

Práctica 2 (35% nota final)

Presentación

En esta práctica se elabora un caso práctico orientado a aprender a identificar los datos relevantes para un proyecto analítico y usar las herramientas de integración, limpieza, validación y análisis de las mismas. Para hacer esta práctica tendréis que trabajar en grupos de 2 personas. Tendréis que entregar un solo archivo con el enlace al repositorio Git donde se encuentren las soluciones incluyendo los nombres de los componentes del equipo. Podéis utilizar la Wiki de Github para describir vuestro equipo y los diferentes archivos que corresponden a vuestra entrega. Cada miembro del equipo tendrá que contribuir con su usuario Github. Aunque no se trata del mismo enunciado, los siguientes ejemplos de ediciones anteriores os pueden servir como guía:

- Ejemplo: https://github.com/Bengis/nba-gap-cleaning
- Ejemplo complejo (archivo adjunto).

Importante: si se elige un nuevo dataset es interesante que contenga una amplia variedad de datos numéricos y categóricos para poder realizar un análisis más rico.

Competencias

En esta práctica se desarrollan las siguientes competencias del Máster de Data Science:

- Capacidad de analizar un problema en el nivel de abstracción adecuado a cada situación y aplicar las habilidades y conocimientos adquiridos para abordarlo y resolverlo.
- Capacidad para aplicar las técnicas específicas de tratamiento de datos (integración, transformación, limpieza y validación) para su posterior análisis.

Objetivos

Los objetivos concretos de esta práctica son:

 Aprender a aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios o multidisciplinares.

- Saber identificar los datos relevantes y los tratamientos necesarios (integración, limpieza y validación) para llevar a cabo un proyecto analítico.
- Aprender a analizar los datos adecuadamente para abordar la información contenida en los datos.
- Identificar la mejor representación de los resultados para aportar conclusiones sobre el problema planteado en el proceso analítico.
- Actuar con los principios éticos y legales relacionados con la manipulación de datos en función del ámbito de aplicación.
- Desarrollar las habilidades de aprendizaje que les permitan continuar estudiando de un modo que tendrá que ser en gran medida autodirigido o autónomo.
- Desarrollar la capacidad de búsqueda, gestión y uso de información y recursos en el ámbito de la ciencia de datos.

Descripción de la Práctica a realizar

El objetivo de esta actividad será el tratamiento de un dataset, que puede ser el creado en la práctica 1 o bien cualquier dataset libre disponible en Kaggle (https://www.kaggle.com). Algunos ejemplos de dataset con los que podéis trabajar son:

- Red Wine Quality (https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009)
- Titanic: Machine Learning from Disaster (https://www.kaggle.com/c/titanic)

El último ejemplo corresponde a una competición activa de Kaggle de manera que, opcionalmente, podéis aprovechar el trabajo realizado durante la práctica para entrar en esta competición.

Siguiendo las principales etapas de un proyecto analítico, las diferentes tareas a realizar (y **justificar**) son las siguientes:

- 1. Descripción del dataset. ¿Por qué es importante y qué pregunta/problema pretende responder?
- 2. Integración y selección de los datos de interés a analizar.
- 3. Limpieza de los datos.
 - 3.1. ¿Los datos contienen ceros o elementos vacíos? ¿Cómo gestionarías cada uno de estos casos?
 - 3.2. Identificación y tratamiento de valores extremos.
- 4. Análisis de los datos.
 - 4.1. Selección de los grupos de datos que se quieren analizar/comparar (planificación de los análisis a aplicar).
 - 4.2. Comprobación de la normalidad y homogeneidad de la varianza.

- 4.3. Aplicación de pruebas estadísticas para comparar los grupos de datos. En función de los datos y el objetivo del estudio, aplicar pruebas de contraste de hipótesis, correlaciones, regresiones, etc. Aplicar al menos tres métodos de análisis diferentes.
- 5. Representación de los resultados a partir de tablas y gráficas.
- 6. Resolución del problema. A partir de los resultados obtenidos, ¿cuáles son las conclusiones? ¿Los resultados permiten responder al problema?
- 7. Código: Hay que adjuntar el código, preferiblemente en R, con el que se ha realizado la limpieza, análisis y representación de los datos. Si lo preferís, también podéis trabajar en Python.

