CSE2315 Slides week 1

Matthijs Spaan Stefan Hugtenburg

Algorithmics group

Delft University of Technology

14 February 2020

This lecture

- Strings and operations on them
- Proofs with induction over strings
- Languages and operations on them
- Proving equality of languages
- Deterministic finite automata and formal definition
- Acceptation of words and recognition of languages
- Generalized transition function δ^*
- Acceptation in terms of δ*
- Regular languages
- Regular operations
- Extension input alphabet DFA
- Closure properties of regular languages

Alphabet and Symbols

- An alphabet is a finite, non-empty set of symbols Examples: $\Sigma_0 = \{0, 1\}, \quad \Sigma_1 = \{a, b, c, \dots, z\}$
- String, or word is a finite sequence of symbols from an alphabet
- Length |w| of a word w. For instance: |abc| = 3 and |bacacs| = 6
- The empty string of length 0: ε
- Σ^0 , Σ^1 , Σ^2 , ..., Σ^n
- $\Sigma^0 = \{\varepsilon\},\$ $\Sigma^1 = \Sigma,$
 - Σ^2 : all words w over Σ with |w| = 2,

. . .

 Σ^n : all words w over Σ with |w| = n.

- Set of words over Σ : $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \cdots \cup \Sigma^n \cup \cdots$
- Note: for all Σ : $\varepsilon \in \Sigma^*$!

Operations on Words

- Concatenation: vw
- n-fold concatenation of w: wⁿ
- $w^0 = \varepsilon$ and $\varepsilon w = w = w\varepsilon$
- Word reversed: w^R

Example: $abracadabra^R = arbadacarba$

- Substring, prefix and suffix Examples:
 - abra is a prefix of abracadabra
 - dabra is a suffix of abracadabra
 - acad is a substring of abracadabra, but no prefix or suffix
 - arcdba is not a substring of abracadabra

Inductive (Recursive) Definition of Word length

Generally, for $w \in \Sigma^*$ and $a \in \Sigma$ we have:

$$|\varepsilon| = 0$$
$$|wa| = |w| + 1$$

Theorem: for all words $v, w \in \Sigma^*$:

$$|vw| = |v| + |w|.$$

Proof

By induction over |w|:

Basis step: If |w| = 0, then $w = \varepsilon$ and

$$|vw| = |v\varepsilon| = |v| = |v| + 0 = |v| + |\varepsilon| = |v| + |w|.$$

Inductive hypothesis: If |x| = n, then |vx| = |v| + |x|.

Inductive step: If |w| = n + 1, then w = ua for some $u \in \Sigma^*$ with |u| = n and for some $a \in \Sigma$. We show that |vw| = |v| + |w|:

$$|vw| = |vua| = |vu| + 1 =_{IH} |v| + |u| + 1 = |v| + |ua| = |v| + |w|.$$

Languages

- Σ^* , Σ^+ .
- A language is a subset $L \subseteq \Sigma^*$.
- An element $w \in L$ is called a word or a string of L.

Examples of languages: Let $\Sigma = \{a, b\}$:

- {abaab, aabbbaa, bbab, bbbb, aab}.
- $\bullet \{a^nb^m \mid n>m\}.$
- $\bullet \ \{w \in \Sigma^* \mid w = w^R\}.$
- Σ^* , \emptyset and $\{\varepsilon\}$.

Operations on Languages

(see also video Operations on Regular Languages) Set operations: \overline{L} , $L_1 \cup L_2$, $L_1 \cap L_2$, $L_1 - L_2$

$$L^R = \{w^R \mid w \in L\}$$
 $L_1 \circ L_2 = \{vw \mid v \in L_1 \text{ and } w \in L_2\}$
 $L^2 = L \circ L = LL \text{ (See remark 2)}$
 $L^3 = LLL$
 $L^* = L^0 \cup L^1 \cup \cdots \cup L^n \cup \cdots$
 $L^+ = L^1 \cup L^2 \cup \cdots \cup L^n \cup \cdots$

Edge cases: $L^0 = \{\varepsilon\}$ and $\emptyset^* = \{\varepsilon\}$.

Remark 1: $\emptyset \neq \{\varepsilon\}$ and $\varepsilon \in L^*$, for every language L.

Remark 2: We usually write L_1L_2 instead of $L_1 \circ L_2$.

