Logica — 10-9-2020

Tutte le risposte devono essere adeguatamente giustificate

1. Si consideri la formula proposizionale (scritta usando le convenzioni sulle parentesi e la priorità dei connettivi)

$$\neg (A \to B) \lor C \to \neg B$$

- (a) Disegnare l'albero sintattico della formula.
- (b) Si tratta di una formula soddisfacibile? Si tratta di una formula valida?
- 2. Si consideri il linguaggio del prim'ordine dell'aritmetica $\mathcal{L} = \{<, +, \cdot, 0, 1\}$, dove:
 - < è simbolo relazionale binario
 - +, \cdot sono simboli funzionali binari
 - 0,1 sono simboli di costante

Si consideri la \mathcal{L} -struttura $\mathcal{R} = (\mathbb{R}, <, +, \cdot, 0, 1)$, dove i simboli di \mathcal{L} sono interretati in maniera standard.

- (a) Scrivere un formula $\varphi(x,y)$ di $\mathcal L$ che abbia esattamente x,y come variabili libere
- (b) Determinare se $\mathcal{R} \models \varphi[x/4, y/3]$
- (c) Determinare l'insieme di verità $\varphi(\mathcal{R})$ e disegnarlo
- 3. Sia $\mathcal{L} = \{C, A, p, g\}$ un linguaggio del prim'ordine, dove C è simbolo relazionale unario, A è simbolo relazionale binario, p, g sono simboli di costante. Si consideri la seguente interpretazione di \mathcal{L} :
 - -C(x): x va al cinema;
 - -A(x,y): x è amico di y;
 - -p: Pino;
 - -g: Gino.

Si scrivano le seguenti frasi in formule del linguaggio \mathcal{L} :

1. Pino va al cinema, ma Gino no.

- 2. Pino e Gino sono gli unici che vanno al cinema.
- 3. Se tutti gli amici di Pino vanno al cinema, allora ci va anche Gino.
- 4. Si considerino gli enunciati del prim'ordine

$$\varphi: \exists x (P(x) \land \neg Q(x))$$

 $\psi: \forall x (P(x) \lor Q(x))$

Costruire, se esistono:

- (a) Un modello di $\neg \varphi$
- (b) Un modello di $\varphi \wedge \neg \psi$

Svolgimento

1. (a)

- (b) * La formula è soddisfacibile, perché se i è un'interpretazione tale che i(B)=0, allora $i^*(\neg B)=1$ e quindi $i^*(\neg(A\to B)\vee C\to \neg B)=1$
 - * La formula non è valida, perché se i è un'interpretazione tale che i(B)=i(C)=1, allora $i^*(\neg(A\to B)\vee C)=1, i^*(\neg B)=0$, e quindi $i^*(\neg(A\to B)\vee C\to \neg B)=0$
- **2.** (a) x = y
 - (b) $\mathcal{R}\not\models\varphi[x/4,y/3]$, perché $4\neq3$
 - (c) $\varphi(\mathcal{R})=\{(a,b)\in\mathbb{R}^2\mid a=b\}$ è la diagonale del primo e terzo quadrante del piano \mathbb{R}^2 :

- 3. 1. $C(p) \land \neg C(g)$
 - 2. $C(p) \wedge C(g) \wedge \forall x (C(x) \rightarrow x = p \lor x = g)$
 - 3. $\forall x \ (A(x,p) \to C(x)) \to C(g)$

4. (a) $\neg \varphi \equiv \forall x (\neg P(x) \lor Q(x))$. Un modello $\mathcal{A} = (A, P^{\mathcal{A}}, Q^{\mathcal{A}})$ per $\neg \varphi$ consiste quindi di:

$$A = \{a\}, \qquad P^{\mathcal{A}} = Q^{\mathcal{A}} = \emptyset$$

dove a è un qualunque elemento.

(b) $\neg \psi \equiv \exists x (\neg P(x) \land \neg Q(x))$. Siano a,b elementi distinti, e sia $\mathcal{B}=(B,P^{\mathcal{B}},Q^{\mathcal{B}})$, dove

$$P^{\mathcal{B}} = \{a\}, \qquad Q^{\mathcal{B}} = \emptyset$$

Allora $\mathcal{B} \models \varphi$, perché $a \in P^{\mathcal{B}}$ e $a \notin Q^{\mathcal{B}}$; inoltre $\mathcal{B} \models \neg \psi$, perché $b \notin P^{\mathcal{B}}$ e $b \notin Q^{\mathcal{B}}$. Pertanto $\mathcal{B} \models \varphi \wedge \neg \psi$.