

Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Departamento de Matemática

ICD - Introdução ao Cálculo Diferencial e Integral Professora Viviane Combinações de Funções

Conceitos

1. Sejam f e g funções com domínio A e B. Então as funções f+g, f-g, fg e f/g são definidas como seguem:

$$(f+g)(x) = f(x) + g(x) \quad e$$

$$\operatorname{dom}(f+g) = A \cap B;$$

$$(f-g)(x) = f(x) - g(x) \quad e$$

$$\operatorname{dom}(f-g) = A \cap B;$$

$$(fg)(x) = f(x)g(x) \quad e$$

$$\operatorname{dom}(fg) = A \cap B;$$

$$(f/g)(x) = f(x)/g(x) \quad e$$

$$\operatorname{dom}(f/g) = \{x \in A \cap B \mid g(x) \neq 0\}.$$

2. A partir dos gráficos de f e g na Figura 2, encontramos

(a)
$$(f+g)(2) = f(2) + g(2) = 3 + 5 = 8$$

(b)
$$(f-g)(2) = f(2) - g(2) = 3 - 5 = -2$$

(c)
$$(fg)(8) = f(8)g(8) = 4 \cdot 3 = 12$$

(d)
$$\left(\frac{f}{g}\right)(x) = \frac{f(o)}{g(0)} \approx \frac{2}{4} = \frac{1}{2}$$

Figura 1: Gráfico de f e g

3. Sejam f(x) = x, g(x) = sen(x) e $n(x) = \frac{1}{x}$. Use o GeoGebra para visualizar os gráficos sobrepostos de:

(b)
$$f$$
, $n \in f - n$

(c) f, $g \in f + g$

4. Sejam $f(x) = \frac{1}{x-2}$ e $g(x) = \sqrt{x}$. Encontre as funções e seus domínios.

(a)
$$(f+g)(x) = \frac{1}{x-2} + \sqrt{x}$$
 e
 $\mathrm{Dom}(f+g) = \{x \mid x \neq 2 \text{ e } x \geq 0\}.$

(b)
$$(f-g)(x) = \frac{1}{x-2} - \sqrt{x}$$
 e
 $\text{Dom}(f+g) = \{x \mid x \neq 2 \text{ e } x \geq 0\}.$

(c)
$$(fg)(x) = \frac{\sqrt{x}}{x-2}$$
 e
 $\mathrm{Dom}(f+g) = \{x \mid x \neq 2 \text{ e } x \geq 0\}.$

(d)
$$(f/g) \frac{1}{(x-2)\sqrt{x}}$$
 e
 $\text{Dom}(f+g) = \{x \mid x \neq 2 \text{ e } x > 0\}.$

 Dadas duas funções f e g, a função composta f o g (também chamada de composição de f e g) é definida por

$$(f \circ g)(x) = f(g(x)).$$

6. O **domínio** de $f \circ g$ é o conjunto de todos os x no <u>domínio</u> de g, de modo que g(x) esteja no <u>imagem</u> de f. Em outras palavras, $(f \circ g)(x)$ está definida sempre que g(x) e (f(g(x))) estão definidas. Podemos imaginar $f \circ g$ usando um diagrama de flechas.

- 7. Por definição, $(f \circ g)(x) = f(g(x))$. Se g(2) = 5 e f(5) = 12, então $(f \circ g)(2) = f(g(2)) = f(5) = 12$.
- 8. Se a regra da função f é "adicione 1" e a regra da função g é "multiplique por 2", então a regra de $f \circ g$ é "multiplique por 2, adicione 1" e a regra de $g \circ f$ é "adicone 1, multiplique por 2."
- 9. Podemos expressar as funções no exercício anterior algebricamente com $f(x) = x + 1, g(x) = 2x, (f \circ g) = 2x + 1$ e $(g \circ f)(x) = 2(x + 1)$.
- 10. Sejam $f(x) = \sqrt{x}$ e $g(x) = \sqrt{2-x}$. Encontre as funções e seus domínios.

