1.5 Derivadas

Derivada num ponto

Interpretação geométrica da derivada

Funções deriváveis

Propriedades das funções deriváveis Teoremas fundamentais sobre funções deriváveis

Derivadas de ordem superior

Aplicações

Cálculo de limites Monotonia e extremos de funções Concavidade e pontos de inflexão Aproximação polinomial de funções

[MIEInf] Cálculo-2019-20

1 / 46

Definição

▶ [Função derivável num ponto] Diz-se que a função f é derivável em $a \in D \cap D'$ quando existe $d \in \mathbb{R}$ tal que

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = d.$$

Ao valor real d chama-se derivada de f no ponto a e escreve-se f'(a)=d.

Observação

ightharpoonup Uma forma equivalente de definir a derivada de f em a é

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

e que resulta de tomar x = a + h, na definição anterior.

lackbox Usando a notação y=f(x) notações alternativas para a derivada são

$$f'(x); y'; \frac{dy}{dx}; \frac{df}{dx}.$$

[MIEInf] Cálculo-2019-20

3 / 46

- lacktriangle [Derivada lateral] Diz-se que $f:D\longrightarrow \mathbb{R}$ é
 - derivável à esquerda em a (quando a é ponto de acumulação à esquerda) se existe $d \in \mathbb{R}$ tal que

$$f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{-}} \frac{f(a+h) - f(a)}{h} = d;$$

• derivável à direita em a (quando a é ponto de acumulação à direita) se existe $d \in \mathbb{R}$ tal que

$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0^{+}} \frac{f(a+h) - f(a)}{h} = d.$$

Nota

Para $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$ e $a \in D \cap D'_- \cap D'_+$ tem-se que f é derivável em a se e só se existirem e forem iguais as derivadas laterais $f'_-(a)$ e $f'_+(a)$.

Exemplo

1. Não é derivável em nenhum ponto a função $f:\mathbb{R}\longrightarrow\mathbb{R}$ definida por

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

2. A função $g:\mathbb{R}\longrightarrow\mathbb{R}$ definida por

$$g(x) = \begin{cases} x^2 + 1, & x \in \mathbb{Q} \\ 1, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

derivável apenas no ponto a=0.

3. A função $h:\mathbb{R}\longrightarrow\mathbb{Z}$ definida por h(x)=[x] é derivável em $\mathbb{R}\setminus\mathbb{Z}$.

[MIEInf] Cálculo-2019-20

5 / 46

Interpretação geométrica da derivada

O declive m da reta tangente à curva y=f(x) no ponto de coordenadas (a,f(a)) é o limite dos sucessivos declives das retas secantes definidas por A e X, à medida que X se aproxima de A, isto é,

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} .$$

[Nota] O ponto X pode estar à direita (como representado na figura) ou à esquerda de A.

Seja $f:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ uma função derivável em $a\in D$.

A equação da reta tangente ao gráfico de f em (a,f(a)) tem equação

$$y = f(a) + f'(a)(x - a).$$

A equação da reta normal ao gráfico de f em (a,f(a)), $f'(a) \neq 0$, tem equação

$$y = f(a) - \frac{1}{f'(a)}(x - a).$$

[Nota] A reta normal ao gráfico de f em (a,f(a)) é a reta perpendicular à reta tangente ao gráfico nesse ponto.

[MIEInf] Cálculo-2019-20

7 / 46

Quando f é derivável em a

> a curva definida por y=f(x) não apresenta nenhum "ponto anguloso" em x=a;

Ex.:
$$f(x) = |x|, x \in \mathbb{R}$$
.

- ▶ a reta definida por y = f(a) + f'(a)(x a) "confunde-se" com a curva numa vizinhança de a;
- ▶ o polinómio f(a) + f'(a)(x a), de grau ≤ 1 , pode usar-se como aproximação para f perto de a.

Observação

lackbox Quando f é contínua em a e

$$\lim_{x \to a} \left| \frac{f(x) - f(a)}{x - a} \right| = \infty$$

a reta tangente à curva definida por y=f(x) no ponto (a,f(a)) é a reta vertical definida pela equação x=a.

• Neste caso diz-se que o gráfico da função tem uma tangente vertical em x=a.

[MIEInf] Cálculo-2019-20

9 / 46

Função derivável e função derivada

Seja $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, $a, b \in D$ e $A \subset D$.

