Part - III CHEMISTRY

Maximum: 60 Scores

Time: 2 Hours

Cool off time: 15 Minutes

General Instructions to Candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 hrs.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except nonprogrammable calculators are not allowed in the Examination Hall.

നിർദ്ദേശങ്ങൾ :

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയ വിനിമയം നടത്താനോ പാടില്ല.
- െ ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപുർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണംം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരഞ്ഞെടുത്തു കഴിഞ്ഞാൽ ഉപ ചോദ്യങ്ങളും
 അതേ ചോദ്യ നമ്പരിൽ നിന്ന് തന്നെ തെരഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

- 1. The mole concept helps in handling a large number of atoms and molecules in stoichiometric calculations.
 - a) Define 1 mol. (1)
 - b) What is the number of hydrogen atoms in 1 mole of methane (CH_4) ? (1)
 - c) Calculate the amount of carbon dioxide formed by the complete combustion of 80 g of methane as per the reaction:

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$$
(Atomic masses : $C = 12.01u$,
 $H = 1.008u$, $O = 16u$). (2)

- 2. Photoelectric effect was first observed by Hertz.
 - a) The number of electrons ejected in the photoelectric effect is proportional to of light used. (frequency, intensity). (1
 - b) Select the correct statement related to the photoelectric effect:
 - i) Threshold frequency is the maximum frequency required to cause photoelectric emission from a particular metal.

- സ്റ്റോക്കിയോമെട്രിക് കണക്കുകൂട്ടലുകളുമായി ബന്ധപ്പെട്ട നിരവധി എണ്ണം ആറ്റങ്ങളേയും തന്മാത്രകളേയും കൈകാര്യം ചെയ്യാൻ മോൾ സങ്കല്പ്പനം സഹായിക്കുന്നു.
 - a) 1 മോൾ നിർവ്വചിക്കുക. (1)
 - b) 1 മോൾ മീഥേനിൽ $(CH_{_4})$ അടങ്ങിയിട്ടുള്ള ഹൈഡ്രജൻ തുറ്റങ്ങളുടെ എണ്ണമെത്ര? (1
 - c) താഴെ കൊടുത്തിരിക്കുന്ന രാസ-പ്രവർത്തന പ്രകാരം 80 ഗ്രാം മീഥേൻ പൂർണ്ണമായി കത്തുമ്പോൾ ഉണ്ടാകുന്ന കാർബൺ ഡൈഓക്സൈഡിന്റെ അളവ് കണക്കാക്കുക:

$$CH_{4(g)}+2O_{2(g)}\longrightarrow CO_{2(g)}+2H_2O_{(g)}$$
 (അറ്റോമിക മാസ്സുകൾ: $C=12.01\mathrm{u}$, $H=1.008\mathrm{u},~O=16\mathrm{u}$).

- ഫോട്ടോ ഇലക്ട്രിക് പ്രഭാവം ആദ്യമായി നിരീക്ഷച്ചത് ഹെട്സ് ആണ്.
 - മ) ഫോട്ടോ ഇലക്ട്രിക് പ്രഭാവത്തിൽ ഉത്സർജ്ജിക്കുന്ന ഇലക്ട്രോണുകളുടെ എണ്ണം, ഉപയോഗിക്കുന്ന പ്രകാശ ത്തിന്റെ ന് നേർ അനുപാത ത്തിലാണ്. (ആവൃത്തി, തീവ്രത).
 - b) ഫോട്ടോ ഇലക്ട്രിക് പ്രഭാവത്തെ സംബന്ധിച്ച് ശരിയായ പ്രസ്താവന തെരഞ്ഞെടുക്കുക:
 - i) ഒരു പ്രത്യേക ലോഹത്തിൽ നിന്ന് ഫോട്ടോ ഇലക്ട്രിക് ഉത്സർജ്ജനം നടക്കുന്നതിനുവേണ്ട ഏറ്റവും കൂടിയ ആവൃത്തിയാണ് ത്രഷോൽഡ് ആവൃത്തി.

