Akreditasi KEMENRISTEKDIKTI, No. 30/E/KPT/2018

e-ISSN: 2528-6579 APLIKASI METODE LEAN USER EXPERIENCE DAN SYSTEM USABILITY

DOI: 10.25126/itiik2025125762

p-ISSN: 2355-7699

SCALE PADA ANALISIS, PERANCANGAN, DAN EVALUASI ANTARMUKA APLIKASI MOBILE

Gita Indah Marthasari*1, Firman Noor Praadita², Briansyah Seto Wiyono³

^{1,2,3}Universitas Muhammadiyah Malang, Malang Email: ¹gita@umm.ac.id, ²firmannoorp@gmail.com, ³brian@umm.ac.id *Penulis Korespondensi

(Naskah masuk: 30 Oktober 2021, diterima untuk diterbitkan: 10 April 2025)

Abstrak

Sistem i-Lab merupakan aplikasi berbasis web untuk mendukung pelaksanaan praktikum di Departement Informatika Universitas Muhammadiyah Malang (UMM). Namun, sistem berbasis web yang saat ini digunakan dianggap belum memenuhi kebutuhan sebagian besar pengguna yang lebih sering menggunakan mobile phone. Berdasarkan survey awal, aplikasi mobile i-Lab diharapkan memiliki tampilan yang menarik dan user experience yang memuaskan. Oleh karena itu, tujuan penelitian ini adalah merancang antarmuka pengguna pada aplikasi iLab mobile menggunakan pendekatan Lean User Experience (Lean UX). Lean UX dianggap lebih sesuai dan efisien dalam proses perancangan user interface perangkat lunak dengan penggunaan sumber daya minimum. Dalam penelitian ini metode Lean UX diterapkan dalam dua iterasi dimana setiap iterasi terdiri dari tiga tahap: yaitu think (analisis), design (membuat MVP), dan test (pengujian dan analisis feedback). Evaluasi dilakukan pada tiap iterasi dalam Lean UX untuk mengetahui tingkat usability sesuai dengan perpektif pengguna. Hasil perancangan dievaluasi menggunakan System Usability Scale (SUS) dengan responden yang merupakan pengguna aplikasi. Berdasarkan pengujian, rancangan Skor akhir mendapatkan nilai "B" (rentang 80-85) dengan skor 81,75 yang termasuk dalam kategori tingkat acceptability range "Good" dan adjective rating "Excellent".

Kata Kunci: pengalaman pengguna, metode Lean UX, system usability scale

APPLYING LEAN USER EXPERIENCE AND SYSTEM USABILITY SCALE METHOD TO ANALYZE. DESIGN. AND EVALUATE A MOBILE APPLICATION

Abstract

The i-Lab system is a web-based application to support the implementation of practicum at the Department of Informatics, University of Muhammadiyah Malang (UMM). However, the web-based system currently used is considered not to meet the needs of most users who use mobile phones more often. Based on the initial survey, the i-Lab mobile application is expected to have an attractive appearance and a satisfying user experience. Therefore, the purpose of this research is to design a user interface on the iLab mobile application using a Lean User Experience (Lean UX) approach. Lean UX is considered to be more suitable and efficient in the process of designing user interface software with minimum resource usage. In this study, the Lean UX method is applied in two iterations where each iteration consists of three stages: think (analysis), design (make MVP), and test (test and analyze feedback). Evaluation is carried out at each iteration in Lean UX to determine the level of usability according to the user's perspective. The results of the design are evaluated using the System Usability Scale (SUS) with respondents who are application users. Based on the test, the final score design got a score of "B" (range 80-85) with a score of 81.75 which was included in the acceptability range category "Good" and the adjective rating "Excelent".

Keywords: user experience, lean UX method, system usability scale

1. PENDAHULUAN

Media pembelajaran merupakan sarana yang menjadikan kegiatan pembelajaran lebih komunikatif. Seiring dengan perkembangan teknologi, terdapat banyak alternatif media yang dapat digunakan sebagai pendukung kegiatan pembelajaran. Salah satunya adalah aplikasi mobile learning yang dijalankan pada smartphone. Adanya aplikasi ini menjadikan proses belajar lebih fleksibel karena informasi dapat diakses dimanapun dan kapanpun (Nealbert et al. 2014). Aplikasi mobile merupakan salah satu alternatif aplikasi berbasis web yang telah lama digunakan dalam pembelajaran.

Sistem i-Lab merupakan aplikasi berbasis web untuk mendukung pelaksanaan praktikum di Departement Informatika Universitas Muhammadiyah Malang (UMM). Sistem membantu para dosen, asisten, dan mahasiswa dalam hal manajemen kegiatan praktikum di laboratorium. Berdasarkan data yang diperoleh, frekuensi penggunaan sistem i-Lab sangat tinggi yang menunjukkan urgensi aplikasi ini bagi dosen maupun mahasiswa. Mobilitas pengguna iLab yang cukup tinggi, membuat pengguna seringkali mengakses website iLab menggunakan smartphone melalui browser. Namun, tampilan melalui browser belum mendukung secara optimal pada smartphone sehingga diperlukan perancangan aplikasi mobile yang dapat mempermudah penggunaan i-Lab. Berdasarkan observasi awal, aplikasi mobile diharapkan memenuhi beberapa fitur utama pada website iLab, seperti fitur KRS lab, presensi, create task dan input grade serta memiliki tampilan antarmuka yang menarik dan fungsional sehingga dapat meningkatkan kepuasan pengguna.

Dalam pengembangan aplikasi mobile, terdapat beberapa aspek yang dapat dijadikan tolok ukur kepuasan pengguna antara lain pengalaman pengguna atau user experience (UX). UX yang baik dapat meningkatkan daya tarik dan kenyamanan pengguna aplikasi mobile (Ghiffary, Susanto, and Prabowo 2018)(Tarute, Nikou, and Gatautis 2017) dimana salah satu penunjangnya adalah antarmuka aplikasi (user interface). Terdapat beberapa metode yang dapat digunakan dalam perancangan UX perangkat lunak. Meskipun semua metode yang ada memiliki tujuan yang sama yaitu memenuhi kebutuhan pengguna, namun terdapat perbedaan pada proses di setiap metode yang ada.

