

Definiția 2.4

Termenii lui \mathcal{L} sunt expresiile definite astfel:

- (T0) Orice variabilă este termen.
- (T1) Orice simbol de constantă este termen.
- (T2) Dacă $m \ge 1$, $f \in \mathcal{F}_m$ și t_1, \ldots, t_m sunt termeni, atunci $ft_1 \ldots t_m$ este termen.
- (T3) Numai expresiile obținute aplicând regulile (T0), (T1), (T2) sunt termeni.

Notatii:

- ► Mulțimea termenilor se notează *Term*_L.
- ► Termeni: $t, s, t_1, t_2, s_1, s_2, ...$
- \triangleright Var(t) este mulțimea variabilelor care apar în termenul t.

Definiția 2.5

Un termen t se numește închis dacă $Var(t) = \emptyset$.

Formule

Definiția 2.6

Formulele atomice ale lui \mathcal{L} sunt expresiile de forma:

- \triangleright (s = t), unde s, t sunt termeni;
- $ightharpoonup (Rt_1 ... t_m)$, unde $R \in \mathcal{R}_m$ și $t_1, ..., t_m$ sunt termeni.

Definiția 2.7

Formulele lui \mathcal{L} sunt expresiile definite astfel:

- (F0) Orice formulă atomică este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă
- (F2) Daca φ și ψ sunt formule, atunci $(\varphi \to \psi)$ este formulă.
- (F3) Dacă φ este formulă, atunci $(\forall x \varphi)$ este formulă pentru orice variabilă x.
- (F4) Numai expresiile obținute aplicând regulile (F0), (F1), (F2), (F3) sunt formule.

Formule

Notații

- ► Mulţimea formulelor se notează *Form*_L.
- Formule: $\varphi, \psi, \chi, \dots$
- $ightharpoonup Var(\varphi)$ este mulțimea variabilelor care apar în formula φ .

Convenție

De obicei renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Atunci când nu e pericol de confuzie, scriem s=t în loc de (s=t), $Rt_1 \ldots t_m$ în loc de $(Rt_1 \ldots t_m)$, $\forall x \varphi$ în loc de $(\forall x \varphi)$, etc..

Formule

Propoziția 2.8 (Inducția pe formule)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- Γ conţine toate formulele atomice;
- $ightharpoonup \Gamma$ este închisă la \neg , \rightarrow și $\forall x$ (pentru orice variabilă x).

Atunci $\Gamma = Form_{\mathcal{L}}$.

Este folosită pentru a demonstra că toate formulele satisfac o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor formulelor care satisfac \mathcal{P} și aplicăm inducția pe formule pentru a obține că $\Gamma = Form_{\mathcal{L}}$.

Conectori derivați

Conectorii \lor , \land , \leftrightarrow și cuantificatorul existențial \exists sunt introduși prin următoarele abrevieri:

$$\varphi \lor \psi := ((\neg \varphi) \to \psi)
\varphi \land \psi := \neg(\varphi \to (\neg \psi)))
\varphi \leftrightarrow \psi := ((\varphi \to \psi) \land (\psi \to \varphi))
\exists x \varphi := (\neg \forall x (\neg \varphi)).$$

Formule

Convenții

- ▶ În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \rightarrow \psi) \rightarrow \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ▶ ¬ are precedență mai mare decât ceilalți conectori;
 - \triangleright \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .
- ▶ Prin urmare, formula $(((\varphi \rightarrow (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \rightarrow \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.
- Cuantificatorii ∀, ∃ au precedență mai mare decât ceilalți conectori.
- ▶ Aşadar, $\forall x \varphi \rightarrow \psi$ este $(\forall x \varphi) \rightarrow \psi$ şi nu $\forall x (\varphi \rightarrow \psi)$.

Notații

De multe ori identificăm un limbaj \mathcal{L} cu mulțimea simbolurilor sale non-logice și scriem $\mathcal{L} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$.

