Experiment 7 Lee's Method

Aumshree P. Shah 20231059^{a)}

(Dated: 20 March 2025)

Synopsis

In this experiment the thermal conductivity of a bad conductor is measured.

I. THEORY AND PROCEDURE

A. Apparatus

• Lee's Apparatus

• Bad conductor discs

• Two thermometers

• Boiler and Induction

• Stop watch

• Weighing balance

• Vernier Caliper

• Screw gauge

B. Theory

Fourier's Law of heat conductance gives the rate of transfer of heat between two objects at temperatures T_1 and T_2 connected by a conductor with conductivity k and cross-sectional areas A (assumed uniform) and length l as

$$\frac{\Delta Q}{\Delta t} = k \frac{A}{l} (T_2 - T_1)$$

This equation governs the rate of heat transfer from disc D_2 to D_1 in the first half of the experiment; where D_1 and D_2 are bottom and top discs of Lee's apparatus respectively.

The instantaneous rate at which a warm body loses heat to surroundings is given by Newton's law of cooling (which is a special case of Stefan's law, when the temperature differences are small, and there are losses other than radiative losses).

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -b(T - T_a)$$

, where T_a is the ambient temperature. This law governs the rate at which the disc D_1 cools in the second half of the experiment.

If m is the mass of the disk and s is the specific heat of the material of D_1 , then the rate at which heat is lost by the disc D_1

$$\frac{\Delta Q_1}{\Delta t} = ms \frac{\mathrm{d}t_1}{\mathrm{d}t}$$

In the steady state achieved in the first half of the experiment, the heat supplied by the steam is lost by cooling of disc D_1 . Hence the heat balance in the experiment is given by combining equations two heat transfer equations.

$$ms\frac{\mathrm{d}T}{\mathrm{d}t} = k\frac{A}{l}(T_2 - T_1) \tag{1}$$

 $^{^{\}rm a)} {\it aumshree.pinkalbenshah@students.iiserpune.ac.in}$

 $\mathrm{d}T/\mathrm{d}t$ for D_1 can be determined from the cooling curve obtained in the second part of the experiment. As an approximation a single value of $\mathrm{d}T/\mathrm{d}t$ can be used for this calculation. It is calculated at the value T_1 during the cooling of the disc D_1 from $T_1 + 10$ °C to $T_1 - 7$ °C. From the known value of $s = 0.380~\mathrm{J\,g^{-1}\,K^{-1}}$ for brass, k can be determined.

Note that if the two thermometers do not initially show the same reading, the difference $T_2 - T_1$ will have to be corrected by the quantity T' determined at the beginning of the experiment.

C. Procedure

- Fill the boiler with water to nearly half and heat it to produce steam. In the mean time, weigh the disc D₁ on which the apparatus rests.
- 2. Further, measure the diameter of specimen disc d with a vernier calliper and its thickness using a screw gauge at several spaces and determine the mean thickness.
- 3. Clamp the glass specimen between the base disk D_2 of the steam jacket and the auxiliary brass disc D_1 . Insert the thermometers (either mercury thermometer or thermocouples) in the two brass disks D_1 , D_2 .
- 4. Check if they show the same readings at room temperature. If not, note the difference T'.
- 5. Connect the boiler outlet with the inlet of the steam chamber by a rubber tube. Continue passing steam until the two brass disks reach a steady temperature. Note down the temperatures T_1 and T_2 of the two discs.
- 6. The second part of the experiment involves the determination of the cooling rate of disc D_1 alone. Remove the sample disc. Heat the disc D_1 directly by the steam chamber till its temperature is about $T_1 + 10$ °C.
- 7. Remove the steam chamber and place the insulating disk on it. Record the temperature of the brass disc at half minute intervals. Continue till the temperature falls to about $T_1 7$ °C.

