

С. В. Ревина Л. И. Сазонов

Оглавление

Ι	Метрические пространства	4
1	Основные понятия	5
	1.1 Аксиомы метрики	5
	1.2 Примеры задания метрик на прямой	6
	1.3 Неравенства Гельдера и Минковского	8
	1.4 Метрики в \mathbb{R}^n	13
	1.5 Шары в метрических пространствах	16
	1.6 Сходимость последовательностей	18
	1.7 Эквивалентные метрики	18
	1.8 Декартово произведение метрических пространств	19
	1.9 Открытые и замкнутые множества	20
2	Пространства последовательностей	23
	2.1 Определения пространств последовательностей	23
	2.2 Сходимость в пространствах последовательностей	25
	2.3 Связь между пространствами ℓ_p и S	27
	2.4 Сепарабельность	28
	2.5 Пример неархимедовой метрики	30
3	Пространства непрерывных и непрерывно дифферен	-
	цируемых функций	36
	3.1 Линейные нормированные пространства $C[a,b],C^m[a,b]$	36
	3.2 Примеры счетно-нормированных пространств	39
4	Пространства Лебега	41
	4.1 Пространства $L_p(a,b), 1 \leq p < \infty$	41
	4.2 Экстремальные точки шара $\overline{S}_1(0)$ в пространствах $L_p(0,1)$	
	4.3 Пространство $L_{\infty}(a,b)$	•
	4.4 Пространства $L_{n,loc}(\Omega)$	

Оглавление _______3

5	He	прерывность отображений	56
6	По	лнота метрических пространств	60
	6.1	Определение полноты	60
	6.2	Доказательство полноты	61
	6.3	Пример неполного пространства	64
	6.4	Теорема о пополнении	65
	6.5	Принцип вложенных шаров и теорема Бэра	67
7	Пр	инцип сжимающих отображений	70
	7.1	Общие сведения	70
	7.2	Применение к алгебраическим уравнениям и системам	72
	7.3	Применение к интегральным и дифференциальным	
		уравнениям	77
8	Ли	нейные нормированные пространства	85
	8.1	Банаховы пространства	85
	8.2	Гильбертовы пространства	86
	8.3	Эквивалентные нормы	90
	8.4	Подпространство	91
9	Ko	мпактность в метрических пространствах	93
	9.1	Относительная компактность и ограниченность	93
	9.2	Критерий Хаусдорфа	
	9.3	Гильбертов кирпич	96
	9.4	Отображения на компактных множествах	98
	9.5	Компактность в $C[0,1]$	102
10	Тот	юлогические пространства	106

Часть I Метрические пространства

Глава 1

Основные понятия

В этой главе основные определения теории метрических пространств иллюстрируются простыми примерами, в основном относящимися к конечномерному случаю.

Для первоначального ознакомления с метрическими пространствами хорошо подходит книга [11, глава 1], в ней разобрано большое количество примеров. Можно также рекомендовать книги [9, 12, 13, 15, 7].

1.1 Аксиомы метрики

Абстрактное понятие метрики является обобщением понятия "расстояние". При этом свойства расстояния (неотрицательность; равенство нулю тогда и только тогда, когда точки пространства совпадают; симметричность; неравенство треугольника) положены в основу определения метрики.

Определение 1.1. Метрикой на множестве X называется функция ρ : $X \times X \longmapsto \mathbb{R}$, удовлетворяющая следующим трем аксиомам:

- 1. $\rho(x,y) \geqslant 0$, причем $\rho(x,y) = 0 \Leftrightarrow x = y$;
- $2. \quad \rho(x,y) = \rho(y,x);$
- 3. $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \quad \forall x,y,z \in X.$

Заметим, что перечисленные аксиомы не являются независимыми. Так, если в аксиоме треугольника 3 положить x=y, то, с учетом аксиомы симметричности 2, получим условие неотрицательности метрики из первой

аксиомы

$$\rho(y,z) \geqslant 0.$$

Задача 1.1. Докажите, что аксиомы метрики эквивалентны следующим двум аксиомам:

1.
$$\rho(x,y) = 0 \Leftrightarrow x = y;$$

2.
$$\rho(x,y) \leq \rho(x,z) + \rho(y,z) \quad \forall x,y,z \in X$$
.

Определение 1.2. Метрическим пространством называется множество с заданной на нем метрикой, т.е. пара (X, ρ) .

Элементы метрического пространства называются точками (это могут быть функции, числовые последовательности, операторы и т.д.). В общем случае одно и то же множество X можно превратить в различные метрические пространства, задавая по-разному метрики. Приведем примеры метрических пространств.

1.2 Примеры задания метрик на прямой

Пример 1.1. Пусть сначала $X = \mathbb{R}$. Стандартной метрикой на прямой называется метрика, которая задается по правилу

$$\rho(x,y) = |x - y|.$$

Очевидно, что первые две аксиомы выполняются по свойствам модуля, а третья следует из неравенства

$$|a+b| \leqslant |a| + |b|,\tag{1.1}$$

если в нем положить a = x - z, b = z - y.

Помимо стандартной, существуют и другие метрики на прямой.

Пример 1.2. Теперь зададим на $X = \mathbb{R}$ так называемую дискретную (или тривиальную) метрику:

$$\rho(x,y) = \begin{cases} 0 & npu & x = y \\ 1 & npu & x \neq y \end{cases}$$
 (1.2)

Выполнение первых двух аксиом метрики очевидно. Неравенство треугольника могло бы не выполняться только в одном случае: если в левой части этого неравенства находится единица:

$$\rho(x,y) = 1,$$

а в правой части — ноль:

$$\rho(x, z) = 0, \quad \rho(z, y) = 0.$$

Но тогда x=z=y. Следовательно, $\rho(x,y)=0$ — противоречие.

Задача 1.2. Пусть X — произвольное множество. Докажите, что (1.2) определяет метрику на X.

Пример 1.3. Пусть $X = \mathbb{R}$. Зададим метрику по правилу

$$\rho(x,y) = \frac{|x-y|}{1 + |x-y|}.$$

Первые две аксиомы метрики, очевидно, выполняются. Для доказательства третьего свойства достаточно проверить выполнение неравенства

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}. (1.3)$$

В свою очередь (1.3) следует из неравенства

$$\frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|+|b|}{1+|a|+|b|}. (1.4)$$

Если рассмотреть функцию $f(t)=\frac{t}{1+t}$ на множестве неотрицательных чисел, то (1.4) можно трактовать как свойство неубывания функции f(t). Легко убедиться, что f(t), действительно, является возрастающей функцией.

Задача 1.3. Пусть X - произвольное множество, $\rho(x,y)$ - метрика на нем. Покажите, что функции

$$\rho_1(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}, \quad \rho_2(x,y) = \min(\rho(x,y),1)$$

- метрики на X.

Задача 1.4. Докажите, что

$$\rho(x,y) = |arctg(x) - arctg(y)|$$

является метрикой на \mathbb{R} .

Задача 1.5. Каким условиям должна удовлетворять определенная на \mathbb{R} непрерывная функция u = f(v), чтобы на вещественной прямой можно было задать метрику с помощью равенства

$$\rho(x,y) = |f(x) - f(y)|?$$

1.3 Неравенства Гельдера и Минковского

Чтобы проверить выполнение неравенства треугольника для основных примеров метрических пространств, нам понадобится неравенство Минковского. В следующей серии упражнений устанавливается справедливость неравенства Минковского для конечных сумм, а затем оно распространяется на ряды.

Определение 1.3. Числа р и q называются сопряженными показателями, если они удовлетворяют условиям

$$1 < p, q < \infty, \quad \frac{1}{p} + \frac{1}{q} = 1.$$

Задача 1.6. Докажите, что для любых неотрицательных чисел а и b и сопряженных показателей p и q справедливо неравенство Юнга

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}. (1.5)$$

Указание. Считая $b\geqslant a>0$, разделите обе части неравенства (1.5) на b^q и рассмотрите функцию

$$f(x) = \frac{x^p}{p} + \frac{1}{q} - x$$

при $x \geqslant 1$.

Задача 1.7. Докажите, что в неравенстве Юнга достигается равенство

$$ab = \frac{a^p}{p} + \frac{b^q}{q}$$

mогда и mолько mогда, κ огда $a^p = b^q$.

Пример 1.4. $\Pi ycmb$

$$\alpha > 0$$
, $\beta > 0$, $\alpha + \beta = 1$.

Тогда для любого $\varepsilon > 0$, для любых неотрицательных а и b выполняется интерполяционное неравенство Юнга

$$ab \leqslant \varepsilon a^{\frac{1}{\alpha}} + \varepsilon^{-\frac{\alpha}{\beta}} b^{\frac{1}{\beta}}. \tag{1.6}$$

Доказательство. Заменим в (1.5)

$$a \to \varepsilon^{\frac{1}{p}}a, \quad b \to \varepsilon^{-\frac{1}{p}}b.$$

Тогда, по неравенству Юнга, с учетом условий p > 1, q > 1:

$$ab \leqslant \frac{\varepsilon a^p}{p} + \frac{\varepsilon^{-\frac{q}{p}}b^q}{q} \leqslant \varepsilon a^p + \varepsilon^{-\frac{q}{p}}b^q.$$

Полагая $\alpha = \frac{1}{p}, \ \beta = \frac{1}{q}, \$ приходим к (1.6).

Задача 1.8. Воспользовавшись неравенством Юнга (1.5), установите неравенство Гельдера для конечных числовых наборов

$$\left| \sum_{k=1}^{n} a_k b_k \right| \leqslant \left\{ \sum_{k=1}^{n} |a_k|^p \right\}^{1/p} \left\{ \sum_{k=1}^{n} |b_k|^q \right\}^{1/q}, \tag{1.7}$$

 $r\partial e \ p \ u \ q - conpяженные показатели.$

Указание. Разделите обе части (1.7) на правую часть и примените почленно неравенство Юнга (1.5).

Задача 1.9. Выведите условия, при которых в неравенстве Гельдера (1.7) достигается знак равенства:

$$\frac{|a_i|^p}{\sum_{i=1}^n |a_i|^p} = \frac{|b_i|^q}{\sum_{i=1}^n |b_i|^q}, \quad \operatorname{sgn} a_i b_i = const, \quad i = 1, \dots, n.$$
 (1.8)

При p=q=2 неравенство Гельдера (1.7) называется неравенством Коши-Буняковского:

$$\left| \sum_{k=1}^{n} a_k b_k \right| \leqslant \left\{ \sum_{k=1}^{n} |a_k|^2 \right\}^{1/2} \left\{ \sum_{k=1}^{n} |b_k|^2 \right\}^{1/2}. \tag{1.9}$$

Если ввести обозначения

$$a = (a_1, a_2, \dots, a_n), \quad b = (b_1, b_2, \dots, b_n),$$

через ||a||, ||b|| обозначить евклидову норму (длину) векторов a и b соответственно,

$$||a|| = \left\{ \sum_{k=1}^{n} |a_k|^2 \right\}^{1/2}, \quad ||b|| = \left\{ \sum_{k=1}^{n} |b_k|^2 \right\}^{1/2},$$

а через (a,b) — их скалярное произведение

$$(a,b) = \sum_{k=1}^{n} a_k b_k,$$

то неравенство Коши-Буняковского примет вид

$$|(a,b)| \le ||a|| \cdot ||b||. \tag{1.10}$$

Так как скалярное произведение векторов в \mathbb{R}^n равно произведению длин этих векторов на косинус угла между ними

$$(a,b) = ||a|| \cdot ||b|| \cos(\hat{a,b}),$$

то неравенство Коши-Буняковского допускает простую геометрическую трактовку — косинус угла между векторами a и b по модулю не превосходит единицу!

Знак равенства в неравенстве (1.10) имеет место тогда и только тогда, когда векторы a и b коллинеарны:

$$a = Cb$$
.

В следующих разделах будет показано, что вид неравенства (1.10) и его геометрический смысл сохраняется для абстрактных гильбертовых пространств.

Пример 1.5. Выведем неравенство Минковского

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p}, \tag{1.11}$$

 $1\leqslant p<\infty$ из неравенства Гельдера (1.7).

$$|a_k + b_k| \le |a_k| + |b_k|. \tag{1.12}$$

Пусть теперь p > 1. Применив (1.12), приходим к неравенству

$$\sum_{k=1}^{n} |a_k + b_k|^p = \sum_{k=1}^{n} |a_k + b_k| |a_k + b_k|^{p-1} \leqslant n$$

$$\leq \sum_{k=1}^{n} |a_k| |a_k + b_k|^{p-1} + \sum_{k=1}^{n} |b_k| |a_k + b_k|^{p-1}.$$

Оценим каждое слагаемое в правой части по неравенству Гельдера:

$$\sum_{k=1}^{n} |a_k + b_k|^p \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |a_k + b_k|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |a_k + b_k|^{(p-1)q}\right)^{\frac{1}{q}}$$

С учетом того, что (p-1)q=p, последнее неравенство преобразуется к виду

$$\sum_{k=1}^{n} |a_k + b_k|^p \leqslant \left(\left(\sum_{i=1}^{n} |a_i|^p \right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p \right)^{1/p} \right) \left(\sum_{k=1}^{n} |a_k + b_k|^p \right)^{\frac{1}{q}}$$

или

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{1 - \frac{1}{q}} \leqslant \left(\sum_{i=1}^{n} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |b_i|^p\right)^{1/p},$$

откуда следует (1.11).

Задача 1.10. Сформулируйте условия, при которых в неравенстве Минковского (1.11) достигается знак равенства.

Аналогично выводятся неравенства Гельдера и Минковского для рядов.

Задача 1.11. Выведите неравенство Гельдера для рядов

$$\left| \sum_{k=1}^{\infty} a_k b_k \right| \leqslant \left\{ \sum_{k=1}^{\infty} |a_k|^p \right\}^{1/p} \left\{ \sum_{k=1}^{\infty} |b_k|^q \right\}^{1/q}, \tag{1.13}$$

в предположениях, что р и q — сопряженные показатели, и ряды в правой части неравенства сходятся.

Задача 1.12. Выведите неравенство Минковского для рядов

$$\left(\sum_{i=1}^{\infty} |a_i + b_i|^p\right)^{1/p} \leqslant \left(\sum_{i=1}^{\infty} |a_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |b_i|^p\right)^{1/p}, \quad 1 \leqslant p < \infty. \quad (1.14)$$

в предположении, что ряды в правой части неравенства сходятся.

Пусть, по-прежнему, p и q подчиняются соотношению

$$\frac{1}{p} + \frac{1}{q} = 1,$$

но p – положительное число, меньшее 1: 0 . Тогда <math>q будет отрицательным:

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} < 0, \quad q < 0.$$

Оказывается, что в этом случае знак в неравенстве Юнга меняется на противоположный.

Задача 1.13. Докажите, что для любых положительных чисел а и b и показателей р и q, удовлетворяющих условиям

$$0$$

справедливо обратное неравенство Юнга

$$ab \geqslant \frac{a^p}{p} + \frac{b^q}{q}. (1.15)$$

Указание. Для функции $y = x^{p-1}$ при x > 0 рассмотрите три ситуации: $1)b > a^{p-1}$; $2)b = a^{p-1}$; $3)b < a^{p-1}$.

Если 0 , то в неравенствах Гельдера и Минковского, так же, как в неравенстве Юнга, знак меняется на противоположный.

Задача 1.14. Докажите, что для любых положительных $a_i > 0$, $b_i > 0$, $1 \le i \le n$ и показателей p и q, удовлетворяющих условиям

$$0$$

выполняется обратное неравенство Гельдера

$$\sum_{k=1}^{n} a_k b_k \geqslant \left\{ \sum_{k=1}^{n} a_k^p \right\}^{1/p} \left\{ \sum_{k=1}^{n} b_k^q \right\}^{1/q}, \tag{1.16}$$

Доказательство аналогично доказательству неравенства Гельдера, только вместо обычного неравенства Юнга применяется обратное.

Из обратного неравенства Гельдера (1.16) можно получить обратное неравенство Минковского.

Задача 1.15. Докажите, что для любых положительных $a_i > 0$, $b_i > 0$, $1 \le i \le n$ и показателя p, удовлетворяющего условию 0 , справедливо обратное неравенство Минковского

$$\left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{1/p} \geqslant \left(\sum_{i=1}^{n} a_i^p\right)^{1/p} + \left(\sum_{i=1}^{n} b_i^p\right)^{1/p}, \tag{1.17}$$

Аналогично формулируются и доказываются обратные неравенства Гельдера и Минковского для рядов.

1.4 Метрики в \mathbb{R}^n

Все метрические пространства, рассматриваемые в данном разделе, обладают важным свойством — они являются линейными нормированными. Дадим определение линейного нормированного пространства.

Определение 1.4. Линейное пространство X над полем \mathbb{R} или \mathbb{C} называется нормированным, если определена функция $\|\cdot\|: X \longmapsto \mathbb{R}$, называемая нормой и удовлетворяющая следующим аксиомам:

- 1. $||x|| \geqslant 0$, $npu \text{ uem } ||x|| = 0 \Leftrightarrow x = 0$;
- 2. $\|\alpha x\| = |\alpha| \|x\| \quad \forall x \in X, \forall \alpha \in \mathbb{R} (unu \mathbb{C});$
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$.

Каждое линейное нормированное пространство является метрическим пространством относительно метрики

$$\rho(x,y) = ||x - y||.$$

Задача 1.16. Какие из метрических пространств на \mathbb{R} , рассмотренные в примерах предыдущего раздела, являются линейными нормированными?

Пример 1.6. Пусть $X = \mathbb{R}^n$, n > 1. Аналогом стандартной метрики на прямой является

$$\rho_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

Первые две аксиомы метрики, очевидно, выполняются. Неравенство треугольника следует из (1.1).

Метрика ρ_1 используется в теории кодирования. Пусть

$$M = \{x \in \mathbb{R}^n | x_i = 0 \lor x_i = 1\}$$

— множество вершин единичного куба в \mathbb{R}^n . Расстояние между двумя вершинами — число перемен нулей и единиц, необходимое, чтобы получить из координат одной вершины координаты другой. Каждая такая перемена есть переход вдоль одного из ребер куба. Таким образом, ρ_1 есть кратчайший путь по ребрам куба между рассматриваемыми его вершинами.

Пространство (\mathbb{R}^n, ρ_1) является линейным нормированным. Норма $||x||_1$ определяется как расстояние от x до 0:

$$||x||_1 = \rho(x,0) = \sum_{i=1}^n |x_i|.$$

Пример 1.7. Определим на \mathbb{R}^n евклидову метрику

$$\rho_2(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^2\right)^{1/2}$$

Расстояние между точками в этой метрике — среднее квадратичное уклонение.

В евклидовом пространстве (\mathbb{R}^n, ρ_2) помимо нормы

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$

можно ввести скалярное произведение

$$(x,y) = \sum_{i=1}^{n} x_i y_i.$$

Пример 1.8. На \mathbb{R}^n можно также определить метрику ρ_p по правилу:

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}, \quad 1 \leqslant p < \infty,$$

р фиксировано.

Первая и вторая аксиомы метрики очевидны, аксиома треугольника следует из неравенства Минковского (1.11).

Пример 1.9. Пусть опять $X = \mathbb{R}^n$. Устремив $p \to \infty$ в выражении для метрики $\rho_p(x,y)$ при фиксированных x и y, получим функцию

$$\rho_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|,$$

которая также определяет метрику в \mathbb{R}^n .

Доказательство. Докажем, что

$$\lim_{p \to \infty} \rho_p(x, y) = \max_{1 \le i \le n} |x_i - y_i|. \tag{1.18}$$

Представим выражение $\rho_p(x,y)$ в виде

$$\rho_p(x,y) = \max_{1 \le i \le n} |x_i - y_i| \left(\sum_{i=1}^n \frac{|x_i - y_i|^p}{\max_{1 \le i \le n} |x_i - y_i|^p} \right)^{1/p}$$

Для второго сомножителя справедливо двойное неравенство

$$1^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} \frac{|x_i - y_i|^p}{\max_{1 \leqslant i \leqslant n} |x_i - y_i|^p}\right)^{1/p} \leqslant n^{\frac{1}{p}}.$$

Устремив p к бесконечности, получим, что выражение в центральной части неравенства стремится к единице. Таким образом, (1.18) доказано.

Аксиомы метрики для

$$\rho_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|,$$

очевидно, выполняются.

1.5 Шары в метрических пространствах

Определение 1.5. Открытым шаром радиуса r c центром e точке e e метрическом пространстве e e e называется множество

$$S_r(x) = \{ y \in X : \rho(y, x) < r \}.$$

Замкнутым шаром радиуса r с центром в точке x называется множество

$$\overline{S}_r(x) = \{ y \in X : \rho(y, x) \leqslant r \}.$$

Из определения следует, что шар — непустое множество, центр шара всегда ему принадлежит.

Задача 1.17. Нарисуйте шар $S_1(0)$ на плоскости $X = \mathbb{R}^2$, выбрав в качестве метрик

$$\rho_1(x,y) = \sum_{i=1}^2 |x_i - y_i|, \quad \rho_2(x,y) = \left(\sum_{i=1}^2 |x_i - y_i|^2\right)^{1/2},$$

$$\rho_\infty(x,y) = \max_{1 \le i \le 2} |x_i - y_i|.$$

А может ли шар быть квадратом для евклидовой метрики? Приведите пример соответствующего пространства.

