

Vita57 SFP+ FMC Module User Manual

HTG-FMC-SFP-PLUS

Version 3.0 January 2011

Copyright © HiTech Global 2003-2011

Disclaimer:

HiTech Global does not assume any liability arising out of the application or use of any product described or shown herein; nor does it convey any license under its patents, copyrights, or mask work rights or any rights of others. HiTech Global reserves the right to make changes, at any time, in order to improve reliability and functionality of this product. HiTech Global will not assume responsibility for the use of any circuitry described herein other than circuitry entirely embodied in its products. HiTech Global provides any design, code, or information shown or described herein "as is." By providing the design, code, or information as one possible implementation of a feature, application, or standard, HiTech Global makes no representation that such implementation is free from any claims of infringement. End users are responsible for obtaining any rights they may require for their implementation. HiTech Global expressly disclaims any warranty whatsoever with respect to the adequacy of any such implementation, including but not limited to any warranties or representations that the implementation is free from claims of infringement, as well as any implied warranties of merchantability or fitness for a particular purpose.

HiTech Global will not assume any liability for the accuracy or correctness of any engineering or software support or assistance provided to a user. HiTech Global products are not intended for use in life support appliances, devices, or systems. Use of a HiTech Global product in such applications without the written consent of the appropriate HiTech Global officer is prohibited.

The contents of this manual are owned and copyrighted by HiTech Global Copyright. HiTech Global All Rights Reserved. Except as stated herein, none of the material may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of HiTech Global. Any unauthorized use of any material contained in this manual may violate copyright laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Revision History

Date	Version	Notes
02/21/2010	1.0	Preliminary
11/01/2010	2.0	
1/12/2011	3.0	Adding additional FMC/FPGA control lines

Table of Contents:

1)	Introduction	4
	Main Features	
	Block Diagram	
	SFP+ Interface	
	4.1) Clock Generation for Serial Transceivers	
	4.2) The AEL2005 Initialization for SFP+ Compliant	
	4.3) LEDs	
	FMC Interface	

1) Introduction:

Vita 57 provides a mechanical standard for I/O mezzanine modules. This standard introduces a methodology that shall allow the front panel IO of IEEE 1101 form factor cards to be configured via mezzanine boards. Vita 57 modules have fixed locations for serial/parallel IOs, clocks, Jtag signals, VCC, and GND. HiTech Global's Vita 57 modules can be plugged into any Vita 57 based boards.

The FMC standard specifies Samtec's SEARAYTM connector set. The VITA 57 SEAM/SEAF Series system provides 400 I/Os in a 40 x 10 configuration or 160 I/Os in a selectively loaded 40 x 10 configuration, in 8.5mm and 10mm stack heights.

The SFP+ FMC Module (HTG-FMC-SFP-PLUS) is a FPGA Mezzanine Connector (FMC) daughter card with two SFP+ ports interfacing to total of 8 serial transceivers (XAUI)

2) Main Features:

- Two SFP+ Connectors
- 156.25MHz for 10Gig operation
- 125.00MHz for 1Gig operation
- Additional clock controlled by FPGA
- Three EEPROMs
- FMC Connector
- MDIO Headers
- Parallel Port Header

3) Block Diagram

Figure (1): Primary Side

Figure (2): Secondary Side

4) SFP + Interface

To create a 10G SFP+ interface, four FPGA serial transceivers (each @ 3.125Gbps) are connected to the Netlogic ALE2005 PHY using XAUI protocol. Figure (3) illustrates the SFP+ implementation.

Figure (3): SFP+ Interface

The AEL2005 is a bidirectional single-channel 10 Gigabit Ethernet/10 Fibre Channel transceiver contacting integrated electronic desperation compensation (EDC) circuits targeted for 10GBASE-LRM optical modules and 10Gbps SFP+ applications. The consolidation of the receiver and transmitter physical layer (PHY) functions on a single ship is combined with the integration of an EDC block, integrated clock drivers, multiple loopback and PRBS for both the line side and the system side.

