

Review: MOSFET Modeling and CMOS Circuits

Sangyoung Park
Chair for Real-Time Computer Systems
Technical University of Munich
sangyoung.park@tum.de

Why Recall MOSFET/CMOS?

- Complementary metal—oxide—semiconductor (CMOS)
 - Nowadays electronics devices are mostly implemented with CMOS technology
 - Need not recall all the details of the equations
 - Understanding qualitative relationship between the key parameters is more important
 - Will be the basis of understanding source of power consumption and low-power techniques

Contents

- MOSFET Structure and Operation
- MOSFET Threshold Voltage
- 1st-Order Current-Voltage Characteristics
- Velocity Saturation
- Short-Channel Effect
- MOS Capacitance

MOSFET Structure and Operation

MOSFET structure

www.wikipedia.com

MOSFET Operation

- Energy band diagram
 - Visualization of available energy levels for electrons in solid materials
- Fermi-level
 - Hypothetical energy level that would have 50% probability of being occupied by an electron

source: hyperphysics.phy-astr.gsu.edu

MOSFET Operation

- Fermi level
 - Lies on the halfway in the band gap in case of semiconductors
 - Controllable by doping to p-type or n-type

$$E_c$$
 E_c E_f E_f E_f E_f E_f Actual fermi level (with doping)

Energy band diagram

MOSFET Structure and Operation

- Cut-off / sub-threshold / weak inversion mode
- Triode mode / linear region
- Saturation / active mode

Linear operating region (ohmic mode)

Saturation mode

reference: http://en.wikipedia.org/wiki/File:MOSFET_functioning.svg

MOSFET Structure and Operation

- Depletion
 - Mobile holes are pushed down under the gate
- Weak inversion
 - Depletion layer thickness increases and an initial layer of mobile electron appears at the surface of the silicon
- Strong inversion
 - The concentration of the mobile electrons is increased until it becomes equal to the concentration of the holes in the substrate
 - Depletion layer thickness remains constant

- Flat-band voltage: V_{FB}
 - The voltage that when applied to a MOS Capacitor produces zero net charge in the underlying semiconductor

$$F_{FB} = \phi_C - \phi_G$$

- V_{GS} required to produce strong inversion is threshold voltage V_T
 - The semiconductor surface that is normally p-type becomes n-type
 - Gate voltage where surface electron concentration equals bulk doping concentration (e.i. A=B)

Source: Chapter 5. C. Hu., "Modern semiconductor devices for integrated circuits", 2010

Rearrangement of V_T

$$V_t = \phi_{gc} - 2 \cdot \phi_F - \frac{Q_{b0}}{C_{ox}} - \frac{Q_{ox}}{C_{ox}}$$

$$V_t = V_{t0} + \gamma \cdot (\sqrt{|-2 \cdot \phi_f|} + V_{sb}) - \sqrt{|2 \cdot \phi_f|})$$

- Source to bulk voltage has an effect on threshold voltage
- Body effect coefficient

$$\gamma = \frac{2 \cdot N_a \cdot \varepsilon_{si}}{C_{ox}}$$

- Cut off
 - No inversion layer exists
 - Drain current is approximately zero

Linear when

$$V_{GD} = V_{GS} - V_{DS} > V_T$$

- Drain current: $I_{DS} = Q_n \times v \times W$
- In the 1st order model, the velocity is linearly proportional to the E field

$$v = \mu E$$
 where $E = \frac{dV(y)}{dy}$

Drain current

$$I_{DS}dy = W\mu_{n}C_{o}x(V_{GS} - V(y) - V_{T})dV$$

$$I_{DS}\int_{0}^{L}dy = W\mu_{n}C_{ox}\int_{0}^{V}{}_{DS}(V_{GS} - V - V_{T})dV$$

$$I_{DS} = \frac{k}{2} \left(2(V_{GS} - V_T)V_{DS} - V_{DS}^2 \right)$$

where
$$k = \frac{W}{L}$$
, and $k' = \mu_n C_{ox}$

Saturation (pinched off)

