Electronics and Communication Systems Electronics Systems

Master Degree in Computer Engineering

https://computer.ing.unipi.it/ce-lm

Luca Fanucci

Dipartimento Ingegneria dell'Informazione

Via Caruso 16 - I-56122 - Pisa - Italy

Phone: +39 050 2217 668

Fax: +39 050 2217 522

Mobile: +39 347 5013837

Email: luca.fanucci@unipi.it

Outline

- ☐ Design Metrics
- □ Managing engineering trade-offs

How to map a system/algorithm to hw/sw design

Design is the art of managing engineering trade-offs!

How to map a system/algorithm to hw/sw design

Let's see some fundamental design metrics!!

Fundamental Design Metrics

- Functionality
- Cost
 - NRE (fixed) costs design effort
 - □ RE (variable) costs cost of parts, assembly, test
- Reliability, robustness
 - Noise margins
 - Noise immunity
- Performance
 - Speed (delay)
 - Power consumption; energy
- Time-to-market

Design is the art of managing engineering trade-offs!

How a chip is manufactured?

Cost of Integrated Circuits

- NRE (non-recurring engineering) costs
 - Fixed cost to produce the design
 - design effort
 - design verification effort
 - mask generation
 - Influenced by the design complexity and designer productivity
 - More pronounced for small volume products
- Recurring costs proportional to product volume
 - silicon processing
 - also proportional to chip area
 - assembly (packaging)
 - test

NRE Cost is Increasing

Silicon Wafer

From http://www.amd.com

Silicon Wafer

300mm wafer and Pentium 4 IC. Photos courtesy of Intel.

Recurring Costs

dies per wafer =
$$\pi$$
 × (wafer diameter/2)² π × wafer diameter die area π × wafer diameter π × wafer diameter π × wafer diameter π × wafer diameter

die yield =
$$(1 + (defects per unit area \times die area)/\alpha)^{-\alpha}$$

Defect Density Trends

Yield Example

Example

- wafer size of 12 inches, die size of 2.5 cm², 1 defects/cm², $\alpha = 3$ (measure of manufacturing process complexity)
- 252 dies/wafer (remember, wafers round & dies square)
- □ die yield of 16%
- □ 252 x 16% = only 40 dies/wafer die yield!

- Die cost is strong function of die area
 - proportional to the third or fourth power of the die area

Examples of Cost Metrics (circa 1994)

Chip	Metal layers	Line width	Wafer cost	Defects /cm²	Area (mm²)	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
PowerPC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super SPARC	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

Examples of Wafer Cost (2003)

		Mask layers						
Wafer size	Line- width (µm)		18	20	22	24	26	
200mm	0.25		\$890	\$980	\$1,070	\$1,155	-	
	0.18		-	\$1,320	\$1,440	\$1,565	-	
	0.13		-	-	\$1,815	\$1,970	\$2,130	
300mm	0.13		_	-	\$2,500	\$2,690	\$2,890	
	0.09		-	-	_	\$2,860	\$3,065	

Source: Icknowledge.com

Examples of Cost Metrics (2003) Intel Pentium4

Fab facility	200mm - 130nm - C	MOS logic - 1 laye	er poly - 6 layer copp	er - FSG ILD				
Fab capacity (wafers/month)	30,000	United States						
Fab utilization	90%							
Wafer costs	Material	Labor	Overhead	Total				
Unyielded wafer costs	\$85.00	\$102.53	\$1,511.78	\$1,699.31				
Wafer yield	·	97						
Yielded wafer costs	\$87.00	\$104.94	\$1,547.33	\$1,739.26				
				·		_		
	Area (mm²)	Gross die	Die yield	Net die	Cost/die			
Die per wafer	146.0	177	70.2%	124	\$14.03			
	Sort 1	Burn-in	Sort 2	Total				
Wafer sort costs	\$0.939	\$0.000	\$0.000	\$0.939				
Package	e FCPGA - 35mm x 35mm x 478pins - Intel 130nm Pentium 4 with 512Kb cache							
	Package Cost	Yield	Yielded w die					
Packaging	\$6.797	95.3%	\$22.828					
	Class 1	Burn-in	Class 2	Total	Yield	Cost adder		
Class test	\$1.031	\$0.080	\$1.031	\$2.142	97.7%	\$0.000		

