PHẦN 1: THÔNG TIN TÓM TẮT (18520440)

Tên đề tài (IN HOA)	NHẬN DIỆN TÒA NHÀ TRONG UIT
Họ và tên (IN HOA)	VÕ QUỐC AN
Lớp - MSSV	CS114.K21.KHTN - 18520440
Ånh	
Link Github chứa repos CS114.K21	https://github.com/anvq38/CS114.K21.KHTN
Điểm đánh giá giữa kỳ (A B C D)	С
Thành tích để tính điểm bonus	Không có
Tóm tắt Bài tập quá trình	 Số lần nộp bài tập Quá trình trên Classroom: 36/36 Số lần nộp bài Thực hành trên Classroom: 7/7 Tự đánh giá (100/100):
Tóm tắt Đồ án Cuối kỳ (không quá 500	- Input là Hình ảnh một tòa nhà trong UIT, output cho biết đó là tòa nhà nào trong UIT. Đối với dữ

từ)	liệu ảnh thì cần phải có các bước tiền xử lý dữ liệu
	và rút trích đặc trưng ảnh. Sau đó, sử dụng dữ liệu
	vừa được rút trích để huấn luyện mô hình. Kết quả
	đánh giá model cho kết quả tốt nhất là 81% trên bộ
	dữ liệu huấn luyện và 60.7% trên bộ dữ liệu mới.
	- Tự đánh giá (85/100)
Link khác	- Link đến báo cáo chi tiết :
	https://github.com/anvq38/CS114.K21.KHTN/blob/m
	aster/Final_Report.pdf
	 Link đến báo cáo slides (pdf):
	https://github.com/anvq38/CS114.K21.KHTN/blob/m
	aster/Final_Presentation.pdf
	- Link đến đồ án:
	https://github.com/anvq38/CS114.K21.KHTN/blob/m
	aster/Final_MachineLearning.ipynb

PHẦN 2: BÁO CÁO TÓM TẮT ĐỒ ÁN CUỐI KỲ

I.Mô tả bài toán

Bài toán: Phân biệt chó và mèo

Input: Hình ảnh một tòa nhà trong UIT

Output: Cho biết đó là tòa nhà nào trong UIT

Kết quả đạt được:

- Đã xây dựng được nhiều model với các phương pháp lấy đặc trưng
 Hog
- Model tốt nhất đạt được kết quả 81% trên bộ dữ liệu huấn luyện và
 60.7% trên bộ dữ liệu mới.

II. Mô tả bộ dữ liệu

Cách xây dựng bộ dữ liệu: Datasets tự chụp cùng với 3 bạn có chung đề tài là Nguyễn Trần Trung, Nguyễn Khánh Toàn và Trần Đình Khang

Datasets có 1096 bức ảnh chia thành 5 labels:

- B (nhà B): 277
- C (nhà C): 235
- D (nhà D): 157
- E (nhà E): 257
- CT (canteen): 170

Testsets có 461 bức ảnh.

III. Tiền xử lý dữ liệu và rút trích đặc trưng

- Tiền xử lý dữ liệu: resize ảnh về kích thước 256x256, chuyển ảnh sang

ảnh màu RGB

- Trích xuất đặc trưng: Trong đồ án môn học này, em sử dụng phương pháp HOG đề rút trích đặc trưng.
- Phân chia dữ liệu:
 - + Em phân chia bộ dữ liệu datasets mình chụp thành 2 phần:
 - 80% làm dữ liệu để train model
 - 20% làm dữ liệu test để đánh giá model
 - + Bộ dữ liệu testsets 461 bức ảnh dùng để đánh giá model.

IV. Mô hình thuật toán máy học

Chọn ra 5 model training để đối chiếu và so sánh

- Support Vector machine
- Linear support vector
- Decision tree
- K-nearest Neighbors
- Logistic Regression

V. Kết quả đánh giá model

1. Support vector machine

- Kết quả trên bộ dữ liệu huấn luyện

Score =	0.79	545454545454	154		
		precision	recall	f1-score	support
	В	0.81	0.75	0.78	57
	C	0.80	0.88	0.83	49
	CT	0.54	0.64	0.58	22
	D	0.94	0.85	0.89	34
	Е	0.82	0.79	0.81	58
accu	racy			0.80	220
macro	avg	0.78	0.78	0.78	220
weighted	avg	0.80	0.80	0.80	220

- Kết quả trên bộ dữ liệu mới

support	f1-score	recall	precision	
101	0.49	0.41	0.61	В
85	0.26	0.20	0.35	C
89	0.76	0.80	0.73	CT
95	0.97	0.94	1.00	D
91	0.49	0.68	0.39	E
461	0.61			accuracy
461	0.59	0.60	0.62	macro avg
461	0.60	0.61	0.62	weighted avg

