Asymptotic Diameter of Preferential Attachment Model

Shuyang Gong and Zhangsong Li

School of Mathematical Sciences, Peking University

May 29, 2025

Joint work with Hang Du (MIT) and Haodong Zhu (TU/E)

YMSC Probability Seminar

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

At each time t, a new vertex labeled t arrives and forms m edges, one at a time, to existing nodes $v \in [t-1]$:

$$\mathbb{P}(t \to v) \varpropto \deg(v) + \delta$$
 where $\delta > -m$.

 \bullet deg(v) is updated after each edge is added

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

- deg(v) is updated after each edge is added
- ullet $\delta=\infty$: uniform-attachment (no degree preference)

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

- deg(v) is updated after each edge is added
- $\delta = \infty$: uniform-attachment (no degree preference)
- $\delta = 0$: Barabási-Albert model [Barabási-Albert'99]

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

- deg(v) is updated after each edge is added
- $\delta = \infty$: uniform-attachment (no degree preference)
- $\delta = 0$: Barabási-Albert model [Barabási-Albert'99]
- ullet The smaller δ , the stronger preference for high-degree vertices

$$\mathbb{P}(t \to v) \propto \deg(v) + \delta$$
 where $\delta > -m$.

- deg(v) is updated after each edge is added
- $\delta = \infty$: uniform-attachment (no degree preference)
- $\delta = 0$: Barabási-Albert model [Barabási-Albert'99]
- ullet The smaller δ , the stronger preference for high-degree vertices
- A popular dynamical model that shares many similar features as in empirically studied real-world networks.

Features of PAM: Power-law degree distribution

Theorem (Bollobás-Riordan-Spencer-Tusnády'01, Deijfen-van den Esker-van der Hofstad-Hooghiemstra'09)

PAM with parameter m, δ yields power-law degree sequence with exponent $\tau=3+\delta/m>2$.

Features of PAM: Power-law degree distribution

Theorem (Bollobás-Riordan-Spencer-Tusnády'01, Deijfen-van den Esker-van der Hofstad-Hooghiemstra'09)

PAM with parameter m, δ yields power-law degree sequence with exponent $\tau=3+\delta/m>2$.

Figure: degree sequences in PAM with $m=2, \delta=0, \tau=3, n=10^6$ (picture courtesy of Remco van der Hofstad)

Figure: degree sequences in Internet Movie Data Base 2007 [Britton-Deijfen-Lőf'2007]

Features of PAM: Small world phenomenon

Figure: Six degrees of separation: "Everybody on this planet is separated only by six other people".

Figure: Distances in social networks Livejournal [Backstrom-Boldi-Rosa-Ugander-Vigna'2010]

Features of PAM: Small world phenomenon

Figure: Six degrees of separation: "Everybody on this planet is separated only by six other people".

Figure: Distances in social networks Livejournal [Backstrom-Boldi-Rosa-Ugander-Vigna'2010]

 Question: Can we rigorously justify the small world phenomenon in PAM?

Features of PAM: Small world phenomenon

Figure: Six degrees of separation: "Everybody on this planet is separated only by six other people".

Figure: Distances in social networks Livejournal [Backstrom-Boldi-Rosa-Ugander-Vigna'2010]

- Question: Can we rigorously justify the small world phenomenon in PAM?
- Equivalently, does PAM have small diameters?

average degree: 2m; $\mathbb{P}(t \to v) \varpropto \deg(v) + \delta$;

• [Pittel'94]: the diameter of PAM with $m=1, \delta>-1$ is typically

$$(1+o(1))\frac{2(1+\delta)\log n}{(2+\delta)\theta}\,,$$

where $\theta \in (0,1)$ is the solution to $\theta + (1+\delta)(1+\log \theta) = 0$.

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$;

• [Pittel'94]: the diameter of PAM with $m=1, \delta>-1$ is typically

$$(1+o(1))\frac{2(1+\delta)\log n}{(2+\delta)\theta}$$
,

where $\theta \in (0,1)$ is the solution to $\theta + (1+\delta)(1+\log \theta) = 0$.

• [Bollobás-Riordan'09]: the diameter of PAM with $m \ge 2, \delta = 0$ is typically $(1 + o(1)) \frac{\log n}{\log \log n}$.

