EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Tuesday, Jan 2 2020

Lecture 2 Randomized Linear Algebra Approximate Matrix Multiplication

Randomized Algorithms

- algorithms that employ a degree of randomness to guide its behavior
- we hope to achieve good performance in the average case
- ▶ the algorithm's performance is a random variable

Randomized Algorithms

Are approximations satisfactory?

- depends on the application
- often acceptable for minimizing training error up to statistical precision
- implicit regularization effect
- when not satisfactory, they can be used as initializers for exact and costly methods
- moreover, exact methods might not work at all for very large scale problems

- \triangleright X : discrete random variable taking values $x_1,...,x_n$
- ightharpoonup Expectation $\mathbb{E}[X]$

$$\mathbb{E}[X] = \sum_{i} x_{i} \mathbb{P}[X = x_{i}]$$

- Properties: linearity
- $ightharpoonup \mathbb{E}[cX] = c\mathbb{E}[X]$ where c is a constant
- ▶ $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$ where X and Y are two random variables

Variance

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

► Var[X] =
$$\mathbb{E}[X^2] - 2\mathbb{E}[X\mathbb{E}X] + \mathbb{E}[\mathbb{E}[X]^2]$$

= $\mathbb{E}[X^2] - \mathbb{E}[X]^2$

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

- Variance properties
- ▶ $Var[cX] = c^2Var[X]$ where c is a constant

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$
$$= \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

- Variance properties
- ▶ $Var[cX] = c^2Var[X]$ where c is a constant
- ▶ $\operatorname{Var}[X + Y] = \mathbb{E}(X + Y)^2 (\mathbb{E}[X] + \mathbb{E}[Y])^2 = \mathbb{E}[X^2] \mathbb{E}[X]^2 + \mathbb{E}[Y^2] \mathbb{E}[Y]^2 + 2(\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y])$
- ▶ Var[X + Y] = Var[X] + Var[Y] for X, Y uncorrelated $(\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y])$
- independence implies uncorrelatedness

- Averaging independent realizations reduce variance
 Let X₁ and X₂ be independent and identically distributed
- ► $Var[\frac{X_1+X_2}{2}] = \frac{1}{4}Var[X_1+X_2]$ = $\frac{1}{4}(Var[X_1] + Var[X_2]) = \frac{1}{2}Var[X_1]$

Deterministic counting

```
\label{eq:Set_counter} \mbox{Set counter} = 0 \\ \mbox{Increment counter} \leftarrow \mbox{counter} + 1 \mbox{ for every item}
```

▶ space complexity is $log_2(n)$ bits for n items

▶ Deterministic counting

```
\label{eq:Set_counter} \mbox{Set counter} = 0 \\ \mbox{Increment counter} \leftarrow \mbox{counter} + 1 \mbox{ for every item}
```

- ightharpoonup space complexity is $\log_2(n)$ bits for n items
- Approximate randomized counting keep only the exponent to reduce space.
- ► For example, in base 2, the counter can estimate the count to be 1, 2, 4, 8, 16, 32, and all of the powers of two.

Deterministic counting

```
\label{eq:Set_counter} \begin{center} Set counter = 0 \\ Increment counter \leftarrow counter + 1 \end{center} \ \ term \end{center}
```

- ightharpoonup space complexity is $\log_2(n)$ bits for n items
- Approximate randomized counting keep only the exponent to reduce space.
- ► For example, in base 2, the counter can estimate the count to be 1, 2, 4, 8, 16, 32, and all of the powers of two.
- flip a coin the number of times of the counter's current value. If it comes up Heads each time, then increment the counter. Otherwise, do not increment it.
- ▶ space complexity is $log_2 log_2(n)$ bits for n items

Approximate randomized counting

Set
$$X=0$$
 Increment $X \leftarrow X+1$ with probability 2^{-X} for every item. Output $\tilde{n}=2^X-1$

