数据建模以及 matlab 实现

云模型

1、云模型介绍:

云模型系我国李德毅院士首创,是一门相对比较新型的学科,属于不确定性人工智能范畴,主要用于定性与定量之间的相互转换。自然界中的不确定性从属性角度来说主要有随机性和模糊性,这跟单色光的"波粒二象性"有点类似[1]。

"云"或者"云滴"(cloud)是云模型的基本单元。所谓"云"是指其在论域上的一个分布,可以用联合概率的形式(x, μ)来类比。可以用一个简单的例子来说明:比如 x 表示身高, μ 表示高个子的隶属度或者称为确定度,用来度量某种倾向的稳定程度;U 表示论域,比如说高个子这个定性概念。形容一个人是高个子是一件相当模糊的事情,因为无法确定身高达到多少的人才算是高个子。当 x=2, $\mu=1$.0,表明身高 2 m的人,是 100%属于高个子的人,这点几乎不容置疑;当 x=1.75, $\mu=0$.55,则表明一个身高 1.75 m的人,算得上是高个子的符合程度只有 0.55;而当 x=1.55, $\mu=0$.1,则表明一个身高只有 1.55 米的人(几乎不认为他是高个子),与高个子的相符程度只有 0.1 左右。

- a) 云模型用三个数据来表示其特征
 - ①期望:云滴在论域空间分布的期望,一般用符号 Ex 表示。

(论域:任何科学理论都有它的研究对象,这些对象构成一个不空的集合,称为论域。)

- ②熵:不确定性程度,由离群程度和模糊程度共同决定,一般用符号 En 表示。
- ③超熵: 用来度量熵的不确定性, 亦即熵的熵, 一般用符号 He 表示。
- b) 云由两种发生器:
 - ①正向云发生器: 用来生成足够的云滴

过程:

- i. 生成以 En 为期望,以 He²为方差的正态随机数 En'
- ii. 生成以 Ex 为期望,以 En'2为方差的正态随机数 x
- iii. 计算隶属度也就是确定度

$$\mu = e^{-\frac{(x-Ex)^2}{2Enr^2}}$$

(这里选择一个常用的钟形函数)

- iv. 重复以上三步直到生成足够多的云滴
- ②逆向云发生器: 用来计算云滴的云数字特征

首先假设样本 x 容量为 n,则其触发机制如下:

- ① 计算样本均值 \overline{X} 和方差 S^2 ;
- ② $E_{\mathbf{x}} = \overline{X}$;

③ En =
$$\sqrt{\frac{\pi}{2}} \times \frac{1}{n} \sum_{1}^{n} |x - Ex|$$
;

4) He = $\sqrt{S^2 - En^2}$.

2、例子:

男子气步枪 60 发比赛的 4 组选手的成绩如表 3-1 所列,通过分析选出一位发挥最出色的选手。

选 手	A	В	C	D
第1次射击	9.5	10.3	10.1	8.1
第2次射击	10.3	9.7	10.4	10.1
第3次射击	10.6	8.6	9.2	10.0
第4次射击	10,5	10.4	10.1	10.1
第5次射击	10.9	9.8	10.0	10.1
第6次射击	10.6	9.8	9.7	10.0
第7次射击	10.4	10.5	10.6	10.3
第8次射击	10.1	10.2	10.8	8.4
第9次射击	9.3	10.2	9.6	10.0
第 10 次射击	10.5	10.0	10.7	9.9

表 3-1 男子气步枪 60 发比赛的成绩

Matlab 程序:

```
clc;
close all;
N=1500;
Y=[9.5 10.3 10.1 8.1
   10.3 9.7 10.4 10.1
   10.6 8.6 9.2 10.0
   10.5 10.4 10.1 10.1
   10.9 9.8 10.0 10.1
   10.6 9.8 9.7 10.0
   10.4 10.5 10.6 10.3
   10.1 10.2 10.8 8.4
   9.3 10.2 9.6 10.0
   10.5 10.0 10.7 9.9]';
for i=1:size(Y,1)
   subplot(size(Y,1)/2,2,i);
   %调用函数部分
   [x,y,Ex,En,He]=cloud_transform(Y(i,:),N);
   plot(x,y,'r.');
   xlabel('射击成绩分布/环');
   ylabel('确定度');
   title(strcat('第',num2str(i),'人射击云模型还原图'));
   axis([8,12,0,1]);
end
```

```
%x 表示云滴,y 表示隶属度,意义是度量倾向的稳定程度;
%Ex,En,He 是云模型的数字特征。y_spor为向量,n 为云滴个数
```

```
%先由样本计算云模型的数字特征
```

```
Ex=mean(y_spor);
S2=var(y_spor);
En=sqrt(pi/2).*mean(abs(y_spor-Ex));
He=sqrt(S2-En^2);
for i=1:n
     Enn=normrnd(En,He,1);
     x(i)=normrnd(Ex,Enn,1);
     y(i)=exp(-(x(i)-Ex).^2/2.*Enn.^2);
end
x;
y;
end
```


观察模型:第四个人的射击环数期望较小。第二个人的射击环数期望没有第一个人第三个人高。第一个第三个人相比,第一个人的云滴离散程度较高,第三个人云滴较密集。总体来说,第三个人的发挥较好。