Important declarations

Please remove this info from manuscript text if it is also present there.

Associated Data

Data supplied by the author:

1. Github: 2. 385737018 3. https://git.io/JRmfe

Required Statements

Competing Interest statement:

The authors declare that they have no competing interests.

Funding statement:

Research start-up funds grant No. 322388 were assigned to Miguel Uyaguari-Diaz at the University of Manitoba. Collaborative grant No. 52622 (Drs. Uyaguari and Yuan) was awarded by the Faculty of Science, University of Manitoba.

Quantitation of human enteric viruses as alternative indicators of fecal pollution to evaluate wastewater treatment processes

Audrey Garcia Equal first author, 1, Tri Le Equal first author, 1, Paul Jankowski 1, Kadir Yanaç 2, Qiuyan Yuan 2, Miguel I Uyaguari-Diaz Corresp. 1

Corresponding Author: Miguel I Uyaguari-Diaz Email address: Miguel.Uyaguari@umanitoba.ca

We investigated the potential use and quantitation of human enteric viruses in municipal wastewater samples of Winnipeg (Manitoba, Canada) as alternative indicators of contamination and evaluated the processing stages of the wastewater treatment plant. During the fall 2019 and winter 2020 seasons, samples of raw sewage, activated sludge, effluents, and biosolids (sludge cake) were collected from the North End Sewage Treatment Plant (NESTP), which is the largest wastewater treatment plant in the City of Winnipeg. DNA and RNA enteric viruses, as well as the *uidA* gene found in *Escherichia coli* were targeted in the samples collected from the NESTP. Total nucleic acids from each wastewater treatment sample were extracted using a commercial spin-column kit. Enteric viruses were quantitated in the extracted samples via quantitative PCR using TagMan assays. The average gene copies assessed in the raw sewage were not significantly different (p-values ranged between 0.0547 and 0.7986) than the average gene copies assessed in the effluents for Adenovirus and crAssphage (DNA viruses), Pepper Mild Mottle Virus (RNA virus), and *uidA* in terms of both volume and biomass. A significant reduction of these enteric viruses was observed consistently in activated sludge samples compared with those for raw sewage. Corresponding reductions in gene copies per volume and gene copies per biomass were also seen for *uidA* but were not statistically significant (p-value = 0.8769 and p-value = 0.6353, respectively). The higher gene copy numbers of enteric viruses and *E. coli* observed in the effluents may be associated with the 12-hour hydraulic retention time in the facility. Enteric viruses found in gene copy numbers were at least one order of magnitude higher than the *E. coli* marker *uidA*. This indicate that enteric viruses may survive the wastewater treatment process and viral-like particles are being released into the aquatic environment. Our results suggest that Adenovirus, crAssphage, and Pepper mild mottle virus can be used as complementary viral indicators of human fecal

¹ Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada

² Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba, Canada

pollution.

- 1 Quantitation of human enteric viruses as alternative indicators of fecal pollution to
- 2 evaluate wastewater treatment processes
- 3 Audrey Garcia^{1*}, Tri Le^{1*}, Paul Jankowski^{1a}, Kadir Yanaç², Qiuyan Yuan² and Miguel Uyaguari-
- 4 Díaz¹^

11

14

- 5 Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, MB,
- 6 Canada R3T 2N2
- 7 ² Department of Civil Engineering, Price Faculty of Engineering, University of Manitoba,
- 8 Winnipeg, MB, Canada R3T 2N2
- 10 *These authors contributed equally to this work.
- 12 ^a Current address: Department of Medical Microbiology and Infectious Diseases, University of
- 13 Manitoba, Winnipeg, Manitoba, Canada
- 15 ^ Corresponding Author:
- 16 Miguel Uyaguari-Díaz
- 17 45 Chancellors Circle, Winnipeg, Manitoba, R3T 2N2, Canada
- 18 Email address: Miguel.Uyaguari@umanitoba.ca

ABSTRACT

20	We investigated the potential use and quantitation of human enteric viruses in municipal
21	wastewater samples of Winnipeg (Manitoba, Canada) as alternative indicators of contamination
22	and evaluated the processing stages of the wastewater treatment plant. During the fall 2019 and
23	winter 2020 seasons, samples of raw sewage, activated sludge, effluents, and biosolids (sludge
24	cake) were collected from the North End Sewage Treatment Plant (NESTP), which is the largest
25	wastewater treatment plant in the City of Winnipeg. DNA and RNA enteric viruses, as well as
26	the <i>uidA</i> gene found in <i>Escherichia coli</i> were targeted in the samples collected from the NESTP.
27	Total nucleic acids from each wastewater treatment sample were extracted using a commercial
28	spin-column kit. Enteric viruses were quantified in the extracted samples via quantitative PCR
29	using TaqMan assays.
30	The average gene copies assessed in the raw sewage were not significantly different (p-values
31	ranged between 0.0547 and 0.7986) than the average gene copies assessed in the effluents for
32	Adenovirus and crAssphage (DNA viruses), Pepper Mild Mottle Virus (RNA virus), and uidA in
33	terms of both volume and biomass. A significant reduction of these enteric viruses was observed
34	consistently in activated sludge samples compared with those for raw sewage. Corresponding
35	reductions in gene copies per volume and gene copies per biomass were also seen for uidA but
36	were not statistically significant (p-value = 0.8769 and p-value = 0.6353 , respectively). The
37	higher gene copy numbers of enteric viruses and E. coli observed in the effluents may be
38	associated with the 12-hour hydraulic retention time in the facility. Enteric viruses found in gene
39	copy numbers were at least one order of magnitude higher than the E. coli marker uidA,
40	indicating that enteric viruses may survive the wastewater treatment process and viral-like
41	particles are being released into the aquatic environment. Our results suggest that Adenovirus,

42 crAssphage, and Pepper mild mottle virus can be used as complementary viral indicators of
 43 human fecal pollution.

44

45

INTRODUCTION

46	The human fecal waste present in raw sewage (RS) contains pathogens that can cause numerous
47	diseases. This can have a huge negative impact to public, aquatic health, and the economy
48	(Stachler, et al., 2017). Wastewater treatment plants (WWTPs) serve as protective barriers
49	between communities and the environment by reducing the organic matter present in wastewater.
50	Water quality is currently assessed using traditional markers such as coliforms and Escherichia
51	coli, leaving other microbes such as viruses largely unexplored. The North End Sewage
52	Treatment Plant (NESTP) in Winnipeg, Manitoba handles approximately 70% of the city's
53	wastewater treatment, serving over 400,000 people (City of Winnipeg, Water and Waste
54	Department, 2020). The treatment process at the NESTP first involves RS undergoing primary
55	treatment to remove solids. During the next treatment cycle, activated sludge (AS), a
56	heterotrophic cocktail of bacteria and protozoa, degrades organic matter present in solid waste.
57	The activated sludge (also known as biological treatment or secondary treatment) is the most
58	widely used process around the world to treat municipal wastewater (Racz et al., 2010; Scholz,
59	2016), and its use will likely continue due to its low cost and high efficiency. After the biological
60	treatment, wastewater is UV-disinfected and discharged as effluents (EF) into the river (City of
61	Winnipeg, Water and Waste Department, 2020). Approximately 200 million liters of EF are
62	discharged per day (City of Winnipeg, Water and Waste Department, 2020).
63	The main indicator of biological contamination used in wastewater treatment screening is <i>E. coli</i> ,
64	a fecal coliform bacterium (Hood et al., 1983). It is present in the gut of humans and warm-

65 blooded animals, and widely used as the main indicator of fecal pollution during the wastewater 66 treatment process. Nevertheless, the use of only fecal bacteria indicator in wastewater excludes 67 other possible pathogen groups present, such as human enteric viruses. Targeting these viruses in 68 EF could be an alternative method to monitor the wastewater treatment process. Within this 69 context, Dutilh et al. (2014) targeted the DNA crAssphage genome in a human fecal sample. 70 With further bioinformatics testing, it was predicted that the crAssphage genome is highly 71 abundant, having been identified in 73% of human fecal metagenomes surveyed (Dutilh, et al., 72 2014). In a study conducted by Zhang et al. (2006), the most abundant fecal virus found in dry 73 weight fecal matter was the plant RNA virus, Pepper mild mottle virus (PMMV). 74 In the present study, samples of RS, AS, EF, and biosolids/sludge cake (SC) from the NESTP 75 were collected (during fall 2019 and winter 2020) to investigate the potential of quantitating 76 human enteric viruses in wastewater samples as complementary indicators of contamination to 77 evaluate the processing stages of wastewater treatment. DNA enteric viruses in this study include 78 human Adenovirus (AdV) and cross-assembly phage (crAssphage), while RNA enteric viruses 79 include PMMV, Noroviruses (NoV) of the genogroups GI and GII, Astrovirus (AstV), Sapovirus 80 (SaV), and Rotavirus (RoV). We also studied the presence of a molecular marker for E. coli, the 81 uidA gene, in the samples collected from the NESTP. An overview of the workflow is illustrated 82 in *Fig. 1*.

