Yu Xia's Problem Set 4

Yu Xia ID: yx5262

September 2022

1

$$r_{15}^m = \frac{r_{15}^a}{12} = 0.003$$

We have:

$$M_{15} = \frac{P \cdot r_{15}^m}{1 - \frac{1}{\left(1 + r_{15}^m\right)^{180}}}$$

If P = \$160K,

$$M_{15} = \boxed{1,151.69}$$

$$TP_0 = 180M_{15} = 207,303$$

If P = \$150K,

$$M_{15} = \boxed{1,079.71}$$

$$TP_1 = 180M_{15} = \boxed{194,346}$$

In 5.1, $\rho^a = 0.02$ is given.

$$\rho^m = \frac{\rho^a}{12} = \frac{0.02}{12} = \frac{0.01}{6} = \frac{1}{600} \approx 0.017$$

The present value of the total annual rent is

$$C(c) = c\left(1 + \frac{1}{1 + \rho^m} + \dots + \frac{1}{(1 + \rho^m)^{11}}\right) = c\frac{1 + \rho^m}{\rho^m}\left(1 - \frac{1}{(1 + \rho^m)^{12}}\right)$$

If
$$C = \$1,500, C(1500) = 17,836$$

$$TP_0 - C(c) - \frac{TP_1}{1 + \rho^a} = 207,303 - 17,836 - \frac{194,346}{1.02} \approx 189,467 - 190,535.29 \approx \boxed{-1,068.29}$$

If $C = \$2,000$, $\boxed{C(2000) = 23,782}$
 $TP_0 - C(c) - \frac{TP_1}{1 + \rho^a} = 207,303 - 23,782 - \frac{194,346}{1.02} \approx 183,521 - 190,535.29 \approx \boxed{-7,014.29}$

$$\begin{split} c^* &= \frac{\rho^m}{1 + \rho^m} \frac{TP_0 - \frac{TP_1}{1 + \rho^a}}{1 - \frac{1}{(1 + \rho_m)^{12}}} \\ &= \frac{\frac{1}{600}}{1 + \frac{1}{600}} \frac{207,303 - \frac{194,346}{1 + 0.02}}{1 - \frac{1}{(1 + \frac{1}{600})^{12}}} \\ &= \frac{\frac{1}{600}}{\frac{601}{600}} \frac{207,303 - \frac{194,346}{1.02}}{1 - \frac{1}{(\frac{601}{600})^{12}}} \\ &= \frac{600}{601} \frac{207,303 - \frac{194,346}{1.02}}{1 - (\frac{600}{601})^{12}} \\ &\approx \boxed{1410.1423} \end{split}$$

If
$$r_u^a = 0.04$$

$$r_u^m = \frac{r_u^a}{12} = \frac{0.04}{12} = \frac{0.01}{3} = \frac{1}{300} \approx 0.00333$$

When P = \$150K,

$$M_u = \frac{P \cdot r_u^m}{1 - \frac{1}{\left(1 + r_u^m\right)^{180}}} = \frac{150,000 \cdot \frac{1}{300}}{1 - \frac{1}{\left(\frac{301}{300}\right)^{180}}} = \frac{1500 \cdot \frac{1}{3}}{1 - \left(\frac{300}{301}\right)^{180}} \approx \frac{500}{1 - 0.5493595} \approx \frac{500}{0.45} \approx \boxed{1,109.53}$$

$$TP_u = 180M_u \approx 180 \times 1,109.53 \approx 199,715.7$$

$$\mathbb{E}[TP] = \pi T P_u + (1 - \pi) T P_1 \approx 0.5 \times 199,715.7 + 0.5 \times 194,346 \approx \boxed{197,030.9}$$

If the prices go up by 10 percent, $P_u = 170$ K.

$$M_u = \frac{P_u \cdot r_{15}^m}{1 - \frac{1}{\left(1 + r_{15}^m\right)^{180}}} = \frac{170,000 \cdot 0.003}{1 - \frac{1}{\left(1 + \frac{3}{1000}\right)^{180}}} = \frac{170 \cdot 3}{1 - \frac{1}{\left(\frac{1003}{1000}\right)^{180}}} = \frac{510}{1 - \left(\frac{1000}{1003}\right)^{180}} \approx \boxed{1,223.6658}$$

$$TP_u = 180M_u \approx \boxed{220, 259.84}$$

If the prices go down by 10 percent, $P_d = 130$ K.

