

Data Mining -- Association Rules

Instructor: Jen-Wei Huang

Office: 92501 in the EE building jwhuang@mail.ncku

Association Rules

- Finding association, correlation or causal structures among sets of items or objects in transactional, relational DB
- Examples
 - bread ^ milk -> butter
 - age("25~35") ^ income("35,000~40,000) -> buyer(Lancer)

Definitions

- $I = \{i_1, i_2, i_3...i_n\}$: the set of all items
 - Itemset: a set of items
- \rightarrow Association rule: $A \rightarrow B$,
 - where A \subset I, B \subset I, A \cap B = \varnothing
- ▶ support $(A \rightarrow B) = Prob.(A \cup B)$
- \rightarrow confidence(A \rightarrow B) = Prob.(A \cup B/A)
 - Strong rule: satisfy both minimum support & confidence

3

Example

Tid	Items
100	A, C, D
200	В, С, Е
300	A, B, C, E
400	B, E

min_support = 2 min_conf = 2/3

- Strong rules
 - \circ {B, E} \rightarrow C (2/3)
 - \circ C \rightarrow A (2/3)
 - ∘ A→C (2/2)

References

- Slides from Prof. J.-W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU

Data Mining – Association Rules

Instructor: Jen-Wei Huang

Office: 92501 in the EE building jwhuang@mail.ncku

Association Rules

- Finding association, correlation or causal structures among sets of items or objects in transactional, relational DB
- Examples
 - bread ^ milk -> butter
 - age("25~35") ^ income("35,000~40,000) ->buyer(Lancer)

Example

Tid	Items
100	A, C, D
200	B, C, E
300	A, B, C, E
400	B, E

min_support = 2 min_conf = 2/3

- Frequent itemsets
 - {A}, {B}, {C}, {E}, {A,C}, {B,C}, {B,E}, {C,E}, {B,C,E}
- Strong rules
 - \circ {B, E} \to C (2/3)
 - \circ C \rightarrow A (2/3)
 - \circ A \rightarrow C (2/2)

Definitions

- $I = \{i_1, i_2, i_3...i_n\}$: the set of all items
 - Itemset: a set of items
- \triangleright Association rule: $A \rightarrow B$,
 - where A \subset I, B \subset I, A \cap B = \emptyset
- ▶ support $(A \rightarrow B) = Prob.(A \cup B)$
- ightharpoonup confidence(AightharpoonupB) = Prob.(AightharpoonupB/A)
 - Strong rule: satisfy both minimum support & confidence

Definitions

- $I = \{i_1, i_2, i_3...i_n\}$: the set of all items
- $ightharpoonup T \subseteq I$: a transaction
- D: a set of T, transaction DB
- itemset: a set of items
- ▶ k-itemset: an itemset that contains k items

Tid	Items
100	A, C, D
200	В, С, Е
300	A, B, C, E
400	B, E

Frequent Pattern

- First proposed by Agrawal [1]
- A pattern that occurs frequently in a data set
- Finding inherent regularities in data
- Foundation for many essential data mining tasks
- In association rule mining, we want to find frequent itemsets, i.e., itemsets whose support are no less than a min_supp threshold.

Apriori Algorithm [2]

- A candidate generation and test approach
- Two steps:
 - Finding all frequent itemsets
 - Deriving valid association rules
- Downward closure property
 - Any subset of a frequent itemset must be frequent
 - E.g.) If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - If there is any itemset which is infrequent, its superset should not be frequent

Apriori Algorithm

- Scan DB once to get frequent 1-itemset
- For frequent k-itemsets, repeat followings
 - Generate length (k+1) candidate itemsets from frequent-k itemsets
 - Test the candidate itemsets against DB
 - Terminate when no frequent or candidate set can be generated
- Compute confidences from all frequent kitemsets (k>1)