83

84

85

86

87

MATERIALS AND METHODS

Sample Collection. A liter of RS, AS, EF, and 1 kg of SC were collected from the NESTP during each sampling event. Each sample was sealed in a 1-L sterile polyethylene container lined with a sterile plastic bag. Samples were collected on October 22nd, 2019 (Event 1) and November

28th, 2019 (Event 2) in the fall season. In the winter season, samples were collected on December 18th, 2019 (Event 3) and February 6th, 2020 (Event 4). SC samples were collected earlier in the day during Events 3 and 4. All samples were kept at 4°C and processed within 24 hours of collection.

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

88

89

90

91

Ultrafiltration of Wastewater Samples. Each wastewater treatment sample (RS, AS, and EF), including Millipore Milli-Q water as a negative control, was first filtered via a funnel and cheesecloth to remove any solid waste or debris. Next, 140 mL of each wastewater sample was concentrated using an ultrafiltration method with Centricon Plus-70 filter units of 30 KDa molecular-weight cutoff (Millipore Corporation, Billerica, MA, USA). The ultrafiltration process used a sterile glass pipette, where 70 mL of each wastewater sample was added into their correspondingly labeled sample filter cup pre-assembled with the filtrate collection cup. Each assembly was then sealed with a cap. The Centricon Plus-70 assemblies were placed into a swinging bucket rotor and centrifuged at 3000 x g for 30 minutes at 20°C. Subsequently, the filtrate was discarded, and the remaining 70 mL of the samples was added into their correspondingly labeled sample filter cup pre-assembled with the filtrate collection cup. Samples were spun at the same speed and temperature for 45 minutes. After centrifugation, the sample filter cup was separated from the filtrate collection cup. The concentration collection cup was then turned upside down and placed on top of the sample filter cup. The device was carefully inverted and placed into the centrifuge. Centricon Plus-70 filter units were centrifuged at 800 x g for 2 minutes at 20°C. After this step, the concentrated sample was collected from the concentration cup via a micropipette. The final volume was measured for each wastewater sample. If needed, 10 mM Tris-HCl, pH 8.5 buffer (Qiagen Sciences, Maryland, MD) was added

112

113

114

115

116

117

118

119

120

121

122

123

to the concentrate to make up a total volume of 250 µL. If the final volume of the concentrate was over 250 μL, Tris buffer was not added. Aliquots containing 250 μL were made and stored at 4°C and processed within 24h. **Sludge Cake Preparation for Ultrafiltration.** To remove cells from the SC samples, a 1X phosphate-buffered solution (PBS) with 0.15M NaCl, 0.05% Tween-20, and pH 7.5 was used. Approximately 30 g of SC sample per sampling event (Events 3 and 4) was collected and divided into six Falcon tubes for each event (~5-6 g per tube). Approximately 30 mL of PBS was added to each tube. The Falcon tubes filled with SC samples were homogenized at constant agitation for 15 minutes at 2500 rpm in a vortex mixer. These tubes were then centrifuged at a speed of 4500 x g for 50 minutes. The supernatant from each tube was subsequently recovered and transferred to a new sterile Falcon tube. For each sample event, 140 mL of supernatant was used for ultrafiltration as described previously. Nucleic Acid (DNA/RNA) Extraction and Fluorometric Assessment. Once the final volume of concentrate was collected from each wastewater sample, the sample was pretreated with InhibitEX buffer (Qiagen Sciences, Maryland, MD) as indicated by the manufacturer. Then,

124

125

126

127

128

129

130

131

132

133

of concentrate was collected from each wastewater sample, the sample was pretreated with InhibitEX buffer (Qiagen Sciences, Maryland, MD) as indicated by the manufacturer. Then, QIAamp MinElute virus spin kit (Qiagen Sciences, Maryland, MD) was used to extract total nucleic acids from each wastewater sample as per the manufacturer's instructions, which included the use of Qiagen Protease and carrier RNA (Qiagen Sciences, Maryland, MD). Samples were eluted in 75 µL of Buffer AVE (Qiagen Sciences, Maryland, MD), quantified, and stored at -80°C for downstream processes. The nucleic acid concentration and purity were assessed using Qubit dsDNA high sensitivity and RNA assay kits in a Qubit 4 fluorometer

134	(Invitrogen, Carlsbad, CA, USA). Qubit results can be found in Supplementary Materials (<i>Table</i>
135	SI).
136	
137	qPCR Primers, Probes, and gBlocks Gene Fragments. Table 1 summarizes the primers and
138	probes used in this study. Forward and reverse primers listed in <i>Table 1</i> were used in the Primer-
139	BLAST tool to extract gene target regions (Ye, et al., 2012). Extracted regions were then
140	uploaded to the Geneious software to verify oligonucleotide sequences associated to the flanking
141	regions and probe. The generated sequences were sent to Integrated DNA Technologies (IDT,
142	Inc., Coralville, Iowa, USA) to generate the desired gBlocks constructs. IDT manufactured all
143	the primers used for qPCR, as well as the probes Ast-P, Ring1a.2, and Ring 2.2 (Table 1).
144	However, probes SaV124TP, SaV5TP, Tampere NSP3, AdV-P, PMMV-Probe, and 056P1 were
145	manufactured by Life Technologies (Carlsbad, CA, USA).
146	
146 147	Quantitative PCR Assays. Taqman Environmental Master Mix 2.0 (Life Technologies,
	Quantitative PCR Assays. Taqman Environmental Master Mix 2.0 (Life Technologies, Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x
147	
147148	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x
147148149	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for
147148149150	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for RNA enteric viruses. Each 10 µl qPCR reaction contained 500 nM of each of the forward primer
147148149150151	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for RNA enteric viruses. Each 10 µl qPCR reaction contained 500 nM of each of the forward primer and the reverse primer and 250 nM of its designated probe when targeting both DNA and RNA
147148149150151152	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for RNA enteric viruses. Each 10 µl qPCR reaction contained 500 nM of each of the forward primer and the reverse primer and 250 nM of its designated probe when targeting both DNA and RNA viruses. Five µl of Environmental Master Mix was utilized in each qPCR reaction for targeting
147148149150151152153	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for RNA enteric viruses. Each 10 µl qPCR reaction contained 500 nM of each of the forward primer and the reverse primer and 250 nM of its designated probe when targeting both DNA and RNA viruses. Five µl of Environmental Master Mix was utilized in each qPCR reaction for targeting DNA viruses, while 2.5 µl of 4x Fast Virus Master Mix was used in each qPCR reaction for
147 148 149 150 151 152 153 154	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for RNA enteric viruses. Each 10 µl qPCR reaction contained 500 nM of each of the forward primer and the reverse primer and 250 nM of its designated probe when targeting both DNA and RNA viruses. Five µl of Environmental Master Mix was utilized in each qPCR reaction for targeting DNA viruses, while 2.5 µl of 4x Fast Virus Master Mix was used in each qPCR reaction for targeting RNA viruses. The <i>uidA</i> qPCR reaction consisted of 5 µl of Environmental Master Mix,
147 148 149 150 151 152 153 154 155	Carlsbad, CA, USA) was used for assays involving DNA enteric viruses and <i>uidA</i> , while 4x Taqman Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA) was used for RNA enteric viruses. Each 10 μl qPCR reaction contained 500 nM of each of the forward primer and the reverse primer and 250 nM of its designated probe when targeting both DNA and RNA viruses. Five μl of Environmental Master Mix was utilized in each qPCR reaction for targeting DNA viruses, while 2.5 μl of 4x Fast Virus Master Mix was used in each qPCR reaction for targeting RNA viruses. The <i>uidA</i> qPCR reaction consisted of 5 μl of Environmental Master Mix, 400 nM of each primer, and 100 nM of probe. All qPCR reactions used 2 μl of template.

158 were subjected to the following conditions: 50.0°C for 2 minutes and 95.0°C for 10 minutes 159 followed by 40 cycles of 95.0°C for 15 seconds and 60.0°C for 1 minute. The RNA enteric 160 viruses (SaV, RoV, AstV, GI and GII NoV, PMMV) were subjected to the following conditions: 161 50.0°C for 5 minutes and 95.0°C for 20 seconds followed by 40 cycles of 95.0°C for 3 seconds 162 and 60.0°C for 30 seconds. Raw qPCR output files can be found on GitHub 163 (https://git.io/J8VJ6). 164 165 Assessment of Ultrafiltration for Viral Recovery Efficiency. Armored RNA (Asuragen, Inc., 166 Austin, TX, USA), an artificial virus packed with a 1000-bp single-stranded fragment and 167 encapsulated in a protein coat, was used to assess recovery efficiency of the ultrafiltration 168 method employed herein. We spiked in 16000 copies of Armored RNA into 7.5 mL of 169 representative RS, AS, and EF samples from the NESTP. For the SC sample, 1.25 g of solid SC 170 was dissolved in 7.5 mL of PBS 1x then homogenized by vortexing at 2500 rpm for 15 minutes 171 and centrifuged at 4500 x g for 50 minutes. The supernatant was transferred to a new Falcon tube 172 to be undergoing the same treatment as the RS, AS, and EF samples. The 7.5-mL MilliQ 173 negative control also spiked with 16000 copies of Armored RNA. These five samples were first 174 filtered through cheesecloth. 0.5 mL was aliquoted from each filtrate for subsequent assessment 175 of recovery efficiency. The remaining volumes were subject to ultrafiltration using the Amicon® 176 Ultra-15 Centrifugal Filter Unit (Millipore Corporation, Billerica, MA, USA). Again, 0.5 mL of 177 each flowthrough was stored for efficiency evaluation. Nucleic acid extraction of the retentate was performed in a manner similar to that described above. The final elution volume was 30 µL. 178 179 Primers (381F: 5'- AGCCTGTCAATACCTGCACC-3' and 475R: 5'-180 CACGCTTAGATCTCCGTGCT-3'), and probe (420P: 5' Cy5-

