中国科学技术大学数学科学学院

	• • •	
2023 ~ 2	0024 学年第	1 学期期末考试试卷

■ A 卷	□ B 卷
-------	-------

课程名称	数学分析 (B3) 2022 年 1 月 8 日下午			课程编号		5-4 544		
考试时间				考试形式	Č	闭卷		
姓名		学	号		_ 学 🦻	ť		
题号			三	四	五.	六	总分	
得分								

一、【30分】填空题与判断题.

- (1) 设 \mathbb{R}^3 上的线性变换 \mathscr{A} 将任意的向量 (x,y,z) 映为 (2x-y,y+z,x), 则它在 (0,0,0) 处的微分将向量 (2022,2023,2024) 映成 _____
- (2) 设 3 阶实对称方阵 A 的特征值为 -1,2,3, 当 $x=(x_1,x_2,x_3)$ 取遍 \mathbb{R}^3 中所有 满足 $x_1^2 + x_2^2 + x_3^2 = 2024$ 的向量时, 函数 xAx^T 的最小值为 ______.
- (3) 记 $B_r = \{(x,y) \in \mathbb{R}^2 : (x-3)^2 + (y-4)^2 < r^2\}, r > 0.$ 那么使得 $\varphi: B_r \to \varphi(B_r), (x, y) \mapsto (x^2 - y^2, 2xy)$

为同胚的正数 r 的上确界是 ______

- (4) ℝⁿ 中的连通开集一定道路连通. 判断正误: _____
- (5) 对 [0,1] 上的实值连续函数空间 C([0,1]) 赋予 \sup 范数, 那么 [0,1] 上次数低 于 2024 的实系数多项式全体是它的闭子集. 判断正误: _____

(6) 设 D 为 \mathbb{R}^2 的非空有界子集. 那么 ∂D 是 \mathbb{R}^2 的非空紧致子集. 判断正误: _____

第1页,共6页

二、【12 分】设 $\mathbb{M}(n)$ 是 n 阶实方阵的全体, 定义映射 $\phi: \mathbb{M}(n) \to \mathbb{M}(n)$ 为 $\phi(A) = AA^{\mathrm{T}}$. 求 $\mathrm{d}\phi_A(H)$, 其中 $A, H \in \mathbb{M}(n)$.

三、【12 分】设 U 是 \mathbb{R}^n 的非空开子集, $\phi:U\to\mathbb{R}^n$ 为 C^1 映射. 设函数 $f:\mathbb{R}^n\to\mathbb{R}$ 满足 $f\circ\phi\equiv 0$, 且 $f^{-1}(0)$ 为 Jordan 零测集. 证明: 对于任意 $x\in U$, 都有 $\mathrm{rank}\,\mathrm{d}\phi(x)< n$.

第2页,共6页

- 四、【16 分】设 D 是 \mathbb{R}^2 的非空子集, 设 $\delta>0$. 请回答如下关于函数 $f:D\to\mathbb{R}$ 在 $P\in D$ 处的振幅 $\omega_f(P)$ 的两个问题, 每问独立评分.
 - (1) (8 分) 设存在 D 中两个收敛到 P 的点列 $\{P_n\}$ 与 $\{Q_n\}$, 使得对于任意 n 成立

证明:
$$\omega_f(P) \geq \delta$$
.

Cof(P. 1) $\geq \delta$.

NHN, $\omega_f(P, A) \geq \delta \Rightarrow \exists Pn. One B_h(p)$
 $f(p_n) - f(o_n) \geq \delta - h$

(2) (8 分) 设 $\omega_f(P) \geq \delta$. 证明: 存在 D 中两个收敛到 P 的点列 $\{P_n\}$ 与 $\{Q_n\}$, 使 得 $\liminf_{n\to\infty}|f(P_n)-f(Q_n)|\geq \delta$.

五、【12 分】设 $D=[0,1]\times[0,1]$, 定义 D 上的函数 f(x,y) 为

$$f(x,y) = \begin{cases} 1 & \text{如果 } x + y \in \mathbb{Q}; \\ 0 & \text{否则}. \end{cases}$$

判断 f 是否为 D 上的黎曼可积函数, 并说明理由.

- 六、【18 分】设 C^1 函数 $f: \mathbb{R}^3 \to \mathbb{R}$ 的像集合包含长度大于零的开区间 (a, b),并且对于任意 $P \in f^{-1}(a, b)$ 都有 $\nabla f(P) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)(P) \neq 0$. 如下四小问独立评分,解答时可用前面小问结论.
 - (1) (5 分) 任取 $t_0 \in (a, b)$, 任取 $P_0 = (x_0, y_0, z_0) \in f^{-1}(t_0)$, 设 $\nabla f(P_0)$ 的第三个分量 $\frac{\partial f}{\partial z}(P_0) \neq 0$. 证明: 存在充分小的正数 δ , 存在 \mathbb{R}^2 中以 (x_0, y_0) 为心的小开圆盘 V_0 , 存在 $P_0 \in \mathbb{R}^3$ 的 Jordan 可测开邻域 U_0 以及 C^1 参数变换

$$\Phi_0: V_0 \times (t_0 - \delta, t_0 + \delta) \to U_0, (x, y, t) \mapsto (x, y, \varphi_0(x, y, t)),$$

使得 $f(x, y, \varphi_0(x, y, t)) = t$; 并求 Φ_0 的 Jacobi 行列式.

提示: 若 $f(P_0)$ 的第一或者第二个分量不等于零, 那么成立类似结论.

第4页,共6页

(2) (5分)设g是 U_0 上的有界实值连续函数,用重积分换元公式证明

$$\int_{U_0} g \,\mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{t_0 - \delta}^{t_0 + \delta} \mathrm{d}t \, \int_{f^{-1}(t) \cap U_0} \, \frac{g}{|\nabla f|} \,\mathrm{d}\sigma_t,$$

这里 $|\cdot|$ 为欧氏范数, $\mathrm{d}\sigma_t$ 是二维 C^1 曲面 $f^{-1}(t)$ 上的面积元.

(3) (3 分) 设长度大于零的有界闭区间 $[c, d] \subset (a, b)$, 且 $f^{-1}([c, d])$ 是 \mathbb{R}^3 中的紧致 Jordan 可测集. 证明存在有限个点 $P_1, \dots, P_n \in f^{-1}([c, d])$, 使得由 (1) 得到的 P_1 的可测开邻域 U_1, \dots, P_n 的可测开邻域 U_n 构成 $f^{-1}([c, d])$ 的开覆盖.

(4) (5 分) 证明: $D_1 := f^{-1}([c, d]) \cap U_1, \dots, D_n := f^{-1}([c, d]) \cap U_n$ 都是 Jordan 可测集, 并且成立余面积公式:

$$\int_{f^{-1}\left([c,d]\right)} \mathrm{d}x \mathrm{d}y \mathrm{d}z = \int_{c}^{d} \mathrm{d}t \, \int_{f^{-1}(t)} \, \frac{\mathrm{d}\sigma_{t}}{|\nabla f|}.$$

提示: 存在 U_i 上连续紧支集函数 $g_i \geq 0$, 使得在 $f^{-1}([c,d])$ 上成立 $\sum_{i=1}^n g_i \equiv 1$.