(2)

- ii) The kinetic energy of the photoelectrons is directly proportional to the frequency of incident light.
- iii) Work function is the same for all metals. (1)
- 3. The general features of the structure of a hydrogen atom and hydrogen like species were quantitatively explained by Niels Bohr.
 - a) Write any postulate of the Bohr's model of the hydrogen atom.
 - b) Calculate the radius of the second orbit of Li^{2+} .

 (Express the answer in nm).

OR

The dual behavior of matter was proposed by the French physicist, de Broglie.

- a) State the dual behavior of matter. (1)
- b) A moving electron has a de Broglie wavelength of 7×10^{-7} m. Calculate its kinetic energy.

(Planck's constant = 6.626×10^{-34} Js, Mass of an electron = 9.1×10^{-31} kg). (2)

- ii) ഫോട്ടോ ഇലക്ട്രോണുകളുടെ ഗതികോർജ്ജം പതന പ്രകാശത്തിന്റെ ആവൃത്തിയ്ക്ക് നേർ അനുപാതത്തിലാണ്.
- iii) വർക്ക് ഫങ്ഷൻ എല്ലാ ലോഹങ്ങൾക്കും തുല്യമാണ്. (1
- 3. ഹൈഡ്രജൻ ആറ്റത്തിന്റേയും ഹൈഡ്രജനു സമാനമായ കണങ്ങളുടേയും ഘടനയുടെ പൊതുവായ സവിശേഷതകൾ അളവു പരമായി വിശദീകരിച്ചത് നീൽസ് ബോർ ആണ്.
 - a) ഹൈഡ്രജൻ ആറ്റത്തിന്റെ ബോർ മാതൃകയുടെ ഏതെങ്കിലും ഒരു അനുമാനം (postulate) എഴുതുക. (1)
 - (b) Li^{2+} -ന്റെ രണ്ടാമത്തെ ഓർബിറ്റിന്റെ റേഡിയസ് കണക്കാക്കുക.
 - (ഉത്തരം നാനോ മീറ്ററിൽ സൂചിപ്പിക്കുക) (2) അല്ലെങ്കിൽ

ഫ്രഞ്ച് ഭൗതിക ശാസ്ത്രഞ്ജനായ ഡി ബ്രോളിയാണ് ദ്രവൃത്തിന്റെ ദ്വൈതസ്വഭാവം നിർദ്ദേശിച്ചത്.

- a) ദ്രവ്യത്തിന്റെ ദ്വൈതസ്വഭാവം
 പ്രസ്താവിക്കുക. (1)
- b) സഞ്ചരിക്കുന്ന ഒരു ഇലക്ട്രോണിന്റെ ഡി ബ്രോളി തരംഗദൈർഘ്യം $7 \times 10^{-7} \mathrm{m}$ ആണ്. ഇതിന്റെ ഗതികോർജ്ജം കണക്കാക്കുക.

(പ്ലാങ്ക് സ്ഥിരാങ്കം = $6.626 \times 10^{-34} \; \mathrm{Js},$ ഒരു ഇലക്ട്രോണിന്റെ മാസ്സ് = $9.1 \times 10^{-31} \mathrm{kg}$). (2) (P.T.O.)

K-32

(3)

- 4. The reactivity of an element is very much related to its ionization enthalpy.
 - a) In general, ionization enthalpy increases from left to right across a period. Give the reason.
 - b) Observe the following graph in which the first ionization enthalpies ($\Delta_i H$) of elements of the second period are plotted against their atomic numbers

- 4. ഒരു മൂലകത്തിന്റെ ക്രീയാശീലത അതിന്റെ അയൊണൈസേഷൻ എൻഥാൽപിയുമായി വളരെയധികം ബന്ധപ്പെട്ടിരിക്കുന്നു.
 - ലെത്തോട്ട് അയൊണൈസേഷൻ
 എൻഥാൽപി കൂടുന്നു.
 കാരണമെഴുതുക.
 - b) രണ്ടാമത്തെ പീരീഡിലെ മൂലകങ്ങളുടെ ഒന്നാം അയോണീകരണ ഊർജ്ജങ്ങളും $(\Delta_i H)$ അവയുടെ അറ്റോമിക സംഖൃകളും (Z) തമ്മിലുള്ള, താഴെ കൊടുത്തിരിക്കുന്ന ഗ്രാഫ് നിരീക്ഷിക്കുക.