181	AGAGTATGAGAGGTCGACGA-TAO 3') were designed using Primer design tool of Geneious
182	Prime version 2021.1.1 (https://www.geneious.com) and targeted a 95-bp region within the
183	Armored RNA genome. This targeted 95-bp fragment was sent to Integrated DNA Technologies
184	(IDT, Inc., Coralville, Iowa) to synthetize a gBlock construct. Serial dilutions of this synthetic
185	fragment were used to generate standards and quantify gene copy numbers (GCNs) of Armored
186	RNA via quantitative reverse transcription PCR (RT-qPCR). DNA quantification was also
187	performed via RT-qPCR. Standards, samples, and non-template controls were run in triplicates.
188	Thermal cycling reactions were performed at 50°C for 5 minutes, followed by 45 cycles at 95°C
189	for 10 seconds and 60°C for 30 seconds on a QuantStudio 5 Real-Time PCR System (Life
190	Technologies, Carlsbad, CA, USA). For RNA assays, each 10-μl RT-qPCR mixture consisted of
191	2.5 μL 4X TaqMan Fast Virus 1-Step Master Mix (Life Technologies, Carlsbad, CA, USA), 400
192	nM each primer, 200 nM probe, and 2.5 μ l of template, as well as ultrapure DNAse/RNAse free
193	distilled water (Promega Corporation, Fitchburg, WI, USA). For DNA assays, $5.0~\mu L$ Master
194	Mix was used.
195	
196	Assessment of Gene Copy Numbers by Volume and Biomass. Gene copy numbers (GCNs)
197	were expressed in terms of sample (per mL or g of sample) and biomass (per ng of DNA or
198	RNA). GCNs per mL of sample were calculated as previously described by Ritalahti et al.
199	(2006). When calculating GCNs per mL of sample, the final volume recovered after filtering 140
200	mL of wastewater sample was used in the formula. For the SC samples, the mass of SC collected
201	was used in the formula to produce results in GCNs per g of sample.

PeerJ reviewing PDF | (2021:08:64427:1:0:NEW 29 Sep 2021)

204

205

206

207

208

209

210

211

212

213

214

215

216

Collection of Metadata for Sampling Events. To perform Principal Component Analysis (PCA) and Spearman's rank correlation analysis for EF samples, metadata pertinent to the sampling events was retrieved. Water quality parameters obtained from the NESTP were combined with their October 2019 monitoring data (City of Winnipeg, Water and Waste Department, 2019) to complete some of the missing fields. For each value not found in either document, data interpolation was performed by taking an average of the corresponding values for the days before and after the sampling event. In addition, the Government of Canada's historical weather database was utilized to obtain the mean temperature on the sampling dates and the total precipitation over three days before each sampling event (hereafter referred to as "precipitation") (Environment and Climate Change Canada, 2021). The values for all parameters were transformed using log₁₀, except for precipitation due to the presence of zero values. These variables were used with log₁₀-transformed GCNs per mL sample for AdV, crAssphage, PMMV, and *uidA* (targets with quantifiable qPCR readings for all replicates across all events) as input for downstream analyses (PCA and Spearman's rank correlation analysis). Data Handling, Statistical Analysis, and Data Visualization. Various applications were

217

218

219

220

221

222

223

224

225

Data Handling, Statistical Analysis, and Data Visualization. Various applications were employed to process data at different steps of the pipeline. Input data, such as output from the qPCR instrument, was subjected to rudimentary formatting and cleaning in Microsoft Excel, which was also used to calculate GCNs per mL or g sample and per ng nucleic acid.

R (R Core Team, 2021) and its integrated development environment RStudio (RStudio Team, 2021) were utilized to further process the data and perform statistical analyses and output visualizations. These operations included general linear models (and estimated pairwise differences) using the package *sasLM* version 0.6.0 (Bae, 2021), PCA (corresponding biplots

226	were created using the package <i>ggbiplot</i> version 0.55 (Vu, 2011)), and Spearman's correlation
227	matrix using the package <i>Hmisc</i> version 4.5-0 (Harrell Jr., 2021). The package <i>reshape2</i> version
228	1.4.4 (Wickham, 2020) was used to reformat these correlation matrices to enhance compatibility
229	with other data-handling tools. Information about other packages is provided in Supplementary
230	Materials (Table S2). The R script used for analysis can be found on GitHub
231	(https://git.io/J8VUI).
232	Another software involved in data visualization was Tableau. Specifically, it was used to
233	generate boxplots for GCNs per mL or g sample and per ng nucleic acid, as well as the heatmap
234	representing the above-mentioned Spearman correlation matrix.
235	For all tests, a p-value of 0.05 was assumed to be the minimum level of significance.
236	
237	RESULTS
238	From our assessment of the sample processing method used in this study, the recovery
239	efficiencies of Armored RNA as measured by RT-qPCR were between 14.03% and 15.94% for
240	RS, 2.63-4.36% for AS, 12.36-18.74% for EF, and 2.40-5.45% for SC. Meanwhile, DNA
241	recovery efficiencies were 32.48-40.87%, 20.96-45.22%, 14.14-20.15%, and 23.41-68.42%,
242	respectively.
243	The GCN values for the DNA and RNA viruses and <i>uidA</i> were transformed into log ₁₀ form.
244	These values were run through a general linear model Tukey-Kramer analysis, and the means of
245	each wastewater processing stage for each target were analyzed. The GCNs were expressed in
246	terms of volume (mL) or weight (g) of sample and biomass (ng of nucleic acids). The result for
247	each GCN value for each replicate from the corresponding sampling event was visualized as one
248	

249	Genomics Team at the British Columbia Centre for Disease Control (2017a, 2017b). With these
250	values, the presence of DNA and RNA viral gene copies and <i>uidA</i> in the Milli-Q water (negative
251	control) samples across all Events 1-4 were determined to be negative. The orange-dotted lines
252	in Figs. 2-6 indicate the mean of the number of gene copies of each wastewater treatment sample
253	across all events.
254	The average GCNs assessed in the RS were not significantly different (p-values ranged between
255	0.0547 and 0.7986) compared to the average GCNs assessed in the EF for the DNA enteric
256	viruses (AdV and crAssphage) (Fig. 2), PMMV (Fig. 3), and uidA (E. coli) (Fig. 4) in terms of
257	both volume and biomass. However, the average GCNs of the DNA enteric viruses assessed in
258	AS were significantly and consistently lower compared to RS. Corresponding reductions in gene
259	copies per volume and gene copies per biomass were also seen for uidA, although these
260	reductions were not statistically significant, with p-values being 0.8769 and 0.6353, respectively.
261	For all the aforementioned targets, there was a relatively higher number of gene copies observed
262	in the EF across all events compared to AS samples.
263	NoV GI and GII were also targets for our study. Boxplots of their GCNs across the different
264	wastewater stages throughout Events 1-4 can be found in Supplementary Materials (Fig. S1). In
265	Events 1 and 2 (Fall season), NoV GI was below qPCR detection limits for all samples (RS, AS,
266	and EF). In addition, NoV GII GCNs for all samples collected in Event 2 and AS samples in
267	Events 3 and 4 (Winter season) were also below the detection limits. Among the quantifiable
268	samples, statistically significant GCN differences in terms of volume/mass and biomass were
269	calculated for the pairs of AS-EF (p-values were 4.483 x 10 ⁻⁶ and 3.226 x 10 ⁻⁷ , respectively), AS-
270	RS (1.658 x 10^{-6} , 1.091 x 10^{-5}), and AS-SC (1.481 x 10^{-9} , 4.083 x 10^{-7}). No significant
271	differences were detected among treatments for GCNs of NoV GI. There was no significant

272	difference between the mean gene copies of NoV GII in the RS and EF samples in terms of
273	volume (p-value = 0.7377), but the difference was significant in terms of biomass (p-value =
274	0.04905). The corresponding quantities of all the other sample pairs were statistically significant
275	when looking at both the volume/mass and biomass perspectives, with p-values ranging from
276	1.304×10^{-8} to 0.0046 , except for AS-RS GCN difference in terms of biomass (p-value =
277	0.0637).
278	RoV gene copies across the various wastewater treatment stages from Event 1 to 4 were also
279	examined. The boxplots illustrating these results in terms of both sample and biomass can be
280	found in the Supplementary Materials (Fig. S2). RoV GCNs were below detection limit for all
281	samples collected in Events 1 and 2. Looking at the EF-SC pair, the mean GCNs differed
282	significantly in terms of volume/mass (p-value = 2.649×10^{-7}) but not biomass (p-value =
283	0.4298). No significant GCN differences could be detected between RS and AS samples in terms
284	of both volume (p-value = 0.4155) and biomass (p-value = 0.6662). The equivalent magnitudes
285	for the remaining pairs per volume/mass and per biomass were statistically significant, with p-
286	values being between 7.907×10^{-10} and 0.02433 , respectively.
287	In the present study, there was no detection of gene copies for AstV and SaV (Sav1, Sav124, and
288	Sav5) in any of the wastewater samples across all events. In addition, to eliminate the possibility
289	of inhibitors or contaminants such as humic acids, additional qPCR tests using bovine serum
290	albumin (data not shown) were conducted with environmental samples (including AS). No
291	significant differences were observed between samples with and without the enzyme.
292	To investigate any potential relationship between collected data for EF samples, PCA was
293	performed with log_{10} -transformed variables. We found that three components (PC1, PC2, and
294	PC3) explained 99.14% of the variance between variables. A summary of the weight of