SVC 0.6073752711496746

2. Linear support vector

- Kết quả trên bộ dữ liệu huấn luyện

Score:	0.809	0909090909091			
		precision	recall	f1-score	support
	В	0.85	0.82	0.84	57
	C	0.78	0.86	0.82	49
	CT	0.62	0.68	0.65	22
	D	0.91	0.85	0.88	34
	Е	0.82	0.78	0.80	58
acc	uracy			0.81	220
macr	o avg	0.80	0.80	0.80	220
weighte	d avg	0.81	0.81	0.81	220

- Kết quả trên bộ dữ liệu mới

	precision	recall	f1-score	support
В	0.48	0.25	0.33	101
C	0.36	0.18	0.24	85
CT	0.71	0.84	0.77	89
D	0.95	0.93	0.94	95
E	0.35	0.65	0.45	91
accuracy			0.57	461
macro avg	0.57	0.57	0.55	461
weighted avg	0.57	0.57	0.55	461

LinearSVC 0.5683297180043384

3. Decision tree

- Kết quả trên bộ dữ liệu huấn luyện

Score = 0	.42	727272727272	725		
		precision	recall	f1-score	support
	В	0.52	0.46	0.49	57
	C	0.50	0.53	0.51	49
	CT	0.11	0.18	0.14	22
	D	0.45	0.44	0.45	34
	E	0.46	0.40	0.43	58
accura	су			0.43	220
macro a	vg	0.41	0.40	0.40	220
weighted a	vg	0.45	0.43	0.44	220

- Kết quả trên bộ dữ liệu mới

	precision	recall	f1-score	support
В	0.24	0.22	0.23	101
C	0.14	0.14	0.14	85
CT	0.31	0.25	0.27	89
D	0.38	0.33	0.35	95
E	0.20	0.30	0.24	91
accuracy			0.25	461
macro avg	0.25	0.25	0.25	461
weighted avg	0.26	0.25	0.25	461

DecisionTreeClassifier 0.2472885032537961

4. K - nearest neighbors

- Kết quả trên bộ dữ liệu huấn luyện.

Score =	0.37	272727272727	274		
		precision	recall	f1-score	support
	В	1.00	0.12	0.22	57
	C	1.00	0.22	0.37	49
	CT	0.16	0.64	0.26	22
	D	0.32	0.82	0.46	34
	Е	0.79	0.38	0.51	58
accu	racy			0.37	220
macro	avg	0.65	0.44	0.36	220
weighted	avg	0.75	0.37	0.37	220

- Kết quả trên bộ dữ liệu mới

	precision	recall	f1-score	support
В	0.00	0.00	0.00	101
C	0.00	0.00	0.00	85
CT	0.34	0.89	0.50	89
D	0.28	0.56	0.37	95
E	0.59	0.22	0.32	91
accuracy			0.33	461
macro avg	0.24	0.33	0.24	461
weighted avg	0.24	0.33	0.24	461

KNeighborsClassifier 0.3297180043383948

5. Logistic regression

- Kết quả trên bộ dữ liệu huấn luyện

Score = 0.8				
	precision	recall	f1-score	support
В	0.85	0.77	0.81	57
C	0.76	0.86	0.81	49
CT	0.62	0.68	0.65	22
D	0.94	0.88	0.91	34
E	0.79	0.78	0.78	58
accuracy			0.80	220
macro avg	0.79	0.79	0.79	220
weighted avg	0.80	0.80	0.80	220

- Kết quả trên bộ dữ liệu mới

m.	precision	recall	f1-score	support
Е	0.52	0.25	0.34	101
C	0.36	0.19	0.25	85
СТ	0.71	0.85	0.78	89
0	0.96	0.94	0.95	95
E	0.36	0.67	0.47	91
accuracy	,		0.58	461
macro avg	0.58	0.58	0.56	461
weighted avg	0.59	0.58	0.56	461

LogisticRegression 0.579175704989154

6. Đánh giá model với k - fold

SVM: 0.802534 (0.038470) DTC: 0.373224 (0.050048) KNN: 0.394749 (0.055073) LR: 0.817359 (0.035220)

- Kết quả đánh giá cao nhất: SVM và LR > 80%

VI. Kết luận

Kết quả dự đoán của mô hình:

SVM : C LogisticRegression : C KNeighbors : D DecisionTree : C Linear : C

Mô hình cho kết quả khả quan khi kiểm tra với bộ dữ liệu huấn luyện nhưng chưa cho kết quả tốt với bộ dữ liệu mới. Độ chính xác tốt

nhất với bộ dữ liệu huấn luyện là 81%, với bộ dữ liệu mới là 60.7%. Những nguyên nhân dẫn đến là:

- + Bộ dữ liệu còn ít.
- + Thao tác tiền xử lý dữ liệu và rút trích đặc trưng còn hạn chế.
- + Bộ dữ liệu chưa đa dạng về góc chụp và độ sáng.

VII. Hướng phát triển

- Tiền xử lý dữ liệu tốt hơn
- Tăng độ đa dạng cho dữ liệu
- Tìm cách thức thức rút trích đặc trưng hiệu quả hơn cho model