

格的概念

第六章 格和布尔代数

§1格的概念

§2分配格

§3有补格

偏序集<A, ≼ >

{a, b} 最小上界 c 最大下界 无

{e, f} 最大下界 d 最小上界 无

注意: 今后把{a, b}的最小上界(最大下界)称 为元素a, b的最小上界(最大下界)。

共同的特性: 在这些偏序集中, 任何两个元素都

有最小上界和最大下界。

一、格

定义1 设<A, <>是一个偏序集,如果A中任意两

个元素都有最小上界和最大下界,则称<A,

≼>为格。

雨课堂 Rain Classroom

例: $\langle I_+, | \rangle$: $a \mid b$ 当且仅当a整除b 称为正整数格

任意两元素a,b的最小上界: 最小公倍数

最大下界:最大公约数

 $< P(S), \subseteq >$

任意两元素S1,S2的最小上界: S1∪S2

最大下界: S1 ∩ S2

- 8/40页 -

例: 给定S={a, b}, P(S)={ Φ ,{a},{b},{a,b}}, 那么,格<P(S), \subseteq >如图所示。

定义2 设<A, ≼>是一个格,如果在A上定义两个二元运算 \ 和 \ ,使得对于 \ a,b ∈ A, a \ b等于a和b的最小上界(LUB), a \ b等于a和b的最大下界(GLB), 则称 < A, \ \ , \ > 为由格 < A, ≼>所诱导的代数系统。二元运算 \ 和 \ 分别称为并运算和交运算。

3.
$$<$$
A, \le >
 $<$ A, \lor , \land >, A: $\{1,2,3,4,5\}$
 $a \lor b = max(a,b)$
 $a \land b = min(a,b)$

4. 设 $n \in I^+$, $I_n = \{x \mid x \in I^+, (x|n)\}$, $\langle I_n, | \rangle$ 为格, 当n = 20时, $I_{20} = \{1,2,4,5,10,20\}$, $\langle I_{20}, | \rangle$ 如图:

 $x \lor y = lcm(x,y), x \land y = gcd(x,y)$

则 $<I_n$, \lor , \land >是由格 $<I_n$, \mid >所诱导的代数系统

二、子格

定义3 设<A, \leq >是一个格,由格<A, \leq >所诱导的代数系统为<A, \vee , \wedge >,设BCA且B \neq Ø,如果A中的这两个运算 \vee 和 \wedge 关于B是封闭的,则称<B, \leq >是<A, \leq >的子格。

注意: 与子群概念的异同

雨课堂 Rain Classroor

例:
$$A=\{a,b,c\}, < P(A), \subseteq >$$

$$P(A) = {\Phi,{a},{b},{c},{a,b},{b,c},{c,a},{a,b,c}}$$

$$S_1 = \{\{a,b,c\}, \{a,b\}, \{b,c\}, \{b\}\}$$

$$S_2 = \{\{a,c\}, \{a\}, \{c\}, \Phi\}$$

$$S_3 = \{ \{\Phi, \{a\}, \{c\}, \{a,b\}, \{b,c\}, \{c,a\}, \{a,b,c\} \} \}$$

 $\langle S_1, \subseteq \rangle$ 是格,并且是 $\langle P(A), \subseteq \rangle$ 的 $\langle S_2, \subseteq \rangle$ 子格

 $<S_3$, $\subseteq>$ 是格,但不是< P(A), $\subseteq>$ 的子格 因为 $\{a,b\}$ $\land \{b,c\}=\{b\} \notin S_3$

 $\{a,b\}$

注意: 对于格<A, <>, 设B是A的非空子集,尽管

<B, <>必定是一个偏序集,然而<B, <>不一

定是格,即使<B, <>是格,也不一定是<A,

<>的子格。

格的主要性质

格的对偶原理: 设<A,<>是格,"<"的逆关系"<_R"与 A组成的偏序集<A,<_R>也是格。两者互为对偶。前者的GLB(最大下界),LUB(最小上界)恰好是后者的LUB,GLB。

如有关于任意格的有效命题P(对任意格都为真),

- 16/40页 -

- (1)将"≼"换成"≥",
- (2) "^"换成"~",
- (3) "\"换成 "\",

便能得到对偶命题P',它也是有效命题。

雨课堂 Rain Classroom

定理1 在一个格<A, \le >中,对于任意的a, b \in A, 都有 $a \le a \lor b$, $b \le a \lor b$ a \land b \le a \land b \le b

证明:因为a Vb是a的一个上界

所以 $a \leq a \vee b$

同理 b≤ a∨b

由对偶原理得 $a \wedge b \leq a$, $a \wedge b \leq b$

定理2 在一个格<A, <>中,对于 \forall a, b, c, d \in A, 如果有a < b, c < d, 则: $a \lor c < b \lor d \qquad a \land c < b \land d$

