THYROID DETECTION USING MACHINE LEARNING SUMMARY

Paper 1

Title of the paper	Chaganti, R., Rustam, F., De La Torre Díez, I., Mazón, J. L. V., Rodríguez, C. L., & Ashraf, I. (2022). Thyroid disease prediction using selective features and machine learning techniques. <i>Cancers</i> , 14(16), 3914.
Area of work	Detection and classification of thyroid disease
Dataset	Dataset was taken from UCI repository. The dataset contains 9172 sample observations and each sample is represented by 31 features.
Methodology / Strategy	The dataset consists of several thyroid-related disease records and many target classes. It is followed by the feature selection process, where many feature selection techniques are applied. Experiments are performed with an 80–20 train–test split using several machine learning and deep learning models.
Algorithm	RF, LR, SVM, ADA, GBM
Result/Accuracy	Results indicate that extra tree classifier-based selected features tend to provide the highest accuracy of 0.99 when used with the RF model. The lower computational complexity of the machine learning models like RF makes them good candidates for thyroid disease prediction.

Paper 2

Title of the paper Area of work	Gupta, Punit, et al. "Detecting thyroid disease using optimized machine learning model based on differential evolution." International Journal of Computational Intelligence Systems 17.1 (2024): 3. Machine learning approach for thyroid disease detection
Dataset	The datasets used in this study are taken from the Kaggle repository. The thyroid disease dataset comprises 9172 samples and every sample has 31 features.
Methodology / Strategy Algorithm	The dataset contains 25 target classes, of which the top 10 target classes are selected for experiments. The selected targeted dataset is imbalanced, so to make the dataset balanced we used the CTGAN augmentation technique. train machine learning models with a training set and perform hyperparameter optimization using DE optimizer which helps to select the best hyperparameter setting for models. In the end, we evaluate models in terms of accuracy, precision, recall, F1 score, and confusion matrix. RF, SVM, LR, AdaBoost, GBM
Aigoritiiii	Kr, Svivi, EK, Adaboost, Obivi
Result/Accuracy	$RF - 0.98 \\ GBM - 0.92 \\ AdaBoost - 0.99 \\ LR - 0.61 \\ SVM - 0.61$

Paper 3

Title of the paper Area of work	Hossain, M. B., Shama, A., Adhikary, A., Raha, A. D., Uddin, K. A., Hossain, M. A., & Bairagi, A. K. (2023). An explainable artificial intelligence framework for the predictive analysis of hypo and hyper thyroidism using machine learning algorithms. <i>Human-Centric Intelligent Systems</i> , 3(3), 211-231.
	used in machine learning
Dataset	The data was taken from the UCI machine learning repository. Dataset contains 3221 instances with a total of 30 features.
Methodology / Strategy	Compare and study different classification algorithms used in machine learning
Algorithm	Decision Tree Classifer, Random Forest Classifer, Naive Bayes Classifer, Gradient Boosting Classifer, Logistic Regression Classifer, K- Nearest Neighbor, Support Vector Machine
Result/Accuracy	Random Forest (RF) is giving the maximum evaluation score in all sectors in our dataset, and Naive Bayes is performing very poorly. Moreover selecting the feature by using the feature importance method RF provides the best accuracy of 91.42%, precision of 92%, recall of 92% and F1-score of 92%.

CONCLUSION

From the above three papers, we get to know that different approaches are used for thyroid detection and classification. From the observation it is found out that Random Forest is more accurate than the other algorithms.