Canonical Estimation in a Rare Events Regime

Mesrob Ohannessian*, Vincent Y. F. Tan†, Munther Dahleh*

† Department of ECE, University of Wisconsin-Madison *LIDS, MIT

SILO (Oct 2011)

■ We have more and more data

- We have more and more data
- Today's Google Corpus (1 billion words)

- We have more and more data
- Today's Google Corpus (1 billion words)
- Yet we do not have enough data

- We have more and more data
- Today's Google Corpus (1 billion words)
- Yet we do not have enough data
- Classical statistics involve an alphabet A and a pmf $p \in P(A)$

$$\mathcal{P}(\mathcal{A}) := \left\{ \mathbf{p} \in \mathbb{R}^{|\mathcal{A}|} : p(a) \geq 0, \sum_{a \in \mathcal{A}} p(a) = 1 \right\}$$

- We have more and more data
- Today's Google Corpus (1 billion words)
- Yet we do not have enough data
- Classical statistics involve an alphabet A and a pmf $p \in P(A)$

$$\mathcal{P}(\mathcal{A}) := \left\{ \mathbf{p} \in \mathbb{R}^{|\mathcal{A}|} : p(a) \geq 0, \sum_{a \in \mathcal{A}} p(a) = 1 \right\}$$

- $X_1, ..., X_n$ are independent samples from p
- Law of large numbers:

$$\frac{1}{n}\sum_{i=1}^n X_i \stackrel{P}{\to} \mathbb{E}X$$

■ Sequence of alphabets A_n and a sequence of pmfs $p_n \in \mathcal{P}(A_n)$

- Sequence of alphabets A_n and a sequence of pmfs $p_n \in \mathcal{P}(A_n)$
- To each *n*, we have an i.i.d. sequence of samples

$$X_{1,n}, X_{2,n}, \ldots, X_{n,n} \sim \prod_{i=1}^{n} p_n(x_{n,i})$$

- Sequence of alphabets A_n and a sequence of pmfs $p_n \in \mathcal{P}(A_n)$
- To each *n*, we have an i.i.d. sequence of samples

$$X_{1,n}, X_{2,n}, \ldots, X_{n,n} \sim \prod_{i=1}^{n} p_n(x_{n,i})$$

■ Let P_n be the law of $np_n(X_n)$ where $X_n \sim p_n$

- Sequence of alphabets A_n and a sequence of pmfs $p_n \in \mathcal{P}(A_n)$
- To each *n*, we have an i.i.d. sequence of samples

$$X_{1,n}, X_{2,n}, \ldots, X_{n,n} \sim \prod_{i=1}^{n} p_n(x_{n,i})$$

■ Let P_n be the law of $np_n(X_n)$ where $X_n \sim p_n$

Definition (Wagner, Viswanath and Kulkarni, IT-Trans 2011)

We say that $\{(A_n, p_n)\}_{n \in \mathbb{N}}$ is a rare-events source if

$$\frac{\check{c}}{n} \leq p_n(a) \leq \frac{\hat{c}}{n}, \quad \forall a \in \mathcal{A}_n$$

and $\exists P$ such that $P_n \Rightarrow P$.

- Sequence of alphabets A_n and a sequence of pmfs $p_n \in \mathcal{P}(A_n)$
- To each *n*, we have an i.i.d. sequence of samples

$$X_{1,n}, X_{2,n}, \ldots, X_{n,n} \sim \prod_{i=1}^{n} p_n(x_{n,i})$$

■ Let P_n be the law of $np_n(X_n)$ where $X_n \sim p_n$

Definition (Wagner, Viswanath and Kulkarni, IT-Trans 2011)

We say that $\{(A_n, p_n)\}_{n \in \mathbb{N}}$ is a rare-events source if

$$\frac{\check{c}}{n} \leq p_n(a) \leq \frac{\hat{c}}{n}, \quad \forall a \in \mathcal{A}_n$$

and $\exists P$ such that $P_n \Rightarrow P$. Note $supp(P) \subseteq \mathcal{C} := [\check{c}, \hat{c}]$.

