Table of Contents

- Motivation & Trends in HPC
- Mathematical Modeling
- Numerical Methods used in HPSC
 - Automatic Differentiation
 - Systems of Differential Equations: ODEs & PDEs
 - Solving Optimization Problems
 - Solving Nonlinear Equations
 - Basic Linear Algebra, Eigenvalues and Eigenvectors
 - Chaotic systems
- HPSC Program Development/Enhancement: from Prototype to Production
- Visualization, Debugging, Profiling, Performance Analysis & Optimization

103

102

Finite Difference Models

- Discrete time steps
- State variables depend on their values at previous steps (mostly recursive systems)

$$N_{t+1}^i = f^i(N_t^1, N_t^2, ..., N_{t-1}^1, N_{t-1}^2, ..., t)$$

- Sometimes analytically solvable
- Simpler versions:
 - Only one previous time step affects the new values
 - Only one state variable
 - Linear dependence
- Analytical methods exist → insight
- Computers are very powerful → numerical results
- Example: Density Independent Population (Virus...) Growth

$$N_{t+1} = N_t + kN_t = N_0(1+k)^{t+1}$$

Useful Calculus Concepts

- A mapping $f(t): \Re \to \Re$ is a function if for each t there is only one value of f(t)
- **Difference quotient** of

 $f(t): \frac{f(t+h)-f(t)}{h}$

- **Derivative** $f'(t) = \lim_{h \to 0} \frac{f(t+h) f(t)}{h}$ Measures the rate of change of f(t) at t
- To differentiate a function means to calculate its derivative
- The inverse operation is **integration**: $F' = f \Rightarrow F = \int_{-\infty}^{\infty} f + C$
- However, not all functions are differentiable:
 - There a points where the derivative does not exist
 - For example: f(t) = |t| at t = 0
 - Sometimes these functions appear in models, so proper attention must be paid to their handling

105

104

Differential equations

 A differential equation relates the behavior of a function with its derivative(s).

$$G(t, f(t)), f'(t), f''(t), ..., t^{(n)}) = 0$$

- In addition to the actual equation, other conditions are required in order to guarantee a unique solution.
- These can be either initial or boundary conditions.
 - Initial conditions are given at one point $t = t_0$
 - Boundary conditions are given at separate points

$$t = t_1, t = t_2, ..., t = t_n$$

Numerical treatment of differential equations

106

- Ordinary differential equations (ODE) & partial differential equations (PDE) are used in physics to
 - Describe phenomena such as the flow of air around an aircraft
 - Bending of a bridge under various stresses
- Obtaining useful information however
 - "How much does this bridge sag if there are a hundred cars on it" is not that easy
- Techniques are required to turn ODEs & PDEs into computable problems

G

106

107

Ordinary Differential Equations

- Ordinary differential equations describe
 - How a quantity (scalar/vector) depends on a single variable
 - Typically, this variable denotes **time**
 - The value of the quantity at some starting time is given
 - This type of equation is called an Initial Value Problem (IVP)

Numerical methods for ODEs

- The most elementary / commonly used methods are finite difference methods
- Numerical solution results in two sets of data:
 - The argument points
 - The function values corresponding to these arguments
- Difference methods
 - Based on approximating the derivative(s) of a function in some interval with linear combinations of the function values

108

09

Numerical methods for ODEs (2)

- The first derivative of a function f(t) is approximated by $f'(t_k) \approx \sum_{j=k-i}^{k+j_+} a_j f(t_j)$
- If the summation index j takes
 - Only values smaller than k, the method is **explicit**
 - Otherwise it is **implicit** and requires one or more algebraic equations
- The difference between the arguments is called step size
 - Usually denoted by h
 - h does not have to be constant

Partial Differential Equations

- Partial differential equations describe functions of several variables:
 - Denoting space and time
 - Similar initial values in ODEs, PDEs need values in space to give a uniquely determined solution
 - These are called boundary values → the problem is called a Boundary Value Problem (BVP)
 - Boundary value problems typically describe static mechanical structures

110

111

Sample Problem

- A heat equation has aspects of both IVPs and BVPs as:
 - It describes heat spreading through a physical object such as a rod
 - The initial value describes the initial temperature
 - The boundary values give prescribed temperatures at the ends of the rod
- Simplifications:
 - All functions involved have sufficiently many higher derivatives
 - Each derivative is sufficiently smooth

Initial Value Problems - IVP

- Many physical phenomena change over time, and typically the laws of physics give a description of the change, rather than of the quantity of interest itself.
 - Newton's second law F = ma
 - Is a statement about the change in position of a point mass expressed as

$$a = \frac{d^2}{dt^2} x = F / m$$

 It states that acceleration depends linearly on the force exerted on the mass

113

112

Initial Value Problems - IVP (2)

