

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2004年5月13日 (13.05.2004)

PCT

(10)国際公開番号
WO 2004/040028 A1

- (51)国際特許分類⁷: C22C 1/02, G06F 17/50
- (21)国際出願番号: PCT/JP2003/013928
- (22)国際出願日: 2003年10月30日 (30.10.2003)
- (25)国際出願の言語: 日本語
- (26)国際公開の言語: 日本語
- (30)優先権データ:
特願2002-316891
2002年10月30日 (30.10.2002) JP
- (71)出願人(米国を除く全ての指定国について): 独立行政法人物質・材料研究機構(NATIONAL INSTITUTE FOR MATERIALS SCIENCE) [JP/JP]; 〒305-0047 茨城県つくば市千現1丁目2番1号 Ibaraki (JP).
- (72)発明者; および
(75)発明者/出願人(米国についてのみ): 横川忠晴
- (YOKOKAWA,Tadaharu) [JP/JP]; 〒305-0047 茨城県つくば市千現1丁目2番1号 独立行政法人物質・材料研究機構内 Ibaraki (JP). 原田広史(HARADA,Hiroschi) [JP/JP]; 〒305-0047 茨城県つくば市千現1丁目2番1号 独立行政法人物質・材料研究機構内 Ibaraki (JP). 小泉裕(KOIZUMI,Yutaka) [JP/JP]; 〒305-0047 茨城県つくば市千現1丁目2番1号 独立行政法人物質・材料研究機構内 Ibaraki (JP). 小林敏治(KOBAYASHI,Toshiharu) [JP/JP]; 〒305-0047 茨城県つくば市千現1丁目2番1号 独立行政法人物質・材料研究機構内 Ibaraki (JP). 大沢真人(OSAWA,Makoto) [JP/JP]; 〒305-0047 茨城県つくば市千現1丁目2番1号 独立行政法人物質・材料研究機構内 Ibaraki (JP).
- (74)代理人: 西澤利夫(NISHIZAWA,Toshio); 〒107-0062 東京都港区南青山6丁目11番1号 スリーエフ南青山ビルディング7F Tokyo (JP).

[統葉有]

(54)Title: GAMMA DASH PRECIPITATION STRENGTHENED PLATINUM GROUP ELEMENT-ADDED Ni-BASED SUPERALLOY DESIGNING SUPPORT PROGRAM AND GAMMA DASH PRECIPITATION STRENGTHENED PLATINUM GROUP ELEMENT-ADDED Ni-BASED SUPERALLOY DESIGNING SUPPORT APPARATUS

(54)発明の名称: γ'析出強化型白金族元素添加Ni基超合金設計支援プログラムおよびγ'析出強化型白金族元素添加Ni基超合金設計支援装置

(1)...ANALYSIS SYSTEM
(11)...INPUT MEANS
(12)...STORAGE MEANS
(13)...COMPOSITION FACTOR CALCULATING MEANS
(14)...ALLOY CHARACTERISTIC CALCULATING MEANS
(15)...GAMMA DASH PHASE CALCULATING MEANS
(16)...OUTPUT MEANS

(2)...SEARCH SYSTEM
(21)...INPUT MEANS
(22)...STORAGE MEANS
(23)...ALLOY COMPOSITION CALCULATING MEANS
(24)...COMPOSITION FACTOR CALCULATING MEANS
(25)...ALLOY CHARACTERISTIC CALCULATING MEANS
(26)...OUTPUT MEANS

(57)Abstract: A novel program for supporting design of a gamma dash precipitation strengthened platinum group element-added Ni-based superalloy. To support the design, a computer is allowed to function as input means (1) for inputting the composition, use temperature, and use stress of an Ni-based superalloy, storage means (2) for previously storing the constituent elements of the Ni-based superalloy, the structure factor calculation formula thereof, and the alloy characteristic calculation formula thereof, structure factor calculating

[統葉有]

WO 2004/040028 A1

(81) 指定国(国内): US.

添付公開書類:
— 国際調査報告書

(84) 指定国(広域): ヨーロッパ特許(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドンスノート」を参照。

means (3) for calculating the structure factor from the alloy composition by using the structure factor calculation formula read from the storage means (2), alloy characteristic calculating means (4) for calculating an alloy characteristic from the alloy composition, the structure factor, the use temperature, and the use stress by using the alloy characteristic calculate formula read out of the storage means (2), and output mean (5) for outputting the structure factor and alloy characteristic together with the alloy composition. Therefore, alloy characteristic analysis and alloy composition search of a gamma dash precipitation strengthened platinum group element-added Ni-based superalloy are simply, easily, and efficiently conducted. A design supporting device therefor is also disclosed.