Salah satu metode perancangan berbasis UX adalah *Lean User Experience* (Lean UX). Dibandingkan dengan metode UX tradisional, Lean UX dianggap lebih sesuai dan efisien dalam proses perancangan user interface perangkat lunak (Abascal et al. 2015). Metode ini menerapkan kolaborasi lintas fungsi yang mengurangi penekanan pada dokumentasi menyeluruh sembari meningkatkan fokus pada perancangan produk yang sesuai dengan kebutuhan (Gothelf and Seiden 2013). *Lean UX*

menggabungkan teori *design thinking* dan prinsip-prinsip pengembangan *agile*. Selain itu, *Lean UX* juga berfokus pada pendekatan yang lebih praktis dengan mengurangi proses analisis dan dokumentasi yang memakan waktu cukup lama. Hal ini bertujuan untuk mendapatkan umpan balik (*feedback*) yang lebih cepat sehingga dapat melakukan iterasi selanjutnya. Metode ini juga digunakan ketika desain diharapkan selesai dalam waktu yang lebih cepat. Dengan demikian, proses desain UX menggunakan metode ini dapat dengan efektif dan efisien diterapkan dalam perancangan aplikasi MiLab. Hasil perancangan ini nantinya juga dapat diterapkan pada proses *development* aplikasi oleh Laboratorium Informatika UMM.

Terdapat beberapa penelitian terdahulu yang membahas tentang perancangan sebuah sistem untuk menghasilkan desain UX yang sesuai dengan kebutuhan pengguna. Dalam penelitian (Marien et al. 2019) dilakukan perancangan aplikasi medis berbasis web menggunakan metode UCD. Kemudian dilakukan evaluasi menggunakan metode System Usability Scale (SUS) dan menghasilkan skor yang baik. Penelitian (Hasim, Wibirama, and Nugroho 2019) juga melakukan perancangan UX pada website e-participation menggunakan metode User-Centered Design (UCD). Pada penelitian tersebut dilakukan evaluasi menggunakan User Experience Questionnaire (UEQ) terhadap hasil perancangan website. Namun, metode-metode vang digunakan tersebut membutuhkan waktu lama pada tahap awal analisis kebutuhan yang kompleks. Hal ini berbeda dengan Lean UX yang lebih mengutamakan pada efisiensi waktu proses untuk mendapatkan feedback yang dapat dijadikan sebagai bahan perbaikan pada selanjutnya. Pada penelitian lainnya iterasi (Trisminingsih and Nurliaputri 2019), perancangan UX menggunakan metode *Lean UX* dengan 2 iterasi pada aplikasi pengawas perkebunan. Pada setiap iterasi terdapat pengujian menggunakan metode Think Aloud dan Retrospective Probing. Pengujian hanya dilakukan kepada calon pengguna yang berpotensi menggunakan aplikasi. Namun, latar belakang penguji sebagai pengguna cenderung sulit untuk memberikan saran perbaikan. Sehingga diperlukan pengujian bersama ahli untuk mendapatkan saran perbaikan yang tepat sebelum diujikan ke pengguna.

Dalam penelitian ini digunakan metode *Lean UX* dengan dua iterasi untuk melakukan perancangan *user interface* pada aplikasi mobile i-lab (MiLab). Setelah dua iterasi selesai dilakukan, hasil *prototype* kemudian dievaluasi menggunakan metode *System Usability Scale* (SUS) untuk mengukur untuk mengukur aspek-aspek *usability* menurut penilaian subyektif pengguna (Aprilia, Santoso, and Ferdiana 2015). Hasil akhir (*output*) dari penelitian ini adalah desain *user interface* aplikasi MiLab dalam bentuk *prototype*.

2. METODE PENELITIAN

Penelitian yang diusulkan dilakukan dalam 2 iterasi dengan metode Lean UX. Metode ini kolaborasi lintas menerapkan fungsi mengurangi penekanan pada dokumentasi awal secara menyeluruh sembari meningkatkan fokus pada perancangan produk yang sesuai dengan kebutuhan (Gothelf and Seiden 2013). Pada dasarnya, Lean UX memiliki tujuan yang sama dengan metode lain, yaitu memenuhi kebutuhan pengguna aplikasi. Namun, metode ini memiliki teknik untuk merancang produk secara lebih cepat dengan penggunaan sumber daya minimum. Dengan demikian, proses perancangan user experience tidak memakan waktu yang lama untuk proses dokumentasi, namun lebih terfokus terhadap solusi yang dirancang.

Metode Lean UX pada dasarnya memiliki empat tahap pengembangan, yaitu declare assumptions, create minimum viable product (MVP), run an experiments, dan feedback & research (Gothelf and Seiden 2013). Dalam penelitian ini, keempat tahap tersebut dikategorikan ke dalam tiga fase iteratif, yaitu think (analisis), design (membuat MVP), dan test (pengujian dan analisis feedback). Hal ini dikarenakan terdapat dua tahap yang dapat menjadi satu fase yaitu, create MVP dan run an experiments. Kedua tahap tersebut termasuk ke dalam fase design, dimana pada saat proses pembuatan MVP, dilakukan juga diskusi bersama tim IT dan stakeholder yang terlibat untuk menghasilkan desain yang sesuai dengan hipotesis. Sehingga, metode Lean UX dalam penelitian ini dapat digambarkan seperti pada Gambar 1.

Gambar 1. Siklus Tahapan Metode Lean UX

Berdasarkan dari Gambar 1, siklus dari metode Lean UX dilakukan secara berulang-ulang hingga didapatkan kesepakatan dari masing-masing tahapan sesuai dengan kebutuhan. Hal ini yang membedakan metode Lean UX dengan metode Traditional UX yang berfokus pada analisis kebutuhan awal atau requirement. Metode Lean UX lebih berfokus terhadap hasil dari feedback percobaan dari setiap iterasi yang dilakukan.