Recursos

Los siguientes recursos son de utilidad para la realización de la práctica:

- Calvo M., Subirats L., Pérez D. (2019). Introducción a la limpieza y análisis de los datos.
 Editorial UOC.
- Megan Squire (2015). Clean Data. Packt Publishing Ltd.
- Jiawei Han, Micheine Kamber, Jian Pei (2012). *Data mining: concepts and techniques*. Morgan Kaufmann.
- Jason W. Osborne (2010). *Data Cleaning Basics: Best Practices in Dealing with Extreme Scores.* Newborn and Infant Nursing Reviews; 10 (1): pp. 1527-3369.
- Peter Dalgaard (2008). *Introductory statistics with R.* Springer Science & Business Media.
- Wes McKinney (2012). Python for Data Analysis. O'Reilley Media, Inc.
- Tutorial de Github https://guides.github.com/activities/hello-world.

Criterios de valoración

Todos los apartados son obligatorios. La ponderación de los ejercicios es la siguiente:

- Los apartados 1, 2 y 6 valen 0,5 puntos.
- Los apartados 3, 5 y 7 valen 2 puntos.
- El apartado 4 vale 2,5 puntos.

Se valorará la idoneidad de las respuestas, que deberán ser claras y completas. Las diferentes etapas deberán justificarse y acompañarse del código correspondiente. También se valorará la síntesis y claridad, a través del uso de comentarios, del código resultante, así como la calidad de los datos finales analizados.

Formato y fecha de entrega

Durante la semana del 13 al 17 de diciembre el grupo podrá entregar al profesor una entrega parcial opcional. Esta entrega parcial es muy recomendable para recibir asesoramiento sobre la práctica y verificar que la dirección tomada es la correcta. Se entregarán comentarios a los estudiantes que hayan efectuado la entrega parcial pero no contará para la nota de la práctica. En la entrega parcial los estudiantes deberán entregar por correo electrónico, al profesor encargado del aula, el enlace al repositorio Github con el que hayan avanzado.

En referencia a la entrega final, se pide:

- a. **Un único documento** (.txt, .pdf, .docx) que contenga **el enlace al repositorio Git** del proyecto (apartado b) y **el enlace al vídeo del proyecto** (apartado c). Este documento se entregará en el espacio de Entrega y Registro de EC del aula.
- b. Un repositorio Git con las soluciones de la práctica. El repositorio Git se creará en Github (https://github.com/), y podrá ser un repositorio público o privado, a elección del grupo. Si se utiliza un repositorio privado, se deberá facilitar acceso al profesor, mediante el nombre de usuario que indicará en el Tablón del aula o por email. El repositorio no se podrá modificar pasada la fecha de entrega, y deberá contener:
 - 1. Una **Wiki o README.md** con los nombres de los componentes del grupo y una descripción de los ficheros.
 - 2. Un documento PDF con las respuestas a las preguntas y los nombres de los componentes del grupo. La extensión de este documento no debe superar las 20 páginas. Además, al final del documento, deberá aparecer la siguiente tabla de contribuciones al trabajo, la cual debe firmar cada integrante del grupo con sus iniciales. Las iniciales representan la confirmación de que el integrante ha participado en dicho apartado. Todos los integrantes deben participar en cada apartado, por lo que, idealmente, los apartados deberían estar firmados por todos los integrantes.

Contribuciones	Firma
Investigación previa	Integrante 1, Integrante 2,
Redacción de las respuestas	Integrante 1, Integrante 2,

Desarrollo código	Integrante 1, Integrante 2,

- 3. Una carpeta con el **código generado** para analizar los datos.
- 4. El fichero CSV con los datos originales.
- 5. El fichero CSV con los datos finales analizados.
- c. Un breve vídeo con la participación de los dos componentes del grupo, donde se realizará una presentación del proyecto, destacando los puntos más relevantes. El vídeo se deberá compartir mediante un enlace del Google Drive de la UOC o incluirse en el repositorio Git. La duración de este vídeo no debe superar los 10 minutos.

Este documento de entrega final de la Práctica 2 se debe entregar en el espacio de Entrega y Registro de AC del aula antes de las 23:59h CET del día 4 de enero del 2022. No se aceptarán entregas fuera de plazo.

Si se estima oportuno, el profesor solicitará a los integrantes del grupo una entrevista remota (de forma conjunta o individual) mediante Google Meet, en referencia a la práctica realizada, en un día y hora acordados.