Hi! I'm Dani. I'm a Data Scientist that loves solving problems and creatively communicating solutions. One of the things I enjoy the most is brain teasers. And I think their visual representation is a great way to solve and understand them. So I hope you enjoy them too!



scartoon of girl with olive skin, brown eyes, medium light brown hair, long lashes, tiny nose, saying hi

## PRISONERS RIDDLE



Two prisoners in jail live in different cells and can't communicate in any way.

The warden will start a game where he goes to each prisoner every night and flips a fair coin.

He will then ask the prisoner to **guess** what he will **flip** for the other prisoner. If both guess wrong, they'll be executed. If at least one is right, they live for another day!



The warden lets them make a strategy before the game starts.

What strategy should they decide to live for the most number of days?

## **ANSWER PRISONERS RIDDLE**

There are **4 SCENARIOS** of coin flips that can happen (P for prisoner):

P1 gets P2 gets

SCENARIO 1: A

SCENARIO 2: A S

SCENARIO 3: S A

SCENARIO 4: S S



To ensure they'll win in each scenario, at least one has to guess the other prisoner's coin correctly (one **OR** the other).





But unfortunately, **they only see what they get**, not what the other prisoner gets. So, if they create a strategy, they could only rely on the information gained from their side (i.e., the coin they get)...

So, if **P1** analyzes how to win in each scenario as if everything depended on him and only knowing what he got:

P1 gets They win if: Wins by saying the same SCENARIO 1:  $\Delta$ (P1 says A) coin he gets **SCENARIO 2:** Wins by saying the (P1 says S) opposite coin he gets SCENARIO 3: S Wins by saying the (P1 says A) opposite coin he gets SCENARIO 4: S Wins by saying the same (P1 says S) coin he gets

3

Similarly, **if everything depended of P2**, as he only knows what he got:



So, individually, they both win in Scenarios 1 and 4 by guessing the same coin as the one they get. And they individually win in Scenarios 2 and 3 by guessing the opposite coin as the one they get.

But both of them don't need to win. Only 1 of the prisoners needs to guess correctly in each scenario!

So, if one prisoner always says the **same** coin he gets, he will always win in **Scenarios 1 and 4**. And, if the other prisoner always says the **opposite** coin he gets, he will always win in **Scenarios 2 and 3**.

So in every scenario (1,2,3,4), we have someone that will guess correctly! So, they'll live forever.

Visually, if **P1** always guesses the **opposite** of what he gets and **P2** always guesses the **same**:



So, it doesn't matter the scenario. Someone always guesses correctly!

