Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Magnetfelder von Spulen Protokoll

Praktikant: Michael Lohmann

Felix Kurtz

E-Mail: m.lohmann@stud.uni-goettingen.de

felix.kurtz@stud.uni-goettingen.de

Betreuer: Björn Klaas

Versuchsdatum: 05.09.2014

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3			
2	Theorie	3			
3	Durchführung				
4	Auswertung4.1 Eichen des Ladungsmessgeräts4.2 Vergleich der beiden Messmethoden4.3 Messung mit der Hallsonde4.4 Homogenität der Magnetfelder4.5 Bestimmung von μ_0	4			
5	Diskussion	4			
Lit	teratur	4			

1 Einleitung

Spulen sind für die Transformation von Spannungen essentiell. Jede Spule besitzt ein charakteristisches Magnetfeld mit dessen genauer Kenntnis man zum Beispiel Untersuchungen wie Magnetresonanztomographie ermöglichen kann. Dafür ist allerdings eine sehr genaue Beschreibung des Magnetfeldes der Spule notwendig. Für zwei Spulen wurde es hier durchgeführt.

2 Theorie

[Mes10]

3 Durchführung

Zuerst muss der Stromintegrator kalibriert werden. Dazu Danach misst man das Magnetfeld der Langen Spule (Primärspule) mit der Induktionss-

Abbildung 1: Magnetfeldmessung mit der Induktionsspule [?, Datum: 09.10.2014]

pule nach dem Aufbau aus Abb. 1, indem der Schalter im Primärkreis kurz geöffnet und wieder geschlossen wird. Der durch den erzeugten Spannungspuls resultierende Strom wird über das Ladungsmessgerät integriert. Für verschiedene Positionen auf der Spulenachse wird die Anzeige des Ladungsmessgerätes notiert. Die Schrittweite beträgt dabei 2 cm und die Messung wird auch außerhalb der Spule fortgeführt.

Zu den weiteren Messungen wird die Hall-Sonde benutzt. Diese schließt man an den

Strom an und auf dem Display erscheint das gemessene Magnetfeld in Gauss. Man startet bei allen drei Spulen (inkl. Helmholtzspule) in der Mitte der Spule und bewegt die Sonde bei jeder Messung um 1 cm heraus. Zuletzt werden die Daten der einzelnen Spulen wie Länge, Durchmesser und Wicklungszahl notiert.

4 Auswertung

4.1 Eichen des Ladungsmessgeräts

$$R_{\text{ges}} = R_1 + \left(\frac{1}{R_2} + \frac{1}{R_L + R_{\text{int}}}\right)^{-1}$$
 (1)

$$R_2 I_2 = (R_L + R_{\rm int}) I_{\kappa}$$

$$I_{\text{ges}} = I_{\kappa} + I_2 = I_{\kappa} \left(1 + \frac{R_L + R_{\text{int}}}{R_2} \right)$$

$$R_{\kappa} = \frac{U}{I_{\kappa}} = \frac{U}{I_{\text{ges}}} \left(1 + \frac{R_L + R_{\text{int}}}{R_2} \right) = R_{\text{ges}} \left(1 + \frac{R_L + R_{\text{int}}}{R_2} \right) \tag{2}$$

$$\kappa = (426.9 \pm 0.4) \,\mathrm{pC/Skt}$$
 (3)

Da der Fehler so gering ist wird er in der folgenden Berechnung nicht berücksichtigt.

- 4.2 Vergleich der beiden Messmethoden
- 4.3 Messung mit der Hallsonde
- 4.4 Homogenität der Magnetfelder
- 4.5 Bestimmung von μ_0

5 Diskussion

Literatur

[Mes10] Meschede, Dieter: *Gerthsen Physik*. Springer-Verlag, Berlin Heidelberg, 24. Auflage, 2010, ISBN 978-3-642-12893-6.

Abbildung 2: Ladung in Abhängigkeit der angezeigten Skalenteile.

Messungmethode	Spule	$\mu_0 [10^{-7} \mathrm{H m^{-1}}]$	
Induktionsspule	Lange Spule	13.020 ± 0.020	
	Lange Spule	13.67 ± 0.11	
Hallsonde	Dicke Spule	13.28 ± 0.13	
	Helmholtzspule	12.39 ± 0.05	

Tabelle 1: Aus den verschiedenen Messungen bestimmte Magnetische Feldkonstante

Abbildung 3: Verlauf des Magnetfeldes: Vergleich der beiden Messmethoden mit der Theorie anhand der Langen Spule.

Abbildung 4: Verlauf des Magnetfeldes: Vergleich der langen und der dicken Spule sowie jeweils mit der Theorie.

Abbildung 5: Verlauf des Magnetfeldes der 3 Spulen: Messung mit der Hallsonde.