Examples

```
Let L = \{ab, aab\}. L^R = \{ba, baa\}
LL = \{abab, abaab, aabab, aabaab\}
L^0 = \{\varepsilon\}
L^2 = \{abab, abaab, aabab, aabaab\}
L^* = \{\varepsilon, ab, aab, abab, abaab, aabaab, aabaab, ababab, \dots\}
L^+ = \{ab, aab, abab, abaab, aabaab, aabaab, ababab, \dots\}
```

Some Properties of Concatenation

$$\bigcirc \emptyset L = \emptyset = L\emptyset$$

$$(L_2 \cup L_3)L_1 = L_2L_1 \cup L_3L_1$$

Exercise

Let $L_1, L_2, L_3 \subseteq \Sigma^*$.

1 Determine whether it holds in general that:

$$L_1(L_2 \cap L_3) = L_1L_2 \cap L_1L_3$$

2 Show that:

If
$$L_1 \subseteq L_2$$
 then $L_1L_3 \subseteq L_2L_3$.

3 Show that:

$$L_1(L_2L_3) = (L_1L_2)L_3$$

4 Give an inductive definition of L^n ($n \ge 0$).

Solution (1)

No!

Let:

- $L_1 = \{a, ab\}$
- $L_2 = \{b\}$
- $L_3 = \{\varepsilon\}$

Now:

- $L_1(L_2 \cap L_3) = L_1\emptyset = \emptyset$.
- $L_1L_2 \cap L_1L_3 = \{ab, abb\} \cap \{a, ab\} = \{ab\}.$

The sets $L_1(L_2 \cap L_3)$ and $L_1L_2 \cap L_1L_3$ are therefore not equal for the given choice of L_1 , L_2 and L_3 .

Solution (2)

Suppose $L_1 \subseteq L_2$. Take an arbitrary $w \in L_1L_3$. We must show that $w \in L_2L_3$.

Since $w \in L_1L_3$, w can be written as w = uv, with $u \in L_1$ and $v \in L_3$. As $u \in L_1$ and $L_1 \subseteq L_2$, we get $u \in L_2$. This gives us $w = uv \in L_2L_3$. Because w was arbitrarily chosen, it holds that $L_1L_3 \subseteq L_2L_3$. This proves the statement. \blacksquare

Solution (3)

First we show that $L_1(L_2L_3) \subseteq (L_1L_2)L_3$ and subsequently that $(L_1L_2)L_3 \subseteq L_1(L_2L_3)$.

We assume concatenation of words is associative, i.e., if $u, v, w \in \Sigma^*$, then u(vw) = (uv)w.

- Suppose $w \in L_1(L_2L_3)$. Then w can be written as $w = w_1w'$, with $w_1 \in L_1$ and $w' \in L_2L_3$. Now w' can be written as $w' = w_2w_3$, with $w_2 \in L_2$ and $w_3 \in L_3$. If we define $w'' = w_1w_2$, it clearly holds that $w'' \in L_1L_2$. We conclude that $w = w_1w_2w_3 = w''w_3 \in (L_1L_2)L_3$.
- Left as an exercise for the reader.

Solution (4)

Inductively define L^n for all $n \ge 0$ as follows:

$$L^0 = \{\varepsilon\}$$

$$L^{n+1} = L^n L$$

Relations

• An *n*-ary relation *R* is a subset of *n*-tuples:

$$R \subseteq A_1 \times \cdots \times A_n$$

A binary relation R is a subset of pairs:

$$R \subseteq A \times B$$

Examples of binary relations on \mathbb{N}^2 : =, \leq , \geq

Functions

- Functions are special relations
- $f:A\to B$
- Binary functions $f: A_1 \times A_2 \to B$
- Binary functions can be displayed in a table
- Domain, co-domain vs. range
- Total vs. partial functions
- Example addition on \mathbb{N} : $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$

Directed Graphs

A (directed) graph is a pair (V, E) where:

- V a set of nodes or vertices
- $E \subseteq V \times V$ a set of edges

Example

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{(1, 3), (2, 4), (3, 3), (3, 5), (4, 1), (5, 2)\}$$

Directed Graphs (Cont.)

- Paths, cycles, simple cycle en loops
- Simple path
- Labeled graphs
- Subgraphs

Examples of a Formal Definition

A formal definition of an automaton makes it possible to:

- 1 construct neat proofs about finite automata,
- think precisely about the material,
- g represent large automata.