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$;

• [Pittel'94]: the diameter of PAM with $m=1, \delta>-1$ is typically

$$(1+o(1))^{\frac{2(1+\delta)\log n}{(2+\delta)\theta}},$$

where $\theta \in (0,1)$ is the solution to $\theta + (1+\delta)(1+\log \theta) = 0$.

- [Bollobás-Riordan'09]: the diameter of PAM with $m \ge 2, \delta = 0$ is typically $(1 + o(1)) \frac{\log n}{\log \log n}$.
- [Caravenna-Garavaglia-van der Hofstad'19]: the diameter of PAM with $m \ge 2, -m < \delta < 0$ is typically

$$(1+o(1))\left(\frac{4}{|\log(1+\delta/m)|}+\frac{2}{\log m}\right)\log\log n$$
.

average degree: 2m; $\mathbb{P}(t \to v) \varpropto \deg(v) + \delta$;

• [Pittel'94]: the diameter of PAM with $m=1, \delta>-1$ is typically

$$(1+o(1))^{\frac{2(1+\delta)\log n}{(2+\delta)\theta}},$$

where $\theta \in (0,1)$ is the solution to $\theta + (1+\delta)(1+\log \theta) = 0$.

- [Bollobás-Riordan'09]: the diameter of PAM with $m \ge 2, \delta = 0$ is typically $(1 + o(1)) \frac{\log n}{\log \log n}$.
- [Caravenna-Garavaglia-van der Hofstad'19]: the diameter of PAM with $m \ge 2, -m < \delta < 0$ is typically

$$(1+o(1))\Big(rac{4}{|\log(1+\delta/m)|}+rac{2}{\log m}\Big)\log\log n$$
 .

• Remaining case: PAM with $m \ge 2, \delta > 0$.

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$;

• Difficulties for extending previous argument:

- Difficulties for extending previous argument:
 - $m \ge 2 \Longrightarrow$ no tree structure;

- Difficulties for extending previous argument:
 - $m \ge 2 \Longrightarrow$ no tree structure;
 - $\delta > 0 \Longrightarrow$ no hub structure.

- Difficulties for extending previous argument:
 - $m \ge 2 \Longrightarrow$ no tree structure;
 - $\delta > 0 \Longrightarrow$ no hub structure.
- Difficulties in the model:

- Difficulties for extending previous argument:
 - $m \ge 2 \Longrightarrow$ no tree structure;
 - $\delta > 0 \Longrightarrow$ no hub structure.
- Difficulties in the model:
 - Lack of independence;

- Difficulties for extending previous argument:
 - $m \ge 2 \Longrightarrow$ no tree structure;
 - $\delta > 0 \Longrightarrow$ no hub structure.
- Difficulties in the model:
 - Lack of independence;
 - Harder to couple to the local limit.

- Difficulties for extending previous argument:
 - $m \ge 2 \Longrightarrow$ no tree structure;
 - $\delta > 0 \Longrightarrow$ no hub structure.
- Difficulties in the model:
 - Lack of independence;
 - Harder to couple to the local limit.
- [Dommers-van der Hofstad-Hooghiemstra'10]: the diameter of PAM with $m \ge 2, \delta > 0$ is typically $O(\log n)$.

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (van der Hofstad-Zhu'25+)

Let ν to be the exponential growth parameter of the local limit of the preferential attachment model, then

$$\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}} \mathbb{P}_{u,v \sim \mathsf{unif}(V(G))} \big(\, \mathsf{dist}_G(u,v) = (1+o(1)) \log_\nu n \big) = 1-o(1) \,,$$

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (van der Hofstad-Zhu'25+)

Let ν to be the exponential growth parameter of the local limit of the preferential attachment model, then

$$\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}} \mathbb{P}_{u,v \sim \mathsf{unif}(V(G))} \big(\, \mathsf{dist}_G(u,v) = (1+o(1)) \log_{\nu} n \big) = 1-o(1) \,,$$

• Implies that typically we have $\operatorname{dist}_G(u,v) = (1+o(1))\log_{\nu} n$ for $\geq 99\%$ vertex pairs (thus typically $\operatorname{diam}(G) \geq (1+o(1))\log_{\nu} n$).