 \blacksquare A_n, p_n, P_n, P are all unknown

- \blacksquare A_n, p_n, P_n, P are all unknown
- Using the samples $X_{1,n}, X_{2,n}, \dots, X_{n,n}$, WVK estimated

Probabilities
$$p_n^n(X_{n,1},\ldots,X_{n,n})$$

Entropy $H(p_n)$

Relative Entropy $D(p_n||q_n)$

- \blacksquare A_n, p_n, P_n, P are all unknown
- Using the samples $X_{1,n}, X_{2,n}, \dots, X_{n,n}$, WVK estimated

Probabilities
$$p_n^n(X_{n,1},...,X_{n,n})$$

Entropy $H(p_n)$

Relative Entropy $D(p_n||q_n)$

■ Note the independence from reordering of the symbols of A_n

- \blacksquare A_n, p_n, P_n, P are all unknown
- Using the samples $X_{1,n}, X_{2,n}, \dots, X_{n,n}$, WVK estimated

Probabilities
$$p_n^n(X_{n,1},\ldots,X_{n,n})$$

Entropy $H(p_n)$
Relative Entropy $D(p_n||q_n)$

- Note the independence from reordering of the symbols of A_n
- Other quantities?

Alphabet size
$$|\mathcal{A}_n|$$

Range of probabilities $\mathcal{C} := [\check{c}, \hat{c}]$

- \blacksquare A_n, p_n, P_n, P are all unknown
- Using the samples $X_{1,n}, X_{2,n}, \dots, X_{n,n}$, WVK estimated

Probabilities
$$p_n^n(X_{n,1},\ldots,X_{n,n})$$

Entropy $H(p_n)$
Relative Entropy $D(p_n||q_n)$

- Note the independence from reordering of the symbols of A_n
- Other quantities?

Alphabet size
$$|\mathcal{A}_n|$$

Range of probabilities $\mathcal{C}:=[\check{c},\hat{c}]$

■ Can we estimate all reasonable quantities in a universal manner?

Canonical Estimation Problems

Let $\{Y_n\}_{n\in\mathbb{N}}$ be a sequence of real-valued random variables such that

■ There exists continuous $f_n(x)$ that converge to f(x) pointwise on C

$$\mathbb{E}[Y_n] = \int_{\mathcal{C}} f_n(x) \, dP_n(x)$$

 $|Y_n - \mathbb{E}[Y_n]| \to 0$ almost surely

Canonical Estimation Problems

Let $\{Y_n\}_{n\in\mathbb{N}}$ be a sequence of real-valued random variables such that

■ There exists continuous $f_n(x)$ that converge to f(x) pointwise on C

$$\mathbb{E}[Y_n] = \int_{\mathcal{C}} f_n(x) \, dP_n(x)$$

 $|Y_n - \mathbb{E}[Y_n]| \to 0$ almost surely

By Skorohod's representation theorem, $Y_n \to \int_{\mathcal{C}} f(x) dP(x)$ a.s.

Canonical Estimation Problems

Let $\{Y_n\}_{n\in\mathbb{N}}$ be a sequence of real-valued random variables such that

■ There exists continuous $f_n(x)$ that converge to f(x) pointwise on C

$$\mathbb{E}[Y_n] = \int_{\mathcal{C}} f_n(x) \, dP_n(x)$$

■ $|Y_n - \mathbb{E}[Y_n]| \rightarrow 0$ almost surely

By Skorohod's representation theorem, $Y_n \to \int_{\mathcal{C}} f(x) dP(x)$ a.s.

Definition

An estimator $\{\hat{Y}_n : \mathcal{A}_n^n \to \mathbb{R}\}_{n \in \mathbb{N}}$ is consistent if

$$\hat{Y}_n(X_{n,1},\ldots,X_{n,n}) \to \int_{\mathcal{C}} f(x) dP(x)$$

almost surely.

Probabilities

$$Y_n = \frac{1}{n} \log p_n^n(X_{n,1}, \dots, X_{n,n}) + \log n, \qquad f(x) = \log x$$

Probabilities

$$Y_n = \frac{1}{n} \log p_n^n(X_{n,1}, \dots, X_{n,n}) + \log n, \qquad f(x) = \log x$$

Entropies

$$Y_n = H(p_n) - \log n, \qquad f(x) = -\log x$$

Probabilities

$$Y_n = \frac{1}{n} \log p_n^n(X_{n,1}, \dots, X_{n,n}) + \log n, \qquad f(x) = \log x$$

Entropies

$$Y_n = H(p_n) - \log n, \qquad f(x) = -\log x$$

Alphabet size

$$Y_n = \frac{|\mathcal{A}_n|}{n}, \qquad f(x) = \frac{1}{x}$$

Probabilities

$$Y_n = \frac{1}{n} \log p_n^n(X_{n,1}, \dots, X_{n,n}) + \log n, \qquad f(x) = \log x$$

