Chapter 4 – Arithmetic Functions and Some Building Blocks

Functional Blocks: Addition

- Addition Development:
 - Half-Adder (HA), a 2-input bit-wise addition functional block,
 - Full-Adder (FA), a 3-input bit-wise addition functional block,
 - Ripple Carry Adder, an iterative array to perform binary addition, and
 - Carry-Look-Ahead Adder (CLA), a hierarchical structure to improve performance.

Carry Propagation

- What is the total delay of 4-bit ripple carry adder?
 - τ_{FA} : delay of a one full adder
 - Serial connected 4 full adders are used.
 - Total delay: $4\tau_{FA}$.

$$4\tau_{\rm FA} \approx 8\tau_{\rm XOR}$$

Faster Adders

- The carry propagation technique is a limiting factor in the speed with which two numbers are added.
- Two alternatives
 - use faster gates with reduced delays
 - Increase the circuit complexity (i.e. put more gates) in such a way that the carry delay time is reduced.
- An example for the latter type of solution is carry lookahead adders
 - Two binary variables:
 - 1. $P_i = a_i \oplus b_i \underline{carry\ propagate}$
 - 2. $G_i = a_i b_i \underline{carry generate}$

Carry Lookahead Adders

- Sum and carry can be expressed in terms of P_i and G_i:
 - $S_i = P_i \oplus C_i$
- Why the names (carry propagate and generate)?
 - If G_i = 1 (both a_i = b_i = 1), then a "new" carry is generated
 - If $P_i = 1$ (either $a_i = 1$ or $b_i = 1$), then a carry coming from the previous lower bit position is propagated to the next higher bit position

4-bit Carry Lookahead Adder

- We can use the carry propagate and carry generate signals to compute carry bits used in addition operation
 - $C_0 = input$
 - $\cdot C_1 = C_0 + P_0 C_0$
 - $C_2 = G_1 + P_1C_1$ = $G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 - $C_3 = G_2 + P_2C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0)$ = $G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - $P_0 = a_0 \oplus b_0$ and $G_0 = a_0 b_0$
 - $P_1 = a_1 \oplus b_1$ and $G_1 = a_1b_1$
 - $P_2 = a_2 \oplus b_2$ and $G_2 = a_2b_2$
 - $P_3 = a_3 \oplus b_3$ and $G_3 = a_3b_3$

4-bit Carry Lookahead Circuit 1/3

4-bit Carry Lookahead Circuit 2/3

- All three carries (C_1, C_2, C_3) can be realized as two-level implementation (i.e. AND-OR)
- C₃ does not have to wait for C₂ and C₁ to propagate
- C₃ has its own circuit
- The propagations happen concurrently

4-bit Carry Lookahead Circuit 3/3

Two levels of logic

4-bit Carry Lookahead Adder

Hybrid Approach for 16-bit Adder

Representation of Negative Numbers

- In order to differ between positive and negative numbers the MSB is used.
 - If "0" positive
 - If "1" negative
- The positive numbers that can be shown by 8 bits are between 0000 0000 and 0111 1111, hence between 0 and + 127.
- 2's complement method is used for representation of negative numbers.
 - 2's complement of a positive number shows the negative of it.
- In order to find the 2's complement of a number
 - 1's complement is found: 0s are changed to 1s, 1s are changed to 0s.
 - 1 is added to 1's complement of the number.

Addition of Positive and Negative Numbers Represented By 2's Complement

Addition of Positive and Negative Numbers Represented By 2's Complement

Addition of Positive and Negative Numbers Represented By 2's Complement

- Overflow occured. The largest positive number that can be represented by 4-bits is +7. Larger numbers can not be reprsented by 4-bits.
- •The smallest negative number that can be represented by 4-bits is 8. Smaller numbers can not be represented by 4-bits.
- •The number of bits to be used in the representation of the numbers should be decided according to the boundaries of the inputs and the outputs of the operations.

