2017 计算机网络期中考试

学号: 姓名:

- 1、(15分)分析计算
- (1) 已知从信道上收到下列数据位序列: 0111 1110 1101 1011 1110 0010 1100 0101 1111 0101 1001 1111 1001 1111 1001 1111 1001 1111 1100,其中包含完整的 HDLC 帧,请以十六进制数字写出帧的内容(不包含帧首尾标志)。(3分)

DB E5 8B F6

7B EF

(2) 已知数据位流为 101110,采用 CRC 校验,G(x)=x3+1,请计算出发送的位流(要求写出计算过程)。(3分)

101110 011

(3) 若使用海明码传输 8 位的报文,并且能够纠正单个比特的错误,海明码中使用奇校验, 计算发送 1110 0011 时的校验位,写出发送的比特流(要求写出计算过程)。(3 分)

0001 (1分)

0010 1101 0011 (5分)

(4) 用户欲发送的数据部分用十六进制表示为 7E FE 27 7D 7D 65 7E,则在信道上使用 PPP 协议的首位字节填充帧方式发送,则完整的发送帧是什么?用十六进制表示。(3分)

7E 7D 5E FE 27 7D 5D 7D 5D 65 7D 5E 7E

(5) PPP 协议使用同步传输技术传输比特串 0110111111111100。试问经过零比特填充后变成怎样的比特串?若接收端接收到的 PPP 帧数据部分是 0001110111110111110110,问删除发送端加入的零比特后变成怎样的比特串?(3分)

解答:原始比特串: 011011111 11111 00 零比特填充后: 0110111110 11111 00

0001110<u>111110</u> <u>111110</u>110=> 0001110<u>11111</u> <u>11111</u> 110

2、(5 分)在下图所示的采用"存储-转发"方式分组的交换网络中,所有链路的数据传输速度为 100mbps,分组大小为 1000B,其中分组头大小 20B,若主机 H1 向主机 H2 发送一个大小为 980000B 的文件,则在不考虑分组拆装时间和传播延迟的情况下,从 H1 发送到 H2 接收完为止,需要的时间至少是多少?

答: 80.16ms. (1002 个 t_f)

- 3、(10分)计算并分析过程。
- (1)数据链路层采用 Go Back N 协议,发送方已经发送了编号为 0-8 的帧,当计时器超时,若发送方已收到应答序号为 0、1 和 6 的确认帧,则发送方需要重发的帧数是多少个?
- (2)数据链路层采用选择重传协议传输数据,发送方发送了 0~3 号数据帧,现在已收到 1号帧的确认,而 0、2 帧依次超时,则此时需要重传的帧数是多少?

2个

- 5、(10分)
- (1) 为什么调制解调器通常的上行和下行速率不一致? 那个速率高?
- (2) 为什么普通的电话线无法传送计算机网络数据,而采用了 ADSL 电话线就可以传送?
- (1)上行时受到模拟转变数字信号的信噪比影响,根据香农公式,会受到限制,而下行不受这个限制。
- (2) ADSL 使用的电缆扩展了普通电话使用的带宽到 3400 以上
- 6、(5分)请按照带宽从大到小排列下列传输介质:粗缆、细缆、双绞线、光纤?并写出双绞线的两根电缆互相拆绕道主要目的是什么?为什么相同类型的设备如计算机需要使用交叉线(反线)互联?

双绞线、细缆、粗缆、光缆

防止干扰。

- 7、(15 分)两台计算机的数据链路层协议实体采取滑动窗口机制,利用 128kbps 的卫星信道传输长度为 1024 字节的数据帧,信道单向传播时延为 270ms。应答帧长度和帧头开销忽略不计。回答下列问题:
- (1) 计算使用停等协议的信道利用率;
- (2) 计算使用发送窗口为 7的 Go-Back-N 协议的信道利用率;
- (3) 为使信道利用率达到 100%,使用 Go-Back-N 协议时发送窗口至少是多少? 帧头中的序号字段至少为多少比特?
- 一帧的发送时间为: 1024*8/128000=64ms

窗口边界:

1+往返传播时延)/帧发送时间

即窗口边界 1+270*2/64=9.4375, 向上取整为 10。

- 1) 1/9.4375=10.6%; 2分
- 2) 7/9.4375=74.2%; 2分
- 3)10; 2分

序号比特数至少为4。 1分

8、(10分))在数据链路层中,两台主机利用停等协议实现可靠的数据传输。其中,数据帧中使用了1比特的序号位。为了节约网络带宽,如果取消数据帧中的序号位,是否仍可以保证可靠的通信?请阐述原因。。

不能。会产生诸如重复帧问题。

- 9、(10分)分析并计算
- (1) 阐述并比较 FDM、TDM 和 CDMA 的复用原理。
- (2) 对于一个带宽为 3kHz, 信噪比为 30dB 的 802.3 以太网信道,请计算该信道的最大数据传输率 C?
- (2) C1= W*log₂(1+S/N) = 3000*log₂ (1+1000) =3000*log₂ 1001 ≈30000bps C2=2H=6000Baud,则由于 802.3 的以太网信道使用了曼彻斯特编码,所以速率 =3000bps,则 C=30000bps。

10、(10分)

- (1) 分别写出 OSI 网络体系结构和 TCP/IP 体系结构,并简写出每层的功能;
- (2) 请写出计算机网络层次化设计方法的设计原则;
- (3)下列哪项不属于网络体系结构必须规范的内容,并说明原因。C

A.分层 B. 对等层通信协议 C.上下层之间的接口 D. 下层对上层提供的服务 11、(10分)长度为100字节的应用层数据交给运输层传送,需加上20字节的TCP首部,再交给网络层,需加上20字节的IP首部,最后交给数据链路层的以太网传送,需加上首部和尾部共18字节。试求数据的传输效率。数据的传输效率是指发送的应用层数据除以所发送的总数据(即应用数据加上各种首部和尾部的额外开销)。若应用层数据长度为1000字节,这数据的传输效率是多少?针对上述情况,请给出方案以提高信道的利用率?

100/ (100+20+20+18) =100/158=63.3%

1000/(1000+20+20+18)=1000/1058=94.5% 增加发送的字节,或使用滑动窗口技术。