The group G is isomorphic to the projective special linear group PSL(3,3). Ordinary character table of $G \cong PSL(3,3)$:

	1a	2a	3a	3b	4a	6a	8a	8b	13a	13b	13c	13d
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	12	4	3	0	0	1	0	0	-1	-1	-1	-1
χ_3	13	-3	4	1	1	0	-1	-1	0	0	0	0
χ_4	16	0	-2	1	0	0	0	0	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$
χ_5	16	0	-2	1	0	0	0	0	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^{} 4 + E(13)^{} 10 + E(13)^{} 12$
χ_6	16	0	-2	1	0	0	0	0	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$
χ_7	16	0	-2	1	0	0	0	0	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$
χ_8	26	2	-1	-1	2	-1	0	0	0	0	0	0
χ_9	26	-2	-1	-1	0	1	$E(8) + E(8)^{} 3$	$-E(8) - E(8)^{} 3$	0	0	0	0
χ_{10}	26	-2	-1	-1	0	1	$-E(8) - E(8)^3$	$E(8) + E(8)^{} 3$	0	0	0	0
χ_{11}	27	3	0	0	-1	0	-1	-1	1	1	1	1
χ_{12}	39	-1	3	0	-1	-1	1	1	0	0	0	0

Trivial source character table of $G \cong PSL(3,3)$ at p = 2

Trivial source character table of $G = I \operatorname{SL}(0,0)$ at $p = 2$													
$Normalisers N_i$				N_1			N_2	N_3	N_4	Ν		$N_6 \mid N_7$	
$p-subgroups\ of\ G\ up\ to\ conjugacy\ in\ G$		P_1					P_3	P_4	I	5	P_6 P_7	P_8	
Representatives $n_j \in N_i$	1a	3a 3b	13a	13b	13c	13d	1a $3a$	1a	1a 3b	$b \mid 1a$	3a	$1a \mid 1a$	1a
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}}$	80	8 2	2	2	2	2	0 0	0	0 0	0	0	0 0	0
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} $	64	10 1	-1	-1	-1	-1	0 0	, 0	0 0	0	0	$0 \mid 0$	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	16	-2 1	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{}7 + E(13)^{}8 + E(13)^{}11$	0 0	, 0	0 0	0	0	$0 \mid 0$	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} $	16	-2 1	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^{} 4 + E(13)^{} 10 + E(13)^{} 12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	0 0	1 0	0 0	0	0	$0 \mid 0$	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	16	-2 1	$E(13)^4 + E(13)^10 + E(13)^12$	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	0 0	0 0	0 0	0	0	$0 \mid 0$	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	16	-2 1	$E(13)^{} 7 + E(13)^{} 8 + E(13)^{} 11$	$E(13) + E(13)^3 + E(13)^9$	$E(13)^2 + E(13)^5 + E(13)^6$	$E(13)^4 + E(13)^10 + E(13)^12$	0 0	, 0	0 0	0	0	0 0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $	144	0 -3	3 1	1	1	1	0 0	, 0	0 0	0	0	0 0	0
$1 \cdot \chi_1 + 2 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	104	14 2	0	0	0	0	8 2	0	0 0	0	0	0 0	0
$ 0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} $	104	5 - 1	0	0	0	0	8 -	$1 \mid 0$	0 0	0	0	0 0	0
$1 \cdot \chi_1 + 2 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 2 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	156	12 0	0	0	0	0	12 0	4	0 0	0	0	0 0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	28	1 1	2	2	2	2	4 1	. 0	2 2	0	0	0 0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	12	3 0	-1	-1	-1	-1	4 1	. 0	2 - 1	$1 \mid 0$	0	$0 \mid 0$	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	26	8 2	0	0	0	0	2 2	$\frac{1}{2}$	0 0	2	2	0 0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	26	-1 -1	0	0	0	0	2 -	$1 \mid 2$	0 0	2	-1	$0 \mid 0$	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	54	0 0	2	2	2	2	6 0	2	2 2	0	0	2 0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	78	6 0	0	0	0	0	6 0	$\sqrt{2}$	0 0	0	0	0 2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		1 1	1	1	1	1	1 1	. 1	1 1	1	1	1 1	1

```
P_1 = Group([()]) \cong 1
```

 $P_2 = Group([(2,6)(5,9)(7,12)(8,11)]) \cong C2$

 $P_3 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11)]) \cong C4$

 $P_4 = Group([(2,6)(5,9)(7,12)(8,11),(3,13)(5,7)(8,11)(9,12)]) \cong C2 \times C2$

 $P_5 = Group([(2, 11, 6, 8)(3, 13)(4, 10)(5, 12, 9, 7), (2, 6)(5, 9)(7, 12)(8, 11), (2, 9, 6, 5)(3, 10)(4, 13)(7, 11, 12, 8)]) \cong \mathbb{Q}_8$

 $P_6 = Group([(2, 11, 6, 8)(3, 13)(4, 10)(5, 12, 9, 7), (2, 6)(5, 9)(7, 12)(8, 11), (3, 13)(5, 7)(8, 11)(9, 12)]) \cong D8$

 $P_7 = Group([(2, 9, 8, 12, 6, 5, 11, 7)(3, 4, 13, 10), (2, 11, 6, 8)(3, 13)(4, 10)(5, 12, 9, 7), (2, 6)(5, 9)(7, 12)(8, 11)]) \cong C8$

 $P_8 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,6)(5,9)(7,12)(8,11),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(3,13)(5,12)(7,9)]) \cong \mathrm{QD}16$

 $N_1 = Group([(2,4)(3,5)(6,8)(10,11),(1,2,3)(5,6,7)(8,9,10)(11,12,13)]) \cong PSL(3,3)$

 $N_2 = Group([(2,9)(3,10)(5,6)(8,11),(2,6)(5,9)(7,12)(8,11),(3,4)(5,11)(7,12)(8,9),(4,13)(5,9)(7,8)(11,12)]) \cong GL(2,3)$

 $N_3 = Group([(2, 11, 6, 8)(3, 13)(4, 10)(5, 12, 9, 7), (2, 6)(5, 9)(7, 12)(8, 11), (3, 13)(5, 7)(8, 11)(9, 12), (2, 7, 6, 12)(3, 4)(5, 11, 9, 8)(10, 13)]) \cong QD16$

 $N_4 = Group([(1,10)(3,8)(9,12)(11,13),(2,6)(5,9)(7,12)(8,11),(1,4)(2,13)(3,6)(7,9),(3,13)(5,7)(8,11)(9,12)]) \cong S4$

 $N_5 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(3,4)(5,11)(7,12)(8,9),(2,9,6,5)(3,10)(4,13)(7,11,12,8),(4,13)(5,9)(7,8)(11,12)]) \cong GL(2,3)$

 $N_6 = Group([(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(3,13)(5,7)(8,11)(9,12),(2,7,6,12)(3,4)(5,11,9,8)(10,13)]) \cong \mathrm{QD}16$

 $N_7 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(5,9)(7,12)(8,11),(3,13)(5,7)(8,11)(9,12)]) \cong QD16$

 $N_8 = Group([(2,9,8,12,6,5,11,7)(3,4,13,10),(2,6)(5,9)(7,12)(8,11),(2,11,6,8)(3,13)(4,10)(5,12,9,7),(2,6)(3,13)(5,12)(7,9),(3,13)(5,7)(8,11)(9,12)]) \cong \mathrm{QD}16$