近世代数课后习题作业4参考解答

- 1. 证明: 显然对 $\forall f \in G$, f 为双射。
- 1) 封闭性: 对 $\forall f,g \in G$, 设f(x) = ax + b, g(x) = cx + d, $a \neq 0, c \neq 0$,

則 $f \circ g(x) = f(g(x)) = f(cx+d) = a(cx+d) + b = (ac)x + ad + b$,所以 $f \circ g \in G$

- 2) 结合律: 映射的复合满足结合律。
- 3) 单位元: $I_{\alpha}(x) = x$
- 4)逆元: 显然对 $\forall f \in G$,由 f 为双射,故 f 可逆,且 $f^{-1}(x) = \frac{1}{a}x \frac{b}{a}$,则 $f^{-1} \in G$ 。
- 2. 证明:
- 1) 由 φ 的构造知 φ 为双射。
- 3. 证明: 记 $U_n = \{x \mid x^n = 1\}$,对 $\forall x_k \in U_n$, $x_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}$, $k = 0,1,\cdots,n-1$ 。 由前面的习题作业知其为群,且有 $U_n = (x_1)$,其中 $x_1 = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$, $x_k = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} = (\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n})^k = (x_1)^k \circ \frac{2\pi}{n}$
- 4. 解: (Z_{12}, \oplus) 为模 12 的同余类加群, $Z_{12} = (a) = ([1])$,其非平凡真子群如下:
- 1) $S_1 = (2a) = \{[0], [2], [4], [6], [8], [10]\}$
- 2) $S_2 = (3a) = \{[0], [3], [6], [9]\}$
- 3) $S_3 = (4a) = \{[0], [4], [8]\}$
- 4) $S_4 = (6a) = \{[0], [6]\}$

 $a^1=a^{k_1\cdot n+k_2\cdot r}=a^{k_1\cdot n}a^{k_2\cdot r}=ea^{k_2\cdot r}=(a^r)^{k_2}$,即 $a=(a^r)^{k_2}$,则 G 的生成元 a 可由 a^r 生

成,故有: $(a^r) = G$ 。

6. 证明:设 a^r 的阶为k,则 $(a^r)^k = e$,即 $a^{rk} = e$ 。又 $a^n = e$,所以n|rk,又(r,n) = d,

则有:
$$\frac{n}{d} | \frac{r}{d} k$$
, 而 $(\frac{n}{d}, \frac{r}{d}) = 1$, 所以 $\frac{n}{d} | k$ 。

又由
$$(a^r)^{\frac{n}{d}} = a^{\frac{nr}{d}} = (a^n)^{\frac{r}{d}} = e^{\frac{r}{d}} = e$$
 得: $k \mid \frac{n}{d}$, 从而 $k = \frac{n}{d}$

- 7. 证明:设(G, \circ)为六阶群。则对 $\forall x \in G(x \neq e)$,其阶只能为 2, 3, 6。
- 1) 若 $\exists a \in G$,且 a 的阶为 6 ,即 $a^6 = e$,则 G = (a),则由循环群的子群知存在 三阶子群为: $S = \{e, a^2, a^4\}$
- 2) 若 $\exists a \in G$,且 a 的阶为 3 ,即 $a^3 = e$,此时显然有三阶子群为: $S = \{e, a^1, a^2\}$
- 3)若不存在 $a \in G$,使得 a 的阶为 3 或 6,则对 $\forall a \in G$ 有 $a^2 = e$,从而此时群 (G, \circ) 为交换群。令 $A = \{a,b\}$,其中 $a,b \in G$ 且均不为单位元。则 $(A) = \{e,a,b,ab\}$, |(A)| = 4/6 矛盾。

- 8. 证明: 设 (G,\circ) 为群, $|G|=p^m$ 。取 $a\in G(a\neq e)$,设其阶为r,则 $r|p^m$,由p为素数得: $r=p^k$, $k\geq 1$ 。
- 1) 若 k=1,则群G的一个p阶子群为H=(a);
- 2)若 k > 1,取 $b = a^{p^{k-1}} \in G$,设 b 的阶为 q,即 $b^q = e$ 。由 $b^p = (a^{p^{k-1}})^p = a^{p^k} = e$ $\Rightarrow q \mid p , \nabla b^q = (a^{p^{k-1}})^q = a^{qp^{k-1}} = e$,则有 $r \mid qp^{k-1}$,即: $p^k \mid qp^{k-1}$,从而 $p \mid q$,所以 q = p。此时群 G 的一个 p 阶子群为 H = (b)。

 满射:显然。

单射: 对 $\forall aH, bH \in S_l$, 若 $aH \neq bH$, 下证 $\varphi(aH) \neq \varphi(bH)$ 。

若 $\varphi(aH)=\varphi(bH)$,则有 $Ha^{-1}=Hb^{-1}$,从而 $Ha^{-1}b=H$,由定理

12. 6. 1 知 $a^{-1}b \in H$,从而aH = bH,矛盾。