Martada da Guira Construction of my distance ilegivel Mediter Consultan ment But, and so encoulous ment a residence legibleided Ulseli M Considera : 1 No care de a tensas produzida pela gerador mas for greissa, portos tes ou riza, se a carent eletram para a menma tensas e apos alteraçãos da tensas superiormente e volta para o vador de tensas for deferente, pederá ser necessários ao em segundo proedemento que será emeciado se necessário. Zara o qual seri medido a resistência interna do gerado V = RI & Formulas auxilian Athan ultrapusar 5 v de plandade P = VI 😜 invern porque danificar o diode R= = (=, U= RI E= U+RII Otherman engine who will Lara cada diodo representar graficamente a curva canaderística da conente eletrica em funças de D Cabador a resistencia estática do diodo em elementos representativos de grafin · Linearizar a fução (lm(ID+IO) = ln(Io) c ev mpt and Lor Io ~ Io, pois ID >> 10 · Representar graficamente la (ID) em fução de VD * toger regunos lenear do paros antirior

O diodo retifica a corrente eletrica, esto i, oran no sentidor direto (polarização direta) apresenta boisas resistência à condução elétrica e elevado no rentido imporo (polarização invern

Joste p -> ånode Dorte n -> cålade com lacemen

Sentido direto in do ánodo para o cotodo (rentido real da.

Esta montagem experimental permite medir, quer a terras quer a corrente elétrica sente mais eficiente

as the good as a self-of delication

 \mathcal{X}

Cartanha, verde, laranja, dourado.

R de proteção > 14,836 K. R.

1

Euroa característica de T= Io (23 -1) I -> coverte que dranersa o desde R-> antante de Bollymon 1,38 x 10 23 g/K Deribe os conacterísticas de um direto em que a resistência mo sentido direto é socio varias ordens de grandys inferor à resistência mo sertido inverso. Mete - se que os díodos mão são condutres obrisos, on sijo, a risistència nou se mantin constante com a variação dos diodo relificada não fuciona em sintemio de avalando, uma vy que isso destruiria as prepriedades deste diodo por viações de paras mp. deferença de petercial, o déado tem uma grande diministra da sur resistência, com seja, uma vez que a resistência é muito baisan da se un, grande armento da covente eletrica para valors muito préseimos e crescentes em modulo da diferença de patencial. Bostane esqueme. e algunna notes + relevante P/ trabalho

W.L.

Pelas característicos do diodo rabemos empiricamento que a resistence no sentido direto do diodo e varias ordens de grandiza inferior a resistencia no sentido inverso de diodo, avim foi usada a montagun It que nos foi apresentato para o sentido inversos dos diodes, uma vy que apera da resistencia de voltimetra ser muito alta, a resistencia de disodo de no sentido enverso terá uma resistencia prósima deste vola desta forma, se a montagem forma a a, a corrente elétrica seria dississem em parcelos borstante prósimos da conente elétrica pelo que se formación error sistemáticos, visto que a corente elétrica medida seria diferente da conente eletrica que efitivomente parsova pete diodo. No sentido direto, poro ambos ordiodos foi assado os mondo a montaga. direte à resistencia de voltimetre, tomando qua virtualmente a parragende counts eletrico no voltimetro OA, não provocando evros sistemáticos Montagement Ro de protogio Montagen of a sentider directs sertide emocras

& herselbrein denâmeca e resultación estata ca · Rundinin estiling (RDC) Est p devera ser calculada nun pento de condução frança 9 utilizante a formula: Ri U , no gráfico de U= I R em que R s'odedira do gráfico de U= I R em que R s'odedira do gráfico de De I dora minister as erro experimentais serão usado 3 porto como o Resultingo Vindoneca (RAY) Esta podera ser calculada MR H = 30, on seprimentalmente, atravis de delive da projeção linear da reta Linearyação da qui de Shockday I.= Io (2 mt -1) Nodera ser linearizado par. E' de notar que só poderá ser ln (I+I0)= ln(I0) + 2V E/ wrade esta tenewización para diformes de patencial baixos longe da zona de e) (In (I M))= In(Io) + 1 orderada decline obeira (x) K=1,381×10-23 l=1,6x10-19 C Rodermos calcular Io através de: b = ln (Io) = 1 To = eb Lodemos também calcular of (of E [1, 2]) atravis de: m: 1 = 1 m n = f = 1 n = mft Uma vez que não foi medido, T terá de ser estimado, estiman-se 1908 o que equivale a 292,15 K (Regentan a o Grupo Calcult dos de I o m, renglican etalica ta tenslican tenamen Diedo religion potendado distingen de grafico e calculos aprentados no Ln(Io) = 22,48V+ ln(Io) -19 Io = 100 1 - 191 : 3,0 + x 10, 9 A Confer com o expende and very que devou tender pour $\eta = \frac{1.6 \times 10^{-19}}{2^2/49 \times 1,381 \times 10^{-23} \times 242,15} = 1,76 \times C1,23$

