=> d all

L2 ANSWER 1 OF 1 JAPIO (C) 2005 JPO on STN

AN 2002-348508 JAPIO <<LOGINID::20050517>>

TI INK JET RECORDING LIQUID

IN IIDA YASUHARU

PA TOYO INK MFG CO LTD

PI JP 2002348508 A 20021204 Heisei

AI JP 2001-158036 (JP2001158036 Heisei) 20010528

PRAI JP 2001-158036 20010528

SO PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined Applications, Vol. 2002

IC ICM C09D011-00

ICS B41J002-01; B41M005-00; C09K011-06

AB PROBLEM TO BE SOLVED: To provide an ink jet recording liquid capable of obtaining a recorded material having good water resistance and emitting red light by ultraviolet light and having sufficient adhesion, scarcely emitting odor, excellent in dryness and out of regard for inflammability also to nonporous object.

SOLUTION: This continuous type ink jet recording liquid is characterized by comprising a coloring agent, a resin, a solvent and tetrabutylammonium bromide as an electric conductivity-controlling agent. The ink jet recording liquid is preferably characterized by comprising 0.2-3 weight% europium-based fluorescent material, 3-15 weight% at least one kind of resin selected from styrene- acrylic, styrene-maleic acid and

α-methylstyrene-styrene-acrylic resins, 20-50 weight% water, 10-60 weight%

n-propyl alcohol, 0-50 ethanol and 0.3-5.0 weight% tetrabutylammonium bromide.

COPYRIGHT: (C)2003, JPO

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-348508

(P 2 0 0 2 - 3 4 8 5 0 8 A)

(43)公開日 平成14年12月4日(2002.12.4)

(51) Int. Cl. 7	識別記号	FI				•	J-1.	(参考)
CO9D 11/00		C09D 11/00				2C056		
B41J 2/01		B41M 5/00		•	E	2H086		
B41M 5/00		C09K 11/06				4J039		
C09K 11/06		B41J 3/04		101	Y			
		審査請求	未請求	請求項の数	汝 7	OL	(全10)頁)
(21)出願番号	特願2001-158036(P2001-158036)	(71)出願人	00022211	8				
			東洋イン	キ製造株式	会社	Ł		
(22)出願日	平成13年5月28日(2001.5.28)		東京都中	央区京橋2	丁目	3 番13 5	号	
		(72)発明者	飯田 保	春				
				央区京橋二		月3番13₹	号 東海	羊イ
			ンキ製造	株式会社内	J			
		,				最	終頁に	続く

(54) 【発明の名称】 インクジェット記録液

(57)【要約】

【課題】紫外線にて赤色に発光する耐水性の良好な記録物が得られ、非ポーラスな対象物に対しても、十分な密着性を有し、臭気が少なく、乾燥性に優れ、引火性に配慮した記録液を提供する。

【解決手段】着色剤、樹脂、溶剤および電導度調整剤としてテトラブチルアンモニウムプロミドを含むことを特徴とするコンティニュアス方式のインクジェット記録液であり、特に、ユーロピウム系蛍光材料 $0.2 \sim 3$ 重量%、酸価 $200 \sim 300$ KOHmg / gで重量平均分子量 $500 \sim 5000$ の、スチレンーアクリル、スチレンーマレイン酸および $\alpha-$ メチルスチレンースチレンーアクリルから選ばれる少なくとも一種の樹脂 $3 \sim 15$ 重量%、水 $20 \sim 50$ 重量%、n- プロピルアルコール $10 \sim 60$ 重量%、エタノール0 ~ 50 重量%およびテトラブチルアンモニウムプロミド $0.3 \sim 5.0$ 重量%からなることを特徴とするインクジェット記録液。

10

30

【請求項1】 着色剤、樹脂、溶剤および電導度調整剤 としてテトラプチルアンモニウムプロミドを含むことを 特徴とするコンティニュアス方式のインクジェット記録 液。

1

【請求項2】 着色剤が、可視光では認識されないが、 紫外線の照射により発光して認識のできる紫外線発光の 蛍光材料である請求項1記載のインクジェット記録液。

【請求項3】 蛍光材料が下記式(1)にて示される請求項2記載のインクジェット記録液。

式(1)

(化1)

(式中、Xは、置換基を有してもよいメチル基、置換基を有してもよいフリル基、置換基を有してもよいフェニル基、置換基を有してもよいチエニル基又は置換基を有してもよいナフチル基を表し、Yは、(n-C, H,), N又は(H, O) nを表す。)

