인간공학

2018. 03. 00

인간-기계 통합체계의 유형

• 인간-기계 통합체계의 유형에는 자동화 체계, 기계화 체계, 수동 체계로 구분

자동화 체계	인간은 작업계획의 수립, 모니터를 통한 작업 상황 감시, 프로그래밍, 설비보전의 역할을 수행하고 체계(System)가 감지, 정보보관, 정보처리 및 의사결정, 행동을 포함한 모든 임무를 수행하는 체계
기계화 체계	반자동 체계로 운전자의 조종에 의해 기계를 통제하는 융통 성이 없는 시스템 형태
수동 체계	인간의 힘을 동력원으로 활용하여 수공구를 사용하는 시 스템 형태다양성이 있고 융통성이 우수한 특징을 갖는다.

인간-기계시스템의 4대 기능

- 감지기능 오감을 통한 인체의 감지기능과 기계적인 감지기 능을 포함한다.
 - 기계의 표시장치와 인간의 눈
- 정보처리 및 의사결정기능 회상, 인식, 정리 등을 통한 정보 처리 및 의사결정 기능을 말한다.
- 행동기능 내려진 의사결정의 결과로 발생하는 조작행위를 말한다.
- 정보보관기능 정보의 보관기능으로 위 3가지 기능 모두와 상호작용을 한다.

복잡한 시스템의 신뢰도나 고장확률의 평가기법

사상공간법 (Event Space Method)	시스템 구성요소들의 가능한 모든 경우를 나열한 후 시 스템의 신뢰도를 구하는 방법
경로추적법 (Path Tracing Method)	시스템이 작동하는 경로를 따라 그 합집합의 확률을 이 용해 신뢰도를 구하는 방법
분해법 (Pivotal Decomposition Method)	복잡한 시스템을 간단한 구조로 분해하여 조건부 확률 을 이용 신뢰도를 구하는 방법

지수분포를 따르는 부품의 신뢰도

• 고장률(
$$\lambda$$
) = $\frac{$ 고장건수(r)} 으로 구한다.

• 고장률이 λ인 시스템이 t시간 지난 후의 신뢰도

$$R(t) = e^{-\lambda t}$$

• 고장까지의 평균시간이 t_0 일 때 이 부품을 t시간 동안 사용할 경우의 신뢰도

$$R(t) = e^{-\frac{t}{t_0}}$$

사건수분석(Event Tree Analysis: ETA)

- 초기사건으로 분류되는 설비의 이상, 운전자의 오류 등이 어떤 결과를 가져오는지를 분석하는 방법이다.
- 귀납적 분석기법으로 각각의 대응시점에서 성공과 실패로 구 분하면서 결과를 분석해 나가는 방법이다.
- 대응시점에서 성공확률과 실패확률의 합은 항상 1이다.
- 사건나무를 그리는 방법은 각각의 부품이 가질 수 있는 경우의 수를 모두 열거하면서 시스템의 고장 혹은 작동을 표시한다.

고장발생확률과 FT도

- 고장사상을 정상사상으로 하는 경우는 직렬인 경우 OR게이 트로 연결해야 한다.
- 병렬인 경우는 AND 게이트로 연결해야 한다.
- 단말에 고장발생확률이 직접 명기된 경우는 단말부터 신뢰도 구하는 공식을 적용하지만, 단말에 부품이 적시되고, 공통의 기기가 배치된 경우 간략화를 먼저 진행한다.
- 신뢰도 공식을 이용하여 고장발생확률을 구한다.
- 신뢰도가 주어질 경우 고장발생확률은 1-신뢰도가 된다.

시스템의 신뢰도

• 직렬연결 시

- 시스템의 신뢰도는 부품 a, b, c 신뢰도의 곱과 같다.
- 전체 시스템 신뢰도 R = R_a X R_b X R_c로 구할 수 있다.
- 병렬연결 시
 - 시스템의 신뢰도는 부품 a, b, c 신뢰도가 R_a, R_b, R_c라 할 때 전체 시스템 신뢰도 R = 1 (1 R_a) X (1 R_b) X (1 R_c)로 구할 수 있다.

MTTF와 MTTR, MTBF

- MTTF(Mean Time To Failure)
 - 설비보전에서 평균작동시간, 고장까지의 평균시간을 의미한다.
 - 제품 고장 시 수명이 다해 교체해야 하는 제품을 대상으로 하므로 평 균수명이라고 할 수 있다.

