# **Proofs for Free in the \lambda\Pi-Calculus Modulo Theory**

**LFMTP 2024** 

Thomas Traversié







### The landscape of proof systems

Many different proof systems, data structures and encodings



- Improve interoperability and re-usability of proofs
  - Easily exchange proofs between proof systems
  - Easily exchange proofs between encodings

### Improving interoperability

- The  $\lambda\Pi$ -calculus modulo theory [Cousineau and Dowek, 2007]
  - Logical framework used for exchanging proofs between systems
  - Implemented in the Dedukti proof language
- Parametricity [Bernardy et al., 2010]
  - Method used for transferring proofs between encodings
  - Trocq, a Coq plugin for proof transfer [Cohen et al., 2024]

Goal: transfer proofs between different theories of the  $\lambda\Pi$ -calculus modulo theory

#### Contribution

- We define an **interpretation of theories** of the  $\lambda\Pi$ -calculus modulo theory
  - For theories that feature basic notions
  - When the source theory can be **embedded** into the target theory
- We show how the proofs of the source can be **transferred** to the target
- We give examples of interpretations in Dedukti

https://github.com/thomastraversie/InterpDK

#### **Outline**

Theories in the  $\lambda\Pi$ -calculus modulo theory

Interpretation of theories

Examples of interpretations

Conclusion

#### **Outline**

Theories in the  $\lambda\Pi$ -calculus modulo theory

Interpretation of theories

Examples of interpretations

Conclusion

### The $\lambda\Pi$ -calculus modulo theory

- lacksquare  $\lambda$ -calculus extended with **dependent types** and **rewrite rules**
- Syntax

Sorts 
$$s := TYPE \mid KIND$$

Terms 
$$t, u, A, B := c \mid x \mid s \mid \Pi(x : A). B \mid \lambda(x : A). t \mid t u$$

Signatures 
$$\Sigma ::= \langle \rangle \mid \Sigma, c : A \mid \Sigma, \ell \hookrightarrow r$$

Contexts 
$$\Gamma ::= \langle \rangle \mid \Gamma, x : A$$

 $\Pi x : A. B \text{ written } A \rightarrow B \text{ if } x \text{ not in } B$ 

 $\blacksquare$  Theory  $\mathbb T$  given by a well-defined signature  $\Sigma$ 

### **Typing rules**

$$\frac{\Gamma \vdash A : \mathtt{TYPE} \qquad \Gamma, x : A \vdash B : s \qquad \Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda(x : A). \ t : \Pi(x : A). \ B} \ [\mathtt{Abs}]$$

$$\frac{\Gamma \vdash t : \Pi(x : A). \ B \qquad \Gamma \vdash u : A}{\Gamma \vdash t \ u : B[x \mapsto u]} \ [App]$$

**Conversion**  $\equiv_{\beta\Sigma}$  generated by  $\beta$ -reduction and the rewrite rules of  $\Sigma$ 

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash B : s}{\Gamma \vdash t : B} \text{ [Conv] } A \equiv_{\beta \Sigma} B$$

# Prelude encoding (1)

Notions of proposition and proof [Blanqui et al, 2023]

■ Universe of sorts Set: TYPE, injection El: Set → TYPE Sort nat: Set, natural number n: El nat Sort o: Set, proposition P: El o

■ Universe of **propositions**  $El\ o$ : TYPE, injection Prf:  $El\ o \to TYPE$ A proof of proposition P is of type  $Prf\ P$ 

