Group Project

Comp9417 Machine Learning and Data Mining T3, 2019

Group Name:

Kill Four Vegetable Chickens (KFVC)

Group Members:

Given Name	Surname	ZID
Xiangyu	Tian	z5223517
Yuao	Jiang	z5217274
Anqige	Wu	z5199351
Rong	Zhen	z5225226

Contents

1. INTRODUCTION	1
2.1 OVERVIEW OF DATASET	1
2. 2 Brief Introduction of each feature	1
3. METHODS	4
3.1.2 Conversation & Phone Lock & Phone Charge & light:	4
3.1.3 Bluetooth	
3.1.4 Wi-Fi Location	
3.1.5 Min-Max pre-processing	5
3.2 PRIMARY PRE-PROCESSING AND ANALYZING OF FEATURES	
3. 3 Pre-processing of target values from survey data	
3. 4 Presentation of implemented models & Evaluate Metrics	7
3.4.1 Implemented Models	7
3.4.2 Evaluate Metrics	9
4. RESULTS	9
4.1 Original results and evaluation	10
4.2 FEATURE SELECTION	10
4.2.1 Feature Importance Criteria	
4.2.2 Results After Feature Selection	
4.3 Hyperparameter Tuning and Evaluation Metrics	13
5. DISCUSSION	13
5.1 COMPARISON OF ALL MODELS	13
5.2 ADVANTAGES & DISADVANTAGES	14
5.3 FINDINGS BASED ON RESULTS	14
6. CONCLUSION	15
7. REFERENCES	15
0 ADDENIDICEC	1.7

1. Introduction

It is reasonable for people to believe that there is a significant correlation between students' mental health and behavior trends. Researchers at Dartmouth College explored a sensing app named StudentLife integrated with MobieEMA, a flexible ecological momentary assessment, helping to collect data relating to many aspects of students' lives including mental well-being, education outcomes, behavioral trends. (Wang & etc., 2014). Based on the original public dataset from StudentLife provided on the official website, this report is aimed at introducing data processing, modeling establishment, and accuracy comparison.

2. Dataset

2.1 Overview of Dataset

The Student Life dataset used in this project is a collection of sensing data from the phones of 48 Dartmouth students over the 10-week term. This dataset is split into two parts: Input which represents the X group and Output which represents the Y group. The input includes 10 features named as: Activity, Audio, Bluetooth, Conversation, Dark, GPS Location, Phone-charge, Phone-lock, Wi-Fi and Wi-Fi-location. The output includes a flourishing scale aiming to measure self-perceived success and PANAS scores which is a measure of positive and negative affect.

It should be noticed that timestamps were generally used in this dataset. A timestamp in this dataset is a sequence of numbers that can represent when a certain event occurred (En.wikipedia.org, 2019). Datetime function in python can convert the timestamp into a certain time in the form of Year-Date-Time, offering readings exactly on seconds. Further processing with timestamp will be discussed in Section 2.2 and Section 3.2.1.

2. 2 Brief Introduction of each feature

Some data can be similarly processed where the description will be stated together. Most of them are used or partially used for model construction while some features may not have strong correlations with the target which will be discarded. Information is provided in the table below. Processing details will be provided in Section 3.

Dataset	Description							
Audio	The datasets for audio and activity are similar can be processed in a similar way as two data sets have the same form of data, which is a certain inference that was detected at certain timestamps.							
Activity	According to specifications (Studentlife.cs.dartmouth.edu, 2019), there are four inferences that can be found: stationary, walking, running and Unknow. There are three inferences for audio that can be found: silence, voice, noise and unknown. However, the inference "unknown" mentioned in the dataset was clarified not occurring in the dataset. It should be noticed that the sensing app will generate activity inference every 2-3 seconds during the continuous 1 minute and then pause for 3 minutes, which indicates any interval larger than 1 minute could not be taken into consideration. The audio and activity data can normally reflect the impact on mental health and physical health.							
Conversation	There are two fields in conversation data files: conversation start timestamp and conversation end timestamp. The duration of students' conversation time generally							
Phone Lock	reflects social performance. Similarly, there are two fields in Phone-lock, Phone-charge as well as light data files:							
Phone Charge	start time and end time. The light data files record when the phone was in a dark environment for a significant long time (>=1 hour) which is connected to one's							