- MTTR(Mean Time To Repair)
 - 설비보전에서 평균 수리시간의 의미로 사용한다.
 - 고장이 발생한 후부터 정상작동시간까지 걸리는 시간의 평균시간을 말한다.
 - 전체고장시간 고장건수 [시간/회]로 구한다.

MTTF와 MTTR, MTBF

- MTBF(Mean Time Between Failure)
 - 평균고장간격, 무고장시간의 평균
 - 고장이 발생하여도 다시 수리를 해서 쓸 수 있는 제품을 의미한다.

•
$$\frac{7 + 5 + 1}{2 + 3 + 3}$$
 또는 $\frac{1}{2 + 3 + 3}$ 등으로 구한다.

• MTBF = MTTF + MTTR

수명곡선과 고장형태

- 시스템 수명곡선의 형태는 초기고장은 감소형, 우발고장은 일정형, 마모고장은 증가형을 보인다.
- 고장률은 총가동시간에 대한 고장건수로 표시한다.
- 디버깅 기간은 초기고장에서 나타난다.

수명곡선과 고장형태

• 감소대책

초기 고장	예방을 위해서는 점검작업이나 시운전이 필요하다.
우발 고장	우발적으로 일어나므로 시운전이나 점검작업을 통해 방지가 불가능하다.
마모 고장	예방을 위해서는 안전진단 및 적당한 수리보존(BM) 및 예방 보전(PM)이 필요하다.

페일 세이프(Fail safe)

• 개요

- 조작상의 과오로 기계나 그 부품에 고장이나 기능 불량이 생겨도 항상 안전하게 작동하는 구조와 기능, 설계방법을 말한다.
- 인간 또는 기계가 동작상의 실패가 있어도 사고를 발생시키지 않도록 하는 통제하는 설계방법을 말한다.
- 기계에 고장이 발생하더라도 일정 기간 동안 기계의 기능이 계속되어 재해로 발전되는 것을 방지하는 것을 말한다.

• 기능 3단계

Fail Passive	부품이 고장나면 에너지를 최저화 즉, 기계가 정지하는 방 향으로 전환되는 것
Fail Active	부품이 고장나면 경보를 울리면서 잠시 동안 운전 가능한 것
Fail Operational	부품이 고장나더라도 부수가 이뤄질 때까지 안전한 기능 을 유지하는 것

풀프루프(Fool Proof)

• 개요

- 풀 프루프(Fool Proof)는 기계 조작에 익숙하지 않은 사람이나 기계의 위험성 등을 이해하지 못한 사람이라도 기계 조작 시 조작 실수를 하지 않도록 하는 기능으로 작업자가 기계 설비를 잘못 취급하더라도 사고가 일어나지 않도록 하는 기능을 말한다.
- 계기나 표시를 보기 쉽게 하거나 이른바 인체공학적 설계도 넓은 의 미의 풀 프루프에 해당된다.
- 각종 기구의 인터록 장치, 크레인의 권과방지장치, 카메라의 이중 촬영방지장치, 기계의 회전부분에 울이나, 커버 장치, 승강기 중량제한시 운행정지 장치, 선풍기 가드에 손이 들어갈 경우 회전정지장치 등이 이에 해당한다.
- 적용되는 기계·기구에는 가드·록 기구·트립 기구·밀어내기 기구, 오버런 기구, 기동방지 기구 등이 있다.

• 조건

- 인간이 에러를 일으키기 어려운 구조나 기능을 가지도록 한다.
- 조작순서가 잘못되어도 올바르게 작동하도록 한다

고정가드와 인터록가드

- 고정가드 : 개구부로부터 가공물과 공구 등을 넣어도 손은 위험영역에 머무르지 않는다.
- 인터록가드 : 기계식 작동 증에 개폐되는 경우 기계가 정지한다.

