ESTABILIDAD

TRABAJO PRÁCTICO Nº1:

FUERZAS CONCURRENTES Y NO CONCURRENTES EN EL PLANO Y EN EL ESPACIO

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 1	Alumno:	
Estática y Resistencia	Composición y	Hojade	Crupo No:
de Materiales	Descomposición de Fuerzas		Grupo Nº:

Ejercicio N°1:

Un tanque de acero debe ser trasladado. Determinar:

a. la magnitud de la fuerza P2 requerida si la resultante de las dos fuerzas aplicadas en A debe ser vertical

b. la magnitud de la resultante R

sabiendo que: $\alpha = 20^{\circ}$ $\beta = 35^{\circ}$ P1 = 460KN

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	Trabajo Fractico N	Aldiffilo.	
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Grupo N°.

Ejercicio N°2:

Sabiendo que el mástil ejerce sobre la articulación C una fuerza dirigida a lo largo de la línea AC y que:

$$\alpha$$
 = 60°
 β = 20°
 \emptyset = 25°
 P_{AC} = 480KN

determine:

a. la magnitud de la fuerza P

b. la tensión en al barra BC

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	,		
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Gгиро IV .

Ejercicio N°3:

Determinar:

a. la tensión en el cable AC

b. la tensión en la cuerda BC

sabiendo que:

 $\alpha = 25^{\circ}$

 $\beta = 10^{\circ}$

P = 350KN

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	Trabajo Fractico N	Aldiffilo.	
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Grupo N°.

Ejercicio N°4:

Una caja de una masa m se encuentra en el piso entre dos paredes. La caja está soportada por un cable vertical, el cual está unido en A a dos cuerdas que están sujetas a las paredes en B y C.

- a. Pasar las unidades a Newton.
- b. Determinar las tensiones en las cuerdas AB y AC.

Sabiendo que:

 $\alpha = 40^{\circ}$

 $\beta = 20^{\circ}$

P = 400Kg

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	,		
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Gгиро IV .

Ejercicio N°5:

Una sección de pared de concreto prevaciado está sostenida por los cables mostrados. Determinar la magnitud y dirección de la resultante de las fuerzas ejercidas por los cables AB y AC sobre la estaca A, sabiendo que la tensión en los cables es de:

TAB = 5,0KNTAC = 4,3KN

A (8;0;4)

B (0;3;6)

C (0;3;0)

D (-8;0;4)

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	Trabajo i Taoneo IV	Additio.	
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Grupo N°.

Ejercicio N°6:

Se emplean tres cables para amarrar el globo mostrado en la figura. Si se sabe que la tensión en el cable AB es 250N, determine la fuerza vertical P que el globo ejerce en A.

A (0;5,6;0) B (4,2;0;2,4) C (-4,2;0;0) D (0;0;-3,3)

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	Trabajo Fractico N	Aldiffilo.	
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Grupo N°.

Ejercicio N°7:

Determinar analíticamente la resultante de las fuerzas que actúan sobre la estructura de la figura y ubicar la resultante.

P1 = 250N P2 = 3500N P3 = 2800N

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	,		
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Gгиро IV .

Ejercicio N°8:

El muro lateral de un canal es de hormigón simple. Cuando el nivel de agua es el indicado en la figura, determinar el momento de la resultante con respecto al punto A.

Agua

$$\gamma_{\rm W} = 10 {\rm kN/m}^3 \qquad \qquad {\rm Hormig\acute{o}n~simple} \\ \gamma = 22 \ {\rm kN/m}^3 \label{eq:gamma_w}$$

H = 8m

Empuje del suelo

$$E_S$$
 = 10kN/m
 α = 30°
y = 3m

Facultad de Ingeniería	Trabajo Práctico Nº 1	Alumno:	
UNCuyo	Trabajo Fractico N	Aldiffilo.	
Estática y Resistencia	Composición y	Hojade	Grupo Nº:
de Materiales	Descomposición de Fuerzas		Grupo N°.

Ejercicio N°9:

Reducir al origen de coordenadas, el sistema de fuerzas F_{1X} , F_{2Y} , F_{3Z} . aplicados en A, B y C respectivamente.

 $F_{1X} = 20kN$

 $F_{2Y} = 30kN$

 $F_{3Z} = 15kN$

A (3;4;2)

B (0;4;2)

C (3;2;0)

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 1	Alumno:	
Estática y Resistencia	Composición y	Hojade	0 110
de Materiales	Descomposición de Fuerzas		Grupo Nº:

ESTABILIDAD

TRABAJO PRÁCTICO N°2:

DETERMINACIÓN DE REACCIONES

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería	Trabajo Práctico Nº 2	Alumno:
UNCuyo	1	
Estática y Resistencia	Determinación	Hojade Grupo Nº:

Ejercicio N°1:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

P1 = 5KN P2 = 10KN P3 = 5KN L = 10 m

DIAGRAMA DE CUERPO LIBRE

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Отиро і і .

Ejercicio N°2:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

P1 = 10KN P2 = 10KN L = 10 m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Gгиро IV .

Ejercicio N°3:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Эгиро IV .

Ejercicio N°4:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

 $q_1 = 10KN/m$ $q_2 = 15KN/m$ P = 30KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Отиро і і .

Ejercicio N°5:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

L = 9m M1 = 40KN M2 = 10KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Gгиро IV .

Ejercicio N°6:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

q = 15KN/m M = 50KNmP = 40KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Gгиро IV .

Ejercicio N°7:

Determinar las reacciones de vinculo de la viga isostatica a partir de los siguientes datos:

q = 15KN/m M = 40KNm P = 50KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Gгиро IV .

Ejercicio N°8:

Determinar las reacciones de vinculo del siguiente portico a partir de los siguientes datos:

$$q = 30KN/m$$

 $P = 40KN$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Reacciones		Gгиро IV .

Ejercicio N°9:

Determinar las reacciones de vinculo del portico a partir de los siguientes datos:

q = 30KN/mP = 40KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 2	Alumno:	
Estática y Resistencia	Determinación	Hojade	
de Materiales	de Reacciones		Grupo Nº:
i			

ESTABILIDAD

TRABAJO PRÁCTICO N°3:

DETERMINACIÓN DE ESFUERZOS INTERNOS

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Эгиро IV .

Ejercicio N°1:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga

P1 = 40KN P2 = 23KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Gгиро IV .

Ejercicio N°2:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Gгиро IV .

Ejercicio N°3:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga

P1 = 23KNq = 18KN/m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Gгиро N .

Ejercicio N°4:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga

P = 45KNq = 17KN/m

Facultad de Ingeniería	Trabajo Práctico Nº 3	Alumno:	
UNCuyo	11454jo 1146466 11	7 damino.	
Fotótico y Docietopoio	Determeinesión	llaia da	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:

Ejercicio N°5:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga

M = 44KNm P = 26KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Grupo iv.

Ejercicio N°6:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga Gerber

q = 15KN/mP = 35KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Grupo iv.

Ejercicio N°7:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga Gerber

q = 27KN/m P1 = 20KN P2 = 35KN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Crupo No:
de Materiales	de Esfuerzos Internos		Grupo Nº:

Ejercicio N°8:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga Gerber

M = 37KNm

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Gгиро IV .

Ejercicio N°9:

Determinar los esfuerzos internos (M,N,Q) de la siguiente viga Gerber

M = 17KNmq = 25KN/m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Gгиро IV .

Ejercicio N°10:

Determinar los esfuerzos internos (M,N,Q) del siguiente pórtico

P = 35KNq = 15KN/m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Crupo No:
de Materiales	de Esfuerzos Internos		Grupo Nº:

Ejercicio N°11:

Determinar los esfuerzos internos (M,N,Q) del siguiente pórtico

P = 36KNq = 18KN/m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Эгиро IV .

Ejercicio N°12:

Determinar los esfuerzos internos (M,N,Q) del siguiente pórtico

P1 = 27KN P2 = 35KN q = 17KN/m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	Grupo Nº:
de Materiales	de Esfuerzos Internos		Эгиро IV .

