Discrete Mathematics Quiz 1 2008.04.08

Name:	Student ID:

Instructions. This is a 2-hr close book quiz. Please manage your time well. No dictionary, calculator, PDA, or any other electronic device. Any dishonorable cheating behavior will give you a miserable future. (Totally 115 points)

1. [10%] Let d_{\min} denote the minimum degree of a vertex in an undirected graph G = (V, E), where V and E denote the set of vertices and edges. Show that the graph contains a simple path containing at least d_{\min} edges. (hint: proof by contradiction, assume the longest simple path $v_0 - v_1 - ... - v_k$ contains $k < d_{\min}$ edges, and then argue why it can NOT be the longest path.)

Ans: Suppose not, which means the longest simple path $v_0 - v_1 - ... - v_k$ contains $k < d_{\min}$ edges. Take vertex v_k for example, there exist at least d_{\min} adjacent vertices to v_k , which means at least one vertex in $N - \{v_0, v_1, ..., v_{k-1}\}$ is adjacent to v_k , and thus it implies the simple path $v_0 - v_1 - ... - v_k$ can be at least one edge longer which contradicts the fact that it is already the longest.

2. [8%] In \mathbb{Z}_7 , which of the following congruence classes are equal? [2], [7], [10], [16], [39], [45], [-1], [-3], [-6], [-17], [-23]

Ans:

3. [62%] The following table lists a number of tasks that must be completed in order for a crew of workers to finish a project.

20012	A	_	_	_		_			_	•
Time (in days)	2	2	3	1	1	2	3	4	3	3

Suppose the project starts at Apr. 9. Task A must be carried out before any other tasks can start. Task B must precede tasks E and F, and both E and F must be completed before H can begin. Tasks C and D must precede task G, which in turn must precede I. Task J must be carried out last. It is assumed that there are enough workers to carry out any number of tasks simultaneously.

- (a) [5%] Draw a PERT diagram showing the relations of these tasks.
- (b) [5%] Draw the critical path.
- (c) [5%] We say a "conflict of tasks" occurs when two tasks violate their precedent relations. Give a suitable sequence for conducting all the tasks so that no conflict of tasks occurs in the entire process.

- (d) [5%] What is the fewest number of days needed to make this product?
- (e) [5%] What is the earliest date for this project to be done?
- (f) [5%] If we start to do task D in Apr.14, will it affect your answer in (e)? If yes, affect how much? If no, explain why not.
- (g) [5%] What is the latest date for task H to begin, in order not to affect your answer in (e)?
- (h) [9%] For any two tasks x and y, suppose we define $x\mathbf{R}y$ to be true if either task x equals to task y or task x can not be started until task y is completed. Explain why \mathbf{R} is reflexive, antisymmetric, and transitive.
- (i) [6%] Following (h), what are BRJ, IRC, HRD? (i.e. True or False?)
- (j) [4%] Following (h), let S be set of all tasks and \mathbf{R} be a relation on S. List all the minimal and maximal elements of S with respect to \mathbf{R} .
- (k) [4%] Following (h), what are the infimum and supremum of E and F? what are the infimum and supremum of G and F?
- (l) [4%] Following (h), is (S, \mathbf{R}) a lattice? Explain your answer.(an answer without explanation gets at most 1 point)

Ans:

- (a) see Fig.1
- (b) A-C-G-I-J
- (c) ABCDEFGHIJ (there are many other permutations, as long as it follows topological ordering)
- (d) 14 days
- (e) Apr.22, since Apr.9+14-1=Apr.22
- (f) Yes, the earliest date for G to start was supposed to be Apr.14, determined by C. If D starts at Apr. 14, the earliest date for G to start becomes Apr.15 which will make the tight schedule 1 day longer.
- (g) Apr.16. Since the earliest time for J to start is Apr.20 (Apr.22-3+1), which means the latest date for H to finish is Apr.19, and thus Apr.19-4+1=Apr.16 is the latest date for H to start, without affecting the tightest schedule in (e).
- (h) \mathbf{R} is obviously reflexive since a task x equals to itself.

