Flight Route

Final Presentation

Guy Farkash

Motivation

The number of business flights in the US was **488M** in 2016, with average of **1.3M** each day (By the Global Business Travel Association)

~6% of the flights, delayed → bad weather (By the Bureau Of Transportation Statistics)

Avoid bad weather flights \rightarrow **Save time** Saving **5 min** each trip \rightarrow Saves **10 months** of work each day $(1.3M \times 0.06 \times 5) / (60 \times 24 \times 7 \times 4) \sim 9.7$ (for all trips combined)

For multi-destination trips
Can choose a cheaper route → Save money

Goal

Best flight route:

Minimum predicted weather delay
Break even by choosing minimum cost

Input:

[Origin City, City 1, City 2, ..., City N]

[City 1 days, City 2 days, ..., City N days]

Starting Date

Return Date

Output:

Origin City→City 3 [Starting Date, Delay, Fare]

City 3→City 2 [Date 1, Delay, Fare]

.

City N→City 5 [Date K, Delay, Fare]

City 5→Origin City [Return Date, Delay, Fare]

The Process

1. Getting the data

Flight reports with weather delay for years 2012 – 2017 Flight fares for 2017

2. Cleaning and Processing the data

Fixing cities names
Creating cities IDs
Creating the database

3. Predicting weather delay

Calculating the delay for each flight in each date

4. Creating a graph

Building the vertices and nodes files

5. Finding best route

Using the graph database

Getting The Data

On-Time Performance database from Bureau of Transportation Statistics

Years 2012 - 2017 **3.2GB** of data

Consumer Airfare report from US department of transportation

Flights average fare for every quarter of 2017

Delays Data

	Field Name	Description
1	Year	Year
2	Month	Month
3	DayOfMonth	Day
4	OriginCityName	Origin City
5	DestCityName	Destination City
6	WeatherDelay	Weather Delay, in Minutes.

Fares Data

	Field Name	Description
1	city1	Origin city
2	city2	Destination city
3	fare	Average fare of all flights and airlines

Cleaning and Processing The Data

Removing records with no delay information

Renaming city names to match for all records

Removing \$ signs from the fare column

Removing unnecessary columns

Adding unique city ID number

Adding fare

Combining all the the files to one database

Processed Data

	Field Name	Description			
1	YEAR	The year → [2012, 2014, 2015, 2016, 2017]			
2	MONTH	The month \rightarrow integer number [1, 2,, 11, 12]			
3	DAY_OF_MONTH	The day of month \rightarrow integer number [1, 2,, 30, 31]			
4	ORIGIN_CITY_ID	Origin city name → string			
5	ORIGIN_CITY_NAME	Origin city ID → unique integer number			
6	DEST_CITY_ID	Destination city name → string			
7	DEST_CITY_NAME	Destination city ID → unique integer number			
8	WEATHER_DELAY	Weather Delay, in Minutes → integer number			
9	FARE	Fare in Dollars → floating point number			

Predicting Weather Delay

Several delay records for each flight:

YEAR	MONTH	DAY	ORIGIN CITY NAME	DEST CITY NAME	WEATHER DELAY
2012	1	22	New York, NY	Boston, MA	6
2014	1	22	New York, NY	Boston, MA	25
2014	1	22	New York, NY	Boston, MA	75
2016	1	22	New York, NY	Boston, MA	59

Number of records can be 1 - 45

Using ML predictions:

- 1. Naive Bayes
- 2. Random Forest
- 3. Multilayer Perceptron
- 4. One-vs-Rest
- 5. Decision Tree

The information is too scarce to train a good model

All the ML models produced accuracy < 30%

Predicting Weather Delay

Creating a predictor of the average delay with confident value

Combining records for each flight to calculate average delay:

MONTH	DAY	ORIGIN CITY NAME	DEST CITY NAME	AVG WEATHER DELAY	RECORDS
1	22	New York, NY	Boston, MA	41.25	4

Adding records from +-5 days of current date: (increase the confidence in the result)

MONTH	DAY	ORIGIN CITY NAME	DEST CITY NAME	AVG WEATHER DELAY	RECORDS
1	22	New York, NY	Boston, MA	40.13	31

Assuming that the weather is similar in a 10 days window

Predicting Weather Delay

Examples:

MONTH	DAY	ORIGIN CITY NAME	DEST CITY NAME	AVG WEATHER DELAY	RECORDS
1	5	New York, NY	Dallas, TX	16	1

High Confidence:

MONTH	DAY	ORIGIN CITY NAME	DEST CITY NAME	AVG WEATHER DELAY	RECORDS
1	6	New York, NY	Los Angeles, CA	63	79

Testing The Predictions

P = **Predicted** Delay

A = **Actual** Delay

"False Alarm" prediction P > A"Miss Detect" prediction P < A

Predictor error [min]
$$Avg Err = \frac{\sum A - P}{N}$$

A Good predictor

Low "Miss Detect" and "False Alarm" error rate

"Miss Detect" error rate < "False Alarm" error rate

Splitting the data

Training Data (2012 - 2016) **Testing Data** (2017)

