cours 3 Apprentissage d'un réseau bayésien

Généralités sur l'apprentissage

Apprentissage de réseaux bayésiens

- Objectif : estimer
 - la structure G du réseau bayésien
 - les paramètres $P(X|\mathbf{pa}(X))$ du réseau bayésien
- ► En se fondant sur :
 - une ou plusieurs base(s) de données
 - complètes ou avec données manquantes
 - des connaissances a priori
 - contraintes sur la structure du RB
 - A priori sur les paramètres $P(X|\mathbf{pa}(X))$
 - connaissances expertes, etc.

- Apprendre la structure du RB
- Apprendre les paramètres sachant cette structure

Apprentissage de paramètres (1/4)

- ▶ Base de données **D** complète : pas de valeur manquante $\mathbf{D} = N$ lignes : $\mathbf{D} = \langle d^{(1)}, \dots, d^{(N)} \rangle$ ligne $d^{(i)}$: instanciation/observation de toutes les variables
- ► Structure du RB *G* connue

<i>X</i> ₁	X_2	 X _n
1	toto	 0
2	titi	 0

▶ Θ : ensemble des paramètres du RB valeurs des tables P(X_i|Pa(X_i))

Objectif : Estimer ⊖ qui « colle » le mieux aux données D

➤ « colle » le mieux ⇒ le plus vraisemblable

Apprentissage de paramètres (2/4)

Vraisemblance : $\mathcal{L}(\Theta : \mathbf{D}) = P(\mathbf{D}|\Theta)$

▶ Structure \mathcal{G} \Longrightarrow indépendances

Estimation par maximum de vraisemblance

- $ightharpoonup \Theta_i$: les paramètres de $P(X_i|\mathbf{Pa}(X_i))$
- ightharpoonup Estimer indépendamment chaque Θ_i :
 - ightharpoonup en ne tenant compte que des colonnes X_i et $\mathbf{Pa}(X_i)$ de \mathbf{D}
 - en calculant Argmax $_{\Theta_i} \mathcal{L}(\Theta_i : \mathbf{D})$

Apprentissage de paramètres (3/4)

Estimation d'une distribution marginale P(X):

- ▶ X : variable aléatoire, domaine : $\Omega_X = \{x_1, \dots, x_n\}$
- $\triangleright \Theta = \{\theta_1, \ldots, \theta_n\} \qquad P(X = x_i | \Theta) = \theta_i$
- $ightharpoonup N_i$: nombre d'occurrences de x_i dans ightharpoonup

Théorème

Si
$$\Theta^* = \operatorname{Argmax}_{\Theta} \mathcal{L}(\Theta : \mathbf{D})$$
, alors $\theta_i^* = \frac{N_i}{N}$

- ▶ Démonstration : Optimum obtenu pour $\frac{\partial \log \mathcal{L}(\Theta:\mathbf{D})}{\partial \theta_i} = 0$
 - \bigwedge contrainte : $\sum_{i=1}^{n} \theta_i = 1$

Exemple d'apprentissage de P(X)

► X = « dé à 6 faces »

► Base de données **D** :

- N = 10
- **►** *N_i* :

▶ Estimation de $P(X = x_i)$:

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
0,3	0,3	0,2	0,1	0,1	0

Apprentissage de paramètres (4/4)

Estimation de $P(X_i|\mathbf{Pa}(X_i))$ par max de vraisemblance (MLE)

