CPT108 Data Structures and Algorithms

Lecture 22 and 23

Graph Traversal: BFS and DFS

Graphs

Some definitions (cont.)

Subgraph

• A graph $H(V_H, E_H)$ is a subgraph of $G(V_G, E_G)$ if and only iff $V_H \subset V_G$ and $E_H \subset V_G$

Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes
 - i.e., given a graph representation and a vertex s in the graph, find ALL paths from s to other vertices

- Can we use recursion when traversing a graph?
 - Possible, but with caution due to cycle
- Even in acyclic graphs, can get combinatorial explosions:

Treat "0" as the root and do recursive traversal down the two edges out of each node: $O(2^N)$ operations!

• So, typically try to visit each node constant number of times (e.g., once)

Traversing a Graph (cont.)

- Two common graph traversal algorithms
 - Depth first search (DFS)
 - Breadth first search (BFS)

Applications

- Find shortest path between nodes in unweighted graph
- Cycle detection in undirected graph
- GPS navigation for neighboring locations
- Find person in social networks
- Devices connected to a particular network
- Crawlers in Search Engines

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - ullet the number of edges on a path from s

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

Main concept

- Visit other nodes at increasing distances from a source node s
 - What do we mean by "distances"?
 - the number of edges on a path from s

set source $s = \{1\}$

BFS tree / BFS forest

What would a "Level" order traversal tell you?

Breadth First Search (BFS) (cont.)

Exercise

Report on the order of the vertices encountered on a BFS starting from vertex A. Break all ties by picking the vertices in alphabetic order (i.e., A before Z).

Breadth First Search (BFS) (cont.)

Pseudocode

- 1 Initialization: Enqueue the starting node into a queue and mark it as visited
- Exploration: While the queue is not empty
 - Dequeue a node from the queue and visit it (e.g., print its value)
 - For each unvisited neighbor of the dequeued node:
 - Enqueue the neighbor into the queue
 - Mark the neighbor as visited
- Termination: Repeat Step 2 until the queue is empty

Recap: Adjacency list vs Adjacency matrix

```
Given a graph G = (V, E):

n = \text{number of vertex}, and

m = \text{number of edges}
```

Adjacency list

- More compact than adjacency matrix if graph has few edges
- Requires a scan of adjacency list to check if an edge exists
- Requires a scan to obtain all edges!

Adjacency matrix

- Always require n² space
 - This can waste a lot of space if the number of edges are sparse
- Find if an edge exist if O(1)
- Obtain all edges in $O(n^2)$

Breadth First Search (BFS) (cont.)

Time complexity

Using adjacency list

```
and m = \text{number of edges})
                                                           Recall: \sum_{v \in V} \deg(v) = 2m
BFS(G, s)
                                                            Total running time of the while loop
      for each vertex u \in G. V
                                                            = \sum_{v \in V} (\deg(v) + 1)
  2
            flag[u] = false
                                                            = \sum_{v \in V} \deg(v) + \sum_{v \in V} 1
  3
      Q =empty queue
                                                            = O(2m + n)
      flag[s] = true
                                                            = O(m+n) \text{ (or } O(|E|+|V|))
      ENQUEUE(Q, s)
                                      Each vertex will enter O
      while Q is not empty ←
                                      at most once
            v = \mathsf{DEQUEUE}(Q)
            for each w adjacent to v ←
                                                 Each iteration takes time proportional to
  8
                                                 deg(V) + 1 (the number 1 is to account
                  if flag[w] = false
  9
                                                 for the case where deg(\mathbf{v}) = 0 — the
                                                 work required is 1, not (0).
                        flag[w] = true
 10
                        ENQUEUE(Q, w)
 11
```

(n = number of vertex)

Breadth First Search (BFS) (cont.)

Time complexity

Using adjacency matrix

```
and m = \text{number of edges})
                                                         Total running time of the while loop
BFS(G, s)
                                                          = \sum_{v \in V} (n)
      for each vertex u \in G. V
                                                          = O(n \times n)
            flag[u] = false
                                                         = O(n^2) (or O(|V|^2))
  3
      Q =empty queue
                                                         which is independent to the number
      flag[s] = true
                                                         of edges m
      ENQUEUE(Q, s)
                                 Each vertex will enter Ω
      while Q is not empty ←
                                    at most once
            v = \mathsf{DEQUEUE}(Q)
           for each w adjacent to v \leftarrow Finding the adjacent vertices of v requires
  8
                                              checking all elements in the row, which
                 if flag[w] = false
  9
                                              takes O(n).
                       flag[w] = true
 10
                       ENQUEUE(Q, w)
 11
```

(n = number of vertex)

Applications

- Traverse and return value (such as max, min, etc.)
- Find a path from point A to B
- Find connected components
- Detect looping (cycles) and
- Solve combinatorial problems, such as:
 - How may ways are there to arrange something
 - Find all possible combinations of ...
 - Find all solutions to a puzzle

Main concept

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with smallest values if more than one nodes can be chosen

