Exercise 1.5 Two New Logical Operators

We define two binary logical operators \heartsuit and \Diamond as follows:

A	B	$A \heartsuit B$	A	B	$A \Diamond B$
0	0	1	0	0	0
0	1	1	0	1	1
1	0	0	1	0	1
1	1	1	1	1	0

(1) Are \heartsuit and \diamondsuit commutative, i.e. does it hold

$$A \heartsuit B \equiv B \heartsuit A$$
 and $A \lozenge B \equiv B \lozenge A$?

Argue by comparing function tables.

Answer: To check if an operator "op" is commutative, one can compare the truth tables of A op B and B op A. Trying this out for the given operators \heartsuit and \diamondsuit results in:

A	B	$A \heartsuit B$	$B \heartsuit A$	A	B	$A \heartsuit B$	$B \Diamond A$
0	0	1	1	0	0	0	0
0	1	1	0	0	1	1	1
1	0	0	1	1	0	1	1
1	1	1	1	1	1	0	0

As the truth tables for $A \heartsuit B$ and $B \heartsuit A$ are different, one can clearly see that $A \heartsuit B \not\equiv B \heartsuit A$, as there exists cases where changing the order of A and B leads to a different result. This shows that the \heartsuit operator is not commutative.

The opposite can be said when comparing $A \lozenge B$ and $B \lozenge A$. The truth tables are the same, demonstrating that the operator \lozenge is commutative.

(2) Prove or disprove that

$$(\neg A \heartsuit B) \lozenge (B \heartsuit C) \equiv \neg (A \lozenge B) \heartsuit \neg (A \lozenge C)$$

by computing and comparing the function tables of the left-hand side and the right-hand side formulas.

Answer: Here are the truth tables of both equations, with additional intermediate steps to help in the process.

	A	B	C	$\neg A \heartsuit B$	$B \heartsuit C$	$(\neg A \heartsuit B) \lozenge (B \heartsuit C)$
-	0	0	0	0	1	1
	0	0	1	0	1	1
	0	1	0	1	0	1
	0	1	1	1	1	0
	1	0	0	1	1	0
	1	0	1	1	1	0
	1	1	0	1	0	1
	1	1	1	1	1	0
A	B	C	¬	$(A \Diamond B)$	$\neg (A \lozenge C)$	$) \mid \neg (A \lozenge B) \heartsuit \neg (A \lozenge C)$
0	0	0		1	1	1
0	0	1		1	0	0
0	1	0		0	1	1
0	1	1		0	0	1
1	0	0		0	0	1
1	0	1		0	1	1
1	1	0		1	0	0
1	1	1		1	1	1

The truth tables differ. Thus, $(\neg A \heartsuit B) \lozenge (B \heartsuit C) \not\equiv \neg (A \lozenge B) \heartsuit \neg (A \lozenge C)$

(3) Let F be a formula with the following function table:

A	B	C	$\mid F \mid$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Find a formula G containing only the logical operators \heartsuit and \diamondsuit , in which the propositional symbols A, B, and C all appear exactly once, and such that $G \equiv F$. No justification is required.

Answer: The formula G below induces the same function as F.

$$G \equiv B \heartsuit (A \lozenge C) \tag{1}$$