MATH 217 W24 - LINEAR ALGEBRA, Section 001 (Dr. Paul Kessenich) Homework Set Part B due Thursday, January 25 at 11:59pm Zhengyu James Pan (jzpan@umich.edu)

- 1. In parts (a) (d) below, determine whether the given function is injective, surjective, both, or neither. Justify your answers.
 - (a) the function $f:[0,4] \to [0,18]$ defined by $f(x) = x^2 + 2$;

Solution: Injective. If $f(x_1) = f(x_2)$, it follows that $x_1^2 = x_2^2$. Since the domain is positive, this also means $x_1 = x_2$, showing injectivity. There is no solution in the domain to f(x) = 0, so there exists a value in the codomain which is not in the image of f. Thus, the function is not surjective.

(b) the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 2x - 5;

Solution: Bijective. If $g(x_1) = g(x_2)$, $2x_1 - 5 = 2x_2 - 5$. Therefore, $x_1 = x_2$, showing injectivity. Let $y \in \mathbb{R}$, and $x = \frac{y+5}{2}$. Then $x \in \mathbb{R}$, and g(x) = y. Thus g is surjective.

(c) the function $h: \mathbb{R}^2 \to \mathbb{R}$ defined by $h(x,y) = 2x^2 + 5y^2$;

Solution: Neither. $10 = h(\sqrt{5}, 0) = h(0, \sqrt{2})$, so h is not injective. h(x, y) = -2 has no solutions in \mathbb{R}^2 since a square cannot be a negative number, therefore h is not surjective.

(d) the function $q: \mathbb{N} \to \mathbb{N}$ defined by $q(n) = \begin{cases} n, & \text{if n is odd} \\ n/2 & \text{if n is even.} \end{cases}$

Solution: Surjective. 1 = q(1) = q(2), so q is not injective. Let $m \in \mathbb{N}$, n = 2m. Then $n \in \mathbb{N}$, n is even, and q(n) = m. So q is surjective.

- 2. Determine whether each statement is true or false. If it is true, prove it. If it is false, prove this by giving a counterexample.
 - (a) For every function $f: X \to Y$ and all $A, B \subseteq X$, if $A \cap B = \emptyset$, then $f[A] \cap f[B] = \emptyset$.

Solution: False. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Assign $A = \mathbb{R}^+$, $B = \mathbb{R}^-$. Then $A \cap B = \emptyset$, but $f(1 \in A) = f(-1 \in B) = 1$. Therefore $f[A] \cap f[B] \neq \emptyset$.

(b) For every function $f: X \to Y$ and all $A, B \subseteq X$, if $f[A] \cap f[B] = \emptyset$, then $A \cap B = \emptyset$.

Solution: True. We prove the contrapositive. Take any $f: X \to Y$ and $A, B \subseteq X$ such that $A \cap B$. Then $\exists a \in X$ such that $a \in A \cap B$. Since $a \in A, f(a) \in f[A]$. Similarly, $a \in B$, so $f(a) \in f[B]$. As $f(a) \in f[A]$ and $f(a) \in f[B]$, $f(a) \in f[A] \cap f[B]$. This means that for every function $f: X \to Y$ and all $A, B \subseteq X$, if $A \cap B \neq \emptyset$, then $f[A] \cap f[B] \neq \emptyset$. Thus the contrapositive is true, so the original statement is true.

(c) For every function $f: X \to Y$ and all $A \subseteq X$, we have $f^{-1}[f[A]] = A$.

Solution: False. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Assign $A = \{1\}$. Then $f[A] = \{1\}$. However, f(1) = f(-1) = 1, so $f^{-1}[f[A]] = \{-1, 1\} \neq A$.

(d) For every function $f: X \to Y$ and all $A \subseteq X$, we have $f[X \setminus A] = Y \setminus f[A]$.

Solution: False. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Assign $A = \{1\}$. Then $f[A] = \{1\}$, but f(1) = f(-1) = 1. Therefore $f[A] \subseteq f[X \setminus A]$, and $f[X \setminus A] \neq Y \setminus f[A]$.

(e) For every bijective function $f: X \to Y$ and all $A, B \subseteq X$, we have $f[A \cap B] = f[A] \cap f[B]$.

Solution: True.

Let $x \in f[A \cap B]$. Then let $a = f^{-1}(x)$. We know $a \in A \cap B$ is unique due to bijectivity. Since $a \in A \cap B$, $a \in A \wedge a \in B$. Thus $f[A \cap B] \subseteq f[A] \cap f[B]$. Let $y \in f[A] \cap f[B]$. Then let $b = f^{-1}(y)$. We know b is unique due to bijectivity. Additionally, $b \in A \wedge b \in B$ because $y \in f[A] \cap f[B]$. Since $b \in A \cap B$, $f(b) = y \in A \wedge a \in B$. Thus $f[A] \cap f[B] \subseteq f[A \cap B]$. Both $f[A] \cap f[B] \subseteq f[A \cap B]$ and $f[A \cap B] \subseteq f[A] \cap f[B]$, so $f[A \cap B] = f[A] \cap f[B]$.

