#### Reed-Solomon Codes

Qi Zhang

Aarhus University School of Engineering

03/03/2014



1 / 25

Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014

- 1 q-ary Linear Block Codes
- 2 Introduction of Reed-Solomon Codes
- 3 RS codes in Systematic Form
- 4 Syndrome Decoding of RS Codes
- 5 Error-location and Error Evaluation Polynomials
- 6 Decoding RS codes using the Euclidean algorithm



2 / 25

03/03/2014

#### q-ary Linear Block Codes

- Consider a Galois Field GF(q) with q elements. It is possible to construct codes with symbols from GF(q).
- Here  $q = p_{prime}^i$ . e.g.,  $p_{prime} = 2$  and i = 3,  $q = 2^3$ .
- Such codes are called *q*-ary codes or non-binary codes.
- The concepts and properties developed for binary codes can be applied to *q*-ary codes with a few modifications.
- Consider the *n*-dimension vector space of defined over GF(q):

$$\mathbf{v} = (v_0, v_1, \dots, v_{n-1})$$

with  $v_i \in GF(q)$  for  $0 \le i < n$ .

■ The vector addition is defined as:

$$(u_0, u_1, \ldots, u_{n-1}) + (v_0, v_1, \ldots, v_{n-1}) = (u_0 + v_0, u_1 + v_1, \ldots, u_{n-1} + v_{n-1})$$
  
where the addition  $u_i + v_i$  is carried out in  $GF(q)$ .

It is similar to the multiplication which is carried out also in GF(q).

# q-ary Linear Block Codes

- **Definition**: An  $C_b(n, k)$  linear block code with symbols from GF(q) is simply a k-dimension subspace of the vector space defined over GF(q).
- A *q*-ary linear block code has all the structure and properties of binary block codes.
- The encoding and decoding of q-ary linear block codes are the same as for binary linear block codes, except that operations and computation followed the rules in GF(q).



# q-ary Cyclic Codes

- A *q*-ary cyclic code  $C_{cyc}(n, k)$  is generated by a polynomial of degree n k over GF(q).
- Namely, the generator polynomial:

$$g(X) = g_0 + g_1X + g_2X^2 + ... + g_{n-k-1}X^{n-k-1} + X^{n-k}$$

where  $g_0 \neq 0$  and  $g_i \in GF(q)$ .

- g(X) is a factor of  $X^n + 1$ .
- The code polynomial c(X) of degree n-1 or less and it is a multiple of g(X).



Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014 5 / 25

#### Introduction of Reed-Solomon Codes

- The generator polynomial g(X) of a t-error correcting binary BCH codes is the minimum-degree polynomial defined over GF(2) and it has roots  $\alpha$ ,  $\alpha^2$ , ...,  $\alpha^{2t}$  from GF(2 $^m$ ).
- Let  $\phi_i(X)$  the minimal polynomial of  $\alpha^i$ , then

$$g(X) = LCM\{\phi_1(X), \phi_2(X), \dots, \phi_{2t}(X)\}\$$

- Generalizing binary BCH codes to q-array BCH codes:
  - The generator polynomial of a *t*-error correcting *q*-ary BCH code is the minimum-degree polynomial defined over GF(q) and it has roots  $\alpha$ ,  $\alpha^2$ , ...,  $\alpha^{2t}$  from  $GF(q^m)$ . Let  $\alpha$  be a primitive element in  $GF(q^m)$ .
  - If let  $\phi_i(X)$  be the minimal polynomial of  $\alpha^i$ , then

$$g(X) = LCM\{\phi_1(X), \phi_2(X), \dots, \phi_{2t}(X)\}\$$

- Obviously, if q = 2, then it is binary BCH code.
- For q-ary BCH code if m = 1, it is a special family of q-ary BCH code, called Reed-Solomn (RS) codes.



#### Introduction of Reed-Solomon Codes

- A RS code  $C_{RS}(n, k)$  is able to correct t or less errors and is defined over GF(q).
- Comparison of the parameters of Binary BCH codes, q-ary BCH code and RS codes:

|                          | Binary BCH code       | RS code        |
|--------------------------|-----------------------|----------------|
| Code length              | $n=2^m-1$             | n = q - 1      |
| Number of parity check   | $n-k \leq mt$         | n-k=2t         |
| Minimum distance         | $d_{min} \geq 2t + 1$ | $d_{min}=2t+1$ |
| Error correct capability | t errors              | t errors       |

- Two important features of RS code:
  - The code length is one less than the size of the code alphabet.
  - The minimum Hamming distance is one greater than the number of parity check symbols.



