PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-255319

(43) Date of publication of application: 25.09.1998

(51)Int.CI.

G11B 7/135

G03F 7/20

(21)Application number: 09-076450

(71)Applicant:

HITACHI MAXELL LTD

(22)Date of filing:

12.03.1997

(72)Inventor:

SUENAGA MASASHI

SUGIYAMA TOSHINORI

(54) MASTER DISK EXPOSURE DEVICE AND METHOD THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a master disk exposure device capable of exposing a minute pit and a narrow groove with high precision and provided with a developing function.

SOLUTION: In this master disk exposure device 100, a master disk 19 coated with a photoresist film 20 is irradiated convergently with laser beams to form a desired pattern. A nozzle 210 fills water between a condensing lens 17 and the master disk 19 during the exposure. The condensing lens 17 increases in NA and functions as an immersion objective. With the nozzle arranged in piping for a water tank and a developer tank, and with a valve installed that changes a feeding liquid to water or developer, the master disk aligner can also be used as a developing device.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19) B本四特并介 (J P) (12) 公 開 特 許 公 報 (A)

(11)特許出顧公開書号

特開平10-255319

(43)公韓日 平成10年(1998) 9月25日

(51) int.CL*		4 則配号	ΡI		
G11B	7/135		G11B 7/135	Z	
GO3F	7/20	505	G03F 7/20	505	

密査算成 未熟点 割点項の数9 FD (全 9 買)

(21)出蘇書号	等面平9-76450	(71)出版人	000005810
			日立マクセル株式会社
(22)出頭日	平成9年(1997)3月12日		大阪府漢木市丑食1丁目1番88号
	,	(72) 奈司会	未永 正廊
		***************************************	大阪府支木市丑食一丁目 1 488号 日立マ
		. i	· · · · · · · · · · · · · · · · · · ·
			クセル株式会社内
		(72)発明者	杉山。寿紀
			大阪府東木市丑貨一丁目 1 書88号 日立マ
		•	クセル株式会社内
		(74)代度人	弁理士 川北 喜十郎 (A) 1名)

(54) 【発明の名称】 原盤黒光葉雲及び方法

(57)【憂約】

【課題】 減小ビット及び幅狭端を高幅度で露光するこ とができ、しかも現像機能をも同時に備えた原盤器光装

【解決手段】 原盤為光装置】()()はフォトレジスト膜 20を塗布した原盤19にレーザ光を集光して照射して 所望のパターンに感光する。ノズル2 1 () は露光中に集 光レンズ17と原盤19との間に水を充満させる。集光 レンズ17のNAが増大し、液浸レンズとして保能す る。該ノズルを水タンク及び現像液タンクに配管し、供 給液体を水または現象液に切り換えるバルブを備えるこ とにより、原盤露光袋鼠を現像袋鼠としても機能させる こともできる.

(2)

特闘平10-255319

. _ ___

【特許請求の範囲】

i

i

【請求項 1 】 フォトレジストを塗布した記録媒体製造 用原盤にレーザ光を集光して照射することによりフォト レジストを所望のパターンに感光する原盤露光鉄圏にお いて

上記レーザ光を上記原盤表面に集光するための光学案子と.

上記光学第子と上記原盤表面との間の光路に液体を介在 させるための手段とを備えることを特徴とする原盤電光 拡撃

【請求項2】 上記光学素子が液視レンズとして機能することを特徴とする請求項1記載の原盤露光装置。

【請求項3】 上記液体を介在させるための手段が、原盤上に液体を吐出するためのノズルと、数ノズルに液体を供給するための液体供給装置とから構成されていることを特徴とする請求項1または2に記載の原盤露光装置。

【請求項4】 さらに、現像液を原盤上に供給するための手段を有することを特徴とする請求項1~3のいずれか一項に記載の原盤電光装置。

【請求項5】 上記現像波を原盤上に供給するための手段が、上記原盤上に上記液体または現像液を吐出するためのノズルと、該ノズルに上記液体または現像液を供給するための供給装置と、該ノズルへの上記液体または現像液の供給を切り換えるための切り換え装置とから構成されていることを特徴とする請求項4に記載の原盤露光等層。

