

Language Control Diffusion: Efficiently Scaling Through Space, Time, and Tasks

Edwin Zhang Harvard, Founding Yujie Liu, Shinda Huang, William Wang University of California, Santa Barbara

Amy Zhang **UT Austin**

Abstract

- Training generalist agents is difficult across several axes such as high-dimensional inputs (space), long horizons (time), and generalization to novel tasks
- We address all three axes by leveraging Language to Control Diffusion models as a hierarchical planner conditioned on language (LCD)
- LCD outperforms other SOTA methodologies in multi-task success rates
- Improves inference speed over other comparable diffusion models by 3.3x~15x

Objective

We propose a hierarchical planner to train a generalist agent in the CALVIN benchmark to listen to language commands using language conditioned reinforcement learning and goal conditioned imitation learning.

Methodology

Hierarchical Diffusion Policies

$$\min_{\pi} \mathbb{E}_{s,\mathcal{R} \sim \mathcal{D}} \left[D_{\text{KL}} \left(\pi_{\beta}(\cdot \mid s, \mathcal{R}), \pi(\cdot \mid s, \mathcal{R}) \right) \right]. \tag{1}$$

$$\min_{\mathcal{P}} D_{\text{KL}} \left(\mathcal{P}_{\beta}(\boldsymbol{\tau} \mid \mathcal{R}), \mathcal{P}(\boldsymbol{\tau} \mid \mathcal{R}) \right) = \min_{\mathcal{P}} \mathbb{E}_{\boldsymbol{\tau}, \mathcal{R} \sim \mathcal{D}} \left[\log \mathcal{P}_{\beta}(\boldsymbol{\tau} \mid \mathcal{R}) - \log \mathcal{P}(\boldsymbol{\tau} \mid \mathcal{R}) \right]. \tag{2}$$

 $\min_{\boldsymbol{\alpha}} \mathbb{E}_{\boldsymbol{\tau}_0,\boldsymbol{\epsilon}}[\|\boldsymbol{\epsilon}_t - \boldsymbol{\epsilon}_{\theta}(\sqrt{\bar{\alpha}_t}\boldsymbol{\tau}_0 + \sqrt{1 - \bar{\alpha}_t}\boldsymbol{\epsilon}_t, t)\|^2].$

Starting from imitation learning (1), we define a state trajectory generator P in (2). This is reformulated to the diffusion training objective (3).

Practical Instantiation

Algorithm 1 Hierarchical Diffusion Policy Training

Input: baseline goal-conditioned policy $\pi_{lo} := \phi(\mathcal{E}(s_t), g_t)$, diffusion variance schedule α_t , temporal stride c, language model ρ

Output: trained hierarchical policy $\pi(a_t|s_t) := \pi_{lo}(a_t|s_t, \pi_{hi}(g_t|s_t))$, where g_t is sampled every ctime steps from π_{hi} as the first state in latent plan τ^c .

- 1: Collect dataset $\mathcal{D}_{\text{onpolicy}}$ by rolling out trajectories $\tau \sim \pi_{\text{lo}}, \rho$
- 2: Instantiate π_{hi} as diffusion model $\epsilon_{\theta}(\boldsymbol{\tau}_{noisy}, t, \rho(L))$
- 3: repeat
- Sample mini-batch $(\tau, L) = B$ from $\mathcal{D}_{\text{onpolicy}}$.
- Subsample latent plan $\boldsymbol{\tau}^c = (\mathcal{E}(s_0), \mathcal{E}(s_c), \mathcal{E}(s_{2c}), ..., \mathcal{E}(s_T)).$ Sample diffusion step $t \sim \text{Uniform}(\{1, ..., T\})$, noise $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Update high-level policy π_{hi} with gradient $-\nabla_{\theta} \| \epsilon \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \boldsymbol{\tau}^c + \sqrt{1 \bar{\alpha}_t} \epsilon, t, \rho(L)) \|^2$ 8: until converged

High-Level Policy: Before this point in Algorithm 1, we assume that a lowlevel policy (LLP) has been trained. We first train our LLP through hindsight relabeling.

Low-Level Policy: We adopt the HULC architecture for our low-level policy, and the state encoder as the visual encoder within the HULC policy. **Model Architecture**: We adopt the T5-XXL model as our textual encoder, which contains 11B parameters and outputs 4096 dimensional embeddings.