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

create the biplot in Fig. 5. Biplots for PC1 versus PC3 (Fig. S3) and PC2 versus PC3 (Fig. S4) are included in the Supplementary Materials. Overall, based on the biplot of PC1 and PC2, samples from the four events were distinct from one another, as point clusters of the four events can be seen occupying different quadrants. PC1, explaining 54.9% of the observed variance, received a notable and positive contribution from COD, cBOD, and TOC. Strongly negative contributors to PC1 were mean temperature, grab filtered UVT, NO_x-N, and TS. These observations were supported by subsequent Spearman's rank correlation analysis (Fig. 6), as COD, cBOD, BOD, and TOC demonstrated strongly positive correlations with one another (rho ranging between 0.8000 and 0.9487) (pvalue < 0.005) and strongly negative correlations with mean temperature, grab filtered UVT, NO_x -N, and TS (rho ranging between -1.000 and -0.8000) (p-value < 0.005). PC2 explained 31.9% of the variance between sampling events and showed a strong contribution from crAssphage, *uidA*, and grab temperature. This observation was also supported by the Spearman's rank correlation analysis showing these variables having strongly positive correlation with one another (rho ranging between 0.7169 and 0.9218) (p-value < 0.0100). Additionally, in the biplot, the axes representing E. coli and fecal coliform specifically pointed towards the same quadrant, which was reflected in their moderately positive Spearman's coefficient (0.6325) (p-value = 0.0273). However, it is worth noting that *uidA* and *E. coli* exhibited a moderately weak negative correlation (rho = -0.3073), although it was not statistically significant (p-value = 0.3313). The two parameters with the strongest contribution against PC2 were grab pH and turbidity, which was illustrated by the strongly positive Spearman's coefficient heatmap (rho = 0.8000) (p-value = 0.0018).

components is included in the Supplementary Materials (*Table S3*). PC1 and PC2 were used to

DISCUSSION

The ultrafiltration method used in this study was assessed and the recovery efficiencies among
all samples for Armored RNA were estimated to be between 2.40-18.74% for RNA. This range
was comparable to other methods to concentrate viral particles such as JumboSep (13.38% \pm
9.11%) or skimmed milk flocculation (15.27% \pm 3.32%), spiked-in wastewater samples, and
using Armored RNA as internal control (Yanaç and Uyaguari, unpublished results). Viral
particles may have been sorbed to biosolids present in wastewater samples, which were filtered
out during the processing stage. In this context, matrix has a significant effect for recovery of
viral particles. When compared to other environmental matrices such as surface water samples,
recovery efficiency is higher using ultrafiltration (tangential flow filtration) ($32.6\% \pm 11.81\%$)
and skimmed milk flocculation (42.64% \pm 15.12%) (Francis and Uyaguari, unpublished results).
Water with high turbidity and amounts of suspended solids tend to saturate filters and impact the
recovery of viral particles (Aslan et al., 2011; Karim et al., 2009; Uyaguari-Diaz, et al., 2016).
Additionally, the flow-through from ultrafiltration is another potential source of lost nucleic acid
The GCNs were expressed in terms of biomass and volume (except for SC, which was expressed
in g s of sample). The higher abundance and more stable signal over time of GCNs of AdV and
crAssphage (Fig. 2) as well as PMMV (Fig. 3) relative to the results of other assays make these
target more representative for conducting comparisons with E. coli. This persistent presence is
consistent with various longitudinal studies previously performed (Ballesté, et al., 2019; Farkas,
et al., 2018; Farkas, et al., 2019; Hamza et al., 2019; Nour, et al., 2021; Schmitz et al., 2016;
Tandukar et al., 2020; Worley-Morse et al., 2019).

A reduction of AdV, crAssphage, PMMV, and uidA GCNs was observed consistently in AS

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

samples (Figs. 2-4). This could be a result of viral particles being sorbed to larger fractions of organic matter that had been filtered by cheesecloth early in the sample-handling process or retained in the filtration devices as previously described. It is important to mention that samples were collected within a 2-hour period from RS \rightarrow AS \rightarrow EF consecutively within each sampling event. The higher GCNs of viruses and E. coli observed in the EF may be associated with the hydraulic retention time (12 hours) in the facility and may not reflect wastewater treatment profiles at the time of collection. In other words, the EF samples may not have been the corresponding RS samples collected earlier. The ideal situation would have seen the former being collected 12 hours after the latter. It is best that similar logistical issues be accounted for in future studies. Other variables to consider are the overflow of sewage from rainy events and fluctuations in mixed liquor-suspended solids (Pérez et al., 2019). In our study, there were 4.6 mm of precipitation for Event 1, which may have affected the results. In the PCA analysis (Fig. 5), the vector for precipitation sharply denotes data points representing Event 1, indicating a possible relationship. Precipitation was also found to have positive correlations with grab flow (rho = 0.7746) and raw flow (rho = 0.7746) (Fig. 6). Nonetheless, further studies and/or more replications are needed to corroborate the potential link between precipitation and microbial counts. Moreover, the duration of anaerobic sludge digestion is 15 days (City of Winnipeg, Water and Waste Department, 2020). In this context, GCNs of *uidA* in the SC were significantly reduced by anaerobic digestion (Fig. 4). This may explain why the gene copies of uidA in terms of biomass were lower in SC compared to all treatments (p-value < 0.02). The average gene copies across all wastewater stages (RS, AS, and EF) for uidA were not significantly different in terms of both volume and biomass. When compared to *uidA*, enteric viruses were found to be at least one order

364	of magnitude more abundant than the <i>E. coli</i> marker. Similar studies have reported <i>uidA</i> in RS at
365	copy numbers nearly 10 ⁴ times that in this report (Jikumaru, et al., 2020; Mbanga, Abia,
366	Amoako, & Essack, 2020). This indicates the possibility of much having been lost during the
367	sample treatment process.
368	GCNs of crAssphage in terms of biomass in SC were significantly higher than RS (p-value =
369	0.0040) and AS (p-value = 5.877×10^{-5}) (Fig. 2). For PMMV, SC samples had significantly
370	more GCNs in terms of biomass than samples from other parts of the wastewater treatment
371	process (p-values ranged from 1.487 x 10 ⁻⁵ to 0.03788) (Fig. 3). Since SC is the by-product of
372	RS and AS using anaerobic digestion, this may indicate that the presence of crAssphage and
373	PMMV was lower in the wastewater being treated in the AS, but higher in the solids. On the
374	other hand, GCNs of AdV in terms of biomass were not significantly different between the AS
375	and SC samples (Fig. 2). Meanwhile, plant viruses such as PMMV remain more stable (in terms
376	of biomass) during these digestion processes (Jumat, et al., 2017).
377	The higher presence of RoV gene copies in the EF (p-value = 0.0006592 in terms of sample and
378	p-value = 0.001550 in terms of biomass) during the winter season (Fig. S2) may indicate a higher
379	risk of transmission during cold seasons (Atabakhsh et al. 2020), since a greater presence of RoV
380	in EF has been previously found during the winter season (Li, et al., 2011).
381	The negative results of SaV (Sav1, Sav124, and Sav5) across all wastewater treatment stages
382	during the fall and winter season are consistent with Varela et al. (2018) where samples were
383	retrieved from a wastewater treatment plant in Tunisia. Their results did not support the general
384	belief that the peak of detection of SaV occurs during the cold and rainy months of the year.
385	However, quantitative detection of SaV in wastewater and river water in Japan showed an

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

increased concentration of SaV in influents between winter and spring (December to May), but a decrease in SaV concentration during the summer and autumn months (July to October) (Haramoto et al., 2008). Yet another pattern of SaV presence was reported in France, as Sima et al. (2011) found the virus to be readily detected in influents but had no clear variations in numbers over the 9-month (October to June) duration of the study. Similarly, seasonal differences in SaV concentrations were not statistically significant in a 3-year study conducted by Song et al. (2021) in China between 2017 and 2019. As a result, there are other factors that can influence wastewater SaV concentrations. For example, it has been hypothesized that isoelectric point could affect how viruses and their different strains behave in bioreactors (Miura et al., 2015). Monitoring over a time period longer than our current study would likely shed more insight into the seasonal variation in the presence of SaV in wastewater. The gene copies of NoV GI and GII were below the detection limit in many of the AS samples (in terms of both volume and biomass), but still relatively abundant in the EF (Fig. S1). A possible explanation for the greatly reduced viral GCNs in AS samples is the high efficiency with which NoV GI and GII are removed, a notion supported by literature (Ibrahim et al., 2020; Kitajima et al., 2014; Schmitz et al., 2016). Furthermore, considering the observation that these viruses were found in abundance in SC samples, another contributing factor could be limitations in the sample collection process, which might not have adequately retrieved the slurry part of the sludge where the viruses are found in greater numbers as they might have sorbed to the larger fractions of the sludge solids. The relative abundance of NoV GI and GII gene copies in RS and EF during the winter months (December and February) and the absence of NoV GII in RS in October may be due to seasonal variability (Pérez, Guerrero, Orellana, Figuerola, & Erijman, 2019). However, the presence of NoV GI and GII gene copies in RS during Event 4 (February) is

