Planen and Evaluieren von Machine Learning Experimenten

Marina Sedinkina Folien von Benjamin Roth

CIS LMU München

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves
- Zusammenfassung und praktische Tipps

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves

2 Zusammenfassung und praktische Tipps

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves

Zusammenfassung und praktische Tipps

- Welches Verfahren / Setup sollte man als erstes implementieren?
- Was könnte man versuchen, um davon ausgehend bessere Ergebnisse zu erzielen?

- Welches Verfahren / Setup sollte man als erstes implementieren?
 - So einfach wie möglich.
 - Wenige Annahmen.
 - Schnell zu implementieren.
- Was könnte man versuchen, um davon ausgehend bessere Ergebnisse zu erzielen?
 - Mehr Daten
 - Weniger Features (Mindestvorkommen)
 - Zusätzliche Features
 - ▶ Andere Repräsentation der Features (Featurekombinationen, ...)
 - Mehr/Weniger Regularisierung, andere Hyperparameter

- Klassifizierung von Email Spam: Angenommen, es wurde ein Klassifikator (SVM) auf den Trainingsdaten trainiert
- Auf einem neuen Datensatz ergibt sich eine hohe Fehlerquote.
- Was sollte als nächstes ausprobiert werden?
 - Mehr Daten
 - Weniger Features (Mindestwortfrequenz)
 - Zusätzliche Features (linguistische Analyse)
 - Andere Repräsentation der Features (Featurekombinationen, ...)
 - Mehr/Weniger Regularisierung, andere Hyperparameter

- Klassifizierung von Email Spam: Angenommen, es wurde ein Klassifikator (SVM) auf den Trainingsdaten trainiert
- Auf einem neuen Datensatz ergibt sich eine hohe Fehlerquote.
- Was sollte als nächstes ausprobiert werden?
 - Mehr Daten
 - Weniger Features (Mindestwortfrequenz)
 - Zusätzliche Features (linguistische Analyse)
 - ▶ Andere Repräsentation der Features (Featurekombinationen, ...)
 - Mehr/Weniger Regularisierung, andere Hyperparameter
- Manche dieser Optionen sind für sich genommen bereits ein umfangreiches Projekt.
- Die Frage wie weiter vorgegangen wird, sollte systematisch entschieden werden! (nicht intuitiv!)

Fehlerdiagnostik

- Diagnostik: Verfahren um herauszufinden, was funktionieren könnte, und was nicht.
- Orientierungshilfe, wie die Vorhersagequalität eines machine learning-Algorithmus' verbessert werden könnte.
- Die Implementierung einer Fehlerdiagnostik nimmt Zeit in Anspruch.

Performanz-Maße

- Ein Performanz-Maß ermöglicht die Vorhersagequalität eines Algorithmus quantitativ festzustellen
- Welches Maß verwendet werden kann, hängt von der Art der Aufgabe ab:
 - ► Klassifikation: Accuracy, F1-Score
 - Ranking: Mean Average Precision
 - Regression: Mean Squared Error
 - Spezialmaße: BLEU, ...

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves
- Zusammenfassung und praktische Tipps

Aufteilung der Daten

• Erster Ansatz: Daten in Trainings und Testdatensatz aufteilen.

Email Betreff	Label
y 2 k - texas log	1
emerging small cap	0
re : patchs work better then pillz	0
meter 1431 - nov 1999	1
re : lyondell citgo	1
dobmeos with hgh my energy level has gone up	0
re : entex transistion	1
your prescription is ready oxwq s f e	0
get that new car 8434	0
entex transistion	1
unify close schedule	1
await your response	0

Auswahl eines Modells

- Folgende Modelle werden durchprobiert:
 - ▶ 100 Merkmale
 - ▶ 1000 Merkmale
 - ▶ 10000 Merkmale
- Option 1: Optimiere Parameter f
 ür jedes der Modelle (anhand Trainingsset), und wähle Model anhand des Performanz-Maßes auf dem Test-set.
- Angenommen das Modell mit 1000 Merkmalen gibt das beste Ergebnis.
- Ist das Performanz-Maß auf den Testdaten eine korrekte Schätzung der in Zukunft zu erwartenden Performanz?

