STAT 571 — Section A1 — Fall 2018

Homework 6

- 1. [2 pts] For a both-sides model with (unweighted) least squares estimator $\widehat{\beta}_{LS}$, consider the predicted values matrix $\widehat{Y}_{LS} = x\widehat{\beta}_{LS}z'$. Express it in terms of Y and two different projection matrices. What are the projection matrices?
- 2. [2 pts] MSOS, Exercise 6.6.3.

the men.

- 3. [9 pts] Read MSOS, Exercise 6.6.12. Do *not* answer the parts of that exercise, but instead answer the following:
 - (a) Compute the matrix C_x . (b) Compute the least squares estimate of β . (c) Compute the matrix $\hat{\Sigma}_z$. (d) Compute the standard errors of the elements of your least squares estimate. (e) Compute the t-statistics for the elements of β (testing against zero). (f) Which elements of β are significantly different from zero? Use a threshold of 2 for |t|. (g) Based on your results, discuss whether there is any difference between the grade profiles of the women and
- 4. [9 pts] Data file coastalcities.csv contains (in comma-separated values format) the latitudes (Latitude) and daily mean temperatures (°C) for each month of the year, in order (Jan, ..., Dec), for 31 different coastal cities around the world. Read the file into R using read.csv("coastalcities.csv").

Let response matrix Y contain the daily mean temperatures (with the months ordered Jan through Dec). Consider a both-sides model with

- x matrix being the 31×3 Q matrix in a QR factorization of a *quadratic* polynomial matrix in latitude (see Homework 5, Problem 7).
- z matrix being a 12×3 (first-order) trigonometric matrix, similar to (but not quite the same as) that described in MSOS expression (4.26).
- (a) Briefly describe what each of the parameters in β represents. (b) Compute $\hat{\beta}$.
- (c) Compute the standard errors of the elements of $\widehat{\beta}$. (d) Which β elements have t-statistics that exceed 2 in absolute value? (e) Based on the results in part (d), draw conclusions.
- 5. [4 pts] Suppose $\beta = (\beta_{ij})$ is a 3×5 matrix, and consider the null hypothesis

$$H_0: \begin{pmatrix} \beta_{12} + \beta_{22}x_1 + \beta_{32}x_1^2 & \beta_{15} + \beta_{25}x_1 + \beta_{35}x_1^2 \\ \beta_{12} + \beta_{22}x_2 + \beta_{32}x_2^2 & \beta_{15} + \beta_{25}x_2 + \beta_{35}x_2^2 \end{pmatrix} = \mathbf{0}$$

where x_1 and x_2 are known constants. Display matrices C and D such that this null hypothesis is equivalent to

$$H_0: C\beta D' = 0$$

6. [4 pts] MSOS, Exercise 7.6.3. [Hint: What is the distribution of $U = (G')^{-1} \hat{\beta}^*$, where G is the upper-triangular Cholesky factor of C_x^* ?]

1