ECE286 Probability and Statistics

Michael Boyadjian February 2, 2020

Contents

1	Intr	roduction to Statistics and Data Analysis
	1.1	Definitions
	1.2	Set Theory
	1.3	Counting
2	Pro	bability
	2.1	Sample Spaces
	2.2	Events
	2.3	Relative Frequency
	2.4	Axioms of Probability
	2.5	Properties
	2.6	Conditional Probability
		2.6.1 Independent Events
		2.6.2 Product Rule and Multiplicative Rule
	2.7	Bayes' Rule
3	Rar	ndom Variables and Probability Distributions
	3.1	Concept of a Random Variable
	3.2	Discrete Probability Distributions
	3.3	Continuous Probability Distributions

1 Introduction to Statistics and Data Analysis

1.1 Definitions

- **Probability:** Mathematical theory that models and analyses uncertainty based on 3 fundamental axioms.
- **Statistics:** Empirical; based on data and measurements; we infer characteristics of a phenomenon

1.2 Set Theory

A set is a set of objects (or elements) represented using capital letters A, B, C, S

- Universal Set: Set of all elements or objects of interest
- Empty Set: Set without any elements, denoted \varnothing
- Compliment of a Set: $A' = \{x | x \notin A\}$
- Union of Two Sets: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Intersection of Two Sets: $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- **Disjoint Sets:** Also called mutually exclusive; A and B are disjoint iff $A \cap B = \emptyset$
- Subsets: Denoted $A \subset B$; A is a subset of B iff $x \in A \implies x \in B$

1.3 Counting

There are three different methods of counting

1. With Replacement, With Ordering

- Given n distinct objects pick one, note down its kind, and put it back
- \bullet Repeat k times
- Produces n^k possibilities
- ex. Number of 8-character passwords = 62^8

2. Without Replacement, With Ordering

- Same as previous, but no replacement
- Produces $\frac{n!}{(n-k)!}$ possibilities
- Describes number of **permutations**, denoted ${}_{n}P_{k}$
- ex. Number of 8-character passwords without repeating characters $=\frac{62!}{54!}$

3. Without Replacement, Without Ordering

- Ordering does not matter, two sequences with same objects count as the same
- Produces $\frac{n!}{k!(n-k)!}$ possibilities
- Describes number of **combinations**, denoted ${}_{n}C_{k}=\binom{n}{k}$
- ex. Number of ways to pick 5 good chips and 3 bad chips out of 90 good and 10 defective $=\binom{90}{5}\binom{10}{3}$

2 Probability

Probability theory rests on the notion of a random experiment. We don't know what the outcome will be until we actually run the experiment. There are three kinds of experiments:

- Designed
- Observational
- Retrospective

An experiment has a procedure and a measurement and always produces one outcome

2.1 Sample Spaces

The sample space describes the set of all possible outcomes (S). There are three different kinds of sample spaces

- Finite \rightarrow discrete
- Countably Infinite \rightarrow discrete
- Continuous

2.2 Events

An event is the set of outcomes we are interested in. This must be a subset of the sample space. The **event class** is the set of all subsets of the sample space. Probabilities will be assigned to the events in ε

2.3 Relative Frequency

We want to assign probabilities consistent with the idea of relative frequency, which is defined as

$$\lim_{n \to \infty} \frac{n_A}{n} = p_A$$

This is only useful to model the likelihood of events occurring, so probabilities are assigned using probability axioms

2.4 Axioms of Probability

- 1. For any event $A, P(A) \ge 0$
- 2. P(S) = 1
- 3. For any two events A and B such that $P(A \cap B) = \emptyset$, then $P(A \cup B) = P(A) + P(B)$

2.5 Properties

- 1. P(A') = 1 P(A)
- 2. $P(A) \leq 1$
- 3. $P(\emptyset) = 0$
- 4. For any events A and B: $P(A \cup B) = P(A) + P(B) P(A \cap B)$

2.6 Conditional Probability

Conditional probability describes the probability of some event B occurring given an event A has occurred. This is denoted as P(B|A), which is read as "the probability of B given A".

A conditional probability relative to a subspace A of S may also be calculated directly from the probabilities assigned to the elements of the original sample space S

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

2.6.1 Independent Events

Two events are said to be independent if and only if

$$P(B|A) = P(B)$$
 or $P(A|B) = P(A)$

A and B are otherwise dependent

2.6.2 Product Rule and Multiplicative Rule

If in an experiment, both events A and B can occur, then

$$P(A \cap B) = P(A)P(B|A)$$

We can use this to find another expression for the independence of events. Two events A and B are independent if and only if

$$P(A \cap B) = P(A)P(B)$$

This multiplicative rule can be extended to more than just two-event situations. If, in an experiment, the events $A_1, A_2, \dots A_k$ occur, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdots P(A_k|A_1 \cap A_2 \cap \cdots \cap A_{k-1})$$

If these events are independent, then

$$P(A_1 \cap A_2 \cap \cdots \cap A_k) = P(A_1)P(A_2)P(A_3)\cdots P(A_k)$$

2.7 Bayes' Rule

Bayes' Rule tells us the following. If the events B_1 , B_2 , . . . , B_k constitute a partition of the sample space S such that $P(B_i) \neq 0$ for i=1,2,...,k, then for any event A in S such that $P(A) \neq 0$,

$$P(B_r|A) = \frac{P(B_r \cap A)}{\sum_{i=1}^k P(B_i \cap A)} = \frac{P(B_r)P(A|B_r)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$

3 Random Variables and Probability Distributions

3.1 Concept of a Random Variable

A random variable is a function that associates a real number with each element in the sample space. This allows us to do math on a random experiment and map outcomes to the real line. We can classify a sample space of random variables in two ways:

- **Discrete Sample Space:** Contains a finite number of possibilities or an unending sequence with as many elements as there are whole numbers
- Continuous Sample Space: Contains an infinite number of possibilities equal to the number of points on a line segment

3.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability. The set of ordered pairs (x, f(x)) is a **probability function**, **probability mass function**, or **probability distribution** of the discrete random variable X if, for each possible outcome x

- 1. $f(x) \ge 0$
- 2. $\sum_{x} f(x) = 1$
- 3. P(X = x) = f(x)

In cases where we want to determine the probability that the observed value X is less than or equal to some real x, we can use what is called the **cumulative distribution function**. F(x) of a discrete random variable X with probability distribution f(x) is

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
 for $-\infty < x < \infty$

3.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assuming exactly any of its values, so we are unable to give its probability distribution in tabular form. In dealing with continuous distributions, note the following:

$$P(a < x < b) = P(a < x < b) + P(x = b) = P(a < x < b)$$

This tells us that we do not need to include an endpoint of the interval if X is continuous. We can define a probability density function for a continuous random variable X. The function f(x) is a **probability density function** for the continuous random variable X, defined over the set of real numbers, if

1.
$$f(x) \geq 0$$
, for all $x \in R$

$$2. \int_{-\infty}^{\infty} f(x)dx = 1$$

3.
$$P(a < x < b) = \int_{a}^{b} f(x)dx$$

Similar to discrete distributions, we can also define a probability distribution function to determine the probability that the observed value X is less than or equal to some real x. The **cumulative** distribution function F(x) of a continuous random variable X with density f(x) is

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
 for $-\infty < x < \infty$