体系结构书面作业三

1913155 袁懿

T1:

使用如下代码:

```
; load x1 from address 0+x2
               x1,0(x2)
Loop:
       ld
                           ; x1=x1+1
       addi
               x1, x1, 1
               x1,0(x2)
                           ; store x1 at address 0+x2
       sd
       addi
               x2, x2, 4
                           x2=x2+4
       sub
               x4,x3,x2
                           ; x4=x3-x2
               x4,Loop
                            ; branch to Loop if x4!=0
       bnez
```

令 x3 的初始值是 x2+396。

1. (15) 代码中的数据相关引起数据危害(data hazards),相关是否导致数据危害与机器实现有关(如流水段数目)。将上述代码中所有的数据相关列表,分别记录寄存器、源指令和目标指令,如:寄存器 x1,ld 指令,addi 指令。

解答:

按照五段流水线的情况:

寄存器 x1	ld指令	addi指令
寄存器 x2	addi指令	sd指令
寄存器 x2	addi指令	sub指令
寄存器 x4	sub指令	benz指令

T2

2. (15) 画出没有向前或旁路硬件情形下 5 段 RISC 流水线中上述指令序列的定时图(如图 2.1)。假设:同一个时钟周期内的寄存器读和写通过寄存器文件实现向前路径,如图 2.2 中 dadd 指令和 or 指令之间所示;分支转移指令采用冻结流水线方法解决。如果访问内存需要 1 个周期,那么这段循环代码的执行需要多少个周期?

ld x1,0(x2)	IF	ID	EX	MEM	WB				
sub x4,x1,x5		IF	ID	EX	MEM	WB			
and $x6,x1,x7$			IF	ID	EX	MEM	WB		
or x8,x1,x9				IF	ID	EX	MEM	WB	
$1d \times 1,0(\times 2)$	IF	ID	EX	MEM	WB				
sub x4,x1,x5		IF	ID	Stall	EX	MEM	WB		
and x6,x1,x7			IF	Stall	ID	EX	MEM	WB	
or x8,x1,x9				Stall	IF	ID	EX	MEM	WB

图 2.1 指令定时图

解答:

在没有前向或者旁路硬件情况下5段RISC流水线中上述指令序列的定时图如下:

	1	2	3	4	5	6	7	8	9	10	11	12
ld x1, 0(x2)	IF	ID	EX	MEN	WB							
addi x1, x1, 1		IF	S	S	ID	EX	MEM	WB				
sd x1, 0(x2)					IF	S	S	ID	EX	MEM	WB	
addi x2, x1, 4								IF	ID	EX	MEM	WB
sub x4, x3, x2									IF	S	S	ID
benz x4, loop												IF
Next Loop												

	13	14	15	16	17	18	19	20	21
ld x1, 0(x2)									
addi x1, x1, 1									
sd x1, 0(x2)									
addi x2, x2, 4									
sub x4, x3, x2	EX	MEM	WB						
benz x4, loop	S	S	ID	EX	MEM	WB			
Next Loop					IF	ID	EX	MEM	WB

循环次数: 396/4 = 99次,总执行周期: $16 \times 99 + 2 = 1586$

T3

3. (15) 画出具有完整向前或旁路硬件情形下 5 段 RISC 流水线中上述指令序列的定时图 (如图 2.1)。假设:分支转移指令采用预测为不发生转移的方法处理。如果访问内 存需要 1 个周期,那么这段循环代码的执行需要多少个周期?

解答:

定时图:

	1	2	3	4	5	6	7	8	9	10	11
ld x1, 0(x2)	IF	ID	EX	MEM	WB						
addi x1, x1, 1		IF	ID	S	EX	MEM	WB				
sd x1, 0(x2)			IF	S	ID	EX	MEM	WB			
addi x2, x2, 4					IF	ID	EX	MEM	WB		
sub x4, x3, x2						IF	ID	EX	MEM	WB	
benz x4, Loop							IF	ID	EX	MEM	WB
benz + 1								IF	Idle	Idle	Idle
benz + 2									IF	Idle	Idle
ld x1, 0(x2)										IF	ID

总执行周期: $9 \times 99 + 2 = 893$

T4

4. (15) 画出具有完整向前或旁路硬件情形下 5 段 RISC 流水线中上述指令序列的定时图 (如图 2.1)。假设:分支转移指令采用预测为发生转移的方法处理。如果访问内存 需要 1 个周期,那么这段循环代码的执行需要多少个周期?

