Cheat Sheet

Parcurgerea în lățime - Algoritm

Algoritm Cormen:


```
CL(G, s)
 1: pentru fiecare vârf u \in V[G] - \{s\} execută
        color[u] \leftarrow \text{ALB}
        d[u] \leftarrow \infty
        \pi[u] \leftarrow \text{NIL}
 5: color[s] \leftarrow GRI
 6: d[s] \leftarrow 0
 8: Q \leftarrow \{s\}
 9: cât timp Q \neq \emptyset execută
        u \leftarrow cap[Q]
        pentru fiecare vârf v \in Adj[u] execută
11:
           \mathbf{dac}\mathbf{\check{a}}\ color[v] = \mathtt{ALB}\ \mathbf{atunci}
               color[v] \leftarrow GRI
               d[v] \leftarrow d[u] + 1
14:
               \pi[v] \leftarrow u
15:
               Pune-În-Coadă(Q, v)
16:
         Scoate-Din-Coadă(Q)
        color[u] \leftarrow \text{NEGRU}
```

Parcurgerea în adâncime - Exemplu

Parcurgerea în adâncime - Algoritm

Algoritm Cormen:

```
1: pentru fiecare vârf u \in V[G] execută
 2: culoare[u] \leftarrow ALB
      \pi[u] \leftarrow \text{NIL}
 4:\ timp \leftarrow 0
 5: pentru fiecare vârf u \in V[G] execută
       dacă \ culoare[u] = ALB \ atunci
          CA-VIZITĂ(u)
CA-VIZITĂ(u)
 1: culoare[u] \leftarrow GRI
                                                    \triangleright Vârful alb u tocmai a fost descoperit.
 2: d[u] \leftarrow timp \leftarrow timp + 1
 3: pentru fiecare v \in Adj[u] execută
                                                    \triangleright Explorează muchia (u, v).
       dacă culoare[v] = ALB atunci
          \pi[v] \leftarrow u
 5:
          CA-VIZITĂ(v)
 7: culoare[u] \leftarrow \text{NEGRU}
                                                    \triangleright Vârful u este colorat în negru. El este terminat.
 8: f[u] \leftarrow timp \leftarrow timp + 1
```

• Havel Hakimi:

Havel-Hakimi complexitate algoritm

- O soluție se folosește de heapuri. Această soluție are complexitatea O((N+M)*log(N)).
- O altă soluție, care nu ne oferă mulțimea muchiilor, se folosește de treapuri și de proprietatea de spargere a unui treap. Complexitatea acestei soluții este O(N*log(N)).
- ➤ O altă soluție se folosește de counting sort și poate atinge complexitatea O(N+M), oferind în același timp și mulțimea muchiilor. Această soluție sortează descrescător gradele și reține pentru fiecare grad ultima apariție. Scăderea cu unu a primelor x grade poate rezulta în pierderea proprietății de monotonie a șirului. Pentru a nu face asta solutia folosește ultima poziție a fiecărui grad pentru a verifica dacă poate scădea cu 1 din toate nodurile cu acel grad. Dacă nu, acesta va scădea cu 1 doar ultimele x poziții ale acelui grad. În timp ce scade gradele algoritmul va actualiza valorile corespunzătoare ultimelor poziții ale gradelor.

Sortare topologica:

Kahn's algorithm [edit]

Not to be confused with Kuhn's algorithm.

