Kansainväliset matematiikkaolympialaiset 2008

Tehtävät ja ratkaisuhahmotelmat

1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun BC keskipiste, leikkaa suoran BC pisteissä A_1 ja A_2 . Vastaavasti pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun CA keskipiste, leikkaa suoran CA pisteissä B_1 ja B_2 , ja pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun AB keskipiste, leikkaa suoran AB pisteissä C_1 ja C_2 . Osoita, että pisteet A_1 , A_2 , B_1 , B_2 , C_1 ja C_2 ovat samalla ympyrällä.

Ratkaisu. Olkoon A_0 sivun BC keskipiste ja B_0 sivun AC keskipiste. Ainoa piste, joka voi olla tehtävässä vaaditun ympyrän keskipiste, on janojen A_1A_2 , B_1B_2 ja C_1C_2 keskinormaalien leikkauspiste. Sanotut keskinormaalit ovat myös kolmion sivujen keskinormaaleja, ja ne leikkaavat kolmion ympäri piirretyn ympyrän keskipisteessä O. Olkoon kolmion ABC ympäri piirretyn ympyrän säde R. Koska $A_0H = A_0A_1$, Pythagoraan lauseesta saadaan

$$OA_1^2 = OA_0^2 + A_0A_1^2 = OA_0^2 + A_0H^2.$$
 (1)

Olkoot K ja L janojen AH ja CH keskipisteet. Kolmioista BCH ja CAH saadaan $A_0L\|BH$ ja $B_0L\|AH$. Koska $BH\bot AC$ ja $OB_0\bot AC$, niin $A_0L\|OB_0$. Vastaavasti $B_0L\|OA_0$. Nelikulmio A_0LB_0O on siis suunnikas, joten $OA_0=B_0L=KH$. Koska $KH\|OA_0$, HA_0OK on suunnikas. Samoin KA_0OA on suunnikas. Siis $A_0K=OA=R$. Sovelletaan suunnikaslausetta suunnikkaaseen HA_0OK ; saadaan

$$2(OA_0^2 + A_0H^2) = OH^2 + A_0K^2 = OH^2 + R^2.$$
(2)

Yhtälöistä (1) ja (2) saadaan heti $OA_1^2 = \frac{1}{2}(OH^2 + R^2)$. Tiedetään, että $OA_1 = OA_2$. Toisaalta sama lasku antaa saman arvon suureille OB_1^2 ja OC_1^2 ja $OB_1 = OB_2$, $OC_1 = OC_2$. Kysytyt pisteet ovat siis kaikki samalla O-keskisellä ympyrällä.

2. (a) Todista, että

$$\frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1$$

kaikille reaaliluvuille x, y ja z, jotka ovat eri suuria kuin 1 ja joille pätee xyz = 1.

(b) Osoita, että äärettömän monella rationaalilukukolmikolla x, y, z, missä kaikki luvut ovat eri suuria kuin 1 ja xyz = 1, edellisessä epäyhtälössä vallitsee yhtäsuuruus.

Ratkaisu. (a) Tehdään muuttujanvaihto

$$\frac{x}{x-1} = a, \quad \frac{y}{y-1} = b, \quad \frac{z}{z-1} = c$$

eli

$$x = \frac{a}{a-1}, \quad y = \frac{b}{b-1}, \quad z = \frac{c}{c-1}.$$

On siis todistettava, että $a^2+b^2+c^2\geq 1$, kun abc=(a-1)(b-1)(c-1), kun $a,b,c\neq 1$. Mutta viimeinen yhtälö on yhtäpitävä yhtälöiden

$$a+b+c-1 = ab+bc+ca,$$

$$2(a+b+c-1) = (a+b+c)^2 - (a^2+b^2+c^2),$$

$$a^2+b^2+c^2-2 = (a+b+c)^2 - 2(a+b+c),$$

$$a^2+b^2+c^2-1 = (a+b+c-1)^2 > 0.$$

Väite on siis tosi.

