목 차

01 두 모집단의 평균 차이에 대한 가설검정(대응표본)

02 두 모집단의 평균 차이에 대한 가설검정(독립표본)

03 두 모집단의 비율 차이에 대한 가설검정

Chapter 08 두 모집단 간의 추론

01 두 모집단의 평균 차이에 대한 가설검정(대응표본)

:: Keywords 대응표본 | 대응표본 t검정

대응표본

■ 대응표본(paired sample)

두 모집단으로부터 표본을 각각 추출할 때, 표본을 구성하는 각각의 인자가 짝을 지어 서로 연관된 표본

→ 교육, 광고, 의료 등의 분야에서 사전(ex-ante)과 사후(ex-post)를 비교하여 효과를 평가할 때 주로 사용

Ex. A제약회사

단위: kg

번호	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
복용 전	75	74	75	75	83	77	82	62	77	82	72	75	78	71	68
복용 후	73	74	76	71	76	68	75	61	68	75	70	71	71	70	67
번호	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
복용 전	76	71	54	75	77	82	74	76	70	77	82	62	77	82	68
복용 후	73	74	50	76	68	75	74	73	69	68	75	61	68	75	67

→ 체중을 조절할 수 있는 건강식품을 개발했는데, 정말 체중을 조절하는 효과가 있는지 확인해보고자 한다.

■ 가설 수립

조사의 목적이 체중 변화의 효과에 맞춰져 있으므로, 귀무가설 H_0 는 체중 변화가 없다. 대립가설 H_1 은 체중 변화가 없다.

 $H_0: \overline{X_1} - \overline{X_2} = 0 \Rightarrow$ 체중 변화가 없다.

 $H_1: \overline{X_1} - \overline{X_2} \neq 0 \Rightarrow$ 체중 변화가 있다.

■ 표본통계량과 표준오차

복용 전의 표본을 $X_{1,1}$ 복용 후의 표본을 $X_{2,1}$ 표본의 크기를 n, X_{1} 과 X_{2} 의 차이를 X_{1} - X_{2} = d_{x} 라 하면,

복용 전/후 차이의 평균은
$$\overline{d_X} = \frac{\sum (X_1 - X_2)}{n}$$

복용 전/후 차이의 분산 $s_{d_X}^2$, 표준편차 s_{d_X} , 표준오차 $s_{\overline{d_X}}$ 는

$$s_{d_X}^2 = \frac{\sum (d_X - \overline{d_X})^2}{n-1}, \ \ s_{d_X} = \sqrt{\frac{\sum (d_X - \overline{d_X})^2}{n-1}}, \ \ s_{\overline{d_X}} = \frac{s_{d_X}}{\sqrt{n}}$$

■ 표본통계량과 표준오차 계산

복용 전/후 차이의 평균, 분산, 표준편차, 표준오차를 구하면

$$\begin{split} \overline{d_X} &= \frac{(75-73)+(74-74)+\cdots+(68-67)}{30} = 3.900 \\ s_{d_X}^2 &= \frac{(2-3.9)^2+(0-3.9)^2+\cdots+(1-3.9)^2}{30-1} = 13.197 \\ s_{d_X} &= \sqrt{\frac{(2-3.9)^2+(0-3.9)^2+\cdots+(1-3.9)^2}{30-1}} = 3.633 \\ s_{\overline{d_X}} &= \frac{3.633}{\sqrt{30}} = 0.633 \end{split}$$

■ 가설검정

수립된 가설에 대한 검정은 자유도를 (n-1)로 하는 $t분포를 이용 신뢰구간 100(1-<math>\alpha$)에서의 검정통계량은 X_1-X_2 에 대해

$$t = \frac{d_X - \overline{d_X}}{s_{d_X} / \sqrt{n}} = \frac{d_X}{s_{d_X} / \sqrt{n}}$$

