Artificial Intelligence and Machine Learning (Integrated)

Course Code	21CS63	Course type	IPCC	Credits L-T-P	3 - 0 - 1
Hours/week: L - T- P	3 - 0 - 2			Total credits	4
Total Contact Hours	L = 40 Hrs; T = 0 Hrs; P = 20 Hrs			CIE Marks	100
Total Contact Hours	Total = 60 Hrs		CIL IVIGIRS 100		100
Flipped Classes content	10 Hours			SEE Marks	100

	Course learning objectives
1.	To understand various artificial intelligence techniques
2.	To understand different logical systems for inference over formal domain representations
3.	To understand basic concepts of machine learning
4.	To apply artificial intelligence and machine learning techniques to real world problems

Required Knowledge of: Algorithm, Probability, Discrete Mathematical Structures

Unit – I Contact Hours = 8 Hours

Introduction to Artificial Intelligence: Introduction, what is AI, Strong Methods, and Weak Methods, Uses and Limitations

Knowledge Representation: Need for good representation, Semantic nets, Frames, Search Spaces, Semantics Tress, Search Trees, Combinatorial Explosion, Problem reduction, Goal Trees

Unit – II Contact Hours = 8 Hours

Search Methodologies: Introduction, Problem solving as search, Data driven or goal driven search, Generate and test, Properties of search methods, Depth First Iterative Deepening, Using Heuristics for Search, Hill Climbing, Best-First Search, Identifying Optimal Paths, Constraint Satisfaction Search, Forward Checking, Ant Colony Optimization, Genetic Algorithms for search, Bidirectional search, Non-chronological backtracking

Unit – III Contact Hours = 8 Hours

Game Playing: Game trees, Minimax, Alpha beta pruning

Introduction to Machine Learning-I: Introduction, Training Rote Learning, Learning Concepts, General-to-Specific Ordering, Version Spaces, Candidate Elimination, Decision-Tree Induction, The Problem of Overfitting, Reinforcement Learning

Unit – IV Contact Hours = 8 Hours

Introduction to Machine Learning-II: The Nearest Neighbor-K nearest neighbor algorithm, Linear regression, Support vector machine, k-means clustering

Neural Networks: Introduction, Neurons, Perceptrons, Multilayer Neural Networks- Backpropagation algorithms, Recurrent Networks, Unsupervised Learning Networks

Unit – V	Contact Hours = 8 Hours
Offic V	Contact Hours - O Hours

Probabilistic Reasoning and Bayesian Belief Networks: Introduction, Probabilistic Reasoning, Joint Probability Distributions, Bayes' Theorem, Simple Bayesian Concept Learning, Bayesian Belief Networks, The Noisy-V Function, Bayes' Optimal Classifier, The Naïve Bayes Classifier

Flipped Classroom Details

Unit No.	I	II	III	IV	V
No. for Flipped	1	2	3	3	1
Classroom Sessions					

List of Experiments

Unit No.	No. of Experiments	Topic(s) related to Experiment	
2.	3	DFID algorithm	
		Heuristic search algorithm	
		A* algorithm	
3.	2	Game trees	
		Find-S algorithm	
4.	4	Single Layer Perceptrons	
		Backpropagation	
		Unsupervised learning networks	
		Clustering algorithm	
5.	1	Naïve Bayes Algorithm	

Unit No.	Self-Study Topics
1.	Inheritance, Object oriented programming
2.	Depth First Search, Breadth First Search, Implementing Depth-First and Breadth-First
	Search, Beam Search
3.	Truth Tables: Not, And, Or, Implies, if, Complex Truth Tables, Tautology, Equivalence, The
	Deduction Theorem
4.	Supervised Learning, Unsupervised Learning, Hebbian Learning, Linear Regression
5.	Collaborative Filtering

	Books
	Text Books:
1.	Ben Coppin, Artificial Intelligence Illuminated, Jones and Bartlett, 2004
2.	Tom M. Mitchell, "Machine Learning", Mcgraw-Hill Education (Indian Edition),2013
	Reference Books:
1.	Elaine Rich Kevin Knight, Shivashankar B Nair: Artificial Intelligence, Tata McGraw Hill 3 rd edition
	2013.