Ejercicio N°13:

Determinar los esfuerzos internos (M,N,Q) del siguiente pórtico

P1 = 17KN P2 = 28KN

P3 = 37 KN

q = 16KN/m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	0 110
de Materiales	de Esfuerzos Internos		Grupo Nº:
		<u> </u>	

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 3	Alumno:	
Estática y Resistencia	Determinación	Hojade	0 110
de Materiales	de Esfuerzos Internos		Grupo Nº:
		<u> </u>	

ESTABILIDAD

TRABAJO PRÁCTICO Nº4:

RETICULADOS PLANOS (DETERMINACIÓN DE ESFUERZOS INTERNOS)

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 4	Alumno:	
Estática y Resistencia	RETICULADOS PLANOS	Hojade	Crupo No
de Materiales	Determinación de esfuerzos internos		Grupo Nº:

Ejercicio N°1:

Resolver el siguiente reticulado por el método de los nudos y verificar las barras de la sección 1-1 por el método de Ritter

Diagrama de cuerpo libre

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 4	Alumno:	
Estática y Resistencia	RETICULADOS PLANOS	Hojade	Grupo Nº:
de Materiales	Determinación de esfuerzos internos		Grupo N°.

Ejercicio N°2:

Resolver el siguiente reticulado por el método de los nudos y verificar las barras de la sección 1-1 por el método de Ritter

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 4	Alumno:	
Estática y Resistencia	RETICULADOS PLANOS	Hojade	Crupo No
de Materiales	Determinación de esfuerzos internos		Grupo Nº:

Ejercicio N°3:

Resolver el siguiente reticulado por el método de los nudos y verificar las barras de la sección 1-1 por el método de Ritter

P1 = 25kN

P2 = 20kN

P3 = 30kN

L = 4m

h = 5m

Diagrama de cuerpo libre

Facultad de Ingeniería	Trabajo Práctico Nº 4	Alumno:	
UNCuyo	Trabajo Fractico N 4	Aldillilo.	
Estática y Resistencia	RETICULADOS PLANOS	Hojade	Crupo NO:
de Materiales	Determinación de esfuerzos internos		Grupo Nº:

Ejercicio N°4:

Resolver el siguiente reticulado por el método de los nudos y verificar las barras de la sección 1-1 por el método de Ritter

P1 = 35kNP2 = 40kN

P3 = 30kN

L = 12m

h = 2m

Diagrama de cuerpo libre

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 4	Alumno:	
Estática y Resistencia	RETICULADOS PLANOS	Hojade	
		110,4	Grupo Nº:
de Materiales	Determinación de esfuerzos internos		

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Crupo NO:
de Materiales	y Momentos de Inercia	Año:	Grupo Nº:

Ejercicio N°1:

Calcular analiticamente las coordenadas del centro de gravedad del perfil "T" de la siguiente figura.

Datos:

$$b_1 = 30cm$$

$$b_2 = 5cm$$

$$h_1 = 5cm$$

$$h_2 = 20cm$$

Numero de figuras elementales

Determinación del centro de gravedad de cada figura elemental

Para cada figura elemental se determina el centro de gravedad a partir del moemnto estático del área, de acuerdo a:

$$x_{gi} = \frac{\int x \cdot dF}{\int 1 \cdot dF}$$

$$y_{gi} = \frac{\int y \cdot dF}{\int 1 \cdot dF}$$

Características geométricas para la figura elemental 1

$$\mathbf{a}_1 = \mathbf{b}_1 \cdot \mathbf{h}_1$$

$$x_1 = \frac{b_1}{2}$$

$$a_1 = b_1 \cdot h_1$$
 $x_1 = \frac{b_1}{2}$ $y_1 = h_2 + \frac{h_1}{2}$

Características geométricas para la figura elemental 2

$$a_2 = b_2 \cdot h_2$$
 $x_2 = \frac{b_1}{2}$ $y_2 = \frac{h_2}{2}$

$$x_2 = \frac{b_1}{2}$$

$$y_2 = \frac{h_2}{2}$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	

Determinación del centro de gravedad de la figura

$$x_{G} = \frac{\sum_{i=1}^{n} a_{i} \cdot x_{i}}{\sum_{i=1}^{n} a_{i}}$$

$$x_{G} = 15cm$$

$$y_{G} = \frac{\sum_{i=1}^{n} a_{i} \cdot y_{i}}{\sum_{i=1}^{n} a_{i}}$$

$$y_{G} = 17,5cm$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo IV.

Ejercicio N°2:

Calcular analiticamente las coordenadas del centro de gravedad de la siguiente figura.

Datos:

$$X_G = 8,5cm$$

$$Y_{G} = 8,08cm$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo N°.

Ejercicio N°3:

Calcular analiticamente las coordenadas del centro de gravedad de la siguiente figura.

Datos:

$$b_1 = 10 cm$$
 $b_1 = 3 cm$
 $b_2 = 2 cm$ $b_2 = 10 cm$
 $b_3 = 8 cm$ $b_3 = 2 cm$
 $b_4 = 2 cm$ $b_4 = 3 cm$

$$X_G = 12,5cm$$

 $Y_G = 10,16cm$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	

Ejercicio N°4:

Calcular analiticamente las coordenadas del centro de gravedad de la siguiente figura.

Datos:

$$h = 10cm$$

 $b_a = 15cm$

$$y_{\mathbf{G}} = \frac{\int_0^h y \cdot dA}{\int_1^h \cdot dA} \qquad y_{\mathbf{G}} = \frac{I_1}{I_2}$$

$$y_G = \frac{I_1}{I_2}$$

donde:

$$I_1 = \int_0^h y \cdot dA \qquad ; \qquad I_2 = \int_0^h \cdot dA$$

$$I_2 = \int_0^h 1 \cdot dA$$

De la figura se deduce que:

$$b_1 \cdot y_1 = \frac{b_a}{h} \cdot (h - y)$$

Reemplazando resulta:

$$I_1 = \int_0^h (b(y) \cdot y) \cdot dy = \int_0^h \left[\frac{b_a}{h} \cdot (h - y) \cdot y \right] \cdot dy = b_a \left(\int_0^h y \cdot dy \right) - \frac{b_a}{h} \cdot \int_0^h y^2 \cdot dy = \frac{1}{6} \cdot h^2 \cdot b_a$$

$$I_2 = \int_0^h b \cdot (y) \cdot dy = \int_0^h \left\lceil \frac{b_a}{h} \cdot (h - y) \right\rceil \cdot dy = b_a \left(\int_0^h 1 \cdot dy \right) - \frac{b_a}{h} \cdot \int_0^h y \cdot dy = \frac{1}{2} \cdot h \cdot b_a$$

$$y_G = \frac{I_1}{I_2} = \frac{\frac{1}{6} \cdot h^2 \cdot b_a}{\frac{1}{2} \cdot h \cdot b_a} = \frac{h}{3}$$
 $y_G = 3,33cm$

$$x_G = \frac{b_a}{2}$$
 $x_G = 7.5cm$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Отиро П.

Ejercicio N°5:

Calcular los momentos de inercia baricéntricos del perfil de la figura.

Datos:

$$B = 10cm$$

$$h_1 = 2cm$$

$$b = 2cm$$

$$h_2 = 26cm$$

Determinación del baricentro de la figura

Por simetría

$$X_g = \frac{B}{2} \qquad Y_g = \left(h_1 + \frac{h_2}{2}\right)$$

Momentos de inercia respecto a los ejes baricéntricos de cada figura

Para una sección rectángular el momento de segundo orden se puede obtener a partir de la siguiente figura como:

$$Jxx_G = \int_{-h/2}^{h/2} y^2 \cdot dA = \int_{-h/2}^{h/2} y^2 \cdot b \cdot dy$$

$$Jxx_G = b \cdot \frac{y^3}{3}$$

$$Jxx_G = b \cdot \frac{(h/2)^3}{3} - b \cdot \frac{(-h/2)^3}{3} = \frac{b \cdot h^3}{12}$$

Facultad de Ingeniería	Trabajo Práctico № 5	Alumno:	
UNCuyo	Trabajo Fractico Nº 5	Alumno.	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Gιαρο IV.

$$Jxx_{1Loc} = \frac{B \cdot h_1^3}{12}$$

Momento de inercia baricéntrico local de las alas respecto del eie x-x

$$Jxx_{2Loc} = \frac{b \cdot h_2^3}{12}$$

Momento de inercia baricéntrico local del alma respecto del eje x-x

$$Jyy_{1Loc} = \frac{B^3 \cdot h_1}{12}$$

Momento de inercia baricéntrico local de las alas respecto del eje y-y

$$Jyy_{2Loc} = \frac{b^3 \cdot h_2}{12}$$

Momento de inercia baricéntrico local del alma respecto del eie y-y

Momentos de Inercia respecto al eje baricéntrico global

$$Jxx_{1global} = Jxx_{1Loc} + B \cdot h_1 \cdot \left(\frac{h_2}{2} + \frac{h_1}{2}\right)^2$$

 $Jxx_{1global} = Jxx_{1Loc} + B \cdot h_1 \cdot \left(\frac{h_2}{2} + \frac{h_1}{2}\right)^2$ Momento de inercia baricéntrico global de las alas respecto del eje x-x

$$Jxx_{2global} = Jxx_{2Loc}$$

Momento de inercia baricéntrico global del alma respecto del eje x-x

$$Jxx_G = 2 \cdot Jxx_{1glob} + Jxx_{2glob}$$

Momento de inercia baricéntrico global total respecto del eje x-x

$$Jxx_G = 10782,67cm^4$$

$$Jyy_{1global} = Jyy_{1Loc}$$

Momento de inercia baricéntrico global de las alas respecto del eje y-y

$$Jyy_{1global} = Jyy_{1Loc}$$

$$Jyy_{2global} = Jyy_{2Loc}$$

Momento de inercia baricéntrico global del alma respecto del eje y-y

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo N°.

$$Jyy_G = 2 \cdot Jyy_{1glob} + Jyy_{2glob}$$

Momento de inercia baricéntrico global total respecto del eje y-y

$$Jyy_G = 350,67cm^4$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo IV.

