Consider a machine with 64 MB physical memory and a 32 bit virtual address space. If the page size is 4 KB, what is the approximate size of the page table?

Given- Size of main memory = 64 MB

- Number of bits in virtual address space = 32 bits
- Page size = 4 KB
- We will consider that the memory is byte addressable.

Number of Bits in Physical Address

If size of main memory = 2^X Bytes, then

number of bits in physical address = X bits

Size of main memory = $64 \text{ MB} = 2^26 \text{ Bytes}$

Thus, Number of bits in physical address = 26 bits

Number of Frames in Main Memory

If number of frames in main memory = 2^X , then number of bits in frame number = X bits

Number of frames in main memory

- = Size of main memory / Frame size
- = 64 MB / 4 KB
- $= 2^26 B / 2^12 B$
- $= 2^14$

Thus, Number of bits in frame number = 14 bits

Number of Bits in Page Offset

We have, Page size = $4 \text{ KB} = 2^12 \text{ B}$

Thus, Number of bits in page offset = 12 bits

So, Physical address is-

Physical Address

Process Size-

If process size = 2^X bytes, then number of bits in virtual address space = X bits

Number of bits in virtual address space = 32 bits

Thus,

Process size

$$=2^{32}$$
 Bytes

$$=4 \text{ GB}$$

Number of Entries in Page Table-

Number of pages the process is divided

- = Process size / Page size
- = 4 GB / 4 KB
- = 2²⁰ pages

Page Table Size-

Page table size

- = Number of entries in page table x Page table entry size
- = Number of entries in page table x Number of bits in frame number

$$= 2^{20} \times 14 \text{ bits}$$

=
$$2^{20}$$
 x 16 bits (Approximating 14 bits \approx 16 bits)

$$= 2^{20} \times 2$$
 bytes

$$= 2 MB$$