STA261: Probability and Statistics II

Shahriar Shams

Week 9 (Likelihood Ratio Test, Goodness of Fit Test)

Winter 2020

Recap of Week 8

- Comparing two independent Normal Populations:
 - equality of two variances
 - equality of two means (variances known)
 - equality of two means (variances unknown)
- Comparing two population means (paired data)

Learning goals for this week

- Likelihood ratio test (LRT)
 - LRT for single population
 - LRT for two populations
 - Confidence Interval using LRT
- Wald and Score test (EXTRA)
- Goodness of Fit (GOF) test

Section 1

Likelihood Ratio Test (LRT) [Rice-P339]

Likelihood Ratio Test (LRT)-general definition

- Suppose we are testing $H_0: \theta \in \Omega_0$ vs. $H_1: \theta \in \Omega_1$
- Let $L(\theta)$ represent the likelihood function.
- The generalized likelihood ratio is defined as

$$\Lambda^* = \frac{\max_{\theta \in \Omega_0} [L(\theta)]}{\max_{\theta \in \Omega_1} [L(\theta)]}$$

- A "small" value of Λ^* provides evidence against H_0
- Finding a distribution of Λ^* might be very difficult

LRT: a special case

• A special case of the test statistic

$$\Lambda = \frac{\max_{\theta \in \Omega_0} [L(\theta)]}{\max_{\theta \in \Omega} [L(\theta)]} = \frac{\max_{\theta \in \Omega_0} [L(\theta)]}{L(\hat{\theta})}$$

where $\hat{\theta}$ is MLE of θ

- If $\hat{\theta} \in \Omega_0$ then $\Lambda = 1 \implies$ We will not reject H_0
- If $\hat{\theta} \notin \Omega_0$, we look for the most likely θ value in Ω_0 and check if it does a "good enough" job as it is done by the MLE.
- Λ value closer to 0 will provide evidence against the H_0

Theorem assigning a distribution to LRT

- Let, p=dim Ω be the number of free parameters in the whole parameter space.
- d= dim Ω_0 be the number of free parameters under the null.
- then we have this following result

$$-2ln\Lambda \xrightarrow{D} \chi^2_{df=p-d}$$

when H_0 is true.

- The proof is "out of scope" for the text book and for our course.
- We will only do examples where Ω_0 is a single point (like θ_0)

Subsection 1

LRT for single population

Example of LRT: Normal distribution with known σ

 $(X_1, X_2, ..., X_n) \stackrel{iid}{\sim} N(\mu, \sigma_0^2)$ with σ_0^2 known Test $H_0: \mu = \mu_0$ at level of significance, α

- $L(\mu) = (2\pi\sigma_0^2)^{-n/2} exp(-\frac{1}{2\sigma_0^2} \sum (x_i \mu)^2)$
- **2** Under H_0 , $L(\mu_0) = (2\pi\sigma_0^2)^{-n/2} exp(-\frac{1}{2\sigma_0^2}\sum_i (X_i \mu_0)^2)$
- **3** The denominator, we have to maximize $L(\mu)$. We know $L(\mu)$ is maximized at \bar{X}
- which gives $L(\hat{\mu}) = (2\pi\sigma_0^2)^{-n/2} exp(-\frac{1}{2\sigma_0^2}\sum (X_i \bar{X})^2)$
- Therefore,

$$\Lambda = \frac{L(\mu_0)}{L(\hat{\mu})}$$

6 Ω has 1 parameter and under H_0 it's $0 \implies p-d=1$

Example of LRT (cont...)

Recall:
$$\sum_{i} (X_i - \mu)^2 = \sum_{i} (X_i - \bar{X})^2 + n(\bar{X} - \mu)^2$$
 [week-3]

Continuing from previous slide,

$$\Lambda = exp(-\frac{1}{2\sigma_0^2} [\sum (X_i - \mu_0)^2 - \sum (X_i - \bar{X})^2])$$

$$\implies -2ln\Lambda = \frac{1}{\sigma_0^2} [\sum (X_i - \mu_0)^2 - \sum (X_i - \bar{X})^2]$$

$$= \frac{1}{\sigma_0^2} n(\bar{X} - \mu_0)^2$$

$$= \left(\frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{(n)}}\right)^2 \sim \chi_{(df=1)}^2$$

We reject H_0 if $-2ln\Lambda > \chi^2_{1-\alpha,(df=1)}$

LRT for Non-Normal distributions

- LRT allows us to test hypothesis for Non-normal distributions since all we need is the likelihood function evaluated at θ_0 and $\hat{\theta}$
- Here is an example I copied from the lecture slides of Alex Stringer (PhD student)

Suppose we have patients arriving at a hospital waiting room, randomly. We can model their wait times X_i according to an exponential distribution,

$$X_i \sim Exp(\theta), E(X) = \theta$$

The hospital claims that the average waiting time is 60 minutes. We go on a randomly selected day and observe that n=100 patients have an average wait time of $\bar{x}=75$ minutes.

