习题课

一、填空题

- 1. $(127)_{10} = (\overline{0001001001111})_{8421BCD} = (010001011010)_{\hat{x}_{3}\bar{y}_{3}} = (111111111)_{2} = (177)_{8} = (7F)_{16}$
- 2. 8位带符号二进制原码10010101的反码是(11101010),补码是(11101011),若将此反码与另一带符号二进制数00011010相加,其二进制反码形式的和为(00000101)。
- 3. 格雷码既具有(循环性)特性,又具有(反射性)特性。
- 4. 函数 $F = AB + \overline{C} \cdot D + \overline{AC}$,其反函数和对偶函数分别为(不必化简)

$$\overline{F} = ((\overline{A} + \overline{B})C + \overline{D})(A + \overline{C})$$

$$F_D = ((\overline{A} + \overline{B})C + \overline{D})(\overline{A} + C)$$

$$((\overline{A} + B)\overline{C} + D)(\overline{A} + C)$$

$$) \circ$$

- 5. 函数 $F(A,B,C) = \bar{A}C + BC$ 的最小项表达式为($\Sigma m(1,3,7)$),最大项表达式为($\Pi M(0,2,4,5,6)$)。
- **6.** 函数 $F = (A + \overline{C})(B + C)$ 可能产生(1)型逻辑险象,消除的方法是(添加一冗余项(A+B))。
 - 7. 用单片容量为1K×4bit的RAM芯片构成4K×8bit的存储器,至少需要用(8)片1K×4bit的RAM芯片进行(字、位)扩展。
 - 8. 集成模/数转换器A/D转换步骤是(采样、保持、量化和编码)

二、化简题

1. 函数 $F(A,B,C,D)=A\overline{B}\overline{C}+\overline{A}BD+\overline{B}CD+\Sigma d(10,14,15)$, 试化 简F为最简的与或式(积之和表达式)和最简或与式(和之积表达式)。

解:卡诺图:

最简积之和表达式:

$$F = A\overline{B} + CD + \overline{A}BD$$

最简和之积表达式:

$$F=(A+B+C)(A+C+D)(\overline{A}+\overline{B})(\overline{C}+D)$$

2. 将表所示原始状态表化简为最简状态表。

解:

$$S_{2}$$
 \times
 S_{3} \times $1,6$
 $4,7$
 S_{4} $1,6$
 $2,4$ \times \times
 S_{5} \times $2,3$
 $4,5$ $5,7$ \times
 S_{6} \checkmark \times \times $2,4$ \times
 S_{7} $3,4$
 $2,8$ \times \times $1,6$
 $2,3$ \times $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$
 $3,4$

等价状态 $S_1 \approx S_6$ $S_2 \approx S_3$ $S_4 \approx S_7$

NS/z

三、分析题

1. 分析下图所示电路,写出输出函数表达式,按图示要求列真值表,说明电路的逻辑功能。

$\overline{A_3}$	A_2	A_1	A_0	F ₃	F_2	F_1	$\overline{F_0}$
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				

解:

A_2	0 0	1	
0	1	0	
1	1	0	F ₀

$\overline{A_3}$	A_2	A_1	A_0	F_3	F_2	F_1	$\overline{F_0}$
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
_1	0	0	1	1	1	0	0

$$F_3 = A_3 \overline{A}_2 \overline{A}_1 + A_3 \overline{A}_2 A_1 + A_2 A_1 \overline{A}_0 + A_2 A_0 = \Sigma m(5,6,7,8,9,13,14,15)$$
 $F_2 = \overline{A}_2 A_1 \overline{A}_0 + A_2 \overline{A}_1 \overline{A}_0 + \overline{A}_2 A_0 = \Sigma m(1,2,3,4,9,10,11,12)$
 $F_1 = \overline{A}_1 \overline{A}_0 + A_1 A_0 = \Sigma m(0,3,4,7,8,11,12,15)$
 $F_0 = \overline{A}_0 = \Sigma m(0,2,4,6,8,10,12,14)$ 逻辑功能: 8421BCD码 一

余3码的转换

2. 分析下图所示电路, 列出状态表和状态图, 说明电路的逻辑功能。

解:
$$\begin{aligned} \mathbf{D}_2 = \mathbf{Q}_2 \oplus \mathbf{Q}_1 \oplus \overline{\mathbf{X}} & \mathbf{D}_1 = \overline{\mathbf{Q}}_1 \\ Z = \mathbf{Q}_2 \mathbf{Q}_1 + \mathbf{Q}_2 \overline{\mathbf{X}} + \mathbf{Q}_1 \overline{\mathbf{X}} \\ \mathbf{Q}_2^{n+1} = \mathbf{Q}_2^n \oplus \mathbf{Q}_1^n \oplus \overline{\mathbf{X}} & \mathbf{Q}_1^{n+1} = \overline{\mathbf{Q}}_1^n \end{aligned}$$