▶ space complexity is $log_2 log_2(n)$ bits for n items

Approximate randomized counting

Set
$$X=0$$
 Increment $X \leftarrow X+1$ with probability 2^{-X} for every item. Output $\tilde{n}=2^X-1$

▶ space complexity is $log_2 log_2(n)$ bits for n items

Lemma 1
$$\mathbb{E}\tilde{n} = \mathbb{E}2^X - 1 = n$$
 (Unbiased) $\operatorname{Var}[\tilde{n}] \leq \frac{1}{2}n^2$

- Variance can be reduced by averaging multiple trials
- $\tilde{n}_1, ..., \tilde{n}_r$ i.i.d. trials, $\mathbf{Var}(\frac{1}{r} \sum_{i=1}^r n_i) = \frac{1}{r} \mathbf{Var}(\tilde{n}_1)$ Morris's Algorithm (1977)

A randomized counting application

From Estan-Varghese-Fisk: traces of attacks Need number of active connections in time slices.

Incoming/Outgoing flows at 40Gbits/second.

Code Red Worm: 0.5GBytes of compressed data per hour (2001).

CISCO: in 11 minutes, a worm infected 500,000,000 machines.

slide credit: Flajolet

Classical Matrix Multiplication Algorithm

Let $A \in R^{n \times d}$ and $B \in R^{d \times p}$

$$(AB)_{ij} = \sum_{k=1}^d A_{ik} B_{kj}$$

Classical Matrix Multiplication Algorithm

Let $A \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{d \times p}$

$$(AB)_{ij} = \sum_{k=1}^{d} A_{ik} B_{kj}$$

Algorithm 2 Vanilla three-look matrix multiplication algorithm

Input: An $n \times d$ matrix A and an $d \times p$ matrix B

Output: The product *AB*

- 1: **for** i = 1 to n **do**
- 2: **for** j = 1 to p **do**
- 3: $(AB)_{ij} = 0$
- 4: **for** k = 1 to d **do**
- 5: $(AB)_{ij} += A_{ik}B_{kj}$
- 6: **end for**
- 7: end for
- 8: end for

Classical Matrix Multiplication Algorithm

Let $A \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{d \times p}$

$$(AB)_{ij} = \sum_{k=1}^d A_{ik} B_{kj}$$

Algorithm 3 Vanilla three-look matrix multiplication algorithm

Input: An $n \times d$ matrix A and an $d \times p$ matrix B

Output: The product *AB*

- 1: for i = 1 to n do
- 2: **for** j = 1 to p **do**
- 3: $(AB)_{ij} = 0$
- 4: **for** k = 1 to d **do**
- 5: $(AB)_{ij} + = A_{ik}B_{kj}$
- 6: **end for**
- 7: end for
- 8: end for
 - Complexity: O(ndp)

Faster Matrix Multiplication

Square matrix multiplication n = d = p

- ► Classical $O(n^3)$
- ► Strassen (1969) $O(n^{2.8074})$
- ► Coppersmith-Winograd (1990) $O(n^{2.376})$
- Vassilevska Williams (2013) $O(n^{2.3728642})$
- ► Le Gall (2014) $O(n^{2.3728639})$
- ▶ J. Alman and V. Williams (December 2020) $O(n^{2.3728596})$

Faster Matrix Multiplication

Square matrix multiplication n = d = p

- ► Classical $O(n^3)$
- ► Strassen (1969) $O(n^{2.8074})$
- ► Coppersmith-Winograd (1990) $O(n^{2.376})$
- ▶ Vassilevska Williams (2013) $O(n^{2.3728642})$
- Le Gall (2014) $O(n^{2.3728639})$
- ▶ J. Alman and V. Williams (December 2020) $O(n^{2.3728596})$ The greatest lower bound for the exponent of matrix multiplication algorithm is generally called ω .
- ▶ $2 \le \omega$ because one has to read all the n^2 entries and hence $2 \le \omega < 2.373$
- \blacktriangleright it is unknown whether $2 < \omega$

