P, NP & NP-Complete

NP-Completeness

- So far we've seen a lot of good news!
 - Many of the problems we have seen could be solved quickly (i.e., in close to linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
 - Evidence that many important problems can not be solved quickly.
- NP-complete problems really come up all the time!
 - 0-1 Knapsack, Travelling Salesman, Bin Packing,
 Scheduling

NP-Completeness

- Some problems are intractable: as they grow large, we are unable to solve them in reasonable time
- What constitutes reasonable time? Standard working definition: polynomial time
 - On an input of size n the worst-case running time is $O(n^k)$ for some constant k
 - Polynomial time: O(n²), O(n³), O(1), O(n lg n)
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)

Why should we care?

- Knowing that they are hard lets you use other methods to solve them...
 - Use a heuristic: come up with a method for solving a reasonable fraction of the common cases.
 - Solve approximately: come up with a solution that you can prove that is close to right.
 - Use an exponential time solution: if you really have to solve the problem exactly and stop worrying about finding a better solution.

Decision problems

 Given an input and a question regarding a problem, determine if the answer is yes or no

Optimization problems

- Find a solution with the "best" value
- Optimization problems can be casted as decision problems that are easier to study

Shortest Path given G = (V,E) and w(u,v) edge weights

- Optimization: What is the minimum total weight of all paths between A and G?
- Decision: Does there exists a path between A and E with total weight at most 20?

Shortest Path given G = (V,E) and w(u,v) edge weights

- Optimization: What is the minimum total weight of all paths between A and G? 17
- Decision: Does there exists a path between A and E with total weight at most 20? YES

Problem: Knapsack (items, weights, benefits, W)

- Optimization: What is the maximum total benefit of all sets of items that can fit in a knapsack with capacity W.
- Decision: Does there exists a set of items having a total benefit
 of at least k that can fit in the knapsack with capacity W

Algorithmic vs Problem Complexity

- The algorithmic complexity of a computation is some measure of how difficult it is to perform the computation (i.e., specific to an algorithm)
- The complexity of a computational problem or task is the complexity of the algorithm with the lowest order of growth of complexity for solving that problem or performing that task.
 - e.g. the problem of searching an ordered list has at most lgn time complexity.
- Computational Complexity: deals with classifying problems by how hard they are.

Class of "P" Problems

- Class P consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
 - Worst-case running time is O(n^k), for some constant k
- Examples of polynomial time:
 - $O(n^2), O(n^3), O(1), O(n \lg n)$
 - Searching and Sorting

Tractable/Intractable Problems

- Problems in P are also called tractable
- Problems not in P can be or
 - intractable solved in reasonable time only for small inputs
 - unsolvable can not be solved at all
- Are non-polynomial algorithms always worst than polynomial algorithms?
 - $n^{1,000,000}$ is *technically* tractable, but really impossible
 - $n^{\log \log \log n}$ is *technically* intractable, but easy

An Unsolvable Problem

- Turing discovered in the 1930's that there are problems unsolvable by any algorithm.
- The most famous of them is the halting problem
 - Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "infinite loop?"
- This is an interesting topic but we will not be covering unsolvable problems in this class. To learn more you can take CS321

Examples of Intractable Decision Problems

- Hamiltonian Cycle (HAM-CYCLE). Given a directed graph G = (V,E), does there exist a simple cycle C that visits every vertex?
- CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?
- Travelling Salesman (TSP). Given a weighted graph G=(V,E)
 - Optimization Problem: Find a minimum weight Hamiltonian Cycle.
 - Decision Problem: Given a graph and an integer k, is there a Hamiltonian Cycle with a total weight at most k

Nondeterminism and NP Algorithms

Nondeterministic algorithm = two stage procedure:

1) Nondeterministic ("guessing") stage:

generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")

2) Deterministic ("verification") stage:

take the certificate and the instance to the problem and returns YES if the certificate represents a solution

NP algorithms (Nondeterministic polynomial) verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that could be solved by Nondetermistic Polynomial algorithms
 Or verifiable in polynomial time
- If we were given a "certificate" of a solution, we could verify/certify that the certificate is correct in time polynomial to the size of the input
- Warning: NP does not mean "non-polynomial"

Decision 0-1 Knapsack is in NP

Given a knapsack with capacity W = 20 is there a subset of items with total benefit at least \$25?

Easy to verify in poly-time that

 $S = \{ 1, 3, 4, 5 \}$ is a certificate solution.

Total weight = 2 + 4 + 5 + 9 = 20

Total benefit =

$$3 + 5 + 8 + 10 = 26 > 25$$

Item	Weight w _i	Benefit b _i
# 1	2	3
2	3	4
3	4	5
4	5	8
5	9	10

Hamiltonian Cycle is in NP

Given: a directed graph G = (V, E), determine a simple cycle that contains each vertex in V

Each vertex can only be visited once

Certificate:

– Sequence: (a, e, d, c, b)

Hamiltonian

3-SAT is in NP

Given a CNF formula Φ with three literals per clause, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

instance s

$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4})$$

certificate t

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 0$, $x_4 = 1$

3-SAT is in NP

Given a CNF formula Φ with three literals per clause, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

instance s

$$(\bar{1} \lor 1 \lor 0) \land (1 \lor \bar{1} \lor 0) \land (1 \lor 1 \lor 1) \land (\bar{1} \lor \bar{0} \lor \bar{1})$$
$$(1) \land (1) \land (1) \land (1)$$

P vs NP???

