МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ ЗАДАНИЯ № 4

Исходные данные

- 1. Тип архитектуры ВС ВС с локальной памятью и индивидуальными ВЗУ.
- 2. Параметры задач, поступающих на решение в систему.

		Характеристики задач по вариантам									
Ном	•	Номер	Интенсивно сть	Номер	Интенсивно сть	Номер	Интенсивно сть	Номер	Интенсивно сть	Номер	Интенсивно сть
23		3	0,40	18	0,20	16	0,15	8	0,05	11	0,35

Номер	Трудоемкость	Среднее число обращений к файлам в процессе									
задачи	процессорных	исполнения задачи (N_{ij})									
	операций	Номера файлов									
	[Тфлоп]	1	2	3	4	5	6	7	8	9	10
3	300	-	-	20	-	10	-	-	-	-	4
8	800	-	24	12	-	16	-	-	4	-	4
11	100	24	-	16	20	-	-	-	4	4	2
16	600	-	30	50	12	8	-	6	-	4	-
18	800	40	-	50	-	24	-	-	-	8	2

Номера	Объем файла	Средняя длина	Вывод файла из	
файлов	[Тбайт]	записи	системы в	
		[Кбайт]	качестве файла	
			данных	
			пользователя	
F1	0.5	5	Да	
F2	1.0	8	Да	
F3	1.0	15	Нет	
F4	1.5	6	Да	
F5	1.5	14	Нет	
F7	2.5	10	Да	
F8	3.0	15	Нет	

F9	2.5	10	Да
F10	4.0	20	Нет

3. Параметры накопителей внешней памяти

Сред	цнее	Скорость	передачи	Емкост	Ъ	
время д	оступа	данных	в ПДП	накопи	теля	Число
к дан	ным	режиме []	Гбайт/с]	[[[байт]	каналов в
НМЛ	НМД	НМЛ	НМД	НМЛ	НМД	контроллере
[млс]	[мкс]					пдп взу
2,0	0,07	80	180	1150	320	4

Соответственно данным задания вариант организации ВЗУ вычислительного модуля проектируемой системы показан на рис. 2.

Рис. 2. Структурная организация по заданию подсистем ВЗУ.

4. Характеристики процессоров и памяти

Быстродейств	Емкость	Скорост	Скорость	Емкость ОЗУ	Скорост	Емкость ОЗУ
ие процессора	процессорн	ь	доступа	вычислительн	ь	вычислительн
вычислительн	ой	доступа	процессора к	ого модуля	доступа	ого модуля
ого модуля	кэш-	к кэш-	ОЗУ	[Гбайт]	процессо	[Гбайт]
[Тфлоп/с]	памяти	памяти	вычислительн		ра к ОЗУ	
	[Гбайт]	процессо	ого модуля		памяти	
		ра [нс]	[нс]		системы	
					[нс]	
0.4	0.1	5	12	2	40	20

Соответственно данным задания вариант организации вычислительного модуля проектируемой системы показан на рис. 3.

Рис. 3. Структурная организация вычислительного модуля

ЭТАПЫ ПРОЕКТИРОВАНИЯ МНОГОПРОЦЕССОРНОЙ СИСТЕМЫ

В результате анализа исходных данных по варианту задания уже возможно представить общую структуру системы.

Относительно рассматриваемого варианта это система с локальной памятью и индивидуальными ВЗУ (рис. 4), в состав которой входят два типа ВЗУ и вычислительные модули с соответствующей организацией. Можно выделить следующие особенности архитектурного решения проектируемой системы.

