MATH 644

CHAPTER 1

SECTION 1.2: ESTIMATES

Contents

Basic Inequalities	2
Sequences	3
Cauchy Sequences	4
Series	5
Cauchy-Schwarz Inequalities For Finite sequences	
For Functions	7

Created by: Pierre-Olivier Parisé Spring 2023

BASIC INEQUALITIES

THEOREM 1. [Triangle Inequality] For $z, w \in \mathbb{C}$, we have

- $\star \ |z+w| \leq |z| + |w|;$
- $\star ||z| |w|| \le |z w|;$
- $\star ||z| |w|| \le |z + w|.$

Proof. Prove the above inequalities.

We also have the following inequalities:

- $-|z| \le \operatorname{Re} z \le |z|;$
- $-|z| \leq \operatorname{Im} z \leq |z|;$
- $|z| \leq |\operatorname{Re} z| + |\operatorname{Im} z|$.

Proof. Prove the above inequalities.

SEQUENCES

A sequence is a function $\mathbb{N} \to \mathbb{C}$. We usually denote a sequence of complex numbers by

$$(z_n)_{n=1}^{\infty}$$
 or $\{z_n\}_{n=1}^{\infty}$.

A shortcut notation is simply (z_n) or $\{z_n\}$.

DEFINITION 2. A sequence (z_n) converges to some complex number a if

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) \in \mathbb{N} \quad \text{ s.t. } |z_n - a| < \varepsilon, \ \forall n \ge N.$$

When a sequence (z_n) converges to a, we denote this by

- $z_n \to a \text{ (as } n \to \infty);$
- $\lim_{n\to\infty} z_n = a$.

THEOREM 3. Let (z_n) be a sequence.

- $z_n \to a \iff \operatorname{Re} z_n \to \operatorname{Re} a \text{ and } \operatorname{Im} z_n \to \operatorname{Im} a;$
- If $z_n \to a$, then $|z_n| \to |a|$.

Proof. Prove the two above statements.

CAUCHY SEQUENCES

A Cauchy sequence is a sequence (z_n) satisfying the following properties:

$$\forall \varepsilon > 0, \ \exists N = N(\varepsilon) \in \mathbb{N}, \ \forall n, m \ge N, \quad |z_n - z_m| < \varepsilon.$$

THEOREM 4. Let (z_n) be a sequence.

- If (z_n) is a Cauchy sequence, then (z_n) is bounded, meaning that there is a finite positive number M such that $|z_n| \leq M$ for any $n \geq 1$.
- (z_n) converges if and only if (z_n) is a Cauchy sequence.

Proof. Prove these assertions.

SERIES

To each sequence (a_n) of complex numbers, we associate an infinite series

$$\sum_{n=1}^{\infty} a_n.$$

The value of $\sum_{n=1}^{\infty} a_n$ might not exists and this is why we introduce the following definition of the value of a series.

Given a sequence (a_n) of complex numbers, we define its m-th partial sums as

$$S_m := \sum_{n=1}^m a_n.$$

DEFINITION 5. We say that $\sum_{n=1}^{\infty} a_n$ exists, or converge, if the sequence of partial sums (S_m) converges.

We have other important related notions of convergent series:

- A series $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\sum_{n=1}^{\infty} |a_n|$ converges.
- A series $\sum_{n=1}^{\infty} a_n$ diverges if it does not converge.

Example 6.

- The series $\sum_{n=1}^{\infty} \frac{i^n}{n^2}$ converges and converges absolutely.
- The series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

THEOREM 7.

- a) A series $\sum_{n=1}^{\infty} a_n$ converges if and only if
 - $\sum_{n=1}^{\infty} \operatorname{Re} a_n$ converges and;
 - $\sum_{n=1}^{\infty} \operatorname{Im} a_n$ converges.
- b) A series $\sum_{n=1}^{\infty} a_n$ converges absolutely if and only if
 - $\sum_{n=1}^{\infty} \operatorname{Re} a_n$ converges absolutely and;
 - $\sum_{n=1}^{\infty} \operatorname{Im} a_n$ converges absolutely.
- c) If $\sum_{n=1}^{\infty} a_n$ converges absolutely, then $\sum_{n=1}^{\infty} a_n$ converges.
- d) If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

Proof. Prove the above assertions.

(C)
$$\sum_{n=1}^{\infty} |a_n|$$
 (CONV. if $A_m := \sum_{n=1}^{\infty} |a_n|$
 $\Rightarrow (A_m)_{m=1}^{\infty}$ is conv. $\Rightarrow (A_m)$ is Cauchy.

