Laboratory 5: Higher order linear differential equations

Exercise 1 Check if the specified functions are solutions for the given differential equation:

(a)
$$xy'' - (x+1)y' - 2(x-1)y = 0$$
, $\varphi_1(x) = e^{2x}$, $\varphi_2(x) = x^2 + 1$;

(b)
$$y'' - tg(x)y' + 2y = 0$$
, $\varphi_1(x) = \cos(x)$, $\varphi_2(x) = \sin(x)$;

(c)
$$x^3y''' - 3x^2y'' + 6xy' - 6y = 0$$
, $\varphi_1(x) = x$, $\varphi_2(x) = x^2$;

(d)
$$xy'' - (2x+1)y' + (x+1)y = 2x^2e^x$$
, $\varphi_1(x) = \frac{2}{3}x^3e^x$, $\varphi_2(x) = x^2e^x$;

Exercise 2 Find a solution of the specified form for the given differential equation:

(a)
$$xy'' - (2x+1)y' + 2y = 0$$
, $\varphi(x) = e^{ax}$;

(b)
$$y'' + y' - \frac{y}{x} = 0$$
, $\varphi(x) = ax + b$;

(c)
$$xy'' + 2y' - xy = 0$$
, $\varphi(x) = \frac{e^{ax}}{bx + c}$;

(d)
$$xy''' - y'' - xy' + y = -x^2$$
, $\varphi(x) = ax^2 + bx + c$;

Exercise 3 Show that the specified functions system S is a fundamental system of solutions for the given linear homogeneous differential equation:

(a)
$$S = \{x, e^x\}, (x-1)y'' - xy' + y = 0;$$

(b)
$$S = \left\{ \frac{e^x}{x}, \frac{e^{-x}}{x} \right\}, xy'' + 2y' - xy = 0;$$

(c)
$$S = \{x, e^x, e^{-x}\}, xy''' - y'' - xy' + y = 0;$$

(d)
$$S = \left\{ x, \frac{1}{x}, 2x \cdot \ln(x) + 2 \right\}, x^2 (2x - 1) y''' + (4x - 3) xy'' - 2xy' + 2y = 0;$$

Exercise 4 Construct the linear homogeneous differential equation for the given fundamental system of solutions S:

(a)
$$S = {\cos(x), \sin(x)};$$

(b)
$$S = \{e^{2x}, x+1\};$$

(c)
$$S = \left\{ x, \ x^3, \ \frac{1}{x} \right\};$$

(d)
$$S = \left\{ e^x, x, \frac{e^x}{x} \right\};$$

Exercise 5 Using variation of the constants method, find a particular solution of the following linear nonhomogeneous differential equations knowing that the given S is a fundamental system of solutions

(a)
$$(x-1)y'' - xy' + y = 3$$
, $S = \{x, e^x\}$:

(b)
$$(2x+1)y'' + 4xy' - 4y = (2x+1)^2$$
, $S = \{x, e^{-2x}\}$;

(c)
$$xy'' + 2y' - xy = e^x$$
, $S = \left\{ \frac{e^x}{r}, \frac{e^{-x}}{r} \right\}$;

(d)
$$xy''' - y'' - xy' + y = -x^2$$
, $S = \{x, e^x, e^{-x}\}$;