

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

概述

FM6126B/FM6126Q 是一款专为 LED 模块和显示器设计的驱动 IC, 具有 16 路恒定的电流输出驱动能力。 FM6126B/FM6126Q 是一款专为 LED 显示屏设计的驱动 IC, 采用 16 路恒流灌电流输出。FM6126B/FM6126Q 采用了 "输出钳位"专利技术,可以有效消除第一行偏暗现象,同时可以防止灯珠损坏。同时 FM6126B/FM6126Q 具有极佳 的抗干扰特性,恒流及低灰效果不受 PCB 板的影响。并可选用不同的外挂电阻对输出级电流大小进行调节,精确控 制 LED 的发光亮度。 FM6126B/FM6126Q 内部采用了电流精确控制技术,可使片间误差 低于±3.0%,通道间误差 低于±2.0%

FM6126B/FM6126Q 在显示过程中(OE=0)会缓存 16bit 显示数据,所以系统在 FM6126B/FM6126Q 显示的过程中可以 再继续存 入 16bit 串行数据,相比通用恒流源芯片,刷新率可以提高 50%以上。

FM6126B/FM6126Q 在 FM6124 基础上集成 6 位电流增益调节,并加入了寄存器配置。有效消除下鬼隐,改善低灰 偏色, 麻点, 第一行偏暗等问题。

特点

- 16 路恒流灌电流输出
- 输出电流设定范围:
 - $0.5 \sim 38 \text{mA@VDD} = 5 \text{V}$
 - $0.5 \sim 25 \text{mA@VDD} = 3.3 \text{V}$
- 电流精度
 - 通道间: ±0.9%(典型值) ±2.0%(最大值) 芯片间: ±2.5%(典型值) ±3.0%(最大值)
- 快速输出电流响应 OE (最小值): 40ns@VDD=5V
- 6 位电流增益调节: 25%~100%
- I/0 施密特触发器触发输入 \triangleright
- 数据传输频率: fMAX=25MHz
- 芯片工作电压: VDD=3.3~5.5V
- 工作温度范围: -40~85℃
- 消除下鬼隐
- 集成双缓存,刷新率比通用恒流芯片提高 50%以上
- 通道内集成双向钳位保护电路,能够有效减少灯珠 的损坏
- 有效解决低灰色块,偏色,麻点,第一行偏暗
- 具有极佳的抗干扰能力和低灰度效果
- 封装形式: SSOP-24 (e=0.635) 、QFN-24-4×4 (0.5mm)

产品应用

- 室内表贴模组系列: P2、P2.5、P3、P3.91、P4、P4.81、P5.
- 户外表贴模组系列: P4.81、P5、P6、P8、P10、P10 直插灯、P13.33 插灯。

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

管脚图

QFN-24

管脚功能描述

引脚定义	引脚名称
GND	芯片接地引脚
SIN	输入到移位寄存器的串行数据输入端
CLK	时钟信号输入端
LE	数据锁存输入端 3个 clk 宽度的 LE 高电平时,数据被传入到锁存器中。
OUT0—OUT15	恒电流输出端
ŌĒ	输出使能信号输入端,并在下降沿处缓存数据 0E 高电平时,关断 0UT0-0UT15 0E 低电平时,打开 0UT0-0UT15
SD0	串行数据输出端,可接到下一个驱动芯片的 SDI 端
REXT	外接调节电阻的输出端,可调节所有通道的输出电流大小
VDD	3. 3V/5V 电源输入端

第2页共14页 www.superchip.cn Version 1.0 May 2019

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

内部框图

I/0 等效电路

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

指令定义

芯片包含一个简单的 16bit 移位寄存器,灰度值和配置值都会锁存到移位寄存器里面。通过计数 LE 信号的 长度来解 析控制命令,不同的 LE 长度表示不同的命令。例如长度为 3 的 LE 信号表示"Data Latch"命令,用 来控制移位寄存器锁 存灰度值,将移位寄存器里的 16bit 数据送给输出通道。下表列出了所有命令及其释义。

