1.1 Classic Sequential Multiplication

Description:

- This algorithm uses a straightforward nested loop approach to compute the product of two
 polynomials.
- Time Complexity: O(n^2) where n is the degree of the polynomials.

Steps:

- 1. Create a result list of size p1.degree+p2.degree+1, initialized to zeros.
- 2. For each coefficient i in p1:
 - For each coefficient j in p2:
 - Compute the product of the coefficients at i and j.
 - Add this product to the corresponding position in the result (i+j).
- 3. Return the result as a new polynomial.

1.2 Classic Parallel Multiplication

Description:

- This is a parallelized version of the classic multiplication algorithm, dividing the computation into smaller tasks executed concurrently.
- Time Complexity: O(n2) but parallel execution reduces the runtime depending on the number of threads.

Steps:

- 1. Divide the result polynomial into segments based on the number of threads.
- 2. Assign each segment to a PolynomialTask that calculates the partial results for that segment.
- 3. Use a ThreadPoolExecutor to execute the tasks concurrently.
- 4. Wait for all tasks to complete, then return the final result.

1.3 Karatsuba Multiplication

Description:

- A divide-and-conquer algorithm that reduces the number of coefficient multiplications compared to the classic approach.
- Time Complexity: O(n log₂(3))≈O(n^{1.59}).

Steps:

- 1. Base Case: If the degree of the polynomials is small, use the classic sequential algorithm.
- 2. Split each polynomial into "low" and "high" halves:
 - o p1=lowP1+x^m·highP1
 - o p2=lowP2+x^m·highP2
- 3. Compute three partial products:
 - o z1=lowP1·lowP2
 - o z2=(lowP1+highP1)·(lowP2+highP2)
 - o z3=highP1·highP2
- 4. Combine the results:
 - Final result = $z^3 \cdot x^{2m} + (z^2 z^3 z^1) \cdot x^m + z^1$

1.4 Karatsuba Parallel Multiplication

Description:

- A parallelized version of the Karatsuba algorithm that executes the recursive calls for z1, z2, and z3 concurrently.
- Time Complexity: : $O(n^{\log_2(3)}) \approx O(n^{1.59})$. with reduced runtime due to parallel execution.

Steps:

- 1. **Base Case:** If the depth of recursion exceeds a threshold or the degree is small, fall back to the sequential Karatsuba algorithm.
- 2. Split the polynomials into "low" and "high" halves.
- 3. Use Callable tasks to compute z1, z2 and z3 in parallel.
- 4. Combine the results using the same approach as the sequential Karatsuba algorithm.

2. Synchronization in Parallelized Variants

2.1 Classic Parallel Multiplication

- **Shared State:** The result polynomial is shared among threads.
- Synchronization:
 - Each thread operates on a separate segment of the result polynomial, avoiding race conditions.
 - o No explicit synchronization is required due to non-overlapping segments.

2.2 Karatsuba Parallel Multiplication

- **Shared State:** Recursive tasks operate on different polynomial segments, so there is no shared state in intermediate computations.
- Synchronization:
 - A ThreadPoolExecutor manages tasks, ensuring that threads are reused efficiently.
 - Futures are used to retrieve results from concurrent tasks, and the awaitTermination method ensures all tasks complete before combining results.

3. Performance Measurements

Environment:

- Processor: Modern multi-core processor (e.g., Intel Core i5-8300H).
- Input: Polynomials of degree 10,000.
- Number of Threads: 2 threads for classic parallel and dynamic threads for Karatsuba parallel.

Results (Example):

Algorithm	Execution Time (ms)
Classic Sequential	1354
Classic Parallel (2 threads)	999
Karatsuba Sequential	846
Karatsuba Parallel	296

Analysis:

1. Classic Sequential vs. Parallel:

- Parallelization significantly reduces runtime for large polynomials by leveraging multiple
 CPU cores.
- o The benefit diminishes for smaller polynomials due to thread management overhead.

2. Karatsuba Sequential vs. Classic Sequential:

- o The Karatsuba algorithm is faster for large inputs due to reduced multiplications.
- o It outperforms classic multiplication for polynomials with a degree greater than ~500.

3. Karatsuba Parallel:

- The parallelized version of Karatsuba achieves the best performance, as it combines algorithmic efficiency with concurrency.
- Scalability improves with more threads, but diminishing returns may occur due to overhead and limited CPU resources.

$$(2+0)$$

$$(2+0) \cdot (3+1)$$

$$(2+0)$$

$$2 \cdot 3 + 2 \cdot 1 + 3 \cdot 0 + 0 \cdot 1$$

6 0

$$(2+0)$$

$$2 \cdot 3 + 2 \cdot 1 + 3 \cdot 0 + 0 \cdot 1$$

6 2 0