

CMPE 59H - Project

Probabilistic Topic Modeling for the Analysis and Classification of Genomic Sequences

Gönül Aycı & Dilara Keküllüoğlu

Computer Engineering, Boğaziçi University **Instructor**: Assoc. Dr. Arzucan Özgür

December 28, 2017

Outline

Introduction

Processing Data

Classification Methods

Results

Problem Description

- To classify **DNA sequences**, we need to find similarities between them.
- This paper uses **NLP topic models** in the bioinformatics context to solve this problem.
 - For example we can find author of a novel by using topic models.
 - Training set is used for learning these **abstract topics** and search them in a new document to attribute an author.

Introduction 3 / 13

Processing Data

- Downloaded Asgari data (from word2vec presentation),
- Reduced size from
 - 360K sequences 7K families,
 - 50K sequences and 100 families
- Split data with the rate of 8:2 to training and test dataset,
- Create two kinds of files
 - Sliding window,
 - Discrete window

Processing Data 4 / 13

Sample code

- In [7]: from sklearn.cross_validation import train_test_split
 # split train and test data with .8 and .2 rate, respectively
 train_data, test_data = train_test_split(data, test_size=0.2)
- In [8]: print len(train_data)
 train_data[0:3]

259214

Out[8]:

	Family ID	Protein Name	Sequences
34581		Choline O- acetyltransferase	MPDLEKDMQKKEKDSRSKDEPAVPKLPVPPLQQTLQMYLQCMKHLV
136255		Peptide methionine sulfoxide reductase MsrA/MsrB	MKHRTFFSLCAKFGCLLALGACSPKIVDAGTATVPHTLSTLKTADN
26967	Cadherin_C	Cadherin-2	SLCKTGFPEDVYSAVLSRDVLEGQPLLNVKFSNCNGKRKVQYESSE

Processing Data 5 / 13

LDA: Pair topics with families

- Create Ida model with train data,
- Assign topic that has the most probability to each sequence,
- Investigate all sequences in a family,
- Find the most frequent topic in a family,
- Assign such topics to each family,
- Use this pairs to assign families to test data

LDA SVM: Classify with feature vectors

- Create Ida model with train data.
- Create **feature vectors** with topic probability distribution,
- Feature vector size is the topic size (e.g. 20, 100, 200),
- Train **SVM** model with training sequences,
- Create feature vectors of test data according to Ida model.

Classification Methods 7 / 13

LDA W2V: Classify using Word2Vec

- Create Ida model with train data.
- Create feature vectors with topic probability distribution and Asgari W2V data,
- Feature vector size is the topic size (e.g. 20, 100, 200) + 100 (W2V word embeddings),
- Train **SVM** model with training sequences,
- Create feature vectors of test data according to Ida model and Asgari word embedding

Classification Methods 8 / 13

Analysis of Results

- Running with 3, 5, and 8 mers
 - Unfortunately, complexity problems for 5 and 8
- We generally got baseline results (random chance)

Accuracy of 5 family classification

- LDA 31%,
- LDA with SVM : 28%,
- Word2Vec: 95%
- LDA with Word2Vec: 92%,

Not get better results for

- Using PCA,
- Applying sliding window,
- Setting # of topics > # of family

Results 9 / 13

LDA + W2V Best Result Confusion Matrix

Results 10 / 13

Numerical Results

k-mer	# of family	# of topic	lda	lda+svm
3	20	100	.07	.15
3	10	200	.11	.14
5	10	100	.12	.13
3	5	500	.31	.28

Table: Accuracy results for sliding window data

C-value	# of family	# of topic	lda	lda+svm	lda+w2v
1	5	100	.23	.28	.74
100	5	100	.23	.25	.92

Table: Accuracy results for discrete window data

Results ______ 11 / 13

References

- https://github.com/aycignl/probabilisticTopicModeling
- Asgari, Ehsaneddin, and Mohammad RK Mofrad. Continuous distributed representation of biological sequences for deep proteomics and genomics. PloS one 10.11 (2015): e0141287.
- La Rosa, Massimo and Fiannaca, Antonino and Rizzo, Riccardo and Urso, Alfonso, Probabilistic topic modeling for the analysis and classification of genomic sequences. BMC bioinformatics, BioMed Central, 16, 6, S2, 2015.

Thank you ...

Any Questions?