Apéndice B

Diferenciación matricial

En esta sección haremos uso de la siguiente notación. ϕ , f y F representan funciones escalar, vectorial y matricial, respectivamente mientras que ζ , x y X argumentos escalar, vectorial y matricial, respectivamente.

A partir de esta convención es directo que podemos escribir los siguientes casos particulares:

$$egin{aligned} \phi(\zeta) &= \zeta^2, \quad \phi(oldsymbol{x}) = oldsymbol{a}^ op oldsymbol{x}, \quad \phi(oldsymbol{X}) = \operatorname{tr}(oldsymbol{X}^ op oldsymbol{X}), \ oldsymbol{f}(\zeta) &= (\zeta, \zeta^2)^ op, \quad oldsymbol{f}(oldsymbol{x}) = oldsymbol{A}oldsymbol{x}, \quad oldsymbol{f}(oldsymbol{X}) = oldsymbol{X}oldsymbol{a}, \ oldsymbol{F}(\zeta) &= \zeta^2 oldsymbol{I}_n, \quad oldsymbol{F}(oldsymbol{x}) = oldsymbol{x}oldsymbol{x}^ op, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \ oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \ oldsymbol{F}(oldsymbol{x}) = oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{x}) = oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \ oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{x}, \quad oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{X}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{x}, \quad oldsymbol{F}(oldsymbol{X}) = oldsymbol{X}oldsymbol{X}oldsymbol{X} oldsymbol{X} = oldsymbol{X}oldsymbol{X}oldsymbol{X} = oldsymbol{X}oldsymbol{X}oldsymbol{X} = oldsymbol{X}oldsymbol{X} = oldsymbol{X} = oldsymbo$$

Existen varias definiciones para la derivada de una función matricial F(X) con relación a su argumento (matricial) X. En este apéndice nos enfocamos en el cálculo diferencial propuesto por Magnus y Neudecker (1985).

Considere $\phi:S\to\mathbb{R}$ con $S\subset\mathbb{R}^n,$ se define la derivada de ϕ con relación a $\boldsymbol{x}\in S$ como

$$\frac{\partial \phi(\boldsymbol{x})}{\partial \boldsymbol{x}} = \left(\frac{\partial \phi}{\partial x_1}, \dots, \frac{\partial \phi}{\partial x_n}\right)^{\top} = \left(\frac{\partial \phi}{\partial x_i}\right) \in \mathbb{R}^n$$

de este modo, introducimos la notación

$$\mathsf{D}\phi(\boldsymbol{x}) = \frac{\partial \phi(\boldsymbol{x})}{\partial \boldsymbol{x}^{\top}} \in \mathbb{R}^{1 \times n}.$$

Ahora, si $\mathbf{f}: S \to \mathbb{R}^m$, $S \subset \mathbb{R}^n$. Entonces la matriz $m \times n$,

$$\mathsf{D}m{f}(m{x}) = egin{pmatrix} \mathsf{D}f_1(m{x}) \ dots \ \mathsf{D}f_m(m{x}) \end{pmatrix} = rac{\partial m{f}(m{x})}{\partial m{x}^ op},$$

es la derivada o matriz Jacobiana de f. La transpuesta de la matriz Jacobiana $\mathsf{D} f(x)$ se denomina gradiente de f(x).

B.1. Aproximación de primer orden

Considere la fórmula de Taylor de primer orden,

$$\phi(c+u) = \phi(c) + u\phi'(c) + r_c(u),$$

donde el resto

$$\lim_{u \to 0} \frac{r_c(u)}{u} = 0.$$

es de orden más pequeño que u conforme $u \to 0.$ Note también que

$$\lim_{u \to 0} \frac{\phi(c+u) - \phi(c)}{u} = \phi'(c).$$

De este modo, se define

$$d \phi(c; u) = u \phi'(c),$$

como el (primer) diferencial de ϕ en c con incremento u. Esto motiva la siguiente definición.