The AEL2005 device is compliant with the following specifications:

- IEEE 802.3ae 10 Gigabit Ethernet
- IEEE 802.3aq 10 GBASE-LRM
- INCITS TII 10 Gigabit Fibre Channel
- XENPAK MS Rev. 3.0
- X2 MSA, Rev. 1.0b
- XPAK MSA, Rev. 2.3
- SFP+ MSA, Rev. 3.0

4.1) Clock Generation for FPGA Serial Transceivers & 10GE PHY

The 10GE PHY (Netlogic AEL2005) device incorporates a flexible clocking methodology wherein 10.3125 Gbps LAN and 10.51875 Gbps SAN data rates may all be generated within the device using a flexible clock synthesizer. This capability allows the use a crystal oscillator at the 10Gigabit Ethernet frequency of 156.25 MHz . If the AEL2005 is used only in SAN mode, the clock input to a crystal oscillator at the 10 Gigabit Fibre Channel frequency of 159.375 MHz. An overview of clocking configurations is provided in the AEL2005 device datasheet.

Serial Transmit Clock frequencies are shown by table (1).

Mode	Reference	Input Frequency	Output Frequency (HSTXCLK)	Output Frequency (HSTXCLK) Divide by 64 Mode
10 Gigabit	CMU_REF Clock	156.25 MHz	10.3125 GHz	161.13 MHz
Ethernet	Synthesizer			
10 Gigabit	CMU_REF Clock	159.375 MHz	10.5175 GHz	164.36 MHz
Fibre Channel	Synthesizer			

Table (1) Serial Transmit Clock Frequencies

Clock generation and distribution for the HTG-FMC-SFP-PLUS module is illustrated by figure (4).

Figure (4): Clock Generation & Distribution

"U8" can be populated by a 125.00MHz clock for 1.0Gig Ethernet or 159.375 for 10Gig Fibre channel applications. C113 and C114 capacitors should be installed (0.1uF) when these clocks are used. Differential clock from FPGA can also be used instead of using clock installed on the "U8". This differential clock is provided through 'K4" and "K5"pins of the FMC connector. This clock can also be enabled/disabled through FPGA. The "JP1" header should be used for clock selection.

4.2) AEL2005 Initialization for SFP+ Compliant

Table (2) lists necessary and optional register writes for bringing up the AEL2005 in the SFP+ compliant configuration. Since the RX_LOS input of the AEL2005 is active high by default, it needs to be changed to active low to comply to the SFP+ MSA. When following the Aeluros layout recommendation for the HSRXDATA differential trace, the polarity of this input

needs to be flipped in the software configuration. One additional feature that the AEL2005 offers, is the RX and TX activity LEDs. When activated by one register write, the CMU_LOL and the CDR_LOL output pins get reconfigured as LED output drivers. The LEDs will toggle whenever valid 10GE packets are received or transmitted.

Register bits	Content	Optional	Function
1.C017.5	1		Flip polarity of RX_LOS input to be active low.
1.C01F.5	1		Flip polarity of HSRXDATA input to facilitate layout of the differential trace from the SFP+ receiver output pins to the AEL2005 receiver input pins.
1.C214.3:0	9	X	Enable RX activity LED indicator when receiving valid 10Gb Ethernet packages.
1.C217.15:0	0xFF00		
1.C214.7:4	0	X	Enable TX activity LED indicator when transmitting valid 10Gb Ethernet packages.
1.C216.15:0	0xCCCC		

Table (2): Initialization Register Writes for the AEL2005

After the mandatory power on reset, the AEL2005 reads in the contents of an EEPROM at address 0xA0 in RevB and 0xA8 in RevC on the I2C bus for internal initialization. The necessary register writes can be accomplished by this patching sequence. Since the patch space accessible by the EEPROM is limited from 1.C000 to 1.C01F the optional writes need to be accomplished by an external u-controller. Table (3) lists the registers that need to be written to the EEPROM for patching upon reset:

EEPROM Register	Data	Function
A0.C0	0x17	Set register 1.C017[7:0] to 0xB0
A0.C1	0xB0	(Flip polarity of RX_LOS input)
A0.C2	0x1F	Set register 1.C01F[7:0] to 0x28 (Flip polarity of HSRXDATA
A0.C3	0x28	input)

Table (3): EEPROM Register Contents for Patching of the AEL2005 upon Reset

4.3) LEDs

D7: SFP1 _RX_LOS

D8: ALE1_RX_ACTIVITIY (U3) **D9:** ALE1_TX_ACTIVITIY (U3)

D11: SFP0 _RX_LOS

D12: ALEO_RX_ACTIVITIY (U4) **D13:** ALEO_TX_ACTIVITIY (U4)

D4: 3.3V Power **D5:** 1.2V Power

5) FMC Interface

The SFP+ Module is populated with a 400-pin <u>Samtec connector</u> for implementation of <u>Vita 57</u> FPGA Mezzanine Card (FMC) interface. The Vita57 calls for fixed location of IOs, Power, Clocks, and JTAG signals so any compliant module can easily be pluggable into any compliant carrier card.

