Задача 6. Даден е детерминиран краен автомат, определен както следва:

- входна азбука {0, 1}
- множество от състояния {A, B, C, D, E}
- начално състояние А
- множество от крайни състояния {С, Е}
- функция на преходите δ , определена по следния начин:

$$\delta(A,0) = B, \ \delta(A,1) = D, \ \delta(B,0) = B, \ \delta(B,1) = C, \ \delta(C,0) = D, \ \delta(C,1) = E, \ \delta(D,0) = D, \ \delta(D,1) = E, \ \delta(E,0) = B, \ \delta(E,1) = C.$$

Да се конструира минимален детерминиран краен автомат, еквивалентен на дадения.

Решение.

Построяваме автомата от условието (не е задължително).

Минимизация.

$$P_1 = \{A, B, D\},\$$

 $P_2 = \{C, E\}$

състояние	преход с 0	преход с 1
A	P_1	P_1
В	P_1	P_2
С	P_1	P_2
D	P_1	P_2
Е	P_1	P_2

Разбиваме P_1 на $P_1 = P_3 \cup P_4$ където $P_3 = \{A\}, P_4 = \{B, D\}.$

състояние	преход с 0	преход с 1
A	P_4	P_4
В	P_4	P_2
С	P_4	P_2
D	P_4	P_2
E	P_4	P_2

Всички състояния от всички множества имат еднакво поведение. Алгоритъмът спира. Финалните състояния са тези, в които има поне едно финално състояния от оригиналния автомат, който минимизирахме – това е само състоянието P_2 . Окончателно, крайния детерминиран и минимизиран автомат:

