Diode Circuits: Part 1

M. B. Patil
mbpatil@ee.iitb.ac.in
www.ee.iitb.ac.in/~sequel

Department of Electrical Engineering Indian Institute of Technology Bombay

* A diode may be thought of as the electrical counterpart of a directional valve ("check valve").

- * A diode may be thought of as the electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.

- * A diode may be thought of as the electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.
- * Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.

- * A diode may be thought of as the electrical counterpart of a directional valve ("check valve").
- * A check valve presents a small resistance if the pressure p > 0, but blocks the flow (i.e., presents a large resistance) if p < 0.
- * Similarly, a diode presents a small resistance in the forward direction and a large resistance in the reverse direction.
- * Note: In a practical diode, the resistance $R_D = V/i$ is a nonlinear function of the applied voltage V. However, it is often a good approximation to treat it as a constant resistance which is small if V is positive and large if V is negative.

* Since the resistance is different in the forward and reverse directions, the i-V relationship is not a straight line.

- * Since the resistance is different in the forward and reverse directions, the i-V relationship is not a straight line.
- * Examples:

- * Since the resistance is different in the forward and reverse directions, the i-V relationship is not a straight line.
- * Examples:

* Forward bias: $i > 0 \text{ A}, V = 0 \text{ V}, \rightarrow \text{S}$ is closed (a perfect contact).

- * Forward bias: $i > 0 \, \text{A}, \ V = 0 \, \text{V}, \rightarrow \text{S}$ is closed (a perfect contact).
- * Reverse bias: $V < 0 \, \text{V}$, $i = 0 \, \text{A} \rightarrow \text{S}$ is open (a perfect open circuit). The diode is said to "block" the reverse applied voltage.

- * Forward bias: $i > 0 \, \text{A}, \ V = 0 \, \text{V}, \rightarrow \text{S}$ is closed (a perfect contact).
- * Reverse bias: $V < 0 \,\text{V}$, $i = 0 \,\text{A} \rightarrow \text{S}$ is open (a perfect open circuit). The diode is said to "block" the reverse applied voltage.
- * The actual values of V and i for a diode in a circuit get determined by the i-V relationship of the diode and the constraints on V and i imposed by the circuit.

$$\begin{split} i &= \mathit{I}_{\mathrm{s}} \left[\exp \left(\frac{\mathit{V}}{\mathit{V}_{\mathit{T}}} \right) - 1 \right] \text{, where } \mathit{V}_{\mathit{T}} = \mathit{k}_{\mathit{B}} \mathit{T} / \mathit{q} \,. \\ \mathit{k}_{\mathit{B}} &= \mathsf{Boltzmann's constant} = 1.38 \times 10^{-23} \; \mathit{J/K} \,. \\ \mathit{q} &= \mathsf{electron \ charge} = 1.602 \times 10^{-19} \; \mathsf{Coul} \,. \\ \mathit{T} &= \mathsf{temperature \ in} \; {}^{\circ}\mathit{K} \,. \end{split}$$

 $V_T \approx 25 \text{ mV}$ at room temperature (27 °C).

$$i=I_s\left[\exp\left(rac{V}{V_T}
ight)-1
ight]$$
, where $V_T=k_BT/q$. $k_B=$ Boltzmann's constant $=1.38\times 10^{-23}~J/K$. $q=$ electron charge $=1.602\times 10^{-19}$ Coul. $T=$ temperature in $^\circ K$. $V_T\approx 25~\text{mV}$ at room temperature (27 $^\circ \text{C}$).

$$i = I_s \left[\exp\left(\frac{V}{V_T} \right) - 1 \right]$$
, where $V_T = k_B T/q$. $k_B = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \ J/K$. $q = \text{electron charge} = 1.602 \times 10^{-19} \ \text{Coul}$. $T = \text{temperature in } {}^{\circ}K$. $V_T \approx 25 \ \text{mV}$ at room temperature (27 ${}^{\circ}\text{C}$).

- * Is is called the "reverse saturation current."
- * For a typical low-power silicon diode, I_s is of the order of $10^{-13}~A$ (i.e., $0.1~{\rm pA}$).

$$i=I_{\rm s}\left[\exp\left(rac{V}{V_T}
ight)-1
ight]$$
, where $V_T=k_BT/q$. $k_B={
m Boltzmann's\ constant}=1.38\times 10^{-23}\ J/K$. $q={
m electron\ charge}=1.602\times 10^{-19}\ {
m Coul}$. $T={
m temperature\ in\ }^{\circ}K$. $V_T\approx 25\ {
m mV\ at\ room\ temperature\ (27\ ^{\circ}C)}$.