指令名称	LE	指令描述
RESET_OEN	>1	软复位信号
DATA_LATCH	3	锁存16bit 数据送给输出通道
	4~10	Reserved
WR_REG1	11	写配置寄存器1
WR_REG2	12	写配置寄存器2

备注: LE 的长度是指当 LE 为高电平时, CLK 的上升沿个数。如下图所示,第一个 LE 信号的长度为 3,亦即该命 令为"Data_Latch"命令。

建立保持时间

LE 信号和SIN 信号的建立保持时间如下表所示。

信号名称	MIN	备注
T_{SU_LE}	7ns	
$T_{\mathrm{HD_LE}}$	7ns	
$T_{ m SW_LE}$	10ns	
T_{SU_SIN}	3ns	
T_{HD_SIN}	3ns	

第 4 页 共 14 页 www.superchip.cn Version 1.0 May 2019

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

FM6126B/FM6126Q 提高刷新率的原理

通用恒流源驱动芯片数据传送及数据显示时序图

通用恒流芯片在数据传输及数据显示如上图所示,数据传输及数据显示利用率低的原因:

- 1. 当显示一个高位数据的时候,数据显示的时间可能会比数据传输的时间大得多,在数据显示多余的时间内不能 进行数据传输。
- 2. 当显示一个低位数据的时候,数据显示的时间可能会比数据传输的时间小得多,在数据传输多余的时间内 不能 进行数据显示。

FM6126B/FM6126Q 数据传送及数据显示时序图

FM6126B/FM6126Q数据传送及数据显示时序见上图所示,data(A)和data(C)为高位数据,data(B)和data(D)高低位数据。 将显示数据高低位按时间进行组合,使显示高位数据多余时间可以利用起来进行数据传送,或者说利用传数据的时 间来进行高位的显示,将传数据和显示数据完美的配合起来,可以有效的提高显示刷新率,基本步骤如下:

- 1. 当data(A)传送完成后,在LE上产生一个latch信号,锁存data(A)
- 2. 完成data(A) 锁存后, ∮由1~>0, 寄存data(A)并显示data(A)
- 3. 在显示 data(A)的同时,对data(B)进行传送
- 4. data(B)传送完成后,由LE产生latch信号,锁存data(B),并接着传送data(C)
- 5. 完成data(A)的显示后,寄存data(B)并显示data(B)
- 6. 完成 data(C)的传送,完成data(B)的显示
- 7. 寄存data(C)和传送data(D),(同步骤1)

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

FM6126B/FM6126Q 消影电路时序

芯片消影时间(Tghost)之定义如下图所示,在 OE 信号为高时,锁存信号(LAT)上升沿到使能信号(OEN) 下降沿 区间为消影时间。

真值表

CLK	LE	<u>—</u> ОЕ	SIN	OUTO ··· OUT7 ··· OUT15	SOUT
<u> </u>	Н	L	Dn	D _n ⋅ ⋅ ⋅ D _n −7 ⋅ ⋅ ⋅ D _n −15	Dn-15
<u>_</u>	L	L	Dn+1	无变化	Dn-14
<u>_</u>	Н	L	Dn+2	D _{n+2} ⋅⋅⋅ D _n −5 ⋅⋅⋅ D _n −13	Dn-13
Ł	×	L	Dn+3	D _n +2 ⋅⋅⋅ D _n −5 ⋅⋅⋅ D _n −13	Dn-13
Ł	×	Н	Dn+3	OFF	Dn-13

规格参数

最大工作范围 (Ta=25℃)

特性		符号	额定值	单位
电源电压		$V_{\scriptscriptstyle DD}$	0~7	V
输出电流		I_0	38	mA
输入电压		$V_{\rm IN}$	-0.4~V _{DD} +0.4	V
输出耐受电压		V _{OUT}	11	V
时钟频率	时钟频率		25	MHz
接地端电流		$I_{ ext{GND}}$	+1000	mA
消耗功耗(印刷	DN-type	P_{D}	3. 19	W
电路板上, 25℃)			0.10	"
热阻抗 DN-type		$R_{\rm th(j-a)}$	39. 15	°C/W
工作温度		$T_{ m opr}$	-40 ~ 85	$^{\circ}$
存储温度		$T_{ m stg}$	−55 [~] 150	$^{\circ}$

