LAB 3 - Classification with Logistic Regression, KNN, and MLP on NSL-KDD Dataset

Report for NSL-KDD Dataset Analysis

This report covers the process, results, and analysis of three machine learning models: **Logistic Regression**, **K-Nearest Neighbors (KNN)**, and **Multi-Layer Perceptron (MLP)** applied to the **NSL-KDD dataset**, which is a dataset used for network intrusion detection.

1. Objective

The main goal of this analysis was to detect anomalies (network intrusions) in the NSL-KDD dataset using three different machine learning models:

- Logistic Regression
- K-Nearest Neighbors (KNN)
- Multi-Layer Perceptron (MLP)

Each model was evaluated based on its accuracy, precision, recall, F1-score, and confusion matrix.

2. Data Preprocessing

2.1 Data Loading

The **NSL-KDD dataset** consists of both normal network traffic and attack types. The data was loaded into pandas DataFrames (train_df and test_df). The dataset contains both numerical and categorical features, which required different preprocessing steps:

• Categorical features: Protocol type (tcp, udp, icmp), service (http, smtp, etc.), and flag were non-numeric.

• **Numerical features**: These include fields like duration, source bytes, destination bytes, and many others.

2.2 Label Encoding

The target variable (label) was transformed into binary values:

- **0** for normal traffic.
- 1 for any kind of attack (anomaly).

```
# Check the unique labels in the training and testing sets
train_labels = train_df['label'].unique()

test_labels = test_df['label'].unique()

# Print the unique labels in both datasets to compare
print("Unique labels in training set:", train_labels)
print("Unique labels in test set:", test_labels)

# Check for any unseen labels in the test set
unseen_labels = set(test_labels) - set(train_labels)
print("Unseen labels in test set:", unseen_labels)
```

2.3 One-Hot Encoding

To handle the categorical features (protocol_type, service, and flag), **One-Hot Encoding** was applied. This converted each categorical value into a set of binary columns, making them usable by machine learning algorithms.

```
# One-Hot Encode the categorical columns: 'protocol_type', 'service', 'flag'
X_train = pd.get_dummies(X_train, columns=['protocol_type', 'service', 'flag'])
X_test = pd.get_dummies(X_test, columns=['protocol_type', 'service', 'flag'])

# Ensure both train and test sets have the same columns after encoding
X_train, X_test = X_train.align(X_test, join='left', axis=1, fill_value=0)

# Verify the shape after One-Hot Encoding
print(X_train.shape)
print(X_test.shape)

125 (125973, 123)
(22544, 123)
```

2.4 Feature Scaling

All numerical features were standardized using **StandardScaler**, ensuring that they were on a common scale with a mean of 0 and a standard deviation of 1.

3. Model Training and Evaluation

3.1 Logistic Regression

Logistic Regression is a simple yet effective algorithm for binary classification problems. The model was trained using the preprocessed dataset and evaluated on the test set.

```
# Importing necessary libraries
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Initialize the Logistic Regression model
logreg_model = LogisticRegression(random_state=42, max_iter=1000)

# Train the model on the PCA-transformed training data
logreg_model.fit(X_train_pca, y_train)

# Model trained successfully
print("Logistic Regression model trained successfully!")
```

3.2 K-Nearest Neighbors (KNN)

KNN is a non-parametric model that classifies data points based on the majority class of their "k" nearest neighbors. We used k=5 neighbors for this analysis.

```
# Import necessary libraries
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Initialize the KNN model
knn_model = KNeighborsClassifier(n_neighbors=5) # You can change 'n_neighbors' to try different values

# Train the KNN model on the PCA-transformed training data
knn_model.fit(X_train_pca, y_train)

# Model trained successfully
print("K-Nearest Neighbors model trained successfully!")
```

3.3 Multi-Layer Perceptron (MLP)

MLP is a neural network model that uses backpropagation to learn weights. We used one hidden layer with 100 neurons for the analysis

```
[ ] # Import necessary libraries
    from sklearn.neural_network import MLPClassifier
    from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

# Initialize the MLP model
    mlp_model = MLPClassifier(hidden_layer_sizes=(100,), max_iter=300, random_state=42)

# Train the MLP model on the PCA-transformed training data
    mlp_model.fit(X_train_pca, y_train)

# Model trained successfully
    print("Multi-Layer Perceptron model trained successfully!")
```

4. Model Performance

The performance of each model was evaluated based on:

- Accuracy: The proportion of correct predictions.
- Precision: The proportion of predicted anomalies that were actually anomalies.
- Recall: The proportion of actual anomalies that were correctly identified.
- F1-score: The harmonic mean of precision and recall, giving a balance between the two.
- **Confusion Matrix**: A matrix showing the breakdown of true positives, false positives, true negatives, and false negatives.

