7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ РАЗРАБОТКИ И ПРОИЗВОДСТВА ДИСТАНЦИОННО УПРАВЛЯЕМОГО ИСТОЧНИКА ПИТАНИЯ СВЧ МАГНЕТРОНА СРЕДНЕЙ МОЩНОСТИ

В рамках выполнения дипломного проекта проводится техникоэкономическое обоснование. Основная цель — подтверждение коммерческой эффективности, целесообразности коммерциализации проектного решения, а также подтверждение актуальности разработки.

Экономическое обоснование разработки и производства нового изделия осуществляется на основе методики, изложенной в [85, стр. 26–36]. Подход, описанный в методике, является эффективным и применимым в реальных экономических условиях, поскольку при разработке методики учитывался и аккумулировался богатый опыт в экономическом обосновании принципиально новых проектов, а также правил по разработке бизнес-планов.

В процессе выполнения обоснования разработки и производства дистанционно управляемого источника питания СВЧ магнетрона средней мощности и выполнении экономических расчётов, предлагаемых методикой, были использованы действующие цены на радиоэлектронные компоненты, действующие заработные платы разработчиков, технологов и нормоконтролёров, действующие ставки рефинансирования, а также ставки налогов и отчислений.

Для анализа и оценки экономической эффективности инвестиций в разработку и производство нового изделия необходимо:

- рассчитать экономический эффект (результат), полученный от производства нового изделия (прирост чистой прибыли);
- рассчитать инвестиции (затраты) в производство (разработку) нового изделия;
- рассчитать показатели экономической эффективности инвестиций в производство и реализацию нового изделия.

Основываясь на проведённом анализе устройств, предлагаемых рынком электронной техники, можно сделать вывод, что разрабатываемое в рамках дипломного проекта устройства в полной мере удовлетворяет требованиям рынка, а также потенциально должно обеспечить технический и коммерческий успех. Следовательно, проектное решение, является новым и актуальным, а также обладает широким спектром преимуществ, таких как:

- низкая цена в своём классе устройств;
- высокая надёжность устройства;

- безотказность сохранение постоянной работоспособности в течение срока эксплуатации;
- функциональность настройка выходной мощности в широком диапазоне и высокая стабильность сигнала дистанционного управления;
 - долговечность;
- ремонтопригодность приспособленность товара к ликвидации различных отказов и повреждений;
- сохраняемость сохранение работоспособности после транспортировки или хранения;
 - эргономичность удобство и комфорт использования товара.

Формирование отпускной цены нового изделия, производство которого автоматизировано, осуществляется на основе расчета его полной себестоимости.

Расчёт затрат по статье «Основные и вспомогательные материалы», в которую включается стоимость необходимых для изготовления изделия основных и вспомогательных материалов в соответствии с представленной в конструкторской документации дипломного проекта номенклатурой, норм расхода на изделие и рыночных цен, осуществляется по формуле:

$$P_{M} = K_{Tp} \cdot \sum_{i=1}^{n} H_{pi} \cdot \coprod_{OT\Pi i} = 29,1 \text{ p.,}$$
 (7.1)

где K_{TP} – коэффициент транспортных расходов ($K_{TP} = 1,15$);

n — номенклатура применяемых материалов;

 ${\rm H}_{{
m P}i}$ — норма расхода материала i-го вида на единицу изделия, нат. ед./шт.;

 $\coprod_{OT\Pi i}$ – цена за единицу материала i-го вида, р.

Результат расчета затрат на материалы приведен в таблице 7.1.