Deterministic Finite Automata (DFAs)

(see also videos Finite State Machines: Introduction and Finite State Machines: Examples)

Definition 1.5 A deterministic finite automaton (*DFA*) is an ordered quintuple $M = (Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states;
- Σ is a finite set, the input alphabet;
- $\delta: Q \times \Sigma \to Q$ is a *total* function, the transition function;
- $q_0 \in Q$ is the start state;
- $F \subseteq Q$ is the set of accept states.

Example

Q	=	$\{EE, OE, EO, OO\}$		a	
\sum	=	$\{a,b\}$	EE	OE	EO
q_0	=	EE	OE	EE	00
F	=	$\{EE, OO\}$	EO	00	EE
			00	EO	OE

Transition graphs

A DFA $M = (Q, \Sigma, \delta, q_0, F)$ can be represented as a graph with directed, labeled edges, the so-called transition graph G_M :

- G_M has exactly |Q| nodes (vertices) with the states in Q as labels;
- two nodes with labels q_i and q_j are connected by the edge (q_i, q_j) with label a iff $\delta(q_i, a) = q_j$.

Exercise

Describe the following DFA D as a tuple $(Q, \Sigma, \delta, q_0, F)$:

Solution

$$D=(Q,\Sigma,\delta,q_0,F)$$
 where:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{0, 1\}$$

$$F = \{q_0\}$$

δ	0	1
q_0	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_2

Exercise

Give a transition graph for the following DFA $M=(Q,\Sigma,\delta,q_0,F)$ where:

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{a, b\}$$

$$F = \{q_2, q_3\}$$

δ	a	b
q_0	q_1	q_0
q_1	q_2	q_3
q_2	q_3	q_0
q_3	q_3	q_0

Solution

Acceptation of Words and Languages by DFAs

Definition Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA and let $a_1a_2\cdots a_n\in\Sigma^*$. M accepts (recognizes) $a_1a_2\cdots a_n$ iff there exist $r_0,\ldots,r_n\in Q$ such that:

- 1 $r_0 = q_0$,
- 2 $\delta(r_i, a_{i+1}) = r_{i+1}$ $(i \ge 0),$
- $r_n \in F$.

Definition The language recognized by a DFA $M=(Q,\Sigma,\delta,q_0,F)$ is given by $L(M)=\{w\in\Sigma^*\mid M \text{ accepts }w\}.$

Generalized transition function (1)

Idea: Define the function δ^* , called the generalized transition function, which answers the following question:

Suppose the automaton $M=(Q,\Sigma,\delta,q_0,F)$ is in state $q\in Q$ and the word $w\in \Sigma^*$ still has to be read. In which state will M be after w has been processed/read in its entirety?

How does δ^* work? For each letter in w, the function δ^* performs an iteration of δ on the state in which M arrived during the previous iteration. The last state that M reaches this way is the outcome of this process. Notation: $\delta^*(q,w)$.

Since δ^* works using iterations, it can be defined inductively using recursion (see next slide).

Generalized transition function (2)

Basis

Zero steps are needed to process the empty string ε , so M stays in state q. That is,

$$\delta^*(q,\varepsilon) = q$$
.

Inductive clause

Suppose we know that M goes from state $q \in Q$ to state $q' \in Q$ while processing $w \in \Sigma^*$, that is, $\delta^*(q,w) = q'$. Then, while processing wa (with $a \in \Sigma$), M first goes from q to q', after which it must process the letter a from q', resulting in $\delta(q',a)$. That is,

$$\delta^*(q, wa) = \delta(q', a) = \delta(\delta^*(q, w), a).$$

This motivates the inductive definition on the next slide.

Inductive Definition of Acceptation

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

Definition $\delta^*: Q \times \Sigma^* \to Q$ is defined inductively for every $q \in Q$ as follows:

$$\delta^*(q,\varepsilon) = q,$$

$$\delta^*(q,wa) = \delta(\delta^*(q,w),a),$$

- M accepts $w \in \Sigma^*$ iff $\delta^*(q_0, w) \in F$
- $\bullet \ L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \}$
- $\delta^*(q, a) = \delta^*(q, \varepsilon a) = \delta(\delta^*(q, \varepsilon), a) = \delta(q, a)$

Note: A DFA accepts ε iff the start state is an accepting state.

Exercise

Suppose we have the following DFA $M = (Q, \Sigma, \delta, q_0, F)$:

Use δ^* to show that $bba \in L(M)$ but that $aba \notin L(M)$.

