Задание по курсу «Аналитическая механика II»

Авторы: Хоружий Кирилл

От: 24 февраля 2021 г.

Содержание

1	Пеј	овое задание по аналитической механике.	2
	1.1	Малые колебания консервативных систем (\checkmark)	4
	1.2	Диссипативные системы и вынужденные колебания	4
	1.3	Элементы теории бифуркаций в нелинейных системах	8

 $\mathcal{H}_{\mathsf{H}}\mathsf{K}$ Физ $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

1 Первое задание по аналитической механике.

1.1 Малые колебания консервативных систем (✓)

16.11

Введём ось OX координат вдоль туннеля, выбрав в качестве x=0 положение равновесия. Тогда кинетическая энергия

$$T = \frac{1}{2}m\dot{x}^2.$$

Интегрируя силу, действующую на тело, находим потенциальную энергию

$$F_x = -\frac{GM(x)m}{r^2(x)} \cdot \frac{x}{r} = -G\varkappa x, \qquad \frac{G\varkappa R^3}{R^2} = g, \quad \Rightarrow \quad \Pi = \int F \, dx = \frac{1}{2} \frac{g}{R} x.$$

Так удачно вышло, что T и Π – квадратичные формы. Запишем вековое уравнение:

$$\frac{\partial^2\Pi}{\partial q^2} - \lambda \frac{\partial^2T}{\partial \dot{q}^2} = 0, \quad \Rightarrow \quad \lambda = \frac{g}{R}, \quad \Rightarrow \quad T = 2\pi \sqrt{\frac{R}{g}}.$$

16.33

Выбрав оси, как показано на рисунке, получим систему с 2 степенями свободы. Кинетическая энергия системы

$$T = \frac{m}{2} \left(\dot{x}_1^2 + \dot{x}_2^2 \right).$$

Потенциальная энергия для трёх пружинок (сдвинутая так, чтобы положение равновесия был 0)

$$\Pi = \frac{c}{2}(x_2)^2 + \frac{c}{2}(x_1)^2 + \frac{2c}{2}(x_2 - x_1)^2.$$

И снова так вышло, что T и Π – квадратичные формы, так что

$$\det\left(\frac{\partial^2\Pi}{\partial q^i\partial q^j}-\lambda\frac{\partial^2T}{\partial \dot{q}^i\partial \dot{q}^j}\right)=0, \quad \Rightarrow \quad \det\left[c\begin{pmatrix}3&-2\\-2&3\end{pmatrix}-\lambda m\begin{pmatrix}1&0\\0&1\end{pmatrix}\right]=0, \quad \Rightarrow \quad (\lambda m)^2+9c^2-6\lambda mc-4c^2=0.$$

Соответственно находим квадраты частот

$$\lambda^{2} - 6\lambda \frac{c}{m} + 5\frac{c^{2}}{m^{2}} = \left(\lambda_{1} - \frac{c}{m}\right)\left(\lambda_{2} - 5\frac{c}{m}\right) = 0, \quad \Rightarrow \quad \begin{cases} \lambda_{1} : \left(-2c - 2c\right)\binom{x_{1}}{x_{2}} = 0 & \Rightarrow \quad \mathbf{u}_{1} = \begin{pmatrix} 1\\1 \end{pmatrix}; \\ \lambda_{1} : \left(2c - 2c\right)\binom{x_{1}}{x_{2}} = 0 & \Rightarrow \quad \mathbf{u}_{2} = \begin{pmatrix} 1\\-1 \end{pmatrix}. \end{cases}$$

Соответственно, уравнение движения будет иметь вид

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \sin \left(\sqrt{\frac{c}{m}} t + \alpha_1 \right) + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \sin \left(\sqrt{\frac{5c}{m}} t + \alpha_2 \right).$$

16.47

Запишем с учётом малости колебаний кинетическую энергию системы

$$T = \frac{m}{2}l^{2}\dot{\varphi}^{2} + \frac{m}{2}(l\dot{\varphi}_{2} + l\dot{\varphi}_{1})^{2}.$$

И, опять же, с учетом малости, потенциальную

$$\Pi = \frac{c}{2} \left((l\varphi_1)^2 + (l\varphi_1 + l\varphi_2)^2 \right) + mgl\cos\varphi_1 + mgl(\cos\varphi_1 + \cos\varphi_2) =$$

$$= \frac{c}{2} \left((l\varphi_1)^2 + (l\varphi_1 + l\varphi_2)^2 \right) + 2mgl\left(1 - \frac{\varphi_1^2}{2}\right) + mgl\left(1 - \frac{\varphi_2^2}{2}\right).$$

