

Seno de x. Método de bisección.

Equipo G. Grupo 1.

Técnicas Experimentales.

 1^{er} curso. 2^{do} semestre

Lenguajes y Sistemas Informáticos

Facultad de Matemáticas

Universidad de La Laguna

Capítulo 1

Motivación y objetivos

1.1. Motivación

Aplicar los conocimientos obtenido en python para resolver una función según el método de la bisección.

1.2. Objetivos

Resolver, mediante el método de la bisección (usando python) la función sin(x).

Capítulo 2

Fundamentos teóricos

2.1. Método de bisección

- 1. Se basa en el Teorema del Valor Intermedio (TVI), el cual establece que toda función continua f en un intervalo cerrado [a,b] toma todos los valores que se hallan entre f(a) y f(b).
- 2. Esto es que: todo valor entre f(a) y f(b) es la imagen de al menos un valor en el intervalo [a,b].
- 3. En caso de que f(a) y f(b) tengan signos opuestos, el valor cero sería un valor intermedio entre f(a) y f(b), por lo que con certeza existe un p en [a,b] que cumple f(p) = 0.
- 4. De esta forma, se asegura la existencia de al menos una solución de la ecuación f(x) = 0.

Capítulo 3

Procedimiento experimental

3.1. Procedimiento

El método de la bisección es un proceso iterativo que sigue los siguientes pasos:

1. Se "parte" por la mitad el intervalo [a,b]. Por lo que se cogen los valores de los extremos y se dividen por 2.

$$c_1 = \frac{a+b}{2}$$

2. Luego hay que mirar los signos de la función en el punto c y comparar con los signos de la función de los extremos.

Si f(a) * f(c) < 0 se sustituye c por b quedandose

$$c_2 = \frac{a + c_1}{2}$$

Si f(b) * f(c) < 0 se sustituye c por a quedandose

$$c_2 = \frac{c_1 + b}{2}$$

3. Y este proceso se va haciendo hasta que la función en el punto c_n es igual a 0

4. Hay que tener en cuenta que este método tiene un error y se puede calcular con:

$$error = \frac{b-a}{2^n}$$

Siendo n las veces que se ha partido.

3.2. Programa en Python

```
#! encoding: UTF-8
#! /usr/bin/python
import sin from math
Cero=0.00001
def f(x):
return sin(x)
def biseccion(a,b,tol):
 c=float((a+b)/2.0)
while f(c) != Cero and abs(b-a) > tol:
  if f(a) * f(c) < Cero
  b = c;
 else f(b) * f(c) < Cero
  a = c;
   c = (a+b)/2.0
 return c
print 'Calcular la raíz de sen(x)'
a = float(raw_input('Valor a del intervalo: '))
b = float(raw_input('Valor b del intervalo: '))
t = 0.00000000000001
r = biseccion(a,b,t)
print "El valor de la raíz de seno de x es: f''(r)
```