【請求項4】 樹脂が、酸価200~300KOHmg/g で重量平均分子量500~5000の水溶性樹脂である 請求項1ないし3いずれか記載のインクジェット記録 変

【請求項5】 水溶性樹脂がスチレン-アクリル、スチレン-マレイン酸および α -メチルスチレン-スチレン-アクリルから選ばれる少なくとも一種である請求項4記載のインクジェット記録液。

【請求項6】 溶剤が、水溶性溶剤と水との混合溶剤である請求項1ないし5いずれか記載のインクジェット記録液。

【請求項7】 下記式 (1) にて示される蛍光材料 0. 2 ~3 重量%、酸価 2 0 0~3 0 0 KOHmg / g で重量 平均分子量 5 0 0~5 0 0 0の、スチレンーアクリル、スチレンーマレイン酸および α -メチルスチレンースチレンーアクリルから選ばれる少なくとも一種の樹脂 3~15 重量%、水 2 0~5 0 重量%、n -プロピルアルコール 1 0~6 0 重量%、エタノール 0~5 0 重量% およびテトラブチルアンモニウムプロミド 0. 3~5. 0 重量% からなることを特徴とするインクジェット記録液。式 (1)

【化2】

Eu CH CH CF3 4

2

(式中、Xは、置換基を有してもよいメチル基、置換基を有してもよいフリル基、置換基を有してもよいフェニル基、置換基を有してもよいチエニル基又は置換基を有してもよいナフチル基を表し、Yは、(n-C, H,), N又は(H, O) nを表す。)

【発明の詳細な説明】

[0001]

【産業上の技術分野】本発明は、コンティニュアスタイプのインクジェット用の記録液に関する。また、紫外線20 にて可視化する記録液 (インキ) に関する。さらに詳しくは、紫外線にて赤色に発光するインクジェット用の記録液 (インキ) に関する。

[0002]

【従来の技術】従来より、コンティニュアスタイプのインクジェット用記録液(インキ)においては、インキ液滴の帯電制御のためインキ中に電導度の調整剤をもちいている。このような電導度調整剤としては、チオシアン酸ナトリウム、チオシアン酸カリウム、硝酸リチウム、塩化リチウム等の潮解性の化合物がよく用いられている。しかしながら、これらの電導度の調整剤はインキを酸性とし、金属の腐食を招き易い欠点を有している。

【0003】また、顔料の分散系のインキにおいては、電導度の調整剤の添加により安定な分散系を不安定化することも引き起こす。したがって、特に特殊な着色剤との併用において、電導度調整剤の選択は大きな課題である。

【0004】また、従来、種々の特殊用途において、可 視光では確認がしにくいが特殊な光によって可視化した り、センサーでの読み取りを可能にするインキの開発が 40 行われている。このような用途には、蛍光増白剤のよう に紫色に発光するものが用いられていたが、蛍光増白剤 は水性の染料であるため耐水性に劣る欠点があった。 又、蛍光増白剤は、発光が一般に紫色であり、紙、繊維 等に広く用いられているため、それらの発光との区別が つけにくいという欠点もあった。

【0005】特公昭54-22336号公報には、紫外線照射により赤橙色に発光するインキが記載されている。このインキは、水および親水性のグリコールエーテルを主体とするインキであり高速で印刷処理する用途に50 おいては、水の量が多くグルコールエーテル類の乾燥も

遅いことから、十分な乾燥が得られなかった。とくに、 被印刷物が、紙以外の非ポーラスなフィルム等の上への 印字においては、特に十分な乾燥速度は得られなかっ た。

【0006】特公平8-26264号公報には、紫外線にて赤橙色に発光する乾燥性の良好なインキが記載されている。これらは、溶剤として、キシレン、メチルエチルケトンを使用している。したがって、非ポーラスなフィルム等への密着、乾燥性が良好であるが、使用している溶剤は、水を含有せず引火性のある溶剤のみで構成さ 10れており、溶剤の臭気、取り扱い上の制約があった。

【0007】特開2000-160083号公報には、上記のメチルエチルケトンのような溶剤に代えてアルコールを70%以上使用するものであり、メチルエチルケトンに比較して臭気の少ないインキとなっている。しかしながら、このインキは引火性の溶剤であるアルコールのみからなり、引火性においてはメチルエチルケトンのインキと同様の取り扱いが必要であり、注意を要するものであった。

[0008]

【発明が解決しようとする課題】本発明は、コンティニュアスタイプのプリンターにおいて十分な帯電制御のできるような電導度の調整剤を用いたインキに関する。また、紫外線にて赤色に発光する耐水性の良好な記録物が得られるインクジェット用記録液(インキ)を提供する。また、本発明は、非ポーラスな対象物に対しても、十分な密着性を有し、臭気が少なく、乾燥性に優れ、引火性に配慮した記録液を提供するものである。

