

IMPLANTAÇÃO DE UM LABORATÓRIO DE BAIXO CUSTO PARA CALIBRAÇÃO DAS COMPONENTES ANGULARES DE INSTRUMENTOS TOPOGRÁFICOS

Tiago S. MARIANO¹, Paulo A. F. BORGES², Lucia FERREIRA³

RESUMO

Nos últimos anos houve uma evolução dos equipamentos topográficos, o que fez com que esses sofressem com o uso intenso, que proporcionou a danificação dos componentes angulares. O Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - Campus Inconfidentes possui um ativo de equipamentos topográficos, entre eles, teodolitos e estações totais para as aulas práticas, porém como foram adquiridos há anos, apresentam erros nas componentes angulares. Desta forma, para evitar gastos com a calibração desses equipamentos e garantir a qualidade das aulas práticas, projetos de pesquisas e trabalhos de conclusão de curso (TCC), realizou-se um estudo dos métodos mais utilizados e de baixo custo, para implantação no Campus Inconfidentes, de um laboratório para a calibração das componentes angulares vertical e horizontal, para atender às demandas locais, destacando a disponibilidade aos alunos dos cursos Técnico em Agrimensura e Engenharia de Agrimensura e Cartográfica de um laboratório para capacitação em práticas de calibração, tornando-os profissionais especializados, preparados para atender as demandas do mercado de trabalho.

Palavras-chave: Estações Totais, Teodolitos, Metrologia Topográfica, Aferição Topográfica, Limbos Angulares.

1. INTRODUÇÃO

A garantia de prestação de serviços de qualidade está diretamente relacionada ao conhecimento dos profissionais quanto à manutenção e calibração dos instrumentos topográficos.

Os laboratórios que oferecem serviços de calibração de instrumentos topográficos, devem ser validados pela norma NBR ISO/IEC 17025:2005, certificados pelas normas ISO 9001:2000 e os procedimentos para aferição devem ser realizados de acordo com os requisitos da norma ISO 17123:2001

A utilização de equipamentos topográficos nas aulas práticas de diversos cursos do IFSULDEMINAS *Campus* Inconfidentes é primordial para a correta capacitação dos futuros profissionais que ingressarão no mercado de trabalho. Entretanto, a eficiência no aprendizado está vinculada à correta operação dos instrumentos.

Atualmente no Brasil, a norma NBR 13.133 apresenta uma classificação dos equipamentos topográficos quanto ao seu padrão de precisão, definida para cada tipo de trabalho a ser executado, de forma a atender os padrões mínimos de exigência e controle de qualidade.

¹ Bolsista PIBIC/FAPEMIG, IFSULDEMINAS – Campus Inconfidentes, E-mail: tiagomtbagrimensura@hotmail.com

² Orientador, IFSULDEMINAS – Campus Inconfidentes. E-mail: paulo.borges@ifsuldeminas.edu.br

³ Colaborador, IFSULDEMINAS – Campus Inconfidentes. E-mail: lucia.ferreira@ifsuldeminas.edu.br

A calibração dos equipamentos topográficos do IFSULDEMINAS não é realizada com frequência, devido à falta de recursos para manutenção, pois são serviços especializados de alto custo.

Após a implantação do Laboratório de Instrumentação Topográfica na Fazenda Escola, a aferição e classificação dos instrumentos será realizada no *Campus*, diminuindo os custos e aumentando a frequência de verificação dos instrumentos, possibilitando a oferta de uma disciplina para capacitação dos discentes do Curso de Engenharia de Agrimensura e Cartográfica, fornecendo assim mão de obra qualificada para as empresas que oferecem serviços de manutenção.

2. FUNDAMENTAÇÃO TEÓRICA

Silva (2008) apresentou uma proposta para criação de um laboratório para calibração das componentes angulares horizontal e vertical de teodolitos e estações totais. A proposta buscou adaptar os testes realizados em bases de campo para um laboratório (ambiente tecnicamente controlado), a partir da utilização de colimadores, visando avaliar a eficiência dos procedimentos de laboratório em relação aos procedimentos de campo.

A norma ISO 17123-3:2001 apresenta uma especificação dos procedimentos de campo que devem ser adotados, modelos matemáticos e modelos de medições de ângulos verticais, onde são apresentados testes simplificados e testes completos para medições de ângulos, os quais devem ser obtidos a partir de uma alta redundância de observações.

A norma NBR ISO/IEC 17025:2005 descreve os requisitos gerais para os laboratórios de calibração e ensaio incluindo os procedimentos de amostragem, independentemente do tamanho do laboratório e também trata do sistema de gestão de qualidade do laboratório. Esta Norma engloba todos os requisitos presente na ABNT NBR ISO 9001.

Foi realizada a implantação do Método Compacto adaptado da norma ISO 17123-3 para laboratórios de aferição e calibração em locais fechados e pequenos.

