Оглавление

0	Формальные языки: определения	2
1	Детерминированные конечные автоматы	7
2	Недетерминированные конечные автоматы	18
3	Регулярные выражения и алгебра Клини	31

Глава 0

Формальные языки: определения

Основной объект изучения в этом курсе — формальные языки и связанные с ними конструкции.

Определение. Алфавит есть конечное множество; будем обозначать его $\Sigma = \{a_1, \ldots, a_N\}$. Слово w есть конечная последовательность $w_1w_2 \ldots w_k$ символов алфавита. К i-ой букве слова w мы будем обращаться w[i]; к первой букве слова обращаемся как к w[1] [то есть отсчет начинаем с единицы, а не с нуля]. Длину слова w мы будем обозначать как |w|, а $\#_x(w)$ — количество вхождений буквы x в w.

Пример 1. Над алфавитом $\{0,1\}$ словами являются $w_1 = 0010$ и $w_2 = 1010110$. В слове w_1 ровно одна единица, то есть $\#_1(w_1) = 1$, а $|w_2| = 7$ — во втором слове 7 букв. В обоих словах одинаковая третья буква, то есть $w_1[3] = w_2[3]$. При этом $w_1[5]$ не определена, так как $|w_1| = 4$.

 $\mathit{Пустую}\ \mathit{cmpoчky}\ \epsilon$ определим как слово нулевой длины. Оно является подсловом любого слова.

Определение. Множество всех слов над алфавитом $\Sigma = \{a_1, \dots, a_N\}$ будем обозначать $\Sigma^* = \{a_1, \dots, a_N\}^*$; язык L есть подмножество Σ^* .

Заметим, что $\emptyset^* = \{\epsilon\}.$

Теперь определим на словах операцию умножения.

Определение. Конкатенация двух слов w_1 и w_2 есть просто слово

$$w_1w_2 := w_1[1] \dots w_1[|w_1|]w_2[1] \dots w_2[|w_2|].$$

 $\Pi pumep 2$. Для слов $w_1 = ab$ и $w_2 = baa$ имеем $w_1w_2 = abbaa$ и $w_2w_1 = baaab$. Заметим, что $w_1w_2 \neq w_2w_1$.

Любое непустое слово является конкатенацией своих букв. Операция конкатенации обладает следующими свойствами:

- она ассоциативна: (ab)c = a(bc);
- имеется единица относительно такого умножения: $\epsilon a = a \epsilon = a;$
- $\bullet |ab| = |a| + |b|.$

Таким образом, Σ^* , оснащенное конкатенацией, есть csofodnuй моноиd, то есть полугруппа с единицей, не имеющая соотношений; последнее означает, что никакие два разных слова не равны друг другу. В дальнейшем будем писать $x^n = \underbrace{x \dots x}_{n \text{ раз}}$. Например, $bbaaaabccccc = b^2a^4bc^5$.

Peверс, или oбращение слова w, определено как $w^R = w[|w|] \dots w[1]$; иными словами, это слово w, прочитанное наооборот. Слово, совпадающее со своим обращением, будем называть nanuhdpomom.

Определение. Пусть $A, B \subset \Sigma^*$. Объединение языков $A \cup B$ есть их объединение как множеств. Произведение языков AB есть множество всевозможных конкатенаций слов из A и B:

$$AB := \{xy | x \in A, \ y \in B\} \tag{1}$$

Заметим, что $A\varnothing=\varnothing A=\varnothing,$ а $A\{\epsilon\}=\{\epsilon\}A=A.$ Считаем далее $A^n=\underbrace{A\ldots A}_{n\text{ штук}}$. Итерация языка

 A^* есть множество слов, составленных из слов A как из букв:

$$A^* = \{\epsilon\} \cup \bigcup_{i=1}^{\infty} A^i.$$

Соответствующую операцию * мы будем называть звездой Клини. Дополнительно мы введем $A^+ = AA^*$. Обращением языка A будем называть

$$A^R := \{x^R | x \in A\} \tag{2}$$

Пример 3. Пусть $A = \{\epsilon, b\}, B = \{a, ba, b^2a\}$. Тогда $A^2 = \{\epsilon, b, b^2\}, BA = \{a, ba, b^2a, ab, bab, b^2ab\}, (AB)^R = \{a, ab, ab^2, ba, bab, bab^2\}$. При этом $A = A^R$ и $A^* = \{a\}^*$.

Задача 0.1. Покажите, что B^*A^2 есть множество слов от букв a и b, которые не содержат трех b подряд.

Задача 0.2. Пусть $\Sigma = \{a, b\}$. Существуют ли два разных языка X таких, что $X = aXb + \epsilon$?

Решение. Если бы существовали два таких языка A и B, что $A=aAb+\epsilon$ и $B=aBb+\epsilon$, то в обоих языках нет слов нечетной длины и ровно одно слово четной длины 2n, а именно a^nb^n . Ведь если $X=aXb+\epsilon$, то $X\cap \Sigma^{2n}=a(X\cap \Sigma^{2n-2})b$, а $X\cap \Sigma^0=\epsilon$, поэтому если $X\cap \Sigma^{2n-2}=a^{n-1}b^{n-1}$, то $X\cap \Sigma^{2n}=a^nb^n$. Поэтому A=B, двух разных решений уравнения не существует.

Задача 0.3. Проверьте истинность следующих равенств:

- (a) $A^*A^* = A^*$;
- **(b)** $A^* = \{\epsilon\} \cup AA^*$:
- (c) $(A^*)^* = A^*$.

Задача 0.4. Алфавит содержит хотя бы две буквы. Скажем, что $L \in \Sigma^*$ треугольный, если

$$\forall x, y, z \in \Sigma^+, \ xyz \in L \iff yzx, zxy \in L \tag{3}$$

Верно ли, что если L треугольный, то и L^2 треугольный?

Решение. Ответ: нет.

Зафиксируем алфавит $\Sigma = \{a,b\}$ и возьмем язык $L = \{aab,aba,baa\}$. Этот язык является треугольным: все слова можно разбить лишь на слова длины 1, каждое слово присутствует вместе со всеми своими циклическими сдвигами. Между тем, в L^2 есть слово baaaab, его можно разбить как $ba^4b = b \cdot a^4 \cdot b$ и циклически переставить множители, тогда полученное слово $a^4b^2 \notin L^2$, ведь $a^3 \notin L$, а слов длины, отличной от 3, в L тоже нет.

Леша Крошнин предложил еще одно решение этой задачи: язык $L = \{ab\}$ в алфавите $\Sigma = \{a,b\}$. L треугольный, так как условие треугольности не выполнено вообще никогда. Между тем, $L^2 = \{abab\}$ очевидно не треугольный, ведь $abab \in L^2$, но $baba \notin L^2$: возьмем $x = a, \ y = ba, \ z = b$.

Определение. Слово p является $npe \phi u \kappa com$ слова w, если $\exists s \in \Sigma^*$ такое, что ps = w. Мы будем записывать $p \sqsubseteq w$. Аналогично, слово s является $cy \phi \phi u \kappa com$ слова w, если $\exists p \in \Sigma^*$ такое, что ps = w. Мы будем называть префиксы и суффиксы w собственными, если они не совпадают со всем w. $\Pi e p e x n e c m$ двух слов $w_1, w_2 \in \Sigma^*$ есть максимальный по длине суффикс w_1 , являющийся некоторым префиксом w_2 . Его будем обозначать как $overlap(w_1, w_2)$.

Задача 0.5. Скажем, что для двух слов $x, y \in \Sigma^*$ максимальное слово $\max(x, y)$ есть максимальное по длине из x и y. Корректно ли определена такая операция? А если $x = overlap(x_1, w), y = overlap(y_1, w)$ для некоторого $w \in \Sigma^*$?

Задача 0.6 (Higman [?koz]). Определим на Σ^* отношение квазипорядка: $x \leq y$, если x получается из y удалением нескольких символов; так, $a^3 \leq (ac)^3$. Докажите лемму Xигмана: любой $L \subset \Sigma^*$ имеет конечное число \leq -минимальных элементов.

 $Mop \phi uз m u$ есть просто морфизмы моноидов $h: \Sigma^* \to \Gamma^*$, то есть отображения, сохраняющие единицу и мультипликативность:

$$h(xy) = h(x)h(y), \ h(\epsilon) = \epsilon$$
 (4)

Тогда определим *образ* множества $X \subset \Sigma^*$ как $h(X) := \{ y \in \Gamma^* | \exists x \in X \ h(x) = y \}$ и *прообраз* множества $Y \subset \Gamma^*$ как $h^{-1}(Y) := \{ x \in \Sigma^* | \exists y \in Y \ h(x) = y \}.$

Задача 0.7. $\Sigma = \{a, b\}$. Определим индуктивно последовательность слов Фибоначчи следующим образом: $f_0 = \epsilon$, $f_1 = b$, $f_2 = a$, $f_k = f_{k-1}f_{k-2}$ для всех $k \geqslant 3$. Пусть $\phi : \Sigma^* \to \Sigma^*$ — морфизм, заданный на алфавите $\phi(a) = ab$, $\phi(b) = a$. Покажите, что $\phi^k(a) = f_{k+2}$.

Задача 0.8 (Thue-Morse [?shallit]). Рассмотрим два бесконечных двоичных слова X и Y. Первое слово есть $X=\lim_{n\to\mathbb{N}}X_n$, предел заданной индуктивно последовательности $\{X_n\}_{n\in\mathbb{N}}\colon X_0=0$, $X_{n+1}=X_n\overline{X_n}$, где \overline{A} получается из A заменой 0 на 1 и наооборот. Y есть бесконечная последовательность $y_0y_1y_2\ldots$, где y_n есть остаток по модулю 2 суммы цифр двоичной записи числа n. Покажите, что X=Y. Определим $\mu:\{0,1\}^*\to\{0,1\}^*$ следующим образом: $\mu(0)=01,\,\mu(1)=10$. Покажите, что в условиях предыдущей задачи $\mu^n(0)=X_n$.

Задача 0.9. Каждое натуральное число однозначно представляется в виде $n=2^{k_n}(4s_n+t_n)$, где $t_n\in\{1;3\}$. Пусть $T=t_1t_2\dots t_n\dots$, а последовательности слов $\{x_n\}_{n\in\mathbb{N}}$ и $\{y_n\}_{n\in\mathbb{N}}$ определены индуктивно: $x_1=1,\ y_1=3,\ x_{n+1}=x_n1y_n,\ y_{n+1}=x_n3y_n$. Покажите, что $x_n\sqsubseteq T$ для всех n и $T=\lim_{n\to\infty}x_n$.

Как мы заметили выше, конкатенация не является коммутативной операцией. Оказывается, что существует простой критерий коммутирования двух слов.

Теорема 0.1 (Lyndon, Schützenberger). Два слова $x, y \in \Sigma^+$ коммутируют титтк $\exists z \in \Sigma^+$ такое, что $x, y \in \{w\}^+$.

Доказательство. Если $x=z^i$ и $y=z^j$ для некоторых $i,j\in\mathbb{N}$ и $z\in\Sigma^+$, то $xy=yx=z^{i+j}$. В обратную сторону утверждение докажем индукцией по |xy|. При |xy|=2 имеем |x|=|y|=1, то есть x и y — буквы алфавита, тогда xy=yx влечет x=y. Далее, считая утверждение доказанным при |xy|< n, докажем его при |xy|=n. Если |x|=|y|, то x=y, поэтому будем считать без ограничения общности, что |x|<|y|. КАРТИНКА! В такой ситуации $w\in\Sigma^+$ является одновременно и суффиксом, и префиксом w. Отсюда следует, что x=wy=yw; при этом |yw|<|xy|=n, поэтому по предположению индукции y и w являются степенями некоторого слова u: $y=u^i$, $w=u^j$ для некоторых $i,j\in\mathbb{N}$ и $u\in\Sigma^+$. Тогда $x=yw=u^{i+j}$ также является степенью слова u.

Задача 0.10 (Lyndon, Schützenberger [?lyndonschutz]). Пусть $x, y, z \in \Sigma^+$. Тогда xy = yz титтк существуют $u \in \Sigma^+$, $v \in \Sigma^*$ и $n \geqslant 0$ такое, что $x = uv, y = (uv)^n u, z = vu$.

Задача 0.11. Сформулируйте и докажите аналоги теоремы Линдона-Шютценберже для равенств

- (a) $xy = y^R x$;
- **(b)** $xy = y^R z$.

- Задача 0.12. (a) (Lyndon [?lyndon]) Пусть $x,y,z\in \Sigma^+$. Покажите, что $x^2y^2=z^2$ титтк $u\in \Sigma^+$ такое, что $x,y\in \{u\}^+,\ z=xy$.
- (b) Пусть $x_1^2 x_2^2 x_3^2 = x_4^2$ для $x_1, x_2, x_3, x_4 \in \Sigma^+$. Обязаны ли хотя бы какие-то два слова x_i и x_j коммутировать?

Задача 0.13. Пусть $x,y\in \Sigma^+,$ а $n\geqslant 2.$ Докажите, что $(xy)^n=x^ny^n$ титтк xy=yx.

Решение. Если x и y коммутируют, то согласно теореме Линдона-Шютценберже $x=w^k, y=w^l$ для некоторого $w \in \Sigma^+$ и $k, l \in \mathbb{N}$ и $(w^{k+l})^n = w^{kn}w^{ln}$. Нетривиально доказать утверждение в обратную сторону.

Сразу сократим на x слева и на y справа и будем доказывать следующее утверждение.

Если $(yx)^N = x^N y^N$ для $x, y \in \Sigma^+$ и $N \geqslant 1$, то xy = yx.

Если |x| = |y|, то x = y и x коммутирует с y; будем считать без ограничения общности, что |y| > |x|. Тут возможны два случая:

- $y \sqsubseteq x^k$ для некоторого $k \leqslant N$;
- $x^N \sqsubseteq y$.

КАРТИНКИ, ДВЕ ШТУКИ!

В первом случае $y=x^{k-1}w$, а x=wu, то есть $y=(wu)^{k-1}w$. Сразу после x^k в слове x^Ny^N обязательно идет подслово w как префикс либо x, либо y; в слове $(yx)^N$ сразу после y идет x. Так как |w|+|u|=|x|, то uw=x, следовательно, $u,w\in\{z\}^+$ для некоторого $z\in\Sigma^+$, а, следовательно, $x,y\in\{z\}^+$.

Во втором случае совершенно аналогично получаем $y=x^Nw=wx^N$, тогда коммутируют w и x^N . Следовательно, $w^i=x^{Nj}$ для некоторых $i,j\in\mathbb{N}$, откуда по теореме Линдона-Шютценберже получаем, что w и x коммутируют, а значит, xy=yx.

Случай |x| > |y| доказывается аналогично.

Отметим также, что существует моноидальный «аналог» великой теоремы Ферма [?schenkman], [?shallit]: уравнение $x^ny^m=z^k$ в строчках имеет решение титтк $\exists w\in \Sigma^+$ такое, что $x,y,z\in \{w\}^+$. Пользуясь этим утверждением, можно получить решение задачи в одну строчку: мы решаем систему уравнений

$$\begin{cases} z^n = x^n y^n \\ z = xy \end{cases},$$

согласно первому же уравнению имеем, что $x, y, z \in \{w\}^+$ для некоторого w.

С помощью формальных языков мы научимся получать некоторые результаты про производящие функции. Напомним, что npouseodsumas функция последовательности $\{a_n\}_{n\in\mathbb{N}}$ есть $f(z)=\sum_{n\in\mathbb{N}}a_nz^n$, где z — формальная переменная. Последнее означает, что мы не рассматриваем производящие функции как отображения $f:\mathbb{R}\to\mathbb{R}$, а как формальные ряды с соответствующими операциями сложения и умножения

$$\left(\sum_{n\in\mathbb{N}}a_nz^n\right) + \left(\sum_{n\in\mathbb{N}}b_nz^n\right) = \sum_{n\in\mathbb{N}}(a_n+b_n)z^n; \ \left(\sum_{n\in\mathbb{N}}a_nz^n\right)\left(\sum_{n\in\mathbb{N}}b_nz^n\right) = \sum_{n\in\mathbb{N}}\left(\sum_{i\in[0,n]}a_ib_{n-i}\right)z^n.$$

В некоторых целях, однако, полезно рассмотреть производящие функции как вещественнозначные или комплекснозначные отображения; эту тему подробно рассмотрел Филипп Флажоле [?flajolet].

Производящая функция языка L есть же $f_L(z) = \sum_{n \in \mathbb{N}} |L \cap \Sigma^k| z^k$. Иными словами, это производящая функция последовательности $\{a_n\}_{n \in \mathbb{N}}$, где a_n — число слов длины n в языке L.

Пример 4. Производящая функция языка $L = \{a^2, ab, bab, a^3, aba, b^2a, b^4\} \subset \{a, b\}^*$ равна $f_L(z) = 2z^2 + 4z^3 + z^4$. Для языка Σ^* имеем

$$f_{\Sigma^*}(z) = \sum_{n=0}^{\infty} |\Sigma|^n z^n = \frac{1}{1 - |\Sigma| z}$$

Задача 0.14. Вычислите производящие функции следующих языков:

- (a) $\{a^nb^nc^n \mid n \in \mathbb{N}\} \subset \{a, b, c\}^*$;
- **(b)** $\{awb \mid w \in \{a, b, c\}^*\};$
- (c) $Pref(w) = \{ p \in \Sigma^* \mid p \sqsubseteq w \}$ [для любого $w \in \Sigma^*$];
- (d) $L_k = \{w \in \{a, b\}^* \mid \#_b(w) = k\}$ [для любого $k \in \mathbb{N}$];
- (e) $\{w \in \Sigma^* \mid w = w^R\}.$

Задача 0.15. Верно ли, что $f_{L_1+L_2}(z) = f_{L_1}(z) + f_{L_2}(z)$? А верно ли, что $f_{L_1L_2}(z) = f_{L_1}(z)f_{L_2}(z)$?

Решение. Разумеется, имеет место формула $f_{L_1+L_2}(z) + f_{L_1\cap L_2}(z) = f_{L_1}(z) + f_{L_2}(z)$, поэтому формула $f_{L_1+L_2}(z) = f_{L_1}(z) + f_{L_2}(z)$ неверна для любых пересекающихся языков. Достаточно взять два совпадающих непустых языка, тогда $f_L(z) = 2f_L(z)$, что очевидно неверно.

