

FCC TEST REPORT

For

Bytech NY Inc.

Bluetooth Lightup Speaker-BK

Model No.: BC-AU-BS-171-BK, OS-312

Prepared For : Bytech NY Inc.

Address : 2585 West 13th Street, Brooklyn, NY, 11223- US

Prepared By : Shenzhen Anbotek Compliance Laboratory Limited

Address : 1/F, Building D, Sogood Science and Technology Park, Sanwei

community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong,

China.518102

Tel: (86) 755-26066440 Fax: (86) 755-26014772

Report Number : SZAWW190104001-01

Date of Receipt : Jan. 04, 2019

Date of Test : Jan. 04~17, 2019

Date of Report : Jan. 17, 2019

Contents

1. General Information.	por		1,001c. V	, , , , , , , , , , , , , , , , , , ,	Hotek	5
1.1. Client Information	ter A	Upo h	Hotek	Popole.	7Un	5
1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During	, otek	Aupore	An Tok	botek	Anbo	5
1.3. Auxiliary Equipment Used During	Test	hotek	Anbo	W. Hotek	popote.	5
1.4. Description of Test Modes	Anbe	otel	Anbore	Pillia.	y whote	6
1.4. Description of Test Modes	Aupore		odny 193	iek Vupo		,7
1.5. List of channels	odny	Yes Vilo		gote ^k pub	or No.	8
1.7. Test Equipment List		pote ^K A	upor W		nhotek l	9
1.8. Measurement Uncertainty		. YayleY	Kipoter.	Amb	- Jotek	10
1.9. Description of Test Facility	poter	Anti	hotek	Anbor	bu.	. 10
2. Summary of Test Results	, nootek	Anbo		Repoter	Anb	. 11
3. Conducted Emission Test	h. Horek	Hupo _{te} ,	Yur.		Vupor	12
3.1. Test Standard and Limit	Anv		tek Vupo.		do _M Yar	12
3.2. Test Setup.	Anbo		Hotek Ho	pote, Aug		12
3.3. Test Procedure	(e)K	pote Ar		A	upo p	12
3.4. Test Data		Kilb Otek	Anbo	b. Potek	Kupo _{fe} ,	. 12
3.2. Test Setup	dge	- Botek	Mopole	Ans	, deotek	17
4.1. Test Standard and Limit	Aupore	VII.	botek	Anbo		17
4.2. Test Setup.	Mapofer	Anbe		ok hopogo	Anv	17
4.3. Test Procedure		e _K Pupo,	by William	241,,	ten Aup	18
4.4. Test Data			poten Ani	D		. 19
4.2. Test Setup	e. Au		botek	Pupore V		27
5.1. Test Standard and Limit	potek	Anbo.	br.	Alpote	Anb	27
5.2. Test Setup	notek	Kupo _{fe,}	Aug.	Motek.	- Anbore	27
5.3. Test Procedure	Vun	otek	Anbor	K Notak	Aupoter	27
5.4. Test Data	Anbo		ek Nupote	Am		. 27
5.3. Test Procedure	both	VU.		otek Anbo		. 31
0.1. ICSL DIAINALU						
6.2. Test Setup	10K	-potek	Pupo _{te} I	Yun Tak	- Thotek	31
6.3. Test Procedure	1000	70	V450fek	Anbo	h. hotek	31
6.4. Test Data	Anboten	Anbe	"POFEK		An-	. 31
7. Carrier Frequency Separation Test	, botek	Mpore	VII.	K. Alloofeli	Anbo.	. 35
7.1. Test Standard and Limit	br.,	³ todna A	Anbe-	**** *********************************	e _k Kupo,	35
7.2. Test Setup	Aup.		otek kap	ore bu	-010 K	35
7.3. Test Procedure	k bup	O. b.,		mboten An	D. 18	35
7.4. Test Data	-Yay	,,,bote	Yun	botek	Pupor	. 35
6.3. Test Procedure	- Tek	v uhotek	Vupo.	Notok	Anhoten	39
8.1. Test Standard and Limit	upo-	notek.	Arbote.	Anv	- abotek	39
8.2. Test Setup	Arbote.	Anv	, notel	Vupor	r ro	39
8.3. Test Procedure	A npote	Anbor	by.	Jok Nupot	Anb	39
8.3. Test Procedure	k -10	otek Pup	Ore Am	otek cal	otek wo	. 39
9. Dwell Time Test	Pitte		npoter A	Upo Pr	yek	41

