Modul 86111

Schienenfahrzeugtechnik I

Prof. Dr. Raphael Pfaff Sommersemester 2015

Schienenfahrzeugtechnik I – Übung 3

Kraftschluss und Schlupf

Aufgabe 1 (Kraftschlussausnutzung). Ein dreiteiliger Triebzug wird beschleunigt und gebremst. Die Daten des Triebzugs sind:

- Achsformel Bo' Bo' + 2' 2' + Bo' Bo'
- $m_{W,i} = 40t$
- Zusätzliche rotierende Massen (anteilig von $m_{W,i}$):
 - Treibachsen $\rho_T=0.15$
 - Laufachsen $\rho_L = 0.08$
- Beschleunigungsvermögen: $a_{max} = 1.5 \frac{\text{m}}{\text{s}^2}$
- Verzögerung der Schnellbremse: $b_{max} = 1.2 \frac{\text{m}}{\text{s}^2}$

Bestimmen Sie:

- a) Treibachsbremskräfte (Lauf- und Treibachsen) und Kraftschlussausnutzung während einer Schnellbremsung
- b) Treibachszugkraft und Kraftschlussausnutzung während der maximalen Beschleunigung
- c) Die Bremse muss an zwei Drehgestellen (1 Laufdrehgestell, 1 Triebdrehgestell) auf Grund eines Fehlers abgesperrt werden. Bestimmen Sie die verbleibende Verzögerung sowie die Kraftschlussausnutzung, für die die Bremsleistung konstant gehalten werden könnte.

Aufgabe 2. Ein Güterwagen (Masse leer $m_L=30\mathrm{t}$, Masse unter maximaler Beladung $m_B=80\mathrm{t}$, rotierende Masse $m_R=3.2\mathrm{t}$) erreicht eine maximale Verzögerung $b_{max}=0.7\frac{\mathrm{m}}{\mathrm{s}^2}$. Bestimmen Sie:

- a) Treibachsbremskraft und Kraftschlussausnutzung w\u00e4hrend einer Schnellbremsung des beladenen Wagens
- b) Kraftschlussausnutzung während einer Schnellbremsung des unbeladenen Wagens unter der Annahme einer konstanten Bremskraft am Radumfang
- c) Treibachsbremskraft des unbeladenen Wages für eine Kraftschlussausnutzung von 0, 1.