МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информационные технологии»

Тема: Введение в анализ данных

Студент гр. 3344	Пачев Д.К.
Преподаватель	Иванов Д.В.

Санкт-Петербург

2024

Цель работы

Познакомиться с анализом данных, развить навыки работы с библиотекой scikit-learn.

Задание

Вариант 1.

Вы работаете в магазине элитных вин и собираетесь провести анализ существующего ассортимента, проверив возможности инструмента классификации данных для выделения различных классов вин.

Для этого необходимо использовать библиотеку sklearn и встроенный в него набор данных о вине.

1) Загрузка данных:

Реализуйте функцию load data(), принимающей вход аргумент train_size (размер обучающей выборки, по умолчанию равен 0.8), которая загружает набор данных о вине из библиотеки sklearn в переменную wine. Разбейте данные для обучения и тестирования в соответствии со значением train size, следующим образом: набора ИЗ данного запишите train_size данных из data, взяв при этом только 2 столбца в переменную X_train и train_size данных поля target в y_train. В переменную X test положите оставшуюся часть данных из data, взяв при этом только 2 столбца, а в у test — оставшиеся данные поля target, в этом вам поможет функция train test splitмодуля sklearn.model_selection (в качестве состояния рандомизатора функции train_test_split необходимо указать 42.).

В качестве результата верните X_{train} , X_{test} , y_{train} , y_{test} .

Пояснение: X_train, X_test - двумерный массив, y_train, y_test. — одномерный массив.

2) Обучение модели. Классификация методом k-ближайших соседей:

Реализуйте функцию train_model(), принимающую обучающую выборку (два аргумента - X_train и y_train) и аргументы n_neighbors и weights (значения по умолчанию 15 и 'uniform' соответственно), которая создает экземпляр классификатора KNeighborsClassifier и загружает в него данные X_train, y_train с параметрами n_neighbors и weights.

В качестве результата верните экземпляр классификатора.

3) Применение модели. Классификация данных

Реализуйте функцию predict(), принимающую обученную модель классификатора и тренировочный набор данных (X_{test}) , которая выполняет классификацию данных из X_{test} .

В качестве результата верните предсказанные данные.

4) Оценка качества полученных результатов классификации.

Реализуйте функцию estimate(), принимающую результаты классификации и истинные метки тестовых данных (y_test), которая считает отношение предсказанных результатов, совпавших с «правильными» в y_test к общему количеству результатов. (или другими словами, ответить на вопрос «На сколько качественно отработала модель в процентах»).

В качестве результата верните полученное отношение, округленное до 0,001. В отчёте приведите объяснение полученных результатов.

Пояснение: так как это вероятность, то ответ должен находиться в диапазоне [0, 1].

5) Забытая предобработка:

После окончания рабочего дня перед сном вы вспоминаете лекции по предобработке данных и понимаете, что вы её не сделали...

Реализуйте функцию scale(), принимающую аргумент, содержащий данные, и аргумент mode - тип скейлера (допустимые значения: 'standard', 'minmax', 'maxabs', для других значений необходимо вернуть None в качестве результата выполнения функции, значение по умолчанию - 'standard'), которая обрабатывает данные соответствующим скейлером.

В качестве результата верните полученные после обработки данные.

