Mathematical Logic Homework 03

Qiu Yihang

Oct.21, 2022

1 The Binary Relation of Membership in Effectively Decidable Subset of N is Not Effectively Decidable

Proof. Assume B is effectively decidable.

Then exists an algorithm \mathcal{B} for determining the membership of input (m, n) in B.

Since $A_0, A_1, ..., A_n, ...$ is a listing of all effectively decidable sets of \mathbb{N} , we know there exists algorithms $A_0, A_1, ..., A_n, ...$ for determining the membership in $A_0, A_1, ..., A_n, ...$

We can construct a subset A^* of \mathbb{N} as follows. For any number $n \in \mathbb{N}$,

```
 \left\{ \begin{array}{l} n \notin A^*, \quad \text{if algorithm $\mathcal{B}$ returns "YES" on input $(n,n)$} \\ n \in A^*, \quad \text{if algorithm $\mathcal{B}$ returns "NO" on input $(n,n)$} \end{array} \right.
```

Now we prove A^* is an effectively decidable. We can construct the following algorithm A^* .

```
Algo. \mathcal{A}^*
begin

on Input n;

Find \mathcal{A}_n in the listing \mathcal{A}_0, \mathcal{A}_1, ..., \mathcal{A}_m, ... and run algorithm \mathcal{A}_n on n;

if the result is "YES" then Output: "NO" else Output: "YES";
end
```

 $n \in A^* \Leftrightarrow \mathcal{A}_n$ on input n returns "NO" $\Leftrightarrow \mathcal{A}^*$ on input n returns "YES".

 $n \notin A^* \Leftrightarrow \mathcal{A}_n$ on input n returns "YES" $\Leftrightarrow \mathcal{A}^*$ on input n returns "NO".

Thus, \mathcal{A}^* determines the membership in A^* , i.e. A^* is an effectively decidable subset of \mathbb{N} .

Since $A_0, A_1, ..., A_n, ...$ is a listing of <u>all</u> effectively decidable subsets of \mathbb{N} , exists $k \in \mathbb{N}$ s.t. $A^* = A_k$. Consider the membership of k in A^* .

When $k \in A^*$, $k \in A^* \Rightarrow A^*$ returns "YES" on $k \Rightarrow A_k$ returns "NO" on $k \Rightarrow k \notin A_k \Rightarrow k \notin A^*$.

When $k \notin A^*$, $k \notin A^* \Rightarrow A^*$ returns "NO" on $k \Rightarrow A_k$ returns "YES" on $k \Rightarrow k \in A_k \Rightarrow k \in A^*$.

Contradiction.

Thus, B is **not** effectively decidable.

2 For any Wff α , $s(\alpha) = 1 + c(\alpha)$

Proof. Proof by induction.

$$S = \{ \alpha \mid \alpha \text{ is a wff and } s(\alpha) = 1 + c(\alpha). \}$$

Now we prove S = the set of all wffs.

BASE CASE. $\alpha = A$, where A is a sentence symbol.

$$c(\alpha)=0, s(\alpha)=1.$$
 Thus, $s(\alpha)=1+c(\alpha)$ holds, i.e. $\alpha\in S.$

INDUCTIVE CASE.

(1) $\alpha = (\neg \beta)$. Obvious $s(\alpha) = s(\beta), c(\alpha) = c(\beta)$. Assume $\beta \in S$.

Then
$$s(\alpha) = s(\beta) = 1 + c(\beta) = 1 + c(\alpha)$$
. Thus, $\alpha \in S$.

(2) $\alpha = (\beta \wedge \gamma)$. Then $s(\alpha) = s(\beta) + s(\gamma), c(\alpha) = c(\beta) + c(\gamma) + 1$.

Assume
$$\beta, \gamma \in S$$
. Then $s(\alpha) = s(\beta) + s(\gamma) = c(\beta) + 1 + c(\gamma) + 1 = 1 + c(\alpha)$.

Thus,
$$\alpha \in S$$
.

(3) Similarly, for cases where $\alpha = (\beta \vee \gamma)$ or $\alpha = (\beta \to \gamma)$ or $\alpha = (\beta \leftrightarrow \gamma)$, when $\beta, \gamma \in S$, $s(\alpha) = s(\beta) + s(\gamma) = 1 + c(\beta) + 1 + c(\gamma) = 1 + c(\alpha)$. Thus, $\alpha \in S$.

Therefore, S = the set of all wffs.