- (b) Edellisen yhtälöketjun viimeinen yhtälö osoittaa, että alkuperäisessä yhtälössä vallitsee yhtäsuuruus jos ja vain jos $a^2+b^2+c^2=a+b+c=1$. Koska $a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)$, yhtäsuuruuden ehto on yhtälöiden a+b+c=1 ja ab+bc+ca=0 yhtäaikainen voimassaolo, sekä $a,b,c\neq 1$. Kun yhtälöistä eliminoidaan c, saadaan $a^2+ab+b^2=a+b$. Tulkitaan tämä b:n toisen asteen yhtälöksi. Yhtälön diskriminantti on $D=(a-1)^2-4a(a-1)=(1-a)(1+3a)$. Saamme rationaalisia ratkaisuja, jos valitsemme a:n niin, että 1-a ja 1+3a ovat rationaaliluvun neliöitä; tällöin diskriminantti ja b ovat myös rationaalisia ja samoin c=1-a-b. Asetetaan $a=\frac{k}{m}$, missä k ja m ovat kokonaislukuja. Jos $m=k^2-k+1$, niin $m-k=(k-1)^2$ ja $m+3k=(k+1)^2$. Tällöin $D=\frac{(k^2-1)^2}{m^2}$ ja $b=\frac{1}{2m}(m-k\pm(k^2-1))$ ja $c=\frac{1-k}{m}$. Kun $k\neq 1$, niin $a,b,c\neq 1$. Kun k käy läpi luonnolliset luvut k=1, saadaan tällä tavoin äärettömän monta yhtälön $a^2+b^2+c^2=1$ toteuttavaa rationaalilukukolmikkoa k=10, ja samoin äärettömän monta tehtävän yhtälön toteuttavaa rationaalilukukolmikkoa k=10, ja samoin äärettömän monta tehtävän yhtälön toteuttavaa rationaalilukukolmikkoa k=10, ja samoin äärettömän monta
- **3.** Osoita, että on olemassa äärettömän monta sellaista positiivista kokonaislukua n, jolle luvulla $n^2 + 1$ on lukua $2n + \sqrt{2n}$ suurempi alkutekijä.

Ratkaisu. Tarkastellaan kokonaislukua $k \geq 20$. Olkoon p jokin luvun $(k!)^2 + 1$ alkutekijä. Silloin p > 20 ja luvuilla p ja k! ei ole yhteisiä tekijöitä. Olkoon $x \equiv k!$ mod p ja 0 < x < p. Jos p/2 > x, niin p - x < p/2 ja $p - x \equiv -k!$ mod p. Joka tapauksessa on olemassa n, 0 < n < p/2 niin, että $n^2 \equiv (k!)^2 \equiv -1$ mod p. p on siis luvun $n^2 + 1$ tekijä. Tästä seuraa edelleen $(p-2n)^2 = p^2 - 4pn + 4n^2 \equiv 4n^2 \equiv -4$ mod p. Siis $(p-2n)^2 \geq p-4$ eli $p \geq 2n + \sqrt{p-4} > 2n + \sqrt{2n}$, jos p > 20, sillä tällöin $p-4 \geq 2n + \sqrt{p-4} - 4 > 2n$. On vielä osoitettava, että ehdon täyttäviä lukuja n on äärettömän monta. Olkoon n ja p edellä tuotetut luvut. Olkoon q jokin luvun $(p^2)! + 1$ alkutekijä. Samoin kuin edellä löydetään n', n' < q/2, niin että q on $n'^2 + 1$:n tekijä ja $q > 2n' + \sqrt{2n'}$. Toisaalta $n'^2 + 1 > q > p^2 > 4n^2 > n^2 + 1$, joten n' > n. Jokaista ehdon täyttävää kokonaislukua kohden löytyy siis suurempi ehdon täyttävä kokonaisluku, joten ehdon täyttäviä kokonaislukuja on äärettömän monta.

4. Määritä kaikki funktiot $f:(0,\infty)\to(0,\infty)$ (f on siis positiivisten reaalilukujen joukossa määritelty funktio, jonka arvot ovat positiivisia reaalilukuja), joille pätee

$$\frac{(f(w))^2 + (f(x))^2}{f(y^2) + f(z^2)} = \frac{w^2 + x^2}{y^2 + z^2}$$

kaikilla positiivisilla reaaliluvuilla w, x, y ja z, jotka toteuttavat ehdon wx = yz.

