

## Potências de expoente inteiro

Propostas de resolução

Exercícios de Provas Nacionais e Testes Intermédios



1. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base  $\frac{1}{4}$ , temos que:

$$\frac{\left(\frac{1}{4}\right)^2}{4^6} \times 4^{-3} = \frac{\left(\frac{1}{4}\right)^2}{\left(\frac{1}{4}\right)^{-6}} \times \left(\frac{1}{4}\right)^{-(-3)} = \left(\frac{1}{4}\right)^{2-(-6)} \times \left(\frac{1}{4}\right)^3 = \left(\frac{1}{4}\right)^8 \times \left(\frac{1}{4}\right)^3 = \left(\frac{1}{4}\right)^{8+3} = \left(\frac{1}{4}\right)^{11}$$

Prova Final 3.º Ciclo - 2022, 2.ª fase

2. Usando as regras operatórias de potências, reconhecendo que  $9=3^2$  e escrevendo o resultado na forma de uma potência de base 3, temos que:

$$\frac{3^{12}}{\left(\frac{1}{3}\right)^4} \times 9^3 = \frac{3^{12}}{3^{-4}} \times \left(3^2\right)^3 = 3^{12-(-4)} \times 3^{2\times3} = 3^{12+4} \times 3^6 = 3^{16} \times 3^6 = 3^{16+6} = 3^{22}$$

Prova Final 3.º Ciclo - 2022, 1.ª fase

- 3. Usando as regras operatórias de potências, temos que:
  - (1)  $5^{-40} = \frac{1}{5^{40}}$ , pelo que deve ser assinalada a coluna (B) na linha (1)
  - (2)  $25^{20} = (5^2)^{20} = 5^{2 \times 20} = 5^{40}$ , pelo que deve ser assinalada a coluna (E) na linha (2)
  - (3)  $10^{-20}: 2^{-20} = \frac{10^{-20}}{2^{-20}} = \left(\frac{10}{2}\right)^{-20} = 5^{-20}$ , pelo que deve ser assinalada a coluna (C) na linha (3)

Instrumento de Aferição Amostral,  $8.^{\rm o}$ ano - 2021

4. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base  $\frac{1}{7}$ , temos que:

$$\frac{7^3}{7^8} \times 7^{-4} = 7^{3-8} \times 7^{-4} = 7^{-5} \times 7^{-4} = 7^{-5-4} = 7^{-9} = \frac{1}{7^9} = \left(\frac{1}{7}\right)^9$$

Prova de Matemática, 9.º ano - 2021

5. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base  $\frac{1}{\epsilon}$ , temos que:

$$\frac{5^{-1} \times 5^{-2}}{5^6} = \frac{5^{-1+(-2)}}{5^6} = \frac{5^{-3}}{5^6} = 5^{-3-6} = 5^{-9} = \frac{1}{5^9} = \frac{1^9}{5^9} = \left(\frac{1}{5}\right)^9$$

Prova Final 3.º Ciclo – 2019, Época especial

6. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base  $\frac{1}{3}$ , temos que:

$$\frac{3^{11}}{3^7} \times 3^{-6} = \frac{3^{11}}{3^7} \times \frac{1}{3^6} = \frac{3^{11} \times 1}{3^7 \times 3^6} = \frac{3^{11}}{3^{7+6}} = \frac{3^{11}}{3^{13}} = 3^{11-13} = 3^{-2} = \frac{1}{3^2} = \frac{1^2}{3^2} = \left(\frac{1}{3}\right)^2$$

Prova Final 3.º Ciclo – 2018, Época especial

7. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base  $\frac{1}{6}$ , temos que:

$$\frac{6^{-4}}{(2^4)^2 \times 3^8} = \frac{6^{-4}}{2^{4 \times 2} \times 3^8} = \frac{6^{-4}}{2^8 \times 3^8} = \frac{6^{-4}}{(2 \times 3)^8} = \frac{6^{-4}}{6^8} = 6^{-4 - 8} = 6^{-12} = \frac{1}{6^{12}} = \frac{1^{12}}{6^{12}} = \left(\frac{1}{6}\right)^{12}$$

