CS118 Discussion 1B

TCP: Throughput, Loss rate

IP: IP header, subnet, fragmentation

Week 6
Zhiyi Zhang (<u>zhiyi@cs.ucla.edu</u>)
@myself record

Contents

- TCP throughput and Loss Rate
- IP

TCP Throughput and Loss Rate

TCP Throughput

- Clarification of Chapter 3, slide 132
 - The stable phase of TCP is the congestion avoidance and no timeout (but fast recovery happens from time to time)
 - If we consider fast recovery to be periodic, then there is a repeated pattern from W/2 to W.
 Therefore the average window size is 3/4W
- Average throughput is your (transmitted data in one RTT) / RTT
 - Here transmitted data in one RTT is 3/4W, so avg. TCP throughput is 3/4W/RTT bytes/sec

TCP Loss Rate

- Loss rate = (lost pkts) / (transmitted # pkts)
- Take homework 5, question 3 (a) as an example
 - In congestion avoidance, the window is
 - W/2
 - W/2 + 1 in next RTT
 - W/2 + 2 in next next RTT

 - W
 - Therefore, the total packets transmitted in these many RTTs is
 - $W/2 + (W/2 + 1) + ... + (W/2 + W/2) = \frac{3}{8} * W^2 + \frac{3}{4} * W$
 - Therefore, the loss rate is
 - $L = 1/(\frac{3}{8} \text{W}^2 + \frac{3}{4} \text{W}), O()$
- Homework 5, question 3 (b)
 - o 3/4*W/RTT
 - $L = 1/(\%*W^2 + \%*W)$ approximately = $1/(\%*W^2)$, so W = $(8/3L)^(1/2)$
 - \circ So $\frac{3}{4}$ *W/RTT = $\frac{3}{4}$ *(8/3L)^(1/2)*MSS/RTT

Network Layer

Basic functions: Routing (Control Plane)

Routing

- To build up the knowledge for routers to know which packet should be forwarded to which next hop
- o To build the knowledge, multiple routers and sometimes external servers need to collaborate
 - Because a single router can only know its direct neighbors
- Two existing solutions
 - Routers collaborate to set up the knowledge
 - A----B----C----D
 - B tells C that B can reach A
 - C tells D that C can reach A through B
 - Routers get knowledge from a dedicated server
 - A----B----C----D
 - All of them are connected to a SDN server.
 - The server have the god view to set up the knowledge

Basic functions: Forwarding (Data Plane)

- Forwarding
 - Forward packets based on the knowledge gained from routing
 - Each router handles its own business
 - When I receive a pkt, I forward it to its next hop
 - Router at the next hop will do his business for further forwarding

IP

IP Header

- Version: 4 bits
 - o IPv4
- Header length (IHL): 4 bits
 - Indicate the length of the header
 - In the unit of 4 bytes
 - Maximum IP header? 4 * (1111)binary = 60 bytes
- Type of Service: 8 bits
 - Not really used in many cases
 - Read RFC 791 for details
- Total Length: 16 bits
 - Total length of the packet, including header and payload
 - In the unit of 1 byte

IP Header (cont'd)

- Identifier: 16 bits
 - Identify fragments that belong to the same segment
- Flags: 3 bits
 - 1st: reserved to be 0
 - 2nd: DF (don't fragment)
 - No fragmentation
 - 3rd: MF (More fragments)
 - This is not the last fragment
- Offset: 13 bits
 - In the unit of 8 bytes
 - Indicate where in the datagram this fragment belongs.
- TTL: 8 bits
 - Time to live

ver	head. len	type of service		length	
16-bit identifier		flgs	fragment offset		
time to live protocol		protocol	header checksum		
	32	bit source	e IP a	ddress	
	32 b	oit destinat	tion IP	address	
		options	(if an	y)	
		(variab typical or UDP	ly a T	ГСР	

IP Header (cont'd)

- Protocol: 8 bits
 - Indicate the next level protocol
 - Usually it's TCP or UDP
- Header checksum: 16 bits
- Source IP address: 32 bits
- Destination IP address: 32 bits

IP Address

How to identify hosts in Internet Protocol?

