DATA PRE-PROCESSING

Read CSV as pandas data frame
import pandas as pd
df = pd.read_csv('/content/123.csv')
df

	Country	ISO 3166-1 alpha- 3	Year	Total	Coal	Oil	Gas	Cement	Flari
0	Afghanistan	AFG	1750	0.00000	NaN	NaN	NaN	NaN	N
1	Afghanistan	AFG	1751	0.00000	NaN	NaN	NaN	NaN	N
2	Afghanistan	AFG	1752	0.00000	NaN	NaN	NaN	NaN	N
3	Afghanistan	AFG	1753	0.00000	NaN	NaN	NaN	NaN	N
4	Afghanistan	AFG	1754	0.00000	NaN	NaN	NaN	NaN	N
63099	Global	WLD	2017	36096.73928	14506.97381	12242.62794	7144.928128	1507.923185	391.9921
63100	Global	WLD	2018	36826.50660	14746.83069	12266.01629	7529.846784	1569.218392	412.1157
63101	Global	WLD	2019	37082.55897	14725.97803	12345.65337	7647.528220	1617.506786	439.2539
63102	Global	WLD	2020	35264.08573	14174.56401	11191.80855	7556.290283	1637.537532	407.5836
63103	Glohal	MΙD	2021	37123 85035	14979 59808	11837 15912	7921 829472	1672 592372	416 5255

#There are total 232 countries in the dataset and each country co2 emission records from 1750 to 2021 df['Country'].value_counts()

Afghanistan	272
Peru	272
Niger	272
Nigeria	272
Niue	272
Greenland	272
Greenland Grenada	272 272
Grenada	272

Name: Country, Length: 232, dtype: int64

df.isnull().sum()

```
Country 0
ISO 3166-1 alpha-3 1632
Year 0
```

200
41360
41387
41486
42290
41554
61484
44130

From the above we can see that there are many null values spread across the dataset and dropping them would take out large portion of valuable data and we may miss the key insights from it.

```
df['Total'].value_counts()
     0.000000
                    41207
     0.003664
                      195
     0.010992
                      159
     0.047632
                      116
     0.007328
                      114
     27.749511
                        1
     31.477311
     37.131214
                        1
     36.061767
                        1
     37123.850350
                        1
     Name: Total, Length: 16193, dtype: int64
```

Instead of dropping null values from every column, the ideal step is to drop the values with zero in total column (Doing so, interprets that either all the column values contributing to the co2 emission is either zero or there are no emissions from that category at that period of time.

```
#we can clearly see most of the columns are NaN when total is 0 df[df['Total'] \! = \! 0]
```

	Country	ISO 3166-1 alpha- 3	Year	Total	Coal	0il	Gas	Cement	Flaring	Other	Per Capita
0	Afghanistan	AFG	1750	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	Afghanistan	AFG	1751	0.0	NaN	NaN	NaN	NaN	NaN	NaN	NaN

#Slicing the data into a new dataframe
df1 = df[df['Total']>0.00000]
df1

	Country	ISO 3166-1 alpha- 3	Year	Total	Coal	Oil	Gas	Cement	F]
199	Afghanistan	AFG	1949	0.014656	0.014656	0.000000	0.000000	0.000000	0.0
200	Afghanistan	AFG	1950	0.084272	0.021068	0.063204	0.000000	0.000000	0.0
201	Afghanistan	AFG	1951	0.091600	0.025648	0.065952	0.000000	0.000000	0.0
202	Afghanistan	AFG	1952	0.091600	0.031708	0.059892	0.000000	0.000000	0.0
203	Afghanistan	AFG	1953	0.106256	0.037949	0.068307	0.000000	0.000000	0.0
63099	Global	WLD	2017	36096.739280	14506.973810	12242.627940	7144.928128	1507.923185	391.9
63100	Global	WLD	2018	36826.506600	14746.830690	12266.016290	7529.846784	1569.218392	412.1
63101	Global	WLD	2019	37082.558970	14725.978030	12345.653370	7647.528220	1617.506786	439.2
63102	Global	WLD	2020	35264.085730	14174.564010	11191.808550	7556.290283	1637.537532	407.5
63103	Global	WID	2021	37123 850350	14979 598080	11837 159120	7921 829472	1672 592372	416.5

