$\exp: \mathscr{S}_n(\mathbb{R}) \to \mathscr{S}_n^{++}(\mathbb{R})$ est un homéomorphisme

Dans ce développement, on démontre que l'exponentielle de matrices induit un homéomorphisme $de \mathcal{S}_n(\mathbb{R})$ sur $\mathcal{S}_n^{++}(\mathbb{R})$.

Lemme 1. $\mathcal{S}_n(\mathbb{R})$ est un fermé de $\mathcal{M}_n(\mathbb{R})$.

Démonstration. Il suffit d'écrire

$$\mathscr{S}_n(\mathbb{R}) = \{ M \in \mathscr{M}_n(\mathbb{R}) \mid {}^t M = M \} = f^{-1}\{0\}$$

où $f: M \to {}^tM - M$ est continue, donc $\mathscr{S}_n(\mathbb{R})$ est fermé en tant qu'image réciproque d'un fermé par une application continue.

Lemme 2. Une suite bornée d'un espace métrique qui admet une seule valeur d'adhérence converge vers cette valeur d'adhérence.

Démonstration. Soit (x_n) une suite bornée d'un espace métrique (E,d) qui n'admet qu'une seule valeur d'adhérence $\ell \in E$. On suppose par l'absurde que (x_n) ne converge pas vers ℓ :

$$\exists \epsilon > 0 \text{ tel que } \forall N \in \mathbb{N}, \exists n \ge N \text{ tel que } d(x_n, \ell) > \epsilon$$
 (*)

On va construire une sous-suite qui converge vers une valeur d'adhérence différente de ℓ .

Par (*) appliqué à N=0, $\exists n_0 \geq 0$ tel que $d(x_{n_0},\ell) > \epsilon$. On définit donc $\varphi(0)=n_0$.

Supposons construite $\varphi(i)$ jusqu'à un rang k telle que $\forall i \leq k$, $\varphi(i+1) > \varphi(i)$ (lorsque cela à un sens) et $d(x_{\varphi(i)},\ell) > \epsilon$. Il suffit alors d'appliquer (*) à $N = \varphi(n) + 1$ pour obtenir un $n_k \geq \varphi(n) + 1 > \varphi(n)$ tel que $d(x_{n_k},\ell) > \epsilon$; on définit alors $\varphi(k+1) = n_k$.

Nous venons donc de construire par récurrence une application $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante et telle que $\forall n \in \mathbb{N}$, $d(x_{\varphi(n)}, \ell) > \epsilon$. La suite $(x_{\varphi(n)})$ est bornée (par hypothèse) : elle est contenue dans un compact et admet une valeur d'adhérence ℓ' (par le théorème de Bolzano-Weierstrass). Soit donc $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $(x_{(\varphi \circ \psi)(n)})$ converge vers ℓ' .

On a $\forall n \in \mathbb{N}$, $d(x_{(\varphi \circ \psi)(n)}, \ell) > \epsilon$, qui donne $d(\ell', \ell) \ge \epsilon$ après un passage à la limite. Donc $\ell \ne \ell'$. Et ℓ' est clairement valeur d'adhérence de (x_n) : absurde.

Lemme 3. Soit $S \in \mathcal{S}_n(\mathbb{R})$. Alors,

$$|||S|||_2 = \rho(S)$$

où ρ est l'application qui a une matrice y associe son rayon spectral.

Démonstration. D'après le théorème spectral, il existe $(e_1, ..., e_n)$ une base orthonormée de \mathbb{R}^n formée de vecteurs propres de S associés aux valeurs propres $\lambda_1, ..., \lambda_n$ de S, qui sont réelles car S

[I-P] p. 182

est symétrique. Soit $x \in \mathbb{R}^n$ dont on note (x_1, \dots, x_n) ses coordonnées dans cette base. On a

$$\|Sx\|_{2}^{2} = \left\|\sum_{i=1}^{n} \lambda_{i} x_{i} e_{i}\right\|_{2}^{2} = \sum_{i=1}^{n} \lambda_{i}^{2} x_{i}^{2} \le \rho(S)^{2} \|x\|_{2}^{2}$$

D'où $||S||_2 \le \rho(S)$. Pour obtenir l'inégalité inverse, il suffit de considérer $\lambda \in \mathbb{R}$ une valeur propre de S telle que $|\lambda| = \rho(S)$ et $x \in \mathbb{R}^n$ un vecteur propre associé à λ . On a alors

$$||Sx||_2 = |\lambda| ||x||_2$$

et on a bien $\rho(S) \leq |||S|||_2$.

Théorème 4. L'application $\exp : \mathscr{S}_n(\mathbb{R}) \to \mathscr{S}_n^{++}(\mathbb{R})$ est un homéomorphisme.

Démonstration. Montrer qu'une application est un homéomorphisme se fait en 4 étapes : on montre qu'elle est continue, injective, surjective, et que la réciproque est elle aussi continue.

