

Xingliang Fang

Opportunities and requirements for small-to-medium scale energy flexibility management solutions in various power market regimes

Master Thesis PSL1226

EEH – Power Systems Laboratory, ETH Zurich Corporate Strategy Office , Landis+Gyr

Examiner: Prof. Dr. Gabriela Hug Supervisor: Dr. Donnacha Daly (Landis+Gyr), Jun Xing Chin

Zurich, November 24, 2017

Abstract

Acknowledgements

Contents

Lis	st of Acronyms	ix
List of Symbols		
1	Introduction	1
2	Model Decription 2.1 Input Model	3 3 3 3 4
3	Simulation Environment	5
4	System setup and component modeling	7
5	Simulation results	9
6	Sensitivity analysis	11
7	Real-time price control	13
8	Conclusions and outlook	15
\mathbf{A}	Model parameters	17
В	System state, input and disturbance	19
\mathbf{C}	Comparison between radiator and heat pump	21
D	EWH analysis	23
E	Results of real-time price control	25

viii *CONTENTS*

List of Acronyms

x CONTENTS

List of Symbols

xii *CONTENTS*

Introduction

Model Decription

- 2.1 Input Model
- 2.1.1 Renewable
- 2.2 Optimization
- 2.2.1 Objective Function

$$\begin{aligned} \underset{d_t^{DA}, c_t^{DA}, d_t^{RT}, c_T^{RT}, r_t}{\text{maximize}} & \sum_{t}^{t \in T} \text{Revenue}_t \\ &= [p_t^{DA}(d_t^{DA} - c_t^{DA}) + p_t^{RT}(d_t^{RT} - c_t^{RT}) + (p_t^r + p_t^{RU}\delta_t^{RU} - p_t^{RD}\delta_t^{RD})r_t]\Delta t \end{aligned}$$

Aggregators/ Neural Traders - Arbitrage

$$Revenue_t = p_t * (d_t - c_t) * \Delta t$$

Generators - Increased revenue

$$Revenue_t$$

$$= [p_t * (g_t + d_t - c_t) - p_t * g_t] * \Delta t$$

$$= p_t * (d_t - c_t) * \Delta t$$

 $\bf Retailer$ - Reduced cost

Revenue_t

$$= [p_t * l_t - p_t * (l_t - d_t + c_t)] * \Delta t$$

$$= p_t * (d_t - c_t) * \Delta t$$

2.2.2 Constraints

Energy Storage Systems (ES)

$$\begin{split} S_{t} &= \eta_{s} S_{t-1} + [\eta_{c} (c_{t}^{DA} + c_{t}^{RT} + \delta_{t}^{RD} r_{t}) - \eta_{d} (d_{t}^{DA} + d_{t}^{RT} + \delta_{t}^{RU} r_{t})] \Delta t \\ d_{t}^{DA} &+ d_{t}^{RT} + \delta_{t}^{RU} r_{t} \leq d_{t}^{max} \\ c_{t}^{DA} &+ c_{t}^{RT} + \delta_{t}^{RD} r_{t} \leq c_{t}^{max} \\ \delta_{r} r_{t} \Delta t \leq S_{t} \leq S_{t}^{max} - \delta_{r} r_{t} \Delta t \\ d_{t}^{DA}, c_{t}^{DA}, d_{t}^{RT}, c_{t}^{RT}, r_{t} \geq 0 \\ \forall t \in [1, 2, ..., T] \end{split}$$

Simulation Environment

System setup and component modeling

Simulation results

Sensitivity analysis

Real-time price control

Conclusions and outlook

Appendix A Model parameters

Appendix B

System state, input and disturbance

Appendix C

Comparison between radiator and heat pump

$22APPENDIX\ C.\ COMPARISON\ BETWEEN\ RADIATOR\ AND\ HEAT\ PUMP$

Appendix D

EWH analysis

Appendix E

Results of real-time price control