K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS CASCODE AMPLIFIER

 16^{th} July, 2020 Numericals

- 1. A two-stage circuit is shown in Figure 1. The BJT parameters are $\beta_1=\beta_2=150, V_{BE_1}=V_{BE_2}=0.7$ V
 - a) Calculate the DC parameters , i.e. V_{B_1} , V_{B_2} , V_{E_1} , V_{E_2} , I_{E_1} , I_{E_2} , I_{C_1} , I_{C_2} , V_{C_1} , V_{C_2} , V_{E_1} , V_{E_2} , V_{CE_1} and V_{CE_2} of the circuit
 - b) Determine the input and output impedance
 - c) Calculate the voltage gain for the circuit

Figure 1: Circuit 1

Solution:

DC Analysis:

The capacitors act as open circuit.

$$f = 0, \therefore X_C = \frac{1}{2\pi fC} = \infty$$

The DC equivalent circuit is shown in Figure 2

Figure 2: DC equivalent circuit

$$\beta_{1} = \beta_{2} = 150, \ I_{C_{1}} = I_{C_{2}} = I_{E_{1}} = I_{E_{2}}$$

$$V_{B_{1}} = \frac{R_{3}}{R_{1} + R_{2} + R_{3}} \times V_{CC} = \frac{3.9k}{3.9k + 6.2k + 7.5k} \times 20$$

$$\therefore V_{B_{1}} = 4.4318 \text{ V}$$

$$V_{B_{2}} = \frac{R_{3} + R_{2}}{R_{1} + R_{2} + R_{3}} \times V_{CC} = \frac{3.9k + 6.2k}{3.9k + 6.2k + 7.5k} \times 20$$

$$\therefore V_{B_{2}} = 11.477 \text{ V}$$

$$V_{E_{1}} = V_{B_{1}} - V_{BE_{1}} = 4.4318 - 0.7$$

$$\therefore V_{E_{1}} = 3.7318 \text{ V}$$

$$I_{E_{1}} = \frac{V_{E_{1}}}{R_{E}} = \frac{3.7318}{1k}$$

$$\therefore I_{E_{1}} = 3.7318 \text{ mA}$$

$$I_{C_{1}} = I_{C_{2}} = I_{E_{2}} = I_{E_{1}} = 3.7318 \text{ mA}$$

$$I_{B_{1}} = I_{B_{2}} = \frac{I_{C_{1}}}{\beta} = 24.87 \ \mu\text{A}$$

$$V_{C_{2}} = V_{CC} - I_{C_{2}}R_{C} = 20 - (3.7318 \times 10^{-3} \times 1.5k)$$

$$\therefore V_{C_{2}} = 14.4023 \text{ V}$$

$$V_{E_2} = V_{B_2} - V_{BE_2} = 11.477 - 0.7$$

$$V_{E_2} = 10.777 \text{ V}$$

$$V_{CE_1} = V_{C_1} - V_{E_1} = 10.777 - 3.7318 = 7.045 \text{ V}$$

$$V_{CE_2} = V_{C_2} - V_{E_2} = 14.4023 - 10.777 = 3.625 \text{ V}$$

Small-signal parameters:

$$r_{\pi_1} = r_{\pi_2} = \frac{\beta V_T}{I_{CQ}} = \frac{150 \times 26 \times 10^{-3}}{3.7318 \times 10^{-3}} = 1.045 \text{ k}\Omega$$
$$g_{m_1} = g_{m_2} = \frac{I_{CQ}}{V_T} = \frac{3.7318 \times 10^{-3}}{26 \times 10^{-3}} = 143.53 \frac{mA}{V}$$

The mid-band AC equivalent circuit is shown in Figure 3

Figure 3: Mid frequency equivalent circuit

Input impedence $Z_i = R_B || r_{\pi_1} = R_2 || R_3 || r_{\pi_1} = (3.9k || 6.2k) || 1.045k$

$$\therefore Z_i = 727.458\Omega$$

Output impedence $Z_o = R_C ||R_L = 1.5k||10k|$

$$\therefore Z_o = 1.3 \text{ k}\Omega$$

$$A_{V_2} = g_m(R_C||R_L) = 143.53 \times 10^{-3} \times 1.3k = 186.59$$

$$A_{V_1} = -g_m \left(\frac{r_\pi}{1+\beta} \right) = \frac{-143.53 \times 10^{-3} \times 1.045k}{151} = -0.9933$$

$$A_{V_T} = A_{V_1} \times A_{V_2} = 186.59 \times -0.9933$$

$$A_{V_T} = -185.34$$

$$|A_{V_T}| \text{ (in dB)} = 20log_{10}A_{V_T} = 20log_{10}(185.34)$$

$$|A_{V_T}| \text{ (in dB)} = 45.359 dB$$

$$V_o = V_{in} \times A_{V_T} = 20 \times 10^{-3} \times 185.34 = 3.7068 \text{ V}$$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 4: Circuit schematic