#After dropping the records which are not contributing towards the total you can see there is a significant change in Null values df1.isnull().sum()

Country	0
ISO 3166-1 alpha-3	84
Year	0
Total	0
Coal	72
Oil	105
Gas	204
Cement	4215
Flaring	272
Other	20077
Per Capita	4431
dtype: int64	

#Dropping the variable Other because 92.5% of the column are having null values

#Because a column with a large number of missing values may not provide useful information, and imputing missing values may introduce bias into the analysis.

df1 = df1.drop(['Other','ISO 3166-1 alpha-3'], axis=1) df1.head()

	Country	Year	Total	Coal	Oil	Gas	Cement	Flaring	Per Capita
199	Afghanistan	1949	0.014656	0.014656	0.000000	0.0	0.0	0.0	NaN
200	Afghanistan	1950	0.084272	0.021068	0.063204	0.0	0.0	0.0	0.011266
201	Afghanistan	1951	0.091600	0.025648	0.065952	0.0	0.0	0.0	0.012098
202	Afghanistan	1952	0.091600	0.031708	0.059892	0.0	0.0	0.0	0.011946
203	Afghanistan	1953	0.106256	0.037949	0.068307	0.0	0.0	0.0	0.013685

df1.shape

(21697, 9)

#These fewer null values can be imputed df1.isnull().sum()

Country	(
Year	(
Total	(
Coal	7
Oil	10
Gas	204
Cement	421
Flaring	27
Per Capita	443
dtype: int64	

#datatypes of variables df1.dtypes

Country	object
Year	int64
Total	float64
Coal	float64
Oil	float64
Gas	float64
Cement	float64
Flaring	float64
Per Capita	float64
dtype: object	

#Slicing all the numerical data into a new dataframe for imputation df2 = df1.iloc[: , 1:] df2.head()

	Year	Total	Coal	Oil	Gas	Cement	Flaring	Per Capita
199	1949	0.014656	0.014656	0.000000	0.0	0.0	0.0	NaN
200	1950	0.084272	0.021068	0.063204	0.0	0.0	0.0	0.011266
201	1951	0.091600	0.025648	0.065952	0.0	0.0	0.0	0.012098
202	1952	0.091600	0.031708	0.059892	0.0	0.0	0.0	0.011946