	sleeping time and it is considered to be associated with mental health.
	The Phone-lock data was recorded when the phone was locked for a significant long time (>=1 hour) which can help to clearly describe students' daily performance in
Light	study and leisure time. The Phone-charge data was recorded when the phone was
	plugged in and charging for a significant long time (>=1 hour) which contributes to
	one's schedule arrangement.
	GPS coordinates were collected every 10 minutes. Data fields include time, provider,
	network type, latitude, longitude, altitude, bearing, speed, travel-state, accuracy. In
GPS Location	fact, all these fields are hardly associated with mental health and some fields are used
	before. For example, travel-state includes two inference "stationary" and "running"
	which are related to activity & audio dataset. Therefore, GPS Location is not taken
	into consideration.
	Its' important fields are time, MAC, class_id and level. It is considered that the
Bluetooth	number of Bluetooth that one student connects to other students reflects one's social
	performance. Bluetooth scans every 10 minutes.
	The Wi-Fi fields are time, BSSID, frequency, level. There are two fields in the Wi-Fi
Wi-Fi	location: time and location.
	Wi-Fi scans frequently and Dartmouth Network Services provides Dartmouth
	College's Wi-Fi AP deployment information which helps to calculate a participant's
Wi-Fi Location	on-campus rough location. It is considered that the number of active-area of Wi-Fi
	locations per day will be calculated. The number is associated with mental health and
	study time.

3. Methods

3. 1 Detailed extraction of each feature

There are 23 original features and 6 original sets of target values extracted from the whole datasets which can be grouped in a CSV file as shown in Appendix 3 where the first 23 columns are features and last 6 columns are targets, corresponding to each student with different Uid in the leftmost column. Details of the method for extraction will be stated separately in the same sequence as the table in Section 2.2 from Section 3.1.1 to Section 3.1.5.

3.1.1 Audio and Activity:

In consideration of the duration of Audio and activity, it can be calculated by extracting separate intervals and sum up by classification using the default dictionary of python. Each inference was regarded as a key in the dictionary where the values are the summation of every interval of different inferences. It should be noticed that there are intervals of 3 minutes that are not included since every interval longer than 3 minutes is pause therefore ignored during collecting data.

In terms of the occurrences of each inference, it is considered that there is a connection between the counting of different inferences and the students' mental health. It can be calculated by using the default dictionary of python and each inference is regarded as a key in the dictionary where the values represent the occurrences of each inference.

3.1.2 Conversation & Phone Lock & Phone Charge & light:

It is discussed in group that these four features have a similar data structure, therefore there is a simple way to extract the needed data: calculate all the end-time minus starttime timestamp and add them together which represents one student's total time spending on these four features during the whole experiment time. It is discussed later that this data can't reflect the daily performance of each student in terms of these features, which is more reasonable to contribute to the final result, that's why the average time of each student spending on these features per day is used.

3.1.3 Bluetooth

Firstly, a timestamp is transferred to date and time and is grouped by day. Secondly, the count of class_id field represents the number of Bluetooth connecting to other portable devices at the same timestamp which is used to calculate the number of Bluetooth that every student connects to other devices per day. It is calculated by using a list and set in python to delete the repeated IDs.

3.1.4 Wi-Fi Location

Dartmouth Campus Map shown in Appendix 1 is used to find every mentioned location in Wi-Fi-Location features. As for the location details, it is divided into two classes: 'in' location and 'near' location. It is assumed that the 'near' location implies students are on their way to the final destination. Thus, only 'in' location data is extracted as features. After programming, there is a list of 100 names of locations mentioned and these locations are divided into different classifications as study, recreation, daily activity and others depending on their general functions. The next step is to calculate every student average occurrence in these four types of locations per day which can be helpful to measure their study period and mental health.

3.1.5 Min-Max pre-processing

Also known as min-max scaling or min-max normalization, is the simplest method and consists of re-scaling the range of features to scale the range in [0, 1] or [-1, 1]. Selecting the target range depends on the nature of the data. The general formula for a

min-max of [0, 1] is given in Appendix 2. This pre-processing method is used to deal with all the X features which are already extracted from the Student-Life dataset.

3.2 Primary pre-processing and analyzing of features

In order to primarily check the distribution of the data, the scatter plot is used for each feature data after normalization. As shown in Appendix 2, it can be witnessed that nodes in some features are not evenly diverging e.g. "Feature Others" extracted from Wi-Fi locations, which reflects that this king of a feature may influence the correct model construction. Using the same way, 7 features including activity_time0, activity_time1, activity_time3, activity_count0, activity_count1, activity_count3 and others from Wi-Fi locations were discarded.