인체 측정 자료의 응용원칙

극단치를 이용 한 설계	최소치	선반의 높이, 조종 장치까지의 거리, 비상벨의 위 치 등
	최대치	출입문의 높이, 좌석 간의 거리, 통로의 폭, 와이 어로프의 사용중량, 위험구역 울타리 등
조절식 설계		의자의 위치 및 높이, 자동차 운전석 의자의 위치 와 높이 등
평균치를 이용한 설계		전동차의 손잡이 높이, 안내데스크, 은행의 접수 대 높이, 공원의 벤치 높이

인간이 기계를 능가하는 조건

- 관찰을 통해서 일반화하여 귀납적 추리를 한다.
- 완전히 새로운 해결책을 도출할 수 있다.
- 원칙을 적용하여 다양한 문제를 해결할 수 있다.
- 상황에 따라 변하는 복잡한 자극 형태를 식별할 수 있다.
- 다양한 경험을 토대로 하여 의사 결정을 한다.
- 주위의 예기치 못한 사건들을 감지하고 처리하는 임기응변 능력이 있다.

동작경제의 원칙

- 개요
 - 작업자가 경제적인 동작을 통해 피로도를 감소시키면서도 능률을 향상시키게 하기 위한 원칙이다.
 - 신체 사용의 원칙, 작업장 배치의 원칙, 공구 및 설비 디자인의 원칙으로 분류된다.
 - 동작을 가급적 조합하여 하나의 동작으로 한다.
 - 동작의 수는 줄이고, 동작의 속도는 적당히 한다.

동작경제의 원칙

• 원칙의 분류

신체 사용의 원칙	 두 손의 동작은 동시에 시작해서 동시에 끝나야 한다. 휴식시간을 제외하고는 양손을 같이 쉬게 해서는 안된다. 손의 동작은 유연하고 연속적인 동작이어야 한다. 동작이 급작스럽게 크게 바뀌는 직선 동작은 피해야한다. 두 팔의 동작은 동시에 서로 반대방향으로 대칭적으로 움직이도록 한다.
작업장 배치의 원칙	 공구나 재료는 작업동작이 원활하게 수행하도록 그 위치를 정해준다. 공구, 재료 및 제어장치는 사용하기 가까운 곳에 배 치해야 한다.
공구 및 설비 디자인 의 원칙	 치구나 족답장치를 이용하여 양손이 다른 일을 할수 있도록 한다. 공구의 기능을 결합하여 사용하도록 한다.

인간 성능 기준(Human criteria)

- 인간에 관련된 특성을 측정하기 위한 기준이다.
- 인간성능 척도, 생리학적 지표, 사고빈도, 주관적 반응 등이 있다.

생체리듬(Biorhythm)

• 개요

- 사람의 체온, 혈압, 맥박 수, 혈액, 수분, 염분량 등이 시간에 따라 또 는 주야에 따라 일정한 형식으로 변화하는 것을 말한다.
- 생체리듬의 종류에는 육체적 리듬, 지성적 리듬, 감성적 리듬이 있다.

• 특징

- 생체리듬에서 중요한 점은 낮에는 신체활동이 유리하며, 밤에는 휴식이 더욱 효율적이라는 것이다.
- 체온 · 혈압 · 맥박 수는 주간에는 상승, 야간에는 저하된다.
- 혈액의 수분과 염분량은 주간에는 감소, 야간에는 증가한다.
- 체중은 주간작업보다 야간작업일 때 더 많이 감소하고, 피로의 자각 증상은 주간보다 야간에 더 많이 증가한다.
- 몸이 흥분한 상태일 때는 교감신경이 우세하고 수면을 취하거나 휴식을 할 때는 부교감신경이 우세하다.

생체리듬(Biorhythm)

• 분류

- 육체 리듬(P)의 주기는 23일이며, 식욕, 활동력, 지구력과 관련된다.
- 감성적 리듬(S)의 주기는 28일이며, 주의력. 예감과 관련된다.
- 지성적 리듬(I)의 주기는 33일이며, 지성적 사고능력(상상력, 판단력, 추리능력)과 관련된다.
- 안정기(+)와 불안정기(-)의 교차점을 위험일이라 한다.

실효온도(ET: Effective Temperature)

- 감각온도, 유효온도라고도 한다.
- 온도, 습도, 대류 등이 인체에 미치는 열효과를 하나의 수치로 통합한 경험적 감각지수이다.
- 상대습도 100%, 풍속 0m/sec일 때에 느껴지는 온도감각을 말한다.
- 공조되고 있는 실내 환경을 평가하는 척도로 사용된다.

Oxford 지수

- 습구온도와 건구온도의 가중 평균치로 습건지수라고도 한다.
- WD = 0.85 X 습구온도 + 0.15 X 건구온도로 구한다.

