Graph Classification

Classification Outline

- Introduction, Overview
- Classification using Graphs
 - Graph classification
 - Direct Product Kernel
 - Predictive Toxicology example dataset
 - Graph embedding approach
 - Vertex classification
 - Laplacian Kernel
 - WEBKB example dataset
 - Vertex embedding approach
 - Edge/Link prediction
 - Edge embedding approach
- gBoost extension of "boosting" for graphs
 - Progressively collects "informative" frequent patterns to use as features for classification / regression.
 - Also considered a frequent subgraph mining technique (similar to gSpan in Frequent Subgraph Chapter).

Example: Molecular Structures

Solution: Machine Learning

- Computationally discover and/or predict properties of interest of a set of data
- Two Flavors:

 Unsupervised: discover discriminating properties among groups of data (Example: Clustering)

 Supervised: known properties, categorize data with unknown properties (Example: Classification)

Classification

- Classification: The task of assigning class labels in a discrete class label set Y to input instances in an input space X
- Ex: Y = { toxic, non-toxic }, X = {valid molecular structures}

Classification with Graph Structures

- Graph classification (between-graph)
 - Each full graph is assigned a class label
- Example: Molecular graphs

- Vertex classification (within-graph)
 - Within a single graph,
 each vertex is assigned
 a class label
- Example: Webpage (vertex) / hyperlink (edge) graphs

Relating Graph Structures to Classes?

Frequent Subgraph Mining

Associate frequently occurring subgraphs with classes

Anomaly Detection

Associate anomalous graph features with classes

*Kernel-based methods

 Devise kernel function capturing graph similarity, use vectorbased classification via the *kernel trick*

Relating Graph Structures to Classes?

- This part focuses on kernel-based and embedding-based classification.
- Two step process:
 - Devise kernel that captures property of interest
 - Apply kernelized classification algorithm, using the kernel function.
- Two type of graph classification looked at
 - Classification of Graphs
 - Direct Product Kernel
 - Classification of Vertices
 - Laplacian Kernel
- Embedding-based Approach
- See Supplemental slides for *support vector machines* (SVM), one of the more well-known kernelized classification techniques.

Walk-based similarity (Graph Kernels)

• Intuition – two graphs are similar if they exhibit similar patterns when performing random walks

Direct Product Graph – Formal Definition

Input Graphs

$$G_1 = (V_1, E_1)$$

$$G_2 = (V_2, E_2)$$

Direct Product Notation

$$G_X = G_1 \times G_2$$

Intuition

Vertex set: each vertex of V_1 paired with *every* vertex of V_2

Edge set: Edges exist only if both pairs of vertices in the respective graphs contain an edge

Direct Product Vertices

$$V(G_x) = \{(a, b) \in V_1 \times V_2\}$$

Direct Product Edges

$$E(G_x) = \{((a,b),(c,d)) | (a,c) \in E_1 \text{ and } (b,d) \in E_2\}$$

Direct Product Graph - example

Type-A

Type-B

$\mathbf{Type-A}$	A	В	\mathbf{C}	D
A	0	1	1	0
В	1	0	0	1
\mathbf{C}	1	0	0	1
D	0 1 1 0	1	1	0

Type-B A B C D E	A	В	\mathbf{C}	D	\mathbf{E}
A	0	1	1	1	1
В	1	0	0	0	0
\mathbf{C}	1	0	0	0	0
D	1	0	0	0	0
${f E}$	1	0	0	0	0

Direct Product Graph Example

Direct Product Kernel (see Kernel Chapter)

- 1. Compute direct product graph G_x
- 2. Compute the maximum inand out-degrees of *Gx*, *di* and *do*.
- 3. Compute the decay constant γ < 1 / min(di, do)
- 4. Compute the infinite weighted geometric series of walks (array A).
- 5. Sum over all vertex pairs.

