Отчёта по лабораторной работе №7

Команды безусловного и условного переходов в Nasm. Программирование ветвлений.

Мошаров Денис Максимович

Содержание

1	Цель работы				4	
2	Зада	ание				5
3	Выполнение лабораторной работы					6
	3.1	Реализация переходов в NASM				6
	3.2	Изучение структуры файлы листинга				11
	3.3	Задание для самостоятельной работы	•	•		12
4	Выв	воды				17

Список иллюстраций

3.1	Создаем каталог с помощью команды mkdir и файл с помощью ко-	
	манды touch	6
3.2	Заполняем файл	7
3.3	Запускаем файл и смотрим на его работу	7
3.4	Изменяем файл	8
3.5	Запускаем файл и смотрим на его работу	8
3.6	Создаем файл командой touch	9
3.7	Заполняем файл	10
3.8	Смотрим на работу программ	10
3.9	Изучаем файл	11
	Удаляем операндум из файла	12
3.11	Создаем файл командой touch	12
	Пишем программу	13
	Смотрим на рабботу программы(всё верно)	14
3.14	Создаем файл командой touch	14
3.15	Пишем программу	15
	Проверяем работу программы	16
3.17	Проверяем работу программы	16

1 Цель работы

Освоить условного и безусловного перехода. Ознакомиться с назначением и структурой файла листинга.

2 Задание

Написать программы для решения системы выражений.

3 Выполнение лабораторной работы

3.1 Реализация переходов в NASM

Создаем каталог для программ ЛБ7, и в нем создаем файл (рис. 3.2).

```
dmmosharov@dmmosharov:~$ mkdir ~/work/arch-pc/lab07
dmmosharov@dmmosharov:~$ cd ~/work/arch-pc/lab07
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ touch lab7-1.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.1 (рис. ??).

```
%include 'in_out.asm'; подключение внешнего файла
SECTION .data
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
SECTION .text
GLOBAL _start
_start:
jmp _label2
_label1:
mov eax, msg1; Вывод на экран строки
call sprintLF; 'Сообщение № 1'
_label2:
mov eax, msg2; Вывод на экран строки
call sprintLF; 'Сообщение № 2'
_label3:
mov eax, msg3; Вывод на экран строки
call sprintLF; 'Сообщение № 2'
_label3:
mov eax, msg3; Вывод на экран строки
call sprintLF; 'Сообщение № 3'
_end:
call quit; вызов подпрограммы завершения
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. 3.3).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
,dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
dmmosharov@dmmosharov:~/work/arch-pc/lab07$
```

Рис. 3.3: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его в соответствии с листингом 7.2 (рис. 3.4).

```
%include 'in_out.asm'; подключение внешнего файла
SECTION .data
msg1: DB 'Cooбщение № 1',0
msg2: DB 'Cooбщение № 2',0
msg3: DB 'Cooбщение № 3',0
SECTION .text
GLOBAL _start
   _start:
   jmp _label2
   _label1:
   mov eax, msg1; Вывод на экран строки
   call sprintLF; 'Cooбщение № 1'
   jmp _end
   _label2:
   mov eax, msg2; Вывод на экран строки
   call sprintLF; 'Cooбщение № 2'
   jmp _label1
   _label3:
   mov eax, msg3; Вывод на экран строки
   call sprintLF; 'Cooбщение № 2'
   jmp _label1
   _label3:
   mov eax, msg3; Вывод на экран строки
   call sprintLF; 'Cooбщение № 3'
   _end:
   call quit; вызов подпрограммы завершения
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. 3.5).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
dmmosharov@dmmosharov:~/work/arch-pc/lab07$
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Создаем новый файл (рис. 3.6).

Рис. 3.6: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его в соответствии с листингом 7.3 (рис. 3.7).

```
You can paste the image f
SECTION .data
msg1: DB 'Сообщение № 1',0
msg2: DB 'Сообщение № 2',0
msg3: DB 'Сообщение № 3',0
SECTION .text
GLOBAL _start
_start:
jmp _label3
_label1:
mov eax, msg1 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 1'
jmp end
_label2:
mov eax, msg2 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 2'
jmp _label1
_label3:
mov eax, msg3 ; Вывод на экран строки
call sprintLF ; 'Сообщение № 3'
jmp _label2
_end:
call quit ; вызов подпрограммы завершения
```

Рис. 3.7: Заполняем файл

Создаем исполняемый файл и проверяем его работу, вводя разные значения В (рис. 3.8).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ touch lab7-2.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ nasm -f elf lab7-2.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-2 lab7-2.o
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ./lab7-2
Введите В: 23
Наибольшее число: 50
```

Рис. 3.8: Смотрим на работу программ

3.2 Изучение структуры файлы листинга

Открываем файл листинга с помощью команды mcedit и изучаем его (рис. 3.9).

