

Overview

- New definition of mailbox existentially/universally bounded using the general notation of k-bounded linearization
- MSO logic over asynchronous MSCs
- MSO definability for existentially and universally k-bounded MSCs

MSO-definability

MSO definability	Raw	Weakly sync	Weakly k-sync	$\exists k$ bounded	$\forall k$ bounded
Asynchronous	Υ	Υ	Υ	Υ	Υ
FIFO 1-1 (p2p)	Υ	Υ	Υ	Υ	Υ
Causally ordered	Υ	Y	Υ	Υ	Υ
FIFO n-1 (mailbox)	Υ	Y	Υ	Υ	Υ
FIFO 1-n					
FIFO n-n					
RSC					

= new

= changed

MSO-definability of raw MSCs

MSO definability	Raw	Weakly sync	Weakly k-sync	$\exists k$ bounded	∀ <i>k</i> bounded
Asynchronous	Υ	Y	Υ	Υ	Υ
FIFO 1-1 (p2p)	Υ	Y	Υ	Υ	Υ
Causally ordered	Υ	Y	Y	Υ	Υ
FIFO n-1 (mailbox)	Υ	Y	Y	Υ	Υ
FIFO 1-n					
FIFO n-n					
RSC					

= new

= changed

MSO-definability of 3k-bounded

MSO definability	Raw	Weakly sync	Weakly k-sync	$\exists k$ bounded	$\forall k$ bounded
Asynchronous	Υ	Υ	Υ	Y	Υ
FIFO 1-1 (p2p)	Υ	Υ	Υ	Υ	Υ
Causally ordered	Υ	Υ	Υ	Υ	Υ
FIFO n-1 (mailbox)	Υ	Υ	Υ	Υ	Υ
FIFO 1-n					
FIFO n-n					
RSC					

= new

= changed

3.5 Existentially bounded MSCs

Definition 3.5. Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}$ and $k \in \mathbb{N}$. A linearization \leadsto of M is called k-bounded if, for all $e \in Matched(M)$, with $\lambda(e) = send(p, q, m)$, we have

$$\#_{Send(p,q,\underline{\hspace{0.1cm}})}(\leadsto,e) - \#_{Rec(p,q,\underline{\hspace{0.1cm}})}(\leadsto,e) \le k.$$

Recall that $\#_{Send(p,q,_)}(\leadsto,e)$ denotes the number of send events from p to q that occured before e, according to \leadsto . Intuitively, a linearization is k-bounded if, at any moment in time, there are no more than k messages in any channel.

Definition 3.6 (Existentially bounded MSC). Let $M = (\mathcal{E}, \to, \lhd, \lambda) \in \mathsf{MSC}_{\mathsf{asy}}$ and $k \in \mathbb{N}$. We call M existentially k-bounded if it has a k-bounded linearization.

Let $MSC_{\exists k-b}$ be the set of existentially k-bounded MSCs, for a given $k \in \mathbb{N}$.

Definition 3.7. An MSC M is p2p existentially k-bounded (p2p- $\exists k$ -bounded) if it is a p2p MSC and it is also existentially k-bounded.

Definition 3.8. An MSC M is causally ordered existentially k-bounded (co- $\exists k$ -bounded) if it is a causally ordered MSC and it is also existentially k-bounded.

When moving on to mailbox MSCs, the definition of mailbox existentially k-bounded MSC should require that there exists a k-bounded linearization that is also a mailbox linearization, not just any linearization. Recall that an MSC is a mailbox MSC if it has at least one mailbox linearization, which represents a sequence of events that can be executed by a mailbox system. Following this intuition, we want one of these mailbox linearizations to be k-bounded, because non-mailbox linearizations cannot be executed by a mailbox system.

Definition 3.9. An MSC M is mailbox existentially k-bounded (mb- $\exists k$ -bounded) if it has a k-bounded mailbox linearization.

It should be noted that, for a k-bounded mailbox linearization, it is not necessarily true that at any time we have at most k messages in each channel. Recall that in the mailbox communication architecture every process has a single incoming channel, but the Definition 3.5 of k-bounded linearization considers the number of pending messages between each pair (p,q) of processes. Let n be the number of processes. We can say that, for a k-bounded mailbox linearization, we have at most k(n-1) messages in each channel at any moment (because each process can have at most k pending messages coming from any of the other n-1 processes).

