1. Consider the language Y = (w + c)(oul + oo)d. List all words for language Y.

Solution: $Y = \{\lambda, d, wd, cd, ould, ood, would, could, wood, cood\}$

- 2. Let $X = \{a, b\}$ and $Y = \{\lambda, ba, ab\}$
 - (a) List the strings in the set XY.

Solution: $XY = \{a, aba, aab, b, bba, bab\}$

(b) List the strings in the set YX.

Solution: $YX = \{a, b, baa, bab, aba, abb\}$

(c) How many strings of length 4 are there in Y^* ?

Solution: 4

(d) List the strings in the set Y^* of length 3 or less.

Solution: $\{\lambda, ba, ab\}$

(e) List the strings in the set X^*Y^* of length four or less.

Solution: $\{\lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, baaa, baab, baba, baba, bbab, bbaa, bbbb\}$

- 3. Consider the language S^* , where $S = \{aa, b\}$
 - (a) How many words does this language have of length 2?

Solution: 2

(b) How many words does this language have of length 3?

Solution: 3

4. For each of the following, write **two strings** IN the language, **two strings** that **NOT** IN the language and give a **short description** of the language using your own words. Solution:

Languages	2 valid strings	2 invalid strings	Description
	(IN)	(NOT IN)	
$ab(a+b)^*$	ab, aba	babb, aab	All strings in this language
			starts with ab , followed by
			a's and b 's in any order.
$ab(a+b)^*ba$	abba, abaaba	abaab, baba	All strings in this language
			starts with ab and ends
			with ba .
$(a+b)b(a+b)^*$	aba, bbaa	aaa, aaaa	All strings in this language
			must contain at least one b .
$(a(a+b)^*b) +$	abb, baba	abaa,bbb	All strings in this language
(a(a+b)*b) + (b(a+b)*a)			either starts with a and
			ends in b , or starts in b and
			ends in a .

- 5. Consider the regular expression (a + b)*a(a + b).
 - (a) What string is NOT in this language?

Solution: Strings that do not have an a in the second to last position is not in this language.

(b) Write out all of the words in this language with 4 or fewer letters.

Solution: aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, baab, bbaa, bbab

- 6. Generate all possible strings for each of the following regular expression (at least for 3 values of Kleene star * i.e: 0, 1, 2):
 - (a) $a(a+b)^*$

Solution: $\{a, aa, ab, aaa, aab, aba, abb, aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb, \dots\}$

(b) a^*b^*

Solution: $\{\lambda, a, b, aa, ab, bb, aaa, aab, abb, aaaa, aabb, abbb, aaab, \dots\}$

(c) (ab)*

Solution: $\{\lambda, ab, abab, ababab, abababab, \dots\}$

7. For the alphabet $\Sigma = \{a, b\}$, give a regular expression for the following languages:

(a) $L_1 = \text{All strings}$ Solution: $(a + b)^*$

(b) L_2 = All strings except empty string Solution: $a(a+b)^* + b(a+b)^*$

(c) L_3 = All strings starting with ab.

Solution: $ab(a+b)^*$

(d) L_4 = All strings ending with ab. Solution: $(a + b)^*ab$

(e) L_5 = All strings that begin AND end with ab.

Solution: $ab(a+b)^*ab$

(f) L_6 = All strings that begin OR end with abSolution: $ab(a+b)^* + (a+b)^*ab$

(g) L_7 = All strings that contain the substring ab. Solution: $(a+b)^*ab(a+b)^*$

(h) L_8 = All strings that contain the substring baSolution: $(a + b)^*ba(a + b)^*$

(i) L_9 = All strings that contain the substring ab or baSolution: $(a+b)^*ab(a+b)^* + (a+b)^*ba(a+b)^*$

(j) $L_{10} = \text{All strings that contain the substring } ab \text{ and } ba$ Solution: $(a+b)^*ab(a+b)^*ba(a+b)^*$

(k) $L_{11} = \text{All strings containing exactly two } a$'s. Solution: $(a+b)^*aa(a+b)^*$

(l) $L_{12} = \text{All strings containing at least two } a$'s. Solution: $(a+b)^*(aa)^*(a+b)^*$