

Data-Mining

Oberseminar Sommersemester 2020

Vortrag 2: Bewertung und Klassifikation von Daten

Benedikt Grothues

Inhalt

- 1. Klassifikation
 - a. Kurzübersicht
 - b. Vorgehensweise
- 2. Variablenklassen
- 3. Datenpartitionierung
- 4. Beurteilung von Klassifikationsergebnissen
 - a. Konfusionsmatrizen
 - b. Grenzwertoptimierungskurve
- 5. Vorstellung Klassifikation
 - a. Naive Bayes
 - b. k-nächste-Nachbarn
 - c. Lineare-Diskriminanz-Analyse
 - d. Support-Vektormaschinen
 - e. Entscheidungsbäume

Klassifikation

- überwachtes Lernverfahren: label Datensatz
- Objekte zu bekannten Klassen zuzuordnen
- Ziel ist eine hohe Klassifikationsgüte

Klassifikation - allgemeine Vorgehensweise

- Datenerhebung- und aufbereitung
- 2. Bestimmung relevanter Einflussgrößen
- 3. Auswahl der Klassifikationsmethode
- 4. Daten-Partitionierung
- Trainieren des Klassifikators/Modells
- 6. Validieren des Klassifikators Anpassung der Modell-Parameter
- 7. Ermitteln der Güte mit Testdaten
- Praktischer Einsatz

Variablen, Merkmale

- Zielgröße (response, dependent, target, predicted variable; outcome, lable attribute)
- Einflussgröße (explanatory, input, regular, independent, prediction variable; outcome)
- Kategorisierung (Skalenniveau)

Erzeugen von zufälligen Datenpartitionen

Partitionen unabhängig → belastbare Abschätzung

daher: Aufteilung des Datensatzes in

- Trainingsdaten: Lernen des Klassifikators (build model)
- Validationsdaten: Optimieren der Modellparameter
- Testdaten: Bewertung der Klassifikationsgüte

Weiterführend: Resampling

- 1. Bootstrapping
- 2. Kreuzvalidierung
- Sonderfall Jackknife method

Erzeugen von zufälligen Datenpartitionen in R

- Verwendung caret-package (Classification And REgression Training)
- Funktion createDataPartition()
- zwei Partitionen mit 80% Training und 20% Validation

```
> training.idx <- createDataPartition(data$variable, p = 0.8, list = FALSE)
```

- > training.part <- data[training.idx,]</pre>
- > validation.part <- data[-training.idx,]</pre>
- drei Partitionen mit 70 % Training je 15% Validation & Test

```
> trg.idx <- createDataPartition(data$variable,, p = 0.7, list = FALSE)
```

```
> trg.part <- data[trg.idx, ]</pre>
```

- > temp <- data[-trg.idx,]</pre>
- > val.idx <- createDataPartition(temp\$MEDV, p = **0.5**, list = **FALSE**)
- > val.part <- temp[val.idx,]</pre>
- > test.part <- temp[-val.idx,]</pre>

Klassifikationsbeurteilung - Konfusionsmatrix

Kenngrößen

- Gesamtklassifikation
 n = tp + tn + fp + fn
- Korrektklassifikationt = tp + tn
- Falschklassifikation

$$f = fp + fn$$

Triviale Beurteilung

- Korrektklassifikationsrate t/n
- Falschklassifikationsrate f/n

		Klassifikation		
		positive	negative	
wahrer Wert	true	true positive	fasle negative	
	false	false positive	true negative	

Klassifikationsbeurteilung - Konfusionsmatrix

Kenngrößen

relevante Klassifikationr = tp + fn

irrelevanteKlassifikationi = fp + tn

		Klassifikation				
		positive	negative			
wahrer Wert	true	true positive	fasle negative			
	false	f a lse positive	true negative			

Abgeleitete Größen

- Richtig-Positiv-Rate (true-positive-rate *tpr*): *tp/r*
- Richtig-Negativ-Rate (false-positive-rate fpr): fp/i

Klassifikationsbeurteilung - Konfusionsmatrix in R

Einlesen der Daten:

```
cp <- read.csv("college-perf.csv")
```

• Erzeugen von geordneten factor-Variablen

```
cp$Perf <- ordered(cp$Perf, levels = c("Low", "Medium", "High"))
cp$Pred <- ordered(cp$Pred, levels = c("Low", "Medium", "High"))
```

