EE 660

MACHINE LEARNING FROM SIGNALS: FOUNDATIONS AND METHODS

Prof. B. Keith Jenkins

Lecture 24

Lecture 24 EE 660 Nov 12, 2020

Announcements

Homework 9 will be posted

Today's topics

- Unsupervised learning (USL) (part 2)
 - Expectation Maximization (EM)
 - Mixture models in USL
 - EM algorithm and equations
 - Example
 - Similarity and dissimilarity measures for clustering

Mixture Models for USL

- · Model each cluster as a pdf with unknown parameters
 - o usually for continuous features x; ∈ R

$$P(x|z=2)$$

$$P(x|z=2)$$

$$P(x|z=3)$$

$$P(x|z=3)$$

$$X = P.L.$$

•
$$p(x|\theta) = \sum_{k=1}^{K} p(x|z=k,\theta) p(z=k|\theta)$$
, $z = cluster index (label)$
 $mixture$ use $\theta_k = parameters for cluster k$

(1)
$$p(\underline{x}|\underline{\theta}) = \sum_{k=1}^{K} \pi_k p(\underline{x}|\underline{z}=k,\underline{\theta}_k)$$
, with $\sum_{k=1}^{K} \pi_k = 1$

our model for cluster k
prior or mixing paramter (weight) for cluster k.

- · Goal: find MLE of Q, or Ok for k=1,2, ..., K
 - · Likelihood: $p(D|D) = \prod_{i=1}^{N} p(x_i|D)$
 - · Generally not solvable analytically => Use EM

EM for Clustering Using Mixture Models

· Same basic algorithm as EM for SSL

Let
$$D = \{ \underline{\gamma}_i \}_{i=1}^N$$
, $\mathcal{H} = \{ \underline{z}_i \}_{i=1}^N$.

zi is cluster label for xi, zi∈ { 1,2, ···, k}.

- · Algorithm (EM for estimating D and H)
 - | Initialize t=0 and $\theta^{(0)}$
 - 2. Iterate (index t: 0, 1, 2, ..., T-1)

2.2 Mstep: Find
$$\underline{\theta}^{(t+1)} = \underset{\underline{\theta}}{\operatorname{argmax}} \mathbb{E}_{\mathcal{H}|\mathcal{D},\underline{\theta}^{(t)}} \{ ln p(\mathcal{D},\mathcal{H}|\underline{\theta}) \}$$

3. Output
$$\hat{\underline{\Theta}} = \underline{\Theta}^{(T)}$$

Equations for Estep

$$p(\mathcal{H}|\mathcal{J},\underline{\theta}) = \prod_{i=1}^{N} p(\mathbf{z}_{i}|\mathbf{z}_{i},\underline{\theta})$$

$$p(\mathbf{z}_{i}|\mathbf{z}_{i},\underline{\theta}) = \frac{p(\mathbf{z}|\mathbf{z}_{i},\underline{\theta}_{k}) p(\mathbf{z}_{i}|\mathbf{x}_{k})}{\sum_{k'=1}^{K} p(\mathbf{z}|\mathbf{z}_{i}|\mathbf{x}_{k'}) p(\mathbf{z}_{i}|\mathbf{x}_{k'})} p(\mathbf{z}_{i}|\mathbf{x}_{k'})$$

$$\Rightarrow soft label (responsibility) \begin{cases} (t) = p(\mathbf{z}_{i}|\mathbf{x}_{i},\underline{\theta}_{k'}) \\ ik = p(\mathbf{z}_{i}|\mathbf{x}_{i},\underline{\theta}_{k'}) \end{cases}$$
Equations for M step

