Solutions to the Exercises

Solution 1 We only check (iv). The rest are easy. Let $r,s\in {\sf Ann}(V)$ and $v\in V$. We have $(r+s)\cdot v=r\cdot v+s\cdot v=0+0=0$ and $(rs)\cdot v=r\cdot (s\cdot v)=r\cdot 0=0$. So ${\sf Ann}(V)$ is a subring of R. Let $t\in R$. We have $(tr)\cdot v=t\cdot (r\cdot v)=t\cdot 0=0$ and $(rt)\cdot v=r\cdot (t\cdot v)=0$. So ${\sf Ann}(V)$ is an ideal of R. We check the S-action is well-defined. Let $\pi(r)=s=\pi(r')$. Then $r-r'\in {\sf ker}\ \pi\subseteq {\sf Ann}(V)$. So

$$r \cdot v - r' \cdot v = (r - r') \cdot v = 0,$$

i.e., $r \cdot v = r' \cdot v$. This shows that the S-action is well-defined. Furthermore, let $\pi(r) = s$, $\pi(r') = s'$ and $v, w \in V$ (so that $\pi(rr') = ss'$ and $\pi(r + r') = s + s'$), we have

$$s * (v + w) = r \cdot (v + w) = r \cdot v + r \cdot w = s * v + s * w,$$

$$(ss') * v = (rr') \cdot v = r \cdot (r' \cdot v) = s * (s * v),$$

$$(s + s') * v = (r + r') \cdot v = r \cdot v + r' \cdot v = s * v + s' * v.$$

Solution 2 Comparing the definitions of module and vector space, we obtain that a vector space over F is an F-module. Therefore, subspaces of a vector space are submodules.

Solution 3 Left as exercise.

Solution 4 (i) The sum U+W is nonempty because both U,W are nonempty. Let $u,u'\in U$, $w,w'\in W$ and $r\in R.$ We have

$$(u+w) + r(u'+w') = (u+ru') + (w+rw') \in U+W.$$

(ii) Let $\{U_i\}_{i\in I}$ be a collection of submodules of V. Since $0 \in U_i$, we have $0 \in \bigcap U_i$. Let $r \in R$ and $x, y \in \bigcap U_i$. We have $x + ry \in U_i$ for each $i \in I$ and hence $x + ry \in \bigcap U_i$.

Solution 5 We claim that $\operatorname{Ann}(G) = 30\mathbb{Z}$ since $30 = \operatorname{lcm}(6,10)$. Let $C_6 = \langle a \rangle$ and $C_{10} = \langle b \rangle$ and let $n \in \mathbb{Z}$ such that $n \in \operatorname{Ann}(G)$. We have $n \cdot (a,b) = (0,0)$. So na = 0 and nb = 0. So $6 \mid n$ and $10 \mid n$. So $\operatorname{lcm}(6,10) \mid n$, i.e., $30 \mid n$. So $\operatorname{Ann}(G) \subseteq 30\mathbb{Z}$. Conversely, $30m \cdot (ka, \ell b) = m(k30a + \ell30b) = m(0,0) = (0,0)$. So $30\mathbb{Z} \subseteq \operatorname{Ann}(G)$.

Solution 6 Left as exercise.

Solution 7 We have IV is not empty because $0 \in IV$. For $\sum a_i v_i, \sum b_j w_j \in IV$ and $r \in R$, we have

$$\sum a_i \cdot v_i + r \sum b_j w_j = \sum a_i \cdot v_i + \sum (rb_j) w_j \in IV$$

because $rb_i \in I$.

Solution 8 Left as exercise.

Solution 9 (i) Let $f: R \to A$ be the ring homomorphism defining A as an R-algebra. So

$$r \cdot (ab) = f(r)(ab) = (f(r)a)b = (r \cdot a)b$$

$$r \cdot (ab) = f(r)(ab) = (f(r)a)b = (af(r))b = a(f(r)b) = a(r \cdot b).$$

(ii) Let $r, s \in R$ and $a \in A$. We have

$$f(r+s) = (r+s) \cdot 1_A = r \cdot 1_A + s \cdot 1_A = f(r) + f(s),$$

$$f(rs) = (rs) \cdot 1_A = 1_A((rs) \cdot 1_A) = 1_A(r \cdot (s \cdot 1_A)) = (r \cdot 1_A)(s \cdot 1_A) = f(r)f(s).$$

$$f(1_R) = 1_R \cdot 1_A = 1_A,$$

$$f(r)a = (r \cdot 1_A)a = r \cdot (1_Aa) = r \cdot (a1_A) = a(r \cdot 1_A) = af(r)$$

Solution 10 Left as exercise.

Solution 11 Left as exercise.

Solution 12 Left as exercise.

Solution 13 Left as exercise.

Solution 14 We only prove part (i). Let $f:V\to X$. The composition $\beta f:V\to Y$ is an R-module homomorphism. Furthermore, for any $v\in V$, we have

$$\beta_*(f+g)(v) = \beta \circ (f+g)(v) = \beta((f+g)(v)) = \beta(f(v)+g(v)) = \beta(f(v)) + \beta(g(v))$$

= $(\beta \circ f)(v) + (\beta \circ g)(v) = (\beta \circ f + \beta \circ g)(v) = (\beta_*(f) + \beta_*(g))(v).$

Solution 15 Left as exercise.