Ejercicio N°6:

Calcular los momentos de inercia respecto de los ejes baricéntricos del perfil de la figura.

Datos:

 $b_1 = 30cm$

 $b_2 = 5cm$

 $h_1 = 5cm$

 $h_2 = 20cm$

$$Jxx_G = 13104,16cm^4$$

$$Jyy_G = 11541,67cm^4$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Отиро IV .

Ejercicio N°7:

Calcular los momentos de inercia respecto de los ejes baricéntricos del perfil de la figura.

$$Jxx_G = 10790,33cm^4$$

$$Jyy_G = 720,07cm^4$$

Facultad de Ingeniería	Trabajo Práctico № 5	Alumno:	
UNCuyo	Trabajo Fractico Nº 5	Aldiffilo.	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Эгиро IV ⁴ .

Ejercicio N°8:

Calcular los momentos de inercia respecto de los ejes baricéntricos del perfil de la figura.

$$Jxx_G = 16058,33cm^4$$

$$Jyy_G = 7933,33cm^4$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Отиро и .

Ejercicio N°9:

Calcular para el perfil de la figura la posición de lo ejes principales de inercia y los valores de los momentos máximos y mínimos respecto de los ejes baricéntricos

Verificar los resultados obtenidos analíticamente, mediante la Circunsferencia de MOHR y de LAND

aº) Ubicación de los ejes baricentricos y determinación de las características geométricas para cada área elemental.

$$b_1 = 15cm$$
 $xg_1 = 7,5cm$
 $b_2 = 7cm$ $xg_2 = 11,5cm$
 $b_3 = 8cm$ $xg_3 = 19cm$
 $xg_3 = 27,5cm$

 $h_2 = 25 cm$ $yg_2 = 12,5 cm$ $h_3 = 10 cm$ $yg_3 = 5 cm$

Momento de Inercia de cada área elemental

$$Jxx_{1Loc} = \frac{b_1 \cdot h_1^3}{12}$$
 $Jxx_{1Glob} = Jxx_{1Loc} + (y_{g1} - Y_g)^2 \cdot a_1$

$$Jyy_{1Loc} = \frac{b_1^3 \cdot h_1}{12}$$
 $Jyy_{1Glob} = Jyy_{1Loc} + (x_{g1} - X_g)^2 \cdot a_1$

$$Jxy_{1Loc} = 0cm^4$$
 $Jxy_{1Glob} = Jxy_{1Loc} + (y_{g1} - Y_g) \cdot (x_{g1} - X_g) \cdot a_1$

Facultad de Ingeniería	Trabajo Práctico Nº 5	Alumno:	
UNCuyo	Trabajo i factico iv 3	Aldillilo.	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo N°.

$$Jxx_{1Glob} = Jxx_{1Loc} + (y_{g1} - Y_g)^2 \cdot a_1$$

$$Jyy_{1Glob} = Jyy_{1Loc} + (x_{g1} - X_g)^2 \cdot a_1$$

$$Jxy_{1Glob} = Jxy_{1Loc} + (y_{g1} - Y_g) \cdot (x_{g1} - X_g) \cdot a_1$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Отиро и .

Construcción de MOHR

Facultad de Ingeniería	Trobaio Drástico NO 5	Λ I	
UNCuyo	Trabajo Práctico № 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo N°.

ı

Facultad de Ingeniería	Trobaio Drástico NO 5	Λ I	
UNCuyo	Trabajo Práctico № 5	Alumno:	
Estática y Resistencia	Determinación de Baricentros	Hojade	Grupo Nº:
de Materiales	y Momentos de Inercia	Año:	Grupo N°.

ı

Facultad de Ingeniería UNCuyo	UNCuyo Trabajo Practico Nº 5 Alumno:		ería Trabajo Práctico Nº 5 Alumno:		
Estática y Resistencia de Materiales			Grupo Nº:		

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:		
Estática y Resistencia	Flexión Simple	Hojade	Crupo No:	
de Materiales	Recta y Desviada		Grupo Nº:	

Ejercicio N°1:

Verificar las tensiones siguiendo el criterio de análisis LRFD y ASD, debido a la flexión de la viga simplemente apoyada de la figura, considerando que la misma está realizada con un perfil IPN

Acero F24 (tensión de fluencia σ_y = 240Mpa)

 $240Mpa = 2400kgf/cm^2 = 24kN/cm^2$

Factor de Resistencia para Flexión: f = 0,9 Coeficiente de Seguridad (ASD), γ = 1.50

Datos:

q_D = 3kN/m (carga permanente)

 $q_L = 5kN/m$ (carga de uso o sobrecarga)

L = 6m

Tensión debida a la flexión:

La expresión que gobierna el estado tensional para el caso de flexión simple, viene dada por:

$$\sigma = \frac{M \cdot y}{In}$$

donde:

σ: tensión en el punto bajo análisis

M: momento flector en la sección

In: momento de inercia respecto al eje neutro

y: distancia del punto analizado al eje neutro

La tensión máxima se producirá en el punto más alejado del eje neutro, para este punto la tensión máxima será:

Facultad de Ingeniería UNCuyo	Trabajo Práctico № 6	Alumno:		
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:	
de Materiales	Recta y Desviada		Grupo N°.	

$$\sigma_{m\acute{a}x} = \frac{M}{W}$$
 donde $W = \frac{In}{y_{m\acute{a}x}}$ módulo resistente

Distribución de tensiones.

Luego a partir de la condición de resistencia y reemplazando en la capacidad de la pieza se puede obtener el módulo resistente necesario como:

$$W_{mec} = \frac{M_{m\acute{a}x}}{\sigma_{adm}}$$

El análisis se desarrollará siguiendo dos estrategias de cálculo:

LRFD (Load Resistance Factor Design)

Este análisis consiste en mayorar las acciones por factores de carga, para luego plantear la siguiente condición de resistencia, de tal forma que se debe cumplir que la capacidad de la barra analizada sea:

Resistencia Requerida < Resistencia de Diseño

Resistencia de Diseño: $\sigma_D = \phi . \sigma_v$

donde ϕ es un factor que depende del tipo de material y de las características de las estructuras y sus uniones. En este caso particular, para una estructura sometida a flexión con uniones soldadas, la norma prescribe ϕ = 0,9

Facultad de Ingeniería UNCuyo	Trabajo Práctico № 6	Alumno:		
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:	
de Materiales	Recta y Desviada		Grupo N°.	

1º) Cálculo de solicitaciones

Esfuerzos debido a cargas permanentes:

$$Q_D = R_{aD} = q_D \cdot L/2 = 9 \text{ kN}$$

$$M_D = q_D \cdot L^2 / 8 =$$
 13,5 kN.m

Esfuerzos debido a cargas de uso:

$$Q_L = R_{aL} = q_L \cdot L/2 =$$
 15 kN

$$M_L = q_L \cdot L^2 / 8 =$$
 22,5 kN.m

La norma define la siguiente combinación:

Resistencia Requerida = 1,2.D + 1,6.L

Entonces:

$$Q_{req} = 1.2 . Q_D + 1.6 . Q_L = 34.8kN$$

$$M_{req} = 1.2 . M_D + 1.6 . M_L = 52.2kN$$

Luego a partir de la condición de resistencia y reemplazando en la capacidad de la pieza se puede obtener el módulo resistente necesario como:

$$W_{\text{nec}} = \frac{M_{\text{req}}}{\phi \cdot \sigma_{y}} = 241,67 \text{ cm}^{3}$$

Facultad de Ingeniería	Trabajo Práctico Nº 6	Alumno		
UNCuyo	Trabajo Fractico Nº 0	Alumno:		
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:	
de Materiales	Recta y Desviada		Grupo N°.	

