HOMEWORK SOLUTION MER 311: ADVANCED MECHANICS FEOY PG 1 OF 7 RBB

PROBLEM STATEMENT | THE TWO MEMBER TRUSS SHOWN IS BEING MODELED IN CLASS USING THE FINITE REMENT TECHNIQUE. USE THE TWO DIMENSTOWN TRUSS DEVELOPED IN THE LAB TO SOLVE FOR THE DEPLECTION AT B AND THE REACTIONS AT A AND B. THE TRUSS MEMBERS DAY ARE MUDE OF CIRCULAR CROSS-SECTION (d=0.25in) Alloy See!

GIVEN:

1. Two member Truss.

2. AND BOWN JCINTS AZEON THE TRUSS ARE RESTRICTED FROM HORIZONTOL OR HERTICAL TRANSCATIONS.

3. BOTH MEMBERS OF THE ARE ATTACHED WITH A DEN JOINT AT B.

4. A 50 16 WAD IS APPLIED AT C

ASSUMPTIONS:

1. Small DEPLECTIONS

2. MEMBERS ARE LINEAR ELASTIC AN CAN ONLY CHART AXTHI LOUDS.

FEOY Pa2 OF7 RBB

SOLUTION:

STARTING WITH THE COMPCTATION OF THE STUPFNESS OF THE TWO EXEMENTS IN THIS TRUSS.

$$k_1 = \frac{A_1 \cdot E_1}{L_1} = \frac{91 \cdot (G.25 \cdot h^2)}{4} \cdot \frac{30 \cdot (10^6) \cdot \frac{1}{10^2}}{\sqrt{(60 \cdot h)^2 + (80 \cdot h)^2}} = \frac{147.3 \cdot (10^3) \cdot \frac{15}{10}}{10}$$

$$k_2 = \frac{A_2 \cdot E_2}{L_2} = \frac{91 \cdot (0.25 \text{ in})^2}{4} \cdot \frac{30(10^6)^{10}/\text{in}^2}{\sqrt{(4.0 \text{ in})^2 + (6.0 \text{ in})^2}} = \frac{204.2(10^3)^{10}/\text{in}}{\sqrt{(4.0 \text{ in})^2 + (6.0 \text{ in})^2}}$$

THE ANGLE EACH ELEMENT MAKES WITH THE POSITIVE HORIZONTAL AXES (X). IT IS IMPORTANT THAT IN THE GENERAL FORM OF OFTHE CALCULATION OF THIS AWGLE

$$\phi_{I} = \tan^{-1}\left(\frac{y_{j} - y_{i}}{x_{j} - x_{i}}\right)$$

WHERE "I" IS THE ELEMENT NUMBER, AND I & J ARE NODE NUMBERS, THAT THE CONVENTION THAT

- . THE NODE "i" IS THE LOWER NODE NUMBER, AND
- . THE NODE "I" IS THE LINEGER NODE NUMBER

GIVEN THIS STANDARD CONVENTION © ILLUSTRATES \overrightarrow{O}_{T} AND THE ORIENTATION OF THE LOCAL COORDINATE SYSTEMS FOR THE TWO MEMBERS OF THIS TRUSS.

(\overrightarrow{S}_{1})

HOMEWORK SOUTION MER311: ADVANCED MECHANICS FE04 PG3cf7

FOR THE TRUSS MEMBERS SHOWN IN (C)

$$\phi_2 = \tan^{-1}\left(\frac{y_3 - y_2}{x_3 - y_3}\right) = \tan^{-2}\left(\frac{0 \text{in} - 6 \text{in}}{12 \text{in} - 8 \text{in}}\right) = \tan^{-2}\left(\frac{6.0 \text{ m}}{9.0 \text{in}}\right) = 303.69 \text{ G}$$

THE TRANSFORMATION IN ATRICES FOR EACH ELEMENT CAN NOW BE CALLULATED.