(3)

Identify the anomalous values and justify.

- The Valence Shell Electron Pair Repulsion (VSEPR) theory helps in predicting the shapes of covalent molecules.
 - a) Arrange the bond pair electron and lone pair electron in the decreasing order of the repulsive interactions among them.

ക്രമരഹിതമായ വിലകൾ കണ്ടെത്തി സാധൂകരിക്കുക.

- 5. സഹസംയോജക സംയുക്തങ്ങളുടെ ആകൃതി പ്രവചിക്കുന്നതിന് വാലൻസ് ഷെൽ ഇലക്ട്രോൺ പെയർ റിപ്പൽഷൻ (VSEPR) സിദ്ധാന്തം സഹായിക്കുന്നു.
 - മ) ബോണ്ട് പെയർ ഇലക്ട്രോണുകളെയും ലോൺ പെയർ ഇലക്ട്രോണുകളെയും, അവ തമ്മിലുള്ള വികർഷണ ബലങ്ങളുടെ അവരോഹണക്രമത്തിൽ എഴുതുക.

4

K-32

(2)

(1)

- has three bond pairs and two lone pairs of electrons. Predict the most stable arrangement of electron pairs in this molecule. (1)
- c) The bond order value is an important property of a molecule. How is bond order related to bond length?
- d) Write the electronic configuration of an oxygen molecule and justify its magnetic nature.
- 6. Real gases behave ideally only at certain conditions.
 - a) What is Boyle point of a gas? (1)
 - b) Write the expression for compressibility factor. What is its value for an ideal gas?
 - c) Density of a gas was found to be 5.5 gL⁻¹ at 2 bar pressure. Calculate its molar mass.
 - $(R = 0.083 \text{ bar L mol}^{-1} \text{ K}^{-1}).$ (2)

- b) AB_3E_2 മാതൃകയിലുള്ള ഒരു തൻമാത്രയിൽ മൂന്ന് ബോണ്ട് ജോടി ഇലക്ട്രോണുകളും രണ്ട് ലോൺ ജോടി ഇലക്ട്രോണുകളും ഉണ്ട്. `ഈ തൻമാത്രയിൽ ഇലക്ട്രോൺ ജോടികളുടെ ഏറ്റവും സ്ഥിരതയുള്ള ക്രമീകരണം പ്രവചിക്കുക.
- c) ഒരു തൻമാത്രയുടെ പ്രധാനപ്പെട്ട ഒരു ഗുണമാണ് ബോണ്ട് ഓർഡർ വില. ബോണ്ട് ഓർഡർ, ബോണ്ടിന്റെ നീളവുമായി എങ്ങനെ ബന്ധപ്പെട്ടിരിക്കുന്നു? (1
- d) ഓക്സിജൻ തൻമാത്രയുടെ ഇലക്ട്രോൺ വിന്യാസം എഴുതി അതിന്റെ കാന്തിക സ്വഭാവം സാധൂകരിക്കുക. (2)
- യഥാർത്ഥ വാതകങ്ങൾ ചില പ്രത്യേക സാഹചര്യങ്ങളിൽ മാത്രം ആദർശസ്വഭാവം കാണിക്കുന്നു.
 - a) ഒരു വാതകത്തിന്റെ ബോയിൽ പോയിന്റ് എന്നാലെന്ത്? (1)
 - b) കംപ്രസിബിലിറ്റി ഫാക്റ്ററിന്റെ സമവാക്യം എഴുതുക. ഒരു ആദർശ വാതകത്തിന് ഇതിന്റെ വിലയെന്ത്?
 - c) 2 ബാർ മർദ്ദത്തിൽ ഒരു വാതകത്തിന്റെ സാന്ദ്രത $5.5~{
 m gL^{-1}}$ ആണെന്നു കണ്ടു. ഇതിന്റെ തമ്പാത്രാഭാരം കണക്കാക്കുക.
 - $(R = 0.083 \text{ bar L mol}^{-1} \text{ K}^{-1}).$ (2)