3. 3 Pre-processing of target values from survey data

As for the survey data, it has 3 scores for each measure. The flourishing score gives one measure and panas (Positive and Negative Affect Schedule) score includes positive and negative scores. The pre-processing steps of survey data are as follows:

- Step 1: It is obvious that there are several missing values in the output files, which means a method should be used to complete the empty data. In order to get the final score, he average score was calculated for each question and multiplies the total question numbers.
- Step 2: As shown in Appendix 3, there are two students with Uid as u25 and u41 who did not answer the questionnaire at all, which is going to be deleted in the survey data. For the panas score, positive answers and negative answers should be distinguished and the sum of each score should be calculated separately.
- Step 3: Most students have two types of scores (pre and post) from questionnaires, while others only finished one questionnaire. In order to get an accurate evaluation, missing values were expected to be the average score of pre

and post scores which will not impose much influence. If there is only one score for a student, the only score will be the average score.

• Step 4: After calculating the average score of each student(panas_positive, panas_negative and flourishing score), the score will be sorted in ascending order to get the median value and scores will be divided into two groups("high" vs "low"), which represented by 1 and 0. If the score equals the median value, it was regarded as being in the "high" group.

3. 4 Presentation of implemented models & Evaluate Metrics

3.4.1 Implemented Models

Method	Logio & Dosign Chaicas	Time
Memou	Logic & Design Choices	Complexity
	1. Random Forest is an ensemble model and is believed to have	
	better performance over lots of other models.	
	2. Random Forest uses the general technique of bootstrap aggregating	O(M(m* n *log n))
	as its training algorithm, which can prevent overfitting compared to	
	Decision Tree.	Assuming there are
Random		n instances, m
Forest	3. Random Forest does not need the feature-selection process and it	attributes and M
	can provide the importance of each feature with feature_importances_	trees growing in a
	function. This list can be helpful to get a better understanding of the	Random Forest
	processed dataset when choosing other training-models.	model
	4. This dataset has less than 30 features and may have imbalanced	
	features, therefore it is considered that Random Forest can relatively	

	bring out a good result.						
	1. It is easy to achieve the goal of classification and the algorithms of						
	KNN is simple.	O(n * k)					
	2. KNN can have great tolerance on the noisy data since the only	Assuming there are					
	provided data will be trained and no extra data needed to define the	n instances, k					
	model.	represents the					
		number of feature					
	3. Only a few nearest data will be considered during making	dimensions.					
KNN	classification. KNN is a non-probabilistic supervised learning						
	algorithm that can reduce the impact of inequality on data collection.	Overall, the					
		complexity of this					
	4. The classification is directly achieved by using the relations from	model is relatively					
	samples which can significantly reduce the error of inappropriate	low as the features					
	feature selection, providing more independence to the classification.	are limited.					
	The Hassanat distance function can be used as it has the tested to have best performance over all common distance functions (Arxiv.org, 2019).						
		O(n * k)					
Logistic	1. Logistic Regression is designed to easily deal with binary-classification problems which are suitable for the processed dataset.	Assuming there are n instances, k represents the					
Regression	2. It has a small computational demand.	number of feature					
		dimensions.					
		Overall the					
		Overall, the					
		complexity of this					

		model is relatively
		low as the number
		of features are
		limited.
	1. It is easy to solve the machine learning problem which can avoid	O(n * k)
	overfitting and can deal with a small amount of sample data. The input	
	data of this project is around 45 samples, which means it is suitable for	Assuming there are
	the SVM model.	n instances, k
		represents the
	2. It can be applied to high-dimensional. The dataset has less than 30	number of feature
CVM	features, which means SVM is a good model to fit.	dimensions.
SVM		
	3. The more features the dataset has, the margin will be larger, and the	Overall, the
	generalization will be better.	complexity of this
		model is relatively
		low as the number
		of features are
		limited

3.4.2 Evaluate Metrics

The function named <u>sklearn.model_selection.cross_val_score</u> is used in all four models as required which is an essential way to prevent overfitting and get as much information as possible from the raw data. The parameter cv for all models was set as 10 therefore 10 folds of cross-validation are used.

The function named <u>sklearn.metrics</u>.classification_report is used to evaluate all four models which include three important indices: recall, precision and F-Score. Formulae of these evaluate measures are provided in Appendix 4. It is discussed that using the

same evaluation methods to assess all models is helpful when comparing the performance among different models.

4. Results

4.1 Original results and evaluation

Table 4.1 shows all original results of accuracy, which was selected as the main tool to select model, based on cross validation before hyper-parameter tuning.

