Для дальнейшего полезно ввести множество

$$X_{\varepsilon} \stackrel{def}{=} \{ x \in X : \omega(f; x) \ge \varepsilon \}, \tag{23.40}$$

где $\varepsilon > 0$ произвольно.

Если $\eta < \varepsilon$, то ясно, что из неравенства $\omega(f;x) \ge \varepsilon$ следует неравенство $\omega(f;x) \ge \eta$. поэтому

$$X_{\varepsilon} \subset X_{\eta}.$$
 (23.41)

Л Е М М А 2. Функция f непрерывна в точке $x \in X$ тогда и только тогда, когда

$$\omega(f;x) = 0. \tag{23.42}$$

С Л Е Д С Т В И Е. $Ecnu\ X_0$ — множество точек разрыва функции $f,\ mo$

$$X_0 = \bigcup_{n=1}^{\infty} X_{1/n}.$$
 (23.43)

Доказательство леммы. Если функция f непрерывна в точке $x_0 \in X$, то для любого $\varepsilon > 0$ существует так, что для всех точек $x \in U_{\varepsilon}(x_0) \cap X$, выполняется неравенство $|f(x) - f(x_0)| < \frac{\varepsilon}{2}$. Поэтому для любых точек $x, x' \in U_{\varepsilon}(x_0) \cap X$ имеем

$$|f(x') - f(x)| \le \le |f(x') - f(x_0)| + |f(x_0) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 (23.44)

и, следовательно,

$$\omega(f; x_0) = \inf_{U(x_0)} \omega(f; U(x_0) \cap X) \le \omega(f; \cap X) =$$

$$= \sup_{x, x' \in U_{\varepsilon}(x_0) \cap X} |f(x') - f(x)| \le \varepsilon.$$
(23.44)

А так как $\varepsilon > 0$ произвольно, то это означает, что $\omega(f; x_0) = 0$.

Наоборот, если $\omega(f;x_0)=0$, то для любого $\varepsilon>0$ существу- ет такая окрестность $U(x_0)$ точки x_0 , что $\omega(f;U(x_0)\cap X)<\varepsilon$. Тогда для любого $x\in U_{\varepsilon}(x_0)\cap X$ будем иметь

$$|f(x) - f(x_0)| \leq \omega(f; U(x_0) \cap X) < \varepsilon,$$

т. е. функция f непрерывна в точке x_0 . \square

Докажем следствие. Если точка $x_0 \in X$ является точкой разрыва функции f, то, в силу леммы 2, $\omega(f;x_0) > 0$, а поэто-