Se adopta entonces un perfil IPN 220 (IRAM-IAS U 500-511/99)

Γ	Denominación)imen	sione	S	Sección	Peso	Valores estáticos					
١	IPN	q	bf	tw	tf	Ag	Р	Jx	Jy	Wx	Wy	ΓX	ry
L		mm	mm	mm	mm	cm ²	Kg/m	cm⁴	cm ⁴	cm ³	cm ³	cm	cm
Ξ													
	220	220	98	8,1	12	39,5	31,1	3060	162	278,2	33,1	8,8	2,03

$$\sigma_1 = M_{req}$$
 . (-h/2) / In = -187,65 Mpa

$$\sigma_2$$
 = M_{req} . (-h/2+t) / In = $\,$ -166,84 Mpa
$$\sigma_3$$
 = 0 0 Mpa

$$\sigma_3 = 0$$
 0 Mpa

$$\sigma_4 = M_{req}$$
 . (h/2 - t) / In = $\,$ 166,84 Mpa

$$\sigma_5 = M_{req}$$
 . (h/2) / In = 187,65 Mpa

Se observa como se cumple para todos los puntos la condicion de resistencia indicada en la expresión:

Resistencia Requerida = $\sigma_{c\,o}$ < Resistencia de Diseño = φ . σ_{y}

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:	
Estática y Resistencia de Materiales	Flexión Simple Recta y Desviada	Hojade	Grupo Nº:

Método ASD (Admisible Stress Design)

En este caso, se plantea un solo coeficiente de seguridad global, entonces la condición de resistencia que exije la norma viene dado por la siguiente expresión:

$$\sigma_{serv} < \frac{\sigma_y}{\gamma} = \frac{240 Mpa}{1.6} = \sigma_{ADM} = 150 \text{ Mpa}$$

$$q_{sar} = D + L = 8 kN/m$$

$$M_{ser} = q_{ser} \cdot L^2 / 8 = 36kN.m$$

$$W_{nec} = M_{ser} / \sigma_{adm} = 240 cm^3$$

Se observa que el mismo perfil cumple ambos criterios de análisis. La variación de tensiones en altura del perfil será:

$$\begin{split} &\sigma_1 = M_{\text{serv}} \cdot (\text{-h/2}) \, / \, \text{In} = & -129,41 \, \text{Mpa} \\ &\sigma_2 = M_{\text{serv}} \cdot (\text{-h/2+t}) \, / \, \text{In} = & -115,06 \, \text{Mpa} \\ &\sigma_3 = 0 & 0 \, \text{Mpa} \\ &\sigma_4 = M_{\text{serv}} \cdot (\text{h/2-t}) \, / \, \text{In} = & 115,06 \, \text{Mpa} \\ &\sigma_5 = M_{\text{ser}} \cdot (\text{h/2}) \, / \, \text{In} = & 129,41 \, \text{Mpa} \end{split}$$

$$\sigma_2 = M_{\text{conv.}} \cdot (-h/2+t) / \text{In} = -115.06 \text{ Mpa}$$

$$\sigma_2 = 0$$
 0 Mpa

$$\sigma_4 = M_{serv}$$
 . (h/2 - t) / In = 115,06 Mpa

$$\sigma_5 = M_{ser}$$
. (h/2) / In = 129,41 Mpa

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:	
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:
de Materiales	Recta y Desviada		Этиро IV .

Ejercicio N°2:

Verificar las tensiones siguiendo el criterio de análisis LRFD y ASD, debido a la flexión de la viga simplemente apoyada de la figura, considerando que la misma está realizada con un perfil UPN

Acero F24 (tensión de fluencia $\sigma_v = 240 \text{Mpa}$)

 $240 \text{Mpa} = 2400 \text{kgf/cm}^2 = 24 \text{kN/cm}^2$

Datos:

 $q_D = 5kN/m$ (carga permanente)

 $q_L = 9kN/m$ (carga de uso o sobrecarga)

 $P_D = 25 \text{ kN} \quad \text{(carga permanente)}$

L = 7m

Facultad de Ingeniería	Trabajo Práctico № 6	Alumno:		
UNCuyo	Trabajo Fractico Nº 0			
Estática y Resistencia	Flexión Simple	Hojade	Grupo No:	
de Materiales	Recta y Desviada		Grupo Nº:	

Ejercicio N°3:

Verificar las tensiones siguiendo el criterio de análisis ASD, debido a la flexión de la viga simplemente apoyada de la figura, considerando que la misma está realizada con una sección compuesta por 2 perfiles UPN, que conforman una sección cajón.

Acero F24 (tensión de fluencia σ_y = 240Mpa)

 $240Mpa = 2400kgf/cm^2 = 24kN/cm^2$

Factor de Resistencia para Flexión: f = 0,9 Coeficiente de Seguridad (ASD), γ = 1.50

Datos:

 $q_{max} = 35kN/m$ (en L/2)

M = 28 kN.m (aplicado en L/2)

L = 5m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:		
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:	
de Materiales	Recta y Desviada		Grupo N°.	

Ejercicio N°4:

Determinar las tensiones de la siguiente viga metálica. El perfil está inclinado un ángulo $\alpha = 30^{\circ}$ respecto de la horizontal.

Datos:

Características mecánicas del acero

Acero F24 (tensión de fluencia σ_y = 240Mpa)

Análisis por el método de las tensiones admisibles (ASD): coeficiente de seguridad γ = 1,6

Cálculo de las solicitaciones

El análisis se realiza en la dirección de los ejes globales coincidente con el plano de la solicitación

$$M = q \cdot L^2 / 8 = 22,5 \text{ kN.m}$$

$$R_A = R_B = q \cdot L / 2 = 15 \text{ Kn}$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:	
Estática y Resistencia	'	Hojade	Grupo Nº:
de Materiales	Recta y Desviada		

Si se descomponen las solicitaciones en las direcciones principales de inercia del perfil:

$$M_{33} = M_{xx}$$
 . $\cos \alpha = 19$ kN.m

$$M_{22} = M_{xx}$$
 . sen $\alpha = 11$ kN.m

$$R_2 = R_v \cdot \cos \alpha = 13 \text{ kN}$$

$$R_3 = R_v \cdot sen \alpha = 7 kN$$

De esta forma la flexión oblicua se transforma en la superposición de dos frexiones rectas. Esto es aplicable debido a la condición de elasticidad lineal con pequeñas deformaciones en que se basa la teoría de la viga utilizada.

Dimensionamiento de la sección

En este ejercicio se utilizará el método ASD de la normativa, esto es por tensiones admisibles, de tal forma que se debe cumplir la condición de resistencia.

$$\sigma = \frac{M_{33}}{W_{33}} + \frac{M_{22}}{W_{22}} \le \frac{\sigma_T}{\gamma}$$

Se adopta para el cálculo de la verificación un perfil IPN 340 con las siguientes características mecánicas.

Denominación		Dimer	nsione	S	Sección	Peso	Valores estáticos					
IPN	h	b	s	t	F	g	Jx	Jy	Wx	Wy	ΓX	ry
	mm	mm	mm	mm	cm ²	Kg/m	cm ⁴	cm ⁴	cm ³	cm ³	cm	cm
320	320	131	11,5	17,3	77,7	60,9	12510	555	781,9	84,7	12,69	2,67
340	340	137	12,2	18,3	86,7	67,9	15700	674	923,5	98,4	13,46	2,79
360	360	143	13	19,5	97	76	19610	818	1089,4	114,4	14,22	2,9

$$\sigma = 19,49 \text{ kN.m} / 923 \text{cm}^3 + 11,25 \text{ kN.m} / 98 \text{cm}^3 = 135,4 \text{ Mpa}$$

$$\sigma < \sigma y / g = 240 \text{ Mpa} / 1,6 = 150 \text{ Mpa}$$
 Verifica

Facultad de Ingeniería	Trabajo Práctico Nº 6	Alumno:		
UNCuyo	Trabajo Fractico Nº 0	Alumno.		
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:	
de Materiales	Recta y Desviada		Эгиро IV ⁴ .	