- A closed form description x(t) = ... can sometimes be derived analytically
- Usually some form of approximation or numerical computation is needed
- Newton's equation is a second order ODE, since it involves a second derivative
- This can be reduced to first order if we allow vector quantities: u(t) = (x(t), x'(t))

$$u' = Au + B, \qquad A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ F/a \end{pmatrix}$$

Initial Value Problems – IVP (3)

 Here we only consider scalar equations → the equation becomes:

$$u'(t) = f(t, u(t)), u(0) = u_0, t > 0$$

- Several numerical methods can solve it
- The initial value in some starting point t, we are interested in the behavior of u

$$t = 0$$
, $u(0) = u_0$, $t \rightarrow \infty$

- As an example: $f(x) = x \rightarrow u'(t) = u(t)$
- The equation states that the rate of growth is equal to the size of the population

114

115

Initial Value Problems – IVP (4)

- We consider the numerical solution and the accuracy of this process
- In a numerical method:
 - We consider discrete size time steps to approximate the solution of the continuous timedependent process
 - This introduces a certain amount of error:
 - Analyze the error introduced in each time step
 - How this error adds up to a global error
- The need to limit the global error will impose restrictions on the used numerical scheme

Error and Stability

- Numerical computation involves inaccuracies
 - Machine arithmetic
 - Incremental errors: small perturbation in the initial value leads to large perturbations in the solution
- A differential equation is **stable** if solutions corresponding to **different initial values** u_0 converge to one another as $t \to \infty$
- Let us limit ourselves to the 'autonomous' ODE u'(t) = f(u(t)) in which the right hand side does not explicitly depend on t

C

116

Criterium for Stability

117

• A sufficient criterium for stability is:

$$\frac{\partial}{\partial u} f(u) = \begin{cases} > 0 & \text{unstable} \\ = 0 & \text{neutrally stable} \\ < 0 & \text{stable} \end{cases}$$

- A simple example
 - $f(u) = -\lambda u$ with solution $u(t) = u_0 e^{-\lambda t}$
- This problem is stable if $\lambda > 0$

Finite Difference Approximation

- Solving the problem numerically → transform the continuous problem into a discrete one by:
 - Looking at finite time/space steps
- Assuming all functions are sufficiently smooth, a straightforward Taylor expansion gives:

gives: $u(t + \Delta t) = u(t) + u'(t)\Delta t + u''(t)\frac{\Delta t^2}{2!} + u'''(t)\frac{\Delta t^3}{3!} + \dots$ • Thus u'(t) is computed: $u'(t) = \frac{u(t + \Delta t) - u(t)}{\Delta t} + O(\Delta t^2)$

$$u'(t) = \frac{u(t + \Delta t) - u(t)}{\Delta t} + O(\Delta t^{2})$$

118

Finite Difference Approximation (2)

The approximation is obtained by replacing a differential operator by a finite difference

$$u'(t) = \frac{u(t + \Delta t) - u(t)}{\Delta t}$$

- Substituting this in u'(t) = f(t,u) gives
 - $u(t + \Delta t) = u(t) + \Delta t f(t, u(t))$
- If $t_0 = 0, t_{k+1} = t_k + \Delta t = \dots = (k+1)\Delta t, u(t_k) = u_k$
- We thus get the Explicit (forward) Euler difference equation $u_{k+1} = u_k + \Delta t \ f(t_k, u_k)$

Explicit Euler: Alternative (easier) Formulation

120

- Considering the general first order differential equation x'(t) = f(t, x(t))with some initial condition $x(0) = x_0$
- Euler's (explicit) method based on

$$x'(t) = \lim_{h \to 0} \frac{x(t+h) - x(t)}{h}$$

• Instead of letting, $h \Rightarrow 0$ take a finite h > 0 and

$$x'(t) \approx \frac{x(t+h) - x(t)}{h}$$

120

Explicit Euler: Alternative (easier) Formulation (2)

- Thus Euler's Explicit Method becomes $x(t+h) \approx x(t) + hx'(t) = x(t) + hf(t,x(t))$
- Which is:
 - Simple to program
 - Very inefficient

- It sometimes gives totally erroneous results
- Highly dependent on the "right" choice for h
- Error is proportional in the first order with the step-size h → Euler is a "first order method"

Euler's Method - Example

• Let us apply Euler's method to the equation $x'(t) = 0.05 \cdot x$ which has as solution $x = 100 \cdot e^{0.05t}$

122

123

• Considering the initial condition x(0) = 100

122

Implicit Euler's method

 Instead of using the value of the derivative at the present point in time t, use the value of the derivative at the future point in time t+h:

$$x'(t) = \lim_{h \to 0} \frac{x(t) - x(t-h)}{h}$$

• Again, with a finite h we get an approximate equation

$$x'(t) \approx \frac{x(t) - x(t - h)}{h}$$

And thus

$$x(t) \approx x(t-h) + hx'(t) = x(t-h) + hf(t, x(t))$$

Implicit Euler's method (2)