$$V_{GS} > V_T$$
, $V_{DS} > V_{GS} > V_T$

Saturation voltage

$$V_{Dsat} = V_{GS} - V_T$$

Beyond the saturation voltage, I_{DS} is obtained by

$$V_{DS} = V_{GS} - V_T$$
$$I_{DS} = \frac{k}{2}(V_{GS} - V_T)^2$$

Channel-length modulation

- Channel-length modulation
 - Measured V-I characteristics show a weak function of V_{DS}

$$L' = L - \Delta L$$

Width of the depletion layer between the pinch-off point and the drain

$$\Delta L = \sqrt{2 \frac{\varepsilon_{si}}{q N_A} (V_{DS} - V_{Dsat})^2}$$

Corrected saturation current

$$I_{DS} = \frac{kW}{2L'} (V_{GS} - V_T)^2 = \frac{kW}{2L} (V_{GS} - V_T)^2 \frac{1}{1 - \frac{\Delta L}{L}}$$
$$I_{DS} = \frac{k'}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$$

- The i_D - v_{DS} characteristics for a device with k'_n (W/L) = 1.0 mA/V²

Velocity Saturation

- Quadratic model is valid for long-channel devices
- Modern DSM devices
 - Channel length has been scaled to the point where the vertical and horizontal electric fields may interact
 - Saturation occurs at the pinch-off point is no longer valid
 - Saturation occurs due to velocity saturation
 - 0.18um device is rather linear than quadratic

Velocity Saturation

- Horizontal field acts to push the carriers to their velocity limit and cause
 - Early saturation
 - Mobility degradation
 - Due to electron scattering caused by dangling bonds at the Si-SiO₂ interface

$$\mu_e = rac{\mu_o}{1 + \left(rac{V_{GS} - V_T}{ heta t_{ox}}
ight) \mathring{\eta}}$$
Empirical values

Velocity Saturation

Piece-wise continuous model

$$u = \mu_e \frac{E_y}{1 + \frac{E_y}{E_C}} \quad E_y < E_c$$
 $v = v_{sat} E_y \ge E_c$

Drain current

$$I_{DS} = W v_{sat} C_{ox} \frac{(V_{GS} - V_T)^2}{V_{GS} - V_T + E_c L}$$

Short-Channel Effect

- Short-channel effect
 - V_T roll-off: charge partitioning model

$$V_T = V_{FB} - 2\phi_F - \frac{Q_B}{C_{ox}}$$

Long channel

$$Q_B \propto X_d \times L$$

Short channel

$$Q_B' \propto X_d \times \frac{L+L'}{2} < Q_B \rightarrow V_T$$
 decreases

Short-Channel Effect

- V_T roll-off impact
 - Threshold voltage reduces as L reduces
 - I_{off} increases
 - Reduced control of the gate on the channel

MOS Capacitance

- Very important for transient simulation
 - Thin oxide capacitance: C_{gs}, C_{gd} and C_{gb}) represented by C_g
 - Junction capacitance (C_{sb} and C_{db})
 - Depletion layer capacitance (C_{ic}) associated with C_{gb}

MOS Capacitance

- Thin oxide capacitance
 - The most important MOS capacitance
 - Two plates of the capacitance are defined as the gate and the channel
 - Cg remains constant for over 25 years because both L and t_{ox} are scaled at the same rate

$$C_G = WLC_{ox} = WL\frac{\varepsilon_{ox}}{t_{ox}} = WC_g$$

MOS Capacitance

- Area of source and drain
 - Bottom area: A_b=WY
 - Side wall area: A_{sw}=Wx_i
- Junction capacitance

$$C_{J} = \frac{C_{jb}A_{b}}{\left(1 - \frac{V_{J}}{\phi_{B}}\right)^{mj}} + \frac{C_{jsw}A_{sw}}{\left(1 - \frac{V_{J}}{\phi_{B}}\right)^{mjsw}}$$

Note

 Slides are modified from lecture notes of "Advanced Computer System Design" from Seoul National University (Lecturer: Prof. Naehyuck Chang)