- 7. Most of the naturally occurring processes are spontaneous.
 - a) Give the criteria for spontaneity of a process in terms of free energy change (ΔG).
 - b) Exothermic reactions associated with a decrease in entropy are spontaneous at lower temperatures. Justify on the basis of Gibbs equation.
 - c) Find the temperature above which the reaction $MgO_{(s)} + C_{(s)} \longrightarrow Mg_{(s)} + CO_{(g)}$ becomes spontaneous.

(Given
$$\Delta_r H^{\Theta} = 490 \text{ kJ mol}^{-1} \text{ and}$$

 $\Delta_r H^{\Theta} = 198 \text{ J K mol}^{-1}$). (2)

- Equilibrium is possible only in a closed system at a given temperature.
 - a) Write the expression for equilibrium constant, K_c for the reaction.

$$4NH_{3(g)} + 5O_{2(g)} = 4NO_{(g)} + 6H_2O_{(g)}$$

$$(1)$$

b) What happens to the value of the equilibrium constant (K'_c) when the above reaction is reversed? (1)

- 7. പ്രകൃതിയിലുള്ള മിക്കവാറും എല്ലാ പ്രക്രിയകളും സ്പൊണ്ടേനിയസ്സ് ആണ്.
 - മ) ഫ്രീ. എനർജി വൃത്യാസത്തിന്റെ അടിസ്ഥാനത്തിൽ (△G) ഒരു പ്രക്രിയയുടെ സ്പൊണ്ടേനിറ്റിയുടെ മാനദണ്ഡം എഴുതുക.
 - b) എൻട്രോപ്പി കുറയുന്ന താപമോചക പ്രവർത്തനങ്ങൾ താഴ്ന്ന ഊഷ്മാവിൽ സ്പൊണ്ടേനിയസ്സ് ആണ്. ഗിബ്സ്സ് സമവാകൃത്തിന്റെ അടിസ്ഥാനത്തിൽ സാധുകരിക്കുക.
 - c) $MgO_{(s)}+C_{(s)}-\longrightarrow Mg_{(s)}+CO_{(g)}$ എന്ന പ്രതിപ്രവർത്തനം ഏത് ഉൗഷ്മാവിനു മുകളിലാണ് സ്പൊണ്ടേനിയസ്സ് ആകുന്നതെന്നു കണ്ടുപിടിക്കുക.

$$(\Delta_r H^\Theta)=490~{
m kJ~mol^{-1}},$$
 $\Delta_r H^\Theta=198~{
m J~K~mol^{-1}}$ എന്നു തന്നിട്ടുണ്ട്).

- 8. ഒരു നിശ്ചിത ഊഷ്മാവിൽ ഒരു അടഞ്ഞ വ്യൂഹത്തിൽ മാത്രമേ സംതുലനാവസ്ഥ സാധ്യമാവുകയുള്ളു.
 - a) $4NH_{3(g)}+5O_{2(g)}$ \Longrightarrow $4NO_{(g)}+$ $6H_2O_{(g)}$ എന്ന രാസപ്രവർത്തനത്തിന്റെ സംതുലന സ്ഥിരാങ്കം, K_c -യുടെ സമവാക്യം എഴുതുക. (1)
 - ${
 m b})$ മുകളിൽ തന്നിട്ടുള്ള രാസപ്രവർത്തനത്തെ നേർവിപരീത ദിശയിലാക്കിയാൽ സംതുലന സ്ഥിരാങ്കത്തിന്റെ $(K'_{\it c})$ വിലയ്ക്ക് എന്തു സംഭവിക്കും? (1)

