Introduction to Intelligent Vehicles [3. Timing Analysis II]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University

Outline

- ☐ Introduction to Other In-Vehicle Networks
- ☐ Timing Analysis of Time Division Multiple Access (TDMA)
 Based Protocols
- ☐ Real-Time Calculus (RTC)

TTEthernet

- ☐ Why TT, not pure Ethernet?
- Features
 - Quality of Service (QoS) and preemption
 - > Time synchronization
- ☐ Traffic types
 - Time-Triggered (TT) traffic (highest priority)
 - Sent over the network at predefined (scheduled) time
 - ➤ Rate-Constrained (RC) traffic
 - Sent over the network with predefined bandwidth
 - Best-Effort (BE) traffic (lowest priority)
 - Conventional Ethernet

Time-Sensitive Networking (TSN)

Features

- ➤ Another name: Audio Video Bridging (AVB)
- Quality of Service and preemption
 - Achieve timing guarantees for high-priority messages
- > Frame replication and elimination
- > Time synchronization
- > Time aware shaper

https://standards.ieee.org/events/automotive/2015/03_IEEE_TSN_Standards_Overview_and_Update_v4.pdf

Time-Sensitive Networking (TSN)

☐ Time aware shaper

http://www.ieee802.org/1/files/public/docs2012/bv-boiger-time-aware-shaper-0712-v01.pdf

Other Protocols with TDMA Concepts

- □ FlexRay
 - https://en.wikipedia.org/wiki/FlexRay
- ☐ Time-Triggered Protocol
 - https://en.wikipedia.org/wiki/Time-Triggered Protocol

Outline

- ☐ Introduction to Potential In-Vehicle Networks
- ☐ <u>Timing Analysis of Time Division Multiple Access (TDMA)</u>
 Based Protocols
- ☐ Real-Time Calculus (RTC)

Abstraction

☐ [Wikipedia]

- > In software engineering and computer science, abstraction is
 - The <u>process</u> of removing physical, spatial, or temporal details or attributes in the study of objects or systems in order to more closely attend to other details of interest
 - It is also very similar in nature to the process of generalization
 - The <u>objects</u> which are created by keeping common features or attributes to various concrete objects or systems of study
 - i.e., the result of the process

> John V. Guttag

 "The essence of abstractions is preserving information that is relevant in a given context, and forgetting information that is irrelevant in that context"

Example

Timing analysis of Controller Area Network (CAN)

Problem Formulation

- ☐ There is a set of time slots scheduled to serve a message in a TDMA-based protocol
 - ➤ The network schedule and the message arrivals are defined by "patterns"
- ☐ What is the worst-case response time of the message?
- Assumptions
 - > Each time slot has the same length
 - ➤ Each time slot serves exactly one instance/frame
 - > An instance/frame is transmitted only if the whole time slot is available
 - No transmission if the instance/frame arrives in the middle of the time slot

Message Definitions

☐ Synchronous message

- > The network knows the time that each frame of the message is sent
- Example 1: Buses arrive at 7am, 8am, 9am, ...
- Example 2: Abstraction of TSN traffic in TSN
- > Example 3: Abstraction of Time-Triggered traffic in TTEthernet

■ Asynchronous message

- The network does not know the time that each frame of the message is sent but knows the period (or pattern) of the message
- > Example 1: Buses arrive every hour
- Example 2: Abstraction of AVB traffic in TSN
- > Example 3: Abstraction of Rate-Constrained traffic in TTEthernet

Pattern Definition

- \square Frame arrival pattern (m, p, a_1 , a_2 , a_3 , ..., a_m)
 - Arriving times of frames: a₁,a₂,a₃,...,a_m
 - > The pattern repeats with a period p
- \square Schedule pattern (n, q, s₁, s₂, s₃, ..., s_n)
 - \triangleright Starting times of time slots: $s_1, s_2, s_3, ..., s_n$
 - The pattern repeats with a period q

m = 2, p = 4,

$$(a_1,a_2) = (0,3)$$

frame arrival
schedule
n = 2, q = 4,
 $(s_1,s_2) = (1,2)$

 \square If m/p > n/q (demand > supply), then it is not schedulable

Synchronous Message

- ☐ Theorem: we only need to consider <u>two rounds</u> to compute the worst-case response time
 - Length of a round = least common multiple of p and q

- ☐ For your reference
 - ➤ Why two rounds?
 - The numbers of unscheduled frames after first and second rounds are the same

Practice

- ☐ Analyze the following patterns
 - > Assume they are synchronous
- \square Frame arrival pattern: (m = 4, p = 10, \mathbf{a} = 0, 3, 5, 6)
- \square Schedule pattern: (n = 2, q = 5, s = 1, 2)

Asynchronous Message: Example

And more cases ...