- Scriem de multe ori $f(t_1, \ldots, t_m)$ în loc de $ft_1 \ldots t_m$ și $R(t_1, \ldots, t_m)$ în loc de $Rt_1 \ldots t_m$.
- Pentru simboluri f de operații binare scriem t_1ft_2 în loc de ft_1t_2 .
- Analog pentru simboluri R de relații binare: scriem t_1Rt_2 în loc de Rt_1t_2 .

L-structura

Definiția 2.9

O L-structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

unde

- A este o mulțime nevidă;
- ▶ $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ este o mulțime de operații pe A; dacă f are aritatea m, atunci $f^{\mathcal{A}} : A^m \to A$;
- ▶ $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ este o mulțime de relații pe A; dacă R are aritatea m, atunci $R^{\mathcal{A}} \subseteq A^m$;
- ightharpoonup A se numește universul structurii A. Notație: A = |A|
- $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numește denotația sau interpretarea lui f (respectiv R, c) în \mathcal{A} .

10

Exemple - Limbajul egalității $\mathcal{L}_{=}$

 $\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$, unde

- $\triangleright \mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- \triangleright \mathcal{L}_- -structurile sunt multimile nevide

Exemple de formule:

• egalitatea este simetrică:

$$\forall x \forall y (x = y \rightarrow y = x)$$

• universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

Exemple - Limbajul aritmeticii $\mathcal{L}_{\mathsf{ar}}$

 $\mathcal{L}_{ar} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \{\dot{<}\}; \dot{<}$ este simbol de relație binară, adică are aritatea 2;
- $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ sunt simboluri de operații binare și \dot{S} este simbol de operație unar (adică are aritatea 1);
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{ar} = (\dot{\langle}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$ sau $\mathcal{L}_{ar} = (\dot{\langle}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$

Exemplul natural de \mathcal{L}_{ar} -structură:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

unde $S: \mathbb{N} \to \mathbb{N}, S(m) = m+1$ este funcția succesor. Prin urmare,

$$\dot{\mathbf{x}}^{\mathcal{N}} = \mathbf{x}, \ \dot{\mathbf{x}}^{\mathcal{N}} = \mathbf{x}, \ \dot{\mathbf{x}}^{\mathcal{N}} = \mathbf{x}, \ \dot{\mathbf{y}}^{\mathcal{N}} = \mathbf{S}, \ \dot{\mathbf{0}}^{\mathcal{N}} = \mathbf{0}.$$

• Alt exemplu de \mathcal{L}_{ar} -structură: $\mathcal{A} = (\{0,1\},<,\vee,\wedge,\neg,1)$.

Exemplu - Limbajul cu un simbol de relație binar

 $\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \{R\}; R \text{ simbol binar}$
- $\mathcal{F} = \mathcal{C} = \emptyset$
- ► £-structurile sunt mulțimile nevide împreună cu o relație binară
- Dacă suntem interesați de mulțimi parțial ordonate (A, \leq) , folosim simbolul \leq în loc de R și notăm limbajul cu \mathcal{L}_{\leq} .
- ▶ Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul < în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- ▶ Dacă suntem interesați de grafuri G = (V, E), folosim simbolul \dot{E} în loc de R și notăm limbajul cu \mathcal{L}_{Graf} .
- ▶ Dacă suntem interesați de structuri (A, \in) , folosim simbolul \in în loc de R și notăm limbajul cu \mathcal{L}_{\in} .

Exemple - Limbajul grupurilor \mathcal{L}_{Gr}

 $\mathcal{L}_{Gr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \emptyset;$
- $ightharpoonup \mathcal{F} = \{\dot{*}, \dot{^{-1}}\}; \, \dot{*} \; \text{simbol binar, } \dot{^{-1}} \; \text{simbol unar}$
- $ightharpoonup \mathcal{C} = \{\dot{e}\}.$

Scriem $\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-1}; \dot{e})$ sau $\mathcal{L}_{Gr} = (\dot{*}, \dot{-1}, \dot{e})$.

Exemple naturale de \mathcal{L}_{Gr} -structuri sunt grupurile: $\mathcal{G} = (G, \cdot, ^{-1}, e)$.