Solution 16 Left as exercise.

Solution 17 Let $v, w \in V$ and $s \in R$. We have

$$\lambda_r(v+w) = r \cdot (v+w) = r \cdot v + r \cdot w = \lambda_r(v) + \lambda_r(w),$$

$$\lambda_r(s \cdot v) = r \cdot (s \cdot v) = (rs) \cdot v = (sr) \cdot v = s \cdot (r \cdot v) = s \cdot \lambda_r(v).$$

Without the assumption that $r \in Z(R)$, we would not have rs = sr. Consider the matrix ring $\mathrm{Mat}_2(\mathbb{R})$ and V is the natural module where V is the set of (2×1) -matrices over \mathbb{R} where the ring acts by matrix multiplication. Let $r = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $s = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. If λ_r were an R-module homomorphism, we would have

$$\lambda_r(s \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}) = s \cdot \lambda_r(\begin{pmatrix} 1 \\ 0 \end{pmatrix})$$
$$rsv = srv$$
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Solution 18 Since \mathbb{Z} -module homomorphisms are just abelian group homomorphisms, given $\phi:V\to V$, we have either $\phi(1)=0$ or $\phi(1)=1$. In the first case, ϕ is the trivial homomorphism. The other is the identity map.

Suppose now that $\phi \in \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$. Since $\mathbb{Z}/m\mathbb{Z}$ is cyclic, ϕ is determined by its value on 1. Suppose that $\phi(1) = k \in \mathbb{Z}/n\mathbb{Z}$ where $0 \le k \le n-1$. Let $d = \gcd(m,n)$. We claim that $k = \frac{n}{d}j$ where $j = 0, \ldots, d-1$. We have

$$0 = \phi(0) = \phi(m) = m\phi(1) = mk.$$

Therefore, we have $n \mid mk$ and hence $\frac{n}{d} \mid \frac{m}{d}k$. Since $\gcd(\frac{n}{d}, \frac{m}{d}) = 1$, we have $\frac{n}{d} \mid k$. So $k = \frac{n}{d}j$ where $j = 0, \ldots, d-1$ because $k \in [0, n-1]$. Given such k, we only need to check that ϕ is well-defined. Suppose that $a \equiv b \pmod{m}$. We have $n \mid \frac{nm}{d}$ and hence

$$\phi(a) = ka = \frac{n}{d}ja = \frac{n}{d}j(b + \ell m) = kb + \frac{nm}{d}j = kb = \phi(b).$$

We define

$$\Phi: \mathsf{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \to \mathbb{Z}/d\mathbb{Z}$$

by $\Phi(\phi)=k$ if $\phi(1)=k$. This is a bijection. We leave it to you to check that Φ is a group homomorphism.

Solution 19 (i) We have seen that $\operatorname{Hom}_R(R,V)$ is an abelian group. The action of R on $\operatorname{Hom}_R(R,V)$ is given by $(r*\phi)(s)=\phi(sr)$. We define $\Phi:\operatorname{Hom}_R(R,V)\to V$ by $\Phi(\alpha):=\alpha(1)$ and $\Psi:V\to\operatorname{Hom}_R(R,V)$ by $\Psi(v):=r\mapsto r\cdot v$. For $r,s\in R,\ v\in V$ and $\alpha\in\operatorname{Hom}_R(R,V)$, we have

$$\begin{split} &\Phi(r*\alpha) = (r*\alpha)(1) = \alpha(r) = r \cdot \alpha(1) = r \cdot \Phi(\alpha), \\ &\Psi(v)(rs) = (rs) \cdot v = r \cdot (s \cdot v) = r\dot{\Psi}(v)(s), \\ &\Psi(r \cdot v)(s) = s \cdot (r \cdot v) = (sr) \cdot v = \Psi(v)(sr) = (r*\Psi(v))(s). \end{split}$$

These show that Ψ is well-defined and both Φ and Ψ are R-module homomorphism. Furthermore, we have

$$(\Psi \circ \Phi)(\alpha)(r) = \Psi(\alpha(1))(r) = r \cdot \alpha(1) = \alpha(r),$$

$$(\Phi \circ \Psi)(v) = (\Psi(v))(1) = 1 \cdot v = v.$$

So Ψ is the inverse of Φ .

