Relatório 3º Projeto ASA 2024/2025

Grupo: TP06

Aluno: Duarte Cruz (ist1110181)

Descrição do Problema e da Solução

O objetivo do problema é desenvolver um programa para distribuir o máximo possível de brinquedos de Natal por T crianças. O programa recebe N fábricas distribuídas por M países, com cada fábrica produzindo um único brinquedo com um determinado stock máximo. Cada criança recebe apenas um brinquedo desejado. Cada país tem um mínimo de prendas distribuídas e um máximo de prendas que podem ser exportadas.

A solução passa por criar dois conjuntos de variáveis:

- 1. O primeiro conjunto representa o número de crianças de cada país que irá receber uma prenda, ligando, assim, os países às crianças lá residentes.
- 2. O segundo conjunto denota o número de brinquedos que cada criança recebe, ligando, assim, as crianças às fábricas que produzem os brinquedos que cada uma deseja.

Ambos os conjuntos são binários, pois têm peso 0 ou 1. Além disso, temos de colocar a função objetivo que é maximizar o número de crianças que irá receber uma prenda. Temos ainda de modelar as restrições do nosso problema:

- 1. O número de prendas que uma criança de um país recebe é igual ao número de prendas fornecidas pelas fábricas desejadas por esta criança.
- 2. O número de prendas fornecidas por uma fábrica tem de ser menor que o seu stock
- 3. A soma das prendas dadas por fábricas de um país a crianças de outros países não pode ultrapassar o limite de exportação desse país.
- 4. Cada país tem de receber um determinado mínimo de prendas.

Análise Teórica

- Leitura dos dados de entrada e processamento dos dados: simples leitura do input, com ciclos a depender de N, de M e de T. Em cada ciclo adiciona-se dados a dicionários com a complexidade O(1), com a exceção do último ciclo em que se adiciona uma lista a um dicionário, cuja complexidade no pior caso é O(N). Deste modo, a complexidade final será O(N + M + TN). Logo, O(M + TN).
- Criação das variáveis e restrições: para criar o conjunto de variáveis País-Criança, percorre-se um ciclo a depender de T. Assim, O(T). Para criar o conjunto de variáveis Criança-Fábrica, percorre um ciclo a depender de T com outro a depender de N, assim O(TN). Para criar a função objetivo, percorre-se outro ciclo a depender de T, logo O(T). As quatro restrições têm complexidades O(TN), O(TN), O(TNM) e O(TM). Logo, O(TNM).
- Complexidade global da solução: deste modo, a solução tem uma complexidade global de O(M + TN + TNM), redutível a O(TNM).

Relatório 3º Projeto ASA 2024/2025

Grupo: TP06

Aluno: Duarte Cruz (ist1110181)

Avaliação Experimental dos Resultados

Foram realizados 27 testes com valores de N entre 100 e 300, com incrementos de 100, valores de M entre 10 e 30, com incrementos de 10, e para os valores de T, entre 1000 e 3000, com incrementos de 1000. Para além disso, foram usados valores constantes para a variância, capacidade máxima e pedidos máximos, sendo eles 0.5, 50 e 5.

Ao analisar o gráfico, notou-se que a relação não era linear, pelo que se usou uma complexidade efetiva de $O(NMT^3)$, de forma a obter um gráfico mais linear.

*Testes corridos num Macbook M1 Pro com 16GB de RAM

N	М	T	NMT^3	T(s)
100	10	1000	1E+12	0,15
100	20	1000	2E+12	0,15
200	10	1000	2E+12	0,15
300	10	1000	3E+12	0,16
100	30	1000	3E+12	0,16
200	20	1000	4E+12	0,15
300	20	1000	6E+12	0,16
200	30	1000	6E+12	0,17
100	10	2000	8E+12	0,31
300	30	1000	9E+12	0,16
100	20	2000	1,6E+13	0,28
200	10	2000	1,6E+13	0,3
300	10	2000	2,4E+13	0,26
100	30	2000	2,4E+13	0,28

N	М	T	NMT^3	T(s)
100	10	3000	2,7E+13	0,46
200	20	2000	3,2E+13	0,27
300	20	2000	4,8E+13	0,27
200	30	2000	4,8E+13	0,29
100	20	3000	5,4E+13	0,45
200	10	3000	5,4E+13	0,45
300	30	2000	7,2E+13	0,27
100	30	3000	8,1E+13	0,4
300	10	3000	8,1E+13	0,42
200	20	3000	1,08E+14	0,47
200	30	3000	1,62E+14	0,43
300	20	3000	1,62E+14	0,45
300	30	3000	2,43E+14	0,44