Prin urmare, $\dot{*}^{\mathcal{G}} = \cdot, \dot{-1}^{\mathcal{G}} = -1, \dot{e}^{\mathcal{G}} = e$.

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $ightharpoonup \mathcal{R} = \emptyset$:
- $\triangleright \mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0})$.

SEMANTICA

Interpretare (evaluare)

Fie \mathcal{L} un limbaj de ordinul I și \mathcal{A} o \mathcal{L} -structură.

Definiția 2.10

O interpretare sau evaluare a (variabilelor) lui $\mathcal L$ în $\mathcal A$ este o funcție $e:V\to A$.

În continuare, $e: V \to A$ este o interpretare a lui \mathcal{L} in \mathcal{A} .

Definiția 2.11 (Interpretarea termenilor)

Prin inducție pe termeni se definește interpretarea $t^{\mathcal{A}}(e) \in A$ a termenului t sub evaluarea e:

- ightharpoonup dacă $t=x\in V$, atunci $t^{\mathcal{A}}(e):=e(x)$;
- ightharpoonup dacă $t=c\in\mathcal{C}$, atunci $t^{\mathcal{A}}(e):=c^{\mathcal{A}}$;
- $lackbox{dacă} t = ft_1 \dots t_m$, atunci $t^{\mathcal{A}}(e) := f^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \dots, t_m^{\mathcal{A}}(e))$.

Interpretarea formulelor

Prin inducție pe formule se definește interpretarea

$$\varphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei φ sub evaluarea e.

$$(s=t)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dacreve{a}} s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \ 0 & \operatorname{altfel}. \end{array}
ight. \ (Rt_1 \ldots t_m)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dacreve{a}} R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \ldots, t_m^{\mathcal{A}}(e)) \ 0 & \operatorname{altfel}. \end{array}
ight.$$

Interpretarea formulelor

Negația și implicația

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \varphi^{\mathcal{A}}(e);$
- $\blacktriangleright (\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$, unde,

Prin urmare,

- $(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0.$
- $(\varphi \to \psi)^{\mathcal{A}}(e) = 1 \iff (\varphi^{\mathcal{A}}(e) = 0 \text{ sau } \psi^{\mathcal{A}}(e) = 1).$

18

.

Interpretarea formulelor

Notație

Pentru orice variabilă $x \in V$ și orice $a \in A$, definim o nouă interpretarea $e_{x \leftarrow a} : V \rightarrow A$ prin

$$e_{x \leftarrow a}(v) = \left\{ egin{array}{ll} e(v) & ext{dacă } v
eq x \ a & ext{dacă } v = x. \end{array}
ight.$$

Interpretarea formulelor

Relația de satisfacere

Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o interpretare a lui \mathcal{L} în \mathcal{A} .

Definiția 2.12

Fie φ o formulă. Spunem că:

- ightharpoonup e satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 1$. Notație: $\mathcal{A} \vDash \varphi[e]$.
- e nu satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 0$. Notație: $\mathcal{A} \not\vDash \varphi[e]$.

Corolar 2.13

Pentru orice formule φ, ψ și orice variabilă x,

- (i) $\mathcal{A} \vDash \neg \varphi[e] \iff \mathcal{A} \not\vDash \varphi[e].$
- (ii) $\mathcal{A} \vDash (\varphi \to \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \text{ implică } \mathcal{A} \vDash \psi[e] \iff \mathcal{A} \not\vDash \varphi[e] \text{ sau } \mathcal{A} \vDash \psi[e].$
- (iii) $A \models (\forall x \varphi)[e] \iff pentru \ orice \ a \in A, \ A \models \varphi[e_{x \leftarrow a}].$

Dem.: Exercițiu ușor.

22

Relația de satisfacere

Fie φ, ψ formule și x o variabilă.

