Stikprøveteori 1. del

Hans Bay

mandag 16. juli 2018

Stikprøveteori definitioner Univers Y_1 , Y_2 , Y_3 , Y_N

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i$$

$$S^2 = \frac{1}{N-1} \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$

stikprøve y_1 , y_2 , y_3 , y_n

$$\overline{y}_{si} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

$$V(\overline{y}_{si}) = \frac{(N-n)}{N} \frac{1}{n} S^2$$

tre dele: endelighed, stikprøve, varians i univers.

Stikprøveteori definitioner Univers Y_1 , Y_2 , Y_3 , Y_N

stikprøve y_1 , y_2 , y_3 , y_n

simpel tilfældig="repræsentativ":

alle mulige stikprøvekombinationer er lige sandsynlige

 $\binom{N}{n}$ dette er alle mulige kombinationer

Lille bitte eksempel på auditoriet

Univers:
$$1,2,3,4$$
 dvs. $N=4$

. udregn $\overline{Y}=rac{1}{N}\sum\limits_{j=1}^{N}y_{j}$ og $S^{2}=rac{1}{N-1}\sum\limits_{j=1}^{N}(Y_{i}\overline{Y})^{2}$

stikprøve er n=2

Hvor mange mulige stikprøver ? udregn gennemsnittet og varians for disse stikprøver udregn middelværdien blandt de mulige udtrukne stikprøver

Stikprøveteori grundlag

 $I_j=1$ hvis nr i er udtaget til stikprøven ellers nul $P(I_j=1)=rac{n}{N}$

$$E(I_j) = P(I_j = 1) = \frac{n}{N}$$

$$V(I_j) = \frac{n}{N} \frac{(N-n)}{N} = \frac{n(N-n)}{N^2}$$
 $P(I_j = 1) = \frac{\text{gunstige}}{\text{mulige}} = \frac{\binom{N-1}{n-1}}{\binom{N}{N}} = \frac{n}{N}$

$$E(I_i) = 0 * P(I_i = 0) + 1 * P(I_i = 1) = \frac{n}{N}$$

$$I_j^2 = I_j \quad V(I_j) = E(I_j^2) - [E(I_j)]^2$$

$$= \frac{n}{N} - \left(\frac{n}{N}\right)^2 = \frac{n(N-n)}{N^2}$$

•
$$E(\overline{y}_{si}) = E(\frac{1}{n} \sum_{i=1}^{n} y_i) = E(\frac{1}{n} \sum_{i=1}^{N} I_j y_i) =$$

•
$$\frac{1}{n} \sum_{j=1}^{N} E(I_j y_j) = \frac{1}{n} \sum_{j=1}^{N} y_j E(I_j) =$$

$$\bullet \ \frac{1}{n} \sum_{j=1}^{N} y_j \frac{n}{N} = \frac{1}{n} \sum_{j=1}^{N} y_j = \overline{Y}$$

•
$$V(\overline{y}_{si}) = V(\frac{1}{n} \sum_{i=1}^{N} I_i y_i)$$

Egenskaber

$$E(\overline{y}_{si}) = \overline{Y}$$

$$V(\overline{y}_{si}) = \frac{(N-n)}{N} \frac{1}{n} S^2$$

$$E(s^2) = S^2$$

Estimerer variansen i universet ved variansen i stikprøven

$$\widehat{S}^2 = s^2 = \frac{1}{n-1} \sum_{j=1}^{n} (y_i - \overline{y}_{si})^2$$

eksempel kommuner s. 46

N=275 kommuner i gode gamle dage

 $\mathbf{Y}_{j}=$ udgift til vejvæsen i 1.000 kr. pr. indbygger (i 1998) for kommune nr. j

$$\overline{Y} = \frac{1}{275} \sum_{j=1}^{275} Y_i = 0,630746$$

$$S^2 = \frac{1}{275-1} \sum_{j=1}^{N} (Y_j - 0,630746)^2 = 0,023054$$

 $S = \sqrt{S^2} = 0,152$

Beregn usikkerhed (og tilhørende 95% cf-interval) når man udtager en stikprøve på

n=5, 10,20 og 50

alternativ variation

Alternativ variation, dvs. at $y_i = 0$ eller 1

P= andel af 1'taller =
$$\overline{Y}$$

 $S^2 = \frac{N}{N-1}P(1-P) \approx P(1-P)$

$$\widehat{p} = \overline{y}_{si} = \frac{1}{n} \sum_{i=1}^{n} y_i = \text{andel af 1'taller i stikprøven}$$

$$\widehat{S^2} = s^2 = rac{n}{n-1} \widehat{p} (1 - \widehat{p})$$
 (beregnet i stikprøven)