Prova Final 3.º Ciclo - 2018, 2.ª fase

8. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base  $\frac{1}{8}$ , temos que:

$$\frac{\left(4^{5}\right)^{2}}{4^{15}} \times 2^{-5} = \frac{4^{5 \times 2}}{4^{15}} \times 2^{-5} = \frac{4^{10}}{4^{15}} \times 2^{-5} = 4^{10-15} \times 2^{-5} = 4^{-5} \times 2^{-5} = (4 \times 2)^{-5} = 8^{-5} = \left(\frac{1}{8}\right)^{5}$$

Prova Final 3.º Ciclo - 2018, 1.ª fase

9. Analisando cada uma das três expressões temos:

(1) 
$$2^{47} \times 2^{-7} = 2^{47 + (-7)} = 2^{47 - 7} = 2^{40}$$
, pelo que temos que se  $2^{40} = 2^x$ , então  $x = 40$ 

(2) Como 
$$5^0 = 1$$
, então temos que  $5^x = 5^0$  ou seja  $x = 0$ 

(3) Como 
$$\frac{1}{4^{10}}=4^{-10}$$
, então temos que  $4^x=4^{-10}$  ou seja  $x=-10$ 

Prova de Aferição 8.º ano - 2018

10. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base 2, temos que:

$$\left(10^4\right)^3 \times 10^2 \times 5^{-14} = 10^{4 \times 3} \times 10^2 \times \frac{1}{5^{14}} = 10^{12} \times 10^2 \times \frac{1}{5^{14}} = \frac{10^{12+2}}{5^{14}} = \frac{10^{14}}{5^{14}} = \left(\frac{10}{5}\right)^{14} = 2^{14}$$

Prova Final 3.º Ciclo – 2017, Época especial



11. Como o termo geral da sucessão é  $b^n$  e a sucessão tem valores alternadamente negativos e positivos, então b < 0

Como o valor absoluto dos termos da sucessão são potências de 2, ou seja, os valores da sucessão  $b^n$ , temos que:

$$b = -2$$

Prova Final 3.º Ciclo - 2017, 2.ª fase

12. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base 4, temos que:

$$(12^3)^2 \times 12^3 \times 3^{-9} = 12^{3 \times 2} \times 12^3 \times \frac{1}{3^9} = 12^6 \times 12^3 \times \frac{1}{3^9} = 12^{6+3} \times \frac{1}{3^9} = 12^9 \times \frac{1}{3^9} = \frac{12^9}{3^9} = \left(\frac{12}{3}\right)^9 = 4^9$$

Prova Final 3.º Ciclo – 2017, 2.ª fase

13. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base 3, temos que:

$$(6^4)^2 \times 6^3 \times 2^{-11} = 6^{4 \times 2} \times 6^3 \times \frac{1}{2^{11}} = 6^8 \times 6^3 \times \frac{1}{2^{11}} = 6^{8+3} \times \frac{1}{2^{11}} = 6^{11} \times \frac{1}{2^{11}} = \frac{6^{11}}{2^{11}} = \left(\frac{6}{2}\right)^{11} = 3^{11}$$

Prova Final 3.º Ciclo – 2017, 1.ª fase

14. Usando as regras operatórias de potências e escrevendo o resultado na forma de uma potência de base 2, temos que:

$$\frac{4^{17}}{2^{17}} \times \left(\frac{1}{2}\right)^{-20} = \left(\frac{4}{2}\right)^{17} \times \frac{1^{-20}}{2^{-20}} = 2^{17} \times \frac{1}{2^{-20}} = 2^{17} \times 2^{20} = 2^{17+20} = 2^{37}$$

Prova Final 3.º Ciclo – 2016, Época especial

15. Usando as regras operatórias de potências, temos que:

$$\left(\frac{5}{3}\right)^3 \times \left(\frac{1}{2}\right)^3 = \left(\frac{5}{3} \times \frac{1}{2}\right)^3 = \left(\frac{5}{6}\right)^3 = \left(\frac{6}{5}\right)^{-3}$$

