

Advanced Mathematics

East China University of Science and Technology

目录

第一章	预备知识														2								
1.1	基础知	识																					2
	1.1.1	函数	数概	念																			2
	1.1.2	函数	数图	像																			3
1.2	解题技	巧																					4
	1.2.1	函数	数概	念																			4

第一章 预备知识

1.1 基础知识

1.1.1 函数概念

函数

反函数

- 严格单调的函数必有反函数,有反函数的函数不一定是单调函数
- $x = f^{-1}(y)$ 和 y = f(x) 是同一个函数

复合函数

四种特性

设 D 为定义域

- 单调性: $\forall x_1, x_2 \in I \in D, x_1 < x_2, f(x_1) > f(x_2)$, 单调递减
- 有界性: $\forall x \in I \in D, \exists M > 0, |f(x)| \leq M$
- 奇偶性: D 关于原点对称, $\forall x \in D$, f(x) = f(-x), 偶函数
- 周期性: $x \in D, x \pm T \in D, \exists T > 0, f(x + T) = f(x)$

函数和导函数:

- f(x) 为可导偶函数 $\Rightarrow f'(x)$ 为奇函数 f(x) 为可导奇函数 $\Rightarrow f'(x)$ 为偶函数
- f(x) 为可导周期为 T 函数 $\Rightarrow f'(x)$ 为周期为 T 函数

第一章 预备知识

3

• f(x) 在 (a,b) 可导且 f'(x) 有界 \Rightarrow f(x) 在 (a,b) 有界 原函数和积分:

- 连续的奇函数的一切原函数为偶函数 连续的偶函数中仅有一个原函数为奇函数
- 连续函数周期为 T 且 $\int_0^T f(x)dx = 0 \Rightarrow$ 原函数周期为 T

1.1.2 函数图像

直角坐标系

常见图像:

- 三角函数
 - 正弦函数和余弦函数
 - 正切函数和余切函数
 - 正割函数和余割函数
- 反三角函数
 - 反正弦函数和反余弦函数
 - 反正切函数和反余切函数
- 取整函数

图像变换:

- 平移变换
 - 水平平移
 - 垂直平移
- 对称变换
 - x 轴对称变换
 - y 轴对称变换
 - 原点对称变换

- -y=x 对称变换
- 伸缩变换
 - 水平伸缩变换
 - 垂直伸缩变换

极坐标系

用描点法画常见图像:

- 心形线: $r = a(1 \cos \theta) \ (a > 0)$
- 玫瑰线: $r = a \sin 3\theta \ (a > 0)$
- 阿基米德螺旋线: $r = a\theta \ (a > 0, \theta \ge 0)$
- 伯努利双纽线: $r^2 = a^2 \cos 2\theta \ (a > 0)$

1.2 解题技巧

1.2.1 函数概念

四种特性

判断单调性主要有两种方法:

- 1. 求导
- 2. 定义法: 单调递减 \Leftrightarrow $(x_1 x_2)(f(x_1) f(x_2)) < 0$