B220383

SAFETY DATA SHEET

DDP SPECIALTY ELECTRONIC MATERIALS
US 9, LLC

Product name: MOLYKOTE® 4 Electrical Insulating Compound

Issue Date: 07/03/2020

Print Date: 07/04/2020

DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions.

1. IDENTIFICATION

Product name: MOLYKOTE® 4 Electrical Insulating Compound

Recommended use of the chemical and restrictions on use

Identified uses: Lubricants and lubricant additives

COMPANY IDENTIFICATION

DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC 974 Centre Road Wilmington DE 19805 UNITED STATES

Customer Information Number:

833-338-7668

SDSQuestion-NA@dupont.com

EMERGENCY TELEPHONE NUMBER

24-Hour Emergency Contact: 1-800-424-9300 Local Emergency Contact: 800-424-9300

2. HAZARDS IDENTIFICATION

Hazard classification

GHS classification in accordance with 29 CFR 1910.1200 Not a hazardous substance or mixture.

Other hazards

No data available

3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical nature: Inorganic compound

This product is a mixture.

Component

CASRN

Concentration

Silicon dioxide

7631-86-9

>= 5.0 - < 15.0 %

Issue Date: 07/03/2020

4. FIRST AID MEASURES

Description of first aid measures General advice:

First Aid responders should pay attention to self-protection and use the recommended protective clothing (chemical resistant gloves, splash protection). If potential for exposure exists refer to Section 8 for specific personal protective equipment.

Inhalation: Move person to fresh air: if effects occur, consult a physician.

Skin contact: Wash off with plenty of water.

Eve contact: Flush eyes thoroughly with water for several minutes. Remove contact lenses after the initial 1-2 minutes and continue flushing for several additional minutes. If effects occur, consult a physician, preferably an ophthalmologist.

Ingestion: If swallowed, seek medical attention. Do not induce vomiting unless directed to do so by medical personnel.

Most important symptoms and effects, both acute and delayed:

Aside from the information found under Description of first aid measures (above) and Indication of immediate medical attention and special treatment needed (below), any additional important symptoms and effects are described in Section 11: Toxicology Information.

Indication of any immediate medical attention and special treatment needed Notes to physician: No specific antidote. Treatment of exposure should be directed at the control of symptoms and the clinical condition of the patient.

5. FIREFIGHTING MEASURES

Suitable extinguishing media: Water spray Alcohol-resistant foam Carbon dioxide (CO2) Dry chemical

Unsuitable extinguishing media: None known.

Special hazards arising from the substance or mixture

Hazardous combustion products: Silicon oxides Boron oxides Formaldehyde Carbon oxides

Unusual Fire and Explosion Hazards: Exposure to combustion products may be a hazard to health.

Advice for firefighters

Fire Fighting Procedures: Use extinguishing measures that are appropriate to local circumstances and the surrounding environment. Use water spray to cool unopened containers. Remove undamaged containers from fire area if it is safe to do so. Evacuate area.

Special protective equipment for firefighters: Wear self-contained breathing apparatus for firefighting if necessary. Use personal protective equipment.

Page 2 of 11

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures: Follow safe handling advice and personal protective equipment recommendations.

Environmental precautions: Discharge into the environment must be avoided. Prevent further leakage or spillage if safe to do so. Retain and dispose of contaminated wash water. Local authorities should be advised if significant spillages cannot be contained.

Methods and materials for containment and cleaning up: Wipe up or scrape up and contain for salvage or disposal. Local or national regulations may apply to releases and disposal of this material, as well as those materials and items employed in the cleanup of releases. You will need to determine which regulations are applicable. For large spills, provide dyking or other appropriate containment to keep material from spreading. If dyked material can be pumped, Sections 13 and 15 of this SDS provide information regarding certain local or national requirements.

See sections: 7, 8, 11, 12 and 13.

7. HANDLING AND STORAGE

Precautions for safe handling: Take care to prevent spills, waste and minimize release to the environment. Handle in accordance with good industrial hygiene and safety practice. Use only with adequate ventilation. See Engineering measures under EXPOSURE CONTROLS/PERSONAL PROTECTION section.

Conditions for safe storage: Keep in properly labelled containers. Store in accordance with the particular national regulations.

Do not store with the following product types: Strong oxidizing agents. Unsuitable materials for containers: None known.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

If exposure limits exist, they are listed below. If no exposure limits are displayed, then no values are applicable

Component	Regulation	Type of listing	Value		
Silicon dioxide	OSHA Z-3	TWA Dust	20 Million particles		
	1		per cubic foot, Silica		
	Further information: a: Based on impinger samples counted by light-field techniques.; mppcf X 35.3 = million particles per cubic meter = particles per c.c				
	OSHA Z-3	TWA Dust	80 mg/m3 / %SiO2, Silica		
	NIOSH REL	TWA	6 mg/m3 , Silica		
	CAL PEL	PEL	6 mg/m3		
		TWA Respirable dust	0.05 mg/m3 , Silica		
	Further information: Ca: Potential Occupational Carcinogen; See Appendix A				

Exposure controls

Engineering controls: Use local exhaust ventilation, or other engineering controls to maintain airborne levels below exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, general ventilation should be sufficient for most operations.

