САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчёт по лабораторной работе №3 «Исследование системы автоматического управления с дискретным ПИД-регулятором» по дисциплине «Дискретные системы управления» Вариант 9

Выполнили: студенты потока 1.2

Дюжев В. Д. Лалаянц К. А.

Преподаватель:

Краснов А.Ю.

ОГЛАВЛЕНИЕ

Теоретическая часть	
1	Дискретное преобразование Лапласа
2	ПИД-регулятор
Эк	спериментальная часть
1	Модель
2	Подбор значения q_0
3	Исследование робастности системы
4	Исследование влияния периода дискретизации
5	Исследование влияния неточности компенсации полюсов

Цель работы

Целью лабораторной работы является изучение одного из часто используемых алгоритмов цифрового управления, полученного путем аппроксимации непрерывного ПИД-регулятора.

Теоретическая часть

Дискретное преобразование Лапласа

ПИД-регулятор

Экспериментальная часть

Модель

Составим схему моделирования:

Рис. 1. Схема.

В качестве параметров системы согласно варианту возьмем $T_1=0.85,$ $T_2=0.95.$

Подбор значения q_0

Установим значение $T=\frac{T_1}{2}$. Проведем моделирование для различных значений q_0 при g=1, без внешних возмущений:

 $Puc.\ 2.\ 3a$ дание 2. Моделирование $npu\ q_0=2.$

 $Puc.\ 3.\ 3адание\ 2.\ Моделирование\ npu\ q_0=4.$

 $Puc.\ 4.\ 3a$ дание 2. Моделирование $npu\ q_0=10.$

Заметим, что при $q_0=4$ система имеет слабоколебательный переходный процесс.

Исследование робастности системы

Зафиксировав q_0 =роведем моделирование системы при различных задающих воздействиях и внешних возмущениях:

Рис. 5. Задание 3. Моделирование при ступенчатом изменении д, без возмущений.

 $Puc. \ 6. \ 3adaние \ 3. \ Modeлирование при \ g = 1, \ cmупенчатое изменение возмущений.$

 $Puc.\ 7.\ 3a$ дание 3. Моделирование при g=1, случайные возмущения.

Заметим, что система оказалась робастна в приведенных выше условиях эксперимента.

Исследование влияния периода дискретизации

Установим значение $T=\frac{T_1}{4}$. Проведем моделирование при ступенчатом изменении возмущения. Заметим, что колебательность исчезла:

 $Puc.\ 8.\ 3a$ дание 4. Моделирование $npu\ g=1,\ cmупенчатое$ изменение возмущений.

Исследование влияния неточности компенсации полюсов

Проведем моделирование при увеличенном и уменьшенном значении T_2 :

 $Puc. \ 9. \ 3a$ дание $5. \ Moделирование при уменьшенном значении <math>T_2$ (80%).

ДСУ

 $Puc.\ 10.\ 3адание\ 5.\ Moделирование\ при\ увеличенном\ значении\ T_2\ (120\%).$

Выводы