PARTIFI DE PHYSIOUE - MAI 2022 - SEMESTRE 2

Documents et calculatrices interdits.

EXERCICE 1 : QCM [PAS DE POINT NEGATIF - 3 POINTS]

Encercler la bonne réponse. Une question peut avoir plusieurs bonnes réponses.

1. Une force \overrightarrow{F} s'exerce selon un angle α sur une boîte de masse m traînée sur le sol à vitesse constante. Si la boîte parcourt une distance AB, alors le travail W effectué par la force \overrightarrow{F} sur la boîte est donné par:

b.
$$W = F \cdot AB \cdot \sin(\alpha)$$

- d. Aucune bonne réponse.
- 2. Lorsqu'un bus démarre brusquement, les passagers sont repoussés en arrière. C'est un exemple de laquelle parmi les lois suivantes?
- a. Première loi de Newton
- b. Deuxième loi de Newton
- c. Troisième loi de Newton
- d. Loi d'énergie cinétique
- 3. Le vecteur force \overrightarrow{F} appliqué à un corps est donné par : $\overrightarrow{F} = 6\overrightarrow{u}_x 8\overrightarrow{u}_y + 10\overrightarrow{u}_z$. Le corps subit alors une accélération de norme $1 m/s^2$. La masse de ce corps est de:

a.
$$10\sqrt{2}$$
 kg.

c.
$$2\sqrt{10}$$
 kg

d. 8 kg

- 4. D'après le théorème de l'énergie cinétique, la somme des travaux des forces extérieures agissant sur un système est égale à
- a. L'énergie cinétique du système
- b. L'énergie potentielle du système
- c. La variation de l'énergie cinétique du système
- d. La variation de l'énergie potentielle du système
- 5. Que ne peut-on pas dire de l'énergie mécanique d'un système ?
- a. Elle est égale à la somme des énergies cinétique et potentielle du système.
- b. Elle est nulle pour une masse *m* animée d'un mouvement rectiligne.
- c. Elle est toujours conservée.
- d. Elle est égale à l'énergie potentielle pour un système au repos.

EXERCICE 2: LOIS DE NEWTON [8 POINTS]

Considérons le système représenté à la figure 1 : Deux masses égales $M=2,0\,\mathrm{kg}$ sont attachées à une corde enroulée sur une poulie bloquée. La masse de gauche repose sur le sol, celle de droite est suspendue à 1,0 m au-dessus du sol.

Il y a une autre masse m=0.5 kg attachée au-dessus de la masse M de droite.

On néglige la masse de la corde et celle de la poulie ainsi que le frottement.

La poulie est finalement libérée. On donne $g = 10 m/s^2$.

Figure 1

- 1. Représenter sur le schéma les différentes forces extérieures qui agissent sur chacune des masses du système.
- 2. Quelles relations existent entre les différentes tensions des fils du système. Justifier votre réponse.

on de l'accél on numérique	Systeme es	CAUTITEE	Pui .	$a = \frac{m}{2M}$	+ m ·	Tanc e	.1
							_

EXERCICE 3: ENERGIE MÉCANIQUE [4,5 POINTS]

Un objet de masse m assimilé à un point matériel est lâché sans vitesse initiale du haut d'une cuvette (point A) situé à une hauteur h par rapport au sol. La bille glisse le long de la cuvette et remonte jusqu'à un deuxième sommet (point B) situé à une hauteur d, avant de continuer son chemin. Les frottements subis par la bille seront négligés. On donne $g\,=\,10\,m$. s^{-2} .

1. Donnez les expressions des énergies cinétique, potentielle et mécanique aux points A, A' et B.

2. En utilisant le théorème de l'énergie mécanique, déterminer l'expression de la vitesse $v_{\it B}$ de la bille au point B?

3. Quelle relation doit exister entre d et h pour que la bille s'arrête net au point B ?
EVEDOLOGIA ENEDOLE CINIÉTIQUE ET TRAVAULI A E DOINITGI
EXERCICE 4 : ENERGIE CINÉTIQUE ET TRAVAIL [4,5 POINTS]
Un palet de hockey de masse m lancé à une vitesse v_A parcourt une distance horizontale x avant de s'immobiliser. On étudie son mouvement dans le référentiel terrestre.
1. Donner le bilan des forces extérieures qui s'exercent sur le palet.
2. Quelle est la force responsable de son ralentissement ?
3. Exprimer le travail de chacune de ces forces.
5. Exprimer le travail de chacune de ces forces.