■ 가설검정

유의수준은 0.05이며 자유도가 29인 $t_{(29,0.025)}$ 는 2.045 그러므로 양측검정의 신뢰구간은

$$d_X - t_{\left(n-1, \frac{\alpha}{2}\right)} \cdot \frac{s_{d_X}}{\sqrt{n}} \le t \le d_X + t_{\left(n-1, \frac{\alpha}{2}\right)} \cdot \frac{s_{d_X}}{\sqrt{n}}$$

$$3.900 - 2.045 \cdot \frac{3.633}{\sqrt{30}} \le t \le 3.900 + 2.045 \cdot \frac{3.633}{\sqrt{30}}$$

$$3.900 - 2.045 \cdot 0.663 \le t \le 3.900 + 2.045 \cdot 0.663$$

$$2.544 \le t \le 5.256$$

■ 가설검정 Cont'd

95%의 신뢰구간에서 검정통계량을 구하면

$$t = \frac{d_X}{s_{d_X} / \sqrt{n}} = \frac{3.9}{0.663} = 5.880$$

5.880은 신뢰구간의 범위에 포함되지 않는다. 즉 귀무가설을 기각하고 대립가설을 채택

예제 8-1 대응표본의 가설검정

준비파일 | 8장_대응표본의 가설검정.xlsx

[표 8-1]을 바탕으로 A제약회사에서 개발한 건강식품이 체중조절에 효과가 있는지 Excel을 이용하여 검정하라. 단, 유의수준은 5%이다.

Chapter 08 두 모집단 간의 추론

02 두 모집단의 평균 차이에 대한 가설검정(독립표본)

:: Keywords 독립표본 | 독립표본 t검정

■ 독립표본(independent sample)

두 모집단으로부터 각각 추출할 때, 각 표본을 구성하는 인자가 서로 상관없는 표본

■독립표본의 모수와 통계량

■ 표본 a와 b의 분포는 분산이 같은 경우와 분산이 다른 경우로 나누어 생각

- 독립표본은 표본의 개수와 분산의 동일성 여부에 따라 다음의 네 가지 경우로 구분
 - 표본의 개수가 충분하고, 모분산이 동일한 경우
 - 표본의 개수가 충분하고, 모분산 간의 동일성을 모르는 경우
 - 표본의 개수가 충분하지 않고, 모분산이 동일한 경우
 - 표본의 개수가 충분하지 않고, 모분산 간의 동일성을 모르는 경우

■ 표본의 개수는 충분하고, 모분산이 동일한 경우

두 집단의 모평균 $\mu_{A,\mu_{B,\mu}}$ 를 비교할 때 σ_A^2, σ_B^2 을 알고 있다면,

$$\mu_A - \mu_B = \delta$$
 의 추정량은 $\overline{x_A} - \overline{x_B}$

표준화하면
$$z = \frac{(\overline{x_A} - \overline{x_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}}\,, \ N(0,1)$$

■ 표본의 개수는 충분하고, 모분산이 동일한 경우

 $\mu_A - \mu_B$ 에 대한 $100(1-\alpha)$ %의 신뢰구간은

$$(\overline{x_A} - \overline{x_B}) - z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}} \ \le \ \mu_A - \mu_B \le \ (\overline{x_A} - \overline{x_B}) + z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}$$

■ 표본의 개수는 충분하고, 모분산이 동일한 경우

가설을 수립하면

- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B \neq 0 \Rightarrow |\mu_A \mu_B| > z_{\frac{\alpha}{2}}$ 이면 H_0 기각, H_1 채택
- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B > 0 \implies \mu_A \mu_B > z_{\alpha}$ 이면 H_0 기각, H_1 채택
- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B < 0 \implies \mu_A \mu_B < -z_{\alpha}$ 이면 H_0 기각, H_1 채택

귀무가설인 $\mu_A - \mu_B = 0$ 의 가설검정을 위한 검정통계량은

$$z = \frac{(\overline{x_A} - \overline{x_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}} = \frac{(\overline{x_A} - \overline{x_B})}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}}$$

■ 표본의 개수는 충분하고, 모분산 간의 동일성을 모르는 경우

두 집단의 모평균 μ_{A} , μ_{B} 를 비교할 때 각 분산 σ_{A}^{2} , σ_{B}^{2} 을 모르는 경우

표본의 개수가 충분하다면 표본분산 s_A^2 , s_B^2 으로 분산 σ_A^2 , σ_B^2 을 대체할 수 있다.