Решение. Ответ крылся в предыдущем пункте: да, верно, что $(L_1L_2)_n = \bigcup_{k \in [0;n]} (L_1)_k (L_2)_{n-k}$, где $(L)_k = \{w \in L | |w| = k\}$ — множество слов языка L длины k. Но эти множества могут пересекаться: например, если $L_1 = \{\epsilon, a\}$, а $L_2 = \{a, a^2\}$, то $a^2 = \epsilon \cdot a^2 = a \cdot a$. Заметим, что здесь получается $L_1L_2 = \{a, a^2, a^3\}$, и

$$f_{L_1}f_{L_2}(z) = (1+z)(z+z^2) = z + 2z^2 + z^3 \neq z + z^2 + z^3 = f_{L_1L_2}(z)$$

Альтернативно можно было поступить как Тагир: «А, нафиг все. Пусть $L=a^*-$ множество всех слов от одной буквы, тогда $L^2=L$, и $f_L^2=f_L$, откуда $f_L=0$ или $f_L=1$. Что совершенно точно не может быть правдой»

Задача 0.16. Пусть $\Sigma = \{a_1, \dots, a_k\}$. Скажем, что Парик-производящая функция — это

$$F_L(z_1,\ldots,z_k) = \sum_{(n_1,\ldots n_k)\in\mathbb{N}^k} N(n_1,\ldots n_k) z_1^{n_1} \ldots z_k^{n_k},$$

где $N(n_1,\ldots n_k)=|\{w\in L|\#_{a_1}(w)=n_1,\ldots \#_{a_k}(w)=n_k\}|$. Пусть $h:\Sigma^*\to\Gamma^*$ — морфизм. Чему равна $F_{h(L)}(z_1,\ldots,z_k)$?

Введем также $\mathbb{Z}\langle\langle\Sigma\rangle\rangle=\{f:\Sigma^*\to\mathbb{Z}\}$. Мы будем работать с этими отображениями $f:\Sigma^*\to\mathbb{Z}$ как с некоммутативными производящими функциями, то есть с суммами вида $\sum_{w\in\Sigma^*}f_ww$, где $f_w\in\mathbb{Z}$. Операции сложения и умножения вводятся на некоммутативных производящих функциях следующим образом:

$$\left(\sum_{w\in\Sigma^*}a_ww\right) + \left(\sum_{w\in\Sigma^*}b_ww\right) = \sum_{w\in\Sigma^*}(a_w + b_w)w; \quad \left(\sum_{w\in\Sigma^*}a_ww\right)\left(\sum_{w\in\Sigma^*}a_ww\right) = \sum_{w\in\Sigma^*}\left(\sum_{u_1u_2=w}a_{u_1}b_{u_2}\right)w$$

Остальные операции будем в дальнейшем определять через сложение и умножение; например, $\exp(\sum_{w\in\Sigma^*} a_w w) = \sum_{n!} \frac{1}{n!} \left(\sum_{w\in\Sigma^*} a_w w\right)^n$.

Задача 0.17. (а) Пусть $f_1, f_2 \in \mathbb{Z}\langle\langle \Sigma \rangle\rangle$. Покажите, что $\exp(f_1) \exp(f_2) = \exp(f_1 + f_2)$ титтк $f_1 f_2 = f_2 f_1$.

(b) Пусть $f_1, f_2 \in \mathbb{Z}\langle\langle \Sigma \rangle\rangle$ таковы, что $f_1 f_2 = f_2 f_1$. Существуют ли $C_1, C_2 \in \mathbb{Z}$ и $f \in \mathbb{Z}\langle\langle \Sigma \rangle\rangle$, что $\frac{f_1}{C_1} = f^{k_1}, \frac{f_2}{C_2} = f^{k_2}$ для некоторых $k_1, k_2 \in \mathbb{N}$?

Глава 1

Детерминированные конечные автоматы

Предмет нашего изучения — модели вычислительных машин, их возможности, свойства и применения. Машины, которые мы будем рассматривать, решают задачу о принадлежности некоторому языку, то есть получают на вход слово, составленное из букв некоторого алфавита, и выдают «да» или «нет» в зависимости от того, принадлежит ли поданное на вход слово языку.

Простейшая из таких машин — конечный автомат, машина, множество состояний которой конечно.

Определение. Детерминированный конечный автомат — набор $(Q, \Sigma, Start, Final, T)$, где

- Q конечное множество состояний,
- Σ алфавит, конечное множество символов,
- $Start \in Q$ стартовое состояние, ровно одно,
- $Final \subseteq Q$ подмножество финальных состояний,
- T таблица переходов, отображение $Q \times \Sigma \to Q$:

$$T(q_i, x) = q_i \tag{1.1}$$

Мы будем писать $q_i \xrightarrow{x} q_j$, если $T(q_i, x) = q_j$.

 $Kon\phiuzypaция$ ДКА есть элемент $Q \times \Sigma^*$. Таблица переходов T задет отображение пространства конфигураций:

$$\forall q \in Q, x \in \Sigma, w \in \Sigma^*$$
 $(q, xw) \mapsto (T(q, x), w)$

Тогда индуктивно продолжим таблицу переходов T до отображения $\widetilde{T}: Q \times \Sigma^* \to Q$:

$$\forall q \in Q, x \in \Sigma, w \in \Sigma^* \qquad \widetilde{T}(q, \epsilon) = q, \ \widetilde{T}(q, wx) = T(\widetilde{T}(q, w), x)$$
(1.2)

Фактически $\widetilde{T}(q,w)$ есть состояние, в котором автомат окажется, стартовав из состояния q и обработав слово w. Это можно проверить индукцией по |w|, доказательство предоставляется читателю. Для краткости будем писать $q \stackrel{w}{\longrightarrow} s$, если $\widetilde{T}(q,w) = s$. Слово $\omega \in \Sigma^*$ принимается автоматом A, если $\widetilde{T}(Start,w) \in Final$, то есть при переходах по символам этого слова по таблице переходов T(A) автомат A остановится в одном из финальных состояний. Язык автомата L(A) — множество всех слов, принимаемых автоматом:

$$L(A) = \{ w \in \Sigma^* \mid \widetilde{T}_A(Start, w) \in Final \}$$

Язык детерминированного конечного автомата можно воспринимать как путей из точки A в множество точек B в конечном помеченном ориентированном графе. Граф здесь задается с помощью Q и T: вершины графа — это множества состояний, а ребра имеют вид (q, T(q, x)) для любой буквы x. Отдельно мы будем помечать стартовые и финальные состояния; такой граф мы будем называть $\partial uarpammoй Mypa$.

Определение. Язык $L \subset \Sigma^*$ называется *регулярным*, если L = L(Aut) для некоторого детерминированного конечного автомата Aut.

Данный в первом определении автомат *полный*, то есть по любой букве из любого состояния есть переход в состояние. Можно было определять неполный автомат, где формально таблица переходов будет не функцией (определенной на любой паре $(q,x) \in Q \times \Sigma$), а отношением (множеством троек $(q_1,x,q_2) \in Q \times \Sigma \times Q$, считается, что по букве x совершается переход $q_i \to q_j$). Такой автомат может не прочитать слово до конца и просто «сломаться» где-то в середине слова. Нам удобнее рассматривать полные автоматы и считать, что любое слово будет прочитано до конца (причина станет очевидной позднее).

Задача 1.1. Дайте точное определение неполного ДКА, его конфигурации и принимаемого языка. Покажите, что для любого неполного ДКА A можно построить (полный) ДКА \widehat{A} такой, что $L(A) = L(\widehat{A})$. Иными словами, докажите, что неполные ДКА принимают те же языки, что и полные.

Будем говорить, что состояние $q_2 \in Q$ достижимо из состояния q_1 , если существует $w_{q_1,q_2} \in \Sigma^*$ такое, что $\widetilde{T}(q_1,w_{q_1,q_2})=q_2$.

Задача 1.2. Предложите алгоритм, позволяющий найти по автомату множество всех состояний, достижимых из стартового состояния.

Мы будем дальше по умолчанию считать, что все состояния достижимы из стартового.

Пример 5. Язык $\{w\} \subset \Sigma^*$, состоящий из единственного слова $w = w_1 \dots w_N$ (для $w_i \in \Sigma$), является регулярным. Действительно, можно построить следующий автомат A:

Формально, $A = (Q, \Sigma, Start, Final, T)$

- $Q = \{[i] | i \in [0; N]\} \cup \{\mathbf{T}\};$
- Σ данный в условии алфавит;
- Start = [0] начальное состояние;
- $Final = \{[N]\}$ финальное состояние;
- Т таблица переходов вида

$$[i] \xrightarrow{w_{i+1}} [i+1]; \ \forall x \in \Sigma \setminus \{w_{i+1}\} \ [i] \xrightarrow{x} [\mathbf{T}]; \ \forall x \in \Sigma \ [T] \xrightarrow{x} [T]$$
 (1.3)

Покажем, что этот автомат принимает только слово $w=w_1\dots w_N$. Действительно, $w\in L(A)$, так как $\widetilde{T}([0],w)=([N],\epsilon)$; любое же другое слово $u\neq\epsilon$ отличается от w в некоторой позиции, скажем, что i-ая позиция — первая, в которой есть различие, тогда $\widetilde{T}([0],u)=\widetilde{T}([i],u[i]u[i+1]\dots u[|u|])=\mathbf{T}$.

К примеру, для слова $a^2ba \in \{a,b\}^*$ имеем вот такой автомат:

На слове a^3b данный автомат совершает переходы $[0] \stackrel{a}{\to} [1] \stackrel{a}{\to} [2] \stackrel{a}{\to} \mathbf{T} \stackrel{b}{\to} \mathbf{T}$ и, таким образом, не принимает его.

Замечание. Впоследствии мы установим, что любой конечный язык является языком некоторого автомата. Такая конструкция не обобщается на бесконечные языки (получится бесконечный автомат!), и бесконечные языки, принимаемые автоматами, обладают очень красивыми и сильными свойствами, о которых мы поговорим позднее.

Пример 6. Язык всех слов из букв $\{a,b\}$, оканчивающихся на a, также является языком детерминированного конечного автомата Aut:

Формально говоря, $A = (Q, \Sigma, Start, Final, T)$, где

- $Q = \{S, A\};$
- $\Sigma = \{a, b\}$;
- Start = S;
- $Final = \{A\};$
- Т таблица переходов вида

$$S \xrightarrow{b} S; S \xrightarrow{a} A; A \xrightarrow{b} S; A \xrightarrow{a} A$$
 (1.4)

На слове a^3ba данный автомат совершает переходы $S \xrightarrow{a} A \xrightarrow{a} A \xrightarrow{a} A \xrightarrow{b} S \xrightarrow{a} A$, а на слове a^2b^2ab — переходы $S \xrightarrow{a} A \xrightarrow{a} A \xrightarrow{b} S \xrightarrow{b} S \xrightarrow{a} A \xrightarrow{b} S$.

Покажем, что построенный автомат принимает язык слов, которые заканчиваются на a. Если слово заканчивается на a, то автомат завершает работу в состоянии a: T(S,a) = T(A,a) = A. Если слово заканчивается на b, то так как T(S,b) = T(A,b) = S, то оно не принимается автоматом: S не является финальынм состоянием.

Пример 7. Язык всех слов на алфавитом $\{a\}$, длина которых делится на 4, также является регулярным:

Формально говоря, $A = (Q, \Sigma, Start, Final, T)$, где

- $Q = \{[i] | i \in \mathbb{Z}/4\mathbb{Z}\};$
- $\Sigma = \{a\};$
- Start = [0];
- $Final = \{[0]\};$
- Т таблица переходов вида

$$\forall i \in \mathbb{Z}/4\mathbb{Z} \qquad [i] \xrightarrow{a} [i+1] \tag{1.5}$$

Напомним, что $\mathbb{Z}/4\mathbb{Z}$ — группа остатков по модулю 4, и i+1 в таблице переходов воспринимается как элемент этой группы. Тогда $\widetilde{T}([0],a^n)=[i]$ титтк $n\equiv i \mod 4$: заметим, что $\widetilde{T}([0],\epsilon)=[0]$, а $T(\widetilde{T}([0],a^n),a)=T([n \mod 4],a)=[(n+1) \mod 4]$. Поэтому $\widetilde{T}([0],a^m)=[0]$ титтк $m\equiv 0 \mod 4$, следовательно, язык этого автомата есть $\{a^{4k}|k\in\mathbb{N}\}$.

Пример 8. Язык всех слов из букв $\{a,b\}$, содержащих подслово ab, также является языком детерминированного конечного автомата Aut:

Формально говоря, $A = (Q, \Sigma, Start, Final, T)$, где

- $Q = \{[p] \mid p \sqsubseteq ab\}$ каждое состояние помечено префиксом искомого слова;
- $\Sigma = \{a, b\}$;
- $Start = [\epsilon]$ пустой префикс;
- $Final = \{[ab]\};$
- Т таблица переходов вида

$$[\epsilon] \xrightarrow{b} [\epsilon]; \ [\epsilon] \xrightarrow{a} [a]; \ [a] \xrightarrow{b} [ab]; \ [a] \xrightarrow{a} [a]; \ [ab] \xrightarrow{\Sigma} [ab]$$
 (1.6)

На слове a^3ba данный автомат совершает переходы $[\epsilon] \xrightarrow{a} [a] \xrightarrow{a} [a] \xrightarrow{a} [a] \xrightarrow{b} [ab] \xrightarrow{a} [ab]$. Покажем, что построенный автомат принимает те и только те слова, которые содержат ab. Если слово содержит ab, то оно имеет вид w_1abw_2 автомат завершает работу в состоянии [ab]:

$$\widetilde{T}([\epsilon],ab) = T([a],b) = [ab]; \quad \widetilde{T}([a],ab) = T([a],b) = [ab]; \quad \widetilde{T}([ab],ab) = T([ab],b) = [ab],$$

то есть из любого состояния Aut попадет по слову ab в финальное состояние и больше не покинет его [все переходы из финального состояния ведут в него же]. Если слово w принимается Aut, то рассмотрим самую левую букву w[l] этого слова, по которой Aut, обрабатывая это слово, попал в [ab]. Впервые попасть в [ab] можно только из [a], поэтому $[a] \xrightarrow{w[l]} [ab]$, откуда согласно таблице переходов w[l] = b. Попасть в состояние [a] можно только по букве a [из состояний $[\epsilon]$ и [a]], таким образом, w[l-1] = a и w содержит подслово ab.

Пример 9. Пусть $\Sigma = \{0, 1\}$. Рассмотрим следующий детерминированный конечный автомат:

Формально $A = (Q, \Sigma, Start, Final, T)$, где

- $Q = \{[0], [1], [2]\};$
- $\Sigma = \{0, 1\};$
- Start = [0];
- $Final = \{[2]\};$
- Т таблица переходов вида

$$\forall i \in \{0, 1, 2\}, \ x \in \{0, 1\} \qquad [i] \xrightarrow{x} [(2i + x) \bmod 3]$$
 (1.7)

Действительно, по модулю 3 имеем $2 \cdot 0 + 0 = 0$, $2 \cdot 0 + 1 = 1$, $2 \cdot 1 + 0 = 2$, $2 \cdot 1 + 1 = 0$, $2 \cdot 2 + 0 = 1$, $2 \cdot 2 + 1 = 2$, что согласуется с таблицей переходов

$$[0] \xrightarrow{0} [0]; [0] \xrightarrow{1} [1]; [1] \xrightarrow{0} [2]; [1] \xrightarrow{1} [0]; [2] \xrightarrow{0} [1]; [2] \xrightarrow{1} [2]$$

Заметим, что $11 \in L(A)$, так как $[0] \xrightarrow{1} [1] \xrightarrow{1} [2]$, а $00100 \notin L(A)$, так как

$$[0] \xrightarrow{0} [0] \xrightarrow{0} [0] \xrightarrow{1} [1] \xrightarrow{0} [2] \xrightarrow{0} [1].$$

Пусть $z(\cdot):\{0,1\}^* \to \{0,1\}^*$ — функция, отбрасывающая передние нули, то есть слову w она сопоставляет его суффикс, начинающийся с самой левой единицы. Докажем теперь, что L(A) состоит из слов w таких, что z(w) — двоичная запись числа, дающего остаток 2 по модулю 3. Для начала заметим, что $w \in L(A) \iff 0^k w \in L(A)$ для любого k, так как $\widetilde{T}([0], 0^k w) = \widetilde{T}([0], w)$; поэтому можем считать, что w само по себе является двоичной кодировкой некоторого целого неотрицательного числа x(w). Покажем индукцией по |w|, что $\widetilde{T}([0], w) = [x(w) \mod 3]$. Для слов длины утверждение очевидно: для слова w длины 1 имеем

$$\widetilde{T}([0], w) = T([0], w) = \begin{cases} 0, w = 0 \\ 1, w = 1 \end{cases}$$

Пусть по предположению индукции для любого слова w длины n верно $\widetilde{T}([0],w)=[x(w) \bmod 3]$. Слова w0 и w1 являются двоичными записями чисел 2x и 2x+1 соответственно. Согласно таблице переходов $[x(w) \bmod 3] \xrightarrow{0} [2x(w) \bmod 3]$ и $[x(w) \bmod 3] \xrightarrow{1} [2x(w) + 1 \bmod 3]$, по предположению $\widetilde{T}([0],w)=[x(w) \bmod 3]$, следовательно,

$$\widetilde{T}([0], w0) = T([x(w) \mod 3], 1) = [2(x(w) \mod 3) \mod 3] = [2x(w) \mod 3] = [x(w0) \mod 3],$$

$$\widetilde{T}([0], w1) = T([x(w) \mod 3], 1) = [2(x(w) \mod 3) + 1 \mod 3] = [(2x(w) + 1) \mod 3] = [x(w1) \mod 3],$$

тем самым индукционный переход доказан. Таким образом, $\widetilde{T}([0], w) = [2]$ титтк z(w) кодирует число, равное 2 по модулю 3.

Задача 1.3. Укажите, как перестроить вышеуказанный автомат, чтобы он принимал язык двоичных записей чисел вида $\{3k+2 \mid k \in \mathbb{N}\} \subset \mathbb{N}$ без ведущих нулей.

Задача 1.4. $\Sigma = \{a\}$. Постройте детерминированные конечные автоматы, принимающие языки

- (a) $\{a^k|k:N\}$ для любого $N\in\mathbb{N};$
- **(b)** $\{a^{100+3k}|k\in\mathbb{N}\};$
- (c) $\{a^{A+Bk}|k\in\mathbb{N}\}$ для любых $A,B\in\mathbb{N}$.

Задача 1.5. $\Sigma = \{a, b\}$. Постройте детерминированные конечные автоматы, принимающие язык слов, в которых

- (a) на 2 месте от конца стоит b;
- (b) на 3 месте от конца стоит b;
- (c) на k месте от конца стоит b;
- (d) есть суффикс вида abw, $w \in \Sigma^2$, то есть |w| = 2.

Задача 1.6. $\Sigma = \{a, b\}$. Постройте детерминированные конечные автоматы, принимающие следующие языки:

- (a) $\{\omega | \#_a(\omega) + 2\#_b(\omega) = 0 \mod 5\};$
- **(b)** $\{\omega | 3\#_a(\omega) + 2\#_b(\omega) = 0 \mod 6\};$
- (c) $\{\omega | 3\#_a(\omega) + 6\#_b(\omega) = 5 \mod 9\};$
- (d) $\{\omega|A\#_a(\omega)+B\#_b(\omega)=k \bmod N\}$ для любых $A,B,k,N\in\mathbb{N}$.