Entropies

$$Y_n = H(p_n) - \log n, \qquad f(x) = -\log x$$

Alphabet size

$$Y_n = \frac{|\mathcal{A}_n|}{n}, \qquad f(x) = \frac{1}{x}$$

Range of probabilities

$$C = [\check{c}, \hat{c}], \qquad f(x) = x^q,$$

Probabilities

$$Y_n = \frac{1}{n} \log p_n^n(X_{n,1}, \dots, X_{n,n}) + \log n, \qquad f(x) = \log x$$

Entropies

$$Y_n = H(p_n) - \log n, \qquad f(x) = -\log x$$

Alphabet size

$$Y_n = \frac{|\mathcal{A}_n|}{n}, \qquad f(x) = \frac{1}{x}$$

Range of probabilities

$$C = [\check{c}, \hat{c}], \qquad f(x) = x^q, \qquad \hat{c} = \lim_{q \to \infty} \left[\int_{\mathcal{C}} x^q \, dP(x) \right]^{1/q}$$

Our strategy is to estimate the shadow P_n , the law of $np_n(X_n)$

- Our strategy is to estimate the shadow P_n , the law of $np_n(X_n)$
- If we can construct a sequence of measures \hat{P}_n such that

$$\hat{P}_n(X_{n,1},\ldots,X_{n,n})\Rightarrow P$$

almost surely...

- Our strategy is to estimate the shadow P_n , the law of $np_n(X_n)$
- If we can construct a sequence of measures \hat{P}_n such that

$$\hat{P}_n(X_{n,1},\ldots,X_{n,n})\Rightarrow P$$

almost surely...

 \blacksquare Then by integrating against the correct limiting function f,

$$\hat{Y}_n(X_{n,1},\ldots,X_{n,n})=\int_{\mathcal{C}}f(x)\,d\hat{P}_n(x)$$

we have a consistent estimator.

- Our strategy is to estimate the shadow P_n , the law of $np_n(X_n)$
- If we can construct a sequence of measures \hat{P}_n such that

$$\hat{P}_n(X_{n,1},\ldots,X_{n,n})\Rightarrow P$$

almost surely...

 \blacksquare Then by integrating against the correct limiting function f,

$$\hat{Y}_n(X_{n,1},\ldots,X_{n,n})=\int_{\mathcal{C}}f(x)\,d\hat{P}_n(x)$$

we have a consistent estimator.

- Problems:
 - Support C isn't known
 - \blacksquare f(x) doesn't have to be bounded everywhere
 - How to get the estimate $\hat{P}_n(x)$?

Estimate the function

Consider a tapered version of f

Estimate the function

Consider a tapered version of f

Lemma (Ohannessian-Tan-Dahleh)

If $C \subset \mathcal{D}$, then

$$\hat{Y}_n := \int_{\mathcal{C}} f_{\mathcal{D}}(x) \, d\hat{P}_n(x)$$

is a consistent estimator

Estimate the function

Consider a tapered version of f

Lemma (Ohannessian-Tan-Dahleh)

If $C \subset \mathcal{D}$, then

$$\hat{Y}_n := \int_{\mathcal{C}} f_{\mathcal{D}}(x) \, d\hat{P}_n(x)$$

is a consistent estimator

If $\mathcal C$ is unknown, just let $\mathcal D$ grow gradually with n_{top}

Estimate with rates

Recall the Wasserstein distance

$$d_W(P,Q) = \sup_{h \in Lip(1)} \left| \int_{\mathbb{R}^+} h \, dP - \int_{\mathbb{R}^+} h \, dQ \right|$$

Estimate with rates

Recall the Wasserstein distance

$$d_W(P,Q) = \sup_{h \in Lip(1)} \left| \int_{\mathbb{R}^+} h \, dP - \int_{\mathbb{R}^+} h \, dQ \right|$$

Lemma (Ohannessian-Tan-Dahleh)

If

$$Lip(f_{D_n}) d_W(\hat{P}_n, P) \rightarrow 0,$$

then,

$$\hat{Y}_n := \int_{\mathbf{R}^+} f_{D_n}(x) \, d\hat{P}_n(x)$$

is consistent.

