CSE366: Artificial Intelligence

"Related Works"

Submitted to:

Dr. Raihan UI Islam(DRUI)

Submitted by:

Group 05

Benazir Meem	2022-3-60-169
Riya Akter	2022-3-60-176
Asifa Akter Liya	2022-3-60-186
Ishrat Jahan Anika	2022-3-60-195

Related Work Summary Table

Title	Dataset name & URL	Descripton	Method name	Accurac y	Research question	Pros & Cons	Citation
(2024) Tea Leaf Disease Detection: Federated Learning CNN Used for Accurate Severity Analysis	Tea Leaf Disease Dataset (collected from six geographic al	Images of diseased tea leaves categorized into four severity levels (1_V_Low) 1-20%, (2_Low) 21-40%, (3_Med) 41-60%, (4_High) 61-80%, (5_V_High) 81-100%. Data from six clients, each with local datasets. Total ~5100 images used for CNN training.	Federated Learning with Convoluti onal Neural Network (CNN) using Federated Averaging algorithm and Decision Tree for interpretab ility.	95–97% (highest 97% for df ₅)	Can a federated CNN model accurately classify tea leaf disease severity while maintaining privacy across distributed data sources?	The model gives high accuracy, ensures data privacy, and works well for different datasets. However, the dataset is not public, needs good computing power and internet, and is limited to tea leaves only.	1

(2024) Tea leaf age quality: Age-stratified tea leaf quality classification dataset	Name:Tea Leaf Age Quality: Age-Stratif ied Tea Leaf Quality Classificati on Dataset URL-https: //data.men deley.com/ datasets/7t 964jmmy3/ 1	The dataset has 2,208 tea leaf images in 4 age-based quality classes (T1–T4), with raw, annotated, and augmented versions for machine learning.	YOLOv8 was used as the supervised backbone for detecting and classifying tea leaves.	mAP:87. 9% Precisio n-89% Recall-8 4.0 %	Can object detection models accurately detect and classify tea leaves by age and quality?	High-qualit y annotations, inter-annota tor reliability is strong, but the dataset is limited to leaf age classificatio n	2
(2023) A Novel Approach For the Detection of Tea Leaf Disease Using Deep Neural Network	Dataset: Tea leaf dataset URL: https://ww w.kaggle.c om/dataset s/saikatdatt a1994/tea-l eaf-disease	A deep learning-ba sed model using a Convolutio nal Neural Network (CNN) is proposed for tea leaf disease detection. Using the Tea Leaf Disease dataset (5867 images, six classes), the model achieved 96.56% accuracy. It effectively	The study uses a Deep Convoluti onal Neural Network (CNN) with data augmenta tion, optimized using the Adam optimizer and ReLU-So ftmax activation s. It applies TensorFlo w-Keras for training	overall accuracy on the test dataset was 96.56%.	Is it possible to achieve significantl y higher accuracy in classifying tea leaf diseases compared to existing methods by using a novel Deep Convolutio nal Neural Network (CNN) architecture ?	The model achieved a high overall accuracy of 96.56% with a new public dataset of 5,867 images and a backend API for real-world use, but showed lower accuracy for Gray Blight (93.46%) and Red Spot (92%) and is currently limited to identifying	3

		classifies diseased and healthy leaves and can be integrated with IoT or mobile application s for real-time monitoring.	and evaluates performan ce through accuracy, precision, recall, F1-score, and confusion matrix analysis.			only five disease types.	
(2025) Tea leaf disease detection using segment anything model and deep convolutional neural networks	Dataset: S. Datta, Tea Leaf Disease, Kaggle.co m, 2022 [online]. URL: https://ww w. kaggle.co m/datasets/ saikatdatta 1994/tea-le af-disease.	This paper presents a CNN-based approach combined with advanced image preprocessing and segmentation n techniques to accurately detect and classify six types of teal leaf diseases, achieving a 95.06% accuracy.	The paper uses advanced image preprocess ing with OpenCV, zero-shot segmentati on using Meta's SAM model, and a custom CNN combined with MLP, SVM, and Decision Tree classifiers	CNN+M LP model achieved a test accuracy of 95.06%.	How can an automated system using image preprocessi ng, zero-shot segmentatio n, and a custom CNN effectively detect and accurately classify tea leaf diseases to enable early and cost-efficien t disease managemen t?	Pros: High accuracy (95.06%), effective preprocessin g, early and cost-efficien t disease detection. Cons: SAM segmentatio n less reliable, some disease confusion, lower performance on certain classes, limited disease coverage.	4
(2020) Tea leaf disease detection using	The research paper used a custom-de	The paper presents a computatio nally efficient	The paper employs a three-step methodolo gy using	The paper reports an overall	How can computatio nally intelligent image	Pros: Novel NSGA-II and PCA-based system with	5

