Hijerahija konsenzusa Deo 2

FIFO (Red)

FIFO Objekt Q

enq(Q,x)

deq(Q) = a

Poseban slučaj: prazan red

$$rep$$
 glava $deq(Q) = \bot$

Teorema: FIFO objekt ima broj konsenzusa 2

Dokaz:

- Možemo rešiti WF (wait-free) konsenzus korišćenjem FIFO (i read/write) objekata za 2 procesa
- 2. **Ne možemo** rešiti WF konsenzus korišćenjem FIFO (i read/write) objekata za 3 ili više procesa

Dokaz - Deo 1

Jedan algoritam WF konsenzusa za 2 proc korišćenjem FIFO objekta (i read/write objekata)

rep glava Na početku:

Deljena memorija

Lokalne promenljive

$$X_{i}, Y_{i} \in \{0,1\}$$

 X_i :početne vred za problem konsenzusa

Y; :vrednosti rezultata za problem konsenzusa

Deljena memorija

Početne vrednosti

Kod za procesor

 p_{i} $i \in \{0,1\}$

```
\begin{aligned} \textit{prefer}[i] &\leftarrow x_i \\ &\text{If } \textit{deq}(Q) = 0 & \textit{//da li sam ja prvi?} \\ &\text{then } y_i \leftarrow x_i & \textit{//da, izaberi moju vred} \\ &\text{else } y_i \leftarrow \textit{prefer}[1-i] &\textit{//ne, izaberi vred} \\ &\text{drugog procesora} \end{aligned}
```

Napomena: ovaj algoritam koristi FIFO objekt i read/write objekte

Primer izvršenja:

Deljena memorija

Predpost. da P₁ prvi pristupa redu

Predpost. da P2 drugi pristupa redu

odluči se za vred. drugog procesora

Dokaz - Deo 2

Dokazaćemo da:

Ne postoji algoritam WF konsenzusa koji koristi samo FIFO i read-write objekte za $n \ge 3$

Razmotrimo tri procesora (isti dokaz se generalizuje za više)

Postoji neka bivalentna početna konfiguracija (ovo smo dokazali ranije)

Pokazaćemo da svaka bivalentna konfiguracija ima neki procesor koji nije kritičan

Zbog toga, možemo konstruisati beskonačno izvršenje sa bivalentnim konfiguracijama gde se konsenzus nikada ne postiže

Predpost. radi kontradikcije da su svi procesori kritični

Ne može biti da svi imaju istu valencu

(v = 0 ili 1)

Moraju postojati dva procesora sa različitim valencama

Deljena memorija

Red	Q_1
•	
Red	Q_2
•	
Red	Q_z
: Read/Write Objekti	

Sluč.: procesori pristupaju različitim objektima

0 - valentna bivalentna 1 - valentna univalentna

Deljena memorija

Dva moguća izvršenja

Deljena memorija

Sluč.: procesori pristupaju istom objektu

Napomena: da je objekt bio čitan/pisan, analiza bi bila ista kao u slučaju sa read/write objektima

Podslučaj: deq/deq

Red Q pre operacija:

Podslučaj: deq/enq

Predpost. Q nije bio prazan

Predpost. da je Q bio prazan

Podslučaj: enq/enq

Predpost. Q nije bio prazan

Objašnjenje

Neka odluka će biti doneta pošto je algoritam konsenzusa oslobođen-čekanja

 p_0 će se odlučiti za iste vrednosti, pošto p_0 vidi iste vred. u deljenoj memoriji u oba izvršenja

U svim slučajevima smo dobili kontradikciju; Zbog toga, postoji procesor koji nije kritičan

Zbog toga, možemo konstruisati izvršenje

Početna konfiguracija

Konsenzus se nikada ne može postići

Compare&Swap

```
Compare&Swap(X,A,B)
\{ \text{ Temp} \leftarrow X; \\ \text{ If } X==A \text{ then } X \leftarrow B; \\ \text{ Return Temp; } \}
```

Deljena memorija

Teorema: Broj konsenzusa za Compare&Swap objekt je ∞

Dokaz:

Sa *n* procesa, za bilo koje *n*, možemo rešiti WF konsenzus koristeći Compare&Swap objekt (i read/write objekte)

Jedan algoritam WF konsenzusa za n procesora sa korišćenjem C&S objekta

Lokalna memorija

Kod za procesor

 $p_i \qquad i \in \{0,1\}$

```
v_i \leftarrow \textit{Compare \& Swap}(\textit{First}, \bot, x_i)

If v_i == \bot //da li sam ja prvi?

then y_i \leftarrow x_i //da, izaberi moju vred

else y_i \leftarrow v_i //ne, izaberi vrednost

od prvog procesa

koja je smeštena u First
```

Napomena: ovaj algoritam koristi compare&swap i read/write objekte

Primer izvršenja:

Lokalna memorija

$$p_2 \left(\begin{array}{c} x_2 = 0 \\ y_2 \end{array} \right)$$

Deljena memorija

Predpost. da se p_2 izvršava prvi

Lokalna memorija

Predpost. da se p, izvršava prvi

Lokalna memorija

Shvata da je prvi, odlučuje se za svoju vred 40

Predpost. da se p_1 izvršava drugi

Lakalna memorija

Predpost. da se p_1 izvršava drugi

Lokalna memorija

Shvata da nije prvi, odlučuje se za vred First⁴²

Slično za p_0 Konsenzus je Lokalna memorija postignut

Shvata da nije prvi, odlučuje se za vred First43

Ovaj algoritam je WF, pošto posle završetka Compare&Swap operacije, svaki procesor odlučuje (bez razmatranja šta drugi procesori rade)

Hijerahija konsenzusa Deo 3

Broj konsenzusa

Broj konsenzusa za objekt datog tipa:

Maksimalan broj procesa za koje se objekt može koristiti za rešavanje problema WF konsenzusa (zajedno sa read/write objektima)

Tip objekta Broj konsenzusa Read/Write **FIFO** ∞ Compare&Swap (beskonačno)

Simulacija:

Objekt tipa B

Objekt tipa A

Objekt tipa A

Read/Write objekt

Objekt tipa A simulira objekt tipa B

Teorema: Objekt tipa A sa brojem konsenzusa n ne može da simulira drugi objekt tipa B sa brojem konsenzusa m > n

Dokaz: Jer bi inače, objekt tipa A imao broj konsenzusa *m*

Univerzalnost

Univerzalni objekt:

može da simulira na WF način bilo koji proizvoljni objekt

Možemo da pokažemo:

Objekti sa brojem konsenzusa *n* mogu da simuliraju na WF način bilo koji proizvoljan objekt za do *n* procesora

Compare&Swap

Simulacija bez blokiranja (Non-Blocking)

Simulacija bez blokiranja (Non-Blocking)

Glava[i] je pokazivač za i-ti proces

Polje after je objekt konsenzusa sa CN = n Procesi se bore da se ulančaju na vrh liste 53

Simulacija oslobođena čekanja (Wait-free)

Najava[i] je pokazivač za i-ti proces

Prioritet ima proces p_i , i = (seqmax + 1) % nAko čeka, svi mu pomažu, inače pomažu sebi 54