One of these algorithms, first described by Kahn (1962), works by choosing vertices in the same order as the eventual topological sort.^[2] First, find a list of "start nodes" that have no incoming edges and insert them into a set S; at least one such node must exist in a non-empty acyclic graph. Then:

```
L ← Empty list that will contain the sorted elements
5 ← Set of all nodes with no incoming edge
while 5 is not empty do
    remove a node n from 5
    add n to L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into 5

if graph has edges then
        return error (graph has at least one cycle)
else
    return L (a topologically sorted order)
```

Sortare topologică - Alt algoritm

Dacă **final[u]** = momentul la care a fost **finalizat** vârful u în parcurgerea DF, avem: $uv \in E$ $\Rightarrow f[u] > f[v]$

atunci sortarea topologică = sortare descrescătoare în raport cu final

Figura 23.7 (a) Profesorul Bumstead își sortează topologic îmbrăcămintea când se îmbracă. Fiecare muchie (u,v) înseamnă că articolul u trebuie îmbrăcat înaintea articolului v. Timpii de descoperire și de terminare dintr-o căutare în adâncime sunt prezentați alături de fiecare vârf. (b) Același graf sortat topologic. Vărfurile lui sunt aranjate de la stânga la dreapta în ordinea descreacătoare a timpului de terminare. Se observă că toate muchiile orientate merg de la stânga la dreapta.

Muchii critice:

Muchii critice

O muchie de avansare (i, j) este critică

 \Leftrightarrow

nu este conținută într-un ciclu închis de o muchie de întoarcere

 \Leftrightarrow

nu există nicio muchie de întoarcere cu

- $\ \square$ o extremitate în j sau într-un descendent al lui j
- cealaltă extremitate în i sau într-un ascendent al lui i (într-un vârf de pe un nivel mai mic sau egal cu nivelul lui i)

Puncte critice

Un vârf este **punct critic** ⇔ există două vârfuri x,y ≠ v astfel încât aparține oricărui x,y-lanţ.

Arborele DF

□ rădăcina este punct critic ⇔

are cel puțin 2 fii în arborele DF

□ un alt vârf i din arbore este critic ⇔

are cel puțin un fiu j cu niv_min[j] ≥ nivel[i]

nu există muchii între subarbori (de traversare)

Conexitate

Componente tare conexe - Algoritm Kosaraju

Următorul algoritm de timp liniar (adică $\theta(V+E)$) determină componentele tare conexe ale unui graf orientat G = (V, E), folosind două căutări în adâncime, una în G, iuna în G.

Componente-Tare-Conexe(G)

- 1. apelează CA(G) pentru a calcula timpii de terminare f[u] pentru fiecare vârf u
- calculează G^T
- apelează CA(G^T), dar, în bucla principală a lui CA, consideră vârfurile în ordinea descrescătoare a timpilor f[u] (calculați la linia 1)
- 4. afișează vârfurile fiecărui arbore din pădurea de adâncime din pasul 3 ca o componentă tare conexă separată

Kruskal

Kruskal

```
sorteaza(E)
                                  Complexitate
for (v=1; v <= n; v++)</pre>
   Initializare(v);
                                   \Box Sortare → O(m logm) = O(m logn)
nrmsel=0
                                   □ n * Initializare
for (uv \in E)
   if (Reprez(u) != Reprez(v)) {
                                   □ 2m * Reprez
      E(T) = E(T) \cup \{uv\};
      Reuneste(u, v);
                                   □ (n-1) * Reuneste
      nrmsel = nrmsel + 1;
       if (nrmsel == n-1)
          STOP; // break
                                  Depinde de modalitatea de memorare a componentelor conexe
```

Disjoint-Set

```
int Solution::find(int node) {
    if (parent[node] == node) return node;

    // find the root node and do compression
    int result = find( node: parent[node]);
    parent[node] = result;
    return result;
}

void Solution::Union(int firstNode, int secondNode) {
    int firstNodeRoot = find( node: firstNode);
    int secondNodeRoot = find( node: secondNode);

    if (size[firstNode] < size[secondNode]) {
        parent[firstNodeRoot] = secondNodeRoot;
        return;
    }

    if (size[firstNode] > size[secondNode]) {
        parent[secondNodeRoot] = firstNodeRoot;
        return;
    }

    // if both sizes are equal then size goes up by one and it doesnt matter which ones the parent parent[firstNodeRoot] = secondNodeRoot;
    size[secondNodeRoot]++;
}
```