9.1. Test Standard and Limit	41
9.2. Test Setup	41
9.3. Test Procedure	41
9.4. Test Data	41
10. 100kHz Bandwidth of Frequency Band Edge Requirement	45
10.1. Test Standard and Limit	45
10.2. Test Setup	45
10.3. Test Procedure	45
10.4. Test Data	45
11. Antenna Requirement	50
11.1. Test Standard and Requirement	50
11.2. Antenna Connected Construction	50
APPENDIX I TEST SETUP PHOTOGRAPH	51
APPENDIX II EXTERNAL PHOTOGRAPH	53
APPENDIX III INTERNAL PHOTOGRAPH	57

TEST REPORT

Applicant : Bytech NY Inc.

Manufacturer : Shenzhen Oceantech Electronics Co., Ltd.

Product Name : Bluetooth Lightup Speaker-BK

Model No. : BC-AU-BS-171-BK, OS-312

Trade Mark : N.A.

Rating(s) : Input: DC 5V, 1A (with DC 3.7V, 300 Battery inside)

Test Standard(s) : FCC Part15 Subpart C 2018, Section 15.247

Test Method(s) : **ANSI C63.10: 2013**

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 15 Subpart C requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Test	aliance		Jan. 04~17, 2019	
Anbotek A	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		20th new	
Prepared by	Anbotek Product Safety	Anbotek Ar	hotek Anbotek	Anbotek Anbotek
otek subotek	* Approved *	k Anbotek	(Engineer / Dolly Mo)	Anboten Anbo
Anbotek Anbotek	All rek of		Carra Mena	
			Snavy Meng	
Reviewer	otek anbotek			An tok spotek
			Supervisor / Snowy Meng	Anbotek Anbot
		Anbotek -	Sally zhong	
		otek Ans abotek		
Approved & Authorized	The suppose	upo, W. Vupo,	ar Ambotes Am	tek apotek
			(Manager / Sally Zhang)	

1. General Information

1.1. Client Information

0	Applicant	:	Bytech NY Inc.
0	Address		2585 West 13th Street, Brooklyn, NY, 11223- US
	Manufacturer		Shenzhen Oceantech Electronics Co., Ltd.
2	Address	:	R602, Block G, Bao'an Zhigu Science and Technology Park, Yintian Road No.4, Bao'an District, Shenzhen 518101
3	Factory	:	Shenzhen Oceantech Electronics Co., Ltd.
P	Address	:	R602, Block G, Bao'an Zhigu Science and Technology Park, Yintian Road No.4, Bao'an District, Shenzhen 518101

1.2. Description of Device (EUT)

		-K MOLO MILE	P. P.
Product Name	:	Bluetooth Lightup Speaker-BK	Anbote Ann Anbotek Anbotek Anbo
Model No.	:	b. K " " " " " " " " " " " " " " " " " "	except the model name, so we prepare
Trade Mark	:	N.A. Anbotek	Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	AC 120V, 60Hz for adapter / AC	240V, 60Hz for adapter/ DC 3.7V battery inside
Test Sample No.	:	S1(Normal Sample), S2(Enginee	ring Sample)
		Operation Frequency:	2402MHz~2480MHz
		Transfer Rate:	1/2 Mbits/s
Product		Number of Channel:	79 Channels
Description	•	Modulation Type:	GFSK, π/4-DQPSK
d a		Antenna Type:	PCB Antenna
		Antenna Gain(Peak):	-0.68 dBi
	Model No. Trade Mark Test Power Supply Test Sample No.	Model No. : Trade Mark : Test Power Supply : Test Sample No. :	Model No. BC-AU-BS-171-BK, OS-312 (Note: All samples are the same of "BC-AU-BS-171-BK" for test on Trade Mark Trade Mark : N.A. Test Power Supply : AC 120V, 60Hz for adapter / AC Test Sample No. : S1(Normal Sample), S2(Enginee Operation Frequency: Transfer Rate: Number of Channel: Modulation Type: Antenna Type:

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

(1)	Adapter	:	Manufacturer: ZTE	
			M/N: STC-A2050I1000USBA-C	
			S/N: 201202102100876	
			Input: 100-240V~ 50/60Hz, 0.3A	536
1			Output: DC 5V, 1000mA	

