우연증폭다형DNA표식자를 리용한 몇가지 뽕누에품종들이 다형성분석

계중삼, 박진순, 허은향, 최남일

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《과학연구부문에서는 나라의 경제발전과 인민생활향상에서 전망적으로 풀어야 할 문 제들과 현실에서 제기되는 과학기술적문제들을 풀고 첨단을 돌파하여 지식경제건설의 지 름길을 열어놓아야 합니다.》

뿅누에품종들은 그 유지와 보존방법에 따라 생물학적특성들이 차이나게 된다.

이로부터 우리는 체계적인 다른갈래짝붙임에 의한 모종유지와 오누이교배방법에 의한 품종보존사이에 나타나는 유전적다형성을 우연증폭다형DNA표식자를 리용하여 분석하였다.

재료와 방법

재료로는 2원, 4원잡종의 뽕누에(Bombyx mori L.)알생산에 리용되고있는 장구형품종인 《155》호와 타원형품종인 《156》호의 알을 리용하였는데 알들은 모종장 1,2(모-1, 모-2)와 우리가 오누이교배방법으로 보존하고있는 보존장(보존-1, 보존-2)에서 채취하였다.

누에알로부터 주형DNA분리는 선행연구[1, 2]에 기초하여 폐놀—클로로포름법으로 하였고 20개의 프라이머가운데서 다형률이 50%이상인 4개의 프라이머 OPD3, OPH8, OPN4, OPN6을 선발하여 PCR증폭[3-7]에 리용하였다.

증폭산물은 에티디움브로미드로 염색한 8% 폴리아크릴아미드겔에서 영동(영동장치《Hoefer(SE600)》)한것을 겔화상입력장치(《UVT》)로 입력하여 관찰하였다.

유전거리는 유전적다형성해석프로그람 NTSYS_{PC} 2.11a를 리용하여 평가하였다.

결과 및 론의

1) 출발재료들의 DNA분리 및 확인

뿅누에 《155》호에 대한 4개 재료와 《156》호에 대한 4개 재료의 알, 총 8개 재료(재료 1은 보존-1의 《155》호, 재료 2는 보존-2의 《155》호, 재료 3은 모-1의 《155》호, 재료 4는 모-2의 《155》호, 재료 5는 보존-1의 《156》호, 재료 6은 보존-2의 《156》호, 재료 7은 모-1의 《156》호, 재료 8은 모-2의 《156》호임)의 누에알로부터 DNA를 분리하고 그 순도를 비교한 결과 A_{260}/A_{280} 은 1.8이상, A_{230}/A_{260} 은 2.0이상이였다. 이로부터 DNA가 비교적 순수하게 분리되었다고 볼수 있다.

2) 시험재료들사이의 유전거리를 평가하기 위한 RAPD분석

뿅누에에서 다형성이 높은것으로 선발한 4개의 RAPD프라이머 OPD3, OPH8, OPN4, OPN6을 리용하여 PCR로 증폭하고 폴아겔전기영동을 한 결과는 그림 1−4와 같다.

그림 1. RAPD프라이머 OPD3을 리용한 8개 재료에 대한 PCR산물의 폴아겔전기영동상 1-8은 재료의 번호임

그림 3. RAPD프라이머 OPN4을 리용한 8개 재료에 대한 PCR산물의 폴아겔전기영동상 1-8은 재료의 번호임

그림 2. RAPD프라이머 OPH8을 리용한 8개 재료에 대한 PCR산물의 폴아겔전기영동상 1-8은 재료의 번호임

그림 4. RAPD프라이머 OPN6을 리용한 8개 재료에 대한 PCR산물의 폴아겔전기영동상 1-8은 재료의 번호임

그림 1-4에서 보는바와 같이 매 프라이머에 의한 증폭띠수는 4~18범위에 있었는데 OPN4프라이머에서 최고 18개의 증폭띠가 나타났다.

5 -0.04

3) NTSYS_{PC} 2.11a를 리용한 유전거리평가

0.18

매 전기영동상들에서 증폭띠들의 유무에 기초하여 8개 재료들사이의 류사성을 평가한 결과는 표와 그림 5와 같다.

	1	2	3	4	5	6	7	8
1	0.00							
2	0.23	0.00						
3	0.26	0.32	0.00					
4	0.29	0.38	0.08	0.00				
5	0.57	0.71	0.59	0.61	0.00			
6	0.42	0.44	0.30	0.24	0.46	0.00		
7	0.38	0.43	0.29	0.23	0.50	0.09	0.00	
8	0.43	0.46	0.32	0.31	0.49	0.08	0.07	0.00

그림 5. 8개 재료들사이의 유전거리

0.33

0.47

0.62

유전거리

표와 그림 5에서 보는바와 같이 3번과 4번의 유전거리는 0.08, 7번과 8번의 유전거리는 0.07로서 그 차이가 없으나 1번과 2번은 0.23, 5번과 6번은 0.46으로서 차이가 심하였다.

실헊결과들을 종합해보면 모-1과 모-2에서 유지 및 보존하고있는《155》호품종들사 이, 《156》 호품종들사이 유전거리가 매우 짧으므로 모-1, 모-2의 《155》 호품종들, 《156》 호 품종들은 매우 류사하다고 평가할수 있다. 즉 품종유지가 잘되였다고 볼수 있다. 그러나 보 존-1과 보존-2에서 보존하고있는《155》호,《156》호품종들사이의 유전거리값은 상대적으 로 큰데 특히 보존-1에서 보존하고있는 《156》호에서 유전거리값이 큰것은 오랜 기간의 격 리보존의 결과라고 본다.

맺 는 말

RAPD프라이머 OPD3, OPH8, OPN6을 리용한 뽕누에 8개 재료의 유전거리값 은 0.07~0.46사이에 있는데 7번과 8번 재료(모-1, 모-2의 《156》호)는 0.07, 3번과 4번 재료(모-1, 모-2의 《155》호)는 0.08로서 매우 작고 1번과 2번 재료(보존-1, 보존-2 의 《155》호)는 0.23, 5번과 6번 재료(보존-1, 보존-2의 《156》호)는 0.46으로서 유전거 리값이 제일 크다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 62, 7, 119, 주체105(2016).
- [2] 김인철 등; 생물학, 1, 22, 주체108(2019).
- [3] N. H. Dodman et al.; Molecular Psychiatry, 15, 8, 2010.
- [4] Anila Hoda et al.; Belgrade, 64, 2, 799, 2012.
- [5] Gabriele Marras et al.: Animal Genetics, 45, 845, 2014.
- [6] 华卫建; 江苏蚕业, 2, 11, 1997.
- [7] 嵩宪军; 蚕业科学, 30, 428, 2004.

주체109(2020)년 1월 5일 원고접수

Genetic Variability of Several Silkworm Strains based on RAPD Analysis

Kye Jung Sam, Pak Jin Sun, Ho Un Hyang and Choe Nam Il

The genetic distances between the 8 strains of silkworm ranged from 0.07 to 0.46, as revealed by RAPD primers, OPD3, OPH8, OPN4, OPN6. The genetic distances between No. 7 and No. 8, between No. 3 and No. 4 were as low as 0.07 and 0.08, respectively, and the genetic distances between No. 1 and No. 2, between No. 5 and No. 6 were as high as 0.23 and 0.46, respectively.

Keywords: RAPD, silkworm, variability