QE for RCF by CAD

富永 直弥

2023年7月3日

1 CAD アルゴリズム

CAD とは、ユークリッド空間の分割で、各分割の上で複数の多項式を符号不変にするものである.Collins により提唱された CAD アルゴリズムについてかく.

定義 1.1. \mathbb{R}^n の有限部分集合族 \mathfrak{D} が、

- 任意の $D \in \mathfrak{D}$ は空でない弧状連結集合,
- 任意の $D_1, D_2 \in \mathfrak{D}$ について, $D_1 \neq D_2$ ならば $D_1 \cup D_2 = \emptyset$,
- $\bullet \ \bigcup_{D \in \mathfrak{D}} D = \mathbb{R}^n$

を満たすとき、 \mathfrak{D} を \mathbb{R}^n の分割という.

定義 1.2. $F \subset \mathbb{R}[x_1,\ldots,x_n]$ を有限部分集合とする.

 $D\subset\mathbb{R}^n$ が F-符号不変であるとは、任意の $f\in F$ に対し、f の符号が D 上一定であることと定義する。 さらに、 \mathbb{R}^n の分割 $\mathfrak D$ が、任意の $D\in\mathfrak D$ に対して、D が F-符号不変となるとき、 $\mathfrak D$ を \mathbb{R}^n の F-符号不変な分割という.

1.1 描画可能

定義 1.3. $F \subset \mathbb{R}^n[x_1,\ldots,x_n]$ を有限部分集合とする. 空でない弧状連結部分集合 $S \subset \mathbb{R}^{n-1}$ が F-描画可能 であるとは,

- 任意の $x \in S$ に対し, F の解の個数, すなわち $\{y \in \mathbb{R} \mid \text{ある } f \in F \text{ に対し } f(x,y) = 0\}$ の元の個数が一定であり、
- 各 $x \in S$ の F の解を $f_1(x) < f_2(x) < \cdots < f_k(x)$ と書くとき、各 f_i は S 上の実数値連続関数

であることと定義する.

命題 1.1. $S \subset \mathbb{R}^{n-1}$ を空でない弧状連結部分集合とし, $F \subset \mathbb{R}[x_1,\ldots,x_n]$ を有限部分集合とする. 次の 3 条件を満たすとき, S は F-描画可能である.

- 任意の $f \in F$ に対し、 $S \perp f$ の複素数根の数は重複度込みで一定である.
- 任意の $f \in F$ に対し, $S \perp f$ の相異なる複素数根の数は一定である.

• 相異なる任意の $f,g \in F$ に対し, $S \perp f,g$ に共通する複素数根の数は重複度込みで一定である.

この命題を示すために次の二つの補題を用意する.

補題 1.1. $S \subset \mathbb{R}^{n-1}$ を空でない弧状連結部分集合とし, $f_1, f_2 \in \mathbb{R}[x_1, \dots, x_n]$ が次を満たすとする.

- 各 i = 1, 2 に対し、 $S \perp f_i$ の重複度込みの複素数根の数は一定.
- 各 i=1,2 に対し, $S \perp f_i$ の相異なる複素数根の数は一定.
- $S \perp f_1, f_2$ の重複度込みの複素数共通根の数は一定.

このとき, $S \perp f_1, f_2$ の相異なる複素数共通根の数は一定.

証明. 方針: $S_k = \{a \in S \mid f_1(a), f_2(a) \text{ の相異なる複素数共通根が } k 個 \} が開集合であることを示す. (多項式の解の, 係数についての連続性から示せる.)$

補題 1.2. $A \in \mathbb{R}[x_1,\ldots,x_n]$ とし, $S \subset \mathbb{R}^{n-1}$ を弧状連結部分集合とする.

- S 上 A の重複度込みの複素数根の数は一定.
- S 上 A の相異なる複素数根の数は一定.

この時, S は $\{A\}$ -描画可能である.

証明. 方針: 次の二つのことを示さなければならない.

- 1. S 上実根の数は一定.
- 2. S 上実根は連続である.

いずれも多項式の根の係数に対する連続性から示せる.

命題 1.1. **の証明**. 補題 1.2. より,各 $f \in F$ に対して,S は $\{f\}$ -描画可能である. よって,S 上の連続関数 $\alpha_{1,f}(a) < \dots \alpha_{n_f,f}(a)$ を,各 $a \in S$ で $f(a)(x) \in \mathbb{R}[x]$ の解であるようにとれる.

主張・ $f,g \in F$ が, $f \neq g$ であるとする, ある $a \in S$ において $\alpha_{k,f}(a) = \alpha_{l,g}(a)$ であるならば, 任意の $a \in S$ に対して $\alpha_{k,f}(a) = \alpha_{l,g}(a)$ である.

この主張は, S が弧状連結であることと, 補題 1.1. から従う. この主張より, F の解の個数は S 上一定である. よって, 命題が示された.

系 1.1. $S \subset \mathbb{R}^{n-1}$ を弧状連結部分集合とし, $F \subset \mathbb{R}[x_1,\ldots,x_n]$ を有限部分集合とする. 次が成り立つとき, S は F-描画可能である.

- 任意の $f \in F$ に対し, $\deg(f(a))$ が一定 $(a \in S)$.
- 任意の $f \in F$ に対し, $\deg(\gcd(f(a), \frac{\partial f}{\partial x_n}(a)))$ が一定 $(a \in S)$.
- 任意の $f,g \in F$ に対し, $\deg(\gcd(f(a),g(a)))$ が一定 $(a \in S)$.

1.2 主部分終結式係数 (Principal Subresultant Coefficient)

ここで書くこと. gcd(f(a), g(a)) の次数が psc(f(a), g(a)) から決まるということ.

1.3 符号不変な分割の存在と CAD アルゴリズム

符号不変な分割の存在を示し、CAD アルゴリズムについて明記する.