Algoritmul lui Prim

- ☐ Se pornește de la un vârf, care formează arborele inițial
- □ La un pas, este selectată o muchie de cost minim, de la un vârf deja adăugat în arbore, la un vârf neadăugat

□ Iniţial: T = (V, ∅) □ pentru i = 1, n-1 • alege o muchie uv cu cost minim din G a.î. u,v sunt în componente conexe diferite (T + uv aciclic)

KRUSKAL

PRIM

- □ s vârful de start□ Iniţial, T = ({s}, ∅)
- □ **pentru** i = 1, n-1
 - $\begin{tabular}{ll} \circ & \mbox{alege o muchie uv cu $\it cost minim} \\ \mbox{din $\it G$ a.î. $\it u$} & \in V(T) \ si \ v \notin V(T) \end{tabular}$
 - o V(T) = V(T) U {v}
 - ∘ E(T) = E(T) U uv

E(T) = E(T) ∪ {uv} Prim - Algoritm

```
□ s - vârful de start
□ iniţializează Q cu V
□ pentru fiecare u ∈ V execută
    d[u] = ∞
    tata[u] = 0
□ d[s] = 0
□ cât timp Q ≠ Ø execută // pentru i=1,n (suficient n-1)
    extrage un vârf u ∈ Q cu eticheta d[u] minimă
    pentru fiecare uv ∈ E execută
    dacă v ∈ Q şi w(u,v) < d[v] atunci
    d[v] = w(u,v)
    tata[v] = u
□ scrie (u, tata[u]) pentru u ≠ s</pre>
```

• Drumuri minime:

Algoritmul lui Dijkstra

```
Dijkstra(G, w, s)
   iniţializează mulţimea vârfurilor neselectate Q cu V

pentru fiecare u∈V execută

   d[u] = ∞; tata[u] = 0

d[s] = 0

cât timp Q≠∅ execută

   u = extrage vârf cu eticheta d minimă din Q

pentru fiecare uv∈E execută

   dacă d[u]+w(u,v) < d[v] atunci

   d[v] = d[u]+w(u,v)

   tata[v] = u

scrie d, tata

// scrie drum minim de la s la un vârf t dat folosind tata
```


Algoritmul lui BELLMAN - FORD

```
pentru fiecare u∈V executa
    d[u] = ∞; tata[u]=0

d[s] = 0

pentru i = 1,n-1 executa
    pentru fiecare uv∈E executa
    daca d[u]+w(u,v)<d[v] atunci
    d[v] = d[u]+w(u,v)
    tata[v] = u</pre>
```

Complexitate: O(nm) Detectarea de circuite negative

Afișarea ciclului negative detectat - folosind tata:

- Fie v un vârf al cărei etichetă s-a actualizat la pasul k
- Facem n paşi înapoi din v folosind vectorul tata (către s);
 fie x vârful în care am ajuns
- Afişăm ciclul care conține pe x folosind tata (din x până ajungem iar în x)

