A Mathematical Introduction to Data Science

Sep. 22, 2016

Homework 3. High Dimensional Statistics Models

Instructor: Yuan Yao Due: Open Date

The problem below marked by * is optional with bonus credits.

- 1. Maximum Likelihood Method: consider n random samples from a multivariate normal distribution, $X_i \in \mathbb{R}^p \sim \mathcal{N}(\mu, \Sigma)$ with $i = 1, \ldots, n$.
 - (a) Show the log-likelihood function

$$l_n(\mu, \Sigma) = -\frac{n}{2} \operatorname{trace}(\Sigma^{-1} S_n) - \frac{n}{2} \log \det(\Sigma) + C,$$

where $S_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)(X_i - \mu)^T$, and some constant C does not depend on μ and Σ ;

(b) Show that $f(X) = \operatorname{trace}(AX^{-1})$ with $A, X \succeq 0$ has a first-order approximation,

$$f(X + \Delta) \approx f(X) - \operatorname{trace}(X^{-1}A'X^{-1}\Delta)$$

hence formally $df(X)/dX = -X^{-1}AX^{-1}$ (note $(I+X)^{-1} \approx I - X$. A typo in previous version missed '-' sign here.);

(c) Show that $g(X) = \log \det(X)$ with $A, X \succeq 0$ has a first-order approximation,

$$g(X + \Delta) \approx g(X) + \operatorname{trace}(X^{-1}\Delta)$$

hence $dg(X)/dX = X^{-1}$ (note: consider eigenvalues of $X^{-1/2}\Delta X^{-1/2}$);

(d) Use these formal derivatives with respect to positive semi-definite matrix variables to show that the maximum likelihood estimator of Σ is

$$\hat{\Sigma}_n^{MLE} = S_n.$$

A reference for (b) and (c) can be found in Convex Optimization, by Boyd and Vandenbergh, examples in Appendix A.4.1 and A.4.3:

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

- 2. Shrinkage: Suppose $y \sim \mathcal{N}(\mu, I_p)$.
 - (a) Consider the Ridge regression

$$\min_{\mu} \frac{1}{2} \|y - \mu\|_2^2 + \frac{\lambda}{2} \|\mu\|_2^2.$$

Show that the solution is given by

$$\hat{\mu}_i^{ridge} = \frac{1}{1+\lambda} y_i.$$

Compute the risk (mean square error) of this estimator. The risk of MLE is given when C = I.

(b) Consider the LASSO problem,

$$\min_{\mu} \frac{1}{2} \|y - \mu\|_2^2 + \lambda \|\mu\|_1.$$

Show that the solution is given by Soft-Thresholding

$$\hat{\mu}_i^{soft} = \mu_{soft}(y_i; \lambda) := \operatorname{sign}(y_i)(|y_i| - \lambda)_+.$$

For the choice $\lambda = \sqrt{2 \log p}$, show that the risk is bounded by

$$\mathbb{E}\|\hat{\mu}^{soft}(y) - \mu\|^2 \le 1 + (2\log p + 1)\sum_{i=1}^{p} \min(\mu_i^2, 1).$$

Under what conditions on μ , such a risk is smaller than that of MLE? Note: see Gaussian Estimation by Iain Johnstone, Lemma 2.9 and the reasoning before it.

(c) Consider the l_0 regularization

$$\min_{\mu} \|y - \mu\|_2^2 + \lambda^2 \|\mu\|_0,$$

where $\|\mu\|_0 := \sum_{i=1}^p I(\mu_i \neq 0)$. Show that the solution is given by Hard-Thresholding

$$\hat{\mu}_i^{hard} = \mu_{hard}(y_i; \lambda) := y_i I(|y_i| > \lambda).$$

Rewriting $\hat{\mu}^{hard}(y) = (1 - g(y))y$, is g(y) weakly differentiable? Why?

(d) Consider the James-Stein Estimator

$$\hat{\mu}^{JS}(y) = \left(1 - \frac{\alpha}{\|y\|^2}\right) y.$$

Show that the risk is

$$\mathbb{E}\|\hat{\mu}^{JS}(y) - \mu\|^2 = \mathbb{E}U_{\alpha}(y)$$

where $U_{\alpha}(y) = p - (2\alpha(p-2) - \alpha^2)/||y||^2$. Find the optimal $\alpha^* = \arg\min_{\alpha} U_{\alpha}(y)$. Show that for p > 2, the risk of James-Stein Estimator is smaller than that of MLE for all $\mu \in \mathbb{R}^p$.