7 / 25

#### Generator polynomial of Reed-Solomon codes

- The generator polynomial of  $C_{RS}(n,k)$  has roots of  $\alpha,\alpha^2,\ldots,\alpha^{2t}$ ;
- Here  $\alpha$  is a primitive element of GF(q),  $\alpha^{q-1} = 1$ ;
- So the generator polynomial of  $C_{RS}(n, k)$  can be expressed as

$$g(X) = (X + \alpha)(X + \alpha^{2}) \dots (X + \alpha^{2t})$$
  
=  $g_0 + g_1X + g_2X^{2} + \dots + g_{2t}X^{2t}$ 

- Comparing with the generator polynomial of binary BCH code:
  - In binary BCH code, the coefficients of g(X) are defined over GF(2), in RS code, the coefficients of g(X),  $g_i$ , belong to GF(g).
  - The minimal polynomials  $\phi_i(X)$  defined over GF(q) are of the simple form  $\phi_i(X) = X + \alpha^i$ .



8 / 25

Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014

# Generator polynomial of RS code

- Generator polynomial comparison of the double error correcting codes binary BCH code  $C_{BCH}(15,7)$  and RS code  $C_{RS}(15,11)$ :
- Both generator polynomials g(X) have roots of  $\alpha, \alpha^2, \alpha^3, \alpha^4$ .
- Here  $\alpha$  is a primitive element of  $GF(2^4)$  generated by  $p_i(X) = 1 + X + X^4$ .
  - Let  $\phi_i(X)$  be the minimal polynomial of  $\alpha^i$  over GF(2), the generator polynomial of  $C_{BCH}(15,7)$  is

$$\begin{split} g(X) &= \phi_1(X)\phi_3(X) \\ &= (X^4 + X + 1)(X^4 + X^3 + X^2 + X + 1) \\ &= \left[ (X + \alpha)(X + \alpha^2)(X + \alpha^4)(X + \alpha^8) \right] \left[ (X + \alpha^3)(X + \alpha^6)(X + \alpha^9)(X + \alpha^{12}) \right] \end{split}$$

■ The generator polynomial of  $C_{RS}(15,11)$  is

$$g(X) = (X + \alpha)(X + \alpha^2)(X + \alpha^3)(X + \alpha^4)$$

- Code rate of  $C_{BCH}(15,7)$  is R = 7/15,
- Code rate of  $C_{RS}(15, 11)$  is R = 11/15.



# Reed-Solomon codes defined over $GF(2^m)$

- Among the generic RS codes, in practice, the RS codes with elements defined over  $GF(2^m)$  is often used.
- In such RS code, each element can have a binary representation in the form of a vector with element of GF(2).
- Code polynomial of RS code can be generally expressed as:

$$c(X) = c_0 + c_1 X + \ldots + c_{n-1} X^{n-1}$$

- As c(X) = m(X)g(X), generator polynomial is a factor of code polynomial:
- Therefore, the roots of generator polynomial are also the roots of the code polynomial.
- There is  $c(\alpha) = c(\alpha^2) = ... = c(\alpha^i) = ... = c(\alpha^{2t}) = 0$
- Substituting  $\alpha^i$  into the general code polynomial expression, there is

$$c(lpha^i) = c_0 + c_1lpha^i + \ldots + c_{n-1}lpha^{(n-1)i} = 0$$
 AARHUS UNIVERS  $1 \leq i \leq n-k = 2t$ 



10 / 25

Qi Zhang (ASE) Reed-Solomon Codes

# Generator polynomial of RS code Example

- **Example 5.2**: Construct the generator polynomial of an RS code  $C_{RS}(7,5)$  that operates over the GF(2<sup>3</sup>) generated by primitive polynomial  $p_i(X) = 1 + X^2 + X^3$ .
- Solution:
  - **1** Construct GF(2<sup>3</sup>) by the primitive polynomial  $p_i(X) = 1 + X^2 + X^3$ .
  - 2 Construct the generator polynomial:
    - As n = 7, k = 5, 2t = n k = 2, so the g(X) can be expressed as

$$g(X) = (X + \alpha)(X + \alpha^2)$$



Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014 11 / 25

#### Generator polynomial of RS code Example

• GF(2<sup>3</sup>) generated by  $p_i(X) = 1 + X^2 + X^3$ :

| ^                     |                                                                                  |
|-----------------------|----------------------------------------------------------------------------------|
| Ü                     | 0 0 0                                                                            |
| 1                     | 100                                                                              |
| $\alpha$              | 0 1 0                                                                            |
| $\alpha^2$            | 0 0 1                                                                            |
| $1+\alpha^2$          | 101                                                                              |
| $1+\alpha + \alpha^2$ | 111                                                                              |
| $1+\alpha$            | 1 1 0                                                                            |
| $\alpha + \alpha^2$   | 0 1 1                                                                            |
|                       | $\begin{array}{c} \alpha^2 \\ 1 + \alpha^2 \\ 1 + \alpha + \alpha^2 \end{array}$ |