(ii) Let $\Phi:\operatorname{End}_R(R)\to R^{\operatorname{op}}$ be defined by $\Phi(\alpha)=\alpha(1).$ We denote * for the product in $R^{\operatorname{op}}.$ We first check that Φ is surjective. For $r\in R$, we claim that $\alpha(s):=sr$ is an R-module endomorphism of R. For $t\in R$,

$$\alpha(ts) = (ts)r = t(sr) = t\alpha(s).$$

So $\Phi(\alpha) = \alpha(1) = r$ and hence Φ is surjective. For $\alpha, \beta \in \operatorname{End}_R(R)$, we have

$$\Phi(\alpha + \beta) = (\alpha + \beta)(1) = \alpha(1) + \beta(1) = \Phi(\alpha) + \Phi(\beta),
\Phi(\alpha\beta) = (\alpha\beta)(1) = \alpha(\beta(1)) = \beta(1)\alpha(1) = \alpha(1) * \beta(1) = \Phi(\alpha) * \Phi(\beta),
\Phi(\mathrm{Id}) = \mathrm{Id}(1) = 1.$$

So Φ is a ring homomorphism. Let $\alpha \in \ker \Phi$. We have $\alpha(1) = 0$. So $\alpha(r) = r\alpha(1) = 0$. So $\alpha = 0$. This shows that Φ is injective.

Solution 20 Define $\phi: V_1 \times \cdots \times V_n \to (V_1/U_1) \times \cdots \times (V_n/U_n)$ by $\phi(v_1, \dots, v_n) = (v_1 + U_1, \dots, v_n + U_n)$. Clearly ϕ is surjective and

$$\ker \phi = \{(v_1, \dots, v_n) : v_i \in U_i\} = U_1 \times \dots \times U_n.$$

We only need to check that ϕ is an R-module homomorphism and the result then follows using the first isomorphism theorem. For $r \in R$, we have

$$\phi(r(v_1, ..., v_n)) = \phi(rv_1, ..., rv_n)$$

$$= (rv_1 + U_1, ..., rv_n + U_n)$$

$$= r(v_1 + U_1, ..., v_n + U_n)$$

$$= r\phi(v_1, ..., v_n).$$

Solution 21 Let $U_i = IR$. We claim that $U := U_1 \times \cdots \times U_n = IR^n$ as submodule of R^n . Notice that

$$IR^n = \{a_1 \cdot v_1 + \dots + a_m \cdot v_m : a_1, \dots, a_m \in I, \ v_1, \dots, v_m \in \mathbb{R}^n, \ m \in \mathbb{N}\}.$$

By Exercise 7, IR is a submodule of R and hence U is a submodule of R^n . For $u \in U$, we have $u = (u_1, \ldots, u_n)$ where $u_i \in IR$. So $u_i = \sum a_{i,j} r_{i,j}$ (finite sum) with $a_{i,j} \in I$ and $r_{i,j}$. So

$$u = (\sum a_{1,j}r_{1,j}, \dots, \sum a_{n,j}r_{n,j}) = \sum a_{i,j}e_{i,j} \in IR^n$$

where $e_{i,j}$ denotes the element $(0,\ldots,0,r_{i,j},0,\ldots,0)$ in R^n where the nonzero component occurs at the ith position. Therefore, $U\subseteq IR^n$. Conversely, for $a_1\cdot v_1+\cdots+a_m\cdot v_m\in IR^n$, we have

$$a_1 \cdot v_1 + \dots + a_m \cdot v_m = \sum_{j=1}^m (a_j v_{1,j}, \dots, a_j v_{n,j}) \in U$$

as $a_j v_{i,j} \in U_i$ where $v_j = (v_{1,j}, \dots, v_{n,j})$. So $IR^n \subseteq U$. Now the desired isomorphism follows using Exercise 20.

Solution 22 Left as exercise. For part (ii), you need our assumption that R is unital.

Solution 23 Suppose that M/N and N are generated by the finite sets A and B respectively. Let $A=\{a_1+N,\ldots,a_m+N\}$ and $B=\{b_1,\ldots,b_n\}$. We claim that M be generated by $\{a_1,\ldots,a_m,b_1,\ldots,b_n\}$. Let $m\in M$. Then $m+N=\sum r_i(a_i+N)$ for some $r_i\in R$. Since $m-\sum r_ia_i\in N$, we have $m-\sum r_ia_i=\sum s_jb_j$ for some $s_j\in R$. So $m=\sum r_ia_i+\sum s_jb_j$.

Solution 24 Let I be a maximal ideal of R. Since I annihilates the module R^n , we can view $R^n/IR^n \cong (R/I)^n$ as R/I-module. Since F:=R/I is a field, it is a vector space over F. The vector space $(R/I)^n$ has dimension n. Therefore, if $R^m \cong R^n$, then $(R/I)^m \cong (R/I)^n$ as vector spaces over F and hence m=n by linear algebra. The converse is clear.

Solution 25 Part (i) is easy. For part (ii),

$$\alpha_{1}\beta_{1}(a_{1}, a_{2}, a_{3}, \ldots) = \alpha_{1}(a_{1}, 0, a_{2}, 0, \ldots) = (a_{1}, a_{2}, \ldots),$$

$$\alpha_{2}\beta_{2}(a_{1}, a_{2}, a_{3}, \ldots) = \alpha_{2}(0, a_{1}, 0, a_{2}, \ldots) = (a_{1}, a_{2}, \ldots),$$

$$\alpha_{1}\beta_{2}(a_{1}, a_{2}, a_{3}, \ldots) = \alpha_{1}(0, a_{1}, 0, a_{2}, \ldots) = (0, 0, \ldots),$$

