2D Clipping Algorithms

CSCI 4229/5229 Summer 2020

Cohen-Sutherland

Define the clip code for a point as a four bit value TBRL, where

$$T = \begin{cases} 1 & \text{if } y > y_{max} \\ 0 & \text{if } y \le y_{max} \end{cases} \qquad B = \begin{cases} 1 & \text{if } y < y_{min} \\ 0 & \text{if } y \ge y_{min} \end{cases}$$
$$R = \begin{cases} 1 & \text{if } x > x_{max} \\ 0 & \text{if } x \le x_{max} \end{cases} \qquad L = \begin{cases} 1 & \text{if } x < x_{min} \\ 0 & \text{if } x \ge x_{min} \end{cases}$$

Let C_0 and C_1 be the TBRL clip code for P_0 and P_1 , respectively. Then

- 1: If $C_0 = 0$ and $C_1 = 0$ the line is completely inside the domain;
- 2: If C_0 and C_1 have one or more bits in common, the line is completely outside the domain;
- 3: If any of the bits in C_0 or C_1 are set, clip to the corresponding edge as follows, updating the end points and clip codes as appropriate

T:
$$x = x_0 + (y_{max} - y_0) \frac{x_1 - x_0}{y_1 - y_0}$$
;

T:
$$x = x_0 + (y_{max} - y_0) \frac{x_1 - x_0}{y_1 - y_0};$$

B: $x = x_0 + (y_{min} - y_0) \frac{x_1 - x_0}{y_1 - y_0};$

R:
$$y = y_0 + (x_{max} - x_0) \frac{y_1 - y_0}{x_1 - x_0}$$

L:
$$y = y_0 + (x_{min} - x_0) \frac{y_1 - y_0}{x_1 - x_0}$$
;

Note that after clipping the line may still miss the domain as in the case of line $\overline{P_Q P_R}$.

Liang-Barsky

Let

$$\mathbf{P}(t) = (1-t)\mathbf{P}_0 + t\mathbf{P}_1$$

For P(t) on the same edge as P_e and hence perpendicular to N,

$$0 = \mathbf{N} \cdot [\mathbf{P}(t) - \mathbf{P}_e]$$

$$= \mathbf{N} \cdot [(1 - t)\mathbf{P}_0 + t\mathbf{P}_1 - \mathbf{P}_e]$$

$$= \mathbf{N} \cdot \mathbf{P}_0 - t\mathbf{N} \cdot \mathbf{P}_0 + t\mathbf{N} \cdot \mathbf{P}_1 - \mathbf{N} \cdot \mathbf{P}_e$$

Bring all terms containing t to the left

$$t\mathbf{N} \cdot [\mathbf{P}_0 - \mathbf{P}_1] = \mathbf{N} \cdot [\mathbf{P}_0 - \mathbf{P}_e]$$

Rearrange

$$t = \frac{\mathbf{N} \cdot [\mathbf{P}_0 - \mathbf{P}_e]}{\mathbf{N} \cdot [\mathbf{P}_0 - \mathbf{P}_1]}$$

For the left edge $\mathbf{N}=(-1,0)$ and $\mathbf{P}_e=(x_{min},y)$ so that

$$t = \frac{(-1,0) \cdot (x_0 - x_{min}, y_0 - y)}{(-1,0) \cdot (x_0 - x_1, y_0 - y_1)} = \frac{x_{min} - x_0}{x_1 - x_0}$$

For the right edge $\mathbf{N} = (1,0)$ and $\mathbf{P}_e = (x_{max}, y)$ so that

$$t = \frac{(1,0) \cdot (x_0 - x_{max}, y_0 - y)}{(1,0) \cdot (x_0 - x_1, y_0 - y_1)} = \frac{x_0 - x_{max}}{x_0 - x_1}$$

For the bottom edge $\mathbf{N} = (0, -1)$ and $\mathbf{P}_e = (x, y_{min})$ so that

$$t = \frac{(0, -1) \cdot (x_0 - x, y_0 - y_{min})}{(0, -1) \cdot (x_0 - x_1, y_0 - y_1)} = \frac{y_{min} - y_0}{y_1 - y_0}$$

For the top edge $\mathbf{N}=(0,1)$ and $\mathbf{P}_e=(x,y_{max})$ so that

$$t = \frac{(0,1) \cdot (x_0 - x, y_0 - y_{max})}{(0,1) \cdot (x_0 - x_1, y_0 - y_1)} = \frac{y_0 - y_{max}}{y_0 - y_1}$$