Web-based Supplementary Material for "Local Adaptive Grouped Regularization and its Oracle Properties for Varying Coefficient Regression"

Wesley Brooks^a, Jun Zhu^b, Zudi Lu^c

^aDepartment of Statistics, University of Wisconsin, Madison, WI 53706

^bDepartment of Statistics and Department of Entomology, University of Wisconsin, Madison, WI 53706

^cSchool of Mathematical Sciences, The University of Southampton, Highfield, Southampton UK

Abstract

The lemmas in this supplement are used in the proofs of Theorems 3 and 4 of the main text. *Keywords:*

1. Lemmas

Lemma 1.

$$E\left[\sum_{i=1}^{n} q_{1}\left(\mathbf{Z}_{i}^{T}\boldsymbol{\zeta}(\boldsymbol{s}), Y_{i}\right) \mathbf{Z}_{i} K_{h}\left(\|\boldsymbol{s}-\boldsymbol{s}_{i}\|\right)\right] = \left(2^{-1} n^{1/2} h^{3} f(\boldsymbol{s}) \kappa_{2} \Gamma(\boldsymbol{s}) \left(\nabla_{uu}^{2} \boldsymbol{\beta}(\boldsymbol{s}) + \nabla_{vv}^{2} \boldsymbol{\beta}(\boldsymbol{s})\right)^{T}\right) + o_{p}\left(h^{2} \mathbf{1}_{3p}\right)$$

$$\mathbf{0}_{2p}$$

 $\label{lem:email$

and

$$Var\left[\sum_{i=1}^{n} q_1 \left(\mathbf{Z}_i^T \boldsymbol{\zeta}(\boldsymbol{s}), Y_i\right) \mathbf{Z}_i K_h \left(\|\boldsymbol{s} - \boldsymbol{s}_i\|\right)\right] = f(\boldsymbol{s}) \operatorname{diag}\left\{\nu_0, \nu_2, \nu_2\right\} \otimes \boldsymbol{\Gamma}(\boldsymbol{s}) + o\left(1\right)$$
$$= \Lambda + o\left(1\right)$$

Proof. Expectation: For j = 1, ..., p, by a Taylor expansion of $\beta_j(s_i)$ around s,

$$eta_j(oldsymbol{s}_i) = eta_j(oldsymbol{s}) +
abla eta_j(oldsymbol{s})(oldsymbol{s}_i - oldsymbol{s}) + (oldsymbol{s}_i - oldsymbol{s})^T \left\{
abla^2 eta_j(oldsymbol{s}) \right\} (oldsymbol{s}_i - oldsymbol{s}) + o(h^2)$$

and thus, for $\boldsymbol{x} \in \mathbb{R}^p$,

$$\boldsymbol{x}_i^T \boldsymbol{\beta}(\boldsymbol{s}_i) = \sum_{j=1}^p x_{ij} \left[\beta_j(\boldsymbol{s}) + \nabla \beta_j(\boldsymbol{s})^T (\boldsymbol{s}_i - \boldsymbol{s}) + \tilde{\beta}_{ij}'' \right] + o(h^2).$$

Letting $\boldsymbol{z}_i^T = \{(1, s_{i,1} - s_1, s_{i,2} - s_2) \otimes \boldsymbol{x}_i^T\}$ and $\boldsymbol{\zeta}(\boldsymbol{s}) = (\boldsymbol{\beta}(\boldsymbol{s})^T, \nabla_u \boldsymbol{\beta}(\boldsymbol{s})^T, \nabla_v \boldsymbol{\beta}(\boldsymbol{s})^T)^T$, we have that

$$egin{aligned} oldsymbol{x}_i^T oldsymbol{eta}(oldsymbol{s}_i) - oldsymbol{z}_i^T oldsymbol{\zeta}(oldsymbol{s}) &= oldsymbol{x}_i^T oldsymbol{eta}_i'' + o\left(h^2\right) \ &= O_p\left(h^2\right). \end{aligned}$$

