

FIRST SEMESTER 2015-2016 Course Handout (Part II)

Dated: 03/08/2015

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : MATH F215

Course Title : ALGEBRA I

Instructor-in-charge : PRADIPKUMAR KESKAR

1. Scope and Objective of the Course:

The objective of this course is to teach the importance of fundamental algebraic structures in modern mathematics and to relate the general results so obtained to concrete applications.

- 2. **Text Book:** I.N. Herstein: Topics in Algebra, 2nd ed., John Wiley (1999)
- 3. Reference Books:
- 1. Michael Artin: Algebra, 1st edition, Prentice Hall of India (1991)
- 2. John B. Fraleigh: A First Course in Abstract Algebra, 7th edition, Pearson (2003)
- 3. David S. Dummit & Richard M. Foote: Abstract Algebra, 2nd edition, John Wiley (1999).
- 4. Joseph Gallian : Contemporary Abstract Algebra, 8th edition, Brooks/Cole, Cengage learning (2012).

4 Course Plan:

Lecture No.	Learning objective	Topics	Sections of text	
Part 1 : G	Group Theory			
1-3	Understanding the concept of a group	Definition & Examples of Groups, Preliminary Lemmas	2.1, 2.2, 2.3	
4-6	Concept of subgroup has more implications than a subset	Subgroups, A counting Principle	2.4, 2.5	
7-9	Generalization of modular arithmetic to arbitrary groups	Normal subgroups and Quotient groups	2.6	
10-12	Which re-labeling of group elements is allowed?	Homomorphisms, Automorphisms	2.7, 2.8	
13	Abstract groups are not that abstract after all.	Cayley's Theorem	2.9	
14-16	An important type of groups	Permutation Groups	2.10	
17-20	Understanding structure of abstract groups	Another counting principle, Sylow's theorems	2.11, 2.12	
Part 2 : R	Ling Theory			
21,22	Basic concept of a ring	Definition & Examples of Rings, Ring of real Quaternions	3.1, 3.2	
23, 24	Which maps between rings relate their structures?	Homomorphism & Examples	3.3	
25-27	Modular arithmetic in rings	Ideals & Quotient Rings	3.4, 3.5	
28, 29	Process of creating fractions	Field of Quotients of ID	3.6	
30, 31	Important rings in Algebra	Polynomial Rings	3.9	
32-36	Ideals in these rings are nice	Euclidean rings and Principal Ideal Rings	3.7, 3.8	
37-40	Rings in which factorization is a reliable process	Unique Factorization Domains, Factorization of polynomials	3.10, 3.11	

5. Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Date & Time	Nature of
No.	Component		(per cent)		Component
•		·			
1.	Mid Term Test	90 min.	35	9/10 2:00 - 3:30 PM	Closed Book
2.	Quizzes		20	unannounced	Closed book
_					
3.	Compre. Exam.	3 hrs.	45	11/12 FN	Open & Closed
					Book

- 6. Chamber Consultation Hour: To be announced in the class.
- 7. **Notices:** Notices concerning this course will be displayed on the Notice Board of Mathematics Group. Also nalanda web-site can be used to post course material as well as notices.
- 8. **Makeup:** Prior permission is needed for makeup; makeup will only be given if enough evidence is there for not being able to take regular test. Quizzes will not have any make-ups.

Instructor-in-charge

MATH F215