16

positive

Subtraction of Numbers With Sign Bit and 2's complement

X	3	0011		0011	3
Y	<u>-1</u>	<u>-0001</u>	2's complement	+1111	+(-1)
Differe	nce 2			10010	2
			ignored		positive
X	3	0011		0011	3
Y	<u>-4</u>	<u>-0100</u>	2's complement	<u>+1100</u>	+(-4)
Differe	nce-1		_	(1)111	-1
					<u>negative</u>
X	3	0011		0011	3
Y	<u>-(-1)</u>	<u>-1111</u>	2's complement	<u>+0001</u>	<u>+1</u>
Differe	nce 4		_	0100	4

Bit and 2's complement

<u>Is the result positive?</u>

- Overflow occured. The largest positive number that can be represented by 4-bits is +7. Larger numbers can not be represented by 4-bits.
- •<u>The smallest negative number that can be represented by 4-bits is -8. Smaller numbers can not be reprsented by 4-bits.</u>
- •The number of bits to be used in the representation of the numbers should be decided according to the boundaries of the inputs and the outputs of the operations.

Subtractor

Recall how we do subtraction (2's complement)

Binary Multipliers

Two-bit multiplier

(3x4)-bit Multiplier: Method

				Уз	У2	У1	Уо	Y
			×		x_2	x_1	x_0	Х
				x ₀ y ₃	$x_0 y_2$	$x_0 y_1$	$x_0 y_0$	
			x ₁ y ₃	$x_1 y_2$	$x_1 y_1$	$x_1 y_0$		
+		х ₂ у ₃	$x_2 y_2$	$x_2 y_1$	$x_2 y_0$			
	Z ₆	Z ₅	z ₄	z ₃	z_2	z_1	z ₀	

4-bit Multiplier: Circuit

mxn-bit Multipliers

- Generalization:
- multiplier: m-bit integer
- multiplicand: n-bit integers
- m×n AND gates
- (m-1) adders
 - each adder is n-bit

Magnitude Comparator

Comparison of two integers: A and B.

- $A > B \rightarrow (1, 0, 0) = (x, y, z)$
- $A = B \rightarrow (0, 1, 0) = (x, y, z)$
- $A < B \rightarrow (0, 0, 1) = (x, y, z)$
- Example: 4-bit magnitude comparator
 - $A = (a_3, a_2, a_1, a_0)$ and $B = (b_3, b_2, b_1, b_0)$
 - **1.**(A = B) case
 - they are equal if and only if $a_i = b_i$ $0 \le i \le 3$
 - $\mathbf{t_i} = (\mathbf{a_i} \oplus \mathbf{b_i})' \qquad 0 \le \mathbf{i} \le 3$
 - $y = (A=B) = t_3 t_2 t_1 t_0$

4-bit Magnitude Comparator

2. (A > B) and (A < B) cases

- We compare the most significant bits of A and B first.
 - if $(a_3 = 1 \text{ and } b_3 = 0) \rightarrow A > B$
 - else if $(a_3 = 0 \text{ and } b_3 = 1) \rightarrow A < B$
 - else (i.e. $a_3 = b_3$) compare a_2 and b_2 .

$$x = (A>B) = a_3b_3' + t_3a_2b_2' + t_3t_2a_1b_1' + t_3t_2t_1a_0b_0'$$

$$z = (A$$

$$y = (A=B) = t_3t_2t_1t_0$$

4-bit Magnitude Comparator:

Circuit

Fig. 4-17 4-Bit Magnitude Comparator

Decoders

- A binary code of n bits
 - capable of representing 2ⁿ distinct elements of coded information
 - A decoder is a combinational circuit that converts binary information from n binary inputs to a maximum of 2ⁿ unique output lines

X	У	d_0	d_1	d_2	d_3
0	0	1	0		0
0	1		1		0
1	0	0	0	1	0
1	1	0	0	0	1

• $d_0 =$

• $d_2 =$

• $d_1 =$

• $d_3 =$

Decoder as a Building Block

 A decoder provides the 2ⁿ minterms of n input variable

- We can use a decoder and OR gates to realize any Boolean function expressed as sum of minterms
 - Any circuit with n inputs and m outputs can be realized using an n-to-2ⁿ decoder and m OR gates.

