Numeri e Logica Digitale: Teoria ed Esercizi

Corso di Sistemi e Reti

Contents

1	Nui	neri in base 2 (binario)	2
	1.1	Rappresentazione dei numeri binari	2
	1.2	Conversione tra decimale e binario	2
	1.3	Conversione tra binario e decimale	2
	1.4	Esercizi svolti	3
	1.5	Esercizi da fare (finchè non si ha la nausea :))	3
2	Ope	erazioni in binario	5
	2.1	Addizione binaria	5
	2.2	Sottrazione binaria	5
	2.3	Esercizi svolti	6
	2.4	Esercizi da fare	6
3	Nui	neri esadecimali	7
	3.1	Concetti base	7
	3.2	Conversione binario \leftrightarrow esadecimale	7
	3.3	Conversione esadecimale \rightarrow decimale \dots	7
	3.4	Convertire decimale in esadecimale	7
	3.5	Esercizi svolti	7
4	Floa	ating Point (virgola mobile)	9
	4.1	Concetti base	9
	4.2	Standard IEEE 754 (32 bit)	9
	4.3	Esempio	9
5	Por	te logiche 10	0
	5.1	Porte fondamentali	0
	5.2	Tabelle di verità	0
		5.2.1 AND	0
		5.2.2 OR	0
		5.2.3 NOT	0
		5.2.4 XOR	0
	5.3	Esercizi svolti	0
	5.4	Esercizi avanzati: Circuiti combinatori	1
	5.5	Esercizi da fare	2
6	Cor	aclusione 1	1

1 Numeri in base 2 (binario)

Il sistema binario è la base dei calcolatori digitali, in quanto ogni bit può rappresentare solo due stati: 0 e 1.

1.1 Rappresentazione dei numeri binari

Ogni cifra in binario è detta bit. Ad esempio:

$$1011_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 11_{10}$$

Il pedice $_2$ indica che il numero è in base 2, mentre $_{10}$ indica la base decimale. 2^n rappresenta il peso di ogni bit, partendo da destra con 2^0 . Ricorda che:

$$2^{0} = 1$$

 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024 = 1K(1Kilo)$
 $2^{20} = 1048576 = 1M(1Mega)$
 $2^{30} = 1073741824 = 1G(1Giga)$

1.2 Conversione tra decimale e binario

Metodo della divisione per 2: Per convertire un numero decimale in binario, si divide per 2 ripetutamente e si prendono i resti dal basso verso l'alto.

Esempio: Convertire 25_{10} in binario.

$$25 \div 2 = 12 \text{ resto } 1$$

 $12 \div 2 = 6 \text{ resto } 0$
 $6 \div 2 = 3 \text{ resto } 0$
 $3 \div 2 = 1 \text{ resto } 1$
 $1 \div 2 = 0 \text{ resto } 1$

Risultato: $25_{10} = 11001_2$

1.3 Conversione tra binario e decimale

Metodo della somma ponderata: Per convertire un numero binario in decimale, si sommano i pesi dei bit che sono 1. Esempio: Convertire 1101₂ in decimale.

$$1101_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 8 + 4 + 0 + 1 = 13_{10}$$

1.4 Esercizi svolti

1. Convertire 43_{10} in binario:

$$43 \div 2 = 21 \text{ resto } 1$$

 $21 \div 2 = 10 \text{ resto } 1$
 $10 \div 2 = 5 \text{ resto } 0$
 $5 \div 2 = 2 \text{ resto } 1$
 $2 \div 2 = 1 \text{ resto } 0$
 $1 \div 2 = 0 \text{ resto } 1$

Risultato: $43_{10} = 101011_2$

2. Convertire 14_{10} in binario:

$$14 \div 2 = 7 \text{ resto } 0$$

 $7 \div 2 = 3 \text{ resto } 1$
 $3 \div 2 = 1 \text{ resto } 1$
 $1 \div 2 = 0 \text{ resto } 1$