# Prelude encoding (2)

Desired behavior: functionality and implication

$$EI(a \leadsto b) \hookrightarrow EI \ a \to EI \ b$$
  
 $Prf(a \Rightarrow b) \hookrightarrow Prf \ a \to Prf \ b$ 

Dependent functionality and implication

$$EI(a \leadsto_d b) \hookrightarrow \Pi z : EI a. EI(b z)$$
  
 $Prf(a \Rightarrow_d b) \hookrightarrow \Pi z : Prf a. Prf(b z)$ 

Universal quantifiers over object-terms and proof-terms

Prf 
$$(\forall a \ b) \hookrightarrow \Pi z : El \ a. \ Prf \ (b \ z)$$
  
 $El \ (\pi \ a \ b) \hookrightarrow \Pi z : Prf \ a. \ El \ (b \ z)$ 

## Theories with prelude encoding

$$lacksquare$$
  $\mathbb{T} = \Sigma_{\textit{pre}} \cup \Sigma_{\mathbb{T}}$ 

- lacksquare Constants and rewrite rules  $\Sigma_{pre}$  of the prelude encoding
- lacksquare Constants and rewrite rules  $\Sigma_{\mathbb{T}}$  defined by the user
- Constraint: for every  $c: A \in \Sigma_{\mathbb{T}}$ , we have  $\vdash A: \mathtt{TYPE}$

# **Example:** theory of natural numbers $\mathbb{T}_n$

$$\mathsf{nat} : \mathit{Set} \qquad \mathsf{0}_n : \mathit{EI} \; \mathsf{nat} \qquad \mathsf{succ}_n : \mathit{EI} \; \mathsf{nat} \to \mathit{EI} \; \mathsf{nat} \qquad \geq_n : \mathit{EI} \; \mathsf{nat} \to \mathit{EI} \; \mathsf{nat} \to \mathit{EI} \; \mathsf{nat}$$

- $\blacksquare \ge_n$  is reflexive, transitive and  $\operatorname{succ}_n x \ge_n x$
- Induction principle

rec<sub>n</sub>: 
$$\Pi(P:EI \text{ nat} \rightarrow EI \text{ o}). Prf (P 0_n) \rightarrow [\Pi(x:EI \text{ nat}). Prf (P x) \rightarrow Prf (P (succ_n x))] \rightarrow \Pi(x:EI \text{ nat}). Prf (P x)$$

Theorem

$$\Pi(x : EI \text{ nat}). Prf (succ_n x \ge_n 0_n)$$

## Example: theory of integers $\mathbb{T}_i$

int : 
$$Set$$
  $0_i: El$  int  $succ_i: El$  int  $\rightarrow El$  int  $pred_i: El$  int  $\rightarrow El$  int  $\geq_i: El$  int  $\rightarrow El$  int  $\rightarrow El$  o

Generalized induction principle

rec<sub>i</sub>: 
$$\Pi(x_0 : El \text{ int})(P : El \text{ int} \rightarrow El \text{ o}). Prf (P x_0) \rightarrow$$
  
 $[\Pi(x : El \text{ int}). Prf (x \ge_i x_0) \rightarrow Prf (P x) \rightarrow Prf (P (\text{succ}_i x))] \rightarrow$   
 $\Pi(x : El \text{ int}). Prf (x \ge_i x_0) \rightarrow Prf (P x)$ 

Theorems

$$\Pi(x : El \text{ int}). \ Prf \ (\operatorname{succ}_i \ x \ge_i \ 0_i) \quad \stackrel{\bigstar}{\checkmark}$$

$$\Pi(x : El \text{ int}). \ Prf \ (x \ge_i \ 0_i) \rightarrow Prf \ (\operatorname{succ}_i \ x \ge_i \ 0_i) \quad \stackrel{\checkmark}{\checkmark}$$

#### **Outline**

Theories in the  $\lambda\Pi$ -calculus modulo theory

Interpretation of theories

Examples of interpretations

Conclusion

#### Intuition

- Goal: represent every term t of type A in the source theory  $\mathbb S$  by a term  $t^*$  of type  $A^*$  in the target theory  $\mathbb T$
- Example: natural numbers and integers
  - Represent *EI* nat by  $\Sigma(z : EI \text{ int})$ . *Prf*  $(z \ge_i 0_i)$
  - Represent El nat by El int and introduce a predicate ✓
- We interpret  $\Pi(x : EI \text{ nat})$ .  $Prf (\operatorname{succ}_n x \geq_n 0_n)$  into

$$\Pi(x^* : El \text{ int}). \underbrace{Prf\left(x^* \geq_i 0_i\right)}_{\text{new assumption}} \rightarrow Prf\left(\text{succ}_i \ x^* \geq_i 0_i\right)$$

