重复输出问题探究 & ThinkEdit的看法

密言 2025.4.9

重复输出问题探究

- 使用WISE编辑模型时, 非常容易出现重复输出的问题
- 并且相似的问题会混淆回答(且重复)

```
"prompt": "who won the men's ice
skating 2018?",
"target_new": "Yuzuru Hanyu",

"rewrite_gen_content": "Terry
Gannon Gannon is an American
sportscaster and Yuz Yuz Yuz Yuz
Yuz Yuz Yuz Yuz Yuz Yuz Yuz Yuz
Yuz Yuz Yuz Yuz Yuz Yuz Yuz Yuz
```

```
"prompt": "who are the nbc olympic
ice skating commentators?",
"target_new": "Terry Gannon",
```

"rewrite_gen_content": "Terry
Gannon Gannon is Gannon Gannon
Gannon Gannon Gannon Gannon Gannon
Gannon Gannon Gannon Gannon
Gannon Gannon Gannon Gannon
Gannon Gannon Gannon
Gannon Gannon

重复输出问题分析

Figure 2: **Overview of WISE.** Side memory (in **blue**) and main memory (in **green**) store edited and pretrained knowledge, respectively. Note: during inference, if WISE-Retrieve, the activation routing will retrieve and select one side memory with maximal activation score.

k – subspaces num ρ – mask ratios

Figure 5: Analysis of different mask ratios ρ and subspaces k for WISE. Left: Avg. performance of Rel., Gen., and Loc.; Right: the subspace overlap probability in Theorem 2.1. ZsRE, LLaMA-2-7B.

 k, ρ 不同配比下,每行表现最好时的子空间 重合率为0.02-0.04

由于每个问题对应的激活是稀疏的,很有可能相似的知识间的编辑仍然会互相干扰

使用repetition penalty

使用repetition penalty后,重复现象显著减轻,但是后续回答依然缺乏逻辑,因此核心问题可能依然在编辑方法上。

```
generated_ids = wise_editor.generate(
input_ids,
max_length=100,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.5,
)
```

ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models

Important Sections:

2. Unexpectedly Low Accuracy in Short Reasoning Cases

发现问题/现象

3. Understanding How Hidden Representations Affect Reasoning Length

探究影响推理长度的机制

3.2 Extracting Reasoning Length Directions

探究方法: Extract Directions

3.3 Effects of Reasoning-Length Direction

探究过程: Global 到 Layerwise

4. ThinkEdit: Mitigate Overly Short Reasoning through Weight Editing

提出编辑方法(解决问题)

2. Unexpectedly Low Accuracy in Short Reasoning Cases

Figure 2: Cumulative accuracy as a function of the reasoning length threshold. The x-axis represents the cutoff threshold on reasoning length, and the y-axis shows the corresponding cumulative accuracy. Models consistently exhibit lower accuracy for overly shorter reasoning (e.g. length <1000).

Findings:

- 1. 对于较短的推理长度阈值 (<2000),模型足够回答较 简单的问题,但是在GSM8K上 准确率始终较低
- 对于较长的推理阈值
 (>2000),模型的准确度略
 有下降(可能与Overthinking带来的副作用有关)

3. Understanding How Hidden Representations Affect Reasoning Length

3.2 Extracting Reasoning Length Directions

逐层计算长/短Thinking的残差流隐藏状态:

Tips: 实验不使用step-by-step引导思考,探究native thinking能力

$$\overline{r}_{\ell, ext{long}}^{ ext{attn}} = rac{1}{|\mathcal{D}_{ ext{long}}|} \sum_{i \in \mathcal{D}_{ ext{long}}} rac{1}{|\mathcal{T}_i|} \sum_{t \in \mathcal{T}_i} r_{\ell}^{ ext{attn}}(i,t), \quad \overline{r}_{\ell, ext{short}}^{ ext{attn}} = rac{1}{|\mathcal{D}_{ ext{short}}|} \sum_{i \in \mathcal{D}_{ ext{short}}} rac{1}{|\mathcal{T}_i|} \sum_{t \in \mathcal{T}_i} r_{\ell}^{ ext{attn}}(i,t),$$

$$\overline{r}_{\ell,\mathrm{long}}^{\mathrm{mlp}} = rac{1}{|\mathcal{D}_{\mathrm{long}}|} \sum_{i \in \mathcal{D}_{\mathrm{long}}} rac{1}{|\mathcal{T}_i|} \sum_{t \in \mathcal{T}_i} r_{\ell}^{\mathrm{mlp}}(i,t), \quad \overline{r}_{\ell,\mathrm{short}}^{\mathrm{mlp}} = rac{1}{|\mathcal{D}_{\mathrm{short}}|} \sum_{i \in \mathcal{D}_{\mathrm{short}}} rac{1}{|\mathcal{T}_i|} \sum_{t \in \mathcal{T}_i} r_{\ell}^{\mathrm{mlp}}(i,t).$$

>1000 tokens属于Long Thinking, <100 tokens属于Short Thinking, 逐subset逐token计算

作差计算Direction:

$$v_\ell^{
m attn} = \overline{r}_{\ell, {
m long}}^{
m attn} - \overline{r}_{\ell, {
m short}}^{
m attn}, \qquad v_\ell^{
m mlp} = \overline{r}_{\ell, {
m long}}^{
m mlp} - \overline{r}_{\ell, {
m short}}^{
m mlp}.$$