DEFINICIÓN B.1 (Diferencial de una función vectorial). Sea $\mathbf{f}: S \to \mathbb{R}^m$, $S \subset \mathbb{R}^n$, si existe una matriz $\mathbf{A} \in \mathbb{R}^{m \times n}$, tal que

$$f(c + u) = f(c) + A(c)u + r_c(u),$$

para todo $\boldsymbol{u} \in \mathbb{R}^n$ con $||\boldsymbol{u}|| < \delta,$ y

$$\lim_{u\to 0}\frac{\boldsymbol{r}_c(\boldsymbol{u})}{||\boldsymbol{u}||}=\boldsymbol{0},$$

entonces la función \boldsymbol{f} se dice diferenciable en \boldsymbol{c} . El vector $m\times 1$

$$d f(c; u) = A(c)u$$

se denomina primer diferencial de f en c con incremento u.

Magnus y Neudecker (1985) mostraron la existencia y unicidad del diferencial df(c; u) de una función $f: S \to \mathbb{R}^m$, $S \subset \mathbb{R}^n$ ($c \in S$), dado por

$$d f(c; u) = A(c)u$$

también mostraron la regla de la cadena e invarianza de Cauchy para el diferencial y enunciaron su primer teorema de identificación.

TEOREMA B.2 (Primer teorema de identificación). Sea $\mathbf{f}: S \to \mathbb{R}^m$, $S \subset \mathbb{R}^n$ función diferenciable, $\mathbf{c} \in S$ y \mathbf{u} un vector n-dimensional. Entonces

$$d f(c; u) = (Df(c))u.$$

La matriz $\mathsf{D} f(c) \in \mathbb{R}^{m \times n}$ se denomina matriz Jacobiana. Tenemos también que

$$\nabla f(c) = (\mathsf{D} f(c))^{\top}$$

es la matriz gradiente de f.

Sea $\mathbf{f}: S \to \mathbb{R}^m$, $S \subset \mathbb{R}^n$ y $f_i: S \to \mathbb{R}$ el *i*-ésimo componente de \mathbf{f} (i = 1, ..., m). Sea \mathbf{e}_j un vector n-dimensional cuyo j-ésimo elemento es uno y los restantes son cero, y considere

$$\lim_{t\to 0} \frac{f_i(\boldsymbol{c}+t\boldsymbol{e}_j) - f_i(\boldsymbol{c})}{t}$$

si el límite existe, se denomina la j-ésima derivada parcial de f_i en c y es denotada por $\mathsf{D}_j f_i(c)$. Note que el elemento ij de $\mathsf{D} f(c)$ es $\mathsf{D}_j f_i(c)$.

B.2. Funciones matriciales

Considere algunos ejemplos de funciones matriciales

$$m{F}(\zeta) = egin{pmatrix} \cos(\zeta) & \sin(\zeta) \ -\sin(\zeta) & \cos(\zeta) \end{pmatrix}, \quad m{F}(m{x}) = m{x}m{x}^ op, \quad m{F}(m{X}) = m{X}^ op, \quad m{X} \in \mathbb{R}^{n imes q}.$$

Antes de considerar el diferencial de una función matricial $\mathbf{F}: S \to \mathbb{R}^{m \times p}, \ S \subset \mathbb{R}^{n \times q}$ introducimos dos conceptos preliminares: la vectorización de una matriz y el producto Kronecker.

DEFINICIÓN B.3 (Operador de vectorización). Sea $A \in \mathbb{R}^{n \times q}$ particionada como

$$A = (a_1, \ldots, a_q),$$

donde $\boldsymbol{a}_k \in \mathbb{R}^n$ es la k-ésima columna de \boldsymbol{A} . Entonces

$$\operatorname{vec}(oldsymbol{A}) = egin{pmatrix} oldsymbol{a}_1 \ dots \ oldsymbol{a}_q \end{pmatrix}.$$