$$\alpha_{2}\beta_{1}(a_{1}, a_{2}, a_{3}, \ldots) = \alpha_{2}(a_{1}, 0, a_{2}, 0, \ldots) = (0, 0, \ldots),$$

$$(\beta_{1}\alpha_{1} + \beta_{2}\alpha_{2})(a_{1}, a_{2}, a_{3}, \ldots) = (\beta_{1}\alpha_{1})(a_{1}, a_{2}, a_{3}, \ldots) + (\beta_{2}\alpha_{2})(a_{1}, a_{2}, a_{3}, \ldots)$$

$$= \beta_{1}(a_{1}, a_{3}, a_{5}, \ldots) + \beta_{2}(a_{2}, a_{4}, a_{6}, \ldots)$$

$$= (a_{1}, 0, a_{3}, 0, a_{5}, \ldots) + (0, a_{2}, 0, a_{4}, \ldots)$$

$$= (a_{1}, a_{2}, a_{3}, a_{4}, \ldots).$$

For any $x \in R$, we have $x = x \cdot 1 = (x\beta_1)\alpha_1 + (x\beta_2)\alpha_2$. Suppose that $x = x_1\alpha_1 + x_2\alpha_2$. We have

$$x\beta_2 = (x_1\alpha_1 + x_2\alpha_2)\beta_2 = x_1(\alpha_1\beta_2) + x_2(\alpha_2\beta_2) = 0 + x_2 = x_2,$$

$$x\beta_1 = (x_1\alpha_1 + x_2\alpha_2)\beta_1 = x_1(\alpha_1\beta_1) + x_2(\alpha_2\beta_1) = x_1 + 0 = x_1.$$

Therefore, $\{\alpha_1, \alpha_2\}$ is a free basis for $_RR$.

For part (iii), define $\phi: R \to R^2$ by $\phi(x) = (x\beta_1, x\beta_2)$. For $\xi \in R$, we have

$$\phi(x+y) = ((x+y)\beta_1, (x+y)\beta_2) = (x\beta_1 + y\beta_1, x\beta_2 + y\beta_2) = (x\beta_1, x\beta_2) + (y\beta_1, y\beta_2)$$

= $\phi(x) + \phi(y)$,
$$\phi(\xi x) = (\xi x\beta_1, \xi x\beta_2) = \xi(x\beta_1, x\beta_2) = \xi\phi(x).$$

So ϕ is an R-module homomorphism. For $(y,z)\in R^2$, we have

$$\phi(y\alpha_1 + z\alpha_2) = ((y\alpha_1 + z\alpha_2)\beta_1, (y\alpha_1 + z\alpha_2)\beta_2)$$

= $(y(\alpha_1\beta_1) + z(\alpha_2\beta_1), y(\alpha_1\beta_2) + z(\alpha_2\beta_2))$
= $(y + 0, 0 + z) = (y, z).$

So ϕ is surjective. Suppose that $\phi(x)=0$. We have $x\beta_1=0=x\beta_2$. So

$$x = x \cdot 1 = (x\beta_1)\alpha_1 + (x\beta_2)\alpha_2 = 0 + 0 = 0.$$

So ϕ is injective.

Solution 26 Left as exercise.

Solution 27 Let $\phi: A \to B$ be a bijective function. By the universal property, we have

$$A \xrightarrow{\iota} F(A)$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi} \Phi$$

$$B \xrightarrow{\jmath} F(B)$$

where $\Psi\iota=\jmath\phi$ and $\Phi\jmath=\iota\phi^{-1}$. We also have $\Phi\Psi\iota=\Phi\jmath\phi=\iota\phi^{-1}\phi=\iota$. Also, $\Psi\Phi\jmath=\jmath$. By the uniqueness, $\Phi\Psi=1_{F(A)}$ and $\Psi\Phi=1_{F(B)}$. So $F(A)\cong F(B)$.

Solution 28 Let M be a finite abelian group. By the classification of the finite abelian group, we may assume that $M = C_{n_1} \times \cdots \times C_{n_k}$ for some positive integers n_1, \ldots, n_k . Let $\ell = \text{lcm}(n_1, \ldots, n_k)$. Then $\ell \cdot m = 0$. For the counterexample, let M be the infinite product of C_2 , i.e., $M = C_2 \times C_2 \times \cdots$. For any $(m_i)_{i \in \mathbb{N}}$, we have $2 \cdot (m_i) = (2 \cdot m_i) = 0$.

Solution 29 Notice that Rm is a nonzero submodule of M since R contains an identity. So M=Rm by definition.

Solution 30 They are the cyclic groups of prime orders. Let M be an irreducible \mathbb{Z} -module. The subgroups of M are the submodules of M. Suppose that M is infinite. Let $0 \neq m \in M$. Then $M = \mathbb{Z}m$. Since M is infinite, there is no nonzero integer k such that km = 0. But $\langle 2m \rangle$ is a submodule of M. So m = k(2m) for some $k \in \mathbb{N}$, i.e., (2k-1)m = 0. This is a contradiction. So M must be finite. By the classification of finite abelian group, M is a direct product of cyclic groups. Since every copy of the direct product is a subgroup of M and M is irreducible, there is only one copy, i.e., $M \cong C_n$. The subgroups of C_n correspond to divisors of n. So n must be prime.

