MATHEMATICAL REASONING Chapter 17

4th
SECONDA
RY

+= x÷

SERIES I

DEFINICIÓN

Es la adición indicada de los términos de una sucesión. Es decir, sea la sucesión:

1° 2° 3° 4° ...
$$n$$
° t_1 ; t_2 ; t_3 ; t_4 ; ...; t_n

Entonces:

$$t_{1} + t_{2} + t_{3} + t_{4} + \dots + t_{n} = S$$

$$SERIE$$
VALOR DE
LA SERIE

PRINCIPALES TIPOS DE SERIES

$$S = t_1 + t_2 + t_3 + t_4 + \dots + t_n$$

$$S = \frac{(t_1 + t_n) \times n}{2}$$

Donde:

 t_1 : Primer sumando

 t_n : Último sumando

n : Cantidad de sumandos

<u> Eemplo1</u>

Calcule el valor de la serie:

$$S = 5 + 8 + 11 + \dots + 29 + 32$$

De la serie, reconocemos:

$$t_1 = 5$$
 $t_n = 32$ $n = 10$

$$\rightarrow S = \frac{(5+32) \times 10}{2} = 185$$

SERIES NOTABLES

SERIE DE LOS PRIMEROS NÚMEROS NATURALES

$$S = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

<u>Hemplo2</u>

Sume:

Sume:
$$1 + 2 + 3 + \dots + 39 = \frac{39(40)}{2} = \underline{780}$$

SERIE DE LOS PRIMEROS NÚMEROS PARES

$$S = 2 + 4 + 6 + \dots + 2n = n(n+1)$$
÷ 2

Ejemplo3

Sume:

$$2 + 4 + 6 + \dots + 32 = 16(17) = 272$$

SERIE DE LOS PRIMEROS NÚMEROS IMPARES

$$S = 1 + 3 + 5 + \dots + (2n - 1) = n^{2}$$

$$+1 \div 2$$

Ejemplo4

Sume:

$$1 + 3 + 5 + \dots + 99 = 50^2 = 2500$$

SERIE DE LOS PRIMEROS NÚMEROS CUADRADOS

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
Emplo4
$$Sume: \\
1^{2} + 2^{2} + 3^{2} + \dots + 30^{2} = \frac{30(31)(61)}{6}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + 30^{2} = \frac{30(31)(61)}{6}$$

$$= 9455$$

SERIEDELOS PRIMEROS NÚMEROS CÚBICOS

SERECELOS PRIMEROS NÚMEROS CÚBICOS
$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + n^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

$$1^{3} + 2^{3} + 3^{3} + 4^{3} + \dots + 20^{3} = \left(\frac{20(21)}{2}\right)^{2}$$
1444 201

$$1^{3} + 2^{3} + 3^{3} + \dots + 20^{3} = \left(\frac{20(21)}{2}\right)^{2}$$
$$= 44100$$

<u>PROBLEMA 1</u>

Se ordenan 153 bolas en forma conveniente logrando formar un triángulo equilátero. ¿Cuántas bolas deben ubicarse en la base?

Resolución

Calcule
$$N + R$$

$$1 + 3 + 5 + 7 + \dots + N = 900$$
$$2 + 4 + 6 + 8 + 10 + \dots + R = 1640$$

Resolución

Halle el valor de
$$P = 3 + 8 + 13 + 18 + \cdots$$

30 términos

Resolución

Calculamos t_{30}

$$-2$$
 3 + 8 + 13 + 18 + ...
+5 +5 +5 +5

$$t_n = 5n - 2$$

$$t_{30} = 5(30) - 2$$

$$t_{30} = 148$$

RECUERDA

$$S = \frac{(t_1 + t_n) \times n}{2}$$

$$P = \left(\frac{3 + 148}{2}\right)^{15}$$

$$P = (151)15$$

El profesor Ronald evalúa a su alumno Geovani; haciéndole la siguiente pregunta:

$$S = 2 + 5 + 8 + 11 + ... + 119$$

Como Geovani estaba nervioso al momento de dar su respuesta, olvidó escribir el cero de su respuesta final. Podría decir ¿cuál fue la respuesta que dio Geovani?

Resolución

Calculamos el número de sumandos.

RECUERDA

$$S = \frac{(t_1 + t_n) \times n}{2}$$

$$S = \frac{(2 + 119)40}{2}$$

$$S = (121)20$$

$$S = 2420$$

Raulito ubica sus fichas en filas: en la primera coloca 2 fichas, en la segunda 4, en la tercera 6 y así sucesivamente hasta que en una fila coloca 80 fichas.

¿Cuántas fichas colocó en total?

Resolución

Piden calcular el número total de fichas:

Filas $\rightarrow 1^{\circ}$ 2° 3° 4° ... 40° N° de fichas: 2 + 4 + 6 + 8 + ... + 80 = 40x41 $\therefore 1640$

Calcule la suma de los 40 primeros números enteros positivos múltiplos de 7

Resolución

Piden el valor de la serie:

$$S = 7 + 14 + 21 + 28 + \dots$$

Factor común 7:

$$S = 7 (1 + 2 + 3 + 4 + ... + 40)$$

$$S = 7 \left(\frac{40 \times 41}{2} \right) = 7(20 \times 41)$$

.. <u>5740</u>

Roberto compró paquetón de figuritas mundial poder para venderlas. El primer día vende solo una figurita, 4 el 🛮 segundo, 9 el tercer día, 16 el día cuarto asi _I sucesivamente hasta que un día vendió 400 figuritas. Si al final de esta última venta solo le quedan 10 figuritas, ¿Cuántas figuritas compro en total Roberto?

Resolución

del | Piden calcular el total de figuritas.

$$1^2 + 2^2 + 3^2 + 4^2 + \dots + 20^2$$

$$\frac{20(21)(41)}{6}$$
 = 2870

El total:
$$2870 + 10$$

Alberto es un recolector de botellas de plástico, la primera hora recogió una botella, la segunda recogió 8, la tercera hora recogió 27 botellas, y así hasta que pasaron 11 horas. ¿Cuántas botellas recogió en total ese día?

Resolución

Piden calcular el total de botellas.

1°hora 2°hora 3°hora 4°hora ... 11°hora

1; 8; 27; 64; ...
$$1^{3} + 2^{3} + 3^{3} + 4^{3} + ... + 11^{3} = \left(\frac{11(12)}{2}\right)^{2}$$

.. 4356 botellas