Lecture 8, 27. 619

S2 Solving systems of equations

Start outh linear case

AX=b

AGIRMAN b GIR"

A= (a; ;)

A: invertible

B= A-1

AB = BA = I =(1:1)

32.1 Iterative : method

AX=b

X(b) > 7(b+1)

Example:
$$3 u+v=5 \cdots 1stepn$$

$$u+2v=5 \cdots 2nleqn$$

$$matrix-vector form u: 1stepn$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 7 & 2nl \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix} b = \begin{bmatrix}$$

Jacobi method idea: solve the ith unknown from ith equation.

$$U = \frac{5-v}{3} \qquad v = \frac{5-u}{2}$$

$$V(h) = \frac{5 - V(0)}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - U(0)}{2} = \frac{5}{2}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{2} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{2} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - V(1)}{3} = \frac{5 - \frac{5}{3}}{3} = \frac{5}{3}$$

$$V(h) = \frac{5 - \frac{$$

Example 2.

u+2v=5 1st egn 3u+v=5 2nd egn

Apply Jacobi method $u+h \ \Upsilon(0) = (u/0) \ v/0) = (0)$ $u = 5-2 \ v = 5-3 \ u$

 $=) \chi(i) = (u(i)) = (2-3u(i))$

 $\chi(x) = \begin{pmatrix} \chi(x) \\ \chi(x) \end{pmatrix} = \begin{pmatrix} \chi(x) \\ \chi(x) \end{pmatrix} = \begin{pmatrix} \chi - 2 & \chi(1) \\ \chi - 3 & \chi(1) \end{pmatrix} = \begin{pmatrix} \chi - 2 & \chi - 2 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi - 3 & \chi - 3 \end{pmatrix} = \begin{pmatrix} \chi - 3 & \chi - 3 \\ \chi -$

X(k) diverges as k+13.

matrix- vector form

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} \qquad b = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Ax= 6

Observation.

Example 1: matrix n

diagonally dominant.

f

a reason to make

the method

WOYK

Definition, $A = (aij) \in IR^{n \times n}$, is strictly diagonally dominant if for each $1 \le i \in n$,

1aiil > I laijl

That is, each diagonal entry dominates its row in the sense that it is preater in magnitude than the sum of magnitude of the vemaider of the entries in its row.

Jacobi method converges

if A 13 Strictly diagonally

dominant.

Sufficient condition's

Express Jacohi method in mattix - vector from

$$A = \begin{pmatrix} a_{11} & a_{1L} \\ a_{2L} & a_{2L} \end{pmatrix} \qquad b = \begin{pmatrix} b_{1} \\ b_{2L} \end{pmatrix} \qquad 2 = \begin{pmatrix} b_{1} \\ b_{2L} \end{pmatrix}$$

$$2 = \begin{pmatrix} u \\ v \end{pmatrix}$$

scheme:

$$\begin{cases} a_{11} U^{(k)} + a_{12} U^{(k-1)} = b_{1} \\ a_{21} U^{(k-1)} + a_{22} U^{(k)} = b_{2} \end{cases}$$

$$(a) \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix} \begin{bmatrix} u(k) \\ v(k) \end{bmatrix} \xrightarrow{\Lambda} \underbrace{\Lambda}^{(k)} \underbrace{\Lambda}^{(k+1)}$$

$$= - \left(\begin{array}{c} 0 & q_{1L} \\ q_{21} & 0 \end{array} \right) \left(\begin{array}{c} U(k+1) \\ V(k+1) \end{array} \right)$$

$$= - \left(\begin{array}{c} 0 & q_{1L} \\ Q_{21} & 0 \end{array} \right) \left(\begin{array}{c} U(k+1) \\ V(k+1) \end{array} \right)$$

Assume Disinvertible =)

Fixed point iteration

Specially: $\chi(b+1) = D^{-1}(b-(U+L)\chi(k))$

L) Jacohi method is a fixed point iteration

Jacobi method (general form)

To solve Ax=b for 2 EIRn,

where A & IRnxn, b & IRn

and A = D + L + Udiegonal upper-triangle

Jacobi method is

$$D\chi^{(k)} = (b - (L+v)\chi^{(k-1)}).$$

or

 $Y = D^{-1} \left(b - (L+v) 2^{-1} (k-1) \right)$ $= G(x) \quad \text{when } D \text{ is invertible.}$

Idea: to get the k-th iterate Y(k),
Solve the ith unknown from the
1th equation, based on Y(k-1)

Examp6

Apply Jacobi method to
$$Ax = b$$
where $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -5 & 2 \end{bmatrix}$

$$Y = \begin{bmatrix} 4 & 1 & 1 \\ 2 & -5 & 2 \end{bmatrix}$$

$$U(k+1) \qquad 4 - V(k) + W(k)$$

$$V(k+1) \qquad = \begin{bmatrix} 4 & 1 & 1 \\ 1 & -2 & 1 & 1 \\$$

Example

Apply Gauss-Seidel method

to
$$A \times = b$$
 where

 $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -5 & 2 \\ 1 & 6 & 8 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 2 & -5 & 2 \\ 1 & 6 & 8 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 4 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $X = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Gauss-Seidel method

idea: Solve ith unknown from

the ith equation, using

the most recently updated

values of the unknowns.

