Least-Squares Regression

Chapra: Chapter-17

Curve Fitting

- Given a set of points:
 - experimental data
 - tabular data
- Fit a curve (surface) to the points so that we can easily evaluate f(x) at any x of interest.
- If *x* within data range
 - → interpolating (generally safe)
- If x outside data range
 - → extrapolating (often dangerous)

Curve Fitting

Two main methods:

1. Least-Squares Regression

- Function is "best fit" to data.
- Does not necessarily pass through points.
- Used for scattered data (experimental)
- Can develop models for analysis/design.

2. Interpolation

- Function passes through all (or most) points.
- Interpolates values of well-behaved (precise) data or for geometric

design.

Linear Regression

- The simplest example of a least-squares approximation is fitting a straight line to a set of paired observations: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- The mathematical expression for the straight line is

$$y = a_0 + a_1 x + e$$

• One strategy for fitting a "best" line through the data would be to minimize the sum of the residual errors for all the available data, as in

• Any straight line passing through the midpoint of the connecting line results in a minimum value equal to zero because the errors cancel.

$$\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)$$

• For the four points shown, any straight line falling within the dashed lines will minimize the sum of the absolute values.

$$\sum_{i=1}^{n} |e_i| = \sum_{i=1}^{n} |y_i - a_0 - a_1 x_i|$$

Using y=4x-4 as the regression curve

Table. Residuals at each point for regression model y = 4x - 4.

X	y	y _{predicted}	$\varepsilon = y - y_{\text{predicted}}$
2.0	4.0	4.0	0.0
3.0	6.0	8.0	-2.0
2.0	6.0	4.0	2.0
3.0	8.0	8.0	0.0
			$\sum_{i=1}^{4} \varepsilon_{i} = 0$

Figure. Regression curve for y=4x-4, y vs. x data

Using y=6 as the regression curve

Table. Residuals at each point for regression model y = 6.

X	y	y _{predicted}	$\varepsilon = y - y_{predicted}$
2.0	4.0	6.0	-2.0
3.0	6.0	6.0	0.0
2.0	6.0	6.0	0.0
3.0	8.0	6.0	2.0
			$\sum_{i=1}^{4} \varepsilon_{i} = 0$

Figure. Regression curve for y=6, y vs. x data

• The least squares criterion minimizes the sum of the square of the residuals in the model, and also produces a unique line.

$$S_r = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Least-Squares Fit of a Straight Line

• To determine values for a_0 and a_1 , above equation is differentiated with respect to each coefficient:

$$\frac{\partial S_r}{\partial a_0} = -2 \sum (y_i - a_0 - a_1 x_i)$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum [(y_i - a_0 - a_1 x_i) x_i]$$

• Setting these derivatives equal to zero will result in a minimum

$$S_r = 0 = \sum y_i - \sum a_0 - \sum a_1 x_i$$
; $0 = \sum y_i x_i - \sum a_0 x_i - \sum a_1 x_i^2$

For i = 1 to n

$$na_0 + \left(\sum x_i\right)a_1 = \sum y_i$$
$$\left(\sum x_i\right)a_0 + \left(\sum x_i^2\right)a_1 = \sum x_i y_i$$

$$a_1 = \frac{n\Sigma x_i y_i - \Sigma x_i \Sigma y_i}{n\Sigma x_i^2 - (\Sigma x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

- Fit a straight line to the *x* and *y* values (1, 0.5), (2, 2.5), (3, 2.0), (4, 4.0), (5, 3.5), (6, 6.0), (7, 5.5)
- The following quantities can be computed:

$$n = 7$$
 $\sum x_i y_i = 119.5$ $\sum x_i^2 = 140$ $\sum x_i = 28$ $\bar{x} = \frac{28}{7} = 4$ $\sum y_i = 24$ $\bar{y} = \frac{24}{7} = 3.428571$

$$a_1 = \frac{7(119.5) - 28(24)}{7(140) - (28)^2} = 0.8392857$$

$$a_0 = 3.428571 - 0.8392857(4) = 0.07142857$$

• Computation for error analysis of the linear fit

y i	$(\mathbf{y}_i - \overline{\mathbf{y}})^2$	$(y_i - a_0 - a_1x_i)^2$
0.5	8.5765	0.1687
2.5	0.8622	0.5625
2.0	2.0408	0.3473
4.0	0.3265	0.3265
3.5	0.0051	0.5896
6.0	6.6122	0.7972
5.5	4.2908	0.1993
24.0	22.7143	2.9911
	0.5 2.5 2.0 4.0 3.5 6.0 5.5	0.5 8.5765 2.5 0.8622 2.0 2.0408 4.0 0.3265 3.5 0.0051 6.0 6.6122 5.5 4.2908

• Therefore, the least-squares fit is y = 0.07142857 + 0.8392857x

Quantification of Error of Linear Regression

• To determine the spread of the points around the line is of similar magnitude along the entire range of the data

the standard deviation,
$$S_y = \sqrt{\frac{S_t}{n-1}}$$
 the standard error of the estimate, $S_{y/x} = \sqrt{\frac{S_r}{n-2}}$

The correlation coefficient of determination, $r^2 = \frac{S_t - S_r}{S_t}$

- Compute the total standard deviation, the standard error of the estimate, and the correlation coefficient for the data in the previous example.
- The standard deviation is $s_y = \sqrt{\frac{22.7143}{7 1}} = 1.9457$
- The standard error of the estimate is $s_{y/x} = \sqrt{\frac{2.9911}{7-2}} = 0.7735$
- The correlation coefficient $r^2 = \frac{22.7143 2.9911}{22.7143} = 0.868$

These results indicate that 86.8 percent of the original uncertainty has been explained by the linear model.