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (van der Hofstad-Zhu'25+)

Let ν to be the exponential growth parameter of the local limit of the preferential attachment model, then

$$\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}} \mathbb{P}_{u,v \sim \mathsf{unif}(V(G))} \big(\, \mathsf{dist}_G(u,v) = (1+o(1)) \log_\nu n \big) = 1-o(1) \,,$$

- Implies that typically we have $\operatorname{dist}_G(u,v) = (1+o(1))\log_{\nu} n$ for $\geq 99\%$ vertex pairs (thus typically $\operatorname{diam}(G) \geq (1+o(1))\log_{\nu} n$).
- Relies on first/second moment method + path counting technique.

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (van der Hofstad-Zhu'25+)

Let ν to be the exponential growth parameter of the local limit of the preferential attachment model, then

$$\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}} \mathbb{P}_{u,v \sim \mathsf{unif}(V(G))} \big(\, \mathsf{dist}_G(u,v) = (1+o(1)) \log_\nu n \big) = 1-o(1) \,,$$

- Implies that typically we have $\operatorname{dist}_G(u,v) = (1+o(1))\log_{\nu} n$ for $\geq 99\%$ vertex pairs (thus typically $\operatorname{diam}(G) \geq (1+o(1))\log_{\nu} n$).
- Relies on first/second moment method + path counting technique.
- Conjecture in [van der Hofstad-Zhu'25+]: typically the diameter of PAM with $m \ge 2, \delta > 0$ is also $(1 + o(1)) \log_{\nu} n$.

Our result: from typical distance to diameter

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (Du-G.-L.-Zhu'25+)

- Let $M_n = M_n(G)$ be the median of pairwise vertex distances of $G \sim \mathsf{PA}_n^{(m,\delta)}$.
- Let $R_n = R_n(G)$ satisfying $\#\{R_n$ -neighborhood of $u\} \ge (\log n)^2$ for all $u \in V(G)$.

Then we have $\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}}(\mathsf{diam}(G) \leq M_n + O(1) \cdot R_n) = 1 - o(1)$.

Our result: from typical distance to diameter

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (Du-G.-L.-Zhu'25+)

- Let $M_n = M_n(G)$ be the median of pairwise vertex distances of $G \sim \mathsf{PA}_n^{(m,\delta)}$.
- Let $R_n = R_n(G)$ satisfying $\#\{R_n$ -neighborhood of $u\} \ge (\log n)^2$ for all $u \in V(G)$.

Then we have $\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}}(\mathsf{diam}(G) \leq M_n + O(1) \cdot R_n) = 1 - o(1)$.

• Note that [van der Hofstad-Zhu'25+] implies that typically $M_n(G) = (1 + o(1)) \log_{\nu} n$.

Our result: from typical distance to diameter

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (Du-G.-L.-Zhu'25+)

- Let $M_n = M_n(G)$ be the median of pairwise vertex distances of $G \sim \mathsf{PA}_n^{(m,\delta)}$.
- Let $R_n = R_n(G)$ satisfying $\#\{R_n$ -neighborhood of $u\} \ge (\log n)^2$ for all $u \in V(G)$.

Then we have $\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}}(\mathsf{diam}(G) \leq M_n + O(1) \cdot R_n) = 1 - o(1)$.

- Note that [van der Hofstad-Zhu'25+] implies that typically $M_n(G) = (1 + o(1)) \log_{\nu} n$.
- [Du-G.-L.-Zhu'25+]: typically $R_n(G) \leq (\log n)^{\frac{2}{3}}$. (expected to be far from tight).

Our result: from typical distance to diameter

average degree: 2m; $\mathbb{P}(t \to v) \propto \deg(v) + \delta$; $\mathsf{PA}_n^{(m,\delta)}$: law of PAM

Theorem (Du-G.-L.-Zhu'25+)

- Let $M_n = M_n(G)$ be the median of pairwise vertex distances of $G \sim \mathsf{PA}_n^{(m,\delta)}$.
- Let $R_n = R_n(G)$ satisfying $\#\{R_n$ -neighborhood of $u\} \ge (\log n)^2$ for all $u \in V(G)$.

