PC 9 : Intervalles de confiance

On corrigera les exercices 3, 5 et 4 en PC.

Exercice 1. (Loi normale) On observe X_1, \ldots, X_n indépendantes et de même loi. On suppose qu'il existe $\theta > 0$ tel que cette loi admet la densité

$$f_{\theta}(x) = \frac{1}{\sqrt{2\pi\theta^2}} \exp\left(-\frac{x^2}{2\theta^2}\right).$$

 $\frac{\text{Indication}}{\Phi^{-1}(0.975)} : F_{\chi_{10}^2}^{-1}(0.025) \simeq 3.25, \ F_{\chi_{10}^2}^{-1}(0.975) \simeq 20.48, \ F_{\chi_{10}^2}^{-1}(0.95) \simeq 18.31, \ F_{\chi_{10}^2}(40/3) \simeq 0.79 \ \text{et}$

- 1. On veut estimer $\tau = \theta^2$. Proposer un estimateur $\hat{\tau}$ de τ et étudier sa loi.
- 2. Construire un intervalle de confiance au niveau $1-\alpha$ de la forme $[S_1, S_2]$ tel que

$$\mathbb{P}(\tau < S_1) = \mathbb{P}(\tau > S_2) = \alpha/2.$$

- 3. Donner la loi asymptotique de $\hat{\tau}$ et en déduire un intervalle de confiance asymptotique.
- 4. Lorsque n = 10, $\hat{\tau} = 2$ et $\alpha = 0.05$, comparer l'intervalle de confiance obtenu à la question 2 (non asymptotique) avec celui obtenu à la question 3 (asymptotique).

Exercice 2. (Intervalles de confiance asymptotiques avec le TCL) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi. On suppose que X_1 est de carré intégrable, de moyenne m et de variance $\sigma^2 > 0$. On pose

$$\widehat{m}_n = \frac{X_1 + \dots + X_n}{n}, \quad \widehat{\sigma}_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \widehat{m}_n)^2.$$

- 1. Justifier que $\sqrt{n} \cdot \frac{\widehat{m}_n m}{\sigma}$ converge en loi vers limite que l'on identifiera.
- 2. En déduire un intervalle de confiance asymptotique pour m au niveau 95% (en supposant σ connu).
- 3. Montrer que $\widehat{\sigma}_n$ converge presque sûrement vers σ . L'estimateur $\widehat{\sigma}_n^2$ est-il sans biais ($\widehat{\sigma}_n^2$ est sans biais si $\mathbb{E}\left[\widehat{\sigma}_n^2\right] = \sigma^2$)?

Indication. On pourra démontrer que $\frac{n-1}{n} \cdot \widehat{\sigma}_n^2 = \left(\frac{1}{n} \sum_{k=1}^n X_k^2\right) - \widehat{m}_n^2$.

4. Montrer que

$$\sqrt{n} \cdot \frac{\widehat{m}_n - m}{\widehat{\sigma}_n} \quad \xrightarrow[n \to \infty]{\text{loi}} \quad \mathcal{N}(0, 1).$$

5. En déduire un intervalle de confiance asymptotique pour m au niveau 95% (en supposant σ inconnu).

Exercice 3. Soient X_1, \ldots, X_n des variables aléatoires réelles i.i.d. dont la loi admet une densité par rapport à la mesure de Lebesgue sur \mathbb{R} donnée par

$$x \in \mathbb{R} \to f(x; \theta) = \frac{2}{\sqrt{\pi \theta}} \exp(-x^2/\theta) \mathbb{1}_{\{x>0\}},$$

où $\theta > 0$ est un paramètre inconnu. On observe une réalisation (x_1, \ldots, x_n) du vecteur aléatoire (X_1, \ldots, X_n) . On désigne par α un réel donné dans [0,1] et on note $\hat{m}_2(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^n X_i^2$ le moment empirique d'ordre 2.

1. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}$ de $\theta.$

- 2. Déterminer la loi de la variable $X_1/\sqrt{\theta}$. Déduire de ce résultat que la loi de la statistique $\hat{\theta}/\theta$ ne dépend pas de θ , puis donner la loi de $n\hat{\theta}/\theta$.
- 3. Trouver des réels a et b tels que $[\hat{\theta}/a, \hat{\theta}/b]$ soit un intervalle de confiance de niveau $1-\alpha$ pour θ .

Solution. 1. La fonction de vraisemblance dans ce modèle est donnée par

$$\theta > 0 \to \mathcal{L}(\mathbf{x}; \theta) = \prod_{i=1}^{n} f(x_i; \theta) = \frac{2^n}{(\pi \theta)^{n/2}} \exp\left\{-\frac{1}{\theta} \sum_{i=1}^{n} x_i^2\right\}.$$

On en déduit la fonction de log-vraisemblance :

$$\ell(\theta) = \log(\mathcal{L}(\mathbf{x}; \theta)) = n \log \frac{2}{\sqrt{\pi}} - \frac{n}{2} \log \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i^2$$
$$= n \log \frac{2}{\sqrt{\pi}} - \frac{n}{2} \log \theta - \frac{n}{\theta} \hat{m}_2(\mathbf{x}).$$

La première et seconde dérivée de $\ell(\theta)$ sont données par

$$\ell'(\theta) = -\frac{n}{2\theta} + \frac{n}{\theta^2} \hat{m}_2(\mathbf{x})$$
$$\ell''(\theta) = \frac{n}{2\theta^2} - \frac{2n}{\theta^3} \hat{m}_2(\mathbf{x}) = \frac{n}{\theta^2} \left(\frac{1}{2} - \frac{2}{\theta} \hat{m}_2(\mathbf{x}) \right).$$

On cherche les points critiques de $\ell(\theta)$:

$$\ell'(\theta) = 0 \Longleftrightarrow -\frac{n}{2\theta} + \frac{n}{\theta^2} \hat{m}_2(\mathbf{x}) = 0 \Longleftrightarrow \theta = 2\hat{m}_2(\mathbf{x}).$$

On vérifie s'il s'agit d'un point de maximum par la dérivée seconde. En effet, on a

$$\ell''(2\hat{m}_2(\mathbf{x})) = \frac{n}{4\hat{m}_2^2(\mathbf{x})} \left(\frac{1}{2} - 1\right) < 0.$$

L'unique point critique de $\ell(\theta)$ étant un maximum, on conclut qu'il est maximum global. Donc, l'EMV est donné par $\hat{\theta} = 2\hat{m}_2(\mathbf{x})$.

2. Notons $Y = X_1/\sqrt{\theta}$. Calculons la fonction de répartition et la densité de la loi de Y:

$$F_Y(y) = \mathbb{P}(X_1/\sqrt{\theta} \le y) = F_{X_1}(y\sqrt{\theta})$$
 et donc $f_Y(y) = \sqrt{\theta}f_{X_1}(y\sqrt{\theta}) = \frac{2}{\sqrt{\pi}}e^{-y^2}\mathbb{1}_{]0,\infty[}(y).$

On constate que la loi de Y ne dépend pas de θ .

On a

$$\frac{\hat{\theta}}{\theta} = \frac{2\hat{m}_2(\mathbf{x})}{\theta} = \frac{2}{n\theta} \sum_{i=1}^n X_i^2 = \frac{2}{n} \sum_{i=1}^n \left(\frac{X_i}{\sqrt{\theta}}\right)^2.$$

Avec $Y_i = X_i / \sqrt{\theta}$ pour i = 1, ..., n, on a alors

$$\frac{\hat{\theta}}{\theta} = \frac{2}{n} \sum_{i=1}^{n} Y_i^2.$$

Il est clair que les variables aléatoires Y_1, \ldots, Y_n sont i.i.d. de même loi que Y, qui ne dépend pas de θ . Par conséquent, la loi de $\hat{\theta}/\theta$ ne dépend pas non plus de θ .