- * Is is called the "reverse saturation current."
- * For a typical low-power silicon diode, I_s is of the order of 10^{-13} A (i.e., 0.1 pA).
- * Although I_s is very small, it gets multiplied by a large exponential factor, giving a diode current of several mA for $V \approx 0.7 \ V$ in a silicon diode.

$$i=I_s\left[\exp\left(\frac{V}{V_T}\right)-1\right]$$
, where $V_T=k_BT/q$. $k_B=$ Boltzmann's constant $=1.38\times 10^{-23}~J/K$. $q=$ electron charge $=1.602\times 10^{-19}$ Coul. $T=$ temperature in $^{\circ}K$. $V_T\approx 25~{\rm mV}$ at room temperature (27 $^{\circ}$ C).

- * Is is called the "reverse saturation current."
- * For a typical low-power silicon diode, I_s is of the order of 10^{-13} A (i.e., 0.1 pA).
- * Although I_s is very small, it gets multiplied by a large exponential factor, giving a diode current of several mA for $V \approx 0.7 \ V$ in a silicon diode.
- * The "turn-on" voltage (V_{on}) of a diode depends on the value of I_s . V_{on} may be defined as the voltage at which the diode starts carrying a substantial forward current (say, a few mA). For a silicon diode, $V_{on} \approx 0.7 \ V$. For LEDs, V_{on} varies from about 1.8 V (red) to 3.3 V (blue).

M. B. Patil, IIT Bombay

$$\begin{array}{c|c} \vdots \\ + & V \end{array} - \begin{array}{c|c} \vdots \\ + & V \end{array} - \end{array}$$

$$i = \mathit{I}_{\mathit{S}}\left[\exp\left(rac{\mathit{V}}{\mathit{V}_{\mathit{T}}}
ight) - 1
ight]$$
 , where $\mathit{V}_{\mathit{T}} = \mathit{k}_{\mathit{B}}\,\mathit{T}/\mathit{q}$.

Example: $\emph{I}_{s}=1\times10^{-13}$ A, $\emph{V}_{T}=25$ mV.

$$i = I_s \left[\exp\left(\frac{V}{V_T}\right) - 1 \right], \text{ where } V_T = k_B T/q.$$

$$= I_s \left[\exp\left(\frac{V}{V_T}\right) - 1 \right], \text{ where } V_T = k_B T/q.$$

$$= I_s \left[\exp\left(\frac{V}{V_T}\right) - 1 \right], \text{ where } V_T = k_B T/q.$$

V	$x = V/V_T$	e ^x	i (Amp)
0.1	3.87	0.479×10^2	0.469×10^{-11}
0.2	7.74	$0.229{ imes}10^4$	0.229×10^{-9}
0.3	11.6	$0.110{ imes}10^6$	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	$0.251{ imes}10^{9}$	0.251×10 ⁻⁴
0.6	23.2	$0.120{ imes}10^{11}$	0.120×10^{-2}
0.62	24.0	0.260×10^{11}	0.260×10^{-2}
0.64	24.8	$0.565{ imes}10^{11}$	0.565×10^{-2}
0.66	25.5	$0.122{ imes}10^{12}$	0.122×10^{-1}
0.68	26.3	$0.265{ imes}10^{12}$	0.265×10^{-1}
0.70	27.1	0.575×10^{12}	0.575×10^{-1}
0.72	27.8	0.125×10^{13}	0.125

$$\begin{array}{c|c} \vdots \\ + V - \end{array} \qquad \begin{array}{c|c} \vdots \\ + V - \end{array}$$

$$i = \mathit{I}_{\mathit{S}}\left[\exp\left(rac{\mathit{V}}{\mathit{V}_{\mathit{T}}}
ight) - 1
ight]$$
 , where $\mathit{V}_{\mathit{T}} = \mathit{k}_{\mathit{B}}\mathit{T}/\mathit{q}$.

Example: $I_s = 1 \times 10^{-13} A$, $V_T = 25 \text{ mV}$.