Estimate with rates

Recall the Wasserstein distance

$$d_W(P,Q) = \sup_{h \in Lip(1)} \left| \int_{\mathbb{R}^+} h \, dP - \int_{\mathbb{R}^+} h \, dQ \right|$$

Lemma (Ohannessian-Tan-Dahleh)

If

$$Lip(f_{D_n}) d_W(\hat{P}_n, P) \rightarrow 0,$$

then,

$$\hat{Y}_n := \int_{\mathbf{R}^+} f_{D_n}(x) \, d\hat{P}_n(x)$$

is consistent.

How to estimate the shadow P_n ?

Pseudo-Empirical Measure

Good-Turing estimator:

- lacksquare Denote the set of symbols that appear k times as $\mathcal{B}_{n,k}\subset\mathcal{A}_n$
- Denote their probabilities as

$$\gamma_{n,k} = p_n(\mathcal{B}_{n,k}) = \sum_{a \in \mathcal{B}_{n,k}} p_n(a)$$

Pseudo-Empirical Measure

Good-Turing estimator:

- Denote the set of symbols that appear k times as $\mathcal{B}_{n,k} \subset \mathcal{A}_n$
- Denote their probabilities as

$$\gamma_{n,k} = p_n(\mathcal{B}_{n,k}) = \sum_{a \in \mathcal{B}_{n,k}} p_n(a)$$

Estimate these using the Good-Turing estimator:

$$\phi_{n,k}:=(k+1)\frac{|\mathcal{B}_{n,k+1}|}{n}$$

Good-Turing estimator:

- Denote the set of symbols that appear k times as $\mathcal{B}_{n,k} \subset \mathcal{A}_n$
- Denote their probabilities as

$$\gamma_{n,k} = p_n(\mathcal{B}_{n,k}) = \sum_{a \in \mathcal{B}_{n,k}} p_n(a)$$

Estimate these using the Good-Turing estimator:

$$\phi_{n,k}:=(k+1)\frac{|\mathcal{B}_{n,k+1}|}{n}$$

■ E.g.: Probability of missing mass $\approx \phi_{n,0}$ [Budianu and Tong 2004]

Strong law of large numbers gives:

Lemma (WVK)

Let the P-Poisson mixture be

$$\lambda_k^P = \int_{\mathbb{R}^+} \frac{e^{-x} x^k}{k!} dP(x), \qquad k = 0, 1, \dots$$

Strong law of large numbers gives:

Lemma (WVK)

Let the P-Poisson mixture be

$$\lambda_k^P = \int_{\mathbb{R}^+} \frac{e^{-x} x^k}{k!} dP(x), \qquad k = 0, 1, \dots$$

Then, $\|\gamma_n - \lambda^P\|_1 \to 0$ and $\|\phi_n - \lambda^P\|_1 \to 0$ almost surely.

Strong law of large numbers gives:

Lemma (WVK)

Let the P-Poisson mixture be

$$\lambda_k^P = \int_{\mathbb{R}^+} \frac{e^{-x} x^k}{k!} dP(x), \qquad k = 0, 1, \dots$$

Then, $\|\gamma_n - \lambda^P\|_1 \to 0$ and $\|\phi_n - \lambda^P\|_1 \to 0$ almost surely.

Theorem (Ohannessian-Tan-Dahleh)

For "most natural" rare event sources, there exist an s > 0 such that

$$n^{\mathbf{s}} \sup_{k \in \mathbb{N}^1} |F_{\phi_n}(k) - F_{\lambda^p}(k)| o 0, \qquad a.s.$$

(Kolmogorov-Smirnov convergence)

Estimation of $\hat{P}_n(x)$ via mixture distribution learning

Theorem

The (pseudo) maximum-likelihood estimator

$$\hat{P}_n^{ML} = \underset{Q}{\operatorname{arg\,min}} \ D(\phi_n || \ Q)$$

is a valid construction, i.e., $\hat{P}_n^{ML} \Rightarrow P$ almost surely.

Estimation of $\hat{P}_n(x)$ via mixture distribution learning

Theorem

The (pseudo) maximum-likelihood estimator

$$\hat{P}_n^{ML} = \underset{Q}{\operatorname{arg\,min}} \ D(\phi_n || \ Q)$$

is a valid construction, i.e., $\hat{P}_n^{ML} \Rightarrow P$ almost surely.

Theorem

The minimum distance estimator

$$\hat{P}_n^{MD} = rg \min_{Q} \sup_{k \in \mathbb{N}} \left| F_{\phi_n}(k) - F_{Poi(Q)}(k) \right|$$

is also valid. Furthermore, there exists s>0 such that $n^s d_W(\hat{P}_n,P) \to 0$ almost surely (with some technical conditions).