- Diz-se que
 - f é derivável se f é derivável em todo o domínio D;
 - f é derivável em $A\subset D$ se $f\big|_A$ é derivável.
- ► Se f é derivável, a função

$$f': D \longrightarrow \mathbb{R}$$
 $x \mapsto f'(x)$

diz-se a função derivada de f.

Propriedades das funções deriváveis

Teorema (Continuidade de funções deriváveis)

Se $f\colon D\subset\mathbb{R}\longrightarrow\mathbb{R}$ é derivável em $a\in D\cap D'$ então f é contínua em a .

Tem-se ainda que

- > se existir derivada lateral à direita em a, $f'_{+}(a)$, então f é contínua à direita em a;
- > se existir derivada lateral à esquerda em a, $f'_{-}(a)$, então f é contínua à esquerda em a.

[MIEInf] Cálculo-2019-20

11 / 46

[Regras básicas de derivação]

Sejam $f,g:D\subset\mathbb{R}\longrightarrow\mathbb{R}$ funções de domínio D, deriváveis no ponto $a\in D\cap D'$.

Então:

(a)
$$(f \pm g)'(a) = f'(a) \pm g'(a);$$

(b)
$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a);$$

(c)
$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)} \text{ , desde que } g(a) \neq 0.$$

Exemplo

1. [Derivadas das funções hiperbólicas]

- $\operatorname{sh}' x = \operatorname{ch} x$, $x \in \mathbb{R}$
- $\operatorname{ch}' x = \operatorname{sh} x, \quad x \in \mathbb{R}$
- $\operatorname{th}' x = \frac{1}{\operatorname{ch}^2 x}, \quad x \in \mathbb{R}$
- $\bullet \ \coth' x = -\frac{1}{\sinh^2 x}, \quad x \neq 0.$

[MIEInf] Cálculo-2019-20

13 / 46

Teorema (Derivada da função composta / Regra da Cadeia)

Sejam $u:D\longrightarrow \mathbb{R}$, $f:B\longrightarrow \mathbb{R}$, com $u(D)\subset B\subset \mathbb{R}$, $a\in D\cap D'$ e $u(a)\in B\cap B'$.

Se u é derivável em a e f é derivável em u(a) então $f\circ u$ é derivável em a, tendo-se

$$(f \circ u)'(a) = f'(u(a)) \cdot u'(a).$$

Teorema (Derivada da função inversa)

Seja $f\colon D\longrightarrow B$, com $D,B\subset\mathbb{R}$, uma função bijetiva. Se f é derivável no ponto $a\in D\cap D'$, $f'(a)\neq 0$ e f^{-1} é contínua em b=f(a), então f^{-1} é derivável em b, tendo-se

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$
.

Exemplo

- 1. [Derivada da função composta] Dada uma função derivável u=u(x), tem-se
 - $[\operatorname{sen} u(x)]' = u'(x) \cos u(x)$
 - $[\cos u(x)]' = -u'(x) \sin u(x)$
 - $[\operatorname{tg} u(x)]' = u'(x) \frac{1}{\cos^2 u(x)}$
 - $\left[\cot u(x)\right]' = -u'(x)\frac{1}{\sin^2 u(x)}$

[MIEInf] Cálculo-2019-20

15 / 46

2. [Derivada da função inversa]

A função logaritmo natural é a função inversa da função exponencial de base e e

- $f: \mathbb{R} \longrightarrow]0, +\infty[, \quad f(x) = e^x$ é bijetiva e $f'(x) = e^x \neq 0$;
- $f^{-1}(y) = \ln y$, $y \in]0, +\infty[$ é contínua

Pelo teorema da derivada da função inversa, sendo y=f(x), vem

$$(\ln y)' = \left(f^{-1}\right)'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(\ln y)} = \frac{1}{e^{\ln y}} = \frac{1}{y}.$$

Assim

$$(\ln y)' = \frac{1}{y}, \quad y \in]0, +\infty[.$$

3. [Derivada da função inversa]

A função arco-seno é a função inversa da função $\sin \left|_{[-\pi/2,\pi/2]}\right|$ e¹

•
$$f:]-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow]-1, 1[, f(x)=\sin x \text{ \'e bijetiva e}$$

 $f'(x)=\cos x \neq 0;$

•
$$f^{-1}(y) = \arcsin(y), y \in]-1,1[.$$

Pelo teorema da derivada da função inversa vem

$$\arcsin' y = (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\cos(\arcsin y)}.$$

