

Module 7
Exercise: System level design

Vojkan Vidojkovic

Where innovation starts

Outline

- System level design

Formula sheet (1/3)

D 11 1 1 1 1	
Power delivered to the load	$ _{TZ}- ^2$
	$P_L = \frac{ V_2^- ^2}{2Z_0} \left(1 - \Gamma_L ^2\right)$
	$P_L = \frac{1}{27} (1 - \mu_L)$
	V
Input power to the network	$P_{in} = \frac{\left V_1^+\right ^2}{2Z_2} \left(1 - \left \Gamma_{in}\right ^2\right)$
	V_1^+ (
	$P_{in} = \frac{1}{1} \left[1 - \left[\Gamma_{in} \right]^2 \right]$
	$m 2Z_0 = m$
Towns and automorphism and Chilary and	V
Input and output reflection coefficients of a	$\Gamma_{in} = \frac{V_1^-}{V^+} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{sc}\Gamma_c}$
transistor with a source and load:	$I_{in} = \frac{1}{V^{+}} = \lambda_{11} + \frac{1}{1 - C \Gamma}$
general case	V ₁ 1-53 ₂₂ 1 L
	_ V SST.
	$\Gamma_{out} = \frac{V_{-}^{-}}{V_{+}^{+}} = S_{22} + \frac{S_{12}S_{21}\Gamma_{S}}{1 - S_{-}\Gamma_{-}}$
	V_2 $1-S_{11}I_S$
Input and output reflection coefficients of a	1/-
transistor with a source and load:	$\Gamma_{in} = \frac{V_1^-}{U^+} = S_{11}$
unilateral case	" V ₁ "
unitateral case	<i>v</i> -
	$\Gamma_{out} = \frac{V_2^-}{V_c^+} = S_{22}$
	V_2^+ V_2^-
Gain of the input matching network	1 17 12
out of the input matering network	$G_{\alpha} = \frac{1 - \Gamma_{S} ^{2}}{1 - \Gamma_{S} ^{2}}$
	$\sigma_S = \frac{1}{ 1 - \Gamma_{in} \Gamma_{ci} ^2}$
	1 - 1 m 2 S
Gain of the output matching network	$C = 1 - \Gamma_L ^2$
	$G_S = \frac{1 - \Gamma_S ^2}{ 1 - \Gamma_{\text{in}} \Gamma_S ^2}$ $G_L = \frac{1 - \Gamma_L ^2}{ 1 - S_{22} \Gamma_L ^2}$
Coin of the two sisters (smiletern)	11 - 5221 []
Gain of the transistor (unilateral case)	$G_0 = S_{21} ^2$
Transducer gain of the basic amplifier	$G_r = G_c G_o G_t$
circuit (input matching, unilateral	$G_T = G_S G_0 G_L$
transistor, output matching)	$G_{a} = G_{a} + G_{a} + G_{a}$
	$G_{T,dB} = G_{S,dB} + G_{0,dB} + G_{L,dB}$
Maximum gain of the input and output	1 1
matching networks	$G_{S_{\text{max}}} = \frac{1}{1 - S_{11} ^2},$
	1
	$G_{I,\dots} \equiv \frac{1}{I}$
	$1 - S_{22} ^2$
Maximum transducer power gain,	$G_{L_{\text{max}}} = \frac{1}{1 - S_{22} ^2}.$ $G_{TU_{\text{max}}} = \frac{1}{1 - S_{11} ^2} S_{21} ^2 \frac{1}{1 - S_{22} ^2}$
unilateral case	$G_{TU_{min}} = \frac{1}{ S_{21} ^2 - \frac{1}{ S_{21} ^2}}$
unnater ar ease	$1 - S_{11} ^2 + S_{22} ^2$
Normalized gain factors g: and gL	$G_{\rm S} = 1 - \Gamma_{\rm S} ^2$
	$g_S = \frac{G_S}{G_S} = \frac{1 - \Gamma_S ^2}{11 - S_U \Gamma_S ^2} (1 - S_{11} ^2),$
	S _{max} (1 - 511 3)
	$G_L = 1 - \Gamma_L ^2$
	$g_L = \frac{1}{G_L} = \frac{1}{ 1 - S_{22}\Gamma_L ^2} (1 - S_{22} ^2).$
Center and radius of the constant gain	$g_L = \frac{G_L}{G_{L_{\text{max}}}} = \frac{1 - \Gamma_L ^2}{ 1 - S_{22}\Gamma_L ^2} (1 - S_{22} ^2).$ $C_S = \frac{g_S S_{11}^*}{1 - (1 - g_S) S_{11} ^2},$
	$C_s = \frac{g_s s_{11}}{g_s s_{11}}$
circle for the input matching network	$1 - (1 - g_S) S_{11} ^2$
	(1 15 12)
	$P_0 = \frac{\sqrt{1 - g_S(1 - S_{11} ^2)}}{2}$
	$\frac{A_S}{1-(1-g_S) S_{11} ^2}$
Center and radius of the constant gain	$R_S = \frac{\sqrt{1 - g_S} (1 - S_{11} ^2)}{1 - (1 - g_S) S_{11} ^2}$ $C_L = \frac{g_L S_{22}^*}{1 - (1 - g_L) S_{22} ^2},$
	$C_L = \frac{g_L \sigma_{22}}{\sigma_{12} \sigma_{12} \sigma_{12}}$
circle for the output matching network	$1 - (1 - g_L) S_{22} ^2$
	$\sqrt{1-g_*}(1- S_{**} ^2)$
	$R_L = \frac{\sqrt{1 - g_L} (1 - S_{22} ^2)}{1 - (1 - g_L) S_{22} ^2}$
	$1 - (1 - g_L) S_{22} ^2$

