

Midterm Presentation -P4 Accuracy of Approximate Circuits

FABIAN GARBER, SIMON HOWIND, KAGAN ÖZTEN, MARTIN RESETARITS, PETER TRAUNMÜLLER

Introduction

- Advantages of approximate computing
- Energy-efficient
- Less area
- Less computing time

Circuit Designs

Circuit Designs

Conventional Full Adder Circuit Design

Approximate Full Adder Circuit Design as proposed by Priyadharshni et al

Truth Table

Input			Full Adder		INXA1	
x	y	c_{in}	c_{out}	s	c_{out}	s
0	0	0	0	0	0 🗸	0 🗸
0	0	1	0	1	$_{1}$ X	1 🗸
0	1	0	0	1	0 🗸	1 🗸
0	1	1	1	0	$1 \checkmark$	0 🗸
1	0	0	0	1	0 🗸	1 🗸
1	0	1	1	0	$1 \checkmark$	0 🗸
1	1	0	1	0	$_{0}$ X	0 🗸
1	1	1	1	1	$1 \checkmark$	1 🗸

Error Analysis

- For multi bit inputs, the error is not Hamming distance
- Error must be interpreted as number

Error Analysis

- For multi bit inputs, the error is not Hamming distance
- Error must be interpreted as number

Binary Decision Diagram

	Input	Output	
X[0]	X[1]	X[2]	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Binary Decision Diagram

	Input		Output
X[0]	X[1]	X[2]	out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Current Status

- VHDL code for full adder and INXA1 finished
- Python code for Binary Decision Diagram for 1 bit analysis
- First estimation of power consumption

Future Plans

- Time, Area and Power Analysis with VHDL TOOL
- Adding functionality for generic N bit Adders
- Implementation in Open Source Processor
- Worst Case Error Analysis with BDD
- Implementing on Zedboard (Hardware)

Thank you!