Uma vez que, para $z = \arcsin y$

$$\cos(\operatorname{arcsen} y) = \sqrt{1 - y^2}$$

vem

$$\operatorname{arcsen}' y = \frac{1}{\sqrt{1 - y^2}}, \quad \operatorname{para} y \in]-1, 1[.$$

17 / 46

4. Derivadas das funções trigonométricas inversas

•
$$\arcsin' x = \frac{1}{\sqrt{1-x^2}}, \quad x \in]-1,1[$$

•
$$\arccos' x = \frac{-1}{\sqrt{1-x^2}}$$
, $x \in]-1,1[$

•
$$\operatorname{arctg}' x = \frac{1}{1+x^2}$$
, $x \in \mathbb{R}$

•
$$\operatorname{arccotg}' x = \frac{-1}{1+x^2}$$
, $x \in \mathbb{R}$

Toma-se o dimínio da função seno aberto para que $\operatorname{sen}' x \neq 0$ [MIEInf] Cálculo-2019-20

Teoremas fundamentais sobre funções deriváveis

Teorema (Fermat)

Seja $f: D \longrightarrow \mathbb{R}$ uma função derivável em $a \in D \cap D'$. Se a é um extremante de f então f'(a) = 0.

[Nota] O recíproco do Teorema de Fermat é falso, isto é,

$$f'(a) = 0 \implies f(a)$$
 extremo local de f .

Exemplo?

[MIEInf] Cálculo-2019-20

19 / 46

Teorema (Rolle)

Seja $f\colon [a,b] \longrightarrow \mathbb{R}$ uma função contínua que é derivável em]a,b[. Se $f(a)\!=\!f(b)$ então

$$\exists c \in [a, b[: f'(c) = 0].$$

Figura: Interpretação geométrica do Teorema de Rolle

- ▶ [Corolários do teorema de Rolle] Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua e derivável em a,b.
 - 1. Entre dois zeros de f existe, pelo menos, um zero de f'.
 - 2. Entre dois zeros consecutivos de f' existe, quando muito, um zero de f.
 - 3. Não há mais do que um zero de f inferior ao menor zero de f', nem mais do que um zero de f superior ao maior zero de f'.

[MIEInf] Cálculo-2019-20

21 / 46

Teorema (Teorema do valor médio de Lagrange)

Seja $f\colon [a,b] \longrightarrow \mathbb{R}$ uma função contínua que é derivável em]a,b[. Então

$$\exists c \in]a, b[: f'(c) = \frac{f(b) - f(a)}{b - a}$$

Figura: Interpretação geométrica do Teorema de Lagrange

[Nota.] Veremos uma aplicação deste teorema no estudo do comprimento de uma curva (Cap. 3)

Exemplo

1. Usando o Teorema de Lagrange, mostre que para todo o $x \neq 0, \, e^x > x+1.$

[MIEInf] Cálculo-2019-20

23 / 46

- ► [Corolários do teorema de Lagrange]
- 1. Se $f\colon [a,b] \longrightarrow \mathbb{R}$ é contínua e f'(x)=0 , $\forall x\!\in\!]a,b[$, então f é constante.
- 2. Se $f,g\colon [a,b]\longrightarrow \mathbb{R}$ são contínuas e tais que f'(x)=g'(x), $\forall x\in \]a,b[$, então existe uma constante $C\in \mathbb{R}$ tal que f(x)=g(x)+C para todo $x\in \ [a,b]$.

[Nota] Uma aplicação deste corolário será vista no Cap. 2.

3. [Monotonia das funções reais]

Seja $f:I\longrightarrow \mathbb{R}$ derivável no intervalo I . Tem-se:

- 3.1 $f'(x) \ge 0$, $\forall x \in I$, se e só se f é crescente em I;
- 3.2 $f'(x) \le 0$, $\forall x \in I$, se e só se f é decrescente em I;
- 3.3 se f'(x) > 0, $\forall x \in I$, então f é estritamente crescente em I;
- 3.4 se f'(x) < 0, $\forall x \in I$, então f é estritamente decrescente em I .

Teorema (de Darboux)

Seja $f\colon I \longrightarrow \mathbb{R}$ uma função derivável no intervalo I para a qual existem $a,b\!\in\! I$ tais que f'(a)< f'(b) .

