DL Kiso VizWiz_VQA Solution

工夫点

- 学習データの選択
- モデルの選択
- 結果のアンサンブル
- gdownを利用し、Google Driveからインスタンス(ランタイム)直下にtrain.zipやvalid.zipをダウンロードし、unzipで展開し利用した。

学習データの作成・選択

まず回答のデータセットを作成。trainデータセットの中で3つ以上一致して且つ確信度がyesのものが多いものを回答とした。→決まらない場合は2つ以上一致して且つ確信度がyesのものが多いもの→それでも決まらないものは学習データに加えない

作成したjson

llavaの学習形式のjsonなど必要な形式に適宜変換した。(<u>https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md</u> を参考に)

DL Kiso VizWiz_VQA Solution 1

モデルの選択

最初に試した方法: GLM-4V-9B (<u>Github</u> / <u>HuggingFace</u>) を使用したLoRAのファインチューニングを実施。 LLMのパラメーターが9B、Vision encoderのパラメーターが4Bで計13Bの非常に大きいモデル H100(VRAM 80GB)で3時間(2epoch)ほど、今回のデータセットに合わせて編集した。

finetune_vision.py , lora.yaml を使いLoRAでファインチューニング。
nohup python finetune_vision.py . THUDM/glm-4v-9b configs/lora.yaml > finetune.log 2>&1 &
trainable params: 6,397,952 || all params: 13,912,718,848 || trainable%: 0.0460

出力が崩壊(アラビア語やロシア語が混ざってしまう)してしまう現象に遭遇した。

理由として考えられるもの

- lora_rank=8で小さすぎたため
- 学習不足のため
- 推論時のパラメーター(top_pなど)をあまり試せなかったため

結果 0.48

そもそも推論だけで2時間ほどかかり、お金がもったいないため断念。よって、方針を変更し、もう少し小さいモデルで行い、実験を繰り返すことにした。

<u>Phi-3-vision</u> のファインチューニング(LoRA) <u>HuggingFace</u> ファインチューニングコードは <u>https://github.com/GaiZhenbiao/Phi3V-Finetuning</u>[1]より引用、改変。

A100(40GB)を使用。

DeepSpeed ZeRO-2を使用。Ir=1e-5, max_seq_length=100に変更。6epoch実施。時間は8時間ほど。 以下実験結果をもとに推論のパラメーターを色々変えて試したもの。

黄色のものをメインにアンサンブルし、一番良いものを提出した。

n		max_new_token	top_p	temperature	do_sample	result
2_2	2epoch学習	10(\n 記号より 前のみ抽出)			False	0.66949
2_3	2epoch学習	10(\n 記号より 前のみ抽出)	0.9	0.7	True	0.62747
2_6	2epoch学習	10(\n 記号より 前のみ抽出)	0.3	0.3	True	0.66951
2_6	2epoch学習	10(\n 記号より 前のみ抽出)	0.3	0.3	True	0.664
2_7	2epoch学習	10(\n 記号より 前のみ抽出)	0.2	0.2	True	0.66864
3	3epoch学習	4	0.9	0.7	True	0.59746

DL Kiso VizWiz_VQA Solution 2

3_1	3epoch学習	10(\n 記号より 前のみ抽出)			False	0.65313
3_2	3epoch学習	10(\n 記号より 前のみ抽出)	0.3	0.3	True	0.65259
4_1	4epoch学習	10(\n 記号より 前のみ抽出)			False	0.64152
5	5epoch学習	10(\n 記号より 前のみ抽出)	0.9	0.7	True	0.61463
5_1	5epoch学習	10(\n 記号より 前のみ抽出)			False	0.6522
5_2	5epoch学習	10(\n 記号より 前のみ抽出)	0.3	0.3	True	0.65258
6	6epoch学習	4	0.9	0.7	True	0.59775
6_1	6epoch学習	10(\n 記号より 前のみ抽出)			False	0.65118
6_2	6epoch学習	10(\n 記号より 前のみ抽出)	0.3	0.3	True	0.64959
ensemble						0.67

max_new_tokenを大きくするとなどにすると、no \nunanswerable \n こういう回答ばかりになっていた。それで、まず unanswerable が出る4にしたが、chicken noo などのtoken数が足りないことによる回答があったため、max_new_token:10にして、\n以下を切れば望ましい答えが出力させた。

また、2_2(do_sample=False)と4の unanswerable の比率を比較すると、2_2が51%、4が39%

一般的に一貫性を高め、創造性を下げようとすると、データの多様性がなくなり、同じ回答ばかり出力される。その バランスが難しかった。結局アンサンブルしてもっともよい精度の提出した。

反省点

調査不足で、Phi-3 visionと同時期に発表されたGoogleのPaliGemmaでファインチューニングすれば73~75点ほどが出るらしい。<u>Huggingface</u>にモデルあり。提出前日まで気付かなかった。

<u>VizWiz VQA</u> (train+val)	Accuracy (Test server - std)	73.7	75.52	
TallvOA	Accuracy	81.72	84.86	

PaligemmaでFinetuneすればもっと精度があげられると思うが今回は実施しなかった。

DL Kiso VizWiz_VQA Solution 3