- 9. Weak acids are partially ionized in aqueous solutions.
 - a) The ionization constants of some acids are given below:
- 9. വീര്യം കുറഞ്ഞ ആസിഡുകൾ ജലീയ ലായനിയിൽ ഭാഗികമായി അയോണീകരിക്കുന്നു.
 - a) ചില ആസിഡുകളുടെ അയോണൈസേഷൻ സ്ഥിരാങ്കങ്ങൾ താഴെ കൊടുത്തിരിക്കുന്നു.

Acid ആസിഡ്	$ m Ionization\ constant\ (\it K_a)$ അയൊണൈസേഷൻ സ്ഥിരാങ്കം
Formic acid (<i>HCOOH</i>) ഫോമിക് ആസിഡ് (<i>HCOOH</i>)	1.8×10^{-4}
Hypochlorous acid (<i>HClO</i>) ഹൈപ്പോക്ലോറസ് ആസിഡ് (<i>HClO</i>)	3.0×10^{-8}
Nitrous acid (HNO_2) നൈട്രസ് ആസിഡ് (HNO_2)	$4.5 imes 10^{-4}$
Hydrocyanic acid (<i>HCN</i>) ഹൈഡോസയനിക് ആസിഡ് (<i>HCN</i>)	4.9×10^{-10}

Arrange the above acids in the increasing order of their acid strength.

(1)

b) Calculate the pH of a 0.01 M acetic acid solution with the degree of ionization 0.045.

(2)

OR

Salts can be classified into different categories on the basis of their solubility.

- a) Identify the solubility range of sparingly soluble salts from the following:

 (Between 0.01 M and 0.1 M, less than 0.01 M, greater than 0.1 M). (1)
- b) Calculate the solubility (S) of $CaSO_4$ at 298 K if its solubility product constant (K_{sp}) at this temperature is 9×10^{-6} .

മുകളിൽ തന്നിട്ടുള്ള ആസിഡുകളെ അവയുടെ അസിഡിക് തീവ്രതയുടെ ആരോഹണ ക്രമത്തിൽ എഴുതുക.

(1)

b) ഡിഗ്രി ഓഫ് അയൊണൈസേഷൻ 0.045 ഉള്ള 0.01 മോളാർ അസെറ്റിക് ആസിഡ് ലായനിയുടെ pH കണക്കാക്കുക.

(2)

അല്ലെ ങ്കിൽ

സോലുബിലിറ്റിയുടെ അടിസ്ഥാനത്തിൽ ലവണങ്ങളെ പല വിഭാഗമായി തിരിക്കാം.

- a) താഴെ കൊടുത്തിരിക്കുന്നവയിൽ നിന്നും സ്പെയറിങ്ങിലി സോലുബിൾ ലവണങ്ങളുടെ സോലുബിലിറ്റി റേയ്ഞ്ച് കണ്ടെത്തുക:
 - $(0.01~{
 m M}$ -നും $0.1~{
 m M}$ -നും ഇടയിൽ, $0.01~{
 m M}$ -നെക്കാൾ കുറവ്, $0.1~{
 m M}$ -നെക്കാൾ കൂടുതൽ)
- b) $298~\mathrm{K}$ -ൽ $CaSO_4$ -ന്റെ സോലുബിലിറ്റി
 - സ്ഥിരാങ്കം $(K_{sp}),\ 9 imes 10^{-6}$ ആയാൽ ഇതേ ഊഷ്മാവിൽ അതിന്റെ സോലുബിലിറ്റി (S) കണക്കാക്കുക.

(P.T.O.)

(2)

(2)

(1)

(2)

10. Competitive electron transfer reactions are utilized in the construction of Galvanic cells.

*

a) Write the redox reaction involved when metallic cobalt is placed in a nickel sulphate solution.

(Note: Only the ionic reaction is expected).

