Introducción a la Lógica y la Computación. Examen Final 09/08/2023.

Apellido y Nombre en todas las hojas

1. Sea L un reticulado finito. Determinar cuáles de las siguientes propiedades son válidas. Si lo son, demostrarlas; sino, dar un contraejemplo.

a)
$$x \le z \implies x \land (y \lor z) = x$$
.

b) No hay ningún elemento con dos complementos.

c)
$$|\mathcal{D}(Irr(L))| = |L|$$
.

2. Sea L un reticulado. Supongamos que vale la Propiedad Cancelativa: $Para\ todos\ a,b,c\in L,\ a\lor b=a\lor c\ y\ a\land b=a\land c\ implican\ b=c.$ Demostrar que L es distributivo.

3. Demostrar usando derivaciones:

a)
$$\{\varphi \lor \theta, \neg \theta, \varphi \rightarrow \psi\} \vdash \psi$$
.

- b) Para todo $\Gamma \subseteq PROP$, $\Gamma \cup \{\varphi\} \vdash \psi$ implica que $\Gamma \cup \{\neg(\varphi \rightarrow \psi)\}$ es inconsistente.
- (4) Suponga que Γ es consistente maximal y que no contiene a $\neg \varphi \land \neg \psi$ ni a φ . Probar que $\psi \in \Gamma$.
- 5. Sea el NFA $M=(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_1,q_2\})$ donde δ viene dada por la siguiente tabla de transición:

Utilizar el algoritmo dado en el teórico para encontrar un autómata determinista que acepte el mismo lenguaje que M.

(6) Determinar si el siguiente lenguaje L es regular. Justificar la respuesta.

$$L = \{a^n b^k c^m : n, k, m > 0 \text{ y } n + k + m = 10\}.$$

L. Sólo para alumnxs libres:

- (a) Demostrar usando derivaciones: $\vdash \varphi \lor \neg \varphi$.
- b) Defina una gramática regular que genere exactamente el lenguaje denotado por la expresión regular $a^*(b+c)a^*$.

 Sea L un reticulado finito. Determinar cuáles de las siguientes propiedades son válidas. Si lo son, demostrarlas; sino, dar un contraejemplo.

a)
$$x \le z \implies x \land (y \lor z) = x$$
.

- b) No hay ningún elemento con dos complementos.
- c) $|\mathcal{D}(Irr(L))| = |L|$.

2. Sea L un reticulado. Supongamos que vale la Propiedad Cancelativa: Para todos $a,b,c\in L$, $a\vee b=a\vee c$ y $a\wedge b=a\wedge c$ implican b=c. Demostrar que L es distributivo.

```
Sea L un reticulado. Supongamos que vale la propiedad cancelativa:
a v b = a v c && a ^ b = a ^ c => b = c
Tenemos que demostrar que se cumple lo siguiente:
a v (b ^ c) = (a v b) ^ (a v c) (1)
a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) (2)
(1)
(a v b) ^ (a v c) = (a v c) ^ (a v c)
                                          (Hipótesis (a v c) = (a v b))
(a \lor c) \land (a \lor c) = (a \lor c)
                                          (Idempotencia)
                                          (Idempotencia)
(a \lor c) = a \lor (c \land c)
a v (c ^ c) = a v (b ^ c)
                                           (Hipótesis b = c)
(2)
(a ^ b) v (a ^ c) = (a ^ b) v (a ^ b)
(a \land b) \lor (a \land b) = (a \land b)
(a \land b) = a \land (b \lor b)
a \wedge (b \vee b) = a \wedge (b \vee c)
```

- a) $\{\varphi \lor \theta, \neg \theta, \varphi \rightarrow \psi\} \vdash \psi$.
- b) Para todo $\Gamma \subseteq PROP$, $\Gamma \cup \{\varphi\} \vdash \psi$ implica que $\Gamma \cup \{\neg(\varphi \rightarrow \psi)\}$ es inconsistente.

4. Suponga que Γ es consistente maximal y que no contiene a $\neg \varphi \land \neg \psi$ ni a φ . Probar que $\psi \in \Gamma$.

Suponga que Γ es consistente maximal y que no contiene a $\neg \phi \land \neg \psi$ ni a ϕ . Probar que $\psi \in \Gamma$.

Como un conjunto consistente maximal es cerrado por derivaciones se da que si $\Gamma \vdash \psi => \psi \in \Gamma$

Supongamos que ψ / \in Γ , entonces como Γ es un conjunto maximal $\neg \psi \in \Gamma$. Luego como φ / \in Γ , entonces $\neg \varphi \in \Gamma$.