Is the hospitals claim supported by the data?

LRT for $Exp(\theta)$

The hypothesis we wish to test is

$$H_0: \theta = 60$$

$$H_1: \theta \neq 60$$

The likelihood is

$$L(\theta|\mathbf{x}) = \frac{1}{\theta^n} \exp\left(-\frac{1}{\theta} \sum_{i=1}^n x_i\right)$$

and the MLE is \bar{X} .

LRT for $Exp(\theta)$ (cont...)

The likelihood ratio is then

$$\Lambda = \left(\frac{\bar{x}}{\theta_0}\right)^n \exp\left(n\left(1 - \frac{\bar{x}}{\theta_0}\right)\right)$$

and the test statistic is

$$-2\log\Lambda = -2n\left(\log\bar{x} - \log\theta_0 + 1 - \frac{\bar{x}}{\theta_0}\right) \sim \chi_1^2$$

With $\theta_0 = 60$, n = 100 and $\bar{x} = 75$, we evaluate

$$-2\log\Lambda = -2(100)\left(\log 75 - \log 60 + 1 - \frac{75}{60}\right) = 5.37$$

which we compare to $\chi^2_{1.0.95} = 3.84$.

Because 5.37 > 3.84, we reject H_0 at the 5% significance level.

LRT for $Exp(\theta)$ (cont...)

We can also compute the p-value of this test. The p-value is the probability of observing a result with as much or greater evidence against H_0 if H_0 is true. If H_0 is true, then $-2 \log \Lambda \sim \chi_1^2$, so

$$p - value = P(\chi_1^2 > 5.37) = 0.02$$

Another example

$(4, 10, 10, 4, 6, 8, 8, 3, 4, 4) \stackrel{iid}{\sim} Pois(\lambda)$. Test $H_0: \lambda = 5$

- $-2ln\Lambda = -2ln(0.3230648) = 2.259805$
- $\chi^2_{0.95,df=1} = 3.841459$
- § Since $-2ln\Lambda < \chi^2_{0.95,df=1}$ we fail to reject H_0
- Calculate the p-value...

Subsection 2

LRT for two populations

Comparing two Normal populations

• Suppose we have two independent Normal samples

$$X_1, X_2, ... X_n \sim N(\mu_x, \sigma_x^2)$$

and

$$Y_1, Y_2, ..., Y_m \sim N(\mu_y, \sigma_y^2)$$

where σ_x^2 and σ_y^2 are known.

• We want to test $H_0: \mu_x = \mu_y$ using LRT

Likelihood of the full data

- Since σ_x^2 and σ_y^2 are known, we have two unknown parameters: μ_x and μ_y
- Under H_0 , these two parameters are equal. So we can write $\mu_x = \mu_y = \mu \implies \text{Number of parameters under } H_0 \text{ is one.}$
- Unrestricted likelihood,

$$L(\mu_x, \mu_y) = (2\pi\sigma_x^2)^{-n/2} exp(-\frac{1}{2\sigma_x^2} \sum (X_i - \mu_x)^2) *$$
$$(2\pi\sigma_y^2)^{-m/2} exp(-\frac{1}{2\sigma_y^2} \sum (Y_i - \mu_y)^2)$$

• Finding the MLE of μ_x and μ_y and plugging into this equation gives us $L(\hat{\mu}_x, \hat{\mu}_y)$

Likelihood under $H_0: \mu_x = \mu_y = \mu$

- Under H_0 , μ is the only unknown parameter.
- The likelihood func.

$$L(\mu) = (2\pi\sigma_x^2)^{-n/2} exp(-\frac{1}{2\sigma_x^2} \sum (X_i - \mu)^2) *$$
$$(2\pi\sigma_y^2)^{-m/2} exp(-\frac{1}{2\sigma_y^2} \sum (Y_i - \mu)^2)$$

