L1 Optimization and Sparse Coding: From Sparsity-Promoting Norms to Convex Optimization

Lecture Notes

July 14, 2025

Contents

1	Introduction to Sparsity-Promoting Norms 1.1 Motivation: From ℓ_0 to ℓ_1
2	Mathematical Framework: ℓ_p Norms
	2.1 Definition and Properties
	2.2 The Case $p < 1$: Quasi-Norms
3	Geometric Interpretation: Unit Balls and Sparsity
	3.1 Visualization of ℓ_p Unit Balls
	3.2 Sparsity Promotion Through Geometric Analysis
4	Convex Optimization Theory
	4.1 Convex Sets and Functions
	4.2 Convexity of ℓ_p Norms
	4.3 Fundamental Optimization Result
5	The ℓ_1 Optimization Problem
	5.1 Problem Formulation
	5.2 Connection to LASSO
	5.3 Problem Components Analysis
	5.3.1 Data Fidelity Term
	5.3.2 Regularization Term
3	Optimization Theory for Non-Differentiable Functions
	6.1 The Descent Lemma
	6.2 Majorization-Minimization Approach
	6.3 Gradient Descent Derivation

7	Proximal Gradient Methods	8
	7.1 Proximal Operator	8
	7.2 Proximal Gradient Algorithm	
	7.3 Proximal Operator of ℓ_1 Norm	
8	Applications and Extensions	9
	8.1 Signal Processing Applications	9
	8.2 Computational Considerations	9
	8.3 Extensions to Other Norms	
9	Conclusion	9
10	Mathematical Appendix	11
	10.1 Subdifferential Calculus	11
	10.2 Optimality Conditions	11
11	Glossary of Symbols	11

1 Introduction to Sparsity-Promoting Norms

The quest for sparse representations in signal processing and machine learning has led to the development of various sparsity-promoting norms. This lecture transitions from the intuitive but computationally intractable ℓ_0 norm to more practical alternatives, particularly the ℓ_1 norm, which offers a favorable balance between sparsity promotion and computational tractability.

1.1 Motivation: From ℓ_0 to ℓ_1

The ℓ_0 norm, defined as the number of non-zero components in a vector, provides the most intuitive measure of sparsity. However, optimization problems involving the ℓ_0 norm are NP-hard due to their combinatorial nature. This computational intractability necessitates the exploration of alternative sparsity-promoting norms that maintain favorable optimization properties.

Definition 1.1 (Sparsity Measure). For a vector $\mathbf{x} \in \mathbb{R}^n$, the ℓ_0 norm is defined as:

$$\|\mathbf{x}\|_0 = \sum_{i=1}^n \mathbf{1}_{x_i \neq 0} \tag{1}$$

where $\mathbf{1}_{x_i\neq 0}$ is the indicator function that equals 1 if $x_i\neq 0$ and 0 otherwise.

The challenge lies in finding norms that promote sparsity while yielding tractable optimization problems. This leads us to consider the family of ℓ_p norms for various values of p.

2 Mathematical Framework: ℓ_p Norms

2.1 Definition and Properties

The ℓ_p norm extends the familiar concept of the Euclidean norm to a broader family of norms parametrized by $p \ge 1$.

Definition 2.1 $(\ell_p \text{ Norm})$. For a vector $\mathbf{x} \in \mathbb{R}^n$ and $p \geq 1$, the ℓ_p norm is defined as:

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 (2)

Example 2.2 (Common ℓ_p Norms).

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| \quad \text{(Manhattan norm)} \tag{3}$$

$$\|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$
 (Euclidean norm) (4)

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} |x_i| \quad \text{(Maximum norm)} \tag{5}$$

2.2 The Case p < 1: Quasi-Norms

For $0 , the expression <math>(\sum_{i=1}^{n} |x_i|^p)^{1/p}$ does not satisfy the triangle inequality and thus is not a norm in the mathematical sense. These are referred to as quasi-norms.

Theorem 2.3 (Triangle Inequality Failure for p < 1). For $0 , the triangle inequality <math>\|\mathbf{x} + \mathbf{y}\|_p \le \|\mathbf{x}\|_p + \|\mathbf{y}\|_p$ does not hold in general.

