The group G is isomorphic to the group labelled by [40, 14] in the Small Groups library. Ordinary character table of $G\cong C10 \times C2 \times C2$:

1a	5a	a = 5b	5c	5d	2a	10a	10b	10 <i>c</i>	10 <i>d</i>	2b	10e	10 <i>f</i>	10 <i>g</i>	10h	2c	10 <i>i</i>	10 <i>j</i>	10k	10 <i>l</i>	2d $10r$	n = 10n	100	10p	2e	$\overline{10q}$	10r 1	0s	0t 2	f = 10u	10v	10w	10x	2g	$\overline{10y}$ 1	0z 10ac	\overline{a} 10ab
χ_1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 1	1
χ_2 1	1	1	1	1	-1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	-1	-1	-1	1 1	1	1	1	-1	-1	-1 -	-1	-1 1	1	1	1	1	-1	-1 -	-1 -1	-1
χ_3 1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1 1	1	1	1	1	1	1	1	1 -	1 - 1	-1	-1	-1	-1	-1 -	-1 -1	-1
χ_4 1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1 1	1	1	1	-1	-1	-1 -	-1	-1 -	1 - 1	-1	-1	-1	1	1	1 1	1
χ_5 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1 -1	1	-1	-1	-1	-1	-1 -	-1	-1 -	1 - 1	-1	-1	-1	-1	-1 -	-1 -1	-1
χ_6 1	1	1	1	1	-1	-1	-1	-1	-1	1	1	1	1	1	-1	-1	-1	-1	-1	-1 -1	-1	-1	-1	1	1	1	1	1 -	1 - 1	-1	-1	-1	1	1	1 1	1
χ_7 1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1 -1	-1	-1	-1	-1	-1	-1 -	-1	-1 1	1	1	1	1	1	1	1 1	1
χ_8 1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	-1 -1	-1	-1	-1	1	1	1	1	1 1	1	1	1	1	-1	-1 -	-1 -1	-1
χ_9 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	¹ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1 .	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1 E(3)	E(5)	$E(5)^3$	$E(5)^{4}$	1 B	E(5)	$E(5)^2$ $E(5)^2$	$(5)^3$ E	$(5)^4$ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1 B	E(5) $E(6)$	$(5)^2$ $E(5)$	$E(5)^4$
$ \chi_{10} $ 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	-1	-E(5)	$-E(5)^{2}$	$-E(5)^{3}$	$-E(5)^4$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1 -	E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	$1 \qquad E(s)$	$E(5)^2$	$E(5)^{3}$	$E(5)^{4}$	-1 $-$	-E(5) -	$-E(5)^2 - E(5)^2$	$(5)^3 -1$	$E(5)^4$ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1 $-$	E(5) - E	$E(5)^2 - E(5)$	$-E(5)^4$
$ \chi_{11} $ 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	¹ 1	E(5)	$E(5)^{2}$	$E(5)^3$	$E(5)^{4}$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1 -	E(5)	$-E(5)^{2}$	$-E(5)^{3}$	$-E(5)^4$	$1 \qquad E(s)$	$E(5)^2$	$E(5)^{3}$	$E(5)^{4}$	1 B	E(5)	$E(5)^2$ $E(5)^2$	$(5)^3$ E	$(5)^4$ -	1 - E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1 $-$	E(5) - E	$E(5)^2 - E(5)$	$-E(5)^4$
$ \chi_{12} $ 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1	-E(5)	$-E(5)^{2}$	$-E(5)^{3}$	$-E(5)^4$	1 .	$E(\hat{5})$	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	$1 \qquad E(\xi)$	E(5)	$E(5)^{3}$	$E(5)^{4}$	-1 $-$	-E(5) -	$-E(5)^2 - E(5)^2$	$(5)^3 -1$	$E(5)^4$ -	1 - E(5)	$-E(5)^{2}$	$-E(5)^{3}$	$-E(5)^4$	1 I	E(5) $E(5)$	$(5)^2$ $E(5)$	$E(5)^4$
