Introduction to Audio Content Analysis

Module 9.3: Onset Detection

alexander lerch

introduction overview

corresponding textbook section

Section 9.3

■ lecture content

- detection of the start of musical events
- fundamental methods for generating a novelty function
- fundamental methods for peak picking

■ learning objectives

- describe the term onset
- implement an automatic onset detection system

Module 9.3: Onset Detection

introduction

corresponding textbook section

Section 9.3

■ lecture content

- detection of the start of musical events
- fundamental methods for generating a novelty function
- fundamental methods for peak picking

■ learning objectives

- describe the term onset
- implement an automatic onset detection system

Module 9.3: Onset Detection

onset detection problem statement

Georgia Center for Music Tech Tech Technology

- **onset**: begin of musical event
- polyphonic audio signals:
 - unknown number of voices and events
 - multiple onsets occur at "the same" time
 - onset might be obfuscated by other musical content

onset detection overview

novelty function

measure of probability for new events/signal change over time

peak picking

identify the most likely locations for onsets

onset detection overview

1 novelty function

measure of probability for new events/signal change over time

2 peak picking

identify the most likely locations for onsets

onset detection overview

novelty function

measure of probability for new events/signal change over time

2 peak picking

• identify the most likely locations for onsets

Georgia Center for Music Tech Tech Technology

- alternative names
 - detection function
 - difference function

processing steps

- 1 extract features
- 2 compute derivative
- 3 smooth result
- 4 apply Half-Wave-Rectification HWR

Georgia Center for Music Tech Technology

- alternative names
 - detection function
 - difference function
- processing steps
 - 1 extract features
 - 2 compute derivative
 - 3 smooth result
 - 4 apply Half-Wave-Rectification HWR

Georgia Center for Music Tech Technology

- alternative names
 - detection function
 - difference function
- processing steps
 - 1 extract features
 - 2 compute derivative
 - 3 smooth result
 - 4 apply Half-Wave-Rectification HWR

Georgia Center for Music Tech Tech Technology

- alternative names
 - detection function
 - difference function
- processing steps
 - 1 extract features
 - 2 compute derivative
 - 3 smooth result
 - 4 apply Half-Wave-Rectification HWR

Georgia Center for Music Tech Technology

- alternative names
 - detection function
 - difference function
- processing steps
 - 1 extract features
 - 2 compute derivative
 - 3 smooth result
 - 4 apply Half-Wave-Rectification HWR

onset detection novelty function examples 1/3

Georgia Center for Music Tech Cechnology

11 time domain

- extract time domain envelope
- calculate slope

pitch-based: evaluate pitch changes

onset detection novelty function examples 1/3

Georgia Center for Music Tech Technology

1 time domain

- extract time domain envelope
- calculate slope

pitch-based: evaluate pitch changes

¹N. Collins, "Using a pitch detector for onset detection," in *ISMIR*, 2005, pp. 100–106.

matlab source: plotOnset.m

onset detection novelty function examples 2/3

3 STFT-based: compute block difference

flux

$$\begin{array}{l} \blacktriangleright \ \ d_{\mathrm{hai}}(n) = \sum\limits_{k=0}^{\mathcal{K}/2-1} \log_2\left(\frac{|X(k,n)|}{|X(k,n-1)|}\right) \\ \\ \blacktriangleright \ \ d_{\mathrm{lar}}(n) = \sum\limits_{k=k(f_{\mathrm{min}})}^{k(f_{\mathrm{max}})} \sqrt{|X(k,n)|} - \sqrt{|X(k,n-1)|} \end{array}$$

