Reinforcement Learning

Bartlett

ntroduction

 $\mathsf{Theory}$ 

Algorithms

Question:

### Bootcamp 6: Reinforcement Learning



William H. Guss, James Bartlett {wguss, james}@ml.berkeley.edu Machine Learning at Berkeley

April 22, 2016

### Overview



Reinforcement Learning

> Guss & Bartlett

. . .

miroducti

...---,

Algorithm

Question

- 1 Introduction
- 2 Theory
- 3 Algorithms
- 4 Questions



Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithm

Question

How would you solve pacman with machine learning?





Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithm

Question

How would you solve pacman with machine learning?

Find a model which takes screen pixels to actions:

$$\pi_{\theta}: s_t \mapsto a_t.$$





Reinforcement Learning

> Guss & Bartlett

Introduction

Algorithm

Theory

How would you solve pacman with machine learning?

Find a model which takes screen pixels to actions:

$$\pi_{\theta}: s_t \mapsto a_t.$$

What is your loss function? Data?





#### Reinforcement Learning

Guss & Bartlett

#### Introduction

Theory

Algorithm

Questions





### Solution: Reinforcement Learning



Reinforcement Learning

Guss &

Introduction

Theory

Algorithm

Questio

 Supervised learning is not the most general formulation of learning.



### Solution: Reinforcement Learning



Reinforcement Learning

Guss &

Introduction

Theory

Algorithm

- Supervised learning is not the most general formulation of learning.
- Humans learn through reward and penalty



### Solution: Reinforcement Learning



Reinforcement Learning

Introduction

Can we make algorithms which improve with crude reward signals?

Machine learning without explicit objective functions



Reinforcement Learning (RL)



#### The Core Idea



Reinforcement Learning

> Guss & Bartlett

troduction

Theory

Algorithm:

Questior



- Models (agents) take action  $a_t$  in some environment.
- Environment provides state  $s_t$ , reward  $r_t$ .
- Models learn to maximize reward  $r_t$ ,  $\forall t$ .

### Markov Decision Process (MDP)



Reinforcement Learning

Dartiett

Introductio

Theory

Algorithm

Environment,  $E = (S, A, R, \rho, r)$ .

- $lue{1}$  State space,  ${\cal S}$
- 2 Action space, A
- f 3 Reward space,  $\cal R$
- 4 Transition distribution,  $\rho(s' \mid s, a)$ . Given a previous state s and action a, environment gives s'.
- **5** Reward function  $r(s, a) \in \mathcal{R}$ .

**Markov Property:**  $\rho(s' \mid s, a)$  depends only on s, a not previous states!

### Markov Decision Process (MDP)



Reinforcement Learning

Bartlett

ntroductio

Theory

Algorithm

Question

#### Example MDP



#### Pacman as an MDP



Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithm

Ŭ

- $S = \mathbb{R}^{256 \times 256}$ , images as state space.
- $\mathcal{A} = \{\uparrow, \downarrow, \rightarrow, \leftarrow\}$ , joystick as action space.
- $r(s_t, a_t) = \text{change in score.}$
- $\rho(s_{t+1} \mid s_t, a_t) = \text{next}$  frame of game after joystick action  $a_t$ .



### Policies/Agents



Reinforcement Learning

> Guss & Bartlett

ntroduction

Theory

Algorithm

Questio

#### Two different types of agents

- Deterministic policy  $a = \pi(s)$  acts in E.
- $\blacksquare$  Stochastic policy  $a \sim \pi(a|s)$  gives a probability distibution over actions.

#### **Policy Trajectories**

$$s_1 \xrightarrow{\pi} a_1 \xrightarrow{\rho,r} s_2, r_2 \xrightarrow{\pi} a_2 \xrightarrow{\rho,r} \cdots$$

# Value under a policy



Reinforcement Learning

Bartlet

Introduction

Theory

Algorithms

Question

The **state value** is a function of a given state for an agent  $\pi$  defined as

$$V^{\pi}(s_t) = \mathbb{E}\left[\sum_{n=t+1}^{\infty} \gamma^n r(s_n, \pi(s_n))\right]$$

- $oldsymbol{1}$   $\gamma$  is the discount factor
- $\mathbf{Z}$   $\pi(s_n)$  is the action the agent  $\pi$  makes after seeing state  $s_n$ .
- $r(s_n, \pi(s_n))$  is the reward the agent gets from taking that action.

### Value under a policy



Reinforcement Learning

Bartlet

Introduction

Theory

A.1. 2.1

Aigorithms

Questions

The **state-action value** for an agent  $\pi$  is defined such that

$$Q^{\pi}(s_t, a_t) = \mathbb{E}\left[\underbrace{r(s_t, a_t)}_{\text{reward for } a_t} + V^{\pi}(s_t)\right]$$

• Given some state  $s_t$ , the *best* agent,  $\pi^*$  is one that take action

$$a_t = \operatorname*{argmax}_{a} Q(s_t, a).$$

### Problems in Reinforcement Learning



Reinforcement Learning

Bartlett

Introductio

Theory

Algorithms

**Policy Optimization:** maximize the expected reward with respect to a policy  $\pi$ ;

$$\pi^* = \operatorname*{argmax}_{\pi} \mathbb{E} \left[ \sum_{t=0}^{\infty} r_t \right]$$

- **Policy Evaluation:** Given some fixed policy  $\pi$  compute expected return.
  - $\blacksquare$  Computing  $Q^\pi,\,V^\pi,$  and other expectations on policy rollout.
  - Lets us perform policy optimization!