 \bullet Finding the MLE of μ and plugging into this equation gives us $L(\hat{\mu})$

Test statistic and distribution

• Test statistic,

$$-2ln\Lambda = -2ln\frac{L(\hat{\mu})}{L(\hat{\mu}_x, \hat{\mu}_y)}$$

• Under H_0 , $-2ln\Lambda \sim \chi^2_{(df=1)}$

Numerical example

 $(16.27, 11.66, 14.05, 15.43, 18.74, 13.42, 17.39, 18.71, 11.18, 13.52, 16.74, 5.43, 16.45, 10.75, 19.06) \sim N(\mu_x, \sigma_x = 3);$ $(10.89, 7.57, 15.39, 8.43, 12.33, 7.43, 5.56, 18.07, 0.35, 7.62) \sim N(\mu_y, \sigma_y = 4)$

- $\hat{\mu}_x = \bar{x} = 14.587 \text{ and } \hat{\mu}_y = \bar{y} = 9.364$
- $\hat{\mu} = 13.162$
- $L(\hat{\mu}) = 2.098396 * 10^{-34}$
- $L(\hat{\mu}_x, \hat{\mu}_y) = 1.033094 * 10^{-31}$
- **5** Test statistic = $-2ln\Lambda = 12.398 \implies p val = 0.00043$

Subsection 3

Constructing Confidence Interval using LRT

CI using LRT

- Under H_0 , $-2ln\Lambda \xrightarrow{D} \chi^2_{df=p-d}$
- We reject H_0 if $-2ln\Lambda > \chi^2_{1-\alpha,(df=p-d)}$
- Conversely, we will fail to reject if $-2ln\Lambda < \chi^2_{1-\alpha,(df=p-d)}$
- Therefore (1α) level CI for θ is the interval of θ values for which

$$-2ln\Lambda < \chi^{2}_{1-\alpha,(df=p-d)}$$

$$\implies L(\theta) > L(\hat{\theta}) * exp\left(-\frac{\chi^{2}_{1-\alpha,(df=p-d)}}{2}\right)$$

• For the hospital waiting room example, 95% CI for θ is the solution of $-2(100) \left(\log 75 - \log \theta + 1 - \frac{75}{\theta}\right) < 3.84$ which is (62.037, 91.841)

Section 2

Wald and Score Test (EXTRA)

Large sample property of MLE

We know from week- 4 and 5 that

$$\frac{\hat{\theta} - \theta_0}{\sqrt{1/nI(\theta_0)}} \xrightarrow{D} N(0, 1)$$

and

$$\frac{S(\theta_0)}{\sqrt{nI(\theta_0)}} \xrightarrow{D} N(0,1)$$

Wald test

A common test statistic proposed by Abraham Wald,

$$\frac{\hat{\theta} - \theta_0}{SE[\hat{\theta}]} \xrightarrow{D} N(0, 1)$$

Wald proposed the use of observed-fisher information to estimate $SE[\hat{\theta}]$.

Observed Fisher Information (E&R page 364)

$$= -\frac{\partial^2}{\partial \theta^2} \log f(X_1, X_2, ..., X_n | \theta) \Big|_{\theta = \hat{\theta}}$$

(in the expression of the second-derivative of the negative log-likelihood replace θ by $\hat{\theta}$)

Testing $\theta = \theta_0$ for Bernoulli dist using Wald test

- Suppose $X_1, X_2, ... X_n \stackrel{iid}{\sim} Bern(\theta)$
- $l(\theta) = \sum X_i log\theta + (n \sum X_i) log(1 \theta)$
- $l'(\theta) = S(\theta) = \frac{\sum X_i}{\theta} \frac{n \sum X_i}{1 \theta} \implies \hat{\theta} = \bar{X}$
- $l''(\theta) = -\frac{\sum X_i}{\theta^2} \frac{n \sum X_i}{(1-\theta)^2}$
- Obs. Fisher Info = $-l''(\theta)|_{\theta=\bar{X}} = \frac{n}{\bar{X}} + \frac{n}{1-\bar{X}} = \frac{n}{\bar{X}(1-\bar{X})}$
- Wald Test Stat, $\frac{\bar{X} \theta_0}{\sqrt{\frac{\bar{X}(1 \bar{X})}{n}}} \xrightarrow{D} N(0, 1)$

Score test

Score test uses the property of

$$\frac{S(\theta_0)}{\sqrt{nI(\theta_0)}} \xrightarrow{D} N(0,1)$$

In the denominator, we calculate the Fisher Information under the null hypothesis.

