Revision of Dataframe

Dataframe from the Previous model

```
In [1]: import pandas as pd
        import numpy as np
        from sklearn.preprocessing import LabelEncoder
        df = pd.read csv('df.csv')
        print("df.shape",df.shape)
        item_count = df["target"].value_counts()
        print("Number of each species in dataframe:\n",item_count)
        df.shape (3607, 1505)
        Number of each species in dataframe:
                                    318
         A luchuensis
        A_trinidadensis
                                   235
        A_indologenus
                                   232
        A welwitschiae
                                   223
        A_sclerotiicarbonarius
                                   220
                                   192
        A homomorphus
        A_ibericus
                                   160
        A_japonicus
                                   141
        A_saccharolyticus
                                   140
        A_niger
                                   140
        A_vadensis
                                   137
        A_costaricaensis
                                   130
        A_heteromorphus
                                   130
        A_carbonarius
                                   120
        A_brasiliensis
                                   120
        A aculeatinus
                                   120
        A sclerotioniger
                                   119
        A_ellipticus
                                   110
        A_eucalypticola
                                   110
        A_aculeatus
                                   100
        A_floridensis
                                    90
        A tubingensis
                                    90
        A neoniger
                                    80
        A_brunneoviolaceus
                                    80
        A uvarum
                                    70
        Name: target, dtype: int64
```

Create New Dataframe

```
In [2]:
        Creating individual dataframe of 'A_costaricaensis' , 'A_neoniger' , 'A_tubing
        df_class6 = df[df['target'] == 'A_costaricaensis']
        df class16 = df[df['target'] == 'A neoniger']
        df_class22 = df[df['target'] == 'A_tubingensis']
        df_class17 = df[df['target'] == 'A_niger']
        df_class25 = df[df['target'] == 'A_welwitschiae']
        0.00
        Select 80 data randomly from each dataframe of 'A_costaricaensis' , 'A_neonige
        Select 140 data randomly from each dataframe of 'A niger' and 'A welwitschiae'
        (the number 80,140 based on the minimum of data in each group)
        df class6 rd = df class6.sample(n = 80)
        df class16 rd = df class16.sample(n = 80)
        df_class22_rd = df_class22.sample(n = 80)
        df class17 rd = df class17.sample(n = 140)
        df_class25_rd = df_class25.sample(n = 140)
        0.00
        Selecting all data from the dataframe in which 'target' is not
        'A_costaricaensis','A_neoniger','A_tubingensis', 'A_niger' and 'A_welwitschiae
        target_cut = ['A_costaricaensis','A_neoniger','A_tubingensis','A_niger','A_wel
        df_cut = df.loc[~df['target'].isin(target_cut)]
        print("df after cut 5 species out.shape",df cut.shape)
        .....
        Concatenate dataframe (samples randomly) of
         'A_costaricaensis','A_neoniger','A_tubingensis','A_niger','A_welwitschiae'
        list_5 = [df_class6_rd,df_class16_rd,df_class22_rd,df_class17_rd,df_class25_rd
        df_com5 = pd.concat(list_5, axis=0, ignore_index=True)
        print("\nShape of combined 5 species dataframe :",df_com5.shape)
        item counts 5 = df com5["target"].value counts()
        print("Number of each species :\n",item_counts_5)
        Renamed A_costaricaensis and A_neoniger in combined dataframe as A_tubingensis
        and renamed A welwitschiae as A niger
        since A_costaricaensis and A_neoniger are synnonyms of A_tubingensis
        and A_welwitschiae is a synnonyms of A_niger
        (Bian et al. 2022)
        df_com5_rename = df_com5.replace({'A_costaricaensis':'A_tubingensis',
                                           'A neoniger': 'A tubingensis',
                                           'A_welwitschiae':'A_niger'})
        print("\nShape of renamed dataframe :",df com5 rename.shape)
        print
        item counts = df com5 rename["target"].value counts()
```

```
print("Number of each species :\n",item_counts)

"""

Combine dataframe of cut dataframe and renamed dataframe

"""

list_2 = [df_cut,df_com5_rename]

df_all = pd.concat(list_2, axis=0, ignore_index=True)

df_all.to_csv('dataframe.csv', index=False) # Save to csv file

print("\nSave file as: dataframe.csv")

print("Shape of dataframe :",df_all.shape)

print("Number of each species in dataframe:\n",df_all["target"].value_counts()
```

