Lecture 7: Classification Methods II

James D. Wilson MATH 373

Plan for this Lecture

- Linear Discriminant Analysis
- Quadratic Discriminant Analysis
- Logistic Regression
- Model Assessment via ROC and AUC
- A Comparison of Classification Methods

Reference: ISL Sections 4.3; 4.5

Recall: Bayes Classifiers

Training Data: *n* observations $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ with $y_i \in \{1, \dots, m\}$

Test Data: Observations of the form (\mathbf{x}_o, y_o) .

Bayes Theorem gives the following relationship:

$$\mathbb{P}(Y = j \mid X = \mathbf{x}) = \frac{\pi_j f_j(\mathbf{x})}{f(\mathbf{x})} = \frac{\pi_j f_j(\mathbf{x})}{\sum_{j=1}^m \pi_j f_j(\mathbf{x})}$$

To calculate the Bayes classifier, we need

- Class conditional probabilities: $f_j(\mathbf{x})$ (difficult!)
- Prior probabilities π_j (pretty easy)

Discriminants

Definition

In many cases, we can view a classifier $\phi(\mathbf{x})$ as an optimization of some function of \mathbf{x} . Namely,

$$\phi(\mathbf{x}) = \operatorname{argmax}_{j} (\delta_{j}(\mathbf{x}))$$

The function $\delta_j(\mathbf{x})$ is the discriminant of \mathbf{x} as it is used to discriminate between classes of Y. Note that $\delta_j(\mathbf{x})$ is also the decision region for class $j \in \{1, ..., m\}$.

Example: For the Bayes classifier,

$$\delta_j(\mathbf{x}) = \mathbb{P}(Y = j \mid X = \mathbf{x})$$

Linear and Quadratic Discriminants

- The Bayes classifier discriminant need not take a simple form.
- We can talk about special (simple) cases of Bayes classifiers.
- We will talk about two classes of discriminants:
 - Linear Discriminants: $\delta_j(\mathbf{x})$ is a *linear* function of \mathbf{x} . For some matrices $\{A_j\}$ and vectors $\{\mathbf{b}_j\}$,

$$\delta_j(\mathbf{x}) = \mathbf{x}^T A_j + \mathbf{b}_j$$

• Quadratic Discriminants: $\delta_j(\mathbf{x})$ is a *quadratic* function of \mathbf{x} . For some matrices $\{A_j\}$, $\{B_j\}$ and vectors $\{\mathbf{b}_j\}$,

$$\delta_j(\mathbf{x}) = \mathbf{x}^T A_j \mathbf{x} + \mathbf{x}^T B_j + \mathbf{b}_j$$

Linear and Quadratic Discriminants

Figure: Linear vs. Quadratic Discriminants. The purple dashed line represents the true Bayes classifier.

- Suppose that there is only one predictor (*p* = 1) and *Y* takes on a class *j* ∈ {1,..., *m*}
- **Distributional Assumption**: $X \mid Y = j$ is Guassian with mean μ_j and the *same* variance σ^2 :

$$f_j(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x-\mu_j)^2\right)$$

Then applying Bayes theorem and doing some algebra gives

$$\log \left(\mathbb{P}(Y = j \mid X = X) \right) = X * \frac{\mu_j}{\sigma^2} - \frac{\mu_j^2}{2\sigma^2} + \log(\pi_j)$$

Fact: Let $f(x) \ge 0$ for all x. Then maximizing f(x) is equivalent to maximizing the function $g(x) = \log(f(x))$. (why?...)

Conclusion: If we assume that $X \mid Y = j$ as $N(\mu_j, \sigma^2)$, we can derive the discriminant function:

$$\delta_j(x) = x * \frac{\mu_j}{\sigma^2} - \frac{\mu_j^2}{2\sigma^2} + \log(\pi_j)$$

Question: We don't know μ_j and σ^2 . How can we estimate them?

Let $Y \in \{1, ..., m\}$. Then we can estimate μ_i and σ^2 using

$$\hat{\mu}_j = \frac{1}{n_j} \sum_{i=1}^n x_i \, \mathbb{I}(y_i = j)$$

$$\hat{\sigma}^2 = \frac{1}{n-m} \sum_{j=1}^m \sum_{i=1}^n (x_i - \hat{\mu}_j)^2 \mathbb{I}(y_i = j)$$

As usual, we can estimate π_j using:

$$\hat{\pi}_j = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(y_i = j)$$

The linear discriminants for *Y* are given by:

$$\hat{\delta}_j(x) = x * \frac{\hat{\mu}_j}{\hat{\sigma}^2} - \frac{\hat{\mu}_j^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_j), \qquad j \in \{1, \dots, m\}$$

In the simple case that m = 2, we can show that the Bayes decision boundary corresponds to the point where

$$X = \frac{\hat{\mu}_1^2 - \hat{\mu}_2^2}{2(\hat{\mu}_1 - \hat{\mu}_2)} = \frac{\hat{\mu}_1 + \hat{\mu}_2}{2}$$

Note: The Bayes decision boundary above is exactly the point where $\hat{\delta}_{-1}(x) = \hat{\delta}_{+1}(x)$

Linear Discriminants: Example

Figure: (Left): Two one-dimensional normal density functions. (Right): 20 observations were simulated from each of the two classes. The dashed black line represents the Bayes decision boundary; the black solid line on the right represents the LDA decision boundary.