All problems that can be solved in polynomial time can be verified in polynomial time.

Any problem in P is also in NP: $P \subseteq NP$

P & NP-Complete Problems

- Shortest simple path
 - Given a graph G = (V, E) find a shortest path from a source to all other vertices
 - Polynomial solution: O(VE)
- Longest simple path
 - Given a graph G = (V, E) find a longest path from a source to all other vertices
 - NP-complete

P & NP-Complete Problems

Euler tour

- G = (V, E) a connected, directed graph find a cycle that traverses <u>each edge</u> of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)

Hamiltonian cycle

- G = (V, E) a connected, directed graph find a cycle
 that visits <u>each vertex</u> of G exactly once
- NP-complete

Does P = NP?

The big (and open question)

is whether $NP \subset P$ or P = NP

- i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- If yes: Efficient algorithms for KNAPSACK, TSP, FACTOR, SAT, ...
- If no: No efficient algorithms possible for KNAPSACK, TSP, SAT, ...
- Consensus opinion on P = NP? Probably no.

Most computer scientists believe that this is false but we do not have a proof ...

Why Prove NP-Completeness?

- Though nobody has proven that P ≠ NP, if you prove a problem NP-Complete, most people accept that it is probably intractable
- Therefore it can be important to prove that a problem is NP-Complete
 - Don't need to come up with an efficient algorithm
 - Can instead work on approximation algorithms

https://www.youtube.com/watch?v=YX40hbAHx3s

NP-Complete Problems

We will see that NP-Complete problems are the "hardest" problems in NP:

- If any one NP-Complete problem can be solved in polynomial time...
- ...then every NP-Complete problem can be solved in polynomial time...
- ...and in fact every problem in NP can be solved in polynomial time (which would show P = NP)
- Thus: solve Hamiltonian-cycle in $O(n^{100})$ time, you've proved that P = NP. Retire rich & famous.

NP-Completeness (informally)

 NP-complete problems are defined as the hardest problems in NP

 Most practical problems turn out to be either P or NP-complete.

NP-Complete

A problem *B* is in NP-complete if:

2. There is a polynomial-time reduction from every problem $A \in \mathbb{NP}$ to B.

NP-Complete Hard

A problem *B* is in NP-Hard if:

There is a polynomial-time reduction from every problem $A \in \mathbb{NP}$ to B.

Reductions

The crux of NP-Completeness is reducibility ≤_p

- Informally, a problem A can be reduced to another problem B if any instance of A can be "easily rephrased" as an instance of B, the solution to which provides a solution to the instance of A
 - What do you suppose "easily" means?
 - This rephrasing is called *transformation*
- Intuitively: If A reduces to B,
 - $A \leq_p B$
 - A is "no harder to solve" than B

Using Reductions

If A is *polynomial-time reducible* to B, we denote this $A \leq_{D} B$

Definition of NP-Complete:

- If A is NP-Complete, A ∈ NP and all problems X are reducible to A
- Formally: $X ≤_p A ∀ X ∈ NP$

If A ≤_D B and A is NP-Complete, then B is NP-Hard

If B∈ NP too then B is NP-Complete

NP-Completeness (formally)

- A problem B is NP-complete if:
 - (1) $B \in \mathbf{NP}$
 - (2) $X \leq_{D} B$ for all $X \in \mathbf{NP}$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NP-Complete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is no harder than problem B, (i.e., we write "A ≤_D B")

if we can solve A using the algorithm that solves B.

Idea: transform the inputs of A to inputs of B

Implications of Reduction

- If $A \leq_p B$ and $B \in P$, then $A \in P$
- if $A \leq_{D} B$ and $A \notin P$, then $B \notin P$

Proving Polynomial Time

- Use a polynomial time reduction algorithm to transform A into B
- 2. Run a known **polynomial time** algorithm for B
- 3. Use the answer for B as the answer for A

Reducibility - Example

- A: Given a set of Booleans, $(x_1, x_2, ..., x_n)$, is at least one TRUE?
- B: Given a set of integers, $(y_1, y_2, ..., y_n)$, is their sum positive?
- Transformation: $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n)$ where $y_i = 1$ if $x_i = TRUE$, $y_i = 0$ if $x_i = FALSE$

Reductions

Proving NP-Completeness

What steps do we have to take to prove a problem B is NP-Complete?

- 1. Pick a known NP-Complete problem A. Reduce A to B
 - Describe a polynomial time transformation/reduction that maps instances of A to instances of B, s.t. "yes" for B = "yes" for A
 - Prove the transformation works
 - Prove it runs in polynomial time

By proving step 1 you have proved that problem B is NP-Hard

- 2. Prove $B \in NP$
 - Show that a solution to B can be verified in polynomial time

If you can prove steps 1 and 2 you have proven that B is NP-complete.

NP-Completeness

All problems below are NP-complete and polynomial reduce to one another!