Proof Sketch. Consider the counterexample with $\mathbf{x} = (1,0)^T$ and $\mathbf{y} = (0,1)^T$ in \mathbb{R}^2 . For p < 1:

$$\|\mathbf{x} + \mathbf{y}\|_p = \|(1, 1)^T\|_p = (1^p + 1^p)^{1/p} = 2^{1/p}$$
 (6)

$$\|\mathbf{x}\|_p + \|\mathbf{y}\|_p = 1^{1/p} + 1^{1/p} = 2$$
 (7)

Since 1/p > 1 for p < 1, we have $2^{1/p} > 2$, violating the triangle inequality.

3 Geometric Interpretation: Unit Balls and Sparsity

3.1 Visualization of ℓ_p Unit Balls

The geometric properties of ℓ_p norms can be understood through their unit balls, defined as:

$$B_p = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_p \le 1 \}$$
(8)

Figure 1: Unit balls for various ℓ_p norms in \mathbb{R}^2 . The ℓ_1 ball forms a diamond shape, while ℓ_2 forms a circle, and ℓ_{∞} forms a square.

3.2 Sparsity Promotion Through Geometric Analysis

The sparsity-promoting properties of different norms can be understood through a geometric optimization perspective. Consider the constrained optimization problem:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_p \quad \text{subject to} \quad \mathbf{A}\mathbf{x} = \mathbf{b} \tag{9}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m < n (underdetermined system).

Theorem 3.1 (Geometric Sparsity Argument). For underdetermined linear systems, the ℓ_1 norm promotes sparse solutions more effectively than the ℓ_2 norm due to the angular structure of the ℓ_1 unit ball.

Geometric Interpretation. The solution is found by inflating the ℓ_p unit ball until it touches the solution set (an affine subspace). The ℓ_1 ball's diamond shape with sharp corners along the coordinate axes makes it more likely to intersect the solution set at a sparse point (where many coordinates are zero) compared to the smooth ℓ_2 ball.

4 Convex Optimization Theory

4.1 Convex Sets and Functions

Definition 4.1 (Convex Set). A set $S \subseteq \mathbb{R}^n$ is convex if and only if for any two points $\mathbf{x}, \mathbf{y} \in S$ and any $\alpha \in [0, 1]$:

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in S \tag{10}$$

Definition 4.2 (Convex Function). A function $f: S \to \mathbb{R}$ defined on a convex set $S \subseteq \mathbb{R}^n$ is convex if for any $\mathbf{x}, \mathbf{y} \in S$ and $\alpha \in [0, 1]$:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \tag{11}$$

4.2 Convexity of ℓ_p Norms

Theorem 4.3 (Convexity of ℓ_p Norms). For $p \geq 1$, the ℓ_p norm is a convex function on \mathbb{R}^n .

Proof. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in [0, 1]$, we need to show:

$$\|\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}\|_{p} \le \alpha \|\mathbf{x}\|_{p} + (1 - \alpha)\|\mathbf{y}\|_{p}$$

$$\tag{12}$$

Using the triangle inequality for norms:

$$\|\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}\|_{p} \le \|\alpha \mathbf{x}\|_{p} + \|(1 - \alpha)\mathbf{y}\|_{p}$$

$$\tag{13}$$

$$= \alpha \|\mathbf{x}\|_p + (1 - \alpha) \|\mathbf{y}\|_p \tag{14}$$

where the last equality uses the homogeneity property of norms.

4.3 Fundamental Optimization Result

Theorem 4.4 (Global Optimality in Convex Optimization). For a convex optimization problem, any local minimum is also a global minimum.

This result is crucial for sparse coding applications, as it guarantees that any convergent optimization algorithm will find the globally optimal solution.

5 The ℓ_1 Optimization Problem

5.1 Problem Formulation

The ℓ_1 optimization problem for sparse coding can be formulated in two equivalent ways:

Definition 5.1 (Constrained ℓ_1 Problem (P1)).

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{subject to} \quad \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2} \le \epsilon \tag{15}$$

Definition 5.2 (Regularized ℓ_1 Problem (P2)).

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$
(16)

5.2 Connection to LASSO

The regularized formulation (P2) is known in statistics as the Least Absolute Shrinkage and Selection Operator (LASSO), introduced by Robert Tibshirani.

