University of Toronto Department of Mathematics

MAT224H1S

Linear Algebra II

Final Examination

August 17, 2012

Z. Amir-Khosravi

Duration: 3 hours

Last Name:	 	
Given Name:		
Student Number:		
Tutorial Group:		

No calculators or other aids are allowed.

FOR MARKER USE ONLY				
Question	Mark			
1	/10			
2	/10			
3	/10			
4	/10			
5	/10			
6	/10			
TOTAL	/60			

ž.			

(10) 1. Define the inner product on $P_2(\mathbb{C})$ by

$$\langle p(x),q(x)\rangle = \int_0^2 p(t)\overline{q(t)}dt.$$

- (a) Find an orthonormal basis for $P_2(\mathbb{C})$ by applying the Gram-Schmidt process to the standard basis $\{1,x,x^2\}$.
- (b) Find the shortest distance between the vector x^2 and the subspace spanned by $\{1, x\}$.

	•		

EXTRA PAGE FOR QUESTION 1 - do not remove.

(10) 2. Consider $M_{2\times 2}(\mathbb{R})$ as a real vector space and define an inner product

$$\langle A, B \rangle = \text{Tr}(B^t A).$$

Let

$$W_1 = \{ A \in M_{2 \times 2}(\mathbb{R}) : A^t = A \}, \ W_2 = \{ A \in M_{2 \times 2}(\mathbb{C}) : A^t = -A \}.$$

- (a) Show that $W_2 = W_1^{\perp}$.
- (b) Find an orthonormal basis for W_1 , and a formula for the orthogonal projection P_{W_1} .

EXTRA PAGE FOR QUESTION 2 - do not remove.

(10) 3. Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be given by

$$T(z_1, z_2) = (-2iz_1 + (1+2i)z_2, (-1+2i)z_1 + 2iz_2).$$

- (a) Show T is normal.
- (b) Find an orthonormal basis of eigenvectors of T for \mathbb{C}^2 .

EXTRA PAGE FOR QUESTION 3 - do not remove.

(10) 4. Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be the linear operator whose matrix in standard coordinates is

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -i \end{array}\right).$$

Find the spectral decomposition of T relative to the standard basis of \mathbb{C}^3 .

EXTRA PAGE FOR QUESTION 4 - do not remove.

(10) 5. Let V be a finite dimensional inner product space, and $T:V\to V$ a projection operator. Prove that T is normal if and only if T is an orthogonal projection.

(10) 6. Let $T: P_3(\mathbb{C}) \to P_3(\mathbb{C})$ be the linear operator given by:

$$T(1) = ix + x^2 - ix^3$$
, $T(x) = x^2$, $T(x^2) = -x$, $T(x^3) = i(1 - 2x^3) + (1 + i)(x + x^2)$.

Find a basis β for $P_3(\mathbb{C})$ such that $[T]^\beta_\beta$ is in Jordan canonical form.

EXTRA PAGE FOR QUESTION 6 - do not remove.