The sum our model

$$\sum_{k'=1}^{K} p(\mathbf{z}_{i}|\mathbf{z}_{i}|\mathbf{x}_{k'}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i})$$

$$= \sum_{k'=1}^{K} p(\mathbf{z}_{i}|\mathbf{z}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i})$$

$$= \sum_{k'=1}^{K} p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i})$$

$$= \sum_{k'=1}^{K} p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i})$$

$$= \sum_{k'=1}^{K} p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}) p(\mathbf{z}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i}|\mathbf{x}_{i})$$

$$P(x, 24 | \underline{\theta}) = \prod_{i=1}^{N} P(\underline{x}_{i}, \underline{z}_{i} | \underline{\theta}) = \prod_{i=1}^{N} P(\underline{x}_{i} | \underline{z}_{i}, \underline{\theta}) P(\underline{z}_{i} | \underline{\theta})$$

$$= \prod_{i=1}^{N} P(\underline{x}_{i}, \underline{z}_{i} | \underline{\theta}) = \prod_{i=1}^{N} P(\underline{x}_{i} | \underline{z}_{i}, \underline{\theta}) P(\underline{z}_{i} | \underline{\theta})$$

for z=k: p(z; |z=k, bk) 11/k

our model

$$\neg \underline{\theta}^{(t+1)} = \underset{\underline{\theta}}{\operatorname{argmax}} \left\{ \underbrace{\geq}_{\mathcal{H}} P(\mathcal{H} | \mathcal{D}, \underline{\theta}^{(t)}) \operatorname{ln}_{\mathcal{P}} (\mathcal{D}, \mathcal{H} | \underline{\theta}) \right\}$$

Comments

1. Algorithm characteristics - same as for SSL EM.

2. Choice of O(0) if no prior knowledge?

- · Use a simpler clustering algorithm (e-g., Kmeans), then use its resulting clusters to calculate $\theta^{(0)}$ for EM. or o Try many different (random) $\theta^{(0)}$; compare the results
- using $p(D|\underline{\Theta})$.
- 3. Quality of clustering result depends on how appropriate the model is for the data.

Example

"Old Faithful" geyser.

Old Faithful Data

Time to next eruption (minutes) vs. duration of eruption (minutes)

Gaussian mixture model (GMM) using EM, K=2.

$$p(\underline{x}|\underline{\theta}) = \sum_{k=1}^{2} p(\underline{x}|z=k,\underline{\theta}_{k}) p(z=k|\underline{\theta}_{k}) = \sum_{k=1}^{2} N(\underline{x}|\underline{\mu}_{k}) \underline{\xi}_{k}) \pi_{k}$$

Algorithm steps

(a)
$$\theta^{(0)}$$
: $\leq_{z=1}^{(0)} = \leq_{z=2}^{(0)} = \frac{1}{z}$, $\mu_{k}^{(0)}$ is shown,

(b) First E step result:
$$Y_{ik}^{(0)} = p(z_i = k \mid \underline{x}_i, \underline{\theta}_k^{(0)})$$

blue ink \underline{x} \underline{y} \underline{y} \underline{y} red ink \underline{x} \underline{y} \underline{y}

From Murphy Fig. 11.11

Similarity and Dissimilarity Measures

Need measures for similarity or dissimilarity between:

- \rightarrow o 2 points x_i, x_j .

 o A point and a cluster

 - · 2 clusters

Need measure for quality of a partitioning [difficult problem]

Let $\Delta(x_i, x_{i'}) = d_{ii'}$ denote a dissimilarity function

Can use a distance function, e.g.;

$$\Delta(x_{i}, x_{i'}) = d_{ii'} = \sum_{j=1}^{D} \Delta_{j} (x_{ij}, x_{i'j})$$

$$\Delta_{j} (x_{ij}, x_{i'j}) \text{ can be: } (x_{ij} - x_{i'j})^{2} \text{ (Eucl. dist.)}^{2}$$

$$|x_{ij} - x_{i'j}| \text{ (l_{i} norm)}$$

or city block dist. or Manhattan dist.) For nominal features (symbolic, categorical, or labels):

 $\Delta(x_{ij}, x_{i'j}) = \# \text{ of features that are different}$ $= \underbrace{\sum_{j=1}^{n} I(x_{ij} \neq x_{i'j})}_{j=1}$

= Hamming distance.

Can let $\Delta(\underline{x}_i, \underline{x}_{i'}) = +$ his or some other $d_{ii'}$, s.t. $d_{ii'} \geq 0 + i$, i' and $d_{ii} = 0 + i$.

or $f(d_{ii'})$, f = any monotonically increasing f cn.