Optimization Theory

Lecture 12

Fudan University

luoluo@fudan.edu.cn

Outline

1 Greedy and Randomized Quasi-Newton Methods

Block Quasi-Newton Methods

Outline

1 Greedy and Randomized Quasi-Newton Methods

2 Block Quasi-Newton Methods

Broyden Family Update

The Broyden family update is

$$\begin{aligned} \operatorname{Broyd}_{\tau}(\mathbf{G}, \mathbf{A}, \mathbf{u}) &\triangleq \tau \left[\mathbf{G} - \frac{\mathbf{A} \mathbf{u} \mathbf{u}^{\top} \mathbf{G} + \mathbf{G} \mathbf{u} \mathbf{u}^{\top} \mathbf{A}}{\mathbf{u}^{\top} \mathbf{A} \mathbf{u}} + \left(\frac{\mathbf{u}^{\top} \mathbf{G} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{A} \mathbf{u}} + 1 \right) \frac{\mathbf{A} \mathbf{u} \mathbf{u}^{\top} \mathbf{A}}{\mathbf{u}^{\top} \mathbf{A} \mathbf{u}} \right] \\ &+ (1 - \tau) \left[\mathbf{G} - \frac{(\mathbf{G} - \mathbf{A}) \mathbf{u} \mathbf{u}^{\top} (\mathbf{G} - \mathbf{A})}{\mathbf{u}^{\top} (\mathbf{G} - \mathbf{A}) \mathbf{u}} \right], \end{aligned}$$

where $\mathbf{G} \in \mathbb{R}^{d \times d}$, $\mathbf{A} \in \mathbb{R}^{d \times d}$, $\mathbf{u} \in \mathbb{R}^d$ and $\tau \in [0,1]$.

Let
$$\mathbf{G} = \mathbf{G}_t$$
, $\mathbf{A} = \int_0^1 \nabla^2 f(\mathbf{x}_t + t(\mathbf{x}_{t+1} - \mathbf{x}_t)) \, \mathrm{d}t$ and $\mathbf{u} = \mathbf{x}_{t+1} - \mathbf{x}_t$.

- For $\tau = 0$, it is classical SR1 method.
- For $\tau = \frac{\mathbf{u}^{\top} \mathbf{A} \mathbf{u}}{\mathbf{u}^{\top} \mathbf{G} \mathbf{u}}$, it is classical BFGS method.
- For $\tau = 1$, it is classical DFP method.

Greedy and Randomized Directions

The update $\mathbf{G}_{t+1} = \operatorname{Broyd}_{\tau}(\mathbf{G}, \mathbf{A}, \mathbf{u})$ with $\mathbf{A} = \nabla^2 f(\mathbf{x}_{t+1})$ satisfies

$$\mathbf{G}_{t+1}\mathbf{u} = \nabla^2 f(\mathbf{x}_{t+1})\mathbf{u}$$

for any $\mathbf{u} \in \mathbb{R}^d$.

We can construct \mathbf{G}_{t+1} by the following choice of \mathbf{u} .

- $\textbf{0} \ \ \mathsf{Greedy} \ \mathsf{strategy:} \ \ \mathbf{u} = \mathsf{arg} \ \mathsf{max}_{\mathbf{v} \in \{\mathbf{e}_1, \dots, \mathbf{e}_d\}} \ \mathbf{v}^\top (\mathbf{G}_t \nabla^2 f(\mathbf{x}_{t+1})) \mathbf{v};$
- ② Randomized strategy: $\mathbf{u} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Greedy and Randomized Quasi-Newton Methods

Algorithm 1 Greedy and Randomized Quasi-Newton Methods

- 1: Input: $\mathbf{G}_0 \in \mathbb{R}^{d \times d}$, M > 0
- 2: **for** t = 0, 1...
- 3: $\mathbf{x}_{t+1} = \mathbf{x}_t \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t)$
- 4: $r_t = \|\mathbf{x}_{t+1} \mathbf{x}_t\|_{\nabla^2 f(\mathbf{x}_t)}$
- 5: $\tilde{\mathbf{G}}_t = (1 + Mr_t)\mathbf{G}_t$
- 6: Construct $\mathbf{u}_t \in \mathbb{R}^d$ by
 - (a) randomized strategy: $[\mathbf{u}_t]_i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0,1)$
 - (b) greedy strategy: $\mathbf{u}_t = \arg\max_{\mathbf{v} \in \{\mathbf{e}_1, \dots, \mathbf{e}_d\}} \mathbf{v}^{\top} (\mathbf{G}_t \nabla^2 f(\mathbf{x}_{t+1})) \mathbf{v}$
- 7: $\mathbf{G}_{t+1} = \operatorname{Broyd}_{\tau}(\tilde{\mathbf{G}}_t, \nabla^2 f(\mathbf{x}_{t+1}), \mathbf{u}_t)$
- 8: end for

