ЭЛЕКТРОННЫЕ И ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА

УДК 621.396:681.323

С. И. Зиатдинов

ИНТЕРПОЛИРОВАНИЕ ФУНКЦИИ НА ОСНОВЕ ДИСКРЕТНОГО ПРЕОБРАЗОВАНИЯ ФУРЬЕ

Исследуются линейные искажения при интерполяции случайного процесса на основе отсчетов его спектральной плотности, полученных дискретным преобразованием Фурье. Анализируются ошибки интерполяции для различных спектрально-корреляционных характеристик случайного процесса. Показано, что в точках взятия отсчетов ошибки интерполяции равны нулю и принимают максимальные значения в середине периода дискретизации.

Ключевые слова: спектр, дискретизация, восстановление, ошибки.

При цифровой обработке информации непрерывная функция x(t) представляется последовательностью ее отсчетов x[n], взятых через период дискретизации T, при этом n=0, 1, 2, ...

На практике для получения спектральной плотности исследуемой функции x(t) широко используется дискретное преобразование Фурье (ДПФ), позволяющее по пачке из N отсчетов функции x(t) получить N отсчетов спектральной плотности [1]:

$$s[k] = \sum_{n=0}^{N-1} x[n]e^{-j\Omega Tnk} , \qquad (1)$$

где $\Omega = 2\pi / NT$, k = 0...(N-1).

В то же время существует обратное ДП Φ , которое по полученным отсчетам спектральной плотности (1) однозначно определяет исходную импульсную последовательность [1]:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} s[k] e^{j\Omega T n k} . {2}$$

Рассмотрим задачу восстановления исходной функции x(t) в любой точке временного интервала t = 0...(N-1)T на основе отсчетов спектральной плотности (1).

Очевидно, что в точках t = nT интерполирующая функция совпадает с исходной функцией x(t), а в точках $t \neq nT$ возникают ошибки интерполяции, оценка которых и составляет цель настоящей статьи.

Для произвольного момента времени t в пределах временного интервала t=0...(N-1)T соотношение (2) в общем виде становится комплексным и записывается следующим образом:

$$y^{*}(t) = \frac{1}{N} \sum_{k=0}^{N-1} s[k] e^{j\Omega kt} .$$
 (3)

Положим $t=\ell T+\Delta T$, где $\ell=0...(N-2)$ — номер временного отсчета в пределах интервала t=0...(N-1)T; $\Delta T=0...T$ — точка интерполирования в пределах периода дискретизации. Тогда выражение (3) принимает вид

$$y^*(t) = \frac{1}{N} \sum_{k=0}^{N-1} s[k] e^{j\Omega k (\ell T + \Delta T)}. \tag{4}$$

После подстановки соотношения (1) в формулу (4) получим

$$y^{*}(t) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x[n] e^{j\Omega T k \left(\ell - n + \frac{\Delta T}{T}\right)}.$$
 (5)

В дальнейшем для практических случаев рассмотрим только вещественную составляющую выражения (5):

$$y(t) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x[n] \cos \Omega Tk \left(\ell - n + \frac{\Delta T}{T}\right). \tag{6}$$

Поскольку интерполирующая функция (6) при $\Delta T \neq 0$ отличается от исходной функции x(t), то возникающие ошибки интерполяции оценим коэффициентом линейных искажений [2—6]

$$K_{\text{\tiny JI.M}}\left(\tau\right) = \sqrt{1 - R_{12}\left(\tau\right)}$$
,

где $R_{12}(\tau)$ — коэффициент взаимной корреляции интерполирующей функции y(t) и исходной функции x(t).

Определим коэффициент линейных искажений для более простого случая при $\tau = 0$.

Пусть исходная функция x(t) представляет стационарный случайный процесс с нулевым математическим ожиданием. Тогда коэффициент взаимной корреляции $R_{12}(0)$ может быть найден из следующего выражения:

$$R_{12}(0) = \frac{\overline{y(t)x(t)}}{\sigma_{y}\sigma_{x}} = \frac{1}{N\sigma_{y}\sigma_{x}} \sum_{k=0}^{N-1} \sum_{n=0}^{N-1} B\left[\left(\ell - n\right)T + \Delta T\right] \cos \Omega T k \left(\ell - n + \frac{\Delta T}{T}\right),$$

где σ_y , σ_x — среднеквадратические значения функций y(t) и x(t); $B(\tau)$ — корреляционная функция исходного процесса x(t).