解答:

定时图如下:

	1	2	3	4	5	6	7	8	9	10	11
ld x1, 0(x2)	IF	ID	EX	MEM	WB						
addi x1, x1, 1		IF	ID	S	EX	MEM	WB				
sd x1, 0(x2)			IF	S	ID	EX	MEM	WB			
addi x2, x2, 4					IF	ID	EX	MEM	WB		
sub x4, x3, x2						IF	ID	EX	MEM	WB	
benz x4, Loop							IF	ID	EX	MEM	WB
ld x1, 0(x2)								IF	ID	EX	MEM

总执行周期: $7 \times 99 + 4 = 697$

T5

5. (20) 高性能处理器具有非常深的指令流水线,一般超过 15 个流水段。假想一个 10 段流水线,是将 5 段流水线中的每个流水段分成两部分构成的。对于数据向前传输,唯一的问题是,数据从一对流水段的末尾传输到需要它们的两个流水段的头部,例如数据从第二个执行段的末尾传输到第一个执行段的头部,仍然导致 1 个周期的延迟。画出具有完整向前或旁路硬件情形下 10 段 RISC 流水线中上述指令序列的定时图 (如图 2.1) (流水段标号使用 IF1, IF2, ID1......)。假设:分支转移指令采用预测为发生转移的方法处理。如果访问内存需要 1 个周期,那么这段循环代码的执行需要多少个周期?

解答:

定时图:

	1	2	3	4	5	6	7	8	9	10	11	12
ld x1, 0(x2)	IF1	IF2	ID1	ID2	EX1	EX2	MEM1	MEM2	WB1	WB2		
addi x1, x1, 1		IF1	IF2	ID1	ID2	S	S	S	EX1	EX2	MEM1	MEM2
sd x1, 0(x2)			IF1	IF2	ID1	S	S	S	ID2	EX1	EX2	MEM1
addi x2, x2, 4				IF1	IF2	S	S	S	ID1	ID2	EX1	EX2
sub x4, x3, x2					IF1	IF2	S	S	S	ID1	ID2	S
benz x4, loop						IF1	IF2	S	S	S	ID1	ID2
ld x1, 0(x2)												

	13	14	15	16	17	18	19	20	21	22	23	24
ld x1, 0(x2)												
addi x1, x1, 1	WB1	WB2										
sd x1, 0(x2)	MEM2	WB1	WB2									
addi x2, x2, 4	MEM1	MEM2	WB1	WB2								
sub x4, x3, x2	EX1	EX2	MEM1	MEM2	WB1	WB2						
benz x4, loop	S	S	EX1	EX2	MEM1	MEM2	WB1	WB2				
ld x1, 0(x2)	IF1	IF2	ID1	ID2	EX1	EX2	MEM1	MEM2	WB1	WB2		

总执行周期: $12 \times 99 + 8 = 1196$

T6

6. (5) 假设在 5 段流水线中,最长的流水段需要 0.8ns,流水线寄存器延迟 0.1ns, 5 段流水线的时钟周期是多少?如果 10 段流水线将 5 段流水线的每个流水段分成两半,那么 10 段流水线的时钟周期是多少?

解答:

时钟周期为流水段中最长的时间,为 0.8+0.1=0.9ns 10段流水线的时钟周期为 0.8/2+0.1=0.5ns

T7

7. (15) 使用你在 4. 和 5. 中的答案,分别确定在 5 段流水线和 10 段流水线中,上述循环代码的平均指令周期数(CPI)。注意:确保仅在第一条指令到达写回阶段时开始计数,直到结束,不包括第一条指令的建立时间。使用在 6.中得到的时钟周期,计算每种流水线的平均指令执行时间。

解答:

程序的指令总数为: $99 \times 6 = 594$ 条

第四题: CPI = (697 - 4)/594 = 1.167

每种流水线平均执行的时间为: $1.167 \times 0.9 ns = 1.05 ns$

第五题: CPI = (1196-8)/594=2

每种流水线平均执行的时间为: $2 \times 0.5 ns = 1 ns$