Planche nº 1. Structures. Corrigé

Exercice nº 1

Soit $x \in G$. Pour $y \in G$, posons $\sigma_x(y) = xy$. σ_x est une application de G dans lui-même. Ensuite, pour tout $y \in G$, $\sigma_x \circ \sigma_{x^{-1}}(y) = xx^{-1}y = y$ et $\sigma_{x^{-1}} \circ \sigma_x(y) = x^{-1}xy = y$. Donc, $\sigma_x \circ \sigma_{x^{-1}} = \sigma_{x^{-1}} \circ \sigma_x = Id_G$. On sait alors que σ_x est une bijection de G sur lui-même ou encore une permutation de G (et de plus, $(\sigma_x)^{-1} = \sigma_{x^{-1}}$).

Soit $\phi: G \to S(G)$. D'après ce qui précède, ϕ est une application de G vers S(G). $x \mapsto \sigma_x$

Vérifions que ϕ est un morphisme de groupes, du groupe (G, \times) vers le groupe $(S(G), \circ)$. Soit $(x, x') \in G^2$. Pour tout $y \in G$,

$$(\varphi(\mathbf{x} \times \mathbf{x}'))(\mathbf{y}) = \sigma_{\mathbf{x}\mathbf{x}'}(\mathbf{y}) = \mathbf{x}\mathbf{x}'\mathbf{y} = \sigma_{\mathbf{x}} \circ \sigma_{\mathbf{x}'}(\mathbf{y}) = (\varphi(\mathbf{x}) \circ \varphi(\mathbf{x}'))(\mathbf{y})$$

et donc $\varphi(x \times x') = \varphi(x) \circ \varphi(x')$. On a montré que φ est un morphisme du groupe (G, \times) vers le groupe $(S(G), \circ)$.

Montrons que φ est injectif. On note e l'élément neutre de G. Soit $x \in G$.

$$\begin{aligned} x \in \mathrm{Ker}(\phi) &\Rightarrow \phi(x) = Id_G \Rightarrow \forall y \in G, \ xy = y \Rightarrow xe = e \\ &\Rightarrow x = e. \end{aligned}$$

Donc, $Ker(\varphi) = \{e\}$ puis φ est injectif.

On sait alors que $\phi(G)$ est un sous-groupe de $(S(g), \circ)$. De plus, puisque ϕ est un morphisme injectif, ϕ réalise un isomorphisme du groupe (G, \times) sur le groupe $(\phi(G), \circ)$.

Exercice nº 2

- 1) $0 = 0 + 0i \in \mathbb{Z}[i]$. Soit $(z, z') \in (\mathbb{Z}[i])^2$. Posons z = a + ib et z' = a' + ib' où $(a, b, a', b') \in \mathbb{Z}^4$. Alors, $z z' = (a a') + i(b b') \in \mathbb{Z}[i]$ et $z \times z' = (aa' bb') + i(ab' + ba') \in \mathbb{Z}[i]$. Enfin, $1 = 1 + 0i \in \mathbb{Z}[i]$. Donc, $\mathbb{Z}[i]$ est un sous-anneau de l'anneau $(\mathbb{C}, +, \times)$.
- 2) Pour $x \in \mathbb{R}$, on pose $v(x) = \lfloor x \rfloor$ si $\lfloor x \rfloor \leqslant x \leqslant \lfloor x \rfloor + \frac{1}{2}$ et $v(x) = \lfloor x \rfloor + 1$ si $\lfloor x \rfloor + \frac{1}{2} < x < \lfloor x \rfloor + 1$ (où $\lfloor x \rfloor$ est la partie entière du réel x). Pour tout réel x, v(x) est un entier relatif tel que $|x v(x)| \leqslant \frac{1}{2}$.

