Problem

 $A \subseteq C \text{ and } B \subseteq \overline{C}.$

Let A and B be two disjoint languages. Say that language C separates A and B if disjoint Turing-recognizable languages that aren't separable by any decidable language.

Describe two

Step-by-step solution

Step 1 of 2

Let A and B are two disjoint languages. Consider that language C, that separates A and B if $A \subseteq CandB \subseteq \overline{C}$. It can be proved as follows:

- It is quite easy to understand this statement. Read the statement carefully things are pretty obvious all you need to understand is $A \subseteq CandB \subseteq \overline{C}$.
- Here, A is a set of C and B is a set of Complement of C. So, it is quite obvious now A and B both are not related to each other anyhow.
- Here, no use of C because even if we use C it won't be able to prove decidability of A on the basis of B and Turing reducibility of A on the basis of B. If it comes to languages those are fully different and belong to different sets then no separators are required. So, here it is worthless to use C as separator.

Comment

Step 2 of 2

Now, consider a Turing machine T that will work as a decider for the language C that separates A and B. Consider both languages as Regular Expressions that will be decided by M_1 and M_2 .

- 1. $S = \langle M, w \rangle$ Where M is a Turing machine.
- 2. Now, run $< M_1, W>$ and $< M_2, W>$
- 3. If M_1 accepts then M rejects and if M_2 accepts M rejects.
- Remember $\,M$ will always halt in each situation. Where C decides A or B. Now it is pretty easy to understand the situation.
- Therefore, it can be said that only the first statement of question is enough to prove the concept" No decidable languages can be used to separate two disjoint Turing recognizable languages".

Comment