Midterm Exam (3pm-5pm on April, 13, 2022)

Student ID: Name	•

Problems:

1. Let U and W be subspaces in \mathbb{R}^d satisfying $u^T w = 0$ for any $u \in U$ and $w \in W$. Let $U \oplus W = \{ \boldsymbol{u} + \boldsymbol{w} : \boldsymbol{u} \in V, \ \boldsymbol{w} \in W \}$. Prove or disprove that

$$\Pi(\cdot | U \oplus W) = \Pi(\cdot | U) + \Pi(\cdot | W),$$

where for any subspace S in \mathbb{R}^d , $\Pi(\cdot | S)$ is the projection operator on S, that is, for any vector $\mathbf{v} \in \mathbb{R}^d$, $\Pi(\mathbf{v} | S)$ is the projection vector of \mathbf{v} .

- 2. Consider the following multiple linear regression: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\mathbf{Y} = (Y_1, \dots, Y_n)^{\top}$, $\mathbf{X} = (\mathbf{1}, \mathbf{x}_1, \dots, \mathbf{x}_p)^{\top}$ with $\mathbf{1} = (1, \dots, 1)^{\top}$ and $\mathbf{x}_j = (x_{1j}, \dots, x_{nj})^{\top}$, $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)^{\top}$ and $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^{\top} \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Assume that $\mathbf{X}^{\top}\mathbf{X}$ is invertible.
 - (a) Prove that the LSE $\hat{\boldsymbol{\beta}}$ is BLUE (Best Linear Unbiased Estimator).
 - (b) Prove that the above (a) implies $\operatorname{var}(\boldsymbol{\lambda}^{\top}\tilde{\boldsymbol{\beta}}) \operatorname{var}(\boldsymbol{\lambda}^{\top}\hat{\boldsymbol{\beta}}) \geq 0$ for any $\boldsymbol{\lambda} \in \mathbb{R}^{p+1}$.
- 3. This problem consists of three parts.
 - (a) Consider the multiple linear regression model

$$Y = X_1 \beta_1 + X_2 \beta_2 + \epsilon,$$

where Y is $n \times 1$, X_1 is $n \times p_1$, β_1 is $p_1 \times 1$, X_2 is $n \times p_2$, β_2 is $p_2 \times 1$, $\epsilon \sim N_n(0_n, \sigma^2 I_n)$ is $n \times 1$, and $X_1^T X_1$ and $X_2^T X_2$ are invertible. Suppose that in fact $\beta_2 = 0$, in other words, the model used by the experimenter is an overfitted model and the true model is

$$Y = X_1 \beta_1 + \epsilon.$$

Let $\hat{\sigma}_o^2$ denote the usual estimate of variance based on the overfitted model, i.e., $\hat{\sigma}_o^2 = Y^T(I-P)Y/(n-p_1-p_2)$, where P is the projection onto the space spanned by the columns of X_1 and the columns of X_2 . Prove that $\hat{\sigma}_o^2$ is an unbiased estimate of σ^2 even if the smaller model is true.

- (b) Find 95% confidence interval for σ^2 based on the overfitted model.
- (c) Let $\hat{\sigma}_r^2$ be the estimate of σ^2 based on the reduced (and correct) model

$$Y = X_1 \beta_1 + \epsilon.$$

Show that the expected length of the confidence interval for σ^2 based on the reduced model is smaller than under the overfitted model.

4. Consider the following regression model

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, 2, \dots, n.$$

The predicted responses $\hat{\mathbf{Y}} = (\hat{Y}_1, \hat{Y}_2, \dots, \hat{Y}_n)^{\top}$ with $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. Let $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^{\top}$, $\mathbf{1} = (1, 1, \dots, 1)^{\top}$, and $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$.

- (a) Show that $\mathbf{Y} \hat{\beta}_0 \mathbf{1} \hat{\beta}_1 \mathbf{x}$ is orthogonal to the linear subspace $\mathcal{C}_{1,\mathbf{x}}$ (in \mathbb{R}^n) spanned by the vectors $\mathbf{1}$ and \mathbf{x} in a sense that $\mathbf{Y} \hat{\beta}_0 \mathbf{1} \hat{\beta}_1 \mathbf{x}$ is orthogonal to any vector $\mathbf{v} \in \mathcal{C}_{1,\mathbf{x}}$ (Do not use properties of projection when showing it). (Hint: two vectors $v = (v_1, \dots, v_n)^\top$, $w = (w_1, \dots, w_n)^\top$ in \mathbb{R}^n are orthogonal if $v^\top w = 0$ with $v^\top w = \sum_{i=1}^n v_i w_i$.)
- (b) Show that $R^2 = (\cos \theta)^2$, where θ is the angle between $Y \bar{Y} \cdot \mathbf{1}$ and $\hat{Y} \bar{Y} \cdot \mathbf{1}$.
- 5. Suppose that the variables are all standardized and orthogonal in the sense that

$$\sum_{i=1}^{n} x_{ij} = 0, \quad n^{-1} \sum_{i=1}^{n} x_{ij}^{2} = 1, \quad \sum_{i=1}^{n} x_{ij} x_{ik} = 0$$

for $1 \le j \ne k \le p$.

- (a) Find the least square estimate $\hat{\beta}_j$ and its variance $\text{var}(\hat{\beta}_j)$.
- (b) Based on general linear hypothesis, perform the following hypothesis testing in details:

$$H_0: A\beta = 0$$
 vs $H_1: \text{not } H_0$,

where $\beta = (\beta_1, \dots, \beta_p)^T$ and A is a following $3 \times p$ matrix:

$$\begin{pmatrix} 1 & 0 & 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & 1 & 0 & \cdots & 0 \\ 2 & 1 & 1 & -1 & 0 & \cdots & 0 \end{pmatrix}.$$