2.1. Think

Tahapan yang dilakukan adalah declare assumptions yang merupakan proses awal dari metode Lean UX. Terdapat 4 fokus utama dengan berbagai aturan dalam tahapan ini, yaitu pernyataan masalah & asumsi, hipotesis, persona, dan fitur (Gothelf and Seiden 2013).

a. Pernyataan Masalah

Pernyataan masalah dan mendeklarasikan asumsi merupakan starting point dari proses perancangan. Pernyataan masalah dan asumsi dapat memberikan gambaran fokus perancangan yang akan dilakukan. Kegiatan ini dilakukan dengan berdiskusi bersama tim pengembang dan pihak pengelola Laboratorium Informatika UMM. Pernyataan masalah dibuat berdasarkan 3 kriteria berikut:

- Sasaran produk atau sistem saat ini
- Masalah yang ingin ditangani oleh b) stakeholder
- Permintaan eksplisit untuk perbaikan yang tidak mendikte solusi spesifik

Selain itu dalam menyusun pernyataan juga masalah dan asumsi harus beberapa mempertimbangkan pertanyaan berikut:

- Siapa penggunanya? a)
- Masalah apa yang diselesaikan?
- dan Kapan bagaimana aplikasi digunakan?
- d) Fitur apa yang akan dirancang?

Kemudian dibuat sebuah pernyataan masalah dan asumsi dengan menggunakan format berikut ini:

"[Produk] dirancang untuk mencapai [tujuan]. Bagaimana kami dapat meningkatkan [produk] sehingga dapat memenuhi kriteria pengguna dalam aspek [kriteria yang dapat diukur ini]"

b. Hipotesis

Permasalahan dan asumsi yang telah ditemukan kemudian diubah menjadi hipotesis. Dalam hipotesis terdapat pernyataan yang diyakini benar dan mencerminkan feedback dari pengguna. Secara umum, hipotesis menggunakan format berikut (Gothelf and Seiden 2013):

"Diyakini bahwa [pernyataan yang dianggap benar]. Dianggap [benar/salah] berdasarkan [feedback/ indikator perubahan yang dilakukan]"

Format hipotesis terdiri dari dua bagian. Kalimat pertama menjelaskan pernyataan yang dianggap benar. Kalimat kedua menyatakan feedback yang mengkonfirmasi bahwa pernyataan memang benar.

c. Proto-persona

Langkah berikutnya yaitu membuat sebuah persona dari hipotesis yang telah ditentukan. Persona merupakan representasi dari calon pengguna. Jenis persona yang digunakan pada penelitian ini adalah proto-persona, karena persona jenis ini dibuat berdasarkan asumsi dan merepresentasikan karakteristik calon pengguna nantinya.

Gambar 2 merupakan format proto persona yang digunakan (Gothelf and Seiden 2013). proto-persona dibuat Sketsa dikertas menggunakan kuadran. Dimana kuadran kiri atas berisi sketsa kasar persona dan nama serta perannya. Kotak kanan atas menyimpan informasi demografis dasar dan bagian bawah dari proto-persona adalah tempat meletakkan isi informasi. Kuadran kiri bawah berisi kebutuhan dan frustrasi pengguna dengan produk atau situasi saat ini, pain point spesifik yang coba dipecahkan oleh produk yang telah dibuat, dan/atau peluang yang ditangani. Kuadran kanan bawah berisi solusi potensial untuk kebutuhan tersebut.

Gambar 2. Template Proto-persona

d. Fitur

Setelah menentukan permasalahan dan fokus pengguna, selanjutnya ditentukan fitur-fitur yang akan ada pada aplikasi. Daftar fitur dijelaskan pada Tabel 1. Setelah semua fokus utama selesai dirancang, kemudian dilakukan pembuatan *style guide* dari aplikasi MiLab sebagai pedoman desain yang akan dibuat pada fase berikutnya.

Tabel 1. Tabel Hipotesis Fitur

We will	for	In order to achieve
[fitur yang dibuat]	[persona]	[hasil yang diharapkan]
	•••	

2.2. Design

Fase ini merupakan inti dari proses dalam *Lean UX*. Serangkaian permasalahan, hipotesis dan rancangan fitur yang dibuat kemudian divisualisasikan dalam bentuk desain. Hal pertama yang harus dilakukan adalah membuat *style guide* sebagai acuan visual desain. Kemudian dilanjutkan dengan membuat *minimum viable product* (MVP) berdasarkan *style guide* yang ada.

a. Style Guideline

Sebelum membuat MVP, terdapat proses pembuatan style guide system. Style guide digunakan sebagai pustaka dari berbagai pola dan aturan visual dalam membuat desain. Objek dari penelitian ini merupakan aplikasi mobile, sehingga diperlukan pedoman visual tampilan aplikasi *mobile*. Pembuatan *style guide* dilakukan dengan berpedoman pada aturan yang terdapat pada Google Material Design dan Human Interface Guidelines dari iOS yang dikustomisasi menyesuaikan kebutuhan. Terdapat beberapa aspek visual yang dibuat dalam style guide ini, diantaranya: warna, tipografi, spacing, grid, padding, tombol, input form, icon, header, dan elemen desain interface lainnya.

b. Create MVP

Dalam fase ini, terdapat tahapan pembuatan minimum viable product (MVP) untuk membantu menguji hipotesis yang telah ditetapkan. Dalam Lean UX, MVP biasanya berupa prototype seperti paper sketch, wireframe, dan mockup. Proses pembuatan prototype perancangan aplikasi MiLab dilakukan pada tahap ini. Pembuatan prototype dilakukan menggunakan software Figma dalam bentuk high-fidelity prototype sesuai dengan style guide yang ada. Setelah MVP yang dibuat telah mencapai kesepakatan bersama tim, maka selanjutnya dilakukan pengujian.