Seja ainda $k \in \mathbb{R}$ tal que f'(a) < k < f'(b) . Então

$$\exists c \in [a, b[: f'(c) = k].$$

[Nota] O Teorema de Darbux

- ▶ também vale se f'(a) > f'(b);
- ightharpoonup não exige a continuidade de f'.

[MIEInf] Cálculo-2019-20

25 / 46

Exemplo

1.
$$g(x) = \begin{cases} -1 & \text{se} \quad -1 \le x < 0 \\ 1 & \text{se} \quad 0 \le x \le 1 \end{cases}$$

Esta função apresenta uma descontinuidade de salto. Claramente ela não possui a propriedade do valor intermédio. Então g não pode ser a derivada de função alguma $f: [-1,1] \longrightarrow \mathbb{R}$.

2.
$$h(x) = \begin{cases} x^2 \cos(\frac{1}{x}) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

Esta função é contínua e diferenciável em ${\mathbb R}$ tendo-se

$$h'(x) = \begin{cases} 2x\cos(\frac{1}{x}) + \sin(\frac{1}{x}) & \text{se } x \neq 0\\ 0 & \text{se } x = 0. \end{cases}$$

A função $h': \mathbb{R} \longrightarrow \mathbb{R}$ não é contínua, no entanto, verifica o teorema de Darboux.

Derivadas de ordem superior

Sejam $f:D\longrightarrow \mathbb{R}$ e $a\in D\cap D'$. Seja E o subconjunto de D formado por todos os pontos onde f é derivável.

- ▶ Diz-se que f é duas vezes derivável em $a \in E \cap E'$, se f' for derivável em a.
 - Chama-se segunda derivada de f em a à derivada(f')'(a);
 - Usam-se, ainda, as notações

$$f''(a), f^{(2)}(a) ou D^2 f(a)$$

lackbox De modo análogo define-se a derivada de ordem $n\in\mathbb{N}$ de uma função que se denota por

$$f^{(n)}$$
 ou $D^{(n)}f$.

$$\hbox{[Nota] Por convenção, considera-se } f^{(0)}=f \, .$$

$$\hbox{[MIEInf] Cálculo-2019-20} \qquad \qquad \qquad 27\ /\ 46}$$

Funções de classe \mathscr{C}^k

Seja $D \subset \mathbb{R}$, não vazio, tal que $D \subset D'$.

▶ Dado $k \in \mathbb{N}_0$, chama-se conjunto das funções de classe \mathscr{C}^k de D em \mathbb{R} ao conjunto

$$\mathscr{C}^k(D) = \{ f : D \to \mathbb{R} \mid f \in k \text{ vezes derivável em } D \in f^{(k)} \in \text{contínua} \}$$

ightharpoonup Chama-se conjunto das funções de classe \mathscr{C}^{∞} de D em $\mathbb R$ ao conjunto

 $\mathscr{C}^{\infty}(D) = \{ f: D \to \mathbb{R} \, | \, f \text{ admite derivada de qualquer ordem em } D \, \}$

Limites: levantamento de Indeterminações

- As derivadas podem ser aplicadas no cálculo de limites para resolver formas indeterminadas.
- ► As formas indeterminadas de limites são:

$$\frac{0}{0}$$
 $\frac{\infty}{\infty}$ $\infty - \infty$ $0 \times \infty$ 0^0 ∞^0 1^∞

Esta aplicação das derivadas é justificada com um resultado conhecido como regra de L'Hôpital.

[MIEInf] Cálculo-2019-20

29 / 46

► [Regra de L'Hôpital]

Sejam $f,g\colon I\longrightarrow \mathbb{R}$ funções deriváveis num intervalo aberto I exceto, eventualmente, no ponto $c\in I.$ Se

- $g'(x) \neq 0$, $\forall x \in I \setminus \{c\}$
- $\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = \ell$, com

$$\ell=0$$
 ou $\ell=+\infty$ ou $\ell=-\infty$

então

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} ,$$

desde que o segundo limite exista (finito ou infinito).

Observação

- ► A regra de l'Hôpital
 - estende-se ao caso em que $c = +\infty$ ou $c = -\infty$.
 - pode ser aplicada recursivamente;
 - recorrendo a manipulações algébricas, é aplicável a outras formas de indeterminação. $\text{Ex.: } \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$
- A regra de L'Hôpital não se aplica aos casos em que os limites, do numerador e/ou do denominador, existem mas são diferentes de zero/ ∞ .