- 1. По условиям задания данная система не имеет общей оперативной памяти оперативная память системы организована на уровне индивидуальной памяти вычислительных модулей и соответственно распределена по модулям.
- 2. Внешняя память организована также как распределенная память каждый вычислительный модуль имеет индивидуальные подсистемы ВЗУ, а общедоступная система ВЗУ отсутствует.
- 3. Каждое ВЗУ имеет быстродействующий контроллер ПДП для выполнения операций ввода-вывода. Каждая операция ввода-вывода в подсистемах ВЗУ обеспечивает передачу блока данных, по емкости равного средней длине записи соответствующего файла (см. табл. 3 задания).
- 4. Каждый вычислительный модуль имеет индивидуальные кэш-память и ЩЗУ соответствующей по заданию емкости.
- 5. Организацию системных интерфейсов предлагается выбрать самостоятельно.
- 6. Исходные файлы данных и программ первоначально размещены в подсистемах ВЗУ вычислительных блоков. Размещение файлов по подсистемам ВЗУ выполняется самостоятельно.
- 7. Подсистема внешнего системного ввода-вывода файлов, указанных по заданию, выбирается самостоятельно на уровне расчета ее технических характеристик.

Исходя их перечисленных особенностей и выбрана общая структура системы для рассматриваемого варианта архитектуры системы. Для уточнения организации системы необходимо определить количество вычислительных блоков, количество накопителей в системах внешней памяти, рассчитать характеристики функциональных узлов и подсистем, которые введены в состав системы самостоятельно. Для решения поставленной задачи необходимо исходя из известных данных уточнить поставленные вопросы.

1. Разработка структурной электрической схемы многопроцессорной системы. Режим оперативной обработки данных.

1.1. Определение параметров средней задачи

При использовании в качестве математических моделей систем оперативной обработки (СОО) аппарата стохастических сетей систем массового обслуживания (СМО) оперируют с однородным входным потоком задач $\{Z_i\}$.

При неоднородном потоке задач на входе моделируемой системы предварительно выполняется определение усредненных параметров входного потока. Такой усредненный поток рассматривается в дальнейшем как однородный поток, а его параметры являются характеристиками «средней задачи», решаемой в моделируемой системе. В качестве характеристик «средней задачи» при проектировании и моделировании функционирования систем определяются следующие данные.

Рис. 4. Укрупненная структурная схем системы.

1) Интенсивность входного потока запросов на решение средней задачи:

$$\lambda_{\tilde{n}\tilde{o}} = \sum_{i=1}^{M} \lambda_i , \qquad (1)$$

где λ_i - интенсивность поступления потока запросов на решение i- й задачи в системе ; M - число потоков задач, поступающих на вход системы.

2) Средняя трудоемкость процессорных операций при одном обращении к файлу при решении средней задачи:

$$\theta = \sum_{i=1}^{M} \lambda_i \theta_i \,, \tag{2}$$

где θ_i - количество процессорных операций при решении i- го потока задач.

3) Среднее число обращений к файлу F_i , определяемое как

$$D_{j} = \sum_{i=1}^{M} \lambda_{i} N_{ij} \qquad , \tag{3}$$

где N_{ii} - число обращений к файлу F_{i} при решении i-го потока задач;

4) Суммарное число обращений к файлам в процессе решения средней задачи равно количеству этапов счета и определяется как:

$$D = \sum_{j=1}^{N} D_j , \quad (j=1,...,N),$$
 (4)

N – количество файлов данных и программ.

5) Вероятности использования файлов F_i при решении средней задачи определяются как

$$P_i = D_i / D$$
 $(j=1,...,N)$ (5)

6) Средняя трудоемкость этапа счета при решении средней задачи определяется как

$$\theta_{\tilde{n}\tilde{a}} = \theta/(D), \tag{6}$$

где D – число этапов счета, выполняемых при решении средней задачи.

Подставляя исходные данные по варианту задания на курсовое проектирование в выражения (1) - (6) определяются параметры средней задачи — параметры усредненного потока решаемых в системе задач.

1.2. Определение количества вычислительных модулей системы

Предварительно следует определить необходимую для решения средней задачи производительность процессорной части системы $V_{\it np}$.