Then we have $\mathbb{P}_{G \sim \mathsf{PA}_n^{(m,\delta)}}(\mathsf{diam}(G) \leq M_n + O(1) \cdot R_n) = 1 - o(1)$.

- Note that [van der Hofstad-Zhu'25+] implies that typically $M_n(G) = (1 + o(1)) \log_{\nu} n$.
- [Du-G.-L.-Zhu'25+]: typically $R_n(G) \leq (\log n)^{\frac{2}{3}}$. (expected to be far from tight).
- Conclusion: typically $\operatorname{diam}(G) \leq (1 + o(1)) \log_{\nu} n$.

It seems that our result

$$\mathsf{diam}(G) \leq M_n(G)^{\leftarrow \mathsf{average}} \stackrel{\mathsf{distance}}{=} + O(1) \cdot R_n(G)^{\leftarrow \mathsf{depth}} \stackrel{\mathsf{for large neighborhood}}{=}$$

It seems that our result

$$\mathsf{diam}(G) \leq M_n(G)^{\leftarrow \mathsf{average}} \stackrel{\mathsf{distance}}{=} + O(1) \cdot R_n(G)^{\leftarrow \mathsf{depth}} \stackrel{\mathsf{for large neighborhood}}{=}$$

holds for many interesting cases beyond the scope of PAM, e.g.

• Random *d*-regular graph $(d \ge 3)$:

It seems that our result

$$\mathsf{diam}(G) \leq M_n(G)^{\leftarrow \mathsf{average}} \stackrel{\mathsf{distance}}{=} + O(1) \cdot R_n(G)^{\leftarrow \mathsf{depth}} \stackrel{\mathsf{for large}}{=} \mathsf{neighborhood}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;

It seems that our result

$$\mathsf{diam}(G) \leq M_n(G)^{\leftarrow \mathsf{average}} \stackrel{\mathsf{distance}}{=} + O(1) \cdot R_n(G)^{\leftarrow \mathsf{depth}} \stackrel{\mathsf{for large}}{=} \mathsf{neighborhood}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;
 - $R_n = O(\log \log n)$;

It seems that our result

$$\operatorname{diam}(G) \leq M_n(G)^{\leftarrow \operatorname{average \ distance}} + O(1) \cdot R_n(G)^{\leftarrow \operatorname{depth \ for \ large \ neighborhood}}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;
 - $R_n = O(\log \log n)$;
 - [Bollobás-Fernandez De La Vega'81]: diameter = $\log_{d-1} n + O(\log \log n)$.

It seems that our result

$$\operatorname{diam}(G) \leq M_n(G)^{\leftarrow \operatorname{average \ distance}} + O(1) \cdot R_n(G)^{\leftarrow \operatorname{depth \ for \ large \ neighborhood}}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;
 - $R_n = O(\log \log n)$;
 - [Bollobás-Fernandez De La Vega'81]: diameter = $\log_{d-1} n + O(\log \log n)$.
- Giant component of Erdős-Rényi graph with average degree $\lambda=1+\Omega(1)$:

It seems that our result

$$\operatorname{diam}(G) \leq M_n(G)^{\leftarrow \operatorname{average \ distance}} + O(1) \cdot R_n(G)^{\leftarrow \operatorname{depth \ for \ large \ neighborhood}}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;
 - $R_n = O(\log \log n)$;
 - [Bollobás-Fernandez De La Vega'81]: diameter = $\log_{d-1} n + O(\log \log n)$.
- Giant component of Erdős-Rényi graph with average degree $\lambda=1+\Omega(1)$:
 - [Riordan-Wormald'08]: $M_n = c(\lambda) \log n$;

It seems that our result

$$\operatorname{diam}(G) \leq M_n(G)^{\leftarrow \operatorname{average \ distance}} + O(1) \cdot R_n(G)^{\leftarrow \operatorname{depth \ for \ large \ neighborhood}}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;
 - $R_n = O(\log \log n)$;
 - [Bollobás-Fernandez De La Vega'81]: diameter = $\log_{d-1} n + O(\log \log n)$.
- Giant component of Erdős-Rényi graph with average degree $\lambda = 1 + \Omega(1)$:
 - [Riordan-Wormald'08]: $M_n = c(\lambda) \log n$;
 - $R_n = \Theta(1) \cdot \log n$;

