DATA MANIPULATION WITH PYTHON

Introduction to Data Science

Author: Eng. Carlos Andrés Sierra, M.Sc.

carlos.andres.sierra.v@gmail.com

Lecturer Computer Engineer School of Engineering Universidad Distrital Francisco, José de Caldas

2024-II

Outline

Numerical Analysis with Numpy

Text Analysis and Regular Expresions

Data Manipulation with Pandas

Outline

1 Numerical Analysis with Numpy

2 Text Analysis and Regular Expresions

3 Data Manipulation with Pandas

Numerical Python Library — Numpy

• Numpy is the core library for scientific computing in Python. It is the fundamental package for scientific computing with Python.

Monny is a general-purpose array-processing package. It provides a high-performant nultid assignment object, and tools for working with these array

Nuthrny was created by Taos Archant in 2005, and it is an open-source project Coming soon, Numpy version 2.0 will be released

Introduction to Data Science

Numerical Python Library — Numpy

- **Numpy** is the core library for scientific computing in Python. It is the fundamental package for scientific computing with Python.
- Mumpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays.
 - open-source project. Coming soon, Numpy ver released.

Numerical Python Library — Numpy

• **Numpy** is the core library for scientific computing in Python. It is the fundamental package for scientific computing with Python.

 Numpy is a general-purpose array-processing package. It provides a high-performance multidimensional array object, and tools for working with these arrays.

open-sources roject. Coming soon, Numpy version 2.0 will be released.

- Numpy provides a comprehensive set of linear algebra functions.
- Numpy provides the function lity to create and manipulate matrices
- Numpy provide the functionality to solve linear systems of equations.
- Numpy provides the functionality to the inverse of a matrix

- Numpy provides a comprehensive set of linear algebra functions.
- Numpy provides the functionality to create and manipulate matrices.

- Numpy provides a comprehensive set of linear algebra functions.
- Numpy provides the functionality to create and manipulate matrices.
- Numpy provides the functionality to solve linear systems of equations.
- Numpy provides the functionality to calculate the determinant of a matrix.
- Numpy provides the functionality to colculate the inverse of a matrix

- Numpy provides a comprehensive set of linear algebra functions.
- Numpy provides the functionality to create and manipulate matrices.
- Numpy provides the functionality to solve linear systems of equations.
- Numpy provides the functionality to calculate the determinant of a matrix.
- Nurve provide inverse of a matrix

- Numpy provides a comprehensive set of linear algebra functions.
- Numpy provides the functionality to create and manipulate matrices.
- Numpy provides the functionality to solve linear systems of equations.
- Numpy provides the functionality to calculate the determinant of a matrix.
- Numpy provides the functionality to calculate the inverse of a matrix.

- **Vectorization** is the process of converting an algorithm from operating on a single value at a time to operating on a set of values at one time.
- Voltorization is the process of replacing explicit loops with array
- o The disadvapages as memby and complexity. The

- Vectorization is the process of converting an algorithm from operating on a single value at a time to operating on a set of values at one time.
- **Vectorization** is the process of replacing explicit loops with array expressions or matrix operations.
- The advantages of vectorization are speed and clarity. The disadvantages are memory and complexity.
- Numpy provides the functionality to vectorize operations on arrays.

- Vectorization is the process of converting an algorithm from operating on a single value at a time to operating on a set of values at one time.
- **Vectorization** is the process of replacing explicit loops with array expressions or matrix operations.
- The advantages of vectorization are speed and clarity. The disadvantages are memory and complexity.
- Numpy provides the functionality to vectorize operations on arrays.

- **Vectorization** is the process of converting an algorithm from operating on a single value at a time to operating on a set of values at one time.
- Vectorization is the process of replacing explicit loops with array expressions or matrix operations.
- The advantages of vectorization are speed and clarity. The disadvantages are memory and <u>complexity</u>.
- Numpy provides the functionality to vectorize operations on arrays.