Theorem (Cook-Levin): SAT is NP-complete Corollary: SAT ∈ P if and only if P = NP

Satisfiability Problem (SAT)

Satisfiability problem: given a logical expression ₱, find an assignment of values (F, T) to variables x_i that causes ₱ to evaluate to T

$$\Phi = X_1 \vee \neg X_2 \wedge X_3 \vee \neg X_4$$

 SAT was the first problem shown to be NPcomplete!

Any thing in $NP \leq_P SAT$

You can think of -> as "easier than". SAT is the hardest problem in NP.

Circuit satisfiability is in NP

Circuit satisfiability

CNF Satisfiability

- CNF is a special case of SAT
- Φ is in "Conjuctive Normal Form" (CNF)
 - "AND" of expressions (i.e., clauses)
 - Each clause contains only "OR"s of the variables and their complements

$$\Phi = (\mathsf{x}_1 \vee \mathsf{x}_2) \wedge (\mathsf{x}_1 \vee \neg \mathsf{x}_2) \wedge (\neg \mathsf{x}_1 \vee \neg \mathsf{x}_2)$$

3-SAT Satisfiability (3-CNF)

A subcase of CNF problem:

Contains three clauses

$$\Phi = (\mathbf{x}_1 \vee \neg \mathbf{x}_1 \vee \neg \mathbf{x}_2) \wedge (\mathbf{x}_3 \vee \mathbf{x}_2 \vee \mathbf{x}_4) \wedge (\neg \mathbf{x}_1 \vee \neg \mathbf{x}_3 \vee \neg \mathbf{x}_4)$$

3-CNF (3-SAT) is NP-Complete

What we want to prove?

How to prove?

We can convert (in polynomial time) a given SAT instance S into a 3-SAT instance S' such that

- If S is satisfiable, then S' is satisfiable.
- If S' is satisfiable, then S is satisfiable.

Key Observation

 $X_1 \lor X_2 \lor X_3 \lor X_4 \lor X_5$ is satisfiable

if and only if

$$(x_1 \lor x_2 \lor z_1) \land (\neg z_1 \lor x_3 \lor z_2) \land (\neg z_2 \lor x_4 \lor z_3) \land (\neg z_3 \lor x_4 \lor x_5)$$
 is satisfiable.

Polynomial Time Reduction

Clause in SAT

 X_1

$$X_1 \vee \neg X_2$$

$$X_1 \vee X_2 \vee X_3$$

$$X_1 \vee X_2 \vee X_3 \vee X_4$$

$$X_1 \vee X_2 \vee X_3 \vee X_4 \vee X_5$$

Clauses in 3SAT

$$X_1 \vee X_1 \vee X_1$$

$$X_1 \lor X_1 \lor \neg X_2$$

$$X_1 \vee X_2 \vee X_3$$

$$(x_1 \lor x_2 \lor z_1) \land (\neg z_1 \lor x_3 \lor x_4)$$

$$(\mathbf{X}_1 \vee \mathbf{X}_2 \vee \mathbf{Z}_1) \wedge (\neg \mathbf{Z}_1 \vee \mathbf{X}_3 \vee \mathbf{Z}_2) \wedge (\neg \mathbf{Z}_2 \vee \mathbf{X}_4 \vee \mathbf{Z}_3) \wedge (\neg \mathbf{Z}_3 \vee \mathbf{X}_4 \vee \mathbf{X}_5)$$

Clique

Clique Problem:

- Undirected graph G = (V, E)
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
- Size of a clique: number of vertices it contains

Optimization problem:

Find a clique of maximum size

Decision problem:

– Does G have a clique of size k?

Clique(G, 4) = NO

Clique Verifier

Given: an undirected graph G = (V, E)

- Problem: Does G have a clique of size k?
- Certificate:
 - A set of k nodes

 Verify that for all pairs of vertices in this set there exists an edge in E

Example: Clique

- CLIQUE = { <G,k> | G is a graph with a clique of size k }
- A clique is a subset of vertices that are all connected
- Why is CLIQUE in NP?

3-SAT ≤_p Clique

Idea:

Construct a graph G such that ₱ is satisfiable only if

G has a clique of size k

Reduce 3-SAT to Clique

- Pick an instance of 3-SAT, Φ, and transform into <G,k> an instance of Clique
- If Φ has m clauses, we create a graph with m clusters of 3 nodes each and set k = m.
- Each cluster corresponds to a clause.
- Each node in a cluster is labeled with a literal from the clause.
- We do not connect any nodes in the same cluster
- We connect nodes in different clusters whenever they are not contradictory
- Any k-clique in this graph corresponds to a satisfying assignment

Example

 $(x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3)$

$$C_1 = x_1 \vee \neg x_2 \vee \neg x_3$$

$$C_2 = \neg x_1 \lor x_2 \lor x_3$$

$$C_3 = x_1 \lor x_2 \lor x_3$$

 $(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)$

Hamiltonian Cycle is in NP-Complete

- Given a graph G, does G contain a Hamiltonian cycle?
- HAM-CYCLE = { G | G is a graph with a Hamitonian Cycle}
- A Hamiltonian cycle is a cycle passing every vertex exactly once.

Hamiltonian Cycle is in NP-Complete

- Why is Ham-Cycle in NP?
 - Given a cycle it can be verified in polynomial time.