Задача 1.7. $\Sigma = \{a,b\}$. Постройте детерминированные конечные автоматы, принимающие языки слов, содержащих

- (a) ровно три буквы b;
- **(b)** хотя бы две буквы a и две буквы b;
- **(c)** подслово *aba*;
- (d) подслово aba четное число раз;
- (e) подслова $(ab)^2b$ и ab^2 .

Задача 1.8. $\Sigma = \{0,1\}$. Постройте детерминированные конечные автоматы, принимающие языки бинарных записей чисел вида

- (a) $\{2 + 5k | k \in \mathbb{N}\};$
- (b) $\{1 + 4k | k \in \mathbb{N}\};$
- (c) $\{A + Bk | k \in \mathbb{N}\}$ для любых $A, B \in \mathbb{N}$.

Задача 1.9. $\Sigma = \{0,1,2\}$. Постройте детерминированные конечные автоматы, принимающие троичные записи множеств, указанных в прошлой задаче.

Задача 1.10. Пусть $f_i(w_1, w_2) : \Sigma^* \times \Sigma^* \to \mathbb{N}$ определена следующим образом:

$$f_i(w_1,w_2) = \begin{cases} 0, & \text{в обоих словах существует } i\text{-ая буква и } w_1[i] = w_2[i], \text{ либо в обоих словах ее нет} \\ 1, & \text{в противном случае} \end{cases}$$
 (1.8)

Теперь определим $d(w_1, w_2) = \sum_{i=0}^{\infty} 2^{-i} f_i(w_1, w_2)$. Пусть $\Sigma = \{a, b\}$. Постройте ДКА, принимающий язык

$$L(w) = \{ u \in \Sigma^* | d(u, w) \le 0.1 \}. \tag{1.9}$$

Задача 1.11. Пусть L — регулярный. Покажите, что язык

$$nL = \{\underbrace{a_1 \dots a_1}_{n \text{ pa3}} \underbrace{a_2 \dots a_2}_{n \text{ pa3}} \dots \underbrace{a_k \dots a_k}_{n \text{ pa3}} | a_1 a_2 \dots a_k \in L \}$$

является регулярным для любого $n \in \mathbb{N}$.

Задача 1.12. Скажем, что $w \in \Sigma^+$ является словом де Брюйна порядка k, если любое слово $u \in \Sigma^k$ длины k содержится в w ровно однажды. Например, ab — слово де Брюйна порядка 1 над алфавитом $\{a,b\}$. Покажите, что для любого $k \geqslant 2$ существует слово де Брюйна порядка k.

Задача 1.13. $\Sigma = \{a, b\}$. Постройте детерминированный конечный автомат, принимающие язык слов w, для которых $\forall i \in [1; n]$ верно:

- a^i является подсловом w;
- либо b^i не является подсловом w, либо самое правое вхождение a^i находится справа от самого правого вхождения b^i .

Регулярные подмножества $\{a\}^*$

Регулярные языки над однобуквенным алфавитом легко классифицировать.

Задача 1.14. Докажите, что язык $A \subset (a)^*$ регулярен титтк множество $Degs_A = \{m | a^m \in A\}$ является асимптотически периодическим, то есть существуют $n, p \in \mathbb{N}$ так что $\forall m \geqslant n \ m \in Degs_A \iff m+p \in Degs_A$.

Задача 1.15. Пусть $A \subset \{a\}^*$ — произвольный язык.

- (a) Покажите, что A^* регулярен.
- (b) Более того, $A^* = \{a^{np}\}_{n \in \mathbb{N}} \setminus G$, где p наименьший общий делитель $Degs_A$, а G некоторое конечное множество.

Задача 1.16. (a) Докажите, что $\{a^{x^2+y^2}|x,y\in\mathbb{Z}\}\subset\{a\}^*$ не может быть языком никакого ДКА.

(b) Докажите, что $\{a^{x^2-xy+y^2}|x,y\in\mathbb{Z}\}\subset\{a\}^*$ не может быть языком никакого ДКА.

Решение. Есть и альтернативное решение в алфавите из одной буквы. Пусть $Q = \{\epsilon\} \cup \{a^{n^2}\}_{n \in \mathbb{N}}$ — язык неотрицательных квадратов. В силу теоремы о четырех квадратов любое целое неотрицательное число представляется в виде суммы четырех квадратов целых неотрицательных чисел, поэтому $Q^4 = a^*$. Возьмем

$$L = Q^2 = \{a^{n_1^2 + n_2^2} | n_i \in \mathbb{N} \cup \{0\}\}$$
(1.10)

тогда $L^2 = a^*$. Докажем, что этот язык не может распознаваться никаким ДКА. В силу задачи 3 листка 1А для каждого такого языка существуют $N,\ p$ так, что $\forall m \geqslant N\ a^m \in L \iff a^{m+p} \in L$:

p — длина достижимого из старта цикла в графе автомата. Покажем, что p делится на любое простое число π вида 4k+3. В самом деле, вне зависимости от N существует $4^{\lfloor \log_4 N \rfloor + 1}$ — квадрат, больший N и не делящийся на π ; если $p \not / \pi$, то существует некоторое $l \in \mathbb{N}$ такое, что $4^{\lfloor \log_4 N \rfloor + 1} + lp : \pi$, но при этом $4^{\lfloor \log_4 N \rfloor + 1} + lp \not / \pi^2$. Однако $a^{4^{\lfloor \log_4 N \rfloor + 1} + lp} \notin L$, так как число, содержащее простые вида 4k+3 в нечетной степени, не может представляться как сумма двух квадратов, следовательно, $p : \pi$. Это верно для всех простых $\pi = 4k+3$; однако же простых чисел такого вида бесконечно много (почему?), значит, существует простое число вида 4k+3, превышающее длину нашего цикла, и, следовательно, не являющееся делителем. Значит, L не может распознаваться никаким ΔKA .

Решение. Эта задача имеет различные решения, приведу известное мне наиболее тривиальное. Все a^{2^k} лежат в языке сумм квадратов: либо 2^{2k} само является квадратом, либо $2^{2k+1} = 2^{2k} + 2^{2k}$. Если бы язык сумм двух квадратов был бы регулярен, то для некоторых k < m два слова a^{2^k} и a^{2^m} будут эквивалентны по Майхилл-Нероду, тогда им же будут эквивалентны все $a^{2^k+l(2^m-2^k)}$ для $l \in \mathbb{N}$, а тогда $2^k + l(2^m - 2^k)$ являются суммами двух квадратов целых чисел для любых $l \in \mathbb{N}$. Таким образом, для l = 2 существуют $A, B \in \mathbb{Z}$ такие, что

$$A^{2} + B^{2} = 2^{k} + 2 \cdot (2^{m} - 2^{k}) = 2^{k} (1 + 2 \cdot (2^{m-k} - 1)) = 2^{k} \cdot M$$

где $M=3 \bmod 4$. Если $A^2+B^2=2N$, то $(\frac{A+B}{2})^2+(\frac{A-B}{2})^2=N$, притом A и B имеют одинаковую четность, поэтому оба $\frac{A\pm B}{2}\in\mathbb{Z}$. Таким образом, если 2^kM представимо в виде суммы двух квадратов, то и M представимо, что, разумеется, не может быть правдой: сумма двух квадратов не может давать остаток 3 по модулю 4.

Как следствие, множества $\{x^2 + y^2 | x, y \in \mathbb{Z}\}$ и $\{x^2 - xy + y^2 | x, y \in \mathbb{Z}\}$ не могут быть представлены в виде конечного объединения арифметических прогрессий.

Автоматы, различающие слова

Скажем, что слова $w_1, w_2 \in \Sigma^*$ различаются детерминированным конечным автоматом Aut, если Aut принимает ровно одно из этих двух слов.

Задача 1.17. Покажите, что два языка $L_1 = \{\epsilon, 000, 011, 111\}$ и $L_2 = \{0001\}$ не могут различаться полным ДКА, имеющим всего два состояния.

Задача 1.18. Пусть слова $w_1, w_2 \in \{a\}^*$ имеют длины N и 2N соответственно. Верно ли, что любой ДКА, принимающий w_1 и не принимающий w_2 , имеет хотя бы $\Omega(\log N)$ состояний?

В следующих двух задачах мы попытаемся получить асимптотику числа состояний детерминированного автомата, различающего два слова. Некоторое знание теории чисел может оказаться полезным.

Задача 1.19. Даны слова $w_1, w_2 \in \{a\}^*$ разных длин, не превышающих n.

- (a) Покажите, что они различаются некоторым ДКА, имеющим $O(\log(n))$ состояний.
- (b) ([?demaine]) Покажите, что существует бесконечно много пар слов $w_1 \neq w_2 \in \{a\}^*$ таких, что любой различающий их ДКА имеет $\Theta(\log(n))$ состояний.

Задача 1.20 ([?robson]). Даны два слова $w_1 \neq w_2 \in \{a,b\}^*$ одинаковой длины n. Будем говорить, что слово $w \in \Sigma^*$ имеет период длины p, если w[i] = w[p+i] для всех $i \in [1;|w|-p]$; скажем также, что w периодично, если оно имеет период длины $p \leq \frac{|w|}{2}$.

- (a) Если wa периодическое слово, то wb не может быть периодическим.
- (b) Если для любых $\alpha < 1$ и $w \in \{a,b\}^*$ подслово $w[i] \dots w[i+l-1]$ непериодично и $l \leqslant |w|^{\alpha}$, то существует $j \leqslant \mathrm{const}_{\alpha} \frac{n \log n}{l}$ такое, что

$$\forall k \neq i, \ k \equiv i \mod j \quad w[k] \dots w[k+l-1] \neq w[i] \dots w[i+l-1]$$

(c) Слова w_1 и w_2 различаются некоторым ДКА, имеющим $O(\sqrt{n \log(n)})$ состояний.

Объединение и пересечение

Утверждение 1.1. *Если* $A, B \subset \Sigma^*$ являются регулярными, то и $A \cap B$ регулярен.

Доказательство. Даны два ДКА $Aut_A = (Q_A, \Sigma, Start_A, Final_A, T_A)$ и $Aut_B = (Q_B, \Sigma, Start_B, Final_B, T_B)$, принимающие языки A и B, построим автоматы, принимающие $A \cap B$ и $A \cup B$.

Сначала рассмотрим $Aut = (Q_A \times Q_B, \Sigma, (Start_A, Start_B), Final_A \times Final_B, T)$, где

$$\forall q_A \in Q_A, q_B \in Q_B, x \in \Sigma \ T((q_A, q_B), x) = (T_A(q_A, x), T_B(q_B, x)) \tag{1.11}$$

(PICTURE) Тогда индукцией по |w| мы можем убедиться, что

$$(Start_A, Start_B) \xrightarrow{w}_{Aut} (q_1, q_2) \iff Start_A \xrightarrow{w}_{Aut_A} q_1 \wedge Start_B \xrightarrow{w}_{Aut_B} q_2$$
 (1.12)

Действительно, для пустого слова это утверждение очевидно; если оно верно для слова w, то будет верно и для wx, $x \in \Sigma$:

$$(Start_A, Start_B) \xrightarrow{w}_{Aut} (\widetilde{T}_A(Start_A, w), \widetilde{T}_B(Start_B, w)) \xrightarrow{x}_{Aut} (T_A(\widetilde{T}_A(Start_A, w), x))$$
$$T_B(\widetilde{T}_B(Start_B, w), x)) = (\widetilde{T}_A(Start_A, wx), \widetilde{T}_B(Start_B, wx))$$

Тогда w принимается Aut титтк оно принимается и Aut_A , и Aut_B :

$$w \in L(Aut) \iff \widetilde{T}((Start_A, Start_B), w) \in Final_A \times Final_B \iff \widetilde{T}_A(Start_A, w) \in Final_A \wedge \widetilde{T}_B(Start_B, w) \in Final_B \iff w \in A \wedge w \in B.$$

Следовательно, язык построенного автомата есть $A \cap B$.

Пример 10. Пусть A — язык двоичных записи чисел, дающих остаток 2 по модулю 3 [с ведущими нулями], $B = \{1(0)^k \mid k \in \mathbb{N}\} \subset \{0,1\}^*$. Применим конструкцию из доказательства для построения ДКА, принимающего $A \cap B$.

Зеленым цветом выделены состояния, достижимые из старта. Убрав остальные состояния, получим следующий автомат:

Можно ли построить более простой детерминированный автомат для $A\cap B$ из предыдущего пункта?

Заметим также, что $A \cap B$ в примере выше может быть принят более простым автоматом:

Дело в том, что B — множество двоичных записей степеней двойки, так как $2^k = 1 \ \widehat{0 \dots 0}_2$; $2^k = 2 \mod 3$ титтк k нечетно. Таким образом, $A \cap B = \{1(0)^{2k+1} \mid k \in \mathbb{N}\}$. Несложно убедиться, что построенный ДКА принимает $A \cap B$. Таким образом, мы построили два разных автомата, принимающих один и тот же язык.

Задача 1.21. (a) Модернизируйте конструкцию из доказательства 1.1, чтобы построить ДКА, принимающий $A \cup B$.

- (b) Если $A \subset \Sigma^*$ регулярен, то и \overline{A} является регулярным.
- (c) Если языки A, B регулярны, то регулярен и $A \setminus B$.

Задача 1.22. Постройте для следующих пар языков A и B детерминированные конечные автоматы, принимающие $A \cap B$ и $A \cup B$:

- (a) $A = \{\omega \in \{a,b\}^* | \#_a(\omega) + 2 \#_b(\omega) = 0 \text{ mod } 5\}, B = \{\omega \in \{a,b\}^* | \#_a(\omega) \ge 2, \#_b(\omega) \ge 2\};$
- (b) $A = \{abw|w \in \{a,b\}^*\}, B = \{w \in \{a,b\}^*|w$ содержит подслово $aba\}.$

Задача 1.23. Пусть A - ДКA, имеющий n состояний, а L(A) содержит хотя бы один $nanun\partial pom$, то есть слово, равное своему обращению: $w = w^R$. Покажите, что L(A) содержит хотя бы один палиндром длины не более $2n^2$.

Матрицы инцидентности

Равно как и ориентированные графы, конечные автоматы можно задавать с помощью матриц инцидентности. Пусть конечный автомат $Aut = (Q, \Sigma, Start, Final, T)$ (не обязательно детерминированный) имеет N состояний, тогда функцию перехода T можно задать матрицей инцидентности диаграммы Мура. А именно, пусть $M \in Mat_N(2^{\Sigma^*})$ — матрица, заданная

$$\forall q_1, q_2 \in Q$$
 $M_{q_1, q_2} = \{x \in \Sigma | q_2 \in T(q_1, x)\}$

Например, автомат выше ПИКЧА задается матрицей

$$\begin{bmatrix} \{a\} & \{b\} & \varnothing & \varnothing \\ \varnothing & \varnothing & \{a\} & \{b\} \\ \{a\} & \{b\} & \varnothing & \varnothing \\ \varnothing & \varnothing & \varnothing & \{a,b\} \end{bmatrix}$$

Теперь обобщим стандартные матричные операции сложения и умножения:

$$(A+B)_{q_1,q_2} = A_{q_1,q_2} \cup B_{q_1,q_2}; \qquad (AB)_{q_1,q_2} = \bigcup_{q \in Q} A_{q_1,q} B_{q,q_2}$$

Единичную матрицу введем, как и полагается, так:

$$\operatorname{Id}_{q_1,q_2} = \begin{cases} \{\epsilon\} &, q_1 = q_2 \\ \varnothing & q_1 \neq q_2 \end{cases}$$

A степень определяется индуктивно $A^0 = \mathrm{Id};$ $A^{n+1} = A^n A$

Задача 1.24. Докажите следующие утверждения:

(a)
$$(A^n)_{q_1,q_2} = \{ w \in \Sigma^* | |w| = n, q_2 \in \widetilde{T}(q_1, w) \};$$

(b)
$$L(Aut) = \bigcup_{s \in Start} \bigcup_{f \in Final} \bigcup_{n \in \mathbb{N}} (A^n)_{s,f}$$

Задача 1.25. Пусть $L \subset \Sigma^*$ регулярен. Покажите, что следующие языки регулярны:

- (a) $\{x \in \Sigma^* | \exists y \in \Sigma^* : |y| = 2^{|x|}, \ xy \in L\};$
- (b) $\{x \in \Sigma^* | \exists y \in \Sigma^* : |y| = p(|x|), \ y \in L\}$, где $p : \mathbb{N} \to \mathbb{N}$ многочлен.

Можно рассматривать также матрицы с коэффициентами в $\mathbb{Z}\langle\langle\Sigma\rangle\rangle$, то есть $M_{q_1,q_2}=\sum_{x\in\Sigma,\ T(q_1,x)=q_2}x$. Для автомата с картинки имеем

$$\begin{bmatrix} a & b & 0 & 0 \\ 0 & 0 & a & b \\ a & b & 0 & 0 \\ 0 & 0 & 0 & a+b \end{bmatrix}$$

Для таких матриц можно переопределить хорошо известные матричные функции. След матрицы можно определить обычным образом $\operatorname{tr}(M) = \sum_i M_{ii} \dots$ ДЕТЕРМИНАНТ...

Задача 1.26. Докажите, что $\det(\exp(M)) = \exp(\operatorname{tr}(M))$ для матриц конечных автоматов.

Глава 2

Недетерминированные конечные автоматы

Теперь мы рассмотрим недетрминированные конечные автоматы. Они отличаются от детерминированных конечных автоматов тем, что из некоторых состояний по некоторым символам можно совершить переходы в разные состояния одновременно. Мы будем считать, что недетерминированный автомат «находится одновременно» в разных состояниях.

Определение. Hedemepmunupoванный конечный автомат — $(Q, \Sigma, Start, Final, T)$, где

- Q конечное множество состояний,
- \bullet Σ алфавит, конечное множество символов,
- $Start \subseteq Q$ подмножество стартовых состояний,
- $Final \subseteq Q$ подмножество финальных состояний,
- T таблица переходов, отображение $Q \times \Sigma \to 2^Q$:

$$T(s_i, \lambda) = \{s_i\} \tag{2.1}$$

 $Kon\phiuzypaция$ ДКА есть подмножество $Q \times \Sigma^*$. Таблица переходов T задет отображение пространства конфигураций:

$$\forall q \in Q, x \in \Sigma, w \in \Sigma^* \qquad (q, xw) \mapsto \{(s, w) | s \in T(q, x)\}$$

Тогда индуктивно продолжим таблицу переходов T до отображения $\widetilde{T}: Q \times \Sigma^* \to Q$:

$$\forall q \in Q, x \in \Sigma, w \in \Sigma^* \qquad \widetilde{T}(q, \epsilon) = q, \ \widetilde{T}(q, xw) = \{T(s, x) | s \in \widetilde{T}(q, w)\}$$
 (2.2)

Как можно заметить, $\widetilde{T}(q,w)\subset Q$ есть множество состояний, в которые можно попасть из q по слову w. Это можно проверить индукцией по |w|, доказательство предоставляется читателю.

