Detekcija spam veb stranica pomoću URL-a

Marina Borozan 1092/18

Uvod

- Spam (štetne) veb stranice su veliki problem u današnje vreme, uzimajući u obzir učestalost internet aktivnosti
- "Spam tehnologija" napreduje I ima mogućnosti da svoje stranice visoko rangira u rezultatima pretrage
- Motiv za detekciju putem URL-a je smanjenje mogućnosti posećivanja stranice ukoliko se na osnovu URL-a može predvideti da je štetna

Vrste spam-a

- Phishing (Pecanje) krađa identiteta (ličnih podataka), najčešće putem posebnog email-a ili chat-a
- Malware (Zlonameran softver) softver koji je namenjen za nanošenje štete na računaru i računarskim mrežama
- Defacement -izmena izgleda(sadržaja) postojeće veb stranice
- Spam u užem smislu slanje neželjenih masovnih poruka bez ikakvog kriterijuma

Kratak opis procesa

- Obrada URL-ova radi dobijanja značajnih informacija
- Procesiranje tekstualnih podataka putem specijalizovanih algoritama -CountVectorizer, Multinomial Naive Bayes
- Klasifikacija pomoću algoritama LinearSVM, SVM sa RBF kernelom I RandomForest

Podaci

- Set podataka čini oko 89 000 URL-ova, od čega dobri(ne štetni) čine oko 40%
- Podaci su dobijeni sa sajta Canadian Institute for Cybersecurity

spam	53531
ne spam	35378

Procesiranje URL-a

https://www.example.com/buy-cheap-viagra

Protocol (scheme)

Subdomain Domain name

Top level domain (TLD)

Deep Url

Top level domain - TLD

Deep url

Multinomial Naive Bayes

- Reči su prvo procesirane koristeći CountVectorizer
- Verovatnoće predviđene MNB su korišćene kao atributi u daljoj obradi podataka
- Accuracy score MNB: ~0.9592

Random Forest

- Test set nam čini 10% seta podataka
- Za različite vrednosti parametra max_depth dobijamo:

	train accuracy	test accuracy
max_depth = 10	99,23%	99,14%
max_depth = 20	99,80%	99,39%
max_depth = 30	99,96%	99,36%

Linear SVM

 Za različite vrednosti parametra Cost dobijamo:

	train accuracy	test accuracy
C = 1	97,24%	96,83%
C = 10	95,01%	94,53%

SVM sa RBF kernelom

 Za različite vrednosti parametara gamma I Cost dobijamo:

	train accuracy	test acuracy
C = 1, gamma = 0.01	98,26%	98,29%
C = 1, gamma = 100	99,79%	92,43%
C = 10, gamma = 1	99,70%	97,90%

Najbitniji atributi

 Koristimo feature_importances_ iz RandomForest modela

label_proba_1	0.3803
label_proba_0	0.3587
len deep url	0.1386
len of domain	0.0405
suffix_co.uk	0.0177
suffix_net	0.0119

Predviđanje bez MultinomialNB

 Isključujemo dodatne kolone sa predviđenim verovatnoćama iz MNB:

	train accuracy	test accuracy
RandomForest	95,48%	92,96%
LinearSVM	65,35%	63,77%
RBF SVM	88,76%	87,46%

Ocena klasifikacije

Najbolji rezultat dobijamo koristeći RandomForest sa max_depth = 30

ROC kriva I matrica konfuzije za RF

	klasif. ne spam	klasif. spam
nije spam	TN=1135	FP=9
spam	FN=8	TP=1664

Zaključak

- Prikazano je nekoliko algoritama za klasifikaciju, od kojih se najbolje ponašaju RandomForest I RBF SVM
- Najvažniji atributi su predikcije verovatnoća iz MultinomialNB I LinearSVM se naročito loše ponaša u slučaju kada ih ne koristimo
- Spam je brzo rastući problem, jer se stalno otkrivaju nove tehnike I ako ih ne pratimo I analiziramo, sve ih je teže detektovati
- Mašinsko učenje u ovoj oblasti ima izuzetan značaj I mnogo prostora za unapređenje u rešavanju sličnih problema

Kraj

Hvala na paznji!