[MIEInf] Cálculo-2019-20

31 / 46

Exemplo

- $1. \lim_{x \to 0} \frac{\operatorname{sen} x}{x}.$
- 2. $\lim_{x \to 0^+} x \ln x$.
- $3. \lim_{x \to +\infty} \frac{e^x}{x}.$
- 4. $\lim_{x \to 0^+} \frac{1+x}{\sin x} \neq \lim_{x \to 0^+} \frac{1}{-\cos x}$

Porquê?

Monotonia e extremos de funções

Seja I um intervalo e $f:I\longrightarrow \mathbb{R}$ uma função derivável.

- ► Na secção 1.4 foi visto que
 - se f'(x) > 0 em I, então f é estritamente crescente em I;
 - se f'(x) < 0 em I, então f é estritamente decrescente em I.
- Ponto Crítico] Um ponto $x_0 \in I$ diz-se um ponto crítico de f quando $f'(x_0) = 0$. (c.f. Teorema de Fermat)
- ightharpoonup Como encontrar os extremantes de f?

[MIEInf] Cálculo-2019-20

33 / 46

► [Teste da 1.ª derivada]

Seja x_0 um ponto crítico de f.

- Se f' muda de sinal negativo para positivo em x_0 , então x_0 é um minimizante local de f;
- Se f' muda de sinal positivo para negativo em x_0 , então x_0 é um maximizante local de f.

Concavidade e pontos de inflexão

Seja $f:D\longrightarrow \mathbb{R}$ e $I\subset D$ um intervalo.

- O gráfico de f tem a concavidade voltada para cima em I quando para todos os $x_1, x_2 \in I$ tais que $x_1 < x_2$ o gráfico de f em $[x_1, x_2]$ está abaixo do segmento de reta que une $(x_1, f(x_1))$ a $(x_2, f(x_2))$.
 - No caso de f ser derivável em I, o gráfico de f tem a concavidade voltada para cima quando f' for crescente neste intervalo.
- ▶ O gráfico de f tem a concavidade voltada para baixo em I quando para todos os $x_1, x_2 \in I$ tais que $x_1 < x_2$ o gráfico de f em $[x_1, x_2]$ está acima do segmento de reta que une $(x_1, f(x_1))$ a $(x_2, f(x_2))$.
 - No caso de f ser derivável em I, o gráfico de f tem a concavidade voltada para baixo quando f' for decrescente neste intervalo.

[MIEInf] Cálculo-2019-20

35 / 46

Seja $f: D \longrightarrow \mathbb{R}$ e $I \subset D$ um intervalo onde $f \in \mathscr{C}^2(I)$.

- ▶ Se f''(x) > 0 em I, então o gráfico de f tem a concavidade voltada para cima em I;
- Se f''(x) < 0 em I, então o gráfico de f tem a concavidade voltada para baixo em I;

- ► [Teste da 2.ª derivada] Seja x_0 um ponto crítico de f.
 - Se $f''(x_0) > 0$, então f tem um mínimo local em x_0 .
 - Se $f''(x_0) < 0$, então f tem um máximo local em x_0 .
 - Se $f''(x_0) = 0$, então nada se pode concluir.
- ▶ [Ponto de inflexão] Um ponto do domínio de uma função contínua onde o gráfico muda de concavidade chama-se ponto de inflexão.
 - Se $f''(x_0) = 0$ e f''(a) muda de sinal em x_0 então x_0 é um ponto de inflexão.

[MIEInf] Cálculo-2019-20

37 / 46

Exemplo

1. A função $f: \mathbb{R} \longrightarrow \mathbb{R}$, dada por $f(x) = x^2$ é derivável em \mathbb{R} e tem um ponto crítico em $x_0 = 0$ pois f'(0) = 0.

Usando o teste da 2.ª derivada, $f^{\prime\prime}(0)>0$, $x_0=0$ é um minimizante local de f.

2. A função $g: \mathbb{R} \longrightarrow \mathbb{R}$, dada por $g(x) = x^3$ é derivável em \mathbb{R} . Embora $x_0 = 0$ seja um ponto crítico, a função não tem aqui um extremo.

 $x_0 = 0$ é um ponto de inflexão da função.

3. A função $h: \mathbb{R} \longrightarrow \mathbb{R}$, dada por h(x) = |x| não é derivável em \mathbb{R} , pois não é derivável em $x_0 = 0$.