Example: Decoder as a Building Block

Full adder

- $C = xy + xz + yz = \Sigma(3, 5, 6, 7)$
- $S = x \oplus y \oplus z = \Sigma(1, 2, 4, 7)$

Encoders

- An encoder is a combinational circuit that performs the inverse operation of a decoder
 - number of inputs: 2ⁿ
 - number of outputs: n
 - the output lines generate the binary code corresponding to the input value

• Example: n = 2

d_0	d_1	d_2	d_3	×	У
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Priority Encoder

- Problem with a regular encoder:
 - only one input can be active at any given time
 - the output is undefined for the case when more than one input is active simultaneously.
- Priority encoder:
 - there is a priority among the inputs

d_0	d_1	d_2	d_3			
0		0		X	X	0
1		0		0	0	1
X	1	0	0	0	1	1
X	X		0	1	0	1
X	X	X	1	1	X 0 1 0	1

4-bit Priority Encoder

- In the truth table
 - X for input variables represents both 0 and 1.
 - Good for condensing the truth table
 - Example: $X100 \rightarrow (0100, 1100)$
 - This means d₁ has priority over d₀
 - d₃ has the highest priority
 - d₂ has the next
 - \mathbf{d}_0 has the lowest priority
 - V = ?

Maps for 4-bit Priority Encoder

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	1
01	0	1	1	1
11	0	1	1	1
10	0	1	1	1

$$-x =$$

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0

$$-y =$$

4-bit Priority Encoder: Circuit

$$-x = d_2 + d_3$$
 $-y = d_1d_2' + d_3$
 $-V = d_0 + d_1 + d_2 + d_3$
 d_2
 d_1
 d_2
 d_3
 d_4
 d_4

Multiplexers

- A combinational circuit
 - It selects binary information from one of the many input lines and directs it to a single output line.
 - Many inputs m
 - One output line
 - selection lines $n \rightarrow n = ?$
- Example: 2-to-1-line multiplexer
 - 2 input lines I₀, I₁
 - 1 output line Y
 - 1 select line S

5	У
0	I _o
1	I_1

Function Table

2-to-1-Line Multiplexer

Special Symbol

4-to-1-Line Multiplexer

- 4 input lines: I₀, I₁, I₂, I₃
- 1 output line: Y
- 2 select lines: S_1 , S_0 .

$$egin{array}{c|cccc} S_1 & S_0 & Y \\ \hline 0 & 0 & ? \\ 0 & 1 & ? \\ 1 & 0 & ? \\ 1 & 1 & ? \\ \hline \end{array}$$

$$Y = ?$$

Interpretation:

- In case $S_1 = 0$ and $S_0 = 0$, Y selects I_0
- In case $S_1 = 0$ and $S_0 = 1$, Y selects I_1
- In case $S_1 = 1$ and $S_0 = 0$, Y selects I_2
- In case $S_1 = 1$ and $S_0 = 1$, Y selects I_3

4-to-1-Line Multiplexer: Circuit

Design with Multiplexers 1/2

- Reminder: design with decoders
- Half adder

$$-C = xy = \Sigma$$
$$-S = x \oplus y = x'y + xy' = \Sigma$$

• A closer look will reveal that a multiplexer is nothing but a decoder with OR gates

Design with Multiplexers 2/2

4-to-1-line multiplexer

$$I_0$$
 I_1
 I_1
 I_2
 I_3
 I_3
 I_3
 I_3
 I_3
 I_4
 I_5
 I_5

•
$$S_1 \rightarrow X$$

•
$$S_0 \rightarrow y$$

•
$$S_1'S_0' = x'y'$$
,

•
$$S_1'S_0 = x'y$$
,

•
$$S_1S_0' = xy'$$
,

•
$$S_1S_0 = xy$$

•
$$Y = S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0' I_2 + S_1S_0 I_3.$$

