

GENETICS ALGORITHM

A Genetic Algorithm (GA) Approach to the Portfolio Design Based on Market Movements and Asset Valuations

Asma BEN-ZINE Leaticia AIDOUNE

Challenges

Unpredictability: Future prices are uncertain due to countless variables (e.g., geopolitical events, pandemics).

Noise: Irrelevant or misleading price fluctuations caused by irrational trading, rumors, or liquidity gaps (not reflecting true value).

Socio-economic factors: Interest rates, inflation, policy changes.

Traditional approaches

Modern Portfolio Theory

A practical method for selecting Investments in order to maximize their overall returns within an acceptable level of risk

	Portfolio 1	Portfolio 2
Return	12%	14%
Risk	10%	10%

Traditional approaches

Sharpe Ratio

The Sharpe Ratio measures how much excess return a portfolio earns for each unit of risk, compared to a risk-free asset.

 $R_{\rm f} = 3\%$

	Portfolio 1	Portfolio 2
Return	10%	12%
Risk	14%	16%

Portfolio 1

Sharpe Ratio =
$$\frac{10\% - 3\%}{14\%} = 0.5$$

Portfolio 2

Sharpe Ratio =
$$\frac{12\% - 3\%}{16\%} = 0.56$$

Where:

r_p = Rate of Return of Stock/ Portfolio

Tp = Standard Deviation of Stock / Portfolio

Limitations

High computational complexity $(O(n^2))$ for MPT).

Covariance ignores multi-asset interactions (e.g., 3+ stocks).

Traditional approaches

Fund Standardization

- Cuts complexity $(O(n^2) \rightarrow O(1))$.
- Captures all asset interactions (not just pairs).
- Uses simple +/- for fast risk calculation.

Fund Metric Formula:

Fund Value = Return - Fees - Tax + Remaining Budget

Portfolio Risk:

$$\sigma_p^2 = \sum_{i=1}^{N} w_i^2 \sigma_i^2 + \sum_{i=1}^{N} \sum_{j \neq i} w_i w_j \sigma_{ij}$$

- ∑w_i²σ_i² → Risk of each asset, adjusted by how much you invest in it (individual variance).
- ∑Σw_iw_jσ_{ij} → How assets move together (covariance between each pair).

Momentum Strategy

Definition:

Based on the idea that stocks that performed well in the past tend to continue performing well

Purpose:

The purpose is to buy high and sell higher or short to cover lower

Momentum Strategy

CAPM (Capital Asset Pricing Model)

C• • • • •

Definition:

CAPM (Capital Asset Pricing Model) is a financial model that calculates the theoretically appropriate expected return of an asset based on its systematic risk (beta) relative to the overall market. It answers: 'What return should investors demand for bearing market risk?' R_f

Formula

$$E(R_i) = R_f + eta_i(E(R_m) \ - R_f)$$

 $E(R_i)\,$ = expected profitability of the financial asset

 R_f = risk-free interest rate

 β_i = sensitivity

 $E(R_m)$ = expected profitability on the market

• **β** = **1**: in line

• β > 1: more volatile

• **0** < **β** < **1** :less volatile

• β < 0 :moves inversely

Purpose:

Momentum Strategy

Definition:

A bio-inspired optimization technique that imitates natural selection to solve complex problems. It evolves a population of candidate solutions (e.g., portfolios) over generation

Encoding & Initialization

Chromosomes are string of 1s and 0s and each position in the chromosome represents a particular characteristic of the solution.

During initialization, a population of these chromosomes is randomly generated to represent diverse potential portfolios.

1 = Stock included 0 = Stock excluded

Fitness Function

Definition:

The fitness function is the core evaluation metric in a genetic algorithm (GA) that quantifies how well a candidate solution (e.g., a portfolio) performs against the desired objectives by evaluating and filtering assets based on their risk-adjusted returns, valuation gaps, and cost efficiency.

The fitness function evaluates portfolios by combining CAPM, Sharpe Ratio (risk-adjusted returns), momentum trends, and volatility measures, while penalizing for transaction costs to guide optimal asset selection.

Genetic Operations

Selection:

Crossover:

Mutation:

Momentum Strategy

Experimental Setup

GA Settings:

- 1% mutation
- 100% crossover

Costs: 0.015% fees, 0.3% taxes

Results

Beating indexes and momentum-only strategies. Shorter (1-month) analysis worked best, with S&P500 needing more GA generations (300 vs. 150 for KOSPI).

2008-2018

CAPM (finding undervalued stocks) + Momentum (tracking trends) + GA (optimizing the mix)

Future Work & Conclusion

Future Research:

- Real-time testing for practical market usability
- Enhance CAPM with Fama-French Factor Models
- Integrate market volatility indexes
- Add macroeconomic indicators for recession prediction

Conclusion:

The CAPM+ strategy offers a strong balance between risk and return, outperforming both index funds and momentum-only methods, especially short-term. It proves robust across multiple markets (KOSPI200, S&P500) and works without expert knowledge, though it can't fully protect against systemic crises.

