E-SmallTalker: A Distributed Mobile System for Social Networking in Physical Proximity

Zhimin Yang, Boying Zhang, Jiangpeng Dai, Adam C. Champion, Dong Xuan and Du Li

May 12, 2010

- Introduction
- System Design
 - System architecture
 - Thought of design
- Implementation and Evaluation
- Conclusion

Introduction

- Social gap in conversation
 - when people interact with strangers or unfamiliar parties
 - people unable to start up a conversation

Introduction

- Social gap in conversation
 - when people interact with strangers or unfamiliar parties
 - people unable to start up a conversation
- E-Small Talk
 - "small talk":shorten the social gap by starting the conversation with a common accepted topic
 - discover and suggest common topics for users

Challenge

- can be deployed on most commercial off-the-shelf (COTS) mobile phones
- always efficient to gain other users' information for conversation
- automatically suggest common topics without manual operation

- Context data store
 - user data: interests
 - system matadata: Bloom filter parameters, user preference

- Context data store
 - user data: interests
 - system matadata: Bloom filter parameters, user preference
- Context encoding and matching
 - encode the context data to be published
 - retrieve Bloom filters and find matching elements when a query is received

- Context data store
 - user data: interests
 - system matadata: Bloom filter parameters, user preference
- Context encoding and matching
 - encode the context data to be published
 - retrieve Bloom filters and find matching elements when a query is received
- Context exchange
 - Bluetooth server and bluetooth client

- Context data store
 - user data: interests
 - system matadata: Bloom filter parameters, user preference
- Context encoding and matching
 - encode the context data to be published
 - retrieve Bloom filters and find matching elements when a query is received
- Context exchange
 - Bluetooth server and bluetooth client
- User interface

Context encoding and matching

• problem formulation user set: $U = \{u_1, u_2, ..., u_N\}$ users' interests topics set: $SetU_i = \{a_{i,1}, a_{i,2}, ... a_{i,N}\}$

Context encoding and matching

 Bloom filter
 A time and space efficient probabilistic data structure for testing whether an element is a member of a set.

Context encoding and matching

- Bloom filter
 - False positive data structure
 - false positive rate f:
 the probability that all the corresponding k bits for any given element are '1' although it is not really a member of the represented set

$$f = (1 - (1 - 1/m)^{kn})^k \approx (1 - e^{-kn/m})^k$$

- iterative discovery protocol
 - Initially: $SetU_A^0 = SetU_A$, $SetU_B^0 = SetU_B$ encode them in two static Bloom filter BF_A^0 , BF_B^0 publish them though the SDP service record.

- iterative discovery protocol
 - Initially: $SetU_A^0 = SetU_A$, $SetU_B^0 = SetU_B$ encode them in two static Bloom filter BF_A^0 , BF_B^0 publish them though the SDP service record.
 - In the (r+1)th round, for A:
 - retrieve BF^r_B received
 - check the membership of each data item in $SetU_A^r$ against BF_B^r , obtain a matching set $SetU_A^{r+1} \subset SetU_A^r$
 - ullet encode $SetU_A^{r+1}$ into a new Bloom filter BF_A^{r+1} and published it

- iterative discovery protocol
 - Initially: $SetU_A^0 = SetU_A$, $SetU_B^0 = SetU_B$ encode them in two static Bloom filter BF_A^0 , BF_B^0 publish them though the SDP service record.
 - In the (r+1)th round, for A:
 - retrieve BF^r_B received
 - check the membership of each data item in $SetU_A^r$ against BF_B^r , obtain a matching set $SetU_A^{r+1} \subset SetU_A^r$
 - ullet encode $SetU_A^{r+1}$ into a new Bloom filter BF_A^{r+1} and published it
 - repeat such steps, until the new matching set is empty or the same as that of the last round or the desired false positive rate is reached

Context exchange

- problems in common context exchange using Bluetooth
 - user permission and passcode in required to build a Bluetooth connection
 - intrusive and irritating

Context exchange

- problems in common context exchange using Bluetooth
 - user permission and passcode in required to build a Bluetooth connection
 - intrusive and irritating
- Bluetooth Service Discovery Protocol (SDP)
 - information of a service is maintained by a service record
 - each service record consists of a list of service attributes
 - each attribute consists of an attribute ID and attribute value

Context exchange

- problems in common context exchange using Bluetooth
 - user permission and passcode in required to build a Bluetooth connection
 - intrusive and irritating
- Bluetooth Service Discovery Protocol (SDP)
 - information of a service is maintained by a service record
 - each service record consists of a list of service attributes
 - each attribute consists of an attribute ID and attribute value
- the approach making use of attributes
 - use attribute value to publish information
 - send an SDP request to gain the information maintained by the SDP server on another device

Implementation

- Java ME: development environment
- implemented and tested on several brands of mobile phones
 Sony Ericsson (W810i), Nokia(5610xm, 6650, N70, N75, N82) ,...
- experimental setup:
 6 mobile phones
 each experiment repeated 10 times
 150 contacts per phone
 7 hash functions
- factors considered:
 the Bluetooth search interval
 the number of nearby device
 the distance between two devices

evaluation

evaluation

- contribution
 - the novel iterative Bloom filter protocol to encode user information
 - the communication approach based on the usage of Bluetooth SDP

- contribution
 - the novel iterative Bloom filter protocol to encode user information
 - the communication approach based on the usage of Bluetooth SDP
- what I learn
 - the thought to design an application based on the objects and the experience of users
 - the idea of innovative usage of other theory