- IP address to identify a host (interface)
 - (IPv4) 32 bits string
 - (IPv4) Usually represented in the format of 8 bits (0 255), 8 bits, 8 bits, 8 bits
 - E.g., check your own IP address by ifconfig command
 - Is your IP address globally unique?
 - No. Why?
 - 192.168.0.111 (private address, NAT)
 - E.g., set up a forwarding server using amazon cloud
 - Is UCLA website's IP address globally unique?
 - Yes. Why?
- IP prefix or network ID to identify a collection of hosts/ a network
 - In the format of <network address>/<subnet mask>
 - Used for IP aggregation -- reduce the size of a router's forwarding table

IP address

- Each interface has an IP address
 - E.g., your Laptop's Ethernet network interface card (NIC) has an IP address -- IP based on ethernet
 - E.g., your Laptop's WiFi NIC has an IP address -- wifi router
 - E.g., a router with 10 interfaces has 10 IP addresses
- Contains two parts:
 - Network ID: is different from network to network. But is the same within the same network.
 - E.g., in your home, all devices have network ID: 192.168.X.X/16: (255.255.0.0)
 - In this case, 192.168.0.0/16 is the network ID
 - Usually, backbone routers forward packets with network ID
 - Host ID: is different from host to host within the same network
 - E.g., in your home, your IP 192.168.0.10 has host ID 0.10 if the network mask is 255.255.0.0
 - E.g., in your home, your IP 192.168.0.10 has host ID 10 if the network mask is 255.255.255.0
 - Your home router forwards packets with full IP address

Class of IP addresses

Class	Leading bits	Size of network number bit field	Size of rest bit field	Number of networks	Addresses per network	Total addresses in class	Start address	End address	Default subnet mask in dot-decimal notation	CIDR notation
Class A	0	8	24	128 (2 ⁷)	16,777,216 (2 ²⁴)	2,147,483,648 (2 ³¹)	0.0.0.0	127.255.255.255 ^[a]	255.0.0.0	/8
Class B	10	16	16	16,384 (2 ¹⁴)	65,536 (2 ¹⁶)	1,073,741,824 (2 ³⁰)	128.0.0.0	191.255.255.255	255.255.0.0	/16
Class C	110	24	8	2,097,152 (2 ²¹)	256 (2 ⁸)	536,870,912 (2 ²⁹)	192.0.0.0	223.255.255.255	255.255.255.0	/24
Class D (multicast)	1110	not defined	not defined	not defined	not defined	268,435,456 (2 ²⁸)	224.0.0.0	239.255.255.255	not defined	not defined
Class E (reserved)	1111	not defined	not defined	not defined	not defined	268,435,456 (2 ²⁸)	240.0.0.0	255.255.255.255 ^[b]	not defined	not defined

Subnets

- Divided by router's interface
 - E.g., the upper router in the picture connects three subnets
 - **223.1.1.0/24**
 - **223.1.9.0/24**
 - **233.1.7.0/24**
- IP address network ID can be further divided by increasing the network mask length
 - E.g., under 223.1.1.0/24, I can further have subnets with network
 ID
 - 223.1.1.0/25 -> CS
 - 223.1.1.128/25 -> EE

IP Fragmentation

Learn from an example

- Identifier = x
- Packet Length = 1500
 - o Header: 20
 - o Payload: 1480
- Fragflag
 - MF = 1 for the first two packets
 - MF = 0 for the last packet
- Offset
 - o Original packet's payload: 4000 20 = 3980
 - Fragment 1's payload: 0 1479; offset = 0
 - Fragment 2's payload: 1480 2959: offset = 1480/8 = 185
 - Fragment 3's payload: 2960 3979: offset = 2960/8 = 370

one large datagram becomes several smaller datagrams

An example question

- Background
 - o MTU: 1450 Bytes
- Questions
 - What's the packet header length?
 - 5 * 4 = 20 bytes
 - What's the total length for the first packet?
 - 20 bytes (header) + 1430?
 - No. because offset is in the unit of 8, 1430 mod 8 != 0
 - Therefore: 20 bytes (header) + 1424 bytes (payload) = 1444 bytes
 - What's the total length of the second packet?
 - 20 bytes (header) + (2400 20 1424) = 20 bytes (header) + 956 bytes (payload) = 976 bytes

4	5	TOS	2400
	123	098	000
25	25 6		checksum
		10	0.1.1.1
		80.23	33.250.61
		data (6	103 bytes)