

PHOTOGRAPH THIS SHEET			
D-AIIA 266	LEVEL INVENTORY E-TR-33-MS DOCUMENT IDENTIFICATION This document has been approved		
#	for public religional designation its distribution to the distribution STATEMENT		
ACCESSION FOR NTIS GRA&I			
DTIC TAB UNANNOUNCED JUSTIFICATION	10 0 1982 1 9 1982		
BY DISTRIBUTION /	E		
AVAILABILITY CODES	DATE ACCESSIONED		
	25		
DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2			

DTIC FORM 70A

DOCUMENT PROCESSING SHEET

Ertec

The Earth Technology Corporation

Ertec Western, Inc.

3777 Long Beach Boulevard • Long Beach, California 90807

Telephone: (213) 595-6611

23011 Moulton Parkway, Suite G10 • Laguna Hills, California 92653

Telephone: (714) 951-0926

3116 West Thomas Road, Suite 601 • P.O. Box 14570 • Phoenix, Arizona 85063

Telephone: (602) 269-7501

MX SITING INVESTIGATION GRAVITY SURVEY - MULESHOE VALLEY NEVADA

Prepared for:

U. S. Department of the Air Force Ballistic Missile Office (BMO) Norton Air Force Base, California 92409

Prepared by:

Ertec Western, Inc. 3777 Long Beach Boulevard Long Beach, California 90807

14 September 1981

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)				
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
E-TR-33-MS				
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED			
Stavity Survey - welestice telley	[Dog of			
	6. PERFORMING ORG. REPORT NUMBER			
$\mathcal{N}\mathcal{V}$	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(1)			
Eitec	F04759-85-1-6666			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Ertec Western Inc. (formerly Furno National) PC. 130X 7765	64312 F			
Long Beach Ca 90507				
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Department of the force Space and Missile Systems cropping the	12. REPORT DATE			
Space and Missile Systems cropnization	13. NUMBER OF PAGES			
1'C T+COLAFIS (O SQUE (SAMSC) 14. MONITORING AGENCY NAME & ADDRESS(I different from Controlling Office)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)			
	ĺ			
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE			
16. DISTRIBUTION STATEMENT (of this Report)				
Distribution Unlimited				
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from	m Report)			
Distribution Onlimited				
	j			
18. SUPPLEMENTARY NOTES				
·	j			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)				
, in the second of the second				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
20. ABSTRACT (Continue on reverse side it necessary and identity by block number) This valley wires starting perfect for perfects of moking a geologic interpretation which includes estimates of Shape of structural basin thickness of alluvial fill				
+ location of sults.	′			

FOREWORD

Methodology and Characterization studies during Fiscal Years 1977 and 1978 (FY 77 and 78) included gravity surveys in 10 valleys, five in Arizona, two in Nevada, two in New Mexico, and one in California. The gravity data were obtained for the purpose of estimating the gross structure and shape of the basins and the thickness of the valley fill. There was also the possibility of detecting shallow rock in areas between boring locations. Generalized interpretations from these surveys were included in Ertec Western's (formerly Fugro National, Inc.) Characterization reports (FN-TR-26a through e).

During the FY 77 surveys, measurements were made to form an approximate 1-mile grid over the study areas, and contour maps showing interpreted depth to bedrock were made. In FY 79, the decision was made to concentrate on verifying and refining suitable area boundaries. This decision resulted in a reduction in the gravity program. Instead of obtaining gravity data on a grid, the reduced program consisted of obtaining gravity measurements along profiles across the valleys where Verification studies were also performed.

The Defense Mapping Agency (DMA), St. Louis, was requested to provide gravity data from their library to supplement the gravity profiles. For Big Smoky, Hot Creek, and Big Sand Springs valleys, a sufficient density of library data was available to permit construction of interpreted contour maps instead of just two-dimensional cross sections.

In late summer of FY 79, supplementary funds became available to begin data reduction. At that time, inner zone terrain corrections were begun on the library data and the profiles from Big Smoky Valley, Nevada, and Butler and La Posa valleys, Arizona. The profile data from Whirlwind, Hamlin, Snake East, White River, Garden, and Coal valleys, Nevada, became available from the field in early October 1979.

A continuation of gravity interpretations was incorporated into the FY 80 and 81 programs, and the results are being summarized in a series of valley reports. Reports covering Nevada-Utah gravity studies are being numbered "E-TR-33-" followed by the abbreviation for the subject valley. In addition, more detailed reports of the results of FY 77 surveys in Dry Lake and Ralston valleys, Nevada, were prepared. Verification studies were continued in FY 80, and gravity studies were included in the program. DMA continued to obtain the field measurements, and there was a return to the grid pattern. The interpretation of the grid data allows the production of contour maps which are valuable in the deep basin structural analysis needed for computer modeling in the water resources program. The gravity

interpretations will also be useful in Nuclear Hardness and Survivability (NH&S) evaluations.

The basic decisions governing the gravity program are made by BMO following consultation with TRW, Inc., Ertec Western, and the DMA. Conduct of the gravity studies is a joint effort between DMA and Ertec Western. The field work, including planning, logistics, surveying, and meter operation is done by the Defense Mapping Agency Hydrographic/Topographic Center (DMAHTC), headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer anomaly (see Section A1.4, Appendix A1.0). The Defense Mapping Agency Aerospace Center (DMAAC), St. Louis, Missouri, calculates outer zone terrain corrections.

Ertec Western provides DMA with schedules showing the valleys with the highest priorities. Ertec Western also recommended locations for the profiles in the FY 79 studies with the provision that they should follow existing roads or trails. Any required inner zone terrain corrections are calculated by Ertec Western prior to making geologic interpretations.

TABLE OF CONTENTS

			Page	
FORE	word .		i	
1.0	INTE	INTRODUCTION		
	1.1 1.2 1.3	Objective	1 1 1	
2.0	GRAVITY DATA REDUCTION		5	
3.0	GEOLOGIC SUMMARY		6	
4.0	INTE	INTERPRETATION		
	4.1 4.2 4.3 4.4	Regional-Residual Separation Density Selection	8 9 10 11	
5.0	CONC	CLUSIONS	18	
REFE	RENCES		19	
		LIST OF APPENDICES		
APPE	NDIX			
A 1	. 0	General Principles of the Gravity Exploration Method	A1-1	
A2	.0	Muleshoe Valley, Nevada, Gravity Data	A2-1	
		LIST OF FIGURES		
Figur Numbe				
1 2 3A	, 3B	Location Map, Muleshoe Valley, Nevada Topographic Setting, Muleshoe Valley, Nevada Gravity Cross Sections and Interpretations	2	
		Muleshoe Valley, Nevada	12,13	
		Muleshoe Valley, Nevada	14,15	

TABLE OF CONTENTS (cont.)