인체의 열교환

• 경로

- 복사 한겨울에 햇볕을 쬐면 기온은 차지만 따스함을 느끼는 것
- 대류 같은 온도에서도 바람이 부느냐 불지 않느냐에 따라 열손실이 달라지는 것
- 건도 달구어진 옥상 바닥을 손바닥을 짚을 때 손바닥으로 열이 전 해지는 것
- 증발 피부 표면을 통해 인체의 열이 증발하는 것

• 열교환 과정

- S = (M W) ± R ± C E
- 단, S는 열 죽적, M은 대사, W는 일, R은 복사, C는 대류, E는 증발을 의미한다.
- 열교환에 영향을 미치는 요소에는 기온(Temperature), 기습 (Humidity), 기류(Air movement) 등이 있다.

열압박 지수(HSI: Heat Stress Index)

- 열평형을 유지하기 위해서 증발해야 하는 발한(發汗)량을 나 타낸다.
- 복사와 대류 외 체온을 유지하기 위해 필요로 하는 땀의 증발 량으로 필요증산량을 백분율로 나타낸 것이다.
- <u>필요증산량</u> ×100 으로 구한다.
- 열평형을 유지하기 위해 필요한 증발량은 대사, 복사, 대류의 합으로 추산할 수 있으므로 공기의 속도(대류), 습도, 온도 등이 주요한 요인으로 된다.

란돌프의 고리

- 시력 측정에 사용하는 지표의 하나이다.
- 잘린 곳의 폭을 시각[분]으로 표시하고, 이의 역수로 시력을 측정한다.

57.3×60×틈간격

• 잘린 곳의 폭을 통해 구하는 시각 글자와의 거리 로 구하며 이때 틈간격이나 글자와의 거리 단위는 [mm]이다.

음량수준

- 음의 크기를 나타내는 단위에는 dB(PNdB, PLdB), phon, sone 등이 있다.
- 음량수준을 측정하는 척도에는 phon 및 sone에 의한 음량수 준과 인식소음수준 등을 들 수 있다.
- 음의 세기는 진폭의 크기에 비례한다.
- 음의 높이는 주파수에 비례한다. (주파수는 주기와 반비례한다.)
- 인식소음수준은 소음의 측정에 이용되는 척도로 PNdB와 PLdB로 구분된다.

sone 값

- 인간이 청각으로 느끼는 소리의 크기를 측정하는 척도 중 하나이다.
- 기준 음에 비해서 몇 배의 크기를 갖느냐는 음의 sone값이 결정한다.
- 1 sone은 40dB의 1,000Hz 순음의 크기로 40phon의 값을 의미한다.
- Pone의 값이 주어질 때 sone = 2 ¹⁰ 으로 구한다.

산업현장의 컬러테라피

색체	심리
빨간색	열정, 생기, 공포, 애정, 용기
노란색	주의, 조심, 희망, 광명, 향상
녹색	안전, 안식, 평화, 위안
파란색	진정, 냉담, 소극, 소원
보라색	우울, 불안, 우미, 고취

자동운동

- 자동운동은 암살 내의 정지된 소광점을 응시하고 있으면 그 광점이 움직이는 것처럼 보이는 현상으로 어두울 때 생기는 착각현상이다.
- 비행 중 조종사는 밤에 불빛을 혼동하여 고정된 불빛이 움직이는 것과 같이 보이는 현상을 말한다.
- 자동운동이 생기기 쉬운 조건은 광점이 작은 것, 대상이 단순 한 것, 광의 강도가 적은 것, 시야의 다른 부분이 어두운 것 등이다.

정보량

- 대안이 n개인 경우의 정보량은 log₂n 으로 구한다.
- 특정 안이 발생할 확률이 p(x)라면 정보량은 $\log_2 \frac{1}{p(x)}$ 로 구한다.
- 여러 안이 발생할 총 정보량은 [개별 확률 X 개별 정보량의 합]과 같다.

1일 작업량

- 전체 작업시간 중에 실제 작업지속시간을 의미한다.
- 시간당 작업지속시간이 분단위로 표현될 경우 다음과 같이 계산한다.

• 단, 8은 1일 작업시간이 8시간일 경우를 의미한다.

Murrell의 작업시간에 포함될 휴식시간

 산소 소비량이 1L/분일 때 평균 권장에너지 소비량 상한값을 5kcal/분으로 계산하고, 이때의 기초대사량은 1.5kcal/분이다.