■ The generator polynomial

$$g(X) = (X + \alpha)(X + \alpha^{2})$$
$$= X^{2} + (\alpha + \alpha^{2})X + \alpha^{3}$$
$$= X^{2} + \alpha^{6}X + \alpha^{3}$$



# RS codes in systematic form

- As the generated code is a linear and cyclic code, the systematic form of RS can be obtained by the same approach of a normal cyclic code.
- The message polynomial is expressed by

$$m(X) = m_0 + m_1 X + m_2 X^2 + \ldots + m_{k-1} X^{k-1}$$

- 1 Multiply message polynomial by  $X^{n-k}$ , obtaining  $X^{n-k}m(X)$
- 2 Divide  $X^{n-k}m(X)$  by generator polynomial g(X), obtaining remainder p(X), there is

$$X^{n-k}m(X) = q(X)g(X) + p(X)$$

3 The code polynomial in systematic form is

$$c(X) = p(X) + X^{n-k} m(X)$$



13 / 25

Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014

#### RS codes in systematic form

- **Example 5.3**: Determine the code vector in systematic form for the RS code of the example 5.2, when the source message is (001 101 111 010 011).
- Solution:
  - 1 Look up in the  $GF(2^3)$  table, obtaining the message polynomial:

$$m(X) = \alpha^2 + \alpha^3 X + \alpha^4 X^2 + \alpha X^3 + \alpha^6 X^4$$

2 Obtaining  $X^{n-k}m(X)$ 

$$X^{n-k}m(X) = X^{7-5}m(X)$$
  
=  $\alpha^2 X^2 + \alpha^3 X^3 + \alpha^4 X^4 + \alpha X^5 + \alpha^6 X^6$ 

- 3 Divide  $X^{n-k}m(X)$  by g(X), obtaining  $p(X) = \alpha^5 X$
- 4  $c(X) = p(X) + X^{n-k}m(X) = \alpha^5 X + \alpha^2 X^2 + \alpha^3 X^3 + \alpha^4 X^4 + \alpha X^5 + \alpha^6 X^6$
- 5 Using the vector form of each element to represent the code polynomial into code vector:

$$\mathbf{c} = (c_0, c_1, c_2, c_3, c_4, c_5, c_6) \\ = (000\ 110\ 001\ 101\ 111\ 010\ 011)$$



# Syndrome Calculation of RS Codes

As we know, the relation among the received polynomial, code polynomial and error polynomial:

$$r(X) = c(X) + e(X)$$

- Syndrome calculation is same as in BCH code.
- We replace the variable X by the roots of c(X),  $\alpha^i$ ,  $i=1,2,\ldots,2t$ . So

$$r(\alpha^i) = c(\alpha^i) + e(\alpha^i) = e(\alpha^i)$$

Assuming there are  $\tau$  errors at location  $X^{j_1}, X^{j_2}, \dots, X^{j_{\tau}}$ , we define the error location number as

$$\beta_i = \alpha^{j_i} \quad i = 1, 2, \dots, \tau$$

A system of equations is formed:

$$s_{1} = r(\alpha) = e(\alpha) = e_{j_{1}}\beta_{1} + e_{j_{2}}\beta_{2} + \dots + e_{j_{\tau}}\beta_{\tau}$$

$$s_{2} = r(\alpha^{2}) = e(\alpha^{2}) = e_{j_{1}}\beta_{1}^{2} + e_{j_{2}}\beta_{2}^{2} + \dots + e_{j_{\tau}}\beta_{\tau}^{2}$$

$$\vdots$$

$$s_{2t} = r(\alpha^{2t}) = e(\alpha^{2t}) = e_{i_{1}}\beta_{1}^{2t} + e_{i_{2}}\beta_{2}^{2t} + \dots + e_{i_{\tau}}\beta_{\tau}^{2t}$$



