VIRAJ BANGARI 10186046

FERROMAGNETIC HYSTERESIS

EXPERIMENTAL SETUP

n1 = **160** turns

n2 = 150 turns

S = 0.1 + /-5% Ohms

R = 1e6 +/- 5% Ohms

C = 0.5e-6 + / - 2% F

SAMPLE DIMENSIONS

- Iron Magnetic Length: 333 +/- 5mm
- Iron Cross Sectional Area:759.08 +- 0.5 mm²
- Carbon Magnetic Length: 78 mm +/- 0.5 mm²
- Carbon Cross Sectional Area: 844.32 mm²

SERIES RESISTOR AND CAPACITOR VOLTAGE FOR IRON SAMPLE

Time [s]	Vs [V]	Vs [V]	
-2.50E-02	3.42E-01	-3.4E-01	
-2.50E-02	3.38E-01	-3.39E-01	
-2.50E-02	3.34E-01	-3.39E-01	
-2.49E-02	3.31E-01	-3.39E-01	

$$H = n_1(LS)^{-1}V_s$$

$$B = RC(n_2A_c)^{-1}V_s$$

HYSTERESIS LOOP

REMANENCE AND COERCIVE FORCES

- \blacktriangleright Iron Remanence = 0.838 +/- 0.003 [T]
- Iron Coercive Force = -252 +/- 1 [A/m]
- Steel Remanence = 0.440 +/- 0.002 [T]
- Steel Coercive Force = -3390 +/- 10 [A/m]

MAGNETS AND MOTORS

- Remanence: The magnetic field after the applied magnetic field is zero
- Coercive Force: Required force to bring the magnetic field to zero.

MAGNETS AND MOTORS

- Remanence: The magnetic field after the applied magnetic field is zero
- Coercive Force: Required force to bring the magnetic field to zero.
- Iron is better suited as a permanent magnet

MAGNETS AND MOTORS

- Remanence: The magnetic field after the applied magnetic field is zero
- Coercive Force: Required force to bring the magnetic field to zero.
- Iron is better suited as a permanent magnet
- Steel is better suited as a motor.

AREA OF THE HYSTERESIS LOOPS

AREA OF THE HYSTERESIS LOOPS

AREA OF THE HYSTERESIS LOOPS

$$P = AVf$$

$$V = L * Area of sample face$$

Power Dissipated by Steel: 100 +/-

Power Dissipated by Steel: 100 +/6W

We estimated: 60 W

WHERE DID IT GO WRONG?

WHERE DID IT GO WRONG?

WHERE DID IT GO WRONG?

CHANGE IN HYSTERESIS POSITION (SAMPLE)

Variac Voltag	ge Top-right corner X [mV]	Top-right corner Y [mV]	x scale [mV/div]	y scale [mV/div]
3	13.75	26.87	5	10
5	18.25	43.75	5	20
7	21	56.25	5	20
10	25.5	72.5	5	20

$$\mathbf{B} = \mu_0 \, \mu_r \mathbf{H}$$

$$\mu_0 = 4\pi * 10^{-7}$$

- Relative permeability: 1900 +/- 200 H/m
- Actual value is:
 - **200000** for **99.8%** pure Iron
 - > 5000 for 99.8% pure Iron

flux density =
$$H\mu_r$$

Calculated as: 333000 +/- 6000N/(Am)

PLASTIC

COPPER

Hysteresis loops looked visually correct

- Hysteresis loops looked visually correct
- Coercive force and remanence was determined.

- Hysteresis loops looked visually correct
- Coercive force and remanence was determined.
- Calculated power: 100 +/- 5 W Estimated: 60 W

- Hysteresis loops looked visually correct
- Coercive force and remanence was determined.
- Calculated power: 100 +/- 5 W Estimated: 60 W
- Relative permeability was calculated: 1900 +/- 200 H/m
 - > 200000 for 99.8% pure Iron
 - > 5000 for 99.8% pure Iron

SOURCES OF ERROR

- Magnetic Length
- Unknown purity of Iron

THANK YOU FOR YOUR TIME