Model Free Reinforcement Learning

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998. (Bible for RL)
 - http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
 - Chapters 5-6
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
 - Chapters 4-5

Outline

- Model-free prediction: Estimate the value function of an unknown MDP
 - Monte-Carlo (MC) Learning
 - Temporal Difference (TD) Learning
- Model-free control: Approximate optimal policies based on the estimation of the value function.
 - On-Policy Monte-Carlo Control
 - On-Policy Temporal-Difference Learning
 - Off-Policy Learning

The purpose of this chapter:

Learn model-free RL: MC + TD

Monte-Carlo Reinforcement Learning

- MC methods learn directly from episodes of experience
- MC is model-free:
 - no knowledge of MDP transitions / rewards
- MC learns from complete episodes:
 - no bootstrapping
- MC uses the simplest possible idea:
 - value = mean return
- Caveat: can only apply MC to episodic MDPs
 - All episodes must terminate

Monte-Carlo Policy Evaluation

• Goal: learn v_{π} from episodes of experience under policy π $S_1, A_1, R_2, ..., S_T \sim \pi$

Recall that the return is the total discounted reward:

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Recall that the value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

Monte-Carlo Policy Evaluation (cont.)

- To evaluate $v_{\pi}(s)$ at state s
 - Every time-step t that state s is visited in an episode,
 - \triangleright Sometimes, we also consider the first time-step t.
 - ▶ Both converge quadratically, so this issue is ignored in this course.
 - Increment counter $N(s) \leftarrow N(s) + 1$
 - Increment total return $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return $V(s) \leftarrow S(s)/N(s)$
- By law of large numbers, $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$

Incremental Mean

The mean $\mu_1, \mu_2,...$ of a sequence $x_1, x_2,...$ can be computed incrementally,

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^k x_j \right)$$

$$= \frac{1}{k} \left(x_k + (k-1) \mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_k - \mu_{k-1} \right)$$

Incremental Monte-Carlo Updates

- Update V(s) incrementally after episode S_1 , A_1 , R_2 , ..., S_T
- For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} \left(G_t - V(S_t) \right)$$

• In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Temporal-Difference Learning

- TD methods learn directly from episodes of experience
- TD is model-free:
 - no knowledge of MDP transitions / rewards
- TD learns from incomplete episodes,
 - by bootstrapping
- TD updates a guess towards a guess

MC vs. TD

- Goal: learn v_{π} online from experience under policy π
- Incremental every-visit Monte-Carlo
 - Update value $V(S_t)$ toward actual return G_t $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$
 - $R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
 - $-\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the TD error

TD vs. MC (I)

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

Bias/Variance Trade-Off

- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
 - Return $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
 - True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on only one random action, transition, reward

MC vs. TD (II)

- MC has high variance, zero bias
 - Good convergence properties (even with function approximation)
 - Not very sensitive to initial value
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges to $v_{\pi}(s)$ (but not always with function approximation)
 - More sensitive to initial value

Batch MC and TD

- MC and TD converge: $V(s) \rightarrow v_{\pi}(s)$ as experience $\rightarrow \infty$
- But what about batch solution for finite experience?

$$s_1^1, a_1^1, r_2^1, ..., s_{T_1}^1$$

 \vdots
 $s_1^k, a_1^k, r_2^k, ..., s_{T_k}^k$

- e.g. Repeatedly sample episode $k \in [1, K]$
- Apply MC or TD(0) to episode k

AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0

B, 1

B, 1

B, 1

B, 1

B, 1

B, 1

B, 0

What is V(A), V(B)?

Both MC and TD will obtain different values!!