Ausgeben der Konfusionsmatrix

tab <- table(cp\$Perf, cp\$Pred, dnn = c("Actual", "Predicted"))

Datensatz: college-perf.csv

•	SAT	GPA ÷	Projects *	Community	Income *	Perf ÷	Pred
1	1380	2.53	1	0	41800	Low	Low
2	1100	3.18	1	5	37600	Low	Low
3	1110	2.73	2	10	34800	Medium	Medium
4	1180	2.49	3	0	24100	Low	High
5	1240	2.89	3	5	56000	Medium	Medium
6	1140	2.85	2	0	50800	Low	Low
7	970	2.37	1	0	47000	Medium	Medium
8	1100	2.67	2	0	50900	Medium	Medium

GPA: grade point avarage (US Notendurchschnitt) SAT: scholastic assesement test (Studierfähigkeit)

Grenzwertoptimierungskurve - ROC-Graph

- engl. reciever operating characteristic
- tpr über fpr aufgetragen
- Graph zeigt Güte
 - eines bestimmten Klassifikators
 - auf einem festen Datensatz
 - mit verschiedenen Parameterwerten
- Variieren der Parameter erzeugt Kurve
- Ermöglicht grafische Analyse zur Parameterwahl

Quelle: An introduction to ROC analysis, Tom Fawcett; Pattern Recognition Letters 27 (2006) 861–874

Grenzwertoptimierungskurve - ROC-Graph

Rohdaten mit Wahrscheinlichkeiten und Klassenzugehörigkeit

```
dat <- read.csv("roc-example-1.csv")
```

prediciton-Objekt erzeugen

```
numerisch: pred <- prediction(dat$prob, dat$class)</pre>
```

kategorisch: pred <- prediction(dat\$prob, dat\$class, label.ordering = c("non-buyer", "buyer"))

perfomance-Objekt: richtig-positiv-rate über falsch-positiv-rate

```
perf <- performance(pred, "tpr", "fpr")</pre>
```

Grafische Ausgabe

```
plot(perf)
```

Quelle: An introduction to ROC analysis, Tom Fawcett; Pattern Recognition Letters 27 (2006) 861–874

Naiver Bayes-Klassifikator

- probabilistisches Verfahren
- basiert auf dem Satz von Bayes
- Prognose der wahrscheinlichsten Klassenzugehörigkeit

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

Wahrscheinlichkeiten aus Trainingsdaten berechnet

Vorteile	Nachteile
hohe Effizienz	erfordert stoch. unabhängige Einflussgrößen
Robust gegen fehlende Daten	Einflussgrößen müssen diskret sein

Naiver Bayes-Klassifikator in **R**

```
#0 Arbeitsverzeichnis aufräumen und Pfad setzen
rm(list = ls())
setwd(dr = "Dokumente/4. Semester/Oberseminar Data Mining/")
#1. nötige Packages laden
library(e1071)
library(caret)
#2 Datensatz einlesen
ep <- read.csv("electronics-purchase.csv")
#4. Erzeugen von zwei Partitionen (Indexe)
set.seed(1000)
train.idx <- createDataPartition(ep$Purchase, p = 0.67, list = FALSE)
#4. Naive-Baves-Klassifikationsmodell erzeugen auf Basis Trainingsdaten
nb.model <- naiveBayes(Purchase ~ . , data = ep[train.idx,])
#5. Modell ausgeben lassen
nb model
#6. Prognose der Testdaten auf Basis des Modells
nb.pred <- predict(nb.model, ep[-train.idx,])
#7. Ausgabe der Konfusionsmatrix für die Testperformance
(nb.tab <- table(ep[-train.idx,]$Purchase, nb.pred, dnn = c("Actual", "Predicted")))
```

