

Jerome Jiang Marco Paniconi VP9 Features & Optimizations for Real-Time Video

Jerome Jiang

jianj@google.com Google LLC

Outline

- Introduction
- SVC (Scalable Video Coding) in VP9
- SVC Metrics Comparison v.s. VP8 Simulcast
- Segmentation (AQ-Mode, ROI)
- Temporal Denoiser
- VP9 Optimizations for ARM

Outline

- Introduction
- SVC (Scalable Video Coding) in VP9
- SVC Metrics Comparison v.s. VP8 Simulcast
- Segmentation (AQ-Mode, ROI)
- Temporal Denoiser
- VP9 Optimizations for ARM

Introduction

- Why optimize encoder for real-time
 - "good" mode too slow
 - Made for VOD (Video on Demand) use cases

- Encoder runs on servers which have plenty of power
- Real-time video can't use 2 pass

Outline

- Introduction
- SVC (Scalable Video Coding) in VP9
- SVC Metrics Comparison v.s. VP8 Simulcast
- Segmentation (AQ-Mode, ROI)
- Temporal Denoiser
- VP9 Optimizations for ARM

SVC (Scalable Video Coding) in VP9

- Fully integrated in WebRTC
- Actively being experimented/tuned
- New features rolling in actively
 - Frame dropping
 - Dynamic pattern updates
 - Speed ups
 - Quality Improvements
 - Screenshare

SVC in VP9

- Unique feature of reference frame scaling
 - Spatial layers for SVC
 - Dynamic resize (change resolution within stream without key frame)
- Intra-only frame
- Multiple spatial & temporal layers
- Change layer pattern on the fly (flexible SVC mode)
- Cyclic refresh
 - Segment level QP
- Noise estimation & denoising
 - All spatial layers

Dynamic Resize in VP9

- The stream must lower resolution to hit bitrate
- No key frame needed for prediction from last frame
 - Smaller frame size
 - Less fluctuation
 - Smoother quality
- Same thing as the resolution scaled up
- Used as default for VP9 in WebRTC

SVC Superframe

- A superframe is a frame packet containing all spatial layers.
- Downsample to lowest resolution first then encode
- Higher resolution frames predict from lower resolution ones

3 Spatial Layers

SVC Patterns - 2 Spatial Layers, 3 Temporal Layers

SVC Reference frame buffer and refresh

- ALTREF reference frame buffer is used in SVC.
- 2SL 3TL example:

	SL0 TL0		SL1 TL0		SL0 TL2		SL1 TL2		SL0 TL1		SL1 TL1		SL0 TL2		SL1 TL2	
	В	R	В	R	В	R	В	R	В	R	В	R	В	R	В	R
0	L	•	G		L				L							
1			L	•	G		L		G		L		G			
2					Α	•	G		Α	•	G		L	•	G	
3							Α				Α	•			L	

B = Buffer index.
R = Refresh.
L = LAST_FRAME.
G = GOLDEN_FRAME.
A = ALTREF FRAME.

SVC Interlayer Prediction

- Users have control about inter-layer prediction (configurable)
- Several modes
 - INTER_LAYER_PRED_ON
 - Default mode, interlayer prediction always on.
 - INTER_LAYER_PRED_OFF
 - Interlayer prediction always off
 - INTER_LAYER_PRED_OFF_NONKEY
 - Interlayer prediction off for non keyframes
 - INTER_LAYER_PRED_ON_CONSTRAINED
 - Inter-layer prediction is on on all frames, but constrained such that any layer S (> 0) can only predict from previous spatial layer S-1, from the same superframe.

SVC Frame Dropping

Several frame dropping modes:

- CONSTRAINED_LAYER_DROP
 - Upper layers are constrained to drop if current layer drops.
- LAYER_DROP
 - Any spatial layer can drop.
- CONSTRAINED_DROPBASE_ENCODESKIP
 - Base spatial layer can drop, and this forces drop of all spatial layers.
 Enhancement spatial layer encodes a skip frame instead of dropping.

Intra-only Frame

- New user joins the group chat
 - Insert base layer as a key frame
 - All receivers need to restart the videostream

SL1 SL1 New User Joins SL0 SL0 Key frame

Can't predict temporally

Intra-only Frame

- With intra-only frame
 - Frame encoded with intra only
 - But doesn't refresh all reference buffers
 - Must be a no show frame

Intra-only Frame

- For receivers who decode top layer
 - Can still predict temporally
 - Avoid effects of key frame
- Intra-only frame is still packed into the superframe
 - No show (not displayed)
 - Can use flag show_existing_frame to copy header of intra-only frame in the superframe
- Experimental feature

Outline

- Introduction
- SVC (Scalable Video Coding) in VP9
- SVC Metrics Comparison v.s. VP8 Simulcast
- Segmentation (AQ-Mode, ROI)
- Temporal Denoiser
- VP9 Optimizations for ARM