Linear Discriminants: general p > 1 case

- Suppose there are p > 1 predictors and $Y \in \{1, ..., m\}$
- **Distributional Assumption**: $X \mid Y = j$ is multivariate Gaussian with mean μ_i and the *same* variance $Cov(X|Y = j) = \Sigma$:

$$f_j(\mathbf{x}) = \frac{1}{(2\pi)^{p/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu_j)^T \Sigma^{-1}(\mathbf{x} - \mu_j)\right)$$

• Then we can obtain the discriminant functions:

$$\delta_j(\mathbf{x}) := \log(\mathbb{P}(Y = j \mid X = \mathbf{x})) = \mathbf{x}^T \Sigma^{-1} \mu_j - \frac{1}{2} \mu_j^T \Sigma^{-1} \mu_j + \log(\pi_j)$$

Linear Discriminant Analysis (LDA) for general p

Suppose that $Y \in \{1, ..., m\}$ and $X \in \mathbb{R}^p$. The linear discriminant functions of $Y \mid X = \mathbf{x}$ are:

$$\hat{\delta}_{j}(\mathbf{x}) = \mathbf{x}^{T} \widehat{\Sigma}^{-1} \hat{\mu}_{j} - \frac{1}{2} \widehat{\Sigma}^{-1} \hat{\mu}_{j} + \log(\hat{\pi}_{j}), \qquad j = 1, \dots, m$$

The Bayes decision boundaries are the values of \mathbf{x} for which $\hat{\delta}_j(\mathbf{x}) = \hat{\delta}_\ell(\mathbf{x})$ for $j \neq \ell$, namely where

$$\mathbf{x}^T \widehat{\Sigma}^{-1} \hat{\mu}_j - \frac{1}{2} \hat{\mu}_j^T \widehat{\Sigma}^{-1} \hat{\mu}_j = \mathbf{x}^T \widehat{\Sigma}^{-1} \hat{\mu}_\ell - \frac{1}{2} \hat{\mu}_\ell^T \widehat{\Sigma}^{-1} \hat{\mu}_\ell$$

Summary of LDA

- Overall aim is to identify the Bayes classifier
- To acheive this, we assume that $X \mid Y = j \sim N(\mu_i, \Sigma)$
- We then estimate μ_j and Σ and calculate the discriminant functions $\delta_j(\mathbf{x}) = \log(\mathbb{P}(Y = j \mid X = \mathbf{x}))$
- $\delta_i(\mathbf{x})$ is a linear function of \mathbf{x}

Question: In many cases, we don't expect each observation $X \mid Y = j$ to have the same variance Σ . What if we allowed heteroscedacticity?

Quadratic Discriminants: general p > 1 case

- Suppose there are p > 1 predictors and $Y \in \{1, ..., m\}$
- **Distributional Assumption**: $X \mid Y = j$ is multivariate Gaussian with mean μ_j (potentially) different variances $Cov(X|Y = j) = \Sigma_j$:

$$f_j(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma_j|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_j)^T \Sigma_j^{-1} (\mathbf{x} - \mu_j)\right)$$

Then we can obtain the discriminant functions (via Bayes):

$$\delta_{j}(\mathbf{x}) \coloneqq \log(\mathbb{P}(Y = j \mid X = \mathbf{x}))$$

$$= -\frac{1}{2}\mathbf{x}^{T}\Sigma_{j}^{-1}\mathbf{x} + \mathbf{x}^{T}\Sigma_{j}^{-1}\mu_{j} - \frac{1}{2}\mu_{j}^{T}\Sigma_{j}^{-1}\mu_{j} - \frac{1}{2}\log(|\Sigma_{j}|) + \log(\pi_{j})$$

QDA for general p

Suppose that $Y \in \{1, ..., m\}$ and $X \in \mathbb{R}^p$. The quadratic discriminant functions of $Y \mid X = \mathbf{x}$ are:

$$\hat{\delta}_{j}(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^{T}\widehat{\Sigma}_{j}^{-1}\mathbf{x} + \mathbf{x}^{T}\widehat{\Sigma}_{j}^{-1}\hat{\mu}_{j} - \frac{1}{2}\hat{\mu}_{j}^{T}\widehat{\Sigma}_{j}^{-1}\hat{\mu}_{j} - \frac{1}{2}\log\left(|\widehat{\Sigma}_{j}|\right) + \log(\hat{\pi}_{j})$$