(57) 要約: γ' 析出強化型白金族元素添加Ni基超合金の設計を支援するために、コンピュータを、Ni基超合金の合金組成、使用温度および使用応力を入力する入力手段(1)、予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段(2)、記憶手段(2)から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段(3)、記憶手段(2)から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段(4)、および組織因子および合金特性を合金組成とともに出力する出力手段(5)、として機能させ、白金族元素を添加した γ' 析出強化型Ni基超合金の合金特性解析や合金組成探索を簡便かつ容易に効率よく行うことのできる、新しい γ' 析出強化型白金族元素添加Ni基超合金の設計支援プログラムおよび設計支援装置を提供する。

明細書

γ'析出強化型白金族元素添加Ni基超合金設計支援プログラムおよび
γ'析出強化型白金族元素添加Ni基超合金設計支援装置

技術分野

この出願の発明は、γ'析出強化型白金族元素添加Ni基超合金設計支援プログラムおよびγ'析出強化型白金族元素添加Ni基超合金設計支援装置に関するものである。さらに詳しくは、この出願の発明は、白金族元素を添加したγ'析出強化型Ni基超合金の合金特性解析や合金組成探索に有用な、新しいγ'析出強化型白金族元素添加Ni基超合金の設計支援プログラムおよび設計支援装置に関するものである。

背景技術

従来より、γ'析出強化型Ni基超合金は、高温強度に優れた耐熱合金としてジェットエンジン、発電用ガスタービンなどの熱機関の高温部材に広く用いられている。特に動翼材については高温、高圧下で使用される部材として必要不可欠なものとなっており、この合金の高温特性が熱機関の出力や熱効率に大きく影響する要因となっている。また最近では、地球温暖化防止、CO₂削減という観点から、特に発電用ガスタービンシステムの超高効率化が望まれており、より高性能な合金の開発が期待されている。

γ'析出強化型Ni基超合金はNi、Al、Co、Cr、Mo、W、Ti、Ta、Hf、Reなど10種類以上の構成元素からなっている。さらに最新の組織安定性の向上とそれによる高温長時間側でのクリープ強度にすぐれた第4世代合金では、ルテニウム(Ru)やイリジウム(Ir)などの白金族元素まで添加されるに至っている。新しい優れた性能を持つ合金を開発するためには、これらの構成元素を組み合わせた

組成の違う合金を設計・製造し、性能を検証しなければならず、多大な労力と費用が必要である。このため、使用温度・応力下における合金構成相の量比や組成を簡便かつ効率的に最適化することが望まれているが、現在、 γ' 析出強化型Ni基超合金開発に適用できる技術は、PHACOMP（非特許文献1参照）、DV-X α クラスター法（非特許文献2参照）、 γ' 析出強化型Ni基超合金設計支援装置（特許文献1参照）のみである。

しかしながら、PHACOMPは電子論を応用した有害相の判定技術であり、新合金開発の方策は見いだされていない。

DV-X α クラスター法によるものは合金元素のエネルギーレベルと共有結合度をパラメータとして、新合金の組成を求める方法であるが、構成相の格子定数ミスマッチなどの合金性能に直接関係する組織因子を考慮しておらず、また、白金族元素には対応していない。

γ' 析出強化型Ni基超合金設計支援装置は合金組成を入力し、構成相である γ' 相の組成と分配比の収束計算および γ' 相量の収束計算を連動させ、 γ 相および γ' 相の組成と γ' 相量、格子定数ミスマッチという組織因子を計算し、さらに組織因子と合金組成から機械的性能を計算するという優れた合金設計支援装置であるが、組織因子計算が90°Cに固定されており、また白金族元素添加に対応していない。

非特許文献1：Chester T. Sims, et al., "Superalloys II", John Wiley & Sons, Inc., 1987, pp. 230-233

非特許文献2：小和田 善之、"DV-X α ホームページ"、[online]、平成14年10月10日更新、DV-X α 研究協会、[平成14年10月28日検索]、インターネット<URL：<http://www.sci.hyogo-u.ac.jp/ykowada/>>

特許文献1：特開平3-191032号公報

そこで、この出願の発明は、以上のとおりの事情に鑑み、上記従来技術では行えなかった白金族元素を添加した γ' 析出強化型Ni基超合金

の使用温度における組織因子計算と使用応力下での耐クリープ特性などの合金特性の解析、また、要求性能を満たす新規な白金族元素を添加した γ' 析出強化型Ni基超合金の合金組成の探査を、簡便かつ容易に効率よく行うことのできる、新しい γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムおよび γ' 析出強化型白金族元素添加Ni基超合金設計支援装置を提供することを課題としている。