- As can be seen in $x(t) \approx x(t-h) + hx'(t) = x(t-h) + hf(t, x(t))$
- The unknown value x(t) appears on **both sides** of the equation, and as an argument for the function f(t,x) on the right hand side.
- This method is known as the **Implicit Euler method**.
- Finding *x(t)* requires solving (possibly numerically) the equation for x(t)
- However, if an analytic formula for x(t) exists, the method is very easy to use
- To solve Implicit Euler you need an iterative solver

124

125

Stability of Implicit Euler

- It is possible to take larger time steps without worrying about unphysical behavior
- Large time steps
 - Can make convergence to the steady state slower
 - But at least there will be no divergence
- Drawback implicit methods are more complicated
 - Can involve nonlinear systems of equations to be solved in every time step

Systems of Differential Equations

- Systems of differential equations describe the dynamics of complicated models
- There are usually two or more state variables $x_j(t)$ whose time development should be studied
 - For a specified time interval
 - For an arbitrary long period of time
- Some systems contain both algebraic and differential equations (DAEs)
- Two-dimensional models are easy to analyze
 - It is often possible to draw pictures of what is going on

126

127

Systems of Differential Equations (2)

• Generic form of a system of differential equations $x'_1(t) = f_1(t, x_1(t), x_2(t), ..., x_n(t))$

$$x'_{2}(t) = f_{2}(t, x_{1}(t), x_{2}(t), ..., x_{n}(t))$$

• • •

$$x'_n(t) = f_n(t, x_1(t), x_2(t), ..., x_n(t))$$

- If none of the functions f_i depend explicitly on t, the system is **autonomous**
- If every function f_i is linear, the system is said to be linear

G

Systems of Differential Equations (3)

- In order to have a unique solution
 - Initial and/or boundary conditions are needed
- Initial conditions are given at the moment t =0
- Sometimes conditions are also given at the end point of the time interval
- It is also possible that part of the conditions are specified at the starting point and part at the end

128

129

General Model Behavior

- Systems with two state variables can exhibit: equilibrium and limit cycles
- Equilibrium behavior:
 - Stable: starting near an equilibrium, will keep you near that equilibrium
 - Asymptotically stable: starting near an equilibrium, will drift you closer and closer to the equilibrium
 - Unstable: starting exactly at the equilibrium, will keep you there. Any perturbation, however small, will drive you away
 - Saddle point: depending on the direction w.r.t. the equilibrium you can either drift towards it or away from it

General Model Behavior (2)

- Limit cycles:
 - Neutral: small perturbations will move you to another cycle
 - Stable: the effect of small perturbations will gradually disappear and the system drifts back to the original cycle
 - Unstable: small perturbations drive the system away from the cycle
- Possibly only numerical results
- Usually the long-term behavior is what matters

130

131

Table of Contents

- Motivation & Trends in HPC
- Mathematical Modeling
- Numerical Methods used in HPSC
 - Automatic Differentiation
 - Systems of Differential Equations: ODEs & PDEs
 - Solving Optimization Problems
 - Solving Nonlinear Equations
 - Basic Linear Algebra, Eigenvalues and Eigenvectors
 - Chaotic systems
- HPSC Program Development/Enhancement: from Prototype to Production
- Visualization, Debugging, Profiling, Performance Analysis & Optimization

Solving optimization problems

- What is an optimization problem?
- Examples of optimization problems
- Selected problem types and solution methods

133

132

A simple optimization problem

- The problem $\min_{x \in \Re} f(x) = e^{-x} + x^2$
- Has the following plot

• And the solution: f(x) = 0.827 at x = 0.352

A 2D optimization problem

- How to manufacture a 0.3 I metal can with as little material as possible?
- The height of the can is h, its radius r, the volume $\pi \cdot r^2 h$ the surface area $2\pi \cdot r^2 + 2\pi \cdot rh$
- With some variable changes we get the optimization problem:
 - Objective function $\min_{x \in \Re^2} f(x) = x_1^2 + x_1 x_2$,
 - Constraint $g(x) = -x_1 x_2 + 300 / \pi \le 0,$
 - Variables $x_i \ge 0, i = 1,2.$

135

134

A 2D optimization problem (2)

- The gradient of the objective function $f(x) = x_1^2 + x_1 x_2$
- Is: $\nabla f(x) = \begin{pmatrix} 2x_1 + x_2 \\ x_1 \end{pmatrix}$ The Hessian is: $\nabla^2 f(x) = \begin{pmatrix} 21 \\ 10 \end{pmatrix}$
- The Jacobian of the constraint function is $g(x) = -x_1x_2 + 300/\pi$ $J(x) = (-2x_1x_2 - x_1^2)$