409 consistent with a study conducted by Flannery et al. (2012), in which the concentration of NoV 410 GI and GII gene copies in the influents of a wastewater treatment plant were significantly higher during the winter months (January to March). This seasonal trend is also reflected colloquially 411 412 through the virus's sobriquet, the winter vomiting bug (Farkas, et al., 2021). 413 In a study conducted by El-Senousy et al. (2007), high numbers of AstV gene copies (per liter) in 414 sewage water samples (from the Greater Cairo area in Egypt) were observed at the end of 415 autumn and during the winter months, but the AstV concentrations tended to decrease as 416 temperatures increased. These results are different from our findings where there was no 417 detection of AstV in any of the wastewater treatment stages across all events. These results may 418 be due to seasonal variability (Pérez et al., 2019) and/or reflect the pattern of infection (Corpuz et 419 al., 2020) within the community under study. 420 Grab filtered UVT being inversely correlated with COD, cBOD, BOD, and TOC is consistent 421 with the widespread use of UV radiation to regulate microbial growth in a variety of medium, 422 including water (Raeiszadeh & Adeli, 2020). Furthermore, it had been suggested that UV is an 423 important influence to the survival of pathogens in wastewater environments, especially in cold 424 weather conditions, such as those found in Manitoba during the surveying period (Murphy, 425 2017). The NESTP uses UV disinfection. Further studies are needed to evaluate the survival of 426 enteric viruses in these reservoirs by using modification to the biological treatment and/or the 427 disinfection process. Some of these modifications include fixed bed reactors (Sizirici & Yildiz, 428 2020), biofilm systems such as membrane bioreactors, biofilters, biofiltration, and carriers (Zhao 429 et al., 2019). Other disinfection processes include the use of chlorine (liquid sodium hypochlorite 430 solution, solid calcium hypochlorite) or newer methods such as ozone (Mezzanotte et al., 2007; 431 Abou-Elela et al., 2012; Collivignarelli et al., 2018).

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

There is a possibility that viral GCNs quantified in the EF may represent an overestimation of the actual number of infectious viral particles since qPCR detects both infective and non-infective agents and UV treatment influences viral viability (Lizasoain et al., 2017). Thus, the interpretation of these results must be performed with caution. Future studies could incorporate culturable assays for a more complete and accurate evaluation. On the other hand, it is also possible that the non-enveloped enteric viruses (Corpuz, et al., 2020) studied here survived the wastewater treatment process. Non-enveloped viruses are more resilient than their enveloped counterparts in numerous environmental conditions and water treatment processes (La Rosa et al., 2020). This is because of the latter group's envelope, which contains receptors needed for infection; if the envelope is lysed, infection is not possible (La Rosa et al., 2020). Various publications have noted the resilience of non-enveloped viruses after wastewater treatment (Adefisove et al., 2016; Campos & Lees, 2014; Farkas, et al., 2019; Fitzgerald, 2015; Fong et al., 2010; Li, et al., 2021; Prevost, et al., 2015; Ruggeri, et al., 2015; Varela, et al., 2018). In this context, we have detected GCNs of AdV, crAssphage, and PMMV in environmental surface waters receiving discharges from the NESTP, two other WWTPs, and other areas radiating away from the WWTPs within the city of Winnipeg (Francis and Uyaguari, unpublished data). Therefore, despite potential factors affecting interpretation, our results still reflect the presence of several non-enveloped enteric viruses in EF samples with reasonable quantitative accuracy.

450

451

452

453

454

CONCLUSION

Our study's primary goal was to identify human enteric viruses with the potential to become alternative indicators of fecal pollution. Towards that end, we propose AdV, crAssphage, and PMMV as more stable viral indicators of water quality due to their quantifiability illustrated in

455	this investigation and the literature. Regular monitoring of these organisms can be useful
456	complements to current methods for assessing wastewater treatment processes. Such vigilance
457	could be a helpful tool to assist public health efforts in the event of a viral outbreak.
458	Additionally, our study indicated that enteric viruses may have survived the wastewater
459	treatment process and viral-like particles are possibly being released into the aquatic
460	environment. Therefore, in addition to such methods as UV radiation (which is currently used in
461	the NESTP and was shown in our study to be inversely correlated with biological parameters),
462	we also suggest that WWTPs consider implementing modifications and/or additions (disinfection
463	processes) to their workflow to reduce the number of viral particles across different stages of the
464	wastewater treatment process.
465	
466	ABBREVIATIONS
467	AdV: Adenovirus
468	AS: activated sludge
469	AstV: Astrovirus
470	BOD: biochemical oxygen demand
471	cBOD: carbonaceous biochemical oxygen demand
472	COD: chemical oxygen demand
473	EF: effluents
474	GCN: gene copy number
475	NESTP: North End Sewage Treatment Plant
476	NH ₄ -N: ammonium-nitrogen
477	NoV: Norovirus

478 NO_x-N: nitrogen oxides - nitrogen 479 **PCA:** Principal Component Analysis 480 **PMMV:** Pepper mild mottle virus 481 **PO₄-P:** orthophosphate as phosphorus 482 **RoV:** Rotavirus 483 **RS:** raw sewage 484 **RT-qPCR:** quantitative reverse transcription PCR 485 SaV: Sapovirus 486 **SC:** sludge cake 487 **sCOD:** soluble chemical oxygen demand 488 TN: total nitrogen 489 **TOC:** total organic carbon 490 **TP:** total phosphorus 491 **TS:** total solids 492 TSS: total suspended solids 493 *uidA*: β-d-glucuronidase gene **WWTP:** wastewater treatment plant 494 495 **AUTHOR CONTRIBUTIONS** 496 AG performed the experiments, analyzed the data, prepared the figures and tables, and wrote and 497 reviewed the drafts of the manuscript. 498 TL performed the validation experiments, analyzed the data, prepared the figures and tables, and 499 wrote and reviewed the drafts of the manuscript.

PJ performed the experiments and reviewed the drafts of the manuscript.

500

501	KY performed the validation experiments and reviewed the drafts of the manuscript.
502	QY contributed the analysis tools and reviewed the drafts of the manuscript.
503	MUD designed the experiments, provided lead guidance during the experiments and analyses,
504	contributed the analysis tools, and reviewed the drafts of the manuscript.
505	All authors read and approved of the final manuscript.
506	ACKNOWLEDGEMENTS
507	Special thanks to the City of Winnipeg and Palwinder Singh, graduate student, Department of
508	Civil Engineering at the University of Manitoba (UoM) for sample collection. Research start-up
509	funds grant No. 322388 were assigned to Miguel Uyaguari-Diaz at the UoM. We acknowledge
510	The Faculty of Science, UoM, collaborative grant No. 52622 (Drs. Uyaguari and Yuan).
511	This research was conducted at the University of Manitoba. "The University of Manitoba
512	campuses are located on original lands of Anishinaabeg, Cree, Oji-Cree, Dakota, and Dene
513	peoples, and on the homeland of the Métis Nation".
514	

515	REFERENCES
516	Abou-Elela, S. I., El-Sayed, M. M. H., El-Gendy, A. S., & Abou-Taleb, E. M. (October 2012).
517	Comparative study of disinfection of secondary treated wastewater using chlorine, UV
518	and ozone. Journal of Applied Sciences Research, pp.5190-5197 ref.12
519	Adefisoye, M. A., Nwodo, U. U., Green, E., & Okoh, A. I. (2016). Quantitative PCR Detection
520	and Characterisation of Human Adenovirus, Rotavirus and Hepatitis A Virus in
521	Discharged Effluents of Two Wastewater Treatment Facilities in the Eastern Cape, South
522	Africa. Food and Environmental Virology, 8, 262-274. doi:10.1007/s12560-016-9246-4
523	Aslan, A., Xagoraraki, I., Simmons, F., Rose, J., & Dorevitch, S. (2011, August 19). Occurrence
524	of adenovirus and other enteric viruses in limited-contact freshwater recreational areas
525	and bathing waters. Journal of Applied Microbiology, 111(5), 1250-1261.
526	doi:10.1111/j.1365-2672.2011.05130.x
527	Bae, KS. (2021). sasLM: 'SAS' Linear Model. Retrieved from https://CRAN.R-
528	project.org/package=sasLM
529	Ballesté, E., Pascual-Benito, M., Martín-Díaz, J., Blanch, A. R., Lucena, F., Muniesa, M.,
530	García-Aljaro, C. (2019, May 15). Dynamics of crAssphage as a human source tracking
531	marker in potentially faecally polluted environments. Water Research, 155, 233-244.
532	doi:10.1016/j.watres.2019.02.042
533	Campos, C. J., & Lees, D. N. (2014, June). Environmental Transmission of Human Noroviruses
534	in Shellfish Waters. Applied and Environmental Microbiology, 80(12), 3552-3561.
535	doi:10.1128/AEM.04188-13
536	City of Winnipeg, Water and Waste Department. (2019, October). North End Water Pollution
537	Control Centre Monitoring Data. Winnipeg, Manitoba, Canada. Retrieved July 21, 2021,

