Midterm 1 Results for Nicholas Khang Tran

! Correct answers are hidden.

Score for this attempt: **40** out of 40 Submitted Oct 1 at 6:23pm This attempt took 9 minutes.

Question 1	1/1 p
on intermediate result that we show to prove a larger result is known as:	
O Proof	
○ Theorem	
○ corollary	
Question 2	1/1;
Vhen a language is NOT regular?	
All languages are regular	
if we are able to construct a DFA or NFA or epsilon-NFA or regular expression	
If we can show that no FA can be built for a language	

Question 3	1 / 1 pts
The machine that can exist in multiple state at any given time is known as:	
○ Turing Machine	
Chomsky hierarchy	
O DFA	
NFA	

Question 4	1 / 1 pts
Regular Languages are NOT closed under union operation.	

Nicholas Khang Tran	's Quiz History: Midterm 1
O True	
False	
Question 5	1/1 pt
$L = \{ w \mid w \text{ is a binary string which does not contain two consecutive the regular expression for this language?}$	Os or two consecutive 1s anywhere}. What is
(01)* + (10)* + 0(10)* + 1(01)*	
(01)* + (10)* + 0(10)*	
(10)* + 0(10)* + 1(01)*	
(01)* + 10(10)* + 1(01)*	
Question 6	1 / 1 p
	1/1p
A language L= Ø if and only if the reachability test fails.	1/1p
A language L= Ø if and only if the reachability test fails. True	1/1 p
A language L= Ø if and only if the reachability test fails.	1/1 p
A language L= Ø if and only if the reachability test fails. True False	1/1p
A language L= Ø if and only if the reachability test fails. True	
A language L= Ø if and only if the reachability test fails. True False	
A language L= Ø if and only if the reachability test fails. True False Question 7	
A language L= Ø if and only if the reachability test fails. True False Question 7 If $V \ge 4$, then $2^{V} \ge V^{2}$ is an example of what type of proof:	
A language L= Ø if and only if the reachability test fails. True False Question 7 If $y \ge 4$, then $2^y \ge y^2$ is an example of what type of proof: deductive	
A language L= Ø if and only if the reachability test fails. True False Question 7 If $y \ge 4$, then $2^y \ge y^2$ is an example of what type of proof: deductive Definitive	
A language L= \emptyset if and only if the reachability test fails. True False Question 7 If $Y \ge 4$, then $2^Y \ge Y^2$ is an example of what type of proof: deductive Definitive Decisive	

1100 as substring

1010 as substring

Only 1s	
Only 0s	
Question 9	1 / 1 pt
How to minimize a DFA?	
O Identify reachable states.	
O Identify empty states	
O Not possible	
Remove unreachable states and Identify & condense equivalent states	into one
Question 10	1/1 pt
If we are able to construct one of the following: DFA or NFA or ε-NFA c	or regular expression then the language is
called:	
Called: Not regular	
○ Not regular	
Not regular regular	
Not regular regular complex simple	1/1 pt
Not regular regular complex simple	1/1 pt
Not regular regular complex simple	1/1 pt
 Not regular regular complex simple Question 11 An NFA is defined by 5-tuple:	1/1 pt
 Not regular complex simple Question 11 An NFA is defined by 5-tuple: true false 	1/1 pt
 Not regular regular complex simple Question 11 An NFA is defined by 5-tuple: true false Question 12	
regular complex simple Question 11 An NFA is defined by 5-tuple: true	

Probabilistic models could be viewed as extensions of which state machines? DFA PDA TM NFA Question 14 Transitions into a dead state are implicit for a NFA. true false	1/1 p
PDA TM NFA Question 14 Transitions into a dead state are implicit for a NFA.	1/1 p
● NFA ■ NFA Question 14 Transitions into a dead state are implicit for a NFA. ■ true	1/1 p
NFA Question 14 Transitions into a dead state are implicit for a NFA. true	1/1 p
Question 14 Transitions into a dead state are implicit for a NFA. true	1/1 p
Fransitions into a dead state are implicit for a NFA.	1/1 p
true	
O false	
Question 15 An NFA accepts w if there exists at least one path from the start state to an accepting (or final) start by w:	1 / 1 p ate that is labeled
true	
O false	
Question 16	1/1p
A DFA that accepts any string that ends with 10 will accept which of these strings?	
O 11000011	
O 1010101	
O 11111000	
© 00000010	
Question 17	1 / 1 p