Typical Operations with Numpy

- Numpy provides the functionality to create and manipulate arrays.
- **Numpy** provides the functionality to perform element-wise operations on arrays.
- **Numpy** provides the functionality to perform matrix operations on arrays.
- Numpy provides the functionality to perform linear algebra operations on arrays.
- **Numpy** provides the functionality to perform statistical operations on arrays.

Outline

Numerical Analysis with Numpy

Text Analysis and Regular Expresions

3 Data Manipulation with Pandas

Strings in Python

Definition

A **string** is a sequence of characters. In Python, a string is a sequence of Unicode characters; also, strings are immutable, ordered, iterable, indexable, and slicable.

Conditionals and Loops with Strings

- **Strings** can be compared using conditional statements.

10 / 31

Conditionals and Loops with Strings

- **Strings** can be compared using conditional statements.
- You could validate if a substring is contained in a string.
- You could iterate over the characters of a string

Conditionals and Loops with Strings

- **Strings** can be compared using conditional statements.
- You could validate if a substring is contained in a string.
- You could iterate over the characters of a string.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method.
- You could replace a substring in a string using the replace() method
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method
- You could replace a substring in a string using the replace() method
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method.
- You could replace a substring in a string using the replace() method
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method
- You could replace a substring in a string using the replace() method
- You could find a substring in a string using the find() method
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method.
- You could replace a substring in a string using the replace() method
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method.
- You could replace a substring in a string using the replace() method.
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method.
- You could replace a substring in a string using the replace() method.
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- You could concatenate strings using the + operator.
- You could repeat a string using the * operator.
- You could format a string using the format() method.
- You could split a string using the split() method.
- You could join a list of strings using the join() method.
- You could replace a substring in a string using the replace() method.
- You could find a substring in a string using the find() method.
- You could count the occurrences of a substring in a string using the count() method.

- Python provides the datetime module to work with dates and times.
- The datetime module provides the datetime class to work with dates and times.
- To create a datetime object, you could use the datetime() constructor.
- The datetime class provides the strftime() method to format a datetime object.
- The datetime class provides the strptime() method to parse a string into a datetime object.
- The datetime class provides the timedelta() constructor to calculate the difference between two datetime objects.

- Python provides the datetime module to work with dates and times.
- The datetime module provides the datetime class to work with dates and times.
- To create a datetime object, you could use the datetime() constructor.
- The datetime class provides the strftime() method to format a datetime object.
- The datetime class provides the strptime() method to parse a string into a datetime object.
- The datetime class provides the timedelta() constructor to calculate the difference between two datetime objects.

- Python provides the datetime module to work with dates and times.
- The datetime module provides the datetime class to work with dates and times.
- To create a datetime object, you could use the datetime() constructor.
- The datetime class provides the strftime() method to format a datetime object.
- The datetime class provides the strptime() method to parse a string into a datetime object.
- The datetime class provides the timedelta() constructor to calculate the difference between two datetime objects.

- Python provides the datetime module to work with dates and times.
- The datetime module provides the datetime class to work with dates and times.
- To create a datetime object, you could use the datetime() constructor.
- The datetime class provides the strftime() method to format a datetime object.
- The datetime class provides the strptime() method to parse a string into a datetime object.
- The datetime class provides the timedelta() constructor to calculate the difference between two datetime objects.

- Python provides the datetime module to work with dates and times.
- The datetime module provides the datetime class to work with dates and times.
- To create a datetime object, you could use the datetime() constructor.
- The datetime class provides the strftime() method to format a datetime object.
- The datetime class provides the strptime() method to parse a string into a datetime object.
- The datetime class provides the timedelta() constructor to calculate the difference between two datetime objects.

- Python provides the datetime module to work with dates and times.
- The datetime module provides the datetime class to work with dates and times.
- To create a datetime object, you could use the datetime() constructor.
- The datetime class provides the strftime() method to format a datetime object.
- The datetime class provides the strptime() method to parse a string into a datetime object.
- The datetime class provides the timedelta() constructor to calculate the difference between two datetime objects.