Summary:

- We assume that $X \mid Y = j \sim N(\mu_j, \Sigma_j)$
- We then estimate μ_j and Σ and calculate the discriminant functions $\delta_j(\mathbf{x}) = \log(\mathbb{P}(Y = j \mid X = \mathbf{x}))$
- $\delta_i(\mathbf{x})$ is a quadratic function of \mathbf{x}

Linear vs. Quadratic Discriminant Analysis

Why should we ever use one method over another? The answer comes back to the bias / variance tradeoff.

- QDA is much more flexible, which often leads to high variance
 - QDA: $\frac{mp(p+1)}{2}$ parameters
 - LDA: mp parameters
- If the assumption of LDA that each $X \mid Y = j$ has the same covariance structure is wrong, then LDA will much higher bias than QDA.
- Conclusion: It again depends on the data and for the user to check assumptions.

Back to Regression

Setting: *Y* is binary, namely $Y \in \{-1, +1\}$ and fixed predictors $X \in \mathbb{R}^p$

Question: How can we model $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ as a function of \mathbf{x} ?

Standard Regression setting: We could use a linear model

$$\mathbb{P}(Y = +1 \mid X = \mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

but...

Back to Regression

...using a linear model provides some values of $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ outside of 0 to 1!

The Logistic Function

Instead, we can use a different model to ensure $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ is between 0 and 1:

$$\mathbb{P}(Y = +1 \mid X = \mathbf{x}) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}$$

Here, $f(x) = \frac{e^x}{1 + e^x} \in (0, 1)$ is called the logistic function of x.

The Logistic Function

$$f(x) = \frac{e^x}{1 + e^x}$$

Logistic Regression

The model

$$\mathbb{P}(Y = +1 \mid X = \mathbf{x}) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}$$

can be rearranged and equivalently stated as:

$$\log \left(\frac{P(Y = +1 \mid X = \mathbf{x})}{1 - P(Y = +1 \mid X = \mathbf{x})} \right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

The above model is called the logistic regression of Y on $X = \mathbf{x}$

Logistic Regression

Model:
$$\log \left(\frac{P(Y = +1 \mid X = \mathbf{x})}{1 - P(Y = +1 \mid X = \mathbf{x})} \right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Features:

- log(odds) is known as the logit or log-odds of Y taking value +1.
- The right hand side is linear in x

Logistic Regression: Interpretation

Holding all other variables constant, increasing x_j by one unit changes the log odds of Y = +1 by β_j . Equivalently, increasing x_j by one unit multiplies the odds of Y = +1 by e^{β_j} .

Inference:

- β_j < 0: the odds of Y = +1 is decreased \Rightarrow the probability of Y = +1 is decreased
- $\beta_j > 0$: the odds of Y = +1 is increased \Rightarrow the probability of Y = +1 is increased
- $\beta_j = 0$: no effect on chances of Y = +1

Estimation via Maximum Likelihood

Goal:

- Estimate β_0, \dots, β_p via maximum likelihood
- Estimate $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ by plugging in the above estimates into the logistic function

Methodology: Identify $\hat{\beta}_0, \dots, \hat{\beta}_p$ that maximizes the likelihood:

$$L(\beta \mid Y = y) = \prod_{i=1}^{n} \mathbb{P}(Y = +1 \mid X = \mathbf{x}_i)^{y_i} \mathbb{P}(Y = 0 \mid X = \mathbf{x}_i)^{1-y_i}$$

Important Fact: The maximum likelihood estimate (MLE) of $\hat{\beta}_j$ has an approximate Gaussian distribution with mean β_j . Therefore, statistical inference can be conducted the same as OLS.

Estimation via Maximum Likelihood

Methodology, continued... Equivalently, we can maximize the log-likelihood of β_0 , $\beta \mid Y = y$, which we can simplify as follows:

$$\ell(\beta_0, \beta \mid Y = y) = \log(L(\beta_0, \beta \mid Y = y))$$

$$= \sum_{i=1}^{n} [y_i \log(\mathbb{P}(Y = +1 \mid X = \mathbf{x}_i))$$

$$+ (1 - y_i) \log(\mathbb{P}(Y = 0 \mid X = \mathbf{x}_i))]$$

$$= \sum_{i=1}^{n} \exp(\beta_0 + \mathbf{x}_i^T \beta) + \sum_{i=1}^{n} [y_i(\beta_0 + \mathbf{x}_i^T \beta)]$$

