

Minería de Datos

¿Qué vamos a ver?

Representación (PCA, t-SNE, ...)

Asociación (apriori)

Clustering (k-means, HAC)

Clasificación

Auto-encoders

- UC - M. Mendoza -

Fuentes de Datos

Tid	Refund	Marital Status	Taxable Income	Defaulted Borrower		
1	Yes	Single	125K	No		
2	No	Married	100K	No		
3	No	Single	70K	No		
4	Yes	Married	120K	No		
5	No	Divorced	95K	Yes		
6	No	Married	60K	No		
7	Yes	Divorced	220K	No		
8	No	Single	85K	Yes		
9	No	Married	75K	No		
10	No	Single	90K	Yes		

(a) Record data.

Projection of x Load	Projection of y Load	Distance	Load	Thickness		
10.23	5.27	15.22	27	1.2		
12.65	6.25	16.22	22	1.1		
13.54	7.23	17.34	23	1.2		
14.27	8.43	18.45	25	0.9		

(c) Data matrix.

TID	ITEMS
1	Bread, Soda, Milk
2	Beer, Bread
3	Beer, Soda, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Soda, Diaper, Milk

(b) Transaction data.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

(d) Document-term matrix.

Herramientas de análisis exploratorio

Box Plots

Herramientas de análisis exploratorio

Captura de Datos

- Muestreo aleatorio: equiprobable en la selección de datos.
- Muestreo con reemplazo: los datos no son removidos de la colección (puede ser muestreado más de una vez).
- Muestreo sin reemplazo: los datos son removidos de la colección si son muestreados (puede ser muestreado solo una vez).
- Muestreo estratificado: los datos son segmentados de acuerdo a algún criterio. Luego, en cada segmento se conduce muestreo aleatorio.

Captura de Datos

Riesgo empírico en muestreo

Representaciones y reducción de dimensionalidad

X1 retiene la mayor parte de la varianza por lo que remover x2 es neutro en términos de compresión.

dataset
$$\mathcal{X} = \{ oldsymbol{x}_1, \dots, oldsymbol{x}_N \}$$
, $oldsymbol{x}_n \in \mathbb{R}^D$

dataset
$$\mathcal{X} = \{ oldsymbol{x}_1, \dots, oldsymbol{x}_N \}$$
, $oldsymbol{x}_n \in \mathbb{R}^D$

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$m{z}_n = m{B}^ op m{x}_n \in \mathbb{R}^M$$
 — Baja dimensionalidad Base de la descomposición $m{B} := [m{b}_1, \dots, m{b}_M] \in \mathbb{R}^{D imes M}$.

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$oldsymbol{z}_n = oldsymbol{B}^ op oldsymbol{x}_n \in \mathbb{R}^M \stackrel{ wo}{\longrightarrow} ext{Baja dimensionalidad}$$

lacksquare Base de la descomposición $oldsymbol{B} := [oldsymbol{b}_1, \dots, oldsymbol{b}_M] \in \mathbb{R}^{D imes M}$.

$$\mathbf{b}_i^{\mathsf{T}} \mathbf{b}_j = 0 \quad \mathsf{y} \quad \mathbf{b}_i^{\mathsf{T}} \mathbf{b}_i = 1$$

dataset
$$\mathcal{X} = \{\boldsymbol{x}_1, \dots, \boldsymbol{x}_N\}$$
, $\boldsymbol{x}_n \in \mathbb{R}^D$

$$oldsymbol{z}_n = oldsymbol{B}^ op oldsymbol{x}_n \in \mathbb{R}^M \stackrel{ wo}{\longrightarrow} ext{Baja dimensionalidad}$$

Base de la descomposición $oldsymbol{B} := [oldsymbol{b}_1, \dots, oldsymbol{b}_M] \in \mathbb{R}^{D imes M}$.

$$\boldsymbol{b}_i^{ op} \boldsymbol{b}_j = 0 \quad \mathsf{y} \quad \boldsymbol{b}_i^{ op} \boldsymbol{b}_i = 1$$

Minimizar la pérdida de información implica capturar la mayor cantidad de varianza en la descomposición.

- UC - M. Mendoza -

Importante: la varianza de la descomposición es independiente de la media.

$$\mathbb{V}_{\boldsymbol{z}}[\boldsymbol{z}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}(\boldsymbol{x} - \boldsymbol{\mu})] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x} - \boldsymbol{B}^{\top}\boldsymbol{\mu}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x}]$$

Importante: la varianza de la descomposición es independiente de la media.

$$\mathbb{V}_{\boldsymbol{z}}[\boldsymbol{z}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}(\boldsymbol{x} - \boldsymbol{\mu})] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x} - \boldsymbol{B}^{\top}\boldsymbol{\mu}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x}]$$

Por lo tanto, corregimos los datos a media 0.

Importante: la varianza de la descomposición es independiente de la media.

$$\mathbb{V}_{\boldsymbol{z}}[\boldsymbol{z}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}(\boldsymbol{x} - \boldsymbol{\mu})] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x} - \boldsymbol{B}^{\top}\boldsymbol{\mu}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x}]$$

Por lo tanto, corregimos los datos a media 0.

