Spring 2025 course announcement MATH 392: Intro to Neural Networks

Instructor: Arvind Suresh (arvindsuresh@arizona.edu)

Credits: 3 (counts toward the 'Application Course" requirement for math majors)

Preregs: MATH 223

Can potentially be waived if student has some experience with multi-variable functions or matrices/vectors; please contact the instructor to enquire!

(Note: more or less time will be spent as needed to cover the requisite mathematical content, the pre-requisites are mainly to ensure a reasonable pace can be maintained.)

<u>Coding prereqs</u>: Experience with Python is useful but not needed because a lot of code will already be provided, and we will make systematic use of <u>Github Copilot</u> to get by with minimal coding.

How to sign up: Email instructor to verify pre-requisites (can skip this if you've taken MATH 223), then fill out enrollment form in MATH Rm 108 (main office in the math building). Email math-academics@arizona.edu for more assistance in signing up.

When: Mon-Wed, 11 – 12:15 pm

Where: Modern Languages, Rm 201.

Goal:

To provide students with a self-contained introduction to the mathematics and practical implementation of neural networks, which are a fundamental class of machine learning models that underlie modern Al's like ChatGPT.

Reasons why you might like to enroll:

- You are interested in AI and would like a self-contained introduction covering the basics.
- You are considering internships/jobs in the field of machine learning/AI and would like to get started building a portfolio with projects to showcase to potential employers.
- You enjoy courses that blend theory (from math) with practice (coding).
- You are a math major looking to fill the "Application Course" credit.

Learning Objectives:

- Understand the key mathematical concepts used in neural networks, including linear algebra, gradient descent, and backpropagation.
- Learn to build and implement simple neural networks using libraries like PyTorch.
- Analyze and evaluate neural network models, with an emphasis on model optimization, regularization, and hyperparameter tuning.

- Gain experience in the research method (namely, asking questions and being able to hunt down answers or resources).
- Prepare for independent research by developing the ability to approach problems related to neural networks and machine learning with a solid mathematical framework.

Course features:

- Math concepts will be motivated by asking natural questions about datasets provided by the instructor.
- Every week, students will learn key topics and immediately engage with the material through hands-on coding exercises (Jupyter notebooks prepared before-hand by the instructor).
- Assignments will primarily consist of mini-projects, implemented in Python using industry-standard packages (sklearn and PyTorch).
- Students will maintain a GitHub repository containing their mini-projects and final project.
- Students will learn to use <u>GitHub Copilot for Education</u> (free and powerful AI code assistant) to write code with minimal effort.
- Heavy emphasis will be placed on the process of doing research, namely, asking lots of interesting questions and collaborating with peers on projects.

Schedule by week

(tentative, might spend more time on math/coding portions depending on the background and interests of students)

Week 1: Introduction to Machine Learning and Neural Networks

Topics

- Overview of Machine Learning
- Introduction to supervised learning.
- Applications and importance of machine learning.
- 2. Universal Approximation Theorem
- Statement and implications for neural networks.
- 3. Case Study: Image Classification in PyTorch
- Example of a simple feedforward neural network for image classification.
- Code demonstration of building, training, and evaluating a model on a small dataset (e.g., MNIST).

Learning Objectives

- Understand supervised learning as a key machine learning paradigm.
- Appreciate the theoretical significance of the universal approximation theorem.
- Gain initial exposure to neural network implementation in PyTorch.

Hands-On Example

- Use PyTorch to demonstrate:
- Loading and visualizing a dataset.
- Defining a simple network architecture.
- Training the model.
- Evaluating and visualizing predictions.

Week 2: Mathematical Foundations – Linear Algebra (I)

Topics

- Vectors and Matrices
- Definition and operations: addition, scalar multiplication, and dot products.
- Matrix multiplication and its geometric interpretation.
- Identity matrix and inverse matrix.
- Applications in Neural Networks
- Representing data as vectors (e.g., input features as vectors).
- Matrix multiplication in neural network computations (e.g., inputs and weights).
- The role of the dot product in calculating activations.

Learning Objectives

- Understand vector and matrix operations.
- Be able to apply matrix multiplication to represent neural network calculations.

- Implement basic matrix operations using NumPy.
- Demonstrate how a neural network layer computes its output using matrix multiplication.

Week 3: Mathematical Foundations - Basic Statistics

Topics

- Descriptive Statistics
- Mean, median, and mode.
- Variance, standard deviation, and range.
- Interquartile range and outliers.
- Correlation and Covariance
- Covariance: measuring the relationship between two variables.
- Correlation coefficient: normalizing covariance for easier interpretation.
- Interpretation of correlation in datasets.
- Importance of Data Distribution
- Normal distribution and its significance in data analysis.
- Skewness and kurtosis.

Learning Objectives

- Understand and calculate key statistics: mean, variance, correlation, etc.
- Learn to interpret statistical measures and their impact on modeling.

- Calculate statistics for a sample dataset using Python (NumPy/Pandas).
- Visualize distributions using histograms and box plots.

Week 4: Mathematical Foundations – Basic Probability

Topics

- Introduction to Probability
- Basic probability rules: addition, multiplication, and conditional probability.
- Probability distributions: uniform, normal, and binomial distributions.
- Random variables: discrete vs continuous.
- Bayes' Theorem and Conditional Probability
- Conditional probability and Bayes' theorem.
- Applications in machine learning, especially in classification.
- Expectation and Variance in Probability
- Expected value of a random variable.
- Variance and standard deviation in probability distributions.

Learning Objectives

- Understand fundamental probability concepts: conditional probability, random variables, and distributions.
- Learn how to apply Bayes' theorem and basic probability rules in data analysis.

