

19.12.2022	תעודת זהות:	ם התלמיד/ה:	١(

מתמטיקה בדידה – פתרון בוחן אמצע סמסטר א'

מרצה: נטלי שלום

הוראות בחינה:

- משך הבחינה: שעתיים (120 דקות).
 - אין לצרף דפי עזר לבחינה.
- בבחינה ישנן 4 שאלות עם סעיפים. יש לענות על כל השאלות.
- יש להוכיח כל טענה שלכם, אלא אם כן מצוין בשאלה שלא צריך להוכיח.
- את התשובה לכל שאלה כתבו במקום המיועד לה (בתוך המלבן שמתחת לכל שאלה). בעמודים האחרונים מצורפים דפי "חירום" למקרה הצורך.
 - המחברת הנלווית לטופס הבחינה לא תיבדק והיא מהווה דפי טיוטה עבורכם.

שימו לב: דפי הטיוטה לא ייבדקו!

- **טיפ חשוב:** תתחילו לפתור קודם את השאלות שאתם מרגישים איתן יותר בנוח, בנושאים שיותר קלים לכם, ואת השאלות הקשות תשמרו לסוף כדי לא לבזבז עליהן את כל הזמן.
 - חובה לקחת נשימה עמוקה לפני תחילת הבחינה ולחשוב על דברים חיוביים.

בהצלחה!!!

שאלה 4	שאלה 3	2 שאלה	שאלה 1	
ג		א ב	א ב	ציון

' סופי:	ציון
---------	------

הוכיחו/הפריכו את הטענות הבאות:

א. (8 נקי)

$$\bigcap_{k=3}^{\infty} P\left(\left[\frac{1}{k}, 1 - \frac{1}{k}\right]\right) \subseteq P\left(\left[\frac{1}{3}, \frac{2}{3}\right]\right)$$

סמנו: הטענה נכונה / לא נכונה. פתרון:

הטענה נכונה. נוכיח את ההכלה:

$$\bigcap_{k=3}^{\infty} P\left(\left[\frac{1}{k}, 1 - \frac{1}{k}\right]\right) \subseteq P\left(\left[\frac{1}{3}, \frac{2}{3}\right]\right)$$

 $x\in P\left(\left[\frac{1}{k},1-\frac{1}{k}\right]\right)$ מתקיים $k\geq 3$ מתקיים מהגדרת חיתוך מהגדרת אז מהגדרת $x\in \bigcap_{k=3}^\infty P\left(\left[\frac{1}{k},1-\frac{1}{k}\right]\right)$ בפרט עבור $x\in P\left(\left[\frac{1}{3},\frac{2}{3}\right]\right)$ ומכאן ההכלה.

(8 נקי)

$$P([0,1]) \subseteq \bigcup_{k=2}^{\infty} P\left(\left[\frac{1}{k}, 1 - \frac{1}{k}\right]\right)$$

סמנו: הטענה נכונה / לא נכונה. פתרון:

הטענה לא נכונה. למשל: (0,1] $\in P([0,1])$, אבל $(0,1] \notin \bigcup_{k=3}^{\infty} P\left(\left[\frac{1}{k},1-\frac{1}{k}\right]\right)$ אבל $(0,1] \in P([0,1])$. נוכיח זאת: נניח בשלילה שהוא $(0,1] \in \left[\frac{1}{k},1-\frac{1}{k}\right]$ בפרט $(0,1] \in \left[\frac{1}{k},1-\frac{1}{k}\right]$ הייב להיות מספר חיובי.

