

统计学导论: R语言实验11

假设检验

主讲人: 郑盼盼

Outline

- 1. 假设检验基本原理
- 2. R语言实现

案例如何检验(判断)一枚硬币是否均匀?设

则 $X \sim B(1, heta)$

 $H_0:\, heta=0.5 \leftrightarrow H_1:\, heta
eq 0.5$

案例如何检验(判断)一枚硬币是否均匀?设

则 $X \sim B(1, heta)$

$$H_0:\, heta=0.5 \leftrightarrow H_1:\, heta
eq 0.5$$

问题: 已获得 X 的重复观测样本 X_1, X_2, \ldots, X_n ,如何根据观测值进行判断?

根据观测样本的判断会出现以下情形:

6

若10次观测均为正面,推断硬币不均匀,则犯I类错误的概率为:

 $\mathbb{P}(X_1=1,\ldots,X_{10}=1)=0.5^{10} \ pprox 0.0009765625$

接 受 H0

得出

结论

结论正确

第二类错误 β 受假错误

 若10次观测均为正面,推断硬币不均匀,则犯I类错误的概率为:

第一类错误 α 拒真错误 结论正确

 $\mathbb{P}(X_1=1,\ldots,X_{10}=1)=0.5^{10} \ pprox 0.0009765625$

接 受 结论正确 H0

拒

绝

跟据

得出

结论

第二类错误 β 受假错误

当原假设成立时, $|\bar{X}-0.5|$ 应该不大,若 $|\bar{X}-0.5|$ 太大,不利于原假设,可以考虑拒绝原假设:

探究原假设成立的条件下,即 $X\sim B(1,0.5)$, $ar{X}-0.5$ 的分布形态。

```
n <- 10 # 样本量为10 (进行10次观测)
m <- 10000 # 模拟试验次数
x <- matrix(rbinom(m*n, 1, 0.5), m, n) # 模拟H0成立时m次模拟
试验的数据
xBar <- apply(x, 1, mean) # 对每次模拟试验计算样本均值
y <- as.factor(xBar - 0.5) # 计算 xBar - 0.5 并转换为因子向量
u <- table(y) # 获得y的频数统计表
v <- prop.table(u) # 计算频率统计表
barplot(v) # 绘制条形图
```

探究原假设成立的条件下,即 $X\sim B(1,0.5)$, $ar{X}-0.5$ 的分布形态。

我们可以看到,当10次投掷结果均为正面(1)时, $\bar{x}-0.5=0.5$,则概率 $\mathbb{P}_{\theta=0.5}(|\bar{X}-0.5|>|\bar{x}-0.5|)$ 十分小,因此拒绝原假设。

假设检验的一般步骤:

- 1. 根据实际问题写出问题的原假设和备择假设
- 2. 给定显著性水平 α , 通常为0.01, 0.05等
- 3. 由样本构造统计量,计算原假设成立的条件下,**不利于原假设**的p-值。
- 4. 若 p-值小于显著水平,则拒绝原假设,否则无理由拒绝原假设。

例 已知某班的数学成绩服从 $N(\mu,9)$,如何**用样本判断**"这个班级的平均成绩是否为 90 分"?

例 已知某班的数学成绩服从 $N(\mu,9)$,如何**用样本判断**"这个班级的平均成绩是否为 90 分"?

$$H_0: \mu = 90 \leftrightarrow H_1: \mu \neq 90$$

1. 根据题目写出原假设和备择假设

例 已知某班的数学成绩服从 $N(\mu,9)$,如何**用样本判断**"这个班级的平均成绩是否为 90 分"?

$$H_0: \mu = 90 \leftrightarrow H_1: \mu \neq 90$$

设定显著性水平 $\alpha=0.05$ 。

Tip

2. 设定显著性水平

例 已知某班的数学成绩服从 $N(\mu,9)$,如何**用样本判断**"这个班级的平均成绩是否为 90 分"?

$$H_0:\, \mu=90 \leftrightarrow H_1:\, \mu
eq 90$$

设定显著性水平 $\alpha=0.05$ 。设 X_1,X_2,\ldots,X_n 为重复观测样本,构造统计量 $|\bar{X}-90|$ 。计算原假设成立的条件下, $|\bar{X}-90|>|\bar{x}-90|$ 的概率,即 p-值

$$\mathbb{P}_{H_0}(|ar{X} - 90| > |ar{x} - 90|)$$

若计算得到样本均值为85,则变为计算

$$\mathbb{P}_{H_0}(|ar{X}-90|>5)$$

3. 根据题目构造统计量,并计算 p-值

例 已知某班的数学成绩服从 $N(\mu,9)$,如何**用样本判断**"这个班级的平均成绩是否为 90 分"?