Hygiene measures: Handle in accordance with good industrial hygiene and safety practice. Use good personal hygiene. Do not consume or store food in the work area. Wash hands before smoking or eating.

Individual protection measures

Eve/face protection: Use safety glasses (with side shields).

Skin protection

Hand protection: Use gloves chemically resistant to this material. NOTICE: The selection of a specific glove for a particular application and duration of use in a workplace should also take into account all relevant workplace factors such as, but not limited to: Other chemicals which may be handled, physical requirements (cut/puncture protection, dexterity, thermal protection), potential body reactions to glove materials, as well as the instructions/specifications provided by the glove supplier. Other protection: Use protective clothing chemically resistant to this material. Selection of specific items such as face shield, boots, apron, or full body suit will depend on the task.

Respiratory protection: Respiratory protection should be worn when there is a potential to exceed the exposure limit requirements or guidelines. If there are no applicable exposure limit requirements or guidelines, wear respiratory protection when adverse effects, such as respiratory irritation or discomfort have been experienced, or where indicated by your risk assessment process. For most conditions no respiratory protection should be needed; however, if discomfort is experienced, use an approved air-purifying respirator.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance

Physical state Grease

Color white translucent

Odor slight

Odor Threshold

pH

Not applicable

Melting point/range

Freezing point

No data available

No data available

Boiling point (760 mmHg) Not applicable

Flash point Seta closed cup >100 °C (212 °F)

Evaporation Rate (Butyl Acetate

= 1)

Flammability (solid, gas) Not classified as a flammability hazard

Not applicable

Lower explosion limitNo data availableUpper explosion limitNo data availableVapor PressureNot applicableRelative Vapor Density (air = 1)No data available

Relative Density (water = 1) > 1

Water solubility No data available

Issue Date: 07/03/2020

Product name: MOLYKOTE[®] 4 Electrical Insulating Compound

Partition coefficient: n-

No data available

octanol/water

Auto-ignition temperature

No data available

Decomposition temperature

No data available

Dynamic Viscosity
Kinematic Viscosity

Not applicable

Explosive properties

Not applicable Not explosive

Oxidizing properties

The substance or mixture is not classified as oxidizing.

Issue Date: 07/03/2020

Liquid Density

> 1 g/cm3

Molecular weight

No data available

Particle size

No data available

NOTE: The physical data presented above are typical values and should not be construed as a specification.

10. STABILITY AND REACTIVITY

Reactivity: Not classified as a reactivity hazard.

Chemical stability: Stable under normal conditions.

Possibility of hazardous reactions: Can react with strong oxidizing agents.

Conditions to avoid: None known.

Incompatible materials: Oxidizing agents

Hazardous decomposition products: Formaldehyde.

11. TOXICOLOGICAL INFORMATION

Toxicological information appears in this section when such data is available.

Acute toxicity

Acute oral toxicity

Product test data not available. Refer to component data.

Acute dermal toxicity

Product test data not available. Refer to component data.

Acute inhalation toxicity

Product test data not available. Refer to component data.

Skin corrosion/irritation

Product test data not available. Refer to component data.

Page 5 of 11

Issue Date: 07/03/2020

Serious eye damage/eye irritation

Product test data not available. Refer to component data.

Sensitization

Product test data not available. Refer to component data.

Specific Target Organ Systemic Toxicity (Single Exposure)

Product test data not available. Refer to component data.

Specific Target Organ Systemic Toxicity (Repeated Exposure)

Product test data not available. Refer to component data.

Carcinogenicity

Product test data not available. Refer to component data.

Teratogenicity

Product test data not available. Refer to component data.

Reproductive toxicity

Product test data not available. Refer to component data.

Mutagenicity

Product test data not available. Refer to component data.

Aspiration Hazard

Product test data not available. Refer to component data.

COMPONENTS INFLUENCING TOXICOLOGY:

Silicon dioxide

Acute oral toxicity

LD50, Rat, > 3,300 mg/kg No deaths occurred at this concentration.

Acute dermal toxicity

LD50, Rabbit, > 5,000 mg/kg

Acute inhalation toxicity

LC50, Rat, 4 Hour, dust/mist, > 2.08 mg/l No deaths occurred at this concentration.

