Assignment Group: 14

Program: Automotive Software Engineering (Master)

Subject: Software Engineering and Programming Basics W18/19

Date: 04/11/2018

Group Members	
Name	Immatrikulation Number
Majid Ali Khan	510868
Ishfaque Ahmed	553225
Ammad Jamil Chaudhry	511951
Muhammad Umair Sabir	487265
Abdul Rehman Sweidat	513012
Murtaza Ali	553212
Faheem Azfar Bhatti	554558

Code:

```
import java.util.Arrays;
import java.util.Scanner;
     GROUP 14 - ASSIGNMENT
     THIS PROGRAM FINDS THE NEAREST VALUE OF THE INPUT IN A GIVEN SORTED ARRAY THIS PROGRAM USES MODIFIED BINARY SEARCH ALGORITHM TO FIND THE CORRECT VALUES
public class Assignment {
    //This method will break the array on each recursive call
private static int[] sliceTheArray(int[] sortedArray, int leftSide, int rightSide) {
    return Arrays.copyOfRange(sortedArray, leftSide, rightSide);
    }
        return 0;
    //This is recursive method to find the nearest value, it is modified version of the binary search
private static int modifiedBinarySearch(int[] sortedArray, int input) {
   int midpoint = sortedArray.length / 2;
        {f if} (sortedArray[midpoint] == input) { //This case handles when the value entered is present in the loop
             return midpoint;
        }
tf (sortedArray.length == 2) { //This case handles the nearest value search
    return input - sortedArray[0] > input - sortedArray[1] ? sortedArray[1] : sortedArray[0];
        if (sortedArray[midpoint] > input) {
    return modifiedBinarySearch(sliceTheArray(sortedArray, 0, midpoint), input);
        } else {
            return modifiedBinarySearch(sliceTheArray(sortedArray, midpoint, sortedArray.length), input);
        }
    }
   int input = reader.nextInt(); //User input
//Output result
        }
}
```

Output:

Sample 1:

```
Run:
          Assignment
         /opt/jdk1.8.0_172/bin/java ...
         Given Array is : 1,2,4,6,7,8,9,11,19,21,99,119,254,256,301,400,500,542,600,610
  Please enter a value to find the closest value in the array
7: Structure
  Ш
     ₽
  0
     <u>=</u>+
         Value near to input : 4 is \Rightarrow 2 and position of the value in the array is \Rightarrow 1
  \rightarrow
     Process finished with exit code 0
      Î
  -
```

Sample 2:

```
Run: Assignment ×
/opt/jdk1.8.0_172/bin/java ...
Given Array is : 1,2,4,6,7,8,9,11,19,21,99,119,254,256,301,400,500,542,600,610
Please enter a value to find the closest value in the array
99
Value near to input : 99 is => 119 and position of the value in the array is => 11
Process finished with exit code 0
```

Sample 3:

```
Run: Assignment ×
/opt/jdk1.8.0_172/bin/java ...
Given Array is : 1,2,4,6,7,8,9,11,19,21,99,119,254,256,301,400,500,542,600,610
Please enter a value to find the closest value in the array
300
Value near to input : 300 is => 301 and position of the value in the array is => 14
Process finished with exit code 0
```

Sample 4:

```
Run:
         Assignment ×
         /opt/jdk1.8.0_172/bin/java ...
  \blacktriangleright
        Given Array is : 1,2,4,6,7,8,9,11,19,21,99,119,254,256,301,400,500,542,600,610
  Please enter a value to find the closest value in the array
  11
     =
  0
        Value near to input : 600 is => 610 and position of the value in the array is => 19
  +
     ₽
        Process finished with exit code 0
     Î
===
```