

Meetings

 H_i הרים מסודרים בשורה אופקית, וממוספרים מ-0 עד N-1 משמאל לימין. גובה ההר N הרים מסודרים בשורה אופקית, וממוספרים אחד. $0 \leq i \leq N-1$). על פסגת כל הר גר בדיוק אדם אחד.

אתם מתכננים לערוך Q פגישות, שממוספרות מ-0 עד Q-1. בפגישה מספר Q-1 ישתתפו Q ישתתפו לבחור מגישה שגרים בהרים מQ-1 עד Q-1 כולל כולל Q-1 כולל Q-1 לצורך הפגישה הזו, עליכם לבחור כל האנשים שגרים בהרים מQ-1 עד Q-1 כולל עד כולל Q-1 לפגישה תהיה עלות שתלויה בנקודת המפגש שבחרתם, הר כלשהו Q-1 לפגישה תהיה עלות שתלויה בנקודת המפגש שבחרתם, שתחושב כך:

- הרים ההרים ביותר, מבין ההרים ($L_j \leq y \leq R_j$) היא הגובה של ההר הגבוה ביותר, מבין ההרים העלות עבור המשתתף מהר x היא x, הגובה של הרx הממוקמים בין x ו-y (כולל הקצוות). בפרט, העלות עבור המשתתף מהר
 - עלות הפגישה היא סך העלויות עבור כל המשתתפים.

אתם רוצים למצוא את העלות המינימלית האפשרית עבור כל פגישה.

שימו לב שלאחר כל פגישה, כל המשתתפים חוזרים להרים שלהם; לכן העלות של כל פגישה אינה מושפעת מהפגישות הקודמות.

פרטי מימוש

עליכם לממש את הפונקציה הבאה:

int64[] minimum costs(int[] H, int[] L, int[] R)

- . מערך באורך N שמייצג את גובהי ההרים: H ullet
- ו- R: מערכים באורך Q שמייצגים את טווחי המשתתפים בפגישות. $oldsymbol{\mathsf{L}}$
- הפונקציה צריכה להחזיר מערך C_j באורך C_j הערך באורך פריך להיות העלות העלות העלית האפשרית עבור פגישה j
 - .implementation notice-שימו לב ש-N ו-Q הם אורכי המערכים, וניתן לקבלם כפי שמתואר ב-Q הם אורכי המערכים, וניתן לקבלם אימו

דוגמה

$$N=4$$
, $H=[2,4,3,5]$, $Q=2$, $L=[0,1]$, $R=[2,3]$ נתונים

 $.minimum_costs([2, 4, 3, 5], [0, 1], [2, 3])$ הגריידר קורא ל-

ם בהר 0, 1 ו-2. אם בוחרים בהר $R_j=2$ ו ו-2, אם בוחרים בהר $R_j=2$ ו ו-2. אם בוחרים בהר j=0 בפגישה j=0 מתקיים לכן ווישב כך:

- $\max\{H_0\}=2$ העלות עבור המשתתף מהר 0 היא ullet
- $\max\{H_0,H_1\}=4$ העלות עבור המשתתף מהר 1 היא ullet
- $\max\{H_0,H_1,H_2\}=4$ העלות עבור המשתתף מהר 2 היא
 - 2+4+4=10 תהיה 0 תהית של פגישה \bullet

.10 איא פגישה 0 בעלות נמוכה יותר, אז העלות המינימלית של פגישה 0 היא

2 בפגישה j=1, מתקיים $L_j=1$ ו- $R_j=3$, לכן ישתתפו בה האנשים מהרים j=1, אם בוחרים בהר כנקודת המפגש, העלות של פגישה j=1 תחושב כך:

- $\max\{H_1,H_2\}=4$ העלות עבור המשתתף מהר 1 היא ullet
 - $\max\{H_2\}=3$ העלות עבור המשתתף מהר 0 היא \bullet
- $\max\{H_2,H_3\}=5$ העלות עבור המשתתף מהר 3 היא ullet
 - 4+3+5=12 לכן, העלות של פגישה 1 תהיה \bullet

לא ניתן לערוך את פגישה 1 בעלות נמוכה יותר, אז העלות המינימלית של פגישה 1 היא 12

הקבצים sample-01-out.txt ו-sample-01-in.txt בקובץ ה-zip המצורף מתייחסים לדוגמה שתוארה. דוגמאות קלט/פלט נוספות נמצאות בקובץ ה-zip.

מגבלות

- 1 < N < 750000 •
- $1 \le Q \le 750\,000$ •
- $(0 \le i \le N-1) \ 1 \le H_i \le 1 \ 000 \ 000 \ 000$ •
- $(0 \le j \le Q-1) \ 0 \le L_j \le R_j \le N-1$ •
- $(0 \le j < k \le Q-1) \ (L_i, R_i) \ne (L_k, R_k)$ •

תת משימות

$$Q \leq 10$$
 , $N \leq 3\,000$ (נקודות 4). 1

- $Q \leq 5\,000$, $N \leq 5\,000$ (בקודות) .2
- $(0 \leq i \leq N-1)~H_i \leq 2$, $Q \leq 100~000$, $N \leq 100~000$ (בקודות) .3
- $(0 \leq i \leq N-1) \ H_i \leq 20$, $Q \leq 100\,000$, $N \leq 100\,000$ (בקודות) .4
 - 5. (40 נקודות) ללא מגבלות נוספות

(Sample grader) גריידר לדוגמה

הגריידר לדוגמה קורא קלט בפורמט הבא:

- Q ואז N:1 שורה \bullet
- H_{N-1} שורה 2: ואז H_1 ואז ואז H_0 \bullet
- R_j ואז וא L_j :($0 \leq j \leq Q-1$) 3+j שורה \bullet

הגריידר לדוגמה מדפיס את הערך שמחזירה minimum_costs בפורמט הבא:

 C_j :($0 \leq j \leq Q-1$) 1+j שורה ullet