DM 3 : Référentiels non galiléens Éléments de correction

N°	Elts de rép.	Pts	Note
1	recherches de tous les exercices	1	
2.	propreté de la copie	0.5	
3.	rendu pour le jour demandé	0.5	

01-07	Danger lié à un pendule suspendu dans un véhicule		
1	Dans le référentiel de la voiture qui freine (non galiléen), car il		
	est plus aisé d'exprimer sa position, sa vitesse et son accélération		
	dans ce référentiel. Il faudra alors tenir compte des forces d'inertie		
	dans l'écriture du PFD dans ce référentiel.		
2	En mouvement à vitesse constante, le référentiel lié à la voiture est		
	translation rectiligne uniforme par rapport au référentiel terrestre donc il est galiléen.		
	En phase de freinage le mouvement de la voiture n'est pas uni-		
	forme donc le référentiel qui y est lié est non-galiléen.		
3	Si la trajectoire de la voiture est rigoureusement rectiligne, alors		
	le théorème du moment cinétique en O s'écrit $\frac{d\vec{L}_{O,R}(M)}{dt}$ =		
	$\vec{M}_O(M\vec{g}) + \vec{M}_O(\vec{T}) + \vec{M}_O(\vec{f}_{ie}), \text{ or } \vec{M}_O(M\vec{g}) = \overrightarrow{OM} \wedge (-Mg\vec{e}_z) / / \vec{e}_y$		
	ainsi que $\vec{M}_O(\vec{T}) = \overrightarrow{OM} \wedge \vec{T}//\vec{e}_y$ et $\vec{M}_O(\vec{f}_{ie}) = \overrightarrow{OM} \wedge \vec{T}$		
	$(-Ma_{R_0}(O_R)\vec{e}_x)//\vec{e}_y$, donc $\vec{L}_{O,R}(M)//\vec{e}_y$ donc le mouvement est		
	contenu dans le plan (O,z,x). Explication aussi possible avec PFD.		
	Si la trajectoire de la voiture est un mouvement de rotation, alors		
	il faut rajouter le moment de la force de Coriolis $\vec{M}_O(\vec{f}_{ic}) = \overline{OM} \wedge$		
	$(-2M\vec{\Omega} \wedge \vec{v}_R(M))$, or $\vec{\Omega}//\vec{e}_z$ et $\vec{v}_R(M) \in (O,z,x)$ donc $\vec{f}_{ic}//\vec{e}_y$ or		
	$\overrightarrow{OM} \in (O,z,x)$ donc $\overrightarrow{M}_O(\overrightarrow{f}_{ic}) \in (O,z,x)$ donc le moment de la		
	force de Coriolis provoque une rotation en dehors du plan $(0, z, x)$		
4	freinage : donc ref uniformément décéléré, donc $\vec{f}_{ie} = Ma_0\vec{u}_x$,		
	$ \text{PFD}: M\vec{a}_R(M) = M\vec{g} + \vec{T} + Ma_0\vec{u}_x$		
	équilibre $\vec{a}_R(M) = \vec{0}$ projections $\tan(\beta_{eq}) = \frac{a_0}{g}$	0.5	
5	projection du PFD sur \vec{e}_{β} donne $M\vec{a}.\vec{e}_{\beta}(M) = M\vec{g}.\vec{e}_{\beta} + \vec{f}_{ie}.\vec{e}_{\beta}$		
	$Ml\ddot{\beta} = -Mg\sin(\beta) + Ma_0\cos(\beta) \text{ donc } \ddot{\beta} + \frac{g}{l}\dot{\beta} = \frac{a_0}{l}\cos(\beta)$		
6	$Ml\ddot{\beta} = -Mg\sin(\beta) + Ma_0\cos(\beta) \text{ donc } \ddot{\beta} + \frac{g}{l}\dot{\beta} = \frac{a_0}{l}\cos(\beta)$ petits angles : $\sin(\beta) \sim \beta$, $\cos(\beta) \sim 1$, $\frac{a_0}{g} = \tan(\beta_{eq}) \sim \beta_{eq}$ donc		
	$\frac{1}{\omega_0^2}\ddot{\beta} + \beta = \beta_{eq} \text{ avec } \omega_0 = \sqrt{\frac{q}{l}}$		

	solution d'oscillateur harmonique : $\beta = A\cos(\omega_0 t) + B\sin(\omega_0 t) + \beta_{eq}$, conditions initiales : $\beta(0) = 0$ et $\dot{\beta}(0) = 0$ donne $\beta(t) = \beta_{eq} [1 - \cos(\omega_0 t)]$		
7	La masse oscille entre $\beta = 0$ et $\beta = 2\beta_{eq}$ donc il faut que $2\beta_{eq} < \alpha$	0.5	
	donc $a_0 < \frac{\alpha}{2}g$		
	application numérique : $a_1 \sim 2 \text{ m.s}^{-2}$ à comparer avec une voiture		
	à 50 km.h ⁻¹ mets 50 m pour s'arrêter soit $a_0 = \frac{v^2}{d} \sim 4 \text{ m.s}^{-2}$,		
	donc le risque est bien réel.		