Revisit Example 1 3u+v=5 $u=\frac{5-v}{3}$ u+2v=5 $u=\frac{5-v}{2}$ $u=\frac{5-v}{3}$ $u=\frac{5-v}{3}$ $u=\frac{5-v}{3}$ $u=\frac{5-v}{3}$ $u=\frac{5-v}{3}$ $v=\frac{5-v}{3}$ $v=\frac{5-v}{3}$

 $(V(1)) = \frac{1}{3} - \frac{10}{3} = \frac{10}{3} = \frac{10}{3}$ $(V(1)) = \frac{1}{3} - \frac{10}{3} = \frac{10}{3} = \frac{10}{3}$ $(V(1)) = \frac{1}{3} - \frac{1}{3} = \frac{10}{3} = \frac{10}{3}$ $(V(1)) = \frac{1}{3} - \frac{1}{3} = \frac{10}{3} = \frac$

matrix-vector form of GS an u(R) + an v(R-1) = 61 (all u(k) + all v(k)=bl $(=) \begin{cases} a_{11} & 0 \\ a_{21} & a_{22} \end{cases} \begin{pmatrix} u(k) \\ v(k) \end{pmatrix}$ $D+L \qquad \Upsilon(k)$ $= b - \begin{cases} 0 & q_{1k} \\ 0 & o \end{cases} \begin{cases} u(k+1) \\ v(k+1) \end{cases}$ $(D+L) \mathcal{X}(k) = b -$ Fixed point problem (1)+L)2 = b-02 18ads to 2 = (0+L) -1 (b-U1) GS. = 6(2)

Gauss - Seidel method

To solve $A \ge b$ for $2 \in 1|2n$.

Where $A \in 1|2n \times n$. $b \in 1|2n$ and A = D + L + U.

Gauss - Seidel method is

(D+L) 2(k) = (b - U2(k-1)).

Wen D is invertible

$$\bar{\chi}(\mathbf{k}) = D_{-1} \left(\bar{p} - \Omega \bar{\chi}(\mathbf{k}) \right)$$

Idea: to solve the ith unknown from the ith equation.

Using the most recently updated unknown.

Ax=b $A \in IR^{n\times n}, b \in IR^{n}$ A = M - N A = M - N A = M - N A = M + M = 1 invertible A = M - M = NM + b A = M - M = M + b A = M - M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b A = M + M + b

For Jacobi method

M=D, N=-(L+U)

Ganss- seidel

M=D+L N=-U

fivel point reaction

fixed point iteration for the related 12 = G(12).

General form of these two method,

Problem
$$X = B \times d = M$$

Numerical method

$$\frac{\chi(k)}{2} = B \times (k-1) + d - M = M$$
Question on convergence.

$$\frac{\chi(k)}{2} - M = B \cdot (\chi(k-1) - M)$$

$$\frac{\chi(k)}{2} - M = B \cdot \chi(k-1)$$

$$\frac{\chi(k)}{2} - M = B \cdot \chi(k-1)$$

$$= B^2 \times (k-1)$$

= BR 2 (0)

$$\gamma(k) - \gamma = \beta(\gamma(k-1) - \gamma)$$

$$= \beta k \geq (0)$$

$$= \beta k \geq (0)$$

$$\beta k = (\lambda_1 k + \lambda_2 k + \lambda_3 k + \lambda_4 k + \lambda_5 k +$$

2; (k) -> 0 as k-> 10 if and if only 1 7:1<1 That is, ween $B = (\lambda_1, \lambda_1)$. ten 1 (k)= 13 1 (k)+d converges if and if only I Til < I for any ;

In peneral: for peneral BEIRMA x (k)= Bx(k-1)+d it converges to x (the solution of 2 = B2+d) all ergenvalues of 13 are hounded by 1 in their absolute values. spectral radius of B = max 1211 ISIEn ni is an elgenvalue of 13 = P(B)

convergence (3) (13)<1

Theorem. 6+ 13 EIRMXM. then & (k+1) = B x (k) + d converges to a solution of Y = BA + d for any siven d and any initial 12 (0) if and only if the spectral radius (B)<1

((b)= max | \lambda_j|

13) < n

\[
\lambda_j \text{ is eigenvalue} \\

\text{of B}

 $A \times = b$ Theorem Given A & 112 "x". If A is strictly diagonally dominant. tan 1) A is invertible 2) Jacobi and Gauss - Scidel me thos applied to Ax= b converges to the unique solution for any belk n, and wath any initial x (0)

For the related: $\Upsilon(k+1) = R \Upsilon(k) + d$ $\Gamma(R) < \Gamma$

$$A = (aij)$$

$$B = (bij)$$

$$AB = C = (Cij)$$

a special case

$$|S^{R} = (\lambda_{n}^{R}, \lambda_{n}^{R})$$

Review: Given.

B & IRMAN

if you can find a pair

\$\lambda \in IR\rangle\$

\$\lambda \in IR\rang

BA=AA

ten Ais an eigenvalue of A

and Ais an eigenvector