CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS/STATISTICS 2015/2016 FIRST SEMESTER EXAMINATION

MTH 1101: GENERAL MATHEMATICS I. TIME: 2 ½ HOURS

INSTRUCTIONS: Read the questions carefully, answer **question one** and any other **three questions**. Only duly registered students should take the exams. No calculator, table, micro-chip or phone is allowed. Any form of examination malpractices will be punished accordingly.

1a. Copy and complete the table below for relation; y = 10x(2x - 3) + 15 on your graph sheet

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
$20x^{2}$				5							
-30 <i>x</i>											
15					15					15	
у					15					215	

b. Using a scale of 2cm to 1unit on the x-axis and 1cm to 10units on the y-axis, draw the graph of $y = 20x^2 - 30x + 15$ for $-2 \le x \ge 3$

c. Use the graph to find; (i) The minimum value of y (ii) The two values of x when y = 35 (iii) The gradient of the curve $20x^2 - 30x + 15$ at x = 1 (iv) The solution set of the equation $20x^2 - 30x - 40$

Note: No biro pen is allowed on the graph sheet

2a. (i) Find the values of $cos75^0$ leaving your answer in surd form (ii) Express sin5x as a polynomial in sin x.

b. Expand $(\cos \theta + i \sin \theta)^n$ for n = 2 & 3 and obtain expression for $\cos 2\theta$, $\sin 2\theta$ & $\cos 3\theta$, $\sin 3\theta$ in terms of $\cos \theta$ and $\sin \theta$.

c. An arithmetic progression whose first term is three (3) and whose nth term is 48 has the sum of its first n terms equal to 225.

(i) Find n and d (ii) Give the first three terms of the arithmetic progression.

3a. Given that $\mu = \{0,1,2,3,...,12\}$, $P = \{p: 0 , <math>Q = \{q: q\text{is even}\}$ and $R = \{r: 2 \le r \le 7, \text{is prime}\}$, where P, Q and R are subsets of μ .

Prove the identities (i) $P \cup (P^{'} \cap Q) = P \cup Q$ (ii) $(P \cap Q) \cup (Q \cap R) = (P^{'} \cap R^{'})^{'} \cap Q$

b. All the 50 science student in a college were asked their subject combination, 18 of the students offered further mathematics, 21 offered Chemistry while 16 offered biology, 7 students offered further math and chemistry, 8 students offered biology while 9 offered chemistry and biology while 5 offered the three subject combinations using the Venn Diagram. Find

(i)
$$n(M \cap C' \cap B')$$
 (ii) $n(M \cup C \cup B)'$

c. If A, B and C are a non-empty subset of a universal set μ, show by means of Venn diagram

(i)
$$(A \cup B) \cup C$$
 (ii) $(A \cap B) \cap C$ (iii) $A \cap (B \cup C)$

4a. Solve the system using crammer's Rule

$$2x + y - z = 3$$

$$x + y + z = 1$$

$$x - 2y - 3z = 4$$

- b. Find the values of a and b which make the expression $x^4 + 6x^3 + 13x^2 + ax + b$ a perfect square for all values of x.
- c. If α and β are the roots of the $2x^2 + 3x 2 = 0$, form the equation whose roots are α^2 , β^2
- 5a. Find polynomial expression p(x), when divided by (x-1) it leaves the remainder 3 and divided by (x-1)(x-2) it leaves the remainder -2x+5
- b. i. The 4th term & 8th term of GP are 24 and 8/27. Find the two possible values of α and r (ii) Find the true set of the inequality $8x 2x^2 1 > 5$
- c. Prove by induction $1^3 + 2^3 + \dots + n^3 = \frac{1}{4} n^2 (n+1)^2$
- 6a. Simplify (i) $\left(12^{3/2} \ X \ 16^{1/8}\right) \div \left(27^{1/6} \ X \ 18^{1/2}\right)$ (ii) $\left(\frac{a+b}{a-b}\right)^{1/2} + \left(\frac{a-b}{a+b}\right)^{1/2}$ when $a = \sqrt{5}$ and $b = \sqrt{2}$ (iii) $\log_{10}(3x^2 + 8) = 1 + \log_{10}\left(\frac{x}{2} + 1\right)$
- b. Given that $log_7 2 = \alpha$, $log_7 3 = \beta$ and $log_7 5 = \gamma$, express the following