V	$x = V/V_T$	e ^x	i (Amp)
0.1	3.87	0.479×10^{2}	0.469×10^{-11}
0.2	7.74	0.229×10^4	0.229×10^{-9}
0.3	11.6	0.110×10^6	0.110×10^{-7}
0.4	15.5	0.525×10^{7}	0.525×10^{-6}
0.5	19.3	0.251×10^{9}	0.251×10^{-4}
0.6	23.2	0.120×10^{11}	0.120×10^{-2}
0.62	24.0	0.260×10^{11}	0.260×10^{-2}
0.64	24.8	$0.565{ imes}10^{11}$	0.565×10^{-2}
0.66	25.5	0.122×10^{12}	0.122×10^{-1}
0.68	26.3	0.265×10^{12}	0.265×10^{-1}
0.70	27.1	0.575×10^{12}	0.575×10^{-1}
0.72	27.8	0.125×10^{13}	0.125

* In many circuits, R_{on} can be neglected (assumed to be $0\,\Omega$) since it is much smaller than the other resistances in the circuit. In that case, the diode in forward conduction can be replaced with simply a battery.

- * In many circuits, R_{on} can be neglected (assumed to be $0\,\Omega$) since it is much smaller than the other resistances in the circuit. In that case, the diode in forward conduction can be replaced with simply a battery.
- * Note that the "battery" shown in the above model is not a "source" of power! It can only absorb power (see the direction of the current), causing heat dissipation.

Diode circuit analysis

* In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.

Diode circuit analysis

- * In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
- * In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.

Diode circuit analysis

- * In DC situations, for each diode in the circuit, we need to establish whether it is on or off, replace it with the corresponding equivalent circuit, and then obtain the quantities of interest.
- * In transient analysis, we need to find the time points at which a diode turns on or off, and analyse the circuit in intervals between these time points.
- * In some diode circuits, the exponential nature of the diode I-V relationship (the Shockley model) is made use of. For these circuits, computation is usually difficult, and computer simulation may be required to solve the resulting non-linear equations.

Case 1: D is off.

Case 1: D is off.

$$V_{AB}=V_{AC}=\frac{3}{9}\times 36=12~V$$
 ,

which is not consistent with our assumption of D being off.

Case 1: D is off.

$$V_{AB}=V_{AC}=\frac{3}{9}\times 36=12~V$$
 ,

which is not consistent with our assumption of D being off.

 \rightarrow D must be on.

Case 1: D is off.

$$V_{AB}=V_{AC}=rac{3}{9} imes36=12~V$$
 ,

which is not consistent with our assumption of D being off.

 $\, \to \! \mathsf{D} \, \mathsf{must be on}.$

Case 2: D is on.

Case 1: D is off.

$$V_{AB} = V_{AC} = \frac{3}{9} \times 36 = 12 \text{ V},$$

 $\label{eq:which is not consistent with our assumption of D being off.} % \[\begin{array}{c} \text{All position} \\ \text$

 $\, \to \! \mathsf{D} \, \mathsf{must be on}.$

Case 2: D is on.

Taking
$$V_C = 0 V$$
,

$$\frac{V_A - 36}{6 \; k} + \frac{V_A}{3 \; k} + \frac{V_A - 0.7}{1 \; k} = 0 \; \text{,} \label{eq:value}$$

$$\rightarrow~V_A=4.47~V,~i=3.77~mA\,.$$

Case 1: D is off.

$$V_{AB} = V_{AC} = \frac{3}{9} \times 36 = 12 \text{ V}$$
 ,

which is not consistent with our assumption of $\ensuremath{\mathsf{D}}$ being off.

 \rightarrow D must be on.

Case 2: D is on.

Taking
$$V_C = 0 V$$
,

$$\frac{V_A - 36}{6 \; k} + \frac{V_A}{3 \; k} + \frac{V_A - 0.7}{1 \; k} = 0 \; , \label{eq:va}$$

 $\to \ V_A = 4.47 \ V, \ i = 3.77 \ mA \, .$

Remark: Often, we can figure out by inspection if a diode is on or off.

