Analysis 1 Inoffizielle Mitschrift

Zusammenfassung zu Grenzwerten

Suprema und Infima, Beschränktheit

Definition 1. Eine Menge $M \subset \mathbb{R}^n$ heißt beschränkt, falls es ein $r \in \mathbb{R}^+$ gibt mit $B_r(0) \supset M$. Im Fall n = 1 heißt das nichts anderes als |x| < r für alle $x \in M$.

Definition 2 (Supremum und Kriterium). Sei $\emptyset \neq M \subset \mathbb{R}$ nach oben beschränkt. Dann definieren wir sup M als die kleinste obere Schranke von M. Wir haben folgende Äquivalenzen

- (i) $s = \sup M$
- (ii) $\forall \varepsilon > 0 : \exists m \in M : s \varepsilon \leq m$
- (iii) $\forall \varepsilon > 0 : \exists m \in M : s \varepsilon < m$

Das Ganze funktioniert für inf M analog.

Satz 1. Der Körper \mathbb{R} ist supremums-vollständig, das heißt, dass jede nicht-leere nach oben beschränkte Menge ein Supremum in \mathbb{R} hat.

Bemerkung. \mathbb{Q} ist nicht supremums-vollständig, denn die Menge $\{x \in \mathbb{Q} : x^2 < 2\} \subset \mathbb{Q}$ hat kein Supremum in \mathbb{Q} .

Was ist der Unterschied zwischen Maximum und Supremum?

Definition 3 (Maximum). Sei $M \subset \mathbb{R}$ nicht leer, dann heißt $x \in \mathbb{R}$ Maximum von M, falls

- (i) $x \in M$.
- (ii) $\forall y \in M : x \geq y$.

Wir schreiben dann $x = \max M$. Für Minimum analog.

Nicht jede nach oben beschränkte Menge $M \subset \mathbb{R}$ besitzt ein Maximum. Zum Beispiel betrachte $A := \{1 - 1/n : n \in \mathbb{N}\} \subset \mathbb{R}$. Dann hat A kein Maximum, denn für alle $x \in A$ existiert ein $n \in \mathbb{N} : x = 1 - 1/n$, aber

$$x = 1 - \frac{1}{n} < 1 - \frac{1}{n+1} \in A$$

Seite 1

Analysis 1 Inoffizielle Mitschrift

also kein $x \in M$ Maximum von A. A besitzt aber ein Supremum, nämlich ist sup A = 1, denn: sei $\varepsilon > 0$ beliebig, dann gibt es ein $n \in \mathbb{N}$ mit

$$\frac{1}{n} < \varepsilon$$

daher gilt

$$1 - \frac{1}{n} > 1 - \varepsilon \iff 1 - \frac{1}{n} + \varepsilon > 1$$

also ist $\sup A = 1$.

Folgen, Limes superior und Limes inferior

Anschaulich gesprochen betrachten wir immer eine Menge zusammen mit einem Konvergenzbegriff. Zum Beispiel ist die Aussage jede Cauchy-Folge konvergiert als Aussage über \mathbb{Q} falsch über \mathbb{R} jedoch wahr. Man sagt dann \mathbb{Q} ist nicht vollständig und \mathbb{R} ist vollständig.

Definition 4 (Folge und Konvergenz). Eine Abbildung $a : \mathbb{N} \to \mathbb{C}$, $n \mapsto a(n) =: a_n$ heißt Folge. Eine Folge heißt komplexwertige konvergent mit Grenzwert $a \in \mathbb{C}$ genau dann, wenn

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N(\varepsilon) : |a_n - a| < \varepsilon$$

Wir schreiben abkürzend $(a_n)_{n\in\mathbb{N}}$ oder auch nur (a_n) . Falls (a_n) gegen $a\in\mathbb{C}$ konvergiert, so schreiben wir

$$\lim_{n \to \infty} a_n \equiv \lim a_n \coloneqq a$$

Definition 5. Sei (a_n) eine Folge in \mathbb{C} . $a \in \mathbb{C}$ heißt Häufungspunkt von (a_n) , falls

 $\forall \varepsilon > 0$: es gibt unendlich viele $n \in \mathbb{N}$: $|a_n - a| < \varepsilon$.

Bemerkung. Der Grenzwert einer Folge ist sein (einziger) Häufungspunkt. Es gilt: $a \in \mathbb{C}$ ist Häufungspunkt von (a_n) genau dann, wenn es eine Teilfolge (a_{n_k}) gibt mit $\lim_{k\to\infty} a_{n_k} = a$.

Definition 6 (Cauchy-Folge). Eine Folge (a_n) in $\mathbb C$ heißt Cauchy-Folge genau dann, wenn

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m > N : |a_n - a_m| < \varepsilon$$

Bemerkung. Jede konvergente Folge ist eine Cauchy-Folge. Die Umkehrung gilt im Allgemeinen nicht, etwa ist die Folge

$$a_{n+1} := \frac{1}{2} \cdot \left(a_n + \frac{2}{a_n} \right), \ n > 1 \quad a_0 := 2$$

hat ausschließlich rationale Folgeglieder und ist konvergent, aber konvergiert nicht in Q.

Analysis 1 Inoffizielle Mitschrift

Lemma 1. Eine monoton fallende/wachsende nach unten/oben beschränkte Folge (a_n) ist konvergent.

Definition 7. Eine Folge (a_n) heißt bestimmt divergent gegen $+\infty$, falls gilt

$$\forall K \in \mathbb{R} : \exists n_0 \in \mathbb{N} : \forall n \ge n_0 : a_n \ge K$$

Sei (a_n) eine bestimmt gegen $+\infty$ divergente Folge, dann gilt $a_n > 0$ für fast alle $n \in \mathbb{N}$ und $\lim 1/(a_n) = 0$. Sei andererseits (b_n) eine Nullfolge mit $b_n > 0$ für fast alle $n \in \mathbb{N}$, dann gilt, dass die Folge $1/(b_n)$ bestimmt gegen $+\infty$ divergiert.

Definition 8. Sei (a_n) eine beschränkte Folge, d.h. es gibt ein $S \in \mathbb{R}$ mit $|a_n| < S$, $\forall n \in \mathbb{N}$. Wir definieren

$$B_n := \sup\{a_k : k \ge n\}$$

 $b_n := \inf\{a_k : k \ge n\}$

Dann sind (B_n) und (b_n) monoton fallend/wachsend und beschränkt, daher konvergent und wir schreiben

$$\limsup_{n \to \infty} a_n := \lim_{n \to \infty} B_n \equiv \inf_{n \in \mathbb{N}} \sup_{k \ge n} a_k$$
$$\liminf_{n \to \infty} a_n := \lim_{n \to \infty} b_n \equiv \sup_{n \in \mathbb{N}} \inf_{k \ge n} a_k$$

Nicht jede beschränkte Folge hat einen Grenzwert. Aber jede beschränkte Folge hat einen Limes superior/Limes inferior. Sei (a_n) beschränkte Folge. Falls gilt $\limsup a_n = \liminf a_n$, dann ist (a_n) konvergent und es gilt $\limsup a_n = \liminf a_n$.

Man kann zeigen, dass das lim sup/lim inf einer beschränkten Folge gerade das Supremum/Infimum seiner Häufungspunkte ist.