 $\begin{aligned} & \text{Soit } (z,z') \in \mathbb{Z}[i] \times (\mathbb{Z}[i] \setminus \{0\}). \text{ Soient } a = \nu \left(\operatorname{Re} \left(\frac{z}{z'} \right) \right) \text{ et } b = \nu \left(\operatorname{Im} \left(\frac{z}{z'} \right) \right). \text{ Soient } q = a + ib \text{ puis } r = z - qz'. \text{ Alors, } q \in \mathbb{Z}[i] \text{ puis } r = z - qz' \in \mathbb{Z}[i] \text{ puis } z = qz' + r. \end{aligned}$

Il reste à vérifier que |r| < |z'| ou encore que $\left|\frac{r}{z'}\right| < 1$.

$$\begin{split} \left|\frac{r}{z'}\right| &= \left|\left(\operatorname{Re}\left(\frac{z}{z'}\right) - \alpha\right) + i\left(\operatorname{Im}\left(\frac{z}{z'}\right) - b\right)\right| = \sqrt{\left(\operatorname{Re}\left(\frac{z}{z'}\right) - \alpha\right)^2 + \left(\operatorname{Im}\left(\frac{z}{z'}\right) - b\right)^2} \\ &\leqslant \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{\sqrt{2}} < 1. \end{split}$$

On a montré que pour tout $(z, z') \in \mathbb{Z}[i] \times (\mathbb{Z}[i] \setminus \{0\})$, il existe $(q, r) \in (\mathbb{Z}[i])^2$ tel que z = qz' + r et |r| < |z'| (division euclidienne dans l'anneau des entiers de GAUSS).

3) Soit $z_0 \in \mathbb{Z}[I]$. Soit $I = z_0\mathbb{Z}[i] = \{z_0z, z \in \mathbb{Z}[i]\}$. Redémontrons que I est un idéal de l'anneau ($\mathbb{Z}[i], +, \times$) (idéal principal engendré par z_0).

 $0 = z_0 \times (0 + 0i) \in I$. Soit $(z, z') \in (\mathbb{Z}[i])^2$. $z_0 z - z_0 z' = z_0 (z - z') \in I$ car $z - z' \in \mathbb{Z}[i]$. Enfin, pour $(z, z') \in \mathbb{Z}[i])^2$, $(z_0 z) z' = z_0 (zz') \in I$ car $zz' \in \mathbb{Z}[i]$.

Vérifions que maintenant que tout idéal de l'anneau ($\mathbb{Z}[i], +, \times$) est principal. Si $I = \{0\}$, alors $I = 0 \times \mathbb{Z}[i]$ est principal.

Dorénavant, I est un idéal non réduit à $\{0\}$ de l'anneau ($\mathbb{Z}[i], +, \times$). Soit $z \in I \setminus \{0\}$. Posons z = a + ib où $(a, b) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$. L'ensemble $\mathscr{D} = \left\{a' + ib' \in I/0 < \sqrt{a'^2 + b'^2} \leqslant \sqrt{a^2 + b^2}\right\}$ est non vide et fini (de cardinal inférieur ou égal à $(2|a|+1) \times (2|b|+1)$). Il existe donc un élément z_0 de \mathscr{D} de plus petit module. Par construction, $z_0 \neq 0$, $z_0 \in I$ et

le module de z_0 est inférieur ou égal au module de tout élément de I (que ce module soit inférieur ou égal ou strictement supérieur à $\sqrt{a^2 + b^2}$).

Montrons que $I = z_0 \mathbb{Z}[i]$. D'une part, pour tout $z \in \mathbb{Z}[i]$, $z_0 z \in I$ puisque $z_0 \in I$ et par définition d'un idéal. Donc, $z_0 \mathbb{Z}[i] \subset I$.

Inversement, soit $z \in I$. D'après la question 2), puisque $z_0 \neq 0$, il existe $(q,r) \in (\mathbb{Z}[\mathfrak{i}])^2$ tel que $z = qz_0 + r$ et $|r| < |z_0|$. Mais $r = z - qz_0$ est dans I et donc r = 0 par définition de z_0 . Par suite, $z = qz_0 \in z_0\mathbb{Z}[\mathfrak{i}]$. Ceci montre que $I \subset z_0\mathbb{Z}[\mathfrak{i}]$ et finalement que $I = z_0\mathbb{Z}[\mathfrak{i}]$.

On a montré que tout idéal de l'anneau ($\mathbb{Z}[i], +, \times$) est principal et donc que l'anneau ($\mathbb{Z}[i], +, \times$) est principal.