Table 4.1: Original results of accuracy

	Panas_Positive	Panas_Negative	Flourishing
Random Forest	0.665	0.593	0.520
KNN	0.683	0.622	0.652
Logistic Regression	0.667	0.685	0.643
SVM	0.725	0.613	0.520

According to Table 4.1, SVM has is the outstanding model on panans_Positive but performs not as well as Logistic Regression on other scores. The model of KNN has an average performance on all scores. Random Forest is a good model on Panas_Positive score in but has unsatisfactory results on others. Generally, among these models, Logistic Regression is the best model since it can remain at a good performance on all scores and using feature selection method can strengthen its high-level performance.

4.2 Feature Selection

4.2.1 Feature Importance Criteria

For the best model logistic regression, reclusive feature eliminator cross-validation was used to process feature selection. The change of number selected along with the cross-validation accuracy score for each target values can be plotted as Figure 4.2.1. By using this result as well as specific features sort using functions of rfeev.support_ and

rfecv.sranking_, and according to the rules of selecting fewer features but achieving the optimal effect, Table 4.2.1 can be achieved to show specific features to achieve the optimal accuracy. It should be mentioned that for Panas_N (the red line in Figure 4.2.1), the optical number is 1 but in practice, one feature is less reasonable to define a model, therefore, the second optimal number 3 was used for the future model optimization.

As mentioned in section 3.4.1.1, it is not necessary to do the feature-selection in Random Forest as using more features will bring out a better result. As for logistic regression and support vector machine, recursive feature elimination and cross-validated (RFECV) was used. KNN model was tested has an unreasonable score and feature selection would increase this irrationality, under testing of many methods of feature selection, no obvious results can be achieved.

Figure 4.2.1 Cross validation score for different number of selected features

Table 4.2.1 The optical number and specific feature selected for different target values

	Pans_N	Pans_P	Flourishing
Number selected	3	5	5
Features selected	bluetooth, audio_count_2, audio_count_2	bluetooth, activity_time2 , audio, daily_activity, recreation	audio_count_2, audio_time_1, audio_time_2, daily_activity, recreation

As for other models, results in figures of SVM is provided in Appendix 7 buy using the same function of RFECV, feature selection of KNN model was analyzed by principal component analysis (PCA) pipelined with grid search, selected features were formed into a new group of features as dimensionality reduction. In terms of random forest, due to the algorism of random forest, the evaluation metrics are not stable and by testing lots of time, the range of the results is large which means that it is not necessary to use evaluate metrics to assess the performance of Random Forest Model.

4.2.2 Results After Feature Selection

By using the specific features selected as mentioned in Section 4.2.1, the logistic regression model was constructed again. Table 4.2.2 shows the results of accuracy after feature selection, compared with Table 4.1, noticeable increases can be found in for all target values which indicates the feature selection is reasonable and perform well on this model.

Table 4.2.2 Results after Feature Selection

	Panas_Positive	Panas_Negative	Flourishing
Random Forest	0.665	0.593	0.520
KNN	0.683	0.622	0.652
Logistic Regression	0.692	0.738	0.713
SVM	0.725	0.613	0.520

4.3 Hyperparameter Tuning and Evaluation Metrics

The hyperparameter tuning for each model after feature selection was performed by using Bayesian optimization and processes with the best parameters are provided in Appendix 7. Table 4.3 is a summary of accuracy for all models related to different targets.

Table 4.3: Results after Feature Selection and Hyperparameter Tuning

	Panas_Positive	Panas_Negative	Flourishing
Random Forest	0.733	0.710	0.600
KNN	0.700	0.655	0.730
Logistic Regression	0.692	0.730	0.713
SVM	0.725	0.680	0.673

5. Discussion

5.1 Comparison of all models

Among Recall, Precision, Accuracy, it is discussed that Accuracy is the most important index. For this binary classification model, the reason to choose accuracy from all evaluation metrics as the main standard mainly due to the fact that compared with precision and recall, the accuracy is a more general evaluation score which can take all

samples into consideration, therefore, no biased focus will be introduced.

Specific ranking for all models in terms of different survey results concluded from Table 4.3 is as followed (">" represents better than):

- Panas_negative survey: Logistic Regression > Random Forest(ranges from 50% to 70%)> SVM > KNN(could be overfitting)
- Panas_positive survey: Random Forest (ranges from 50% to 70%)> SVM > KNN(could be overfitting) > Logistic Regression
- Flourishing: KNN (could be overfitting) > Logistic Regression > SVM > Random Forest (ranges from 50% to 70%).

5.2 Advantages & Disadvantages

The advantages of models are mentioned in Section 3.4 and after analyzing, different models have their own disadvantages in certain fields. The range of the results of Random Forest is too large due to the small size of the processed features which means that the results are relatively unreliable. The SVM model takes up too much calculate space which is not profitable. The accuracy of the KNN model reaches even up to 80% precision as stated in Appendix 7 before feature selection, which means it is likely for it to become overfitting in some cases. In some cases, the logistic regression model could be underfitting.