# Behavioral Cloning



Reinforcement Learning

Dartiett

Introduction

Algorithms

Questio

**Behavioral Cloning:** Supervised learning in MDPs using and expert agent expert  $\pi^*!$ 

Given expert examples  $\mathcal{D}=(s_t,a_t=\pi^*(s_t))$  and a model  $\pi_{\theta}$  find  $\theta^*$  st

$$\theta^* = \operatorname*{argmin}_{\theta} \mathcal{L}(a_t, \pi_{\theta}(s_t)).$$

where  $\mathcal{L}$  is some loss function.

- Show, don't tell!
- No complicated machinery, just standard ML.

### Behavioral Cloning



Reinforcement Learning

Bartlett

atroduction

Theory

Algorithms

Ü

#### **Issue: Compounding Error**

Given some irreducible error  $\epsilon = 0.001$ 

$$\mathcal{L}(a_1, \pi(s_1)) = 2\epsilon$$





Reinforcement Learning

> Guss & Bartlett

ntroduction

. .....

Algorithms

Questior

### Goals of Q-learning

1 Approximate  $Q^{\pi^*}$ , the Q function of the optimal agent, as  $Q(s_t,a_t)$ .



Reinforcement Learning

Bartlett

ntroduction

i neory

Algorithms

Questio

#### Goals of Q-learning

- $\blacksquare$  Approximate  $Q^{\pi^*}$  , the Q function of the optimal agent, as  $Q(s_t,a_t).$
- 2 Using Q, find the agent,  $\pi$ , that best approximates the optimal agent,  $\pi^*$ .



Reinforcement Learning

> Guss & Bartlett

and discountry

Theory

Algorithms

Questions

How do we define best?



Reinforcement Learning

> Guss & Bartlett

ntroductior

Theory

Algorithms

Questior

#### How do we define best?

Given some state  $s_t$ , the **best** agent,  $\pi^*$  is one that takes action

$$a_t = \arg\max_a Q(s_t, a).$$



Reinforcement Learning

Dartiett

Introductio

Theory

Algorithms

Questions

#### An example: Frozen Lake Problem





Reinforcement Learning

> Guss & Bartlett

ntroductio

Theory

Algorithms

Ougetier

- 100 reward for reaching the goal
- $\blacksquare 0$  otherwise

How do we keep track of this long term reward?



Reinforcement Learning

> Guss & Bartlett

ntroductio

i neory

Algorithms

Questio

lacksquare 100 reward for reaching the goal

• 0 otherwise

How do we keep track of this long term reward?

Q function



Reinforcement Learning

Bartlett

ntroductio

Theory

Algorithms

Questions

How do we actually calculate the  ${\it Q}$  function?



Reinforcement Learning

> Guss & Bartlett

troduction

\_.

Algorithms

```

How do we actually calculate the Q function? The Bellman Equation.



Reinforcement Learning

> Guss & Bartlett

ntroductio

Theory

Algorithms

Questions

How do we actually calculate the  ${\cal Q}$  function?

The Bellman Equation.

$$Q^{\pi}(s_t, a_t) = r_t + \gamma Q^{\pi}(s_{t+1}, \pi(s_{t+1}))$$



Reinforcement Learning

Bartlett

ntroduction

i neory

Algorithms

One Q-Learning Algorithm: Tabular Q-Learning

- Explore the environment
- On the way, use the Bellman equation to store a table of expected future reward (Q) for each state-action pair.
- Use this table to pick the best possible action for any given state.



Reinforcement Learning

> Guss & Bartlett

Introduction

Theory

Algorithms

Questions

### An example update for Frozen Lake.

Suppose our stored  ${\cal Q}$  table looks like so:

| Up | Down | Left | Right |
|----|------|------|-------|
| 0  | 65   | 0    | 40    |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 50 | 75   | 30   | 20    |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |



Reinforcement Learning

Dartiett

ntroduction

.. ..

Algorithms

Questions

An example update for Frozen Lake.

Then suppose our agent moves down from the starting square



Reinforcement Learning

Bartlett

Introductio

Theory

Algorithms

Question

An example update for Frozen Lake.

Then we update using the Bellman equation.

$$Q(s_{t+1}, a_{t+1}) = Q(s_t, a_t) + \alpha(r_t + \gamma(\max_a Q(s_t, a) - Q(s_t, a_t)))$$

| Up | Down | Left | Right |
|----|------|------|-------|
| 0  | 65   | 0    | 40    |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 50 | 75   | 30   | 20    |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |



Reinforcement Learning

Bartlet

Introduction

Theory

Algorithms

Questions

### An example update for Frozen Lake.

The table now looks like so:

| Up | Down | Left | Right |
|----|------|------|-------|
| 0  | 70   | 0    | 40    |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 50 | 75   | 30   | 20    |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |
| 0  | 0    | 0    | 0     |

### Policy Iteration



Reinforcement Learning

> Guss & Bartlett

ntroduction

Theory

Algorithms

- T

#### **Deep Determisitic Policy Gradient**

- **1** Actor neural network  $\mu: \mathcal{S} \to \mathcal{A}$
- 2 Critic network  $Q^{\mu}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$
- 3 Performance of  $\mu$  is  $Q^{\mu}(s_t, \mu(s_t))$ . Maximize performance!  $\nabla_W Q^{\mu}(s_t, a_t) = \nabla_a Q^{\mu}(s_t, a) \cdot \nabla_W \mu(s_t)$



Reinforcement Learning

> Guss & Bartlett

ntroduction

Theory

Algorithms

Questions

# Questions?