- $ightharpoonup r_i$: taille du domaine de X_i domaine de $X_i = \{x_{i1}, \dots, x_{ir_i}\}$
- ▶ q_i : taille du domaine de $\mathbf{Pa}(X_i)$ domaine de $\mathbf{Pa}(X_i) = \{w_{i1}, \dots, w_{iq_i}\}$
- ▶ N_{ijk} : nombre d'occurrences de $(X_i = x_k, \mathbf{Pa}(X_i) = w_{ij})$ dans \mathbf{D} $N_{ij} = \sum_k N_{ijk}$
- ▶ $\Theta_i = \{\theta_{ijk} : 1 \le j \le q_i, 1 \le k \le r_i\}$: paramètres de $P(X_i | \mathbf{Pa}(X_i))$ $\theta_{ijk} = P(X_i = x_k | \mathbf{Pa}(X_i) = w_{ij}, \Theta_i)$
- ▶ Si $\Theta_i^* = \operatorname{Argmax}_{\Theta_i} \mathcal{L}(\Theta_i : \mathbf{D})$, alors $\theta_{ijk}^* = \frac{N_{ijk}}{N_{ij}}$

N_{ii} peut être égal à 0!

Exemple d'apprentissage de P(X|Y)

$$ightharpoonup \Omega_X = \{x_1, x_2\}, \quad \Omega_Y = \{y_1, y_2\}$$

► Base de données **D** :

X	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₂	<i>X</i> ₂	<i>X</i> ₁	<i>X</i> ₁	<i>X</i> ₁	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₂
Y	<i>X</i> ₁ <i>Y</i> ₁	<i>y</i> ₁	<i>y</i> ₁	<i>y</i> ₁	<i>y</i> ₂					

 $\begin{array}{c|cccc} & N_{ijk} & N_{ij} \\ \hline & x_1 & x_2 \\ \hline y_1 & 1 & 3 \\ \hline y_2 & 4 & 2 \\ \hline \end{array} \begin{array}{c|cccc} 4 \\ 6 \\ \end{array}$

ightharpoonup Estimation de P(X|Y):

	<i>X</i> ₁	<i>X</i> ₂
<i>y</i> ₁	1/4	3/4
<i>y</i> ₂	4/6	2/6

Apprentissage de paramètres avec a priori (1/2)

- ightharpoonup A priori: distribution $\pi(\Theta)$ sur les paramètres
 - ⇒ Estimation par maximum *a posteriori* (MAP)

$$\Theta^* = \operatorname{Argmax}_{\Theta} P(\Theta | \mathbf{D})$$

- ► Formule de Bayes : $P(\Theta|\mathbf{D}) = \frac{P(\mathbf{D}|\Theta) \times \pi(\Theta)}{P(\mathbf{D})}$
- $ightharpoonup P(\mathbf{D}) = \sum_{\theta} P(\mathbf{D}|\Theta = \theta) \times \pi(\theta)$ = constante pour le Argmax

$$\Longrightarrow \Theta^* = \operatorname{Argmax}_{\Theta} P(\mathbf{D}|\Theta) \times \pi(\Theta) = \operatorname{Argmax}_{\Theta} \prod_{i \in A} \mathcal{L}(\Theta_i : \mathbf{D}) \pi(\Theta)$$

▶ Hypothèse : indépendance des paramètres : $\pi(\Theta) = \prod \pi(\Theta_i)$

$$\Longrightarrow \Theta^* = \operatorname{Argmax}_{\Theta} \prod_{i=1}^{n} \mathcal{L}(\Theta_i : \mathbf{D}) \pi(\Theta_i)$$

$$\Longrightarrow \Theta_i^* = \operatorname{Argmax}_{\Theta_i} P(\mathbf{D}|\Theta_i) \times \pi(\Theta_i)$$

A priori classique

Distribution de Dirichlet

- ▶ *Y* : variable de domaine le simplexe *k*-dimensionnel : $\{k\text{-uplets }(y_1,\ldots,y_k) \text{ t.q. } y_i \geq 0 \text{ pour tout } i, \text{ et } \sum_{i=1}^k y_i = 1\}$ $\implies Y = \text{ensemble de distributions de probabilité}$
- ▶ Soit $\alpha = \{\alpha_1, \ldots, \alpha_k\}$ t.q. $\alpha_i > 0$ pour tout i
- ▶ $Dir(Y, \alpha)$ = distribution de probabilité définie sur Ω_Y par :

$$Dir(Y = y, \alpha) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} y_i^{\alpha_i - 1}$$

avec $B(\cdot)$ = constante de normalisation = fonction Beta

▶ Justification : Geiger & Heckerman (1997)