χ_{13} 1	E(5	E(5)	$E(5)^2$	$E(5)^4$	¹ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^4$	1 .	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1 $-E$	-E(5)	2 $-E(5)^{2}$	$-E(5)^4$	-1 $-$	-E(5) -	$-E(5)^2 - E(5)^2$	$(5)^3 -1$	$E(5)^4 -$	1 - E(5)	$-E(5)^2$	$-E(5)^3$	$-E(5)^4$	-1 $-$	E(5) $-E$	$E(5)^2 - E(5)$	$(5)^3 - E(5)^4$
χ_{14} 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1 -	E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1 $-E$	-E(5)	2 $-E(5)^{2}$	$-E(5)^4$	1 H	E(5)	$E(5)^2$ $E(5)^2$	$(5)^3$ E	$(5)^4$ –	1 - E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	1 I	E(5) $E(5)$	$(5)^2$ $E(5)$	$E(5)^4$
χ_{15} 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	¹ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1 -	E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1 $-E$	-E(5)	2 $-E(5)^{3}$	$-E(5)^4$	-1 $-$	-E(5) -	$-E(5)^2 - E(5)^2$	$(5)^3 -1$	$E(5)^4$ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	1 I	E(5) $E(5)$	$(5)^2$ $E(5)$	$E(5)^4$
χ_{16} 1	E(5	E(5)	$E(5)^{2}$	$E(5)^4$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	-1	-E(5)	$-E(5)^2$	$-E(5)^{3}$	$-E(5)^4$	1 .	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1 $-E$	-E(5)	2 $-E(5)^{3}$	$-E(5)^4$	1 H	E(5)	$E(5)^2$ $E(5)$	$(5)^3$ E	$(5)^4$ 1	E(5)	$E(5)^{2}$	$E(5)^{3}$	$E(5)^{4}$	-1 $-$	E(5) $-E$	$E(5)^2 - E(5)$	$(5)^3 - E(5)^4$
$ \chi_{17} $ 1	E(5)	E(5)	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1 I	$E(5)^2$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1 $E(5)$	$(5)^2$	E(5)	$E(5)^{3}$	1 E	$\mathbb{E}(5)^2$.	$E(5)^4$ E	E(5)	$(5)^3$ 1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1 E	$E(5)^2$ $E(5)^2$	$(5)^4$ $E(5)$	$E(5)^3$
χ_{18} 1	E(5)	E(5)	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1 -	$E(5)^{2}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1 $E(5)$	$(5)^2$	E(5)	$E(5)^{3}$	-1 -1	$E(5)^2$ -	$-E(5)^4 - I$	$\Xi(5) - I$	$E(5)^3 = 1$	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1 -1	$E(5)^2 - E$	$E(5)^4 - E(5)^4$	5) $-E(5)^3$
χ_{19} 1	E(5)	E(5)	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1 -	$E(5)^{2}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1 $E(5)$	$(5)^2$	E(5)	$E(5)^{3}$	1 E	$\mathbb{E}(5)^2$.	$E(5)^4$ E	E(5)	$(5)^3$ –	$1 - E(5)^{\frac{1}{2}}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1 -1	$E(5)^2 - E$	$E(5)^4 - E(5)^4$	5) $-E(5)^3$
χ_{20} 1	E(5)	$E(5)^2$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1 I	$E(5)^2$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1 $E(5)$	$(5)^2$	E(5)	$E(5)^{3}$	-1 -1	$E(5)^2$ -	$-E(5)^4 - I$	$\Xi(5) - I$	$E(5)^3 -$	$1 - E(5)^{2}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1 E	$E(5)^2$ $E(5)^2$	$(5)^4 E(5)$	$E(5)^3$
