APPENDIX A PROOF OF THEOREM 1

Proof. We present the formal proof using a sequence of games from the real security game G_0 to the random game G_9 . The games run in time at most t, and involve at most n_p honest parties. We also define an event $\xi_i (0 \le i \le 9)$ as \mathcal{A} winning game G_i by breaching the semantic security of LLRA. Additionally, we assume \mathcal{S} is the solver of ECCDHP and \mathcal{T} is the solver of ECCDLP.

We also define an event $\xi_i (0 \le i \le 9)$ as \mathcal{A} winning game G_i by breaching the semantic security of the LLRA. Note that event Z, which is independent of ξ_i , may occur during \mathcal{A} 's computation. Games G_i and G_{i+1} are indistinguishable unless Z occurs. Thus, we have:

$$|\operatorname{Prob}[\xi_{i+1}] - \operatorname{Prob}[\xi_i]| \le \operatorname{Prob}[Z]$$

Game G_0 : This game corresponds to a real attack scenario where all oracle queries are answered honestly in accordance with the protocol specifications. Based on the security definition, we obtain:

$$\mathbf{Adv}_{A}^{LLRA}(k) = |2\Pr\left[b' = b\right] - 1|$$

Game G_1 : This game simulates the hash oracle H. The execution of the Reveal, Send, Corrupt, and Test queries in this game is equivalent to executing an actual attack. Thus, we have:

$$Prob [\xi_1] = Prob [\xi_0]$$

Game G_2 : In this game \mathcal{A} replaces Y_A with the value x_{Y_A} chosen uniformly at random. The protocol runs honestly to generate x_{Y_A} . By the ECDLP problem, \mathcal{A} executes n_s times with probability $\mathbf{Adv}_{\mathcal{A}}^{ECDLP}(\mathcal{T})$, the value Y_A and xY_A are indistinguishable. Then, we have:

$$|\operatorname{Prob}[\xi_2] - \operatorname{Prob}[\xi_1]| \le n_s \mathbf{Adv}_{\mathcal{A}}^{ECDLP}(\mathcal{T})$$

Game G_3 : In this game, m=1, the condition n>20 guarantees that $n>20\cdot m, n\geq m/3$ and n>16. The leakage-resilient storage $\Lambda_{Z_q^*}^{n,1}$ is $(2\lambda,\epsilon)$ -secure leakage-resilient and the refreshing protocol $Refresh_{Z_q^*}^{n,1}$ is $(l,\lambda,\epsilon'), l\in N$, ϵ and ϵ' is negligible, and $\lambda=(0.15n\log q,0.15n\log q)$. Thus, we have:

$$|\operatorname{Prob}[\xi_3] - \operatorname{Prob}[\xi_2]| \le n_n \cdot \epsilon'$$

Game G_4 : In this game, a collision occurs based on the birthday attack. The probability of collisions in the content simulation is at most $\binom{n_e+n_s}{2}$ events, each of which occurs with a probability of $\frac{1}{n_p}$. The probability of collisions in the hash oracle simulation is at most $\binom{n_h}{2}$ events, each of which occurs with probability $\frac{1}{2^l}$. Thus, we have:

$$\begin{split} |\operatorname{Prob}\left[\xi_{4}\right] - \operatorname{Prob}\left[\xi_{3}\right]| &\leq \left(\begin{array}{c} n_{e} + n_{s} \\ 2 \end{array}\right) \cdot \frac{1}{n_{p}} + \left(\begin{array}{c} n_{h} \\ 2 \end{array}\right) \cdot \frac{1}{2^{l}} \\ &\leq \frac{(n_{e} + n_{s})^{2}}{2n_{p}} + \frac{n_{h}^{2}}{2^{l+1}} \end{split}$$

Game G_5 : In this game, the ciphertext E_A is replaced with an encryption of hw_A . If E_A is a valid ciphertext, sets the

session key identical to that of S_B^j ; else, sets the session key as an uniformly chosen element from dictionary |X|. There are n_s+n_h events in total, each of which occurs with probability $\frac{1}{|X|}$. Under the semantic security of authenticated encryption, we have:

$$|\operatorname{Prob}[\xi_5] - \operatorname{Prob}[\xi_4]| \le \frac{n_s + n_h}{|X|}$$

Game G_6 : In this game, the ciphertext E_B is replaced with an encryption of hw_B' . If the \mathcal{A} can distinguish game G_6 from game G_5 , then the semantic security of authenticated encryption will be broken at most $n_e + n_h$ with probability $\frac{1}{|\mathcal{X}|}$. Thus, we have:

$$|\operatorname{Prob}[\xi_6] - \operatorname{Prob}[\xi_5]| \le \frac{n_e + n_h}{|X|}$$

Game G_7 : In this game, we show that the adversary \mathcal{A} can distinguish a real session key from a random number if the following situations occur.

