1 写像について (全射・単射)

置換の話の前段階として、今日は写像の概念について (特に全射・単射について) 少し演習して慣れておきましょう.

演習 1.1 $\mathbb R$ を実数とする. 次で与えられる写像 $f:\mathbb R\to\mathbb R, x\mapsto f(x)$ がそれぞれ全射であるかどうか, また単射であるかどうかを答えよ.

- (1) f(x) = 2x 1
- (2) $f(x) = x^2$
- (3) $f(x) = x^3$
- (4) $f(x) = x^3 3x$
- (5) $f(x) = e^x$

演習 1.2 $f: A \rightarrow B, g: B \rightarrow C$ を写像とする.

- (1) f,g が共に全射ならば、合成写像 $g \circ f : A \to C$ も全射であることを示せ.
- (2) f,g が共に単射ならば、合成写像 $g \circ f: A \to C$ も単射であることを示せ.
- (3) f,g が共に全単射ならば (1), (2) により $g\circ f$ も全単射になる. このとき $g\circ f$ の逆写像は $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ であることを示せ.

集合 S に対して, S から S への恒等写像を $\mathrm{id}_S: S \to S$ と書くことにする.

演習 1.3 写像 $f:A\to B$ に対し、ある写像 $g:B\to A$ が存在して $g\circ f=\mathrm{id}_A$ 、 $f\circ g=\mathrm{id}_B$ となるならば f は全単射であり、 $g=f^{-1}$ となることを示せ.