Dr. Jan-Willem Liebezeit Lukas Fuchs Niklas Eiermann SoSe 2024

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 02

Abgabedatum: 02.05.24, 12 Uhr

1. (NA) Minifragen

- 1. Wenn der Vektor $b \in \mathbb{R}^m$ als Linearkombination aus den Spaltenvektoren von $A \in M(m \times n, \mathbb{R})$ dargestellt werden kann, ist dann Ax = b für $x \in \mathbb{R}^n$ lösbar?
- 2. Sei $x, y \in \mathbb{R}^n$, n > 1, gilt dann $(\langle x, y \rangle = 0 \Rightarrow x = 0 \text{ oder } y = 0)$?
- 3. Sei $v \in \mathbb{R}^2$ und sei $w \in \mathbb{R}^2$ ein zu v orthogonaler Vektor mit ||w|| = 1. Ist w eindeutig?
- 4. Kann aus $x, y \in \mathbb{R}^2$ (linear unabhängig) immer mehr als eine Orthonormalbasis mithilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens berechnet werden?

2. (A) Lösbarkeit und Lösungen

Wir betrachten das Gleichungssystem

$$\begin{cases}
x_1 +2x_2 + x_3 -2x_4 = 3 \\
2x_1 +4x_2 + x_3 + x_4 = 10 \\
3x_1 +6x_2 + x_3 +2x_4 = 15 \\
-x_1 -2x_2 +2x_3 - x_4 = -3
\end{cases}$$

- 1. Bestimmen Sie mit Satz 7.4.2 und Satz 7.4.4, ob das System lösbar bzw. universell lösbar ist. Ist das System eindeutig lösbar? (2)
- 2. Bestimmen Sie die Dimension des Lösungsraumes \mathcal{L}_0 des zugehörigen homogenen Gleichungssystems. (2)
- 3. Bestimmen Sie die Lösungsmenge des Gleichungssystems. (2)

3. (A) Darstellungen von Bilinearformen

1. Es sei $A \in M(n \times n, \mathbb{R})$. Zeigen Sie, dass

$$B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x,y) \mapsto x^{\top} Ay = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$$

eine Bilinearform ist. (2)

2. Es sei umgekehrt $s: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine Bilinearform und e_1, \ldots, e_n die kanonischen Basisvektoren im \mathbb{R}^n . Zeigen Sie, dass $s(x,y) = \sum_{i=1}^n \sum_{j=1}^n s(e_i, e_j) x_i y_j$. (2)

3. Schließen Sie daraus nun die Existenz einer Matrix $M \in M(n \times n, \mathbb{R})$ mit (2) $s(x,y) = x^{\top} M y$ für alle $x,y \in \mathbb{R}^n$.

4. (A) Das Gram-Schmidtsche Orthogonalisierungsverfahren

Zeigen Sie die Behauptungen zum Gram-Schmidtschen Orthogonalisierungsverfahren: Für linear unabhängige Vektoren $v_1, \ldots, v_m \in \mathbb{R}^n$ liefert das in Beispiel 8.2.9 (i) dargestellte Verfahren Vektoren w_1, \ldots, w_m mit

1.
$$||w_i|| = 1, i = 1, ..., m$$
, bzgl. der induzierten Norm $||v|| = \sqrt{\langle v, v \rangle}$, (1)

2.
$$\langle w_i, w_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$
 (3)

Wenden Sie das Verfahren an, um die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

zu orthonormieren . (2)

5. (A) Spur einer Matrix

Die Summe $\sum_{i=1}^{n} a_{ii}$ der Diagonalelemente der Matrix $(a_{ij}) = A$ heißt die Spur von (a_{ij}) , in Zeichen Spur $A = \sum_{i=1}^{n} a_{ii}$.

- (a) Zeigen Sie, dass die Spur eine Linearform auf $M(n \times n, \mathbb{R})$ ist. (3)
- (b) Zeigen Sie, dass durch

$$\langle A, B \rangle := \operatorname{Spur}(A^{\top}B)$$

ein Skalarprodukt auf $M(n \times n, \mathbb{R})$ definiert ist. (3)

6. (T),(NA) Bilinearformen und Skalarprodukte Gegeben seien die Abbildungen

$$B_{1}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} j x_{j} y_{j},$$

$$B_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} (-1)^{j} x_{j} y_{j},$$

$$B_{3}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} x_{j} y_{j}^{2}.$$

Prüfen Sie jeweils, ob B_1 , B_2 , B_3 eine Bilinearform oder sogar ein Skalarprodukt ist.

7. (T), (NA) Es sei $F: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung und $\langle \cdot, \cdot \rangle$ ein beliebiges Skalarprodukt auf dem \mathbb{R}^n . Zeigen Sie:

$$\forall x \in \mathbb{R}^n \left(x - F(x) \in \left(\text{Bild}(F) \right)^{\perp} \right) \Rightarrow \forall x, y \in \mathbb{R}^n \left(\langle x, F(y) \rangle = \langle F(x), y \rangle \right).$$

Gilt das auch, wenn man \mathbb{R}^n durch \mathbb{C}^n ersetzt?

Erläuterungen zur Bearbeitung und Abgabe:

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Üungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.