Main concept

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with smallest values if more than one nodes can be chosen

dfs(s) =
$$\{1, 2, 4, 7\}$$

Main concept

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with smallest values if more than one nodes can be chosen

dfs(s) =
$$\{1, 2, 4, 7, 8, 9, 11, 10\}$$

Main concept

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with smallest values if more than one nodes can be chosen

$$\begin{array}{c} \text{dfs(s)} = \{ \ 1, \\ 2,4,7, \\ 8,9,11,10, \\ 3,5,6 \\ \} \end{array}$$

Main concept

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with smallest values if more than one nodes can be chosen

$$dfs(s) = \{ 1, \\ 2,4,7, \\ 8,9,11,10, \\ 3,5,6, \\ 12,13, \\ 1 \}$$

Main concept

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with smallest values if more than one nodes can be chosen

```
dfs(s) = { 1,
2,4,7,
8,9,11,10,
3,5,6,
12,13,
14,15
}
```

 \Rightarrow DFS completed!

 Mark a neighbor of the current node as we traverse and don't traverse previously marked nodes

set source $s = \{1\}$ and pick the vertex with *smallest* values if more than one nodes can be chosen

DFS tree

- Capture the structure of the recursive calls
 - When we visit an adjacent vertex of v, we add it as a child of v
 - Whenever DFS returns from a vertex V, we climb up in the tree from V to its parent

Depth First Search (DFS) (cont.)

Exercise

Report on the order of the vertices encountered on a DFS starting from vertex *A*. Break all ties by picking the edge with smallest weight.

Depth First Search (DFS) (cont.)

Pseudocode

- Start by putting the source node on the top of a stack
- Take the top node of the stack and add it to the visited list
- 3 Create a list of that vertex's adjacent nodes and add the ones which are not visited to the top of the stack
- 4 Keep repeating steps 2 and 3 until the stack is empty

Depth First Search (DFS) (cont.)

Time complexity

DFS(G)

4

Using adjacency list

```
1 for each vertex u \in G. V

2 flag[v] = false

3 RDFS(v)

RDFS(v) Flag the vertex v as visited

1 flag[v] = true
```

for each w adjacent to v

if flag[w] = false

RDFS(w)

Call RDFS recursively for each of *v*'s adjacent vertices

- Each vertex will only visit at most once
- We had to examine all edges of the vertices
 - i.e., $\sum_{v \in V} \deg(v) = 2m$, where m is the number of edges
- Therefore, the running time of DFS is proportional to the number of edges and the number of vertices (same as BFS)
 - O(n+m) (or O(|V|+|E|)), where m is the number of vertices

Differences between BFS and DFS

	BFS	DFS	
Definition	Traversal begins at the <i>root</i> node and walk through all nodes on the same level before moving on to the next level	Traversal begins at the <i>root</i> node and proceeds through the nodes as far as possible until we reach the node with no unvisited nearby nodes	
Conceptual Difference	Builds the tree level by level	Builds the tree subtree by subtree	
Data structure	Queue (FIFO)	Stack (LIFO)	
Suitable for	Searching vertices closer to the given source	Finding paths (or solutions) that are away from source	
Applications	Finding Shortest path, bipartite graphs, GPS navigation, etc.	Cycles or loops detection, finding strongly connected components (SCC), etc.	
Path generation	Traversals according to the tree level	Traversals according the tree depth	
Backtracking	Not required	Required to follow a backtrack	
Memory	More memory	Less memory	
Loops	Cannot be trapped into finite loops	Can be trapped into infinite loops	

Differences between BFS and DFS

	Adjacency list		Adjacency matrix	
	Time complexity	Auxiliary space	Time complexity	Auxiliary space
BFS	O(V + E)	O(V + E)	$O(V ^2)$	$O(V ^2)$
DFS	O(V + E)	O(V + E)	$O(V ^2)$	$O(V ^2)$

Reading

• Chapter 20, Cormen (2022)

References I

algo.monster (2024). Depth First Search. Online:

https://algo.monster/problems/dfs_intro.[last accessed: 20 Mar 2024].

Geeksforgeeks.org (2024a). Breadth First Search or BFS for a Graph. Online:

https://www.geeksforgeeks.org/breadth-first-search-or-bfs-for-a-graph. [last accessed: 20 Mar 2024].

— (2024b). Depth First Search or DFS for a Graph. Online: https://www.geeksforgeeks.org/depth-first-search-or-dfs-for-a-graph. [last accessed: 20 Mar 2024].

— (2024c). Difference between BFS and DFS. Online: https://www.geeksforgeeks.org/difference-between-bfs-and-dfs/. [last accessed: 20 Mar 2024].

Programiz (2024a). Breadth first search. Online:

https://www.programiz.com/dsa/graph-bfs.[last accessed: 20 Mar 2024].

References II

Programiz (2024b). Depth First Search (DFS). Online:

https://www.programiz.com/dsa/graph-dfs.[last accessed: 20 Mar 2024].