1 Calculus Review

(a) Compute a closed-form expression for the value of following summation:

$$\sum_{k=1}^{\infty} \frac{9}{2^k}$$

(b) Use summation notion to write an expression equivalent to the following statement:

The sum of the first n consecutive odd integers, starting from 1

(c) Compute the following integral:

$$\int_0^\infty \sin(t)e^{-t}dt$$

(d) Find the maximum value of the following function and determine where it occurs:

$$f(x) = -x \cdot \ln x$$

Solution:

(a) Use the convergence of geometric series with |r| < 1.

$$\sum_{k=1}^{\infty} \frac{9}{2^k} = 9 \cdot \sum_{k=1}^{\infty} \frac{1}{2^k} = 9 \cdot (\sum_{k=0}^{\infty} \frac{1}{2^k} - 1)$$
$$= 9 \cdot (2 - 1) = 9$$

(b) Observe that 2k + 1 is odd for all $k \in \mathbb{Z}$.

$$\sum_{k=0}^{n-1} 2k + 1$$

(c) Let $I = \int \sin(t)e^{-t}$. Use integration by parts, with $u = \sin(t)$ and $dv = e^{-t}$. This means $du = \cos(t)$ and $v = -e^{-t}$.

$$I = \int \sin(t)e^{-t}dt = uv - \int v \cdot du$$
$$= -\sin(t)e^{-t} + \int e^{-t}\cos(t)dt$$

Use integration by parts again on $\int e^{-t} \cos(t) dt$, with $u = \cos(t)$ and $dv = e^{-t}$. This means $du = -\sin(t)$ and $v = -e^{-t}$.

$$\int e^{-t} \cos(t) dt = uv - \int v \cdot du$$

$$= -\cos(t)e^{-t} - \int e^{-t} \cdot \sin(t) dt$$

$$= -\cos(t)e^{-t} - I$$

Combining these results:

$$I = -\sin(t)e^{-t} - \cos(t)e^{-t} - I$$

$$\Rightarrow 2I = -\sin(t)e^{-t} - \cos(t)e^{-t}$$

$$\Rightarrow I = \frac{-\sin(t)e^{-t} - \cos(t)e^{-t}}{2}$$

Finally, we have:

$$I\Big|_{0}^{\infty} = \frac{0-0}{2} - \frac{0-1}{2} = \frac{1}{2}$$

(d) Compute the derivative of the function, and set it equal to 0.

$$\frac{df}{dx} = -1 \cdot \ln x + -x \cdot \frac{1}{x}$$
$$= -\ln x - 1 = 0$$
$$\Rightarrow x^* = \frac{1}{e}$$

The optimal value is achieved at $x^* = \frac{1}{e}$, and the corresponding value is $f(x^*) = \frac{1}{e}$.

2 Propositional Practice

In parts (a)-(c), convert the English sentences into propositional logic. In parts (d)-(f), convert the propositions into English. In part (f), let P(a) represent the proposition that a is prime.

- (a) There is one and only one real solution to the equation $x^2 = 0$.
- (b) Between any two distinct rational numbers, there is another rational number.
- (c) If the square of an integer is greater than 4, that integer is greater than 2 or it is less than -2.
- (d) $(\forall x \in \mathbb{R}) (x \in \mathbb{C})$
- (e) $(\forall x, y \in \mathbb{Z})(x^2 y^2 \neq 10)$

(f)
$$(\forall x \in \mathbb{N}) [(x > 1) \implies (\exists a, b \in \mathbb{N}) ((a + b = 2x) \land P(a) \land P(b))]$$

Solution:

(a) Let $p(x) = x^2$. The sentence can be read: "There is a solution x to the equation p(x) = 0, and any other solution y is equal to x". Or,

$$(\exists x \in \mathbb{R}) ((p(x) = 0) \land ((\forall y \in \mathbb{R})(p(y) = 0) \implies (x = y))).$$

(b) The sentence can be read "If x and y are distinct rational numbers, then there is a rational number z between x and y." Or,

$$(\forall x, y \in \mathbb{Q})((x \neq y) \implies ((\exists z \in \mathbb{Q})(x < z < y \lor y < z < x))).$$

Equivalently,

$$(\forall x, y \in \mathbb{Q})((x = y) \lor (\exists z \in \mathbb{Q})(x < z < y \lor y < z < x)).$$

Note that x < z < y is mathematical shorthand for $(x < z) \land (z < y)$, so the above statement is equivalent to

$$(\forall x, y \in \mathbb{Q})(x = y) \lor ((\exists z \in \mathbb{Q})((x < z) \land (z < y)) \lor ((y < z) \land (z < x))).$$

- (c) $(\forall x \in \mathbb{Z}) ((x^2 > 4) \implies ((x > 2) \lor (x < -2)))$
- (d) All real numbers are complex numbers.
- (e) There are no integer solutions to the equation $x^2 y^2 = 10$.
- (f) For any natural number greater than 1, there are some prime numbers a and b such that 2x = a + b.