- Ham-Cycle is in NP-Complete
 - Proof in Jeff Erickson's Algorithms Section 12.11
 - Vertex Cover ≤_P Ham-Cycle
 - 3-SAT ≤_P Ham-Cycle

Traveling Salesman Problem

- A traveling salesman needs to visit n cities
- Is there a route of at most d length? (decision problem)
 - Optimization-version asks to find a shortest cycle visiting all vertices once in a weighted graph

Traveling Salesman Problem

- In the traveling salesman problem, a salesman must visit
 n cities.
- Salesman wishes to make a tour visiting each city exactly once and finishing at the city he started.
- There is an integer cost c(i,j) to travel from city i to city j.
- For example, the salesman must travel to a, b, c, d locations.
- Travel costs are given

Optimization TSP

- The salesman wishes to make the tour whose total cost is minimum.
- The total cost is sum of the individual costs along the edges of the tour
- In the example the minimum cost tour is a-c-b-d
- The cost of this tour is 1+2+1+3=7

Decision TSP

The formal language:

TSP = { $\langle G,c,k \rangle$: G=(V,E) is a complete graph, c is a function from $(V \times V) \rightarrow N$, $k \in \mathbb{N}$ and G has a traveling salesman tour with cost at most k}

$$G = ({a, b, c, d}, {(a,b),..(c,d)}) c(a,b) = 4, c(a,c) = 1,...c(c,d) = 5$$

Suppose k = 15

Can we verify the solution certificate

$$(a,d,c,b)$$
 - yes
 $c(a,d) + c(d,c) + c(c,b) + c(b,a) =$
 $3 + 5 + 2 + 4 = 14 < 15$

NP-Completeness Proof Method

To show that B is NP-Complete:

1. Show that B is in NP.

Give a polynomial time algorithm for verifying a solution.

2. Show that $A \leq_P B$ for some $A \in NP$ -Complete

Pick an instance, A, of your favorite NP-Complete problem

Show a polynomial algorithm to transform A into an instance of B

Step 2 alone shows that a problem is NP-Hard

Prove TSP-Decision is NP-complete

1) Show that TSP belongs to NP.

Given an instance of the problem the certificate is the sequence of *n* vertices (cities) in the tour.

The certifier (verification algorithm) checks that

- this sequence contains each vertex exactly once,
- sums up the edge costs and checks whether the sum is at most k.

This process can be done in polynomial time.

Therefore TSP-Decision is in NP

Prove TSP-Decision is NP-complete

2) Prove that TSP is NP-hard. We can show that Ham-cycle ≤ _D TSP.

where Ham-cycle ∈ NP-Complete

Let G=(V,E) be an instance of Ham-cycle. We construct an instance of TSP as follows

- Form the complete graph G' = (V, E') where $E' = \{ (i,j) : i, j ∈ V \text{ and } i \neq j \}$ and
- Define the cost function c by $c(i,j) = \{ 0 \text{ if } (i,j) \in E, 1 \text{ if } (i,j) \notin E \}$

The instance of TSP is then $\langle G', c, 0 \rangle$ which is easily formed in polynomial time.

By proving 2) TSP-Decision is NP-Hard. Since 1) held too then we have shown that TSP-Decision is NP-Complete

We now show that graph **G** has a Hamiltonian cycle if and only if graph **G'** has a tour of cost at most 0.

Suppose the graph **G** has a Hamiltonian cycle **h**.

Each edge in *h* belongs to *E* and thus has a cost 0 in *G'* Thus *h* is a tour in *G'* with cost 0

Conversely suppose that graph **G'** has a tour **h'** of cost at most 0.

Since the cost of edges in **E'** are 0 and 1, the cost of tour **h'** is exactly 0 and each edge on the tour must have cost 0.

Thus *h'* contains only edges in *E*.

Hence we conclude that h' is a Hamiltonian cycle in graph G.

By proving 2) TSP-Decision is NP-Hard. Since 1) held too then we have shown that TSP-Decision is NP-Complete

NP-Complete and polynomial reduce to one another!

SUBSET-SUM

Instance: A set of numbers denoted S and a target number t.

Problem: To decide if there exists a subset S' \subseteq S, s.t $\Sigma_{y \in S'}y = t$.

Examples of SUBSET-SUM

 $\langle \{2,4,8\},10 \rangle \in \text{SUBSET-SUM...}$ because 2+8=10 $\langle \{2,4,8\},11 \rangle \notin \text{SUBSET-SUM}$... because 11 cannot be made out of $\{2,4,8\}$

$$\begin{aligned} \text{SUBSET-SUM} = \{ \left\langle S, t \right\rangle | \, S = \left\{ x_1, ..., x_k \right\} \\ \text{there is a subset } R \subseteq S \\ \text{such that } \sum_{y \in R} y \ = \ t \} \end{aligned}$$

SUBSET-SUM is NP-Complete

Proof:

1. Show SUBSET-SUM is in NP.

2. Show 3SAT≤_pSUBSET-SUM.

SUBSET-SUM is in NP

Given a set S and target t:

- Verify that S'⊆S is a solution
- The answer is YES iff $\Sigma_{y \in S}$, y=t.

The length of the certificate: O(n) (n=|S|)

Time complexity: Is the time to add the numbers in S' which is O(n).