Asynchronous Message: Theorem

- \Box Theorem: if the worst case happens when frame P_i is assigned to time slot S_i , then
 - > P_i or one frame before P_i must <u>just miss</u> an assigned time slot, and
 - ➤ There must be no unused time slot between the ending time of the just-missed time slot and the starting time of S_i

Asynchronous Message: Duplication

- \square Frame arrival pattern (m, p, a_1 , a_2 , a_3 , ..., a_m)
 - Arriving times of frames: a₁,a₂,a₃,...,a_m
 - > The pattern repeats with a period p
- \square Schedule pattern (n, q, s₁, s₂, s₃, ..., s_n)
 - \triangleright Starting times of time slots: $s_1, s_2, s_3, ..., s_n$
 - > The pattern repeats with a period q
- Assumption (or duplication until)
 - \triangleright p = q = least common multiple of p and q
- ☐ Duplication again
 - \Rightarrow $a_{m+1} = a_1 + p$, $a_{m+2} = a_2 + p$, ..., $a_{2m} = a_m + p$
 - $> s_{n+1} = s_1 + q, s_{n+2} = s_2 + q, ..., s_{2n} = s_n + q$
 - Fix m, n, p, q this time

Asynchronous Message: Example

- ☐ Frame arrival pattern
 - \rightarrow (m = 4, p = 16, **a** = 3, 7, 11, 15, 19, 23, 27, 31)
- ☐ Schedule pattern
 - \rightarrow (n = 4, q = 16, s = 0, 1, 2, 3, 16, 17, 18, 19)
- ☐ The patterns here are just for simpler computation later
 - > They do not follow the original definitions

Asynchronous Message: Equation

- ☐ We only need to consider a finite number of different alignments of the frame arrival and the schedule
 - > They are the cases that a frame just misses a time slot
 - > The worst-case response time is

$$1 + \max_{1 \le k \le m} (\max_{1 \le j \le n} (s_{j+k} - s_j) - \min_{1 \le i \le m} (a_{i+k-1} - a_i))$$

- "1" is the transmission time
- "max_{1≤k≤m} (...)" is the waiting time
- What is the meaning of the equation?
 - Assume the i-th frame just misses the j-th time slot
 - Calculate the response time of the k-th frame after the i-th frame
 - k = 1 for the i-th frame itself
- > What is the meaning of the equation, again?
 - The densest part of the frame arrival pattern is served by the least dense part of the schedule pattern

Asynchronous Message: Example

- ☐ Frame arrival pattern: (m = 4, p = 16, a = 3, 7, 11, 15, 19, 23, 27, 31)
- Schedule pattern: (n = 4, q = 16, s = 0,1,2,3,16,17,18,19)

k	$max_{1 \le j \le n} \left(s_{j+k} - s_{j} \right)$	=	$\min_{1 \le i \le m} (a_{i+k-1} - a_i)$	=	() in max _{1≤k≤m} ()
1	$\max_{1 \le j \le 4} (s_{j+1} - s_j)$	(j=4) → 13	$\min_{1 \le i \le 4} (a_i - a_i)$	(i=1,2,3,4) → 0	13
2	$\max_{1 \le j \le 4} (s_{j+2} - s_j)$	(j=3,4) → 14	$\min_{1 \le i \le 4} (a_{i+1} - a_i)$	(i=1,2,3,4) → 4	10
3	$\max_{1 \le j \le 4} (s_{j+3} - s_j)$	(j=2,3,4) → 15	$\min_{1 \le i \le 4} (a_{i+2} - a_i)$	(i=1,2,3,4) → 8	7
4	$\max_{1 \le j \le 4} (s_{j+4} - s_j)$	(j=1,2,3,4) → 16	$\min_{1 \le i \le 4} (a_{i+3} - a_i)$	(i=1,2,3,4) → 12	4

note: this is waiting time 19

Asynchronous Message: Example

- ☐ Frame arrival pattern: (m = 3, p = 10, a = 2, 3, 6, 12, 13, 16)
- ☐ Schedule pattern: (n = 4, q = 10, s = 1, 4, 5, 9, 11, 14, 15, 19)