Apprentissage de paramètres avec a priori (2/2)

Estimation par Max a posteriori (MAP)

- ightharpoonup A priori de Dirichlet d'hyperparamètres α_{ijk}
- ► Si $\Theta_i^* = \operatorname{Argmax}_{\Theta_i} P(\mathbf{D}|\Theta_i) \times \pi(\Theta_i) \text{ alors } \theta_{ijk}^* = \frac{N_{ijk} + \alpha_{ijk} 1}{N_{ij} + \alpha_{ij} r_i}$

2 Indépendances et graphe

Rappel de l'épisode précédent

Indépendances et modèle graphique

- ⇒ Raisonnement sur la partie graphique du modèle
- Vérifications d'indépendances conditionnelles sans connaître les valeurs des probabilités!

d-séparation

Chaîne $\langle X_1, \ldots, X_n \rangle$

- ensemble de nœuds $\{X_1, \ldots, X_n\}$
- ▶ pour tout $i \in \{1, ..., n-1\}$, le graphe contient l'arc $X_i \to X_{i+1}$ ou $X_{i+1} \to X_i$

Chaîne $\langle X_1, \dots, X_n \rangle$ bloquée par un ensemble **Z**

- ▶ Bloquée si et seulement si $\exists i \in \{2, ..., n-1\}$ tel que l'une des 2 propriétés ci-dessous est vérifiée :
 - $igodelightarrow (X_{i-1}, X_i, X_{i+1})$ est une V-structure : $X_{i-1} \rightarrow X_i \leftarrow X_{i+1}$, et ni X_i ni ses descendants ne sont dans f Z
 - ② (X_{i-1}, X_i, X_{i+1}) n'est pas une V-structure et $X_i \in \mathbf{Z}$

d-séparation – bis

- Chaîne ⟨D, B, C, A⟩ bloquée par ∅?
- ► Chaîne ⟨D, B, C, A⟩ bloquée par {E}?
- ► Chaîne $\langle D, B, C, F, A \rangle$ bloquée par $\{E\}$?
- ► Chaîne ⟨D, G, C, A⟩ bloquée par {E}?
- ► Chaîne ⟨D, G, C, F, A⟩ bloquée par {E}?

d-séparation – ter

d-séparation

- ► A, B, C trois variables aléatoires ou groupes de variables disjoints
- ➤ A est d-séparé de B par C si toute chaîne entre A et B est bloquée par C.

Théorème

- ► A, B, C trois variables aléatoires ou groupes de variables disjoints
- ▶ A est d-séparé de B par $C \Longrightarrow A \bot \!\!\! \bot B | C$

Conséquence de la d-séparation

Couverture de Markov d'un nœud X_i

- $ightharpoonup \mathcal{X} = \{X_1, \dots, X_n\}$: nœuds du réseau bayésien
- $ightharpoonup MB(X_i) = {
 m couverture \ de \ Markov \ de \ } X_i$
 - = ensemble de nœuds t.q. $X_i \perp \!\!\! \perp (\mathcal{X} \setminus (MB(X_i) \cup \{X_i\})) | MB(X_i)$
- ► $MB(X_i) = \{ \text{parents de } X_i \} \cup \{ \text{enfants de } X_i \} \cup \{ \text{parents des enfants de } X_i \} \setminus \{ X_i \}$

- $\rightarrow X_i$: nœud en vert
- $ightharpoonup MB(X_i)$: nœuds en violet

Conséquences

- $P(X_i|\mathcal{X}\setminus\{X_i\}) = P(X_i|MB(X_i))$
- Classification : observer MB(X_i) suffit pour « classifier » X_i