VP9 SVC v.s. VP8 Simulcast

File	Match	Problem	avg_psnr:
dark720p.y4m	1	8/0	-54.809
desktop2360p.y4m	✓	7/0	-39.724
desktop360p.y4m	1	7/0	-58.236
fourpeople720p.y4m	1	8/0	-38.593
gipsrecmotion720p.y4m	1	8/0	-17.756
gipsrestat720p.y4m	1	8/0	-34.539
jimredvga_25fps.y4m	1	7/0	-47.880
kirlandvga.y4m	1	7/0	-60.486
marcooffice720p.y4m	1	8/0	-28.842
mj1vc720p.y4m	1	8/0	-40.792
mj2vc720p.y4m	1	8/0	-29.558
mj3vc720p.y4m	1	8/0	-35.089
mj4vc720p.y4m	1	8/0	-25.326
mmmovingvga.y4m	1	7/0	-42.653
mmstionaryvga.y4m	1	7/0	-51.641
niklas720p.y4m	1	8/0	-27.064
niklasvga.y4m	1	7/0	-35.198
still_bright_360_640.y4m	1	7/0	-40.011
tacomanarrowsvga.y4m	1	7/0	-70.085
tacomascmvvga.y4m	1	7/0	-39.452
testnoise720p.y4m	1	8/0	-59.004
thaloundeskmtgvga.y4m	1	7/0	-45.923
vidyo1_1280x720_60.y4m	1	8/0	-28.229
vidyo3_1280x720_60.y4m	1	8/0	-24.326
vidyo4_1280x720_60.y4m	1	8/0	-38.088
{OVERALL}	1	None	-40.532

mmmovingvga.y4m

VP9 SVC Speed up

Overall 45% speed up on HD (720p).

Outline

- Introduction
- SVC (Scalable Video Coding) in VP9
- SVC Metrics Comparison v.s. VP8 Simulcast
- Segmentation (AQ-Mode, ROI)
- Temporal Denoiser
- VP9 Optimizations for ARM

Segmentation

- VP8 and VP9 allow users to specify areas to apply different parameters with the rest of the frames.
 - Quantization Parameters
 - Loop filter strength
 - Static threshold only in VP8, set threshold for skipping motion search
 - Skip encoding or not only in VP9, copy the block from previous frame
 - Reference frame only in VP9
- VP8 16x16 block, 4 segments
- VP9 8x8 block, 8 segments
- Two features based on segmentation
 - o AQ Mode cyclic refresh
 - ROI Region of Interest

Cyclic Refresh (AQ_mode = 3)

- VP9 encoder selects percentage of frame to apply lower quantization parameter (QP).
- The area will move from frame to frame, adaptively.
- After a period of time, whole frame will be refreshed.
- Good quality boost for video conference content.
- Integrated into the CBR rate control.
- Used as default for WebRTC.

ROI - Region of Interest

- ROI enables users to specify any area to apply different encoding parameters
- API

```
if (vpx_codec_control(&codec, VP8E_SET_ROI_MAP, &roi))
    die_codec(&codec, "Failed to set ROI map");
```

- roi is type vpx_roi_map_t
 - Users need to specify roi first
 - ROI area is marked by 0 and non-zero values which segment to use
 - Specify different QP, loop filter strength etc.

ROI struct key elements

```
typedef struct {
/* ... */
/*! VP8 only uses the first 4 segments. VP9 uses 8 segments. */
  int delta_q[8]; /**< Quantizer deltas. */</pre>
  int delta_lf[8]; /**< Loop filter deltas. */</pre>
 /*! skip and ref frame segment is only used in VP9. */
  int skip[8]; /**< Skip this block. */</pre>
  int ref frame[8]; /**< Reference frame for this block. */
 /*! Static breakout threshold for each segment. Only used in VP8. */
  unsigned int static threshold[4];
} vpx roi map t;
```


ROI Parameters - QP & Loopfilter

- For QP and loop filter, the struct specifies "delta"
 - o qp_roi = base_q + delta_q
 - If delta_q < 0, then qp_roi is lower than base_q, which is QP for the frame. Thus ROI has better quality.
 - If delta_q > 0, then qp_roi is higher than base_q, thus ROI has worse quality.
- -63 <= delta_q <= 63
- -63 <= delta lf <= 63

ROI Parameters - QP

```
segment ID = 0
qp = base qp
                                      ROI
               delta_qp = -20
               segment ID = 1
               qp = base_qp + delta_qp
                  = base_qp - 20
```


ROI Parameters - Reference frame

- Force using specified reference frame by users
- Reference frame (ref_frame): only used in VP9.
 - -1: Do not apply this feature
 - 0: Force using intra
 - 1: Force using last frame
 - 2: Force using golden frame
- Special cases:
 - ALTREF_FRAME is not used in non-rd pickmode for 0 lag. If user forces to use ALTREF_FRAME, ignore this feature and don't do anything.
 - When GOLDEN_FRAME is not set as one of reference frames and user forces to use GOLDEN_FRAME, just ignore this feature.
 - GOLDEN_FRAME is updated on last frame, where GOLDEN_FRAME and LAST_FRAME is the same frame. Map GOLDEN_FRAME to LAST_FRAME.