【請求項6】 さらに、露光及び現像された原盤を検査 するための検査装置を備えることを特徴とする請求項5 に記載の原盤露光装置。

【請求項7】 上記検査装置が、原盛露光装置の上記光学素子を含む光へッドであることを特徴とする請求項6に記載の原盤露光装置。

【請求項8】 上記液体が水であることを特徴とする請求項1~7のいずれか一項記載の原盤露光装置。

【請求項9】 フォトレジストを塗布した記録媒体製造 用原盤にレーザ光を集光して解射することによりフォト レジストを所望のパターンに感光する原盤露光方法にお いて

上記レーザ光を葉光するための光学素子と原盤との間に 40 液体を介在させながら原盤露光を行うことを特徴とする 原盤露光方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、光ディスク等の記録媒体用基板の原盤を製造するための原盤器光鉄置に開し、より詳細にはフォトレジストを望布した原盤を露光する際の露光解像力を向上することができる原盤露光鉄 置及び方法に関する。

[0002]

【従来の技術】コンパクトディスクや光磁気ディスクの 基板は、プリフォーマット信号に対応するグループやプ リエンボスピットのパターンを原盤上に露光及び現象に より形成した役、得られた原盤を複製してスタンパを作 製し、スタンパを装着した射出成型器でプラスチック材 料等を射出成型することによって製造される。原盤にグ ループやプリエンボスピットのパターンを形成するため に原盤露光装置が用いられている。原盤露光装置は、通 常、フォトレジストが塗布されたガラス原盤を回転しな 10 がら、原盤面に照射するレーザ光をプリフォーマットは 号に応じてオンオフすることによって所定のパターンで フォトレジストを感光する。感光した原璧は、原璧義光 装置から取り外された後、現像装置のターンテーブルに 装着され、回転している原盤表面に上方からアルカリ液 を供給することにより現像が行われる。現像が終わる と、原盤に形成された湯やピットの寸法が適切がどうか を光ヘッドを備えた検査装置により検査される。こうし てスタンパ形成用の原盤が作製されている。

【0003】上述の原整器光袋酸として、例えば、テレビジョン学会誌 Wol 37, No.6、475-490頁(1983年)には、レーザ光波長入=457.98 nm、レンズ関口数 NA=0.93の光へッドを用いて、原盤上にスポットサイズ的0.5 μmにレーザ光を絞り込むことができる VHD/AHD方式ビデオディスクのレーザカッティングマシンが開示されている。このカッティングマシンを用いると最小0.25 μmのエンボスピットを形成することができることが報告されている。また、このカッティングマシンはレーザスポットを原盤に追従させるためにHe-Neレーザを援助ビームとしたフォーカシングサーボ系を用いている。

【0004】特開平6-187668号公報は、映トラックビッチ化、高密度記録しても隣接トラックからのクロストークを軽減することができる光ディスク原盤の製造方法を開示しており、原盤露光において上記文献とはは同様の構成のレーザカッティングマシンを使用している。

[0005]

【発明が解決しようとする課題】近年のマルチメディア化による情報量の増大に体い、光ディスク等の信報記録 媒体の高密度化、大容量化が要望されている。この要望に応えるために、原盤露光装置においても光ディスク等に記録するエンボスピットやグループのパターンをより 微小化して露光する必要がある。かかる微小パターンを露光するには、レーザ光を原盤に集光するレンズの隣口数(NA)を増大すること、レーザ光の波長を短波長化することが考えられる。しかしながら、レンズのNA及びレーザ波長の短波長化には限界があり、露光分解能を大幅に向上することは容易ではない。

[0006]また、前記のように義光及び現像工程は、 50 それぞれ、原営義光装置及び現像装置を用いて第々に行

(3)

われていたため、装置コストがかかるとともに、装置数 屋スペースも必要であり、さらにスタンパを製造するま での工程を煩雑化していた。

【0007】本発明の目的は、情報ビットの強小化及び 狭トラックピッチ化に対応した狭端化を実現することが できる原盤電光袋置を提供することにある。

【0008】また、本発明の別の目的は、露光機能のみならず現像観能をも備え且つ露光解像力が向上した原盤 電光装置を提供することにある。

【()()()()() 本発明のさらに別の目的は、情報ビットの 10 微小化及び狭トラックピッチ化に対応した狭滞化を実現 することができる原盤電光方法を提供することにある。

