3 The Goemans-Williamson Algorithm

We let $S^k = \{x \in \mathbb{R}^{k+1} : ||x|| = 1\}$. Throughout we fix a graph G = (V, E) and set n = |V|.

Maxcut: We let Maxcut(G) denote the size of the largest edge cut in G.

Theorem 3.1

- (i) It is NP-complete to decide if G satisfies $Maxcut(G) \ge k$.
- (ii) It is NP-hard to approximate Maxcut(G) to within a factor of $\frac{16}{17}$ unless P = NP.
- (iii) Assuming $BPP \neq NP$ and the Unique Games Conjecture, there is no approximation algorithm for Maxcut(G) achieving a better ratio than Goemans-Williamson algorithm.

Semidefinite Relaxation: First, observe that

$$\operatorname{Maxcut}(G) = \max \frac{1}{2} \sum_{ij \in E} (1 - x_i \cdot x_j)$$

s.t. $x_i \in \{-1, 1\}$ for every $i \in V$

Noting that $\{-1,1\} = S^0$, we consider the following semidefinite relaxation of this problem

$$\operatorname{Maxcut}^{\circ}(G) = \operatorname{max} \frac{1}{2} \sum_{ij \in E} (1 - x_i \cdot x_j)$$

s.t. $x_i \in S^{n-1}$ for every $i \in V$

Note that $\operatorname{Maxcut}(G) \leq \operatorname{Maxcut}^{\circ}(G)$. Also, since $||x_i|| = 1$ for every $i \in V$ we have

$$\frac{1}{4} \sum_{ij \in E} ||x_i - x_j||^2 = \frac{1}{4} \sum_{ij \in E} (x_i - x_j) \cdot (x_i - x_j) = \frac{1}{2} \sum_{ij \in E} (1 - x_i \cdot x_j)$$

So, in other words, the problem $Maxcut^{\circ}(G)$ is equivalent to embedding the vertices on the sphere S^{n-1} so that the sum of the squares of the corresponding edge lengths is maximum.

Gram matrix: Given a collection of vectors $\{x_i\}_{i\in S} \in \mathbb{R}^m$ the associated *Gram matrix* $X \in \mathbb{R}^{S \times S}$ is given by $X_{ij} = x_i \cdot x_j$. If $S = \{1, \ldots, n\}$ and we form a matrix U by taking x_i as the i^{th} column, then $X = U^{\top}U$. Note that X is a gram matrix if and only if $X \succeq 0$.

Theorem 3.2 Let A be the adjacency matrix of G and let X be the gram matrix of $\{x_i\}_{i\in V} \in \mathbb{R}^n$. Then $\{x_i\}_{i\in V}$ is optimal for Maxcut°(G) if and only if X is optimal for the SDP

$$\min X \cdot A$$

$$s.t. \ X \succeq 0$$

$$X_{ii} = 1 \ for \ every \ i \in V$$

Proof: It is immediate from the definition that $X \succeq 0$. Therefore,

$$X$$
 is feasible $\Leftrightarrow X_{ii} = 1$ for every $i \in V$
 $\Leftrightarrow ||x_i|| = 1$ for every $i \in V$
 $\Leftrightarrow \{x_i\}_{i \in V}$ feasible for Maxcut°(G).

Furthermore,

$$\frac{1}{2} \sum_{ij \in E} (1 - x_i \cdot x_j) = \frac{1}{2} |E| - \frac{1}{4} A \cdot X$$

The result follows immediately from this.

Note: It follows from the above that an (approximately) optimal solution for $Maxcut^{\circ}(G)$ can be computed in polynomial time.

Theorem 3.3 There exists $\alpha \in \mathbb{R}$ with $\alpha \sim .868$ with the following property. If $\{x_i\}_{i \in V}$ is optimal for Maxcut°, H is a random hyperplane through the origin, and Cut(H) is the size of the edge cut consisting of those edges $ij \in E$ for which x_i and x_j are separated by H, then

$$\mathbb{E}[Cut(H)] \ge \alpha \operatorname{Maxcut}^{\circ}(G) \ge \alpha \operatorname{Maxcut}(G)$$

Proof: Let β be the largest real number with the property that $\operatorname{arccos}(t) \geq \beta(1-t)$ for every $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ and set $\alpha = \frac{2\beta}{\pi}$. The probability that an edge $ij \in E$ will have ends on either side of this partition is precisely $\frac{\theta}{\pi}$ where θ is the angle between the vectors x_i and x_j . Thus

$$\mathbb{E}[Cut(H)] = \sum_{ij \in E} \frac{\arccos(x_i \cdot x_j)}{\pi}$$
$$\geq \sum_{ij \in E} \frac{\beta}{\pi} (1 - x_i \cdot x_j)$$
$$= \alpha \operatorname{Maxcut}^{\circ}(G)$$

Goemans-Williamson Algorithm: Compute an (approximately) optimal solution to $Maxcut^{\circ}(G)$, take a random hyperplane through the origin, and return the corresponding edge cut. By the theorem, the expected size of this edge cut is at least .868 of Maxcut(G) (i.e. this is a .868 approximation algorithm).