MSO-definability of \(\forall k\)-bounded

MSO definability	Raw	Weakly sync	Weakly k-sync	$\exists k$ bounded	$\forall k$ bounded
Asynchronous	Υ	Υ	Υ	Υ	Υ
FIFO 1-1 (p2p)	Υ	Υ	Υ	Υ	Υ
Causally ordered	Υ	Υ	Υ	Υ	Υ
FIFO n-1 (mailbox)	Υ	Υ	Υ	Υ	Υ
FIFO 1-n					
FIFO n-n					
RSC					

= new

= changed

3.6 Universally bounded MSCs

Definition 3.10 (Universally bounded MSC). Let $M = (\mathcal{E}, \rightarrow, \triangleleft, \lambda) \in \mathsf{MSC}_{\mathsf{asy}}$ and $k \in \mathbb{N}$. We call M universally k-bounded if all of its linearizations are k-bounded.

Let $\mathsf{MSC}_{\forall k-b}$ be the set of universally k-bounded MSCs.

Definition 3.11. An MSC M is p2p universally k-bounded (p2p- $\forall k$ -bounded) if it is a p2p MSC and it is also universally k-bounded.

Let $\mathsf{MSC}_{p2p-\forall k-b}$ be the set of p2p universally k-bounded MSCs.

Definition 3.12. An MSC M is causally universally ordered k-bounded (co- $\forall k$ -bounded) if it is a causally ordered MSC and it is also universally k-bounded.

Let $\mathsf{MSC}_{\mathsf{co}{\text{-}}\forall k{\text{--}}b}$ be the set of causally ordered universally k-bounded MSCs.

Definition 3.13. An MSC M is mailbox universally k-bounded (mb- $\forall k$ -bounded) if all of its mailbox linearizations are k-bounded.

Let $MSC_{mb-\forall k-b}$ be the set of mailbox universally k-bounded MSCs.

3.6.1 Hierarchy

In this section we will investigate the relations between the various classes of universally k-bounded MSCs that we introduced. From their definition, it is quite straightforward to see that $MSC_{co-\forall k-b} \subseteq MSC_{p2p-\forall k-b} \subseteq MSC_{\forall k-b}$. The set of mailbox universally k-bounded MSCs, however, does not fit in this hierarchy. Recall that an MSC is mb- $\forall k$ -bounded if all of its mailbox linearizations are k-bounded, but the definition does not say anything about non-mailbox linearizations. It can be the case that an MSC has a bound k on its mailbox linearization, but another bound k' on non-mailbox linearizations. Fig. 7 shows an MSC M which is mb- $\forall 1$ -bounded, but not $\forall 1$ -bounded. According to the mailbox semantics, a mailbox linearization of M has to respect the order $m_1 \sqsubseteq_M m_3 \sqsubseteq_M m_4$. Note that all mailbox linearizations are 1-bounded, but we are able to find a non-mailbox linearization that is 2-bounded, such as $m_1 \leadsto m_2 \leadsto m_3 \leadsto m_2 \leadsto m_3 \leadsto m_3 \leadsto m_4$.

Figure 7: Example of MSC which is mailbox universally 1-bounded, but not universally 1-bounded (it is universally 2-bounded).

$\forall k$ -bounded hierarchy (given k)

STW-boundness

Bounded STW	Raw	Weakly sync	Weakly k-sync	$\exists k$ bounded	$\forall k$ bounded
Asynchronous	N	N	Υ	Υ	Υ
FIFO 1-1 (p2p)	N	N	Υ	Υ	Υ
Causally ordered	N	N	Y	Υ	Υ
FIFO n-1 (mailbox)	N	Υ	Υ	Υ	Υ
FIFO 1-n					
FIFO n-n					
RSC					

MSO extra

Acyclicity Given a binary relation \rightarrow , the acyclicity of \rightarrow can be expressed with an MSO formula. Recall that, given a binary relation \rightarrow , it is acyclic if and only if its transitive closure \rightarrow ⁺ is antisymmetric. The MSO formula of acyclicity directly follows from this definition:

$$\Phi_{acyclic} = \neg \exists x. \exists y. (x \to^+ y \land y \to^+ x).$$

MSO extra

Transitive Closure Given a set Σ and binary relation $\to \subseteq \Sigma \times \Sigma$ that is irreflexive, antisymmetric, and transitive (i.e., \to is a strict partial order), we can express its reflexive transitive closure \to^* in MSO as

$$x \to^* y = \exists X. (x \in X \land y \in X \land \forall z. (z \in X \implies z = y \lor \exists k. (k \in X \land z \to k)))$$

Example (non-antisymmetric relation):

 $a \rightarrow b$ = "there is a direct flight from a to b"

$$X = \{Nice, Varese, Milano, Paris, Roma\}$$

Example (non-transitive relation):

$$a \rightarrow b$$

$$X = \{a, d, b, c\}$$

Doubts

- MSO-definability of transitive closure
- Communication model and channels (On the Diversity of Asynchonous Communication - Chevrou, Hurault, Quéinnec)