根据中心极限定理,当 H_0 成立的条件下,即 $\mu=90$,样本均值 \bar{X} 服从正态分布:

$$ar{X} \sim N\left(90,rac{9}{n}
ight)$$

于是p-值为

$$|\mathbb{P}_{H_0}(|ar{X}-90|>5)=2\mathbb{P}_{H_0}(ar{X}-90<-5)=2\Phi\left(-rac{5}{3/\sqrt{n}}
ight)$$

3. 根据题目构造统计量,并计算 p-值

例 已知某班的数学成绩服从 $N(\mu,9)$,如何**用样本判断**"这个班级的平均成绩是否为 90 分"?

根据中心极限定理,当 H_0 成立的条件下,即 $\mu=90$,样本均值 X 服从正态分布:

$$ar{X} \sim N\left(90,rac{9}{n}
ight)$$

于是p-值为

$$\mathbb{P}_{H_0}(|ar{X}-90|>5)=2\mathbb{P}_{H_0}(ar{X}-90<-5)=2\Phi\left(-rac{5}{3/\sqrt{n}}
ight)$$

比较上式所得p-值和 α

4. 比较p-值和lpha

11.2 假设检验的R语言实现

例 某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5 \, \mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 $1.15 \, \mathrm{cm}$,问:在显著性水平 $0.05 \, \mathrm{r}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

		表 5-10	40 根胡萝卜长	度的数据		(单位: cm)	
11.50	10.08	12.14	12.33	10.68	13.37	13.37	
11.79	12.83	11.32	14.51	11.84	12.13	13.23	
12.34	10.46	12.82	13.87	11.20	12.99	13.44	
11.54	12.79	12.94	12.82	13.48	12.77	13.37	
11.96	12.38	12.20	12.07	11.89	11.04	10.17	
10.34	12.66	10.62	11.98	11.82			

例 某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5\,\mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 $1.15\,\mathrm{cm}$,问:在显著性水平 $0.05\,\mathrm{r}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

答 根据题意可知,萝卜长度 $X \sim N(\mu, 1.15^2)$ 。因此,原假设和备择假设为: $H_0: \mu = 11.5 \leftrightarrow H_1: \mu \neq 11.5$

例 某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5\,\mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 $1.15\,\mathrm{cm}$,问:在显著性水平 $0.05\,\mathrm{r}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

答 根据题意可知,萝卜长度 $X \sim N(\mu, 1.15^2)$ 。因此,原假设和备择假设为: $H_0: \mu = 11.5 \leftrightarrow H_1: \mu \neq 11.5$

用样本均值 \overline{X} 来判断原假设是否正确,根据大数定律和题意(此处样本量为40),若原假设成立:

$$ar{X} \sim N\left(11.5, rac{1.15^2}{40}
ight)$$

例 某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5\,\mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 $1.15\,\mathrm{cm}$,问:在显著性水平 $0.05\,\mathrm{r}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

因此,我们可以计算在 H_0 成立的条件下的p-值

$$\mathbb{P}(|ar{X}-11.5|\!>|ar{x}-11.5|)=2\Phi\left(-rac{|ar{x}-11.5|}{1.15/\sqrt{40}}
ight).$$

例某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5\,\mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 $1.15\,\mathrm{cm}$,问:在显著性水平 $0.05\,\mathrm{r}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

因此,我们可以计算在 H_0 成立的条件下的p-值

$$\mathbb{P}(|ar{X}-11.5|\!>|ar{x}-11.5|)=2\Phi\left(-rac{|ar{x}-11.5|}{1.15/\sqrt{40}}
ight).$$

可以利用R语言计算p-值:

例某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5\,\mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 1.15 cm,问:在显著性水平 $0.05\,\mathrm{下}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

答 根据题意可知,萝卜长度 $X \sim N(\mu, \sigma^2)$ 。因此,原假设和备择假设为:

$$H_0: \, \mu = 11.5 \leftrightarrow H_1: \, \mu \neq 11.5$$

同样,我们可以利用样本均值来计算p-值:

$$\mathbb{P}(|ar{X} - 11.5| > |ar{x} - 11.5|)$$

但此时,总体方差未知,我们通过构造统计量T来衡量p-值:

$$T = rac{ar{X} - \mu_0}{S/\sqrt{n}} = rac{ar{X} - 11.5}{S/\sqrt{40}} \sim t(n-1)$$

例 某种子公司在销售胡萝卜种子的说明书中声称:用此种胡萝卜的平均长度为 $11.5\,\mathrm{cm}$ 。某人种植这种胡萝卜后得到的胡萝卜长度数据见下表,若胡萝卜长度的标准差为 1.15 cm,问:在显著性水平 $0.05\,\mathrm{下}$,可接受该种子公司关于胡萝卜平均长度的说明吗?