Как обычно, получив квадратичные формы (хотя бы в малом приближение) радуемся и переходим к поиску частот собственных колебаний

$$\det\left(\frac{\partial^2\Pi}{\partial q^i\partial q^j}-\lambda\frac{\partial^2T}{\partial \dot{q}^i\partial \dot{q}^j}\right)=0, \quad \Rightarrow \quad \det\left[\begin{pmatrix}2cl^2-2mgl & cl^2\\ cl^2 & cl^2-mgl\end{pmatrix}-\lambda ml^2\begin{pmatrix}2&1\\1&1\end{pmatrix}\right]=0.$$

Раскрыв, получаем уравнение вида

$$2([cl^2 - ml^2 \lambda] - mgl)^2 - [cl^2 - ml^2 \lambda]^2 = 0, \quad \Rightarrow \quad x = \frac{\sqrt{2}mgl}{\sqrt{2} \pm 1} = [cl^2 - ml^2 \lambda], \quad \Rightarrow \quad \lambda_{1,2} = \frac{c}{m} - 2\frac{g}{l} \mp \sqrt{2}\frac{g}{l}.$$

 Φ_{M} ЗТ E Х ЖиК

Теперь подставляем известные λ , и находим амплитудные векторы

$$\lambda_1 : (2 + 2\sqrt{2} \quad 2 + \sqrt{2}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad \mathbf{u}_1 = \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix};$$
$$\lambda_2 : (2 - 2\sqrt{2} \quad 2 - \sqrt{2}) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \quad \Rightarrow \quad \mathbf{u}_2 = \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}.$$

Это позволяет нам записать уравнение движения малых колебаний (при $c/m > (2+\sqrt{2})g/l)$

$$\begin{pmatrix} \varphi_1 \\ \varphi_2 \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ -\sqrt{2} \end{pmatrix} \sin\left(\sqrt{\frac{c}{m} - \left(2 + \sqrt{2}\right)} \frac{g}{l} t + \alpha_1\right) + C_2 \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix} \sin\left(\sqrt{\frac{c}{m} - \left(2 - \sqrt{2}\right)} \frac{g}{l} t + \alpha_2\right).$$

16.64

Запишем кинетическую энергию системы

$$T = \frac{m}{2} \left(\dot{x}_1^2 + \dot{x}_3^2 \right) + \frac{nm}{2} \dot{x}_2^2.$$

И, считая 0 в положении равновесия, потенциальную энергию системы, запасенную в сжатых пружинах

$$\Pi = \frac{c}{2}(x_2 - x_1)^2 + \frac{c}{2}(x_3 - x_2)^2.$$

В таком случае

$$\det\left(\frac{\partial^2\Pi}{\partial q^i\partial q^j}-\lambda\frac{\partial^2T}{\partial \dot{q}^i\partial \dot{q}^j}\right)=0,\quad \Rightarrow\quad \det\left[c\begin{pmatrix}1&-1&0\\-1&2&-1\\0&-1&1\end{pmatrix}-\lambda m\begin{pmatrix}1&0&0\\0&n&0\\0&0&1\end{pmatrix}\right]=0.$$

Раскрывая, приходим у уравнению на λ вида

$$\lambda_1 \left(\lambda_2 - \frac{c}{m} \right) \left(\lambda_3 - \frac{(2+n)c}{nm} \right) = 0.$$

Соответственно, амплитудные векторы находим, как

$$\lambda_{1}: \begin{pmatrix} -c & 2c & -c \\ c & -c & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0 \qquad \Rightarrow \qquad \mathbf{u}_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix};$$

$$\lambda_{2}: \begin{pmatrix} c & 2c - nc & c \\ 0 & c & 0 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0 \qquad \Rightarrow \qquad \mathbf{u}_{2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix};$$

$$\lambda_{3}: \begin{pmatrix} c & nc & c \\ 0 & c & 2c/n \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 0 \qquad \Rightarrow \qquad \mathbf{u}_{3} = \begin{pmatrix} n \\ -2 \\ n \end{pmatrix}.$$

Что ж, уравнение движения малых колебаний запишется в виде

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (C_1 t + \alpha_1) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \sin\left(\sqrt{\frac{c}{m}} t + \alpha_2\right) + C_3 \begin{pmatrix} n \\ -2 \\ n \end{pmatrix} \sin\left(\sqrt{\frac{(n+2)c}{nm}} t + \alpha_3\right).$$

16.107

Знаем, что кинетическая энергия и обобщенные силы для системы могут быть записаны в виде 1

$$T = \frac{1}{2} a_{ik} \dot{q}_i \dot{q}_k, \qquad Q_i = b_{ik} \dot{q}_k,$$

где a_{ik} – положительно определенная квадратичная форма, а $b_{ik} = -b_{ki}$ – кососимметричная квадратичная форма.

Запишем уравнения Лагранжа второго рода

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i, \quad \Rightarrow \quad a_{ik} \ddot{q}_k = b_{i\alpha} \dot{q}_\alpha.$$

Осталось этот набор уравнений решить.