A esta função não é aplicável o teste da 1.ª derivada em $x_0=0$, por a função não ser derivável neste ponto. No entanto tem um extremo em $x_0=0$ pois é contínua neste ponto, é crescente em $]0,\varepsilon[$ e decrescente em $]-\varepsilon,0[$, $\varepsilon>0$.

Esboço do gráfico de funções

Seja $f:D\longrightarrow \mathbb{R}$ uma função. Pretende-se fazer um esboço da curva definida y=f(x). Os passos seguintes fornecem informações úteis para fazer o esboço pretendido:

- 1. Determinação do domínio e contradomínio;
- 2. Análise de alguns limites apropriados (existência de assintotas);
- 3. Interseção com os eixos: x tal que f(x) = 0 e y tal que f(0) = y;
- 4. Algumas características geométricas: simetria, periodicidade, ...;
- 5. Extremantes e intervalos de monotonia;
- 6. Pontos de inflexão e intervalos de concavidade.

[MIEInf] Cálculo-2019-20

39 / 46

Exercício

- 1. Justifique as representações gráficas das funções hiperbólicas (c.f. Cap. 1.4)
- 2. Esboce graficamente a função definida por $\frac{2x^2}{x^2-1}$.

Aproximação polinomial de funções

► [Polinómio de Taylor]

Seja $f:I\longrightarrow \mathbb{R}$ uma função e $a\in I$ tal que a n-ésima derivada de f existe em a. O polinómio

$$P_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

é chamado polinómio de Taylor de f, de ordem n, em torno do ponto a.

[MIEInf] Cálculo-2019-20

41 / 46

Exemplo

1.
$$f(x) = e^x$$
, $x \in \mathbb{R}$, $a = 0$

$$P_{1,0}(x) = 1 + x$$

$$P_{0,0}(x) = 1$$
 $P_{1,0}(x) = 1 + x$ $P_{2,0}(x) = 1 + x + \frac{x^2}{2}$

$$P_{3,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$

$$P_{3,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
 $P_{4,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$

No caso de $f(x) = e^x$ demonstra-se que, para um qualquer $n \in \mathbb{N}_0$, se tem

$$P_{n,0}(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots + \frac{x^n}{n!}$$

[MIEInf] Cálculo-2019-20

43 / 46

Observação

$$P_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

- lacktriangle Os coeficientes de $P_{n,a}$ dependem das derivadas de fcalculadas em a.
- lacktriangle Se f é n vezes derivável em $a \in I$ está garantida a existência das constantes

$$f(a), f'(a), f''(a), \ldots, f^{(n)}(a).$$

- $ightharpoonup P_{n,a}$ é um polinómio de grau não superior a n: grau $P_{n,a} \leq n$.
- A reta tangente ao gráfico da função em (a, f(a)), estudada na secção 1.5, é um caso particular do Polinómio de Taylor (n = 1).

► [Teorema]

O polinómio de Taylor $P_{n,a}$ é o único polinómio de grau não superior a n cujas derivadas no ponto a (desde a ordem 0 até à ordem n) coincidem com as correspondentes derivadas de f no ponto a.

• Sejam $f, g: I \longrightarrow \mathbb{R}$ funções contínuas em $a \in I$. Dado $n \in \mathbb{N}_0$, diz-se que f e g são iguais até à ordem n em a se

$$\lim_{x \to a} \frac{f(x) - g(x)}{(x - a)^n} = 0.$$

• Quando existem $f'(a),\ldots,f^{(n)}(a)$, $g'(a),\ldots,g^{(n)}(a)$. Então f é igual a g até à ordem n em a se e só se

$$f(a) = g(a), \quad f'(a) = g'(a), \dots, f^{(n)}(a) = g^{(n)}(a).$$

[MIEInf] Cálculo-2019-20

45 / 46

► [Fórmula de Taylor]

Chama-se fórmula de Taylor de ordem n para a função f em torno do ponto a à expressão

$$f(x) = P_{n,a}(x) + R_{n,a}(x)$$
 com $\lim_{x \to a} \frac{R_{n,a}(x)}{(x-a)^n} = 0.$

- $R_{n,a}$ diz-se resto de Taylor de f de ordem n em a;
- existem diferentes fórmulas para $R_{n,a}$;
- uma das fórmulas para o resto de Taylor é a fórmula de Lagrange

$$R_{n,a}(x) = \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi),$$

onde ξ é um valor entre a e x.