因此,我们可以利用T计算p-值

$$\left|\mathbb{P}\left(\left|rac{\sqrt{40}(ar{X}-11.5)}{S}
ight|>\left|rac{\sqrt{40}(ar{x}-11.5)}{S}
ight|
ight)$$

可以利用R语言计算p-值

```
# H0: mu == mu0
h <- t.test(x, mu=11.5, alternative = "two.side")
h$p.value
```

存在三种原假设:

$$H_0: \, \mu = \mu_0 \quad (1)$$

$$H_0: \, \mu \leq \mu_0 \ \ \, (2)$$

$$H_0: \, \mu \geq \mu_0 \ \ \, (3)$$

对于三种原假设,我们都可以通过构造统计量T,来计算p-值

$$T=rac{ar{X}-\mu_0}{S/\sqrt{n}}$$

其p-值分别对应于:

$$\mathbb{P}\left(rac{|ar{X}-\mu_0|}{S/\sqrt{n}}>rac{|ar{x}-\mu_0|}{S/\sqrt{n}}
ight).$$

$$(2) \quad \mathbb{P}\left(rac{ar{X}-\mu_0}{S/\sqrt{n}}>rac{ar{x}-\mu_0}{S/\sqrt{n}}
ight)$$

$$\mathbb{P}\left(rac{ar{X}-\mu_0}{S/\sqrt{n}}<rac{ar{x}-\mu_0}{S/\sqrt{n}}
ight)$$

例 还是上面萝卜长度的例子,现在我们关心该品种的胡罗卜平均长度是否大于 $11.5\,\mathrm{cm}$ 问题。

$$H_0: \mu \geq 11.5$$

可以使用如下代码计算p-值

```
# H0: mu >= mu0

h <- t.test(x, mu=11.5, alternative = "less")

h$p.value
```

例 还是上面萝卜长度的例子,现在我们关心该品种的胡罗卜平均长度是否小于 $11.5\,\mathrm{cm}$ 问题。

$$H_0: \mu \leq 11.5$$

可以使用如下代码计算p-值

```
# H0: mu <= mu0
h <- t.test(x, mu=11.5, alternative = "greater")
h$p.value
```

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

						表	5-11	甲现	E学生	的数	学成约	责数据	居				(单位:	分)
45	54	41	45	80	60	49	44	55	87	73	64	35	89	85	55	84	80	67	70
84	76	51	56	83	83	45	58.	46	65	0	76	79	75	86	62	43	57	75	47
						表	5-12	Z:	班学生	上的数	学成	.绩数	据		_			(单位	二分)
45	46	78	45	47	83	表	5-12 36	Z3 80	班学生 55	上的数	文学成 0	·绩数 75	据 68	53	85	44	51	(单位 67	E: 分) 64

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

1. 原假设:甲乙两班平均成绩无明显差异,即

 $H_0:\,\mu_1=\mu_2$

30

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

1. 原假设:甲乙两班平均成绩无明显差异,即

 $H_0:\,\mu_1=\mu_2$

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

1. 原假设: 甲乙两班平均成绩无明显差异

2. 原假设:甲班成绩优于乙班,即

 $H_0:\,\mu_1\geq\mu_2$

32

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

1. 原假设: 甲乙两班平均成绩无明显差异

2. 原假设:甲班成绩优于乙班,即

 $H_0:\,\mu_1\geq\mu_2$

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

1. 原假设: 甲乙两班平均成绩无明显差异

2. 原假设: 甲班成绩优于乙班

3. 原假设:甲班成绩差于乙班,即

 $H_0: \, \mu_1 \leq \mu_2$

例下表分别来自甲班和乙班学生的数学成绩样本数据,试对比分析两个班级学生的平均数学成绩

1. 原假设: 甲乙两班平均成绩无明显差异

2. 原假设: 甲班成绩优于乙班

3. 原假设:甲班成绩差于乙班,即

 $H_0: \mu_1 \leq \mu_2$