Séparation, indépendance et maps

Notation : $\langle A \perp_{\mathcal{G}} B | C \rangle$: A d-séparé de B par C dans graphe \mathcal{G} $A \perp \!\!\!\perp_{P} B | C \text{ : selon la distribution de probabilité } P,$ A indépendant de B conditionnellement à C

Définitions

- ightharpoonup Soit $\mathcal G$ un graphe et P une distribution de probabilité
- ▶ \mathcal{G} I-map (independence map) de P ssi $\langle A \perp_{\mathcal{G}} B | C \rangle \Longrightarrow A \coprod_{P} B | C$ Interprétation : absence d'arc dans $\mathcal{G} \Longrightarrow$ indépendance dans P
- ▶ \mathcal{G} D-map (dependence map) de P ssi $A \perp \!\!\! \perp_P B | C \Longrightarrow \langle A \perp_{\mathcal{G}} B | C \rangle$ Interprétation : présence d'arc dans $\mathcal{G} \Longrightarrow$ dépendance
- ▶ \mathcal{G} P-map (perfect map) de P ssi $A \perp \!\!\!\perp_P B | C \iff \langle A \perp_{\mathcal{G}} B | C \rangle$ Interprétation : présence d'arc dans \mathcal{G} ssi dépendance absence d'arc dans \mathcal{G} ssi indépendance

Réseaux bayésiens et maps

Définition d'un réseau bayésien

- $ightharpoonup \mathcal{G}$ un graphe, muni de la *d*-séparation
- $\triangleright \mathcal{G}$ est une I-map d'une distribution P
- $\Longrightarrow \mathcal{G}$ est une structure de réseau bayésien pour P
- \Longrightarrow P est factorisable selon le graphe $\mathcal G$

Propriété de Markov globale (PMG)

 \mathcal{G} vérifie la PMG pour P ssi \mathcal{G} est une I-map pour P.

⇒ les réseaux bayésiens vérifient la PMG

Propriété de Markov locale (PML)

 $\mathcal G$ vérifie la PML pour P ssi pour toute variable X:

 $X \perp \!\!\! \perp_P$ non descendants(X) | parents(X).

⇒ les réseaux bayésiens vérifient la PML

 $PMG \iff PML$

Apprentissage de structure

Apprentissage de structure – une 1ère idée

- ▶ Objectif : déterminer la structure \mathcal{G} à partir de données **D**
- ► Rappel : \mathcal{G} P-map (perfect map) de P ssi $A \perp \!\!\! \perp_P B | C \iff \langle A \perp_{\mathcal{G}} B | C \rangle$
- ➤ Algorithme « naïf » :
 - créer toutes les structures G possibles
 - ▶ \forall \mathcal{G} , calculer tous les triplets (A, B, C) t.q. $\langle A \perp_{\mathcal{G}} B | C \rangle$
 - ▶ tester si $A \perp \!\!\!\perp_P B | C$ (par exemple, test du χ^2 en utilisant **D**)
 - ▶ si vrai pour tout triplet (A, B, C), structure \mathcal{G} trouvée

Problèmes de l'algorithme naïf (1/3)

Théorème – Robinson (1977)

Le nombre de structures \mathcal{G} à n nœuds est super-exponentiel :

$$\#(n) = \begin{cases} 1 & \text{si } n \le 1 \\ \sum_{i=1}^{n} (-1)^{i+1} 2^{i(n-1)} C_n^i \times \#(n-1) & \text{si } n > 1 \end{cases}$$

⇒ on ne peut pas tester toutes les structures

3 réseaux bayésiens équivalents (mêmes indep.) :

- ⇒ ne les compter que pour 1 seul réseau!
- Appliquer l'algorithme dans l'espace des classes d'équivalence de Markov

