F21T3A5

Wir betrachten das Anfangswertproblem $\dot{x}(t) = v(x(t)), x(0) = \xi \in \mathbb{R}^2$ für das gegebene Vektorfeld $v: \mathbb{R}^2 \to \mathbb{R}^2$; $v \to v(x_1, x_2) = \begin{pmatrix} -x_1^5 \\ x_1^4 x_2 + x_1^2 \cos(\frac{1}{x_1}) \end{pmatrix} f \ddot{u} r x_1 \neq 0 \ bzw. \ v(0, x_2) = 0.$

- a) Begründen Sie, dass v stetig ist.
- b) Geben Sie die erste Komponente $x_1(t)$ der Lösung $x : I \to \mathbb{R}^2$ explizit an.
- c) Zeigen Sie, dass $\Gamma = \left\{ (r, \frac{1}{r} \sin\left(\frac{1}{r}\right) : r > 0 \right\}$ die Trajektorie zum Anfangswert $x = \left(\frac{1}{\pi}, 0\right)$ ist.
- d) Begründen Sie, dass alle Fixpunkte von v instabil sind.

Zu a)

Auf \mathbb{R}^2 sind $\mathbb{R}^2 \to \mathbb{R}$; $(x_1, x_2) \to -x_1^5$ und $\mathbb{R}^2 \to \mathbb{R}$; $(x_1, x_2) \to x_1^4 x_2$ stetig als Polynome. Für eine Folge $\left(x_1^{(n)}, x_2^{(n)}\right) \xrightarrow[n \to \infty]{} (0, x_2)$ ist $0 \le \left|\left(x_1^{(n)}\right)^2 \cos\left(\frac{1}{x_1^{(n)}}\right) - 0\right| \le \left|x_1^{(n)}\right|^2 \xrightarrow[n \to \infty]{} 0$, also ist auch $\mathbb{R}^2 \to \mathbb{R}$; $(x_1, x_2) \to x_1^2 \cos\left(\frac{1}{x_1}\right)$ stetig und daher ist v stetig.

Zub)

Das Anfangswertproblem liefert $x_1' = -x_1^5$ und $x_2' = \begin{cases} x_1^4 x_2 + x_1^2 \cos\left(\frac{1}{x_1}\right); x_1 \neq 0 \\ 0; x_1 = 0 \end{cases}$. Die erste Komponente erfüllt $x_1' = -x_1^5; x_1(0) = \xi_1$ (1)

Für $\xi_1 = 0$ ist $\lambda_1 : \mathbb{R} \to \mathbb{R}$; $t \to 0$ die eindeutige maximale Lösung von (1); für $\xi_1 \neq 0$ erhalten wir durch Trennen der Variablen $\int_{\xi_1}^{\lambda_1(t)} \frac{1}{-s^5} ds = \left[\frac{1}{4s^4}\right]_{\xi_1}^{\lambda_1(t)} = \int_0^t 1 \, ds = t$, also $\frac{1}{4(\lambda_1(t))^4} = t - \frac{1}{4\xi_1^4}$ und damit $\lambda_1(t) = \frac{1}{4\sqrt{4t-\xi_1^{-4}}} = (4t - \xi_1^{-4})^{-\frac{1}{4}} f \ddot{u}r \, t > -4\xi_1^{-4}$. Es gilt $\lambda_1(0) = (\xi_1^{-4})^{-\frac{1}{4}} = |\xi_1|$ und $\lambda_1'(t) = -\frac{1}{4}(4t - \xi_1^{-4})^{-\frac{5}{4}} * 4 = -(\lambda_1(t))^5$. Somit ist $\lambda_1:] - 4\xi_1^{-4}; \infty[\to \mathbb{R} ; t \to \frac{sign(\xi_1)}{4\sqrt{4t-\xi_1^{-4}}}$ eine

Lösung von (1) und wegen $|\lambda_1(t)| \xrightarrow[t \searrow -4\xi_1^{-4}]{} \infty$ ist es auch die maximale Lösung.