```
    /home/dm-7-2.lst
    [----]
    0 L:[
    1+ 0
    1/225]
    *(0
    /14458b)
    0032
    0x020
    [*][X]

    1
    %include 'in_out.asm'

    1
    <1>;
    $yнкция вычисления длины сообщения

    3
    <1> slen:

    4
    00000000 53
    <1> push ebx.

    5
    00000001 89C3
    <1> mov ebx, eax.

    6
    <1>...

    7
    <1 nextchar:</td>

    8
    00000003
    803800
    <1> cmp byte [eax], 0...

    9
    90000006
    7403
    <1> jz finished.

    10
    00000008
    40
    <1> jz finished.

    11
    00000009
    EBF8
    <1> jmp nextchar.

    12
    <1>...

    13
    <1> sub eax, ebx

    15
    00000000 5B
    <1> pop ebx.

    16
    0000000E C3
    <1> pop ebx.

    1 Помощь 2 Сох-ть 3 Блок
    4 Вамена 5 Копия
    6 Пер~ть 7 Поиск
    8 Уда~ть 9 Менюм 10 Выход
```

Рис. 3.9: Изучаем файл

Строка 33: 0000001D-адрес в сегменте кода, BB01000000-машинный код, mov ebx,1-присвоение переменной есх значения 1.

Строка 34: 00000022-адрес в сегменте кода, B804000000-машинный код, mov eax,4-присвоение переменной eax значения 4.

Строка 35 00000027-адрес в сегменте кода, CD80-машинный код, int 80hвызов ядра.

Открываем файл и удаляем один операндум (рис. 3.10).

Рис. 3.10: Удаляем операндум из файла

Транслируем с получением файла листинга При трансляции файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst

3.3 Задание для самостоятельной работы

ВАРИАНТ-2

Напишите программу нахождения наименьшей из 3 целочисленных переменных а,b и с.Значения переменных выбрать из табл. 7.5 в соответствии с вариантом, полученнымпри выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу.

Создаем новый файл (рис. 3.11).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ touch lab7-4.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$
```

Рис. 3.11: Создаем файл командой touch

Открываем его и пишем программу, которая выберет наименбшее число из трех(2 числа уже в программе, 3е вводится из консоли) (рис. 3.12).

```
%include 'in_out.asm'
section .data
msg1 DB 'Введите В: ', Oh
msg2 DB 'Наименьшее число: ', Oh
A dd '82'
C dd '61'
section .bss
min resb 10
B resb 10
section .text
global .text
_start:
mov eax, msg1
call sprint
mov ecx,B
mov edx,10
call sread
mov eax,B
call atoi
mov [B],eax
mov ecx,[A]
mov [min],ecx
check B:
mov eax, min
mov ecx,[min]
cmp ecx,[B]
il fin
```

Рис. 3.12: Пишем программу

Транслируем файл и смотрим на работу программы (рис. 3.13).

```
dmmosharov@dmmosharov:-/work/arch-pc/lab07$ nasm -f elf lab7-3.asm dmmosharov@dmmosharov:-/work/arch-pc/lab07$ ld -m elf i386 -o lab7-3 lab7-3.o dmmosharov@dmmosharov:-/work/arch-pc/lab07$ ./lab7-3 Введите В: 59 Наименьшее число: 59
```

Рис. 3.13: Смотрим на рабботу программы(всё верно)

2. Напишите программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции f(x) и выводит результат вычислений. Вид функции f(x) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений х и а из 7.6.

Создаем новый файл (рис. 3.14).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ touch lab7-4.asm
dmmosharov@dmmosharov:~/work/arch-pc/lab07$
```

Рис. 3.14: Создаем файл командой touch

Открываем его и пишем программу, которая решит систему уравнений, при даных, введенных в консоль (рис. 3.15).

```
section .data
msg1 DB 'Введите X: ',0h
msg2 DB 'Введите A: ',0h
ans: DB F(x)=0
section .bss
x: RESB 80
a: RESB 80
res: RESB 80
section .text
global _start
start:
mov eax,msg1
call sprint
mov ecx,x
mov edx,80
call sread
mov eax,x
call atoi
mov [x],eax
mov eax, msg2
call sprint
mov ecx,a
mov edx,80
call sread
mov eax,a
```

Рис. 3.15: Пишем программу

Транслируем файл и проверяем его работу при х=1 и а=1(рис. ??).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ./lab7-4 Введите X: 5 Введите A: 7 F(x)=6
```

Рис. 3.16: Проверяем работу программы

Транслируем файл и проверяем его работу при x=2 и a=2(рис. ??).

```
dmmosharov@dmmosharov:~/work/arch-pc/lab07$ ./lab7-4
Введите X: 6
Введите A: 4
F(x)=5
```

Рис. 3.17: Проверяем работу программы

4 Выводы

Мы познакомились с структурой файла листинга, изучили команды условного и безусловного перехода.