Más conveniente resultará una sección tipo cajón como un caño estructural de acero. Si se adopta una sección rectangular de 220mm x 120mm x 8mm:

A = 50,2 cm²

$$I_x = 3100 \text{ cm}^4$$

 $W_x = 281 \text{ cm}^3$
 $I_y = 1200 \text{ cm}^4$
 $W_v = 200 \text{ cm}^3$

La tensión máxima será:

$$\sigma$$
 = 19,49 kN.m / 281cm³ + 11,25 kN.m / 200cm³ = 125,6 Mpa
 σ < σ y / g = 240 Mpa / 1,6 = 150 Mpa **Verifica**

Comparando esta sección con la anterior se observa claramente que esta última es mucho más eficiente, dado que su peso por unidad de longitud es de 0,391kN/m contra 0,679kN/m del perfil IPN. Esto significa un ahorro del 40% aproximadamente en material.

Posición del eje neutro

El eje neutro de la sección viene dado por la recta que une los puntos de tensión nula. A partir de esta condición se puede obtener su expresión en términos de los momentos de inercia principales de la sección y de la posición del plano de solicitación.

$$tg \beta = -(I_{xx}/I_{vv}) \cdot tg \alpha$$

Esta expresión indica si el eje de solicitación gira un ángulo a medido desde el baricentro respecto a un eje principal de inercia, el eje neutro girará con centro en el baricentro de la sección a partir del otro eje principal de inercia en el mismo sentido un ángulo β.

arc tg [(
$$-3100 \text{ cm}^4 / 1200 \text{ cm}^4$$
) . tg 30°] = $-56,2^\circ$

Facultad de Ingeniería	Trobaio Práctico NO 6	Alumna	
UNCuyo	Trabajo Práctico № 6	Alumno:	
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:
de Materiales	Recta y Desviada		

Verificación de los resultados aplicando el círculo de Land

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:	
Estática y Resistencia	Flexión Simple	Hojade	Grupo Nº:
de Materiales	Recta y Desviada		Gгиро IV .

Ejercicio N°5:

Idem al ejercicio Nº4

Datos:

q = 15 kN/m

L = 8 m

 $\alpha = 25^{\circ}$

Adoptar un perfil PCN

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 6	Alumno:	
Estática y Resistencia	Flexión Simple	Hojade	0 110
de Materiales	Recta y Desviada		Grupo Nº:
_		•	

ESTABILIDAD

TRABAJO PRÁCTICO Nº7:

CORTE EN LA FLEXIÓN Y CORTE ÚLTIMO

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Fractico N T	Alumno.	
Estática y Resistencia	Corte en la Flexión	Hojade	Crupo No:
de Materiales	y Corte Último		Grupo Nº:

Ejercicio N°1:

Dada la viga de madera de la figura, determinar las tensiones debidas a flexión y corte, y dimensionar la sección de la misma tal que verifiquen las tensiones máximas admisibles.

Características mecánicas del material a utilizar

$$\sigma_{\text{admf}} = 8 \cdot MPa$$

$$\tau_{admf} = 0.12 \cdot MPa$$

Determinación de los esfuerzos internos.

A partir de la condición de momento nulo en el apoyo A

$$\sum M^{(A)} = 0 = P_1 \cdot 1m + P_2 \cdot 3m + q \cdot \frac{(5m)^2}{2} - R_B \cdot L$$

Se obtiene la reacción A, de tal forma que:

$$R_{\rm B} = \frac{P_1 \cdot 1m}{5m} + \frac{P_2 \cdot 3m}{5m} + q \cdot \frac{5m}{2} = 10.42 \text{kN}$$

Luego de la condición de equilibrio de fuerzas

$$R_A = R_B - P_1 - P_2 - q \cdot 5m = 11.55kN$$

A continuación se transcribe la resolución para cada punto.

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Fractico N T	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Crupo No:
de Materiales	y Corte Último		Grupo Nº:

Punto	Ord x	Qizq	Qder	Mom
	[m]	[kN]	[kN]	[kN m]
A	0		11.55	0
1	1	8.05	5.55	9.80
Max	2.58	0	0	14.20
2	3	-1.45	3.45	1.38
В	5	-10.45	0	0

Cálculo de las tensiones debido a flexión y corte

Dimensionado de la sección.

A partir de la sección donde se produce el momento máximo (x=2.58), y adoptando una sección rectangular, cuya relación de lados sea 1:2. ; se puede calcular una sección que luego debe ser verificada para las otras secciones de la viga.

$$W_{nec} = \frac{M_{max}}{\sigma_{adm}} = \frac{14.20 \cdot kNm}{8 \cdot MPa} = 1775 \cdot cm^3$$

Entonces las dimensiones necesarias que debe tener la viga de madera resultan

$$W_{\text{nec}} = \frac{b \cdot h^2}{6} = \frac{\frac{h}{2} h^2}{6} = \frac{h^3}{12}$$
$$h = \sqrt[3]{12 \cdot W_{\text{nec}}} = \sqrt[3]{12 \cdot 1775 \cdot \text{cm}^3} = 27.72 \cdot \text{cm}$$

Se adopta una sección de 6"x12" (15.24cmx30.48cm), luego las características de la sección adoptada serán:

$$Ix = \frac{b \cdot h^3}{12} = \frac{15.24 \text{cm} \cdot 30.48 \text{cm}^3}{12} = 35962.395 \cdot \text{cm}^4$$

$$Wx = \frac{b \cdot h^2}{6} = 2359.737 \cdot \text{cm}^3$$

Verificación de tensiones.

Se analizarán las tensiones en distintas secciones y en cada sección en distintos puntos de la misma

1.- Sección de momento máximo

Para la sección de momento máximo de acuerdo a la tabla resulta M=14.2 kNm

Q=0

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Fractico N 7	Alumno.	
Estática y Resistencia	Corte en la Flexión	Hojo do	
Listatica y ixesistericia	Corte en la Flexion	Hojade	Grupo Nº:

Luego las tensiones para distintas alturas serán:

$$\sigma = \frac{M}{In} y = \frac{14,20 \cdot kNm}{3596239cm^4} y$$

En la sección bajo estudio el esfuerzo de corte es nulo, por lo tanto no se desarrollan tensiones de corte.

2.- Sección de corte máximo

De los diagramas de corte y momento de la viga bajo análisis se observa que la sección de corte máximo se ubica en el apoyo, y en este punto el momento flector es nulo.

Aplicando la expresión desarrollada por Jourawsky resulta

$$\tau = \frac{\mathbf{Q} \cdot \mathbf{S}_{\mathbf{y}}}{\mathbf{In} \cdot \mathbf{b}}$$

Luego en la siguiente tabla se indican los valores que toma la tensión para los distintos puntos analizados

Punto	Ord y	Sy	τ
	[cm]	[cm3]	[MPa]
1	-15.24	0	0
2	-7.62	1327.35	0.28
3	0	1769.80	0.373
4	7.62	1327.35	0.28
5	15.24	0	0

Se puede observar que la tensión tangencial en el punto baricéntrico, es igual a

$$\tau_{\text{max}} = \frac{3}{2} \frac{Q}{A} = 1.5 \cdot \frac{11.55 \cdot KN}{460.86 \cdot \text{cm}^2} = 1.5 \cdot 0.251 \cdot MPa = 0.373MPa$$

Según lo expuesto las tensiones tangenciales máximas se producen en las secciones donde se produce el máximo esfuerzo cortante, que en este

$$\sigma_{\max_{min}} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \left(\tau_{xy}\right)^2}$$

$$\sigma_{\max} = 0 \cdot M Pa \pm \sqrt{0 \cdot M Pa^2 + (0.373 \cdot M Pa)^2} = 0$$

3.- Sección "C" con momento y corte.-

En esta sección el Momento flector Mc es de 9.80 KNm y el Esfuerzo de Corte Qc=8.05KN

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Fractico N T	Alullillo.	
Estática y Resistencia	Corte en la Flexión	Hojade	
		.,.	Grupo Nº:

Punto	Ord y	S	Sy	τ
	[cm]	[MPa]	[cm3]	[MPa]
1	-15.24	-4.15	0	0
2	-7.62	-2.07	1327.35	019
3	0	0	1769.80	0.26
4	7.62	2.07	1327.35	0.19
5	15.24	4.15	0	0