D. Precautions

• PRECAUTIONS

II. OBSERVATIONS

Mass of D1 = in all variables add a underline

ENTER A Actual data HERE			
Material	T_i (°C)	Length (cm)	$\Delta L \ (10^{-5} \ \text{m})$
Copper	24.0	59.8	75
Copper	25.5-24.5-25.5	59.7	74
Aluminium	24.0-23.0-24.7	59.9	105
Brass	24.1-23.2-24.3	59.7	85
Steel	22.1-24.8-20.5	-	74
Aluminium	24.3-23.7-24.3	59.8	104
Brass	23.7-22.4-24.3	60.0	85
Steel	24.6-25.3	59.9	76
Brass	24.8-25.3	60.1	86
Steel	23.3-23.5	59.7	76

TABLE I. Data taken on 11 Mar 2025, the variables represents the property as described in the theory.

Least count of scale: 0.1 cm Least count of thermometer: 0.1 $^{\circ}$ C Least count of spherometer: 10^{-5} m

III. UNCERTAINTIES AND ERROR SOURCES

A. Measurement Uncertainties

- Weight Measurements:
- Length Measurements:
- Temperature Measurements: Uncertainty of ± 0.05 K due to instrument resolution.

B. Random Errors

•

C. Systematic Errors

•

•

IV. CALCULATION AND ERROR ANALYSIS

A. Error Propagation

Using Equation-1 we get:

$$k = ms \frac{l}{A} \frac{\dot{T}}{T_2 - T_1}$$

From the length, temperature and mass uncertainty, the error to k will travel using the formula for error propagation as: ENTER A BOOK ERROR PROPER HERE

(2)

REFRENCE THE BOOOk The uncertainty in α is given by the basic formula for error propagation.:

$$\sigma_{\alpha} = \alpha \sqrt{\left(\frac{\sigma_{\Delta L}}{\Delta L}\right)^{2} + \left(\frac{\sigma_{L}}{L}\right)^{2} + \left(\frac{\sigma_{\Delta T}}{\Delta T}\right)^{2}}$$

where $\sigma_{\Delta L}, \sigma_{L}, \sigma_{\Delta T}$ are the uncertainties in expansion length, initial length, and temperature difference, respectively.

B. Calculation

We calculate the value of α of all data points and their uncertainity from hte above formul, we get:¹

 $^{^{1}}$ Refer to ? for calculations

Material	$\alpha (1/^{\circ}C)$
Aluminium	$(2.303 \pm 0.005) \times 10^{-5}$
Aluminium	$(2.291 \pm 0.005) \times 10^{-5}$
Brass	$(1.870 \pm 0.004) \times 10^{-5}$
Brass	$(1.851 \pm 0.004) \times 10^{-5}$
Brass	$(1.909 \pm 0.004) \times 10^{-5}$
Copper	$(1.650 \pm 0.003) \times 10^{-5}$
Copper	$(1.656 \pm 0.003) \times 10^{-5}$
Steel	$(1.591 \pm 0.003) \times 10^{-5}$
Steel	$(1.691 \pm 0.003) \times 10^{-5}$
Steel	$(1.662 \pm 0.003) \times 10^{-5}$

TABLE II. Calculated expansion coefficients

V. RESULT

The calculated values of α show high precision but large variations from expected values. The inconsistencies suggest experimental errors, leading to unreliable results.

ENTER A ACTUAL LAB VALUES HERE DONT DELTE

Lets fucking go

Appendix A: Theoretical Values

The expected values of α in ${}^{\circ}\mathrm{C}^{-1}$ are:

$$\alpha_{\rm Steel} \approx (1.08 - 1.25) \times 10^{-5}$$

$$\alpha_{\rm Brass} \approx (1.8 - 1.9) \times 10^{-5}$$

$$\alpha_{\rm Aluminium} \approx (2.1 - 2.4) \times 10^{-5}$$

$$\alpha_{\rm Copper} \approx 1.78 \times 10^{-5}$$

REFERENCES