χ_{21} 1	E(5)	$E(5)^2$	E(5)	$E(5)^{3}$	³ 1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1 I	$E(5)^2$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1 $-E($	$(5)^2 - E(5)$	4 $-E(5)$	$-E(5)^3$	-1 -1	$E(5)^2$ -	$-E(5)^4 - I$	$\Xi(5) - I$	$E(5)^3 -$	$1 - E(5)^{2}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1 -1	$E(5)^2 - E$	$E(5)^4 - E(5)$	5) $-E(5)^3$
χ_{22} 1	E(5)	$E(5)^2$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1 -	$E(5)^{2}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1 $-E($	$(5)^2 - E(5)$	4 $-E(5)$	$-E(5)^3$	1 E	$\Xi(5)^2$.	$E(5)^4$ E	\ /	$(5)^3$ –	$1 - E(5)^{2}$	()	-E(5)	$-E(5)^{3}$	1 E	$E(5)^2$ $E(5)^2$	$(5)^4 E(5)$	$E(5)^3$
χ_{23} 1	E(5)	$E(5)^2$	E(5)	$E(5)^{3}$	³ 1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1 -	$E(5)^{2}$	$-E(5)^4$	-E(5)	$-E(5)^{3}$	-1 $-E($	$(5)^2 - E(5)$	4 $-E(5)$	$-E(5)^3$	-1 -1	$E(5)^2$ -	$-E(5)^4 - I$	E(5) - I	$E(5)^3 = 1$	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	1 E	$E(5)^2$ $E(5)^2$	$(5)^4 E(5)$	$E(5)^3$
$\chi_{24} \mid 1$	E(5)	$E(5)^2$	E(5)	$E(5)^{3}$	-1	$-E(5)^2$	$-E(5)^4$	-E(5)	$-E(5)^{3}$		()	$-E(5)^4$	-E(5)	$-E(5)^{3}$	1 I	$E(5)^2$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1 $-E($	$(5)^2 - E(5)$	4 $-E(5)$	$-E(5)^3$	1 E	$\Xi(5)^2$.	$E(5)^4$ E	E(5)	$(5)^3$ 1	$E(5)^{2}$	$E(5)^{4}$	E(5)	$E(5)^{3}$	-1 -1	$E(5)^2 - E$	$E(5)^4 - E(5)$	$-E(5)^3$
χ_{25} 1	E(5	E(5)) $E(5)$	$E(5)^2$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1 I	$E(5)^3$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1 E(5	$)^3 E(5)$	$E(5)^{4}$	$E(5)^{2}$			E(5) E	$(5)^4$ E	$(5)^2$ 1	$E(5)^{3}$		$E(5)^{4}$	$E(5)^{2}$	1 E	$E(5)^3$ E	E(5) $E(5)$	$E(5)^2$
χ_{26} 1	E(5	E(5)) $E(5)$	$E(5)^2$		$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	-1 -	$E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^{2}$	1 E(5	, ,	\ /	$E(5)^{2}$		\ /	-E(5) $-E$	$(5)^4 - 1$	$E(5)^2 = 1$	$E(5)^{3}$	\ /	$E(5)^{4}$	$E(5)^{2}$	-1 -1	$E(5)^3 - I$	E(5) - E(5)	$(5)^4 - E(5)^2$
$ \chi_{27} $ 1	E(5)	E(5)) $E(5)$	$E(5)^2$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	-1	$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^{2}$	-1 -	$E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^{2}$	1 $E(5)$	$)^3 E(5)$	$E(5)^{4}$	$E(5)^{2}$	1 E	$\Xi(5)^3$	E(5) E	$(5)^4$ E	$(5)^2 -$	$1 - E(5)^{\frac{1}{2}}$	-E(5)	$-E(5)^4$	$-E(5)^2$	-1 -1	$E(5)^3 - I$	E(5) - E(5)	$-E(5)^2$
χ_{28} 1	E(5)	E(5)) $E(5)$	$E(5)^2$	-1	$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$		$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^{2}$	1 I	$E(5)^3$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1 E(5	$)^3 E(5)$	$E(5)^{4}$	$E(5)^{2}$	-1 -1	$E(5)^{3}$ -	-E(5) $-E$	$(5)^4 - 1$	$E(5)^2 -$	$1 - E(5)^{\frac{1}{2}}$	-E(5)	$-E(5)^4$	$-E(5)^2$	1 E	$E(5)^3$ E	E(5) $E(5)$	$E(5)^2$