In other words: Any even integer larger than 2 can be written as the sum of two primes.

Aside: This statement is known as Goldbach's Conjecture, and it is a famous unsolved problem in number theory (https://xkcd.com/1310/).

3 Tautologies and Contradictions

Classify each statement as being one of the following, where P and Q are arbitrary propositions:

- True for all combinations of P and Q (Tautology)
- False for all combinations of *P* and *Q* (Contradiction)
- Neither

Justify your answers with a truth table.

(a)
$$P \Longrightarrow (Q \land P) \lor (\neg Q \land P)$$

(b)
$$(P \lor O) \lor (P \lor \neg O)$$

(c)
$$P \wedge (P \Longrightarrow \neg Q) \wedge (Q)$$

$$(\mathsf{d})\ (\neg P \Longrightarrow Q) \Longrightarrow (\neg Q \Longrightarrow P)$$

(e)
$$(\neg P \Longrightarrow \neg Q) \land (P \Longrightarrow \neg Q) \land (Q)$$

(f)
$$(\neg(P \land Q)) \land (P \lor Q)$$

Solution:

(a) **Tautology**

P	Q	$Q \wedge P$	$\neg Q \wedge P$	$P \implies (Q \land P) \lor (\neg Q \land P)$
T	T	T	F	Т
T	F	F	T	Т
F	Т	F	F	T
F	F	F	F	Т

(b) **Tautology**

P	Q	$P \lor Q$	$P \vee \neg Q$	$(P \lor Q) \lor (P \lor \neg Q)$
T	T	T	T	T
T	F	T	T	T
F	T	Т	F	T
F	F	F	T	T

(c) Contradiction

P	Q	$P \Longrightarrow \neg Q$	$P \wedge (P \Longrightarrow Q) \wedge (Q)$
T	T	F	F
T	F	T	F
F	T	T	F
F	F	T	F

(d) Tautology

P	Q	$\neg P \Longrightarrow Q$	$\neg Q \Longrightarrow P$	$(\neg P \Longrightarrow Q) \Longrightarrow (\neg Q \Longrightarrow P)$
T	T	T	T	Т
T	F	T	T	T
F	T	T	T	Т
F	F	F	F	T

(e) Contradiction

P	Q	$P \Longrightarrow \neg Q$	$\neg P \Longrightarrow \neg Q$	$(P \Longrightarrow \neg Q) \land (\neg P \Longrightarrow \neg Q) \land (Q)$		
T	T	F	T	F		
T	F	T	T	F		
F	T	T	F	F		
F	F	Т	T	F		

(f) Neither

P	Q	$P \lor Q$	$\neg (P \land Q)$	$(P \lor Q) \land (\neg (P \land Q))$
T	T	T	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	T	F

4 Prove or Disprove

For each of the following, either prove the statement, or disprove by finding a counterexample.

- (a) $(\forall n \in \mathbb{N})$ if *n* is odd then $n^2 + 4n$ is odd.
- (b) $(\forall a, b \in \mathbb{R})$ if $a + b \le 15$ then $a \le 11$ or $b \le 4$.
- (c) $(\forall r \in \mathbb{R})$ if r^2 is irrational, then r is irrational.
- (d) $(\forall n \in \mathbb{Z}^+)$ $5n^3 > n!$. (Note: \mathbb{Z}^+ is the set of positive integers)

Solution:

(a) **Answer**: True.

Proof: We will use a direct proof. Assume n is odd. By the definition of odd numbers, n = 2k + 1 for some natural number k. Substituting into the expression $n^2 + 4n$, we get $(2k + 1)^2 + 4 \times (2k + 1)$. Simplifying the expression yields $4k^2 + 12k + 5$. This can be rewritten as $2 \times (2k^2 + 6k + 2) + 1$. Since $2k^2 + 6k + 2$ is a natural number, by the definition of odd numbers, $n^2 + 4n$ is odd.

Alternatively, we could also factor the expression to get n(n+4). Since n is odd, n+4 is also odd. The product of 2 odd numbers is also an odd number. Hence n^2+4n is odd.

(b) Answer: True.

Proof: We will use a proof by contraposition. Suppose that a > 11 and b > 4 (note that this is equivalent to $\neg(a \le 11 \lor b \le 4)$). Since a > 11 and b > 4, a + b > 15 (note that a + b > 15 is equivalent to $\neg(a + b < 15)$). Thus, if a + b < 15, then a < 11 or b < 4.