Exercice nº 3

- 1) Soit $z \in \mathbb{C}$. z est un élément d'ordre fini du groupe $(\mathbb{C}, +)$ si et seulement si il existe $n \in \mathbb{N}^*$ tel que nz = 0. Ceci équivaut à z = 0.
- 2) Soit $z \in \mathbb{C}$. z est un élément d'ordre fini du groupe (\mathbb{C}^*, \times) si et seulement si il existe $\mathfrak{n} \in \mathbb{N}^*$ tel que $z^{\mathfrak{n}} = 1$. Les éléments d'ordre fini du groupe (\mathbb{C}^*, \times) sont les racines \mathfrak{n} -èmes de l'unité pour $\mathfrak{n} \in \mathbb{N}^*$.

L'ensemble de ces nombres est $\bigcup_{n \in \mathbb{N}^*} U_n$ (et n'est pas U).

Exercice nº 4

On note e l'élément neutre de G. Soit $x \in G$. On sait que l'ordre de x divise le cardinal de G. Puisque card(G) est un nombre impair, l'ordre de x est un nombre impair. Notons donc 2p+1, $p \in \mathbb{N}$, l'ordre de x. Alors, $x^{2p+1} = e$ puis $x^{2p+2} = x$ ou encore $x = (x^{p+1})^2 = f(x^{p+1})$.

Ainsi, pour tout $x \in G$, il existe $x' \in G$ tel que f(x') = x. Donc, f est surjective. f est surjective de l'ensemble fini G sur lui-même et donc f est bijective.

Ainsi, par exemple, si $G = U_{2p+1}$ est le groupe des racines 2p + 1-èmes de l'unité dans \mathbb{C} , si deux racines 2p + 1-èmes de l'unité ont le même carré, alors elles sont égales (ce n'est par exemple par le cas dans U_4 puisque $(-i)^2 = i^2 = -1$) et toute racine 2p + 1-ème de l'unité est le carré d'une racine 2p + 1-ème de l'unité.

Exercice nº 5

1) Soient $(x,y) \in A^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. $f_{\alpha}(\lambda x + \mu y) = a(\lambda x + \mu y) = \lambda a x + \mu a y = \lambda f_{\alpha}(x) + \mu f_{\alpha}(y)$. Donc, $f_{\alpha} \in \mathcal{L}(A)$. Soit $\alpha \in A \setminus \{0\}$. Pour $x \in A$,

$$x \in \text{Ker}(f_\alpha) \Rightarrow \alpha x = 0 \Rightarrow x = 0 \text{ (car l'algèbre } (A, +, ., \times) \text{ est intègre)}.$$

Donc, $\operatorname{Ker}(f_{\mathfrak{a}})=\{0\}$ puis $f_{\mathfrak{a}}\in GL(A)$ car $\dim(A)<+\infty$. En particulier, il existe $\mathfrak{a}'\in A$ tel que $\mathfrak{a}\mathfrak{a}'=f_{\mathfrak{a}}(\mathfrak{a}')=1$. \mathfrak{a} est donc inversible à droite dans l'algèbre $(A,+,,\times)$. De même, \mathfrak{a} est inversible à gauche. Soit \mathfrak{a}'' son inverse à gauche. Alors, $\mathfrak{a}''=\mathfrak{a}''\mathfrak{a}\mathfrak{a}'=\mathfrak{a}'$ et donc \mathfrak{a} est inversible pour \times .

D'autre part, si a=0, a n'est pas inversible pour \times (car 0 est absorbant pour \times et donc, pour tout $x\in A, 0\times x\neq 1$). On a montré que : $\forall a\in A, a$ inversible pour \times si et seulement si $a\neq 0$. Mais alors, $(A,+,\times)$ est un corps.