df after cut 5 species out.shape (2944, 1505)

```
Shape of combined 5 species dataframe : (520, 1505)
Number of each species :
A niger
                     140
A_welwitschiae
                    140
A costaricaensis
                     80
A_neoniger
                     80
A_tubingensis
                     80
Name: target, dtype: int64
Shape of renamed dataframe: (520, 1505)
Number of each species :
A_niger
                  280
A_tubingensis
                 240
Name: target, dtype: int64
Save file as: dataframe.csv
Shape of dataframe: (3464, 1505)
Number of each species in dataframe:
A_luchuensis
                            318
A niger
                           280
A tubingensis
                           240
A_trinidadensis
                           235
A_indologenus
                           232
A_sclerotiicarbonarius
                           220
A homomorphus
                           192
A_ibericus
                           160
A japonicus
                           141
A_saccharolyticus
                           140
A_vadensis
                           137
A heteromorphus
                          130
A aculeatinus
                           120
A brasiliensis
                           120
A carbonarius
                           120
A_sclerotioniger
                           119
A_ellipticus
                           110
A eucalypticola
                           110
A aculeatus
                           100
A floridensis
                            90
A brunneoviolaceus
                            80
A uvarum
                            70
Name: target, dtype: int64
```

Count no. of member in each set & Print class mapping encoder

```
In [3]: |cols =[x for x in df all.columns if x not in ['target']]
        rowused = []
        for i in range (len(df all)):
                if i % 10 == 0:
                   rowused.append('test')
                elif i % 10 == 1:
                    rowused.append('validate')
                else:
                    rowused.append('train')
        df all['rowused'] = rowused
        dd=df_all['rowused'].sample(len(df_all))
        test set=df all[df all['rowused']=='test']
        validate set=df all[df all['rowused']=='validate']
        train_set=df_all[df_all['rowused']=='train']
        print('Count test_set:\n',test_set['target'].value_counts())
        print('\nCount validate_set:\n',validate_set['target'].value_counts())
        print('\nCount train_set:\n',train_set['target'].value_counts())
        print('----')
        label encoder = LabelEncoder()
        data_y = df_all.loc[:, 'target']
        encoded_y = label_encoder.fit_transform(data_y.values.ravel())
        label encoder name mapping = dict(zip(label encoder.classes ,label encoder.tra
        print('Mapping of Label Encoded Classes:', label_encoder_name_mapping, sep="\r
```

Count test_set:	
A luchuensis	32
_ A_niger	28
A_tubingensis	24
A_trinidadensis	24
A_indologenus	23
A_sclerotiicarbonarius	22
_	20
A_homomorphus	
A_ibericus	16
A_saccharolyticus	14
A_japonicus	14
A_heteromorphus	13
A_vadensis	13
A_aculeatinus	12
A_brasiliensis	12
A_carbonarius	12
A_sclerotioniger	12
A_ellipticus	11
A_eucalypticola	11
A aculeatus	10
A_floridensis	9
A_brunneoviolaceus	8
A uvarum	7
Name: target, dtype: int6	•
Name. carget, utype. into	7
Count validate_set:	
A_luchuensis	32
A_niger	28
A_tubingensis	24
 A_trinidadensis	24
A_indologenus	23
A_sclerotiicarbonarius	22
A homomorphus	19
A ibericus	16
_	14
A_saccharolyticus	
A_japonicus	14
A_vadensis	14
A_heteromorphus	13
A_aculeatinus	12
A_brasiliensis	12
A_carbonarius	12
A_sclerotioniger	12
A_ellipticus	11
A_eucalypticola	11
A_aculeatus	10
A_floridensis	9
_ A_brunneoviolaceus	8
_ A uvarum	7
Name: target, dtype: int6	4
<u> </u>	
Count train_set:	
A_luchuensis	254
A_niger	224
A_tubingensis	192
A_trinidadensis	187
_ A_indologenus	186
A sclerotiicarbonarius	176
	•

A_homomorphus	153
A_ibericus	128
A_japonicus	113
A_saccharolyticus	112
A_vadensis	110
A_heteromorphus	104
A_aculeatinus	96
A_brasiliensis	96
A_carbonarius	96
A_sclerotioniger	95
A_ellipticus	88
A_eucalypticola	88
A_aculeatus	80
A_floridensis	72
A_brunneoviolaceus	64
A_uvarum	56
Name: target, dtype:	int64

Mapping of Label Encoded Classes:

{'A_aculeatinus': 0, 'A_aculeatus': 1, 'A_brasiliensis': 2, 'A_brunneoviolace us': 3, 'A_carbonarius': 4, 'A_ellipticus': 5, 'A_eucalypticola': 6, 'A_flori densis': 7, 'A_heteromorphus': 8, 'A_homomorphus': 9, 'A_ibericus': 10, 'A_in dologenus': 11, 'A_japonicus': 12, 'A_luchuensis': 13, 'A_niger': 14, 'A_sacc harolyticus': 15, 'A_sclerotiicarbonarius': 16, 'A_sclerotioniger': 17, 'A_tr inidadensis': 18, 'A_tubingensis': 19, 'A_uvarum': 20, 'A_vadensis': 21}