538	from
539	https://www.winnipeg.ca/waterandwaste/pdfs/sewage/ComplianceReporting/2019/oct/ne
540	wpcc.pdf
541	City of Winnipeg, Water and Waste Department. (2020, October 8). Sewage Treatment Plants.
542	Retrieved July 21, 2021, from City of Winnipeg:
543	https://www.winnipeg.ca/waterandwaste/sewage/treatmentPlant/default.stm#tab-north-
544	end-sewage-treatment-plant.
545	Collivignarelli, M.C., Abbà, A., Benigna, I., Sorlini, S., & Torretta, V. (2018). Overview of the
546	Main Disinfection Processes for Wastewater and Drinking Water Treatment
547	Plants. Sustainability, 10, 86. https://doi.org/10.3390/su10010086.
548	Comber, S. D., Gardner, M. J., & Ellor, B. (2020, September). Seasonal variation of contaminant
549	concentrations in wastewater treatment works effluents and river waters. Environmental
550	Technology, 41(21), 2716-2730. doi:10.1080/09593330.2019.1579872
551	Corpuz, M. V., Buonerba, A., Vigliotta, G., Zarra, T., Ballesteros Jr, F., Campiglia, P.,
552	Naddeo, V. (2020, November 25). Viruses in wastewater: occurrence, abundance and
553	detection methods. Science of the Total Environment, 745.
554	doi:10.1016/j.scitotenv.2020.140910
555	Dutilh, B. E., Cassman, N., McNair, K., Sanchez, S. E., Silva, G. G., Boling, L., Edwards, R.
556	A. (2014). A highly abundant bacteriophage discovered in the unknown sequences of
557	human faecal metagenomes. Nature Communications, 5(4498), 1-11.
558	doi:10.1038/ncomms5498
559	El-Senousy, W. M., Guix, S., Abid, I., Pintó, R. M., & Bosch, A. (2007, January). Removal of
560	astrovirus from water and sewage treatment plants, evaluated by a competitive reverse

561	transcription-PCR. Applied and Environmental Microbiology, 73(1), 164-7.
562	doi:10.1128/AEM.01748-06
563	Environment and Climate Change Canada. (2021). Historical Data. Retrieved July 21, 2021,
564	from Government of Canada:
565	https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
566	Farkas, K., Adriaenssens, E. M., Walker, D. I., McDonald, J. E., Malham, S. K., & Jones, D. L.
567	(2019, June). Critical Evaluation of CrAssphage as a Molecular Marker for Human-
568	Derived Wastewater Contamination in the Aquatic Environment. Food and
569	Environmental Virology, 11(2), 113-119. doi:10.1007/s12560-019-09369-1
570	Farkas, K., Green, E., Rigby, D., Cross, P., Tyrrel, S., Malham, S. K., & Jones, D. L. (2021, May
571	27). Investigating awareness, fear and control associated with norovirus and other
572	pathogens and pollutants using best-worst scaling. Scientific Reports, 11.
573	Farkas, K., Marshall, M., Cooper, D., McDonald, J. E., Malham, S. K., Peters, D. E., Jones,
574	D. L. (2018, November). Seasonal and diurnal surveillance of treated and untreated
575	wastewater for human enteric viruses. Environmental Science and Pollution Research,
576	25(33), 33391-33401. doi:10.1007/s11356-018-3261-y
577	Fitzgerald, A. (2015). Review of Approaches for Establishing Exclusion Zones for Shellfish
578	Harvesting around Sewage Discharge Points - Desk Study to Inform Consideration of the
579	Possible Introduction of Exclusion Zones as a Control for Norovirus in Oysters.
580	Technical Report, Aquatic Water Services Ltd. Retrieved July 26, 2021, from
581	https://webarchive.nationalarchives.gov.uk/20150418173120/http://www.food.gov.uk/sit
582	es/default/files/Exclusion%20Zones%20Project%20FS513404%20-
583	%20Technical%20Report%20FINAL.pdf

584	Fong, TT., Phanikumar, M. S., Xagoraraki, I., & Rose, J. B. (2010, February). Quantitative				
585	detection of human adenoviruses in wastewater and combined sewer overflows				
586	influencing a Michigan river. Applied and Environmental Microbiology, 76(3), 715-23.				
587	doi:10.1128/AEM.01316-09				
588	Frahm, E., & Obst, U. (2003). Application of the fluorogenic probe technique (TaqMan PCR) to				
589	the detection of Enterococcus spp. and Escherichia coli in water samples. Journal of				
590	Microbiological Methods, 52(1), 123-31. doi:10.1016/s0167-7012(02)00150-1				
591	Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., & Hothorn, T. (2021). mvtnorm:				
592	Multivariate Normal and t Distributions. Retrieved from http://CRAN.R-				
593	project.org/package=mvtnorm				
594	Hamza, H., Rizk, N. M., Gad, M. A., & Hamza, I. A. (2019, November). Pepper mild mottle				
595	virus in wastewater in Egypt: a potential indicator of wastewater pollution and the				
596	efficiency of the treatment process. Archives of Virology, 164(11), 2707-2713.				
597	doi:10.1007/s00705-019-04383-x				
598	Haramoto, E., Katayama, H., Phanuwan, C., & Ohgaki, S. (2008, March). Quantitative detection				
599	of sapoviruses in wastewater and river water in Japan. Letters in Applied Microbiology,				
600	46(3), 408-13. doi:10.1111/j.1472-765X.2008.02330.x				
601	Harrell Jr., F. E. (2021). Hmisc: Harrell Miscellaneous. Retrieved from https://CRAN.R-				
602	project.org/package=Hmisc				
603	Hood, M. A., Ness, G. E., & Blake, N. J. (1983). Relationship among fecal coliforms,				
604	Escherichia coli, and Salmonella spp. in shellfish. Applied and environmental				
605	microbiology, 45(1), 122-126. doi:10.1128/aem.45.1.122-126.1983				

606	Ibrahim, C., Hammami, S., Khelifi, N., Pothier, P., & Hassen, A. (2020). The Effectiveness of
607	Activated Sludge Procedure and UV-C 254 in Norovirus Inactivation in a Tunisian
608	Industrial Wastewater Treatment Plant. Food and Environmental Virology, 12, 250-259.
609	doi:10.1007/s12560-020-09434-0
610	Jikumaru, A., Ishii, S., Fukudome, T., Kawahara, Y., Iguchi, A., Masago, Y., Suzuki, Y.
611	(2020, July). Fast, sensitive, and reliable detection of waterborne pathogens by digital
612	PCR after coagulation and foam concentration. Journal of Bioscience and
613	Bioengineering, 130(1), 76-81. doi:10.1016/j.jbiosc.2020.02.004
614	Jumat, M. R., Hasan, N. A., Subramanian, P., Heberling, C., Colwell, R. R., & Hong, PY.
615	(2017). Membrane Bioreactor-Based Wastewater Treatment Plant in Saudi Arabia:
616	Reduction of Viral Diversity, Load, and Infectious Capacity. Water, 9(7).
617	doi:10.3390/w9070534
618	Kageyama, T., Kojima, S., Shinohara, M., Uchida, K., Fukushi, S., Hoshino, F. B.,
619	Katayama, K. (2003, April). Broadly Reactive and Highly Sensitive Assay for Norwalk-
620	Like Viruses Based on Real-Time Quantitative Reverse Transcription-PCR. Journal of
621	Clinical Microbiology, 41(4), 1548-1557. doi:10.1128/JCM.41.4.1548-1557.2003
622	Karim, M. R., Rhodes, E. R., Brinkman, N., Wymer, L., & Fout, G. S. (2009, April). New
623	Electropositive Filter for Concentrating Enteroviruses and Noroviruses from Large
624	Volumes of Water. Applied and Environmental Microbiology, 75(8), 2393-2399.
625	doi:10.1128/AEM.00922-08
626	Kitajima, M., Iker, B. C., Pepper, I. L., & Gerba, C. P. (2014, August 1). Relative abundance and
627	treatment reduction of viruses during wastewater treatment processesidentification of

