Writeup HW #1

0.1 Introduction

In this writeup, we will be evaluating two different algorithms written in two different programming languages ability to approximate π . The first Python algorithm calculates π by simulating the inscribing of a circle in a square by selecting random points in the square and checking if they are in said circle giving us $\approx \frac{\pi}{4}$. In comparison, the C++ algorithm uses the average value of the function $f(x) = \sqrt{1-x^2}$ on the interval [0,1] to approximate $\frac{\pi}{4}$. Both algorithms used n points.

0.2 Python Approximation

From the Python approximation, we were able to generate the following approximations of π for n = 10000, 1000000, 25000000 points.

0.3 C++ Approximation

From the C++ approximation, we were able to generate the following approximations of π for n = 10000, 1000000, 25000000 points.

0.4 Conclusion

One thing to note when comparing the two algorithms, is that the C++ algorithm was able to approximate π more quickly (timewise) and with a higher degree of accuracy for a lower value of n, as indicated by the lesser standard deviation for n=10000 and an average that is closer to π . Similarly, for larger values of n, the C++ algorithm was able to obtain an average value closer to π , with a lesser spread as seen by the case where n=25000000 where the standard deviation of C++ Approx < standard deviation of Python Approx, all while $|\pi-approx|$ was minimized under the C++ algorithm for each of our n point experiments.