Закон адаптивной задержки теплопереноса

Edited by Prof. N1KURA version 1.5.9 date 2025-08-15 draft НФЗПН Проект закона Thermal Control Adaptive Materials Metamaterials Cattaneo-Vernotte **TDTR**

Phonon/Electron Applications

универсальный закон, задающий поправку к времени пролёта относительно однородного образца au_0 .

Коэффициенты lpha и eta выражаются через локальные функции материала, определяющие скорость теплового сигнала $v(\phi)=\sqrt{\kappa(\phi)/(au_c(\phi)\,
ho(\phi)c_p(\phi))}$, и подчиняются масштабам $lpha\propto L^2$, $eta\propto L^3$ по длине образца L. Это связывает закон с измеримыми зависимостями $\kappa(\phi)$, $\tau_c(\phi)$, $\rho(\phi)c_p(\phi)$ и делает возможной идентификацию α,β по экспериментальным данным.

$$au_{ ext{total}} = au_0 + lpha \left|
abla \phi \cdot \hat{\mathbf{q}}
ight| + eta \left(
abla \phi \cdot \hat{\mathbf{q}}
ight)^2 + \mathcal{O}(|g|^3), \qquad g =
abla \phi \cdot \hat{\mathbf{q}}$$

В управляемых неоднородных средах минимальная задержка прихода теплового фронта определяется не только

материаловедческими параметрами, но и величиной проекции градиента управляемого параметра ϕ на направление теплового потока $g=
abla \phi\cdot\hat{\mathbf{q}}$. На базе гиперболической модели Cattaneo–Vernotte в малоградиентном пределе получен

Практический результат — технологический «динамический тепловой барьер»: варьируя профиль $\phi(x)$ (жидкокристаллические структуры, феррожидкости, функциональные композиты, градиентные покрытия), можно

предсказуемо увеличивать или уменьшать задержку теплового фронта. Это релевантно для электроники и силовых модулей, опто- и фотонных устройств, а также для узлов с жёсткими требованиями к тепловым транзиентам (в т.ч. квантовые установки). Область применимости: малоградиентный режим и небаллистический перенос; интерфейсные сопротивления контролируются и симметризуются; профиль ϕ квазистатичен за время пролёта. Предложен мини-протокол верификации

(TDTR/фотоакустика/ИК-термография) и безразмерная метрика эффективности $\eta_{
m delay}=(au_{
m total}- au_0)/ au_0$ для сравнения материалов и профилей. Статус: теоретическая модель (preprint/draft), требующая экспериментальной валидации.

1. Введение (Introduction)

Аннотация

- Гипотеза: медленное по сравнению с фронтом изменение $\phi(x)$ порождает дополнительную инерционность распространения, пропорциональную $|\partial \phi/\partial x|$ (при малых градиентах).
- 2. Предыстория (Prehistory)
- Фурье: мгновенная диффузия (парадокс бесконечной скорости). Каттанео-Вернотта (CV): вводит конечную скорость через время релаксации au_c .

- теплового сигнала по пути.
- Связать минимальную задержку прихода теплового импульса с величиной $|\partial \phi/\partial x|$ и вывести коэффициенты закона через

4. Формулировка

B 1D: $g = \partial \phi / \partial x$.

Каноническая знаковая форма. Здесь
$$g = \nabla \phi \cdot \hat{\mathbf{q}}$$
 — проекция градиента управляемого параметра на направление теплового потока. Эта форма нужна, если важно направление эффекта (ускорение/замедление). Модульная запись из рамки выше удобна как инженерная оценка величины эффекта.

Словами: Полная минимальная задержка теплового фронта равна задержке однородного образца плюс поправки, зависящие от величины градиента управляемого параметра.

 $\overline{ au_{ ext{total}}} = \overline{ au_0 \ + \ lpha |
abla \phi \cdot \hat{\mathbf{q}}| \ + \ eta (
abla \phi \cdot \hat{\mathbf{q}})^2 \ + \ \mathcal{O}(|g|^3)}$

•
$$au_{
m total}$$
 — полная минимальная задержка прихода фронта, [c] • au_0 — задержка однородного образца при $g=0$, [c] (в CV: $L\sqrt{ au_c\,
ho c_p/\kappa(\phi_0)}$) • $lpha$ — линейный коэффициент адаптивности среды, [c·м / Φ]; возможно $lpha=lpha(T)$

 $\alpha = \alpha(\phi, T, B).$

интерфейсов.