Так как метрическое пространство не обязано быть линейным, в нем могут происходить необычные явления.

Задача 1.18. Может ли в метрическом пространстве шар большего радиуса лежать строго внутри шара меньшего радиуса [15, с. 36]?

Пример 1.10. Докажем, что в метрическом пространстве невозможно строгое включение $S_2(x) \subset S_1(y)$.

Доказательство. Предположим, что все точки шара $S_2(x)$ принадлежат шару $S_1(y)$, и это включение строгое. Это означает, что для любой точки $t \in S_2(x)$ выполняется условие $t \in S_1(y)$, но найдется точка $z \in S_1(y)$, которая не принадлежит "меньшему" шару: $z \notin S_2(x)$.

Взяв в качестве точки t центр шара радиуса 2, из условия $t \in S_1(y)$ выводим, что расстояние между центрами рассматриваемых шаров меньше единицы:

$$\rho(x,y) < 1.$$

В то же время

$$\rho(y,z) < 1; \quad \rho(z,x) \geqslant 2.$$

Оценив расстояние между z и x по неравенству треугольника, приходим к противоречию:

$$\rho(z, x) \le \rho(z, y) + \rho(y, z) < 1 + 1 = 2.$$

Задача 1.19. Сформулируйте обобщение утверждения предыдущего примера.

Пример 1.11. В теории распознавания образов применяется пространство Хемминга $(\Omega_n, \rho^{\sigma})$. Через Ω_n обозначено множество векторов

$$\omega = (\omega_1, ..., \omega_n)$$

c двоичными координатами $\omega_i = 0$ или $\omega_i = 1, i = 1, \ldots n,$

$$\rho^{\sigma}(\omega, \tilde{\omega}) = \sum_{i=1}^{n} \sigma_i |\omega_i - \tilde{\omega}_i|,$$

 $\sigma_i > 0 - заданы.$

Задача 1.20. Докажите, что в метрическом пространстве Хемминга существуют шары, имеющие несколько центров. Приведите пример шара в $(\Omega_n, \rho^{\sigma})$, совпадающего со множеством своих центров.

1.6 Сходимость последовательностей

Определение 1.6. Последовательность $x_n \in X$ сходится к точке $x \in X$, если

$$\rho(x_n, x) \to 0 \quad npu \quad n \to \infty.$$

Определение 1.7. Последовательность x_n называется ограниченной, если она содержится в некотором шаре.

Из определения метрики следуют общие свойства сходящихся последовательностей.

Задача 1.21. Докажите, что из сходимости последовательности в метрическом пространстве следует сходимость любой ее подпоследовательности; предел сходящейся последовательности единственен; из сходимости последовательности следует ее ограниченность [11, с. 16].

1.7 Эквивалентные метрики

Определение 1.8. Две метрики ρ_1 и ρ_2 называются эквивалентными, если существуют константы $C_1, C_2 > 0$ такие, что $\forall x, y \in X$

$$C_1 \rho_1(x, y) \leqslant \rho_2(x, y) \leqslant C_2 \rho_1(x, y)$$

Задача 1.22. Докажите, что последовательности одновременно сходятся или расходятся в эквивалентных метриках.

Задача 1.23. Пусть X - произвольное множество, $\rho(x,y)$ - метрика на нем, а метрика $\rho_1(x,y)$ задана по правилу

$$\rho_1(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}$$

Hай ∂ ите условия, nри которых метрики ρ и ρ_1 эквивалентны.

Задача 1.24. Пусть функция $f: \mathbb{R} \to \mathbb{R}$ непрерывно дифференцируема. Найдите условие эквивалентности следующих метрик на \mathbb{R}

$$\rho_1(x,y) = |x-y|, \quad \rho_2(x,y) = |f(x) - f(y)|.$$

Задача 1.25. Являются ли метрики

$$\rho_1(x,y) = |x-y|, \quad \rho_2(x,y) = |arctg(x) - arctg(y)|.$$

эквивалентными на всей вещественной оси, на конечном интервале?

Задача 1.26. Докажите, что

$$\rho_1(x,y) = \sum_{i=1}^n |x_i - y_i|, \quad \rho_\infty(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

являются эквивалентными метриками на \mathbb{R}^n .

Задача 1.27. Пусть метрика ρ_p задается по правилу

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}, \quad 1 \le p < \infty,$$

Проверьте, что метрики $\rho_p(x,y)$, $\rho_q(x,y)$, $1 \leq p,q \leq \infty$ являются эквивалентными метриками на \mathbb{R}^n .

1.8 Декартово произведение метрических пространств

Если $(X_1, \rho_1), (X_2, \rho_2)$ — два метрических пространства, то в прямом произведении $X_1 \times X_2$ можно ввести метрики

$$d_1((x_1, x_2), (y_1, y_2)) = (\rho_1^2(x_1, y_1) + \rho_2^2(x_2, y_2))^{1/2},$$

$$d_2((x_1, x_2), (y_1, y_2)) = \rho_1(x_1, y_1) + \rho_2(x_2, y_2),$$

$$d_3((x_1, x_2), (y_1, y_2)) = \max(\rho_1(x_1, y_1), \rho_2(x_2, y_2))$$

 $\forall (x_1, x_2), (y_1, y_2) \in X_1 \times X_2.$

Задача 1.28. Покажите, что метрики d_1, d_2, d_3 эквивалентны.

В силу эквивалентности этих метрик, на декартовом произведении метрических пространтв можно определить метрику любым из указанных способов. Таким образом, пара $(X_1 \times X_2, d)$, где в качестве метрики d берется любая из указанных метрик, является метрическим пространством.

Заметим, что сходимость в $X_1 \times X_2$ — "покоординатная":

$$(x_1, x_2) \longmapsto (y_1, y_2) \Leftrightarrow \rho_1(x_1, y_1) \to 0, \rho_2(x_2, y_2) \to 0.$$

Задача 1.29. Докажите, что для любых четырех точек x, y, z, t метрического пространства справедливы неравенства:

1.
$$|\rho(x,z) - \rho(y,z)| \leq \rho(x,y)$$
;

2.
$$|\rho(x,z) - \rho(y,t)| \le \rho(x,y) + \rho(z,t)$$

(неравенство четырехугольника).

Задача 1.30. Докажите, что метрика $\rho: X \times X \longmapsto \mathbb{R}$ — непрерывная функция [15, с. 32].

1.9 Открытые и замкнутые множества

Определение 1.9. Множество называется открытым в X, если вместе c каждой своей точкой x оно содержит и некоторый шар $S_r(x)$.

Определение 1.10. Точка $x \in X$ называется предельной точкой множества $M \subset X$, если существует последовательность $x_n \in M$, $x_n \neq x$, сходящаяся к x.

Определение 1.11. Замыканием множества A (обозначение $-\overline{A}$) называется объединение этого множества и множества всех его предельных точек.

Определение 1.12. *Множество замкнуто, если оно совпадает со своим замыканием.*

Пример 1.12. $3a\partial a\partial u$ м на прямой $X=\mathbb{R}$ стандартную метрику

$$\rho(x,y) = |x - y|.$$

Тогда интервал (a, b) является открытым множеством, отрезок [a, b] — замкнутым множеством, а полуинтервал [a, b) не является ни открытым, ни замкнутым множеством.

Пример 1.13. Однако, если метрику оставить прежней

$$\rho(x,y) = |x - y|,$$

а в качестве всего пространства рассматривать интервал X = (a, b), то он будет как открытым, так и замкнутым множеством. То же самое справедливо для отрезка и полуинтервала.

Замыкание открытого шара $S_r(x)$ будем обозначать через $\overline{S_r(x)}$, в отличие от замкнутого шара $\overline{S}_r(x)$. В метрических пространствах $\overline{S_r(x)}$ и $\overline{S}_r(x)$ не обязаны совпадать.

Задача 1.31. Докажите, что открытый шар в метрическом пространстве есть открытое множество, замкнутый шар — замкнутое множество.

Пример 1.14. Пусть X – произвольное множество. Определим на X дискретную метрику:

$$\rho(x,y) = \begin{cases} 0 & npu & x = y \\ 1 & npu & x \neq y \end{cases}$$

Докажем, что любое подмножество X является одновременно u открытым, u замкнутым множеством.

Доказательство. Любое подмножество пространства X открыто, так как вместе с любой точкой x в нем содержится шар $S_{1/2}(x)$ (этот шар состоит из одной точки!).

Любое подмножество пространства X замкнуто. Если оно состоит из одной точки, то у него нет предельных точек. Если оно состоит более чем из одной точки — то тоже нет, в силу специфики задания метрики. \square

Задача 1.32. Докажите, что замыкание открытого шара в метрическом пространстве содержится в замкнутом шаре, но может с ним не совпадать [15, с. 37].

Задача 1.33. Пусть F_1 и F_2 — замкнутые множества в метрическом пространстве и $F_1 \cap F_2 = \varnothing$. Постройте открытые множества U_1 и U_2 такие, что

$$F_1 \subset U_1, \quad F_2 \subset U_2 \quad u \quad U_1 \cap U_2 = \varnothing.$$

Задача 1.34. Пусть $\{U_{\alpha}\}_{{\alpha}\in A}$ – система открытых множеств в метрическом пространстве X. Покажите, что

$$\bigcup_{\alpha \in A} U_{\alpha}, \quad \bigcap_{i=1}^{n} U_{\alpha_i}$$

— открытые множества.

Задача 1.35. Сформулируйте и докажите соответствующие утверждения для замкнутых множеств.

Задача 1.36. Докажите, что открытое множество можно представить в виде объединения шаров.

Задача 1.37. Докажите, что замкнутое множество можно представить в виде пересечения дополнений к шарам.

Задача 1.38. Докажите, что множество M в метрическом пространстве открыто (замкнуто) тогда и только тогда, когда его дополнение X/M замкнуто (открыто).

Глава 2

Пространства последовательностей

Непосредственным обобщением на бесконечномерный случай пространств (\mathbb{R}^n, ρ_p) являются пространства последовательностей $\ell_p, 1 \leqslant p < \infty$ и ℓ_∞ . Важную роль в приложениях играет также пространство всех последовательностей S.

2.1 Определения пространств последовательностей

Рассмотрим множество числовых последовательностей

$$x = (x_1, x_2, ...).$$

Оно является линейным пространством. Для того чтобы на этом множестве определить норму по правилу

$$||x||_1 = \sum_{i=1}^{\infty} |x_i|$$

необходимо потребовать, чтобы выполнялось условие

$$\sum_{i=1}^{\infty} |x_i| < \infty.$$

Таким образом, приходим к определению пространства ℓ_1 :

$$\ell_1 = \left\{ x = (x_1, x_2, \dots) \middle| \sum_{i=1}^{\infty} |x_i| < \infty, \quad \rho_1(x, y) = \sum_{i=1}^{\infty} |x_i - y_i| \right\}$$

Аналогично определяется ℓ_2

$$\ell_2 = \left\{ x = (x_1, x_2, \dots) \middle| \sum_{i=1}^{\infty} |x_i|^2 < \infty, \quad \rho_2(x, y) = \left(\sum_{i=1}^{\infty} |x_i - y_i|^2 \right)^{1/2} \right\}$$

Помимо нормы,

$$||x||_2 = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2}$$

в ℓ_2 можно задать скалярное произведение

$$(x,y) = \sum_{i=1}^{\infty} x_i y_i.$$

Забегая вперед, отметим, что ℓ_2 называется координатным гильбертовым пространством, так как любое сепарабельное гильбертово пространство изоморфно ℓ_2 .

Для любого вещественного $p,\ 1\leqslant p<\infty,$ пространства ℓ_p определяются так:

$$\ell_p = \left\{ x = (x_1, x_2, \dots) \middle| \sum_{i=1}^{\infty} |x_i|^p < \infty, \quad \rho_p(x, y) = \left(\sum_{i=1}^{\infty} |x_i - y_i|^p \right)^{1/p} \right\}$$

Выполнение аксиомы треугольника в ℓ_p следует из неравенства Минковского для рядов (1.14).

 ℓ_p является линейным нормированным пространством с нормой

$$||x||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}.$$

Бесконечномерным аналогом пространства $(\mathbb{R}^n, \rho_{\infty})$ является пространство ограниченных числовых последовательностей

$$\ell_{\infty} = \left\{ x = (x_1, x_2, \dots) \left| \sup_{1 \le i < \infty} |x_i| < \infty, \quad \rho_{\infty}(x, y) = \sup_{1 \le i < \infty} |x_i - y_i| \right\} \right\}$$

Пример 2.1. Покажем, что

$$\rho(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|}.$$
 (2.1)

является метрикой в пространстве S всех числовых последовательностей.

Доказательство. Так как

$$\frac{1}{2^k} \frac{|x_k - y_k|}{1 + |x_k - y_k|} \leqslant \frac{1}{2^k},$$

то ряд (2.1) сходится.

Первая и вторая аксиомы метрики, очевидно, выполняются. Неравенство треугольника следует из неравенства (1.3)

$$\frac{|a+b|}{1+|a+b|} \leqslant \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}.$$

которое было доказано в первой главе.

Задача 2.1. Можно ли в пространстве S задать норму, согласованную c метрикой данного пространства (2.1)?

2.2 Сходимость в пространствах последовательностей

Пример 2.2. Докажем, что сходимость в пространстве S совпадает с покоординатной сходимостью.

Доказательство. Пусть последовательность $x^{(n)}$ сходится к некоторому элементу x в пространстве S. Это означает, что для любого $\varepsilon > 0$ найдется номер элемента последовательности N такой, что

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k|}{1 + |x_k^{(n)} - x_k|} < \varepsilon \quad \forall n > N.$$

3афиксируем номер координаты k. Тогда

$$\frac{1}{2^k} \frac{|x_k^{(n)} - x_k|}{1 + |x_k^{(n)} - x_k|} < \varepsilon \quad \forall n > N.$$

Так как ε произвольно, а k фиксировано, то последнее неравенство означает, что

$$|x_k^{(n)} - x_k| \to 0 \quad \text{при} \quad n \to \infty, \tag{2.2}$$

то есть из сходимости последовательности в S следует покоординатная сходимость.

Обратно, пусть выполняется (2.2). Докажем сходимость последовательности $x^{(n)}$ в S.

Так как ряд

$$\sum_{k=1}^{\infty} \frac{1}{2^k}$$

сходится, то остаток ряда стремится к нулю:

$$\forall \varepsilon > 0 \quad \exists m : \sum_{k=m+1}^{\infty} \frac{1}{2^k} < \frac{\varepsilon}{2}.$$

Тогда

$$\rho(x^{(n)}, x) = \sum_{k=1}^{m} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k|}{1 + |x_k^{(n)} - x_k|} + \sum_{k=m+1}^{\infty} \frac{1}{2^k} \frac{|x_k^{(n)} - x_k|}{1 + |x_k^{(n)} - x_k|} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

(первое слагаемое мало за счет покоординатной сходимости, так как число слагаемых конечно.) \Box

Задача 2.2. Докажите, что сходимость в пространствах ℓ_p , $1 \leqslant p \leqslant \infty$ включает покоординатную сходимость. Верно ли обратное?

Пример 2.3. Исследуем сходимость следующих последовательностей в пространствах ℓ_p , ℓ_{∞} , S:

a)
$$x^{(n)} = (1, 2, \dots, n, 0, \dots);$$

6)
$$y^{(n)} = (1/n, 1/n, \ldots, 1/n, 0, \ldots);$$

Сначала найдем покоординатный предел. Для первой последовательности он имеет вид

$$x = (1, 2, \dots, n, \dots).$$

Следовательно, последовательность $x^{(n)}$ сходится в пространстве S.

Она не сходится ни в одном из пространств $\ell_p, 1 \leqslant p < \infty$. Действительно, покоординатный предел не принадлежит этим пространствам: $x \notin \ell_p$, так как не выполняется необходимое условие сходимости ряда: $x_i \not\to 0$ при $i \to \infty$.

Последовательность $x^{(n)}$ не сходится также в пространстве ℓ_{∞} . Покоординатный предел не принадлежит этому пространству, так как

$$\sup_{1 \leqslant i < \infty} |x_i| = \infty.$$

Покоординатный предел второй последовательности – последовательность, состоящая из нулей:

$$y=(0,0,\ldots).$$

Следовательно, последовательность $y^{(n)}$ сходится в S.

Сходимость в пространстве $\ell_p,\ 1\leqslant p<\infty$ означает, что

$$\rho(y^{(n)},y) = \left\{\sum_{i=1}^n \left(\frac{1}{n}\right)^p\right\}^{\frac{1}{p}} = \frac{1}{n^{\frac{p-1}{p}}} \to 0 \quad \text{при} \quad n \to \infty.$$

Поэтому $y^{(n)}$ сходится в ℓ_p при 1 .

Наконец, последовательность сходится в ℓ_{∞} , так как

$$\rho_{\infty}(y^{(n)}, y) = \sup_{1 \le i < \infty} \frac{1}{n} \to 0 \quad \text{при} \quad n \to \infty.$$

Задача 2.3. В каких из пространств ℓ_p , ℓ_∞ , S сходятся следующие последовательности $(\alpha > 0)$:

a)
$$x^{(n)} = (1, 1, \dots, 1, \dots, 1);$$

6)
$$x^{(n)} = (1/n^{\alpha}, 1/n^{\alpha}, \dots, 1/n^{\alpha}, 0, \dots)$$
?

${f 2.3}$ Связь между пространствами ℓ_p и S

Пример 2.4. Докажем, что для пространств последовательностей выполняются теоретико-множественные включения

$$\ell_1 \subset \ell_p \subset \ell_q \subset \ell_\infty \subset S, \quad 1$$

 \mathcal{A} оказательство. Очевидно, что пространство всех последовательностей S охватывает все пространства ℓ_p .

По определению, пространству ℓ_p принадлежат те последовательности, для которых ряд

$$\sum_{i=1}^{\infty} |x_i|^p$$

сходится. Следовательно, общий член ряда должен стремиться к нулю.

Если $x_i \to 0$ при $i \to \infty$, и p < q, то

$$|x_i|^q < |x_i|^p.$$

Поэтому

$$\sum_{i=1}^{\infty} |x_i|^q < \sum_{i=1}^{\infty} |x_i|^p.$$

Следовательно, $\ell_p \subset \ell_q$ при p < q.

Кроме того, из сходимости последовательности x_n следует ее ограниченность. Поэтому $\ell_q \subset \ell_\infty$.

Задача 2.4. Из результатов предыдущего примера следует, что на ℓ_1 определены все метрики пространств ℓ_p , $1 \leq p \leq \infty$ и S. Докажите, что они попарно неэквивалентны.

2.4 Сепарабельность

Определение 2.2. Если M плотно во всем пространстве X, то говорят, что M всюду плотно в X.

Определение 2.3. Метрическое пространство (X, ρ) называется сепарабельным, если в нем существует счетное всюду плотное множество.

Задача 2.5. Пользуясь тем, что множество рациональных чисел Q всюду плотно в \mathbb{R} , приведите пример счетного всюду плотного множества в \mathbb{R}^n , установив тем самым сепарабельность этого пространства.

Пример 2.5. Докажем, что ℓ_p , $1 \le p < \infty$ — сепарабельные метрические пространства.

Доказательство. Докажем, что в ℓ_p при $1\leqslant p<\infty$ существует счетное всюду плотное множество. Пусть

$$M = \{x_0 | x_0 = (r_1, r_2, \dots, r_n, 0, \dots)\},\$$

где $r_i \in \mathbb{Q}$ — произвольные рациональные числа , n — произвольное натуральное число. Тогда M счетно.

Докажем, что M всюду плотно в ℓ_p . Надо показать, что любой элемент $x \in \ell_p$ можно приблизить элементами из M, т. е.

$$\forall \, \varepsilon > 0 \, \forall \, x \in l_p \, \exists \, x_0 \in M : \, \|x - x_0\|_{\ell_p} < \varepsilon.$$

 $T. \kappa. x \in l_p$, то ряд

$$\sum_{i=1}^{\infty} |x_i|^p$$

сходится. Тогда остаток этого ряда стремится к нулю, т.е.

$$\forall \varepsilon > 0 \ \exists \ n : \sum_{i=n+1}^{\infty} |x_i|^p < \frac{\varepsilon^p}{2}.$$

По данному номеру n подберем элемент $x_0 \in M$ вида

$$x_0 = (r_1, r_2, \dots, r_n, 0, \dots)$$

такой, что

$$\sum_{i=1}^{n} |x_i - r_i|^p < \frac{\varepsilon^p}{2}.$$

Тогда справедлива следующая оценка:

$$||x - x_n||_{\ell_p}^p < \frac{\varepsilon^p}{2} + \frac{\varepsilon^p}{2} = \varepsilon^p$$

и счетное всюду плотное множество построено.

Пример 2.6. Докажем, что ℓ_{∞} — не сепарабельно.

Доказательство. Рассмотрим множество

$$M = \{x \in l_{\infty} | x_i = 0 \text{ или } x_i = 1\}.$$

Так как множеству M можно поставить во взаимно-однозначное соответствие множество всех подмножеств натурального ряда, то M имеет мощность континуума.

