	Signal		Atmos. ν_{μ}		Atmos. ν_{μ} (LE)		Atmos. μ		Total Bkg	
	Rate [Hz]	Shift (%)	Rate [Hz]	Shift (%)	Rate [Hz]	Shift (%)	Rate [Hz]	Shift (%)	Rate [Hz]	Shift (%)
sig m 10 c 2ovr3 0.23	6.79×10^{-7}	22.87	2.64×10^{-7}	103.60	2.33×10^{-7}	91.82	3.39×10^{-7}	63.77	6.47×10^{-7}	92.32
sig_m_100_c_2ovr3_0.23	1.3×10^{-6}	17.03	2.23×10^{-7}	88.89	8.53×10^{-8}	137.36	3.46×10^{-7}	58.74	3.85×10^{-7}	130.31
sig_m_1000_c_2ovr3_0.23	1.23×10^{-6}	19.76	2.57×10^{-7}	72.50	9.16×10^{-8}	85.28	3.36×10^{-7}	65.41	4.44×10^{-7}	111.91
sig_m_10000_c_2ovr3_0.23	1.04×10^{-6}	24.98	2.18×10^{-7}	104.24	6.73×10^{-8}	98.96	2.75×10^{-7}	0.94	3.41×10^{-7}	134.62
sig_m_100000_c_2ovr3_0.23	1.02×10^{-6}	15.69	2.6×10^{-7}	83.42	7.91×10^{-8}	178.15	3.69×10^{-7}	51.51	3.84×10^{-7}	199.81
sig_m_10_c_1ovr2_0.25	1.24×10^{-6}	21.56	5.94×10^{-8}	216.12	8.84×10^{-8}	81.99	3.34×10^{-7}	66.40	3.42×10^{-7}	124.68
sig_m_100_c_1ovr2_0.25	2.17×10^{-6}	18.44	6.82×10^{-8}	157.14	6.49×10^{-8}	72.30	3.52×10^{-7}	136.34	4.15×10^{-7}	134.54
sig_m_1000_c_1ovr2_0.25	2.3×10^{-6}	16.31	9.67×10^{-8}	136.25	8.02×10^{-8}	87.96	3.21×10^{-7}	159.80	4.15×10^{-7}	162.61
sig_m_10000_c_1ovr2_0.25	2.4×10^{-6}	14.54	1.02×10^{-7}	73.69	1.02×10^{-7}	89.73	3.57×10^{-7}	211.62	4.25×10^{-7}	206.07
sig_m_100000_c_1ovr2_0.25	2.26×10^{-6}	18.70	1.2×10^{-7}	135.36	9.12×10^{-8}	86.21	4.37×10^{-7}	218.44	6.05×10^{-7}	180.23
sig_m_10_c_1ovr3_0.25	6.71×10^{-7}	19.49	1.93×10^{-8}	176.65	6.26×10^{-8}	67.85	3.46×10^{-7}	142.03	3.38×10^{-7}	180.60
sig_m_100_c_1ovr3_0.25	9.15×10^{-7}	16.06	4.11×10^{-8}	225.58	1.1×10^{-7}	101.01	5.06×10^{-7}	174.77	6.07×10^{-7}	148.64
sig_m_1000_c_1ovr3_0.25	9.15×10^{-7}	19.71	2.47×10^{-8}	166.99	7.33×10^{-8}	90.97	4.01×10^{-7}	108.33	4.43×10^{-7}	127.59
sig_m_10000_c_1ovr3_0.25	1.03×10^{-6}	18.21	4.14×10^{-8}	150.03	8.86×10^{-8}	121.10	5.75×10^{-7}	190.25	6.25×10^{-7}	209.91
sig_m_100000_c_1ovr3_0.25	1.27×10^{-6}	18.22	9.18×10^{-8}	96.81	1.54×10^{-7}	146.92	7.74×10^{-7}	223.60	9.58×10^{-7}	220.00
sig_m_10_c_1ovr2_0.32	4.74×10^{-7}	59.82	4.69×10^{-9}	729.98	1.16×10^{-8}	176.31	N/A	nan	1.58×10^{-8}	348.43
sig_m_100_c_1ovr2_0.32	9.89×10^{-7}	55.52	5.99×10^{-9}	265.48	9.92×10^{-9}	197.55	N/A	nan	3.09×10^{-8}	891.87
sig_m_1000_c_1ovr2_0.32	1.11×10^{-6}	42.05	9.29×10^{-9}	233.19	1.22×10^{-8}	121.11	N/A	nan	4.36×10^{-8}	605.01
sig_m_10000_c_1ovr2_0.32	1.18×10^{-6}	36.71	1.17×10^{-8}	269.80	1.34×10^{-8}	135.27	N/A	nan	2.49×10^{-8}	175.69
sig_m_100000_c_1ovr2_0.32	1.08×10^{-6}	52.49	1.71×10^{-8}	313.94	1.21×10^{-8}	142.47	N/A	nan	4.46×10^{-8}	640.66
sig_m_10_c_1ovr3_0.32	3.0×10^{-7}	39.61	1.04×10^{-9}	488.22	7.26×10^{-9}	143.94	N/A	nan	7.1×10^{-9}	211.42
sig_m_100_c_1ovr3_0.32	5.0×10^{-7}	32.90	4.19×10^{-9}	636.46	1.49×10^{-8}	150.70	N/A	nan	1.9×10^{-8}	250.75
sig_m_1000_c_1ovr3_0.32	4.41×10^{-7}	40.87	1.65×10^{-9}	323.81	9.99×10^{-9}	184.28	N/A	nan	1.14×10^{-8}	175.13
sig_m_10000_c_1ovr3_0.32	5.39×10^{-7}	40.77	5.19×10^{-9}	821.54	1.24×10^{-8}	215.85	2.78×10^{-7}	0.49	4.49×10^{-8}	649.76
sig_m_100000_c_1ovr3_0.32	7.17×10^{-7}	35.64	1.43×10^{-8}	289.86	2.27×10^{-8}	163.16	N/A	nan	4.26×10^{-8}	630.35
sig_m_10_c_2ovr3_0.3	2.24×10^{-7}	54.83	2.1×10^{-8}	180.19	2.14×10^{-8}	225.97	N/A	nan	4.2×10^{-8}	208.49
sig_m_100_c_2ovr3_0.3	4.98×10^{-7}	52.51	2.42×10^{-8}	251.82	7.31×10^{-9}	147.06	N/A	nan	3.16×10^{-8}	199.87
sig_m_1000_c_2ovr3_0.3	5.19×10^{-7}	61.87	3.37×10^{-8}	144.05	9.35×10^{-9}	165.67	N/A	nan	4.79×10^{-8}	509.84
sig_m_10000_c_2ovr3_0.3	3.87×10^{-7}	72.07	2.55×10^{-8}	231.61	8.6×10^{-9}	135.69	N/A	nan	3.33×10^{-8}	192.23
sig_m_100000_c_2ovr3_0.3	4.23×10^{-7}	43.57	3.16×10^{-8}	159.94	8.48×10^{-9}	210.82	N/A	nan	3.96×10^{-8}	132.35