【課題を解決するための手段】本発明の第1の態様に従えば、フォトレジストを後布した記録媒体製造用原盤にレーザ光を集光して解射することによりフォトレジストを所望のパターンに感光する原盤露光装置において、上記レーザ光を上記原盤表面に集光するための光学素子と、上記光学素子と上記原盤表面との間の光路に液体を介在させるための手段とを備えることを特徴とする原盤 電光装置が提供される。

【0010】本発明の原盤露光装量の原理を図6を用いて説明する。図6は、本発明の原盤露光装量の光ヘッドにより露光されている原盤19近傍の紅大観念図である。原盤露光鉄置のレーザ光線(図示しない)から照射されたレーザ光4はリレーレンズ15を介して葉光レンズ17により原盤上に塗布されたフォトレジスト購20の表面に集光される。本発明の原盤露光装置は、図6に示したように液体200を原盤表面上に供給するノズル210を備えており、露光動作中には、このノズル210から供給された液体200により原盤のフォトレジスのト購20と集光レンズ17との間段は充満される。ここで、集光レンズ17により識別しうる2点間の最小距離では一般に下記式(1)により表される。

[0011]

【数1】

マニネ/NAニネ/(n・sına) (1) 整義光線 スカー 入は集光レンズ17に入射するレーザ光4の液 となり、 長、NAは集光レンズ17の関口数、nは集光レンズ1 フの物点側(原盤側) 域質の度折率。 aは集光レンズ1フから照射される光束の最大関きの半分すなわち閉口半 40 されたと角をそれぞれ示す。 集光レンズ17により識別しうる2 点間の最小距離 r が小さいほど、原盤露光装置の露光解像力が高いといえる。 レーザ光の波長 入を一定とした場合、 r を小さくするには上式(1)からNAを大きくすればよいことがわかる。NAは式(1)のようにNAニストを望ればよいことがわかる。NAは式(1)のようにNAニストを望ればよいことがわかる。NAは式(1)のようにNAニストを望ればよいことがわかる。NAは式(1)のようにNAニストを望ればよいことがわかる。NAを増大するには限行率 nと関口半角をを大きくすればよい。本発明では原始の表面20と葉光レンズ17との間に液体200(n するため 50 点 20 を 20 と葉光レンズ間に介在する場合、すなわち、従来の原 50 される。

整電光接層の葉光レンズよりもNAを増大することができる。接電すれば、本発明の原盤電光装層では、葉光レンズ17を液浸レンズとして機能させることができる。液体200は、NAを大きくするために、屈折率の大きな液体が好ましいが、レンズ17の収差の防止する観点から原盤の表面20と集光レンズ17との間隔を散調整する場合には、環光レンズ17の屈折率に近い屈折率を有する液体、例えば、セダー抽を用いるのが好ましい。しかしながら、液体200は、原盤のフォトレジスト腺20と接触することになるので、フォトレジストを腐食させず且つ後処理が容易であるという関点から木が好道である。

【0012】本発明の原盤電光装置は、さらに、現像液を原盤上に供給するための手段を有することができる。 原盤電光装置に現像液供給手段を装着することにより電 光後のプロセスに使用されていた現像装置が不要となり、電光・現像プロセスを簡略化することが可能になる。

【0013】上記現像液を原盤上に供給するための手段 は、上記光学素子と原盤との間に介在させる液体または 現像液を原盤上に吐出するためのノズルと、数ノズルに 上記液体または現像液を供給するための供給装置と、上 記ノズルへの上記液体または現像液の供給を切り換える ための切り換え装置とから構成することができる。本発 明の原盤高光鉄置の具体例では、集光レンズと原盤との 間に液体を介在させるために原盤上に液体を吐出するた めのノズルとノズルに液体を供給するための供給鉄置を 用いているので、供給液を現像液と露光用の液体とで切り換えることができる切り換え装置、例えば、電磁弁を 数若すれば、かかるノズル及び液体供給装置を現像液 給用としても用いることができ、一層簡単な構造で現像 機能を原盤電光鉄置に組み込むことができる。