DEFINICIÓN B.4 (Producto Kronecker). Sea $\mathbf{A} \in \mathbb{R}^{m \times n}$ y $\mathbf{B} \in \mathbb{R}^{p \times q}$, entonces el producto Kronecker entre \mathbf{A} y \mathbf{B} denotado por $\mathbf{A} \otimes \mathbf{B}$ es la matriz $mp \times nq$ definida como

$$m{A} \otimes m{B} = egin{pmatrix} a_{11} m{B} & \dots & a_{1n} m{B} \\ dots & & dots \\ a_{m1} m{B} & \dots & a_{mn} m{B} \end{pmatrix}$$

Resultado B.5. Sean A, B, C y D matrices de órdenes apropiados y λ escalar. Entonces

- (a) $A \otimes B \otimes C = (A \otimes B) \otimes C = A \otimes (B \otimes C)$,
- (b) $(A+B)\otimes (C+D) = A\otimes C + B\otimes C + A\otimes D + B\otimes D$,
- (c) $(A \otimes B)(C \otimes D) = AC \otimes BD$,
- (d) $\lambda \otimes \mathbf{A} = \lambda \mathbf{A} = \mathbf{A} \otimes \lambda$,
- (e) $(\mathbf{A} \otimes \mathbf{B})^{\top} = \mathbf{A}^{\top} \otimes \mathbf{B}^{\top}$
- (f) $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$
- (g) $(\mathbf{A} \otimes \mathbf{B})^- = \mathbf{A}^- \otimes \mathbf{B}^-$.

Resultado B.6. Sean $\mathbf{A} \in \mathbb{R}^{n \times n}$ y $\mathbf{B} \in \mathbb{R}^{p \times p}$. Entonces

- (a) $\operatorname{tr}(\boldsymbol{A} \otimes \boldsymbol{B}) = \operatorname{tr}(\boldsymbol{A}) \operatorname{tr}(\boldsymbol{B}),$
- (b) $|\mathbf{A} \otimes \mathbf{B}| = |\mathbf{A}|^p |\mathbf{B}|^n$,
- (c) $\operatorname{rg}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{rg}(\mathbf{A}) \operatorname{rg}(\mathbf{B})$.

Observe que, si $\boldsymbol{a} \in \mathbb{R}^n$ y $\boldsymbol{b} \in \mathbb{R}^p$, entonces

$$ab^{\top} = a \otimes b^{\top} = b^{\top} \otimes a.$$

por otro lado, tenemos que

$$\operatorname{vec}(\boldsymbol{a}\boldsymbol{b}^\top) = \operatorname{vec}(\boldsymbol{a}\otimes\boldsymbol{b}^\top) = \operatorname{vec}(\boldsymbol{b}^\top\otimes\boldsymbol{a}) = \boldsymbol{b}\otimes\boldsymbol{a}.$$

Estos resultados sugieren una conexión entre el operador de vectorización, el producto Kronecker y la traza. Considere el siguiente resultado

RESULTADO B.7.

(a) Si A y B son ámbas matrices de orden $m \times n$, entonces

$$\operatorname{tr} \mathbf{A}^{\top} \mathbf{B} = \operatorname{vec}^{\top} \mathbf{A} \operatorname{vec} \mathbf{B}.$$

(b) Si A, B y C son de órdenes adecuados, entonces

$$\operatorname{vec} \boldsymbol{A}\boldsymbol{B}\boldsymbol{C} = (\boldsymbol{C}^{\top} \otimes \boldsymbol{A}) \operatorname{vec} \boldsymbol{B},$$

 $donde \operatorname{vec}^{\top} \mathbf{A} = (\operatorname{vec} \mathbf{A})^{\top}.$

Finalmente, tenemos el siguiente resultado

RESULTADO B.8. Sean A, B, C y D matrices, tal que, el producto ABCD está definido y es cuadrado, entonces

$$\operatorname{tr} \boldsymbol{A}\boldsymbol{B}\boldsymbol{C}\boldsymbol{D} = \operatorname{vec}^{\top} \boldsymbol{D}^{\top} (\boldsymbol{C}^{\top} \otimes \boldsymbol{A}) \operatorname{vec} \boldsymbol{B} = \operatorname{vec}^{\top} \boldsymbol{D} (\boldsymbol{A} \otimes \boldsymbol{C}^{\top}) \operatorname{vec} \boldsymbol{B}^{\top}.$$