Certainty Equivalence

- MC converges to solution with minimum mean-squared error
 - Best fit to the observed returns

$$\sum_{k=1}^{K} \sum_{t=1}^{T_k} (G_t^k - V(s_t^k))^2$$

- In the AB example, V(A) = 0, V(B) = 0.75
- TD(0) converges to solution of max likelihood Markov model
 - Solution to the MDP $<\mathcal{S}$, \mathcal{A} , $\hat{\mathcal{P}}$, $\hat{\mathcal{R}}$, $\gamma>$ that best fits the data

$$\hat{P}_{S}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} 1(s_{t}^{k}, a_{t}^{k}, s_{t+1}^{k} = s, a, s')$$

$$\hat{\mathcal{R}}_{S}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_{k}} 1(s_{t}^{k}, a_{t}^{k} = s, a) r_{t}^{k}$$

- In the AB example, V(A) = 0.75, V(B) = 0.75

MC vs. TD (III)

- TD exploits Markov property
 - Usually more efficient in Markov environments
 - ▶ So, TD works well for MDP problems like 2048.
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments
 - ▶ MC works fine for non-MDP too.

Monte-Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

Temporal-Difference Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

General TD Learning

- Review TD
 - Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$ $V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$
 - $-R_{t+1} + \gamma V(S_{t+1})$ is called the TD target
- Question: a more general TD target?
- Investigate TD in a more general manner.
- A typical one: $TD(\lambda)$

n-Step Prediction

• Let TD target look *n* steps into the future

n-Step Return

• Consider the following *n*-step returns for $n = 1,2, \infty$

n = 1
$$G_{t}^{(1)} = R_{t+1} + \gamma V(S_{t+1})$$
n = 2
$$G_{t}^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})$$

$$\vdots$$

$$R_{t+1} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} V(S_{t+2})$$

$$\vdots$$

$$R_{t+1} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_{T}$$

Define the *n*-step return

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$$

 \bullet *n*-step temporal-difference learning

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right)$$

$$G_t^{(n)}$$

Example of Averaging n-Step Returns

- We can average n-step returns over different n
- Example:
 - average the 2-step and 4-step returns

$$\frac{1}{2}G^{(2)} + \frac{1}{2}G^{(4)}$$

- Combines information from two different time-steps
- Next:
 - combine information from all time-steps?

λ-return

- λ -return G_t^{λ} :
 - combines all *n*-step returns $G_t^{(n)}$
- Using weight $(1 \lambda) \lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

or (in the case of termination)

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t$$

Forward-view TD(λ)

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right)$$

 λ^{T-t-1}

TD(λ) Weighting Function

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Forward-view $TD(\lambda)$

- Update value function towards the λ-return
- Forward-view looks into the future to compute G_t^{λ}
- Like MC, can only be computed from complete episodes

Backward View $TD(\lambda)$

- Forward view provides theory
- Backward view provides mechanism
 - Update online, every step, from incomplete sequences

Notes:

 Consider backward (eligible traces) only when you try to implement it online. Otherwise, you can ignore it now.

Eligibility Traces

- Credit assignment problem: did bell or light cause shock?
- Frequency heuristic: assign credit to most frequent states
- Recency heuristic: assign credit to most recent states
- Eligibility traces combine both heuristics

$$E_0(s) = 0$$

$$E_t(s) = \gamma \lambda E_{t-1}(s) + 1(S_t = s)$$

accumulating eligibility trace

times of visits to a state

Backward View $TD(\lambda)$

- Keep an eligibility trace for every state s
- Update value V(s) for every state s
- In proportion to TD-error δ_t and eligibility trace $E_t(s)$

$$\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$$
$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

$TD(\lambda)$ and TD(0)

• When $\lambda = 0$, only current state is updated

$$E_t(s) = 1(S_t = s)$$

$$V(s) \leftarrow V(s) + \alpha \delta_t E_t(s)$$

• This is exactly equivalent to TD(0) update

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t$$

$TD(\lambda)$ and MC

• When $\lambda = 1$, TD(1) = MC

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-t-1} G_t = G_t$$

- Consider episodic environments with offline updates
 - Over the course of an episode, total update for TD(1) is the same as total update for MC
- Consider an episode where s is visited once at time-step k,
 - ▶ TD(1) updates accumulate error online

$$\sum_{t=1}^{T-1} \alpha \delta_t E_t(s) = \alpha \sum_{t=k}^{T-1} \gamma^{t-k} \delta_t = \alpha (G_k - V(S_k))$$