発明の開示

この出願の発明は、上記の課題を解決するものとして、第1には、 γ' 析出強化型白金族元素添加Ni基超合金の設計を支援するために、コンピュータを、Ni基超合金の合金組成、使用温度および使用応力を入力する入力手段、予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段、記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段、および組織因子および合金特性を合金組成とともにに出力する出力手段、として機能させることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラム、ならびに第2には、 γ' 析出強化型白金族元素添加Ni基超合金の設計を支援する装置であって、Ni基超合金の合金組成、使用温度および使用応力を入力する入力手段、予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段、記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段、および組織因子および合金特性を合金組成とともにに出力する出力手段、を備えることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援装置を提供する。

第3には、前記記憶手段に記憶した構成元素が、Ni、Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、Pd、Ptであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第4には、前記記憶手段に記憶した組織因子計算式が、少なくとも使用温度における γ 相と γ' 相の平衡計算式を含むものであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第5には、前記 γ 相と γ' 相の平衡計算式が、使用温度における γ' 面の式および分配比の式からなるものであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第6には、前記記憶手段に記憶した合金特性計算式が、合金組成、組織因子、使用温度および使用応力との関数として表されたものであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第7には、前記コンピュータを、構成元素に関して γ' 相の組成と分配比の反復収束計算および γ' 相量の反復計算を連動させて、使用温度における γ 相および γ' 相の組成と γ' 相の量比を算出する γ' 相算出手段としてさらに機能させることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラム、ならびに第8には、前記構成元素に関して γ' 相の組成と分配比の反復収束計算および γ' 相量の反復計算を連動させて、使用温度における γ 相および γ' 相の組成と γ' 相の量比を算出する γ' 相算出手段をさらに備えることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援装置を提供する。

またこの出願の発明は、第9には、 γ' 析出強化型白金族元素添加Ni基超合金の設計を支援するために、コンピュータを、Ni基超合金の1個以上の要求性能、使用温度および使用応力を入力する入力手段、予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、要求性能を満足する合金組成を算出する合金組成

算出手段、記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段、記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段、および組織因子および合金特性を合金組成とともにに出力する出力手段、として機能させることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラム、ならびに第10には、 γ' 析出強化型白金族元素添加Ni基超合金の設計を支援する装置であって、Ni基超合金の1個以上の要求性能、使用温度および使用応力を入力する入力手段、予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、要求性能を満足する合金組成を算出する合金組成算出手段、記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段、記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段、および組織因子および合金特性を合金組成とともにに出力する出力手段、を備えることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援装置をも提供する。

第11には、前記記憶手段に記憶した構成元素が、Ni、Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、Pd、Ptであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第12には、前記記憶手段に記憶した組織因子計算式が、少なくとも使用温度における γ 相と γ' 相の平衡計算式を含むものであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第13には、前記 γ 相と γ' 相の平衡計算式が、使用温度における γ' 面の式および分配比の式からなるものであることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは設計支援装置、第14には、前記要求性能が、合金特性および組織因子の

いずれか一方または両方から選ばれる 1 個以上のものであることを特徴とする γ' 析出強化型白金族元素添加 Ni 基超合金設計支援プログラムまたは設計支援装置を提供する。

上記のとおりの特徴を有するこの出願の発明によれば、コンピュータを用いて、合金組成、使用温度、使用応力を入力すると、予め記憶してある組織因子計算式によって格子定数、格子定数ミスフィットおよび合金元素の固溶指数という組織因子を自動的に算出することができる。このときの組織因子計算式としては、たとえば収束計算を行う使用温度における γ 相と γ' 相の平衡計算式、より具体的には使用温度における γ' 面の式および分配比の式からなる γ 相と γ' 相の平衡計算式を考慮できる。

また、入力した合金組成、使用温度、使用応力および算出した組織因子から合金特性計算式を用いて、クリープ破断寿命などの合金特性をも自動的に算出することができる。このときの合金特性計算式としては、合金組成、組織因子、使用温度および使用応力との関数として表されたものを考慮できる。

そしてこれら算出した組織因子および合金特性は入力した合金組成とともに画面表示等出力されるので、合金設計において参照できるようになる。

また、予め記憶した Ni 基超合金の Ni、Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、Pd、Pt 等の各構成元素に関して、 γ' 相の組成と分配比の反復収束計算および γ' 相量の反復計算を連動させて、入力した使用温度における γ 相および γ' 相それぞれの組成と量比を自動算出し表示することも可能である。

一方で、1 個以上の要求性能、より具体的には合金特性および組織因子のいずれか一方または両方から選ばれる 1 種以上の要求性能を入力すると、要求性能を満足する合金組成を自動算出することもできる。より具体的には、 γ' 相の組成と相量を自動的に変化させ、その各々につ