On peut calculer la loi de $n\hat{\theta}/\theta$ explicitement. D'abord, on constate que la variable aléatoire $2Y^2$ suit la loi χ^2_1 , car pour tout t>0,

$$F_{2Y^2}(t) = \mathbb{P}(2Y^2 \le t) = \mathbb{P}(Y \le \sqrt{t/2}) = F_Y\left(\sqrt{\frac{t}{2}}\right),$$

et donc

$$f_{2Y^2}(t) = \frac{1}{2\sqrt{2t}} f_Y\left(\sqrt{\frac{t}{2}}\right) = \frac{1}{\sqrt{2t\pi}} e^{-t/2} = \frac{\left(\frac{1}{2}\right)^{1/2}}{\Gamma\left(\frac{1}{2}\right)} t^{1/2-1} e^{-t/2}.$$

En utilisant que la somme de n variables indépendantes de loi χ_1^2 suit la loi χ_n^2 , on en déduit que $n\hat{\theta}/\theta$ suit la loi χ_n^2 .

3. On cherche a et b tels que

$$1 - \alpha = \mathbb{P}_{\theta}(\theta \in [\hat{\theta}/a, \hat{\theta}/b]) = \mathbb{P}_{\theta}\left(\frac{1}{a} \leq \frac{\theta}{\hat{\theta}} \leq \frac{1}{b}\right) = \mathbb{P}_{\theta}\left(nb \leq \frac{n\hat{\theta}}{\theta} \leq na\right)$$
$$= F_{\chi_{n}^{2}}(na) - F_{\chi_{n}^{2}}(nb).$$

On peut choisir a et b tel que $F_{\chi_n^2}(na) = 1 - \alpha/2$ et $F_{\chi_n^2}(nb) = \alpha/2$. On a alors

$$a = q_{1-\alpha/2}(\chi_n^2)/n$$
 $b = q_{\alpha/2}(\chi_n^2)/n$.

Donc on obtient finalement l'intervalle de confiance

$$\left[\frac{n\hat{\theta}}{q_{1-\alpha/2}(\chi_n^2)}, \frac{n\hat{\theta}}{q_{\alpha/2}(\chi_n^2)}\right].$$

Exercice 4. Soit la variable aléatoire

$$Y = \mathbb{1}_{\{\theta > \xi\}},$$

où $\theta \in \mathbb{R}$ et ξ est une variable aléatoire de loi $\mathcal{N}(0,1)$. On dispose d'un échantillon Y_1, \ldots, Y_n des réalisations i.i.d. de Y.

- 1. Soit Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$. Montrer que $\hat{\theta}_n = \Phi^{-1}(\frac{1}{n}\sum_{i=1}^n Y_i)$ est l'estimateur de maximum de vraisemblance de θ . Cet estimateur est-il consistant?
- 2. Chercher la loi limite de l'estimateur $\hat{\theta}_n$ quand $n \to \infty$.
- 3. Soit $0 < \alpha < 1$. Proposer un intervalle de confiance asymptotique de niveau 1α .

Solution. 1. Comme Y prend ses valeurs dans $\{0,1\}$, Y suit une loi de Bernoulli avec paramètre $\mathbb{P}(Y=1) = \mathbb{P}(\theta > \xi) = \Phi(\theta)$. La fonction de vraisemblance s'écrit

$$\mathcal{L}(\theta; Y_1, \dots, Y_n) = \prod_{i=1}^n (\Phi(\theta))^{Y_i} (1 - \Phi(\theta))^{1 - Y_i} = (\Phi(\theta))^{\sum_{i=1}^n Y_i} (1 - \Phi(\theta))^{n - \sum_{i=1}^n Y_i},$$

et la log-vraisemblance est donnée par

$$\ell(\theta) = \sum_{i=1}^{n} Y_i \log(\Phi(\theta)) + (n - \sum_{i=1}^{n} Y_i) \log(1 - \Phi(\theta)).$$

