CLAIMS

What is claimed is:

1	1.	An article comprising:
1		a heat spreader including a die side and a heat-sink side; and
2		a container barrier disposed on the heat spreader die side, wherein the
3	contain	ner barrier and the heat spreader form a recess upon the die side.
1	2.	The article of claim 1, further including:
2		a first channel through the heat spreader to communicate from the die
3	side to	the heat-sink side; and
4		optionally a first plug disposed in the first channel.
1	3.	The article of claim 1, further including:
2		a first channel through the heat spreader to communicate from the die
3	side to	the heat-sink side;
4		optionally a first plug disposed in the channel;
5		a second channel through the heat spreader to communicate from the
6	die sid	e to the heat-sink side; and
7		optionally a second plug disposed in the second channel.
1	4.	The article of claim 1, further including:
2		a first channel through the container barrier; and
3		a first plug disposed in the first channel, wherein the plug is gas-
4	perme	able and liquid-impermeable.
1	5.	The article of claim 1, further including:
2		a first channel through the container barrier;
3		a first plug disposed in the first channel, wherein the first plug is gas-
4	perme	able and liquid-impermeable;

5	a second channel through the container barrier to communicate from				
6	the die side to the heat-sink side; and				
7	a second plug disposed in the second channel, wherein the second				
8	plug is gas-permeable and liquid-impermeable.				
1	6. The article of claim 1, wherein the container barrier is selected from				
2	a solder, a leaded solder, a lead-free solder, a reactive solder, an indium material, a				
3	tin material, a silver material, a tin-silver material, a tin-silver-indium material, and				
4	combinations thereof.				
1	7. The article of claim 1, wherein the container barrier is selected from				
2	a metal; a polymer-solder hybrid; a polymer matrix and a metal preform; and a				
3	polymer matrix, a metal preform, and a middle heat transfer structure disposed				
4	therebetween.				
1	9 The article of aloins 1 further including:				
1	8. The article of claim 1, further including:				
2	a liquid heat-transfer medium disposed in the recess.				
1	9. The article of claim 1, further including:				
2	a liquid heat-transfer medium disposed in the recess, wherein the				
3	liquid heat-transfer medium is selected from an organic composition, a				
4	metal, and combinations thereof.				
1	10. A package comprising:				
2	a heat spreader including a die side and a heat-sink side;				
3	a container barrier disposed on the heat spreader die side, wherein the				
4	container barrier and the heat spreader forms a recess upon the die side; and				
5	a liquid heat-transfer medium disposed in the recess.				

- 1 11. The package of claim 10, wherein the heat spreader is selected from 2 a heat slug, a heat pipe, and an integrated heat spreader. 1 12. The package of claim 10, wherein the die side of the heat spreader 2 includes a convoluted interface with the liquid heat-transfer medium. 13. The package of claim 10, further including: 1 2 a first channel through the heat spreader to communicate from the die 3 side to the heat-sink side; and optionally 4 a first plug disposed in the first channel. 1 14. The package of claim 10, further including: 2 a first channel through the heat spreader to communicate from the die 3 side to the heat-sink side; optionally a first plug disposed in the first channel; 4 5 a second channel through the heat spreader to communicate from the 6 die side to the heat-sink side; 7 optionally a second plug disposed in the second channel. The package of claim 10, further including: 1 15. 2 a first channel through the container barrier; 3 optionally a first plug disposed in the first channel. 1 16. The package of claim 10, further including: 2 a first channel through the container barrier; 3 optionally a first plug disposed in the first channel;
- 1 17. The package of claim 10, further including:

4 5 a second channel through the container barrier; and

optionally a second plug disposed in the second channel.

2		a die in contact with the liquid heat transfer medium.				
1	18.	The package of claim 10, further including:				
2		a die in contact with the liquid heat transfer medium; and				
3		a mounting substrate coupled to the die.				
1	19.	A process comprising:				
2		forming a container barrier upon a heat sink substrate to achieve a				
3	recess, the recess including:					
4		a recess wall including the container barrier; and				
5		a recess base including the heat sink.				
1	20.	The process of claim 19, wherein forming the container barrier upon				
2	the heat sink is cold forming, selected from rolling, pressing, stamping, and					
3	combinations thereof.					
1	21.	The process of claim 19, wherein forming the container barrier upon				
2	the heat sink includes assembling a polymer-solder hybrid container barrier.					
1	22.	The process of claim 19, further including:				
2		disposing a liquid heat transfer medium in the recess.				
1	23.	A process comprising:				
2		forming a container barrier upon a die to achieve a recess, the die				
3	including an active surface and a backside surface, and the recess including					
4		a recess wall including the container barrier; and				
5		a recess base including the die backside surface.				
1	24.	The process of claim 23, wherein forming the container barrier upon				
2	a die includes	assembling a polymer-solder hybrid container barrier.				

1	25.	The process of claim 23, further including:	
2		assembling the container barrier upon a heat sink.	
1	26.	The process of claim 23, further including:	
2		disposing a liquid heat transfer medium in the recess.	
1	27.	A computing system comprising:	
2		a heat spreader including a die side and a heat-sink side;	
3		a container barrier disposed on the heat spreader die side, wherein the	
4	contai	ner barrier and the heat spreader form a recess upon the die side;	
5		a die in contact with the container barrier;	
6		a liquid heat-transfer medium disposed in the recess; and	
7		at least one of an input device and an output device coupled to the	
8	die.		
1	28.	The computing system according to claim 27, wherein the computing	
2	system is disp	osed in one of a computer, a wireless communicator, a hand-held	
3	device, an automobile, a locomotive, an aircraft, a watercraft, and a spacecraft.		

29.

1 2

3

The computing system according to claim 27, wherein the die is

selected from a data storage device, a digital signal processor, a micro-controller, an

application specific integrated circuit, and a microprocessor.