

נכתב ע"י צבי מינץ

zvimints@gmail.com

Distributed System - מערכות מבוזרות

אוסף של יחידות חישוב אשר יכולים לתקשר אחד עם השני

הערה: גם מחשב אחד הוא מבוזר, היות ויש כמה מעבדים וכמה תהליכים.

יתרונות של מערכות מבוזרות:

- 1. לשתף מידע ביו קדקודים שונים
- 2. לטפל בכמות מידע גדולה יותר (במקום שכל המידע יהיה במקום כלשהו, אז ניתן להחזיק מידע בכל קודקוד)
 - 3. עיבוד מקבילי (Parallelism)
- 4. Redundancy and Resiliency (אם מתוך 100 מכשירים אז 30 נפלו אז נבנה אותם ככה שהם יעבדו רק בעומס)
 - Scaling .5

מודלים למערכות מבוזרות

Message Passing:

- Nodes/processes interact by exchanging messages
- Fully connected topology or arbitrary network

מערכות סינכרוניות: לכל המכשירים ישנו ״קו שעון״ משותף ולכן אפשר לדבר על סיבובים, שליחת ההודעות מתרחשת בתחילת הסיבוב ולקראת סוף הסיבוב ההודעה מגיעה. זמן הסיבוב ידוע מראש

"Message Passing" במודל

r בראונד , r-1 בזמן בזמן , r-1 כל תהליך שולח הודעות.

"Shared Memory" במודל

בכל ראונד, כל תהליך יכול לגשת לתא זיכרון בודד.

מערכות אסינכרוניות: אין ״קו שעון״, זמן הגעת ההודעה הוא מספר **סופי** כלשהו **לא ידוע** אשר יכול להשתנות בין הודעות. במודל "Message Passing"

ההודעות תמיד מגיעות

זמן הגעת ההודעה הוא לא ידוע מראש ותמיד נסתכל על המקרה הגרוע ביותר

(יש זיכרון אחד) "Shared Memory" במודל

כל התהליכים בסופו של דבר יבצעו את הצעד הבא

זמן העיבוד לא ידוע מראש ותמיד נסתכל על המקרה הגרוע ביותר

:Failures תקלות

Crash Failure •

קודקוד אשר מפסיק לעבוד בזמן מסוים, במערכת סינכרונית זה יכול לקרות באמצע השעון.

Byzantine Failure •

קודקודיים שרוצים לפגוע בחישוב, ״האקרים״.

Omission Failure

קודקוד אשר מפסיק לעבוד לזמן מסויים

Resilience •

התמודדות עם מספר מסויים של תקלות (מודל שמתמודד לדוגמא עם 50 תקלות כן ו51 לא)

תכונות נכונות של מערכת מבוזרות:

שום דבר רע לא קורה ויקרה - Safety •

דוגמא: בכל נקודת זמן, לכל היותר רמזור אחד בצבע ירוק

י ... על מנת להוכיח Safety נוכיח בעזרת Invariant, המצב ההתחלתי היה בטוח, וכל מצב משאיר את המערכת בטוחה

עז נונול זווול וו Salety בל וו בעוו ול ווועמוומוו, וומבב ווווונווזול וווו

- משהו טוב יקרה למשהו - Liveness

דוגמא: יש תמיד אור ירוק אחד דלוק ברמזור דוגמא: במערכת אשר מספקת אוכל לאנשים, אז משהו מקבל אוכל.

דוגמא: במערכת החלפת הקשר, אז משהו יכול לגשת למקור מידע.

- משהו טוב יקרה לכולם - Fairness

דוגמא: במערכת אשר מספקת אוכל לאנשים, אז כולם מקבלים מספיק אוכל. דוגמא: במערכת החלפת הקשר, אז כל אחד יכול לגשת למקור מידע כל הזמן.

דוגמא: שני האורות ירוקים ברמזור

נכתב ע"י צבי מינץ zvimints@gmail.com

מערכת בסיסית מכילה:

- v_1, \dots, v_n קודקודים אשר מיוצגים בn .1 . באופן לא מפורש - Implicit יש n קודקודים ממוספרים מ-1 עד n כאשר n הוא מספר ידוע.
 - Q_i יש מצב פנימי ע בכל זמן, לכל קודקוד v_i יש מצב פנימי .2

Schedule: רצף של שליחות וקבלות המהוות את האירועים במערכת.

Admissible Schedule: רצף הגיוני, כלומר אין קבלת הודעה לפני שהיא נשלחת.

