2024년도 공공기관 용역과제 AI개발 수행내역서

과제명	기상정보를 활용한 공공자전거 수요분석 및 예측
담당자	정지용

2025년 01월 07일

AI개발 수행내용

1. 사업과제 : 기상정보를 활용한 공공자전거 수요분석 및 예측

2. 개요 및 현황

- 2.1 추진배경 및 목적
- 장기간 축적된 데이터베이스를 기반으로하여 인공지능 기반의 예측모델에 대한 수요가 점진적 증대 예상
- 공공자전거 이용의 증가와 함께, 기상정보를 활용한 수요 예측의 필요성이 점차 커지고 있음. 특히, 기후 변화와 계절적 요인이 자전거 이용 패턴에 미치는 영향이 크기 때문에, 이를 분석하는 것 이 중요함.
- 기상정보는 자전거 이용에 직접적인 영향을 미치는 요소로, 기온, 강수량, 일사량 등 다양한 기상 변수들이 자전거 이용자의 선택에 영향을 줄 수 있음. 따라서, 이러한 데이터를 기반으로 한 예측 모델 개발이 필요함.
- 공공자전거 시스템의 효율성을 높이기 위해, 기상정보를 활용하여 수요를 예측하고, 자전거 대여소의 운영 및 관리에 대한 전략을 수립하고자 함. 이를 통해 자전거 이용자들에게 더 나은 서비스를 제공 할 수 있을 것으로 기대됨.
- 기상정보를 활용한 수요분석을 통해, 자전거 이용의 활성화 및 대중교통과의 연계를 강화하고, 도시 내 친환경 교통수단으로서의 공공자전거의 역할을 증대시키고자 함.
- 향후, 기상정보를 활용한 수요 예측 모델을 기반으로, 자전거 이용 외에도 대중교통, 보행자 이동 등다양한 교통수단에 대한 분석으로 확대할 계획임. 이를 통해 도시의 교통 체계 전반에 대한 통합적인접근이 가능해질 것으로 기대됨.

2.2 과제 범위

	과제 구분	내용		
시각화	실시간 환경계측정보 연계 및 시각화	환경계측정보 실시간 연계 모형 구현 상황관리 대시보드 등 시각화 구현 예측모델 시각화		
		테스트		

2.3 과제 추진 방법

- 1) 구축 대상 선정 기준
- 데이터 접근성 및 활용성
 - 데이터 수집 및 관리의 용이성
 - 정부 및 공공기관에서 이미 구축된 데이터베이스 활용 여부
 - 종속변수에 영향을 미치는 다양한 독립변수에 대한 정보 포함여부를 통한 모델학습의 유용성
- 예측모델 개발 효율성
 - 모델 학습 및 평가 과정 간소화를 위한 다른 환경 기초데이터에 비해 변수가 상대적으로 단순한 구조 여부
 - 개발된 모델을 통해 다른 데이터 수요 예측에 적용 가능 여부
- 환경문제 해결 기여도 및 경제성(변경)
 - 예측모델을 통해 환경관리에 상대적 기여도가 높은지 여부(ex. 오염도 저감, 에너지 절감 등)
 - 운영 효율성을 높여 비용 절감 효과 여부(자원 최적화, 유지보수 비용 절감)
 - 환경문제 해결을 통한 사회적 비용감소 효과 여부(대기 질 개선, 교통 혼잡 완화)

2) AI 예측 분석모델 적용 대상

환경관리 기능	수집 데이터	예측모델인자(독립변수)	AI예측 분석 대상
공공 자전거 수요	- 2023년 서울시 일별 공공자전거 이용 현황 데이터 - 2023년 일별 기상관측 데이터	- 기상 변수 : 평균기온, 상대습도, 강수량, 일사량, 적설량	- 공공자전거 수요 예측 - 평균기온, 상대습도, 일사량 등 상관관계 분석