いて γ 相の組成を順次計算し、次いでこれらの組成を足し合わせて、合金組成を自動的に算出する。

そして、算出した合金組成に基づいて上記組織因子計算式により組織因子を自動算出し、また算出した合金組成および組織因子ならびに入力した使用温度および使用応力に基づいて上記合金特性計算式により合金組成を自動算出し、それら組織因子、合金特性および合金組成のリストを画面表示等出力できるようになる。

これにより、従来技術では行えなかった白金族元素を添加した γ' 析出強化型Ni基超合金の使用温度における組織因子計算と使用応力下での耐クリープ特性などの合金特性の解析、ならびに、要求性能を満たす新規な白金族元素を添加した γ' 析出強化型Ni基超合金の合金組成の探査を、簡便かつ容易に効率よく行うことができる所以である。

図面の簡単な説明

図1は、この出願の発明の一実施形態を説明するための機能ブロック図である。

図2は、この出願の発明の一実施形態を説明するためのフローチャートである。

図3は、 γ 相および γ' 相の組成、量比、組織因子および合金特性についてのより具体的な計算フローチャートである。

図4は、図3に続く計算フローチャートである。

図5は、この出願の発明の一実施例としての解析例の結果を例示した図である。

図6は、この出願の発明の別の一実施例としての探査例の結果を例示した図である。

なお、図中の符号は次のものを示す。

1 解析系

1.1 入力手段

1 2 記憶手段

1 3 組成因子算出手段

1 4 合金特性算出手段

1 5 γ' 相算出手段

1 6 出力手段

2 探査系

2 1 入力手段

2 2 記憶手段

2 3 合金組成算出手段

2 4 組成因子算出手段

2 5 合金特性算出手段

2 6 出力手段

発明を実施するための最良の形態

図1～図4は、各々、上記のとおりの特徴を有するこの出願の発明の一実施形態を説明するための機能ブロック図およびフローチャートである。以下、本実施形態における合金特性解析および合金組成探査について説明する。

なお、図1および図2では、入力した合金組成、使用温度、使用応力から合金の組織因子および合金特性を算出し出力する解析系(1)と、入力した要求性能を満たす合金組成を探査し出力する探査系(2)とかなる2系統構成の実施形態を示しており、本実施形態によれば、使用目的に応じて、解析系(1)または探査系(2)のいずれかを選択し(ステップS1)、所望の演算結果を引き出すことが可能である。もちろん2系統構成であるからといって図示したように入力手段(1 1)(2 1)、記憶手段(2 1)(2 2)、出力手段(1 6)(2 6)をそれぞれ二つずつ設ける必要がないことは言うまでもない。

<合金特性の解析>

本実施形態において、Ni基超合金の構成元素がNi、Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、PdおよびPtである合金組成、使用温度および使用応力を入力すると(図1—入力手段(11)、図2・図3—ステップS2)、入力した使用温度における γ 相および γ' 相のそれぞれの組成と量比が平衡計算式に基づいて算出される(図1—組成因子算出手段(13)・ γ' 相算出手段(15)、図2—ステップS3、図3・図4—ステップS3a～S3p)。この平衡計算式には、 γ 相と γ' 相が平衡して存在する相の組成の計算式、すなわち γ' 面の式と合金元素の分配比の式(Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、PdおよびPtなどの構成元素それぞれの γ 相中の濃度と γ' 相中の濃度との比で示される)を用いている。これらの γ' 面の式と分配比の式は、それぞれ既存のNi基超合金を重回帰分析した分析データに基づいて作成されている。

γ' 面の式は、たとえば①式に示すような γ' 相中の構成元素濃度と温度の関数として表される。

γ 相中のAl濃度

$$= f \{ \gamma' \text{相中のCo, Cr, Mo, W, Ti, Nb, Ta, Hf, Re, Ir, Ru, Rh, Pd および Pt 濃度(at%), 温度} \dots \dots \textcircled{1} \}$$

また、分配比の式も、たとえば②式に示すような γ' 相中の構成元素濃度と温度の関数として表される。

i元素の分配比

$$= g \{ \gamma' \text{相中のCo, Cr, Mo, W, Al, Ti, Nb, Ta, Hf, Re, Ir, Ru, Rh, Pd および Pt 濃度(at%), 温度} \dots \dots \textcircled{2} \}$$

ただし、iはCo、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、PdおよびPtを示す。

これら①、②式を代表とする γ' 面の式と分配比の式を用いて、図3および図4に示す計算フローに基づく反復収束計算を行う。本実施形態においては、反復収束計算の安定性確保と分析データが豊富という理由から、まず、基準として900℃（もちろんこの温度は一例である）における γ 相および γ' 相の組成と量比を計算する（ステップS3a～S3h）。より具体的には本計算では、合金組成、使用温度および使用応力の入力値（ステップS2）、ならびに合金元素の分配比などの組織因子計算の初期値（ステップS3a）および γ' 相量比の初期値（ステップS3b）を用いて、入力合金組成と計算合金組成とが一致（ステップS3e）するまで γ' 相の組成および量比（ステップS3c）ならびに分配比の計算（ステップS3d）を γ' 量比および分配比を微小変化（ステップS3f）させながら繰り返し（第1の反復収束計算）、一致後に基準温度900度での γ' 面の方程式計算を行い（ステップS3g）、さらに計算結果が γ' 面上に乗る（ステップS3h）まで上記各処理（ステップS3c～S3g）を繰り返す。

