We Claim:

1. A compound of Formula I:

where:

5

10

15

20

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen,

$$\mathbb{R}^{11}$$
 \mathbb{R}^{12} or \mathbb{R}^{13} \mathbb{R}^{14} ;

biphenyl substituted with halo,

X is CH, N, or N^+ -O;

Y is CR¹⁶, N, or N⁺-O⁻;

Q is CR¹⁷, N, or N⁺-O⁻;

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R³ is hydrogen or C₁-C₆ alkyl;

R⁴ is hydrogen, C₁-C₆ alkyl, or phenyl;

10

15

R³ and R⁴ taken together with the carbon to which they are attached form a C₃-C₆ cycloalkyl ring;

 R^5 is hydrogen, fluoro, trifluoromethyl, R^{32} , or phenyl optionally monosubstituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy;

 R^6 is fluoro, hydroxy, <u>p</u>-toluenesulfonyloxy, R^{34} , $-CH_2C(O)R^{35}$, or $-OC(O)NHR^{36}$; or R^5 and R^6 taken together form $=CHC(O)(C_1-C_4$ alkoxy);

R⁷ is hydrogen or fluoro; or R⁶ and R⁷ taken together form a bond;

R⁸ is hydrogen or fluoro;

R⁹ is hydrogen, C₁-C₆ alkyl, or phenyl;

 R^{10} is hydrogen, C_1 - C_6 alkyl, phenyl, -C(O)(C_1 - C_6 alkyl), or -SO₂(C_1 - C_6 alkyl);

R¹¹ and R¹² are independently selected from the group consisting of methyl, ethyl, and propyl;

R¹³ is hydrogen or C₁-C₆ alkyl;

R¹⁴ is C₃-C₅ cycloalkyl, C₁-C₆ alkyl, or -CH₂R¹⁸;

 R^{15} is $-CF_2R^{19}$, $-OR^{20}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{21}$, $-NR^{22}SO_2R^{23}$, $(C_1-C_3 \text{ alkoxy})$ -carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹⁶ is hydrogen, chloro, isobutyl, CH₂R²⁴; CF₂R²⁵, 1,1,1-trifluoro-2-hydroxyeth-2-20 yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²⁶, C(O)R²⁷, N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹⁷ is hydrogen or fluoro;

R¹⁸ is ethynyl or cyclopropyl;

R¹⁹ is hydrogen or methyl;

30 R²⁰ is difluoromethyl or methanesulfonyl;

 R^{21} is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, phenyl, or $-NR^{30}R^{31}$;

WO 2005/108358 PCT/US2005/012191 -181-

R²² is hydrogen, C₁-C₃ alkyl optionally substituted with up to 3 fluorine atoms, or C₃-C₆ cycloalkyl;

 R^{23} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

 R^{24} is fluoro, hydroxy, or C_1 - C_3 alkoxy;

R²⁵ is hydrogen, phenyl, or furyl;

R²⁶ is C₁-C₃ alkyl optionally substituted with one or two fluorine atoms;

R²⁷ is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²⁸R²⁹, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

5

10

15

20

30

R³⁰ and R³¹ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

R³² is C₁-C₁₀ alkyl optionally substituted with 1-6 fluorine atoms, oxo, or one or two hydroxy groups, C₂-C₆ alkenyl, or -(CH₂)₀₋₃-R³³;

R³³ is C₃-C₇ cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R³³ is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ - OR^{32} ;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C₁-C₆ alkyl, or R³⁷ and R³⁸, taken together with the nitrogen to which they are attached, form a piperidine ring optionally substituted with C₁-C₆ alkyl, a

homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with 25 $(C_1-C_6 \text{ alkoxy})$ methyl;

 R^{36} is C_1 - C_6 alkyl or adamantyl;

or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N⁺-O; and b) when X is CH, Y is CR¹⁶, and Q is CR¹⁷, then one of R¹⁶ and R¹⁷ is other than hydrogen.

