Exponenteille

Propriétés de l'exponentielle

Caractérisation

La fonction exponentielle notée exp et définie sur $I = \mathbb{R}$ est définie par $\exp x = e^x$

 \bullet exp est dérivable sur $\mathbb R$

• $\exp tx = \exp x$

• $\exp 0 = 1$

Propriété

$$\exp x + y = \exp x \times \exp y$$

Signe

 $\forall x \in \mathbb{R}, e^x > 0$

4 Propriétés algébriques

Soient $\forall x, y \in \mathbb{R}$

$$\bullet$$
 $e^x = e^y \Leftrightarrow x = y$

•
$$e^x < e^y \Leftrightarrow x < y$$

 $\forall x \in \mathbb{R}^{+*} \text{ et } \forall n \in \mathbb{Z}$:

La fonction exponentielle vérifie les règles des puissances $\forall x,y\in\mathbb{R}$ et $\forall n\in\mathbb{Z}$

$$\bullet \ e^{x+y} = e^x e^y$$

•
$$e^{-x} = \frac{1}{e^x}$$

$$\bullet \ e^{x-y} = \frac{e^x}{e^y} \qquad \bullet \ (e^x)^n = e^{nx}$$

$$\bullet$$
 $(e^x)^n = e^{nx}$

Étude de l'exponentielle В

Limites

Aux bornes de son ensemble de définition, les limites de l'exponentielle sont:

$$\bullet \lim_{x \to -\infty} e^x = 0$$

$$\bullet \lim_{x \to +\infty} e^x = +\infty$$

(a) Croissances comparées

•
$$\lim_{x \to -\infty} xe^x = 0$$

$$\bullet \lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Dérivée

(a) Dérivée de e^x

 $\ln x$ est dérivable sur \mathbb{R} et

$$(e^x)\prime = e^x$$

(b) Dérivée de e^u

u est une fonction dérivable et strictement positive sur $I,\,e\hat{\mathbf{u}}$ est alors dérivable sur I

$$(e^u)\prime(x) = u\prime(x)e^{u(x)}$$