1.4. Description of Test Modes

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	CH00
Mode 2	CH39
Mode 3	CH78
Mode 4	Keeping TX+ Charging Mode

For Conducted Emission							
Final Test Mode Description							
Mode 4	Keeping TX+ Charging Mode	Anbotek Anbo					

			For	Radiated Emi	ssion			
F	inal Test Mo	de			Description	n		
Anbore	Mode 1	otek Ar	poter A	Ipo Stek	CH00	ole Vu	hotek	Anbotek
Aupo	Mode 2	nbotek	Anboter	Anb	СН39	Anbote	An	Anbo
Ken Ar	Mode 3	Anbotek	Anbote.	Aur	CH78	Anbot	Ai.	k Ar
poter	Mode 4	Anbotek	Anbore	Kee	ping TX+ Charg	ging Mode	sk up	otek

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The data rate was set in 1Mbps for radiated emission due to the highest RF output power.

1.5. List of channels

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
00	2402	Anb 17	2419	34	2436	51	2453	68	2470
01	2403	18	2420	35	2437	52	2454	69	2471
02	2404	19	2421	36	2438	53 oten	2455	70	2472
03	2405	20	2422	37	2439	54	2456	71	2473
04	2406	21	2423	38	2440	55	2457	72	2474
05	2407	22	2424	39	2441	56	2458	73	2475
05	2408	23	2425	40	2442	57	2459	74	2476
Let 07 AT	2409	24	2426	41 Anb	2443	58	2460	75	2477
08	2410	25	2427	42 N	2444	59	2461	76	2478
09	2411	26	2428	43	2445	60	2462	ote*77	2479
10	2412	27 📉	2429	44	2446	61 mbo	2463	78	2480
p.I.Pole	2413	28	2430	45	2447	62	2464		
12	2414	29	2431	46	2448	63	2465		
13	2415	30	2432	47,,,,,,,	2449	64	2466		
14	2416	31	2433	48	2450	65	2467	5,00	
15	2417	32	2434	49	2451	66	2468		
16	2418	33	2435	50	2452	67	2469		

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. EUT built-in battery-powered, fully-charged battery use of the test battery.
- 3. BDR corresponds to GFSK, and EDR corresponds to $\pi/4$ DQPSK

1.6. Description Of Test Setup

CE

RE

1.7. Test Equipment List

by.	- Loter	AND	rek "por	N. P.	V.C.L.	rupo	
Item Equipment		Equipment Manufacturer		Serial No.	Last Cal.	Cal. Interval	
otek 1. nbotek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Nov. 05, 2018	1 Year	
2,00	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Nov. 05, 2018	1 Year	
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Nov. 05, 2018	1 Year	
4.	Spectrum Analysis	Agilent	E4407B	US39390582	Nov. 05, 2018	1 Year	
1.0 K	MAX Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year	
6.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Nov. 05, 2018	1 Year	
7.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Nov. 20, 2018	1 Year	
8.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Nov. 19, 2018	1 Year	
9.	Loop Antenna	Schwarzbeck	FMZB1519B	00053	Nov. 20, 2018	1 Year	
10.	Horn Antenna	A-INFO	LB-180400-K F	J211060628	Nov. 20, 2018	1 Year	
11.	Pre-amplifier	SONOMA	310N	186860	Nov. 05, 2018	1 Year	
12.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A	
13.	RF Test Control System	YIHENG	YH3000	2017430	Nov. 05, 2018	1 Year	
14.	Power Sensor	DAER	RPR3006W	15I00041SN045	Nov. 05, 2018	1 Year	
15.	Power Sensor	DAER	RPR3006W	15I00041SN046	Nov. 05, 2018	1 Year	
16.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Nov. 05, 2018	1 Year	
17.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Nov. 05, 2018	1 Year	
18.	Signal Generator	Agilent	E4421B	MY41000743	Nov. 05, 2018	1 Year	
19.	DC Power Supply	IVYTECH	IV3605	1804D360510	Apr. 02, 2018	1 Year	
20.	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Nov. 01, 2018	1 Year	

1.8. Measurement Uncertainty

Radiation Uncertainty	:	Ur = 3.9 dB (Horizonta	ul) Mariek	Anbotek	'upole,	Ann
0		Ur = 3.8 dB (Vertical)	And	Anbotek	Anbot	be.
		Anbotek Anbote	An hotek	Anbotek	Anbo	ek by
Conduction Uncertainty	:	Uc = 3.4 dB	be Mr.	tek Anbote	Anbo	otek

1.9. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registed and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, July 31, 2017.

