TIAGo Training Sessions Motion planning with Movelt!

Introduction

Movements without planning

- Pure spline interpolation for joint position
- No self-collision check
- Can be allowed in a controlled situation

Collision avoidance (II)

Movements without planning

- Pure spline interpolation for joint position
- Can be allowed in a controlled situation
- Can lead to self collision

Example: The robot **is not** taking it's own body into account when executing motions.

IIAGo I.S

Collision avoidance (III)

"The robot is taking it's own body into account when executing motions."

How?

Example: The robot **is** taking it's own body into account when executing motions.

Collision avoidance (IV)

"The robot is taking it's own body into account when executing motions."

How?

Motion planning!

Probabilistic sampling-based motion planner: RRT-connect*

*Movelt! has more planners available

IIAGo T.S

Movelt!

Movelt!

- "Movelt! is state of the art software for mobile manipulation [...]."
- What does it provide for us?
 - Framework for motion planning and trajectory smoothing
 - ROS Action interface
 - Collision checking
 - Manage collision environment: add/remove (virtual) obstacles
 - Plugins for motion planning and trajectory smoothing
 - Change parameters of system
 - Develop custom plugins/algorithms
 - Tools to set up a robot configuration
 - GUI by means of an RViz plugin

IIAGO I.S

Motion Planning GUI (I)

- Plugin of RViz
- Can be used with a real or simulated robot
- Supports visualization of plans without execution
- Select different planning groups
- On-the-fly change of planning library

Kinematic Movelt! demo launch:

roslaunch tiago_moveit_config demo.launch Real robot*:

export ROS_IP=10.68.0.128
export ROS_MASTER_URI=http://tiago-0c:11311
roslaunch tiago_moveit_config moveit_rviz.launch
config:=true

Motion Planning GUI (II)

- To specify the end effector goal,
- drag the end effector
 - along translational and
 - along rotational axis
 - o in 3D

TIAGo T.S

Motion Planning GUI (III)

- When the goal state is not in collision, motion planning will generate trajectories that go around
 - robot body parts

TIAGO T.S

Motion Planning GUI (IV)

- When the goal state is not in collision, motion planning will generate trajectories that go around
 - robot body parts and
 - other objects of the collision environment.

IIAGO I.S

IIAGO I.S

Motion Planning GUI (V)

- When the goal state is not in collision, motion planning will generate trajectories that go around
 - robot body parts and
 - other objects of the collision environment. *

Objects can be added via the GUI, the action API or a **Kinect-type sensor (point clouds)**

ILAGO I.S

Motion Planning GUI (VI)

With a goal that creates collision,

- the GUI will draw colliding parts in red whether they are
 - self

Motion Planning GUI (VII) es collision,

With a goal that creates collision,

- the GUI will color colliding parts with red whether they are
 - self collisions or
 - environmental collisions.

TIAGo T.S

Learn more

- The official Movelt! documentation can be found at: http://moveit.ros.org/documentation/
- With tutorials: http://moveit.ros.org/documentation/tutorials/
 - o Basic C++:

http://docs.ros.org/indigo/api/pr2 moveit tutorials/html/planning/src/doc/move group interface tutorial.html

Basic Python:

http://docs.ros.org/indigo/api/pr2 moveit tutorials/html/planning/scripts/doc/move group python interface tutorial.html

Questions?

