

Semantic Segmentation with Active Semi-Supervised Representation Learning

Aneesh Rangnekar¹, Christopher Kanan², Matthew Hoffman¹

¹Rochester Institute of Technology

²University of Rochester

Terminology Overview

Labeled Data

Supervised Learning

Terminology Overview

Semi-Supervised Learning

Terminology Overview

Motivation

- There were 10K hours for determining the categories present in each image, 20K for using point annotations for each object present, and over 55K for creating segmentation masks
 - Microsoft coco: Common objects in context

- Annotation and quality control required more than 90 minutes on average for a single image in Cityscapes dataset
 - CityScapes

Observation 1: Training with teacher-student pseudo labeling at every mini-batch iteration is very time and GPU resource consuming, especially for semantic segmentation

Observation 2: Exponentially moving average based teacher-student learning remains sensitive to underlying class distributions observed by the student

Observation 3: Training separately on images from the labeled and unlabeled data, while the unlabeled data undergoes heavy augmentations, skews batch normalization

Observation 1: Training with teacher-student pseudo labeling at every mini-batch iteration is very time and GPU resource consuming, especially for semantic segmentation

Solution: Approach self-training as a potential solution for semi-supervised learning

Observation 2: Exponentially moving average based teacher-student learning remains sensitive to underlying class distributions observed by the student

Solution: Combat class imbalance by accounting for long-tail classes

Observation 3: Training separately on images from the labeled and unlabeled data, while the unlabeled data undergoes heavy augmentations, skews batch normalization

Solution: Ensure all images during a mini-batch iteration are seen jointly by the network

S4AL+ Self-Training

Self-Training

Xie, Q., Luong, M.T., Hovy, E. and Le, Q.V., 2020. Self-training with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10687-10698).

Self-Training

Xie, Q., Luong, M.T., Hovy, E. and Le, Q.V., 2020. Self-training with noisy student improves imagenet classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 10687-10698).

Representation Learning

Representation Learning

Representation Learning

Representation Learning

- Cross-Entropy Loss
- Regional Contrast Loss (ReCo)

void	road	sidewalk	building	wall
fence	pole	traffic light	traffic sign	vegetation
terrain	sky	person	rider	car
truck	bus	train	motorcycle	bicycle

20

Active Learning

Aneesh Rangnekar, Christopher Kanan, and Matthew Hoffman. Semantic segmentation with active semi-supervised learning. IEEE/CVF Winter Conference on Applications of Computer Vision, 2023 Xie, S., Feng, Z., Chen, Y., Sun, S., Ma, C. and Song, M. Deal: Difficulty-aware active learning for semantic segmentation. Asian Conference on Computer Vision, 2020

Image

Active Learning

S4AL

S4AL+

Ground Truth

, ora	Touc	Sidewalk		wan
fence	pole	traffic light	traffic sign	vegetation
terrain	sky	person	rider	car
truck	bus	train	motorcycle	bicycle

- Semi-Supervised Learning:
 - CityScapes

- Does representation learning help?
 - CityScapes

- Future Work
 - Knowledge Distillation

Thank you for watching!