Direct Product Graph of Type-A and Type-B

$$k(G_1, G_2) = \sum_{i,j} (I - \frac{A_{ij}}{\gamma})^{-1}$$

Kernel Matrix

$$K(G_1, G_1), K(G_1, G_2), ..., K(G_1, G_n)$$

 $K(G_2, G_1), K(G_2, G_2), ..., K(G_2, G_n)$
...
 $K(G_n, G_1), K(G_n, G_2), ..., K(G_n, G_n)$

- Compute direct product kernel for all pairs of graphs in the set of known examples.
- This matrix is used as input to SVM function to create the classification model.
 - *** Or any other kernelized data mining method!!!

Predictive Toxicology (PTC) dataset

- The PTC dataset is a collection of molecules that have been tested positive or negative for toxicity.
- 1. # R code to create the SVM model
- 2. data("PTCData") # graph data
- 3. data("PTCLabels") # toxicity information
- 4. # select 5 molecules to build model on
- 5. sTrain = sample(1:length(PTCData),5)
- 6. PTCDataSmall <- PTCData[sTrain]
- 7. PTCLabelsSmall <- PTCLabels[sTrain]
- 8. # generate kernel matrix
- K = generateKernelMatrix (PTCDataSmall, PTCDataSmall)
- 10. # create SVM model
- model =ksvm(K, PTCLabelsSmall, kernel='matrix')

Graph embedding approach

- The embedding-based approach embeds the whole graph. It computes one vector which describes a graph. The graph2vec approach is used since it is the best performing approach for a graph embedding.
- Graph2vec is based on the idea of the doc2vec approach that uses the skip-gram network. It gets an ID of the document on the input and is trained to maximize the probability of predicting random words from the document.

Graph embedding approach

Graph2vec approaches consist of three steps:

- Sampling and relabeling all sub-graphs from the graph. Sub-graph is a set of nodes that appear around the selected node.
- Training the skip-gram model. Graphs are similar to documents. Since documents are set of words graphs are set of sub-graphs. In this phase, the skip-gram model is trained. It is trained to maximize the probability of predicting sub-graph that exists in the graph on the input. The input graph is provided as a one-hot vector.
- Computing embeddings with providing a graph ID as a one-hot vector at the input. Embedding is the result of the hidden layer.
- Since the task is predicting sub-graphs, graphs with similar sub-graphs and similar structure have similar embeddings.

Graph embedding approach

Kernels for Vertex Classification

Regularized Laplacian

$$K = \sum_{i=1}^{\infty} \gamma^{i} (-L)^{i}$$

Example

- Example: word-webpage graph
 - Vertex webpage
 - Edge set of pages containing same word

$$Ad jacency \ Matrix \ A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{ij} = \begin{cases} 1, & \text{if and vertex } v_i \text{ belongs to edge } e_j \text{ in the hypergraph} \\ 0, & \text{otherwise.} \end{cases}$$

Laplacian Matrix

- In the mathematical field of graph theory the Laplacian matrix (L), is a matrix representation of a graph.
- L = D M
 - M adjacency matrix of graph (e.g., A*A^T from hypergraph flattening)
 - D degree matrix (diagonal matrix where each (i,i) entry is vertex i's [weighted] degree)
- Laplacian used in many contexts (e.g., spectral graph theory)

$$AA^T = egin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 2 & 1 & 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \ 1 & 1 & 1 & 2 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 2 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
 $D = \sum_j [AA^T]_{ij}$

$$D = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

$$L = D - AA^{T}$$

$$L = \begin{bmatrix} 3 & -1 & -1 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \end{bmatrix}$$

Normalized Laplacian Matrix

• Normalizing the matrix helps eliminate bias in matrix toward high-degree vertices

$$L_{i,j} \coloneqq \begin{cases} 1 & \text{if } i = j \text{ and } \deg(v_i) \neq 0 \\ \\ \frac{-1}{\sqrt{\deg(v_i) \deg(v_j)}} & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\ \\ 0 & \text{otherwise} \end{cases}$$

