# Lecture3 Optimization

Kuggle Deep Learning Study week1



1. Random Search

우리가 이제까지 배운 것:

- 1. 예측하는 모델을 만드는 것 (Wx+b 이용하는 등 ···)
- 2. 이 모델이 좋은 지 나쁜 지 판단하는 Loss function (지우가 바로 직전에 설명해준 ☺) ex) SVM의 <u>hinge loss</u>, multinomial Logistic Regression의 <u>softmax</u>

-> 이제부터는 데이터로부터 계산된 Loss를 바탕으로 더 좋은 모델이 되도록 뭔가를 할 거예요!

## 1. Random Search



산 전체 = loss function 산의 높이 = loss

내 모델이 <mark>낮은 Loss</mark>를 갖기를 원해!

= <mark>산의 높이가 낮아지는 곳</mark>으로 가길 원해!

Q. 어떻게 하면 산의 낮은 곳으로 이동할 수 있을까?

#### 1. Random Search

## 방법1. 그냥 랜덤하게 방향 정하기 (random search)

```
bestloss = float("inf") # Python assigns the highest possible float

for num in xrange(1000):

W = np.random.randn(10, 3073) * 0.0001 # generate random parametel

loss = L(X_train, Y_train, W) # get the loss over the entire train

if loss < bestloss: # keep track of the best solution

bestloss = loss

bestW = W

print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
```

W를 random으로 정해 -> loss를 구해 -> loss가 낮아졌으면 그 값으로 W를 바꿔 -> loss가 낮아지지 않았으면 pass

방법1. 그냥 랜덤하게 방향 정하기 (이것도 해보고, 저것도 해보고 …)

방법2. 기울기를 따라 이동하기 (gradient descent)

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

기울기를 따라 이동하려면, 먼저 기울기(gradient)를 계산해야 한다. (gradient를 어떻게 weight update에 사용하는지는 뒤에 나와요) \* 여기서 gradient란 편도함수의 집합이라고 생각하면 쉬워요.



# \_ 2. Follow the slope -

| current W:   | W + h (first dim):           | gradient dW:        |
|--------------|------------------------------|---------------------|
| [0.34,       | [0.34 + <b>0.0001</b> ,      | [?,                 |
| -1.11,       | -1.11, <mark>편미분 값을 우</mark> | <br> 해 w1의 값만 조금 증가 |
| 0.78,        | 0.78,                        | ?,                  |
| 0.12,        | 0.12,                        | ?,                  |
| 0.55,        | 0.55,                        | ?,                  |
| 2.81,        | 2.81,                        | ?,                  |
| -3.1,        | -3.1,                        | ?,                  |
| -1.5,        | -1.5,                        | ?,                  |
| 0.33,]       | 0.33,]                       | ?,]                 |
| loss 1.25347 | loss 1.25322                 | ,                   |

current W:

# [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...

loss 1.25347

# W + h (first dim): [0.34 + 0.0001]-1.11, 0.78, 0.12, 0.55, 2.81, 0.33,...] loss 1.25322

# gradient dW:

[-2.5,  
?,  
?,  
(1.25322 - 1.25347)/0.0001  
= -2.5  
$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,  
?,...]

#### current W: W + h (second dim): [0.34,[0.34,-1.11, -1.11 + 0.00010.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1,-1.5, [0.33,...]0.33,...] loss 1.25353 loss 1.25347

## gradient dW:

[-2.5,  
0.6,  
?,  
?,  
(1.25353 - 1.25347)/0.0001  
= 0.6  

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
?,...]

#### current W: **W + h** (third dim): [0.34,[0.34,-1.11, -1.11, 0.78 + 0.00010.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, 0.33,...] 0.33,...] loss 1.25347 loss 1.25347

## gradient dW:

[-2.5,  
0.6,  
0,  
?,  
(1.25347 - 1.25347)/0.0001  
= 0  

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

근데 이거 언제 다해? …

우리가 gradient를 구한 방식은 수치 미분(numerical differentiation) (변화량을 아주 작은 값으로 두고 계산하는 것: 우리는 0.0001로 두고 계산했다)

<mark>수치 미분(numerical differentiation)</mark> approximate하고, 느려

-> <mark>해석 미분(analytical differentiation)</mark> 사용해서 gradient 구하는 걸로 바꾸자!

(이것을 사용하면 나중에 나오는 backpropagation을 사용할 수 있게 된다!)

수치미분의 단점으로 gradient를 analytical differentiation으로 구한다고 하자.

그렇다면 이제 gradient를 이동하는데 어떻게 활용할 것인가?

#### 잠깐, remind!

- \*우리가 하고자 하는 것은 Loss를 작게 만드는 parameter(W)를 찾는 것
- \* Loss를 작게 만들기 위해 W를 어떻게 이동시켜야 하는지 그 정보를 찾는 것!