2.3. Test

Design selesai, maka MVP sebagai hasil dari fase tersebut akan dilakukan pengujian. Tahap ini dilakukan untuk menemukan berbagai asumsi baru berdasarkan feedback dari tester dan proses validasi terhadap hipotesis awal. Pengujian pada tahap ini menggunakan metode Cognitive Walkthrough. Metode ini memungkinkan proses inspeksi terkait dengan desain dan fungsionalitas antarmuka yang diuji (Zaini, Noor, and Wook 2019). Pengujian melibatkan 3 praktisi ahli untuk mengevaluasi antarmuka yang telah dibuat. Pengujian dilakukan dengan tidak lebih dari 5 orang agar mendapatkan hasil dan feedback yang efektif (Nielsen and Landauer 1993). Penguji akan menyelesaikan task yang telah dibuat sebelumnya oleh peneliti. Task yang dibuat memiliki urutan penyelesaian yang jelas dan merepresentasikan gambaran calon pengguna (Hendradewa 2017). Task tersebut mewakili fitur utama yang akan dikembangkan dalam aplikasi MiLab. Peneliti akan membuat daftar kriteria tampilan yang dievaluasi. Kemudian penguji akan mengevaluasi dari segi desain dan fungsionalitas tampilan yang ada. Dalam metode Cognitive Walkthrough, pengujian harus mempertimbangkan 4 pertanyaan yang dijelaskan pada Tabel 2 (Nielsen 1994):

Gambar 3. Peringkat Skor SUS

Tabel 2. Daftar Pertanyaan Cognitive Walkthrough

	yaan Cogmuve warkunougu
Pertanyaan	Deskripsi
Apakah ini yang Anda harapkan?	Tercapainya tujuan dalam penggunaan <i>prototype</i> MiLab untuk menyelesaikan <i>task</i>
Apakah Anda membuat kemajuan menuju tujuan Anda?	Tampilan yang dibuat dapat dipelajari dengan jelas oleh pengguna
Apa tindakan Anda selanjutnya?	Pengguna mampu mengoperasikan tampilan sesuai dengan tujuan yang ingin dicapai
Apa yang Anda harapkan untuk tampilan selanjutnya?	Pengguna mengoperasikan tampilan dan mendapatkan respon yang sesuai.

Dalam tahap ini juga dilakukan konsultasi terhadap hasil dari pengujian yang menggali asumsiasumsi baru untuk perbaikan pada iterasi berikutnya. Luaran dari tahap ini adalah daftar perbaikan yang perlu dilakukan terkait dengan tampilan dan fungsionalitasya.

2.4. Pengujian

Pengujian ini dilakukan untuk mengetahui seberapa efektif kegunaan hasil perancangan yang dibuat menurut pengguna. Metode yang digunakan dalam tahap ini adalah *System Usability Scale* (SUS). Metode ini dipilih karena banyak digunakan untuk mengukur tingkat *usability* dengan efektif dan efisien (Aprilia et al. 2015). SUS berupa kuesioner yang terdiri dari 10 item pertanyaan seperti ditunjukkan pada Tabel 3. Kuesioner SUS memiliki 5 skala penialaian antara lain: "Sangat Tidak Setuju", "Tidak Setuju", "Netral", "Setuju", "Sangat Setuju" (Brooke 1995).

Setiap item pertanyaan memiliki bobot kontribusi skor masing-masing. Nilai skor dalam setiap item berkisar 1 hingga 5. Dengan bobot masing-masing item memiliki aturan sebagai berikut (Brooke 1995):

- a. Setiap pertanyaan yang bernomor ganjil, skor yang didapat dari *user* akan dikurangi
- Setiap pertanyaan yang bernomor genap, skor yang didapat dari *user* akan dikurangi
 5.
- Skor SUS didapat dari hasil penjumlahan skor setiap pertanyaan yang kemudian dikali 2,5.

Tabel 3 Item Pertanyaan SUS

	Tabel 3. Item Pertanyaan SUS
Kode	Item Pertanyaan
R1	Saya akan sering menggunakan aplikasi ini
R2	Saya menilai aplikasi ini terlalu kompleks (memuat
	banyak hal yang tidak perlu)
R3	Saya menilai aplikasi ini mudah dijelajahi
R4	Saya membutuhkan bantuan teknis untuk menggunakan aplikasi ini
R5	Saya menilai fungsi/fitur yang disediakan pada aplikasi ini dirancang dan disiapkan dengan baik
R6	Saya menilai terlalu banyak inkonsistensi pada aplikasi ini
R7	Saya merasa kebanyakan orang akan mudah menggunakan aplikasi ini dengan cepat
R8	Saya menilai aplikasi ini sangat rumit untuk dijelajahi
R9	Saya merasa sangat percaya diri menggunakan aplikasi ini
R10	Saya perlu belajar banyak hal sebelum saya dapat menggunakan aplikasi ini dengan baik

Aturan di atas berlaku pada setiap satu responden. Skor akhir dari SUS didapat dengan menjumlahkan keseluruhan nilai dari masing-masing responden dan dibagi dengan jumlah responden, sehingga didapat berupa rata-rata skor. Proses pengujian ini dilakukan dengan membagikan prototype secara online menggunakan tools bernama Maze, kemudian diberikan kuesioner untuk dijawab oleh responden. Jumlah responden yang dijadikan sampel adalah sebanyak 30 orang yang merupakan calon pengguna aktif aplikasi MiLab. Menurut Roscoe dalam (Sugiono 2014), ukuran sampel yang layak dalam penelitian adalah berkisar 30 sampai dengan 500 responden.

Hasil akhir skor SUS yang telah didapatkan kemudian dilakukan analisis dan dikategorikan berdasarkan kriteria pada Gambar 3 (Bangor et al. 2009).