Datensatz: electronics-purchase.csv

k-Nächste-Nachbarn

- Prognose ist Mittelwert der k nächsten Nachbarn
- Einflussgrößen zwingend numerisch
- Zielgröße kategorial
- Bestimmung des *k* ist problemabhängig
- benötigt drei Partitionen
 - Validierung des optimalen k basierend auf Trainingsdaten
 - Test-Prognose auf Basis von k und Trainingsdaten
- kein Modell, das trainiert werden muss
- Gesamter Trainingsdatensatz wird berücksichtigt

k-Nächste-Nachbarn

1-Nearest Neighbor Classifier

15-Nearest Neighbor Classifier

quelle: Hastie ed al: The Elements of Statistical Learning; Springer

k-Nächste-Nachbarn in R

```
#0 Arbeitsverzeichnis aufräumen und Pfad setzen
rm(list = ls())
setwd(dir = "~/Dokumente/4. Semester/Oberseminar Data Mining/Datasets/")
#1. nötige Packages laden
library(class)
library(caret)
#2 Datensatz einlesen
vac <- read.csv("vacation-trip-classification.csv")
#3. Standardisieren der Einflussgrößen 'Income' and 'Family size'
vac$Income.z <- scale(vac$Income)</pre>
vac$Family size.z <- scale(vac$Family size)</pre>
#4. Erzeugen von drei Partitionen für das knn-Modell
set.seed(1000)
train.idx <- createDataPartition(vac$Result, p = 0.5, list = FALSE)
train <- vac[train.idx, ]
temp <- vac[-train.idx, ]
val.idx <- createDataPartition(temp$Result, p = 0.5, list = FALSE)
val <- temp[val.idx, ]
test <- temp[-val.idx, ]
```

```
#5. Erzeugen der Prognosen für Validierungsdaten mit k=1
pred.val <- knn(train[,4:5], val[,4:5], train[,3], 1)

#6. Erzeugen der Konfusionsmatrix für k=1 für Validationsdaten
(errmat.valk1 <- table(val$Result, pred.val, dnn = c("Actual", "Predicted")))
plot(errmat.valk1, col = rainbow(2))

#7. Erzeugen der Prognosen für Testdaten mit k=1
pred.test <- knn(train[,4:5], test[,4:5], train[,3], 1)

#8. Erzeugen der Konfusionsmatrix für k=1 für Testdaten
(errmat.test <- table(test$Result, pred.test, dnn = c("Actual", "Predicted")))
plot(errmat.test, col = rainbow(2))
```

Datensatz: vacation-trip-classification.csv

Datensatz

- banknote-authentication.csv
- 1372 Einträge
- Wavelet-Transformation
- Fotos von Banknoten
- Originale und Fälschungen

Einflüssgrößen

- Varianz
- Schiefe
- Krümmung
- Entropie

⟨□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□									
	variance ‡	skew ‡	curtosis ‡	entropy ÷	class ÷				
1	3.6216000	8.66610	-2.80730000	-0.446990	0				
2	4.5459000	8.16740	-2.45860000	-1.462100	0				
3	3.8660000	-2.63830	1.92420000	0.106450	0				
4	3.4566000	9.52280	-4.01120000	-3.594400	0				
5	0.3292400	-4.45520	4.57180000	-0.988800	0				
6	4.3684000	9.67180	-3.96060000	-3.162500	0				
7	3.5912000	3.01290	0.72888000	0.564210	0				
8	2.0922000	-6.81000	8.46360000	-0.602160	0				
				100000000000000000000000000000000000000	1000				

Vorverarbeitung in **R**

#2. Datensatz einlesen

bn <- read.csv("banknote-authentication.csv")</pre>

#3. Zielvariable in factor-Variable wandeln bn\$class <- factor(bn\$class)

#4. Erzeugen von zwei Partitionen set.seed(1000)

train.idx <- createDataPartition(bn\$class, p = 0.7, list=FALSE)

Lineare Diskriminanzanalyse (LDA)

- Einflüssgrößen normalverteilt
- lineare Trennung der Gruppen
- Maximierung von Abstand der Klassenzentren (mean-value)
- Minimierung der Varianz innerhalb der Gruppen