- \mathcal{A} made $Corrupt(U_A^i)$ query but no $Send(S_B^j)$ query. If an adversary \mathcal{A} successfully forges a valid message E_A , they can obtain hw_A and D_A by issuing n_c Corrupt query on U_A^i . However, \mathcal{A} cannot retrieve any identity information or data about y_A from X_A , hw_A , D_A , and Y_A . Therefore, if \mathcal{A} can correctly calculate the value sk_A with negligible advantage, they can forge a valid ciphertext with the same advantage.
- \mathcal{A} made $Corrupt(U_A^i)$ query and $Send(S_B^j)$ query. Assuming the adversary \mathcal{A} successfully forges a valid message E_A and obtains hw_A and D_A of U_A^i by issuing a Corrupt query, they can set x_{y_A} and x_{u_A} and request a valid message msg_2^i using the $Send(S_B^j, msg_1^i)$ query. To forge a valid E_A , \mathcal{A} must accurately calculate the value $x_{sk_A} = X_A \oplus X_B \oplus H_3(Y_B \cdot x_{u_A})$. If the adversary executes $n_s 1$ Send queries to guess ID_A , the probability that \mathcal{A} produces a valid E_A is bounded by $\frac{1}{|\mathcal{X}|}$.

Therefore, we have:

$$\begin{aligned} &|\operatorname{Prob}\left[\xi_{7}\right]-\operatorname{Prob}\left[\xi_{6}\right]|\\ &\leq\frac{n_{s}-1}{|X|}+n_{c}(\mathbf{Adv}_{\mathcal{A}}^{ECDLP}(\mathcal{T})+\mathbf{Adv}_{\mathcal{A}}^{ECCDH}(\mathcal{S}))\end{aligned}$$

Game G_8 : In this game, the adversary $\mathcal A$ issues a $Corrupt(S_B^j)$ query and then requests a valid message $msg_1=(X_A,Y_A,T_A,C_A,Auth)$ by using the $Send(U_A^i,S_B^j)$ query. Assuming that $\mathcal A$ successfully forges a valid ciphertext E_B , they can distinguish between a real session key and a random number. After obtaining hw_B and D_B of S_B^j via the Corrupt query, $\mathcal A$ sets x_{y_B} and x_{u_B} and computes $x_{sk_B}=X_A\oplus X_B\oplus H_3(Y_A\cdot x_{u_B})$. To forge a valid E_B , $\mathcal A$ must correctly calculate the value x_{sk_B} , as well as know the identity ID_B . If $\mathcal A$ executes n_s-1 Send queries to guess ID_B , the probability that $\mathcal A$ outputs a valid E_B is bounded by $\frac{1}{|X|}$. Therefore, we obtain:

$$|\operatorname{Prob}[\xi_8] - \operatorname{Prob}[\xi_7]| \le \frac{n_s - 1}{|X|}$$

Game G_9 : This game serves as a bridging step where the advantage of \mathcal{A} in guessing b is completely eliminated. This

is achieved by making the outputs of $Test(\cdot,\cdot)$ queries indistinguishable in the previous sequence of games, unless the game is halted. Therefore, we obtain:

$$\operatorname{Prob}\left[\xi_{9}\right] = \operatorname{Prob}\left[\xi_{8}\right] = \frac{1}{2}$$

Thus, we have:

$$\mathbf{Adv}_{\mathcal{A}}^{LLRA}(k) \leq 2n_p \cdot \epsilon' + \frac{(n_e + n_s)^2}{n_p} + \frac{n_h^2}{2^l}$$

$$+ 2(\frac{n_s + n_h}{|X|} + \frac{n_e + n_h}{|X|}) + \frac{4(n_s - 1)}{|X|}$$

$$+ 2(n_s + n_c)\mathbf{Adv}_{\mathcal{A}}^{ECDLP}(\mathcal{T}) + 2n_c\mathbf{Adv}_{\mathcal{A}}^{ECCDH}(\mathcal{S})$$