▶ By end of episode it accumulates total error

$$\delta_k + \gamma \delta_{k+1} + \gamma^2 \delta_{k+2} + \dots + \gamma^{T-1-k} \delta_{T-1}$$

Outline

- Model-free prediction: Estimate the value function of an unknown MDP
 - Monte-Carlo (MC) Learning
 - Temporal Difference (TD) Learning
- Model-free control: Approximate optimal policies based on the estimation of the value function.
 - On-Policy Monte-Carlo Control
 - On-Policy Temporal-Difference Learning
 - Off-Policy Learning

Model-Free Control

- For most of MDP problems, either:
 - MDP model is unknown, but experience can be sampled
 - MDP model is known, but is too big to use, except by samples
- Model-free control can solve these problems
- On-policy vs. off-policy
 - On-policy learning
 - "Learn on the job"
 - Learn about policy π from experience sampled from π
 - Off-policy learning
 - ▶ "Look over someone's shoulder"
 - Learn about policy π from experience sampled from μ

Generalized Policy Iteration (Review)

- Policy evaluation \rightarrow Estimate v_{π}
 - e.g. Iterative policy evaluation
- Policy improvement \rightarrow Generate $\pi' \geq \pi$
 - e.g. Greedy policy improvement

Generalized Policy Iteration With Monte-Carlo Evaluation

- Policy evaluation
 - Monte-Carlo policy evaluation, $V = v_{\pi}$? Problems: Model free?
- Policy improvement
 - Greedy policy improvement?
 - ▶ Problems: Always choose the same one (the best one)?

Model-Free Policy Iteration Using Action-

Value Function

 Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left(\mathcal{R}_s^a + \mathcal{P}_{ss'}^a V(s') \right)$$

• Greedy policy improvement over Q(s, a) is model-free $\pi'(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$

Note: this is very important!

Generalized Policy Iteration With Action-Value Function

- Policy evaluation
 - Monte-Carlo policy evaluation, $Q = q_{\pi}$
- Policy improvement
 - Greedy policy improvement?
 - ▶ Problems: Always choose the same one (the best one)?

Example of Greedy Action Selection

- There are two doors in front of you,
 Always apply the greedy action selection:
 - You open the left door and get reward 0V(left) = 0
 - You open the right door and get reward +1 V(right) = +1
 - You open the right door and get reward +3 V(right) = +2
 - You open the right door and get reward +2 V(right) = +2
 - **–** :
- Are you sure you've chosen the best door?

ε-Greedy Exploration

 \bullet ε -greedy policy:

$$\pi(a|s) = \begin{cases} \varepsilon/m + 1 - \varepsilon & \text{if } a^* = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a) \\ \varepsilon/m & \text{otherwise} \end{cases}$$

- Exploration
 - If you always try the best, you don't explore a real better one.
 - With probability ε choose an action at random
 - ▶ Simplest idea for ensuring continual exploration
 - All m actions are tried with non-zero probability
- Exploitation
 - If you always choose at random, you don't exploit the best
 - With probability 1ε choose the greedy action

ε-Greedy Policy Improvement

- Theorem
 - For any ε -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, $v_{\pi'}(s) \ge v_{\pi}(s)$
- Proof:

$$q_{\pi}(s, \pi'(s))$$

$$= \sum_{a \in \mathcal{A}} \pi'(a|s) q_{\pi}(s, a)$$

$$= \varepsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \varepsilon) \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

$$\geq \varepsilon/m \sum_{a \in \mathcal{A}} q_{\pi}(s, a) + (1 - \varepsilon) \sum_{a \in \mathcal{A}} \frac{\pi(a|s) - \varepsilon/m}{1 - \varepsilon} q_{\pi}(s, a)$$

$$= \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s, a) = v_{\pi}(s)$$

• Therefore from policy improvement theorem, $v_{\pi'}(s) \ge v_{\pi}(s)$

Monte-Carlo Policy Iteration

- Policy evaluation
 - Monte-Carlo policy evaluation, $Q = q_{\pi}$
- Policy improvement
 - ε -greedy policy improvement
 - Converge too, but the proof is not given here.