次いで、入力した使用温度と基準温度900℃との差から生じる γ' 面および分配比の変化分を計算し（ステップS3i）、さらに入力使用温度における γ 相および γ' 相の組成と量比を計算する（ステップS3j～S3o）。より具体的には本計算では、上記第1の反復収束計算と同様な第2の反復集束計算を使用温度について行う。

そして、 γ' 面の方程式計算（ステップS3n）の結果が γ' 面上にある場合に（ステップS3o）、使用温度における γ 相および γ' 相の組成と量比が算出されたことになる（ステップS3p）。

図3および図4に示したように、基準温度900℃における γ' 相量と分配比を計算するループである第1の反復収束計算（ステップS3c～S3h）と使用温度における γ' 相量と分配比を計算する別のループである第2の反復収束計算（ステップS3j～S3o）を設けることで、収束計算解の発散を抑え、安定した、精度の高い解析結果が得られる。

なお、入力した合金組成から有害相が生成する場合や γ' 相が析出しない場合などには、その旨が表示されるようになっている。この場合、合金組成、使用温度および使用応力を入力し直し、再度、 γ 相および γ' 相のそれぞれの組成と量比を計算することができる。

以上のように γ 相および γ' 相のそれぞれの組成と量比を計算した後は、下記表1に例示した他の組織因子と合金特性の予測計算を行う（図1－組成因子算出手段（13）・合金特性算出手段（14）・ γ' 相算出手段（15）、図2・図4－ステップS4）。組織因子の計算式および合金の合金特性計算式は予め記録されている（図1－記憶手段（12））。

表 1

算出可能な組織因子および合金特性の例	
組織因子	合金特性
使用温度における γ 相と γ' 相の組成と量比	使用温度、使用応力における 単結晶超合金の クリープ破断寿命
γ 相と γ' 相の格子定数	のび率
格子定数ミスフィット	しほり率
比 重（室温）	
液相線温度	
固相線温度	
初期溶融温度	
完全固溶化温度	
完全固溶化温度幅	
固溶指数（900°C）	

この出願の発明においては、合金特性計算式を既存のNi基超合金のデータを重回帰分析し、合金組成と組織因子、合金組成と使用温度、合金組成と使用応力、合金組成と組織因子と使用温度、合金組成と組織因子と使用応力、合金組成と使用温度と使用応力、合金組成と組織因子と使用温度と使用応力の関数としていることをひとつの特徴としている。これによって、上記表1に例示した種々の合金特性を算出し、入力した

合金組成および算出した組織因子とともに表示することを可能ならしめている。

＜合金組成の探査＞

続いて、所望の特性を有する新合金の組成を探査する場合には、まず、探査系を選択し(図1－探査系(2)、図2－ステップS1)、使用温度、使用応力および要求性能を入力する(図1－入力手段(21)、図2－ステップS7)。要求性能としては上記表1に例示した合金特性から任意のものを1種以上選択することができる。また、必要に応じて、組織因子を1つ以上選択し、要求性能として付加することもできる。

要求特性を入力すると、合金組成が自動的に微少に変化し、前述した解析系(1)と同様にして、その組成に対する γ' 相と平衡する γ 相の組成を計算し(図1－合金組成算出手段(23)、図2－ステップS8・S9)、使用温度、使用応力における組織因子と合金特性の計算が行われる(図1－組織因子算出手段(24)・合金特性算出手段(25)、図2－ステップS10)。ついで、それらの値と入力した要求性能を対照し、要求性能を満たす場合には、必要に応じて順位付けを行い(準位付け手段(図示なし))、算出した合金組成、組織因子および合金特性を記憶するとともに(算出結果記憶手段(図示なし))、それらのリストを出力する(図1－出力手段(26)、図2－ステップS12)。

一方、要求性能を満足しない場合には、再び、合金組成を変化させ(図1－合金組成算出手段(23)、図2－ステップS11)、 γ' 相の組成、量比の計算を繰り返す(図1－合金組成算出手段(23)・組織因子算出手段(24)・合金特性算出手段(25)、図2－ステップS8～S10)。また、要求性能を満足する合金が存在しない場合には、その旨が表示される(図1－出力手段(26))。以上の過程もすべて自動的に行われる。