• 휴식시간

$$R =$$
작업시간 $\times \frac{E -$ 평균에너지소비량상한값 $E -$ 기초대사량

휴식산출

• 휴식시간

$$R =$$
작업시간× $\frac{$ 작업평균에너지소모량 $-$ 권장에너지소모량 $^{\prime}$ 작업평균에너지소모량 $-$ 휴식중에너지소모량

- 60분간 작업 시 일반적으로 $R = 60 \times \frac{E 4}{E 1.5}$ 로 구한다.
 - 단, 이때 E는 작업 중 에너지 평균 소비량이고, 4는 기초대사량, 1.5는 휴식 중 에너지 소비량이다.

산소 소비량의 계산

- 흡기량과 배기량이 주어지고 공기 중 산소는 21%, 배기가스의 산소가 16%라면 산소소비량은 흡기량 X 21% 배기량 X 16%이다.
- 흡기량이 주어지지 않을 경우 분당 흡기량은 질소의 양으로 구한다.

흡기량 =
$$\frac{배기량 \times (100 - CO_2\% - O_2\%)}{79}$$

• 에너지 값은 구해진 분당 산소 소비량 X 5 kcal 로 구한다.

감각차단현상

- 단조로운 업무가 장시간 지속될 때 주로 발생한다.
- 작업자의 감각기능 및 판단능력이 둔화 또는 마비되는 현상 이다.
- 멍해지는 현상으로 인지과정의 착오를 가져오기 쉽다.

에너지 대사율(RMR: Relative Metabolic Rate)

• 개요

- RMR은 특정 작업을 수행하는 데 있어 작업자의 생리적 부하를 계측 하는 지표이다
- 주로 동적 근력작업이나 정적 근력작업의 강도를 측정하여 연속작업 이 가능한 시간을 예측하기 위해 사용한다.

$$RMR = \frac{ 운동대사량}{ 기초대사량} = \frac{ 운동 시 산소소모량 - 안전시 산소소모량}{ 기초대사량(산소소비량)}$$

■ RMR이 키지는 데 따라 작업 지속시간이 짧아진다.

• 작업강도 구분

작업구분	RMR	작업 종류 등		
중(重)작업	4~7	일반적인 전신노동, 힘이나 동작속도가 큰 작업		
중(中)작업	2~4	손·상지작업, 힘·동작속도가 작은 작업		
경(輕)작업	0~2	손가락이나 팔로 하는 가벼운 작업		

배치(Layout)의 3단계

• 지역배치 → 건믈배치 → 기계배치순으로 진행한다.

작업장 구성요소 배치의 원칙

- 중요성의 원칙(우선배치)
- 사용빈도의 원칙(우선배치)
- 기능별 배치의 원칙
- 사용 순서의 원칙

조종장치를 촉각적으로 식별하기 위하여 암호화하는 방법

- 형상 암호화된 조종장치
- 표면 촉감을 이용한 암호화
- 크기를 이용한 암호화

통제표시비 : C/D(C/R) 비

• 개요

- 통제장치의 변위량과 표시장치의 변위량과의 관계를 나타낸 비율로 C/D비, 조종과 반응의 비라고 하여 C/R비라고도 한다.
- 최적의 C/D비는 1.08-2.20 정도이다.

$$C/D = \frac{\rm §제기기의 변위량}{\rm 표시계기의 변위량}$$

$$2 \times \pi (3.14) \times r (반지름) \times \frac{각도}{360}$$

회전 조종구의 C/D비= $\frac{2 \times \pi (3.14) \times r (반지름) \times \frac{각도}{360}}{$ 표시계기의 변위량

• 특징

- 통제표시비가 작다는 것은 민감한 장치로 미세한 조종은 어렵지만 수 행시간이 짧다.
- 통제표시베가 크다는 것은 미세한 조종은 쉽지만 수행시간은 상대적으로 길다.
- 통제기기 시스템에서 발생하는 조작시간의 지연은 직접적으로 통제 표시비가 가장 크게 작용하고 있다.

