VE401 Assignment

Yang Tiancheng 517370910259 March 7, 2020

Exercise 1. Elementary Probability

Solution. We use Cardano's principle to get the probability. The number of ways to pick 120 people from 2000 individuals is

 $n_1 = \frac{2000!}{120! \times (2000 - 120)!}$

The number of ways that me and my friend are both chosen is equal to the number of ways to choose 118 people from 1998 individuals, which is

$$n_2 = \frac{1998!}{118! \times (1998 - 118)!}$$

Therefore the probability that me and my friend will both be chosen is

$$\frac{n_2}{n_1} = \frac{\frac{1998!}{118! \times (1998 - 118)!}}{\frac{2000!}{120! \times (2000 - 120)!}} = 0.357\%$$

Exercise 2. Some Routine Calculations

i) **Proof.** Since $A \subset B$, $B = A + B \setminus A$. Note that $A \cap B \setminus A = \emptyset$. Thus $P[B] = P[A] + P[B \setminus A] \ge P[A]$. Therefore $P[A] \le P[B]$.

ii) **Proof.** Since A and B are independent, we have $P[A \cap B] = P[A]P[B]$. We know that P[A]P[B] > 0 so $P[A \cap B] > 0$. Thus $P[A \cap B] = \frac{|A \cap B|}{|S|} > 0$, which means that $|A \cap B| > 0$. Therefore, $A \cap B \neq \emptyset$ and hence they are not mutually exclusive.

iii) **Proof.** First we have two trivial equations:

$$P[A] = P[A \backslash (A \cap B)] + P[A \cap B]$$

$$P[B] = P[B \backslash (A \cap B)] + P[A \cap B]$$

We also have

$$P[A \cup B] = P[A \backslash (A \cap B)] + P[B \backslash (A \cap B)] + P[A \cap B]$$

. Therefore,

$$P[A \cup B] = P[A] - P[A \cap B] + P[B] - P[A \cap B] + P[A \cap B] = P[A] + P[B] - P[A \cap B]$$

Exercise 3. D'Alembert's Coins

i) **Solution.** No, it is not possible. If the coin is fair, we know that

$$P[two\ heads] = P[no\ heads] < P[onehead]$$

. Now if the coin is biased, for that coin $P[head] \neq P[nohead]$. And hence if it is tossed twice,

$$P[two\ heads] \neq P[no\ heads]$$

. Therefore, even though the coin can be biased, the three outcomes cannot have the same probability. $\hfill\Box$

ii) **Solution.** No, it is not possible as well. Denote one coin as A, with P[A, head] = a. We know that P[A, head] + P[A, tail] = 1 so P[A, tail] = 1 - a. Similarly, we also have coin B with b and b. Now, if the three outcomes have same probability, then

$$a * b = (1 - a) * (1 - b) = 1/3$$

. From here we get that a + b = 1. Now we calculate

$$a * b = a * (1 - a) = \frac{1}{3}$$

which has no real solution. Therefore, it is impossible to make the coins so that D'Alembert's claim is true. \Box

Exercise 4. Independence

i) **Solution.** Denotion of events:

P1: a participant from the first group is chosen;

P2: a participant from the second group is chosen;

A: the participant replies "yes" to the second question;

Now we list the known probabilities: P[P1] = 50%, P[P2] = 50%, P[A|P1] = 17%, P[A|P2] = 3%. We want to know the total probability of P[A].

$$P[A] = P[A|P1] * P[P1] + P[A|P2] * P[P2] = 17\% * 50\% + 3\% * 50\% = 10\%$$
 (1)

Therefore, this probability is 10%.

ii) **Solution.** No. We have P[A|P1] > P[A]. Therefore it is not independent.