Таблица 7.1 – Расчёт затрат на основные и вспомогательные материалы

Наименование	Ед. изм.	Норма	Цена, р.	Сумма, р.	
материала		расхода	_		
Сталь нержавеющая 08X22H6T	ТН	0,001833	13 794,50	25,28	
Прочие материалы	TH				
Итого		0,001833	13 794,50	25,28	
Всего с учётом					
транспортных				29,1	
расходов (Рм)					

Расчёт затрат по статье «Покупные комплектующие изделия, полуфабрикаты», в которую включается стоимость необходимых для изготовления изделия комплектующих изделий в соответствии с представленной в конструкторской документации дипломного проекта номенклатурой, количеством на изделие и рыночных цен, осуществляется по формуле:

$$P_{K} = K_{Tp} \cdot \sum_{i=1}^{m} N_{i} \cdot \coprod_{OT\Pi i} = 553.8 \text{ p.},$$
 (7.2)

где m — номенклатура применяемых комплектующих;

 N_i – количество комплектующих і-го вида на единицу изделия, нат. ед./шт.

Результат расчета затрат на комплектующие изделия и полуфабрикаты приведен в таблице 7.2.

Таблица 7.2 – Расчёт затрат на комплектующие изделия и полуфабрикаты

	Количество	Цена за единицу	Сумма, р.	
Наименование комплектующего	на изделие,	комплектующего,		
	шт.	p.		
1	2	3	4	
1. Двусторонняя печатная плата	1	3,5	3,5	
2. Диодный мост <i>КВРС5010</i>	2	5,2	10,4	
3. Реле <i>SRD-05VDC-SL-C</i>	2	2,25	2.50	
"SONGLE"	2	2,23	2,50	
4. Оптрон <i>4N25</i>	2	1,9	3,8	
5. Конденсатор <i>X7R 2220</i> 0,1мкФ	1	2,3	2,3	
6. Конденсатор	1	0,18	0,18	
электролитический <i>X5R</i> 10мкФ	1	0,16	0,10	
7. Конденсатор	1	3,8	3,8	
электролитический ЕСАР 100мкФ	1	3,6	3,6	
8. Конденсатор керамический	1	0,27	0,27	
<i>NPO 0805</i> 10пФ	1	0,27	0,27	
9. Конденсатор	1	4,70	4,70	
электролитический ЕСАР 470мкФ	1	4,70	4,70	
10. Конденсатор керамический	1	0,19	0,19	
<i>X7R</i> 2,2мкФ	1	0,19	0,19	
11. Конденсатор керамический	1	0,59	0,59	
<i>X7R</i> 0,1мкФ	1	0,39	0,33	

Продолжение таблицы 7.2.

продолжение песницы 7.2.			
1	2	3	4
12. Конденсатор керамический	1	0,09	0,09
<i>X7R</i> 5600πΦ	1	0,09	0,09
13. Конденсатор керамический	1	0,18	0,18
<i>X7R</i> 45мкФ	1	0,18	0,10
14. Конденсатор керамический	1	0.50	0.50
<i>X7R</i> 0,1мкФ	1	0,59	0,59
15. Конденсатор керамический	1	0.40	0.40
<i>X7R</i> 0,33мкФ	1	0,49	0,49
16. Конденсатор керамический	1	0.00	0.00
<i>X7R</i> 8200πΦ	1	0,09	0,09
17. Конденсатор керамический	1	0,17	0,17
<i>NPO</i> 150πΦ	1	0,17	0,17
18. Микросхема LD111	1	1,90	1,90
"STMICROELECTRONICS"	1	1,90	1,90
19. Микросхема TNY265 "All	1	24,50	24,50
POWERINT"	1	24,30	24,30
20. Микроконтроллер EPS8266	1	50,70	50,70
"Espressif Systems"	1	30,70	30,70
21. ШИМ генератор XY-LPWM			
"Shenzhen Alisi Electronic	1	35,00	35,00
Technology"			
22. Микросхема ТСА785НКLА1	1	25	25
"SIEMESNS"	1	23	23
23. Транзистор 2N7002	1	0,56	0,56
24. Транзистор <i>КТ819А</i>	1	3,40	3,40
25. Транзистор <i>IGBT GT60N321</i>	1	35	35
26. Транзистор 2SC2785	2	1,85	1,85
27. Диод Шотки <i>1N5819</i>	2	0,42	0,84
28. Диод <i>FR207</i>	8	0,42	3,36
29. Диод <i>SB3100</i>	3	2,60	7,8
30. Трансформатор <i>TI-EE16-1534</i>	2	21.60	62.20
"FERYSTER"	2	31,60	63,20
31. Трансформатор <i>ALT3232M</i> -	1	5,70	5,70
151-T001 "TDK"		·	
32. Трансформатор <i>F609ABA00GP</i>	1	173,80	173,80
32. Разъём AS-208 (K2414), 220B	1	5,00	5,00
IEC320	_	-,	- ,

Продолжение таблицы 7.2.