3. HASIL PENELITIAN DAN PEMBAHASAN

3.1. Iterasi Fase Pertama

Metode Lean UX dimulai dengan fase think, dimana mengadakan diskusi dan brainstorming bersama para stakeholder yang terdiri dari pengurus Laboratorium Informatika UMM dan tim developer aplikasi Milab yang akan mengimplementasi desain yang dibuat. Fase ini diawali dengan proses pembuatan pernyataan masalah dengan hasil bagaimana agar pengguna mengakses i-Lab dengan praktis namun tetap dapat mencakup fitur-fitur utama

dari website i-Lab. Dari hasil pernyataan masalah didapatkan hasil hipotesis, yaitu:

"Diyakini bahwa aplikasi MiLab dapat meningkatkan mobilitas manajemen kegiatan praktikum dengan tampilan antarmuka yang dapat diterima oleh user dan memiliki fitur-fitur sesuai dengan kebutuhan kegiatan praktikum. Dikatakan benar ketika pengguna merasa dimudahkan dan nyaman menggunakan aplikasi untuk kegiatan praktikum."

Proses berikutnya membuat proto persona. Pada penelitian ini terdapat dua jenis proto persona yang dibuat, yaitu mahasiswa dan asisten laboratorium yang ditunjukkan pada Gambar 4 dan Gambar 5. Hal ini dikarenakan terdapat dua role user yang nantinya akan menggunakan aplikasi dengan fitur-fitur tertentu sesuai dengan kebutuhan. Proses ini juga melibatkan tim untuk berdiskusi terkait data-data para pengguna aplikasi sebagai isi dari proto-persona. Persona mahasiswa nantinya akan menggunakan aplikasi untuk kegiatan praktikum sebagai praktikan. Sedangkan persona asisten lab nantinya akan menggunakan aplikasi sebagai asisten/ instruktur yang membantu manajemen kegiatan praktikum dan memberi penilaian terhadap praktikan. Dari hasil proto persona, teridentifikasi 9 (sembilan) fitur seperti ditunjukkan pada table 4.

Tabel 4. Hasil Identifikasi Fitur Anlikasi

No	Fitur	Untuk
1.	Fitur KRS Lab	Mahasiswa
2.	Fitur Download Modul	Mahasiswa
3.	Fitur Kelas Praktikum	Mahasiswa
4.	Fitur Schedule	Mahasiswa
5.	Fitur Left Stuff	Mahasiswa
6.	Fitur Modul Praktikum	Asisten
7.	Fitur Presence	Asisten
	Fitur Input Grade	Asisten
	Fitur Report Student	Asisten

Setelah rangkaian kebutuhan didapatkan, dilakukan proses visualisasi dalam bentuk desain antarmuka aplikasi. Proses visualisasi ini dilakukan dengan 2 iterasi. 1) Proses penyusunan style guideline, didapatkan beberapa komponen yang dapat dijadikan acuan dalam perancangan desain selanjutnya. Beberapa komponen tersebut antara lain: warna, tipografi, spacing, grid, padding, tombol, input form, icon, header, dan elemen desain interface lainnya. Gambar 6 adalah contoh dari dokumentasi style guideline yang telah dibuat. 2) Membuat Minimum Viable Product (MVP).

Proses pembuatan prototype menggunakan software Figma. Prototipe ini dibuat berdasarkan kebutuhan yang didapat dan pedoman desain pada style guideline yang telah dibuat sebelumnya. Pembuatan desain antarmuka mencakup seluruh fitur yang telah ditentukan, namun terdapat 2 fitur (mahasiswa dan asisten lab) yang digunakan untuk proses evaluasi. Sehingga kedua fitur yang dipilih merupakan fitur awal yang harus digunakan dalam aplikasi oleh masing-masing persona. Dengan menentukan fitur awal untuk proses evaluasi, maka hal ini dapat berdampak pada seberapa mudah user mempelajari aplikasi pada awal penggunaan. Kedua fitur yang dipilih telah dianggap mewakili secara umum tampilan pada aplikasi yang dirancang. Fiturfitur tersebut yaitu KRS Lab dan Modul Praktikum. Gambar 7 adalah tampilan homepage dan login page aplikasi dan Gambar 8 adalah tampilan awal kedua fitur yang telah dibuat prototipe dan akan dilakukan pengujian.

Musmuliady Jahi

- 18 20 Tahun
- Makassar Mahasiswa

Pain Point & Needs

- · Melihat nilai pada setiap kegiatan praktikum
- Mengetahui jadwal kegiatan praktikum dengan mudah
 Lebih mudah dalam mengakses sistem i-Lab dimanapun dan kapanpun

- kegiatan praktikum dengan mudah Melakukan KRS Lab dengan praktis
- Mendownload file modul praktiku

Behavioral Demographic Information

- Pengguna smartphone
 Mahasiswa Informatika UMM
 Mengikuti kegiatan praktikum setiap 2
- Menyukai sesuatu yang mudah

Potential Solutions

- yang ada pada website.
- Tampilan antarmuka aplikasi yang menarik dan mudah dipahar
- · Fitur-fitur manajemen kegiata

Gambar 4. Proto-persona Mahasiswa

Fajarisma Putri

- 18 20 Tahun
- Wanita
- Tulungagung

Behavioral Demographic Information

- Pengguna smartphone
 Asisten Lab Informatika UMM
 Membantu praktikan dalam kegia
- praktikum setiap 2 pekan Membuat task modul praktikum,
- melakukan input nilai dan absen
- Menvukai se

Pain Point & Needs

- Melakukan absensi kegiatan praktikum dengan mudah tanpa harus membuka website untuk menyingkat waktu
 Membuat task modul praktikum untuk
- dikerjakan oleh praktikan dengan mudah
- Melakukan input nilai praktikum

Potential Solutions

- Dibuatkan aplikasi mobile i-Lab yang mampu mengakomodir kebutuhan fitur yang ada pada website.
- Tampilan antarmuka aplikasi yang
- menarik dan mudah dipaham Fitur-fitur manajemen kegiatan

Gambar 5. Proto-persona Asisten Lab

Gambar 6. Style Guideline System

Gambar 7. Tampilan Homepage dan Login Page Milab

Gambar 8. Tampilan Awal Fitur KRS Lab dan Modul Praktikum Iterasi pertama

Proses akhir yaitu evaluasi internal dari prototype yang telah dibuat bersama expert dalam

bidang UI/UX mengunakan metode Cognitive Walktrough (CW). Evaluator terdiri dari 3 orang yang bekerja pada sebuah agensi desain UI/UX dan berpengalaman lebih dari 2 tahun. Terdapat 19 layar dari kedua fitur yang dievaluasi oleh para evaluator menggunakan Maze. Kemudian masing-masing evaluator memberikan list perbaikan yang perlu dilakukan pada setiap layar. Selanjutnya melakukan diskusi untuk menentukan saran perbaikan mana saja yang perlu diimplementasikan pada iterasi kedua. Daftar saran perbaikan dijelaskan pada tabel 5.