Notons φ la densité de la loi $\mathcal{N}(0,1)$. On dérive

$$\ell'(\theta) = \frac{\sum_{i=1}^{n} Y_i}{\Phi(\theta)} \varphi(\theta) - \frac{n - \sum_{i=1}^{n} Y_i}{1 - \Phi(\theta)} \varphi(\theta)$$

$$= \frac{(1 - \Phi(\theta)) \sum_{i=1}^{n} Y_i - \Phi(\theta) (n - \sum_{i=1}^{n} Y_i)}{\Phi(\theta) (1 - \Phi(\theta))} \varphi(\theta)$$

$$= \frac{\sum_{i=1}^{n} Y_i - n\Phi(\theta)}{\Phi(\theta) (1 - \Phi(\theta))} \varphi(\theta).$$

Puisque $\varphi > 0$ et la fonction de répartition $\Phi : \mathbb{R} \to (0,1)$ est bijective, la réciproque Φ^{-1} est bien définie. Ainsi,

$$\ell'(\theta) = 0 \Leftrightarrow \sum_{i=1}^n Y_i - n\Phi(\theta) = 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^n Y_i = \Phi(\theta) \Leftrightarrow \theta = \Phi^{-1}\left(\frac{1}{n} \sum_{i=1}^n Y_i\right).$$

On vérifie que $\ell(\theta)$ atteint un maximum en $\frac{1}{n}\sum_{i=1}^n Y_i$. En effet, d'une part on a $\varphi(\theta)/(\Phi(\theta)(1-\Phi(\theta)))>0$ pour tout $\theta\in\mathbb{R}$. D'autre part, $\sum_{i=1}^n Y_i-n\Phi(\theta)<0$ si et seulement si $\theta>\Phi^{-1}\left(\frac{1}{n}\sum_{i=1}^n Y_i\right)$. Donc, la dérivée vérifie $\ell'(\theta)<0$ si et seulement si $\theta>\Phi^{-1}\left(\frac{1}{n}\sum_{i=1}^n Y_i\right)$. On déduit que $\ell(\theta)$ atteint son maximum en $\frac{1}{n}\sum_{i=1}^n Y_i$, et donc l'estimateur de maximum de vraisemblance est $\hat{\theta}_n=\Phi^{-1}\left(\frac{1}{n}\sum_{i=1}^n Y_i\right)$.

Puisque $\frac{1}{n}\sum_{i=1}^{n}Y_{i} \to \mathbb{E}[Y_{1}] = \Phi(\theta) \ p.s.$ et Φ^{-1} est une fonction continue, on a $\hat{\theta}_{n} = \Phi^{-1}(\frac{1}{n}\sum_{i=1}^{n}Y_{i}) \to \Phi^{-1}(\Phi(\theta)) = \theta \ p.s.$. Donc $\hat{\theta}_{n}$ est consistant pour θ .

2. En vertu du TCL (car $\mathbb{E}[Y_1^2] < \infty$), on a $\sqrt{n}(\frac{1}{n}\sum_{i=1}^n Y_i - \Phi(\theta)) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \operatorname{Var}(Y_1)) = \mathcal{N}(0, \Phi(\theta)(1 - \Phi(\theta)))$. La fonction $\Phi^{-1}(\theta)$ est continument dérivable avec dérivée $(\Phi^{-1})'(\theta) = 1/\varphi(\Phi^{-1}(\theta))$. On obtient par la delta-méthode

$$\sqrt{n}(\hat{\theta}_n - \theta) = \sqrt{n} \left(\Phi^{-1} \left(\frac{1}{n} \sum_{i=1}^n Y_i \right) - \Phi^{-1}(\Phi(\theta)) \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, ((\Phi^{-1})'(\Phi(\theta)))^2 \Phi(\theta)(1 - \Phi(\theta)))$$

$$= \mathcal{N} \left(0, \frac{\Phi(\theta)(1 - \Phi(\theta))}{\varphi^2(\theta)} \right).$$

