Course 11 Push-Down Automata (PDA)

Intuitive Model

Definition

- A push-down automaton (APD) is a 7-tuple M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where:
 - Q finite set of states
 - Σ alphabet (finite set of input symbols)
 - **Γ** − stack alphabet (finite set of stack symbols)
 - δ : Q x (Σ U { ε }) x $\Gamma \rightarrow \mathcal{P}(Qx \Gamma^*)$ –transition function
 - $q_0 \in Q$ initial state
 - $Z_0 \in \Gamma$ initial stack symbol
 - $F \subseteq Q$ set of final states

Push-down automaton

Transition is determined by:

- Current state
- Current input symbol
- Head of stack

Reading head -> input band:

- Read symbol
- No action

Stack:

- Zero symbols => pop
- One symbol => push
- Several symbols => repeated push

Configurations and transition / moves

• Configuration:

$$(q, x, \alpha) \in Q \times \Sigma^* \times \Gamma^*$$

where:

- PDA is in state q
- Input band contains x
- Head of stack is α
- Initial configuration (q_0, w, Z_0)

Configurations and moves(cont.)

Moves between configurations:

```
p,q \in \mathbb{Q}, a \in \Sigma, Z \in \Gamma, w \in \Sigma^*,\alpha,\gamma \in \Gamma^*
```

```
(q,aw,Z\alpha) \vdash (p,w,\gamma Z\alpha) \text{ iff } \delta(q,a,Z) \ni (p,\gamma Z)
(q,aw,Z\alpha) \vdash (p,w,\alpha) \text{ iff } \delta(q,a,Z) \ni (p,\varepsilon)
(q,aw,Z\alpha) \vdash (p,aw,\gamma Z\alpha) \text{ iff } \delta(q,\varepsilon,Z) \ni (p,\gamma Z)
(\varepsilon\text{-move})
\bullet \not\models , \not\models , \not\models ,
```

Language accepted by PDA

Empty stack principle:

$$L_{\varepsilon}(M) = \{ w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), q \in Q \}$$

Final state principle:

$$L_f(M) = \{w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q_f, \varepsilon, \gamma), q_f \in F\}$$

Representations

- Enumerate
- Table
- Graphic

Construct PDA

- L = $\{0^n1^n | n \ge 1\}$
- States, stack, moves?

1. States:

- Initial state:q₀ beginning and process symbols '0'
- When first symbol '1' is found move to new state => q_1
- Final: final state q₂

2. Stack:

- Z_0 initial symbol
- X to count symbols:
 - When reading a symbol '0' push X in stack
 - When reading a symbol '1' pop X from stack

Exemple 1 (enumerate)

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, Z_0, \{q_2\})$$

$$\delta(q_0,0,Z_0) = (q_0,XZ_0)$$

$$\boldsymbol{\delta}(q_0,0,X) = (q_0,XX)$$

$$\delta(q_0,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1,\varepsilon,Z_0) = (q_2,Z_0)$$

$$\delta(q_1, \varepsilon, Z_0) = (q_1, \varepsilon)$$

Empty stack

$$\vdash (q_1, \varepsilon, \varepsilon)$$

$$(q_0,0011,Z_0) \vdash (q_0,011,XZ_0) \vdash (q_0,11,XXZ_0) \vdash (q_1,1,XZ_0) \vdash (q_1, \varepsilon, Z_0) \vdash (q_2, \varepsilon, Z_0)$$

Final state

Exemple 1 (table)

		0	1	ε
	Z_0	q_0,XZ_0		
q_0	X	q_0,XZ_0 q_0,XX	$q_{1}, \boldsymbol{\varepsilon}$	
	Z_0			q_2,Z_0 (q_1, ε)
q_1	X		$q_{\scriptscriptstyle{1}}, \boldsymbol{\varepsilon}$	
	Z_0			
q_2	X			

```
(q0,0011,Z0) \mid - (q0,011,XZ0) \mid - (q0,11,XXZ0) \mid - (q1,1,XZ0) \mid - (q1, \varepsilon,Z0) \mid - (q2, \varepsilon,Z0) \mid q2 \text{ final seq. is acc based on final state}
(q0,0011,Z0) \mid - (q0,011,XZ0) \mid - (q0,11,XXZ0) \mid - (q1,1,XZ0) \mid - (q1,\varepsilon,\varepsilon) \text{ seq is acc based on empty stack}
```

