6. Homework Assignment - 414-1 Electrodynamics

I. Kovács

February 16, 2021

Exercise 1 (2 pts)

Derive the equation of motion of $g(\lambda)$ and $r(\lambda)$ for the following action:

$$S = \int d\lambda \left[-g(\lambda)^{-1} \frac{\mathrm{d}r}{\mathrm{d}\lambda} \cdot \frac{\mathrm{d}r}{\mathrm{d}\lambda} - \left(\frac{1}{2} mc \right)^2 g(\lambda) \right]$$

Exercise 2 (2 pts)

Derive the equation of motion through the Euler-Lagrange equations of the following EM Lagrange density:

$$\mathcal{L}(A^{\mu}, \partial^{\mu}A^{\nu}) = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} - \frac{1}{c}J^{\mu}A_{\mu}$$

Exercise 3 (3 pts)

Consider the following Lagrange density:

$$\mathcal{L}(\phi,\phi^{\star}) = \left|\partial_{\mu}\phi\right|^{2} - m^{2}|\phi|^{2},$$

where $\phi = \frac{1}{\sqrt{2}} (a(x) + ib(x))$ is a complex scalar. i) Derive the two equations of motion. ii) \mathcal{L} is invariant under $\phi \to e^{i\alpha} \phi$. Construct the Noether current corresponding to this symmetry!

Exercise 4 (3 pts)

Consider the following Lagrange density:

$$\mathcal{L}(A^{\mu},\partial^{\mu}A^{\nu})=F_{\mu\nu}^{\star}F^{\mu\nu}$$

Explain why we didn't consider a term proportional to this when discussing the equation of motion for EM fields.

Exercise 5 (4 pts)

In the reference frame a static uniform E_0 field is parallel to the x=axis and a static uniform magnetic field $B_0 = 2E_0$ lies in the x-y plane, making an angle θ with the x-axis. i) Determine the velocity of a reference frame in which the electric and magnetic fields are parallel. What are the fields in this frame for ii) $\theta \ll 1$ and iii) $\theta \to \pi/2$?