3. On a, d'après la question précédente,

$$\begin{split} 1 - \alpha &= \lim_{n \to \infty} \mathbb{P}_{\theta} \left(\sqrt{n} (\hat{\theta}_n - \theta) \in \left[\sqrt{\frac{\Phi(\theta)(1 - \Phi(\theta))}{\varphi^2(\theta)}} q_{\alpha/2}^N, -\sqrt{\frac{\Phi(\theta)(1 - \Phi(\theta))}{\varphi^2(\theta)}} q_{\alpha/2}^N \right] \right) \\ &= \lim_{n \to \infty} \mathbb{P}_{\theta} \left(\hat{\theta}_n - \sqrt{\frac{\Phi(\theta)(1 - \Phi(\theta))}{n\varphi^2(\theta)}} q_{\alpha/2}^N \le \theta \le \hat{\theta}_n + \sqrt{\frac{\Phi(\theta)(1 - \Phi(\theta))}{n\varphi^2(\theta)}} q_{\alpha/2}^N \right). \end{split}$$

Un intervalle de confiance asymptotique de niveau $1-\alpha$ est donc $\left[\hat{\theta}_n - \sqrt{\frac{\Phi(\theta)(1-\Phi(\theta))}{n\varphi^2(\theta)}}q_{\alpha/2}^N, \hat{\theta}_n + \sqrt{\frac{\Phi(\theta)(1-\Phi(\theta))}{n\varphi^2(\theta)}}q_{\alpha/2}^N\right]$. Alternative : En vertu du TCL et du théorème de Slutsky, on a

$$\sqrt{n} \frac{\bar{Y}_n - \Phi(\theta)}{\sqrt{S_n^2}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1),$$

où $S_n^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y}_n)^2$. Ce qui implique

$$\begin{split} 1 - \alpha &= \lim_{n \to \infty} \mathbb{P}_{\theta} \left(\sqrt{n} \frac{\bar{Y}_n - \Phi(\theta)}{\sqrt{S_n^2}} \in [q_{\alpha/2}^N, -q_{\alpha/2}^N] \right) \\ &= \lim_{n \to \infty} \mathbb{P}_{\theta} \left(\bar{Y}_n - q_{\alpha/2}^N \sqrt{\frac{S_n^2}{n}} \le \Phi(\theta) \le \bar{Y}_n + q_{\alpha/2}^N \sqrt{\frac{S_n^2}{n}} \right) \\ &= \lim_{n \to \infty} \mathbb{P}_{\theta} \left(\Phi^{-1} \left(\bar{Y}_n - q_{\alpha/2}^N \sqrt{\frac{S_n^2}{n}} \right) \le \theta \le \Phi^{-1} \left(\bar{Y}_n + q_{\alpha/2}^N \sqrt{\frac{S_n^2}{n}} \right) \right), \end{split}$$

car la fonction Φ est strictement croissante. On a donc montré que $\left[\Phi^{-1}\left(\bar{Y}_n-q_{\alpha/2}^N\sqrt{\frac{S_n^2}{n}}\right),\Phi^{-1}\left(\bar{Y}_n+q_{\alpha/2}^N\sqrt{\frac{S_n^2}{n}}\right)\right]$ est un intervalle de confiance asymptotique de niveau $1-\alpha$ pour θ .

Exercice 5 (Loi exponentielle). Soit $(E_i)_{i\geq 1}$ une suite de variables aléatoires indépendantes de même loi exponentielle de paramètre $\lambda > 0$ inconnu. On pose $\widehat{\lambda}_n = \frac{E_1 + \dots + E_n}{n}$ et

$$\widehat{\sigma}_n^2 = \frac{1}{n-1} \sum_{k=1}^n (E_k - \widehat{\lambda}_n)^2.$$

- 1. Donner un intervalle de confiance asymptotique pour $\frac{1}{\lambda}$ au niveau 95%.
- 2. Comment obtenir un intervalle de confiance asymptotique pour λ au niveau 95%?