Formula sheet (2/3)

Power delivered to the load	
Tower delivered to the load	V_2 (V_2
	$P_L = \frac{ V_2^- ^2}{2Z_0} \left(1 - \Gamma_L ^2\right)$
Transfer and the description of	
Input power to the network	$P_{in} = \frac{ V_1^+ ^2}{2Z} (1 - \Gamma_{in} ^2)$
	$P_{in} = \frac{111}{277} \left[1 - \left[\Gamma_{in} \right]^2 \right]$
	2 2 0
Input and output reflection coefficients of a	$\Gamma_{in} = \frac{V_1^-}{V^+} = S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{rr}\Gamma_r}$
transistor with a source and load: general case	$V_{in} = V_1^+ = S_{11}^- + \frac{1}{1 - S_{22}\Gamma_L}$
general case	_ V S.S.T.
	$\Gamma_{out} = \frac{V_{-}^{2}}{V^{+}} = S_{22} + \frac{S_{12}S_{21}\Gamma_{S}}{1 - S_{-}\Gamma_{-}}$
Input and output reflection coefficients of a	V-
transistor with a source and load:	$\Gamma_{in} = \frac{V_1^-}{V_1^+} = S_{11}$
unilateral case	F ₁
	$\Gamma_{out} = \frac{V_2^-}{V_c^+} = S_{22}$
	- 2
Gain of the input matching network	$G_{-} = 1 - \Gamma_S ^2$
	$G_S = \frac{1 - \Gamma_S ^2}{ 1 - \Gamma_{\text{in}} \Gamma_S ^2}$ $G_L = \frac{1 - \Gamma_L ^2}{ 1 - S_{22} \Gamma_L ^2}$
Gain of the output matching network	$1- \Gamma_L ^2$
	$G_L = \frac{1}{ 1 - S_{22}\Gamma_L ^2}$
Gain of the transistor (unilateral case)	$G_0 = S_{21} ^2$
Transducer gain of the basic amplifier	-0 1-211
circuit (input matching, unilateral	$G_T = G_S G_0 G_L$
transistor, output matching)	$G_{T,dB} = G_{S,dB} + G_{0,dB} + G_{L,dB}$
Maximum gain of the input and output	1
matching networks	$G_{S_{\text{max}}} = \frac{1}{1 - S_{11} ^2},$
	6 1
	$GL_{\max} = \frac{1}{1 - S_{22} ^2}.$
Maximum transducer power gain,	$G_{L_{\text{max}}} = \frac{1}{1 - S_{22} ^2}.$ $G_{TU_{\text{max}}} = \frac{1}{1 - S_{11} ^2} S_{21} ^2 \frac{1}{1 - S_{22} ^2}$
unilateral case	$G_{TU_{\text{max}}} = \frac{1}{1 - S_{11} ^2} S_{21} ^2 \frac{1}{1 - S_{22} ^2}$