[0009]

【課題を解決するための手段】すなわち、本発明は、着色剤、樹脂、溶剤および電導度調整剤としてテトラブチルアンモニウムプロミドを含むことを特徴とするコンティニュアス方式のインクジェット記録液に関する。

【0010】また、本発明は、着色剤が、可視光では認識されないが、紫外線の照射により発光して認識のできる紫外線発光の蛍光材料である上記インクジェット記録液に関する。

【0011】また、本発明は、蛍光材料が下記式(1)にて示される上記インクジェット記録液に関する。

【0012】式(1)

[0013]

[化3]

【0014】(式中、Xは、置換基を有してもよいメチル基、置換基を有してもよいフリル基、置換基を有してもよいフェニル基、置換基を有してもよいチエニル基又は置換基を有してもよいナフチル基を表し、Yは、(n-C, H,), N又は(H,O) nを表す。)

また、本発明は、樹脂が、酸価200~300KOHmg/gで重量平均分子量500~5000の水溶性樹脂である上記インクジェット記録液に関する。

【0015】また、本発明は、水溶性樹脂がスチレンー 20 アクリル、スチレンーマレイン酸および α – メチルスチレンースチレンーアクリルから選ばれる少なくとも一種である上記インクジェット記録液に関する。

【0016】また、本発明は、溶剤が、水溶性溶剤と水との混合溶剤である上記インクジェット記録液に関する。

【0017】また、本発明は、上記式(1)にて示される蛍光材料0.2~3重量%、酸価200~300KOHmg/gで重量平均分子量500~5000の、スチレンーアクリル、スチレンーマレイン酸および α -メチルスチレンースチレンーアクリルから選ばれる少なくとも一種の樹脂3~15重量%、水20~50重量%、n-プロピルアルコール10~60重量%、エタノール0~50重量%およびテトラブチルアンモニウムブロミド0.3~5.0重量%からなることを特徴とするインクジェット記録液。

【0018】本発明において着色剤は、種々の染料、顔料等を対象とできるが、蛍光材料を対象としたときに電 導度調整剤の効果がより一層発揮される。

【0019】本発明の蛍光材料は、254nm~365 40 nmの紫外線にて600~650nm、特に615nm 付近に発光を有し、紫外線を照射しないときは着色して いないため下地の紙等にて識別が容易にはできないもの である。

【0020】本発明の蛍光材料は、式(1)に示されるように、テトラーnープチルアンモニウム塩あるいは水を対イオンに有するユーロピウムの錯体であり、メチル基等の置換基としては低級アルキル基、フェニル基、ハロゲン原子、水酸基等がある。

[0021] 本発明の蛍光材料の具体例としては、テト 50 ラ [4, 4, 4-トリフルオロ-1-(2-フラニル) -1、3-プタンジオナート] ユーロピウム錯体、テト ラ (4, 4, 4-トリフルオロー1-フェニルー1, 3 - ブタンジオナート) ユーロピウム錯体、テトラ〔4, 4, 4-トリフルオロー1-(2-チオニル)-1, 3 - ブタンジオナート] ユーロピウム錯体、テトラ〔4, 4, 4-トリフルオロー1ーナフチルー1, 3ープタン ジオナート] ユーロピウム錯体、テトラ〔4, 4, 4-トリフルオロー1ーメチルー1, 3ープタンジオナー ト) ユーロピウム錯体等があり、これらの化合物は、可 視光で無色ないし淡黄色であり紫外光のもとでは赤色に 10

発色する特性を有しており、発光強度が大きく、耐久性

にも優れる。また、溶剤に対する溶解性も有している。

【0022】本発明の蛍光材料は、4,4,4ートリフ ルオロー1ー(2-フラニル)-1,3-プタンジオン 化合物、4,4,4ートリフルオロー1ーフェニルー 1, 3-プタンジオン化合物、4, 4, 4-トリフルオ ロ-1-(2-チオニル)-1,3-プタンジオン化合 物、4,4,4-トリフルオロ-1-ナフチル-1,3 -ブタンジオン化合物、4,4,4-トリフルオロ-1 -メチル-1, 3-ブタンジン化合物等のブタンジオン 20 化合物と、過塩素酸ユーロピウムとを水酸化ナトリウム とともにアセトン中にて反応させることにより製造でき

