matrices que no son diagonalizables (es decir, que no tienen n vectores característicos linealmente independientes) surgen en la práctica. En este caso, aún es posible demostrar que la matriz es semejante a otra, una matriz más sencilla, pero la nueva matriz no es diagonal y la matriz de transformación C es más difícil de obtener.

Para analizar bien este caso, se define la matriz N_k como la matriz de $k \times k$

$$N_k = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$(8.6.1)$$

Observe que N_k es la matriz con unos arriba de la diagonal principal y ceros en otra parte. Para un escalar dado λ se define la **matriz de bloques de Jordan** $B(\lambda)$ por

Matriz de bloques de Jordan

$$B(\lambda) = \lambda I + N_k = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & & \cdots & \lambda & 1 \\ 0 & 0 & & \cdots & 0 & \lambda \end{pmatrix}$$
 (8.6.2)

Es decir, $B(\lambda)$ es la matriz de $k \times k$ con el escalar λ en la diagonal, unos arriba de la diagonal y ceros en otra parte.

Nota. Se puede (y con frecuencia se hará) tener una matriz de bloques de Jordan de 1×1 . Esa matriz toma la forma $B(\lambda) = (\lambda)$.

Por último, una matriz de Jordan J tiene la forma

Nota

La matriz de bloques de Jordan fue denominada así en honor del matemático francés Camille Jordan (1838-1922). Los resultados en esta sección aparecieron por primera vez en el brillante trabajo de Jordan *Traité des substitutions et des équations algebriques* (Tratado sobre sustituciones y ecuaciones algebraicas), publicado en 1870.

Matriz de Jordan

$$J = \begin{pmatrix} B_1(\lambda_1) & 0 & \cdots & 0 \\ 0 & B_2(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & B_r(\lambda_r) \end{pmatrix}$$

donde cada $B_j(\lambda_j)$ es una matriz de bloques de Jordan. Entonces una matriz de Jordan es una matriz que tiene en la diagonal matrices de bloques de Jordan y ceros en otra parte.

EJEMPLO 8.6.1 Tres matrices de Jordan

Los siguientes ejemplos son matrices de Jordan. Los bloques de Jordan se marcaron con líneas punteadas:

$$\mathbf{ii} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad \mathbf{iii} \begin{pmatrix} -3 & 0 & 0 & 0 & 0 \\ 0 & -3 & 1 & 0 & 0 \\ 0 & 0 & -3 & 1 & 0 \\ 0 & 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 & 7 \end{pmatrix} \qquad \mathbf{iiii} \begin{pmatrix} 4 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$