(e) In general, an odd monotone unbounded function $\Theta : \mathbb{R} \to \mathbb{R}$ defined by $\Theta_{\lambda}(t)$ with parameter $\lambda \geq 0$ is called *shrinkage* rule, if it satisfies

[shrinkage]
$$0 \le \Theta_{\lambda}(|t|) \le |t|;$$

[odd]
$$\Theta_{\lambda}(-t) = -\Theta_{\lambda}(t)$$
;

[monotone]
$$\Theta_{\lambda}(t) \leq \Theta_{\lambda}(t')$$
 for $t \leq t'$;

[unbounded]
$$\lim_{t\to\infty} \Theta_{\lambda}(t) = \infty$$
.

Which rules above are shrinkage rules?

3. *Necessary Condition for Admissibility of Linear Estimators. Consider linear estimator for $y \sim \mathcal{N}(\mu, \sigma^2 I_p)$

$$\hat{\mu}_C(y) = Cy.$$

Show that $\hat{\mu}_C$ is admissible only if

- (a) C is symmetric;
- (b) $0 \le \rho_i(C) \le 1$ (where $\rho_i(C)$ are eigenvalues of C);
- (c) $\rho_i(C) = 1$ for at most two i.

These conditions are satisfied for MLE estimator when p = 1 and p = 2.

Reference: Theorem 2.3 in Gaussian Estimation by Iain Johnstone, http://statweb.stanford.edu/~imj/Book100611.pdf

4. James Stein Estimator for p = 1:

From Theorem 3.1 in the lecture notes, we know that MLE $\hat{\mu} = Y$ is admissible when p = 1 or 2. However if we use SURE to calculate the risk of James Stein Estimator,

$$R(\hat{\mu}^{\text{JS}}, \mu) = \mathbb{E}U(Y) = p - \mathbb{E}_{\mu} \frac{(p-2)^2}{\|Y\|^2}$$

it seems that for p=1 James Stein Estimator should still has lower risk than MLE for any μ . Explain what violates the above calculation for p=1.

5. Phase transition in PCA "spike" model: Consider a finite sample of n i.i.d vectors x_1, x_2, \ldots, x_n drawn from the p-dimensional Gaussian distribution $\mathcal{N}(0, \sigma^2 I_{p \times p} + \lambda_0 u u^T)$, where λ_0/σ^2 is the signal-to-noise ratio (SNR) and $u \in \mathbb{R}^p$. In class we showed that the largest eigenvalue λ of the sample covariance matrix S_n

$$S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

pops outside the support of the Marcenko-Pastur distribution if

$$\frac{\lambda_0}{\sigma^2} > \sqrt{\gamma},$$

or equivalently, if

$$SNR > \sqrt{\frac{p}{n}}$$
.

(Notice that $\sqrt{\gamma} < (1+\sqrt{\gamma})^2$, that is, λ_0 can be "buried" well inside the support Marcenko-Pastur distribution and still the largest eigenvalue pops outside its support). All the following questions refer to the limit $n \to \infty$ and to almost surely values:

- (a) Find λ given SNR $> \sqrt{\gamma}$.
- (b) Use your previous answer to explain how the SNR can be estimated from the eigenvalues of the sample covariance matrix.

- (c) Find the squared correlation between the eigenvector v of the sample covariance matrix (corresponding to the largest eigenvalue λ) and the "true" signal component u, as a function of the SNR, p and n. That is, find $|\langle u, v \rangle|^2$.
- (d) Confirm your result using MATLAB or R simulations (e.g. set u = e; and choose $\sigma = 1$ and λ_0 in different levels. Compute the largest eigenvalue and its associated eigenvector, with a comparison to the true ones.)
- 6. Exploring S&P500 Stock Prices: Take the Standard & Poor's 500 data: http://math.stanford.edu/~yuany/course/data/snp452-data.mat, which contains the data matrix $X \in \mathbb{R}^{n \times p}$ of n = 1258 consecutive observation days and p = 452 daily closing stock prices, and the cell variable "stock" collects the names, codes, and the affiliated industrial sectors of the 452 stocks. Use Matlab or R for the following exploration.
 - (a) Take the logarithmic prices $Y = \log X$;
 - (b) For each observation time $t \in \{1, ..., 1257\}$, calculate logarithmic price jumps

$$\Delta Y_{i,t} = Y_{i,t} - Y_{i,t-1}, \quad i \in \{1, \dots, 452\};$$

(c) Construct the realized covariance matrix $\hat{\Sigma} \in \mathbb{R}^{452 \times 452}$ by,

$$\hat{\Sigma}_{i,j} = \frac{1}{1257} \sum_{\tau=1}^{1257} \Delta Y_{i,\tau} \Delta Y_{j,\tau};$$

