Più Potere agli Automi Finiti

DFA/NFA pregi:

Estremamente semplici.

Particolarmente adatti a descrivere alcuni compiti importanti come - pattern matching, lavastoviglie, telecomandi, semafori, circuiti sequenziali, \dots

DFA/NFA difetti:

non sono sufficientemente "potenti" per risolvere numerosi problemi importanti.

Obiettivo: la macchina più semplice che sia "potente" quanto i computer convenzionali.

Macchina di Turing

Alan Mathison Turing (1912 - 1954)

Nel 1936 Alan Turing schematizzò i limiti delle macchine calcolatrici, ponendo le definizioni di quella che sarebbe diventata famosa come macchina di Turing.

Simile ad un automa finito ma con una memoria illimitata e senza restrizioni. Una macchina di Turing è un modello molto più preciso di computer: può fare tutto ciò che un reale computer può fare!

Ha permesso una formalizzazione del concetto di algoritmo e computazione.

Macchina di Turing

Una macchina di Turing è una macchina a stati finiti con un nastro infinito (memoria illimitata).

Il nastro è diviso in celle (caselle) ognuna delle quali può contenere simboli.

Ha una testina che consente di leggere e scrivere simboli ed è in grado di muoversi liberamente sul nastro.

Esistono solo due stati che fanno terminare la computazione: accept e reject. Quando la Macchina di Turing raggiunge uno di essi, la computazione si ferma immediatamente.

Se non raggiunge uno stato di accettazione o rifiuto , la MdT andrà avanti per sempre, senza mai fermarsi.

Macchina di Turing

All'inizio il nastro contiene solo la stringa input. Tutto il resto è vuoto, cioè riempito con il simbolo $blank \sqcup$.

Inizialmente la testina si trova sulla prima cella del nastro, cioè all'inizio della stringa input. Il simbolo ⊔ segna la fine della stringa input.

Ad ogni passo, la testina legge il simbolo puntato, lo lascia inalterato o lo sovrascrive con un altro simbolo, e poi si sposta a destra o a sinistra.

Una Macchina di Turing è una settupla: $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$.

ightharpoonup Insieme Stati Q

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($\sqcup \notin \Sigma$)

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($\sqcup \notin \Sigma$)
- ▶ Γ : Alfabeto del nastro ($\sqcup \in \Gamma$, $\Sigma \subset \Gamma$)

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($\sqcup \notin \Sigma$)
- ▶ Γ : Alfabeto del nastro ($\sqcup \in \Gamma$, $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione di transizione

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($\sqcup \notin \Sigma$)
- ▶ Γ : Alfabeto del nastro ($\sqcup \in \Gamma$, $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione di transizione
- ► q₀: stato iniziale

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($\sqcup \notin \Sigma$)
- ▶ Γ : Alfabeto del nastro ($\sqcup \in \Gamma$, $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione di transizione
- $ightharpoonup q_0$: stato iniziale
- ► q_{accept} : stato **accept**

- ► Insieme Stati Q
- ▶ Alfabeto di lavoro Σ ($\sqcup \notin \Sigma$)
- ▶ Γ : Alfabeto del nastro ($\sqcup \in \Gamma$, $\Sigma \subset \Gamma$)
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: funzione di transizione
- $ightharpoonup q_0$: stato iniziale
- ▶ q_{accept}: stato accept
- $ightharpoonup q_{reject}$: stato reject

Sia M una Macchina di Turing definita da $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject}).$

 $\blacktriangleright \ \ {\rm Ad\ ogni\ istante}\ M\ {\rm occupa\ uno\ degli\ stati}\ {\rm in}\ Q.$

Sia M una Macchina di Turing definita da $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$.

- $\blacktriangleright \ \ {\rm Ad\ ogni\ istante}\ M\ {\rm occupa\ uno\ degli\ stati}\ {\rm in}\ Q.$
- lacktriangle La testina si trova in una cella del nastro contenente qualche simbolo $\gamma \in \Gamma$.

Sia M una Macchina di Turing definita da $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$.

- lacktriangle Ad ogni istante M occupa uno degli stati in Q.
- lackbox La testina si trova in una cella del nastro contenente qualche simbolo $\gamma \in \Gamma$.
- ▶ La funzione di transizione $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ dipende dallo stato q e dal simbolo di nastro γ .

Sia M una Macchina di Turing definita da $(Q, \Sigma, \Gamma, \delta, q_o, q_{accept}, q_{reject})$.

- Ad ogni istante M occupa uno degli stati in Q.
- ▶ La testina si trova in una cella del nastro contenente qualche simbolo $\gamma \in \Gamma$.
- ▶ La funzione di transizione $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$ dipende dallo stato q e dal simbolo di nastro γ .

Se la macchina è in uno stato $q\in Q$ e la testina punta alla casella del nastro contenente il simbolo a, allora la macchina si comporterà come descritto dalla funzione di transizione δ sulla coppia stato-simbolo (q,a).