56,131 R09 = 0,5625 70 5000 0,56 0,000896 0,562 0, 428 × 10-3 0,562 0,410,10 RAG= 59,89,2 1 Under 12 porter à feite a projection linear Astonitary polonizació Diode religion and inverse + 0,00008 = h(IO) · Ln(I) = 35,024 × 31,0334 Io = 1 2324 -334 1,00008 A 1,6×10.19 39,657 35,074×1,381×10-23×292,19 7 (= 413 € [1, 2] Mar seri feita a resistência o estática nem dinâmica poque seria oblet um rata de que tende para infinite, uma voy que mas fencione em rigone a avalanche; of também mais pode sor calculate Diodo zenar golnigadear direta Ln(F)=35,0274V-31,0 & To = e-31,032 = 3,31×10-14 RDY = \$10229 51 8,7994 x10"4 1 RAY = 40964 9, 12 × 10-4 1 Distr your planded morro Diede zener plandade many Mum momento inicial, noto - ne remo printincia estation antes de pente de avalande de 1,14 × 10-6 1 C com a pento mun monente mais final, varifice se uma rusultica estatu de 3, a 16 × 10 mon fri calculate a rusible ca deminer dente à grande altració de volves

Conndersion Nota-se uma tendircia parabolica dos residuos que sor dista relificat quer no diode sener em polonitate polonização direla, mortante que la goo sainte uma variavel que não foi estedada ou que a linearização não foi bem exualata dende mais notard no disdo seur (game es co hicle?)

it inenteza do amprimetro nos tabelos i alterada, uma vy que a seale foi
alterada, no propagação de erros seriousade a maio inentigo. a Tabelas tem de Drepagação de inartiro entar no fin / · Diodo retefrado polaridade dirita Grafius no! To:, b m2(10): (3 h) 2 m2 (h)=) = 1 M(Ib) = 1 (1) = 3, 07 > 10 9 × 0, 20 = 3, 10 3×10 10 $m'(M) = \left(\frac{3}{2}m\right)^{2}m^{2}(m) =$ na pode enten E) M(M) = & M(M) = 38 > 10-3 blu Inc. relector To = (301 × 10-10 + 2) 10-10 / A M= \$1,760 = 0,008 Linest de 5/01 $M(R)y - \sqrt{(\frac{1}{L})^2 n^2(V) + (-\frac{V}{L^2})^2 n^2(L)}$ 1 = 0,000846 = 5, 24 x 1, 18 r RO8 = 8 56, 13 2 + 7,18 1 · Diodo gener polaridade direta m2(F6) = etu(b/= 3,31×10-14×0,014=5,56×10-16A n2(M) = KTm2 M(m) = 0,0340740 > 0,02293 = +, 10x Io = (3 931 × 10-16 + 6 , 10-16) A Escothento M(RD8) = J(=)2~2(V)+(-+2)2~2(I)= V-0,73974VA I = 0,000 512 A RD8 = (4, 12 × 10- 4 + 1,62 1 12 dent - ne que a invention mis estri bran calculate , mas now for personal durature

