Use Case: Model Prediksi Pelanggan Gagal Bayar Kartu Kredit

Iffatabiyan Habibilhafızh Alhisyam

Market & Business Analyst MayBank

Perkenalan

2022- Market & Business Analyst at Maybank Indonesia

2021 – Data Science Development Program at Maybank Indonesia

2020 – Charter's Business Intern at Garuda Indonesia

Poin Belajar

Framework Data Analytics

Hands-on Coding

Cross-Industry Standard Process for Data Mining

1. Business Understanding

Latar Belakang

FinanKu adalah sebuah startup *fintech* imajiner yang memberikan fasilitas simpanan dan pinjaman kepada nasabahnya. Jasa yang mereka tawarkan di antaranya Tabungan, Deposito, Pinjaman Tanpa Agunan, Kartu Kredit, dan Pembiayaan Kendaraan Mobil & Motor.

Saat ini, FinanKu memiliki pelanggan sebanyak ~20,000 yang tersebar di 3 kota besar di Indonesia; Jakarta, Bandung, dan Surabaya. Angka ini cukup besar mengingat FinanKu baru berjalan selama 1,5 tahun, di mana diekspektasikan dalam 3 tahun ke depan pelanggan mereka akan berjumlah 300,000+.

Perkembangan yang cepat ini membuat para *stakeholders* di Divisi Kredit FinanKu untuk semakin berhati-hati dalam menyalurkan kredit yang dimiliki agar tidak mengalami gagal bayar, khususnya dari lini Kartu Kredit yang memiliki fitur *instant approval* dalam 1 menit.

1. Business Understanding

Permasalahan

Dalam setahun terakhir, terdapat lebih dari 20% nasabah kartu kredit milik FinanKu yang gagal bayar. Akibatnya operasional bisnis menjadi terganggu mengingat skala *startup* FinanKu masih tergolong rendah.

Tujuan Bisnis

FinanKu ingin mengetahui lebih awal nasabah lending yang berpotensi untuk mengalami gagal bayar.

Tujuan Analisa

Membuat Sebuah Model Prediksi Gagal Bayar untuk Fasilitas Kartu Kredit di FinanKu

2. Data Understanding

Sebelum membuat model, perlu dipahami variabel apa saja yang tersedia dan dapat digunakan.

Branch

Lokasi cabang nasabah terdaftar

Balance

Rata-rata nominal tabungan yang tersimpan di FinanKu

City

Lokasi kota nasabah terdaftar

NumofProducts

Jumlah kepemilikan produk nasabah FinanKu

Age

Usia nasabah pada tahun observasi

HasCrCard

Status kepemilikan kartu kredit (1 = Memiliki, 0 = Tidak)

Avg Annual Income

Rata-rata pendapatan tahunan nasabah

Active Member

Status keaktifan Nasabah yang dilihat berdasarkan transaksi yang dilakukan

2. Data Understanding

Penting Untuk Melakukan Analisa

Descriptive

Sebelum membuat model kompleks, Analisa sederhana juga bisa dilakukan untuk mengetahui apakah terdapat pola yang sudah tergambarkan di awal

Rata-rata Saldo Nasabah Rata-rata Sebaran Kepemilikan Lokasi **Produk** Usia

3. Data Preparation

Persiapan data yang dilakukan dapat berupa pengubahan bentuk, pemisahan jumlah sample, maupun penambahan variabel.

01	Pengecekan Data Duplikat/Data yang hilang	Menambah Variabel/Fitur Baru (rata-rata, min, max)
03	Transformasi Data □ melakukan <i>encoding</i> untuk data kategorikal maupun standardiasi untuk data numerik	Mengulang Tahapan yang sama Untuk Dataset Validasi
05	Pengecekan Korelasi	Pemisahan Data <i>Train/Test</i>

4. Modeling

Pemilihan Algoritma

Pencarian Hyperparameter Terbaik

Melakukan *tuning* model menggunakan *GridSearchCV*

Pembangunan Model

Membuat *model machine learning* menggunakan parameter terbaik

5. Evaluation

Untuk mengukur keberhasilan model dalam memprediksi digunakan parameter akurasi dan recall dengan bobot masing-masing 50 persen.

Confusi	on Matrix	Aktual	
		Positive	Negative
		True	False
	Positive	Positive	Positive
Prediks		(TP)	(FP)
i		False	True
	Negative	Negative	Negative
		(FN)	(TN)

Akurasi

Akurasi =
$$\frac{TP+TN}{TP+TN+FP+FN}$$

Recall

Recall =
$$\frac{TP}{TP+FN}$$

Positif

Gagal Bayar

Negatif □ Tidak Gagal Bayar

6. Deployment

Pada tahapan ini *deployment* yang dilakukan berupa *coding* dalam bentuk *jupyter notebook,* karena *end-user* nya adalah orang yang membangun model itu sendiri

