INTEGRATION

1	Def : If $\frac{d}{dx}(f(x)) = g(x)$ then $\int g(x)dx = f(x) + c$ Where, c is called constant of integration
2	$\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$
3	$\int (f(x) - g(x)) dx = \int f(x) dx - \int g(x) dx$
4	$\int k f(x) dx = k \int f(x) dx \text{ Where , k = constant.}$
5	If $\int f(x)dx = g(x) + c$ then, $\int f(lx + m)dx = \frac{1}{l}g(lx + m) + c$
6	$\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$
7	$\int \frac{f'(x)}{\sqrt{f(x)}} dx = 2\sqrt{f(x)} + c$
8	$\int (f(x))^{n} f'(x) dx = \frac{(f(x))^{n+1}}{n+1} + c$
9	$\int x^n dx = \frac{x^{n+1}}{n+1} + C \text{Where, } n \neq -1$
10	$\int 1 \mathrm{d} x = x + c$
11	$\int \frac{1}{x^2} dx = \frac{-1}{x} + c$
12	$\int \frac{1}{\sqrt{x}} dx = 2\sqrt{x} + c$
13	$\int \frac{1}{x} \mathrm{d}x = \log x + c$
14	$\int e^x dx = e^x + c$
15	$\int a^x dx = \frac{a^x}{\log a} + c \text{ Where, } a > 0, \ a \neq 1$
16	$\int \cos x dx = \sin x + c$
17	$\int \sin x dx = -\cos x + c$
18	$\int \sec^2 x dx = \tan x + c$
19	$\int \csc^2 x dx = -\cot x + c$
20	$\int \sec x \tan x dx = \sec x + c$

21	$\int \csc x \cot x dx = -\csc x + c$
22	$\int \frac{1}{\sqrt{1-x^2}} dx = \sin^{-1}x + c \mathbf{OR} \ -\cos^{-1}x + c$
23	$\int \frac{1}{1+x^2} dx = \tan^{-1} x + c \ \mathbf{OR} \ -\cot^{-1} x + c$
24	$\int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1} x + c \ \mathbf{OR} \ - \csc^{-1} x + c$
25	$\int \tan x dx = \log \sec x + c = -\log \cos x + c$
26	$\int \cot x dx = \log \sin x + c = -\log \csc x + c$
27	$\int \sec x dx = \log \sec x + \tan x + c = \log\left \tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right + c$
28	$\int \csc x dx = \log \csc x - \cot x + c = \log\left \tan\frac{x}{2}\right + c$
29	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$
30	$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left \frac{a + x}{a - x} \right + c$
31	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \log \left \frac{x - a}{x + a} \right + c$
32	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \log x + \sqrt{x^2 + a^2} + c$
33	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \log x + \sqrt{x^2 - a^2} + c$
34	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \left(\frac{x}{a}\right) + c$
35	$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right) + c$
36	$\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log x + \sqrt{x^2 + a^2} + c$
37	$\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log x + \sqrt{x^2 - a^2} + c$
38	$\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$