Risultato: $14_{10} = 1110_2$

3. Convertire 101011_2 in decimale:

$$101011_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= 32 + 0 + 8 + 0 + 2 + 1 = 43₁₀

4. Convertire 1110_2 in decimale:

$$1110_2 = 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

= 8 + 4 + 2 + 0 = 14₁₀

1.5 Esercizi da fare (finchè non si ha la nausea :))

- 1. Convertire 7_{10} in binario (111).
- 2. Convertire 5_{10} in binario (101).
- 3. Convertire 12_{10} in binario (1100).
- 4. Convertire 78_{10} in binario (1001110).
- 5. Convertire 255_{10} in binario (11111111).
- 6. Convertire 100_{10} in binario (1100100).
- 7. Convertire 200_{10} in binario (11001000).
- 8. Convertire 120_{10} in binario (1111000).
- 9. Convertire 111_2 in decimale (7).

- 10. Convertire 101_2 in decimale (5).
- 11. Convertire 1100_2 in decimale (12).
- 12. Convertire 1001110_2 in decimale (78).
- 13. Convertire 111111111_2 in decimale (255).
- 14. Convertire 1100100_2 in decimale (100).
- 15. Convertire 11001000_2 in decimale (200).
- 16. Convertire 1111000_2 in decimale (120).

2 Operazioni in binario

2.1 Addizione binaria

Le regole fondamentali sono:

$$0+0=0$$
, $0+1=1$, $1+0=1$, $1+1=10$

Quando si somma 1+1, si scrive 0 e si riporta 1 alla colonna successiva. Quando si somma 1+1+1 (incluso il riporto), si scrive 1 e si riporta 1 alla colonna successiva.

Esempio: $1011_2 + 1101_2$

Risultato: 11000₂

Esempio: $111_2 + 101_2$

Risultato: 1100₂

Esempio: $1111_2 + 1111_2$

Risultato: 11110_2 Nota come la somma di due 1 dove c'è un riporto produce un ulteriore riporto.

2.2 Sottrazione binaria

Si usa spesso il **complemento a 2**:

- 1. Invertire i bit del sottraendo (complemento a 1)
- 2. Sommare 1
- 3. Sommare il risultato al minuendo

Esempio: $1011_2 - 0101_2$

$$0101_2 \rightarrow \text{complemento a } 1 = 1010_2$$

$$1010_2+1=1011_2$$
 (complemento a 2)

$$1011_2 + 1011_2 = 10110_2$$
 (scartare il riporto)

Risultato: $0110_2 = 6_{10}$

2.3 Esercizi svolti

$$1. 1101_2 + 1011_2$$

Risultato: 11000_2

$$2. \ 1001_2 - 0110_2$$

$$0110_2 \rightarrow \text{complemento a } 1 = 1001_2$$

 $1001_2 + 1 = 1010_2$ (complemento a 2)
 $1001_2 + 1010_2 = 10011_2$ (scartare il riporto)
 $1 \quad 0 \quad 0 \quad 1$

Risultato: $0011_2 = 3_{10}$

2.4 Esercizi da fare

- 1. $1010_2 + 1101_2$ (risultato: 10111_2)
- 2. $1110_2 + 1011_2$ (risultato: 11001_2)
- 3. $10000_2 + 1111_2$ (risultato: 11111_2)
- 4. $1101_2 0011_2$ (risultato: 0110_2)
- 5. $1010_2 0101_2$ (risultato: 101_2)
- 6. $1111_2 0110_2$ (risultato: 1001_2)

3 Numeri esadecimali

3.1 Concetti base

Il sistema esadecimale ha 16 simboli: $0, 1, 2, \dots, 9, A, B, C, D, E, F$. Ogni cifra esadecimale rappresenta 4 bit.