Original L

Regularized L

$$L = \begin{bmatrix} 3 & -1 & -1 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 \\ -1 & -1 & -1 & 4 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix} \quad L = \begin{bmatrix} 1.0 & -0.20 & -0.3 & -0.2 & 0.0 & 0.0 & 0.0 \\ -0.2 & 1.0 & -0.2 & -0.2 & -0.2 & 0.0 & 0.0 & 0.0 \\ -0.3 & -0.2 & 1.0 & -0.2 & 0.0 & 0.0 & 0.0 & 0.0 \\ -0.2 & -0.2 & -0.2 & -0.2 & 1.0 & -0.2 & 0.0 & 0.0 & 0.0 \\ 0.0 & -0.2 & 0.0 & -0.2 & 1.0 & -0.2 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.5 & 1.0 \end{bmatrix}$$

Laplacian Kernel

- Uses walk-based geometric series, only applied to regularized Laplacian matrix
- Decay constant NOT degree-based – instead tunable parameter < 1

$$K = \sum_{i=1}^{\infty} \gamma^i (-L)^i$$

$$K = (I + \gamma L)^{-1}$$

$$L = \begin{bmatrix} 1.0 & -0.20 & -0.3 & -0.2 & 0.0 & 0.0 & 0.0 \\ -0.2 & 1.0 & -0.2 & -0.2 & -0.2 & 0.0 & 0.0 \\ -0.3 & -0.2 & 1.0 & -0.2 & 0.0 & 0.0 & 0.0 \\ -0.2 & -0.2 & -0.2 & 1.0 & -0.2 & 0.0 & 0.0 \\ 0.0 & -0.2 & 0.0 & -0.2 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0 & -0.5 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & -0.5 & 1.0 \end{bmatrix}$$

Regularized L

WEBKB dataset

- The WEBKB dataset is a collection of web pages that include samples from four universities website.
- The web pages are assigned into five distinct classes according to their contents namely course, faculty, student, project and staff.
- The web pages are searched for the most commonly used words. There are 1073 words that are encountered at least with a frequency of 10.

- # R code to create the SVM model
- 2. data(WEBKB)
- 3. # generate kernel matrix
- 4. K = generateKernelMatrixWithinGraph(WEBKB)
- 5. # create sample set for testing
- 6. holdout <- sample (1:ncol(K), 20)
- 7. # create SVM model
- 8. model =ksvm(K[-holdout,-holdout], y, kernel='matrix')

Node Embedding

- In 2014, DeepWalk: Online Learning of Social Representations
- Each graph as a document
- Random walks will be the sentences in this document

- Random Walk In graph G(V,E):
 - A sequences of nodes <v1, v2, ..., vk>, such that each (vi, vi+1) is an edge in E

General method for node embedding

```
Algorithm 1 DeepWalk(G, w, d, \gamma, t)
Input: graph G(V, E)
    window size w
    embedding size d
    walks per vertex \gamma
    walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}
 1: Initialization: Sample \Phi from U^{|V| \times d}
 2: Build a binary Tree T from V
                                                                                Algorithm 2 SkipGram(\Phi, W_{v_i}, w)
 3: for i = 0 to \gamma do
                                                                                 1: for each v_j \in \mathcal{W}_{v_i} do
       \mathcal{O} = \text{Shuffle}(V)
                                                                                        for each u_k \in \mathcal{W}_{v_i}[j-w:j+w] do
 5:
       for each v_i \in \mathcal{O} do
                                                                                         J(\Phi) = -\log \Pr(u_k \mid \Phi(v_j))
 6:
         W_{v_i} = RandomWalk(G, v_i, t)
                                                                                 4: \Phi = \Phi - \alpha * \frac{\partial J}{\partial \Phi}
          SkipGram(\Phi, W_{v_i}, w)
       end for
                                                                                        end for
                                                                                 6: end for
 9: end for
```

Classic Search Strategies

- The problem of sampling neighborhoods N_S of a source node $\mathcal U$ can be viewed as a form of local search.
- There are two extreme sampling strategies for generating neighborhood sets:
 - Breadth-first Sampling (BFS)
 - Depth-first Sampling (DFS)

Breadth-first Sampling (BFS)

- \bullet Neighborhood N_S is restricted to nodes which are immediate neighbors of the source $\ensuremath{\mathcal{U}}$
- For a neighborhood of size k = 3 BFS samples nodes

$$s_1, s_2, s_3$$

- Nodes that have similar structural roles in networks should be embedded closely together.
 - \circ E.g., nodes \mathcal{U} and s_6 in fig
- Restricting search to nearby nodes, BFS gives microscopic view.
- Network roles such as bridges and hubs can be inferred using BFS.