#### current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

dW = ... (some function data and W)

## gradient dW:

[-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, Gradient가 의미하는 바?

#### current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

dW = ... (some function data and W)

## gradient dW:

[-2.5, 0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3,

## Gradient가 의미하는 바?

W1을 1만큼 증가하면 loss는 -2.5 증가 = 2.5 감소

#### current W:

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

dW = ... (some function data and W)

## gradient dW:

0.6, 0, 0.2, 0.7, -0.5, 1.1, 1.3, -2.1,...]

[-2.5,

## Gradient가 의미하는 바?

W1을 1만큼 증가하면 Loss는 -2.5 증가 = 2.5 감소

W2를 1만큼 증가하면 Loss는 0.6 증가

#### current W:

loss 1.25347

Gradient가 음수(-)일 때 w가 증가(+)하면 Loss 감소

Gradient가 양수(+)일 때 w가 감소(-)하면 Loss 감소 data and W)

0.55,

- -> gradient의 반대 방향으로 이동하면 Loss 감소!
- -> gradient로부터 이동할 방향에 대한 정보를 얻자! 0.33,...]

## gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

## Gradient가 의미하는 바?

W1을 1만큼 증가하면

Loss는 -2.5 증가

= 2.5 감소

W2를 1만큼 증가하면

Loss는 0.6 증가



```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

업데이트 된 weight 업데이트 이전 weights Gradient의 <mark>반대방향</mark>으로 이동

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

업데이트 된 weight 업데이트 이전 weights Gradient의 <mark>반대방향</mark>으로 이동

Big learning rate



Overshooting ☺ 오히려 Loss가 증가하는 방향으로 update가 될 수도

Small learning rate



Slow ⊗ 너무 느리게 진행된다

Big learning rate

Small learning rate

- 1. 언제나 적절한 learning rate는 존재하지 않는다!
- 2. 적절한 learning rate를 설정해주는 것은 중요하다.
- 3. Gradient descent 외 다른 optimizer도 다수 존재한다. Ex) Adam, Momentum, …

Overshooting ② 오히려 Loss가 증가하는 방향으로 update가 될 수도

Slow ⊗ 너무 느리게 진행된다

Gradient를 구하려면 먼저 Loss를 구해야 한다!

Loss를 구하려면 각 데이터에서 prediction을 구하고, 실제 정답과 비교해야 한다.

## 근데, 데이터가 엄청 많으면?

Loss 구하는데 시간이 너무 오래 걸린다.

-> 학습하는 데 시간 너무 오래 걸린다 ⊗

Gradient를 구하려면 먼저 Loss를 구해야 한다!

Loss를 구하려면 각 데이터에서 prediction을 구하고, 실제 정답과 비교해야 한다.

전체 데이터가 아니라 일부 데이터(mini batch)로만 Loss를 구하자!

근데, 데이터가 엄청-> stochastic gradient descent

Loss 구하는데 시간이 너무 오래 걸린다.

-> 학습하는 데 시간 너무 오래 걸린다 ♡

| — 4. Stochastic Gradient Descent                                        |  |  |
|-------------------------------------------------------------------------|--|--|
| 4. Stochastic diadicht beseem                                           |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
| Q. Stochastic은 무슨 의미로 붙었나요?                                             |  |  |
| A. 여기서 stochastic은 '확률적인' 이라는 뜻으로,                                      |  |  |
| 전체 데이터의 loss를 sample 데이터에서 구한 loss로 추정하고, Sample 데이터로 gradient를 추정하기 때문 |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |



$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

# Vanilla Minibatch Gradient Descent

```
while True: 전체 데이터에서 일부 데이터만 뽑는다
```

data\_batch = sample\_training\_data(data, 256) # sample 256 examples
weights\_grad = evaluate\_gradient(loss\_fun, data\_batch, weights)
weights += - step\_size \* weights\_grad # perform parameter update

#### Algorithm 8.1 Stochastic gradient descent (SGD) update

**Require:** Learning rate schedule  $\epsilon_1, \epsilon_2, \ldots$ 

**Require:** Initial parameter  $\theta$ 

$$k \leftarrow 1$$

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{x^{(1)}, \ldots, x^{(m)}\}$  with corresponding targets  $y^{(i)}$ .

Compute gradient estimate:  $\hat{\boldsymbol{g}} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ 

Apply update:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon_k \hat{\boldsymbol{g}}$ 

$$k \leftarrow k + 1$$

end while



- 4. Stochastic Gradient Descent -
  - 1. Hyperparameter vs parameter
  - Hyperparameter : 모델 학습 전에 설정되어야 하는 변수 (우리가 설정!) ex. learning\_rate
  - Parameter : 모델이 학습되며 업데이트 되는 변수 ex. 회귀분석에서는 회귀계수, Wx+b에서 W와 b
  - 2. mini-batch

https://light-tree.tistory.com/133

발표 들어주셔서 감사합니다