. מערכת אשר מתאר את מצב המערכת ℓ זה וקטור של n כניסות אשר מתאר את מצב המערכת כאשר לאחר סדרת אירועים נקבל את הריצה הבאה:

 $C_0, \Phi_1, C_1, \Phi_2, \dots$

.כאשר Φ_i הוא אירוע כלשהו

םסויים. Schedule-מה כל קודקוד רואה מה – Local View

בהינתן מתזמן S נגדיר S להיות נקודת המבט של קודקוד לאורך המערכת. $S = S_{13}, S_{23}, S_{31}, r_{13}, S_{32}, r_{31}, r_{23}, S_{13}, S_{21}, r_{31}, r_{12}, r_{32}$ לדוגמא, בהינתן רצף

$$S|1 = s_{13}, r_{13}, s_{13}, r_{12}$$

$$S|2 = s_{23}, r_{23}, s_{21}$$

$$S|3 = s_{31}, s_{32}, r_{31}, r_{31}, r_{32}$$

אבחנה: S|i רואה את כל מה ש-S

תרגיל לדוגמא

יהיו p_1,\dots,p_n קודקודים במערכת שליחת הודעות המריצים את האלגוריתם הבא:

: i = 1 אם

 p_2 -שלח '1' ל המתן לקבל הודעה ממנו אם קיבלת ≥ 5 החזר 1 אחרת, החזר 0.

:אחרת

 p_{i-1} – המתן לקבל הודעה

(תהליך אחרון) אם i=n אם

 p_{i+1} – שלח הודעה ל

 p_{i+1} – המתן לקבל הודעה מ

שלח אותה ל p_{i-1} בתוספת 1

עבור השאלה הזו: (מערכת סינכרונית)

 p_1 מחזיר – Safety – קודקוד

 $^{\prime}$ 1' מחזיר – p_1 משהו שאינו – Liveness

י1י כולם מחזירים - Fairness

T- זמו הסיבוב

מודל הרצה לאלגוריתם:

1. מערכת סינכרונית, הודעה אחת הולכת לאיבוד.

Safety אם הודעה אבדה בדרך מהקודקוד הראשון לקודקוד החמישי אז הקודקוד הראשון יקבל5>5 ולכן ואין – Safety שם ההודעה מהקודקוד הראשון לשני אבדה אז כולם תקועים – Liveness

לא מתקיים אז Fairness לא מתקיים אל Liveness

2. מערכת אסינכרונית – כל ההודעות מגיעות.

1 < 5 - לא, כי אם הטיימר של p_2 פקע , אז הוא ישלח לקודקוד הראשון 1^\prime י ו- 3

.1 גם אם הטיימרים של כולם יפקעו אז p_n לא יחכה ולכן יחזיר – Liveness

Safety כמו – Fairness

נכתב ע"י צבי מינץ zvimints@gmail.com

בעיית 2 הגנרלים

מודל: שני יחידות חישוב דטרמיניסטיות אשר מדברות במערכת סינכרונית מעל מערכת שליחת הודעות לא אמינה (הודעות יכולות ללכת לאיבוד)

 $\{0,1\}$ קלט: כל יחידת חישוב מתחילה עם קלט מהקבוצה

 $\{0,1\}$ פלט: כל אחד מיחידות החישוב צריך להוציא פלט

הסכמה: שני יחידות החישוב צריכות להסכים על <u>אותו</u> פלט

נכונות: אם הקלט זהה אז הפלט צריך להיות זהה לקלט במידה והודעות לא הולכות לאיבוד, אחרת, להחזיר 0 או 1 מוסכמים.

תקלות: הודעה יכולה ללכת לאיבוד

סיום: שני יחידות החישוב צריכים להסכים בזמן סופי

הבעיה אינה פתירה

שיטת הוכחה: להניח שקיים אלגוריתם ולהראות סדרת הרצה הזהות זו לזו שתביא לסתירה סימונים:

E' ו-E' הרצה E' לא ניתנת להבדל מהרצה E' עבור קודקוד v אם v רואה את אותו הקלט ואת אותם ההודעות ב-E' אם E' לא ניתנת להבדל עבור קודקוד v, אזי v מבצע את אותה סדרה של פעולות (בגלל שזה דטרמניסטי) בשני E או לחלופין E' או לחלופין E' או לחלופין E'

עבור קודקוד v כלשהו $i\in\{1,...,k\}$ עבור $E_{i-1}\sim_v E_i$ כך ש- $E_0,E_1,E_2,...E_k$ עבור קודקוד v כלשהו (בגלל שזה דטרמיניסטי) אזי מתקיים כי כל הקודקודיים מוצאים אותו פלט בכל ההרצאות (בגלל שזה דטרמיניסטי)

הוכחה:

נניח בשלילה כי קיים אלגוריתם סופי דטרמיניסטי הפותר את הבעיה ב-T סיבובים נשקול את רצץ ההרצות Executions הבא:

Nodes always decide after exactly T rounds

Execution E_0 : Both inputs are 0, no messages are lost.

