

Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)

Vorgehensweise bei dynamischer Programmierung

- Bestimme rekursive Struktur einer optimalen Lösung.
- 2. Entwirf rekursive Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 3. Transformiere rekursive Methode in eine iterative (bottom-up) Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 4. Bestimme aus dem Wert einer optimalen Lösung und den in 3. ebenfalls berechneten Zusatzinformationen eine optimale Lösung.

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

- Objekt 1 und 3 passen in den Rucksack und haben Gesamtwert 13
- Objekt 2, 3 und 4 passen und haben Gesamtwert 15

Das Rucksackproblem

- Eingabe: Anzahl der Objekte n Für jedes Objekt i seine ganzzahlige Größe g[i] und seinen ganzzahligen Wert v[i] Rucksackgröße W
- Ausgabe: $S \subseteq \{1, ..., n\}$, so dass $\sum_{i \in S} g[i] \leq W$ und $\sum_{i \in S} v[i]$ maximal ist

Lösungsansatz

- Bestimme zunächst den Wert einer optimalen Lösung
- Leite dann die Lösung selbst aus der Tabelle des dynamischen Programms her

Herleiten der Rekursion

- Sei $0 \subseteq \{1, ..., i\}$ eine optimale Lösung für das Rucksackproblem mit Objekten 1, ..., i und Rucksackgröße j
- Sei Opt(i,j) der Wert einer solchen optimalen Lösung
- Gesucht: Opt(n, W)

Aufgabe

Bestimmen Sie eine Rekursionsgleichung für Opt(i, j)

Lemma 24 (Struktur einer optimalen Lösung des Rucksackproblems)

- Sei $0 \subseteq \{1, ..., i\}$ eine optimale Lösung für das Rucksackproblem mit Objekten 1, ..., i und Rucksackgröße j. Es bezeichne $\mathrm{Opt}(i, j)$ den Wert dieser optimalen Lösung. Dann gilt:
- (a) Ist Objekt i in O enthalten, so ist $O \setminus \{i\}$ eine optimale Lösung für das Rucksackproblem mit Objekten 1, ..., i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j) = v[i] + Opt(i-1,j-g[i]).
- (b) Ist Objekt i nicht in 0 enthalten, so ist 0 eine optimale Lösung für das Rucksackproblem mit Objekten 1, ..., i-1 und Rucksackgröße j. Insbesondere gilt $\mathrm{Opt}(i,j) = \mathrm{Opt}(i-1,j)$.

Beweis

- (a) z.z.: Ist Objekt i in O enthalten, so ist $O \setminus \{i\}$ eine optimale Lösung für das Rucksackproblem mit Objekten 1, ..., i-1 und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j) = v[i] + Opt(i-1,j-g[i]).
- Für i = 1 ist die Aussage offensichtlich korrekt. Sei also i > 1.
- Sei 0 eine optimale Lösung mit Wert 0pt(i,j), die Objekt i enthält. Da Objekt i Größe g[i] hat, gilt sicher, dass $0 \setminus \{i\}$ eine Gesamtgröße von höchstens j g[i] hat. Damit ist $0 \setminus \{i\}$ eine gültige Lösung für das Rucksackproblem mit Objekten 1, ..., i 1 und Rucksackgröße j g[i].

Beweis

- Annahme: $O \setminus \{i\}$ hat Wert $R = \mathrm{Opt}(i,j) v[i]$ und ist keine optimale Lösung für das Rucksackproblem mit Objekten 1, ..., i-1 und Rucksackgröße j-g[i].
- Dann gibt es eine bessere Lösung O^* für dieses Problem mit Wert $R^* > R$. Weiterhin ist $O^* \cup \{i\}$ eine gültige Lösung für das Rucksackproblem mit Objekten 1, ..., i und Rucksackgröße j. Der Wert dieser Lösung ist $R^* + v[i] > R + v[i] = \text{Opt}(i,j)$. Widerspruch zur Optimalität von O.
- Damit ergibt sich sofort Opt(i,j) = v[i] + Opt(i-1,j-g[i]).

