PAPER ID-311338	

				Sut	oject	Co	de: I	REC	101
Roll No:									

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2023-24 FUNDAMENTALS OF ELECTRONICS ENGINEERING

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	$2 \times 7 =$	14
Q no.	Question	Marks	CO
a.	Explain the difference between the P-N junction diode and Light-Emitting diode.	2	1
b.	Why BJT is called a current controlled device?	2	2
c.	What is the basic difference between JFET and MOSFET?	2	2
d.	Add binary numbers (1110.10 + 1011.11) ₂ .	2	4
e.	Simplify the Boolean function $F = XY + XY'Z + YZ'$ using Boolean algebra.	2	4
f.	Explain the concept of virtual ground in OP-Amp.	2	3
g.	Write the two applications of Satellite communication.	2	5
	SECTION B		
2.	Attempt any three of the following:	$7 \times 3 =$	21

2.	Attempt any three of the following:	$7 \times 3 =$	21
a.	Define the static and dynamic resistance of the Diode. Also differentiate	7	1 (
	between Transition and Diffusion capacitance.		
b.	Draw and explain the working of the P-N-P Transistor in common-base	7	2
	(CB) configuration with its characteristic graphs.	00	("
c.	Define the common mode rejection ratio. Determine the output voltage	7.	3
	of a differential amplifier for the input voltages of 300μV and 240μV.	5	
	The differential gain is 5000 and the value of CMRR is 100.		
d.	Perform the following as mentioned:	7	4
	(i) Convert (63.250) ₁₀ to binary number.		
	(ii) Convert (10010.101) ₂ to decimal number.		
	(iii) Convert (A6B.0F) 16 to octal number.		
	(iv) Perform subtraction using 2's complement (111-1010) ₂ .		
	(v) Design AND, OR, and NOT gates using only NOR gates.		
e.	Explain the need of modulation in the communication system.	7	5

SECTION C

	3.	Attempt any one part of the following:	$7 \times 1 = $	7
	a.	Draw and explain the construction and working of N-channel JFET with	7	2
4		characteristic graphs.		
	b.	Draw and explain the construction and working of P-channel Depletion	7	2
		MOSFET with characteristic graphs.		
	4.	Attempt any one part of the following:	$7 \times 1 = 7$	7
100	a.	Determine and draw the output voltage of given network.	7	1
		Vi 20 V Si Output Voltage		

only.

Roll No: Subject Code: BEC101

Printed Page: 2 of 2

BTECH (SEM I) THEORY EXAMINATION 2023-24 FUNDAMENTALS OF ELECTRONICS ENGINEERING

TIME: 3HRS M.MARKS: 70

5. Attempt any *one* part of the following: $7 \times 1 = 7$

J.	Attempt any one part of the following:	/ X I -	1
Q no.	Question	Marks	CO
a.	Draw the circuit diagram and explain the working of the Subtractor	7	3
	using OP-Amp. Also, derive the expression for the output voltage.		
b.	Determine the output voltage of the given network.	7	3
	330K Ω		
			-
	33ΚΩ		7.

V1=12mV 0 $47 \text{ K}\Omega$ $47 \text$

υ.	Attempt any one part of the following.	/ A I —	,
Q no.	Question	Marks	CO
a.	Simplify the function $F = \Sigma m(0,3,5,7,8,9,10,12,13) + \Sigma d(1,6,11,14)$ using K-map and implement the simplified expression using NAND gates only.	7	4
b.	Simplify the function F= \(\Pi\)M (0, 2, 10, 11, 12, 14, 15)•\(\Pi\)A (5,13)using K-man and implement the simplified expression using NOR gates	7	4

7.	Attempt	any <i>one</i> part of the following:	$7 \times 1 =$	7
Q no.		Question	Marks	CO
a.	In an amp	olitude-modulated wave, derive the expression for	7	5
	(i)	Amplitude of sidebands		
	(ii)	Sideband frequencies		
	(iii)	Modulation Index		
	(iv)	Modulation Efficiency		
b.	Write sho	ort notes on	7	5
	(i)	Amplitude Modulation technique		
	(ii)	Radar Communication		