Practice Examples Chapter-4 Sampling Theorem

Practice

- 1. What is *f* in terms of time *t*?
- 2. What is f_s , sampling frequency in hertz in terms of time?
- 3. What is Ω , analogue frequency in rad/s?
- 4. What is Ω_s , analogue sampling frequency?
- 5. What is discrete time frequency ω in radians in terms of Ω ?
- 6. What is ω_s , discrete time sampling frequency in terms of Ω_s ?
- 7. What is the general rule of finding spectrum of any analogue periodic signal? Find the spectrum of analogue periodic impulse train.
- 8. Why is the spectrum of discrete-time signal x[n] is periodic with $\omega = 2\pi$ radians, the cliché we learned in Chapter-2?
- 9. Draw the analogue Sinc function $x(t) = \frac{\sin(\pi t/2)}{(\pi t/2)}$ and $x(t) = \frac{\sin(5\pi t/2)}{(\pi t/2)}$
- 10. Why we choose the reconstruction filter as low pass filter of cut-off $\frac{\pi}{T}$. Is this filter an analogue filter or discrete filter? Why/Why not? What mathematical operation the reconstruction filter performs?
- 11. What is the condition of being a band-limited signal in Ω and ω in the scope of sampling theorem.
- 12. Perform downsampling for M=2 and $\omega_N=\frac{\pi}{4'}$ repeat this for M=5

13. Perform upsampling for L=3 and $\omega_N=\frac{\pi}{2}$ for the above spectrum.

14.

The sequence

$$x[n] = \cos\left(\frac{\pi}{4}n\right), \quad -\infty < n < \infty.$$

was obtained by sampling a continuous-time signal

$$x_c(t) = \cos(\Omega_0 t), \quad -\infty < t < \infty,$$

at a sampling rate of 1000 samples/s. What are two possible positive values of Ω_0 that could have resulted in the sequence x[n]?

15.

A simple model of a multipath communication channel is indicated in Figure P4.7-1. Assume that $s_c(t)$ is bandlimited such that $S_c(j\Omega) = 0$ for $|\Omega| \ge \pi/T$ and that $s_c(t)$ is sampled with a sampling period T to obtain the sequence

$$x[n] = x_c(nT)$$
.

Figure P4.7-1

- (a) Determine the Fourier transform of $x_c(t)$ and the Fourier transform of x[n] in terms of $S_c(j\Omega)$.
- 16.

A continuous-time signal $x_c(t)$, with Fourier transform $X_c(j\Omega)$ shown in Figure P4.22-1, is sampled with sampling period $T = 2\pi/\Omega_0$ to form the sequence $x[n] = x_c(nT)$.

Figure P4.22-1

- (a) Sketch the Fourier transform $X(e^{j\omega})$ for $|\omega| < \pi$.
- (b) The signal x[n] is to be transmitted across a digital channel. At the receiver, the original signal $x_c(t)$ must be recovered. Draw a block diagram of the recovery system and specify its characteristics. Assume that ideal filters are available.
- (c) In terms of Ω_0 , for what range of values of $T \operatorname{can} x_c(t)$ be recovered from x[n]?

Do problem 4.29, 4.38