Practical 5 - Josiah Teh IPYNB

December 8, 2021

1 First Name: Josiah

2 Last Name: Teh

```
[3]: import pandas as pd
import numpy as np
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.stats.multicomp as multi
import matplotlib.pyplot as plt
```

3 From Prac 1 to 3

```
[4]: nesarc = pd.read_csv('nesarc.csv', low_memory=False)
pd.set_option('display.float_format', lambda x:'%f'%x)
```

```
[5]: nesarc['S2AQ5B'] = pd.to_numeric(nesarc['S2AQ5B'], errors='coerce') #convert_

→variable to numeric

nesarc['S2AQ5D'] = pd.to_numeric(nesarc['S2AQ5D'], errors='coerce') #convert_

→variable to numeric

nesarc['S2AQ5A'] = pd.to_numeric(nesarc['S2AQ5A'], errors='coerce') #convert_

→variable to numeric
```

```
[6]: sub1=nesarc[(nesarc['AGE']>=26) & (nesarc['AGE']<=50) & (nesarc['S2AQ5A']==1)] sub2=sub1.copy()
```

```
[7]: #SETTING MISSING DATA
sub2['S2AQ5D']=sub2['S2AQ5D'].replace(99, np.nan)

sub2['S2AQ5B']=sub2['S2AQ5B'].replace(8, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(9, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(10, np.nan)
sub2['S2AQ5B']=sub2['S2AQ5B'].replace(99, np.nan)
```

```
[8]: recode2 = {1:30, 2:26, 3:14, 4:8, 5:4, 6:2.5, 7:1} sub2['BEER_FEQMO'] = sub2['S2AQ5B'].map(recode2) sub2['BEER_FEQMO'] = pd.to_numeric(sub2['BEER_FEQMO'])
```

```
[9]: # Creating a secondary variable multiplying the days consumed beer/month and
      → the number of beer/per day
      sub2['NUMBEERMO EST']=sub2['BEER FEQMO'] * sub2['S2AQ5D']
      sub2['NUMBEERMO EST'] = pd.to numeric(sub2['NUMBEERMO EST'])
[10]: ct1 = sub2.groupby('NUMBEERMO_EST').size()
      print (ct1)
     NUMBEERMO_EST
     1.000000
                   477
     2.000000
                   407
     2.500000
                   414
     3.000000
                   172
     4.000000
                   429
     520.000000
                     1
     540.000000
                     2
     624.000000
                     1
     720.000000
     900.000000
     Length: 75, dtype: int64
```

4 Categorical -> Quantitative - ANOVA

```
[11]: sub2['DYSLIFE'] = sub2['DYSLIFE'].astype('category')
```

5 Draw boxplot to show relationship between minor depression status (DYSLIFE (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

```
[13]: # hint lecture cell 10
%matplotlib inline
sns.boxplot(x='DYSLIFE', y='NUMBEERMO_EST', data=sub2)
plt.xlabel('DYSLIFE')
plt.ylabel('NUMBEERMO_EST')
[13]: Text(0, 0.5, 'NUMBEERMO_EST')
```


6 Perform ANOVA analysis between minor depression status (DYSLIFE (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

```
[14]: # hint lecture cell 11
model1 = smf.ols(formula='NUMBEERMO_EST ~ C(DYSLIFE)', data=sub2).fit()
print (model1.summary())
```

OLS Regression Results							
Dep. Variable:	NIIME	EERMO_EST	R-501	====== 12red:		0.003	
Model:	WOTIL	R-squared: Adj. R-squared:			0.003		
Method:	Leas	OLS t Squares	F-statistic:			20.23	
Date:		-	<pre>Prob (F-statistic):</pre>			6.99e-06	
Time:	,	19:23:55	Log-Likelihood:			-38804	
No. Observations:		7303	AIC:			7.761e+04	
Df Residuals:		7301	BIC:			7.763e+04	
Df Model:		1					
Covariance Type:	nonrobust						
===		=======	=====			=========	
	coef	std err		t	P> t	[0.025	
0.975]							

```
27.2277
                 0.587
                        46.361
                               0.000
                                      26.076
Intercept
28.379
C(DYSLIFE) [T.1] 12.9670
                  2.883
                         4.497
                               0.000
                                      7.315
18.619
______
Omnibus:
                 7622.371 Durbin-Watson:
                                           2.026
                       Jarque-Bera (JB):
Prob(Omnibus):
                  0.000
                                       640965.769
Skew:
                  5.150 Prob(JB):
                                           0.00
                       Cond. No.
Kurtosis:
                  47.725
                                           5.02
______
Notes:
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[15]: sub3 = sub2[['NUMBEERMO_EST', 'DYSLIFE']].dropna()
```

7 print the mean of number of beer consumed grouped by minor depression status (use sub3)

```
[16]: # hint lecture cell 13
      print ('means for NUMBEERMO_EST by minor depression status')
      m1 = sub3.groupby('DYSLIFE').mean()
      print (m1)
     means for NUMBEERMO_EST by minor depression status
              NUMBEERMO_EST
     DYSLIFE
     0
                  27.227714
     1
                  40.194719
```

print the standard deviation (std) of number beer consumed grouped by minor depression status (use sub3)

```
[18]: # hint lecture cell 14
      print ('standard deviations for NUMBEERMO_EST by minor depression status')
      sd1 = sub3.groupby('DYSLIFE').std()
      print (sd1)
     standard deviations for NUMBEERMO EST by minor depression status
              NUMBEERMO_EST
     DYSLIFE
                  47.678467
                  75.407118
```

