RÉPUBLIQUE ISLAMIQUE DE MAURITANIE MINISTÈRE DE L'ÉDUCATION NATIONALE DIRECTION DES EXAMENS ET DE L'ÉVALUATION SERVICE DES EXAMENS

Série : Sciences de la nature Épreuve : Mathématiques

Durée : 4heures Coefficient : 6

Baccalauréat 2011 session Complémentaire

Exercice 1 (3 points)

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte

1) Soit f une fonction définie et continue sur \mathbb{R} vérifiant pour tout x, réel f(4-x)+f(x)=8

et $\lim_{x\to +\infty} f(x) = 5$, soit (C) la courbe de f dans un repère orthonormé.

	Question	Réponse A	Réponse B	Réponse C
1	La courbe (C) admet	Un centre de symétrie $\Omega(-2,4)$	Un centre de symétrie $\Omega(2,4)$	Un axe de symétrie d'équation x=2
2	La courbe (C) admet une asymptote d'équation	x = 5	Y = 5	Y=5x
3	$\lim_{x\to-\infty}f(x)$ égale	-5	3	-∞
4	Si f est strictement croissante sur l'intervalle [2, +∞[,alors elle est	Croissante sur R	Décroissante sur]−∞,2]	Non monotone sur R

2)Une usine produit des bouteilles de 75 cl d'eau minérale. Soit X la variable aléatoire ayant pour valeurs les quantités possibles d'eau dans une bouteille expérimentée en centilitre. On note p_i la probabilité que la quantité d'eau dans une bouteille soit x_i centilitres. On donne le tableau suivant :

x_i	74,8	74,9	75	75,1	75,2
p_i	1	3	11	4	1
	20	20	20	20	$\overline{20}$

	Question	Réponse A	Réponse B	Réponse C
1	Si on choisit au hasard une bouteuille ,la probabilité qu'elle soit au moins 75 cl est :	$\frac{1}{20}$	$\frac{1}{5}$	$\frac{3}{4}$
2	L'espérance mathématique de la variable X est étale à	75,001	75	74,99

Recopie sur la feuille et complète le tableau suivant en choisissant la bonne réponse.

Question	1	2	3	4	5	6
Réponse						

Exercice 2 (4 points)

Pour tout nombre complexe z on pose $f(z) = z^2 - 2z$

1a) Calculer f(a) et f(b)

b) En déduire les solutions, dans \mathbb{C} , des équations $z^2 - 2z + 2 = 0$ et $z^2 - 2z + 4 = 0$

2. On pose $c = ab = (1+i)(1+i\sqrt{3})$

- a) Écrire a et b sous forme trigonométrique et exponentielle.
- b) Écrire a et b sous forme algébrique et exponentielle
- c) En déduire les valeurs exactes de $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$

Exercice 3 (4 points)

On définit une suite (U_n) pour tout entier naturel non nul n par $:\!U_n=\frac{n^2}{2^n}$

- 1.a) Calculer les termes : U₂ ; U₃ ; U₄ et U₅
- b) Montrer que (U_n) est positive, non monotone et quelle est ni arithmétique, ni géométrique.
- 2.a) Montrer que pour tout entier naturel non nul n on a $:\frac{U_{n+1}}{U_n} = \frac{1}{2} (\frac{n+1}{n})^2$
- b) Prouver, pour tout entier naturel $n \ge 5$, on a : $0 < \frac{U_{n+1}}{U_n} \le \frac{3}{4}$
- 3.a) Déterminer le sens de variation de la suite (U_n) à partir du rang 5
- b) Que peut -on en déduire pour la suite ?
- 4.a) Montrer que pour tout naturel $n \ge 5$, on a : $0 < U_n < \frac{25}{32} (\frac{3}{4})^{n-5}$
- b) En déduire $\lim_{n\to+\infty} U_n$

.Exercice 3 (9 points)

Soit fla fonction définie sur $]0, +\infty[$ par : $f(x)=2x-1+\ln x$

Soit C sa courbe représentative dans un repère orthonormé $(0; \vec{\iota}, \vec{j})$ d'unité 1cm

- 1. Calculer $\lim_{x\to 0^+} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.
- 2.a) Calculer f'(x) et dresser le tableau de variation de f
- b) Démontrer que f réalise une bijection de $]0,+\infty[$ sur un intervalle J que l'on déterminera .
- c) Dresser le tableau de variation de f^{-1} réciproque de f
- 3. Montrer que l'équation f(x)=0 admet une unique solution α .Vérifier que $0,6<\alpha<0,7$
- 4a) Préciser les points de (C) en lequel s la tangente est parallèle à la droite d'équation y=3x
- b) construire la courbe (C).
- 5a) En utilisant une intégration par parties, calculer $\int_{\alpha}^{1} \ln t dt$
- b) En déduire, en fonction de α , l'aire du domaine plan limité par la courbe $\ (C\)$, l'axe des abscisses et les droites d'équation $x=\alpha$ et x=1
- 6.On considère la fonction g définie sur \square par : $g(x) = x 1 + 2e^x$. Soit Γ sa courbe représentative dans le repère précédant
- a) En utilisant le tableau de variation de f, dresser le tableau de variation de g.
- b) Calculer $\lim_{x\to\infty} (g(x)-(x-1))$ et interpréter graphiquement.
- c) Calculer $\lim_{x\to +\infty} \frac{g(x)}{x}$ et interpréter graphiquement.
- d) Déterminer en fonction de α l'abscisse du point d'intersection de la courbe Γ de g avec l'axe des abscisses
- e) Construire I