RIT Formula SAE Senior Design

Agenda

- Project Description
- Customer Needs
- Engineering Specifications
- Budget
- Risk Assessment
- Preliminary Testing Results
- Finalized Intake Design Details

Project Introduction

- As each competition passes, fuel efficiency and technical superiority becomes much more prevalent in competition scoring. To advance the RIT Formula SAE Racing Team in the engine subsystem, the variable intake system will prove to be innovative and technically competitive.
- <u>Problem Statement:</u> This senior design project will develop a variable intake system for the Formula SAE race car that will allow for increased fuel efficiency, design advancements and a greener methodology to produce more engine power.

Project Introduction

Project Scope:

- 1. Measure the fuel efficiency of the engine
- 2. Improve power and torque
- 3. Packaging the system with simplicity to allow for ease of installation and maintenance
- 4. Design and build for the non-professional, weekend and competition market

Work Breakdown

Customer Needs

Customer Need #	Importance	Description						
		Volumetric Efficiency						
CN1	4	Increased Air Inductance						
		Fuel Efficiency						
CN2	7	Optimized usage of race fuel						
		Power/Torque						
CN3	5	Increased HP Output						
CN4	5	Increased Torque Output						
		Drivability						
CN5	6	Ease of length of change while driving						
		Weight						
CN6	3	No significant weight gain						
		Reliability						
CN7	7	Lowmaintenance						
		Manufacturability						
CN8	1	Simplistic						
		Serviceability						
CN9	2	Computer programming						
CN10	2	Assembly						
		Cost						
CN11	0	Lowcost						

Importance: 10 = Highest Importance

0 = Lowest Importance

Engr. Spec. #	Importance	Source	Specification (description)	Unit of Measure	Marginal Value	Ideal Value	Comments/Status	
ES1	2	Weight	The overall weight of the system compared to non-adjustable	1 bs	4.0	1.85	Current system 1.478 lbs	
ES2	1	Performance	The reduction of lap times due to system performance	sec	1	2	Will vary depending on event	
ES3	3	Fuel Economy	The impact this system has on fuel consumption	1bs/hr	0	-2		
ES4	7	anufacturing Tin	Time required to produce a working unit	days	20	10		
ES5	5	Current Draw	Current required by the system to operate	amps	5	1		
ES6	4	Actuation Time	Time required to change position	milliseconds	200	100		
ES8	5	Voltage Draw	Voltage required to produce a working system	volts	12	12		

Concept Screening

Concept Screening							
	2-Stroke	Infinitely					
Selection Criteria							
Volumetric Efficiency							
Increased Air Inductance	+	+					
Fuel Efficiency							
Optimized usage of race fuel	+	+					
Power/Torque							
Increased HP Output	+	+					
Increased Torque Output	+	+					
Drivability							
Ease of length of change while driving	-	+					
Weight							
No significant weight gain	0	0					
Reliability							
Lowmaintenance	0	0					
Manufacturability							
Simplistic	+	-					
Serviceability							
Computer programming	+	-					
Assembly	+	-					
Cost							
Lowcost	0	0					
Sum +'s	7	5					
Sum 0's	2	2					
Sum -'s	1	3					
Net Score	6	2					
Rank	1	2					

Based on the customer needs, the best intake system for the race car is the two-position as it allows for a greater number of benefits compared to an infinitely variable system given the time frame, tools and manufacturing capabilities available.

Budget

Product	Manufacturer	Part Number	Unit Price	Quantity	Total Price	Comments		
Testing and Verification								
Testing Materials								
93 Octane Fuel	-	-	\$ 3.00	20	\$ 60.00	gallons		
100 Octase Fuel	-	-	\$ 6.00	20	S 120.00	gallons		
Tires	Competition Tire East	D2696	\$ 180.00	4	\$ 720.00	Goodyear Tires		
Miscellaneous Dyno Materials	-	-	-	-	-			
Thermocouples	Omega	KMQSS-062U-6	\$ 26.00	8	\$ 208.00			
		Манц	facturing and Assembly	7				
Electric Actuation								
Electric Solenoid	Allied Electronics	Ledex 195204-230	\$ 19.97	3	\$ 59.91	2 for testing, 1 for manufacturing		
Extension Spring	McMaster-Carr	9657K33	\$ 6.86	1	\$ 6.86	Package of 12		
Рня гонайс Аспиайон								
Three Way Solenoid	Skinner	3131BBN1EN00RRT1J1C1	\$ 57.50	2	\$ 115.00	Three Way Valve		
Pneumatic Cylinder	Bimba	010.5-NRBNT	\$ 20.15	2	\$ 40.30	Single Acting .5" Stroke, non rotating, 7/16 bore		
Pressure Regulator	Parker	14R110C	\$ 18.99	1	\$ 18.99			
System Materials								
Altominum Plate	McMaster Carr	8975K439	\$ 10.94	2	\$ 21.88	Size: 0.25 x 6 x 12, for Base Flange		
Aluminum Tube	McMaster Carr	89965K123	\$ 18.18	1	\$ 18.18	Size: 1.5 x 0.035 x 36, for Static Runners		
Aluminum Sheet	McMaster Carr	89015K14	\$ 12.63	1	\$ 12.63	Size: 0.050 x 12 x 12, for Plenum Shell		
Aluminum Sheet	McMaster Carr	89015K18	\$ 26.29	1	\$ 26.29	Size: 0.125 x 12 x 12, for Plenum Base		
ABS Plastic Rod	McMaster Carr	8587K52	\$ 57.57	1	\$ 57.57	Size: 3 Round x 12, for Diverter		
ABS Plastic Rod	McMaster Carr	8587K49	\$ 22.53	2	\$ 45.06	Size: 2 Round x 12, for Dynamic Runners		
Miscellaneous System Materials								
Air Filter	K&N Filters	RU-0981	\$ 29.99	1	\$ 29.99	Size: 2 Round x 12, for Dynamic Runners		
			Total		\$ 1,391.26			
			Maximum '	Maximum Total				
			Balance	,	\$ 108.74			
	Purchased	·				·i		

