Exoplanet Measures

Kevin Hoy, Joshua Kingsbury, Avidaan Srivastava, Logan Steele

THE OHIO STATE UNIVERSITY

Goals

Obtain estimates for

- Mass
- Radius
- Density

Explore data archives and computational tools

Modeling of detection data

Motivation

Observables are limited

Wealth of information inferred from analysis

Mass-Radius Relation

- Improved modeling
- Formation tendencies and limitations

Uncertainties

Propagation thru to derived values

$$\delta = \left(\frac{R_p}{R_*}\right)^2$$

$$R_p = \sqrt{\delta} \cdot R_*$$

Radius

Rely on transit light curve data

Observable:

Changes in stellar luminosity

Parameters:

• δ , R*

Derived:

Radius Estimate

Light Curve Model

Light curve model using *pylightcurve*

• pylightcurve imports own data

$$K = \frac{m_p}{m_*} \cdot \sqrt{\frac{Gm_*}{a}} \cdot \sin i \; ; \; i \approx 90^{\circ}$$

$$m_p = K \cdot m_* \cdot \sqrt{\frac{a}{Gm_*}}$$

Mass

Rely on radial velocity data

Observable:

Red/Blue shift in spectra

Parameters:

• G, m_*, a, K, i

Derived:

Mass Estimate

Lomb-Scargle Periodogram

Period identification

Radial Velocity Phase

Radial Velocity Curve Model

Orbital solution using EXOFAST

Input:

- Light Curve data
- Radial Velocity Data

Parameters Output:

• P, e, ω , t₀, K

Model radial velocity curve using radvel

Density and Uncertainties

Radius Uncertainty

$$\sigma_{R_p} = R_p \left(\frac{\sigma_{\overline{\delta}}}{\overline{\delta}} \cdot \frac{1}{2} - \frac{\sigma_{R_*}}{R_*} \right) \qquad \sigma_{\overline{\delta}} = \frac{\sigma_{\delta}}{\sqrt{N}}$$

$$\sigma_{\overline{\delta}} = \frac{\sigma_{\delta}}{\sqrt{N}}$$

Mass Uncertainty

$$\sigma_{m_p} = \frac{1}{2\sqrt{G}} \sqrt{\frac{K^2 m_*}{a} \cdot \sigma_a^2 + \frac{K^2 a}{m_*} \cdot \sigma_{m_*}^2 + 4m_* a \cdot \sigma_K^2}$$

$$\sigma_K = \frac{\sqrt{\sigma_{\text{max}}^2 + \sigma_{\text{min}}^2}}{2}$$

Density and Uncertainty

$$\rho_p = \frac{m_p}{V_p} = \frac{m_p}{\frac{4}{3}\pi R_p^3}$$

$$\sigma_{\rho_p} = \rho_p \left(\frac{\sigma_{m_p}}{m_p} + 3 \frac{\sigma_{R_p}}{R_p} \right)$$

Modeling/Parameters

$$R_p = \sqrt{\delta} \cdot R_*$$

 δ - 0.024 ± 0.004

 R_* - 0.783 ± 0.013 R_{Sun}

Modeling/Parameters

$$m_p = K \cdot m_* \cdot \sqrt{\frac{a}{Gm_*}}$$

 $K - 197.0 \pm 1.0 \text{ m s}^{-1}$

 $a - 0.0314 \pm 0.0004$ AU

 m_* - 0.84 ± 0.02 M_{Sun}

 $G - 6.67408 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^{-2}$

10

Estimates vs Accepted

	Radius (R_Jup)	Mass (M_Jup)	Density (Kg m ⁻³)
Estimate	1.19 ± 0.07	1.124 ± 0.016	832.09 ± 156.17
Accepted	1.13 ± 0.01	1.13 ± 0.08	943 ± 77
Source	Stassun et al. 2017	Stassun et al. 2017	Bonomo et al. 2017

Archive Comparison

Chen and Kipping

 $R \sim M^{-0.04}$

Given calculated mass of 1.124 ± 0.016 M_jup

0.9953 ± 0.0006 R_jup

Good 1st order approximation

Accepted Value
1.13 ± 0.01 R_jup
Stassun et al. 2017

Conclusion

Our derived measures are consistent

- with values obtained from tools
- with accepted values

HD 189733 b is a prime example of mass/radius/density relation

Quest-ions.

"L" is Optical Depth

A

Limb Darkening

16

radvel orbital solution params

K - 202.283082 m s⁻¹

P - 2.21863 days

e - 0.019434

ω - 83.30°

*t*_o - 2453935.531264

17

Plotting Orbital Phase

$$M(t_{obs}) = \frac{(t_{obs} - T_0) \bmod P}{P}$$

Startig with the parenthesis in the numerator; for every time observed, we want it's difference from the start of a period to the end. The T_0 in the equation offsets the phase of the sinusoid, and would be set to the time when the potential planet is at the point in its orbit between the star and Earth (when the star would be moving radially towards Earth). We then want to take the modulos of the resulting time to get its point in time within a single period. Finally, we normalize the value by dividing by the period. The result is a value between 0 and 1 for each radial velocity that when plotted should show a single noisy sinusoid if the "best frequency" was accurate.