SMI Assignment 5

Andrew Martin

October 20, 2017

1. Exponential distribution y_i independent exponential observations with PDF

$$f(y;\theta) = \frac{1}{\theta}e^{-y/\theta} \quad y \ge 0, \quad \theta > 0$$

(a) Write down the log-likelihood $\ell(\theta; \mathbf{y})$ Solution

$$\begin{split} \ell(\theta;y) &= \log(L(\theta;y)) \\ &= \log(f(y;\theta)) \\ &= \log\left(\prod_{i=1}^n \frac{1}{\theta} e^{-y_i/\theta}\right) \\ &= \log\left(\frac{1}{\theta^n} e^{\sum_{i=1}^n -y_i/\theta}\right) \\ &= \log\frac{1}{\theta^n} + \log(e^{-n\bar{y}/\theta}) \\ &= \log\frac{1}{\theta^n} + \frac{-n\bar{y}}{\theta} \\ &= \frac{-n\bar{y}}{\theta} - n\log\theta \end{split}$$

•••

(b) Hence find the maximum likelihood estimate $\hat{\theta}$ Solution

 θ which maximises $\ell(\theta;y)$ Maximised when:

$$\frac{\partial \ell}{\partial \theta} = 0$$

$$= \frac{n\bar{y}}{\theta^2} - \frac{n}{\theta}$$

$$= \frac{n\bar{y} - n\theta}{\theta^2}$$

$$\implies \theta = \bar{y}$$

Check it is a maximum:

$$\frac{\partial^2 \ell}{\partial \theta^2} = \frac{n\theta - 2ny}{\theta^3}$$
So when $\theta = y$

$$\Rightarrow \frac{n\theta - 2n\bar{y}}{\theta^3} = -yn/y^3 < 0$$

$$\Rightarrow decreasing$$

$$\Rightarrow maximum$$

Maximised when $\theta = y$ So

$$\hat{\theta} = y$$

•••

(c) Find the Fisher information I_{θ} Solution

$$I_{\theta} = -E \left[\frac{\partial^{2} \ell}{\partial \theta^{2}} \right]$$

$$= -E \left[\frac{n\theta - 2n\bar{y}}{\theta^{3}} \right]$$

$$= -\left[\frac{n\theta - 2nE[\bar{y}]}{\theta^{3}} \right]$$

$$= -\left[\frac{n\theta - 2n\theta}{\theta^{3}} \right]$$

$$= -\frac{-n\theta}{\theta^{3}}$$

$$= \frac{n}{\theta^{2}}$$

...

2. Binomial distribution

Consider a single binomial observation x from $Bin(n, \theta)$ with n trials and probability of success p

(a) Find the log-likelihood $\ell(\theta; x)$

Solution

The x observation is Bernoulli distributed, so the probability mass function is:

$$f(x,p) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0 \end{cases}$$

Or alternatively:

$$f(x,p) = \binom{n}{1} p^x (1-p)^{n-x}$$

Discard the $\binom{n}{1}$ as it is not relevant.

$$f(\mathbf{x}, \theta) = \theta^x (1 - \theta)^{n-x}$$

$$\ell(\theta; x) = \log L(\theta; x) = \log (f(x; \theta))$$

$$= \log (\theta^x (1 - \theta)^{n - x})$$

$$= \log(\theta^x) + \log((1 - \theta)^{n - x})$$

$$\ell(\theta; x) = x \log \theta + (n - x) \log(1 - \theta)$$

•••

(b) Find the Score function, the Fisher information and the MLE, $\hat{\theta}$ Solution

Score function,
$$S = \frac{\partial \ell}{\partial \theta}$$

$$= \frac{x}{\theta} + (n - x) * (-\frac{1}{1 - \theta})$$

$$= \frac{x}{\theta} + \frac{x - n}{1 - \theta}$$
Fisher information $= -E \left[\frac{\partial^2 \ell}{\partial \theta} \right]$

$$= -E \left[\frac{\partial}{\partial \theta} \left(\frac{x}{\theta} + \frac{x - n}{1 - \theta} \right) \right]$$

$$= -E \left[\frac{-x}{\theta^2} + \frac{x - n}{(1 - \theta)^2} \right]$$

$$= -E \left[\frac{-x}{\theta^2} \right] - E \left[\frac{x - n}{(1 - \theta)^2} \right]$$

$$= \frac{x}{E \left[\theta^2 \right]} - \frac{x - n}{E \left[(1 - \theta)^2 \right]}$$

$$\hat{\theta} = \theta | S = 0$$

$$\frac{x}{\theta} + \frac{x - n}{1 - \theta} = 0$$

$$\frac{x}{\theta} = -\frac{x - n}{1 - \theta}$$

$$x(1 - \theta) = -\theta(x - n)$$

$$x - x\theta + x\theta - n\theta = 0$$

$$\hat{\theta} = \frac{n}{x}$$

(c) Find expressions for the log-likelihood ratio test statistic, G^2 , and the score test statistic, U, for testing the null hypothesis $H_0: \theta = \theta_0$ versus $H_A: \theta \neq \theta_0$

