Álgebra Universal e Categorias

Exame - Época Especial (23 de julho de 2018) -

____ duração: 2h00 ____

- 1. Sejam $\mathcal{A}=(A;F)$ e $\mathcal{B}=(B;G)$ álgebras do mesmo tipo e $\alpha:\mathcal{A}\to\mathcal{B}$ um homomorfismo. Mostre que se S_1 é um subuniverso de \mathcal{A} , então $\alpha(S_1)$ é um subuniverso de \mathcal{B} .
- 2. Sejam $\mathcal{A}=(A;*^{\mathcal{A}})$ e $\mathcal{B}=(B;*^{\mathcal{B}})$ as álgebras de tipo (2), onde $A=\mathbb{R}\setminus\{-1\}$, $B=\mathbb{R}\setminus\{0\}$, $*^{\mathcal{A}}:A\times A\to A$ é a operação definida por $a*^{\mathcal{A}}b=a+b+ab$, para quaisquer $a,b\in A$, e $*^{\mathcal{B}}$ é a multiplicação usual em B. Seja $\alpha:A\to B$ a aplicação definida por $\alpha(x)=x+1$, para todo $x\in A$.
 - (a) Mostre que a aplicação α é um isomorfismo de \mathcal{A} em \mathcal{B} .
 - (b) Mostre que a relação de equivalência $\ker \alpha$ é uma congruência em \mathcal{A} .
 - (c) Justifique que $A/\ker \alpha \cong B$.
- 3. Seja $\mathcal{A}=(A;f^{\mathcal{A}},g^{\mathcal{A}})$ a álgebra de tipo (1,1) tal que $A=\{0,1,2,3\}$ e $f^{\mathcal{A}}$ e $g^{\mathcal{A}}$ são as operações definidas por

Sabendo que o reticulado de congruências de ${\mathcal A}$ pode ser representado por

onde $\theta_1 = \triangle_A \cup \{(0,3),(3,0)\}$ e $\theta_4 = \Theta(1,2)$, diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- (a) O par (θ_1, θ_4) é um par de congruências fator.
- (b) A álgebra \mathcal{A} não é sudiretamente irredutível e é diretamente indecomponível.
- (c) O conjunto suporte da álgebra $\mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4 = (A/\theta_1 \times A/\theta_4; f^{\mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4}; g^{\mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4})$ tem 6 elementos e $f^{\mathcal{A}/\theta_1 \times \mathcal{A}/\theta_4}(([1]_{\theta_1}, [1]_{\theta_4})) = ([0]_{\theta_1}, [2]_{\theta_4}).$
- 4. Diga, justificando, se a afirmação seguinte é verdadeira para qualquer categoria ${\bf C}$ e para quaisquer ${\bf C}$ -morfismos $f:A\to B$ e $g:B\to C$: Se $g\circ f$ é um monomorfismo, então f e g são monomorfismos.
- 5. Sejam ${\bf C}$ uma categoria e X um objeto de ${\bf C}$. Mostre que $(X, {\rm id}_X)$ é um objeto terminal da categoria ${\bf C}/X$ dos objetos sobre X.
- 6. Na categoria **Set**, considere os conjuntos $\{0\}$, \mathbb{N}_0 e as funções i, f e $id_{\mathbb{N}_0}$ definidas por

Mostre que $(\{0\}, i)$ é um coignalizador de f e $id_{\mathbb{N}_0}$.

- 7. Sejam $\mathbf C$ uma categoria e $f:A\to B$ um morfismo de $\mathbf C$. Mostre que se f é um epimorfismo, então $(B,(\mathrm{id}_B,\mathrm{id}_B))$ é uma soma amalgamada de (f,f).
- 8. Sejam C e D categorias e $F: C \to D$ um funtor. Mostre que se F é um funtor fiel e pleno, então F reflete inversos esquerdos.

 $\textbf{Cotação:} \ \ 1.(1.75); \ \ 2.(2.0+1.75+0.75); \ \ 3.(1.25+1.25+1.25); \ \ 4.(1.25); \ \ 5.(2.0); \ \ 6.(2.5); \ \ 7.(2.25); \ \ 8.(2.0).$