(i)
$$log_7$$
 6 (ii) log_7 75 (iii) log_7 $\frac{15}{2}$ in terms of α,β,γ

c. Given that $\tan \theta = 5/12$, where θ is an angle between 180° and 270° . Calculate without using table, the value of (i) $\sin 2\theta$ (ii) $\cos 2\theta$ (iii) $\cos 3\theta$

CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS/STATISTICS

2017/2018 FIRST SEMESTER EXAMINATION MTH 1101: GENERAL MATHEMATICS I. TIME: 2HOURS 30 MINS

INSTRUCTIONS: Read the questions carefully, answer **question one** and any other **three questions**. Only duly registered students should take the exams. No calculator, table, micro-chip or phone is allowed. Any form of examination malpractices will be punished accordingly.

- 1a. Rewrite the quadratic equation $\frac{1}{x+1} = \frac{2x-9}{2x-4}$ as the quadratic function f (x).
- b. Tabulate the values of f (x) using the table shown below **ON YOUR GRAPH SHEET**

Х	-3.0	-1.5	0	1.5	3.0	4.5	6.0
f(x) = y							

- c. Graph the points using a scale of 2cm to 1 unit on the x-axis and 4cm to 10 units on the y-axis and draw a smooth line through the points for $-3 \le x \le 6$
- d. Use the graph to find; (i) The co-ordinates of the x intercepts (ii) The solution set of the equation $y = 2x^2 9x 14$ (iii) What are the co-ordinates of the vertex? Is it a minimum or a maximum? Note: No biro pen is allowed on the graph sheet
- 2a. 120 First year CRUTECH students sat for an examination in Mathematics involving three papers, Geometry, Analysis and Calculus. 34 students passed all three papers; 52 students passed Geometry and Analysis papers; 20 students passed Calculus and Geometry but failed Analysis; 60 students passed only two of the three papers; 80 students passed the Calculus paper; 78 students passed Geometry paper; and 12 students passed only one paper
 - (i) Represent the information in a Venn diagram
 - (ii) How many students failed all the three papers?
 - (iii) How many students failed the Geometry paper?
- b. Solve the equation $log_4(3x+4) = log_2(2x+1)$
- c. For what values of a and b are x 1 and x + 2 factors of $x^3 + ax^2 + bx + 4$?
- 3a. (i) List the four basics steps required for the application of mathematical induction.

- (ii) Prove by induction that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1) \forall n \in \mathbb{N}$
- b. (i) In an A.P, the 13th term is 27 and the 7th term is three times the 2nd term. Find the first term, the common difference and the sum of the first ten terms.
 - (ii) The sum of the 2^{nd} and 3^{rd} term of G.P. is 6 and the 3^{rd} and 4^{th} terms is -12. Find the 1^{st} term and common ratio.
- c. (i) Find the expansion of $\left(2x \frac{1}{2}\right)^4$ in descending powers of x.
 - (ii) Find the coefficient of y^{10} in the expansion of $(2y-3)^4$
- 4a. Simplify the following complex numbers; (i) $\frac{3+i}{1+2i} \frac{2}{3+i}$ (ii) $\frac{1}{\cos\theta + \sin\theta}$ (iii) $(1+i)^2 + (1-i)^2$
- b. Express the complex number $\frac{i\sqrt{2}}{4+4i}$ in trigonometric form.
- c. Apply De Moivre's theorem to simplify $(1+i)^8 + (1-i)^8$
- 5a. Define with examples, the following matrices (i) Square matrix (ii) Diagonal matrix (iii) Identity matrix (iv) Symmetric matrix (v) Zero matrix
- b. Solve the system below, using Crammer's Rule;

$$-x + 3y - 2z = 5$$

$$4x - y - 3z = -8$$

$$2x + 2y - 5z = 7$$

- 6a. Evaluate without using tables $\tan \left(\frac{\pi}{12}\right)$
- b. If $TanA = \frac{4}{3}$ and $CosB = \frac{12}{13}$ find the values of (i) Sin(A B) (ii) Cos(A + B)if A is acute
- c. A chord of a circle of radius 9cm subtends an angle of 75⁰ at the centre. Find the length of the chord and the perimeter of the major segment formed.