Suppose $x \neq y$. If $x\mathbf{R}y$ is true, task x is not started until y is completed, and thus y must have been started before x is completed, which means $y\mathbf{R}x$ is false. This makes the only chance to have both $x\mathbf{R}y$ and $y\mathbf{R}x$ be true is to let x=y, which is true since \mathbf{R} is reflexive. This shows \mathbf{R} is antisymmetric.

Suppose $x \neq y$. If both $x\mathbf{R}y$ and $y\mathbf{R}z$ are true, which means y is completed before x is started, and z is completed before y is started, thus z is completed before x is started and $x\mathbf{R}z$ becomes true. So \mathbf{R} is transitive.

- (i) BRJ = False, IRC = True, HRD = False
- (i) minimal elements: J; maximal element: A
- (k) infimum of E,F: H, supremum of E,F: B; infimum of G,F: J, supremum of G,F: A
- (1) yes, since all pairs of tasks uniquely meet or join each other.

- 4. [16%] Let X denote the set of real numbers. Suppose we have a function $f: X \to X$, $f(x) = \frac{1}{|x|+1}$
 - (a) [4%] Is f well-defined? why?
 - (b) [2%] rnq f = ?
 - (c) [6%] Is f injective? why? Is f surjective? why?
 - (d) [4%] Derive f^{-1} , if one exists; or explain why it does not exist.

Ans:

- (a) yes, since for each $x \in X$, f(x) is uniquely defined in X (i.e. for a given $x \in X$, there will be only one f(x)
- (b) Let $y = \frac{1}{|x|+1}$.

If
$$x \ge 0$$
, $y = \frac{1}{x+1}$, $x = \frac{1-y}{y} = f^{-1}(y)$ with $y \in X - \{0\}$
If $x < 0$, $y = \frac{1}{-x+1}$, $x = \frac{y-1}{y} = f^{-1}(y)$ with $y \in X - \{0\}$

If
$$x < 0$$
, $y = \frac{1}{-x+1}$, $x = \frac{y-1}{y} = f^{-1}(y)$ with $y \in X - \{0\}$

It is easy to show $y \in (0,1]$, since $|x| \geq 0$, $1+|x| \geq 1$, which means $\frac{1}{|x|+1} \leq 1$; also, $\lim_{x\to\infty} \frac{1}{|x|+1} = 0.$

Thus rng f = (0, 1].

(c) f is NOT injective since if $x_1 = -x_2 \neq 0$, $f(x_1) = f(x_2)$

f is NOT surjective since $rng\ f = (0,1] \neq X = R$.

- (d) by (c), we know f^{-1} does not exist, since it is not one-to-one correspondence.
- 5. [19%] If X has m elements and Y has n elements,
 - (a) [2%] Is it possible that m > n, if there is a one-to-one function with domain X and codomain Y? Explain your answer.
 - (b) [5%] How many one-to-one functions are there with domain X and codomain Y?
 - (c) [2%] Is it possible that m > n, if there is an onto function with domain X and codomain Y? Explain your answer.
 - (d) [10%] How many onto functions are there with domain X and codomain Y?

Ans:

- (a) No, since such a function will make some element in X not mappable to Y.
- (b) When $m \leq n$, totally there are $P_m^n = n \cdot (n-1) \cdot \dots \cdot (n-m+1)$ possible mapping relations (i.e. functions).
- (c) Yes, as long as each element in X is mapped to an element in Y, and each element in X is mapped.
- (d) It is not possible that m < n, if there is an onto function with domain X and codomain Y, since it will force some element in X maps to more than one element in Y, contradicts the definition of functions. Thus for an onto function with domain X and codomain Y, $m \ge n$. In this case, the total possibilities can be calculated by the total number of functions - $\sum_{i=1}^{n-1}$ (the total number of functions without mapping i elements in Y) which equals to $n^m - \sum_{i=1}^{n-1} (-1)^{i+1} C_i^n (n-i)^m$.