【0023】本発明の蛍光材料は、発光強度が強いので 記録液中に0.2~3重量%用いることにより印字物と しての所望の検知が可能である。これよりも少ないと発 光の読み取りが十分でなく、また、これよりも多いと記 録の跡が判別しやすくなってくる。記録液は、蛍光材料 と溶剤とによりプリンターに適した記録液に調整できる が、被記録体に応じて溶剤の種類、パインダーの使用の 30 有無、種類、量等の調整が可能である。また、プリンタ 一の種類に応じて粘度、表面張力、電導度、乾燥性等の 調節もできる。

【0024】また、本発明の記録液の特性は、プリンタ ーによって適性が異なるが、一般に粘度0.8~15c ps、表面張力20~55dyn/cmである。

【0025】また、コンティニュアス方式のインクジェ ットインキに用いるためには0. 1~20mS/cmの電 導度に調整する。このため、テトラブチルアンモニウム プロミドを 0.3~5.0重量%添加する。テトラプチ 40 ルアンモニウムプロミドは、単独で用いてもよいが、公 知の他の電導度調整剤と併用して用いることもできる。

【0026】本発明の記録液に用いる樹脂としては、紙 への定着ばかりでなく、非ポーラスなフィルムに対して も良好な密着性を必要とするものである。このような樹 脂としてスチレンーアクリル、スチレンーマレイン酸、 α-メチルスチレン-スチレン-アクリルの共重合体樹 脂が用いられる。スチレン-アクリル樹脂およびα-メ チルスチレンースチレンーアクリル樹脂中のアクリル成 分は(メタ)アクリル酸もしくはそのアルキルエステル 50 性を維持し、被印刷体での良好な乾燥性および臭気の少

がある。

【0027】上記樹脂のなかで紙への定着性および非ポ ーラスなフィルムへの定着性および樹脂の透明性、ま た、水含有の溶剤系に溶解しながら、乾燥後の良好な耐 水性を有し、プリンターでの吐出安定性を得るために は、スチレン-アクリルの樹脂が好ましい。さらに、 α -メチルスチレン-スチレン-アクリル酸の3元共重合 体は、溶解性と密着性、 耐水性のバランスに優れた記 録液を形成することができる。

6

【0028】また、上記特性のバランスを良好とするた めには、酸価200~300KOHmg/g 、好ましくは22 0~260KOHmg/g、重量平均分子量500~500 0、好ましくは1500~3500の上記樹脂を用い る。

【0029】本発明の記録液に使用する樹脂は、記録液 中に3~15重量%、好ましくは5~15重量%用い る。この量よりも少ないと非浸透性の被記録体に対して 十分な蛍光材料の定着ができない。また、この量よりも 多くなると、記録液の粘度が高くなり、吐出安定性を低 下させることがある。また、蛍光材料の周囲を樹脂層が 厚く覆うことになり、化合物の発光の低下を招く恐れが あるばかりか、樹脂に起因する蛍光の発生も障害になる 上記樹脂は、それを単独であるいは混 可能性がある。 合して用いられるが、定着性、記録液の粘度調整、溶解 性等の調整用に下記のような樹脂を混合して用いること も可能である。これらの樹脂としては、本発明の混合溶 剤に対する溶解性が良好であり、記録液の粘度を適度に 調整できるものを選択する。このような目的として添加 することの可能な樹脂としては、セルロース系、フェノ ール系、エポキシ系、エポキシフェノール系、ポリエス テル系、ポリアミド系、ポリウレタン系、プチラール 系、シリコン系、ロジン、ロジン変性樹脂(フェノール 変性、マレイン酸変性、フマル酸変性等)、アクリルア ミド、アルキッド系、シェラック系等の溶剤に対して溶 解性の良好な樹脂が例示できる。これらの樹脂は0~3 重量%が必要に応じて用いられる。

【0030】本発明の記録液に使用する溶剤としては、 蛍光材料の溶解性に優れ、臭気および衛生性の観点から アルコール系の溶剤が好ましい。また、引火性の配慮か ら、かつ蛍光材料の溶解性および被記録材への乾燥性、 密着性のバランスを考慮して水を混合する。このような 混合の溶剤組成として、水、n-プロピルアルコール混 合系、または水、n-プロピルアルコールおよびエタノ ール混合系とする。エタノールおよび水を多くすると樹 脂の溶解性を低下させ樹脂の析出を誘発させることがあ る。したがって、安定な記録液とするために、水20~ 50重量部に対して、n-プロピルアルコール10~6 ○重量部、エタノール ○ ~50重量部として調整す る。この調整により、蛍光材料および樹脂の良好な溶解 なく、引火性および衛生性で好ましい記録液となる。

