PATENT ABSTRACTS OF JAPAN

(11)Publication number: 11-313257

(43)Date of publication of application: 09.11.1999

(51)Int.CI.

H04N 5/335 H01L 27/146

(21)Application number: 10-120251

30.04.1998

(71)Applicant:

MINOLTA CO LTD

(72)Inventor:

NAKAMURA SATOYUKI TAKADA KENJI

HAGIWARA YOSHIO MIYATAKE SHIGEHIRO

(54) SOLID-STATE IMAGE PICKUP DEVICE

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To provide a solid-state image pickup device excellent in S/N and wide in dynamic range and capable of obtaining a high pixel output.

SOLUTION: This device is configured by arranging pixels in a matrix. In this case, each pixel of the device is made up of a photoelectric conversion photoelectric diode PD, a MOS transistor(TR) T1 that converts its output current into a logarithmically transformed voltage, a MOS TR T2 whose gate receives the logarithmically transformed voltage, a capacitor C whose one-side terminal connects to a source of the MOS TR T2 to receive an output current from the source and whose other terminal connects to a DC voltage line Vss, a MOS TR T3 that amplifies an output of the capacitor C, and a guide path through which the amplified signal is led to an output signal line.

LEGAL STATUS

[Date of request for examination]

14.03.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-313257

(43)公開日 平成11年(1999)11月9日

(51)Int. Cl. 6

識別記号

FΙ

H 0 4 N 5/335

H 0 4 N 5/335

E

H O 1 L 27/146

H 0 1 L 27/14

A

審査請求 未請求 請求項の数23

0 L

(全18頁)

(21)出願番号

特願平10-120251

(22)出願日

平成10年(1998)4月30日

(71)出願人 000006079

ミノルタ株式会社

大阪府大阪市中央区安土町二丁目3番13号

大阪国際ビル

(72)発明者 中村 里之

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

(72)発明者 高田 謙二

大阪市中央区安土町二丁目3番13号 大阪

国際ビル ミノルタ株式会社内

(74)代理人 弁理士 佐野 静夫

最終頁に続く

(54)【発明の名称】固体撮像装置

(57)【要約】

【課題】画素の出力を大きく得ることができ、S/Nの 良好で、ダイナミックレンジの広い固体撮像装置を提供 オス

【解決手段】画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、光電変換用のフォトダイオードPDと;その出力電流を対数変換した電圧に変換するMOSトランジスタT1と;対数変換された出力電圧がゲートに印加されるMOSトランジスタT2と;一端が前記MOSトランジスタの第2電極から出力電流を受けるように接続され他端が直流電圧に接続されたキャパシタCと;キャパシタの出力を増幅するMOSトランジスタT3と、増幅された信号を出力信号線へ導出する手段とから成っている。

40

1

【特許請求の範囲】

【請求項1】画素をマトリクス状に配してなる二次元の 固体撮像装置において、各画素が以下のものを含むこと を特徴とする固体撮像装置:光電変換素子と、

前記光電変換素子の出力電流を対数変換した電圧に変換する対数変換手段と、第1電極と第2電極と制御電極と を備え、この制御電極に前記対数変換手段の出力電圧が 印加されるトランジスタと、

一端が前記トランジスタの第2電極から出力電流を受けるキャパシタと、

前記キャパシタの出力を増幅する増幅器と、

増幅された信号を出力信号線へ導出する導出路。

【請求項2】前記増幅器は、前記キャパシタからの出力を、前記キャパシタに蓄積された電荷に比例して電流増幅するものであることを特徴とする請求項1に記載の固体撮像装置。

【請求項3】前記増幅器は、第1電極と第2電極と前記 キャパシタの出力が印加される制御電極とを有する増幅 用トランジスタと、前記増幅用トランジスタの第2電極 に通じる出力信号線に接続された負荷抵抗とを含む請求 20 項1又は請求項2に記載の固体撮像装置。

【請求項4】前記負荷抵抗の総数が全画素数より少ないことを特徴とする請求項3に記載の固体撮像装置。

【請求項5】前記導出路は、前記増幅用トランジスタの第2電極に接続されていることを特徴とする請求項3又は請求項4に記載の固体撮像装置。

【請求項6】前記負荷抵抗は、前記増幅用トランジスタの第2電極に接続された第1電極と、直流電圧に接続された第2電極と、直流電圧に接続された制御電極とを有する抵抗用トランジスタであることを特徴とする請求項3に記載の固体撮像装置。

【請求項7】前記増幅用トランジスタがnチャンネルMOSトランジスタであり、前記増幅用トランジスタの第1電極に印加される直流電圧が、前記抵抗用トランジスタの第2電極に接続される直流電圧よりも高電位であることを特徴とする請求項6に記載の固体撮像装置。

【請求項8】前記増幅用トランジスタがpチャンネルM OSトランジスタであり、前記増幅用トランジスタの第 1電極に印加される直流電圧が、前記抵抗用トランジス タの第2電極に接続される直流電圧よりも低電位である ことを特徴とする請求項6に記載の固体撮像装置。

【請求項9】前記導出路は、全画素の中から所定のものを順次選択し、選択された画素から増幅された信号を出力信号線に導出するスイッチを含むことを特徴とする請求項1~請求項8のいずれかに記載の固体撮像装置。

【請求項10】前記キャパシタの出力を導出する間に次の積分を行う第2のキャパシタをさらに備えることを特徴とする請求項1~請求項9のいずれかに記載の固体撮像装置。

【請求項11】前記キャパシタへの電流入力路にスイッ

チを設け、このスイッチを全画素で同時制御して全画素 の積分時間を同一にしたことを特徴とする請求項1又は 請求項2に記載の固体撮像装置。

【請求項12】画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が以下のものからなっていることを特徴とする固体撮像装置:フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 10 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 1電極が直流電圧に接続されサブスレッショルド領域で 動作する第2MOSトランジスタと、

一端が第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電荷に基づく信号を積分するキャバシタと、

前記キャパシタの一端にゲートが接続され第1電極が直 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

20 前記キャパシタの前記一端に第1電極が接続され第2電極が直流電圧に接続されているとともにゲートにリセット信号が入力されたときONして前記キャパシタを初期 状態にリセットする第4MOSトランジスタと、

第3MOSトランジスタの第2電極に第1電極が接続され第2電極が出力信号線に接続されゲート電極が行選択線に接続された読み出し用の第5MOSトランジスタ。

【請求項13】画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が以下のものからなっていることを特徴とする固体撮像装置:フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続されサブスレッショルド領域で動作する第2MOSトランジスタと、

一端が第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続されるとともに第2MOSトランジスタの第1電極にリセット電圧が与えられたときに第2MOSトランジスタを介してリセットされるキャパシタと、

前記キャパシタの一端にゲートが接続され第1電極が直流電圧に接続されて増幅器として動作する第3MOSトランジスタと、

第1電極が第3MOSトランジスタの第2電極に接続され第2電極が出力信号線に接続されゲート電極が行選択線に接続された読み出し用の第5MOSトランジスタ。

【請求項14】画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が以下のものからなっていることを特徴とする固体撮像装置:フォトダイオー

ドと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 1電極が直流電圧に接続されサブスレッショルド領域で 動作する第2MOSトランジスタと、

ー端が第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電荷に基づく信号を積分するキャパシタと、

前記キャパシタの一端にゲートが接続され第1電極が直 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

前記キャパシタの一端に第1電極が接続され第2電極が 直流電圧に接続されゲートに直流電圧が印加されて常時 ONする第4MOSトランジスタと、

第3MOSトランジスタの第2電極に第1電極が接続され第2電極が出力信号線に接続されゲート電極が行選択 線に接続された読み出し用の第5MOSトランジスタ。

【請求項15】画素をマトリクス状に配してなる二次元 20 の固体撮像装置において、各画素が、

フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続される とともに第1電極が直流電圧に接続されサブスレッショ ルド領域で動作する第2MOSトランジスタと、