Определения и единицы:

- β квадратичный коэффициент малой нелинейности, [c·м 2 / Φ^2]
- ϕ управляемый параметр (объёмная доля, директорный вектор, пористость, фазовая доля, магнитная проницаемость), $[\Phi]$
- Размерность: $[\Phi \cdot \mathsf{m}^{-1}]$ (для безразмерной ϕ : $[\mathsf{m}^{-1}]$) • $\hat{\mathbf{q}}$ — единичный вектор направления теплового потока/фронта (безразмерный) • $\nabla \phi$ — пространственный градиент параметра ϕ , [Φ ·м $^{-1}$]

4.2 Следствие: безразмерная метрика эффективности

$$\eta_{
m delay} = rac{ au_{
m total} - au_0}{ au_0} = rac{lpha}{ au_0} \left|
abla \phi \!\cdot\! \hat{f q}
ight| + rac{eta}{ au_0} \left(
abla \phi \!\cdot\! \hat{f q}
ight)^2.$$

5. Область применимости и обобщение • Тип переноса: фононный и электронный диффузионный режимы; гидродинамический (второй звук) — по отдельной калибровке $v(\phi)$. Баллистический режим требует модификации.

фазопереходные среды.

- ullet Критерий малоградиентности: $\mathcal{G}=rac{|g|\,L}{\max(\phi_0,\Delta\phi)}\ll 1$. При $\mathcal{G}\gtrsim 0.2$ ожидаем вклады выше $O(g^2)$ и рост роли
- Учитывать при аппроксимации. ullet Границы: для мм-образцов с $\Delta\phi\lesssim 0.5$ разумно $|g|=|
 abla\phi\cdot\hat{f q}|\lesssim 10^3$ м $^{-1}$; выше — возможен выход из линейноквадратичного режима.

• Сопутствующие градиенты: ∇T и ∇p влияют на κ и v через сжимаемость/плотность: $\kappa(p) pprox \kappa_0 + (\partial \kappa/\partial p)\, p$.

CV-система: $\tau_c \, \partial_t {f q} + {f q} = -\kappa(\phi) \nabla T$, $ho c_p \, \partial_t T + \nabla \cdot {f q} = 0 \Rightarrow$ гиперболическое уравнение с локальной скоростью $v(\phi) = \sqrt{\kappa(\phi)/(\tau_c \rho c_p)}$

6.1 Подробные шаги вывода α, β

1. Разложение скорости: $v(x)=v(\phi_0+gx)\approx v_0+v'(\phi_0)\,gx+\frac{1}{2}v''(\phi_0)\,g^2x^2.$ 2. Разложение обратной величины: $\frac{1}{v(x)}=\frac{1}{v_0+\delta}pprox \frac{1}{v_0}-\frac{\delta}{v_0^2}+\frac{\delta^2}{v_0^3}$, где $\delta=v'gx+\frac{1}{2}v''g^2x^2.$ 3. Интегрирование по длине:

$$t=\int_0^L rac{dx}{v(x)}pprox rac{L}{v_0}-rac{v'}{v_0^2}rac{gL^2}{2}+rac{3v'^2-v_0v''}{6v_0^3}\,g^2L^3.$$
 4. Идентификация: $au_0=rac{L}{v_0}$, $lpha=rac{L^2}{2}rac{|v'|}{v_0^2}$, $eta=rac{L^3}{6}rac{|3v'^2-v_0v''|}{v_0^3}$.

С учётом
$$v(\phi) = \sqrt{\kappa(\phi)/(au_c(\phi)\,
ho(\phi)c_p(\phi))}$$
 имеем:

Если важно направление эффекта (ускорение/замедление), используйте **знаковую** форму без модулей.

фит-оценками из эксперимента.

7. Прогнозы, проверяемые следствия

8. Мини-эксперимент

ullet Линейность $au_{
m total}- au_0$ по |g| при малых градиентах; квадратичная поправка для больших |g|.• Масштабирование: $\alpha \propto L^2$, $\beta \propto L^3$. • С учётом ∇p : при росте давления в жидкостях возможна коррекция $v(\phi,p) \to$ поправка к $\alpha(T,p)$.

• Методы (по шкале времени): ○ TDTR, pump-probe (кГц-МГц): тонкие плёнки/ мембраны $L \lesssim 50-200~\mu$ м, окна нс-мкс.