Varians beregninger i alternativt tilfælde

$$y_j = 1$$
 eller 0. dermed $y_j = y_j^2$

$$(N-1)S^2 = \sum\limits_{j=1}^N (Y_j - \overline{Y})^2 = \sum\limits_{j=1}^N Y_j^2 + \sum\limits_{j=1}^N \overline{Y}^2 - 2\overline{Y}\sum\limits_{j=1}^N Y_j =$$

$$\sum_{i=1}^{N} Y_{i} + N\overline{Y}^{2} - 2\overline{Y}N\overline{Y} \quad \text{brug } P = \overline{Y}$$

$$=NP + NP^2 - 2NP^2 = N(P + P^2 - 2P^2) = NP(1 - P)$$

$$S^2 = \frac{N}{N-1}P(1-P)$$

Varians beregninger i alternativt tilfælde

$$V(\widehat{p}) = V(\overline{y}_{si}) = \frac{(N-n)}{N} \frac{1}{n} S^2 = \frac{(N-n)}{N} \frac{1}{n} \frac{N}{N-1} P(1-P) = \frac{(N-n)}{N-1} \frac{1}{n} P(1-P)$$
 (hypergeometrisk)

$$\widehat{V(\widehat{p})} = \frac{(N-n)}{N} \frac{1}{n} \widehat{S^2} = \frac{(N-n)}{N} \frac{1}{n} s^2 = \frac{(N-n)}{N} \frac{1}{n} \frac{1}{n-1} \widehat{p} (1-\widehat{p}) = \frac{(N-n)}{N} \frac{1}{n-1} \widehat{p} (1-\widehat{p})$$

Øvelse se på Greens målinger

Vælg et parti i Greens opinion fra 3. marts 2017 og eftervis konfidensintervallet

Stratifikation

Strat	Antal	Univers	stikpr.	stikpr.	sum	gns	varians
		vægte	antal	vægte			
1	N_1	$W_1 = \frac{N_1}{N}$	n_1	$w_1 = \frac{n_1}{n}$	$Y_{1.}$	$\overline{Y_{1.}}$	S_1^2
2							
K	N _K	$W_K = \frac{N_K}{N}$	n _K	$w_K = \frac{n_K}{n}$	Y_{K}	$\overline{Y_{K.}}$	S_K^2
	N	1	n	1	$Y = Y_{}$	_	_

Variansanalyseopspaltningen

$$S^{2} = \frac{1}{N-1} \sum_{j=1}^{N} (Y_{i} - \overline{Y})^{2}$$

$$(N-1)S^{2} = \sum_{k=1}^{K} [(N_{k} - 1)S_{k}^{2} + N_{k}(\overline{Y}_{k.} - Y)^{2}]$$

$$\sum_{k=1}^{K} \sum_{m=1}^{N_{k}} (y_{km} - Y)^{2} = \sum_{k=1}^{K} \sum_{m=1}^{N_{k}} (y_{km} - \overline{Y}_{k.} + \overline{Y}_{k.} - Y)^{2} =$$

$$\sum_{k=1}^{K} \sum_{m=1}^{N_k} (y_{km} - \overline{Y}_{k.})^2 + \sum_{k=1}^{K} \sum_{m=1}^{N_k} (\overline{Y}_{k.} - Y)^2 + \sum_{k=1}^{K} (\overline{$$

$$\sum_{k=1}^{K} \sum_{m=1}^{N_k} 2 * (y_{km} - \overline{Y}_{k.}) * (\overline{Y}_{k.} - Y)$$

$$\sum_{k=1}^{K} \sum_{m=1}^{N_k} (y_{km} - \overline{Y}_{k.})^2 = \sum_{k=1}^{K} (N_k - 1) S_k^2$$

$$\sum_{k=1}^{K} \sum_{m=1}^{N_k} (\overline{Y}_{k.} - Y)^2 = \sum_{k=1}^{K} N_k (\overline{Y}_{k.} - Y)^2$$

