## Unidad 9

## Elemento de volumen en coordenadas cilíndricas

Para ubicar un punto en  $\mathbb{R}^3$  podemos utilizar coordenadas cilíndricas, que son las ya conocidas polares en  $\mathbb{R}^2$  con el agregado de la 3ª variable  $z_{\underline{u}}$  Las ecuaciones de transformación son:



En la **Fig.** se observan las **superficies coordenadas** correspondientes a las coordenadas cilíndricas. Entre seis de ellas queda determinado el diferencial de volumen que se muestra en la **Fig.** 7, cuyo volumen es:

$$dV = \rho \, d\rho \, d\varphi \, dz$$



## Elemento de volumen en coordenadas esféricas

## L'uls is ce encideret le eng ambrases

La fórmula puede interpretarse geométricamente, tomando un elemento de volumen en coordenadas esféricas.

Para ello debemos tener en cuenta que:

 $r = cte \implies sup. esférica$ 

 $\lambda$ = cte  $\Rightarrow$  sup. cónica de eje z y vértice en (0;0;0).

 $\phi$ = cte  $\Rightarrow$  semiplano de borde z

$$\overline{AC} = \Delta r$$

 $AB = r sen \lambda \Delta \varphi$ 

(es un arco que está en la curva intersección de una superficie esférica con una sup. cónica).

(Recordar: long.arco = r. áng. en rad.)

$$AD = r \Delta \lambda$$

 $\Delta V = long. \overline{AC}. \underline{long}. AB. \underline{long}AD$ 

 $\Delta V = r \operatorname{sen} \lambda . \Delta r. r. \Delta \phi . \Delta \lambda$ 

 $\Delta V = r^2 \cdot \underbrace{sen}_{\lambda} \cdot \Delta r \cdot \cdot \Delta \phi \cdot \Delta \lambda$ 

