.

Frequency should be rational multiple of pi for periodicity

$$x(n - r)$$
 -> Shift to right by r units $x(2n)$ -> Squishing by half

Linearity Checking: lite

TI: Give x(n - N), see if output is y(n - N)

Memoryless: function of x(n)

Causal: depends only on x(n), x(n - 1), etc.

Stable: BIBO

Convolution is associative only if the sequences are absolutely summable (do carefully)

TABLE 2.2 FOURIER TRANSFORM THEOREMS

Sequence	Fourier Transform	
x[n]	$X(e^{j\omega})$	
y[n]	$Y(e^{j\omega})$	
$1. \ ax[n] + by[n]$	$aX(e^{j\omega}) + bY(e^{j\omega})$	
2. $x[n-n_d]$ (n_d an integer)	$e^{-j\omega n_d}X(e^{j\omega})$	
3. $e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$	
4. x[-n]	$X(e^{-j\omega})$ $X^*(e^{j\omega})$ if $x[n]$ real.	
$5. \ nx[n]$	$j\frac{dX\left(e^{j\omega}\right)}{d\omega}$	
6. x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$	
7. $x[n]y[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) Y(e^{j(\omega-\theta)}) d\theta$	
Parseval's theorem:		
8. $\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) ^2 d\omega$		
9. $\sum_{n=-\infty}^{\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$		

TABLE 2.3 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform
1. $\delta[n]$	1
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$
5. <i>u</i> [<i>n</i>]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$
6. $(n+1)a^nu[n]$ $(a < 1)$	$\frac{1}{(1-ae^{-j\omega})^2}$
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_c, \\ 0, & \omega_c < \omega \le \pi \end{cases}$
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 + 2\pi k)$
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty} \left[\pi e^{j\phi} \delta(\omega - \omega_0 + 2\pi k) + \pi e^{-j\phi} \delta(\omega + \omega_0 + 2\pi k)\right]$

$X(z) = sum x(n) z^-n$

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz,$$

	TRULE U. T OUNIE OUNINION ZETTIANIO OTHIN FAITO			
	Sequence	Transform	ROC	
_	1. $\delta[n]$	1	All z	
	2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1	
	3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1	
_	4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)	
	5. $a^n u[n]$	$\frac{1}{1-az^{-1}}$	z > a	
	$6a^n u[-n-1]$	$\frac{1}{1-az^{-1}}$	z < a	
_	7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a	
	$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a	
	9. $\cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1	
	10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1	
_	11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	
_	12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r	
	13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z > 0	

Difference equations: lite

Type 1: (Even fn, Odd length) No zeroes

Type 2: (Even fn, even length) Zero at z = -1

Type 3: (Odd fn, odd length) Zero at +1 and -1

Type 4: (Odd fn, even length) Zero at +1