The FMC connector provides access to 8 Serial Transceivers (on the FPGA side) JTAG signals, 12V/3.3V/Adjustable supplies, 12C signals, and multiple differential clocks.

Table (4) and (5) illustrate pin assignment for the FMC connector interface.

Table (4): FMC Pin Assignment

		Column "B"				Column "A"	
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	CLK_DIR	Reserved	33V	1	GND	GND	
2	GND	GND		2	DP1_M2C_P	AEL0_DP[1]_M2C_P	U4-5
3	GND	GND		3	DP1_M2C_N	AEL0_DP[1]_M2C_N	U4-4
4	DP9_M2C_P	NC	NC	4	GND	GND	
5	DP9_M2C_N	NC	NC	5	GND	GND	
6	GND	GND		6	DP2_M2C_P	AEL0_DP[2]_M2C_P	U4-8
7	GND	GND		7	DP2_M2C_N	AEL0_DP[2]_M2C_N	U4-9
8	DP8_M2C_P	NC	NC	8	GND	GND	
9	DP8_M2C_N	NC	NC	9	GND	GND	
10	GND	GND		10	DP3_M2C_P	AEL0_DP[3]_M2C_P	U4-13
11	GND	GND		11	DP3_M2C_N	AEL0_DP[3]_M2C_N	U4-12
12	DP7_M2C_P	AEL1_DP[0]_M2C_P	U3-2	12	GND	GND	
13	DP7_M2C_N	AEL1_DP[0]_M2C_N	U3-1	13	GND	GND	
14	GND	GND		14	DP4_M2C_P	AEL1_DP[2]_M2C_P	U3-8
15	GND	GND		15	DP4_M2C_N	AEL1_DP[2]_M2C_N	U3-9
16	DP6_M2C_P	AEL1_DP[1]_M2C_P	U3-5	16	GND	GND	
17	DP6_M2C_N	AEL1_DP[1]_M2C_N	U3-4	17	GND	GND	
18	GND	GND		18	DP5_M2C_P	AEL1_DP[3]_M2C_P	U3-13
18	GND	GND		18	DP5_M2C_N	AEL1_DP[3]_M2C_N	U3-12
20	GBTCLK1_M2C_P	FMC_REF_CLK1_P	U6-23	20	GND	GND	
21	GBTCLK1_M2C_N	FMC_REF_CLK1_P	U6-22	21	GND	GND	
22	GND	GND		22	DP1_C2M_P	AEL0_DP[1]_C2M_P	U4-20
23	GND	GND		23	DP1_C2M_N	AEL0_DP[1]_C2M_N	U4-19
24	DP9_C2M_P	NC	NC	24	GND	GND	
25	DP9_C2M_N	NC	NC	25	GND	GND	
26	GND	GND		26	DP2_C2M_P	AEL0_DP[2]_C2M_P	U4-23
27	GND	GND		27	DP2_C2M_N	AEL0_DP[2]_C2M_N	U4-24
28	DP8_C2M_P	NC	NC	28	GND	GND	
29	DP8_C2M_N	NC	NC	29	GND	GND	
30	GND	GND		30	DP3_C2M_P	AEL0_DP[3]_C2M_P	U4-27
31	GND	GND		31	DP3_C2M_N	AEL0_DP[3]_C2M_N	U4-26
32	DP7_C2M_P	AEL1_DP[0]_C2M_P	U3-16	32	GND	GND	
33	DP7_C2M_N	AEL1_DP[0]_C2M_V	U3-17	33	GND	GND	
34	GND	GND		34	DP4_C2M_P	AEL1_DP[2]_C2M_P	U3-23
35	GND	GND		35	DP4_C2M_N	AEL1_DP[2]_C2M_N	U3-24
36	DP6_C2M_P	AEL1_DP[1]_C2M_P	U3-20	36	GND	GND	
37	DP6_C2M_N	AEL1_DP[1]_C2M_N	U3-19	37	GND	GND	
38	GND	GND		38	DP5_C2M_P	AEL1_DP[3]_C2M_P	U3-27
39	GND	GND		39	DP5_C2M_N	AEL1_DP[3]_C2M_N	U3-26
40	RES0	NC		40	GND	GND	