It seems that our result

$$\operatorname{diam}(G) \leq M_n(G)^{\leftarrow \operatorname{average \ distance}} + O(1) \cdot R_n(G)^{\leftarrow \operatorname{depth \ for \ large \ neighborhood}}$$

- Random *d*-regular graph $(d \ge 3)$:
 - [Chung-Lu'02]: $M_n = \log_{d-1} n + O(\log \log n)$;
 - $R_n = O(\log \log n)$;
 - [Bollobás-Fernandez De La Vega'81]: diameter = $\log_{d-1} n + O(\log \log n)$.
- Giant component of Erdős-Rényi graph with average degree $\lambda = 1 + \Omega(1)$:
 - [Riordan-Wormald'08]: $M_n = c(\lambda) \log n$;
 - $R_n = \Theta(1) \cdot \log n$;
 - [Fernholz-Ramachandran'07] (see also [Ding-Kim-Lubetzky-Peres'10] for more general λ): diameter = $(1 + \Theta(1)) \cdot$ average distance.

• Two random sources: denote PA(·) the distribution of G_n and $\mathbb{P}_{u,v}$ the uniform selection.

- Two random sources: denote PA(·) the distribution of G_n and $\mathbb{P}_{u,v}$ the uniform selection.
- Let M_n be the upper bound of "typical" median distance: with prob. 1-o(1) over PA on G_n

$$\mathbb{P}_{u,v \sim \mathsf{UNIF}(V(G_n))} [\operatorname{\mathsf{dist}}(u,v) \leq M_n \mid G_n] \geq 1/2.$$

• By [van der Hofstad and Zhu 25], we can take $M_n = (1 + o(1)) \log_{\nu} n$.

- Two random sources: denote PA(·) the distribution of G_n and $\mathbb{P}_{u,v}$ the uniform selection.
- Let M_n be the upper bound of "typical" median distance: with prob. 1-o(1) over PA on G_n

$$\mathbb{P}_{u,v \sim \mathsf{UNIF}(V(G_n))} ig[\mathsf{dist}(u,v) \leq M_n \, | \, G_n ig] \geq 1/2 \, .$$

- By [van der Hofstad and Zhu 25], we can take $M_n = (1 + o(1)) \log_{\nu} n$.
- High level idea: $\forall u, v$, with probability $1 o(1/n^2)$, there exists two vertices in their respective R_n -neighborhoods with distance at most M_n .

- Two random sources: denote PA(·) the distribution of G_n and $\mathbb{P}_{u,v}$ the uniform selection.
- Let M_n be the upper bound of "typical" median distance: with prob. 1-o(1) over PA on G_n

$$\mathbb{P}_{u,v \sim \mathsf{UNIF}(V(G_n))} \big[\, \mathsf{dist}(u,v) \leq M_n \, | \, G_n \big] \geq 1/2 \, .$$

- By [van der Hofstad and Zhu 25], we can take $M_n = (1 + o(1)) \log_{\nu} n$.
- **High level idea**: $\forall u, v$, with probability $1 o(1/n^2)$, there exists two vertices in their respective R_n -neighborhoods with distance at most M_n .

• Diameter at most $M_n + 2R_n$. $M_n = \log_{\nu} n$, $R_n = o(\log n)$.

Lemma

Taking
$$R_n = (\log n)^{2/3}$$
,

$$PA[|N_{R_n}(u)| \ge (\log n)^4, \forall u \in V(G_n)] = 1 - o(1).$$

Lemma

Taking
$$R_n = (\log n)^{2/3}$$
,

$$PA[|N_{R_n}(u)| \ge (\log n)^4, \forall u \in V(G_n)] = 1 - o(1).$$

• Far from tight. Expected to be $R_n = O(\log \log n)$ for $|N_{R_n}(u)| \ge \text{polylog}(n)$.

Lemma

Taking
$$R_n = (\log n)^{2/3}$$
,

$$PA[|N_{R_n}(u)| \ge (\log n)^4, \forall u \in V(G_n)] = 1 - o(1).$$

- Far from tight. Expected to be $R_n = O(\log \log n)$ for $|N_{R_n}(u)| \ge \text{polylog}(n)$.
 - $m \ge 2$ condition \Rightarrow exponential growth in neighborhood size.

