Master Degree in Artificial Intelligence for Science and Technology

Unsupervised Learning

Fabio Stella

Department of Informatics, Systems and Communication
University of Milan-Bicocca
fabio.stella@unimib.it

Artificial Intelligence;

intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans.

- Colloquially, the term Artificial Intelligence (AI) is used to describe machines/computers that mimic "cognitive" functions that humans associate with other human minds, such as "learning" and "problem solving".
- Two kinds of AI:
 - ✓ Weak
 - ✓ Strong

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Artificial Intelligence

Bayesian Networks

- A type of statistical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG).
- Bayesian networks are ideal for taking an event that occurred and predicting the likelihood that any one of several possible known causes was the contributing factor.
- Structural Causal Models.

Machine Learning

algorithms and statistical models that computer systems use in order to perform a specific task effectively without using explicit instructions, relying on patterns and inference instead.

Three kinds of ML;

- Supervised
- Unsupervised
- Reinforcement Learning

ARTIFICIAL INTELLIGENCE

A program that can sense, reason, act, and adapt

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multilayered neural networks learn from vast amounts of data

Machine Learning

Curve fitting (correlations) - linear

Machine Learning

Curve fitting - nonlinear

Machine Learning

Curve fitting - nonlinear

Deep Neural Networks

Highly dimensional, highly nonlinear curve fitting

Fitting can be highly misleading

Spurious Correlations

DOI:10.1145/3271625

What just happened in artificial intelligence and how it is being misunderstood.

BY ADNAN DARWICHE

Human-Level Intelligence or Animal-Like Abilities?

"The vision systems of the eagle and the snake outperform everything that we can make in the laboratory, but snakes and eagles cannot build an eyeglass or a telescope or a microscope."

Fitting does not give us any understanding

What can truly be achieved?

Does Exercise affects
Cholesterol?

Simpson's Paradox

 No matter how much data you collect, the question can not be answered when using the data alone

DOI:10.1145/3

What just happened in artificial intelligence and how it is being misunderstood.

BY ADNAN DARWICHE

Human-Level Intelligence or Animal-Like Abilities?

"The vision systems of the eagle and the snake outperform everything that we can make in the laboratory, but snakes and eagles cannot build an eyeglass or a telescope or a microscope."

"The vision systems of the eagle and the snake outperform everything that we can make in the laboratory, but snakes and eagles cannot build an eyeglass or a telescope or a microscope."

— Judea Pearl

JUDEA PEARL
WINNER OF THE TURING AWARD
AND DANA MACKENZIE

THE BOOK OF WHY

THE NEW SCIENCE
OF CAUSE AND EFFECT

The Ladder of Causation

MAGINING

DOING

SEEING"

Calls for predictions based on passive observations.

It is characterized by the question "What if I see ...?"

For instance, imagine a marketing director at a department store who asks,

"How likely is a customer who bought toothpaste to also buy dental floss?"

"What if do ...?" & "How?"

We step up to the next level of causal queries when we begin to change the world. A typical question for this level is

"What will happen to our floss sales if we double the price of toothpaste?"

INTERVENTION
 ACTIVITY: Doing, Intervening

QUESTIONS: What if 1 do ...? How?
(What would Y be if 1 do X?
How can I make Y happen?)

EXAMPLES: If I take aspirin, will my headache be cured?
What if we han eigerettes?

This already calls for a new kind of knowledge, absent from the data, which we find at rung two of the Ladder of Causation, Intervention.

Many scientists have been quite traumatized to learn that none of the methods they learned in statistics is sufficient even to articulate, let alone answer, a simple question like

"What happens if we double the price?"

"What if I had done ...?" & "Why?"

3. COUNTERFACTUALS

ACTIVITY: Imagining, Retrospection, Understanding

QUESTIONS: What if I had does ...? Wigyl
(Was is X that caused Y? What if X had not
occurred? What if I had acted differently?)

EXAMPLES: Was is the seption that stopped my headache?
Would Karmedy be alive if Oswald had nor
killed him? What if I had not smoked for the
last? years?

