Reductions

Shifting Gears

- from individual problems ro problem-solving models
- from linear/quadratic to polynomial/exponential scale
- from details of implementation o conceptual framework

Introduction

Suppose we could (couldn't) solve problem X efficiently

What else could (couldn't) we solve efficiently?

Definition

- ullet Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X
- Cost of solving X = total cost of solving Y + cost pf reduction

Desiderata. Classify problems according to computational requirements.

Desiderata'.

Suppose we could (could not) solve problem *X* efficiently. What else could (could not) we solve efficiently?

- Ex 1. --- finding the median reduces to sorting
 - \circ sort N items
 - o return item in the middle
 - \circ NlogN + 1
- Ex 2. ---element distinctness reduces to sorting
 - \circ sort N items
 - check adjacent pairs for equality
 - \circ NlogN + N

Designing Algorithms

Given algorithm for Y, can also solve X

Ex

- · 3-collinear reduces to sorting.
- · Finding the median reduces to sorting.
- · Element distinctness reduces to sorting.
- · CPM reduces to topological sort. [shortest paths lecture]
- · Arbitrage reduces to shortest paths. [shortest paths lecture]
- · Burrows-Wheeler transform reduces to suffix sort. [assignment]
- ..
- Convex hull reduces to sorting---NlogN+N
- Shortest-path on edge-weighted graphs and digraphs---ElogV+E

Establishing Lower bounds

Prove that a problem requires a certin number of steps

Linear-time reductions

- Problem *X* linear-time reduces to problem *Y* if *X* can be solved with
 - Linear number of standard computational steps
 - \circ Constant number of calls to Y
- ullet Prove that two problems X and Y have the same complexity
 - \circ first, show that problem X linear-time reduces to Y
 - \circ second, show that problem Y linear-time reduces to X
 - \circ conclude that X and Y have the same complexity

Sorting and Convex Hull

Classifying Problems

Linear Arithmetic Reductions

• complexity by reduction

problem	arithmetic	order of growth
integer multiplication	$a \times b$	M(N)
integer division	a/b, a mod b	M(N)
integer square	a ²	M(N)
integer square root	L√a J	M(N)

• complexity in history

year	algorithm	order of growth
?	brute force	N ²
1962	Karatsuba-Ofman	N 1.585
1963	Toom-3, Toom-4	N 1.465 , N 1.404
1966	Toom-Cook	N 1 + 1
1971	Schönhage-Strassen	N log N log log N
2007	Fürer	N log N 2 log*N
?	?	N

Matrix Multiplication

• complexity by reduction

problem	linear algebra	order of growth
matrix multiplication	$A \times B$	MM(N)
matrix inversion	A-1	MM(N)
determinant	A	MM(N)
system of linear equations	Ax = b	MM(N)
LU decomposition	A = L U	MM(N)
least squares	$min Ax - b _2$	MM(N)

• complexity in history

year	algorithm	order of growth
?	brute force	N 3
1969	Strassen	N 2.808
1978	Pan	N 2.796
1979	Bini	N 2.780
1981	Schönhage	N 2.522
1982	Romani	N 2.517
1982	Coppersmith-Winograd	N 2.496
1986	Strassen	N 2.479
1989	Coppersmith-Winograd	N 2.376
2010	Strother	N 2.3737
2011	Williams	N 2.3727
?	?	N 2 + ε

Complexity class

set of problems sharing some computational property

Summary

Reductions are important in theory to:

- · Design algorithms.
- · Establish lower bounds.
- · Classify problems according to their computational requirements.

Reductions are important in practice to:

- · Design algorithms.
- · Design reusable software modules.
 - stacks, queues, priority queues, symbol tables, sets, graphs
 - sorting, regular expressions, Delaunay triangulation
 - MST, shortest path, maxflow, linear programming
- · Determine difficulty of your problem and choose the right tool.
 - use exact algorithm for tractable problems
 - use heuristics for intractable problems