平成24年2月3日(金)3時限施行数学B1(-各) 理工学部数学B1坦当者

(90分)

次の1から5に答えなさい。解答は解答用紙の所定の欄に記入すること。

1. (1) 次の不定積分を求めなさい。

$$\int \frac{dx}{(x^2+2)(x+1)}$$

(2) 次の定積分を求めなさい。

$$\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2 - x + 1}}$$

2. 次の2重積分を求めなさい。

(1)
$$\iint_D \frac{(x+y)^2}{x+y+1} dx dy, \quad D: 0 \le x \le 1, \ 0 \le y \le 1$$

(2)
$$\iint_D (x+2y)\sin(x-y)dxdy$$
, $D: 0 \le x-y \le \pi$, $0 \le x+y \le \pi$

3. 次の累次積分の積分範囲を図示し、積分順序を交換してその値を求めなさい。

$$I = \int_0^1 \left(\int_{x^2}^1 x e^{-y^2} dy \right) dx$$

- **4.** xyz 空間内の曲面 $A = \{(s-t, s+2t, st) \mid 0 \le s \le t \le 1\}$ を考える。
 - (1) z 方向の成分が正の A の単位法線ベクトル n を求めなさい。
 - (2) A の法線の向きを (1) で求めた \mathbf{n} とするとき、ベクトル場 $\mathbf{f}=(y-1,z,x^2)$ の A 上での面積分 $\iint_A \mathbf{f} \cdot \mathbf{n} \, dS$ を求めなさい。
- 5. xy 平面において、(1,0) から (2,1) にいたる線分を Γ_1 、(2,1) から (2,5) にいたる線分を Γ_2 、(2,5) から (1,3) にいたる線分を Γ_3 、(1,3) から (1,0) にいたる線分を Γ_4 とし、 $\Gamma = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4$ とする。このとき、 Γ に沿っての線積分 $I = \int_{\Gamma} (x^3 + x^2y^2) dx + (xy y^3) dy$ を求めなさい。