Homework 2	
ADC	Dac
	DAC
a) $\Delta V = \frac{2.55 - 0}{255} = 0.01V = 10 \text{mV}$	a) Vout = 256. 0.0098 u = 2.51v
b) n=12 -> 212-1=4095	
4095 20:001V=1mV	b) $\Delta V = \frac{3}{4095} & 0.001220 \text{ count}$ $V_{out} = 2048 \cdot \frac{3}{4095} & 2.5036 V$
C) $\Delta V = \frac{12}{2^{n-1}} < 0.001$	C) $\Delta V = \frac{0.25}{128} = 0.01953125 \frac{V_{count}}{V_{count}}$
$\Rightarrow 2^{n} - 1 > \frac{12}{0.001} = 12000$	C) $\Delta V = \frac{0.25}{128} = 0.01953125 \text{ V}_{count}$. $V_{max} = 511 \cdot \Delta V = 0.998 \text{ V}$
2 ⁿ > 12 001	$V_{\text{max}} = 511 \cdot \Delta V = 0.998 v$
n > log, (12001) 2 13.55	Prob & statistics, Noise
$\Delta V = \frac{12}{16383} \approx 0.000732 \text{V} < \text{Im} V$	2 fz = 500 HH2
so you need at least 14 bits	a) fa=50KH2
	r= 50 kHz
d) 2 ⁿ -1 = 2047	50 4 250
AV = 5 2 0.002443 V COUNTS	Faig. = 50KHZ
$Counts = \frac{2.52}{4 \text{ M}} = 2.52 \cdot \frac{2047}{5} = 1031.7$	D) Ja= 250 MHZ
Δυ 3	v = 250 = ts/2
1032 counts	- Faigl = 250KHz
3 f= 25.10 GHZ h= 1042	c) fa= 750 KHz
	V= 750-500=250KHz
$\frac{V_{\text{out}}}{V_{\text{in}}} = \frac{0.33}{3.3} = 0.1$	Jagi = 250KHZ a) Ja= 1000KHZ
Pr(f) = 1 + jwT T = PrC	v= 1000 -2.500 = ONHz
	Jagi = 0
$ R(F) = \frac{1}{\sqrt{1 + (whC)^2}} = 0.1$	O digit
$\sqrt{1 + (\omega_{PC})^2} = \frac{1}{0.1} = 10$	

$$\begin{aligned} & + (\omega P_{c})^{2} = QQ \\ & P_{c} = \frac{\sqrt{49}}{\omega} \\ & \omega \\ & = 2\pi \sqrt{f} \end{aligned} \qquad \begin{aligned} & V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \\ & = 2\pi \sqrt{f} = 2\pi \sqrt{f} \cdot 25 \cdot 10^{6} = 1.57 \cdot 10^{8} \text{ red}_{2/5} \\ & P_{e} = \frac{\sqrt{49}}{2\pi \sqrt{f}} \end{aligned} \qquad \begin{aligned} & V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned} \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned} \qquad \begin{aligned} & V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned} \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned} \qquad \begin{aligned} & V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned} \\ & V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned}$$

$$& V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned}$$

$$& V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned}$$

$$& V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned}$$

$$& V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned}$$

$$& V_{w} = 3.3V & V_{w} = 0.83V \\ & P_{e} = 10 \cdot 10^{6} \text{ Hz} \end{aligned}$$

$$& V_{w} = 3.3V & V_{w} = 0.83V \\ & V_{w} = 0.81V \\ & V_{w} = 0.83V \\ & V_{w} = 0.81V \\ & V_{w$$

```
function y = square_wave(N, A)
  t = (0:N-1)/N;
  y = A * sign(sin(2*pi*t))';
endfunction

function y = triangle_wave(N, A)
  t = (0:N-1)/N;
  y = (2*abs(2*(t - floor(t + 0.5))) - 1)' * A;
endfunction

function y = gaussian_noise(N, mu, sigma)
  y = mu + sigma*randn(N,1);
endfunction
```


