

A Multi-modal Digital Assistant

Presentation structure

Chatty's GUI

- NLP part:
- Context Free Grammar
- Main Challenges
- Auto correct
- Heuristic based approach
- Data Augmentation
- Machine learning based approaches

- IVP part:
- Skin color detection
- Haar Cascade Classifier
- Principal component analysis (PCA)

Experiment and results

Vaadin

CFG-based skills

Variable:	Expression:
<s></s>	<action></action>

<ACTION> <FOOD> | <SCHEDULE> <FOOD> Where can I eat <DISH>

<DISH> sushi

•••

- Too few skills...
- Encode up to 52 skills!

Main challenges

- Lack of Data
- Deal with synonyms
- Spelling mistakes

Benchmark Autocorrect

- Levenshtein distance
- Trie Data structure
- Edit distance

Benchmark Autocorrect

	a		if b =0,
	b		if a =0,
$\mathrm{lev}(a,b) = \langle$	$egin{aligned} \operatorname{lev}(\operatorname{tail}(a), \operatorname{tail}(b)) \ 1 + \min egin{cases} \operatorname{lev}(\operatorname{tail}(a), b) \ \operatorname{lev}(a, \operatorname{tail}(b)) \ \operatorname{lev}(\operatorname{tail}(a), \operatorname{tail}(b)) \end{cases} \end{aligned}$		if a[0] = b[0]
$\operatorname{lev}(a, b) = \langle$	ĺ	$(\operatorname{lev}(\operatorname{tail}(a),b)$	
	$1+\minig<$	$\operatorname{lev}(a, \operatorname{tail}(b))$	otherwise.
	Į Į	lev(tail(a), tail(b))	

Benchmark Autocorrect

Autocorrect

Autocorrects 88% of misspelled words with 1 mutation.

Autocorrects 72.7% of misspelled words with 2 mutations.

Benchmark Autocorrect

DRAWBACKS:

- Dictionary needs to be comprehensive
- Not all types of misspellings are captured
- Context independent

Benchmark Approach - Bag Of Words Based Chatbot

Evaluation Function

 $P_{wordsincommon} + P_{letterateachindex}$

User Query: When is linear programming?

User Query: When is linear programming?

Database question: What is linear programming?

Database question: What is linear programming?

User Query: When is linear programming?

Database question: What is linear programming?

User Query: When is linear programming?

What if there is a typo?

$$\frac{P_{wordsincommon} + P_{letterateachindex}}{2}$$

User Query: Whay is linear programning?

Issues?

Does not take into account context

Benchmark Approach - Heuristic Based Chatbot

Database question: When do we have linear programming

Benchmark Approach - Heuristic Based Chatbot

Database question: When do we have linear programming

User Query 1: Why do we have linear programming?

User Query 1: Why do we have linear programming? 0.78

User Query 1: Why do we have linear programming? 0.78

User Query 2: At what time is linear programming? 0.53

User Query 1: Why do we have linear programming? 0.78

User Query 2: At what time is linear programming? 0.53

User Query 1: Why do we have linear programming? 0.78

Answer: Because it is important.

Data Augmentation

The more data the better - Group 07

Issues?

No data at all.

Solution:

Backtranslation?

Backtranslation impossible because of too short sentences

Augment the data using rephrasing

Augment the data using rephrasing

(uses BERT under the hood)

ML-based approach

Machine Learning based approaches

CNN structure

Skin Color Detection

- Linear separation of skin and non-skin tones
- Color spaces used for recognizing skin are RGB, HSV and YCbCr
- Rule-based separation
- Easy to implement and shows good results
- After finding the mask, we extract boundaries
- In the final stage we only keep the boundaries that are the size of a face and draw a bounding box around those boundaries
- Morphological opening to pull apart connected regions

Face Detection

RGB Mask

YCbCr Mask

HSV Mask

Combined Mask

Contour Extraction

Bounding Box

HAAR CLASSIFIERS

- Haar features are extracted from lots of positive images (containing faces)
- The features work like convolutional kernels

- Since there are lots of features to calculate, the process is sped up by using integral images
- Best features are then selected by Adaboost training
- The concept of Cascade of Classifiers is introduced. Instead of applying all features at once they are grouped and applied one-by-one.

Face Detection

Principal Component Analysis (PCA)

PROBLEM:

Viewing each picture as a vector

SOLUTION:

Extract most important dimensions (main features of the face)

How it works?

- Compute covariance matrix from the initial training set of face images
- Obtain the eigenvalues of the covariance matrix as well as the eigenvectors

Training phase

- Lower dimension
- Contains main components

Recognition phase

HCC →

Project input image into each of the eigenface of the eigenspace

Select the minimum distance

If lower than
threshold
>> label with the
face of the
eigenface giving
the minimum
distance

Face Recognition

Experiments & Results

1) Is it possible to implement a skin color model that is going to perform as well as a Haar Cascade Classifier?

Algorithms	FDR (%)	DSR (%)
Haar Cascade Classifier	18.82	99.33
RGB-HSV-YCbCr	20.26	81.33
RGB-HSV	26.72	73.55
RGB	37.84	64.22

2) What is the optimal number of eigenvectors to successfully recognize faces using PCA (Principal Component Analysis) with satisfactory accuracy and computational speed?

Eigenvectors Count	DSR (%)	Total Time (s)
10	36	66.2
20	42	70
40	46	71.5
80	52	76.9
160	52	116.9
All	52	212

3) What is the highest accuracy that can be reached for recognizing utterances from the CFG, and what model achieves this accuracy?

Number of class	2
Accuracy	0.8283
Precision	0.8367
Recall	0.9462
F1 Score	0.8881

Number of class	2
Accuracy	0.6454
Precision	0.6308
Recall	0.8367
F1 Score	0.7193

Bag of Words Approach

CNN

NLP

Trieu Ngoc Hoang Grassetto Nico De Clercq William VISION

Roşca Alexei Imparato Adele