Control Systems
(8 to 10M)

ESE = 100M

Obi*
(2016-30M) (60 to 70M)

Text Books :-

Gall (1) control system Engg -> NISE

- 2) control system Engg -> Magrath & Gopal
- 753 Automatic (S -> B.C.Kuo
 - (4) control systems: principle & Design: M. Gopal
 - (5) Modern control Sys: ogota.

⇒TF, BD, SFG -> IM 602M

- ⇒ Time Domain Analysis Transient Analysis Steady State Analysis ACE
- ⇒ Stability Time Domain tech ⇒ RH | RL]

 frequency Domain tech ⇒ BP | NP]
 - ⇒ compensators & controller ×
 - ⇒ State space Analysis → (2m)

control 545 :- objective > To get desired of P

> My we don't get Desired of P >> Because Noise

- >> High frequency Noise >> [BWA → Noise AmplitudeA]
- > High freq noise is eliminated > By using LOW PASS filter
- Control Systems are desired as Low PASS filter.
- $\Rightarrow \text{Standard form of Sys} = \frac{K(1+5T_1)(1+5T_2)-\cdots}{S^n(1+5T_0)(1+5T_0)\cdots}$ $\stackrel{(r)}{|s|} \Rightarrow \stackrel{1}{|s|} \Rightarrow \text{Integrator} \text{Low pass filter}.$

P>Z ⇒ Strictly proper TF P=Z ⇒ proper TF P<Z ⇒ Improper TF

IF: - It is a mathematical equivalent model of the System.

For ex:- RC CKT

$$V_{i}(s)$$
 $V_{i}(s)$ $V_{$

= Any system, deguribed in terms of OLTF

→ OLSYStem: - It is described as OLTF of a system.

G(s) =
$$\frac{(s+1)}{s^2(s+3)(s+3)}$$

- open loop poles locations are identified directly.

- Hence we can find or stability directly. No stability tech

⇒ CL System: - It is described as OLTF of a Unity FB System.

$$G(S) = \frac{(S+1)}{S^{2}(S+3)(S+3)}, \quad H(S) = 1$$

$$\Rightarrow CLTF \Rightarrow \frac{C(S)}{R(S)} = \frac{(S+1)}{S^{2}(S+2)(S+3) + (S+1)} = \frac{(S+1)}{(S^{4}+SS^{3}+6S^{2}+S+1)}$$

- CL Poles locations can't identified directly. Because find roots of denominator of TF is difficult thence regd a stability tech to find CL Stability.

CLS BPINP - freq Domain tech

for Complete Analysis -> Best is Time Domain tech. For stability --- Best is free Domain but. For ex:- L[g(t-T)] = est. G(s) → [Transportation delay or Lag

Time Domainlech :-

RH/RL: Regd Pole location.

Reglet High order terms.

Reglet High order terms.

EST ~ (1-ST) Approximate (3) condition is obtained

Freg Domain tech: -

BPINP: - Regd Magnitude & Phase

Hence exact (3) condition is obtained.

>NP - Stability of all systems of CL poles RH-s-plane Range of K for (5)

and priority = RL -> Nature of the system is Identified 3rd priority = BP => stability of only Minimum phase sys

Lith priority => RH => Exact location of pole can't find

Compensators & controllers !- To get desired specifications

⇒ Speed → Lead @ PD controller ⇒ Stability ⇒ " " " > Speed, Accuracy & stability

⇒ Accuracy ⇒ Lag @ PI controller

Lag-lead compensator or

= Accuracy = Lag & PI controller |

PID controller.

State space Analysis: - valid for Dynamic

TF Analysis, Valid only LTI systems ⇒ Dynamic System > L|NL|TV|TIV

A FAN WIO Blades - Not a system - No proper ofp (No air flow)

A FAN w/o Regulator -> System -> proper ofp (air flow)

(May @ May rot be desired ofp)

A FAN with Regulator -> control System => Desired ofp.

(Desired air flow)

Control System:- It is a group of physical components arranged in a Such away that, it gives the desired of p, by using controller of regulator to the given of p.

Traffic Control signay (or 343)

Notraghe Duration of Traffic light

is independent of clearence of traffic

On Existed traffic

- OL system :- Human being not included.

⇒ Manual control sys: - closed loop cs → Man > work like feedback n/w
> CL control system > sensor are evential.

OL System: A system in which, the controller action is independent of of P. is called open loop system

ex: FAN, AIR COOLER, Traffic light, washing machine
-- Any system, which is not having provision to
select reference 9/P and not having sensors

CL system: - A system in which, the controller action depends on output is called closed loop control system.

Ex. Ac, Human Being, Automatic iron Box, refrigirators. --any system which is having sensors & provisor to select
the reference 4/P.

FEEDBACK NIW: It is a property of the closed loop system which brings the olp to 4/P & compare with reference 4/P & Generale error.

- ⇒ controller action take place such that, the error becomes the zero.
 - => Error =0 means, the system is stable [Bounded 417] & gives desired ofp.
 - > feedback now consists the sensors
 - = Maximum gain of feedback now ratio is 1

The Best feedback is unity negative FB.

Rus E = R - CHL steady state errors are valid for only unity feedback system.

-ve FB improves the relative stability [Qus, Hus)>0

Qus = $\frac{1}{(S+2)}$ HUS=1 & (-ve FB)

Rus = $\frac{1}{1+Qus}$ = $\frac{1}{3+3}$

Rus = $\frac{1}{1-Qus}$ (1st priority)

Hus=1 & (+ve FB)

Rus = $\frac{1}{1-Qus}$ = $\frac{1}{3+1}$

Leve PS

Rus = $\frac{1}{1-Qus}$ (last priority)