# AMARFLY EN EL País de Computación Cuantica



### Hola!



### Soy Ana Martinez Sabiote

Estudiante de ingeniería Informática y Matemáticas en la Universidad de Granada



You can find me at anamarsabi@gmail.com



**Actualidad:** supercomputadores

#### Limites



Estos límites están impuestos por el modelo computacional que utilizamos. Es posible que, con un modelo computacional distinto, algunos de estos límites desaparezcan.

#### Richard Feynmann

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.



# "Simulating" Physics

Al igual que un bit, un qubit puede representar dos estados 0 y 1 (estados base)

#### **QUBITS**

**BITS CUÁNTICOS** 

Concepto cuántico de bit de información.

Ć

ambos estados de forma simultánea



#### Conceptos básicos de mecánica cuántica

- Principio de Incertidumbre de Heisenberg
- Superposición de estados
- Entrelazado cuántico
- Coherencia

#### Ejemplo: panda o cruz



# 100 ms

Tiempo de coherencia alcanzado actualmente

#### PARALELISMO CUÁNTICO

#### **QUBITS**

0>

1>

$$\psi = \alpha |0\rangle + \beta |1\rangle$$
 2 qubits

| 2 bits | 0 | 0   |  | 0 0 | 1 0 |
|--------|---|-----|--|-----|-----|
|        | 1 | 1 1 |  | 0 1 | 1 1 |

4 estados independientes. El sistema puede estar en uno de esos cuatro estados.

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$



Qubits de spin

Computador cuántico topológico

Trampas de iones

Circuitos superconductores

Circuitos fototónicos

#### Características de este modelo de computación



#### Puertas cuánticas

Equivalente a las puertas lógicas de los circuitos digitales.

Las puertas cuánticas son reversibles y matemáticamentes son matrices unitarias

#### Puertas cuánticas, puertas unarias

#### Puerta NOT

$$U_{NOT} = \sigma_1 = X \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|\Psi_t\rangle = U_{NOT}|\Psi_s\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a \end{pmatrix} = b|0\rangle + a|1\rangle$$



#### Puertas cuánticas, puertas unarias

#### Puerta de Hadamard



$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} (X + Z)$$

Transforma cualquiera de los estados base en una combinación de ambos. Rotación de  $\pi/2$  radianes alrededor del eje X y del eje Z

El operador de Hadamard es una de las puertas cuánticas de mayor utilidad ya que realiza lo que se conoce como paralelismo masivo, ya que un estado de n qubits lo pone en superposición de 2<sup>n</sup> estados.

#### Puertas cuánticas, puertas unarias

Puerta Z

$$Z \equiv \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Deja el estado fundamental inalterado ( $|0\rangle$ ) y cambia el signo del estado excitado ( $|1\rangle$  a  $-|1\rangle$ )

#### Puertas cuánticas múltiples

#### Puerta CNOT

$$|A\rangle \xrightarrow{CNOT} |A\rangle \\ |B\rangle \xrightarrow{} |A \oplus B\rangle$$

$$\begin{vmatrix}
|00\rangle & \longrightarrow |00\rangle \\
|01\rangle & \longrightarrow |01\rangle \\
|10\rangle & \longrightarrow |11\rangle \\
|11\rangle & \longrightarrow |10\rangle
\end{vmatrix}$$
Puerta *CNOT*

#### Puerta de Toffoli

Extensión de tres qubits de la puerta CNOT.



#### Puertas múltiples

Puerta SWAP



$$U_{\text{SWAP}} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Intercambia los estados de dos qubits.

Puerta clonadora

$$U_{CLON}|b0\rangle = |bb\rangle \qquad \forall |b\rangle$$

#### Puertas múltiples

Puerta SWAP



$$U_{\text{SWAP}} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Intercambia los estados de dos qubits.

Puerta clonadora

$$U_{CLON}|b0\rangle = |bb\rangle \quad \forall |b\rangle$$

TEOREMA DE NO CLONACIÓN

#### Qué resuelve la computación cuántica

- Problema del viajante
- Búsquedas no indexadas
- Factorización de grandes números

Transforma problemas con un crecimiento exponencial de la complejidad en problemas con un crecimiento polinómico.

#### Algoritmos cuánticos

Técnicas para la construcción de algoritmos cuánticos:

- Amplificación de amplitud
- Transformada de Fourier cuántica
- Caminata cuántica
- Corrección cuántica de errores
- Simulación de sistemas físicos

Algoritmos cuánticos más significativos

Algoritmo de Deusch

Algoritmo de Grover

Algoritmo de Shor



Búsqueda en un espacio de datos no ordenado.

#### Modelo clásico

Tamaño espacio de datos=N

Evaluar búsqueda al menos N/2 intentos, N en el peor de los casos

#### Modelo cuántico

√N intentos

#### Algoritmo de Shor

p y q son dos números primos del orden de 10<sup>200</sup>

#### Algoritmo de Shor

Descomponer un número N en sus factores primos por un computador clásico: complejidad exponencial

En 2001 se ejecutó el algoritmo de Shor en un computador cuántico de 7 qubits.

## Computador cuántico



# 15 mK

El punto más frío del Universo



Computación cuántica adiabática

DWave

Computador cuántico universal

# Supremacía cuántica



Seguridad: encriptación postcuántica Química, medicina y nuevos materiales Machine learning y deep learning Big data Quantum internet



- O#
- QuTiP : Quantum Toolbox in Python
- QISKit IBM Quantum Experience





### Gracias!

### Alguna pregunta?

You can find me at

- @IngenierasUGR
- anamarsabi@gmail.com