Nicolas Segura

Jaime Torres

David Ruiz

Recomendaciones ClinicaAlpes

Link del repositorio: https://github.com/drvillota/Laboratorio-3

Link presentación: https://www.canva.com/design/DAE7kenvPRU/T3MxCvYhggoEbb7iTx-GMg/edit?utm_content=DAE7kenvPRU&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton

El dashboard se encuentra disponible en el repositorio.

Carga y limpieza de los datos

Primero cargamos todos los datos y luego los visualizamos para ver que tipos de datos tiene las variables. La base de datos cuenta con 294 filas y cada una con 10 atributos

Eliminamos las celdas con valor nulo

	Expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles	BMI	under-five deaths	Polio	Total expenditure	Diphtheria	HIV/AIDS	GDP	Population	thinness 10-19 years	thinness 5-9 years	Income composition of resources	Schooling
count	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	294.000000	2.940000e+02	294,000000	294.000000	294.000000	294.000000
mean	2790.500000	180.156463	22.748299	4.031327	250.691789	67.258503	2299.707483	39.811565	31.921769	82,459184	5.934014	80.578231	2.866327	2888.804225	4.541904e+06	5.141497	5.135374	0.492966	9.931293
std	85.014705	149.969676	28.065706	3.411991	636.324313	35.669719	6887.681389	20.323780	43.125549	21.932024	3.285364	24.922111	6.876873	7269.383426	1.293499e+07	4.007686	4.123723	0.289985	4.827973
min	2644.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	7.000000	0.000000	5.000000	0.100000	0.000000	0.0000000+00	0.100000	0.100000	0.000000	0.000000
25%	2717.250000	82.000000	3.000000	1.375000	0.000000	\$3,000000	0.000000	19.300000	3.000000	75,000000	4.400000	75.000000	0,100000	0.000000	0.0000000e+00	1.625000	1.600000	0.415000	9.725000
50%	2790.500000	153.000000	10,000000	2.720000	27.137321	83.000000	55.500000	43.000000	12,000000	92.000000	5,405000	92.000000	0.100000	430.824070	1.055190e+05	5.050000	4,500000	0.600500	11,100000
75%	2863.750000	231,000000	29.000000	6.632500	194.536691	94.000000	816.500000	57.475000	42,000000	96.000000	7.075000	96.000000	0.775000	2244.678564	2.482152e+06	6.675000	6.700000	0.715750	12.975000
max	2937.000000	723.000000	116.000000	12.220000	4003.908598	99.000000	49871.000000	79.300000	191.000000	99.000000	17.600000	99.000000	43.500000	45758.955400	7.827147e+67	15.800000	16.400000	0.836000	15.700000

Se calcula el puntaje z para calcular qué tan lejos está de la desviación estándar, siendo eliminados de los datos los valores menores a 3

```
restr = data_or.apply(lambda x:np.abs(stats.zscore(x))<3).all(axis=1)
data_cl = data_or.drop(data_or.index[~restr],inplace=False)
data_cl.shape

(230, 19)</pre>
```

Graficamos las relaciones entre la variable objetivo y el resto en el conjunto de datos para un mejor análisis.

Usamos p-andas para ver a mas detalle los datos, este método también nos permite ver la correlación entre los datos

Variables

Modelamiento y análisis

Primero, separamos la variable objetivo del modelo y creamos datos de entrenamiento y datos de prueba.

```
# Se selecciona la variable objetivo, en este caso "Adult Mortality".
Y = data_cl['Expectancy']
# Del conjunto de datos se elimina la variable "Adult Mortality"
X = data_cl.drop(['Expectancy'], axis=1)

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=seed)
df_train = pd.concat([X_train,Y_train],axis=1)
df_test =pd.concat([X_test,Y_test],axis=1)
```

A continuación, revisamos la colinealidad para analizar la relación que existe entre variables.

	columns	coef					
0	Adult Mortality	241.402131					
1	infant deaths	-39.209483					
2	Alcohol	-53.037230					
3	percentage expenditure	-247.890629					
4	Hepatitis B	11.430407					
5	BMI	-26.487210					
6	Polio	-111.405566					
7	Total expenditure	191.696327					
8	Diphtheria	103.032329					
0.3999286025317751							

Se puede concluir que las variables "Adult Mortality", "Total expenditure" y "Diphtheria" son las variables con mayor colinealidad.

```
# Note que hay que sacarte ta raiz at vator
np.sqrt(mse(Y_test, pipeline.predict(X_test)))
```

62.64274117642231

Retomando, calculamos el error cuadrático medio entre la variable objetivo de prueba y la predicción del modelo pipeline con los datos de prueba, lo cual nos arroja un valor elevado, siendo este, indicio de un modelo impreciso.

Igualmente, podemos para facilitar el análisis, se graficó la normalidad entre la predicción del modelo con los datos de prueba y la variable objetivo.

Finalmente, revisamos si en el modelo hay homocedasticidad; Concluimos que la varianza no es constante.