SRA/ALR Prüfung Hochschule Mannheim

Michael Stapelberg, Felix Bruckner, Pascal Krause

Fakultät für Informatik Hochschule Mannheim

2012-07-19

- 1 Allgemeines
 - Unser Projekt
 - Architektur
 - Vorgehen
- 2 Hardware
 - Kinect
 - Grafikkarte
 - Handschuh
- 3 Algorithmen
 - Median Filter
 - Kalibrierung
 - Gloweffekt
 - RGB-Bild maskieren
 - Referenz-Farbe
 - Speed-Up
- Ausblick

- 1 Allgemeines
 - Unser Projekt
 - Architektur
 - Vorgehen
- 2 Hardware
 - Kinect
 - Grafikkarte
 - Handschuh
- 3 Algorithmen
 - Median Filter
 - Kalibrierung
 - Gloweffekt
 - RGB-Bild maskierer
 - Referenz-Farbe
 - Speed-Up
- Ausblick

Projekt

Die Idee

Jede einigermaßen ebene Fläche, soll als Whiteboard dienen können.

- Die Schwierigkeiten
 - Auflösung des Tiefenbildes zu gering
 - Farberkennung auf gesamten Bild schlecht
- Der Lösungsansatz
 - Aufbereitung der Daten durch anwenden von Filtern

Allgemeines

Vorgehen

- Suchen eines open-source SDK
- Erforschen der Kinect
- Suchen nach Problemlösungen
- Validieren der Lösungen (CPU)
- Portieren der Lösungen auf GPU
 - Programmaufbau an CUDA anpassen
 - Algorithmen f
 ür CUDA optimieren

- Allgemeines
 - Unser Projekt
 - Architektur
 - Vorgehen
- 2 Hardware
 - Kinect
 - Grafikkarte
 - Handschuh
- 3 Algorithmer
 - Median Filter
 - Kalibrierung
 - Kalibrierung
 - RGB-Bild maskierer
 - Referenz-Farbe
 - Referenz-FarbeSpeed-Up
- Aushlick

Kinect

- Sensors
 - 640x480 30Hz RGB Depth
 - 640x480 30Hz Depth
- Genauigkeit
 - Genauigkeit ab 50cm ca. 1,5mm
 - Genauigkeit ab 5m ca. 5cm

Grafikkarte

- Nvidia GeForce GTS 250
- 16 Prozessoren / 8 Cores
- 1024 MB Device-Memory

Handschuh

- 100% Baumwolle
- Hoher Tragekomfort
- Farbe: Orange

- Allgemeines
 - Unser Projekt
 - Architektur
 - Vorgehen
- 2 Hardware
 - Kinect
 - Grafikkarte
 - Handschuh
- 3 Algorithmen
 - Median Filter
 - Kalibrierung
 - Gloweffekt
 - RGB-Bild maskieren
 - Referenz-Farbe
 - Speed-Up

Median Filter

- Arbeitet auf dem Tiefenbild
- Filtert das Rauschen aus dem Tiefenbild heraus

Kalibrierung

- Es kann auf neuen Hintergrund kalibriert werden
- Arbeitet auf dem Tiefenbild
- Filtert alle sich nicht bewegenden Punkte aus dem Tiefenbild.

Gloweffekt

- Arbeitet auf dem Tiefenbild
- Expandiert alle anzuzeigenden Punkte im Tiefenbild, anhand eines einstellbaren Radius

RGB-Bild maskieren

- Arbeitet auf dem RGB-Bild
- Rechnet das Tiefenbild auf das RGB-Bild um, und maskiert alle relevanten Pixel

Referenz-Farbe

- Arbeitet auf dem RGB-Bild
- Zeigt nur noch die Pixel auf dem RGB-Bild an, welche die referenzierte Farbe haben

Speed-Up

$$S(p) = \frac{Ausf \ddot{u}hrungszeit SingleCore}{Ausf \ddot{u}hrungszeit MultiCore}$$

Rechenzeit Tabelle

Recheneinheit	Median Filter	RGB-Bild maskieren
CPU	3 Millisekunden	3 Millisekunden
GPU	2 Mikrosekunden	1 Mikrosekunden

Speed-Up Median Filter: 5%

Speed-Up RGB-Bild-Maskierung: over9000%

- Allgemeines
 - Unser Projekt
 - Architektur
 - Vorgehen
- 2 Hardware
 - Kinect
 - Grafikkarte
 - Handschuh
- 3 Algorithmer
 - Median Filter
 - Kalibrierung
 - Gloweffekt
 - RGB-Bild maskierer
 - Referenz-Farbe
 - Referenz-FarbeSpeed-Up
- Ausblick

Ausblick

- Bewegung interpolieren
- Extremitäten statt Pixel
- Visuell bedienbare GUI
 - Buttons
 - Gesten
- Ausführlichere Dokumentation
- Plattformabhänigkeit minimieren