$ \chi_{29} $ 1	E(5)	E(5)) $E(5)$	$E(5)^2$	1	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$		$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$	1 I	$E(5)^3$	E(5)	$E(5)^{4}$	$E(5)^{2}$	-1 $-E($	$(5)^3 - E(5)$	-E(5)	$-E(5)^2$	-1 -1	()	-E(5) $-E$	$(5)^4 - 1$	(/	$1 - E(5)^{\frac{1}{2}}$	(/	$-E(5)^4$	$-E(5)^2$		()	E(5) - E(5)	/ / /
χ_{30} 1	E(5)	E(5)) $E(5)$	$E(5)^2$		$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$		$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$		$E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$	-1 $-E($	$(5)^3 - E(5)$	-E(5)	$-E(5)^2$		()	()	· /	()	$1 - E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$		(/	E(5) $E(5)$	\ /
χ_{31} 1	E(5)	/	/ /	(-)		$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$		$-E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$		$E(5)^{3}$	-E(5)	$-E(5)^4$	$-E(5)^2$	-1 $-E($	/	, ,	(-)	-1 -1	()	\ /	()	$E(5)^2 = 1$	$E(5)^{3}$	E(5)	$E(5)^{4}$	$E(5)^{2}$		()	E(5) $E(5)$	' ' '
χ_{32} 1	E(5)	/ .	/_ \ /	$E(5)^2$	-1	$-E(5)^3$	-E(5)	$-E(5)^4$	$-E(5)^2$		$-E(5)^3$	\ _/	$-E(5)^4$	$-E(5)^2$		$E(5)^3$	E(5)	$E(5)^{4}$	$E(5)^{2}$	-1 $-E($	/	, , ,	\ /		` ' .	\ /_	` / _	$(5)^2$ 1	$E(5)^{3}$		$E(5)^{4}$	$E(5)^{2}$		\ /	E(5) - E(5)	/ / /
χ_{33} 1	E(5)	/ /		E(5)	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)		$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)		$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	1 E(5	, ,	\ /	E(5)			` '	· /	C(5) 1	$E(5)^4$	\ / _	$E(5)^{2}$	E(5)		` ' .	$(5)^3$ $E(5)$	E(5)
χ_{34} 1	E(5)	/ /	()	E(5)	-1	$-E(5)^4$	$-E(5)^{3}$	$-E(5)^{2}$	-E(5)	1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)		\ /	$-E(5)^{3}$	$-E(5)^{2}$	-E(5)	1 E(5	, ,	\ /	E(5)	-1 -1	\ /	()	$(5)^2 -$	E(5) 1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1 -1	$E(5)^4 - E$	$E(5)^3 - E(5)$	$(5)^2 - E(5)$
χ_{35} 1	E(5)	/ .	()	/		$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)		()	(/ _	$-E(5)^{2}$	-E(5)		$E(5)^4$	$-E(5)^{3}$	$-E(5)^{2}$	-E(5)	1 E(5			E(5)		()	$E(5)^3$ $E(5)^3$		C(5) –	1 - E(5)	$-E(5)^3$	$-E(5)^{2}$	-E(5)		\ /	$E(5)^3 - E(5)$	()
χ_{36} 1	E(5)	/ .		E(5)	-1	\ /.	\ /	$-E(5)^{2}$	-E(5)	-1	\ /.	\ \ \	$-E(5)^{2}$	-E(5)		$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	1 E(5	/ .	. ,	E(5)	-1 -1	` ' .	` ' ~	()_	E(5) –	()	. \ / _	$-E(5)^{2}$	-E(5)		` ' .	$(5)^3$ $E(5)$	` _ ` /
χ_{37} 1	E(5)	/ .		E(5)	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)		$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1 $-E($	·	_ ` '	_		\ /.	\ /	\ \ \ \	E(5) –	1 - E(5)	$-E(5)^3$	$-E(5)^{2}$	-E(5)		\ /	$E(5)^3 - E(5)$	/ / /
χ_{38} 1	E(5)	E(5)	$E(5)^3$. (/		\ /.	$-E(5)^{3}$	$-E(5)^{2}$	-E(5)	1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1 -	$E(5)^4$	$-E(5)^{3}$	$-E(5)^{2}$	-E(5)	-1 $-E($	$(5)^4 - E(5)$	3 $-E(5)^{2}$	-E(5)	1 E	· / .	· / _	$(5)^2$ I	C(5) –	1 - E(5)	$-E(5)^3$	$-E(5)^{2}$	-E(5)		()	$(5)^3 E(5)$	` ' '
