Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение Высшего образования

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа 2 по вычислительной математике

Численное решение нелинейных уравнений и систем Вариант №13

Группа: Р3216

Выполнил:

Сиразетдинов А.Н.

Проверил:

Малышева Т. А.

Оглавление

Цель работы	3
Вычислительная реализация задачи	
Решение нелинейного уравнения	
Решение системы нелинейных уравнений	
Программная реализация задачи	
Метод половинного деления	
Метод простых итераций	7
Метод секущих	
Результат работы программы	
Вывод	.11

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Вычислительная реализация задачи

Решение нелинейного уравнения

$$x^3 + 4,81x^2 - 17,37x + 5,38$$

Интервалы изоляции корней:

- 1) [-8;-7]
- 2) [0;1]
- 3) [2;3]

Для уточнения значения корней воспользуемся:

- 1) Метод хорд
- 2) Метод Ньютона
- 3) Метод простой итерации

Уточняем крайний левый корень:

Метод хорд								
N шага	а	b	Х	f(a)	f(b)	f(x)	$X_{k+1} - X_k$	
1	-8,000	-7,000	-7,247	-59,820	19,660	3,246		
2	-8,000	-7,247	-7,286	-59,820	3,246	0,490		-0,04
3	-8,000	-7,286	-7,292	-59,820	0,490	0,073		-0,01

Уточняем средний корень:

$$f'(x) = 3x^2 + 9,62x - 17,37$$

Метод ньютона								
N шага	X_k	f(x _k)	f'(x _k)	X_{k+1}	$[X_{k+1}-X_k]$			
1	0,000	5,380	-17,370	0,310		0,31		
2	0,310	0,491	-14,103	0,345		0,03		
3	0,345	0,007	-13,699	0,345		0,00		

Уточняем крайний правый корень:

$$f'(x) = 3x^{2} + 9,62x - 17,37$$

$$f'(2) = 13,87$$

$$f'(3) = 38,49$$

$$\lambda = -\frac{1}{38,49} = -0,026$$

$$x = x - 0,026(x^{3} + 4,81x^{2} - 17,37x + 5,38)$$

$$\varphi(x) = -0,026x^{3} - 0,125x^{2} + 1,452x - 0,14$$

Условие сходимости:

$$\varphi'(x) = -0.078x^2 - 0.25x + 1.452$$
$$\varphi(2) = 0.64$$
$$\varphi(3) = 0$$

Условие сходимости выполняется

Метод простой итерации								
N шага	Х	X _{k+1}	f(x _k +1)	$[X_{k+1}-X_k]$				
1	2,000	2,056	-1,309		0,06			
2	2,056	2,091	-0,768		0,03			
3	2,091	2,112	-0,432		0,02			
4	2,112	2,124	-0,231		0,01			

Решение системы нелинейных уравнений

Решение уравнений находится в области

$$\begin{cases} 1 < x < 1,5 \\ -0,5 < y < 0 \end{cases}$$

Выразим $\varphi(x)$

$$\begin{cases} x = 1 - \frac{1}{2}siny \\ y = 0.7 - cos(x - 1) \end{cases}$$

Проверяем условие сходимости

$$\frac{\partial \varphi_1}{x} = 0 \qquad \qquad \frac{\partial \varphi_1}{y} = -\frac{1}{2}\cos y$$

$$\frac{\partial \varphi_2}{x} = \sin(x - 1) \qquad \frac{\partial \varphi_2}{y} = 0$$

$$|-\frac{1}{2}cosy| < 0.5$$

$$|sin(x-1)| < 0.5$$

$$\max(0.5; 0.5) = 0.5 < 1 => Процесс сходящийся$$

Начальное приближение: x = 1, y = -0.5

Метод итераций								
N шага	x_k	y_k	x_k+1	y+k+1	x_k+1 - x_k]	y_k+1 - y_k]		
1	1,000	-0,500	1,240	-0,300	0,24	0,20		
2	1,240	-0,300	1,148	-0,271	0,09	0,03		
3	1,148	-0,271	1,134	-0,289	0,01	0,02		
4	1,134	-0,289	1,143	-0,291	0,01	0,00		

Программная реализация задачи

Метод половинного деления

Метод простых итераций

```
f_der_right = scipy.misc.derivative(f, self.right, dx=1e-6)
lambda_var = 1 / max(f_der_left, f_der_right)
if f_der_right > 0 and f_der_left > 0:
   lambda_var = - 1 * lambda_var
phi = lambda x: x + lambda_var * f(x)
phi_der = lambda x: scipy.misc.derivative(phi, x, dx=1e-6)
if phi_der(self.left) >= 1 or phi_der(self.right) >= 1:
print(f"{phi_der(self.left)=} \n{phi_der(self.right)=}")
x = phi(x_prev)
while numpy.abs(f(x)) > self.accuracy and iter_count < self.max_iter_count and x < self.right:
   x_prev = x
   x = phi(x_prev)
table.add_row(list(map(lambda i: round(i, self.symbols_after_dot),
                       [iter_count, x_prev, x, f(x), numpy.abs(x_prev - x)])))
print(table)
print(f"Найденный корень: {round(x, self.symbols_after_dot)}")
print(f"Значение функции: {f(x)}")
```

Метод секущих

Метод Ньютона для систем нелинейных уравнений

Результат работы программы

```
Выберите уравнение:

0: x^3 + 4.81x^2 - 17.37x + 5.38

1: x^3 - 1.89x^2 - 2x + 1.76

2: \sin{x} + 0.02x^2 - 1

3: \sqrt{x} - 0.05x^3 + 0.5x^2 - 5

Вы хотите ввести данные из файла? [y/n] n
Введите левую границу -10
Введите правую границу -1
Введите точность 0.001
Выберите метод:

0: половинного деления

1: секущих

2: простых итераций
```


Вывод

В ходе работы были изучены численные методы решения нелинейных уравнений и систем нелинейных уравнений. В результате работы были найдены корни заданных уравнений и систем с использованием различных численных методов, а также были построены графики функций и были написана программа для автоматического нахождения корней в заданной области