

Predicting Party Affiliation from Political Speech

Raymond Zhu

Patrick Carron

Goals

 Determine party affiliation based off Congressional speeches based on unique terms used by each group or differences in frequency of term use.

- Find a way to parse the filename and create a sparse vector representation.
- Compare classification algorithm and find optimal hyper-parameters.

Models

- We used Multinomial NB and Stochastic Gradient Descent.
- We looked at the smoothing parameters for Multinomial NB. We picked Multinomial NB because there was a chance the features were independent.
- Stochastic Gradient Descent:
 - Loss Functions Considered:
 - Hinge, Logistic, Perceptron
 - Regularization Penalties Considered:
 - L1, L2, None.
 - Range of Alphas Searched.
- Used 3-fold cross validation In order to find optimal hyper-parameters.

Data

- Congressional Speech data set by Lillian Lee from Cornell.
- Training set is 5660 documents, with 1.3 million tokens.
- Single terms found:
 - herzog
 - surfrider
 - hamburglar
 - blazed

Results

- Highest test accuracy was 74.9% using Stochastic Gradient Descent with Hinge loss with a L2 penalty, Bigram LM, Tf-Idf, and Alpha=.0002.
- Highest NB accuracy was 70.6% accuracy. Alpha of 0.05.
- Our accuracy of predicting party affiliation beat their accuracy by 3% of trying to predict voting outcomes for speakers.

Bigram LM improved accuracy for all classifiers compared to Unigram LM

