K 11/1

МАГНИТНОЕ ПОЛЕ ТОКА

Магнитное взаимодействие. Магнитное поле

$$\left. F
eq rac{F_{ ext{ iny Kyn}}}{F_{ ext{ iny Paas}}}
ight\}
ightarrow F_{ ext{ iny Mass}}$$

Эрстед (дат.) — вокруг проводника с током существует магнитное поле

Свойства магнитного поля:

- Порождается током
- Обнаруживается по действию на ток
- Механизм взаимодействия: поле ток
- Вектор магнитной индукции

Опыт: $F_{max} \sim I \cdot \Delta l$

$$oxed{ |F_{max}| \over I \cdot \Delta l} = const = B$$

$$[B] = rac{H}{A \cdot \mathcal{M}} = T \pi$$

$$ec{B} \uparrow \uparrow igwedge^N$$

- Линии магнитной индукции (ЛМИ)
 - Замкнуты (поле вихревое)
 - Не перескаются

Правило буравчика: — Если жало *↑*↑I, то вращ. рукоят. ТТ ЛМИ

Правило буравчика:

— Если пальцы **↑**↑I, то отогн. б/палец. ↑↑ ЛМИ

Сила Ампера (на проводник в магнитном поле)

$$F_A = B \cdot I \cdot \Delta l \cdot \sin{(\widehat{I, B})}$$

Направление $F_A o$ правило левой руки

Сила Лоренца (на частицу в магнитном поле)

$$F_A = \sum f_{\scriptscriptstyle \mathcal{I}}$$

Применение $f_{\scriptscriptstyle \mathcal{I}}$: • Определение $\frac{1}{2}$ (масс-спектрограф)

- Отклонение \overline{e} в кинескопе
- Полярное сияние
- Циклотрон
- МГД генератор
- Магнитные свойства вещества

 $t_{\mathit{K}\!\mathit{w}\mathit{p}\mathit{u}}^{\circ}$: ферром. \longrightarrow парамаг.

примечание

примечание