证明: 因为a∧c≤a a∧c≤c

 \overline{m} a≤b, c≤d

所以 $a \land c \le b$ $a \land c \le d$

所以 a ∧ c ≤ b ∧ d

类似可证明 $a \lor c \le b \lor d$

推论: (格的保序性) 在一个格<A, \leq >中,

对于a, b, c∈A, 如果有b≼c, 则

 $a \lor b \le a \lor c$ $a \land b \le a \land c$

证明: 因为a≤a, b≤c

依据定理2可得。

定理3 设<A,≤>是一个格,由格<A,≤>所诱导的代数系 统为 $\langle A, \vee, \wedge \rangle$, 则对于 $\forall a, b, c, d \in A$, 有:

- (1) 交換律 a∨b=b∨a a∧b=b∧a
- (2) 结合律 (a \setminus b) \setminus c=a \setminus (b \setminus c)

$$(a \land b) \land c=a \land (b \land c)$$

- (3) **幂等律** a∨a=a a∧a=a
- (4) 吸收律 a∨ (a∧b) =a $a \wedge (a \vee b) = a$

结合律 $(a \lor b) \lor c = a \lor (b \lor c)$

证明: \Box 由定理1知 $b \leq b \vee c \leq a \vee (b \vee c)$

$$a \le a \lor (b \lor c)$$

 $\therefore a \lor b \le a \lor (b \lor c)$

 $\nabla : c \leq b \vee c \leq a \vee (b \vee c)$

 \therefore (a \lor b) \lor c \leq a \lor (b \lor c)

类似地 a∨(b∨c) ≤ (a∨b) ∨c

 $\therefore (a \lor b) \lor c = a \lor (b \lor c)$

幂等律 $a \lor a = a$ $a \land a = a$

证明: ∵a≤a∨a

由自反性可知a≤a

 $∴ a \lor a ≤ a (a \lor a ∈ a ⊢ L 用)$

 $\therefore a \lor a = a$

由对偶原理: $a \wedge a = a$

吸收律 $a \lor (a \land b) = a, a \land (a \lor b) = a$

证明: \Box 由定理1知 $a \leq a \vee (a \wedge b)$

 $\nabla : a \leq a, a \wedge b \leq a$

$$\therefore a \lor (a \land b) \leq a$$

$$\therefore a \lor (a \land b) = a$$

- 23/40页 -

例: 设<N,≤>是一个偏序集, N是自然数集, ≤是"小 于等于"关系, 定义

a∨b=max{a,b} (取大运算)

a∧b = min {a,b} (取小运算)

则<N,< >是一个格。由此格诱导的代数系统为

 $\langle N, \vee, \wedge \rangle$

则该代数系统的两个运算满足

交 持 结 合 律 等 幂 律 収 位

- 1. 交换性:任意两个数a和b的最大值(最小值)与b和a 的最大值(最小值)是相等的。
- 2. 结合性:

max(max(a,b),c) = max(a,max(b,c)) 都是三个数a,b,c中的最大值,所以 \lor 是可结合的,

min(min(a,b),c)=min(a, min(b,c)), 说明 \ 是可结合的。

- 3. 幂等性: max(a,a)=min(a,a)=a
- 4. 吸收性: max(a,min(a,b)) =a

min(a, max(a,b))=a

引車: 设<A, \lor , \land >是一个代数系统,其中 \lor , \land 都是二

元运算且满足吸收性,则\和\都满足幂等性。

即要证,已知对于∀ a, b∈A 有a∨(a∧b)=a和a∧(a∨b)=a

则: a \/ a=a a \/ a=a

证明: $\Box a \lor (a \land b) = a$ (吸收律)

用 (a > b) 代替b, 得:

$$\mathbf{a} \vee (\mathbf{a} \wedge (\mathbf{a} \vee \mathbf{b})) = \mathbf{a}$$

$$\nabla : a \wedge (a \vee b) = a$$

$$\therefore a \vee a = a$$

同理可证a \wedge a=a

定理4 设<A, \lor , \land >是一个代数系统,其中 \lor , \land 都是二

元运算且满足交换性,结合性和吸收性,则A上存在偏序关系 \leq ,使<A, \leq >是一个格。

证明思路:分四部分内容来证明:

- (1) 定义二元关系≼: a ≤ b当且仅当 $(a \land b)=a$
- (2) 证明是偏序关系(证自反、反对称和传递);
- (3) 证明a△b是a和b的最大下界(下确界);

证明: 在A上定义二元关系 \leq 为: 对于 \forall a, b \in A, a \leq b当且仅当(a \land b) =a

首先证明≼是偏序关系

(1) \(\times\), \(\)满足吸收律 \(\times\) \(\)满足幂等性(根据引理)