Для нормального функционирования системы необходимо, чтобы система устойчиво работала в стационарном режиме. Одним из условий существования стационарного режима в системе является условие работы в стационарном режиме сетевой модели вычислительного блока системы. Это условие определяется выражением:

$$\lambda_{ii} \nu_{ii} < 1$$
,

где λ_{ii} - интенсивность потока запросов при решении средней задачи на входе вычислительного блока системы,

 $\upsilon_{i\delta}$ - длительность или среднее время обслуживания одного запроса в вычислительном блоке системы.

Рассматривая величину D как коэффициент передачи для СМО, отображающей вычислительный блок системы, можно определить интенсивность потока заявок на обслуживание к блоку :

$$\lambda_{i\delta} = \lambda_{i\delta} D$$
.

Среднее время обслуживания в процессорной части системы равна средней продолжительности этапа счета, которую можно определить по выражению:

$$v_{i\delta} = \theta_{i\delta} / V_{i\delta}$$

где $V_{\scriptscriptstyle np}$ - производительность процессорной части системы.

Таким образом, условие существования стационарного режима определяется отношениями

$$(\lambda_{\tilde{n}\tilde{\delta}}\theta_{\tilde{n}\tilde{\delta}}D)/V_{\tilde{n}\tilde{\delta}} < 1$$
 ,

а минимальная производительность процессорной части, обеспечивающее существование стационарного режима, равна

$$V_{i\delta \min} = \lambda \quad \theta.$$

В итоге количество процессоров, которые необходимо использовать для вычислений в режиме оперативной обработки определяется по формуле:

$$m_{ID} = \frac{V_{i\delta}}{V_{ii}},$$

где

 $V_{M\!\Pi} = 1/t_{on}$ - среднее быстродействие микропроцессора заданного по исходными данными, t_{on} - среднее время выполнения операций в микропроцессоре.

В общем случае

$$t_{on} = \frac{\sum_{i=1}^{N} k_i * t_i}{N},$$

где

 k_i - число операций i-го типа в задаче;

 t_i - время выполнения операции i-го типа;

N – общее число операций различного типа.

При определении t_{on} необходимо исходить из условия, что в решаемых задачах в среднем 50% посылочных операций, 15% арифметических, 15% логических, 10% операций передачи управления, 10% операций ввода-вывода.

1.3. Определение количества накопителей ВЗУ

Этот этап заключается в количественной оценке возможности размещения каждого файла из множества $\{F_j\}$ в накопителях ВЗУ различного типа, включенных в состав системы.

Определение количества накопителей в ВЗУ выполняется исходя из их емкости для размещения файлов данных и программ по заданию и с учетом требования - количество накопителей в системе должно быть минимальным.

Например, для размещения заданных файлов данных в НМЛ достаточно выполнить условие - емкость накопителя, используемого в системе, не меньше суммарной величины размещаемых в накопителе файлов, т.е.

$$m_{l\ddot{E}} > (\sum_{l\ddot{E}}^{\hat{E}} G_j)/G,$$

где

 G_i - величина размещаемого файла,

G – емкость НМЛ.

Аналогично выбирается и количество накопителей на МД.

1.4. Уточнение структурной электрической схемы многопроцессорной системы.

Пусть по результатам расчетов в п.п. 1.1.-1.3. определено, что для успешной работы системы в ее составе необходимо иметь:

- 7000 процессорных блоков с производительностью 0.4 Тфлоп/с;
- 20 накопителей на МЛ или 60 накопителей на МД;
- общий объем обрабатываемых файлов составляет 20 Тбайт;
- общий объем ОЗУ системы составляет 14 Тбайт

Для балансировки нагрузки в функциональных узлах системы целесообразно организовать из однотипных накопителей две подсистемы ВЗУ : подсистему ВЗУ на НМЛ и подсистему ВЗУ на НМД.

Структурные схемы подсистем ВЗУ на НМЛ и ВЗУ на НМД приведены на рис. 5 и рис. 6 соответственно.

