1.
$$RF = 10KD$$
 $x = 1$
 $R_1 = 100D$
 $R_2 = (20^k x) MA = 20 NA$
 $V_{10} = 4.5 mV$

w.k.t
$$Vag = \begin{bmatrix} 1 + R_4 \\ R_1 \end{bmatrix} V_{i0}$$
 due to i/p offset uslings.

$$= (1 + \frac{10 \times 10^2}{100}) 4.5 mV$$

$$= (101) 4.5 mV$$

$$= 454.5 mV$$

and Vioj = RFIR due to i/p bias current.
=
$$(10 \times)(20 \text{ nA})$$

= $200 \times 10^6 \times 10^6$
= $2\times 10^4 = 0.2 \text{ mV}$

80, total Voof = 454.5 + 6.2 mv.

Vot total = 454.7mV)

2. a)

$$50, gain = -1.$$

$$-\frac{kf}{R_1} = -1$$

and output impedence is $\frac{R_0}{1+AR}$.

b)