1 Majorization

Next week we'll talk about entanglement. This week we'll talk about Nielsen's theorem.

• Doubly-stochastic operators

Consider some alphabet Σ and some linear mapping $L(\mathcal{R})^{\Sigma}$. This linear mapping being identified with rows and columns indexed by Σ .

An operator $A \in L(\mathbb{R}^{\Sigma})$ is called "doubly stochastic" if the following hold:

- $A(a,b) \in [0,1]$ for all $a,b \in \Sigma$
- $\sum_{a \in \Sigma} A(a, b) = 1$ for every $b \in \Sigma$
- $\sum_{b \in \Sigma} A(a, b) = 1$ for every $a \in \Sigma$

Ex: Suppose $\Pi \in Sym(\Sigma)$. Now, define $V_{\Pi}(a,b)=1$ if $a=\Pi(b)$ and equals 0 otherwise. This describes the class of permutation operators, e.g.:

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

or

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

. Also, for $p\in P(Sym(\Sigma)),\ A=\sum_{\Pi\in Sym(\Sigma)}'p(\pi)V_{\Pi}$ is doubly stochastic (by convexity).

There exist a theorem (Birkhoff-von Neumann theorem): An operator $A \in L(\mathbb{R}^{\Sigma})$ is doubly stochastic if and only if $A = \sum_{\pi \in Sym(\Sigma)} p(\pi)V_{\pi}$ for some choice of $p \in P(Sym(\Sigma))$.

2 Majorization for real vectors

Definition: For vectors u, v $in\mathbb{R}^{\Sigma}$ we say that u majorizes v written as $u \succ v$ $(v \prec u)$ if and only if there exists a doubly sthocastic $A \in L(\mathbb{R}^{\Sigma})$ such that v = Au.

Notation: $u \in \mathbb{R}^{\Sigma}$ and $n = |\Sigma|$. Define $r(u) = (r_1(u), \dots, r_2(u))$ to be the unique vector such that

- $r_1(u) \ge \cdots \ge r_n(u)$
- $r_1(u), \ldots, r_n(u) = u(a) : a \in \Sigma$ (as multisets)

Consider the following theorem where $u,v\in\mathbb{R}^{\Sigma}.$ The following are equivalent:

- 1. $u \succ v$ (i.e., v = Au for A doubly stochastic)
- 2. For every $k \in 1, \ldots, n$ it holds that

$$\sum_{j=1}^{k} r_j(u) \ge \sum_{j=1}^{k} r_j(v)$$

and also that $\sum_{j=1}^{n} r_j(u) = \sum_{j=1}^{n} r_j(v)$.

3. It holds that v = Bu for $B \in L(\mathbb{R})^{\Sigma}$ given by $B(a,b) = |U(a,b)|^2$ for some unitary $U \in U(\mathbb{C})^{\Sigma}$.

We can easily show 1 from 2 by using the Birkhoff-von Neumann theorem by writing each doubly stochastic operator as a convex combination of permutation operators.

Going from 2 to 3 is difficult. You can show it by performing induction on ${\bf n}$

Going from 3 to 1 is trivial because if 3 holds then you can just let A = B. This is majorization for real vectors. We can also discuss majorization in the context of Hermitian operators.

3 Majorization of Hermitian operators

Definition: A channel $\Phi \in C(\mathcal{X})$ is a mixed-unitary channel if and only if there exists an alphabet Σ , a probability vector $p \in P(\Sigma)$ and a collection of unitary operators $U_a : A \in \Sigma$ such that $\Phi(X) = \sum_{a \in \Sigma} p(a)U_aXU_a^*$ (for all $X \in L(\mathcal{X})$).

Definition: Let's suppose that $A, B \in Herm(\mathcal{X})$. We say that A majorizes B, $A \succ B$ or $B \prec A$, if only if there exists a mixed unitary channel $\Phi \in C(\mathcal{X})$ such that $B = \Phi(A)$.

Theorem: Let's suppose that we have $A, B \in Herm(\mathcal{X})$. It holds that $A \succ B$ if and only if their vectors of eigenvalues have the following relationship: $\lambda(A) \succ \lambda(B)$. Let's prove this theorem.

Proof of this theorem: Let $n = dim(\mathcal{X})$. Consider the spectral decompositions of two operators A and B as $A = \sum_{k=1}^{n} \lambda_k(A) v_k v_k^*$ and $B = \sum_{k=1}^{n} \lambda_k(B) u_k u_k^*$.

Right to Left

Assume, first, that $\lambda(A) > \lambda(B)$. It follows that

$$\lambda_j(B) = \sum_{\pi \in S_n} p(\pi) \lambda_{\pi(j)}(A)$$

for some $p \in P(S_n)$. Now, let's define $U_{\pi} = \sum_{k} u_k v_{\pi(k)}^*$ for each $\pi \in S_n$. Now, we'll average these: $\sum_{\pi} p(\pi) U_{\pi} A U_{\pi}^*$. We'll bustitute our spectral decomposition

of A so that the previous sum becomes:

$$\sum_{\pi} p(\pi) U_{\pi} \left(\sum_{k=1}^{n} \lambda_{k}(A) v_{k} v_{k}^{*} \right) U_{\pi}^{*}$$

$$= \sum_{\pi} p(\pi) \sum_{k=1}^{n} \lambda_{\pi(k)}(A) u_{k} u_{k}^{*}$$

$$= \sum_{k=1}^{n} \lambda_{k}(B) u_{k} u_{k}^{*}$$

$$= R$$

Going from left to right

Suppose, on the other hand, that $A \succ B$:

$$B = \sum_{i=1}^{m} p_i U_i A U_i^*$$

We have that $\lambda_j(B) = u_j^* B u_j = \sum_{i=1}^m p_i u_j^* U_i$. This can be written as:

$$\sum_{k=1}^{n} \sum_{i=1}^{m} p_i(u_j^* U_i v_k) (v_k^* U_i^* u_j) \lambda_k(A)$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{m} p_i |u_j^* U_i v_k|^2 \lambda_k(A)$$

$$= \sum_{k=1}^{n} D(j, k) \lambda_k(A)$$

Where $D(j,k) = \sum_{i=1}^{m} p_i |u_j^* U_i v_k|^2$ is doubly stochastic. This is equivalent to saying that $D\lambda(A) = \lambda(B)$.

The following are equivalent conditions:

- 1. $A \succ B$ (i.e. $B = \Phi(A)$ for Φ being a mixed unitary)
- 2. $B = \Phi(A)$ for Φ being a unital channel
- 3. $B = \Phi(A)$ for Φ being a positive, trace-preserving and unital channel (note that Φ does not need to be completely positive)

Consider the following proposition: Suppose $\rho, \sigma \in D(\mathcal{X})$ satisfy $\rho \succ \sigma$. It holds that $H(\sigma) \geq H(\rho)$.

Proof: We know that $\rho \succ \sigma$ implies that $\sigma = \sum_{k=1}^n p_k U_k \rho U_k^*$. Then we use the concavity of the entropy to write:

$$H(\sigma) = H(\sum_{k=1}^{n} p_k U_k \rho U_k^*)$$

$$\geq \sum_{k=1}^{n} p_k H(U_k \rho U_k^*)$$

$$= \sum_{k=1}^{n} p_k H(\rho)$$

$$= H(\rho)$$