$$\sum_{k=1}^{K}\sum_{m=1}^{N_k} 2*(y_{km}-\overline{Y}_{k.})*(\overline{Y}_{k.}-Y)=2\sum_{k=1}^{K}(\overline{Y}_{k.}-Y)\sum_{m=1}^{N_k}(y_{km}-\overline{Y}_{k.})$$

$$\sum_{m=1}^{N_k} (y_{km} - \overline{Y}_{k.}) = 0$$

Stratifikation

$$(N-1)S^2 = \sum_{k=1}^{K} [(N_k - 1)S_k^2 + N_k(\overline{Y}_{k.} - Y)^2]$$

$$(N - K)S_i^2 = \sum_{k=1}^K \sum_{m=1}^{N_k} (y_{km} - \overline{Y}_{k.})^2 = \sum_{k=1}^K (N_k - 1)S_k^2$$
$$(K - 1)S_m^2 = \sum_{k=1}^K N_k (\overline{Y}_{k.} - \overline{Y})^2$$

$$(N-1)S^2 = (N-K)S_i^2 + (K-1)S_m^2$$

Stratifikation lille eksempel

Stratum	Antal	sum	gns	varians
	N _K		$\overline{Y}_{k.}$	S_k^2
4, 7, 10	3	21	7	18/2
5, 9, 11, 15	4	40	10	52/3
2, 5 , 5 , 4	4	16	4	6/3
sum	11	77	_	_

$$\overline{Y} = \sum_{k=1}^{K} \sum_{m=1}^{N_k} y_{km} = \frac{77}{11} = 7$$

$$\overline{Y} = \sum_{k=1}^{K} N_k \overline{Y}_{k.} = \frac{1}{11} [3 * 7 + 4 * 10 + 4 * 4] = 7$$

Stratifikation lille eksempel

$$S_i^2 = \frac{1}{11-3} \sum_{k=1}^{3} (N_k - 1) S_k^2 = 9,5$$

$$S_m^2 = \frac{1}{3-1} \sum_{k=1}^{3} N_k (\overline{Y}_{k.} - 7)^2 = 36$$

$$S^2 = \frac{1}{11-1} \sum_{j=1}^{11} (Y_j - 7)^2 = \frac{148}{10}$$

$$(N-1)S^2 = (N-K)S_i^2 + (K-1)S_m^2$$

$$(11-1)*\frac{148}{10} = (11-3)*9, 5+(3-1)*36$$

Hans Bay ()

Stratifikation

$$E(\overline{y_{k.}}) = \overline{Y_{k.}}$$

$$V(\overline{y_{k.}}) = \frac{(N_k - n_k)}{N_k} \frac{1}{n_k} S_k^2$$

$$\overline{y}_{strat} = \sum_{k=1}^{K} W_k \overline{y_k}$$

$$E(\overline{y}_{strat}) = \overline{Y}$$

$$V(\overline{y}_{strat}) = \sum_{k=1}^{K} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2$$

side 140

Stratum	Antal	vægte	sum	gns	varians
	N_K	W_k		$\overline{Y}_{k.}$	S_k^2
1,2,3	3	$\frac{1}{4}$	6	2	1
4,5,6	3	$\frac{1}{4}$	15	5	1
7,8,9	3	$\frac{1}{4}$	24	8	1
10,11,12	3	$\frac{1}{4}$	33	11	1
sum	12	1	78	-	-

$$\overline{Y} = \frac{1}{12} \sum_{j=1}^{12} y_j = \frac{1}{12} \sum_{j=1}^{12} j = \frac{78}{12} = 6,5$$

$$S^2 = \frac{1}{12-1} \sum_{j=1}^{12} (j-6,5)^2 = 13$$

$$V(\overline{y}_{si}) = \frac{(N-n)}{N} \frac{1}{n} S^2 = \frac{12-4}{12} \frac{1}{4} 13 = \frac{13}{6}$$

$$V(\overline{y}_{strat}) = \sum_{k=1}^{4} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2 = \sum_{k=1}^{4} (\frac{1}{4})^2 \frac{(3-1)}{3} \frac{1}{1} 1 = \frac{1}{6}$$