# Interpretation of terms (1)

• We define **two translations**  $t \mapsto t^*$  and  $t \mapsto t^+$  such that if t : A then  $t^* : A^*$  and  $t^+ : A^+$   $t^*$ 

■ Definition of  $t \mapsto t^*$ 

$$(x)^* := x^*$$
 (variable)  
 $(c)^* := c^*$  (parameter)  
 $\mathsf{TYPE}^* := \mathsf{TYPE}$   
 $\mathsf{KIND}^* := \mathsf{KIND}$   
 $(t\ u)^* := t^*\ u^*\ u^+$   
 $(\lambda(x:A).\ t)^* := \lambda(x^*:A^*)(x^+:A^+\ x^*).\ t^*$   
 $(\Pi(x:A).\ B)^* := \Pi(x^*:A^*)(x^+:A^+\ x^*).\ B^*$ 

# Interpretation of terms (2)

■ Definition of  $t \mapsto t^+$ 

$$(x)^{+} := x^{+}$$
 (variable)  
 $(c)^{+} := c^{+}$  (parameter)  
 $KIND^{+} := KIND$   
 $(t \ u)^{+} := t^{+} \ u^{*} \ u^{+}$   
 $(\lambda(x : A). \ t)^{+} := \lambda(x^{*} : A^{*})(x^{+} : A^{+} \ x^{*}). \ t^{+}$ 

# Interpretation of terms (3)

■ If *B* : TYPE,

$$(\Pi(x:A).\ B)^+ := \lambda(f:(\Pi(x:A).\ B)^*).\ \Pi(x^*:A^*)(x^+:A^+\ x^*).\ B^+\ (f\ x^*\ x^+)$$

- If B : KIND, we cannot abstract on f
  - We write  $T\{X\}$  when the **metavariable** X occurs in T
  - We write  $T\{f\}$  when X is substituted by f

$$(\Pi(x:A).\ B)^+\{X\} := \Pi(x^*:A^*)(x^+:A^+\ x^*).\ B^+\{X\ x^*\ x^+\}$$

Definition of TYPE<sup>+</sup>

$$\mathtt{TYPE}^+\{X\} \coloneqq X \to \mathtt{TYPE}$$

### Interpretation of theories

#### $\mathbb S$ has an interpretation in $\mathbb T$ when:

1. for each constant  $c: A \in \mathbb{S}$ , we have in  $\mathbb{T}$ 

```
- a term c^* such that \vdash c^* : A^*,
```

- a term  $c^+$  such that

$$\vdash c^+ : A^+ c^*$$
 if  $\vdash A : \texttt{TYPE}$   
 $\vdash c^+ : A^+ \{c^*\}$  if  $\vdash A : \texttt{KIND}$ 

2. for each rewrite rule  $\ell \hookrightarrow r \in \mathbb{S}$ , we have  $\ell^* \equiv_{\beta \Sigma} r^*$  and  $\ell^+ \equiv_{\beta \Sigma} r^+$  in  $\mathbb{T}$ .

## Parameters for the prelude encoding (1)

- We must find the parameters for the prelude encoding
- lacksquare If nat : Set, then nat\* : Set and nat\* : EI nat\* ightarrow EI o

$$Set^* := Set$$
  
 $Set^+ := \lambda(z : Set)$ . El  $z \to El$  o

If n : El nat, then  $n^* : El$  nat\* and  $n^+ : Prf$  (nat+  $n^*$ )

$$EI^* := \lambda(x^* : Set)(x^+ : EI \ x^* \to EI \ o). \ EI \ x^*$$
  
 $EI^+ := \lambda(u^* : Set)(u^+ : EI \ u^* \to EI \ o)(z : EI \ u^*). \ Prf \ (u^+ \ z)$ 

