

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

Title: Design and Implementation of Digital Circuits in Microwind

1. 4-Bit Full Adder

Circuit Diagrams:

Truth Tables: -

Α	В	Cin	Sum	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Department: - ICT

ENROLLMENT: - 92410133023

SUBJECT: - VLSI DATE: - 13-09-2025

Logic Equations: -

The sum (S) of the full-adder is the XOR of A, B, and Cin. Therefore,

$$Sum,\,S\,=\,A\,\oplus\,B\,\oplus\,C_{in}\,=\,A'B'C_{in}\,+\,A'BC'_{in}\,+\,AB'C'_{in}\,+\,ABC_{in}$$

The carry (C) of the half-adder is the AND of A and B. Therefore,

$$Carry,\,C\,=\,AB\,+\,AC_{in}\,+\,BC_{in}$$

Microwind Layout: -

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

Output:

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

2. 8×1 MultiplexerCircuit Diagrams: -

Block Diagram: -

Figure 4 - 8:1 Multiplexer

Truth Tables: - Department: - ICT

ENROLLMENT: - 92410133023

SUBJECT: - VLSI DATE: - 13-09-2025

Selection Inputs			Output	
S_2	S_1	S_0	Υ	
0	0	0	I ₀	
0	0	1	I_1	
0	1	0	I ₂	
0	1	1	I ₃	
1	0	0	I_4	
1	0	1	I ₅	
1	1	0	I ₆	
1	1	1	I ₇	

Logic Equations: -

Y = S2S1S0I0 + S2S1S0I1 + S2S1S0I2 + S2S1S0I3 + S2S1S0I4 + S2S1S0I5 + S2S1S0I6 + S2S1S0I7

Microwind Layouts: -

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

Output:

3. 1-bit Magnitude Comparator

Circuit Diagrams:

Page no.

Department: - ICT ENROLLMENT: - 92410133023

SUBJECT: - VLSI DATE: - 13-09-2025

Truth Tables: -

A	В	A <b< th=""><th>A=B</th><th>A>B</th></b<>	A=B	A>B
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

Logic Equations: -

" = (AB + A'B')

Thus,

$$((A < B) + (A > B))' = (A = B)$$

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

Microwind Layouts: -

Output:

Page no.

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

4. 4-bit Serial-In Serial-Out (SISO) Register

Circuit Diagrams: -

Truth table:

CLK	Q3	Q2	Q1	Q0
Initial (Reset)	0	0	0	0
After 1st clock pulse	1	0	0	0
After 2nd clock pulse	1	1	0	0
After 3rd clock pulse	1	1	1	0
After 4th clock pulse	1	1	1	1

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

Screenshots Of Layouts: -

Output:

Department: - ICT SUBJECT: - VLSI ENROLLMENT: - 92410133023 DATE: - 13-09-2025

lusion:

Hence Design and implement the transistor level layout 4-bit Full Adder, 8×1 Multiplexer, 1-bit Magnitude Comparator and4-bit Serial-In Serial-Out (SISO) Register using microwind.