Propoziția 2.14

- (i) $(\varphi \vee \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \vee \psi^{\mathcal{A}}(e);$
- (ii) $(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e)$;
- (iii) $(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$
- $(iv) \ (\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \textit{dac} \ \textit{a} \ \textit{exist} \ \textit{a} \in A \ \textit{a.i.} \ \varphi^{\mathcal{A}}(e_{\mathsf{x} \leftarrow \mathsf{a}}) = 1 \\ 0 & \textit{altfel}. \end{cases}$

Dem.: Exercițiu ușor. Arătăm, de exemplu, (iv).

$$(\exists x\varphi)^{\mathcal{A}}(e) = 1 \iff (\neg \forall x \neg \varphi)^{\mathcal{A}}(e) = 1 \iff (\forall x \neg \varphi)^{\mathcal{A}}(e) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1.$$

Relația de satisfacere

Corolar 2.15

- (i) $A \vDash (\varphi \land \psi)[e] \iff A \vDash \varphi[e] \text{ si } A \vDash \psi[e].$
- (ii) $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii) $A \vDash (\varphi \leftrightarrow \psi)[e] \iff A \vDash \varphi[e] \ ddac \ A \vDash \psi[e].$
- (iv) $A \vDash (\exists x \varphi)[e] \iff \text{exist} \check{a} \in A \text{ a.i. } A \vDash \varphi[e_{x \leftarrow a}].$

22

Fie φ formulă a lui \mathcal{L} .

Definiția 2.16

Spunem că φ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} și o evaluare e : $V \to A$ a.î.

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că (A, e) este un model al lui φ .

Atenție! Este posibil ca atât φ cât și $\neg \varphi$ să fie satisfiabile. Exemplu: $\varphi := x = y$ în $\mathcal{L}_=$.

5

Semantică

Fie φ formulă a lui \mathcal{L} .

Definiția 2.17

Spunem că φ este adevărată într-o \mathcal{L} -structură \mathcal{A} dacă pentru orice evaluare $e: V \to A$,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că \mathcal{A} satisface φ sau că \mathcal{A} este un model al lui φ .

Notație: $A \models \varphi$

Definiția 2.18

Spunem că φ este formulă universal adevărată sau (logic) validă dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \vDash \varphi$$
.

Notație: $\models \varphi$

26

Semantică

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 2.19

 φ și ψ sunt logic echivalente dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \bowtie \psi$

Definiția 2.20

 ψ este consecință semantică a lui φ dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \models \psi$

Observație

- (i) $\varphi \vDash \psi$ ddacă $\vDash \varphi \rightarrow \psi$.
- (ii) $\varphi \bowtie \psi$ ddacă $(\psi \bowtie \varphi \bowtie \varphi \bowtie \varphi)$ ddacă $\bowtie \psi \leftrightarrow \varphi$.

Echivalențe și consecințe logice

Pentru orice formule φ , ψ și orice variabile x, y,

$$\neg \exists x \varphi \quad \exists \quad \forall x \neg \varphi \tag{1}$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi \tag{2}$$

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \forall x \varphi \wedge \forall x \psi \tag{3}$$

$$\forall x \varphi \vee \forall x \psi \models \forall x (\varphi \vee \psi) \tag{4}$$

$$\exists x (\varphi \wedge \psi) \models \exists x \varphi \wedge \exists x \psi \tag{5}$$

$$\exists x (\varphi \lor \psi) \quad \exists \ x \varphi \lor \exists x \psi \tag{6}$$

$$\forall x(\varphi \to \psi) \models \forall x\varphi \to \forall x\psi \tag{7}$$

$$\forall x(\varphi \to \psi) \models \exists x \varphi \to \exists x \psi \tag{8}$$

$$\forall x \varphi \models \exists x \varphi \tag{9}$$

Echivalențe și consecințe logice

$$\varphi \models \exists x \varphi$$

$$\forall x \varphi \models \varphi \tag{11}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \tag{12}$$

$$\exists x \exists y \varphi \quad \exists \ y \exists x \varphi \tag{13}$$

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{14}$$

Dem.: Exercițiu.

Propoziția 2.21

Pentru orice termeni s, t, u,

$$(i) \models t = t;$$

(ii)
$$\models s = t \rightarrow t = s$$
;

(iii)
$$\models s = t \land t = u \rightarrow s = u$$
.

Dem.: Exercițiu ușor.

9

(10)