## Parameters for the prelude encoding (2)

■ If 
$$P: El\ o$$
, then  $P^*: El\ o$  and  $P^+: Prf\ P^* \to Prf\ P^*$  
$$o^*:= o$$
 
$$o^+:= \lambda(z: El\ o).\ z \Rightarrow_d (\lambda(x: Prf\ z).\ z)$$

■ If 
$$t : Prf \ P$$
, then  $t^* : Prf \ P^*$  and  $t^+ : Prf \ P^*$ 

$$Prf^* := \lambda(x^* : El \ o)(x^+ : Prf \ (o^+ \ x^*)). \ Prf \ x^*$$

$$Prf^+ := \lambda(u^* : El \ o)(u^+ : Prf \ (o^+ \ u^*))(z : Prf \ u^*). \ Prf \ u^*$$

#### Main theorems

Suppose that  $\mathbb S$  has an interpretation in  $\mathbb T.$ 

- Interpretation theorem: If  $\Gamma \vdash t : A$  in  $\mathbb S$  then  $\Gamma^{*,+} \vdash t^* : A^*$  in  $\mathbb T$ 
  - $\hookrightarrow$  We can **transfer** proofs from  $\mathbb S$  to  $\mathbb T$
- **Relative consistency theorem**: If  $\mathbb{T}$  is consistent, then  $\mathbb{S}$  is **consistent**

#### **Outline**

Theories in the  $\lambda\Pi$ -calculus modulo theory

Interpretation of theories

Examples of interpretations

Conclusion

### **Example:** natural numbers and integers

Natural numbers can be embedded into integers

```
\begin{aligned} &\mathsf{nat}^* \coloneqq \mathsf{int} \\ &\mathsf{nat}^+ \coloneqq \lambda(z : El \; \mathsf{int}). \; z \geq_i 0_i \\ &\mathsf{succ}_n^* \coloneqq \lambda(x^* : El \; \mathsf{int})(x^+ : Prf \; (x^* \geq_i 0_i)). \; \mathsf{succ}_i \; x^* \end{aligned}
```

■ The theorems of  $\mathbb{T}_n$ 

$$\vdash$$
 thm :  $\Pi(x : El \text{ nat})$ .  $Prf (succ_n x \ge_n 0_n)$ 

can be derived in  $\mathbb{T}_i$ 

$$\vdash \mathsf{thm}^* : \Pi(x^* : \mathit{El} \ \mathsf{int}). \ \mathit{Prf} \ (x^* \geq_i 0_i) \to \mathit{Prf} \ (\mathsf{succ}_i \ x^* \geq_i 0_i)$$

#### **Example: sets and pointed graphs**

- Zermelo set theory can be represented by pointed graphs [Dowek and Miquel, 2007]
- We can **interpret** the theory of sets in the theory of pointed graphs
  - $\hookrightarrow$  The theory of pointed graphs is computational
- Every pointed graph represents a set
  - $\hookrightarrow$  The predicates asserting that a graph represents a set are  $\mbox{unnecessary}$

#### **Outline**

Theories in the  $\lambda\Pi$ -calculus modulo theory

Interpretation of theories

Examples of interpretations

Conclusion

### Takeaway message

- Interpretation for theories
  - With prelude encoding
  - When the source  $\mathbb S$  can be **embedded** in the target  $\mathbb T$
- Interpretation of a type A of  $\mathbb S$  by a more general type  $A^*$  of  $\mathbb T$  But we introduce the **predicate**  $A^+$
- Well-suited when the target is larger than the source May insert unnecessary predicates

#### **Perspectives**

- Practical application: implementation in Dedukti
- Theoretical application: relative normalization
  - Result in deduction modulo theory using an interpretation [Dowek and Miquel, 2007]
  - Possible for the  $\lambda\Pi$ -calculus modulo theory?

Thank you for your attention!