CROSS RIVER UNIVERSITY OF TECHNOLOGY, CALABAR DEPARTMENT OF MATHEMATICS/STATISTICS

2016/2017 FIRST SEMESTER EXAMINATION MTH 1101: GENERAL MATHEMATICS I. TIME: 2 ½ HOURS

INSTRUCTIONS: Read the questions carefully, answer **question one** and any other **three questions**. Only duly registered students should take the exams. No calculator, table, micro-chip or phone is allowed. Any form of examination malpractices will be punished accordingly.

- 1a. Consider the relation $2(y 25x) = 3(13 7x^2)$ and make y the subject of the equation.
- b. Use the "y" equation obtained in (a) to complete the table of values shown below for the interval $-3 \le x \le 5$ on your graph sheet

Х	-3	-2	-1	0	1	2	3	4	5
Υ									

- c. Using a scale of 2cm to 1unit on the x-axis and 1cm to 10units on the y-axis, plot the points for $-3 \le x \le 5$.
- d. Use the graph to find; (i) The maximum value of y (ii) The two values of x when y = -16 (iii) The solution set of the equation $2y = -21x^2 + 50x + 199$ (iv) Find algebraically the equation of the axis of symmetry and the co-ordinates of the vertex of the parabola.

Note: No biro pen is allowed on the graph sheet

- 2a. If $\log 2 = x$ and $\log 3 = y$, find in terms of x and y the value of $\log_{27} \left(\frac{1}{72}\right)^{\frac{1}{2}}$
- b. Solve the equation $2(9^x) 3^{\frac{2x+1}{2}} 3 = 0$
- c. Simplify without mathematical tables; (i) $\frac{8^{1/3} X 5^{2/3}}{10^{2/3}}$ (ii) $\sqrt{\frac{8.1 X 10^{-16}}{2.25 X 10^{17}}}$
- 3a. (i) Write in surd form tan 15⁰ and simplify as much as possible
 - (ii) Verify and identity $\frac{\cos\theta \cot\theta}{1-Sin\theta}-1=Cosec\theta$
- b. Prove that $3^{4n+2} + 2(4^{3n+1})$, $n \in \mathbb{N}$ is an integer multiple of 17.

- 4a. If α and β are the roots of the equation $3x^2 + 2x 6 = 0$, find the equation whose roots are α + 1 and β + 1.
- b. Solve the system below, using Crammer's Rule;

$$3y + 2x = z + 1$$

$$3x + 2z = 8 - 5y$$

$$3z - 1 = x - 2y$$

- 5a. Express $\frac{(1+i)^4}{(2-2i)^3}$ in the form of x + yi
- b. (i) State and prove De Moivre's Theorem (i) Compute $(1-\sqrt{3i})^6$
- c. Find the values of p and q if x 2 and x + 1 are both factors of $Px^3 + 3x^2 9x + q$ and hence obtain the third factor.
- 6a. The arithmetic progression with first term a, common difference d and sum S, satisfy the equation $n^2 + \left(\frac{2a}{d} 1\right)n \frac{2s}{d} = 0$. Find n when a=3, $d = \frac{1}{2}$ and S = 2828
- b. The sum of the first n terms of and AP is given by $S_n = pn + qn^2$. Given also that $S_3 = 6$ and $S_5 = 11$
 - (i) Find the values of p and q
 - (ii) Deduce an expression for the nth term and the value of the common difference.
- c. If A, B, C are a non-empty subset of a Universal Set "U", show by means of Venn diagram

(i)
$$(A \cup B) \cup C$$
 (ii) $(A \cap B) \cap C$ (iii) $A \cap (B \cup C)$ (iv) $(A \cap B \cap C)^C$ (v) $(A \cap B) \cup (A \cap C)$