Algorithm Boosting Sequential weak learners Adaboost Strong Onderfitting

Ship bias - Training Data Acc Jul 40/2

Ship bias - Training Data Acc Jul 40/2

Ship bias - Test Data Acc Jul 40/2 Stump - Decision tree is whit to one level or one split Aim

High Bias To low Boy

Low/High Var To, low Varion & Weak learners -> Weak learners are added sequentially. In cose of Random Forest -> Majority Voting Classifier (Classification)

Anerage of of p (Regression) Adabost -> Weak leavners -> Add the off of Weak leavners with some weights assigned to it. 20 Datapoints 100 data points have wrongly along with some other pundicted. will go to it-F= x(M) + x2(M2) + x3(M3) + + x5(M3)

	DATE RANKA MAGE
3 1/2 3 1/2 3 1/2	weight is TPP importance of model is two high wet. is -ve the needed is not doing anything.
9	M, M, Mg Mn -> Weak learners d, d2, d3 d2 -> Weights
	Calaby Credit Approval Wt. O Greate Decision Tree Strong 2=50k B No 1/2 (Sabry) 2=50k G Yes 1/2 (Sabry) 550k G Yes 1/4 550k G Yes 1/4 50k N Yes 1/4 This includes Normal 150k N Yes 1/4 150k No 1/4 (1/4) To determine best nearly learner use
	G=Good (H(s)=P+log_P,-P-log_P 13 = Bad N=Normal - This decision tree strong is made using best one using Entropy or Gini impurity
(3)	Calculate Total Eurox We have to axign weights > Initial assigning would be 1/2 since there are total > data points Proce Split
	(res) (14ex) = nb 14ex = a wrong perediction (res) Total Error = 1
	7,

						DATE /	3th Assignment
	Balany	Credit	Approval	Weigh	to Opdate u		and not
	<=50 k	- B	No	3	70.058:0.697	0.08	0-3.08
	<=50K	G	Yes	47	0.058+0.697	0.06	0-08-0-16
1 2	<= 50/	< 9	Yes	V	0.058 + 0.697	0.08	0.16-0.24
	550 K		No	Y2	0.058	0.08	024-0.32
	250k		Yes	4	0.056	0.08	0-32-0-40
	>90K		Yes	1/2	0.349	0.50	0.40-0.90
	(= 50		No	1/7	0.058	0.08	0-90-1
					0.697	~ 1	rotom value
					Ra	rdom bing wil	1 be selected
) >	Our	aim is	to pass	fhis	wrong record	1 1 11 6	cision tree
			to tra		a with thank	some other	value can
	again		ted.) Jan)	- XX	
	also	got sele	7.00		U. E.		
		l Predesti	9 10			mlex	
*	tina						
9	T.,1	(50K, G)	+		erry of James	dempate to	
9	lesi	1				~	
•	Test	-> Q	_>()	\rightarrow \bigcirc \rightarrow	\	
-						50	
-		0 ($\frac{1}{2}$	0	00	N.	
-					<u> </u>	No	
9		Yes	Tark general	Vo	Yes	Light gail	
9			hongin	- (
2		f = x,(M)	+ X2 (M2)+	×3(M) + X4 (M4)		
0		Fa All			144	-/25)	Lesson II
20		= 0.896 /4	es)+ 0.650	(No) + 1	D- 38 (Ye1) + 0.2		
-		= 12440)	+0.85 (1	Jo)			
-		W.				yes Yes	the final
		Because	there is	u mo	ou weightag	Je on 15	0
0		eresult i	vill be	Yos.	2 2 2		

	PAGE	
	Gradient Boosting Algorithm	
	Regression pp stredicted (9-9) pole of decision tree	
	Regression of stredicted (9-9) pole of decision tree Exp. Degree Salary 9 R1 R2 9 R3 R,	4 9
	75k -25k -23 72.7 -227	
	3 Masters 70k $75k - 5k - 3$ $74.7 \rightarrow 6$ ased on	× (0·1)
	5 Master 80k 75k 5k 3 75.3 4.7	
	6 PHD 100K 75K 25K 20 77 23	
	75k Aug.	
	Almorated the books	2
Step-2	Create a Base Model	. 0
	Cook in the way the way the way the way the way the state of the	
	75K Average = 75K	
	O/P	
		-
Step-2	Compute Residuals & Error.	-
		-
Step 3-	if x; and of p. Residuals (R,)	-
	ilp oc; and op residuals (R,)	-
		-
	75% Decision True to complete depth wit	th
	Bare Model 6 1/p (xi) & Residual > (Residual)	alis
	Dependent fear	
	10 o(x; R,) (2 {2i, Ro})	-/ -
Record		
	0000	
	Olp R2 Olp -> R4	-
41143	Irredicted = 75+x(-23) x-> learning Rate	
	= 75+ 0.41x-23 X > 0 to 1	

let x = 0.1

Be is assumption & ofp of decision true. Since Dependent feature with which decision true is made is . By Bz will be close to "it. This loop will go on and on until the predicted value Reeps on decereasing and everor is coming towards o. By default ro of DT is 200. Base learner Model 2 (M.) on(hn(x)) F(x) - Loho(x) + x, (h,(x)) + x, (h2(x)) + leavining Rate $F(x) = \begin{cases} x \\ z \\ z \end{cases}$ $x = \begin{cases} x \\ z \end{cases}$ ×g boost Classifier (Extreme Gradient Boost) Dataset R2 R1 Approval Gredet Salvy 0.52 L= 50K 0-58 0.42 2:50k .0.5 0.42 0.58 G 4=50K - 0.5 >50K 0.2 G > 50K 5-5 N > 50/4 -0.5 0 17 1 = 50K

-> Sow Now Calculate similarity Grains Final Ofp -> O/p of base model log(odds) = log(p) -> log loss of logistic Regression. = log (0.5) = log 1 20 Model $O|p = \sigma \left(0 + \alpha(2)\right)$ 2 is swood Nobe as per the data point. considering & you (0 to 1). Let x = 0.1 Model ofp= 0(0.1) = 1 = 0.52 > P.T.A -> for second pt. , 0/p = 5(0+0.10.33) = 5(0.033) = 0.58 After getting is calculate Rr. then next decision tree will be based on it & Residual Rr. ofp) = o (Base learner + d, (DT,) + d, (DT,) + ... &n (DTn)

		DATE /	1 1
		PAGE	3
	Xaprost Regnessos		
	Exp Gap Salary Res 2 0/p		
	2 Yes Hok -11k 46	M. A. VA	
	2.5 Yes 46.		
	3 No 52k 1k 53-5	Y	
	4 No bok 9k 53.5		
	4.5 Yes 62k 11k		-
	Aug 51k		
	Similarity cut = 1 [Elevidual] 2	1.	
	3 pr (1-Prob)	A. O. H. W.	
	21(1.0)		
	b. of (1)		
1	Base Model		
	₩ 51k		
>	In XG boost we create binary Teres only.		
	[-11,-9,1,9,11]		
	Exp		
1	Total state allowed / all /	43	
	<= 2 >2 > Foist pt - y 2.		
	[-9,1,9,1]		
	S·W = 60.5 SW= 28.5		
)	Similarity usight = 2 (Residuals)2		
	Na de Paris		
	No. of Residuals + &	1 1012-1	
	1-5 tlypeal		
	1-5 tlyperparameter.	ALCOHOLD IN	Z 2
	SW = , 121 2 121 60.5		
333	1+1>let (1=1 2 =		

144

28.5

S-W(Right Node) = (9+1+9+11)2
4+1