(c) Answer: True.

Proof: We will use a proof by contraposition. Assume that r is rational. Since r is rational, it can be written in the form $\frac{a}{b}$ where a and b are integers with $b \neq 0$. Then r^2 can be written as $\frac{a^2}{b^2}$. By the definition of rational numbers, r^2 is a rational number, since both a^2 and b^2 are integers, with $b \neq 0$. By contraposition, if r^2 is irrational, then r is irrational.

(d) **Answer**: False.

Proof: We will use proof by counterexample. Let n = 7. $5 \times 7^3 = 1715$. 7! = 5040. Since $5n^3 < n!$, the claim is false.

CS 70, Fall 2020, HW 1 5

5 Twin Primes

- (a) Let p > 3 be a prime. Prove that p is of the form 3k + 1 or 3k 1 for some integer k.
- (b) Twin primes are pairs of prime numbers p and q that have a difference of 2. Use part (a) to prove that 5 is the only prime number that takes part in two different twin prime pairs.

Solution:

- (a) First we note that any integer can be written in one of the forms 3k, 3k + 1, or 3k + 2. (Note that 3k + 2 is equal to 3(k + 1) 1. Since k is arbitary, we can treat these as equivalent forms). We can now prove the contrapositive: that any integer m > 3 of the form 3k must be composite. Any such integer is divisible by 3, so this is true right away. Thus our original claim is true as well.
- (b) We can check all the primes up to 5 to see that of these, only 5 takes part in two twin prime pairs (3,5 and 5,7). What about primes > 5?

For any prime m > 5, we can check if m + 2 and m - 2 are both prime. Note that if m > 5, then m + 2 > 3 and m - 2 > 3 so we can apply part (a) and we can do a proof by cases based on the two forms from part (a).

Case 1: m is of the form 3k+1. Then m+2=3k+3, which is divisible by 3. So m+2 is not prime.

Case 2: m is of the form 3k-1. Then m-2=3k-3, which is divisible by 3. So m-2 is not prime.

So in either case, at least one of m+2 and m-2 is not prime.

6 Social Network

Consider the same setup as Q2 on the vitamin, where there are n people at a party, and every two people are either friends or strangers. Prove or provide a counterexample for the following statements.

- (a) For all cases with n = 5 people, there exists a group of 3 people that are either all friends or all strangers.
- (b) For all cases with n = 6 people, there exists a group of 3 people that are either all friends or all strangers.

Solution:

(a) The statement is false. A counterexample is shown below where people are connected if they are friends and unconnected if they are strangers. In this example, at most 2 are friends or strangers.

CS 70, Fall 2020, HW 1

(b) The statement is true. We proceed with a proof by cases.

For any person p, we could divide the rest of people into 2 groups: the group of p's friends and the group of strangers. By pigeonhole principle, one of the groups must have at least 3 people.

Case 1a: *p* is friends with at least 3 people, and these friends are all strangers. Then *p*'s friends form a group of at least 3 strangers.

Case 1b: p is friends with at least 3 people, and at least 2 of them are friends with each other. These two, along with p, form a group of 3 friends.

Case 2a: *p* is strangers with at least 3 people, and these strangers are all friends. Analogous to Case 1a, these strangers form a group of at least 3 friends.

Case 2b: *p* is strangers with at least 3 people, and at least 2 of them are not friends. Analogous to Case 1b, these 2 strangers form a group of at least strangers.

7 Preserving Set Operations

For a function f, define the image of a set X to be the set $f(X) = \{y \mid y = f(x) \text{ for some } x \in X\}$. Define the inverse image or preimage of a set Y to be the set $f^{-1}(Y) = \{x \mid f(x) \in Y\}$. Prove the following statements, in which A and B are sets. By doing so, you will show that inverse images preserve set operations, but images typically do not.

Hint: For sets X and Y, X = Y if and only if $X \subseteq Y$ and $Y \subseteq X$. To prove that $X \subseteq Y$, it is sufficient to show that $(\forall x)$ $((x \in X) \implies (x \in Y))$.

(a)
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
.

(b)
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
.

(c)
$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$
.

(d)
$$f(A \cup B) = f(A) \cup f(B)$$
.

(e) $f(A \cap B) \subseteq f(A) \cap f(B)$, and give an example where equality does not hold.

(f) $f(A \setminus B) \supseteq f(A) \setminus f(B)$, and give an example where equality does not hold.