Testing $\theta = \theta_0$ for Bernoulli dist using Score test

- Suppose $X_1, X_2, ... X_n \stackrel{iid}{\sim} Bern(\theta)$
- $l(\theta) = \sum X_i log\theta + (n \sum X_i) log(1 \theta)$
- $l'(\theta) = S(\theta) = \frac{\sum X_i}{\theta} \frac{n \sum X_i}{1 \theta}$
- $S(\theta_0) = \frac{\sum X_i}{\theta_0} \frac{n \sum X_i}{1 \theta_0} = \frac{n(\bar{X} \theta_0)}{\theta_0(1 \theta_0)}$
- $l''(\theta) = -\frac{\sum X_i}{\theta^2} \frac{n \sum X_i}{(1 \theta)^2}$
- Fisher Info = $-E[l''(\theta)]|_{\theta=\theta_0} = \frac{n}{\theta_0} + \frac{n}{1-\theta_0} = \frac{n}{\theta_0(1-\theta_0)}$
- Score Test Stat, $\frac{\bar{X}-\theta_0}{\sqrt{\frac{\theta_0(1-\theta_0)}{n}}} \xrightarrow{D} N(0,1)$

Comments on Wald, Score and LRT

- Computationally, Wald test is easier to conduct.
- \bullet For large n, all three of these tests perform the same.
- \bullet For small n, LRT is preferred over the others.

- You don't need to study Wald and Score test for the final exam.

 These are extra materials.
- You will find these three tests in almost all the advanced courses

Section 3

Goodness of Fit test

Chi-sq goodness of fit test [E&R-P490]

- This test is used to assess whether or not a categorical random variable W, which takes finite values $\{1, 2, ..., k\}$, has a specified probability measure P.
- When we have discrete random variable which takes infinitely many values, we partition the possible values into k categories.
- When we have a continuous random variable we partition the real line into k sub-intervals.
- \bullet Naturally, the counts of these k categories form a multinomial distribution.

Test statistic and distribution

- Let $X_1, X_2, ..., X_k$ be the observed counts of category 1, 2, ..., k respectively.
- We can write,

$$(X_1, X_2, ..., X_k) \sim Multinomial(n, p_1, p_2, ..., p_k)$$

- We know, $E[X_i] = np_i$ for i = 1, 2, ..., k
- Test statistic,

$$X^{2} = \sum_{i=1}^{k} \frac{(X_{i} - np_{i})^{2}}{np_{i}} \xrightarrow{D} \chi_{(df=k-1)}^{2}$$

• It is recommended to ensure that $E[X_i] = np_i \ge 1$ for every i

Proof for a simple case (k=2)

We want to show

$$X^{2} = \sum_{i=1}^{2} \frac{(X_{i} - np_{i})^{2}}{np_{i}} \xrightarrow{D} \chi_{(df=1)}^{2}$$

Homework...

Re-wording the test statistic

we can write the same test as following:

$$X^{2} = \sum_{i=1}^{k} \frac{\text{(Observed count of i - expected count of i)}^{2}}{\text{expected count of i}} \xrightarrow{D} \chi^{2}_{(df=k-1)}$$

Numerical example [Example 9.1.7, E&R-P491]

Suppose we have 10000 random numbers generated from a Uniform[0,1] distribution. After dividing them into 10 equal length bins we have these following counts.

i		1	2	3	4	5	6	7	8	9	10
Σ	ζ_i	993	1044	1061	1021	1017	973	975	965	996	955

Test if these numbers look uniform or not.

Numerical example (cont...)

- If the numbers are really from a Uniform[0,1] distribution then expected counts for each cell is $10000 * \frac{1}{10} = 1000$
- So we have,

i	1	2	3	4	5	6	7	8	9	10
Observed	993	1044	1061	1021	1017	973	975	965	996	955
Expected	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

• test stat,

$$X^{2} = \left(\frac{(993 - 1000)^{2}}{1000} + \frac{(1044 - 1000)^{2}}{1000} + \dots + \frac{(955 - 1000)^{2}}{1000}\right) = 11.056$$

- p-value = 1-pchisq(11.056,df=9) = 0.27189
- We don't have any evidence to reject the statement that these number are from a Uniform[0,1] distribution.
- In naive words, "they look uniform".