NANDINI RAI

	Integral / Type	Method	
1.	∫ tan²x dx	Put $tan^2x = sec^2x - 1$	
2.	$\int \cot^2 x dx$	$Put \cot^2 x = \csc^2 x - 1$	
3.	$\int \sin^2 x dx$	$Put \sin^2 x = \left(\frac{1-\cos 2x}{2}\right)$	
4.	$\int \cos^2 x dx$	$Put \cos^2 x = \left(\frac{1 + \cos 2 x}{2}\right)$	
5.	∫ sin ³ x dx	$Put \sin^3 x = \frac{3}{4} \sin x - \frac{1}{4} \sin(3x)$	
6.	∫ cos ³ x dx	Put $\cos^3 x = \frac{3}{4} \cos x + \frac{1}{4} \cos(3x)$	
7.	$\int \frac{1}{1 \pm \sin x} dx, \int \frac{1}{\sec x \pm \tan x} dx$ $\int \frac{1}{\csc x \pm \cot x} dx$	Rationalize it	
8.	$\int \frac{1}{1 \pm \cos x} dx$	Either rationalize it or use half angle formula $1 + \cos x = 2 \cos^2 \left(\frac{x}{2}\right) \& 1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right)$	
9.	To integrate, the product of Sine and sine, sine and cosine, cosine and cosine.	Use defactorisation formula	
10.	$\int \sqrt{1 \pm \sin x} dx$	Use half angle formula, $1 \pm \sin 2\theta = (\cos \theta \pm \sin \theta)^2$	
11.	$\int \sqrt{1 \pm \cos x} \mathrm{dx}$	Use half angle formula, $1 + \cos x = 2\cos^2\left(\frac{x}{2}\right)$, $1 - \cos x = 2\sin^2\left(\frac{x}{2}\right)$	
12.	$\int \frac{p(x)}{Q(x)} dx \text{ Where P(x) and Q(x) are}$ $polynomial in x$ $(degree of P(x) \ge degree of Q(x))$	 Divide P(x) by Q(x) Write P(x) = quotient. Q(x) + remainder Put value of P(x) in integral and take separate division. 	
13.	$\int \frac{P(x)}{ax^2+b} dx$ where $P(x)$ is a polynomial in x.	If degree of $P(x) \le 1$ 1. Separate division & Separate integrals 2. Use $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$ and standard formulae. If degree of $P(x) \ge 2$ 1. First divide $P(x)$ by $ax^2 + b$ 2. Write $P(x)$ = quotient $(ax^2 + b)$ + remainder 3. Put value of $P(x)$ in integral and take separate division and then integrate.	

		,
14.	$\int P(x)\sqrt{ax+b} \ dx , \int \frac{P(x)}{\sqrt{ax+b}} \ dx$ $\int P(x)(ax+b)^n dx , \int \frac{P(x)}{(ax+b)^n} dx$ Where, P(x) is polynomial in x	Put (ax + b) = t
15.	$\int \frac{a \sin x + b \cos x}{c \sin x + d \cos x} dx, \int \frac{ae^{x} + b}{ce^{x} + d} dx$ Note : Answer is always $Ax + B \log DR + c$	 write NR = A(DR)+B d/dx(DR) Find A and B Put value of NR in integral. Take separate division and separate integral. use ∫ f'(x)/f(x) dx = log f(x) + c
16.	$\int \frac{\sin(x+a)}{\sin(x+b)} dx , \int \frac{\sin(x+a)}{\cos(x+b)} dx$ $\int \frac{\cos(x+a)}{\sin(x+b)} dx , \int \frac{\cos(x+a)}{\cos(x+b)} dx$	 Adjust angle of DR in NR Apply formula sin (A ± B), cos (A ± B) in NR only. Take separate division and Separate integral.
17.	$\int \frac{1}{\sin(x-a)\cos(x-b)} dx$	 Multiply and divide by cos (b – a). Write (b – a) = [(x – a) – (x – b)] in NR. Apply formula cos (A – B) in NR only. Take separate division and Separate integral.
18.	$\int \frac{1}{\sin(x-a)\sin(x-b)} dx$ $\int \frac{1}{\cos(x-a)\cos(x-b)} dx$	 Multiply and divide by sin (b – a) Write (b – a) = [(x – a) – (x – b)] in NR. Apply formula sin (A – B) in NR only. Take separate division and Separate integral. Note: In above method, instead of (b – a) we can take (a – b)
19.	$\int \frac{1}{a \sin x + b \cos x} dx$	1. Find $\sqrt{a^2 + b^2} = r$ 2. Divide and multiply by r in DR only. 3. Put $\frac{a}{r} = \cos \alpha$, $\frac{b}{r} = \sin \alpha$ OR $\frac{a}{r} = \sin \alpha$, $\frac{b}{r} = \cos \alpha$ 4. Put DR in form $\sin (A + B)$ OR In form $\cos (A + B)$. 5. use formula $\int \csc dx$ OR $\int \sec x dx$ 6. Replace $\alpha = \tan^{-1} \left(\frac{b}{a}\right)$ OR $\alpha = \tan^{-1} \left(\frac{a}{b}\right)$
20.	$\int \frac{1}{ax^2 + bx + c} dx, \int \frac{1}{quadratic}$	1. Find LT = $\frac{(MT)^2}{4(FT)}$ OR = $\left(\frac{1}{2} \times coefficient\ of\ x\right)^2$ When coefficient of x^2 is 1 2. Make complete square 3. Apply formula, $\int \frac{1}{x^2 + a^2} dx$, $\int \frac{1}{a^2 - x^2} dx$, $\int \frac{1}{x^2 - a^2} dx$