1	2	3	4
33. Антенна <i>RP-SMA 2.4G 2DB</i>	1	31,00	31,00
34. Резистор 0805 10 кОм, 1%	1	0,03	0,03
35. Резистор 0805 3,6 кОм, 1%	1	0,03	0,03
36. Резистор 0805 2 кОм, 5%	1	0,03	0,03
37. Резистор 0805 1 кОм, 1%	1	0,03	0,03
38. Резистор 0402 200 кОм, 1%	1	0,02	0,02
39. Резистор 0805 100 кОм, 5%	1	0,03	0,03
40. Резистор 0805 15 кОм, 5%	1	0,03	0,03
41. Резистор 0805 10 кОм, 5%	1	0,03	0,03
42. Резистор 0805 10 Ом, 1%	1	0,03	0,03
43. Резистор 0805 10 кОм, 5%	1	0,03	0,03
44. Резистор 0805 2 кОм, 5%	1	0,03	0,03
45. Резистор 1206 100 кОм, 5%	2	0,04	0,08
46. Резистор 0805 1.5 кОм, 5%	1	0,03	0,03
47. Резистор 0805 56 кОм, 1%	1	0,03	0,03
48. Резистор 0805 91 кОм, 1%	1	0,03	0,03
49. Резистор 0805 240 Ом, 1%	1	0,03	0,03
50. Резистор 0805 110 кОм, 1%	1	0,03	0,03
51. Резистор 0805 56 кОм, 5%	1	0,03	0,03
52. Резистор 0805 82 кОм, 1%	6	0,03	0,18
53. Резистор подстроечный 3006P-1-501LF, 500 Ом	1	2,85	2,85
54. Винт А.М3×10	4	1,14	4,56
55. Шуруп 2,5×14	4	0,13	0,52
56. Ножка силиконовая	4	0,27	1,08
57. Провод <i>LiY</i> 1*0.14	1	0,35	0,35
Итого	88	460,25	481,57
Всего с учетом транспортных расходов $(1,1-1,2)$ (P_{κ})			553,8

Расчет накладных расходов проводится по формуле:

$$P_{\text{накл}} = \frac{(P_{\text{M}} + P_{\text{K}}) \cdot H_{\text{накл}}}{100} = \frac{(29.1 + 553.8) \cdot 54}{100} = 314.8 \text{ p.,}$$
 (7.3)

где $P_{_{M}}$, $P_{_{K}}$ — расходы на материалы и комплектующие изделия, р.;

 $H_{\text{накл}}$ — норматив накладных расходов, % ($H_{\text{накл}} = 54,0$ % для радиоэлектронной техники).

Полная себестоимость рассчитывается по формуле:

$$C_{\Pi} = P_{M} + P_{K} + P_{HAK\Pi} = 29.1 + 553.8 + 314.8 = 897.7 \text{ p.}$$
 (7.4)

Расчет плановой прибыли проводится по формуле:

$$\Pi_{\rm eg} = \frac{C_{\rm m} \cdot P_{\rm mp}}{100} = \frac{897.7 \cdot 25}{100} = 224.4 \text{ p.},$$
 (7.5)

где P_{np} – рентабельность продукции, (15–40 %).

Отпускная цена рассчитывается по формуле:

$$L_{\text{отп}} = C_{\text{п}} + \Pi_{\text{ел}} = 897,7 + 224,4 = 1122,1 \text{ p.}$$
 (7.6)

Формирование отпускной цены нового изделия представлено в таблице 7.3.