ISED-Registration No.: 8058A-1

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A-1, June 13, 2016.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test Results

Standard Section	Test Item	Result
15.203/15.247(c)	Antenna Requirement	PASS
15.207	Conducted Emission	PASS
15.205/15.209	Spurious Emission	PASS
15.247(b)(1)	Conducted Peak Output Power	PASS
15.247(a)(1)	20dB Occupied Bandwidth	PASS
15.247(a)(1)	Carrier Frequencies Separation	PASS
15.247(a)(1)	Hopping Channel Number	PASS
15.247(a)(1)	Dwell Time	PASS
15.247(d)	Band Edge	PASS

3. Conducted Emission Test

3.1. Test Standard and Limit

Test Standard	FCC Part15 Section 15.20	7 Anbore And Hotek	Anbotek Anbo stek
	Fra 200 200 200	Maximum RF	Line Voltage (dBuV)
9	Frequency	Quasi-peak Level	Average Level
Test Limit	150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
	500kHz~5MHz	56	46
	5MHz~30MHz	60	50

Remark: (1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequency.

3.2. Test Setup

3.3. Test Procedure

The EUT system is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC line are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to FCC ANSI C63.10-2013 on Conducted Emission Measurement.

The bandwidth of test receiver (ESCI) set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

3.4. Test Data

Please to see the following pages.

worst case: GFSK, CH00

Test Site: 1# Shielded Room
Operating Condition: Keeping TX+ Charging
Test Specification: AC 240V, 60Hz for adapter

Comment: Live Line

Tem.: 22.6°C Hum.: 42%

Test Site: 1# Shielded Room
Operating Condition: Keeping TX+ Charging (
Test Specification: AC 240V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.6°C Hum.: 42%

Test Site: 1# Shielded Room
Operating Condition: Keeping TX+ Charging
Test Specification: AC 120V, 60Hz for adapter

Comment: Live Line

11.42

-0.29

12.61

0.70

12.49

20.13

20.13

20.14

20.16

20.16

31.55

19.84

32.75

20.86

32.65

56.00

46.00

56.00

46.00

56.00

1.5820

1.7300

2.1420

2.9660

3.2500

8

9

10

11

12

Tem.: 22.6°C Hum.: 42%

-24.45

-26.16

-23.25

-25.14

-23.35

QP

AVG

QP

AVG

Test Site: 1# Shielded Room
Operating Condition: Keeping TX+ Charging
Test Specification: AC 120V, 60Hz for adapter

Comment: Neutral Line

Tem.: 22.6°C Hum.: 42%

No.	Freq. (MHz)	Reading (dBuV)	Factor (dB)	Result (dBu∀)	Limit dBu∀	Over Limit (dB)	Detector	Remark
1	0.1740	7.17	19.90	27.07	54.76	-27.69	AVG	
2	0.3500	21.07	19.91	40.98	58.96	-17.98	QP	
3	0.4380	2.12	19.95	22.07	47.10	-25.03	AVG	
4	0.5899	18.00	20.01	38.01	56.00	-17.99	QP	
5	0.6060	1.37	20.01	21.38	46.00	-24.62	AVG	
6	1.1100	0.12	20.12	20.24	46.00	-25.76	AVG	
7	1.1980	17.28	20.12	37.40	56.00	-18.60	QP	
8	1.5780	17.22	20.13	37.35	56.00	-18.65	QP	
9	1.6820	-0.61	20.13	19.52	46.00	-26.48	AVG	
10	1.9180	15.80	20.14	35.94	56.00	-20.06	QP	
11	2.2220	17.19	20.14	37.33	56.00	-18.67	QP	
12	2.2220	-0.95	20.14	19.19	46.00	-26.81	AVG	