표본의 개수가 충분히 크다는 가정하에 표본평균의 차 $\overline{x_A} - \overline{x_B}$ 에 대한 기대값과 분산은 $E(\overline{x_A} - \overline{x_B}) = E(\overline{x_A}) - E(\overline{x_B}) = \mu_A - \mu_B$

$$\begin{split} s^2(\overline{x_A} - \overline{x_B}) &= s^2(\overline{x_A}) + s^2(\overline{x_B}) - 2\operatorname{Cov}(\overline{x_A}, \ \overline{x_B}) \\ &= \frac{s_{x_A}^2}{n_A} + \frac{s_{x_B}^2}{n_B} \quad (n_A, \ n_B \geq 30) \end{split}$$

■ 표본의 개수는 충분하고, 모분산 간의 동일성을 모르는 경우

$$\mu_A - \mu_B = 0$$
의 추정량 $\overline{x_A} - \overline{x_B}$ 를 표준화하면

$$z = \frac{(\overline{x_A} - \overline{x_B})}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}}, \ N(0, 1)$$

■ 표본의 개수는 충분하고, 모분산 간의 동일성을 모르는 경우

 $\mu_A - \mu_B$ 에 대한 $100(1-\alpha)$ % 의 신뢰구간은

$$(\overline{x_A} - \overline{x_B}) - z_{\frac{\alpha}{2}} \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}} \leq \mu_A - \mu_B \leq (\overline{x_A} - \overline{x_B}) + z_{\frac{\alpha}{2}} \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$$

■ 표본의 개수는 충분하고, 모분산 간의 동일성을 모르는 경우

가설을 수립하면

- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B \neq 0 \Rightarrow |\mu_A \mu_B| > z_{\frac{\alpha}{2}}$ 이면 H_0 기각, H_1 채택
- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B > 0 \implies \mu_A \mu_B > z_{\alpha}$ 이면 H_0 기각, H_1 채택
- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B < 0 \implies \mu_A \mu_B < -z_{\alpha}$ 이면 H_0 기각, H_1 채택

귀무가설인 $\mu_A - \mu_B = 0$ 의 가설검정을 위한 검정통계량은

$$z = \frac{(\overline{x_A} - \overline{x_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{(\overline{x_A} - \overline{x_B})}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}}$$

■ 표본의 개수는 충분하지 않고, 모분산이 동일한 경우

가정: 두 모집단이 정규분포이거나 정규분포와 비슷하다.

모집단은 $N(\mu_A, \sigma_A^2)$ 과 $N(\mu_B, \sigma_B^2)$ 이며, $\sigma_A^2 = \sigma_B^2 = \sigma^2$ 이므로 두 모집단이 가지는 공통분산 σ^2 을 추정

모분산을 모르므로 표본분산으로 대체하여 $s_A^2 = s_B^2 = s^2$ 과 같이 분산이 서로 동일하다고 추정

■ 표본의 개수는 충분하지 않고, 모분산이 동일한 경우

합동 분산 추정량 (pooled variance estimator)

서로 독립적인 모집단들의 공통 분산의 불편추정량(unbiased estimator) s_n^2 으로 나타냄

$$s_p^2 = rac{\displaystyle\sum_{i=1}^k (n_i-1) \cdot s_i^2}{\displaystyle\sum_{i=1}^k (n_i-1)}$$
 $(k$: 모집단 개수, n : 표본 크기, s^2 : 표본분산)

■ 표본의 개수는 충분하지 않고, 모분산이 동일한 경우

모집단 A와 B를 대상으로 한 독립표본에 대한 검정을 다루고 있으므로, 표본 A와 표본 B의 합동 분산 추정량은

$$s_p^2 = \frac{(n_A - 1) \cdot s_A^2 + (n_B - 1) \cdot s_B^2}{(n_A - 1) + (n_B - 1)} = \frac{(n_A - 1) \cdot s_A^2 + (n_B - 1) \cdot s_B^2}{n_A + n_B - 2}$$

■ 표본의 개수는 충분하지 않고, 모분산이 동일한 경우

 $\mu_A - \mu_B$ 에 대한 $100(1-\alpha)$ %의 신뢰구간은

$$\begin{split} (\overline{x_A} - \overline{x_B}) - t_{\left(n_A + n_B - 2, \frac{\alpha}{2}\right)} s_p \sqrt{\left(\frac{1}{n_A} + \frac{1}{n_B}\right)} & \leq \mu_A - \mu_B \\ & \leq (\overline{x_A} - \overline{x_B}) + t_{\left(n_A + n_B - 2, \frac{\alpha}{2}\right)} s_p \sqrt{\left(\frac{1}{n_A} + \frac{1}{n_B}\right)} \end{split}$$