Lemma

Taking $R_n = (\log n)^{2/3}$,

$$PA[|N_{R_n}(u)| \ge (\log n)^4, \forall u \in V(G_n)] = 1 - o(1).$$

- Far from tight. Expected to be $R_n = O(\log \log n)$ for $|N_{R_n}(u)| \ge \text{polylog}(n)$.
 - $m \ge 2$ condition \Rightarrow exponential growth in neighborhood size.
- Major Challenge: dealing with dependence issue.

Lemma (Conditional attachment lemma)

Let E be a set of potential edges in $G_n \sim \mathsf{PA}$ and A be a set of vertices. Assume that $A \subset [s,n]$, then

$$\mathsf{PA}[u \to A \mid E \subset E(G_n)] \leq \frac{|A|(m+\delta+1)+|E|}{(2s-2)m+s\delta}.$$

• Typical vertices: for any u, let $\mathcal{A}(u)$ denote the set of vertices w with dist $(u, w) \leq M_n$. u is called typical if $|\mathcal{A}(u)| \geq n/10$.

- Typical vertices: for any u, let A(u) denote the set of vertices w with dist $(u, w) \le M_n$. u is called typical if $|A(u)| \ge n/10$.
- With prob. 1 o(1), $\#\{\text{typical vertices}\} \ge n/10$. Denoted by \mathcal{G}_1 .

- Typical vertices: for any u, let A(u) denote the set of vertices w with dist $(u, w) \leq M_n$. u is called typical if $|A(u)| \geq n/10$.
- With prob. 1 o(1), $\#\{\text{typical vertices}\} \ge n/10$. Denoted by \mathcal{G}_1 .
 - [van der Hofstad-Zhu'25] implies

$$\widetilde{\mathcal{G}}_1 \triangleq \left\{ G_n : \mathbb{P}_{u,v \sim \mathsf{unif}^{\otimes 2}}[\mathsf{dist}_{G_n}(u,v) \leq M_n \mid G_n] \geq 1/2 \right\}.$$

holds w.p. 1 - o(1).

- Typical vertices: for any u, let A(u) denote the set of vertices w with dist $(u, w) \le M_n$. u is called typical if $|A(u)| \ge n/10$.
- With prob. 1 o(1), $\#\{\text{typical vertices}\} \ge n/10$. Denoted by \mathcal{G}_1 .
 - [van der Hofstad-Zhu'25] implies

$$\widetilde{\mathcal{G}}_1 \triangleq \left\{ G_n : \mathbb{P}_{u,v \sim \mathsf{unif}^{\otimes 2}}[\mathsf{dist}_{G_n}(u,v) \leq M_n \mid G_n] \geq 1/2 \right\}.$$

holds w.p. 1 - o(1).

ullet We have $\widetilde{\mathcal{G}}_1\subset \mathcal{G}_1.$ Assuming \mathcal{G}_1^c ,

$$\begin{split} & \mathbb{P}_{u,\nu}[\mathsf{dist}_{G_n}(u,\nu) \leq M_n \mid G_n] \\ \leq & \mathbb{P}_u[u \text{ is typical} \mid G_n] + \mathbb{P}_{u,\nu}[u \text{ is not typical, } \mathsf{dist}(u,\nu) \leq M_n \mid G_n] \\ \leq & \frac{1}{10} + \frac{1}{10} < 1/2. \end{split}$$

- Typical vertices: for any u, let A(u) denote the set of vertices w with dist $(u, w) \leq M_n$. u is called typical if $|A(u)| \geq n/10$.
- With prob. 1 o(1), $\#\{\text{typical vertices}\} \ge n/10$. Denoted by \mathcal{G}_1 .
 - [van der Hofstad-Zhu'25] implies

$$\widetilde{\mathcal{G}}_1 \triangleq \left\{ G_n : \mathbb{P}_{u,v \sim \mathsf{unif}^{\otimes 2}}[\mathsf{dist}_{G_n}(u,v) \leq M_n \mid G_n] \geq 1/2 \right\}.$$

holds w.p. 1 - o(1).

ullet We have $\widetilde{\mathcal{G}}_1\subset \mathcal{G}_1.$ Assuming \mathcal{G}_1^c ,

$$\begin{split} & \mathbb{P}_{u,\nu}[\mathsf{dist}_{G_n}(u,\nu) \leq M_n \mid G_n] \\ \leq & \mathbb{P}_u[u \text{ is typical} \mid G_n] + \mathbb{P}_{u,\nu}[u \text{ is not typical, } \mathsf{dist}(u,\nu) \leq M_n \mid G_n] \\ \leq & \frac{1}{10} + \frac{1}{10} < 1/2. \end{split}$$

• \Rightarrow PA(\mathcal{G}_1) = 1 - o(1) under PA.

