Recall: T: V -> W invertible if and only if T injective and surjective.

morally the same

Theorem: T:V -> W invertible.

linear

Them V is finite dimensional if and only if W is finite dimensional.

Sketch of the proof:

(⇒) V is finite dimensional.

p= 401,..., σαζ bosis of V.

Chaine: Tlp) = 4 Tlot1, ..., Tlouly is a basis of W.

- (i) linearly independent. Tinjective.
- (ii) $W = \operatorname{Span} \{ T(\sigma_i), ..., T(\sigma_i) \}$. To suffective. $\omega \quad \sigma \in V \quad T(\sigma) = \omega$

(=) w is finite dimensional.

8 = 4 25, ,..., 25a4

 $T^{-1}: W \rightarrow V$, repeat the above with the coles of β and δ sungped. \Box .

Theorem: T: V - W linear, V and W are fruite dimensional.

T invertible if and only if LTIPS is invertible. $A = [idv]^p$

of my inv.

 \circ

9-(1/m) - 1.mxm(11)

T - ETJB

(>) Suppose T invertible.

There is U: W - V linear transformation such that

·wbi = UT bm vbi = TU

A ;w.

B s.t. AB = Idw

Since dim(v) = dim(w) by the previous

BA = Idu

theorem, $[TJ]_{S}^{K}$ is square. Chim: $([TJ]_{S}^{K})^{-1} = [UJ]_{S}^{R} = [T^{-1}J]_{S}^{R}$.

Idn = [idv] P = [UT] P = [U] ETT P

Idn = [idw] & = [TU] & = [T] & [U] &

idv: 1 - > 1

ן ב לשיייים ל

 $\left[id J \right]_{b}^{b} = \left[\left[id v(\alpha v) \right]_{b}^{b} \left[id v(\alpha v) \right]_{b}^{b} \cdots \left[id v(\alpha v) \right]_{b}^{b} \right] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

(€) [T] & invertible. We want to prove that T: V → W is invertible.

There is $A \in M_{u \times u}(IF)$ such that

Iduxu = L·[7] and Iduxu = [7] b. A

We want to find $S: W \rightarrow V$ such that ST = idv and TS = idw.

We want $[S]_{8}^{P} = A = \begin{bmatrix} a_{11} \dots a_{1n} \\ \vdots & \vdots \\ a_{n1} \dots a_{nn} \end{bmatrix}$ whation $S(w_{i}) = \sum_{j=1}^{n} A_{ji} \cdot v_{j}$

Jefine
$$S: W \longrightarrow V$$
.
 $W_i \longmapsto \sum_{j=1}^{n} A_{ji} \cdot v_j$

By construction [S] = A. Now:

$$f(v,v) \xrightarrow{iuv} Muxu (IF)$$

$$T_{A} = T_{S} \Leftrightarrow A = S \qquad T_{A} \qquad \qquad \downarrow$$

$$T \qquad \qquad \downarrow T_{J}^{P}$$

Then: idv = ST and idw = TS.

 \Box .

Cocollary: T:V->V linear transformation, V finite dimensional, men:

T invertible if and only if [T] is invertible.

Corollary: A ∈ Muxu (IF) invertible if and only if TA ∈ R (IF", IF")
is invertible.

Definition: $T: Y \to W$ invertible, we say that V is isomorphic to W.

isomorphism $V \cong W$