!pip install fancyimpute

import pandas as pd

```
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Requirement already satisfied: fancyimpute in /usr/local/lib/python3.9/dist-packages (0.7.0)
Requirement already satisfied: knnimpute>=0.1.0 in /usr/local/lib/python3.9/dist-packages (from fancyimpute) (0.1.0)
Requirement already satisfied: nose in /usr/local/lib/python3.9/dist-packages (from fancyimpute) (1.3.7)
Requirement already satisfied: cvxpy in /usr/local/lib/python3.9/dist-packages (from fancyimpute) (1.2.3)
Requirement already satisfied: cvxopt in /usr/local/lib/python3.9/dist-packages (from fancyimpute) (1.3.0)
Requirement already satisfied: scikit-learn>=0.24.2 in /usr/local/lib/python3.9/dist-packages (from fancyimpute) (1.2.1)
Requirement already satisfied: pytest in /usr/local/lib/python3.9/dist-packages (from fancyimpute) (3.6.4)
Requirement already satisfied: six in /usr/local/lib/python3.9/dist-packages (from knnimpute>=0.1.0->fancyimpute) (1.15.0)
Requirement already satisfied: numpy>=1.10 in /usr/local/lib/python3.9/dist-packages (from knnimpute>=0.1.0->fancyimpute) (1.22.4)
Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=0.24.2->fancyimpute) (1.2.0)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=0.24.2->fancyimpute) (1.10.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.9/dist-packages (from scikit-learn>=0.24.2->fancyimpute) (3.1.0)
Requirement already satisfied: setuptools<=64.0.2 in /usr/local/lib/python3.9/dist-packages (from cvxpy->fancyimpute) (57.4.0)
Requirement already satisfied: scs>=1.1.6 in /usr/local/lib/python3.9/dist-packages (from cyxpy->fancyimpute) (3.2.2)
Requirement already satisfied: osqp>=0.4.1 in /usr/local/lib/python3.9/dist-packages (from cvxpy->fancyimpute) (0.6.2.post0)
Requirement already satisfied: ecos>=2 in /usr/local/lib/python3.9/dist-packages (from cvxpy->fancyimpute) (2.0.12)
Requirement already satisfied: pluggy<0.8,>=0.5 in /usr/local/lib/python3.9/dist-packages (from pytest->fancyimpute) (0.7.1)
Requirement already satisfied: atomicwrites>=1.0 in /usr/local/lib/python3.9/dist-packages (from pytest->fancyimpute) (1.4.1)
Requirement already satisfied: py>=1.5.0 in /usr/local/lib/python3.9/dist-packages (from pytest->fancyimpute) (1.11.0)
Requirement already satisfied: more-itertools>=4.0.0 in /usr/local/lib/python3.9/dist-packages (from pytest->fancyimpute) (9.1.0)
Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.9/dist-packages (from pytest->fancyimpute) (22.2.0)
Requirement already satisfied: gdldl in /usr/local/lib/python3.9/dist-packages (from osgp>=0.4.1->cvxpy->fancyimpute) (0.1.5.post3)
```

Iterative imputer is a type of imputation method used to fill in missing values in a dataset. It is based on building a model to predict the missing values using the observed values in the dataset. The iterative imputer works by cycling through each variable with missing values and predicting the missing values using the other variables in the dataset. is a popular imputation method in machine learning and data analysis, as it can produce accurate imputations even when there are complex relationships between the variables.

```
from fancyimpute import IterativeImputer

# create an instance of the MICE imputer
mice_imputer = IterativeImputer()

# impute the missing values using MICE
imputed_data = mice_imputer.fit_transform(df2)

# create a new dataframe with the imputed data
df2 = pd.DataFrame(imputed_data, columns=df2.columns)
```

Imputed dataframe:
 Year

Total

Coal

Oil

Gas \

```
1949.0
                        0.014656
                                      0.014656
                                                    0.000000
                                                                 0.000000
            1950.0
                        0.084272
                                      0.021068
                                                    0.063204
    1
                                                                 0.000000
     2
           1951.0
                        0.091600
                                      0.025648
                                                    0.065952
                                                                 0.000000
     3
            1952.0
                        0.091600
                                      0.031708
                                                    0.059892
                                                                 0.000000
            1953.0
                        0.106256
                                      0.037949
                                                    0.068307
                                                                 0.000000
     4
     . . .
               . . .
           2017.0
                   36096.739280
                                                12242.627940
     21692
                                 14506.973810
                                                              7144.928128
     21693
           2018.0
                   36826.506600
                                 14746.830690
                                                12266.016290
                                                              7529.846784
     21694
           2019.0 37082.558970 14725.978030
                                               12345.653370
                                                             7647.528220
     21695
           2020.0 35264.085730 14174.564010 11191.808550
                                                             7556.290283
     21696 2021.0 37123.850350 14979.598080 11837.159120 7921.829472
                            Flaring Per Capita
                 Cement
                                       4.257393
    0
              0.000000
                           0.000000
              0.000000
                           0.000000
                                       0.011266
     2
              0.000000
                           0.000000
                                       0.012098
              0.000000
                           0.000000
                                       0.011946
               0.000000
                           0.000000
                                       0.013685
                                            . . .
     21692 1507.923185
                        391.992176
                                       4.749682
           1569.218392
                        412.115746
                                       4.792753
                        439.253991
     21694
           1617.506786
                                       4.775633
     21695 1637.537532 407.583673
                                       4.497423
     21696 1672.592372 416.525563
                                       4.693699
     [21697 rows x 8 columns]
#All the Null values are
df2.isnull().sum()
     Year
                   0
                   0
     Total
     Coal
                   0
     Oil
                   0
     Gas
                   0
     Cement
                   0
     Flaring
                   0
     Per Capita
     dtype: int64
df2['Country'] = df1['Country'].values
#Re-Calculating the new Total after imputation
df2['Total'] = df2['Per Capita'] + df2['Flaring'] + df2['Cement'] + df2['Gas'] + df2['Oil'] + df2['Coal']
```