3) AI 분석모델 구축 프로세스

- 데이터 수집
 - 서울열린데이터광장 서울시 공공자전거 이용정보(일별)
 - 기상자료 개방포털 서울시 기상관측 데이터(일별)
- 데이터 전처리
 - 데이터 표준화 및 전처리(결측치, 이상치 처리)
 - 변수를 표준화 및 정규화하여 모델학습 효율성을 향상.
 - 상관관계 분석을 통해 독립변수 간의 관계를 확인.
 - 특성 중요도를 통해 중요도가 낮은 독립변수 제거.
- 데이터 모델링
 - 모델 성능 평가를 위해 MSE, r-squared 등의 지표를 사용.
 - 모델 비교 및 최적 모델 도출 (XGBoost 채택)
- 데이터 예측
 - 다양한 기상요인에 따른 공공자전거 수요 예측
- 결과 시각화 및 분석
 - 모델의 정확도 평가를 위해 실제값과 예측값을 비교
 - 예측결과에 대한 분석 결과를 산점도로 시각화.
 - 실제값과 예측값 간의 차이를 바탕으로 잔차 분석 진행.
 - 기상요인에 따른 공공자전거 수요 예측을 통한 운영 효율성 향상 및 환경적 기여

연구개발 주요 결과물

1. 데이터 수집

- 서울시 공공자전거 일별 이용 현황 데이터(엑셀) : 2023년
- 서울시 기상관측 일병 기상 데이터(엑셀) : 2023년

	A	В	C	D	E	F	G	H
- 1	지점	지점명	일시	평균기온(℃)	일강수량(mm)	평균 상대습도(%)	합계 일사량(MJ/m2)	일 최심적설(cm)
2	108	서울	2023-01-01	-0.2		54.5	10.81	
3	108	서울	2023-01-02	-4.5		45.9	11.63	
4	108	서울	2023-01-03	-5		49	11,77	
5	108	서울	2023-01-04	-1.8		51.4	10,89	
6	108	서울	2023-01-05	-1.6		58.1	6.09	
7	108	서울	2023-01-06	0,6	3,9	71,9	8,78	3,6
8	108	서울	2023-01-07	1,5	0,1	80,9	4,78	3,6
9	108	서울	2023-01-08	1.3		69,3	9.37	
10	108	서울	2023-01-09	3,1		60,1	10,53	
11		서울	2023-01-10			59,9	11,33	
12		서울	2023-01-11			61.9	10,86	
13	108	서울	2023-01-12	5.9	0	46.6	10,88	
14	108	서울	2023-01-13		37,3	99,1	1,11	
15		서울	2023-01-14		1,6	92,9	1,84	
16		서울	2023-01-15		3.2	93.9	1,32	
17		서울	2023-01-16		0	63,1	12,95	0.3
18		서울	2023-01-17		0	65,1	5,27	
19		서울	2023-01-18		0	60,5	12,71	
20		서울	2023-01-19		1	69.3	7.63	
21		서울	2023-01-20			52,4		
22		서울	2023-01-21			55,4		
23		서울	2023-01-22		0	62,8		
24		서울	2023-01-23			66.6	10.15	
25		서울	2023-01-24			51,9		
26		서울	2023-01-25		0	45,1	14,08	
27		서울	2023-01-26		0.8	80.1	4.51	4.5
28		서울	2023-01-27			56.5	14,1	
29		서울	2023-01-28		0	54,9	12,58	
30		서울	2023-01-29			58,3	9,79	
31		서울	2023-01-30			55.9	14,17	
32		서울	2023-01-31			69.1	6.5	
33		서울	2023-02-01			68,4	13,24	
34		서울	2023-02-02			50,3		
35		서울	2023-02-03			47.4		
36		서울	2023-02-04			49,8	13,23	
37		서울	2023-02-05			71	11,35	
38		서울	2023-02-06			72,3		
39	108	서울	2023-02-07	3.5		72.9	10.12	

그림 1 서울 열린데이터광장 공공데이터

2. 데이터 분석

2.1 데이터 상관관계(Heatmap)

