

Adaptive Methods in Clinical Research

Lecture 8: Fully adaptive designs

Thomas Jaki
MRC Biostatistics Unit
31 October 2023

Adaptive Designs

At each interim

- · decide whether or not to stop
- change sample size
- drop or add a dose
- · change the endpoint
- change the question

Fisher's combination method

	First stage	Second stage
Observations	n_1	n_2
one-sided p-value	p_1	p_2

- p-values need to be independent
- Combine the evidence from the two stages via taking product of p-values from both stages
- Under H_0 , $-2 \log(p_1 \times p_2) \sim \chi_4^2$ (Fisher, 1932)

The null distribution of a p-value

Consider a test of H_0 : $\theta = 0$ vs H_1 : $\theta > 0$, based on a continuously distributed test statistic $T(\mathbf{x})$ computed from data \mathbf{x} .

Let p denote the resulting one-sided p-value

$$p = \mathbb{P}(T \ge t | \theta = 0)$$

where T denotes the random value and t the observed value of the test statistic.

p itself is an observed value of a random variable P, and the probability $\mathbb{P}(P \le p | \theta = 0) = p$.

That is, under H_0 , P is uniformly distributed on (0, 1).

Proof

under H₀

$$p_1 \sim U(0,1)$$
 and independently $p_2 \sim U(0,1)$

Hence

$$-\log(p_1) \sim \textit{Exp}(1)$$
 and $-\log(p_2) \sim \textit{Exp}(1)$

and so

$$-\log(p_1p_2) = -\log(p_1) - \log(p_2) \sim \textit{Ga}(2,1)$$

and therefore

$$-2\log(p_1p_2)\sim Ga\left(\frac{4}{2},\frac{1}{2}\right)=\chi_4^2$$

- Proposed by Bauer & Köhne (1994)
- Stage 1 and Stage 2 need to be independent

The upper 0.975 point of the χ_4^2 distribution is 11.14. Setting $\alpha=0.025$ (one-sided), we will PROCEED to claim that E > C if

$$-2\log(p_1p_2) \ge 11.14$$

or equivalently if

$$p_1p_2 \leq 0.0038$$

If after the first stage, we already know that

$$p_1 \leq 0.0038$$

then there is no need to conduct the second stage: we will PROCEED to claim that $\mathsf{E} > \mathsf{C}$

curtailed sampling

The full procedure is as shown:

$$-$$
 for $\alpha = 0.025$, $\alpha_1 = 0.0038$

If the early PROCEED boundary is set at α_1 and the early ABANDON boundary is set at α_0 , then in order to achieve an overall one-sided type I error rate of α ,

$$c = \frac{\alpha - \alpha_1}{\log(\alpha_0) - \log(\alpha_1)}$$

found by integration

Hence

$$\alpha = \alpha_1 + \int_{\alpha_1}^{\alpha_0} \frac{c}{p_1} dp_1$$

$$= \alpha_1 + c \Big[\log(p_1) \Big]_{\alpha_1}^{\alpha_0}$$

$$= \alpha_1 + c \Big[\log(\alpha_0) - \log(\alpha_1) \Big]$$

so that

$$c = \frac{\alpha - \alpha_1}{\log(\alpha_0) - \log(\alpha_1)}$$

Beyond 2 stages

- Wassmer (1999) extended this approach to any number of stages
- At the ith interim analysis calculate the product of p-values
 - 1. Stop and PROCEED if $p_1 \times \cdots \times p_i \leq c_i$
 - 2. Stop and ABANDON if $p_i \ge \alpha_{0i}$
 - 3. Use a recursive method to find c_1, \ldots, c_k and $\alpha_{01}, \ldots, \alpha_{0k}$ satisfying some chosen constraints
- Calculations become more complex as number of stages increases
- All stages equally weighted

Inverse normal method

For group sequential trials we need test statistics B_i and V_i which, under the null hypothesis, satisfy

- $B_i \sim N(0, V_i)$
- increments $(B_i B_{i-1})$ between interims are independent

Regardless of where these statistics come from

Note:

$$Z = \frac{B}{\sqrt{V}}$$

where B is the score statistic and V is the Fisher information.

Transforming the p-value

Let

$$Z = \Phi^{-1}(1 - P)$$

where Φ denotes the N(0,1) distribution function

Then

$$\mathbb{P}(Z \le z | \theta = 0) = \mathbb{P}(\Phi^{-1}(1 - P) \le z | \theta = 0)$$

$$= \mathbb{P}((1 - P) \le \Phi(z) | \theta = 0)$$

$$= \mathbb{P}(P \ge 1 - \Phi(z) | \theta = 0)$$

$$= \Phi(z)$$

so that $Z \sim N(0, 1)$.

Combining the p-values

Consider tests of H_{i0} : $\theta_i = 0$ vs H_{i1} : $\theta_i > 0$, based on independent, sequentially available data sets \mathbf{x}_i , with corresponding one-sided p-values, p_i , i = 1, ..., k

Then

$$Z_i = \Phi^{-1}(1 - P_i), i = 1, \dots, k$$

are independent N(0,1) random variables, and

$$Y_i = W_i \Phi^{-1}(1 - P_i), i = 1, ..., k$$

are independent $N(0, W_i^2)$ random variables.

Now put

$$B_i = Y_1 + \cdots + Y_i$$
 $V_i = W_1^2 + \cdots + W_i^2$

Then if all null hypotheses H_{i0} : $\theta_i = 0$ are true,

- $B_i \sim N(0, V_i)$
- increments $(B_i B_{i-1})$ between interims are independent

So, if these statistics are plotted and compared with sequential stopping boundaries, then the required type I error will be achieved.