【0014】本発明の原盤露光接置は、さらに、露光及び現像された原盤のピットや満の幅や深さ等を検査するための検査装置を備えることができる。これにより、原盤露光接置により露光・現像・検査が一つの装置で可能となり、設備コストの削減及びスタンパ製造までのプロセスを問略化することができる。従来の検査装置は光へッドを備え、光ヘッドからの検査光を走査して現像電光されたピットや消幅を検査していたので、原盤露光接置の集光レンズを含む光ヘッドを検査用の光ヘッドとして使用することが可能となり、装置の簡略化及び小型化が可能となる。

【0015】本発明の第2の態様に従えば、フォトレジストを塗布した記録媒体製造用原盤にレーザ光を築光して照射することによりフォトレジストを所望のパターンに思光する原盤露光方法において、上記レーザ光を集光するための光学素子と原盤との間に液体を介在させながら原盤露光を行うことを特徴とする原盤露光方法が提供される。

【0016】本発明の原盤電光方法に従えば、レーザ光 を集光するための光学素子と原盤との間に液体を介在さ せながら原盤露光を行うために、光学素子を液浸レンズ として級蛇させて光ヘッドの電光解像力を向上させるこ とができる。また、森光中に原盤上に付着した痙等を液 体を流動させることにより除去することができる。

[0017]

【発明の実施の形態】以下、本発明の固体イマージョン レンズを用いた原盤蓋光禁霊の実施の形態及び実施例を 図面を参照しながら説明する。

【0018】(第1実統例)本発明に従う原盤政光袋屋 の第1実施例を図1により説明する。図1は、原盤電光 装置 1 () () の構成徴略を示す。原金電光装置 1 () ()は、 主に、雲光用のレーサ光を出射するレーザ光線1.原盤 19への照射タイミング及び照射位置をそれぞれ調整す る音響光学(AO)変調器7及び音響光学(AO)偏向 器9、糞光用光ヘッド27、原盤19を回転するターン テーブル21. 原盤19上に水を吐出するノズル210 及び水/現像液供給装置220、照耐されたスポットを 光路を調整するためのビームスプリッター3、ミラー1 1. ハーフミラー13、レンズ6等の種々の光学素子か ち様成されている。

【0019】レーサ光瀬1から出射されたレーザ光束2 はビームスプリッタ3により第1の光束4と第2の光束 5に分けられる。第1の光束4は、一対のレンズ6で挟 まれたAO変調器7に入射して、記録すべき位号のタイ ミングに応じたパルス光に変調される。AO変調器7で 変調されたパルス光はミラー8で反射された後、AO傷 向器9に入射して原盤19の所定の半径方向位置を照射 30 するように偏向される。次いで、偏向された光は、備光 ミラー1()及びミラー11を経て光へッド27に入射す る。光ペッド27には後述するリレーレンズ15及び集 光レンズ17が鉄岩されており、それらのレンズにより レーザ光は原盤19の表面の所定位置に集光される。原 盤19上には予め入射光に対して感光性のフォトレジス ↑20が途布されている。一方、第2の光東5はEO変 調器12に入射する。AO変調器7の代わりにEO変調 墨12により照射タイミング及び露光量を変調してもよ 反射され、入/2位相板14を退過した後、僻光ミラー 10、ミラー11を経て光へっド27に到達する。

【0020】ノズル210はターンテーブル21の上方 で且つ原盤19の中心近傍に配置されており、原盤19 に向かって水200を吐出する。ターンテーブル21に より原盤19が回転されるとその途心力で水200は原 盤19の外周に広がり、原盛のフォトレジスト購20を 覆う水浪を形成する。原盛19の外周に向かって流動し た水200は年光レンズ17と原盤のフォトレジスト表 面20との間を充満するため、集光レンズ17は波浸レ 50 イル341、永久磁石35b、ヨーク36c.36dは