【0031】なお、これらの溶剤に、樹脂および蛍光材料の溶解安定性を増加させるため、N-メチルー2-ピロリドン、 $\gamma-$ ブチルラクトン等のような溶剤を $0\sim5$ 重量%の範囲で併用することができる。しかしながら、これらの使用は、蛍光材料の溶解性を向上させるが、乾燥性の低下を招くこともあり、高速の乾燥性を必要とするときはこの使用を最小限とする。

【0032】また、本発明の記録液にはインキの循環、あるいは移動、また、記録液の製造時の泡の発生を防止 10 するため消泡剤を添加することもできる。更に、記録液の吐出安定性、記録画像の向上のため、下記のような界面活性剤を加えて用いることもできる。このような界面活性剤としては、アニオン性、非イオン性、カチオン性、両イオン性活性剤を用いることができる。

【0033】アニオン性活性剤としては、脂肪酸塩、アルキル硫酸エステル塩、アルキルアリールスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルスルホン酸塩、ジアルキルンアリールエーテルジスルホン酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸塩、ナフタレンスルホン酸フォルマリン縮合物、ポリオキシエチレンアルキルリン酸エステル塩、グリセロールボレイト脂肪酸エステル、ポリオキシエチレングリセロール脂肪酸エステル等を例示できる。

【0034】非イオン性活性剤としては、ポリオキシエ

チレンアルキルエーテル、ポリオキシエチレンアルキル アリールエーテル、ポリオキシエチレンオキシプロピレ ンプロックコポリマー、ソルビタン脂肪酸エステル、ポ リオキシエチレンソルビタン脂肪酸エステル、ポリオキ シエチレンソルビトール脂肪酸エステル、グリセリン脂 肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポ リオキシエチレンアルキルアミン、フッ素系、シリコン 系等の非イオン性活性剤が例示できる。

【0035】カチオン性活性剤としては、アルキルアミン塩、第4級アンモニウム塩、アルキルピリジニウム塩、アルキルイミダゾリウム塩等を例示できる。

【0036】両イオン性活性剤としては、アルキルベタイン,アルキルアミンオキサイド,ホスファジルコリン等が例示できる。

【0037】なお、本発明の記録液は、非浸透性のフィルム等への印字におけるインキの適度なひろがり、はじきの防止用として、式(2)で示されるシリコン化合物を用いることができる。このシリコン化合物は、フィルムでのインキの適度な広がりの調整を行うものであり、インクジェットのきれいなドットを構成できるようになり、光学読み取りが許容できる画像形成ができるため優位である。シリコン化合物の添加量は全インクジェット記録液を基準として0.01~0.5であることが好ましい。

[0038]式(2) [0039] [化4]

【0040】 (式中、m は40~50の整数、n は4~7の整数、p は1~5の整数、r は10~20の整数を表す。)

本発明の記録液は、記録物とした時に識別しにくいものであるが、着色剤を用いて記録物を識別し易くすることも可能である。このため、一般の顔料や染料も化合物と一緒に用いることができる。しかしながら、蛍光特性を 40 充分発揮させるため、記録液の3重量%以下、好ましくは2重量%以下の使用に止める必要がある。添加できる染料としては、油性染料、含金属染料、分散染料等が用いられる。これらの染料は、無機塩の除去された精製染料が好ましい。

【0041】記録液の製造については、蛍光材料、溶剤、樹脂、必要に応じて添加剤等を混合し攪拌して溶解し、必要に応じて希釈、他の添加剤を混合する。混合攪拌は、通常の羽を用いた攪拌機による攪拌のほか、高速の分散機、乳化機等により行うこともできる。混合され 50

た溶解混合液は、希釈の前あるいは後で孔径 3μ 以下のフィルターにて十分濾過する。さらに好ましくは 1.0μ 以下のフルターにて濾過する。フィルターの濾過に先立って、遠心分離による濾過を用いることもでき、これは、フィルターによる濾過における目詰まりを少なくし、フィルター交換が容易となる。

【0042】記録液は、記録装置の方式にもよるが粘度0.8~15cps(25℃)の液体として調整する。表面張力は20~60dyn/cmであることが好ましい。

【0043】本発明によるインキは、コンティニュアス方式のプリンターにおいて使用できる。コンティニュアス方式のプリンターにおいては、インキの吐出および回収による連続使用によりインキ中の溶剤が揮散し、インキの固形分が時間により濃縮される。このため、本発明にかかわるインキにおいては、インキ中の揮発成分を補充する希釈液を必要とする。