功能: 模4可逆计数器

- 3. 分析下图所示电路。要求:
 - (1) 画出74163的状态转换图(图例为 $Q_3Q_2Q_1Q_0$);
 - (2) 画出10个CP脉冲作用下的 Q_3 、 Q_2 、 Q_1 、 Q_0 、 Z_1 、 Z_2 的 波形(设初值为 $Q_3Q_2Q_1Q_0$ =0110);
 - (3) 说明电路的逻辑功能。

解: (1) 状态转换图:

$$\overline{\mathrm{LD}} = \overline{\mathrm{Y}}_{5} = \overline{\mathrm{m}}_{5} = \overline{\mathrm{Q}_{2}\overline{\mathrm{Q}}_{1}\mathrm{Q}_{0}}$$

$$\overline{LD} = 0$$

(2) 波形图:

$$Z_1 = \Sigma m(0,3,4,5)$$

$$Z_2 = \Pi M(0,2,3,4)$$

(3) 功能: 模8计数器, 序列发生器

 Z_1 : 00100111

Z₂: 11010001

- 4. 分析下图所示电路, 设Q₂Q₁Q₀为电路状态。
 - (1) 写出 D_{SL} 的函数表达式;
 - (2) 列出完整的状态表和状态图;
 - (3) 说明电路的逻辑功能;
 - (4) 判断是否具有自启动能力。

解:

(1) D_{SL} 的函数表达式:

$$\mathbf{D}_{\mathrm{SL}} = \overline{\mathbf{Q}}_{2} \mathbf{Q}_{0} + \mathbf{Q}_{2} \overline{\mathbf{Q}}_{0} = \mathbf{Q}_{2} \oplus \mathbf{Q}_{0}$$

(2) 状态表:

Q_0^n	Q_1^n	Q_2^n	Q_0^{n+1}	Q_1^{n+1}	Q_2^{n+1}
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	0	1
1	1	1	1	1	0

状态图:

 M_1

 M_0

 $Q_0 \quad Q_1 \quad Q_2$

 $Q_A\ Q_B\ Q_C\ Q_D$

74194

 $B C D D_{SL}$

 \overline{CR}

CP

MUX

EN

(3) 逻辑功能

M序型发生器: 0111010 0111010

(4) 自启动性

当初始状态为0000时,不能自启动。

四、设计题

1. 已知函数F(A,B,C,D)= Σ m(0,4,8,9,10,11),用3线一8线译码器74138实现该函数,画出逻辑图。

2. 试用JK触发器和少量 门电路设计一个具有右 图所示状态转换关系的 时序电路。

解: 次态方程:

$$Q_2^{n+1} = Q_2^n \oplus Q_1^n$$

激励方程:

$$\mathbf{Q}_1^{n+1} = \overline{\mathbf{Q}}_1^n \mathbf{Q}_0^n$$

$$J_2 = Q_1^n$$

$$J_2 = Q_1^n \qquad K_2 = Q_1^n$$

$$\mathbf{Q}_0^{\mathbf{n}+1} = \overline{\mathbf{Q}}_2^{\mathbf{n}} + \overline{\mathbf{Q}}_1^{\mathbf{n}}$$

$$J_1 = Q_0^n \qquad K_1 = 1$$

$$K_1 = 1$$

$$J_0 = \overline{Q}_2^n + \overline{Q}_1^n$$
 $K_0 = Q_2^n Q_1^n$

$$K_0 = Q_2^n Q_1^n$$

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+}	${}^{1}Q_{1}^{n+}$	$^{+1}Q_0^{n+1}$
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	0	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	0

电路图:

3. 画出1010串行序列检测器的原始状态图与原始状态表。设该序列检测器的输入序列为X,输出序列为Z,则仅当输入X连续送进1010时,输出Z才出现1,其它情况下都输出0,序列可以重叠。例如:

X: 0010101011

Z: 0000010100

解: 设原始状态: S_0 —初始状态,收到0; S_1 —收到1; S_2 —收到10; S_3 —收到101。

原始状态图

原始状态表

x PS	0	1	
S_0	$S_0/0$	$S_1/0$	
S_1	$S_2/0$	$S_1/0$	
S_2	$S_0/0$	$S_3/0$	
S_3	$S_2/0$	$S_1/0$	NS/z