Если два различных элемента x и y принадлежат множеству M, то расстояние между ними равно единице:

$$||x - y||_{\ell_{\infty}} = 1.$$

Таким образом, в пространстве ℓ_{∞} существует континуум элементов, отстоящих друг от друга на расстояние, равное единице.

Доказательство несепарабельности пространства проведем от противного. Предположим, что пространство сепарабельно. Тогда существует всюду плотное множество K в ℓ_{∞} . Рассмотрим шар с центром в произвольной точке множества K с радиусом, равным $\frac{1}{3}$.

Если K всюду плотно, вне этих шаров нет элементов пространства — каждый из элементов ℓ_{∞} попал хотя бы в один такой шар. Шаров счетное число, а в пространстве существует множество мощности континуума. Следовательно, хотя бы в один шар попали две различные точки из множества M. Обозначим их m_1 и m_2 . Тогда

$$||m_1 - m_2||_{\ell_\infty} < \frac{1}{3} + \frac{1}{3} = \frac{2}{3}.$$

Но так как

$$||m_1 - m_2||_{\ell_{\infty}} = 1,$$

следовательно, приходим к противоречию.

Задача 2.6. Докажите сепарабельность пространства S [11, c. 24, 55].

2.5 Пример неархимедовой метрики

Пример 2.7. В множестве всевозможных последовательностей натуральных чисел для элементов

$$x = (n_1, n_2, \dots, n_k, \dots), \quad y = (m_1, m_2, \dots, m_k, \dots)$$

обозначим через $k_0(x,y)$ наименьший индекс, при котором $n_k \neq m_k$. Докажем, что:

a)
$$\rho(x,y) = \begin{cases} 0 & x = y, \\ \frac{1}{k_0(x,y)} & x \neq y \end{cases}$$

есть метрика на X;

б) аксиома треугольника выполняется в X в усиленной форме:

$$\rho(x,z) \leqslant \max(\rho(x,y),\rho(y,z)); \tag{2.3}$$

- в) если $\rho(x,y) \neq \rho(y,z)$, то $\rho(x,z) = \max(\rho(x,y),\rho(y,z))$;
- г) любой открытый шар $S_r(x)$ является одновременно замкнутым множеством и $S_r(y) = S_r(x)$ для любого $y \in S_r(x)$;
- д) любой замкнутый шар $\overline{S}_r(x)$ является одновременно открытым множеством и $\overline{S}_r(y) = \overline{S}_r(x)$ для любого $y \in \overline{S}_r(x)$;
- e) если два шара в X имеют общую точку, то один из них содержится в другом;
- ж) расстояние между двумя различными открытыми шарами радиуса r, содержащимися в замкнутом шаре радиуса r, равно r;
 - 3) пространство X сепарабельно;
- и) последовательность $x_n \in X$ фундаментальна, тогда и только тогда, когда

$$\rho(x_n, x_{n+1}) \to 0$$
 при $n \to \infty$.

 κ) пространство X полно.

 \mathcal{A} оказательство. Докажем пункты а)—д) сформулированных утверждений.

Первая и вторая аксиомы метрики, очевидно, выполняются. Для доказательства неравенства треугольника достаточно установить, что выполняется неравенство (2.3).

Докажем (2.3). Рассмотрим три случая: 1) $\rho(x,y)>\rho(y,z)$; 2) $\rho(x,y)<\rho(y,z)$; 3) $\rho(x,y)=\rho(y,z)$.

В первом случае, если x=z, то (2.3) выполняется. Если $x\neq z$, то из неравенства

$$\rho(x,y) > \rho(y,z)$$

следует, что

$$k_0(x,y) < k_0(y,z).$$

То есть до координаты $k_0(x,y)$ включительно элементы y и z неразличимы. Начиная с $k_0(x,y)$ элемент x отличается от y, следовательно, x отличается от z. Тогда $k_0(x,z) = k_0(x,y)$, то есть

$$\rho(x,z) = \rho(x,y).$$

Итак, доказана импликация:

$$\rho(x,y) > \rho(y,z) \Longrightarrow \rho(x,z) = \rho(x,y).$$

Аналогично, поменяв местами в последнем рассуждении x и z, во втором случае получим:

$$\rho(x,y) < \rho(y,z) \Longrightarrow \rho(x,z) = \rho(y,z).$$

Наконец, в третьем случае, из равенства $\rho(x,y)=\rho(y,z)$ следует, что $k_0(x,y)=k_0(y,z).$ Но тогда должно выполняться неравенство

$$k_0(x,z) \geqslant k_0(x,y).$$

Действительно, если предположить, что $k_0(x,z) < k_0(x,y)$, то, повторяя те же рассуждения, что и в первом случае, придем к равенству

$$k_0(y,z) = k_0(x,z),$$

из которого следует, что

$$k_0(y,z) = k_0(x,z) < k_0(x,y),$$

что противоречит предположению. Тогда

$$\rho(x,y) = \rho(y,z) \Longrightarrow \rho(x,z) \leqslant \rho(y,z).$$

Выполнение аксиомы треугольника в усиленной форме (2.3) доказано.

Попутно доказано и утверждение пункта в): если $\rho(x,y) \neq \rho(y,z)$, то

$$\rho(x, z) = \max(\rho(x, y), \rho(y, z)).$$

Теперь докажем, что любой открытый шар $S_r(x)$ является одновременно замкнутым множеством, причем выполняется равенство:

$$\overline{S_r(x)} = S_r(x). \tag{2.4}$$

В рассматриваемом пространстве открытый шар радиуса r определяется следующим образом:

$$S_r(x) = \left\{ z : k_0(x, z) > \frac{1}{r} \right\} \bigcup \{z = x\}$$

Докажем, что шар $S_r(x)$ содержит все свои предельные точки.

Точка x_* называется предельной точкой шара $S_r(x)$, если существует последовательность

$$z_n \in S_r(x), \quad z_n \neq x$$

такая, что

$$\rho(z_n, x_*) \to 0 \quad \text{при} \quad n \to \infty.$$

Для данной метрики это означает, что

$$k_0(x,z_n) > \frac{1}{r}, \quad k_0(z_n,x_*) \to \infty$$
 при $n \to \infty$.

Требуется доказать, что для любой предельной точки шара x_* выполняется неравенство $\rho(x,x_*) < r$, то есть

$$k_0(x, x_*) > \frac{1}{r}$$
 или $x = x_*$.

Предположим противное: $k_0(x, x_*) \leqslant \frac{1}{r}$. Так как для достаточно больших n выполняется неравенство

$$k_0(z_n, x_*) > k_0(x, z_n),$$

то $k_0(x,x_*)=k_0(x,z_n)$. Но правая часть этого равенства больше $\frac{1}{r}$, а левая, по предположению, не превосходит $\frac{1}{r}$ — противоречие. Равенство (2.4) доказано.

Теперь докажем, что для любого $y \in S_r(x)$ шар с центром в точке y радиуса r совпадает с шаром с центром в точке x радиуса r:

$$S_r(x) = S_r(y).$$

Сначала покажем, что

$$S_r(y) \subset S_r(x)$$
.

Пусть $z \in S_r(y)$, то есть

$$k_0(y,z) > \frac{1}{r}.$$

Так как $y \in S_r(x)$, то $k_0(x,y) > \frac{1}{r}$. Докажем, что $z \in S_r(x)$, то есть

$$k_0(x,z) > \frac{1}{r}.$$

Действительно, если $y \neq z \neq x$, то

$$k_0(x,z) = \min(k_0(y,z), k_0(x,y)) > \frac{1}{r}.$$

Если же z = y, то

$$k_0(x,z) \geqslant k_0(x,y) > \frac{1}{r}.$$

Аналогично для z = x.

Включение $S_r(x) \subset S_r(y)$ доказывается заменой в предыдущем рассуждении x на y.

Докажем, что любой замкнутый шар $\overline{S}_r(x)$ является одновременно открытым множеством. По определению,

$$\overline{S}_r(x) = \left\{ z : k_0(x, z) \geqslant \frac{1}{r} \right\} \bigcup \{z = x\}$$

Требуется доказать, что для любой точки $z \in \overline{S}_r(x)$ найдется $\varepsilon > 0$ такое, что $S_{\varepsilon}(z) \subset \overline{S}_r(x)$. Более подробно: для любого z: $k_0(x,z) \geqslant \frac{1}{r}$ найдется $\varepsilon > 0$:

$$\forall y \quad k_0(z,y) > \frac{1}{\varepsilon} \Longrightarrow k_0(x,y) \geqslant \frac{1}{r}.$$

Так как

$$k_0(x,y) \geqslant \min(k_0(x,z), k_0(z,y)),$$

то достаточно выбрать $\varepsilon < r$.

Докажем, что $\overline{S}_r(y)=\overline{S}_r(x)$ для любого $y\in \overline{S}_r(x)$. Пусть $z\in S_r(y)$, то есть $k_0(y,z)\geqslant \frac{1}{r}$. Покажем, что $z\in S_r(x)$, то есть $k_0(x,z)\geqslant \frac{1}{r}$. Так как $y\in \overline{S}_r(x)$, то $k_0(y,x)\geqslant \frac{1}{r}$. По неравенству треугольника

$$k_0(x,z) \geqslant \min(k_0(y,z), k_0(y,x)) \geqslant \frac{1}{r}.$$

Задача 2.7. Докажите утверждения е), ж), з) примера.

Пространство, рассмотренное в последнем примере, обладает довольно экзотическими свойствами. Это связано с тем, что неравенство треугольника в форме (2.3) соответствует геометрии, в которой не выполняется аксиома Архимеда (по-другому называемая аксиомой измеримости).

Аксиома Архимеда состоит в следующем. Рассмотрим прямую и выберем на ней два отрезка a и b с началом в одной точке, причем длина отрезка a меньше длины отрезка b. Тогда, прикладывая меньший отрезок a доль прямой достаточное число раз, мы в конце концов превзойдем больший отрезок b.

Как следует из свойства в), все треугольники в неархимедовом пространстве с метрикой (2.3) — равнобедренные.

Два разных шара не могут частично пересекаться: либо они не имеют общих точек, либо один из них содержится внутри другого.

Метрики, подобные рассмотренной выше, применяются в теоретической физике. Так, в монографии [4] для описания свойств микромира предлагается ввести так называемую *p*-адическую норму на множестве рациональных чисел. Неархимедовость этой нормы согласуется с соотношением неопределенности Планка.

Глава 3

Пространства непрерывных и непрерывно дифференцируемых функций

${f 3.1}$ Линейные нормированные пространства $C[a,b],\ C^m[a,b]$

C[a,b] — стандартное обозначение пространства непрерывных на отрезке [a,b] функций с максимум-метрикой

$$\rho(f, g) = \max_{t \in [a, b]} |f(t) - g(t)|.$$

Аксиомы метрики, очевидно, выполняются. Неравенство треугольника следует из неравенства для модулей (1.3).

Последовательность f_n сходится к f в метрике C[a,b], если

$$\max_{t \in [a,b]} |f_n(t) - f(t)| \to 0$$
 при $n \to \infty$.

Поэтому сходимость в C[a,b] последовательности элементов f_n к f есть равномерная сходимость последовательности функций $f_n(t)$ к функции f(t) на отрезке [a,b].

Задача 3.1. Пространство C[a,b] является линейным нормированным относительно нормы

$$||f|| = \max_{t \in [a,b]} |f(t)|.$$

Задача 3.2. Что собой представляет шар $S_1(0)$ в C[a,b]?

C[a,b] — сепарабельное пространство. Счетное всюду плотное множество в нем образуют многочлены с рациональными коэффициентами $P_Q[a,b]$. Действительно, любой многочлен можно сколь угодно точно приблизить многочленами с рациональными коэффициентами. Поэтому $P_Q[a,b]$ всюду плотно во множестве всех многочленов P[a,b]:

$$P_Q[a,b] \subset P[a,b]$$

По теореме Вейерштрасса, любую непрерывную функцию можно равномерно приблизить многочленами, поэтому

$$P[a,b] \subset C[a,b].$$

В следующих главах будет доказана полнота пространства C[a,b]. Таким образом, C[a,b] — сепарабельное банахово пространство.

На множестве непрерывно-дифференцируемых функций на отрезке [a,b] функций зададим метрику по правилу

$$\rho(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| + \max_{t \in [a,b]} |f'(t) - g'(t)|. \tag{3.1}$$

Сходимость последовательности f_n к f по этой метрике означает, что последовательности функций $f_n(t)$ равномерно сходится к функции f(t) на отрезке [a,b], и последовательность производных $f'_n(t)$ также сходится к f'(t) равномерно.

Задача 3.3. Пространство $C^1[a,b]$ является линейным нормированным относительно нормы

$$||f|| = \max_{t \in [a,b]} |f(t)| + \max_{t \in [a,b]} |f'(t)|.$$

 ${f 3}$ адача ${f 3.4.}$ Что собой представляет шар $S_1(0)$ в $C^1[a,b]$?

Задача 3.5. Докажите сепарабельность пространства $C^1[a,b]$.

В $C^1[a,b]$ можно задать эквивалентную метрику по правилу:

$$\rho_1(f,g) = \max(\max_{t \in [a,b]} |f(t) - g(t)|, \max_{t \in [a,b]} |f'(t) - g'(t)|)$$

38

Действительно, для метрик ρ (3.1) и ρ_1 выполняется двойное неравенство:

$$\rho_1(f,g) \leqslant \rho(f,g) \leqslant 2\rho_1(f,g).$$

Задача 3.6. Приведите другие примеры метрик в $C^1[a,b]$, эквивалентных ρ (3.1).

Аналогично определяется пространство m раз непрерывно-дифференцируемых функций на отрезке [a,b].

Задача 3.7. Пусть $C^m[a,b]$ — множество всех m раз непрерывнодифференцируемых функций на конечном отрезке [a,b]. Докажите, что

$$\rho(f,g) = \sup_{0 \le n \le m} \max_{t \in [a,b]} |f^{(n)}(t) - g^{(n)}(t)|. \tag{3.2}$$

— метрика на $C^m[a,b]$.

Задача 3.8. Что означает сходимость в пространстве $C^m[a,b]$?

Задача 3.9. Пространство $C^m[a,b]$ является линейным нормированным относительно нормы

$$||f|| = \sup_{0 \le n \le m} \max_{t \in [a,b]} |f^{(n)}(t)|.$$

Задача 3.10. Докажите сепарабельность пространства $C^m[a,b]$.

Задача 3.11. Приведите пример метрики на множестве т раз непрерывно-дифференцируемых на отрезке [a,b] функций, эквивалентной (3.2).

Позже мы докажем полноту пространства $C^m[a,b]$.

Если Ω — ограниченная область в \mathbb{R}^n , то пространства непрерывных в замыкании Ω функций $C(\overline{\Omega})$ и m раз непрерывно дифференцируемых в замыкании Ω функций $C^m(\overline{\Omega})$ определяются аналогично.

3.2 Примеры счетно-нормированных пространств

На множестве непрерывных на интервале (a, b) функций также можно задать метрику. При этом используется та же конструкция, что и для определения метрики в пространстве последовательностей S. Полученное пространство нормированным не будет, оно является счетно-нормированным.

Определение 3.1. Последовательность x_n в линейном нормированном пространстве X называется фундаментальной, если $||x_n - x_m|| \to 0$ при $n, m \to \infty$.

Определение 3.2. Две нормы в линейном пространстве X называются согласованными, если любая последовательность $x_n \in X$, фундаментальная по каждой из этих норм и сходящаяся к некоторому пределу $x \in X$ по одной из этих норм, сходится к тому же пределу и по второй норме.

Определение 3.3. Линейное пространство X называется счетнонормированным, если в нем задана счетная система согласованных друг с другом норм $||x||_n$, $n=1,2,\ldots$

В каждом счетно-нормированном пространстве можно ввести метрику по правилу:

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|f - g\|_n}{1 + \|f - g\|_n}.$$
 (3.3)

Вместо норм в (3.3) могут задаваться полунормы. Полунорма отличается от нормы тем, что из равенства нулю ||f|| = 0 не следует, что f = 0.

Пример 3.1. Пространство C(a,b) определяется как множество непрерывных на интервале (a,b) функций f(t) со счетной системой полунорм:

$$||f||_n = \max_{t \in K_n} |f(t)|, \quad (a, b) = \bigcup_{n=1}^{\infty} K_n,$$

 $K_n - компактные множества (в данном случае отрезки), такие, что <math>K_n \subset K_{n+1}.$

Метрика в C(a,b) задается по правилу

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\max_{t \in K_n} |f(t) - g(t)|}{1 + \max_{t \in K_n} |f(t) - g(t)|}.$$
 (3.4)

Сходимость по метрике ρ (3.4) — это равномерная на любом компактном множестве K_n сходимость функций.

Рассмотрим функции, непрерывные на прямой.

Задача 3.12. Докажите, что на множестве $C(\mathbb{R})$ всех непрерывных функций на \mathbb{R} можно ввести метрику

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\max_{-n \le t \le n} |f(t) - g(t)|}{1 + \max_{-n \le t \le n} |f(t) - g(t)|}$$

Задача 3.13. Что означает сходимость в $C(\mathbb{R})$?

Аналогично определяется пространство $C(\Omega)$ для любой области $\Omega \in \mathbb{R}^n$.

Теперь рассмотрим множество всех бесконечно дифференцируемых функций на отрезке.

Задача 3.14. Пусть $C^{\infty}[a,b]$ — множество всех бесконечно дифференцируемых функций на конечном отрезке [a,b]. Докажите, что

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\max_{t \in [a,b]} |f^{(n)}(t) - g^{(n)}(t)|}{1 + \max_{t \in [a,b]} |f^{(n)}(t) - g^{(n)}(t)|}$$

— метрика на $C^{\infty}[a,b]$.

Задача 3.15. Каков смысл сходимости в $C^{\infty}[a,b]$?

Задача 3.16. Докажите сепарабельность пространства $C^{\infty}[a,b]$.

Структуру счетно-нормированного пространства можно также ввести на множестве функций, бесконечно дифференцируемых на прямой.

Задача 3.17. Аналогично предыдущим упраженениям определите метрику на $C^{\infty}(\mathbb{R})$.

Глава 4

Пространства Лебега

4.1 Пространства $L_p(a,b), 1 \leq p < \infty$

Пространство $L_p(a,b)$, $1\leqslant p<\infty$ (сравните с определением ℓ_p) состоит из функций f(x), измеримых по Лебегу, таких, что существует интеграл Лебега от p-ой степени f(x)

$$\int_{a}^{b} |f(x)|^{p} dx < \infty,$$

и расстояние определяется по формуле:

$$\rho_p(f,g) = \left\{ \int_a^b |f(x) - g(x)|^p \, dx \right\}^{1/p}.$$

Две функции, отличающиеся на множестве меры ноль, отождествляются как элементы $L_p(a,b)$.

Строго говоря, элементами пространства $L_p(a,b)$ являются классы эквивалентных (т.е. отличающихся на множестве меры ноль) функций, а расстояние между классами определяется как расстояние между любыми их представителями.

Выполнение неравенства треугольника в $L_p(a,b)$ следует из неравенства Минковского для интегралов:

$$\left\{ \int_{a}^{b} |f(x) + g(x)|^{p} dx \right\}^{1/p} \leqslant \left\{ \int_{a}^{b} |f(x)|^{p} dx \right\}^{1/p} + \left\{ \int_{a}^{b} |g(x)|^{p} dx \right\}^{1/p}, \tag{4.1}$$

 $1\leqslant p<\infty$, которое (при $p\neq 1$) вытекает из неравенства Гельдера:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leq \left\{ \int_{a}^{b} |f(x)|^{p} dx \right\}^{1/p} \left\{ \int_{a}^{b} |g(x)|^{q} dx \right\}^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1, \tag{4.2}$$

 $1 < p, q < \infty$.

Задача 4.1. Докажите неравенство Гельдера (4.2) для измеримых по Лебегу функций.

Указание. Примените неравенство Юнга (1.5).

Задача 4.2. Докажите, что неравенство Гельдера обращается в равенство, если

$$\begin{cases} \frac{|f(x)|^p}{b} = \frac{|g(x)|^q}{b}, \\ \int_a^b |f(x)|^p dx & \int_a^b |g(x)|^q dx \\ \operatorname{sgn} f(x)g(x) & \stackrel{nownu}{=} const. \end{cases}$$

Задача 4.3. Выведите неравенство Минковского (4.1) из неравенства Гельдера.

Задача 4.4. Проверьте выполнение аксиом метрики для $\rho_p(f,g)$.

Задача 4.5. Пользуясь тем, что множество непрерывных на отрезке [0,1] функций C[0,1] всюду плотно в пространстве $L_p(0,1)$, установите сепарабельность $L_p(0,1)$ при $1\leqslant p<\infty$.

Далее в этой главе через $||f||_{L_p(a,b)}$ обозначается норма функции f в пространстве $L_p(a,b)$:

$$||f||_{L_p(a,b)} = \left\{ \int_a^b |f(x)|^p dx \right\}^{1/p}.$$

При p=q=2 из неравенства Гельдера (4.2) получаем неравенство Коши-Буняковского:

$$\left| \int_{a}^{b} f(x)g(x) \, dx \right| \leqslant \left\{ \int_{a}^{b} |f(x)|^{2} \, dx \right\}^{1/2} \left\{ \int_{a}^{b} |g(x)|^{2} \, dx \right\}^{1/2}. \tag{4.3}$$

Пространство $L_2(a,b)$ отличается от прочих $L_p(a,b)$ тем, что в нем можно задать скалярное произведение. Напомним определение скалярного произведения.