Solution 31 We first check that eM is a submodule of M. Clearly, $e0=0\in eM$. So $eM\neq\emptyset$. For $em,em'\in eM$ and $r\in R$, we have

$$em + r(em') = em + (re)m' = em + (erm') = e(m + rm') \in eM.$$

Similarly, (1-e)M is a submodule of M. For $m \in M$, we have m = em + (1-e)m. So M = eM + (1-e)M. Suppose that $x \in eM \cap (1-e)M$. Then (1-e)m = x = em'. So

$$e(1 - e)m = e^{2}m'$$
$$(e - e)m = em'$$
$$0 = em' = x.$$

So $eM \cap (1-e)M = \{0\}$. As such, $M = eM \oplus (1-e)M$.

Solution 32 Left as exercise.

Solution 33 Left as exercise.

Solution 34 We first verify that $\phi * r$ belongs in $\text{Hom}_S(Y, Z)$. For any $s \in S$ and $y \in Y$, we have

$$(\phi*r)(ys) = \phi(r(ys)) = \phi((ry)s) = \phi(ry)s = (\phi*r)(y)s.$$

So $\phi * r \in \text{Hom}_S(Y, Z)$. For $r, r' \in R$, we have

$$(\phi * (r + r'))(y) = \phi((r + r')y) = \phi(ry + r'y) = \phi(ry) + \phi(r'y) = (\phi * r)(y) + (\phi * r')(y)$$
$$= (\phi * r + \phi * r')(y).$$

The other axiom is left as an exercise to check.

Solution 35 In our examples, we have proved that $R \otimes_R N \cong N$ for any R-module N. So $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q} \cong \mathbb{Q}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \cong \mathbb{C}$. Define $\beta : \mathbb{Q} \to \mathbb{Q}$ by $\beta(x) = x$. This is clearly an \mathbb{Z} -module homomorphism. By Theorem 10.8, there exists an \mathbb{Q} -module homomorphism $\Phi : \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q}$ such that $\Phi(1 \otimes x) = x$. In particular, Φ is surjective. For any $\frac{r}{s} \otimes x$, $\frac{a}{b} \otimes y \in \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$, we have

$$\frac{r}{s} \otimes x + \frac{a}{b} \otimes y = \frac{rb}{sb} \otimes x + \frac{sa}{sb} \otimes y = \frac{1}{sb} \otimes (rbx) + \frac{1}{sb} \otimes (say) = \frac{1}{sb} \otimes (rbx + say).$$

So every element in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ can be expressed as a simple tensor. As such, if $x \otimes y \in \ker \Phi$, we have

$$0 = \Phi(x \otimes y) = \Phi(x(1 \otimes y)) = x\Phi(1 \otimes y) = xy.$$

So either x=0 or y=0. As such, $x\otimes y=0$. This shows that Φ is injective. So $\mathbb{Q}\otimes_{\mathbb{Z}}\mathbb{Q}\cong\mathbb{Q}$ as \mathbb{Q} -modules.

On the other hand, we show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ surjects onto $\mathbb{C} \oplus \mathbb{C}$ as \mathbb{C} -modules. Similar as before, let $L = \mathbb{C} \oplus \mathbb{C}$ and $\beta : \mathbb{C} \to \mathbb{C} \oplus \mathbb{C}$ defined by $\beta(a+ib) = (a,ib)$ where $a,b \in \mathbb{R}$. For $r \in \mathbb{R}$ and $a+ib \in \mathbb{C}$, we have

$$\beta(r(a+ib)) = (ra, rib) = r(a, ib) = r\beta(a+ib).$$

So β is an \mathbb{R} -module homomorphism. By Theorem 10.8, there exists an \mathbb{C} -module homomorphism $\Phi: \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C} \oplus \mathbb{C}$ such that $\Phi\iota = \beta$. In particular, $\Phi(1 \otimes (a+ib)) = \Phi\iota(a+ib) = \beta(a+ib) = (a,ib)$. So $(1,0),(0,i) \in \operatorname{im} \Phi$. Since Φ is an \mathbb{C} -module homomorphism,

$$\Phi(i \otimes i) = \Phi(i(1 \otimes i)) = i(0, i) = (0, -1),
\Phi(i \otimes 1) = \Phi(i(1 \otimes 1)) = i(1, 0) = (i, 0).$$

So Φ is surjective. This shows that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ cannot be isomorphic to \mathbb{C} as \mathbb{C} -modules.

Solution 36 (i): Suppose that $\overline{a} = \overline{a'}$, i.e., a - a' = km for some $k \in \mathbb{Z}$. We have ad + mD = (a' + km)d + mD = a'd + mD. So β is well-defined. Also, for example,

$$\beta(dn, \overline{a}) = a(dn) + mD = (na)d + mD = \beta(d, \overline{na}).$$

So β is \mathbb{Z} -balanced.

