Object Detection

Lu Peng School of Computer Science, Beijing University of Posts and Telecommunications

Machine Vision Technology								
Semantic information					Metric 3D information			
Pixels	Segments	Images	Videos		Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking		Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2		2	2	2	2

What we will learn today?

- > Introduction of object detection
- **≻** Face Detection
- > Pedestrian Detection

2020/5/11

Beijing University of Posts and Telecommunications

-

What we will learn today?

- > Introduction of object detection
- **➢** Face Detection
- **Pedestrian Detection**

Object Category Detection

- > Focus on object search: "Where is it?"
- > Build templates that quickly differentiate object patch from background patch

Source: James Hays

2020/5/11

Beijing University of Posts and Telecommunications

Challenges in modeling the object class

Source: K. Grauman

Challenges in modeling the non-object class

Source: James Hays

2020/5/11

Beijing University of Posts and Telecommunications

6

Object Detection Design challenges

- ➤ How to efficiently search for likely objects
 - Even simple models require searching hundreds of thousands of positions and scales.
- > Feature design and scoring
 - · How should appearance be modeled?
 - · What features correspond to the object?
- ➤ How to deal with different viewpoints?
 - · Often train different models for a few different viewpoints

What we will learn today?

> Introduction of object detection

≻ Face Detection

Pedestrian Detection

2020/5/11

Beijing University of Posts and Telecommunications

۶

Face Detection

Behold a state-of-the-art face detector!

(Courtesy Boris Babenko)

Things iPhoto thinks are faces

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

10

"The Nikon S60 detects up to 12 faces."

Face detection and recognition

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

12

Challenges of face detection

- > Sliding window = tens of thousands of location/scale evaluations
 - One megapixel image has ~10⁶ pixels, and a comparable number of candidate face locations
- ➤ Faces are rare: 0–10 per image
 - For computational efficiency, spend as little time as possible on the non-face windows.
 - For 1 Mpix, to avoid having a false positive in every image, our false positive rate has to be less than 10⁻⁶

Source:James Hays

Sliding Window Face Detection with Viola-Jones

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

14

Rapid object detection using a boosted cascade of simple features

P Viola, M Jones - Proceedings of the 2001 IEEE computer ..., 2001 - ieeexplore.ieee.org
This paper describes a machine learning approach for visual object detection which is
capable of processing images extremely rapidly and achieving high detection rates. This
work is distinguished by three key contributions. The first is the introduction of a new image
representation called the "integral image" which allows the features used by our detector to
be computed very quickly. The second is a learning algorithm, based on AdaBoost, which
selects a small number of critical visual features from a larger set and yields extremely ...

☆ 切 被引用 20640 次 相關文章 全部共 108 個版本
文献分析

Histograms of oriented gradients for human detection

Why boosting?

- A simple algorithm for learning robust classifiers
 - Freund & Shapire, 1995
 - Friedman, Hastie, Tibshhirani, 1998
- Provides efficient algorithm for sparse visual feature selection
 - Tieu & Viola, 2000
 - Viola & Jones, 2003
- Easy to implement, not requires external optimization tools.

2020/5/11

Beijing University of Posts and Telecommunications

16

Boosting - mathematics

• It is a sequential procedure:

一个线性分类器无法对红点与蓝点进行分 类,我们就寻找几个弱分类器联合起来对他 们进行分类

Each data point has a class label:

$$y_t = \begin{cases} +1 & (\bullet) \\ -1 & (\bullet) \end{cases}$$

and a weight: $w_t=1$

Y. Freund and R. Schapire, <u>A short introduction to boosting</u>, *Journal of Japanese Society for Artificial Intelligence*, 14(5):771-780, September, 1999.

Weak learners from the family of lines

Each data point has a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

and a weight:

 $w_t = 1$

h => p(error) = 0.5 it is at chance

2020/5/11

Beijing University of Posts and Telecommunications

1 Q

Toy example

Each data point has a class label:

$$y_t = \begin{cases} +1 & \textcircled{\bullet} \\ -1 & \textcircled{\bullet} \end{cases}$$

and a weight: $w_t=1$

This one seems to be the best

This is a 'weak classifier': It performs slightly better than chance.

Each data point has a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$w_{t+1,i} \leftarrow w_{t,i} \beta_t^{1-|h_t(x_i)-y_i|}$$

2020/5/11

Beijing University of Posts and Telecommunications

20

Toy example

Each data point has a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$w_{t+1,i} \leftarrow w_{t,i} \beta_t^{1-|h_t(x_i)-y_i|}$$

Each data point has a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$w_{t+1,i} \leftarrow w_{t,i} \beta_t^{1-|h_t(x_i)-y_i|}$$

2020/5/11

Beijing University of Posts and Telecommunications

วว

Toy example

Each data point has a class label:

$$y_t = \begin{cases} +1 & \bullet \\ -1 & \bullet \end{cases}$$

We update the weights:

$$w_{t+1,i} \leftarrow w_{t,i} \beta_t^{1-|h_t(x_i)-y_i|}$$

The strong (non-linear) classifier is built as the combination of all the weak (linear) classifiers.