Se analizarán el estado tensional en el punto 2

Punto 3

$$\sigma_x = -0MPa$$

$$\sigma_{x} = 0MPa$$

$$\tau_{\rm xy} = 0.26 M\, Pa$$

$$\begin{split} \sigma_{\underset{max}{min}} &= \frac{\sigma_{x}}{2} \mp \sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2} + \left(\tau_{xy}\right)^{2}} = \\ \sigma_{\underset{min}{min}} &= \frac{0M\,Pa}{2} - \sqrt{\left(\frac{-0M\,Pa}{2}\right)^{2} + \left(0.26M\,Pa\right)^{2}} = -0.26M\,Pa \\ \sigma_{\underset{max}{max}} &= 0.26M\,Pa \\ \tau_{\underset{min}{max}} &= \pm \sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2} + \left(\tau_{xy}\right)^{2}} = \pm \sqrt{\left(\frac{-0M\,Pa}{2}\right)^{2} + \left(0.26M\,Pa\right)^{2}} = \pm 0.26M\,Pa \end{split}$$

$$\min$$
 $\bigvee(2)$

Posición de los planos donde aparecen las tensiones normales max y min

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 7	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Grupo Nº:
de Materiales	y Corte Último		Gтиро N .

$$\tan(2\theta) = -\frac{2 \cdot \tau_{xy}}{\sigma_x - \sigma_y} = -\frac{2 \cdot 0.26 \text{MPa}}{0 \text{MPa} - 0 \text{MPa}} = \infty$$

$$\theta = 45^{\circ}$$

$$\tan(2\theta) = \frac{\sigma_x - \sigma_y}{2 \cdot \tau_{xy}} = \frac{-0MPa - 0MPa}{2 \cdot 0.26MPa} = 0$$

$$\theta = 0^{\circ}$$

Ejercicio N°2:

Dada la viga metálica de la figura determinar las tensiones debidas a flexión y corte.- Dimensionar la sección de la misma tal que verifiquen las tensiones máximas admisibles

Adoptar para la viga una sección "IPN"

$$\sigma_{adm} = 160 MPa$$

Determinación de los esfuerzos internos a partir de la condición de momento nulo en los apoyos:

$$\sum M^{(A)} = 0 = P_{1y} * 2m + P_{2y} * 4.5m - R_{By} * 6.5m + q * 6.5m * 3.25m$$

$$R_{By} = \frac{21,21kN * 2m + \frac{15kN}{m} * 6,5m * 3,25m + 20kN * 4,5m}{6,5m} = 69,12kN$$

$$\sum M^{(B)} = 0 = -P_{2y} * 2m - P_{1y} * 4,5m - q * 6,5m * 3,25m + R_{Ay} * 6,5m$$

$$R_{Ay} = \frac{21,21kN * 4,5m + \frac{15kN}{m} * 6,5m * 3,25m + 20kN * 2m}{6,5m} = 69,59kN$$

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Fractico N T		
Estática y Resistencia	Corte en la Flexión	Hojade	Crupo No:
de Materiales	y Corte Último		Grupo Nº:

Cálculo de las tensiones debido a corte y flexión

Punto	Ord x [m]	Qizq [kN]	Qder [kN]	Mom [kN m]
A	0		69,58	0
1	2.	39,58	18,37	109,16
Max	3,22	0	0	120,40
2	4,5	-19,13	-39,13	108,21
В	6,5	-69,12	0	0

Dimensionamiento de la sección

A partir de la sección donde se produce el momento máximo, x=3,22m y adoptando un perfil IPN se puede calcular una sección que luego debe ser verificada para las otras secciones de la viga.

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 7	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Grupo Nº:
de Materiales	y Corte Último		Эгиро N .

$$W_{nsc} = \frac{12040kNcm}{16kN/cm^2} = 752,2cm^3$$

Adopto IPN 320, con características

h:320 mm

b=131mm

t=17,3 mm

s=11,5mm

Wx=782cm3

IY=556cm4

IX=12510cm4

Wy=89,7cm3

$$A_1 = 13,1 \text{cm} * 1,73 \text{cm} = 22,66 \text{cm}^2$$

$$A_2 = \frac{(32cm - 2 * 1,73cm)}{2} * 1,15cm = 16,41cm^2$$

Verificación de la sección

Sección de momento máximo

Para la sección de momento máximo resulta según la tabla M=120,40 kNm

Q=0Kn

Luego las tensiones para distintas alturas serán:

$$\sigma = \frac{M}{I_n} y = \frac{12040kNcm}{12510cm^4} * y$$

$$\sigma_1 = -\frac{12040kNcm}{12510cm^4} * 16cm = -15,36kN/cm^2$$

$$\sigma_2 = -\frac{12040kNcm}{12510cm^4} * (16 - 1,73)cm = 14,05kN/cm^2$$

$$\sigma_3 = 0$$

Punto	Y(cm)	σ(MPa)	Sy(cm ³)	Txy(MPa)
1	-16	-153,6	0	0
2	-14,27	-140,5	342,95	0
3	0	0	460,75	0
4	14,27	140,5	342,95	0
5	16	153,6	0	0

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 7	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Grupo Nº:
de Materiales	y Corte Último		Gгиро N .

Sección de corte máximo

$$S_1 = 0$$

$$\tau_1 = \frac{Q * S_1}{I_n * b} = \frac{69,58kN * 0}{12510cm^4 * 13,1cm} = 0$$

$$S_2 = A_1 * \left(16cm - \frac{1,73cm}{2}\right) = 342,95cm^3$$

$$\tau_2 = \frac{Q * S_2}{I_n * b} = \frac{69,58kN * S_2}{12510cm^4 * 13,1cm} = 0,145kN/cm^2$$

$$\tau_2 = \frac{Q * S_2}{I_n * b} = \frac{69,58kN * S_2}{12510cm^4 * 1,15cm} = 1,66kN/cm^2$$

$$S_2 = (A_1 + A_2) * \frac{A_1 * \left(16cm - \frac{1,73cm}{2}\right) + A_2 * \frac{16cm - 1,73cm}{2}}{A_1 + A_2} = 460,75cm^3$$

$$\tau_3 = \frac{Q*S_y}{I_n*b} = \frac{69,58kN*S_2}{12510cm^4*1,15cm} = 2,23kN/cm^2$$

Punto	Y(cm)	σ(MPa)	Sy(cm3)	Txy(MPa)
1	-16	0	0	0
2	-14,27	0	342,95	1,45-16,6
3	0	0	460,75	22,3
4	14,27	0	342,95	1,45-16,6
5	16	0	0	0

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Practico Nº 7	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Crupo No:
de Materiales	y Corte Último		Grupo Nº:

$$\begin{aligned} &\tau_{max} = \frac{3Q}{2At} = \frac{3Q}{2*(2*(A_1 + A_2))} = \frac{1,33kN}{cm^2} = 13,3MPa \\ &\sigma_x = \sigma_y = 0 \\ &\sigma_{max-min} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} = \frac{2,23kN}{cm^2} = 22,3MPa \\ &tg(2\theta) = \frac{-2\tau_{xy}}{\sigma_x - \sigma_y} = \infty \\ &\sigma = 45^{\circ} \\ &tg(2\sigma) = \frac{\sigma_x - \sigma_y}{2\tau_{xy}} = 0 \\ &\sigma = 0^{\circ} \\ &Sección 1-1 con momento y corte \end{aligned}$$

Punto Y(cm) σ(MPa) Sy(cm3) Txy(MPa) -16 -13,96 1 -14,27342,95 0,8-9,43 2 -12,41 3 460,75 12,6 14,27 342,95 9,43-0,8 12,41

13,96

Punto 1

Q = 39,58kNM = 109,16kNm

$$\begin{split} &\tau_{xy} = \sqrt{\left(\frac{-13,96\text{MPa}}{2}\right)^2 + 0MPa^2} = 6,98MPa \\ &\sigma_{max-min} = \frac{-13,96\text{MPa}}{2} \pm \sqrt{\left(\frac{-13,96\text{MPa}}{2}\right)^2 + 0MPa^2} \\ &\sigma_{max} = 0MPa \\ &\sigma_{min} = -13,98MPa \\ &tg(2\theta) = \frac{-2*0MPa}{-13,96\text{MPa}} = 0 \\ &\theta = 0^2 \\ &tg(2\theta) = \frac{-13,96\text{MPa}}{2*0MPa} = \infty \\ &\theta = 45^\circ \end{split}$$

16

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 7	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Crupo No:
de Materiales	y Corte Último		Grupo Nº:

