# 1<sup>st</sup> Order Transients – 2

general solution

### First Order RC Case



• Solution 
$$v(t) = (v_0 - v_\infty) e^{-t/RC} + v_\infty$$

Switch changes  $a \rightarrow b$  at t = 0



Switch changes  $b \rightarrow a$  at t = 0



#### First Order RL Case



• Loop KVL equation: 
$$\frac{di(t)}{dt} + \frac{R}{L} i(t) = \frac{1}{R} V_S$$

• Solution: 
$$i(t) = (i_0 - i_\infty) e^{-\frac{R}{L}t} + i_\infty$$

Switch opens at t = 0



Switch closes at t = 0



#### General Result – 1st Order

• Inductor current or capacitor voltage, x(t) for t > 0

$$x(t) = [x(0) - x(\infty)] e^{-t/\tau} + x(\infty)$$

- Final and initial values,  $x(\infty)$  and x(0):
  - From a DC analysis based on "open" or "short" models for C and L
  - Initial value exploits the continuity of capacitor voltages and inductor currents at t=0

$$x(t) = [x(0) - x(\infty)] e^{-t/\tau} + x(\infty)$$

- Time constant  $\tau$  (= L/R or RC)
- Why this form?

$$e^{-t/\tau} = \begin{cases} 1 & t = 0\\ 0.369 & t = \tau\\ 0.002 & t = 4\tau \end{cases}$$



### What if the Circuit is more Complex?





- Use the Thevenin equivalent circuit seen by L or C
  - Time constant  $\tau = L/R_{Th}$  or  $R_{Th}C$

## Worked Example

• Find i(t)



$$i(t) = (i_0 - i_\infty) e^{-t/\tau} + i_\infty$$

• Need:  $\tau$ ,  $i_{\infty}$ , and  $i_{0}$ 

Step 1 – time constant 
$$\tau = \frac{L}{R_{Th}}$$



$$R_{Th} = 3 + 5||10||10$$
  
= 3 + 5||5  
= 5.5  $\Omega$ 

$$\tau = \frac{2}{5.5} = \frac{1}{2.75} \sec$$

### Step 2 – final value $i_{\infty}$ ; as $t \to \infty$



$$\frac{v-15}{5} + \frac{v}{10} + \frac{v}{3} + \frac{v}{10} = 0 \implies v = \frac{45}{11}$$

$$i_{\infty} = \frac{v}{3} = \frac{15}{11} = 1.36 \text{ amps}$$

### Step 3 – initial value $i_0$



$$i_0 = \frac{v}{3} = \frac{30}{19} = 1.58 \text{ amps}$$

### Combining



$$i(t) = (i_0 - i_\infty) e^{-2.75 t} + i_\infty$$
  
= 0.22  $e^{-2.75 t} + 1.36$  amps



### **Practice Problem:**

Find  $i_L(t)$ 



### **Practice Problem:**

### Find $v_c(t)$

