화학 데이터 인공지능을 위한 Multimodal Learning 라이브러리 및 ChemAl

나경석 한국화학연구원 (KRICT)

CONTENTS

- **01** Heterogeneous Data Types on Chemical Data
- 02 Multimodal Learning for Chemical Data
- 03 ChemAl: Al for Chemical Applications
- **04** Future Open Source Projects

Numerical Value

Numerical data represented by the scalar values and the feature vectors (engineering conditions, experimental values)

String Data

A sequence of characters to encode chemical structures and attributes of chemical compounds (chemical formula, SMILES)

Image Data

Image-like data to represent physical patterns and analysis results of chemical compounds (diffraction patterns)

Attributed Graph

Mathematical graphs
with node and edge
features to describe the
atomic structures of
molecules and
crystalline systems

Numerical Value

Numerical data represented by the scalar values and the feature vectors (engineering conditions, experimental values)

String Data

A sequence of characters to encode chemical structures and attributes of chemical compounds (chemical formula, SMILES)

Image Data

Image-like data to represent physical patterns and analysis results of chemical compounds (diffraction patterns)

Attributed Graph

Mathematical graphs with node and edge features to describe the atomic structures of molecules and crystalline systems

Hybrid perovskite

Numerical Value

Numerical data represented by the scalar values and the feature vectors (engineering conditions, experimental values)

String Data

A sequence of characters to encode chemical structures and attributes of chemical compounds (chemical formula, SMILES)

Image Data

Image-like data to represent physical patterns and analysis results of chemical compounds (diffraction patterns)

Attributed Graph

Mathematical graphs
with node and edge
features to describe the
atomic structures of
molecules and
crystalline systems

Band gap, Efficiency, Analysis results

Chemical formula (CsPbl₃), Crystal structure (CIF)

Chemical formula (C₃H₅N₂), Molecular structure (SMILES)

Metadata

Chemical formula (Ac₂Aglr), Space group (Fm3m)

Interpretations

Refined information by physical and chemical domain knowledge, such as Cartesian coordinates

Synthesis Conditions

Experimental conditions in the synthesis process.

Analysis Data

Diffraction pattern image and spectrum, ...

Reaction conditions and results

Experimental conditions of the chemical systems based on atomic and substructure interactions

■ High-Level Information

Physical and chemical information about composite and heterogeneous structures, such as device structures and device properties

02 Multimodal Learning for Chemical Data

- Modality [Wikipedia]
 - The channel by which signs are transmitted (linguistics)
 - A path of communication between the human and the computer (computer science)

Multimodal Learning

- Different modality → Different statistics
- Joint representation learning from the data sources of different modalities

- **Metadata** (domain knowledge, experience, ...)
- Vision Data (image, chart, gesture, ...)
- Sound Data (audio, voice, ...)

02 Multimodal Learning for Chemical Data

- Different modality → Different prediction model
 - Vector-shaped data: feedforward neural networks, gradient boosting tree
 - Image data: convolutional neural networks
 - Sequential data: recurrent neural networks, transformer models
 - **Graph data**: graph neural networks, graph kernel methods

(RDKit, Pymatgen)

learning

(TorchVision, PyG)

(environment) path/user> pip install ailca

Step 1: load dataset and construct a multimodal dataset

```
dataset_crystal = crystal.load_dataset("path_metadata", "path_structs", load_information)
dataset_image = image.load_dataset("path_metadata", "path_imgs", load_information)
dataset = MultimodalDataset(datasets=[dataset_crystal, dataset_image], load_information)
dataset_train, dataset_test = dataset.split(train_ratio)
data_loader = get_data_loader(dataset_train, batch_size, shuffle=True)
```

Step 2: define the embedding networks for each data type

emb_net_crystal = CGCNN(dataset_crystal, dim_out, readout_method)
emb_net_image = ResNet34(dim_out)
model = MultimodalNet(emb_nets=[emb_net_crystal, emb_net_image], dim_out, rep_method).cuda()

Step 3: optimize model parameters of the multimodal prediction model

```
optimizer = get_optimizer(model, gradient_method)
loss_func = get_loss_func(loss_name)

for epoch in range(0, epochs):
        train_loss = model.fit(data_loader, optimizer, loss_func)
```

