

STEFANE ADNA DOS SANTOS

ANÁLISE DE SENTIMENTOS AMERICANAS

Este projeto utiliza técnicas de Processamento de Linguagem Natural (PLN) para classificar o sentimento dos comentários feitos pelos usuários na review de produtos do site Americanas.com. A documentação completa deste projeto pode ser acessada no arquivo "documentação_americanas.pdf".

DATASET

A base de dados utilizada foi disponibilizada pela B2W e contém colunas referentes ao título e texto da avaliação, nome e categoria do produto vendido, data de nascimento, gênero e localização do usuário que comprou o produto. Além disso, esta base contém as colunas "overall_rating" e "recommend_to_a_friend" que são referentes ao sentimento do usuário com relação ao produto comprado.

A coluna "overall_rating" pode possuir 5 valores, estando na escala de 1 a 5, onde o valor mais alto corresponde a um alto nível de satisfação com o produto. A coluna "recommend_to_a_friend" pode ter respostas assinaladas com "Yes" ou "No" e corresponde as respostas do usuário quando eles foram perguntados se eles indicariam o produto comprado para um amigo. Conforme as informações publicadas pelo artigo do B2W, existem inconsistências que podem ocorrer ao analisar os sentimentos dos usuários com base na coluna "overall_rating". Sendo assim, este projeto utiliza a coluna "recommend_to_a_friend" para classificar o sentimento dos comentários feitos pelos usuários.

PRÉ-PROCESSAMENTO

As técnicas de remoção de caracteres especiais, remoção de StopWords, Lematização e Stemização foram utilizadas para o processamento textual das colunas "review_title" e "review_text". O pré-processamento foi realizado utilizando o notebook "text_processing.ipynb" e a GPU do Google Colab, contendo apenas as primeiras 50 mil linhas do Dataset.

EXPERIMENTOS

Visando encontrar os melhores parâmetros para o projeto, foram desenvolvidos uma série de experimentos utilizando vários tipos de pré-processamento textual, classificadores e técnicas para validação dos modelos. Os experimentos foram realizados utilizando o notebook "experimentos.ipynb" que foi executado utilizando a GPU do Google Colab. Além disso, os dados foram divididos em 80% para treinamento e 20% para teste dos classificadores. Os testes desenvolvidos foram:

- 1. Vetorização dos dados: foram testados os algoritmos de vetorização Doc2Vec e o TF-IDF. Os dois algoritmos de vetorização foram utilizados em conjunto com o classificador de Regressão Logística. O classificador treinado com o Doc2vec obteve 85.8% de acurácia, o treinado utilizando o TF-IDF obteve 90.19% de acurácia. Por tanto, para este problema, o melhor algoritmo de vetorização foi o TF-IDF utilizado em conjunto com o CountVectorizer.
- **2. GridSearch:** Esta técnica foi implementada nos classificadores LogisticRegression, BernoulliNB, KNeighborsClassifier e RandomForestClassifier da biblioteca Scikitlearn. Ela é utilizada com o intuito de encontrar os parâmetros mais adequados para serem utilizados nos classificadores.
- **3. Validação cruzada:** Esta técnica foi utilizada para validar o melhor modelo de classificação. O algoritmo K-fold com K igual a 10 foi utilizado, sendo avaliadas as métricas de acurácia e f1-score. O classificador que obteve os melhores resultados foi o de Regressão logística com 90.32% de média de acurácia e 93.65% de média de F1-Score. A Tabela abaixo exibe os resultados obtidos através destes experimentos.

Classificador	Acurácia	F1-Score
Logistic Regression	$90.32\% \pm 0.43$	$93.65\% \pm 0.29$
BernoulliNB	$86.12\% \pm 0.52$	$90.90\% \pm 0.36$
KNN	$75.02\% \pm 6$	$83.38\% \pm 7.45$
Random Forest	$75.31\% \pm 0.06$	$85.89\% \pm 0.03$
Bagging Classifier	$90.25\% \pm 0.36$	$93.61\% \pm 0.25$

4. Processamento textual: Utilizada para encontrar o melhor tipo de processamento textual, os algoritmos de Lematização e Stemização foram utilizados. Com isso, utilizando o TF-IDF e o classificador de Regressão Logística, foram realizados testes utilizando os tipos de pré-processamento e as colunas review_text e review_title do dataset. A Tabela abaixo exibe o resultado destes experimentos.

