Math 327 Homework 5

Chongyi Xu

May 3, 2017

- 1. Determine if the following series converge. Explain.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{5n-2}$

It diverges. Apply limit comparison test with $\sum_{n=1}^{\infty} \frac{1}{n}$. $\lim_{n \to \infty} \left| \frac{1}{\frac{5n-2}{n}} \right| = \lim_{n \to \infty} \left| \frac{n}{5n-2} \right| = \frac{1}{5} \neq 0$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges(harmonic series), then $\sum_{n=1}^{\infty} \frac{1}{5n-2}$ also diverges.

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

It converges. In order to apply alternating series test, we need to prove $\frac{1}{\sqrt{n}}$ is non-increasing and converges to 0.

- Claim: $\frac{1}{\sqrt{n}}$ is non-increasing. Proof: Let $\frac{1}{\sqrt{n}} = a_n$. Then $a_n - a_{n+1} = \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} = \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}$. Since $\sqrt{n(n+1)} > 0$ and $n+1 > n \iff \sqrt{n+1} > \sqrt{n}$ for $n \in \mathbb{N}$, then $a_n - a_{n+1} > 0$. So $\frac{1}{\sqrt{n}}$ is non-increasing (decreasing).
- Claim: $\frac{1}{\sqrt{n}}$ converges to 0. Proof: Let $\varepsilon > 0$. By Archimedean Property, choose N with $\frac{1}{N} < \varepsilon^2$. Then for any $n \ge N$, $\left|\frac{1}{\sqrt{n}} - 0\right| = \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{N}}$ (since $n \ge N$) $< \varepsilon$ (by the choice of N). So $\frac{1}{\sqrt{n}}$ converges to 0.

So by alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges.

 $(c) \sum_{n=1}^{\infty} \left(\frac{n+1}{n^2+1}\right)^3$

It converges by applying comparison test.

For n = 1, $(\frac{n+1}{n^2+1})^3 = 1$. So $\sum_{n=1}^{\infty} (\frac{n+1}{n^2+1})^3 = 1 + \sum_{n=2}^{\infty} (\frac{n+1}{n^2+1})^3$. Therefore, we only need to consider the $\sum_{n=2}^{\infty} (\frac{n+1}{n^2+1})^3$ part for convergence.

Claim:
$$(\frac{n+1}{n^2+1})^3 < \frac{1}{n^3} \iff \frac{n+1}{n^2+1} < \frac{1}{n}$$

Since
$$n \ge 2$$
, $\frac{n+1}{n^2+1} = \frac{(n+1)(n-1)}{(n^2+1)(n-1)} = \frac{n^2-1}{n^3-n^2+n-1}$
 $< \frac{n^2}{n^3-n^2+n-1}$

Since for
$$n \ge 2$$
, $-n^2 + n - 1 = n(1 - n) - 1 < 0$

$$< \frac{n^2}{n^2}$$

$$= \frac{1}{n}$$

So we have $(\frac{n+1}{n^2+1})^3 < \frac{1}{n^3} < \frac{1}{n^2}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by comparison test, $\sum_{n=1}^{\infty} (\frac{n+1}{n^2+1})^3$ converges

(d)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

It converges by Ratio Test.

$$\lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{(n+1)!n^n}{(n+1)^{n+1}n!}$$

$$= \lim_{n \to \infty} \frac{(n+1)!}{n!} \cdot \frac{n^n}{(n+1)^{n+1}}$$

$$= \lim_{n \to \infty} (n+1) \cdot (\frac{n}{n+1})^n \cdot \frac{1}{n+1}$$

$$= \lim_{n \to \infty} (\frac{n}{n+1})^n$$

$$= \lim_{n \to \infty} (\frac{1}{1+\frac{1}{n}})^n$$

$$= \frac{1}{e} < 1 \text{ since } \lim_{n \to \infty} (1+\frac{1}{n})^n = e$$

Since $0 \le \lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} < 1$, by Ratio Test, it (absolutely) converges.

(e)
$$1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \dots$$

It converges by Ratio Test.

Since
$$1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \dots = \sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}$$

$$\begin{split} \lim_{n \to \infty} \frac{\frac{(n+1)!}{[2(n+1)-1]!}}{\frac{n!}{(2n-1)!}} &= \lim_{n \to \infty} \frac{(n+1)!}{n!} \cdot \frac{(2n-1)!}{(2n+1)!} \\ &= \lim_{n \to \infty} (n+1) \cdot \frac{1}{2n} \cdot \frac{1}{2n+1} \\ &= \lim_{n \to \infty} \frac{n+1}{2n+1} \cdot \frac{1}{2n} \\ &< 1 \text{ since } n+1 < 2n+1 \text{ and } \frac{1}{2n} \le 1 \end{split}$$

Since $0 \le \lim_{n \to \infty} \frac{\frac{(n+1)!}{[2(n+1)-1]!}}{\frac{n!}{[2n-1)!}} < 1$, by Ratio Test, it (absolutely) converges.

$$(f) \sum_{n=1}^{\infty} \frac{n}{2^n}$$

It converges by Ratio Test.

Claim:
$$\frac{n+1}{n} \le 2$$

Proof: $\frac{n+1}{n} = \frac{1}{n} + 1$. Since $\frac{1}{n} \le 1$ for $n \in \mathbb{N}$, $\frac{n+1}{n} \le 2$.

$$\begin{split} \lim_{n \to \infty} \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} &= \lim_{n \to \infty} \frac{n+1}{n} \cdot \frac{2^n}{2^{n+1}} \\ &= \lim_{n \to \infty} \frac{n+1}{n} \cdot \frac{1}{2} \\ &\leq 1 \text{ since as proved above, } \frac{n+1}{n} \leq 2 \end{split}$$

Since