Ratkaisu. Olkoon f jokin ehdon toteuttava funktio. Asettamalla w=x=y=z=1 saadaan

$$\frac{2f(1)^2}{2f(1)} = 1,$$

josta seuraa f(1) = 1. Olkoon sitten w > 0, x = 1, $y = z = \sqrt{w}$. Nyt

$$\frac{f(w)^2 + 1}{2f(w)} = \frac{w^2 + 1}{2w}.$$

Yhtälö sievenee muotoon

$$(wf(w) - 1)(f(w) - w) = 0.$$

Siis joko f(w)=w tai $f(w)=\frac{1}{w}$. On ilmeistä, että funktiot f(x)=x ja $f(x)=\frac{1}{x}$ (kaikilla x>0) toteuttavat yhtälön. Osoitetaan, että muita yhtälön toteuttavia funktioita ei ole. Tehdään vastaoletus, jonka mukaan tällainen funktio f olisi olemassa. Silloin olisi olemassa positiiviset luvut a ja b, a, $b \neq 1$, niin että $f(a)=\frac{1}{a}$ ja f(b)=b. Asetetaan $w=a, x=b, y=z=\sqrt{ab}$. Saadaan

$$\frac{\frac{1}{a^2} + b^2}{2f(ab)} = \frac{a^2 + b^2}{2ab}$$

eli

$$f(ab) = \frac{ab(a^{-2} + b^2)}{a^2 + b^2}.$$

Mutta f(ab) on joko ab tai $\frac{1}{ab}$. Edellisessä tapauksessa on oltava $a^{-2}=a^2$ eli a=1. Jälkimmäisessä tapauksessa $a^2b^2(a^{-2}+b^2)=a^2+b^2$, josta seuraa b=1. Kumpikin vaihtoehto johti ristiriitaan, joten vastaoletus on väärä.

5. Olkoot n ja k, $k \ge n$, positiivisia kokonaislukuja, ja olkoon k-n parillinen. Olkoon annettuna 2n lamppua, jotka on varustettu numeroin $1, 2, \ldots, 2n$ ja joista jokainen voi palaa tai olla pimeänä. Aluksi kaikki lamput ovat pimeinä. Tarkastellaan askelista koostuvia jonoja. Jokaisella askeleella jonkin lampun tila vaihdetaan päinvastaiseksi (lamppu sytytetään tai sammutetaan).

Olkoon N kaikkien sellaisten k:sta askeleesta muodostuvien jonojen lukumäärä, jotka johtavat tilaan, jossa lamput $1, \ldots, n$ palavat ja lamput $n+1, \ldots, 2n$ ovat pimeinä.

Olkoon M kaikkien sellaisten k:sta askeleesta muodostuvien jonojen lukumäärä, jotka johtavat tilaan, jossa lamput $1, \ldots, n$ palavat ja lamput $n+1, \ldots, 2n$ ovat pimeinä, mutta lamppuja $n+1, \ldots, 2n$ ei ole kertaakaan sytytetty.

Määritä suhde N/M.

Ratkaisu. Sanomme, että jono, jolla päästään alkutilasta tehtävän lopputilaan, on sallittu jono, ja sallittu jono, jolla päästään lopputilaan niin, että minkään lampun $n+1,\ldots,2n$ tilaa ei muuteta, on rajoitettu jono. Rajoitettuja jonoja on olemassa, koska on mahdollista sytyttää kukin lampuista $1,\ldots,n$ ja sen jälkeen sytyttää ja sammuttaa lamppua $1\frac{1}{2}(k-n)$ kertaa. Tarkastellaan nyt mielivaltaista rajoitettua jonoa X ja mielivaltaista lamppua p, $1 \leq p \leq n$. Oletetaan, että jonossa tämän lampun tilaa on muutettu k_p kertaa; k_p on pariton. Valitaan mielivaltainen parillinen määrä jonon sellaisia askelia, joissa lampun p tilaa vaihdetaan ja korvataan jokainen askeleella, jossa lampun n+p tilaa vaihdetaan. Täten saadaan 2^{k_p-1} jonoa, joiden askeleet yhtyvät jonon X askeliin muuten kuin valittujen p:n tilaa muuttavien askelten kohdalla. $(k_p$ -alkioisella joukolla on 2^{k_p-1} parillisalkioista osajoukkoa.) Samalla tavalla voidaan jokaiseen lamppuun $1,\ldots,n$ liittyvät tilanvaihdot siirtää lampun $n+1,\ldots 2n$ tilanvaihdoiksi. Rajoitettuun jonoon X liittyy tällä tavoin $2^{k_1-1} \cdot 2^{k_2-1} \cdots 2^{k_n-1} = 2^{k-n}$ erilaista sallittua jonoa.

Osoitetaan kääntäen, että jokainen sallittu jono Y saadaan rajoitetusta jonosta kuvatulla tavalla: korvataan jokainen lampun q > n tilan muuttava Y:n askel lampun q - n tilan muuttavalla askeleella. Näin saadaan eräs rajoitettu jono X. Koska jonossa Y lamppujen q > n tilaa on muutettu parillinen määrä kertoja, jonon Y ja jonon X lopputilat ovat samat. Selvästi Y saadaan X:stä edellä kuvatulla menetelmällä. Jokaista rajoitettua jonoa kohden on siis tasan 2^{k-n} samaan lopputilaan johtavaa sallittua jonoa. Siis $N/M = 2^{k-n}$.