	A	В
1	대여일시	대여건수
2	2023-01-01	38,037
3	2023-01-02	56,609
4	2023-01-03	61,252
5	2023-01-04	67,721
6	2023-01-05	68,711
7	2023-01-06	63,125
8	2023-01-07	42,492
9	2023-01-08	44,620
10	2023-01-09	74,134
11	2023-01-10	80,604
12	2023-01-11	81,988
13	2023-01-12	87,595
14	2023-01-13	20,792
15	2023-01-14	25,896
16	2023-01-15	21,415
17	2023-01-16	61,311
18	2023-01-17	67,337
19	2023-01-18	71,361
20	2023-01-19	68,359
21	2023-01-20	51,398
22	2023-01-21	30,226
23	2023-01-22	22,752
24	2023-01-23	30,880
25	2023-01-24	15,265
26	2023-01-25	38,329
27	2023-01-26	24,340
28	2023-01-27	40,221
29	2023-01-28	35,890
30	2023-01-29	38,347
31	2023-01-30	65,611
32	2023-01-31	74,828
33	2023-02-01	72,476
34	2023-02-02	70,755
35	2023-02-03	72,693
36	2023-02-04	57,939
37	2023-02-05	53,806
38	2023-02-06	81,306
39	2023-02-07	86,528

그림 2 기상자료 개방포털 기상관측 데이터

2.2 탐색적 데이터 분석

○ 결측치 및 중복값 통계

○ 주요 변수별 데이터 분포(Histogram)

○ 데이터 전처리

		Unnamed: 0	date	count		avg_temperature	avg_humidity	solar_radiation
0	0	2023-01-01		38037	-0.2	54.5	10.81	
1	1	2023-01-02		56609	-4.5	45.9	11.63	
2	2	2023-01-03		61252	-5.0	49.0	11.77	
3	3	2023-01-04		67721	-1.8	51.4	10.89	
4	4	2023-01-05		68711	-1.6	58.1	6.09	
5	5	2023-01-06		63125	0.6	71.9	8.78	
6	6	2023-01-07		42492	1.5	80.9	4.78	
7	7	2023-01-08		44620	1.3	69.3	9.37	
8	8	2023-01-09		74134	3.1	60.1	10.53	
9	9	2023-01-10		80604	1.6	59.9	11.33	

3. 데이터 학습 및 모델정의

- 3.1 예측 모델 선정
- 결정계수 비교: Ensemble 기법 중 하나인 XGBoost 모델 채택

```
# 모텔 정의
models = {
    '선형 회귀': LinearRegression(),
'랜덤 포레스트': RandomForestRegressor(random_state=42),
     'XGBoost': XGBRegressor(random_state=42)
# R-squared 점수 저장
r2 scores = {}
for name, model in models.items():
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    r2 = r2_score(y_test, y_pred)
    r2_scores[name] = r2
```


XGBoost Training Process

3.2 모델학습 및 학습 시각화

○ 모델 학습

```
X = df[['avg_temperature', 'avg_humidity', 'solar_radiation']]
y = df['count']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 데이터 분할
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.3, random_state=42)
# XGBoost 모델 생성 및 학습
model = XGBRegressor(random_state=42)
model.fit(X_train, y_train)
```

○ 학습과정 시각화

```
Train RMSE
Test RMSE
                                                                                                                                                                    35000
                                                                                                                                                                    30000
                                                                                                                                                             25000
W
pit.figure(figsize=(10, 6))
plt.plot(evals_result['train']['rmse'], label='Train RMSE')
plt.plot(evals_result['test']['rmse'], label='Test RMSE')
plt.xlabel('Roosting Iterations')
plt.ylabel('RMSE')
plt.title('XGBoost Training Process')
plt.legend()
plt.gend()
 plt.figure(figsize=(10, 6))
                                                                                                                                                                    15000
 plt.grid()
 plt.show()
                                                                                                                                                                     5000
```

40000

3.3 모델 예측

○ 예측값 vs 실제값 비교

■선 그래프 비교

■ 산점도 분석

■ 잔차 분석

4. 프로토타이핑(화면)

4.1 모델 예측

○ 기상요인에 따른 공공자전거 이용건수 예측

기상정보에 따른 이용건수 예측하기

평균기온(°C)

0.00 - +

평균습도(%)

0.00 - +

일사량(MJ/m2)

0.00 - +

4.2 예측결과

○ 기상요인에 따른 공공자전거 이용건수 예측

날짜	이용건수	평균기온	상대습도	일사량
2023-01-13	20792	8.3	99.1	1,11

기상정보에 따른 이용건수 예측하기

예측하기

예상되는 공공자전거 이용 건수: 20799건