통제표시비(C/D비)를 설계할 때 고려해야 하는 5가지 요소

- 계기의 크기
- 공차 허용 오차를 말한다.
- 방향성
- 조작시간
- 목시거리

정량적 지침의 설계 요령

- 선각이 약 20도 정도 되는 뾰족한 지침을 사용할 것
- 지침의 끝은 작은 눈금과 맞닿되 겹치지 않도록 할 것
- 원형 눈금일 경우 지침의 색은 선단에서 눈금의 중심까지 칠 할 것
- 시차를 없애기 위해 지침은 눈금면과 밀착할 것

시각적 표시장치와 청각적 표시장치의 비교

시각적 표시장치	청각적 표시장치
 수신 장소의 소음이 심한 경우 정보가 공간적인 위치를 다룬 경우 정보의 내용이 복잡하고 긴 경우 직무상 수신자가 한 곳에 머무르는 경우 메시지를 추후 참고할 필요가 있는 경우 	 수신 장소가 너무 밝거나 암순응이 요구될 때 정보의 내용이 시간적인 사건을 다루는 경우 정보의 내용이 간단한 경우 직무상 수신자가 자주 움직이는 경우 정보의 내용이 후에 재참조되지 않는 경우 메시지가 즉각적인 행동을 요구하는 경우

양립성(Compatibility)

• 인간의 기대하는 바와 자극 또는 반응들이 일치하는 관계를 말하는데 양립성이 적을수록 정보처리에서 재코드화 과정은 많아진다.

공간(Spatial) 양립성	표시장치와 이에 대응하는 조종장치의 위치가 인간의 기대에 모순되지 않는 것을 말한다. 즉, 왼쪽 표시장치와 관련된 조종장치는 왼쪽에, 오른쪽 표시장치에 관 련된 조종장치는 오른쪽에 위치하는 것을 말한다.
운동 (Movement) 양립성	조종장치의 조작방향에 따라서 기계장치나 자동차 등이 움직이는 것을 말한다.
개념 (Conceptual) 양립성	인간이 가자는 개념과 일치하게 하는 것으로 적색 수도꼭지는 온수, 청색 수도꼭지는 냉수를 의미하는 것이나 위험신호는 빨 간색, 주의신호는 노란색, 안전신호는 파란색으로 표시하는 것 등이 이에 해당한다.
양식(Modality) 양립성	문화적 관습에 의해 생기는 양립성 혹은 직무에 관련된 자극과이에 대한 응답 등으로 청각적 자극 제시와 이에 대한 음성응답 과업에서 갖는 양립성이 이에 해당한다.

조도(照度)

- 조도는 특정 지점에 도달하는 광의 밀도를 말한다.
- 단위는 럭스(Lux)를 사용한다. $\left(\frac{1cd}{1m^2}, \frac{1lm}{1m^2}\right)$
- 반사체의 반사율과는 상관없이 일정한 값을 갖는다.

조도(
$$lux$$
) = $\frac{광도}{(거리)^2}$

소음수준

- 소음수준의 주지
 - 해당 작업장소의 소음 수준
 - 인체에 미치는 영향과 증상
 - 보호구의 선정과 착용방법
 - 그 밖에 소음으로 인한 건강장해 방지에 필요한 사항
- 소음노출수준의 계산
 - 각 소음강도별 허용노출시간 대비 실제노출시간의 비의 합으로 구한 다.
 - 이의 합에 따라 소음노출기준을 적용한다.

음압수준

- 음압(Sound pressure) 은 물리적으로 측정한 음의 크기를 말 한다.
- 소음원으로부터 P_1 만큼 떨어진 위치에서 음압수준이 dB_1 일 경우 P_2 만큼 떨어진 위치에서의 음압수준은 다음과 같이 구한다.

$$dB_2 = dB_1 - 20\log\left(\frac{P_2}{P_1}\right)$$

• 소음원으로부터 거리와 음압수준은 역비례한다.

1. 인간-기계 통합시스템에서 시스템(System)이 갖는 기능에 대한 설명이다. () 안을 채우시오.

(1)	회상, 인식, 정리 등을 통한 (①)을 말한다.
(2)	내려진 의사결정의 결과로 발생하는 조작행위를 말한다.
(3)	기계의 표시장치와 인간의 눈을 의미한다.
(4)	위 3가지 기능 모두와 상호작용을 한다.

2. 직렬이나 병렬구조로 단순화될 수 없는 복잡한 시스템의 신 뢰도나 고장확률을 평가하는 기법에 대한 설명이다. () 안 을 채우시오.

