

Machine Learning & Data Mining Spam Filtering using Naïve Bayes classification

Group members: Nguyễn Vũ Minh - 20194801

Lê Huy Hoàng - 20194766

Table of contents

O1Problem Domain

What problem can the Al model solve

03 Results

The results we obtained from the dataset

What algorithm and dataset we used

O4Conclusion

Our conclusion for this Al model

O1 Problem Domain

Problem Domain

??????

02 Algorithm

Algorithm

$$P(A|B) = \frac{P(B|A) * P(A)}{P(B)}$$

Bayes formula

$$P(Spam|Content) = \frac{P(Content|Spam) * P(Spam)}{P(Content)}$$

Algorithm (Cont.)

Compute & Compare

$$P(Spam|Content) = \frac{P(Content|Spam) * P(Spam)}{P(Content)}$$

$$P(Normal|Content) = \frac{P(Content|Normal) * P(Normal)}{P(Content)}$$

$$P(Spam|Content) = P(Content|Spam) * P(Spam)$$

$$P(Normal|Content) = P(Content|Normal) * P(Normal)$$

Algorithm Breakdown

.....

For P(Spam):

$$P(Spam) = \frac{N_{Spam}}{N_{Spam} + N_{Ham}}$$

For P(Content | Spam): Content = $w_1w_2w_3...w_n$

$$P(Content|Spam) = \prod_{i=1}^{n} P(w_i|Spam)$$

With
$$P(w_i | Spam) = \frac{N_{w_i | Spam}}{N_{Spam}}$$

https://www.kaggle.com/datasets/balaka18/email-spam-classification-dataset-csv lgnore all stopwords from the dataset

S	p	a	m

	m
а	ш
 ч	

																			<u> </u>										
Email No. the	to	ect	and	for	of	а		you	hou	in	on	is	this	enron	i	be	that	will	have	with	your	at	we	S	are	it	by	com	as
Email 1	0	0	1	0	0	0	2	0	C		0	0	1	0	0	2	0	0	0	0	0	0	0	0 3	()	0	0	0
Email 2	8	13	24	6	6	2	102	1	. 27	1	8	21	13	0	1	61	4	2	0	0	2	0 1	.2	9 95	4	1	3	3	3
Email 3	0	0	1	0	0	0	8	0	C		4	2	0	0	0	8	0	0	0	0	0	0	2	0 2	()	0	0	0
Email 4	0	5	22	0	5	1	51	2	10		1	5	9	2	0	16	2	0	0	1	1	0	2	1 36	:	3	1	2	0
Email 5	7	6	17	1	5	2	57	0	9		3	12	2	2	0	30	8	0	0	2	0	0	7	0 19		2	4	2	0
Email 6	4	5	1	4	2	3	45	1		1	6	12	8	1	0	52	2	0	0	0	1	0	5	5 56		2	7	1	1
Email 7	5	3	1	3	2	1	37	0	C		9	4	6	2	0	27	1	0	0	0	0	0	7	1 40	()	0	0	0
Email 8	0	2	2	3	1	2	21	6	C		2	6	2	0	0	28	1	0	1	0	0	5	1	0 23	()	1	0	0
Email 9	2	2	3	0	0	1	18	0	C		3	3	2	1	0	15	0	1	0	0	0	0	3	2 6	()	0	0	0
Email 10	4	4	35	0	1	0	49	1	. 16		9	4	1	0	0	35	10	0	2	1	1	0	3	1 37)	1	1	0
Email 11	22	14	2	9	2	2	104	0	2	3	5	13	21	9	0	96	6	8	2	2	3	0 2	27	4 76		2 1	13	0	5
Email 12	33	28	27	11	10	12	173	6	12	2	8	47	27	7	4	160	11	1	6	1	3	3 1	.8	4 145	:	3 2	21	1	3
Email 13	27	17	3	7	5	8	106	3	C	2	2	33	16	5	0	102	7	0	6	1	3	2 1	1	1 91		1 1	LO	1	2
Email 14	4	5	7	1	5	1	37	1	. 3		8	8	6	1	0	43	1	0	1	0	4	0	2	4 46	()	5	1	0

Difficulties

Since we have
$$P(w_i | Spam) = \frac{N_{w_i | Spam}}{N_{Spam}}$$

If w_i never appear in a spam email in the dataset:

$$P(w_i|Spam)=0$$

P(Content|Spam) = 0

Faulty result

Solution:

$$P(w_i | Spam) = \frac{N_{w_i | Spam} + \alpha}{N_{Spam} + \alpha * N_{Vocabulary}}$$

Basically we count the world from α instead of 0

Difficulties (Cont.)

$$P(Content|Spam) = \prod_{i=1}^{n} P(w_i|Spam)$$

Number very small ____

Floating-point underflow

Solution: since if a > b then log(a) > log(b)

we calculate and compare log(P(Spam|Content)) and log(P(Ham|Content)) instead

$$log(P(Spam|Content)) = log(P(Spam)) + \sum_{i=1}^{n} log(P(w_i|Spam))$$

$$log(P(Ham|Content)) = log(P(Ham)) + \sum_{i=1}^{n} log(P(w_i|Ham))$$

03 Results

Results

Methods: k-fold cross-validation with stratified sampling

Sp	am	Classified by the					
		system					
		Spam	Normal				
True	Spam	1417	83				
class	Normal	214	3458				

Precision (Spam) =
$$\frac{1417}{1417 + 214}$$
 = 86.88 %
Recall (Spam) = $\frac{1417}{1417 + 83}$ = 94.47 %

Nor	mal	Classified by the					
		system					
		Normal	Spam				
True	Normal	3458	214				
class	Spam	83	1417				

Precision (Normal) =
$$\frac{3458}{3458 + 83}$$
 = 97.66 %
Recall (Normal) = $\frac{3458}{3458 + 214}$ = 94.17 %

=> Precision (Macro) =
$$\frac{86.88 + 97.66}{2}$$
 = 92.27 %
=> Recall (Macro) = $\frac{94.47 + 94.17}{2}$ = 93.32 %
=> F1 = $\frac{2 * 92.27 * 93.32}{92.27 + 94.32}$ = 92.79 %

04 Conclusion

Conclusion

- The Al model achieve a pretty good result although false positive is a problem
- Naïve Bayes classification might have a problem of ignore the order of words in an email, which might be crucial to detect if a mail is spam or not

THANK YOU FOR LISTENING!