Polynomial Regression

- The sample data is poorly represented by a straight line
- For these cases, a curve would be better suited to fit these data.
- To fit polynomials to the data can be accomplished using *polynomial* regression.

Polynomial Regression

- Suppose we want to fit a second-order polynomial or quadratic: $y = a_0 + a_1x + a_2x^2 + e$
- For this case the sum of the squares of the residuals is

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_i - a_2 x_i^2)^2$$

 We take its derivative with respect to each of the unknown coefficients of the polynomial

$$\frac{\partial S_r}{\partial a_0} = -2\sum (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S_r}{\partial a_1} = -2\sum x_i (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

$$\frac{\partial S_r}{\partial a_2} = -2\sum x_i^2 (y_i - a_0 - a_1 x_i - a_2 x_i^2)$$

Polynomial Regression

• These equations can be set equal to zero and rearranged to develop the following set of normal equations:

$$(n)a_0 + (\sum x_i)a_1 + (\sum x_i^2)a_2 = \sum y_i$$

$$(\sum x_i)a_0 + (\sum x_i^2)a_1 + (\sum x_i^3)a_2 = \sum x_i y_i$$

$$(\sum x_i^2)a_0 + (\sum x_i^3)a_1 + (\sum x_i^4)a_2 = \sum x_i^2 y_i$$

- The two-dimensional case can be easily extended to an *m*th order polynomial as $y = a_0 + a_1x + a_2x^2 + ... + a_mx_m + e$
- The standard error is

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

- Fit a second-order polynomial to the data (0, 2.1), (1, 7.7), (2, 13.6), (3, 27.2), (4, 40.2), (5, 61.1).
- From the given data,

$$m = 2$$
 $\sum x_i = 15$ $\sum x_i^4 = 979$
 $n = 6$ $\sum y_i = 152.6$ $\sum x_i y_i = 585.6$
 $\bar{x} = 2.5$ $\sum x_i^2 = 55$ $\sum x_i^2 y_i = 2488.8$
 $\bar{y} = 25.433$ $\sum x_i^3 = 225$

• Therefore, the simultaneous linear equations are

$$\begin{bmatrix} 6 & 15 & 55 \\ 15 & 55 & 225 \\ 55 & 225 & 979 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 152.6 \\ 585.6 \\ 2488.8 \end{Bmatrix}$$

• Solving these equations through a technique such as Gauss elimination gives $a_0 = 2.47857$, $a_1 = 2.35929$, and $a_2 = 1.86071$. Therefore, the least-squares quadratic equation for this case is

$$y = 2.47857 + 2.35929x + 1.86071x^2$$

X i	y i	$(y_i - \overline{y})^2$	$(y_i - a_0 - a_1x_i - a_2x_i^2)^2$
0	2.1	544.44	0.14332
1	7.7	314.47	1.00286
2	13.6	140.03	1.08158
3	27.2	3.12	0.80491
4	40.9	239.22	0.61951
5	61.1	1272.11	0.09439
Σ	152.6	2513.39	3.74657

• The standard error of the estimate based on the regression polynomial is $s_{y/x} = \sqrt{\frac{3.74657}{6-3}} = 1.12$

• The coefficient of determination is
$$r^2 = \frac{2513.39 - 3.74657}{2513.39} = 0.99851$$

Multiple Linear Regression

 A useful extension of linear regression is the case where y is a linear function of two or more independent variables

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

- For this two-dimensional case, the regression "line" becomes a "plane".
- The "best" values of the coefficients are determined by

$$S_r = \sum_{i=1}^n (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})^2$$

Multiple Linear Regression

• Differentiating with respect to each of the unknown coefficients

$$\frac{\partial S_r}{\partial a_0} = -2 \sum_i (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_1} = -2 \sum_i x_{1i} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

$$\frac{\partial S_r}{\partial a_2} = -2 \sum_i x_{2i} (y_i - a_0 - a_1 x_{1i} - a_2 x_{2i})$$

• Setting the partial derivatives equal to zero and expressing the result in matrix form as

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^2 & \sum x_{1i}x_{2i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^2 \end{bmatrix} = \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} \sum y_i \\ \sum x_{1i}y_i \\ \sum x_{2i}y_i \end{Bmatrix}$$

• The following data were calculated from the equation y = 5 +

$$4x_1 - 3x_2$$

Use multiple linear regression to fit these data.

0	0	5
2 2.5	1	10
2.5	2	9
1	3	0
4 7	6	0
7	2	27

 x_1

The result in matrix form

$$\begin{bmatrix} 6 & 16.5 & 14 \\ 16.5 & 76.25 & 48 \\ 14 & 48 & 54 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 54 \\ 243.5 \\ 100 \end{Bmatrix}$$

• The following data were calculated from the equation $y = 5 + 4x_1 - 3x_2$

Use multiple linear regression to fit these data.

• The result in matrix form

$$\begin{bmatrix} 6 & 16.5 & 14 \\ 16.5 & 76.25 & 48 \\ 14 & 48 & 54 \end{bmatrix} \begin{Bmatrix} a_0 \\ a_1 \\ a_2 \end{Bmatrix} = \begin{Bmatrix} 54 \\ 243.5 \\ 100 \end{Bmatrix}$$

<i>x</i> ₁	X ₂	У
0	0	5
0 2 2.5	1	10 9
2.5	2	9
1	2	0
4 7	6 2	3
7	2	27

• It can be solved using a method such as Gauss elimination for $a_0 = 5$, $a_1 = 4$ and $a_2 = -3$

which is consistent with the original equation from which these data were derived.