(ii): By Theorem 10.10, we have a group homomorphism $\Phi:D\otimes_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z})\to D/mD$ such that $\Phi(d\otimes \overline{a})=ad+mD$. Taking a=1, we have that Φ is surjective. Furthermore,

$$d\otimes \overline{a}=d\otimes a\overline{1}=(da)\otimes \overline{1}.$$

Let $d \otimes 1 \in \ker \Phi$, we have $\Phi(d \otimes \overline{1}) = d + mD = mD$. Then $d \in mD$, i.e., d = md'. So $d \otimes 1 = (d'm) \otimes 1 = d' \otimes \overline{m} = d' \otimes 0 = 0$. So Φ is injective.

Solution 37 Left as exercise.

Solution 38 Let $\beta: M \times N \to N \otimes_R M$ be given by $\beta(m,n) = n \otimes m$. This is R-bilinear because

$$\beta(rm + r'm', n) = n \otimes (rm + r'm') = n \otimes (rm) + n \otimes (r'm') = (nr) \otimes m + (nr') \otimes m'$$
$$= (rn) \otimes m + (r'n) \otimes m' = r(n \otimes m) + r'(n \otimes m') = r\beta(m, n) + r'\beta(m', n).$$

Similarly, we can prove that $\beta(m, rn + r'n') = r\beta(m, n) + r'\beta(m, n')$. By the universal property, we have an R-module homomorphism $\phi: M \otimes_R N \to N \otimes_R M$ such that $\phi(m \otimes n) = n \otimes m$. Similarly,

we have an R-module homomorphism $\psi: N \otimes_R M \to M \otimes_R N$ such that $\psi(n \otimes m) = m \otimes n$. By the uniqueness of the universal property,

$$M \times N \xrightarrow{\iota} M \otimes_R N$$

$$\downarrow \qquad \qquad \parallel$$

$$M \otimes_R N$$

Since $\psi\phi(m\otimes n)=m\otimes n$, we have $\psi\phi=1$. Similarly, $\phi\psi=1$. So ϕ is an isomorphism.

Solution 39 Let $\beta: M \times (\bigoplus_{i \in I} N_i) \to \bigoplus_{i \in I} (M \otimes_R N_i)$ be defined as

$$\beta(m,(n_i)) = (m \otimes n_i)_{i \in I}.$$

We have β is R-balanced. For example,

$$\beta(mr, (n_i)) = ((mr) \otimes n_i)_{i \in I} = (m \otimes (rn_i))_{i \in I} = \beta(m, (rn_i)_{i \in I}) = \beta(m, r(n_i)_{i \in I}).$$

As such, we have a group homomorphism $\Phi: M \otimes_R (\bigoplus_{i \in I} N_i) \to \bigoplus_{i \in I} (M \otimes_R N_i)$ such that $\Phi(m,(n_i)_{i \in I}) = (m \otimes n_i)_{i \in I}$. Similarly, for each $i \in I$, we define $\beta_i: M \times_R N_i \to M \otimes_R (\bigoplus_{i \in I} N_i)$ by $\beta_i(m_i,n_i) = m_i \otimes (n_j^{(i)})_{j \in I}$ where $n_j = 0$ if $j \neq i$. Therefore, there exist group homomorphisms $\Psi_i: M \otimes_R N_i \to M \otimes_R (\bigoplus_{i \in I} N_i)$ such that $\Psi_i(m \otimes n_i) = m_i \otimes (n_j^{(i)})$. Now let $\Psi = \oplus \Psi_i: \bigoplus_{i \in I} (M \otimes_R N_i) \to M \otimes_R (\bigoplus_{i \in I} N_i)$ so that $\Psi(m_i \otimes n_i)_{i \in I} = \sum m \otimes (n_j^{(i)})_{i \in I}$. (This is where the proof fails if we replace direct sum with direct product because the sum $\sum m \otimes (n_j^{(i)})_{i \in I}$ could end up with infinite sum and it does not make sense in $M \otimes_R (\prod_{i \in I} N_i)$). It is now routine to check that Ψ and Φ are inverses of each other.

Solution 40 *We have $\mathbb{Q} \otimes_{\mathbb{Z}} N_i = 0$ because

$$x \otimes y = \frac{x}{2^i} \cdot 2^i \otimes y = \frac{x}{2^i} \otimes 2^i \cdot y = \frac{x}{2^i} \otimes 0 = 0.$$

Therefore, $\prod_{i\in I}(\mathbb{Q}\otimes N_i)=0$. On the other hand, we claim that $\mathbb{Q}\otimes_{\mathbb{Z}}\prod_{i\in I}N_i\neq 0$.

For this, we prove the following statement: Let N be a left nonzero torsion-free \mathbb{Z} -module. Then $\mathbb{Q} \otimes_{\mathbb{Z}} N$ is nonzero.