4. Radiation Spurious Emission and Band Edge

4.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.20	09 and 15.205	Anthotok	Anbotek A	'upo stek
7	Frequency (MHz)	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
	0.009MHz~0.490MHz	2400/F(kHz)	obotek - Anbo	o Pur	300 000
	0.490MHz-1.705MHz	24000/F(kHz)	Anbotek Ar	Pore VIII	societ 30 And
5	1.705MHz-30MHz	30	Anbotek	Anbor P	30
Test Limit	30MHz~88MHz	100	40.0	Quasi-peak	3.ek
	88MHz~216MHz	150	43.5	Quasi-peak	3 _{botek}
	216MHz~960MHz	200	46.0	Quasi-peak	kek 3 sabotek
	960MHz~1000MHz	500	54.0	Quasi-peak	atek 3 nobe
٠	Above 1000MHz	500	54.0	Average	3
	Above 1000MHZ	botek - Anbot	74.0	Peak	3

Remark:

- (1) The lower limit shall apply at the transition frequency.
- (2) 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

4.2. Test Setup

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

4.3. Test Procedure

For below 1GHz: The EUT is placed on a turntable, which is 0.8m above the ground plane.

For above 1GHz: The EUT is placed on a turntable, which is 1.5m above the ground plane.

The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Rotated the EUT through three orthogonal axes to determine the maximum emissions, both horizontal and vertical polarization of the antenna are set on test. The EUT is tested in 9*6*6 Chamber. The device is evaluated in xyz orientation.

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying

aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as:

RBW = 9KHz, VBW = 30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 30MHz to 1000MHz, Set the spectrum analyzer as:

RBW = 100kHz, VBW = 300kHz, Detector = Quasi-Peak, Trace mode = Max hold, Sweep- auto couple.

For above 1GHz, Set the spectrum analyzer as:

RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple.

RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

4.4. Test Data

PASS

During the test, pre-scan the GFSK, $\pi/4$ QPSK modulation, and found the GFSK modulation Middle channel which is the worst case, only the worst case is recorded in the report

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Note: The data is in TX only mode, and this is the worst mode

Test Results (30~1000MHz)

Job No.: SZAWW190104001-01 Temp.(°C)/Hum.(%RH): 24.1°C/50%RH

Standard: FCC PART 15C Power Source: DC 3.7V battery inside

Test Mode: Mode 2 Polarization: Horizontal

Test Results (30~1000MHz)

Job No.: SZAWW190104001-01 Temp.(°C)/Hum.(%RH): 24.1°C/50%RH

Standard: FCC PART 15C Power Source: DC 3.7V battery inside

Test Mode: Mode 2 Polarization: Vertical

Test Results (1GHz-25GHz)

Test Mode: 0	CH00			Test	channel: Lowe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	38.45	34.04	6.58	34.09	44.98	74.00	-29.02	boteV
7206.00	32.59	37.11	7.73	34.50	42.93	74.00	-31.07	Vok
9608.00	32.15	39.31	9.23	34.79	45.90	74.00	-28.10	V
12010.00	*Anb	tek	hotek p	upote	An botek	74.00	Anbo	V
14412.00	ote * And	otek .	nbotek	Aupoter	Ann	74.00	Aupo	V
4804.00	42.98	34.04	6.58	34.09	49.51	74.00	-24.49	H
7206.00	34.45	37.11	7.73	34.50	44.79	74.00	-29.21	H
9608.00	31.68	39.31	9.23	34.79	45.43	74.00	-28.57	Anbou
12010.00	*nbote	Anbo	18K	abotek	Anboten	74.00	Anbotek	H
14412.00	cek * Anb	stek bi	100, b	abotek	Anboten	74.00	Anbotek	H
			A	verage Value	e	0.0		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4804.00	27.05	34.04	6.58	34.09	33.58	54.00	-20.42	V
7206.00	21.15	37.11	7.73	34.50	31.49	54.00	-22.51	V
9608.00	20.15	39.31	9.23	34.79	33.90	54.00	-20.10	V
12010.00	potek * A	100	nbotek	Anbotek	Augo	54.00	Aupor	V
14412.00	Anbotek	Anbore	An botek	Anbote	Anbo	54.00	lek Aut	V
4804.00	31.41	34.04	6.58	34.09	37.94	54.00	-16.06	hpore.
7206.00	23.40	37.11	7.73	34.50	33.74	54.00	-20.26	MA
9608.00	19.98	39.31	9.23	34.79	33.73	54.00	-20.27	Ηn
12010.00	atek *	potek	Aupote	And	Anbotek	54.00	abote	Н
14412.00	*	abotek	Anbote	Anv	k nbote	54.00	or br.	ote ^K H

