Permit Numbers 1302 and PSDTX1085

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Source	Air Contaminant	Emission F	Rates *	
Name (2)	Name (3)	lb/hr	TPY **	
	VOC	577.88	15.60	
Interim until 12/31/2011	CO	322.44	16.82	
	NO_x	60.74	4.86	
	NH_3	393.16	25.02	
	SO ₂	0.12	0.01	
Start-Up Flare	VOC	165.17	6.20	
After 12/31/2011	CO	258.22	18.62	
	NO_x	65.84	5.40	
	NH_3	80.34	4.88	
	SO ₂	0.23	0.02	
ADN Operating Flare	VOC	614.45	92.42	
	CO	521.74	307.75	
	NO_x	139.52	22.60	
	SO_2	1.23	2.91	
	HCI	0.07	0.19	
Ammonia Flare	VOC	4.68	0.34	
	CO	64.88	4.24	
	NO_x	64.41	3.91	
	NH_3	112.67	6.76	
	SO_2	0.01	0.01	
	Start-Up Flare Interim until 12/31/2011 Start-Up Flare After 12/31/2011 ADN Operating Flare	Name (2) Name (3) Start-Up Flare VOC Interim until 12/31/2011 CO NOx NH3 SO2 VOC After 12/31/2011 CO NOx NH3 SO2 ADN Operating Flare VOC CO NOx SO2 HCI HCI Ammonia Flare VOC CO NOx NOx NH3	Name (2) Name (3) Ib/hr Start-Up Flare Interim until 12/31/2011 VOC 322.44 NO _x 60.74 NH ₃ 393.16 SO ₂ 0.12 Start-Up Flare After 12/31/2011 VOC 165.17 NO _x 65.84 NH ₃ 80.34 SO ₂ 0.23 ADN Operating Flare VOC 521.74 NO _x 139.52 SO ₂ 1.23 HCI 0.07 Ammonia Flare VOC 4.68 NO _x 64.41 NH ₃ 112.67	

Emission	Source	Air Contaminant <u>Emiss</u>	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
PH63	HCN Loading Flare	VOC	0.34	0.77
	-	CO	1.59	4.07
		NO_x	0.20	0.49
		NH_3	0.01	0.01
		SO ₂	0.01	0.01
PA403	Building 3056 Fugitive (4)	VOC	0.45	1.99
PA404	Building 3040 Fugitive (4)	VOC	4.95	21.68
PA405	Building 3050 Fugitive (4)	VOC	5.27	23.09
PA406	Building 3092 Fugitive (4)	VOC	0.08	0.37
PA407	Building 3045/3055	VOC	0.61	2.66
	Fugitive (4)	HCI	0.01	0.01
PC408	Building 3065/3099	VOC	2.36	10.37
	Fugitive (4)	HCI	0.03	0.13
PC409	Building 3068 Fugitive (4)	VOC	0.86	3.77
		HCI	0.01	0.01
PF410	311 Tank Farm Fugitive (4	1) VOC	0.13	0.55
PF414	3047 Rail Rack Fugitive (4	I) VOC	0.19	0.82
PH401	Building 3030/3032	VOC	3.09	13.56
	Fugitive (4)	NH_3	3.60	15.75
PH402	Building 3090 Fugitive (4)	VOC	0.02	0.10

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
PH601	E HCN OD Stack	VOC NH₃	0.01 0.01	0.01 0.01
PH602	W HCN OD Stack	VOC NH₃	0.01 0.01	0.01 0.01
PC82	Dust Collector	PM	0.03	0.01
PT301	Tank	INORGANIC	0.01	0.01
PT302	Tank	INORGANIC	0.01	0.01
PT303	Tank	INORGANIC	0.01	0.01
PT304	Tank	VOC	0.01	0.01
PT305	Decanter	VOC	0.01	0.01
PT60	Absorber	VOC	3.21	2.91
PA39	Fume Abator (Incinerator)	VOC CO NO _x SO ₂ NH ₃	0.48 0.01 2.00 0.01 0.01	1.05 0.01 5.12 0.01 0.01
PT326	Tank	VOC	0.01	0.01
PT329	Tank	VOC	2.51	0.24
PT335	Tank	VOC	0.03	0.01

