Przestrzeń Euklidesowa – cz. 2

Rzut na podprzestrzeń wektorową i metoda najmniejszych kwadratów

Def. Niech E = (V, <*, *>) będzie przestrzenią Euklidesa, zaś V_1 podprzestrzenią wektorową przestrzeni V. Wektor $h \in V$ nazywamy wektorem ortogonalnym do p.p.w. V_1 , jeśli jest on ortogonalny do każdego wektora $y \in V_1$: < h, y > = 0.

Wn. Aby wektor h∈V był ortogonalny do p.p.w V_1 potrzeba i wystarcza, aby był ortogonalny do wszystkich wektorów dowolnej bazy p.w. V_1 . Istotnie, jeśli <h, b_k > = 0 dla wektorów bazy $\{b_k\}_{k=1,2,...,n}$ p.p.w. V_1 to również dla dowolnego wektora $y = c_1 b_1 + c_2 b_2 + ... + c_n b_n$, jako liniowej kombinacji wektorów bazy, zachodzi <h, y> = <h, $c_1 b_1 + c_2 b_2 + ... + c_n b_n$ > = 0 wobec liniowości iloczynu skalarnego. Warunek konieczny jest oczywisty.

P1(a). Wektor $\mathbf{u} = [5, 2, -1]$ jest ortogonalny do p.p.w. $V_1 \subset \mathbf{R}^3$ danej równaniem 5x + 2y - z = 0 (płaszczyzna π), gdyż \mathbf{u} jest jej wektorem normalnym i równanie to możemy zapisać z użyciem standardowego iloczynu skalarnego w postaci: $\langle \mathbf{u}, [x, y, z] \rangle = 0$. Dlatego, każda baza p.p.w. V_1 , np. układ $\{b_1 = [1, 0, 5], b_2 = [0, 1, 2]\}$, zawiera wektory ortogonalne do wektora \mathbf{u} . (b) Wektor $\mathbf{w} = [2, -3, 4]$ jest ortogonalny do p.p.w. $V_2 \subset \mathbf{R}^3$ danej równaniem parametrycznym l: [x, y, z] = t [5, 2, -1], dla $t \in \mathbf{R}$ - prosta $l \perp \pi = V_1$ z P1(a).

Def. <u>Podprzestrzenie wektorowe</u> V_1 i V_2 przestrzeni Euklidesa $E = (V, <^*, ^*>)$ nazywamy <u>ortogonalnymi</u>, jeśli dowolne wektory $x \in V_1$ i $y \in V_2$ są ortogonalne.

Def. Zbiór wszystkich wektorów p.w. V ortogonalnych do p.p.w. $V_1 \subset V$ nazywamy <u>dopełnieniem ortogonalnym p.p.w.</u> V_1 , ozn. V_1^{\perp} .

P2. W P1. prosta l, jako p.p.w. $V_2 \subset V = \mathbb{R}^3$, jest dopełnieniem ortogonalnym płaszczyzny π , czyli $V_2 = V_1^{\perp}$ oraz jednocześnie $V_1 = V_2^{\perp}$ – dlaczego ? **Uwaga**: (i) $V^{\perp} = \mathbf{0}$, $\mathbf{0}^{\perp} = V$; (ii) $(V_1^{\perp})^{\perp} = V_1$; (iii) $V_1 \subset V_2 \Rightarrow V_2^{\perp} \subset V_1^{\perp}$. **Def**. Niech V_1 będzie p.p.w. przestrzeni Euklidesa $E = (V, <^*, ^*>)$. Dla dowolnego wektora $y \notin V_1$ wektor $y_0 \in V_1$, taki że wektor $h = y - y_0$ jest ortogonalny do V_1 nazywamy <u>rzutem wektora y na p.p.w.</u> V_1 .

Wn. Wektor $h = y - y_0 \perp V_1$ określa najmniejszą odległość |h| wektora y od p.p.w. V_1 , czyli $|y - y_0| = \min_{x \in V_1} d(y, x) < |y - y_1| dla y_1 \in V_1$ jeśli tylko $y_1 \neq y_0$. Istotnie, bo $y_0 - y_1 \in V_1$ i stąd $\langle h, y_0 - y_1 \rangle = 0$. Wówczas z tw. Pitagorasa mamy: $|y - y_0|^2 + |y_0 - y_1|^2 = |y - y_0 + y_0 - y_1|^2 = |y - y_1|^2$, czyli teza dla $y_1 \neq y_0$.

Tw (konstrukcja rzutu ortogonalnego wektora na p.p.w.)

