# TITLE: Low-Cost 2D LiDAR Using ToF Sensors & Arduino Nano

An Affordable Approach to Environmental Mapping

Team Name: Quantum Quest

### Introduction to LiDAR

Lidar (Light Detection and Ranging) is a technology that uses laser pulses to measure distances to objects.

### Working of Lidar



### Applications of lidar



Autonomous vehicles & drones (Navigation & obstacle detection).



Smart cities (Traffic monitoring & urban planning).



Surveying & mapping (Geospatial data collection)

Challenges with Traditional LiDAR Systems:

1.Expensive

2.High Power Consumption

3.Complex

The Problem Statement?

How can we develop a budget-friendly LiDAR system that provides decent accuracy for applications like robotics and indoor mapping?

#### Solution:

Using ToF Sensor, Stepper Motor and Arduino Nano

- 1.Affordable: ToF sensors cost a fraction of traditional LiDAR systems.
- 2. Power-efficient: Works with a simple Arduino Nano microcontroller.
- 3.Compact & Lightweight: Ideal for small-scale applications.

### Why Use Time-of-Flight (ToF) Sensors for LiDAR?

Time-of-Flight (ToF) sensor measures distance by calculating the time taken for an infrared light pulse to hit an object and return.

| Feature                 | ToF Sensor                         | Ultrasonic Sensor       | Traditional LiDAR                           |
|-------------------------|------------------------------------|-------------------------|---------------------------------------------|
| Accuracy                | Millimeter-level precision         | Centimeter-level        | High (but expensive)                        |
| Speed                   | Fast response time                 | Moderate                | High                                        |
| Cost                    | Affordable                         | Very cheap              | Expensive                                   |
| Power<br>Consumption    | Low                                | Low                     | High                                        |
| Environmental<br>Impact | Works in dark and light conditions | Affected by reflections | Works well but requires powerful processing |

The range of VL53L0X model ToF sensor is approximately 2m

## System Design



### How the 2D LiDAR System Works



### Efficiency

Fast Scanning Rate:

Can scan a full 360° in seconds.

Real-Time Processing:

Data is processed within milliseconds.

• Low Power Consumption:

Runs efficiently on Arduino Nano.

High Accuracy:

Achieves millimeter precision with VL53L0X

### Future Scope & Improvements

### Longer Range ToF Sensors:

Use sensors like TFmini-S (12m range) for better coverage.

#### 3D LiDAR Implementation

Adding vertical scanning for full 3D environment mapping.

#### Wireless Data Transmission

Implementing Wi-Fi/Bluetooth for remote data collection.

### SLAM Integration

Applying Simultaneous Localization and Mapping (SLAM) algorithms for autonomous robots.

### Conclusion

A low-cost ToF-based 2D LiDAR is a viable alternative to expensive commercial systems.

### Thank You!!!