Logistic Regression Results:

• **Accuracy**: 84.62%

• Precision: 93%

• **Recall**: 79%

• **F1-Score**: 85%

```
→ Accuracy: 84.62%
    Confusion Matrix:
    [[ 8909 802]
     [ 2666 10167]]
    Classification Report:
                 precision
                              recall f1-score
                                                support
              0
                      0.77
                               0.92
                                         0.84
                                                   9711
                      0.93
                               0.79
                                         0.85
                                                  12833
                                         0.85
                                                  22544
        accuracy
                                         0.85
                                                  22544
                      0.85
                                0.85
       macro avg
    weighted avg
                      0.86
                                0.85
                                         0.85
                                                  22544
```

K-Nearest Neighbors (KNN) Results:

• Accuracy: 80.86%

Precision: 96% Recall: 69%

• F1-Score: 80%

```
→ Accuracy: 80.86%
    Confusion Matrix:
    [[9335 376]
    [3938 8895]]
    Classification Report:
                 precision recall f1-score
                                               support
                   0.70
                               0.96
                                        0.81
                                                 9711
                               0.69
                    0.96
                                       0.80
                                                12833
                                                22544
                                        0.81
       accuracy
                                                 22544
      macro avg
                     0.83
                               0.83
                                        0.81
    weighted avg
                     0.85
                               0.81
                                        0.81
                                                 22544
```

Multi-Layer Perceptron (MLP) Results:

• **Accuracy**: 84.76%

• Precision: 93%

• **Recall**: 79%

• **F1-Score**: 86%

```
→ Accuracy: 84.76%
    Confusion Matrix:
    [[ 8971 740]
     [ 2696 10137]]
    Classification Report:
                  precision
                              recall f1-score
                                                  support
               0
                                 0.92
                                           0.84
                       0.77
                                                     9711
                       0.93
                                 0.79
                                           0.86
                                                    12833
                                           0.85
                                                    22544
        accuracy
                       0.85
                                 0.86
                                           0.85
                                                    22544
       macro avg
                                                    22544
    weighted avg
                       0.86
                                 0.85
                                           0.85
```

5. Confusion Matrix Analysis

The **confusion matrices** for each model show how well they classified normal and anomaly classes.

Logistic Regression Confusion Matrix:

[[8909 802]

8909 True Negatives (normal classified as normal), 802 False Positives (normal misclassified as anomaly)

2666 False Negatives (anomaly misclassified as normal), 10167 True Positives (anomaly classified as anomaly)

KNN Confusion Matrix:

[[9335 376]

High true negatives, low false positives, but many anomalies are missed (high false negatives)

[3938 8895]]

MLP Confusion Matrix:

[[8971 740]

Balanced performance between normal and anomaly classifications

[2696 10137]]

6. Comparison of Models

Model	Accuracy	Precision	Recall	F1-Score
Logistic Regression	84.62%	93%	79%	85%
K-Nearest Neighbors	80.86%	96%	69%	80%
Multi-Layer Perceptron	84.76%	93%	79%	86%

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
    # Logistic Regression Performance
    print("=== Logistic Regression ===")
    print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")
    print(f"Precision: {precision_score(y_test, y_pred):.2f}")
    print(f"Recall: {recall_score(y_test, y_pred):.2f}")
    print(f"F1-Score: {f1_score(y_test, y_pred):.2f}")
    # K-Nearest Neighbors (KNN) Performance
    print("\n=== K-Nearest Neighbors (KNN) ===")
    print(f"Accuracy: {accuracy_score(y_test, y_pred_knn):.2f}")
    print(f"Precision: {precision_score(y_test, y_pred_knn):.2f}")
    print(f"Recall: {recall_score(y_test, y_pred_knn):.2f}")
    print(f"F1-Score: {f1_score(y_test, y_pred_knn):.2f}")
    print("\n=== Multi-Layer Perceptron (MLP) ===")
    print(f"Accuracy: {accuracy_score(y_test, y_pred_mlp):.2f}")
    print(f"Precision: {precision_score(y_test, y_pred_mlp):.2f}")
    print(f"Recall: {recall_score(y_test, y_pred_mlp):.2f}")
    print(f"F1-Score: {f1_score(y_test, y_pred_mlp):.2f}")
```

- Best Overall Model: Multi-Layer Perceptron (MLP) slightly outperformed Logistic
 Regression in terms of accuracy and F1-score, making it the best model for this task.
- Best Precision: KNN had the highest precision (96%), meaning it rarely misclassified normal instances as anomalies, but its lower recall (69%) indicates that many anomalies were missed.
- Best Recall: Logistic Regression and MLP both had better recall than KNN, meaning they
 detected more anomalies.

7. Conclusion and Recommendations

- MLP and Logistic Regression are the most balanced models in terms of accuracy, precision, recall, and F1-score.
- KNN had a very high precision but missed many anomalies (lower recall), which might not be ideal for intrusion detection where detecting anomalies is critical.
- MLP achieved the highest F1-score and a slightly better accuracy, making it the most effective model for this analysis.