

Programa del curso EE-0305

Transductores

Escuela de Ingeniería Electromecánica Carrera de Ingeniería Electromecánica (tronco común)

I parte: Aspectos relativos al plan de estudios

1. Datos generales

Nombre del curso: Transductores

Código: EE-0305

Tipo de curso: Teórico - Práctico

Obligatorio o electivo: Obligatorio

Nº de créditos: 2

Nº horas de clase por semana: 3

Nº horas extraclase por semana:

Curso de 3^{er} semestre en Ingeniería Electromecánica (tronco co-Ubicación en el plan de estudios:

mún)

CA-0205 Fundamentos de organización de computadoras Requisitos:

EE-0304 Laboratorio de circuitos I **Correquisitos:**

El curso es requisito de: EE-0405 Instrumentación

Asistencia: Obligatoria

Suficiencia: No

Posibilidad de reconocimiento: Sí

grama:

Aprobación y actualización del pro- 01/01/2026 en sesión de Consejo de Escuela 01-2026

2. Descripción general

El curso de *Transductores* aporta en el desarrollo de los siguientes rasgos del plan de estudios: implementar sistemas de instrumentación para la medición y modificación de variables físicas en sistemas electromecánicos; y aplicar principios de metrología para medir variables físicas en sistemas electromecánicos.

Los aprendizajes que los estudiantes desarrollarán en el curso son: comprender las características estáticas, dinámicas, eléctricas y de fabricación de los transductores; seleccionar transductores según su aplicación en sistemas específicos, considerando sus características y principios de funcionamiento; y experimentar con transductores mediante prácticas que permitan aprendizajes significativos y el desarrollo de habilidades aplicadas.

Para desempeñarse adecuadamente en este curso, los estudiantes deben poner en práctica lo aprendido en los cursos de: Física general I, y Física general II.

Una vez aprobado este curso, los estudiantes podrán emplear algunos de los aprendizajes adquiridos en los cursos de: Instrumentación, Modelado y simulación de sistemas, Control automático, y Control por eventos discretos.

3. Objetivos

Al final del curso la persona estudiante será capaz de:

Objetivo general

 Evaluar transductores para su integración en sistemas de instrumentación dedicados a la medición y manipulación de variables físicas en sistemas electromecánicos.

Objetivos específicos

- Comprender las características estáticas, dinámicas, eléctricas y de fabricación de los transductores.
- Seleccionar transductores según su aplicación en sistemas específicos, considerando sus características y principios de funcionamiento.
- Experimentar con transductores mediante prácticas que permitan aprendizajes significativos y el desarrollo de habilidades aplicadas.

4. Contenidos

En el curso se desarrollaran los siguientes temas:

- 1. Conceptos básicos
 - 1.1. Señales, estímulos y sistemas
 - 1.2. Modelos y simulaciones
 - 1.3. Sensores, actuadores y transductores
 - 1.4. Clasificaciones
- Características de los transductores
 - 2.1. Función de transferencia
 - 2.2. Entrada y salida a escala completa
 - 2.3. Exactitud y precisión

TEC | Tecnológico de Costa Rica

- 2.4. Repetibilidad y reproducibilidad
- 2.5. Histéresis y no linealidad
- 2.6. Saturación y banda muerta
- 2.7. Resolución
- 2.8. Impedancia de salida
- 2.9. Excitación
- 2.10. Características dinámicas
- 2.11. Confiabilidad e incertidumbre
- 3. Transductores térmicos
 - 3.1. Bimetales
 - 3.2. Termoresistivos
 - 3.3. Termoeléctricos
 - 3.4. Termomecánicos
 - 3.5. Inductivos y microondas para calentamiento
- 4. Transductores ópticos
 - 4.1. Fotoconductores
 - 4.2. Fotodiodos
 - 4.3. Fototransistores
 - 4.4. Fotovoltaicos
 - 4.5. Piroeléctricos y termopilas para radiación térmica
- 5. Transductores eléctricos y magnéticos
 - 5.1. Capacitivos
 - 5.2. Inductivos
 - 5.3. Efecto Hall
 - 5.4. Magnetohidrodinámicos
 - 5.5. Magnetoresistivos
 - 5.6. Magnetrostrictivos
 - 5.7. Magnetómetros
 - 5.8. Piezoelectricos
 - 5.9. Piezoresistivos
 - 5.10. Voltaje, corriente y resistencia
 - 5.11. Motores
 - 5.12. Solenoides