■ 표본의 개수는 충분하지 않고, 모분산이 동일한 경우

가설을 수립하면

- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B \neq 0 \Rightarrow |\mu_A \mu_B| > z_{\frac{\alpha}{2}}$ 이면 H_0 기각, H_1 채택
- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B > 0 \implies \mu_A \mu_B > z_{\alpha}$ 이면 H_0 기각, H_1 채택
- H_0 : $\mu_A \mu_B = 0$, H_1 : $\mu_A \mu_B < 0 \implies \mu_A \mu_B < -z_{\alpha}$ 이면 H_0 기각, H_1 채택

■ 표본의 개수는 충분하지 않고, 모분산이 동일한 경우

귀무가설인 $\mu_A - \mu_B = 0$ 의 가설검정을 위한 검정통계량은

$$t_{\left(n_A+n_B-2,\,\frac{\alpha}{2}\right)} = \frac{(\overline{x_A}-\overline{x_B})-(\mu_A-\mu_B)}{s_p\sqrt{\left(\frac{1}{n_A}+\frac{1}{n_B}\right)}} = \frac{(\overline{x_A}-\overline{x_B})}{s_p\sqrt{\left(\frac{1}{n_A}+\frac{1}{n_B}\right)}}$$

■ 표본의 개수는 충분하지 않고, 모분산 간의 동일성을 모르는 경우

표본평균의 차 $\overline{x_A} - \overline{x_B}$ 에 대한 기대값과 분산은

$$\begin{split} E(\overline{x_A} - \overline{x_B}) &= E(\overline{x_A}) - E(\overline{x_B}) = \mu_A - \mu_B \\ s^2(\overline{x_A} - \overline{x_B}) &= s^2(\overline{x_A}) + s^2(\overline{x_B}) - 2\operatorname{Cov}(\overline{x_A}, \overline{x_B}) = \frac{s_{x_A}^2}{n_A} + \frac{s_{x_B}^2}{n_B} \end{split}$$

■ 표본의 개수는 충분하지 않고, 모분산 간의 동일성을 모르는 경우

 $\mu_A - \mu_B$ 에 대한 $100(1-\alpha)$ %의 신뢰구간은

$$(\overline{x_A} - \overline{x_B}) - t_{\left(n_A + n_B - 2, \frac{\alpha}{2}\right)} \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}} \leq \mu_A - \mu_B$$

$$\leq (\overline{x_A} - \overline{x_B}) + t_{\left(n_A + n_B - 2, \frac{\alpha}{2}\right)} \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$$

■ 표본의 개수는 충분하지 않고, 모분산 간의 동일성을 모르는 경우

가설은 H_0 : $\mu_A - \mu_B = 0$, H_1 : $\mu_A - \mu_B \neq 0$ H_0 : $\mu_A - \mu_B = 0$, H_1 : $\mu_A - \mu_B > 0$ H_0 : $\mu_A - \mu_B = 0$, H_1 : $\mu_A - \mu_B < 0$

귀무가설인 $\mu_A - \mu_B = 0$ 의 가설검정을 위한 검정통계량은

$$t_{\binom{n_A + n_B - 2, \frac{\alpha}{2}}} = \frac{(\overline{x_A} - \overline{x_B}) - (\mu_A - \mu_B)}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} = \frac{(\overline{x_A} - \overline{x_B})}{s_p \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$

'표본의 개수가 충분하지 않고, 모분산이 동일한 경우'와 같다.

Ex. A사와 B사의 알카라인 건전지

단위: 시간

번호	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A٨	18	16	17	15	14	19	16	15	18	15	16	17	15	14	19	12	16
B사	16	15	16	14	15	18	13	15	12	17	15	16	18	12	14	15	16

→ A사와 B사의 알카라인 건전지의 작동 시간에 차이가 있는지 유의수준 5%에서 검정해보고자 한다.

■ 가설의 수립

조사의 목적이 제조사별로 알카라인 건전지의 품질 차이에 맞춰져 있으므로,

귀무가설 H_0 는 제조사별 건전지의 사용 시간에 차이가 없다. 대립가설 H_1 은 제조사별로 건전지의 사용 시간에 차이가 있다.