- b) In the reaction $Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(aq)}$ $\longrightarrow 2PbSO_{4(s)} + 2H_2O_{(l)},$ identify the following :
 - i) Substance oxidized
 - ii) Substance reduced
 - iii) Oxidizing agent
 - iv) Reducing agent
- 11. About 18% of the total production of dihydrogen is from coal.
 - a) What is 'coal gasification'?
 - b) How is dihydrogen produced by a 'water-gas shift reaction'? (2)
 - c) Write any two uses of dihydrogen. (1)

- 10. കോംപറ്റിറ്റീവ് ഇലക്ട്രോൺ ട്രാൻസ്ഫർ പ്രതിപ്രവർത്തനങ്ങൾ ഗാൽവാനിക് സെല്ലുകളുടെ നിർമ്മാണത്തിന് ഉപയോഗിക്കുന്നു.
 - a) കൊബാൾട്ട് ലോഹത്തെ നിക്കൽ സൾഫേറ്റ് ലായനിയിൽ വയ്ക്കുമ്പോൾ നടക്കുന്ന റിഡോക്സ് പ്രതിപ്രവർത്തനം എഴുതുക.
 (അയൊണിക് പ്രതിപ്രവർത്തനം മാത്രം എഴുതിയാൽ മതിയാകും.)
 - b) $Pb_{(s)}+PbO_{2(s)}+2H_2SO_{4(aq)}$ $\longrightarrow 2PbSO_{4(s)}+2H_2O_{(l)}$ എന്ന പ്രതിപ്രവർത്തനത്തിൽ താഴെപ്പറയുന്നവ കണ്ടെത്തുക:
 - i) ഓക്സീകരിക്കപ്പെട്ട പദാർത്ഥം
 - ii) നിരോക്സീകരിക്കപ്പെട്ട പദാർത്ഥം
 - iii) ഓക്സീകാരി
 - iv) നിരോക്സീകാരി
- 11. ഡൈഹൈഡ്രജന്റെ ആകെ ഉൽപ്പാദനത്തിന്റെ ഏകദേശം 18% കൽക്കരിയിൽ നിന്നാണ്.
 - a) 'കോൾ ഗ്യാസിഫിക്കേഷൻ'എന്നാലെന്ത്?
 - b) 'വാട്ടർ ഗ്യാസ് ഷിഫ്റ്റ് പ്രതിപ്രവർത്തനം' വഴി ഡൈഹൈഡ്രജൻ
 നിർമ്മിക്കുന്നതെങ്ങനെ?
 - c) ഡൈഹൈഡ്രജന്റെ ഏതെങ്കിലും രണ്ട്
 ഉപയോഗങ്ങൾ എഴുതുക.

2. Alkali metals and alkaline earth metals belong to the S-block of the periodic table.	12. ആൽക്കലി ലോഹങ്ങളും ആൽക്കലൈൻ എർത്ത് ലോഹങ്ങളും ആവർത്തന പട്ടികയുടെ S -ബ്ലോക്കിൽ ഉൾപ്പെടുന്നു.
 a) Name the process used for the industrial preparation of sodium carbonate. (1) b) The above mentioned method is 	പേരെഴുതുക. (1) b) മുകളിൽ സൂചിപ്പിച്ച മാർഗ്ഗം പൊട്ടാസ്യം
not suitable for the preparation of potassium carbonate. Give the reason. (1)	കാർബണേറ്റിന്റെ നിർമ്മാണത്തിന് അനിയോജ്യമല്ല. കാരണമെഴുതുക. (1) c) ഖരാവസ്ഥയിലുള്ള ബെറിലിയം ക്ലോറൈഡിന്റെ ശൃംഖലാ ഘടന
beryllium chloride in solid state. (1) d) Write the chemical equation showing the preparation of	വരയ്ക്കുക. (1) d) ജിപ്സത്തിൽ നിന്ന് പ്ലാസ്റ്റർ ഓഫ് പാരീസ് നിർമ്മിക്കുന്നതിനുള്ള രാസസമവാക്യം എഴുതുക. (1)
Plaster of Paris from gypsum. (1) 3. The group 14 elements have four electrons in the outermost shell.	13. ഗ്രൂപ്പ് 14 മൂലകങ്ങളിൽ ബാഹ്യത ഷെല്ലിൽ നാല് ഇലക്ട്രോണുകൾ ഉണ്ട്.
a) $SiCl_4$ can be easily hydrolyzed by water while CCl_4 cannot be hydrolyzed. (1)	a) $SiCl_4$ -നെ എളുപ്പത്തിൽ ജലം ഉപയോഗിച്ച് ഹൈഡോലിസിസ് നടത്താം. എന്നാൽ CCl_4 -നെ ഹൈഡോലൈസ് ചെയ്യാൻ സാധ്യമല്ല. (1)
b) How are fullerenes prepared? (1) c) Distinguish between silicones and silicates. (2)	
	തമ്മിലുള്ള വൃത്യാസമെഴുതുക. (2)