21.	$\int \frac{\text{linear}}{\text{quadratic}} , \int \frac{\text{lx+m}}{\text{ax}^2 + \text{bx+c}} dx$	 Express lx + m = A d/dx (ax² + bx + c) + B Obtain the value of A and B by equating the coefficient of like powers of x on both sides Replace lx + m = A d/dx (ax² + bx + c) + B in given integral Take separate division and separate integral. In one integral , use formula, ∫ f'(x) / f(x) dx = log f(x) + c In another integral, use type, ∫ 1 / quadratic 	
22.	$\int \frac{1}{a\sin^2 x + b\cos^2 x + c} dx$ $\int \frac{1}{a\sin^2 x + b\cos^2 x} dx$ $\int \frac{1}{a\sin^2 x + c} dx, \int \frac{1}{b\cos^2 x + c} dx$	 Divide NR and DR by cos²x. Convert each term of DR in tanx using 1+tan²θ = sec²θ. Put tanx = t. Convert integral into type ∫ 1/(quadratic) 	
23.	$\int \frac{1}{a \sin x + b \cos x + c} dx$ $\int \frac{1}{a \sin x + b \cos x} dx$ $\int \frac{1}{a \sin x + c} dx , \qquad \int \frac{1}{b \cos x + c} dx$	1. Put $\tan\left(\frac{x}{2}\right) = t$ (angle of tan is half of angle of sin & cos) 2. $dx = 2\left(\frac{1}{1+t^2}\right)dt$ 3. $\sin x = \frac{2\tan(x/2)}{1+\tan^2(x/2)} = \frac{2t}{1+t^2}$, $\cos x = \frac{1-\tan^2(x/2)}{1+\tan^2(x/2)} = \frac{1-t^2}{1+t^2}$ 4. Covert integral in type $\int \frac{1}{\text{quadratic}}$	
24.	$\int \frac{1}{x^{\frac{1}{n} + x^{\frac{1}{m}}}} dx$	Put $x = t^l$ Where l is LCM of n and m.	
25.	Odd power of $\sin x$ or $\cos x$ $\int \sin^n x \ dx \ , \int \cos^n x \ dx$ Where, n is odd natural number	 Separate one sin x or cos x. Put remaining in terms of power of sin²x or cos²x. Replace sin²x = 1 - cos²x or cos²x = 1 - sin²x Put cos x = t or sin x = t 	
26.	Even power of sin x or cos x. $\int \sin^n x \ dx, \int \cos^n x \ dx$ Where, n is even natural number	1. Write integrand in power of $\sin^2 x$ or $\cos^2 x$. 2. Replace $\sin^2 x = \left(\frac{1-\cos 2 x}{2}\right)$ or $\cos^2 x = \left(\frac{1+\cos 2 x}{2}\right)$ 3. Go to reducing power by step (2).	
27.	Any power of $\tan x$ or $\cot x$ $\int \tan^n x dx, \int \cot^n x dx$ Where, n is even or odd.	 Separate one tan²x or cot²x. Replace that tan²x = sec²x - 1 or cot²x = cosec²x - 1. Separate integral. In one integral put tan x = t or cot x = t In another integral, repeat above steps, if require. 	