【0044】本発明にかかわる記録液においては、この ような希釈液としては、水5~10重量部、n-プロピ ルアルコール95~70重量部、エタノール0~50重 量部からなる希釈液が適している。

【0045】記録液の混合溶剤中からアルコール部分が 揮発しやすいため、記録液組成中の溶剤成分と同様であ り、揮発性の高い、アルコール分を記録液成分よりも多 い組成として、樹脂および蛍光材の溶解性と粘度調整を

【0046】本発明の記録液は、電導度調整剤が金属へ 10 の腐食性を低減するものであり、従来の電導度調整剤と 比較し、プリンターの保守の面での取り扱いが容易とな った。また、蛍光材料との相溶性も良好であり、ロング ランの運転においても安定した吐出特性が得られた。ま た、耐水性が著しく良好であるのでインクジェット用イ ンキとして好適に用いられ、光学読み取りによるパリア ブル情報の高速印字、バーコード形成、オフィスにおけ る書類の隠し文字、記号、ダンボールのマーキング、ナ ンバリング、バーコード等の認識しにくい記録物、セキ ュリティー機能を有する記録物の分野にて利用すること 20 ができる。また、本発明の記録液による記録物は、蛍光 増白剤等の染料を蛍光材料として含有する記録液から得 られた記録物に較べ耐水性も良好であり、記録物の保存 性の優位な特殊な画像を形成することができる。

[0047]

【実施例】以下、実施例に基づき本発明をさらに詳細に 説明する。実施例中、部および%は、重量部および重量 %をそれぞれ表す。

【0048】 蛍光材料(1)、(2)の合成

酸化ユーロピウム3.6部、水10部中に過塩素酸(6 30

蛍光材料(1)

スチレン-アクリル樹脂(酸価230、Mw3300)

n-プロピルアルコール

エタノール

水

テトラブチルアンモニウムブロミド

シリコン添加剤

原料は攪拌機にて20分溶解した後0.80μのメンプ ランフィルターにて濾過し、粘度4.8cpsの記録液 を得た。この記録液を日立製作所社製「日立 I J プリン 40 ター」に入れてポリスチレンの透明フィルムに記録を行

【0051】記録物は可視光下では識別できないが、紫 外線を照射したところ赤色の発光 (615 n m付近) が 確認できた。記録液を記録面に水を垂らして記録液のに じみを調べたが、記録液のにじみ、流れ出しはなく充分

蛍光材料(2)

スチレンーアクリル樹脂(酸価240、Mw1600)

n-プロピルアルコール

精製水

0%水溶液) 12. 8部を加え、室温にて30分攪拌し た。この水溶液を4,4,4-トリフルオロ-1-(2 フラニル) -1, 3-プタンジオン16.5部、水酸 化ナトリウム3、2部、水5部、アセトン250部の混 合液中に室温で滴下し1時間攪拌した。反応終了後、エ バポレーターでアセトンを除き、生成した黄色のペース ト状固体をエタノール50部で溶解し、攪拌下、水30 0部中に滴下した。析出した白色固体を濾別乾燥し蛍光 材料(1)を15.5部得た。 この蛍光材料(1)1 0部をエタノール200部に溶解し、テトラブチルアン モニウムプロミド6部を加え、室温で1時間攪拌し、そ の後、水500部を加え析出した固体を濾別、50℃に

10

【0049】蛍光材料(3)、(4)の合成

て減圧乾燥し11.5部の蛍光材料(2)を得た。

酸化ユーロピウム3.6部、水10部中に過塩素酸(6 0%水溶液) 12. 8部を加え、室温にて30分攪拌し た。この水溶液を4,4,4-トリフルオロ-1-(2 -フェニル) -1, 3-プタンジオン16.5部、水酸 化ナトリウム3.2部、水5部、アセトン250部の混 合液中に室温で滴下し1時間攪拌した。反応終了後、エ パポレーターでアセトンを除き、生成した黄色のペース ト状固体をエタノール50部で溶解し、攪拌下、水30 0部中に滴下した。析出した白色固体を濾別乾燥し蛍光 材料(3)を15.5部得た。 この蛍光材料(3)1 0部をエタノール200部に溶解し、テトラブチルアン モニウムプロミド6部を加え、室温で1時間攪拌し、そ の後、水500部をくわえ析出した固体を濾別、50℃ にて減圧乾燥し11.5部の蛍光材料(4)を得た。

[実施例1] 下記の原料を混合し記録液を作製した。

[0050]