2020/5/11

Beijing University of Posts and Telecommunications

24

Boosting - mathematics

• Defines a classifier using an additive model:

• We need to define a family of weak classifiers

 $oldsymbol{h}_k(x)$ form a family of weak classifiers

Boosting - mathematics

• Weak learners $h_j(x) = \begin{cases} 1 & \text{if } f_j(x) > \theta_j \\ 0 & \text{otherwise} \end{cases}$ value of rectangle feature

· Final strong classifier

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) > \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & otherwise \end{cases}$$

当票数过半,则认为是1

2020/5/11

Beijing University of Posts and Telecommunications

26

Viola & Jones algorithm

- A "paradigmatic" method for real-time object detection
- · Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

- A "paradigmatic" method for real-time object detection
- · Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

2020/5/11

Beijing University of Posts and Telecommunications

28

Weak classifier

- •4 kind of Rectangle filters
- Value = ∑ (pixels in white area) –
 ∑ (pixels in black area)

位置固定的卷积核,这个卷积核只卷积这个 位置,卷积运算的结果为阴影部分与白色部 分的像素和相减

这个卷积核就相当于boosting中的弱分类器,我们用多个弱分类器对一个图片(复杂输入)进行联合处理

Weak classifier

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

30

如果使用上述办法直接进行卷积求和,运算量会非常的耗时 既然是求和,我们可以提前扫描整张图,提前求和,保存在一张表中 这个求和可以从原图左上角开始,慢慢扩大这个矩形,累加最外层的像素,就 避免了重复计算

Integral images for fast feature evaluation

• The integral image computes a value at each pixel (x,y) that is the sum of all pixel values above

and to the left of (x,y), inclusive.

先构建一张表,里面存放的元素Eij等于原图ij位置的pixel与左上角为顶点的矩形内的所有pixels的和

- This can quickly be computed in one pass through the image.
- 'Summed area table'

$$I_{\sum}(x,y) = \sum_{\substack{x' \leq x \ y' < y}} i(x',y')$$

Sxy Sxny

Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- The sum of original image values within the rectangle can be computed as:

sum = A - B - C + D

等做卷积时,到求和表中进行查阅,再按上面这个公式计算,就很快得到了指定区域的面积

Only 3 additions are required for any size of rectangle!

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

32

Viola & Jones algorithm

 For a 24x24 detection region, the number of possible rectangle features is ~160,000!

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

- A "paradigmatic" method for real-time object detection
- · Training is slow, but detection is very fast
- Key ideas
 - *Integral images* for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

2020/5/11

Beijing University of Posts and Telecommunications

Viola & Jones algorithm

1. Evaluate each rectangle filter on each example

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

- 2. Select best filter/threshold combination
 - a. Normalize the weights

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j}^{n} w_{t,j}}$$

$$h_j(x) = \begin{cases} 1 & \text{if } f_j(x) > \theta_j \\ 0 & \text{otherwise} \end{cases}$$

b. For each feature, j

$$h_{j}(x) = \begin{cases} 1 & \text{if } f_{j}(x) > \theta_{j} \\ 0 & \text{otherwise} \end{cases}$$

$$\varepsilon_{j} = \sum_{i} w_{i} |h_{j}(x_{i}) - y_{i}|$$

- c. Choose the classifier, h_t with the lowest error t
- 3. Reweight examples

$$w_{t+1,i} \leftarrow w_{t,i} \beta_t^{1-|h_t(x_i)-y_i|} \qquad \beta_t = \frac{\varepsilon_t}{1-\varepsilon_t}$$

$$\boldsymbol{\beta}_t = \frac{\boldsymbol{\varepsilon}_t}{1 - \boldsymbol{\varepsilon}_t}$$

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

2020/5/11

Beijing University of Posts and Telecommunications

36

Viola & Jones algorithm

4. The final strong classifier is

$$\boldsymbol{\beta}_t = \frac{\boldsymbol{\varepsilon}_t}{1 - \boldsymbol{\varepsilon}_t}$$

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) > \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

$$\alpha_t = \log \frac{1}{\beta_t}$$

The final hypothesis is a weighted linear combination of the T hypotheses where the weights are inversely proportional to the training errors

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

- A "paradigmatic" method for real-time object detection
- · Training is slow, but detection is very fast
- Key ideas
 - *Integral images* for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

2020/5/11

Beijing University of Posts and Telecommunications

2 0

Boosting for face detection

• A 200-feature classifier can yield 95% detection rate and a false positive rate of 1 in 14084

如果每个样本都经过所有弱分类器按照各 自权重累加判断,不仅慢而且效果不好

Source: Svetlana Lazebnik

2020/5/11

我们可以使用分层检测的思想,用某2个弱分类器,使他们有非常强的负样本检出率,对没有人脸的图像非常确定,对有人脸的图像缺不是很肯定,如果通过,再交给下一层分类器继续检测

Cascade for Fast Detection

级联动作的强烈的超点中,在第一层批排除了所有强人脸的样子(原样中)

- Fast classifiers early in cascade which reject many negative examples but detect almost all positive examples.
- Slow classifiers later, but most examples don't get there.