- (a) Plot V_o versus V_i for -5 V < $V_i < 5$ V .
- (b) Plot $V_o(t)$ for a triangular input: $-5~V~to~+5~V,~500~Hz~. \label{eq:volume}$

- (a) Plot V_o versus V_i for $-5\ V < V_i < 5\ V$.
- (b) Plot $V_o(t)$ for a triangular input: $-5 \ V \ to \ +5 \ V, \ 500 \ Hz \, .$

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

- (a) Plot V_{o} versus V_{i} for $-5\ V < V_{i} < 5\ V$.
- (b) Plot $V_o(t)$ for a triangular input: $-5 \text{ V to } +5 \text{ V, } 500 \text{ Hz}\,.$

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off. Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1R_1$.

- (a) Plot V_o versus V_i for -5 V < $V_i < 5$ V .
- (b) Plot $V_o(t)$ for a triangular input: -5~V to +5~V, 500 Hz .

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1 R_1$.

Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.

 $\Rightarrow V_{AB} > 1.7 \ V \Rightarrow D_2$ cannot conduct.

- (a) Plot V_o versus V_i for -5 V < $V_i < 5$ V .
- (b) Plot $V_o(t)$ for a triangular input: $-5~V~to~+5~V,~500~Hz~. \label{eq:volume}$

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

Consider D_1 to be on $\rightarrow V_{AB} = 0.7 + 1 + i_1 R_1$.

Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.

 $\Rightarrow V_{AB} > 1.7 \ V \Rightarrow D_2$ cannot conduct.

Similarly, if D_2 is on, $V_{BA} > 0.7 \ V$, i.e., $V_{AB} < -0.7 \ V \Rightarrow D_1$ cannot conduct.

- (a) Plot V_o versus V_i for -5 V < $V_i < 5$ V .
- (b) Plot $V_o(t)$ for a triangular input: -5~V to +5~V, 500 Hz .

First, let us show that D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

Consider D_1 to be on $o V_{AB} = 0.7 + 1 + i_1 R_1$.

Note that $i_1 > 0$, since D_1 can only conduct in the forward direction.

 $\Rightarrow V_{AB} > 1.7 \ V \Rightarrow D_2$ cannot conduct.

Similarly, if D_2 is on, $V_{BA} > 0.7 \ V$, i.e., $V_{AB} < -0.7 \ V \Rightarrow D_1$ cannot conduct.

Clearly, D_1 on $\Rightarrow D_2$ off, and D_2 on $\Rightarrow D_1$ off.

For $-0.7\,V < V_i < 1.7\,V,$ neither D_1 nor D_2 can conduct.

* For $-0.7~V < V_i < 1.7~V$, both D_1 and D_2 are off. \rightarrow no drop across R, and $V_o = V_i$. (1)

* For
$$-0.7 \ V < V_i < 1.7 \ V$$
, both D_1 and D_2 are off.
 \rightarrow no drop across R , and $V_0 = V_i$. (1)

* For
$$V_i < -0.7$$
 V, D_2 conducts. $\rightarrow V_o = -0.7 - i_2 R_2$.
Use KVL to get i_2 : $V_i + i_2 R_2 + 0.7 + Ri_2 = 0$.

Use KVL to get
$$i_2$$
: $V_i + i_2R_2 + 0.7 + Ri_2 = V_i + 0.7$

$$ightarrow i_2 = -rac{V_i+0.7}{R+R_2}$$
 , and $V_o = -0.7-R_2i_2 = rac{R_2}{R+R_2}\ V_i - 0.7rac{R}{R+R_2}$.

Slope
$$\frac{dV_o}{dV_i} = \frac{R_2}{R + R_2} = \frac{0.5 \text{ k}}{1 \text{ k} + 0.5 \text{ k}} = \frac{1}{3}$$
.

* For
$$-0.7 \ V < V_i < 1.7 \ V$$
, both D_1 and D_2 are off.
 \rightarrow no drop across R , and $V_0 = V_i$. (1)

* For
$$V_i < -0.7~V$$
, D_2 conducts. $\to V_o = -0.7 - i_2 R_2$. Use KVL to get i_2 : $V_i + i_2 R_2 + 0.7 + R i_2 = 0$.

$$V_o = -0.7 - R_2 i_2 = \frac{R_2}{R + R_2} V_i - 0.7 \frac{R}{R + R_2}.$$
Slope $\frac{dV_o}{dV_i} = \frac{R_2}{R + R_2} = \frac{0.5 \,\text{k}}{1 \,\text{k} + 0.5 \,\text{k}} = \frac{1}{3}.$

* For
$$V_i > 1.7 \ V$$
, D_1 conducts. $\rightarrow V_o = 0.7 + 1 + i_1 R_1$.