第1電極が第2MOSトランジスタの第2電極に接続されゲートにスイッチング電圧が印加される第6MOSトランジスタと

一端が第6MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電流に基づく信号を積分するキャパシタと、

前記キャパシタの一端にゲートが接続され第1電極が直 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

前記キャパシタの前記一端に第1電極が接続され第2電極が直流電圧に接続されているとともにゲートにリセット信号が入力されたときONして前記キャパシタを初期状態にリセットする第4MOSトランジスタと、

第3MOSトランジスタの第2電極に第1電極が接続され第2電極が出力信号線に接続されゲート電極が行選択線に接続された読み出し用の第5MOSトランジスタと、

から成り、第6MOSトランジスタをOFFして前記キャパシタの積分を停止した状態で前記キャパシタに蓄積された電荷に基づく信号を第3MOSトランジスタで増幅して読み出すようにしたことを特徴とする固体撮像装置。

す リカマサに配しでわる。

【請求項16】画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、

フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 1電極にクロックが印加されサブスレッショルド領域で 動作する第2MOSトランジスタと、

10 一端が第1スイッチを介して第2MOSトランジスタの 第2電極に接続され他端が直流電圧に接続され前記フォ トダイオードで発生した光電流に基づく信号を積分する キャパシタと、

ゲートが前記キャパシタの一端に接続され第1電極が直 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

ー端が第3MOSトランジスタの第2電極に接続され他端が出力信号線に接続された第2スイッチと、

から成り、第1スイッチをON状態にして前記キャパシタへ第2MOSトランジスタの出力電流を供給して信号の積分を行ない、第1スイッチをOFFした状態で第2スイッチをONして前記キャパシタの信号を第3MOSトランジスタで増幅して出力信号線へ導出し、その後、第1スイッチをON状態にして第2MOSトランジスタの第1電極に印加される前記クロックのリセット電圧期間に第2MOSトランジスタと第1スイッチを通して前記キャパシタの初期化を行なうことを特徴とする固体撮像装置。

【請求項17】画素をマトリクス状に配してなる二次元 30 の固体撮像装置において、各画素が、

フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 1電極にクロックが印加されサブスレッショルド領域で 動作する第2MOSトランジスタと、

ー端が第1スイッチを介して第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電流に基づく信号を積分するキャパシタと、

ゲートが前記キャパシタの一端に接続され第1電極が直 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

一端が前記キャパシタの一端に接続され他端が直流電圧 に接続されゲートにリセット信号が入力される第4MO Sトランジスタと、

一端が第3MOSトランジスタの第2電極に接続され他端が出力信号線に接続された第2スイッチと、

50 から成り、第1スイッチをOFFして前記キャパシタの

信号を第3MOSトランジスタで増幅して出力信号線へ 読み出しているときに第2MOSトランジスタの第2電 極のクロックのリセット電圧期間に前記第2MOSトラ ンジスタの第2電極に関係するpn接合容量をリセット し、前記クロックの他のレベル期間に前記pn接合容量 への信号の積分を開始させ、前記キャパシタの信号の読 み出し終了後に第1スイッチをONさせて前記pn接合 容量の蓄積電荷を前記キャパシタへ移送するとともに該 キャパシタの積分を続行することを特徴とする固体撮像 装置。

【請求項18】 画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、

フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 1電極に直流電圧が印加されサブスレッショルド領域で 動作する第2MOSトランジスタと、

ー端が第2MOSトランジスタの第2電極に接続され他 20 端が直流電圧に接続され前記フォトダイオードで発生した光電流に基づく信号を積分する第1キャパシタと、

ー端が第1キャパシタの一端に接続された第1スイッチ と、

第1スイッチの他端に一端が接続され他端が直流電圧に 接続された第2キャパシタと、

第2キャパシタの前記一端にゲートが接続され第1電極 が直流電圧に接続されて増幅器として動作する第3MO Sトランジスタと、

第2キャパシタの一端に第1電極が接続され第2電極が 直流電圧に接続されゲートにリセット信号が入力される 第4MOSトランジスタと、

一端が第3MOSトランジスタの第2電極に接続され他端が出力信号線に接続された第2スイッチとから成り、第1スイッチをOFF状態にして第2キャパシタの信号を第3MOSトランジスタで増幅して出力信号線へ読み出しているときに第1キャパシタで次の積分を開始し、前記読み出し終了後、第4MOSトランジスタをONして第2キャパシタをリセットした後、第1スイッチをONして第1キャパシタの電荷を第2キャパシタへ転送するとともに第2キャパシタの積分を続行することを特徴とする固体撮像装置。

【請求項19】 画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、

フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 パシタをリセットし、前記クロックの他のレベル期間に 1電極にクロックが印加されサブスレッショルド領域で 50 第1キャパシタの積分を開始し、読み出し終了後第4M

動作する第2MOSトランジスタと、

ー端が第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電流に基づく信号を積分する第1キャパシタと、

一端が第1キャパシタの一端に接続された第1スイッチと、

第1スイッチの他端に一端が接続され他端が直流電圧に 接続された第2キャパシタと、

第2キャパシタの一端にゲートが接続され第1電極が直 10 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

一端が第3MOSトランジスタの第2電極に接続され他端が出力信号線に接続された第2スイッチと、

から成り、第1キャパシタで積分された電圧を第1スイッチをONして第2キャパシタに転送することで第1キャパシタのリセットを行ない、次いで第1スイッチをOFFして第2キャパシタの電荷に基づく信号を第3MOSトランジスタで増幅して前記出力信号線へ読み出しているときに第1キャパシタで次の積分を行なうことを特徴とする固体撮像装置。

【請求項20】画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、

フォトダイオードと、

前記フォトダイオードの一方の電極に第1電極とゲート 電極が接続されサブスレッショルド領域で動作する第1 MOSトランジスタと、

ゲートが第1MOSトランジスタのゲートに接続され第 1電極にクロックが印加されサブスレッショルド領域で 動作する第2MOSトランジスタと、

30 一端が第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電流に基づく信号を積分する第1キャパシタと、

ー端が第1キャパシタの一端に接続された第1スイッチャ

第1スイッチの他端に一端が接続され他端が直流電圧に接続された第2キャパシタと、

第2キャパシタの一端にゲートが接続され第1電極が直 流電圧に接続されて増幅器として動作する第3MOSト ランジスタと、

40 第2キャパシタの一端に第1電極が接続され第2電極が 直流電圧に接続されゲートにリセット電圧が印加される 第4MOSトランジスタと、

一端が第3MOSトランジスタの第2電極に接続され他端が出力信号線に接続された第2スイッチと、

から成り、第1スイッチをOFFした状態で第2キャパシタの信号を第3MOSトランジスタで増幅して読み出しているときに第2MOSトランジスタの第2電極に印加されるクロックのリセット電圧レベル期間に第1キャパシタをリセットし、前記クロックの他のレベル期間に第1キャパシタの辞分を開始し、読む出し終了後第4M

OSトランジスタをONして第2キャパシタをリセットし、次に第1スイッチをONして第1キャパシタの電荷を第2キャパシタへ転送するとともに第2キャパシタの積分を継続することを特徴とする固体撮像装置。

【請求項21】前記画素に対し前記出力信号線を介して接続され前記第3MOSトランジスタのドレイン側で前記第3MOSトランジスタの負荷抵抗を成すMOSトランジスタを備えていることを特徴とする請求項12~請求項20のいずれかに記載の固体撮像装置。

【請求項22】画素マトリクスの列ごとに、その列に含 10 まれる各画素の第5 MOSトランジスタに接続された第 1 電極と、直流電圧に接続された第2 電極と、直流電圧に接続されたゲートとを有する抵抗用MOSトランジスタをさらに備えたことを特徴とする請求項12~請求項15のいずれかに記載の固体撮像装置。

【請求項23】画素マトリクスの列ごとに、その列に含まれる各画素の第2スイッチに接続された第1電極と、直流電圧に接続された第2電極と、直流電極に接続されたゲートとを有する抵抗用MOSトランジスタをさらに備えたことを特徴とする請求項16~請求項20のいず20れかに記載の固体撮像装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は固体撮像装置に関するものであり、特に画素を二次元に配置した固体撮像装置に関する。

[0002]