TEC | Tecnológico de Costa Rica

- 6. Transductores mecánicos
 - 6.1. Galgas extensiometricas
 - 6.2. Celdas de carga
 - 6.3. Acelerómetros
 - 6.4. Sensores de presión
 - 6.5. Velocidad
 - 6.6. Giroscopios
- 7. Transductores acústicos
 - 7.1. Micrófonos e hidrófonos
 - 7.2. Parlantes
 - 7.3. Ultrasónicos
- 8. Transductores químicos
 - 8.1. Electroquímicos
 - 8.2. Potenciométricos
 - 8.3. Termoquímicos
- 9. Transductores de radiación
 - 9.1. Ionizante
 - 9.2. Microondas
- 10. Transductores MEMS
 - 10.1. Métodos de fabricación
 - 10.2. Unidades de medición inercial (IMU)
 - 10.3. Sensores de presión
 - 10.4. Micrófonos
 - 10.5. Interruptores ópticos
- 11. Interfaces de los transductores
 - 11.1. Amplificadores operacionales
 - 11.2. Amplificadores de potencia
 - 11.3. PWMs para actuadores
 - 11.4. Convertidores A/D y D/A
 - 11.5. Puentes
 - 11.6. Transmisión de datos
 - 11.7. Excitadores
 - 11.8. Ruido e interferencia

Il parte: Aspectos operativos

5. Metodología

En este curso, se utilizará el enfoque sistémico-complejo para la ejecución de las sesiones magistrales y se integrará la investigación práctica aplicada para las sesiones prácticas. Esta última se implementará mediante técnicas como el modelado, simulación, prototipado y la experimentación controlada.

Las personas estudiantes podrán desarrollar actividades en las que:

- Recibirán instrucción sobre los principios físicos que gobiernan el comportamiento de los transductores.
- Analizarán alternativas para seleccionar el transductor adecuado de acuerdo con cada aplicación vista en los estudios de caso.

Este enfoque metodológico permitirá a la persona estudiante evaluar transductores para su integración en sistemas de instrumentación dedicados a la medición y manipulación de variables físicas en sistemas electromecánicos

Si un estudiante requiere apoyos educativos, podrá solicitarlos a través del Departamento de Orientación y Psicología.

6. Evaluación

La evaluación se distribuye en los siguientes rubros:

- Pruebas parciales: evaluaciones formales que miden el nivel de comprensión y aplicación de los conceptos clave del curso. Generalmente cubren una parte significativa del contenido visto hasta la fecha y pueden incluir problemas teóricos y prácticos.
- Tareas: evaluaciones que tienen el propósito de reforzar, aplicar o evaluar el aprendizaje de un tema específico. Pueden requerir investigación, resolución de problemas, desarrollo de habilidades prácticas o aplicación de conocimientos teóricos.
- Act. aprendizaje activo: actividad diseñada para que los estudiantes se involucren de manera directa y práctica en la construcción de su conocimiento, a través de la resolución de problemas, la discusión y la aplicación de conceptos teóricos en contextos reales o simulados.

Pruebas parciales (2)	60 %
Tareas (6)	15 %
Act. aprendizaje activo (1)	25 %
Total	100 %

De conformidad con el artículo 78 del Reglamento del Régimen Enseñanza-Aprendizaje del Instituto Tecnológico de Costa Rica y sus Reformas, en este curso la persona estudiante **no** tiene derecho a presentar un examen de reposición.

7. Bibliografía

[1] N. Ida, Sensors, actuators, and their interfaces. The Institution of Engineering y Technology, 2020.

[2] J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications. Springer, 2016.

[3] R. Pallas-Areny y J. G. Webster, Sensors and signal conditioning. John Wiley & Sons, 2012.

8. Persona docente

8. Persona do- El curso será impartido por:

Dr.-Ing. Juan José Rojas Hernández

Licenciatura en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Maestría en Ingeniería en Electrónica con énfasis en microsistemas, Instituto Tecnológico de Costa Rica, Costa Rica

Doctorado en Ciencia aplicada a la integración de sistemas, Instituto Tecnológico de Kyushu, Japón

Especialización en Ciencia de los datos, Instituto Tecnológico de Costa Rica, Costa Rica

Correo: juan.rojas@itcr.ac.cr Teléfono: 88581419

Oficina: 31 Escuela: Ingeniería Electromecánica Sede: Cartago

M.Sc. Luis Diego Murillo Soto Técnico en Electrónica, COVAO, Costa Rica

Bachillerato en Ingeniería en Mantenimiento Industrial, Instituto Tecnológico de Costa Rica, Costa Rica

Maestría en Ingeniería en Computación, Instituto Tecnológico de Costa Rica, Costa Rica

Especialización en Robótica Industrial, CNAD, México

Maestría en Ingeniería Electrica, Universidad de Costa Rica, Costa Rica

Doctorado en Sistemas Fotovoltaicos, Instituto Tecnológico de Costa Rica, Costa Rica

Correo: Imurillo@itcr.ac.cr Teléfono: 25509347

Oficina: 7 Escuela: Ingeniería Electromecánica Sede: Cartago