CS 70, Fall 2020, HW 1

Solution:

In order to prove equality A = B, we need to prove that A is a subset of B, $A \subseteq B$ and that B is a subset of A, $B \subseteq A$. To prove that LHS is a subset of RHS we need to prove that if an element is a member of LHS then it is also an element of the RHS.

- (a) Suppose x is such that $f(x) \in A \cup B$. Then either $f(x) \in A$, in which case $x \in f^{-1}(A)$, or $f(x) \in B$, in which case $x \in f^{-1}(B)$, so in either case we have $x \in f^{-1}(A) \cup f^{-1}(B)$. This proves that $f^{-1}(A \cup B) \subseteq f^{-1}(A) \cup f^{-1}(B)$.
 - Now, suppose that $x \in f^{-1}(A) \cup f^{-1}(B)$. Suppose, without loss of generality, that $x \in f^{-1}(A)$. Then $f(x) \in A$, so $f(x) \in A \cup B$, so $x \in f^{-1}(A \cup B)$. The argument for $x \in f^{-1}(B)$ is the same. Hence, $f^{-1}(A) \cup f^{-1}(B) \subseteq f^{-1}(A \cup B)$.
- (b) Suppose x is such that $f(x) \in A \cap B$. Then f(x) lies in both A and B, so x lies in both $f^{-1}(A)$ and $f^{-1}(B)$, so $x \in f^{-1}(A) \cap f^{-1}(B)$. So $f^{-1}(A \cap B) \subseteq f^{-1}(A) \cap f^{-1}(B)$. Now, suppose that $x \in f^{-1}(A) \cap f^{-1}(B)$. Then, x is in both $f^{-1}(A)$ and $f^{-1}(B)$, so $f(x) \in A$ and $f(x) \in B$, so $f(x) \in A \cap B$, so $f(x) \in A \cap B$. So $f^{-1}(A) \cap f^{-1}(B) \subseteq f^{-1}(A \cap B)$.
- (c) Suppose x is such that $f(x) \in A \setminus B$. Then, $f(x) \in A$ and $f(x) \notin B$, which means that $x \in f^{-1}(A)$ and $x \notin f^{-1}(B)$, which means that $x \in f^{-1}(A) \setminus f^{-1}(B)$. So $f^{-1}(A \setminus B) \subseteq f^{-1}(A) \setminus f^{-1}(B)$. Now, suppose that $x \in f^{-1}(A) \setminus f^{-1}(B)$. Then, $x \in f^{-1}(A)$ and $x \notin f^{-1}(B)$, so $f(x) \in A$ and $f(x) \notin B$, so $f(x) \in A \setminus B$, so $f(x) \in A \setminus B$. So $f^{-1}(A) \setminus f^{-1}(B) \subseteq f^{-1}(A \setminus B)$.
- (d) Suppose that $x \in A \cup B$. Then either $x \in A$, in which case $f(x) \in f(A)$, or $x \in B$, in which case $f(x) \in f(B)$. In either case, $f(x) \in f(A) \cup f(B)$, so $f(A \cup B) \subseteq f(A) \cup f(B)$. Now, suppose that $y \in f(A) \cup f(B)$. Then either $y \in f(A)$ or $y \in f(B)$. In the first case, there is an element $x \in A$ with f(x) = y; in the second case, there is an element $x \in B$ with f(x) = y. In either case, there is an element $x \in A \cup B$ with f(x) = y, which means that $y \in f(A \cup B)$. So $f(A) \cup f(B) \subseteq f(A \cup B)$.
- (e) Suppose x ∈ A ∩ B. Then, x lies in both A and B, so f(x) lies in both f(A) and f(B), so f(x) ∈ f(A) ∩ f(B). Hence, f(A ∩ B) ⊆ f(A) ∩ f(B).
 Consider when there are elements a ∈ A and b ∈ B with f(a) = f(b), but A and B are disjoint. Here, f(a) = f(b) ∈ f(A) ∩ f(B), but f(A ∩ B) is empty (since A ∩ B is empty).
- (f) Suppose $y \in f(A) \setminus f(B)$. Since y is not in f(B), there are no elements in B which map to y. Let x be any element of A that maps to y; by the previous sentence, x cannot lie in B. Hence, $x \in A \setminus B$, so $y \in f(A \setminus B)$. Hence, $f(A) \setminus f(B) \subseteq f(A \setminus B)$.

 Consider when $B = \{0\}$ and $A = \{0,1\}$, with f(0) = f(1) = 0. One has $A \setminus B = \{1\}$, so $f(A \setminus B) = \{0\}$. However, $f(A) = f(B) = \{0\}$, so $f(A) \setminus f(B) = \emptyset$.

CS 70, Fall 2020, HW 1