LETTING L=cos & AND M = SIN &, THE TRANSFORMATION MATTREES FOR THE TWO ELEMENTS CAN BE WRETTEN

$$[T_1] = \begin{bmatrix} l_1 & m_1 & 0 & 0 \\ 0 & 0 & l_1 & m_1 \end{bmatrix} = \begin{bmatrix} 0.800 & 0.600 & 6 & 0 \\ 0 & 0 & 0.800 & 0.600 \end{bmatrix}$$
 (7)

$$[7_2] = \begin{bmatrix} l_2 & m_2 & 0 & 0 \\ 0 & 0 & l_1 & m_2 \end{bmatrix} = \begin{bmatrix} 0.5547 & 0.8326 & 0 & 0 \\ 0 & 0 & 0.5547 & 0.8320 \end{bmatrix}$$

{U} cook AND {} com ARE ONE DIMENSIONAL ELEMENTS AND {U} OLDAL AND {FIGURER ARE TWO DIMENSIONAL. THE SECOND DIMENSION IS NOW ADDED TO THE LOCAL SYSTEM EVEN THOUGH IT WILL ALWAYS REO.

$$\left\{ u_{i}^{2} \right\}_{u_{i}^{2}} = \left\{ \begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right\} = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \\ u_{i}^{2} \end{array} \right] = \left[\begin{array}{c} u_{i}^{2} \\ u_{i}^{2} \end{array} \right]$$

$$\{S\}_{ccm} = \{S_{xi}\} \Rightarrow \{S_{xi}\}_{S_{yi}} = \begin{bmatrix} 1 & m & 0 & 0 \\ -m & 1 & 0 & 0 \\ S_{xi} & S_{yi} \end{bmatrix} = \begin{bmatrix} 1 & m & 0 & 0 \\ -m & 1 & 0 & 0 \\ 0 & 0 & 1 & m \\ 0 & 0 & -m & 1 \end{bmatrix} \begin{cases} f_{xi} \\ f_{yi} \\ u_{xi} \\ u_{yi} \end{bmatrix}$$

THE TRANS FORMATION MATRICES IN 7 F 8 CAN NOW BE RE EXPANSION

$$\begin{bmatrix} \overline{T_1} \end{bmatrix} = \begin{bmatrix} 0.806 & 0.600 & 0 & 0 \\ -0.600 & 0.800 & 0 & 0 \\ 0 & 0 & 0.800 & 0.600 \\ 0 & 0 & -0.600 & 0.800 \end{bmatrix}$$

$$(1)$$

$$[T_2] = \begin{bmatrix} 0.5547 & -0.2320 & 0 & 0 \\ 0.2320 & 0.5547 & 0 & 0 \\ 0 & 0 & 0.5547 & -0.2320 \\ 0 & 0 & 0.2370 & 0.5547 \end{bmatrix}$$
(12)

HOMEWORLD SCUTION MER 311: ADVANCED MECHANICS FEOY POYCF 7 RBB

THE LOCAL STEPPNESS MATRICES [L] LOCAL FOR EACH ELEMENT IN THE TRUSS NEEDS TO BE CALCULATED

GIVEN THE STIFFNESS CALCULATIONS IN (1) & AND THE DEPINATION OF THE LOCAL MAKRIX IN (13)

THE LOCAL STIFFMESS MATRICES CAN NOW BE CALCULATED

$$[k_3]_{LCCAL} = 147.3(10^3) \lim_{n \to \infty} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

[R2] LECON = 204.2(403)
$$\lim_{n \to \infty} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

(14) AND (15) NEED TO BE EXPANDED SO THEY ARE THE SAME DIMENSION AS THE CLOBAL #A PARAMETERS, BUT AND INSURE THAT THE LOCAL LOADS ARE AXIAL.

$$[k_1]_{\omega_{CAL}} = 147.3(10^3) \frac{15}{10} \cdot \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 6 & 6 \\ -1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$[k_2]_{locon} = 204.2(10^3) \frac{15}{10} \cdot \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 6 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

THE LOCK STIPF HESS MATRICES IN (6) AND (7) NEED TO BE TRANSFORMED INTO THE GLOBAL SYSTEM. STORTING WITH (3)

SCBSTITUTING IN 6 46

HOMEWORK SOLLTICK MER311: ADVANCED MECHANICS FECY PG Scr 7 RBB

(20)