- cosine distance
- complex

onset detection novelty function examples 2/3

Georgia Center for Music Technology

3 STFT-based: compute block difference

flux

$$\begin{array}{l} \blacktriangleright \ \, d_{\mathrm{hai}}(n) = \sum\limits_{k=0}^{\mathcal{K}/2-1} \log_2\left(\frac{|X(k,n)|}{|X(k,n-1)|}\right) \\ \\ \blacktriangleright \ \, d_{\mathrm{lar}}(n) = \sum\limits_{k=k(f_{\mathrm{min}})}^{k(f_{\mathrm{max}})} \sqrt{|X(k,n)|} - \sqrt{|X(k,n-1)|} \end{array}$$

cosine distance

complex

onset detection novelty function examples 2/3

Georgia Center for Music Tech Technology

3 STFT-based: compute block difference

flux

$$d_{\text{hai}}(n) = \sum_{k=0}^{K/2-1} \log_2\left(\frac{|X(k,n)|}{|X(k,n-1)|}\right)$$

$$d_{\text{lar}}(n) = \sum_{k=k(f_{\text{min}})}^{k(f_{\text{max}})} \sqrt{|X(k,n)|} - \sqrt{|X(k,n-1)|}$$

cosine distance

complex

$$d_{\text{dux}}(n) = \sum_{k=0}^{K/2-1} |X(k,n) - X(k,n-1)|$$

onset detection novelty function examples 3/3

3 STFT-based cont'd

- Goto-distance²
 - higher power than closest preceding and following bins

Module 9.3: Onset Detection 7 / 11

²M. Goto and Y. Muraoka, "Music Understanding At The Beat Level – Real-time Beat Tracking For Audio Signals," in *Proceedings of the Workshop on Computational Auditory Scene Analysis (IJCAI)*, Aug. 1995.

onset detection peak picking: introduction

detect onsets in the smoothed novelty function

■ typical criteria

- local maximum & salient peak
- higher than minimum likelihood
- not too close to maxima with higher likelihood
- other options: high attack slope, distance to prev.

onset detection peak picking: introduction

- detect onsets in the smoothed novelty function
- typical **criteria**
 - local maximum & salient peak
 - higher than minimum likelihood
 - not too close to maxima with higher likelihood
 - other options: high attack slope, distance to prev. min, . . .

onset detection peak picking: thresholding

- options for thresholding
 - fixed threshold

$$G_{d,c} = \lambda_1$$

smoothed threshold

$$G_{d, ext{ma}} = \lambda_2 + \sum_{j=0}^{\mathcal{O}-1} b(j) \cdot d(i-j)$$

• median threshold

$$G_{d,\mathrm{me}} = \lambda_2 + \hat{Q}_d(0.5)$$

onset detection

■ goal

- compare a series of ground truth onset time stamps with a series of predicted time stamps
- **ground truth annotation** problems
 - deviations between annotators
 - how to annotate quasi-synchronous onsets
- metrics
 - measure TP with tolerance range ⇒ TP, FN, FP (TN only implicitly)
 - Precision, Recall, F-Measure
 - other metrics
 - ► mean (absolute) deviation
 - standard deviation
 - max deviation

onset detection evaluation

■ goal

 compare a series of ground truth onset time stamps with a series of predicted time stamps

■ ground truth annotation problems

- deviations between annotators
- how to annotate quasi-synchronous onsets

metrics

- measure TP with tolerance range ⇒ TP, FN, FP (TN only implicitly)
- Precision, Recall, F-Measure
- other metrics
 - ▶ mean (absolute) deviation
 - standard deviation
 - max deviation

onset detection

■ goal

 compare a series of ground truth onset time stamps with a series of predicted time stamps

■ ground truth annotation problems

- deviations between annotators
- how to annotate quasi-synchronous onsets

metrics

- measure TP with tolerance range ⇒ TP, FN, FP (TN only implicitly)
- Precision, Recall, F-Measure
- other metrics
 - ► mean (absolute) deviation
 - standard deviation
 - max deviation

novelty function

- measure of unexpectedness likelihood of an event
 - often a measure similar to flux

■ peak picking

- detecting peaks (onsets) in the novelty function
- usually done by smoothing and adaptive thresholding

