Factorio Optimization Problem

September 27, 2023

1 Formalization

Let $p \in N^+$ be a natural number, $r \in Q^+$ be a rational number, $m \in N^+$ be a natural number, and $\vec{c} \in N^n s.t. \forall i \in N^+, i \leq n, c_i > 0$. Henceforth, r is the "rate", p is the "output quantity", m is the "multiplicity", and \vec{c} is the "input". Then consider a directed acyclic graph G defined as

$$G = \{V, E\}$$

$$V_i \in V = \{v_k \mid (p_k, r_k, \vec{c}_k, m_k), k \in N^+\}$$

$$E_i \in E = \{e \mid E(v_a, v_b) \implies (\exists j \in N^+ \leq dim(\vec{c}_b), M(v_a) * P(v_a) \geq M(v_b) * j, j = C(v_b, v_a)$$

$$\land \not \exists (f \in E \ s.t. \ f = E(v_a, v_c), v_b \neq v_c)$$

where $M(v_i) = m_i$, $P(v_i) = p_i$ for the multiplicities and output quantities of a vertex, respectively, and $C(v_i, v_i)$ returns the index of $\vec{c_i}$ that $P(v_i)$ corresponds to

Additionally, let a "source vertex" be defined as:

$$S \subset V = \{s \mid s = (p = 1, r = 0, \vec{c} = \emptyset, n_k \in N^+\}$$

Finally, we let $T \subset V = V - S$, the set of vertices that are not sources, and |T| = Q. Notably, $Q = \sum_{i=1}^{n} M(v_n) \in$

 N^+ . Then, let the Δ operator denote the differences between two connected edges, v_i, v_j as:

$$\Delta_{i \to j} = M(v_j) * \vec{c}_{C(v_j, v_i)} - M(v_i) * P(v_i)$$
 where $\Delta_{i \to j}$ is defined iff $E(v_i, v_j) \wedge \Delta_{i \to j} > 0$

Then, let the optimizer $O(Q,G): N \times \{V,E\} \to \vec{z} \in Z^{|V|}$ desire the following:

$$\vec{z} = \underset{z \in Z^{|V|}}{\operatorname{argmin}} \sum_{i=0}^{|V|-1} \sum_{j=i+1}^{|V|} \Delta_{i \to j}$$
 where $z_i = M(v_i), i \in N^+ \leq |V|$