LIST OF DRAWINGS

Orawing Number		Page
1	Complete Bouguer Anomaly Contours, Muleshoe Valley, Nevada	In Pocket
2	Depth to Rock - Interpreted from Gravity Data, Muleshoe Valley, Nevada	at End of Report

1.0 INTRODUCTION

1.1 OBJECTIVE

Gravity data from Muleshoe Valley were studied for the purpose of making a geologic interpretation which includes estimates of the shape of the structural basin, the thickness of the alluvial fill, and the location of concealed faults. The estimates will be useful in modeling the dynamic response of ground motion in the basin and in evaluating ground-water resources.

1.2 LOCATION

Muleshoe Valley is located in east-central Nevada about 40 miles (64 km) west of the Utah border and 80 miles (129 km) south of the town of Ely by U.S. Route 93 (Figure 1).

Muleshoe Valley lies between Lake Valley and Cave Valley and opens southward into Dry Lake Valley. Muleshoe Valley is bounded on the west by the southern Schell Creek Range and on the east by the Fairview Range, Grassy Mountain, and Dutch John Mountain (Figure 2).

The area covered by this report lies between North latitudes '38°05' and 38°30' and West longitudes 114°35' and 114°50'.

1.3 SCOPE OF WORK

Five primary work elements were completed during this study. They are:

- 1. Computation and merging of terrain corrections;
- 2. Synthesis of regional and valley-specific geological data;
- Evaluation of the regional field and separation of the residual field;

Ertec

- 4. Inverse modeling to estimate depth to bedrock; and
- 5. Interpretation of structural relationships.

The gravitational field within Muleshoe Valley was defined by data from 224 stations. The distribution of stations is shown in Drawing 1.0 and the station data are listed in Appendix A2.0. The Defense Mapping Agency Aerospace Center (DMAAC) supplied 86 gravity stations from its library, and 138 new gravity measurements were made by the Defense Mapping Agency Hydrographic—Topographic Center/Geodetic Survey Squadron (DMAHTC/GSS).

Muleshoe Valley and Cave Valley were studied together, with the results presented in separate reports. The rectangular region between North latitudes 38°05' and 38°45' and West longitudes 114°35' and 115°00' contains both of the valleys and surrounding mountains. All of the 522 gravity stations within this region were used to establish a common regional trend for the two valleys. Following separation of the residual field, the geologic modeling of the two valleys was done independently.

2.0 GRAVITY DATA REDUCTION

DMAHTC/GSS obtained the basic observations for the new stations and reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to the new stations to convert the SBA to the Complete Bouguer Anomaly (CBA). Only the first two levels of terrain corrections described below were applied to the library stations.

First, the DMAAC, St.Louis, Missouri, used its library of digitized terrain data and a computer program to calculate corrections out to 104 miles (167 km) from each station. When the program could not calculate the terrain effects near a station, Ertec Western used a ring template to estimate the effect of terrain within approximately 3000 feet (914 m) of the station. The third level of terrain corrections was applied to those stations where relief of 10 feet (3 m) or more was observed within 130 feet (40 m). In these cases, the elevation differences were measured in the field at a distance of 130 feet (40 m) along six directions from the stations. These data were used by Ertec Western to calculate the effect of the very near relief.

The CBA values and principle facts for the Muleshoe Valley stations are listed in Appendix A2.0.

3.0 GEOLOGIC SUMMARY

Muleshoe Valley is a small valley in the eastern part of the Great Basin section of the Basin and Range physiographic province as described by Fenneman (1931).

Muleshoe Valley opens into Dry Lake Valley on the south. On the west and north, it is bounded by the southern Schell Creek Range. On the east, it is bounded by Dutch John Mountain, Grassy Mountain, and the Fairview Range (Figure 2). Narrow gaps on the north and east of the valley lead into Lake Valley.

The southern Schell Creek Range is primarily composed of carbonate and siliceous clastic rocks (dolomite, limestone, shale, and quartzite). At the northwest margin of the valley, these sedimentary rocks are overlain by Oligocene welded tuffs and are intruded by minor Tertiary rhyolite dikes and plugs (Ekren and others, 1977). Dutch John Mountain and Grassy Mountain are composed of carbonate and siliceous clastic rocks (limestone, shale, and quartzite) (Tschanz and Pampeyan, 1970); the Fairview Range is composed of middle-Tertiary ash-flow tuff, welded tuff, rhyolite lava, and basalt lava (Ekren and others, 1977). Isolated outcrops of carbonate and siliceous clastic rocks are found in the southern part of the Fairview Range.

The present topographic relief of Muleshoe Valley and the surrounding mountains is largely the result of late-Cenozoic extensional block faulting (Stewart, 1980). Surface data give little indication of the subsurface configuration of the valley.

The Schell Creek Range block on the west appears to be tilted down to the east. Repetition of Oligocene welded tuffs and the underlying Paleozoic rocks in the Dutch John-Grassy-Fairview Range across the valley suggests a major fault along the eastern margin of the valley, but minor faults may also occur beneath the western margin (Ertec, 1981a).

The valley-fill deposits are older alluvium and younger alluvium. The older alluvium is Quaternary in age (Tschanz and Pampeyan, 1970) and consists of nonindurated and partly indurated gravels, sands, and silts derived from the surrounding bedrock (Eakin, 1963). The younger alluvium is composed of reworked older alluvium and is found only in Coyote Wash, the valley's axial drainage channel (Tschanz and Pampeyan, 1970).

Aerial photograph analysis and geologic field reconnaissance (Ertec, 1981a) indicate only a few minor Pleistocene fault scarps breaking the valley-floor surface, although lineaments of unknown origin occur along the southeastern and southwestern valley margins. The Coyote Wash fault extends into Muleshoe Valley from the southwest just north of Silver King Mountain but does not appear to disturb the Quaternary alluvium. Aligned, faceted ridge spurs along the western flank of Dutch John and Grassy mountains suggest Quaternary faulting in the northeastern portion of the valley.

4.0 INTERPRETATION

The basis of interpretation in this report is the Complete Bouguer Anomaly (CBA). Complete Bouguer Anomaly contours and the gravity station locations are shown in Drawing 1.

