Основи системного аналізу

Задача колективного експертного оцінювання

Савченко Ілля Олександрович ННК "ІПСА" НТУУ "КПІ ім. Ігоря Сікорського"

Метод Делфі

Суть цього методу полягає в тому, щоб за допомогою серії послідовних дій домогтися максимального консенсусу при визначенні правильного рішення.

Базовим принципом методу є те, що деяка кількість незалежних експертів краще оцінює і пророкує результат, ніж структурована група особистостей.

Загальна процедура методу Делфі

- Перший тур групі експертів пропонується анонімно відповісти на деяке питання або зробити деяку оцінку
- Експертів знайомлять із результатами першого туру і пропонують переглянути свої оцінки в наступному турі
- Це продовжується, доки не буде досягнуто консенсусу

Ключові принципи методу Делфі

• Анонімність учасників

Запобігає пасткам колективного обговорення:

- Ефект приєднання до більшості: популярність певних переконань збільшується у міру того, як їх приймає все більше людей
- Ефект ореолу (гало): загальне сприйняття людини впливає на сприйняття її окремих особливостей

Ключові принципи методу Делфі

• Структурування інформації

Інформація від експертів збирається у формі відповідей на питання опитувальників і коментарів до цих відповідей

• Постійний зворотній зв'язок

Експертів знайомлять з результатами попередніх турів, і вони можуть змінювати свої оцінки

Застосування методу Делфі

Метод найбільш доцільно застосовувати для оцінювання певних висловлювань щодо майбутнього.

Стратегічне планування в державному управлінні, техніці, бізнесі.

Питання:

- Як політичні, економічні, соціокультурні, технологічні фактори вплинуть на ситуацію?
- Як відреагують зацікавлені сторони?
- Чи можна вже зараз окреслити потенційні несподіванки?
- Які найбільш екстремальні сценарії можуть виникнути?
- Як підготуватися до можливих подій?

Етапи методу Делфі

Попередній

- Формулювання проблеми і генерація опитувальних форм
- Підбір групи експертів (від 16)

Основний

- Якщо це не перший тур, ознайомлення експертів з результатами попереднього туру
- Надання опитувальників експертам і збір відповідей
- Оцінювання узгодженості і прийняття рішення про необхідність проведення ще одного туру

Аналітичний

• Впорядкування і аналіз отриманих результатів

Критика методу Делфі

- Думка більшості не обов'язково правильна, креативні рішення можуть відкидатися.
- Аналіз займає багато часу, не підходить до оперативного аналізу.
- Зростає конформізм експертів, прагнення потрапити до більшості.
- Можливість організаторів маніпулювання експертною групою.

Делфі в реальному часі (real-time)

Однією з модифікацій методу є постійне оновлення результатів одразу після отримання відповідей від будь-якого експерта замість проведення турів.

Експерти можуть змінювати свою думку в будь-який час скільки завгодно разів.

Нехай K експертів надають свої оцінки для N показників:

$$\mu^{(k)} = \{Q_j^{(k)} \mid j \in [1, N]\}, k \in [1, K]$$

Введемо метрику для відстані між експертними оцінками:

$$\rho(\mu^{(k_1)}, \mu^{(k_2)}) = \sum_{j=1}^{N} \left| Q_j^{(k_1)} - Q_j^{(k_2)} \right|$$

Будується матриця відстаней:

$$D = \left\{ \rho(\mu^{(k_1)}, \mu^{(k_2)}) \mid k_1, k_2 \in [1, K] \right\}$$

Будується вектор сум по стовпчиках:

$$\hat{D} = \left\{ \sum_{k_2=1}^K \rho(\mu^{(k_1)}, \mu^{(k_2)}) \mid k_1 \in \overline{1, K} \right\}$$

Медіаною M є експертна думка з найменшою сумою стовпчика:

$$M = \left\{ \mu^{(k_{\min})} \mid \sum_{k_2=1}^K \rho(\mu^{(k_{\min})}, \mu^{(k_2)}) = \min_{k_1 \in I, K} \left(\sum_{k_2=1}^K \rho(\mu^{(k_1)}, \mu^{(k_2)}) \right) \right\}$$

Будуємо вектор відхилень від медіани:

$$D^{M} = \{ \rho(M, \mu^{(k)}) | k \in [1, K] \}$$

В якості множини довіри визначимо множину T, як половину найближчих до медіани експертних думок.

В разі, якщо необхідно проводити наступні тури експертизи, критерієм збіжності експертних думок вважають радіус множини довіри R^T .