Execution E_1 : One of the messages in round T is lost.

...

Execution E_{2i} : Both messages in round T+1-i are lost.

Execution *E*_{2i+1}: One of the messages in round T-i is lost.

...

Execution E2T: Both inputs are 0, no messages are delivered. All outputs are 0 due to similarity.

Execution E_{2T} : Both inputs are 0, no messages are delivered. All outputs are 0 due to similarity.

Execution E_{2T+1} : Input of v_1 is 0 but input of v_2 is 1. No messages are delivered.

Execution E_{2T+2} : Both inputs are 1, no messages are delivered.

• • •

Execution $E_{2T+2i+1}$: Exactly one of the messages in round i is delivered.

Execution $E_{2T+2i+2}$: Both messages in round i are delivered.

. . .

Execution E_{4T+2} : Both messages in round T are delivered. Decision must be 1 - a contradiction.

נכתב ע"י צבי מינץ

zvimints@gmail.com

לסיכום:

- We start with an execution in which both nodes have input 0 and no messages are lost: by validity both nodes must decide 0.
- We remove messages one by one to obtain a sequence of executions such that consecutive
 executions are similar.
- From an execution with no messages delivered and both inputs 0, we can get to an execution with no messages delivered and both inputs 1 (in two steps).
- By adding back messages one by one, we obtain an execution in which both nodes have input 1 and no messages are lost: by validity both nodes must decide 1 ⇒ contradiction!
- Not hard to generalize to an arbitrary number *n*>1 of nodes.

הרצאה 3 – בעיית 2 הגנרלים רנדומלי

תזכורת: בעיית 2 הגנרלים יכולה להיות פתירה אם:

- נאפשר לאחד מהצדדים להטיל מטבע •
- נקבל גם פתרון עם הסתברות ϵ להסכמה •

אלגוריתם "הרמות" - Level Algorithm:

- 1. שני הרמות מאותחלות ל-0
- 2. בכל ראונד: שני הקודקודים שולחים את הרמה שלהם לשני
- l_u =-ט אחר מעדכן את מעדכן אזי u אזי אשר עם רמה u אזי u מעדכן את מקודקוד .3 מאפר מקודקוד u אשר עם רמה u אזי u מעדכן את הרמה שלו ל-= .3 $\max\{l_u,l_v+1\}$

אבחנה: הרמות בחיים לא יורדות

תכונות

טענה: בכל הזמנים, כמות הרמות שונה לכל היותר ב-1

הוכחה: באינדוקציה על מספר הסבבים

בהתחלה $l_{v}=l_{v}=0$ ולכן הבסיס מתקיים.

t+1-נניח כי הטענה נכונה עבור סיבוב t ונשקול את הסיבוב

אם $l_u=l_v$ אזי הטענה מתקיימת כי הרמה של כל קודקוד עולה לכל היותר ב-1 ובחיים לא יורדת. ורמה של כל קודקוד עולה על נניח בה״כ כי $l_u=l_v+1$, לא משנה מה קורה בסיבוב t+1 אזי t_u לא משתנה, אם t_u מקבל הודעה t_u מקודקוד t_u אזי $t_u=l_v+1$. הרמה עולה ל- $t_u=l_u+1$

טענה: אם כל ההודעות מתקבלות אזי הרמה של שני הקודקודיים זהה ושווה למספר הסיבובים

הוכחה: באינדוקציה על מספר הסיבובים

עבור שלב הבסיס זה מתקיים באופן טריוויאלי

t+1-הסיבוב ה-רt+1 את הסיבוב ה-ונשקול את לאחר וניח כי הטענה נכונה ו $l_u=l_v=t$

 $l_u'=l_u+1=t+1$ יהי $l_v'=l_v+1=t+1$ להיות הרמה של הקודקודים u,v לאחר הסיבוב הt+1, לפי ההגדרה של האלגוריתם אזי כנדרש כנדרש

.טענה: הרמה l_u של קודקוד u שווה ל-0 אם״ם u לא מקבל אף הודעה u

הוכחה: אם u לא מקבל אף הודעה אזי הרמה לא משתנה ולכן זה נשאר 0, ולכן נניח כי בנקודה מסויימת הוא מקבל הודעה עם u הרמה u מקודקוד v.

