Basic Concepts in Data Transmission

EE450: Introduction to Computer Networks

Professor A. Zahid

Data and Signals

- Data is an entity that convey information
 - Analog
 - Continuous values within some interval
 - e.g. sound, video
 - Digital
 - Discrete values
 - e.g. text, integers
- Signals are electrical or electromagnetic or optical representations of data

Analog vs. Digital Signals

Periodic Signals

(b) Square wave

Parameters of a Sinusoid

- Peak Amplitude (A)
 - Maximum strength of signal
 - Measured in volts or amps
- Frequency (f)
 - Rate of change of signal
 - Measured in Hertz (Hz) or cycles per second
 - The Period of a periodic signal, T = 1/f
- Phase (φ)
 - Relative position in time
 - Measured in Degrees (or Radians)

Varying Sine waves $s(t)=A\sin(2\pi f t + \phi)$

Frequency Domain Concepts

- Any arbitrary signal can be thought as a combination of many (may be infinite) components with each component being a sinusoidal waveform of given amplitude, frequency and phase
- Example shows the addition of two sinusoids

Time vs. Frequency Domains

Spectrum and Bandwidth

- Spectrum of the Signal
 - range of frequencies contained in signal
- Bandwidth of the Signal
 - width of spectrum
 - Telephony (Voice) bandwidth 300Hz~ 3400Hz
 - Video bandwidth 4~6 MHz
- Bandwidth of Transmission System
 - Range of frequencies that will pass through the system without much degradation

Analog Signals representing Analog/Digital Data

Digital Signals representing Analog/Digital Data

Advantages of Digital Transmission

- Digital Technology
 - Low cost VLSI technology
- Data Integrity
 - Longer distances over lower quality lines
- Capacity Utilization
 - High bandwidth links economical
 - High degree of multiplexing easier with digital techniques
- Security & Privacy
 - Encryption
- Integration of Services
 - Can treat analog and digital data similarly

Transmission Impairments

- Signal received differ from signal transmitted
 - Analog degradation of signal quality
 - Performance Measure: SNR
 - Digital bit errors
 - Performance Measure: Bit Error Rate
- Reasons
 - Attenuation (amplitude distortion)
 - Delay distortion (pulse smearing!)
 - Noise: Thermal, Crosstalk, Impulse, etc...
 - Interference (intentional or un-intentional)

Channel Capacity (Shannon Theorem)

- The presence of noise can corrupt one or more bits
- Assume that the bandwidth of the medium is B
 (Hz) and the signal-to-noise ratio is SNR (usually given in decibels)
- The capacity of the channel (in bps) is the maximum transmission bit rate possible with negligible bit error rates (i.e. reliable transmission)
- $R_b \le C = B \log_2 (1 + SNR)$
 - Note that to increase the capacity, we need either to increase the bandwidth, increase the signal power or reduce the noise power

Quick Review of decibels

$$N_{dB} = 10 log_{10} \frac{P_2}{P_1}$$

 P_1 = input power level N_{dB} = number of decibels

 P_2 = output power level log_{10} = logarithm to the base 10

Example: If the input power level to a transmission system is 10mW and the measured output is 5mW, the power loss in dB is

$$N_{dB} = 10 \log (5/10) = 10 (-0.3) = -3 dB$$

Modulation/Demodulation (Modems)

- Modulation is the process of varying one or more parameters of a carrier signal (Amplitude, Frequency or Phase) in accordance to an information signal
- Binary Modems: One bit goes-in, one signal goes-out ⇒ Signaling (Baud) Rate = Bit Rate
- Multi-level Modems: "k" bits go-in, one signal goes-out $\Rightarrow R_s = R_b/k$

Modems (Continued)

Types of Modulation

Binary Amplitude Shift Keying

Binary Frequency Shift Keying

Binary Phase Shift Keying

Quadrature Phase Shift Keying (QPSK)

Example: Phase Constellations

Bits

Constellation diagram

Phase
0
90
180
270

Tribit	Phase
000 001 010 011 100 101 110	0 45 90 135 180 225 270
111	315

Tribits (3 bits)

Dibit (2 bits)

Constellation diagram

Quadrature Amplitude Modulation

Analog/Digital Conversion (A/D)

- Digitization consists of 3 processes
 - Sampling
 - Quantization
 - Encoding

Sampling/Quantization/Encoding

- If a signal is sampled at regular intervals at a rate higher than twice the highest signal frequency, the samples contain all the information of the original signal
- Voice signals are limited to below 4000Hz ⇒
 Require 8000 sample per second
- The result, which is 8000 analog samples/sec are quantized to certain number of allowable levels. In practice, for telephony, 256 allowable levels
- Each quantized sample is encoded into 8 bits resulting in a digital signal of rate 64 Kbps

Analog/Digital Conversion (Cont.)

Digital Data/Digital Signals (Line Coding)

- Line coding is the process of encoding the binary string of bits by a digital/discrete-level signal suitable for transmission over the line
- Examples include:
 - NRZ-L: Non-Return-to-Zero Level
 - NRZ-I: Non-Return-to-Zero Inverted
 - Manchester/ Differential Manchester Coding
 - Many others...

NRZ & NRZI

- NRZ: Two different voltages for 0 and 1 bits
- Voltage constant during bit interval
- e.g. Absence of voltage for zero, constant positive voltage for one. More often, negative voltage for one value and positive for the other
- NRZI: Non-return to zero inverted on ones

Manchester/Differential Manchester

Manchester

- Transition in middle of each bit period
- Transition serves as clock and data
- Low to high represents one
- High to low represents zero
- Used by IEEE 802.3

• Differential Manchester

- Mid-bit transition is clocking only
- Transition at start of a bit period represents zero
- No transition at start of a bit period represents one
- Note: this is a differential encoding scheme
- Used by IEEE 802.5

Manchester/Differential Manchester

Manchester Encoding

Differential Manchester Encoding

Trade-offs in choice of Line Coding

- Signal Spectrum
 - Lack of high frequencies reduce required BW
 - Lack of dc component allows ac coupling, providing isolation
- Clocking
 - Synchronizing transmitter and receiver
 - External clock or Sync based on signal
- Immunity to Interference and Noise
- Error Detection
- Cost and Complexity