$$M_d = \frac{P_d \cdot r_{15}^m}{1 - \frac{1}{\left(1 + r_{15}^m\right)^{180}}} = \frac{130,000 \cdot 0.003}{1 - \frac{1}{\left(1 + \frac{3}{1000}\right)^{180}}} = \frac{130 \cdot 3}{1 - \frac{1}{\left(\frac{1003}{1000}\right)^{180}}} = \frac{390}{1 - \left(\frac{1000}{1003}\right)^{180}} \approx \boxed{935.7442}$$

$$TP_d = 180M_d \approx \boxed{168, 433.99}$$

$$\mathbb{E}[TP] = 0.45TP_u + 0.55TP_d \approx 0.45 \times 220, 259.8 + 0.55 \times 168, 434 \approx \boxed{191755.62}$$

4

By 1, we have the critical value $c^* \approx 1410.1423$, comparing buying now and buying a year afterward. Assume you are in the end of year 1. You are considering whether to buy in the end of t = 1 or the end of t = 2.

$$P^{t=2} = \$200,000 - 60,000 = \$140K.$$

On the other hand,

$$M_{15}^{t=2} = \frac{P^{t=2} \cdot r_{15}^m}{1 - \frac{1}{(1 + r_{15}^m)^{180}}} = \frac{140,000 \cdot 0.003}{1 - \frac{1}{(1 + 0.003)^{180}}} = \frac{140 \cdot 3}{1 - \frac{1}{(1.003)^{180}}} = \frac{420}{1 - \frac{1}{(1.003)^{180}}} \approx 1007.7248$$

$$TP_2 = 180M_{15}^{t=2} \approx 181,390.46$$

The critical value, comparing t = 1 and t = 2, is:

$$e^{*\prime} = \frac{\rho^m}{1 + \rho^m} \frac{TP_1 - \frac{TP_2}{1 + \rho^a}}{1 - \frac{1}{\left(1 + \rho_m\right)^{12}}} = \frac{600}{601} \frac{194,346 - \frac{181,390.5}{1.02}}{1 - \left(\frac{600}{601}\right)^{12}} \approx \boxed{1388.6526}$$

If the rent at the end of t = 1 is higher than \$1388.6526, buy at the end of t = 1 (if you have already been in t = 1). If the rent at the end of t = 1 is less than \$1388.6526, wait another year and buy at the end of t = 2 (if you have already been in t = 1).

(i) If
$$TP_0 - C(c_0) - 0.9c_0 \left(\frac{1}{(1+\rho^m)^{12}} + \frac{1}{(1+\rho^m)^{13}} + \dots + \frac{1}{(1+\rho^m)^{23}} \right) - \frac{TP_2}{(1+\rho^a)^2} < 0$$
, better to buy at $t = 0$ than $t = 2$ regardless of future change of rent.