Определение 4.1. Пусть X — линейное пространство X над полем \mathbb{C} . Функция $(,): X \times X \longmapsto \mathbb{C}$ называется скалярным произведением, если она удовлетворяет следующим аксиомам:

1.
$$(x,x) \ge 0$$
, $npuvem (x,x) = 0 \Leftrightarrow x = 0$;

2.
$$(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z);$$

$$3. \quad (x,y) = \overline{(y,x)};$$

 $\forall x, y, z \in X, \ \forall \alpha, \beta \in \mathbb{C}, \ черта \ означает \ комплексное \ сопряжение.$

В случае вещественного линейного пространства скалярное произведение симметрично.

Задача 4.6. Докажите, что формула

$$(f,g) = \int_{a}^{b} f(x)g(x) dx$$

задает скалярное произведение в вещественном пространстве $L_2(a,b)$.

Неравенство Коши-Буняковского (4.3) можно переписать в виде

$$|(f,g)| \le ||f||_{L_2(a,b)} ||g||_{L_2(a,b)}.$$

Определим косинус угла между элементами пространства $L_2(a,b)$ по формуле

$$\cos(\widehat{f,g}) = \frac{(\widehat{f,g})}{\|f\|_{L_2(a,b)} \|g\|_{L_2(a,b)}}.$$

Тогда неравенство Коши-Буняковского допускает следующую трактовку: косинус по модулю не превосходит единицу.

Задача 4.7. Равенство в неравенстве Коши-Буняковского выполняется тогда и только тогда, когда f(x) = c g(x) (то есть $|\cos(\widehat{f}, g)| = 1$).

Теперь сформулируем утверждения о пространствах $L_p(a,b)$, $1 \leq p < \infty$, которые доказываются с помощью неравенства Гельдера (4.2).

Пример 4.1. Справедливо включение:

$$L_p(a,b) \subset L_q(a,b)$$
 npu $p \geqslant q$.

Доказательство. Пусть $f \in L_p(a,b)$. Тогда q-ю степень нормы f в пространстве $L_q(a,b)$ можно представить в виде

$$||f||_{L_q(a,b)}^q = \int_a^b |f(x)|^q dx = \int_a^b 1 \cdot |f(x)|^q dx.$$

К правой части этого выражения применим неравенство Гельдера с сопряженными показателями r и s: $\frac{1}{r} + \frac{1}{s} = 1$.

$$\int_{a}^{b} 1 \cdot |f(x)|^{q} dx \leqslant \left(\int_{a}^{b} 1 dx\right)^{\frac{1}{r}} \cdot \left(\int_{a}^{b} |f(x)|^{qs} dx\right)^{\frac{1}{s}}.$$

Положив $s=\frac{p}{q}$ и учитывая, что тогда $r=\frac{p}{p-q}$, перепишем правую часть последнего неравенства в виде

$$\left(\int_{a}^{b} 1 \, dx\right)^{\frac{1}{r}} \cdot \left(\int_{a}^{b} |f(x)|^{qs} \, dx\right)^{\frac{1}{s}} = (b-a)^{\frac{p-q}{p}} \|f\|_{L_{p}}^{q}.$$

Окончательно,

$$||f||_{L_q(a,b)}^q \le (b-a)^{\frac{p-q}{p}} ||f||_{L_p(a,b)}^q.$$

Извлекая степень q, приходим к оценке:

$$||f||_{L_q(a,b)} \le (b-a)^{\frac{p-q}{p\,q}} ||f||_{L_p(a,b)}, \quad p \geqslant q.$$
 (4.4)

Задача 4.8. Пусть $1 \leqslant p < r < q < \infty$. Тогда любая функция $f \in L_p(a,b) \cap L_q(a,b)$ принадлежит пространству $L_r(a,b)$, и выполняется неравенство:

$$||f||_{L_r(a,b)} \le ||f||_{L_p(a,b)}^{\alpha} ||f||_{L_q(a,b)}^{\beta},$$

$$e\partial e \ \alpha = \frac{1/r - 1/q}{1/p - 1/q}, \ \beta = \frac{1/p - 1/r}{1/p - 1/q}.$$

Норму функции в L_r можно оценить также через сумму двух слагаемых, одно из которых велико, а другое мало.

Задача 4.9. Пусть $f \in L_p(a,b), f \in L_q(a,b), p < q$. Тогда $f \in L_r(a,b)$ для всех r таких, что p < r < q, u для любого $\varepsilon > 0$ выполняется оценка

$$||f||_{L_q(a,b)} \le \varepsilon ||f||_{L_p(a,b)} + \varepsilon^{-\mu} ||f||_{L_q(a,b)},$$
 (4.5)

где

$$\mu = \frac{\frac{1}{r} - \frac{1}{q}}{\frac{1}{p} - \frac{1}{r}}, \ 1 \leqslant p < r < q < \infty.$$

Указание. Для доказательства воспользуйтесь интерполяционным неравенством Юнга

$$ab \leqslant \varepsilon a^{\frac{1}{\alpha}} + \varepsilon^{-\frac{\alpha}{\beta}} b^{\frac{1}{\beta}},$$
 (4.6)

которое справедливо для любого $\varepsilon > 0$, для любых неотрицательных a и b, $\alpha > 0, \ \beta > 0, \ \alpha + \beta = 1.$

Пример 4.2. Пусть $f \in L_p(a,b)$, $g \in L_q(a,b)$. Тогда fg принадлежит $L_s(a,b)$, где показатель s определяется из равенства:

$$\frac{1}{s} = \frac{1}{p} + \frac{1}{q}$$

и выполняется оценка:

$$||fg||_{L_s(a,b)} \le ||f||_{L_n(a,b)} ||g||_{L_a(a,b)}.$$

Доказательство. Обозначим $p'=\frac{p}{s},\ q'=\frac{q}{s}.$ Тогда выполняется равенство $\frac{1}{p'}+\frac{1}{q'}=1.$ Применим неравенство Гельдера с сопряженными показателями

p', q':

$$\int_{a}^{b} |f(x)g(x)|^{s} dx \leq \left(\int_{a}^{b} |f(x)|^{p's} dx\right)^{\frac{1}{p'}} \left(\int_{a}^{b} |g(x)|^{q's} dx\right)^{\frac{1}{q'}} =$$

$$= \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{s}{p}} \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{\frac{s}{q}} = \|f\|_{L_{p}(a,b)}^{s} \|g\|_{L_{q}(a,b)}^{s}.$$

Таким образом, $||fg||_{L_s(a,b)} \leq ||f||_{L_p(a,b)} ||g||_{L_q(a,b)}$.

Задача 4.10. Пусть $f \in L_p(a,b), g \in L_q(a,b), h \in L_r(a,b), nричем$

$$\frac{1}{r} + \frac{1}{p} + \frac{1}{q} = 1$$

Тогда fgh суммируема и выполняется неравенство:

$$||fgh||_{L_1(a,b)} \le ||f||_{L_p(a,b)} ||g||_{L_q(a,b)} ||h||_{L_r(a,b)}.$$

Вернемся к неравенству Минковского. Если хотя бы одна из функций f(x) или g(x) равна нулю почти всюду, то неравенство Минковского превращается в равенство. Если же ни одна из функций не обращается в ноль почти всюду, то условия обращения неравенства в равенство формулируются по-разному для случаев p=1 и p>1.

Задача 4.11. Проверьте, что при p=1 неравенство Минковского обращается в равенство, если

$$\operatorname{sgn} f(x) = \operatorname{sgn} g(x), \tag{4.7}$$

a npu p > 1, если

$$f(x) = c g(x), c > 0.$$
 (4.8)

В следующем разделе будет показано, что различие условий (4.7) и (4.8) приводит к тому, что множества экстремальных точек шаров в $L_p(a,b)$ при p=1 и p>1 различны.

4.2. Экстремальные точки шара $\overline{S}_1(0)$ в пространствах $L_P(0,1)$ 47

4.2 Экстремальные точки шара $\overline{S}_1(0)$ в пространствах $L_p(0,1)$

Определение 4.2. Пусть X — линейное пространство над полем \mathbb{R} . Замкнутым отрезком, соединяющим точки a u b, называется множество точек

$$\{f \in X \mid f = t \, a + (1 - t) \, b, \ t \in [0, 1]\}.$$

Определение 4.3. Множество $M \subset X$ называется выпуклым, если $\forall m_1, m_2 \in M$ отрезок, соединяющий точки m_1 и m_2 , принадлежит X.

Далее в этом параграфе будем предполагать, что M — выпуклое множество.

Определение 4.4. Точка $x^* \in M$ называется экстремальной точкой множества M, если x^* не является серединой никакого отрезка, целиком принадлежащего M.

То, что x^* является серединой, означает

$$x^* = \frac{1}{2}(a+b), \ a, \ b \in M, \ a \neq b, \ b \neq x^*.$$
 (4.9)

Если M - открытое множество, то для него экстремальных точек нет по определению открытого множества.

Пример 4.3. Пусть в \mathbb{R}^3 задана евклидова норма

$$||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

Рассмотрим замкнутый единичный шар

$$\overline{S}_1(0) = \{ x \in \mathbb{R}^3 \mid ||x|| \leqslant 1 \}.$$

Tогда множество экстремальных точек — это сфера

$${x \in \mathbb{R}^3 \mid ||x|| = 1}.$$

4.2. Экстремальные точки шара $\overline{S}_1(0)$ в пространствах $L_P(0,1)$ 48

Пример 4.4. Рассмотрим в евклидовом пространстве \mathbb{R}^3 замкнутый прямоугольный параллелепипед

$$\Pi = \{ x \in \mathbb{R}^3 \mid |x_i| \leqslant 1; \quad 1 \leqslant i \leqslant n \}.$$

Экстремальные точки - его вершины.

Пример 4.5. Аналогично, если на плоскости задана евклидова метрика, то экстремальные точки замкнутого единичного круга $\bar{S}_1(0)$ заполняют окружность. Если же на плоскости задать метрику по-другому:

$$\rho_1(x,y) = |x_1 - y_1| + |x_2 - y_2|,$$

так, что

$$||x|| = |x_1| + |x_2|,$$

то замкнутый единичный шар в этой метрике является квадратом. Следовательно, экстремальные точки— его вершины.

Оказывается, что нечто подобное наблюдается в пространствах функций L_p . Если p > 1, то экстремальные точки замкнутого единичного шара заполняют сферу. А если p = 1, то экстремальных точек нет (элементы, отличающиеся на множестве меры ноль, отождествляются)!

Пример 4.6. В пространствах $L_p(0,1)$, $1 экстремальные точки замкнутого шара заполняют сферу <math>\{f \mid ||f||_{L_p} = 1\}$. Других экстремальных точек нет.

4.2. Экстремальные точки шара $\overline{S}_1(0)$ в пространствах $L_P(0,1)$ 49

Пусть сначала f принадлежит замкнутому шару радиуса $\frac{1}{2}$:

$$||f||_{L_p} \leqslant \frac{1}{2}.$$

Докажем, что найдутся элементы $g, h \in \overline{S}_1(0)$ такие, что f является серединой отрезка, соединяющего g и h: $f = \frac{1}{2}(g+h)$.

Действительно, если положить $g=2f,\ h=0,$ то $f=\frac{1}{2}(g+h)$ и

$$||g||_{L_p} = 2||f||_{L_p} \leqslant 1; \quad ||h|| = 0.$$

Следовательно, $g,\ h\in \overline{S}_1(0)$ и никакая точка $f\in \overline{S}_{\frac{1}{2}}(0)$ не является экстремальной точкой шара $\overline{S}_1(0)$.

Теперь рассмотрим сферический слой

$$\frac{1}{2} < ||f||_{L_p} < 1.$$

Пусть $||f||_{L_p} = \frac{1}{M}$, где 1 < M < 2, тогда f(x) можно представить в виде

$$f(x) = tf(x) + (1 - t)f(x),$$

где $t = \frac{M}{2}, \, t \in (\frac{1}{2}, 1)$, то есть

$$f(x) = \frac{1}{2} [M f(x) + (2 - M)f(x)].$$

Положим

$$g(x) = M f$$
, $h(x) = (2 - M)f(x)$.

Тогда

$$||g||_{L_p} = M ||f||_{L_p} = M \frac{1}{M} = 1, \quad ||h||_{L_p} = (2 - M)||f||_{L_p} = \frac{2 - M}{M}.$$

Так как M > 1,
то 2 - M < M. Следовательно,

$$\frac{2-M}{M} < \frac{M}{M} = 1.$$

Поэтому $||h||_{L_p} < 1$ и $g, h \in \overline{S}_1(0)$. Таким образом, никакая точка открытого шара не может быть экстремальной точкой замкнутого шара.

Замечание 4.1. Если рассмотреть $f_t = tg + (1 - t)h$, $g, h \in \overline{S}_1(0)$, $t \in [0, 1]$, то по свойству нормы $f_t \in \overline{S}_1(0)$, $t \in [0, 1]$, т. е.

$$||f_t||_{L_p} \le t ||g||_{L_p} + (1-t)||h||_{L_p} \le t \cdot 1 + (1-t) \cdot 1 = 1.$$

Замечание 4.2. В проведенном доказательстве важно, что $f \neq g$, $f \neq h$, m. e. отрезок не вырождается в точку.

Теперь докажем, что точки сферы

$${f \mid ||f||_{L_p} = 1}$$

являются экстремальными точками замкнутого шара $\overline{S}_1(0)$.

Доказательство проведем от противного. Предположим, что для любой точки f единичной сферы найдутся элементы $g,\ h$, которые принадлежат замкнутому шару $\overline{S}_1(0)$ и f является серединой отрезка, соединяющего g и h:

$$f = \frac{1}{2}(g+h).$$

При этом $f \neq g, \ f \neq h$. Тогда, по неравенству Минковского

$$1 = ||f||_{L_p} = \frac{1}{2}||g + h||_{L_p} \le \frac{1}{2}(||g||_{L_p} + ||h||_{L_p}).$$

Так как $\|g\|_{L_p} \leqslant 1$ и $\|h\|_{L_p} \leqslant 1$, то знак строгого неравенства в последнем неравенстве невозможен, следовательно, необходимо, чтобы каждая из норм равнялась единице: $\|g\|_{L_p} = 1$, $\|h\|_{L_p} = 1$.

Тогда

$$||g + h||_{L_p} = ||g||_{L_p} + ||h||_{L_p}. (4.10)$$

Поскольку $1 (это важно!), то <math>g = c \, h, \ c > 0$. Поэтому

$$f = \frac{1}{2}(ch + h) = \frac{c+1}{2}h.$$

Так как $||f||_{L_p} = 1$, $||h||_{L_p} = 1$, то $\frac{c+1}{2} = 1$. Следовательно, c = 1. Тогда g = h, f = h, т. е. отрезок превращается в точку — противоречие.

Задача 4.12. Экстремальных точек замкнутого шара $\overline{S}_1(0)$ в пространстве $L_1(0,1)$ не существует.

4.3 Пространство $L_{\infty}(a,b)$

Пусть y = g(x) — ограниченная сверху функция на интервале (a, b), то есть существует такая константа M, что

$$g(x) \leqslant M \quad \forall x \in (a, b).$$

Тогда можно определить точную верхнюю грань функции g(x).

Определение 4.5. M_* называется точной верхней гранью (супремумом) функции g(x)

$$M_* = \sup_{x \in (a,b)} g(x),$$

если выполняются следующие свойства

- 1) $g(x) \leq M_*$, т. е. M_* одна из верхних граней функции g(x);
- 2) $\forall \varepsilon > 0 \exists x_{\varepsilon} \neq \emptyset, x_{\varepsilon} \in (a,b) : g(x_{\varepsilon}) > M_* \varepsilon.$

Пусть теперь g(x) ограничена сверху почти всюду на интервале (a,b):

$$g(x) \leqslant M$$
 п.в. $x \in (a,b)$.

Тогда можно определить существенный супремум функции g(x).

Определение 4.6. Число α_* называется существенным супремумом функции g(x)

$$\alpha_* = \operatorname{ess\,sup}_{x \in (a,b)} g(x),$$

e cлu

- 1) $g(x) \leqslant \alpha_*$ normu всюду в (a,b).
- 2) $\forall \varepsilon > 0 \exists (a_{\varepsilon}, b_{\varepsilon}) \subset (a, b) : \operatorname{mes}(a_{\varepsilon}, b_{\varepsilon}) \neq 0, \forall x \in (a_{\varepsilon}, b_{\varepsilon}) \quad g(x) > \alpha_* \varepsilon.$

Существенный супремум можно определить и по-другому.

Определение 4.7.

$${\rm ess} \sup_{x \in (a,b)} g(x) = \inf \left\{ \alpha | \, {\rm mes}(x \in (a,b) : g(x) > \alpha) = 0 \right\}.$$

Задача 4.13. Докажите эквивалентность двух определений существенного супремума.

Пространство $L_{\infty}(a,b)$ определяется как множество измеримых на (a,b) функций f(x), для каждой из которых существует константа α_f , зависящая от f такая, что для почти всех $x \in (a,b)$ выполняется неравенство:

$$|f(x)| \leqslant \alpha_f$$

и норма f определяется как существенный супремум модуля функции f(x):

$$||f||_{L_{\infty}} = \operatorname{ess\,sup}_{x \in (a,b)} |f(x)|,$$

где

$$\operatorname{ess\,sup}_{x \in (a,b)} |f(x)| = \inf_{\alpha \in R} \{ \alpha | \operatorname{mes}(x \in (a,b) : |f(x)| > \alpha) = 0 \}.$$

Докажите следующие утверждения о пространстве $L_{\infty}(a,b)$:

Задача 4.14. $L_{\infty}(a,b)$ — не сепарабельное пространство.

Задача 4.15. Пространство $L_{\infty}(a,b)$ вложено в каждое из пространств $L_p(a,b)$ при $1 \le p < \infty$:

$$L_{\infty}(a,b) \subset \bigcap_{p=1}^{\infty} L_p(a,b),$$

причем выполняется неравенство:

$$||f||_{L_p(a,b)} \le (b-a)^{1/p} ||f||_{L_\infty(a,b)} \quad \forall p : 1 \le p < \infty.$$

Задача 4.16. Пусть $f \in L_1(a,b), g \in L_\infty(a,b)$. Докажите неравенство Гельдера:

$$\left| \int_{a}^{b} f(t)g(t)dt \right| \leqslant \int_{a}^{b} |f(t)|dt \operatorname{ess\,sup}_{t \in (a,b)} |g(t)|.$$

Прежде, чем сформулировать следующее утверждение о пространстве $L_{\infty}(a,b)$, напомним его конечномерный аналог.

Пусть в пространстве \mathbb{R}^n при $1 \leqslant p < \infty$ заданы нормы

$$||x||_p = \left[\sum_{i=1}^n |x_i|^p\right]^{\frac{1}{p}},$$

а также максимум-норма

$$||x||_{\infty} = \max_{1 \le i \le n} |x_i|.$$

Тогда для любого $x \in \mathbb{R}^n$ справедливо предельное соотношение

$$||x||_{\infty} = \lim_{p \to \infty} ||x||_p$$

Аналогичная связь существует между нормами в пространствах $L_p(a,b)$ при $1 и нормой в пространстве <math>L_\infty(a,b)$.

Пример 4.7. Справедливо предельное соотношение

$$||f||_{L_{\infty}(a,b)} = \lim_{p \to \infty} ||f||_{L_{p}(a,b)}.$$

$$||f||_{L_p(a,b)} = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}} \leqslant \operatorname{ess\,sup}_{x \in (a,b)} |f(x)| (b-a)^{\frac{1}{p}}, \quad 1 \leqslant p < \infty.$$

Таким образом,

$$||f||_{L_p(a,b)} \le (\text{mes }\Omega)^{\frac{1}{p}} ||f||_{L_\infty(a,b)}.$$
 (4.11)

С другой стороны, по определению существенного супремума, для любого $\varepsilon > 0$ найдется интервал ненулевой длины $(a_{\varepsilon}, b_{\varepsilon})$, который является подмножеством (a, b) такой, что для всех x из этого интервала справедлива оценка

$$\forall x \in (a_{\varepsilon}, b_{\varepsilon}) \quad |f(x)| > ||f||_{L_{\infty}(a,b)} - \varepsilon.$$

Возведем последнее неравенство в степень p и проинтегрируем по интервалу $(a_{\varepsilon}, b_{\varepsilon})$. Получим

$$\int_{a_{\varepsilon}}^{b_{\varepsilon}} |f(x)|^{p} dx > (\|f\|_{L_{\infty}(a,b)} - \varepsilon)^{p} (b_{\varepsilon} - a_{\varepsilon}).$$

Тогда

$$||f||_{L_p(a,b)} > ||f||_{L_p(a_{\varepsilon},b_{\varepsilon})} > (||f||_{L_{\infty}(a,b)} - \varepsilon)(b_{\varepsilon} - a_{\varepsilon})^{\frac{1}{p}}. \tag{4.12}$$

Из (4.11) — (4.12) следует двойное неравенство

$$(\|f\|_{L_{\infty}(a,b)} - \varepsilon)(b_{\varepsilon} - a_{\varepsilon})^{\frac{1}{p}} \leqslant \|f\|_{L_{p}(a,b)} \leqslant (b_{\varepsilon} - a_{\varepsilon})^{\frac{1}{p}} \|f\|_{L_{\infty}(a,b)}. \tag{4.13}$$

Устремив $p \to +\infty$, получим требуемое равенство.