Remark 5.3 (LASSO vs. Sparse Coding). While LASSO and sparse coding share the same mathematical formulation, they operate in different contexts:

- LASSO: Overdetermined systems (m > n) for variable selection
- Sparse Coding: Underdetermined systems (m < n) for signal representation

5.3 Problem Components Analysis

5.3.1 Data Fidelity Term

The term $\frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ serves as the data fidelity term, ensuring that the solution \mathbf{x} produces a reconstruction $\mathbf{A}\mathbf{x}$ that is close to the observed signal \mathbf{b} .

Proposition 5.4 (Properties of Data Fidelity Term). The data fidelity term $g(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2$ is:

- 1. Convex (as a composition of convex functions)
- 2. Differentiable with gradient $\nabla g(\mathbf{x}) = \mathbf{A}^T(\mathbf{A}\mathbf{x} \mathbf{b})$
- 3. Strongly convex if **A** has full column rank

5.3.2 Regularization Term

The term $\lambda \|\mathbf{x}\|_1$ acts as a regularization term, promoting sparsity in the solution.

Proposition 5.5 (Properties of ℓ_1 Regularization). The regularization term $h(\mathbf{x}) = ||\mathbf{x}||_1$ is:

- 1. Convex
- 2. Non-differentiable at $x_i = 0$ for any component i
- 3. Promotes sparsity through its geometric properties

6 Optimization Theory for Non-Differentiable Functions

6.1 The Descent Lemma

For smooth convex functions, we can construct quadratic majorizers that facilitate optimization.

Lemma 6.1 (Descent Lemma). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex, differentiable function with Lipschitz continuous gradient. Then for any $\mathbf{x}_k \in \mathbb{R}^n$, there exists L > 0 such that:

$$f(\mathbf{x}) \le Q_L(\mathbf{x}; \mathbf{x}_k) = f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2$$
(17)

for all $\mathbf{x} \in \mathbb{R}^n$.

6.2 Majorization-Minimization Approach

Definition 6.2 (Majorization-Minimization Algorithm). Given a convex function f, the majorization-minimization approach generates a sequence $\{\mathbf{x}_k\}$ by:

$$\mathbf{x}_{k+1} = \operatorname{argmin}_{\mathbf{x}} Q_L(\mathbf{x}; \mathbf{x}_k) \tag{18}$$

$$= \operatorname{argmin}_{\mathbf{x}} \left[f(\mathbf{x}_k) + \nabla f(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) + \frac{L}{2} \|\mathbf{x} - \mathbf{x}_k\|_2^2 \right]$$
(19)

6.3 Gradient Descent Derivation

Minimizing the majorizer $Q_L(\mathbf{x}; \mathbf{x}_k)$ with respect to \mathbf{x} :

$$\nabla_{\mathbf{x}}Q_L(\mathbf{x};\mathbf{x}_k) = \nabla f(\mathbf{x}_k) + L(\mathbf{x} - \mathbf{x}_k) = 0$$
(20)

$$\Rightarrow \mathbf{x}_{k+1} = \mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k) \tag{21}$$

This recovers the standard gradient descent update with step size $\gamma = 1/L$.

Theorem 6.3 (Gradient Descent Convergence). For a convex, differentiable function f with Lipschitz continuous gradient, the gradient descent algorithm converges to the global minimum.

7 Proximal Gradient Methods

7.1 Proximal Operator

For the composite optimization problem $\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$ where f is smooth and g is non-smooth, we introduce the proximal operator.

Definition 7.1 (Proximal Operator). The proximal operator of a function g with parameter $\lambda > 0$ is defined as:

$$\operatorname{prox}_{\lambda g}(\mathbf{v}) = \operatorname{argmin}_{\mathbf{x}} \left\{ \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{v}\|_{2}^{2} + g(\mathbf{x}) \right\}$$
 (22)

7.2 Proximal Gradient Algorithm

For the problem $\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$:

- 1. Initialize \mathbf{x}_0
- 2. For $k = 0, 1, 2, \ldots$:

$$\mathbf{y}_k = \mathbf{x}_k - \frac{1}{L} \nabla f(\mathbf{x}_k) \tag{23}$$

$$\mathbf{x}_{k+1} = \operatorname{prox}_{\frac{1}{L}g}(\mathbf{y}_k) \tag{24}$$

7.3 Proximal Operator of ℓ_1 Norm

Theorem 7.2 (Soft Thresholding). The proximal operator of the ℓ_1 norm is given by the soft thresholding operator:

$$[\operatorname{prox}_{\lambda \| \cdot \|_1}(\mathbf{v})]_i = \operatorname{sign}(v_i) \max\{|v_i| - \lambda, 0\}$$
(25)

where $sign(v_i)$ is the sign function.

