A Robot for Cleaning and Sorting Garbage in the Home Environment

Jiajun Long, Ximan Zhang, Yikai Zheng, Jie Luo, Vong Sinrithy

2023.6.1

Contents

1. Introduction

Detailed Introduction Related Work

3. Methods

Object Recognition SLAM and Navigation

5. Conclusion

Model and Environment
Dataset

4. Experiments

Object Recognition SLAM and Navigation Integrated Experiment

Introduction

Detailed Introduction

Task:

A defined home environment some household items carelessly placed One or more trash cans

mapping the overall environment Identify furniture and garbage

One or more garbage that appears randomly is thrown into the corresponding trash can

Related Work

- [1] Jo ao Machado Santos, David Portugal, and Rui P. Rocha. An evaluation of 2d slam techniques available in robot operating system. In 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pages 1–6, 2013.
- [2] Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai, and Bo Ma. A review of yolo algorithm developments. Procedia Computer Science, 199:1066–1073, 2022. The 8th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19.
- [3] Yoonyoung Cho, Donghoon Shin, and Beomjoon Kim. ω2: Optimal hierarchical planner for object search in large environments via mobile manipulation. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7888–7895, Oct 2022.
- [4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong- Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. CoRR, abs/2004.10934, 2020.
- [5] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan L. Yuille. Adversarial examples for semantic segmentation and object detection. CoRR, abs/1703.08603, 2017.
- [6] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen, and Jun-Wei Hsieh. Csp- net: A new backbone that can enhance learning capability of CNN. CoRR, abs/1911.11929, 2019.
- [7] Diganta Misra. Mish: A self regularized non-monotonic neural activation function. CoRR, abs/1908.08681, 2019.
- [8] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Drop- block: A regularization method for convolutional net- works. CoRR, abs/1810.12890, 2018.
- [9] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Bur- gard. Improved techniques for grid mapping with rao- blackwellized particle filters. IEEE Transactions on Robotics, 23(1):34–46, 2007.

 AncoraSIR.com

Dataset and Environment

Model and Environment

Model

Parameters: Maximum speed: 0.5m/s

Maximum acceleration: 1m/s2

IMU equipped

LiDAR:

particles: 500

detection radius: 0.1-6m

RGB-D Camera

Environment

Living room: sofas, trash cans, tables

Kitchen: dining table, chairs

Bedroom: fitness equipment, desks

Dataset - COCO

Methods

Work Flow

YOLOv4

- Mosaic data enhancement
- CmBN
- SAT(Self Adversarial Training
- CSPDarknet53
- Mish activation function
- Dropblock regularization

- SPP
- FPN+PAN

- YOLOv3

SLAM

Prediction stage

Algorithm 1 Improved RBPF for Map Learning

Require:

 \mathcal{S}_{t-1} , the sample set of the previous time step

 z_t , the most recent laser scan

 u_{t-1} , the most recent odometry measurement

Ensure:

 \mathcal{S}_t , the new sample set

$$S_t = \{\}$$

for all $s_{t-1}^{(i)} \in \mathcal{S}_{t-1}$ do

$$\langle x_{t-1}^{(i)}, w_{t-1}^{(i)}, m_{t-1}^{(i)} \rangle = s_{t-1}^{(i)}$$

Calibration stage

// scan-matching

$$\begin{aligned} x_t^{\prime(i)} &= x_{t-1}^{(i)} \oplus u_{t-1} \\ \hat{x}_t^{(i)} &= \operatorname{argmax}_x p(x \mid m_{t-1}^{(i)}, z_t, x_t^{\prime(i)}) \end{aligned}$$