Dla p.p.w. V_1 z bazą $\{b_k\}_{k=1, 2, ..., m}$ określimy rzut wektora $y \notin V_1$ jako wektor $y_0 \in V_1$, a więc postaci: $y_0 = c_1$ $b_1 + c_2$ $b_2 + ... + c_m$ b_m , gdzie współczynniki $c_k \in \mathbb{R}$ znajdziemy z warunków ortogonalności: $\langle y - y_0, b_k \rangle = 0$. Warunki te tworzą układ m równań liniowych dla m niewiadomych $\{c_1, c_2, ..., c_m\}$:

$$(*) \quad <\mathbf{y}, \, b_k>=c_1< b_1, \, b_k>+c_2< b_2, \, b_k>+...+c_m< b_m, \, b_k> \, , \, k=1, \, 2, \, 3,..., \, m.$$

Macierz układu (*) nazywamy macierzą Gramma: $A = [\langle b_i, b_j \rangle]_{i, j = 1, 2, ..., m}$.

Wn. Macierz Gramma jest nieosobliwa dla wektorów liniowo niezależnych. Dowód: ćwiczenie.

Stąd, układ (*) jest układem Cramera i dlatego posiada zawsze jednoznaczne rozwiązanie niezerowe, jeśli tylko y \neq **0**.

Wn. Dla układu ortogonalnych wektorów macierz Gramma jest diagonalna. Dowód: ćwiczenie.

Stąd, gdy baza $\{b_k\}_{k=1, 2, ..., m}$ p.p.w. V_1 jest

- (i) bazą ortogonalną, to $c_k = \langle y, b_k \rangle / \langle b_k, b_k \rangle$,
- (ii) bazą ortonormalną to $c_k = \langle y, b_k \rangle$ rzut wektora y na k-ty wektor bazy.

Wskazanie współrzędnych $\{c_k\}$ wektora y_0 w bazie $\{b_k\}_{k=1, 2, ..., m}$ p.p.w. V_1 kończy konstrukcję rzutu wektora y na tę podprzestrzeń. Ozn. $y_0 = \text{Proj}_{V_1}(y)$.

- **P3**. Wyznaczmy rzut wektora $y = [1, 1, 1, -1] \in \mathbb{R}^4$ na 1-wymiarową p.p.w. V_1 określoną przez układ 3 równań $x_1 + x_2 = x_2 + x_3 = x_3 + x_4 = 0$. Przechodząc do równania parametrycznego otrzymujemy $V_1 = E([1, -1, 1, -1])$, a stąd dla standardowego iloczynu skalarnego mamy $y_0 = 1/2$ [1, -1, 1, -1], co daje odległość wektora y od V_1 : $d(y, y_0) = (1/4 + 9/4 + 1/4 + 1/4)^{1/2} = 3^{1/2}$. Zauważmy, że $Proj_{V_1}([1, 1, 1, 1]) = \mathbf{0}$, bo $\mathbf{y}' = [1, 1, 1, 1] \in V_1^{\perp}$.
- **P4**. Używając bazy ortogonalnej <u>wielomianów Legendre'a</u> {1, x, x^2 -1/3, x^3 -3/5x} w podprzestrzeni wielomianów stopnia co najwyżej 3, $\mathbf{R}_3[\mathbf{x}]$, łatwo znaleźć rzut wektora $\mathbf{y} = \mathbf{x}^4$ na tę p.p.w. przy iloczynie skalarnym danym przez całkę w przedziale [-1, 1]. Jest to tzw. aproksymacja wielomianowa. Ponieważ $\langle \mathbf{x}^4, \mathbf{x} \rangle = \langle \mathbf{x}^4, \mathbf{x}^3$ -3/5x $\rangle = 0$ to rzut $\mathbf{y}_0 = \mathbf{c}_0 + \mathbf{c}_2 (\mathbf{x}^2$ -1/3) = 6/7 \mathbf{x}^2 3/35, wobec $\mathbf{c}_0 = \langle \mathbf{x}^4, \mathbf{1} \rangle / \langle \mathbf{1}, \mathbf{1} \rangle = 1/5$ i $\mathbf{c}_2 = \langle \mathbf{x}^4, \mathbf{x}^2$ -1/3>/ $\langle \mathbf{x}^2$ -1/3, \mathbf{x}^2 -1/3> = 6/7.
- P5. W p.w. funkcji ciągłych na przedziale $[0, 2\pi]$ rozważmy (2n+1)-wymiarową p.p.w. V_1 z bazą ortogonalną funkcji $\{1, \cos(x), \sin(x), \cos(2x), \sin(2x), ..., \cos(nx), \sin(nx)\}$. Rzut dowolnej funkcji ciągłej f(x) na tę p.p.w. jest optymalną aproksymacją tej funkcji przez tzw. wielomiany trygonometryczne postaci $P(x) = a_0 + a_1 \cos(x) + b_1 \sin(x) + a_2 \cos(2x) + b_2 \sin(2x) + ... + a_n \cos(nx) + b_n \sin(nx) \in V_1$, gdzie współczynniki są znów postaci $a_k = \langle f(x), \cos(kx) \rangle / \langle \cos(kx), \cos(kx) \rangle$ oraz $b_k = \langle f(x), \sin(kx) \rangle / \langle \sin(kx), \sin(kx) \rangle$, gdzie $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x)dx$. Wówczas, np. $x/2 = \pi/2 (\sin(x) + \frac{1}{2}\sin(2x) + ... + 1/n\sin(nx))$ dla $x \in [0, 2\pi]$. Rzut funkcji ciągłej na p.p.w. wielomianów trygonometrycznych jest zadaniem poszukiwania tzw. szeregu Fouriera funkcji ciągłej na przedziale. Współczynniki $\{a_0, a_k, b_k\}_{k=1, 2, ..., n}$ są identyczne jak te znane z teorii szeregów Fouriera: $a_0 = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x) dx$; $a_k = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} f(x) \cos(kx) dx$; $b_k = \frac{1}{\sqrt{\pi}} \int_0^{2\pi} f(x) \sin(kx) dx$.