Tabel 5. Da	aftar Saran P	erbo	iikan	Iterasi Pertama
Layar	Fitur			Saran Perbaikan
Login	KRS Lab	&	-	Perlu ditambahkan
	Modul			logo universitas dan
	Praktikum			lab informatika
				UMM sebagai
				identitas aplikasi.
			-	Susunan konten
				menjadi rata tengah
				untuk menjaga
				konsistensi layout.
Popup reminder	KRS Lab		-	Perlu ditambahkan
KRS				ilustrasi yang
				menjelaskan isi
**	IZDC I 1	0		konten.
Homepage	KRS Lab	æ	-	Susunan menu pada selama menu KRS
(Mahasiswa)	Modul Praktikum			
	Piakukuiii			
				kurang rapi, perlu dilakukan perbaikan
				pada tampilan menu
				pada saat KRS
				dibuka agar tampilan
				tetap rapi.
			_	Section menu
				dipindah pada bagian
				atas agar user dapat
				fokus menuju menu-
				menu yang
				dibutuhkan daripada
				membaca informasi
				pada banner terlabih
				dahulu.
			-	Pada bagian banner,
				terdapat tombol yang
				kurang terlihat. Perlu

Layar	Fitur		Saran Perbaikan
•			mengubah style
			button agar lebih
***	TVD C * 1		terlihat jelas.
List kelas aktif	KRS Lab	-	Perlu mengubah
KRS			copywriting judul
			halaman agar lebih mudah dipahami.
Pilih mata	KRS Lab		-
kuliah			
Pilih kelas teori	KRS Lab	-	Perlu dibedakan
			tampilan daftar kelas
			teori dan kelas
			praktikum agar
			pengguna lebih memahami maksud
			dari halaman
			tersebut.
Pilih kelas	KRS Lab	-	Ditambahkan
praktikum			keterangan hari/
			pekan jadwal
			praktikum.
		-	Perlu memberikan
			keterangan kuota pada setiap kelas.
Pilih ruangan &	KRS Lab	_	Perlu menambahkan
nomor meja	- Luc		tampilan default
<u>-</u>			ketika pengguna
			belum memilih
			ruangan.
		-	Menambahkan
			keterangan yang
			menunjukkan meja terisi, kosong, dan
			dipilih.
		_	Perlu melakukan
			improvisasi tampilan
			agar terlihat seperti
			visualisasi denah
			ruangan lab yang
Detail/	KRS Lab		sesungguhnya.
summary KRS	KKS Lau		=
Popup	KRS Lab	& -	Perlu memperbesar
keterangan	Modul		ukuran ikon agar
Sukses	praktikum		hierarki lebih sesuai.
Profile		& -	Improvisasi tampilan
	Modul		list informasi profile
	Praktikum		agar tidak terlihat
			seperti input teks untuk android.
		_	Copywriting pada
			tombol perlu
			diperbaiki.
Homepage	Modul	-	Menambah
(Asisten)	Praktikum		keterangan berhasil
			pindah role user.
		-	Perbaikan lain sama
			dengan homepage mahasiswa.
List mata kuliah	Modul	_	Perlu memperbaiki
	Praktikum		copywriting pada
			judul halaman.
		-	Menambah
			keterangan jumlah

Layar	Fitur		Saran Perbaikan
			praktikan yang ada
			pada setiap kelas.
		-	Menambahkan
			keterangan hari
			sebagai jadwal dari
			praktikum pada kelas
			tersebut.
List modul	Modul	-	Perlu membedakan
praktikum	Praktikum		keterangan modul
			baru dan modul yang
			telah terisi data
			detail.
Buat modul	Modul	-	Mengganti pada
baru	Praktikum		warna ikon jenis taks
			yang tidak aktif
			dengan warna
			disable.
Isi detail modul	Modul	_	Menambahkan
	Praktikum		keterangan batas
			persentase (100%)
			agar user mengtahui
			batas pembagian
			bobot task
		_	User harus dapat
			mengedit persentase
			yang telah dibuat
			sebelum disimpan
Popup buat	Modul	_	Menambah batasan
persentase	Praktikum		range pada elemen
penilaian	Takukum		slider dengan
pennaran			kelipatan angka
		_	Mengganti tombol
			teks batal menjadi
			ikon
Popup kalender	Modul	_	Menambah nama
горир канениег	Ptaktikum	_	hari
	1 taktikuiii		Menambahkan
		-	keterangan hari ini
			Menambahkan
		-	
			keterangan hari yang telah lalu
Detail modul	Modul		ician iaiu
Detail modul	Modul Praktikum		-
	rrakukum		

3.2. Iterasi Fase Kedua

Pada fase ini tidak terdapat perubahan asumsi, hipotesis dan juga fitur. Sehingga pada iterasi kedua, tetap menggunakan daftar asumsi, hipotesis, protopersona dan daftar fitur yang telah dibuat pada iterasi pertama.

Untuk perbaikan desain tampilan dilakukan berdasarkan saran dari evaluator yang telah didapat pada fase testing iterasi pertama. Proses perbaikan dilakukan pada seluruh tampilan fitur yang ada pada aplikasi dengan menggunakan software Figma. Gambar 9 adalah hasil perbaikan tampilan yang dilakukan pada aplikasi sesuai dengan saran perbaikan dari evaluator. Setelah desain diperbaiki, kemudian dibuat juga prototipe untuk proses evaluasi.