Доказанные утверждения позволяют рассматривать шкалу пространств $L_p(a,b)$ при $1\leqslant p\leqslant \infty$.

Задача 4.17. Установите для конечного интервала (a,b) теоретико-множественные включения

$$L_{\infty}(a,b) \subset L_p(a,b) \subset L_q(a,b) \subset L_1(a,b), \quad 1 < q < p < \infty.$$

Сохраняются ли указанные включения для неограниченного интервала?

Задача 4.18. Из результатов предыдущей задачи следует, что на $L_{\infty}(a,b)$ определены все метрики $\rho_p(f,g),\ 1\leqslant p<\infty$. Являются ли они эквивалентными?

Задача 4.19. Найдите норму функции $f(t) = t^{\alpha}$ в тех пространствах $L_p(0,1), 1 \leq p \leq \infty$, которым эта функция принадлежит.

4.4 Пространства $L_{p, loc}(\Omega)$

Пусть Ω — область в \mathbb{R}^n , не обязательно ограниченная. Множество измеримых в Ω функций, p-ая степень модуля которых интегрируема по любой ограниченной строго внутренней подобласти Ω' области Ω , $\Omega' \subseteq \Omega$, обозначим через $L_{p,loc}(\Omega)$.

Очевидно, что выполняется включение $L_p(\Omega) \subset L_{p,loc}(\Omega)$.

В пространстве $L_{p,loc}(\Omega)$ можно ввести счетную систему полунорм. Пусть K_n — последовательность вложенных друг в друга ограниченных и замкнутых множеств : $K_n \subset K_{n+1}$ таких, что

$$\Omega = \bigcup_{n=1}^{\infty} K_n.$$

Зададим семейство полунорм

$$||f||_n = ||f||_{L_p(K_n)}.$$

Тогда расстояние в $L_{p,loc}(\Omega)$ можно определить по формуле:

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|f - g\|_n}{1 + \|f - g\|_n}.$$

Пример 4.8. Пусть $x \in \mathbb{R}$. Рассмотрим функцию

$$f(x) = \frac{1}{(1-|x|)^{\alpha}}, \quad \alpha > 0.$$

Она принадлежит пространствам $L_{1,loc}$ (|x|<1), $L_{2,loc}$ (|x|<1) для любого α . В то же время функция принадлежит L_1 (|x|<1) только при $\alpha<1$, $u\ f\in L_2$ (|x|<1) при $\alpha<\frac{1}{2}$.

Глава 5

Непрерывность отображений

Аналогично понятию непрерывности функций формулируется понятие непрерывности отображений метрических пространств. Сначала сформулируем определение на языке последовательностей.

Определение 5.1. Пусть (X, ρ) , (Y, d)— метрические пространства. Отображение $f: X \to Y$ называется непрерывным в точке x_0 , если для любой последовательности $x_n \in X$ из того, что $x_n \to x_0$ по метрике ρ , следует, что $f(x_n) \to f(x_0)$ по метрике d при $n \to \infty$.

Теперь сформулируем определение непрерывности отображений на языке $\varepsilon-\delta$.

Определение 5.2. Отображение $f: X \to Y$ называется непрерывным в точке x_0 , если

$$\forall \varepsilon > 0 \exists \delta > 0 \forall x : \rho(x, x_0) < \delta \Longrightarrow d(f(x), f(x_0)) < \varepsilon.$$

Задача 5.1. Докажите эквивалентность двух сформулированных определений.

Определение 5.3. Отображение $f: X \to Y$ называется непрерывным, если оно непрерывно в каждой точке пространства X.

Задача 5.2. Покажите непрерывность метрики $\rho: X \times X \to \mathbb{R}$ в метрическом пространстве (X, ρ) .

 ${f y}$ казание. Рассмотрите в декартовом произведении произведении X imes X одну из эквивалентных метрик

$$d_1((x_1, x_2), (y_1, y_2)) = (\rho^2(x_1, y_1) + \rho^2(x_2, y_2))^{1/2},$$

$$d_2((x_1, x_2), (y_1, y_2)) = \rho(x_1, y_1) + \rho(x_2, y_2),$$

$$d_3((x_1, x_2), (y_1, y_2)) = \max(\rho(x_1, y_1), \rho(x_2, y_2))$$

 $\forall (x_1, x_2), (y_1, y_2) \in X \times X$ и воспользуйтесь неравенством четырехугольника

$$|\rho(x,z) - \rho(y,t)| \le \rho(x,y) + \rho(z,t).$$

Задача 5.3. Докажите следующие критерии непрерывности: отображение $f: X \to Y$ непрерывно тогда и только тогда, когда для любого открытого множества $U \subset Y$ (замкнутого множества $F \subset Y$) множество $f^{-1}(U)$ открыто в X ($f^{-1}(F)$ замкнуто в X).

Задача 5.4. Является ли непрерывным отображение $f: C[0,1] \to C[0,1]$, определяемое формулой $f(x(t)) = x^3(t)$?

Пример 5.1. На множестве непрерывных на отрезке [0,1] функций введем интегральную метрику

$$\rho_1(f,g) = \int_{0}^{1} |f(t) - g(t)| dt.$$

Получившееся функциональное пространство обозначим $\mathfrak{R}_1[0,1]$. Покажем, что отображение

$$f: \mathfrak{R}_{1}[0,1] \to \mathfrak{R}_{1}[0,1],$$

определяемое соотношением

$$f(x(t)) = x^2(t).$$

не будет непрерывным в этой метрике.

Доказательство. Покажем, что данное отображение не является непрерывным в нуле. Для доказательства достаточно построить последовательность непрерывных функций $x_n(t)$, для которых

$$\rho_1(x_n, 0) = \int_0^1 |x_n(t)| dt \to 0,$$

a

$$\rho_1(x_n^2, 0) = \int_0^1 |x_n(t)|^2 dt \not\to 0,$$

при $n \to \infty$.

В качестве $x_n(t)$ выберем кусочно-линейную функцию

$$x_n(t) = \begin{cases} b_n(1 - t/a_n) & \text{при} & 0 \leqslant t \leqslant a_n; \\ 0 & \text{при} & a_n \leqslant t \leqslant 1. \end{cases}$$

Тогда

$$\rho(x_n, 0) = \frac{a_n b_n}{2}, \quad \rho(x_n^2, 0) = \frac{a_n b_n^2}{3}.$$

Поэтому достаточно выбрать, например, $a_n = \frac{1}{n}, b_n = \sqrt{n}$.

Задача 5.5. Пусть X — множество непрерывно дифференцируемых функций на [0,1], для которых x(0) = 0, с метрикой

$$\rho(x,y) = \max_{0 \le t \le 1} |x(t) - y(t)|.$$

Является ли непрерывным отображение $f:(X,\rho)\to C[0,1]$, определяемое формулой

$$f(x)(t) = \frac{x(t)}{t}?$$

Задача 5.6. Являются ли непрерывными следующие отображения пространства C[0,1] в себя:

a)
$$f(x)(t) = \int_0^t x(s)ds$$
,
6) $f(x)(t) = x(t^{\alpha}), \alpha > 0$
B) $f(x)(t) = \int_0^t x^2(s)ds$?

Задача 5.7. Тот эке вопрос для пространства $L_2(0,1)$.

Глава 6

Полнота метрических пространств

6.1 Определение полноты

Определение 6.1. Последовательность x_n называется фундаментальной, если $\rho(x_n, x_m) \to 0$ при $n, m \to \infty$.

Из неравенства треугольника следует, что любая сходящаяся последовательность является фундаментальной. Обратное, вообще говоря, неверно.

Пример 6.1. Пусть X = [0,1), $\rho(x,y) = |x-y|$. Последовательность $x_n = \frac{1}{n}$ фундаментальна, но не сходится в данном пространстве.

Пример 6.2. Пусть $X = \mathbb{Q}$ (множество рациональных чисел),

$$\rho(x,y) = |x - y|.$$

Тогда последовательность

$$x_n = \left(1 + \frac{1}{n}\right)^n$$

фундаментальна, но не сходится в данном пространстве.

Определение 6.2. Метрическое пространство (X, ρ) называется полным, если каждая фундаментальная последовательность в нем сходится.

Множество рациональных чисел $\mathbb Q$ с обычной метрикой является неполным метрическим пространством. Согласно критерию Коши, $\mathbb R^n$ с

любой из метрик

$$\rho_p(x,y) = \left[\sum_{i=1}^n |x_i - y_i|^p\right]^{\frac{1}{p}}, \quad 1 \leqslant p \leqslant \infty$$

— полное метрическое пространство.

На примере множества непрерывных на отрезке функций покажем, как одно и то же множество можно превратить в полное или неполное метрическое пространство, задавая по-разному метрику.

6.2 Доказательство полноты

Напомним, что C[a,b] — стандартное обозначение пространства непрерывных на отрезке [a,b] функций с максимум-метрикой:

$$\rho(f, g) = \max_{t \in [a, b]} |f(t) - g(t)|.$$

Сходимость в C[a,b] последовательности элементов f_n есть равномерная сходимость последовательности функций $f_n(t)$ на отрезке [a,b].

Пример 6.3. Докажем, что C[a,b] — полное метрическое пространство.

Доказательство. Пусть $\{f_n\}$ — фундаментальная в C[a,b] последовательность. Надо доказать, что существует элемент $f \in C[a,b]$ такой, что

$$\rho(f_n,f)\to 0.$$

По определению фундаментальности $\{f_n\}$ в C[a,b]:

$$\max_{t \in [a,b]} |f_n(t) - f_m(t)| \to 0 \qquad n, m \to \infty.$$
(6.1)

Наша первая задача — выделить элемент, "подозреваемый" в том, что он является пределом данной последовательности. Для этого применяется уже доказанный факт — полнота $\mathbb R$ с обычной метрикой.

Из (6.1) следует более слабое утверждение: для любого фиксированного t

$$|f_n(t) - f_m(t)| \to 0 \qquad n, m \to \infty.$$

То есть при любом фиксированном t $f_n(t)$ — фундаментальная числовая последовательность. Так как вещественная прямая с обычной метрикой — полное метрическое пространство, то для любого фиксированного t существует (поточечный!) предел, обозначим его f(t):

$$\lim_{n \to \infty} f_n(t) = f(t).$$

Осталось доказать два утверждения: 1) f_n сходится к f в метрике C[a,b], то есть равномерно по $t\in [a,b]$; 2) f — элемент C[a,b].

Для доказательства равномерной сходимости в определении фундаментальности последовательности (6.1) фиксируем n > N, а m устремим к бесконечности. Тогда приходим к неравенству:

$$\forall \varepsilon > 0 \exists N : \forall n > N \max_{t \in [a,b]} |f_n(t) - f(t)| \leqslant \varepsilon,$$

которое показывает, что сходимость равномерная.

Теперь докажем, что $f \in C[a,b]$, то есть равномерный предел последовательности непрерывных функций есть непрерывная функция. Для любого $t_0 \in [a,b]$ оценим модуль разности f(t) и $f(t_0)$, воспользовавшись $\varepsilon/3$ -приемом. Выберем n таким, чтобы

$$\max_{t \in [a,b]} |f_n(t) - f(t)| < \frac{\varepsilon}{3}.$$

В силу непрерывности $f_n(t)$, подберем δ так, чтобы из $|t-t_0|<\delta$ следовало

$$|f_n(t) - f_n(t_0)| < \varepsilon/3.$$

Тогда, если $|t-t_0|<\delta$, то

$$|f(t) - f(t_0)| \le |f(t) - f_n(t)| + |f_n(t) - f_n(t_0)| + |f_n(t_0) - f(t_0)| < \varepsilon.$$

По существу в рассмотренном примере приведено подробное доказательство двух фундаментальных теорем анализа — критерия Коши равномерной сходимости последовательности функций и теоремы Вейерштрасса о непрерывности равномерного предела последовательности непрерывных функций.

Задача 6.1. Сформулируйте короткое доказательство полноты пространства C[a,b], использующее указанные теоремы.

Задача 6.2. Докажите полноту пространства $C^1[a,b]$ — непрерывно дифференцируемых на [a,b] функций с метрикой:

$$\rho(f,g) = \max_{t \in [a,b]} |f(t) - g(t)| + \max_{t \in [a,b]} |f'(t) - g'(t)|.$$

Задача 6.3. Докажите полноту пространства $C^{\infty}[0,1]$ с метрикой

$$\rho(f,g) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\max_{t \in [a,b]} |f^{(n)}(t) - g^{(n)}(t)|}{1 + \max_{t \in [a,b]} |f^{(n)}(t) - g^{(n)}(t)|}$$

[14, c. 44]

Пример 6.4. Докажем полноту пространства ℓ_2 .

Доказательство. Пусть $x^{(n)}$ — фундаментальная в ℓ_2 последовательность. Это означает, что

$$\rho^{2}(x^{(n)}, x^{(m)}) = \sum_{n=1}^{\infty} (x_{k}^{(n)} - x_{k}^{(m)})^{2} \to 0 \quad \text{при} \quad n, m \to \infty.$$
 (6.2)

Надо доказать, что последовательность $x^{(n)}$ сходится в ℓ_2 , то есть найдется такой элемент $x \in \ell_2$, что

$$\rho^{2}(x^{(n)}, x) = \sum_{n=1}^{\infty} (x_{k}^{(n)} - x_{k})^{2} \to 0 \quad \text{при} \quad n \to \infty.$$
 (6.3)

Так как из (6.2) следует, что для любого фиксированного номера k

$$|x_k^{(n)} - x_k^{(m)}| \to 0$$
 при $n, m \to \infty$,

и пространство $\mathbb R$ полно, то для любого k существует покоординатный предел

$$\lim_{n \to \infty} x_k^{(n)} = x_k.$$

Осталось показать, что элемент $x=(x_1,x_2,\ldots,x_k,\ldots)$ принадлежит пространству ℓ_2 :

$$\sum_{n=1}^{\infty} x_k^2 < \infty,$$

и последовательность $x^{(n)}$ сходится к x по метрике пространства ℓ_2 , то есть выполняется (6.3).

Из (6.2) следует, что для любого $\varepsilon > 0$ найдется такой номер N, что для любого фиксированного M выполняется неравенство

$$\sum_{n=1}^{M} (x_k^{(n)} - x_k^{(m)})^2 < \varepsilon$$
 при $n, m > N$.

Зафиксировав n, перейдем в конечной сумме к пределу при $m \to \infty$:

$$\sum_{n=1}^{M} (x_k^{(n)} - x_k)^2 \leqslant \varepsilon \quad \forall M.$$

Теперь перейдем к пределу при $M \to \infty$:

$$\sum_{n=1}^{\infty} (x_k^{(n)} - x_k)^2 \leqslant \varepsilon. \tag{6.4}$$

Применим неравенство Минковского:

$$\left(\sum_{k=1}^{\infty} x_k^2\right)^{1/2} \leqslant \left(\sum_{k=1}^{\infty} (x_k^{(n)} - x_k)^2\right)^{1/2} + \left(\sum_{k=1}^{\infty} |x_k^{(n)}|^2\right)^{1/2}.$$

Так как ряды в правой части неравенства сходятся, то сходится ряд и в левой части, то есть $x \in \ell_2$. А из (7.1) следует, что выполняется (6.3). \square

Задача 6.4. Докажите полноту следующих пространств последовательностей: a) ℓ_{∞} [11, c. 31]; б)S.

6.3 Пример неполного пространства

Пример 6.5. На множестве непрерывных функций можно ввести также интегральную метрику, например, по правилу:

$$\rho_1(f,g) = \int_{-1}^{1} |f(t) - g(t)| dt.$$

Покажем, что в этом случае, в отличие от примера 6.3, получится неполное метрическое пространство.

Достаточно привести пример последовательности непрерывных функций, фундаментальной по интегральной метрике ρ_1 , которая не сходится по этой метрике к непрерывной функции. Так как любое неполное метрическое пространство можно пополнить, то в более широком пространстве эта фундаментальная последовательность будет сходиться. К чему? К разрывной функции! В качестве такой функции можно взять, например, знак числа sgn. Интуитивно ясно, что приблизить $\operatorname{sgn}(t)$ можно следующей последовательностью кусочно-линейных непрерывных функций:

$$\varphi_n(t) = \begin{cases} -1 & \text{при} & -1 \le t \le -1/n; \\ nt & \text{при} & -1/n \le t \le 1/n; \\ 1 & \text{при} & 1/n \le t \le 1. \end{cases}$$

Легко убедиться в том, что

$$\rho_1(\varphi_n, \varphi_m) = \left| \frac{1}{m} - \frac{1}{n} \right| \to 0 \qquad m, n \to \infty,$$

И

$$\lim_{n \to \infty} \int_{-1}^{1} |\varphi_n(t) - \operatorname{sgn}(t)| dt = 0.$$

Для любой непрерывной функции f из неравенств

$$0 < \rho_1(f, \operatorname{sgn}) \leq \rho_1(f, \varphi_n) + \rho_1(\varphi_n, \operatorname{sgn})$$

следует, что $\rho_1(f,\varphi_n) \not\to 0$ при $n \to \infty$.

Оказывается, что при пополнении пространства непрерывных функций с интегральной метрикой ρ_1 возникают функции, неинтегрируемые по Риману, и результатом пополнения является лебеговское пространство $L_1(-1,1)$.

6.4 Теорема о пополнении

Определение 6.3. Метрическое пространство (X, ρ) изометрически изоморфно (Y, d) (обозначение $(X, \rho) \sim (Y, d)$), если существует отоб-

ражение $f: X \to Y$ такое, что:

1) $f - \delta u e \kappa m u e Ho$;

2)
$$\rho(x_1, x_2) = d(f(x_1), f(x_2)) \quad \forall x_1, x_2 \in X.$$

Изометрический изоморфизм – отношение эквивалентности. Все изометрически изоморфные пространства с точки зрения сходимости и полноты можно не различать.

Задача 6.5. Какое из свойств — инъективность или сюръективность — следует из того, что отображение f осуществляет изометрию?

Теорема 1 (О пополнении). Любое неполное метрическое пространство (X, ρ) можно пополнить, то есть существуют полное метрическое пространство (Y, d) и отображение $f: X \to Y$ такие, что:

$$1) \quad \overline{f(X)} = Y;$$

2)
$$\rho(x_1, x_2) = d(f(x_1), f(x_2)) \quad \forall x_1, x_2 \in X.$$

Пример 6.6. Докажем, что вещественная прямая с метрикой

$$\rho(x_1, x_2) = |arctg(x_1) - arctg(x_2)| \tag{6.5}$$

является неполным метрическим пространством.

Доказательство. Так как функция f(x) = arctg(x) монотонна, то для $\rho(x_1, x_2)$ (6.5) выполняются аксиомы метрики.

Арктангенс осуществляет взаимно-однозначное отображение вещественной прямой $\mathbb R$ на интервал $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Пусть

$$X = \mathbb{R}, \quad Y = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

Рассмотрим метрические пространства (X, ρ) и (Y, d), где d — стандартная метрика на прямой:

$$d(u,v) = |u - v|.$$

Так как $f:X \to Y$ биективно, и равенство (6.5) можно записать в виде

$$\rho(x_1, x_2) = d(f(x_1), f(x_2)),$$

то вещественная прямая с метрикой ρ изометрически изоморфна интервалу $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ с метрикой d:

$$(\mathbb{R}, \rho) \sim \left(\left(-\frac{\pi}{2}, \frac{\pi}{2} \right), d \right).$$

Но интервал со стандатрной метрикой является неполным метрическим пространством. Следовательно, вещественная прямая с метрикой ρ также является неполным метрическим пространством.

Чтобы пополнить пространство (Y,d), достаточно включить точки $\frac{\pi}{2}$ и $-\frac{\pi}{2}$. В исходном пространстве (X,ρ) этому соответствует добавление к вещественной прямой бесконечно удаленных точек $+\infty$ и $-\infty$.

Задача 6.6. Будет ли полным метрическим пространством вещественная прямая с метрикой:

a)
$$\rho(x_1, x_2) = |e^{x_1} - e^{x_2}|,$$

6)
$$\rho(x_1, x_2) = |x_1^3 - x_2^3|$$
?

Если нет, то постройте пополнение по соответствующей метрике.

Задача 6.7. Постройте пополнение множества целых чисел с метри-кой:

$$\rho(n,m) = |e^{in} - e^{im}|.$$

Задача 6.8. Укажите метрики, в которых следующие множества вещественной оси являются полными метрическими пространствами: а) (0,1); б) $(0,\infty)$; в) $\mathbb{R}\setminus\{0\}$; г) $\mathbb{R}\setminus\{0,1,2,\ldots\}$; д) множество всех рациональных чисел Q.

6.5 Принцип вложенных шаров и теорема Бэра

Для полных метрических пространств справедливы фундаментальные теоремы: принцип вложенных шаров (обобщение принципа вложенных сегмен-

тов), теорема Бэра и принцип сжимающих отображений (теорема Банаха о неподвижной точке). Первые две теоремы формулируются в этом разделе.

Теорема 2 (Принцип вложенных шаров). Для полноты метрического пространства необходимо и достаточно, чтобы любая последовательность замкнутых вложенных друг в друга шаров, радиусы которых стремятся к нулю, имела непустое пересечение.

Задача 6.9. Докажите принцип вложенных шаров.

Задача 6.10. Приведите пример метрического пространства, в котором существует последовательность замкнутых вложенных друг в друга, не имеющих общей точки шаров, радиусы которых стремятся к нулю.

Задача 6.11. Покажите, что множество $\mathbb N$ натуральных чисел с метрикой

$$\rho(n,m) = \begin{cases} 1 + \frac{1}{n+m} & npu \quad n \neq m \\ 0 & npu \quad n = m \end{cases}$$

$$(6.6)$$

- полное метрическое пространство, а шары [n, 1+1/(2n)] не имеют общей точки.

Определение 6.4. *Множество называется нигде не плотным, если оно* не является плотным ни в одном шаре.

Задача 6.12. Покажите, что $M \subset X$ нигде не плотно, если \overline{M} не содержит внутренних точек.

Задача 6.13. Докажите, что график непрерывной функции нигде не плотен в \mathbb{R}^2 . Верно ли это для образа непрерывной кривой?

Теорема 3 (Теорема Бэра). Полное метрическое пространство нельзя представить в виде счетного объединения нигде не плотных множеств.

Обычно теорема Бэра формулируется как теорема о категории.

Определение 6.5. Множество $N \subset X$ — множество первой категории, если оно является счетным объединением нигде не плотных множеств.

Определение 6.6. Множество $M \subset X$ — множество второй категории, если оно не является множеством первой категории.

Теорема 4 (Вторая формулировка теоремы Бэра). Полное метрическое пространство X вляется множеством второй категории.

Используя теорему Бэра, докажите следующие утверждения.

Задача 6.14. Пусть X — полное метрическое пространство u $X = \bigcup_{i=1}^{\infty} F_i$, где F_i — замкнутые множества. Докажите, что хотя бы одно u них содержит шар.

Задача 6.15. Множество действительных чисел несчетно.

Задача 6.16. В полном метрическом пространстве пересечение счетно-го множества открытых всюду плотных множеств всюду плотно.

Глава 7

Принцип сжимающих отображений

7.1 Общие сведения

Определение 7.1. Отображение $f: X \to X$ называется сжимающим, если существует такое число $\alpha: 0 < \alpha < 1$, что для любых $x_1, x_2 \in X$ выполняется неравенство:

$$\rho(f(x_1), f(x_2)) \leqslant \alpha \rho(x_1, x_2).$$

Определение 7.2. Точка а называется неподвижной точкой отображения f, если f(a) = a.

Теорема 5 (Принцип сжимающих отображений). Пусть (X, ρ) – полное метрическое пространство, $f: X \to X$ – сжимающее отображение пространства X в себя. Тогда существует единственная неподвижная точка x_* отображения $f: f(x_*) = x_*$; для любого элемента $x_0 \in X$ последовательность $x_n = f(x_{n-1})$, $n \in N$, сходится к неподвижной точке, причем расстояние между n-ым приближением и неподвижной точкой подчиняется оценке:

$$\rho(x_n, x_*) \leqslant \frac{\alpha^n}{1 - \alpha} \rho(x_0, x_1). \tag{7.1}$$

Задача 7.1. Докажите: если отображение f полного метрического пространства (X, ρ) в себя обладает свойством, что

$$\rho(f(x_1), f(x_2)) < \rho(x_1, x_2)$$

для любых $x_1, x_2 \in X$, $x_1 \neq x_2$, то неподвижной точки может не быть [15, c. 45].

В приложениях часто применяется утверждение следующего примера.

Пример 7.1. Пусть A — отображение полного метрического пространства (X, ρ) в себя такое, что его некоторая степень A^n — сжимающее отображение. Тогда отображение A имеет единственную неподвижную точку.

Доказательство. Сначала докажем существование неподвижной точки у оператора A. Согласно принципу сжимающих отображений, оператор A^n имеет единственную неподвижную точку: $A^n x = x$. Подействовав на обе части последнего равенства оператором A, приходим к выражению:

$$A(A^n x) = Ax,$$

которое можно переписать в виде:

$$A^n(Ax) = Ax$$
.

Следовательно, Ax является неподвижной точкой оператора A^n , и в силу единственности неподвижной точки у оператора A^n , выполняется равенство: Ax = x, то есть существует неподвижная точка оператора A.

Теперь докажем единственность неподвижной точки оператора A. Пусть существует $x_1 \neq x$: $Ax_1 = x_1$. Так как любая неподвижная точка оператора A является неподвижной точкой оператора A^n , то, в силу единственности неподвижной точки у оператора A^n : $x_1 = x$. Единственность доказана.

Задача 7.2. Пусть B и C — отображения полного метрического пространства (X, ρ) в себя. Докажите: если отображение B — сжимающее, и отображения B и C коммутируют, то уравнение Cx = x имеет решение [15, c. 46].

Задача 7.3. Пусть (X, ρ) — полное метрическое пространство, f — отображение замкнутого шара $\overline{S}_r(x_0)$ в X, для которого существует константа α , $\alpha < 1$ такая, что для $x, y \in \overline{S}_r(x_0)$ выполняется:

1)
$$\rho(f(x), f(y)) \leqslant \alpha \rho(x, y);$$

2)
$$\rho(f(x_0), x_0) \leq (1 - \alpha)r$$
.

Докажите, что отображение f имеет в шаре $\overline{S}_r(x_0)$ единственную неподвижную точку.

Задача 7.4. Докажите, что любое непрерывное отображение отрезка в себя имеет неподвижную точку.

7.2 Применение к алгебраическим уравнениям и системам

Пример 7.2. Пусть функция y = f(t) определена и дифференцируема на всей вещественной оси, и для любого $t \in \mathbb{R}$ выполняется неравенство:

$$|f'(t)| \leq \lambda < 1.$$

Докажем, что существует единственное решение уравнения f(t) = t.

 \mathcal{A} оказательство. Вещественная прямая \mathbb{R} со стандартной метрикой $\rho(x,y) = |x-y|$ является полным метрическим пространством. Докажем, что в условиях примера $f: \mathbb{R} \to \mathbb{R}$ является сжимающим отображением. По теореме Лагранжа

$$\rho(f(t_1), f(t_2)) = |f(t_1) - f(t_2)| = |f'(\xi)||t_1 - t_2|,$$

где $\xi \in (t_1, t_2)$. Тогда, по условию,

$$|f(t_1) - f(t_2)| \leqslant \lambda |t_1 - t_2|$$

Так как $\lambda < 1$, то f — сжимающее отображение. По принципу сжимающих отображений, существует единственное решение уравнения f(t) = t.

Задача 7.5. Пусть функция y = f(t) определена и дифференцируема на всей вещественной оси, и для любого $t \in \mathbb{R}$ выполняется неравенство:

$$|f'(t)| \geqslant \lambda > 1.$$

Докажите, что существует единственное решение уравнения f(t) = t.

При исследовании конкретных уравнений, как правило, не задана операторная форма уравнения x = Ax и не задано пространство, в котором

рассматривается уравнение. Приведение к указанной операторной форме можно осуществить многими способами, и от этого выбора зависит удачное применение принципа сжимающих отображений. От выбора оператора A зависит, возможно, первоначальный выбор метрического пространства, которое оператор A переводит в себя.

Трудно ожидать, что оператор A сразу окажется сжимающим в этом пространстве. Тогда приходится выбирать его подпространство, инвариантное относительно оператора A, на котором этот оператор — сжимающий.

Проиллюстрируем сказанное на простом примере.

Пример 7.3. Докажем, что существует непрерывная на [0,1] функция x(t), удовлетворяющая уравнению: $x(t) - e^{-x(t)} = \sin(t)$.

Доказательство. Перепишем уравнение в виде

$$x(t) = e^{-x(t)} + \sin(t).$$
 (7.2)

Введем оператор $(Ax)(t) = e^{-x(t)} + \sin(t)$ и будем рассматривать его в пространстве C[0,1].

Оценим

$$\rho(Ax_1, Ax_2) = \max_{t \in [0,1]} |Ax_1(t) - Ax_2(t)|.$$

По теореме Лагранжа о конечных приращениях имеем

$$|Ax_1(t) - Ax_2(t)| = e^{-\xi(t)}|x_1(t) - x_2(t)|,$$

где $\xi(t)$ — некоторая промежуточная точка между $x_1(t)$ и $x_2(t)$. Отсюда следует, что оператор A не является сжимающим на всем пространстве C[0,1].

Так как

$$\rho(Ax_1, Ax_2) \leqslant \max_{t \in [0,1]} e^{-\xi(t)} \rho(x_1, x_2),$$

то при любом $\delta > 0$ на множестве

$$X_{\delta} = \{x(t) \in [0,1], x(t) \geqslant \delta\}$$

для оператора A выполняется условие сжимаемости. Однако, видно, что X_{δ} не является инвариантным относительно оператора A множеством.

Попробуем указать замкнутое множество из пространства C[0,1], которое A переводит в себя. Заметим, что при $t \in [0,1]$ выполняется неравенство $\sin(t) \geqslant 0$. Тогда из уравнения (7.2) следует, что $x(t) \geqslant 0$. Из этого неравенства, а также из того, что $\sin(t) \leqslant 1$ вытекает

$$(Ax)(t) = e^{-x(t)} + \sin(t) \le 2. \tag{7.3}$$

Снова обращаясь к (7.2), получаем $x(t) \leq 2$. Следовательно,

$$(Ax)(t) = e^{-x(t)} + \sin(t) \geqslant e^{-x(t)} \geqslant e^{-2}.$$
 (7.4)

Обозначим

$$X = \{x(t) \in [0, 1], e^{-2} \le x(t) \le 2\}.$$

Из (7.2-7.3) следует, что оператор A переводит пространство X в себя. Так как C[0,1] — полное метрическое пространство, X замкнуто, то X является полным метрическим пространством.

Оператор A является сжимающим в X:

$$\rho(Ax_1, Ax_2) \leqslant e^{-e^{-2}} \rho(x_1, x_2).$$

По принципу сжимающих отображений, существует единственное в X решение исходного уравнения. Из построения пространства X следует, что других решений в C[0,1] нет.

Задача 7.6. Докажите, что уравнение $2te^t = 1$ $(t \in \mathbb{R})$ имеет единственное решение, это решение лежит на интервале (0,1).

Задача 7.7. Докажите, что существует непрерывная на [0,1] функция x(t), удовлетворяющая уравнению:

$$x(t) - 0.5\sin(x(t)) + a(t) = 0,$$

 $\mathit{rde}\ a(t)$ – $\mathit{заданная}\ \mathit{непрерывная}\ \mathit{функция}.$

В следующем примере и задачах рассматривается применение принципа сжимающих отображений к системам линейных алгебраических уравнений.

Пример 7.4. Пусть $A : \mathbb{R}^n \to \mathbb{R}^n$ — линейное отображение с матрицей $\{a_{ij}\}$ в метрическом пространстве (\mathbb{R}^n, ρ) , причем

1)
$$\rho = \rho_{\infty}$$
, $\rho_{\infty}(x, y) = \max_{1 \le k \le n} |x_k - y_k|$, $\max_{i} \sum_{j=1}^{n} |a_{ij}| < 1$,

2)
$$\rho = \rho_1$$
, $\rho_1(x, y) = \sum_{k=1}^n |x_k - y_k|$, $\max_j \sum_{i=1}^n |a_{ij}| < 1$,

3)
$$\rho = \rho_2$$
, $\rho_2(x,y) = \left\{ \sum_{k=1}^n |x_k - y_k|^2 \right\}^{1/2}$, $\sum_{i,j=1}^n |a_{ij}|^2 < 1$.

Докажем: A — сжимающее отображение.

$$(Ax)_i = \sum_{j=1}^n a_{ij} x_j.$$

В первом случае

$$\rho_{\infty}(Ax, Ay) = \max_{1 \le i \le n} |(Ax)_i - (Ay)_i| = \max_{1 \le i \le n} \left| \sum_{j=1}^n a_{ij} (x_j - y_j) \right|.$$

Так как модуль суммы не превосходит суммы модулей, то

$$\rho_{\infty}(Ax, Ay) \leqslant \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{ij}| |(x_j - y_j)|.$$

Вынесем из-под знака суммы $\max_{1 \leq j \leq n} |x_j - y_j|$:

$$\rho_{\infty}(Ax, Ay) \leqslant \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{n} |a_{ij}| \max_{1 \leqslant j \leqslant n} |x_j - y_j| = \alpha \rho_{\infty}(x, y),$$

где

$$\alpha = \max_{i} \sum_{j=1}^{n} |a_{ij}| < 1.$$

Следовательно, A — сжимающее отображение в метрике ho_{∞} .

Аналогично оценим расстояние между Ax, Ay в метрике ρ_1 :

$$\rho_1(Ax, Ay) = \sum_{i=1}^n \left| \sum_{j=1}^n a_{ij}(x_j - y_j) \right| \le \sum_{i=1}^n \sum_{j=1}^n |a_{ij}| |x_j - y_j|.$$

Поменяем местами суммирование:

$$\rho_1(Ax, Ay) \leqslant \sum_{j=1}^n \left(\sum_{i=1}^n |a_{ij}|\right) |x_j - y_j|.$$

Тогда

$$\rho_1(Ax, Ay) \leqslant \max_j \sum_{i=1}^n |a_{ij}| \sum_{j=1}^n |x_j - y_j| = \alpha \rho_1(x, y).$$

Так как $\alpha < 1$, то отображение A является сжимающим в метрике ρ_1 . Теперь оценим расстояние между Ax, Ay в евклидовой метрике.

$$\rho_2^2(Ax, Ay) = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} (x_j - y_j) \right)^2.$$

К внутренней сумме применим неравенство Коши-Буняковского:

$$\rho_2^2(Ax, Ay) \leqslant \sum_{i=1}^n \sum_{j=1}^n a_{ij}^2 \sum_{j=1}^n (x_j - y_j)^2 = \alpha^2 \rho_2^2(x, y).$$

Так как по условию $\alpha < 1$, то отображение A является сжимающим в метрике ρ_2 .

Задача 7.8. Докажите следующие утверждения: для бесконечной системы линейных алгебраических уравнений

$$x_i = \sum_{j=1}^{\infty} a_{ij} x_j + b_i, \quad i = 1, 2, \dots$$

а) если выполнено условие $\sup_{j} \sum_{i=1}^{\infty} |a_{ij}| < 1$, то данная система имеет единственное решение $x = (x_1, x_2, \ldots) \in \ell_1$ для любой последовательности $b = (b_1, b_2, \ldots) \in \ell_1$;

- б) если выполнено условие $\sup_{i} \sum_{j=1}^{\infty} |a_{ij}| < 1$, то данная система имеет единственное решение $x = (x_1, x_2, \ldots) \in \ell_{\infty}$ для любой последовательности $b = (b_1, b_2, \ldots) \in \ell_{\infty}$;
- в) если выполнено условие $\sum_{i,j=1}^{\infty} |a_{ij}| < 1$, то система имеет единственное решение $x = (x_1, x_2, \ldots) \in \ell_2$ для любой последовательности $b = (b_1, b_2, \ldots) \in \ell_2$.

Задача 7.9. Пусть λ_k , $k=1,2,\dots m$ - собственные значения матрицы $A\ u\ \lambda_k \neq 1$. Докажите, что последовательные приближения

$$x_n = Ax_{n-1} + y$$

сходятся к решению системы линейных алгебраических уравнений

$$x - Ax = y$$

npu любом начальном npuближении тогда и только тогда, когда $|\lambda_k| < 1,$ $k=1,2,\ldots m.$

7.3 Применение к интегральным и дифференциальным уравнениям

Уравнение вида

$$x(t) = \int_{a}^{b} K(t,s)x(s)ds + f(t)$$

$$(7.5)$$

называется линейным интегральным уравнением Фредгольма второго рода. Функции f(t) и K(t,s) предполагаются известными, x(t) — неизвестной, K(t,s) называется ядром интегрального уравнения.

В частном случае, когда K(t,s)=0 при s>t, получается интегральное уравнение Вольтерра второго рода:

$$x(t) = \int_{a}^{t} K(t, s)x(s)ds + f(t).$$
 (7.6)

Если f=0, то уравнение называется однородным, если $f\neq 0$ — неоднородным.

Ядро вида

$$K(t,s) = \sum_{j=1}^{n} P_j(t)Q_j(s)$$

называется вырожденным. Линейное интегральное уравнение с вырожденным ядром сводится к системе линейных алгебраических уравнений.

Будем рассматривать интегральные уравнения в пространствах C[a,b] и $L_p(a,b)$.

Пример 7.5. Рассмотрим линейное интегральное уравнение Фредгольма второго рода:

$$x(t) = \lambda \int_{0}^{1} t^2 sx(s)ds + t \tag{7.7}$$

с параметром λ . Решение интегрального уравнения x(t) будем трактовать как неподвижную точку оператора A, действующего по правилу:

$$Ax(t) = \lambda \int_{0}^{1} t^2 sx(s)ds + t. \tag{7.8}$$

Пусть сначала оператор A действует в пространстве C[0,1]. Он переводит пространство в себя. Выясним, при каких λ применим принцип сжимающих отображений. С помощью неравенства "модуль интеграла не превосходит интеграла модуля" и теоремы сравнения для интегралов оценим расстояние между Ax и Ay в пространстве C[0,1].

$$\begin{split} & \rho(Ax,Ay) = \max_{t \in [0,1]} |\lambda \int_{0}^{1} t^{2} s(x(s) - y(s)) ds| \leqslant \\ & \leqslant \max_{t \in [0,1]} |\lambda| \int_{0}^{1} t^{2} s |x(s) - y(s)| ds \leqslant \\ & \leqslant |\lambda| \max_{t \in [0,1]} \int_{0}^{1} t^{2} s ds \max_{t \in [0,1]} |x(s) - y(s)| = \frac{|\lambda|}{2} \rho(x,y) \end{split}$$

Итак, константа сжимаемости $\alpha = |\lambda|/2$, следовательно, при $|\lambda| < 2$ применим принцип сжимающих отображений в пространстве C[0,1].

Пусть теперь оператор A действует в пространстве $L_2(0,1)$. Преобразуем выражение квадрата расстояния между Ax и Ay в $L_2(0,1)$:

$$\rho^{2}(Ax, Ay) = \int_{0}^{1} |\lambda|^{2} \left(\int_{0}^{1} t^{2} s(x(s) - y(s)) ds \right)^{2} dt =$$

$$= |\lambda|^{2} \int_{0}^{1} t^{4} dt \left(\int_{0}^{1} s(x(s) - y(s)) ds \right)^{2} dt = \frac{|\lambda|^{2}}{5} \left(\int_{0}^{1} s(x(s) - y(s)) ds \right)^{2}$$

Теперь к интегралу применим неравенство Коши-Буняковского:

$$\rho^{2}(Ax, Ay) \leqslant \frac{|\lambda|^{2}}{5} \int_{0}^{1} s^{2} ds \rho^{2}(x, y)$$

После вычисления интеграла и извлечения квадратного корня приходим к следующей оценке:

$$\rho(Ax, Ay) \leqslant \frac{|\lambda|}{\sqrt{15}}\rho(x, y),$$

из которой вытекает, что при $|\lambda| < \sqrt{15}$ к интегральному уравнению (7.7) применим принцип сжимающих отображений в пространстве $L_2(0,1)$.

Найдем точное решение исходного интегрального уравнения с вырожденным ядром. Заметим, что уравнение (7.7) можно переписать в виде:

$$x(t) = \lambda t^2 a + t, (7.9)$$

где через a обозначено выражение:

$$a = \int_{0}^{1} sx(s)ds.$$

Чтобы получить a в левой части уравнения (7.9), умножим его на t и про-интегрируем:

$$a = \lambda a \int_{0}^{1} t^{3} dt + \int_{0}^{1} t^{2} dt.$$

Вычислив интегралы, находим a:

$$a = \frac{1}{4}\lambda a + \frac{1}{3}, \quad a = \frac{4}{3(4-\lambda)}.$$

Подставив полученное выражение в (7.9), находим решение:

$$x(t) = \frac{4\lambda}{3(4-\lambda)}t^2 + t.$$

Итак, для любого $\lambda \neq 4$ существует единственное решение уравнения (7.7).

Для $\lambda=0,5$ методом последовательных приближений найдем приближенное решение в пространстве C[0,1] с точностью 0,01. Итерации находятся по формуле:

$$x_n = \frac{1}{2} \int_{0}^{1} t^2 s x_{n-1}(s) ds + t$$

Погрешность оценим по формуле (7.1):

$$\rho(x_n, x_*) \leqslant \frac{4}{3} \left(\frac{1}{4}\right)^n \rho(x_0, x_1) \leqslant 0,01.$$

Выберем в качестве начального приближения $x_0 = 0$. Тогда $x_1 = t$, $\rho(x_0, x_1) = 1$, и для нахождения приближенного решения с заданной точностью достаточно n = 4 итераций.

Далее находим последовательно $x_2 = t$, $x_3 = \frac{9}{48}t^2 + t$ и $x_4 = \frac{73}{384}t^2 + t$. Точное решение имеет вид: $x_* = \frac{4}{21}t^2 + t$ и $\rho(x_4, x_*) = \frac{4}{21} - \frac{73}{384} \approx 0,0004$.

Задача 7.10. При каких λ применим принцип сжимающих отображений κ следующим интегральным уравнениям второго рода:

1)
$$x(t) = \lambda \int_{0}^{1} ts^{2}x(s)ds + 1;$$
 2) $x(t) = \lambda \int_{0}^{1} e^{(t-s)}x(s)ds + 1;$

3)
$$x(t) = \lambda \int_{0}^{1} t^{2} s^{2} x(s) ds + t^{3};$$
 4) $x(t) = \lambda \int_{0}^{1} \cos(\pi(t-s)) x(s) ds + 1.$

а) в пространстве C[0,1], б) в пространстве $L_2[0,1]$? При $\lambda=0,5$ найти методом последовательных приближений решение с точностью до 0,01 и сравнить его с точным решением.

Теперь сформулируем и докажем утверждения о существовании и единственности решений интегральных уравнений Фредгольма в общем виде.

Пример 7.6. Докажем: если ядро K(t,s) непрерывно и

$$\int_{a}^{b} |K(t,s)| ds \leqslant d < 1,$$

то интегральное уравнение Фредгольма второго рода

$$x(t) = \int_{a}^{b} K(t, s)x(s)ds + f(t)$$

имеет единственное решение для любой непрерывной функции f(t).

Доказательство. Через A обозначим оператор, действующий по правилу

$$Ax(t) = \int_{a}^{b} K(t,s)x(s)ds + f(t).$$

Тогда интегральное уравнение Фредгольма принимает вид

$$x = Ax$$

и его решение является неподвижной точкой отображения A.

Будем рассматривать оператор A в полном метрическом пространстве C[a,b]. Так как функции K(t,s) и f(t) непрерывны, то оператор A отображает пространство C[a,b] в себя:

$$A: C[a,b] \rightarrow C[a,b].$$

Докажем, что он является сжимающим в этом пространстве. Оценим расстояние между Ax, Ay:

$$\rho(Ax,Ay) = \max_{t \in [a,b]} \left| \int\limits_a^b K(t,s)(x(s)-y(s))ds \right| \leqslant \max_{t \in [a,b]} \int\limits_a^b |K(t,s)||x(s)-y(s)|ds.$$

Вынесем из-под знака интеграла максимум второго сомножителя

$$\rho(Ax, Ay) \leqslant \max_{s \in [a,b]} |x(s) - y(s)| \max_{t \in [a,b]} \int_{a}^{b} |K(t,s)| ds.$$

Окончательно,

$$\rho(Ax, Ay) \leqslant \max_{t \in [a,b]} \int_{a}^{b} |K(t,s)| ds \rho(x,y).$$

Так как по условию

$$\max_{t \in [a,b]} \int_{a}^{b} |K(t,s)| ds \leqslant d < 1,$$

то A — сжимающее отображение. По принципу сжимающих отображений, существование и единственность решения уравнения доказаны.

Задача 7.11. Пусть K(x,t,s) – непрерывная функция трех переменных, удовлетворяющая по x условию Липшица:

$$|K(x_1,t,s)-K(x_2,t,s)| \leq L|x_1-x_2|.$$

 Πpu каких λ нелинейное интегральное уравнение

$$x(t) = \lambda \int_{a}^{b} K(x(s), t, s)ds + f(t)$$

имеет непрерывное решение на отрезке [a,b] [9, c.95]?

Задача 7.12. Докажите: если ядро измеримо и удовлетворяет условию:

$$\int_{a}^{b} \int_{a}^{b} |K(t,s)|^2 dt ds < 1,$$

то интегральное уравнение Фредгольма второго рода (7.5) имеет единственное решение $x \in L_2(a,b)$ для любой функции $f(t) \in L_2(a,b)$. Задача 7.13. Пусть А – интегральный оператор Вольтерра

$$Ax(t) = \int_{a}^{t} K(t,s)x(s)ds,$$
(7.10)

K(t,s) – непрерывно. Доказать: существует число т такое, что A^m является сжимающим отображением в C[a,b], и, значит, для интегрального уравнения Вольтерра второго рода (7.6) справедлива теорема существования и единственности решения [9, с. 96].

Задача 7.14. В множестве непрерывных на [a,b] функций введем метрику по правилу:

$$\rho_{\beta}(x,y) = \max_{t \in [a,b]} |x(t) - y(t)| e^{-\beta t}.$$

Докажите: при достаточно больших β интегральный оператор Вольтерра (7.10) является сжимающим относительно метрики ρ_{β} .

В следующих задачах рассматривается применение принципа сжимающих отображений для доказательства теоремы существования и единственности решения задачи Коши.

Задача 7.15. Пусть функция f определена и непрерывна в некоторой области $G \subset R^2$, содержащей точку (x_0, y_0) , и удовлетворяет в этой области условию Липшица по y:

$$|f(x, y_1) - f(x, y_2)| \le M|y_1 - y_2|.$$

Доказать, что на некотором сегменте $|x-x_0| \leq d$ существует, и притом только одно, решение $y=\varphi(x)$ задачи Коши:

$$y'(x) = f(x, y), \quad y(x_0) = y_0.$$

[9, c. 92].

Задача 7.16. Пусть дана система дифференциальных уравнений

$$y_i'(x) = f_i(x, y_1(x), y_2(x), \dots, y_n(x)), \quad i = 1 \dots n.$$

с начальными условиями $y_i(x_0) = y_{0i}$, i = 1...n, причем функции f_i определены и непрерывны в некоторой области $G \subset R^{n+1}$, содержащей точку $(x_0, y_{01}, \dots y_{0n})$, и удовлетворяют условию Липшица

$$|f_i(x, y_1^{(1)}, \dots, y_n^{(1)}) - f_i(x, y_1^{(2)}, \dots, y_n^{(2)})| \le M \max_{1 \le i \le n} |y_i^{(1)} - y_i^{(2)}|.$$

Доказать, что на некотором сегменте $|x-x_0| \leq d$ существует, и притом только одно, решение задачи Коши [9, с. 93].

Глава 8

Линейные нормированные пространства

8.1 Банаховы пространства

Определение 8.1. Линейное пространство X над полем \mathbb{R} или \mathbb{C} называется нормированным, если определена функция $\|\cdot\|: X \longmapsto R$, называемая нормой и удовлетворяющая следующим аксиомам:

- 1. $||x|| \ge 0$, $npu \lor eM$ $||x|| = 0 \Leftrightarrow x = 0$;
- 2. $\|\alpha x\| = |\alpha| \|x\| \quad \forall x \in X, \forall \alpha \in \mathbb{R} (unu \mathbb{C});$
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$.

Каждое линейное нормированное пространство является метрическим пространством относительно метрики $\rho(x,y) = \|x-y\|$.

Задача 8.1. Приведите пример метрического пространства, которое а) не является линейным;

б) является линейным, но не является нормированным.

Определение 8.2. Полное линейное нормированное пространство называется банаховым.

Пример 8.1. C[a,b] – пространство непрерывных на [a,b] функций с максимум-нормой:

$$||f|| = \max_{t \in [a,b]} |f(t)| \tag{8.1}$$

является банаховым пространством.

Его можно превратить в неполное линейное нормированное пространство либо удалив достаточное число элементов и оставив прежнюю норму, либо определив на всем множестве непрерывных функций норму подругому.

Например, через P[a,b] обозначим множество многочленов с нормой (8.1). Согласно теореме Вейерштрасса, любую непрерывную на отрезке функцию можно равномерно приблизить многочленами. Следовательно, P[a,b] – неполное пространство.

С другой стороны, ранее было показано, что множество непрерывных функций с интегральной нормой

$$||f||_1 = \int_a^b |f(t)|dt$$

является неполным пространством. Обозначим его $\mathfrak{R}_{\mathbf{1}}[a,b]$ (это обозначение, в отличие от C[a,b], не является общепринятым).

Аналогично доказывается неполнота пространства $\mathfrak{R}_2[a,b]$ – множества непрерывных на отрезке [a,b] функций с интегральной нормой

$$||f||_2 = \left\{ \int_a^b |f(t)|^2 dt \right\}^{1/2}.$$

8.2 Гильбертовы пространства

Определение 8.3. Линейное пространство X над полем \mathbb{C} называется предгильбертовым, если определена функция $(,): X \times X \longmapsto \mathbb{C}$, называемая скалярным произведением и удовлетворяющая следующим аксиомам:

1.
$$(x,x) \geqslant 0$$
, $npu \cdot e^{-x}$ $(x,x) = 0 \Leftrightarrow x = 0$;

2.
$$(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z);$$

3.
$$(x,y) = \overline{(y,x)};$$

 $\forall x,y,z\in X,\ \forall \alpha,\beta\in\mathbb{C},\ черта\ означает\ комплексное\ сопряжение.$

Каждое предгильбертово пространство является линейным нормированным пространством относительно нормы

$$||x|| = \sqrt{(x,x)}.$$

Задача 8.2. Докажите, что во всяком предгильбертовом пространстве выполняется неравенство Коши-Буняковского [11, с. 85], [9, с. 167]:

$$|(x,y)|^2 \le (x,x)(y,y).$$
 (8.2)

Задача 8.3. Каждое предгильбертово пространство является линейным нормированным относительно нормы:

$$||x|| = \sqrt{(x,x)}.$$
 (8.3)

Из (8.2), (8.3) следует, что неравенство Коши-Буняковского можно переписать в виде:

$$|(x,y)| \leqslant ||x|| ||y||. \tag{8.4}$$

Во всяком предгильбертовом пространстве можно определить не только норму (то есть длину) вектора, но и угол между векторами. Угол φ между векторами x и y находится по формуле:

$$\cos \varphi = \frac{(x,y)}{\|x\| \|y\|}.\tag{8.5}$$

Из (8.5) следует, что ортогональность векторов естественно определяется через равенство нулю скалярного произведения.

Определение 8.4. Полное предгильбертово пространство называется гильбертовым.

Пример 8.2. Примерами гильбертовых пространств являются пространство последовательностей ℓ_2 :

$$\ell_2 = \left\{ x = (x_1, x_2, ...) \left| \sum_{i=1}^{\infty} |x_i|^2 < \infty, \quad (x, y) = \sum_{i=1}^{\infty} x_i \overline{y_i} \right\} \right\}$$

npocmpaнcmво функций $L_2(a,b)$:

$$L_2(a,b) = \left\{ f(t) - \quad \text{измерима} \left| \int\limits_a^b |f(t)|^2 dt < \infty, (f,g) = \int\limits_a^b f(t) \overline{g(t)} dt
ight\}.$$

А пространство $\mathfrak{R}_2[a,b]$ — множество непрерывных на отрезке [a,b] функций со скалярным произведением

$$(f,g) = \int_{a}^{b} f(t)\overline{g(t)}dt$$

— предгильбертово, но не гильбертово пространство.

В следующих утверждениях H — предгильбертово пространство, полнота роли не играет.

Задача 8.4. 1) Сложение в H непрерывно. 2) Умножение на комплексные числа непрерывно.

Задача 8.5. Скалярное произведение непрерывно относительно сходимости по норме [11, с. 86].

Задача 8.6. В вещественном предгильбертовом пространстве элементы x и y ортогональны тогда и только тогда, когда $||x+y||^2 = ||x||^2 + ||y||^2$.

Задача 8.7. Пусть $x_1, x_2, \dots x_n$ - ортогональная система в $H, x = \sum_{k=1}^n x_k$.

Доказать, что $||x||^2 = \sum_{k=1}^n ||x_k||^2$.

Задача 8.8. Пусть x_n, y_n принадлежат замкнутому единичному шару $\overline{S}_1(0)$ в H и $(x_n, y_n) \to 1$ при $n \to \infty$. Доказать, что $||x_n - y_n|| \to 0$ при $n \to \infty$.

Задача 8.9. Докажите, что во всяком предгильбертовом пространстве выполняется тождество параллелограмма:

$$||x - y||^2 + ||x + y||^2 = 2(||x||^2 + ||y||^2).$$

Задача 8.10. Докажите, что в любом вешественном нормированном пространстве, в котором выполняется это тождество, можно ввести такое скалярное произведение, что будет справедливо равенство:

$$||x||^2 = (x, x)$$

[9, c. 188].

Пример 8.3. Докажем: в C[a,b] нельзя ввести скалярное произведение, согласующееся с нормой этого пространства.

Доказательство. Проведем доказательство для $C\left[0,\frac{\pi}{2}\right]$. Укажем такие элементы $x,y\in C\left[0,\frac{\pi}{2}\right]$, для которых не выполняется тождество параллелограмма.

Пусть $x(t) = \cos t, y(t) = \sin t.$ Тогда

$$||x|| = \max_{t \in [0, \frac{\pi}{2}]} |\cos(t)| = 1; \quad ||y|| = \max_{t \in [0, \frac{\pi}{2}]} |\sin(t)| = 1,$$

НО

$$||x-y|| = \max_{t \in [0, \frac{\pi}{2}]} |\cos(t) - \sin(t)| = 1; \quad ||x+y|| = \max_{t \in [0, \frac{\pi}{2}]} |\cos(t) + \sin(t)| = \sqrt{2}.$$

Следовательно,

$$||x - y||^2 + ||x + y||^2 \neq 2(||x||^2 + ||y||^2).$$

Тождество параллелограмма не выполняется в $C\left[0,\frac{\pi}{2}\right]$, поэтому скалярное произведение, согласованное с нормой данного пространства, ввести нельзя.

Задача 8.11. Докажите: в ℓ_p при $p \neq 2$ нельзя ввести скалярное произведение, согласующееся с нормой этих пространств [9, с. 190].

С помощью тождества параллелограмма можно показать, что пространства $L_p(a,b)$ при $p\neq 2$ не являются гильбертовыми.

Задача 8.12. Приведите пример неполного линейного нормированного пространства, которое

- а) не является предгильбертовым;
- б) является предгильбертовым.

Задача 8.13. Приведите пример банахова пространства, которое

- а) не является гильбертовым;
- б) является гильбертовым.

Рис. 8.1: Метрические пространства

Связь между метрическим, линейными нормированными, банаховыми, предгильбертовыми и гильбертовыми пространствами иллюстрирует Puc.1.

8.3 Эквивалентные нормы

Определение 8.5. Две нормы $\|\cdot\|_1$, $\|\cdot\|_2$ называются эквивалентными, если существуют постоянные $C_1, C_2 > 0$ такие, что

$$C_1 ||x||_1 \leqslant ||x||_2 \leqslant C_2 ||x||_1 \quad \forall x \in X.$$

 $\mathbf{3a}$ дача 8.14. Ha \mathbb{R}^n все нормы эквивалентны.

Задача 8.15. Пусть X — линейное нормированное пространство. Докажите, что нормы

$$\sup(\|x_1\|, \|x_2\|), \|x_1\| + \|x_2\|, (\|x_1\|^2 + \|x_2\|^2)^{1/2}$$

эквивалентны на $X \times X$.

Докажите следующие утверждения, относящиеся к бесконечномерному случаю:

Задача 8.16. Пространство непрерывных на [a,b] функций не полно по норме

$$||x||_1 = \int_a^b |x(t)| dt.$$

Задача 8.17. Нормы

$$||x|| = \max_{t \in [a,b]} |x(t)| \quad u \quad ||x||_1 = \int_a^b |x(t)| dt$$

не эквивалентны на множестве непрерывных функций.

8.4 Подпространство

Определение 8.6. Множество элементов L линейного пространства X над полем \mathbb{R} (или \mathbb{C}) называется линейным многообразием, если

$$\forall \alpha, \beta \in \mathbb{R} \ (u \land u \ \mathbb{C}) \ \forall x, y \in X : x, y \in L \Rightarrow \alpha x + \beta y \in L.$$

Определение 8.7. Подпространством линейного нормированного пространства X называется подмножество, которое является замкнутым линейным многообразием.

Докажите следующие утверждения о конечномерных пространствах:

Задача 8.18. \mathbb{R}^n полно.

Задача 8.19. Конечномерное подмножество линейного нормированного пространства, являющееся линейным многообразием, замкнуто (т.е. является подпространством).

Пример 8.4. Покажем, что пространство непрерывно дифференцируемых на [a,b] функций $C^1[a,b]$ не замкнуто в C[a,b] и, следовательно, $C^1[a,b]$ не является подпространством C[a,b].

Доказательство. Для доказательства достаточно привести пример предельной точки множества $C^1[a,b]$, которая принадлежит C[a,b], но не принадлежит $C^1[a,b]$. То есть доказать существование последовательности элементов пространства $C^1[a,b]$, которая сходится в C[a,b], но предел не принадлежит $C^1[a,b]$.

Возьмем $x_*(t) = \left| t - \frac{a+b}{2} \right|$ – элемент пространства C[a,b], который не принадлежит $C^1[a,b]$. По теореме Вейерштрасса, любую непрерывную

на отрезке функцию можно равномерно приблизить тригонометрическими многочленами. Следовательно, существует последовательность элементов пространства $C^1[a,b]$, сходящаяся к x_* . Но x_* не принадлежит $C^1[a,b]$. Утверждение доказано.

Задача 8.20. Докажите, что множество полиномов с максимумнормой не является подпространством C[a,b], а множество полиномов ограниченной степени с максимум-нормой является подпространством C[a,b].

Глава 9

Компактность в метрических пространствах

9.1 Относительная компактность и ограниченность

Пусть (X, ρ) — метрическое пространство.

Определение 9.1. Множество $M \subset X$ называется ограниченным, если оно содержится в некотором шаре.

Определение 9.2. Множество $M \subset X$ называется относительно компактным, если из любой последовательности его элементов можно извлечь сходящуюся подпоследовательность. Если предел этой последовательности принадлежит M, то M называется компактным множеством.

Из определения следует, что компактное множество в метрическом пространстве — это относительно компактное и замкнутое множество.

Пользуясь определением компактности, докажите следующие утверждения.

Задача 9.1. Замкнутое подмножество компактного метрического пространства компактно.

Задача 9.2. Компактное метрическое пространство полно.

Таким образом, компактное метрическое пространство — это относительно компактное и полное пространство.

При исследовании компактности конечномерный и бесконечномерный случаи существенно отличаются друг от друга.

Пример 9.1. Пусть $X = \mathbb{R}^n$ с любой из метрик ρ_p

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}, \quad 1 \le p < \infty.$$

Из теоремы Больцано-Вейерштрасса следует, что относительная компактность множества в конечномерном случае равносильна ограниченности. Соответственно, компактность — это ограниченность и замкнутость.

В бесконечномерном случае это не так. Из относительной компактности следует ограниченность, обратное неверно.

Задача 9.3. Докажите, что любое относительно компактное множество является ограниченным.

Задача 9.4. Постройте отрицание определения относительной компактности.

Приведем пример ограниченного множества в бесконечномерном пространстве, которое не является относительно компактным.

Пример 9.2. Докажем, что замкнутый единичный шар $\overline{S}_1(0)$ в пространстве ℓ_2 не является относительно компактным множеством.

Доказательство. По определению,

$$\overline{S}_1(0) = \left\{ x \in \ell_2 \middle| \rho_2(x,0) = \left(\sum_{i=1}^{\infty} |x_i|^2 \right)^{1/2} \leqslant 1 \right\}$$

Рассмотрим последовательность базисных векторов $\{e_n\}_{n=1}^{\infty}$:

Очевидно, что $\{e_n\} \in \overline{S}_1(0)$. Так как при $n \neq m, n, m \to \infty$

$$\rho(e_n, e_m) = \sqrt{2} \not\to 0,$$

то из данной последовательности нельзя выделить сходящуюся подпоследовательность. \Box

9.2 Критерий Хаусдорфа

Определение 9.3. Множество M называется ε -сетью для множества N, если для любого элемента $n \in N$ найдется элемент $m \in M$ такой, что

$$\rho(m,n) < \varepsilon$$
.

Задача 9.5. Пусть $X = \mathbb{R}^2$ с евклидовой метрикой. При $\varepsilon = \frac{1}{2}$ постройте ε -сеть, состоящую из конечного числа элементов, для квадрата

$$K = \{ x \in \mathbb{R}^2 | 0 \leqslant x_i \leqslant 1, \quad i = 1, 2 \}$$

Теорема 6 (Критерий Хаусдорфа). Для того, чтобы множество M из X было относительно компактным, необходимо, а в случае полноты X и достаточно, чтобы для любого $\varepsilon > 0$ у множества M существовала ε -сеть, состоящая из конечного числа элементов.

Задача 9.6. Пусть M-компактное множество в полном метрическом пространстве (X,ρ) . Докажите, что для любого $\varepsilon>0$ множество M может быть представлено в виде

$$M = \bigcup_{i=1}^{n} F_i,$$

где F_i — замкнутые множества и для $i=1,2,\ldots n$ $diam F_i<\varepsilon$ $(diam F_i=\sup_{x,y\in F_i}\rho(x,y)).$

9.3 Гильбертов кирпич

Наша цель — привести пример относительно компактного множества в бесконечномерном случае. Предварительно докажем следующее утверждение.

Пример 9.3. Пусть (X, ρ) — полное метрическое пространство и известно, что для любого $\varepsilon > 0$ у множества $M \subset X$ существует относительно компактная ε -сеть. Тогда M относительно компактно.

Доказательство. Пусть N — относительно компактная ε -сеть множества M. Тогда, по определению ε -сети, для любого $m \in M$ найдется $n \in N$ такой, что

$$\rho(m,n)<\varepsilon.$$

Так как, по условию, N — относительно компактное множество, то, согласно критерию Хаусдорфа, у множества N существует ε -сеть L, состоящая из конечного числа элементов. То есть для любого $n \in N$ найдется $\ell \in L$ такой, что

$$\rho(n,\ell) < \varepsilon$$
.

По неравенству треугольника, для любого $\varepsilon>0$ у множества M существует 2ε -сеть L, состоящая из конечного числа элементов:

$$\rho(m,\ell) \leqslant \rho(m,n) + \rho(n,\ell) < 2\varepsilon.$$

Так как, по условию, пространство X полно, то из существования конечной ε -сети следует относительная компактность множества M.

Множество K в пространстве ℓ_2

$$K = \left\{ x = (x_1, x_2, \ldots) \in \ell_2 \, \middle| \, |x_n| \leqslant \frac{1}{n} \quad n \in \mathbb{N} \right\}$$
 (9.1)

будем называть "гильбертовым кирпичом".

Пример 9.4. Докажем, что гильбертов кирпич является относительно компактным множеством в пространстве ℓ_2 .

 \mathcal{A} оказательства достаточно построить относительно компактную ε -сеть.

Заметим, что K является ограниченным множеством: $K \subset \overline{S}_R(0)$, где

$$R = \sqrt{\sum_{i=1}^{\infty} \frac{1}{n^2}}.$$

Пусть множество K_N состоит из следующих элементов: N первых координат каждого элемента из K остаются неизменными, остальные полагаются равными нулю

$$K_N = \left\{ y^N \in K \mid y^N = (x_1, x_2, \dots, x_N, 0, \dots, 0, \dots), x \in K \right\}$$

Докажем, что для любого $\varepsilon>0$ найдется номер N такой, что K_N является ε -сетью для множества K. Это означает, что для любого $\varepsilon>0$ найдется номер N такой, что для каждого $x\in K$ можно выбрать $y\in K_N$ такой, что

$$\rho(x,y) < \varepsilon.$$

В качестве такого элемента y возьмем элемент y^N , у которого N первых координат совпадают с координатами элемента x. Тогда расстояние между x и y^N выражается формулой:

$$\rho(x, y^N) = \sqrt{\sum_{k=N+1}^{\infty} |x_k|^2}.$$

Ряд в правой части можно равномерно оценить числовым рядом, который представляет собой остаток сходящегося ряда. Следовательно,

$$\sqrt{\sum_{k=N+1}^{\infty} |x_k|^2} \leqslant \sqrt{\sum_{k=N+1}^{\infty} \frac{1}{k^2}} < \varepsilon.$$

Множество K_N относительно компактно в ℓ_2 как ограниченное множество в \mathbb{R}^N . Таким образом, относительно компактная ε -сеть множества K построена и утверждение примера доказано.

Задача 9.7. Где в доказательстве использовано условие $|x_n| \leq \frac{1}{n}$? Мож-но ли его не учитывать? Что можно потребовать вместо него?

Задача 9.8. Предложите другой способ задания гильбертова кирпича (9.1) в пространстве ℓ_2 .

Задача 9.9. Приведите пример относительно компактного множества в пространстве ℓ_p при $p \neq 2$ и докажите его относительную компактность.

Обобщение доказательства относительной компактности гильбертова кирпича приводит к критерию относительной компактности множества в пространстве ℓ_p .

Задача 9.10. Докажите, что множество M элементов $x=(x_1,x_2,\ldots)\in \ell_p\ (p\geqslant 1)$ относительно компактно тогда и только тогда, когда оно ограничено и по любому $\varepsilon>0$ найдется $n\in\mathbb{N}$ такой, что для любого $x\in M$ выполняется неравенство

$$\sum_{k=n}^{\infty} |x_k|^p < \varepsilon$$

[11, c. 248].

9.4 Отображения на компактных множествах

Пример 9.5. Докажем, что при непрерывном отображении образ компактного пространства компактен.

Доказательство. Пусть (X, ρ) — компактное метрическое пространство. Отображение $f: X \to X$ непрерывно. Докажем, что f(X) — компактное множество.

Рассмотрим произвольную последовательность $y_n \in f(X)$. Тогда $\forall y_n$ найдется $x_n \in X$ такой, что $f(x_n) = y_n$. В силу компактности пространства (X, ρ) найдется подпоследовательность x_{n_k} , сходящаяся к некоторому

элементу $x \in X$:

$$\exists x_{n_k} : \rho(x_{n_k}, x) \to 0 \quad \text{при} \quad k \to \infty. \tag{9.2}$$

Пусть $y_{n_k} = f(x_{n_k})$. В силу непрерывности отображения f из (9.2) следует, что

$$\rho(f(x_{n_k}), f(x)) \to 0$$
 при $k \to \infty$.

Таким образом, для любой последовательности y_n найдется подпоследовательность y_{n_k} такая, что

$$\rho(y_{n_k}, y) \to 0$$
 при $k \to \infty$,

причем
$$y = f(x) \in f(X)$$
.

Задача 9.11. Является ли образ относительно компактного множества при непрерывном отображении относительно компактным?

Теоремы Вейерштрасса о непрерывных функциях на отрезке обобщаются на функции, непрерывные на компактных множествах в метрических пространствах.

Задача 9.12. Непрерывная функция $f: X \to \mathbb{R}$, определенная на компактном метрическом пространстве X, ограничена и достигает своего максимума и минимума [11, c. 224].

Задача 9.13. Пусть X, Y — метрические пространства, X компактно $u \ f : X \to Y$ — непрерывное отображение. Докажите, что f равномерно непрерывно.

На основании теорем Вейерштрасса доказываются следующие утверждения.

Задача 9.14. Пусть M- компактное множество в полном метрическом пространстве (X,ρ) . Докажите, что для любого $x\in X$ найдется такой $y\in M$, что $\rho(x,M)=\rho(x,y)$.

Задача 9.15. Для того, чтобы метрическое пространство (X, ρ) было компактным, необходимо и достаточно, чтобы любая непрерывная числовая функция на X была ограничена.

Теперь рассмотрим непрерывный функционал на пространстве C[0,1]. Из результата следующей задачи вытекает, в частности, что замкнутый единичный шар в этом пространстве не является компактным множеством.

Задача 9.16. Проверьте, что отображение $f:C[0,1] \to \mathbb{R}$, заданное формулой

$$f(x) = \int_{0}^{1/2} x(t)dt - \int_{1/2}^{1} x(t)dt,$$

непрерывно. Покажите, что точная верхняя грань его значений на замкнутом единичном шаре $\overline{S}_1(0)$ равна 1, но эта грань не достигается ни на каком элементе шара.

Пример 9.6. Пусть (X, ρ) — компактное метрическое пространство и отображение $f: X \to X$ удовлетворяет условию

$$\rho(f(x_1, x_2)) = \rho(x_1, x_2).$$

Докажем, что уравнение f(x) = y разрешимо при любом $y \in X$.

Коротко утверждение примера формулируется так: компактное метрическое пространство нельзя изометрически отобразить на его часть.

Доказательство. Рассмотрим два способа доказательства.

Первый способ. Доказательство проведем от противного. Предположим, что f осуществляет отображение пространства X на его часть M:

$$f: X \xrightarrow{\operatorname{Ha}} M, \quad M \subset X.$$

Тогда образ f совпадает с M

$$f(X) = M$$

и найдется точка $x_0 \in X, x_0 \notin M$.

Построим последовательность точек $\{x_n\} \in f(X)$ по следующему правилу:

$$x_n = f(x_{n-1}), \quad n \in \mathbb{N}.$$

Тогда $x_n \in f(X)$ при $n \geqslant 1$.

Так как $x_1 = f(x_0)$, $x_0 \notin f(X)$ и отображение f осуществляет изометрию, то последовательность $\{x_n\}$ состоит из бесконечного числа элементов.

Так как, по условию, пространство (X, ρ) компактно, а отображение f непрерывно, то f(X) — замкнутое множество. Следовательно, множество $X \setminus f(X)$ — открыто. Поэтому из того, что $x_0 \notin M$ вытекает, что

$$\exists \varepsilon > 0 : S_{\varepsilon}(x) \notin f(X).$$

Чтобы прийти к противоречию с данным утверждением, покажем, что в любой сколь угодно малой окрестности точки x_0 найдется элемент последовательности x_n , принадлежащий f(X).

Действительно, с одной стороны, последовательность $\{x_n\}$ состоит из бесконечного числа элементов. С другой стороны, так как пространство (X, ρ) — компактно, то для любого $\varepsilon > 0$ у X существует конечная ε -сеть.

Воспользуемся принципом ящиков Дирихле: если в m ящиках лежит m+1 предмет, то найдется хотя бы один ящик, в котором лежит более одного предмета.

Тогда, по принципу ящиков Дирихле, найдутся два элемента последовательности $\{x_n\}$, которые попадут в одну ячейку ε -сети:

$$\exists k, \ell : \rho(x_k, x_\ell) < \varepsilon.$$

По построению последовательности $\{x_n\}$, это неравенство можно переписать в виде

$$\exists k, \ell : \rho(f(x_{k-1}), f(x_{\ell-1}) < \varepsilon.$$

В свою очередь, последнее неравенство равносильно следующему

$$\exists k, \ell : \rho(x_{k-1}, x_{\ell-1}) < \varepsilon.$$

Продолжая этот процесс, после конечного числа шагов найдем элемент последовательности $\{x_n\}$, который лежит в ε -окрестности точки x_0

$$\rho(x_0, x_{k-\ell}) < \varepsilon$$
 при $k > \ell$.

Противоречие получено и утверждение примера доказано.

Второй способ. Пусть x — произвольная точка из X. Рассмотрим последовательность $\{f^n(x)\}_{n=1}^{\infty}$.

Пусть $\{f^{n_k}(x)\}_{k=1}^\infty$ $(n_k < n_{k+1})$ — сходящаяся подпоследовательность. Но тогда

$$\rho(f^{n_k}(x), f^{n_{k+1}}(x)) = \rho(x, f^{n_{k+1}-n_k}(x)) \to 0 \quad \text{при} \quad k \to \infty.$$

Отсюда следует, что $x \in f(X)$ ввиду замкнутости f(X).

Задача 9.17. Доказать, что если (X, ρ) — компактное метрическое пространство и отображение $f: X \to X$ удовлетворяет условию

$$\rho(f(x_1), f(x_2)) < \rho(x_1, x_2) \quad npu \quad x_1 \neq x_2,$$

то существует единственная неподвижная точка отображения f. Будет ли отображение f сжимающим?

9.5 Компактность в C[0,1]

Определение 9.4. Множество Φ непрерывных на отрезке [0,1] функций называется равномерно ограниченным, если существует такая константа R>0, что

$$\forall \varphi \in \Phi \forall t \in [0,1] \quad |\varphi(t)| \leqslant R.$$

Определение 9.5. Множество $\Phi \subset C[0,1]$ называется равностепенно непрерывным, если для любого $\varepsilon > 0$ существует такое $\delta > 0$, что для любой функции $\varphi \in \Phi$ справедливо неравенство

$$|\varphi(t_1) - \varphi(t_2)| < \varepsilon$$

как только

$$|t_1 - t_2| < \delta.$$

Теорема 7 (Критерий Арцела). *Множество* $\Phi \in C[0,1]$ относительно компактно тогда и только тогда, когда Φ равномерно ограниченно и равностепенно непрерывно.

Пример 9.7. Докажем достаточный признак относительной компактности в C[0,1]. Множество непрерывно дифференцируемых функций таких, что сами они равномерно ограничены и их первые производные равномерно ограничены, относительно компактно в C[0,1].

Доказательство. Пусть M

$$M = \left\{ x \in C^{1}[0, 1] \mid |x(t)| \leqslant B, |x'(t)| \leqslant B_{1} \right\}$$

— рассматриваемое множество функций. Очевидно, что M равномерно ограничено. Для доказательства равностепенной непрерывности рассмотрим разность $|x(t_1)-x(t_2)|$. По теореме Лагранжа

$$|x(t_1) - x(t_2)| = |x'(\xi)||t_1 - t_2|,$$

где $\xi \in [t_1, t_2]$. Тогда, по условию

$$|x(t_1) - x(t_2)| \leq B_1|t_1 - t_2|.$$

Следовательно, для любого $\varepsilon>0$ найдется $\delta=\frac{\varepsilon}{B_1}$ такое, что из

$$|t_1 - t_2| < \delta$$

следует, что

$$|x(t_1) - x(t_2)| < \varepsilon.$$

Задача 9.18. Какие из следующих множеств относительно компактны в C[0,1]?

1)
$$M_1 = \left\{ x \in C[0,1] \mid |x(t)| \leq B \right\},$$

2)
$$M_2 = \left\{ x \in C[0,1] \mid |x(t)| \leqslant B, |x(t_1) - x(t_2)| \leqslant L|t_1 - t_2| \right\}$$

Задача 9.19. Пусть M — равномерно ограниченное множество функций в пространстве C[0,1]. Докажите, что множество N функций вида

$$y(t) = \int_{0}^{t} x(\tau)d\tau, \quad t \in [0, 1],$$

 $r \partial e \ x(t) \in M$, относительно компактно.

Задача 9.20. Докажите, что шар пространства $C^1[0,1]$ является относительно компактным множеством в пространстве C[0,1]. Является ли он компактным множеством в C[0,1]?

Задача 9.21. Постройте отрицание определения равностепенной непрерывности.

Пример 9.8. Докажем, что множество $t^n, n = 1, 2, \ldots$ не является относительно компактным в C[0, 1].

Доказательство. Очевидно, что данное множество равномерно ограничено. Докажем, что оно не является равностепенно непрерывным. Пусть $\varepsilon = \frac{1}{2}, \, \delta$ — любое число, меньшее единицы. Возьмем

$$t_1 = 1, \quad t_2 = 1 - \delta.$$

Тогда для любого δ найдется номер N такой, что

$$x(t_1) - x(t_2) = 1 - \left(1 - \frac{\delta}{2}\right)^N \geqslant \frac{1}{2}$$

Действительно, достаточно выбрать

$$N \geqslant \left\lceil \frac{\ln \frac{1}{2}}{\ln(1-\delta)} \right\rceil + 1,$$

что и требовалось доказать.

Задача 9.22. Являются ли относительно компактными следующие

множества в C[0,1]?

1)
$$(at)^n \quad n = 1, 2, \dots;$$

$$(2) \qquad \sin(nt) \quad n = 1, 2, \dots;$$

3)
$$\sin(t+n) \ n=1,2,...;$$

4)
$$e^{t+\alpha} \quad \alpha \in \mathbb{R}$$

$$5) e^{t-\alpha} \alpha \in \mathbb{R}, \quad \alpha > 0$$

Задача 9.23. Используя теорему Арцела, сформулируйте и докажите критерий относительной компактности в пространстве $C^1[0,1]$.

Глава 10

Топологические пространства

Более широкий класс по сравнению с метрическими пространствами образуют топологические пространства.

Определение 10.1. Топологическим пространством называется пара (X, τ) – множество X с введенной на нем топологией τ . Топология τ есть система подмножеств, обладающих следующими свойствами:

- 1) пустое множество и все пространство X принадлежат τ ;
- 2) объединение любого числа множеств из τ принадлежит τ ;
- 3) пересечение любого конечного числа множеств из τ принадлежат τ .

Определение 10.2. Подмножества, удовлетворяющие указанным трем свойствам, называются открытыми.

Определение 10.3. Любое открытое множество, содержащее точку $x \in X$, называется окрестностью точки x.

Каждое метрическое пространство (X, ρ) является топологическим пространством. Открытые множества, определяемые обычным образом через расстояние ρ , задают топологию.

Произвольное метрическое пространство (X, ρ) удовлетворяет аксиоме отделимости Хаусдорфа: для любых различных точек $x, y \in X$ существуют множество τ_x , содержащее x и множество τ_y , содержащее y, которые принадлежат системе τ и не пересекаются: $\tau_x \cap \tau_y = \emptyset$.

Определение 10.4. Система открытых множеств Σ топологического пространства (X, τ) называется базой топологии этого пространства,

если любое непустое открытое множество пространства X может быть получено как объединение множеств из Σ .

Определение 10.5. Топологическое пространство называется пространством со счетной базой, если в нем существует хотя бы одна база, состоящая не более чем из счетного числа элементов.

Метрическое пространство является пространством со счетной базой тогда и только тогда, когда оно сепарабельно.

Определение 10.6. Топологическое пространство (X, τ) называется метризуемым, если топология τ в нем может быть задана с помощью какой-нибудь метрики.

Не всякое топологическое пространство метризуемо.

Пример 10.1. В теории обобщенных функций важную роль играет пространство $C_0^{\infty}(\mathbb{R})$. Оно состоит из бесконечно дифференцируемых на вещественной прямой функций, каждая из которых финитна — обращается в ноль вне некоторого отрезка.

Множество

$$\operatorname{supp} \varphi = \overline{\{x : \varphi(x) \neq 0\}}$$

(черта означает замыкание) называется носителем функции φ .

 $C_0^{\infty}(\mathbb{R})$ — пространство бесконечно дифференцируемых функций с компактным носителем. Сходимость в этом пространстве определяется следующим образом.

Определение 10.7. Последовательность $\varphi_n \to \varphi$ в C_0^{∞} , если 1. носители функций $\varphi_n(x)$ "не убегают"на бесконечность:

$$\exists a, b : \operatorname{supp} \varphi_n \subset [a, b] \quad \forall n;$$

2. $\varphi_n(x)$ сходится к $\varphi(x)$ и все производные $\varphi_n(x)$ сходятся к соответствующим производным $\varphi(x)$ равномерно по $x \in [a,b]$:

$$\varphi_n^{(j)}(x) \to \varphi^{(j)}(x) \qquad n \to \infty, j = 0, 1, \dots \forall x \in [a, b].$$

Задача 10.1. Пусть $\varphi \in C_0^{\infty}(\mathbb{R})$. Сходятся ли в $C_0^{\infty}(\mathbb{R})$ следующие последовательности:

$$1)\frac{1}{n}\varphi(x); \quad 2)\frac{1}{n}\varphi(nx); \quad 3)\frac{1}{n}\varphi\left(\frac{x}{n}\right)?$$

Задача 10.2. Докажите, что пространство $C_0^{\infty}(\mathbb{R})$ не метризуемо [14, c. 161].

Литература

- [1] Антоневич А. Б., Князев П. Н., Радыно Я.В. Задачи и упражнения по функциональному анализу. Минск: Выш. школа, 1978. 208 с.
- [2] Ахиезер Н. И., Глазман И. М. Теория линейных операторов в гильбертовом пространстве. М.: Наука, 1966. 544 с.
- [3] *Вайнберг М. М.* Функциональный анализ. М.: Просвещение, 1979. 128 с.
- [4] Владимиров В. С., Волович И. В., Зеленов Е. И. р-адический анализ и математическая физика.-М.: Физматлит, 1994.-352 с.
- [5] Зорич В. А. Математический анализ. Ч. 2. М.: Наука, 1984. 640 с.
- [6] *Ильин В. А., Позняк Э. Г.* Основы математического анализа. Ч. 2. М.: Наука, 1980.
- [7] *Канторович Л. В., Акилов Г. П.* Функциональный анализ. М.: Наука, 1984. 752 с.
- [8] *Кириллов А. А., Гвишиани А. Д.* Теоремы и задачи функционального анализа. М.: Наука, 1988. 400 с.
- [9] Колмогоров А. Н., Фомин С. В. Элементы теории функций и функционального анализа. М.: Наука, 1989. 624 с.
- [10] Функциональный анализ *Под ред. Крейна С. Г.* М.: Наука, 1972. 544 с.
- [11] *Люстерник Л. А., Соболев В. И.* Элементы функционального анализа. М.: Наука, 1965. - 520 с.

Литература 110

[12] *Люстерник Л. А., Соболев В. И.* Краткий курс функционального анализа. М.: Высш. школа, 1982. - 271 с.

- [13] $Pu\partial M.$, Caймон Б. Методы современной математической физики. Т.1. Функциональный анализ. М.: Мир, 1977. 460 с.
- [14] $Py\partial uh$ У. Функциональный анализ. М.: Мир, 1975. 448 с.
- [15] Cadoehuuuй B.A. Теория операторов. М.: Изд-во МГУ, 1986. 368 с.
- [16] Соболев С. Л. Некоторые применения функционального анализа в математической физике. М.: Наука, 1988. 334 с.
- [17] Треногин В. А. Функциональный анализ. М.: Наука, 1980. 496 с.
- [18] *Треногин В. А., Писаревский Б. М., Соболева Т. С.* Задачи и упражнения по функциональному анализу. М.: Наука, 1984. 256 с.
- [19] Xалмош П. Гильбертово пространство в задачах. М.: Мир, 1970. 352 с.
- [20] *Харди Г., Литтлвуд Д., Полиа Г.* Неравенства. М.: Ин. лит-ра, 1948. 456 с.