Regular Expressions — ReGex

- A regular expression is a sequence of characters that define a search pattern.
- Regular expressions are used to search for patterns in strings.
- In Python, the re module provides the functionality to work with regular expressions.
- The re module provides the compile() function to compile a regular expression pattern.
- The re module provides the search() function to search for a pattern in a string.

- A regular expression is a sequence of characters that define a search pattern.
- Regular expressions are used to search for patterns in strings.
- In Python, the re module provides the functionality to work with regular expressions.
- The re module provides the compile() function to compile a regular expression pattern.
- The re module provides the search() function to search for a pattern in a string.

- A regular expression is a sequence of characters that define a search pattern.
- Regular expressions are used to search for patterns in strings.
- In **Python**, the re module provides the functionality to work with regular expressions.
- The re module provides the compile() function to compile a regular expression pattern.
- The re module provides the search() function to search for a pattern in a string.

- A regular expression is a sequence of characters that define a search pattern.
- Regular expressions are used to search for patterns in strings.
- In **Python**, the re module provides the functionality to work with regular expressions.
- The re module provides the compile() function to compile a regular expression pattern.
- The re module provides the search() function to search for a pattern in a string.

- A **regular expression** is a sequence of characters that define a search pattern.
- Regular expressions are used to search for patterns in strings.
- In **Python**, the re module provides the functionality to work with regular expressions.
- The re module provides the compile() function to compile a regular expression pattern.
- The re module provides the search() function to search for a pattern in a string.

Outline

Numerical Analysis with Numpy

2 Text Analysis and Regular Expresions

3 Data Manipulation with Pandas

- Pandas is a fast, powerful, flexible, and easy-to-use open-source data manipulation and data analysis library built on top of the Python programming language.
- Pandas is a high-level data manipulation tool developed by Wes McKinney in 2008.
- Pandas is a fast and efficient data manipulation tool that is built on top of NumPy.
- Pandas is one of the most popular and widely-used data manipulation libraries in the world.

- Pandas is a fast, powerful, flexible, and easy-to-use open-source data manipulation and data analysis library built on top of the Python programming language.
- Pandas is a high-level data manipulation tool developed by Wes McKinney in 2008.
- Pandas is a fast and efficient data manipulation tool that is built on top of NumPy.
- Pandas is one of the most popular and widely-used data manipulation libraries in the world.

- Pandas is a fast, powerful, flexible, and easy-to-use open-source data manipulation and data analysis library built on top of the Python programming language.
- Pandas is a high-level data manipulation tool developed by Wes McKinney in 2008.
- Pandas is a fast and efficient data manipulation tool that is built on top of NumPy.
- Pandas is one of the most popular and widely-used data manipulation libraries in the world.

- Pandas is a fast, powerful, flexible, and easy-to-use open-source data manipulation and data analysis library built on top of the Python programming language.
- Pandas is a high-level data manipulation tool developed by Wes McKinney in 2008.
- Pandas is a fast and efficient data manipulation tool that is built on top of NumPy.
- Pandas is one of the most popular and widely-used data manipulation libraries in the world.

The "Series" Data Structure

- A Series is a one-dimensional array-like object that contains a sequence of values and an associated array of data labels, called the index.
- The index of a Series is an array of labels that correspond to the values in the Series. The index of a Series is an optional parameter that defaults to a sequence of integers starting at zero.
- The Series object is a core data structure in Pandas.

The "Series" Data Structure

- A Series is a one-dimensional array-like object that contains a sequence of values and an associated array of data labels, called the index.
- The index of a Series is an array of labels that correspond to the values in the Series. The index of a Series is an optional parameter that defaults to a sequence of integers starting at zero.
- The Series object is a core data structure in Pandas.

The "Series" Data Structure

- A Series is a one-dimensional array-like object that contains a sequence of values and an associated array of data labels, called the index.
- The index of a Series is an array of labels that correspond to the values in the Series. The index of a Series is an optional parameter that defaults to a sequence of integers starting at zero.
- The Series object is a core data structure in Pandas.

Querying a Series

- You could query a Series using indexing (boolean or fancy).
- You could query a Series using loc and iloc indexers

Querying a Series

- You could query a Series using indexing (boolean or fancy).
- You could query a **Series** using loc and iloc indexers.