By a Taylor expansion around $\boldsymbol{x}^T \boldsymbol{\beta}(\boldsymbol{s}_i)$, then,

$$q_1\left(\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}), \mu(\boldsymbol{s}_i, \boldsymbol{z}_i)\right) = q_1\left(\boldsymbol{x}_i^T\boldsymbol{\beta}(\boldsymbol{s}_i), \mu(\boldsymbol{s}_i, \boldsymbol{z})\right)$$
$$-q_2\left(\boldsymbol{x}_i^T\boldsymbol{\beta}(\boldsymbol{s}_i), \mu(\boldsymbol{s}_i, \boldsymbol{z})\right)\boldsymbol{x}_i^T\tilde{\boldsymbol{\beta}}_i''$$
$$+o\left(h^2\right).$$

And by the definitions of $q_1(\cdot)$ and $q_2(\cdot)$, we have that

$$q_1\left(\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}), \mu(\boldsymbol{s}_i, \boldsymbol{z}_i)\right) = \rho(\boldsymbol{s}_i, \boldsymbol{z}_i)\boldsymbol{x}_i^T\tilde{\boldsymbol{\beta}}_i'' + o\left(h^2\right).$$

Now the expectation of Ω_n is

$$nE\left(\omega_{i}|\mathbf{Z}_{i}=\mathbf{z}_{i},\mathbf{s}_{i}\right)=\left(1/2\right)\alpha_{n}\mathbf{z}_{i}q_{1}\left(\mathbf{z}_{i}^{T}\boldsymbol{\zeta}(\mathbf{s}),\mu(\mathbf{s}_{i},\mathbf{z}_{i})\right)K\left(h^{-1}\|\mathbf{s}-\mathbf{s}_{i}\|\right)$$

$$=\left(1/2\right)\alpha_{n}h^{2}\mathbf{z}_{i}\left\{h^{-2}\rho(\mathbf{s}_{i},\mathbf{z}_{i})\mathbf{x}_{i}^{T}\tilde{\boldsymbol{\beta}}_{i}''+o\left(\mathbf{1}_{3p}\right)\right\}K\left(h^{-1}\|\mathbf{s}-\mathbf{s}_{i}\|\right).$$

To facilitate a change of variables, we observe that $h^{-2}\tilde{\beta}_j'' = \left(\frac{s_i - s}{h}\right)^T \left\{\nabla^2 \beta_j(s)\right\} \left(\frac{s_i - s}{h}\right)$. Thus,

$$E\left(\omega_{i}|\boldsymbol{s}_{i}\right)=\left(1/2\right)\alpha_{n}h^{2}\left[\left(\begin{array}{c}1\\h^{-1}(s_{i,1}-s_{1})\\h^{-1}(s_{i,2}-s_{2})\end{array}\right)\otimes\left\{\boldsymbol{\Gamma}(\boldsymbol{s}_{i})h^{-2}\tilde{\boldsymbol{\beta}}_{i}^{\prime\prime}\right\}+o\left(\mathbf{1}_{3p}\right)\right]K\left(h^{-1}\|\boldsymbol{s}-\boldsymbol{s}_{i}\|\right).$$

And, using the symmetry of the kernel function,

$$E(\omega_i) = (1/2)\alpha_n h^4 f(\boldsymbol{s}) \begin{pmatrix} \kappa_2 \\ h\kappa_3 \\ h\kappa_3 \end{pmatrix} \otimes \left[\boldsymbol{\Gamma}(\boldsymbol{s}) \left\{ \nabla_{uu}^2 \boldsymbol{\beta}(\boldsymbol{s}) + \nabla_{vv}^2 \boldsymbol{\beta}(\boldsymbol{s}) \right\} \right] + o\left(h^2 \mathbf{1}_{3p}\right)$$

