Swarm Built Pad

Group 28

Camry Artalona Hung Nguyen Richard Malcolm Stanley Minervini Coy Torreblanca Sponsor Mike Conroy

NASA's Artemis Program

The Problem

- Regolith (lunar dust) in the atmosphere of the moon is harmful to astronauts and spacecraft.
- Need a level surface on the moon before a landing pad can be constructed.

EZ-RASSOR

Goal of the Project

The goal of our project is to successfully have a swarm of rovers level an area of the lunar surface for the creation of a landing pad. We will do this using a framework called ROS (Robot Operating System) and simulate it in Unity.

Requirements

- Create a leveling algorithm which handles dig and dump instructions for each rover.
- Efficiently manage all rovers while algorithm instructions are performed.

Stretch Goals

- Merge with ARM team to place landing pads in the Gazebo simulation
- Demo Sim Stretch Goals:
 - Creating a Unity simulation in which the rovers edit the terrain
 - Decoupling of Gazebo and Unity

Objectives

- Convert surface map image into 2 dimensional matrix.
- Implement leveling algorithm to generate rover instructions.
- Implement central task manager to assign tasks to rovers.
- Create simulation in Unity.

Meeting/Schedule

- Scrum Framework.
- 2-Week Sprints.
- Daily Standups.
- Sprint Planning/Grooming.
- Sprint Retrospectives.
- Daily Sync-ups.
- Weekly meetings with sponsor, Mike Conroy.

Technologies / Languages

- Discord
- Jira
- Github
- ROS1
- Gazebo
- Python2
- Unity
- C#

Block Diagram of Solution

The Area

Image Processing

Input - A topographical image of the moon imported into the Gazebo simulation.

Output - A scaled, 2d array of the landing pad area where each value in the array represents the number of actions required to level a pixel.

Implementation

- Gray scaled
- Zero scaled
- Pixel expand

Image Processing

Dig and Dump Locations **Dig Location Dump Location**

Leveling Algorithm

Leveling algorithm creates a set of instructions which rovers use to level the land efficiently.

An instruction is a hill paired with a hole.

The leveling algorithm uses a greedy approach.

Distance Matrix

Dig Location 1	Dump Location 1	Dump Location 2	Dump Location 3
Dig Location 2	Dump Location 3	Dump Location 1	Dump Location 2
Dig Location 3	Dump Location 3	Dump Location 1	Dump Location 2

$$O(N * (M + Log M))$$

The Central Task Manager

- The Central Task Manager gives rovers instructions created by the Leveling Algorithm.
- The rovers execute the instructions independently.

Swarm Controller and Rovers Interface

Central Task Manager

Rover has a Problem

The Rover Logic

- Logic required to execute rover instructions is encapsulated into a rover class.
- Rover logic can solve problems which may arise at runtime.

Rover Leveling Logic

Infinite Pathing with Full Drum

Simulation

Map: Imported from the EZ-Rassor github, converted to a .raw file format, then used to create terrain in Unity.

Rover Logic: Create Subscribers for each component needed, parse data and handle information properly.

Terrain Manipulation: Rovers are able to edit terrain object's height map in scene once they receive a command via ros to do so.

Division of Tasks

- Camry Artalona Project lead/Simulation
- Richard Malcolm Simulation
- Coy Torreblanca Leveling Algorithm/Central Task Manager
- Hung Nguyen Scrum Master/Image Processing/Central Task Manager
- Stanley Minervini Image Processing/Central Task Manager

Successes and Difficulties

Successes

- Team work
- Good communication with FSI teams
- Completed Objectives.
- Completed stretch goal of terrain manipulation in Unity.

Difficulties

- Working with Python2
- Working with ROS (ROS1)
- Working with Gazebo
- Integrating a solution to an already established project

Budget

• \$0.00

Summary

Leveling Algorithm

 The Leveling Algorithm creates the set of instructions which rovers use to level the area efficiently.

Central Task Manager

 The Central Task Manager assigns rovers instructions and handles rover problems if encountered.

Rover Logic

Rover logic controls a rover to execute an instruction.

Unity Simulation

- Implemented terrain manipulation
- Rovers receive instructions from ROS on Ubuntu
- Map scaled correctly

Unity Demo

Unity Demo