Step 4: evaluate the trained model on test dataset

```
eval_results = MLResult(model, dataset_train, dataset_test)
eval_results.save("path_result_file")
model.save("path_model_file")
print(eval_results)
```

Installation

Install development environments, such as Python, GPU drive, external frameworks

Data Preprocessing

Convert raw chemical data of unstructured formats into the machine-readable formats

Model Configuration

Select appropriate machine algorithms and initial configurations according to the input data

Hyperparameter Optimization

Search optimal hyperparameters to generate an accurate prediction model

Model Evaluation

Evaluate the trained prediction models on predefined test datasets

Installation

Data Preprocessing

Model Configuration

Hyperparameter Optimization

Model Evaluation

Web implementation

ChemAl is available on desktop, tablet, and smartphone without GPU machines and software installations

Multimodal Learning

ChemAl supports multimodal learning for heterogeneous data formats in chemical applications

Auto-Configuration

Appropriate machine learning algorithms are automatically trained according to data formats of the input data

Transfer Learning

Installation

Data Preprocessing

Model Configuration

Hyperparameter Optimization

Model Evaluation

Web implementation

ChemAl is available on desktop, tablet, and smartphone without GPU machines and software installations

Multimodal Learning

ChemAl supports multimodal learning for heterogeneous data formats in chemical applications

Auto-Configuration

Appropriate machine learning algorithms are automatically trained according to data formats of the input data

Transfer Learning

Installation

Data Preprocessing

Model Configuration

Hyperparameter Optimization

Model Evaluation

Web implementation

ChemAl is available on desktop, tablet, and smartphone without GPU machines and software installations

Multimodal Learning

ChemAl supports multimodal learning for heterogeneous data formats in chemical applications

Auto-Configuration

Appropriate machine learning algorithms are automatically trained according to data formats of the input data

Transfer Learning

Installation

Data Preprocessing

Model Configuration

Hyperparameter Optimization

Model Evaluation

Web implementation

ChemAl is available on desktop, tablet, and smartphone without GPU machines and software installations

Multimodal Learning

ChemAl supports multimodal learning for heterogeneous data formats in chemical applications

Auto-Configuration

Appropriate machine learning algorithms are automatically trained according to data formats of the input data

Transfer Learning

Toolkits

Pre-trained prediction models and data-preprocessing algorithms for chemical applications

Machine Learning

Machine learning to generate the prediction models based on userdefined problems

Applications

Model store of the users to share their machine learning tasks and prediction models

Toolk	it	Input Type	Target Property (Unit)	R ² Score	Source Files
Ž,	Band Gap Prediction Prediction of expeirmental band gap [more]	Composition	Experimental band gap (eV)	0.909	Trained model Source dataset
	Formation Energy Prediction Prediction of experimental formation energy [more]	Composition	Experimental formation energy (eV/atom)	0.907	Trained model Source dataset
響	Thermoelectricity Prediction Prediction of ZT (figure of merit) for a given temperature [more]	CompositionTemperature (K)	ZT (Figure of merit)	0.867	Trained model
**	Band Gap Prediction of Perovskites Band gap prediction of organic-inorganic perovskites ^[more]	Crystal structure (.cif)	HSE band gap (eV)	0.901	Trained model Source dataset
*	Band Gap Correction $ \label{eq:GGA} \text{Prediction of G_0W_0 band gap from naive GGA band gap $[^{\text{Imore}}]$ } $	Crystal structure (.cif)GGA band gap (eV)	${\sf G_0W_0}$ band gap (eV)	0.951	Trained model Source dataset Reference
	Prediction of Absorption Max Predicting absorption max of organic chromophores [more]	Chromophore structure (SMILES) Solvent structure (SMILES)	Absorption max (nm)	0.902	Trained model Source dataset
*	Data Clustering Grouping data points based on density of data ^[more]	Data points (.xlsx)Distance threshold (epsilon)Quantity threshold (MinPts)	None	Not available	Reference
÷	Outlier Detection Detection of abnormal data based on data distribution [more]	Data points (.xlsx)Number of neighbors (NumNN)	None	Not available	Reference

