Листок 2: λ -исчисление как язык программирования

Упражнение 1. Представить в виде λ -терма и выполнить редукцию к нормальной форме:

 $(1) \otimes 2 + 3$

- $(3) \otimes \mathtt{fst} (1,3)$
- (2) if (is_zero? 1) then 1 else 2
- (4) 2* (if false then 1 else 0)

Упражнение 2. Определить λ -терм, реализующий функцию хог (без использования and, or, not). Вычислить терм: false xor true.

Упражнение 3. Определить λ -терм, реализующий операцию \leqslant . Вычислить терм $1\leqslant 2$.

Упражнение 4. Определить λ -терм, реализующий операцию возведения в степень. Вычислить терм: 3 ехр 2.

Упражнение 5. Определить λ -терм, реализующий операцию умножения через операцию сложения. (*Указание*: используйте частичное применение функции сложения. Под функцией сложения можно понимать терм $plus = \lambda m \cdot \lambda n \cdot \dots$, получающийся из определения $m+n=\dots$)

Комбинаторы неподвижной точки

Упражнение 6. Определить λ -терм sum, вычисляющий сумму чисел от 1 до n. Вычислить терм: sum 3.

Упражнение 7. Найти терм F, такой что

$$Fxy = FxyF$$
.

Упражнение 8. Определить λ -терм div, реализующий операцию целочисленного деления. Вычислить терм: 4 div 3.

Упражнение 9 (\otimes). Определить λ -терм gcd, вычисляющий наибольший общий делитель двух чисел. Вычислить терм: 6 gcd 8.

Упражнение 10. Показать, что терм

$$\mathbf{Y}_{\text{Turing}} = AA$$
, где $A = \lambda ux \cdot x(uux)$,

является комбинатором неподвижной точки.

Основные определения