Entonces $\neg \psi$, $\neg \phi \in \Gamma$ por lo que Γ podría deducir a $\neg \phi \land \neg \psi$, lo cual es absurdo, pues $\neg \phi \land \neg \psi$ / $\in \Gamma => \Gamma$ / $\vdash \neg \phi \land \neg \psi$. De suponer que ψ / $\in \Gamma$

5. Sea el NFA $M = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1, q_2\})$ donde δ viene dada por la siguiente tabla de transición:

	0	1	ϵ
q_0	$\{q_1\}$	0	0
q_1	$\{q_2\}$	Ø	$\{q_0\}$
q_2	0	$\{q_0\}$	$\{q_1\}$

Utilizar el algoritmo dado en el teórico para encontrar un autómata determinista que acepte el mismo lenguaje que M.

Eliminamos las transiciones espontaneas:

Tomamos M' = $({q0,q1,q2}, {0,1}, \triangle', q0, F')$

 $[q0] = \{q0\}$

 $[q1] = \{q0,q1\}$

 $[q2] = \{q1,q2\}$

 $F' = \{q1,q2\}$

 $\triangle'(q0,0) = [\triangle^{(q0),0)} = [\triangle^{(q0),0)} = [q1] = \{q0,q1\}$

 $\triangle'(q0,1) = [\triangle^{(q0),1}] = [\triangle^{(q0),1}] = [\emptyset] = \emptyset$

 $\triangle'(q1,0) = [\triangle^{(q1,0)}] = [\triangle^{(q0,q1),0)} = [q1,q2] = \{q0,q1,q2\}$

 $\triangle'(q1,1) = [\triangle^{(q1,1)}] = [\triangle^{(q0,q1,1)}] = [\emptyset] = \emptyset$

 $\triangle'(q2,0) = [\triangle^{(q2),0)} = [\triangle^{(q1,q2),0)} = [q2] = \{q1,q2\}$

 $\triangle'(q2,1) = [\triangle^{(q2),1)] = [\triangle^{(q1,q2),1)] = [q0] = \{q0\}$

Nos da el siguiente AFN:

Tomamos M" = (P(Q'), {0,1}, \triangle ", q0, F") Q' = {q0,q1,q2} P(Q') = {{q0}, {q1}, {q2}, {q0,q1}, {q0,q2}, {q1,q2}, {q0,q1,q2}, \emptyset } F" = {{q1}, {q2}, {q0,q1}, {q0,q2}, {q1,q2}, {q0,q1,q2}} \triangle " ... Obtenemos el siguiente AFD: $(((q0))^{*})^{*}$ (((q1))) ((((q1))) ((((q1))) ((((q1,q2))) ((((q0,q1))) ((((q0,q1))) ((((q0,q2))) ((((q0,q2))) ((((q0,q2))) ((((q0,q2))) ((((q0,q2))) ((((q0,q2))) ((((q0,q2))) ((((q0,q2))) ((((q0,q1,q2))) ((((q0,q1,q2))) ((((q0,q1,q2))) ((((q0,q1,q2))) ((((q0,q1,q2))) ((((q0,q1,q2)))

6. Determinar si el siguiente lenguaje L es regular. Justificar la respuesta. $L=\{a^nb^kc^m:n,k,m>0\ \text{y}\ n+k+m=10\}.$

Queremos ver que L = $\{a^n b^k c^m : n, k, m > 0 y n + k + m = 10\}$ es regular.

Supongamos que L si es regular, y sea j la constante de bombeo. Tomamos la cadena $\alpha = a^j$. b^4 . c^j , luego $|\alpha| = 2j + 3$, con j = 3 entonces j + j + 4 = 10.

Por pumping lema descomponemos $\alpha = \alpha 1\alpha 2\alpha 3$ $\alpha 1 = a^r$, r >= 0

 $\alpha 2 = a^s, s >= 1$

 $\alpha 3 = a^{(j - (s + r))} \cdot b^{4} \cdot c^{j}$

para i = 0 tenemos:

 $\alpha = \alpha 1(\alpha 2^0)\alpha 3 = \alpha 1\alpha 3$

=
$$a^r$$
 . $a^(j - (s + r))$. b^4 . c^j

 $= a^{(j-s)} \cdot b^{4} \cdot c^{j}$

Como s >= 1, ya no se cumple que j - s + 4 + j = 10. Absurdo de suponer que L es regular

C -> aC | e