Thus, for any wff α , $s(\alpha) = 1 + c(\alpha)$, i.e. the number of occurrences of sentence symbols in α is 1 greater than the number of binary connectives in α .

3 Parsing Tree of a Wff

Solution. The resulting parse tree is as follows.

Figure 1: Parse Tree

How the algorithm constructs the parse tree above is explained as follows.

First create a single node $((A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C)))$.

The only existing leaf node is not a sentence symbol. Since the second symbol is not \neg , find $(A \lor (B \land C))$ followed by \leftrightarrow . The remaining part is $((A \lor B) \land (A \lor C))$. Create two children.

Leaf node $(A \vee (B \wedge C))$ is not a sentence symbol. Since the second symbol is not \neg , find

A

and $(B \wedge C)$. Create two children.

Leaf node $((A \lor B) \land (A \lor C))$ is not a sentence symbol. Since the 2nd symbol is not \neg , find $(A \lor B)$ and $(A \lor C)$. Create two children.

Leaf node A is a sentence symbol.

Leaf node $(B \wedge C)$ is not a sentence symbol. Since the 2nd symbol is not \neg , find B and C. Create two children.

Leaf node $(A \vee B)$ is not a sentence symbol. Since the 2nd symbol is not \neg , find A and B. Create two children.

Leaf node $(A \vee C)$ is not a sentence symbol. Since the 2nd symbol is not \neg , find A and C. Create two children.

All leaf nodes A, B, C, A, B, A, C are sentence symbols.

Terminate.

4 Problem 4

4.1 Whether $(P \land Q) \rightarrow R \models (P \rightarrow R) \lor (Q \rightarrow R)$ or not

Solution. $(P \land Q) \to R \vDash (P \to R) \lor (Q \to R)$. The proof is as follows.

Under truth assignment v,

$$\bar{v}\big[(P\to R)\vee(Q\to R)\big]=\texttt{False}$$
 only if. $\bar{v}(P\to R)=\texttt{False}$ and $\bar{v}(Q\to R)=\texttt{False}$ only if. $v(P)=v(Q)=\texttt{True}, v(R)=\texttt{False}.$

v does not satisfy $((P \land Q) \to R)$, given that $\bar{v}\big[((P \land Q) \to R)\big] = \mathtt{False}$.

Thus, truth assignments that do not satisfy $(P \to R) \lor (Q \to R)$

only if. they do not satisfy $((P \land Q) \rightarrow R)$,

i.e. truth assignments satisfying $((P \land Q) \to R)$ satisfies $(P \to R) \lor (Q \to R)$.

Therefore, $(P \land Q) \rightarrow R$ tautologically implies $(P \rightarrow R) \lor (Q \rightarrow R)$.

4.2 Whether $(P \land Q) \rightarrow R \models \exists (P \rightarrow R) \lor (Q \rightarrow R)$ or not

Solution. $(P \land Q) \to R \models \exists (P \to R) \lor (Q \to R)$. The proof is as follows.

The truth table of $(P \wedge Q) \to R$ and $(P \to R) \vee (Q \to R)$ is as follows.

v(P)	v(Q)	v(R)	$\bar{v}((P \land Q) \to R)$	$\bar{v}((P \to R) \lor (Q \to R))$
True	True	True	True	True
True	True	False	False	False
True	False	True	True	True
True	False	False	True	True
False	True	True	True	True
False	True	False	True	True
False	False	True	True	True
False	False	False	True	True

Thus, under any truth assignment $v, \bar{v}[(P \land Q) \to R] = \bar{v}[(P \to R) \lor (Q \to R)].$

Therefore, any truth assignment satisfying $(P \wedge Q) \to R$ satisfies $(P \to R) \vee (Q \to R)$ while any truth assignment satisfying $(P \to R) \vee (Q \to R)$ satisfies $(P \wedge Q) \to R$.

Thus,
$$(P \land Q) \rightarrow R$$
 is tautologically equivalent to $(P \rightarrow R) \lor (Q \rightarrow R)$.

5 Problem 5

5.1 $((P \rightarrow Q) \rightarrow P) \rightarrow P$ Is a Tautology

Solution. $((P \to Q) \to P) \to P$ is a tautology. The proof is as follows.

The truth table of $((P \to Q) \to P) \to P$ is as follows.

v(P)	v(Q)	$\bar{v}[P \to Q]$	$\bar{v}[(P \to Q) \to P]$	$\bar{v}[((P \to Q) \to P) \to P]$
True	True	True	True	True
True	False	False	True	True
False	True	True	False	True
False	False	True	False	True

Thus, for any truth assignment $v, \, \bar{v} \big[((P \to Q) \to P) \to P \big] = {\tt True}.$

Therefore,
$$((P \to Q) \to P) \to P$$
 is a tautology.

