1001ICT Introduction To Programming 1 2013-2 Laboratory 5

School of Information and Communication Technology Griffith University

August 20, 2013

When	Teaching week 6
Goals	In this laboratory you will write programs that use loops.
Marks	4
Robots	Cyclops-NXT
Props	Bollard
Tracks	Stripe Track
	WhiteBlack Track

1 Preparation

Before your lab class:

- Print these lab notes. You need to refer to them a lot before the lab class and during it.
- Read up to section 15 of the lecture notes.
- Browse the console and nxt environment documentation available at http://www.ict.griffith.edu.au/arock/itp/students/mash/.
- You can start work before your lab class. If you can't write the complete programs, you could at least create the program files, with header comments and imports.

2 Pre-laboratory questions (1 mark)

Answer the following in the spaces provided, before your laboratory class.

1. For each of the programs you are to write this week:

MaSH console program 1

(a) Is the loop going to be definite or indefinite?

(b) Which loop statement will be required?

MaSH NXT program 1

(a) Is the loop going to be definite or indefinite?

(b) Which loop statement will be required?

MaSH console program 2

(a) Is the loop going to be definite or indefinite?

(b) Which loop statement will be required?

2. (a) What method is used to turn on a lamp?

	(b)	Is it a procedure or a function?
	(c)	How can you tell?
3.	(a)	What method is used to determine whether a touch sensor is currently pushed or not?
	(b)	Is it a procedure or a function?
		How can you tell?
4.	(a)	What method is obtain the current light level being observed by a light sensor?
	()	
	(h)	Is it a procedure or a function?
		How can you tell?
	(0)	now can you ten.
5.	Wh	at is the Java operator meaning "not"?
3	Ac	tivities
All p	rogra	ams must:
•		e header comments showing the name of the file, the author's name, and the purpose of the gram;
•	use	constants for motor and sensor ports; and
•	be r	neatly indented.
3.1	\mathbf{M}	aSH console program 1 (1 mark)

3.

• Write a program that reads a number and prints that many hash characters (#) and then a newline. Example:

```
$ java Line
Enter the size: 50
```

MaSH NXT program 1 (1 mark) 3.2

• Write a program that makes the robot drive across 5 black stripes on the stripe track.

3.3 MaSH NXT program 2 (1 mark)

• This problem will be revealed during the laboratory class.

3.4 MaSH console program 2 (no marks, just kudos)

- Write a program that counts the number of lines in a text file.
- Use input redirection to read from a file instead of the keyboard.

4 After the Laboratory

• Organize the work you have done into folders on your network drive.