Воспользуемся алгоритмом приведения двух квадратичных форм к каноническому виду. Выберем в качестве скалярного произведения a_{ik} , в терминах a_{ik} выберем ортогональный базис так, чтобы a_{ik} было равно δ_{ik} .

¹C глубоким сожалением вынуждены оставить баланс индексов в рамках этой задачи. Немое суммирование подразумевается, при повторение индексов.

 $\mathsf{M}_{\mathsf{H}}\mathsf{K}$

Повернём через u_{ik} базис, приведя b_{ik} к каноническому виду b_{jl}^* , указанному в условии с m блоков 2×2 .

$$\begin{cases} \delta_{ik}\ddot{q}_k = b_{i\alpha}\dot{q}_{\alpha}, \\ u_{kj}q_j^* = q_k \end{cases} \Rightarrow u_{li}^{-1} \cdot \left(\delta_{ik}u_{kj}q_j^* = b_{i\alpha}u_{\alpha\beta}q_{\beta}^*\right) \stackrel{\exists i=1}{\Rightarrow} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \ddot{q}_1^* \\ \ddot{q}_2^* \end{pmatrix} = \begin{pmatrix} 0 & -\nu \\ \nu & 0 \end{pmatrix} \begin{pmatrix} \dot{q}_1^* \\ \dot{q}_2^* \end{pmatrix}.$$

И таких систем с колебаниями у нас будет m штук

$$\begin{cases} \ddot{q}_1^* = -\nu \dot{q}_2^* \\ \ddot{q}_2^* = -\nu \dot{q}_1^* \end{cases} \Rightarrow \begin{cases} \dddot{q}_1^* = -\nu \ddot{q}_2^* \\ \dddot{q}_2^* = -\nu \ddot{q}_1^* \end{cases} \Rightarrow \begin{cases} q_1^* = \frac{A}{\nu} \cos(\nu t + \alpha) + C_1 \\ q_2^* = \frac{A}{\nu} \sin(\nu t + \alpha) + C_2. \end{cases}$$

Нули же в каноническом виде b_{ij} будут соответствовать трансляциям

$$q^* = At + B.$$

Собирая всё вместе, находим, что

$$q_{\alpha} = u_{\alpha i} q_{i}^{*}, \qquad q_{i}^{*} = \begin{cases} (A_{j}/\nu_{j}) \cdot \cos(\nu_{j} t + \alpha_{j}) + B_{2j-1} & \text{при } i = 2j-1 \leqslant 2m; \\ (A_{j}/\nu_{j}) \cdot \sin(\nu_{j} t + \alpha_{j}) + B_{2j} & \text{при } i = 2j \leqslant 2m; \\ (A_{j}) \cdot t + B_{j} & \text{при } i = j > 2m. \end{cases}$$

1.2 Диссипативные системы и вынужденные колебания

17.11 (a)

Известно, что система описывается, как

$$\begin{cases} \ddot{x} + \ddot{x} + x - \alpha y = 0 \\ \ddot{y} + \dot{y} - \beta x + y = 0 \end{cases}, \Rightarrow A = B = E, \qquad C = \begin{pmatrix} 1 & -\alpha \\ -\beta & 1 \end{pmatrix}.$$

Тогда запишем уравнение на собственные числа

$$\det (A\lambda^2 + B\lambda + C) = \det \begin{vmatrix} \lambda^2 + \lambda + 1 & -\alpha \\ -\beta & \lambda^2 + \lambda + 1 \end{vmatrix} = 0,$$

Раскрывая,

$$(\lambda^2 + \lambda + 1)^2 + \beta \alpha = (\lambda^2 + \lambda + 1 - i\gamma)(\lambda^2 + \lambda + 1 + i\gamma) = 0.$$

Получается, что

$$\lambda_{1,2} = \frac{1}{2} \left(-1 \pm \sqrt{\pm 4i\gamma - 3} \right),\,$$

где введено обозначение $\gamma = \sqrt{\beta\alpha}$. По теореме об асимптотической устойчивости достаточно, чтобы $\operatorname{Re} \lambda_i < 0$, соответственно найдём все γ удовлетворяющие этому условию.

Пусть $\alpha \cdot \beta < 0$, тогда $\gamma = i\sqrt{|\alpha\beta|}$, или

$$\lambda_{1,2} = \frac{1}{2} \left(-1 \pm \sqrt{\mp 4\varkappa - 3} \right), \quad \Rightarrow \quad |4\varkappa - 3| < 1, \quad \Rightarrow \quad |\varkappa| = |\alpha\beta| < 1,$$

где было введено обозначение $\varkappa = |\alpha\beta|$.