Skin corrosion/irritation

Brief contact may cause slight skin irritation with local redness.

Serious eye damage/eye irritation

May cause slight eye irritation.

Sensitization

Did not cause allergic skin reactions when tested in guinea pigs.

For respiratory sensitization:

No relevant data found.

Specific Target Organ Systemic Toxicity (Single Exposure)

Available data are inadequate to determine single exposure specific target organ toxicity.

Specific Target Organ Systemic Toxicity (Repeated Exposure)

No relevant data found.

Carcinogenicity

No relevant data found.

Teratogenicity

No relevant data found.

Reproductive toxicity

No relevant data found.

Mutagenicity

In vitro genetic toxicity studies were negative. Animal genetic toxicity studies were negative.

Aspiration Hazard

Based on physical properties, not likely to be an aspiration hazard.

12. ECOLOGICAL INFORMATION

Ecotoxicological information appears in this section when such data is available.

Toxicity

Silicon dioxide

Acute toxicity to fish

Material is practically non-toxic to aquatic organisms on an acute basis (LC50/EC50/EL50/LL50 > 100 mg/L in the most sensitive species tested). LC50, Danio rerio (zebra fish), 96 Hour, > 10,000 mg/l, OECD Test Guideline 203

Acute toxicity to aquatic invertebrates

EC50, Daphnia magna (Water flea), 48 Hour, > 1,000 mg/l, OECD Test Guideline 202

Persistence and degradability

Silicon dioxide

Biodegradability: Biodegradability is not applicable to inorganic substances.

Bioaccumulative potential

Silicon dioxide

Bioaccumulation: Bioconcentration potential is low (BCF < 100 or Log Pow < 3).

Partition coefficient: n-octanol/water(log Pow): 0.53

Bioconcentration factor (BCF): 3.16

Mobility in soil

Silicon dioxide

Potential for mobility in soil is very high (Koc between 0 and 50).

Partition coefficient (Koc): 21.73

Page 7 of 11

13. DISPOSAL CONSIDERATIONS

Disposal methods: DO NOT DUMP INTO ANY SEWERS, ON THE GROUND, OR INTO ANY BODY OF WATER. All disposal practices must be in compliance with all Federal, State/Provincial and local laws and regulations. Regulations may vary in different locations. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. AS YOUR SUPPLIER, WE HAVE NO CONTROL OVER THE MANAGEMENT PRACTICES OR MANUFACTURING PROCESSES OF PARTIES HANDLING OR USING THIS MATERIAL. THE INFORMATION PRESENTED HERE PERTAINS ONLY TO THE PRODUCT AS SHIPPED IN ITS INTENDED CONDITION AS DESCRIBED IN MSDS SECTION: Composition Information. FOR UNUSED & UNCONTAMINATED PRODUCT, the preferred options include sending to a licensed, permitted: Incinerator or other thermal destruction device. For additional information, refer to: Handling & Storage Information, MSDS Section 7 Stability & Reactivity Information, MSDS Section 10 Regulatory Information, MSDS Section 15

Treatment and disposal methods of used packaging: Empty containers should be recycled or otherwise disposed of by an approved waste management facility. Waste characterizations and compliance with applicable laws are the responsibility solely of the waste generator. Do not re-use containers for any purpose.

14. TRANSPORT INFORMATION

DOT

Not regulated for transport

Classification for SEA transport (IMO-IMDG):

Not regulated for transport

Consult IMO regulations before transporting ocean bulk

Transport in bulk according to Annex I or II of MARPOL 73/78 and the

IBC or IGC Code

Classification for AIR transport (IATA/ICAO):

Not regulated for transport

This information is not intended to convey all specific regulatory or operational requirements/information relating to this product. Transportation classifications may vary by container volume and may be influenced by regional or country variations in regulations. Additional transportation system information can be obtained through an authorized sales or customer service representative. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material.

Issue Date: 07/03/2020

15. REGULATORY INFORMATION

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Sections 311 and 312
No SARA Hazards

Superfund Amendments and Reauthorization Act of 1986 Title III (Emergency Planning and Community Right-to-Know Act of 1986) Section 313

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Section 103

This material does not contain any components with a CERCLA RQ.

Pennsylvania Right To Know

The following chemicals are listed because of the additional requirements of Pennsylvania law:

ComponentsCASRNSiloxanes and Silicones, di-Me, polymers with Me
silsesquioxanes68037-74-1Silicon dioxide7631-86-9Silicone Metalloid ComplexTrade secret

California Prop. 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

United States TSCA Inventory (TSCA)

All components of this product are in compliance with the inventory listing requirements of the U.S. Toxic Substances Control Act (TSCA) Chemical Substance Inventory.