2. A compound of Formula I(a):

where:

5

10

15

20

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen,

biphenyl substituted with halo,

X is CH, N, or N^+ -O;

Y is CR¹⁶, N, or N⁺-O⁻;

Q is CR^{17} , N, or N^+ -O⁻;

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

 R^6 is fluoro, hydroxy, <u>p</u>-toluenesulfonyloxy, R^{34} , $-CH_2C(O)R^{35}$, or $-OC(O)NHR^{36}$; or R^5 and R^6 taken together form $=CHC(O)(C_1-C_4$ alkoxy);

 R^9 is hydrogen, C_1 - C_6 alkyl, or phenyl;

 R^{10} is hydrogen, C_1 - C_6 alkyl, phenyl, $-C(O)(C_1$ - C_6 alkyl), or $-SO_2(C_1$ - C_6 alkyl);

WO 2005/108358 PCT/US2005/012191

R¹¹ and R¹² are independently selected from the group consisting of methyl, ethyl, and propyl;

R¹³ is hydrogen or C₁-C₆ alkyl;

5

20

25

30

R¹⁴ is C₃-C₅ cycloalkyl, C₁-C₆ alkyl, or -CH₂R¹⁸;

 R^{15} is $-CF_2R^{19}$, $-OR^{20}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{21}$, $-NR^{22}SO_2R^{23}$, $(C_1-C_3 \text{ alkoxy})$ -carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹⁶ is hydrogen, chloro, isobutyl, CH₂R²⁴; CF₂R²⁵, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²⁶, C(O)R²⁷, N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹⁷ is hydrogen or fluoro;

R¹⁸ is ethynyl or cyclopropyl;

R¹⁹ is hydrogen or methyl;

R²⁰ is difluoromethyl or methanesulfonyl;

 R^{21} is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, phenyl, or $-NR^{30}R^{31}$;

 R^{22} is hydrogen, C_1 - C_3 alkyl optionally substituted with up to 3 fluorine atoms, or C_3 - C_6 cycloalkyl;

 R^{23} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

 R^{24} is fluoro, hydroxy, or C_1 - C_3 alkoxy;

R²⁵ is hydrogen, phenyl, or furyl;

 R^{26} is C_1 - C_3 alkyl optionally substituted with one or two fluorine atoms;

R²⁷ is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²⁸R²⁹,

pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

WO 2005/108358

 R^{30} and R^{31} taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or one or two hydroxy groups, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{33} ;

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ - OR^{32} ;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C_1 - C_6 alkyl, or R^{37} and R^{38} , taken together with the nitrogen to which they are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

 R^{36} is C_1 - C_6 alkyl or adamantyl;

or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N^+ - O^- ; and D0 when D1 is D2, and D3 is D3, then one of D1 is other than hydrogen.

20

5

10

15

- 3. The use of a compound of either of Claims 1 or 2 for the manufacture of a medicament for the treatment of Alzheimer's disease.
- 4. The use of a compound of either of Claims 1 or 2 for the manufacture of a medicament for the prevention of the progression of mild cognitive impairment to Alzheimer's disease.
 - 5. The use of a compound of either of Claims 1 or 2 for the manufacture of a medicament for the inhibition of BACE.

- 6. The use of a compound of either of Claims 1 or 2 for the manufacture of a medicament for treating a disease or condition capable of being improved or prevented by inhibition of BACE.
- 7. A pharmaceutical formulation adapted for the treatment of conditions resulting from excessive levels of A-β peptide comprising a compound of either of Claims 1 or 2 in combination with one or more pharmaceutically acceptable excipients, carriers, or diluents.
- 8. A pharmaceutical formulation comprising a compound of either of Claims 1 or 2, in combination with a pharmaceutically acceptable carrier, diluent, or excipient.
 - 9. A compound of Formula III:

$$\begin{array}{c|cccc}
H & OR^{40} & R^{39} \\
\hline
R^1 & N & N & R^3 \\
O & R^2 R^8 & R^7 & R^6 & R^5
\end{array}$$
III

where:

15

20

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen,

biphenyl substituted with halo,

X is CH, N, or N⁺-O; Y is CR¹⁶, N, or N⁺-O; O is CR¹⁷, N, or N⁺-O;

10

15

20

25

30

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

 R^3 is hydrogen or C_1 - C_6 alkyl;

 R^4 is hydrogen, C_1 - C_6 alkyl, or phenyl;

 R^3 and R^4 taken together with the carbon to which they are attached form a $C_3\text{-}C_6$ cycloalkyl ring;

 R^5 is hydrogen, fluoro, trifluoromethyl, R^{32} , or phenyl optionally monosubstituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy;

 R^6 is fluoro, hydroxy, <u>p</u>-toluenesulfonyloxy, R^{34} , $-CH_2C(O)R^{35}$, or $-OC(O)NHR^{36}$; or R^5 and R^6 taken together form $=CHC(O)(C_1-C_4$ alkoxy);

R⁷ is hydrogen or fluoro; or R⁶ and R⁷ taken together form a bond;

R⁸ is hydrogen or fluoro;

R⁹ is hydrogen, C₁-C₆ alkyl, or phenyl;

 R^{10} is hydrogen, C_1 - C_6 alkyl, phenyl, $-C(O)(C_1$ - C_6 alkyl), or $-SO_2(C_1$ - C_6 alkyl);

R¹¹ and R¹² are independently selected from the group consisting of methyl, ethyl, and propyl;

R¹³ is hydrogen or C₁-C₆ alkyl;

R¹⁴ is C₃-C₅ cycloalkyl, C₁-C₆ alkyl, or -CH₂R¹⁸;

 R^{15} is $-CF_2R^{19}$, $-OR^{20}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{21}$, $-NR^{22}SO_2R^{23}$, $(C_1-C_3 \text{ alkoxy})$ -carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹⁶ is hydrogen, chloro, isobutyl, CH₂R²⁴; CF₂R²⁵, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²⁶, C(O)R²⁷, N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents

15

20

30

selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹⁷ is hydrogen or fluoro;

R¹⁸ is ethynyl or cyclopropyl;

R¹⁹ is hydrogen or methyl;

R²⁰ is difluoromethyl or methanesulfonyl;

 R^{21} is C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, phenyl, or $-NR^{30}R^{31}$;

10 R²² is hydrogen, C₁-C₃ alkyl optionally substituted with up to 3 fluorine atoms, or C₃-C₆ cycloalkyl;

R²³ is C₁-C₃ alkyl or C₃-C₆ cycloalkyl;

 R^{24} is fluoro, hydroxy, or C_1 - C_3 alkoxy;

R²⁵ is hydrogen, phenyl, or furyl;

R²⁶ is C₁-C₃ alkyl optionally substituted with one or two fluorine atoms;

 R^{27} is C_1 - C_3 alkyl, C_3 - C_5 cycloalkyl, C_2 - C_3 alkenyl, C_1 - C_3 alkoxy, $NR^{28}R^{29}$, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

R³⁰ and R³¹ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

25 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or one or two hydroxy groups, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{33} ;

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ -OR³²;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C_1 - C_6 alkyl, or R^{37} and R^{38} , taken together with the nitrogen to which they

are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

 R^{36} is C_1 - C_6 alkyl or adamantyl;

R³⁹ is hydrogen or a nitrogen protecting group;

R⁴⁰ is hydrogen or an oxygen protecting group;

or an acid addition salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N⁺-O⁻; b) when X is CH, Y is CR¹⁶, and Q is CR¹⁷, then one of R¹⁶ and R¹⁷ is other than hydrogen; and c) at least one of R³⁹ and R⁴⁰ is other than hydrogen.