Use KVL to get
$$i_1$$
: $-V_i + i_1R + 0.7 + 1 + i_1R_1 = 0$.

$$\rightarrow i_1 = \frac{V_i - 1.7}{R + R_1}, \text{ and}$$

$$V_{o} = 1.7 + R_{1}i_{1} = \frac{R_{1}}{R + R_{1}}V_{i} + 1.7\frac{R}{R + R_{1}}.$$

$$(3)$$
Since $dV_{o} = R_{1} = 1.5 \text{ k} = 3$

Slope
$$\frac{dV_o}{dV_i} = \frac{R_1}{R + R_1} = \frac{1.5 \text{ k}}{1 \text{ k} + 1.5 \text{ k}} = \frac{3}{5}$$
.

* For
$$-0.7 \ V < V_i < 1.7 \ V$$
, both D_1 and D_2 are off.
 \rightarrow no drop across R , and $V_0 = V_i$. (1)

* For
$$V_i<-0.7$$
 V , D_2 conducts. $\rightarrow V_o=-0.7-i_2R_2$. Use KVL to get i_2 : $V_i+i_2R_2+0.7+Ri_2=0$.

$$ightarrow i_2 = -rac{V_i+0.7}{R+R_2}$$
 , and $V_o = -0.7-R_2i_2 = rac{R_2}{R+R_2} \ V_i - 0.7 rac{R}{R+R_2}$.

Slope
$$\frac{dV_o}{dV_i} = \frac{R_2}{R + R_2} = \frac{0.5 \text{ k}}{1 \text{ k} + 0.5 \text{ k}} = \frac{1}{3}$$
.

* For $V_i > 1.7$ V , D_1 conducts. $\rightarrow V_o = 0.7 + 1 + i_1 R_1$.

Use KVL to get
$$i_1$$
: $-V_i + i_1R + 0.7 + 1 + i_1R_1 = 0$.
 $V_i - 1.7$

$$ightarrow i_1 = rac{V_i - 1.7}{R + R_1}$$
 , and

$$V_o = 1.7 + R_1 i_1 = \frac{R_1}{R + R_1} V_i + 1.7 \frac{R}{R + R_1}.$$
 (3)
Slope $\frac{dV_o}{dV_c} = \frac{R_1}{R + R_1} = \frac{1.5 \text{ k}}{1 \text{ k} + 1.5 \text{ k}} = \frac{3}{5}.$

* Using Eqs. (1)-(3), we plot V_o versus V_i. (SEQUEL file: ee101_diode_circuit_1.sqproj)

Point-by-point construction of V_o versus t:

Two time points, t_1 and t_2 , are shown as examples.

Plot V_o versus V_i for $-5\ V < V_i < 5\ V$.

Plot V_o versus V_i for $-5\ V < V_i < 5\ V\,.$

At what value of V_i will the diode turn on?

At what value of V_i will the diode turn on? In the off state, $V_D=rac{R_1}{R_1+R_2}\;V_i$.

At what value of V_i will the diode turn on?

In the off state,
$$V_D=rac{R_1}{R_1+R_2}\,V_i$$
 .

As V_i increases, V_D increases.

For D to turn on, we need $V_D = 0.7 V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

At what value of V_i will the diode turn on?

In the off state,
$$V_D=rac{R_1}{R_1+R_2}\,V_i$$
 .

As V_i increases, V_D increases.

For D to turn on, we need $V_D = 0.7 \ V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

(SEQUEL file: ee101_diode_circuit_2.sqproj)

Plot V_o versus V_i for $-5\ V < V_i < 5\ V$.

At what value of V_i will the diode turn on? In the off state, $V_D=\frac{R_1}{R_1+R_2}~V_i$. As V_i increases, V_D increases.

For *D* to turn on, we need $V_D = 0.7 \ V$.

i.e.,
$$V_i = \frac{R_1 + R_2}{R_1} \times 0.7 = 1.05 \ V.$$

(SEQUEL file: ee101_diode_circuit_2.sqproj)

Plot V_o versus V_i (Ref: Sedra/Smith).

Plot V_o versus V_i (Ref: Sedra/Smith).