ROI Parameters - Skip

Segmentation - Future Work

- Make ROI and AQ-Mode work together
- If users enable both ROI and AQ-Mode, codec needs to put them into two different segments.

Cyclic Refresh effective segment ID = 1 qp = base_qp + cr_delta_q

Cyclic Refresh & ROI overlapped segment ID = 1, 2 qp = base_qp + cr_delta_q + delta_q

VP9 Temporal Denoiser

- Noise estimation
- Denoiser will decide according to noise estimation
 - If noise level is low don't denoise even if denoising enabled by user
 - If noise level is high
 - Perform motion compensation return two values
 - COPY_BLOCK Copy block from source without denoising
 - FILTER BLOCK Denoise the source

Denoiser Frame Buffer

Denoiser in SVC

More frame buffers: N_{reference frames} x N_{denoise spatial layers}
running_avg_y

Denoiser in SVC

Outline

- Introduction
- SVC (Scalable Video Coding) in VP9
- SVC Metrics Comparison v.s. VP8 Simulcast
- Segmentation (AQ-Mode, ROI)
- Temporal Denoiser
- VP9 Optimizations for ARM

VP9 Optimizations for ARM

- Different speed settings for VP9
 - Real-time uses speed >= 5
 - Speed 5 and 6 used by YouTube Live
 - Speed 7 desktop
 - Speed 8 ARM (Mobile devices)
- We're adding speed 9
 - Motion search is very expensive
 - Adaptively prune subpel search according to different content
 - Speedup partitioning, reduce Golden mode search
 - Used on ARM

VP9 Optimization for ARM - Multi-threading

- Tile based multi-threading
- VP9 multi-threading was based on tiles before
 - Every tile is at least 256 pixels wide
 - Single thread on low-res
 - Every thread works on one tile
 - Number of threads can't be greater than number of tiles
 - 4 threads most on HD (720p)
- Example two tiles
 - It often happens one thread is faster than the other
 - Because of content
 - Faster thread needs to wait for the slower one

Row-based Multi-threading

- Add row-based multi-threading on top of tile-based
- Superblock (64x64) row based
- Allow number of threads to be greater than number of tiles:
 - Allow multi-threading on low-res
 - Example: 4 threads on 2 tiles
 - 2 threads on one tile, 2 threads on the other
 - After the faster tile finishes, the thread(s) will help the slower one
- Remove dependencies between superblock rows
- API
 vpx codec control(&codec, VP9E SET ROW MT, 1);

Bonus - Fast Partitioning

- Superblock Partitioning takes a lot of time
 - Variable Block sizes in VP9 (64X64, 64x32, 32x64,32x32,...,4x4).
 - Recursive structure
 - Compute at each level
- For real-time, we use Variance-based fast partitioning
 - If the SAD between current superblock and motion compensated superblock from last frame is small
 - Copy partitioning from last frame
 - o For SVC:
 - Add scaling superblock from lower resolution to higher

Fast Partitioning

To balance between speed and quality:

- Add a counter for each superblock
 - How many times this superblock has been copied consecutively
- If the counter is greater than threshold 5 currently
 - Stop reusing for this block in this frame
 - Do normal partitioning to reduce quality loss
- Only enabled for speed 7 and 8
 - Speed 8 is only used on ARM real-time

Scale partitioning in SVC

Motion Vector Reuse

Reuse motion vector from base layer for faster NEWMV search on LAST.

VP9 Improvements on ARM

Tested 2 threads on Google Pixel XL - Qualcomm Snapdragon 820 Over the past year

- VGA
 - 93% speed up
 - 120fps ~ 180fps depending on content
- HD
 - 95% speed up
 - 40fps ~ 64fps

VP9 Improvement on ARM

WebRTC test on HD (720p) on Nexus 6, very old phone. Encoding time from 110ms to 70ms.

Wrap Up

- Huge progress on VP9 SVC
 - Integrated in WebRTC for Hangouts
- VP9 SVC maintains quality advantage over VP8 simulcast
- Segmentation adds more flexibility to developers
 - Face Recognition Use lower QP on face
 - Image segmentation Use higher QP on background
- Denoiser improves quality under noisy situations
- Huge speed up of VP9 on ARM
 - More than 90% for 2 threads on high-end phones

Thank you!