

B38EM Introduction to Electricity and Magnetism

Lecture 1

Dr. Yuan Ding (Heriot-Watt University)
yuan.ding@hw.ac.uk
yding04.wordpress.com

Topics

- Electric charges at rest (electrostatics)
- Steady electric current electrons in motion
- Magnetostatics fields
- Electromagnetic induction

These four topics are known collectively as

'Electromagnetism'

High frequency electromagnetics / microwaves Wireless communications

References & Resources

 Elements of Electromagnetics (7th Edition), by Sadiku, Oxford University Press

Fundamentals of Applied Electromagnetics (7th Edition), by Ulaby and Ravaioli

 Field and Wave Electromagnetics (2nd Edition), by David K. Cheng

•

Electrostatics

electric field, potential diff., capacitance, charge

Magnetostatics

magnetic field, current, inductance, magnetism

Electromagnetics

induction, emf, radiation, EM wave

Electrostatics

Magnetostatics

Electromagnetics

EM Spectrum

3 Hz

100 Mm

Major Applications

- Power generation / transmission (1882)
- Communications wire / broadcast (1884)
- Electronics (1904) Vacuum Tube
- Radar (1940s)
- Computing and Control (1945)
- The transistor (1950s)
- Integrated circuits (1960s)
- Microprocessors (1980s)
- Mobile communications and the Internet (1990s)
- Microwave ovens, wireless power transmission, biomedical applications,

Later in your studies

This course forms a basis for subsequent modules

- transformers, machines, motors, generators
- transmission lines (microstrip, coax, stripline)
- fields and waves
- radar, wireless-communication
- electromagnetic interference, EMI
- electromagnetic compatibility, EMC
- microwave passive devices,
 - antennas, couplers, filters, splitters
- microwave active devices,
 - amplifiers, mixers, detectors MMIC, RFIC

Generator & Motor

Generator

Motor

Electronics & Microelectronics

circuit inductor

on-wafer inductor

comparable size to circuit opposite

Wireless Communications

What causes what?

- Bodies of stationary and isolated electric charges produce electric fields between them, but no magnetic field.
- A **current** carrying conductor will **produce** a **magnetic field** around itself, but no average electric field.
- A time-varying electric current will produce both magnetic and electric fields, this is better known as an electromagnetic field.

system of charges	electric field
direct current carrying conductor	magnetic field
alternating current carrying conductor	electromagnetic field

Assessment Plan

50% Two time-limited in-class Examinations

50% Assignments & Computer labs