3. (a) Prove that for every function $f: \mathbb{R} \to \mathbb{R}$, if f(cx) = cf(x) for all $c \in \mathbb{R}$ and $x \in \mathbb{R}$, then f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. (In other words, prove that every function $f: \mathbb{R} \to \mathbb{R}$ that preserves scalar multiplication is a linear transformation from \mathbb{R} to \mathbb{R} .)

Solution: We use 3 cases: $\begin{cases} (1) & x \neq 0 \in \mathbb{R}, y \in \mathbb{R} \\ (2) & x = 0, y \neq 0 \in \mathbb{R} \\ (3) & x = 0, y = 0 \end{cases}$

(1) Let $x \neq 0 \in \mathbb{R}$, $y \in \mathbb{R}$. Then y = cx, where $c \in \mathbb{R}$, by closure of nonzero division in the reals. Additionally, f(y) = f(cx) = cf(x). Thus

$$f(x+y) = f(x+cx) = f((1+c)x) = (1+c)f(x) = f(x) + cf(x) = f(x) + f(y)$$

(2) The variables are analogously switched from case (1) if x = 0 and y is nonzero.

(3) Note that

$$f(0) = 0 f(k) = 0 k \in \mathbb{R}.$$

So, if x = y = 0,

$$f(0+0) = f(0) + f(0) = 0.$$

Thus, linearity holds in all cases for all $f : \mathbb{R} \to \mathbb{R}$ if f(cx) = cf(x) for all $c \in \mathbb{R}$ and $x \in \mathbb{R}$.

(b) Give an example to show that the argument you gave in part (a) cannot work in 2 dimensions. That is, explicitly describe a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ that is not a linear

transformation but has the property that $f(c\vec{x}) = cf(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$ and $c \in \mathbb{R}$. Remember to prove that your example works!

Solution: Define $f(x,y) = (\sqrt{x^2 + y^2}, 0)$.

Scalar multiplication: $cf(x,y) = \left(c\sqrt{x^2 + y^2}, 0\right) = \left(\sqrt{(cx)^2 + (cy)^2}, 0\right) = f(cx, cy)$ f(1,0) = (1,1) f(0,1) = (1,1) $f(1,1) = (1,2) \neq (1,1) + (1,1) = f(1,0) + f(0,1)$

Thus linearity does not hold here, even though scalar multiplication is preserved through the function.

- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and suppose that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. (In other words, suppose that f preserves addition).
 - (a) Prove that f(0) = 0.

Solution: Let $x \in R$. Then

$$f(x) = f(x+0) = f(x) + f(0) = f(x) + 0.$$

Thus f(0) = 0.

(b) Prove that for all $x \in \mathbb{R}$, f(-x) = -f(x).

Solution: Let $x \in \mathbb{R}$. Then

$$f(x + (-x)) = f(0) = f(x) + f(-x) = 0.$$

Hence f(-x) = -f(x).

(c) Use induction to prove that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$, f(nx) = nf(x).

Solution: Base case: $n = 1, f(1 \cdot x) = 1 \cdot f(x)$. Inductive step: Assume f(nx) = nf(x). Then

$$f((n+1)x) = f(nx + x)$$

$$= f(nx) + f(x)$$

$$= nf(x) + f(x)$$

$$= (n+1)f(x)$$
(f preserves addition)
(assumption)

Thus the statement holds for all n.

(d) Prove that for all $m \in \mathbb{Z}$ and $x \in \mathbb{R}$, f(mx) = mf(x).

Solution: We split possibilities for $m \in \mathbb{Z}$ into 3 cases: $\begin{cases} (1) & x \in \mathbb{Z}^+ = \mathbb{N} \\ (2) & x \in 0 \\ (3) & x \in \mathbb{Z}^- = -\mathbb{N} \end{cases}$

- (1) We have shown this in part (c).
- (2) We know from part (a) that

$$f(0x) = f(0) = 0 = 0f(x).$$

(3) We know from part (b) that f(-x) = -f(x). Then

$$f(mx) = -(-f(mx)) = -f(-mx).$$

By the case assumption, -m is positive, so it falls under case 1. Then we know

$$-f(-mx) = -(-mf(x)) = mf(x).$$

Thus the statement is true for all cases of m and x.