(1)

- 14. The IUPAC names of alkanes are based on their chain structure.
 - a) Give the IUPAC name of

- b) Represent 1-Methyl-3- propyl cyclohexane using bond line notation.
- c) What is the type of hybridization of C in CH_3^+ ? Also predict its shape.
- d) Name the type of bond fission resulting in the formation of free radicals.

\mathbf{OR}

Organic compounds have to be purified before analysis.

- a) Which type of liquids can be purified using distillation under reduced pressure? Suggest an example.
- b) Name the two main types of chromatographic techniques based on the principle of differential adsorption.
- d) In what form is nitrogenestimated in the Dumas method?

- 14. ആൽക്കേനുകളുടെ IUPAC നാമങ്ങൾ അവയുടെ ശൃംഖലാ ഘടനയെ ആശ്രയിച്ചിരിക്കുന്നു.
 - a) താഴെ കൊടുത്തിരിക്കുന്ന സംയുക്തത്തിന്റെ IUPAC നാമം എഴുതുക:

- b) 1-മീഥൈൻ 3 പ്രോപ്പൈൽ
 സൈക്ലോഹെക്സെനെ ബോണ്ട് ലൈൻ
 നൊട്ടേഷൻ ഉപയോഗിച്ച്
 പ്രതിനിധീകരിക്കുക.
- c) CH_3^+ -ൽ കാർബണിന്റെ ഹെബ്രിഡൈസേഷൻ എന്ത്? കൂടാതെ ഇതിന്റെ ആകൃതിയും പ്രവചിക്കുക. (1)
- d) ഏതു തരം ബോണ്ട് ഫിഷനിലാണ് ഫ്രീ റാഡിക്കലുകൾ ഉണ്ടാകുന്നത്.
 (1)

അല്ലെങ്കിൽ

സൂക്ഷ്മ പരിശോധനകൾക്കു മുൻപായി കാർബണിക സംയുക്തങ്ങളെ ശുദ്ധീകരിക്കേണ്ടതുണ്ട്.

- മ) താഴ്ന്ന മർദ്ദത്തിലുള്ള സ്വേദനം ഏതുതരം ദ്രാവകങ്ങളുടെ ശുദ്ധീകരണത്തിനാണ് ഉപയോഗീക്കു-ന്നത്? ഒരു ഉദാഹരണം നിർദ്ദേശിക്കുക. (1)
- b) ഡിഫറൻഷൃൽ അഡ്സോർപ്ഷൻ തത്ത്വം അടിസ്ഥാനമാക്കിയുള്ള രണ്ട് മുഖ്യ ക്രൊമറ്റോഗ്രാഫിക് സങ്കേതങ്ങളുടെ പേരെഴുതുക.
 (1)
- d) ഡ്യൂമാസ് രീതിയിൽ നൈട്രജനെ എസ്റ്റിമേറ്റ് ചെയ്യുന്നത് ഏത് രൂപത്തിലാണ്. (1)

(1)

(2)