(a)
$$f \circ g = \sqrt{\sqrt{2-x}} = \sqrt[4]{2-x}$$
 e
 $\text{Dom}(f \circ g) = \{x \mid x-2 \ge 0\}$
 $= \{x \mid x \le 2\} = (-\infty, 2].$

(b)
$$g \circ f = \sqrt{2 - \sqrt{x}}$$
 e
$$\operatorname{Dom}(g \circ f) = \{x \mid 2 - \sqrt{x} \ge 0 \ \in \ x \ge 0\}$$

$$Dom(g \circ f) = \{x \mid 2 - \sqrt{x} \ge 0 \text{ e } x \ge 0\}$$
$$= \{x \mid 2 \le \sqrt{x} \text{ e } x \ge 0\}$$
$$= \{x \mid 0 \le x \le 4\} = [0, 4].$$

(c)
$$f \circ f =$$

$$Dom(f \circ f) = \{x \mid x > 0\} = [0, +\infty).$$

(d)
$$g \circ g =$$

$$Dom(f \circ g)$$

$$= \{x \mid 2 - x \ge 0 \ \in \ 2 - \sqrt{2 - x} \ge 0\}$$

$$= \{x \mid x \le 2 \ \in \ \sqrt{2 - x} \le 2\}$$

$$= \{x \mid x \le 2 \text{ e } 2 - x \le 4\}$$

$$= \{x \mid x \ge 2 \text{ e } -2 \le x\} = [-2, 2].$$

11. Encontre $f \circ g \circ h$ se $f(x) = \frac{x}{x+1}$, $g(x) = x^{10}$ e $h(x) = \sqrt{3-x}$. Determine o domínio de $f \circ g \circ h$.

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(\sqrt{3-x}))$$

$$= f((\sqrt{3-x})^{10}) = f((3-x)^5)$$

$$= \frac{(3-x)^5}{(3-x)^5 + 1}.$$

A função $(f\circ g\circ h)(x)$ está definida sempre que $h(x)=\sqrt{3-x},\ (g\circ h)(x)=(3-x)^5$ e $(f\circ g\circ h)(x)=\frac{(3-x)^5}{(3-x)^5+1}$ estão definidas. Assim,

$$\begin{aligned} & \operatorname{Dom}(f \circ g \circ h) \\ &= \{ x \mid 3 - x \geq 0 \ \in \ (3 - x)^5 + 1 \neq 0 \} \\ &= \{ x \leq 3 \ \in \ x \neq 4 \} = (-\infty, 3]. \end{aligned}$$

12. Dada $F(x) = \sqrt[4]{x^2 - 4}$ determine $f \in g$ tais que $(f \circ g)(x) = F(x)$.

Uma das opções é $g(x) = x^2 - 4$ e $f(x) = \sqrt[4]{x}$.

13. Dada $F(x) = (4 + \sqrt{x})^9$ determine $f, g \in h$ tais que $(f \circ g \circ h)(x) = F(x)$.

Uma das opções é $h(x) = \sqrt{x}, \quad g(x) = 4 + x$ e $f(x) = x^9$.

- 14. Seja f uma função.
 - f é par se f(-x) = f(x), para todo
 - $f \in \underline{\text{impar}}$ se f(-x) = -f(x), para todo $x \in \overline{\mathrm{dom}(f)}$.
- 15. O gráfico de uma função par é simétrico em relação ao eixo y. O gráfico de uma função ímpar é simétrico em relação à origem. Veja os seguintes exemplos:

 $f(x) = x^2$ é uma função par

 $f(x) = x^3$ é uma função impar

16. O gráfico de uma função definida para $x \ge 0$ é dado. Completo o gráfico para x < 0 para fazer (a) uma função par e (b) uma função ímpar.

