Network Flows

LP - solvable

Combinatorial alg. augmenting paths, considering residual network

need for residual network s O(VE2) with BFS

Correctness proof for combinatorial alg

= Min Cut

s-tact is a partition of the vertices sev, tevz

V, 1 V2 = Ø V, U V2 = V

forward direction

mars flow & min cut

more flour & any cut including min cut amount offlow from s to t goes through a cut, bounds possible flour

capacity of the cut

xev, yevz

min cut & mars flow

1 assume alg. terminates

(a.g. BES, integer weights, flow addition bounded by the sum of all capacities) to must terminate

=) connot get from s bt, ofterwise an augmenting

=> For exist sturded algorithm's flow algorithm's flow algorithm's flow 2 algorithm's aut 7.

=> Max flow 3 algorithm's flow 2 algorithm's out 7.

Mars Plan Z Alg's flow Z Alg's out Z min out Z more => must be all equalifies =7 max flow = min cut and algorithm returns it, is correct note on cut contractor short with I, keep includy nodes into V, where flow can still be pushed from Vi. Duality (when min into more problems, and vice vera) mars fsa+ fsB SSA FAB FBT I if cropper out o otherwill 4SA - FAB-FAT UA = 1 of A is on the set with S for the out 0 otenwise fse+fab -fBT = 0 min 3 you + 2 4 s B + 4 B + 4 T + 3 4 BT + UA YSA Ys B YAB YAT 420 Y RT

Column player

$$Y_1 = \frac{2}{7} \quad Y_2 = \frac{5}{7}$$

max Z

$$2 \leq 3 \times , -2 \times 2$$

$$x_1 + x_2 = 1$$

(3

solve game

$$x_1 = \frac{3}{2} \times_2 = \frac{4}{2}$$

value:
$$-\frac{3}{2} + \frac{4}{2} = \frac{1}{2}$$

duals:

player perspectives