That is,

$$\begin{aligned} 207,303 - c_0 \frac{1 + \rho^m}{\rho^m} \left(1 - \frac{1}{(1 + \rho^m)^{12}} \right) \\ &- 0.9c_0 \frac{1}{(1 + \rho^m)^{12}} \left(1 + \frac{1}{1 + \rho^m} + \dots + \frac{1}{(1 + \rho^m)^{11}} \right) - \frac{181,390.46}{(1 + \rho^a)^2} < 0 \\ \implies 207,303 - c_0 \frac{1 + \rho^m}{\rho^m} \left(1 - \frac{1}{(1 + \rho^m)^{12}} \right) \\ &- \frac{0.9c_0}{(1 + \rho^m)^{12}} \frac{1 + \rho^m}{\rho^m} \left(1 - \frac{1}{(1 + \rho^m)^{12}} \right) - \frac{181,390.46}{(1 + \rho^a)^2} < 0 \\ \implies 207,303 - c_0 \frac{1 + \rho^m}{\rho^m} \left(1 - \frac{1}{(1 + \rho^m)^{12}} \right) \left(1 + \frac{0.9}{(1 + \rho^m)^{12}} \right) - \frac{181,390.46}{(1 + \rho^a)^2} < 0 \\ \implies 207,303 - c_0 \frac{1 + \frac{1}{600}}{\frac{1}{600}} \left(1 - \frac{1}{\left(1 + \frac{1}{600} \right)^{12}} \right) \left(1 + \frac{0.9}{\left(1 + \frac{1}{600} \right)^{12}} \right) - \frac{181,390.46}{(1 + 0.02)^2} < 0 \\ \implies 207,303 - c_0 \frac{\frac{601}{600}}{\frac{1}{600}} \left(1 - \frac{1}{\left(\frac{601}{600} \right)^{12}} \right) \left(1 + \frac{0.9}{\left(\frac{600}{601} \right)^{12}} \right) - \frac{181,390.46}{1.0404} < 0 \\ \implies 207,303 - 601c_0 \left(1 - \left(\frac{600}{601} \right)^{12} \right) \left(1 + 0.9 \left(\frac{600}{601} \right)^{12} \right) - \frac{181,390.46}{1.0404} < 0 \\ \implies 207,303 - \frac{181,390.46}{1.0404} < 601c_0 \left(1 - \left(\frac{600}{601} \right)^{12} \right) \left(1 + 0.9 \left(\frac{600}{601} \right)^{12} \right) \left(1 + 0.9 \left(\frac{600}{601} \right)^{12} \right) \\ \implies 601c_0 \left(1 - \left(\frac{600}{601} \right)^{12} \right) \left(1 + 0.9 \left(\frac{600}{601} \right)^{12} \right) > 207,303 - \frac{181,390.46}{1.0404} \end{aligned}$$

$$\implies c_0 > \frac{207,303 - \frac{181,390.46}{1.0404}}{601 \left(1 - \left(\frac{600}{601}\right)^{12}\right) \left(1 + 0.9\left(\frac{600}{601}\right)^{12}\right)} \approx \boxed{1472.52} > 1410.1423$$

Buy at t = 0 if $c_0 > 1472.52$ regardless of future change.

If
$$TP_0 - C(c_0) - 1.1c_0 \left(\frac{1}{(1+\rho^m)^{12}} + \frac{1}{(1+\rho^m)^{13}} + \dots + \frac{1}{(1+\rho^m)^{23}} \right) - \frac{TP_2}{(1+\rho^a)^2} > 0$$
,

better to buy at t = 2 than t = 0 regardless of future change of rent.

That is,

$$\implies c_0 < \frac{207,303 - \frac{181,390.46}{1.0404}}{601 \left(1 - \left(\frac{600}{601}\right)^{12}\right) \left(1 + 1.1 \left(\frac{600}{601}\right)^{12}\right)} \approx \boxed{1333.62} < 1410.1423$$

Buying at t = 0 is the wrost.

Now let's consider:

 $1.1 \times 1333.62 \approx 1466.9779 > 1388.6526$

 $0.9 \times 1333.62 < 1333.62 < 1388.6526$

Still cannot tell t = 1 and t = 2.

If $c_1 = 1.1c_0 < 1388.6526 \iff c_0 < \boxed{1262.4115} < 1333.62 < 1410.1423$, t = 2 is better than t = 1, t = 1 is better than t = 0, even if future increase in rate. Thus buying at t = 2 is the best regardless of future rent change.

If $c_1 = 0.9c_0 > 1388.6526 \iff c_0 > \boxed{1542.9474} > 1410.1423 > 1333.62$, buying at t = 2 is wrose than buying at t = 1 regardless of future change. But at the same time, t = 0 becomes the best choice.

If t = 1 is the best time,

 $c_0 < 1410.1423$ and $c_1 > 1388.6526$.

 $c_1 \ge 0.9c_0$

 $\therefore 0.9c_0 > 1388.6526$ regardless of rent change. Follows the conclusion above.

It follows that:

Buy at t = 0 if $c_0 > 1472.52$ regardless of future change.