Слово $\omega \in \Sigma^*$ принимается автоматом A, если $T(Start, w) \cap Final \neq \emptyset$, то есть при переходах по символам этого слова по таблице переходов T(A) автомат A остановится в множестве состояний, содержащем хотя бы одно финальное состояние. Язык автомата L(A) — множество всех слов, принимаемых автоматом.

Изображать недетерминированные автоматы мы также будем диаграммами Мура. Слово принимается HKA, если существует хотя бы один путь в этой диаграмме из некоторого стартового состояния $s \in Start$ в некоторое финальное $f \in Final$, побуквенно помеченный этим словом. Возможно, что таких путей несколько, и они ведут из разных стартовых в разные финальные состояния

Формально говоря, $A = (Q, \Sigma, Start, Final, T)$, где

- $Q = \{[0], [1], [2], [3], [1'], [2']\};$
- $\Sigma = \{a\};$
- $Start = \{[0]\};$
- $Final = \{[0]\};$
- Т таблица переходов вида

$$[0] \xrightarrow{a} [1], [1] \xrightarrow{a} [2], [2] \xrightarrow{a} [3], [3] \xrightarrow{a} [0]$$

$$(2.3)$$

$$[0] \xrightarrow{a} [1'], [1'] \xrightarrow{a} [2'], [2'] \xrightarrow{a} [0]$$
 (2.4)

Найдем язык L(A) этого автомата. Слово a^x принимается НКА A титтк на диаграмме Мура существует путь длины N, начинающийся и заканчивающийся в состоянии [0]. Этот путь должен проходить по циклам $[0] \to [1] \to [2] \to [3]$ и $[0] \to [1'] \to [2']$ и содержать каждый из них целое число раз (возможно, нулевое): этот путь можно разбить на интервалы, начинающиеся и заканчивающиеся в [0] и не содержащие больше [0]. Таким образом, N = 3m + 4n для некоторых $m, n \in \mathbb{Z}_{\geqslant 0}$, то есть $L(A) = \{a^{3m+4n}|m,n \in \mathbb{Z}_{\geqslant 0}\}$.

Пример 12. Язык всех слов из букв $\{a,b\}$, у которых b стоит на третьем с конца месте, распознается некоторым недетерминированным автоматом:

Формально говоря, $A = (Q, \Sigma, Start, Final, T)$, где

- $Q = \{[i] | i \in \{0, 1, 2, 3\} \cup \{\mathbf{T}\};$
- $\Sigma = \{a, b\}$;
- $Start = \{[0]\};$
- $Final = \{[3]\};$
- \bullet T таблица переходов вида

$$\forall x \in \Sigma \qquad [0] \xrightarrow{b} [1]; \ [0] \xrightarrow{x} [0], \ [1] \xrightarrow{x} [2], \ [2] \xrightarrow{x} [3], \ [3] \xrightarrow{x} \mathbf{T}, \ \mathbf{T} \xrightarrow{x} \mathbf{T}$$
 (2.5)

Докажем, что этот автомат принимает только слова вида wbx_1x_2 , где $x_1, x_2 \in \Sigma, w \in \Sigma^*$. Действительно, рассмотрим \tilde{u} — суффикс u длины 3. Если $\tilde{u} = bx_1x_2$, то u принимается автоматом: очевидно, $[0] \in \widetilde{T}(Start, \omega)$ для любого слова ω , а так как $[1] \in T([0], b)$, то $[3] \in \widetilde{T}([0], bx_1x_2)$. Если же $\tilde{u} = ax_1x_2$, то u не принимается автоматом: последние три буквы образуют слово ax_1x_2 , тогда $\widetilde{T}([0], ax_1x_2) = \widetilde{T}([0], x_1x_2) = [0]$ и $\widetilde{T}([i], ax_1x_2) = [3]$ для любого $i \neq 0$, ни одно из этих трех состояний не является финальным.

Пример 13. Пусть язык $L \subset \{a,b\}^*$ распознается некоторым детерминированным конечным автоматом A. Язык $\sqrt{L} = \{w \in \Sigma^* | w^2 \in L\}$ распознается некоторым недетерминированным автоматом. Идея заключается в том, чтобы угадать состояние, в котором автомат A пройдет середину слова $ww \in L$; это будет некоторое состояние q такое, что $Start \xrightarrow{w} q \xrightarrow{w} f \in Final$, а priori оно может быть любым.

Опишем конструкцию явно. ПИКЧА! Пусть $A = (Q_A, \Sigma, Start_A, Final_A, T_A)$, тогда построим НКА \widehat{A} :

- $Q = Q_A^3 = Q_A \times Q_A \times Q_A$;
- $\Sigma = \{a, b\}$;
- $Start = \{Start_A\} \times \{(q,q)|q \in Q_A\};$
- $Final = \{(q,q)|q \in Q_A\} \times Final_A;$
- Т таблица переходов вида

$$\forall q, \in Q, x \in \Sigma \ (q_1, q, q_2) \xrightarrow{x} (T(q_1, x), q, T(q_2, x))$$

$$\tag{2.6}$$

Недетерминированность этого автомата — в недетерминированности старта: мы пытаемся угадать состояние, в котором A оказался, прочитав середину слова w^2 , которое он примет в итоге. Теперь докажем, что такая конструкция действительно принимает лишь \sqrt{L} . Слово w принимается \hat{A} титтк $\exists q \in Q_A$ такое, что $\widetilde{T}_A(Start, w) = q$ и $\widetilde{T}_A(q, w) \in Final$. Такое q существует титтк слово w^2 принимается автоматом A и $\widetilde{T}_A(Start, w) = q$.

Теперь мы докажем, что языки, принимаемые НКА, регулярны.

Теорема 2.1. Для любого НКА A_n есть ДКА A_d такой, что $L(A_n) = L(A_d)$.

Доказательство. Построим по A_n детерминированный A_d . Для этого сделаем простое наблюдение: в НКА однозначно осуществляется переход по букве из одного состояния в подмножество состояний, поэтому для любого $S \subset Q(A_d)$ образ при переходе по букве определен однозначно:

$$\hat{T}(S, a) = \bigcup_{s_i \in S} T(s_i, a), \ \forall a \in \Sigma, S \subset Q(A)$$
(2.7)

Это отображение в нашем случае продолжается до

$$\widetilde{T}_d(S, ax) = \bigcup_{s_i \in T(S, x)} T(s_i, x), \ \forall a \in \Sigma, \ x \in \Sigma^*, \ S \subset Q(A)$$
(2.8)

Иными словами, мы переходим одновременно во все состояния, в которые можем перейти в заданном НКА переходом по данной букве. Состояния A_d , таким образом, будут подмножествами состояний A_n , финальными мы объявим подмножества $S_{Final} \subset Q(A_n)$, содержащие финальные состояния. Так что если $A_n = (Q, \Sigma, Start, Final, T)$, то $A_d = (2^Q, \Sigma, \{Start\}, S_{Final}, \hat{T})$. Языки этих автоматов совпадают: $w \in L(A_n)$ титтк $\tilde{T}_d(\{Start\}, w) \in S_{Final}$, что верно титтк существует подмножество $\tilde{T}_d(\{Start\}, w) \subset Q$, которое есть $\tilde{T}(Start, w)$ для НКА A_n и содержит хотя бы одно финальное состояние, то есть $w \in L(A_n)$.

Так как детерминированный конечный автомат является частным случаем НКА, то из теоремы следует, что ДКА и НКА распознают один и тот же класс языков, то есть регулярные. Если НКА A_n имеет k состояний, то ДКА A_d , построенный по нему, будет иметь не более 2^k состояний. Впоследствии мы докажем, что эта оценка асимптотически точна, то есть существует серия языков $L_k \subset \{a,b\}^*$ для $k \in \mathbb{N}$ такая, что существует НКА, принимающий L_k и имеющий O(k) состояний, а любой ДКА, принимающий его, имеет $O(2^k)$ состояний.

Пример 14. Рассмотрим НКА, принимающий язык всех слов из букв $\{a,b\}$, у которых b стоит на предпоследнем месте:

Теперь построим детерминированный автомат, принимающий тот же язык. ПИКЧА!

Задача 2.1. Постройте НКА, принимающий $L_k = \{w \in \{a,b\}^* | w = u_1bu_2, |u_2| = k-1\}$, и детерминизируйте его.

Полученный НКА имеет k+1 состояние, а $\Omega(2^k)$ состояний. Доказывать, что любой ДКА, принимающий L_k , имеет столько состояний, мы научимся чуть позже.

Задача 2.2. Покажите, что приведенный выше алгоритм детерминизации совершает $O(|\Sigma|N2^N)$ операций, где N — число состояний исходного автомата.

Задача 2.3. (а) Покажите, что любой конечный язык $\{w_1, \dots w_n\} \subset \Sigma^*$ регулярен.

(b) Постройте НКА, принимающий $\{ba^3b, a^2b^2, aba^2\}$, и детерминизируйте его.

Задача 2.4. Пусть $L \subset \Sigma^*$ регулярен. Покажите, что L^R также регулярен.

Задача 2.5. Вспомним, что в задаче 0.6 мы ввели отношение квазипорядка на Σ^* : $x \leq y$, если x получается из y удалением нескольких символов.

- (a) Пусть $L_w = \{u \in \Sigma^* \mid w \leq u\}$ Покажите его регулярность.
- (b) Скажем, что язык $L \leq -замкнут$ вверх, если вместе с любым словом из L содержатся все слова, большие его: $x \in L$, $x \leq y \Rightarrow y \in L$. Докажите, что любой \leq -замкнутый вверх язык регулярен.

Задача 2.6. Пусть язык $L \subset \Sigma^*$ регулярен. Докажите, что и $FH(L) = \{x \in \Sigma^* | \exists y \in \Sigma^* | x| = |y|, xy \in L\}$, язык первых половинок слов L, является регулярным.

Задача 2.7. Пусть язык $L \subset \Sigma^*$ регулярен. Докажите, что и $MT(L) = \{y \in \Sigma^* | \exists x, z \in \Sigma^* | x| = |y| = |z|, \ xyz \in L\}$, язык серединок L, является регулярным.

Задача 2.8. Для любого $L \subset \Sigma^*$ определим *циклическое замыкание* $\Delta(L)$ как наименьший язык, содержащий L и удовлетворяющий условию

$$\forall x, y \in \Sigma^+, \ xy \in \Delta(L) \iff yx \in \Delta(L)$$
 (2.9)

Пусть L регулярный. Верно ли, что $\Delta(L)$ регулярный?

Решение. Верно. Существует ДКА Aut, принимающий L. Мы будем пользоваться его минимальностью, полагая, что все состояния достижимы из старта. Построим НКА Aut_{Δ} , принимающий $\Delta(L)$:

Если слово регулярного языка допускает разбиение xy, значит, автомат Aut находился в какомто состоянии, прочитав x, а Aut_{Δ} пытается его недетерминированно угадать, начиная читать y с какого-то состояния, придя в финал и затем начиная читать префикс. Если $xy \in L$, то Aut_{Δ} должен закончить в том же состоянии, что и Aut, прочитавший x; Aut_{Δ} должен просто помнить, какое состояние было гипотетически стартовым для чтения суффикса и был ли прочитан суффикс.

Формально объясняем так. Пусть Aut, ДКА, принимающий L, задан следующим образом:

- $Q = \{q_1, \dots q_N\}$ множество состояний Aut,
- Σ оригинальный алфавит,
- $Start \in Q$ стартовое состояние,
- $Final \subset Q$ подмножество финальных состояний,
- ullet T таблица переходов Aut,

Опеределим Aut_{Δ} таким образом:

- $Q_{\Delta} = \{ \mathbf{Start} \} \cup (Q \times [1; N] \times \{0; 1\}),$
- Σ алфавит, данный в условии,
- $Start_{\Delta} = \mathbf{Start}$ выделяем отдельно стартовое состояние,
- $Final_{\Delta} = \{(q_i, i, 1) | i \in [1; N] \},$
- \bullet T_{Δ} есть объединение старых переходов

$$\forall x \in \Sigma, j \in [1; N], k \in \{0, 1\} \ ((q_i, j, k), x) \to (T(q_i, x), j, k)$$

и новых переходов по ϵ

$$\forall f \in Final, j \in [1; N] \ ((f, j, 0), \epsilon) \rightarrow (Start, j, 1); \ (\mathbf{Start}, \epsilon) \rightarrow \{(q_i, i, 0) | i \in [1; N]\}$$

Проверим корректность нашей конструкции. Автомат Aut_{Δ} , работая на слове w, остановится в множестве состояний, содержащем некоторый $(q_i, i, 1)$, титтк существуют $x, y \in \Sigma^*$ такие, что w = xy и автомат Aut,

- читая x и начиная работу в q_i , закончит в некотором $F \in Final$;
- читая y и начиная работу в Start, закончит в q_i .

Это верно, так как Aut_{Δ} может находиться в состояниях $(q_i, j, 1)$, читая слово w, титтк некоторый префикс является суффиксом некоторого слова регулярного языка: в такое состояние Aut_{Δ} мог попасть, только проходя перед этим (Start, j, 1), а значит, и (F, j, 0) для некоторого $F \in Final$, то есть титтк слово, прочитанное по пути из $(q_j, j, 0)$ в (F, j, 0), есть суффикс некоторого слова из L (В этом моменте мы существенно пользуемся тем, что состояние q_j достижимо из стартового состояния Aut.) Соответственно, если x является некоторым суффиксом некоторого слова $w \in L$, то y, прочитанный по пути из (Start, j, 1) в $(q_j, j, 1)$, можно считать префиксом некоторого слова из языка L. Вместе yx образуют слово, по которому ДКА Aut, начиная в Start, проходит в q_j , а затем и в некоторое финальное состояние. Если же $x, y \in \Sigma^*$, заданные условием выше, существуют, то Aut_{Δ} очевидно примет слово yx, а $xy \in L$.

Задача 2.9. Дан $L \subset \Sigma^*$. Определим

$$\sqrt[n]{L} = \{ w \in \Sigma^* | w^n \in L \}.$$

Покажите, что если L регулярен, то

(a) $\sqrt[n]{L}$ регулярен для любого $n \geqslant 1$;

(b)
$$\bigcup_{n\geqslant 1} \sqrt[n]{L} = \bigcup_{n\leqslant |Q|} \sqrt[n]{L}$$
.

регулярны.

Задача 2.10 (Seiferas, McNaughton [?seifmcn]). Скажем, что функция $f: \mathbb{Z}_{\geqslant 0} \to \mathbb{Z}_{\geqslant 0}$ сохраняет регулярность, если для любого регулярного $L \subset \Sigma^*$ язык

$$\{x\mid \exists y,\ |y|=f(|x|),\ xy\in L\}$$

. Скажем, что функция $f: \mathbb{Z}_{\geqslant 0} \to \mathbb{Z}_{\geqslant 0}$ слабо сохраняет регулярность, если для любого регулярного $L \subset \Sigma^*$ язык

$${x \mid \exists y, \ |y| = f(|x|), \ y \in L}$$

- . Покажите, что следующие утверждения эквивалентны:
- (a) f сохраняет регулярность;
- (b) f слабо сохраняет регулярность;
- (c) для любого асимптотически периодического множества S множество $f^{-1}(S)$ также асимптотически периодическое;
- (d) для любого $n\in\mathbb{Z}_{\geqslant 0}$ множество $f^{-1}(n)$ асимптотически периодическое, а для любого $M\in\mathbb{N}$ имеем

$$\exists q \in \mathbb{N}, \ \exists m \in \mathbb{N} \ \forall n \geqslant m \quad f(n) = f(n+q) \bmod p$$

Задача 2.11. Определим альтернированный конечный автомат как пятерку

$$AltAut = (Q, \Sigma, T, F_{Start}, F_{Final}),$$

где

- Q конечное множество состояний,
- Σ алфавит,
- T таблица переходов, отображение $\Sigma \to ((Q \to \{0,1\}) \to (Q \to \{0,1\}))$:

$$T(x): f(q,x) \mapsto T[f(q,x)], \ f \in \{0,1\}^Q$$
 (2.10)

- $F_{Final}: 2^{Q \to \{0,1\}} y$ словие принятия, множество «финальных» распределений,
- $F_{Start}: Q \to \{0,1\}$ характеристическая функция финальных состояний.

Здесь состояния суть распределение нулей и единиц на конечном множестве. Каждый переход по букве x меняет распределение указанным выше образом. Начальное распределение есть F_{Start} , финальное — F_{Final} . Как и в классической ситуации, индуктивно определяется функция $\widetilde{T}: (Q \times \Sigma^*) \to ((Q \to \{0,1\}) \to \{0,1\})$:

$$\widetilde{T}(\epsilon): F_{Start} \mapsto F_{Start}, \ \widetilde{T}(xw): F \mapsto T(x)(F)$$
 (2.11)

Сокращенно будем писать $F \xrightarrow{w} G$, если \widetilde{T} Говорим, что слово $w \in \Sigma^*$ принимается автоматом AltAut, если $\widetilde{T}(F_{Start}) \in F_{Final}$. Покажите, что язык L принимается AKA с N состояниями титтк A^R принимается некоторым ДКА с 2^N состояниями.

Задача 2.12 (Matos [?matos]). Для слова $w = w[1] \dots w[n]$ определим

$$e_r^q(w) = \{w[r]w[k+r]\dots w[k+r\frac{n-r}{q}] \mid \exists j \in \mathbb{Z}_{\geqslant 0}, n = kj+r\}, \quad q, r \in \mathbb{Z}_{\geqslant 0}\}$$

И

$$pad_a^q(w) = wa^r, \ r = \min_{\mathbb{Z}_{\geq 0}} \{x \mid x + |w| : q\}.$$

Например,

$$e_1^2(\underline{a}b\underline{b}a\underline{a}b) = aba, \quad pad_a^5(abbaab) = abbaab\underline{a}a\underline{a}a.$$

Для языка $L \subset \Sigma^*$ введем $e_r^q(L) = \{e_r^q(w) \mid w \in L\}$ и $pad^q(L) = \{pad_a^q(w) \mid w \in L, \ a \in \Sigma\}$. Пусть L регулярен, покажите регулярность

- (a) $e_2^1(L)$ и $e_2^2(L)$;
- **(b)** $e_r^q(L)$;
- (c) $pad^q(L)$.