15 / 25

Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014

# Syndrome Calculation of RS Codes Example

- For the particular case of  $C_{RS}(n, n-2)$ ,
- It can correct any error pattern of size t = 1.
- Syndrome calculation is

$$s_1 = r(\alpha) = e(\alpha) = e_{j_1}\beta_1 = e_{j_1}\alpha^{j_1}$$
  
 $s_2 = r(\alpha^2) = e(\alpha^2) = e_{j_1}\beta_1^2 = e_{j_1}\alpha^{2j_1}$ 

■ Hence,

$$\alpha^{j_1} = \frac{s_2}{s_1}$$

$$e_{j_1} = \frac{s_1^2}{s_2}$$

The system has two equations. It is able to find two unknown which are the *error location* and *error value*.

# Syndrome Calculation of RS Codes Example

**Example 5.4**: For the RS code of example 5.3, assume the received vector is

 $\mathbf{r}=(000\ 110\ 001\ 101\ 111\ 111\ 011)=(0\ \alpha^5\ \alpha^2\ \alpha^3\ \alpha^4\ \alpha^4\ \alpha^6).$  Determine the error location and error value of the single error that occurred in the transmission, find the code polynomial.



Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014 17 / 25

# Syndrome Calculation of RS Codes Example

#### Solution:

- 1 The received polynomial is  $r(X) = \alpha^5 X + \alpha^2 X^2 + \alpha^3 X^3 + \alpha^4 X^4 + \alpha^4 X^5 + \alpha^6 X^6$
- **2** Replace the variable X by  $\alpha, \alpha^2$  in r(X), obtaining the syndrome equations:

$$s_1 = r(\alpha) = \alpha^6 + \alpha^4 + \alpha^6 + \alpha + \alpha^2 + \alpha^5 = \alpha$$
  
 $s_2 = r(\alpha^2) = 1 + \alpha^6 + \alpha^2 + \alpha^5 + 1 + \alpha^4 = \alpha^6$ 

**3** Calculate the error location and error value:

$$\alpha^{j_1} = \frac{s_2}{s_1} = \frac{\alpha^6}{\alpha} = \alpha^5$$
  $e_{j_1} = \frac{s_1^2}{s_2} = \frac{\alpha^2}{\alpha^6} = \alpha^{-4} = \alpha^3$ 

- 4 Obtain the error polynomial  $e(X) = \alpha^3 X^5$ .
- 5 So the code polynomial is

$$\begin{array}{ll} c(X) = & e(X) + r(X) \\ = & \alpha^3 X^5 + \alpha^5 X + \alpha^2 X^2 + \alpha^3 X^3 + \alpha^4 X^4 + \alpha^4 X^5 + \alpha^6 X^6 \\ = & \alpha^5 X + \alpha^2 X^2 + \alpha^3 X^3 + \alpha^4 X^4 + \alpha X^5 + \alpha^6 X^6 \end{array}$$

#### Error location and error polynomials

- We have learned error location and error polynomials in binary BCH codes:
  - Error location polynomials:

$$\sigma(X) = (X - \alpha^{-j_1})(X - \alpha^{-j_2}) \dots (X - \alpha^{-j_{\tau}}) = \prod_{l=1}^{\tau} (X - \alpha^{-j_l})$$

Error evaluation polynomials:

$$W(X) = \sum_{l=1}^{\tau} e_{j_l} \prod_{\substack{i=1\\i\neq l}}^{\tau} (X - \alpha^{-j_i})$$

Error value is equal to

$$e_{j_l} = rac{W(lpha^{-j_l})}{\sigma'(lpha^{-j_l})}$$



19 / 25

- Steps of the Euclidean algorithm for RS code  $C_{RS}(n, k)$  with error correction capability t:
  - Step 1. Calculate syndrome vector components  $s_i = r(\alpha^i)$ ,  $1 \le i \le n k$  then construct syndrome polynomial

$$S(X) = \sum_{j=1}^{n-k} s_j X^{j-1}$$

- Step 2. If S(X) = 0, the received vector is considered as the code vector.
- Step 3. If  $S(X) \neq 0$ , the algorithm initialization:

$$i = -1$$
  
 $r_{-1}(X) = X^{n-k}$   $r_0(X) = S(X)$   
 $t_{-1}(X) = 0$   $t_0(X) = 1$ 

■ Step 4. Interation parameters are determined as below. The interation stops when  $deg(r_i(X)) < deg(t_i(X))$ 

$$r_i(X) = r_{i-2}(X) - q_i(X)r_{i-1}(X)$$
  

$$t_i(X) = t_{i-2}(X) - q_i(X)t_{i-1}(X)$$



Step 5. Take  $t_i(X)$  after interation stops. Find  $\lambda$  which makes  $\sigma(X)$  a monic polynomial.

