## Електромагнитни явления

Тестовите задачи носят по 1точка 1. На фигурата са показани два точкови заряда с големини q и 4q. Отрицателният заряд A отблъсква заряда B със сила  $F_1$  = 1 N. Какъв е знакът на заряда B и големината на силата  $F_2$ , с която зарядът Bдейства на A? а) положителен, 4 N б) отрицателен, 4 N в) положителен, 1 N г) отрицателен, 1 N 2. Точков заряд създава електростатично поле, чийто интензитет на разстояние 4 cm от заряда е 800 N/C. Колко е интензитетът на полето на 2 см от заряда? a) 3200 N/C б) 1600 N/C в) 400 N/C г) 200 N/C 3. Наелектризирано топче се намира в точка от електростатично поле с потенциал  $\phi = 10 \text{ V}$ . Колко кулона е електричният заряд на топчето, ако електричната му потенциална енергия е  $W = -5.10^{-8} \, \mathrm{J}.$ в) 5.10<sup>-7</sup> С a)  $-5.10^{-7}$  C б)  $-5.10^{-9}$  С г) 2.10<sup>8</sup> С 4. На фигурата са показани три точки от повърхността на зареден проводник. Най-много некомпенсирани електрични заряди се натрупват около точка: a) A  $\delta$ ) B $\mathbf{B}$ ) Cг) Зарядите винаги се разпределят равномерно върху повърхността на проводника, независимо каква е нейната форма. 5. Суперкондензатор с капацитет  $C = 200 \; \mathrm{F}$  е зареден до напрежение  $U = 2.5 \; \mathrm{V}$ . Колко е зарядът q на б) 80 С г) 500 C кондензатора? a) 0.0125 C в) 200 C 6. Две незаредени метални кубчета се допират едно до друго. Към кубчетата се доближава положително заредено кълбо (вж. фигурата), без да се докосва до тях. В присъствие на кълбото кубчетата се разделят. Как са заредени двете кубчета след разделянето? а) 1 – отрицателно, 2 – не е заредено б) 1 – отрицателно, 2 – положително в) 1 – положително, 2 – отрицателно; г) 1 – не е заредено, 2 – не е заредено. 7. Частица с положителен електричен заряд се движи със скорост v в магнитно поле с индукция B. Коя от фигурите представя правилно правилото на дясната ръка, по което се определя посоката на магнитната сила F, действаща на частицата?

 $\Gamma$ ) Нито една от тях. Магнитната сила винаги е по посока на магнитната индукция B.

8. Магнитната индукция на дадено разстояние от дълъг праволинеен проводник, по който тече ток, e B = 0.16 T. Колко ще стане големината на магнитната индукцията на това разстояние, ако токът през проводника нарасне 2 пъти? a) 0,04 T б) 0,08 Т в) 0,32 T г) 0,64 T

9. Доближаваме силен магнит към топчето от фигурата. То се намагнитва и се привлича от магнита. При отдалечаване на магнита топчето се размагнитва напълно. От опита може да направим извода, че топчето е от:



- а) феромагнитен материал
- г) парамагнитен материал
- в) диамагнитен материал

б) сегнетоелектричен материал

- **10.** Частица с отрицателен електричен заряд се движи по посока на силовите линии на еднородно електростатично поле. Кинетичната енергия на частицата:
- а) намалява
- б) нараства
- в) не се променя
- г) Не е възможно частица с отрицателен заряд да се движи в тази посока.
- **11.** При опита на Фарадей, показан на фигурата, в намотка 2 се индуцира ток само ако:
- а) двете намотки са с еднакъв брой навивки;
- б) по намотка 1 тече силен постоянен ток;
- в) токът в намотка 1 се променя;
- г) в желязната сърцевина е създадено магнитно поле, което не се променя с течение на времето.
- **12.** През консуматор със съпротивление  $R=100~\Omega$  тече променлив ток с амплитуда  $I_{\rm max}=5~{\rm A.}$  Средната мощност P на тока през консуматора е:
- a) 2500 W
- б) 1250 W
- в) 500 W
- г) 20 W
- **13.** Безжичната интернет връзка (Wi-Fi) се осъществява посредством:
- а) микровълни
- б) ултразвук
- в) инфрачервени лъчи
- г) средни (радио) вълни
- 14. Частица с отрицателен заряд  $q = -25 \,\mu\mathrm{C}$  се намира в еднородно електростатично поле. На частицата действа електрична сила с големина  $F = 8.10^{-6} \,\mathrm{N}$ .
- а) Направете чертеж, от който да се вижда посоката на силата F, действаща на частицата....2т
- б) Определете интензитета E на електростатичното поле....2 Решение:
- **15.** На входа на идеален трансформатор се подава напрежение от мрежата (ефективна стойност на напрежението  $U_1 = 220 \text{ V}$ ). Броят на навивките във вторичната намотка на трансформатор е 5 пъти помалък от броя на навивките в първичната намотка. Определете:
- а) ефективната стойност  $U_2$  на напрежението на изхода на трансформатора;...2т Решение:
- б) ефективната стойност  $I_1$  на тока на входа на трансформатора, ако ефективната стойност на тока на изхода на трансформатора е  $I_2$  = 2 A. ...2т Решение

| 0 – 6 точки   | Слаб 2        |
|---------------|---------------|
| 7 – 8 точки   | Среден 3      |
| 9 – 11 точки  | Добър 4       |
| 12 – 14 точки | Много добър 5 |
| 15 – 17 точки | Отличен 6     |

