Assignment 4: Data Wrangling

Jasmine Papas

Spring 2023

OVERVIEW

This exercise accompanies the lessons in Environmental Data Analytics on Data Wrangling

Directions

- 1. Rename this file <FirstLast>_A04_DataWrangling.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Be sure to **answer the questions** in this assignment document.
- 5. When you have completed the assignment, **Knit** the text and code into a single PDF file.

The completed exercise is due on Friday, Feb 20th @ 5:00pm.

Set up your session

- 1a. Load the tidyverse, lubridate, and here packages into your session.
- 1b. Check your working directory.
- 1c. Read in all four raw data files associated with the EPA Air dataset, being sure to set string columns to be read in a factors. See the README file for the EPA air datasets for more information (especially if you have not worked with air quality data previously).
 - 2. Apply the glimpse() function to reveal the dimensions, column names, and structure of each dataset.

```
# 1a install.package(tidyverse)
library(tidyverse)
# install.package(lubridate)
library(lubridate)
# install.package(here)
library(here)
# 1b
getwd()
```

[1] "/home/guest/R/EDA-Spring2023"

```
EPA_03_2018 <- read.csv("./Data/Raw/EPAair_03_NC2018_raw.csv", stringsAsFactors = TRUE)
EPA_03_2019 <- read.csv("./Data/Raw/EPAair_03_NC2019_raw.csv", stringsAsFactors = TRUE)</pre>
EPA PM25 2018 <- read.csv("./Data/Raw/EPAair PM25 NC2018 raw.csv", stringsAsFactors = TRUE)
EPA PM25 2019 <- read.csv("./Data/Raw/EPAair PM25 NC2019 raw.csv", stringsAsFactors = TRUE)
glimpse(EPA_03_2018)
## Rows: 9,737
## Columns: 20
                                          <fct> 03/01/2018, 03/02/2018, 03/03/201~
## $ Date
## $ Source
                                          <fct> AQS, AQS, AQS, AQS, AQS, AQS, AQS~
## $ Site.ID
                                          <int> 370030005, 370030005, 370030005, ~
## $ POC
                                          <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ Daily.Max.8.hour.Ozone.Concentration <dbl> 0.043, 0.046, 0.047, 0.049, 0.047~
## $ UNITS
                                          <fct> ppm, ppm, ppm, ppm, ppm, ppm, ppm~
## $ DAILY_AQI_VALUE
                                          <int> 40, 43, 44, 45, 44, 28, 33, 41, 4~
                                          <fct> Taylorsville Liledoun, Taylorsvil~
## $ Site.Name
## $ DAILY_OBS_COUNT
                                          <int> 17, 17, 17, 17, 17, 17, 17, 17, 17, 1~
## $ PERCENT_COMPLETE
                                          <dbl> 100, 100, 100, 100, 100, 100, 100~
                                          <int> 44201, 44201, 44201, 44201, 44201~
## $ AQS_PARAMETER_CODE
                                          <fct> Ozone, Ozone, Ozone, Ozone, Ozone~
## $ AQS_PARAMETER_DESC
## $ CBSA CODE
                                          <int> 25860, 25860, 25860, 25860, 25860~
                                          <fct> "Hickory-Lenoir-Morganton, NC", "~
## $ CBSA NAME
## $ STATE CODE
                                          <int> 37, 37, 37, 37, 37, 37, 37, 37, 3~
## $ STATE
                                          <fct> North Carolina, North Carolina, N~
                                          <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ~
## $ COUNTY_CODE
## $ COUNTY
                                          <fct> Alexander, Alexander, ~
## $ SITE LATITUDE
                                          <dbl> 35.9138, 35.9138, 35.9138, 35.913~
## $ SITE LONGITUDE
                                          <dbl> -81.191, -81.191, -81.191, -81.19~
```

Wrangle individual datasets to create processed files.