Faster Matrix Multiplication

Square matrix multiplication n = d = p

- ightharpoonup Classical $O(n^3)$
- ► Strassen (1969) $O(n^{2.8074})$
- ► Coppersmith-Winograd (1990) $O(n^{2.376})$
- ▶ Vassilevska Williams (2013) $O(n^{2.3728642})$
- Le Gall (2014) $O(n^{2.3728639})$
- ▶ J. Alman and V. Williams (December 2020) $O(n^{2.3728596})$ The greatest lower bound for the exponent of matrix multiplication algorithm is generally called ω .
- ▶ $2 \le \omega$ because one has to read all the n^2 entries and hence $2 \le \omega < 2.373$
- \blacktriangleright it is unknown whether $2 < \omega$
- some are galactic algorithms (Lipton and Regan)
 only of theoretical interest and impractical due to large constants

Strassen showed 1 how to use 7 scalar multiplies for 2×2 matrix multiplication

$$\left[\begin{array}{cc} C_{11} & C_{12} \\ C_{21} & C_{22} \end{array}\right] = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right] \left[\begin{array}{cc} B_{11} & B_{12} \\ B_{21} & B_{22} \end{array}\right]$$

classical algorithm

$$M_1 = A_{11}B_{11}$$

$$M_2 = A_{12}B_{21}$$

$$M_3 = A_{11}B_{12}$$

$$M_4 = A_{12}B_{22}$$

$$M_5 = A_{21}B_{11}$$

$$M_6 = A_{22}B_{21}$$

$$M_7 = A_{21}B_{12}$$

$$M_8 = A_{22}B_{22}$$

$$C_{11} = M_1 + M_2$$

$$C_{12} = M_3 + M_4$$

$$C_{21} = M_5 + M_6$$

$$C_{22} = M_7 + M_8$$

Strassen's algorithm

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_2 = (A_{21} + A_{22})B_{11}$$

$$M_3 = A_{11}(B_{12} - B_{22})$$

$$M_4 = A_{22}(B_{21} - B_{11})$$

$$M_5 = (A_{11} + A_{12})B_{22}$$

$$M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$$

$$M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$C_{11} = M_1 + M_4 - M_5 + M_7$$

$$C_{12} = M_3 + M_5$$

$$C_{21} = M_2 + M_4$$

$$C_{22} = M_1 - M_2 + M_3 + M_6$$

¹V. Strassen, Gaussian Elimination is not Optimal, 1969

Classical Matrix Multiplication vs Strassen's Method and others

- ► The constants in fast matrix multiplication methods are high and for a typical application the classical method works better.
- ▶ The submatrices in recursion take extra space.
- ► Because of the limited precision of computer arithmetic on noninteger values, larger errors accumulate

Time comparison: Classical vs Strassen Matrix Multiplication

Matrix Multiplication on High-Density Multi-GPU Architectures: Theoretical and Experimental Investigations. Zhang and Gao. 2015

- ▶ For a matrix $A \in \mathbb{R}^{n \times d}$
- $lackbox{A}^{(j)} \in \mathbb{R}^{n \times 1}$ denotes the j-th column of A as a column vector
- $lackbox{A}_{(i)} \in \mathbb{R}^{1 \times d}$ denotes *i*-th row of A is a row vector

- ▶ For a matrix $A \in \mathbb{R}^{n \times d}$
- $lackbox{A}^{(j)} \in \mathbb{R}^{n \times 1}$ denotes the j-th column of A as a column vector
- ▶ $A_{(i)} \in \mathbb{R}^{1 \times d}$ denotes *i*-th row of A is a row vector

$$\blacktriangleright A = \left[A^{(1)} \dots A^{(d)} \right]$$

- ▶ for a vector $x \in \mathbb{R}^n$
- $\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ denotes its Euclidean length (ℓ_2 -norm)

