

Scalable Data Science

Lecture 15b:QB decomposition

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Application of dimension reduction

Recommendation system

Minimize some loss function, e.g. $\sum (A_{ij} - X_{i*}Y_{*j})^2$ Use $\sum_k X_{ik} Y_{kj}$ to predict missing entry (i,j)

Application of dimension reduction

Constraints e.g. A and W non-negative

Singular Value Decomposition

- $A = U\Sigma V^t$
- Optimality properties e.g.

$$A_k = U_k \Sigma_k V_k^t = argmin_{X:rank(X) \le k} |A - X|_F$$

$$A_k = U_k \Sigma_k V_k^t = argmin_{X:rank(X) \le k} |A - X|_2$$

<u>Issues</u>: high complexity, negative U, V etc.

Yet often forms the initialization for other matrix factorizations

Alternate look at SVD

$$X = \Sigma_k V_k^{\iota} = U_k^{\iota} A$$

Can find a similar decomposition, but more efficiently?

Should retain (approximately) the optimality properties

Optimal Frob error =
$$\left|A - U_k \left(U_k^t A\right)\right|_F^2 = \sum_{j>k} \sigma_j^2$$

QB decomposition

Can we find orthogonal $Q \in \Re^{n \times (k+p)}$ and B such that

$$|A - QB|_F \approx |A - A_k|_F$$
 and/or $|A - QB|_F \approx |A - A_k|_2$

Also want
$$k + p = O(k)$$

CX decomposition

Can we find C, a subset of columns of A, such that

$$|A - CX|_F \approx |A - A_k|_F$$

and
$$|C| = O(k)$$
?

CX decomposition

Can we find C, a subset of columns of A, such that

$$|A - CX|_F \approx |A - A_k|_F$$

and |C| = O(k)? It is not clear that this even exists!! Useful in ML applications when actual columns, and not their linear combinations, are needed.

QB: prototype algorithm

Find $\Omega \in \Re^{d \times (k+p)}$ a random matrix

$$Y = A \Omega$$

Find Q = orthogonal basis for col(Y)

Return $(Q, Q^t A)$

Intuition

Assume rank(A) = k $\omega_1 \dots \omega_k \in \Re^d$ be random vectors

 $A\omega_1, A\omega_2, \dots, A\omega_k$ are in general position in column space of A

Intuition

Assume rank(A) = k $\omega_1 \dots \omega_k \in \Re^d$ be random vectors

 $A\omega_1, A\omega_2, \dots, A\omega_k$ are in general position in column space of A

 $Q = \text{orthogonal basis of } [A\omega_1, ... A\omega_k] = A\Omega \text{ is also basis for colspace(A)}$

Intuition

$$A=A_k+E$$
 , $|E|$ small
$$\omega_1\ldots\omega_k\in\Re^d \text{ be random vectors}$$

$$A\omega_i = A_k\omega_i + E\omega_i$$

The perturbation E can take a vector out of the column-space A

But, if we take k+p vectors, the chance that $\{A\omega_i\}$ does not span $\{A_{*i}\}$ is small

Random matrix

 $\Omega = \text{any JL matrix e.g. } N(0,1) \text{ or } \pm 1 \text{ or FJLT or Sparse JL}$

Theoretical bounds are the same, however these differ in numerical stability issues

Most practical implementations use N(0,1)

Theoretical Guarantee

Claim:
$$E[|A - QB|_F] \le \left(1 + \frac{k}{p-1}\right)|A - A_k|_F$$

Bounds can also be obtained on the L2 norm error, few different variants of the bound

Qualitative take-away: Need to choose p to be a small constant, in practice ≈ 5

Modified Algorithm

In reality, the bound $|A-QB|_F$ depends on the singular values $\{\sigma_{k+1},\ldots,\}$

Bound improves if $\sum_{i \le k} \sigma_i^2 \gg \sum_{i > k} \sigma_i^2$

Power scheme

In reality, the bound $|A-QB|_F$ depends on the singular values $\{\sigma_{k+1},\ldots,\}$

Bound improves if $\sum_{i \le k} \sigma_i^2 \gg \sum_{i > k} \sigma_i^2$

To achieve this, we use $(AA^t)^P A = U \Sigma^{2P+1} V^t$

Modified Algorithm [HMK10]

$$\begin{split} & \mathbf{function} \; [\mathbf{Q}, \mathbf{B}] = \mathbf{randQB_p}(\mathbf{A}, \ell, P) \\ & \mathbf{\Omega} = \mathbf{randn}(n, \ell). \\ & \mathbf{Q} = \mathbf{orth}(\mathbf{A}\mathbf{\Omega}). \\ & \mathbf{for} \; j = 1:P \\ & \mathbf{Q} = \mathbf{orth}(\mathbf{A}^*\mathbf{Q}). \\ & \mathbf{Q} = \mathbf{orth}(\mathbf{A}\mathbf{Q}). \\ & \mathbf{Q} = \mathbf{orth}(\mathbf{A}\mathbf{Q}). \\ & \mathbf{end} \; \mathbf{for} \\ & \mathbf{B} = \mathbf{Q}^*\mathbf{A} \end{split}$$

Total runtime =
$$O(nd\ell + n\ell^2)$$

$$\ell = k + p \approx k + 5$$

$$P = 1 \ or \ 2$$
 is sufficient

References:

- Primary reference
 - Lecture notes on Randomized Numerical Linear Algebra by Petros Drineas and Michael Mahoney, https://arxiv.org/abs/1712.08880
 - Finding Structure with Randomness, Halko, Martinsson and Tropp, https://arxiv.org/pdf/0909.4061.pdf
 - A Practical Guide to Randomized Matrix Computations with MATLAB Implementations, Shushen Wang, https://arxiv.org/pdf/1505.07570.pdf

Thank You!!

