Topological Spaces

October 26th, 2020

1 Topological Spaces

Definition. A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (1) \varnothing and X are in \mathcal{T}
- (1) \bowtie and Λ are m,
 (2) For any subcollection of \mathcal{T} , indexed by set I, we have: $\bigcup_{\alpha \in I} U_{\alpha} \in \mathcal{T}$ (3) For any finite subcollection of \mathcal{T} with n elements, we have: $\bigcap_{i=1}^{n} U_{i} \in \mathcal{T}$

A set for which a topology \mathcal{T} is specified is called a **topological space**. And the element of \mathcal{T} is called **Open Set**

With the element of \mathcal{T} is defined as open set, we could say a topology is a collection of subsets of X such that \emptyset and X itself are open and satisfies that arbitrary unions and finite intersections of open sets are open. We often write set X and its topology \mathcal{T} as the ordered pair: (X, \mathcal{T}) . And when we say: "Let XXX be open sets", that means we defined a topology on X and \mathcal{T} consists the subsets mentioned above.

EXAMPLE. If X is any set, the collection of all subsets of X is a topology on X, called **discrete topology**. The collection which has only \emptyset and X itself is called **trivial topology**.

EXAMPLE. Let X be a set; let \mathcal{T}_f be the collectino of all subsets U of X such that X-U is either finite or all of X. Then \mathcal{T}_f is a topology of X, called **finite complement topology**. Note that varnothing = U - U is finite and $U = U - \emptyset$, therefore we have \emptyset and U belong to \mathcal{T}_f . Let $\{U_\alpha\}$ be a subcollection of \mathcal{T} indexed by I. Then we have:

$$X - \bigcup U_{\alpha} = \bigcap (X - U_{\alpha})$$

Since each $X - U_{\alpha}$ is finite, we have $X - \bigcup U_{\alpha}$ is finite. If $U_1, ..., U_n \in \mathcal{T}_f$. Then:

$$X - \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X - U_i)$$

Since each $X_n - U_i$ is finite, the finite union of sets with finite cardinal numbers are also finite. Thus $\bigcap_{i=1}^{n} U_i \in \mathcal{T}_f$ In conclusion, \mathcal{T}_f is a topology on set X.

EXAMPLE. Let X be a set and \mathcal{T} a topology on X. If Y is a subset of U. We define the following collection:

$$\mathcal{T}_Y = \{ Y \cap U \mid U \in \mathcal{T} \}$$

It is easy to see that \mathcal{T}_Y is a topology on Y:

$$\emptyset = \emptyset \cap Y \quad Y = X \cap Y$$

If $\{V_{\alpha}\}$ is a subcollection of \mathcal{T}_{Y} , then each V_{α} could be written as $U_{\alpha} \cap Y$, we have:

$$\bigcup V_{\alpha} = \bigcup (U_{\alpha} \cap Y) = (\bigcup U_{\alpha}) \cap Y$$

Note that $\bigcup U_{\alpha}$ is in \mathcal{T} ,hence we have $\bigcup V_{\alpha} \in \mathcal{T}_{Y}$. If $V_{i} = U_{i} \cap Y$, i = 1, 2, ..., n is a finite collection of \mathcal{T}_{Y} . Then:

$$\bigcap_{i=1}^{n} V_i = \bigcap_{i=1}^{n} (U_i \cap Y) = (\bigcap_{i=1}^{n} U_i) \bigcap Y$$

Note that $\bigcap_{i=1}^{n} U_i \in \mathcal{T}$, thus we have $\bigcap_{i=1}^{n} V_i \in \mathcal{T}_Y$. The above new collection consists of the intersection of Y and open sets are called **subspace topology**, and therefore, Y is a topological space.

REMARK. It is easy to see that a set could be assigned with different topology. A typical example is the discrete topology and trivial topology of the same set X. These two topology represents different topological structure. A trivial topology looks like a steel while discrete topology is fine enough to make generate any subset of X.

Definition. Suppose \mathcal{T} and \mathcal{T}' are two topologies on a given set X. If $\mathcal{T} \subset \mathcal{T}'(\mathcal{T} \subsetneq \mathcal{T}')$, we say that \mathcal{T}' is $finer(strictly\ finner)$ than \mathcal{T} , or \mathcal{T} is $coarser(strictly\ coarser)$ than \mathcal{T}' . We say \mathcal{T} is comparable with \mathcal{T}' if either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T}' \subset \mathcal{T}$

Sometimes we also say that \mathcal{T}' is larger than \mathcal{T} or \mathcal{T} is smaller than \mathcal{T}' , but not as vivid as finer.

2 Closed Sets and Limit Point

Definition. Let (X, \mathcal{T}) be a topological space. We say a subset A of X is **closed** if X - A is open.

EXAMPLE. Let (X, \mathcal{T}) be a topological space and \mathcal{T} be the discrete topology, then any subset of X is a closed set. On the other hand, let \mathcal{T} be trivial topology, then any subset that is neither \emptyset nor X is neither open nor closed.

EXAMPLE. Let $(\mathbb{R}^2, \mathcal{T})$ be a topological space and \mathcal{T} generated by all open ball. And consider the set:

$$\{(x,y) \mid x \ge 0, y \ge 0\}$$

The set is closed as its complement is:

$$(-\infty,0)\times\mathbb{R}\cup\mathbb{R}\times(-\infty,0)$$

And each of them are open.

EXAMPLE. Let $(\mathbb{R}, \mathcal{T})$ be a topological space with topology \mathcal{T} consists of all open sets under the metric space (\mathbb{R}, d) . Consider $Y = [0, 1] \cup (2, 3)$ and the subspace topology. We claim that [0, 1] is an open set of Y, because $[0, 1] = (-1, \frac{3}{2}) \cap Y$. Similarly, (2, 3) is also open in Y. And the complement of each of them is another interval, therefore [0, 1] and (2, 3) are both open and closed.

REMARK. By these three examples, we could see that a subset of X can be open, or closed, or both, or neither. In addition, we see that a subset is open(closed) or not depends on the whole space you consider: [0,1] in EXAMPLE3 is not open in \mathbb{R} but open in Y.(2,3) is not closed in \mathbb{R} but closed in Y.

Theorem 1. Let X be a topology space. Then the following conditions hold:

- (1) \varnothing and X are closed
- (2) For any collection of closed set $\{V_{\alpha} \mid \alpha \in I\}$, we have $\bigcap_{\alpha \in I} V_{\alpha}$ is closed
- (3) The intersection of any finite many closed sets are closed.

Proof.