Estimation via Maximum Likelihood

There is no analytical form for $\hat{\beta}$ that maximizes the log-likelihood (unlike OLS for standard regression). So, we must resort to a computational means using methods like:

- Gradient descent methods for each β_i or
- Fisher scoring algorithm

Once we obtain $\hat{\beta}$, we can calculate:

$$\widehat{\mathbb{P}}(Y = +1 \mid X = \mathbf{x}) = \frac{\exp\left(\widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j x_j\right)}{1 + \exp\left(\widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j x_j\right)}$$

Logistic Regression

The binary classifier is defined as

$$\phi(\mathbf{X}) = \operatorname{argmax}_{j} \{ \hat{\mathbb{P}}(\mathbf{Y} = j \mid \mathbf{X} = \mathbf{x}) \}$$

Or, equivalently,

$$\phi(\mathbf{X}) = \operatorname{argmax}_{j} \{ \operatorname{logit} (\hat{\mathbb{P}}(\mathbf{Y} = j \mid \mathbf{X} = \mathbf{x})) \}$$

Hence, the discriminant function is given by

$$\delta_j(\mathbf{x}) = (-1)^{j-1} (\hat{\beta}_0 + \sum_{i=1}^{p} \hat{\beta}_i x_i)$$

Conclusion: Logistic regression gives a linear discriminant!

Summary of Logistic Regression

- Inference-based: β_j describes the multiplicative effect of x_j on the odds of Y = +1
- For binary classification only! (though there are multi-class extensions)
- Provides linear discriminants $\delta_j = \log(\mathbb{P}(Y = j \mid X = \mathbf{x}))$
- Estimates found via maximum likelihood + gradient descent / Fisher scoring algorithms

Classification via Thresholding

Issue: In binary classification settings, we often choose a class using a threshold τ . For example, we choose Y = +1 if

$$P(Y = +1 \mid X = \mathbf{x}) > \tau$$

So far, we've typically used τ = 0.5.

Point: The error rate will change based on the threshold value τ that we choose.

Question: How can we assess the performance of a method based on τ ?

Receiver Operating Characteristics (ROC)

The receiver operating characteristics (ROC) of a binary classifier are the

- true positive rate (sensitivity)
- false positive rate (1 specificity)

for the classifier across a grid of the threshold τ .

The ROC curve plots the comparison of these two quantities across τ .

ROC curve

32 / 40

The Area Under the Curve (AUC)

The area under the curve (AUC) is the area under the ROC curve.

Features:

- AUC ∈ [0, 1]
- Measures the overall performance of a classifier
- The higher the better.
- We expect a classifier that performs no better than chance to have an AUC of 0.5 on an independent test set.

Bayesian Methods: (X, Y) are jointly distributed

- Bayes classifier:
 - Classifier based on $\mathbb{P}(Y = j \mid X = \mathbf{x})$
 - Impossible to calculate probabilities, but if we could, the classifier would be the <u>best</u>.
- Naïve Bayes:
 - Assumes predictors $X_k \mid Y = j$ are conditionally independent

Bayesian Methods: (X, Y) are jointly distributed

- LDA:
 - $X \mid Y = j \sim N(\mu_j, \Sigma)$
 - Discriminant functions are linear in x
- QDA:
 - $X \mid Y = j \sim N(\mu_j, \Sigma_j)$
 - Discriminant functions are quadratic in x

Non-parametric Methods: No assumption on (X, Y)

- K-Nearest Neighbors
 - Classify test sample x_o based on the K points that are closest in the training set.

Frequentist Regression Methods: X is a fixed value

- Logistic Regression
 - Classify using the log odds of Y:

$$\log\left(\frac{\mathbb{P}(Y=+1)}{\mathbb{P}(Y=-1)}\right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

ullet eta parameters have meaning – inference-based

- Scenario 1: $X \mid Y = j \sim N(\mu_j, \Sigma), j = 1, 2$ and independent
- Scenario 2: $X \mid Y = j \sim N(\mu_j, \Sigma), j = 1, 2$ with correlation $\rho = -0.5$
- Scenario 3: $X \mid Y = j \sim t(50)$ and independent

- Scenario 4: $X \mid Y = j \sim N(\mu_j, \Sigma_j), j = 1, 2$ and independent
- Scenario 5: Simulated so there is a quadratic boundary
- Scenario 6: Simulated so there is a complex non-linear boundary

Summary:

- No method works best all the time. The choice depends on the problem, and each method varies in assumptions and peformance.
- Linear boundaries ⇒ LDA, Logistic
- Quadratic boundaries ⇒ QDA
- Non-linear boundaries ⇒ K-NN, Empirical Naïve Bayes

Take-away: You need to thoroughly explore the data, and try several methods to see which works best.

Next Up

- Implementing classification methods in R
- Decision trees
- Random Forests
- Bagging and Boosting