Prova de Aferição 8.º ano - 2016

16. Aplicando as regras operatórias de potências temos que como  $x^4 = 3$ , então

$$x^8 = x^{4 \times 2} = (x^4)^2 = (3)^2 = 9$$
 e  $x^{-4} = \frac{1}{x^4} = \frac{1}{3}$ 

Pelo que, fazendo a substituição na expressão e somando as frações, temos

$$\frac{x^8}{2} - x^{-4} = \frac{9}{2_{(3)}} - \frac{1}{3_{(2)}} = \frac{27}{6} - \frac{2}{6} = \frac{25}{6}$$

Prova Final 3.º Ciclo – 2015, Época especial

17. Usando as regras operatórias de potências, e somando as frações obtidas, temos que:

$$\left(2^{10}\right)^{-2} \times 2^{20} + 3^{-1} = 2^{10 \times (-2)} \times 2^{20} + \frac{1}{3^1} = 2^{-20} \times 2^{20} + \frac{1}{3} = 2^{-20 + 20} + \frac{1}{3} = 2^0 + \frac{1}{3} = 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} = \frac{4}{3} = \frac{1}{3} + \frac{1}{3} = \frac{4}{3} = \frac{1}{3} + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} = \frac{1}{3} = \frac{1}{3} + \frac{1}{3} = \frac{1}{3$$

Prova Final 3.º Ciclo - 2015, 2.ª fase

18. Usando as regras operatórias de potências, temos que:

$$\frac{3^{21} \times 3^{-7}}{(3^2)^5} = \frac{3^{21+(-7)}}{3^{2\times 5}} = \frac{3^{14}}{3^{10}} = 3^{14-10} = 3^4$$

Prova Final 3.º Ciclo - 2015, 1.ª fase

19. Escrevendo 8 na forma de uma potência de base 2 e usando as regras operatórias de potências, temos que:

$$\frac{1}{8} = \frac{1}{2^3} = 2^{-3}$$

Prova Final 3.º Ciclo - 2014, 1.ª chamada

20. Escrevendo 9 na forma de uma potência de base 3 e usando as regras operatórias de potências, temos que:

$$\frac{1}{9} = \frac{1}{3^2} = 3^{-2}$$

Teste Intermédio 9.º ano – 21.03.2014 Exame Nacional 3.º Ciclo - 2007, 1.ª chamada

21. Simplificando a expressão, usando as regras operatórias de potencias de expoente racional, temos que:

$$a^{-2} \times a^4 = a^{-2+4} = a^2$$

Resposta: Opção C

Prova Final 3.º Ciclo - 2013, 1.ª chamada

22. Usando as regras operatórias de potências, temos que:

$$n^{-3} = \frac{1}{n^3} = \frac{1}{n^3 = k} \frac{1}{k}$$

Resposta: Opção C

Prova Final 3.º Ciclo - 2012, 1.ª chamada

23. Escrevendo  $\frac{1}{9}$  na forma de uma potência de base 3, e usando as regras operatórias de potências, temos que:

$$\left(\frac{1}{9}\right)^4 = \left(\frac{1}{3^2}\right)^4 = \left(3^{-2}\right)^4 = 3^{-2 \times 4} = 3^{-8}$$

E assim temos que se  $3^k = 3^{-8}$ , então k = -8

Teste Intermédio 9.º ano - 10.05.2012



24. Escrevendo 125 na forma de uma potência de base 5 e usando as regras operatórias de potências, temos que:

$$\frac{1}{125} = \frac{1}{5^3} = 5^{-3}$$

Resposta: Opção B

Teste Intermédio  $8.^{\rm o}$ ano – 11.05.2011

25. Escrevendo 81 na forma de uma potência de base 3 e usando as regras operatórias de potências, temos que:

$$\frac{1}{81} = \frac{1}{9^2} = \frac{1}{(3^2)^2} = \frac{1}{3^{2 \times 2}} = \frac{1}{3^4} = 3^{-4}$$

Resposta: Opção B

Teste Intermédio  $8.^{\circ}$  ano -27.04.2010