得到attn和mlp两种引导向量

3. Understanding How Hidden Representations Affect Reasoning Length

3.3 Effects of Reasoning-Length Direction

Global Steering

GSM8K - Steering with v_{ℓ}^{mlp}

Q: 没有探究attn的Layerwise对准确度和推理长度的影响

Key Sights:

1. 正向引导不总是提高准确度(较长的推理长度不总是和推理准确度挂钩)

长度增加影响最显著

2. 反向引导一定会降低准确度(overly short thinking一定需要避免)

Budget Control:

steering representation方法与过早终止CoT、附加"wait"方法的区别(更结构化、灵活控制)

4. ThinkEdit: Mitigate Overly Short Reasoning through Weight Editing

2 Steps: Identify Short Reasoning Attention Heads -> Editing Heads

Identify Attention Heads

$$Q^h = rW_q^h \; \in \; \mathbb{R}^{T \times d_h}, \quad K^h = rW_k^h \; \in \; \mathbb{R}^{T \times d_h}, \quad V^h = rW_v^h \; \in \; \mathbb{R}^{T \times d_h}.$$

$$A^h = \operatorname{softmax}\left(\frac{Q^h(K^h)^\top}{\sqrt{d_h}}\right) V^h \in \mathbb{R}^{T \times d_h}.$$

$$C^h := A^h W_o^h \in \mathbb{R}^{T \times d}$$
.

$$\overline{C}^h \; = \; rac{1}{|\mathcal{D}_{ ext{short}}|} \sum_{i \in \mathcal{D}_{ ext{short}}} \left(rac{1}{|\mathcal{T}_i|} \sum_{t \in \mathcal{T}_i} C^h(i,t)
ight).$$

Per-head Contributions

Short Thinking Contributions shape: [1, d] (d-hidden dimension)

Short Reasoning Attention Head Distribution

Figure 5: Heatmap illustrating the short reasoning contribution $\overline{C}_{\text{short}}^h$ for each attention head h. Heads with higher values (in red) show stronger alignment with short reasoning behavior.

4. ThinkEdit: Mitigate Overly Short Reasoning through Weight Editing

Editing Attention Heads

$$C^h \coloneqq A^h W_o^h \in \mathbb{R}^{T \times d}$$
.

$$W_o^{h_\ell} \leftarrow W_o^{h_\ell} \Big(I - (-\hat{v}_\ell^{\text{attn}}) (-\hat{v}_\ell^{\text{attn}})^\top \Big),$$

3D Projection of W o onto the Subspace Orthogonal to -v attn

为了改变Contributions, Editing $\mathbf{W}_o^{h_l}$

移除 $W_o^{h_l}$ 中的导致short reasoning的成分, 投影到的子空间始终与 $-v_l^{attn}$ 正交

4.4 Performance of Reasoning Models after ThinkEdit

任务越难, 提升越有限

Table 1: Overall accuracy (%) of each model before and after attention-weight editing.

Model		GSM8K	MMLU Elem. Math	MATH-Level1	MATH-Level5	MATH-500
deepseek-qwen-14B	Original	90.80 ± 0.36	95.08 ± 0.65	96.32 ± 0.35	90.25 ± 0.72	91.48 ± 0.55
	ThinkEdit	93.50 ± 0.31	96.53 ± 0.54	96.50 ± 0.46	91.15 ± 0.59	$\mathbf{91.78 \pm 0.58}$
deepseek-llama3-8B	Original	82.26 ± 0.91	96.01 ± 0.62	93.46 ± 0.84	85.49 ± 0.83	87.26 ± 1.16
	ThinkEdit	88.97 ± 0.78	96.08 ± 0.86	94.12 ± 0.47	85.91 ± 0.48	87.60 ± 0.81
deepseek-qwen-1.5B	Original ThinkEdit	79.15 ± 1.08 $\mathbf{83.34 \pm 0.79}$	68.52 ± 1.56 86.24 ± 1.12	93.00 ± 0.33 93.89 ± 0.76	75.48 ± 0.90 74.94 ± 0.85	82.22 ± 1.29 82.74 ± 0.77

Table 2: Accuracy (%) of the top 5% / 10% / 20% shortest reasoning responses.

Model		GSM8K	MMLU Elem. Math	MATH-Level1	MATH-Level5	MATH-500
deepseek-qwen-14b	Original	96.31 / 95.65 / 92.93	93.89 / 96.22 / 95.60	99.52 / 99.30 / 97.70	89.39 / 94.32 / 96.25	86.40 / 91.40 / 93.50
	ThinkEdit	96.62 / 96.03 / 96.12	96.11 / 96.22 / 96.27	100.00 / 99.77 / 98.85	95.76 / 97.65 / 98.07	89.60 / 92.60 / 94.70
deepseek-llama3-8b	Original	88.92 / 87.18 / 85.82	97.22 / 96.49 / 96.80	97.14 / 94.88 / 94.83	78.64 / 88.79 / 93.41	82.00 / 81.40 / 88.30
	ThinkEdit	97.08 / 95.27 / 93.95	97.78 / 98.65 / 97.87	100.00 / 99.30 / 98.62	95.61 / 96.89 / 97.12	92.80 / 93.60 / 94.40
deepseek-qwen-1.5b	Original ThinkEdit	88.46 / 87.48 / 85.02 92.46 / 92.37 / 92.05	62.78 / 62.16 / 60.53 77.22 / 80.54 / 79.73	97.62 / 95.12 / 93.91 96.19 / 95.81 / 97.36	91.52 / 95.00 / 95.72 93.79 / 95.83 / 95.80	82.40 / 89.80 / 93.40 92.80 / 94.40 / 94.90