- 15. Many chemical properties of organic compounds can be explained on the basis of electron displacement effects.
 - a) What is a resonance effect? (1)
 - b) Categorize the following functional groups into those having +R effect and -R effect:
 - $-NH_2, -NO_2, -COOH, -OH$ (1)
- 16. Free rotation is possible with respect to a C-C bond in the case of alkanes.
 - a) The repulsive interaction between the adjacent bonds in a conformation is called
 - b) Draw Newman's projections of the two conformers of ethane. Which among these is more stable? Justify.
 - c) An alkene on ozonolysis followed by reduction of the ozonide formed with zinc and water gave a mixture of ethanal and methanal.
 - i) Identify the alkene. (1)
 - ii) Illustrate the above mentioned reaction using the chemical equation. (1)
- 17. Pollution of water originates mainly from human activities.
 - a) What do you mean by the term, PCB? (1)
 - b) How do chemical pollutants cause eutrophication? (1)
 - c) Mention the adverse effects of high fluoride concentration in drinking water.

- 15. കാർബണിക സംയുക്തങ്ങളുടെ മിക്ക രാസഗുണങ്ങളും ഇലക്ട്രോൺ ഡിസ്പ്ലെയ്സ്മെന്റ് ഇഫക്ടുകളുടെ അടിസ്ഥാനത്തിൽ വിശദീകരിക്കാം.
 - a) റെസൊണൻസ് ഇഫക്ട് എന്നാലെന്ത്? (1)
 - b) താഴെ കൊടുത്തിരിക്കുന്ന ഫങ്ഷണൽ $\omega_{\rm color} \omega_{\rm color} \omega_{\rm$
 - $-NH_2, -NO_2, -COOH, -OH \qquad (1)$
- 16. C C-ബോണ്ടിനെ ആധാരമാക്കി ആൽക്കേനുകളിൽ സ്വതന്ത്രമായ ഭ്രമണം സാധ്യമാണ്.
 - a) ഒരു കൺഫോമറിലെ സമീപസ്ഥ ബോണ്ടുകൾ തമ്മിലുള്ള വികർഷണത്തെ
 -എന്നു വിളിക്കുന്നു. (b) ഈഥേന്റെ രണ്ട് കൺഫോമറുകളുടെ ന്യൂമാൻ പ്രൊജക്ഷനുകൾ വരയ്ക്കുക. ഇതിൽ ഏതിനാണ് സ്ഥിരത
 - c) ഒരു ആൽക്കീനെ ഓസൊനോളിസിസ് നടത്തി ലഭിച്ച ഓസൊണൈഡിനെ സിങ്കും ജലവും ഉപയോഗിച്ച് നിരോക്സീകരിച്ചപ്പോൾ എഥനാലിന്റെ-യും മെഥനാലിന്റേയും ഒരു മിശ്രിതം കിട്ടി.

കൂടുതലുള്ളത്? സാധുകരിക്കുക.

- i) ആൽക്കീൻ തിരിച്ചറിയുക. (1)
- ii) രാസസമവാകും ഉപയോഗിച്ച്
 മുകളിൽ സൂചിപ്പിച്ച
 പ്രതിപ്രവർത്തനം വിശദമാക്കുക. (1
- ജല മലിനീകരണം മുഖ്യമായും ഉണ്ടാകുന്നത് മനുഷ്യന്റെ പ്രവൃത്തികളിൽ നിന്നാണ്.
 - a) PCB എന്ന പദം എന്തിനെ നുചിപ്പിക്കുന്നു? (1)
 - b) രാസമാലിന്യങ്ങൾ യൂട്രോഫിക്കേഷന് കാരണമാകുന്നതെങ്ങനെ?(1)
 - c) കുടിവെള്ളത്തിൽ ഫ്ളൂറൈഡിന്റെ ഉയർന്ന ഗാഢത മൂലം ഉണ്ടാകുന്ന ദോഷഫലങ്ങൾ സൂചിപ്പിക്കുക.

(1)