TD3- Problème d'affectation

Exercice 1

Déterminer une solution pour le problème d'affectation modélisé par le PLM suivant :

$$Minimize \quad 4X_{11} + 6X_{12} + 3X_{13} + 4X_{14} + 7X_{21} + 4X_{22} + 5X_{23} + 6X_{24} \\ \quad + 4X_{31} + 7X_{32} + 6X_{33} + 8X_{34} + 2X_{41} + 6X_{42} + 4X_{43} + 7X_{44} \\ \quad + 4X_{41} + 6X_{42} + 4X_{43} + 7X_{44} + 6X_{44} + 6X_{44} + 6X_{45} + 6X_{4$$

St.
$$X_{11}+X_{12}+X_{13}+X_{14}=1$$

 $X_{21}+X_{22}+X_{24}+X_{24}=1$
 $X_{31}+X_{32}+X_{33}+X_{34}=1$
 $X_{41}+X_{42}+X_{43}+X_{44}=1$
 $X_{11}+X_{21}+X_{31}+X_{41}=1$
 $X_{12}+X_{22}+X_{32}+X_{42}=1$
 $X_{13}+X_{23}+X_{33}+X_{43}=1$
 $X_{14}+X_{24}+X_{34}+X_{44}=1$

Exercice 2

Le tableau ci-dessous contient les durées d'exécution d'une de 5 tâches (T_1 , T_2 , T_3 , T_4 et T_5) sur 5 machines (M_1 , M_2 , M_3 , M_4 et M_5).

	T_1	T_2	T_3	T_4	T_5
\mathbf{M}_1	12	8	6	3	9
M_2	6	5	14	8	7
M_3	9	3	8	2	10
M_4	12	15	8	9	12
M5	6	8	2	14	7

Sachant que chaque machine ne peut exécuter qu'une seule tâche à un instant donné :

- 1- Déterminer quelle tâche à exécuter sur chaque machine pour minimiser le coût d'exécution des 5 tâches sur les 5 machines.
- 2- Calculer le coût d'exécution des 5 tâches sur les 5 machines.

3- En se basant sur la variable de décision ci-dessous, déterminer le modèle mathématique linéaire (fonction objective et contraintes) qui modélise le problème.

 x_{ij} :

1 si la tâche i est affectée à la machine j.

0 Sinon

Exercice 3

Cinq robots doivent traiter cinq tâches. Chaque robot peut traiter n'importe quelle tâche. Les durées de traitements des tâches par chaque robot sont résumées dans le tableau ci-dessous

9	8	6	4	6
3	6	6	7	4
4	9	8	3	6
7	6	4	4	7
2	8	3	5	6

- 1- Modéliser ce problème par un graphe.
- 2- Déterminer Quelle tâche à affecter à quel robot afin de minimiser la somme des temps de traitement.
- 3- Calculer le coût d'exécution des 5 tâches sur les 5 robots.
- 4- Modéliser ce problème par un programme linéaire.