Для нахождения коэффициента взаимной корреляции $R_{12}(0)$ необходимо знать средне-квадратическое значение σ_{y} интерполирующей функции, которое определяется соотношением

$$\sigma_{y} = \frac{1}{N} \left[\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} \sum_{p=0}^{N-1} \sum_{m=0}^{N-1} B[n-m] \cos \Omega Tk \left(\ell - n + \frac{\Delta T}{T} \right) \cos \Omega Tp \left(\ell - m + \frac{\Delta T}{T} \right)^{-1/2} \right].$$

Пусть корреляционная функция процесса x(t) описывается соотношением

$$B(\tau) = \sigma_x^2 \exp(-|\tau| \Delta f),$$

где Δf — параметр, определяющий ширину спектральной плотности случайного процесса x(t); данной корреляционной функции соответствует пологая медленно спадающая спектральная плотность.

Результаты расчетов коэффициента линейных искажений $K_{\pi,\mu}(0)$ для различных значений параметров ℓ и $\Delta T/T$ при значении произведения $\Delta fT=0,005$ и числе отсчетов функции x(t) N=17 представлены в табл. 1.

Гаолица 1											
$\Delta T / T$		0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
$K_{_{\mathrm{Л.И}}}$,%	$\ell = 0$	0	5,99	11,47	15,32	16,59	15,24	12,07	8,42	5,49	3,28
	$\ell = 8$	0	3,74	6,23	7,80	8,46	8,49	8,14	7,38	5,94	3,65
	$\ell = 15$	0	3,28	5,49	8,42	12,07	15,24	16,59	15,32	11,47	5,99

Как следует из анализа полученных данных, в точках взятых отсчетов функции x(t) коэффициент линейных искажений равен нулю. При этом минимальные значения коэффициента $K_{\text{п.и}}\left(0\right)$ имеют место в середине интервала времени (N-1)T $\left(\ell=8\right)$ и в точках, примыкающих к моментам взятия отсчетов функции x(t).

В табл. 2 приведены результаты расчетов коэффициента линейных искажений $K_{\text{л.и}}(0)$ для корреляционной функции процесса x(t) вида

$$B(\tau) = \sigma_x^2 \exp(-\tau^2 \Delta f^2),$$

соответствующей резко падающей спектральной плотности. Вычисления произведены при прежних исходных данных.

Таблица 2											
ΔT	$\Delta T / T$		0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
	$\ell = 0$	0	1,50	3,00	4,02	4,28	3,75	2,65	1,37	0,32	0,18
$K_{_{\mathrm{Л.H}}}$,%	$\ell = 8$	0	0,56	0,93	0,99	0,73	0,26	0,28	0,65	0,74	0,50
	$\ell = 15$	0	0,18	0,32	1,37	2,65	3,75	4,28	4,02	3,00	1,50

Сопоставляя результаты, представленные в табл. 1 и 2, можно отметить, что для резко падающей спектральной плотности функции x(t) ошибки интерполяции в 4—7 раз меньше, чем в случае медленно падающей спектральной плотности. В целом же характер поведения коэффициента линейных искажений $K_{\text{п.и}}\left(0\right)$ для различных значений параметров ℓ и $\Delta T/T$ остается прежним.

СПИСОК ЛИТЕРАТУРЫ

- 1. Голд Б., Рейдер Ч. Цифровая обработка сигналов. М.: Сов. радио, 1973.
- 2. *Зиатдинов С. И., Жуков А. Д.* Искажение сигнала в узкополосных фильтрах // Изв. вузов. Приборостроение. 2006. Т. 49, № 12. С. 44—47.
- 3. Зиатдинов С. И. Линейные искажения сигнала фильтром Баттерворта // Там же. 2007. Т. 50, № 1. С. 35—39.
- 4. Зиатдинов С. И. Линейные искажения сигнала экстраполяторами // Там же. 2007. Т. 50, № 5. С. 57—60.
- 5. Зиатдинов С. И. Линейные искажения сигнала интерполятором // Там же. 2007. Т. 50, № 10. С. 50—53.
- 6. *Зиатдинов С. И.*, *Гирина Н. В.* Анализ ошибок при тригонометрической интерполяции // Там же. 2008. Т. 51, № 5. С. 42—45.

Сведения об авторе

Сергей Ильич Зиатдинов

 д-р техн. наук, профессор; Санкт-Петербургский государственный университет аэрокосмического приборостроения, кафедра информационно-сетевых технологий; E-mail: kaf.53@GUAP.ru

Рекомендована кафедрой информационно-сетевых технологий Поступила в редакцию 29.11.07 г.