Test Results (1GHz-25GHz)

Гest Mode: (CH39			Test	channel: Midd	le		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	37.15	34.38	6.69	34.09	44.13	74.00	-29.87	boteV
7323.00	31.73	37.22	7.78	34.53	42.20	74.00	-31.80	Vap
9764.00	31.38	39.46	9.35	34.80	45.39	74.00	-28.61	V
12205.00	***************************************	stek v	abotek p	upor	An	74.00	Aupo	V
14646.00	* Anti	ntek .	nbotek	Anbotek	Ann	74.00	Aupor	V V
4882.00	41.41	34.38	6.69	34.09	48.39	74.00	-25.61	H
7323.00	33.47	37.22	7.78	34.53	43.94	74.00	-30.06	H
9764.00	30.79	39.46	9.35	34.80	44.80	74.00	-29.20	Anboth H
12205.00	* Anbote	Anbo	rek Vi	botek	Anboten	74.00	anbotek	Ĥ
14646.00	lek * Anb	itek Ar	loor b	botek	Anboren	74.00	anbotek	H×
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4882.00	26.01	34.38	6.69	34.09	32.99	54.00	-21.01	V
7323.00	20.44	37.22	7.78	34.53	30.91	54.00	-23.09	V
9764.00	19.53	39.46	9.35	34.80	33.54	54.00	-20.46	V
12205.00	potek * A	Ipor Fek	anbotek	Anbores	Ambo	54.00	Anbor	V
14646.00	Anbot &	Aupor	An botek	Anboth	Ambo	54.00	lek Ant	V
4882.00	30.22	34.38	6.69	34.09	37.20	54.00	-16.80	Yupoten
7323.00	22.61	37.22	7.78	34.53	33.08	54.00	-20.92	P. H.
9764.00	19.25	39.46	9.35	34.80	33.26	54.00	-20.74	Ηn
12205.00	***	potek	Aupore	And wotek	Anbotek	54.00	Allote	Н
14646.00	*	botek	Anboten	Vun.	k abote	54.00	P. P. 11.	ote ^K H

Test Results (1GHz-25GHz)

Test Mode: (CH78			Test	channel: Highe	est		
				Peak Value				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	36.23	34.72	6.79	34.09	43.65	74.00	-30.35	o teV
7440.00	31.11	37.34	7.82	34.57	41.70	74.00	-32.30	V_{e_k}
9920.00	30.83	39.62	9.46	34.81	45.10	74.00	-28.90	V
12400.00	*	stek	abotek p	upore	Ar. potek	74.00	Anbo	V
14880.00	* And	otek .	nbotek	Anbote.	Au Potek	74.00	Anbor	v V
4960.00	40.29	34.72	6.79	34.09	47.71	74.00	-26.29	Н
7440.00	32.77	37.34	7.82	34.57	43.36	74.00	-30.64	H
9920.00	30.15	39.62	9.46	34.81	44.42	74.00	-29.58	Anbote H
12400.00	* Anbote	Anbe	rek br	botek	Anboten	74.00	Anbotek	H
14880.00	cek * Anb	Vek bi	100, b	Sporek	Anboten	74.00	anbotek	H
			A	verage Valu	e			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Pol.
4960.00	25.30	34.72	6.79	34.09	32.72	54.00	-21.28	V
7440.00	19.96	37.34	7.82	34.57	30.55	54.00	-23.45	V
9920.00	19.10	39.62	9.46	34.81	33.37	54.00	-20.63	V
12400.00	poter * A	lpo.	abotek.	Anboter	Aug of e	54.00	Aupor	V
14880.00	Anbotak	Anbor	Andotek	Anboli	Amb	54.00	lek Vul	V
4960.00	29.41	34.72	6.79	34.09	36.83	54.00	-17.17	H dur
7440.00	22.07	37.34	7.82	34.57	32.66	54.00	-21.34	PAH.
9920.00	18.75	39.62	9.46	34.81	33.02	54.00	-20.98	Hal
12400.00	otek *	potek	Anboro	Andotek	Anbotek	54.00	phote	Н
14880.00	*	abotek	Anbote	Ano	k hotel	54.00	9.K M	ote ^K H

Remark

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Radiated Band Edge:

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ QPSK modulation, and found the GFSK modulation is worse case, the report only record this mode.
- 2. Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor

5. Maximum Peak Output Power Test

5.1. Test Standard and Limit

0	Test Standard	FCC Part15	C Section 15.2	247 (b)(3)	Anna	Anbotek	Anbor	All
	Test Limit	125mW	A. anbotek	Anbote.	And	Anbotek	Aupor rek	P.