9 Categorical (>2) -> Quantitative - ANOVA

```
[19]: sub2['ETHRACE2A'] = sub2['ETHRACE2A'].astype('category')
sub2['ETHRACE2A']=sub2['ETHRACE2A'].cat.rename_categories(["White", "Black",

→"NatAm", "Asian", "Hispanic"])
```

10 Draw boxplot to show relationship between ethinicity (ETHRACE2A (categorical)) and estimated number of beer consumed (NUMBEERMO_EST (quantitative))

[23]: Text(0, 0.5, 'NUMCIGMO_EST')


```
[24]: sub4 = sub2[['NUMBEERMO_EST', 'ETHRACE2A']].dropna()
```

11 Perform ANOVA analysis between ethinicity (ETHRACE2A (categorical)) and estimated number of beer consumed (NUM-BEERMO_EST (quantitative))

[27]: # hint lecture cell 18
model2 = smf.ols(formula='NUMBEERMO_EST ~ C(ETHRACE2A)', data=sub4).fit()
print (model2.summary())

	OLS Regres	sion Resul	ts			
		=======	========	=======		
Dep. Variable:	NUMBEERMO_EST	R-square			0.005	
Model: OLS		Adj. R-s	-	0.004		
Method:	-	F-statis		8.261		
Date:	· · · · · · · · · · · · · · · · · · ·		statistic):	1.21e-06		
Time: No. Observations:	19:28:56 7303	Log-Likelihood:		-38797. 7.760e+04		
Df Residuals:	7303 7298	AIC:		7.760e+04 7.764e+04		
Df Model:	1290	BIC:		7.764e+04		
Covariance Type:	nonrobust					
				P> t		
0.975]	coef	std err	t	P> t	[0.025	
Intercept	27.8589	0.742	37.535	0.000	26.404	
29.314						
C(ETHRACE2A) [T.Black] 7.831	4.5843	1.656	2.768	0.006	1.338	
C(ETHRACE2A)[T.NatAm]	11.6496	4.581	2.543	0.011	2.670	
20.629 C(ETHRACE2A)[T.Asian]	-11.2589	3.594	-3.133	0.002	-18.304	
-4.214						
C(ETHRACE2A)[T.Hispan -0.370	nic] -3.2403	1.464	-2.213	0.027	-6.111	
-0.570			=========			
Omnibus: 7639.304		Durbin-W	atson:	2.027		
Prob(Omnibus): 0.0		Jarque-B	era (JB):	646522.833		
Skew:	5.167	Prob(JB):		0.00		
Kurtosis:	47.921	Cond. No.		8.28		

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

12 print the mean of number of beer consumed grouped by ethinicity

```
[29]: # hint lecture cell 19
     print ('means for NUMBEERMO EST by ethinicity')
     m2= sub4.groupby('ETHRACE2A').mean()
     print (m2)
     means for NUMBEERMO_EST by ethinicity
               NUMBEERMO_EST
     ETHRACE2A
                   27.858922
     White
     Black
                   32.443182
     NatAm
                 39.508475
     Asian
                  16.600000
     Hispanic
                   24.618638
```

13 print the standard deviation (std) of number of beer consumed grouped by ethinicity

```
[30]: # hint lecture cell 20
     print ('standard deviations for NUMBEERMO_EST by ethnicity')
     sd2 = sub4.groupby('ETHRACE2A').std()
     print (sd2)
     standard deviations for NUMBEERMO_EST by ethnicity
               NUMBEERMO_EST
     ETHRACE2A
     White
                   50.537013
     Black
                 55.289755
     NatAm
                 57.231386
     Asian
                 25.572698
     Hispanic
                 41.073842
```

14 Perform Tukey's Honestly Significant Difference (Post hoc) test

```
[31]: # hint lecture cell 21
mc1 = multi.MultiComparison(sub4['NUMBEERMO_EST'], sub4['ETHRACE2A'])
res1 = mc1.tukeyhsd()
print(res1.summary())

Multiple Comparison of Means - Tukey HSD, FWER=0.05
```

group1 group2 meandiff p-adj lower upper reject

Asian	Black	15.8432	0.001	5.4332	26.2532	True
Asian	Hispanic	8.0186	0.2007	-2.1752	18.2124	False
Asian	${\tt NatAm}$	22.9085	0.001	7.2827	38.5343	True
Asian	White	11.2589	0.015	1.4533	21.0646	True
Black	Hispanic	-7.8245	0.001	-13.1332	-2.5159	True
Black	${\tt NatAm}$	7.0653	0.5624	-5.9129	20.0435	False
Black	White	-4.5843	0.0448	-9.103	-0.0655	True
Hispanic	${\tt NatAm}$	14.8898	0.0132	2.0844	27.6953	True
Hispanic	White	3.2403	0.175	-0.7553	7.2359	False
NatAm	White	-11.6496	0.0816	-24.1482	0.8491	False