При конструировании ВЗУ на НМЛ использовано 4 контроллера ПДП, 16 накопителей на МЛ, емкость подсистемы составляет 16 Тбайт.

ВЗУ на НМД содержит 3 контроллера ПДП и 12 накопителей на МД, емкость подсистемы составляет 4 Тбайта.

Рис. 5. Структурная организация ВЗУ НМЛ на базе вычислительного модуля.

Рис. 6. Структурная организация ВЗУ НМД на базе вычислительного модуля.

В итоге емкость подсистем внешней памяти составляет 20 Тбайт. Подсистемы спроектированы на базе заданных типов вычислительных модулей, на которые возлагаются функции процессоров баз данных.

При организации вычислений в системе принимается стратегия синхронных вычислений в исполнительных вычислительных модулях. В связи с тем, что используются выделенные вычислительные блоки с функциями баз данных, во-первых, нет необходимости вводить в состав исполнительных модулей подсистемы ВЗУ.

Во вторых, исполнительные вычислители являются однотипными модулями со следующей структурной организацией (рис. 7).

Исходя из принятой концепции построения системы блочно-структурная организация системы приведена на рис. 8., где

ПВЗУ НМЛ – подсистема внешней памяти на магнитных лентах;

ПВЗУ НМД – подсистема внешней памяти на магнитных дисках;

УВМ – выделенный управляющий вычислительный модуль;

БВМ — блок исполнительных вычислительных модулей, работающих в синхронном режиме вычислений; количество исполнительных вычислительных модулей — 7000;

ПВВВ – подсистема внешнего ввода-вывода, обеспечивающая взаимодействие системы с терминалами пользователей системы;

СШВВВ – системная шина внешнего ввода-вывода данных;

СШМО – системная шина межпроцессорных обменов между вычислительными модулями системы.

Рис. 7. Структурная организация исполнительного модуля системы.

Рис. 8. Блочно-структурная схема многопроцессорной системы.

1.5. Разработка модели Маркова вычислительного процесса

Концептуально принимается следующая организация вычислительного процесса в многопроцессорной системе с разработанной структурой.

- 1. Запросы на обслуживания формируются с терминалов пользователей с интенсивностью, заданной по варианту задания.
- 2. Каждый запрос исполняется по схеме, аналогичной приведенной на рис.1, включает этапы процессорного счета, обращения к файлам данных и программ, вывод результатов счета на терминалы пользователей.
- 3. Запросы пользователей рассматриваются интегрировано характеризуются параметрами средней задачи.
- 4. Каждый запрос на обслуживание первоначально вводится в УВМ, который и определяет порядок использования ресурсов системы для результативного исполнения запроса.
- 5. Первично файлы данных и программ, необходимых для исполнения запроса, размещены в накопителях подсистем ВЗУ.
- 6. При поступлении в УВМ запроса на обслуживание УВМ инициирует загрузку в оперативную память данных исполнительных вычислительных модулей (БВМ) данных и программ из подсистем внешней памяти вычислительных модулей, на базе которых спроектированы ВЗУ НМЛ и ВЗУ НМД. Так емкость оперативной памяти модулей БВМ не позволяет загрузить весь необходимый объем данных, то следует реализовать механизм свопинга.
- 7. Результаты расчетов из исполнительных модулей БВМ выводятся на пользовательские терминалы непосредственно из модулей БВМ.

Исходя из рассмотренной концепции для создания Марковской модели вычислительного процесса можно выделить следующие состояния процесса:

 $S_{\ 0}$: Начальное состояние — формирования потоков запросов на обслуживание пользователями;

S _{ПВВВ} : Прием ПВВВ запросов пользователей на обслуживание и передача этих запросов на СШВВВ; Прием ПВВВ запросов на обслуживание операции ввода-вывода данных из СШВВВ;

 S_{CIIIBB} : Передача запросов СШВВВ адресатам — УВИ, БВМ, ПВВВ, ПВЗУ НМЛ и НМД;

S _{УВМ} : Прием запроса на обслуживание УВМ и выдача запроса на обслуживание адресату;

S _{БВМ} : Прием данных в оперативную память модулей БВМ, выполнение вычислительных операций, формирование запросов на обслуживание адресатам и передача данных из БВМ на СШВВВ;

S _{СШМО} : Прием и передача данных между взаимодействующими вычислительными модулями;

S к: Финальное состояние – завершение процедуры обслуживания.