Auswahl eines Modells

- Folgende Modelle werden durchprobiert:
 - ▶ 100 Merkmale
 - ▶ 1000 Merkmale
 - ▶ 10000 Merkmale

•

- Option 1: Optimiere Parameter f
 ür jedes der Modelle (anhand Trainingsset), und wähle Model anhand des Performanz-Maßes auf dem Test-set.
- Angenommen das Modell mit 1000 Merkmalen gibt das beste Ergebnis.
- Ist das Performanz-Maß auf den Testdaten eine korrekte Schätzung der in Zukunft zu erwartenden Performanz?
- Antwort: Nein. Der zusätzliche Parameter "Anzahl der Merkmale" ist auf das Testset überangepasst.

Auswahl eines Modells

- Besser: Daten in Trainings-, Kreuzvalidierungs- and Testdaten aufteilen (z.B. 60%–20%–20%).
- Kreuzvalidierungsdaten werden auch Entwicklungsdaten genannt (cross-validation set, development set).

Subject	Label
y 2 k - texas log	1
emerging small cap	0
re : patchs work better then pillz	0
meter 1431 - nov 1999	1
re : lyondell citgo	1
dobmeos with hgh my energy level has gone up	0
re : entex transistion	1
your prescription is ready oxwq s f e	0
get that new car 8434	0
entex transistion	1
unify close schedule	1
await your response	0

Trainings- / Kreuzvalidierungs- / Test-Fehler

- Merkmalsgewichte werden auf Trainingsdaten geschätzt.
- Das Modell (Merkmale, Hyperparameter) wird anhand der Kreuzvalidierungsdaten ausgewählt.
- Die zu erwartende Performanz des Models wird anhand der Testdaten ermittelt.
- Ergebnisse auf Trainings- oder Kreuzvalidierungsdaten können nicht als Berwertung des Algorithmus aufgefasst werden!

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves
- Zusammenfassung und praktische Tipps

- Richtige Hyperparameter auszuwählen ist ein Teil des Modelltrainings!
- Viele Hyperparameter:
 - embedding_size $\in \{10, ..., 1000\}$
 - hidden_size ∈ {10, ..., 1000}
 - ▶ $11_{regularizer} \in \{10, ..., 1000\}$
 - ▶ 12_regularizer $\in \{10, ..., 1000\}$
 - ▶ dropout \in {10, ..., 1000}
 - ▶ optimizer \in {rmsprop, adagrad, sgd}
 - **.**..
 - window size $\in \{1, 2, 3\}$
- Ansatz 1: Grid-Suche, geschachtelte for-Schleife: Probiere alle möglichen Wertekombinationen aus und wähle die beste Kombination anhand des Validierungsdatensatzes aus.
- Problem: der Suchraum über alle mögliche Kombinationen wird zu groß

Beispiel für English: Hyperparameter Optimization

Beispiel für Deutsch: Hyperparameter Optimization

 Ansatz 2, Sampling: Für jeden der verschiedenen Parameter wähle Werte aus und führe so viele Konfigurationen aus, wie du dir leisten kannst (z. B. 100). Wähle Model anhand des Performanz-Maßes auf dem Entwiscklungset aus.

- Ansatz 2, Sampling: Für jeden der verschiedenen Parameter wähle Werte aus und führe so viele Konfigurationen aus, wie du dir leisten kannst (z. B. 100). Wähle Model anhand des Performanz-Maßes auf dem Entwiscklungset aus.
- Intuition:

 Ansatz 2, Sampling: Für jeden der verschiedenen Parameter wähle Werte aus und führe so viele Konfigurationen aus, wie du dir leisten kannst (z. B. 100). Wähle Model anhand des Performanz-Maßes auf dem Entwiscklungset aus.

Intuition:

▶ Einige Parameter sind unabhängig von den anderen Parameter. Es ist wichtiger, gute Werte für diese Parameter auszuwählen, als alle Kombinationen auszuprobieren.

 Ansatz 2, Sampling: Für jeden der verschiedenen Parameter wähle Werte aus und führe so viele Konfigurationen aus, wie du dir leisten kannst (z. B. 100). Wähle Model anhand des Performanz-Maßes auf dem Entwiscklungset aus.

Intuition:

- Einige Parameter sind unabhängig von den anderen Parameter. Es ist wichtiger, gute Werte für diese Parameter auszuwählen, als alle Kombinationen auszuprobieren.
- Einige Parameter verbessern die Ergebnisse nur ein bisschen. Verschwende keine Zeit, diese Parameter zu untersuchen. Untersuche andere Parameter.

 Ansatz 2, Sampling: Für jeden der verschiedenen Parameter wähle Werte aus und führe so viele Konfigurationen aus, wie du dir leisten kannst (z. B. 100). Wähle Model anhand des Performanz-Maßes auf dem Entwiscklungset aus.

