EXP-6

For hadoop.3x version

http://localhost:9870

http://localhost:8088/cluster

Place the mapper file ,reducer file and hadoop dtearming jar file in Documents,Create input foler in hadoop and place the wordcount.txt file on it.

hadoop/Documents\$ give below comments to run

hadoop@Ubuntu:~/Documents\$ hadoop jar hadoop-streaming-2.7.3.jar -input /home/hadoop/input/word count data.txt -output /home/hadoop/output -mapper mapper.py reducer reducer.py

To check the output folder part-oooo file is created or not hadoop@Ubuntu:~/Documents\$ hadoop fs -ls /home/hadoop/output

hadoop@Ubuntu:~/Documents\$ hadoop fs -ls /home/hadoop/output Found 2 items

-rw-r--r-- 1 hadoop supergroup 0 2024-08-03 08:59 /home/hadoop/output/ SUCCESS -rw-r--r-- 1 hadoop supergroup 592 2024-08-03 08:59 /home/hadoop/output/part-00000

hadoop@Ubuntu:~/Documents\$ hdfs dfs -cat /user/hadoop/output/part-00000 cat: \user/hadoop/output/part-00000': No such file or directory

Verify the output

hadoop@Ubuntu:~/Documents\$ hdfs dfs -cat /home/hadoop/output/part-00000 2,000 1 ChatGPT 1 Did 1

Roman 2 Romans

1

Some 1 Sure! 1 This 1 3 a actually

ancient 1 and

3

1

```
ash
     1 ash,
because
       1
buildings
       1
called 1
concrete 2 concrete, 1
concrete.
              1
construction 1 durable
1 for 1 form 2 from 1
gets
       1 harbors
has
       1 have 1
impressive
incredibly
      1 know
is
1 lime, 1
longevity
      1 made
1 many 1
mineral
mixture
modern
       1 of
       3
outlasted
       1 over
      2 partly
1 reacts 1
reinforces
       1
seawater
       1
seawater,
       1
showcasing
       1
stronger
structures?
       1
survived
       1
techniques
       1
```

```
2
that
the
       5
their
time. 1 to
       1
tobermorite,
              1
used
volcanic
              2
was
       1
which 1
with
years, 1 you
       1
path of hadoop input file
/home/hadoop/input/word count data.txt
path of hadoop output file /home/hadoop/output
```

Commands on hadoop to check the input and output file

1. List Contents of a Hadoop Directory

To list the contents of a directory in HDFS, use the -ls option with the hadoop fs command. List the Input Folder

bash

hadoop fs -ls /user/hduser/input

List the Output Folder

bash

hadoop fs -ls /user/hduser/output

2. View Detailed Information

The -ls command provides a detailed listing of files and directories, including permissions, owner, group, size, and modification date.
3. View File Contents
To view the contents of a file, use the -cat option. For example:
View a File in the Input Folder
bash
hadoop fs -cat /user/hduser/input/filename.txt
Replace filename.txt with the actual name of the file you want to view.
View a File in the Output Folder
If your output folder contains multiple files (e.g., part-r-00000), you can view one of the files:
bash
hadoop fs -cat /user/hduser/output/part-r-00000
4. Check for Folder Existence
To check if a folder exists in HDFS, you can use the -test command with the -d option: Check if Input Folder Exists
bash
hadoop fs -test -d /user/hduser/input && echo "Input folder exists" \parallel echo "Input folder does not exist"
Check if Output Folder Exists

hadoop fs -test -d /user/hduser/output && echo "Output folder exists" echo "Output folder does not exist"
5. Additional Commands
Make a Directory:
bash
hadoop fs -mkdir /user/hduser/new_directory
Delete a File or Directory:
bash
hadoop fs -rm /user/hduser/input/filename.txt
hadoop fs -rm -r /user/hduser/output
Get File Status:
bash
hadoop fs -stat /user/hduser/input/filename.txt
Example Usage
Assuming you have the following setup:
Input Folder: /user/hduser/input
Output Folder: /user/hduser/output

bash

You would list the contents like this:
bash
hadoop fs -ls /user/hduser/input
And to check the output:
bash
hadoop fs -ls /user/hduser/output
bash
hadoop fs -cat /user/hduser/output/part-r-00000PIG UDF PROGRAM
TIO ODI TROGRAM
To check the pig program
hadoop@Ubuntu:~/Documents\$ nano sample.txt
Paste the below content to sample.txt
1,John
2,Jane
3,Joe
4,Emma
hadoop@Ubuntu:~/Documents\$ hadoop fs -put sample.txt /home/hadoop/piginput/
hadoop@Ubuntu:~/Documents\$ nano demo_pig.pig