- Breaking [1, n] into three sets: $G_{n-2K_n} \triangleq [1, n-2K_n]$, $I_1 \triangleq [n-2K_n, n-K_n]$ and $I_2 \triangleq [n-K_n, n]$ where $K_n = n/\log n$.
- There exists a w_1 in I_1 , such that $w_1 \to a$ typical vertex and $w_1 \to N_{R_n}(u)$, with probability $1 (1 O((\log n)^4/n))^{K_n} = 1 \exp(-O((\log n)^3))$.
- For any $u, v \in [1, n-2K_n]$, $\operatorname{dist}_{G_n}(u, v) \leq M_n + 2R_n + 4$ with prob. $1 o(1/n^2)$.

- Breaking [1, n] into three sets: $G_{n-2K_n} \triangleq [1, n-2K_n]$, $I_1 \triangleq [n-2K_n, n-K_n]$ and $I_2 \triangleq [n-K_n, n]$ where $K_n = n/\log n$.
- There exists a w_1 in I_1 , such that $w_1 \to a$ typical vertex and $w_1 \to N_{R_n}(u)$, with probability $1 (1 O((\log n)^4/n))^{K_n} = 1 \exp(-O((\log n)^3))$.
- For any $u, v \in [1, n-2K_n]$, $\operatorname{dist}_{G_n}(u, v) \leq M_n + 2R_n + 4$ with prob. $1 o(1/n^2)$.

- Breaking [1, n] into three sets: $G_{n-2K_n} \triangleq [1, n-2K_n]$, $I_1 \triangleq [n-2K_n, n-K_n]$ and $I_2 \triangleq [n-K_n, n]$ where $K_n = n/\log n$.
- There exists a w_1 in I_1 , such that $w_1 \to a$ typical vertex and $w_1 \to N_{R_n}(u)$, with probability $1 (1 O((\log n)^4/n))^{K_n} = 1 \exp(-O((\log n)^3))$.
- For any $u, v \in [1, n-2K_n]$, $\operatorname{dist}_{G_n}(u, v) \leq M_n + 2R_n + 4$ with prob. $1 o(1/n^2)$.

- Breaking [1, n] into three sets: $G_{n-2K_n} \triangleq [1, n-2K_n]$, $I_1 \triangleq [n-2K_n, n-K_n]$ and $I_2 \triangleq [n-K_n, n]$ where $K_n = n/\log n$.
- There exists a w_1 in I_1 , such that $w_1 \to a$ typical vertex and $w_1 \to N_{R_n}(u)$, with probability $1 (1 O((\log n)^4/n))^{K_n} = 1 \exp(-O((\log n)^3))$.
- For any $u, v \in [1, n-2K_n]$, $\operatorname{dist}_{G_n}(u, v) \leq M_n + 2R_n + 4$ with prob. $1 o(1/n^2)$.

- Breaking [1, n] into three sets: $G_{n-2K_n} \triangleq [1, n-2K_n]$, $I_1 \triangleq [n-2K_n, n-K_n]$ and $I_2 \triangleq [n-K_n, n]$ where $K_n = n/\log n$.
- There exists a w_1 in I_1 , such that $w_1 \to a$ typical vertex and $w_1 \to N_{R_n}(u)$, with probability $1 (1 O((\log n)^4/n))^{K_n} = 1 \exp(-O((\log n)^3))$.
- For any $u, v \in [1, n-2K_n]$, $\operatorname{dist}_{G_n}(u, v) \leq M_n + 2R_n + 4$ with prob. $1 o(1/n^2)$.

