Pravděpodobnost a statistika - zkoušková písemka 13.6.2019

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. K obvodnímu lékaři přijde během jeho ordinačních hodin 7:00-11:00 a 12:00-14:00 průměrně 18 pacientů (předpokládejme, že v uvedenou dobu není žádný čas preferovaný a pacienti přicházejí nezávisle na sobě), přičemž průměrně každý šestý pacient má alergii. Určete pravděpodobnost, že

- a) na prvního pacienta bude lékař čekat alespoň 40 minut,
- b) do 8:00 přijdou maximálně dva pacienti,
- c) do 8:00 přijdou maximálně dva pacienti a žádný z nich nebude mít alergii,
- d) během odpoledne přijdou alespoň dva pacienti s alergií,
- e) nejpozději čtvrtý příchozí pacient bude mít alergii,
- f) mezi 45 příchozími pacienty bude alespoň deset pacientů s alergií (použijte CLV).

Úloha 2. Sdružené pravděpodobnosti náhodných veličin X a Y jsou dány následující tabulkou:

	X = -1	X = 0	X = 1
Y = -1	1/8	1/8	1/8
Y = 0	1/8	0	1/8
Y=1	1/8	1/8	1/8

- a) Spočtěte cov(X, Y).
- b) Rozhodněte, zda jsou náhodné veličiny X a Y nezávislé, a své rozhodnutí matematicky řádně zdůvodněte.
- c) Jsou-li X a Y nezávislé, určete sdružené rozdělení (tj. tabulku sdružených pravděpodobností) náhodného vektoru (U, V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom U a V nezávislé nejsou.
 Pokud X a Y nezávislé nejsou, určete sdružené rozdělení náhodného vektoru (U, V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom U a V nezávislé jsou.
- d) Spočtěte P(X + Y = 0) a $P(X \le 0 | Y \ge 0)$.

Úloha 3. Na úvodním kurzu potápění se nově zapsaní účastníci pokoušeli potopit co nejníže bez dýchacího přístroje. Naměřené hloubky (v m) jsou uvedeny v následující tabulce:

- a) Nakreslete histogram a odhadněte z něj, jaké rozdělení má náhodná veličina udávající hloubku potopení náhodně vybraného účastníka kurzu.
- b) Spočtěte výběrový průměr a výběrový rozptyl těchto dat. (hint: $\sum x_i = 50.7$, $\sum (x_i \bar{x})^2 \doteq 6$)
- c) Statisticky otestujte na hladině 5%, zda je možné říct, že střední hloubka potopení náhodně vybraného účastníka je 4m.

Úloha 4. Tenistka si na zápasy bere červený, nebo černý dres. Byly pozorovány následné počty výher a proher v těchto dresech:

dres \ výsledek	výhra	prohra
červený	50	10
černý	30	10

- a) Statisticky otestujte na hladině 5%, zda je výsledek utkání závislý na volbě dresu.
- b) Statisticky otestujte na hladině 1%, zda si tenistka dresy vybírá náhodně nebo má některý z nich oblíbenější.
- c) Odhadněte z dat marginální rozdělení složek náhodného vektoru (X,Y), kde X popisuje výsledek zápasu (pokud vyhraje, pak X=1, jinak X=0) a Y popisuje barvu dresu (Y=1 pro červený dres a Y=2 pro černý).
- d) S využitím výsledku z příkladu c) spočtěte pravděpodobnost, že
 - (i) v následujících pěti utkáních tenistka vyhraje alespoň čtyřikrát,
 - (ii) v následujících pěti utkáních si tenistka alespoň čtyřikrát vezme červený dres,
 - (iii) nejpozději sedmé utkáních tenistka prohraje,
 - (iv) tenistka vyhraje následující utkání, pokud si vezme červený dres.