Le lettere A–F rappresentano i valori decimali 10–15, cioè:

$$A_{16} = 10_{10}, B_{16} = 11_{10}, C_{16} = 12_{10}, D_{16} = 13_{10}, E_{16} = 14_{10}, F_{16} = 15_{10}.$$

In binario:

$$A = 1010_2, B = 1011_2, C = 1100_2, D = 1101_2, E = 1110_2, F = 1111_2.$$

3.2 Conversione binario \leftrightarrow esadecimale

Esempio: 11011101_2 Dividere in gruppi di 4 bit: $1101\ 1101\ 1101_2 = D_{16}$, $1101_2 = D_{16}$ Risultato: DD_{16}

Esempio: 10100011₂ Dividere in gruppi di 4 bit: 1010 0011 1010₂ = A_{16} , 0011₂ = 3_{16} Risultato: $A3_{16}$

3.3 Conversione esadecimale \rightarrow decimale

$$2F_{16} = 2 \cdot 16^1 + 15 \cdot 16^0 = 32 + 15 = 47_{10}$$

3.4 Convertire decimale in esadecimale

Metodo della divisione per 16: Per convertire un numero decimale in esadecimale, si divide per 16 ripetutamente e si prendono i resti dal basso verso l'alto. Esempio: Convertire 254_{10} in esadecimale.

$$254 \div 16 = 15 \text{ resto } 14(E)$$

 $15 \div 16 = 0 \text{ resto } 15(F)$

Risultato: $254_{10} = FE_{16}$

3.5 Esercizi svolti

1. Convertire $3B_{16}$ in binario:

$$3 = 0011, \quad B = 1011 \Rightarrow 3B_{16} = 00111011_2$$

2. Convertire $A7_{16}$ in binario:

$$A = 1010, \quad 7 = 0111 \Rightarrow A7_{16} = 10100111_2$$

3. Convertire $7E_{16}$ in decimale:

$$7E_{16} = 7 \cdot 16^1 + 14 \cdot 16^0 = 112 + 14 = 126_{10}$$

4. Convertire $1F_{16}$ in decimale:

$$1F_{16} = 1 \cdot 16^1 + 15 \cdot 16^0 = 16 + 15 = 31_{10}$$

5. Convertire 10110101_2 in esadecimale:

$$1011\ 0101 \to B5_{16}$$

6. Convertire 11110000_2 in esadecimale:

$$1111\ 0000 \rightarrow F0_{16}$$

7. Convertire 255_{10} in esadecimale:

$$255 \div 16 = 15 \text{ resto } 15(F)$$

 $15 \div 16 = 0 \text{ resto } 15(F)$

Risultato: FF_{16}

8. Convertire 100_{10} in esadecimale:

$$100 \div 16 = 6$$
 resto 4
 $6 \div 16 = 0$ resto 6

Risultato: 64_{16}

4 Floating Point (virgola mobile)

4.1 Concetti base

I numeri reali si rappresentano in forma normalizzata:

$$N = (-1)^S \cdot 1.M \cdot 2^E$$

- S = segno (0=positivo, 1=negativo)
- M = mantissa (parte significativa)
- E = esponente

4.2 Standard IEEE 754 (32 bit)

- 1 bit per il segno
- 8 bit per l'esponente
- 23 bit per la mantissa

4.3 Esempio

Rappresentare -5.25 in floating point:

$$5.25_{10} = 101.01_2 = 1.0101_2 \times 2^2$$

$$S = 1, \quad E = 2 + 127 = 129 = 10000001_2, \quad M = 010100 \dots 0$$

5 Porte logiche

Le porte logiche sono blocchi base dei circuiti digitali. Elaborano segnali 0 e 1.