An Example

$min_support = 2$

Database DB

Tid	Items	
100	A, C, D	
200	B, C, E	
300	A, B, C, E	
400	B, E	

 C_{I} $\xrightarrow{1^{st} scan}$

ltemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	ltemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

 C_2 2nd scan

ltemset			
{A, B}			
{A, C}			
{A, E}			
{B, C}			
{B, E}			
{C, E}			

 C_3 | Itemset | {B, C, E}

3 rd scan	L_3

ltemset	sup
{B, C, E}	2

Candidate Generation

- Step 1: self–joining L_k
- Step 2: pruning
- ▶ E.g.)
 - ∘ *L*₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - ∘ *C*₄ = {*abcd*}

Pseudo-Code

```
C_k: Candidate itemset of size k L_k: frequent itemset of size k
```

```
L_1 = \{ \text{frequent items} \};
for (k = 1; L_k! = \emptyset; k++) do begin

C_{k+1} = \text{candidates generated from } L_k;
for each transaction t in database do
increment the count of all candidates in C_{k+1} that are contained in t

L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support end}

return \bigcup_k L_k;
```

Association Rules Computation

```
for each large itemset m do
  for each subset p of m do
    if (sup(m)/sup(m-p)>= minconf) then
      output the rule (m-p)=>p with
      conf= sup(m)/sup(m-p) and
      support=sup(m)
```

Example

- Frequent k-itemsets (k>1) generated from the previous step:
 - {A, C}, {B, C}, {B, E}, {C, E}, {B, C, E}
- Scan DB to test if the confidences of the corresponding ARs are valid.
 - ∘ A->C, C->A
 - ∘ B->C, C->B
 - ∘ B->E, E->B
 - ∘ C->E, E->C
 - B−>CE, C−>BE, E−>BC, BC−>E, BE−>C, CE−>B

Redundant Rules

- For the same support and confidence, if we have a rule {a,d}->{c,e,f,g}, do we need
 - {a,d}->{c,e,f}
 - {a}->{c,e,f,g}
 - {a,d,c}->{e,f,g}
 - \circ {a}->{d,c,e,f,g}?
- Maximal association rules

Interestingness Measure

- play basketball ⇒ eat cereal [40%, 66.7%] is misleading
 - The overall % of students eating cereal is 75% > 66.7%.
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate, although with lower support and confidence
- Measure of dependent/correlated events: lift

$$lift = \frac{P(A \cup B)}{P(A)P(B)}$$

$$lift(B,C) = \frac{2000/5000}{3000/5000*3750/5000} = 0.89$$

	Basketball	Not basketball	Sum (row)
Cereal	2000	1750	3750
Not cereal	1000	250	1250
Sum(col.)	3000	2000	5000

$$lift(B, \neg C) = \frac{1000/5000}{3000/5000*1250/5000} = 1.33$$

Improvements of Apriori

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Scan Reduction

- Reduce Scans of database
- Compute candidate k−itemsets from candidate (k−1)−itemsets instead of frequent (k−1)−itemsets
- Two scan methods:
 - Scan DB the first time for frequent 1-itemsets
 - Compute all candidate k-frequent itemsets from frequent 1-itemsets
 - Scan DB the second time to test if candidate kitemsets are frequent

Partition Database

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB [3]
 - Step 1: partition database and find local frequent patterns
 - Step 2: consolidate global frequent patterns

Hash-based Algorithm

- Algorithm DHP [4]: Direct Hashing and Pruning
- Hash table scheme
 - Eliminate infrequent candidate itemsets in the early phase
- Transaction items pruning
 - Eliminate infrequent items from the database

Candidate Itemsets Pruning

Hash table building

Candidate pruning

Transaction Items Pruning

- A transaction should contain at least k+1 k-itemsets to support (k+1)-itemsets
 - Each item should appear at least k times

Trimming information collecting

Transaction trimming

References

- [1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93
- ▶ [2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94
- [3] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB'95.
- ▶ [4] J. S. Park, M. S. Chen, and P. S. Yu. An effective hash-based algorithm for mining association rules. SIGMOD'95

