Huffman Coding

Data Compression

In data compression is reducing the space required to storing a piece of data.

- We can replace recurrent elements in the data with a unique representation for each distinct element, which will require lesser space.
- Based on the unique representations we used to denote each element, the compressed data can be decompressed to get the original message

Given a code (corresponding to some alphabet C) and a message the message is encoded by replacing the characters with the codewords

How can we represent a-f, using fixed length codes?

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5

Using fixed length codes:

6 characters \rightarrow 3 bits are required for each code

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length code						

File size to store 100,000 characters?

= 300,000

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101

Variable length codewords

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101
Variable length codes	0	101	100	111	1101	1100

File size

$$= (45.1 + 13.3 + 12.3 + 16.3 + 9.4 + 5.4).1000 = 224000$$

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101
Variable length codes	0	101	100	111	1101	1100

Decoding

Given an encoded message, decoding is the process of turning it back into the original message.

- A message is uniquely decodable if it can only be decoded in one way.
- The unique decipherability property is needed in order for a code to be useful.

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101
Variable length codes	0	101	100	111	1101	1100

Decode the sequence: 001011101

Prefix Codes

- No codeword is also a prefix of some other codeword
- Prefix codes are desirable because they simplify decoding.
 - In encoding; we just concatenate the codewords representing each character of the file
 - Since no codeword is a prefix of any other, the codeword that begins an encoded file is unambiguous.

Huffman Codes

Huffman codes are a optimal code of variable length codewords which can be used for lossless data compression.

Here, we consider the data to be a sequence of characters;

Huffman's greedy algorithm uses a table giving how often each character occurs (frequency) to build up an optimal way of representing each character as a unique binary string (binary character code) which is called a codeword.

These can be used to compress data very effectively

 savings of 20% to 90% are typical, depending on the characteristics of the data being compressed.

Prefix Codes

Given a tree corresponding to the prefix codes, we can easily decode a character sequence

Let C be the alphabet, a set of n characters and that each character $c \in C$ is an object with attribute c.freq

The tree (T) for an optimal prefix code has

- exactly n leaves and n - 1 internal nodes

For each character c

 $d_{\mathsf{T}}(c)$ denote the depth of the c's node \rightarrow length of the codeword for c

Prefix Codes

For each character c in the alphabet C,

- the attribute c.freq denote the frequency of c in the file
- $d_{\tau}(c)$ denote the depth of the c's node \rightarrow length of the codeword for c

The number of bits required to encode a file is,

$$B(T) = \sum_{c \in C} c.freq \cdot d_T(c)$$

This is also called the cost of the tree T.

Huffman Codes - Algorithm

```
HUFFMAN(C)
1 n \leftarrow |C|
2 O \leftarrow C
                                   // Q is a minimum priority queue, for frequency attribute
3 for i \leftarrow 1 to n - 1
       do ALLOCATE-NODE(z)
5
       left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)
6
              right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)
                                                         // f[c]is frequency of character c
             f[z] \leftarrow f[x] + f[y]
              INSERT(Q, z)
9 return EXTRACT-MIN(Q)
```

Huffman Codes - Algorithm

```
2
                         3
                              4
                                    5
                                         6
               1
Character
               а
                    b
                         C
                               d
                                    е
Frequency
               45
                    13
                         12
                               16
                                         5
```

```
HUFFMAN(C)
```

$$1 n \leftarrow |C|$$

$$2Q \leftarrow C$$

3 for $i \leftarrow 1$ to n - 1

- 4 ALLOCATE-NODE(z)
- 5 $left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)$
- 6 $right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)$
- 7 $f[z] \leftarrow f[x] + f[y]$
- 8 INSERT(Q, z)
- 9 return EXTRACT-MIN(*Q*)

Huffman Codes Algorithm - Runtime

Assumes that Q is implemented as a binary min-heap.

For a set C of n characters, the initialization of Q can be performed in O(n) time using the BUILD-MIN-HEAP procedure.

The for loop is executed exactly |n| - 1 times. Each heap operation requires time $O(\log n)$.

The loop contributes

$$= (|n|-1)*O(\log n) = O(n \log n)$$

Thus, the total running time of HUFFMAN on a set of n characters

$$= O(n) + O(n \log n) = O(n \log n)$$

Huffman Codes

Character	а	b	С	d	е	f
Frequency (in thousands)	45	13	12	16	9	5
Fixed length code	000	001	010	011	100	101
Variable length codes	0	101	100	111	1101	1100

Huffman Codes

An optimal code for a file is always represented by a **<u>full binary tree</u>**, in which every non-leaf node has <u>two</u> children.

The <u>fixed-length</u> code in our example is <u>not optimal</u> since its tree, is not a full binary tree.

Correctness of the Algorithm

Greedy choice property:

x and y be two characters in C having the lowest frequencies

Then the codewords for x and y have the same length and differ only in the last bit.

Correctness of the Algorithm

Optimal substructure property:

If x and y two characters in C having the lowest frequencies

- Then let C' = C $\{x,y\} \cup \{z\}$ where f(z) = f(x) + f(y)
- Let T' be the tree representing the optimal code for C'

We can obtain the T

- by removing leaf node z, and replace with internal node having x, y as leaf nodes
- which represent optimal code for C

0/1 Knapsack Problem

A thief robbing a store finds n items, each item, i worth \$ i and weighs w_i kg The thief wants to take as valuable a load as possible, in his knapsack which can carry at most W

Which items should he take?

0/1 Knapsack Problem

Greedy choice: item with max value per kg.

If we select item 1 with the highest value per kg, knapsack is not filled to its capacity and solutions with item 1 are suboptimal.

Therefore a greedy strategy does not work for 0/1 knapsack problem

0/1 Knapsack Problem

Greedy choice: item with max value per kg.

If we select item 1 with the highest value per kg, knapsack is not filled to its capacity and solutions with item 1 are suboptimal.

Therefore a greedy strategy does not work for 0/1 knapsack problem

Fractional Knapsack Problem

```
Knapsack(w[1..n], v[1..n], W): array [1..n]
      //assumed w & v such that v[i]/w[i] > v[j]/w[j] for i < j
for i = 1 to n
      x[i] = 0; w_{+} = 0;
while w_{t} < W do
      i = best remaining item
      if w_t + w[i] W then //w[i] is the greedy choice
             x[i] = 1; wt = wt + w[i]
      else x[i] = (W - w_{t})/w[i]
             M^{\dagger} = M
return x
```

Fractional Knapsack Problem

If the thief can take fractions of items, then the greedy algorithm will yield an optimal solution

