Subjective Logic

José C. Oliveira

May 22, 2020

Probabilistic Logic

- It is an extension of binary logic.
- Propositions get assigned probabilities.
- Formulas of probability calculus replace truth tables.

Subjective Logic

- Uncertainty: A subjetive opinion can have uncertainty about probabilities.
- Subjectivity: Subjective belief ownership can be explicitly expressed

Domain

Domain

Definition

The *domain* is the set of values that represents possible states (or events) of a variable situation. These events are mutually exclusive.

Domain

Definition

The *domain* is the set of values that represents possible states (or events) of a variable situation. These events are mutually exclusive.

Suppose we have an urn with balls that can be red, green or blue. The domain $\mathbb X$ will be:

$$X = \{ red, green, blue \}$$
 (1)

4/11

Hyperdomain

Hyperdomain

Definition

Let X be a domain.

The *hyperdomain* denoted by $\mathcal{R}(\mathbb{X})$ is

$$\mathsf{Hyperdomain:}\ \mathscr{R}(\mathbb{X}) = \mathscr{P}(\mathbb{X}) \setminus \{\mathbb{X},\emptyset\} \tag{2}$$

Hyperdomain

Definition

Let X be a domain.

The *hyperdomain* denoted by $\mathscr{R}(\mathbb{X})$ is

Hyperdomain:
$$\mathscr{R}(\mathbb{X}) = \mathscr{P}(\mathbb{X}) \setminus \{\mathbb{X}, \emptyset\}$$
 (2)

The hyperdomain of our urn is:

$$\mathcal{R}(\mathbb{X}) = \{ \{red\}, \{green\}, \{blue\}, \{green, blue\}, \{green, blue\} \}$$

$$\{red, green\}, \{red, blue\}, \{green, blue\} \}$$

$$(3)$$

5/11

Belief Mass Distribution and Uncertainty Mass

Belief Mass Distribution and Uncertainty Mass

I told you that our urn has 10 colored balls. One ball is red, 2 are blue, and 3 are green or blue. Therefore, you know nothing about 4 balls.

Belief Mass Distribution and Uncertainty Mass

I told you that our urn has 10 colored balls. One ball is red, 2 are blue, and 3 are green or blue. Therefore, you know nothing about 4 balls.

The belief mass distribution and uncertainty mass will be:

$$\begin{array}{lll} \mathbf{b}_{X}(\{\textit{red}\}) & = 0.1 \\ \mathbf{b}_{X}(\{\textit{green}\}) & = 0 \\ \mathbf{b}_{X}(\{\textit{blue}\}) & = 0.2 \\ \mathbf{b}_{X}(\{\textit{red},\textit{green}\}) & = 0 \\ \mathbf{b}_{X}(\{\textit{red},\textit{blue}\}) & = 0 \\ \mathbf{b}_{X}(\{\textit{green},\textit{blue}\}) & = 0.3 \\ u_{X} & = 0.4 \end{array}$$

$$(4)$$

6/11

Hyper-opinion

Hyper-opinion

Definition

A hyper-opinion on the hypervariable X is the ordered triplet $\omega_X = (\mathbf{b}_X, u_X, \mathbf{a}_X)$.

7 / 11

Hyper-opinion

Definition

A hyper-opinion on the hypervariable X is the ordered triplet $\omega_X = (\mathbf{b}_X, u_X, \mathbf{a}_X)$.

The hyper-opinion about our urn is

$$\omega_{X} = \begin{pmatrix} \mathbf{b}_{X}(\{red\}) & = 0.1, & \mathbf{a}_{X} \\ \mathbf{b}_{X}(\{green\}) & = 0, \\ \mathbf{b}_{X}(\{blue\}) & = 0.2, \\ \mathbf{b}_{X}(\{red, green\}) & = 0, \\ \mathbf{b}_{X}(\{red, blue\}) & = 0, \\ \mathbf{b}_{X}(\{green, blue\}) & = 0.3, \\ u_{X} & = 0.4. \end{pmatrix}$$

$$(5)$$

Comparison with Dempster-Shafer Belief Theory

8/11

Comparison with Dempster-Shafer Belief Theory

Dempster-Shafer Belief Theory (DST) is a general framework for reasoning with uncertainty.

Dempster-Shafer Belief Theory	Subjective Logic
DST uses the term 'frame of discernment'	SL uses domain.
DST uses <i>basic belief assignment</i> denoted by $\mathbf{m}(x)$	SL uses belief mass distribution and uncertainty mass
Basic belief can be assigned to the frame	We can't observe evidence about the domain. SL uses uncertainty mass instead.
Dempster's rule	Belief constraint fusion operator.

Comparison with Fuzzy Logic

9/11

Comparison with Fuzzy Logic

In Fuzzy Logic, truth values of variables may be *any real number between 0 and 1*. There are levels of truth in the interval that overlaps.

Comparison with Fuzzy Logic

In Fuzzy Logic, truth values of variables may be any real number between 0 and 1. There are levels of truth in the interval that overlaps.

Fig. 5.1 Difference between fuzzy membership functions and subjective opinions.

Propositions can be assigned one of three truth-values specified as TRUE, FALSE and UNKNOWN.

José C. Oliveira Subjective Logic May 22, 2020 10 / 11

Propositions can be assigned one of three truth-values specified as TRUE, FALSE and UNKNOWN.

$$(x \wedge y \wedge \dots \wedge z) = \text{UNKNOWN} \tag{6}$$

José C. Oliveira Subjective Logic May 22, 2020 10 / 11

Propositions can be assigned one of three truth-values specified as TRUE, FALSE and UNKNOWN.

$$(x \wedge y \wedge \cdots \wedge z) = \text{UNKNOWN} \tag{6}$$

In subjective logic, a conjunction of large number of opinions 'I don't know' will say that $(x \land y \land \cdots \land z)$ is likely FALSE.

What we've done so far

11 / 11

What we've done so far

We studied

- Basic definitions about Subjective Logic
- Opinion representations
- Decision making

What we've done so far

We studied

- Basic definitions about Subjective Logic
- Opinion representations
- Decision making

Next

- Entropy and conflict between opinions
- Subjective Logic operators