U/V	I/mA	I/A	Ln(I)	Ln(I _{ajuste})	Resíduos (Ln(I))	Incerteza(U/V)	Incerteza(I/A)
0,381	0,004	0,000004	-12,43	-11,04	1,3901	0,001	0,00001
0,418	0,024	0,000024	-10,64	-10,21	0,4303	0,001	0,00001
	•			•	0,4303		· · · · · · · · · · · · · · · · · · ·
0,441	0,049	0,000049	-9,92	-9,69		0,001	0,00001
0,459	0,082		-9,41	-9,29	0,1234	0,001	0,00001
0,464	0,097	0,000097	-9,24	-9,17	0,0679	0,001	0,00001
0,474	0,124	0,000124	-9,00	-8,95	0,0471	0,001	0,00001
0,486 0,494	0,168 0,204	0,000168	-8,69	-8,68	0,0132 -0,0010	0,001	0,00001
0,494	0,204	0,000204	-8,50	-8,50 -8,21	-0,0010	0,001	0,00001 0,00001
0,507	0,278	0,000278	-8,19 -7,97	-8,00	-0,0183	0,001	0,00001
0,510	0,345	0,000345	-7,83	-7,85	-0,0318	0,001	0,00001
0,531	0,478	0,000478	-7,65	-7,67	-0,0206		0,00001
0,533	0,501	0,000501	-7,60	-7,62	-0,0227	0,001	0,00001
0,539	0,572	0,000572	-7,47	-7,49	-0,0203	0,001	0,00001
0,542	0,607	0,000607	-7,41	-7,42	-0,0122	0,001	0,00001
0,546	0,667	0,000667	-7,31	-7,33	-0,0166		0,00001
0,552	0,752	0,000752	-7,19	-7,19	-0,0016	0,001	0,00001
0,557	0,836	0,000732	-7,09	-7,08	0,0049	0,001	0,00001
0,559	0,863	0,000863	-7,06	-7,04	0,0181	0,001	0,00001
0,56	0,896	0,000896	-7,02	-7,01	0,0031	0,001	0,00001
0,561	0,911	0,000911	-7,00	-6,99	0,0089	0,001	0,00001
0,562	0,928	0,000928	-6,98	-6,97	0,0129	0,001	0,00001
0,563	0,951	0,000951	-6,96	-6,95	0,0109	0,001	0,00001
0,564	0,967	0,000967	-6,94	-6,92	0,0167	0,001	0,00001
0,5636	0,951	0,000951	-6,96	-6,93	0,0244	0,00001	0,00001
0,56151	0,91	0,00091	-7,00	-6,98	0,0215	0,00001	0,00001
0,55981	0,878	0,000878	-7,04	-7,02	0,0191	0,00001	0,00001
0,55764	0,839	0,000839	-7,08	-7,07	0,0157	0,00001	0,00001
0,55548	0,802	0,000802	-7,13	-7,12	0,0123	0,00001	0,00001
0,55421	0,781	0,000781	-7,15	-7,14	0,0102	0,00001	0,00001
0,55285	0,759	0,000759	-7,18	-7,18	0,0082	0,00001	0,00001
0,55116	0,732	0,000732	-7,22	-7,21	0,0065	0,00001	0,00001
0,54927	0,703	0,000703	-7,26	-7,26	0,0044	0,00001	0,00001
0,54766	0,679	0,000679	-7,29	-7,29	0,0029	0,00001	0,00001
0,54705	0,671	0,000671	-7,31	-7,31	0,0011	0,00001	0,00001
0,54482	0,64	0,00064	-7,35	-7,36	-0,0018	0,00001	0,00001
0,54363	0,623	0,000623	-7,38	-7,38	-0,0016	0,00001	0,00001
0,54321	0,606	0,000606	-7,41	-7,39	0,0166	0,00001	0,00001
0,54045	0,582	0,000582	-7,45	-7,45	-0,0050		0,00001
0,53916	0,566	0,000566	-7,48	-7,48	-0,0062	0,00001	0,00001
0,53815	0,554		-7,50	-7,51	-0,0074		0,00001
0,53572	0,526	0,000526	-7,55	-7,56	-0,0102	· · · · · · · · · · · · · · · · · · ·	0,00001
0,53323	0,498	0,000498	-7,60	-7,62	-0,0115		0,00001
0,53126	0,477	0,000477	-7,65	-7,66	-0,0127	0,00001	0,00001
0,52837	0,448	0,000448	-7,71	-7,73	-0,0150		0,00001
0,5255	0,42	0,00042	-7,78	-7,79	-0,0149		0,00001
0,52352	0,403	0,000403	-7,82	-7,83	-0,0181	0,00001	0,00001
0,52045	0,376	0,000376	-7,89	-7,90	-0,0178		0,00001
0,51704	0,349	0,000349	-7,96	-7,98	-0,0200		0,00001
0,51296	0,317	0,000317	-8,06	-8,07	-0,0155		0,00001
0,50996	0,296	0,000296	-8,13	-8,14	-0,0144		0,00001
0,50494	0,264	0,000264	-8,24	-8,25	-0,0129		0,00001
0,49808	0,225	0,000225	-8,40	-8,41	-0,0073	0,00001	0,00001
0,49489	0,208	0,000208	-8,48	-8,48	-0,0004		0,00001
0,48985	0,185	0,000185	-8,60	-8,59	0,0034		0,00001
0,44252	0,052	0,000052	-9,86	-9,66	0,2084	0,00001	0,00001