628	potential viral indicators. Science of the Total Environment, 488-489, 290-296.
629	doi:10.1016/j.scitotenv.2014.04.087
630	La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S., & Suffredini, E. (2020, July 15).
631	Coronavirus in water environments: Occurrence, persistence and concentration methods -
632	A scoping review. Water Research, 179. doi:10.1016/j.watres.2020.115899
633	Li, D., Gu, A. Z., Zeng, SY., Yang, W., He, M., & Shi, HC. (2011, May). Monitoring and
634	evaluation of infectious rotaviruses in various wastewater effluents and receiving waters
635	revealed correlation and seasonal pattern of occurrences. Journal of Applied
636	Microbiology, 110(5), 1129-37. doi:10.1111/j.1365-2672.2011.04954.x
637	Li, X., Cheng, Z., Dang, C., Zhang, M., Zheng, Y., & Xia, Y. (2021, July). Metagenomic and
638	viromic data mining reveals viral threats in biologically treated domestic wastewater.
639	Environmental Science and Ecotechnology, 7. doi:10.1016/j.ese.2021.100105
640	Lizasoain, A., Tort, L., García, M., Gillman, L., Alberti, A., Leite, J., Colina, R. (2017).
641	Human enteric viruses in a wastewater treatment plant: evaluation of activated sludge
642	combined with UV disinfection process reveals different removal performances for
643	viruses with different features. Letters in Applied Microbiology, 66(3), 215-221. doi:DOI
644	10.1111/lam.12839
645	Makowski, D., Ben-Shachar, M., Patil, I., & Lüdecke, D. (2020). Automated Results Reporting
646	as a Practical Tool to Improve Reproducibility and Methodological Best Practices
647	Adoption. Retrieved from https://github.com/easystats/report .
648	Mbanga, J., Abia, A. L., Amoako, D. G., & Essack, S. Y. (2020). Quantitative microbial risk
649	assessment for waterborne pathogens in a wastewater treatment plant and its receiving
650	surface water body. BMC Microbiology. doi:10.1186/s12866-020-02036-7

651	Mezzanotte, V., Antonelli, M., Citterio, S., & Nurizzo, C. (2007). Wastewater disinfection				
652	alternatives: chlorine, ozone, peracetic acid, and UV light. Water Environment Research,				
653	79(12), 2373-2379. doi:10.2175/106143007x183763.				
654	Miura, T., Okabe, S., Nakahara, Y., & Sano, D. (2015, May 15). Removal properties of human				
655	enteric viruses in a pilot-scale membrane bioreactor (MBR) process. Water Research, 75,				
656	282-291. doi:10.1016/j.watres.2015.02.046				
657	Molecular Microbiology & Genomics Team, British Columbia Centre for Disease Control.				
658	(2017). Detecting Norovirus by Fast Real-Time RT-PCR. British Columbia, Canada.				
659	Molecular Microbiology & Genomics Team, British Columbia Centre for Disease Control.				
660	(2017). Performing the GI Virus Panel by Real-Time PCR Procedure. British Columbia,				
661	Canada.				
662	Murphy, H. (2017). Persistence of Pathogens in Sewage and Other Water Types. In J. Rose, & B.				
663	Jiménez-Cisneros (Eds.), Global Water Pathogen Project (Vol. 4). E. Lansing, MI,				
664	UNESCO. doi:10.14321/waterpathogens.51				
665	Nour, I., Hanif, A., Zakri, A. M., Al-Ashkar, I., Alhetheel, A., & Eifan, S. (2021, April 29).				
666	Human Adenovirus Molecular Characterization in Various Water Environments and				
667	Seasonal Impacts in Riyadh, Saudi Arabia. International Journal of Environmental				
668	Research and Public Health, 18(9), 4773. doi:10.3390/ijerph18094773				
669	Oka, T., Katayama, K., Hansman, G. S., Kageyama, T., Ogawa, S., Wu, FT., Takeda, N.				
670	(2006). Detection of human sapovirus by real-time reverse transcription-polymerase				
671	chain reaction. Journal of Medical Virology, 78(10), 1347-1353. doi:10.1002/jmv.20699				

6/2	Perez, M. V., Guerrero, L. D., Orellana, E., Figuerola, E. L., & Erijman, L. (2019, July 2). Time				
673	Series Genome-Centric Analysis Unveils Bacterial Response to Operational Disturbance				
674	in Activated Sludge. mSystems, 4(4). doi:10.1128/mSystems.00169-19				
675	Prevost, B., Lucas, F. S., Ambert-Balay, K., Pothier, P., Moulin, L., & Wurtzer, S. (2015,				
676	October). Deciphering the Diversities of Astroviruses and Noroviruses in Wastewater				
677	Treatment Plant Effluents by a High-Throughput Sequencing Method. Applied and				
678	Environmental Microbiology, 81(20), 7215-7222. doi:10.1128/AEM.02076-15.				
679	R Core Team. (2021). R: A language and environment for statistical computing. R Foundation				
680	for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/				
681	Racz, L., T. Datta, and R. Goel. 2010. Effect of organic carbon on ammonia oxidizing bacteria in				
682	a mixed culture. Bioresource Technology, 101 (16), 6454-60.				
683	Raeiszadeh, M., & Adeli, B. (2020, October 14). A Critical Review on Ultraviolet Disinfection				
684	Systems against COVID-19 Outbreak: Applicability, Validation, and Safety				
685	Considerations. ACS Photonics. doi:10.1021/acsphotonics.0c01245				
686	Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006).				
687	Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously				
688	monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology,				
689	72(4), 2765-74. doi:10.1128/AEM.72.4.2765-2774.2006				
690	Rosario, K., Symonds, E. M., Sinigalliano, C., Stewart, J., & Breitbart, M. (2009). Pepper Mild				
691	Mottle Virus as an Indicator of Fecal Pollution. Applied and Environmental				
692	Microbiology, 75(22), 7261-7267. doi:10.1128/AEM.00410-09				
693	Rosman, N. H., Anuar, A. N., Chelliapan, S., Din, M. F., & Ujang, Z. (2014, June).				
694	Characteristics and performance of aerobic granular sludge treating rubber wastewater at				

695	different hydraulic retention time. Bioresource Technology, 161, 155-61.
696	doi:10.1016/j.biortech.2014.03.047
697	RStudio Team. (2021). RStudio: Integrated Development Environment for R. Boston, MA:
698	RStudio, PBC. Retrieved from http://www.rstudio.com/
699	Ruggeri, F. M., Bonomo, P., Ianiro, G., Battistone, A., Delogu, R., Germinario, C., Fiore, L.
700	(2015, January). Rotavirus Genotypes in Sewage Treatment Plants and in Children
701	Hospitalized with Acute Diarrhea in Italy in 2010 and 2011. Applied and Environmental
702	Microbiology, 81(1), 241-249. doi:10.1128/AEM.02695-14
703	Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. New York: Springer.
704	Scholz, M. Chapter 15-Activated Sludge Processes, Editor(s): Miklas Scholz, Wetlands for
705	Water Pollution Control (Second Edition), Elsevier, Pages 91-105.
706	Schmitz, B. W., Kitajima, M., Campillo, M. E., Gerba, C. P., & Pepper, I. L. (2016). Virus
707	Reduction during Advanced Bardenpho and Conventional Wastewater Treatment
708	Processes. Environmental Science & Technology, 50(17), 9524-9532.
709	doi:10.1021/acs.est.6b01384.
710	Sima, L. C., Schaeffer, J., Saux, JC. L., Parnaudeau, S., Elimelech, M., & Guyader, F. S. (2011)
711	August). Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant.
712	Applied and Environmental Microbiology, 77(15), 5170-5177. doi:10.1128/AEM.00583-
713	11.
714	Sizirici, B., & Yildiz, I. (2020). Organic matter removal via activated sludge immobilized gravel
715	in fixed bed reactor. E3S Web of Conferences, 191, 03006, 1-5.

716	Song, K., Lin, X., Liu, Y., Ji, F., Zhang, L., Chen, P., Xu, A. (2021). Detection of Human
717	Sapoviruses in Sewage in China by Next Generation Sequencing. Food and
718	Environmental Virology, 13, 270-280. doi:10.1007/s12560-021-09469-x
719	Stachler, E., Akyon, B., Carvalho, N. A., Ference, C., & Bibby, K. (2018). Correlation of
720	crAssphage qPCR Markers with Culturable and Molecular Indicators of Human Fecal
721	Pollution in an Impacted Urban Watershed. Environmental Science & Technology,
722	52(13), 7505-7512. doi:10.1021/acs.est.8b00638
723	Stachler, E., Kelty, C., Sivaganesan, M., Li, X., Bibby, K., & Shanks, O. C. (2017). Quantitative
724	CrAssphage PCR Assays for Human Fecal Pollution Measurement. Environmental
725	Science & Technology, 51(16), 9146–9154. doi:10.1021/acs.est.7b02703
726	Tandukar, S., Sherchan, S. P., & Haramoto, E. (2020). Applicability of crAssphage, pepper mild
727	mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during
728	wastewater treatment. Scientific Reports, 10(3616). doi:10.1038/s41598-020-60547-9
729	Therneau, T. (2021). A Package for Survival Analysis in R. Retrieved from https://CRAN.R-
730	project.org/package=survival
731	Ushey, K., Allaire, J., Wickham, H., & Ritchie, G. (2020). rstudioapi: Safely Access the RStudio
732	API. Retrieved from https://CRAN.R-project.org/package=rstudioapi
733	Uyaguari-Diaz, M. I., Chan, M., Chaban, B. L., Croxen, M. A., Finke, J. F., Hill, J. E., Tang,
734	P. (2016). A comprehensive method for amplicon-based and metagenomic
735	characterization of viruses, bacteria, and eukaryotes in freshwater samples. Microbiome,
736	4(20). doi:10.1186/s40168-016-0166-1
737	Varela, M. F., Ouardani, I., Kato, T., Kadoya, S., Aouni, M., Sano, D., & Romalde, J. L. (2018,
738	March 1). Sapovirus in Wastewater Treatment Plants in Tunisia: Prevalence, Removal,