Processamento e texto	Acurácia
review_text + stemização	90.19%
review_text + lematização	90.21%
review_text + lematização + stemização	89.93%
review_title + stemização	88.79%

review_title + lematização	89.05%
review_title + lematização + stemização	88.78%
review_text +review_title + stemização	91.96%
review_text +review_title + lematização	92.49%
review_text +review_title + lematização + stemização	92.17%

Com isso, a partir dos resultados obtidos nos experimentos, ficou comprovado que os melhores resultados foram obtidos utilizando os algoritmos de lematização, TF-IDF e o classificador de Regressão Logística. Este algoritmos em conjunto obtiveram 92.49% de acurácia nos testes. A figura abaixo exibe a matriz de confusão do modelo utilizado neste pipeline.

REPRODUTIVIDADE

A base de dados utilizada neste projeto está na pasta Dataset. Os modelos são salvos automaticamente dentro da pasta Models. Além disso, para utilizar este projeto deve-se clonar este repositório e executar o seguinte comando dentro da pasta do projeto:

pip install -r requirements.txt

Para treinar um novo modelo pode-se executar o comando abaixo:

python src/americanas/train.py

Caso seja necessário alterar o caminho da pasta do dataset ou o caminho em que os modelos serão salvos, pode-se enviar estes caminhos como argumento. Sendo eles:

- --path dataset < caminho dataset >
- --path count <caminho count vectorizer>
- --path_tfidf <caminho_tfidf>
- --path model <caminho classificador>

Para realizar a predição de um texto, pode-se executar o comando abaixo:

python src/americanas/predict.py --text "este produto é muito bom"

STREAMLIT

Uma aplicação no Streamlit foi desenvolvida com o intuito de facilitar a análise do sentimento de um texto. A aplicação permite que o usuário visualize o dashboard das análises realizadas e também insira um título e um texto de uma análise que a aplicação irá retornar para o usuário qual o sentimento do texto, podendo ser um sentimento positivo ou negativo. O link para acesso da aplicação é:

https://stefaneadna-nlp-sentiment-analysis-neow-srcamericanasapp-rmkwy2.st reamlit.app/

ANÁLISES

Foram realizadas algumas análises utilizando a base de dados da B2W. A figura abaixo exibe o gráfico da relação entre a quantidade de avaliações dos produtos, o gênero e o sentimento de avaliação dos usuários. A partir desta analise, pode-se perceber que a maior quantidade de avaliações possuem sentimento positivo e as pessoas do sexo masculino costumam fazer mais avaliações no site das Americanas.

Relação entre as avaliações dos produtos e o gênero.

A figura abaixo exibe um gráfico que contém uma relação da idade dos usuários com quantidade de compras que eles fazem. Para esta avaliação, a idade dos usuários foram divididas em quatro grupos, sendo o primeiro grupo as pessoas entre 15 e 30 anos, o segundo as pessoas entre 30 e 45 anos, o terceiro as pessoas entre 45 e 60 anos e o último as pessoas entre 60 e 100 anos. A partir desta analise, fica claro que as pessoas mais jovens tendem a não fazerem muitas análises dos produtos que compram. Não é possível afirmar se elas são as que menos compram produtos, pois a base de dados não contém esta informação. Com isso, o grupo que mais realizou avaliações é o grupo entre 45 e 60 anos.

Relação da idade dos usuários e quantidade de compras e o sentimento da avaliação dos usuários.

Outra análise realizada foi a dos produtos que possuem as maiores quantidades de avaliações positivas e negativas. Como pode ser visualizado nas figuras abaixo, alguns produtos possuem a indicação de valores de variação (traço na barra), isso ocorre para produtos que são iguais, mas possuem a cor diferente.

Ademais, também foi analisado o top dez de categorias de produtos mais avaliadas. Conforme fica claro na visualização da figura abaixo, as categorias de produtos de Smartfone, TV e Cabelo são as mais avaliadas.

As nuvens de palavras para as avaliações boas e ruins também foram geradas. Conforme as figuras abaixo. Na nuvem de palavras de avaliações boas, pode-se visualizar palavras como: recomendo, bom, excelente, ótima, rápida, qualidade. Na nuvem de palavras de avaliações ruins pode-se visualizar palavras como: péssimo, ruim, defeito e problema.