即 $a \wedge a = a$ $\therefore a \leq a$ 自反性

(2) 设a≼b, 则a∧b=a

再设b≤a, 则b∧a=b

- 二 / 满足交换律 二 a=b 反对称性
- (3) 设a \leq b, b \leq c, 则a \wedge b=a, b \wedge c=b

$$\Box a \land c = (a \land b) \land c$$

$$= a \wedge (b \wedge c) = a \wedge b = a$$

∴ a ≤ c 传递性 即≤是偏序关系

其次证明a△b是a和b的最大下界 a≤b当且仅当a△b=a

由于
$$(\underline{a \wedge b}) \wedge a = \underline{a \wedge b}$$

$$(\underline{a \wedge b}) \wedge b = \underline{a \wedge b}$$

所以 $a \land b \le a$, $a \land b \le b$

即a/b是a和b的下界

设c∈A, 是a和b的任一下界, 即: c≤a, c≤b

$$c \land a = c \quad c \land b = c$$

- \therefore c \land (a \land b) =(c \land a) \land b = c \land b = c
- $\therefore c \leq a \wedge b$
- ∴ a \b b 是a和b的最大下界

雨课堂 Rain Classroon

最后,根据交换性和吸收性,由 $a \wedge b = a$ 得

在A上定义二元关系<为: 对于 \forall a, b \in A, a \leq b当且仅当a \land b=a

- \therefore a=a \land b \Leftrightarrow b=a \lor b
- ∴ ≼即为: 对于 $\forall a, b \in A$, $a \le b$ 当且仅当 $a \lor b = b$

类似的可证明 a V b是 a和 b的最小上界

因此, <**A**, ≼>是一个格

定理5 设<A, \leq >是一个格,则对于 \forall a, b, c \in A,有:

 $a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$

 $(a \land b) \lor (a \land c) \leq a \land (b \lor c)$

(分配不等式)

 $a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$

证明: $: a \leq a \vee b$

 $a \leq a \vee c$

 $\therefore a = a \land a \leq (a \lor b) \land (a \lor c) \tag{1}$

 $\mathbf{b} \land \mathbf{c} \leq \mathbf{c} \leq \mathbf{a} \lor \mathbf{c}$

- $\therefore a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$

利用对偶原理 $(a \land b) \lor (a \land c) \leq a \land (b \lor c)$

定理6 设<A, <>是一个格,则对于 \forall a, b \in A,有 a < b \Leftrightarrow a \land b=a \Leftrightarrow a \lor b = b

证明: 先证a ≤ b ⇔ a ∧ b=a

- (1) $\forall a \leq b$, $a \leq a$, $\therefore a \leq a \wedge b$ 又 $\forall a \wedge b \leq a$, 则 $a \wedge b = a$
- (2) 反之, 假定 a ∧ b=a 则 a=a ∧ b ≤ b
 - ∴ a ≤ b
 - \therefore a \leq b \Leftrightarrow a \land b=a

同理: $a \leq b \Leftrightarrow a \vee b = b$

定理7 设<A, \leq >是一个格, 对于 \forall a, b, c \in A, 有 $a \leq c \Leftrightarrow a \lor (b \land c) \leq (a \lor b) \land c$ (模不等式)

证明: 由<u>定理6</u> $a \le c \Leftrightarrow a \lor c = c$

由<u>定理5</u> $a \lor (b \land c) \leq (a \lor b) \land (a \lor c)$

用c代替a∨c a∨(b∧c)≤(a∨b)∧c

 $\therefore a \leq c \Rightarrow a \vee (b \wedge c) \leq (a \vee b) \wedge c$

若 $a \lor (b \land c) \leq (a \lor b) \land c$

则 $a \leq a \vee (b \wedge c) \leq (a \vee b) \wedge c \leq c$ 即 $a \leq c$

- $\therefore a \lor (b \land c) \leq (a \lor b) \land c \Rightarrow a \leq c$
- $\therefore a \leq c \Leftrightarrow a \vee (b \wedge c) \leq (a \vee b) \wedge c$

推论: 在格<A, <>中,则对于 \forall a, b, c \in A, 必有:

$$(a \land b) \lor (a \land c) \leq a \land (b \lor (a \land c))$$

 $a \lor (b \land (a \lor c)) \leq (a \lor b) \land (a \lor c)$

证明: $(a \land b) \lor (a \land c) \leq (a \lor (a \land c)) \land (b \lor (a \land c))$

$$(a \land b) \lor (a \land c) \leq a \land (b \lor (a \land c))$$

- $a \lor (b \land (a \lor c)) \leq (a \lor b) \land (a \lor (a \lor c))$
- $\therefore a \lor (b \land (a \lor c)) \leq (a \lor b) \land (a \lor c)$