Intuition:

- Einige Parameter sind unabhängig von den anderen Parameter. Es ist wichtiger, gute Werte für diese Parameter auszuwählen, als alle Kombinationen auszuprobieren.
- Einige Parameter verbessern die Ergebnisse nur ein bisschen. Verschwende keine Zeit, diese Parameter zu untersuchen. Untersuche andere Parameter.
- Praktische Tipps:

 Ansatz 2, Sampling: Für jeden der verschiedenen Parameter wähle Werte aus und führe so viele Konfigurationen aus, wie du dir leisten kannst (z. B. 100). Wähle Model anhand des Performanz-Maßes auf dem Entwiscklungset aus.

Intuition:

- Einige Parameter sind unabhängig von den anderen Parameter. Es ist wichtiger, gute Werte für diese Parameter auszuwählen, als alle Kombinationen auszuprobieren.
- Einige Parameter verbessern die Ergebnisse nur ein bisschen. Verschwende keine Zeit, diese Parameter zu untersuchen. Untersuche andere Parameter.

• Praktische Tipps:

```
E.g.: 0.01, 0.1, 1, 10, 100
or: 0.01, 0.02, 0.1, 0.3, 1,3, 10, 30, 100
or: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100
```


 Ansatz 2a: Mache Sampling nur über einen kleinen "sinnvollen" Bereich von Parameterwerten.

- Ansatz 2a: Mache Sampling nur über einen kleinen "sinnvollen" Bereich von Parameterwerten.
 - ► Falls einige Werte an der Grenze liegen:

- Ansatz 2a: Mache Sampling nur über einen kleinen "sinnvollen" Bereich von Parameterwerten.
 - ► Falls einige Werte an der Grenze liegen:
 - ► Erweitere den Bereich an diesen Grenzen manuell (Konfigurationsdatei / den Code bearbeiten) und optimiere die Parameter erneut

- Ansatz 2a: Mache Sampling nur über einen kleinen "sinnvollen" Bereich von Parameterwerten.
 - ► Falls einige Werte an der Grenze liegen:
 - ► Erweitere den Bereich an diesen Grenzen manuell (Konfigurationsdatei / den Code bearbeiten) und optimiere die Parameter erneut
- Ansatz 2b: Ansatz 2a automatisieren

- Ansatz 2a: Mache Sampling nur über einen kleinen "sinnvollen" Bereich von Parameterwerten.
 - ► Falls einige Werte an der Grenze liegen:
 - ► Erweitere den Bereich an diesen Grenzen manuell (Konfigurationsdatei / den Code bearbeiten) und optimiere die Parameter erneut
- Ansatz 2b: Ansatz 2a automatisieren
 - Erweitere den Teilbereich, wenn der beste Wert nach n Iterationen auf einer Grenze liegt

- Ansatz 2a: Mache Sampling nur über einen kleinen "sinnvollen" Bereich von Parameterwerten.
 - ► Falls einige Werte an der Grenze liegen:
 - Erweitere den Bereich an diesen Grenzen manuell (Konfigurationsdatei / den Code bearbeiten) und optimiere die Parameter erneut
- Ansatz 2b: Ansatz 2a automatisieren
 - Erweitere den Teilbereich, wenn der beste Wert nach n Iterationen auf einer Grenze liegt
- Mehr Ideen: Yoshua Bengio, "Practical recommendations for gradient-based training of deep architectures"

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves
- Zusammenfassung und praktische Tipps

Feststellen von Bias oder Variance

- Bias: Unteranpassung an Trainingsdaten (underfit).
 - ► Modell nicht "mächtig" genug.

• Variance: Überanpassung an Trainingsdaten (overfit).

Feststellen von Bias oder Variance

- Bias: Unteranpassung an Trainingsdaten (underfit).
 - ► Modell nicht "mächtig" genug.
 - Zu wenige Merkmale?
 - ► Zu viel Regularisierung?
- Variance: Überanpassung an Trainingsdaten (overfit).
 - Zu viele Parameter/Merkmale?
 - Zu wenig Regularisierung?
 - Zu wenige Daten?

Fehlerrate bei Erhöhen der Modellkapazität

Diagnose: Underfitting oder Overfitting?

- Angenommen der Crossvalidierungsfehler is groß.
- Ist es ein Bias- (underfitting) oder Variance- (overfitting) Problem?

Diagnose: Underfitting oder Overfitting?

