Towards an understanding of Bonneville cutthroat trout responses to riparian grazing exclosures

Scott Miller^{1,2} and Phaedra Budy^{1,3}

¹Intermountain Center for River Rehabilitation and Restoration, Department of Watershed Sciences, Utah State University

²Bureau of Land Management

³USGS Utah Cooperative Fish and Wildlife Research Unit

- Livestock grazing is leading cause of riparian and instream habitat degradation in western U.S.
- > 80% of western riparian areas affected

 Riparian grazing exclosures widely implemented on public lands

UT public lands: > 150 riparian exclosures

 Goals: Restore degraded habitat and facilitate the coexistence of grazing and native fish populations

Source: ICRRR Restoration Database

 Despite widespread implementation, few studies assess restoration efficacy

- Cutthroat: Equivocal or conflicting results
- What factors contribute to differential responses among system?

Grazing (-)

Riparian vegetative cover/biomass

Terrestrial arthropod inputs

Salmonid biomass

Questions:

- 1. Do BCT populations differ between grazed and ungrazed reaches?
- 2. What reach-scale factors are related to differences in BCT populations between grazed and ungrazed reaches?
- 3. Do recovery patterns vary as a function of grazing regime, exclosure age, or exclosure size?

Site selection

- 10 paired grazed and ungrazed reaches
 - BCT
 - 2nd & 3rd order reaches
 - Maintained exclosure
 - Active grazing
 - Minimize geomorphic differences between pairs
- System characteristics
 - Grazing regime: season long vs. rotational
 - Age: 4 39 years
 - Size: 0.06 96%

Sampling

Paired study design

Upstream: Grazed Downstream: Ungrazed

Min. 1 km buffer -

- Reach lengths: 20x bankfull
- Sampled once: summer 2008 or 2009

- Fish assemblages
 - 3-pass depletion
 - Reaches: 20x bankfull
 - Response variables: Density, biomass, condition, composition

- Diet
 - Stomach contents gastric lavage
 - Stable isotopes (δ 13C and δ 15N)

Physical habitat measurements:

Continuous
Undercut banks
Overhanging vegetation
Habitat units (e.g., riffle, run, pool)

Physical habitat measurements:

<u>Continuous</u> Undercut banks

Overhanging veg.

Habitat units (e.g., riffle, run, pool)

Point

Depth

Velocity

Substrate

Temperature*

Width

- Prey availability
 - Terrestrial arthropod prey
 - 5 pan traps/reach
 - 48 hours
 - Aerial aquatic insects
 - 5 pan traps/reach
 - 48 hours
 - Benthic aquatic arthropod prey
 - 8 composite Surbers/reach

Do BCT populations differ between grazed and ungrazed reaches?

Response Variable
% change =
100* ((Ungrazed-Grazed)/Grazed)

Statistical Test
Wilcoxon signed rank test

- On average, density and biomass significantly greater within exclosures
- Consistent directional changes, while magnitude of change highly variable
- No differences in condition, age structure, or assemblage composition

What reach-scale factors are related to differences in BCT populations between grazed and ungrazed reaches?

	Kendall's tau: % Change	
	BCT Density	BCT Biomass
Proportion overhanging vegetation	0.57	0.46
Aquatic benthic prey biomass	0.21	0.43
Terrestrial prey biomass	0.50	0.57
Aerial aquatic prey biomass	0.28	0.36
Width-to-Depth ratio	0.21	0.14
Proportion undercut banks	0.71	0.5
Residual Pool Depth	-0.07	0.14
Habitat Diversity	0.21	-0.14
Temperatue	-0.21	0.29
Substrate (D16)	-0.43	-0.36

BCT biomass responses proportional to increases in terrestrial prey availability

BCT density responses scaled with increases in cover availability

 Terrestrial prey comprised only 11% of prey availability by biomass

- BCT foraging behavior: strong preference of terrestrial prey
- 50% of ingested prey

Do recovery patterns vary as a function of grazing regime, exclosure age, or exclosure size?

	Kendall's tau: % Change		
	Grazing regime	Exclosure Age	Exclosure Size
Aquatic benthic prey biomass	0.06	0.05	0.28
Terrestrial prey biomass	0.46	0.18	0.11
Aerial aquatic prey biomass	0.09	-0.3	-0.03
Width-to-Depth ratio	-0.43	-0.1	0.63
Proportion undercut banks	0.12	-0.32	-0.14
Proportion overhead vegetation	0.43	0	0.13
Residual Pool Depth	0.06	0.14	-0.04
Habitat Diversity	0.43	0.41	0.17
Substrate	0.37	0.18	-0.2
Temperature	-0.3	-0.1	-0.21
BCT Density	-0.47	-0.07	-0.14
BCT Biomass	-0.47	0	-0.07
Averages	0.33	0.17	0.19

Weak relationships with age...

1978 (SL)

1978 (SDR)

Overriding influence of grazing practices

Ungrazed

Differential responses between grazing regimes and among abiotic and biotic variables

Differential responses between grazing regimes and among abiotic and biotic variables

Passive restoration bang for your buck: BCT responses

Putting responses in a regional context

Take home points

- Variable fish responses to grazing management are likely predictable
- Both habitat and prey resource availability (terrestrials) likely facilitate BCT recovery
- Grazing management at larger spatial scales will greatly increase efficacy of passive restoration efforts
- Landscape versus local-scale processes in facilitating abiotic and biotic recovery trajectories

Future questions

- What factors control the recovery of terrestrial arthropod assemblages
- Do exclosures facilitate increased growth and survival = source populations
- Identify interactions among grazing regime, exclosure age, and size
- How robust are these patterns

Acknowledgements

Funding

- UDWR Endangered Species Mitigation Fund (# 0809)
- Intermountain Center for River Rehabilitation and Restoration
- Bureau of Land Management

Field and lab assistance

 Paul Mason, Gary Thiede, Reed Chaston, Dave Fowler, Katrina Langenderfer, Ben Marett, Ellen Wakeley, and Hilary Whitcomb

Logistics and permitting

Wyoming Game and Fish Department, Idaho Fish and Game,
 Utah Department of Wildlife Resources