Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе №4

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«Свободные затухающие колебания в параллельном LC-контуре»

Цель работы.

Изучить свободные затухающие колебания LC-контура

Задачи, решаемы при выполнении работы.

- Получить график затухающих колебаний для контуров с разными параметрами
- Косвенно измерить логарифмический декремент затухания и добротность
- Исследовать зависимость названных величин от параметров контура

Объект исследования.

Переменный ток

Метод экспериментального исследования.

Измерение зависимости напряжения на конденсаторе от времени

Исходные данные.

$$U(t) = U_m e^{-\beta t} \sin(\omega t + \alpha) \tag{1}$$

$$T = 2\pi\sqrt{LC} \tag{2}$$

$$\beta = \frac{R}{2L} \tag{3}$$

$$\omega = \sqrt{\omega_0^2 - \beta^2} \tag{4}$$

$$\lambda = \frac{U(t)}{U(t+T)} = \beta T \tag{5}$$

$$Q \approx \frac{1}{R} \sqrt{\frac{L}{C}} \tag{6}$$

$$\delta\beta = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta L}{L}\right)^2} \tag{7}$$

$$\delta\lambda = \sqrt{\delta\beta^2 + \left(\frac{\Delta T}{T}\right)^2} \tag{8}$$

$$\delta \tau = \tau \cdot \delta \beta \tag{9}$$

$$\Delta Q = \sqrt{\left(\frac{1}{R^2}\sqrt{\frac{L}{C}}\cdot\Delta R\right)^2 + \left(\frac{1}{2R\sqrt{LC}}\cdot\Delta L\right)^2 + \left(\frac{\sqrt{L}}{2R\sqrt{C^3}}\cdot\Delta C\right)^2}$$
 (10)

Результаты прямых измерений.

Контур №1
$L=5{,}7$ м Γ н
$\mathrm{C}=97{,}9\;\mathrm{H}\Phi$
$R=16{,}65~\mathrm{Om}$
time/div = 0,1 мс
volts/div = 0.1 B

$$\begin{array}{c} \text{Kohtyp} \ \mathbb{N}^{2} \\ L = 5.7 \ \text{mGH} \\ C = 97.9 \ \text{h} \Phi \\ R = 5.3 \ \text{Om} \\ \text{time/div} = 0.1 \ \text{mc} \\ \text{volts/div} = 0.1 \ \text{B} \end{array}$$

$$\begin{array}{c} \text{Kohtyp} \ \mathbb{N}^3 \\ L = 5.7 \ \text{mGH} \\ C = 1 \ \text{mkF} \\ R = 5.3 \ \text{Om} \\ \text{time/div} = 0.5 \ \text{mc} \\ \text{volts/div} = 0.1 \ \text{B} \end{array}$$

$$\begin{array}{c} \text{Kohtyp} \ \mathbb{N}^4 \\ L = 5.7 \ \text{mGH} \\ C = 1 \ \text{mkF} \\ R = 16.65 \ \text{Om} \\ \text{time/div} = 0.5 \ \text{mc} \\ \text{volts/div} = 0.1 \ \text{B} \end{array}$$

t, div	U, div
0.6	3.1
1.2	-2.9
2.2	2.3
2.8	-2.2
3.8	1.8
4.3	-1.7
5.3	1.4
5.8	-1.4
	1

t, div	U, div
0.5	3.2
1.0	-3.0
2.1	2.6
2.6	-2.6
3.6	2.2
4.2	-2.2
5.2	2.0
5.8	-2.0
6.8	1.8
7.4	-1.6
8.4	1.6
	1

t, div	U, div
0.4	3.8
0.6	-3.4
1.4	3.0
1.6	-2.8
2.4	2.5
2.6	-2.3
3.4	2.0
3.6	-2.0
4.4	1.7
4.6	-1.6
5.3	1.4
5.6	-1.3
6.3	1.2
6.7	-1.1
7.4	1.0
7.7	-0.9
8.4	0.9
8.8	-0.7

t, div	
-,	U, div
0.4	4.0
0.6	-3.0
1.4	2.2
1.6	-1.6
2.3	1.2
2.7	-0.9
3.2	0.6
3.7	-0.5
4.3	0.4
4.7	-0.3
5.2	0.2
5.8	-0.2

Обработка результатов и расчёт косвенных величин.

ullet Период колебаний T

Для 1-го и 2-го контура по формуле (2) $T_{12}=0,158$ мс. Из опыта $T_{12}=0,155$ мс Для 3-го и 4-го контура по формуле (2) $T_{34}=0,474$ мс. Из опыта $T_{34}=0,506$ мс

- Коэффициент затухания β
- $\beta_1 = (1461 \pm 27) c^{-1}$
- $\beta_2 = (465 \pm 12) c^{-1}$
- $\beta_3 = (465 \pm 12) c^{-1}$
- $\beta_4 = (1461 \pm 27) c^{-1}$
- ullet Логарифмический декремент λ
- $\lambda_1 = (0, 226 \pm 0, 015)$
- $\lambda_2 = (0,074 \pm 0,005)$
- $\lambda_3 = (0, 235 \pm 0, 008)$
- $\lambda_4 = (0,730 \pm 0,020)$
- Время затухания $\tau = \frac{1}{\beta}$
- $\tau_1 = (0,684 \pm 0,013) \text{ MC}$
- $au_2 = (2, 15 \pm 0, 06)$ мс
- $\tau_3 = (2, 15 \pm 0, 06) \text{ MC}$
- $au_4 = (0,684 \pm 0,013)$ мс
- \bullet Добротность Q
- $Q_1 = (14, 49 \pm 0, 15)$
- $Q_2 = (45, 5 \pm 0, 9)$
- $Q_3 = (14, 2 \pm 0, 8)$
- $Q_4 = (4, 53 \pm 0, 23)$

Выводы.

Мы провели измерения свободных затухающих колебаний напряжения в LC-контурах с разными параметрами. На основе полученных данных были найдены следующие величины: период колебаний T, коэффициент затухания β , логарифмический декремент λ , время затухания τ , добротность Q.

В опыте было обнаружено необычное поведение затухающих колебаний: их полупериоды (время, за которое заряды на обкладках конденсатора меняют знак) не равны, что противоречит уравнению $U(t) = U_m e^{-\beta t} \sin(\omega t + \alpha)$, так как данная функция обладает симметрией. Приведём значения полупериодов всех 4-ёх контуров (особенно хорошо различия видны в 3-ем контуре):

hT_1 , div	0.6	1	0.6	1	0.5	1	0.5								
hT_2 , div	0.5	1.1	0.5	1.0	0.6	1	0.6	1	0.6	1					
hT_3 , div	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.8	0.2	0.7	0.3	0.7	0.4	0.7	0.3
hT_4 , div	0.2	0.8	0.2	0.7	0.4	0.5	0.5	0.6	0.4	0.5	0.6				

Таким образом, перетекание заряда в одном направление происходит быстрее чем в другом. Объяснения данному явлению мы не знаем, но можно предположить, что, так как период однозначно определяют L и C, то в осцилляторе либо индуктивность, либо ёмкость конденсатора зависит от направления тока.

