代数幾何学まとめノート

第1章

可換環

1.1 可換環

定義 1 アーベル群 A が(単位的)可換環であるとは、積と呼ばれる写像 $A \times A \to A$, $a,b\mapsto ab$,where, $a,b\in A$ を備えており、以下の公理を満たすときをいう:

任意の $a,b,c \in A$ について

- 1. ab = ba
- 2. (ab)c = a(bc)
- 3. (a + b)c = ac + bc
- 4. 1a = a

ここで、 $1 \in a$ を A の単位元という。

以降、単に環といったら単位的可換環のことを意味すると約束する。

定義 2 環 A から B への写像 $\phi:A\to B$ が環準同型写像であるとは、次の性質を満たすときをいう:

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- 2. $\phi(ab) = \phi(a)\phi(b)$
- 3. $\phi(1) = 1$

定義 3 環 A の部分集合 \mathfrak{a} がイデアルであるとは、 \mathfrak{a} が次の性質を満たすときをいう。

- 1. αは加法に関して部分群である。すなわち
 - (a) $0 \in \mathfrak{a}$
 - (b) $\forall a \in \mathfrak{a}, -a \in \mathfrak{a}$
 - (c) $\forall a, \forall b \in \mathfrak{a}, a+b \in \mathfrak{a}$
- 2. $\forall a \in \mathfrak{a}, \forall x \in A, ax \in A$.

定義 4 環 A のイデアル \mathfrak{p} が素イデアルであるとは、 \mathfrak{p} が次の性質を満たすときをいう。

 $p,q \in A$ について、 $pq \in \mathfrak{p}$ ならば $p \in \mathfrak{p}$ または $q \in \mathfrak{p}$.

定義 5 (Wikipedia) 拡大体の超越次数とは、体の拡大 L/K の大きさのある種のかなり 粗いはかり方である。きちんと言えば、K 上代数的に独立な L の部分集合の最も大きい 濃度として定義される。

定義 6 体 k の超越次数 1 の有限生成拡大体 K を 1 次元関数体と呼ぶ。

ここでは K として k 上の 1 変数有理関数体 k(X) を思い浮かべておけばよいはず。

K を k 上の 1 次元関数体とする。 C_K を K/k の DVR すべてのなす集合とする。 C_K の元を点とも呼ぶ。

 $C_K \ni P \leftrightarrow R_P$ (P に対応する DVR).

定義 7 抽象非特異曲線とは K を k 上の 1 次元関数体として、開部分集合 $U \subseteq C_K$ である。ただし U には誘導位相を与え、開部分集合上の正則関数の概念を C_K の場合から定める。

第2章

層

定義 8 X を位相空間とする。X 上の前層 F とは以下のようなデータである。

- 1. X の各開集合 U に対してアーベル群 $\mathcal{F}(U)$ が定まっている。
- 2. X の開集合 U,V で、 $V\subseteq U$ となるペアについてアーベル群の準同型写像 $\rho_{UV}:\mathcal{F}(U)\to\mathcal{F}(V)$ が定まっている。 これを制限写像と呼ぶ。

ただしこれらは以下の条件を満たすものとする:

- 空集合 \emptyset に対しては $\mathcal{F}(\emptyset) = 0$ (自明なアーベル群)。
- $\rho_{UU}: \mathcal{F}(U) \to \mathcal{F}(U)$ は恒等写像。
- X の開集合 $W \subseteq V \subseteq U$ に対して、 $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

 $s \in \mathcal{F}(U)$ に対して $\rho_{UV}(s)$ を $s|_{V}$ と書くこともある。

定義 9 (層の茎と芽) 順極限の定義をする。もっとわかりやすく書く。F を X 上の前層 とし、P を X 上の点とする。F の P における茎 F_P を、P を含む全ての開集合 U に対する群 F(U) と制限写像 ρ がなす順系に関する順極限と定義する。茎 F_P の元を点 P における F の切断の芽という。

定義 10 位相空間 X の上の前層 F がさらに次の条件を満たすとき F を層という。

- 3. (局所性)X の任意の開集合 U とその開被覆 $\{V_i\}$ に対して、 $s \in \mathcal{F}(U)$ がすべての i について $s|_{V_i}=0$ を満たすならば s=0.
- 4. (貼り合わせ条件) 各 i について $s_i \in \mathcal{F}(V_i)$ があり、 $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ を満たすならば、ある $s \in \mathcal{F}(U)$ が存在して、 $s_i = s|_{V_i}$ となる。

定義 11 (前層の射) \mathcal{F} , \mathcal{G} を X 上の前層とするとき、それらの間の射 $\phi: \mathcal{F} \to \mathcal{G}$ とは 各開集合 $U \subset X$ に対するアーベル群の射 (= 準同型写像) $\phi(U): \mathcal{F}(U) \to \mathcal{G}(U)$ からなるもので、各 $\phi(U)$ が制限写像と可換になるものである。

$$\begin{array}{ccc} \mathcal{F}(U) & \xrightarrow{\phi(U)} & \mathcal{G}(U) \\ \rho_{UV} & & & & \downarrow \rho'_{UV} \\ \mathcal{F}(V) & \xrightarrow{\phi(V)} & \mathcal{G}(V) \end{array}$$

定義 12 (前層に付随する層) X 上の前層 F が与えられたときに、それから X 上の層 F^+ を構成することができる:

X の各開集合 U に対し、アーベル群 $\mathcal{F}^+(U)$ を次で定める。

- 1. $\mathcal{F}^+(U)$ は次のような関数 $s:U\to \bigcup_{P\in U}\mathcal{F}_P$ 全体の集合である。(これがアーベル群をなすことは明らか。各点における茎 \mathcal{F}_P がアーベル群なので各点ごとで和を考えればよい。)
- 2. ただしs は以下の条件を満たすものとする:
 - 各点 $P \in U$ について $s(P) \in \mathcal{F}_P$.
 - 各点 $P \in U$ について U に含まれる P の開近傍 V と $t \in \mathcal{F}(V)$ が存在して、 $\forall Q \in V$ について t の Q における芽 t_Q は s(Q) に等しい。

Appendix

定義 13 (写像の制限と延長) 写像 $f: X \to Y$ と部分集合 $S \subseteq X$ が任意に与えられたとき、 $\forall s \in S, f|_S := f(s)$ と置くことにより定義される写像 $f|_S: S \to Y$ を f の S への制限と呼ぶ。写像 h の適当な制限が f に一致するとき h は f の延長または拡大、もしくは拡張であるという。

定義 14 (写像の貼り合わせ) V_1,V_2,Y を集合、 $U=V_1\cup V_2$ とする。写像 $f_1:V_1\to Y,$ $f_2:V_2\to Y$ が与えられて、

$$f_1|_{V_1 \cap V_2} = f_2|_{V_1 \cap V_2}$$

を満たしているとする。このとき、写像 $f: U \to Y$ を

$$\forall x \in U = V_1 \cup V_2, \quad f(x) = \begin{cases} f_1(x) & \text{if } x \in V_1 \\ f_2(x) & \text{if } x \in V_2 \end{cases}$$

で定義すれば、これは well-defined な写像になる。このとき、 f_1 と f_2 は貼り合わさって写像 f を定めるという。f は f_1 の延長かつ f_2 の延長になっている。また、 f_1 は f の V_1 への制限かつ f_2 は f の V_2 への制限になっている。