Model or Method Name	Year	Input Data	Description
Extended GNN (EGNN)	2020	Molecular structureMetadata of molecule	Joint representation learning of attributed graph and global information
Tuplewise Graph Neural Network (TGNN)	2020	Crystal structureLow-level band gap	Correction model from low-cost band gaps to expensive but accurate band gaps
Unsupervised Subspace Extraction (USE)	2021	 Unlabelled dataset 	Feature extraction to find optimal subspace
DopNet	2021	Chemical formula	Prediction model for doped materials
Automated Nonlinearity Encoder (ANE)	2022	Not specified	A generalized method to generate latent data representations for extrapolation
System-Identified Material Descriptor (SIMD)	2022	Chemical formulaSet of materials	A material descriptor based on latent representation of the material systems
Conditional Graph Information Bottleneck (CGIB)	2022	 Molecular structures 	Graph neural network to predict the target properties from molecular interactions
Substructure Interaction Graph Network with Node Augmentation (SIGNNA)	2022	Molecular structuresCrystal structures	Graph neural network to predict the target properties of heterogeneous systems

Model or Method Name	Year	Input Data	Description
Extended GNN (EGNN)	2020	Molecular structureMetadata of molecule	Joint representation learning of attributed graph and global information
Tuplewise Graph Neural Network (TGNN)	2020	Crystal structureLow-level band gap	Correction model from low-cost band gaps to expensive but accurate band gaps
Unsupervised Subspace Extraction (USE)	2021	 Unlabelled dataset 	Feature extraction to find optimal subspace
DopNet	2021	Chemical formula	Prediction model for doped materials
Automated Nonlinearity Encoder (ANE)	2022	Not specified	A generalized method to generate latent data representations for extrapolation
System-Identified Material Descriptor (SIMD)	2022	Chemical formulaSet of materials	A material descriptor based on latent representation of the material systems
Conditional Graph Information Bottleneck (CGIB)	2022	 Molecular structures 	Graph neural network to predict the target properties from molecular interactions
Substructure Interaction Graph Network with Node Augmentation (SIGNNA)	2022	Molecular structuresCrystal structures	Graph neural network to predict the target properties of heterogeneous systems

Model or Method Name	Year	Input Data	Description
Extended GNN (EGNN)	2020	Molecular structureMetadata of molecule	Joint representation learning of attributed graph and global information
Tuplewise Graph Neural Network (TGNN)	2020	Crystal structureLow-level band gap	Correction model from low-cost band gaps to expensive but accurate band gaps
Unsupervised Subspace Extraction (USE)	2021	 Unlabelled dataset 	Feature extraction to find optimal subspace
DopNet	2021	Chemical formula	Prediction model for doped materials
Automated Nonlinearity Encoder (ANE)	2022	Not specified	A generalized method to generate latent data representations for extrapolation
System-Identified Material Descriptor (SIMD)	2022	Chemical formulaSet of materials	A material descriptor based on latent representation of the material systems
Conditional Graph Information Bottleneck (CGIB)	2022	 Molecular structures 	Graph neural network to predict the target properties from molecular interactions
Substructure Interaction Graph Network with Node Augmentation (SIGNNA)	2022	Molecular structuresCrystal structures	Graph neural network to predict the target properties of heterogeneous systems

Model or Method Name	Year	Input Data	Description
Extended GNN (EGNN)	2020	Molecular structureMetadata of molecule	Joint representation learning of attributed graph and global information
Tuplewise Graph Neural Network (TGNN)	2020	Crystal structureLow-level band gap	Correction model from low-cost band gaps to expensive but accurate band gaps
Unsupervised Subspace Extraction (USE)	2021	 Unlabelled dataset 	Feature extraction to find optimal subspace
DopNet	2021	Chemical formula	Prediction model for doped materials
Automated Nonlinearity Encoder (ANE)	2022	Not specified	A generalized method to generate latent data representations for extrapolation
System-Identified Material Descriptor (SIMD)	2022	Chemical formulaSet of materials	A material descriptor based on latent representation of the material systems
Conditional Graph Information Bottleneck (CGIB)	2022	 Molecular structures 	Graph neural network to predict the target properties from molecular interactions
Substructure Interaction Graph Network with Node Augmentation (SIGNNA)	2022	Molecular structuresCrystal structures	Graph neural network to predict the target properties of heterogeneous systems

감사합니다

화학 데이터 인공지능을 위한 Multimodal Learning 라이브러리 및 ChemAl