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

直流特性 (Ta=-40℃~85℃,如不另外说明)

特性	测试条件	最小值	典型值	最大值	单位
电源电压	-	3. 3	5	5. 5	V
ON时的输出电压	OUTn	0.6	_	4	V
高电平逻辑输入电压	_	0.7*V _{DD}	_	$V_{\scriptscriptstyle DD}$	V
低电平逻辑输入电压	-	GND	-	0. 3*V _{DD}	V
SOUT高电平输出电流	V _{DD} =5V	-	-	-1	mA
SOUT低电平输出电流	V _{DD} =5V	-	_	1	mA
恒流输出	OUTn	0. 5	-	38	mA

开关特性 (Ta=25℃, VDD=5.0V, 如不另外说明)

特性		符号	测试电路	测试条件	最小值	典型值	最大值	单位
	OE - OUTO	tpLH3	6	LE=H	-	28	31	
传输延迟时间	OE -OUT1	tpHL3	6	LE=H	-	28	31	ns
	CLK-SOUT	tpHL2	6	-	-	22	30	
输出端上升	时间	tor	6	电压波形 10~90%	_	25	28	ns
输出端下降	时间	tof	6	电压波形的90 [~] 10%	_	33	37	ns

动态特性 (VDD=4.5~5.5V, Ta=-40℃~85℃, 如不另外说明)

特性	符号	测试电路	测试条件	最小值	典型值	最大值	单位
串行数据传输频率	$F_{\scriptscriptstyle CLK}$	6	_	-	-	30	MHz
时钟脉冲宽度	$t_{ ext{wCLK}}$	6	SCK=H或者L	20	-	=	ns
锁存脉冲宽度	$t_{\mathtt{wLE}}$	6	LE=H	20	-	=	ns
使能脉冲宽度	twoE	6	OE =H或者L,	40	_	_	ns
文化/\(\frac{1}{2}\)	UwOE	0	R _{EXT} =890 Ω	40 –			113
保持时间	t _{HOLD1}	6	_	5	_	=	ns
W121111	t _{HOLD2}	6	_	5	-	-	ns
建立时间	t _{SETUP1}	6	_	5	-	-	ns
医亚川内	t _{SETUP2}	6	_	5	-	-	ns
最大时钟上升时间	t_{r}	6		=	_	500	ns
最大时钟下降时间	$t_{\scriptscriptstyle\mathrm{f}}$	6		-	-	500	ns

深圳市富满电子集团股份有限公司 SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

电气特性 (VDD=4.5~5.5V, Ta=25℃, 如不另外说明)

特性	符号	测试电路	测试条件	最小值	典型值	最大值	单位
高电平逻辑输出电压	V_{OH}	1	I _{OH} =-1mA, SOUT	V _{DD} -0.4	-	V_{DD}	V
低电平逻辑输出电压	V_{OL}	1	I _{OH} =+1mA, SOUT	_	_	0.4	V
高电平逻辑输入电流	${ m I}_{ ext{IH}}$	2	$V_{\text{IN}}\!\!=\!\!V_{\text{DD}},\;\text{OE}$, SIN, CLK	_	-	1	μА
低电平逻辑输入电流	${ m I}_{{\scriptscriptstyle { m IL}}}$	3	V _{IN} =GND, LE, SIN, CLK	-	-	-1	μА
	$I_{ exttt{DD1}}$	4	Rext=未接, OUT off	_	4.8	8	mA
	$I_{ exttt{DD2}}$	4	Rext=1.24K Ω , OUT off	_	7. 2	9	mA
电源电流	$I_{ ext{DD3}}$	4	Rext= 620Ω , OUT off	_	9. 2	11	mA
	$I_{ exttt{DD4}}$	4	Rext=1.24K Ω , OUT on	_	8. 7	10	mA
	$I_{ exttt{DD5}}$	4	$\text{Rext=}620\Omega$, OUT on	-	10. 7	12	mA
	I_{01}	5	V _{DD} =5. OV, V ₀ =1. OV,	_	15	-	mA
恒流输出			R _{EXT} =1. 23k Ω				
15.4716.41111 [11]	I_{02}	5	$V_{DD} = 5.0V$, $V_0 = 1.0V$,	_	30	_	mA
			$R_{\text{EXT}}=615~\Omega$				
			$V_{DD}=5.0V$, $V_0=1.0V$,				
恒流误差	$\Delta \ { m I}_0$	5	$R_{\text{EXT}}=1.23~\text{k}\Omega$,	_	± 0.15	± 0.37	mA
			OUTO OUT15				
			$V_{DD}=4.5^{5}.5V$, $V_{0}=1.0V$,				
恒流电源电压调节	$%V_{DD}$	5	$R_{\text{EXT}}=1.24~\text{k}~\Omega$, $~\text{OUTO}^\sim$	_	± 0.2	-	%/V
			OUT15				
			$V_{DD}=5.0V$, $V_0=1.0^{\circ}3.0V$,				
恒流输出电压调节	$%V_{\text{OUT}}$	5	$R_{\text{EXT}} = 1.24 \text{ k} \Omega$, OUTO^{\sim}	_	± 0.1		%/V
			0UT15				
上拉电阻	Rup	3	ŌĒ	200	300	500	kΩ
下拉电阻	R_{DOWN}	2	LE	200	300	500	kΩ