Граф Маркова, представляющий организацию вычислительного процесса в многопроцессорной системе, показан на рис. 9.

Рис. 9. Граф-схема организации вычислительного процесса

Исходя из принятой организации вычислительного процесса и известным по заданию характеристикам задач и устройств далее рассчитываются интенсивности запросов на обслуживание на входах и выходах функциональных подсистем системы. Далее определяются длительности ожидания запросов на обслуживания и длительности обслуживания запросов в функциональных подсистемах в зависимости от выбранных дисциплин обслуживания.

1.6. Расчет характеристик функциональных подсистем многопроцессорной системы.

Расчет характеристик функциональных подсистем многопроцессорной системы выполняется для неопределенных в задании подсистем на основе известного выражения :

$$\lambda \upsilon \leq 1$$
.

Отсюда, например, длительность обслуживания запросов СШМО определяется по выражению

$$\nu_{\tilde{N}\partial\tilde{H}} \leq 1/\lambda_{\tilde{N}\partial\tilde{H}}$$
,

где значение $\lambda_{\tilde{N}Oll}$ определяется расчетами Марковской модели организации вычислительного процесса.

Аналогично определяются и характеристики всех других функциональных подсистем и узлов, введенные в состав системы при ее проектировании.

Для оценки работы исполнительного модуля системы и определения характеристик введенного в него оборудования следует отдельно построить марковскую модель работы отдельного модуля исходя из того, что в его оперативную память введены данные для выполнения вычислительной работы на этапе загрузки системы.

Вариант модели работы вычислительного модуля для рассматриваемого варианта показана на рис. 10., где введены следующие состояния процесса.

 S_0 : Начальное состояние — формирования потоков запросов на обслуживание на входе процессора;

S _{КВВВ} : Формирование КВВВ запросов на обслуживание и передача этих запросов на СШВВВ при выполнении операций вывода результатов расчетов; прием КВВВ запросов на выполнение операции ввода данных в ОЗУ с СШМО;

S _{СШВМ} : Передача запросов и данных с СШВМ адресатам – процессору, кэш-памяти, ЩЗУ, контроллерам внешнего ввода-вывода;

S _{ОЗУ} : Прием запросов на ввод и вывод данных с СШВМ и Контроллера кэш-памяти и их прием или передачу адресатам;

 $S_{ \ \, \mathrm{KHII}}$: Прием и передачу данных в ОЗУ , процессор или контроллер внешнего вводавывода;

 $S_{\Pi P}$: Прием данных на обработку, выполнение вычислений и выдача результатов адресатам;

S_к: Финальное состояние – завершение процедуры обслуживания.

Рис. 9. Граф-схема организации вычислительного процесса в исполнительном вычислительном модуле

Для определения характеристик блоков вычислительного модуля рассчитываются значения интенсивностей на запросов на обслуживание и определяются значения длительности обслуживания для каждого блока в соответствии с выбранной дисциплиной обслуживания.

ОФОРМЛЕНИЕ ОТЧЕТА

- 1. Исходные данные.
- 2. Разработка структурной схемы
- 3. Графическая часть отчета должна содержать:
 - Структурную схему мультипроцессорной системы.
 - Структурные схемы и аналитической модели (СМО) подсистем.
 - Графы Маркова описания вычислительного процесса.
 - Графики, иллюстрирующие работоспособность системы при варьировании значения интенсивности средней задачи.