WE CLAIM:

1	1.	A method for substantially uniformly coating an interior surface of a
2	tubular struct	ure, said method comprising:
3	induci	ng a magnetic field having a given magnitude within the tubular
4		structure;
5	applyi	ng a bias at a given voltage to the tubular structure; and
6	expos	ing the interior surface to a gaseous precursor material under conditions
7		effective to convert a quantity of the gaseous precursor material to
8		ionized gaseous precursor material, the given magnitude and voltage
9		being effective to deposit the ionized gaseous precursor material onto
10		the interior surface and to convert the ionized gaseous precursor
11		material to a substantially uniform protective coating on the interior
12		surface.
1	2.	The method of claim 1, further comprising positioning a tubular
2	structure relat	tive to a magnetic field source such that the magnetic field is generated
3	from within t	he tubular structure.
1	3.	The method of claim 2, wherein said positioning includes providing a

- tubular structure having a high aspect ratio.4. The method of claim 2, wherein said positioning includes providing a
- 4. The method of claim 2, wherein said positioning includes providing a tubular structure comprising ferromagnetic material.

1	5.	The method of claim 2, wherein said positioning includes positioning a
2	magnetic asse	mbly, as the magnetic field source, within the tubular structure and
3	generating the	magnetic field therefrom.
1	6.	The method of claim 5, wherein said positioning comprises positioning
2	a plurality of	magnets within and along the length of the tubular structure, and said
3	inducing com	prises, generating a plurality of magnetic fields having the same
4	direction.	
1	7.	The method of claim 1, further comprising exposing the interior
2	surface of the	tubular structure to inert gas under conditions effective to clean the
3	interior surfac	e prior to exposing the interior surface to gaseous precursor material
4	and after indu	cing a magnetic field.
1	8.	The method of claim 7, wherein said gas is argon.
1	9.	The method of claim 1, wherein said exposing comprises selecting
2	gaseous precu	ersor material from the group consisting of SiH ₄ ; CH ₄ ; C ₂ H ₂ ; N ₂ ;
3	Cr(CO) ₆ and o	combinations thereof.
1	10.	The method of claim 1, further comprising rotating at least one of the
2	tubular structi	ure and the magnetic field source during said exposing.
1	11.	The method of claim 1, further comprising passing coolant during the
2	exposing in th	ne vicinity of said magnetic field source, thereby cooling said magnetic
3	field source.	

The method of claim 11, wherein said passing includes passing water

12.

in the vicinity of said magnetic field source.

l

1	13.	The method of claim 1, wherein said applying a bias includes applying
2	a positive bias	to said magnetic field source.
1	14.	The method of claim 1, wherein said exposing is performed under
2	conditions inc	luding a vacuum pressure of from about 0.5 to about 100 millitorr, and a
3	negative volta	ge having a pulse frequency of from about 1 Hz to about 20 kHz, at a
4	pulse width of	about 5 microseconds to about 40 microseconds applied to bias the
5	tubular structu	ıre.
1	15.	The method of claim 1, wherein said positioning includes positioning
2	the tubular str	ucture and the magnetic field source within a vacuum chamber, such
3	that said expo	sing is performed under a vacuum.
1		

1	16.	A method for coating an interior surface of a ferromagnetic tubular
2	structure, said	d method comprising:
3	positio	oning a ferromagnetic tubular structure and a magnetic field source in
4		the vicinity of one another;
5	operat	ting the magnetic field source to induce a magnetic field of a given
6		magnitude within the tubular structure;
7	applyi	ng a bias at a given voltage to the tubular structure; and
8	expos	ing the interior surface to a gaseous precursor material under conditions
9		effective to convert a quantity of the gaseous precursor material to
10		ionized gaseous precursor material, the given magnitude and the given
11		voltage being effective to deposit the ionized gaseous precursor
12		material onto the interior surface and to convert the ionized gaseous
13		precursor material to a protective coating along a length of the interior
14		surface.
1	17.	The method of claim 16, wherein said positioning includes providing a
2	tubular struct	ure having a high aspect ratio.
1	18.	The method of claim 16, wherein said positioning includes positioning
2	a magnetic fie	eld assembly, as the magnetic field source, within and along a length of
3	the tubular st	ructure and generating the magnetic field therefrom during said inducing
1	19.	The method of claim 16, further comprising exposing the interior
2	surface of the	tubular structure to inert gas, thereby cleaning the interior surface, prior
3	to exposing the interior surface to a gaseous precursor material and after inducing a	
4	magnetic field.	
1	20.	The method of claim 19, wherein said gas is argon.

