Precalculus Homework

Graphs of trig functions; inverse trig

1. Find each of the following values. Express your answers precisely, not as decimals.

(a) $\arcsin(\sin 4)$.

 $\mathfrak{p} = \mathfrak{u}$ hanse (b) $\arcsin(\sin 0.5)$.

(c) $\arcsin(\cos 120^\circ)$.

adamble: $-rac{\pi}{6}$

(d) $\arccos(\cos(3))$.

(e) $\arccos(\cos(-2))$.

(f) $\arcsin(\sin(-4))$.

(g) $\arctan(\tan 5)$.

 $\pi \Omega = 0$. The properties of Ω

Solution. 1.g $\frac{3\pi}{2} \approx 4.71$ and $2\pi \approx 6.28$, so

 $\frac{3\pi}{2} < 5 < 2\pi$ Therefore $-\frac{\pi}{2} < 5 - 2\pi < 0 < \frac{\pi}{2}.$

Therefore $5-2\pi$ is in the restricted domain of the tangent function. Moreover, the tangent function is π -periodic, so $\tan 5 = \tan(5-2\pi)$. Therefore $\arctan(\tan 5) = 5-2\pi$.

2. Express as the following as an algebraic expression of x. In other words, "get rid" of the trigonometric and inverse trigonometric expressions.

(a) $\cos^2(\arctan x)$.

(b) $-\sin^2(\operatorname{arccot} x)$. $\frac{z^{x+1}}{1} \cdot \operatorname{ijansure}$ (d) $-\frac{1}{\sin(\operatorname{arccos} x)}$. $\frac{z^{x+1}-1}{1} \cdot \operatorname{ijansure}$ $\frac{z^{x-1} \wedge 1}{1} - \operatorname{ijansure}$

(c) $\frac{z^{x+1}}{\cos(\arcsin x)}$.

Solution. 2.b. We follow the strategy outlined in the end of the solution of Problem 3.c. We set $y = \operatorname{arccot} x$. Then we need to express $-\sin^2 y$ via $\cot y$. That is a matter of algebra:

$$-\sin^{2}(\operatorname{arccot} x) = -\sin^{2} y$$

$$= -\frac{\sin^{2} y}{\sin^{2} y + \cos^{2} y}$$

$$= -\frac{1}{\frac{\sin^{2} y + \cos^{2} y}{\sin^{2} y}}$$

$$= -\frac{1}{1 + \cot^{2} y}$$

$$= -\frac{1}{1 + x^{2}}$$
Set $y = \operatorname{arccot} x$

$$use $\sin^{2} y + \cos^{2} y = 1$
Substitute back $\cot y = x$$$

3. Let $x \in (0,1)$. Express the following using x and $\sqrt{1-x^2}$.

(a)
$$\sin(\arcsin(x))$$
.
 (e) $\sin(2\arccos(x))$.
$$\frac{z^x-1}{\sqrt{xz}}$$

(b) $\sin(2\arcsin(x))$. (f) $\sin(3\arccos(x))$.

$$\frac{2x-1}{\sqrt{x^2}}\sqrt{x^2} \text{ Townerns} \qquad \qquad \frac{2x-1}{\sqrt{x}-1}\sqrt{x} + \frac{2}{x}\sqrt{x} - \frac{2x}{x}\sqrt{x} + \frac{2}{x}\sqrt{x} + \frac{2}{x}\sqrt$$

(c) $\sin(3\arcsin(x))$. (g) $\cos(2\arcsin(x))$.

$$\epsilon_{x^{\underline{k}}-1 \text{ Single}}$$
 answer $1-x^{\underline{k}}-1$

(d) $\sin(\arccos(x))$. (h) $\cos(3\arccos(x))$.

Solution. 3.b. Let $y = \arcsin x$. Then $\sin y = x$, and we can draw a right triangle with opposite side length x and hypotenuse length 1 to find the other trigonometric ratios of y.

Then $\cos y = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2}$. Now we use the double angle formula to find $\sin(2\arcsin x)$.

$$\sin(2\arcsin x) = \sin(2y)$$

$$= 2\sin y \cos y$$

$$= 2x\sqrt{1 - x^2}.$$

Solution. 3.c. Use the result of Problem 3.b. This also requires the addition formula for sine:

$$\sin(A+B) = \sin A \cos B + \sin B \cos A,$$

and the double angle formula for cosine:

$$\cos(2y) = \cos^2 y - \sin^2 y.$$

```
\sin(3 \arcsin x) = \sin(3y)
= \sin(2y + y)
= \sin(2y) \cos y + \sin y \cos(2y)
= (2 \sin y \cos y) \cos y + \sin y (\cos^2 y - \sin^2 y)
Use addition formula
= 2 \sin y \cos^2 y + \sin y \cos^2 y - \sin^3 y
= 3 \sin y \cos^2 y - \sin^3 y
= 3 \sin y (1 - \sin^2 y) - \sin^3 y
= 3x(1 - x^2) - x^3
= 3x - 4x^3
```

The solution is complete. A careful look at the solution above reveals a strategy useful for problems similar to this one.

- (a) Identify the inverse trigonometric expression- $\arcsin x, \arccos x, \arctan x, \dots$ In the present problem that was $y = \arcsin x$.
- (b) The problem is therefore a trigonometric function of y.
- (c) Using trig identities and algebra, rewrite the problem as a trigonometric expression involving only the trig function that transforms y to x. In the present problem we rewrote everything using $\sin y$.
- (d) Use the fact that $\sin(\arcsin x) = x$, $\cos(\arccos x) = x$, ..., etc. to simplify.

Solution. 3.f We use the same strategy outlined in the end of the solution of Problem 3.c. Set $y = \arccos x$ and so $\cos(y) = x$. Therefore:

$$sin(3y) = sin(2y + y)
= sin(2y) cos y + sin y cos(2y)
= 2 sin y cos y cos y + sin y(2 cos2 y - 1)
= 2 sin y cos2 y + sin y(2 cos2 y - 1)
= sin y(4 cos2 y - 1)
= $\sqrt{1 - x^2}(4x^2 - 1)$ use $\cos y = x
\sin y = \sqrt{1 - x^2}$$$