Learning

Optimization and gradient descent

Useful material

Math for ML: https://gwthomas.github.io/docs/math4ml.pdf

The matrix cookbook: https://www2.imm.dtu.dk/pubdb/pubs/3274-full.html

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Learning

Machines make mistakes, but they can learn

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1N} \\ x_{21} & x_{22} & & & \\ \vdots & \vdots & & & \\ x_{M1} & x_{M2} & \cdots & x_{MN} \end{pmatrix} \xrightarrow{\text{ML}} \begin{pmatrix} l_1 \\ l_2 \\ \vdots \\ \vdots \\ l_M \end{pmatrix}$$

Predicted label: $\hat{l}_1 = f_w\left(x_{11}, x_{12}, \cdots, x_{1N}\right)$

true labels, "ground truth"

Making mistakes and correcting them is learning.

We want to tune the parameters w so that predicted label is close to the true one

$$f_w(x_{11}, x_{12}, \cdots, x_{1N}) = f(x_{11}, x_{12}, \cdots, x_{1N}; w_1, w_2, \cdots, w_k) \leftarrow$$

depends on wi

The loss function

Measuring the prediction error made by the machine learning method

Predicted value for sample i: $\hat{l}_i = f_w\left(x_{i1}, x_{i2}, \cdots, x_{iN}\right)$

Prediction error for sample i: $E_i(l_i, \hat{l}_i)$

Example of squared error: $E_i = |l_i - \hat{l}_i|^2$ global error $E = \sum |l_i - \hat{l}_i|^2$

The error depends on the parameters of the machine learning model

$$E(w) = \sum_{i} |l_i - \hat{l}_i(w)|^2$$

Minimization

we want to minimize the error

How? -> the error depends on the weights w

We want to find the w for which it is E minimal: $\operatorname*{argmin}_{w}E(w)$

Finding the minimum using the gradient

Gradient descent

The algorithm: an iterative process

- start at a random point w_0
- compute the gradient or derivative $\nabla E(w_0)$
- move one step following:

$$w_{n+1} = w_n - \alpha \nabla E(w_n)$$

The **step size** α is a parameter to be chosen. It is also called the **learning** rate.

Gradient descent

$$w_{n+1} = w_n - \alpha \nabla E(w_n)$$

Iterate until minimum reached or

$$|w_{n+1} - w_n| \le \varepsilon$$

for a given small positive ε

Gradient descent

$$w_{n+1} = w_n - \alpha \nabla E(w_n)$$

The step size α will depend on the application

- too small: slow convergence
- too big: no convergence

When the step size α is too big

Convex function

f convex: $\forall t \in [0,1], \quad f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ $\forall x_1, x_2 \in \text{dom } f$

Several coordinates

The gradient is a vector

$$\nabla f = \begin{pmatrix} \frac{\frac{3}{\partial x_1}}{\frac{\partial f}{\partial x_2}} \\ \vdots \\ \frac{\partial f}{\partial x_N} \end{pmatrix}$$

$$\frac{\partial E}{\partial w_i}(w)$$

The effect of a slight change of the parameter i on the error.

Stochastic gradient descent (SGD)

The loss function takes into account all the training set $E = \sum |l_i - \hat{l}_i|^2$

- slow to compute
- may need a lot of memory if dataset is large

Instead: compute the gradient for each sample $E_i = |l_i - \hat{l}_i|^2$

Batch or mini-batch gradient descent: compromise, compute the gradient for a small set of samples -> "batch size" in deep learning

Example: gradient for the logistic regression $\frac{\partial}{\partial a}L = X^T(\hat{y} - y)$

Exercise: find the expression for the SGD and batch GD

Convergence of the gradient descent

SGD is faster to compute but has slower convergence.

Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Gradient descent with momentum

Severals improvement for the SGD

Example: heavy ball

$$w_{t+1} = w_t - \alpha \nabla E(w_t) + \beta (w_t - w_{t-1})$$
Momentum

 $(w_t - w_{t-1})$ is the variation at the previous step

2 stochastic gradient descents

Loss landscape

Loss functions in neural nets are non-convex

An example of loss function of a deep neural network.

Gradient descent may be a challenge!

(a) without skip connections

(b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.

From: Visualizing the Loss Landscape of Neural Nets, https://arxiv.org/pdf/1712.09913.pdf