- Breaking [1, n] into three sets: $G_{n-2K_n} \triangleq [1, n-2K_n]$, $I_1 \triangleq [n-2K_n, n-K_n]$ and $I_2 \triangleq [n-K_n, n]$ where $K_n = n/\log n$.
- There exists a w_1 in I_1 , such that $w_1 \to a$ typical vertex and $w_1 \to N_{R_n}(u)$, with probability $1 (1 O((\log n)^4/n))^{K_n} = 1 \exp(-O((\log n)^3))$.
- For any $u, v \in [1, n-2K_n]$, $\operatorname{dist}_{G_n}(u, v) \leq M_n + 2R_n + 4$ with prob. $1 o(1/n^2)$.

- Show for any $u \in [n-2K_n, n]$, $\operatorname{dist}_{G_n}(u, [1, n-2K_n]) \leq R_n + 2$.
- BFS (breath-first search) in $N_{R_n}(u)$. \mathcal{F}_{k-1} as the attachment of v_1, \ldots, v_{k-1} .
- Applying the conditional attachment lemma,

$$\mathbb{P}\big[v_k \not\to [1, n-2K_n] \,|\, \mathcal{F}_{k-1}\big] = O\bigg(\frac{1}{\log n}\bigg).$$

• $\mathbb{P}\Big[N_{R_n}(u)\cap[1,n-2K_n]=\emptyset\Big] \leq (1/\log n)^{(\log n)^3}=o(1/n^3)$, by iterative conditioning.

- Show for any $u \in [n-2K_n, n]$, $\operatorname{dist}_{G_n}(u, [1, n-2K_n]) \leq R_n + 2$.
- BFS (breath-first search) in $N_{R_n}(u)$. \mathcal{F}_{k-1} as the attachment of v_1, \ldots, v_{k-1} .
- Applying the conditional attachment lemma,

$$\mathbb{P}\big[v_k \not\to [1, n-2K_n] \,|\, \mathcal{F}_{k-1}\big] = O\bigg(\frac{1}{\log n}\bigg).$$

• $\mathbb{P}\Big[N_{R_n}(u)\cap[1,n-2K_n]=\emptyset\Big]\leq (1/\log n)^{(\log n)^3}=o(1/n^3)$, by iterative conditioning.

- Show for any $u \in [n-2K_n, n]$, $\operatorname{dist}_{G_n}(u, [1, n-2K_n]) \leq R_n + 2$.
- BFS (breath-first search) in $N_{R_n}(u)$. \mathcal{F}_{k-1} as the attachment of v_1, \ldots, v_{k-1} .
- Applying the conditional attachment lemma,

$$\mathbb{P}\big[v_k \not\to [1, n-2K_n] \,|\, \mathcal{F}_{k-1}\big] = O\bigg(\frac{1}{\log n}\bigg).$$

• $\mathbb{P}\Big[N_{R_n}(u)\cap[1,n-2K_n]=\emptyset\Big]\leq (1/\log n)^{(\log n)^3}=o(1/n^3)$, by iterative conditioning.

- Show for any $u \in [n-2K_n, n]$, $\operatorname{dist}_{G_n}(u, [1, n-2K_n]) \leq R_n + 2$.
- BFS (breath-first search) in $N_{R_n}(u)$. \mathcal{F}_{k-1} as the attachment of v_1, \ldots, v_{k-1} .
- Applying the conditional attachment lemma,

$$\mathbb{P}\big[v_k \not\to [1, n-2K_n] \,|\, \mathcal{F}_{k-1}\big] = O\bigg(\frac{1}{\log n}\bigg).$$

• $\mathbb{P}\Big[N_{R_n}(u)\cap[1,n-2K_n]=\emptyset\Big]\leq (1/\log n)^{(\log n)^3}=o(1/n^3)$, by iterative conditioning.

Outlook and discussions

- We prove the asymptotic diameter of the PA model is $\log_{\nu} n$ when $m > 2, \delta > 0$.
- End of the story? We hope the proof technique can be applied to other graph models.
- Open question:
 - (1) Conditional on diameter being $C \log_{\nu} n$ with C > 1, what is the graph structure?
 - (2) Pinpointing the second order of the diameter of PA model. Conjecture: $\log_{\nu} n + O(\log \log n)$.

Thank you!