ンズとして級蛇する。

【0021】光ヘッド27から原盤19上のフォトレジ スト第20に照射された光は、前記式(1)及び液役レ ンズの原理により芝気中の理論的な最小スポット怪より も小さなスポットを形成してフォトレジスト腺20を感 光させる。このため、従来の原盤露光袋屋よりも露光解 像力が向上し、一層微細なピット及び案内簿のパターン を高結度で露光することができる。 光ヘッド27の構造 の評価については後述する。

10 【0022】原盤19のフォトレジスト腺20の表面か ら反射された光は、集光レンズ 1 7 及びリレーレンズ 1 5を透過して平行光となり、ミラー11、個光ミラー1 ()、ハーフミラー13を経てレンズ22により撮像管2 4上に集光される。撮像管24のディスプレイ26に表 示されたスポット像26a、26Dを観察することによ り、景光レンズ17によって形成されるスポット形状を 確認することができる。

【0023】レーザ光線1、AO変調器7、EO変調器 12. ターンテーブル21等の動作は、図示しない中間 観測するための撮像管24及びディスプレイ26並びに 20 部(図3及び図4参照)により一括して管理される。制 御部にはプリフォーマット信号が入力され、それに応じ てA○玄調器7等の発光周期等が調整される。

[0024]次に、原整部光装置100の光へッド27 の構造の詳細を図2及び図3を用いて説明する。図2 は、集光レンズ17を弾性部材18を介して支持する光 ヘッド27を下方から見た斜視図を示し、図3は光へっ F27の拡大断面図を示す。なお、図3には、光ヘッド 27の構造を分かり易くするために、ノズル210から 吐出された水200の図示は省略してある。

【0025】図2に示すように光へっド27は、栞光レ ンズ] 7 と、泉光レンズ] 7 を保持する集光レンズホル ダ16aと、光ヘッドベース部28とを備え、集光レン ズホルダ16aはベース部28の底面に固岩された4本 の支持部材29及びそれに接続された弾性部材188、 例えば板パネにより支持されている。この支持構造によ り、呆光レンズホルダ16aは、原盛平面と平行な方向 (図中X, Y方向) に拘束され、集光レンズ17の光軸 方向(図中2方向)に可動である。

[0026] 図3に示すように、集光レンズホルダ16 い。EO変調器 1 2 を通過した光はハーフミラー 1 3 で 40 a はその上部にビエゾ素子 3 3 を介してリレーレンズ 1 5を支持するリレーレンズホルダ32を備える。ここ で、ビエソ素テ33は集光レンズ17に対するリレーレ ンズ15の光軸方向位置を変更してリレーレンズ15の 焦点位置を強調整する。

【0027】リレーレンズホルダ32は弾性部村18b を介してベース部28の支持部材29と連結されてい る。リレーレンズホルダ32上には、ボイスコイル型ア クチュエータ 14()を構成するポピン34eが固着され ており、アクチュエータ140の他の常成要素であるコ ベース部28 に鉄岩されている。これにより、アクチュエータ14 ()が延助すると、集光レンズ17及びリレーレンズ15がベース部28 に対して光軸方向(図面上下方向)に移動することになる。アクチュエータ140の駆動は、撮像管24のディスプレイ26によるスポット像268、26 bの観察結果に基づいて制御部88を通じて行われる。これにより、集光レンズ17の端面と原盤19表面との間隔が適正な館に調整される。気光レンズ17の端面と原盤19表面との間隔は、焦光レンズ17の端面と原盤19表面との間隔は、焦光レンズ17の端面と原盤19表面との間隔は、焦光レンズ17の端面と原盤19表面との間隔は、焦光レンズ17の端面と原盤19表面との間隔は、焦光レンズ17の無点距離に応じて、一般に、数μm~数十μmに調 10 をされる。

