# Mélytanulás házi feladat Dokumentáció

Képgeneráció diffúziós modellek használatával

Készítették:

Köpeczi-Bócz Gergely Safár Gergő

### Bevezetés

A mi projektfeladatunk egy diffúziós modell implementálása és tanítása volt azzal a céllal, hogy azt később képgenerálásra lehessen felhasználni.

A feladatkiírás szerint a megvalósításhoz olyan diffúziós modelleket volt célszerű felhasználnunk, mint a DDPM (Denoising Diffusion Probabilistic Model) vagy a DDIM (Denoising Diffusion Implicit Model). A kiírásban rögzített cél volt továbbá, hogy a generált képek realisztikus ábrázolást kell, hogy szemléltessenek.

A házi feladat készítése során több különböző tudományos írást, cikket és publikációt megvizsgáltunk és felhasználtunk projektünk megvalósításához. Ezek egy része a kiírásban lévő ajánlott irodalom részét képezte azonban akad közötte általunk talált forrás is. Ezek a Hivatkozások fejezetben találhatóak felsorolva.

# Adatelőkészítés

#### Adathalmazok kiválasztása

Az első lépés a házi elkészítése során két megfelelő adathalmaz kiválasztása volt. Több ilyen adathalmaz megvizsgálása után arra jutottunk, hogy a Flowers102, valamint a OxfordIIITPet adathalmazokat fogjuk felhasználni a modelleken végzet tanítás során.

A kettő adatstruktúra közül a Flowers102 elég kicsi méretűnek mondható, viszont ez az adatset szerepelt a feladatkiírásban, mint ajánlott halmaz. Ezért is esett rá a választás.

Emellett szerettünk volna egy nagyobb adathalmazon is elvégezni a feladatot, ezzel is tesztelve, hogy milyen különbség mutatkozik az adathalmazok méreteinek kisebb mértékű változása esetén. Ezen okból esett a választásunk végül az OxfordIIITPet nevű adathalmazra második opció gyanánt.

Míg a Flowers102 adathalmaz 1020 mintából dolgozik, addig az OxfordIIITPet esetében ez a szám 3680. Ezt a nagyjából 3-szoros különbséget kellően nagynak éreztük ahhoz, hogy érdemes legyen a két adathalmazt egymással összevetni, hogy a projekt során melyikkel érhetünk el jobb eredményeket.

Mindkét adathalmaz megtalálható volt a torchvision library-ben, ami nagyban megkönnyítette az importálásukat a projektünkbe.

Az OxfordIIITPet adatstruktúra esetében cleansing-et is alkalmaztunk, ugyanis előfordultak olyan osztályok a halmazban, melyek elemszáma nem egész 100 volt. Összesen 5 osztály volt ilyen a 36-ból és bár ezek elemszáma sem maradt el sokkal 100-tól (nagyjából 93 és 98 között mozogtak), mégis úgy gondoltuk, hogy az eldobásukkal tisztábbá, ugyanakkor pedig nem számottevően kissebbé fog megváltozni az adathalmazunk.

#### Adathalmazok felosztása

Következőnek felosztottuk mindkét adathalmazt három különböző részre. Ezek voltak a tanító, validációs és teszt halmazok, amelyek az eredeti adatstruktúrák 70, 15, valamint 15 %-át tették ki.

Mivel a két adathalmaz mérete elégségesen kicsi (kevesebb, mint 10 000 sample) volt a memóriában való tárolásukhoz ezért azokat a program során oda töltöttük be és tároltuk.

Fontos megjegyezni, hogy az mindkét adathalmazban 256x256-ostól 1024x1024-es felbontásig voltak minták, amiket végül minden esetben32x32-es felbontásra csökkentettünk le. Erre a projekt második felében használt DDPM miatt volt szükség. Ugyanis ebben az esetben egy előre elkészített modellt finomítottunk tovább, aminek feltétele volt, hogy 32x32-es képekkel kellett dolgoznnunk.

# Felhasznált modellek

Ezzel át is térnénk a használt modellek ismertetésére. Kezdésnek, azaz baseline modellnek mi az úgynevezett VAE-t (Variational Autoencoder) használtuk.