 $a,b\in\mathbb{R}$ מסמנים: $a,b\in\mathbb{R}$ מסמנים

 $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$: קטע סגור (a,b) = $\{x \in \mathbb{R} | a < x < b\}$: קטע פתוח

 $T \circ P = \{ \langle a, c \rangle \in A \times C \mid \exists b \in B \ (\langle a, b \rangle \in P \land \langle b, c \rangle \in T) \}$ הרכבת יחסים:

א. נגדיר $S=\{\langle A,B\rangle\in P(\mathbb{N})\times P(\mathbb{N})\mid A\subsetneq B\}$ משמעותו יימוכלת ממשיי) א. נגדיר $S\circ S=S$ מוכיחו/הפריכו הוכיחו/הפריכו ו

נקי) $R \circ R = R$: הוכיחו/הפריכו $R = \{\langle q, q' \rangle \in \mathbb{Q} \times \mathbb{Q} \mid q < q' \}$ נגדיר

הטענה נכונה. נוכיח הכלה דו כיוונית:

הממוצע (הממוצע בחר $b=\frac{q+q'}{2}$ יהי $q< b \ \land \ b< q'$ כך ש־' $b\in \mathbb{Q}$ כך אז q< q' אז q< q', אז q< q' הממוצע (q,q'). אז מתקיים:

$$b = \frac{q+q'}{2} < \frac{q'+q'}{2} = \frac{2q'}{2} = q' \implies b < q' \implies bRq'$$

$$b = \frac{q+q'}{2} > \frac{q+q}{2} = \frac{2q}{2} = q \implies b > q \implies qRb$$

 $.\langle q,q'
angle \in R \circ R$ ולכן $qRb \ \wedge \ bRq'$ כלומר

 $q < b \land b < q'$ יהי קר כלומר כך ש־' $qRb \land bRq'$ כך ש־' $b \in \mathbb{Q}$ אז יש $q \in R \circ R$ יהי יהי ירי יהי יארי פובע ' $q \in R$ אז יש יש לכך שר' $q \in R$ בדע יארים יארים אובע ' $q \in R$ ולכן ישר'

סה"כ הוכחנו הכלה דו כיוונית ולכן יש שוויון בין הקבוצות.

 $P(\mathbb{R})$ נגדיר את היחסים הבאים מעל

$$S = \{ \langle X, Y \rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid X = Y \lor 0 \in X\Delta Y \}$$

$$T = \{ \langle X, Y \rangle \in P(\mathbb{R}) \times P(\mathbb{R}) \mid 0 \notin X\Delta Y \}$$

עבור כל אחד מהיחסים, קבעו האם הוא יחס שקילות והוכיחו את קביעתכם. אם היחס הוא יחס שקילות, מצאו מערכת נציגים עבורו (אין צורך להוכיח שזו מערכת נציגים). (30 נקי)

 $A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$ - הפרש סימטרי - תוכורת:

 $0\in X\Delta Y$ אז $X=\emptyset,\ Y=\{0\},\ Z=\{1\}$ אז בחר הוא לא טרנזיטיבי. דוגמה: נבחר אז בחר אז אז S לא יחס שקילות כי הוא לא טרנזיטיבי. דוגמה: נבחר $X=\{1\}\setminus\emptyset=\{1\}\setminus\emptyset=\{1\}$ וגם $X\neq Z$ וגם $X\neq Z$ אבל, לא מתקיים $X=\{1\}\setminus\emptyset=\{1\}$ וגם $X\neq Z$ וגם $X\neq Z$

יחס שקילות. נוכיח זאת: T

- $0 \in Y \Delta Z$ אז $Y \notin X \cup Y$ אז $Y \notin X \cup Y$. נניח בשלילה ש־ $Y \cup X \cup Y$ אז $Y \notin X \cup Y$ אם אם $Y \cup Y \cup X \cup X \cup X$ נוכיח $Y \cup X \cup X \cup X \cup X$ ומז $Y \cup X \cup X \cup X \cup X \cup X$.

בשני המקרים הגענו למסקנה T ולכן T טרנזיטיבי. סה"כ הוכחנו ש־T יחס שקילות. מערכת נציגים לדוגמה: $\{0\}, \emptyset\}$.