Solution

Log likelihood-ratio test statistic is given by

$$\begin{split} G^2 &= -2(\ell(\theta_0; Y) - \ell(\hat{\theta}; Y)) \\ &= -2\left(x\log\theta_0 + (n-x)\log(1-\theta_0) - (x\log\hat{\theta} + (n-x)\log(1-\hat{\theta}))\right) \\ &= -2\left(x\log(\theta_0/\hat{\theta}) + (n-x)\log\frac{1-\theta_0}{1-\hat{\theta}}\right) \end{split}$$

$$U = \frac{S}{\sqrt{l_{\theta_0}}}$$

$$= \frac{\frac{x}{\theta} + \frac{x-n}{1-\theta}}{\sqrt{\frac{x}{E[\theta^2]} - \frac{x-n}{E[(1-\theta)^2]}}}$$

...

(d) State the asymptotic distributions of G^2 and U respectively under H_0

Solution

If H_0 is true U converges to N(0,1)And G^2 converges to χ_1^2 ...

3. Poisson distribution

 y_i independent $Po(\lambda)$ observations

You may use the log-likelihood, score function and Fisher information for λ and the MLE $\hat{\lambda}$ from the lecture notes

(a) State an approximate $100(1-\alpha)\%$ confidence interval for λ Solution

The Confidence interval is:

$$\left(\hat{\lambda} - z_{\alpha/2}\sqrt{\hat{\lambda/n}}, \quad \hat{\lambda} + z_{\alpha/2}\sqrt{\hat{\lambda/n}}\right)$$

•••

- (b) Let $\phi = \log \lambda$
 - i. Write down the log-likelihood $\ell_{\phi}(\phi; y)$

Solution

$$\ell_{\phi}(\phi; \mathbf{y}) = -ne^{\phi} + \sum_{i=1}^{n} y_i \phi + \log \left(\prod_{i=1}^{n} \frac{1}{y_i!} \right)$$

ii. Hence find the maximum likelihood estimate $\hat{\phi}$ and the Fisher information $i_n(\phi)$

Solution

$$S(\phi, \mathbf{y}) = \frac{\partial l}{\partial \phi}$$
$$= -ne^{\phi} + \sum_{i=1}^{n} y_i$$

And $\hat{\phi}$:

$$\hat{\phi} = \phi | S = 0$$

$$-ne^{\phi} + \sum_{i=1}^{n} y_i = 0$$

$$e^{\phi} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$\phi = \log(y_i)$$

Fisher info:

$$i_n \phi = -E[\ell'']$$

$$= -E[S']$$

$$= -E[-ne^{\phi}]$$

$$= ne^{\phi}$$

...

iii. It was shown that the test statistic to test $H_0: \lambda = \lambda_0$ is

$$U = \frac{\bar{Y} - \lambda_0}{\sqrt{\lambda_0/n}}$$

Let $\phi_0 = \log \lambda_0$. Using (ii), show U', the score test for testing $H_0: \phi = \phi_0$ is the same as U

Solution

$$U' = \frac{S}{\sqrt{i_n \phi}}$$

$$= \frac{-ne_0^{\phi} + \sum_{i=1}^n y_i}{\sqrt{ne_0^{\phi}}}$$

$$= \frac{-ne_0^{\phi} + \bar{y}}{\sqrt{ne_0^{\phi}}}$$

$$= \frac{\bar{y} - e_0^{\phi}}{\sqrt{\frac{e_0^{\phi}}{n}}}$$

Figure 1: Model Checks for model 1

And since $\phi = \log(\lambda)$ $\implies U' = \frac{\bar{y} - \lambda_0}{\sqrt{\lambda_0/n}}$

4. Linear modelling

- (a) Load in 2.gumtree.rds
- (b) Only considering dogs that have been sold. I.e. only dogs with price larger than \$10. Filter the data to only include these.
- (c) Fit a model with age as a predictor and price as response (Model 1). Are the assumptions of the linear model reasonable (include plots)

Solution

The linear model assumptions are: homoscedasticity, normality, linearity and independence.

i. homoscedasticity - from the scale-location plot, the variance of the data does not appear equal

Figure 2: Model Checks for model 2

- ii. normality the residuals vs fitted shows the data is not normal, the red line has negative slope rather than being constant = 0.
- iii. linearity the normal q-q plot shows a very non-linear trend in the data, as it grows somewhat exponentially .
- iv. independence design assumption assume to be true

From this the assumptions are not reasonable. ...

