The Mathematical Theory of Finite Element Methods

Arden Rasmussen

September 10, 2018

0 Contents

1	Bas	cic Concepts
	1.1	Weak Formulation of Boundary Value Problem
	1.2	Ritz-Galrkin Approximation
	1.3	Error Estimates
	1.4	Piecewise Polynomial Spaces
	1.5	Relationship to Difference Methods
	1.6	Computer Implementation of Finite Element Methods
	1.7	Local Estimates
	1.8	Adaptive Approximation
	1.9	Weighted Norm Estimates

1 Basic Concepts

The finite element method provides a method for generating algorithms for approximating the solutions of differential equations.

1.1 Weak Formulation of Boundary Value Problem

Considering the two-point boundary value problem

$$-\frac{d^2u}{dx^2} = f \quad (0,1)$$
$$u(0) = 0 \quad u'(1) = 0$$

Taking some function v, and finding the inner product with f, we find

$$(f,v) = \int_0^1 u'(x)v'(x)dx = a(u,v)$$

We define a vector space V as follows

$$V \equiv \left\{ v \in L^2(0,1) : \quad a(v,v) < \infty \text{ and } v(0) = 0 \right\}$$

Using this we can characterize the solution to the differential equation as any function $u \in V$ that satisfies the boundary condition and that satisfies

$$a(u, v) = (f, v) \quad \forall v \in V$$

This is called the *variational* or *weak* formulation of the differential equation. It is variational because v is allowed to vary arbitrarily. It is called weak, because there are other ways in which to interpret the equation with less restrictive assumptions on f.

1.2 Ritz-Galrkin Approximation

Let $S \subset V$ be any (finite dimensional) subspace. Then when we replace V in the previous declaration we find

$$u_S \in S$$
 $a(u_S, v) = (f, v)$ $\forall v \in S$

With this approximation, it can be shown that the solution u_S must exist and be unique.

1.3 Error Estimates

Observing the fundamental orthogonality between u and u_S implies

$$a(u - u_S, w) = 0 \quad \forall w \in S$$

Now we define the energy norm as

$$\|v\|_E = \sqrt{a(v,v)}$$

Using this norm, the Schwarz' inequality relates the energy norm and inner-product

$$|a(v,w)| \le ||v||_E ||w||_E \quad \forall v, w \in V$$

- 1.4 Piecewise Polynomial Spaces
- 1.5 Relationship to Difference Methods
- 1.6 Computer Implementation of Finite Element Methods
- 1.7 Local Estimates
- 1.8 Adaptive Approximation
- 1.9 Weighted Norm Estimates