Final cost: 25.57\$ / chip source:www.icknowledge.com

Fundamental Design Metrics

- Functionality
- Cost
 - NRE (fixed) costs design effort
 - □ RE (variable) costs cost of parts, assembly, test
- □ Reliability, robustness
 - Noise margins
 - Noise immunity
- Performance
 - Speed (delay)
 - Power consumption; energy
- Time-to-market

Reliability

Noise in Digital Integrated Circuits

- Noise unwanted variations of voltages and currents at the logic nodes
- From two wires placed side by side
 - capacitive coupling
 - voltage change on one wire can influence signal on the neighboring wire
 - cross talk
 - inductive coupling
 - current change on one wire can influence signal on the neighboring wire

- From noise on the power and ground supply rails
 - can influence signal levels in the gate

Example of Capacitive Coupling

Signal wire glitches as large as 80% of the supply voltage will be common due to crosstalk between neighboring wires as feature sizes continue to scale

Crosstalk vs. Technology

Static Gate Behavior

- Steady-state parameters of a gate static behavior tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances.
- Digital circuits perform operations on Boolean variables x ∈ {0,1}
- A logical variable is associated with a nominal voltage level for each logic state

$$1 \Leftrightarrow V_{OH} \text{ and } 0 \Leftrightarrow V_{OL}$$

$$V(x)$$
 $V_{OH} = ! (V_{OL})$ $V_{OL} = ! (V_{OH})$

□ Difference between V_{OH} and V_{OL} is the logic or signal swing V_{sw}= V_{OH} - V_{OL}

DC Operation

Voltage Transfer Characteristics (VTC)

□ Plot of output voltage as a function of the input voltage

Mapping Logic Levels to the Voltage Domain

□ The regions of acceptable high and low voltages are delimited by V_{IH} and V_{IL} that represent the points on the VTC curve where the gain = -1

Noise Margins

□ For robust circuits, want the "0" and "1" intervals to be as large as possible

□ Large noise margins are desirable, but not sufficient ...

Noise Immunity

- Noise margin expresses the ability of a circuit to overpower a noise source
 - noise sources: supply noise, cross talk, interference, offset
- Absolute noise margin values are deceptive
 - a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise
- □ For good noise immunity, the signal swing (i.e., the difference between V_{OH} and V_{OL}) and the noise margin have to be large enough to overpower the impact of fixed sources of noise

Fundamental Design Metrics

- Functionality
- Cost
 - NRE (fixed) costs design effort
 - □ RE (variable) costs cost of parts, assembly, test
- Reliability, robustness
 - Noise margins
 - Noise immunity

□ Performance

- Speed (delay)
- Power consumption; energy
- Time-to-market

Fan-In and Fan-Out

- Fan-out number of load gates connected to the output of the driving gate
 - gates with large fan-out are slower

- □ Fan-in the number of inputs to the gate
 - gates with large fan-in are bigger and slower

Directivity

- A gate must be undirectional: changes in an output level should not appear at any unchanging input of the same circuit
 - In real circuits full directivity is an illusion (e.g., due to capacitive coupling between inputs and outputs)

- Key metrics: output impedance of the driver and input impedance of the receiver
 - ideally, the output impedance of the driver should be zero and
 - input impedance of the receiver should be infinity

The Ideal Inverter

- □ The ideal gate should have
 - infinite gain in the transition region
 - a gate threshold located in the middle of the logic swing
 - high and low noise margins equal to half the swing
 - input and output impedances of infinity and zero, resp.

Delay Definitions

Modeling Propagation Delay

Model circuit as first-order RC network

$$v_{out}(t) = (1 - e^{-t/\tau})V$$
 where $\tau = RC$

Time to reach 50% point is $t = ln(2) \tau = 0.69 \tau$

Time to reach 90% point is $t = ln(9) \tau = 2.2 \tau$

Matches the delay of an inverter gate

Power and Energy Dissipation

- Power consumption: how much energy is consumed per operation and how much heat the circuit dissipates
 - supply line sizing (determined by peak power)

$$P_{peak} = V_{dd}i_{peak}$$

Power and Energy Dissipation

- Power consumption: how much energy is consumed per operation and how much heat the circuit dissipates
 - supply line sizing (determined by peak power)

$$P_{peak} = V_{dd}i_{peak}$$

battery lifetime (determined by average power dissipation)

$$p(t) = v(t)i(t) = V_{dd}i(t)$$

$$P_{avg} = 1/T \int p(t) dt = V_{dd}/T \int i_{dd}(t) dt$$

- packaging and cooling requirements
- Two important components: static and dynamic