	(Column "D"				Column "C"	
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	PG_C2M	Power Good	D3	1	GND	NC	
2	GND	GND		2	DP0_C2M_P	AEL0_DP[0]_C2M_P	U4-16
3	GND	GND		3	DP0_C2M_N	AEL0_DP[0]_C2M_N	U4-17
4	GBTCLK0_M2C_P	FMC_REF_CLK0_P	U6-16	4	GND	GND	
5	GBTCLK0_M2C_N	FMC_REF_CLK0_P	U6-15	5	GND	GND	
6	GND	GND		6	DP0_M2C_P	AEL0_DP[0]_M2C_P	U4-2
7	GND	GND		7	DP0_M2C_N	AEL0_DP[0]_M2C_N	U4-1
8	LA01_P_CC	SFP0_SCL	U4-36	8	GND	GND	
9	LA01_N_CC	SFP0_SDA	U4-35	9	GND	GND	
10	GND	GND		10	LA06_P	NC	NC
11	LA05_P	User defined signal	NC	11	LA06_N	NC	NC
12	LA05_N	User defined signal	NC	12	GND	GND	
13	GND	GND		13	GND	GND	
14	LA09_P	User defined signal	NC	14	LA10_P	NC	NC
15	LA09_N	User defined signal	NC	15	LA10_N	NC	NC
16	GND	GND		16	GND	GND	
17	LA13_P	User defined signal	NC	17	GND	GND	
18	LA13_N	User defined signal	NC	18	LA14_P	NC	NC
18	GND	GND		18	LA14_N	NC	NC
20	LA17_P_CC	User defined signal	NC	20	GND	GND	
21	LA17_N_CC	User defined signal	NC	21	GND	GND	
22	GND	GND		22	LA18_P_CC	NC	NC
23	LA23_P	User defined signal	NC	23	LA18_N_CC	NC	NC
24	LA23_N	User defined signal	NC	24	GND	GND	
25	GND	GND		25	GND	GND	
26	LA26_P	User defined signal	NC	26	LA27_P	NC	NC
27	LA26_N	User defined signal	NC	27	LA27_N	NC	NC
28	GND	GND		28	GND	GND	
29	TCK	JTAG		29	GND	GND	
30	TDI	JTAG BYPASS		30	SCL	I2C serial clock.	U5 -6
31	TDO	JTAG		31	SDA	I2C serial data.	U5 -5
32	3P3VAUX	3.3V Aux. Supply	3.3V	32	GND	GND	-
33	TMS	JTAG		33	GND	GND	-
34	TRST_L	Asynch. Init.		34	GA0	Geographical address	U5-1
35	GA1	Geographical address	U5-2	35	12P0V	12V Supply	
36	3P3V	3.3V Supply	3.3V	36	GND	GND	
37	GND	GND	GND	37	12P0V	12V Supply	
38	3P3V	3.3V Supply	3.3V	38	GND	GND	
39	GND	GND	GND	39	3P3V	3.3V Supply	
40	3P3V	3.3V Supply	3.3V	40	GND	GND	