(d) Fit a model with age as a predictor and log(price) as the response (Model 2). Are the assumptions of the linear model reasonable (include plots)

Solution

- i. Homoscedasticity: Shown in the scale-location plot, the data appears to have constant variance.
- ii. Normality: Shown in the residuals vs fitted plot, the trend is still not a constant zero and appears to 'jump' somewhat so it is not quite normal.
- iii. Linearity: Shown in the normal-q-q plot. The data for this model seems much closer to a linear trend but is not quite

perfect.

iv. Independence: this is a key part of the model and must be assumed to be true.

From this the assumptions are not reasonable. ...

(e) Using model 2, calculate a 95% prediction interval for a dog with an age of 1 year

Solution

The prediction gives:

I.e. the prediction interval is

```
(4.166801, 7.807337)
```

• • •

(f) Fit a model with state as a predictor and log(price) as the response variable (Model 3). Are the assumptions of the linear model reasonable (include plots).

Solution

Model 3 gives summary statistics (these will be referred to later):

Coefficients:

0 0 00-0	=			
Estimate Std. Error \mathbf{t} value $\Pr(> \mathbf{t})$				
(Intercept)	6.08462	0.20212	30.103	<2e-16 ***
stateNA	-0.19459	0.20407	-0.954	0.3404
${\rm state} {\rm NSW}$	-0.17601	0.20618	-0.854	0.3934
stateNT	-0.13748	0.22741	-0.605	0.5455
stateQLD	-0.09484	0.20700	-0.458	0.6469
stateSA	-0.11727	0.22253	-0.527	0.5983
stateTAS	-0.34207	0.24016	-1.424	0.1545
stateVIC	0.43588	0.21870	1.993	0.0464 *
stateWA	-0.07604	0.21181	-0.359	0.7196

- ___
- i. Homoscedasticity: Shown in the scale-location plot, the data appears to have reasonably constant variance for the different levels.
- ii. Normality: Shown in the residuals vs fitted plot, the trend is very close to 0, implying normality.
- iii. Linearity: Shown in the normal-q-q plot. The plot appears very similar to model 2, so it is close to linear.
- iv. Independence: this is a key part of the model and must be assumed to be true.

Figure 3: Model Checks for model 3

The assumptions are *reasonable*, though the model will not be perfect.

••

Leave the observations with state NA in the dataset for the model

(g) In model 3, which state is used as the reference level

Solution

ACT is used as the intercept.

• • •

(h) In model 3, which state is significantly different to the reference level at the 5% significance level

Solution

Victoria is, with a probability of 0.0464. As is shown in the summary statistics ...

(i) Using model 3, predict the price of a dog from South Australia. Also give the 95% prediction interval for the price of a dog from South Australia

Solution

The R output is:

```
1\ 5.96735\ 4.14195\ 7.792751
     I.e. the predicted value is 5.96735 and the confidence interval is
                        (4.14195, 7.792751) ...
The Code used for section 4 is below:
library(tidyverse)
library(broom)
setwd("D:/Documents/Uni/Smi")
pdf(file="Graphs.pdf")
##Read in the data
gumtree = readRDS("2.gumtree.rds")
##Filter to only 'sold' dogs
gumtree = gumtree \% > \%
  filter (price > 10)
##Model 1
model1lm = lm(price \sim age, data = gumtree)
tmp = \mathbf{par}(mfrow = \mathbf{c}(2,2))
plot(model1lm)
par(tmp)
\#\#Model 2
model2lm = lm(log(price) \sim age, data = gumtree)
tmp = \mathbf{par}(mfrow = \mathbf{c}(2,2))
plot(model2lm)
par(tmp)
#assuming age is in years
newdat = data.frame(age=1)
predict(model2lm, newdata=newdat, interval="prediction")
##Model 3
model3lm = lm(log(price) \sim state, data = gumtree)
tmp = \mathbf{par}(mfrow = \mathbf{c}(2,2))
plot(model3lm)
par(tmp)
dev.off()
#price of dog from SA
summary(model3lm)
#95% prediction interval
newdat = data.frame(state="SA")
predict(model3lm, newdata=newdat, interval="prediction")
```

 fit

lwr

upr