CS 3313: Foundations of Computing

Lab 1: Proof Techniques

http://gw-cs3313.github.io

Outline

- Math preliminaries this should all be review
 - Proof techniques
 - Exercises

Sets and set operations

• Set: Collection of non-repeating items $S = \{1, a, \{c, d\}\}, |S| = 3$

Sets and set operations

- Set: Collection of non-repeating items $S = \{1, a, \{c, d\}\}, |S| = 3$
- Common sets:

$$\mathbb{Z}$$
 - set of integers \mathbb{Z}^+ - set of positive integers

$$\mathbb{N}$$
 - natural numbers \mathbb{R} - Reals

$$\emptyset \ or \{\}$$
 – empty set

Sets and set operations

- Set: Collection of non-repeating items $S = \{1, a, \{c, d\}\}, |S| = 3$
- Common sets:

$$\mathbb{Z}$$
 - set of integers \mathbb{Z}^+ - set of positive integers

$$\mathbb{N}$$
 - natural numbers \mathbb{R} - Reals

$$\emptyset$$
 or $\{\}$ – empty set

- Set relations:
 - Membership: $5 \in \mathbb{Z}$, $3.1 \notin \mathbb{Z}$, $\{c,d\} \in \{1,a,\{c,d\}\}$
 - Subset: $\{1,2\} \subset \{1,2,3\}$
 - Union: $A \cup B$ Intersection: $A \cap B$ Complement: \overline{A}
 - De Morgan's Laws: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}$
 - Cartesian product: If $A = \{1,2,3\}, B = \{a,b\}$ $A \times B = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

Strings

- Alphabet Σ : set of symbols
 - Ex: $\Sigma = \{a, b\}, \Sigma = \{0, 1\}$
- *String*: finite sequence of symbols from Σ ,
 - ex: v = aba and w = abaaa
 - ex: v = 001 and w = 11001
 - Empty string (λ)
 - Substring, prefix, suffix

Strings

- Alphabet Σ : set of symbols
 - Ex: $\Sigma = \{a, b\}, \Sigma = \{0, 1\}$
- *String*: finite sequence of symbols from Σ ,
 - ex: v = aba and w = abaaa
 - ex: v = 001 and w = 11001
 - Empty string (λ)
 - Substring, prefix, suffix
- Operations on strings:
 - Concatenation: vw = abaabaaa
 - Reverse: $w^R = aaaba$
 - Repetition: $v^2 = abaaba$ and $v^0 = \lambda$
- Length of a string: |v| = 3 and $|\lambda| = 0$

Languages

- Language L: Set of strings
- ${\it \Sigma}^*=$ set of all strings formed by concatenating zero or more symbols in Σ
 - Ex: if $\Sigma = \{0,1\}$ then $\Sigma^* = \{all\ binary\ strings,\ including\ empty\ string\}$
- A language is any subset of Σ*

Examples: $L_1 = \{ a^n b^n : n \ge 0 \}$ and $L_2 = \{ ab, aa \}$

 A string in a language is also called a <u>sentence</u> of the language

Graphs

- A graph G consists of a
 - vertex set $V(G) = \{v_1, v_2, ...\}$ and
 - edge set $E(G) \subset \{(x,y)|x,y \in V(G)\}$ i.e., an edge connects a pair of vertices
- Directed vs. undirected graphs
- Degree of a vertex number of edges coming out of the vertex e.g. $\deg(v_1) = 2$

Outline

Math preliminaries – this should all be review

- Proof techniques
 - Exercises

Proofs

This class will involve a lot of proofs.

General proof procedure:

- 1. Understand the statement without the math lingo
- Build up an intuition in English or by picture, work through examples
 - This gets easier with practice
- 3. Construct proof
 - This part is procedural
 - Use facts and theorems you already know
 - Proof techniques will guide you

Writing proofs

- Be concise no multi-paragraph explanations
- Be precise use mathematic notation and logical reasoning
- Follow proof techniques this will give you a structure for the proof

Proof techniques

- Direct proof
- Proof by contradiction
- Proof by induction

Direct Proof

Produce a chain of logically sound deductions that justify the expected conclusion

• Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

- Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Intuition: Any element not in the union of A and B must be outside of both A and B

- Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Intuition: Any element not in the union of A and B must be outside of both A and B
- Proof: Important, there are two directions to prove!
 - 1. Suppose $x \in \overline{A \cup B}$, then $x \in \overline{A} \cap \overline{B}$ If $x \in \overline{A \cup B}$, then $x \notin A \cup B$ (by definition of complement) So, $x \notin A$ and $x \notin B$ (by definition of union) Thus, $x \in \overline{A}$ and $x \in \overline{B}$ (by definition of complement) Therefore, $x \in \overline{A} \cap \overline{B}$ (by definition of intersection)

- Theorem: $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- Intuition: Any element not in the union of A and B must be outside of both A and B
- Proof: Important, there are two directions to prove!
 - 1. Suppose $x \in \overline{A \cup B}$, then $x \in \overline{A} \cap \overline{B}$ If $x \in \overline{A \cup B}$, then $x \notin A \cup B$ (by definition of complement) So, $x \notin A$ and $x \notin B$ (by definition of union) Thus, $x \in \overline{A}$ and $x \in \overline{B}$ (by definition of complement) Therefore, $x \in \overline{A} \cap \overline{B}$ (by definition of intersection)
 - 2. Suppose $x \in \overline{A} \cap \overline{B}$, then $x \in \overline{A} \cup \overline{B}$ If $x \in \overline{A} \cap \overline{B}$, then $x \in \overline{A}$ and $x \in \overline{B}$ (by definition of intersection) So, $x \notin A$ and $x \notin B$ (by definition of complement) thus, $x \notin A \cup B$ (by definition of union) implying that $x \in \overline{A \cup B}$ (by definition of complement)

Proof by contradiction

Proof Outline:

- 1. Assume the opposite of what you want to try to prove
- 2. Show that it leads to a contradiction
- 3. Thus, the original assumption must be false

Theorem: For any integer n, if n² is odd then n is odd

- Theorem: For any integer n, if n² is odd then n is odd
- Intuition: The product of two odd numbers has no factors of 2,
 so it will be odd

- Theorem: For any integer n, if n² is odd then n is odd
- Intuition: The product of two odd numbers has no factors of 2,
 so it will be odd
- Proof:
 - 1. Assume there exists an even n s.t. n² is odd (very important to get the negation of the statement correct!)

Then, n=2m for some integer m (by definition of even) So, $n^2 = 4m^2 = 2(2m^2)$ which is even

Contradiction!!!

Proof by induction

Proof Outline:

- 1. Base case: Verify that statement holds for base case (e.g., true for i=1)
- **2. Inductive hypothesis**: Assume that if the statement holds for i=n for some value n
- 3. Induction step: Prove that the statement holds for i=n+1

Why this works:

P(1) is true implies P(2) is true

P(2) is true implies P(3) is true

• • •

P(n-1) is true implies P(n) is true

Therefore, P(n) is true

• Theorem: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$

- Theorem: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$
- Intuition: Test it for some small values of n

- Theorem: $1 + 2 + \dots + n = \sum_{i=1}^{n} i = \frac{(n+1)n}{2}$
- Intuition: Test it for some small values of n
- Proof:

Base case:
$$n = 1 - 1 = (1+1)*1/2 = 2/2 = 1$$

Hypothesis: Assume
$$\sum_{i=1}^{k} i = \frac{(k+1)k}{2}$$
 for some k

Induction: Show that
$$\sum_{i=1}^{k+1} i = \frac{((k+1)+1)(k+1)}{2}$$

•
$$\sum_{i=1}^{k+1} i = k+1 + \sum_{i=1}^{k} i = (k+1) + \frac{(k+1)(k)}{2}$$
 (by hypothesis)
= $\frac{k^2 + 3k + 2}{2} = \frac{(k+2)(k+1)}{2}$

Outline

- Math preliminaries this should all be review
- Proof techniques

Exercises

Exercises

- Prove each of the following statements
- Work in groups make sure you put down all the names
- Scan your solutions and submit on Blackboard by end of day

Exercises

- 1. Prove that in any graph G, the sum of degrees of the nodes of G is an even number
- 2. Prove that $\sqrt{2}$ is irrational
- 3. Prove that

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$