Stratum	Antal	vægte	sum	gns	varians
	N _K	W_k		$\overline{Y}_{k.}$	S_k^2
1,5,9	3	$\frac{1}{4}$	15	5	16
2,6,10	3	$\frac{1}{4}$	18	6	16
3,7,11	3	$\frac{1}{4}$	21	7	16
4,8,12	3	$\frac{1}{4}$	24	8	16
sum	12	1	78	-	_

$$\overline{Y} = \frac{1}{12} \sum_{j=1}^{12} y_j = \frac{1}{12} \sum_{j=1}^{12} j = \frac{78}{12} = 6,5$$

$$S^2 = \frac{1}{12-1} \sum_{j=1}^{12} (j-6,5)^2 = 13$$

$$V(\overline{y}_{si}) = \frac{(N-n)}{N} \frac{1}{n} S^2 = \frac{12-4}{12} \frac{1}{4} 13 = \frac{13}{6}$$

$$V(\overline{y}_{strat}) = \sum_{k=1}^{4} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2 = \sum_{k=1}^{4} (\frac{1}{4})^2 \frac{(3-1)}{3} \frac{1}{1} 16 = \frac{16}{6}$$

S. 142 kommuner

Stratum	Antal		gns	varians	stik
	N _K	W_k	$\overline{Y}_{k.}$	S_k^2	n _k
HR	50	0,18		0,0174	2
øerne	84	0,31		0,0177	3
Jylland	141	0,51		0,0258	5
sum	275	1,00	_	_	10

$$\overline{Y} = \frac{1}{275} \sum_{j=1}^{275} Y_i = 0,630746$$

$$S^2 = \frac{1}{275-1} \sum_{j=1}^{N} (Y_{j-1}, 0, 630746)^2 = 0, 023054 = (0, 152)^2$$

$$V(\overline{y}_{si}) = \frac{(275-10)}{275} \frac{1}{10} (0, 152)^2 = (0, 047)^2$$

Udregn varians for stratificeret stikprøve

4 D > 4 D > 4 E > 4 E > E 900

S. 142 kommuner

Stratum	Antal		gns	varians	stik
	N_K	W_k	$\overline{Y}_{k.}$	S_k^2	n _k
HR	50	0,18		0,0174	2
øerne	84	0,31		0,0177	3
Jylland	141	0,51		0,0258	5
sum	275	1,00	_	_	10

$$\overline{Y} = \frac{1}{275} \sum_{j=1}^{275} Y_j = 0,630746$$

$$S^2 = \frac{1}{275-1} \sum_{j=1}^{N} (Y_{j-1}, 630746)^2 = 0,023054 = (0,152)^2$$

$$V(\overline{y}_{si}) = \frac{(275-10)}{275} \frac{1}{10} (0, 152)^2 = (0, 047)^2$$

$$V(\overline{y}_{strat}) = \sum_{k=1}^{3} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2 = (0,046)^2$$

Proportional

$$n_k = nW_k$$

$$\overline{y}_p = \sum_{k=1}^K W_k \overline{y_k} = \frac{1}{n} \sum_{i=1}^n y_i$$
 dvs. det "oprindelige" estimat, selvvejende

$$V(\overline{y}_p) = \frac{N-n}{N} \frac{1}{n} \sum_{k=1}^{K} W_k S_k^2$$

Sammenlignet med simpel tilfældig

$$V(\overline{y}_{si}) = \frac{(N-n)}{N} \frac{1}{n} S^2$$

optimal

$$\mathsf{n}_k = n \frac{W_k S_k}{\sum\limits_{k=1}^K W_k S_k}$$

$$V(\overline{y}_{opt}) = \frac{1}{n} \left(\sum_{k=1}^{K} W_k S_k \right)^2 - \frac{1}{N} \sum_{k=1}^{K} W_k S_k^2$$

Generelt gælder at

$$V(\overline{y}_{opt}) <= V(\overline{y}_p) <= V(\overline{y}_{si})$$

S. 142 o s. 166

Strat	Antal		varians			
	N _K	W_k	S_k^2	S_k	W_k*S_k	$W_k * S_k^2$
HR	50	0,18	0,0174	0,1319	0,0240	0,0032
øer	84	0,31	0,0177	0,1330	0,0406	0,0054
Jyll.	141	0,51	0,0258	0,1606	0,0824	0,0132
sum	275	1,00	_		0,1470	0,0218

$$\overline{Y} = \frac{1}{275} \sum_{j=1}^{275} Y_i = 0,630746$$

$$S^2 = \frac{1}{275-1} \sum_{j=1}^{N} (Y_{i} - 0,630746)^2 = 0,023054 = (0,152)^2$$

$$V(\overline{y}_{si}) = \frac{(275-25)}{275} \frac{1}{25} (0, 152)^2 = (0, 0290)^2$$