Buy at t = 2 if $c_0 < 1262.4115$ regardless of future change.

But it's still hard to draw a conslusion if $1262.4115 < c_0 < 1472.52$, unless you know exactly how rate will change.

(ii)

Your expectation of the rent the next year is

$$\mathbb{E}\left[c_{1}\right] = 0.5 \cdot 1.1c_{0} + 0.5 \cdot 0.9c_{0} = c_{0}$$

If $c_0 > 1410.1423 > 1388.6526$, buy the house at t = 0.

If $c_0 < 1388.6526 < 1410.1423$, buy the house at t = 2.

If $1388.6526 < c_0 < 1410.1423$,

Buying at t=1 is better than buying at t=0, at the same time, t=1 is better than t=2.

So buying at t = 1 is the optimal choice if $1388.6526 < c_0 < 1410.1423$.

To sum up,

If $c_0 > 1410.1423$, buy the house at t = 0.

If $c_0 = 1410.1423$, indifferent between t = 0 and t = 1.

If $1388.6526 < c_0 < 1410.1423$, buying at t = 1 is the optimal choice.

If $c_0 = 1388.6526$, indifferent between t = 1 and t = 2.

If $c_0 < 1388.6526$, buy the house at t = 2.

(iii)

If $1262.4115 < c_0 < 1472.52$:

Case 1: If rent goes up at the end of t = 1, $c_1 = 1.1c_0 > 1.1 \times 1262.4115 \approx 1388.6526$, buying a house at the end of t = 1 is better than t = 2.

If $c_0 < 1410.1423$, buying at t = 1 is the best choice.

If $c_0 > 1410.1423$, buying at t = 0 is the best choice.

Case 2: If rent goes down at the end of t = 1, $c_1 = 0.9c_0 < 0.9 \times 1472.52 \approx 1325.27 < 1388.6526$, buying a house at the end of t = 2 is better than buying a house at the end of t = 1.

Since at t = 0, you don't know the rent at t = 1,

if
$$TP_0 - C(c_0) - \mathbb{E}[c_1] \left(\frac{1}{(1+\rho^m)^{12}} + \frac{1}{(1+\rho^m)^{13}} + \dots + \frac{1}{(1+\rho^m)^{23}} \right) - \frac{TP_2}{(1+\rho^a)^2} < 0$$
,

buy at t = 0 according to your expectation, $\mathbb{E}[c_1] = c_0$.

That implies,

$$c_0 > \frac{207,303 - \frac{181,390.46}{1.0404}}{601 \left(1 - \left(\frac{600}{601}\right)^{12}\right) \left(1 + \left(\frac{600}{601}\right)^{12}\right)} \approx \boxed{1399.6309}$$

If $c_0 > 1399.6309$, buying at t = 0 is better than t = 2.

If $c_0 < 1399.6309$, buying at t = 2 is better than t = 0.

If $1410.1423 < c_0 < 1472.52$:

Buying at t=0 is better than buying at t=1, at the same time, t=0 is better than t=2.

If $1399.6309 < c_0 < 1410.1423$:

Buying at t=1 is better than buying at t=0, at the same time, t=0 is better than t=2.

At the same time, $c_1 = 0.9c_0 < 0.9 \times 1410.1423 \approx 1269.1281 < 1388.6526$. t = 2 is actually better than t = 1.

The case is that, you know t = 1 is better than buying at t = 0 at the beginning. You wait to t = 1. You find that rent goes down. t = 2 becomes the best choice. But you cannot know the rent change in advance. At t = 0, your expectation is that t = 1 is the best.

If $1262.4115 < c_0 < 1399.6309$:

Buying at t = 2 is better than buying at t = 0, at the same time,

 $c_1 = 0.9c_0 < 0.9 \times 1399.6309 \approx 1259.6662 < 1388.6526$

t=2 is better than t=1, if rent goes down.

In conclusion,

If $c_0 > 1472.52$, buy at t = 0.

If $c_0 < 1262.4115$, buy at t = 2.

If $1262.4115 \le c_0 \le 1472.52$:

Case 1: rent increases.

If $c_0 = 1262.4115$, indifferent with t = 1 and t = 2.