第8页共14页 Version 1.0 May 2019 www.superchip.cn

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

测试电路

测试电路1: 高电平逻辑输入电压/低电平逻辑输入电压

测试电路2: 高电平逻辑输入电流/下拉电阻

测试电路3: 低电平逻辑输入电流/上拉电阻

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

测试电路 4: 电源电流

测试电路 5: 恒流输出/输出 OFF 漏电流/恒流误差 恒流电源电压调节/恒流输出电压调

测试电路 6: 开关特性

www.superchip.cn 第 10 页 共 14 页 Version 1.0 May 2019

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

时序波形

1. CLK, SIN, SOUT

2. CLK, SIN, LE, OE, OUTO

3. **OUTO**

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

应用信息

FM6126B/FM6126Q 采用了精确电流驱动控制技术,同一芯片的不同通道间,不同芯片之间的电流差异极小。

- 1) 通道间电流差异<±2%, 芯片间的电流差异<±3.0%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示。输出电流将不随 LED 顺向电压 V_F的变化而变化。

调节输出电流

FM6126B/FM6126Q 通过外接电阻 Rext 来调节输出电流(Iout),计算公式为:

 $V_{R-EXT}=1.23V$;

 $Iout = (V_{R-EXT}/Rext)*15$

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

封装信息

> SSOP-24 (e=0.635)

<i>h</i> h 口		毫米			
符号	最小值	典型值	最大值		
A	_	1.60	1. 65		
A1	_	0. 15	0. 20		
A2	1.40	1.45	1. 50		
A3	0.60	0.65	0.70		
b	0. 22	0. 25	0.30		
С	0. 17	0. 22	0. 25		
D	8. 55	8.65	8. 75		
Е	5. 90	6.00	6. 10		
E1	3.80	3. 90	4.00		
е		0. 635BSC			
L	0. 57	0.60	0. 65		
L1	1. 05BSC				
θ	0°	3°	6°		

SHEN ZHEN FINE MADE ELECTRONICS GROUP CO., LTD.

FM6126B/FM6126Q(文件编号: S&CIC1703) 16 路双缓存恒流输出 LED 驱动芯片

QFN-24-4 \times 4 (0.5mm)

SYMBOL	MILLIMETER					
JIMDOL L	MIN	NOM	MAX			
A	0.83	0.85	0.87			
A1	0	0.02	0.05			
A2	•••					
A3		0. 20REF				
ь	0. 18	0. 25	0. 30			
D	3. 90	4.00	4. 10			
D2	2.65	2.70	2.75			
Е	3. 90	4.00	4. 10			
E2	2. 65	2.70	2.75			
e	0.40	0.50	0.60			
K	0. 25REF					
L	0.35	0.40	0. 45			
L1	120	<u> </u>	825			
R	0.09	=	823			