2.	Stuart Russel, Peter Norvig: Artificial Intelligence A Modern Approach, Pearson 3 rd edition 2013.
3.	Ethem Alpaydin, "Introduction to Machine Learning", 2 nd Edition, PHI Learning Pvt. Ltd., 2013.
	E-resources (NPTEL/SWAYAM Any Other)- mention links
1.	https://nptel.ac.in/courses/106105077
2.	https://nptel.ac.in/courses/106106139

Course delivery methods		Assessment methods		
1.	Chalk and Talk	1.	IA tests	
2.	PPT and Videos	2.	Open Book Assignments (OBA)/ Lab Project	
3.	Flipped Classes	3.	Lab Test	
4.	Practice session/Demonstrations in Labs	4.	Semester End Examination	

	Course Outcome (COs)					
Lea	Learning Levels:					
	Re - Remember; Un - Understand; Ap - Apply; An - Analysis	s; Ev - Evalua	ate; Cr - Creat	te		
At th	ne end of the course, the student will be able to	Learning Level	PO(s)	PSO(s)		
1.	Apply difficult real-world problems in a state space representation to solve them using AI techniques	Ар	1,2,3,5,12	1,2,3		
2.	Understand the informed and uninformed problem types and apply search strategies to solve them.	Ар	1,2,3,5,12	1,2,3		
3.	Understand the basics of machine learning and neural networks to solve real world problems	An	1,2,3,5,12	1,2,3		
4.	Understand the concepts in Bayesian analysis from probability models and methods	Re	1,2,3,5,12	1,2,3		
5.	Apply the learnings inculcated throughout the course and develop a course project / present a seminar on that	An	1,2,3,5,9,10, 11,12	1,2,3		

Scheme of Continuous Internal Evaluation (CIE):

For integrated courses, a lab test also will be conducted at the end of the semester. The lab test **(COMPULSORY)** will be part of the CIE. **No SEE for Lab**.

	THEORY (60 marks)		LAB (40 i		
		Assignment (OBA/Lab Project/			Total
IA test 1	IA test 2	Industry assignment)/ Course	Conduction	Lab test	Total
		project			
25 marks	25 marks	10 marks	15 marks	25 marks	100 marks

IA Test:

- 1. No objective part in IA question paper
- 2. All questions descriptive

Conduct of Lab:

1. Conducting the experiment and journal: 5 marks

- 2. Calculations, results, graph, conclusion and Outcome: 5 marks
- 3. Viva voce: 5 marks

Lab test: (Batchwise with 15 students/batch)

- 1. Test will be conducted at the end of the semester
- 2. Timetable, Batch details and examiners will be declared by Exam section
- 3. Conducting the experiment and writing report: 5 marks
- 4. Calculations, results, graph and conclusion: 10 marks
- 5. Viva voce: 10 marks

Eligibility for SEE:

- 1. 40% and above (24 marks and above) in theory component
- 2. 40% and above (16 marks and above) in lab component
- 3. Lab test is COMPULSORY
- 4. Not eligible in any one of the two components will make the student Not Eligible for SEE

Sch	neme of Semester End Examination (SEE):
1.	It will be conducted for 100 marks of 3 hours' duration.
2.	Minimum marks required in SEE to pass: Score should be ≥35 &, however overall score of
	CIE+SEE should be ≥40%.
3.	Question paper contains three parts A, B and C. Students have to answer
	1. From Part A answer any 5 questions each Question Carries 6 Marks.
	2. From Part B answer any one full question from each unit and each Question Carries 10 Marks.
	3. From Part C answer any one full question and each Question Carries 20 Marks.

CO-PO Mapping (planned)									CO-PSO Mapping (planned)						
	РО	РО	РО	РО	PSO	PSO	PSO								
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	٧	٧	٧		٧							٧	٧	٧	٧
2	٧	٧	٧		٧							٧	٧	٧	٧
3	٧	٧	٧		٧							٧	٧	٧	٧
4	٧	٧	٧		٧							٧	٧	٧	٧
5	٧	٧	٧		٧				٧	٧	٧	٧	٧	٧	٧

SI No	Skill & competence enhanced	Applicable Industry	Job roles students can take up			
	after undergoing the course	Sectors & domains	after undergoing the course			
1	Data modeling and evaluation	Healthcare Sector	Data Scientist			
2	Proficiency in conceptual	e-commerce	Machine Learning Engineer			
	knowledge of neural networks					
3	Build classifiers	Banking and finance	Business Intelligence Developer			