Exemple 1 (graphic)

Properties

Theorem 1: For any PDA M, there exists a PDA M' such that

$$L_{\varepsilon}(M) = L_{f}(M')$$

Theorem 2: For any PDA M, there exists a context free grammar such that

$$L_{\varepsilon}(M) = L(G)$$

Theorem 3: For any context free grammar there exists a PDA M such that

$$L(G) = L_{\varepsilon}(M)$$

HW

- Parser:
 - Descendent recursive
 - LL(1)
 - LR(0), SLR, LR(1)

Corresponding PDA

Structure of compiler

Semantic analysis

Parsing – result: syntax tree (ST)

Simplification: abstract syntax tree (AST)

- Annotated abstract syntax tree (AAST)
 - Attach semantic info in tree nodes

Example

Semantic analysis

- Attach meanings to syntactical constructions of a program
- What:
 - Identifiers -> values / how to be evaluated
 - Statements -> how to be executed
 - Declaration -> determine space to be allocated and location to be stored
- Examples:
 - Type checkings
 - Verify properties
- How:
 - Attribute grammars
 - Manual methods

Attribute grammar

• Syntactical constructions (nonterminals) – attributes

$$\forall X \in N \cup \Sigma : A(X)$$

Productions – rules to compute/ evaluate attributes

$$\forall p \in P: R(p)$$

Definition

AG = (G,A,R) is called *attribute grammar* where:

- G = (N, Σ, P, S) is a context free grammar
- A = $\{A(X) \mid X \in N \cup \Sigma\}$ is a finite set of attributes
- $R = \{R(p) \mid p \in P\}$ is a finite set of rules to compute/evaluate attributes

Example 1

```
• G = ({N,B},{0,1}, P, N}
P: N,-> NB
N -> B
B -> 0
```

```
N_1.v = 2* N_2.v + B.v

N.v = B.v

B.v = 0

B.v = 1
```

Attribute – value of number = \mathbf{v}

B -> 1

- Synthetized attribute: A(lhp) depends on rhp
- Inherited attribute: A(rhp) depends on lhp

Evaluate attributes

• Traverse the tree: can be an infinite cycle

- Special classes of AG:
 - L-attribute grammars: for any node the depending attributes are on the "left";
 - can be evaluated in one left-to-right traversal of syntax tree
 - Incorporated in top-down parser (LL(1))
 - S-attribute grammars: synthetized attributes
 - Incorporated in bottom-up parser (LR)

Steps

- What? decide what you want to compute (type, value, etc.)
- Decide attributes:
 - How many
 - Which attribute is defined for which symbol
- Attach evaluation rules:
 - For each production which rule/rules

Example 2 (L-attribute grammar)

Decl -> DeclTip ListId

ListId -> Id

ListId -> ListId, Id

ListId.type = DeclTip.type Id.type = ListId.type ListId₂.type = ListId₁.type Id.type = ListId₁.type

Attribute – type

int i,j

Example 3 (S-attribute grammar)

```
ListDecl -> ListDecl; Decl
```

ListDecl -> Decl

Decl -> Type ListId

Type -> int

Type -> long

ListId -> Id

ListId -> ListId, Id

```
ListDecl<sub>1</sub>.dim = ListDecl<sub>2</sub>.dim + Decl.dim

ListDecl.dim = Decl.dim

Decl.dim = Type.dim * ListId.no

Type.dim = 4

Type.dim = 8

ListId.no = 1

ListId<sub>1</sub>.no = ListId<sub>2</sub>.no + 1
```

Attributes – dim + no – for which symbols

int i,j; long k

Proposed problems (HW):

- 1) Define an attribute grammar for arithmetic expressions
- 2) Define an attribute grammar for logical expressions
- 3) Define an attribute grammar for if statement