References

- ▶ Slides from Prof. J.–W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU

HW1

- Compute strong association rules from the following DB with
 - $min_supp = 50\%$
 - $min_conf = 66\%$
- DB:

```
100 A, C, D
200 B, C, E
300 A, B, C, E
400 B, E
500 A, C, E
600 B, C, D
```


Data Mining – Association Rules

Instructor: Jen-Wei Huang

Office: 92501 in the EE building jwhuang@mail.ncku

FP-Growth [1]

- Mining frequent patterns without candidate generation
 - Depth-first search approach
- Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc → abcd is a frequent pattern

Construct FP-tree

TID	Items bought
100	$\overline{\{f, a, c, d, g, i, m, p\}}$
200	$\{a, b, c, f, l, m, o\}$
300	$\{b, f, h, j, o, w\}$
400	$\{b, c, k, s, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$

 $min_support = 3$

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Sort frequent items in frequency descending order, f-list

```
Header Table

Item frequency head

f 4
c 4
a 3
b 3
m 3
p 3
```

F-list = f-c-a-b-m-p

Construct FP-tree

TID	Items bought ((ordered) frequent items	
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	min_support = 3
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$	

3. Scan DB again, sort items in the transaction by frequency and construct FP-tree

Partition Database

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - 0
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Conditional Pattern Bases

- Starting at the least frequent item in the header table
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of the item to form its conditional pattern base

Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Mining Conditional FP-tree

Cond. pattern base of "cam": (f:3) f:3

cam-conditional FP-tree

Single Prefix Path

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- $\{\}$ $a_1:n_1$ $a_2:n_2$
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts

Benefits of FP-tree

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count node– links and the *count* field)

FP-Growth Algorithm

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Problems of FP-Growth

- What about if FP-tree cannot fit in memory?
 - DB projection
- First partition a database into a set of projected DBs
- Then construct and mine FP-tree for each projected DB

ECLAT [3]

- Mining by exploring vertical data format
- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - \bullet t(X) = {T₁, T₂, T₃}, t(XY) = {T₁, T₃}
 - Diffset (XY, X) = $\{T_2\}$

Basic Extensions

- Max-pattern [5]
 - R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- Closed-pattern [6]
 - N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
 Discovering frequent closed itemsets for association rules. ICDT'99.
- Sequential pattern [7]
 - R. Agrawal and R. Srikant. Mining sequential patterns.
 ICDE'95

Closed Patterns and Max-Patterns

- ▶ A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $\binom{100}{100} + \binom{100}{100} + \binom{100}{100} + \binom{100}{100} = 2^{100} 1 = 1.27*10^{30}$ sub-patterns!
- Solution: *Mine closed patterns and max-patterns instead*
- An itemset X is closed if X is frequent and there exists no super-pattern Y > X, with the same support as X
 - Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X

Examples

- Exercise. DB = {<a₁, ..., a₁₀₀>, < a₁, ..., a₅₀>}
 Min_sup = 1.
- What is the set of closed itemset?
 - \circ <a₁, ..., a₁₀₀>: 1
 - \circ < a_1 , ..., a_{50} >: 2
- What is the set of max-pattern?
 - \circ <a₁, ..., a₁₀₀>: 1
- What is the set of all patterns?
 - 0

Computational Complexity

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the min_sup threshold
 - When min_sup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexity vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: ~10⁻⁴⁰
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions?

References

- ▶ [1] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD' 00
- [2] G. Grahne and J. Zhu, Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- ▶ [3] M. J. Zaki, Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and Data Engineering, 12(3):372-390. May/June 2000
- [4] M. J. Zaki and Karam Gouda, Fast Vertical Mining Using Diffsets. In 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 2003.
- [5] R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98.
- [6] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. ICDT'99.
- [7] R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95

References

- ▶ Slides from Prof. J.–W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU