Miroir plan et lentilles minces

Son	nmaire
I Miroir plan	
I/A Définition	
I/B Construction d'images	
I/C Relation de conjugaison	
I/D Grandissement transversal	
II Lentilles minces	
II/A Définition	
II/B Constructions géométriques d'une lentille mince	
II/C Relations de conjugaisons	
II/D Grandissement transversal	
II/E Complément : démonstrations des relations	
III Quelques applications	
III/A Condition de netteté	
III/B Champ de vision à travers un miroir plan	
✗ Capacités exigibles	
	Construire l'image d'un objet par un miroir
Connaître les propriétés d'un miroir plan.	plan.
Définir les propriétés du centre optique, des foyers principaux et secondaires, de la distance focale, de la vergence.	Construire l'image d'un objet situé à distance finie ou infinie à l'aide de rayons lumineux, identifier sa nature réelle ou virtuelle.
Prévoir par construction graphique et par application successive de relations de conjugaison et/ou de grandissement la position et la taille d'une image par un système optique composé de plusieurs lentilles.	○ Exploiter les formules de conjugaison et de grandissement transversal de DESCARTES et de NEWTON.
	☐ Établir et utiliser la condition de formation de l'image réelle d'un objet réel par une lentille convergente.

✓ L'essentiel	

I. Miroir plan 3

I | Miroir plan

I/A Définition

♥ Définition O3.1 : Miroir plan

Surface plane totalement réfléchissante. On le schématisme avec le symbole

pour un miroir orienté vers le haut.

Stigmatisme, aplanétisme

Le miroir plan est le seul système optique **rigoureusement** stigmatique et aplanétique.

I/B Construction d'images

On utilise les lois de SNELL-DESCARTES pour la réflexion, en traçant deux rayons partant de l'objet ponctuel.

♥ Propriété O3.1 : Image d'un objet réel

Soit **A un point objet** d'un miroir plan. Les rayons **incidents** se croisant en A arrivent sur le miroir en I et I'. Par la loi de la **réflexion**, les rayons émergents sont les rayons réfléchis, avec un angle de réflexion **opposé** à l'angle d'incidence. On trouve **l'image A'** en traçant l'intersection des rayons **émergents**.

Avec la figure ci-contre, on observe

$$\tan(i) = \frac{\overline{HI}}{\overline{HA}} = \frac{\overline{HI}}{-\overline{HA'}}$$

Soit

$$\overline{\mathrm{HA'}} = -\overline{\mathrm{HA}}$$

FIGURE 3.1 – Image d'un objet R. par un miroir plan.

Propriété O3.2 : Image d'un objet virtuel

Le principe du retour inverse de la lumière permet de permuter A et A' dans la démonstration précédente.

FIGURE 3.2 – Image d'un objet V. par un miroir plan.

I/C Relation de conjugaison

♥ Définition O3.2 : Relation de conjugaison

Formule mathématique reliant la position d'un objet à celle de son image par un système optique.

Propriété O3.3 : Relation de conjugaison d'un miroir plan

L'image A' par un miroir plan est le **symétrique** de l'objet A. Avec H le projeté orthogonal de A sur le miroir plan, on écrit cette conjugaison

$$A \xrightarrow{M} A'$$
 avec $\overline{HA'} = -\overline{HA}$

Remarque O3.1 : Réalité et virtualité du miroir plan

Le miroir plan garde la nature d'un faisceau : s'il est divergent en entrée, il est divergent en sortie et inversement. Ainsi, avec la définition du caractère réel et virtuel des objets, le miroir plan change la nature de l'objet.

I/D Grandissement transversal

lacktriangle Propriété O3.4 : γ miroir plan

Le miroir plan a un grandissement transversal

$$\gamma = +1$$

\heartsuit Démonstration O3.1 : γ miroir plan

Soit AB un objet étendu. On construit son image A'B' par le miroir plan : on appelle H le projeté orthogonal de A sur le miroir, H' celui de B.

On a

$$\overline{BH'} = \overline{H'B}$$
 et $\overline{AH} = \overline{HA'}$

Ainsi, on obtient

$$\overline{AB} = \overline{HH'} = \overline{A'B'}$$

FIGURE 3.3 – Image d'un objet étendu par un miroir plan.

II. Lentilles minces 5

II | Lentilles minces

II/A**Définition**

Définition O3.3 : Lentilles, minces, convergentes et divergentes

Une lentille est un composant optique **centré** constitué d'un milieu TLHI, délimité par deux dioptres de sommets S_1 et S_2 . Elle est dite **mince** si son diamètre est très grand devant son épaisseur.

Convergente

Son point foyer objet est avant sa face d'entrée.

FIGURE 3.4 – Exemples de lentilles convergentes.

Divergente

Son point foyer objet est après sa face de sortie.

FIGURE 3.5 – Exemples de lentilles divergentes.

Remarque O3.2 : Stigmatisme et aplanétisme

D'une manière générale, les lentilles minces ne sont ni stigmatiques ni aplanétiques. Nous utiliserons donc toujours les lentilles minces dans les conditions de Gauss et les considérerons comme stigmatiques et aplanétiques.

Définition O3.4 : Centre optique

On appelle **centre optique** d'une lentille et on le note O le point à l'intersection de l'axe optique et de la lentille.

Propriété O3.5 : Centre optique

Tout rayon passant par le centre optique O d'une lentille mince n'est pas dévié, et F'est symétrique de F par O.

♥ Définition O3.5 : Distance focale image et vergence

On appelle distance focale image la distance algébrique OF'; elle est positive pour une lentille convergente, négative pour une lentille divergente. Elle se note usuellement f'.

On appelle *vergence* et on note V la grandeur définie par

$$V = \frac{1}{\overline{\text{OF'}}}$$

Unités

En tant que distance, $\overline{OF'}$ (ou f') s'exprime en mètres (m).

L'unité de la vergence est le m⁻¹, mais elle s'exprime usuellement en dioptries (δ) .

II/B Constructions géométriques d'une lentille mince

II/B) 1 Rappel

Foyers d'une lentille

Par définition (voir chapitre 2), le foyer objet F donne une image à l'infini, et ce peu importe la nature de la lentille.

De même, le foyer image F' est le point image d'un objet à l'infini.

♥ Application O3.1 : Foyers des lentilles

FIGURE 3.6 – Foyer image convergent

FIGURE 3.7 – Foyer image divergent

♥ Attention O3.1 : Différence convergente/divergente

Il est plus que commun d'avoir des erreurs sur les lentilles divergentes à cause d'une mauvaise compréhension de leurs propriétés. Ainsi, on insistera fortement sur le fait que la seule différence entre les divergentes et les convergentes est la position inversée des foyers! Toutes les règles de construction restent les mêmes.

♥ Important O3.1 : Règles primaires

Avec la propriété des foyers principaux, on a donc 3 points d'intérêts pour construire les rayons émergents d'une lentille mince :

- 1) Tout rayon incident passant par O n'est pas dévié;
- 2) Tout rayon incident parallèle à l'axe optique émerge en passant par F'.
- 3) Tout rayon incident passant par F émerge parallèle à l'axe optique;

♥ Application O3.2 : Cas primaire

Figure 3.8 – Utilisation des règles primaires

II. Lentilles minces

Application O3.3 : Situations primaires communes

Figure 3.9 – Divergente simple

FIGURE 3.10 – Convergente après

FIGURE 3.11 – Divergente après

FIGURE 3.12 — Convergente F

[II/B)3] Règles secondaires

♥ Important O3.2 : Règles second.

Avec la propriété des foyers secondaires, on a deux règles de construction supplémentaires :

- 4) Deux rayons incidents parallèles entre eux émergent en se croisant dans le plan focal image;
- 5) Deux rayons incidents se croisant dans le plan focal objet émergent parallèles entre eux.

FIGURE 3.13 – Utilisation des règles secondaires

Lycée Pothier 7/12 MPSI3 – 2024/2025

II/B) 4 Corrigé des tracés

Correction des cas simples

FIGURE 3.14 – Utilisation des règles primaires

FIGURE 3.15 — Utilisation des règles secondaires

Correction des cas primaires

 ${\bf FIGURE~3.18}-{\rm Divergente~après}$

FIGURE 3.19 — Convergente F

II. Lentilles minces

II/C Relations de conjugaisons

Propriété O3.6 : Relations de conjugaison des lentilles

Soit \mathcal{L} une lentille de centre optique O et de foyers F et F', réalisant l'image A' d'un objet A. On écrit

$$A \xrightarrow[O]{\mathcal{L}} A'$$

et on a

Relation de DESCARTES, au centre

$$\frac{1}{\overline{OF'}} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}$$

Relation de NEWTON, au foyer

$$\overline{\text{OF'}} \times \overline{\text{OF}} = \overline{\text{F'A'}} \overline{\text{FA}}$$

 $\Leftrightarrow -f'^2 = \overline{\text{F'A'}} \overline{\text{FA}}$

II/D Grandissement transversal

lacktriangle Propriété O3.7 : γ lentille mince

À partir de la définition du grandissement transversal $\gamma = \frac{\overline{A'B'}}{\overline{AB}}$, on peut définir

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

$$\gamma = \frac{\overline{F'A'}}{\overline{F'O}} = \frac{\overline{FO}}{\overline{FA}}$$

II/E Complément : démonstrations des relations

Démonstration O3.2 : Relations de conjugaison et grandissement

Soit \mathcal{L} telle que AB $\xrightarrow[O]{\mathcal{L}}$ A'B'. On a la figure ci-contre.

Pour trouver la relation de conjugaison, nous utilisons les triangles OAB et OA'B' pour lesquels nous utilisons le théorème de Thalès. Nous avons directement la formule du grandissement de DESCARTES :

$$\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = \gamma$$

FIGURE 3.20 – Schéma de notations

Nous définissons ensuite le point H projeté orthogonal de B sur la lentille, et le point H' projeté orthogonal de B' sur la lentille.

En utilisant le théorème de Thalès dans les triangles F'OH et F'A'B' et en remarquant que $\overline{OH} = \overline{AB}$, on a cette fois

$$\begin{split} \frac{\overline{\mathbf{A'B'}}}{\overline{\mathbf{OH}}} &= \frac{\overline{\mathbf{A'B'}}}{\overline{\mathbf{AB}}} = \frac{\overline{\mathbf{F'A'}}}{\overline{\mathbf{F'O}}} \\ \Leftrightarrow & \boxed{\gamma = -\frac{\overline{\mathbf{F'A'}}}{\overline{\mathbf{OF'}}}} \end{split}$$

Et en utilisant les triangles FAB et FOH'

$$\frac{\overline{OH'}}{\overline{AB}} = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{FO}}{\overline{FA}}$$

$$\Leftrightarrow \boxed{\gamma = -\frac{\overline{OF}}{\overline{FA}}}$$

En les combinant on obtient élémentairement

$$\overline{OF'} \times \overline{OF} = \overline{F'A'}\overline{FA}$$
$$\Leftrightarrow -f'^2 = \overline{F'A'}\overline{FA}$$

En y injectant les décompositions

$$\overline{F'A'} = \overline{F'O} + \overline{OA'} \quad \text{ et } \quad \overline{FA} = \overline{FO} + \overline{OA}$$

et après développement, on obtient

$$\overline{OF'}\overline{OA'} - \overline{OF'}\overline{OA} + \overline{OA}\overline{OA'} = 0 \iff \left| \frac{1}{\overline{OF'}} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} \right|$$

par division par $\overline{OF'}\overline{OA}\overline{OA'}$.