- $\textbf{2) a)} \ \operatorname{Soit} \ \mathfrak{n} = \dim_{\mathbb{R}}(A) \ (\mathfrak{n} \in \mathbb{N} \setminus \{0,1\}). \ \operatorname{La \ famille} \ \left(\alpha^k\right)_{0 \leqslant k \leqslant \mathfrak{n}} \ \operatorname{est \ de \ cardinal} \ \mathfrak{n} + 1 > \mathfrak{n} = \dim(A). \ \operatorname{Donc}, \ \operatorname{la \ famille} \ \left(\alpha^k\right)_{0 \leqslant k \leqslant \mathfrak{n}} \ \operatorname{est \ liée}. \ \operatorname{On \ en \ d\'eduit} \ \operatorname{qu\'eil} \ \operatorname{existe} \ (\lambda_0, \ldots, \lambda_n) \in \mathbb{R}^{n+1} \ \operatorname{tel \ que} \ (\lambda_0, \ldots, \lambda_n) \neq (0, \ldots, 0) \ \operatorname{et} \ \lambda_n \alpha^n + \ldots + \lambda_1 \alpha + \lambda_0 = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{existed} \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, 0) \ \operatorname{que} \ (\lambda_0, \ldots, \lambda_n) = (0, \ldots, \lambda$
- 0. Le polynôme $P_0 = \sum_{k=0}^n \lambda_k X^k$ est un polynôme non nul tel que $P_0(\alpha) = 0$.
- b) Soit $I = \{P \in \mathbb{K}[X]/\ P(\alpha) = 0\}$. Montrons que I est un idéal de l'anneau $(\mathbb{R}[X], +\infty)$. $0 \in I$ puis si $(P,Q) \in I^2$, $(P-Q)(\alpha) = P(\alpha) Q(\alpha) = 0$ et donc $P-Q \in I$. Soit $(P,Q) \in \mathbb{R}[X] \times I$. $(PQ)(\alpha) = P(\alpha) \times Q(\alpha) = P(\alpha) \times 0 = 0$ et donc $PQ \in I^2$. I est donc un idéal de l'anneau $(\mathbb{R}[X], +, \times)$.

Puisque l'anneau ($\mathbb{R}[X], +, \times$) est un anneau principal, I est un idéal principal de cet anneau. Plus précisément, puisque $I \neq \{0\}$ d'après la question a), on sait qu'il existe un polynôme unitaire $\mu_{\mathfrak{a}}$ et un seul tel que $I = \mu_{\mathfrak{a}} \mathbb{R}[X]$. $\mu_{\mathfrak{a}}$ est le polynôme minimal de \mathfrak{a} .

- c) Soit $(P,Q) \in (\mathbb{R}[X])^2$ tel que $\mu_{\alpha} = P \times Q$. Alors $P(\alpha)Q(\alpha) = \mu_{\alpha}(\alpha) = 0$ et donc $P(\alpha) = 0$ ou $Q(\alpha) = 0$ car l'anneau $(A,+,\times)$ est intègre. Donc, $P \in I \setminus \{0\}$ ou $Q \in I \setminus \{0\}$ (car $P \times Q = \mu_{\alpha} \neq 0$). Mais alors, $\deg(P) \geqslant \deg(\mu_{\alpha})$ ou $\deg(Q) \geqslant \deg(\mu_{\alpha})$. Ceci montre que μ_{α} est irréductible sur $\mathbb{R}[X]$.
- 3) Soit $\alpha \in A \setminus (\mathrm{Vect}(1))$ (α existe car $\dim(A) \geqslant 2$). μ_{α} est irréductible sur $\mathbb{R}[X]$. Donc, μ_{α} est de degré 1 ou 2. $\deg(\mu_{\alpha}) = 1$ fournit $\mu_{\alpha} = X \alpha$ et en particulier $\alpha \in \mathbb{R} = \mathrm{Vect}(1)$ ce qui est faux. Donc, $\deg(\mu_{\alpha}) = 2$ puis il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\mu_{\alpha} = X^2 + \alpha X + \beta$ avec $\alpha^2 4\beta < 0$. Ceci fournit en particulier $\alpha^2 + \alpha \alpha + \beta = 0$ puis $\left(\alpha + \frac{\alpha}{2}\right)^2 = -\frac{4\beta \alpha^2}{4}$ puis

 $\left(\frac{2\alpha+\alpha}{\sqrt{4\beta-\alpha^2}}\right)^2=-1. \text{ Soit } \alpha_0=\frac{2\alpha+\alpha}{\sqrt{4\beta-\alpha^2}}. \ \alpha_0 \text{ est un \'el\'ement de A tel que } \alpha_0^2=-1. \text{ De plus, } \alpha_0\notin \text{Vect}(1) \text{ car aucun \'el\'ement de Vect}(1) \text{ n'a un carr\'e\'egal \`a}-1 \text{ et donc la famille } (1,\alpha_0) \text{ est libre.}$

