MIT OpenCourseWare http://ocw.mit.edu

2.00AJ / 16.00AJ Exploring Sea, Space, & Earth: Fundamentals of Engineering Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Exploring Earth, Sea & Space: FUNdaMENTALs of Design

Intro. To Engineering Analysis

Units and Dimensions

Base Unit		SI unit
Mass	[M]	kg
Length	[L]	m
Time	[T]	S
Temperature	[W]	K
Electric Current	[1]	Amps
Amt of Matter	[mole]	Mol

1 Newton =
$$1 \text{ kg*m/s}^2$$

[Force] = [M * L * T-2]

Always double check your units!

Derived Units

Derived Unit		SI Units
Area, A	[L ²]	m ²
Volume, ₩	[L ³]	m ³
Velocity, v	[LT-1]	m/s
Acceleration, a	[L T ⁻²]	m/s ²
Pressure, $p = F/A$	[M L ⁻¹ T ⁻²]	$N/m^2 = kg/m/s^2$
Stress, t	[M L ⁻¹ T ⁻²]	$N/m^2 = kg/m/s^2$
Force, $F = p*A$	[M L T ⁻²]	N = kg*m/s²
Energy, E Work, $W = F^*x$	[M L ² T ⁻²]	J = N*m
Power, $P = F^*v$	[M L ² T ⁻³]	W = J/s = N*m/s

Always double check your units!

Free Body Diagrams

ALWAYS SKETCH IN YOUR DESIGN NOTEBOOK!

WHERE DO THE FORCES ACT?

Images of a horse-drawn sleigh, a rock falling off a cliff, a crash-test dummy, and a hand holding a shoe removed due to copyright restrictions.

Sketches

Free Body Diagrams

Images from Wikimedia Commons, http://commons.wikimedia.org

Please see http://www.globalsecurity.org/military/library/policy/army/accp/al0966/al0966b0019.gif

Forces:
$$\Sigma \vec{F} = m\vec{a}$$

Sir Isaac Newton (1642 - 1727)

• Types of forces?

Forces:

$\Sigma \vec{F} = m\vec{a}$

Sir Isaac Newton (1642 - 1727)

- Types of forces:
 - Shear Forces (Tangent to surface): e.g. Friction
 - Normal forces
 (Perpendicular to surface): e.g. Pressure forces
 - Gravity
 - Body forces
 - Others?

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = m\mathbf{a}$$

Forces:

$\Sigma \vec{F} = m\vec{a}$

Sir Isaac Newton (1642 - 1727)

- Types of forces:
 - Shear Forces (Tangent to surface): e.g. Friction
 - Normal forces
 (Perpendicular to surface): e.g. Pressure forces

 $\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{h}} = m\mathbf{a}$

- Gravity
- Body forces
- Others?

- FORCES do WORK and transfer ENERGY
- If FORCES act on a body and there is <u>NO</u> ACCELERATION then the body is in EQUILIBRIUM
 - Keep in mind where each force acts when designing (center of forces & lines of action)

Torque, t

- Torque, t
 - Force, *F*, applied at a distance, *r*:

$$au = \mathbf{r} \times \mathbf{F}$$
 or $au = rF\sin\theta$

- Rate of change of ar $d\mathbf{L}$ nentum, $\mathbf{L}\boldsymbol{\tau} = \frac{d\mathbf{L}}{dt}$

$$\tau = r \times F$$

 $L = r \times p$

Momentum:

Linear momentum

$$\mathbf{p} = m\mathbf{v}$$

- m = mass of object
- v= velocity vector

Angular momentum

$$L = I\omega$$

- I = moment of inertia
- w = angular velocity

Work:

$$W = \int F dx$$

In order for WORK to be done FORCE must act on an object <u>AND</u> the object must MOVE in the direction of the FORCE.

Work:

$$W = \int F dx$$

In order for WORK to be done FORCE must act on an object <u>AND</u> the object must MOVE in the direction of the FORCE.

Force in direction of motion

Constant Force: W =

Variable Force:

W = Fx

$$W = \int F dx$$

Force not in direction of motion

$$W = F \cos \theta x$$

$$W = \int F \cos \theta \, dx$$

WORK requires ENERGY

Energy:

Kinetic Energy

$$KE = \frac{1}{2}mv^2$$

Potential Energy

$$PE = mg\Delta h$$

Power:

- POWER is the <u>rate</u> of doing WORK or <u>rate</u> of using <u>ENERGY</u>
- ENERGY used must equal the WORK done

$$\overline{P} = W/t$$

$$P_{\text{instantaneous}} = \vec{F} \cdot \vec{V}$$

Efficiency:

Efficiency measures
 how "well" power is
 transmitted or the
 process is performed

$$\eta = \frac{P_{out}}{P_{in}} < 1.0$$

$$P = F V = F \cos \theta V$$
 (for F, V constant)

Conservation Laws

Momentum	Energy	Angular Momentum
Collisions (elastic/inelastic; 1D or 2 ⁺ D) Fluid motion Design Analysis	Einstein: E = mc ² Useful for solving mechanics Problems!	Rotating Bodies Torques Motors and spinning wheels
Impulses External forces $\frac{d}{dt}(m\vec{V}) = \Sigma \vec{F}$	Fluids – Bernoulli's Equation Electrical Circuits – Voltage Laws Heat/Thermo-1st Law of Thermodynamics	Angular velocity times moment of inertia Vector Quantities!

- M g
- How do you determine k if it is not given?
- How much work must be done to stretch the spring some distance x?

- When it is in an equilibrium position draw a free body diagram.
 - What are the forces acting on it?
 - Write an equation for the force balance?
- What happens if you give it a light push down and let it go?
 - How would you write an equation of motion to describe this? Consider the force balance.
 - Is there a specific frequency that this mass will oscillate at? Why do we care?

Tacoma Narrows Bridge Video