1	21.	The method of claim 16, wherein said exposing includes selecting a
2	gaseous precu	rsor material from the group of gaseous precursor materials consisting
3	of SiH ₄ ; CH ₄ ;	; C ₂ H ₂ ; N ₂ ; Cr(CO) ₆ ; and combinations thereof.
1	22.	The method of claim 18, wherein said positioning includes positioning
2	a plurality of r	magnets within and along the length of the tubular structure, whereby,
3	during the ind	ucing, a plurality of magnetic fields having the same direction are
4	generated.	
1	23.	The method of claim 18 further comprising, rotating at least one of the
2	tubular structu	are and the magnetic field source during said exposing.
1	24.	The method of claim 23 further comprising, passing coolant during
2	exposing in th	e vicinity of said magnetic field assembly, thereby cooling said
3	magnetic field	l assembly.
1	25.	The method of claim 24, wherein said passing includes passing water
2	in the vicinity	of said magnetic field assembly.
1	26.	The method of claim 18, wherein said applying a bias includes
2	applying a pos	sitive bias to said magnetic field assembly.
1	27.	The method of claim 16, further comprising positioning the tubular
2	structure and t	the magnetic field source within a vacuum chamber, such that said

exposing is performed under a vacuum.

3

The method of claim 16, wherein said exposing is performed under conditions including a vacuum pressure of from about 0.5 to about 100 millitorr, and a negative voltage having a pulse frequency of from about 1 Hz to about 20 kHz, at a pulse width of about 5 microseconds to about 40 microseconds applied to bias the tubular structure.

1	29.	A method for substantially uniformly coating an interior surface of a
2	ferromagnetic (subular structure having a high aspect ratio, said method comprising:
3	position	ning a ferromagnetic tubular structure having a high aspect ratio
4		relative to a magnetic field source;
5	inducin	g a magnetic field having a given magnitude within the tubular
6		structure by operating the magnetic field source;
7	applyin	g a bias at a given voltage to the tubular structure; and
8	exposin	g the interior surface to a gaseous precursor material under conditions
9		effective to convert a quantity of the gaseous precursor material to
10		ionized gaseous precursor material, the given magnitude and the given
11		voltage being effective to deposit the ionized gaseous precursor
12		material onto the interior surface and to convert the ionized gaseous
13		precursor material to a substantially uniform protective coating along a
14		length of the interior surface.
1	30.	The method of claim 29, wherein said positioning includes positioning
2	a magnetic asso	embly, as the magnetic field source, within and along the length of the
3	tubular structur	re such that the magnetic field is generated from within the length of
4	the tubular stru	cture.
1	31.	The method of claim 30, further comprising exposing the interior
2	surface of the t	ubular structure to inert gas to clean the interior surface prior to
3	exposing the in	terior surface to a gaseous precursor material and after inducing a
4	magnetic field.	

1	32.	The method of claim 30, wherein said positioning includes positioning
2	the tubular str	ructure and the magnetic field source within a vacuum chamber, such
3	that said expo	osing is performed under a vacuum.
1	33.	The method of claim 32, further comprising rotating at least one of the
2	tubular struct	ure and the magnetic field source during said exposing.
1	34.	The method of claim 33, further comprising passing coolant during the
2	exposing in the	ne vicinity of said magnetic field assembly, thereby cooling the magnetic
3	field assembl	y.
1	35.	The method of claim 33, wherein said applying a bias includes
2	applying a po	sitive bias to the magnetic field source.
1	36.	The method of claim 29, wherein said exposing includes selecting a

gaseous precursor material from the group of gaseous precursor materials consisting

of SiH₄; CH₄; C₂H₂; N₂; Cr(CO)₆; and combinations thereof.

2

3

1	37. A tubular structure formed of a ferromagnetic material, said tubular
2	structure comprising an outside surface, an inside surface, and a gaseous deposition
3	product substantially uniformly coating said inside surface, wherein said tubular
4	structure has an aspect ratio of at least about 3.