Punto 2

$$\tau_{max} = \sqrt{\left(\frac{-12,41MPa}{2}\right)^2 + 9,43MPa^2} = 11,29MPa$$

$$\sigma_{max-min} = \frac{-12,41MPa}{2} \pm \sqrt{\left(\frac{-12,41MPa}{2}\right)^2 + 9,43MPa^2}$$

$$\sigma_{max} = 5,08MPa$$

$$\sigma_{min} = -17,49MPa$$

$$tg(2\theta) = \frac{-2*9,43MPa}{-12,41MPa} = 1,52$$

$$\theta = 28,33^{\circ}$$

$$tg(2\theta) = \frac{-12,41MPa}{2*9,43MPa} = -0,66$$

Punto 3

$$\tau_{max} = \sqrt{0MPa^{2} + 12,6MPa^{2}} = 12,6MPa$$

$$\sigma_{max-min} = 0MPa \pm \sqrt{0MPa^{2} + 12,6MPa^{2}}$$

$$\sigma_{max} = 12,6MPa$$

$$\sigma_{min} = -12,6MPa$$

$$tg(2\theta) = \frac{-2 * 12,6MPa}{0MPa} = \infty$$

$$\theta = 45^{\circ}$$

$$tg(2\theta) = \frac{0MPa}{2 * 12,6MPa} = 0$$

$$\theta = 0^{\circ}$$

Ejercicio N°3:

Dada la viga metálica de la figura determinar las tensiones debidas a flexión y corte.- Dimensionar la sección de la misma tal que verifiquen las tensiones máximas admisibles

Adoptar para la viga una sección "UPN" $\sigma_{adm} = 160M\,Pa$ $\tau_{adm} = 90M\,Pa$

Facultad de Ingeniería	Trabajo Práctico Nº 7	Alumno:	
UNCuyo	Trabajo Fractico N 7	Alumno.	
Estática y Resistencia	Corte en la Flexión	Hojade	Grupo Nº:

Ejercicio N°4:

Dada la viga metálica de la figura determinar las tensiones debidas a flexión y corte.- Dimensionar la sección de la misma tal que verifiquen las tensiones máximas admisibles.

Adoptar para la viga una sección de caño estructural.

$$\sigma_{adm} = 160MPa$$

$$\tau_{adm} = 90M\,Pa$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 7	Alumno:	
Estática y Resistencia	Corte en la Flexión	Hojade	Crupo No:
de Materiales	y Corte Último		Grupo Nº:

Ejercicio N°5:

 .- Dada la viga metálica de la figura determinar las tensiones debidas a flexión y corte.- Dimensionar la sección de la misma tal que verifiquen las tensiones máximas admisibles

Adoptar para la viga una sección cajón conformada por 2 perfiles UPN.

$$\sigma_{adm}=160MPa$$

$$\tau_{adm} = 90M\,Pa$$

ESTABILIDAD

TRABAJO PRÁCTICO Nº8:

DEFORMACIONES. CÁLCULO DE FLECHAS Y ROTACIONES

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería	Trabajo Práctico Nº 8	Alumno:	
UNCuyo	Trabajo i factico N 0	Aldillilo.	
Estática y Resistencia	Deformaciones	Hojade	Crupo No:
de Materiales	Cálculo de flechas y rotaciones		Grupo Nº:

Ejercicio N°1:

Viga simplemente apoyada, con carga concentrada

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar $f_{máx}$ = L/200

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

$$\sigma$$
 adm = 1600 Kg/cm² = 160 Mpa

$$E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$$

$$L = 4.5 \text{ m}$$

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 8	Alumno:	
Estática y Resistencia	Deformaciones	Hojade	Grupo Nº:
de Materiales	Cálculo de flechas y rotaciones		Grupo iv.

Ejercicio N°2:

Viga simplemente apoyada, con 3 carga concentrada

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar $f_{máx}$ = L/300

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

$$\sigma$$
 adm = 1600 Kg/cm² = 160 Mpa

$$E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$$

L = 2 m

Facultad de Ingeniería	Trabajo Práctico Nº 8	Alumno:	
UNCuyo	Trabajo i factico iv	Alumno.	
Estática y Resistencia	Deformaciones	Hojade	Grupo Nº:
de Materiales	Cálculo de flechas y rotaciones		Grupo IV.

Ejercicio N°3:

Viga simplemente apoyada, con carga uniformemente repartida

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar $f_{\text{máx}}$ = L/500

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

 σ adm = 1600 Kg/cm² = 160 Mpa

 $E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$

L = 5.5 m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 8	Alumno:	
Estática y Resistencia	Deformaciones	Hojade	Grupo Nº:
de Materiales	Cálculo de flechas y rotaciones		Θιαροίν.

Ejercicio N°4:

Viga en voladizo, con carga concentrada en el extremo libre

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar $f_{máx}$ = L/500

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

 σ adm = 1600 Kg/cm² = 160 Mpa

 $E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$

L = 1 m

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 8	Alumno:	
Estática y Resistencia	Deformaciones	Hojade	Grupo Nº:
de Materiales	Cálculo de flechas y rotaciones		Gruро N .

Ejercicio N°5:

Viga simplemente apoyada, con carga concentrada en el centro del tramo y con carga uniformemente repartida en toda su longitud

- a) Dimensionar
- b) Cálculo y verificación de flecha máxima. Adoptar $f_{máx}$ = L/500

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

 σ adm = 1600 Kg/cm² = 160 Mpa

 $E = 2100000 \text{ Kg/cm}^2 = 210000 \text{ Mpa}$

L = 6 m

P = 45kN

q = 2,5

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 8	Alumno:	
Estática y Resistencia	Deformaciones	Hojade	0 110
de Materiales	Cálculo de flechas y rotaciones		Grupo Nº:
iercicio N°6:			
	los casos anteriores y determinar la ediante procedimientos computacion		e apoyo en forma
, , , , , , , , , , , , , , , , , , , ,			

ESTABILIDAD

TRABAJO PRÁCTICO Nº9:

DIMENSIONAMIENTO A TRACCIÓN, COMPRESIÓN, PANDEO

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería	Trabajo Práctico Nº 9	Alumno:	
UNCuyo	Trabajo i ractico iv 9	Aldillilo.	
Estática y Resistencia	Dimensionamiento	Hojade	Crupo NO:
de Materiales	a tracción, compresión. Pandeo		Grupo Nº:

Ejercicio N°1:

Dimensionar las barras del siguiente reticulado.

Datos:

P1 vale según el estado de carga:

Peso propio (D): 12 kN

Sobrecarga (L): 8 kN

Combinación de estados

$$Co = 1.2 D + 1.6 L$$

Los resultados obtenidos se indican en la siguiente tabla:

Barra	Peso Propio	Sobrecarga	Combinación
Dalla	(D) kN	(L) kN	Co kN
1-1`	-40,25	-26,83	-91,23
2-2`	-26,83	-17,89	-60,82
3-3`	36	24	81,60
4-4`	36	24	81,60
5-5`	0	0	0
6-6`	-13,42	-8,94	-30,41
7	12	8	27,20

Donde los valores negativos indican que la barra está sometida a compresión.

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 9	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Crupo Nº
de Materiales	a tracción, compresión. Pandeo		Grupo Nº:

Determinación de los valores de diseño

Por razones de sencillez de fabricación, es conveniente agrupar las barras del reticulado de acuerdo a su tipo de esfuerzo y ubicación. En este caso se agruparán del siguiente modo:

Cordón Superior: -91,23 kN compresión
Cordón Inferior: 81,60 kN tracción
Montantes: 27,20 kN tracción
Diagonales: -30,41 kN compresión

Características mecánicas de los materiales

Se adoptará como sección caño estructural de acero tipo F-24 (CIRSOC 301), con los siguientes valores de tensión de fluencia.

tensión de fluencia σ_y = 240 Mpa (2400 kgf/cm²) factor del material ϕ = 0,9

Verificación

En esta etapa sólo se verificarán las barras sometidas a tracción, dado que las barras sometidas a compresión deben ser verificadas considerando los efectos de inestabilidad elástica por pandeo.

Se debe cumplir que la capacidad de la barra analizada sea:

$$\sigma_{co} \le \phi \cdot \sigma_{y} = 216 Mpa$$

donde ϕ , es un factor que depende del tipo de material y de las características de la estructura y de sus uniones. En este caso particular, para una estructura sometida a tracción con uniones soldadas, la norma prescribe que ϕ = 0,9.

