DoSA-Open_3D 사용 메뉴얼

Example of Linear Vibrator

2020-12-02 GiTae Kweon (zgitae@gmail.com)

DoSA 구성

PC 요구사항

➤ CPU : 4 Core 이상

➤ RAM : 16GB 이상

프로그램 구성

Toolbar

1. 작업관리

✓ New : 신규작업 생성

✓ Open : 이전작업 열기

✓ Save : 작업 저장

✓ SaveAs : 다른 이름으로 저장

✓ Shape : 3D 형상 확인

2. 설계

✓ Coil : 권선 추가 및 사양 설계

✓ Magnet : 영구자석 추가 및 사양 설정 ✓ Steel : 연자성체 추가 및 사양 설정 DESIGN DESIGN

3. 가상실험

✓ Force : 구동부 자기력 예측

해석 모델

해석모델 설명

1. 형상 모델

2. 제품 사양

가. 코일권선

• Coil Turns: 126 turns

• Coil Resistance: 15.75 Ohm

나. 영구자석

• Material : NdFeB 40

• 착자방향 : 90 (UP)

다. 전원

• Voltage: 2.5V

(작업 예제파일: DoSA-Open_3D 설치 디렉토리 > Samples > LV)

Design 생성

1. Toolbar > New 버튼 클릭

2. Design Name: 작업 명칭 입력 (LV)

3. Shape File (STEP): LV.step 선택하기 (작업 예제파일: DoSA 설치 디렉토리 > Samples > LV)

<u>[형상모델 주의 사항]</u>

DoSA-Open_3D 는 아직 아래의 기능제한을 가지고 있음

- 가. 코일 형상 제한
 - 코일 중심 축이 Y 방향이어야 한다.
 - 원통코일 형태로 전류가 인가된다.(사각 코일인 경우는 약간의 차이가 발생할 수 있음)
- 나. 구동부 형상 제한
 - 구동부는 아직 하나의 부품만을 지원하고 있다.

Design 생성

- 4. Gmsh 에서 Solenoid 3차원 형상을 확인한다.
- 5. Gmsh 를 종료한다.
- 6. Part Name 을 확인 한다.
- 7. 형상과 Part Name 에 문제가 없다면 OK 를 클릭한다.

Design 생성

8. Design 생성을 확인한다.

Parts Design

Coil 추가

1. Toolbar > Coil 버튼 클릭

- 2. List Box 에서 "Coil" 선택
- 3. OK 버튼 클릭

Coil 설계

1. Coil 기구사양 입력

✓ Part Material : Copper 선택

✓ Current Direction: IN 선택 (안쪽 방향)

✓ Moving Parts : MOVING 선택 (구동 부품)

✓ Coil Wire Grade: Bonded_IEC_Grade_1B 선택

✓ Inner Diameter : 3 mm

✓ Outer Diameter: 3.73 mm

✓ Coil Height: 1.18 mm

✓ Copper Diameter: 0.045 mm

✓ Horizontal Coefficient : 0.95 (Bonded Type)

✓ Vertical Coefficient : 1.13 (Bonded Type)

✓ Resistance Coefficient : 1.1 (Bonded Type)

2. Coil 사양 계산

✓ Design Coil 버튼 클릭

2

Coil Design

1			
Δ	Common Fields		
	Node Name	Coil	
Δ	Specification Fields		
	Part Material	Copper	
	Curent Direction	IN	
	Moving Parts	MOVING	
Δ	Calculated Fields		
	Coil Turns	126	
	Coil Resistance [Ω]	15, 74769	
	Coil Layers	6	
	Turns of One Layer	21	
Δ	Design Fields (optional)		
	Coil Wire Grade	Bonded_IEC_Grade_1B	
	Inner Diameter [mm]	3	
	Outer Diameter [mm]	3,73	
	Coil Height [mm]	1,18	
	Copper Diameter [mm]	0,045	
	Wire Diameter [mm]	0,04953	
	Coil Temperature [°C]	20	
	Horizontal Coefficient	0,95	
	Vertical Coefficient	1,13	
	Resistance Coefficient	1,1	

Magnet 추가

1. Toolbar > Magnet 버튼 클릭

- 2. List Box 에서 "Magnet" 선택
- 3. OK 버튼 클릭

Magnet 설정

1. Magnet 속성 설정

✓ Part Material : NdFeB_40 선택

✓ Hc, Br 은 자동 설정됨

✔ Moving Parts : FIXED 선택 (고정 부품)

✓ Magnet Plane : XY_Plane_Z

✓ Magnet Angle : 90 or Up 버튼 클릭

1				
Δ	Common Fields			
	Node Name	Magnet		
Δ	■ Specification Fields			
	Part Material	NdFeB_40		
	Hc	969969		
	Br	1,26497		
	Moving Parts	FIXED		
Δ	3			
	Magnet Plane	XY_Plane_Z		
	Magnet Angle	90		

[참고] Magnet 착자설정

✓ Magnet Plane : XY_Plane_Z

✓ Magnet Angle: 90

✓ Magnet Plane : ZX_Plane_Y

✓ Magnet Angle : 45° (135°, -45°, -135°)

Plate 추가

1. Toolbar > Steel 버튼 클릭

- 2. List Box 에서 "Plate" 선택
- 3. OK 버튼 클릭

Plate 설정

1. Plate 속성 설정

✔ Part Material : SUS_430 선택

✔ Moving Parts : FIXED (고정 부품)

[BH 곡선]

1

■ Common Fields	
Node Name	Plate
Specification Fields	
Part Material	SUS_430
Moving Parts	FIXED

Case 추가

1. Toolbar > Steel 버튼 클릭

- 2. List Box 에서 "Case" 선택
- 3. OK 버튼 클릭

Case 설정

1. Case 속성 설정

✔ Part Material : SUS_430 선택

✔ Moving Parts : FIXED (고정 부품)

[BH 곡선]

1

4	Common Fields	
	Node Name	Case
4	Specification Fields	
	Part Material	SUS_430
	Moving Parts	FIXED
	-	

Virtual Experiments

자기력 가상실험

1. Toolbar > Force 버튼 클릭

- 2. Experiment Name 입력: "Force"
- 3. OK 버튼 클릭
- 4. 자기력 가상실험 설정
 - ✓ Voltage: 2.5 V
- 5. 해석조건 설정
 - ✓ Mesh Size Percent : 5 % ✓ Actuator Type : VCM 선택
- 6. Force Test 버튼 클릭

자기력 가상실험 실행

7. 형상을 확인 하고 Run 버튼 클릭

자기력 가상실험 실행

- 8. 해석 결과를 확인 함 (해석 시간은 컴퓨터 사양에 따라 다름)
- 9. 해석 진행 상황을 확인하려면 Gmsh 상태 바를 클릭하세요.
- 10. **Gmsh** 를 종료함
- 11. 다시 Run 버튼을 클릭함 (VCM 방식 액추에이터는 자기력 정확도를 높이기 위해 두 번 해석을 진행함)

자기력 가상실험 결과

- 12. 해석 결과를 확인 하고 Gmsh 를 종료함
- 13. 자기력 확인

Thank You

Email: zgitae@gmail.com

Homepage: http://openactuator.org