Выполнение работы

- load_data(train_size) функция загружает встроенный датасет "вино" из библиотеки scikit-learn. Затем она извлекает только первые два признака (X) и целевую переменную (у) из этого датасета. После этого функция разделяет данные на обучающий и тестовый наборы, используя train_test_split. Параметр train_size позволяет настраивать размер обучающего набора.
- train_model(X_train, y_train, n_neighbors, weights) функция создает модель классификатора ближайших соседей (KNeighborsClassifier) из библиотеки scikit-learn. Она обучает модель на переданных обучающих данных (X_train) и соответствующих метках классов (y_train). Параметры n_neighbors и weights позволяют настраивать количество соседей и веса для классификации.
- predict(clf, X_test) функция использует обученную модель (clf), чтобы предсказать метки классов для переданных тестовых данных (X_test) с помощью метода predict
- estimate(res, y_test) функция оценивает точность предсказаний, сравнивая предсказанные метки классов (res) с фактическими метками классов (y test) с помощью метрики ассигасу score.
- scale(data, mode) функция выполняет масштабирование данных в соответствии с выбранным режимом. Она принимает данные (data) и режим масштабирования (mode), который может быть "standard" для стандартизации, "minmax" для мин-макс масштабирования или "maxabs" для масштабирования по максимальной абсолютной величине. Функция возвращает масштабированные данные.

Исследуем работу классификатора, обученного на данных разного размера

значение train_size	0.1	0.3	0.5	0.7	0.9
точность работы	0.379	0.8	0.843	0.815	0.722

Из таблицы видно, что при малых значениях train_size, точность классификатора мала, так как мало данных для тренировки модели. При значение train_size = 0.5 достигается максимальная точность, но при последующем увеличении значения точность снижается, что говорит о том, что слишком много данных для обучения снизят эффективность, и приведут к переобучению модели, и увеличению времени обучения.

Исследуем работу классификатора, обученного с различными значениями n_neighbors

значение n_neighbors	3	5	9	15	25
точность работы	0.861	0.833	0.861	0.861	0.833

Из таблицы видим, что точность работы при различных значениях n_neighbors несильно различается. При значениях 3, 9 и 15 достигается максимальная точность, что означает, что для данного набора данных эти значения наиболее оптимальны.

Исследуем работу классификатора с предобработанными данными

Скейлеры	Точность работы
StandardScaler	0.417
MinMaxScaler	0.417
MaxAbsScaler	0.278

Из таблицы видим, что при использовании StandardScaler и MinMaxScaler точность работы не отличается, а при использовании MaxAbsScaler точность меньше, это говорит о том, что выбор способа масштабирования влияет на точность работы. При данном датасете лучшая точность достигается при StandardScaler и MinMaxScaler.

Тестирование

Результаты тестирования представлены в Таблице 1 Таблица 1 - Результаты тестирования

$N_{\underline{0}}$	Входные данные	Выходные данные	Комментар
п/п			ИИ
1.	X_train, X_test, y_train, y_test = load_data(0.5) clf = train_model(X_train, y_train) res = predict(clf, X_test) est = estimate(res, y_test) print(est)	0.843	-
2.	X_train, X_test, y_train, y_test = load_data(0.5) standard_scaled_x = scale(X_train) clf = train_model(standard_scaled_x, y_train) res = predict(clf, X_test) est = estimate(res, y_test) print(est)	0.371	-

Выводы

В ходе выполнения лабораторной работы были получены навыки анализа данных на языке Python при помощи библиотеки scikit-learn.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
from sklearn import datasets
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score
from sklearn.preprocessing import StandardScaler, MinMaxScaler,
MaxAbsScaler
def load data(train size = 0.8):
    wine = datasets.load wine()
    X = wine.data[:, :2]
    y = wine.target
    X_train, X_test, y_train, y_test = train_test_split(X, y,
train size=train size, random state=42)
    return X train, X test, y train, y test
def train model(X train, y train, n neighbors = 15,
weights='uniform'):
    classifer = KNeighborsClassifier(n neighbors = n neighbors, weights
= weights)
   classifer.fit(X train, y train)
    return classifer
def predict(clf, X test):
    return clf.predict(X test)
def estimate(res, y_test):
    return round(accuracy score(y true=y test, y pred=res), 3)
def scale(data, mode = "standard"):
    if mode == 'standard':
        scaler = StandardScaler()
    elif mode == 'minmax':
        scaler = MinMaxScaler()
    elif mode == 'maxabs':
       scaler = MaxAbsScaler()
    else: return None
    return scaler.fit transform(data)
```