P (watts) =
$$C_L V_{dd}^2 f_{0\rightarrow 1} + t_{sc} V_{dd} I_{peak} f_{0\rightarrow 1} + V_{dd} I_{leakage}$$

$$f_{0\rightarrow 1} = P_{0\rightarrow 1} * f_{clock}$$

Power and Energy Dissipation

- Propagation delay and the power consumption of a gate are related
- Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors
 - the faster the energy transfer (higher power dissipation) the faster the gate
- □ For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant
 - Power-delay product (PDP) energy consumed by the gate per switching event
- An ideal gate is one that is fast and consumes little energy, so the ultimate quality metric is
 - □ Energy-delay product (EDP) = power-delay ²

Summary

- Digital integrated circuits have come a long way and still have quite some potential left for the coming decades
- Some interesting challenges ahead
 - Getting a clear perspective on the challenges and potential solutions is the purpose of this course
- Understanding the design metrics that govern digital design is crucial
 - Cost, reliability, speed, power and energy dissipation

Outline

- ☐ Design Metrics
- ☐ Managing engineering trade-offs

Luca Fanucci 35

How to map a system/algorithm to hw/sw design

Design is the art of managing engineering trade-offs!

Source: T.Noll, RWTH Aachen

Source: Rabaey, BRWC

Source: T.Noll, RWTH Aachen

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

How to address growing SoC complexity?

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

MP-SoC solution:

- + Programmable solution
- Utilizing existing tools
- Scheduling and Mapping may be difficult
- Throughput constraints not achievable

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

Programmable Solution and Accelerator:

- + Programmable solution
- Utilizing existing tools ?
- Flexibility bound to given limitations:
 - Instruction Set
 - Processor/ASIC Interface
 - Memory Interface
 - Architecture Timing

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

Programmable Solution and Accelerator:

loosely coupled

tightly coupled

(embedded into infrastructure)

- Programmable solution
- High Performance
- Utilizing existing tools?
- Flexibility bound to given limitations:
 - Instruction Set
 - Processor/FPGA Interface
 - Memory Interface
 - Architecture Timing

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

loosely coupled

tightly coupled

(embedded into infrastructure)

Comercial Example: Stretch Inc.

load/store up to 3x/2x 128 bit User-defined extensions to the core ISA

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

Programmable Solution and Accelerator:

FPGA

Processor

- Programmable solution
- Utilizing existing tools ?
- Energy Efficiency
- Area/Timing Efficency
- Flexibility bound to given limitations:
 - Instruction Set
 - Processor/FPGA Interface
 - Memory Interface
 - Architecture Timing

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

FPGA

Processor

Comercial Example:

XILINX, Virtex-II Pro

Single or multiple IBM PowerPC Processors are embedded in the FPGA (Platform FPGA).

XILINX, Virtex-4 FPGA family

Logic Cells, RAM, XtremeDSP™ Slices, PowerPC Processor Blocks, 10/100/1000 Ethernet MAC Blocks, RocketIO™ Serial Transceivers

programmable

reconfigurable

fixed

DSP, μC, RISC, GPP, ...

FPGA / eFPGA

ASIC

Compiler, Assembler, Linker, Simulator, Debugger

Gate-Level Synthesis Tools, Power Analysis Tools, HW-Simulator

To map the Architecture to the Application means:

- >> Consider jointly HW and SW for an efficient solution
- >> Identify hotspots of the application and ...
- >> implement complex instructions.

Without being limited to given structures or interfaces!

Application Specific Instruction Set Processor (ASIP)

How to move through the design space?

Trade-offs:

Area vs. Timing vs. Energy

Design Time vs.
ATE-Product

Architectural Features vs.
Verification Effort

Verification Effort vs.
ATE-Product

Flexibility vs.
ATE-Product

ADL (Architecture Design Language) LISA

Luca Fanucci

Centralized Processor Design with LISA

Luca Fanucci 52

End, Questions?

- ☐ Design Metrics
- □ Managing engineering trade-offs

