$6_{ML}^{2} = \frac{1}{N} \sum_{n=1}^{N} (x_{n} - \mu_{ML})^{2}$	(1. 56)
$\mathcal{M}_{M} = \frac{1}{N} \sum_{n=1}^{N} \chi_{n}$	(1.55)
Before solve this question, here as	re 2 things
need to be know.	
NML is Unbiased estimate	
6 ml is Brased estimate	
Which means E[Uni]=U	Kactually)
$E \left[\int_{ML}^{2} J + \int_{0}^{2} d^{2} \right]$	$\frac{N-1}{N}$ 6 ²)
1. How to get E[Um]=u	
² . How to get $E[6_{ML}] = \frac{N-1}{N}$, 2

3. Why we could get
$$E[6^{2}M] = 6^{2}$$

How to get $E[MM] = M$

$$E[MML] = E[\frac{1}{N}\sum_{n=1}^{N}X_{n}] = \frac{1}{N}\cdot\sum_{n=1}^{N}E[\chi_{n}] = \frac{1}{N}\cdot N\cdot M = M$$

2. How to get $E[6^{2}ML] = \frac{N-1}{N}$

Here we will use $M=MML$, for $\frac{N}{N}=(X_{n}-MML)^{2}$; (*)

$$E[6^{2}ML] = E[\frac{1}{N}\sum_{n=1}^{N}(\chi_{n}-MML)^{2}]$$

Assume $y = \frac{1}{N}\sum_{n=1}^{N}(\chi_{n}-MML)^{2}$

So, $y = \frac{1}{N}\sum_{n=1}^{N}(\chi_{n}-MML)^{2}$

$$= \frac{1}{N}\sum_{n=1}^{N}\chi_{n}^{2} - \frac{1}{N}\sum_{n=1}^{N}2\chi_{n}MML + \frac{1}{N}\sum_{n=1}^{N}MmL$$

1)

```
Because, E[\mathcal{U}_{nL}] = E[\frac{1}{N}\sum_{n=1}^{N}X_{n}] = u = u_{nL} (See (xs))
     \frac{1}{N}\sum_{n}^{N}\mu_{n}^{2}=\mu_{n}^{2}
                                So, \mathbb{O}, \mathbb{O}, (*) \Rightarrow E[Y] = E[N \times (X_n - u_{nL})^2]
                                                 = E[ 1 E xn - 2 MmL · MmL + MmL2
                                               = E \left[ \frac{1}{N} \sum_{n=1}^{N} \chi_n^2 - M_{ML}^2 \right]
                                                                                                                                                                                                                                                                                                                              (3)
                                        From (x): Um = u, and combine (3):
                                                                                                                                                                                                                                                                    Subtract u and add
       3= E[ NE (2 - 12 - (12))]
                       = E[\(\frac{1}{N}\)\(\frac{N}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}\N\)\(\frac{1}{N}\)\(\frac{1}{N}\)\(\frac{1}\N\)\(\frac{1}\N\)\(\frac{1}\N\)\(\frac{1}\N\)\(\frac{1}\N\)\(\frac{1}\N\)\(\frac{1
                      = E[\frac{1}{N}\sum_{n=1}^{N}(\chi_{n}^{2}-\mu^{2})]-E[(N\times_{N}^{1})(\mu_{n2}^{2}-\mu^{2})]
                      = E\left[\frac{1}{N}\sum_{n=1}^{N}(x_{n}^{2}-\mu^{2})\right] - \left(E(\mu\mu^{2}) - E[\mu^{2}]\right)
                     = N = (E[zn]-E[n2])-(E(um2)-E[u2])
4: \frac{1}{N} \sum_{n=1}^{N} (E[x_n^2] - E[\mu^2])
           Because, u is a constant here, E[u^2] = u^2
= \frac{1}{N} \sum_{n=1}^{N} (E[x_n^2] - u^2)
```

Because
$$X_{n} \sim N(\mu, 6^{2})$$
, so $E[X_{n}] = \mu$ (1.49)
 $S_{0}(4) \Rightarrow \frac{1}{N} \sum_{k=1}^{N} (E[X_{n}^{2}] - E[X]^{2})$

$$= \frac{1}{N} \sum_{k=1}^{N} Var[X_{n}]$$

$$= \frac{1}{N} \sum_{k=1}^{N} 6^{2}$$

$$(See C*7)$$

$$S_{0}(5) \Rightarrow E[\mu_{ML}^{2}] - \mu^{2}$$

$$E[\mu_{ML}^{2}] - \mu^{2}$$

$$E[\mu_{ML}^{2}] - E[\mu_{ML}]^{2}$$

$$= Var[\mu_{ML}]$$

4,5 =>			
E[6mL]=			
1 =	$\frac{1}{N} \sum_{n=1}^{N} \delta^{2}$ $N \times \frac{1}{N}$ $N \times \frac{1}{N}$	$\frac{1}{N^2} \sum_{n=1}^{N} 6^2$ $N \rightarrow 6^2$ $N \rightarrow 6^2$	
=	$\frac{N-1}{N}$ 6 ²	-> Biased e	estimate.
3. Why we	could get	- E[6 m2] =	62
See probl	em 1.13.		