בבגלל שהרמה בחיים לא קטנה ומתחילה ב-0 אז היא לפחות 0, כלומר $l_v \geq 0$ ולכן מהגדרת האלגוריתם הוא מעדכן את בבגלל שהרמה בחיים לא יורדת $l_u = \max\{l_u, l_v + 1\} > 0$ הרמה $l_u = \max\{l_u, l_v + 1\}$

לסיכום:

- 1. בסוף האלגוריתם ההפרש רמות לכל היותר 1
- r אם כל ההודעות מגיעות, אזי כל הרמות שוות למספר הסיבובים 2.
- אחת הודעה אחת מקבל לפחות הודעה אחת u הרמה של קודקוד u היא לפחות u היא לפחות הודעה אחת.

אלוגריתם רנדומי לפתרון בעיית הגנרלים:

- נניח כיuיכול להשתמש ברנדומזציה \bullet
- נניח שהקלטים יכולים להיות רק 0 או 1

נכתב ע"י צבי מינץ

zvimints@gmail.com

- באופן אחיד $t \in \{1, ..., r\}$ בוחר מספר u בוחר 1.
- עבור r צעדים ("Level Algorithm") עבור עבור "הרמה" את האלגוריתם "הרמה" עבור u צעדים מריצים את האלגוריתם, בכל הודעה שני הצדדים מוסיפים גם כן את הקלט שלהם וקודקוד u מציין גם כן את u
 - 3. כל קודקוד פולט 1 אם:
 - הה קלט זהם לויש להם קלט t ויש להם קלט זהה 1.
 - 2. שני הקלטים זהים ל-1
 - t הרמה של הקודקוד הוא לפחות 3.
 - 4. הקודקוד פולט 0

0 טענה: אם אחד הקלטים הוא 0 אז שני הקודקודים פולטים

הוכחה: נובע ישירות מהאלגוריתם

טענה: נניח שאחד הקלטים הוא 1

1. אם אף הודעה לא הולכת לאיבוד אזי שני הקלטים יפלטו 1

 $\{l_u, l_v\} = \{t - 1, t\}$ שני הקודקודים פולטים את אותו הערך אלא אם כן

u מחליט u בהתאמה, לפי ההגדרה של האלגוריתם, u מחליט u מחליט u נניח תחילה כי

.1 אזי v מכיר את t ואת 2 הקלטים אשר הם 1, ולכן הוא מחליט $l_v = t > 0$ בגלל ש-

כעת, נניח כי $l_u, l_v \geq t$ אזי שני מכירים את $l_u, l_v < t$ אזי שני מכירים את $l_u, l_v < t$ אזי שני מכירים את $l_u, l_v < t$ אזי שני מכירים את ולכן ופלטו 1. קבלנו כי אם אף הודעה לא הולכת לאיבוד אזי $l_u = l_v = r \geq t$ ולכן יפלטו 1. t

 $1-rac{1}{r}$ **טענה:** האלגוריתם מגיע להסכמה עם הסתברות של לפחות

הוכחה:

תזכורת: ההפרש רמות הוא לכל היותר 1

בגלל שהרמה נקבעת רק לפי כמות ההודעות שמגיעות/הולכות לאיבוד, אזי ה״אויב״ יכול לקבוע שהם יהיו שונות, ולכן בגלל שהרמה נקבעת רק לפי כמות ההודעות שמגיעות/הולכות לאיבוד, אזי ה״אויב״ יכול לקבוע שהם יהיו שונות, ולכן $i \in \{1, ..., r\}$ עבור $\{l_u, l_v\} = \{i-1, i\}$

בגלל שה"אויב" לא מכיר את t אזי ההסתברות $\{l_u,l_v\}=\{t-1,t\}$ הינה המכיר את אזי ההסתברות בגלל שה"אויב" בא

 $rac{1}{r}$ לפי שני הטענות הקודמות, הקודקודים מגיעים להסכמה בכל שלב אחר ולכן נוכל להסיק כי ההסתברות לכשלון הינה

ח<u>סם תחתון:</u>

'השלים