Classe d'équivalence de Markov

Définition : équivalence de Markov

- ▶ G₁, G₂ deux structures de RB contenant les mêmes nœuds/variables aléatoires
- ▶ $G_1, G_2 \in$ même classe d'équivalence de Markov ssi, pour tous ensembles de variables disjoints A, B, C:

$$\langle A \perp_{\mathcal{G}_1} B | C \rangle \Longleftrightarrow \langle A \perp_{\mathcal{G}_2} B | C \rangle$$

Définitions

- ▶ G structure de RB. Squelette de G obtenu en remplaçant les arcs $X \to Y$ par des arêtes X Y.
- ▶ {nœuds X, Y, Z} = \mathbf{v} -structure \iff dans \mathcal{G} , $\exists X \to Y \leftarrow Z$ et $\exists X \to Z$ et $\exists Z \to X$

Théorème – Verma et Pearl (1991)

 $\mathcal{G}_1,\mathcal{G}_2\in$ même classe d'équivalence de Markov ssi même squelette et mêmes v-structures.

Problèmes de l'algorithme naïf (2/3)

Appliquer l'algo dans l'espace des classes d'équivalence

Propriété expérimentale – Gillispie et Perlman (2002)

Ratio $\frac{\text{taille de l'espace des DAG}}{\text{taille de l'espace des classes d'équivalence}} \approx 3.7$

⇒ Pas d'avantage à utiliser les classes d'équivalence

Théorème – Chickering, Heckerman, Meek (2004)

L'apprentissage de structure de RB est NP-hard.

- ▶ 2 alternatives :
 - Apprentissage « exact » pour des « petits » RB
 - ▶ Apprentissage « approché » ⇒ heuristiques

Problèmes de l'algorithme naïf (3/3)

▶ 2ème problème : tester si A⊥⊥PB|C impossible si

D petite ou $\Omega_{A \cup B \cup C}$ de grande taille

$$\Rightarrow (X \perp_{\mathcal{G}} Y | C \forall X \in A, \forall Y \in B)$$

▶ Perfect map $\Longrightarrow A \perp \!\!\!\perp_P B | C \Longleftrightarrow (X \perp \!\!\!\perp_P Y | C \forall X \in A, \forall Y \in B)$

Tests d'indépendance

- ► Hypothèse (**DAG-faithfulness**) : *P* représentable par une perfect map \mathcal{G}
- ▶ Ne tester que l'indépendance conditionnelle de couples de variables

Théorème d'Hammersley-clifford

P distribution strictement positive \implies P représentable par une perfect map.

Relations déterministes entre variables $\Longrightarrow P$ non strictement positive

Apprentissage fondé sur les contraintes

Idée générale de l'apprentissage sous contraintes

- Apprendre le squelette via des tests d'indépendance
- Orienter les v-structures
- Propager ces orientations afin qu'elles ne créent pas de nouvelle v-structure
- Orienter le reste des arêtes sans créer de nouvelle v-structure
- Algorithmes classiques :
 - ▶ Inductive causation (IC) Verma et Pearl (1990)
 - ▶ PC Spirtes, Glymour et Scheines (2000)

Bibliographie

- ➤ Chickering D., Heckerman D. et Meek C. (2004)

 « Large-Sample Learning of Bayesian Networks is

 NP-Hard », Journal of Machine Learning Research,

 5:1287–1330
- ► Geiger D. et Heckerman D. (1997) « A Characterization of the Dirichlet Distribution through Global and Local Parameter Independence », The Annals of Statistics, 25(3):1344–1369
- ► Gillispie S. et Perlman M. (2002) « The size distribution for Markov equivalence classes of acyclic digraph models », Artificial Intelligence, 141 :137–155
- ▶ Robinson, R. (1977) « Counting unlabeled acyclic digraphs », Combinatorial Mathematics V, 622 : :28–43
- ➤ Spirtes E., Glymour C. et Scheines R. (2000) Causation, Prediction and Search, 2nd edition, Springer-Verlag
- Verma T. et Pearl J. (1990)

 ≪ Equivalence and synthesis of causal models

 », Proceedings of UAI, 220–227