【0029】次に、図4を用いて、図1に示した水/理 像遊供給装置220の構造の詳細を説明する。水/現像 液供給装置220は、主に、アルカリ液である現像液及 び水をそれぞれ貯蔵するタンク82、84と、それらの タンク内部を加圧する窒素ポンプ92と、タンク82。 84からノズル210に水/現像液を供給する配管8 O、80a, 80b及び制御部88等から構成されてい る。水/現像液を吐出するノズル2 1 0 は配営8 0 に接 30 続され、その途中から現像波タンク82に接続する配管 80aと水タンク84に独続する配管80bに分岐す る。配管80a及び80bにはそれぞれ電磁パルプ86 a及び86bが装着されており、その開閉は制御部88 により刺御される。配管80の途中には流量コントロー ルバルブ90が終着され、ノズル210から吐出される 液体の液量が制御部88を通じて制御される。 現像液タ ンク82と水タンク84にはそれぞれ窒素ポンプ92か **ら高圧窒素が供給され、タンク内部が加圧されることに** よってそれらのタンク82、84から現像液及び木が配 40 官80a,80bに流出される。 窒素ポンプ92もまた 制御部88により制御されている。なお、制御部88 は、図1に示した原盤糞光装屋の糞光動作を一括して管 理している制御部と共通している。

【0030】図4に示したような現体液/水供給装置220の動作を以下に設明する。原盤電光装置において露光が行われる際、制御部88は水タンク84側の電磁バルブ86bを開放して水タンク84内の水を配管80に供給する。制部部88はまた流量コントロールバルブ9(を制御して、配管80中を流れる水の流量を調節し、

適量の水をノズル210から吐出させる。これにより、 露光中は、集光レンズ17と原盤表面のフォトレジスト 20との間隙が水で充満され、集光レンズ17が液港レ ンズとして概能する。また、富光前または富光中にフォ トレジスト膜20上に付着した塵等がノズルからの水に より達し出されるために、妄等の付着物による露光精度 の低下を防止することもできる。なお、ノズル210か ら吐出される水量は、集光レンズ17と原盤表面のフォ トレジスト20との間腺が常に水で充満される量が必要 であるが、原盤上での水の流動により築光レンズ17と 原盤表面のフォトレジスト20との間の維持された間隔 を変動させないようにするのが望ましい。 原盤上での水 の流れを安定させるためにノズル210の吐出方向を水 平方向にしてもよい。また、集光レンズホルダ16aに よる水の抵抗を減らすために集光レンズホルダ168の 底面の端部が曲面を形成するようにしてもよい。

[0031]原盤20の電光が終了すると、制御部88は電磁パルプ86bを閉鎖するとともに、現像液タンク82側の電磁パルプ86aを開放することによってノズ20ル210から吐出される液を水から現像液に切り換える。流量コントロールパルプ90は制御部88の制御下で現像液の液量を調整し、適切な液速の現像液をノズル210から吐出させる。こうして、感光した原盤20の現像物作が行われる。

【0032】図4に示した鉄屋220では、現像液と水とを電磁バルブ86a、bを切り換えることによって同一ノズル210により供給することができため、電光終了後、感光した原盤を移動することなくその場合で現像することができる。

【0033】さらに、図1に示した光へッド27. 撮像 電24及びディスプレイ26は、露光・現像が終了した 後に原盤上に形成されたビット及び溝の幅や深さ等を検 査するための検査装置として用いることも可能である。 このように原盤露光装置を指成することにより、従来の 原盤露光装置を、露光・現像・検査が可能な一体型装置 とすることができる。

[0034] [第2実施例] 本発明に従う原盤露光狭虚の第2実施例を図5を用いて説明する。図5は、図3に示した原盤露光狭虚の光ヘッド27の変形例を示す断面図である。図5に示した光ヘッド部は、集光レンズ17を支持する集光レンズホルダ16bの構造が図3に示した栄光レンズホルダ16aと異なる以外は、実期例1の原盤露光装置100の光ヘッド部と同様の構造を育する。それゆえ、実施例1の原盤露光装置100と共通する部村及び構造については同一の行号を付してその説明を省略する。また、図5には、集光レンズホルダ16bの構造を分かり易くするために、ノズル210から吐出された水の図示を省略してある。