Some comments on the Uniform example

- The choice of 10 bins is completely arbitrary.
- We could have picked 15 or 20 (or some other number) equal bins. The process remains same just the degrees of freedom will be different.
- Not necessarily we need cells with equal probabilities.
- Ques: what if we wanted to check if the numbers are from a $Unif[0,\theta]$ distribution, where θ is unknown...

Theorem 9.1.2 [E&R-P493]

- If $p_1, p_2, ..., p_k$ are **unknown** then we need to estimate them.
- Under H_0 these will be functions of the associated parameter (θ) .
- In this case,

$$(X_1, X_2, ..., X_k) \sim Multinomial(n, p_1(\theta), p_2(\theta), ..., p_k(\theta))$$

• After estimating θ by $\hat{\theta}$, Test statistic,

$$X^{2} = \sum_{i=1}^{k} \frac{(X_{i} - np_{i}(\hat{\theta}))^{2}}{np_{i}(\hat{\theta})} \xrightarrow{D} \chi^{2}_{(df=k-1-dim(\Omega))}$$

where $dim(\Omega)$ represents the number of parameters needed to be estimated based on the data in order to calculate the p_i 's

Example [Example 9.1.8, E&R-P493]

Testing for exponentiality

Suppose life-lengths of light bulbs (Y_i) follows an $Exponential(\beta)$, where β is unknown. We have the partitions as

$$(0,1],(1,2],(2,3],(3,\infty)$$

Based on sample of size, n = 30, the observed counts are 5,16,8,1 H_0 : The true model is $Exponential(\beta)$

• The first goal of this problem is to guess the best β (finding the MLE).

Exponential example continues..

- We can find θ using two different approaches:
 - if the life-lengths of the 30 bulbs were available (lets call them $Y_1, Y_2, ..., Y_{30}$) then

$$L(\beta) = \beta^{30} exp[-\beta \sum y_i] \implies \hat{\beta} = \frac{1}{\bar{y}}$$

• if all we have is the counts of Y_i 's that fall into those four partitions (which is the case in this example), we can define,

$$L(\beta) = (1 - e^{-\beta})^5 (e^{-\beta} - e^{-2\beta})^{16} (e^{-2\beta} - e^{-3\beta})^8 (e^{-3\beta})^1$$

where, $(1 - e^{-\beta}) = P(Y_i \in (0, 1])$, similarly the other terms. Solving it numerically (using any software), $\hat{\beta} = 0.603535$

Exponential example continues...

• Using $\hat{\beta} = 0.603535$ we can calculate,

$$p_1 = 1 - e^{-0.603535}$$
 = 0.453125
 $p_2 = e^{-0.603535} - e^{-2*0.603535}$ = 0.247803
 $p_3 = \dots$ = 0.135517
 $p_4 = \dots$ = 0.163555

- Expected counts: 30 * 0.453125 = 13.59375, similarly the other three: 7.43409, 4.06551, 4.90665
- Test stat = $\frac{(5-13.59375)^2}{13.59375} + \frac{(16-7.43409)^2}{7.43409} + \dots \approx 22.22$
- p-val=1-pchisq(22.22,df=2) = 0.000015
- We reject $H_0 \Longrightarrow$ We have strong evidence against $Exp(\beta)$ being the true model for the these data.

Explanation of the $L(\beta)$ from slide 40

- Let's take an example of the first number (Y_1) .
- If we knew the actual observed number y_1 (say 0.78) then the contribution of Y_1 in the likelihood function is $f_{\beta}(y_1) = \beta exp(-\beta * y_1)$
- If we don't observe the actual y_1 rather all we know is $Y_1 \in (0, 1]$ then the contribution of Y_1 in the likelihood function is $P(Y_1 \in (0, 1]) = F_{\beta}(1) F_{\beta}(0) = 1 e^{-\beta}$
- There are 5 numbers that belong to this range, hence together their contribution is $(1 e^{-\beta})^5$
- Similarly the other terms...

Assignment (Non-credit)

Evans and Rosenthal

Exercise (without the part on residuals) 9.1.5, 9.1.6, R(9.1.25)

John A. Rice

Exercise 9: 36, 37, 40, 43, 44