5.3 Findings based on results

The average performance of the logistic regression model is better than other models on three surveys. As mentioned in section 4, it is cleared that features including Bluetooth, Daily-Activity, Audio, Recreation are the most important features contribute to the results. This is reasonable since features are important and more representative to quantify the social activities a student participates in. It indicates that a student who frequently talks with others and socializes in different places with different people is more likely to own a positive attitude towards life.

6. Conclusion

The datasets from the sensing app can be processed and selected to build models for predicting mental health. The model of logistic regression is reasonable and performs well on original results and can achieve higher accuracy by feature selection and hyperparameter tuning, although it could not be ignored that the better model can be built if more users could be involved in data collection and higher competency can be achieved. According to the results, it can be predicted that social ability and social performance significantly affect the student's mental health. Students should be encouraged to spend more time on social activities.

7. References

En.wikipedia.org. (2019). Unix time. [online] Available at: https://en.wikipedia.org/wiki/Unix_time [Accessed 25 Nov. 2019].

Home.dartmouth.edu. (2019). [online] Available at: https://home.dartmouth.edu/sites/home/files/campus_map_11x17.pdf [Accessed 25 Nov. 2019].

Mary Ann Liebert, Inc., publishers. (2019). Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review | Big Data. [online] Available at: https://www.liebertpub.com/doi/abs/10.1089/big.2018.0175 [Accessed 25 Nov. 2019].

Studentlife.cs.dartmouth.edu. (2019). StudentLife Dataset. [online] Available at: https://studentlife.cs.dartmouth.edu/dataset.html [Accessed 25 Nov. 2019].

Wang, Rui, Chen, Fanglin, Chen, Zhenyu, Li, Tianxing, Harari, Gabriella, Tignor, Stefanie, Zhou, Xia, Ben-Zeev, Dror & Campbell, Andrew 2014, 'StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones', in Proceedings of the 2014 ACM International Joint Conference on pervasive and ubiquitous computing, ACM, pp. 3–14.

8. Appendices

Appendix 1: Figure of Dartmouth College Map

Appendix 2: Minmax function used for normalisztion

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Appendix 3: All extracted data collected in a CSV file

