Equivalence Relations

Learning Objectives. By the end of class, students will be able to:

• Prove a given set is an equivalence relation.

Instructor Notes: Reading Strayer, Appendix B

Turn in Let R be the equivalence relation on \mathbb{R} defined by

$$[a] = \{b \in \mathbb{R} : \sin(a) = \sin(b) \text{ and } \cos(a) = \cos(b)\}.$$

Prove that R is an equivalence relation on \mathbb{R} . Describe the equivalence classes on \mathbb{R}

Solution: Since $\sin(a) = \sin(a)$ and $\cos(a) = \cos(a)$, the relation R is reflexive.

If $\sin(a) = \sin(b)$ and $\cos(a) = \cos(b)$, the $\sin(b) = \sin(a)$ and $\cos(b) = \cos(a)$, so the relation is symmetric.

If $\sin(a) = \sin(b)$ and $\cos(a) = \cos(b)$, $\sin(b) = \sin(c)$ and $\cos(b) = \cos(c)$, then $\sin(a) = \sin(c)$ and $\cos(a) = \cos(c)$ is transitive.

Note that $\sin(a) = \sin(b)$ if $b = a + 2\pi k$ or $b = -a + \pi + 2\pi k$ for some $k \in \mathbb{Z}$, and $\cos(a) = \cos(b)$ if $b = a + 2\pi k$ or $b = -a + 2\pi k$ for some $k \in \mathbb{Z}$. These conditions are both true with $b = a + 2\pi k$. Thus, for $a \in [0, 2\pi)$,

$$[a] = {\ldots, a - 4\pi, a - 2\pi, a, a + 2\pi, a + 4\pi, \ldots}.$$

In-class Problem 1 Prove that

$$[a] = \{b \in \mathbb{Z} : 3 \mid (a - b)\}$$

is an equivalence relation on \mathbb{Z} .

Proof Let $a, b \in \mathbb{Z}$. We must show that the relation is reflexive, symmetric, and transitive.

To show the relation is reflexive, we must show $a \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$. Since $\boxed{3 \mid a-a=0}$ $a \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$.

To show the relation is symmetric, we must show that if $x \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$, then $a \in \{b \in \mathbb{Z} : 3 \mid (x-b)\}$. If $x \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$, then there exists $k \in \mathbb{Z}$ such that 3k = a - x. Therefore, -3k = b - a and $a \in \{b \in \mathbb{Z} : 3 \mid (x-b)\}$.

To show the relation is transitive, we must show that if $x \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$ and $y \in \{b \in \mathbb{Z} : 3 \mid (x-b)\}$, then $x \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$. If $x \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$, then there exists $k \in \mathbb{Z}$ such that 3k = a - x. Similarly, if $y \in \{b \in \mathbb{Z} : 3 \mid (x-b)\}$, then there exists $m \in \mathbb{Z}$ such that 3m = x - y. Therefore, 3(m+k) = a - k and $y \in \{b \in \mathbb{Z} : 3 \mid (a-b)\}$. Since the relation is reflexive, symmetric, and transitive, it is an equivalence relation.