Load the data from HDFS data = LOAD '/home/hadoop/piginput/sample.txt' USING PigStorage(',') AS (id:int>
Dump the data to check if it was loaded correctly DUMP data;
hadoop@Ubuntu:~/Documents\$ pig demo_pig.pig
2024-08-07 12:13:08,791 [main] INFO org.apache.pig.backend.hadoop.executionengine.util.MapRedUtil - Total input paths to process: 1
(1,John)
(2,Jane)
(3,Joe)
(4,Emma)
By using these commands, you can manage and inspect files and directories in your Hadoop setup.
To Run pig basic program and uf program
uppercase_udf.py
- def uppercase(text): return text.upper()
ifname ==
"main": import sys
for line in sys stdin:

paste the below the content to demo_pig.pig

finally u get Success! Job Stats (time in seconds): JobId Maps Reduces MaxMapTime MinMapTime AvgMapTime MedianMapTime MaxReduceTime MinReduceTime AvgReduceTime MedianReducetime Alias Feature Outputs job local1786848041 0001 1 0 0 n/a n/a n/a data,uppercased data MAP ONLY hdfs:///home/hadoop/pig output data, Input(s): Successfully read 4 records (42778068 bytes) from: "hdfs:///home/hadoop/sample.txt" Output(s): Successfully stored 4 records (42777870 bytes) in: "hdfs:///home/hadoop/pig output data" Counters: Total records written: 4 Total bytes written: 42777870 Spillable Memory Manager spill count: 0 Total bags proactively spilled: 0 Total records proactively spilled: 0

2024-08-07 13:33:04,631 [main] WARN org.apache.hadoop.metrics2.impl.MetricsSystemImpl - JobTracker metrics system already initialized!

Job DAG:

job local1786848041 0001

2024-08-07 13:33:04,639 [main] WARN org.apache.hadoop.metrics2.impl.MetricsSystemImpl - JobTracker metrics system already initialized!

2024-08-07 13:33:04,644 [main] WARN org.apache.hadoop.metrics2.impl.MetricsSystemImpl - JobTracker metrics system already initialized!

2024-08-07	13:33:04,667	[main]	INFO
org.apache.pig.backend.	hadoop.executionengine.mapI	ReduceLayer.MapReduceLauncher -	- Success!
To check the output file	is created		
hadoop@Ubuntu:~/Doc	uments\$ hdfs dfs -ls /home/ha	doop/pig_output_data	
Found 2 items			
If you need to examine	the files in the output folder, u	se:	
To view the output			
hadoop@Ubuntu:~/Doc	uments\$ hdfs dfs -cat /home/h	adoop/pig_output_data/part-m-0000	00
bash: put the employe	es.json local directory to <i>hon</i>	ne/hadoop directory	
pig shell: Load the json file by	giving following command		
grunt> Load the data emplo	oyees = LOAD '/home/hadoop/emp.	son' USING	
JsonLoader('name:chararray,	age:int,department:chararray,salary	:float'); grunt>projected	
= FOREACH employees GENE	RATE name, salary;		
DUMP projected;			
1. Aggregation			
Aggregate the total salar	ry:		
pig			
Load the data			
	ome/hadoop/employees.json' U array,age:int,department:charar		
Aggregate: Calculate	the total salary		

Note: The LIMIT command should be used with an appropriate number, as Pig does not directly support skipping a specific number of records. 3. Limit Limit the results to the top 3 records: pig -- Load the data employees = LOAD '/home/hadoop/employees.json' USING JsonLoader('name:chararray,age:int,department:chararray,salary:float'); -- Limit: Get the top 3 highest earners top 3 employees = LIMIT employees 3; DUMP top_3_employees; Output: name age department salary Charlie Black 45 IT 80000 Alice Johnson 35 Finance 70000 60000 Jane Smith 25 IT 4. Count Count the number of employees:

pig

-- Load the data

-- Count the number of employees

employees = LOAD '/home/hadoop/employees.json' USING

JsonLoader('name:chararray,age:int,department:chararray,salary:float');