6. Kuperassa nelikulmiossa ABCD on $BA \neq BC$. Kolmioiden ABC ja ADC sisään piirretyt ympyrät ovat ω_1 ja ω_2 . Oletetaan, että on olemassa ympyrä ω , joka sivuaa puolisuoraa BA eri puolella A:ta kuin B ja puolisuoraa BC eri puolella C:tä kuin B ja joka myös sivuaa suoria AD ja CD. Osoita, että ympyröiden ω_1 ja ω_2 yhteisten ulkopuolisten tangenttien leikkauspiste on ympyrällä ω .

Ratkaisu. Väitteen todistamiseksi riittää osoittaa, että ympyröiden ω_1 ja ω_2 välisen homotetiakuvauksen homotetiakeskus on ympyrällä ω . Osoitetaan ensin, että ympyrän ω olemassa olo asettaa rajoituksen nelikulmion ABCD muodolle. Olkoot ympyrän ω ja suorien BA, BC, CD ja AD sivuamispisteet K. L, M ja N. Nyt AB + AD = (BK - AK) + (AN - DN) = BL - AN + AN - DM = BL - (CM - CD) = BL - CL + CD = BC + CD.

Olkoon nyt P ympyrän ω_1 ja sivun AC yhteinen piste; olkoon R ympyrän ω_1 P:n kautta piirretyn halkaisijan toinen päätepiste ja Q BR:n ja AC:n leikkauspiste. Olkoot vielä U ja V R:n kautta piirretyn ω_1 :n tangentin ja suorien BA ja BC leikkauspisteet. B-keskinen

homotetia, joka kuvaa UV:n janaksi AC, kuvaa ympyrän ω_1 , joka on kolmion BUV sivuun UV liittyvä sivuympyrä, kolmion BAC sivuun AC liittyväksi sivuympyräksi. Q on näin ollen viimemainitun sivuympyrän ja sivun AC yhteinen piste. On helppo nähdä (ja tunnettua), että kolmion XYZ sisään piirretyn ympyrän sivuamispisteen etäisyys kolmion kärjestä X on sama kuin sivuun XY liittyvän sivuympyrän sivuamispisteen etäisyys kärjestä Y. Näin ollen AP = CQ.

Kolmion sisään piirretyn ympyrän sivuamispisteen ja kolmion kärjen etäisyys on laskettavissa tunnetun (ja helposti johdettavan) kaavan avulla. Sen mukaan $AP=\frac{1}{2}(AB+AC-BC)$. Vastaavasti kolmion ADC sisään piirretyn ympyrän ja sivun AC yhteiselle pisteelle Q' saadaan $CQ'=\frac{1}{2}(AC+CD-AD)$. Koska edellä sanotun mukaan tehtävän nelikulmiolle pätee AB-BC=CD-AD, on CQ'=AP=CQ. Q on siis ympyrän ω_2 ja suoran AC yhteinen piste. Vastaavalla tavalla nähdään, että ympyrän ω_2 pisteeseen Q piirretyn halkaisijan toinen päätepiste S, D ja P ovat samalla suoralla.

Olkoon sitten T ympyrän ω AC:n suuntaisen tangentin sivuamispiste (tarkemmin sanoen se niistä, joka on lähempänä suoraa AC). Homotetia, jonka keskus on B ja homotetiasuhde $\frac{BT}{PR}$ kuvaa ympyrän ω_1 ympyräksi ω . B, R, Q ja T ovat siis samalla suoralla. Vastaavasti

homotetia, jonka keskus on D ja homotetiasuhde $-\frac{DT}{DS}$ kuvaa ympyrän ω_2 ympyräksi ω . P, S, D ja T ovat siis samalla suoralla. Mutta koska ympyröiden ω_1 ja ω_2 halkaisijat PR ja SQ ovat yhdensuuntaiset, ne kuvautuvat toisilleen T-keskisessä homotetiassa. Tästä seuraa, että itse ympyrät ω_1 ja ω_2 kuvautuvat toisilleen tässä homotetiassa. Mutta tällöin T:n on oltava ympyröiden yhteisten ulkopuolisten tangenttien leikkauspiste, ja todistus on valmis.