Zuc)

Für $\xi=\frac{1}{\pi}$ ergibt sich λ_1 : $]-\frac{\pi^4}{4}$; $\infty[\to\mathbb{R}$; $t\to(4t+\pi^4)^{-\frac{1}{4}}$ als maximale Lösung für die erste Komponente und die zweite Differentialgleichung ist dann gegeben durch $x_2'=(4t+\pi^4)^{-1}x_2+(4t+\pi^4)^{-\frac{1}{2}}\cos\left((4t+\pi^4)^{\frac{1}{4}}\right)$; $x_2(0)=0$, also eine skalare inhomogene lineare Differentialgleichung mit stetigen Koeffizientenfunktionen, hat also laut Lösungsformel die Lösung λ_2 : $]-\frac{\pi^4}{4}$; $\infty[\to\mathbb{R}$;

$$t \to \exp\left(\int_0^t (4s + \pi^4)^{-1} ds\right) \int_0^t \exp\left(-\int_0^r (4s + \pi^4)^{-1} ds\right) \left((4r + \pi^4)^{-\frac{1}{2}} \cos\left((4r + \pi^4)^{\frac{1}{4}}\right)\right) dr = \exp\left(\left[\ln(4s + \pi^4) * \frac{1}{4}\right]_0^t\right) \int_0^t \exp\left(-\left[\ln(4s + \pi^4) * \frac{1}{4}\right]_0^r\right) \left((4r + \pi^4)^{-\frac{1}{2}} \cos\left((4r + \pi^4)^{\frac{1}{4}}\right)\right) dr = \frac{1}{\pi} (4t + \pi^4)^{\frac{1}{4}} \int_0^t \pi(4r + \pi^4)^{-\frac{1}{4} - \frac{1}{2}} \cos\left((4r + \pi^4)^{\frac{1}{4}}\right) dr = (4t + \pi^4)^{\frac{1}{4}} \left[\sin\left((4r + \pi^4)^{\frac{1}{4}}\right)\right]_0^t = (4t + \pi^4)^{\frac{1}{4}} \sin\left((4t + \pi^4)^{\frac{1}{4}}\right) = \left(\lambda_{1(t)}\right)^{-1} \sin\left(\left(\lambda_{1(t)}\right)^{-1}\right) = \frac{1}{\lambda_{1(t)}} \sin\left(\frac{1}{\lambda_{1(t)}}\right).$$

Weil $\lambda_1(t) = (4t + \pi^4)^{-\frac{1}{4}} \xrightarrow[t \to \infty]{} 0$ und $\lambda_1'(t) = -\frac{1}{4}(4t + \pi^4)^{-\frac{5}{4}} * 4 < 0$ ist λ_1 streng monoton fallend, also $\lambda_1(]-\frac{\pi^4}{4};\infty[)=]0;\infty[$.

Die Trajektorie ist damit

$$\left\{\left(\lambda_1(t),\lambda_2(t)\right):t\in\right]-\frac{\pi^4}{4};\infty[\right\}=\left\{\left(\lambda_{1(t)},\frac{1}{\lambda_{1(t)}}\sin\left(\frac{1}{\lambda_{1(t)}}\right)\right):t\in]-\frac{\pi^4}{4};\infty[\right\}=\left\{\left(r,\frac{1}{r}\sin\left(\frac{1}{r}\right)\right):r>0\right\}$$

Zu d)

Die Fixpunkte von $\dot{x}(t) = v(x(t))$ sind genau die Nullstellen von $v(x_1, x_2)$, also $-x_1^5 = 0 \iff x_1 = 0$ und $v(0, x_2) = 0 \iff x_2 \in \mathbb{R}$.

Für einen Startwert $(\xi_1, \xi_2) \in \mathbb{R}^2$ ist die Lösung $\lambda(t) = (\lambda_1(t), \lambda_2(t))$ mit $\lambda_1(t)$ wie in (b) und

$$\lambda_2:] - 4\xi^{-4}; \infty[\to \mathbb{R}; t \to \exp\left(\int_0^t \frac{1}{4s + \xi_1^{-4}} ds\right) \left(\xi_2 + \int_0^t \exp\left(-\int_0^r \frac{1}{4s + \xi_1^{-4}} ds\right) \frac{\cos\left(\sqrt[4]{4r + \xi_1^{-4}}\right)}{\sqrt{4r + \xi_1^{-4}}} dr\right) = 0$$

 $\cdots = (4t + \xi_1^{-4})^{\frac{1}{4}} \left(\xi_1 \xi_2 + \sin \left((4t + \xi_1^{-4})^{\frac{1}{4}} \right) - \sin \left(\frac{1}{|\xi_1|} \right) \right)$. Diese bleibt nicht in der Nähe von ξ_2 .