Таблица 7.3. – Формирование отпускной цены нового изделия на основе полной себестоимости

Показатель	Расчет по формуле	Сумма, р.
1. Материалы	См. табл. 7.1	29,1
2. Покупные комплектующие изделия	См. табл. 7.2	553,8
3. Накладные расходы	Формула (7.3)	314,8
4. Полная себестоимость	Формула (7.4)	897,7
5. Плановая прибыль	Формула (7.5)	224,4
6. Отпускная цена изделия	Формула (7.6)	1122,1

Экономическим эффектом от производства и реализации новых изделий является прирост чистой прибыли, полученной от их реализации.

Расчет прироста чистой прибыли у предприятия—производителя от реализации новых изделий (при формировании цены на основе полных затрат) осуществляется по формуле:

$$\Delta\Pi_{\rm q} = N_{\rm m} \cdot \Pi_{\rm eg} \left(1 - \frac{H_{\rm m}}{100} \right) = 1000 \cdot 224.4 \cdot \left(1 - \frac{18}{100} \right) = 184008 \,\mathrm{p.},$$
 (7.7)

где $N_{\rm II}$ — прогнозируемый годовой объём производства и реализации изделий, шт. Прогнозируемый годовой объём производства в рамках дипломного проекта — 1000 шт, т.к. это пробная партия.

 $\Pi_{E\!I\!I}$ – плановая прибыль, приходящаяся на единицу изделия, р.;

 H_{Π} — ставка налога на прибыль согласно действующему законодательству, % (по состоянию на $01.01.2022~\mathrm{r.}-18~\%$).

Затраты в производство нового изделия включают в общем случае:

- инвестиции на его разработку;
- инвестиции в прирост основного капитала (затраты на приобретение необходимого для производства нового изделия оборудования, станков и т.п.);
- инвестиции в прирост собственного оборотного капитала (затраты на приобретение необходимых для производства нового изделия материалов, комплектующих, начатой, но незавершенной продукции и т.п.).

Инвестиции в разработку нового изделия могут быть оценены двумя альтернативными способами:

- по договорной цене разработчика, если разработка нового изделия осуществляется сторонней организацией (по смете разработчика);
- по затратам на разработку нового изделия инженерами предприятияпроизводителя, расчет которых осуществляется по методике, представленной ниже.

Основная заработная плата разработчиков рассчитывается по формуле:

$$3_{\text{o}} = K_{\text{пр}} \sum_{i=1}^{n} 3_{\text{дH}i} \cdot T_{i} = 5543,53 \text{ p.,}$$
 (7.8)

где $K_{\Pi P}$ – коэффициент премий ($K_{\Pi P}$ = 1,3);

n — категории исполнителей, занятых разработкой усовершенствованного изделия; $\mathbf{3}_{\mathtt{дн}i}$ — дневная заработная плата исполнителя i-й категории, p.;

 T_i — продолжительность участия в разработке исполнителя і-й категории, д.

Дополнительная заработная плата разработчиков рассчитывается по формуле:

$$3_{\pi} = \frac{3_0 \cdot H_{\pi}}{100}, = \frac{5543,53 \cdot 10}{100} = 554,35 \text{ p.,}$$
 (7.9)

где $H_{\rm д}$ — норматив дополнительной заработной платы, (можно принять на уровне среднего по экономике 10–20 %).

Отчисления на социальные нужды рассчитываются по формуле:

$$P_{\text{соц}} = \frac{(3_0 + 3_{\text{д}}) \cdot H_{\text{соц}}}{100} = \frac{(5543,53 + 554,35) \cdot 34,6}{100} = 2109,87 \text{ p.,}$$
 (7.10)

где H_{COU} — ставка отчислений в Φ C3H и Белгосстрах (в соответствии с действующим законодательством по состоянию на 01.01.2020 г. -34,6 %).

Расчет инвестиций на разработку нового изделия проводится по формуле:

$$3_p = 3_o + 3_A + P_{coil} = 5543,53 + 554,35 + 2109,87 = 8207,75 p.$$
 (7.11)

Расчет заработной платы разработчиков нового изделия, рассчитанный по формуле (7.8) представлен в таблице 7.4.