3. MATERIAL E MÉTODOS

A metodologia para implementação contemplou diferentes atividades visando a utilização de lunetas de níveis automáticos como colimadores, o que não necessita de grandes adaptações para implementação, pois o custo desses equipamentos não é elevado.

A distribuição dos colimadores foi executada com base na norma 17.123-3 e a distribuição teve como base DZIERZEGA, SCHERRE (2003), pois na ISO 17.123 não consta qual a angulação de um colimador para outro, como ilustra a figura 1.

Na distribuição da posição dos colimadores foi utilizada uma estação total Ruide, cuja precisão angular é de 2". Definida a forma de distribuição dos colimadores, construiu-se um pilar de

centragem forçada de acordo com as normas para padronização de marcos do IBGE.

Figura 1: Distribuição Horizontal e Vertical dos colimadores (níveis).

Fonte: DZIERZEGA E SCHERRE (2002)

Para fixação dos colimadores foi construída uma chapa de aço em L de 30 cm de comprimento por 15 cm de largura por 4 mm de espessura para acoplar o colimador.

Foi locada a posição em que os colimadores deveriam ficar na parede, de acordo com a distribuição apresentada na Figura 1. Para melhorar a visão dos fios estadimétricos dos níveis, utilizou-se um sistema de iluminação com filtros amarelos, sendo este sistema alimentado por uma bateria de 12 volts. A Figura 2 ilustra a distribuição dos colimadores no laboratório:

Figura 2: Visualização do Pilar Central, da mesa de ajuste da altura e dos colimadores implantados para aferição angular de equipamentos topográficos.

Fonte: autor

Após a implantação dos elementos para posicionamento dos colimadores e o pilar para fixação do instrumento a ser aferido, utilizou-se uma estação total do Setor de Agrimensura e Cartografia para avaliação do sistema de calibração, onde o equipamentos topográfico foi submetido à metodologia de coleta de observações estabelecida na norma ISO 17123-3:2001.

4. RESULTADOS E DISCUSSÕES

Com as realizações das primeiras medições foi possível atestar a aferição do equipamento de referência, confirmando sua precisão angular nominal. Desta forma verificou-se que ao utilizar o método descrito por DZIERZEGA, SCHERRE (2003), obtém-se um resultado confiável, proporcionando assim a possibilidade de se calibrar qualquer equipamentos topográfico indiferente

de marca e modelo. Realizou-se testes de estabilidade do pilar de centragem forçada e dos suportes dos colimadores, onde verificou-se que ao passar veículos pesados próximo ao laboratório os colimadores sofriam pequenas vibrações devido ao conjunto não ser fixado sobre uma mesma sapata de concreto, porém no contexto geral o laboratório de aferição atendeu as expectativas considerandose as alternativas utilizadas para construção.

5. CONCLUSÕES

Com a conclusão da implantação do laboratório de calibração das componentes angulares torna-se possível a aferição contínua dos instrumentos utilizados nas aulas práticas de topografia, permitindo avaliar as reais condições dos instrumentos e classificá-los segundo a norma NBR 13.133.

Será possível ainda a capacitação dos discentes quanto aos procedimentos para calibração e aferição de equipamentos topográficos (teodolitos e estações totais). Destaca-se a importância da implantação do laboratório de calibração pelo cenário atual onde existem poucas empresas que dispõe de um local onde seja possível realizar calibrações e verificações em equipamentos topográficos.

AGRADECIMENTO

Agradecemos as pessoas que nos apoiaram na implantação do laboratório destacando-se o orientador do projeto e ao Núcleo Institucional de Pesquisa e Extensão do campus Inconfidentes (NIPE) que forneceu o recurso para a realização do mesmo e a ajuda que o estagiário José Luis Barcelos nos deu na construção do laboratório.

REFERÊNCIAS

ABNT. NBR ISO/IEC 17025:2005: Requisitos gerais para a competência de laboratórios de ensaio e calibração. Rio de Janeiro, p. 31. 2005. Associação Brasileira de Normas Técnicas.

ABNT. NBR ISO 9001:2000: **Sistema de Gestão de Qualidade - Requisitos**. Rio de Janeiro, p. 30. 2000. Associação Brasileira de Normas Técnicas.

ABNT. NBR 13.133: **Execução de levantamento topográfico**. Rio de Janeiro, 35 p.,1994. Associação Brasileira de Normas Técnicas.

DZIERZEGA, A.; SCHERRER, R. **Measuring with electronic total station**. Survey Review, v. 37, n. 287, janeiro de 2003.

ISO. Field procedures for testing geodetic and surveying instruments - Part 3: Theodolites. International Standard ISO 17123-3:2001, Optics and optical instruments, Geneva, Switzerland. 2001. International Standardization Organization.

SILVA, M. M. S. **Metodologia para a criação de um laboratório para classificação das componentes angulares horizontal e vertical, de teodolitos e estações totais**. Tese (Doutorado) - Programa de Pós-Graduação em Ciências Geodésicas, Setor de Ciências da Terra. Universidade Federal do Paraná. 2008.