The interpretation of irregularly spaced data is both difficult and inefficient. In order to simplify the interpretation, the CBA data were reduced to a set of values on the nodes of a regularly spaced grid. The value at each node was computed using a minimum curvature gridding program (Briggs, 1974; and Swain, 1976). Minimum curvature gridding is an iterative process, the purpose of which is to find the smoothest surface that fits the irregularly spaced data. This smooth surface is then used to interpolate between the existing data points. A 0.62-mile (1-km) grid spacing, which is slightly more dense than the average data spacing, was used throughout this analysis.

4.1 REGIONAL RESIDUAL SEPARATION

A fundamental difficulty in gravity interpretation is that the gravity expression of short wavelength, shallow structural features of interest are overlapped and obscured by long wavelength features occurring at all depths. The purpose of a regional-residual separation is to remove the effect of the longer wavelength structures so that the features of interest may be correctly interpreted.

In order to estimate the form and magnitude of the long wavelength contribution (regional), the CBA was continued upward using a fast Fourier transform (FFT) and a frequency domain filter (Gunn, 1975). The data were continued upward to a height at which no correlation could be seen between the upward-continued CBA and the surface structure. This was at an altitude of 60,000 feet. The regional was then subtracted from the CBA and the resulting residual anomaly was further adjusted by a constant -8.0 mgal to make the zero residual contour approximately fit outcrops of Paleozoic carbonate rocks.

4.2 DENSITY SELECTION

The correct interpretation of the residual anomaly requires density values that are representative of the subsurface rock. In this analysis, only very generalized density information was available. Three borings were drilled approximately 100 feet (30 m) into the alluvium during Verification studies (Ertec, 1981b). The average density measured at the bottom of these borings was slightly less than 2.0 g/cm 3 . To account for compaction with depth (Woollard, 1962; and Grant and West, 1965) a density of 2.3 g/cm 3 was assigned to the alluvium.

Basement rocks underlying the alluvium are assumed to be similar to rocks exposed in the nearby mountains. These consist of Tertiary volcanic and plutonic rocks and Paleozoic carbonate and siliceous sedimentary rocks. Published values for the density of the Paleozoic rocks typically range from 2.6 to 2.9 g/cm³. Carbonate rocks in the Paleozoic section are the most dense with some in Nevada and Utah having values near 2.8 g/cm³. The siliceous clastic sediments generally have densities ranging

between 2.6 and 2.7 g/cm³. Densities representative of the Tertiary volcanic rocks range from 2.0 to 2.5 g/cm³ for tuffaceous material, depending on the degree of welding, compaction, and alteration; from 2.3 to 2.6 g/cm³ for andesite and rhyolite flows; and from 2.6 to 2.7 g/cm³ for plutonic rocks.

4.3 MODELING

Modeling was accomplished using three computer programs. Two of these programs compute the gravitational effect of two-and three-dimensional bodies (Talwani and others, 1959; and Plouff, 1975). The third program calculates an inverse three-dimensional solution (Cordell, 1970). The two forward modeling programs were used to augment the inverse modeling program because the inverse program is capable of handling only a single density contrast; whereas, there are several density contrasts that contribute to the form of the residual anomaly.

A contour map showing the thickness of alluvial fill, based on the results of the inverse program, is shown in Drawing 2. The density contrast between alluvium and bedrock used in this analysis was -0.5 g/cm^3 . There is very little independent information with which to compare this interpretation. One well, 4N-64E-7dc, drilled to a depth of 1150 feet (351 m) did not penetrate bedrock. Its location is noted in Drawing 2.

Two gravity profiles were selected for forward modeling with the Talwani program using two density contrasts: $-0.5~\rm g/cm^3$ for alluvium and $-0.3~\rm g/cm^3$ for volcanic rock. Profile B-B'

crosses the narrow northern part of the valley and Profile A-A' crosses the deepest part of the valley (Drawing 1). The interpretations resulting from forward modeling are shown in Figures 3A and 3B.

There are three principal sources of error in this analysis. First, because there is no detailed study of the true densities of the rocks, we have had to rely on estimates. Second, the inverse modeling program, upon which most of the interpretation is based, is capable of handling only a single density contrast; whereas, there are probably several density contrasts that contribute to the residual anomaly. Third, the distribution of gravity data in the mountains is not uniform, leaving areas in which the interpretation is based on interpolated trends of the data.

4.4 DISCUSSION OF RESULTS

The interpreted structure of Muleshoe Valley is shown on the contour maps of depth to rock (Drawing 2). Cross-sectional views of the interpreted stratigraphy and structure are shown in Figures 4A and 4B. The interpretations are based on geological information from published reports, analysis of aerial photographs, and geological field reconnaissance as well as gravity data. For example, wherever there was sufficient gravity data, the placement of faults could be made by finding the maximum horizontal gravity gradients. However, in areas lacking detailed gravity data, placement of faults was guided by field reconnaissance and published geologic maps. Major faults on the drawing generally comprise zones of smaller faults.

YOTE WASH

"ALEO EDICAND PRECAMBRIAN" SILICEOUS SEDIMENTARY NOTHING

3/13

SEA LEVEL

SCHELL CREEK RANGE

5,000 FT.

10,000 FT. 7 WEST

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

// || N = = // ||

GENERALIZED GEOLOGIC CROSS-SECTION A-A' MULESHOE VALLEY, NEVADA

AND FLOWS

14 SEPT 81

-5,000 FT.

FIGURE 40

In terms of its gravitational expression, Muleshoe Valley is not separated from Lake Valley as much as the topography would suggest. For example, the gravity low crossing the Fairview Range is a consequence of the low density of its volcanic materials. Muleshoe Valley is basically a graben that is wider at its southern end than at its northern end (Drawing 2 and Figure 4). The range-bounding fault on the east side of the valley appears to have more displacement than the corresponding fault on the west side of the valley.

Judging from the results of gravity modeling (Figure 3), the average slope of the base of the alluvium is about 30° on the west side of the valley. On the east side of the valley, the slope is between 45° and 60° in the north, and about 25° in the south. The 25° slope becomes steeper below the volcanic layer (Figure 3B).

The contour map of depth to rock (Drawing 2) shows that there is about 5000 feet (1524 m) of alluvium in the deepest parts of the valley. There may be as much as 3000 feet (914 m) of volcanic rock overlying Paleozoic rock in the Fairview Peak (Figure 2) area. (This estimate is based on a mass defect calculated by planimetric integration of the residual gravity anomaly [described by Grant and West, 1965] and an assumed density contrast of -0.35 g/cm³ between volcanic rock and Paleozoic rock). It is primarily because of this substantial thickness of volcanic rock that the CBA contours defining Muleshoe Valley cut across the Fairview Range into Lake Valley.