Normalized gain factors g ₂ and g _L	$g_S = \frac{G_S}{G_{co}} = \frac{1 - \Gamma_S ^2}{11 - S_V \Gamma_c ^2} (1 - S_{11} ^2),$
	O _{Smax} [1 - O111 3]
	$G_L = 1 - \Gamma_L ^2$
	$g_L = \frac{1}{G_{L_{\text{max}}}} = \frac{1}{ 1 - S_{22}\Gamma_L ^2} (1 - S_{22} ^2).$
Center and radius of the constant gain	$g_L = \frac{G_L}{G_{L_{\text{max}}}} = \frac{1 - \Gamma_L ^2}{ 1 - S_{22}\Gamma_L ^2} (1 - S_{22} ^2).$ $C_S = \frac{g_S S_{11}^*}{1 - (1 - g_S) S_{11} ^2},$
circle for the input matching network	$C_S = \frac{1 - (1 - g_S) S_{11} ^2}{1 - (1 - g_S) S_{11} ^2}$
	$\sqrt{1-g_S}(1- S_{11} ^2)$
	$R_S = \frac{\sqrt{1 - g_S} (1 - S_{11} ^2)}{1 - (1 - g_S) S_{11} ^2}$ $C_L = \frac{g_L S_{22}^*}{1 - (1 - g_L) S_{22} ^2},$
Center and radius of the constant gain	g _L S ₂₂ *
circle for the output matching network	$C_L = \frac{z_2}{1 - (1 - g_L) S_{22} ^2},$
	$R_L = \frac{\sqrt{1 - g_L} \left(1 - S_{22} ^2\right)}{1 - (1 - g_L) S_{22} ^2}$
	- (* \$£/1~661

Formula sheet (3/3)

Three-stage amplifier: Output noise $(P_{n,total})$, noise factor	$P_{n,total} = G_{A3}G_{A2}G_{A1}P_{n,in} + G_{A3}G_{A2}P_{n1} + G_{A3}P_{n2} + P_{n3}$
(F_{total}) noise figure (NF_{total})	$F_{total} = \frac{P_{n,total}}{G_{A3}G_{A2}G_{A1}P_{n,in}}$
	$F_{total} = 1 + \frac{P_{n1}}{G_{A1}P_{n,in}} + \frac{P_{n2}}{G_{A1}G_{A2}P_{n,in}} + \frac{P_{n3}}{G_{A3}G_{A2}G_{A1}P_{n,in}}$
	$F_{total} = F_1 + \frac{F_2 - 1}{G_{A1}} + \frac{F_3 - 1}{G_{A1}G_{A2}}$ $NF_{total} = 10 \log_{10} F_{total}$
	Noise factor of single stage $F_j = 1 + \frac{P_{nj}}{G_{Aj}P_{n,in}}, j = 1,2,3$
	Noise figure of single stage $NF_j = 10 \log_{10} F_j$, $j = 1,2,3$
Receiver sensitivity	$P_{sens}[dBm] = k_B T_0 B[dBm] + NF_{total}[dB] + SNR[dB]$
	$P_{sens} [dBm] = -174 + NF_{total} + 10\log_{10} B + SNR$
Conversion Watt to dBm	$P_{sens} [dBm] = 10log_{10} \frac{P_{sens} [Watt]}{1mWatt}$
	$P_{sens} [dBm] = 10 \log_{10} \frac{P_{sens} [Watt]}{10^{-3} Watt}$
Gain conversion from linear to dB	$G[dB] = 10\log_{10}G$

