Matematiikan ja tilastotieteen laitos Topologia I

Kurssikoe 2.3.2010, ratkaisut.

1. Olkoon (X,d) metrinen avaruus ja A sen epätyhjä osajoukko. Osoita, että joukko

$$U = \{ x \in X \, | \, d(x, A) > 0 \}$$

on avoin $X:ss\ddot{a}$.

Ratk. Väite. U on avoin X:ssä.

Tod. Tunnetusti etäisyysfunktio $f: X \to \mathbf{R}, \ f(x) = d(x, A)$, on jatkuva. Pätee $U = \{x \in X \mid f(x) > 0\} = f^{-1}]0, \infty[$. Tunnetusti joukko U on avoin - \mathbf{R} :n avoimen välin $]0, \infty[$ alkukuvana jatkuvassa kuvauksessa f.

Toinen tod. Olkoon $x \in U$. Silloin d = d(x, A) > 0. Voidaan valita r = d/2, jolloin kolmioepäyhtälötarkastelu antaa $B(x, r) \subset U$. Määritelmän mukaan U on avoin.

2. Määritellään \mathbf{R} :ssä pisteiden x ja y välimatka yhtälöllä

$$d(x,y) = ||x| - |y||, \quad \text{kun } x, y \in \mathbf{R}.$$

Mitkä metriikkapostulaateista (M1)-(M3) kuvaus d toteuttaa joukossa \mathbf{R} ? Onko se metriikka siinä? Perustelu.

Ratk. Postulaatti (M1) toteutuu, sillä

$$d(x,y) = \big| |x| - |y| \big| = \big| |x| - |z| + |z| - |y| \big| \le \big| |x| - |z| \big| + \big| |z| - |y| \big| = d(x,z) + d(z,y).$$

(M2) toteutuu, sillä

$$d(x,y) = ||x| - |y|| = ||y| - |x|| = d(y,x).$$

(M3) ei toteudu ${\bf R}$:ssä. Vastaesimerkki: Valitaan x=1 ja y=-1, jolloin $x,y\in {\bf R}$ ja $d(x,y)=\left||1|-|-1|\right|=|1-1|=0$, mutta kuitenkin $x\neq y$. Johtopäätös on, että d ei ole metriikka ${\bf R}$:ssä.

3. Olkoon (E, || * ||) normiavaruus, ja kiinnitetään kaksi sen pistettä $a, b \in E$. Tarkastellaan kuvausta $f : [0, 1] \to E$,

$$f(t) = (1-t) a + t b$$
, kun $t \in [0,1]$,

jossa väli [0,1] on varustettu tavallisella euklidisella metriikalla d.

- (a) Osoita että f on jatkuva.
- (b) Osoita että se on peräti Lipschitz.

Ratk. Tunnetusti Lipschitz-kuvaus on aina jatkuva. Siten riittää tehdä kohta (b), kohta (a) seuraa siitä.

(b) Väite. Kuvaus f on Lipcshitz.

Tod. Olkoon $s,t \in [0,1]$. Tällöin normin ominaisuuksien perusteella

$$||f(s) - f(t)|| = ||(1 - s) a + s b - (1 - t) a - t b|| = ||(t - s) a + (s - t) b||$$

$$< ||(t - s) a|| + ||(s - t) b|| = |t - s| ||a|| + |s - t| ||b|| = (||a|| + ||b||)|s - t|.$$

Siten Lipschitz-vakioksi kelpaa M = ||a|| + ||b||.

Huom. Kohta (a) menisi suoraan seuraavasti: Kuvaukset $[0,1] \to \mathbf{R}$, $t \mapsto 1-t$ ja $t \mapsto t$ ovat tunnetusti jatkuvia. Samoin vakiokuvaukset $[0,1] \to E$, $t \mapsto a$ ja $t \mapsto b$. Jatkuvien tuloina kuvaukset $[0,1] \to E$, $t \mapsto (1-t)a$ ja $t \mapsto tb$ ovat jatkuvia. Siten $f:[0,1] \to E$ on näiden summana jatkuva.

4. Tarkastellaan euklidisen tason \mathbb{R}^2 :n osajoukkoja

$$A = \{(x, y) \in \mathbf{R}^2 \mid x > 0, \ xy = 1\}$$
 ja $B = \{(x, y) \in \mathbf{R}^2 \mid x > 0, \ y = 0\}.$

- (a) Osoita, että joukko A on suljettu.
- (b) Osoita, tavalla tai toisella, että A:lla ja B:llä on jotkin erilliset ympäristöt, ts. \mathbf{R}^2 :n avoimet joukot U ja V, joilla $A \subset U$, $B \subset V$ ja $U \cap V = \emptyset$.

Ohje (b). Sopiva lause tai voit konstruoida A:n ja B:n väliin erottavan käyrän.

Ratk. (a) Väite. A on suljettu \mathbb{R}^2 :ssa.

Tod. Merkitään $F = \{(x,y) | xy = 1\}$ ja $H = \{(x,y) | x \geq 0\}$. Sevästi F ja H ovat suljettuja (perustelussa voidaan käyttää vaikka jatkuvia funktioita $f,g: \mathbf{R}^2 \to \mathbf{R}, \ f(x,y) = xy - 1$ ja $g(x,y) = x = pr_1(x,y)$). Siten $A = F \cap H$ on suljettujen joukkojen leikkauksena suljettu.

(b) Väite. Joukoilla A ja B on erilliset ympäristöt \mathbb{R}^2 :ssa.

Tod. Selvästi B:n sulkeuma on $\bar{B}=\{(x,y)\,|\,x\geq 0,\;y=0\}$. Lisäksi pätee $A\cap \bar{B}=\emptyset$. Koska A ja \bar{B} ovat erillisiä suljettuja joukkoja, Urysohnin lemman mukaan niillä on erilliset ympäristöt U ja V. Nämä kelpaavat A:n ja B:n erillisiksi ympäristöiksi.

Huom. Ohjeessa mainittu konstruktio: Joukot A ja B ovat tasokäyrät y=1/x ja $y=0,\ x>0$. Niiden väliin asettuu käyrä $y=1/(2x),\ x>0$. Se rajaa joukot $U=\{(x,y)\,|\, x>0,\ xy>1/2\}$ ja $V=\{(x,y)\,|\, x>0,\ xy<1/2\}$. Selvästi nämä ovat avoimia \mathbf{R}^2 :ssa, $A\subset U$, $B\subset V$ ja $U\cap V=\emptyset$.