PCA (enfoque secuencial): Comenzamos buscando $\boldsymbol{b}_1 \in \mathbb{R}^D$:

Importante: la varianza de la descomposición es independiente de la media.

$$\mathbb{V}_{\boldsymbol{z}}[\boldsymbol{z}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}(\boldsymbol{x} - \boldsymbol{\mu})] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x} - \boldsymbol{B}^{\top}\boldsymbol{\mu}] = \mathbb{V}_{\boldsymbol{x}}[\boldsymbol{B}^{\top}\boldsymbol{x}]$$

Por lo tanto, corregimos los datos a media 0.

PCA (enfoque secuencial): Comenzamos buscando $\boldsymbol{b}_1 \in \mathbb{R}^D$:

$$V_1 := \mathbb{V}[z_1] = \frac{1}{N} \sum_{n=1}^{N} z_{1n}^2$$

Importante: la varianza de la descomposición es independiente de la media.

$$\mathbb{V}_{oldsymbol{z}}[oldsymbol{z}] = \mathbb{V}_{oldsymbol{x}}[oldsymbol{B}^ op(oldsymbol{x} - oldsymbol{\mu})] = \mathbb{V}_{oldsymbol{x}}[oldsymbol{B}^ op oldsymbol{x} - oldsymbol{B}^ op oldsymbol{\mu}] = \mathbb{V}_{oldsymbol{x}}[oldsymbol{B}^ op oldsymbol{x}]$$

Por lo tanto, corregimos los datos a media 0.

PCA (enfoque secuencial): Comenzamos buscando $\boldsymbol{b}_1 \in \mathbb{R}^D$:

$$V_1 := \mathbb{V}[z_1] = rac{1}{N} \sum_{n=1}^N z_{1n}^2$$
 . Dado que $z_{1n} = oldsymbol{b}_1^ op oldsymbol{x}_n$, $V_1 = rac{1}{N} \sum_{n=1}^N (oldsymbol{b}_1^ op oldsymbol{x}_n)^2 = rac{1}{N} \sum_{n=1}^N oldsymbol{b}_1^ op oldsymbol{x}_n oldsymbol{x}_n^ op oldsymbol{b}_1$ $= oldsymbol{b}_1^ op oldsymbol{S} oldsymbol{b}_1$,

Importante: la varianza de la descomposición es independiente de la media.

$$\mathbb{V}_{oldsymbol{z}}[oldsymbol{z}] = \mathbb{V}_{oldsymbol{x}}[oldsymbol{B}^ op(oldsymbol{x} - oldsymbol{\mu})] = \mathbb{V}_{oldsymbol{x}}[oldsymbol{B}^ op oldsymbol{x} - oldsymbol{B}^ op oldsymbol{\mu}] = \mathbb{V}_{oldsymbol{x}}[oldsymbol{B}^ op oldsymbol{x}]$$

Por lo tanto, corregimos los datos a media 0.

PCA (enfoque secuencial): Comenzamos buscando $\boldsymbol{b}_1 \in \mathbb{R}^D$:

$$V_1 := \mathbb{V}[z_1] = rac{1}{N} \sum_{n=1}^N z_{1n}^2$$
 . Dado que $z_{1n} = oldsymbol{b}_1^ op oldsymbol{x}_n$, $V_1 = rac{1}{N} \sum_{n=1}^N (oldsymbol{b}_1^ op oldsymbol{x}_n)^2 = rac{1}{N} \sum_{n=1}^N oldsymbol{b}_1^ op oldsymbol{x}_n oldsymbol{x}_n^ op oldsymbol{b}_1$ $= oldsymbol{b}_1^ op oldsymbol{S} oldsymbol{b}_1$,

Por lo tanto, maximizar la varianza corresponde a:

$$\max_{oldsymbol{b}_1} oldsymbol{b}_1^ op oldsymbol{S} oldsymbol{b}_1$$
 , sujeto a $\|oldsymbol{b}_1\|^2 = 1$.

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 \qquad \text{, sujeto a } \|\boldsymbol{b}_1\|^2 = 1 \,.$$
 Lagrangiano
$$\mathfrak{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1)$$

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 \quad \text{, sujeto a } \|\boldsymbol{b}_1\|^2 = 1 \,.$$
 Lagrangiano
$$\mathcal{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{b}_1} = 2\boldsymbol{b}_1^\top \boldsymbol{S} - 2\lambda_1 \boldsymbol{b}_1^\top \,, \qquad \frac{\partial \mathcal{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1$$

$$\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 \quad \text{, sujeto a } \|\boldsymbol{b}_1\|^2 = 1 \,.$$
 Lagrangiano
$$\mathfrak{L}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1)$$

$$\frac{\partial \mathfrak{L}}{\partial \boldsymbol{b}_1} = 2\boldsymbol{b}_1^\top \boldsymbol{S} - 2\lambda_1 \boldsymbol{b}_1^\top \,, \qquad \frac{\partial \mathfrak{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1$$

$$= 0 \qquad \qquad \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1 \,, \\ \boldsymbol{b}_1^\top \boldsymbol{b}_1 = 1 \,.$$