Beweis

(b) analog zu (a).

Korollar 25 (Rekursion zur Berechnung der Kosten einer opt. Lösung)

Es gilt:

- Opt(0,j) = 0 für $0 \le j \le W$,
- Opt $(i,j) = \max\{\text{Opt}(i-1,j), v[i] + \text{Opt}(i-1,j-g[i])\}, \text{ falls } i > 0 \text{ und } g[i] \le j,$
- Opt(i,j) = Opt(i-1,j), sonst.

Beweis

Aufgrund von Lemma 24 wissen wir, dass der Wert einer optimalen Lösung entweder durch $\mathrm{Opt}(i-1,j)$ oder durch $v[i]+\mathrm{Opt}(i-1,j-g[i])$ gegeben sind. Letzterer Fall kann nur auftreten, wenn $g[i] \leq j$ ist. Beide Werte entsprechen außerdem dem Wert einer zulässigen Lösung. Dies zeigt die Korrektheit der Rekursion.

Wenn Objekt i nicht in den Rucksack, sind in der optimalen Lösung nur Objekte aus $\{1, ..., i-1\}$

LS 2 /

Dynamische Programmierung

Rekursion

- Wenn j < g[i] dann Opt(i,j) = Opt(i-1,j)
- Sonst,

$$Opt(i,j) = max{Opt(i-1,j), v[i] + Opt(i-1,j-g[i])}$$

Rekursionsabbruch

• Opt(0, j) = 0 für $0 \le j \le W$

Sonst ist entweder i in der optimalen Lösung oder die beste Lösung besteht aus Objekten aus $\{1, ..., i-1\}$

Gibt es keine Objekte, so kann auch nichts in den Rucksack gepackt werden

```
Rucksack(n, g, v, W)
```

- 1. **new array** Opt[0..n][0..W]
- 2. for $j \leftarrow 0$ to W do
- 3. Opt $[0, j] \leftarrow 0$
- **4.** for $i \leftarrow 1$ to n do
- 5. **for** $j \leftarrow 0$ **to** W **do**
- 6. Berechne Opt[i, j] nach Rekursion
- **7.** return Opt[n, W]

Laufzeit

 $\mathbf{O}(nW)$

Optimaler Lösungswert für W = 8

n	0	2	3	5	7	9	10	12	13
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

Grö	ße	Wert
	7	
	g	v
1	5	2
2	3	4
	1	1
	2	3
	1	2
	7	3
	4	7
n	3	3

Beobachtung:

- Sei R der Wert einer optimalen Lösung für die Elemente 1, ..., i
- Falls $g[i] \le j$ und Opt[i-1, j-g[i]] + v[i] = R, so ist Objekt i in mindestens einer optimalen Lösung enthalten

Wie kann man eine optimale Lösung berechnen?

- Idee: Verwende Tabelle der dynamischen Programmierung
- Fallunterscheidung + Rekursion:
 - Falls das i-te Objekt in einer optimalen Lösung für Objekte 1 bis i und Rucksackgröße j ist, so gib es aus und fahre rekursiv mit Objekt i-1 und Rucksackgröße j-g[i] fort
 - Ansonsten fahre mit Objekt i-1 und Rucksackgröße j fort

RucksackLösung(Opt, g, v, i, j)

- 1. if i = 0 return \emptyset
- **2. else if** g[i] > j **then return** RucksackLösung(Opt, g, v, i 1, j)
- 3. **else if** Opt[i,j] = v[i] + Opt[i-1,j-g[i]] **then**
- **4. return** $\{i\} \cup \text{RucksackL\"osung}(\text{Opt}, g, v, i 1, j g[i])$
- 5. **else return** RucksackLösung(Opt, g, v, i 1, j)

Aufruf

- Nach der Berechnung der Tabelle Opt von Rucksack wird RucksackLösung mit Opt, g, v, i = n und j = W aufgerufen.
- Nach dem Lemma wird dann die optimale Lösung konstruiert