На наступному етапі до множини довіри ввійдуть ті експертні думки, відстань від яких до медіани не перевищить R^T . Якщо множина довіри буде збільшуватись, це означатиме збіжність експертних думок.

- Іноді розбіжність в експертних думках пояснюється різними поглядами на проблему.
- Якщо використовувати медіану або середні значення оцінок, інформація, пов'язана з різним поглядом на проблему, буде втрачена.

- 1) Кожна експертна думка вважається окремим кластером
- 2) Будується матриця відстаней D між кластерами
- 3) В матриці D шукаються кластери C_{i_1}, C_{i_2} , відстань між якими найменша

4) Об'єднуємо всі експертні думки, що містились в кластерах C_{i_1}, C_{i_2} , в один кластер C_{i^*} . Оцінками нового кластеру можна вважати середнє арифметичне з усіх оцінок, що містяться у ньому:

$$\mu^{(i^*)} = \left\{ \frac{\sum_{k \in C_{i^*}} Q_j^{(k)}}{N_{i^*}} \mid j \in [1, N] \right\}$$

 N_{i^*} – кількість експертних думок в кластері

5) Повторюємо кроки 2—4, доки найменша відстань в матриці відстаней не стане більше деякого порогового значення. В якості такого значення можна використовувати, наприклад, радіус множини довіри R^T .

Експерт 1			Експерт 2			Експерт 3		
F ₁	F ₂	F ₃	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
0,613	0,321	0,119	0,299	0,513	0,136	0,392	0,817	0,125
0,223	0,475	0,288	0,346	0,248	0,579	0,308	0,099	0,594
0,164	0,204	0,593	0,355	0,239	0,285	0,3	0,084	0,281
	Експерт 4		Експерт 5			Експерт 6		
F ₁	F ₂	F ₃	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
0,582	0,336	0,094	0,555	0,292	0,124	0,21	0,068	0,317
0,201	0,462	0,31	0,169	0,427	0,235	0,411	0,316	0,334
0,217	0,202	0,596	0,276	0,281	0,641	0,379	0,616	0,349
	Експерт 7		Експерт 8			Експерт 9		
F ₁	F ₂	F ₃	F ₁	F ₂	F ₃	F ₁	F ₂	F ₃
0,309	0,402	0,345	0,729	0,264	0,227	0,276	0,63	0,198
0,543	0,461	0,101	0,187	0,5	0,19	0,322	0,217	0,489
0,148	0,137	0,554	0,084	0,236	0,583	0,402	0,153	0,313

Матриця відстаней:

	\mathbf{k}_1	k ₂	k_3	k_4	k ₅	k ₆	\mathbf{k}_7	\mathbf{k}_{8}	k ₉
\mathbf{k}_1	_	1,698	2,058	0,186	0,484	2,118	1,254	0,562	1,852
k_2	1,698	_	0,824	1,616	1,666	1,558	1,796	2,142	0,508
k_3	2,058	0,824	_	1,972	2,096	2,382	2,286	2,588	0,816
k_4	0,186	1,616	1,972		0,426	2,066	1,318	0,704	1,766
k_5	0,484	1,666	2,096	0,426	_	1,944	1,478	0,736	1,89
k_6	2,118	1,558	2,382	2,066	1,944	_	1,886	2,266	1,612
k ₇	1,254	1,796	2,286	1,318	1,478	1,886	_	1,352	1,772
k_8	0,562	2,142	2,588	0,704	0,736	2,266	1,352	_	2,236
k_9	1,852	0,508	0,816	1,766	1,89	1,612	1,772	2,236	_
Сума	10,212	11,808	15,022	10,054	10,72	15,832	13,142	12,586	12,452

Матриця відстаней (крок 2):

	C_1	k_2	k_3	k ₅	k ₆	k ₇	k_8	k ₉
C_1	_	1,657	2,015	0,455	2,092	1,287	0,633	1,809
\mathbf{k}_{2}	1,657	_	0,824	1,666	1,558	1,796	2,142	0,508
k_3	2,015	0,824		2,096	2,382	2,286	2,588	0,816
k_5	0,455	1,666	2,096		1,944	1,478	0,736	1,89
k_6	2,092	1,558	2,382	1,944	_	1,886	2,266	1,612
\mathbf{k}_7	1,287	1,796	2,286	1,478	1,886	_	1,352	1,772
k_8	0,633	2,142	2,588	0,736	2,266	1,352	_	2,236
k ₉	1,809	0,508	0,816	1,89	1,612	1,772	2,236	_

Матриця відстаней (крок 3):