- ▶ for a vector $x \in \mathbb{R}^n$
- $\|x\|_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$ denotes its Euclidean length $(\ell_2\text{-norm})$
- ▶ for a matrix $A \in \mathbb{R}^{n \times d}$
- $ightharpoonup \|A\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^d |A_{ij}|^2}$ is the Frobenius norm
- ▶ $||A||_F = ||\mathbf{vec}(A)||_2$ where \mathbf{vec} reshapes A into an $nd \times 1$ vector

Approximate Matrix Multiplication by random sampling

matrix multiplication formula

$$(AB)_{ij} = \sum_{k=1}^{d} A_{ik} B_{kj} = A_{(i)} B^{(j)}$$

 $ightharpoonup A_{(k)}B^{(k)}$ are inner products

Approximate Matrix Multiplication by random sampling

matrix multiplication formula

$$(AB)_{ij} = \sum_{k=1}^{d} A_{ik} B_{kj} = A_{(i)} B^{(j)}$$

- $ightharpoonup A_{(k)}B^{(k)}$ are inner products
- same formula as a sum of outer products

$$AB = \sum_{k=1}^{d} A^{(k)} B_{(k)}$$

 \triangleright $A^k B_k$ are rank-1 matrices

Approximate Matrix Multiplication by random sampling

matrix multiplication as sum of outer products

$$AB = \sum_{k=1}^{d} A^{(k)} B_{(k)}$$

▶ **basic idea**: sample m indices $i_1, ..., i_m \in \{1, ..., d\}$

$$AB \approx^? \sum_{t=1}^m A^{(i_t)} B_{(i_t)}$$

Required probability background

- ▶ Probability, events, random variables
- Expectation, variance, standard deviation
- Conditional probability, independence

A probability refresher will be posted on the course webpage

Approximate Matrix Multiplication by weighted sampling

matrix multiplication as sum of outer products

$$AB = \sum_{k=1}^{d} A^{(k)} B_{(k)}$$

- ▶ weighted sampling: sample m indices $i_1, ..., i_m \in \{1, ..., d\}$ independently with replacement such that
- ▶ $\mathbb{P}[i_t = k] = p_k$ for all t $p_1, ..., p_d$ is a discrete probability distribution

$$AB \approx \frac{1}{m} \sum_{t=1}^{m} \frac{1}{p_{i_t}} A^{(i_t)} B_{(i_t)}$$

Approximate Matrix Multiplication by weighted sampling

- ▶ weighted sampling: sample m indices $i_1, ..., i_m \in \{1, ..., d\}$ independently with replacement such that
- $ightharpoonup \mathbb{P}[i_t = k] = p_k \text{ for all } t$

$$AB \approx \frac{1}{m} \sum_{t=1}^{m} \frac{1}{p_{i_t}} A^{(i_t)} B_{(i_t)}$$

$$\blacktriangleright \mathbb{E}\left[\frac{1}{m}\sum_{t=1}^{m}\frac{1}{p_{i_t}}A^{(i_t)}B_{(i_t)}\right]=$$

Approximate Matrix Multiplication by weighted sampling

yields a smaller matrix multiplication problem

$$AB \approx \frac{1}{m} \sum_{t=1}^{m} \frac{1}{p_{i_t}} A^{(i_t)} B_{(i_t)} \triangleq CR$$

$$\blacktriangleright \ \ C = \left[\begin{array}{ccc} \frac{1}{\sqrt{mp_{i_1}}} A^{(i_1)} & \dots & \frac{1}{\sqrt{mp_{i_m}}} A^{(i_m)} \end{array} \right]$$

Approximate Matrix Multiplication

Algorithm 4 Approximate Matrix Multiplication via Sampling

Input: An $n \times d$ matrix A and an $d \times p$ matrix B, an integer m and probabilities $\{p_k\}_{k=1}^d$