739	and Genetic Characterization. Applied and Environmental Microbiology, 84(6).
40	doi:10.1128/AEM.02093-17
41	Vu, V. Q. (2011). ggbiplot: A ggplot2 based biplot. Retrieved from
42	http://github.com/vqv/ggbiplot
43	Wang, X. M., Wei, Z. M., Guo, J. M., Cai, J. M., Chang, H. M., Ge, Y. M., & Zeng, M. M.
44	(2019, November). Norovirus Activity and Genotypes in Sporadic Acute Diarrhea in
45	Children in Shanghai During 2014–2018. The Pediatric Infectious Disease Journal,
46	38(11), 1085-1089. doi:10.1097/INF.000000000002456
47	Wickham, H. (2011). The Split-Apply-Combine Strategy for Data Analysis. <i>Journal of</i>
48	Statistical Software, 40(1), 1-29. doi:10.18637/jss.v040.i01
49	Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag
750	Wickham, H. (2020, April 9). reshape2: Flexibly Reshape Data: A Reboot of the Reshape
751	Package. Retrieved from https://cran.r-project.org/package=reshape2
752	Wickham, H., & Bryan, J. (2019). readxl: Read Excel Files. Retrieved from https://CRAN.R-
753	project.org/package=readxl
754	Wickham, H., & Bryan, J. (2021). usethis: Automate Package and Project Setup. Retrieved from
755	https://CRAN.R-project.org/package=usethis
756	Wickham, H., & Seidel, D. (2020). scales: Scale Functions for Visualization. Retrieved from
757	https://CRAN.R-project.org/package=scales
758	Wickham, H., François, R., Henry, L., & Müller, K. (2021). dplyr: A Grammar of Data
759	Manipulation. Retrieved from https://CRAN.R-project.org/package=dplyr
60	Wickham, H., Hester, J., & Chang, W. (2021). devtools: Tools to Make Developing R Packages
61	Easier. Retrieved from https://CRAN.R-project.org/package=devtools

762 Worley-Morse, T., Mann, M., Khunjar, W., Olabode, L., & Gonzalez, R. (2019, September). 763 Evaluating the fate of bacterial indicators, viral indicators, and viruses in water resource 764 recovery facilities. Water Environment Research, 91(9), 830-842. doi:10.1002/wer.1096 Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012, June 18). 765 766 Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. 767 BMC Bioinformatics, 13(134). doi:10.1186/1471-2105-13-134 768 Zeileis, A., & Croissant, Y. (2010). Extended Model Formulas in R: Multiple Parts and Multiple 769 Responses. Journal of Statistical Software, 34(1), 1-13. doi:10.18637/jss.v034.i01 770 Zeng, S. Q., Halkosalo, A., Salminen, M., Szakal, E. D., Puustinen, L., & Vesikari, T. (2008). 771 One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. 772 Journal of Virological Methods, 153(2), 238-40. doi:10.1016/j.jviromet.2008.08.004 Zhang, T., Breitbart, M., Lee, W. H., Run, J.-Q., Wei, C. L., Soh, S. W., Hibberd, M. L., Liu, E. 773 774 T., Rohwer, F., & Ruan, Y. (2006, January). RNA Viral Community in Human Feces: 775 Prevalence of Plant Pathogenic Viruses. *PLOS Biology*, 4(1). 776 doi:10.1371/journal.pbio.0040003 777 Zhao, Y., Liu, D., Huang, W., Yang, Y., Ji, M., Nghiem, L. D., Trinh, Q. T., Tran, N. H. (2018). 778 Insights into biofilm carriers for biological wastewater treatment processes: Current state-779 of-the-art, challenges, and opportunities. Bioresource Technology, 288, 121619. 780 doi.org/10.1016/j.biortech.2019.121619.

Table 1(on next page)

Table 1. Primers and probes used in the present study.

Target	DNA or RNA	Primer/ Probe	Sequence (5'-3')	Genomic Target	References
		AdV-F	GCC TGG GGA ACA AGT TCA G		Molecular Microbiology & Genomics
Adenovirus	DNA	AdV-R	ACG GCC AGC GTA AAG CG	Hexon	Team,
40/41		AdV-P (Probe)	NED-ACC CAC GAT GTA ACC AC- MGB-NFQ		British Columbia Centre for Disease Control, 2017a
		Ast-F	AAG CAG CTT CGT GAR TCT GG	Junction of	Molecular Microbiology & Genomics
Astrovirus	RNA	Ast-R	GCC ATC RCA CTT CTT TGG TCC	polymerase and capsid	Team,
		Ast-P (Probe)	Cy5-CAC AGA AGA GCA ACT CCA TCG CAT TTG-Tao-IBDRQ		British Columbia Centre for Disease Control, 2017a
		056F1	CAG AAG TAC AAA CTC CTA AAA AAC GTA GAG	Genomic	
crAssphage	DNA	056R1	GAT GAC CAA TAA ACA AGC CAT TAG C	base pair region: 14731 bp-	Stachler, Akyon, Carvalho, Ference, & Bibby, 2018
		056P1	FAM-AAT AAC GAT TTA CGT GAT GTA AC	14731 bp- 14856 bp	
		784F	GTG TGA TAT CTA CCC GCT TCG C		
Escherichia coli	DNA	866R	AGA ACG GTT TGT GGT TAA TCA GGA	uidA	Frahm and Obst, 2003
Coli		EC807 (Probe)	FAM-TCG GCA TCC GGT CAG TGG CAG T-BHQ1		
		COG1F- flap	AATAAATCATAACGYTGGATGCGNTT YCATGA		Kageyama, et al., 2003; Wang, et al.,
GI	RNA	COG1R- flap	AATAAATCATAACTTAGACGCCATCA TCATTYAC	Norovirus GI	2019
		Ring1a.2 (Probe)	6-FAM- AGATYGCGR/ZEN/ TCYCCTGTCCA -IBFQ		Molecular Microbiology & Genomics Team, British Columbia Centre for Disease Control, 2017b
	RNA	COG2F- flap	AATAAATCATAACARGARBCNATGTT YAGRTGGAT GAG	Norovirus GII	Kageyama, et al., 2003; Wang, et al., 2019
GII		COG2R- flap	AATAAATCATAATCGACGCCATCTTC ATTCACA		
		Ring 2.2 (Probe)	JOE - TGGGAGGGY/ZEN/ GATCGCAATCT - IBFQ		Molecular Microbiology & Genomics Team, British Columbia Centre for Disease Control, 2017b
		PMMV-FP	GAG TGG TTT GAC CTT AAC GTT TGA	1878 bp-	
D M:14		PMMV-RP	TTG TCG GTT GCA ATG CAA GT	1901 bp ^a	
Pepper Mild Mottle Virus	RNA	PMMV- Probe	FAM-CCT ACC GAA GCA AAT G-MGB- NFQ	and 1945 bp-1926 bp ^a	1926 Stewart, & Breitbart, 2009
		Tampere NSP3-F	ACC ATC TWC ACR TRA CCC TCT ATG AG		S, ,
Rotavirus	RNA	Tampere NSP3-R	GGT CAC ATA ACG CCC CTA TAG C	Non- structural Protein 3	
Type A		Tampere NSP3 (Probe)	VIC-AGT TAA AAG CTA ACA CTG TCA AA-MGB-NFQ		
	RNA	SaV1F	TTG GCC CTC GCC ACC TAC		
		SaV5F	TTT GAA CAA GCT GTG GCA TGC TAC		
		SaV124F	GAY CAS GCT CTC GCY ACC TAC	Junction of polymerase and capsid	
Sapovirus		SaV1245R	CCC TCC ATY TCA AAC ACT A		Oka, et al., 2006
		SaV124TP (Probe)	FAM-CCR CCT ATR AAC CA-MGB-NFQ		
		SaV5TP (Probe)	FAM-TGC CAC CAA TGT ACC A-MGB- NFQ		

Figure 1. Graphical abstract of workflow.

Figure 2. Box plots of the number of gene copies of DNA enteric viruses across each wastewater stage throughout Events 1-4.

Figures 2A and 2C visualize the number of gene copies per mL or g of sample, while *Fig. 2B* and *Fig. 2D* visualize the number of gene copies per ng of DNA. In *Fig. 2C*, this quantity was log₁₀-transformed for aesthetic purposes. The unit for the SC in *Fig. 2A* and *Fig. 2C* is gene copies per g of sample.

Figure 3. Box plots of the number of genes copies of PMMV across each wastewater stage throughout Events 1-4.

Figure 3A visualizes the number of gene copies per mL or g of sample, while Fig. 3B visualizes the number of gene copies per ng of DNA. Both quantities were log_{10} -transformed for aesthetic purposes. The unit for the SC in Fig. 3A is gene copies per g of sample.

Figure 4. Box plots of the number of gene copies of *uidA* across each wastewater stage throughout Events 1-4.

Figure 4A visualizes the number of gene copies per mL or g of sample, while Fig.~4B visualizes the number of gene copies per ng of DNA. Both quantities were log_{10} -transformed for aesthetic purposes. The unit for the SC in Fig.~4A is gene copies per g of sample.

Figure 5. Principal Component Analysis of log_{10} -transformed EF parameters, PC1 versus PC2.

The only variable not log_{10} -transformed was precipitation due to presence of zero values.

Figure 6. Heatmap showing Spearman's rank correlation analysis between parameters collected for EF sampling events.

