MA 327 A - Álgebra Linear - 1^o semestre de 2010 Terceira Prova - 29/06/2010

RA	Nome
Assinatura	

Instruções: Escolha 4 questões apenas e resolva-as. Se resolver as 5 questões, sua nota será a soma das 4 questões onde você tirou pior nota.

Questão 1 (valor 2.5) Seja um operador linear $T: V \to V$, com v_1 e v_2 autovetores associados respectivamente aos autovalores λ_1 e λ_2 , $\lambda_1 \neq \lambda_2$.

- a) Prove que v_1 e v_2 são linearmente independentes.
- **b)** Prove que se v_3 também é autovetor associado a λ_1 , então $v_1 + \alpha v_3$ é autovetor associado a $\lambda_1 \ \forall \ \alpha \in \mathbb{R}$.

Questão 2 (valor 2.5) Seja um operador $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $v_1 = (1, 1, 1), v_2 = (0, 2, 0)$ e $v_3 = (0, 0, -1)$ são autovetores associados, respectivamente, aos autovalores $\lambda_1 = 1$, $\lambda_2 = -1$ e $\lambda_3 = 2$. Calcule T(1, 0, 0).

Questão 3 (valor 2.5) Encontre os autovalores e autovetores associados da matriz

$$A = \left[\begin{array}{rrr} 2 & 0 & 0 \\ -2 & 0 & 0 \\ -2 & 1 & -1 \end{array} \right].$$

Questão 4 (valor 2.5) Considere a matriz

$$A = \left[\begin{array}{ccc} 1 & a & b \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{array} \right],$$

com $a, b \in \mathbb{R}$, cujos autovalores são $\lambda_1 = \lambda_2 = 1$ e $\lambda_3 = 3$. Para que valores de a e b a matriz B é diagonalizável?

Questão 5 (valor 2.5) Construa uma matriz real 3×3 não diagonal tal que seus autovalores sejam $\lambda_1 = \lambda_2 = 1$ e $\lambda_3 = -1$ e ela seja

- a) Diagonalizável.
- b) Não diagonalizável.