Reducing 3SAT to SubSet Sum

Proof idea:

- Choosing the subset numbers from the set S corresponds to choosing the assignments of the variables in the 3SAT formula.
- The different digits of the sum correspond to the different clauses of the formula.
- If the target t is reached, a valid and satisfying assignment is found.

Subset Sum

3CNF formula:

$$(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4)$$

clause: 1 2 3 4

1	0	0	0	1	0	0	1
1	0	0	0	0	1	0	0
	1	0	0	1	1	0	0
	1	0	0	0	0	1	0
		1	0	1	0	0	0
		1	0	0	0	1	1
			1	0	1	0	0
			1	0	0	0	1
		_		1	0	0	0
				1	0	0	0

Make the number table and the 'target sum' t

dummies

Reducing 3SAT to SubSet Sum

- Let φ∈3CNF with k clauses and ℓ variables x₁,...,x_ℓ.
- Create a Subset-Sum instance <S_φ,t> by:
 2ℓ+2k elements of

$$S_{\varphi} = \{y_1, z_1, \dots, y_{\ell}, z_{\ell}, g_1, h_1, \dots, g_k, h_k\}$$

- y_j indicates positive x_j literals in clauses
- z_i indicates negated x_i literals in clauses
- g_i and h_i are dummies
- and

Subset Sum

Note 1: The "1111" in the target forces a proper assignment of the x_i variables.

Note 2: The target "3333" is only possible if each clause is satisfied. (The dummies can add maximally 2 extra.)

$(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land$
$\left (\overline{x}_2 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_3 \vee \overline{x}_4) \right $

+× ₁	
$-x_1$	
+x ₂	
-x ₂	
+x ₃	
-x ₃	
+x ₄	
-x ₄	

			, 1	-			
1	0	0	0	1	0	0	1
1	0	0	0	0	1	0	0
	1	0	0	1	1	0	0
	1	0	0	0	0	1	0
		1	0	1	0	0	0
		1	0	0	0	1	1
			1	0	1	0	0
			1	0	0	0	1
				1	0	0	0
				1	0	0	0
					1	0	0
					1	0	0
						1	0
						1	0
							1
							1
1	1	1	1	3	3	3	3

 $(\mathbf{X}_{1} \vee \mathbf{X}_{2} \vee \mathbf{X}_{3}) \wedge (\overline{\mathbf{X}}_{1} \vee \mathbf{X}_{2} \vee \mathbf{X}_{4}) \wedge (\overline{\mathbf{X}}_{2} \vee \overline{\mathbf{X}}_{2} \vee \overline{\mathbf{X}}_{3}) \wedge (\mathbf{X}_{1} \vee \overline{\mathbf{X}}_{3} \vee \overline{\mathbf{X}}_{4})$

Subset Sum

1	0	0	0	1	0	0	1	
	1	0	0	0	0	1	0	
		1	0	0	0	1	1	
			1	0	1	0	0	
				1	0	0	0	
				1	0	0	0	
					1	0	0	
					1	0	0	
						1	0	
							1	
1	1	1	1	3	3	3	3	
	_							

	+× ₁
	-x ₁
	+x ₂
•	$-X_2$
	+×3
	-x ₃
	-x ₃ +x ₄
	$-x_4$
+	

$X_1, \overline{X}_2, \overline{X}_3$	$\bar{\zeta}_3, X_4$ is	s a satisfyin	g
	as	ssignment	

1	1	1	1	3	3	3	3
							1
							1
						1	0
						1	0
					1	0	0
					1	0	0
				1	0	0	0
				1	0	0	0
			1	0	0	0	1
			1	0	1	0	0
		1	0	0	0	1	1
		1	0	1	0	0	0
	1	0	0	0	0	1	0
	1	0	0	1	1	0	0
1	0	0	0	0	1	0	0
1	0	0	0	1	0	0	1

 $(x_1 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land (\overline{x}_2 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_1 \lor \overline{x}_3 \lor \overline{x}_4)$

Subset Sum

1	0	0	0	0	1	0	0
	1	0	0	0	0	1	0
		1	0	0	0	1	1
			1	0	1	0	0
				1	0	0	0
				1	0	0	0
					?	^ .	<u>٠</u>
1	1	1	1	2	?	?	?

	$-x_1$
•	+X ₂
	-x ₂
	+X ₃
	-x ₃
	+×4
•	-x ₄
†	
*	

+x₁

$\overline{X}_1, \overline{X}_2, \overline{X}_3, X_4$	is not a
satisfying a	ssignment

1	1	1	1	3	3	3	3
							1
						1	0
						1	0
					1	0	0
					1	0	0
				1	0	0	0
				1	0	0	0
			1	0	0	0	1
			1	0	1	0	0
		1	0	0	0	1	1
		1	0	1	0	0	0
	1	0	0	0	0	1	0
	1	0	0	1	1	0	0
1	0	0	0	0	1	0	0
1	0	0	0	1	0	0	1

Proof 3SAT ≤_P Subset Sum

- For every 3CNF φ, take target t=1...13...3
 and the corresponding set S_φ.
- If $\phi \in 3SAT$, then the satisfying assignment defines a subset that reaches the target.