The input and output waveforms for voltage gain \mathcal{A}_{V_1} are shown in Figure 5

Figure 5: Input and output waveforms for voltage gain A_{V_1}

The input and output waveforms for voltage gain ${\cal A}_{V_2}$ are shown in Figure 6

Figure 6: Input and output waveforms for voltage gain \mathcal{A}_{V_2}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
I_{B_1}	$24.87866 \ \mu A$	$23.5086 \ \mu A$
I_{C_1}	$3.7318~\mathrm{mA}$	$3.5498~\mathrm{mA}$
I_{E_1}	$3.7318~\mathrm{mA}$	$3.57346~\mathrm{mA}$
I_{B_2}	$24.87866~\mu{\rm A}$	$23.5086 \ \mu A$
I_{C_2}	$3.7318~\mathrm{mA}$	$3.52629~\mathrm{mA}$
I_{E_2}	$3.7318~\mathrm{mA}$	$3.5498~\mathrm{mA}$
V_{E_2}	10.777 V	10.5895 V
V_{C_2}	14.4023 V	14.7106 V
Voltage gain of 1^{st} stage (A_{V_1})	-0.9933	-0.9687
Voltage gain of 2^{nd} stage (A_{V_2})	186.59	175.477
Overall voltage gain A_{V_T}	45.359 dB	44.6079 dB
Input impedance of 1^{st} stage	727.458Ω	7
Output impedance of 2^{nd} stage	1.3 kΩ	-
Output voltage	3.7068 V	3.4 V

Table 1: Numerical 1

- $2.\,$ A two-stage circuit is shown in Figure 7. The BJT parameters are
 - $k_{n_1} = k_{n_2} = 0.8 \text{ mA}/V^2 \text{ and } V_{TN_1} = V_{TN_2} = 0.8 \text{ V}$
 - a) Calculate the DC parameters , i.e. V_{G_1} , V_{G_2} , V_{GS_1} , V_{GS_2} , I_{D_1} , I_{D_2} , V_{D_1} , V_{D_2} , V_{S_1} , V_{S_2} , V_{DS_1} , V_{DS_2} of the circuit
 - b) Determine the input and output impedance of the circuit
 - c) Calculate the voltage gain for the circuit

Figure 7: Circuit 2

Solution:

DC Analysis:

The capacitors act as open circuit.

$$f = 0, \therefore X_C = \frac{1}{2\pi fC} = \infty$$

$$R_T = R_1 + R_2 + R_3 = 113 \text{ k}\Omega$$

The DC equivalent circuit is shown in Figure 8

Figure 8: DC equivalent circuit

$$V_{G_1} = \frac{R_3}{R_T} \times V_{DD} = \frac{10k}{113k} \times 18$$

$$\therefore V_{G_1} = \mathbf{1.59292} \ \mathbf{V}$$

$$V_{G_2} = \frac{R_2 + R_3}{R_T} \times V_{DD} = \frac{18k + 10k}{113k} \times 18$$

$$V_{G_2} = 4.4601769 \text{ V}$$

$$V_{GS_1} = V_{G_1} - V_{S_1}$$

$$V_{GS_1} = 1.59292 - I_{D_1} R_S$$

$$I_{D_1} = k_n (V_{GS_1} - V_{TN_1})^2$$

$$\therefore I_{D_1} = 0.8 \times 10^{-3} \times (V_{GS_1} - 0.8)^2 \qquad \dots (2)$$

Putting (2) in (1), we get

$$V_{GS_1} = 1.59292 - [800 \times 0.8 \times 10^{-3} \times (V_{GS_1} - 0.8)^2]$$