	\mathbf{C}_1	\mathbf{k}_2	k_3	k_6	k ₇	k_8	k_9
C_1		1,632	2,042	2,042	1,34	0,626	1,836
\mathbf{k}_2	1,632		0,824	1,558	1,796	2,142	0,508
k_3	2,042	0,824		2,382	2,286	2,588	0,816
k_6	2,042	1,558	2,382	_	1,886	2,266	1,612
\mathbf{k}_7	1,34	1,796	2,286	1,886	_	1,352	1,772
k_8	0,626	2,142	2,588	2,266	1,352	_	2,236
k_9	1,836	0,508	0,816	1,612	1,772	2,236	_

Матриця відстаней (крок 4):

	C_1	C_2	k_3	k_6	k ₇	k_8
C_1		1,724	2,042	2,042	1,34	0,626
C_2	1,724		0,82	1,562	1,784	2,186
k_3	2,042	0,82		2,382	2,286	2,588
k_6	2,042	1,562	2,382		1,886	2,266
\mathbf{k}_7	1,34	1,784	2,286	1,886	_	1,352
k_8	0,626	2,186	2,588	2,266	1,352	

Матриця відстаней після шести кроків:

	C_1	C_2	k_6	k ₇
C_1		1,724	2,042	1,34
C_2	1,724		1,562	1,784
k ₆	2,042	1,562		1,886
k ₇	1,34	1,784	1,886	-

Інтервальне оцінювання

Номер рівня <i>s</i>	Якісна хар-ка рівня <i>s</i>	Кількісна хар-ка рівня s	Оцінка $\mu_{js}^{(k)}$ можливості реалізації рівня s	Ступінь упевненості $\mathcal{V}_{js}^{(k)}$ експерта в оцінці
1	Надзвичайно низький	[0-0,1]	0,05	0,99
2	Дуже низький	[0,1-0,25]	0,15	0,85
3	Низький	[0,25-0,4]	0,35	0,65
4	Середній	[0,4-0,6]	0,45	0,97
5	Високий	[0,6-0,75]	0,25	0,75
6	Дуже високий	[0,75-0,9]	0,15	0,85
7	Надзвичайно високий	[0,9 – 1]	0,10	0,95

Інтервальне оцінювання

Оцінку j-го показника k-й експерт визначає для кожного рівня s у вигляді нечіткої змінної

$$\tilde{Q}_{js}^{(k)} = \left\langle Q_{js}^{(k)}, \mu_{js}^{(k)} \right\rangle$$

Оцінка *j*-го показника в цілому

$$\tilde{Q}_{j}^{(k)} = \left\{ \left\langle \tilde{Q}_{js}^{(k)} \right\rangle \middle| s \in [1; S] \right\}, j \in [1; N]; k \in [1; K]$$

Оцінка об'єкта в цілому

$$\tilde{Q}^{(k)} = \{ \langle Q_j^{(k)}, v_j^{(k)} \rangle | j \in [1; N] \}, k \in [1; K]$$

де $v_j^{(k)} = \{v_{js}^{(k)} | s \in [1;S]\}, k \in [1;K]$ — ступені упевненості k-го експерта в оцінках.

Графік експертних оцінок для показника

Метрики відстаней для інтервальних оцінок

1.
$$\rho(Q_j^{(k)}, Q_j^{(l)}) = \frac{1}{S} \sum_{s=1}^{S} \left| \mu_{js}^{(k)} - \mu_{js}^{(l)} \right|$$

2.
$$\rho(Q_j^{(k)}, Q_j^{(l)}) = \max_{s} \left| \mu_{js}^{(k)} - \mu_{js}^{(l)} \right|$$

Верхня і нижня границя: $\mu_{js}^+ = \max_k \mu_{js}^{(k)}$ $\mu_{js}^- = \min_k \mu_{js}^{(k)}$

Середнє значення: $\hat{\mu}_{js} = \frac{\mu_{js}^+ - \mu_{js}^-}{2}$

Графік експертних оцінок для показника

Узгодженість інтервальних експертних оцінок

1. Ширина інтервалу:

$$\rho(Q_j^+,Q_j^-)$$

2. Близькість математичного сподівання оцінок до середини інтервалу

$$Q_{j}^{M}:\left\{M\mu_{js}=\frac{1}{K}\sum_{k=1}^{K}\mu_{js}^{(k)}\middle|s\in[1,S]\right\} \qquad \rho(Q_{j}^{M},\hat{Q}_{j})$$

3. Дисперсія оцінок $D\mu_{js} = \frac{1}{K-1} \sum_{k=1}^{K} \left(\mu_{js}^{(k)} - M \mu_{js} \right)^2$