multi-objective	veloped tea	system	mobile-ca	average	processing	multi-class	
image	leaf	using	ptured	accuracy	algorithms	SVM	
segmentation	disease	NSGA-II-b	images	of 83%	—specifical	detects five	
segmentation	dataset	ased image	with	for	ly	tea leaf	
	from three	segmentatio	minimal	detecting	NSGA-II,	diseases	
	tea gardens	n, PCA		five tea	PCA, and	early from	
	_	feature	preprocess	leaf	multi-class	•	
	in Assam,		ing,			real images	
	India,	reduction,	NSGA-II	diseases,	SVM—be	with 83%	
	containing	and	for image	with	integrated	accuracy.	
	312	multi-class	segmentati	individua	to develop	Cons:	
	labeled	SVM	on, PCA	1	an accurate,	Small	
	images of	classificatio	for feature	accuracie	low-overhe	dataset,	
	five	n to	reduction,	s ranging	ad,	lower	
	diseases,	automatical	and	from	automated	accuracy for	
	but no	ly detect	multi-class	75% to	system for	Red Spider,	
	public	five tea leaf	SVM with	over	early-stage	kernel	
	URL is	diseases	an RBF	92%	detection	sensitivity,	
	provided	from 312	kernel for	dependin	and	and limited	
	for access.	mobile-capt	classifying	g on the	classificatio	to	
		ured	five tea	disease.	n of	visible-light	
		images,	leaf		multiple tea	images.	
		achieving	diseases.		leaf	-	
		an average			diseases		
		accuracy of			using		
		83% and			mobile-capt		
		enabling			ured		
		in-field use			images?		
		by farmers.			11111200		

Reference Paper for Comparison:

- [1]. Kabir MM, Hafiz MS, Bandyopadhyaa S, Jim JR, Mridha MF. Tea leaf age quality: Age-stratified tea leaf quality classification dataset. *Data Brief.* 2024 Apr 21;54:110462. doi: 10.1016/j.dib.2024.110462. PMID: 38711743; PMCID: PMC11070690. https://pmc.ncbi.nlm.nih.gov/articles/PMC11070690/
- [2]. S. Vats, V. Kukreja, and S. Mehta, "Tea Leaf Disease Detection: Federated Learning CNN Used for Accurate Severity Analysis," 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation

(IATMSI), Gwalior, India, 2024, pp. 1-6, doi: 10.1109/IATMSI60426.2024.10503207. Keywords: {Data privacy; Technological innovation; Federated learning; Neural networks; Transforms; Data models; Robustness; Tea leaf diseases; Convolutional neural networks (CNNs); Federated learning; Disease classification; Severity levels}. https://ieeexplore.ieee.org/abstract/document/10503207

[3] S. Datta and N. Gupta, "A Novel Approach For the Detection of Tea Leaf Disease Using Deep Neural Network," *Procedia Computer Science*, vol. 218, pp. 2273–2286, 2023.

https://www.sciencedirect.com/science/article/pii/S187705092300203X?via%3Dihub

[4] Balasundaram, A., Sundaresan, P., Bhavsar, A., Mattu, M., Kavitha, M. S., & Shaik, A. (2025). Tea leaf disease detection using segment anything model and deep convolutional neural networks. *Results in Engineering*, *25*, 103784. https://doi.org/10.1016/j.rineng.2024.103784

[5] S. Mukhopadhyay, M. Paul, R. Pal, and D. De, "Tea leaf disease detection using multi-objective image segmentation," *Multimedia Tools and Applications*, vol. 80, pp. 753–771, 2021. https://doi.org/10.1007/s11042-020-09567-1