16. OTHER INFORMATION

Hazard Rating System

NFPA

	Health	Flammability	Instability
	0	1	0
IMIS			
	Health	Flammability	Physical Hazard
	0/	1	0

Revision

Identification Number: 6004025 / A776 / Issue Date: 07/03/2020 / Version: 5.0 Most recent revision(s) are noted by the bold, double bars in left-hand margin throughout this document.

L	.ea	ıe	n	a

Legenu	
CAL PEL	California permissible exposure limits for chemical contaminants (Title 8, Article
	107)

NIOSH REL	USA. NIOSH Recommended Exposure Limits
OSHA Z-3	USA. Occupational Exposure Limits (OSHA) - Table Z-3 Mineral Dusts
PEL	Permissible exposure limit
TWA	8-hour time weighted average

Full text of other abbreviations

AICS - Australian Inventory of Chemical Substances; AIIC - Australian Inventory of Industrial Chemicals: ASTM - American Society for the Testing of Materials; bw - Body weight; CERCLA -Comprehensive Environmental Response, Compensation, and Liability Act; CMR - Carcinogen, Mutagen or Reproductive Toxicant; DIN - Standard of the German Institute for Standardisation, DOT -Department of Transportation; DSL - Domestic Substances List (Canada); ECx - Concentration associated with x% response; EHS - Extremely Hazardous Substance; ELx - Loading rate associated with x% response; EmS - Emergency Schedule; ENCS - Existing and New Chemical Substances (Japan); ErCx - Concentration associated with x% growth rate response; ERG - Emergency Response Guide; GHS - Globally Harmonized System; GLP - Good Laboratory Practice; HMIS - Hazardous Materials Identification System; IARC - International Agency for Research on Cancer; IATA -International Air Transport Association; IBC - International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk; IC50 - Half maximal inhibitory concentration; ICAO -International Civil Aviation Organization; IECSC - Inventory of Existing Chemical Substances in China; IMDG - International Maritime Dangerous Goods; IMO - International Maritime Organization; ISHL -Industrial Safety and Health Law (Japan); ISO - International Organisation for Standardization, KECI -Korea Existing Chemicals Inventory, LC50 - Lethal Concentration to 50 % of a test population; LD50 -Lethal Dose to 50% of a test population (Median Lethal Dose); MARPOL - International Convention for the Prevention of Pollution from Ships: MSHA - Mine Safety and Health Administration; n.o.s. - Not Otherwise Specified: NFPA - National Fire Protection Association; NO(A)EC - No Observed (Adverse) Effect Concentration, NO(A)EL - No Observed (Adverse) Effect Level, NOELR - No Observable Effect Loading Rate: NTP - National Toxicology Program; NZIoC - New Zealand Inventory of Chemicals; OECD - Organization for Economic Co-operation and Development; OPPTS - Office of Chemical Safety and Pollution Prevention; PBT - Persistent, Bioaccumulative and Toxic substance; PICCS -Philippines Inventory of Chemicals and Chemical Substances; (Q)SAR - (Quantitative) Structure Activity Relationship; RCRA - Resource Conservation and Recovery Act; REACH - Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals; RQ - Reportable Quantity; SADT - Self-Accelerating Decomposition Temperature; SARA - Superfund Amendments and Reauthorization Act; SDS - Safety Data Sheet; TCSI - Taiwan Chemical Substance Inventory; TSCA - Toxic Substances Control Act (United States); UN - United Nations; UNRTDG - United Nations Recommendations on the Transport of Dangerous Goods; vPvB - Very Persistent and Very Bioaccumulative

Information Source and References

This SDS is prepared by Product Regulatory Services and Hazard Communications Groups from information supplied by internal references within our company.

DDP SPECIALTY ELECTRONIC MATERIALS US 9, LLC urges each customer or recipient of this (M)SDS to study it carefully and consult appropriate expertise, as necessary or appropriate, to become aware of and understand the data contained in this (M)SDS and any hazards associated with the product. The information herein is provided in good faith and believed to be accurate as of the effective date shown above. However, no warranty, express or implied, is given. Regulatory requirements are subject to change and may differ between various locations. It is the buyer's/user's responsibility to ensure that his activities comply with all federal, state, provincial or local laws. The information presented here pertains only to the product as shipped. Since conditions for use of the product are not under the control of the manufacturer, it is the buyer's/user's duty to determine the conditions necessary for the safe use of this product. Due to the proliferation of sources for information such as manufacturer-specific (M)SDSs, we are not and cannot be responsible for

Issue Date: 07/03/2020

Issue Date: 07/03/2020

(M)SDSs obtained from any source other than ourselves. If you have obtained an (M)SDS from another source or if you are not sure that the (M)SDS you have is current, please contact us for the most current version.

Page 11 of 11

				e de la companya de l
				A Same - Top
		·		