Root

The "first" node in the tree

The node at the top

Children

A node has "children" if it has nodes in lower levels associated with it

Leaf

And node with not children is called a "leaf node"

Siblings

Nodes with the same parent are "sibling nodes"

Subtree

Any non-root node and all of its children are a subgraph

Breadth First

Visit by each level, left-to-right

6

A, B, C, D, E, F, G, H, I, J

Depth First

"Post-order"

Explore each branch as far as you can before backtracking

H, I, D, J, E, B, F, G, C, A

Generic (N-ary) Tree

Useful for organizing hierarchical data

Four operations

- Insert child of
- Remove
- Has?
- Get subtree for

Generic (N-ary) Tree

The DOM!

Generic (N-ary) Tree

Your computer's file system!

Binary Tree

Nodes to the left are less than the current node

Nodes to the right are greater than the current node

nodes on right side have to have a greater value than their lefter sibling

when we call add method it figures where to put it...keeps data sorted in such a way as to be easy to search