Technology for X-Informatics: MapReduce

June 19 2013

Geoffrey Fox

gcf@indiana.edu

http://www.infomall.org/X-InformaticsSpring2013/index.html

Associate Dean for Research, School of Informatics and Computing

Indiana University Bloomington

2013

Big Data Ecosystem in One Sentence

Use Clouds running Data Analytics Collaboratively processing Big Data to solve problems in X-Informatics (or e-X)

X = Astronomy, Biology, Biomedicine, Business, Chemistry, Climate, Crisis, Earth Science, Energy, Environment, Finance, Health, Intelligence, Lifestyle, Marketing, Medicine, Pathology, Policy, Radar, Security, Sensor, Social, Sustainability, Wealth and Wellness with more fields (physics) defined implicitly Spans Industry and Science (research)

Education: Data Science see recent New York Times articles http://datascience101.wordpress.com/2013/04/13/new-york-times-data-science-articles/

MapReduce

Introduction

MapReduce

A parallel Runtime coming from Information Retrieval

- Implementations support:
 - Splitting of data
 - Passing the output of map functions to reduce functions
 - Sorting the inputs to the reduce function based on the intermediate keys
 - Quality of services

Sam's Problem

http://www.slideshare.net/esaliya/mapreduce-in-simple-terms

Sam thought of "drinking" the apple

Creative Sam

Implemented a parallel version of his innovation

MapReduce "File/Data Repository" Parallelism

Instruments

= (data parallel) computation reading and writing data Map **Reduce** = Collective/Consolidation phase e.g. forming multiple global sums as in histogram

Portals /Users

MapReduce

Advanced Topics

4 Forms of MapReduce

MPI is Map followed by Point to Point Communication – as in style d)

Map Collective Model (Judy Qiu)

- Combine MPI and MapReduce ideas
- Implement collectives optimally on Infiniband, Azure, Amazon
- Applies for general data; not necessarily key-value pairs

Twister for Data Intensive Iterative Applications

- (Iterative) MapReduce structure with Map-Collective is framework
- Twister runs on Linux or Azure
- Twister4Azure is built on top of Azure tables, queues,
 storage

 Qiu, Gunarathne

Pleasingly Parallel Performance Comparisons

BLAST Sequence Search

Cap3 Sequence Assembly

Smith Waterman Sequence Alignment

Multi Dimensional Scaling

Scalable Parallel Scientific Computing Using Twister4Azure. Thilina Gunarathne, BingJing Zang, Tak-Lon Wu and Judy Qiu. Submitted to Journal of Future Generation Computer Systems. (Invited as one of the best 6 papers of UCC 2011)

Investigating Improved communication (collective) routines

Hadoop adjusted for Azure: implies Hadoop KMeans run time adjusted for the performance difference of iDataplex vs Azure

Kmeans Strong Scaling (with Hadoop Adjusted)

128 Million data points. 500 Centroids (clusters). 20 Dimensions. 10 iterations Parallel efficiency relative to the 32 core run time.

Note Hadoop slower by factor of 2

Relative Efficiency = Time(32 cores)/Time(N cores) . 32/N