При $\alpha \cdot \beta > 0$ верно, что $\gamma = \varkappa^2$, тогда

$$\operatorname{Re}\sqrt{z} = \operatorname{Re}\left(\sqrt{|z|}\cos\left(\frac{\varphi}{2} + \pi k\right)\right) < 0, \quad \Rightarrow \quad \sqrt{a^2 + b^2} \,\, \frac{1}{2}\left(1 + \frac{a}{\sqrt{a^2 + b^2}}\right) < 1,$$

где комплексное число под корнем было представлено как a+ib. Тогда

$$\sqrt{9 + \partial \varkappa^2} - 3 < 2, \quad \Rightarrow \quad 9 + 16 \varkappa^2 < 5, \quad \Rightarrow \quad |\alpha \beta| < 1.$$

Получается достаточным условием асимптотической устойчивости является условие $|\alpha\beta| < 1$.

$17.8 (\checkmark)$

Для начала рассмотрим систему, в которой нижний грузик привязан к полу пружинкой жесткости $c_{n+1}=0$, так матрица для потенциальной энергии станет немного симметричнее.

Выберем в качестве координат положения грузиков, где $q^i=0$ соответствует положению равновесия i-го груза. Запишем потенциальную энергию системы

$$2\Pi = c_1 q_1^2 + c_2 (q_1 - q_2)^2 + \ldots + c_n (q_n - q_{n-1})^2 + c_{n+1} q_{n+1}^2.$$

 Φ_{N} ЗТ $_{\mathsf{E}}$ Х ЖиК

Тогда матрица потенциальной энергии C примет вид

$$C_{ij} = \frac{\partial^2 \Pi}{\partial q^i \partial q^j}, \quad \Rightarrow \quad C = \begin{pmatrix} c_1 + c_2 & -c_2 & 0 \\ -c_2 & c_2 + c_3 & -c_3 & 0 \\ 0 & -c_3 & c_3 + c_4 \\ & 0 & \ddots & -c_n \\ & & -c_n & c_n + c_{n+1} \end{pmatrix}$$

Запишем уравнение Лагранжа второго рода, и рассмотрим систему в линейном приближении

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}^{i}} - \frac{\partial T}{\partial q^{i}} = -\frac{\partial \Pi}{\partial q} + Q_{i}, \quad \Rightarrow \quad A\ddot{q} + B\dot{q} + Cq = 0, \quad \Rightarrow \quad \frac{dE}{dt} = A\ddot{q} \cdot \dot{q} + C\dot{q} \cdot q = -B\dot{q} \cdot \dot{q} = -\beta\dot{q}_{n}^{2}.$$

Получается, что диссипация является полной, а значит имеет смысл вспомнить теорему о добавлении в систему диссипативных сил с полной диссипацией.

Thr 1.1 (Теорема Томсона-Тэта-Четаева). Если в некотором изолированном положении равновесия потенциальная энергия имеет строгий локальный минимум, то при добавлении диссипативных сил с полной диссипацией (и/или гироскопических) это положение равновесия становится асимптотически устойчивым.

По теореме Лагранжа-Дирихле положение равновесия q=0 устойчиво, если в положение равновесия достигается локальный минимум потенциала П. Получается остается показать, что матрица C положительно определена, или, по критерию Сильвестра, что все угловые миноры Δ_i матрицы C положительны.

Посчитав несколько миноров ручками, приходим к виду Δ_i , которое докажем по индукции.

Предположение:
$$\Delta_n = \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{j=1}^{n+1} c_j$$
База:
$$\Delta_2 = \det \left\| \begin{matrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 + c_3 \end{matrix} \right\| = c_1 c_2 + c_2 c_3 + c_1 c_3 = \sum_{i=1}^{2+1} \frac{1}{c_i} \left(\prod_{j=1}^{2+1} c_j \right)$$
Переход:
$$\Delta_{n+1} \stackrel{\text{(I)}}{=} (c_{n+1} + c_{n+1}) \Delta_n - c_{n+1}^2 \Delta_{n-1} =$$

$$= c_{n+1} \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{j=1}^{n+1} c_j + c_{n+2} \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{j=1}^{n+1} c_j - c_{n+1}^2 \sum_{i=1}^{n} \frac{1}{c_i} \prod_{j=1}^{n} c_j =$$

$$= c_{n+2} \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{j=1}^{n+1} c_j + c_{n+1} \left(\sum_{i=1}^{n} \frac{1}{c_i} \prod_{j=1}^{n+1} c_j + \frac{1}{c_{n+1}} \prod_{j=1}^{n+1} c_j \right) - c_{n+1}^2 \sum_{i=1}^{n} \frac{1}{c_i} \prod_{j=1}^{n} c_j =$$

$$\stackrel{\text{(II)}}{=} \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{i=1}^{n+2} c_j + \frac{1}{c_{n+2}} \prod_{j=1}^{n+2} c_j = \sum_{i=1}^{n+2} \frac{1}{c_i} \prod_{i=1}^{n+2} c_j, \qquad \text{Q. E. D.}$$