Explicit Local Convergence Rate

Suppose the objective is μ -strongly-convex and L-smooth and let

$$\kappa = L/\mu$$
 and $\lambda_t = \sqrt{\nabla f(\mathbf{x}_t)^{\top}(\nabla^2 f(\mathbf{x}_t))^{-1}\nabla f(\mathbf{x}_t)}.$

• For greedy/randomized Broyden family method, we have

$$\mathbb{E}[\lambda_t] \leq \mathcal{O}\left(\left(1 - \frac{1}{\kappa d}\right)^{t(t-1)}\right).$$

For greedy/randomized SR1 method, we have

$$\mathbb{E}[\lambda_t] \leq \mathcal{O}\left(\left(1 - rac{1}{d}
ight)^{t(t-1)}
ight).$$

3 The rate $\mathbb{E}[\lambda_{t+1}/\lambda_t]$ converges to 0 linearly.

Outline

Greedy and Randomized Quasi-Newton Methods

Block Quasi-Newton Methods

Multiple Directions

Recall that we have used the fact

$$\mathbf{G}_{t+1}\mathbf{u} = \nabla^2 f(\mathbf{x}_{t+1})\mathbf{u}$$

of Broyden family update to construct $\mathbf{G}_{t+1} \in \mathbb{R}^{d \times d}$.

Can we use multiple directions to construct G_{t+1} ? Such as

$$\mathbf{G}_{t+1}\mathbf{U} = \nabla^2 f(\mathbf{x}_{t+1})\mathbf{U}$$

for some $\mathbf{U} \in \mathbb{R}^{d \times k}$, where $k \ll d$.

Symmetric Rank-k Update

Recall that SR1 update can be written as

$$\mathrm{SR1}(\boldsymbol{\mathsf{G}},\boldsymbol{\mathsf{A}},\boldsymbol{\mathsf{u}}) = \boldsymbol{\mathsf{G}} - \frac{(\boldsymbol{\mathsf{G}}-\boldsymbol{\mathsf{A}})\boldsymbol{\mathsf{u}}\boldsymbol{\mathsf{u}}^\top(\boldsymbol{\mathsf{G}}-\boldsymbol{\mathsf{A}})}{\boldsymbol{\mathsf{u}}^\top(\boldsymbol{\mathsf{G}}-\boldsymbol{\mathsf{A}})\boldsymbol{\mathsf{u}}}.$$

for given $\mathbf{G} \in \mathbb{R}^{d \times d}$, $\mathbf{A} \in \mathbb{R}^{d \times d}$ and some $\mathbf{u} \in \mathbb{R}^d$.

We generalized SR1 to SR-k as

$$SR-k(\mathbf{G},\mathbf{A},\mathbf{U}) = \mathbf{G} - (\mathbf{G} - \mathbf{A})\mathbf{U}(\mathbf{U}^{\top}(\mathbf{G} - \mathbf{A})\mathbf{U})^{-1}\mathbf{U}^{\top}(\mathbf{G} - \mathbf{A})$$

for given $\mathbf{G} \in \mathbb{R}^{d \times d}$, $\mathbf{A} \in \mathbb{R}^{d \times d}$ and some $\mathbf{U} \in \mathbb{R}^{d \times k}$.

Symmetric Rank-k Method

Algorithm 2 Symmetric Rank-k Method

- 1: **Input:** $G_0 \in \mathbb{R}^{d \times d}$, $M \ge 0$ and $k \in [d]$.
- 2: **for** t = 0, 1...
- 3: $\mathbf{x}_{t+1} = \mathbf{x}_t \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t)$
- 4: $r_t = \|\mathbf{x}_{t+1} \mathbf{x}_t\|_{\nabla^2 f(\mathbf{x}_t)}$
- 5: $\tilde{\mathbf{G}}_t = (1 + Mr_t)\mathbf{G}_t$
- 6: construct $\mathbf{U}_t \in \mathbb{R}^{d \times k}$ by $[\mathbf{U}_t]_{ij} \overset{\text{i.i.d}}{\sim} \mathcal{N}(0,1)$
- 7: $\mathbf{G}_{t+1} = \operatorname{SR-}k(\tilde{\mathbf{G}}_t, \nabla^2 f(\mathbf{x}_{t+1}), \mathbf{U}_t)$
- 8: end for
- **1** SR-k method has the local convergence rate $\mathbb{E}[\lambda_t] \leq \mathcal{O}((1-k/d)^{t(t-1)})$.
- ② For quadratic problems, we set M=0 and it has global linear convergence.