実 施 例

<解析実施例>

TMS-138合金の組成を入力し、900°C - 392 MPa および 1100°C - 137 MPa における平衡状態および合金特性を計算した。図5はその結果を表示したプリントアウト出力の一例を示したものである。図中の略記号の意味は下記表2に示したとおりである。

表 2

略記号	組織因子または特性	単位	単位または状態
(WT%)	合金組成	重量%	—
(AT%)	合金組成	原子%	—
GP	γ'相の組成	原子%	使用温度 (°C)
G	γ相の組成	原子%	使用温度 (°C)
Fraction.Gp	γ'相量	a.t量	使用温度 (°C)
Lat.Gp	γ'相の格子定数	Å	使用温度 (°C)
Lat.G	γ相の格子定数	Å	使用温度 (°C)
Lat.Misfit	格子定数ミスフィット	%	使用温度 (°C)
Liq	液相線温度	°C	—
Sol1	固相線温度	°C	—
Sol2	初期溶融温度	°C	—
Solv	完全固溶化温度	°C	—
Window	完全固溶化温度幅	°C	—
SI	固溶指数	—	900°C
Density	比重	g/cm³	室温
El.	のび率	%	使用温度 (°C)
R.A	しほり率	%	使用温度 (°C)
Creep life	単結晶合金のクリープ破断寿命	h	使用温度 (°C) 使用応力 (MPa)

図5のプリントアウト出力に表示されたγ相およびγ'相の組成などの組織因子および合金特性の予測値はTMS-138合金の実測値と十分一致していた。その計算時間は約1秒程度であり、高速で、しかも精度の高い合金特性の解析が行えることが確認できた。

<探査実施例>

要求特性として、クリープ破断寿命（試験条件 1100°C、137 MPa）を 500 時間以上、 γ' 相固溶化温度幅を 40°C 以上とした他、格子定数ミスフィット、固溶指数などに一定の制限を与え、かつ、TMS-138 合金の組成範囲付近を探査した。その結果、Ru を 2.0 wt % から 2.5 wt % に増加した場合、他の合金添加元素を Ru 量增加分だけ減らしても、TMS-138 合金と同等以上の合金特性を持つ TMS-157 合金が得られることが分かった。

実際にこの合金を溶解して作製した単結晶試験片の合金特性を測定し、設計値と比較した。図 6 はその結果を示したものである。図 6 から明らかなように、TMS-138 および TMS-157 合金の設計値（＝計算値）は高温・低応力側および中低温・高応力側ともに実測値と十分に一致していることが分かる。

もちろん、この出願の発明は以上の実施形態および実施例に限定されるものではなく、細部については様々な態様が可能である。

産業上の利用可能性

以上詳しく述べた通り、この出願の発明により、白金族元素添加合金を含めた γ' 析出強化型 Ni 基超合金の任意の合金組成、温度、応力に対する特性を予測することが可能となる。また、所望の特性を満たす新規な白金族元素添加合金を含めた γ' 析出強化型 Ni 基超合金を効率よく探査することができる。これにより白金族元素添加合金を含めた Ni 基超合金の解析と探査が、簡便かつ容易になり、合金開発の効率が著しく向上する。

請求の範囲

1. γ' 析出強化型白金族元素添加Ni基超合金の設計を支援するために、コンピュータを、

Ni基超合金の合金組成、使用温度および使用応力を入力する入力手段、

予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、

記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段、

記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段、および

組織因子および合金特性を合金組成とともにに出力する出力手段、

として機能させることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラム。

2. γ' 析出強化型白金族元素添加Ni基超合金の設計を支援する装置であって、

Ni基超合金の合金組成、使用温度および使用応力を入力する入力手段、

予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、

記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出する組織因子算出手段、

記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出する合金特性算出手段、および

組織因子および合金特性を合金組成とともにに出力する出力手段、

を備えることを特徴とする γ' 析出強化型白金族元素添加 Ni 基超合金設計支援装置。

3. 記憶手段に記憶した構成元素が、Ni、Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、Pd、Pt であることを特徴とする請求項 1 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援プログラムまたは請求項 2 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援装置。

4. 記憶手段に記憶した組織因子計算式が、少なくとも使用温度における γ 相と γ' 相の平衡計算式を含むものであることを特徴とする請求項 1 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援プログラムまたは請求項 2 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援装置。

5. γ 相と γ' 相の平衡計算式が、使用温度における γ' 面の式および分配比の式からなるものであることを特徴とする請求項 4 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援プログラムまたは請求項 4 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援装置。

6. 記憶手段に記憶した合金特性計算式が、合金組成、組織因子、使用温度および使用応力との関数として表されたものであることを特徴とする請求項 1 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援プログラムまたは請求項 2 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援装置。