III Quelques applications

III/A Condition de netteté

Soit $AB \xrightarrow{\mathcal{L}} A'B'$ avec \mathcal{L} convergente projetant sur un écran. On appelle x la distance $|\overline{OA}|$ et D la distance fixe AA'. Quelle est la contrainte sur le choix de lentille pour que A'B' soit nette?

FIGURE 3.21 – Schéma de situation

Résultat attendu

L'image est nette si la lentille forme l'image sur l'écran. Avec D fixe, on cherche une équation avec x.

Outils

Relation de Descartes

$$\frac{1}{\overline{OF'}} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}$$

et
$$\overline{OA} = -x$$
, $\overline{OA'} = D - x$.

Application

Avec les notations de l'énoncé, la relation de DESCARTES devient

$$\frac{1}{f'} = \frac{1}{D-x} - \frac{1}{-x}$$

$$\Leftrightarrow \frac{1}{f'} = \frac{x+D-x}{x(D-x)}$$

$$\Leftrightarrow f' = \frac{x(D-x)}{D}$$

$$\Leftrightarrow 0 = x^2 - xD + f'D$$

Ce trinôme du second degré a pour discriminant

$$\Delta = D^2 - 4f'D = D(D - 4f')$$

xétant une distance physique, on cherche $\Delta \geq 0.$

 $\diamond \Delta = 0 \text{ si } D = 4f', \text{ et alors}$

$$x = \frac{D}{2}$$

 $\diamond \Delta > 0 \text{ si } D > 4f', \text{ et alors}$

$$x_{\pm} = \frac{D \pm \sqrt{D(D - 4f')}}{2}$$

Ainsi, la zone de netteté de l'image se situe entre x_+ et x_- , et a donc une largeur

$$d = x_+ - x_- = \sqrt{D(D - 4f')}$$

III/B Champ de vision à travers un miroir plan

Une personne dont les yeux se situent à $h = 1,70 \,\mathrm{m}$ du sol observe une mare gelée (équivalente à un miroir plan) de largeur $l = 5,00 \,\mathrm{m}$ et située à $d = 2,00 \,\mathrm{m}$ d'elle.

- 1) Peut-elle voir sa propre image? Quelle est la nature de l'image?
- 2) Quelle est la hauteur maximale H d'un arbre situé de l'autre côté de la mare (en bordure de mare) qu'elle peut voir par réflexion dans la mare? On notera D=l+d.

III/B) 1 Propre image

Outil

Pour voir une image, il faut qu'un rayon partant de l'image puisse arriver jusqu'à l'œil de l'observataire. Étant donné qu'on travaille avec un miroir, l'image de l'observataire est son symétrique par le plan du miroir (même si le miroir ne s'étend pas jusque-là!).

Application

III/B) 2 Image arbre

Outil

Ici aussi, l'idée est de trouver l'image de l'arbre, et de voir la condition limite pour la taille visible.

Application

Un schéma avec l'image de l'arbre nous permet de voir que le point le plus haut qu'on peut voir par réflexion sur le lac est quand on regarde proche de nous : si on regarde plus loin, on voit en effet plus vers le bas de l'arbre (rayon vert incident, rayon orange émergent). Un arbre qui est trop grand ne sera pas visible en regardant ce point-là (rayon bleu incident, rose émergent). On s'intéresse donc à la construction géométrique formée par le rayon violet incident, rouge émergent, qui nous permet d'appliquer le théorème de Thalès : $\frac{H}{l} = \frac{h}{d}$, soit

$$H = \frac{l \times h}{d}$$
 avec
$$\begin{cases} l = 5,00 \text{ m} \\ h = 1,70 \text{ m} \\ d = 2,00 \text{ m} \end{cases}$$

D'où

$$H = 4.25 \,\mathrm{m}$$