We first define an equivalence relation on $\mathbb{Q} \times N$. Let $(\frac{r}{s}, x) \sim (\frac{a}{b}, y)$ if and only if (rb)x = (as)y. Suppose that $\frac{r'}{s'} = \frac{r}{s}$ and $\frac{a'}{b'} = \frac{a}{b}$. We have

$$(sb)(r'b'x - s'a'y) = (rs'bb'x - ss'ab'y) = 0.$$

Since N is torsion-free and $\mathbb{Z}\ni sb\neq 0$, we have r'b'x=s'a'y. So the relation \sim is well-defined. Clearly, $(\frac{r}{s},x)\sim (\frac{r}{s},x)$ and, $(\frac{r}{s},x)\sim (\frac{a}{b},y)$ if and only if $(\frac{a}{b},y)\sim (\frac{r}{s},x)$. Furthermore, suppose that $(\frac{r}{s},x)\sim (\frac{a}{b},y)$ and $(\frac{a}{b},y)\sim (\frac{c}{d},z)$. We have

$$b(rdx - csz) = dasy - sady = 0.$$

Again, since N is torsion-free, we have rdx=csz. So \sim is an equivalence relation.

Let $\widetilde{N}=\mathbb{Q}\times N/\sim$ be the set of equivalence classes and we write [q,x] for the equivalence class containing (q,x). It is an \mathbb{Q} -module (vector space) where

$$\left[\frac{a}{b}, x\right] + \left[\frac{r}{s}, y\right] = \left[\frac{1}{bs}, asx + bry\right],$$
$$\frac{a}{b} \left[\frac{r}{s}, y\right] = \left[\frac{ar}{bs}, y\right].$$

The zero element is [0,0]. We claim that $[1,x] \neq [0,0]$ for $x \neq 0$. If not, we have $x=1 \cdot 0=0$, a contradiction. So $\widetilde{N} \neq 0$ because $N \neq 0$.

We define $\beta: \mathbb{Q} \times N \to \widetilde{N}$ by $\beta(q,x) = [q,x]$. The map β is well-defined and surjective. Next, we shall show that β is \mathbb{Z} -balanced. For $n \in \mathbb{Z}$, $\frac{a}{b}$, $\frac{a'}{b'} \in \mathbb{Q}$ and $x, x \in N$, we have

$$\begin{split} \beta(\frac{a}{b}n,x) &= [\frac{a}{b}n,x] = [\frac{a}{b},nx] = \beta(\frac{a}{b},nx), \\ \beta(\frac{a}{b} + \frac{a'}{b'},x) &= \beta(\frac{ab' + a'b}{bb'},x) = [\frac{ab' + a'b}{bb'},x] \\ &= [\frac{1}{bb'},ab'x + a'bx] = [\frac{a}{b},x] + [\frac{a'}{b'},x] = \beta(\frac{a}{b},x) + \beta(\frac{a'}{b'},x) \\ \beta(\frac{a}{b},x + x') &= [\frac{a}{b},x + x'] = [\frac{ab}{bb},x + x'] = [\frac{1}{bb},abx' + abx] \\ &= [\frac{a}{b},x] + [\frac{a}{b},x']\beta(\frac{a}{b},x) + \beta(\frac{a}{b},x'). \end{split}$$

By Theorem 10.10, there exists a group homomorphism $\Phi:\mathbb{Q}\otimes_{\mathbb{Z}}N\to\widetilde{N}$ such that $\beta=\Phi\circ\iota$ where $\iota:\mathbb{Q}\times N\to\mathbb{Q}\otimes_{\mathbb{Z}}N$. Since β is surjective and $\widetilde{N}\neq 0$, we have Φ is surjective and hence $\mathbb{Q}\otimes_{\mathbb{Z}}N\neq 0$.

For arbitrary \mathbb{Z} -module, let

$$N' = \{x \in N : nx = 0 \text{ for some } 0 \neq n \in \mathbb{Z}\}.$$

This is a submodule (the torsion submodule) of N. The quotient N/N' is a torsion-free \mathbb{Z} -module because, if n(x+N')=N' for some $n\neq 0$, then $nx\in N'$ and hence $x\in N'$. Define the map $\gamma:\mathbb{Q}\times N\to\mathbb{Q}\otimes_{\mathbb{Z}}N'$ by $\gamma(q,x)=q\otimes(x+N')$. We claim that γ is a \mathbb{Z} -balanced.

$$\gamma(q, x + x') = q \otimes ((x + x') + N') = q \otimes (x + N') + q \otimes (x' + N') = \gamma(q, x) + \gamma(q, x'),$$

$$\gamma(q + q', x) = (q + q') \otimes (x + N') = q \otimes (x + N') + q' \otimes (x + N') = \gamma(q, x) + \gamma(q', x),$$

$$\gamma(qn, x) = qn \otimes (x + N') = q \otimes (nx + N') = \gamma(q, nx).$$

By Theorem 10.10 again, there exists a group homomorphism $\Phi': \mathbb{Q} \otimes_{\mathbb{Z}} N \to \mathbb{Q} \otimes_{\mathbb{Z}} (N/N')$. Since γ is also surjective, we have Φ' is surjective. Suppose also that $N/N' \neq 0$. By our statement, $\mathbb{Q} \otimes_{\mathbb{Z}} (N/N') \neq 0$ and hence $\mathbb{Q} \otimes_{\mathbb{Z}} N \neq 0$.