Действительно, первый переход (I) получается, раскрытием определителя Δ_{n+1} по нижней строчке. В переходе (II) были сделаны замены, вида

$$\sum_{i=1}^n \frac{1}{c_i} \prod_{j=1}^{n+1} c_j = c_{n+1} \sum_{i=1}^n \frac{1}{c_i} \prod_{j=1}^n c_j; \qquad \prod_{j=1}^{n+1} c_j = \frac{1}{c_{n+2}} \prod_{j=1}^{n+2} c_j; \qquad c_{n+2} \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{j=1}^{n+1} = \sum_{i=1}^{n+1} \frac{1}{c_i} \prod_{j=1}^{n+2} c_j.$$

Полученная формула для Δ_n ясно даёт понять, что $\Delta_i > 0$ для i = 1, ..., n, что доказывает положительную определенность C, а значит и локальный минимум потенциала Π достигается в положение равновесия q = 0.

Таким образом выполняются условия теоремы Лагранжа-Дирихле, как и условия теоремы Томсона-Тэта-Четаева, а значит положение равновесия q=0 является асимптотически устойчивым.

17.20

Запишем систему в матричном виде

$$A\ddot{q} + B\dot{q} + Cq = 0,$$

и воспользуемся теоремой Ляпунова об асимптотической устойчивости. Действительно, существует функция, такая, что

$$V = E = T + \Pi = \frac{1}{2} a_{ij} \dot{q}^i \dot{q}^j + \frac{1}{2} c_{\alpha\beta} q^{\alpha} q^{\beta} > 0.$$

 $\mathbf{K}_{\mathbf{H}}\mathbf{K}$ $\Phi_{\mathbf{H}}\mathbf{3}\mathbf{T}_{\mathbf{E}}\mathbf{X}$

В силу уравнений движения

$$\frac{dE}{dt} = a_{ij}\ddot{q}^i\dot{q}^j + c_{\alpha\beta}\dot{q}^{\alpha}q^{\beta} = -b_{\gamma}(\dot{q}^{\gamma}) < 0,$$

из чего следует асимптотическая устойчивость системы.

17.28

Есть некоторая система такая, что

$$\begin{cases} \dot{x}^{1} = \alpha_{1}(x^{2} - x^{1}), \\ \dot{x}^{2} = \alpha_{2}(x^{3} - x^{2}), \\ \dots \\ x^{n} = \alpha_{n}(x^{1} - x^{n}) \end{cases}$$

и снова найдём функцию Ляпунова, например, V вида

$$2V = \frac{1}{\alpha_1}(x_1 - a)^2 + \frac{1}{\alpha_2}(x_2 - a)^2 + \dots + \frac{1}{\alpha_n}(x_n - a)^2,$$

тогда, в силу уравнений системы

$$\dot{V} = \frac{\dot{x}_1}{\alpha_1}(x_1 - a) + \dots + \frac{\dot{x}_n}{\alpha_n}(x_n - a) = (x_1 - a)(x_2 - x_1) + \dots + (x_n - a)(x_1 - x_n) =$$

$$= -\sum_{i=1}^n x_i^2 + \sum_{i=1}^{n-1} x_i x_{i+1} + x_n x_1 = -\frac{1}{2}(x_n^2 - 2x_n x_1 + x_1^2) - \frac{1}{2}\sum_{i=1}^n (x_i - x_{i+1})^2 < 0,$$

аналогично №17.20, по теореме Ляпунова об асимптотической устойчивости, положение равновесия системы асимптотически устойчиво.

18.17

Известно что на груз действуют две силы

$$F_1(t) = A_1 \sin \omega_1 t, \qquad F_2(t) = A_2 \cos \omega_2 t,$$

и сопротивление среды $F = -\beta v$.

Запишем кинетическую и потенциальную энергию системы

$$T = \frac{m}{2}\dot{q}^2, \qquad \Pi = \frac{c}{2}q^2.$$

Из уравнений Лагранжа второго рода находим

$$m\ddot{q} + \beta \dot{q} + cq = F_1 + F_2 = A\sin(\omega_1 t) + B\cos(\omega_2 t).$$

Для начала найдём собственные колебания системы

$$m\lambda^2 + \beta\lambda + c = 0, \quad \Rightarrow \quad \lambda_{1,2} = \frac{-\beta \pm \sqrt{\beta^2 - 4mc}}{2m}.$$

Найдём теперь частные решения для вынужденных колебаний, в виде

$$q = \alpha_1 \sin(\omega_1 t + \varphi_1) + \alpha_2 \sin(\omega_2 t + \varphi_2),$$