Задача 2.13. Определим $ma\phi\phi\Lambda$ двух слов индуктивно:

$$\forall x, y \in \Sigma^*$$
 $x||\epsilon = \{x\}, \ \epsilon||y = \{y\}, \ (xa)||(yb) = (x||yb)a + (xa||y)b$

Иными словами, шаффл x и y — это множество слов, полученное «вставкой» этих слов друг в друга. Покажите, что если A и B регулярны, то

$$A||B = \bigcup_{x \in A, u \in B} x||y \tag{2.12}$$

также регулярен.

Задача 2.14. Обобщим конструкцию из задачи ... Пусть $\Delta = \{1,2,\ldots k\} \subset \mathbb{N}$. Для $w \in \Sigma^*$ и $u \in \Delta^*$ одинаковой длины n определим $w^u = w[1]^{u[1]} \ldots w[n]^{u[n]}$. Например, $bab^{124} = ba^2b^4$. Соответственно, для $A \subset \Sigma^*$ и $B \subset \Delta^*$ определим $A^B = \{w^u \mid w \in A, \ u \in B\}$. Покажите, что если A и B регулярны, то и A^B регулярен.

Задача 2.15. Дан $\Sigma = \{a,b\}$. Определим на словах одинаковой длины *метрику Хэмминга* $H(w_1,w_2)$ как число позиций, в которых эти слова различаются. Если $|w_1| \neq |w_2|$, то зададим $H(w_1,w_2) = \infty$. Для языка $A \in \Sigma^*$ определим

$$H(w,A) = \min_{u \in A} H(w,u)$$

Покажите, что для любого регулярного L язык $Ham(L,k) = \{w \in \Sigma^* | H(w,L) \leqslant k\}$ регулярен.

Решение. Пусть $Aut = (Q, \Sigma, Start, Final, T)$ — полный ДКА, принимающий L; построим НКА, приимающий Ham(L,k). Идеология простая: воспользоваться силой декаротова произведения, чтобы помнить и состояние в Aut, и число ошибок в слове. Формально говоря, автомат $\widehat{Aut} = (\widehat{Q}, \Sigma, \widehat{Start}, \widehat{Final}, \widehat{T})$, где

- $\widehat{Q} = (Q \times [0;k]) \cup \{\mathbf{TRASH}\}$, где $[0;k] \subset \mathbb{Z}$;
- Σ старый добрый алфавит;
- $\widehat{Start} = (Start, 0)$ начальное состояние;
- $\widehat{Final} = \{S \subset \widehat{Q} | \exists f \in Final, j \in [0; k] \ (f, j) \in S\}$ остановимся на слове w, если есть слово не далее чем на j, лежащее в языке L;
- \bullet \widehat{T} таблица переходов вида

$$\begin{split} &((s,i),a) \rightarrow \begin{cases} \{(T(s,a),i),(T(s,b),i+1)\}, & i < k \\ \{(T(s,a),i),\mathbf{TRASH}\}, & i = k \end{cases}, \\ &((s,i),b) \rightarrow \begin{cases} \{(T(s,b),i),(T(s,a),i+1)\}, & i < k \\ \{(T(s,b),i),\mathbf{TRASH}\}, & i = k \end{cases}, \\ &\forall x \in \Sigma \; (\mathbf{TRASH},x) \rightarrow \mathbf{TRASH} \end{split}$$

ведь если $H(\alpha, \beta) = i$, то $H(\alpha, \beta) \in \{i, i+1\}$.

Теперь надо показать корректность такой конструкции. Действительно, автомат \widehat{Aut} , прочитав слово w длины n, остановится в множестве S_n таком, что

$$S_n \cap (Q \times [0;k]) = \{(q,i) | i \in [0;k], \exists u \in \Sigma^* | u | = n \text{ if } Aut \xrightarrow{u} q, H(w,u) = i\}$$

Докажем это по индукции. База при n=0 очевидна; теперь докажем шаг индукции. Наше $w=\hat{w}x$ имеет длину $n+1,\ x\in\Sigma,\ a$ $\widehat{Aut},\$ прочитав $\hat{w},\$ остановится в состояниях (q,i) таких, что для некоторого $\hat{u}\in\Sigma^*$ длины n $Aut\overset{u}{\to}q$ и H(w,u)=i. Тогда $H(\hat{w}a,\hat{u}a)=H(\hat{w}b,\hat{u}b)=i$ и $H(\hat{w}a,\hat{u}a)=H(\hat{w}b,\hat{u}b)=i+1,$ и при прочтении буквы a имеем $((s,i),b)\to X$ такое, что $X\cap(Q\times[0;k])=\{(T(s,a),i),(T(s,b),i+1)\},\$ здесь i и i+1 есть в точности соответствующие расстояния Хэмминга; с буквой b получается аналогично.

Тогда \widehat{Aut} остановится в некотором $S \subset \widehat{Q}$, содержащем некоторый (f,j) (где $\exists f \in Final, j \in [0;k]$) на слове w титтк |w| = |u| для некоторого $u \in L$ и H(w,u) = j.

Задача 2.16. Пусть $R \subset \Sigma^*$ — регулярный. Верно ли, что $\{w \in \Sigma^* | w^{|w|} \in R\}$ — регулярный?

Конечность автомата

Конечность автомата важна. Покажем, что для любого языка можно построить бесконечный детерминированный автомат.

Определение. Граф Кэли группы G - граф (V, E), где V — элементы группы, а $E = (g_1, g_2)$, если $\exists w : g_1 = g_2 w^{\pm 1}$. Например, на картинке по центру изображен граф Кэли группы \mathbb{Z} .

Для моноидов граф Кэли определяется аналогично. Построим граф Кэли для Σ^* , объявив вершины, соответствующие словам языка, состояниями Final и взяв e за состояние Start. Полученный граф и будет соответсвующим автоматом для языка.

Здесь же a posteriori выясняется, что число финальных состояний может быть бесконечным.

Задача 2.17. Распознаются ли этим автоматом $\{a^nb^n|n\in\mathbb{N}\}$? А $\{a^nb^nc^n|n\in\mathbb{N}\}$?

Задача 2.18. Любой ли язык распознается бесконечным детерминированным автоматом, если число финальных состояний конечно?

Задача 2.19. Существует ли язык, распознающийся бесконечным НКА и никаким бесконечным ДКА, число финальных состояний которого конечно?

є-переходы и свойства замкнутости

Теперь же введем так называемые ϵ -nереходы. Это переходы $q_1 \stackrel{\epsilon}{\to} q_2$ по пустой строке. Автомат с ϵ -переходами, попадая в состояние q, оказывается также во всех $s \in T(q, \epsilon)$. Этот аргумент позволяет понять, почему конечные автоматы с ϵ -переходами принимают те же языки, что и обычные конечные автоматы.

Лемма 2.1. Для любого HKA с ϵ -переходами существует эквивалентный HKA, принимающий тот же язык. Таким образом, языки, распознаваемые ϵ -переходами, регулярны.

Доказательство. По автомату $Aut_{\epsilon} = (Q, \Sigma, Start, Final, T)$ с ϵ -переходами можно построить эквивалентный HKA $Aut = (Q, \Sigma, Start, Final, \widehat{T})$, в котором к переходу $q_1 \xrightarrow{x} q_2$ добавляются $q_1 \xrightarrow{x} q$ для всех состояний q таких, что есть переход $q_2 \xrightarrow{\epsilon} q$. Формально,

$$\forall q \in Q, x \in \Sigma \ \widehat{T}(q, x) = T(q, x) \cup \{s \in Q | q \xrightarrow{\epsilon} s\}$$

Покажем индукцией по |w|, что $\forall S \subset Q$

$$Start \xrightarrow{w}_{Aut_{\epsilon}} S \iff Start \xrightarrow{w}_{Aut} S$$

то есть что оба автомата одинаково работают на одном и том же слове w. На нулевом шаге оба автомата одновременно находятся в состоянии Start. Если же при прочтении слова w оба автомата окажутся в множестве состояний S, то при прочтении слова wx (где x — одна буква) они одновременно окажутся в

$$\bigcup_{q \in S} T(q,x) = \bigcup_{q \in S} T(q,x) \cup \{s \in Q | q \xrightarrow{\epsilon} s\}.$$

Хотя ε-переходы и не увеличивают вычислительной мощности, они оказываются регулярно полезны — как, например, при доказательстве следующего критически важного утверждения.

Утверждение 2.1. Если A и B — регулярные языки, то A + B, AB и A^* также регулярны.

Доказательство. Языки A и B регулярные, следовательно, принимаются некоторыми ДКА $\{Q_A, \Sigma, S_A, F_A, T_A\}$ и $\{Q_B, \Sigma, S_B, F_B, T_B\}$, мы построим по ним соответствующие НКА с ϵ -переходами. (ПИКЧА)

Для $A \cup B$ мы построим автомат $Aut_{A \cup B} = \{Q_A \cup Q_B \cup \{*\}, \Sigma, \{*\}, F_A \cup F_B, T\}$, где

$$\forall q_A \in Q_A, \ q_B \in Q_B, \ x \in \Sigma \ T(*, \epsilon) = \{S_A, S_B\}, \ T(q_A, x) = T_A(q_A, x), \ T(q_B, x) = T_B(q_B, x).$$

(ПИКЧА)

Для AB мы построим автомат $Aut_{AB}\{Q_A \cup Q_B, \Sigma, S_A, F_B, T\}$, где

$$\forall q_A \in Q_A, \ q_B \in Q_B, \ f \in F_A, \ x \in \Sigma \ T(q_A, x) = T_A(q_A, x), \ T(f, \epsilon) = S_B, \ T(q_B, x) = T_B(q_B, x).$$

Для A^* мы построим автомат $Aut_{A^*} = \{Q_A \cup \{*\}, \Sigma, \{*\}, \{*\}, T\}$, где

$$\forall q \in Q_A, x \in \Sigma \ T(q, x) = T_A(q, x), \ T(*, \epsilon) = S_A, \ \forall f \in F_A \ T(f, \epsilon) = *.$$

Для построенных автоматов с ϵ -переходами найдутся НКА, также принимающие A+B, AB и A^* , следовательно, A+B, AB и A^* окажутся регулярными.

Задача 2.20. Покажите, что построенные НКА с ϵ -переходами действительно принимают именно A + B, AB и A^* .

 ϵ -переходы в доказательстве выше нужны не просто так.

Задача 2.21. По двум ДКА $Aut_A = \{Q_A, \Sigma, S_A, F_A, T_A\}$ и $Aut_B = \{Q_B, \Sigma, S_B, F_B, T_B\}$, принимающим языки A и B, Вася строит НКА Aut_{A+B} , распознающий A+B.

(ПИКЧА) Построим НКА, принимающий A+B, склеив стартовые состояния автоматов, принимающих A и B. Формально говоря,

- $Q = \{Start\} \sqcup (Q_A \setminus S_A) \sqcup (Q_B \setminus S_B)$
- Σ алфавит, совпадающий с алфавитом Aut_A и Aut_B
- ullet Start новое стартовое состояние, «склейка» S_A и S_B
- $F = F_A \sqcup F_B$
- \bullet T таблица переходов, все переходы которой описываются так:
 - $(p,x) \rightarrow q$, если есть переходы $(p,x) \rightarrow q$ в Aut_A или Aut_B , в которых $p,q \notin S_A$ или $p, q \notin S_B$;
 - (Start,x) o q, если есть переходы $(S_A,x) o q$ в Aut_A и $((S_B,x) o q)$ в Aut_B .

Корректна ли его конструкция? Если да, то докажите, что $L(Aut_{A+B}) = A + B$, если нет, то приведите контрпример.

Решение. Ответ: нет.

(a) Aut_A (b) Aut_B (c) Aut_{A+B}

Ежу понятно, что ϵ -переходы использовались в классических доказательствах не просто так; в противном случае может существовать слово, прочитанное вдоль такого обхода по диаграмме Мура Aut_{A+B} : цикл внутри Aut_A из Start в Start, проход по Aut_B в финальное состояние. Нужно подобрать так A и B, чтобы это слово не лежало в языке A+B. Пример двух автоматов на картинке.

На картинке выше $A = a^*$, $B = b^*$, а $L(Aut_{A+B}) = (a+b)^*$, конечно же, $(a+b)^* \neq a^* + b^*$: в $L(Aut_{A+B})$ есть слово ab, которого не может быть в A+B.

Задача 2.22. По двум ДКА $Aut_A = \{Q_A, \Sigma, S_A, F_A, T_A\}$ и $Aut_B = \{Q_B, \Sigma, S_B, F_B, T_B\}$, принимающим языки A и B, Вася строит НКА Aut_{AB} , распознающий AB.

(ПИКЧА) Построим НКА, принимающий AB, склеив стартовое состояние Aut_B с финальными состояниями Aut_A . Формально говоря,

- $Q = \{q_{AB}\} \sqcup (Q_A \setminus F_A) \sqcup (Q_B \setminus S_B),$
- Σ алфавит, совпадающий с алфавитом Aut_A и Aut_B ,
- $S = S_A$ стартовое состояние Aut_A ,
- $F = F_B$ финальные состояния Aut_B ,
- \bullet T таблица переходов, все переходы которой описываются так:

- $-(p,x) \to q$, если есть переходы $(p,x) \to q$ в Aut_A или Aut_B , в которых $p \notin F_A, \ q \notin S_B;$
- $-(p,x) \rightarrow q_{AB}$, если есть переходы $((p,x) \rightarrow q)$ в Aut_A и $q \in F_A$;
- $-(q_{AB},x) \rightarrow q$, если есть переходы $((S_B,x) \rightarrow q)$ в Aut_B ;
- $-(q_{AB},x) \to q_{AB}$, если есть переходы $((S_B,x) \to S_B)$ в Aut_B или $(p,x) \to q$ в Aut_A , где $p,q \in F_A$;

Корректна ли его конструкция? Если да, то докажите, что $L(Aut_{AB}) = AB$, если нет, то приведите контрпример.

Решение. Ответ: нет.

Ежу понятно, что ϵ -переходы использовались в классических доказательствах не просто так; в противном случае может существовать слово, прочитанное вдоль такого обхода по диаграмме Мура Aut_{AB} : цикл внутри Aut_{A} из Start в Start, проход по Aut_{B} в финальное состояние. Нужно подобрать так A и B, чтобы это слово не лежало в языке AB. Пример двух автоматов на картинке.

На картинке выше $A=a^*,\ B=b^*,\ a\ L(Aut_{AB})=(a+b)^*,\ конечно же,\ (a+b)^*\neq a^*b^*$: в $L(Aut_{AB})$ есть слово ab, которого не может быть в A+B.

Задача 2.23. Детерминизируйте автомат $Aut_{A\cup B}$ с ϵ -переходами, построенный в лемме 2.1. Сравните его с конструкцией из 1.1.

Задача 2.24. Пусть ДКА A и B имеют $N_A\geqslant 1$ и $N_B\geqslant 2$ состояний соответственно. Покажите, что существует ДКА, принимающий L(A)L(B) и имеющий не более $N_A2^{N_B}-2^{N_B-1}$ состояний.

Задача 2.25 (Yu, Zhuang, Salomaa [?yuzhuangsalomaa]). Пусть ДКА A имеет N_A состояний соответственно. Покажите, что существует ДКА, принимающий $L(A)^*$ и имеющий не более $2^{N_A-1}+2^{N_A-2}$ состояний.

Мы завершим эту главу доказательством того, что регулярные языки замкнуты относительно морфизмов и прообразов морфизмов.

Теорема 2.2. Пусть $h: \Sigma^* \to \Delta^* - \text{морфизм.}$ Если L регулярен, то и h(L) регулярен.

Доказательство. Язык L принимается некоторым ДКА Aut, построим недетерминированный конечный автомат \widehat{Aut} такой, что $L(\widehat{Aut}) = h(L)$. ПИКЧА! Идея в том, чтобы вместо каждого перехода по букве $x \in \Sigma$ мы вклеиваем переход по буквам слова h(x). Действительно, имея автомат $Aut = (Q, \Sigma, Start, Final, T)$, построим $\widehat{Aut} = (\widehat{Q}, \Delta, Start, Final, \widehat{T})$, где

- $\widehat{Q} = Q \cup \{(q, T(q, x), i) \mid q \in Q, x \in \Sigma, i \in (0; |h(x)|)\} \cup \{\mathbf{T}\}$ к состояниям старого автомата добавили «промежуточные» состояния и «сток»,
- Δ алфавит языка h(L),
- Start стартовое состояние Aut,

- Final финальные состояния Aut,
- \hat{T} таблица переходов, все переходы которой описываются так:

$$- \forall q \in Q \quad \widehat{T}(q, x) = \{(q, T(q, y), 1) \mid y \in \Sigma, \ x = h(y)[1]\} \cup \{T(q, y) \mid y \in \Sigma, \ |x| = 1, \ x = h(y)\};$$

- $\widehat{T}((q, T(q, x), i), h(x)[i+1]) = (q, T(q, x), i+1);$
- $\forall q \in Q \ \widehat{T}(q,\epsilon) = q$, если $h(x) = \epsilon$ для некоторой $x \in \Sigma$;
- все остальные переходы [по незайдествованным буквам] в ${f T}.$

Вообще этот автомат может быть недетерминированным: для $L = \{a,b\}^*$ и $h:\{a,b\}^* \to \{a\}^*$, $h(a) = a, h(b) = a^2$ получим следующие автоматы: ПИКЧА.

Докажем, что $L(\widehat{Aut}) = h(L)$. Действительно, если $w \in h(L)$, то $w = h(u) = h(u[1]) \dots h(u[|u|])$ для некоторого $u \in L$, тогда в диаграмме автомата \widehat{Aut} существует путь

$$Start \xrightarrow{h(u[1])} \widetilde{T}(Start, u[1]) \xrightarrow{h(u[2])} \widetilde{T}(Start, u[1]u[2]) \dots \xrightarrow{h(u[|u|])} \widetilde{T}(Start, u[1] \dots u[|u|]) = \widetilde{T}(Start, u) \in Final.$$

Таким образом, $h(L) \subseteq L(\widehat{Aut})$. Теперь докажем, что $L(\widehat{Aut}) \subseteq h(L)$. Действительно, если слово w принимается \widehat{Aut} , то существует путь из стартового состояния в финальное, то есть последовательность состояний $S = \{s_0, \ldots s_{|w|}\} \subset \widehat{Aut}$ такая, что $s_0 = Start, \ s_{i+1} \in \widehat{T}(s_i, w[i+1])$ для любого i и $s_{|w|} \in Final$. ПИКЧА! В этой последовательности нет состояния \mathbf{T} — из него недостижимо ни одно состояние, кроме \mathbf{T} . Кроме того, эту последовательность можно разбить на интервалы между состояниями из Q, то есть существует $0 = i_0 \leqslant i_1 \leqslant \ldots \leqslant i_k = |w|$ такая, что $\{s_{i_0}, \ldots s_{i_k}\} \subset Q$, а остальные состояния— «промежуточные»:

$$S \setminus \{s_{i_0}, \dots s_{i_k}\} \subset \Big\{ (q, T(q, x), i) \mid q \in Q, x \in \Sigma, i \in (0; |h(x)|) \Big\}.$$

Тогда вдоль любой подпоследовательности вида $\{s_{i_j}, s_{i_j+1}, \dots s_{i_{j+1}}\}$ читается подслово u=h(x), $x\in\Sigma$: во-первых, первый переход имеет вид $s_{i_j}\to (s_{i_j},s_{i_{j+1}},1)$ или $s_{i_j}\to s_{i_{j+1}}$, то есть первая буква подслова есть h(x)[1], во-вторых, если $u[i]\neq h(x)[i]$, то следующее состояние в последовательности есть \mathbf{T} , которого не может быть. Таким образом, вдоль всего пути было прочитано слово $h(x_1)\dots h(x_k)=h(x_1\dots x_k)$ для $x_1,\dots x_k\in\Sigma$, то есть слово из h(L).