#Final Dataset after Data Pre-Processing
df2.head()

	Year	Total	Coal	Oil	Gas	Cement	Flaring	Per Capita	Country
0	1949.0	4.272049	0.014656	0.000000	0.0	0.0	0.0	4.257393	Afghanistan
1	1950.0	0.095538	0.021068	0.063204	0.0	0.0	0.0	0.011266	Afghanistan
2	1951.0	0.103698	0.025648	0.065952	0.0	0.0	0.0	0.012098	Afghanistan
3	1952.0	0.103546	0.031708	0.059892	0.0	0.0	0.0	0.011946	Afghanistan
4	1953.0	0.119941	0.037949	0.068307	0.0	0.0	0.0	0.013685	Afghanistan

Dataset with other type of imputation (replacing null values with mean of the variable)

```
import pandas as pd
# Load the dataset
data = df1.copy()
# Identify the variables with missing values
missing_vars = ['Coal', 'Oil', 'Gas', 'Cement', 'Flaring', 'Per Capita']
# Calculate the mean of each variable
mean_vals = data[missing_vars].mean()
# Impute missing values with mean
data[missing_vars] = data[missing_vars].fillna(mean_vals)
# Optionally, create a new variable to indicate which values were imputed
data['var1_imputed'] = data['Coal'].isna().astype(int)
data.isnull().sum()
    Country
                     0
     Year
     Total
                     0
     Coal
     Oil
     Gas
     Cement
     Flaring
                     0
     Per Capita
                     0
     var1_imputed
    dtype: int64
data['Total'] = data['Per Capita'] + data['Flaring'] + data['Cement'] + data['Gas'] + data['Oil'] + data['Coal']
```

We can consider imputation using itterative imputer because imputation using mean of the variable may introduce bias, ignores the relationships, distorts the distribution and reduce the variance.

```
# Export dataframe "df" to an excel workbook and download to a local folder
from google.colab import files
df2.to_csv("cleaned_123.csv")
files.download("cleaned_123.csv")
```

```
import pandas as pd
clean_df=pd.read_csv('/content/cleaned_123.csv')
```

clean_df.head()

import matplotlib.pyplot as plt

Create pie chart

	Unnamed:	0	Year	Total	Coal	Oil	Gas	Cement	Flaring	Per Capita	Country
0		0	1949.0	4.272049	0.014656	0.000000	0.0	0.0	0.0	4.257393	Afghanistan
1		1	1950.0	0.095538	0.021068	0.063204	0.0	0.0	0.0	0.011266	Afghanistan
2		2	1951.0	0.103698	0.025648	0.065952	0.0	0.0	0.0	0.012098	Afghanistan
3		3	1952.0	0.103546	0.031708	0.059892	0.0	0.0	0.0	0.011946	Afghanistan
4		4	1953.0	0.119941	0.037949	0.068307	0.0	0.0	0.0	0.013685	Afghanistan

```
# Sample data
labels = ['Coal', 'Oil', 'Gas', 'Cement', 'Flaring', 'Per Capita']
sizes = [clean_df['Coal'].sum(), clean_df['Oil'].sum(), clean_df['Gas'].sum(), clean_df['Cement'].sum(), clean_df['Flaring'].sum(), clean_df['Per Capita'].sum()]
```

```
fig, ax = plt.subplots()
ax.pie(sizes, labels=labels, autopct='%1.1f%%')

# Add title
ax.set_title('Pie Chart showing the percentage of emission through out the years')

# Show plot
plt.show()
```