10

5

10. A compound of Formula IV:

where:

15

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen,

$$\mathbb{R}^{11}$$
 \mathbb{R}^{15} or \mathbb{R}^{13} \mathbb{R}^{14} ;

biphenyl substituted with halo,

20 X is CH, N, or N⁺-O⁻; Y is CR^{16} , N, or N⁺-O⁻; Q is CR^{17} , N, or N⁺-O⁻;

10

15

20

25

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R³ is hydrogen or C₁-C₆ alkyl;

 R^4 is hydrogen, C_1 - C_6 alkyl, or phenyl;

 R^3 and R^4 taken together with the carbon to which they are attached form a C_3 - C_6 cycloalkyl ring;

 R^5 is hydrogen, fluoro, trifluoromethyl, R^{32} , or phenyl optionally monosubstituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy;

 $R^6 \ is \ fluoro, \ hydroxy, \ \underline{p}\text{-toluenesulfonyloxy}, \ R^{34}, -CH_2C(O)R^{35}, \ or \\ -OC(O)NHR^{36}; \ or \ R^5 \ and \ R^6 \ taken \ together \ form = CHC(O)(C_1-C_4 \ alkoxy) \ or \ oxo;$

R⁷ is hydrogen or fluoro; or R⁶ and R⁷ taken together form a bond;

R⁸ is hydrogen or fluoro;

R⁹ is hydrogen, C₁-C₆ alkyl, or phenyl;

R¹⁰ is hydrogen, C₁-C₆ alkyl, phenyl, -C(O)(C₁-C₆ alkyl), or -SO₂(C₁-C₆ alkyl);

 R^{11} and R^{12} are independently selected from the group consisting of methyl, ethyl, and propyl;

R¹³ is hydrogen or C₁-C₆ alkyl;

R¹⁴ is C₃-C₅ cycloalkyl, C₁-C₆ alkyl, or -CH₂R¹⁸;

 R^{15} is $-CF_2R^{19}$, $-OR^{20}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{21}$, $-NR^{22}SO_2R^{23}$, $(C_1-C_3 \text{ alkoxy})$ -carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹⁶ is hydrogen, chloro, isobutyl, CH₂R²⁴; CF₂R²⁵, 1,1,1-trifluoro-2-hydroxyeth-2-30 yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²⁶, C(O)R²⁷, N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents

15

20

25

30

selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹⁷ is hydrogen or fluoro;

R¹⁸ is ethynyl or cyclopropyl;

R¹⁹ is hydrogen or methyl;

R²⁰ is difluoromethyl or methanesulfonyl;

R²¹ is C₁-C₄ alkyl, C₃-C₆ cycloalkyl, phenyl, or -NR³⁰R³¹;

 R^{22} is hydrogen, C_1 - C_3 alkyl optionally substituted with up to 3 fluorine atoms, or C_3 - C_6 cycloalkyl;

 R^{23} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

 R^{24} is fluoro, hydroxy, or C_1 - C_3 alkoxy;

R²⁵ is hydrogen, phenyl, or furyl;

 R^{26} is C_1 - C_3 alkyl optionally substituted with one or two fluorine atoms;

R²⁷ is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²⁸R²⁹, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-

1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

 R^{30} and R^{31} taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or 1 or 2 hydroxy groups, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{33} ;

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ -OR³²;

R³⁵ is hydroxy, C₁-C₆ alkoxy, or NR³⁷R³⁸ where R³⁷ and R³⁸ are independently hydrogen or C₁-C₆ alkyl, or R³⁷ and R³⁸, taken together with the nitrogen to which they

WO 2005/108358 PCT/US2005/012191

-191-

are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

 R^{36} is C_1 - C_6 alkyl or adamantyl;

R³⁹ is hydrogen or a nitrogen protecting group;

 R^{41} and R^{42} are independently selected from methyl, ethyl, and propyl; or an acid addition salt thereof; provided that no more than one of X, Y, and Q may be N or N^{4} - O^{-} .

10

5