A 2D optimization problem (3)

• The minimizing point x^* satisfies $f(x^*) \le f(x)$ for all feasible points in $x \in \Re^n$

• The minimum $x^* \approx (3.6,7.3)^T$ -r = 3.6, h = 7.3

• Leads to the minimum function value $f(x^*) \approx 39$

136

Types of optimization problems

• Linear programming (LP): $\min_{x} c^{T} x, Ax = b \text{ or } Ax \leq b, x \geq 0$

• Integer programming (IP): $\min_{x,y} c^T x + d^T y$, so that $Ax + Dy \le b$ with $y_i, i = 1,...,r$ integer variables

• Quadratic programming (QP):

$$\min_{x} \frac{1}{2} x^{T} Q x + c^{T} x, A x \leq b$$

6

137

Types of optimization problems (2)

• (Unconstrained) Nonlinear optimization:

$$\min f(x)$$

• Nonlinear least squares problems: $\min \sum f_i(x)^2$

$$\min_{x} \sum f_i(x)^2$$

• Nonlinear optimization, linear constraints:

$$\min f(x), Ax = b \text{ or } Ax \le b$$

Nonlinear optimization, nonlinear constraints:

$$\min_{x} f(x), g_i(x) \le 0, h_j(x) = 0$$

139

138

Special optimization problems

- Global optimization
- Non-smooth optimization
- Optimal control
- Dynamic programming
- Min-max problems: $\min \max\{f_i(x), i = 1, ..., m\} \text{ so that } x \in F$
- Combinatorial optimization
- Graph problems (e.g. network flow)

Scalar functions

• Let $f: \Re \to \Re$ be continuous

• Principle of optimization

• The best choice is the *golden ratio*: lengths (a, x) and (x, b) are $\frac{3-\sqrt{5}}{2} \approx 0.38197$ and $\frac{\sqrt{5}-1}{2} \approx 0.61803$ compared to the total length of the interval (a, b): [a, b] is to [a, x] as [a, x] is to [x, b]

Linear programming

• Considering $\min_{x} c^{T} x, Ax \leq b, x \geq 0$

• And the example $\min_{x} f(x) = -3x_1 - x_2$

so that
$$\begin{cases} -6x_1 + 5x_2 \le 30 \\ -7x_1 + 12x_2 \le 84 \end{cases}$$
$$\begin{cases} x_2 \le 9 \\ 19x_1 + 14x_2 \le 266 \\ x_1 \le 10 \\ 4x_1 - 7x_2 \le 28 \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

G

142

142

Integer programming

- Mixed-integer programming (MIP): $\min_{x,y} c^T x + d^T y$, so that $Ax + Dy \le b$ where $y_i, i = 1,...,r$ are integer-valued variables, and $x \ge 0$, $0 \le y \le w$
- Integer programming is much harder than LP
- Example:
 - 35 binary variables (0/1)
 - There are $2^{35} \approx 34 \times 10^9$ cases
 - If you can handle 1000 cases in one second, it would take 400 days to solve the problem

145

144

Integer programming (2)

- There are approximate and heuristic solution methods for IP problems
- Local minimum
 - There is a neighborhood with radius r, r > 0 where the function has the minimum value on the center x^*

- Global minimum is the smallest of the local minima
- Saddle point

Nonlinear optimization

• Optimizing continuous function $f: \mathbb{R}^n \to \mathbb{R}$ $\min_{x} f(x), g_i(x) \le 0, i = 1,...,p,$

$$h_j(x) = 0, j = 1,...,r.$$

- Function f(x) is the objective function
- Functions $g_i(x)$ and $h_i(x)$ are constraints
- There is no general method for solving nonlinear optimization problems
- Therefore we will first look at unconstrained optimization

148

Unconstrained optimization: steepest descent (pretty bad method!)

149

• Select the direction, where the gradient is steepest:

$$x_{k+1} = x_k - \lambda_k \nabla f(x_k)$$

• Optimizing a quadratic function

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

Converges only linearly, and may be very slow!

Conjugate gradient method

- Modest memory requirements
- Convergence is (super)linear
- Finds the minimum of an n dimensional quadratic function in n steps
- Optimizing a quadratic function $f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$

150

154

Constrained nonlinear optimization

• The problem: $\min_{x \in \mathbb{R}^n} f(x), g_i(x) \le 0, i = 1,...,p,$

$$h_j(x) = 0, j = 1,...,1.$$

• The constraints may be linear or nonlinear

 Sequential quadratic programming (SQP) may be the most used and most robust method