 \cdot נגדיר פונקציה h באופן הבא

$$h = \lambda f \in \mathbb{R} \to \mathbb{N}$$
. $\lambda Y \in P(\mathbb{N})$. $f^{-1}[Y]$

. (קבוצת מקורות) $g^{-1}[Y] = \{x \in dom(g) | g(x) \in Y\}$ מגדירים: $Y \subseteq Range(g)$ (קבוצת מקורות) עבור פונקי

א. רשמו תחום וטווח עבור הפונקציה h (אין צורך להוכיח את תשובתכם). (6 נקי) נא לא להשתמש בקבוצה $\mathbb D$, אין בה צורך.

$$dom(h) = \mathbb{R} \to \mathbb{N}$$

 $Range(h) = P(\mathbb{N}) \to P(\mathbb{R})$

(8 נקי) את תשובתכם) אין צורך להוכיח את תשובתכם) אין צורך להוכיח את תשובתכם) ($x \in \mathbb{Z} \mid x \leq k$ (הערך השלם העליון של $x \in \mathbb{Z} \mid x \leq k$) (הערך השלם העליון של

 $h(\lambda x \in \mathbb{R}. |[x]|)(\{0\}) = (-1,0]$

 $h(\lambda x \in \mathbb{R}. |[x]|)(\mathbb{N} \setminus \{0,1\}) = (-\infty, 2] \cup (1, \infty)$

ג. האם הפונקציה h היא על (ביחס לטווח שרשמתם)! האם הפונקציה h היא על (ביחס לטווח שרשמתם)! הוכיחו את קביעותיכם. (20 נקי)

כך $x_1\in\mathbb{R}$ שייים אונות. מכיוון שהן פונקציות בעלות אותו מכיוו $f_1,f_2\in\mathbb{R}\to\mathbb{N}$ שייים h שייים אונים). שייים שונים שני מספרים טבעיים שונים).

 $h\left(f_{1}\right)\left(A\right)\neq T$ כך שי א כלומר שהן שתי פונקציות שונות, כלומר שקיים $A\in P\left(\mathbb{N}\right)$ כלומר שהן שהי פונקציות שונות, כלומר שקיים אונות, כלומר כך שי $A=\{f_{1}\left(x_{1}\right)\}$ נבחר $A=\{f_{1}\left(x_{1}\right)\}$ נבחר $A=\{f_{1}\left(x_{1}\right)\}$ נבחר לומר כך שי $A=\{f_{1}\left(x_{1}\right)\}$ כלומר כך שי $A=\{f_{1}\left(x_{1}\right)\}$ נבחר לומר כך שי לומר כל כל מומר כך שי לומר כל מומר כל כל מומר כל מומר

$$x_1 \in \{x \in \mathbb{R} \mid f_1(x) \in A\} = f_1^{-1}[A] = h(f_1)(A)$$

(מתקיים: $f_1(x_1) \neq f_2(x_1)$ מתקיים:

$$x_1 \notin \{x \in \mathbb{R} \mid f_2(x) \in A\} = f_2^{-1}[A] = h(f_2)(A)$$

 $h\left(f_{1}\right)\neq$ ט"כלומר, מצאנו איבר איבר $h\left(f_{1}\right)\left(A\right),h\left(f_{2}\right)\left(A\right)$ מהקבוצות מהקבוצות עשייך רק ששייך איבר איבר איבר ולהות, מרח"ע.

המשך פתרון שאלה 4 סעיף ג' (במידת הצורך)

 $g\in P\left(\mathbb{N}
ight) o P\left(\mathbb{R}
ight)$.(\mathbb{R} דוגמה נגדית: נקח $g=\lambda Y\in P\left(\mathbb{N}
ight)$.(\mathbb{R} נפונקציה קבועה שמחזירה תמיד h ... h שוח של h ... h אכן איבר בטווח של h ... h כלומר היא אכן איבר בטווח של h כך ש־h כך ש־h כלומר, לכל h מתקיים h מתקיים h כך ש־h כך ש-h כלומר.

$$\forall Y \in P(\mathbb{N}). f^{-1}[Y] = g(Y) = \mathbb{R}$$

כלומר , $f^{-1}\left[\emptyset
ight]=\mathbb{R}$ מתקיים $Y=\emptyset$ כלומר

$$\mathbb{R} = f^{-1} \left[\emptyset \right] = \left\{ x \in \mathbb{R} \mid f \left(x \right) \in \emptyset \right\} = \emptyset$$

. קיבלנו $\mathbb{R}=\emptyset$ ואו סתירה

דף "חירום" 1

· ·

דף "חירום" קד

דף "חירום" 3