Alloker en proportional og optimal stikprøve n=25 beregn varianser herfor

S. 142 o s. 166

	Antal		varians				Р	opt
	N _K	W_k	S_k^2	S_k	W_k*S_k	$W_k * S_k^2$		
HR	50	0,18	0,0174	0,1319	0,0240	0,0032	4	4
øer	84	0,31	0,0177	0,1330	0,0406	0,0054	8	7
Jyll.	141	0,51	0,0258	0,1606	0,0824	0,0132	13	14
sum	275	1,00	_		0,1470	0,0218	25	25

$$S^2 = \frac{1}{275-1} \sum_{j=1}^{N} (Y_{i} - 0,630746)^2 = 0,023054 = (0,152)^2$$

$$V(\overline{y}_{si}) = \frac{(275-25)}{275} \frac{1}{25} (0, 152)^2 = (0, 0290)^2$$

$$V(\overline{y}_p) = \frac{N-n}{N} \frac{1}{n} \sum_{k=1}^{K} W_k S_k^2 = \frac{(275-20)}{275} \frac{1}{20} (0, 0218) = (0, 0282)^2$$

$$V(\overline{y}_{opt}) = \frac{1}{n} \left(\sum_{k=1}^{K} W_k S_k \right)^2 - \frac{1}{N} \sum_{k=1}^{K} W_k S_k^2 = \frac{1}{25} (0, 1470)^2 - \frac{1}{275} (0, 0218) = (0, 0280)^2$$

Hans Bay () Stikprøveteori 1. del mandag 16. juli 2018

oversigt

	estimator	varians
\overline{y}_{si}	$\frac{1}{n}\sum_{i=1}^{n}y_{i}$	$\frac{(N-n)}{N}\frac{1}{n}S^2$
p		$ \frac{\frac{(N-n)}{N-1}P(1-P)}{N-1} = V(\widehat{p}) $
p		$\frac{(N-n)}{N}\frac{1}{n-1}\widehat{p}(1-\widehat{p})=\widehat{V(\widehat{p})}$
\overline{y}_{strat}	$\sum_{k=1}^{K} W_k \overline{y_{k}}$	$\sum_{k=1}^{K} W_k^2 \frac{N_k - n_k}{N_k} \frac{1}{n_k} S_k^2$
\overline{y}_p	$\sum_{\substack{k=1\\k}}^{K} W_k \overline{y_k} = \frac{1}{n} \sum_{i=1}^{n} y_i$	$\frac{N-n}{N}\frac{1}{n}\sum_{k=1}^{K}W_kS_k^2$
\overline{y}_{opt}	$\sum_{k=1}^{K} W_k \overline{y_k}.$	$\frac{1}{n} (\sum_{k=1}^{K} W_k S_k)^2 - \frac{1}{N} \sum_{k=1}^{K} W_k S_k^2$

	allokering af n_k	bestemmelse af stikprøve-størrelse
<u>y</u> ₅i		$\frac{S^2}{(\frac{L_0}{2*1,96})^2 + \frac{1}{N}S^2}$
\overline{y}_{strat}		
\overline{y}_p	$n_k = nW_k$	$\frac{\sum\limits_{k=1}^{K}W_{k}S_{k}^{2}}{(\frac{L_{0}}{2*1,96})^{2}+\frac{1}{N}\sum\limits_{k=1}^{K}W_{k}S_{k}^{2}}$
\overline{y}_{opt}	$n_k = n \frac{W_k S_k}{\sum\limits_{k=1}^K W_k S_k}$	$\frac{(\sum_{k=1}^{K} W_k S_k)^2}{(\frac{L_0}{2*1,96})^2 + \frac{1}{N} \sum_{k=1}^{K} W_k S_k^2}$

konfidensintervaller for små stikprøver

En simpel tilfældig stikprøve på n=4.0000 blandt N=4.200.000 Der findes 2 (to) tilfælde af Ziska.

Udregn et 95% konfidensinterval for andelen af Zika tilfælde i Danmark kommenter dette interval

Brug SAS programmet wright