5.2
$$(A \leftrightarrow B) \rightarrow \neg((A \rightarrow B) \rightarrow \neg(B \rightarrow A))$$
 Is a Tautology

Solution. $(A \leftrightarrow B) \to \neg((A \to B) \to \neg(B \to A))P$ is a tautology. The proof is as follows. The truth table of $(A \leftrightarrow B) \to \neg((A \to B) \to \neg(B \to A))$ is as follows.

v(A)	v(B)	$\bar{v}[(A \leftrightarrow B) \to \neg((A \to B) \to \neg(B \to A))]$
True	True	True
True	False	True
False	True	True
False	False	True

Thus, for any truth assignment
$$v$$
, $\bar{v}[(A \leftrightarrow B) \rightarrow \neg((A \to B) \rightarrow \neg(B \to A))] = \text{True}$.
Therefore, $(A \leftrightarrow B) \rightarrow \neg((A \to B) \rightarrow \neg(B \to A))$ is a tautology.

6 Problem 6

6.1 If $\Sigma \models \alpha$ Then For Any β , $\Sigma \models \beta \rightarrow \alpha$

Proof.
$$\Sigma \vDash \alpha \Longrightarrow$$
 for any truth assignment v satisfying Σ , $\bar{v}(\alpha) = \mathsf{True}$.

 \Longrightarrow for any β , for any truth assignment v satisfying Σ , $\bar{v}(\beta \to \alpha) = \mathsf{True}$.

(Since when $\bar{v}(\alpha) = \mathsf{True}$, either $\bar{v}(\beta) = \mathsf{True}$ or False , $\bar{v}(\beta \to \alpha) = \mathsf{True}$.)

 \Longrightarrow for any β , for any truth assignment v satisfying Σ , v satisfies $\beta \to \alpha$.

 \Longrightarrow for any β , $\Sigma \vDash \beta \to \alpha$.

6.2 $\Sigma, \beta \models \alpha \text{ iff. } \Sigma \models \beta \rightarrow \alpha$

Proof. First we prove $\Sigma, \beta \vDash \alpha \Longrightarrow \Sigma \vDash \beta \to \alpha$. $\Sigma, \beta \vDash \alpha \Longrightarrow \text{ for any truth assignment } v \text{ satisfying } \Sigma \text{ and } \beta, \ \bar{v}(\alpha) = \text{True.}$ $\Longrightarrow \text{ for any truth assignment } v \text{ satisfying } \Sigma \text{ s.t. } \bar{v}(\beta) = \text{True, we have } \bar{v}(\alpha) = \text{True.}$ $\Longrightarrow \text{ for any truth assignment } v \text{ satisfying } \Sigma, \ \bar{v}(\beta \to \alpha) = \text{True.}$ (Since for truth assignment $v \text{ satisfying } \Sigma$, $\text{When } \bar{v}(\beta) = \text{False, either } \bar{v}(\alpha) = \text{True or False, } \bar{v}(\beta \to \alpha) = \text{True.}$ When $\bar{v}(\beta) = \text{True} \Longrightarrow \bar{v}(\alpha) = \text{True, we also have } \bar{v}(\beta \to \alpha) = \text{True.}$) $\Longrightarrow \text{ for any truth assignment } v \text{ satisfying } \Sigma, v \text{ satisfies } \beta \to \alpha.$ i.e. $\Sigma \vDash \beta \to \alpha.$

Now we prove $\Sigma \vDash \beta \rightarrow \alpha \Longrightarrow \Sigma, \beta \vDash \alpha$.

 $\Sigma \vDash \beta \to \alpha \Longrightarrow \text{for any truth assignment } v \text{ satisfying } \Sigma, \, \bar{v}(\beta \to \alpha) = \texttt{True}.$

 \Longrightarrow for any truth assignment v satisfying Σ s.t. $\bar{v}(\beta)=$ True, we have $\bar{v}(\alpha)=$ True. (Otherwise, $\bar{v}(\beta\to\alpha)=$ False.)

 \Longrightarrow for any truth assignment v satisfying Σ and β , $\bar{v}(\alpha) = \mathsf{True}$.

i.e.
$$\Sigma, \beta \models \alpha$$
.

Therefore, $\Sigma \models \beta \rightarrow \alpha$ iff. $\Sigma, \beta \models \alpha$.