- A DataFrame is a two-dimensional labeled data structure with columns of potentially different types.
- A DataFrame is a tabular data structure that is similar to a spreadsheet or a SQL table.
- A DataFrame is a core data structure in Pandas. It is a two-dimensional size-mutable data structure with labeled axes (rows and columns).
- A DataFrame is a container for Series objects.

- A DataFrame is a two-dimensional labeled data structure with columns of potentially different types.
- A DataFrame is a tabular data structure that is similar to a spreadsheet or a SQL table.
- A DataFrame is a core data structure in Pandas. It is a two-dimensional size-mutable data structure with labeled axes (rows and columns).
- A DataFrame is a container for Series objects.

- A DataFrame is a two-dimensional labeled data structure with columns of potentially different types.
- A DataFrame is a tabular data structure that is similar to a spreadsheet or a SQL table.
- A DataFrame is a core data structure in Pandas. It is a two-dimensional size-mutable data structure with labeled axes (rows and columns).
- A DataFrame is a container for Series objects.

- A DataFrame is a two-dimensional labeled data structure with columns of potentially different types.
- A DataFrame is a tabular data structure that is similar to a spreadsheet or a SQL table.
- A DataFrame is a core data structure in Pandas. It is a two-dimensional size-mutable data structure with labeled axes (rows and columns).
- A DataFrame is a container for Series objects.

- You could index a DataFrame using column names.
- You could load a DataFrame from a CSV file.
- You could load a DataFrame from a JSON file
- You could load a DataFrame from a SQL database.

- You could index a DataFrame using column names.
- You could load a DataFrame from a CSV file.

MSc. C.A. Sierra (UD FJC)

- You could index a DataFrame using column names.
- You could load a DataFrame from a CSV file.
- You could load a DataFrame from a JSON file.
- You could load a DataFrame from a SQL database

Introduction to Data Science

- You could index a DataFrame using column names.
- You could load a DataFrame from a CSV file.
- You could load a DataFrame from a JSON file.
- You could load a DataFrame from a SQL database.

DateTime Handling in Pandas

- You could convert a string to a datetime object using the to_datetime() method.
- You could convert a datetime object to a string using the strftime() method.
- You could convert a datetime object to a timestamp using the timestamp() method.

DateTime Handling in Pandas

- You could convert a string to a datetime object using the to_datetime() method.
- You could convert a datetime object to a string using the strftime()
 method.
- You could convert a datetime object to a timestamp using the timestamp() method.

DateTime Handling in Pandas

- You could convert a string to a datetime object using the to_datetime() method.
- You could convert a datetime object to a string using the strftime()
 method.
- You could convert a datetime object to a timestamp using the timestamp() method.

Querying a DataFrame

- You could query a **DataFrame** using indexing (boolean or fancy).
- You could query a DataFrame using loc and iloc indexers
- You could query a DataFrame using query method

Querying a DataFrame

You could query a DataFrame using indexing (boolean or fancy).

Introduction to Data Science

- You could query a DataFrame using loc and iloc indexers.
- You could query a DataFrame using query method

Querying a DataFrame

- You could query a DataFrame using indexing (boolean or fancy).
- You could query a DataFrame using loc and iloc indexers.
- You could query a **DataFrame** using query method.

Missing Values in a DataFrame

- You could detect missing values in a DataFrame. The isnull()
 method returns a Boolean DataFrame indicating the presence of
 missing values.
- You could fill missing values in a DataFrame. The fillna() method returns a DataFrame with missing values filled.
- You could drop missing values in a DataFrame. The dropna() method returns a DataFrame with missing values dropped.

Missing Values in a DataFrame

- You could detect missing values in a DataFrame. The isnull()
 method returns a Boolean DataFrame indicating the presence of
 missing values.
- You could fill missing values in a DataFrame. The fillna() method returns a DataFrame with missing values filled.
- You could drop missing values in a DataFrame. The dropna() method returns a DataFrame with missing values dropped.