Solution. 1. Comme $\mathbb{E}[E_1] = \frac{1}{\lambda}$, nous pouvons appliquer l'exercice précédent :

$$\widehat{I}_n = \left[\widehat{\lambda}_n - \frac{1.96 \cdot \widehat{\sigma}_n}{\sqrt{n}}, \widehat{\lambda}_n + \frac{1.96 \cdot \widehat{\sigma}_n}{\sqrt{n}}\right]$$

est un intervalle de confiance asymptotique pour $\frac{1}{\lambda}$ au niveau 95%.

(2) Dire que $\frac{1}{\lambda} \in [A, B]$ est équivalent au fait que $\frac{1}{B} \le \lambda \le \frac{1}{A}$. On en déduit que

$$\widehat{J}_n = \left[\frac{1}{\widehat{\lambda}_n + \frac{1.96 \cdot \widehat{\sigma}_n}{\sqrt{n}}}, \frac{1}{\widehat{\lambda}_n - \frac{1.96 \cdot \widehat{\sigma}_n}{\sqrt{n}}} \right]$$

est un intervalle de confiance asymptotique pour λ au niveau 95%.

Alternativement, on aurait pu appliquer la méthode delta : en notant $\sigma^2 = \frac{1}{\lambda^2}$ la variance de E_1 , en appliquant la méthode delta avec la fonction f(x) = 1/x (dérivable en $1/\lambda$ avec $f'(1/\lambda) = -\lambda^2 \neq 0$), $\sqrt{n} \cdot \left(f(\widehat{\lambda}_n) - f(1/\lambda)\right)$ converge en loi vers $\mathcal{N}(0, (f'(1/\lambda))^2\sigma^2)$. Ainsi, $\sqrt{n} \cdot \left(\frac{1}{\widehat{\lambda}_n} - \lambda\right)$ converge en loi vers $\mathcal{N}(0, (f'(1/\lambda))^2\sigma^2) = \mathcal{N}(0, \lambda^2) = \mathcal{N}(0, 1/\sigma^2)$. Ainsi,

$$\sigma\sqrt{n}\cdot\left(\frac{1}{\widehat{\lambda}_n}-\lambda\right) \quad \stackrel{\text{loi}}{\underset{n\to\infty}{\longrightarrow}} \quad \mathcal{N}(0,1).$$

En appliquant le lemme de Slutsky, on obtient que

$$\widehat{\sigma}_n \sqrt{n} \cdot \left(\frac{1}{\widehat{\lambda}_n} - \lambda\right) \xrightarrow[n \to \infty]{\text{loi}} \mathcal{N}(0, 1).$$

On en déduit que

$$\left[\frac{1}{\widehat{\lambda}_n} - \frac{1.96}{\widehat{\sigma}_n \sqrt{n}}, \frac{1}{\widehat{\lambda}_n} + \frac{1.96}{\widehat{\sigma}_n \sqrt{n}}\right]$$

est un intervalle de confiance asymptotique pour λ au niveau 95%.

Exercice 6. On effectue une enquête, durant une épidémie de grippe, dans le but de connaître la proportion p de personnes présentant ensuite des complications graves. On observe un échantillon représentatif de 400 personnes et pour un tel échantillon 40 personnes ont présenté des complications.

- 1. Donner un intervalle de confiance pour p au risque 5%.
- 2. On désire que la valeur estimée \hat{p} diffère de la proportion inconnue exacte p de moins de 0.005 avec une probabilité égale à 95%. Quel sera l'effectif d'un tel échantillon?
- 3. Quel devrait être le risque pour obtenir le même intervalle qu'à la question précédente en conservant l'effectif n = 400? Quelle conclusion peut-on en tirer?