Aligners

J Fass | 21 June 2017

Definitions

Assembly:

I've found the shredded remains of an important document; put it back together!

Definitions

Alignment:

Somebody plagiarized parts of my document; where did they copy paragraphs from and where did each of the words come from?

Definitions

Mapping:

Somebody plagiarized parts of my document; where did they copy paragraphs from and where did each of the words come from?

Why align (or map)?

Why align (or map)?

<u>ATGATAGCATCGTCGGGTGTCTCAATAATAGTGCCGTATCATGCTGGTGTTATAATCGCCGCATGACATGATCAATGG</u>

CAATAA**A**AGTGCCGTATCATGCTGGTGTTA**C**AATCGCCGCA

CGTATCATGCTGGTGTTACAATCGCCGCATGACATGATCAATGG

TGTCTGCTCAATAA**A**AGTGCCGTATCATGCTGGTGTTACAATC

ATCGTCGGGTGTCTGCTCAATAAAAGTGCCGTATCATG--GGTGTTATAA

CTCAATAAGAGTGCCGTATCATG - - GGTGTTATAATCGCCGCA

GTTATAATCGCCGCATGACATGATCAATGG

To measure variation

Why align (or map)?

Timeline

"Global" and "local"

Global aligners try to align all provided sequence, end to end, both "query" and "subject / target" ...

E.g.

- Aligning two Salmonella genomes
- Aligning human and gorilla orthologous coding regions

"Global" and "local"

Local aligners try to find "hits" or chains of hits within each provided sequence ...

E.g.

- Finding mitochondrial "splinters" in nuclear chromosomes
- Finding genes that share a domain with a gene of interest

"Glocal ... ?"

Short read aligners generally assume that the *whole read* came from somewhere within the target (reference) sequence ...

... so, *global* with respect to the read, and *local* with respect to the reference.

Short Read (Non-splicing) Aligners

Li, H and Homer, N (2010) *Briefings in Bioinformatics* 11:473 "A survey of sequence alignment algorithms for next-generation sequencing"

Table 1:Popular short-read alignment software

Program	Algorithm	SOLID	Long	Gapped	PE	Q°
Bfast	hashing ref.	Yes	No	Yes	Yes	No
Bowtie	FM-index	Yes	No	No	Yes	Yes
BWA	FM-index	Yes ^d	Yes ^e	Yes	Yes	No
MAQ	hashing reads	Yes	No	Yes ^f	Yes	Yes
Mosaik	hashing ref.	Yes	Yes	Yes	Yes	No
Novoalign ^g	hashing ref.	No	No	Yes	Yes	Yes

These two were fastest, at ~7 Gbp (vs human) per CPU day ... HiSeq 2500 generated 50-100 Gbp per day (at the time)

(Fall '12-'13) ... 150-180 Gbp per day

(Summer '16) ... 600 Gbp per day

(Summer '17) ... 1-3 Tbp per day

https://www.illumina.com/systems/sequencing-platforms.html

Burrows-**W**heeler Aligners

Burrows-Wheeler Transform used in bzip2 file compression tool; FM-index (Ferragina & Manzini) allow efficient finding of substring matches within compressed text – algorithm is *sub-linear* with respect to time and storage space required for a certain set of input data (reference 'ome, essentially).

Reduced memory footprint, faster execution.

BWA

BWA is a fast gapped aligner. Long read aligners (bwasw and mem) also fast, and can perform well for 454, Ion Torrent, Sanger, and PacBio reads. BWA is actively maintained and has a strong user community.

bio-bwa.sourceforge.net

'bwa aln' (BWA "backtrack") for reads < 70 bp

'bwa bwasw'

'bwa mem' (seeds with *maximal exact matches*, extends via *Smith-Waterman*)

Bowtie

(now Bowtie 2) ... comparable to BWA. Bowtie is part of a suite of tools (Bowtie, Tophat, Cufflinks, CummeRbund) that address RNAseq experiments.

http://bowtie-bio.sourceforge.net

Written by same folks as Tophat ... so, full compatibility.

Tophat(2)

Aligns full reads to genome, to determine "coverage islands." Creates simulated spliced exons based on these islands, then aligns remaining short reads to the simulated cDNA (to find reads crossing splice junctions).

HISAT2

Improved replacement for Tophat2, using ...

STAR

Spliced Transcripts Aligned to a Reference

Aligns short reads and full length cDNA

Similar to BWA MEM algorithm, but searches uncompressed version (suffix array) of genome (faster, but more RAM required!). Claims better sensitivity and specificity than previous short read aligners, and 50x speed vs TopHat2. Requires ~27 GB RAM for human genome!

Kallisto

A pseudoaligner (mapper? see Pachter <u>blog</u> <u>post</u>) that compares read k-mers (all overlapping subsequences) to a <u>transcriptome</u> <u>de Bruijn graph (T-DBG)</u> to find transcripts compatible with the read. Also uses expectation maximization (EM) and bootrapping to determine most likely transcript and abundance uncertainty.

See *sleuth* for DGE analysis.

Salmon

Performs *quasi-mapping* (yeeesh, another term) to a set of transcripts (not genome), similar in methods to kallisto.

Edit Distance:

Mapping Quality:

```
prob. of incorrect position = 10^{-MQ/10} ... (BWA)
```

Proper Pairs:

Insert Size:

Inner Distance:

Multimappers:

Reads that align equally well to more than one reference location.

Generally, multimappers are discounted in variant detection, and often discounted (ignored) in counting applications (RNA-Seq).

Note: *multimapper "rescue"* in some algorithms.

Duplicates:

Reads or read pairs arising from the same library fragment, either during library preparation (PCR duplicates) or colony formation (optical duplicates).

Generally, duplicates are discounted in variant detection, and ignored in counting applications (RNA-Seq).

Edit distance

Mapping Quality

Proper pairs

Insert size (template length) versus "inner distance"

Multimappers

Duplicates (don't try de-duping without PE ... applies in RNA-Seq as well ... e.g. with phiX, 5k positions, but adding second read results in millions of possible fragments) ... PCR versus optical (defunct)

Splice junction inference?

Splice junction track?

Clipping. H / S. ... yes, need for SAM slides

Alignment Viewers

- IGV (Integrated Genomics Viewer)
 - www.broadinstitute.org/igv/
- BAMview, tview (in SAMtools), IGB, GenomeView, SAMscope

 UCSC Genome Browser, GBrowse

IGV

IGV

IGV

More on IGV's interface, file formats, and display can be found here:

http://www.broadinstitute.org/igv/AlignmentData

More on interpreting and customizing IGV's display can be found here:

http://www.broadinstitute.org/software/igv/interpreting_insert_size