Solution (1)

$$\delta^*(q_0, bba) = \delta(\delta^*(q_0, bb), a)$$

$$= \delta(\delta(\delta^*(q_0, b), b), a)$$

$$= \delta(\delta(\delta(\delta^*(q_0, \varepsilon), b), b), a)$$

$$= \delta(\delta(\delta(q_0, b), b), a)$$

$$= \delta(\delta(q_0, b), a)$$

$$= \delta(q_0, a)$$

$$= q_1$$

$$\in F.$$

This means $bba \in L(M)$.

Solution (2)

$$\delta^*(q_0, aba) = \delta(\delta^*(q_0, ab), a)$$

$$= \delta(\delta(\delta^*(q_0, a), b), a)$$

$$= \delta(\delta(\delta(\delta^*(q_0, \varepsilon), a), b), a)$$

$$= \delta(\delta(\delta(q_0, a), b), a)$$

$$= \delta(\delta(q_1, b), a)$$

$$= \delta(q_1, a)$$

$$= q_2$$

$$\notin F.$$

This means that $aba \notin L(M)$.

Regular languages

Definition A language L is regular iff there exists a DFA M with L = L(M).

Exercise

- \bullet Is the language consisting of words with exactly one a regular?
- 2 Is every regular language finite?
- Is every language consisting of exactly one word regular?
- 4 Is every finite language regular?

Answers

- 1 Of course, the DFA for this language is on slide 32.
- 2 No. The language consisting of words with exactly one *a* is infinite.
- Yes! Why?
- 4 Yes! Why?

Let $\Sigma = \{a, b, c\}$. Design a DFA that accepts precisely all words w in which every b is followed by at least one c.

Note Words in which no *b* occurs are also accepted.

Reminder $\delta^*: Q \times \Sigma^* \to Q$ is defined inductively for each $q \in Q$ as follows:

$$\delta^*(q,\varepsilon) = q,$$

$$\delta^*(q,wa) = \delta(\delta^*(q,w),a),$$

Exercise Let $M=(Q,\Sigma,\delta,q_0,F)$ be a DFA. Using induction over the length |w|, prove that for each $w\in \Sigma^*$ and each $q\in Q$:

$$\delta^*(q,w) \in Q$$

Also specify what must be proven and what your induction hypothesis is.

Hint Based on the definition of a DFA, the following holds for each $a \in \Sigma$ and $q \in Q$: $\delta(q, a) \in Q$.

Basis step: If |w| = 0, then $w = \varepsilon$. Now, if $q \in Q$, we get:

$$\delta^*(q,\varepsilon) =_{\mathsf{definition}} q \in Q.$$

Inductive hypothesis (IH): For all $w \in \Sigma^*$ with |w| = n and $q \in Q$: $\delta^*(q, w) \in Q$.

Inductive step: Given the IH, we must show that the statement holds for words $v \in \Sigma^*$, with |v| = n + 1. If |v| = n + 1, there exists a $w \in \Sigma^*$ with |w| = n and an $a \in \Sigma$ such that v = wa. We get:

$$\delta^*(q, v) = \delta^*(q, wa) =$$
definition $\delta(\delta^*(q, w), a)$.

From the IH, we derive that $\delta^*(q, w) = q'$ for some $q' \in Q$. Therefore:

$$\delta^*(q, v) = \delta(q', a) \in Q,$$

because of the definition of a DFA.

This proves the statement.

Closure Properties of Regular Languages

Question Suppose L, L_1 and L_2 are regular languages. Which of the following languages are also regular?

- $\mathbf{1}$ \overline{L}
- $2L^R$
- $3 L_1 \cap L_2$
- **4** $L_1 \cup L_2$
- \bigcirc L_1L_2
- $\bigcirc L^*$

Regular Languages and Closure under Complement

Theorem The class of regular languages is closed under complement. That is, if L is regular, then \overline{L} is also regular.

Proof sketch

- 1 If L is regular, there exists a DFA M recognizing L, i.e., L(M) = L.
- 2 Show that M can be transformed into an automaton \overline{M} recognizing \overline{L} .
- 3 Let $M = (Q, \Sigma, \delta, q_0, F)$. Define:

$$\overline{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

4 Show that $\overline{L(M)} = L(\overline{M})$

Exercise as intermezzo

Suppose we have the following DFA $M=(Q,\Sigma,\delta,q_0,F)$ with $\Sigma=\{a,b\}$:

Construct a DFA M' with input alphabet $\Sigma' = \{a, b, c\}$ such that L(M') = L(M).