A사의 건전지 표본의 평균 사용 시간을 x_A B사의 건전지 표본의 평균 사용 시간을 x_B 라 하면

 $H_0: x_A = x_B \Rightarrow A$ 사와 B사의 건전지 사용 시간에 차이가 없다.

 $H_1: \overline{x_A} \neq \overline{x_B} \Rightarrow \text{A사와 B사의 건전지 사용 시간에 차이가 있다.}$

■ 표본통계량과 합동 분산 추정량

표본의 크기를 n이라 하고, $\overline{x_A}$ 과 $\overline{x_B}$ 의 차이를 $E(\overline{x_A}-\overline{x_B})=\mu_A-\mu_B$ 라 하면, σ^2 에 대한 합동 분산 추정량 s_p^2 은

$$s_p^2 = \frac{(n_A - 1)s_A^2 + (n_B - 1)s_B^2}{(n_A - 1) + (n_B - 1)}$$

■ 표본통계량과 합동 분산 추정량

$$\sigma^2(\overline{x_A}-\overline{x_B})$$
는 $s^2(\overline{x_A}-\overline{x_B})$ 이고, 이에 대한 불편 추정량은 $s^2(\overline{x_A}-\overline{x_B})=s_p^2\Big(\frac{1}{n_A}-\frac{1}{n_B}\Big)$ $\overline{x_A}=16.1,\ \overline{x_B}=15.2,\ \overline{x_B}=15.2,\ s_B^2=2.800$ 이므로 합동 분산 추정량을 구하면
$$s_p^2=\frac{(20-1)\cdot 3.253+(20-1)\cdot 2.800}{40-2}=3.026$$

이때 $s_p = \sqrt{3.026} = 1.74$ 는 s_A^2 과 s_B^2 을 각자의 자유도로 가중한 공통 분산의 불편추정량(unbiased estimator)

■ 가설검정

수립된 가설에 대한 검정은 자유도를 $(n_A + n_B - 2)$ 로 하는 t분포를 이용 검정통계량은

$$t_{\left(n_A+\,n_B-\,2,\,\frac{\alpha}{2}\right)} = \frac{(\overline{x_A}-\,\overline{x_B})}{s_p\,\sqrt{\left(\frac{1}{n_A}+\,\frac{1}{n_B}\right)}}$$

양측검정의 신뢰구간은

$$\begin{split} (\overline{x_A} - \overline{x_B}) - t_{\left(n_A + n_B - 2, \; \frac{\alpha}{2}\right)} s_p \sqrt{\left(\frac{1}{n_A} + \frac{1}{n_B}\right)} & \leq \; \mu_A - \mu_B \\ & \leq \; (\overline{x_A} - \overline{x_B}) + t_{\left(n_A + n_B - 2, \; \frac{\alpha}{2}\right)} s_p \sqrt{\left(\frac{1}{n_A} + \frac{1}{n_B}\right)} \end{split}$$

■ 가설검정

신뢰구간 95%에서의 검정통계량을 구하면

$$t_{(38,\,0.025)} = \frac{16.1 - 15.2}{1.740\, \cdot \, \sqrt{\frac{1}{20} + \frac{1}{20}}} = 1.636$$

■ 가설검정

양측검정의 신뢰구간을 구하면

$$\begin{array}{c} (16.1-15.2)-1.636\, \boldsymbol{\cdot}\, 1.740\, \boldsymbol{\cdot}\, \sqrt{\frac{1}{20}+\frac{1}{20}} \, \leq \, \mu_{A}-\mu_{B} \\ \\ \leq (16.1-15.2)+1.636\, \boldsymbol{\cdot}\, 1.740\, \boldsymbol{\cdot}\, \sqrt{\frac{1}{20}+\frac{1}{20}} \\ \\ 0 \leq \, \mu_{A}-\mu_{B} \leq 1.800 \end{array}$$

예제 8-2 독립표본의 가설검정

준비파일 | 8장_독립표본의 가설검정.xlsx

[표 8-3]을 바탕으로 A사와 B사의 알카라인 건전지의 사용 시간에 정말 차이가 있는지 Excel을 이용하여 검정하라. 단, 유의수준은 5%이다.