1. 5部

10.0部

54.0部

5.0部

29.0部

3. 0部

0.05部

な耐水性を有していた。

【0052】記録液の連続使用したところインキの粘度 の増粘がみられたため、記録液の消費量に応じた希釈液 (1) の添加をおこなった。この希釈液(1)の添加 は、記録液の消費量の約0.6倍量を追加することで対 応した。これにより、記録液の粘度を印刷初期と同様に 維持できた。

[実施例2] 下記の原料を混合し記録液を作製した。

[0053]

1.5部

10.0部

59.0部

29.0部

テトラブチルアンモニウムブロミド シリコン添加剤

12 3. 0部

0.05部

原料は攪拌機にて20分溶解したのち0.8μのメンプ ランフィルターにて濾過し、粘度5.1cpsの記録液 を得た。

【0054】この記録液を日立製作所社製「日立Ⅰ」プ リンター」に入れて普通紙に記録を行った。記録液の連 統使用により記録液の粘度の増粘がみられたため、記録 液の消費量に応じた希釈液 (3) の添加をおこなった。 希釈液 (3) の添加は、インキの消費量の約0.6倍量 10 【0055】 を追加することで対応した。これにより、インキの粘度

を印刷初期と同様に維持できた。 記録物に紫外線を照 射したところ、オレンジかかった赤色の発光が確認でき た。記録面に水を垂らしてインキのにじみを調べたが、 インキのにじみ、流れ出しはなく充分な耐水性を有して いた。

〔実施例3~6〕表に記載する記録液を実施例1と同様 の方法にて作成した。

	式(1)	のX 式	(1) のY		
蛍光材料 (1)	フリル	基	水		
蛍光材料(2)	フリル	基テ	トラプチルア:	ンモニウム塩	
蛍光材料(3)	フェニ	ル基	水		
蛍光材料(4)	フェニ	ル基 テ	トラブチルア:	ンモニウム塩	
蛍光材料(5)	チオニ	ル基テ	トラブチルア:	ンモニウム塩	
蛍光材料(6)	ナフチ	ル基 テ	トラブチルア:	ンモニウム塩	
樹脂(1)	スチレ	ンーアクリ	ル樹脂(酸価	230. Mw3	3300)
樹脂 (2)	$\alpha - \lambda$	チルスチレ	ン-スチレン・	- アクリル酸‡	<u></u>集重合体(酸価
240.					
	Mw1	600)			
樹脂 (3)	スチレ	ンーマレイ	ン酸樹脂(酸イ	西215、Mv	v 3 8 0 0)
樹脂 (4)	$\alpha - \lambda$	チルスチレ	ンースチレン・	- アクリル酸‡	<u></u>集重合体(酸価
2 1 0					
•	Mw 4	500)			
表1					
記録液	(1)	(2)	(3)	(4)	(5)
<u>(6)</u>					
蛍光材料 (1)	1. 5				
蛍光材料 (2)		1. 5			
蛍光材料(3)			1. 5		
蛍光材料(4)				1. 5	
蛍光材料(5)					1. 5
蛍光材料(6)					
. 1. 5					
樹脂 (1)	1 0				
樹脂 (2)		1 0			1 0
樹脂 (3)			1 0		
樹脂 (4)				1 0	
1 0					
n-プロピル	5 4	5 9	5 9	5 9	4 5
4 5					
アルコール					
エタノール	5	0	0	0 ·	1 4
1 4	•	•			
精製水	2 9	2 9	2 9	2 9	2 9
2 9					
テトラブチルアン	ノモニウム	ブロミド			
	3	3	3	3	3

14

13

3

シリコン添加剤 0.05 0.05 0.05 0.05 0.05 0.05 0.05

希釈液 ターにてろ過して、希釈液を作成した。 表2の組成にて溶剤を混合し、0.8ミクロンのフィル

表 3

希釈液	(1)	(2)	(3)	(4)
n - プロピルアルコール	8 0	7 0	9 5	6 0
エタノール	1 0	2 0	0	3 0
精製水	1 0	. 1 0	5	1 0

比較記録液 (1) (2) (3) (4) (5)