Впоследствии мы получим еще одно доказательство этой теоремы.

Теорема 2.3. Пусть $h: \Sigma^* \to \Delta^* - \text{морфизм.}$ Если L регулярен, то и $h^{-1}(L)$ регулярен.

Доказательство. Язык L принимается некоторым ДКА Aut, построим недетерминированный конечный автомат \widehat{Aut} такой, что $L(\widehat{Aut}) = h^{-1}(L)$. ПИКЧА! Мы перестроим Aut так, чтобы по букве x совершались переходы по слову h(x). А именно, имея автомат $Aut = (Q, \Delta, Start, Final, T)$, построим $\widehat{Aut} = (Q, \Sigma, Start, Final, \widehat{T})$, где

- Q —состояния старого автомата,
- Σ алфавит языка $h^{-1}(L)$,
- Start стартовое состояние Aut,
- *Final* финальные состояния *Aut*,
- \widehat{T} таблица переходов вида

$$\forall q \in Q, x \in \Sigma \quad \widehat{T}(q, x) = T(q, h(x))$$

Этот конечный автомат получается детерминированным. Докажем, что $L(\widehat{Aut}) = h^{-1}(L)$. Пусть $\widetilde{\widetilde{T}}(q,w)$ — состояние, в котором \widehat{Aut} окажется, перейдя из состояния q по буквам слова w; покажем индукцией по |w|, что $\widetilde{\widehat{T}}(q,w) = \widetilde{T}(q,h(w))$. Для слова длины 0 имеем $\widetilde{\widehat{T}}(q,\epsilon) = q = \widetilde{T}(q,\epsilon) = \widetilde{T}(q,h(\epsilon))$. Теперь в предположении $\forall w, \ |w| = n$ $\widetilde{\widehat{T}}(q,w) = \widetilde{T}(q,h(w))$ докажем переход. Слово длины n+1 представим как wx, |w| = n, $x \in \Sigma$, поэтому

$$\widetilde{\widehat{T}}(q,wx) = \widehat{T}(\widetilde{\widehat{T}}(q,w),x) = \widehat{T}(\widetilde{T}(q,h(w)),x) = T(\widetilde{T}(q,h(w)),h(x)) = \widetilde{T}(q,h(w)h(x)) = \widetilde{T}(q,h(wx)).$$

Таким образом,

$$w \in L(\widehat{Aut}) \iff \widetilde{\widehat{T}}(q,w) \in Final \iff \widetilde{T}(q,h(w)) \in Final \iff h(w) \in L.$$

Значит, $w \in L(\widehat{Aut})$ титтк $w \in h^{-1}(L)$.

Задача 2.26. Пусть язык L регулярен. Покажите, что множество длин слов L

$$\{l \mid \exists w \in L, \ |w| = l\} \subset \mathbb{Z}_{>0}$$

является асимптотически периодическим.

Задача 2.27. Пусть язык L регулярен. Регулярен ли

$$\{w \in \Sigma^* | \exists u \in L : |w| - |u| = 1\}$$
? (2.13)

Задача 2.28. По аналогии с морфизмом определим $nodcmanos \kappa y \ s : \Sigma^* \to \Sigma^*$ как мультипликативное отображение, заданное на алфавите следующим образом: s(a) есть некоторый регулярный язык. Определим

$$s(L) = \{s(w) \mid w \in L\}, \quad s^{-1}(L) = \{w \mid s(w) \in L\}$$

Пусть L — регулярный язык, s — подстановка.

- (a) Покажите, что s(L) регулярен.
- **(b)** Обязан ли $s^{-1}(L)$ быть регулярным?

Глава 3

Регулярные выражения и алгебра Клини

В этой главе мы рассмотрим иной способ задать регулярные языки. Матлогик Стивен Клини определил регулярные множества индуктивно и доказал, что они могут выражены через атомарные языки с помощью операций + [объединение], · [конкатенация] и * [звездочка Клини], полученное выражение называется регулярным. Впоследствии в той же статье Клини показал, что ...

Впоследствии регулярные выражения были использованы для создания текстовых редакторов ...

Определение. Множество *регулярных выражений REG* над алфавитом Σ — множество строчек над алфавитом $\Sigma \cup \{+,\cdot,*,(,)\}$, удовлетворяющее следующим правилам:

- \varnothing, ϵ, x для любой $x \in \Sigma amomaphile$ регулярные выражения;
- если α и β регулярные выражения, то $\alpha + \beta, \alpha\beta, \alpha^*, (\alpha)$ регулярные выражения;
- никаких других регулярных выражений нет, то есть любое регулярное выражение может быть получено из атомарных с помощью операций $+,\cdot,*$ и использования скобок.

Язык $L(\alpha)$ регулярного выражения α определяется реккурентно:

- $L(\varnothing) = \varnothing$, $L(\epsilon) = \{\epsilon\}$, $L(x) = \{x\}$ для любой $x \in \Sigma$;
- $L(\alpha + \beta) = L(\alpha) + L(\beta)$;
- $L(\alpha\beta) = L(\alpha)L(\beta)$;
- $L(\alpha^*) = (L(\alpha))^*$.

Язык $L \subset \Sigma^*$ называется *регулярным*, если он является языком некоторого регулярного выражения. Мы будем говорить, что $\alpha = \beta$, если их языки совпадают.

Под длиной $|\alpha|$ регулярного выражения α мы будем понимать длину α как слова над алфавитом $\Sigma \cup \{+, *, (,)\}$; знак умножения и ϵ вносят нулевой вклад в длину выражения.

В дальнейшем для краткости мы будем использовать выражение «язык α », имея в виду «язык $L(\alpha)$ регулярного выражения α », а под регулярным выражением Σ будем понимать сумму всех букв алфавита Σ .

В прошлых главах мы уже давали определение регулярности через конечные автоматы, чуть позже мы покажем эквивалентность всех данных нами определений регулярного языка. В нескольких следующих примерах мы покажем регулярность некоторых языков, предъявив для них регулярные выражения.

Пример 15. Рассмотрим регулярное выражение $(a+b)^*b^2a(ba+a^2b)^*$. Слово $a^2b^3a^3b^2aba$ лежит в языке данного регулярного выражения:

$$a^2b^3a^3b^2aba = \underbrace{a^2b}_{\in (a+b)^*} \cdot b^2a \cdot \underbrace{a^2b \cdot ba \cdot ba}_{\in (ba+a^2b)^*}$$

Пример 16. Язык всех слов, содержащих подслово $w \in \Sigma^*$, является регулярным: он может быть описан регулярным выражением $\Sigma^*w\Sigma^*$. Действительно, $u \in \Sigma^*$ содержит подслово w титтк для некоторого $k \in [1; |w|]$ имеет место $u[k] = w[1], \dots u[k + |w| - 1] = w[|w|]$. Это эквивалентно $u = u_1wu_2$ для некоторых $u_1, u_2 \in \Sigma^*$ [возможно, пустых], то есть $w \in \Sigma^*w\Sigma^*$.

Пример 17. Докажем, что язык $L \subset \{a,b\}^*$ всех слов, содержащих три буквы b, является регулярным. Слово w, содержащее ровно три буквы b, должно иметь вид $a^xba^yba^zba^t$ для некоторых $x,y,z,t \in \mathbb{Z}_{\geq 0}$. Следовательно, $L = L(a^*ba^*ba^*ba^*)$.

Пример 18. Язык D_n всех слов из букв алфавита Σ , длина которых делится на $n \geqslant 1$, является языком регулярного выражения $(\Sigma^n)^*$: слово w имеет длину dn титтк $w = w_1 \dots w_d$, где $|w_1| = \dots = |w_d| = n$, то есть $w_1, \dots w_d \in \Sigma^n$. Следовательно, |w| = dn титтк $w \in (\Sigma^n)^d$. Таким образом,

$$|w|: n \iff \exists d \in \mathbb{N}, \ |w| = dn \iff \exists d \in \mathbb{N}, \ w \in (\Sigma^n)^d \iff w \in (\Sigma^n)^*$$

Пример 19. Пусть $w \in \Sigma^+$. Язык $Pref(w) = \{u \mid u \sqsubseteq w\}$ префиксов слова w конечен и таким образом является языком регулярного выражения

$$\epsilon + w[1] + \ldots + w[1] \ldots w[|w|]$$

В этом выражении |w| знаков сложения, одно пустое слово и по одному слову каждой длины от 1 до |w|, значит, длина этого регулярного выражения равна $|w| + \sum_{i=1}^{|w|} i = {|w|+1 \choose 2} - 1 = \Theta(|w|^2)$. Все буквы слова w, кроме последней, используются более одного раза; предъявим более короткое PB, в котором каждая буква w встречается ровно один раз:

$$\beta(w) = \epsilon + w[1](\epsilon + w[2](\dots(\epsilon + w[|w|])\dots))$$

Например, для слова $w = a^2b^2ab$ имеем

$$\beta(a^2b^2ab) = \epsilon + a(\epsilon + a(\epsilon + b(\epsilon + b(\epsilon + a(\epsilon + b))))).$$

В $\beta(w)$ используется |w|-1 пара скобок, каждая буква w ровно по разу, и |w| знаков сложения, таким образом, $|\beta(w)|=4|w|-2=\Theta(|w|)$.

Задача 3.1. Докажите, что любое регулярное выражение α , описывающее Pref(w), имеет длину $\Omega(|w|)$.

Решение. Так как язык Pref(w) конечен, то α не содержит слагаемого вида $\gamma_1\beta^*\gamma_2$, где $L(\gamma_1), L(\gamma_2) \neq \emptyset$, а $L(\beta) \neq \emptyset$ или $L(\beta) \neq \epsilon$: в таком случае язык $L(\beta^*)$ бесконечен, тогда и язык $L(\gamma_1\beta^*\gamma_2)$ бесконечен. Это позволяет нам считать, что выражение α не содержит звездочку — в слагаемом вида $\gamma_1\beta^*\gamma_2$ либо одно из γ_i задает пустой язык [тогда слагаемое можно удалить], либо $\beta^* = \epsilon$ [и тогда можно сократить β^*]. В выражении α , не содержащем звездочек, должно быть хотя бы |w| букв — иначе любое слово языка $L(\alpha)$ должно иметь длину, меньшую |w|, что не может правдой: $w \in Pref(w)$.

Задача 3.2. Пусть $w \in \Sigma^+$. Постройте регулярные выражения, описывающие языки слов,

- (a) имеющих префикс w;
- (b) в которых есть подслово w, начинающееся с третьей позиции;
- (c) содержащих хотя бы два непересекающихся вхождения w.

Задача 3.3. Определим PreSuf(w) как слов, у которых существует и префикс, и суффикс, равный w. Постройте регулярные выражения для PreSuf(w), где

- (a) $w = a^3b^2$;
- **(b)** $w = a^2b^3a^2$;
- (c) $w = (ab)^4$.

Решение. 1. Ответ: $a^2b^3\Sigma^*a^2b^3 + a^2b^3$. Все слова вида $a^2b^3wa^2b^3$ лежат в $PreSuf(a^2b^3)$. Осталось показать, что любое слово из $PreSuf(a^2b^3)$ либо равно a^2b^3 , либо имеет длину хотя бы 10. Слова длины 6 существовать не может ПИКЧА: у него четвертая буква равна и b, и a одновременно. Аналогично не бывает слов длины 7, 8 и 9 в PreSuf(w).

2. Omeem: $a^2b^3a^2\Sigma^*a^2b^3a^2 + a^2b^3a^3b^3a^2 + a^2b^3a^2b^3a^2 + a^2b^3a^2$.

Нужно быть осторожным: слово $a^2b^3a^2$ имеет нетривиальный перехлест ПИКЧА с самим собой. Поэтому аккуратно рассмотрим, какие слова могут иметь суффикс и префикс, равный $a^2b^3a^2$:

- само слово $a^2b^3a^2$,
- слово $a^2b^3a^2b^3a^2$, в котором искомые префикс и суффикс пересекаются по a^2 ,
- слово $a^2b^3a^3b^3a^2$, в котором искомые префикс и суффикс пересекаются по a,
- слово $a^2b^3a^2wa^2b^3a^2$ для любого $w\in \Sigma^*$, в котором искомые префикс и суффикс не пересекаются.

Суммируем все это и получаем ответ.

3. $Omsem: (ab)^4 \Sigma^* (ab)^4 + (ab)^4 + (ab)^5 + (ab)^6 + (ab)^7$. Получается рассуждениями, аналогичными предыдущему пункту.

Задача 3.4. Постройте регулярные выражения, описывающие следующие языки:

- (a) на 2 месте от конца стоит b;
- (b) на 3 месте от конца стоит b;
- (c) на k месте от конца стоит b;
- (d) есть суффикс вида abw, $w \in \Sigma^2$, то есть |w| = 2.

Задача 3.5. Постройте регулярные выражения, описывающие следующие языки:

- (a) $\{\omega | \#_a(\omega) + 2\#_b(\omega) = 0 \mod 5\};$
- **(b)** $\{\omega | 3\#_a(\omega) + 2\#_b(\omega) = 0 \mod 6\};$
- (c) $\{\omega|A\#_a(\omega)+B\#_b(\omega)=k \text{ mod } N\}$ для любых $A,B,k,N\in\mathbb{N}$.

Задача 3.6. $\Sigma = \{a, b, c\}$. Постройте регулярные выражения, описывающие следующие языки:

- (a) язык слов, в которых сразу же после a идет b;
- (b) язык слов, в которых сразу же после a не идет b.

Задача 3.7. Докажите, что любой бесконечный регулярный язык L содержит бесконечный регулярный подъязык R такой, что $L \setminus R$ бесконечный.

Задача 3.8. Пусть α – некоторое регулярное выражение. Укажите, как построить регулярное выражение языка $Pref(L(\alpha)) = \{x \in \Sigma^* \mid \exists y \, xy \in L(\alpha)\}.$

Задача 3.9. Пусть $w \in \Sigma^+$. Постройте регулярные выражение для языка $\Sigma^* \setminus \{w\}$, имеющее длину O(|w|).

Задача 3.10. Проверить, что для любых регулярных выражений a,b,c имеют место равенства

- a + (b + c) = (a + b) + c, a(bc) = (ab)c;
- $\bullet \ a+b=b+a;$
- \bullet a+a=a;
- $\bullet \ a + \varnothing = a$:
- $a \cdot \epsilon = \epsilon \cdot a = a$, $a \cdot 0 = 0 \cdot a = 0$;
- a(b+c) = ab + ac, (a+b)c = ac + bc;
- $\bullet \ \epsilon + aa^* = \epsilon + a^*a = a^*;$
- $b + ac \subseteq c \iff a^*b \subseteq c$;
- $b + ca \subseteq c \iff ba^* \subseteq c$.

Задача 3.11. Скажем, что дизтонктивная нормальная форма регулярного выражения α есть представление в виде $\alpha_1 + \ldots + \alpha_k$, где α_i не содержат сложения. Например, $(a^*b^*)^* -$ в дизъюнктивной нормальной форме, а $(a+b)^*$ — нет. Покажите, что любое PB имеет эквивалентное ему выражение в ДНФ.

Мы уже давали в прошлой главе определение регулярных языков. Теперь мы покажем эквивалентность этих двух определений.

Теорема 3.1 (Kleene). Следующие свойства языка L эквивалентны:

- L является языком некоторого регулярного выражения;
- L принимается некоторым конечным автоматом.

Доказательство. Заметим, что атомные паттерны задают регулярные языки. Далее заметим, что если A, B регулярны, то и $AB, A+B, A^*$ регулярны.

Теперь же пусть язык L является языком некоторого детерминированного автомата $(Q, \Sigma, Start, Final, T)$ Построим по этому автомату регулярное выражение L(A). Построим множество регулярных выражений $\{\alpha_{uv}^X\}$, где α_{uv}^X — регулярное выражение языка всех слов, которое получается прохождением пути вида

$$u \longrightarrow x_1 \longrightarrow x_2 \longrightarrow \cdots \longrightarrow v$$

где $u, v \in Q, x_1, \dots x_k \in X \subset Q$. В самом деле, как мы ранее говорили, регулярный язык суть язык путей по конечному помеченному орграфу из одной вершины в другую; надо эти пути перечислить. Данные выражения строятся индуктивно по размеру X:

$$\alpha_{uv}^\varnothing = \begin{cases} \begin{cases} a_1 + \dots + a_k \\ \varnothing \end{cases} &, a_i - \text{символы, по которым есть переход из } u \text{ в } v, \ u \neq v \\ \begin{cases} a_1 + \dots + a_k + \epsilon \\ \epsilon \end{cases} &, a_i - \text{символы, по которым есть переход из } u \text{ в } v, \ u = v \end{cases}$$

Шаг индукции:

$$\alpha_{uv}^{X} = \alpha_{uv}^{X - \{q\}} + \alpha_{uq}^{X - \{q\}} (\alpha_{qq}^{X - \{q\}})^* \alpha_{qv}^{X - \{q\}} \qquad \forall q \in Q$$

В таком случае ответ

$$\alpha = \sum_{f \in Final} \alpha_{Start,f}^{Q}.$$

Докажем, что $L(\alpha)$ есть искомый язык. Для этого установим следующее: пусть L^X_{uv} — язык слов, читаемых в диаграмме Мура вдоль путей вида

$$u \longrightarrow x_1 \longrightarrow x_2 \longrightarrow \cdots \longrightarrow v$$

где $u, v \in Q, x_1, \dots x_k \in X \subset Q$, формально,

$$L_{uv}^X = \{ w \in \Sigma^* | u \xrightarrow{w} v, \ \forall p \supset w \exists x_i \in X \ u \xrightarrow{p} x_i \},$$

тогда $L_{uv}^X = L(\alpha_{uv}^X)$. Это доказывается индукцией по |X|. База при |X| = 0 очевидна. Пусть утверждение верно для некоторого X, добавим к нему некоторую вершину $s \in Q$. Любое слово, лежащее в $L_{uv}^{X \cup \{s\}}$, читается вдоль пути, который либо проходит через s, либо не проходит. В первом случае такие слова по предположению индукции образуют язык $\alpha_{us}^X(\alpha_{ss}^X)^*\alpha_{sv}^X$:

- путь, вдоль которого читаются такие слова, сначала посещает состояние s, соответствующие префиксы образуют α_{us}^{X} ;
- такой путь может проходить через s сколь угодно раз, соответствующие подслова образуют $(\alpha_{ss}^X)^*$;
- ullet последний раз посещая s, этот путь завершается в v, такие суффиксы образуют $lpha_{sv}^X.$

Слова же во втором случае образуют опять же по предположению α_{uv}^X . Таким образом, $L_{uv}^X = L(\alpha_{uv}^X)$, тогда $\alpha = \sum_{f \in Final} \alpha_{Start,f}^Q$.