- Use Python to simulate random variables and calculate basic probabilities.
- Generate and visualize probability distributions.

Week 5: Introduction to Loss Functions in Machine Learning

Topics

- 1. What is a Loss Function?
- Definition and role in machine learning.
- Difference between loss and cost (loss per sample vs average loss).
- 2. Common Loss Functions (MSE for regression, cross-entropy for classification)
- 3. Visualizing Loss
- Loss landscapes and gradients.
- Intuition behind minimizing loss during training.
- 4. Connecting Loss to Optimization
- Gradient descent as a method to minimize loss.
- Backpropagation as a mechanism to compute gradients in neural networks.

Learning Objectives

- Understand the purpose of loss functions in machine learning.
- Learn about commonly used loss functions for regression and classification.
- Appreciate the connection between loss functions and optimization.

- Explore different loss functions using synthetic datasets.
- Use Python to compute MSE and Cross-Entropy Loss on example datasets.
- Visualize how changes in predictions affect the loss values.

Week 6: Linear Regression and Its Connection to Neural Networks

Topics

- Linear Regression Overview
- Basics of fitting a line to data using least squares.
- Loss function for regression: Mean Squared Error (MSE).
- Multivariable linear regression: extending to multiple input features.
- Link to Neural Networks
- Neural networks as generalizations of linear models.
- Understanding linear layers in neural networks.

Learning Objectives

- Understand the mechanics of linear regression and how it minimizes loss.
- Recognize how linear models relate to the structure of neural networks.

- Implement linear regression from scratch using Python.
- Use Scikit-learn to quickly fit a linear regression model to a dataset and visualize results.

Week 7: The Perceptron - Concepts, History, and the XOR Problem

Topics

- 1. The Perceptron
- Concept: a single-layer binary classifier.
- Mathematical formulation: input, weights, bias, activation function.
- Training via weight updates: the perceptron learning rule.
- 2. History of the Perceptron
- Invented by Frank Rosenblatt in 1958.
- Early promise and excitement in artificial intelligence.
- 3. The XOR Problem
- Demonstration of a linearly non-separable problem.
- Limitations of the perceptron in solving non-linear problems.
- Introduction to multi-layer networks as a solution.

Learning Objectives

- Understand the perceptron as a foundational building block for neural networks.
- Appreciate the historical significance of the perceptron and its limitations.
- Recognize the need for non-linearity and multi-layer networks.

- Implement the perceptron algorithm for a simple linearly separable dataset.
- Visualize the decision boundary for the perceptron.
- Attempt to classify XOR data and discuss why it fails.

Week 8: Introduction to Multilayer Perceptrons (MLPs)

Topics

- What is a Multilayer Perceptron?
- Extension of the perceptron with hidden layers.
- Activation functions enabling non-linear transformations.
- Why MLPs Solve the XOR Problem
- Representing non-linear decision boundaries with multiple layers.

Learning Objectives

- Understand the architecture and function of an MLP.
- Recognize how MLPs overcome the limitations of single-layer perceptrons.

- Implement an MLP for the XOR problem using PyTorch.
- Train and evaluate the model, visualizing the learned decision boundary.

Week 9: Introduction to Optimization via Gradient Descent

Topics

- Basics of Gradient Descent
- Concept of gradients and their role in optimization.
- Learning rate and its impact.
- Variants of Gradient Descent
- Batch, Stochastic, and Mini-Batch Gradient Descent.

Learning Objectives

- Understand how gradient descent is used to optimize loss functions.
- Learn the differences between gradient descent variants.

- Visualize gradient descent on a 2D function.
- Use PyTorch's autograd to implement parameter updates in a simple example.

Week 10: Backpropagation

Topics

- Backpropagation: its role in computing gradients and training neural networks.
- Applying backpropagation to single-layer networks.
- Extending backpropagation to multi-layer networks using the chain rule.

Learning Objectives

- Understand how backpropagation computes gradients layer by layer.
- Learn its application in training multi-layer neural networks.

- Manual implementation of backpropagation for a single-layer network.
- Use PyTorch to observe backpropagation in a multi-layer perceptron.

Week 11: Activation Functions

Topics

- The purpose of activation functions: enabling non-linearity in neural networks.
- Common activation functions: Sigmoid, Tanh, ReLU, and their modern variants.
- Choosing the right activation function for a task.

Learning Objectives

- Understand the importance of activation functions in neural networks.
- Learn the properties, advantages, and limitations of commonly used activation functions.

- Visualize and compare activation functions.
- Experiment with different activation functions in a PyTorch model.

Week 12: Regularization in Neural Networks

Topics

- · Why Regularization?
- Overfitting and its causes in machine learning models.
- Common Regularization Techniques:
- L1 and L2 regularization (penalizing large weights).
- Dropout: randomly deactivating neurons during training.
- Data augmentation: enhancing the dataset to improve generalization.

Learning Objectives

- Understand the importance of regularization in training neural networks.
- Learn and apply various regularization techniques.

- Implement L2 regularization and dropout in a PyTorch model.
- Experiment with how regularization impacts model performance on a small dataset.

Week 13: Model Evaluation and Hyperparameter Tuning

Topics

- Model Evaluation
- Train, validation, and test splits.
- Common evaluation metrics: accuracy, precision, recall, F1-score.
- Visualizing performance with confusion matrices.
- · Hyperparameter Tuning
- Key hyperparameters: learning rate, batch size, number of layers, etc.
- Grid search and random search.
- Introduction to advanced techniques like Bayesian optimization.

Learning Objectives

- Learn to evaluate models effectively using appropriate metrics.
- Understand the impact of hyperparameters on model training and performance.

- Evaluate a trained model using performance metrics in PyTorch.
- Perform a simple grid search for hyperparameter tuning.