Se adopta para la estructura las siguientes secciones:

Barra	Tipología	Sección trans. (cm²)
Cordón superior	Caño estructural 100x60#2,5	7,75
Cordón inferior	Caño estructural 60x30#2,5	4,25
Montantes	Caño estructural 30x20#2,0	1,84
Diagonales	Caño estructural 60x30#2,5	4,25

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 9	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:
de Materiales	a tracción, compresión. Pandeo		Gгиро N .

Resumen:

Barra	Tensión	Verificación ≤ 216 Mpa
Cordón inferior	192 Mpa	Verifica
Montantes	147,22 Mpa	Verifica

Facultad de Ingeniería	Trabajo Práctico Nº 9	Alumno:	
UNCuyo	Trabajo Fractico N 9	Aldillilo.	
Estática y Resistencia	Dimensionamiento	Hojade	Crupo No:
de Materiales	a tracción, compresión. Pandeo		Grupo Nº:

Ejercicio N°2:

Dimensionar la siguiente viga reticulada correspondiente a un entrepiso. La separación entre dos vigas consecutivas es de 5m. El peso propio de la estructura se estima que es de 1kN/m², y la sobrecarga de servicio es de 5 kN/m².

Esquema de la estructura

Modelo estructural de la viga reticulada

Esquema de cargas

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 9	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:
de Materiales	a tracción, compresión. Pandeo		Gruро N .
Ejercicio N°3:			
	ga critica de Euler para una columna		un IPN 300 y una
altura de 3,5m	para todos los estados posibles de vi	nculacion	

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 9	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:
de Materiales	a tracción, compresión. Pandeo		Gruро N .
		·	

Ejercicio N°4:

Dimensionar una columna Articulada-Empotrada, utilizando un perfil UPN, con los siguientes datos

P = 200 kN H = 4.5 mAcero tensión admisible = 1400 kg/cm²

Facultad de Ingeniería	Trabajo Práctico Nº 9	Alumno:	
UNCuyo	Trabajo Fractico N 9	Aldillilo.	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:

Ejercicio N°5:

Dimensionar una columna empotrada y libre en el extremo superior, solicitada al siguiente estado de carga.

P = 50 kN M = 5 kNm H = 2.5 mAcero tensión admisible = 1400 kg/cm² Perfil IPN

Facultad de Ingeniería	Trabajo Práctico Nº 9	Alumno:	
UNCuyo	Trabajo Fractico N 9	Aldillilo.	
Estática y Resistencia	Dimensionamiento	Hojade	Crupo Nº
de Materiales	a tracción, compresión. Pandeo		Grupo Nº:

FLEXIÓN COMPUESTA

Ejercicio N°6:

Verificar el muro de sostenimiento de hormigón simple al empuje del agua, en la base del mismo, suponiendo como datos:

$$\gamma_{\text{liq}}$$
 = 1050 kg/m³

$$\gamma_{\rm m}$$
 = 2200 kg/m³

$$\sigma_{ADM}$$
 = 1,50 kg/m²

Facultad de Ingeniería	Trabajo Práctico Nº 9	Alumno:	
UNCuyo	Trabajo i factico iv 9	Aldillilo.	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:
de Materiales	a tracción, compresión. Pandeo		Grupo iv.

1º) Cálculo de solicitaciones

$$E_a = \frac{H^2}{2} \cdot \gamma_{liq}$$
 Empuje del liquido

$$P_m = \gamma_m \cdot b \cdot H$$
 Peso del muro

Tomando momento respecto a (k):

$$\sum M^k = 0 = E_a \cdot \frac{H}{3} - P_m \cdot \frac{b}{6}$$

$$\sum M^{k} = 0 = \frac{H^{2}}{2} \cdot \gamma_{liq} \cdot \frac{H}{3} - \gamma_{m} \cdot b \cdot H \cdot \frac{b}{6}$$

Operando se deduce que:

$$b \ge H \cdot \sqrt{\frac{\gamma_{liq}}{\gamma_m}} = 2.1m$$

Como se ha impuesto que la condición de que (R) pase por es extremo O, resulta:

$$\sigma_{m\acute{a}x} = \frac{2 \cdot Pm}{b} = 1{,}386kg/cm^2$$

2º) Verificación de la resistencia (se verifica en la zona de máxima solicitación)

$$\sigma = \frac{N}{A} \pm \frac{M}{W}$$

$$N = P_m = 13860kg$$

$$A = 210cm \cdot 100cm = 21000cm^2$$

$$M = E_a \cdot \frac{H}{3} = 4500 kg \cdot m / m$$

$$W = \frac{b \cdot h^2}{6} = 735000 cm^3$$

Facultad de Ingeniería	Trabajo Práctico Nº 9	Alumno:	
UNCuyo	Trabajo i Tactico IV 3	Aldillilo.	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:
de Materiales	a tracción, compresión. Pandeo		Стиро IV ⁻ .

$$\sigma = \frac{13860kg}{21000cm^{2}} \pm \frac{450000kgcm}{735000cm^{3}} = \begin{cases} \sigma_{max} = -1.27kg/cm^{2} \\ \sigma_{min} = -0.05kg/cm^{2} \end{cases}$$

En consecuencia y según el valor de h adoptado en la base del muro se tiene:

Verificación al vuelco

$$\frac{MR}{MV} \ge 1.5$$

$$MR = Pm \cdot \frac{h}{2} = 13860 kg / m \cdot \frac{2,1m}{2} = 1455300 kg cm / m$$

$$MV = 450000 kg cm/m$$

$$\gamma = \frac{MR}{MV} = 3,23 > 1,5$$

Estabilidad al deslizamiento

Se debe cumplir que
$$Pm \cdot f' = \gamma_e \cdot Ea$$
 $\therefore \gamma_e = \frac{Pm \cdot f'}{Ea} \ge 1,5$

f`: coeficiente de rozamiento entre muro y terreno (adoptar 0,4)

$$\gamma_e = \frac{Pm \cdot f}{Ea} = \frac{13860 kg/m \cdot 0,40}{4500 kg/m} = 1,23$$

No verifica esta condición y se debe redimensionar, una alternativa es aumentar el peso del muro, otra alternativa posible es aumentar la fricción de la interfase terreno suelo mediante el tratamiento de la superficie de apoyo (dentado, etc)

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 9	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Crupo No
de Materiales	a tracción, compresión. Pandeo		Grupo Nº:

Ejercicios optativos. Pandeo

Ejercicio N°7:

Dimensionar una columna, bajo la condición de biarticulada, utilizando el método Domke y admitiendo una longitud H = 3,5m

P = 5kNAcero tensión admisible = 1400kg/cm²

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 9	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	
de Materiales	a tracción, compresión. Pandeo		Grupo Nº:
	· · · · · · · · · · · · · · · · · · ·		

ESTABILIDAD

TRABAJO PRÁCTICO Nº10:

DIMENSIONAMIENTO A TORSIÓN

GRUPO N°:

UNIVERSIDAD NACIONAL DE CUYO FACULTAD DE INGENIERÍA

Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 10	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:
de Materiales	a torsión		Gгиро IV .

Ejercicio N°1:

Determinar la torsión máxima y el ángulo de rotación total de la barra de sección circular de 50cm de diámetro y de 2500 mm de longitud sometida a un momento torsor de 18,5 kNm.

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

 σ adm = 1600 Kg/cm² = 160 Mpa

 τ adm = 900 Kg/cm² = 90 Mpa

 $E = 2000000 \text{ Kg/cm}^2 = 200000 \text{ Mpa}$

 $G = 800000 \text{ Kg/cm}^2 = 80000 \text{ Mpa}$

Facultad de Ingeniería	Trabajo Práctico Nº 10	Alumno:	
UNCuyo	-		
Estática y Resistencia	Dimensionamiento	Hojade	Grupo Nº:

Ejercicio N°2:

Calcular el diámetro de un árbol de motor que debe transferir una potencia de 100 HP a 160 rpm.

Datos:

Acero tipo F24 - Tensión de fluencia $\sigma f = 240 \text{ Mpa} (2400 \text{ Kgf/cm}^2)$

 σ adm = 1600 Kg/cm² = 160 Mpa

 τ adm = 900 Kg/cm² = 90 Mpa

 $E = 2000000 \text{ Kg/cm}^2 = 200000 \text{ Mpa}$

 $G = 800000 \text{ Kg/cm}^2 = 80000 \text{ Mpa}$

 γ máx = 1/4° /m

Cognited de Ingenierie			
Facultad de Ingeniería UNCuyo	Trabajo Práctico Nº 10	Alumno:	
Estática y Resistencia	Dimensionamiento	Hojade	Crupe No.
de Materiales	a torsión		Grupo Nº:
·			