- 4.1 Найти емкость С земного шара. Считать радиус земного шара R=6400 км. На сколько изменится потенциал земного поля, если ему сообщить заряд q=1 Кл?
- 4.2 Два металлических шара радиусами R_1 =2 см и R_2 =6 см соединены проводником, емкостью которого можно пренебречь. Шарам сообщен заряд Q=1 нКл. Найти поверхностную плотность σ зарядов на шарах.
- 4.3 Найти соотношение между радиусом шара R и максимальным потенциалом ϕ , до которого он может быть заряжен в воздухе, если при нормальном давлении разряд в воздухе наступает при напряженности электрического поля $E_0=3$ MB/м. Каким будет максимальный потенциал ϕ шара диаметром D=1 м?
- 4.4 Разность потенциалов между пластинами плоского конденсатора U=100 В. Площадь каждой пластины $S=200 \text{ см}^2$, расстояние между пластинами d=0.5 мм, пространство между ними заполнено парафином ($\varepsilon=2$). Определить силу притяжения пластин друг к другу.
- 4.5 К пластинам плоского воздушного конденсатора приложена разность потенциалов U_1 =100 В. Площадь пластин S=200 см², расстояние между ними d=1.5 мм. После отключения конденсатора от источника напряжения в пространстве между пластинами внесли парафин (ϵ =2). Определить разность потенциалов U_2 между пластинами после внесения диэлектрики. Определить также емкость конденсатора C_1 и C_2 до и после внесения диэлектрика.
- 4.6 Определить емкость коаксиального кабеля длиной 10 м, если радиус его центральной жилы r_1 =1 см, радиус оболочки r_2 =1.5 см, а изоляционными материалом служит резина (ϵ =2.5).
- 4.7 Определить напряженность электростатического поля на расстоянии d=1 см от оси коаксиального кабеля, если радиус его центральной жилы $r_1=0.5$ см, а радиус оболочки $r_2=1.5$ см. Разность потенциалов между центральной жилой и оболочкой U=1 кВ.
- 4.8 Определить напряженность электростатического поля на расстоянии 2 см от центра воздушного сферического конденсатора, образованного двумя шарами (внутренний радиус $r_1=1$ см, внешний $-r_2=3$ см), между которыми приложена разность потенциалов U=1 кВ.
- 4.9 Пространство между пластинами плоского конденсатора заполнено диэлектриком, диэлектрическая восприимчивость которого χ =0.08. Расстояние между пластинами d=5 мм. На пластины конденсатора подана разность потенциалов U=4 кВ. Найти поверхностную плотность связанных зарядов на диэлектрике и поверхностную плотность заряда на пластинах конденсатора
- 4.10 В однородное электростатическое поле напряженностью $E_0 = 700$ В/м перпендикулярно полю помещается бесконечная плоскопараллельная стеклянная пластина ($\epsilon = 7$). Определить: 1) напряженность электростатического поля внутри пластины; 2) электрическое смещение внутри пластины; 3) поляризованность стекла; 4) поверхностную плотность связанных зарядов на стекле.

- 4.11 Найти емкость С сферического конденсата состоящего из двух концентрических сфер с радиусами r = 10 см и R = 10,5 см. Пространство между сферами заполнено маслом. Какой радиус R_0 должен иметь шар, помещенный в масло, чтобы иметь такую же емкость?
- 4.12 При поучении фотоэлектрических явлений используется сферический конденсатор, состоящий из металлического шарика диаметром d=1.5 см (катода) и внутренней поверхности посеребренной изнутри сферической колбы диаметром D=11 см (анода). Воздух из колбы откачивается. Найти емкость C такого конденсатора.
- 4.13 Свободные заряды равномерно распределены с объемной плотностью ρ =5 нКл/м³ по шару радиусом R=10 см из однородного изотропного диэлектрика с проницаемостью ϵ =5. Определить напряженность электростатического поля на расстояниях r_1 =5 см и r_2 =15 см от центра шара.
- 4.14 Конденсатор состоит из двух концентрических сфер. Радиус R_1 внутренней сферы равен 10 см, внешней R_2 =10.2 см. Промежуток между сферами заполнен парафином. Внутренней сфере сообщен заряд Q=5 мкКл. Определить разность потенциалов U между сферами.
- 4.15 Плоский конденсатор состоит из двух пластин, разделенных стеклом (ε =7). Какое давление р производят пластины на стекло перед пробоем, если напряженность Е электрического поля перед пробоем равна 30 MB/м?
- 4.16 Что такое поляризованность?
- 4.17 Что показывает диэлектрическая проницаемость среды?
- 4.18 Выведите связь между диэлектрическими восприимчивостью вещества и проницаемостью среды
- 4.19 Как определяется вектор электрического смещения? Что он характеризует?
- 4.20 В чем различие поляризации диэлектриков с полярными и неполярными молекулами?