2020/5/11

Beijing University of Posts and Telecommunications

40

Attentional cascade

Chain classifiers that are progressively more complex and have lower false positive rates:

Receiver operating characteristic

Source: Svetlana Lazebnik

2020/5/11

Attentional cascade

- The detection rate and the false positive rate of the cascade are found by multiplying the respective rates of the individual stages
- A detection rate of 0.9 and a false positive rate on the order of 10^{-6} can be achieved by a 10-stage cascade if each stage has a detection rate of 0.99 (0.99¹⁰ \approx 0.9) and a false positive rate of about 0.30 (0.3¹⁰ \approx 6×10⁻⁶)

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

42

Training the cascade

- •Set target detection and false positive rates for each stage
- Keep adding features to the current stage until its target rates have been met
 - Need to lower boosting threshold to maximize detection
 (as opposed to minimizing total classification error)
 - > Test on a validation set
- •If the overall false positive rate is not low enough, then add another stage
- •Use false positives from current stage as the negative training examples for the next stage

The implemented system

- · Training Data
 - 5000 faces
 - All frontal, rescaled to 24x24 pixels
 - 300 million non-faces
 - 9500 non-face images
 - Faces are normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination
 - Pose

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

2020/5/11

Beijing University of Posts and Telecommunications

лл

System performance

- Training time: "weeks" on 466 MHz Sun workstation
- 38 layers, total of 6061 features
- Average of 10 features evaluated per window on test set
- "On a 700 Mhz Pentium III processor, the face detector can process a 384 by 288 pixel image in about .067 seconds"
 - 15 Hz
 - 15 times faster than previous detector of comparable accuracy (Rowley et al., 1998)

- First two features selected by boosting:
- This feature combination can yield 100% detection rate and 50% false positive rate

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

Output of Face Detector on Test Images

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.

2020/5/11

Beijing University of Posts and Telecommunications

46

Other detection tasks

Facial Feature Localization

Profile Detection

Male vs. female

Profile Detection

Source: Svetlana Lazebnik

2020/5/11

Beijing University of Posts and Telecommunications

48

Profile Features

Face Image Databases

- Databases for face recognition can be best utilized as training sets
 - Each image consists of an individual on a uniform and uncluttered background
- Test Sets for face detection
 - MIT, CMU (frontal, profile), Kodak

2020/5/11

Beijing University of Posts and Telecommunications

50

What we will learn today?

- > Introduction of object detection
- **≻** Face Detection
- > Pedestrian Detection

Histograms of oriented gradients for human detection

N.Dalal, B.Triggs - 2005 IEEE computer society conference on ..., 2005 - ieeexplore.ieee.org

We study the question of feature sets for robust visual object recognition; adopting linear

SVM based human detection as a test case. After reviewing existing edge and gradient
based descriptors, we show experimentally that grids of histograms of oriented gradient

(HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality ... ☆ 99 被引用 31161 次 相關文章 全部共82 個版本 ≫ [文献分析]

2020/5/11

Beijing University of Posts and Telecommunications

52

HoG Feature

detection window:64x128

Block size:16x16

Stride:8x8

Cell size:8x8

Bin number: 9

HOG dim: 3780 Source: Kristen Grauman

Code available: http://pascal.inrialpes.fr/soft/olt/

Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

2020/5/11

Beijing University of Posts and Telecommunications

51

Pedestrian detection with HOG

- Learn a pedestrian template using a support vector machine
- At test time, compare feature map with template over sliding windows.
- Find local maxima of response
- Multi-scale: repeat over multiple levels of a HOG pyramid

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

INRIA pedestrian database

Source: Kristen Grauman

2020/5/11

Beijing University of Posts and Telecommunications

56

Something to think about...

- > Sliding window detectors work
 - - very well for faces
 - - fairly well for cars and pedestrians
 - - badly for cats and dogs
- > Why are some classes easier than others?

Strengths/Weaknesses of Statistical Template Approach

> Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
- Fast detection

> Weaknesses

- Not so well for highly deformable objects or "stuff"
- · Not robust to occlusion
- Requires lots of training data

2020/5/11

Beijing University of Posts and Telecommunications

58