E59	5,	u57	n26	u54	u53	u52	u51	u50	u49	u47	146	145	4	u43	u42	u41	и39	L36	155	L34	u33	u32	u31	u30	u27	u25	u24	u23	u22	u20	u19	ul8	ul7	ul6	ul5	u.	13	1112	1110	1100	u08	1107	II 5	up 1	u03	u02	w <u>0</u>	u00	
6.766	5.291	628	3.124	3.436	4.41	1.532	3.747	1.659	3.791	1.618	7.537	3.863	2.964	4.98	3.484	3.501	1.103	3.424	3.276	3.567	5.144	7.082	5.22	8.247	434	4349	7.098	3.013	2.731	2.383	439	3.426	3.719	4.535	3.339	6997	3 504	5446	4858	7307	664	4.5.5	4 775	7.322	1255	5.385	7.34	6.753	conversation
7.408	9392	10.982	6.092	6.483	7.38	9.502	9,691	3.829	9,995	2.683	8.808	4.89	4.704	8.169	7.598	3.767	1.435	11.614	2.566	2.561	11.29	9.439	8.644	10.258	8.396	4	7.97	12.674	9,694	5.945	10.361	6.498	12.097	7.715	3.097	9.149	7454	12.138	10.087	110	9.704	11 080	0024	15.459	4.381	9.086	10.968	7.431	dark
7.426	5.457	731	2.823	3.143	3.095	3.997	5.717	1.693	6.281	3.097	6	3.221	2.685	4.029	2.735	3.054	633	5.386	2.837	1.457	6.819	5.969	4.828	5.409	4.13	1.18	5.421	8.723	3.453	2.656	3.795	4.124	4.814	4.734	1.435	494	3 877	799	3.477	5.40	5.761	5 173	4 074	7.039	5.359	6.649	4.393	4.756	phonecharge
6388	14.116	10.676	7.65	6.246	12.427	12.788	16.593	5.111	9.933	4.31	8.176	9.08	11.689	9.57	6.698	4341	1.423	13.982	5.678	2.375	8.607	12.434	7.045	13.522	6918	5.595	12.95	10.839	10.566	7.084	12.155	9,078	12.83	11.37	3.847	10.791	8931	13.359	12.596	13 830	10.377	13,073	10 770	17.312	7.513	6.985	13.6		phonelock
8317	6.968	9.864	5.475	10.286	6.03	8.212	7.484	7.368	10.214	6.766	10.527	7.067	6.839	9.018	7.404	7.981	3.208	7.719	6.03	6.975	7.261	9.741	6.667	11.869	6.97	7.159	9219	5.931	6.439	5.633	8.955	7.638	8.106	7,475	6.957	8.607	8 689	7.896	10.091	8118	9.71	8837	0100	10.172	4.39	10.104	6.172	9,417	bluetooth
1674611	476456	449404	432927	301196	458617	186605	489705	274127	572515	374324	367770	368962	459497	364531	341580	336339	162565	474728	510084	322269	395212	423133	456379	441052	486447	209138	233511	453871	409639	342723	497301	424135	500153	461341	228410	404004	411622	490507	505222	447010	470389	350551	441160	398779	404853	485697	438583	403461	activity count 0
142134	16549	30212	17574	18317	9991	21951	27029	4536	25929	12077	36947	8661	7283	19422	8003	8889	517	19311	11688	12531	18132	29127	18930	28153	12892	12750	10438	8613	13632	8284	18658	11704	14980	19653	8207	37582	11039	14629	15897	25730	24232	14101	16144	33114	4623	29510	20954	30659	activity count
33104	2957	1446	4375	2733	678	18918	9591	22	4266	1324	12561	901	903	3870	1126	1609	32	10478	5271	2054	1999	4483	2875	3354	1620	3583	2886	1015	6462	422	361	1352	1897	2668	681	3317	3617	5869	4553	3010	7794	9005 00±1	1400	15733	423	678	9778	8990	activity_count_0 activity_count_1 activity_count_2
95518	9793	17584	14822	9112	7766	13987	11589	6639	10031	10056	13649	28352	4181	12475	111120	2066	721	16639	9034	25727	7797	16204	18513	22286	8711	12287	3006	4831	9765	2769	9299	6585	9218	7087	8598	6212	10437	14372	5487	11870	6308	0898	17043	14890	1503	11633	5547		
3566306	1182837	1128789	1038974	756679	1138049	896856	1215909	677993	1476187	755879	894383	697193	1138072	908861	840080	835191	401519	1180238	1244730	652811	986481	1056779	1146292	1096479	1209994	521607	582894	1121458	999317	849200	1237667	1052530	1239388	1143032	568226	1005840	1000076	1226087	1253576	1118000	1177780	096368	100000	994693	1002408	1215516	1096955	1012199	activity_count_3 activity_time_0
337600	44321	82333	44845	53698	27915	60895	72583	11967	70375	26547	101406	20838	19606	52054	20759	24110	1431	51029	31397	27804	49551	81699	55934	74951	35928	35233	29348	23743	39164	21824	49108	32155	39447	52324	21830	97191	30610	42390	45916	68647	68125	30085	ARTIS	88322	12597	80742	57979		