[0035] 集光レンズホルダ16bは、その中央に集 50 光レンズ17を支持し、ホルダ底部は外側に向かうに観 って原生19との間隔が広くなるような鉱面を形成している。集光レンズホルダ16bの内部には、外部から集光レンズ17に通じる空洞(光路)16f、16gが集光レンズ17の光輪を挟んで対称に形成されおり、一方の光路16fの間口部(光入射口)には光ファイバ40が終者され、他方の光路16gの間口部(光出射口)には、スリット41a及び検出部41bを備えたレンズ位置検出器41が終着されている。レンズ位置検出器41が終着されている。レンズ位置検出器41の検出部41bは前述のボイスコイルモータ140を制御する料御部88に接続されている。すなわち、実施例10原金電光装置では、ボイスコイルモータ140の料御はディスプレイ26による観察結果に基づいて行っていたが、この実施例ではレンズ位置検出器41からの検出信号に基づいて行う。

【0036】光ファイバ40から射出された光は空洞 (光路) 16 fを通って集光レンズ17に入射した後、 原盤19により反射されて再び集光レンズ17及び空間 (光路) 168を通ってレンズ位置終出器41に入射す る。レンズ位置鉄出器41は、検出部418と41bに 分割されており、集光レンズ17の端面17cと原盤表 20 面20との間隔が予め定めた適正値のとき、原盤からの 反射光の中心がレンズ位置後出器41の検出部418と 4.1 bの中間に配置するように設計されている。 すなわ ち、このとき終出部41aと41hの前記反射光の光量 が等しくなる。それゆえ、霞光中、すなわち、ノズル2 10から水が吐出されて原盤表面のフォトレジスト20 上を水が流動しているときに、集光レンズ17の塩面1 7cと原盤のフォトレジスト20との間隔が適正な間隔 になければ、終出部41aと41りから出てくる反射光 検出出力のバランスがくずれ、制御部ではこれに定答し 30 てポイスコイル型アクチュエータ 140を駆動し呆光レ ンズ17と原盤19との間隔が適正な値に修正されるよ うにする。また、水などの液体を集光レンズ17とフォ トレジスト表面20との間に充満させた場合、フォトレ ジストと前記液体との屈折率が近似していれば、光ファ イバー40から出た光がフォトレジスト表面20で反射 される強度が小さくなり位置光検出部で検出される光量 が減り、サーボが不安定になることがある。このような 場合には、フォトレジストと原盤の間にアルミ等の反射 腹を形成して反射光量を増すこともできる。

[0037] 図5に示した原盤電光装置は、レンズ位置 検出器41を備えるので策光レンズ17と原盤との間隔 が常に適正な値になるように制御部88を通じて自動的 に調整される。従って、電光中に原盤表面に供給された 水の流量の変動等により最光レンズホルダ16bの上下 方向の揺れが生じた場合でも、揺れを諦めて集光レンズ 17と原盤との間隔を適正な値に収束することができ

[0038]以上、本発明を実施例により設明してきた たは現像液を供給するための供給装置と上記ノスメへの か。本発明は特許請求の範囲に記載した範囲で実施例の 50 該液体または現像液の供給を切り換えるための切り換え

様々の変形及び改良を含むことができる。上記例では、 原盤中央近傍に水/現像液が吐出されるようにノズルを 配置したが、ノズルの位置は原盤の回転によって原盤と 集光レンズとの間瞭に水を充満させることができる限り 任意の位置に配置することができる。例えば、原盤の半 径方向において最光レンズと同一位置であり且つ原盤の 回転方向前方にノズルを配置することができる。またノ ズルからの液体の吐出方向はノズルの向きを変更することによって任意の方向に調整することができる。

10

【0039】上記実施例ではノズルを用いて水を原盤上に吐出させる様成としたが、原盤外周に沿って壁面を設けることによって原盤を底部とする容費を形成し、容器内に一定量の水を落えることによって原盤と集光レンズとの間腔に水を充満させることにできる。このようにすれば、ノズルから吐出する水の量を低減し、あるいは、電光前にのみノズルから水を容器内に充満させ、水の強動による集光レンズホルダの脳れを抑制することができる。また、ノズル自体を省略して、上記のような容器構造だけを採用してもよい。すなわち、原盤と集光レンズとの間隙に水を介在させることができる方法であれば、任意の方法を用いることができる。

