Statistische Tests

1 Begriffe und Vorgehensweise

Allgemein

Beispiel

- 1. Problem formulieren: $Nullhypothese H_0$ festlegen
- 2. Alternativen bestimmen: Alternativen bestimmen: Alternativen bestimmen
- 3. zu beobachtende Grösse festlegen: Teststatistik T
- 4. Wahrscheinlichkeitsverteilung von T unter H_0 bestimmen
- 5. Menge aller "extremen" Beobachtungen definieren:

 Verwerfungsbereich K mit Signifikanzniveau α
- 6. Daten erheben, Wert von T berechnen: T = t
- 7. P-Wert berechnen
- 8. Entscheidung:

t im Verwerfungbereich: verwerfe H_0 t im Annahmebereich: behalte H_0 bei

Erläuterungen:

- 1. Wir nehmen an, dass kein Effekt oder Unterschied vorhanden ist und versuchen Evidenz gegen diese Annahme, die $Nullhypothese\ H_0$, zu finden. Die Nullhypothese ist das zu überprüfende Modell und besteht meistens aus einer Verteilungsannahme und einer Aussage über einen Parameter.
- 2. Weil man Evidenz **gegen** und nicht für etwas sucht, entspricht die Alternativhypothese der *Arbeitshypothese*. Die Nullhypothese möchte man möglichst widerlegen.
- 3. Die Teststatistik basiert meistens auf einer Schätzung des Parameters, der in Null- und Alternativhypothese auftritt.
- 5. Das Signifikanzniveau α (significance level) ist gleich der Wahrscheinlichkeit, ein "extremes" Resultat zu erhalten, unter der Annahme, dass H_0 stimmt. Je grösser also α gewählt wird, desto grösser ist der Verwerfungsbereich und umgekehrt. Üblich sind $\alpha = 5\%$ oder $\alpha = 1\%$. Das Komplement zum Verwerfungsbereich heisst *Annahmebereich*.
- 7. Der P-Wert (p-value) ist die Wahrscheinlichkeit, dass in einem neuen Versuch ein mindestens so extremes Resultat herauskommt, unter der Annahme, dass H_0 richtig ist. Der P-Wert ist **nicht** die Wahrscheinlichkeit, dass H_0 richtig ist. Einer Hypothese kann gar keine Wahrscheinlichkeit zugeordnet werden, sie ist entweder richtig oder falsch.

- 8. Der Wert von T ist genau dann im Verwerfungsbereich, wenn der P-Wert $\leq \alpha$. In diesem Fall wird die Nullhypothese abgelehnt oder verworfen. H_0 wird als statistisch widerlegt betrachtet. Der Test ist (statistisch) signifikant.
 - Wenn der P-Wert> α ist, dann liegt der Wert von T im Annnahmebereich und die Daten sprechen zu wenig gegen H_0 . H_0 kann nicht verworfen werden. Der Test ist nicht signifikant.
- **Fehler 1. Art:** H_0 wird verworfen, obschon H_0 richtig wäre. Die Wahrscheinlichkeit eines Fehlers 1. Art ist α und wird auf 5% oder 1% festgelegt.
- **Fehler 2. Art:** H_0 wird beibehalten, obschon H_A stimmt. Die Wahrscheinlichkeit eines Fehlers 2. Art wird meist mit β bezeichnet.
- **Macht:** 1β ist die Wahrscheinlichkeit, eine wahre Alternativhypothese zu erkennen und heisst die *Macht* des Tests (power).

2 Tests für Lageparameter

2.1 z-Test

Seien X_1, \ldots, X_n unabhängig normalverteilt mit Erwartungswert μ und bekannter Varianz σ^2 . Betrachte die folgenden Hypothesen:

$$H_0$$
: $\mu = \mu_0$
 H_A : $\mu \neq \mu_0$.

Die Teststatistik des z-Tests ist:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}},$$
 unter H_0 standardnormalverteilt.