Habilidades

(a)

1. Use a adição gráfica para esboçar o gráfico de f+g.

- 2. Sejam $f(x) = x^2 3x + 2 e g(x) = 4 3x$. Encontre as seguintes funções e seus domínios.
 - (a) f g (c) f/g (e) $g \circ f$

- (b) fg
- (d) $f \circ g$ (f) $f \circ f$
- 3. Encontre $f \circ g \circ h$ e seu domínio, em que f(x) =

- $\sqrt{1-x}$, $g(x) = 1 x^2$ e $h(x) = 1 + \sqrt{x}$.
- 4. Dados $f(x) = \frac{1-x}{x+1}$ e $g(x) = \frac{1}{x+1}$ determine a lei das seguintes funções e o seu domínio.

 - (a) $h(x) = f \circ g$ (b) $m(x) = f \circ f$
- 5. Expresse a função na forma $f \circ g$.
 - (a) $F(x) = (x-9)^2$
 - (b) $G(x) = \frac{x^2}{x^2 + 4}$
 - (c) $K(x) = |1 x^3|$
- 6. Exrpresse a função na forma $f \circ g \circ h$.
 - (a) $T(x) = \frac{1}{\sqrt{1+\sqrt{x}}}$

(b)
$$M(x) = (4 + \sqrt[3]{x})^9$$

(c) $V(x) = \sqrt[3]{\sqrt{x} - 1}$

(c)
$$V(x) = \sqrt[3]{\sqrt{x} - 1}$$

7. Dados
$$f(x) = \begin{cases} 3x^2 + 1, \text{ se } x \le 0 \\ 2x^2 + x, \text{ se } x > 0 \end{cases}$$
 e $g(x) = x + 3$, determine $f \circ g \in g \circ f$.

8. Dados
$$f(x) = \begin{cases} 3x^2 + 1, \text{ se } x \le 0 \\ x^2 + x, \text{ se } x > 0 \end{cases}$$
 e $g(x) = \begin{cases} \sqrt{x^2 + 1}, \text{ se } x < 2 \\ 7x - 1, \text{ se } x \ge 2 \end{cases}$, determine $f \circ g \in g \circ f$.

- 9. Suponha que $h = f \circ g$. (a) Se g é uma função par, h é necessariamente par? (b) Se g é ímpar, h é impar? (c) E se g é impar e f é impar? (d) E se g é impar e f é par?
- 10. Mostre que se f e g são funções ímpares, então

(f+g) e (f-g) também são funções ímpares.

- 11. Mostre que se fe gsão funções ímpares, então $f \cdot g$ e $\frac{f}{g}$ são funções pares.
- 12. Seja fuma função. Mostre que a função

$$g(x) = \frac{1}{2}[f(x) + f(-x)]$$

é par e que a função

$$h(x) = \frac{1}{2} [f(x) - f(-x)]$$

é ímpar.

13. Prove que qualquer função f pode ser expressa como a soma de uma função par com uma função ímpar. (Dica: Use o exercício anterior).

Gabarito

1.

2. (a)
$$(f-g)(x) = x^2 - 2$$

Dom $(f-g) = \mathbb{R}$

(b)
$$(f \cdot g)(x) = -3x^3 + 13x^2 - 18x + 8$$

 $Dom(f \cdot g) = \mathbb{R}$

(c)
$$(f/g)(x) = \frac{x^2 - 3x + 2}{4 - 3x}$$

 $Dom(f/g) = \mathbb{R} - \left\{\frac{4}{3}\right\}$

(d)
$$(f \circ g)(x) = 9x^2 - 15x + 6$$

 $\operatorname{Dom}(f \circ g) = \mathbb{R}$

(e)
$$(g \circ f)(x) = -3x^2 + 9x - 2$$

 $Dom(g \circ f) = \mathbb{R}$

(f)
$$(f \circ f)(x) = x^4 - 6x^3 + 10x^2 - 3x$$

 $Dom(f \circ f) = \mathbb{R}$

3.
$$(f \circ g \circ h)(x) = |1 + \sqrt{x}| \text{ e Dom}(f \circ g \circ h) = \mathbb{R}_+$$

4. (a)
$$h(x) = \frac{x}{x+2} \in Dom(h) = \mathbb{R} - \{-2, -1\}$$

(b)
$$m(x) = x \in Dom(m) = \mathbb{R} - \{-1\}$$

5. (a) Uma das opções é
$$f(x) = x^2$$
 e $g(x) = x-9$.
Assim, $(f \circ g)(x) = F(x)$