5.0 CONCLUSION

The Complete Bouguer Anomaly data indicate that Muleshoe Valley is an irregular graben that is filled with as much as 5000 feet (1524 m) of alluvium. The deepest part of the graben is generally under the axis of the valley with the maximum depth south of the center. The northern part of the graben is less than half as wide as the southern part. On the west side of the valley, the interface between Paleozoic bedrock and alluvium has a dip of about 30° while the equivalent interface on the east side of the valley has a dip in excess of 50°. This, combined with the observation that the gravity low is displaced eastward with respect to the axis of the valley, indicates that the graben is tilted slightly to the east, as well as to the south. The southern end of the valley has a thin layer of alluvium and volcanic rocks overlying Paleozoic rocks. Apparently the southern end of the graben has no block-like edge but approaches the surface gradually by a stair-step series of unobservably small faults.

5.0 CONCLUSION

The Complete Bouguer Anomaly data indicate that Muleshoe Valley is an irregular graben that is filled with as much as 5000 feet (1524 m) of alluvium. The deepest part of the graben is generally under the axis of the valley with the maximum depth south of the center. The northern part of the graben is less than half as wide as the southern part. On the west side of the valley, the interface between Paleozoic bedrock and alluvium has a dip of about 30 ° while the equivalent interface on the east side of the valley has a dip in excess of 50 °. This, combined with the observation that the gravity low is displaced eastward with respect to the axis of the valley, indicates that the graben is tilted slightly to the east, as well as to the south. The southern end of the valley has a thin layer of alluvium and volcanic rocks overlying Paleozoic rocks. Apparently the southern end of the graben has no block-like edge but approaches the surface gradually by a stair-step series of onobservably small faults.

REFERENCES

- Briggs, I. C., 1974, Machine contouring using minimum curvature, Geophysics, v. 39, no. 1, p. 39-48.
- Cordell, Lindreth, 1970, Iterative solution of three-dimensional gravity anomaly data, Geological Survey Computer Contribution No. 10, U.S. Geological Survey, Washington, D.C.
- Eakin, T. E., 1963, Ground-water appraisal of Pahranagat and Pahroc Valleys, U.S. Geological Survey, Ground Water Resources-Reconnaissance Series, Report 21, p. 35.
- Ekren, E. B., Orkild, P. P., Sargent, K. A., and Dixon, C. L., 1977, Geologic map of Tertiary rocks, Lincoln County, Nevada, U.S. Geological Survey Map I-1041.
- Ertec Western, Inc., 1981a, MX siting investigation fault study summary of Muleshoe Valley, Nevada, unpublished.
- , 1981b, MX siting investigation verification study, Muleshoe Valley, Nevada, Volume II Geotechnical Data.
- Fenneman, W. W., 1931, Physiography of Western United States, New York: McGraw-Hill, p. 534.
- Goguel, Jean, 1954, A universal table for the prediction of the lunar-solar correction in gravimetry (tidal gravity corrections); geophysical prospecting, v. II, supplement, March.
- Grant, F. S., and West, G. F., 1965, Interpretation theory in applied geophysics, New York: McGraw-Hill Book Co.
- Gunn, P. J., 1975, Linear transformations of gravity and magnetic fields, Geophysical Prospecting, v. 23, p. 300-312.
- Howard, E. L., 1978, Geologic map of the eastern Great Basin, Nevada and Utah, Denver, Colorado, Terra Scan Group Ltd., scale 1:250,000.
- Plouff, D., 1975, Derivation of formulas and FORTRAN programs to compute gravity anomalies of prisms, U.S. Geological Report No. USGA-GD-75-015.
- Stewart, J. H., 1980, Geology of Nevada, Nevada Bureau of Mines and Geology Special Publication 4, p. 136.
- Swain, C. J., 1976, A FORTRAN IV program for interpolating irregularly spaced data using the difference equations for minimum curvature, Computers and Geosciences, v. 1, p. 231-240.

- Talwani, M., Worzel, J. L., and Landisman, M., 1959, Rapid computations for two-dimensional bodies with application to the Mendocino submarine fracture zone, J. Geophysical Research, v. 64, p. 49-59.
- Tschanz, C. M., and Pampeyan, E. H., 1970, Geology and mineral deposits of Lincoln County, Nevada, Nevada Bureau of Mines Bulletin 73, p. 188.
- Woollard, G. P., 1962, The relation of gravity anomalies to surface elevation, crustal structure, and geology, University of Wisconsin, Department of Geology, Geophysical and Polar Research Center, Madison, Wisconsin, Report 62-9.

APPENDIX A1.0

GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.0 GENERAL PRINCIPLES OF THE GRAVITY EXPLORATION METHOD

A1.1 GENERAL

A gravity survey involves measuring the differences in the gravitational field between various points on the earth's surface. The gravity values are associated with the force which causes a 1 gm mass to be accelerated at 980 cm/sec^2 . This force is normally referred to as a 1 g force.

Even though in many applications the gravitational field at the earth's surface is assumed to be constant, small but distinguishable differences in gravity occur from point to point. The differences in gravity are caused by geometrical effects, such as differences in elevation and latitude, and by lateral variations in density within the earth. The lateral density variations are a result of changes in geologic conditions. For measurements at the surface of the earth, the largest factor influencing the pull of gravity is the density of all materials between the center of the earth and the point of measurement.

To detect changes produced by differing geological conditions, it is necessary to detect differences in the gravitational field as small as a few milligals. A milligal is equal to 0.001 cm/sec² or 0.00000102 g. To recognize changes due to geological conditions, the measurements are "corrected" to account for changes due to differences in elevation and latitude.

A difference in gravity between two points which is not caused by the effects of known geometrical differences, such as in elevation, latitude, and surrounding terrain, is referred to as an "anomaly." The anomaly is the basic concept of the gravitational exploration method. If, instead of being an oblate spheroid characterized by complex density variations, the earth were made up of concentric, homogeneous shells, the gravitational field would be the same at all points on the surface of the earth. The complexities in the earth's shape and material distribution are the reason that the pull of gravity is not the same from place to place.

An anomaly reflects lateral differences in material densities. The gravitational attraction is smaller at a place underlain by relatively low density material than it is at a place underlain by a relatively high density material. The term "negative gravity anomaly" describes a situation in which the pull of gravity within a prescribed area is small compared to the area surrounding it. Low-density alluvial deposits in basins such as those in the Nevada-Utah region produce negative gravity anomalies in relation to the gravity values in the surrounding mountains which are formed by more dense rocks.

