# Chapter 3

# Underlying Technologies

# **CONTENTS**

- LANS
- CONNECTING DEVICES
- WAN

#### **Internet model**



- Most of today LAN networks is based on Ethernet or CSMA/CD technology
- Tocken Ring





#### **CSMA/CD**



# Minimum frame length/Transmission rate is proportional to Collision domain / Propagation speed

#### Remark

- Traditional networks implementing Ethernet technology (based on CSMA/CD)
  - For ex. 10Base2 defined a distance of 200m between two farest node of the network
- Today's LAN network require a transmission rate of 100 Mbps or 1000 Mbps
- In order to let today's LAN networks to work always with the CSMA/CD mechansim, we should either
  - Reduce the distance
  - Frame length

# **Ethernet layers**

| OSI Model           |  | Ethernet                      |  |  |
|---------------------|--|-------------------------------|--|--|
| Data link layor     |  | Logical Link<br>Control (LLC) |  |  |
| Data link layer     |  | Media Access<br>Control (MAC) |  |  |
| Physical layer      |  | Physical layer                |  |  |
| Transmission medium |  |                               |  |  |

#### **Ethernet frame**

Preamble 56 bits of alternating 1s and 0s.
SFD Start field delimiter, flag (10101011)



- Ethernet address sent byte by byte, left to right
- For each byte, the less significat bit is sent first
- Unicast (least significat bit of the first byte= 0), multicast (least significat bit = 1) and broadcast addresses (48 1s)
- A source address is always unicat, a distination address can be unicat, broadcast or multicast







c. 10BASE-T





a. 100BASE-TX



b. 100BASE-FX



#### **Gigabit Ethernet implementation**



a. 1000BASE-SX/LX

#### **Gigabit Ethernet implementation**





a. Station A captures the token



b. Station A sends data to station C



c. Station C copies data and sends frame back to A



d. Station A releases the token

#### Figure 3-9

#### **Data frame**

| SD Start delimiter (flag)    |                               |        |        |                     |                   | EI               |                |        | er (flag) |  |
|------------------------------|-------------------------------|--------|--------|---------------------|-------------------|------------------|----------------|--------|-----------|--|
| AC Access control (priority) |                               |        |        |                     |                   | FS               | S Frame status |        |           |  |
|                              | FC Frame control (frame type) |        |        |                     |                   |                  |                |        |           |  |
|                              | SD                            | AC     | FC     | Destination address | Source<br>address | Data             | CRC            | ED     | FS        |  |
|                              | 1 byte                        | 1 byte | 1 byte | 6 bytes             | 6 bytes           | Up to 4500 bytes | 4 bytes        | 1 byte | 1 byte    |  |



Multistation access unit MAU



#### **Connecting devices**

Network

Data link

**Physical** 

Router
(three-layer switch)

Bridge
(two-layer switch)

Repeater
(hub)

Network

Data link

**Physical** 

# Repeater



# A repeater connects segments of a LAN together.

A repeater forwards every packet; it has no filtering capability.

## Hubs



A bridge has a table used in filtering decisions.

#### **Figure 3-29**

## **Bridge**



| Address      | Interface |
|--------------|-----------|
| 712B13456141 | 1         |
| 712B13456142 | 1         |
| 642B13456112 | 2         |
| 642B13456113 | 2         |

Bridge table



A bridge connects segments of a LAN together.

A router is a three-layer (physical, data link, and network) device.

A repeater or a bridge connects segments of a LAN.

A router connects independent LANs or WANs to create an internetwork (internet).

#### **Routing example**



A router changes the physical addresses in a packet.

# Comparing Hubs, Switches, Routers

|                   | Hub/     | Bridge/ | Router |
|-------------------|----------|---------|--------|
|                   | Repeater | Switch  |        |
| Traffic isolation | no       | yes     | yes    |
| Plug and Play     | yes      | yes     | no     |
| Efficient routing | no       | no      | yes    |
| Cut through       | yes      | yes     | no     |