Beispiel

Opt[i, j] = 13, j = 8, i = 8: Es gilt Opt[i, j] > v[i] +Opt[i - 1, j - g[i]]

n	0	2	3	5	7	9	10	12	13 ^
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

Grö	jße	We	r
	<u> </u>	<u> </u>	
	g	v	
1	5	2	
1	3	4	
	1	1	
	2	3	
	1	2	
	7	3	
	4	7	
n	3	3	

Opt[i,j] =	0, j =	0, i =	0:
Es gilt $i =$	0		

n	0	2	3	5	7	9	10	12	13
	0	2	3	5	7	9	10	12	13
	0	2	3	5	6	7	9	10	10
	0	2	3	5	6	7	9	10	10
	0	1	3	4	5	7	8	8	8
	0	1	1	4	5	5	5	5	6
	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
0	0	0	0	0	0	0	0	0	0
	0	1							W

Grö	jße	We	ert
	7	_ ✓	
	g	v	
1	5	2	
2	3	4	
	1	1	
	2	3	
	1	2	
	7	3	
	4	7	
n	3	3	

Lemma 26

Hat die optimale Lösung für Objekte 1, ..., i und Rucksackgröße j den Wert $\mathrm{Opt}(i,j)$, so berechnet Algorithmus RucksackLösung eine Teilmenge S von $\{1, ..., i\}$, so dass $\sum_{i \in S} g[i] \leq j$ und $\sum_{i \in S} v[i] = \mathrm{Opt}(i,j)$ ist.

Beweis:

- Aufgrund von Korollar 25 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1, ..., i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.
- Beweis per Induktion über i.
- (I.A.) Ist i = 0, so gibt der Algorithmus die leere Menge zurück. Dies ist korrekt, da kein Objekt in den Rucksack gepackt werden kann.
- (I.V.) Die Aussage stimmt für i-1.

Lemma 26

Hat die optimale Lösung für Objekte 1, ..., i und Rucksackgröße j den Wert $\mathrm{Opt}(i,j)$, so berechnet Algorithmus RucksackLösung eine Teilmenge S von $\{1, ..., i\}$, so dass $\sum_{i \in S} g[i] \leq j$ und $\sum_{i \in S} v[i] = \mathrm{Opt}(i,j)$ ist.

Beweis:

- (I.S.) Ist g[i] > j, so kann Objekt i Teil keiner Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt, g, v, i 1, j) zurück. Dies ist nach (I.V.) und Lemma 24 korrekt.
- Ist $g[i] \le j$ und Opt[i,j] = v[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält. In diesem Fall gibt der Algorithmus $\{i\} \cup RucksackLösung(Opt, g, v, i-1, j-g[i])$ zurück. Dies ist nach (I.V.) korrekt.
- Ist $g[i] \le j$ und Opt[i,j] > v[i] + Opt[i-1,j-g[i]], so kann Objekt i nicht zu einer optimalen Lösung gehören. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt, g, v, i-1, j) zurück. Dies ist nach (I.V.) korrekt.

RucksackKomplett(n, g, v, W)

- 1. Rucksack(n, g, v, W)
- 2. **return** RucksackLösung(Opt, g, v, n, W)

Satz 27

Algorithmus RucksackKomplett berechnet in $\Theta(nW)$ Zeit den Wert einer optimalen Lösung, wobei n die Anzahl der Objekte ist und W die Größe des Rucksacks.

Beweis:

- Die Laufzeit von Algorithmus Rucksacklösung ist $\Theta(n)$, da sich bei jedem rekursiven Aufruf der erste Parameter um 1 reduziert, es nur jeweils einen rekursiven Aufruf gibt und jeder Aufruf konstante Zeit benötigt.
- Die Laufzeit wird durch Algorithmus Rucksack dominiert und ist somit $\Theta(nW)$. Die Korrektheit folgt aus den beiden Lemmas.