The objective of gravity exploration is to deduce the variations in geologic conditions that produce the gravity anomalies identified during a gravity survey.

A1.2 INSTRUMENTS

The gravity field data was measured with a LaCoste and Romberg Model D gravimeter. The sensing element of the gravimeter is a mass suspended by a zero-length spring. Deflections of the

mass from a null position are proportional to changes in gravitational attraction. These instruments are sealed and compensated for atmospheric pressure changes. They are maintained at a constant temperature by an internal heater element and thermostat. The absolute value of gravity is not measured directly by a gravimeter. It measures relative values of gravity between one point and the next. Gravitational differences as small as 0.01 milligal can be measured.

A1.3 FIELD PROCEDURES

The gravimeter readings were calibrated in terms of absolute gravity by taking readings twice daily at nearby USGS gravity base stations. Gravimeter readings fluctuate because of small time-related deviations due to the effect of earth tides and instrument drift. Field readings were corrected to account for these deviations. The magnitude of the tidal correction was calculated using an equation suggested by Goguel (1954):

 $C = P + N\cos \phi (\cos \phi + \sin \phi) + S\cos \phi (\cos \phi - \sin \phi)$ where C is the tidal correction factor, P, N, and S are time-related variables, and ϕ is the latitude of the observation point. Tables giving the values of P, N, and S are published annually by the European Association of Exploration Geophysicists.

The meter drift correction was based on readings taken at a designated base station at the start and end of each day. Any difference between these two readings after they were corrected for tidal effects was considered to have been the result of

instrumental drift. It was assumed that this drift occurred at a uniform rate between the two readings. Corrections for drift were typically only a few hundredths of a milligal. Readings corrected for tidal effects and instrumental drift represented the observed gravity at each station. The observed gravity values represent the total gravitational pull of the entire earth at the measurement stations.

A1.4 DATA REDUCTION

Several corrections or reductions are made to the observed gravity to isolate the portion of the gravitational pull which is due to the crustal and near-surface materials. The gravity remaining after these reductions is called the "Bouguer Anomaly." Bouguer Anomaly values are the basis for geologic interpretation. To obtain the Bouguer Anomaly, the observed gravity is adjusted to the value it would have had if it had been measured at the geoid, a theoretically defined surface which approximates the surface of mean sea level. The difference between the "adjusted" observed gravity and the gravity at the geoid calculated for a theoretically homogeneous earth is the Bouguer Anomaly.

Four separate reductions, to account for four geometrical effects, are made to the observed gravity at each station to arrive at its Bouguer Anomaly value.

a. <u>Free-Air Effect</u>: Gravitational attraction varies inversely as the square of the distance from the center of the earth. Thus corrections must be applied for elevation. Observed

E Ertec

gravity levels are corrected for elevation using the normal vertical gradient of:

FA = -0.09406 mg/ft (-0.3086 milligals/meter) where FA is the free-air effect (the rate of change of gravity with distance from the center of the earth). The free-air correction is positive in sign since the correction is opposite the effect.

b. Bouguer Effect: Like the free-air effect, the Bouguer effect is a function of the elevation of the station, but it considers the influence of a slab of earth materials between the observation point on the surface of the earth and the corresponding point on the geoid (sea level). Normal practice, which is to assume that the density of the slab is 2.67 grams per cubic centimeter was followed in these studies. The Bouguer correction (B_c), which is opposite in sign to the free-air correction, was defined according to the following formula.

 $B_C = 0.01276$ (2.67) h_f (milligals per foot)

 $B_C = 0.04185$ (2.67) h_m (milligals per meter)

where $h_{\mbox{\scriptsize f}}$ is the height above sea level in feet and $h_{\mbox{\scriptsize m}}$ is the height in meters.

c. <u>Latitude Effect</u>: Points at different latitudes will have different "gravities" for two reasons. The earth (and the geoid) is spheroidal, or flattened at the poles. Since points at higher latitudes are closer to the center of the earth than points near the equator, the gravity at the higher latitudes is larger. As the earth spins, the centrifugal acceleration

causes a slight decrease in gravity. At the higher latitudes where the earth's radii are smaller, the centrifugal acceleration diminishes. The gravity formula for the Geodetic Reference System, 1967, gives the theoretical value of gravity at the geoid as a function of latitude. It is:

g = 978.0381 (1 + 0.0053204 $\sin^2 \phi$ - 0.0000058 $\sin^2 2\phi$) gals where g is the theoretical acceleration of gravity and ϕ is the latitude in degrees. The positive term accounts for the spheroidal shape of the earth. The negative term adjusts for the centrifugal acceleration.

The previous two corrections (free air and Bouguer) have adjusted the observed gravity to the value it would have had at the geoid (sea level). The theoretical value at the geoid for the latitude of the station is then subtracted from the adjusted observed gravity. The remainder is called the Simple Bouguer Anomaly (SBA). Most of this gravity represents the effect of material beneath the station, but part of it may be due to irregularities in terrain (upper part of the Bouguer slab) away from the station.

d. <u>Terrain Effect</u>: Topographic relief around the station has a negative effect on the gravitational force at the station. A nearby hill has upward gravitational pull and a nearby valley contributes less downward attraction than a nearby material would have. Therefore, the corrections are always positive. Corrections are made to the SBA when the terrain effects were 0.1 milligal or larger. Terrain corrected Bouguer values are

called the Complete Bouguer Anomaly (CBA). When the CBA is obtained, the reduction of gravity at individual measurement points (stations) is complete.

A1.5 INTERPRETATION

To interpret the gravity data, the portion of the CBA that might be caused by the light-weight, basin-fill material must be separated from that caused by the heavier bedrock material which forms the surrounding mountains and presumably the basin floor. The first step is to create a regional field. A regional field is an estimation of the values the CBA would have had if the light-weight sediments (the anomaly) had not been there. Since the valley-fill sediments are absent at the stations read in the mountains, one approach is to use the CBA values at bedrock stations as the basis for constructing a second order polynomial surface to represent a regional field over the valley.

Where there are insufficient bedrock stations to define a satisfactory regional trend, another approach is to estimate the regional by the process of upward continuation of the CBA field.

In Potential Theory, a field normal to a surface, regardless of its actual source, may be considered as originating in an areal distribution of mass on that surface. If the field strength is known the surface density of mass (grams per square centimeter) can be calculated. The observed gravity field at the surface of the earth approximately fulfills the requirements of this theory: thus the observed (Bouquer anomaly) field can be used

to compute a surficial distribution of mass which would reproduce the field, and most importantly, account for the gravity field anywhere above the surface of observation. On this basis, the Bouguer anomaly field is readily "continued" to level surfaces above the ground.