Output: Matrices CR such that CR \approx AB

- 1: **for** t = 1 to m **do**
- 2: Pick $i_t \in \{1,...,d\}$ with probability $\mathbb{P}[i_t = k] = p_k$ in i.i.d. with replacement
- 3: Set $C^{(t)} = \frac{1}{\sqrt{mp_{i_t}}} A^{(i_t)}$ and $R_{(t)} = \frac{1}{\sqrt{mp_{i_t}}} B_{(i_t)}$
- 4: end for

Approximate Matrix Multiplication

Algorithm 5 Approximate Matrix Multiplication via Sampling

Input: An $n \times d$ matrix A and an $d \times p$ matrix B, an integer m and probabilities $\{p_k\}_{k=1}^d$

Output: Matrices CR such that CR \approx AB

- 1: **for** t = 1 to m **do**
- 2: Pick $i_t \in \{1,...,d\}$ with probability $\mathbb{P}[i_t = k] = p_k$ in i.i.d. with replacement
- 3: Set $C^{(t)} = \frac{1}{\sqrt{mp_{i_t}}} A^{(i_t)}$ and $R_{(t)} = \frac{1}{\sqrt{mp_{i_t}}} B_{(i_t)}$
- 4: end for
- ▶ We can multiply *CR* using the classical algorithm
- ► Complexity *O*(*nmp*)

Sampling probabilities

▶ Uniform sampling $p_k = \frac{1}{d}$ for all k = 1, ..., m.

$$AB \approx \frac{1}{m} \sum_{t=1}^{m} \frac{1}{d^{-1}} A^{(i_t)} B_{(i_t)} \triangleq CR$$

AMM mean and variance

$$AB \approx CR = \frac{1}{m} \sum_{t=1}^{m} \frac{1}{p_{i_t}} A^{(i_t)} B_{(i_t)}$$

- Mean and variance of the matrix multiplication estimator Lemma 2
- $\blacktriangleright \mathbb{E}\left[(CR)_{ij}\right] = (AB)_{ij}$
- ► Var $[(CR)_{ij}] = \frac{1}{m} \sum_{k=1}^{d} \frac{A_{ik}^2 B_{kj}^2}{\rho_k} \frac{1}{m} (AB)_{ij}^2$

AMM mean and variance

$$AB \approx CR = \frac{1}{m} \sum_{t=1}^{m} \frac{1}{p_{i_t}} A^{(i_t)} B_{(i_t)}$$

- Mean and variance of the matrix multiplication estimatorLemma 2
- $\blacktriangleright \mathbb{E}\left[(CR)_{ij}\right] = (AB)_{ij}$
- ► Var $[(CR)_{ij}] = \frac{1}{m} \sum_{k=1}^{d} \frac{A_{ik}^2 B_{kj}^2}{p_k} \frac{1}{m} (AB)_{ij}^2$
- $\mathbb{E}\|AB CR\|_F^2 = \sum_{ij} \mathbb{E}(AB CR)_{ij}^2 = \sum_{ij} \mathbf{Var}[(CR)_{ij}]$ $= \frac{1}{m} \sum_{k=1}^d \frac{\sum_i A_{ik}^2 \sum_j B_{kj}^2}{p_k} \frac{1}{m} \|AB\|_F^2$ $= \frac{1}{m} \sum_{k=1}^d \frac{1}{p_k} \|A^{(k)}\|_2^2 \|B_{(k)}\|_2^2 \frac{1}{m} \|AB\|_F^2$

Uniform sampling guarantees

▶ $p_k = \frac{1}{d}$ for k = 1, ..., d

$$AB \approx CR = \frac{d}{m} \sum_{t=1}^{m} A^{(i_t)} B_{(i_t)}$$

- ▶ We can choose sampling set before looking at data (oblivious)
- AMM algorithm can be performed in one pass over data

$$\mathbb{E}\|AB - CR\|_F^2 = \frac{d}{m} \sum_{k=1}^d \|A^{(k)}\|_2^2 \|B_{(k)}\|_2^2 - \frac{1}{m} \|AB\|_F^2$$