5.1 Porte fondamentali

Porta	Simbolo	Funzione	
AND	\wedge	1 se tutti ingressi = 1	
OR	V	1 se almeno un ingresso $= 1$	
NOT	「「	inversione $0 \leftrightarrow 1$	
NAND	†	negazione AND	
NOR	↓	negazione OR	
XOR	\oplus	1 se ingressi diversi	

5.2 Tabelle di verità

5.2.1 AND

A	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

5.2.2 OR

A	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

5.2.3 NOT

Α	NOT A
0	1
1	0

5.2.4 XOR

A	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

5.3 Esercizi svolti

1. Costruire la tabella di verità della porta NAND a due ingressi:

 $A \quad B \quad A \text{ NAND } B$

Soluzione:

$$0\ 0\ 1,\quad 0\ 1\ 1,\quad 1\ 0\ 1,\quad 1\ 1\ 0$$

2. Costruire la tabella di verità della porta NOR a due ingressi:

Soluzione:

5.4 Esercizi avanzati: Circuiti combinatori

1. Dato il circuito, trovare la tabella di verità:

Circuito: $(A \wedge B) \vee (\neg C)$

A	В	С	$A \wedge B$	$\neg C$	Uscita
0	0	0	0	1	1
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	1	1
1	0	1	0	0	0
1	1	0	1	1	1
1	1	1	1	0	1

2. Dato il circuito, trovare la tabella di verità:

Circuito: $(A \oplus B) \wedge C$

A	В	С	$A \oplus B$	Uscita
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

3. Dato il circuito, trovare la tabella di verità:

Circuito: $\neg(A \land B) \lor (B \land C)$

A	В	С	$A \wedge B$	$\neg (A \land B)$	$B \wedge C$	Uscita
0	0	0	0	1	0	1
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	1
1	0	0	0	1	0	1
1	0	1	0	1	0	1
1	1	0	1	0	0	0
1	1	1	1	0	1	1

4. Data la tabella di verità, trovare il circuito logico:

A	В	Uscita
0	0	1
0	1	0
1	0	0
1	1	0

Soluzione: $\neg A \land \neg B$ oppure $\neg (A \lor B)$ (porta NOR)

5. Data la tabella di verità, trovare il circuito logico:

A	В	С	Uscita
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Soluzione: $A \vee B \vee C$ (L'uscita è 1 se almeno uno degli ingressi è 1)

6. Dato il circuito, trovare la tabella di verità:

Circuito: $(A \land \neg B) \lor (\neg A \land B)$

Nota: questa è equivalente a $A \oplus B$

A	В	$\neg A$	$\neg B$	$A \wedge \neg B$	$\neg A \wedge B$	Uscita
0	0	1	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	1	0	0	0	0	0

5.5 Esercizi da fare

1. Costruire la tabella di verità per: $(A \lor B) \land \neg C$

Soluzione:

A	В	С	$A \vee B$	$\neg C$	Uscita
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	1	0	0
1	0	0	1	1	1
1	0	1	1	0	0
1	1	0	1	1	1
1	1	1	1	0	0

2. Costruire la tabella di verità per: $\neg(A \oplus B)$ (XNOR)

Soluzione:

A	В	$A \oplus B$	Uscita
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

3. Dato il circuito $\neg A \lor (B \land C)$, costruire la tabella di verità completa

Soluzione:

A	В	С	$\neg A$	$B \wedge C$	Uscita
0	0	0	1	0	1
0	0	1	1	0	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	1	1

4. Data la tabella: A=0,B=0 \rightarrow 1; A=0,B=1 \rightarrow 1; A=1,B=0 \rightarrow 1; A=1,B=1 \rightarrow 0. Trovare il circuito.

Soluzione: $\neg(A \land B)$ oppure A NAND B

5. Costruire la tabella di verità per: $(A \wedge B) \oplus C$

Soluzione:

A	В	С	$A \wedge B$	Uscita
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

6. Trovare il circuito per l'uscita che vale 1 solo quando esattamente due ingressi su $\rm A,B,C$ sono 1

Soluzione: $(A \wedge B \wedge \neg C) \vee (A \wedge \neg B \wedge C) \vee (\neg A \wedge B \wedge C)$

A	В	С	Uscita
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0