k	$max_{1 \le j \le n} (s_{j+k} - s_{j})$	=	$\min_{1 \le i \le m} (a_{i+k-1} - a_i)$	=	() in max _{1≤k≤m} ()
1	$max_{1 \le j \le 4} \ (\ s_{j+1} - s_{j}\)$	(j=3) → 4	$\min_{1 \le i \le 3} (a_i - a_i)$	(i=1,2,3) → 0	4
2	$\max_{1 \le j \le 4} (s_{j+2} - s_j)$	(j=3) → 6	$\min_{1 \le i \le 3} (a_{i+1} - a_i)$	(i=1) → 1	5
3	$max_{1 \le j \le 4} (s_{j+3} - s_{j})$	(j=3) → 9	$\min_{1 \le i \le 3} (a_{i+2} - a_i)$	(i=1) → 4	5

note: this is waiting time

Practice

- ☐ Analyze the following patterns
 - > Assume they are asynchronous
- \square Frame arrival pattern: (m = 4, p = 10, \mathbf{a} = 0, 3, 5, 6)
- \square Schedule pattern: (n = 2, q = 5, s = 1, 2)

Discussion

- ☐ They imply the optimal scheduling for a message
 - > As early as possible for a synchronous message
 - > As evenly as possible for an asynchronous message
 - ➤ How to resolve conflicts between multiple messages?
- ☐ Gaps to a practical protocol
 - > Each time slot has the same length
 - > Each time slot serves exactly one frame
 - Frame arrival and network schedule are described by patterns
 - Multiple switches?

Outline

- ☐ Introduction to Potential In-Vehicle Networks
- ☐ Timing Analysis of Time Division Multiple Access (TDMA)
 Based Protocols
- **☐** Real-Time Calculus (RTC)
 - > The exams will not include RTC

Min-Plus Algebra

■ Minimum

$$\rightarrow$$
 (f \bigoplus g)(t) = min (f(t),g(t))

Convolution

- \triangleright (f \bigotimes g)(t) = inf_{0 \le s \le t} (f(s) + g(t s))
- \triangleright Example: f(x) = x and g(x) = 2x
- ightharpoonup Example: $f(x) = x \text{ if } x \le 1$; f(x) = 3x of x > 1; g(x) = 2x

Deconvolution

- \rightarrow (f \bigcirc g)(t) = sup _{u > 0} (f (t + u) g(u))
- \triangleright Example: f(x) = x and g(x) = 2x
- ightharpoonup Example: $f(x) = x \text{ if } x \le 1$; f(x) = 3x of x > 1; g(x) = 2x

Input Arrival and Service Curves

- ☐ Input/output cumulative function, R(t) / R'(t)
 - > R(t): the amount of load that arrives in time interval [0,t)
 - > R'(t): the amount of load that leaves in time interval [0,t)
- \square Input upper/lower arrival curves, $\alpha_{l}(t) / \alpha_{l}(t)$
 - $\triangleright \alpha_{l}(t) \le R(s+t) R(s) \le \alpha_{ll}(t)$
- \Box Input upper/lower service curves, $β_u(t) / β_l(t)$
 - ightharpoonup (R $\bigotimes \beta_1$)(t) \leq R'(t) \leq (R $\bigotimes \beta_2$)(t)

Output Arrival and Service Curves

- \Box Given a process with $\alpha_{ij}(t)$, $\alpha_{ij}(t)$, $\beta_{ij}(t)$, $\beta_{ij}(t)$
- \Box Output upper/lower arrival curves, $\alpha'_{l}(t) / \alpha'_{l}(t)$

$$\triangleright \alpha'_{u} = ((\alpha_{u} \otimes \beta_{u}) \otimes \beta_{l}) \oplus \beta_{u}$$

$$\triangleright \alpha'_{l} = ((\alpha_{l} \oslash \beta_{u}) \otimes \beta_{l}) \oplus \beta_{l}$$

■ Maximal backlog

$$\triangleright$$
 b_{max} = sup_{t > 0} ($\alpha_u(t) - \beta_l(t)$)

Maximal delay

$$\triangleright$$
 d_{max} = sup_{t≥0} [inf_{s≥0, \alpha_{IJ}(t) ≤ \beta_I(t+s)} (s)]

System analysis

input service curves β_u and β_l input arrival curves α_u and α_l output arrival curves α_u' and α_l'

output service curves β'_{μ} and β'_{μ}

Q&A