Gambar 9. Tampilan fitur KRS Lab dan Modul Praktikum Iterasi kedua

Berdasarkan 19 tampilan layar yang dievaluasi oleh expert pada iterasi pertama, dapat disimpulkan bahwa perlu dilakukan perbaikan terkait dengan clarity (kejelasan informasi pada setiap layar), copywriting (penggunaan frasa yang sesuai konteks), dan beberapa susunan layout. Beberapa saran perbaikan tersebut juga dijadikan evaluasi untuk seluruh tampilan pada setiap fitur yang dibuat. Berikut adalah daftar saran perbaikan yang didapat

dari para evaluator pada Tabel 6. Setelah proses evaluasi pada iterasi kedua, didapatkan beberapa saran perbaikan sebelum prototype dapat dikirimkan kepada user. Selanjutnya akan kembali dilakukan perbaikan sesuai dengan saran yang telah didapat dari evaluator. Setelah perbaikan dilakukan, selanjutnya prototipe akan diujikan kepada user Milab pada tahap pengujian. Gambar 10 merupakan contoh dari hasil perbaikan setelah evaluasi iterasi kedua.

Gambar 10. Hasil Perbaikan Evaluasi Iterasi Kedua

Tabel 6. Daftar Saran Perbaikan Iterasi Pertama

Layar	Fitur	Saran Perbaikan
Login	KRS Lab	- Improvisasi tampilan
_	& Modul	logo UMM dan Lab
	Praktikum	Informatika agar lebih terbaca dengan mudah oleh user.
Popup reminder KRS	KRS Lab	-

Layar	Fitur	Saran Perbaikan
Homepage	KRS Lab	-
(Mahasiswa)	& Modul	
	Praktikum	
List kelas aktif KRS	KRS Lab	-
Pilih mata kuliah	KRS Lab	-
Pilih kelas	KRS Lab	 Memperbaiki konsistensi warna teks pada inputan yang belum terisi data.

Layar	Fitur	Sa	ran Perbaikan
		-	Memperbaiki elemen
			alert agar lebih mudah
			dipahami oleh user.
List kelas	KRS Lab		-
teori			
List kelas	KRS Lab		-
praktikum	IZDG I 1		m: 1 1
Pilih	KRS Lab	-	Tidak perlu
ruangan &			menampilkan tampilan detail/ denah ruangan
nomor meja			detail/ denah ruangan sebelum user memilih
			jenis ruangan.
Popup	KRS Lab	_	Mengubah microcopy
Konfirmasi	KKS Lab		agar lebih sesuai dengan
Simpan Data			konteks dan fungsi
Simpun Butu			popup.
Popup	KRS Lab		-
keterangan	& Modul		
Sukses	praktikum		
Profile	KRS Lab		-
	& Modul		
	Praktikum		
Homepage	Modul		-
(Asisten)	Praktikum		
List mata	Modul		-
kuliah List modul	Praktikum Modul		
List modul praktikum	Praktikum		-
Buat modul	Modul		Konsistensi ketebalan
baru	Praktikum		font pada elemen input
Isi detail	Modul	_	Memperbaiki keterangan
modul	Praktikum		persentase penilaian agar
			lebih jelas.
Popup buat	Modul	-	Memperbaiki indicator
persentase	Praktikum		range persentase agar
penilaian			lebih jelas (dapat
			menggunakan kelipatan
_			5)
Popup	Modul		-
kalender	Ptaktikum		
Detail	Modul		-
modul	Praktikum		

3.3. Pengujian System Usability Scale

Hasil prototipe dari dua iterasi sebelumnya akan dilanjutkan proses pengujian untuk mengetahui tingkat kesesuaian antara desain dengan kebutuhan pengguna kepada *user* itu sendiri menggunakan metode System Usability Scale (SUS). Hasil pengujian ini menentukan apakah desain yang telah dibuat dapat diterima oleh calon pengguna atau tidak. Pengujian ini dilakukan dengan cara membagikan prototipe kepada 30 responden yang merupakan mahasiswa dan asisten. Kemudian diberikan kuesioner online yang terdiri dari 10 pertanyaan SUS yang harus dijawab oleh responden.

Hasil skor yang didapatkan pada Tabel 7, selanjutnya dilakukan perhitungan dengan menggunakan rumus yang telah dijelaskan pada bab sebelumnya. Kemudian dihitung total rata-rata dari setiap skor yang didapat. Adapun hasil perhitungan skor SUS seperti pada tabel 7.

Berdasarkan grafik kategori penilaian yang telah dijelaskan pada bab sebelumnya, diperoleh bahwa skor 81,75 termasuk dalam *grade scale* B (80-85). Sehingga dapat dikatakan bahwa perancangan desain antarmuka aplikasi Milab berhasil mendapatkan

tingkat acceptability range "Good" dan adjective rating "Excelent".

Tabel 7. Skor SUS				
No	Responden	Total	Skor SUS	
		Skor		
1	R1	20	50	
2	R2	39	97,5	
3	R3	34	85	
4	R4	37	92,5	
5	R5	35	87,5	
6	R6	20	50	
7	R7	37	92,5	
8	R8	33	82,5	
9	R9	36	90	
10	R10	32	80	
11	R11	37	92,5	
12	R12	29	72,5	
13	R13	31	77,5	
14	R14	35	87,5	
15	R15	31	77,5	
16	R16	32	80	
17	R17	39	97,5	
18	R18	34	85	
19	R19	36	90	
20	R20	38	95	
21	R21	35	87,5	
22	R22	36	90	
23	R23	29	72,5	
24	R24	30	75	
25	R25	34	85	
26	R26	27	67,5	
27	R27	28	70	
28	R28	27	67,5	
29	R29	33	82,5	
30	R30	37	92,5	
Sko	r Rata-rata (Hasil	Akhir)	81,75	

4. KESIMPULAN

Berdasarkan tahapan-tahapan pada perancangan desain *user interface* menggunakan metode *Lean UX* pada aplikasi Milab, didapatkan beberapa kesimpulan sebagai berikut:

- Metode Lean UX digunakan dalam penelitian ini dikarenakan memiliki teknik untuk merancang produk secara lebih cepat dengan penggunaan sumber daya minimum. Dengan melakukan proses diskusi untuk mementukan kebutuhan dan membuat MVP, dapat menghasilkan prototipe dengan waktu yang relatif singkat dan siap untuk dilakukan evaluasi kepada evaluator. Evaluasi dilakukan terhadap hasil dari iterasi dalam Lean UX untuk mengetahui tingkat kegunaan sesuai dengan perpektif pengguna.
- b. Setelah perancangan menggunakan *Lean UX* selesai, kemudian dilakukan pengujian menggunakan menggunakan *System Usability Scale* (SUS) kepada 30 calon pengguna asli aplikasi Milab. Proses pegujian berhasil mendapatkan *grade scale* "B" (rentang 80-85) dengan skor 81,75 yang termasuk dalam tingkat *acceptability range* "Good" dan *adjective rating* "Excelent".
- c. Berdasarkan hasil pengujian menggunakan SUS dengan skor 81,75, maka dapat

dikatakan hasil perancangan telah memenuhi solusi dari permasahalan pada hipotesis yang telah ditentukan sebelumnya. Dengan nilai pengujian tersebut, berarti tampilan antarmuka pengguna aplikasi Milab telah sesuai dengan kebutuhan dan keinginan *user*.

DAFTAR PUSTAKA

- ABASCAL, J., S. BARBOSA, M. FETTER, T. GROSS, P. PALANQUE, AND M. "Human-Computer WINCKLER. 2015. Interaction - INTERACT 2015: 15th IFIP TC International Conference Bamberg, Germany, September 14-18, 2015 Proceedings, Part IV." Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9299:673-74. doi: 10.1007/978-3-319-22723-8.
- APRILIA, IKA H. N., P. INSAP SANTOSO, AND RIDI FERDIANA. 2015. "Pengujian Usability Website Menggunakan System Usability Scale Website Usability Testing Using System Scale." Jurnal IPTEK-KOM Usability 17(1):31-38.
- BANGOR, AARON, TECHNICAL STAFF, PHILIP KORTUM, **JAMES** MILLER, TECHNICAL STAFF. 2009. "Determining What Individual SUS Scores Mean: Adding an Adjective Rating Scale." Journal of Usability Studies 4(3):114-23.
- BROOKE, JOHN. 1995. "SUS: A 'Quick and Dirty' Usability Scale." Usability Evaluation In Industry (November):207-12. doi: 10.1201/9781498710411-35.
- GHIFFARY, MUHAMMAD NAUVAL EL, TONY DWI SUSANTO, AND **ANISAH** HERDIYANTI PRABOWO. 2018. "Analisis Komponen Desain Layout, Warna, Dan Kontrol Pada Antarmuka Pengguna Aplikasi Mobile Berdasarkan Kemudahan Penggunaan (Studi Kasus: Aplikasi Olride)." Jurnal Teknik ITS 7(1). doi: 10.12962/j23373539.v7i1.28723.
- GOTHELF, JEFF, AND JOSH SEIDEN. 2013. Lean UX - Applying Lean Principles to Improve User Experience.
- HASIM, WAHID, SUNU WIBIRAMA, AND HANUNG ADI NUGROHO. 2019. "Redesign of E-Participation Using User-Centered Design Approach for Improving User Experience." 2019 International Conference on Information and Communications Technology, ICOIACT 2019 857–61. doi: 10.1109/ICOIACT46704.2019.8938545.
- ANDRIE PASCA. HENDRADEWA. 2017. Evaluasi." "Perbandingan Metode Perbandingan Metode Evaluasi Usability

- Penggunaan (Studi Kasus: Perangkat *Smartphone*) 23(1):9–18.
- MARIEN, SOPHIE, DELPHINE LEGRAND, RAVI RAMDOYAL, JIMMY NSENGA, GUSTAVO OSPINA, VALÉRY RAMON, AND ANNE SPINEWINE. 2019. "A User-Centered Design and Usability Testing of a Medication Reconciliation Web-Based Application Integrated in an EHealth Network." International Journal of Medical Informatics 126(February 2018):138-46. doi: 10.1016/j.ijmedinf.2019.03.013.
- NEALBERT, JAN, V. CALIMAG, ANNE G. MIGUEL, ROMEL S. CONDE, AND LUISA B. AQUINO. 2014. "14. Eng-Ubiquitous Learning Environment Using Android-Luisa B. Aquino." International Journal of Research in Engineering & Technology 2(2):2321-8843.
- NIELSEN, J., AND J. LANDAUER. 1993. "A Mathematical Model of Finding the Usability Problem. Proceedings of the CHI 93 Proceedings of the Interact Conference on Human Factors in Computing Systems." INTERCHI'93 Proceedings of ACMConference 206-13.
- NIELSEN, JAKOB, 1994, "Usability Inspection Methods." in Conference on Human Factors in Computing Systems - Proceedings.
- SUGIONO, P. D. 2014. "Metode Penelitian Pendidikan Pendekatan Kuantitatif.Pdf." Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif Dan R&D.
- TARUTE, ASTA, SHAHROKH NIKOU, AND RIMANTAS GATAUTIS. 2017. "Mobile Application Driven Consumer Engagement." Telematics and Informatics 34(4):145-56. doi: 10.1016/j.tele.2017.01.006.
- TRISMININGSIH. RINA. AND **DEDRA** NURLIAPUTRI. 2019. "User Experience Design of Task-Management Application for Plantation Supervisor Using Lean UX." Proceedings - 2019 5th International Conference on Science and Technology, ICST 2019 16-19. doi: 10.1109/ICST47872.2019.9166579.
- ZAINI, NUR ATIQAH, SITI FADZILAH MAT NOOR, AND TENGKU SITI MERIAM TENGKU WOOK. 2019. "Evaluation of APi Interface Design by Applying Cognitive Walkthrough." International Journal of Advanced Computer Science and Applications 10(2):306–15.

10.14569/ijacsa.2019.0100241

