HW5

20211119 박 건 호

기존 코드의 Generalize를 증명하기 위해서 다양한 *.vertex, *.element 파일을 적용하여 실제 동작하는지 확인하는 과제를 수행했습니다. 총 Device를 9개로 3개는 스스로 제작한 파일을, 나머지는 다른 학생들이 제작한 *.vertex, *.element 파일을 적용하여 potential과 Interface, region 설정하였습니다.

1. Generalization

1) Double-Gate Device

Index: 27

Region

Red, Blue region : Gate
Black region : Substrate

Contact : 총 2개의 Contact을 구성 Cyan : Top, Bottom 에 Contact을 지정

Interface: region 간 총 2개의 interface를 설정 (Magenta)

3) Diamond Structure

Index: 30

Region

Region 1 : Red Region 2 : Blue Region 3 : Yellow

Contact : 총 3개의 Contact을 구성

Cyan : Region 1의 left top side, Potential -1로 설정

Region 2의 Bottom, Potential 1로 설정

Region 3의 right top side, Potential 0으로 설정

Interface : 각 region 간 interface, 총 3개로 설정

Interface 1 : Magenta
Interface 2 : Green
Interface 3 : White

3) MOSFET Device

Index: 70

Region

Red, Yellow region: Nitride (Spacer)

Blue region : Gate (Ploygate)
Black region : Substrate

Contact : 총 4개의 Contact을 구성

Cyan : Source, Gate, Drain, Substrate 로 총 4개 구역을 지정했습니다.

사진 상 오른 쪽 상단으로 지정한 Drain과 Gate 에 Potential 1을 지정했고 Source, Substrate에 0을 지정했습니다.

Interface: region 간 총 3개의 interface를 설정

Magenta : 한줄로 표시되었지만, 실제 4개의 region 간의 동일한 edge를 찾는 작업을 통해서 설정하였습니다.

4) RCAT Device

현재 제가 연구하고 있는 DRAM의 Structure를 모방하여 구조를 제작하였습니다.

Index: 85

Region

Yellow region : Drain Blue region : Source Red region : Substrate

Contact : 총 4개의 Contact을 구성

Cyan : Source, Gate, Drain, Substrate로 총 4개 구역을 지정했습니다.

Round Gate에 Potential을 1로 지정하여 결과를 확인하였고, Drain, Source에 Potential 0을 Substrate에 -1을 설정하여 결과를 확인하였습니다.

Interface: region 간 총 2개의 interface를 설정

Magenta: red-yellow region의 Interface

Green: red-blue region의 interface

* 다양한 삼각형의 형태에서도 가능함을 보이기 위해서 일정하지 않은 삼각형을 설정했습니다.

2. Potential 결과 확인

1번 Device

Top = 1	Bottom = 1	Sum
0	1	1
1.18E-17	1	1
0	1	1
0.170172177	0.829827823	1
0.152551749	0.847448251	1
0.170172177	0.829827823	1
0.428472937	0.571527063	1
0.375585212	0.624414788	1
0.346138515	0.653861485	1
0.375585212	0.624414788	1
0.428472937	0.571527063	1
0.481360662	0.518639338	1
0.481294565	0.518705435	1
0.480831886	0.519168114	1
0.481294565	0.518705435	1
0.481360662	0.518639338	1
0.53438058	0.46561942	1
0.587400499	0.412599501	1
0.6145999	0.3854001	1
0.587400499	0.412599501	1
0.53438058	0.46561942	1
0.798233483	0.201766517	1
0.802766716	0.197233284	1
0.798233483	0.201766517	1
1	0	1
1	0	1
1	0	1

1번 Device의 전체 Vertex 각각의 Potential의 값을 결과를 확인하면 위와 같습니다. Top과 Bottom에만 각각 Potential을 1로 설정하였고, 두 경우의 합은 모든 Node에서 1의 결과를 가지는 것을 확인했습니다.

2번 Device

Left top side=1	Right top side=1	Bottom=1
0	0	1
0	0	1
0	0	1
0.220114	0.180789	0.599097
0.168577	0.168577	0.662847
0.180789	0.220114	0.599097
0.397182	0.240314	0.362505
0.318943	0.25974	0.421317
0.25974	0.318943	0.421317
0.240314	0.397182	0.362505
0.619188	0.195241	0.185571
0.492071	0.263473	0.244456
0.366455	0.366455	0.26709
0.263473	0.492071	0.244456
0.195241	0.619188	0.185571
1	0	0
0.730459	0.167977	0.101564
0.519451	0.333736	0.146813
0.333736	0.519451	0.146813
0.167977	0.730459	0.101564
0	1	0
1	0	0
0.722777	0.216522	0.060701
0.458561	0.458561	0.082878
0.216522	0.722777	0.060701
0	1	0
1	0	0
0.621689	0.3261	0.052211
0.3261	0.621689	0.052211
0	1	0

2번의 경우 역시 모든 경우를 더했을 때 모든 Contact에 1을 준 경우인 전체 vertex에서 1을 출력할 수 있었습니다.

3번 Device

Index가 총 70개 이므로 표로 표현하는 것의 한계가 있어 그림으로 표현했습니다.

총 4가지의 Contact 을 설정했고, 각각의 Contact에 Potential을 1이와 같은 결과를 수치적인 Potential의 값을 더해서 결과를 확인했을 때, 모든 Vertex에서 1의 값을 출력하는 것을 확인했습니다.

4번 Device

위와 마찬가지로 많은 Index를 가지고 있어서 그림으로만 비교하였습니다.

총 4가지의 Contact 을 설정했고, 각각의 Contact에 Potential을 1이와 같은 결과를 수치적인 Potential의 값을 더해서 결과를 확인했을 때, 모든 Vertex에서 1의 값을 출력하는 것을 확인했습니다.

* 3,4번 Device의 모든 Contact에 Potential 1 가했을 때의 결과입니다.

* 일반화를 확인하기 위해서 계산 전자공학을 수강하는 다른 학생들의 Vertex, Element 파일을 받아서 실제 제 코드에 적용해봤습니다.

Han's Structure

* 성민 씨와 결과를 비교했을 때 동일한 contact과 Interface를 지정할 수 있음을 확인했습니다.

1) Heart

Index : 27

Region

Red, Blue, Yellow region

Contact : 총 2개의 Contact을 구성

Cyan : Top, Bottom에 Contact을 지정 // Top : 1 Bottom : 0

Interface : 3개

White, Green, Magenta로 각각의 Region 간의 interface를 설정할 수 있습니다.

2) Diamond

Index: 31

Region: 3개로 구성

Red, Yellow, Blue region으로 구성

Contact : 총 2개의 Contact을 구성

Cyan : Top, Bottom에 Contact을 지정 // Top : 1 Bottom : 0

Interface : 3개

White, Green, Magenta로 각각의 Region 간의 interface를 설정할 수 있습니다.