Monte-Carlo Control

- Policy evaluation
 - Monte-Carlo policy evaluation, $Q \approx q_{\pi}$
- Policy improvement
 - ε -greedy policy improvement
 - For every episode, improve more slowly by at most a factor of ε .

I-Chen Wi

TD vs. MC Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(s, a)
 - Use ε -greedy policy improvement
 - Update every time-step

Updating Action-Value Functions with Sarsa

$$Q(S,A) \leftarrow Q(S,A) + \alpha(R + \gamma Q(S',A') - Q(S,A))$$

Notice: Interesting naming

Sarsa Algorithm for On-Policy Control

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
S \leftarrow S'; A \leftarrow A';
until S is terminal
```

- Sarsa converges to the optimal action-value function
- *n*-step Sarsa like *n*-step return
- Sarsa(λ) like TD(λ)

Off-Policy Learning

- Evaluate target policy $\pi(a|s)$ to compute $V_{\pi}(s)$ or $q_{\pi}(s,a)$
- While following behaviour policy $\mu(a|s)$

$$\{S_1, A_1, R_2, \dots, S_T\} \sim \mu$$

- Why is this important?
 - Learn from observing humans or other agents
 - Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$
 - Learn about optimal policy while following exploratory policy
 - Learn about multiple policies while following one policy

Importance Sampling

Estimate the expectation of a different distribution

$$\mathbb{E}_{X \sim P}[f(X)]$$

$$= \sum P(X)f(X)$$

$$= \sum Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{O(X)} f(X) \right]$$

Importance Sampling for Off-Policy Monte-Carlo

- Use returns generated from μ to evaluate π
- Weight return G_t according to similarity between policies
- Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)\pi(A_{t+1}|S_{t+1})}{\mu(A_t|S_t)\mu(A_{t+1}|S_{t+1})} \dots \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

Update value towards corrected return

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\pi/\mu} - V(S_t) \right)$$

- Cannot use if μ is zero when π is non-zero
- Importance sampling can dramatically increase variance

Importance Sampling for Off-Policy TD

- Use TD targets generated from μ to evaluate π
- Weight TD target $R + \gamma V(S')$ by importance sampling
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) +$$

$$\alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \left(R_{t+1} + \gamma V(S_{t+1}) \right) - V(S_t) \right)$$

- Much lower variance than Monte-Carlo importance sampling (since just one step)
- Policies only need to be similar over a single step

Q-Learning

- We now consider off-policy learning of action-values Q(s,a)
- No importance sampling is required
- Next action is chosen using behaviour policy $A_{t+1} \sim \mu(\cdot | S_{t+1})$
- But we consider alternative successor action $A' \sim \pi(\cdot | S_{t+1})$
- And update $Q(S_t, A_t)$ towards value of alternative action $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \gamma Q(S_{t+1}, A') Q(S_t, A_t))$

Off-Policy Control with Q-Learning

- We now allow both behaviour and target policies to improve
- The target policy π is greedy w.r.t. Q(s, a)

$$\pi(S_{t+1}) = \underset{a'}{\operatorname{argmax}} \ Q(S_{t+1}, a')$$

- The behaviour policy μ is e.g. ε-greedy w.r.t. Q(s, a)
- The Q-learning target then simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

$$= R_{t+1} + \gamma Q\left(S_{t+1}, \underset{a'}{\operatorname{argmax}} Q(S_{t+1}, a')\right)$$

$$= R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$$

Q-Learning Control Algorithm

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A) \right)$$

- Theorem
 - Q-learning control converges to the optimal action-value function, $Q(s,a) \rightarrow q_*(s,a)$

Q-Learning Algorithm for Off-Policy Control

Initialize $Q(s, a), \forall s \in S, a \in A(s)$, arbitrarily, and $Q(terminal\text{-}state, \cdot) = 0$ Repeat (for each episode):

Initialize S

Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

 $S \leftarrow S';$

until S is terminal

