

Название

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»
КАФЕДРА	«КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)»

Отчёт

по лабораторной работе №5

высокоуровневого синтеза Xilinx Vitis HLS»

«Разработка ускорителей вычислений средствами САПР

Дисциплина	«Архитектура ЭВМ»		
C	III.= **F		D 4.57
Студент	ИУ7-55Б		Бугаенко А.П.
		(подпись, дата)	(Фамилия И.О.)
Преподователь			А.Ю. Попов
		(подпись, дата)	(Фамилия И.О.)

Содержание

Введение	٠
Практическая часть	4
Результаты сборки и отладки в режиме Emulation SW	(
Результаты сборкии отладки в режиме Emulation HW	7
Результаты сборкии отладки в режиме Hardware	(
Вывод	،

Введение

Целью данной работы является изучение методики и технологии синтеза аппаратных устройств ускорения вычислений по описаниям на языках высокого уровня. В ходе лабораторной работы рассматривается маршрут проектирования устройств, представленных в виде синтаксических конструкций ЯВУ C/C++, изучаются принципы работы IDE Xilinx Vitis HLS и методика анализа и отладки устройств.

В ходе работы необходимо разработать ускоритель вычислений по индивидуальному заданию, разработать код для тестирования ускорителя, реализовать ускоритель с помощью средств высоко уровненного синтеза, выполнить его отладку.

Для достижения данной цели необходимо выполнить следующие задачи:

- 1) Разработать ускоритель вычислений по индивидуальному заданию;
- 2) Разработать код для тестирования ускорителя, реализовать ускоритель с помощью средств высоко уровненного синтеза;
 - 3) Выполнить отладку реализованного ускорителя.

Практическая часть

Листинг 1 — Листинг неоптимизированного кода

```
extern "C" {
 1
2
   void var002_no_prragmas(int* c, const int* a, const int* b, const int len) {
        for (int i = 0; i < len; i+=2) {
3
              if (b[i] > a[i]) {
 4
 5
                   c[i] = b[i];
              } else {
 6
7
                   c[i] = a[i];
8
9
        for (int i = 1; i < len; i+=2) {
10
              if (b[i] < a[i]) {
11
12
                   c[i] = b[i];
              } else {
13
                   c[i] = a[i];
14
15
16
        }
17
18
```

Листинг 2 — Листинг кода с конвейерной организацией

```
extern "C" {
 1
 2
   void var002 pipelined(int* c, const int* a, const int* b, const int len) {
3
       for (int i = 0; i < len; i+=2) {
4
   #pragma HLS PIPELINE
              if (b[i] > a[i]) {
5
6
                   c[i] = b[i];
              } else {
7
8
                   c[i] = a[i];
9
10
        for (int i = 1; i < len; i+=2) {
11
12
              if (b[i] < a[i]) {
13
                   c[i] = b[i];
14
              } else {
                   c[i] = a[i];
15
16
17
       }
18
19
```

```
Листинг 3 — Листинг кода с развёрткой
```

```
1 extern "C" {
```

```
void var002 unrolled(int* c, const int* a, const int* b, const int len) {
2
3
       for (int i = 0; i < len; i+=2) {
   #pragma HLS UNROLL factor = 2
4
 5
              if (b[i] > a[i]) {
 6
                   c[i] = b[i];
7
              } else {
                   c[i] = a[i];
8
9
10
11
        for (int i = 1; i < len; i+=2) {
12
   #pragma HLS UNROLL factor = 2
13
              if (b[i] < a[i]) {
                   c[i] = b[i];
14
15
              } else {
                   c[i] = a[i];
16
17
18
       }
19
20
```

Листинг 4 — Листинг кода с развёрткой и конвейерной организацией

```
extern "C" {
1
2
    void var002_pipe_unroll(int* c, const int* a, const int* b, const int len) {
        for (int i = 0; i < len; i+=2) {
3
   #pragma HLS PIPELINE
4
   \#pragma HLS UNROLL factor = 2
5
              if (b[i] > a[i]) {
6
                   c[i] = b[i];
7
8
              } else {
                   c[i]= a[i];
9
10
11
12
        for (int i = 1; i < len; i+=2) {
   #pragma HLS UNROLL factor = 2
13
              if (b[i] < a[i]) {
14
                   c[i] = b[i];
15
              } else {
16
                   c[i] = a[i];
17
18
19
        }
20
21
```

Результаты сборки и отладки в режиме Emulation SW

☑ Console 🏻 📗 Vitis Log 🛈 Guidance 🔫 Progress <terminated> (exit value: 0) SystemDebugger_hls_acc_lab_system_hls_acc_lab [OpenCL] /iu_home/iu7122/workspa [Console output redirected to file:/iu_home/iu7122/workspace_lab_2/hls_acc_lab/Emulation Found Platform Platform Name: Xilinx INFO: Reading /iu_home/iu7122/workspace_lab_2/hls_acc_lab_system/Emulation-SW/binary_conLoading: '/iu_home/iu7122/workspace_lab_2/hls_acc_lab_system/Emulation-SW/binary_contain Trying to program device[0]: xilinx_u200_xdma_201830_2 Device[0]: program successful! Kernel | Wall-Clock Time (ns)+....+....+.... var002_no_prragmas 4272545 var002_unrolled 4100841 | var002_pipelined | 713143

Note: Wall Clock Time is meaningful for real hardware execution only, not for emulation. Please refer to profile summary for kernel execution time for hardware emulation. TEST PASSED.

Рисунок 0.1 — Результат работы программы

Результаты сборкии отладки в режиме Emulation HW

Рисунок 0.1 — Assistant View

Рисунок 0.2 — Окно внутрисхемового отладчика Vivado

Рисунок 0.3 — Результат работы программы

Результаты сборкии отладки в режиме Hardware

Рисунок 0.1 — Содержимое вкладки Summary часть 1

Рисунок 0.2 — Содержимое вкладки Summary часть 2

Рисунок 0.3 — Содержимое вкладки System Diagram

Рисунок 0.4 — Содержимое вкладки Platform Diagram

Рисунок 0.5 - HLS no params

Рисунок 0.6 — HLS unroll

Рисунок 0.7 — HLS pipe

Рисунок 0.8 — HLS pipe unroll

Рисунок 0.9 — Результаты работы программы

Вывод

В ходе лабораторной работы были изучены архитектура гетерогенных вычислительных систем и технологии разработки ускорителей вычислений на базе ПЛИС фирмы Xilinx. Была выполнена генерация ядра ускорителя с последующим синтезом, сборкой и тестированием бинарного модуля ускорителя.

В результате сборки проекта было выяснено, что использование оптимизаций приводит к реальному повышению быстродействия работы программы. Однако следует отметить, что в режиме программной эмуляции выигрыш получился наиболее существенным (до 3-х раз), а в режимах аппаратной эмуляции и аппаратного исполнения ускорение осталось, но оно не настолько существенное (до 5-10%). Это можно объяснить тем, что возможно объем тестирования был недостаточным и небольшая выборка данных не позволяет получить наиболее точные результаты, также ввиду большой загруженности удаленного сервера и разного количества пользователей на нем, тестирование происходило не в равных условиях.