

Neural Language Models

Phạm Quang Nhật Minh

Almesoft JSC minhpham0902@gmail.com

Table of Contents

- Neural Language Models
- Training Neural Language Models

Neural Language Models (LMs)

- Language Modeling: Calculating the probability of the next word in a sequence given some history.
 - □ We've seen N-gram based LMs
 - □ But neural network LMs far outperform n-gram language models
- State-of-the-art neural LMs are based on more powerful neural network technology like Transformers
- But simple feedforward LMs can do almost as well!

Simple feedforward Neural Language Models

■ Task: predict next word w_t

given prior words W_{t-1} , W_{t-2} , W_{t-3} , ...

- Problem: Now we're dealing with sequences of arbitrary length.
- Solution: Sliding windows (of fixed length)

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$$

Neural Language Model

Why Neural LMs work better than N-gram LMs

- Training data:
- We've seen: I have to make sure that the cat gets fed.
- Never seen: dog gets fed
- Test data:
- I forgot to make sure that the dog gets ____
- N-gram LM can't predict "fed"!
- Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

Training neural language models