En los ejemplos introducidos al inicio de esta sección, tenemos

$$\operatorname{vec} \boldsymbol{F}(\zeta) = (\cos(\zeta), -\sin(\zeta), \sin(\zeta), \cos(\zeta))^{\top},$$

$$\operatorname{vec} \boldsymbol{F}(\boldsymbol{x}) = \operatorname{vec}(\boldsymbol{x}\boldsymbol{x}^{\top}) = \boldsymbol{x} \otimes \boldsymbol{x},$$

$$\operatorname{vec} \boldsymbol{F}(\boldsymbol{X}) = \operatorname{vec} \boldsymbol{X}^{\top} = (\boldsymbol{X} \otimes \boldsymbol{I}_q) \operatorname{vec} \boldsymbol{I}_q.$$

Sea $F: S \to \mathbb{R}^{m \times p}, \ S \subset \mathbb{R}^{n \times q}$ una función matricial, podemos notar que

$$\operatorname{vec} \boldsymbol{F}(\boldsymbol{X}) = \boldsymbol{f}(\operatorname{vec} \boldsymbol{X})$$

esto permite obtener el diferencial de una función matricial considerando la relación

$$\operatorname{vec} \operatorname{d} \boldsymbol{F}(\boldsymbol{C}; \boldsymbol{U}) = \operatorname{d} \boldsymbol{f}(\operatorname{vec} \boldsymbol{C}; \operatorname{vec} \boldsymbol{U})$$

en cuyo caso \boldsymbol{F} tiene matriz Jacobiana

$$\mathsf{D} F(C) = \mathsf{D} f(\mathsf{vec} C)$$

Las consideraciones anteriores motivan el primer teorema de indentificación para funciones matriciales Magnus y Neudecker (1985)

TEOREMA B.9 (Primer teorema de identificación para funciones matriciales). Sea $\mathbf{F}: S \to \mathbb{R}^{m \times p}, S \subset \mathbb{R}^{n \times q}$ función diferenciable, $\mathbf{C} \in S$ y \mathbf{U} matriz $n \times q$. Entonces

$$\operatorname{vec} d F(C; U) = (DF(C)) \operatorname{vec} U.$$

 $con (\mathsf{D} \boldsymbol{F}(\boldsymbol{C}))^{\top}$ la matriz gradiente de \boldsymbol{F} .

B.3. Matriz Hessiana

Considere $\phi: S \to \mathbb{R}$ con $S \subset \mathbb{R}^n$, entonces se define la matriz Hessiana como la matriz de segundas derivadas, dada por

$$\mathsf{H}\phi(\boldsymbol{x}) = \frac{\partial^2 \phi(\boldsymbol{x})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^\top} = \frac{\partial}{\partial \boldsymbol{x}^\top} \Big(\frac{\partial \phi(\boldsymbol{x})}{\partial \boldsymbol{x}^\top} \Big)^\top = \mathsf{D}(\mathsf{D}\phi(\boldsymbol{x}))^\top.$$

Es posible definir el diferencial de funciones vectoriales y matriciales de manera análoga a la delineada anteriormente. Sin embargo, en este apéndice nos enfocaremos solamente en el cálculo de diferenciales de funciones escalares. El segundo diferencial de una función escalar está dado por

$$\mathsf{d}^2\,\phi=\mathsf{d}(\mathsf{d}\,\phi).$$

Magnus y Neudecker (1985) enunciaron el siguiente teorema de identificación para matrices Hessianas de funciones escalares

TEOREMA B.10 (Segundo teorema de identificación). Sea $\phi: S \to \mathbb{R}$, $S \subset \mathbb{R}^n$ dos veces diferenciable, $\mathbf{c} \in S$ y \mathbf{u} vector n-dimensional. Entonces

$$d^2 \phi(\boldsymbol{c}; \boldsymbol{u}) = \boldsymbol{u}^{\top} (H \phi(\boldsymbol{c})) \boldsymbol{u}.$$

donde $H\phi(c) \in \mathbb{R}^{n \times n}$ es la matriz Hessiana de ϕ .