We now apply the statement to our case. Let $N=\prod_{i\in I}N_i$. The submodule N' consists of sequences $(x_i)_{i\in I}$ such that x_i 's are almost all zero. Therefore, N/N' is nonzero. For example, it contains $(1)_{i\in I}$. So $\mathbb{Q}\otimes_{\mathbb{Z}}N\neq 0$. This proves our claim.

Solution 41 (i): It is clear that $(m,x) \sim (n,y)$ if and only if $(n,y) \sim (m,x)$. Also, $(m,x) \sim (m,x)$ because 1(mx-mx)=0. Suppose now that $(m,x) \sim (n,y) \sim (k,z)$, i.e., t(my-nx)=0 and

s(nz-ky)=0 for some nonzero $s,t\in\mathbb{Z}.$ Since $n\neq 0$, we have

$$tsn(mz - kx) = (tm)(snz) - ks(tnx) = tm(sky) - ks(tmy) = 0.$$

So $(m,x) \sim (k,z)$. This shows that \sim is an equivalence relation.

(ii): We only check well-definedness. The rest is left as exercise. Suppose that $(m,x) \sim (m',x')$ and $(n,y) \sim (n',y')$, i.e., t(mx'-m'x)=0=s(ny'-n'y) for some nonzero integers s,t. We have

$$ts(m'n')(my + nx) = tm'm(sn'y) + sn'n(tm'x) = tm'm(sny') + sn'n(tmx') = ts(mn)(m'y' + n'x').$$

(iii): Again, we only check that the map β is well-defined. The rest is left as exercise. Suppose that $\frac{a}{b} = \frac{a'}{b'}$, i.e., ab' = a'b. We have

$$b'(ax) = (b'a)x = (a'b)x = b(a'x).$$

So [(b,ax)]=[(b',a'x)]. By Theorem 10.10, there exists an abelian group homomorphism $f:\mathbb{Q}\otimes_{\mathbb{Z}}N\to\mathbb{Z}^{-1}N$ such that $f(\frac{a}{b}\otimes x)=[(b,ax)]$.

(iv): Suppose that $(m,x) \sim (m',x')$, i.e., t(mx'-m'x)=0. We have

$$\frac{1}{m} \otimes x = \frac{tm'}{tmm'} \otimes x = \frac{1}{tmm'} \otimes (tm'x) = \frac{1}{mm'} \otimes (tmx') = \frac{tm}{tmm'} \otimes x' = \frac{1}{m'} \otimes x'.$$

So g is well-defined. It is left as an exercise to check that g is a group homomorphism and it is the inverse of f.

(v): Suppose that $\frac{1}{m} \otimes x = 0$. By the isomorphism in part (iv), we have

$$0 = f(0) = f(\frac{1}{m} \otimes x) = [(m, x)].$$

The zero element in $\mathbb{Z}^{-1}N$ is [(1,0)]. So $(m,x)\sim (1,0)$, i.e., t(x-0)=0 for some $0\neq t\in \mathbb{Z}$. Suppose now that rx=0 for some $0\neq r\in \mathbb{Z}$. We have

$$\frac{1}{m} \otimes x = \frac{r}{rm} \otimes x = \frac{1}{rm} \otimes (rx) = \frac{1}{rm} \otimes 0 = 0.$$

Solution 42 Self-study.

Solution 43 Left as exercise.

Solution 44 Suppose that $f_3(m)=0$ for some $m\in M_3$. Therefore, fg(m)=hf(m)=0. Since f_4 is injective, we have g(m)=0. Since it is exact at M_2 , there exists $m'\in M_2$ such that g(m')=m. We have hf(m')=fg(m')=f(m)=0. So $f(m')\in\ker h_2=\operatorname{im} h_1$ and hence there exists $n\in N_1$ such that h(n)=f(m'). But f_1 is surjective. There exists $m''\in M_1$ such that f(m'')=n. We have fg(m'')=hf(m'')=h(n)=f(m'). Since f_2 is injective, we have m'=g(m''). So $m=g(m')=g^2(m'')=0$. So f_3 is injective.

Solution 45 (i) Define $\gamma(1)=1$ and $\gamma(-1)=(1,2)$. This is a group homomorphism. We have $\operatorname{sgn}\gamma(-1)=\operatorname{sgn}((1,2))=-1$. So $\operatorname{sgn}\gamma=\operatorname{id}_{\{\pm 1\}}$. (ii) Suppose that we have a group homomorphism such that $\delta\iota=\operatorname{id}_{A_n}$. In particular, δ is surjective and there is a normal subgroup N of S_n such that $|N|=|S_n|/|A_n|=2$. So $N=\langle \tau \rangle$ where τ is a permutation of order 2, i.e., $\tau=(a_1,b_1)(a_2,b_2)\cdots(a_k,b_k)$ as a product of disjoint cycles where $k\geq 1$. Since $n\geq 3$, there exists $c\not\in\{a_1,b_1\}$. Since N is closed under conjugation, we must have $\tau=(a_1,c)\tau(a_1,c):=\sigma$. But $\tau:b_1\mapsto a_1$ while $\sigma:b_1\mapsto c$. A contradiction. So there is no such δ .