Proof. The proximal operator problem becomes:

$$\min_{\mathbf{x}} \left\{ \frac{1}{2\lambda} \|\mathbf{x} - \mathbf{v}\|_{2}^{2} + \|\mathbf{x}\|_{1} \right\} \tag{26}$$

This separates into n independent scalar problems:

$$\min_{x_i} \left\{ \frac{1}{2\lambda} (x_i - v_i)^2 + |x_i| \right\} \tag{27}$$

The solution is the soft thresholding operator due to the subdifferential analysis of the absolute value function. \Box

8 Applications and Extensions

8.1 Signal Processing Applications

The ℓ_1 optimization framework finds extensive applications in:

- Compressed Sensing: Recovering sparse signals from undersampled measurements
- Image Denoising: Removing noise while preserving important features
- Feature Selection: Identifying relevant variables in high-dimensional data
- Dictionary Learning: Learning overcomplete bases for signal representation

8.2 Computational Considerations

Remark 8.1 (Algorithmic Efficiency). The proximal gradient method for ℓ_1 optimization has several computational advantages:

- 1. Uses only first-order information (gradients)
- 2. Scales well to high dimensions
- 3. Produces sparse solutions automatically through soft thresholding
- 4. Guaranteed global convergence for convex problems

8.3 Extensions to Other Norms

The framework extends naturally to other sparsity-promoting norms:

- Group LASSO: $\|\mathbf{x}\|_{\text{group}} = \sum_{g} \|\mathbf{x}_{g}\|_{2}$
- Elastic Net: $\alpha \|\mathbf{x}\|_1 + (1 \alpha) \|\mathbf{x}\|_2^2$
- Total Variation: $\|\nabla \mathbf{x}\|_1$ for piecewise constant signals

9 Conclusion

The transition from ℓ_0 to ℓ_1 optimization represents a fundamental shift in sparse coding methodology. By leveraging the convex optimization framework, we obtain:

- 1. Computational Tractability: Polynomial-time algorithms with global optimality guarantees
- 2. Sparsity Promotion: Geometric properties that encourage sparse solutions
- 3. Theoretical Foundation: Rigorous mathematical framework for analysis

4. Practical Effectiveness: Wide applicability across signal processing domains

The proximal gradient method provides an elegant solution to the non-differentiability challenge, enabling efficient optimization of ℓ_1 -regularized problems. This framework continues to be a cornerstone of modern sparse signal processing and machine learning applications.

10 Mathematical Appendix

10.1 Subdifferential Calculus

For non-differentiable convex functions, we use the concept of subdifferentials:

Definition 10.1 (Subdifferential). The subdifferential of a convex function f at \mathbf{x} is:

$$\partial f(\mathbf{x}) = \{ \mathbf{g} \in \mathbb{R}^n : f(\mathbf{y}) \ge f(\mathbf{x}) + \mathbf{g}^T(\mathbf{y} - \mathbf{x}) \text{ for all } \mathbf{y} \}$$
 (28)

10.2 Optimality Conditions

Theorem 10.2 (First-Order Optimality Condition). For the problem $\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$ where f is differentiable and g is convex, \mathbf{x}^* is optimal if and only if:

$$0 \in \nabla f(\mathbf{x}^*) + \partial g(\mathbf{x}^*) \tag{29}$$

11 Glossary of Symbols

 \mathbf{x} Vector in \mathbb{R}^n

 $\|\cdot\|_p$ ℓ_p norm

A Dictionary matrixb Observed signal

 λ Regularization parameter

 ϵ Noise tolerance

 $\begin{array}{ll} \operatorname{prox}_{\lambda g} & \operatorname{Proximal\ operator\ of}\ g \\ \partial f & \operatorname{Subdifferential\ of}\ f \\ L & \operatorname{Lipschitz\ constant} \\ \gamma & \operatorname{Step\ size\ parameter} \end{array}$