— L'application est bien définie et continue : Soit $S \in \mathcal{S}_n(\mathbb{R})$. D'après le théorème spectral,

$$\exists P \in \mathcal{O}_n(\mathbb{R}) \text{ telle que } S = P^{-1} \underbrace{\text{Diag}(\lambda_1, \dots, \lambda_n)}_{=D} P$$

où $\lambda_1, \dots, \lambda_n$ désignent les valeurs propres de S. On a donc

$$\exp(S) = P^{-1} \exp(D)P$$
$$= P^{-1} \operatorname{Diag}(e^{\lambda_1}, \dots, e^{\lambda_n})P$$

Or, $P^{-1} = {}^t P$, donc ${}^t \exp(S) = \exp(S)$ et $\exp(S) \in \mathscr{S}_n(\mathbb{R})$. De plus, $\forall x \in \mathbb{R}^n$,

$${}^{t}xSx = {}^{t}(Px)D(Px) > 0$$

car $D \in \mathscr{S}_n^{++}(\mathbb{R})$. Donc $S \in \mathscr{S}_n^{++}(\mathbb{R})$. Elle est de plus continue en tant que restriction de l'exponentielle définie sur $\mathscr{M}_n(\mathbb{K})$ (qui est la somme d'une série normalement convergente sur toute boule ouverte de $\mathscr{M}_n(\mathbb{K})$).

— L'application est surjective : Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$. On peut écrire

$$S = P \operatorname{Diag}(\mu_1, \dots, \mu_n) P^{-1}$$

Il suffit alors de poser $U=P^{-1}\operatorname{Diag}(\ln(\mu_1),\ldots,\ln(\mu_n))P\in \mathscr{S}_n(\mathbb{R})$ pour avoir $\exp(U)=S$; d'où la surjectivité.

— <u>L'application est injective</u> : Soient $S, S' \in \mathcal{S}_n(\mathbb{R})$ telles que $\exp(S) = \exp(S')$. Montrons que S = S'. Comme avant, $\exists P, P' \in \mathcal{O}_n(\mathbb{R})$ telles que

$$S = P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{-1}$$
 et $S' = P' \operatorname{Diag}(\lambda_1', \dots, \lambda_n') P'^{-1}$

Soit $L \in \mathbb{R}[X]$ tel que $\forall i \in [1, n]$, $L(e^{\lambda_i}) = \lambda_i$ et $L(e^{\lambda_i'}) = \lambda_i'$ (les polynômes d'interpolation de Lagrange conviennent parfaitement et sont bien définis dans le cas présent car $e^{\lambda_i} = e^{\lambda_i}$

 $e^{\lambda_j} \Longrightarrow \lambda_i = \lambda_i$ par injectivité de l'exponentielle). D'où

$$\begin{split} L(\exp(S)) &= L(P \mathrm{Diag}(\lambda_1, \dots, \lambda_n) P^{-1}) \\ &= P L(\exp(\mathrm{Diag}(\lambda_1, \dots, \lambda_n))) P^{-1} \\ &= P \mathrm{Diag}(\lambda_1, \dots, \lambda_n) P^{-1} \\ &= S \end{split}$$

et de même, $L(\exp(S')) = S'$. D'où S = S' car on a supposé $\exp(S) = \exp(S')$.

- <u>L'application inverse est continue</u>: Soit (A_k) une suite de $\mathscr{S}_n^{++}(\mathbb{R})$ qui converge vers $A \in \mathscr{S}_n^{++}(\mathbb{R})$. Il s'agit de montrer que la suite (B_k) de terme général $B_k = \exp^{-1}(A_k)$ converge vers $B = \exp^{-1}(A)$. Supposons tout d'abord (B_k) non bornée. Comme sur $\mathscr{S}_n(\mathbb{R})$, $\|.\|_2 = \rho(.)$ (par le Lemme 3), il existe $\varphi: \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $\rho(B_{\varphi(k)}) \to +\infty$. On peut donc extraire une suite de valeurs propres (λ_k) telle que $|\lambda_k| \to +\infty$. Encore une fois, quitte à extraire, on peut supposer $\lambda_k \to +\infty$ ou $\lambda_k \to -\infty$.
 - Si $\lambda_k \longrightarrow +\infty$, $e^{\lambda_k} \longrightarrow +\infty$. Mais $\forall k \in \mathbb{N}$, e^{λ_k} est valeur propre de A_k , donc $\rho(A_k) \longrightarrow +\infty$: absurde car (A_k) converge.
 - Si $\lambda_k \longrightarrow -\infty$, $e^{-\lambda_k} \longrightarrow +\infty$. Mais $\forall k \in \mathbb{N}$, $e^{-\lambda_k}$ est valeur propre de A_k^{-1} , donc $\rho(A_k^{-1}) \longrightarrow +\infty$: absurde car (A_k^{-1}) converge par continuité de $M \mapsto M^{-1}$.

Donc la suite (B_k) est bornée. Par le théorème de Bolzano-Weierstrass, (B_k) admet une valeur d'adhérence $\widetilde{B_0}$. Comme $\mathscr{S}_n(\mathbb{R})$ est fermé (c'est le Lemme 1), $\widetilde{B_0} \in \mathscr{S}_n(\mathbb{R})$.

Soit $\widetilde{B} \in \mathscr{S}_n(\mathbb{R})$ une valeur d'adhérence de (B_k) et soit $\varphi : \mathbb{N} \to \mathbb{N}$ strictement croissante telle que $B_{\omega(k)} \longrightarrow \widetilde{B}$. Alors,

$$\exp(B) = A \longleftarrow A_{\varphi(k)} = \exp(B_{\varphi(k)}) \longrightarrow \exp(\widetilde{B})$$

ie. $\exp(B)=\exp(\widetilde{B})$; donc $B=\widetilde{B}=\widetilde{B_0}$ par injectivité de exp. Donc par le Lemme 2, $B_k\longrightarrow B$.

Bibliographie

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

 $\verb|https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487. html.$