		Column "F"			Column "E"		
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	PG_M2C	Power Good	3.3V	1	GND	GND	GND
2	GND	GND	GND	2	HA01_P_CC	User defined signal	NC
3	GND	GND	GND	3	HA01_N_CC	User defined signal	NC
4	HA00_P_CC	User defined signal	NC	4	GND	GND	GND
5	HA00_N_CC	User defined signal	NC	5	GND	GND	GND
6	GND	GND	GND	6	HA05_P	User defined signal	NC
7	HA04_P	User defined signal	NC	7	HA05_N	User defined signal	NC
8	HA04_N	User defined signal	NC	8	GND	GND	GND
9	GND	GND	GND	9	HA09_P	User defined signal	NC
10	HA08_P	User defined signal	NC	10	HA09_N	User defined signal	NC
11	HA08_N	User defined signal	NC	11	GND	GND	GND
12	GND	GND	GND	12	HA13 P	User defined signal	NC
13	HA12_P	User defined signal	NC	13	HA13_N	User defined signal	NC
14	HA12_N	User defined signal	NC	14	GND	GND	GND
15	GND	GND	GND	15	HA16_P	User defined signal	NC
16	HA15_P	User defined signal	NC	16	HA16_N	User defined signal	NC
17	HA15_N	User defined signal	NC	17	GND	GND	GND
18	GND	GND	GND	18	HA20_P	User defined signal	NC
18	HA19_P	User defined signal	NC	18	HA20_N	User defined signal	NC
20	HA19_N	User defined signal	NC	20	GND	GND	GND
21	GND	GND	GND	21	HB03_P	User defined signal	NC
22	HB02_P	User defined signal	NC	22	HB03_N	User defined signal	NC
23	HB02_N	User defined signal	NC	23	GND	GND	GND
24	GND	GND	GND	24	HB05_P	User defined signal	NC
25	HB04_P	User defined signal	NC	25	HB05_N	User defined signal	NC
26	HB04_N	User defined signal	NC	26	GND	GND	GND
27	GND	GND	GND	27	HB09_P	User defined signal	NC
28	HB08_P	User defined signal	NC	28	HB09_N	User defined signal	NC
29	HB08_N	User defined signal	NC	29	GND	GND	GND
30	GND	GND	GND	30	HB13_P	User defined signal	NC
31	HB12_P	User defined signal	NC	31	HB13_N	User defined signal	NC
32	HB12_N	User defined signal	NC	32	GND	GND	GND
33	GND	GND	GND	33	HB19_P	User defined signal	NC
34	HB16_P	User defined signal	NC	34	HB19_N	User defined signal	NC
35	HB16_N	User defined signal	NC	35	GND	GND	GND
36	GND	GND	GND	36	HB21_P	User defined signal	NC
37	HB20_P	User defined signal	NC	37	HB21_N	User defined signal	NC
38	HB20_N	User defined signal	NC	38	GND	GND	GND
39	GND	GND	GND	39	VADJ	Adjustable Voltage	
40	VADJ	Adjustable Voltage		40	GND	GND	GND

	Column "H"					Column "G"	
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	VREF_A_M2C	Reference voltage		1	GND	GND	GND
2	PRSNT_M2C_L	Present Signal		2	CLK1_M2C_P	CLK1_M2C_P	NC
3	GND	GND	GND	3	CLK1_M2C_N	CLK1_M2C_N	NC
4	CLK0_M2C_P	CLK0_M2C_P	U6-19	4	GND	GND	GND
5	CLK0_M2C_N	CLK0_M2C_N	U6-17	5	GND	GND	GND
6	GND	GND	GND	6	LA00_P_CC	MDC_F	U11-18
7	LA02_P	SFP1_SCL	U3-36	7	LA00_N_CC	MDIO-F	U11-16
8	LA02_N	SFP1_SDA	U3-35	8	GND	GND	GND
9	GND	GND	GND	9	LA03_P	EN_CLK_USER_F	U11-4
10	LA04_P	CLK_SEL_F	U11-2	10	LA03_N	EN_CLK_156_F	U11-6
11	LA04_N	User defined signal	NC	11	GND	GND	GND
12	GND	GND	GND	12	LA08_P	User defined signal	NC
13	LA07_P	User defined signal	NC	13	LA08_N	User defined signal	NC
14	LA07_N	User defined signal	NC	14	GND	GND	GND
15	GND	GND	GND	15	LA12_P	User defined signal	NC
16	LA11_P	User defined signal	NC	16	LA12_N	User defined signal	NC
17	LA11_N	User defined signal	NC	17	GND	GND	GND
18	GND	GND	GND	18	LA16_P	User defined signal	NC
18	LA15_P	User defined signal	NC	18	LA16_N	User defined signal	NC
20	LA15_N	User defined signal	NC	20	GND	GND	GND
21	GND	GND	GND	21	LA20_P	User defined signal	NC
22	LA19_P	User defined signal	NC	22	LA20_N	User defined signal	NC
23	LA19_N	User defined signal	NC	23	GND	GND	GND
24	GND	GND	GND	24	LA22_P	User defined signal	NC
25	LA21_P	User defined signal	NC	25	LA22_N	User defined signal	NC
26	LA21_N	User defined signal	NC	26	GND	GND	GND
27	GND	GND	GND	27	LA25_P	User defined signal	NC
28	LA24_P	User defined signal	NC	28	LA25_N	User defined signal	NC
29	LA24_N	User defined signal	NC	29	GND	GND	GND
30	GND	GND	GND	30	LA29_P	User defined signal	NC
31	LA28_P	User defined signal	NC	31	LA29_N	User defined signal	NC
32	LA28_N	User defined signal	NC	32	GND	GND	GND
33	GND	GND	GND	33	LA31_P	User defined signal	NC
34	LA30_P	User defined signal	NC	34	LA31_N	User defined signal	NC
35	LA30_N	User defined signal	NC	35	GND	GND	GND
36	GND	GND	GND	36	LA33_P	User defined signal	NC
37	LA32_P	User defined signal	NC	37	LA33_N	User defined signal	NC
38	LA32_N	User defined signal	NC	38	GND	GND	GND
39	GND	GND	GND	39	VADJ	Adjustable Voltage	
40	VADJ	Adjustable Voltage		40	GND	GND	

