

Data Sheet

Universal constants:

Avogadro constant	$N_{ m A}$	=	$6.022 \times 10^{23} \mathrm{mol}^{-1}$		
Boltzmann constant	k_{B}	=	$1.381 \times 10^{-23} \mathrm{JK^{-1}}$		
Charge of electron	e	=	$1.602 \times 10^{-19} \mathrm{C}$		
Planck constant	h	=	$6.626 \times 10^{-34} \mathrm{Js}$		
Speed of light in vacuum	c	=	$2.998 \times 10^8 \mathrm{ms^{-1}}$		
Universal gravitational constant	G	=	$6.674 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$		
Universal gas constant	R	=	$8.315\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$		
Stefan-Boltzmann constant	σ	=	$5.670 \times 10^{-8} \mathrm{W m^{-2} K^{-4}}$		
Wien's displacement constant	b	=	$2.898 \times 10^{-3} \mathrm{mK}$		
Permittivity of free space	ϵ_0	=	$8.854 \times 10^{-12} \mathrm{m}^{-3} \mathrm{kg}^{-1} \mathrm{s}^4 \mathrm{A}^2$		
Permeability of free space	μ_0	=	$1.257 \times 10^{-6} \mathrm{NA^{-2}}$		
Mass of electron	$m_{ m e}$	=	$9.109 \times 10^{-31} \mathrm{kg}$	=	$0.511~\mathrm{MeV/c^2}$
Mass of proton	$m_{ m p}$	=	$1.673 \times 10^{-27} \mathrm{kg}$	=	$938.272~\mathrm{MeV/c^2}$
Mass of neutron	$m_{ m n}$	=	$1.675 \times 10^{-27} \mathrm{kg}$	=	$939.565~\mathrm{MeV/c^2}$
Mass of deuteron	$m_{ m D}$	=	$3.344 \times 10^{-27} \mathrm{kg}$	=	$1875.613~{ m MeV/c^2}$
Mass of He nucleus	$m_{ m He}$	=	$6.645 \times 10^{-27} \mathrm{kg}$	=	$3727.181{ m MeV/c^2}$

Astronomical data:

Mass of Sun	M_{\odot}	=	$1.988\times10^{30}\mathrm{kg}$		
Radius of Sun	R_{\odot}	=	$6.957 \times 10^8 \mathrm{m}$		
Luminosity of Sun	L_{\odot}	=	$3.828 \times 10^{26} \mathrm{W}$		
Effective temperature of Sun	$T_{\mathrm{eff},\odot}$	=	$5772\mathrm{K}$		
Apparent magnitude of Sun (in V-band)	$m_{ m V,\odot}$	=	-26.74		
Absolute magnitude of Sun (in V-band)	$M_{ m V,\odot}$	=	+4.82		
Apparent bolometric magnitude of Sun	$m_{\mathrm{bol},\odot}$	=	-26.83		
Absolute bolometric magnitude of Sun	$M_{ m bol,\odot}$	=	+4.74		
Solar constant (above atmosphere of Earth)	S_{\odot}	=	$1361{ m W}{ m m}^{-2}$		
Apparent angular diameter of Sun (from Earth)	$ heta_{\odot}$	\approx	32'		
Mass of Earth	M_{\oplus}	=	$5.972 \times 10^{24} \mathrm{kg}$		
Radius of Earth	R_{\oplus}	=	$6.378 \times 10^6 \mathrm{m}$		
Axial tilt of Earth	ϵ	=	23°26′		
Inclination of the lunar orbit w.r.t. the ecliptic		=	5°8′43″		
Mass of Jupiter	$M_{ m J}$	=	$1.898 \times 10^{27} \mathrm{kg}$		
Radius of Jupiter	$R_{ m J}$	=	$6.991 \times 10^7 \mathrm{m}$		
1 Astronomical Unit	$1\mathrm{au}$	=	$1.496 \times 10^{11} \mathrm{m}$		
1 parsec	$1\mathrm{pc}$	=	$3.086 \times 10^{16} \mathrm{m}$		
1 light-year	$1 \mathrm{ly}$	=	$9.461 \times 10^{15} \mathrm{m}$		
1 jansky	$1\mathrm{Jy}$	=	$10^{-26}\mathrm{Wm^{-2}Hz^{-1}}$		
1 tropical year		=	365.2422 solar days	=	$3.156 \times 10^7 \mathrm{s}$
		=	365 d 5 h 48 min 46 s		
1 sidereal year		=	365.2564 solar days	=	$3.156 \times 10^7 \mathrm{s}$
		=	$365\mathrm{d}$ 6 h $9\mathrm{min}$ $13\mathrm{s}$		
Rate of precession of Vernal Equinox		=	1° per 71.6 years		

Calculus related formulas:

1.
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$$
 2. $\frac{d}{dx}x^n = nx^{n-1}$ 3. $\frac{d}{dx}\sin kx = k\cos kx$ 4. $\frac{d}{dx}\cos kx = -k\sin kx$ 5. $\frac{d}{dx}\tan kx = k\sec^2 kx$ 6. $\int x^n dx = \frac{x^{n+1}}{n+1} + \text{constant}$; for $n \neq -1$ 7. $f(x) \simeq f(x_0) + \frac{df}{dx}\Big|_{x=x_0} (x-x_0)$; for $x \approx x_0$