无穷级数(一) 10年5月6日下午

- 1. 证明 $\sum_{n=1}^{\infty}$ 发散.
 - (i) 用柯西收敛准则.

 - (ii) 对某个趋于无穷的子列 n_k , 证明 $S_{n_k} \to +\infty$. (iii) 用微分中值定理作出 $\frac{1}{k}$ 的适当的下界.
 - (iv) 用积分作出 $\frac{1}{k}$ 的适当的下界.
- 2. 证明 $\sum \frac{1}{n^p}$ 收敛, p > 1.
- 3. 设正数列 $\{a_n\}$ 单调减, $\sum a_n$ 收敛, 证明 $na_n \to 0$.
- 4. 设 $\sum a_n$ 为正项收敛级数,试确定 $\sum a_n^{\frac{n}{n+1}}$ 是否收敛。
- 5. 设 $\{a_n\}$ 满足 $0 < a_n < a_{2n} + a_{2n+1}$ (对 n > 1), 判别 $\sum a_n$ 是否收敛.
- 6. 设 $\sum a_n$ 是正项收敛级数, 求证 $\sum_{n \leq N \atop a_n > \frac{1}{n}} 1 = o(N)$.
- 7. 设 $\{a_n\}$ 是单调增且有界的正数列, 证明 $\sum (1 \frac{a_n}{a_{n+1}})$ 收敛.
- 8. 试求出正项收敛级数 $\sum a_n$ 满足的充分必要条件, 使得存在正数数列 $\{b_n\}$, 具有 性质:

$$\sum b_n$$
收敛,且 $\sum \frac{a_n}{b_n}$ 收敛.

- 9. 设 A 是十进制表示中不含数码 0 的正整数的集合, 求证
 - (1) $\sum_{n\in A}\frac{1}{n}$ 收敛.
 - (2) 确定所有 α , 使 $\sum_{n \in A} \frac{1}{n^{\alpha}}$ 收敛.

10. 设 $\sum a_n$ 为正项发散级数, 判别下面级数的敛散性:

$$(1) \quad \sum \frac{a_n}{1+a_n};$$

(2)
$$\sum \frac{a_n}{1 + na_n};$$

$$(3) \quad \sum \frac{a_n}{1 + n^2 a_n};$$

$$(4) \quad \sum \frac{a_n}{1 + a_n^2}.$$

苏州大学数学科学学院