76939	7604	37416	10347	8072	1793	95539	24028	228	10973	2737	32828	2220	2256	9880	2903	4271	79	26506	13459	5168	5175	12184	7564	8845	4206	9366	7477	2647	16913	ii R	899	3462	4855	6780	1772	8435	9870	15393	19055	10170	20493	13417	3857	40234	1099	1886	25038		activity_time_1 activity_time_2
208583	24853	45769	35981	24316	19961	56230	29891	16500	27045	20965	33791	42820	10535	32043	26569	5456	1820	42066	21413	36680	20179	42542	48454	56079	22276	31568	8102	10707	15390	7233	23298	16738	23253	15763	21685	15966	30135	38116	14186	30726	16855	37876	30657	37/622	3993	31008	14707	48491	activity_time_3
2241609	1159024	1069543	1051230	984389	1240274	1193196	1333036	806139	1483761	745869	992983	743268	1206021	1050924	956564	872656	449477	1312791	1350267	709031	949326	1131508	1296519	1051896	1291467	578282	600507	1121267	1022557	874622	1367062	1141423	1266863	1301039	628352	926932	1154904	1316049	1291459	1017147	1259405	021870	HANASS	909387	1106665	1286966	1100677		audio_count_0 a
785090	719280	795674	369141	459977	633120	342474	456827	224082	633415	196514	747337	453971	414365	503667	404623	449938	60265	417470	424582	404955	570334	811151	732750	980034	556219	584153	466501	356095	334951	274848	626762	488628	571437	562036	412700	885091	443415	768945	640000	1015/03	832152	308870	587780	745735	145978	715488	909899		audio_count_1 a
1657431	436902	777514	392504	254131	241413	176358	365261	61855	489563	221741	628819	243372	153521	362523	162545	260032	18488	323688	259764	248599	392091	561486	376038	830169	335280	265330	230689	285100	328110	183884	292077	219406	270499	276382	243288	715100	20020	365760	420314	265195	501055	71005	406018	801609	58403	441940	597906		audio_count_2 a
2139078	1100072	1015031	997140	937356	1178318	1127272	1265832	764622	1323879	706293	943266	707466	1144717	1001754	908563	828597	426497	1246613	1279675	674004	903375	1076278	1234778	1001444	1228359	550807	570202	1068143	970195	830422	1299060	1084088	1201940	1235653	598258	882559	1087097	1251490	1227217	11587%	1199320	007777	1084717	864695	1047290	1221711	1048520		audio_time_0
748072	691671	763030	354059	442585	607937	180117	438481	214759	538841	188208	717619	436522	398347	484565	389288	432003	57732	400643	407446	388695	549950	779702	703995	941521	534933	561035	448071	341341	321683	263858	602784	469139	548705	540181	396513	851000	421611	738807	615801	07570	800311	383833	563716	715645	139998	687630	876171	903564	audio_time_1 a
1588113	419655	742900	375001	243873	230810	167189	349052	59073	432341	211091	605551	233413	146145	347732	156961	248596	17650	310080	248440	237816	376816	539329	360625	795481	321718	254308	221258	269867	313636	175007	279950	209957	258111	264950	233028	686546	235925	350295	400975	440801	481251	11881	386786	766664	55588	423999	574502	570633	audio_time_2 f_preP
22	22	ઝ	13		28	46	24	13	35	22	42	27	32	22	24		20	32	27	28	19	29	22	42	ಜ		26	26	26	29	<u>2</u>	16	<u>2</u>	8	30	8	= E	5 8	ಚ ಕ	z :	8 8	3 2	ಚ !	23	33	ಚ	30	32	f preP f
+	ᅜ	12	9				=	=	18	22	H	H	H	H	H		10	=	12	5	*	7			8					-		-	-	+	-	+	2 5	+	+	+	26 5	+	+	+	27			33	f_preN f_postP f_postN
37			29		33	26	26		34	33	H	H	H	32	H			32	20	24	26	4		32	19		22	28		23	22	+	1	+	ಜ	36	+	+	\$ 2	+	12	5 5	ಚ :	+	133			22	XXP f
29			5		17	39	12 4		16	=		8	12	21	21			19	22	7	28	22	37	21	B		18	24		26	22	ઝ	37	ಜ	13	12	1	5	28 17	4		3 5	3 5	19	20	5			_
\$	51	50	\$		50	22	40.047	\$	51	50.425	45	\$	\$	45	-55		22	お	\$	49	22	22	16	52	31		4-	35	\$	5.	45	37	37	45	5	S :	4	46	3 5	1	38.756	6 d	48	3	22	お	45		p_pre i
3			\$		49	37	\$		Si	52	4	49	4-	45	16			お	4	B	28	56	36	36	32		43	42		5	45		ж Ж	4	\$	ಜ		\$	# ±	5	3	A3 6	5	ಜ	೭	4	\$	5	p_post

