

Department of Computer Science and Engineering

Course Title: Electrical Circuits

Course Number: 209

Semester: 4th

Experiment No.: 02

Experiment Title: Series-Parallel DC Circuit and Verification of Kirchhoff's Laws

Student ID: 2020-3-60-012

Student Name: Sadia Islam Prova

Date of Performance: 20-11-21

Date of Report Submission: 07-01-2022

Objectives:

- 1. To learn analysis of dc series-parallel circuit.
- 2. To verify Kirchhoff's Voltage Law (KVL).
- 3. To verify Kirchhoff's Current Law (KCL).

Circuit Diagram:

Figure: Circuit for Experiment

Table 01.Data Sheet:

Measured	Measured	Measured	Measured	Measured	Measured	Measured	Measured
Value of	Value of	Value of	Value of	Value of	Value of	Value of	Value of
<i>E</i> (∨)	V1 (V)	V2(V)	V3 (V)	I1 (mA)	I2 (mA)	Iз (mA)	Resistance
							(Ω)
3	2.273	0.727	0.727	22.732	15.463	7.269	R1 = 100
							R2 = 47
							R3 = 100

Answers to the post lab report questions:01

Simplifying the cicuit,

$$Rp = R2 | | R3$$

= 47 | | 100
= 31.973 Ω

$$Req = Rp + R1 = (31.973 + 100) Ω = 131.973 Ω$$

For *I1*,

$$I1 = \frac{E}{R1 + Rp} = 0.022732 \text{ A} = 22.732 \text{ mA}$$

Using CDR,

$$I2 = \frac{R3 \times I1}{R2 + R3} = \frac{22.732 \times 100}{47 + 100} = 15.463 \, mA$$
$$I3 = \frac{R2 \times I1}{R2 + R3} = \frac{22.732 \times 47}{47 + 100} = 7.269 \, mA$$

Using Ohm's law,

$$V1 = I1 \times R1 = (100 \times 22.732)V = 2.273 V$$

$$V2 = I2 \times R2 = (15.463 \times 47)V = 0.727 V$$

$$V3 = I3 \times R3 = (100 \times 7.269)V = 2.273 V$$

There is no discrepancy in PSpice.

Answers to the post lab report questions:02

- 1) V2 = V3
- 2) E = V1 + V2 = (0.727 + 2.273)V = 3V
- 3) I1 = I2 + I3 = (15.463 + 7.269)mA = 22.732 mA

Conclusion:

We verified KCL and KVL in this experiment and found no discripency in PSpice with our theoretically calculated values.