$$\sigma(X) = \lambda t_i(X), \quad W(X) = -\lambda r_i(X)$$

- Step 6. Find roots of  $\sigma(X)$  by *Chien search*.
- Step 7. Calculate the error values by substituting the roots of  $\sigma(X)$  into error value equations:

$$e_{j_h} = \frac{W(\alpha^{-j_h})}{\sigma'(\alpha^{-j_h})}$$

Step 8. The error polynomial is constructed as

$$e(X) = e_{j_1}X^{j_1} + e_{j_2}X^{j_2} + \ldots + e_{j_{\tau}}X^{j_{\tau}}$$

- Step 9. Error correction is verified:
  - If  $e(\alpha^i) \neq r(\alpha^i)$  for any  $i = 1 \dots 2t$ , then error correction is discardeds
  - If  $e(\alpha^i) = r(\alpha^i)$  for any  $i = 1 \dots 2t$ , then c(X) = r(X) + e(X).

■ **Example 5.5**: For the RS code  $C_{RS}(7,3)$  defined over  $GF(2^3)$ , generated by the primitive polynomial  $p_i(X) = 1 + X^2 + X^3$ , and for the received vector  $\mathbf{r} = (000\ 000\ 011\ 000\ 111\ 000\ 000)$ . Determine the error polynomial and code polynomial by Euclidean algorithm.



Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014 22 / 25

#### Solution:

- Step 1. Look up the GF(2³) Table 5.1, the received polynomial  $r(X) = \alpha^6 X^2 + \alpha^4 X^4$
- Step 2. Calculate the components of syndrome vector by  $s_i = r(\alpha^i)$ , 1 < i < 2t = 4:

$$s_1 = r(\alpha) = \alpha + \alpha = 0$$

$$s_2 = r(\alpha^2) = \alpha^3 + \alpha^5 = \alpha^6$$

$$s_3 = r(\alpha^3) = \alpha^5 + \alpha^2 = \alpha^4$$

$$s_4 = r(\alpha^4) = \alpha^5 + \alpha^2 = \alpha^4$$

So syndrome polynomial is  $S(X) = \alpha^6 X + \alpha^4 X^2 + \alpha^4 X^3$ .

■ Step 3.  $S(X) \neq 0$ , initialize the algorithm:

Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014 23 / 25

- continuing...
  - Step 4. Execute the recursion until  $deg(r_i) < deg(t_i)$

• Step 5. As  $t_i(X) = \alpha^4 X^2 + \alpha^3 X + \alpha^5$ ,  $\lambda = \alpha^3$ , So

$$\sigma(X) = \lambda t_i(X) = X^2 + \alpha^6 X + \alpha$$
  
 $W(X) = -\lambda r_i(X) = \alpha^3 \alpha^4 X = X$ 

■ Step 6. Find the roots of  $\sigma(X)$  by *Chien search*. There is

$$\alpha^{-j_1} = \alpha^3 = \alpha^{-4}$$
  $\alpha^{-j_2} = \alpha^5 = \alpha^{-2}$   
 $j_1 = 4$   $j_2 = 2$ 



24 / 25

Qi Zhang (ASE) Reed-Solomon Codes

- Have known  $j_1 = 4$ ,  $j_2 = 2$ , continuing...
  - Step 7. Calculate the error values by substituting the roots of  $\sigma(X)$  into error value equations:

$$e_{j_1} = \frac{W(\alpha^{-j_1})}{\sigma'(\alpha^{-j_1})} = \frac{\alpha^3}{\alpha^6} = \alpha^4$$

$$e_{j_2} = \frac{W(\alpha^{-j_2})}{\sigma'(\alpha^{-j_2})} = \frac{\alpha^5}{\alpha^6} = \alpha^6$$

■ Step 8. The error polynomial is constructed as

$$e(X) = e_{j_1}X^{j_1} + e_{j_2}X^{j_2} = \alpha^4X^4 + \alpha^6X^2$$

- Step 9. Error correction is verified.
  - As  $e(\alpha^i) = r(\alpha^i)$  for any i, then c(X) = r(X) + e(X).
  - The code vector is a all-zero vector.



Qi Zhang (ASE) Reed-Solomon Codes 03/03/2014 25 / 25