Results

Experimental Setup: Dataset, Metric, and Baselines

Horizon	GCBC	MCIL	HULC	SPIL	Diffuser-1D	Diffuser-2D	Ours
One	64.7 ± 4.0	76.4 ± 1.5	82.6 ± 2.6	84.6 ± 0.6	47.3 ± 2.5	37.4 ± 3.2	88.7 ± 1.5
Two	28.4 ± 6.2	48.8 ± 4.1	64.6 ± 2.7	65.1 ± 1.3	18.8 ± 1.8	9.3 ± 1.3	69.9 ± 2.8
Three	12.2 ± 4.1	30.1 ± 4.5	47.9 ± 3.2	50.8 ± 0.4	5.9 ± 0.4	1.3 ± 0.2	54.5 ± 5.0
Four	4.9 ± 2.0	18.1 ± 3.0	36.4 ± 2.4	38.0 ± 0.6	2.0 ± 0.5	0.2 ± 0.0	$\textbf{42.7} \pm \textbf{5.2}$
Five	1.3 ± 0.9	9.3 ± 3.5	26.5 ± 1.9	28.6 ± 0.3	0.5 ± 0.0	0.07 ± 0.09	32.2 ± 5.2
Avg horizon len	1.11 ± 0.3	1.82 ± 0.2	2.57 ± 0.12	2.67 ± 0.01	0.74 ± 0.03	0.48 ± 0.09	$\boldsymbol{2.88 \pm 0.19}$

LCD is good for lang. cond. RL

	GCBC	HT	Ours
Seen	45.7 ± 2.5	38.0 ± 2.2	$\boxed{ 53.7 \pm 1.7}$
Unseen	46.0 ± 2.9	36.7 ± 1.7	54.0 ± 5.3
Noisy	42.7 ± 1.7	33.3 ± 1.2	$oxed{48.0\pm4.5}$

LCD can generalize to new tasks

Task	Diffuser-1D	Ours
Lift Pink Block Table	31.67 ± 10.27	55.00 ± 16.33
Lift Red Block Slider	13.35 ± 10.25	88.33 ± 8.50
Push Red Block Left	1.64 ± 2.35	35.00 ± 7.07
Push Into Drawer	3.34 ± 4.71	90.00 ± 10.80
Rotate Blue Block Right	5.00 ± 4.10	36.67 ± 14.34
Avg SR	12.67 ± 3.56	61.00 ± 7.79

Faster inference time through hierarchy

	HULC	SPIL	Diffuser-1D	Diffuser-2D	Ours (HLP only)	Ours (full)
Training (hrs) (↓ Lower is Better)	82	86	20.8	49.2	13.3	95.3
Inference time (sec) (\downarrow)	0.005	0.005	1.11	5.02	0.333	0.336
Avg ∇ updates/sec (\uparrow)	.5	.5	4	2.1	6.25	6.25
Model size (↓)	47.1M	54.8M	74.7M	125.5M	20.1M	67.8M
Latent dims (↓)	N/A	N/A	256	1024	32	32

Diffusion vs Other Methods

Task	MLP	Transformer	Ours
One	86.6 ± 2.3	85.4 ± 0.5	88.7 ± 1.5
Two	64.1 ± 0.1	60.9 ± 0.5	69.9 ± 2.8
Three	48.1 ± 8.3	42.6 ± 1.9	54.5 ± 5.0
Four	35.7 ± 8.8	29.8 ± 2.5	$\textbf{42.7} \pm \textbf{5.2}$
Five	25.5 ± 7.6	20.0 ± 1.8	32.2 ± 5.2
Avg SR	2.60 ± 0.33	2.36 ± 0.08	2.88 ± 0.19

Training Test Env A turn on the light bulb" block to the left in the slide

CALVIN benchmark example. Trained on long trajectories of a series of actions, the model will be tested on a new, never seen before trajectory.

Denoised Latent Representations. Directly using latent diffusion models fails. Hallucination occurs on Diffusor-1D, and loss of fine details occurs on Diffuser-2D.

An overview of our Denoising process. This an example of the denoising process of one of our ablations, the Diffuser-2D model.