General Instruction

- Submit uncompressed file(s) in the Dropbox folder via BeachBoard (Not email).
- 1. Implement multi-layer neural network **WITHOUT** using external deep learning libraries such as Keras, Caffe, Theano, TensorFlow, ...
 - (a) (1 point) Complete Assignment_4_keras.ipynb to train a model that approximates XOR function.
 - The width of the layer 1 is 2, and the width of the layer 2 is 1.
 - The activation functions of the layer 1 are the hyperbolic tangent.
 - The activation function of the layer 2 is the sigmoid.
 - The loss function is the binary cross entropy.
 - (b) (25 points) Calculate $\frac{\partial L}{\partial \vec{W}^{(1)}}$, $\frac{\partial L}{\partial \vec{w}^{(2)}}$, $\frac{\partial L}{\partial \vec{b}^{(1)}}$, and $\frac{\partial L}{\partial b^{(2)}}$. Please include the answers in the Jupyter notebook. Notice that you can use LaTeX equation in the Jupyter notebook.
 - (c) (25 points) Implement Assignment_4_scratch.ipynb without using any external deep learning libraries. However, you can use auxiliary libraries such as numpy.
 - (d) Submit both Assignment_4_scratch.ipynb and Assignment_4_scratch.html (or Assignment_4_scratch.pdf).

Figure 1: network design