THE GLOBAL STIFFNESS MATRIX FOR EACH ELEMENT INN NOW BECALLAID

[7] - [7] BECAULE [7] IS AN CRIHOGNAL MATRIX. (6) AND (17) CAN NOW BE TRANSFORMED INTO THE CLOSAL SYSTEM USING (11) IT (12)

$$[K_{1}] = \begin{bmatrix} 0.800 & -0.600 & 0 & 6 \\ 0.600 & 0.800 & 0 & 6 \\ 0 & 0 & 0.800 & -0.600 \\ 0 & 0 & 0.600 & 0.800 \end{bmatrix} \cdot 147.3(10) \frac{15}{10} \begin{bmatrix} 1 & 0 & -1 & 6 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 6.800 & 0.600 & 0 & 0 \\ -6.600 & 0.800 & 0.600 \\ 0 & 0 & -0.600 & 0.800 \end{bmatrix}$$

 $[K_2] = \begin{bmatrix} 0.5547 & 0.8326 & 0 & 0 \\ -0.8326 & 0.5547 & 6 & 6 \\ 0 & 0 & 0.5547 & 0.8320 \\ 0 & 6 & -0.8326 & 0.5547 \end{bmatrix} \cdot 204.2(10^3) \frac{1b}{10} \begin{bmatrix} 1 & 6 & -1 & 6 \\ 0 & 6 & 0 & 0 \\ -1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$$= 204.2(10^{3}) \lim_{\text{in}} \begin{bmatrix} 0.3077 & -0.4615 & -0.3077 & 0.4615 \\ -0.4615 & 0.6923 & 0.4615 & -0.6923 \\ -0.3077 & 0.4615 & 0.3077 & -0.4615 \\ 0.4615 & -0.6923 & -0.4615 & 0.6923 \end{bmatrix}$$

Global Stiffness w/o Constant

							Does not inc	lude stiffne	ss constant										,	
		0.8	-0.6	0	0	[k*]=	1	0	-1	0		0.8	0.6	0	0		0.6400	0.4800	-0.6400	-0.4800
1	r=1T	0.6	0.8	0	0		0	0	0	0	[T]=	-0.6	0.8	0	0	ful	0.4800	0.3600	-0.4800	-0.3600
	[T] ¹ =	0	0	0.8	-0.6		-1	0	1	0		0	0	0.8	0.6	[K]=	-0.6400	-0.4800	0.6400	0.4800
		0	0	0.6	0.8		0	0	0	0		0 0 -0.6	0.8		-0.4800	-0.3600	0.4800	0.3600		
	[T] ^T =	0.554747	0.83207	0	0	[k*]=	1	0	-1	0		0.5547	-0.832	0	0		0.3077	-0.4615	-0.3077	0.4615
,		-0.83207	0.554747	0	0		0	0	0	0	[T]=	0.832	0.5547	0	0	[K]=	-0.4615	0.6923	0.4615	-0.6923
2		0	0	0.554747	0.83207		-1	0	1	0	[1]-	0	0	0.5547	-0.832	[K]-	-0.3077	0.4615	0.3077	-0.4615
		0	0	-0.83207	0.554747		0	0	0	0		0	0	0.832	0.5547		0.4615	-0.6923	-0.4615	0.6923

HOMEWORK SOLUTION
MERBLE ADVANCED MECHANICS

PECY PG6 CF7 RBB

THENE FEAT

$$\begin{cases} f_{1x} \\ f_{2y} \\ f_{2y} \end{cases} = 147.3(10^3) \frac{1b}{1n} \begin{cases} 0.6406 & 0.4806 & -0.6400 & -6.4806 \\ 0.4806 & 0.3606 & -0.4806 & -0.3606 \\ -0.6400 & -0.4806 & 0.6400 & 0.4806 \\ -0.4800 & -0.3600 & 0.4806 & 0.3600 \end{cases} \begin{cases} U_{1x} \\ U_{1y} \\ U_{2y} \\ U_{2y} \end{cases}$$

$$\begin{cases}
\int_{S_{4}} \int$$

(24)