An important property of such "upward continuation" is that the resultant field with increasing altitudes of continuation, changes more with respect to shallow sources than it does with respect to deeper sources. The anomalous parts of the field ascribed to shallow density distribution tend to vanish as the continuation is carried upward whereas the field produced by deeper sources changes only slightly, so that upward continuations produce "regional"-type fields.

The difference between the CBA and the regional field is called the "residual" field or residual anomaly. The residual field is the interpreter's estimation of the gravitational effect of the geologic anomaly. The zero value of the residual anomaly is not exactly at the rock outcrop line but at some distance on the "rock" side of the contact. The reason for this is found in the explanation of the terrain effect. There is a component of gravitational attraction from material which is not directly beneath a point.

If the "regional" is well chosen, the magnitude of the residual anomaly is a function of the thickness of the anomalous (fill) material and the density contrast. The density contrast is the difference in density between the alluving and bedrock material.

If this contrast were known, an accurate calculation of the thickness could be made. In most cases, the densities are not well known and they also vary within the study area. In these cases, it is necessary to use typical densities for materials similar to those in the study area.

If the selected average density contrast is smaller than the actual density contrast, the computed depth to bedrock will be greater than the actual depth and vice-versa. The computed depth is inversely proportional to the density contrast. A ten percent error in density contrast produces a ten percent error in computed depth. An iterative computer program is used to calculate a subsurface model which will yield a gravitational field to match (approximately) the residual gravity anomaly.

The second vertical derivative (SVD) of gravitational field is used to aid the interpreter in evaluating the subsurface mass distribution. Once the CBA field has been projected onto a uniform grid system, its SVD at the grid nodes is readily computed. In accordance with LaPlace's Equation in Free Space, the negative of the second vertical derivative is equal to the sums of the second derivatives in the x-direction and in the y-direction. The second vertical derivative is an indication of the curvature of the Bouguer anomaly field. In particular the zero-value of the SVD indicates the inflection in the field as it changes from "concave-upward" (algebraically negative SVD) to "convex-upward" (algebraically positive SVD). In a general way the zero SVD falls on the tightest contours of the field and

where contours are nearly parallel its location can be established by eye. However, where contours diverge, converge, or change direction this is not always so readily done. The zero SVD contour line may be an indicator of a line of faulting, the pinchout of a stratum, truncation of a stratum at an unconformity or merely a marked change in shape or in density of a geologic unit.

APPENDIX A2.0

MULESHOE VALLEY, NEVADA

GRAVITY DATA

STATION IDENT.		AT. MIN			ELEV. N +CODE			NORTH UTM	EAST UTM	OBSV GRAV	THEO GRAV	FAA	CBA +1000
0260	38	515	11438	375	51690T	0	2164	21775	706471	1435541	199963	1610	80796
0262	38	520	11440	74	55889T	ō	1384	21777	703561	467091	99970	-680	80388
0263	38	531	1144	42	54629T	0	1324	21795	70256	47609	199986	-990	80512
					52881T	0			700611				81366
					58560T	0	1874	21884	70565	145175	200051		80427
0275	38	593	11440	25	56280T	0	1454	21914	704241	146313	200077	-820	80125
0278	38	602	1144	175	54062T	0	1284	21925	702041	1479132	200090	-1320	80368
5029	38	622	1144	132	54511T	0	1374	21963	70266	1474262	200120	-1410	80137
0294	38	623	11444	491	52500T	0	1214	21952	697411	1496112	200121	-1120	81091
0274	38	627	11440	062	55600T	0	1354	21975	703683	1467062	200127	-1120	80055
1914	38	640	11448	392	50951T	0	924	21970	69155	1499252	200146	-2290	80422
0157	38	658	1144	783	51161T	0	964	22007	69313	1496922	200172	-2350	80296
0273	38	654	11439	790	56660T	0	1494	22046	70472	1457112	200181	-1170	79659
0154	38	675	1144	575	51801T	0	1014	22042	69470	1491982	200197	-2270	80161
					55000T	0			70110				
					52530T	0			69636				80687
					53930T	0	1234	22106	698221	1485842	200241	-920	80803
					55230T	0		_	69987	-			80469
					53930T	0			698541			-900	80837
					56220T	0			70278				80151
					51709T	0			693441				
					58281T	0			70574				79879
					59911T	0			707111				80653
					51529T	0			707451				80320
					55479T	0			69715				80593
					57749T	_			700101				81086
					56181T	0			698901				80467
					56270T	0			70123				
					57621T	_			704981				80195
					58560T	_			69835				80337
					56339T	0			69206				80597
					56870T	0			70050				80216
					57021T				69733				80432
					51509T	0			68993				80459
					58471T	-			70627				80952
					56650T				69645				80515
					57470T 56001T				69933				80442
					560011 50341T				69465		-		80512
	_				55840T				700431 693171				80519 80431
					52510T				69135	–			
0012	20	977	* * * * * (J 7 (3)	JEJ101	J	1034	EE777	G7133	1770/06	200323	-1430	GU/43