 $|g| \in \{0, g, 2g\}$; одинаковые покрытия и контактные

• Образцы: три пластины одинаковой длины L с

Фотоакустика / ИК-термография:

десятки-сотни мкс.

• **Контакты**: контролировать и симметризовать R_{int} вход/выход; одинаковые адгезионные слои. • Метод выделения времени пролёта: критерий порога

фронта или кросс-корреляционный пик между входом и детектором; одно и то же правило для всех серий.

миллиметровые образцы $L \sim 0.5 - 2$ мм, окна

 $a_1\,|g|+a_2g^2$ для модульной формы); $a_1\!
ightarrow\!lpha,\,a_2\!
ightarrow\!eta$. Сравнивать AIC/BIC для моделей $\{a_1\}$ и $\{a_1, a_2\}$. • Оценки погрешности: $\pm 0.5 \; \mu \text{с}$ по времени;

ullet Обработка: фит $y = au_{
m total} - au_0 = a_1\,g + a_2\,g^2$ (или

Параметр ϕ Материал/система Нанокомпозит SiO₂/PMMA

β (c·m 2) α (C'M) 10^{-11} – 10^{-10}

Слева: схема пролёта импульса. Справа: типичная

зависимость $au_{\mathrm{total}}(g)$

• Микроэлектроника: динамические тепловые барьеры над горячими узлами (управляемый g). • **Космические покрытия**: адаптивные теплозащитные слои с градиентом ϕ по толщине. • **Биомедицина**: управляемая гипертермия в тканях/гидрогелях с пространственным профилем ϕ .

 $lpha = rac{L^2}{2} rac{|v'|}{v_0^2} = 2.5 \cdot 10^{-8} \; ext{c·m}, \quad eta = rac{L^3}{6} rac{3 v'^2 - v_0 v''}{v_0^3} pprox -1.25 \cdot 10^{-11} \; ext{c·m}^2$

 $\Delta au_1=lpha|g|=12.5~\mu$ c, $\Delta au_2=eta g^2pprox -3.125~\mu$ c, $au_{
m total}pprox 0.109$ MC

$$lpha = rac{L^2}{2} rac{|v'|}{v_0^2} pprox 1.3 \cdot 10^{-9} \, ext{c}$$
м

11.4 Пример (ускорение) Те же параметры, но $v'(\phi_0)=+5~{ m M/c}$, $g=+500~{ m M}^{-1}$. Линейная поправка в знаковой форме: $\Delta t^{(1)} = -rac{v'}{v_0^2}rac{gL^2}{2}pprox -12.5~\mu$ с. С учётом $eta g^2pprox -3.125~\mu$ с, получаем $au_{ m total}pprox 0.100-0.0125-0.003125pprox 0.0844$ мс.

12. Литература и сопоставление

DOI (уточнить рис./страницу при цитировании)

11.5 Феррожидкость (влияние магнитного поля)

увеличение задержки при изменении B.

(2004). <u>DOI</u>, <u>PDF</u>

градиентом $\kappa(x)$

 $-\mathbf{n}$ эквивалентны.

• [4] A. I. Zhmakin, "The Zoo of Non-Fourier Heat Conduction Models," arXiv:2212.12922 (2022). arXiv, PDF • [5] J.-H. Choi et al., "Analytical solution of the Cattaneo-Vernotte equation," JAMET (2016). PDF [6] Жидкий кристалл 5СВ (E-field). DOI

- [3] Yin 2008 FGM композит (градиент доли частиц) 300* ≈ 8.6[†] директорный вектор (усреднённая ≈ 1.0 [6] Жидкий кристалл 5СВ 800
 - ориентация) 1000 ≈ 50 пористость (градиент по толщине)
- ϕ управляемый параметр среды; безразмерный в примерах (доля, усреднённая ориентация), но в общем случае
- τ_c время релаксации теплового потока в модели CV. • TDTR — Time-Domain ThermoReflectance, импульсный лазерный метод измерения теплопроводности и тепловой диффузии с наносекундным-пикосекундным разрешением; основан на регистрации изменения коэффициента

В знаковой (теоретической) форме модуль опускается: $| abla\phi\cdot\hat{f q}| o g$. В 1D-редукции $g=\partial\phi/\partial x$.

• Обоснование: управление теплопереносом определяет надёжность и производительность микро/нано-систем. • Цель: ввести проверяемый закон, связывающий задержку теплового фронта с градиентом управляемого параметра среды.