定义: $\mathcal{C}(A_1, \leq 1)$ 和 $\mathcal{C}(A_2, \leq 2)$ 是两个格,由它们分别诱导 的代数系统为<A₁, \lor ₁, \land ₁>和<A₂, \lor ₃, \land ₅>,若存在 着一个从 A_1 到 A_2 的映射f,使得对于 $\forall a,b \in A_1$,有

$$f(\mathbf{a} \lor_1 \mathbf{b}) = f(\mathbf{a}) \lor_2 f(\mathbf{b})$$

 $f(\mathbf{a} \land_1 \mathbf{b}) = f(\mathbf{a}) \land_2 f(\mathbf{b})$

则称f为从<A₁, \lor 1, \land 1>到<A₂, \lor 2, \land 2 的格同态。

 $\pi < f(A_1), \leq > \geq < A_1, \leq >$ 的格同态象。

当f是双射时,称f为从<A₁, \lor 1, \land 1>到<A₂, \lor 3, \land 5>的 格同构。

定理8:(格同态的保序性)

设f是<A₁,≤₁>和<A₂,≤₂>的格同态,则对 \forall x, y \in A₁ <mark>如</mark> 果 $x \leq_1 y$, 必有 $f(x) \leq_2 f(y)$

 $\therefore x \land_1 y = x$

 $f(\mathbf{x} \wedge_1 \mathbf{y}) = f(\mathbf{x}) = f(\mathbf{x}) \wedge_2 f(\mathbf{y})$ (同态公式)

 $\therefore f(\mathbf{x}) \leq_2 f(\mathbf{y})$

注意: 定理8的逆命题是不一定成立的

格同态是保序的,但是保序的不一定是格同态

雨课堂

例:设<S, \leq >是一个格,其中S={a,b,c,d,e},如图

则<P(S), \subseteq >也是一个格。

作 $f: S \rightarrow P(S)$, 对 $\forall x \in S$,

使得 $f(x)=\{y \mid y \in S, y \leq x\}$

有f(a)=S, $f(b)=\{b,e\}$, $f(c)=\{c,e\}$,

$$f{d}={d,e}, f(e)={e}$$

当 $x, y \in S$ 且 $x \leq y$ 时,有 $f(x) \subseteq f(y)$ ∴ f是保序的

但是,对于b, d∈S,有b∨d=a

$$f(\mathbf{b} \vee \mathbf{d}) = f(\mathbf{a}) = \mathbf{S}$$
 $f(\mathbf{b}) \cup f(\mathbf{d}) = \{\mathbf{b}, \mathbf{d}, \mathbf{e}\}$

 $\therefore f(\mathbf{b} \vee \mathbf{d}) \neq f(\mathbf{b}) \cup f(\mathbf{d})$

定理9: 设两个格<A₁, $\leq_1>$ 和<A₂, $\leq_2>$, f是从A₁到A₂的双射,则f是<A₁, $\leq_1>$ 到<A₂, $\leq_2>$ 的格同构,当且仅当对 \forall a, b \in A₁, a \leq_1 b \Leftrightarrow f(a) \leq_2 f(b)。

证明:设f是<A $_1$, $\le_1>$ 到<A $_2$, $\le_2>$ 的格同构。 由定理8知对 \forall a,b \in A $_1$,若a \le_1 b,必有f(a) $\le_2 f$ (b)反之,设f(a) $\le_2 f$ (b), [0f(a) $\land_2 f$ (b)=f(a \land_1 b)=f(a)

- :*f*是双射
- ∴ a ∧₁b=a 故a≤₁ b

设对 $\forall a, b \in A_1$ $a \leq_1 b \Leftrightarrow f(a) \leq_2 f(b)$ 设a∧₁b=c,则c≤₁a,c≤₁b,有 $f(a \land_1 b) = f(c), f(c) \leq_1 f(a), f(c) \leq_1 f(b)$ $\therefore f(c) \leq f(a) \wedge f(b)$ 设 $f(a) \land f(b) = f(d)$,则 $f(c) \leq f(d), f(d) \leq f(a), f(d) \leq f(b)$ $\therefore d \leq_1 a, d \leq_1 b$ ∴ $d \leq_1 a \wedge_1 b$ $\Box d \leq_1 c$, $f(d) \leq_2 f(c)$ $\therefore f(c) = f(d)$ $\mathbb{P}f(a \wedge_1 b) = f(a) \wedge_2 f(b)$ 类似地可证 $f(a \lor_1 b) = f(a) \lor_2 f(b)$ 因此,f是<A₁,<1>到<A₂,<2>的格同构