Summary of Asymptotic Notations (CLRS 4th Ed.)

Asymptotic Bound	$ \lim_{n\to\infty}\frac{f(n)}{g(n)}=C $	Complete Definition	Asymptotic Family Relationships	Is $g(n)$ an asymptotically tight bound for $f(n)$?
ω	∞ = <i>C</i>	$\omega(g(n)) = \begin{cases} f(n) : \text{for any positive constant} \\ c > 0, \exists \text{ a constant } n_0 > 0 \text{ such that} \\ 0 \le cg(n) < f(n) \forall n \ge n_0 \end{cases}$	$\omega(g(n)) \subset \Omega(g(n))$	No; asymptotically larger (see page 61)
Ω	0 < C≤ ∞	$\Omega(g(n)) = \begin{cases} f(n) : \exists \text{ positive constants } c \text{ and } n_0 \\ \text{such that } 0 \le cg(n) \le f(n) \ \forall \ n \ge n_0 \end{cases}$	$\Theta(g(n)) \subseteq \Omega(g(n))$	Maybe
o	0 = C	$o(g(n)) = \begin{cases} f(n) : \text{for any positive constant} \\ c > 0, \exists \text{ a constant } n_0 > 0 \text{ such} \\ \text{that } 0 \le f(n) < cg(n) \forall n \ge n_0 \end{cases}$	$o(g(n)) \subset O(g(n))$	No; asymptotically smaller (see page 60)
0	0 ≤ C < ∞	$O(g(n)) = \begin{cases} f(n) : \exists \text{ positive constants } c \text{ and } n_0 \\ \text{such that } 0 \le f(n) \le cg(n) \ \forall \ n \ge n_0 \end{cases}$	$\Theta(g(n)) \subseteq O(g(n))$	Maybe
Θ	0 < C < ∞	$\Theta(g(n)) = \begin{cases} f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0 \\ \text{such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall \ n \ge n_0 \end{cases}$	Theorem 3.1 For any two functions $f(n)$ and $g(n)$, we have $f(n) = \Theta(g(n))$ iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$	Yes

Notes:

f(n) must be nonnegative whenever n is sufficiently large (asymptotically nonnegative)

g(n) must be asymptotically nonnegative

if $\forall n \ge n_0$ the function f(n) is equal to g(n) to within a constant factor, then g(n) is an asymptotically tight bound for f(n)

Symbol Meanings:

f(n) is the function describing the algorithm derived through analysis of the algorithm

g(n) is the function that is being tested as bounding f(n) from below, or from above, or from both below and above

∃ - "there exists"

∀ - "for all"

Iff – "if and only if"

John E. Boon, Jr.