Figura 1 – Tabela com os dados relativos ao díodo retificador (corrente direta).

Figura 2 – Curva Caraterística do díodo retificador (corrente direta).

m	22,5	-19,6	b
s _m	0,1	0,05	s _b
r ²	0,99899	0,018	s _y

Figura 3 – Linearização e ajuste da curva caraterística do díodo Retificador (In(I)) e os seus parâmetros de linearização.

Figura 4 – Gráfico com os resíduos resultantes da linearização.

r escalas de anedia

U/V	I/mA	I/A	Incerteza(U/V)	Incerteza(I/A)
0,62278	0,008	0,00008	0,0003	0,00001
1,0444	0,008	0,00008	0,0001	0,00001
1,5347	0,008	0,00008	0,0001	0,00001
2,0633	0,008	0,00008	0,0001	0,00001
2,7237	0,008	0,00008	0,0001	0,00001
3,3362	0,008	0,00008	0,0001	0,00001
3,6829	0,008	0,00008	0,0001	0,00001
4,4638	0,008	0,00008	0,0001	0,00001
5,042	0,008	0,00008	0,0001	0,00001
5,805	0,008	0,00008	0,0001	0,00001

Figura 5 – Tabela com os valores relativos à corrente de saturação do díodo retificador (corrente inversa).

Figura 6 – Gráfico com a corrente de saturação do díodo retificador.

Comen to m

U/V	I/mA	I/A	Ln(I)	Ln(I _{ajuste})	Resíduos (Ln(I))	Increteza(U/V)	Incerteza(I/A)
0,39989	0,008	0,00008	-9,43	-17,0	-7,5979	0,00001	0,00001
0,6236	0,007	0,00007	-9,57	-9,20	0,3717	0,00001	0,00001
0,65725	0,032	0,00032	-8,05	-8,02	0,0305	0,00001	0,00001
0,6848	0,086	0,00086	-7,06	-7,05	0,0069	0,00001	0,00001
0,69773	0,136	0,00136	-6,60	-6,60	0,0015	0,00001	0,00001
0,70706	0,189	0,00189	-6,27	-6,27	-0,0008	0,00001	0,00001
0,71203	0,225	0,00225	-6,10	-6,10	-0,0011	0,00001	0,00001
0,71613	0,26	0,0026	-5,95	-5,95	-0,0020	0,00001	0,00001
0,7199	0,296	0,00296	-5,82	-5,82	0,0003	0,00001	0,00001
0,72253	0,324	0,00324	-5,73	-5,73	0,0021	0,00001	0,00001
0,72604	0,366	0,00366	-5,61	-5,61	0,0031	0,00001	0,00001
0,72769	0,388	0,00388	-5,55	-5,55	0,0026	0,00001	0,00001
0,73136	0,441	0,00441	-5,42	-5,42	0,0031	0,00001	0,00001
0,73328	0,472	0,00472	-5,36	-5,35	0,0024	0,00001	0,00001
0,73481	0,499	0,00499	-5,30	-5,30	0,0004	0,00001	0,00001
0,73633	0,526	0,00526	-5,25	-5,25	0,0009	0,00001	0,00001
0,73816	0,56	0,0056	-5,18	-5,18	0,0024	0,00001	0,00001
0,73974	0,592	0,00592	-5,13	-5,13	0,0021	0,00001	0,00001
0,74155	0,632	0,00632	-5,06	-5,06	0,0002	0,00001	0,00001
0,74285	0,661	0,00661	-5,02	-5,02	0,0008	0,00001	0,00001
0,74447	0,7	0,007	-4,96	-4,96	0,0002	0,00001	0,00001
0,7457	0,731	0,00731	-4,92	-4,92	0,0000	0,00001	0,00001
0,74734	0,774	0,00774	-4,86	-4,86	0,0003	0,00001	0,00001
0,74864	0,811	0,00811	-4,81	-4,82	-0,0009	0,00001	0,00001
0,74952	0,836	0,00836	-4,78	-4,78	-0,0004	0,00001	0,00001
0,75071	0,872	0,00872	-4,74	-4,74	-0,0009	0,00001	0,00001
0,75236	0,925	0,00925	-4,68	-4,69	-0,0021	0,00001	0,00001
0,75332	0,957	0,00957	-4,65	-4,65	-0,0025	0,00001	0,00001
0,7534	0,96	0,0096	-4,65	-4,65	-0,0028	0,00001	0,00001
0,74256	0,656	0,00656	-5,03	-5,03	-0,0017	0,00001	0,00001
0,73954	0,589	0,00589	-5,13	-5,13	0,0002	0,00001	0,00001
0,73782	0,555	0,00555	-5,19	-5,19	-0,0006	0,00001	0,00001
0,72974	0,418	0,00418	-5,48	-5,48	-0,0001	0,00001	0,00001
0,72309	0,331	0,00331	-5,71	-5,71	0,0003	0,00001	0,00001
0,71373	0,239	0,00239	-6,04	-6,04	-0,0019	0,00001	0,00001
0,70132	0,155	0,00155	-6,47	-6,47	-0,0035	0,00001	0,00001