Using the training data to build the database Using the testing data to test the predictor

"Miss Detect" average error = ~9.5 [min]

"False Alarm" average error = ~20 [min]

Total average delay is 46 [min]

"Miss Detect" accuracy = ~79%
"False Alarm" accuracy = ~56%

Creating a Graph

Origin cities name
Origin cities ID

Destination Vertices File Contains:

Destination cities name Destination cities ID

Nodes File Contains:

Year, Month, Day
Origin cities name
Origin cities ID
Destination cities name
Destination cities ID
Predicted weather delay
Number of records
Fares

Loading the graph to GrapheneDB

Origin Vertices

	Field Name	Description
1	ORIGIN_CITY_NAME	Origin city name → string
2	ORIGIN_CITY_ID	Origin city ID → unique integer number

Destination Vertices

	Field Name	Description
1	DEST_CITY_NAME	Destination city name → string
2	DEST_CITY_ID	Destination city ID → unique integer number

Nodes

	Field Name	Description
1	YEAR	The year → [2012, 2014, 2015, 2016, 2017]
2	MONTH	The month \rightarrow integer number [1, 2,, 11, 12]
3	DAY_OF_MONTH	The day of month \rightarrow integer number [1, 2,, 30, 31]
4	ORIGIN_CITY_ID	Origin city name → string
5	ORIGIN_CITY_NAME	Origin city ID → unique integer number
6	DEST_CITY_ID	Destination city name → string
7	DEST_CITY_NAME	Destination city ID → unique integer number
8	AVG_WEATHER_DELAY	Weather Delay, in Minutes → integer number
8	DELAY_RECORDS	Number of records → integer number
9	FARE	Fare in Dollars → floating point number

Finding The Best Route

Best Route Algorithm:

1) Find all routes possibilities

All cities - dates combinations

- 2) Get delay and fare data for each route
- 3) Choose the best route with:
 - a) Less delay
 - b) High confidence (large records number)
 - c) Less fare

StartDate	1Date2Date3	End
Start	Date1Date2.	Date3 End
StartDate	1Date2D	ate3 End
StartDate	1Date2	.Date3 End

Start	Date 1	Date 2	Date 3	End
Ori	City 1	City 2	City 3	Ori
Ori	City 1	City 3	City 2	Ori
Ori	City 2	City 1	City 3	Ori
Ori	City 2	City 3	City 1	Ori
Ori	City 3	City 1	City 2	Ori
Ori	City 3	City 2	City 1	Ori

GUI

A convenient user interface makes it easy to use

Origin city = Boston

Destination 1 = New York

Destination 2 = Las Vegas

Destination 3 = San Francisco

Example Results

Input: Origin city = **Boston** Destination 1 = **New York**

(5 days)

Starting date: **Jan. 23th** Ending date: Feb. 14th

Destination 2 = Las Vegas Destination 3 = **San Francisco** (5 days)

(5 days)

Output:

The best route has avo delay of 109 minutes:

Boston, MA ---> San Francisco, CA @ 1/23

The avg delay is 36 (21.0 reports)

The fare is 324.72 \$

San Francisco, CA ---> Las Vegas, NV @ 2/4

The avg delay is 9 (12.0 reports)

The fare is 133.67 \$

Las Vegas, NV ---> New York, NY @ 2/9

The avg delay is 28 (5.0 reports)

The fare is 278.83 \$

New York, NY ---> Boston, MA @ 2/14

The avg delay is 36 (82.0 reports)

The fare is 148.51 \$

Example Results

Best Route Predicted Delay: 109 minutes Real World Delay: 99 minutes

Boston, MA ---> San Francisco, CA @ 1/23
The avg delay is 36 (21.0 reports)

San Francisco, CA ---> Las Vegas, NV @ 2/4
The avg delay is 9 (12.0 reports)

Las Vegas, NV ---> New York, NY @ 2/9
The avg delay is 28 (5.0 reports)

New York, NY ---> Boston, MA @ 2/14 The avg delay is 36 (82.0 reports) Boston, MA ---> San Francisco, CA @ 1/23 The delay was 23

San Francisco, CA ---> Las Vegas, NV @ 2/4
The delay was 0

Las Vegas, NV ---> New York, NY @ 2/9
The delay was 0

New York, NY ---> Boston, MA @ 2/14 The avg delay is 76

Other Route Predicted Delay: 208 minutes

Boston, MA ---> New York, NY ---> Las Vegas, NV ---> San Francisco, CA ---> Boston, MA (different order)

Thank You