подставляя в уравнения движения получам, что (рассмотрим ω_1 , для ω_2 рассуждения аналогичны)

$$\sin(\omega_1 t + \varphi_1)(x - m\omega_1^2) + \cos(\omega_1 t + \varphi_1)\omega_1\beta = \frac{A}{\alpha_1}\sin\omega_1 t, \quad \Rightarrow \quad \sin(\omega_1 t + \varphi_1 + \varkappa) = \frac{A}{\alpha_1}\frac{\sin\omega_1 t}{\sqrt{(c - m\omega_1)^2 + \beta^2\omega_1^2}}$$

где и такая, что

$$\cos \varkappa = \frac{c - m\omega_1^2}{\sqrt{(\omega_1 \beta)^2 + (c - m\omega_1)^2}}.$$

Сравнивая выражения, находим константы

$$\begin{cases} \varphi_1 = -\varkappa_1 \\ \varphi_2 = \frac{\pi}{2} - \varkappa_2 \end{cases} \qquad \alpha_i(\omega_i) = \frac{A_i}{\sqrt{(m\omega_i - c)^2 + \omega_i^2 \beta^2}},$$

и подставляем в ответ

$$q = \alpha_1 \sin(\omega_1 t + \varphi_1) + \alpha_2 \sin(\omega_2 t + \varphi_2).$$

 Φ_{U} З $\mathsf{T}_{\mathsf{E}}\mathsf{X}$

18.31

И снова запишем кинетическую и потенциальную энергию системы, как

$$T = \frac{1}{2}J(\varphi_1^2 + \varphi_2^2), \qquad \Pi = \frac{c}{2}\varphi_1^2 + \frac{c}{2}(\varphi_2 - \varphi_1)^2.$$

Из уравнений Лагранжа второго рода перейдём к системе

$$J\ddot{\varphi}_1 + c(\varphi_1 - \varphi_2) = M_0 \sin \omega t$$

$$J\ddot{\varphi} + \beta \dot{\varphi}_2 + c(\varphi_2 - \varphi_1) = 0.$$

Искать собственные числа здесь оказалось плохой идеей, так что просто будем искать решение в виде

$$\varphi = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{i\omega t} - \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} e^{-i\omega t}.$$

Для первого слагаемого

$$\begin{cases}
-J\omega^2 a_1 + ca_1 - ca_2 = \mathcal{M} \\
-J\omega^2 a_2 + \beta i\omega a_2 + ca_2 - ca_1 = 0
\end{cases} \Rightarrow \begin{cases}
a_1(c - J\omega^2) - ca_2 = \mathcal{M} \\
a_2(c - J\omega^2 + i\beta\omega) = ca_1
\end{cases}$$

Для второго слагаемого

$$\begin{cases} -J\omega^2 b_1 + cb_1 - cb_2 = -\mathcal{M} \\ -J\omega^2 b_2 - \beta i\omega b_2 + cb_2 - cb_1 = 0 \end{cases} \Rightarrow \begin{cases} b_1 = \frac{b_2}{c}(c - J\omega^2 - i\beta\omega) \\ b_2 \left(\frac{c - J\omega^2}{c}(c - J\omega^2 + i\beta\omega - c)\right) = -\mathcal{M} \end{cases}$$

где $\mathcal{M} = M_0/(2i)$. Также хочется ввести некоторые постоянные

$$\varkappa = \frac{c - J\omega^2}{c}(c - J\omega^2 + i\beta\omega) - c, \qquad \xi = \frac{c - J\omega^2}{c}(c - J\omega^2 + i\beta\omega - c), \qquad \eta = 0$$

тогда получим хорошие выражения для искомых переменных

$$\begin{cases} a_1 = \frac{\mathcal{M}}{\varkappa} \frac{c - J\omega^2 + i\beta\omega}{c} \\ a_2 = \frac{\mathcal{M}}{\varkappa} \end{cases}, \qquad \begin{cases} b_1 = -\frac{\mu}{\xi} \frac{c - J\omega^2 - i\beta\omega}{c} \\ b_2 = -\frac{\mu}{\xi} \end{cases}.$$

Теперь их можно поставить в решение уравнения и получить ответ:

$$\varphi = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} e^{i\omega t} - \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} e^{-i\omega t}.$$

18.37

Момент инерции стержня $J=\frac{1}{3}ml^2$, тогда, считая отклонения малыми, кинетическую и потенциальную энергию системы можем записать, как

$$T = \frac{1}{2}J(\dot{\varphi}^2 + \dot{\psi}^2), \qquad \Pi = \frac{1}{2}c(\varphi a - \psi a)^2 + \left(1 - \frac{\varphi^2}{2} + 1 - \frac{\psi^2}{2}\right)mg\frac{l}{2}.$$

Переходя в СО движущейся платформы, к системе добавляется инерциальная сила

$$M = \frac{mA}{2}\sin(\omega t)\omega^2 l,$$

действующая на центры масс стержней.

