

Federated Learning and applications of data visualization techniques in machine learning

Bruno Henrique Meyer Aurora Pozo Wagner M. Nunan Zola

Introduction

Bruno Henrique Meyer

- Currently PhD student in Computer Science (Artificial Intelligence)
 - CBio (Bio-inspired Computation g
 - Advisors: Aurora Pozo (UFPR), Wagner M. Nunan Zola (UFPR), Michele Nogueira (UFMG)

Usage of Artificial Intelligence for cybersecurity issues

Summary

- Introduction to Artificial Intelligence, Machine Learning and Deep Learning
- Data visualization

- Federated Learning
- Hypothesis and experiments
- Opportunities and conclusion remarks

Context

- Data is present in large amounts in many projects
 - Hard to interpret
 - Hard to manage
 - Can be used by Artificial Intelligence solutions
 - Different formats: text, image, networks, etc.
- Complex problems
 - Expert knowledge (biology, physics, etc.)
 - Experiments and data interpretation
 - Technologies to accelerate processes and identify important phenomena

Introduction

Artificial Intelligence

- Many applications
- Many problems

Machine Learning

- Data representation
- Labeled and unlabeled data

Deep Learning

- Neural networks
- Automatically learn data representation
- "Black Box"

Data in Machine Learning

- Raw data in machine learning
- Structured format

- Data requires an representation
- Quantitative values

0	0	0	255	255	255	0	0
0	0	255	0	0	0	0	0
0	255	0	0	0	0	0	0
255	0	0	0	0	0	0	0
255	0	0	255	255	0	0	0
255	0	255	0	0	255	0	0
0	255	0	0	0	255	0	0
0	0	255	255	255	0	0	0

Data representation

- Most common approach: Several high-dimensional vectors
- In the past: Human engineering to draw features for each application
- Today: Automatically learn representations from raw-data with deep learning

Visualizing data with machine learning

- Dimensionality reduction
- Interpret machine learning representations of raw data
- Famous algorithm used for dimensionality reduction: t-sne

Visualizing data with machine learning

principal component analysis (PCA), t-SNE is able to separate samples from different continents; (ii) unlike PCA,

sub-continental patterns in a single plot. We conclude that the ability for t-SNE to reveal population stratification

t-SNE is more robust with respect to the presence of outliers; (iii) t-SNE is able to display both continental and

at different scales could be useful for human genetic association studies.

Convolutional Neural Networks (CNN)

- Popular technique used in Deep Learning
- Advantage: High classification accuracy (sometimes better than experts)
- Disadvantage: Black Box model

Visualizing CNN representation

With Visualization techniques: **Black box** → "**Gray box**"

Autoencoder

- High dimensional vector representing raw-data
- Unsupervised learning: Learn without labels

Autoencoder

Basic workflow for applications

Data privacy

- GDPR (General Data Protection Regulation)
- LGPD (General Data Protection Law in Brazil)

Federated Learning

- Learn machine learning models
 without centralizing data
- Most popular algorithm: FedAvg
- Can learn almost any type of deep learning model
- Challenges to create good models considering different types of data
- Distributed and parallel computing

Horizontal Federated Learning

Vertical Federated Learning

Federated Learning with public data

 Some problems considers a few amount of labeled and reliable data

 Improve clients models accuracy

Hypothesis and Experiments

- Hypothesis 1: We can use data visualization techniques to aid data interpretation in the RESMA project
- Hypothesis 2: We can apply Federated Learning to aid data interpretation in the RESMA project

- Experiments
 - Apply Deep Learning for classification of man-of-war (physaliaphysalis)
 - Apply Autoencoder for data representation of man-of-war
 - Adapt the previous techniques for Federated Learning context

Classifier (CNN)

Centralized Learning

Federated Learning (10 clients)

Autoencoder

Centralized Learning

Federated Learning (10 clients)

Application Example 1

Application Example 2

Opportunities

- Semi-supervised learning
 - Labeled and unlabeled data to train a single model
- Anomaly detection
 - Filter poor quality data
 - Identify exceptions
- Few-shot learning
 - Model trained with few data and able to generalize its representation
- Explainable AI (xAI)
 - White-Box algorithms and systems
 - Analyse Black-Box models decisions

Explainable AI for text classification

Prediction probabilities

atheism

christian

Text with highlighted words

From: johnchad@triton.unm.edu (jchadwic)
Subject: Another request for Darwin Fish

Organization: University of New Mexico, Albuquerque

Lines: 11

NNTP-Posting-Host: triton.unm.edu

Hello Gang,

There have been some notes recently asking where to obtain the DARWIN fish.

This is the same question I have and I have not seen an answer on the

net. If anyone has a contact please post on the net or email me.

Explainable AI for image classification

bruno.meyer@ufpr.br