Extension of the input alphabet

The automaton M on slide 44 has had its input alphabet Σ extended with the letter c: $\Sigma' = \Sigma \cup \{c\}$. We could then construct an automaton M' with alphabet Σ' such that L(M') = L(M).

This can be generalized: an input alphabet can be extended arbitrarily using the construction on slide 44.

Theorem Let Σ and Σ' be alphabets such that $\Sigma \subseteq \Sigma'$. Then for every DFA $M=(Q,\Sigma,\delta,q_0,F)$, a DFA $M'=(Q',\Sigma',\delta',q_0',F')$ exists with L(M')=L(M).

Proof

Let Σ and Σ' be alphabets such that $\Sigma \subseteq \Sigma'$. Also, let a DFA M be given as $M = (Q, \Sigma, \delta, q_0, F)$.

Define $M' = (Q', \Sigma', \delta', q'_0, F')$ such that:

$$Q' = Q \cup \{q_t\}$$

$$q'_0 = q_0$$

$$F' = F$$

Also define $\delta'(q, a)$ for each $q \in Q'$ and $a \in \Sigma'$ as:

$$\delta'(q,a) = \left\{ egin{array}{ll} \delta(q,a) & ext{if } q \in Q ext{ and } a \in \Sigma, \\ q_t & ext{otherwise}. \end{array}
ight.$$

Then we have L(M') = L(M).

Regular Languages are Closed under Union

(see also video Operations on Regular Languages)

Theorem The class of regular languages is closed under union. In other words, if L_1 and L_2 are regular, then $L_1 \cup L_2$ is also regular.

Proof idea:

- 1 If L_1 and L_2 are regular, there exist DFAs M_1 and M_2 with $L(M_1) = L_1$ and $L(M_2) = L_2$.
- We now construct a DFA M that lets M₁ and M₂ compute in parallel on a given input word w.
- 3 As soon as one of the DFAs M_1 or M_2 accepts the input word w, M accepts w.

Proof

Let $M_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $M_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ be the DFAs such that $L(M_1)=L_1$ and $L(M_2)=L_2$.

We construct a DFA M such that:

$$L(M) = L(M_1) \cup L(M_2).$$

Note: Because of the theorem on input alphabet extension, we can assume that M_1 and M_2 have the same alphabet Σ .

Construction for Union

Let
$$M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Define $M = (Q, \Sigma, \delta, q_0, F)$ such that:

$$egin{array}{lcl} Q & = & Q_1 imes Q_2 \ q_0 & = & (q_1,q_2) \ F & = & \{(q,q') \mid q \in F_1 \ {
m or} \ q' \in F_2 \} \end{array}$$

For all $a \in \Sigma$ and all $(q, q') \in Q$, define δ as follows:

$$\delta\left((q,q'),a\right) = \left(\delta_1(q,a),\delta_2(q',a)\right)$$

(One step of M via δ ((q,q'),a) corresponds to two parallel steps of M_1 and M_2 via $\delta_1(q,a)$ and $\delta_2(q',a)$, respectively.)

Proof (Cont.)

To be proven: $L(M) = L(M_1) \cup L(M_2)$.

Sketch: We use δ^* for this. By induction over |w|, one can show (try this yourself!):

$$\delta^* ((q, q'), w) = (\delta_1^*(q, w), \delta_2^*(q', w))$$

From this it follows that

$$\delta^*\left((q,q'),w\right)\in F\quad \text{ iff }\quad \delta_1^*(q,w)\in F_1 \text{ or } \delta_2^*(q',w)\in F_2.$$

This means that $L(M) = L(M_1) \cup L(M_2)$.

Let M_1 and M_2 be given by, respectively:

Construct a DFA M such that $L(M) = L(M_1) \cup L(M_2)$.

Show that the class of regular languages is closed under intersection.

- What exactly does this mean? What must be proven?
- 2 Is it possible, given two DFAs M_1 and M_2 , to construct a third DFA M such that $L(M) = L(M_1) \cap L(M_2)$?
- 3 Is it possible to give a "smarter" (less laborious) proof?

Answers

- 1 That for all regular languages L_1 and L_2 , the intersection $L_1 \cap L_2$ is also regular.
- 2 Yes, in the same way as the proof for union. Only difference is:

$$F = \{(q, q') \mid q \in F_1 \text{ and } q' \in F_2\}$$

3 Yes. After all, we have $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$, and we know regular languages are closed under union and complement.

Construct a DFA that recognizes the language containing all strings with aba as substring.