#### Baseline modell

A VAE egy generatív neurális hálózati modell, amely a Bayes-statisztikán alapul, és hatékonyan képes tanulni az adatok rejtett, alacsony dimenziós reprezentációját. A VAE kiterjeszti a klasszikus autoencodert, amely az adatok kódolásával és visszafejtésével (dekódolásával) foglalkozik, azáltal, hogy a kódolt reprezentációt egy valószínűségi térben definiálja.

```
# Encoder
self.enc = torch.nn.Sequential(
    torch.nn.Conv2d(3, 32, 4, 2, 1),
    torch.nn.ReLU(),
    torch.nn.Conv2d(32, 32, 4, 2, 1),
    torch.nn.ReLU(),
    torch.nn.ReLU(),
    torch.nn.ReLU(),
    torch.nn.Flatten()
)
# Decoder
self.dec = torch.nn.Sequential(
    torch.nn.Linear(latent_dim, output_shape),
    torch.nn.Unflatten(1, (32, vmi, vmi)),
    torch.nn.ConvTranspose2d(32, 32, 4, 2, 1),
    torch.nn.ReLU(),
    torch.nn.ConvTranspose2d(32, 32, 4, 2, 1),
    torch.nn.ConvTranspose2d(32, 3, 4, 2, 1),
    torch.nn.Tanh()
}
```

1. ábra Az encoder és decoder felépítése a baseline (VAE) esetén

A modell megírása után következett a tanítási folyamat. Ezt először a Flowers102, majd az OxfordIIITPets adathalmazokon végeztük el. Végül plot-oltunk néhány képet az eredeti, valamint a VAE által rekonstruáltak közül, amelyek a következő képen láthatóak.



2. ábra A VAE által rekonstruált képek összehasonlítása az eredetiekkel mindkét adathalmaz esetében

#### Baseline kiértékelése

A generált képek pontosságának mérésére két közismert módszert is alkalmaztunk. Az egyik az úgynevezett Fréchet Inception Distance (FID), míg a másik az Inception Score (IS).

A FID egy széles körben használt metrika generatív modellek, többek között VAE-k által generált képek minőségének értékelésére. Az FID azokat a különbségeket méri, amelyek az eredeti (valós) és a generált (mesterséges) képek jellemzői között fennállnak, egy előre betanított neurális hálózat segítségével. A virágokat tartalmazó halmaz esetében a kapott pont

318.1361 lett, míg az állatokat tartalmazó képek esetében 305.5305. Sajnos általánosságban igaz, hogy 100-as érték fölött a generáció nem számít a legtökéletesebb minőségűnek, ami a fenti képeken is látszik.

Az IS (Inception Score) szintén a generált képek minőségének és sokféleségének mérésére szolgáló mérési eljárás, így ezt is alkalmaztunk mindkét adathalmaz esetében és rendre 2.36 valamint 2.58-as értékeket kaptunk. Általánosságban igaz, hogy ezek a nem kimagasló, de elfogadható generációkra jellemző értékek.

#### Advanced modell

Következőnek választottunk egy jobb képességűnek tartott modellt, amit kicsit továbbfejlesztettünk. A választásunk a huggingface DDPM modellje (1) lett. Pontosabban szólva a google/ddpm-cifar10-32 jelölésű, előre tanított modell. Ennek a tovább tanításához felhasználtuk a huggingface oldalán megtalálható segédletet. A továbbfejlesztésünk, azaz a hiperparaméter optimalizálásunk gyakorlatilag a learning rate finomhangolását jelentette.

Az átalakítások után a modellt két alkalommal tanítottuk, egyszer a virágokat és egyszer az állatokat tartalmazó adathalmazon. Az implementálása és futtatása során előforduló hibák esetében, valamint az adathalmazok tanításba való megfelelő beillesztésében a ChatGPT 40 által nyújtott segítséget is felhasználtunk.

A futtatás alkalmával az alább látható minta képeket sikerült generáltatni a továbbfejlesztett DDPM modellel.