С помощью уравнений Лагранжа второго рода переходим к уравнениям вида

$$A\ddot{\boldsymbol{q}}+C\boldsymbol{q}=M, \hspace{1cm} A=J\begin{pmatrix}1&0\\0&1\end{pmatrix}, \hspace{1cm} C=\frac{1}{2}\begin{pmatrix}2a^2c+mgl&-2ca^2\\-2ca^2&2a^2c+mgl\end{pmatrix}$$

Из векового уравнения теперь можем найти собственные частоты системы, для получения однородного решения

$$\det(C - \lambda A) = 0, \quad \Rightarrow \quad \left(mg\frac{l}{2} - J\lambda \right) \left(a^2c + mg\frac{l}{2} - J\lambda \right) = 0,$$

откуда легко находим λ

$$\lambda_1=rac{3}{2}rac{g}{l}, \qquad \quad , \quad \quad m{u}_1=egin{pmatrix}1\\1\end{pmatrix}, \qquad \quad \lambda_2=rac{3}{2}rac{g}{l}+rac{6ca^2}{ml^2}, \qquad egin{pmatrix}1\\-1\end{pmatrix}.$$

из которых уже можем составить Φ CP.

Рис. 1: Фазовый портрет системы №Т4 (бифуркация при плавном изменение c)

Теперь перейдём к поиску частного решения²:

$$\varphi = \alpha \sin(\omega t), \psi = \beta \sin(\omega t), \quad \Rightarrow \quad -A\omega^2 \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + C \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{mA\omega^2 l}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

вводя матрицу

$$\Lambda = C - A\omega^2, \quad \Rightarrow \quad \Lambda \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{mA\omega^2 l}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \Leftrightarrow \quad \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \Lambda^{-1} \, \frac{mA\omega^2 l}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Считая Λ^{-1} , находим частное решение и получаем ответ

$$\begin{pmatrix} \varphi \\ \psi \end{pmatrix} = \frac{3A\omega^2}{3g - 2l\omega^2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \sin(\omega t) + C_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} \sin\left(\sqrt{\frac{3}{2}} \frac{g}{l} t + \alpha_1\right) + C_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} \sin\left(\sqrt{\frac{3}{2}} \frac{g}{l} + \frac{6ca^2}{ml^2} t + \alpha_2\right).$$

18.62

Известно, что кинетическая и потенциальная энергия системы могут быть записаны, как

$$T = \frac{1}{2} a_{ik} \dot{q}^i \dot{q}^k, \qquad \Pi = \frac{1}{2} c_{ik} q^i q^k.$$

С помощью уравнений Лагранжа второго рода можем перейти к системе

$$A\ddot{q} + C\dot{q} = Au_1\gamma\sin(\omega t).$$

Так как A, C – (невырожденные) положительно-определенные симметричные квадратичные формы, то они вопервых обратимы, а во вторых коммутируют (т.к. одновременно приводятся к диагональному виду), а значит и $A^{-1}C$ симметрична, соответственно имеет ортогональный базис.

Собственно, известно, что

$$\begin{cases} \det(C - \lambda_i A) = 0 \\ (C - \lambda_i A) \boldsymbol{u}_i = 0, \end{cases} \Rightarrow A^{-1} C \boldsymbol{u}_i = \lambda_1 \boldsymbol{u}_i.$$

Перейдём к базису из собственных векторов (и переменным θ), тогда уравнения примут вид

$$\ddot{q} + \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \dot{q} = \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} \gamma \sin(\omega t).$$

Так как резонанс возможен только на собственных частотах системы, и $\lambda_1 = \omega_1^2$, то единственная частота, на которой возможен резонанс равна ω_1 .

1.3 Элементы теории бифуркаций в нелинейных системах

T4

Запишем уравнения Бине для движения в метрике Шварцшильда:

$$u'' + u = \frac{a}{2c^2}v^2 + \frac{3}{2}au^2,$$

где $r^2\dot{\varphi}=c$.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo

 $^{^2 {\}rm Tak}$ как по условию φ и ψ малые, то про резонанс говорить не приходится.

 Φ_{N} З T_{E} Х

consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Рис. 2: Бифуркационная диаграмма стационарных точек уравнения Бине

T5

Покажем существование предельного цикла, и нарисуем фазовые портреты для системы

$$\dot{x} = -y + x(\mu - x^2 - y^2)(\mu - 2x^2 - 2y^2)$$
$$\dot{y} = x + y(\mu - x^2 - y^2)(\mu - 2x^2 - 2y^2)$$

при различных параметрах μ .