\$-transitions	
alpha-transitions	
O delta-transitions	
epsilon-transitions	
Question 18	1/1 p
A technique that is used to show a given language is not regular is known as	S.
O Dilemma	
O DFA	
Pumping Lemma	
Regular expression	
Question 19	1 / 1 p
Jnix environments heavily use regular expressions.	
True	
○ False	
Question 20	1/1 p
	1/1 p
	1 / 1 p
How to decide if a string w in language L is accepted by a DFA?	1/1 _p
How to decide if a string w in language L is accepted by a DFA?	1/1 p
How to decide if a string w in language L is accepted by a DFA? If the DFA hangs tight If the DFA ends in an accepting state	1/1 p
If the DFA ends in an accepting stateIf the DFA ends in a start state	1/1 p

0.000	
Open property	
Closure property	
Clean property	
Clear property	
Question 22	1/1p
A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols:	
True	
○ False	
Question 23	1/1p
A DFA is defined by 3-tuple:	
○ True	
false	
false Question 24	1/1p
	1/1p
Question 24	1/1p
Question 24 What is the regular expression for a DFA that accepts 01 as a substring?	1/1p
Question 24 What is the regular expression for a DFA that accepts 01 as a substring?	1/1p
Question 24 What is the regular expression for a DFA that accepts 01 as a substring? 1*00*1(0+1)* 1*(10)*0*	1/1p
Question 24 What is the regular expression for a DFA that accepts 01 as a substring? 1*00*1(0+1)* 1*(10)*0*	1/1 p

Chomsky hierarchy	
DFA	
O NFA	
Question 26	1 / 1 pt
Empty string is represented by:	
© Σ (sigma)	
○ δ(delta)	
ε (epsilon)	
O α (alpha)	
	1/1p
Question 27 A transition from one state to another state without consuming any additional input symbol is known	as:
A transition from one state to another state without consuming any additional input symbol is known Null transition	as:
transition from one state to another state without consuming any additional input symbol is known	as:
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition	as:
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition	
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition Last resort	
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition Last resort Question 28	
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition Last resort Question 28 When a language is regular?	
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition Last resort Question 28 When a language is regular? All languages are regular	
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition Last resort Question 28 When a language is regular? All languages are regular if we are able to construct a DFA or NFA or epsilon-NFA or regular expression	1/1 pi
A transition from one state to another state without consuming any additional input symbol is known Null transition Epsilon transition New transition Last resort Question 28 When a language is regular? All languages are regular if we are able to construct a DFA or NFA or epsilon-NFA or regular expression If it is accepted by the program	

True	
○ False	
Question 30	1 / 1 p
Study of abstract computing devices or machines is known as:	
Computing	
Formal theory	
Automata theory	
Machine learning	
Question 31	1/1p
Explicit epsilon-transitions between different states introduce non-de	terminism:
true	
trueFalse	
	1/1 p
O False Question 32	1 / 1 p
○ False	1/1p
Question 32 An alphabet is not a finite set of symbols:	1 / 1 p
Question 32 An alphabet is not a finite set of symbols: True	1/1p
Question 32 An alphabet is not a finite set of symbols: True False	1/1 p
Question 32 An alphabet is not a finite set of symbols: True False Question 33	1/1 p

○ NFA	
Question 34	1/1 _F
If we introduce ϵ then the regular expression $(01)^* + (10)^* + (10)^*$	$0(10)^* + 1(01)^*$ can be simplified to $(\epsilon + 1)(01)^*(\epsilon + 0)$.
true	
O false	
Question 35	1/1 p
Regular languages are regular under reunion.	
O True	
False	
A DFA that accepts only even number of 1s and 0s will accept 11000011 1010101	
A DFA that accepts only even number of 1s and 0s will accep 11000011	
A DFA that accepts only even number of 1s and 0s will accept 11000011 1010101 11111000 00000100	ot which of these strings?
A DFA that accepts only even number of 1s and 0s will accept 11000011 1010101 11111000 00000100	ot which of these strings?
A DFA that accepts only even number of 1s and 0s will accept 11000011 1010101 11111000 00000100	ot which of these strings?
A DFA that accepts only even number of 1s and 0s will accept a second of 11000011 1010101 11111000 00000100 Question 37 We use the symbol Σ(sigma) to denote an alphabet:	ot which of these strings?
 1010101 111111000 00000100 Question 37 We use the symbol Σ(sigma) to denote an alphabet: True 	of which of these strings?

ϵ -closure of a state q, ECLOSE(q), is the set of all states (including itself) that can be reached from making an arbitrary number of ϵ -transitions.	m q by repeatedly
true	
○ false	
Question 39	1 / 1 pts
A language L is accepted by some e-NFA if and only if L is accepted by some DFA.	
true	
○ false	

Question 40	1 / 1 pts
What is Pigeon Hole Principle?	
at least one hole must contain more than one pigeon	
O Pigeons don't live in holes	
Each hole has exactly one pigeon	
O Pigeons love holes	

Quiz Score: 40 out of 40