7. コンピュータを、構成元素に関して γ' 相の組成と分配比の反復収束計算および γ' 相量の反復計算を連動させて、使用温度における γ 相および γ' 相の組成と γ' 相の量比を算出する γ' 相算出手段、としてさらに機能させることを特徴とする請求項 1 記載の γ' 析出強化型白金族元素添加 Ni 基超合金設計支援プログラム。

8. 構成元素に関して γ' 相の組成と分配比の反復収束計算および γ' 相量の反復計算を連動させて、使用温度における γ 相および γ' 相の組

成と γ' 相の量比を算出する γ' 相算出手段、をさらに備えることを特徴とする請求項2記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援装置。

9. γ' 析出強化型白金族元素添加Ni基超合金の設計を支援するために、コンピュータを、

Ni基超合金の1個以上の要求性能、使用温度および使用応力を入力する入力手段、

予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、

要求性能を満足する合金組成を算出手段、

記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出手段、

記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、使用温度および使用応力から合金特性を算出手段、および

組織因子および合金特性を合金組成とともに出力する出力手段、

として機能させることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラム。

10. γ' 析出強化型白金族元素添加Ni基超合金の設計を支援する装置であって、

Ni基超合金の1個以上の要求性能、使用温度および使用応力を入力する入力手段、

予めNi基超合金の構成元素、組織因子計算式および合金特性計算式を記憶しておく記憶手段、

要求性能を満足する合金組成を算出手段、

記憶手段から読み出した組織因子計算式を用いて合金組成から組織因子を算出手段、

記憶手段から読み出した合金特性計算式を用いて合金組成、組織因子、

使用温度および使用応力から合金特性を算出する合金特性算出手段、および

組織因子および合金特性を合金組成とともにに出力する出力手段、を備えることを特徴とする γ' 析出強化型白金族元素添加Ni基超合金設計支援装置。

1 1. 記憶手段に記憶した構成元素が、Ni、Co、Cr、Mo、W、Al、Ti、Nb、Ta、Hf、Re、Ir、Ru、Rh、Pd、Ptであることを特徴とする請求項9記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは請求項10記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援装置。

1 2. 記憶手段に記憶した組織因子計算式が、少なくとも使用温度における γ 相と γ' 相の平衡計算式を含むものであることを特徴とする請求項9記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは請求項10記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援装置。

1 3. γ 相と γ' 相の平衡計算式が、使用温度における γ' 面の式および分配比の式からなるものであることを特徴とする請求項12記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは請求項12記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援装置。

1 4. 要求性能が、合金特性および組織因子のいずれか一方または両方から選ばれる1個以上のものであることを特徴とする請求項9記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援プログラムまたは請求項10記載の γ' 析出強化型白金族元素添加Ni基超合金設計支援装置。

図 1

図 2

図 3

図 4

団 5

ALLOY TMS-138 *** Phase & Properties Calculation (at 1100. C/ 137. 0 MPa ***PGM*

	Ni	Co	Cr	Mo	W	Al	Ti	Nb
(WT%)	63. 60	5. 88	2. 94	2. 94	5. 88	5. 88	0. 00	0. 00
(AT%)	67. 74	6. 24	3. 54	1. 92	2. 00	13. 62	0. 00	0. 00
GP	68. 04	4. 51	2. 22	1. 00	1. 80	18. 12	0. 00	0. 00
G	64. 54	10. 83	7. 14	3. 57	2. 33	4. 52	0. 00	0. 00
	Ta	Hf	Re	Ir	Ru	Rh	Pd	Pt
(WT%)	5. 88	0. 10	4. 90	0. 00	2. 00	0. 00	0. 00	0. 00
(AT%)	2. 03	0. 04	1. 65	0. 00	1. 24	0. 00	0. 00	0. 00
GP	2. 77	0. 05	0. 58	0. 00	0. 92	0. 00	0. 00	0. 00
G	0. 61	0. 01	4. 29	0. 00	2. 16	0. 00	0. 00	0. 00
Fraction. Gp	Lat. Gp (A)		Lat. G (A)		Lat. Misfit (%)			
	0. 57	3. 65660		3. 67010		-0. 36769		
Liq (C)	Sol1 (C)		Sol2 (C)		Solv (C)		Window (C)	
1409. 5	1390. 2		1345. 9		1301. 4		44. 4	
SI (900. C)	Density		EI. (%)		R. A (%)		Creep life (h)	
1. 442 (1. 251)	9. 012		20. 75		30. 53		503. 1+/-85. 9	