 Also, the target can only be obtained via a set that gives a satisfying assignment for φ.

$$\phi \in 3SAT$$
 if and only if $\langle S_{\phi}, 1...13...3 \rangle \in SubsetSum$

0-1 KNAPSACK

Prove the following knapsack problem to be NP complete

Decision version

n objects, each with a weight $w_i > 0$ and a benefit $b_i > 0$ capacity of knapsack : W. Can you fill the knapsack so that the sum of benefits is at least K?

For all item i in the solution set S.

$$\sum b_i \ge K$$
 and $\sum w_i \le W$

KNAPSACK is NP-Complete

- 1) Show NP Verify a solution in polynomial time
- 2) Show NP-Hard. Reduce SUBSET-SUM to KNAPSACK

KNAPSACK is NP-Complete

- 1) Show NP Verify a solution in polynomial time Given a certificate solution $X = \{x_1, ..., x_n\}$ can we verify in poly time.
- Sum the weights of x∈X must be ≤ W. Time O(n)
- Sum the benefits of x∈X must be ≥ K. Time O(n)

Reduction

 Show NP-Hard. SUBSET-SUM ≤_P KNAPSACK. How can you use Knapsack to solve Subset-Sum

2) Show NP-Hard. SUBSET-SUM \leq_P KNAPSACK. How can you use Knapsack to solve Subset-Sum

Reduction from SUBSET-SUM to Decision-KNAPSACK: SUBSET- $SUM = { <math><S, t> | S = \{y_1, ..., y_k\} \text{ and for some } Subset T = \{y_i, ..., y_l\} \subseteq S, \Sigma y_i = t \}$

Set
$$b_i = y_i$$
 and $w_i = y_i$

Set
$$W = t$$
 and $K = t$

Then for any subset $T \subseteq S$

$$\sum_{i \in T} y_i = t \quad \text{if and only if} \quad \sum_{i \in T} b_i = \sum_{i \in T} y_i \ge t \quad \text{and} \quad \sum_{i \in T} w_i = \sum_{i \in T} y_i \le t$$

Example: Reduce SUBSET-SUM to KNAPSACK.

SUBSET-SUM = < {12, 6, 8, 13, 20}, 26 >

Set
$$b_i = w_i = x_i$$

Set
$$W = k = 26$$

Knapsack has capacity 26. Is there a subset of items that will fit in the knapsack and have a total benefit of at least 26?

$\sum b_i =$	$= \sum x_i \ge 26$	$\sum w_i$	$= \sum x_i \le 26$
$i \in T$	$i \in T$	$i \in T$	$i \in T$

item	weight	benefit
1	12	12
2	6	6
3	8	8
4	13	13
5	20	20

Yes $T = \{ \text{ item 2}, \text{ item 5} \}$. This corresponds to a subset sum $T = \{6, 20\}$ sum 26

SUBSET-SUM to PARTITION

- SET PARTITION = $\{x_1, x_2, ..., x_k \mid \text{ we can split} \}$ the integers into two sets which sum to half $\}$
- SUBSET-SUM = { <x₁,x₂,...x_k,t> | there exists a subset which sums to t }
- If I can solve SET- PARTITION, how can I use that to solve an instance of SUBSET-SUM?

Prove that SET-PARTITION is in NP-complete

SET-PARTITION. Given a set S can we partition S into two sets X and \overline{X} = S-X (both sets are nonempty) such that the sum of the elements in X equals the sum of the elements in S-X. That is

$$\sum_{y \in X} y = \sum_{y \in X - S} y$$

To show that SET-PARTITION is NP-Complete, we need to show:

- (1) That SET-PARTITION ∈ NP. Given a partition of set S we can verify in polynomial time that the two subsets X and S-X have equal sums by adding the values in each set. This clearly takes time O(n) where n is the number of elements in S.
- (2) That some NP-Complete problem A can be reduced to SET-PARTITION in polynomial time and the original problem A has a yes solution if and only if SET-PARTITION has a yes solution.

We will select A to be SUBSET-SUM which has been proven to be in NP-Complete. SUBSET-SUM is defined as follows: Given a set S of integers and a target number t, find a subset $Y \subseteq S$ such that the members of Y add up to exactly t.

We will need to show a polynomial time reduction from SUBSET-SUM to SET-PARTITION, SUBSET-SUM \leq_{v} SET-PARTITION

Let s be the sum of numbers in S. Feed S' = S \cup {s - 2t} into SET-PARTITION and answer YES if and only if SET-PARTITION answers YES.

This reduction takes polynomial time since all we did was add a single element, s – 2t to S. To calculate s-2t we must computer the sum of all numbers in S which takes O(n) time.

We must show that $\langle S, t \rangle \in SUBSET-SUM$ iff $\langle S' \rangle \in SET-PARTITION$. In other words There exists a subset of S that sums to t if and only if there exists a set partition of S' with equal sums.

1) If Y is a solution to <S,t> SUBSET-SUM then S' has a SET-PARTITION.

If there exists a subset Y of numbers in S that sum to t then the remaining numbers in S-Y sum to s - t. Now S' = (S-Y) \cup Y \cup {s-2t} such that we can partition S' into two sets (S-Y) and Y \cup {s-2t} with each partition summing to s - t. Therefore there is a solution to SET-PARTITION.

2) If there exists a partition of S' then there exists a solution to <S, t> ∈ SUBSET-SUM.

Recall sum(S') = 2(s-t) and S' = $S \cup \{s-2t\}$.

