Generalizing Assured Al for Traffic Light Control

Daniel Stambler and Evan Leung

Assuring AI Systems

- Al systems becoming ubiquitous
- Cannot be used in critical systems
 - Need to guarantee the worst case
 - Al fails on edge cases
- Assuring Al
 - Switch to safe algorithm to handle situations when AI fails

Al Traffic Light Controllers

- Potential for more efficient travel through intersections
- Non-fatal errors still considered unacceptable

Unreasonably long wait times

- Blackbox Monitor
- Whitebox Monitor

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Definitions

Model:

Differentiable mathematical formula for fitting input data

Training:

Process of optimizing the weights of a given model

Evaluation:

Process of using a trained model. Pass in inputs, get results

Monolithic Model:

 Inflexible model. To evaluate an m x n grid, the model needs to be trained on an m x n grid

General Model:

Flexible model that can be evaluated on any m x n grid

Definitions: Defining our Environment

- Four way intersection, bidirectional roads
- Four incoming edges
- Four outgoing edges
- Straight + right turn on green
- Separate green light for left turns
- All lights (straight + left) must switch to yellow lights

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Previous Work

- Monolithic 2x2 model using SUMO/FLOW
 - Can't scale up
- Generalized model in Gym CityFlow
 - Solves scaling problem
 - Couldn't replicate results

Early Challenges

- Onboarded to Gym CityFlow
 - Didn't see any learning
- Switched back to SUMO/FLOW
 - Replicated previous monolithic model success
 - Spent a while learning very large codebase
 - Understood Jerry's approach and its possible flaws, brainstormed new approaches

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Problem Definition

 Monolithic model takes too long to train for any topology larger than 2x2

- Goal generalized model that:
 - outperforms Safe Controller
 - can be applied to any n x m topology
 - comparable performance to 2x2 monolithic
- Measuring performance in terms of average speed of all cars in intersection

Previous Attempts at Generalized Model

- 2x2 grid where each intersection employs the same model
 - Al learns at each intersection
 - Keeps feature vector small
- Training was unsuccessful
 - Every intersection is a corner case

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Key Terms

- NxM training environment: All controller placed in the center of NxM
 grid of intersections, all other intersections safe or random
- NxM evaluation environment: trained AI controller placed at every intersection of NxM grid
- Pertinent avg speed: average speed over cars that enter edges connected to Al-controlled intersections
- Grid padding: add an extra layer of safe-controlled intersections around an NxM grid

Approach 1

- 3x3 training environment
- Fixed controllers on outer 8 intersections

Al controller in the center

Inputs to the Model

- Modifying feature vector
- Changes to the system
 - Change number of traffic lights for AI to update
 - Update RL actions function to manually update traffic lights that aren't at center node

Variable/Size	3 x 3 Monolithic Vals	Our Implementation Vals
Speeds	216	24
Distance to Intersection	216	24
Edge Number	216	24
Density	24	8
Velocity Average	24	8
Last Change	9	1
Direction	9	1
Currently Yellow	9	1
Total	723	91

Experiments

- Three runs with 3 x 3 grid all safe controllers to establish a baseline
- Three runs with 3 x 3 grid all safe controllers except for center node
- Three runs with 3 x 3 grid all random controllers except for center
 node

Safe Controller Baselines

- Need to compare our 3x3 results with 3x3 safe controller
- Three Safe Controller runs under different seeds
 - Result 1: Approx 5.59 m/s
 - Result 2: Approx 5.57 m/s
 - Result 3: Approx **5.55** m/s
- Average across runs: 5.57 m/s

Monolithic 2 x 2 Baseline Results

Best Average Speed: 6.429 m/s (49,700,000 steps)

Safe Controller 3x3 Results

Best Pertinent Average Speed: 6.484 m/s (47,050,000 steps) from seed B

Safe Controller 3x3 Results

Random Controller 3 x 3 Results

Best Pertinent Average Speed: 1.837 m/s (45,500,000 steps) from seed C

3x3 Evaluation Results

- Applied models to 3x3 evaluation environment
- Discovered models did not learn to generalize
- Als trained on different environments and with different reported training speeds all yield ~4.3 m/s

Evaluation Results

Approach 2

- Increase Al's observation space to "look ahead" 1 intersection
 - Work in tandem with other Als on evaluation environment

 5x5 training environment to avoid edge cases

Look Ahead Controller Results

Best Pertinent Average Speed: 5.423 m/s (7,200,000 steps) from seed B

Look Ahead Evaluation Results

- Same results, failing to generalize/work with other AI controllers
- Average speed on 3x3 eval environment is 4.3 m/s

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Future Work

- Add trained AI neighbors to training environment
- Training on multiple environments in parallel
- Replace Sumo with more efficient environment (possibly reconcile our implementations with gym-cityflow)

Questions

Thank You