Lineare Diskriminanzanalyse (LDA) in **R**

```
0. Arbeitsverzeichnis aufräumen und Pfad setzen
rm(list = ls())
setwd(dr =
"Dokumente/4. Semester/Oberseminar Data Mining/")
#1. nötige Packages laden
library(MASS)
library(caret)
#2. Datensatz einlesen
bn <- read.csv("banknote-authentication.csv")
#3 Zielvariable in factor-Variable wandeln
bn$class <- factor(bn$class)
#4. Erzeugen von zwei Partitionen
set.seed(1000)
train.idx <- createDataPartition(bn$class, p = 0.7, list=FALSE)
```

```
#5. Linear-Diskriminanzanalyse-Klassifikationsmodell erzeugen
auf Basis Trainingsdaten
Ida.model <- Ida(bn[train.idx, 1:4], bn[train.idx, 5])</pre>
#Ida.model <- Ida(class ~ ., data = bn[train.idx,])
#6. Erzeugen der Modell-Prognosen auf den Trainingsdaten
bn[train.idx,"Pred"] <- predict(lda.model, bn[train.idx,
1:4])$class
#7. Ausgabe der Konfusionsmatrix der Trainingsperformance
table(bn[train.idx, "class"], bn[train.idx, "Pred"], dnn =
c("Actual", "Predicted"))
#8. Erzeugen der Prognosen auf den Testdaten
bn[-train.idx,"Pred"] <- predict(Ida.model, bn[-train.idx,
1:4])$class
#9. Ausgabe der Konfusionsmatrix der Testperformance
table(bn[-train.idx, "class"], bn[-train.idx, "Pred"], dnn =
c("Actual", "Predicted"))
```


SVM - Support Vector Machine

- Klassentrennung durch optimale Hyperebene
- sogenannter large-margin-classifier
- betrachtet nur relevante Punkte (Support Vekt)
- bei nichtlinearen Trennlinien: Kerneltrick
- findet auch nichtlineare Klassengrenzen
- hoher Rechenaufwand

SVM - Support Vector Machine in R

```
#0. Arbeitsverzeichnis aufräumen und pfad setzen
rm(list = ls())
setwd(dr =
"Dokumente/4. Semester/Oberseminar Data Mining/")
#1. nötige Packages laden
library(e1071)
library(caret)
#2 Datensatz einlesen
bn <- read.csv("banknote-authentication.csv")</pre>
#3. Zielgröße 'class' in factor-variable wandeln
bn$class <- factor(bn$class)
#4. Erzeugen von zwei Partitionen
set.seed(1000)
train.idx <- createDataPartition(bn$class, p=0.7, list=FALSE)
#5. SVM-Klassifikationsmodell erzeugen auf Basis
Trainingsdaten
svm.model <- svm(class ~ ., data = bn[train.idx,])
```

```
#6/7. Prüfen der Modellperformance mit Trainingsdaten und
Ausgabe der Konfusionsmatrix
(tab.train <- table(bn[train.idx,"class"], fitted(svm.model), dnn =
c("Actual", "Predicted")))
round(prop.table(tab.train)*100,1) #Pozentual
#8. Erzeugen der Prognosen auf den Testdaten
pred <- predict(svm.model, bn[-train.idx,])</pre>
#9. Ausgabe der Konfusionsmatrix der Testperformance
(tab.val <- table(bn[-train.idx, "class"], pred, dnn = c("Actual",
"Predicted")))
round(prop.table(tab.val)*100,1) #Pozentual
#8. Grafische Darstellung des Modells für Trainingsdaten
plot(svm.model, data=bn[train.idx,], skew ~ variance)
#9. Grafische Darstellung des Modells für Testdaten
plot(svm.model, data=bn[-train.idx,], skew ~ variance)
```


Künstliches Neuronales Netz

- je Einflüssgröße ein Eingabeneuron
- Ausgabeschicht für Zielgröße
- Anpassung der Schwellwerte durch Training
- Neuronales Netz bildet
 Klassifizierungsaufgabe ab

Künstliches Neuronales Netz in R

```
#0 Arbeitsverzeichnis aufräumen und Pfad setzen
rm(list = ls())
setwd(dir = "~/Dokumente/4. Semester/Oberseminar Data Mining/Datasets/")
#1. nötige Packages laden
library(nnet)
library(caret)
#2 Datensatz einlesen
bn <- read.csv("banknote-authentication.csv")
#3 Zielvariable in factor-Variable wandeln
bn$class <- factor(bn$class)
#4. Erzeugen von zwei Partitionen
train.idx <- createDataPartition(bn$class, p=0.7, list = FALSE)
#5. Neuronales-Netz-Klassifikationsmodell erzeugen
nnet.model <- nnet(class ~., data=bn[train.idx,],size=3,maxit=10000,decay=.001, rang =
0.05)
#6. Erzeugen der Prognosen auf den Testdaten
nnet.pred <- predict(nnet.model, newdata=bn[-train.idx,], type="class")
#7. Ausgabe der Konfusionsmatrix der Testperformance
(table(bn[-train.idx,]$class, nnet.pred))
```