Optimal sampling probabilities

▶ Optimal sampling probabilities to minimize $\mathbb{E}||AB - CR||_F$ i.e., sum of variances

$$\begin{split} & \min_{\substack{p_1, \dots, p_d \geq 0 \\ \sum p_k = 1}} \mathbb{E} \|AB - CR\|_F \\ &= \min_{\substack{p_1, \dots, p_d \geq 0 \\ \sum p_k = 1}} \frac{1}{m} \sum_{k=1}^d \frac{1}{p_k} \|A^{(k)}\|_2^2 \|B_{(k)}\|_2^2 - \frac{1}{m} \|AB\|_F^2 \end{split}$$

Optimal sampling probabilities

Let $q_1,...,q_d \in \mathbb{R}$ given

$$\min_{\substack{p_1,\dots,p_d\geq 0\\\sum p_k=1}}\sum_{k=1}^d\frac{q_k^2}{p_k}$$

lacktriangle introduce a Lagrange multiplier for the constraint $\sum p_k = 1$

Optimal sampling probabilities

Nonuniform sampling

$$p_k = \frac{\|A^{(k)}\|_2 \|B^{(k)}\|_2}{\sum_i \|A^{(k)}\|_2 \|B^{(k)}\|_2}$$

- ▶ minimizes $\mathbb{E}||AB CR||_F$
- $\mathbb{E}\|AB CR\|_F^2 = \frac{1}{m} \sum_{k=1}^d \frac{1}{p_k} \|A^{(k)}\|_2^2 \|B_{(k)}\|_2^2 \frac{1}{m} \|AB\|_F^2$

$$= \frac{1}{m} \left(\sum_{k=1}^{d} \|A^{(k)}\|_2 \|B_{(k)}\|_2 \right)^2 - \frac{1}{m} \|AB\|_F^2$$

is the optimal error

Special case: computing A^TA

► Nonuniform sampling

$$p_k = \frac{\|A_{(k)}\|_2^2}{\sum_i \|A_{(k)}\|_2}$$

► minimizes $\mathbb{E}||A^TA - CR||_F$ note that $C = R^T$

Probability Bounds

- ▶ So far we have results on the expectation of the error
- ► Markov's Inequality
- ▶ If Z is a non-negative random variable and t > 0, then

$$\mathbb{P}\left[Z>t\right]\leq\frac{\mathbb{E}Z}{t}$$

Probability Bounds for AMM

► Upper-bounding the error

$$\begin{split} \mathbb{E}\|AB - CR\|_F^2 &= \frac{1}{m} \left(\sum_{k=1}^d \|A^{(k)}\|_2 \|B_{(k)}\|_2 \right)^2 - \frac{1}{m} \|AB\|_F^2 \\ &\leq \frac{1}{m} \left(\sum_{k=1}^d \|A^{(k)}\|_2 \|B_{(k)}\|_2 \right)^2 \\ &\leq \frac{1}{m} \left(\sqrt{\sum_{k=1}^d \|A^{(k)}\|_2^2} \sqrt{\sum_{k=1}^d \|B_{(k)}\|_2^2} \right)^2 \\ &= \frac{1}{m} \|A\|_F^2 \|B\|_F^2 \,. \end{split}$$

Applying Markov's inequality

Final Probability Bound

▶ For any $\delta > 0$, set $m = \frac{1}{\delta \epsilon^2}$ to obtain

$$\mathbb{P}\left[\|AB - CR\|_F > \epsilon \|A\|_F \|B\|_F\right] \le \delta \tag{1}$$

• i.e., $||AB - CR||_F < \epsilon ||A||_F ||B||_F$ with probability $1 - \delta$.

Approximating $A^T A$ rows of A are i.i.d. Gaussian

▶ Approximating A^TA rows of A are i.i.d. Student's t-distribution (3 degrees of freedom)

▶ Approximating A^TA a subset of the CIFAR dataset

► Approximating *A^TA* sparse matrix from a computational fluid dynamics model

Questions?