

Computer Science o Is NOT just about coding or hardware or software! o Computer Science is about PROBLEM SOLVING o Computer Science is about developing algorithms to solve complex problems

Control / Logic Structures • Tools we use to create Algorithms WHAT IS AN ALGORITHM? • An algorithm is a step-by- step definition of a process. • It should also be a well-developed, organized approach to solving a complex problem. • Computer Scientists ask themselves four critical questions when they evaluate algorithms ...

Developing an Algorithm

- 1. Identify the Input
- 2. Identify the Output
- 3. Identify the Processes
- 4. Develop a HIPO Chart
- 5. Develop Pseudocode or a Flowchart
- 6. Test our algorithm with a Desk Check

Michala Paussan

rogramming Basics - F

1. Identify the INPUT • What data do I need to generate the output? • How will I get the data? • From the user? • What is the format of the data? 2. Identify the OUTPUT • What output do I need to return to the user? • How should it be displayed? • How can I display the data to produce meaningful results? • Data vs. Information 3. Identify the Processing

• What do we need to do to produce the output with the given input

HIPO Charts, PseudoCode, & Flowcharts

- We use these tools for 2 reasons
 - 1 they help us to develop our algorithms
 - 2 they help us communicate our ideas with others
- HIPO Charts (Hierarchical, Input, Processing, Output)
 - This is where we begin Divide & Conquer!
 - Describes the system from a high level
- Pseudocode A terse-English description of our algorithm
 - This is where we define the specific flow of our algorithm
- Flowcharts A symbolic representation of our algorithm
 - Describes our algorithm similarly to pseudocode, but creates a diagrammatic representation of our algorithm

Michele Rouss

rogramming Basics

A Simple Sequence Problem

Problem Statement:

- Develop an algorithm that calculates the sum and average of two numbers entered by the user
- Create a HIPO chart
- 2. Write the Pseudocode
- 3. Create a Flowchart
- 4. Perform a Desk Check to test our algorithm

All of these techniques help us develop our algorithm without dealing with the complexities of a programming language

Programming B

Creating our HIPO Chart

Hierarchical and Input, Processing Output Chart

- Shows the overall structure of the program
- Shows the relationship between different components/modules in the system
- Top-level is general
- 2nd level breaks it down into
 - → Input, Processing & Output
- Each successive level is more detailed

First we need to ask a few questions:

- What is the specified input?
- What is the specified output?
- What processing do we need to do to go from the input to t output?
- How can we break out problem into more manageab sub problems

 Programming Basics P1

 11

HIPO CHART CALCULATE & OUTPUT Top-Level General Description The sum & avg of 2 numbers INPUT CALCULATE OUTPUT sum & avg sum & avg second number INPUT CALC OUTPUT OUTPUT second numbe avg first numbe Lower-Levels Detailed Description Top-Level: High-level or general description 2nd-Level: Breaks it down into Input, Processing and Output Bottom-Level: Detailed Solution → for now detail to 1 instruction

Exercise #1 Design the algorithm for a program that calculates the total of a retail sale. The program should ask the user for the following: • the retail price of the item being purchased and • the sales tax rate. Once the information has been entered the program should calculate and display the following: • The sales tax for the purchase and • the total sale. First, we need to ask ourselves a few questions.

Exercise #1

Design the algorithm for a program that calculates the total of a retail sale.

The program should ask the user for the following:

• the retail price of the item being purchased and
• the sales tax rate.

Once the information has been entered the program should calculate and display the following:

• The sales tax for the purchase and
• the total sale.

Write the Pseudocode for this problem.

Assignment Statement Examples GOOD ageOne = 15 ageTwo = 23 averageAge = (ageOne + ageTwo) / 2.0 answer = 'y' sum = num1 + num2 BAD 10 + sum = sum 23 = sum + 5 sum + 5 = sum

Exercise

Design the algorithm for a program that calculates the total of a retail sale.

The program should ask the user for the following:

• the retail price of the item being purchased and
• the sales tax rate.

Once the information has been entered the program should calculate and display the following:

• The sales tax for the purchase and
• the total sale.

Draw the flowchart for this algorithm.

Some things to think about

• What is our input?

• What are our output?

• What do we need to calculate (processing)?

• What should we name our variables?

SOMETHING THAT MAKES SENSE!

Flowchart Exercise

VARIABLE LIST
INPUT

OUTPUT

PROCESSING

Programming Basics - P1 35

Exercise #2 Draw a flowchart to match the following pseudocode. **BEGIN PROGRAM** ASSIGN num1 = 5 ASSIGN num2 = 10 CALC num2 = num2 + 10 num3 = num1 * 2 CALC CALC num2 = num2 - num1 **OUTPUT** num1 **OUTPUT** num2 **OUTPUT** num3 **END PROGRAM** What is our input? • What is our output? What are our variables?

Exercise #2: Desk Check • Trace the steps in your flowchart from the previous exercise and show the output produced by this program. ■ Michele Rousseau Programming Basics - P1

Exercise #1: Desk Check Trace the steps in your flowchart from the sales tax and retail price problem. INPUT: \$300.00 & 10% EXPECTED OUTPUT: Programming Basics - P1 44

EXAMPLE UPDATED The 3 slides demonstrate the final versions of the topic example for the HIPO chart, pseudocode and flowchart The 4th slide provides a detailed explanation of how to conduct a desk check The 5th slide will show the final desk check Notice that all the diagrams and the pseudocode use proper variable names

Example Desk Check Desk checks are how we are test our algorithm • we start by selecting test data - for this example we will test 2 sets of data. Now every time we execute a PROMPT in pseudocode or an INPUT in a flowchart we store one of our input values into the variable specified. We start read our input values in from left to right. • Test set #1: 36 7 • Test set #2: 96 5 • Next, we want to do is figure out what the output should be and then walk through our algorithm (flowchart or pseudocode) one step at a time and see if it produces the same results. • Test set #1: **NPUT VALUES** **INPUT VALUES** **IN

```
Example Desk Check
  INPUT: 3 (num1)
        7 (num2)
  EXPECTED OUTPUT: 10 (sum)
                    5 (avg)
         <u>num2</u>
num1
                                        <u>OUTPUT</u>
                                        10 (sum)
5 (avg)
                      10
                              5
TEST CASE #2:
  INPUT: 9 (num1)
        5 (num2)
  EXPECTED OUTPUT: 14 (sum)
                    7 (avg)
                                         OUTPUT
14 (sum)
7 (avg)
num1
          num2
                     sum
                             avg
  9
           5
                     14
```