 $\frac{m>n}{|S_m-S_n|} = \frac{m}{|Z_n|} = \frac{m}{|Z_n|} = \frac{m}{|Z_n|} = \frac{m}{|A_m-A_n|}$ So: (Sm) is (auchy => (Sm) is conv. => = is conv. (c1) \mathbb{Z} an $(\text{conv.}) \Rightarrow (\mathbb{S}_m)$ (conv.)=> (Sm) Cauchy. Let ESO. BNEIN st. nim > N, |Sm-Sn/<E. Take $m = n+1 \Rightarrow |Sm-Sn| = |an+1|$ So, $\forall n \geq N$, $|antil < \varepsilon$.

 So_1 $a_n \rightarrow o$.

ロ

For Finite sequences

Given $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{C}$, we have

$$\left|\sum_{j=1}^{n} a_{j} \bar{b}_{j}\right| \leq \left(\sum_{j=1}^{n} |a_{j}|^{2}\right)^{2} \left(\sum_{j=1}^{n} |b_{j}|^{2}\right)^{1/2}.$$

Equality occurs if and only if

- $a_j = cb_j$ for some $c \in \mathbb{C}$ or;
- $b_j = 0$ for any $j \ge 1$.

Note: Can you extend the Cauchy-Schwarz inequality to series?

$$|\int_{n=1}^{\infty} |a_{n}|^{2} < \infty \quad d \quad \sum_{n=1}^{\infty} |b_{n}|^{2} < \infty \quad | \text{ then } .$$

$$|\int_{j=1}^{\infty} a_{j} h_{j} \quad (cnv).$$

$$|\int_{j=1}^{\infty} a_{j} h_{j} \quad | \leq \left(\sum_{j=1}^{\infty} |a_{j}|^{2}\right)^{1/2} \left(\sum_{j=1}^{\infty} |b_{j}|^{2}\right)^{1/2}$$

For Functions

- A function $f:[a,b]\to\mathbb{C}$ is said to be continuous if

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \text{s.t.} \ \forall x,y \in [a,b], \quad |x-y| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon.$$

- An important fact: A function $f:[a,b]\to\mathbb{C}$ is continuous if and only if
 - Re $f:[a,b]\to\mathbb{R}$ is continuous and;
 - Im $f:[a,b]\to\mathbb{R}$ is continuous.

DEFINITION 8. For a continuous function $f:[a,b]\to\mathbb{C}$, we define its integral on [a,b] by

$$\int_{a}^{b} f(t) dt := \underbrace{\int_{a}^{b} \operatorname{Re} f(t) dt}_{a} + i \underbrace{\int_{a}^{b} \operatorname{Im} f(t) dt}_{a}.$$

Note: The integrals of Re f(t) and Im f(t) are the Riemann integral. We will only use the Riemann integral.

THEOREM 9. If $f, g : [a, b] \to \mathbb{C}$ are two continuous functions, then

$$\left| \int_a^b f(t) \overline{g(t)} \, dt \right| \le \left(\int_a^b |f(t)|^2 \, dt \right)^{1/2} \left(\int_a^b |g(t)|^2 \, dt \right)^{1/2}$$

Proof. Prove the Cauchy-Schwarz inequality for functions.

$$\int_{a}^{b} |f(t)|^{2} dt = \lim_{n \to \infty} \frac{b-a}{n} \sum_{j=1}^{n} |f(t_{j})|^{2}$$

$$d \int_{a}^{b} |g(t)|^{2} dt = \lim_{n \to \infty} \frac{b-a}{n} \sum_{j=1}^{n} |g(t_{j})|^{2}$$

$$where t_{j} = a + \frac{b-a}{n} j, \quad j = 1, 2, 3, ..., n.$$

$$Now, \quad similarly, \quad \int_{a}^{b} |f(t_{j})|^{2} dt = \lim_{n \to \infty} \frac{b-a}{n} \sum_{j=1}^{n} |f(t_{j})| g(t_{j})$$

$$\int_{a}^{b} |f(t_{j})|^{2} |f(t_{j})|^{2} dt = \lim_{n \to \infty} \frac{b-a}{n} \sum_{j=1}^{n} |f(t_{j})|^{2} dt$$

$$= \left(\frac{b-a}{n} \sum_{j=1}^{n} |f(t_{j})|^{2}\right)^{1/2} \left(\frac{b-a}{n} \sum_{j=1}^{n} |g(t_{j})|^{2}\right)^{1/2}$$

$$= \left(\frac{b-a}{n} \sum_{j=1}^{n} |f(t_{j})|^{2}\right)^{1/2} \left(\frac{b-a}{n} \sum_{j=1}^{n} |g(t_{j})|^{2}\right)^{1/2}$$

Take n-so to obtain the inequality.