STATION					ELEV.						OBSV		FAA	CBA
IDENT.	DEG 	IJIN	DEG 	MIN	+CODE	. 1f	470U.	T UTN	1 U -	TM_	GRAV	GRAV		+1000
					-	•			******				-	
0013	38 9	14 1	1449	7995	1860T	0	132	422473	689	861	49911	200547	-1850	80592
0787	38 9	22 1	11444	1455	6850T	0	135	422507	697	951	46689	200559	-390	80355
0018	38 9	39 1	11449	7345	5850T	0	152	422521	690	801	47262	200584	-780	80322
0020	38 9	44	11446	6695	8261T	0	131	422540	694	671	45919	200591	120	80391
0021	38 9	46 1	11445	5585	9341T	0	175	422547	7 696	291	45187	200594	410	80355
0811	38 9	57	11437	7936	1329T	0	123	422596	5 707	461	44341	200610	1410	80633
0804	38 9	63 1	11443	3236	1171T	0	163	422587	699	711	44694	200619	1610	80923
0019	38 9	66 1	1448	3375	4692T	0	94	422575	692	211	48305	200623	-870	80574
0022	38 9	71 1	1144	5725	8471T	0	119	422630	696	071	45899	200660	230	80419
0803	38 9	97 :	11444	1006	0732T	0	150	422647	7 698	571	44782	200669	1230	80480
0026	3810	03 :	11449	7825	2251T	0	128	422638	3 690	071	49740	200677	-1780	80518
7286	3810	05	11436	5216	0246T	0	117	422691	1 709	951	43831	200680	-170	79397
0805	3810	05	11442	2636	6581T	0	386	422667	7 700	571	41111	200680	3050	80736
0024	3810	13	11447	7525	4491T	0	128	422665	5 693	431	48398	200692	-1030	80508
0023	3810	24	1144	585	6280T	0	97	422688	3 694	801	47015	200708	-750	80147
0025	3810	34 :	11448	3765	6319T	0	111	422699	9 691	611	46865	200723	-880	80021
7442	3810	55	11443	3686	0397T	0	140	422756	699	021	45498	200754	1550	81110
					9531T	0						200773		80775
0032	3810	74	1144	7625	6969T	0	114	422777	7 693	251	146449	200781	-740	79944
0034	3810	79	1144	5705	7110T	0	103	422793	3 696	061	147198	200789	120	80763
					5341T	Q	100	422799	9 694	561	147848	200796	-890	80340
					2710T	0	126	422800	690	401	149004	200805	-2210	79936
					1680T	٥	161	422927	7 697	941	L43784	200891	910	80041
					0961T							201010		79382
					3960T							201274	-2560	79172
					1821T							201285		79425
7049	3814	30	1143	5506	18371	0	119	423480	710	781	43601	201303	460	79499
7441	3815	15	11442	2206	0843T							201427		79611
					2359T							201449		79314
1580	3817	30	1143	5906	2139T	0	132	424033	3 710	051	43802	201742	500	79462
7443	3817	75	1144	7606	2487T							201808		80921
7424	3818	25	1144	1905	9551T							201882		79255
					1568T	0	141	424375	709	381	144291	202015		79341
					1624T	0	140	42440	5 709	201	144257	202039		79320
					7799T	Ó	273	424542	2 699	061	146055	202168	-1730	78823
					0679T							202226		79247
					9760T							202584		79455
					0259T	_						202696		79885
					2221T		_					202923		79289
					0312T							202938		80705
					0285T							202945		80684

STATIO			ELEV.					OBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG MI	N +CODE		דטם/א	MTU	UTM	GRAV	GRAV		+1000
1208	382590	1143822	59892T	0	23042	25615	706261	465252	203004	-140	79670
1577	382720	1143860	59419T				705651			-230	79840
7030	382782	1143862	59846T	0	20442	25969	705591	467722	203286	-210	79574
1589	382900	1143870	60141T	0	13442	26187	705421	466522	203459	-230	79394
	382875	1143571		0		26152		444752		-3278	76645
		1144012					703451				80923
	382468		5998C	-			706481				79843
		1143794		-	188842			328022			80128
LV0201		1143564					710451				79328
		1143815					706361				79871
		1143635					709631				79583
CAV073	382274 382379	1144861	– – –				691281				81522
		11448756					691021 695491				80901 79838
		1144947					690141				81724
	382451	1144769					692541				79708
		1144382					697971				79688
		1144070					702731				81293
	· - · · · - -	1144031					703451				80615
		1143645					709821				80795
		1144992					689161				78234
CAV074	382317	1144917	50321T	0			690451				80432
		1144933		0			690141			-573	79145
CAV077	382572	1144950	5990S	0	1094	25541	689861	455492	202977	-1053	78626
CAV078	382648	1144947	6001C	0	11142	25719	689861	454342	203118	-1205	78438
CAV 079	382789	1144886	6018S	0	1214	25945	690691	454512	203296	-1205	78390
CAV080	382875	1144903	60305	0	1274	26140	690401	452732	203451	-1426	78134
		1144868		0			690871				
		1144762		0			692451				79059
		1144803		0			691951				80195
		1144844		0			691411				80729
CAV087				0			694251				80663
		1144620		0			694531				80532
		1144850		0			691481				81117
		11449590 1143694		0			689901 707941				81148
	382727	1143677		Ö		25874		447476			77665
LV0124	382618	1143677	5921Y	0		25674		454142			78010
	382501	1143597		Ö			707031				78252
LV0144	382421	1143575	5929Y	ō			707941				78240
	382324	1143584		ō			709851				
		· - · •	- · ·	_				· ·			

STATION		LONG.	ELEV.			NORTH	EAST	OBSV		FAA	CBA
IDENT.	DEG MIN	DEG MIN	4 +CODE	I I	1/0UT	UTM	UTM	GRAV	GRAV		+1000
1.00152	202070	1143884	50000	^	1224	24222	705101	14404	203575	-420	79227
		1144004							203373		79408
		1144103							203503		79245
		1144171							203303		79589
		1144046							203380		79883
		1143932							203393		79654
		1143766							203384		
		1143843							203215		79489
		1143898			_				202691		80989
		1144027							202616		81221
		1143787							202546		79856
		1143877		0	2354	24840	705661	44535	202391	2145	80637
LV0171	382041	1143836	6407B						202198		80302
LV0172	381951	11437716	52441T	0	1714	24435	707311	44516	202066		80092
LV0174	382240	11436485	59550T	0	1114	24974	708961	45699	202490	-744	79056
LV0175	382240	11435415	59531T	0	1004	24978	710521	45135	202490	-1327	78469
LV0180	382129	1143541	5960Y	0	1034	24773	710571	45148	202327	-1086	78689
		1143697		0	1264	24771	708301	45488	202330	-156	79427
		1143676		0	1224	24614	708651	44673	202206	-355	79046
		1143526							202137		
		11436376		0	1424	24364	709281	44232	505006	221	79346
		11435576		0	1164	23746	710611	43241	201514	420	79266
LV0254	381460	1143550	6190S						201347	468	79473
		1143716							202618	-510	79293
		1144439							201117		79577
		1144439		201			697941			966	80289
		1144560							203130		79730
		1144466							203526	6539	80244
		1144947							202182		81592
		1144120							202599		81271
		1144047							202374		81124
		1144165									80734
		1143942							201847	-	80087
		1143959		-					201471		79480
		1144961			_				201917		80379
		1144109							200985		79367
		1144769							202814		79614
		11448506							202426		81107
	382271	1144651							202536		79614
		1144664							202696		79867
M2003	382423	1144540	9505C	O	1254	52580	675871	44875	202759	488	79460

