R-HTA-Workshop Model Inputs Tables

Jasper Zhang

April 2024

1 Introduction

The following sections present tables from the Chemotherapy model introduced in Value of Information for Healthcare Decision-Making book (Heath et al., 2024), illustrating the probability distributions for model inputs. Each table is placed on its own page to enhance clarity and focus. Detailed descriptions accompany each table to guide the reader through the data presented.

2 Table 1: Model Input Distributions from Literature

Table 1: The probability distributions for the model inputs for the Chemotherapy model. This table reports the definition, the distribution family, and the published estimate and standard error. These are transformed into parameters of the distributions in the chemotherapy model's definition in R code.

Parameter	Definition	Distribution	Estimate	Standard Error
$\log(\rho)$	Log odds ratio of side effects	Normal	$\log(0.54)$	0.3
r	Rate of death for individuals who	Gamma	0.0475	0.0316
	have recovered or not experienced side effects			
λ_1	Probability of recovery in a given	Beta	0.21	0.03
	week for someone treated at home who does not transition to hospital care			
λ_2	Probability of recovery in a given	Beta	0.03	0.0065
$\mathcal{M}_{\mathcal{L}}$	week for someone treated in hos-	Deva	0.00	0.0009
	pital who does not die			
q	Quality of life for recovered pa-	Beta	0.98	0.0283
	tients			
q_{HC}	Quality of life for home care pa-	Beta	0.7	0.141
	tients			
q_H	Quality of life for hospitalised pa-	Beta	0.03	0.173
	tients			
c_{death}	One-off cost of death	Log-normal	1710	27.57
c_{HC}	Yearly cost of treatment at home	Log-normal	830	12.25
c_H	Yearly cost of treatment in hos-	Log-normal	2400	43.36
	pital			
$c_{Treatment1}$	Drug Cost of the standard care	Constant Value	120	
$c_{Treatment2}$	Drug Cost of the novel treatment	Constant Value	1975	

3 Table 2: Primary Data-Informed Probability Distributions

Table 2: The prior specification and data used to determine the probability distributions for the model inputs informed by primary data sources for the Chemotherapy model. These distributions are derived as the Beta posteriors under the given Beta priors and data.

0	F			
Parameter	Definition	Prior Dis-	Prior Pa-	Data
		tribution	rameters	
$\overline{\pi_0}$	Probability of side ef-	Beta	(1, 1)	N: 111; Side
	fects under standard			Effects: 52
	care			
Γ_1	1-year probability of	Beta	(1, 1)	Side Effects:
	hospitalisation, given			52; Hospital-
	the patient had side ef-			isations: 43
	fects			
Γ_2	1-year probability of	Beta	(1, 1)	Hospitalisations:
	death			43; Death: 8

4 Reference

Heath, A., Kunst, N., Jackson, C. (2024). Value of Information for Healthcare Decision Making. CRC Press. Chapter 2: "A Case Study: A Novel Chemotherapy Treatment".