Figura 7 – Tabela com os dados experimentais relativos ao díodo Zener (corrente direta).

Figura 8 – Gráfico com os dados experimentais da curva caraterística do díodo Zener (corrente direta).

Figura 9 — Gráfico com a linearização dos dados experimentais do díodo Zener (Ln(I)) e o seu ajuste e os seus parâmetros de linearização (corrente direta).

Figura 10 – Gráfico com os resíduos resultantes da linearização.

U/V	I/mA	I/A	Incerteza(U/V)	Incerteza(I/A)
0,954	0	0	0,0001	0,000001
2,5965	0,0003	0,000003	0,0001	0,000001
4,113	0,0004	0,000004	0,0001	0,000001
5,661	0,0006	0,000006	0,0001	0,000001
7,0594	0,0007	0,000007	0,0001	0,000001
8,626	0,0007	0,000007	0,0001	0,000001
9,063	0,0009	0,000009	0,0001	0,000001
9,6717	0,001	0,00001	0,0001	0,000001
9,8089	0,0014	0,000014	0,0001	0,000001
9,8126	0,0014	0,000014	0,0001	0,000001
9,99668	0,0071	0,000071	0,0001	0,000001
10,008	0,0224	0,000224	0,001	0,000001
10,017	0,0643	0,000643	0,001	0,000001
10,017	0,0886	0,000886	0,001	0,000001
10,017	0,1018	0,001018	0,001	0,000001
10,016	0,1247	0,001247	0,001	0,000001
10,016	0,1325	0,001325	0,001	0,000001
10,016	0,1454	0,001454	0,001	0,000001
10,017	0,1892	0,001892	0,001	0,000001
10,017	0,2188	0,002188	0,001	0,000001
10,018	0,2425	0,002425	0,001	0,000001
10,018	0,2704	0,002704	0,001	0,000001
10,019	0,2894	0,002894	0,001	0,000001
10,019	0,3108	0,003108	0,001	0,000001
10,02	0,3268	0,003268	0,001	0,000001
10,02	0,3393	0,003393	0,001	0,000001

Figura 11 – Tabela com os dados experimentais obtidos do díodo Zener (corrente inversa). A cinzento escuro os dados referentes à zona de saturação. A cinzento claro, os valores da zona de avalanche.

Figura 12 – Gráfico com os dados representados da tabela da figura ??.