If there exists a partition of S' into two sets X and S'-X such that the sum over each set is s-t then one of these sets say X must contain the number s-2t. By removing it, we get a set $X' = X - \{s-2t\}$ with sum(X') = (s-t) - (s-2t) = t, and since $S' = S \cup \{s-2t\}$ all of the elements in X' are in S. Therefore there exists a subset X' of S that sums to t.

Since, SET-PARTITION \in NP and SUBSET-SUM \leq_p SET-PARTITION is in NP-Complete.

Recall 3-SAT

A special of CNF problem: Each clause contains three boolean literals

$$\Phi = (\mathsf{x}_1 \vee \neg \mathsf{x}_1 \vee \neg \mathsf{x}_2) \wedge (\mathsf{x}_3 \vee \mathsf{x}_2 \vee \mathsf{x}_4) \wedge (\neg \mathsf{x}_1 \vee \neg \mathsf{x}_3 \vee \neg \mathsf{x}_4)$$

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT ≤_p 3-SAT

Is 4-SAT NP-Complete?

Instance: A collection of clause *C* where each clause contains exactly *4* literals, Boolean literals x.

Question: Is there a truth assignment to *x* so that each clause is satisfied?

Example
$$\Phi = (x_1 \lor \neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_3 \lor x_2 \lor x_4)$$

NP-Completeness Proof Method

To show that 4-SAT is NP-Complete:

1. Show that 4-SAT is in NP.

Give a polynomial time algorithm for verifying a solution.

2. Show that $3-SAT \leq_P 4-SAT$

Give a polynomial algorithm F to transform 3-SAT into an instance of 4-SAT such that:

- For any instance X of 3-SAT if X is True then F(X) is true for 4-SAT and
- For any instance F(Y) of 4-SAT if F(Y) is True then Y is true for 3-SAT

Step 2 alone shows that a problem is NP-Hard

1. Show that 4-SAT is in NP.

Give a polynomial time algorithm for verifying a 4-SAT solution. This algorithm takes a 4-SAT instance and proposed truth assignments as input and evaluates the 4-SAT instance. If the 4-SAT instance evaluates to true the algorithm outputs yes; otherwise the algorithm outputs no. Thus runs in polynomial time.

$$\Phi = (x_1 \lor \neg x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_3 \lor x_2 \lor x_4)$$
 Candidate solution $x_1 = 1$, $x_2 = 1$, $x_3 = 1$, $x_4 = 1$ yes

2. Show that $3-SAT \leq_P 4-SAT$

Give a polynomial algorithm F to transform 3-SAT into an instance of 4-SAT such that:

- For any instance X of 3-SAT if X is True then F(X) is true for 4-SAT and
- For any instance F(Y) of 4-SAT if F(Y) is True then Y is true for 3-SAT

2. Show that 3-SAT ≤_P 4-SAT

Give a polynomial algorithm F to transform 3-SAT into an instance of 4-SAT such that:

- For any instance X of 3-SAT if X is True then F(X) is true for 4-SAT and
- For any instance F(Y) of 4-SAT if F(Y) is True then Y is true for 3-SAT

$$X = \left(\overline{x_1} \lor x_2 \lor x_3\right) \land \left(\overline{x_1} \lor \overline{x_2} \lor x_3\right)$$

$$Y = (\overline{x_1} \lor x_2 \lor x_3 \lor h) \land (x_1 \lor \overline{x_2} \lor x_3 \lor h)???$$

2. Show that 3-SAT ≤_P 4-SAT

Give a polynomial algorithm F to transform 3-SAT into an instance of 4-SAT such that:

- For any instance X of 3-SAT if X is True then F(X) is true for 4-SAT and
- For any instance F(Y) of 4-SAT if F(Y) is True then Y is true for 3-SAT

$$X = \left(\overline{x_2} \vee \overline{x_2} \vee \overline{x_2}\right) \wedge \left(x_2 \vee x_2 \vee x_2\right)$$

$$Y = \left(\overline{x_2} \vee \overline{x_2} \vee \overline{x_2} \vee h\right) \wedge (x_2 \vee x_2 \vee x_2 \vee h)???$$

2. Show that $3-SAT \leq_P 4-SAT$

$$X = \left(\overline{x_2} \vee \overline{x_2} \vee \overline{x_2}\right) \wedge \left(x_2 \vee x_2 \vee x_2\right)$$

$$Y = (\overline{x_2} \vee \overline{x_2} \vee \overline{x_2} \vee h) \wedge (x_2 \vee x_2 \vee x_2 \vee h) \wedge (x_2 \vee x_2 \vee x_2 \vee \overline{h}) \wedge (\overline{x_2} \vee \overline{x_2} \vee \overline{x_2} \vee \overline{h})$$

To prove that 4-SAT is NP-hard, we reduce 3-SAT to 4-SAT as follows. Let ϕ denote an instance of 3-SAT. We convert ϕ to a 4-SAT instance ϕ' by turning each clause $(x \lor y \lor z)$ in ϕ to $(x \lor y \lor z \lor h) \land (x \lor y \lor z \lor \neg h)$, where h is a new variable. Clearly this is polynomial-time doable.