•
$$Y = x'y' I_0 + x'y I_1 + xy' I_2 + xyI_3$$

Example: Design with Multiplexers

• Example: $S = \Sigma(1, 2)$

Design with Multiplexers Efficiently

- More efficient way to implement an n-variable Boolean function
 - 1. Use a multiplexer with n-1 selection inputs
 - 2. First (n-1) variables are connected to the selection inputs
 - 3. The remaining variable is connected to data inputs
- Example: $Y = \Sigma(1, 2)$

Example: Design with Multiplexers

• $F(x, y, z) = \Sigma(1, 2, 6, 7)$

•
$$\mathbf{F} = \mathbf{x'y'z} + \mathbf{x'yz'} + \mathbf{xyz'} + \mathbf{xyz}$$

•
$$Y = S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0' I_2 + S_1S_0 I_3$$

•
$$I_0 = z$$
, $I_1 = z'$, $I_2 = 0$, $I_3 = 1$.

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Example: Design with Multiplexers

$$F = x'y'z + x'yz' + xyz' + xyz$$

F = z when x = 0 and y = 0

F = z' when x = 0 and y = 1

F = 0 when x = 1 and y = 0

F = 1 when x = 1 and y = 1

Design with Multiplexers

- General procedure for n-variable Boolean function
 - $F(x_1, x_2, ..., x_n)$
- 1. The Boolean function is expressed in a truth table
- 2. The first (n-1) variables are applied to the selection inputs of the multiplexer $(x_1, x_2, ..., x_{n-1})$
- 3. For each combination of these (n-1) variables, evaluate the value of the output as a function of the last variable, x_n .
 - $0, 1, x_n, x_n'$
- 4. These values are applied to the data inputs in the proper order.

Decoder/Demultiplexer

- A demultiplexer is a combinational circuit
 - it receives information from a single line and directs it one of 2^n output lines

• It has n selection lines as to which output will get the input

Programmable Logic Devices (PLD's)

- Programmable Logic Devices are formed by AND and OR arrays. The gate arrays are programmed by using switches in order implement a special Boolean function.
- We will discuss three PLDs in this course.
 - 1. Programmable Read Only Memory (PROM)
 - 2. Programmable Logic Array (PLA)
 - 3. Programmable Array Logic (PAL)

Programmable Logic Devices

Read Only Memory (ROM)

- ROM is a device which can store binary information and keep it even when the power is cut.
- ROM contains a decoder and a fixed OR array.

Architecture of a 32x8-bit ROM

Combinational Circuit Design by Using ROM

- It is direct implementation of a Boolean function.
 - There is no need to optimize the Boolean function. It produces all the minterms.
- Reprogramme gives the chance to implement different Boolean funcions on the same device.

Design with ROM

• The truth table of the Boolean function shows the positions of the switches that are closed.

Inputs				Outputs								
I_4	I_3	I_2	I_1	I_0	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
•••				•••								
1	1	1	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Design with ROM

- X shows that there is connection. Hence X shows logic-1.
- If there is no X, then there is no connection. Hence absense of X means logic-0.

Example

- Design a circuit which calculates the square of the 3-bit input with ROM.
- We have to find the input and output bit length.
 - The input bit length is 3. The output bit length is 6. 72 = 49 = 1100012.
- We have to produce the truth table.
 - Doğruluk Tablosu:

\mathbf{X}_2	\mathbf{x}_1	\mathbf{x}_0	\mathbf{y}_5	$\mathbf{y_4}$	\mathbf{y}_3	\mathbf{y}_2	\mathbf{y}_1	$\mathbf{y_0}$
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	1	0	0	0	0	1	0	0
0	1	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	0	1
1	1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0	1

Example

- We decide that $y_0 = x_0$ and $y_1 = 0$ from the truth table.
- We need a 8×4 ROM.

Programmable Array Logic (PAL)

AND Gate Inputs Minterms I_1 I_2 I_3 10-11-12 - I_4

Design with PAL

Programmable Logic Array (PLA)

$$F1 = AB' + AC + A'BC'$$

$$F2 = (AC + BC)'$$