- Angenommen der Crossvalidierungsfehler is groß.
- Ist es ein Bias (underfitting) oder Variance (overfitting) Problem?

Diagnose: Underfitting oder Overfitting

- Bias (underfitting):
 - train error hoch
 - ▶ cv error ≈ train error
- Variance (overfitting):
 - train error niedrig
 - cv error >> train error

Übersicht

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves
- Zusammenfassung und praktische Tipps

Learning Curves

- "Learning Curve": Fehlerfunktion in Abhängigkeit von der Datenmenge.
- Je mehr Daten im Training vorhanden sind, desto schwieriger ist es ein Modell zu finden, dass alle Trainingsdaten perfekt modelliert ...

Learning Curves

- "Learning Curve": Fehlerfunktion in Abhängigkeit von der Datenmenge
- Je mehr Daten im Training vorhanden sind, desto schwieriger ist es ein Modell zu finden, dass alle Trainingsdaten perfekt modelliert ...
- ... jedoch steigt bei mehr Trainingsdaten die Qualität der Vorhersage für ungesehene Daten.

Learning Curves bei underfitting-Modellen

 Bei underfitting-Modellen ändert sich der Fehler in Abhängigkeit von zusätzlichen Daten nicht wesentlich.

Learning Curves bei overfitting-Modellen

- Großer Unterschied zwischen Trainings- und Testfehler.
- Zusätzliche Trainingsdaten reduzieren den Testfehler.
- Zusätzliche Trainingsdaten erhöhen den Trainingsfehler (weniger Overfitting)

Übersicht

- Entwickeln von maschinellen Lernverfahren
 - Verbessern eines machine-learning Algorithmus
 - Aufteilung der Daten
 - Hyperparameter Optimization
 - Underfitting und Overfitting Erkennen
 - Datenmenge und Learning Curves
- Zusammenfassung und praktische Tipps

Sind mehr Daten immer besser?

- Daten zu gewinnen ist mit Aufwand verbunden.
- Wann lohnt sich dieser Aufwand?

Sind mehr Daten immer besser?

- Banko and Brill 2001: "It's not who has the best algorithm that wins.
 It's who has the most data."
- Annahmen:
 - Merkmale enkodieren alle wesentlichen Informationen, so dass ein Mensch die Entscheidung souverän treffen könnte.
 - Der Lernalgorithmus hat eine hohe Kapazität (hohe Varianz, overfitting).
- Unter diesen Annahmen ist es eine gute Idee, mehr Daten zu gewinnen.
- Ansonsten ist es vielversprechender, an Merkmalen und Algorithmus zu arbeiten.

Zusammenfasssung: Verbessern von Performanz

- Ausgangssituation: Klassifikator hat zu große Fehlerrate auf Kreuzvalidierungsdaten.
- Diagnostik: Learning Curves
 - ► Testfehler und CV-Fehler für 10%, 20%, ... 100% der Testdaten anzeigen.
 - ▶ ⇒ Overfitting oder Underfitting.
- Nächste Schritte:
 - Problem ist Overfitting:
 - ★ Regularisierung erhöhen
 - ★ Weniger Merkmale
 - ★ Mehr Trainingsdaten
 - Problem ist Underfitting:
 - ★ Regularisierung erniedrigen
 - ★ Merkmalskombinationen
 - ★ Zusätzliche Merkmale

Fehleranalyse

- Beginne mit einem einfachen Algorithmus, der schnell implementiert werden kann.
- Auf Kreuzvalidierungsdaten testen und Hyperparameter optimieren.
- Learning Curves anzeigen, um zu sehen ob mehr Daten oder mehr Features helfen könnten.
- Fehleranalyse:
 - Von Hand Beispiele in den Kreuzvalidierungsdaten suchen, bei denen der Algorithmus Fehler gemacht hat.
 - Gibt es systematische Fehler?
- Falls das Problem Underfitting war, neue Features anhand der Beobachtungen konstruieren.
- Falls das Problem Overfitting war, Features anhand der Beobachtungen generalisieren (oder neue Daten gewinnen).

Fehleranalyse: Spam-Email Beispiel

- 500 Beispiele in Kreuzvalidierungsset
- 100 falsch klassifiziert
- Durchsehen und von Hand kategorisieren:
- Welche Art von Email:
 - Pharma
 - Gefälschte Produkte
 - Fishing-emails
 - andere
- Welche Features könnten helfen:
 - Länge der Email
 - Beabsichtigte 5chreibfehl3r
 - andere

Noch Fragen?

•