Instituto Superior de Engenharia de Lisboa

Licenciatura/Mestrado em Engenharia Informática e de Computadores

Segurança Informática

Segunda série de exercícios, Semestre de Inverno de 08/09

Data de entrega: 10 de Janeiro de 2012

- 1. Considere o protocolo de autorização OAuth 2.0 [1].
 - 1.1. Qual a diferença entre dono de recursos e cliente.
 - 1.2. Os clientes são caraterizados em função do seu perfil. Descreva os perfis web application e user-agent-based application.
 - 1.3. Qual a diferença entre authorization token e access token?
 - 1.4. De que forma o redirection URI pode ser usado para montar um ataque de Cross Site Request Forgery (CSRF)? O que está previsto para impedir este tipo de ataque?
- 2. Considere o modelo de certificados definido pela SDSI (Simple Distributed Security Infrastructure) e as seguintes entidades e nomes locais:
 - a) K_{MAI} Eleitor $\rightarrow K_{MAI}$ Freguesia Eleitor
 - b) $K_{MAI} \ Concelho \rightarrow K_{Loures}$
 - c) K_{MAI} Concelho $\rightarrow K_{Lisboa}$
 - d) $K_{Lisboa} Freguesia \rightarrow K_{Lapa}$
 - e) K_{Lisboa} $Freguesia \rightarrow K_{Ajuda}$
 - f) K_{Ajuda} Eleitor $\rightarrow K_{Carol}$
 - g) K_{Lapa} $Eleitor \rightarrow K_{Alice}$
 - h) K_{Lapa} Eleitor $\rightarrow K_{Bob}$

 K_{MAI} representa a chave pública do Ministério da Administração Interna.

- 2.1. Qual o certificado que K_{MAI} tem de emitir para delegar nos concelhos a enumeração de freguesias $(K_{MAI} \ Freguesia)$?
- 2.2. Qual o certificado que K_{MAI} pode emitir para substituir o certificado a) e o da alínea anterior?
- 2.3. Considere a existência de uma aplicação web controlada por K_{MAI} a qual apresenta o número de eleitor a quem provar pertencer a K_{MAI} Eleitor. Apresente o processo de inferência que permite provar que o principal K_{Alice} tem acesso ao serviço.
- 3. Considere o artigo [2].
 - 3.1. Quais os alvos dos ataques de $buffer\ overflow?$ Descreva sucintamente o ataque a ponteiros de funções.
 - 3.2. Descreva a forma como o alvo "old base pointer" pode ser usado para alterar a sequência de instruções executadas?
 - 3.3. Numa das propostas apresentadas, o valor da guarda ("canário") depende do valor do alvo a proteger. Apresente a razão para esta dependência e diga como ele é implementada.
 - 3.4. Descreva a abordagem da biblioteca Libsafe e qual a sua limitação.
 - 3.5. Para além de extensões a compiladores, os autores consideraram outras técnicas de protecção. Quais as limitação da técnica que impede a execução de código no stack?

- 4. O objectivo deste exercícios é configurar uma política para controlo de acessos a informação presente numa base de dados SQL. A base de dados que será usada no exercício guarda informação sobre alunos, professores, disciplinas e as notas que os alunos obtiveram nas disciplinas em que se inscreveram.
 - 4.1. Operações preparatórias:
 - Execute o *script* DBEscola.sql o qual cria a base de dados e respectivas tabelas, insere dados e cria os utilizadores correspondentes a alunos e professores.
 - Verifique que o dono da base de dados tem acesso a todas as tabelas e que os restantes utilizadores não têm qualquer acesso.
 - 4.2. Realize cada um dos seguintes passos e verifique se as permissões são aplicadas pelo SGDB:
 - i. Atribua o direito para ler a tabela Alunos ao utilizador Ana.
 - ii. Revogue o direito para ler a tabela Alunos ao utilizador Ana.
 - iii. Crie o database role Aluno e adicione os utilizadores que são alunos. Atribua a este role direitos de ler a tabela Alunos.
 - iv. Negue explicitamente o acesso ao utilizador Ana.
 - v. Revogue esta permissão.
 - 4.3. Realize os comandos necessários para que os alunos (ou seja, todos os utilizadores excepto Joao e Maria) apenas consigam ver informação pessoal, ou seja, número, nome, as disciplinas a que se inscreveu, a respectiva nota e qual o professor.
 - 4.4. Crie uma vista com toda a informação sobre os professores, ou seja, nome do professor, nome da disciplina, e o número e nota dos alunos inscritos.
 - Defina o *role* Professor, adicionando os utilizadores Joao e Maria. Altere as permissões do *role* Professor para que os seus utilizadores possam ler a vista criada anteriormente.
 - Atribua a permissão de UPDATE sobre a coluna Nota ao role Professor. Verifique a sua correcta aplicação introduzindo notas usando utilizadores do role Aluno e Professor.
- 5. O objectivo deste exercício é explorar uma vulnerabilidade no procedimento armazenado presente no ficheiro DBEscola_create_sp_notas.sql. Adicione este procedimento à base de dados Escola e atribua permissões de execução ao *role* Aluno.
 - 5.1. Execute o procedimento com um utilizador do *role* Aluno e, usando *SQL Injection*, dê controlo sobre a base de dados a todos os alunos (GRANT CONTROL TO Aluno).
 - 5.2. Protega o procedimento contra este ataque usando, correctamente, o procedimento armazenado sp_executesql. Mais informações em http://msdn.microsoft.com/en-us/library/ms188001.aspx.
- 6. Realize um documento, não excedendo as 8 páginas de dimensão (excluindo referências), sobre um dos seguintes temas:
 - Ataques de Cross Site Scripting e Cross Site Request forgery em aplicações web.
 - Controlo de acesso mandatório em sistemas operativos.
 - Modelo de controlo de acessos do sistema de gestão de bases de dados SQL Server 2008.

Referências

- [1] The OAuth 2.0 Authorization Protocol draft-ietf-oauth-v2-22, http://tools.ietf.org/html/draft-ietf-oauth-v2-22, visitado em 28/11/2011.
- [2] John Wilander and Mariam Kamlar. 2003. A Comparasion of Publicly Available Tools for Dynamic Buffer Overflow Prevention. In *Proceedings of the 10th Network and Distributed System Security Symposium* (NDSS)