Projet 2022-23, M2 IF app.

Dans tout ce qui suit, on se donne une base stochastique $(\Omega, \mathcal{F}_T, (\mathcal{F}_t)_{t\geq 0}, P)$ où $(\mathcal{F}_t)_{t\geq 0}$ est une filtration représentant l'information disponible sur le marché. Un taux d'intérêt instantanné $(r_u)_{u\in [0,T]}$ sans risque (taux ZC) est donné pour une période [0,T] et est défini selon une approche en continue. L'actif sans risque de prix S^0 du modèle considéré vérifie alors $dS_t^0 = r_t S_t^0 dt$ où $S_0^0 = 1$. On suppose que r est un processus stochastique vérifiant le modèle de Vasicek, c'est à dire l'E.D.S. suivante et on suppose qu'on travaille directement sous la probabilité de risque neutre Q supposée unique. On a

$$dr_t = a(b - r_t)dt + \gamma dW_t \tag{0.1}$$

où a,b et γ sont strictement positifs et W est un mouvement Brownien standard

Question 1 (2pts): Ecrire le schéma d'Euler associé à la dynamique (0.1).

Question 2 (3pts): On se fixe $r_0 = 1.5\%$, a = 0.2, b = 2% et $\gamma = 12\%$. Fournir le code Python permettant de simuler des trajectoires de r lorsque T = 5.

On notera que le modèle de Vasicek peut donner des valeurs de r qui peuvent être négatives.

Question 3 (2pts): Expliquer comment on approxime l'intégrale $\int_0^T r_u du$.

Question 4 (3pts): Fournir le code qui permet alors d'en déduire une approximation du prix ZC, B(0,T) dont on rappelle le prix (expliquer d'où vient la formule ci-dessous):

$$B(0,T) = E_Q(e^{-\int_0^T r_u du}).$$

On considère désormais un actif risqué S modélisé par un modèle à volatilité locale en probabilité de risque neutre avec

$$\sigma(t,x) = 15\%(1 + \sqrt{t} + \frac{x+1}{1+x^2}).$$

On suppose donc que la valeur actualisée du prix \tilde{S} vérifie:

$$d\tilde{S}_t = \sigma(t, \tilde{S}_t)\tilde{S}_t dB_t, \ \tilde{S}_0 = 60.$$

où $B_t = \frac{1}{2}W_t + \frac{\sqrt{3}}{2}C_t$ et C est un mouvement Brownien standard indépendant de W.

Question 5 (1pts): D'après le modèle ci-dessus, dire en expliquant si oui ou non le marché obligataire et l'actif S sont corrélés.

Question 6 (2pts): Donner le schéma d'Euler permettant de simuler des trajectoires de \tilde{S} . Ces trajectoires sont-elles des solutions exactes de l'E.D.S. vérifiée par \tilde{S} ?

Question 7 (3pts): En déduire la procédure permettant de simuler des trajectoires de S. Fournir le code Python ainsi qu'un graphique.

Question 8 (2pts): Rappeler le principe permettant de calculer le prix d'une option de payoff terminal ξ_T à l'instant T dans un marché complet sans opportunité d'arbitrage. Rappeler également le principe numérique permettant de l'approximer.

Question 9 (2pts): En déduire en expliquant et en fournissant le code Python, le prix de l'option Européenne de payoff $(K - S_T)^+$ et celui de l'option Asiatique de payoff $(S_T - \frac{1}{T} \int_0^T S_u du)^+$. Proposer une étude pour différentes valeurs de K autour de S_0 .