- nnet() erzeugt single-hidden-layer neural network
- size: Anzahl der Neuronen in der versteckten Schicht
- maxit: max. Anzahl Iterationen
 Default 100
- decay: weight decay. Default 0
- rang: Intervall Initialgewichte

Entscheidungsbaum

- selektiert Einflussgrößen
- top down Wichtigkeit
- verwendet diskrete
 Einflussgrößen
- leicht zu interpretieren
- Konstruktion berücksichtigt schrittweise Informationszugewinn

Quelle: https://blog.liwde.de/posts/2018/von-baeumen-netzen-und-maschinen/

Entscheidungsbaum in R

```
#0. Arbeitsverzeichnis aufräumen und pfad setzen
rm(list = ls())
setwd(dr = "Dokumente/4. Semester/Oberseminar Data Mining/")
#1. load requiered packages
library(rpart) #Recursive Partitioning and Regression Trees
library(rpart.plot)
library(caret) #Classification And REgression Training
#2 read data
titanic data <- read.csv("titanic.csv")
#Initialisieren des Pseudozufallszahlengenerators
set.seed(1000)
#Partition mit zufälligen 70% der Einträge
train.index <- createDataPartition(titanic data$Survived, p = 0.7, list = FALSE)
#build classification model
mod <- rpart(Survived ~ Pclass + Sex + Age + Fare, data = titanic data[train.index, ],
method = "class", control = rpart.control(minsplit = 20, cp = 0.01))
#plot the model
rpart.plot(mod, box.palette="RdBu", shadow.col="gray", nn=TRUE)
```

```
#Prognostizierte Klassenzugehörigkeit der Testdaten
pred.class <- predict(mod, titanic_data[-train.index,], type = "class") #factors
pred.prob <- predict(mod, titanic_data[-train.index,], type = "prob") #probabilities

#Konfusionsmatrix der Klassifizierung
(tab <- table(titanic_data[-train.index,]$Survived, pred.class, dnn = c("Actual",
"Predicted"))) #total
round(prop.table(tab)*100,1) #Pozentual

#Erstelle Prediction-Objekt
pred.rocr <- prediction(pred.prob[,2], titanic_data[-train.index,"Survived"])
#Generiere Performance-Objekt
perf.rocr <- performance(pred.rocr, "tpr", "fpr")
plot(perf.rocr)
```

Datensatz: titanic.csv

0	Survived	Pclass ÷	Name ^	Sex =	Age ÷	Siblings.!	Parents/	Fare
742	0	1	Capt. Edward Gi	male	70.00	1	1	71.0000
692	0	1	Col. John Weir	male	60.00	0	0	26.5500
645	1	1	Col. Oberst Alfo	male	56.00	0	0	35.5000
31	0	1	Don. Manuel E	male	40.00	0	0	27.7208
397	0	2	Dr. Alfred Pain	male	23.00	0	0	10.5000
793	1	1	Dr. Alice (Farnh	female	49.00	0	0	25.9292
763	0	1	Dr. Arthur Jacks	male	46.00	0	0	39.6000

Welche Methode klassifiziert die Banknoten am Besten?

- LDA
- SVM
- NN
- D1

Quellen und Literatur

- I. Thomas A. Runkler: **Data Mining** Modelle und Algorithmen intelligenter

 Datenanalyse ISBN 978-3-8348-1694-8
- II. Viswanathan, Gohil, Yu-Wei: R: Reciepes for Analysis, Visualisatzon and ML Packt Publishing
- III. Joel Grus: Data Science from Scratch: First Principles with Python
- IV. Trevor Hastie, Robert Tibshirani, Jerome Friedman: *The Elements of Statistical Learning Data Mining, Inference, and Prediction,* Springer 2017

