3	Prove that the problem associated with language A_{TM} defined below is undecidable. You are given that HALT = {< M , w >: M is a Turing machine and M halts on w } is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L_3 is defined as $A_{TM} = \{ < M, w > : M \text{ is a TM that accepts } w \}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value.
Proc	<u>of</u>
Opti	onal: $\overline{L3}$ =
We '	will use a mapping reduction to prove the reduction
	$HALT.$ \leq $A_TM.$
Assı	ume that A_{TM} <u>.</u> is decidable.
The	transition function f that maps instances of HALT to instances of
. A _T	M is given by TM F given by the following pseudocode.
1.	'On input < M, w
elen So,	$a_1, < \ldots$.N, a_2, \ldots is an element of A_{TM} iff < M,w $a_2 > a_2 > a_2$
The	refore, . A_{TM} . a_1 is undecidable. (This also means that the complement of a_{TM} a_1 is undecidable; the complement of any undecidable language is itself undecidable.)

3	Prove that the problem associated with language L_3 defined below is undecidable. You are given that HALT = {< M , w >: M is a Turing machine and M halts on w } is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L_3 is defined as $L_3 = \{ < M > : M \text{ is a Turing machine and } \mathcal{L}(M) \ge 5, \text{ i.e. } M \text{ accepts at least five words} \}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value.
Note	, $\mathcal{L}(M)$ is a well-known notation to describe the set of words recognised by machine M.
Proo	<u>f</u>
Optio	onal: L3 =
	vill use a mapping reduction to prove the reduction
Н	ALT≤L3
Assu	ıme that L3 $_{1}$ is decidable.
The	transition function f that maps instances of HALT to instances of . L3 is given
by TI	M F given by the following pseudocode.
1.	On input $<$
elem So, u HA Ther	$_{1}$, < N $_{3}$ > is an element of L3 iff < M , w $_{2}$ > is an ent of HALT using f and the assumption that L3 $_{1}$ is decidable, we can decide LT A contradiction. efore, L3 $_{1}$ is undecidable. (This also means that the complement of .L3 $_{1}$ is undecidable; the complement of any undecidable language is itself ecidable.)

3	Prove that the problem associated with language L_3 defined below is undecidable. You are given that HALT = {< M , w >: M is a Turing machine and M halts on w } is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L_3 is defined as $L_3 = \{ < M, a, b > : M \text{ is a Java program, } a \text{ and } b \text{ are integer variables declared in } M, and when M is run, a and b have the same value at least once\}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value.
<u>Proc</u>	<u>of</u>
Opti	onal: $\overline{L3}$ =
We '	will use a mapping reduction to prove the reduction
⊢	IALT≤L3
Assı	ume thatL3 <u>ı</u> is decidable.
The	transition function f that maps instances ofHALT to instances ofL3 is
give	n by TM F given by the following pseudocode.
F = '	'On input < <i>M</i> , <i>w</i> ₂ >:
	Construct the following <i>N</i> given by the following pseudocode.
	<i>N</i> = "void main(void) {
	int x=5, y=6;
	Run <i>M</i> on <i>w</i> ;
	X++;
	}
2.	Output < N, x, y $_{3}$ >."
	$x_1, is an element of L3 iff is an element of HALT$
So,	using f and the assumption that L3 $_{ exttt{1}}$ is decidable, we can decide
. H <i>A</i>	ALT A contradiction.
The	refore, L3 $_{ extstyle 1}$ is undecidable. (This also means that the complement of
	.L3 $_{1}$ is undecidable; the complement of any undecidable language is itself ecidable.)

3	Prove that the problem associated with language L_3 defined below is undecidable. You are given that HALT = $\{: M \text{ is a Turing machine and } M \text{ halts on } w\}$ is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L_3 is defined as $L_3 = \{ < M, q > : M \text{ is a TM that never goes into state } q \text{ when } M \text{ is run} \}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value.
Proc	<u>of</u>
We v	onal: \overline{L}_3 = {< M , q >: M is a TM that when run goes into state q at least once}will use a mapping reduction to prove the reduction HALT \leq \overline{L}_3
Assı	ume that $.\overline{L}_3$ 1 is decidable.
	transition function f that maps instances of HALT to instances of \overline{L}_3 is n by TM F given by the following pseudocode.
F = '	'On input < <i>M</i> , <i>w</i> <u>2</u> >:
1.	Construct the following <i>N</i> given by the following pseudocode.
	N = "On any input:
	Let q be some state not in \emph{M}
	Run <i>M</i> on <i>w</i>
	Go into state q
2.	Output < <i>N</i> , <i>q</i> ₃ >."
	L_1 , < N , q L_3 is an element of \overline{L}_3 iff < M , w L_2 is an element .HALT
	using f and the assumption that \overline{L}_3 $_1$ is decidable, we can decide ALT A contradiction.
Ther	refore, \overline{L}_3 $\mathbf{_1}$ is undecidable. (This also means that the complement of
	\overline{L}_3 $_1$ is undecidable; the complement of any undecidable language is itself ecidable.)

3	Prove that the problem associated with language L_3 defined below is undecidable. You are given that HALT = {< M , w >: M is a Turing machine and M halts on w } is undecidable. Use the template provided to perform a mapping reduction. You must give your answer on this exam question sheet.
	The language L_3 is defined as $L_3 = \{ \langle J, i \rangle : J \text{ is a Java program and } i \text{ is a nonnegative integer, and when } J \text{ is run it never executes line number } i \}.$
	Note, in the template below, some blanks have a small subscript number. Blanks with the same subscript number must have the same value.
Prod	<u>of</u>
	<i>ional:</i> $\overline{L}_3 = \{ \langle J, i \rangle : J \text{ is a Java program and } i \text{ is a nonnegative integer, and when } J \text{ is run it cutes line number } i \text{ at least once} \}$
We	will use a mapping reduction to prove the reduction
	$HALT \leq \overline{L}_3$
	ume that \overline{L}_3 <u>1</u> is decidable.
	transition function f that maps instances of HALT to instances of \overline{L}_3 is
give	n by TM <i>F</i> given by the following pseudocode.
F =	"On input < <i>M</i> , <i>w</i> ₂ >:
1.	. Construct the following N given by the following pseudocode.
	$N = ".0: .void main(void) { (line number 0)$
	1: Run <i>M</i> on <i>w</i> (line number 1)
	2: int $x = 10$; (line number 2)
	3: } (line number 3)
2	
	I_1 , <n, <math="">I_1I_2> is an element of \overline{L}_3 iff < M, $w$$I_2$> is an element ofT</n,>
So,	using f and the assumption that \overline{L}_3 1 is decidable, we can decide
	HALT A contradiction.

Therefore, . . $\overline{L}_{3\cdot}$ $_{1}$ is undecidable. (This also means that the complement of

. . \overline{L}_3 $_1$ is undecidable; the complement of any undecidable language is itself undecidable.)