Applications

- 1. Hypotheses H_{i0} could all be the same: $\theta = 0$, based on independent data \mathbf{x}_i , each comprising the new data only observed between the ith and the (i-1)th interim analyses
 - \Rightarrow the sample size, allocation ratio or other design features concerning the ith dataset can depend on previous data
- 2. The hypotheses H_{i0} could concern different endpoints (mortality, time to progression, tumour shrinkage), or different test statistics (logrank, Wilcoxon, binary) based on independent groups of patients
 - \Rightarrow the endpoint or test statistic could be changed between interim analyses, provided that H_0 : "the treatments are identical" is to be tested

Example: Group sequential trials

Suppose that H_0 : $\theta = 0$ is tested against H_1 : $\theta > 0$ at the ith interim, based on the group sequential statistic $(B_i - B_{i-1})$.

Corresponding one-sided p-values, P_i , are

$$P_i = 1 - \Phi\left(\frac{B_i - B_{i-1}}{\sqrt{V_i - V_{i-1}}}\right)$$

Put $W_i^2 = (V_i - V_{i-1})$, so that

$$Y_{i} = W_{i}\Phi^{-1}(1 - P_{i})$$

$$= \sqrt{V_{i} - V_{i-1}}\Phi^{-1}\left(\Phi\left(\frac{B_{i} - B_{i-1}}{\sqrt{V_{i} - V_{i-1}}}\right)\right)$$

$$= (B_{i} - B_{i-1})$$

It follows that

$$B_i = Y_1 + \dots + Y_i = B_i$$
 and $V_i = W_1^2 + \dots + W_i^2 = V_i$

so that the inverse normal approach and the group sequential approach are identical in this case.

This is a good thing!

It means that the approach is built on solid foundations

Closed testing

Treatments: k experimentals T_1, \ldots, T_k

one control T_0

Adaptive designs tend to use pairwise comparisons i.e. individually test each $H_{0,i}$: $\theta_i = 0$

To strongly control the type I error rate for testing multiple hypotheses closed testing procedures are used (Marcus et al., 1976)

Consider one stage only

Closed testing procedure

Form a family of H_0 's from all possible intersections of $H_{0,i}$'s

Reject $H_{0,i}$ at level α , iff all H_0 's that imply $H_{0,i}$ are rejected at level α .

e.g. 3 experimental treatments

Reject $H_{0,1}$: $\theta_1 = 0$, iff we reject

Let I be a set of m individual hypotheses from k ($m \le k$) $H_{0,I}$ denote the intersection hypothesis

$$H_{0,I} = \bigcap_{i \in I} H_{0,i}$$

e.g. if $I = \{1, 2\}$ then $H_{0,I} = H_{0,12}$

p-values for intersection hypotheses

We need to calculate p-value p_l to test $H_{0,l}$

Suppose we calculate a *p*-value, p_i , for each $H_{0,i}: \theta_i = 0$

Bonferroni correction

$$p_l = m \times \min(p_i)$$

where m is the number of indices in I

e.g.
$$k=3,\ p_1=0.2,\ p_2=0.05,\ p_3=0.03$$
 then for $I=\{2,3\}$ we find $m=2,\ p_I=0.03\times 2=0.06$

p-values for intersection hypotheses (Dunnett, 1955)

Dunnett *p*-values are valid for multiple comparisons against a common control.

Compute a standardised test statistic Z_i for each $H_{0,i}$: $\theta_i = 0$. Let z^* be the maximum of the observed z values for $H_{0,i}$, $i \in I$.

Then the Dunnett p-value is

$$\mathbb{P}\{\max_{i\in I}Z_i>z^{\star}\}$$

calculated assuming that $\{Z_i\}_{i\in I}$ follow a multivariate normal joint distribution with each $Z_i \sim N(0,1)$ and $cov(Z_i,Z_j) = 0.5$ for $i \neq j$.

p-values for intersection hypotheses (Dunnett, 1955)

Recall our previous example:

$$k=3,\; p_1=0.2,\; p_2=0.05,\; p_3=0.03.$$
 which correspond to $z_1=0.842,\; z_2=1.645,\; z_3=1.881.$

For $I = \{2,3\}$ we find $z^* = 1.881$, $p_I = 0.054$.

Using closed testing procedure we therefore need to conduct tests for $(2^k - 1)$ hypotheses.

For each hypothesis, $H_{0,l}$ calculate a p-value from data collected at stage j, $p_{l,j}$

Take p-values for $H_{0,l}$ convert into a test statistic e.g. using the inverse normal method as

$$Y_{l,j} = \frac{1}{\sqrt{j}} \sum_{i=1}^{j} \Phi^{-1} (1 - p_{l,j})$$

Compare test statistic for $H_{0,1}$ using the **same boundaries** calculated as for the two treatments (T_1 and T_0) case, as

adaptive approach adjusts for the multiple treatments via the *p*-values, not via the boundaries.

Stopping rules

Stop for efficacy

When conclude at least one T_i is superior to T_0 via the closed testing procedure i.e when all test statistics for those H_0 's that imply $H_{0,i}$ crosses the upper boundary, u_i

Stop for futility

When test statistic for global H_0 crosses the lower boundary, I_j or when maximum number of looks is reached

Comments

- Sample size calculations
 - difficult under complex rules
 - larger then specialised methods
- Can do other adaptations, e.g.
 - select populations
 - Changing the primary endpoint
 - Changing the trial objective (such as switching from non-inferiority to superiority)
 - sample size re-estimation
- Ordering in treatment effects could be incorporated into closed testing procedure

