

Business Forecasting

Dummy Variable Regression

Regression in Time Series methods

Regression is a useful tool to estimate models where the target variable (Y) can be explained by "causal" independent variables (X) eg Sales (Y) explained by **Price**, **Promotional Spend**, **Income**, **Interest rates**, **Competitors** (X's)

Regression can also be used to estimate models more indicative of **time series models**

Quasi- explanatory variables (time, seasonal dummies, lagged dependent variables) can be used instead of regular explanatory variables.

Trend Extrapolations

Trend extrapolation based on trend equation

$$Y_t = f \text{ (time)}$$

For a linear trend $\longrightarrow Y_t = \beta_0 + \beta_1 * t$

The time index "t" acts as a quasi explanatory variable to help explain/forecast Y_t with regression used to estimate β_o , β_1

Estimated equation $(Y_t = b_o + b_1 * t)$ used to forecast Y_t based on future value of time index

Often used as quick way of **generating forecasts of independent variables** needed in regression forecasts of the target variable.

Explanatory and Dummy Variables

It is possible to **utilise seasonal variables** in typical "causal" regression models.

The seasonal dummies can account for **seasonal impacts** not explained by the independent variables.

Interpretation and forecasting as in previous examples

Example:

$$X_1 = Price$$

$$\hat{Y} = b_0 + b_1 X_1 + b_2 X_2$$

 X_2 = Holiday (X_2 = 1 if a holiday occurred during the week and X_2 = 0 if there was no holiday that week)

Combining Explanatory & Dummies

 $b_0 + b_2$ b_0 $No Holiday(X_2 = 1)$ $No Holiday(X_2 = 0)$

If H_0 : $\beta_2 = 0$ is rejected, then "Holiday" has a significant effect on pie sales

 X_1 (Price)

Interpreting the Dummy Coefficient MACQUARIE University

$$Sales = 300 - 30(Price) + 15(Holiday)$$

Sales: Number of pies sold per week

Price: Pie price in \$

Holiday: {
 If a holiday occurred during the week of If no holiday occurred
}

 $b_2 = 15 >> On$ average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