STATION		LONG.	ELEV.			—	H EAST	OBSV	THEO	FAA	CBA
IDENT.	DEG MIN	DEG MIN	+CODE	11	1/0UT	UTM	UTM	GRAV	GRAV		+1000
MSV004	382295	1144515	9005C	٥	1144	25044	696311	452702	202571	-812	78831
		1144390		ō			698131				79104
MSV006	382441	1144379	6134\$	0	1454	25319	698231	449792	202785	-74	79149
MSV007	382538	1144346	62305	0	1674	25500	698661	446922	202928	401	79319
MSV008	382655	1144272	63965	0	2034	25719	699681	441822	203099	1282	79670
MSV009	382725	1144209	64455	0	2204	25850	700571	440362	203202	1494	79732
MSV011	382416	1144273	63388	0	1714	25277	699781	443762	202748	1281	79835
MSV012	382285	1144276	6356C	0	1794	25034	699801	444942	202556	1760	80260
MSV017	381547	1144098	62555	0	1394	23676	702731	433082	201474	706	79510
		1144139		0	1584	24009	702051		-		80144
		11441246		0		24198	702221				80418
		11440466		Ō			703341				80425
		1144269		0			699951				80524
		1144268		0			700011				80452
		1144233		0			700571				80318
		11442286		0		24218	700701			781	79959
		1144218		0			700941	– – – – –			79911
		1144318 1144382		0			699521 698561			_	79001
		1144323		0			699361				78864
		11443126		Ö			699451				79343
		11443875		ő			698341				79024
		1144398		ŏ			698121				79424
		1144437		ŏ			697491				78804
		1144465		ō			697261				
		1144483		ō			697061				
		1144556		ō			696031		_		78424
MSV037	381557	11447525	5121T	0		23671				-2595	
MSV038	381635	11446985	55571T	0	1124	23817	693941	467562	201603	-2547	78611
MSV039	381710	11446575	5601QT	0	1124	23957	694501	465172	201713	-2483	78526
MSV040	381786	1144607	5647C	0	1144	24099	695201	46435	201825	-2243	78611
MSV041	381926	1144556	5722C	0	1204	24360	695881	46193	202030	-1984	78620
MSV042	382038	1144579	5805C	0	1194	24566	695501	461092	202194	-1450	78869
MSV043	382139	1144530	5905C	0	1164	24755	696161	45386	202342	-1380	78595
MSV044	382143	11446745	59130T	0			694061			-415	79548
		11447516	50699T	0	1394	24843	692921	461842	202418	895	80331
	381951	1144691		0	1434	24402	693901	454192	505099	-347	79393
		1144775		0	1434	24166	692731	453472	201882	-865	79104
	-	1144836		0			691871	· - · - -			79127
			5782C	0			691341				79180
MSV0 50	381514	1144919	5595C	0	1194	23585	690771	469952	201426	-1774	79262

STATION LAT.	LONG. ELEV.	TER-COR. NORT	'H EAST OBSV THEO	FAA CBA
IDENT. DEG MIN	DEG MIN +CODE	IN/OUT UTM	I UTM GRAV GRAV	+1000
		· -		
MSV051 381765 1	144951 6110C	0 174424049	69019145440201794	1152 80487
MSV061 381407 1	144956 5552Y	0 115423386	69028147159201269	-1858 79321
MSV062 381435 1	144818 5468Y	0 118423443	69228147432201310	-2416 79052
MSV063 381338 1	14487453970T	0 128423261	69150147931201168	-2444 79276
MSV064 381252 1	14490453599T	0 118423101	69110148495201042	-2103 79734
MSV065 381169 1	14493053271T	0 122422947	69076148650200920	-2137 79816
MSV066 381039 1	14495752710T	0 124422798	69040149016200803	-2181 79965
MSV067 381074 1	144762 5697Y	0 113422777	69325146467200781	~697 79985
MSV068 381203 1	144760 5453V	0 104423016	69323148344200970	-1306 80199
MSV069 381334 1	144723 5516V	0 99423259	69371147241201162	-2007 79278
MSV070 381479 1	144622 5649V	0 97423531	69512146112201375	-2096 78734
MSV071 381330 1	144559 5692V	0 100423350	69608146031201230	-1628 79058
MSV072 381247 1	144589 5632V	0 108423103	69570146596201035	-1433 79466
MSV073 381160 1	144654 5539V	0 104422940	69479147758200907	-1020 80192
MSV074 381080 1	144570 5711Y	0 105422795	6 69606147218200790	177 80803
MSV077 381470 1	144467 5806Y	0 102423557	69737145184201391	-1563 78736
MSV078 381376 1	144347 6005Y	0 116423350	69918143795201224	-911 78723
MSV079 381460 1	144208 61075	0 131423511	70117144240201347	372 79674
MSV081 382521 1	144111 7834C	01120425477	70209135887202903	6725 81126

EXPLANATION

FAULTS SHOWN ON GEOLOGIC BASE MAP:

NORMAL

NORTH

INFERRED

CONCEALED

A A'

LOCATION OF PROFILE

CONTOUR INTERVAL = 5 MILLIGALS

GRAVITY STATIONS

GEOLOGIC BASE MAP: E.L.Howard (191)

MAP:

NORTH

LOCATION OF PROFILE

CONTOUR INTERVAL = 5 MILLIGALS

GEOLOGIC BASE MAP: E.L.Howard (1978)

MX SITING INVESTIGATION
DEPARTMENT OF THE AIR FORCE
BMO/AFRCE-MX

COMPLETE BOUGUER ANOMALY CONTOURS MULESHOE VALLEY, NEVADA

14 SEPT 81

DRAWING 1

EXPLANATION

U D

FAULTS INFERRED FROM GRAVITY DATA

FAULTS SHOWN ON GEOLOGIC BASE MAP

ALLUVIAL MATERIAL

ROCK (ALL PATTERNS)

CONTOUR INTERVAL - 1000 FT.

DEPTH CALCULATIONS BASED ON DENSITY CONTRAST OF $0.5g\ cm^{-3}$

WELL

GEOLOGIC BASE MAP: E. L. Howard (1978)

INTER!

14 HEPT 81

ATION

RED FROM

N ON

SE MAP

TERIAL

TTERNS)

ERVAL = 1000 FT.

LATIONS BASED ON TRAST OF -0.5g cm⁻³

E MAP: E. L. Howard (1978)

NORTH

SCALE 1: 125,000

MX SITING INVESTIGATION DEPARTMENT OF THE AIR FORCE BMO/AFRCE-MX

DEPTH TO ROCK INTERPRETED FROM GRAVITY DATA **MULESHOE VALLEY, NEVADA**

14 SEPT 81

DRAWING 2