- (d) Compute the eigenvalues (and eigenvectors) of $\hat{\Sigma}$ and store them in a descending order by $\{\hat{\lambda}_k, k = 1, \dots, p\}$.
- (e) Horn's Parallel Analysis: the following procedure describes a so-called Parallel Analysis of PCA using random permutations on data. Given the matrix $[\Delta Y_{i,t}]$, apply random permutations $\pi_i: \{1, \ldots, t\} \to \{1, \ldots, t\}$ on each of its rows: $\Delta \tilde{Y}_{i,\pi_i(j)}$ such that

$$[\Delta \tilde{Y}_{\pi(i),t}] = \begin{bmatrix} \Delta Y_{1,1} & \Delta Y_{1,2} & \Delta Y_{1,3} & \dots & \Delta Y_{1,t} \\ \Delta Y_{2,\pi_2(1)} & \Delta Y_{2,\pi_2(2)} & \Delta Y_{2,\pi_2(3)} & \dots & \Delta Y_{2,\pi_2(t)} \\ \Delta Y_{3,\pi_3(1)} & \Delta Y_{3,\pi_3(2)} & \Delta Y_{3,\pi_3(3)} & \dots & \Delta Y_{3,\pi_3(t)} \\ \dots & \dots & \dots & \dots & \dots \\ \Delta Y_{n,\pi_n(1)} & \Delta Y_{n,\pi_n(2)} & \Delta Y_{n,\pi_n(3)} & \dots & \Delta Y_{n,\pi_n(t)} \end{bmatrix}.$$

Define $\tilde{\Sigma} = \frac{1}{t}\Delta \tilde{Y} \cdot \Delta \tilde{Y}^T$ as the null covariance matrix. Repeat this for R times and compute the eigenvalues of $\tilde{\Sigma}_r$ for each $1 \leq r \leq R$. Evaluate the p-value for each estimated eigenvalue $\hat{\lambda}_k$ by $(N_k+1)/(R+1)$ where N_k is the counts that $\hat{\lambda}_k$ is less than the k-th largest eigenvalue of $\tilde{\Sigma}_r$ over $1 \leq r \leq R$. Eigenvalues with small p-values indicate that they are less likely arising from the spectrum of a randomly permuted matrix and thus considered to be signal. Draw your own conclusion with your observations and analysis on this data. A reference is: Buja and Eyuboglu, "Remarks on Parallel Analysis", Multivariate Behavioral Research, 27(4): 509-540, 1992.

7. *Finite rank perturbations of random symmetric matrices: Wigner's semi-circle law (proved by Eugene Wigner in 1951) concerns the limiting distribution of the eigenvalues of random symmetric matrices. It states, for example, that the limiting eigenvalue distribution of $n \times n$ symmetric matrices whose entries w_{ij} on and above the diagonal $(i \le j)$ are i.i.d Gaussians $\mathcal{N}(0, \frac{1}{4n})$ (and the entries below the diagonal are determined by symmetrization, i.e., $w_{ji} = w_{ij}$) is the semi-circle:

$$p(t) = \frac{2}{\pi} \sqrt{1 - t^2}, \quad -1 \le t \le 1,$$

where the distribution is supported in the interval [-1,1].

- (a) Confirm Wigner's semi-circle law using MATLAB or R simulations (take, e.g., n = 400).
- (b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner matrix. That is, find the largest eigenvalue of the matrix

$$W + \lambda_0 u u^T$$
,

where W is an $n \times n$ random symmetric matrix as above, and u is some deterministic unit-norm vector. Determine the value of λ_0 for which a phase transition occurs. What is the correlation between the top eigenvector of $W + \lambda_0 u u^T$ and the vector u as a function of λ_0 ? Use techniques similar to the ones we used in class for analyzing finite rank perturbations of sample covariance matrices.

[Some Hints about homework] For Wigner Matrix $W = [w_{ij}]_{n \times n}, w_{ij} = w_{ji}, w_{ij} \sim N(0, \frac{\sigma}{\sqrt{n}}),$ the answer is

eigenvalue is
$$\lambda = R + \frac{1}{R}$$

eigenvector satisfies $(u^T \hat{v})^2 = 1 - \frac{1}{R^2}$