【0040】また、上記原盤電光装置は、光ヘッド都を現像処理時に原盤から退避させることができるような退避権構あるいは光ヘッド部に現像液が付着することを防止するための光ヘッドカバーを設けることができる。かかる退避機構または光ヘッドカバーを設けることがよって光ヘッド部をアルカリ設である現像液から保護し、レンズ及びレンズホルダの腐食を防止することができる。【0041】本発明の原盤電光装置は、コンパクトディスク、CD-ROM、デジタルビデオディスク等の再生専用の光記録媒体、CD-Rのような連記型記録媒体、光超気ディスクのような置換え型光記録媒体のみならずハードディスク等に使用されるエンボスピットタイプの遊気記録媒体を設造するために使用することができる。【0042】

【発明の効果】本発明の原型高光装置は、集光レンズと原盤との間に液体を介在させることによって集光レンズは液浸レンズとして機能することができるため、電光解像力を一層向上することができ、それによって極めて微小なビット、例えば、(). 2 μ m以下のビットが形成される高密度記録媒体用の原盤を製造することも可能になる。

[10043]また、本発明の原盤電光装置は、現像液供 給手段を有するため電光後のプロセスに従来使用されて いた現像装置が不要となり、電光・現像プロセスを簡略 化することが可能になる。特に、現像液供給手段を、上 記光学素子と原盤との関に介在させる液体または現像液 を原盤上に吐出するためのノズルと該ノズルに該液体ま たは現像液を供給するための供給装置と上記ノズルへの せ流体または現像液の供給を切り換えるための切り換え

特別平10-255319

12

11 装置とから構成することにより、ノズルから現象波と露 光用の液体とを切り換えて吐出することができるため、 一层簡単な構造で現像機能を原金蓋光統層に組み込むこ とができる。

【0144】本発明の原盛露光装屋は、さらに、露光及び現像された原盤のピットや湯の幅や深さ等を検査するための検査装置を備えることにより、原盤露光鏡置により電光・現像・検査が一つの装屋で可能となり、設備コストの削減及びスタンパ製造までのプロセスの簡略化を実現することができる。

【0045】本異明の原盤露光方法に従えば、レーザ光を集光するための光学素子と原盤との間に液体を介在させながら原盤露光を行うために、光学素子を液度レンズとして機能させることができるとともに電光中に原盤上に付着した塵等を流動除去することができる。このため光ヘッドの露光解像力及び露光精度を向上させることが可能になる。

【図面の簡単な説明】

- 【図】】 本発明に従う原盛器光装屋の全体構成を説明する概念図である。
- 【図2】図1に示した本発明に従う原盤電光装置の光へ ッドの第1実施例を下方から見た斜視図である。
- 【図3】図1に示した本発明に従う原盤電光装置の光へっドの第1実施例を示す断面図である。
- 【図4】本発明の第1実施例及び第2実施例に従う原盤*

* 電光装置のノズル及び水/現像液供給装置の構造を設勢 する概念図である。

【図5】本発明の第2の実施例に従う原盤電光袋間の光へっドの断面図である。

【図6】本発明の原盤露光装屋の集光レンズが液浸レンズとして機能することを説明する図である。

【符号の説明】

- 3 ビームスブリッタ
- 7 AO変調器
- 9 AO偏向器
- 16a, b 集光レンズホルダ
- 17 集光レンズ
- 18 弹性部村
- 20 フォトレジスト
- 27 光ヘッド
- 28 光ヘッドベース部
- 29 支持部村
- 82 現像液タンク
- 84 水タンク
- 20 92 空気ポンプ
 - 100 原整露光装置
 - 130 ボイスコイル型アクチュエータ
 - 200 水
 - 210 水/現像液吐出ノズル

[31]

(8)

特閒平10-255319

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:					
☐ BLACK BORDERS					
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES					
☐ FADED TEXT OR DRAWING					
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING					
☐ SKEWED/SLANTED IMAGES					
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS					
☐ GRAY SCALE DOCUMENTS					
☐ LINES OR MARKS ON ORIGINAL DOCUMENT					
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY					

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.