【従来の技術】フォトダイオード等の光電変換素子と、その光電変換素子で発生した光電荷を出力信号線へ取り出す手段とを含む画素をマトリクス状(行列状)に配し 30 てなる二次元固体撮像装置は種々の用途に供されている。ところで、このような固体撮像装置は光電変換素子で発生した光電荷を読み出す(取り出す)手段によってCCD型とMOS型に大きく分けられる。CCD型は光電荷をポテンシャルの井戸に蓄積しつつ、転送するようになっており、ダイナミックレンジが狭いという欠点がある。一方MOS型はフォトダイオードのpn接合容量に蓄積した電荷をMOSトランジスタを通して直接読み出すようになっていた。

【0003】ここで、従来のMOS型固体撮像装置の1 画素当りの構成を図24に示し説明する。同図において、PDはフォトダイオードであり、そのカソードがMOSトランジスタT1のゲートとMOSトランジスタT2のドレインに接続されている。MOSトランジスタT1のソースはMOSトランジスタT3のドレインに接続され、MOSトランジスタT3のソースは出力信号線Voutへ接続されている。またMOSトランジスタT1のドレインには直流電圧VDDが印加され、MOSトランジスタT2のソースとフォトダイオードPDのアノードには直流電圧Vssが印加されている。MOSトランジスタ 8

T2のゲートには直流電圧ΦRSが印加されている。

【0004】フォトダイオードPDに光が当たると、光電荷が発生し、その電荷はMOSトランジスタT1のゲートに蓄積される。ここで、MOSトランジスタT3のゲートにパルスΦVを与えてMOSトランジスタT3をONすると、MOSトランジスタT1のゲートの電荷に比例した電流がMOSトランジスタT1、T3を通って出力信号線Voutへ導出される。このようにして入射光量に比例した出力電流を読み出すことができる。信号読み出し後はMOSトランジスタT3をOFFにしてMOSトランジスタT2をONすることでMOSトランジスタT1のゲート電圧を初期化させることができる。

[0005]

【発明が解決しようとする課題】このように、従来のMOS型の固体撮像装置は各画素においてフォトダイオードで発生しMOSトランジスタのゲートに蓄積された光電荷をそのまま読み出すものであったからダイナミックレンジが狭く、また光源の変動成分やノイズ成分が含まれたまま出力されてしまい、しかも出力信号は小さいレベルであるので、S/Nが悪く全体として高品質の撮像信号を得ることができないという欠点があった。

【0006】本発明はこのような点に鑑みなされたものであって、画素の出力を大きく得ることができる固体撮像装置を提供することを目的とする。また、本発明の他の目的はS/Nの良好な撮像信号を得ることができる固体撮像装置を提供することにある。更に他の目的はダイナミックレンジの広い固体撮像装置を提供することにある。

[0007]

50

30 【課題を解決するための手段】上記の目的を達成するため請求項1に記載の発明では、画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、光電変換素子と;前記光電変換素子の出力電流を対数変換した電圧に変換する対数変換手段と;第1電極と第2電極と制御電極とを備え、この制御電極に前記対数変換手段の出力電圧が印加されるトランジスタと;一端が前記トランジスタの第2電極から出力電流を受けるキャパシタと;前記キャパシタの出力を増幅する増幅器と;増幅された信号を出力信号線へ導出する導出路とから成って40 いる。

【0008】この構成によると、光電変換出力信号はキャパシタで積分されるので、光電変換出力信号に含まれる光源の変動成分や高周波のノイズはキャパシタで吸収され除去される。そして、これらの変動成分や高周波のノイズの除去された光電変換出力信号は更に増幅器で増幅され充分な大きさとなって出力されるので、感度の良い撮像信号となる。更に、この構成では対数圧縮変換によって固体撮像装置のダイナミックレンジが広くなる。また、各画素ごとに光電変換手段とキャパシタと増幅器と導出手段が設けられているので、より正確に安定した

信号読み出しが可能である。

【0009】請求項3に記載するように、増幅器は第1電極と第2電極と前記キャパシタの出力が印加される制御電極とを有する増幅用トランジスタと、前記増幅用トランジスタの第2電極に通じる出力信号線に接続された負荷抵抗とを含むものであってもよい。この負荷抵抗は、いくつかの画素で兼用されていてもよい。従って、請求項4に記載するように、その総数が全画素数より少なくてもよい。また、増幅用トランジスタを用いる場合、請求項5に記載するように、前記導出路は増幅用トランジスタの第2電極に接続し、この第2電極から信号を導出すればよい。

【0010】負荷抵抗として請求項6に記載するように、増幅用トランジスタの第2電極に接続された第1電極と、直流電圧に接続された第2電極と、直流電圧に接続された制御電極とを有する抵抗用トランジスタを用いてもよい。増幅用トランジスタとしてMOSトランジスタを用いてもよい。nチャンネルMOSトランジスタを用いる場合、請求項7に記載するように、増幅用トランジスタの第1電極に印加される直流電圧を抵抗用トランジスタの第2電極に接続される直流電圧よりも高電位とすればよい。

【0011】増幅用トランジスタとしてpチャンネルM OSトランジスタを用いる場合、請求項8に記載するように、増幅用トランジスタの第1電極に印加される直流電圧を抵抗用トランジスタの第2電極に接続される直流電圧よりも低電位とすればよい。前記導出路としては、請求項9に記載するように、全画素の中から所定のものを順次選択し、選択された画素から増幅電圧を出力信号線に導出するスイッチを含むものを用いてもよい。請求項10に記載の発明では、第1キャパシタの出力を導出する間に、次の積分を行う第2のキャパシタを設けることにより、第1キャパシタの信号を読み出すと同時に第2キャパシタへの積分が可能となり、動画撮像に対応することが可能である。

【0012】また、請求項11に記載の発明では、前記キャパシタへの電流入力路にスイッチを設け、このスイッチを全画素で同時制御して全画素の積分時間を同一にしたことを特徴とする。本発明によれば、キャパシタに蓄積された電荷の読み出しのタイミングが行ごとに順次 40ずれることがなく、そのキャパシタの積分時間(及びタイミング)は全画素で同一であるので、画素間での読み出しずれに基づく信号の誤差といったものは生じない。

【0013】また、請求項12に記載の発明では、画素をマトリクス状に配してなる二次元の固体撮像装置において、各画素が、フォトダイオードと;前記フォトダイオードの一方の電極に第1電極とゲート電極が接続されサブスレッショルド領域で動作する第1MOSトランジスタと;ゲートが第1MOSトランジスタのゲートに接続され第1電極が直流電圧に接続されサブスレッショル

10

ド領域で動作する第2MOSトランジスタと;一端が第2MOSトランジスタの第2電極に接続され他端が直流電圧に接続され前記フォトダイオードで発生した光電荷に基づく信号を積分するキャパシタと;前記キャパシタの一端にゲートが接続され第1電極が直流電圧に接続されて増幅器として動作する第3MOSトランジスタと;前記キャパシタの前記一端に第1電極が接続され第2電極が直流電圧に接続されているとともにゲートにリセット信号が入力されたときONして前記キャパシタを初期状態にリセットする第4MOSトランジスタと;第3MOSトランジスタの第2電極に第1電極が接続され第2電極が出力信号線に接続されゲート電極が行選択線に接続された読み出し用の第5MOSトランジスタとから成っている。

【0014】このような構成によると、フォトダイオードで発生した光電流は第1MOSトランジスタで対数変換され、そのゲート電圧は対数変換電流に比例した電圧となる。この電圧によって第2MOSトランジスタを通してキャパシタが充電される。積分が終了した時点で第5MOSトランジスタがONされキャパシタの電圧が第3MOSトランジスタで増幅されて出力信号線へ導出される。その後、第4MOSトランジスタのゲートにリセットパルスが印加されると、キャパシタは初期化され、再びキャパシタによる積分が開始される。

