Traffic Light.

Gruppo 18: Davide Marchetti / 815990

Informatica Industriale / Progetto Finale A.A. 2019 / 2020

Considerazioni iniziali.

- Il semaforo è progettato per lavorare con un segnale di clock avente periodo di 1 secondo. Per una simulazione più efficiente in ModelSim, questo è stato fissato a 10ns.
- Sono stati previsti degli stati aggiuntivi per agevolare l'implementazione delle specifiche fornite: DISABLED, nella comandare di accensione e spegnimento del semaforo; NOMINAL_AUTO, per gestire la transizione automatica che avviene in modalità MOD_AUTO.

Porte I/O.

Nome	Direzione	Risoluzione	Commenti
Clk	IN	1 bit	
Operational Mode	IN	2 bit	
Standby Mode	IN	2 bit	
Enable	IN	1 bit	Attivo Alto Sincrono
Reset	IN	1 bit	Attivo Basso Asincrono Prioritario su Enable
Red	OUT	1 bit	
Yellow	OUT	1 bit	
Green	OUT	1 bit	

Standby Mode	Stato Associato
00	MOD0
01	MOD1
10	MOD_AUTO
11	_

Operational Mode	Stato Associato
00	MAINTENANCE
01	NOMINAL
10	STANDBY
11	_

Segnali Interni.

Segnali Interni.

Nome	Risoluzione	Commenti
nominal_int	1 bit	È attivo (=1) quando NOMINAL è la modalità operativa selezionata.
standby_int	1 bit	È attivo (=1) quando STANDBY è la modalità operativa selezionata.
maintenance_int	1 bit	È attivo (=1) quando MAINTENANCE è la modalità operativa selezionata. Controlla l'abilitazione del componente di Standby Mode Controller.
state_changed_int	1 bit	Attivo basso. Rimane attivo (=0) per un colpo di clock quando cambia la modalità operativa selezionata.
mod0_int	1 bit	È attivo (=1) quando MOD0 è la modalità di standby selezionata.
mod1_int	1 bit	È attivo (=1) quando MOD1 è la modalità di standby selezionata.
mod_auto_int	1 bit	È attivo (=1) quando MOD_AUTO è la modalità di standby selezionata.
mod_auto_expired_int	1 bit	Asincrono. È attivo (=1) quando il contatore della modalità di standby MOD_AUTO è scaduto.
mode_changed_int	1 bit	Attivo basso. Rimane attivo (=0) per un colpo di clock quando cambia la modalità operativa selezionata.

Operational Mode Controller.

DIAGRAMMA DEGLI STATI:

NOTE IMPLEMENTATIVE:

- Macchina a stati finiti di Moore.
- Transizione in stato S_DISABLED quando enable=0.
- Dopo 10 secondi nello stato S_STANDBY in modalità MOD_AUTO, transizione automatica allo stato S_NOMINAL_AUTO per simulare il comportamento della modalità S_NOMINAL.
- La transizione verso lo stato S_NOMINAL_AUTO avviene solo dallo stato S_STANDBY ed è notificata dall'esterno da parte dal componente di Standby Mode Controller.

Standby Mode Controller.

DIAGRAMMA DEGLI STATI:

NOTE IMPLEMENTATIVE:

- Macchina a stati finiti di Moore.
- Il segnale di reset è asincrono e prioritario rispetto al segnale di enable.
- Incapsula un contatore a 4 bit per riportare automaticamente il semaforo in stato operativo S_NOMINAL dopo 10 secondi.
- Il componente è attivo (enable=1) quando il semaforo è in stato di MAINTENANCE.

Light Controller.

TOP-VIEW:

NOTE IMPLEMENTATIVE:

- Incapsula un contatore a 4 bit per la gestione dei timing delle modalità operative e di standby.
- I segnali state_changed e mode_changed agiscono come reset asincroni del contatore interno e vengono attivati al cambio di stato o modalità dai rispettivi componenti.

Modalità Operativa.

Modalità di Standby.

Abilita la modifica della modalità di funzionamento dello stato STANDBY

MAINTENANCE /tb_semaphore_regular_cycle/clk_int 2'b10 /tb_semaphore_regular_cycle/operational_mode_int 2b10 2'b00 2b10 2'b00 +- /tb_semaphore_regular_cycle/standby_mode_int 2'b00 2b01 2b10 (Lights) /tb_semaphore_regular_cycle/red_int /tb_semaphore_regular_cycle/yellow_int /tb_semaphore_regular_cycle/green_int MOD0 MOD1

- ROSSO e VERDE spenti
- GIALLO acceso per 1 secondo e spento per 2 secondi

- ROSSO e VERDE si alternano accesi per 1 secondo ciascuno
- GIALLO rimane spento

Modalità di Standby.

Modalità di Standby.

 La modifica della modalità operativa è abilitata solo quando il semaforo è nello stato di MAINTENANCE.

Enable/Reset.

- A prescindere dallo stato in cui si trova il semaforo, l'attivazione del segnale di reset (reset=0) imposta la modalità di standby a MODO.
- Il segnale di reset è asincrono e prioritario rispetto al segnale di enable.

- Il cambio di stato viene attuato correttamente dopo un delay di 1 colpo di clock.
- Il semaforo non registra variazioni di stato ad eccezione del segnale di reset.

Conclusioni.

- Ciascuna unità è stata implementata in VHDL e simulata con testbench specifiche per verificarne il funzionamento.
- Dai risultati ottenuti il semaforo opera correttamente nelle tre modalità richieste.