Estimation questions

1. To go to the mountain top I use a gondola lift in the morning. I go back from the top using the same gondola lift in the evening. Cabins are numbered from 1 to a.

I have noticed that the absolute difference of cabin numbers of my two trips was 10.

- (a) Estimate a using maximum likelihood.
- (b) Estimate a using method of moments.
- 2. Random variables $X_1, X_2, ..., X_n$ are independent identically distributed with density

$$f(x_i \mid \lambda, a) = \frac{\lambda}{2} \exp(-\lambda |x_i - a|).$$

Observed values for n = 3 are -3, 1, 11.

- (a) Estimate λ using method of moments for fixed a=1.
- (b) Estimate λ and a using maximum likelihood.
- 3. Random variables $X_1, ..., X_n$ are independent and normally distributed $\mathcal{N}(1, 1/b)$.
 - (a) Estimate b using maximum likelihood.
 - (b) Does the estimator achive the Cramer-Rao lower bound?
 - (c) Is the estimator consistent?
 - (d) Is the estimator unbiased?
- 4. Random variables $X_1, X_2, ..., X_n$ are independent identically distributed with density

$$f(x_i \mid \lambda) = \frac{\lambda}{2} \exp(-\lambda |x_i|).$$

For n=100 I have 40 negative values with sum equal to -300 and 60 positive values with sum equal to 500.

- (a) Test the hypothesis $\lambda = 1$ using LR approach at significance level $\alpha = 0.01$.
- (b) Test the hypothesis $\lambda = 1$ using LM approach at significance level $\alpha = 0.01$.

Distribution questions

- 5. I have three problems in the home assignment. Time spent on each problem is modelled by independend exponentially distributed random variables with rate λ : X_1 , X_2 , X_3 .
 - (a) Find the moment generating function of X_i and hence the moment generating function of $S = X_1 + X_2 + X_3$.
 - (b) Find $\mathbb{E}(S^3)$.
 - (c) Find the joint density of $R = X_1/(X_1 + X_2 + X_3)$ and S.
- 6. I have 100 numbers written on small sheets of paper: $x_1, x_2, ..., x_{100}$. The sum of these numbers is 1. Find the possible values of the sum

$$\frac{x_1}{\sqrt{1-x_1}} + \frac{x_2}{\sqrt{1-x_2}} + \ldots + \frac{x_{100}}{\sqrt{1-x_{100}}}.$$

Hint: consider a randomly selected number *X* and apply the Jensen's inequality.