Таблица 7.4 – Расчет заработной платы разработчиков нового изделия

Категория исполни- теля	Числен- ность исполн и-телей, чел.	Месячна я заработ- ная плата, р.	Дневна я заработ -ная плата, р.	Продолжител ь-ность участия в разработке, д.	Зарабо т-ная плата, р.	Преми я, (30– 60 %)
1 Руково- дитель проекта	1	1900	90,47	21	2000,00	570
2 Инженер- конструктор	1	1570	74,76	15	1121,40	336,42
3 Инженертехнолог	1	1500	71,43	10	571,40	214,29
4 Нормо- контролёр	1	1200	57,14	7	571,40	119,99
5 Сборщик	1	900	42,85	3	219,05	38,57
Итого	5	7070	336,66	56	4264,25	1279,28

Дневная заработная плата разработчиков нового изделия определяется путём деления их месячной заработной платы (оклад плюс надбавки) на количество рабочих дней в месяце (21). Размер месячной заработной платы разработчика каждой категории соответствует установленному на предприятии—производителе фактическому ее размеру.

Результат расчета затрат на разработку нового изделия приведен в таблице 7.5.

Таблица 7.5 – Расчет инвестиций на разработку нового изделия

Наименование статьи затрат	Расчет по формуле (в таблице)	Сумма, р.
1. Основная заработная плата разработчиков	См. табл. 7.4	5543,53
2. Дополнительная заработная плата разработчиков	Формула (7.9)	554,35
3. Отчисления на социальные нужды	Формула (7.10)	2109,87
4. Инвестиции на разработку нового изделия	Формула (7.11)	8207,75

Инвестиции в прирост основного капитала не требуются, т. к. производство нового изделия планируется осуществлять на действующем оборудовании в связи с наличием на предприятии—производителе свободных производственных мощностей.

Расчёт инвестиций в прирост собственного оборотного капитала приведен ниже.

Годовая потребность в материалах определяется по формуле:

$$\Pi_{\rm M} = P_{\rm M} \cdot N_{\rm \Pi} = 29.1 \cdot 1000 = 29100 \,\mathrm{p}.$$
 (7.12)

Годовая потребность в комплектующих изделиях рассчитывается по формуле:

$$\Pi_{K} = P_{K} \cdot N_{\Pi} = 553.8 \cdot 1000 = 553800 \text{ p.}$$
 (7.13)

Инвестиции в прирост собственного оборотного капитала в процентах от годовой потребности в материалах и комплектующих изделиях (исходя из среднего уровня по экономике: 20–30 %) рассчитываются по формуле:

$$\Delta H_{\text{COK}} = (0.2 - 0.3)(\Pi_{\text{M}} + \Pi_{\text{K}}) = 0.25 \cdot (29100 + 553800) = 145725 \text{ p. } (7.14)$$

Оценка экономической эффективности разработки и производства нового изделия у предприятия-производителя зависит от результата сравнения инвестиций в производство нового изделия (инвестиции в разработку и прирост собственных оборотных средств) и полученного годового прироста чистой прибыли.

Сумма инвестиций меньше суммы годового экономического эффекта, то есть инвестиции окупятся менее чем за год, оценка экономической эффективности инвестиций в производство нового изделия осуществляется на основе расчета простой нормы прибыли (рентабельности инвестиций (затрат)) по формуле:

$$P_{_{\text{II}}} = \frac{\Delta\Pi_{_{\text{II}}}}{\text{M}_{_{\text{II}}\text{p}}} \cdot 100 \% = \frac{184008}{8207,74 + 145725} \cdot 100 \% = 119,54\%, \tag{7.15}$$

где $И_{\Pi P}$ – инвестиции в производство нового изделия, р.

Таким образом, инвестиции в производство нового изделия будут экономически эффективными, т. к. рентабельность инвестиций превышает 100 % и составляет 119,54% (100 % плюс ставка по банковским долгосрочным депозитам), и, следовательно, разработка нового изделия является целесообразной.