

Imarticus Learning

Project on: Credit Risk Analysis

Submitted from DSP Batch 27 by, Nidhi Patel Sanyukta Shenoy Wasim Akram

Data Analysis

Data Analysis refers to extracting knowledge and insight from large amount of Data.

Process of extracting Gold:

Searching Gold Mine

Removing Soil and Rock
Or
Extracting Gold

Required Gold

Our Data Analysis

Process of Extracting Data for Credit Risk Analyse:

Data Taken from XYZ Co-operation

Data Cleaning and Feature Selection

Required Data for Analysis

OBJECTIVE

Steps used for Credit Risk Analysis

Extraction of data from repositories

Data Cleansing and loading into Database

Data
Transformation

Pattern Discovery using Algorithm such as regression, Classification, etc

Data
Visualisation
and Result

Extraction of Data from XYZ Co-operation

Data Contains

- I. All the details of the people who applied for loan between June 2007 and December 2015
- 2. The data contains the indicator of default, payment information, Credit history, etc.
- 3. Columns 73 Rows - 855696

Pre - processing of Data Data Cleaning

```
Pre Processing the Data

Find Missing Value and Calculating Missing Value Percentage.

In [11]: Count_Null=Credit_DS.isnull().sum()
print(Count_Null)

...

In [13]: Per_Null =round(Credit_DS.isnull().sum()/len(Credit_DS) * 100,2)
print(Per_Null)

...

In [16]: Missing_Val.to_csv(r'D:\Desktop\MissingValues.csv')
```

Pre - processing of Data

Column Name	count	% Count	Column Name	count	% Count
annual_inc_joint	855527	99.95	inq_last_12m	842681	98.45
dti_joint	855529	99.95	desc	734157	85.77
verification_status_joint	855527	99.95	mths_since_last_record	724785	84.67
il_util	844360	98.64	mths_since_last_major_derog	642830	75. I
mths_since_rcnt_il	843035	98.49	mths_since_last_delinq	439812	51.38
open_acc_6m	842681	98.45	next_pymnt_d	252971	29.55
open_il_6m	842681	98.45	tot_coll_amt	67313	7.86
open_il_12m	842681	98.45	tot_cur_bal	67313	7.86
open_il_24m	842681	98.45	total_rev_hi_lim	67313	7.86
total_bal_il	842681	98.45	emp_title	49443	5.78
open_rv_I2m	842681	98.45	emp_length	43061	5.03
open_rv_24m	842681	98.45	last_pymnt_d	8862	1.04
max_bal_bc	842681	98.45	revol_util	446	0.05
all_util	842681	98.45	last_credit_pull_d	50	0.01
inq_fi	842681	98.45	collections_12_mths_ex_med	56	0.01
total_cu_tl	842681	98.45			

Data Transformation

Converting Categorial data to Numeric

Column Name Term Grade Emp_Length Home_ownership Verification status **Purpose** Initial List Status Application_type Open_account

For Example:

```
In [30]: Credit_DS.grade.value_counts()
    grade_final={'A':6,'B':5,'C':4,'D':3,'E':2,'F':1,'G':0}
    Credit_DS.grade=[grade_final[item]for item in Credit_DS.grade]
    print(Credit_DS.grade)
```

Data Standardisation

Data Splitting

Credit_DS

Rows: 855696

Columns: 38

June 2007 to May 2015

June 2015 to Dec 2015

Training

Rows: 598978

Columns: 38

Testing

Rows: 256991

Columns: 38

Models used for Analysing

Logistic Regression

Decision Tree

Adaptive Boost
Classifier

Extra Trees
Classifier

Understanding Model Implementation

Logistic Regression

Model – 1 – Logistic Regression

Logistic Regression Model

Receiver Operating Characteristic

Prepared by Nidhi Patel

Understanding Model Implementation

Logistic Regression

Decision Tree

Model – 2 Decision Tree

Decision Tree

Receiver Operating Characteristic

Prepared by Nidhi Patel

Understanding Model Implementation

Logistic Regression

Decision Tree

Adaptive Boost Classifier

Model – 3 Adaptive Boosting Classifier

Receiver Operating Characteristic

Prepared by Nidhi Patel

Understanding Model Implementation

Logistic Regression

Decision Tree

Adaptive Boost Classifier

Extra Trees Classifier

Model – 4 – Extra Trees Classifier

84.11%

Extra Trees Classifier

Prepared by Nidhi Patel

0.884244373

0.798055945

79.82%

Receiver Operating Characteristic

Prepared by Nidhi Patel

Which Model is Performing Better? Description of Models

Which Model is Performing Better?

Logistic Regression

Decision Tree

Adaptive Boost Classifier

Extra Trees Classifier

Heat Map of Logistic Regression

Prepared by Nidhi Patel

Visualisation of Data

Conclusion

Credit Risk Analysis is a very crucial part of the banking sector and it plays an important role in the growth of the bank's profit. Using analysing techniques one can predict or analyse that a person applying for loan will repay the loan or not. So, multiples algorithms have been implemented to analyse a defaulter. The best model selected out of all models that have been tested is Logistic Regression model with an accuracy of 99.957%, which is cross verified with K-fold cross validation technique having the same accuracy of 99.956%. Further insights gained using visualizations from Tableau is that the bank is really working hard to come up from crisis of loss of revenue. To overcome this crisis, credit risk analysis will help them to grow and earn profit.

Documentation for the Credit Risk Analysis

Thank You!