Experimental design and data life cycle for omics data experiments A short introduction

Dr. Friederike Ehrhart, Assistant professor

Maastricht University, Department of Bioinformatics – BiGCaT Maastricht University Medical Centre, Department of Psychiatry and Neuropsychology

Helis Academy

Content

- Research strategies and workflows for omics data generation
- Raw data quality control and preprocessing
- Data life cycle making data FAIR, especially re-usable

Research strategies

Hypothesis-driven research "reductionistic"

Data driven research "holistic"

Example: Cancer research

Data – driven: Which pathways/processes are affected in cancer cells?

- Experimental design: tumor samples vs. healthy controls
- Collection of tissue samples from tumors and healthy tissue
- Extract molecules of interest (mRNA, microRNA, proteins, metabolites)
- Quantify molecules of interest
- Quality control and statistics
- List of molecules with changed quantities
- Follow up analysis and interpretation

Lauren

Considerations for experimental design

*** * * * *

- Sensitivity reproducibility coverage
 - RNAseq all depends on sequencing depth,
 the more the better but also more expensive
 - Mass Spectrometry
 - targeted approaches are generally more sensitive than untargeted
 - reproducibility is influenced more by sample preparation protocol
 - coverage is limited in targeted approaches
- Statistical power
 - How to do it properly check: https://doi.org/10.1093/bioinformatics/bti456
 - What has been accepted in the current research?
 - Transcriptomics about 20 samples (plus 20 controls)
 - Mass spectrometry/micro arrays min. 4
 - Depends on previous studies check literature and ask your experts for the specific method!

Limit of detection

https://doi.org/10.1038/s41467-020-16937-8

Molecules of interest

*** * * * *

- Gene expression
 - Transcriptome
 - mRNA
 - microRNA
 - Whole RNA
 - Proteins
 - Proteome
 - Peptidome
 - Special proteome: e.g. phosphoproteomics
- Metabolite profiles
 - Targeted metabolomics
 - Untargeted metabolomics
 - Special metabolomics lipidomics

http://www.stathiskanterakis.com/?p=286

The nature of omics data

Molecules	Method	Kind of data
Transcriptome	Microarray	Fluorescence light intensities
Transcriptome	RNAseq	Counts
Proteome/peptidome	Mass spectrometry	Relative (or absolute) peak size – fold
Metabolome		change between experiment and control or absolute values for concentrations

Affymetrix chips: one sample per array

For Affymetrix chips each gene is measured by <u>dozens of probes</u> that are randomly distributed across the chip; these probes together form a <u>probeset</u>

Affymetrix Chips

Probe identifier

Vlaanderen-Nederland
Europees Fonds voor Regionale Ontwikkeling

Illumina: bead chips

From raw to processed data

- **Quality Control**
- Pre-processing
 - Background correction
 - Normalisation
 - Filtering
 - Annotation
- Recommended R packages and tutorial:

oconductor

beta-actin QC: OK all 31/5' ratios < 3

Statistical evaluation

T-test

ARRAYANALYSIS.ORG

- Correction for multiple testing
- ANOVA / modelling
- > List of differentially expressed genes
- Further analysis
 - Pathway/GO/network analysis

Data publication

- * * * * * * *
- With publication of the paper, also the raw and/or processed data needs to be published
 - ArrayExpress at EBI, Gene Expression Omnibus (GEO) at NCBI

- MetaboLights for metabolomics/proteomics
- Zenodo or figshare for more general data
- Standards for proper description for publication of data:
 - MIAME Minimum information about a microarray experiment
 - MIAPE-MS Minimum information about a proteomics experiment,
 MS
- Metadata annotation
 - Standardized language / ontologies
 - MeSH terms for disease descriptions
 - No abbreviations/codes
- Scientific data journal for data publications

Thank you for your attention! Any questions?