【0015】また、請求項13に記載の発明では、画素 をマトリクス状に配してなる二次元の固体撮像装置にお いて、各画素が、フォトダイオードと;前記フォトダイ オードの一方の電極に第1電極とゲート電極が接続され サブスレッショルド領域で動作する第1MOSトランジ スタと:ゲートが第1MOSトランジスタのゲートに接 続されサブスレッショルド領域で動作する第2MOSト ランジスタと;一端が第2MOSトランジスタの第2電 極に接続され他端が直流電圧に接続されるとともに第2 MOSトランジスタの第1電極にリセット電圧が与えら れたときに第2MOSトランジスタを介してリセットさ れるキャパシタと;前記キャパシタの一端にゲートが接 続され第1電極が直流電圧に接続されて増幅器として動 作する第3MOSトランジスタと;第1電極が第3MO Sトランジスタの第2電極に接続され第2電極が出力信 号線に接続されゲート電極が行選択線に接続された読み 出し用の第5MOSトランジスタとから成っている。

【0016】この構成では、キャパシタの積分やキャパシタ電圧の読み出しについては、上記請求項4の場合と同一であるが、キャパシタのリセットについては第2MOSトランジスタの第1電極にリセット電圧が与えられたとき、キャパシタの電荷が第2MOSトランジスタを通して放電されることによってなされる。

サブスレッショルド領域で動作する第1MOSトランジ 【0017】また、請求項14に記載の発明では、画素スタと;ゲートが第1MOSトランジスタのゲートに接 をマトリクス状に配してなる二次元の固体撮像装置にお続され第1電極が直流電圧に接続されサブスレッショル 50 いて、各画素が、フォトダイオードと;前記フォトダイ

ている。

30

同一にできる。

11

ジスタを同時制御することによって全画素の積分時間を

の電極に第1電極とゲート電極が接続され ヨルド領域で動作する第1MOSトランジ トが第1MOSトランジスタのゲートに接 極が直流電圧に接続されサブスレッショル する第2MOSトランジスタと;一端が第 ンジスタの第2電極に接続され他端が直流 れ前記フォトダイオードで発生した光電荷 を積分するキャパシタと;前記キャパシタ トが接続され第1電極が直流電圧に接続さ して動作する第3MOSトランジスタと; ·タの一端に第1電極が接続され第2電極が **ご続されゲートに直流電圧が印加されて常時** MOSトランジスタと;第3MOSトラン 電極に第1電極が接続され第2電極が出力 されゲート電極が行選択線に接続された読 :5MOSトランジスタとから成っている。 この構成では、常時ONする第4MOSト が抵抗と等価になり、キャパシタに所定値の **ミれていることになる。このためキャパシタ** その抵抗によって決まることになる。換言 4 MOSトランジスタのゲート電極に加える 可変することによって初期値を調整できるこ

【0021】また、請求項16に記載の発明では、画素 をマトリクス状に配してなる二次元の固体撮像装置にお いて、各画素が、フォトダイオードと;前記フォトダイ オードの一方の電極に第1電極とゲート電極が接続され サブスレッショルド領域で動作する第1MOSトランジ スタと;ゲートが第1MOSトランジスタのゲートに接 続され第1電極にクロックが印加されサブスレッショル ド領域で動作する第2MOSトランジスタと;一端が第 1スイッチを介して第2MOSトランジスタの第2電極 に接続され他端が直流電圧に接続され前記フォトダイオ ードで発生した光電流に基づく信号を積分するキャパシ タと;ゲートが前記キャパシタの一端に接続され第1電 極が直流電圧に接続されて増幅器として動作する第3M OSトランジスタと;一端が第3MOSトランジスタの 第2電極に接続され他端が出力信号線に接続された第2 スイッチとから成り、第1スイッチをON状態にして前 記キャパシタへ第2MOSトランジスタの出力電流を供 給して信号の積分を行ない、第1スイッチをOFFした 状態で第2スイッチをONして前記キャパシタの信号を 第3MOSトランジスタで増幅して出力信号線へ導出 し、その後、第1スイッチをON状態にして第2MOS トランジスタの第1電極に印加される前記クロックのリ セット電圧期間に第2MOSトランジスタと第1スイッ

| また、請求項15に記載の発明では、画素 ス状に配してなる二次元の固体撮像装置にお 素が、フォトダイオードと;前記フォトダイ 5の電極に第1電極とゲート電極が接続され ンヨルド領域で動作する第1MOSトランジ - トが第1MOSトランジスタのゲートに接 ともに第1電極が直流電圧に接続されサブス ド領域で動作する第2MOSトランジスタ 弧が第2MOSトランジスタの第2電極に接 トにスイッチング電圧が印加される第6MO スタと;一端が第6MOSトランジスタの第 続され他端が直流電圧に接続され前記フォト で発生した光電流に基づく信号を積分するキ ;前記キャパシタの一端にゲートが接続され 直流電圧に接続されて増幅器として動作する トランジスタと;前記キャパシタの前記一端 が接続され第2電極が直流電圧に接続されて にゲートにリセット信号が入力されたときO キャパシタを初期状態にリセットする第4M ジスタと;第3MOSトランジスタの第2電 極が接続され第2電極が出力信号線に接続さ 極が行選択線に接続された読み出し用の第5 ンジスタとから成り、第6MOSトランジス して前記キャパシタの積分を停止した状態で シタに蓄積された電荷に基づく信号を第3M ジスタで増幅して読み出すようにしている。

【0022】この構成では、キャパシタの初期化(リセ ット)はキャパシタの電荷が第1スイッチと第2MOS トランジスタを通して放電することにより行なわれる。 【0023】また、請求項17に記載の発明では、画素 をマトリクス状に配してなる二次元の固体撮像装置にお いて、各画素が、フォトダイオードと;前記フォトダイ オードの一方の電極に第1電極とゲート電極が接続され サブスレッショルド領域で動作する第1MOSトランジ スタと;ゲートが第1MOSトランジスタのゲートに接 続され第1電極にクロックが印加されサブスレッショル ド領域で動作する第2MOSトランジスタと;一端が第 1スイッチを介して第2MOSトランジスタの第2電極 40 に接続され他端が直流電圧に接続され前記フォトダイオ ードで発生した光電流に基づく信号を積分するキャパシ タと;ゲートが前記キャパシタの一端に接続され第1電 極が直流電圧に接続されて増幅器として動作する第3M OSトランジスタと;一端が前記キャパシタの一端に接 続され他端が直流電圧に接続されゲートにリセット信号 が入力される第4MOSトランジスタと;一端が第3M OSトランジスタの第2電極に接続され他端が出力信号 線に接続された第2スイッチとから成り、第1スイッチ をOFFして前記キャパシタの信号を第3MOSトラン 】この構成では、全画素の第6MOSトラン 50 ジスタで増幅して出力信号線へ読み出しているときに第

チを通して前記キャパシタの初期化を行なうようになっ

2MOSトランジスタの第2電極のクロックのリセット 電圧期間に前記第2MOSトランジスタの第2電極に関 係するpn接合容量をリセットし、前記クロックの他の レベル期間に前記pn接合容量への信号の積分を開始さ せ、前記キャパシタの信号の読み出し終了後に第1スイ ッチをONさせて前記pn接合容量の蓄積電荷を前記キ ャパシタへ移送するとともに該キャパシタの積分を続行 するようになっている。

【0024】また、請求項18に記載の発明では、画素 をマトリクス状に配してなる二次元の固体撮像装置にお 10 いて、各画素が、フォトダイオードと;前記フォトダイ オードの一方の電極に第1電極とゲート電極が接続され サブスレッショルド領域で動作する第1MOSトランジ スタと;ゲートが第1MOSトランジスタのゲートに接 続され第1電極に直流電圧が印加されサブスレッショル ド領域で動作する第2MOSトランジスタと;一端が第 2 MOSトランジスタの第2電極に接続され他端が直流 電圧に接続され前記フォトダイオードで発生した光電流 に基づく信号を積分する第1キャパシタと;一端が第1 キャパシタの一端に接続された第1スイッチと;第1ス イッチの他端に一端が接続され他端が直流電圧に接続さ れた第2キャパシタと;第2キャパシタの前記一端にゲ ートが接続され第1電極が直流電圧に接続されて増幅器 として動作する第3MOSトランジスタと;第2キャパ シタの一端に第1電極が接続され第2電極が直流電圧に 接続されゲートにリセット信号が入力される第4MOS トランジスタと;一端が第3MOSトランジスタの第2 電極に接続され他端が出力信号線に接続された第2スイ ッチとから成り、第1スイッチをOFF状態にして第2 キャパシタの信号を第3MOSトランジスタで増幅して 出力信号線へ読み出しているときに第1キャパシタで次 の積分を開始し、前記読み出し終了後、第4MOSトラ ンジスタをONして第2キャパシタをリセットした後、 第1スイッチをONして第1キャパシタの電荷を第2キ ャパシタへ転送するとともに第2キャパシタの積分を続 行するようになっている。

