Bioinformatics Algorithms

(Fundamental Algorithms, module 2)

Zsuzsanna Lipták

Masters in Medical Bioinformatics academic year 2018/19, II. semester

Pairwise Alignment 3

Optimal pairwise alignment in linear space

/ 15

Given two sequences s, t of length n:

- DP algorithm for global alignment: $O(n^2)$ time and space
- if we only want the score of an optimal alignment sim(s,t) (problem variant 1), then we can do this in $O(n^2)$ time and O(n) space (space-saving variant)
- But that algo does not give us the optimal alignment itself (problem variant 2)
- Now: algorithm for computing an optimal alignment itself in time $O(n^2)$ but space O(n)

There are several algorithms achieving this, e.g. Hirschberg (1975) a.k.a. Myers-Miller (1988). Here we present the divide-and-conquer algorithm from the book by Durbin, Eddy, Krogh, Mitchison: *Biological Sequence Analysis*, 1998 (ch. 26).

s = GAAGA, t = CACA

match: 2, mismatch: -1, gap: -1

D(i,j)		0	C 1	A 2	C 3	A 4	
	0	0	-1	-2	-3	-4	The optimal
G	1	-1	-1	-2	-3	-4	alignments are: 1. (GAAGA)
A	2	-2	-2	1	0	-1	2. (GAAGA CA-CA)
A	3	-3	-3	0	0	2	3. $\binom{\text{GAAGA}}{\text{C-ACA}}$ 4. $\binom{\text{GAAGA}}{\text{GAAGA}}$
G	4	-4	-4	-1	-1	1	4. (CAC-A)
A	5	-5	-5	-2	-2	1	

4 / 15

6/15

3 / 15

Consider the first optimal alignment $\binom{GAAGA}{-CACA}$:

Idea: Divide-and-conquer

We divide the two sequences s,t in two parts, left and right, align left with left, right with right, and then concatenate the two alignments:

Why does this work?

Generalization of the theorem on which the DP recursion for pairwise alignment is based (see p. 18 of "Pairwise alignment 1"):

Theorem

Let alignment $\mathcal A$ be the concatenation of two alignments $\mathcal B$ and $\mathcal C$, i.e. $\mathcal A=\mathcal B\cdot\mathcal C$. If $\mathcal A$ is optimal, then so are $\mathcal B$ and $\mathcal C$.

Proo

Again, we prove the claim by contradiction. Let $\mathcal A$ be an alignment of s and t, $\mathcal B$ one of s' and t', and $\mathcal C$ one of s'' and t''. (Thus s=s's'' and t=t't''.) Assume that $\mathcal B$ is not optimal, then $\mathcal B$ can be replaced by some alignment $\mathcal B'$ of the same strings s', t' with higher score than $\mathcal B$. Define $\mathcal A'=\mathcal B'\cdot\mathcal C$. Then $\mathcal A'$ is also an alignment of s, t, and

$$\mathit{score}(\mathcal{A}') = \mathit{score}(\mathcal{B}') + \mathit{score}(\mathcal{C}) > \mathit{score}(\mathcal{B}) + \mathit{score}(\mathcal{C}) = \mathit{score}(\mathcal{A}),$$

a contradiction to the optimality of $\mathcal{A}.$ —The case where \mathcal{C} is not optimal is analogous.

5/15

So it's okay to align optimally the left and the right parts, and then to concatenate them:

Question

But how do we know where to divide them?

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{CA}{G-} \cdot \binom{C-C}{AC}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

Definition

A cut is a pair of positions (n',m'), where $1 \le n' \le n$, and $1 \le m' \le m$ (with |s| = n, |t| = m).

We are looking for a good cut, i.e. one for which there is an optimal alignment passing through it.

- (3,2) is a good cut: the optimal alignments (GAAGA), (GAAGA), (GAAGA) all pass through the cell (3,2), aligning GAA with CA.
- (3,3) is a good cut: the optimal alignment $\binom{GAAGA}{CAC-A}$ passes through the cell (3,3), aligning GAA with CAC.
- (3,1) is not a good cut, since no optimal alignment passes through cell (3,1), i.e. no optimal alignment aligns GAA with C.

8 / 15

The problem is: The reverse of the theorem is not true! Concatenating two optimal al's does not always yield an optimal al.: e.g. $\binom{GA}{G-} \cdot \binom{-C}{AC}$ yields $\binom{GA-C}{G-AC}$, which is not optimal.