Problem 1

System is at temperature T_0 =17° (290K) Impedance of 50 Ω IF bandwidth of 10 MHz

- 1) Compute the <u>overall noise figure</u> of this system
- 2) If the input noise power from a feeding antenna is $N_i = kT_A B$, where $T_A = 150$ K, find the <u>output noise power</u> in dBm
- 3) If we require a minimum signal-to-noise ratio (SNR) of 20 dB at the output of the receiver, what is the minimum signal voltage that should be applied at the receiver input?

Problem 1: Solution (1/2)


```
F = 1 + Te
                  57 few 15 50 12 of
                    to tempopoluze
Te=(1.78-1). To = 0.78 To
Hi, total = K3. (TA+ Te) B
Ho, total = Hc, total. & total
Ho, to to C [ down = Hi, to to [ down + 6 to tects]
Gldof - 087 = 6a - Lf - Ly = 6dB
Hi, total I dow I = 10 og KB. (TA+TE) B
Lb=1.38 e-23 JK
TA= 150 K
te= 0.78 · 1 Jo K = 116, 1K
B= 10 MHZ
HC, Lotol I tow I = - 10% & day
Ho, to tol I dow ] = - 1048+6= 36
Ho, total I dow I = - 96. 8 don
```

Problem 1: Solution (2/2)

Pseus [Asw] = 10 log Pseus
Psous I offund = 10/09 (KTO, F.B. 8HZ)
KTO [Awi] = 10 log KTO = -174 dou/ Hz
P Seus = - 174 dzul + 10 log F + 10 log B + 10 lg 842
P sous = - 174 dem + HF + 10 log 8 + 8H2[d8]
Pseus = -174+1,5+70+20
P seus = - 81. 5 dtry
The state of the s

Receiver sensitivity in Watts: graphical representation

Receiver sensitivity in dBm: graphical representation

Problem 2

The block diagram of the wireless receiver is shown in figure below. The data describing the wireless receiver are provided in the text following the figure. The wireless receiver consists of Low Noise Amplifier (LNA), Mixer (MIX) and Amplifier (AMP). Si and N_i denote signal and noise at the RF input (RF_{IN}). So and N₀ denote signal and noise at the IF output (IF_{OUT}).

 $LNA\ gain: G_{LNA}[dB] = 15dB$

LNA noise figure: $NF_{LNA} = 2dB$

 $MIX gain: G_{MIX}[dB] = 10dB$

MIX noise figure: $NF_{MIX} = 10dB$

 $AMP \ gain: G_{AMP}[dB] = 20dB$

AMP noise figure: $NF_{AMP} = 5dB$

System temperature: $T_0 = 290K$

IF bandwidth: B = 10MHz

Boltzmann constant:
$$k_B = 1.38 \cdot 10^{-23} \frac{Watt \cdot s}{K}$$

- a) Calculate the overall noise figure (NF) of the wireless receiver.
- b) Which block in wireless receiver has the largest impact on the overall noise figure? Explain your answer.
- c) If the input noise power from a feeding antenna is Ni = k_BT₀B, find the output noise power and express it in dBm.
- d) If a minimum signal-to-noise ratio (SNR) of 20dB is required at the IF output (IF_{OUT}), what is the minimum signal (so called receiver sensitivity) that should be applied at the RF input (RF_{IN}). Express the receiver sensitivity in dBm.

Problem 2: Solution (1/2)

GLHA

FZHA FAMIX

Problem 2: Solution (2/2)

Problem 3: Calculate the received power

Problem 3: Solution