Depth-first Sampling (DFS)

- Neighborhood consists of nodes sequentially sampled at increasing distances from the source node $\,\mathcal{U}$
- For a neighborhood of size k = 3 DFS samples nodes S_4, S_5, S_6

DFS ♦ Homophily

- Nodes that are highly interconnected and belong to similar network communities should be embedded closely together.
 - \circ E.g., nodes \mathcal{U} and \mathcal{S}_1 in fig
- DFS sampled nodes reflect a macro-view of nodes neighborhood.

Flexible notion of neighborhood

- Authors design a flexible neighborhood sampling strategy which allows them to smoothly interpolate between BFS and DFS
- The above sampling strategy is achieved by a flexible biased random walk that explores neighborhoods in a BFS as well as DFS fashion.

Drawbacks of DeepWalk and LINE

- DeepWalk: learns *d-dimensional* feature representations by simulating uniform random walks. Can be observed as a special case of *node2vec* with parameters p = 1 & q = 1.
- LINE: learns *d-dimensional* feature representations in two steps:
 - \circ d/2 dimensions by **BFS-style**
 - \circ d / 2 dimensions by sampling nodes at **2-hop** distance
- Networks represent a mixture of homophily and structural equivalence, which are not effectively covered by the above two methods.

How Node2vec take random walks

Default Setup: Parameters Just the same as DeepWalk

• Dimensionality (D): 128

• Number of walks starting from each node (r): 10

• Walk Length (l): 80

• Context Size (k): 10

Each random walk:

- Step 1: initial node
- Step 2: look at the neighbors, select one as the next node
- Step 3: repeat step 2 until the length of random walk is equal 1

$$P(c_i = x \mid c_{i-1} = v) = \begin{cases} \frac{\pi_{vx}}{Z} & \text{if } (v, x) \in E \\ 0 & \text{otherwise} \end{cases}$$

Where node2vec really comes in

Biasing the selection of next node

- Last edge in random walk : $\mathbf{t} \rightarrow \mathbf{v}$
- Currently at node **v**
- How to select next node from v neighbors?

How much do you like to go back to \mathbf{t} ? \longrightarrow parameter " \mathbf{p} "

How much do you like to go far from t? \rightarrow parameter "q"

$$\alpha_{pq}(t,x) = \begin{cases} \frac{1}{p} & \text{if } d_{tx} = 0\\ 1 & \text{if } d_{tx} = 1\\ \frac{1}{q} & \text{if } d_{tx} = 2 \end{cases}$$

Overview of node2vec algorithm

```
Algorithm 1 The node2vec algorithm.
LearnFeatures (Graph G = (V, E, W), Dimensions d, Walks per
  node r, Walk length l, Context size k, Return p, In-out q)
  \pi = \text{PreprocessModifiedWeights}(G, p, q)
  G' = (V, E, \pi)
  Initialize walks to Empty
  for iter = 1 to r do
     for all nodes u \in V do
       walk = node2vecWalk(G', u, l)
       Append walk to walks
   f = StochasticGradientDescent(k, d, walks)
  return f
node2vecWalk (Graph G' = (V, E, \pi), Start node u, Length l)
  Inititalize walk to [u]
  for walk\_iter = 1 to l do
     curr = walk[-1]
     V_{curr} = \text{GetNeighbors}(curr, G')
     s = \text{AliasSample}(V_{curr}, \pi)
     Append s to walk
   return walk
```

Edge Embedding

Link prediction deals with pairs of nodes

We need to find embeddings of edges

Embedding of edge (u,v) done by a binary operator $g(u, v) : V \times V \longrightarrow R^d$