WHENE

$$\begin{cases}
F_{1x} \\
F_{1y} \\
F_{2x} \\
F_{2y} \\
F_{3y} \\
F_{3y}
\end{cases} =
\begin{cases}
(S_{1x})_1 \\
(S_{2x})_1 + (S_{2x})_2 \\
(S_{2y})_1 + (S_{2y})_2 \\
(S_{3x})_2 \\
(S_{3x})_2
\end{cases} =
\begin{cases}
A_x \\
A_y \\
Solb \\
Olb \\
C_y \\
C_y
\end{cases}$$

25

26

constant		Global Stiffness Ma	trix w/ Constant	
	94272	70704	-94272	-70704
1.47E+05	70704	53028	-70704	-53028
1.471-03	-94272	-70704	94272	70704
	-70704	-53028	70704	53028
	62836	-94248	-62836	94248
2.04E+05	-94248	141364	94248	-141364
2.041103	-62836	94248	62836	-94248
	94248	-141364	-94248	141364

94272	70704	-94272	-70704	0	0
70704	53028	-70704	-53028	0	0
-94272	-70704	94272	70704	0	0
-70704	-53028	70704	53028	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	62836	-94248	-62836	94248
0	0	-94248	141364	94248	-141364
0	0	-62836	94248	62836	-94248
0	0	94248	-141364	-94248	141364
	SY	STEM STIFFNI	ESS MATRIX		
94272	70704	-94272	-70704	0	0
70704	53028	-70704	-53028	0	0
-94272	-70704	157108	-23544	-62836	94248
-70704	-53028	-23544	194392	94248	-141364
0	0	-62836	94248	62836	-94248
0	0	94248	-141364	-94248	141364

Homework Scittien
MER311: ADVANCED MECHANICS

PECY PG7cF7 RBB

THE ROWS ASSOCIATED WITH KNOWN DISPLACEMENTS ARE PARTITIONED OUT OF THE GLOBAL EQUATION, (29)

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
767.6 & 530.3 & -767.0 & -530.3 & 0 & 0 \\
6 & 0 & -628.4 & 942.5 & 628.4 & -942.5 \\
0 & 0 & 947.5 & -1413.6 & -942.5 & 1433.6
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
A_{x} \\
A_{y} \\
C_{x}
\end{cases} =
\begin{bmatrix}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -767.0 & 0 & 0 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -767.0 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -747.0 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -747.0 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -747.0 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 & -942.7 & -942.5 \\
0 & 0 & 0
\end{cases}$$

$$\begin{cases}
947.7 & 767.6 &$$

IN THE REMAINDUC MATRIX,

$$\begin{cases} 5016 \\ 016 \\ \end{cases} = \begin{bmatrix} -942.7 & -707.0 & 1571.1 & -235.4 & -628.4 & 942.5 \\ -707.0 & -530.3 & -235.4 & 1944.6 & 942.5 & -14136 \\ \end{cases} \times 10^{30} \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$$

$$\Rightarrow \begin{cases} u_{2x} \\ u_{2y} \end{cases} = \begin{cases} 0.3241 \\ 0.03976 \end{cases} \times 10^{3} \text{ in}$$

(29)

$$\begin{array}{c}
-33.3 \\
-25.0 \\
-14.7 \\
25.0
\end{array}$$

Schmany: All Chilliations In THIS EXAMPLE WERE PERFORMENS USING EXCEL.

50	=	157108	-23544	_	U_{2x}
0	-	-23544	194392	•	U_{2y}
U _{2x} =	=	6.48271E-06	7.8517E-07	•	50
U _{2y} =		7.85172E-07	5.2393E-06		0
U _{2x} =	3.2414E-04				
U _{2y} =	3.9259E-05				

A_{x}		94272	70704	-94272	-70704	0	0
A_{y}	_	70704	53028	-70704	-53028	0	0
C_{x}	_	0	0	-62836	94248	62836	-94248
C_{y}		0	0	94248	-141364	-94248	141364

0 0 3.2414E-04 3.9259E-05 0

 A_x -33.33 A_y = -25.00 C_x -16.67 C_y 25.00