where $\{\nabla_{uu}^2 \boldsymbol{\beta}(\boldsymbol{s}) + \nabla_{vv}^2 \boldsymbol{\beta}(\boldsymbol{s})\} = (\nabla_{uu}^2 \beta_1(\boldsymbol{s}) + \nabla_{vv}^2 \beta_1(\boldsymbol{s}), \dots, \nabla_{uu}^2 \beta_p(\boldsymbol{s}) + \nabla_{vv}^2 \beta_p(\boldsymbol{s}))^T$. Thus,

$$E\left(\Omega_{n}\right) = \begin{pmatrix} \alpha_{n}^{-1} 2^{-1} h^{2} \kappa_{2} f(\boldsymbol{s}) \Gamma(\boldsymbol{s}) \left(\nabla_{uu}^{2} \boldsymbol{\beta}(\boldsymbol{s}) + \nabla_{vv}^{2} \boldsymbol{\beta}(\boldsymbol{s})\right)^{T} \\ \mathbf{0}_{2p} \end{pmatrix} + o_{p} \left(h^{2} \mathbf{1}_{3p}\right)$$

Variance: By the previous result, $E(\Omega_n) = O(h^2)$. Thus, $var(\Omega_n) \to E(\Omega_n^2)$, and since the observations are independent, $E(\Omega_n^2) = \sum_{i=1}^n E(\omega_i^2)$. And, by Taylor expansion around $\mathbf{z}_i^T \boldsymbol{\zeta}(\mathbf{s}_i)$,

$$q_1^2 \left(\boldsymbol{z}_i^T \boldsymbol{\zeta}(\boldsymbol{s}), Y_i \right) = q_1^2 \left(\boldsymbol{z}_i^T \boldsymbol{\zeta}(\boldsymbol{s}_i), Y_i \right)$$
$$- q_1 \left(\boldsymbol{z}_i^T \boldsymbol{\zeta}(\boldsymbol{s}_i), Y_i \right) q_2 \left(\boldsymbol{z}_i^T \boldsymbol{\zeta}(\boldsymbol{s}_i), Y_i \right) \boldsymbol{x}_i^T \tilde{\boldsymbol{\beta}}_i^T$$
$$+ o \left(h^2 \right).$$

Since $q_1(\cdot, \cdot)$ is the quasi-score function, it follows that

$$E\left(\omega_i^2|\boldsymbol{Z}_i=\boldsymbol{z}_i,\boldsymbol{s}_i\right)=\alpha_n^2\rho(\boldsymbol{s}_i,\boldsymbol{z}_i)\boldsymbol{z}_i\boldsymbol{z}_i^TK\left(h^{-1}\|\boldsymbol{s}-\boldsymbol{s}_i\|\right)+o\left(h^2\right).$$

By the symmetry of the kernel function,

$$E(\omega_i^2) = n^{-1} f(\mathbf{s}) \operatorname{diag} \{\nu_0, \nu_2, \nu_2\} \otimes \Gamma(\mathbf{s}) + o(1).$$

Thus,

$$Var(\Omega_n) = f(s) \operatorname{diag} \{\nu_0, \nu_2, \nu_2\} \otimes \Gamma(s) + o(1).$$

Lemma 2.

$$E\left[\sum_{i=1}^{n} q_{2}\left(\boldsymbol{Z}_{i}^{T}\boldsymbol{\zeta}(\boldsymbol{s}), Y_{i}\right) \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{T} K_{h}\left(\|\boldsymbol{s} - \boldsymbol{s}_{i}\|\right)\right] = -f(\boldsymbol{s}) \operatorname{diag}\left\{\kappa_{0}, \kappa_{2}, \kappa_{2}\right\} \otimes \boldsymbol{\Gamma}(\boldsymbol{s}) + o\left(1\right)$$

$$= -\Delta + o\left(1\right)$$

and

$$Var\left\{ \left(\sum_{i=1}^{n} q_{2} \left(\boldsymbol{Z}_{i}^{T} \boldsymbol{\zeta}(\boldsymbol{s}), Y_{i} \right) \boldsymbol{Z}_{i} \boldsymbol{Z}_{i}^{T} K_{h} \left(\left\| \boldsymbol{s} - \boldsymbol{s}_{i} \right\| \right) \right)_{ij} \right\} = O\left(n^{-1} h^{-2} \right)$$

Proof. Expectation: The approach is similar to the proof of Lemma 1. By the Taylor expansion of $q_2\left(\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}), \mu\left(\boldsymbol{s}_i, \boldsymbol{z}_i\right)\right)$ around $\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}_i)$:

$$q_2\left(\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}), \mu(\boldsymbol{s}_i, \boldsymbol{z}_i)\right) = q_2\left(\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}_i), \mu(\boldsymbol{s}_i, \boldsymbol{z}_i)\right) + q_3\left(\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}_i), \mu(\boldsymbol{s}_i, \boldsymbol{z}_i)\right) \left\{\boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}) - \boldsymbol{z}_i^T\boldsymbol{\zeta}(\boldsymbol{s}_i)\right\}$$
$$= -\rho(\boldsymbol{s}_i, \boldsymbol{z}_i) + o(1).$$

And by the same arguments as before

$$E\left(\delta_{i}|\mathbf{Z}_{i}=\mathbf{z}_{i},\mathbf{s}_{i}\right)=-\alpha_{n}^{2}\rho(\mathbf{s}_{i},\mathbf{z}_{i})\mathbf{z}_{i}\mathbf{z}_{i}^{T}K\left(h^{-1}\|\mathbf{s}_{i}-\mathbf{s}\|\right)$$

$$E\left(\delta_{i}|\mathbf{s}_{i}\right)=-\alpha_{n}^{2}\begin{pmatrix}1\\h^{-1}(s_{i,1}-s_{1})\\h^{-1}(s_{i,2}-s_{2})\end{pmatrix}\begin{pmatrix}1\\h^{-1}(s_{i,1}-s_{1})\\h^{-1}(s_{i,2}-s_{2})\end{pmatrix}^{T}\otimes\mathbf{\Gamma}(\mathbf{s}_{i})K\left(h^{-1}\|\mathbf{s}_{i}-\mathbf{s}\|\right)$$

$$E\left(\delta_{i}\right)=-nf\left(\mathbf{s}\right)\operatorname{diag}\left\{\kappa_{0},\kappa_{2},\kappa_{2}\right\}\otimes\mathbf{\Gamma}\left(\mathbf{s}\right)+o\left(n^{-1}\right)$$

Thus,

$$E(\Delta_n) = -f(s)\operatorname{diag}\left\{\kappa_0, \kappa_2, \kappa_2\right\} \otimes \Gamma(s) + o(1)$$

Variance: From the previous result, it follows that $\{E(\delta_i)\}^2 = O(n^{-2})$. By the definition of δ_i ,

$$E\left(\delta_{i}^{2}|\mathbf{Z}_{i}=\mathbf{z}_{i},\mathbf{s}_{i}\right) = \alpha_{n}^{4}\mathbf{z}_{i}^{T}\mathbf{z}_{i}q_{2}^{2}(\mathbf{s}_{i},\mathbf{z}_{i}) \begin{pmatrix} 1 \\ h^{-1}(s_{i,1}-s_{1}) \\ h^{-1}(s_{i,2}-s_{2}) \end{pmatrix} \begin{pmatrix} 1 \\ h^{-1}(s_{i,1}-s_{1}) \\ h^{-1}(s_{i,2}-s_{2}) \end{pmatrix}^{T} \mathbf{z}_{i}\mathbf{z}_{i}^{T}K^{2}\left(h^{-1}||\mathbf{s}_{i}-\mathbf{s}||\right) + o\left(1\right)$$

And it follows that $E\left(\delta_{i}^{2}\right)=O\left(n^{-1}\alpha_{n}^{2}\right)$, and $Var\left(\Delta_{n}\right)=O\left(\alpha_{n}^{2}\right)$.