Symmetric Rank-k Update

Lemma

For any positive-definite matrices $\mathbf{A} \in \mathbb{R}^{d \times d}$ and $\mathbf{G} \in \mathbb{R}^{d \times d}$ with

$$\mathbf{A} \preceq \mathbf{G} \preceq \eta \mathbf{A}$$

for some $\eta \geq 1$, we let $\mathbf{G}_+ = \mathrm{SR}\text{-}k(\mathbf{G}, \mathbf{A}, \mathbf{U})$ for some full rank matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$. Then it holds that

$$\mathbf{A} \leq \mathbf{G}_{+} \leq \eta \mathbf{A}$$
.

If we can construct $\{\eta_t\}$ such that

$$\nabla^2 f(\mathbf{x}_t) \preceq \mathbf{G}_t \preceq \eta_t \nabla^2 f(\mathbf{x}_t) \quad \text{and} \quad \lim_{t \to +\infty} \eta_t = 1.$$

Then the update $\mathbf{G}_{t+1} = \mathrm{SR}\text{-}k(\mathbf{G}_t, \nabla f(\mathbf{x}_{t+1}), \mathbf{U}_t)$ leads to

$$\lim_{t\to+\infty} (\mathbf{G}_t - \nabla^2 f(\mathbf{x}_t)) = \mathbf{0}.$$

We introduce the quantity

$$\tau_{\mathbf{A}}(\mathbf{G}) \triangleq \operatorname{tr}(\mathbf{G} - \mathbf{A})$$

to characterize the difference between **A** and **G**.

Theorem

Let $\mathbf{G}_+ = \operatorname{SR-}k(\mathbf{G},\mathbf{A},\mathbf{U})$ with $\mathbf{G} \succeq \mathbf{A} \in \mathbb{R}^{d \times d}$ and select $\mathbf{U} \in \mathbb{R}^{d \times k}$ by drawing each entry of \mathbf{U} according to $\mathcal{N}(0,1)$ independently. Then

$$\mathbb{E}\left[au_{\mathbf{A}}(\mathbf{G}_{+})
ight] \leq \left(1 - rac{k}{d}
ight) au_{\mathbf{A}}(\mathbf{G}).$$

Lemma

Assume $\mathbf{P} \in \mathbb{R}^{d \times k}$ is column orthonormal $(k \leq d)$ and $\mathbf{p} \sim \mathcal{N}(\mathbf{0}, \mathbf{P}\mathbf{P}^{\top})$ is a d-dimensional multivariate normal distributed vector. Then we have

$$\mathbb{E}\left[\frac{\mathbf{p}\mathbf{p}^{\top}}{\mathbf{p}^{\top}\mathbf{p}}\right] = \frac{1}{k}\mathbf{P}\mathbf{P}^{\top}.$$

Lemma

Let $\mathbf{U} \in \mathbb{R}^{d \times k}$ be a random matrix and each of its entry is independent and identically distributed according to $\mathcal{N}(0,1)$, then it holds that

$$\mathbb{E}\left[\mathbf{U}(\mathbf{U}^{\top}\mathbf{U})^{-1}\mathbf{U}^{\top}\right] = \frac{k}{d}\mathbf{I}_{d}.$$

<u>Lem</u>ma

For positive semi-definite matrix $\mathbf{B} \in \mathbb{R}^{d \times d}$ and full rank matrix $\mathbf{U} \in \mathbb{R}^{d \times k}$ with $k \leq d$, it holds that

$$\operatorname{tr}(\mathbf{B}\mathbf{U}(\mathbf{U}^{\top}\mathbf{B}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{B}) \geq \operatorname{tr}(\mathbf{U}(\mathbf{U}^{\top}\mathbf{U})^{-1}\mathbf{U}^{\top}\mathbf{B}).$$

Lemma

Suppose the twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is M-strongly self-concordant and the positive definite matrix $\mathbf{G}_t \in \mathbb{R}^{d \times d}$ satisfies

$$\nabla^2 f(\mathbf{x}_t) \leq \mathbf{G}_t \leq \eta_t \nabla^2 f(\mathbf{x}_t)$$

for some $\eta_t \geq 1$ and $M\lambda_t \leq 2$. Then the update formula

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t)$$

holds that

$$\|\mathbf{x}_{t+1} - \mathbf{x}_t\|_{\nabla^2 f(\mathbf{x}_t)} \leq \lambda_t \quad \text{and} \quad \lambda_{t+1} \leq \left(1 - \frac{1}{\eta_t}\right) \lambda_t + \frac{M}{2} \lambda_t^2 + \frac{M^2}{4\eta_t} \lambda_t^3.$$