- \Rightarrow If a given clause $(x \lor y \lor z)$ is satisfied by a truth assignment, then $(x \lor y \lor z \lor h) \land (x \lor y \lor z \lor \neg h)$ is satisfied by the same truth assignment with h arbitrarily set. Thus if ϕ is satisfiable, ϕ' is satisfiable.
- \Leftarrow Suppose ϕ' is satisfied by a truth assignment T. Then $(x \lor y \lor z \lor h) \land (x \lor y \lor z \lor \neg h)$ must be true under T. As h and $\neg h$ assume different truth values, $x \lor y \lor z$ must be true under T as well. Thus ϕ is satisfiable.

NP-Completeness All problems below are NP-complete and polynomial reduce to one another!

The COURSE-TIME assignment problem is as follows.

- Input: A set of m students S, a set of n classes C, a positive integer K and, for each student x ∈ S, a list L of courses that student x wants to take.
- Question: Is it possible to schedule courses into only K time slots such that each student to take all of his or her desired courses, without any time conflicts?

Prove that the COURSE-TIME assignment problem is NP-complete. (**Hint:** Use that fact that K-COLOR is in NP-Complete.)

- Show that COURSE-TIME is in NP.
 Give a polynomial time algorithm for verifying a solution.
- Show that K-COLOR ≤_P COURSE-TIME
 Step 2 alone shows that a problem is NP-Hard

1. Show that COURSE-TIME is in NP.

Give a polynomial time algorithm for verifying a solution.

A certificate is an assignment of courses to time slots. To check the certificate, check that each student's list of courses has no time conflicts, and that only the K number of time slots have been used.

Number of students = m

Number of courses $n = \max \text{ size of student list } L$

Time to check conflicts O(m*n)

Time to check K time slots = O(n)

2. Show that K-COLOR ≤_P COURSE-TIME

The K-COLOR problem is as follows.

- Input: An undirected graph G and a positive integer K.
- Question: Is it possible to color the vertices of G using no more than K colors (coloring each vertex just one color) so that no two adjacent vertices have the same color?

K-COLOR ≤_P COURSE-TIME

The K-COLOR problem reduces to the course assignment problem via reduction defined as follows. Given graph G and positive integer K, produce a course assignment problem whose courses are the vertices of G, and with K available time slots. Include, in the problem, a student for each edge of G. The student associated with edge (u,v) wants to take courses u and v, and nothing more.

Instance of 3-COLOR

Instance of COURSE-TIME

Students S = { ab, bc, bd, cd } Class lists L student

$$ab = \{a, b\}$$

$$bc = \{b, c\}$$

$$bd = \{b, d\}$$

$$cd = \{c, d\}$$

Courses = $\{a, b, c, d\}$

$$K = 3$$
 time slots

K-COLOR ≤_P COURSE-TIME

Instance of 3-COLOR

Instance of COURSE-TIME

```
Students S = { ab, bc, bd, cd }

Class lists L student

ab = \{a, b\}
bc = \{b, c\}
bd = \{b, d\}
cd = \{c, d\}

Courses = { a, b, c, d}

K = 3 time slots
```

```
a = 9am = red
b = 10am = blue
c = 11am = yellow
d = 9am = red
```

a. Any K-COLOR solution gives a solution to COURSE-TIME.

Suppose that G can be colored with K colors. Get a K-coloring of G. Assign times slots to the courses by following the coloring. If vertex v is colored by color m, then use time slot m for course v. Since the coloring does not color any two adjacent vertices the same color, there can be no time conflicts.

b. Any COURSE-TIME solution gives a solution to K-COLOR.

Suppose that the courses can be assigned time slots so that there are no conflicts. Then assign colors to *G* in the same way, using the *m*-th color for vertex *v* if course *v* received the *m*-th time slot. Since there is a student for each edge, and none of the students have time slot conflicts, this coloring must avoid coloring two adjacent vertices the same color.

Remark. Be sure that your reduction goes the right direction. You need to show how to solve the graph coloring problem, assuming that you already have a solution to the course assignment problem, not the other way around.

Bin Packing—Dec. is NP-complete

Bin Packing problem: Given n items of sizes a_1 , a_2 ,..., a_n (0 < $a_i \le 1$), pack these items in at most k bins of size 1.

- 1. Bin packing in in NP
 - To verify a solution
 - Add the weights of the items in each bin.
 - Each bin must contain < 1unit.
 - Check that each item is in a bin
 - There are at most k bins used.
 - This can be done in O(n).
- 2. SET-PARTITION reduces to Bin Packing

Bin Packing—Dec. is NP-complete

<u>SET-PARTITION</u>: Given a set of numbers $X = \{x_1, x_2, ..., x_k\}$. Is there a subset of X, B, such that the sum of the elements in B is equal to the sum of the elements in S-B.

Bin Packing: Given n items of sizes a_1 , a_2 ,..., a_n (0 < $a_i \le 1$), pack these items in at most k bins of size 1.

2. SET-PARTITION ≤_p Bin Packing

Let sum = $\sum_{i=1}^k x_i$. Define S = $\{s_1, s_2, \dots s_k\}$ where $s_i = \frac{2x_i}{sum}$ for i = 1, ..k. Then if $\{s_1, s_2, \dots s_k\}$ can be packed into 2 bins, X can be partitioned into 2 sets.

Thus Bin Packing is NP-Complete