$$V_{GS_1} = 1.59292 - 0.64V_{GS_1}^2 + 1.024V_{GS_1} - 0.4096$$

$$\therefore 0.64V_{GS_1}^2 - 0.024V_{GS_1} - 1.18332 = 0$$

$$V_{GS_1} = 1.3786 \text{ V or } V_{GS_1} = -1.3411 \text{ V}$$

Since
$$V_{GS_1} > V_{TN_1}$$
, $\therefore V_{GS_1} = 1.3786 \text{ V}$

From equation (2), $I_{D_1} = 0.8 \times 10^{-3} \times (1.3786 - 0.8)^2$

$$I_{D_1} = 0.2678 \text{ mA}$$

$$I_{D_1} = I_{D_2} = \mathbf{0.2678} \ \mathbf{mA}$$

$$V_{D_2} = V_{DD} - I_{D_2}R_D = 18 - 0.2678 \times 10^{-3} \times 3.3k$$

$$V_{D_2} = 17.116 \text{ V}$$

$$V_{GS_2} = V_{GS_1} = V_{G_2} - V_{S_2} = 1.3786 \text{ V}$$

$$V_{S_2} = 4.4601769 - 1.3786 = 3.08157 \text{ V}$$

$$V_{DS_2} = V_{D_2} - V_{S_2} = 17.116 - 3.08157 =$$
14.03443 V

$$V_{D_1} = V_{S_2} = 3.08157 \text{ V}$$

$$V_{DS_1} = V_{D_1} - V_{S_1} = \mathbf{2.86733} \ \mathbf{V}$$

Small-signal parameters:

$$g_{m_1} = g_{m_2} = 2k_n(V_{GS} - V_{TN}) = 2 \times 0.8 \times 10^{-3} \times (1.3786 - 0.8)$$

$$\therefore g_{m_1} = g_{m_2} = 0.92576 mA/V$$

The mid-band AC equivalent circuit is shown in Figure 9

Figure 9: Mid frequency equivalent circuit

$$g_{m_2}V_{gs_2} = g_{m_1}V_{gs_1}$$

$$R_G = R_2 || R_3$$

Input impedence $Z_i = R_G = R_2 ||R_3 = 18k||10k$

$\therefore Z_i = \mathbf{6.42857} \, \mathbf{k}\Omega$

Output impedence $Z_o = R_D || R_L = 3.3k || 10k$

$$\therefore Z_o = \mathbf{2.4812} \ \mathbf{k}\Omega$$

$$A_{V_2} = \frac{V_o}{V_1} = \frac{-g_{m_2}V_{gs_2}(R_D||R_L)}{-V_{gs_2}} = g_{m_2}(R_D||R_L)$$

$$\therefore A_{V_2} = 0.92576 \times 10^{-3} \times 2.4812k = 2.29699$$

$$A_{V_1} = \frac{V_1}{V_S} = \frac{-V_{gs_2}}{V_{gs_1}} = \frac{-V_{gs_1}}{V_{gs_1}} = -1$$

$$A_{V_T} = A_{V_1} \times A_{V_2} = 2.29699 \times -0.1$$

$$A_{V_T} = -2.29699$$

$$|A_{V_T}|$$
 (in dB) = $20log_{10}A_{V_T} = 20log_{10}(2.29699)$

$$\therefore |A_{V_T}| \text{ (in dB)} = 7.223180209 dB$$

$$V_o = V_{in} \times A_{V_T} = 20 \times 10^{-3} \times 2.29699 = 45.9399 \text{ mV}$$

SIMULATED RESULTS:

Above circuit is simulated using LTspice and the results are presented below:

Figure 10: Circuit schematic

The input and output waveforms for voltage gain A_{V_1} are shown in Figure 11

Figure 11: Input and output waveforms for voltage gain A_{V_1}

The input and output waveforms for voltage gain \mathcal{A}_{V_2} are shown in Figure 12

Figure 12: Input and output waveforms for voltage gain A_{V_2}

Comparison of theoretical and simulated values:

Parameters	Theoretical	Simulated
V_{G_1}	1.59292 V	1.59292 V
V_{D_1}	3.08157 V	$3.08154~{ m V}$
V_{S_1}	0.2143 V	0.214284 V
I_{D_1}	0.2678 mA	0.267856 mA
V_{G_2}	4.460179 V	4.46018
V_{D_2}	17.116 V	17.1161
V_{S_2}	3.08157 V	3.08154 V
I_{D_2}	$0.2678~\mathrm{mA}$	0.267856 mA
Voltage gain of 1^{st} stage (A_{V_1})	-1	-0.997
Voltage gain of 2^{nd} stage (A_{V_2})	2.29699	2.2983
Overall voltage gain A_{V_T}	7.22318 dB	$7.077~\mathrm{dB}$
Input impedance of 1^{st} stage	$6.42867~\mathrm{k}\Omega$	_
Output impedance of 2^{nd} stage	$2.4812~\mathrm{k}\Omega$	_
Output voltage	45.9399 mV	45.858311 mV

Table 2: Numerical 2