Bilingual Knowledge and Ensemble Techniques for Portuguese Natural Language Processing Tasks

Ruan Chaves Rodrigues (UFG)*-ruanchaves93@gmail.com Jéssica Rodrigues da Silva (B2W Digital)-jsc.rodrigues@gmail.com Pedro Vitor Quinta de Castro (UFG)*-pedrovitorquinta@inf.ufg.br Nádia Félix Felipe da Silva (UFG)*-nadia@inf.ufg.br Anderson da Silva Soares (UFG)*-anderson@inf.ufg.br

> *: Institute of Computing Federal University of Goias (UFG), Brazil

> > October 15, 2019

Agenda

- Introduction
- Related Work
- Ensemble Architecture
- Experimental Setup
- 6 Results
- 6 Conclusions
- References

Introduction

Motivation:

 State-of-the-art models are often first trained only in English and/or Chinese.

Concept:

- Leverage the knowledge of state-of-the-art models through Automatic Translation
- Combine models trained for Portuguese and English through ensemble techniques

Introduction

Paper count by country at the 2018 NLP conferences [Rei 2019]

Introduction

• GLUE Benchmark Leaderboard [UWNLP 2019]

	Rank	Name	Model	URL	Score
	1	ALBERT-Team Google LanguageALBERT (Ensemble)			89.4
+	2	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)		89.0
	3	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8
	4	Facebook AI	RoBERTa	♂	88.5
	5	XLNet Team	XLNet-Large (ensemble)	♂	88.4
+	6	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6
	7	GLUE Human Baselines	GLUE Human Baselines		87.1

Related Work

 Using Bilingual Knowledge and Ensemble Techniques for Unsupervised Chinese Sentiment Analysis [Wan 2008]

BERT

 Bidirectional Encoder Representations from Transformers [Devlin et al. 2018]

RoBERTa

"(1) training the model longer, with bigger batches, over more data;
 (2) removing the next sentence prediction objective;
 (3) training on longer sequences;
 (4) dynamically changing the masking pattern applied to the training data" [Liu et al. 2019]

Overview

Stage I: Training the MLP

Stage I - Step 1: Translation

Stage I - Step 2: Split the training data into folds

 Stage I - Step 3: Fine tune one model for each possible combination of (n - 1) folds

Stage I - Step 4: Predict scores for every missing fold

Stage I - Step 5: Train a MLP with the predicted scores

Stage II: Produce the model predictions

 Stage II - Step 6: Fine tune a single model for each training set

 Stage II - Step 7: Let each model predict scores for the test set

Stage III: Produce the final predictions

 Stage III - Step 8: Combine both model predictions through the now trained MLP

Stage III - Step 9 (only for entailment): Round up and convert

[None, None, Entailment, Entailment, ..., None]

Experimental Setup

Fine-tuning

- Transformers library (Hugging Face). [HuggingFace 2019]
- RoBERTa: 12 epochs.
- BERT: 4 epochs.
- Only the final layer is considered.
- Ensemble architecture: 5 folds
- The learning rate was adjusted to train the entire ensemble architecture under a single GPU with 8 GB of memory.

Results

Architecture	ASSIN 1 [Propor 2016]		ASSIN 2 [STIL 2019]	
Architecture	Entailment	Similarity	Entailment	Similarity
BERT	* * *	0.79	0.819	0.75
RoBERTa	* * *	0.74	0.884	0.81
Ensemble (5 folds)	* * *	0.82	0.883	0.78

ASSIN 1: Complex sentences, most of which will be lost in translation

The ensemble model will always perform better than each model on its own.

ASSIN 2: Simple sentences, which will be almost perfectly translated

The accuracy of the ensemble will approach the stronger model (RoBERTa) as we increase
the amount of folds

Conclusions

Highlights

- Adaptative ensemble architecture which can produce the best results regardless of the quality of the translation.
- Robust performance across many domains, thanks to the underlying Transformer architecture.
- Open source.

Future work

- Improve on the Multilayer Perceptron.
- Ensemble BERT and BiMPM. [Wang et al. 2019]
- Improve BERT's fine-tuning process with SesameBERT. [Su and Cheng 2019]
- Data augmentation. [Yang et al. 2019]

References I

- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
- HuggingFace (2019). Transformers. https://huggingface.co/transformers/.
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach.
- Propor (2016). Assin 1. http://propor2016.di.fc.ul.pt/?page_id=381.
- Rei, M. (2019). The geographic diversity of nlp conferences. https://web.archive.org/web/20191009171059/http://www.marekrei.com/blog/geographic-diversity-of-nlp-conferences/. Accessed: 2019-10-09.
- STIL (2019). Assin 2. https://sites.google.com/view/assin2/.
- Su, T.-C. and Cheng, H.-C. (2019). Sesamebert: Attention for anywhere.
- UWNLP (2019). Glue benchmark leaderboard. https://gluebenchmark.com/leaderboard/. Accessed: 2019-10-09.
- Wan, X. (2008). Using bilingual knowledge and ensemble techniques for unsupervised chinese sentiment analysis. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP '08, pages 553–561, Stroudsburg, PA, USA. Association for Computational Linguistics.
- Wang, R., Su, H., Wang, C., Ji, K., and Ding, J. (2019). To tune or not to tune? how about the best of both worlds?
- Yang, W., Xie, Y., Tan, L., Xiong, K., Li, M., and Lin, J. (2019). Data augmentation for bert fine-tuning in open-domain question answering.

Acknowledgements

Acknowledgements

AmericasHealth