Missing Values in a DataFrame

- You could detect missing values in a DataFrame. The isnull()
 method returns a Boolean DataFrame indicating the presence of
 missing values.
- You could fill missing values in a DataFrame. The fillna() method returns a DataFrame with missing values filled.
- You could drop missing values in a DataFrame. The dropna()
 method returns a DataFrame with missing values dropped.

Merging DataFrames

- You could merge two DataFrames using the merge() method.
- You could concatenate two DataFrames using the concat() method
- You could join two DataFrames using the join() method

Merging DataFrames

- You could merge two DataFrames using the merge() method.
- You could concatenate two **DataFrames** using the concat() method.

Introduction to Data Science

23 / 31

Merging DataFrames

- You could merge two DataFrames using the merge() method.
- You could concatenate two DataFrames using the concat() method.
- You could join two **DataFrames** using the join() method.

GroupBy in Pandas

- You could group a DataFrame using the groupby() method.
- You could aggregate a DataFrame using the agg() method.
- You could transform a **DataFrame** using the transform() method
- You could filter a DataFrame using the filter() method

GroupBy in Pandas

- You could group a DataFrame using the groupby() method.
- You could aggregate a **DataFrame** using the agg() method.
- You could transform a DataFrame using the transform() method
- You could filter a DataFrame using the filter() method

GroupBy in Pandas

- You could group a **DataFrame** using the groupby() method.
- You could aggregate a **DataFrame** using the agg() method.
- You could transform a **DataFrame** using the transform() method.
- You could filter a DataFrame using the filter() method.

GroupBy in Pandas

- You could group a **DataFrame** using the groupby() method.
- You could aggregate a **DataFrame** using the agg() method.
- You could transform a **DataFrame** using the transform() method.
- You could filter a **DataFrame** using the filter() method.

24 / 31

Scales DataFrame

- You could pivot a **DataFrame** using the pivot() method.
- You could pivot table a DataFrame using the pivot_table() method.

Scales DataFrame

- You could pivot a **DataFrame** using the pivot() method.
- You could pivot table a **DataFrame** using the pivot_table() method.

Pandas Idioms

- You could apply functions to **DataFrames**.
- You could chain methods in Pandas

Pandas Idioms

- You could apply functions to **DataFrames**.
- You could chain methods in Pandas.

You could perform statistical tests as:

- t-tests using the ttest_ind() method from the scipy library.
- ANOVA using the f_oneway() method from the scipy library.
- Chi-square using the chi2_contingency() method from the scipy library
- Correlation using the corr() method from the pandas library.

MSc. C.A. Sierra (UD FJC)

You could perform statistical tests as:

- t-tests using the ttest_ind() method from the scipy library.
- ANOVA using the f_oneway() method from the scipy library.
- Chi-square using the chi2_contingency() method from the scipy library
- Correlation using the corr() method from the pandas library.

You could perform statistical tests as:

- t-tests using the ttest_ind() method from the scipy library.
- ANOVA using the f_oneway() method from the scipy library.
- Chi-square using the chi2_contingency() method from the scipy library.
- Correlation using the corr() method from the pandas library.

You could perform statistical tests as:

- t-tests using the ttest_ind() method from the scipy library.
- ANOVA using the f_oneway() method from the scipy library.
- Chi-square using the chi2_contingency() method from the scipy library.
- Correlation using the corr() method from the pandas library.

p-hacking and p-value

- p-hacking is the practice of manipulating the data and analysis of statistical tests to produce significant results.
- The **p-value** is the probability of obtaining an effect at least as extreme as the one in your sample data, assuming the null hypothesis is true.

p-hacking and p-value

- p-hacking is the practice of manipulating the data and analysis of statistical tests to produce significant results.
- The **p-value** is the probability of obtaining an effect at least as extreme as the one in your sample data, assuming the null hypothesis is true.

Introduction to Data Science

Goodhart's Law

Definition

When a measure becomes a target, it ceases to be a good measure.

Outline

Numerical Analysis with Numpy

2 Text Analysis and Regular Expresions

3 Data Manipulation with Pandas

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/ courses/data-science-introduction