5.2. Test Setup

5.3. Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above,
- 2. Spectrum Setting:

RBW > the 20 dB bandwidth of the emission being measured

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

5.4. Test Data

Test Item	:	Max. peak output power	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V battery inside	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

Channel Frequency (MHz)	Peak Power output (dBm)	Limit (dBm)	Results	Modulation
2402	0.713	20.96	PASS	BDR
2441	0.706	20.96	PASS	BDR
2480	1.777	20.96	PASS	BDR
2402	1.280	20.96	PASS	EDR
2441	1.164 Anbotes	20.96	PASS	EDR
2480	2.201	20.96	PASS	EDR

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

6. 20DB Occupy Bandwidth Test

6.1. Test Standard

Test Standard FCC Part15 C Section 15.247 (a)(1)	Ann	Anbotek	Anbo	p.
--	-----	---------	------	----

6.2. Test Setup

6.3. Test Procedure

Using the following spectrum analyzer settings:

- 1. Span= approximately 2 to 3 times the 20dB bandwidth, centered on a hopping channel.
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

6.4. Test Data

Test Item :	20dB BW		Test Mode	:	CH Low ~ CH High
-------------	---------	--	-----------	---	------------------

Test Voltage : DC 3.7V battery inside Temperature : 24℃
Test Result : PASS Humidity : 55%RH

T	- O. V.	The state of the s	10.
Channel	Frequency(MHz)	20dB Down BW(kHz)	Modulation Mode
Low	2402	874.2	BDR
Middle	2441	878.1	BDR
High	2480	876.0	BDR
Low	2402	1252.0	EDR
Middle	2441	1255.0	EDR
High	2480	1256.0	EDR

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

7. Carrier Frequency Separation Test

7.1. Test Standard and Limit

0	Test Standard	FCC Part15 C Section 15.247 (a)(1)	Anbotek	Anbo	P
	Test Limit	>25KHz or >two-thirds of the 20 dB bandwidth	Anbotek	Anboatek	P

7.2. Test Setup

7.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer settings:

- 1. Span= Wide enough to capture the peaks of two adjacent channels
- 2. Set the RBW = 30 kHz.
- 3. Set the VBW = 100 kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

7.4. Test Data

Test Item	:	Frequency Separation	Test Mode :	CH Low ~ CH High
Test Voltage	:	DC 3.7V battery inside	Temperature :	24℃
Test Result	:	PASS	Humidity :	55%RH

Channel	Frequency	Separation Read	Limit	Modulation Mode	
Chamici	(MHz)	Value (kHz)	(kHz)	Wiodulation Wiode	
Low	2402	1000	874.2	BDR	
Middle	2441	1000	878.1	BDR	
High	2480	1000	876.0	BDR BDR	
Low	2402	1000	834.7	EDR	
Middle	2441	1000	836.7	EDR	
High	2480	1000	837.3	EDR	
Remark: The limit of	mode (EDR) is 2/3 of 20	dB BW:	Aupor K	stek anboten	

Remark. The limit of mode (LDR) is 2/3 of 20db BW.

Test Mode: BDR---Low

Test Mode: BDR---Middle

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Middle

Test Mode: EDR---High

8. Number of Hopping Channel Test

8.1. Test Standard and Limit

Test Standard	FCC Part15 C Section	on 15.247 (a)(1)	Am	Anbotek	Anbo	b
Test Limit	>15 channels	otek Anbore	k hotek	Anbotek	Anbo	, P

8.2. Test Setup

8.3. Test Procedure

The EUT must have its hopping function enabled. Using the following spectrum analyzer setting:

- 1. Span= the frequency band of operation
- 2. Set the RBW = 100kHz.
- 3. Set the VBW = 300kHz.
- 4. Sweep time = auto couple.
- 5. Detector function = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.