■ Normalized entropy: $Y_n = H(p_n) - \log n$

- Normalized entropy: $Y_n = H(p_n) \log n$
- Canonical with $f(x) = -\log x$

- Normalized entropy: $Y_n = H(p_n) \log n$
- Canonical with $f(x) = -\log x$
- f is D_n -Lipschitz on $\mathcal{D} := [D_n^{-1}, D_n]$

- Normalized entropy: $Y_n = H(p_n) \log n$
- Canonical with $f(x) = -\log x$
- f is D_n -Lipschitz on $\mathcal{D} := [D_n^{-1}, D_n]$

Lemma

With $D_n = o(n^s)$,

$$\hat{Y}_n := \int_{\mathbb{R}^+} (-\log x)_{D_n} d\hat{P}_n(x)$$

is consistent

■ Normalized alphabet size: $Y_n = |A_n|/n$

- Normalized alphabet size: $Y_n = |A_n|/n$
- Canonical with $f(x) = \frac{1}{x}$ [Bhat and Sporat 2004]

- Normalized alphabet size: $Y_n = |A_n|/n$
- Canonical with $f(x) = \frac{1}{x}$ [Bhat and Sporat 2004]
- f is D_n^2 -Lipschitz on $\mathcal{D} := [D_n^{-1}, D_n]$

- Normalized alphabet size: $Y_n = |A_n|/n$
- Canonical with $f(x) = \frac{1}{x}$ [Bhat and Sporat 2004]
- f is D_n^2 -Lipschitz on $\mathcal{D} := [D_n^{-1}, D_n]$

Lemma

With $D_n = o(n^{s/2})$,

$$\hat{Y}_n := \int_{\mathbb{R}^+} \left(\frac{1}{x}\right)_{D_n} d\hat{P}_n(x)$$

is consistent

Estimating support $C = [\check{c}, \hat{c}]$

- Not quite canonical but close.
- Let Z be the weak limit of $Z_n := np_n(X_n)$ and let $P := Z_*(\mathbb{P})$. Then

$$\hat{\mathbf{c}} = \operatorname{esssup}_{\omega} Z(\omega) = \lim_{q \to \infty} \left[\int_{\mathcal{C}} x^q \, dP(x) \right]^{1/q}$$

Estimating support $C = [\check{c}, \hat{c}]$

- Not quite canonical but close.
- Let Z be the weak limit of $Z_n := np_n(X_n)$ and let $P := Z_*(\mathbb{P})$. Then

$$\hat{c} = \operatorname{esssup}_{\omega} Z(\omega) = \lim_{q \to \infty} \left[\int_{\mathcal{C}} x^q \, dP(x) \right]^{1/q}$$

■ Thus, " $f(x) = x^q$ ". Let q grow with n too!

Estimating support $C = [\check{c}, \hat{c}]$

- Not quite canonical but close.
- Let Z be the weak limit of $Z_n := np_n(X_n)$ and let $P := Z_*(\mathbb{P})$. Then

$$\hat{c} = \operatorname{esssup}_{\omega} Z(\omega) = \lim_{q \to \infty} \left[\int_{\mathcal{C}} x^q \, dP(x) \right]^{1/q}$$

■ Thus, " $f(x) = x^q$ ". Let q grow with n too!

Lemma

With
$$q_n = \frac{\log n}{\log \log n}$$
 and $D_n = o(n^{\frac{s}{2q_n}})$,

$$\hat{Y}_n := \left[\int_{\mathbb{R}^+} (x^{q_n})_{D_n} d\hat{P}_n(x)\right]^{1/q_n}$$

is consistent for estimating ĉ

■ Challenge: Large alphabets and data scarcity

- Challenge: Large alphabets and data scarcity
- Model: WVK's rare-events regime model

- Challenge: Large alphabets and data scarcity
- Model: WVK's rare-events regime model
- Problems: Canonical estimation

- Challenge: Large alphabets and data scarcity
- Model: WVK's rare-events regime model
- Problems: Canonical estimation
- Solution: Imitating the source

- Challenge: Large alphabets and data scarcity
- Model: WVK's rare-events regime model
- Problems: Canonical estimation
- Solution: Imitating the source
 - Abstract methods
 - Concrete constructions

- Challenge: Large alphabets and data scarcity
- Model: WVK's rare-events regime model
- Problems: Canonical estimation
- Solution: Imitating the source
 - Abstract methods
 - Concrete constructions
- Future work: Further analysis of convergence rates