HiDi Embedding

Wednesday, May 8, 2019 1:20

Linear Decision Boundary

Non-Linear decision boundary

det higher-dimensional embedding $\Phi: \mathbb{R}^P \to \mathbb{R}^D$ $\Phi(x) \in \mathbb{R}^D$

$$ex = (1, x_1, x_2)$$
= $(1, x_1, x_2, x_1^2, x_2^2)$

I makes linear methods into non-linear ones

ex x,,..., xp are proposition and we want to

Wednesday, May 8, 2019

Let
$$\overline{Z}_{ik} = \overline{D}_{k}(x;)$$
 $\chi_{i} \in \mathbb{R}^{p}$ $k=1,...,D$

linear - SVIM for $y_{i} \in \{-1, 15\}$

Main $\frac{1}{n} \stackrel{?}{i=1} (1-y_{i}; \overline{Z}_{i}^{T}\beta)_{+} + \lambda 1|\beta|^{2}$
 f

Claim $\hat{\beta}$ solves SVIM can be written $\overline{Z}_{i}^{T}X_{i}$, $\alpha \in \mathbb{R}^{n}$

i.e. $\hat{\beta}_{i}^{T} = \overline{Z}_{i}^{T}X_{i} = \overline{Z}_{i}^{T}X_{i$

General

10 1. 7 1/ 1/ 1/2

min ρ
$$R_{n}(y, Z_{p}) + \lambda || \beta ||^{2}$$

min $R_{n}(y, K_{x}) + \lambda x^{T} K_{x}$
 $x \in R_{n}(y, K_{x}) = (x_{x})^{T} \Delta (x_{x}) = (x_{x})^{T} \Delta (x_{x})$
 $(x_{x}) = (x_{x})^{T} \Delta (x_{x}) = (x_{x})^{T} \Delta (x_{x})$
 $(x_{x}) = (x_{x})^{T} \Delta (x_{x}) = (x_{x})^{T} \Delta (x_{x})$
 $(x_{x}) = (x_{x})^{T} \Delta (x_{x}) = (x_{x})^{T} \Delta (x_{x})$
 $(x_{x}) = (x_{x})^{T} \Delta (x_{x})^{T} \Delta (x_{x})$
 $(x_{x}) = (x_{x})^{T} \Delta (x_{x})^{T} \Delta$