if $\hat{x}_t^{(i)} =$ failure then

$$x_t^{(i)} \sim p(x_t \mid x_{t-1}^{(i)}, u_{t-1})$$

$$w_t^{(i)} = w_{t-1}^{(i)} \cdot p(z_t \mid m_{t-1}^{(i)}, x_t^{(i)})$$

else

// sample around the mode

for
$$k = 1, \dots, K$$
 do

$$x_k \sim \{x_i | |x_i - \hat{x}^{(i)}| < \Delta\}$$

end for

Resampling stage

// compute Gaussian proposal $\mu_t^{(i)} = (0, 0, 0)^T$ $\eta^{(i)} = 0$ for all $x_j \in \{x_1, \dots, x_K\}$ do $\mu_t^{(i)} = \mu_t^{(i)} + x_j \cdot p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_t \mid x_{t-1}^{(i)}, u_{t-1})$ $\eta^{(i)} = \eta^{(i)} + p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_t \mid x_{t-1}^{(i)}, u_{t-1})$ end for $\mu_t^{(i)} = \mu_t^{(i)} / \eta^{(i)}$ $\Sigma_{t}^{(i)} = \mathbf{0}$ for all $x_i \in \{x_1, \dots, x_K\}$ do $\Sigma_t^{(i)} = \Sigma_t^{(i)} + (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T.$ $p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_j \mid x_{t-1}^{(i)}, u_{t-1})$ end for $\Sigma_t^{(i)} = \Sigma_t^{(i)} / \eta^{(i)}$ // sample new pose $x_t^{(i)} \sim \mathcal{N}(\mu_t^{(i)}, \Sigma_t^{(i)})$ // update importance weights $w_t^{(i)} = w_{t-1}^{(i)} \cdot \eta^{(i)}$

Map estimation

end if

$$\begin{aligned} & \textit{// update map} \\ & m_t^{(i)} = \text{integrateScan}(m_{t-1}^{(i)}, x_t^{(i)}, z_t) \\ & \textit{// update sample set} \\ & \mathcal{S}_t = \mathcal{S}_t \cup \{\langle x_t^{(i)}, w_t^{(i)}, m_t^{(i)} \rangle\} \end{aligned}$$

end for

$$N_{\text{eff}} = 1/\sum_{i=1}^{N} (\tilde{w}^{(i)})^2$$

if
$$N_{\rm eff} < T$$
 then

$$S_t = \text{resample}(S_t)$$

end if

Navigation

Experiments

Experiment 1-1 Object Recognition

Tested the model accuracy by COCO test dataset

Class	Images	Instances	P	R	mAP50	mAP75	mAP50-95: 10	00%	5.07s/it]
all	5000	36335	0.672	0.519	0.566	0.401	0.371		

$$mAP50 = 0.566$$

$$mAP75 = 0.401$$

$$mAP50-95 = 0.371$$

Similar to the paper of YOLOv4

High accuracy

Experiment 1-2 Object Recognition

Tested the model accuracy on objects of simulation environment

Final choice:

Cup: 98%

Bowl: 90%

Bottle: 83%

Book: 31%

Experiment 1-3 Object Recognition

Compare with other algorithms and focus on error performance

YOLOv4 three times faster than EfficientDet

YOLOv4 improve AP and FPS 10% and 12% from YOLOv3

Experiment 2 - Slam and Navigation

The process of self-mapping and navigation

Experiment 2 - Slam and Navigation

Simulations Experiments									
	image1	image2	image3	image4					
RMSE	20. 1239	91. 4085	92. 3797	94. 5178					
SSIM	0.8528	0.7035	0.6576	0.7171					

Experiment 3 - Integrated process

The garbage we need for object recognition can be classified.

The map of the successful navigation path back to the trash bin area after picking up the trash

Experiment 3 - Integrated process

Bottle Cup

Experiment 3 - Problem

It is believed that it is caused by the error between the object in the simulation environment and the model trained by the real image

Conclusion

Conclusion

Task completion degree:

- Object Recognition
- SLAM and Navigation
- Integrated Process

Limitations:

- model and environment more stable structures and diverse environment
- object recognition used more advanced algorithms and more obvious features
- navigation and mapping advanced mapping and more intelligent autonomous navigation