Перейдём к полярным координатам

Полярным координатам
$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow \begin{cases} \dot{x} = \dot{r}\cos\varphi - r\dot{\varphi}\sin\varphi = r\left((2r^4 - 3r^2\mu + \mu^2)\cos\varphi - \sin\varphi\right) \\ \dot{y} = \dot{r}\sin\varphi + r\dot{\varphi}\cos\varphi = r\left((2r^4 - 3r^2\mu + \mu^2)\sin\varphi + \cos\varphi\right) \end{cases}$$

Рассмотрим $\dot{x}\cos\varphi + \dot{y}\sin\varphi = \dot{r}$, и $\dot{y}\cos\varphi - \dot{x}\sin\varphi = r\dot{\varphi}$:

$$\begin{cases} \dot{r} = r(2r^4 - 3r^2\mu + \mu^2) \\ r\dot{\varphi} = r \end{cases} \Rightarrow \frac{\dot{r}}{\dot{\varphi}} = \frac{dr}{d\varphi} = r(2r^4 - 3r^2\mu + \mu^2).$$

Судя по виду уравнений можно предположить, что при некоторых μ производная $dr/d\varphi = 0$ (более аккуратные рассуждения будут проведены в задаче T6), тогда

$$(2r^4 - 3r^2\mu + \mu^2) = 2\left(r^2 - \frac{\mu}{2}\right)\left(r^2 - \mu\right) = 2\left(r^2 - r_1^2\right)\left(r^2 - r_2^2\right) = 0,$$

где $r_1^2 = \mu/2$ и $r_2^2 = \mu$. Соответсвенно при $\mu > 0$ существует периодическая траектория при $r \in \{r_1, r_2\}$. Из вида производной \dot{r} знаем, что

$$\operatorname{sign} \dot{r} = \begin{cases} 1, & r \in (0, r_1) \cup (r_2, +\infty) \\ -1, & r \in (-r_1, r_2) \end{cases}$$

Следовательно траектория $\dot{\varphi} = 1$, $r = r_2$ является неустойчивой, а $\dot{\varphi} = 1$, $r = r_2$ устойчива, а соответсвенно и является предельным циклом.

При отрицательных μ существует единственное положение равновесия в x=y=0, являющееся устойчивым фокусом (см. вид \dot{r}), а при $\mu>0$ становится неустойчивым фокусом. Таким образом приходим к фазовым портретам изображенным на рисунке 3.

T6

Рассмотрим систему вида

$$\dot{x} = -y + \mu x - xy^2,$$

$$\dot{y} = \mu y + x - y^3.$$

Аналогично ${
m T5}$ перейдём к полярным координатам, и выразим \dot{arphi} и \dot{r} , так вышло, что и здесь всё хорошо, и

$$\begin{cases} r\dot{\varphi} = r \\ \dot{r} = r\mu - r^3 \sin^2(\varphi) \end{cases} \Rightarrow \frac{\dot{r}}{\dot{\varphi}} = \frac{dr}{d\varphi} = r(\mu - r^2 \sin^2 \varphi).$$

Найдём значения $r = r_*$, где \dot{r} меняет знак

$$r_*^2 = \mu \sin^{-2} \varphi,$$

 $\mathsf{W}_{\mathsf{N}}\mathsf{X}$

Рис. 3: Фазовый портрет системы №Т5 (бифуркация при плавном изменение μ)

что возможно только при $\mu > 0$. Аналогично предыдущей задаче рассмотрим $\sin \dot{r}$, и получим

$$\operatorname{sign} \dot{r} = \begin{cases} 1 & r < r_* \\ -1 & r > r_* \end{cases}$$

Подробнее рассмотрим положение равновесия x=y=0, которое в силу постоянства $\dot{\varphi}$ единственное. В линейном приближение,

$$J = \begin{pmatrix} \dot{x}_x' & \dot{x}_y' \\ \dot{y}_x' & \dot{y}_y' \end{pmatrix} = \begin{pmatrix} \mu - y^2 & -1 - 2xy \\ 1 & \mu - 3y^2 \end{pmatrix} = \begin{pmatrix} \mu & -1 \\ 1 & \mu \end{pmatrix}.$$

Тогда

$$\det(J - \lambda E) = (\mu - \lambda)^2 + 1 = 0, \quad \Rightarrow \quad \lambda_{1,2} = \mu \pm 1.$$

Тогда при $\mu < 0$, по теореме Ляпунова об устойчивости в линейном приближение, x = y = 0 – устойчивый фокус, при $\mu = 0$ верно, что $\text{Re}(\lambda) = 0$, следовательно это центр, а при $\mu > 0$ фокус становится неустойчивым. Это позволяет прийти к фазовы портретам при различным значениям μ , изображенным на рисунке 4.

Рис. 4: Бифуркация Пуанкаре-Андронова-Хопфа