Lemma

If twice differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is M-strongly self-concordant and μ -strongly convex and positive definite matrix $\mathbf{G} \in \mathbb{R}^{d \times d}$ and $\mathbf{x} \in \mathbb{R}^d$ satisfy

$$\nabla^2 f(\mathbf{x}) \leq \mathbf{G} \leq \eta \nabla^2 f(\mathbf{x})$$

for some $\eta \geq 1$, then we have

$$abla^2 f(\mathbf{x}_+) \leq \tilde{\mathbf{G}} \leq \eta (1 + Mr)^2 \nabla^2 f(\mathbf{x}_+)$$

for any $\mathbf{x}_+ \in \mathbb{R}^d$, where $\tilde{\mathbf{G}} = (1 + Mr)\mathbf{G}$, $r = \|\mathbf{x} - \mathbf{x}_+\|_{\nabla^2 f(\mathbf{x})}$.

This implies

$$\nabla^2 f(\mathbf{x}_t) \leq \mathbf{G}_t \leq (1+\delta_t) \nabla^2 f(\mathbf{x}_t),$$

where

$$\delta_t = \frac{d\kappa \operatorname{tr}(\mathbf{G}_t - \nabla^2 f(\mathbf{x}_t))}{\operatorname{tr}(\nabla^2 f(\mathbf{x}_t))}.$$

Theorem

Suppose $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth, μ -strongly-convex and M-strongly self-concordant, we run SR-k with initial \mathbf{x}_0 and \mathbf{G}_0 such that

$$\lambda_0 \leq rac{\ln(3/2)}{4\eta_0 M} \qquad ext{and} \qquad
abla^2 f(\mathbf{x}_0) \leq \mathbf{G}_0 \leq \eta_0
abla^2 f(\mathbf{x}_0)$$

for some $\eta_0 \geq 1$. Then it holds that

$$abla^2 f(\mathbf{x}_t) \preceq \mathbf{G}_t \preceq \frac{3\eta_0}{2}
abla^2 f(\mathbf{x}_t) \qquad \text{and} \qquad \lambda_t \leq \left(1 - \frac{1}{2\eta_0}\right)^t \lambda_0.$$

Theorem

Suppose function $f: \mathbb{R}^d \to \mathbb{R}$ is L-smooth, μ -strongly-convex and M-strongly self-concordant, if we run SR-k with k < d and set the initial \mathbf{x}_0 and \mathbf{G}_0 such that

$$\lambda_0 \leq rac{\ln 2}{2} \cdot rac{(d-k)}{M \eta_0 d^2 \kappa} \qquad ext{and} \qquad
abla^2 f(\mathbf{x}_0) \leq \mathbf{G}_0 \leq \eta_0
abla^2 f(\mathbf{x}_0)$$

for some $\eta_0 \ge 1$. Then we have

$$\mathbb{E}\left[\frac{\lambda_{t+1}}{\lambda_t}\right] \leq 2d\kappa\eta_0\left(1-\frac{k}{d}\right)^t,$$

which naturally indicates the following two stage convergence

$$\lambda_{t_0+t} \leq \left(1 - \frac{k}{d+k}\right)^{t(t-1)/2} \cdot \left(\frac{1}{2}\right)^t \cdot \left(1 - \frac{1}{2\eta_0}\right)^{t_0} \lambda_0,$$

with probability at least $1-\delta$ for some $\delta \in (0,1)$, where $t_0 = \mathcal{O}(d \ln(\eta_0 \kappa d/\delta)/k)$.

Corollary

Under the assumptions of above theorem, we run $\mathrm{SR}\text{-}k$ with k=d and set the initial \textbf{x}_0 and \textbf{G}_0 such that

$$\lambda(\mathbf{x}_0) \leq rac{\ln(3/2)}{4M\eta_0}$$
 and $\nabla^2 f(\mathbf{x}_0) \preceq \mathbf{G}_0 \preceq \eta_0 \nabla^2 f(\mathbf{x}_0)$.

Then we have $\mathbb{E}[\lambda_{t+1}] \leq M\lambda_t^2$ for any $t \geq 1$.

SR-k builds a bridge between the theories of standard quasi-Newton methods and Newton's method.