Чтобы вычислить регулярное выражение по автомату, необязательно считать все α_{uv}^{X} . Пример: Выберем q_2 за выбрасываемое состояние:

$$\alpha_{q_1,q_1}^{\{q_1,q_2,q_3\}} = \alpha_{q_1,q_1}^{\{q_1,q_3\}} + \alpha_{q_1,q_2}^{\{q_1,q_3\}} (\alpha_{q_2,q_2}^{\{q_1,q_3\}})^* \alpha_{q_2,q_1}^{\{q_1,q_3\}}$$

Можно и дальше продолжать разбиение, а можно заметить, что:

$$\begin{array}{l} \alpha_{q_1,q_3}^{\{q_1,q_3\}} = a^* \\ \alpha_{q_1,q_2}^{\{q_1,q_3\}} = a^*b \\ \alpha_{q_2,q_2}^{\{q_1,q_3\}} = \epsilon + ab + a^2a^*b \\ \alpha_{q_2,q_1}^{\{q_1,q_3\}} = a^2a^* \end{array}$$

Тогда имеем $a^* + a^*b(\epsilon + ab + a^2a^*b)^*a^2a^* = a^* + a^*b(aa^*b)^*a^2a^* = a^* + a^*ba(a^*ba)^*aa^* = \epsilon + (a + ba)^*a$.

Задача 3.12. Приведите альтернативное доказательство замкнутости регулярных языков относительно морфизмов.

Задача 3.13. Для каких $k,p,q\in\mathbb{Z}$ существует регулярный язык такой, что число слов длины не более n в нем равно

- (a) $\Theta(n^k)$,
- **(b)** $\Theta(2^{\frac{p}{q}n})$?

Задача 3.14. Пусть L — регулярный. Используя регулярные выражения, докажите, что язык

$$nL = \{\underbrace{a_1 \dots a_1}_{n \text{ pa3}} \underbrace{a_2 \dots a_2}_{n \text{ pa3}} \dots \underbrace{a_k \dots a_k}_{n \text{ pa3}} | a_1 a_2 \dots a_k \in L \}$$

является регулярным для любого $n \in \mathbb{N}$. Сравните с 1.11.

Задача 3.15. Рассмотрим $L = \{w \in \Sigma^* \mid \forall x \in \Sigma \mid w \mid_x = 1\}$. Покажите, что любое PB, описывающее этот язык, имеет длину более $2^{|\Sigma|-1}$, в то время как существует PB для $\Sigma^* \setminus L$ длины $O(|\Sigma|^2)$.

Задача 3.16. Для двух языков $A, B \subset \Sigma^*$ определим *частное* двух языков:

$$A/B = \{ x \in \Sigma^* | \exists y \in B \qquad xy \in A \}$$

Покажите, что если A регулярный, то A/B регулярен для любого B.

Задача 3.17. Построим по ДКА $Aut = (Q, \Sigma, Start, Final, T)$ следующий орграф G: множеством вершин будет Q, а ребра суть

$$E = \{(q_i q_j) | q_i, q_j \in Q, \exists x \in \Sigma \ T(q_i, x) = q_j\}.$$

В графе G получилось 3 цикла. Верно ли, что L(Aut) не может быть записан регулярным выражением, использующим не более одной звезды Клини?

Назовем *-глубиной регулярного выражения реккурентно определенную функцию $h:REG \to \mathbb{Z}$, удовлетворяющую следующим условиям:

- $h(\emptyset) = h(\epsilon) = h(x) = 0$ для $x \in \Sigma$,
- $h(\alpha + \beta) = h(\alpha\beta) = \max(h(\alpha), h(\beta)),$
- $h(\alpha^*) = h(\alpha) + 1$.

*-глубиной регулярного языка L назовем наименьшую *-глубину регулярного выражения, описывающего язык. Например, $(a^*)^* = a^*$, поэтому *-глубина языка $(a^*)^*$ равна 1.

Задача 3.18 (Eggan). Теперь пусть имеется орграф G. Назовем *цикловым рангом* r(G) функцию, заданную реккурентно:

- r(G) = 0, если граф не содержит циклов;
- для сильно связного G имеем $r(G) = 1 + \min_{v \in V} r(G v)$, где вместе с вершиной v удаляются и все смежные ребра;
- ullet если G не сильно связен, то $r(G) = \max r(G_i)$ для G_i компонент сильной связности.

Докажите следующую *теорему Эггана*: *-глубина равна минимально возможному цикловому рангу недетерминированного конечного автомата с ϵ -переходами, принимающего данный язык.

Задача 3.19. Покажите, что *-глубина любого регулярного языка над $\{a\}$ конечна.

В то же время *-глубина регулярного языка над алфавитом большей мощности может быть сколь угодно большой. Эгган построил реккурентно заданное семейство регулярных языков $\{L_n\}$ такое, что *-глубина языка L_n равна n.

Задача 3.20 (Eggan, Salomaa [?salomaa]). (a) ...

Алгоритмы построения конечных автоматов по РВ

Теорема Клини допускает конструктивное доказательство: по регулярному выражению α можно явно построить конечный автомат, принмающий $L(\alpha)$. Существуют разные алгоритмы построения автомата по регулярному выражению; мы разберем некоторые, начав с алгоритма, предложенного Глушковым. Пусть дано регулярное выражение α над $\Sigma = \{a_1, \ldots a_N\}$; по нему строим новый алфавит $\widehat{\Sigma} = \{a_{11}, \ldots a_{1\#a_1(\alpha)}, \ldots, a_{N1}, \ldots a_{N\#a_N(\alpha)}\}$ и линеаризованное регулярное выражение $\widehat{\alpha}$, полученное из α заменой букв a_i на a_{ir} , где r — номер вхождения буквы a_i в α . Например, для выражения $\alpha = ab(a^2 + bab)^*$ над $\Sigma = \{a,b\}$ получим $\widehat{\alpha} = a_1b_1(a_2a_3 + b_2a_4b_3)^*$ над $\widehat{\Sigma} = \{a_1,a_2,a_3,a_4,b_1,b_2,b_3\}$. Далее введем

$$First(\hat{\alpha}) = \{ x \in \widehat{\Sigma} | x \widehat{\Sigma}^* \cap L(\hat{\alpha}) \neq \emptyset \}$$
 (3.1)

$$Last(\hat{\alpha}) = \{ x \in \widehat{\Sigma} | \widehat{\Sigma}^* x \cap L(\hat{\alpha}) \neq \emptyset \}$$
(3.2)

$$Follow(\hat{\alpha}) = \{(x,y) \in \widehat{\Sigma}^2 | \widehat{\Sigma}^* x y \widehat{\Sigma}^* \cap L(\hat{\alpha}) \neq \emptyset \}$$
 (3.3)

Говоря проще, $First(\hat{\alpha})$ — множество первых букв слов языка $L(\hat{\alpha})$, $Last(\hat{\alpha})$ — множество последних букв слов языка $L(\hat{\alpha})$, а $Follow(\hat{\alpha})$ — множество пар букв, идущих друг за другом.

Построим следующий ДКА $\widehat{Aut}_{\alpha} = (\widehat{Q}, \widehat{\Sigma}, \widehat{Start}, \widehat{Final}, \widehat{T})$, в котором

- $\widehat{Q} = \{[\epsilon]\} \cup \{[x] | x \in \widehat{\Sigma}\} \cup \{\mathbf{T}\}$ нестартовые нетупиковые состояния помечены буквами нового алфавита;
- $\widehat{\Sigma}$ модифицированный алфавит;
- $\widehat{Start} = [\epsilon]$ начальное состояние;
- $\widehat{Final} = \{[x] | x \in Last(\hat{\alpha})\}$ финальные состояния помечены буквами, на которые могут заканчиваться слова из $L(\hat{\alpha})$;
- ullet \widehat{T} таблица переходов вида

$$\widehat{T}([\epsilon],x) = \begin{cases} [x], & x \in First(\widehat{\alpha}) \\ \mathbf{T}, & x \notin First(\widehat{\alpha}) \end{cases}, \qquad \widehat{T}([x],y) = \begin{cases} [y], & x \in Follow(\widehat{\alpha}) \\ \mathbf{T}, & x \notin Follow(\widehat{\alpha}) \end{cases}, \qquad \forall x \in \widehat{\Sigma}(\mathbf{T},x) = \mathbf{T}([x],y) = \begin{cases} [x], & x \in Follow(\widehat{\alpha}) \\ \mathbf{T}, & x \notin Follow(\widehat{\alpha}) \end{cases}$$

Тогда назовем автоматом Глушкова следующий НКА $Aut_{\alpha}=(\widehat{Q},\Sigma,\widehat{Start},\widehat{Final},T),$ в котором

$$\forall i \in [1; N], \ r \in [1; \#_{a_i}(\alpha)]$$
 $T(q_1, a_i) = q_2 \iff \widehat{T}(q_1, a_{ir}) = q_2$

Фактически Aut_{α} получен \widehat{Aut}_{α} «стиранием» всех порядковых номеров букв, то есть заменой a_{ir} на a_{i} .

Пример 20. Построим автомат Глушкова для упомянутого выше выражения $\alpha = ab(a^2 + bab)^*$. Как уже было сказано, линеаризованное выражение имеет вид $\hat{\alpha} = a_1b_1(a_2a_3 + b_2a_4b_3)^*$ над $\hat{\Sigma} = \{a_1, a_2, a_3, a_4, b_1, b_2, b_3\}$. Далее имеем

$$First(\hat{\alpha}) = \{a_1\} (3.4)$$

$$Last(\hat{\alpha}) = \{b_1, a_3, b_3\} (3.5)$$

$$Follow(\hat{\alpha}) = \{(a_1, b_1), (b_1, a_2), (b_1, b_2), (a_2, a_3), (b_2, a_4), (a_4, a_3), (a_3, b_2), (a_3, a_2), (b_3, a_2), (b_3, b_2)\}$$
(3.6)

Слева построен ДКА по линеаризованному регулярному выражению. Справа — соответствующий автомат Глушкова. [Переходы в тупиковое состояние не изображены для простоты картинки.]

... [АЛГОРИТМ ГЛУШКОВА] ...

Следующая теорема объясняет, почему конструкция Глушкова работает.

Теорема 3.2. Язык автомата Глушкова Aut_{α} есть $L(\alpha)$.

Доказательство. Покажем сперва, что $L(\hat{\alpha}) = L(\widehat{Aut}_{\alpha})$. Пусть $S \subset \widehat{\Sigma}$, и \widehat{S} — соответствующее подмножество состояний автомата \widehat{Aut}_{α} ; тогда для любых $x,y\in\widehat{\Sigma}$ верно

$$L(\alpha_{[x],[y]}^{\widehat{S}}) = \{w \in \widehat{\Sigma}^* | w \in \widehat{\Sigma}^* y \bigcap_{s \in S} \widehat{\Sigma}^*, \ \forall s \in S \cup \{x,y\} \ w \in s \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha}), \ \forall s_1,s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ \forall s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ \forall s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ \forall s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ \forall s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ \forall s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ \forall s_2 \in S \cup \{x,y\} \ w \in \widehat{\Sigma}^* \Rightarrow (x,y) \in Follow(\widehat{\alpha}), \ w \in Follow(\widehat{\alpha}), \ w \in Follow(\widehat{\alpha}), \ w \in Follo$$

Иными словами, $\alpha^{\widehat{S}}_{[x],[y]}$ описывает те и только те слова, которые содержат буквы из S, начинаются в x, заканчиваются в y, и любые две соседние буквы могут быть соседними буквами в словах из $L(\hat{\alpha})$. Это можно доказать индукцией по |S|. База очевидна: язык $L(\alpha_{[x],[y]}^\varnothing)$ будет пустым, если x и y не могут соседствовать, и будет $\{y\}$, если существуте переход $[x] \xrightarrow{y} [y]$ (других переходов между такими состояниями нет). Шаг доказывается аналогично теоерме ...: для некоторой $z \in S$ имеем

$$\alpha_{[x],[y]}^{\widehat{S}} = \alpha_{[x],[y]}^{\widehat{S}-\{z\}} + \alpha_{[x],[z]}^{\widehat{S}-\{z\}} (\alpha_{[z],[z]}^{\widehat{S}-\{z\}})^* \alpha_{[z],[y]}^{\widehat{S}-\{z\}}$$

С другой стороны,

$$\{w \in \widehat{\Sigma}^* | w \in \widehat{\Sigma}^* y \bigcap_{s \in S} \widehat{\Sigma}^* s \widehat{\Sigma}^*, \ \forall s_1, s_2 \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha})\} = C_z \cup N_z, \text{ and } S \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha})\} = C_z \cup N_z, \text{ and } S \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha})\} = C_z \cup N_z, \text{ and } S \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha})\} = C_z \cup N_z, \text{ and } S \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha})\} = C_z \cup N_z, \text{ and } S \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha})\}$$

где C_z — искомые слова, содержащие z, а N_z — искомые слова, не содержащие z:

$$C_z = \{ w \in \widehat{\Sigma}^* | w \in \widehat{\Sigma}^* y \bigcap_{s \in S} \widehat{\Sigma}^* s \widehat{\Sigma}^*, \ w \in \widehat{\Sigma}^* z \widehat{\Sigma}^*, \ \forall s_1, s_2 \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha}) \} (3.7)$$

$$N_z = \{ w \in \widehat{\Sigma}^* | w \in \widehat{\Sigma}^* y \bigcap_{s \in S} \widehat{\Sigma}^* s \widehat{\Sigma}^*, \ w \notin \widehat{\Sigma}^* z \widehat{\Sigma}^*, \ \forall s_1, s_2 \in S \cup \{x, y\} \ w \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Follow(\widehat{\alpha}) \} (3.8)$$

Тогда
$$N_z=L(\alpha_{[x],[y]}^{\widehat{S}-\{z\}})$$
 по предположению, а $C_z=L(\alpha_{[x],[z]}^{\widehat{S}-\{z\}}(\alpha_{[z],[z]}^{\widehat{S}-\{z\}})*\alpha_{[z],[y]}^{\widehat{S}-\{z\}})$. Действительно,

$$C_z = \{w_1 w_2 w_3 | w_1, w_3 \notin \widehat{\Sigma}^* z \widehat{\Sigma}^*, \ w_2 \in z \widehat{\Sigma}^* z \cup \{\epsilon\}, w_3 \in \widehat{\Sigma}^* y \ \forall s_1, s_2 \in S \cup \{x, y\} \ w_1 w_2 w_3 \in \widehat{\Sigma}^* s_1 s_2 \widehat{\Sigma}^* \Rightarrow (s_1, s_2) \in Fe$$

Язык слов w_1 есть $L(\alpha_{[z],[z]}^{\widehat{S}-\{z\}})$, слова w_2 образуют $L(\alpha_{[z],[z]}^{\widehat{S}-\{z\}})^*$, а слова w_3 образуют $\alpha_{[z],[y]}^{\widehat{S}-\{z\}}$. Несложно заметить, что при добавлении состояния \mathbf{T} язык не меняется. Для выражений $\alpha_{[\epsilon],[y]}^{\widehat{S}}$ же имеем вместо условия $\forall s \in S \cup \{x,y\}$ $w \in s\widehat{\Sigma}^* \Rightarrow (x,s) \in Follow(\widehat{\alpha})$ условие $\forall s \in S \cap S$ $S \cup \{x,y\} \ w \in s\widehat{\Sigma}^* \Rightarrow s \in First(\hat{\alpha});$ доказательство аналогично.

Теперь докажем, что $L(Aut_{\alpha})=L(\alpha)$. Во-первых, если $\widehat{w}=\prod_{j=1}^{|w|}a_{i_{j}j_{l}}\in L(\widehat{Aut}_{\alpha}),$ то w= $\prod_{i=1}^{|w|} a_{i_l} \in L(Aut_{\alpha})$: индукцией по |w| и $|\widehat{w}|$ можно убедиться, что

$$\forall q_1, q_2 \in \widehat{Q} \qquad q_1 \xrightarrow{\widehat{w}}_{\widehat{Aut}_{\alpha}} q_2 \Rightarrow q_1 \xrightarrow{w}_{Aut_{\alpha}} q_2.$$

Во-вторых, если $w=\prod_{j=1}^{|w|}a_{i_l}\in L(Aut_{\alpha})$ и $w\neq\epsilon$, то пусть $[s_1],\dots,[s_{|w|}]$ — последовательность состояний, пройденных при прочтении w, то есть

$$[\epsilon] \longrightarrow [s_1] \longrightarrow \cdots \longrightarrow [s_{|w|}]$$

Тогда $s_1 \dots s_{|w|} \in L(\widehat{Aut}_{\alpha})$, следовательно, $s_1 \dots s_{|w|} \in L(\hat{\alpha})$. Отсюда сразу же следует, что $w \in$ $L(\alpha)$. Тем самым, мы доказали, что $L(Aut_{\alpha}) = L(\alpha)$.

Задача 3.21. Используя теорему ..., постройте другой алгоритм построения НКА по регулярному выражению и докажите его корректность. Верно ли, что полученный автомат будет совпадать с автоматом Глушкова? Этот алгоритм мы будем называть алгоритмом Томпсона.

Воспользовавшись идеей Глушкова, мы можем построить алгоритм построения ДКА по регулярному выражению. Следуя [?asethiu], пронумеруем по порядку все буквы регулярного выражения, введем аналоги $First(\cdot), Last(\cdot), Follow(\cdot)$ и с помощью них построим автомат, состояниями которого будут подмножества позиций в регулярном выражении.