We might wonder, My headache is gone now, but

- Why?
- Was it the aspirin I took?
- The food I ate?
- The good news I heard?

These queries take us to the top rung of the Ladder of Causation, the level of Counterfactuals, because to answer them we must go back in time, change history, and ask,

"What would have happened if I had not taken the aspirin?"

No experiment in the world can deny treatment to an already treated person and compare the two outcomes, so we must import a whole new kind of knowledge.

CONTENTS

- DATA TYPES; to list different types of data and to learn hw they must be used for unsupervised learning.
- DATA PREPROCESSING; to preprocess data in such a way it can be used by unsupervised learning tasks,
- CLUSTERING LEARNING; to form homogeneous groups of observations and/or attributes using a given proximity measure,
- CLUSTERING VALIDATION; to evaluate and compare different clustering solutions to select the one to deploy.
- ANOMALY DETECTION; to find anomalous observations, to discover outliers observations, under different theoretical settings.
- BAYESIAN NETWORKS; to learn probabilistic/causal structure from data and to make decisions under uncertainty.

Introduction ASSESSMENT - ONGOING EXAM (MAX 33) Lab Reports 11pts — Project 12pts — Interview 10pts Students are allowed/suggested to work in pairs during the lab activity Students are allowed/encouraged to work in pair to design, develop and document their project. ASSESSMENT - FULL EXAM (MAX 30) — Project 20pts — Interview 10pts Master Degree in Artificial Intelligence for Science and Technology Unsupervised Learning 27

PROJECT

- Students are allowed/suggested to work in pairs to design, develop and document their project
- A common project or a list of projects among which to choose will be given after the first half of the course (about mid of April)
- At the end of the project a technical report must be delivered (8 pages, a template will be given)
- The report will be graded analytically (e.g., methodological correctness, clarity of exposition, etc.). More details will be given together with the project.

Introduction

INTERVIEW

- 20 minutes in total
- Of which 10/15 min for the presentation of the project
- The remaining 5/10 min for the interview on methodological aspects

LABORATORY

Check slides from Giulia Cisotto PhD

Introduction

LECTURE'S CALENDAR

Day	Time	Торіс	where?
01-03-2023	14:30 - 16:30	Introduction	U1-04
06-03-2023	14:30 - 16:30	Types of Data	U3-09
15-03-2023	14:30 - 16:30	Proximity Measures	U1-04
20-03-2023	14:30 - 16:30	Introduction to Cluster Analysis	U3-09
22-03-2023	14:30 - 16:30	Cluster Analysis: K-means Clustering	U1-04
29-03-2023	14:30 - 16:30	Cluster Analysis: Hierarchical Clustering	U1-04
03-04-2023	14:30 - 16:30	Cluster Analysis: Density-based Clustering	U3-09
05-04-2023	14:30 - 16:30	Cluster Analysis: Clustering Validation	U1-04
12-04-2023	14:30 - 16:30	Introduction to Anomaly Detection	U1-04
19-04-2023	14:30 - 16:30	Anomaly Detection: Nearest-neighbor based	U1-04
26-04-2023	14:30 - 16:30	Anomaly Detection: Clustering Based, Statistical Approaches and Reconstruction Based	U1-04
03-05-2023	14:30 - 16:30	Anomaly Detection: Additional Algorithms	U1-04
10-05-2023	14:30 - 16:30	Introduction to Bayesian Networks	U1-04
17-05-2023	14:30 - 16:30	Bayesian Networks: Inference	U1-04
24-05-2023	14:30 - 16:30	Bayesian Networks: learning	U1-04
31-05-2023	14:30 - 16:30	Bayesian Networks and Healthcare	U1-04

ASKING QUESTIONS

 Course issues, i.e., lectures, lab, exams, general, ...; write a post using the Moodle platform and discuss it with your peers and teachers at the same time

— Lectures topics Forum (Lecture)

Lab issuesForum (Lab)

— General issues Forum (General)

Specific issues, drop an email to <u>fabio.stella@unimib.it</u> and/or to <u>giulia.cisotto@unimib.it</u>