Soit $b \in A$. Si $b \in \operatorname{Vect}(1)$, alors $b \in \operatorname{Vect}(1, \alpha_0)$. Sinon $b \in A \setminus \operatorname{Vect}(1)$. Comme précédemment, il existe $(\alpha', \beta') \in \mathbb{R}^2$ tel que on construit $\alpha'^2 - 4\beta' < 0$ et $b^2 + \alpha'b + \beta' = 0$ puis $b_0 = \frac{2b + \alpha'}{\sqrt{4\beta' - \alpha'^2}}$ est un élément de A tel que $b_0^2 = -1$. Mais alors, $a_0^2 = b_0^2$ puis $(b_0 + a_0)$ $(b_0 - a_0) = 0$ et donc $b_0 = a_0$ ou $b_0 = -a_0$ car l'anneau $(A, +, \times)$ est intègre. Dans, tous les cas, $b_0 \in \operatorname{Vect}(1, \alpha_0)$ puis $b = \frac{1}{2} \left(-\alpha' + \sqrt{4\beta' - \alpha'^2} b_0 \right) \in \operatorname{Vect}(1, b_0) \subset \operatorname{Vect}(1, \alpha_0)$.

Ceci montre que $A = \mathrm{Vect}\,(1,\alpha_0) = \left\{x + \alpha_0 y,\; (x,y) \in \mathbb{R}^2\right\}$ puis que $\dim(A) = 2$ car $(1,\alpha_0)$ est une base de A. Puisque $\alpha_0^2 = -1$, il est immédiat que l'application $\phi: \mathbb{C} \to A$ est un isomorphisme d'algèbres. $x + iy \mapsto x + \alpha_0 y$

Exercice n° 6 On note e l'élément neutre du groupe (G, \times) .

 $(1) \Rightarrow (4)$. Supposons que HK soit un sous-groupe de (G, \times) .

Soit $(h, k) \in H \times K$. On a $kh = (h^{-1}k^{-1})^{-1}$. Mais $h^{-1} \in H$ et $k^{-1} \in K$ puis $h^{-1}k^{-1} \in HK$ puis $(h^{-1}k^{-1})^{-1} \in HK$ car HK est un sous-groupe. Ainsi, pour tout $(h, k) \in H \times K$, $kh \in HK$. Ceci montre que $KH \subset HK$.

 $(4) \Rightarrow (1)$. Supposons que $KH \subset HK$. e est dans H et e est dans K et donc $e = e \times e \in HK$. Soit $(h,k,h',k') \in H \times K \times H \times K$. $(hk) \times (h'k')^{-1} = hkk'^{-1}h'^{-1}$. Ensuite, k'^{-1} est dans K et h'^{-1} est dans H. Donc, $kk'^{-1}h'^{-1}$ est dans $KH \subset HK$ puis il existe $(h'',k'') \in H \times K$ tel que $kk'^{-1}h'^{-1} = h''k''$. Mais alors,

$$(hk) \times (h'k')^{-1} = (hh'')k'' \in HK.$$

Ceci montre que HK est un sous-groupe de (G, \times) .

On a montré que $(1) \Leftrightarrow (4)$. En échangeant les rôles de H et K, on a aussi $(2) \Leftrightarrow (3)$.

 $(3) \Rightarrow (4)$. Supposons $HK \subset KH$. Soit $(h,k) \in H \times K$. $(kh)^{-1} = h^{-1}k^{-1}$ est dans HK et donc dans KH. Mais alors, $kh = \left((kh)^{-1}\right)^{-1}$ est dans HK. Ceci montre que $KH \subset HK$. En échangeant les rôles H et K, on a aussi $(4) \Rightarrow (3)$ et finalement, $(3) \Leftrightarrow (4)$.

On a montré que $(1) \Leftrightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$.

Exercice nº 7

Par hypothèse, il existe $n \in \mathbb{N}^*$ tel que $(xy)^n = 0$. Mais alors, $(yx)^{n+1} = y(xy)^n x = 0$ et donc yx est nilpotent.

Exercice nº 8

Si I = A, alors $1 \in I$. Inversement, si $1 \in I$, alors pour tout $a \in A$, $a = 1 \times a \in I$ et donc $A \subset I$ puis A = I.

Exercice nº 9

Exercice nº 10

Exercice nº 11

Exercice nº 12