Operator	Symbol	Definition
Average	H	$[f(u) \boxplus f(v)]_i = \frac{f_i(u) + f_i(v)}{2}$
Hadamard	⊡	$[f(u) \boxdot f(v)]_i = f_i(u) * f_i(v)$
Weighted-L1	• 1	
Weighted-L2	$\ \cdot\ _{\tilde{2}}$	$ f(u) \cdot f(v) _{\tilde{2}i} = f_i(u) - f_i(v) ^2$

Node2vec Scalability

Process time is linear in number of nodes \rightarrow O(a |V|)

• a is constant relying on R (numWalks) and L (walkLength)

For Optimization (SGD) use negative sampling

Example: Erdos-Renyi graphs with an average degree of 10

Traditional Classifications

Decision Trees

- Classification model → tree of conditionals on variables, where leaves represent class labels
- Input space is typically a set of discrete variables

Bayesian belief networks

- Produces directed acyclic graph structure using Bayesian inference to generate edges.
- Each vertex (a variable/class) associated with a probability table indicating likelihood of event or value occurring, given the value of the determined dependent variables.

Support Vector Machines

- Traditionally used in classification of real-valued vector data.
- See Kernels chapter for kernel functions working on vectors.

Ensemble Classification

• Ensemble learning: algorithms that build multiple models to enhance stability and reduce selection bias.

Some examples:

- Bagging: Generate multiple models using samples of input set (with replacement), evaluate by averaging / voting with the models.
- Boosting: Generate multiple weak models, weight evaluation by some measure of model accuracy.

Evaluating, Comparing Classifiers

Performance Metrics

A very brief, "typical" classification workflow:

- 1. Partition data into *training*, *test* sets.
- 2. Build classification model using only the training set.
- 3. Evaluate accuracy of model using only the test set.

Modifications to the basic workflow:

- Multiple rounds of training, testing (cross-validation)
- Multiple classification models built (bagging, boosting)
- More sophisticated sampling (all)

Substructure-Based Graph Classification

- ☐ Basic idea
 - \square Extract graph substructures $F = \{g_{1,...}, g_n\}$
 - \square Represent a graph with a feature vector $\mathbf{X} = \{x_1, ..., x_n\}$
 - \square where \mathcal{X}_i is the frequency of g_i in that graph
 - ☐ Build a classification model
- ☐ Different features and representative work
 - ☐ Tree and cyclic patterns [Horvath et al.]
 - ☐ Minimal contrast subgraph [Ting and Bailey]
 - ☐ Frequent subgraphs [Deshpande et al.; Liu et al.]
 - ☐ Graph fragments [Wale and Karypis]

Direct Mining of Discriminative Patterns

Avoid mining the whole set of patterns

- Harmony [Wang and Karypis]
- DDPMine [Cheng et al.]
- LEAP [Yan et al.]
- MbT [Fan et al.]

Find the most discriminative pattern

- A search problem?
- An optimization problem?

Extensions

- Mining top-k discriminative patterns
- Mining approximate/weighted discriminative patterns

Graph Kernels

Motivation:

- Kernel based learning methods doesn't need to access data points
 - They rely on the kernel function between the data points
- Can be applied to any complex structure provided you can define a kernel function on them

• Basic idea:

- Map each graph to some significant set of patterns
- Define a kernel on the corresponding sets of patterns

Kernel-based Classification

- Random walk
 - Basic Idea: count the matching random walks between the two graphs
 - Marginalized Kernels
 - Gärtner '02, Kashima et al. '02, Mahé et al.'04

$$K(G_1, G_2) = \sum_{h_1} \sum_{h_2} p(h_1)p(h_2)K_L(l(h_1), l(h_2))$$

- h_1 and h_2 are paths in graphs G_1 and G_2
- $p(h_1)$ and $p(h_2)$ are probability distributions on paths
- $K_L(l(h_1), l(h_2))$ is a kernel between paths, e.g.,

$$K_L(l_1, l_2) = \begin{cases} 1 & \text{if } l_1 = l_2, \\ 0 & otherwise. \end{cases}$$