ALLOY TMS-138 *** Phase & Properties Calculation (at 900. C/ 392. 0 MPa ***PGM*

	Ni	Co	Cr	Mo	W	Al	Ti	Nb
(WT%)	63. 60	5. 88	2. 94	2. 94	5. 88	5. 88	0. 00	0. 00
(AT%)	67. 74	6. 24	3. 54	1. 92	2. 00	13. 62	0. 00	0. 00
GP	69. 25	4. 08	1. 84	1. 14	1. 84	17. 91	0. 00	0. 00
G	64. 54	10. 83	7. 14	3. 57	2. 33	4. 52	0. 00	0. 00
	Ta	Hf	Re	Ir	Ru	Rh	Pd	Pt
(WT%)	5. 88	0. 10	4. 90	0. 00	2. 00	0. 00	0. 00	0. 00
(AT%)	2. 03	0. 04	1. 65	0. 00	1. 24	0. 00	0. 00	0. 00
GP	2. 70	0. 05	0. 40	0. 00	0. 80	0. 00	0. 00	0. 00
G	0. 61	0. 01	4. 29	0. 00	2. 16	0. 00	0. 00	0. 00
Fraction. Gp	Lat. Gp (A)		Lat. G (A)		Lat. Misfit (%)			
	0. 68	3. 64031		3. 65121		-0. 29827		
Liq (C)	Sol1 (C)		Sol2 (C)		Solv (C)		Window (C)	
1409. 5	1390. 2		1345. 9		1301. 4		44. 4	
SI (900. C)	Density		EI. (%)		R. A (%)		Creep life (h)	
1. 442 (1. 251)	9. 012		22. 39		22. 45		1015. 5+/-313. 6	

図 6

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/13928

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ C22C1/02, G06F17/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁷ C22C1/02, 19/00-19/03, C22F1/10, G06F17/50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2003
Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JICST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	GB 2241358 A (NATIONAL RESEARCH INSTITUTE FOR METALS), 28 August, 1991 (28.08.91), Claims & JP 3-191032 A	2,10
Y	YOKOKAWA et al., "Ni-ki Chogokinchu no Hakkinzoku Genso no γ/γ' Sobunpai", Nippon Kinzoku Gakkaishi, September 2002, Vol.66, No.9, pages 873 to 876	2,10
Y	KOBAYASHI et al., "Dai 4 Sedai Ni-ki Ichihoko Gyoko Chogokin no Sekkei", Nippon Kinzoku Gakkaishi, Vol.66, No.9, pages 897 to 900	2,10

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family
---	--

Date of the actual completion of the international search 10 December, 2003 (10.12.03)	Date of mailing of the international search report 24 December, 2003 (24.12.03)
---	--

Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
--	--------------------

Facsimile No.	Telephone No.
---------------	---------------

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/JP03/13928**C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 1184473 A2 (KABUSHIKI KAISHA TOSHIBA), 06 March, 2002 (06.03.02), Claims & JP 2002-146460 A & US 2002-62886 A1	2,10
Y	EP 434966 A1 (GENERAL ELECTRIC CO.), 03 July, 1991 (03.07.91), Claims & US 5151249 A1 & CA 2029539 A1 & JP 5-5143 A	2,10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/13928

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 1, 3 to 9, 11 to 14

because they relate to subject matter not required to be searched by this Authority, namely:
These Claims pertain to Computer program.

2. Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' C22C1/02, G06F17/50

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C22C1/02, 19/00-19/03, C22F1/10, G06F17/50

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922-1996年
 日本国公開実用新案公報 1971-2003年
 日本国登録実用新案公報 1994-2003年
 日本国実用新案登録公報 1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

JICST

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	GB 2241358 A(NATIONAL RESEARCH INSTITUTE FOR METALS) 1991.08.28 CLAIMS&JP 3-191032 A	2, 10
Y	横川ら, Ni基超合金中の白金族元素の γ / γ' 相分配, 日本国金属学会誌, 9月. 2002, 第66巻, 第9号, P. 873-876	2, 10
Y	小林ら, 第4世代Ni基一方向凝固超合金の設計, 日本国金属学会誌, 第66巻, 第9号, P. 897-900	2, 10
Y	EP 1184473 A2(KABUSHIKI KAISHA TOSHIBA) 2002.03.06 CLAIMS&JP 2002-146460 A&US 2002-62886 A1	2, 10
Y	EP 434966 A1(GENERAL ELECTRIC COMPANY) 1991.07.03 CLAIMS&US 5151249 A1&CA 2029539 A1&JP 5-5143 A	2, 10

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

10. 12. 03

国際調査報告の発送日

24.12.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

小川 武

4K 9270

電話番号 03-3581-1101 内線 3435

第I欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲 1,3-9,11-14 は、この国際調査機関が調査をすることを要しない対象に係るものである。
つまり、
コンピューター・プログラムに該当する。
2. 請求の範囲 _____ は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 請求の範囲 _____ は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第II欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかつた。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかつたので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかつたので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあつた。
- 追加調査手数料の納付と共に出願人から異議申立てがなかつた。