Péndulo doble

1. Introducción

Se plantea y se obtienen las ecuaciones de movimiento del sistema de doble péndulo a partir de la ecuación de Euler-Lagrante. Se describen también los modos normales de oscilación del sistema. Debido a que el sistema no tiene solución analítica se obtiene una solución numérica que se implementa en una simulación en Python.

2. Planteamiento del problema

Considere un sistema formado por dos masas colgando de cuerdas de masa despreciable y sin fricción, donde las masas están sujetas a la acción de la gravedad. Se desea describir el movimiento de ambas masas. Debido a que las posiciones de cada masa se pueden describir en función de su ángulo respecto a la normal del plano superior resultará conveniente plantear el problema en coordenadas polares. Se empezará analizando el sistema descrito en la figura 1.

Se describe al vector $\vec{r_1}$ en función de los ángulos θ_1 y θ_2 como

$$\vec{r_1} = l(sen(\theta_1)\hat{i} + cos(\theta_1)\hat{j})$$

cuya derivada es

$$\dot{\vec{r_1}} = l\dot{\theta_1}cos(\theta_1)\hat{i} - l\dot{\theta_1}sen(\theta_1)\hat{j}$$

entonces el cuadrado del módulo de $\dot{\vec{r_1}}$ queda

$$\dot{r}_{1}^{2} = l^{2} \dot{\theta}_{1}^{2} \tag{1}$$

Análogamente para $\vec{r_2}$

$$\vec{r_2} = l(sen(\theta_1) + sen(\theta_2))\hat{i} + l(cos(\theta_1) + cos(\theta_2))\hat{j}$$

Figura 1: Diagrama de cuerpo libre

Su derivada

$$\dot{\vec{r_2}} = (\dot{\theta_1} lcos(\theta_1) + \dot{\theta_2} lcos(\theta_2))\hat{i} - (\dot{\theta_1} lsin(\theta_1) + \dot{\theta_2} lsin(\theta_2))\hat{j}$$

El cuadrado de su módulo queda

$$\dot{\vec{r_2}} = l^2 [\dot{\theta_1}^2 + \dot{\theta_2}^2 + 2\dot{\theta_1}\dot{\theta_2}cos(\theta_1 - \theta_2)] \tag{2}$$

De esta manera se puede describir la energía cinética del sistema como

$$T = T_1 + T_2 = \frac{1}{2}m_1\dot{r_1} + \frac{1}{2}m_2\dot{r_2}$$
$$= \frac{1}{2}m_1l^2\dot{\theta_1}^2 + \frac{1}{2}m_2l^2[\dot{\theta_1}^2 + \dot{\theta_2}^2 + 2\dot{\theta_1}\dot{\theta_2}cos(\theta_1 - \theta_2)]$$
$$= \frac{1}{2}l^2[\dot{\theta_1}^2(m_1 + m_2) + \dot{\theta_2}^2m_2 + 2m_2\dot{\theta_1}\dot{\theta_2}]$$

Y la energía potencial se define como

$$V = V_1 + V_2 = m_1 g r_{1y} + m_2 g r_{2y} = -m_1 g l cos(\theta_1) - m_2 g l (cos(\theta_1) + cos(\theta_2))$$
$$= -g l ((m_1 + m_2) cos(\theta_1) + m_2 cos(\theta_2))$$

De estas magnitudes se obtiene el lagrangiano $\mathcal{L} = T - V$

$$\mathcal{L} = \frac{1}{2}l^{2}[\dot{\theta_{1}}^{2}(m_{1} + m_{2}) + \dot{\theta_{2}}^{2}m_{2} + 2m_{2}\dot{\theta_{1}}\dot{\theta_{2}}] + gl((m_{1} + m_{2})cos(\theta_{1}) + m_{2}cos(\theta_{2}))$$
(3)

Utilizando la ecuación de Euler-Lagrange

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_i} \right) - \frac{\partial L}{\partial \theta_i} = 0$$

se obtienen las ecuaciones de movimiento para el sistema.

Resolviendo para θ_1

$$\frac{d}{dt} \left[\frac{1}{2} l^2 (2\dot{\theta}_1(m_1 + m_2) + 2m_2\dot{\theta}_2\cos(\theta_1 - \theta_2)) \right]
= -gl(m_1 + m_2)sen(\theta_1) - m_2\dot{\theta}_1\dot{\theta}_2l^2sen(\theta_1 - \theta_2)$$

$$l^{2}\ddot{\theta}_{1}(m_{1}+m_{2}) + m_{2}l^{2}\ddot{\theta}_{2}cos(\theta_{1}-\theta_{2}) = -m_{2}l^{2}\dot{\theta}_{2}^{2}sen(\theta_{1}-\theta_{2}) -gl(m_{1}+m_{2})sen(\theta_{1})$$
(4)

Resolviendo para θ_2

$$\frac{d}{dt} \left[\frac{1}{2} l^2 (2m_2 \dot{\theta}_2 + 2m_2 \dot{\theta}_1 cos(\theta_1 - \theta_2)) \right]$$
$$= -glm_2 sen(\theta_2) + l^2 m_2 \dot{\theta}_1 \dot{\theta}_2 sen(\theta_1 - \theta_2)$$

$$l^{2}m_{2}\ddot{\theta}_{2} + l^{2}m_{2}\ddot{\theta}_{1}cos(\theta_{1} - \theta_{2}) = m_{2}l^{2}\dot{\theta}_{1}^{2}sen(\theta_{1} - \theta_{2}) -glm_{2}sen(\theta_{2})$$
(5)

Aquí se tiene un sistema de dos ecuaciones (4 y 5) y dos incógnitas θ_1 y θ_2 . Resolviendo simultáneamente las ecuaciones de movimiento quedan

$$\ddot{\theta}_1 = \frac{-g(2m_1 + m_2)\sin\theta_1 - m_2g\sin(\theta_1 - 2\theta_2) - 2\sin(\theta_1 - \theta_2)m_2(\dot{\theta}_2^2l_2 + \dot{\theta}_1^2l_1\cos(\theta_1 - \theta_2))}{l_1(2m_1 + m_2 - m_2\cos(2\theta_1 - 2\theta_2))}$$
(6)

У

$$\ddot{\theta}_2 = \frac{2\sin(\theta_1 - \theta_2)(\dot{\theta}_1^2 l_1(m_1 + m_2) + g(m_1 + m_2)\cos\theta_1 + \dot{\theta}_2^2 l_2 m_2\cos(\theta_1 - \theta_2))}{l_2(2m_1 + m_2 - m_2\cos(2\theta_1 - 2\theta_2))}$$
(7)

Figura 2: ngulo 1 respecto a tiempo

Figura 3: ngulo 2 respecto a tiempo

3. Solución numérica

Las ecuaciones (5) y (6) forman un sistema de ecuaciones diferenciales de segundo grado que no poseen solución analítica, por lo que se procederá a encontrar una solución numérica. Se utiliza el método de Runge-Kutta para resolver la velocidad y la posición de cada masa del péndulo.

A partir de las gráficas de los ángulos respecto al tiempo no se puede intuir ninguna propiedad especial del sistema, pero si se grafica la trayectoria de la m_2 se observa un comportamiento caótico.

4. Referencias

- [1] Illana, J. El significado de la relatividad. Universidad de Granada.
- [2] Einstein, Albert. On the Electrodynamics of Moving Bodies, 1905.

Figura 4: ngulo 2 respecto a tiempo