【0025】また、請求項19に記載の発明では、画素 をマトリクス状に配してなる二次元の固体撮像装置にお いて、各画素が、フォトダイオードと;前記フォトダイ オードの一方の電極に第1電極とゲート電極が接続され サブスレッショルド領域で動作する第1MOSトランジ スタと;ゲートが第1MOSトランジスタのゲートに接 続され第1電極にクロックが印加されサブスレッショル ド領域で動作する第2MOSトランジスタと;一端が第 2MOSトランジスタの第2電極に接続され他端が直流 電圧に接続され前記フォトダイオードで発生した光電流 に基づく信号を積分する第1キャパシタと;一端が第1 キャパシタの一端に接続された第1スイッチと、第1ス イッチの他端に一端が接続され他端が直流電圧に接続さ れた第2キャパシタと;第2キャパシタの一端にゲート 50 各画素の第5MOSトランジスタに接続された第1電極

14

が接続され第1電極が直流電圧に接続されて増幅器とし て動作する第3MOSトランジスタと;一端が第3MO Sトランジスタの第2電極に接続され他端が出力信号線 に接続された第2スイッチとから成り、第1キャパシタ で積分された電圧を第1スイッチをONして第2キャパ シタに転送することで第1キャパシタのリセットを行な い、次いで第1スイッチをOFFして第2キャパシタの 電荷に基づく信号を第3MOSトランジスタで増幅して 前記出力信号線へ読み出しているときに第1キャパシタ で次の積分を行なうようになっている。

【0026】また、請求項20に記載の発明では、画素 をマトリクス状に配してなる二次元の固体撮像装置にお いて、各画素が、フォトダイオードと;前記フォトダイ オードの一方の電極に第1電極とゲート電極が接続され サブスレッショルド領域で動作する第1MOSトランジ スタと;ゲートが第1MOSトランジスタのゲートに接 続され第1電極にクロックが印加されサブスレッショル ド領域で動作する第2MOSトランジスタと;一端が第 2MOSトランジスタの第2電極に接続され他端が直流 電圧に接続され前記フォトダイオードで発生した光電流 に基づく信号を積分する第1キャパシタと;一端が第1 キャパシタの一端に接続された第1スイッチと;第1ス イッチの他端に一端が接続され他端が直流電圧に接続さ れた第2キャパシタと;第2キャパシタの一端にゲート が接続され第1電極が直流電圧に接続されて増幅器とし て動作する第3MOSトランジスタと;第2キャパシタ の一端に第1電極が接続され第2電極が直流電圧に接続 されゲートにリセット電圧が印加される第4MOSトラ ンジスタと;一端が第3MOSトランジスタの第2電極 に接続され他端が出力信号線に接続された第2スイッチ とから成り、第1スイッチをOFFした状態で第2キャ パシタの信号を第3MOSトランジスタで増幅して読み 出しているときに第2MOSトランジスタの第2電極に 印加されるクロックのリセット電圧レベル期間に第1キ ャパシタをリセットし、前記クロックの他のレベル期間 に第1キャパシタの積分を開始し、読み出し終了後第4 MOSトランジスタをONして第2キャパシタをリセッ トし、次に第1スイッチをONして第1キャパシタの電 荷を第2キャパシタへ転送するとともに第2キャパシタ の積分を継続するようになっている。

【0027】また、請求項21に記載の発明では、請求 項12~請求項20のいずれかに記載の固体撮像装置に おいて、前記画素に対し前記出力信号線を介して接続さ れ前記第3MOSトランジスタのドレイン側で前記第3 MOSトランジスタの負荷抵抗を成すMOSトランジス 夕を備えている。

【0028】また、請求項22に記載の発明では、請求 項12~請求項15のいずれかに記載の固体撮像装置に おいて、画素マトリクスの列ごとに、その列に含まれる

と、直流電圧に接続された第2電極と、直流電圧に接続 されたゲートとを有する抵抗用MOSトランジスタをさ らに備えたことを特徴とする。

【0029】また、請求項23に記載の発明では、請求項16~請求項20のいずれかに記載の固体撮像装置において、画素マトリクスの列ごとに、その列に含まれる各画素の第2スイッチに接続された第1電極と、直流電圧に接続された第2電極と、直流電極に接続されたゲートとを有する抵抗用MOSトランジスタをさらに備えたことを特徴とする。

[0030]

【発明の実施の形態】以下、本発明の固体撮像装置の各 実施形態を図面を参照して説明する。図1は本発明の一 実施形態である二次元のMOS型固体撮像装置の一部の 構成を概略的に示している。同図において、G11~Gm nは行列配置 (マトリクス配置) された画素を示してい る。 2 は垂直走査回路であり、行 (ライン) 4-1、4 -2、・・・、4-nを順次走査していく。3は水平走 査回路であり、画素から出力信号線6-1、6-2、・ ・・、6-mに導出された光電変換信号を画素ごとに水 20 平方向に順次読み出す。5は電源ラインである。各画素 に対し、上記ライン4-1、4-2・・・、4-nや出 力信号線6-1、6-2・・・、6-m、電源ライン5 だけでなく、他のライン (例えば、クロックラインやバ イアス供給ライン等)も接続されるが、図1ではこれら について省略し、図3以降の各実施形態において示して いる。

【0031】出力信号線6-1、6-2、・・・、6- mごとにnチャンネルのMOSトランジスタQ1、Q2 が図示の如く1組ずつ設けられている。MOSトランジスタQ1のゲートは直流電圧線7に接続され、ドレインは出力信号線6-1に接続され、ソースは直流電圧VS S のライン8に接続されている。一方、MOSトランジスタQ2のドレインは出力信号線6-1に接続され、ソースは最終的な信号線9に接続され、ゲートは水平走査回路3に接続されている。

【0032】画素G11~Gmnには、後述するように、それらの画素で発生した光電荷に基づく信号を増幅して出力する増幅用の第3MOSトランジスタT3が設けられている。その増幅用のMOSトランジスタT3が設けられている。その増幅用のMOSトランジスタT3と上記 40 MOSトランジスタQ1との接続関係は図2(a)のようになる。ここで、MOSトランジスタQ1のソースに接続される直流電圧VSS'と、第3MOSトランジスタT3のドレインに接続される直流電圧VDD'との関係はVDD'>VSS'であり、直流電圧VSS'は例えばグランド電圧(接地)である。この回路構成は上段のMOSトランジスタT3のゲートに信号が入力され、下段のMOSトランジスタT3のゲートに信号が入力され、下段のMOSトランジスタQ1のゲートには直流電圧が常時印加される。このため下段のMOSトランジスタQ1は抵抗と等価であり、図2(a)の回路はソースフォロア型の増50

16

幅回路となっている。この場合、MOSトランジスタT 3から増幅出力されるのは電流であると考えてよい。 【0033】MOSトランジスタQ2は水平走査回路3 によって制御され、スイッチ素子として動作する。尚、 後述するように各実施形態の画素内にはスイッチ用の第 5MOSトランジスタも設けられている。この第5MO SトランジスタT5も含めて表わすと、図2(a)の回 路は正確には図2(b)のようになる。即ち、第5MO SトランジスタがMOSトランジスタQ1と第3MOS トランジスタT3との間に挿入されている。ここで、第 5MOSトランジスタT5は行の選択を行うものであ り、トランジスタQ2は列の選択を行うものである。な お、図1および図2に示す構成は以下に説明する第1実 施形態~第9実施形態に共通の構成である。いずれにし ても、図2のように構成することにより信号のゲインを 大きく出力することができる。