Powiększając wymiar $2n+1 = \dim V_1$ dokonujemy najczęściej lepszego przybliżenia rzutowanej funkcji, tzn. odległość $d(f, V_1)$ staje się coraz mniejsza.

Metoda najmniejszych kwadratów – rozwiązywanie układów sprzecznych.

Niech teoretycznie wielkość y zależy liniowo od zmiennych $\{x_1, x_2, ..., x_m\}$, czyli $y = c_1x_1 + c_2x_2 + ... + c_mx_m$, gdzie parametry c_k są szukanymi niewiadomymi.

W pewnym doświadczeniu wyznaczamy n-krotnie ciąg $\{y, x_1, ..., x_m\}$ z błędami pomiarowymi, tak że układ

$$y_1 \approx c_1 x_{11} + c_2 x_{21} + \dots + c_m x_{m1},$$

 $y_2 \approx c_1 x_{12} + c_2 x_{22} + \dots + c_{m2} x_{m2},$ \Leftrightarrow $y \approx c_1 b_1 + c_2 b_2 + \dots + c_m b_m$
 $y_n \approx c_1 x_{1n} + c_2 x_{2n} + \dots + c_{mn} x_{mn},$

jest sprzeczny, co znaczy że wektor kolumnowy $y = [y_1, y_2,..., y_n]^T$ <u>nie jest liniową kombinacją</u> wektorów kolumnowych:

 $\begin{aligned} b_1 &= [x_{11},\,x_{12},\,...\,\,,\,x_{1n}]^T,\,b_2 = [x_{21},\,x_{22},\,...\,\,,\,x_{2n}]^T,\,....\,\,,\,b_m = [x_{m1},\,x_{m2},\,...\,\,,\,x_{mn}]^T \\ &\text{i możemy jedynie poszukiwać optymalnego wektora } y_0 \in V_1 = E(b_1,\,b_2\,,\,...\,\,,\,b_m), \\ &\text{tak żeby } d(y,\,y_0) = \text{min. (tu występują ,,najmniejsze kwadraty'')}. \end{aligned}$

Inaczej, szukamy rzutu kolumny wyrazów wolnych y na V_1 , jako p.p.w. wymiaru m (jeśli, co zakładamy, wektory b_k są liniowo niezależne).

Wówczas, ciąg szukanych współczynników c_k jest rozwiązaniem układu równań

$$<$$
y, $b_k>$ = $c_1 <$ b₁, $b_k>$ + $c_2 <$ b₂, $b_k>$ + ... + $c_m <$ b_m, $b_k>$,

z nieosobliwą macierzą Gramma $G= \langle b_i, b_j \rangle$ (patrz konstrukcja rzutu na p.p.w.).

P6. Rozwiążmy sprzeczny układ równań: u + w = 1, u - w = 1, u = -1, stosując metodę najmniejszych kwadratów, jako rzut wektora y = [1, 1, -1] na 2-wymiarową (!) p.p.w. $V_1 = E(b_1, b_2)$ dla $b_1 = [1,1,1]$, $b_2 = [1,-1,0]$). Zauważmy, że baza jest układem ortogonalnym, więc rzut $y_0 = c_1$ [1,1,1] + c_2 [1, -1, 0], gdzie $c_1 = \langle y, b_1 \rangle / \langle b_1, b_1 \rangle = 1/3$ oraz $c_2 = \langle y, b_2 \rangle / \langle b_2, b_2 \rangle = 0$. Ostatecznie, mamy $y_0 = 1/3b_1 = [1/3, 1/3, 1/3]$, jako kolumnę wyrazów wolnych niesprzecznego już układu równań dobranego optymalnie do układu danego:

$$u' + w' = 1/3$$
, $u' - w' = 1/3$, $u' = 1/3$ z optymalnym rozwiązaniem postaci: $[u', w'] = [1/3, 0] = [c_1, c_2] \approx [u, w]$.