5. a 6. přednáška z LGR

Obsah

- Přirozená dedukce
 - Odvozovací pravidla
 - Korektnost a úplnost

Formální důkazové systémy

Formální důkazové systémy výrokové logiky patří do syntaxe. Nezabývají se pravdivostí formulí, ale odvoditelností formulí z jiných formulí.

Je ovšem žádoucí, aby odvoditelnost respektovala pravdivost (= korektní systém), v lepším případě, aby se odvoditelnost shodovala s pravdivostí, tj. aby bylo možné odvodit právě všechny sémantické důsledky (= úplný systém).

V žádném případě nechceme, aby šlo odvodit i nepravdivé formule (= příliš agresivní systém), či dokonce všechny formule (= sporný systém).

Formální důkazové systémy

- Hilbertův systém Hilbert, Německo, 1908
 Má několik axiomů a málo odvozovacích pravidel,
 pro výrokovou logiku jsou to tři typy axiomů a jedno odvozovací pravidlo (modus ponens).
 Pracuje s formulemi obsahujícími pouze spojky z {¬,⇒}.
- Přirozená dedukce Gentzen, Německo, kolem 1930
 Nemá axiomy, ale má mnoho odvozovacích pravidel, která kopírují přirozené uvažování.

Základní odvozovací pravidla

Přirozená dedukce pracuje s formulemi, které obsahují základní sadu spojek kromě ekvivalence. (Místo ekvivalence budeme vždy dokazovat obě implikace.)

Dále používá znak \bot pro spor, což je zkratka za jakoukoliv formuli $\varphi \land \neg \varphi$, kde φ je formule. (Pokud bychom chtěli, mohli bychom místo sporu pracovat s formulí ff .)

Pro každou spojku jsou v přirozené dedukci dvě pravidla:

- i-pravidlo, které spojku zavádí (introduction rule)
- e-pravidlo, které spojku odstraňuje (elimination rule)

Základní odvozovací pravidla		
spojka	i-pravidlo	e-pravidlo
^	$\frac{\varphi \psi}{\varphi \wedge \psi} \wedge_i$	$\frac{\varphi \wedge \psi}{\varphi} \wedge_{e_1} \frac{\varphi \wedge \psi}{\psi} \wedge_{e_2}$
\Rightarrow	$\frac{\varphi}{\vdots} \\ \frac{\psi}{\varphi \Rightarrow \psi} \Rightarrow_{i}$	$\dfrac{arphi \qquad arphi \Rightarrow \psi}{\psi} \Rightarrow_{\pmb{e}} \; ext{Modus ponens (MP)}$

Základní odvozovací pravidla spojka i-pravidlo e-pravidlo no i-rule for \bot

Definice

Odvození formule φ z formulí v S je konečná posloupnost formulí $\varphi_1, \varphi_2, \ldots, \varphi_k$ taková, že platí:

- každá formule φ_i je buď formule z množiny S, nebo je to pomocný předpoklad (tj. otevírá box), anebo vznikla z formulí $\varphi_1, \ldots, \varphi_{i-1}$ pomocí některého odvozovacího pravidla přirozené dedukce
- všechny pomocné předpoklady jsou pasivní (tj. všechny boxy jsou uzavřeny)
- $\bullet \ \varphi_k = \varphi$

V odvození budeme psát formule pod sebe a budeme rozsah platnosti pomocných předpokladů vyznačovat rámečky (boxy).

Definice

Formule φ je *logickým důsledkem* množiny formulí S, jestliže existuje odvození formule φ z formulí v S. Značíme $S \vdash \varphi$, popř. $\psi \vdash \varphi$, či $\vdash \varphi$.

Příklady

Na přednášce bude dokázáno:

- $a \wedge b \vdash b \wedge a$
- $\vdash a \Rightarrow (b \Rightarrow a)$
- $\bullet \neg a \lor b \vdash a \Rightarrow b$

Další odvozovací pravidla Reductio ad absurdum (RAA) Tertium non datur (TND)

Příklady

Na přednášce bude dokázáno (s použitím pravidel RAA a TND):

- $\bullet \neg b \Rightarrow \neg a \vdash a \Rightarrow b$
- $a \Rightarrow b \vdash \neg a \lor b$

Definice

Říkáme, že formule φ a ψ jsou *logicky ekvivalentní*, pokud $\varphi \vdash \psi$ a také $\psi \vdash \varphi$. Značíme $\varphi \dashv \vdash \psi$.

Věta (syntaktická o kompaktnosti)

Pro libovolnou množinu formulí S a libovolnou formuli φ platí: $S \vdash \varphi$, právě když existuje konečná $S' \subseteq S$ tak, že $S' \vdash \varphi$.

Věta (syntaktická o dedukci)

Pro libovolnou množinu formulí S a libovolné formule φ a ψ platí: $S \cup \{\varphi\} \vdash \psi$, právě když $S \vdash \varphi \Rightarrow \psi$.

Věta o korektnosti

Pro každou množinu formulí S a formuli φ platí: Když $S \vdash \varphi$, pak $S \models \varphi$.

Věta o úplnosti

Pro každou množinu formulí S a formuli φ platí:

$$S \vdash \varphi$$
, právě když $S \models \varphi$.

Definice

Formule φ splňující $\vdash \varphi$ se nazývá *věta* výrokové logiky. Aneb věty výrokové logiky jsou odvoditelné pravidly přirozené dedukce z prázdné množiny.

Slabá věta o úplnosti

Větami výrokové logiky jsou právě tautologie.

Pro každou formuli φ platí: $\vdash \varphi$, právě když $\models \varphi$.

Poznámka

Podle věty o úplnosti přirozené dedukce platí:

 $S \vdash \varphi$, právě když $S \models \varphi$.

 $S \nvdash \varphi$, právě když $S \not\models \varphi$.

Úlohy se zajímavě doplňují v tom smyslu, že vždy jedna je lehčí, máme-li trochu štěstí (nalezneme-li svědka).

Pro $S \vdash \varphi$ stačí najít jedno odvození formule φ z S, zatímco pro $S \models \varphi$ je třeba vyplnit tabulku o 2^n řádcích.

Pro $S \not\models \varphi$ stačí najít jedno ohodnocení u, ve kterém je u(S) = 1, ale $u(\varphi) = 0$, zatímco pro $S \not\vdash \varphi$ je nutno zjistit, že neexistuje odvození formule φ z S.

Literatura

- M. Huth, M. Ryan: Logic in Computer Science, Cambridge University Press, 2004. Kapitola 1.2
- M. Demlová, B. Pondělíček: Matematická logika, ČVUT Praha, 1997. Kapitola 9.
- L. Nentvich: Přirozená dedukce odvozovací pravidla a příklady použití ftp://math.feld.cvut.cz/gollova/lgr/natded.pdf