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
PT308	Tank	VOC	1.88	0.36
PT10	HCL Scrubber/Tank	HCI	0.17	0.02
PT341	Tank	VOC	0.01	0.01
PT342	Tank	VOC	0.13	
PT343	Tank	VOC	0.13	
PT342, PT343	Tanks	VOC		0.08
PT344	Tank	VOC	0.02	0.01
PT345	Tank	VOC	0.01	0.01
PT347	Tank	VOC	0.01	0.01
PT349	Tank	VOC	0.02	0.01
PT369	Tank	VOC	0.01	0.01
PT370	Tank	VOC	0.01	0.01
PT371	Tank	VOC	0.01	0.01
PT379	Tank	VOC	0.01	0.01
PT380	Tank	VOC	0.01	0.01
PT383	Tank	VOC	11.30	

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
PT384	Tank	VOC	11.30	
PT383, PT384	Tanks	voc		3.85
PT387	Tank	VOC	0.01	0.01
PT388	Tank	VOC	0.01	0.01
PC83	Building Vent	РМ	6.00	0.75
PN628	ADN Analyzer Vent	VOC	0.01	0.01
PN601	NG Plant KO Pot	VOC	0.05	0.22
PH627	HCN Analyzer Vent	VOC	0.01	0.01
PN301	Tank	VOC	0.01	0.01
PN302	Tank	VOC	0.01	0.01
PT353	Tank	VOC	0.01	
PT354	Tank	VOC	0.01	
PT355	Tank	VOC	0.01	
PT353, PT354, PT355	Tanks	VOC		0.01
PT381	Tank	VOC	5.31	

Emission	Source	Air Contaminant	Emission R	ates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
PT382	Tank	VOC	5.30	
PT381, PT382	Tanks	voc		2.08
PN447	Gas Plant Fugitive (4)	VOC	0.57	2.49
PF412	513 Tank Farm Fugitive (4) VOC	0.01	0.02
PF413A	Cooling Tower Fugitive (4)	INORGANIC	0.08	0.32
PF413	ADN Cooling Tower	РМ	0.38	1.65
PF415	3058 Tank Farm Fugitive ((4) VOC	0.23	1.01
PF900	Parts Degreaser	VOC	0.025	0.01
PF901	Dust Collector	РМ	0.55	0.10
PF40	South ADN Boiler	VOC CO NO _x PM HCI CI ₂ SO ₂	1.79*** 56.68*** 490.00*** 13.69*** 2.96*** 0.72***	
PF41	North ADN Boiler	VOC CO NO _x PM	1.79*** 69.38*** 637.00*** 13.69***	

Emission	Source	Air Contaminant	Emission Rates *		Emission Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **	
		HCI Cl ₂ SO ₂	2.96*** 0.72*** 0.23***	 	
PF40/PF41	South and North ADN Boilers	VOC CO NO _x PM HCI Cl ₂ SO ₂	 	5.26 151.34 2407.04 15.39 4.38 1.06 1.00	
PF416	Boiler Fugitive (4)	VOC	0.07	0.31	
PT399	Misc Tanks	VOC	0.01	0.01	
PW450	Wastewater Fugitive (4)	VOC	0.05	0.01	
PC22	Carbon Drum	VOC	0.01	0.01	
PC425	Drum	VOC	0.03	0.01	
PC426	Drum	VOC	0.01	0.01	
PC23	Carbon Drum	VOC	0.01	0.01	
PF601	North ADN Boiler Analyzer Vent	VOC CO NO _x PM HCI	0.01 0.01 0.08 0.01 0.01	0.01 0.04 0.35 0.01 0.01	

Emission	Source	Air Contaminant	Emission	Rates *
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY **
		Cl ₂	0.01	0.01
		SO ₂	0.01	0.01
PF600	South ADN Boiler	VOC	0.01	0.01
	Analyzer Vent	CO	0.01	0.03
		NO_x	0.06	0.27
		PM	0.01	0.01
		HCI	0.01	0.01
		Cl_2	0.01	0.01
		SO_2	0.01	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

CO - carbon monoxide

NO_x - total oxides of nitrogen

NH₃ - ammonia

SO₂ - sulfur dioxide

HCl - hydrogen chloride

Cl₂ - chlorine

PM - particulate matter, suspended in the atmosphere, including PM₁₀

PM₁₀ - particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no PM greater than 10 microns is emitted.

- (4) Emission rate is an estimate and compliance is demonstrated by meeting the requirements of the applicable special conditions and permit application representations.
 - * Emission rates are based on and the facilities are limited by the following maximum operating schedule:

Hrs/day 24 Days/week 7 Weeks/year 52 or Hrs/year 8,760

- ** Compliance with annual emission limits is based on a rolling 12-month period.
- *** lb/hr limits for North and South ADN Boilers are based on a 30-day rolling average

Dated May 18, 2011