- 3. Change date columns to be date objects.
- 4. Select the following columns: Date, DAILY_AQI_VALUE, Site.Name, AQS_PARAMETER_DESC, COUNTY, SITE_LATITUDE, SITE_LONGITUDE
- 5. For the PM2.5 datasets, fill all cells in AQS_PARAMETER_DESC with "PM2.5" (all cells in this column should be identical).
- 6. Save all four processed datasets in the Processed folder. Use the same file names as the raw files but replace "raw" with "processed".

Combine datasets

- 7. Combine the four datasets with rbind. Make sure your column names are identical prior to running this code.
- 8. Wrangle your new dataset with a pipe function (%>%) so that it fills the following conditions:
- Include all sites that the four data frames have in common: "Linville Falls", "Durham Armory", "Leggett", "Hattie Avenue", "Clemmons Middle", "Mendenhall School", "Frying Pan Mountain", "West Johnston Co.", "Garinger High School", "Castle Hayne", "Pitt Agri. Center", "Bryson City", "Millbrook School" (the function intersect can figure out common factor levels but it will include sites with missing site information...)
- Some sites have multiple measurements per day. Use the split-apply-combine strategy to generate daily means: group by date, site name, AQS parameter, and county. Take the mean of the AQI value, latitude, and longitude.
- Add columns for "Month" and "Year" by parsing your "Date" column (hint: lubridate package)
- Hint: the dimensions of this dataset should be $14,752 \times 9$.
- 9. Spread your datasets such that AQI values for ozone and PM2.5 are in separate columns. Each location on a specific date should now occupy only one row.
- 10. Call up the dimensions of your new tidy dataset.
- 11. Save your processed dataset with the following file name: "EPAair_O3_PM25_NC1819_Processed.csv"

```
# 7
EPA_Data <- rbind(EPA_03_2018_select, EPA_03_2019_select, EPA_PM25_2018_select, EPA_PM25_2019_select)
# 8
EPA_Data_wrangled <- EPA_Data %>%
    filter(Site.Name == "Linville Falls" | Site.Name == "Durham Armory" | Site.Name ==
        "Legett" | Site.Name == "Hattie Avenue" | Site.Name == "Clemmons Middle" |
        Site.Name == "Mendenhall School" | Site.Name == "Frying Pan Mountain" | Site.Name ==
        "West Johnston Co." | Site.Name == "Garinger High School" | Site.Name ==
        "Castle Hayne" | Site.Name == "Pitt Agri. Center" | Site.Name == "Bryson City" |
        Site.Name == "Millbrook School") %>%
        group_by(Date, Site.Name, AQS_PARAMETER_DESC, COUNTY) %>%
        summarise(meanAQI = mean(DAILY AQI VALUE), meanLat = mean(SITE LATITUDE), meanLong = mean(SITE LONG)
```

```
Generate summary tables
```

11

12. Use the split-apply-combine strategy to generate a summary data frame. Data should be grouped by site, month, and year. Generate the mean AQI values for ozone and PM2.5 for each group. Then, add a pipe to remove instances where mean **ozone** values are not available (use the function drop_na in your pipe). It's ok to have missing mean PM2.5 values in this result.

write.csv(EPA_Data_wrangled, row.names = FALSE, file = "./Data/Processed/EPAair_03_PM25_NC1819_Processe

13. Call up the dimensions of the summary dataset.

```
# 12
EPA_Data_Sum <- EPA_Data_wrangled %>%
    group_by(Site.Name, month, year) %>%
    drop_na(Ozone) %>%
    summarise(mean_ozone <- mean(Ozone), mean_PM25 <- mean(PM2.5))

## 'summarise()' has grouped output by 'Site.Name', 'month'. You can override
## using the '.groups' argument.

# 13
dim(EPA_Data_Sum)

## [1] 117    5</pre>
```

14. Why did we use the function drop_na rather than na.omit?

Answer: We use drop_na because na.omit does not always work. Drop_na only keeps the columns that have all the data necessary, while na.omit simply marks the columns with missing values as incomplete.