Purchased

To Be Purchased

To Be Returned

Risks Please see handout for list

Solenoid Force Curve

Typical Force @ 20°C

Testing Equipment

Test Equipment available

Machine shop equipment DC Dynamometer Chassis Dynamometer Honda CBR 600 test engine RIT FSAE race car Electronic test equipment Computers

Test Equipment needed but not available

Advanced Vehicle based data acquisition system (DAQ)

Testing

Sub-System Breakdown

- Mechanical System
- The mechanical system is comprised of the sliding interface that allows the change in runner length and the plenum that the runners interact with. This system must allow for the desired change in length, not leak, maintain desired plenum volume, and comply with the FSAE rulebook.
- Actuation System
- The actuation system will move the mechanical system based on inputs from the control system. Actuation speed is critical for this application as transient times must be kept under 100ms. This system must also be able to gauge the system's location.
- Control System
- The controls for this system will be fully integrated into the engine control unit (ECU) for the vehicle. Using inputs such as RPM, throttle position, manifold pressure and current runner length the control system will output a desired runner length to be achieved by the actuation system.
- Supporting Systems
- The variable intake will interface with the engine on one end and a throttle/ restrictor assembly on the other. Sufficient information on the flow characteristics of the throttle/ restrictor assembly will be needed to design and tune this system.
- The electrical requirements of the actuation system will be provided by the vehicle's stator. There is a limited amount of power available from this system, which must be taken into account.

Current Draw Analysis

Component	Max Limits (A)	Duty Cycle	Average (A)
Motec and Sensors	2.5	1	2.5
MW Power	6	1	6
Dash	2	1	2
Brake Light	0.5	0.2	0.1
Fuel Pump	5.4	1	5.4
Fan	7.4	1	7.4
Shift Solenoids	0.5	0.2	0.1
TCMX	1	1	1
Wheel Speed Sensors	0.8	1	0.8
Intake Actuation System	0.5	0.5	0.25
Totals	26.6	7.9	25.55

Preliminary Testing Results

To find the runner lengths that achieved the best possible torque and horsepower, we modified a previous intake into our first prototype so that the runner length was adjustable. Testing was performed at inch increments from 6" through 12". As you can see from the graph above, the best resulting lengths are 12", 11" and 9". Using this data, a second prototype was created.

Preliminary Testing Results

To mimic a two position system with the desired torque and horsepower peaks, we modified an existing plenum to fit the extending runners with an adjustable gap. When the intake was in long mode, the gap was closed and the total runner length was 12 inches. When the intake was in short mode, the gap was open and the total runner length was 9 inches. The open gap length was tested a multiple length in order to determine differences in yielding horsepower and torque. As a result the optimal gap length to be used in the final design is 0.5 inches.

Packaging: The geometry of the chassis, as well as the governing rulebook, defines the packaging area for the intake system. The intake must lie within the area outlined below.

Intake System without Spike to Direct Flow into Runners

Intake System with Spike to Direct Flow into Runners

CFD Analysis

CFD Analysis

Electrical Integration and Assembly

Electrical Integration and Assembly

Intake System Design

Intake Actuation Map

Next Steps...Manufacturing

Rapid Prototyping

Composites

Aluminum

Next Steps...Dynamometer and Car Testing

Senior Design Team MSD II		Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
Tasks										
Finish Assembling Final Intake System										
Tune and Test Final Intake System on Dyno										
Integrate Intake System onto Race Car										
On Car Testing										
Prepare for Customer Review and Verification										
Work with Customer to Exemplify Final Intake Performance Capabilites										

