Beloit College, DSDA390

SEIZURE VS NON-SEIZURE DETECTION USING MLP

My Le'25

OVERVIEW

- Early detection of seizures can prevent injuries and provide better management for patients with epilepsy. Traditional methods may not be sufficient for real-time analysis
 - => Build a ML model for binary classification to distinguish between seizure/non-seizure events from Bonn data

HOW DID I APPROACH

- **Prepare the data:** Preprocess the dataset, including feature extraction, normalization, and splitting into training and validation sets
- Define the MLP model: Create the model architecture using PyTorch
- Train the model: Set up the training loop, loss function, optimizer, and evaluation metrics
- Evaluate performance: Monitor the model's performance

DATA PREPROCESSING

- Steps Involved:
 - Load Dataset: The data was loaded from CSV files
 - Feature Normalization: Scaled features using StandardScaler to ensure uniformity and avoid scale dominance during training
 - Train-Test Split: Divided the dataset into training and validation sets using train_test_split from scikit-learn

WHY MULTI-LAYER PERCEPTRONS?

- The dataset consists of tabular data, making MLP ideal
- MLP can scale easily to large datasets, making it suitable this growing data
- But also train moderate-size datasets faster (compared to more complex models like deep CNNs or RNNs)
- MLP can capture non-linear relationships in the data due to its non-linear activation functions (ReLU, Sigmoid)
- MLP is effective for classification

MODEL ARCHITECTURE

- MLP to classify the data into two classes: seizure or non-seizure
- Input Layer: Takes the features of the data
- Hidden Layers:
 - First hidden layer with 128 neurons
 - Second hidden layer with 64 neurons
 - Third hidden layer with 32 neurons
- Output Layer: One neuron with a sigmoid activation to predict the probability of the "Seizure" class
- Activation Functions: ReLU after each hidden layer and sigmoid for the output

Epoch 1/200, Loss: 0.6656, Accuracy: 0.6190 Validation Loss: 0.6967, Accuracy: 0.5000 Epoch 2/200, Loss: 0.5605, Accuracy: 0.7669 Validation Loss: 0.7529, Accuracy: 0.5400 Epoch 3/200, Loss: 0.4471, Accuracy: 0.7995 Validation Loss: 0.7837, Accuracy: 0.5300 Epoch 4/200, Loss: 0.3822, Accuracy: 0.8471 Validation Loss: 0.8017, Accuracy: 0.5600 Epoch 5/200, Loss: 0.3127, Accuracy: 0.9098 Validation Loss: 0.9238, Accuracy: 0.5800 Epoch 6/200, Loss: 0.2022, Accuracy: 0.9323 Validation Loss: 1.0110, Accuracy: 0.6300 Epoch 7/200, Loss: 0.1205, Accuracy: 0.9599 Validation Loss: 2.4914, Accuracy: 0.6300 Epoch 8/200, Loss: 0.0629, Accuracy: 0.9850 Validation Loss: 2.6878, Accuracy: 0.6500 Epoch 9/200, Loss: 0.0486, Accuracy: 0.9875 Validation Loss: 2.9061, Accuracy: 0.6400 Epoch 10/200, Loss: 0.0252, Accuracy: 0.9950

Epoch 195/200, Loss: 0.0000, Accuracy: 1.0000 Validation Loss: 5.4908, Accuracy: 0.6900 Epoch 196/200, Loss: 0.0000, Accuracy: 1.0000 Validation Loss: 5.4936, Accuracy: 0.6900 Epoch 197/200, Loss: 0.0000, Accuracy: 1.0000 Validation Loss: 5.4953, Accuracy: 0.6900 Epoch 198/200, Loss: 0.0000, Accuracy: 1.0000 Validation Loss: 5.4967, Accuracy: 0.6900 Epoch 199/200, Loss: 0.0000, Accuracy: 1.0000 Validation Loss: 5.5000, Accuracy: 0.6900 Epoch 200/200, Loss: 0.0000, Accuracy: 1.0000 Validation Loss: 5.5017, Accuracy: 0.6900

TRAIN THE MODEL

 Loss and Accuracy tracked for both Training and Validation sets

• Pattern:

- Training Loss: Decreasing steadily -> model improvement
- Training Accuracy: Increases to near 100% ->
 model is fitting well to the training data
- Validation Loss: Initially fluctuates and increases-> overfitting
- Validation Accuracy: Plateaus around 68%

• Key Observations:

 The model performs well on the training set but struggles with generalization to the validation set, highlighting potential overfitting.

CLASSIFICATION REPORT

	precision	recall	f1-score	support	
Non-seizure Seizure	0.71 0.71	0.70 0.72	0.71 0.71	50 50	
accuracy macro avg weighted avg	0.71 0.71 0.71	0.72 0.71 0.71	0.71 0.71 0.71 0.71	100 100 100	

- The model performs well on non-seizure data but has slightly lower recall for seizure data
- Precision for seizure detection is better than recall

LIMITATIONS

- Limited understanding of Biology and Neuroscience hindered effective data interpretation and model design
- Training accuracy is near 100%, but validation accuracy stagnates at 68%
 - Model memorizes training data but fails to generalize well on unseen data
- The model may not provide clear insights into the decision-making process

IMPROVEMENTS

- Use regularization techniques (e.g., L2, dropout) and implement cross-validation
- Explore additional evaluation metrics (e.g., F1 score, ROC curve) that align with the application's goals
- Talk to domain experts and have a better understanding of the overall dataset

THANK YOU