بسم الله الرحمن الرحيم

Parsing:
Top-Down Parsing,
Recursive Descent & Predictive
Parser & LL(1)

Recall ...

Continue ...

How to write tests for selecting the appropriate production rule?

Basic Tools:

First: Let α be a string of grammar symbols. First(α) is the set that includes every terminal that appears leftmost in α or in any string originating from α .

NOTE: If $\alpha \Rightarrow \varepsilon$, then ε is First(α).

Follow: Let A be a non-terminal. Follow(A) is the set of terminals a that can appear directly to the right of A in some sentential form. ($S \Rightarrow \alpha A \alpha \beta$, for some α and β). NOTE: If $S \Rightarrow \alpha A$, then \$ is Follow(A).

Computing First Sets

Definition

First(X) = {
$$t \mid X \rightarrow^* t\alpha$$
} \cup { $\epsilon \mid X \rightarrow^* \epsilon$ }

Intuition:

- 1. First(t) = { t }
- 2. $\varepsilon \in First(X)$
 - if $X \rightarrow \varepsilon$
 - if $X \to A_1 \dots A_n$ and $\varepsilon \in First(A_i)$ for $1 \le i \le n$
- 3. First(α) \subseteq First(X) if X \rightarrow $A_1 ... A_n <math>\alpha$
 - and $\varepsilon \in First(A_i)$ for $1 \le i \le n$

Computing First Sets

- Compute First(X):
 - initialize:
 - if T is a terminal symbol then First (T) = {T}
 - if T is non-terminal then First(T) = { }
 - Calculate if e in First(X) for all X
 - while First(X) changes (for any X) do
 - for all X and all rules (X:= ABC...) do
 - First (X) := First(X) U First (ABC...)
 where First(ABC...) := F1 U F2 U F3 U ... and
 - » F1 := First (A)
 - » F2 := First (B), if A is Nullable; emptyset otherwise
 - » F3 := First (C), if A is Nullable & B is Nullable; emp...

»

First Sets. Example

Recall the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

$$X \rightarrow + E \mid \epsilon$$

 $Y \rightarrow * T \mid \epsilon$

First sets

Computing Follow Sets

· Definition:

Follow(X) = {
$$t \mid S \rightarrow^* \beta X + \delta$$
 }

- Intuition
 - If $X \rightarrow A$ B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
- if $B \rightarrow^* \epsilon$ then $Follow(X) \subseteq Follow(A)$
 - If S is the start symbol then $\$ \in Follow(S)$

Computing Follow Sets (Cont.)

Algorithm sketch:

- 1. $\$ \in Follow(S)$
- 2. First(β) { ϵ } \subseteq Follow(X)
 - For each production $A \rightarrow \alpha \times \beta$
- 3. $Follow(A) \subseteq Follow(X)$
 - For each production $A \rightarrow \alpha \times \beta$ where $\epsilon \in \text{First}(\beta)$

Computing Follow Sets

- Follow(X) is computed iteratively
 - base case:
 - initially, we assume nothing in particular follows X
 - (when computing, Follow (X) is initially { })
 - inductive case:
 - if (Y := s1 X s2) for any strings s1, s2 then
 - Follow (X) U= First (s2)
 - if (Y := s1 X s2) for any strings s1, s2 then
 - Follow (X) U= Follow(Y), if s2 is Nullable