χ_{39} 1	E(5)	E(5)	$E(5)^3$	E(5)		$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)		(-)	$-E(5)^{3}$	$-E(5)^2$	-E(5)		$E(5)^4$	$-E(5)^{3}$	$-E(5)^2$	-E(5)	-1 $-E($	/	/	-E(5)		` '.	()	\ /	E(5) 1	$E(5)^{4}$	$E(5)^{3}$	$E(5)^{2}$	E(5)		\ / .	$(5)^3$ $E(5)$	E(5)
χ_{40} 1	E(5)	E(5)	$E(5)^{3}$	E(5)	-1	$-E(5)^4$	$-E(5)^{3}$	$-E(5)^2$	-E(5)	-1	$-E(5)^4$	$-E(5)^{3}$	$-E(5)^2$	-E(5)	1 I	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1 $-E($	$(5)^4 - E(5)$	3 $-E(5)^{2}$	-E(5)	1 E	$E(5)^4$.	$E(5)^3$ E	$(5)^2$ I	C(5) 1	$E(5)^4$	$E(5)^{3}$	$E(5)^{2}$	E(5)	-1 -1	$E(5)^4 - E(5)^4$	$E(5)^3 - E(5)$	-E(5)

Trivial source character table of $G \cong C10 \times C2 \times C2$ at $p = 5$:		
Normalisers N_i	N_1	N_2
p-subgroups of G up to conjugacy in G	P_1	P_2
Representatives $n_j \in N_i$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 $	•	
$ \left[0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + $		
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{27} + $	•	
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 1 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + $	•	
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{31} + $		
$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{33} + 0 \cdot \chi_{34} + 0 \cdot \chi_{35} + 0 \cdot \chi_{36} + 0 \cdot \chi_{37} + 0 \cdot \chi_{38} + 0 \cdot \chi_{39} + 1 \cdot \chi_{39} + 0 \cdot \chi_{31} + $	$\chi_{40} \mid 5 -5 -5 5 -5 5 -5$	
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} +$	•	
$ \left[0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{20} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + $	$\chi_{40} \mid 1 -1 1 -1 1 -1 1 -1$	1 -1 1 1 -1 -1 1 -1
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + $	$\chi_{40} \mid 1 1 -1 -1 1 1 -1 -1$	1 1 -1 1 -1 1 -1 -1
$ \left[0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{2$		1 -1 -1 1 1 -1 -1 1
$ \left[0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 1 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{2$	•	1 1 1 -1 1 -1 -1
$ \left[0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + $		1 -1 1 -1 -1 1 -1 1
		1 1 -1 -1 -1 1 1
$\left[0 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 1 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{31} + 0 \cdot \chi_{31}$	$\chi_{40} \mid 1 -1 -1 1 -1 1 -1$	1 -1 -1 -1 1 1 -1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(7, 8, 9, 10, 11)]) \cong C5$

 $\begin{aligned} N_1 &= Group([(1,2),(3,4),(5,6),(7,8,9,10,11)]) \cong \text{C10} \times \text{C2} \times \text{C2} \\ N_2 &= Group([(1,2),(3,4),(5,6),(7,8,9,10,11)]) \cong \text{C10} \times \text{C2} \times \text{C2} \end{aligned}$