Manual methods

- Symbolic execution
 - Using control flow graph, simulate on stack how the program will behave
 - [Grune Modern Compiler Design]

- Data flow equations
 - Data flow associate equations based on data consumed in each node (statement) of the control flow graph: In, Out, Generated, Killed
 - [Grune Modern Compiler Design], [Kildall], [course]

Course 12

Structure of compiler

Generate intermediary code

Forms of intermediary code

- Java bytecode source language: Java
 - machine language (dif. platforms)JVM
- MSIL (Microsoft Intermediate Language)
 - source language: C#, VB, etc.
 - machine language (dif. platforms)Windows
- GNU RTL (Register Transfer Language)
 - source language: C, C++, Pascal, Fortran etc.
 - machine language (dif. platforms)

Representations of intermediary code

- Annotated tree: intermediary code is generated in semantic analysis
- Polish postfix form:
 - No parenthesis
 - Operators appear in the order of execution
 - Ex.: MSIL

Exp =
$$a + b * c$$
 ppf = $abc* + c$ ppf = $ab*c + c$

• 3 address code

3 address code

= sequence of simple format statements, close to object code, with the following general form:

Represented as:

- Quadruples
- Triples
- Indirected Triples

Quadruples:

• Triples:

(considered that the triple is storing the result)

Special cases:

- 1. Expressions with unary operator: < result >=< op >< arg2 >
- 2. Assignment of the form a := b => the 3 addresss code is a = b (no operatorand no 2^{nd} argument)
- 3. Unconditional jump: statement is **goto L**, where L is the label of a 3 address code
- 4. Conditional jump: **if c goto L**: if **c** is evaluated to **true** then unconditional jump to statement labeled with L, else (if c is evaluated to false), execute the next statement
- 5. Function call p(x1, x2, ..., xn) sequence of statements: param x1, param x2, param xn, call p, n
- 6. Indexed variables: < arg1 >,< arg2 >,< result > can be array elements of the form a[i]
- 7. Pointer, references: &x, *x

Example: b*b-4*a*c

ор	arg1	arg2	rez
*	b	b	t1
*	4	а	t2
*	t2	С	t3
-	t1	t3	t4

nr	ор	arg1	arg2
(1)	*	b	b
(2)	*	4	а
(3)	*	(2)	С
(4)	-	(1)	(3)

Example 2

If (a<2) then a=b else a=b*b

Optimize intermediary code

- Local optimizations:
 - Perform computation at compile time constant values
 - Eliminate redundant computations
 - Eliminate inaccessible code if...then...else...

- Loop optimizations:
 - Factorization of loop invariants
 - Reduce the power of operations

Eliminate redundant computations

Example:

D:=D+C*B

A:=D+C*B

C:=D+C*B

(1)	*	С	В	
(2)	+	D	(1)	
(3)	:=	(2)	D	
(1)	*	$oldsymbol{C}$	D	
(1/				
(5)	+	D	(4)	
(6)	:=	(5)	A	
/ -	*		D	
			D	
(0)		D	(7)	
(0)	T	ע		
$\overline{(9)}$:=	(8)	$\overline{\mathrm{C}}$	

Determine redundant operations

- Operation (j) is redudant to operation (i) with i<j if the 2 operations are identical and if the operands in (j) did not change in any operation between (i+1) and (j-1)
- Algorithm [Aho]

Factorization of loop invariants

What is a loop invariant?

$$x=y+z;$$
 $for(i=0, i <= n, i++)$
 $\{a[i]=i*x\}$

Challenge

```
V1:
P = a[0]
For i=1 to n
P = P + a[i]*v^i
```

V2:
P = a[0]
Q=v
For i=1 to n
P = P + a[i]*Q
Q = Q*v

Consider n, and a[i] i=0,n the coefficients of a polynomial P.

Given v, write an algorithm that computes the value of P(v)

3 solutions

$$P(x) = a[n]*x^n + ... + a[1]*x + a[0] = (a[n]*x^(n-1)+ ... + a[1])*x + a[0]$$

Reduce the power of operations

$$t1=k*v;$$
for(i=k, i<=n,i++)
{ t=t1;
t1=t1+v;...}