Derivatives

Question 1. Calculate the derivative of the following functions:

•
$$f_0(x) = 3x^2$$

•
$$f_1(x) = 5x^2 - 18$$

•
$$f_2(x) = 5x^2 - 18x + 39$$

•
$$f_3(x) = \sin(x)$$

•
$$f_4(x) = \sin(x) * x^2$$

•
$$f_5(x) = \frac{5x^3 - 2x + 1}{2x - 7}$$

•
$$f_6(x) = ax^2 + bx + c$$

Question 2. Calculate the second order derivative of the same functions:

•
$$f_0(x) = 3x^2$$

•
$$f_1(x) = 5x^2 - 18$$

•
$$f_2(x) = 5x^2 - 18x + 39$$

•
$$f_3(x) = \sin(x)$$

•
$$f_4(x) = \sin(x) * x^2$$

•
$$f_5(x) = \frac{5x^3 - 2x + 1}{2x - 7}$$

•
$$f_6(x) = ax^2 + bx + c$$

Question 3. Find the anti-derivative of the following functions:

•
$$g_0(x) = 3x^2$$

•
$$g_1(x) = 5x^2 - 18$$

•
$$g_2(x) = 5x^2 - 18x + 39$$

•
$$g_3(x) = \sin(x)$$

•
$$g_4(x) = ax^2 + bx + c$$

Question 4. Calculate the following partial derivatives:

•
$$h_1(x,y) = 3x^2 + y^2$$
 w.r.t. $x\left(\frac{\partial h_1}{\partial x}\right)$

•
$$h_1(x,y) = 3x^2 + y^2$$
 w.r.t. $y\left(\frac{\partial h_1}{\partial x}\right)$

•
$$h_2(x,y,z) = 5x^3 - 18y^2 - 18x + 39z^5 + 40xy + z^2x^3y$$
 w.r.t. $x\left(\frac{\partial h_2}{\partial x}\right)$

•
$$h_2(x,y,z) = 5x^3 - 18y^2 - 18x + 39z^5 + 40xy + z^2x^3y$$
 w.r.t. $y \left(\frac{\partial h_2}{\partial y}\right)$

•
$$h_2(x,y,z) = 5x^3 - 18y^2 - 18x + 39z^5 + 40xy + z^2x^3y$$
 w.r.t. $z\left(\frac{\partial h_2}{\partial z}\right)$

Question 5. Calculate the following second / third order partial derivatives:

•
$$h_1(x,y) = 3x^2 + y^2$$
 w.r.t. x then y $(\frac{\partial^2 h_1}{\partial x \partial y})$

•
$$h_1(x,y) = 3x^2 + y^2$$
 w.r.t. y then x $(\frac{\partial^2 h_1}{\partial y \partial x})$

•
$$h_2(x,y,z) = 5x^3 - 18y^2 - 18x + 39z^5 + 40xy + z^2x^3y$$
 w.r.t. x and $x \left(\frac{\partial^2 h_2}{\partial x^2}\right)$

•
$$h_2(x,y,z) = 5x^3 - 18y^2 - 18x + 39z^5 + 40xy + z^2x^3y$$
 w.r.t. y and x $(\frac{\partial^2 h_2}{\partial y \partial x})$

•
$$h_2(x,y,z) = 5x^3 - 18y^2 - 18x + 39z^5 + 40xy + z^2x^3y$$
 w.r.t. z then x and y $(\frac{\partial^3 h_2}{\partial x \partial u \partial z})$

As a reminder, one step of gradient descent is done using the formula

$$x_{n+1} = x_n - \lambda * f'(x_n)$$

where x_n is the current point, λ is the 'learning rate', and f' (sometimes written $\frac{df}{dx}$) is the derivative of f, f being the function to minimize.

Question 6. Calculate 5 steps of gradient descent with learning rate of $\lambda = 0.8$, starting from $x_0 = -0.25$ for the function $f(x) = x^2 - x + 3$.

Conjecture what is the exact minimum of f^1 ; how far is x_1 from it? and x_4 ?

What happens if the learning rate is $\lambda = 1$? and $\lambda = 2$? and $\lambda = 0.1$? and $\lambda = 0.01$? (do only 3 steps)

¹Plotting $x_0, x_1, x_2, x_3, \ldots$ may help.