Сначала формально определим ДКА \overline{Aut}_{α} , который будем строить, затем предъявим строящий его алгоритм. Итак, пусть α — регулярное выражение над Σ , определим $\overline{\alpha}\#\in(\Sigma\cup\#)^*$ как слово, полученное из α стиранием всех скобок и знаков операций и добавлением # в конец, и $S=[1,\ldots,|\overline{\alpha}|]\subset\mathbb{N}$. Определим функции $firstpos,lastpos:REG\to 2^S$ и $followpos:S\to S$:

$$firstpos(\alpha) = \{i \in S | \overline{\alpha}[i] \Sigma^* \cap L(\alpha) \neq \emptyset \}$$
 (3.9)

$$lastpos(\alpha) = \{ i \in S | \Sigma^* \overline{\alpha}[i] \cap L(\alpha) \neq \emptyset \}$$
 (3.10)

$$\forall i \neq |\overline{\alpha}| \ followpos(i) = \{ j \in S | \Sigma^* \overline{\alpha}[i] \overline{\alpha}[j] \Sigma^* \cap L(\alpha) \neq \emptyset \}, follow(|\overline{\alpha}|) = \emptyset$$
 (3.11)

Здесь же становится ясно, зачем мы добавили #: в отличие от автомата Глушкова здесь нет выделенного стартового состояния [не заданного позицией в регулярном выражении], поэтому нужно выделить отдельно финальные состояния, в которые совершается переход по буквам $lastpos(\alpha)$. За решеткой не следует никакого символа, поэтому $follow(|\overline{\alpha}|) = \emptyset$.

Определим $\overline{Aut}_{\alpha} = (\overline{Q}, \Sigma, \overline{Start}, \overline{Final}, \overline{T})$, в котором

- $\overline{Q} = 2^S \cup \{ \mathbf{T} \}$ подмножества множества буквенных позиций регулярного выражения α ;
- Σ оригинальный алфавит;
- $\overline{Start} = firstpos(\alpha)$ множество позиций первых букв $L(\alpha)$;
- $\overline{Final} = \{A \in 2^S \mid lastpos(\alpha) \subset A\}$ финальные состояния помечены позициями, среди которых есть позиции последних букв слов из $L(\alpha)$;
- \bullet \overline{T} таблица переходов вида

$$\forall A \in 2^S \ \overline{T}(A,x) = \begin{cases} \{followpos(i) \mid i \in A, x = \overline{\alpha}[i]\}, & \text{если непусто} \\ \mathbf{T}, & \text{иначе} \end{cases}, \quad \forall x \in \Sigma \ \overline{T}(\mathbf{T},x) = \mathbf{T}$$

Задача 3.22. Проверьте, что $L(\overline{Aut}_{\alpha}) = L(\alpha)$.

Теперь предъявим алгоритм для его построения. Функции $firstpos(\cdot)$, $lastpos(\cdot)$ и $followpos(\cdot)$ можно вычислить рекурсивным обходом по синтаксическому дереву регулярного выражения. В листьях стоят атомарные регулярные выражения, в остальных узлах — операции +, \cdot и *. Например, для выражения $a(a+b)^*ba^*b$ имеем выражение на $\Pi UK UA$.

Каждый узел v синтаксического дерева можно рассматривать как корень поддерева, являющегося синтаксическим деревом некоторого регулярного выражения β_v . Поэтому функции $firstpos(\cdot)$ и $lastpos(\cdot)$ будем вычислять на вершинах дерева: firstpos(v) зададим как $firstpos(\beta_v)$, аналогично определим lastpos(v). Для их вычисления дополнительно введем функцию nullable: $REG \to \{0,1\}$, равную 1, если в языке регулярного выражения есть ϵ , и 0 в противном случае. Все три функции вычисляем реккурентно по следующим правилам:

. . .

Тогда $firstpos(\alpha)$ и $lastpos(\alpha)$ получаются как значения в корне дерева.

Зная значения $firstpos(\cdot)$ и $lastpos(\cdot)$, вычислим $followpos(\cdot)$. Ее можно вычислить, обходя в ширину синтаксическое дерево и в каждой вершине v проделывая следующие операции

ullet если в v стоит операция \cdot , а ее потомки есть v_1 слева и v_2 справа, то

$$\forall i \in lastpos(v_1) \quad followpos(i) + = firstpos(v_2)$$

ullet если стоит операция *, а ее потомок есть u, то

$$\forall i \in lastpos(u) \quad followpos(i) + = firstpos(u)$$

• в остальных случаях ничего не происходит.

Теперь можно смело строить ДКА. Достаточно рассматривать лишь состояния, достижимые из $firstpos(\alpha)$.

- 1. Построить синтаксическое дерево выражения α .
- 2. Начиная с листьев, реккурентно по дереву вычислить $firstpos(\cdot)$ и $lastpos(\cdot)$, используя таблицу ...
- 3. Обходя в ширину синтаксичесткое дерево, вычислить $followpos(\cdot)$.
- 4. Отметить $firstpos(\alpha) \in 2^S \cup \mathbf{T}$ как стартовое состояние, пометить его.
- 5. Пока существует помеченное состояние с непомеченным соседом [то есть имеется переход $q \xrightarrow{x} \overline{T(q,x)}$, в котором q помечено, а $\overline{T(q,x)}$ нет] пометить этого соседа.
- 6. Финальные состояния все подмножества S, содержащие $lastpos(\alpha)$.

Пример 21. Построим согласно приведенному алгоритму ДКА по РВ $a(a+b)^*ba^*b$. На картинке ПИКЧА показано синтаксическое дерево и результаты вычисления $firstpos(\cdot)$ и $lastpos(\cdot)$. Вершины, для которых nullable равен 1, мы выделили квадратиком.

Теперь вычислим $followpos(\cdot)$. В корне дерева имеем followpos(6) = 7. В его левом потомке получаем followpos(4) = followpos(5) = 6. На следующем уровне имеем followpos(4) = followpos(5) = 5. Далее имеем followpos(1) = followpos(2) = followpos(3) = 4. На последних уровнях добавляем к followpos(1), followpos(2), followpos(3) подмножество $\{2,3\}$. Итоговые значения $followpos(\cdot)$ записаны в табличке:

. . .

Стартовое состояние ДКА равно $firstpos(a(a+b)*ba*b) = \{1\}$, по a совершается переход в $followpos(1) = \{2,3,4\}$, а по b — в состояние \mathbf{T} : никакие слова данного языка не начинаются на b. В позициях 2,3,4 a стоит на месте 2, а b — на местах 3 и 4, поэтому

$$\{2,3,4\} \xrightarrow{a} followpos(2) = \{2,3,4\}; \quad \{2,3,4\} \xrightarrow{b} followpos(3) \cup followpos(4) = \{2,3,4,5,6\}$$

Аналогично достраиваем остальные переходы, имеем ДКА на следующей картинке.

Задача 3.23. (a) Проверьте, что приведенный выше алгоритм корректно строит \overline{Aut}_{α} .

(b) Несложно убедиться в том, что в построенном по α ДКА всего $O(2^{|\alpha|})$ состояний. Предъявите семейство регулярных выражений α_n таких, что $|\alpha_n| = \Theta(n)$, а число состояний в $\overline{Aut}_{\alpha_n}$ равно $\Omega(2^n)$.

Построение конечного автомата по регулярному выражению помогает решить задачу conocmaвления образцов¹: дано слово w и регулярное выражение α , верно ли, что $w \in L(\alpha)$? Достаточно построить конечный автомат Aut_{α} любыми из вышеперечисленных алгоритмов и проэмулировать его работу на w. Аргументом за использование того или иного алгоритма является время его работы и размер используемой памяти.

¹pattern matching

Задача 3.24. Оцените асимптотически сложность [в худшем случае]

- (a) каждого из трех алгоритмов построения конечного автомата по регулярному выражению как $O(f(|\alpha|))$;
- (b) время работы каждого из построенных автоматов на входном слове как $O(f(|w|, |\alpha|))$.

Подробнее об этом, а также о других использованиях регулярных языков в работе с текстами мы поговорим в главе ...

Алгебры Клини и уравнения с регулярными коэффициентами

Сформулируем алгебраически свойства, которыми мы пользуемся при работе с регулярными выражениями. Это даст еще один способ интерпретации регулярных языков.

Определение. Алгебра Клини \mathcal{K} — множество с операциями $+, \cdot, *,$ удовлетворяющими аксиомам: (здесь a, b, c - любые элементы множества)

- a + (b + c) = (a + b) + c, a(bc) = (ab)c
- a + b = b + a
- \bullet a+a=a
- a + 0 = a
- $a \cdot 1 = 1 \cdot a = a, a \cdot 0 = 0 \cdot a = 0$
- a(b+c) = ab + ac, (a+b)c = ac + bc
- $1 + aa^* = 1 + a^*a = a^*$

Кроме того введем на \mathcal{K} отношение \leq таким образом

$$a \leqslant b \iff a+b=b$$

и потребуем выполнения следующих аксиом:

- $b + ac \le c \iff a^*b \le c$
- $b + ca \le c \iff ba^* \le c$

Пусть Σ^* — алгебра Клини регулярных выражений, тогда квадратные матрицы с коэффициентами из регулярных выражений образуют алгебру Клини $Mat(n, \Sigma^*)$. Операции $+, \cdot$ — линейно алгебраические, а * вводится как

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \sum_{n=0}^{\infty} \begin{bmatrix} a & b \\ c & d \end{bmatrix}^n, \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix}^0 = \begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$

Покажем, что для любой такой матрицы $A^* = I + A + A^2 + \ldots$, где I — диагональная матрица с ϵ на диагонали, а умножение понимается в линейно-алгебраическом смысле. Действительно, в матрице A^n стоят слова от a, b, c, d длины n, покажем, что

$$A^{n} = \begin{bmatrix} [(a+bd^{*}c)^{*}]_{n} & [(a+bd^{*}c)^{*}bd^{*}]_{n} \\ [(d+ca^{*}b)^{*}ca^{*}]_{n} & [(d+ca^{*}b)^{*}]_{n} \end{bmatrix}$$

где $[L]_n$ — слова, содержащие суммарно n букв a,b,c,d. Это доказывается по индукции, база при n=1 очевидна. Теперь рассмотрим $A^{n+1}=A^n\cdot A$:

$$\begin{bmatrix} [(a+bd^*c)^*]_n & [(a+bd^*c)^*bd^*]_n \\ [(d+ca^*b)^*ca^*]_n & [(d+ca^*b)^*]_n \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} =$$

$$= \begin{bmatrix} [(a+bd^*c)^*]_n a + [(a+bd^*c)^*bd^*]_n c & [(a+bd^*c)^*]_n b + [(a+bd^*c)^*bd^*]_n d \\ [(d+ca^*b)^*ca^*]_n a + [(d+ca^*b)^*]_n c & [(d+ca^*b)^*ca^*]_n b + [(d+ca^*b)^*]_n d \end{bmatrix}$$

Что имеем покомпонентно? Любое слово из $[(a+bd^*c)^*]_{n+1}$ оканчивается либо на a (все такие слова есть очевидно $[(a+bd^*c)^*]_na)$, либо на c (все такие образуют $[(a+bd^*c)^*bd^*]_nc)$, тогда $[(a+bd^*c)^*]_na+[(a+bd^*c)^*bd^*]_nc=[(a+bd^*c)^*]_{n+1}$. Аналогично рассматриваются остальные элементы матрицы A^{n+1} : надо просто посмотреть, на какие буквы заканчиваются слова из $[(a+bd^*c)^*bd^*]_{n+1}$, $[(d+ca^*b)^*ca^*]_{n+1}$, $[(d+ca^*b)^*]_{n+1}$.

Для матриц $N \times N$ сделаем следующее: разобьем матрицу на блоки и определим

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix}^* = \begin{bmatrix} (A+BD^*C)^* & (A+BD^*C)^*BD^* \\ (D+CA^*B)^*CA^* & (D+CA^*B)^* \end{bmatrix}$$

Эта конструкция определена корректно: здесь звезда Клини применется лишь к прямоугольным матрицам.

Это поможет в поиске решений линейных уравнений от регулярных функций. Пусть есть регулярные выражения a_{ij}, b_j , переменные x_i и система уравнений $x_i = \sum a_{ij} x_j + b_j$. Система может быть записана как x = Ax + b, где $x = (x_i), A = (a_{ij}), b = (b_i)$.

Теорема 3.3. Пусть дана линейная система $x_i = \sum a_{ij}x_j + b_j$, где $a_{ij}, b_j \in \mathcal{K}$, $x = (x_i)$ — вектор из x_i в линейно-алгебраическом смысле этого слова, а $A = (a_{ij})$ — матрица из регулярных выражений. Тогда $x = A^*b$ — минимальное по включению решение.

Задача 3.25. Докажите эту теорему.

Bывод. Если a, b — регулярные выражения, то a^*b — наименьшее по включению решение уравнения x = ax + b.

Задача 3.26. В условиях данного следствия докажите, что если $\epsilon \notin a$, то минимальное решение также является единственным.

Задача 3.27. Найдите все решения уравнения x = ax + b, если $\epsilon \in a$.

Решение данной системы можно интерпретировать в терминах конечных автоматов. $x = Ax + b, a_{ij}, b_i$ — регулярные выражения, для них есть НКА A_{ij}, B_i . Заведем состояния s_1, \ldots, s_n, f , где s_i соответствует переменной x_i , а f — финальное — соответствует свободному члену.

«Вклеим» автоматы A_{ij} между s_i и s_j и B_i Между s_i и f. Тогда x_i есть просто слова, которые можно прочитать по пути из s_i в f, проходя через s_1, s_2, \ldots, s_n .

Обобщения регулярных выражений

Мы можем также рассматривать регулярные выражения, использующие дополнительные операции, вроде ∩ [пересечение] и C [дополнение]. Введем расширенные регулярные выражения, то есть PB, использующие дополнения.

Определение. Множество расширенных регулярных выражений xREG над алфавитом Σ — множество строчек над алфавитом $\Sigma \cup \{+,\cdot,*,(,),\complement\}$, удовлетворяющее следующим правилам:

- \varnothing, ϵ, x для любой $x \in \Sigma amomaphile$ регулярные выражения;
- если α и β регулярные выражения, то $\alpha+\beta, \alpha\beta, \alpha^*, (\alpha), \alpha^{\complement}$ расширенные регулярные выражения;
- никаких других расширенных регулярных выражений нет, то есть любое расширенное регулярное выражение может быть получено из атомарных с помощью операций $+,\cdot,*,\mathfrak{C}$ и использования скобок.

Язык $L(\alpha)$ расширенного регулярного выражения α определяется так же, как и для обычного регулярного выражения, с тем дополнительным условием, что $L(\alpha^{\complement}) = L(\alpha)^{\complement}$. По формулам де Моргана $\alpha \cap \beta = (\alpha^{\complement} + \beta^{\complement})^{\complement}$, поэтому пересечение как операция выражается через остальные.

Определение. Регулярный язык $L \subset \Sigma^*$ назовем *-*свободным*², если он может быть задан расширенным регулярным выражением без звезды Клини.

Заметим, что $\varnothing^{\complement} = \Sigma^*$. Таким образом, в частности, язык всех слов, содержащих подслово $w \in \Sigma^*$, является *-свободным: он может быть задан регулярным выражением $\varnothing^{\complement} w \varnothing^{\complement}$.

Задача 3.28. Покажите, что $(ab)^*$ *-свободен.

Peшение. Построим для $(ab)^*$ расширенное регулярное выражение, не использующее звездочку Клини. Непустое слово лежит в данном языке титтк выполняются следующие условия:

- оно начинается на a и заканчивается на b;
- за каждой буквой a следует буква b;
- ullet за каждой буквой b следует буква a.

Слова, удовлетворяющие первому условию, образуют язык $a\varnothing^{\complement}b$. Слова, удовлетворяющие второму условию, не содержат подслова a^2 , следовательно, описываются расширенным РВ $(\varnothing^{\complement}a^2\varnothing^{\complement})^{\complement}$. Язык слов, удовлетворяющих третьему условию, есть по аналогии $(\varnothing^{\complement}b^2\varnothing^{\complement})^{\complement}$. Искомый язык есть пересечение всех этих трех языков; так как они *-свободны, то и $(ab)^*$ *-свободен.

Между тем для языка $(a^2)^*$ не существует *-свободного расширенного регулярного выражения. Шютценберже сформулировал критерии *-свободности языка; к нему мы вернемся позднее.

Задача 3.29. $\Sigma = \{a_0, \dots a_n\}$. Рассмотрим язык L_n , состоящий из слова $(\dots (a_0^2a_1)^2\dots a_n)^2$.

- Покажите, что любое регулярное выражение, задающее L_n , имеет длину $\Omega(2^n)$.
- Постройте регулярное выражение c one paque d nepeceuenus, имеющее длину $O(n^2)$.

Решение. • Решение почти аналогично решению задачи XXX: кратчайшее PB, задающее данный язык, не может содержать звезды Клини и, следовательно, содержит по разу все буквы слова $(\dots (a_0^2a_1)^2\dots a_n)^2$, коих очевидно $\Omega(2^n)$.

• В прошлом пункте нельзя было использовать звездочку Клини, здесь же можно: данный язык можно представить как пересечение некоторых бесконечных языков. Если точнее, мы получим $(\dots (a_0^2a_1)^2\dots a_n)^2$ как пересечение n+1 языка, каждый из которых записывается регулярным выражением длины не более Cn для константы $C \in \mathbb{N}$.

Для всех $k \in [1; n]$ рассмотрим языки

$$L_k := (\dots((((a_0 + \dots a_{k-1})^* a_k)^2 a_{k+1})^* a_{k+2})^* \dots a_n)^*$$

и введем также $L_0=(\dots((a_0^2a_1)^*a_2)^*\dots a_n)^*$. Докажем, что $(\dots(a_0^2a_1)^2\dots a_n)^2=\bigcap_{i\in[0;n]}L_i$. Слово лежит в $L_n=((a_0+\dots a_{n-1})^*a_n)^2$ титтк оно имеет вид $w_1a_nw_2a_n$, где $w_1,w_2\in\{a_0,\dots a_{n-1}\}$. Это самое слово должно лежать в $L_{n-1}=(((a_0+\dots a_{n-2})^*a_{n-1})^2a_n)^*$, тогда

$$w_1 a_n w_2 a_n \in L_{n-1} \iff w_1 = u_1 a_{n-1} u_2 a_{n-1}, w_2 = u_3 a_{n-1} u_4 a_{n-1}$$

Продолжая по аналогии для $L_{n-2}, \dots L_0$, получаем, что в пересечении всех языков L_i лежит ровно одно слово $(\dots (a_0^2a_1)^2\dots a_n)^2$. При этом длина регулярного выражения L_k равна

$$\underbrace{2(2k+3)}_{\text{длина }(a_0+\dots a_{k-1})^*a_k)^2} + \underbrace{2(n-k)}_{\text{остальные буквы и операции}} + \underbrace{2(n-k-1)}_{\text{скобки}} = 4n+4$$

, таким образом, длина всего выражения есть $(4n+4)(n+1)+n=O(n^2)$, как и требовалось.

²star-free по-английски