【0034】従って、画素がダイナミックレンジ拡大のために光電流を対数変換しているような場合は、そのままでは出力信号が小さいが、本増幅回路により充分大きな信号に増幅されるため、後続の信号処理回路(図示せず)での処理が楽になる。また、増幅回路の負荷抵抗部分を構成するトランジスタQ1を画素内に設けずに、列方向に配置された複数の画素が接続される出力信号線6-1、6-2、・・・、6-mごとに設けることにより、負荷抵抗の数を低減でき、半導体チップ上で増幅回路が占める面積を少なくできる。

【0035】以下、各実施形態を画素部分の構成を示して説明する。尚、以下の各実施形態では、信号を第3MOSトランジスタT3で増幅して出力信号線へ導出する旨、説明しているが、正確には第3MOSトランジスタT3と上述の負荷抵抗用のMOSトランジスタQ1との組み合せによって増幅するものであることは理解されるべきである。なお、本明細書において、「直流電圧へ接続」という場合、グランド電圧への接続、すなわち「接地」をも含むものとする。以下、各実施形態を画素部分の構成を示して説明する。

【0036】〈第1実施形態〉図3において、pnフォトダイオードPDが感光部(光電変換部)を形成している。そのフォトダイオードPDのアノードは第1のMOSトランジスタT1のドレインとゲート、及び第2のMOSトランジスタT2のソースは第3のMOSトランジスタT3のゲート、及び第4のMOSトランジスタT4のドレインに接続され、第3のMOSトランジスタT3のソースは第5のMOSトランジスタT5のドレインに接続されている。第5のMOSトランジスタT5のソースは出力信号線Vout(このVoutは図1の6-1、6-2、・・・、6-mに対応する)へ接続されている。

【0037】また、pnフォトダイオードPDのカソー

ドと第2のMOSトランジスタT2のドレイン、及び第 3のMOSトランジスタT3のドレインには直流電圧V DDが印加されるようになっている。一方、第1のMOS トランジスタT1のソースには直流電圧Vssが、第2の MOSトランジスタT2のソースにはキャパシタCを介 して同じく直流電圧Vssが印加されており、第4のMO Sトランジスタ T 4のソースには直流電圧 VRSが印加さ れている。第1、第2のMOSトランジスタT1、T2 はいずれもサブスレッショルド領域で動作するようにバ イアスされている。

【0038】今、フォトダイオードPDに光が当たると 光電流が発生し、第1MOSトランジスタT1のゲート には、MOSトランジスタのサブスレッショルド特性に より、前記光電流を対数変換した値の電圧が発生する。 この電圧により、キャパシタCには光電流の積分値を対 数変換した値と同等の電荷が蓄積される。ここで第5M **OSトランジスタT5のゲートにパルスΦVを与えて、** 該MOSトランジスタT5をONにするとキャパシタC へ蓄積された電荷に比例した電流が第3、第5MOSト ランジスタT3、T5を通り、出力信号線Voutへ導出 される。このようにして入射光量の対数値に比例した信 号(出力電流)を読み出すことができる。信号読み出し 後は第5MOSトランジスタT5をOFFにして第4M OSトランジスタT4をONすることでキャパシタC及 び第3MOSトランジスタT3のゲート電圧を初期化さ せることができる。

【0039】〈第2実施形態〉図4に示すように第2実 施形態では、第2MOSトランジスタT2のドレインに クロックΦDを与えることによってキャパシタC及び第 3MOSトランジスタT3のゲート電圧をリセット(初 期化) するようにし、それによって第4MOSトランジ スタT4を削除した構成となっている。その他の構成は 第1実施形態(図3)と同一である。尚、クロックΦD のハイレベル期間では、キャパシタCに積分が行なわ れ、ローレベル期間では、キャパシタCの電荷がMOS トランジスタT2を通して放電され、キャパシタCの電 圧及び第3MOSトランジスタT3のゲートは略クロッ クΦDのローレベル電圧になる(リセット)。この第2 実施形態では、第4MOSトランジスタT4を省略でき る分、構成がシンプルになる。

【0040】〈第3実施形態〉図5に示すように、第3 実施形態は、第1実施形態(図3)に対し第2MOSト **ランジスタT2とキャパシタCとの間にnチャンネル型** の第6MOSトランジスタT6をスイッチとして挿入し た点が特徴となっている。この第6MOSトランジスタ T6のドレインは第2MOSトランジスタT2のソース に接続され、ソースはキャパシタCに接続され、ゲート には積分時間制御電圧 (スイッチング電圧) **Φ**_{INT}が印 加されるようになっている。積分時間制御電圧ΦINTを

た状態でキャパシタCの積分動作が行なわれる。そし て、キャパシタCの信号を読み出す際には、積分時間制 御電圧 Φ_{INT}をローレベルにして該第6MOSトランジ スタT6をOFFにした状態で、第5MOSトランジス タT5をONし、第3、第5MOSトランジスタT3、 T5を通して出力信号線Voutへ読み出す。

【0041】信号読み出し後は、第5MOSトランジス タT5をOFFにし、且つ第6MOSトランジスタT6 をOFFにした状態で第4MOSトランジスタT4をO 10 NさせることによってキャパシタC及び第3MOSトラ ンジスタT3のゲート電圧のリセット (初期化) を行な う。しかる後、第6MOSトランジスタT6をONして キャパシタ Cによる積分を行なう。この第3実施形態で は、二次元に配置された全ての画素の第6MOSトラン ジスタT6のゲートに同時刻、同時間だけパルスを与え ると全ての画素が同時刻、同時間だけ積分された電荷を 各画素のキャパシタCに蓄積することができる。

【0042】〈第4実施形態〉図6に示すように、第4 実施形態は第1実施形態(図3)に対して、第4MOS トランジスタT4を省略するとともに、第2MOSトラ ンジスタT2のドレインにクロックΦDを与えるように し、且つその第2MOSトランジスタのソースとキャパ シタC間に第6MOSトランジスタT6をスイッチとし て挿入した点が相違しており、その他の構成は同一であ る。第6MOSトランジスタT6はドレインが第2MO SトランジスタT2のソースに接続され、ソースがキャ パシタに接続され、ゲートには積分時間制御電圧Фімт が印加されるようになっている。

【0043】フォトダイオードPDに光が当たると光電

流が発生し、MOSトランジスタT1のゲートには、M OSトランジスタのサブスレッショルド特性により、前 記光電流を対数変換した値の電圧が発生する。この電圧 により、キャパシタCには光電流の積分値を対数変換し た値と同等の電荷が蓄積されるが、ここで2次元に配置 されたすべての画素の第6MOSトランジスタT6のゲ ートに同時刻、同時間だけONさせるパルスを与えると すべての画素が同時刻、同時間だけ積分された電荷を各 画素のキャパシタCにそれぞれ蓄積することができる。 【0044】次に第5MOSトランジスタT5のゲート **40** にパルスΦ V を与え、第5 M O S トランジスタ T 5 を O Nにすると第3MOSトランジスタT3のゲートへ蓄積 された電荷 (この電荷はキャパシタ Cの電荷量に依存し ている) に比例した電流が第3、第4MOSトランジス タT3, T4を通り、信号出力線Voutへ導出される。 このようにして入射光量の対数値に比例した信号を読み 出すことができる。信号読み出し後は第5MOSトラン ジスタT5をOFFにし、第6MOSトランジスタT6 をONにして第2MOSトランジスタT2のドレインに キャパシタCの初期化のためのクロックΦDを与えるこ ハイレベルにして第6MOSトランジスタT6をONし 50 とでキャパシタC及び第3MOSトランジスタT3のゲ

ート電圧を初期化させることができる。

【0045】〈第5実施形態〉図7に示すように、第5 実施形態は第3実施形態(図5)に対し、第2MOSト ランジスタT2のドレインにクロックΦDを与えるよう にしている点が主に相違している。尚、Csは第2MO SトランジスタT2のソース(第6MOSトランジスタ T6のドレイン)に関係するpn接合容量である。