Drumuri minime de sursă unică în grafuri aciclice

▶ Algoritmi - G=(V, E) graf orientat

```
G - ponderat, ponderi >0
G - neponderat
                                                                         G - ponderat fără circuite
Parcurgere lățime BF
                               Algoritmul lui Dijkstra
BF(s)
                               Dijkstra(s)
                                                                         DAGS(s)
coada C \leftarrow \emptyset;
                               (min-heap) Q \leftarrow V
                                                                         SortTop ← sortare_topologica(G)
adauga(s, C)
                               \{se putea incepe doar cu Q \leftarrow \{s\}
                               +vector viz; v∈Q ⇔ v nevizitat}
                               pentru fiecare u∈V
                                                                         pentru fiecare u∈V
pentru fiecare u∈V
  d[u]=\infty; tata[u]=viz[u]=0
                                   d[u] = \infty; tata[u]=0
                                                                             d[u] = \infty; tata[u]=0
                               d[s] = 0
viz[s] \leftarrow 1; d[s] \leftarrow 0
                               cat timp Q \neq \emptyset
cat timp C \neq \emptyset
                                                                         pentru fiecare u ∈ SortTop
                                  u = extrage(Q) vârf cu eticheta
   u \leftarrow extrage(C);
                                       d minimă
                                  pentru fiecare uv∈E
                                                                             pentru fiecare uv∈E
   pentru fiecare u\mathbf{v} \in \mathbf{E}
                                     daca v \in 0 si d[u] + w(u,v) < d[v]
                                                                                  daca d[u]+w(u,v)< d[v]
       daca viz[v]=0
                                              d[v] = d[u] + w(u, v)
                                                                                        d[v] = d[u] + w(u,v)
           d[v] \leftarrow d[v]+1
                                             tata[v] = u
                                                                                        tata[v] = u
           tata[v] ← u
                                              repara (v,Q)
           adauga (v, C)
           viz[v] \leftarrow 1
                               scrie d, tata
                                                                         scrie d, tata
scrie d, tata
                               O(m log(n)) / O(n^2)
                                                                         O(n+m)
O(n+m)
```

Floyd(G, w)

```
for(i=1;i<=n;i++)
  for(j=1;j<=n;j++) {
    d[i][j]=w[i][j];
    if(w[i][j]== ∞)
        p[i][j]=0;
    else
        p[i][j]=i;
  }
  for(k=1;k<=n;k++)
    for(i=1;i<=n;i++)
        for(j=1;j<=n;j++)
        if(d[i][j]>d[i][k]+d[k][j]) {
          d[i][j]=d[i][k]+d[k][j];
        p[i][j]=p[k][j];
    }
}
```

• Flux:

Implementare

- Memorăm lanțurile (arborele BF) folosind vector tata
- Convenţie pentru arcele inverse (i,j) ţinem minte tatăl cu semnul minus

```
tata[i] = -i
```

- Edmonds-Karp

```
construieste_s-t_lant_nesat_BF()
  pentru(v \in V) executa tata[v] \leftarrow 0; viz[v] \leftarrow 0
  \texttt{coada} \ \texttt{C} \ \leftarrow \ \emptyset
  adauga(s, C)
  viz[s] \leftarrow 1
  cat timp C \neq \emptyset executa
     i ← extrage(C)
     pentru (ij ∈ E) executa arc direct
           dacă (viz[j]=0 și c(ij)-f(ij)>0) atunci
              adauga(j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow i
              daca (j=t) atunci STOP și returnează true(1)
                                       arc invers
     pentru (ji ∈ E) executa
           daca (viz[j]=0 și f(ji)>0) atunci
              adauga(j, C)
              viz[j] \leftarrow 1; tata[j] \leftarrow -i
              daca (j=t) atunci STOP și returnează true(1)
  returnează false(0)
```

Complexitate

- Algoritm generic Ford Fulkerson O(mL)/O(nmC)
- Implementare Edmonds Karp O(nm²)

Graful rezidual G_f

BF(s) - în graful rezidual

Drumul de creștere [s, 1, 4, t] - capacitate reziduală 4

Graful rezidual Gf

7/7 1 4/5 4 5 0/2 3/3 t

Graful rezidual G_f

Aplicații p -colorări

Exemplu – De câte săli este nevoie minim pentru programarea într-o zi a n conferinte cu intervale de desfăsurare date?