(b) Uma das opções é
$$f(x) = \frac{x}{x+4}$$
 e $g(x) = x^2$. Assim, $(f \circ g)(x) = G(x)$

(c) Uma das opções é
$$f(x) = |x|$$
 e $g(x) = 1 - x^3$. Assim, $(f \circ g)(x) = K(x)$

6. (a) Uma das opções é
$$f(x) = \frac{1}{x}$$
, $g(x) = \sqrt{1+x}$ e $h(x) = \sqrt{x}$. Assim, $(f \circ g \circ h)(x) = T(x)$

(b) Uma das opções é
$$f(x) = x^9$$
, $g(x) = 4 + x$ e $h(x) = \sqrt[3]{x}$. Assim, $(f \circ q \circ h)(x) = M(x)$

(c) Uma das opções é
$$f(x) = \sqrt[3]{x}$$
, $g(x) = x-1$ e $h(x) = \sqrt{x}$. Assim, $(f \circ g \circ h)(x) = V(x)$

7.
$$(f \circ g)(x) = \begin{cases} 3x^2 + 18x + 28, & \text{se } x \le -3\\ 2x^2 + 13x + 21, & \text{se } x > -3 \end{cases}$$

$$(g \circ f)(x) = \begin{cases} 3x^2 + 4, & \text{se } x \le 0\\ 2x^2 + x + 3, & \text{se } x > 0 \end{cases}$$

8.
$$(f \circ g)(x) = \begin{cases} x^2 + 1 + \sqrt{x^2 + 1}, & \text{se } x < 2\\ 49x^2 - 7x, & \text{se } x \ge 2 \end{cases}$$

$$(g \circ f)(x) = \begin{cases} \sqrt{9x^4 + 6x^2 + 2}, & \text{se } -\frac{\sqrt{3}}{3} < x \le 0\\ 21x^2 + 6, & \text{se } x \le -\frac{\sqrt{3}}{3}\\ \sqrt{x^4 + 2x^3 + x^2 + 1} & \text{se } 0 < x < 1\\ 7x^2 + 7x - 1 & \text{se } x \ge 1 \end{cases}$$

9. (a) Sim, pois
$$h(-x) = f \circ g(-x) = f(g(-x)) = f(g(x)) = f \circ g(x) = h(x)$$
.

(b) Não, pois se $f(x)=x^2$ e $g(x)=x^3$ temos que g(x) é ímpar, mas $h(x)=f\circ g(x)=x^6$ não é ímpar.

(c)
$$h \in \text{impar}$$
, pois $h(-x) = f(g(-x)) = f(-g(x)) = -f(g(x)) = -h(x)$.

(d)
$$h \in \text{par}$$
, pois $h(-x) = f(g(-x)) = f(-g(x)) = f(g(x)) = h(x)$.

10. Dica: Desenvolva (f+g)(-x) e (f-g)(-x), aplicando a definição de soma e subtração de funções e a de função ímpar em f(-x) e g(-x). Mostre que (f+g)(-x) = -(f+g)(x) e (f-g)(-x) = -(f-g)(x).

11. Dica: Desenvolva $(f \cdot g)(-x)$ e (f/g)(-x), aplicando a definição multiplicação e divisão de funções e a de função ímpar em f(-x) e g(-x). Mostre que $(f \cdot g)(-x) = (f \cdot g)(x)$ e (f/g)(-x) = (f/g)(x)

12. Desenvolva g(-x) e mostre que g(-x) = g(x)Desenvolva h(-x) e mostre que h(-x) = -h(x)

13. Utilizando o exercício anterior, mostramos que f(x) = g(x) + h(x), sendo f uma função qualquer, g uma função par e h uma função ímpar.

Bibliografia

STEWART, James et all. Precalculus: Mathematics for Calculus. Seventh Edition. Boston:

Cengage Learning, 2014.