Algunas ventajas (prácticas) importantes del cálculo de diferenciales son:

• Sea f(x) función vectorial $m \times 1$ con argumento x, vector n-dimensional, entonces

$$\mathsf{D} f(x) \in \mathbb{R}^{m \times n}$$
 sin embargo, $\mathsf{d} f(x) \in \mathbb{R}^m$

• Para funciones matriciales, dF(X) tiene la misma dimensión que F sin importar la dimensión de X.

B.4. Reglas fundamentales

A continuación se presentan algunas reglas fundamentales para el cálculo de diferenciales

Considere u y v funciones escalares y α una constante, entonces:

$$\begin{split} \operatorname{d}\alpha &= 0, \qquad \operatorname{d}(\alpha u) = \alpha \operatorname{d}u, \quad \operatorname{d}(u+v) = \operatorname{d}u + \operatorname{d}v, \\ \operatorname{d}(uv) &= (\operatorname{d}u)v + u(\operatorname{d}v) \qquad \operatorname{d}(u/v) = \frac{(\operatorname{d}u)v - u(\operatorname{d}v)}{v^2}, (v \neq 0), \\ \operatorname{d}u^\alpha &= \alpha u^{\alpha-1} \operatorname{d}u, \qquad \operatorname{d}e^u = e^u \operatorname{d}u, \\ \operatorname{d}\log u &= u^{-1} \operatorname{d}u, (u > 0) \qquad \operatorname{d}\alpha^u = \alpha^u \log \alpha \operatorname{d}u, (\alpha > 0), \end{split}$$

aquí por ejemplo,

$$\phi(x) = u(x) + v(x).$$

Análogamente para U, V funciones matriciales, α un escalar (constante) y $A \in \mathbb{R}^{m \times n}$ constante, tenemos

$$\begin{split} \operatorname{d} \boldsymbol{A} &= \mathbf{0}, & \operatorname{d} (\alpha \boldsymbol{U}) = \alpha \operatorname{d} \boldsymbol{U}, \\ \operatorname{d} (\boldsymbol{U} + \boldsymbol{V}) &= \operatorname{d} \boldsymbol{U} + \operatorname{d} \boldsymbol{V}, & \operatorname{d} (\boldsymbol{U} \boldsymbol{V}) = (\operatorname{d} \boldsymbol{U}) \boldsymbol{V} + \boldsymbol{U} \operatorname{d} \boldsymbol{V}, \\ \operatorname{d} (\boldsymbol{U} \otimes \boldsymbol{V}) &= \operatorname{d} \boldsymbol{U} \otimes \operatorname{d} \boldsymbol{V}, & \operatorname{d} (\boldsymbol{U} \odot \boldsymbol{V}) = \operatorname{d} \boldsymbol{U} \odot \operatorname{d} \boldsymbol{V}, \\ \operatorname{d} \boldsymbol{U}^\top &= (\operatorname{d} \boldsymbol{U})^\top, & \operatorname{d} \operatorname{vec} \boldsymbol{U} = \operatorname{vec} \operatorname{d} \boldsymbol{U}, & \operatorname{d} \operatorname{tr} \boldsymbol{U} = \operatorname{tr} \operatorname{d} \boldsymbol{U}. \end{split}$$

Otros diferenciales de uso frecuente en Estadística son:

$$\label{eq:formula} \begin{split} \operatorname{d}|F| &= |F|\operatorname{tr} F^{-1}\operatorname{d} F, \qquad \operatorname{d}\log|F| = \operatorname{tr} F^{-1}\operatorname{d} F, \\ \operatorname{d} F^{-1} &= -F^{-1}(\operatorname{d} F)F^{-1}. \end{split}$$