3. ábra A DDPM által generált néhány mintakép az OxfordIIITPets esetében



4. ábra Szintén a DDPM által generált képek, azonban a Flowers102 esetében

#### Advanced kiértékelése

Természetesen a kiértékelésbe beletartozott ebben az esetben is, hogy mindkét adathalmaz esetében megnéztük a korábbi baseline esetében is megvizsgált FID és IS értékeket és ezek a következő képpen alakultak. Bár nem a várt mértékű volt a javulás, de egyértelműen jobban teljesített az újabb DDPM alapú modellünk.

Az evaluation folyamatát ebben az esetben úgy végeztük, hogy generáltattunk mindkét halmaz esetében száz-száz képet. Ezután random kiválasztottunk az eredeti adathalamazokból véletlenszerűen száz-száz képet. Végül a halmazonkénti 200 képen végeztük a FID kiértékelést. Ennek az eredménye az lett, hogy a virágokat tartalmazó halmaz esetében 318-ról 309-re, valamint az állatokat tartalmazó esetében 305-ről 256-ra sikerült lejjebb vinni a FID értékét. A második esetben ez 16%-os javulást jelent. Az OxfordIIITPets esetében vélhetően azért fedezhető fel nagyobb mértékű javulás mert ebben az esetben jóval nagyobb adathalmazon folyt a tanítás.

Ezek után elvégeztük az IS értékek kiszámítását is, ami egy sokkal érdekesebb eredményre vezetett. Ebben az esetben a virágok adathalmazán kiértékelve 2.35-ről 2.26-ra esett vissza az interception score. Tekintve, hogy a nagyobb IS érték élesebb képeket jelent, ebben az esetben a DDPM, bár minimálisan, de rosszabb eredményt ért el, mint a VAE. Ugyanez nem igaz az állatokat tartalmazó dataset esetében, ahol 2.579-ről 2.605-re sikerült az IS értéket növelni. Noha ez is kis mértékű javulásnak számít, mégis figyelembe véve az összes érték alakulását a DDPM hozott jobb eredményeket.

# Összegzés

Összességében úgy véljük, hogy a DDPM modell mindkét esetben jobban teljesített (még annak ellenére is, hogy a flowers esetében a FID értéke nem az elvárt mértékbe tért ki a VAE-hez képes). A DDPM sokkal színesebb, valósághoz közelibb képeket generált, és az objektumok láthatóbbak és felismerhetőbbek az általa létrehozott képeken, mint voltak azok a VAE esetében. Véleményünk természetesen fakadhat abból is, hogy kicsit elfogultabbak vagyunk a komplexebb modell (DDPM) iránt, és úgy véljük, hogy ezek a metrikák nem alkalmazhatók olyan jól ehhez a modellhez, mint azt előzetesen gondoltuk.

Végeredményként úgy érezzük, hogy a kis siker is siker. Valamint, hogy a nem kevés munkamennyiség miatt, amit a projektbe fektettünk, elégedettek lehetünk az elért eredményekkel, már csak azért is, mert a feladat megoldása során rengetek hasznos tudással lettünk gazdagabbak.

# Hivatkozások

DDPM tanításának huggingface dokumentációja,
 https://colab.research.google.com/github/huggingface/notebooks/blob/main/dif
 fusers/training\_example.ipynb#scrollTo=1f740dfe-e610-4479-ac30-cce1f9e62553

2. Huggingface cikk a diffúziós modellekről, https://huggingface.co/blog/annotated-diffusion

3. Huggingface git repo diffúziós modellekhez, <a href="https://github.com/huggingface/diffusers">https://github.com/huggingface/diffusers</a>

4. Keras leírás a DDIM modellről, <a href="https://keras.io/examples/generative/ddim/">https://keras.io/examples/generative/ddim/</a>

5. Cornell University publikáció DDPM modellekről, <a href="https://arxiv.org/abs/2006.11239">https://arxiv.org/abs/2006.11239</a>

6. Cornell University publikáció DDIM modellekről, <a href="https://arxiv.org/abs/2010.02502">https://arxiv.org/abs/2010.02502</a>