给定数据集(如大小为64xb4x3的图片,m张)写为向量形式:

$$X = \begin{bmatrix} x^{(i)} & x^{(i)} & x^{(i)} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \end{bmatrix}$$

X的Shape: (12280,m) 其中 12288=64x64X3



11 - Wy

正向传播流经如下:

初始的, A<sup>col</sup> = X, w<sup>cll</sup> shape: (n<sup>cll</sup>, n<sup>cl-1</sup>)

6. Shape: (nc12, 1)

$$Z^{CO} = W^{CO}A^{CO} + b^{CO}$$
 (7x12)\$\forallow{\text{1}} \text{x(1)} \tex

白的传播流程如一 (= = = [ (A (1) (1) , y (1)) = - \frac{1}{m} (\frac{1}{2} y(\hat{\chi}) \line A^{(3)} (\hat{\chi}) + ((-y(\hat{\chi})) \line (\line A^{(3)} (\hat{\chi}))  $\sqrt{A_{C33}} = -\frac{\mu}{l} \left( \frac{A_{C33}}{l} - \frac{l - A_{C33}}{l - \lambda} \right) \qquad (l \times m)$  $dZ^{(3)} = dA^{(3)} \cdot g'(Z^{(3)}) \text{ p, multiply (1xm, 1xm) = (1xm)}$   $dw^{(3)} = dZ^{(3)} \cdot A^{(2)} \cdot (1xm) \times (5xm)^{T} = (1x5)$   $db^{(3)} = dZ^{(3)} \cdot P. Sum (1xm, axis=1) = (1x1)$  $\int_{0}^{\infty} A^{\alpha} = \int_{0}^{\infty} A^{\alpha} \cdot W^{\alpha} = (1 \times 5)^{T} \times (1 \times m) = (5 \times m)$ 1200 = 1 A C22. g (2022) np. multiply (5xm, 5xm) = (5xm) dwar = d= (5 xm) x (7xm) = (5 x7) 16 = 17 np. sum (5xm, axisc1) = (5x1) dA = d2 = w (5x7) x (5xm) = (7xm) 1200 = AA to g (200) mondaiply (1xm, 7xm)= (7xm) 1Wti2 = 12ti2. Aton (1xm)x (12288, m) = (7x12286) d b = d= ci) NP. Sum (7XM, axis=1) = (7X1) 两分的传播时会用到A<sup>CC</sup>, Z<sup>CC</sup>, 例上应在正的传播 中将它们存起来。

后的模拟:

dz = np. multiply (dA to), g'zto)

dw to = dZ to Att-12T

db<sup>TU</sup>= np. sum(dz<sup>TU</sup>, axis=1) dA<sup>TUI</sup>= W<sup>TUtIIT</sup>. dz<sup>TUHII</sup>(第一层除外)