(1)	시스템 구성요소들의 가능한 모든 경우를 나열한 후 시 스템의 신뢰도를 구하는 방법
(2)	시스템이 작동하는 경로를 따라 그 합집합의 확률을 이 용해 신뢰도를 구하는 방법
(3)	복잡한 시스템을 간단한 구조로 분해하여 조건부 확률을 이용해 신뢰도를 구하는 방법

3. 다음의 안전설계의 방법과 그 설명을 올바르게 짝지으시오.

☐ Fail Safe

☐ Fool Proof

- ② 기계나 그 부품에 고장이나 기능 불량이 생겨도 항상 안전하게 작동 하는 구조와 기능
- ⑤ 작업자가 기계 설비를 잘못 취급 하더라도 사고가 일어나지 않도록 하는 기능

4. Fail Safe 기능에 대한 설명이다. ()안을 채우시오.

Fail (1)	부품이 고장나면 기계가 정지하는 방향으로 전환되는 것
Fail (②)	부품이 고장나면 경보를 울리면서 잠시 동안 운전 가능한 것
Fail (③)	부품이 고장나더라도 부수가 이뤄질 때까지 안전한 기능 을 유지하는 것

5. 인체계측 자료를 장비나 설비의 설계에 응용하는 경우 활요되는 3가지 원칙에 대한 설명이다. () 안을 채우시오.

(①)설계	인체에 맞게 조절이 가능하도록 설계하는 것이다.조작자와 제어버튼 사이의 거리, 조작에 필요한 힘 등을 정할 때 사용하는 원칙이다.
(②)설계	 가장 작은 혹은 가장 큰 자료를 대상으로 수용하는 원 칙이다.
(③)설계	가장 평균적인 자료를 활용해 범용성을 갖는 원칙이다.은행창구, 슈퍼마켓 계산대 등에서 사용한다.

6. 사람이 작업할 때 느끼는 체감온도 또는 실효온도에 영향을 주는 요인에는 (①), (②), (③)등이 있다. () 안을 채우시오.

7. 실현 가능성이 동일한 대안이 4개 있을 때 총 정보량은 몇 비트(bit)인지 계산하시오.

가. 계산식:

나. 결과:

8. 기계설비의 작업능률과 안전을 위한 배치(Layout)의 3단계를 올바른 순서대로 나열하시오.

a 지역배치

ⓑ 건물배치

ⓒ 시설배치

9. 체계나 설비를 설계함에 있어 부품을 배치하는 경우 고려해 야 하는 부품배치의 원칙에 대한 설명이다. () 안을 채우시오.

(①)의 원칙

• 사용(②)의 원칙

• (③) 배치의 원칙

· 사용(④)의 원칙

10. 다음은 양립성에 대한 설명이다. () 안을 채우시오.

(①) 양립 성	표시장치와 이에 대응하는 조종장치의 위치가 인간의 기대에 모순되지 않는 것을 말한다.
운동 양립성	(②)에 따라서 기계장치나 자동차 등이 움직이는 것을 말한다.
(③) 양립 성	인간이 가자는 개념과 일치하게 하는 것으로 적색 수도꼭지는 온수, 청색 수도꼭지는 냉수를 의미하는 것이나 위험신호는 빨 간색, 주의신호는 노란색, 안전신호는 파란색으로 표시하는 것 등이 이에 해당한다.
(④) 양립 성	문화적 관습에 의해 생기는 양립성 혹은 직무에 관련된 자극과이에 대한 응답 등으로 청각적 자극 제시와 이에 대한 음성응답 과업에서 갖는 양립성이 이에 해당한다.

11. 조명은 근로자들이 작업환경의 측면에서 중요한 안전요소이다. 산업안전보건법상 다음의 작업에서 근로자를 상시 작업시키는 장소의 조도기준을 쓰시오.

초정밀작업	정밀작업	보통작업	그 밖의 작업
(①)Lux 이상	(②)Lux 이상	(③)Lux 이상	(④)Lux 이상

12. 강렬한 소음작업을 나타내고 있다. 다음 괄호 안을 채우시 오.

```
가) 90dB 이상의 소음이 1일 (①) 시간 이상 발생되는 작업
```

- 나) 100dB 이상의 소음이 1일 (②) 시간 이상 발생되는 작업
- 다) 110dB 이상의 소음이 1일 (③) 시간 이상 발생되는 작업
- 라) 115dB 이상의 소음이 1일 (④) 시간 이삼 발생되는 작업

Thank you