Given a long integer \boldsymbol{x} , count the number of values of \boldsymbol{a} satisfying the following conditions:

- $a \oplus x > x$
- 0 < a < x

where \boldsymbol{a} and \boldsymbol{x} are long integers and \oplus is the <u>bitwise XOR</u> operator.

You are given q queries, and each query is in the form of a long integer denoting x. For each query, print the total number of values of a satisfying the conditions above on a new line.

For example, you are given the value x = 5. Condition 2 requires that a < x. The following tests are run:

```
1 \oplus 5 = 4

2 \oplus 5 = 7

3 \oplus 5 = 6

4 \oplus 5 = 1
```

We find that there are 2 values meeting the first condition: 2 and 3.

Function Description

Complete the the Great Xor function in the editor below. It should return an integer that represents the number of values satisfying the constraints.

theGreatXor has the following parameter(s):

• *x*: an integer

Input Format

The first line contains an integer q, the number of queries.

Each of the next \boldsymbol{q} lines contains a long integer describing the value of \boldsymbol{x} for a query.

Constraints

- $1 \le q \le 10^5$
- $1 < x < 10^{10}$

Subtasks

For **50%** of the maximum score:

- $1 \le q \le 10^3$
- $1 \le x \le 10^4$

Output Format

For each query, print the number of values of a satisfying the given conditions on a new line.

Sample Input 0

2 2 10

Sample Output 0

1 5

Explanation 0

We perform the following q = 2 queries:

1. For x = 2 the only value of a satisfying 0 < a < x is 1. This also satisfies our other condition, as

 $1 \oplus 2 = 3$ and 3 > x. Because we have one valid a and there are no more values to check, we print 1 on a new line.

2. For $\boldsymbol{x}=\boldsymbol{10}$, the following values of \boldsymbol{a} satisfy our conditions:

```
1 \oplus 10 = 11
4 \oplus 10 = 14
5 \oplus 10 = 15
6 \oplus 10 = 12
7 \oplus 10 = 13
```

There are five valid values of \boldsymbol{a} .

Sample Input 1

2 100

Sample Output 1

27

Explanation 1

In the first case:

```
2 \oplus 5 = 7
3 \oplus 5 = 6
```

In the second case, the first 10 values are:

 $\begin{array}{c} 1 \oplus 100 = 101 \\ 2 \oplus 100 = 102 \end{array}$

 $3 \oplus 100 = 103 \\ 8 \oplus 100 = 108$

 $9\oplus 100=109$

 $10 \oplus 100 = 110$

 $11 \oplus 100 = 111$

 $12 \oplus 100 = 104$ $13 \oplus 100 = 105$

 $14 \oplus 100 = 106$

 $15 \oplus 100 = 107$