024
•	Georgia Institute of Technology	MS	Computer Engineering	August 2017 – December 2018
•	Georgia Institute of Technology	MS	Environmental Engineering	August 2016 - December 2017
•	Xiamen University	BS	Ecology	September 2012 - May 2016

Teaching

Georgia Institute of Technology

Head Teaching Assistant of CSE 6250 Big Data for Healthcare

Since 2020

Lab Instructor CEE 4200 Hydraulic Engineering

Spring 2019, Spring 2020

Research Projects

- Assimilated multi-source IoT data from well-logs with **Physics Informed Neural Network** for reservoir inference, achieving equal accuracy as the best numerical model but 10x faster.
- Developed **Fourier Neural Operator (FNO)** as surrogate geophysical model, which is further combined **PCA** for subsurface reservoir inference based on well-log data, achieving 30x faster than numerical model.
- Developed **GAN** and **DNN** as the first AI inverse model to estimate the subsurface fractures based on hydraulic data, the model can provide real-time conditional estimation on oil & gas discovery.
- Combined **PCA** and **geostatistical approach** to develop efficient numerical inverse model for groundwater modeling and uncertainty quantification, shortening the modeling time from 18 days to 1 hour.
- Applied upscaling method to develop high-speed numerical PDE solvers based on Finite Element Method, enhancing the groundwater simulation speed by 16x with approximation error <3%.
- Combined **snesim** based on **multiple-point statistics** and Monte Carlo sampling to generate subsurface fractured realizations conditioning on borehole data. Provided estimation of the CO₂ storage capacity.

Work Experiences

Schlumberger-Doll Research

Cambridge, MA

Research Intern as Machine Learning Engineer

May 2023 – August 2023

Find end-to-end AI solution for carbon capture and sequestration in 3D subsurface environment.

- Developed "**GeoGPT**" software with the **StyleGAN-V** at backend as the first generative AI model providing real-time uncertainty identification of CO₂ storage in underground reservoirs.
- Leveraged **Kubernetes**, **Docker** and **Azure DevOps** to automate the AI model deployment on clusters. And automatically monitor the model train process with **Comet-ML**.

 Built up GeoAI platform on Azure with integrating hierarchical neural network modules, hyperparameter configurations, and automatic delivery for users to customize a ML pipeline with oneline code.

Skills

- **Programming**: Python, Java, C/C++, MATLAB, R, Julia.
- ML/DL/AI: Pytorch, Tensorflow, Scikit-learn, Jax, Keras, CUDA, Julia.
- **Big Data**: PySpark, Hadoop, MapReduce, Scala, Hive, Pig, Hbase.
- **Cloud Computing:** AWS, Azure, GCP, LAMBDA
- Data Analysis and Visulization: MySQL, Numpy, Pandas, Matplotlib, Plotly, Grafana.
- CI/CD: Git, Docker, Azure DevOps, Google Container Registry, Bitbucket, Gitlab

Publications

Peer-reviewed journals

- Guo, Q., Liu, M., & Luo, J. (2023), Predictive Deep Learning for High-Dimensional Inverse Modeling of Hydraulic Tomography in Gaussian and Non-Gaussian Fields, *Water Resour. Res.*, 59(10), e2023WR035408, doi: https://doi.org/10.1029/2023WR035408.
- Guo, Q., Zhao, Y., Lu, C., & Luo, J. (2023). High-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN). *Journal of Hydrology*, 616, 128828, doi: https://doi.org/10.1016/j.jhydrol.2022.128828.
- Zhao, Y., Guo, Q., Lu, C., & Luo, J. (2022). High-dimensional groundwater flow inverse modeling by upscaled effective model on principal components. *Water Resour. Res.*, 58(7), e2022WR032610. doi: https://doi.org/10.1029/2022WR032610.
- He, Y., Guo, Q., Liu, Y., Huang, H., Hou, D., & Luo, J. (2024). Multiphysics Modeling Investigation of Wellbore Storage Effect and Non-Darcy Flow. Water Resources Research, 60(1), e2023WR035453. doi: https://doi.org/10.1029/2023WR035453.
- Guo, Q., He, Y., Liu, M., Zhao, Y., Liu, Y., & Luo, J. Fourier neural operator for deep learning surrogate model of subsurface flow. [under review]

Conferences

• [Presentation] Guo, Q., Luo, J. Large-scale Inverse Modeling of Hydraulic Tomography by Physics Informed Neural Network, In: AGU 2022 Fall Meeting, Chicago, IL, December 2022

Invited Talks and Seminars

- Scalable high-dimensional inverse modeling of hydraulic tomography by physics informed neural network (HT-PINN). In: National Environmental Conference for Doctoral Students, Beijing, China, January 2023.
- Physics informed neural network in groundwater inverse modeling. In: Water Resource Engineering Seminar, Georgia Institute of Technology, Atlanta, GA, March 2022.

Service and leadership

- Currently served as reviewer for Water Resources Research, Journal of Hydrology, etc.
- President of Student Association, College of Environment and Ecology, Xiamen University