28.	Even power of sec x or cosec x $\int sec^n x dx, \int cosec^n x dx$ Where, n is even natural number	 Separate one sec²x or cosec²x Write remaining in power of sec²x or cosec²x. Replace sec²x = 1 + tan²x or cosec²x = 1 + cot²x. Put tan x = t or cot x = t 	
29.	$\int \sec^{n} x dx, \int \csc^{n} x dx$ Where, n = 3	Use integration by parts.	
		If integrand Contains	Substitute
		1. $\sqrt{a^2 - x^2}$	$x = a \sin \theta, x = a \cos \theta$
		2. $\sqrt{x^2 - a^2}$	$x = a \sec \theta, x = a \csc \theta$
30.	Example involving square root	3. $\sqrt{a^2 + x^2}$	$x = a \tan \theta, x = a \cot \theta$
		4. $\sqrt{(a-x)/(a+x)}$	x = a cos θ
		5. $\sqrt{(a-x)/x}$	$x = a \sin^2 \theta$
		6. $\sqrt{2}$ ax – x ²	$x = 2a \sin^2 \theta$
31.	$\int \frac{1}{\sqrt{\text{quadratic}}}$, $\int \frac{1}{\sqrt{\text{ax}^2 + \text{bx} + \text{c}}} dx$	1. Find LT = $\frac{(MT)^2}{4(FT)}$ OR = $\left(\frac{1}{2}\right)^2$ 2. Adjust LT and make comp 3. Use formula $\int \frac{1}{\sqrt{x^2+a^2}} dx$,	When coefficient of x^2 is 1 lete square.
32.	$\int \frac{linear}{\sqrt{quadratic}} \ , \int \frac{lx+m}{\sqrt{ax^2+bx+c}} dx$	 Use formula ∫ 1/√(x²+a²) dx , ∫ 1/√(x²-a²) dx , ∫ 1/√(x²-x²) dx Express lx + m = A d/dx (ax² + bx + c) + B Obtain the value of A and B by equating the coefficient of like powers of x on both sides Replace lx + m = A d/dx (ax² + bx + c) + B in the given integral Take separate division & separate integral. In one integral, substitute quadratic = t or use formula ∫ f'(x)/√f(x) dx = 2√f(x) + c In another integral, use type ∫ 1/√(quadratic) 	
33.	$\int \frac{1}{\text{linear}\sqrt{\text{linear}}} \int \frac{1}{(px+q)\sqrt{ax+b}} dx$	Put ax + b = t^2 i.e. $\sqrt{\text{linear}} = t$	

	ſ 1		
34.	$\int \frac{1}{\text{linear}\sqrt{\text{quadratic}}}$ $\int \frac{1}{(px+q)\sqrt{ax^2+bx+c}} dx$	$Put px + q = \frac{1}{t}$	
35.	$\int \sqrt{\text{quadratic}}$ $\int \sqrt{\text{ax}^2 + \text{bx} + \text{c}} dx$	1. Find LT = $\frac{(MT)^2}{4(FT)}$ OR = $\left(\frac{1}{2} \times coefficient \ of \ x\right)^2$ When coefficient of x^2 is 1 2. Adjust LT and make complete square. 3. Use formula $\int \sqrt{x^2 + a^2} dx$, $\int \sqrt{x^2 - a^2} dx$, $\int \sqrt{a^2 - x^2} dx$	
36.	$\int linear \sqrt{quadratic}$ $\int (lx + m) \sqrt{ax^2 + bx + c} dx$	 Express lx + m = A d/dx (ax² + bx + c) + B Obtain the value of A and B by equating the coefficient of like powers of x on both sides Replace lx + m = A d/dx (ax² + bx + c) + B in the given integral Take separate integral. In one integral, substitute quadratic = t In another integral, use type ∫ √quadratic 	
37.	INTEGRATION BY PARTIAL FRACTION :		
(i)	$\int \frac{px+q}{(x-a)(x-b)} dx$	distinct linear factor $Express: \frac{px+q}{(x-a)(x-b)} = \frac{A}{(x-a)} + \frac{B}{(x-b)}$	
(ii)	$\int \frac{px^2 + qx + r}{(x - a)(x - b)(x - c)} dx$	distinct linear factor $Express: \frac{px^2+qx+r}{(x-a)(x-b)(x-c)} = \frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$	
(iii)	$\int \frac{px+q}{(x-a)^2} dx$	repetitive linear factor $\text{Express}: \frac{px+q}{(x-a)^2} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2}$	
(iv)	$\int \frac{px^2 + qx + r}{(x - a)^3} dx$	repetitive linear factor $\text{Express}: \frac{px^2 + qx + r}{(x-a)^3} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3}$	
(v)	$\int \frac{px^2 + qx + r}{(x-a)^2(x-b)} dx$	repetitive linear factor $\text{Express}: \frac{px^2 + qx + r}{(x-a)^2(x-b)} = \frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$	
(vi)	$\int \frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)} dx$	Linear & quadratic factor	

