

Eexam

Place student sticker here

Note:

- During the attendance check a sticker containing a unique code will be put on this exam.
- · This code contains a unique number that associates this exam with your registration number.
- This number is printed both next to the code and to the signature field in the attendance check list.

Tensor Networks

Exam: IN2388 / Final Exam Date: Monday 2nd August, 2021

Examiner: Christian Mendl **Time:** 11:30 – 13:00

Working instructions

- This exam consists of 10 pages with a total of 3 problems.
 Please make sure now that you received a complete copy of the exam.
- The total amount of achievable credits in this exam is 60 credits.
- · Detaching pages from the exam is prohibited.
- · Allowed resources: open book
- Subproblems marked by * can be solved without results of previous subproblems.
- Answers are only accepted if the solution approach is documented. Give a reason for each answer unless explicitly stated otherwise in the respective subproblem.
- Do not write with red or green colors nor use pencils.

Problem 1 (20 credits)

0	
1	
2	
3	
4	\vdash

a) Represent the following contraction operation as graphical tensor diagram, labeling each tensor and tensor leg:

$$e_{pq} = \sum_{i,j,k,\ell} a_{\ell ik} b_{kjq} c_{j\ell p} d_i.$$

b)* We consider the following to-be contracted tensor network:

Find an optimal contraction order that minimizes contraction complexity, i.e., the overall computational cost, assuming that the dimensions of the tensor legs obey

$$\dim(p) = \dim(q) =: \ell \ll \dim(j) = \dim(k) =: m \ll \dim(i) =: n,$$

and that at each contraction step, two tensors are contracted together. (An optimality proof is not required here.)

c) What is the asymptotic computational cost (in \mathcal{O} -notation) of the contractions you found in (b)? Assume a literal implementation of contractions based on the summation formulation.

d)* We define T as the following tree tensor network:

Draw the tensor diagram for evaluating $\langle T, T \rangle$.

e) In the context of part (d), we consider a local SVD-splitting operation performed on a node C of the tree (parent node called P), which updates both the child and parent node:

This local operation is applied to each node in the tree (except the root) given a particular ordering. We distinguish between two realizations:

- (i) The operation is first performed on the A tensors in the middle layer before proceeding to the B tensors.
- (ii) The operation is first performed on the *B* tensors in the bottom layer before proceeding to the *A* tensors.

We denote the resulting tree tensor network by T'. For each of the two cases, simply the tensor diagram for evaluating $\langle T', T' \rangle$ as far as possible. Also provide a short explanation of your simplifications.

Problem 2 (20 credits)

We consider the following Hamiltonian on a one-dimensional lattice with L sites and open boundary conditions, where J is a real parameter:

$$H = -J \sum_{j=2}^{L-1} X_{j-1} Y_j Z_{j+1}.$$

What is the matri							
For a given index Pauli matrices X	<i>x j</i> ∈ {2, , L − 1 , Y, Z.	}, represent <i>X</i>	Y _{j-1} Y _j Z _{j+1} in	terms of Kron	ecker product:	s of identity n	natrices and
Construct a finite	state sutemateur	and correction	nding MPO	topooro for rom	erocopting U.o.	a matriy arad	uet energter
Construct a finite should separate dimensions of th	ly specify the MP	O tensors A ^j	for $j = 2, \dots, j$	L – 1 and the	boundary tens	s mainx prod sors A^1 , A^L . I	Also provide

0	Ц
1	
2	Ц
3	
4	

d)* Specify an operator of the form $P_k = A_{k-1}B_kC_{k+1}$ with each A, B, C a Pauli matrix and $k \in \{2, ..., L-1\}$, such that P_k commutes with H. (A proof of the commuting property is not required.)

e)* Consider the partitioning of the Hamiltonian as $H = H_a + H_b$ with

$$H_a = -J \sum_{j=2, \text{mod}(j,4)=2}^{L-2} \left(X_{j-1} Y_j Z_{j+1} + X_j Y_{j+1} Z_{j+2} \right) \quad \text{and} \quad H_b = -J \sum_{j=4, \text{mod}(j,4)=0}^{L-2} \left(X_{j-1} Y_j Z_{j+1} + X_j Y_{j+1} Z_{j+2} \right).$$

Is it possible to represent the matrix exponentials e^{-iH_at} or e^{-iH_bt} (with $t \in \mathbb{R}$) exactly in quantum circuit form, assuming that you can use arbitrary one-, two- and three-qubit gates? Briefly justify your answer.

Problem 3 (20 credits)

We define a linear map $\mathcal{E}:\mathbb{C}^{n\times n}\to\mathbb{C}^{n\times n}$ $(n\in\mathbb{N})$ as

$$\mathcal{E}(\rho) = \sum_{j=1}^{s} K_{j} \rho K_{j}^{\dagger}$$

with given matrices $K_j \in \mathbb{C}^{n \times n}$ satisfying $\sum_{j=1}^s K_j^\dagger K_j = I$.

a\	Show 1	that	۶	mane
a.		uiai	$^{\circ}$	IIIaps

- (i) Hermitian matrices to Hermitian matrices, and
- (ii) positive semi-definite matrices to positive semi-definite matrices.

	C
Н	1
Н	2
Н	3
Я	4

b)* For the following, we define two new tensors $\mathcal K$ and $\mathcal K'$ of degree 3 by $\mathcal K_{j,...} = \mathcal K_j$ and $\mathcal K'_{j,...} = \mathcal K_j^\dagger$ for all j=1,...,s. Draw the tensor network representing the application of $\mathcal E$ to ρ in terms of ρ , $\mathcal K$ and $\mathcal K'$, clearly indicating the dimension of each leg.

$$\mathcal{F}(\rho) = \sum_{i=1}^{s} L_i \rho L_i^{\dagger} \quad \text{with } L_i = \sum_{j=1}^{s} v_{ij} \, K_j \, \text{for } i = 1, \dots, s.$$

Show that $\mathcal E$ and $\mathcal F$ represent the same map.

d) \mathcal{K} interpreted as $(sn) \times n$ matrix is an isometry by definition; we can thus extend it to a unitary matrix $U \in \mathbb{C}^{(sn) \times (sn)}$ such that (with labels at the legs denoting dimensions, and $|0\rangle$ the first unit vector in \mathbb{C}^s):

Draw a tensor diagram that represents $\mathcal{E}(\rho)$ in terms of ρ , U, U^{\dagger} and $|0\rangle$.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	tion of part (d), express	(,· , · · 9		

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