(比較例) 実施例の方法に準じて下記表3の記録液を試 作し評価を行った。

17/10/2011				<u> </u>		<u> </u>	- / 	<u> </u>	<u> </u>		<u> </u>		<u> </u>
(6)													
蛍光材料	(1)		1.	5	1		5	1.	5	1.	5	1.	. 5
1. 5													
樹脂 (1)			1 ()						1 0)	1	5
ポリビニル	レピロ	リド	ン			5		5					
5													
メチルエヲ	・ルケ	トン	8 ()									
イソプロヒ	ピルア	'ルコ-	-ル 8	}								1	0
エタノーバ	レ				9	5		8	0	8 8	3	7	3
エチレンク・リコー	ルモノエラ	チルエーテル	,										
2 5													
精製水								1	3				
6 8													
チオシアン	/酸Na	1	1			1			1	1			1
1													
シリコン沼	\$加剤	1	C)		0			0	0)	0.	0 5
0.05													
表 4													
実施例	粘度	. ž	長面張力)	電導度		<u> 適過性</u>	耐	水性	密着	性	ドッ	ト形状
<u>引火点</u>													
1	4.	8	25.	3	1.	1	良		良		良		良
23℃													
2	5.	1	25.	2	1.	2	良		良		良		良
31℃													
3	5.	1	25.	3	1.	0	良		良		良		良
31℃													
4	5 .	0	25.	7	1.	2	良		良		良		良
31℃													
5	4.	8	24.	6	1.	1	良		良		良		良
31℃			•		•								
6	4.	7	25.	3	1.	2	良		良		良		良
23℃													
比較例													
1	4.	1	23.	1	0.	8	良		良		良		不良
10℃以下													
2	6.	3	22.	3	0.	7	良		べたつ	<	良		不良
13℃													

		() /			19 19 2 0 0 2
15					16
3 6.7	7 22.	5 1.6	良	べたつく	良 不良
18℃					
4 5. 0	22.	4 1. 2	良	良	良 不良
13℃ -					
5 5.3	3 23.	5 1. 2	良	良	良 良
14℃					
6 7.2	2 41.	5 1.8	良	べたつく	良 良
60℃以上					
表 5					
比較記録液 (7)	(8)	(9)	(10) (11) (
12)					
蛍光材料(1)	1. 5				
蛍光材料 (2)		1. 5			
蛍光材料(3)			1. 5		
蛍光材料(4)				1. 5	
蛍光材料(5)					1. 5
蛍光材料(6)					
1. 5					
樹脂(1)	1 0				
樹脂(2)		1 0			1 0
樹脂(3)			1 0		
樹脂 (4)				1 0	
1 0					
n -プロピル	5 4 .	5 9	5 9	5 9	4 5
4 5					
アルコール					
エタノール	5	0	0	0	1 4
1 4					
精製水	2 9	2 9	2 9	2 9	2 9
2 9					
チオシアン酸カリ	ノウム				
	3	3	3	3	3
3					
シリコン添加剤	0.05	0.05	0.05	0.05	0.05
0.05					

希釈液

表2の組成にて溶剤を混合し、0.8ミクロンのフィル ターにてろ過して、希釈液を作成した。濾過性 80μ メンプランフィルター(4.5cm ϕ)での減圧 減過時の減過量が1L以上。

耐水性 水に3分浸漬したときのインキの滲み、流れ 出し。

メンデングテープ(スリーエム社製)による 密着性 剥離テスト。

ドット形状 PSフィルム上でのドットの形状を顕微鏡 にて確認した。

比較例1の記録液は、メチルエチルケトンの臭いが強烈 である。引火点が低い。比較例2の記録液は、引火点が 低く、樹脂による耐水性も弱い。比較例3の記録液は、 水が一部用いられているが、ドットの形状が不十分であ 50 識別しにくい記録を行うことが可能であり、また、紫外

る。樹脂に基づく耐水性も弱い。比較例4の記録液は、 溶剤がアルコールのみであり、また、ドットの形成も不 十分である。比較例5の記録液は、溶剤がアルコールの みであり、引火点が低い。比較例6の記録液は、フィル 40 ム面での乾燥が著しく遅い。比較例7から11の記録液 は、ステンレス材料との接触を12時間継続させたとこ ろ、ステンレスの腐食がみとめられた。実施例1から6 のインキでは、ステンレスの腐食は認められなかった。 [0056]

【発明の効果】本発明により、プリンターでの金属の腐 食性の少ないコンティンニュアスプリンター用の記録液 を提供できる。また、蛍光材料の溶解性に優れた吐出安 定性の良い記録液を得ることができ、耐水性の良好な記 録物を得ることができた。この記録物は、紙等の下地と

18

17

光により赤色の発光を生じるので特殊な記録物としてセる印刷等に利用できる。 ンサーでの読み取り、隠し文字、セキュリティーに関す

フロントページの続き

Fターム(参考) 2C056 EA13 FA05 FC02

2H086 BA52 BA53 BA55 BA59 BA60

BA62

4J039 AD03 AD09 AD10 AD14 BA12

BA39 BC07 BC08 BC33 BC59

BE01 BE02 BE12 BE29 CA03

CA06 EA10 EA27 EA28 EA38

EA43 GA24