		Express: $\frac{px^2+qx+r}{(x-a)(x^2+bx+c)} = \frac{A}{(x-a)} + \frac{Bx+C}{(x^2+bx+c)}$
38.	Inside power $\int \frac{1}{x(ax^n+b)} dx$	1. Multiply x inside the bracket. 2. Divide NR and DR by x^{n+1} . 3. Adjust derivative of DR in NR. 4. Use formula $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$.
39.	Outside power $\int \frac{1}{x^{n}(ax+b)} dx$	 Adjust x and (ax + b) in NR Take separate division and Separate integral Repeat above steps 'n' times.
40.	INTEGRATION BY PARTS: To integrate, the product of two different functions.	$\int uv dx = u \int v dx - \int \left(\frac{du}{dx} \int v dx\right) dx$
	 While using integration by parts we select the function 'v' such that ∫ v dx is easily possible To select 'u' and 'v' we use LIATE rule L – Log, I – Inverse, A – Algebraic, T –Trigo, E – Exponential Function. We select 'u' as that function which come first in LIATE order To integrate, sin⁻¹x, cos⁻¹x& log x we take v = 1 and apply integration by parts 	
41.	$\int \frac{\sin x \pm \cos x}{a + b \sin 2x} dx$	1. Find the function $f(x)$ such that $\frac{d}{dx}[f(x)] = NR$ 2. Put $f(x) = t$ 3. Squaring $f(x) = t$ obtain value of $sin2x$ 4. Use type $\int \frac{1}{quadratic}$
42.	$\int \frac{x^2+1}{x^4+1} \mathrm{d}x$	Divide by x^2 and put $\left(x \pm \frac{1}{x}\right) = t$
43.	$\int \sqrt{\frac{linear}{linear}} , \int \sqrt{\frac{ax+b}{cx+d}} dx$	1. Multiply & divide by $ax + b$ into root 2. Convert into type $\int \frac{\text{linear}}{\sqrt{\text{quadratic}}}$

NANDINI RAI Page 8

DEFINITE INTEGRALS

1	If $\int f(x)dx = g(x) + c$, then $\int_a^b f(x)dx = [g(x)]_a^b = g(b) - g(a)$	
2	$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$	
3	$\int_a^b k. f(x) dx = k \int_a^b f(x) dx, \text{ where k is a constant.}$	
4	$\int_{a}^{b} uv dx = \left(u \int v dx \right)_{a}^{b} - \int_{a}^{b} \left(\frac{du}{dx} \int v dx \right) dx$	
5	$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$	
6	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$	
7	If $a < c < b$, then $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$	
8	$\int_0^a f(x)dx = \int_0^a f(a - x)dx$	
9	$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$	
10	$\int_0^{2a} f(x) dx = \int_0^a [f(x) + f(2a - x)] dx$	
11	$\int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx \text{ if } f(x) = f(2a - x)$	
12	$\int_{-a}^{a} f(x) dx = \begin{cases} 2 \int_{0}^{a} f(x) dx & \text{If f is an even functions} \\ 0 & \text{If f is an odd functions} \end{cases}$	

NANDINI RAI Page 9