الامتحان التجريبي وير مادة: الرياضيات المدة: 4 ساعات الصفحة: 3

الحبزء الأول

- (a) بين أن f متصلة في 0 على اليمين.
- (٥) ادرس قَابلية اشتقَاق الدَالة ٢ على عين ٥ ثم أعط تَاويلا هندسيًا لِلنتيجة المحصل عليهًا .
 - . $\lim_{x \to +\infty} f(x)$ النهاية c
 - (3) ادرس تغيرات الدّالة 1.
 - $(0,\overline{i},\overline{j})$ المنحنى الممثل للدَالة f في معلم متعَامد ممنظم (C_f) ليكن (C_f)
 - \cdot 1 للمنحنى (C_f) عند النقطة ذَات الأفصول (T) اكتب معَادلة المأس (T) للمنحنى (α)
 - . (C_f) و (T) ارسم في نفس المعلم (C_f) و (C_f)
- المتقالية عددا . بین أن v_n متقاربة و حدد نهایتها بین أن

 $F(x)=\int_{1}^{x}rac{t}{t-\ln(t)}dt$ لتكن F الدَالة العددية العرفة على على على بمنا يلي F بمنا يلي F

- F ادرس منحی تغیرات (1)
- x حدد إشارة F(x) تبعًا لقيم (2)
- . $\forall x \in]0,1]:0 \le \frac{x}{x-\ln(x)} \le x$ أَن (a) (3)
- $|x-\frac{1}{2}| \leq \lim_{x \to 0^+} F(x) \leq 0$: أن $|x-\frac{1}{2}| \leq \lim_{x \to 0^+} F(x) \leq 0$: أن $|x-\frac{1}{2}| \leq \lim_{x \to 0^+} F(x) \leq 0$: أن استنتج أن $|x-\frac{1}{2}| \leq \lim_{x \to 0^+} F(x) \leq 0$: أن استنتج أن $|x-\frac{1}{2}| \leq \lim_{x \to 0^+} F(x) \leq 0$
 - $\lim_{x\to +\infty} F(x) = +\infty \text{ أن } f(x) = +\infty \text{ أن } f(x) = 1, +\infty \text{ [}1, +\infty \text{[}1, +\infty \text{[}1] : f(x) \geq 1 \text{]}$
 - $\int_1^x (1+\frac{\ln(t)}{t})dt$ و $\int_1^x (1+\ln(t))dt$: احسب التكاملين $x \in \mathbb{R}_+^*$ و $x \in \mathbb{R}_+^*$ و (5)
 - . $(\forall t \in \mathbb{R}_+^*): t \geq 1 \Rightarrow \frac{t}{t \ln(t)} \leq 1 + \ln(t):$ نین آن (b)
 - . $(\forall x \in [1, +\infty[) : x + \frac{\ln^2(x)}{2} 1 \le F(x) :$ اثنت أن (d)

<u>2</u>3

 $(0, \overline{u}, \overline{v})$ المستوى العقدي منسوب إلى معلم متعَامد معظم و مبَاشر $(0, \overline{u}, \overline{v})$ المستوى العقدي منسوب إلى معلم متعَامد معظم و مبَاشر $z_B = i$ و $z_A = 2i$ التي لحقيهما $z_B = i$ و نعتبر النقطين $z_B = i$ و نعتبر النقطين $z_B = i$ و نعتبر النقطة $z_A = 2i$ التي لحقيهما $z_B = i$ و نعتبر النقطة $z_A = 2i$ التي اللحق $z_B = i$ و نعتبر النقطة $z_B = i$

 $(\forall z \in \mathbb{C} - \{i\}) : |\varphi(z)| = \frac{AM}{BM} : \text{if } i \text{ (1)} I$ $(\forall z \in \mathbb{C} - \{i, 2i\}) : arg(\varphi(z)) \equiv (\overline{\overrightarrow{BM}}, \overline{\overrightarrow{AM}}) + \frac{\pi}{2} \quad [2\pi] : \text{if } j$

، $F=\{M(z)/\varphi(z)\in i\mathbb{R}\}$ ، $E=\{M(z)/\mid \varphi(z)\mid =1\}$ نبته كل من المجموعتين $E=\{M(z)/\mid \varphi(z)\mid =1\}$ نبود طبيعة كل من المجموعتين (2)

: بين أن : (1) II

 $(\forall z \in \mathbb{C} - \{i\}) : |\varphi(z) - i| = \frac{1}{|z - i|} \quad ; \quad (\forall z \in \mathbb{C} - \{i\}) : ary(\varphi(z) - i) = -ary(z - i) \quad [2\pi]$

(2) بين أنه إِذَا كَانت النقطة M(z) تنتمي إِلَى الدَائِرة C) التي مركزها B و شمّاعهَا أَوْ فإِن النقطة M(z) تنتمي إِلَى دَائِرة يتم تحديدهَا .

M انظرقًا من النقطة M' انظرقًا من النقطة (3)

 $\mathcal{R}_e(u)=1$ على هذه المقادلة بحيث $\varphi(z)=z$ نرمز ب u و v على هذه المقادلة بحيث (1) π

. D(v) و C(u) و $M'(\varphi(z))$ و M(z) و $z\in\mathbb{C}-\{i,u,v\}$: ليكن (2)

 $\frac{\varphi(z)-u}{\varphi(z)-v}=-rac{z-u}{z-v}$: نِيْنَ أَنْ (a)

 $\overline{(\overline{M'D},\overline{M'C})} \equiv \pi + \overline{(\overline{MD},\overline{MC})}$ [2 π]: ن (b)

(c) بين أنه إذًا كانت النقط M و M و D و D مستقيمية فان النقط M و M و M و D و D مستقيمية و إذًا كانت M و D و D و D مستقيمية فإن النقط M و M و M و D و D تكون متذاورة .

3 (1)

35x-192y=1: آلسعادلة \mathbb{Z}^2 السعادلة (1

ب) بين ان المحادلة: 35x = 1 تقبل حلا وحيدا في 35x = 1 ثم استنج حلها

2) ا) بین انه یوجد عدین اولین مختلفین p و p یحققان:

PGCD((p-1),(q-1))=4 $_{9}$ (p-1)(q-1)= 192

 \mathbb{N}^* اليكن \mathbf{a} ن 3

 $a^{385} \equiv a \quad [13]$ يين ان (1

 $a^{385} \equiv a$ [221]: نا جنتنج ان (ب

2008 = 19 [221]. نحقق من (1 (4

ب) استنتج مما سبق باقي القسمة الإقليدية العدد 2008على 221

5) ليكن b مجموع ارقام العدد 2008³⁸⁵²⁰⁰⁹ في نظمة العد العشري

حدد باقى القسمة الإقليدية للعدد لا على 9

.°. '3

التعربة: C 3 Z+Z+1=0 01= leal 1 d will Z[X] = { a+ba / (a,b) & Z2} المان (مرة تبادلية . عرة كالمرة تبادلية . من أ نساء ع : (x ,+, [م] معلقة تبادلية وواحدية 0,5 4- تحسّر النطبيط عماليم : المتطبيط المتطبط المتطبيط المتطبط المتط المتطبط المتطبط المتطبط المتط المتطبط المتطبط المتطبط المتطبط المتطبط الم $a+ba+b^2-ab$ $f(x) = |x|^2$ if in -1 0,5 YXE ZZZZ ب س ان ع نشاكل من (ع [ه] عن (ع عن الله عن ال 0,5 د - لتك كا المجموعة العكو نت عناع [العلام التي تقبل مقلوبا کی ممان بانست لے "" ندر - إسستر 0,5