Computing a good cut

- 1. In sequence 1, we will always take the middle cut position $n' = \lceil n/2 \rceil$.
- 2. In sequence 2, we will remember where the middle row $n' = \lceil n/2 \rceil$ was crossed.
- 3. For this, we will need to compute another matrix ${\cal M}$ (again, in space-saving manner!).

9 / 15

8 / 15

Matrix M

- Definition: For $i \ge n'$, cell M(i,j) contains an index r s.t. there exists an optimal alignment with score D(i,j) passing through cell (n',r).
- Computation of M(i,j):
 - $\bullet \ \text{ for } i=n' \text{ and } j=1,\ldots,m \text{:} \quad M(n',j)=j;$
 - for i > n', $0 \le j \le m$: M(i,j) = M(i',j'), where D(i,j) derives from cell (i',j')—if there is more than one, choose acc. to priority (e.g. *left-diag-top*)
- Note that by definition $(i', j') \in \{(i-1, j), (i-1, j-1), (i, j-1)\}.$
- Then M(n,m)=r s.t. there is an optimal alignment of s and t which passes through cell $(\lceil n/2 \rceil, r)$.
- Thus, we can use the cut $(n',r)=(\lceil n/2\rceil,M(n,m))$ in the divide-step and recurse with $s_1\dots s_{n'}$ and $t_1\dots t_r$ on the left, and $s_{n'+1}\dots s_n$ and $t_{r+1}\dots t_m$ on the right.

Back to the example (p. 4): Here n = 5, thus $n' = \lceil n/2 \rceil = 3$. We compute the matrix M according to the priority *left-diag-top*:

D(i,j)			C	A	C	A						
		0	C 1	2	3	4						
	0	0	-1 -1	-2	-3	-4						
G	1	-1	-1	-2	-3	-4						
A	2	-2	-2	1	0	-1	M(i,j)	0	1	2	3	4
A	3	-3	-3	0	0	2	3	0	1	2	3	4
G	4	-4	-4	-1	-1	1	4	0	0	2	2	4
A	5	-5	-5	-2	-2	1	3 4 5	0	0	0	2	2

So we have to recurse with r = 2, i.e. GAA,CA (left) and GA,CA (right).

10/15 11/15

For the left part GAA, CA, we have $n' = \lceil n/2 \rceil = 2$, and we get

D(i,j)			C 1	A				
		0	1	2				
	0	0	-1	-2 -2 1 0				
G	1	-1	-1	-2	M(i,j)	0	1	2
A	2	-2	-2	1	2	0	1	2
A	3	-3	-3	0	3	0	0	1

Thus, r=1 and we have to divide these at cut (2,1), yielding GA,C and A,A.

 $r \leftarrow M(n, m)$

Algorithm PWA(s,t)

N-W-algorithm

else
 .

4

5.

6.

Analysis (1)

Space

- all matrix computations are space-saving (row-wise), they all need linear space in the number of columns, which is always $\leq m$
- ullet at any given time, there are the two matrices D and M to be computed
- nothing needs to be stored for later, once we have computed r = M(n, m)
- thus for the matrix computations we need space O(m);
- we need to store the partial alignments, whose total length is the length of the final alignment, thus O(n+m)
- altogether space O(n+m)

(space-saving manner, row-wise)

for i = 0 to n' - 1 compute i'th row of D (space-saving manner, row-wise)

return $PWA(s_1 \dots s_{\lceil n/2 \rceil}, t_1 \dots t_r)$ concatenated with $PWA(s_{\lceil n/2 \rceil+1} \dots s_n, t_{r+1} \dots t_m)$.

Analysis (2)

1. if $\max(|s|,|t|) \le 2$, then return an optimal alignment computed with

for $i = \lceil n/2 \rceil$ to n, compute i'th row of D and i'th row of M

13 / 15

Time

- in the first iteration, we compute the entries of the two matrices D and M, each in constant time: $\underbrace{(n+1)(m+1)}_{D} + \underbrace{\lceil n/2 \rceil (m+1)}_{M}$ entries, so O(nm) time
- In each iteration, we are exactly halving the problem size (wherever we cut t, string s is always cut in the middle), thus we get:

$$nm + \frac{1}{2}nm + \frac{1}{4}nm + \ldots \leq nm \sum_{k=0}^{\infty} \frac{1}{2^k} = 2nm \in \textit{O(nm)}.$$

Thus we doubled the time (asymptotically the same: O(nm)), but reduced the space from quadratic to linear.

14/15 15/15