It is easier to find the status (on/off) of each diode w.r.t. V_{o} .

Plot V_o versus V_i (Ref: Sedra/Smith).

It is easier to find the status (on/off) of each diode w.r.t. $V_{\rm o}$.

Plot V_o versus V_i (Ref: Sedra/Smith).

It is easier to find the status (on/off) of each diode w.r.t. V_o .

Plot V_o versus V_i (Ref: Sedra/Smith).

It is easier to find the status (on/off) of each diode w.r.t. V_{o} .

Plot V_o versus V_i (Ref: Sedra/Smith).

It is easier to find the status (on/off) of each diode w.r.t. $V_{\rm o}$.

 D_1 on

M. B. Patil, IIT Bombay

* In the reverse direction, an ideal diode presents a large resistance for any applied voltage.

- * In the reverse direction, an ideal diode presents a large resistance for any applied voltage.
- * A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at a certain voltage called the "breakdown voltage" (V_{BR}).

- * In the reverse direction, an ideal diode presents a large resistance for any applied voltage.
- * A real diode cannot withstand indefinitely large reverse voltages and "breaks down" at a certain voltage called the "breakdown voltage" (VBR).
- * When the reverse bias $V_R > V_{\rm BR}$ (i.e., $V < -V_{\rm BR}$), the diode allows a large amount of current. If the current is not constrained by the external circuit, the diode would get damaged.

Symbol for a Zener diode

Symbol for a Zener diode

* A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.

Symbol for a Zener diode

- * A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
- * Diodes with high $V_{\rm BR}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).

Symbol for a Zener diode

- * A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
- * Diodes with high $V_{\rm BR}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).
- * Typically, circuits are designed so that the reverse bias across any diode is less than the $V_{\rm BR}$ rating for that diode.

Symbol for a Zener diode

- * A wide variety of diodes is available, with $V_{\rm BR}$ ranging from a few Volts to a few thousand Volts! Generally, higher the breakdown voltage, higher is the cost.
- * Diodes with high $V_{\rm BR}$ are generally used in power electronics applications and are therefore also designed to carry a large forward current (tens or hundreds of Amps).
- * Typically, circuits are designed so that the reverse bias across any diode is less than the $V_{\rm BR}$ rating for that diode.
- * "Zener" diodes typically have V_{BR} of a few Volts, which is denoted by V_Z . They are often used to limit the voltage swing in electronic circuits.

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{on}, \ V_2 = -V_Z.$

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{\text{on}}, \ V_2 = -V_Z.$ Total voltage drop $V = V_1 - V_2 = V_{\text{on}} + V_Z.$

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{on}, \ V_2 = -V_Z$.

Total voltage drop $V = V_1 - V_2 = V_{on} + V_Z$.

Example: $V_{\text{on}} = 0.7 \,\text{V}$, $V_Z = 5 \,\text{V} \rightarrow V = 5.7 \,\text{V}$.

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{\text{on}}, \ V_2 = -V_Z$.

Total voltage drop $V = V_1 - V_2 = V_{on} + V_Z$.

Example: $V_{\text{on}} = 0.7 \,\text{V}$, $V_Z = 5 \,\text{V} \rightarrow V = 5.7 \,\text{V}$.

* $i < 0 \rightarrow D_1$ in reverse conduction, D_2 in forward conduction

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{on}$, $V_2 = -V_Z$.

Total voltage drop $V = V_1 - V_2 = V_{on} + V_Z$.

Example: $V_{\text{on}} = 0.7 \text{ V}$, $V_Z = 5 \text{ V} \rightarrow V = 5.7 \text{ V}$.

* $i < 0 \rightarrow D_1$ in reverse conduction, D_2 in forward conduction $\rightarrow V_1 = -V_Z$, $V_2 = V_{\rm on}$.

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{on}$, $V_2 = -V_Z$.

Total voltage drop $V = V_1 - V_2 = V_{on} + V_Z$.

Example: $V_{\text{on}} = 0.7 \text{ V}$, $V_{\text{Z}} = 5 \text{ V} \rightarrow V = 5.7 \text{ V}$.

* $i < 0 \rightarrow D_1$ in reverse conduction, D_2 in forward conduction $\rightarrow V_1 = -V_Z$, $V_2 = V_{on}$.