<pre>employee_count = FOREACH (GROUP employees ALL) GENERATE COUNT(employees) AS total_count;</pre>					
DUMP emplo	yee_co	unt;			
Output:					
scss					
(5)					
5. Remove					
Remove empl	oyees fi	rom a s _l	pecific o	department, e.g., "IT":	
pig					
	LOAD '		_	employees.json' USING department:chararray,salary:float');	
Remove em	ployees	s from t	he 'IT' d	lepartment	
				byees BY department != 'IT';	
DUMP filtered	d_empl	oyees;			
Output:					
name age	departi	ment	salary		
John Doe	30	HR	50000		
Alice Johnson	35	Financ	e	70000	
Bob Brown	28	Market	ting	55000	

import Json file and do projetion, aggregation, limit, count, skip and remove using python and hdfs

Steps to be followed:

Install pandas and hdfs using pip.

- Optionally install pyarrow or hdfs3 if needed based on your specific requirements.
- Verify the installation to ensure everything is set up correctly.

Required Packages
pandas: Purpose: Provides data structures and functions to efficiently manipulate and analyze data. Installation: Use pip to install pandas.
bash
pip install pandas
hdfs:
Purpose: Provides a Python interface to interact with HDFS. Installation: Use pip to install hdfs.
bash
pip install hdfs
Additional Considerations
While the script should work with just the above packages, here are some additional considerations:
pyarrow (Optional but useful):

datasets or different file formats, pyarrow can be useful.
Installation: Use pip to install pyarrow.
bash
pip install pyarrow
hdfs3 (Alternative to hdfs):
Purpose: Another Python library for interacting with HDFS. It's an alternative to the hdfs package and might be preferred in some scenarios. Installation: Use pip to install hdfs3.
bash
pip install hdfs3
Verifying Package Installation
After installing the required packages, you can verify that they are correctly installed and accessible in your Python environment:
python
import pandas as pd from hdfs import InsecureClient
Check pandas version print("Pandas version:", pdversion)

Purpose: If you're working with Apache Arrow or need additional features for handling large

```
# Test HDFS client connection client =
InsecureClient('http://localhost:9870', user='hadoop')
print("HDFS status:", client.status('/'))
If you run this script and see the version of pandas and a status message from HDFS without any
errors, the packages are installed correctly.
Create process data.py file
from hdfs import
InsecureClient import pandas
as pd import json
# Connect to HDFS hdfs client =
InsecureClient('http://localhost:9870', user='hdfs')
# Read JSON data from HDFS try: with
hdfs client.read('/home/hadoop/emp.json', encoding='utf-8') as reader:
    json data = reader.read() # Read the raw data as a
string
           if not json data.strip(): # Check if data is empty
raise ValueError("The JSON file is empty.")
     print(f"Raw JSON Data: {json data[:1000]}") # Print first 1000 characters for
debugging
                data = json.loads(json data) # Load the JSON data except
json.JSONDecodeError as e: print(f"JSON Decode Error: {e}") exit(1) except Exception
as e:
  print(f"Error reading or parsing JSON data: {e}")
exit(1)
# Convert JSON data to DataFrame
try:
  df = pd.DataFrame(data)
except ValueError as e:
```

```
print(f"Error converting JSON data to DataFrame: {e}")
exit(1)
# Projection: Select only 'name' and 'salary' columns
projected df = df[['name', 'salary']]
# Aggregation: Calculate total salary
total salary = df['salary'].sum()
# Count: Number of employees earning more than 50000
high earners count = df[df['salary'] > 50000].shape[0]
# Limit: Get the top 5 highest earners
top 5 earners = df.nlargest(5, 'salary')
# Skip: Skip the first 2 employees
skipped df = df.iloc[2:]
# Remove: Remove employees from a specific department
filtered df = df[df['department'] != 'IT']
# Save the filtered result back to HDFS
filtered json = filtered df.to json(orient='records')
try:
  with hdfs_client.write('/home/hadoop/filtered_employees.json', encoding='utf-8',
overwrite=True) as writer:
     writer.write(filtered json)
  print("Filtered JSON file saved successfully.")
except Exception as e:
  print(f"Error saving filtered JSON data: {e}")
exit(1)
```

```
# Print results
print(f"Projection: Select only name and salary columns")
print(f"{projected_df}")
print(f"Aggregation: Calculate total salary")
print(f"Total Salary: {total_salary}")
print(f"\n")
```

print(f'# Count: Number of employees earning more than 50000")

Filtered DataFrame