【0046】なお、前記接合容量Csは図23に示すように、n型半導体基板100に形成したPウェル層101と第2MOSトランジスタT2のソース領域102との間に形成される。ただし、このソース領域102は第6MOSトランジスタT6のドレイン領域105と兼用になっている。図23において、103は第2MOSトランジスタT2のドレイン領域であり、また106は第6MOSトランジスタT6のソース領域である。104、107はそれぞれ第2、第6MOSトランジスタT2、T6のゲート電極である。

【0047】フォトダイオードPDに光が当って光電流が発生すると第1MOSトランジスタT1のゲートには、MOSトランジスタのサブスレッショルド特性により、前記光電流を対数変換した値の電圧が発生する。この電圧により、キャパシタCには光電流の積分値を対数変換した値と同等の電荷が蓄積されるが、ここで2次元に配置されたすべての画素の第6MOSトランジスタT6のゲートに同時刻、同時間だけパルスを与えるとすべての画素が同時刻、同時間だけ積分された電荷を各画素のキャパシタCにそれぞれ蓄積することができる。

【0048】次に第5MOSトランジスタT5のゲートにパルス Φ Vを与えて、該第5MOSトランジスタT5をONにすると、第3MOSトランジスタT3のゲートへ蓄積された電荷に比例した電流が第3、第5MOSトランジスタT3、T5を通り、出力信号線Voutへ導出される。このようにして入射光量の対数値に比例した信号を読み出すことができる。また、各画素の積分終了時(第6MOSトランジスタT6がOFFになった後)に第2MOSトランジスタT2のドレインにクロック Φ Dのローレベルを与え、この第2のMOSトランジスタのソース(第3のMOSトランジスタのドレイン)の初期化、即ち接合容量Csの初期化(リセット)を行った後、クロック Φ Dがハイレベルになったときから接合容量Csへの積分を開始し、信号読み出し期間に次のフレームの信号を接合容量Csに蓄積しておく。

【0049】そして、全画素の信号(現フレームの信号)を読み出した後、第4MOSトランジスタT4をONにしてキャパシタC及び第3MOSトランジスタT3のゲート電圧を初期化させる。次に、第4MOSトランジスタT4をOFFにして第6MOSトランジスタT6をONさせ接合容量Csに蓄積された電荷をキャパシタCに移し、キャパシタCの積分を継続させる。これにより同時刻、同時間の積分機能を持ち、且つ動画にも対応50

できる。特に、積分時間の一部(接合容量 C s への積分)を読み出しと並行して行なうことにより撮像時間を 短縮でき、T V レートでの動画撮像が可能となる。

【0050】〈第6実施形態〉図8に示すように、第6 実施形態は第1実施形態(図3)に比し、第4MOSトランジスタT4のゲートにリセット電圧として所定の直流電圧RST(DC)を常時印加するようにした点が相違しており、その他の構成は第1実施形態と同一である。本実施形態では、常時ONする第4MOSトランジスタT4が抵抗と等価になり、キャパシタに所定値の抵抗が接続されていることになる。このためキャパシタの初期値が、その抵抗によって決まることになる。換言すれば、第4MOSトランジスタT4のゲート電極に加える直流電圧を可変することによって初期値を調整できる。

【0051】〈第7実施形態〉図9に示すように、第7 実施形態は第1実施形態(図3)に対し、キャパシタと して2つのキャパシタC1、C2が設けられている点 と、それらの間にnチャンネルMOSトランジスタより 成る第6MOSトランジスタT6をスイッチとして接続 している点が相違し、その他の構成は第1実施形態と同 様である。図9において、第2MOSトランジスタT2 のソースと直流電圧Vssとの間に第1キャパシタC1が 接続されその第1キャパシタC1の一端と第2MOSト ランジスタT2のソースに第6MOSトランジスタT6 のドレインが接続されている。そして、この第6MOS トランジスタT6のソースと直流電圧Vssとの間に第2 のキャパシタ C 2 が接続されている。また、この第2キ ャパシタC2と第6MOSトランジスタT6のソースに 30 増幅用の第3MOSトランジスタT3のゲートが接続さ れている。

【0052】フォトダイオードPDに光が当って光電流が発生すると第1MOSトランジスタT1のゲートには、MOSトランジスタのサブスレッショルド特性により、前記光電流を対数変換した値の電圧が発生する。この電圧により、第1キャパシタC1には光電流の積分値を対数変換した値と同等の電荷が蓄積される。そして、第6MOSトランジスタT6をONすると、第1キャパシタC1で積分された電荷が第2キャパシタC2の容量を第1キャパシタC1の容量に比し充分大きく選んでおけば、第1キャパシタC1の電荷は殆ど第2キャパシタC2へ移送される。従って、第1キャパシタC1について見れば、リセットされたと等価である。電荷を第2キャパシタC2へ転送後、積分を続行する。

【0053】次に、第6MOSトランジスタT6をOF Fにし、第5MOSトランジスタT5のゲートにパルス Φ Vを与えて、第5MOSトランジスタT5をONにすると第3MOSトランジスタT3のゲートへ蓄積(この 電荷は第2キャパシタC2の電荷量に依存している)さ

れた電荷に比例した電流が第3、第5MOSトランジス タT3、T5を通り、出力信号線Voutへ導出される。 このようにして入射光量の対数値に比例した出力電流を 読み出すことができる。信号読み出し後は第5MOSト ランジスタT5をOFFにして第4MOSトランジスタ T4をONすることで第2キャパシタC2及びMOSト ランジスタT3のゲート電圧を初期化させることができ る。この実施形態では、全ての画素の第6MOSトラン ジスタT6の制御を同一に行なうことにより、全画素の 積分タイミング (従って積分時間) を同一にできる。

【0054】〈第8実施形態〉図10に示すように、第 8 実施形態では、第7 実施形態 (図9) に対し、第2 M OSトランジスタT2のドレインに直流電圧がクロック **ΦDを印加することによって第4MOSトランジスタT** 4を削除している点が第7実施形態と相違しているだけ で、その他の接続構成は同一である。この実施形態で は、第1キャパシタC1の積分、その積分電荷の第2キ ャパシタC2への転送、及び第2キャパシタC2の内容 の読み出しについては第7実施形態と同じである。

【0055】信号の読み出しが終わってキャパシタC2 20 のリセットを行なうとき、第6MOSトランジスタT6 をONした状態で第2MOSトランジスタT2のドレイ ンにクロックΦDのローレベル電圧を与えることによっ て第1キャパシタC1の電荷が第2MOSトランジスタ T2を通して放電されるとともに、第2キャパシタC2 の電荷が第6MOSトランジスタT6及び第2MOSト ランジスタT2を通して放電され、第1、第2キャパシ タC1、C2が同様に前記クロックΦDのローレベル電 圧に設定(初期化)される。

【0056】〈第9実施形態〉図11に示すように、第 9実施形態では、第7実施形態(図9)に対し、第2M OSトランジスタT2のドレインに直流電圧でなく、ク ロックΦDを印加するようにしている点が相違している だけで、他の部分は第7実施形態と同一である。この実 施形態では、第1、第2キャパシタC1、C2のリセッ ト(初期化)を互いに独立に行なう。即ち、第1キャパ シタC1のリセットは第2MOSトランジスタT2のド レインにクロックΦDのローレベル電圧を印加すること によって行ない、第2キャパシタC2のリセットは第4 MOSトランジスタT4をONして行なう。

【0057】フォトダイオードPDに光が当って光電流 が発生すると第1MOSトランジスタT1のゲートに は、MOSトランジスタのサブスレッショルド特性によ り、前記光電流を対数変換した値の電圧が発生する。こ の電圧により、第1キャパシタC1には光電流の積分値 を対数変換した値と同等の電荷が蓄積される。従って、 全ての第2MOSトランジスタT2のドレインに同時 刻、同時間だけクロックΦDのローレベルを与えてキャ パシタC1への積分を開始し、その後全ての第6MOS トランジスタT6をONすると第1キャパシタC1で積 50 し、pチャンネル型MOSトランジスタを用いる場合