If $1262.4115 < c_0 < 1410.1423$, buy at t = 1.

If $c_0 = 1410.1423$, indifferent with t = 0 and t = 1.

If $1410.1423 < c_0 \le 1472.52$, buy at t = 0.

Case 2: rent decreases,

If $1410.1423 < c_0 \le 1472.52$, best choice is to buy at t = 0.

If $1262.4115 \le c_0 < 1410.1423$, best choice is to buy at t = 2.

(iv)

Follows from (iii), but plug in $0.9c_0$ in case 2.

It implies
$$c_0 > \frac{207,303 - \frac{181,390.46}{1.0404}}{601 \left(1 - \left(\frac{600}{601}\right)^{12}\right) \left(1 + 0.9 \left(\frac{600}{601}\right)^{12}\right)} \approx 1472.52$$

If $c_0 > 1472.52$, buying at t = 0 is the best.

If $c_0 < 1472.52$, buying at t = 2 is better than t = 0 if price goes down.

Case 2 is under the condition $1262.4115 < c_0 < 1472.52$, where buying a house at the end of t = 2 is better than buying a house at the end of t = 1 if rent goes down.

So in Case 2, rent goes down, buy at t = 2 is optimal.

To summarize:

If $c_0 > 1472.52$, buy at t = 0.

If $c_0 < 1262.4115$, buy at t = 2.

If $1262.4115 \le c_0 \le 1472.52$:

Case 1, rent goes up,

If $c_0 = 1262.4115$, indifferent with t = 1 and t = 2

if $1262.4115 < c_0 < 1410.1423$, buy at t = 1,

if $c_0 = 1410.1423$, indifferent with t = 0 and t = 1,

if $1410.1423 < c_0 \le 1472.52$, buy at t = 0,

Case 2, rent goes down, buy at t = 2.

(v)

If $1262.4115 < c_0 < 1472.52$:

When $1410.1423 < c_0 < 1472.52$, t = 0 is better than t = 1. You are comparing t = 0 and t = 2.

Plug in $\mathbb{E}[c_1]$ like (iii), we have $1399.6309 < 1410.1423 < c_0 < 1472.52$. t = 0 is better than t = 2.

When $1262.4115 < c_0 < 1410.1423$, t = 1 is better than t = 0. You wait for another year.

If price goes up, $c_1 = 1.1c_0 > 1.1 \times 1262.4115 \approx 1388.6526$, you buy at t = 1.

If price goes down, $c_1 = 0.9c_0 < 0.9 \times 1410.1423 \approx 1269.1281 < 1388.6526$, you buy at t = 2.

In short,

If $c_0 > 1410.1423$, buy at t = 0.

If $c_0 < 1262.4115$, buy at t = 2.

If $1262.4115 \le c_0 \le 1410.1423$:

Wait for one year.

When rent goes up, buy at t = 1.

When rent goes down, buy at t = 2.

(vi)

If $1262.4115 < c_0 < 1472.52$:

When $1410.1423 < c_0 < 1472.52$, t = 0 is better than t = 1. You are comparing t = 0 and t = 2.

If rent goes up, $c_0 > 1333.62$, buy at t = 0.

If rent goes down, $c_0 < 1472.52$, buy at t = 2.

When $1262.4115 < c_0 < 1410.1423$:

Wait for one year.

If rent goes up, $c_1 = 1.1c_0 > 1.1 \times 1262.4115 \approx 1388.6526$, you buy at t = 1.

If price goes down, $c_1 = 1.1c_0 < 0.9 \times 1410.1423 \approx 1269.1281 < 1388.6526$, you buy at t = 2.

Thus,

If $c_0 > 1472.52$, buy at t = 0.

If $c_0 < 1262.4115$, buy at t = 2.

If $1410.1423 < c_0 < 1472.52$:

If rent goes up, buy at t = 0.

If rent goes down, buy at t = 2.

If $1262.4115 \le c_0 \le 1410.1423$:

Wait for one year.

When rent goes up, buy at t = 1.

When rent goes down, buy at t = 2.

I think (v) is closest to professor's meaning.