Reescribimos:
$$V_1 = \boldsymbol{b}_1^{\top} \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^{\top} \boldsymbol{b}_1 = \lambda_1$$

Lagrangiano
$$\begin{aligned} \max_{\boldsymbol{b}_1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 &, \text{ sujeto a } \|\boldsymbol{b}_1\|^2 = 1 \,. \\ \mathcal{L}(\boldsymbol{b}_1, \lambda) &= \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1) \\ & \frac{\partial \mathcal{L}}{\partial \boldsymbol{b}_1} = 2 \boldsymbol{b}_1^\top \boldsymbol{S} - 2 \lambda_1 \boldsymbol{b}_1^\top \,, \qquad \frac{\partial \mathcal{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1 \end{aligned}$$

$$= 0 \qquad \qquad \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1 \,, \\ \boldsymbol{b}_1^\top \boldsymbol{b}_1 = 1 \,. \end{aligned}$$
 Se calcula usando la SVD Reescribimos: $V_1 = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

La reconstrucción es: $\tilde{\boldsymbol{x}}_n = \boldsymbol{b}_1 z_{1n} = \boldsymbol{b}_1 \boldsymbol{b}_1^{\top} \boldsymbol{x}_n \in \mathbb{R}^D$

Lagrangiano
$$\begin{aligned} &\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 &, \text{ sujeto a } \|\boldsymbol{b}_1\|^2 = 1 \,. \\ &\boldsymbol{\mathcal{E}}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1) \\ & & & \frac{\partial \mathfrak{L}}{\partial \boldsymbol{b}_1} = 2 \boldsymbol{b}_1^\top \boldsymbol{S} - 2 \lambda_1 \boldsymbol{b}_1^\top \,, \qquad \frac{\partial \mathfrak{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1 \end{aligned}$$

$$= 0 \qquad \qquad \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1 \,, \\ &\boldsymbol{b}_1^\top \boldsymbol{b}_1 = 1 \,. \end{aligned}$$
 Se calcula usando la SVD Reescribimos: $V_1 = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

La reconstrucción es: $\tilde{\boldsymbol{x}}_n = \boldsymbol{b}_1 z_{1n} = \boldsymbol{b}_1 \boldsymbol{b}_1^{\top} \boldsymbol{x}_n \in \mathbb{R}^D$

Lagrangiano
$$\begin{aligned} &\max_{\boldsymbol{b}_1} \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 &, \text{ sujeto a } \|\boldsymbol{b}_1\|^2 = 1 \,. \\ &\boldsymbol{\mathcal{L}}(\boldsymbol{b}_1, \lambda) = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 + \lambda_1 (1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1) \\ & & & \frac{\partial \mathfrak{L}}{\partial \boldsymbol{b}_1} = 2 \boldsymbol{b}_1^\top \boldsymbol{S} - 2 \lambda_1 \boldsymbol{b}_1^\top \,, & \frac{\partial \mathfrak{L}}{\partial \lambda_1} = 1 - \boldsymbol{b}_1^\top \boldsymbol{b}_1 \end{aligned}$$

$$= 0 \qquad \qquad \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1 \,, \\ &\boldsymbol{b}_1^\top \boldsymbol{b}_1 = 1 \,. \end{aligned}$$
 Se calcula usando la SVD Reescribimos: $V_1 = \boldsymbol{b}_1^\top \boldsymbol{S} \boldsymbol{b}_1 = \lambda_1 \boldsymbol{b}_1^\top \boldsymbol{b}_1 = \lambda_1$

Proceso iterativo:

$$\hat{m{X}}:=m{X}-\sum_{i=1}^{m-1}m{b}_im{b}_i^{ op}m{X}=m{X}-m{B}_{m-1}m{X}\,,\qquad ext{con}\quad m{X}=egin{bmatrix}m{x}_1,\dots,m{x}_N\end{bmatrix}\in\mathbb{R}^{D imes N}$$
 y $m{B}_{m-1}:=\sum_{i=1}^{m-1}m{b}_im{b}_i^{ op}$

Proceso iterativo:

$$\hat{m{X}} := m{X} - \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op m{X} = m{X} - m{B}_{m-1} m{X} \,, \qquad ext{con} \quad m{X} \ = \ m{igl[x_1, \dots, x_Nigr]} \ \in \ \mathbb{R}^{D imes N}$$
 y $m{B}_{m-1} := \sum_{i=1}^{m-1} m{b}_i m{b}_i^ op$

- Aspectos prácticos:
 - Usa la full SVD (LAPACK) para datos densos.
 - Usa la SVD truncada (ARPACK) para datos dispersos.
 - Se puede usar MLE (reconstrucción data) para estimar el # de componentes.
- Implementaciones:

- Python: sklearn

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html