Se $\delta(q, a) = (q', b, d)$, allora la macchina:

- 1. scrive b al posto di a;
- 2. sposta la testina a sinistra o a destra a seconda che d sia rispettivamente L o R (attenzione: se d=L e la testina si trova nella casella più a sinistra, allora la testina non si sposta);
- 3. passa nello stato q';

 t_1

Supponiamo che la MdT al tempo t_0 si trovi nello stato q, con la testina posizionata su una casella del nastro contenente il simbolo b. Allora il comportamento della macchina al tempo t_0 è descritto da $\delta(q,b)$.

Se $\delta(q,b)=(q',a,L)$, allora la macchina scriverà a al posto di b, sposterà la testina di una casella a sinistra e transirà nello stato q'. Cioè la configurazione della MdT al tempo $t_1=t_0+1$ sarà:

Computazione di una MdT

- lacktriangle La computazione parte sempre da uno stato iniziale q_0 .
- L'input è posizionato sulla parte più a sinistra del nastro: le prime n celle a sinistra, se n è lunghezza input.
- ▶ La testina si trova nella prima cella a sinistra del nastro (cella 0).

Rappresentazione della transizione (diagramma di stato):

$$\overbrace{q} \qquad b \to a, L \qquad \downarrow \qquad \downarrow \qquad q'$$

Differenze tra MdT e automi finiti

Differenze tra macchine di Turing e automi finiti.

- ► Una MdT ha un nastro di lunghezza infinita.
- Una MdT può sia leggere sia scrivere sul nastro.
- ▶ Ha una testina che può muoversi sia verso sinistra sia verso destra.
- ▶ Gli stati speciali q_{accept} e q_{reject} hanno **effetto immediato!**

Diagramma di stato di una MdT

Gli stati di arresto non hanno archi uscenti. Quando la macchina raggiunge uno stato di arresto, la computazione termina.

Non permesso:

Non permesso:

Tempo 2

La stringa $aba\ {\rm non}$ è accettata.

Tempo 4

La stringa aba non è accettata.

Gli stati di terminazione non verranno mai raggiunti: la macchina cicla all'infinito.

Esempio: linguaggi non regolari e MdT

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

Idea

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Può essere dimostrato (con il Pumping lemma) che il seguente linguaggio non è regolare:

$$L = \{0^n 1^n | n \ge 0\}.$$

Non esiste alcun automa finito in grado di riconoscere ${\cal L}.$

Possiamo progettare una macchina di Turing che accetta le stringhe $w \in L$ e rifiuta le stringhe $w \not\in L$.

- ► Cancella ripetutamente la prima occorrenza di 0 e l'ultima di 1.
- La stringa è del tipo 0^n1^n se e solo se ogni 0 all'estrema sinistra avrà un corrispondente 1 all'estrema destra.

Formalizziamo: diagramma di stato

Attenzione: tutte le transizioni non indicate conducono allo stato di rifiuto:

- 1. Se leggi ⊔, vai a 5. Se leggi 0, scrivi ⊔ e vai a 2.
- 2. Spostati a destra di tutti gli 0 e 1. Al primo \sqcup , spostati a sinistra e vai a 3
- 3. Se leggi 1, scrivi ⊔ e vai a 4.
- 4. Spostati a sinistra di tutti gli 0 e 1. Se leggi \sqcup , spostati a destra e vai a 1.
- Accetta.

0

0

Non è indicata la transizione per 1: si va nello stato di rifiuto.

Non è indicata la transizione per 1: si va nello stato di rifiuto.

MdT per le stringhe $a^nb^nc^n$

Progettiamo ora una macchina di Turing per il seguente linguaggio:

$$L=\{a^nb^nc^n|\ n\geq 0\}.$$

Idea

- Leggiamo la stringa da sinistra a destra: sovrascriviamo la prima occorrenza di a con X, la prima occorrenza di b con Y e la prima occorrenza di c con Z.
- ► Facciamo tornare indietro la testina e iteriamo.
- La stringa è di tipo $a^nb^nc^n$ se e solo se ad ogni lettura da sinistra a destra troviamo sempre una a, una b e una c; tranne che nell'ultima iterazione nella quale non dovremo trovare né a, né b né c.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

MdT per le stringhe $a^nb^nc^n$

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

MdT per le stringhe $a^nb^nc^n$

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

MdT per le stringhe $a^nb^nc^n$

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

MdT per le stringhe $a^nb^nc^n$

- 1. Se leggi \sqcup vai a 7; se leggi a scrivi X, vai a destra e passa a 2
- 2. Fin quando leggi a o Y vai a destra; se leggi b scrivi Y, vai a destra e passa a 3.
- 3. Fin quando leggi b o Z vai a destra; se leggi c scrivi Z, vai a sinistra e passa a 4.
- 4. Fin quando leggi A,b,Y o Z vai a sinistra; se leggi X vai a destra e passa a 5.
- 5. Se leggi a scrivi X, vai a destra e passa a 2; se leggi Y vai a destra e passa a 6.
- 6. Fin quando leggi Y o Z vai a destra; se leggi \sqcup , vai a 7.
- 7. Accetta.