8.4. Test Data

Test Item :	Number of Hopping Frequency	Test Mode :	CH Low ~ CH High
Test Voltage :	DC 3.7V battery inside	Temperature :	24℃
Test Result :	PASS	Humidity :	55%RH

Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel
2402-2480MHz	And tok 79 potek Anbot	≥15 _{nboten}

BDR Mode

EDR Mode

9. Dwell Time Test

9.1. Test Standard and Limit

ol,	Test Standard	FCC Part15 (C Section 15.2	47 (a)(1)	Am	Anbotek	Anbo	p
	Test Limit	0.4 sec	Anbotek	Anboro	Air	Anboten	Anbo	

9.2. Test Setup

9.3. Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span= zero span, centered on a hopping channel
- 2. Set the RBW = 1 MHz.
- 3. Set the VBW = 1 MHz.
- 4. Sweep time = as necessary to capture the entire dwell time per hopping channel.
- 5. Detector function = peak.
- 6. Trace mode = \max hold.
- 7. Allow trace to fully stabilize.

9.4. Test Data

Test Item	:	Time of Occupancy	Test Mode	:	CH Low ~ CH High
Test Voltage	:	DC 3.7V battery inside	Temperature	:	24℃
Test Result	:	PASS	Humidity	:	55%RH

Package Type	Pulse width (ms)	Time slot length(ms)	Dwell time (ms)	Limit (s)	Modulation
DH1	0.374	time slot length *1600/2 /79 * 31.6	119.68	0.4	BDR
DH3	1.632	time slot length *1600/4 /79 * 31.6	261.12	0.4	BDR
DH5	2.880	time slot length *1600/6 /79 * 31.6	307.20	0.4	BDR
2DH1	0.384	time slot length *1600/2 /79 * 31.6	122.88	0.4	EDR M
2DH3	1.626	time slot length *1600/4 /79 * 31.6	260.16	0.4	EDR
2DH5	2.880	time slot length *1600/6 /79 * 31.6	307.20	0.4	EDR

Test Mode: BDR---DH1

Test Mode: BDR---DH3

Test Mode: BDR---DH5

Test Mode: EDR---2DH1

Test Mode: EDR---2DH3

Test Mode: EDR---2DH5

10. 100kHz Bandwidth of Frequency Band Edge Requirement

10.1. Test Standard and Limit

Test Standard	FCC Part15 C Section 15.247 (d)
Test Limit	in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

10.2. Test Setup

10.3. Test Procedure

The EUT must have its hopping/Non-hopping function enabled. Using the following spectrum analyzer setting:

- 1. Set the RBW = 100kHz.
- 2. Set the VBW = 300kHz.
- 3. Sweep time = auto couple.
- 4. Detector function = peak.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.

10.4. Test Data

Test Item :	Band edge	Test Mode :	CH Low ~ CH High
Test Voltage :	DC 3.7V battery inside	Temperature :	24℃
Test Result :	PASS	Humidity :	55%RH

For Hopping Mode

BDR mode

EDR mode

For Non-Hopping Mode

BDR mode -- Lowest

BDR mode -- Highest

For Non-Hopping Mode

EDR mode -- Lowest

EDR mode -- Highest

Conducted Emission Method

Test Mode: BDR---Low

Test Mode: BDR---Mid

Test Mode: BDR---High

Test Mode: EDR---Low

Test Mode: EDR---Mid

Test Mode: EDR---High

11. Antenna Requirement

11.1. Test Standard and Requirement

Test Standard	FCC Part15 Section 15.203 /247(c)
	Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
	1) 15.203 requirement:
	An intentional radiator shall be designed to ensure that no antenna other than that furnished
	by the responsible party shall be used with the device. The use of a permanently
	attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the
	manufacturer may design the unit so that a broken antenna can be replaced by the user, but
Requirement	the use of a standard antenna jack or electrical connector is prohibited.
	2) 15.247(c) (1)(i) requirement:
	Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed.
	Point-to-point operations may employ transmitting antennas with directional gain greater
	than 6dBi provided the maximum conducted output power of the intentional radiator is
	reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

11.2. Antenna Connected Construction

The antenna is PCB Antenna which permanently attached, and the best case gain of the antenna is -0.68 dBi. It complies with the standard requirement.

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

APPENDIX II -- EXTERNAL PHOTOGRAPH

APPENDIX III -- INTERNAL PHOTOGRAPH

----- End of Report -----