2.2 t-Test für eine Stichprobe

Seien X_1, \ldots, X_n unabhängig normalverteilt mit Erwartungswert μ und unbekannter Varianz. Betrachte die folgenden Hypothesen:

$$H_0$$
: $\mu = \mu_0$
 H_A : $\mu \neq \mu_0$.

Die Teststatistik des t-Tests ist:

$$t = \frac{X - \mu_0}{S/\sqrt{n}}$$
, unter H_0 t-verteilt mit $n - 1$ Freiheitsgraden (degrees of freedom).

2.3 Vorzeichentest (sign test)

Seien X_1, \ldots, X_n iid mit Median m.

$$H_0$$
: $m = \mu_0$
 H_A : $m \neq \mu_0$.

Zur Berechnung der Teststatistik T wird von jedem Wert μ_0 subtrahiert. Dann ist T die Anzahl positiver (oder negativer) Beobachtungen; $T \sim \mathcal{B}(n, 0.5)$.

2.4 Wilcoxontest (Rangsummentest, signed rank test)

Seien X_1, \ldots, X_n iid stetige, symmetrisch verteilte Zufallsvariablen mit Median m.

 H_0 : $m = \mu_0$ H_A : $m \neq \mu_0$.

Zuerst wird von allen Beobachtungen μ_0 subtrahiert. Die Werte werden dann dem Absolutbetrag nach geordnet und die zugehörigen Ränge bestimmt. Sind mehrere Werte gleich gross, werden die Ränge gemittelt.

Die Teststatistik ist die Rangsumme aller positiven (oder negativen) Werte T^+ (oder T^-). Es gibt Tabellen mit den kritischen Werten; für n > 30 Normalapproximation.

2.5 t-Test für zwei unabhängige Stichproben

Seien X_1, \ldots, X_n unabhängig normalverteilt mit Erwartungswert μ_X und Varianz σ^2 und Y_1, \ldots, Y_m unabhängig normalverteilt mit Erwartungswert μ_Y und Varianz σ^2 . Die Y_i seien unabhängig von den X_i .

 H_0 : $\mu_X = \mu_Y$ H_A : $\mu_X \neq \mu_Y$.

Die Teststatistik des t-Tests ist:

$$t = \frac{\bar{X} - \bar{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \quad \text{mit } S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n + m - 2}$$

Unter H_0 ist t-verteilt mit n+m-2 Freiheitsgraden.

2.6 Mann-Whitney-Test (Rangsummentest, rank sum test)

Seien X_1, \ldots, X_n iid stetige Zufallsvariablen mit Erwartungswert μ_X und Y_1, \ldots, Y_m iid stetige Zufallsvariablen mit Erwartungswert μ_Y . Die Y_i seien unabhängig von den X_i .

 H_0 : $\mu_X = \mu_Y$ H_A : $\mu_X \neq \mu_Y$.

Bestimme die Rangsummen $T^{(1)}$ der X_i und $T^{(2)}$ der Y_i in der "gemeinsamen" Stichprobe. Setze

$$U^{(1)} = T^{(1)} - \frac{n(n+1)}{2}, \quad U^{(2)} = T^{(2)} - \frac{m(m+1)}{2} \quad \text{ und } U = \min(U^{(1)}, U^{(2)}).$$

Die kritischen Werte für U sind tabelliert.

3 Dualität zwischen Tests und Vertrauensintervallen

Bei einem Test lautet die Frage: "Welche Beobachtungen sind vereinbar mit H_0 , bzw. einem Parameterwert μ_0 ?" Der Annahmebereich liefert die Antwort.

Umgekehrt wird bei einem Vertrauensintervall gefragt: "Welche Parameter sind vereinbar mit den Beobachtungen?" Alle diese Parameterwerte bilden dann das Vertrauensintervall.

Satz 3.1 (Dualitätssatz)

Ein Test mit Signifikanzniveau α verwirft $H_0: \mu = \mu_0$ genau dann nicht, wenn μ_0 innerhalb des $(1 - \alpha)100\%$ -Vertrauensintervalls liegt.