Total voltage drop $V = V_1 - V_2 = -V_Z - V_{on} = -(V_Z + V_{on}) = -5.7 \text{ V}$.

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{\rm on}, \ V_2 = -V_Z.$

* $i < 0 \rightarrow D_1$ in reverse conduction, D_2 in forward conduction

Total voltage drop $V = V_1 - V_2 = V_{on} + V_Z$.

Example: $V_{\text{on}} = 0.7 \,\text{V}$, $V_Z = 5 \,\text{V} \rightarrow V = 5.7 \,\text{V}$.

- $V_1 = V_Z, V_2 = V_{on}.$ Total voltage drop $V = V_1 V_2 = -V_Z V_{on} = -(V_Z + V_{on}) = -5.7 \text{ V}.$
- * For $-(V_Z + V_{on}) < V < (V_Z + V_{on})$, conduction is not possible $\rightarrow i = 0$.

* $i > 0 \rightarrow D_1$ in forward conduction, D_2 in reverse conduction $\rightarrow V_1 = V_{\rm on}, \ V_2 = -V_Z.$

* $i < 0 \rightarrow D_1$ in reverse conduction, D_2 in forward conduction

Total voltage drop $V = V_1 - V_2 = V_{on} + V_Z$.

Example: $V_{on} = 0.7 \text{ V}, V_Z = 5 \text{ V} \rightarrow V = 5.7 \text{ V}.$

- $V_1 = V_Z, V_2 = V_{on}.$ Total voltage drop $V = V_1 V_2 = -V_Z V_{on} = -(V_Z + V_{on}) = -5.7 \text{ V}.$
- * For $-(V_Z + V_{on}) < V < (V_Z + V_{on})$, conduction is not possible $\rightarrow i = 0$.

Plot V_o versus V_i .

Plot V_o versus V_i .

Plot V_o versus V_i .

* For $-5.7\,\mathrm{V} < V_i < 5.7\,\mathrm{V}$, no conduction is possible $\rightarrow V_o = V_i$.

* For $-5.7\,\mathrm{V} < V_i < 5.7\,\mathrm{V}$, no conduction is possible $\to V_o = V_i$.

- * For $-5.7 \,\mathrm{V} < V_i < 5.7 \,\mathrm{V}$, no conduction is possible $\rightarrow V_o = V_i$.
- * For $V_i > 5.7 \, \text{V}$, D_1 is forward-biased, D_2 is reverse-biased, and $V_o = (V_{\text{on}} + V_Z)$. The excess voltage $(V_i (V_{\text{on}} + V_Z))$ drops across R.

- * For $-5.7 \,\mathrm{V} < V_i < 5.7 \,\mathrm{V}$, no conduction is possible $\rightarrow V_o = V_i$.
- * For $V_i > 5.7 \, \text{V}$, D_1 is forward-biased, D_2 is reverse-biased, and $V_o = (V_{\text{on}} + V_Z)$. The excess voltage $(V_i (V_{\text{on}} + V_Z))$ drops across R.

- * For $-5.7\,\mathrm{V} < V_i < 5.7\,\mathrm{V}$, no conduction is possible $\rightarrow V_o = V_i$.
- * For $V_i > 5.7 \text{ V}$, D_1 is forward-biased, D_2 is reverse-biased, and $V_o = (V_{\text{on}} + V_Z)$. The excess voltage $(V_i (V_{\text{on}} + V_Z))$ drops across R.
- * For $V_i < -5.7 \,\text{V}$, D_2 is forward-biased, D_1 is reverse-biased, and $V_o = -(V_{\text{on}} + V_Z)$. The excess voltage $(-V_i (V_{\text{on}} + V_Z))$ drops across R.

- * For $-5.7 \,\mathrm{V} < V_i < 5.7 \,\mathrm{V}$, no conduction is possible $\rightarrow V_o = V_i$.
- * For $V_i > 5.7 \text{ V}$, D_1 is forward-biased, D_2 is reverse-biased, and $V_o = (V_{on} + V_Z)$. The excess voltage $(V_i (V_{on} + V_Z))$ drops across R.
- * For $V_i < -5.7 \,\text{V}$, D_2 is forward-biased, D_1 is reverse-biased, and $V_o = -(V_{\text{on}} + V_Z)$. The excess voltage $(-V_i (V_{\text{on}} + V_Z))$ drops across R.