Appendix 4: Scatter plot s for all features after normalization

Appendix 5: Formulae of metrics

$$egin{align*} &\operatorname{recall} = rac{|\{\operatorname{relevant\ documents}\} \cap \{\operatorname{retrieved\ documents}\}|}{|\{\operatorname{relevant\ documents}\} \cap \{\operatorname{retrieved\ documents}\}|} \ &\operatorname{precision} = rac{|\{\operatorname{relevant\ documents}\} \cap \{\operatorname{retrieved\ documents}\}|}{|\{\operatorname{retrieved\ documents}\}|} \ &F = rac{2 \cdot \operatorname{precision} \cdot \operatorname{recall\ }}{(\operatorname{precision} + \operatorname{recall})} \end{aligned}$$

Appendix 6: Figure of Cross validation score for different number of selected features

Appendix 7: Hyperparameter Tuning and Evaluation Metrics

Model	Hyperparameter Tuning	Evaluation Metrics
Random Forest		None epth': 5, 'max_features': 0.313,
	Panas_Negative:	
	{'target': 0.71, 'params': {'max_depoints': 25.0, 'n_estimes': 25.0, '	
	Panas Positive:	None

	iter target max_depth max_fe min_sa n_esti 1	
	{'target': 0.733, 'params': {'max_o' 'min_samples_split': 24., 'n_estime	_
	iter target n_neig 3	precision recall fl-score 0 0.817 0.7 0.714 1 0.727 0.767 0.724 accuracy 0.73 macro_avg 0.772 0.73 0.717 weighted_avg 0.769 0.73 0.719
KNN	{'target': 0.73, 'params': {'n_neigh	bors': 11}}
KNN	1 ter	precision recall f1-score 0 0.61 0.8 0.68 1 0.717 0.518 0.585 accuracy 0.655 macro_avg 0.662 0.658 0.631 weighted_avg 0.666 0.655 0.631
	{'target': 0.663, 'params': {'n_neig	hbors': 12 }}

	Panas Posi	tive:				
	 iter		n_neig			
	10 1	0.75	10.0			
	12 2 7	0.75	12.23			.1
	1 3	0.725	7. 283	p:	recision recall f	:1-score
	4 7 5		1.875 7.95	0	0.626 0.717	0.663
	15 6	0.725	15.0	1	0.783 0.683	0.711
	11 7 4	0.7333	11.12	accuracy		0.7
	8 13	0.6467	4.548	macro_avg	0.705 0.7	0.686
	9 9 10	0.7083	13.69 9.253	weighted_avg	0.705 0.7	0.686
	1 11		1.0			
	5 12 12	0.6833	5.913			
	13 10	0.75	12.78			
	14 12	0.75	10.43			
	15	0.75	1 (1	11 1 10))		
			ns: {'n_neig	hbors': 10}}		
	Flourishing	;• ;•				
	iter	target	C			
	1 2	0.705	1.209			
	3	0. 705 0. 705	1.36 1.0	pr	ecision recall fl	l-score
	4	0. 705	1. 151	0	0.05 0.65	0 605
	5 6	0. 705 0. 705	1.073 1.406	0	0.85 0.65 0.611 0.75	0. 685 0. 654
	7	0.705	1. 443	accuracy	0.011	0. 705
	8	0. 705 0. 705	1.411 1.125	macro_avg	0.73 0.7	0.666
	10	0.705	1. 459	weighted_avg	0. 727 0. 705	0.668
	11	0.705	1.074			
	13	0. 705 0. 705	1.327 1.332			
	14	0.705	1.42			
	15 =======	0. 705 ========	1.061			
ogistic						
Legressi	{'target': 0.'	705, 'para	ims': {'C': 1.	209}}		
n	Panas_Negative:					
	iter target C		c			
	1	0. 73 0. 73	1. 209 1. 36	рі	recision recall f	1-score
	3	0. 73	1.0	0	0.676. 0.924	0.751
	4 5	0. 73	1. 151 1. 073	0	0. 676 0. 834 0. 751 0. 634	0. 751 0. 661
	6 7	0. 73 0. 73	1. 406 1. 443	accuracy		0. 73
	8	0. 73 0. 73	1. 411 1. 125	macro avg	0.745 0.733	0. 734
	10	0. 73 0. 73	1. 459 1. 074	weighted avg	0. 749 0. 73	0.704
	12	0. 73	1. 327			
	13	0. 73	1. 332			
	15	0. 73	1.061			
	1					

		Panas_Positive:	
Flourishing:		iter target C	0 0.668 0.651 0.641 1 0.742 0.734 0.714 accuracy 0.692 macro_avg 0.705 0.692 0.676
1 1 1 1 1 1 1 1 1 1		{'target': 0.692, 'params': {'C': 1.2	209}}
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		iter target C gamma 1	0 0.8 0.516 0.588 1 0.613 0.767 0.66 accuracy 0.648 macro_avg 0.705 0.642 0.62 weighted_avg 0.704 0.649 0.624
16	SVM	Panas Negative:	precision recall f1-score 0

iter target 1	C gamma 0. 4939 -4. 74 1. 05 -0. 5729 1. 185 -2. 752 -4. 443 -2. 108 1. 226 -2. 607 3. 617 -2. 021 4. 038 -3. 275 -2. 575 -1. 572 -3. 575 -1. 572 -3. 575 -1. 572 -3. 575 -1. 572 -3. 575 -3. 572 -3. 575 -3. 572 -3. 575 -3. 572 -3. 575 -3. 572 -3. 575 -3. 572 -5. 0 -5. 0 -5. 0 -5. 0 -5. 0 -5. 0 -6. 0 -0. 0 -7. 575 -7. 575 -7. 575	0 1 accuracy macro_avg weighted_avg	0. 8 0. 713	recall f 0.717 0.734 0.725 0.725	0. 0. 0. 0. 0.
---------------------	---	---	----------------	--	----------------------------