• Известные модели не учитывают управляемую пространственную неоднородность свойств, меняющую скорость 3. Постановка цели (Purpose)

- наблюдаемые макропараметры.
- $igg| au_{
 m total} = au_0 \; + \; lpha \left|rac{\partial \phi}{\partial x}
 ight| \; + \; etaigg(rac{\partial \phi}{\partial x}igg)^2 \; + \; \mathcal{O}igg(\left|rac{\partial \phi}{\partial x}
 ight|^3igg)igg|$

как инженерная оценка величины эффекта.

потока. Эта форма нужна, если важно направление эффекта (ускорение/замедление). Модульная запись из рамки выше удоб как инженерная оценка величины эффекта. В 3D эквивалентная запись получается заменой
$$\partial \phi/\partial x \to \nabla \phi \cdot \hat{\mathbf{q}}$$
.
Словами: Полная минимальная задержка теплового фронта равна задержке однородного образца плюс поправки, зависящие от величины градиента управляемого параметра.

- x пространственная координата, [м] ullet g — проекция градиента управляемого параметра на направление теплового потока: $g =
 abla \phi \cdot \hat{\mathbf{q}}$; в 1D: $g = \partial \phi / \partial x$.
- L длина образца вдоль направления $\hat{\bf q}$, [м] 4.1 Альтернативные формы (температурная/полевая зависимость)
- Здесь γ температурный коэффициент с единицами ${ ext{K}}^{-1}; \ \alpha_0$ значение при T o 0. Для магнитоуправляемых систем

 $au_{
m total}(T) = au_0(T) + lpha_0\,e^{-\gamma T}\,|
abla\phi{\cdot}\hat{f q}| + eta(T)igg(rac{\partial\phi}{\partial x}igg)^2,$

В знаковой формулировке модуль опускается:
$$|
abla \phi \cdot \hat{\mathbf{q}}| o g$$
. Метрика удобна для сопоставления материалов и профилей при одинаковых L и условиях контакта.

• Где действует: градиентные метаматериалы, композиты, аэрогели, жидкие кристаллы, феррожидкости, • Допущения: $|\partial \phi/\partial x| \cdot L \ll \phi_0$; ϕ медленнее теплового фронта; режим линейного отклика.

- 6. Вывод/пояснения (через модель Cattaneo-Vernotte)
- Для $\phi(x)=\phi_0+gx$, $g=
 abla\phi\cdot\hat{f q}$ (в 1D: $g=\partial\phi/\partial x$), время пролёта $t=\int_0^L dx/v(x)$.

6.2 Связь
$$\alpha, \beta$$
 с материал-функциями

С учётом $v(\phi) = \sqrt{\kappa(\phi)/(\tau_{o}(\phi) \, \rho(\phi) c_{n}(\phi))}$ имеем:

 $rac{\partial \ln v}{\partial \phi} = rac{1}{2} igg(rac{\partial \ln \kappa}{\partial \phi} - rac{\partial \ln au_c}{\partial \phi} - rac{\partial \ln (
ho c_p)}{\partial \phi} igg), \qquad rac{\partial^2 \ln v}{\partial \phi^2} = rac{1}{2} igg(rac{\partial^2 \ln \kappa}{\partial \phi^2} - rac{\partial^2 \ln au_c}{\partial \phi^2} - rac{\partial^2 \ln (
ho c_p)}{\partial \phi^2} igg).$

Эти выражения позволяют предсказывать $lpha(\phi_0)$, $eta(\phi_0)$ из независимых калибровок $\kappa(\phi)$, $au_c(\phi)$, $ho(\phi)c_p(\phi)$ и сопоставлять их с

- условия. $\tau_{total}(g) = \tau_{0} + a_{1}|g| + a_{2}g^{2}$
- Импульс: длительность 0.5-10 нс; частота повторения 0.1–10 МГц (подбирается под целевую $au_{
 m total}$ и L).
- неоднородность $g-\pm 5\%$; шум детектора $-\le 2\%$. 9. Типичные диапазоны коэффициентов (ориентировочно)
- Жидкий кристалл Аэрогель

уточняется экспериментально.*¹

 10^{-9} – 10^{-8}

11. Численные примеры 11.1 Пример (замедление)

L=1 мм, $au_c=1$ μ с, $ho c_p=2\cdot 10^6$ Дж/м $^3\cdot$ К, $\kappa(\phi_0)=200$ Вт/(м \cdot К). Тогда $v_0pprox 10$ м/с, $au_0=0.1$ мс. Пусть

$\Delta au_1=lpha|g|=50~\mu$ с, Δau_2 мала $\Rightarrow~ au_{ m total}pprox au_0+50~\mu$ с.

