lecture 14: Intro to Spectral Graph Heury Last time we discussed the intuition behind the use of graphical models & the underlying manifold assumption. We now want to explore how such muition & more broadly, graph models, can be exploited to design algorithms. Our startiz point is a gentle intro to spectral graph theory . F. Chung, "Spectral Graph Thoury", 1997 14.1 Graph Luplacion Matrices Suppose une cre giron a data set X CM CIR X= {x1,--, xn} last time we saw a simple approach for constructing a graph on this data G= { X, W {

· Proximit g graphs are conceptually simpler & easier to analyze. · K-NN graphs are computationally desirable as their weight matrix W is sporse! (& K ron-zero entries in each row) · Note: Ore can consider many other constructions Once we have constructed the graph, ie, the W matria me con immediately défine a so-culted graph Laplacian matria on it. first, define the degree of wijht. $d_i = \sum_{i=1}^{N} W_{ij}, \quad i = 1, \dots, N$ This is simply the Shmot the rows of W d= (d,,-,dn) = W1, 1=(1,...,1) ElR this is also the sum of all weights wij of edges that are connected to xi.

	Intuitively, lighdegree vodes are vore
	influential since they connect to move heads
	or have higher weight connections. So the
	degree encodes the importance of each node.
	· ·
	With the degrees at hand we define the
	With the degrees at hand we define the degree matrix (R^nn) = D = diay(d), D= [d'dz, O] (B) dn
	(C) (O) (O) (O)
	& in tam define the unnormalized graph Laplacian matrix/operator
	Laplacian matrix/operator
	1 = N - IN EIR
	We can define other types of graph laplacias as well. The two mest use ful ones are
	Laplacias as well. The two most use Int
	ones are
	- normalized Graph Captacian (Ch)
5	normalized Graph Laplacian (GL) ym.) D-1/2 (D-W)D-1/2 = I-D-1/2 WD

· Random walk GL (von-sym.) D'(D-W)=I-D'W 14.2 Spectrum of GLS For simplicity let we will focus on unnormalized Laplacions for now. Observe that D-W is symm. Also that $= \sum_{i=1}^{n} d_{i} f_{i}^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} f_{i} f_{j}$ $= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} w_{ij} \right) f_{i}^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} f_{i} f_{j}^{2}$ $=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\omega_{ij}\left(\hat{\xi}_{i}-\hat{\xi}_{j}\right)^{2}$ Thus, Lis PDS! But there is more. L=D-W=> L1=D1-W1 =d-d=0

	in otherwords, and vectors belong
	to the null space of L!
	But there is note
1	Det We say the graph Gris pathwise
+	connected if for all pairs xi,x; \(\times \text{ Hene} \) exists a path (ie seq. of edges) from x;
	A Doserve, it Gis Not Pathwise connected
	then, after re-labeling of the vertices me con always write was a block diag.
<u>_</u>	
٨	matria Wil 6
	W= 0 W2
	$\mathbb{Z}_{N_{N_{1}}}$
	whose W; one the weights of the 1-th connected component.
کر	<i>(</i>
,	The: Lim(Nul(L)) = 1 iff G is Pathwise
	connected.

	Iden of proof: suppose it isn't connected & has allest two connected components. Then show
	allest two connected components. Then show
	that dim(Null(L)) >1
	This simple fact is the underlying principle idea of the famous spectral charlengalg.
	Suppose G has two connected components
	G = G, U G2, G, = {X, ,W, }, G2={X2, W2
	Then we can alway re-order pts such that
	$W = \begin{bmatrix} W_1 & \emptyset \\ \emptyset & W_2 \end{bmatrix}$
	We already know that LI = 0 but also since
	$L = D - W = \begin{bmatrix} D_1 & \emptyset \\ \emptyset & D_2 \end{bmatrix} - \begin{bmatrix} W_1 & \emptyset \\ \emptyset & W_2 \end{bmatrix} = \begin{bmatrix} L_1 & \emptyset \\ \emptyset & L_2 \end{bmatrix}$
	Where L, &Lz one GL's of G, &Gz. Se,
	we con see that
$\langle \cdot \rangle$	$\begin{bmatrix} L_1 & \emptyset \\ \emptyset & L_2 \end{bmatrix} \begin{bmatrix} 1_1 \\ \emptyset \end{bmatrix} = \begin{bmatrix} L_1 & \emptyset \\ \emptyset & L_2 \end{bmatrix} \begin{bmatrix} \emptyset \\ 1_2 \end{bmatrix} = \emptyset$
7)	

Since $\begin{bmatrix} 1_1 \\ 1_2 \end{bmatrix}$, $\begin{bmatrix} 1_1 \\ -1_2 \end{bmatrix}$ are lin. indep. we infer $\dim(\text{Null}(L))=2$ if G, &Gz are themselves connected. We just made an important discovery? if Ghas M-connected components. Then Wallity (L) = M! This, we simply need to count the # of zero eigenvalus of L to find the # of clusters! Also, Null (G) = Span & 11 G; } where IG: are the indicator vectors of the connected components Gi