分された電荷が第2キャパシタC2へ移送される。ここ で2次元に配置されたすべての画素の第6MOSトラン ジスタT6のゲートに同時刻、同時間だけパルスを与え るとすべての画素が同時刻、同時間だけ積分された電荷 を各画素の第2キャパシタC2にそれぞれ蓄積すること

22

【0058】次に第5MOSトランジスタT5のゲート にパルスΦVを与え、該MOSトランジスタT5をON にすると第3MOSトランジスタT3のゲートへ蓄積さ 10 れた電荷 (この電荷は第2キャパシタC2の電荷量に依 存している) に比例した信号が第3、第5MOSトラン ジスタT3、T5を通り、出力信号線Voutへ導出され る。このようにして入射光量の対数値に比例した信号を 読み出すことができる。また、各画素の積分終了時(第 6MOSトランジスタT6がOFFになった後) に第2 MOS トランジスタT2のドレインにクロック Φ Dのロ ーレベル電圧を与え、第1キャパシタC1の初期化を行 った後、信号読み出し期間に次のフレームの信号を第1 キャパシタC1に蓄積しておく。

【0059】そして、全画素の信号を読み出した後、第 4MOSトランジスタT4をONにして第2キャパシタ C2及び第3MOSトランジスタT3のゲート電圧を初 期化させる。次に、第6MOSトランジスタT6をON させ第1キャパシタC1に蓄積された電荷を第2キャパ シタC2に移し、積分を継続させる。これにより全画素 が同時刻、同時間の積分機能を持ち、且つ動画にも対応 できる。

【0060】以上説明した第1~第9実施形態は、画素 内の能動素子であるMOSトランジスタT1~T6を全 が、これらのMOSトランジスタT1~T6を全てpチ ャンネル型のMOSトランジスタで構成してもよい。図 14~図22には、上記第1~第9実施形態をpチャン ネルMOSトランジスタで構成した例である第10実施 形態~第18実施形態を示している。そのため図12~ 図22では接続の極性や印加電圧の極性が逆になってい る。例えば、図14 (第10実施形態) において、フォ トダイオードPDはアノードが直流電圧VDDに接続さ れ、カソードが第1MOSトランジスタT1のドレイン 40 とゲートに接続され、また第2MOSトランジスタのゲ ートに接続されている。第1MOSトランジスタT1の ソースは直流電圧Vssに接続されている。

【0061】この場合、直流電圧VssとVDDは、Vss> VDD となっており、図3 (第1実施形態) と逆であ る。また、キャパシタCの出力電圧は初期値が高い電圧 で、積分によって降下する。また、第4MOSトランジ スタT4や第5MOSトランジスタT5をONさせると きには、低い電圧をゲートに印加する。以上の通り、n チャンネル型のMOSトランジスタを使った場合に比

動作についての説明は省略する。

は、電圧関係や接続関係が一部異なるが、構成は実質的 に同一であり、また基本的な動作も同一であるので、図 14~図22については図面で示すのみで、その構成や

【0062】尚、これらの第10~第18実施形態の画 素を含む固体撮像装置の全体構成を説明するためのブロ ック回路構成図を図12に示し、その電圧増幅回路部分 を抜き出して図13に示している。図12については、 図1と同一部分(同一の役割部分)に同一の符号を付し て説明を省略する。図12に示すように、列方向に配列 10 された出力信号線6-1、6-2、・・・、6-mに対 してpチャンネルMOSトランジスタQ1とpチャンネ ルMOSトランジスタQ2が接続されている。MOSト ランジスタQ1のゲートは直流電圧線7に接続され、ド レインは出力信号線6-1に接続され、ソースは直流電 圧VSS'のライン8に接続されている。一方、MOSト ランジスタQ2のドレインは出力信号線6-1に接続さ れ、ソースは最終的な信号線9に接続され、ゲートは水 平走査回路3に接続されている。ここで、トランジスタ Q1は画素内のpチャンネル型の第3MOSトランジス 20 タT3と共に図13 (a) に示すような増幅回路を構成 している。

【0063】この場合、MOSトランジスタQ1は第3 MOSトランジスタT3の負荷抵抗となっている。従って、このトランジスタQ1のソースに接続される直流電圧VSS'と、第3MOSトランジスタT3のドレインに接続される直流電圧VDD'との関係は、VDD'<VSS'であり、直流電圧VDD'は例えばグランド電圧(接地)である。トランジスタQ1のドレインはトランジスタT3に接続され、ゲートには直流電圧が印加されている。pチャンネルMOSトランジスタQ2は水平走査回路3によって制御され、増幅回路の出力を最終的な信号線9へ導出する。画素内の第5MOSトランジスタT5を考慮すると、図13(a)の回路は図13(b)のように表わされる。

[0064]

【発明の効果】以上説明したように本発明によれば、キャパシタで積分するようにしているので、光源の変動成分やノイズ成分を除去できるとともに、増幅により所望の信号が大きく得られるので、S/Nが向上した高品質の撮像信号を得ることができるとともに、後続回路での信号処理が楽になる。また、光電流を対数変換することによりダイナミックレンジが広くなる。また、各画素ごとに光電変換手段とキャパシタと増幅器と導出手段が設けられているので、より正確に安定した信号読み出しが可能である。更に、能動素子をMOSトランジスタで構成することにより周辺の処理回路(A/Dコンバータ、デジタル・システム・プロセッサ、メモリ)等と共にワンチップ上に形成することができ、例えばワンチップカメラの実現に有用となる。50

【図面の簡単な説明】

【図1】本発明の一実施形態である二次元固体撮像装置 の全体の構成を説明するためのブロック回路図

- 【図2】図1の一部の回路図
- 【図3】本発明の第1実施形態の1画素の構成を示す回路図
- 【図4】本発明の第2実施形態の1画素の構成を示す回路図
- 【図5】本発明の第3実施形態の1画素の構成を示す回 路図
- 【図6】本発明の第4実施形態の1画素の構成を示す回 路図
- 【図7】本発明の第5実施形態の1画素の構成を示す回 路図
- 【図8】本発明の第6実施形態の1画素の構成を示す回路図
- 【図9】本発明の第7実施形態の1画素の構成を示す回路図
- 【図10】本発明の第8実施形態の1画素の構成を示す ② 同路図
 - 【図11】本発明の第9実施形態の1画素の構成を示す 回路図
 - 【図12】画素内の能動素子をpチャンネルMOSトランジスタで構成した実施形態の場合の本発明の二次元固体撮像装置の全体の構成を説明するためのブロック回路図
 - 【図13】図12の一部の回路図
 - 【図14】本発明の第10実施形態の1画素の構成を示す回路図
- 30 【図15】本発明の第11実施形態の1画素の構成を示す回路図
 - 【図16】本発明の第12実施形態の1画素の構成を示す回路図
 - 【図17】本発明の第13実施形態の1画素の構成を示す回路図
 - 【図18】本発明の第14実施形態の1画素の構成を示す回路図
 - 【図19】本発明の第15実施形態の1画素の構成を示す回路図
- 0 【図20】本発明の第16実施形態の1画素の構成を示す回路図
 - 【図21】本発明の第17実施形態の1画素の構成を示す回路図
 - 【図22】本発明の第18実施形態の1画素の構成を示す回路図
 - 【図23】上記第5実施形態における接合容量の構造を 示す図
 - 【図24】従来例の1画素の構成を示す回路図 【符号の説明】
- 50 G11~Gmn 画素

(14)

2 垂直走査回路

3 水平走査回路

4-1~4-n 行選択線

6-1~6-m 出力信号線

PD フォトダイオード

【図1】

25

T1~T6 第1~第6MOSトランジスタ

C キャパシタ

C1、C2 第1、第2キャパシタ

Cs 接合容量

【図2】

【図13】

【図3】

【図4】

【図17】

【図20】

【図22】

【図18】

【図21】

【図23】

フロントページの続き

(72)発明者 萩原 義雄

大阪市中央区安土町二丁目3番13号 大阪 国際ビル ミノルタ株式会社内 (72)発明者 宮武 茂博

大阪市中央区安土町二丁目 3 番13号 大阪 国際ピル ミノルタ株式会社内