11.3 Жидкий кристалл (директорный вектор)

L=0.5 mm, $v_0pprox 14$ m/c, $v'(\phi_0)=2$ m/c, |g|=800 m $^{-1}$.

11.2 Аэрогель (ориентировочно)

 $v'(\phi_0) = -5 \text{ m/c}, \ v''(\phi_0) = 15 \text{ m/c}, \ |g| = 500 \text{ m}^{-1}.$

$$\Delta au_1 = lpha |g| pprox 1.0~\mu$$
c, $au_{
m total} pprox au_0 + 1.0~\mu$ c.

Для MnFe₂O₄ (
$$\chi \approx 0.1$$
) при $B=1$ Тл: $\alpha(B) \approx \alpha_0 \, (1+0.05B^2)$.

12. Литература и сопоставление

Ключевые обзоры по TDTR/ИК-термографии, градиентным материалам и не-фурье-моделям (CV/MCV). При появлении

[7] Аэрогель SiO₂ (TDTR). DOI

13. Глоссарий может иметь размерность (напр., А/м — для намагниченности, Па — для давления, фракция по объёму для

• **Директорный вектор** — единичный вектор, задающий ось ориентации молекул в жидком кристалле; физически ${f n}$ и

отражения образца от времени после лазерного нагрева. © PNNPL — Professor Nikura's New Physical Laws. Plagiarism is prohibited. Prof. N1KURA

объёмная доля наночастиц 10^{-12} – 10^{-11} директорный вектор (усреднённая ориентация) $10^{-8} - 10^{-7}$ $10^{-11} - 10^{-10}$ пористость Диапазоны ориентировочные: $\alpha(T)$ у ряда нанокомпозитов снижается при росте T (порядка десятков % между 100–300 К) — *1 - Уточняются для конкретных материалов и температур. Если ϕ имеет размерность, то α имеет размерность с'м / [ед. ϕ], а β — c'м² / [ед. ϕ]²; например, при ϕ в A/м — c'м/(A/м), при ϕ в Па — c'м/Па. 10. Практические приложения • **Диагностика материалов**: обратная задача: восстановление $\phi(x)$ по измеренной $au_{ ext{total}}(g)$.

L=2 мм, v_0 мал из-за низкой κ ; примем $lpha=5\cdot 10^{-8}$ с·м, |g|=1000 м $^{-1}$.

Ключевые обзоры по TDTR/ИК-термографии, градиентным материалам и не-фурье-моделям (CV/MCV). При появлении экспериментальных данных по
$$\Delta \tau$$
 они могут быть добавлены в таблицу.

• [1] D. G. Cahill et al., "Nanoscale thermal transport. II. 2003–2012," *Applied Physics Reviews* 1, 011305 (2014). DOI, PDF

• [8] Метаматериал с градиентом $\kappa(x)$. DOI |g| (M Δau измерено Δau модель Источник Материал

Для феррожидкости можно считать $\phi(B)pprox\phi_0+k\,\chi B^2$ (кластеризация/ориентация), где χ — магнитная восприимчивость. Тогда линейный коэффициент $lpha(B) \propto \left| rac{\partial v}{\partial \phi} \right| |
abla \phi \cdot \hat{f q}| \sim lpha_0 \, (1+c\,\chi B^2)$ при тех же |g|. Это даёт управляемое уменьшение/

• [2] D. G. Cahill, "Analysis of heat flow in layered structures for time-domain thermoreflectance," Rev. Sci. Instrum. 75, 5119

• [3] H. M. Yin et al., "Effective Thermal Conductivity of Functionally Graded Composites...," J. Appl. Mech. 75, 051113 (2008).

(MKC)

600

(MKC)

≈ 6.5

[7] Аэрогель SiO_2 [8] Метаматериал с

 $\kappa(\phi(x))$ с контролем наполнителя

 * Оценка: $\Delta\phipprox0.3$ на L=1 мм $\Rightarrow|g|pprox300$ м $^{-1}$. † Расчёт по $\Delta au=lpha|g|+eta g^2$ с параметрами из примера 11.1.

наполнителя).