# Отчет о выполнении лабораторной работы 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Костылев Влад, Б01-208

10 мая 2023 г.

#### Аннотация

**Цель работы:** 1) измерение температурной зависимости коэффициента поверхностного натяжения дистиллированной воды с использованием известного коэффициента поверхностного натяжения спирта; 2) определение полной поверхностной энергии и теплоты, необходимой для изотермического образования единицы поверхности жидкости при различной температуре.

**В работе используются:** прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

#### 1 Теоретическая справка

Для сферического пузырька с воздухом внутри жидкости избыточное давление даётся формулой Лапласа:

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = \frac{2\sigma}{R} \tag{1}$$



где  $\sigma$  – коэффициент поверхностного натяжения,  $P_{\it enympu}$  и  $P_{\it cnapy>cu}$  – давление внутри пузырька и снаружи, R – радиус кривизны поверхности раздела двух фаз.

### 2 Используемое оборудование

**В работе используются:** прибор Ребиндера с термостатом и микроманометром; исследуемые жидкости; стаканы.

#### 3 Методика измерений

Исследуемая жидкость (дистиллированная вода) и тестовая жидкость (этиловый спирт) наливаются в сосуд (см. рис. ниже). При создании достаточного разряжения воздуха в колбе с иглой пузырьки воздуха начинают побулькивать через жидкость. Поверхностное натяжение можно определить по величине разряжения  $\Delta P$  (1), необходимого для прохождения пузырьков (при известном радиусе иглы).

Разряжение в системе создается с помощью аспиратора А. Разность давлений в полостях с разряженным воздухом и атмосферой измеряется спиртовым микроманометром. Для стабилизации температуры исследуемой жидкости через рубашку D колбы В непрерывно прогоняется вода из термостата.



## 4 Результаты измерений и обработка данных

Убедившись в герметичности системы, начнем измерения. Откроем кран K1 аспиратора и подберем частоту падения капель из него так, чтобы максимальное давление манометра не зависело от этой частоты (не чаще, чем 1 капля в 5 секунд).

При пробулькивании спирта:

$$\triangle P_{cnupm_max} = 39$$
MM. $cnupm.cm$ 

Сделаем несколько пробулькиваний, полученные данные внесем в таблицу и рассчитаем радиус:

| dP | dP, Πa   | r_тр, мм   |  |
|----|----------|------------|--|
| 39 | 60,34938 | 0,75493733 |  |
| 37 | 57,25454 | 0,79574476 |  |
| 38 | 58,80196 | 0,77480411 |  |
| 38 | 58,80196 | 0,77480411 |  |
| 37 | 57,25454 | 0,79574476 |  |

Тогда получаем радиус:

$$R = 0.78 \pm 0.02$$
мм

Измерив данный радиус микрометром мы получаем значение 0.55 мм. Вы еще раз можете убедиться в моей криворукости.

Теперь, утопим иглу на максимальную высоту, оставив небольшое расстояние до дна, чтобы пузырек его не касался. И сравним посчитанные значения со значениями микроманометром  $(P_2 - P_1)$ .

| h1, см | Р1_макс | h2, см | Р1_макс | dP | dР, Па | dP_h, Πa |
|--------|---------|--------|---------|----|--------|----------|
| 1.5    | 107     | 0.7    | 146     | 39 | 76.518 | 78.48    |

Можем заметить, что полученные разницы очень близки друг другу.

Ну а теперь самая долгая часть работы, снятие зависимости коэффициента поверхностного натяжения от температуры (от 20 до 60 градусов цельсия с шагом в 5):

| Т, град цел | dP    | dР, Па  | сигма    |
|-------------|-------|---------|----------|
| 20          | 149   | 292,338 | 80,9325  |
| 25          | 148   | 290,376 | 80,19675 |
| 30          | 146,5 | 287,433 | 79,09313 |
| 35          | 145   | 284,49  | 77,9895  |
| 40          | 143   | 280,566 | 76,518   |
| 45          | 141,5 | 277,623 | 75,41438 |
| 50          | 139,5 | 273,699 | 73,94288 |
| 55          | 138   | 270,756 | 72,83925 |
| 60          | 136   | 266,832 | 71,36775 |

Сравним их с табличными значениями:

| температура, <sup>0</sup> С | поверхностое натяжение,<br>(H/м) *10 <sup>-3</sup> |
|-----------------------------|----------------------------------------------------|
| 5                           | 74,90                                              |
| 10                          | 74,22                                              |
| 15                          | 73,49                                              |
| 18                          | 73,05                                              |
| 20                          | 72,75                                              |
| 25                          | 71,97                                              |
| 30                          | 71,18                                              |
| 40                          | 69,56                                              |
| 50                          | 67,91                                              |
| 60                          | 66,18                                              |
| 70                          | 64,40                                              |
| 80                          | 62,60                                              |
| 100                         | 58,90                                              |

Видим, все значения отличаются на небольшую константу, это связано с проблемами измерения радиуса иглы.

По посчитанным данным построим график, проаппроксимируя их:



Тогда из графика находим:

$$\frac{d\sigma}{dT} = -0.244 \times 10^{-3} \frac{H}{M*K}$$

Построим еще два графика: теплоты образования единицы поверхности жидкости ( $q=-T\frac{d\sigma}{dT}$ ) и поверхностной энергии U единицы площади F ( $\frac{U}{F}=(\sigma-T\frac{d\sigma}{dT})$ ):



### 5 Заключение

В данной работе мы научились довольно точно измерять коэффициент поверхностного натяжения жидкости, а именно дистиллированной воды, также в ходе выполнения лабораторной мы научились пользоваться спиртовым микроманометром.