Herbst 16 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $(t, x) \mapsto f(t, x)$, eine stetige Funktion, die bezüglich der Koordinate x Lipschitz-stetig ist. Zeigen Sie, dass das Differentialgleichungssystem

$$\dot{x} = f(t, x)$$

genau dann autonom ist (d. h. f(t,x) ist von t unabhängig), wenn mit jeder Lösung φ : $]a,b[\to \mathbb{R}^n$ der Differentialgleichung und jedem $\gamma \in \mathbb{R}$ auch $\varphi_\gamma:]a-\gamma,b-\gamma[\to \mathbb{R}^n,\varphi_\gamma(t)=\varphi(t+\gamma)$, eine Lösung ist.

Lösungsvorschlag:

Zunächst ist φ_{γ} für alle $\gamma \in \mathbb{R}$ wohldefiniert. Falls das System autonom ist, handelt es sich wieder um eine Lösung, weil $\varphi'_{\gamma}(t) = \varphi'_{\gamma}(t+\gamma) = f(t+\gamma, \varphi(t+\gamma)) = f(t, \varphi_{\gamma}(t))$ für alle t im Lösungsintervall ist und damit die Gleichung erfüllt ist.

Sei jetzt für jede Lösung φ auch φ_{γ} eine Lösung. Um zu zeigen, dass f unabhängig von t ist müssen wir für alle $s, t \in \mathbb{R}, x \in \mathbb{R}^n$ die Gleichung f(s, x) = f(t, x) zeigen. Seien dazu $s \in \mathbb{R}, x \in \mathbb{R}^n$ beliebig aber fest gewählt.

Die Strukturfunktion erfüllt die Voraussetzungen des Satzes von Picard-Lindelöf, es gibt also zur Anfangsbedingung $\varphi(s)=x$ eine eindeutige Maximallösung auf einem Intervall $(s-\delta,s+\delta)$ mit $\delta>0$. Sei jetzt $t\in\mathbb{R}$ beliebig, dann ist $t=s-\gamma$ für $\gamma=s-t\in\mathbb{R}$. Per Voraussetzung ist φ_{γ} wieder eine Lösung auf dem Intervall $(s-\delta-\gamma,s+\delta-\gamma)=(t-\delta,t+\delta)$, wobei das Lösungsintervall den Punkt t enthält. Damit folgt wegen $s=t+\gamma$ nun $f(s,x)=f(s,\varphi(s))=\varphi'(s)=\varphi'(t+\gamma)=\varphi'_{\gamma}(t)=f(t,\varphi_{\gamma}(t))=f(t,\varphi(t+\gamma))=f(t,\varphi(s))=f(t,x)$, also f(s,x)=f(t,x) für beliebige $s,t\in\mathbb{R}$ und $x\in\mathbb{R}^n$. D. h. aber, dass f unabhängig von t ist und die Differentialgleichung ist daher autonom.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$