într-o zi a n conferințe cu intervale de desfășurare date?

se intersectează cu

Graful intersecției intervalelor este 3-colorabil:

Sunt necesare minim 3 săli (corespunzătoare celor 3 culori):

Sala 1: (1,4), (6,7) Sala 2: (2,3), (3,8) Sala 3: (2,5), (6,8)

Aplicație

Construcția unui graf orientat din secvențele de grade

Exemplu

•
$$s_0^+ = \{1, 0, 2\}$$

•
$$s_0^- = \{1, 1, 1\}$$

Grafuri de Bruijn

- Etichete pe arce:

- În general:

 $\boldsymbol{b}_i \in \{0,1\}$

Algoritmul lui Hierholzer

- Pasul 0 verificare condiții (conex+vf. izolate, grade pare)
- Pasul 1:
 - \circ alege $v \in V$ arbitrar
 - construiește C un ciclu în G care începe cu v (cu algoritmul din Lema)
- ▶ cât timp |E(C)| < |E(G)| execută</p>
 - selectează $v \in V(C)$ cu $d_{_{G-E\,(C)}}(v) > 0$ (în care sunt incidente muchii care nu aparțin lui C)
 - · construiește C' un ciclu în G E(C) care începe cu v
 - \circ C = ciclul obținut prin fuziunea ciclurilor C și C' în \mathbf{v}
- scrie C

Complexitate - O(m)

• Grafuri Hamiltoniene:

Conectivitatea $\kappa(G)$ unui graf G este este marimea minima a unei mulțimi de tăiere a lui G.

Cum o calculăm ? -> Flux maxim = taietura minima.

Definiții ajutătoare

Conectivitatea κ(G) unui graf G este este marimea minima a unei mulţimi de tăiere a lui G

O mulțime de noduri a unui graf G este independentă dacă nu contine noduri adiacente. Numărul de independență $\alpha(G)$ al unui graf G este marimea cea mai mare posibila a unei mulțimi independente a lui G.

3 (una din solutii este {0,3,8})

· Teorema lui Chvatal si Erdos

Fie G un graf conectat cu ordinal $n \ge 3$, conectivitatea $\kappa(G)$, și numărul de independență $\alpha(G)$. Daca $\kappa(G) \ge \alpha(G)$, atunci G este hamiltonian

Cum găsim un ciclu hamiltonian?

O a doua soluție este sa folosim un algoritm exponential mai eficient: Vom considera matricea $\mathbb C$ având următoarea semnificație: $\mathbb C[j][k]$ este costul minim al unui lanț ce începe în nodul $\mathbb 1$, se termină în nodul $\mathbb k$ și conține toate nodurile identificate cu $\mathbb 1$ în configurația binară a lui $\mathbb 1$ exact o singură dată. De exemplu, pentru graful din enunț, starea caracterizată de tripletul (4, 23, 0) va avea valoarea 7 și va reprezenta costul minim al unui lanț ce începe în nodul 4, se termină în nodul 0 și conține exact o singură dată nodurile $\{0, 1, 2, 4\}$, deoarece $23 = (10111)_2$ (ordinea biților este considerată cea inversă scrierii în baza 2).

Solutia are complexitatea O(2ⁿ *n)

Graf planar

Teorema celor 6 culori

Orice graf planar conex este 6 -colorabil.

a Algoritm de colorare a unui graf planar cu 6 culori

```
colorare(G)
  daca |V(G)|≤ 6 atunci coloreaza varfurile cu
culori distincte din {1,...,6}
  altfel
    alege x cu d(x) ≤ 5
    colorare(G-x)
        colorează x cu o culoare din {1,...,6}
  diferită de culorile vecinilor
```

 Sugestie implementare – determinarea iterativă a ordinii în care sunt colorate vârfurile (similar parcurgere BF, sortare topologică)

Distanța Levenshtein

 Distanța Levenshtein este un număr care ne spune cât de diferite sunt două cuvinte. Considerăm cuvintele indexate de la 1 în momentul în care le retinem în memorie.

$$\bullet \quad lev_{a,b}(i,j) = \begin{cases} \max(i,j) & , dac\check{a}\min(i,j) = 0 \\ lev_{a,b}(i-1,j) + 1 \\ lev_{a,b}(i,j-1) + 1 & , altfel \\ lev_{a,b}(i-1,j-1) + 1_{(a_i \neq b_j)} \end{cases}$$