	Column "K"					Column "J"	
	FMC Pin Name	Pin Description	DEST.		FMC Pin Name	Pin Description	DEST.
1	VREF_B_M2C	Reference voltage		1	GND	GND	GND
2	GND	GND	GND	2	CLK3_M2C_P	Differential Clock	NC
3	GND	GND	GND	3	CLK3_M2C_N	Differential Clock	NC
4	CLK2_C2M_P	CLK2_C2M_P	U6-7	4	GND	GND	GND
5	CLK2_C2M_N	CLK2_C2M_N	U6-8	5	GND	GND	GND
6	GND	GND	GND	6	HA03_P	User defined signal	NC
7	HA02_P	User defined signal	NC	7	HA03_N	User defined signal	NC
8	HA02_N	User defined signal	NC	8	GND	GND	GND
9	GND	GND	GND	9	HA07_P	User defined signal	NC
10	HA06_P	User defined signal	NC	10	HA07_N	User defined signal	NC
11	HA06_N	User defined signal	NC	11	GND	GND	GND
12	GND	GND	GND	12	HA11_P	User defined signal	NC
13	HA10_P	User defined signal	NC	13	HA11_N	User defined signal	NC
14	HA10_N	User defined signal	NC	14	GND	GND	GND
15	GND	GND	GND	15	HA14_P	User defined signal	NC
16	HA17_P_CC	User defined signal	NC	16	HA14_N	User defined signal	NC
17	HA17_N_CC	User defined signal	NC	17	GND	GND	GND
18	GND	GND	GND	18	HA18_P	User defined signal	NC
18	HA21_P	User defined signal	NC	18	HA18_N	User defined signal	NC
20	HA21_N	User defined signal	NC	20	GND	GND	GND
21	GND	GND	GND	21	HA22_P	User defined signal	NC
22	HA23_P	User defined signal	NC	22	HA22_N	User defined signal	NC
23	HA23_N	User defined signal	NC	23	GND	GND	GND
24	GND	GND	GND	24	HB01_P	User defined signal	NC
25	HB00_P_CC	User defined signal	NC	25	HB01_N	User defined signal	NC
26	HB00_N_CC	User defined signal	NC	26	GND	GND	GND
27	GND	GND	GND	27	HB07_P	User defined signal	NC
28	HB06_P_CC	User defined signal	NC	28	HB07_N	User defined signal	NC
29	HB06_N_CC	User defined signal	NC	29	GND	GND	GND
30	GND	GND	GND	30	HB11_P	User defined signal	NC
31	HB10_P	User defined signal	NC	31	HB11_N	User defined signal	NC
32	HB10_N	User defined signal	NC	32	GND	GND	GND
33	GND	GND	GND	33	HB15_P	User defined signal	NC
34	HB14_P	User defined signal	NC	34	HB15_N	User defined signal	NC
35	HB14_N	User defined signal	NC	35	GND	GND	GND
36	GND	GND	GND	36	HB18_P	User defined signal	NC
37	HB17_P_CC	User defined signal	NC	37	HB18_N	User defined signal	NC
38	HB17_N_CC	User defined signal	NC	38	GND	GND	GND
39	GND	GND	GND	39	VIO_B_M2C	IO Bank Voltage	
40	VIO_B_M2C	IO Bank Voltage		40	GND	GND	

Table (5): FMC Pin Assignment

SFP+ FMC Module – User Manual

