Duck News Reporters: Automated fake news detection through contextual similarity comparison

COMP9491: Applied Artificial Intelligence — Project Report

Dhruv Agrawal z5361800@unsw.edu.au Duke Nguyen z5398432@unsw.edu.au Jim Tang z5208565@unsw.edu.au

July 30, 2023

Todo list

[Introduction] Describe the problem domain and aim of study, briefly introduce the developed
methods and summarise your experimental findings
[Related work] Dhruv : Describe the current state-of-the-art or related literature in this problem
domain
[Methods/Preprocessing and tokenization] Jim: Write
[Methods/Feature — Similarity model] Duke : Write
[Methods/Feature — Non-latent features] Duke : Write
[Methods/Feature — BERT embeddings] Duke : Write
[Methods/Model — Machine learning] Jim: Write
[Methods/Model — Neural networks] Dhruv : Write
[Experimental setup/Dataset] Jim: write
[Experimental setup/Evaluation metrics] Jim: write
[Results and discussion] Jim: Machine learning
[Results and discussion] Dhruv : Neural nets
[Conclusion] Summarise the study and discuss directions for future improvement
[Conclusion/Limitations] Convert list of limitations to subsubsections with discussion
[Individual contributions] \mathbf{Jim} : \sim 1pg detailing individual contributions
[Individual contributions] Dhruv : ~1pg detailing individual contributions
[Individual contributions] Duke : ~1pg detailing individual contributions

1 Introduction

[Introduction] Describe the problem domain and aim of study, briefly introduce the developed methods and summarise your experimental findings

2 Related work

Related work Dhruy: Describe the current state-of-the-art or related literature in this problem domain

3 Methods

Figure 1 shows our mostly linear classification pipeline. After preprocessing and tokenization, we extract contextual articles which are fed into a similarity model to form our first feature. Additionally, non-latent features from raw text and BERT embeddings form the rest of our features. The concatenation of all the features are fed into our classification models which infers a binary classification label.

Figure 1: Our classification pipeline.

3.1 Preprocessing and tokenization

[Methods/Preprocessing and tokenization] Jim: Write

3.2 Feature — Similarity model

One of the core aspects of our research was the ability to automatically gather articles that give some context to each input article. Our approach summarizes the input article so it can be used to find contextual articles. These articles can then be used for comparison to the input article.

Summary extraction

To get the context articles, we need to summarize the main topic of our input article down to at most 10 keywords. We use the Python gensim [1] library which provides various topic modelling interfaces for text inputs. We use the ldamodel which implements Latent Dirichlet Allocation (LDA) to extract a single topic. LDA is a probabilistic model where the idea is you have a number of documents representing some latent topics characterized by a distribution over words. By feeding in the preprocessed sentences of our input article, we are able to get the main themes. We sort the output keywords by the probability they represent the topic then cap the amount of words to 10 at most.

For the scope of our research, we are able to perform manual validation of the summaries extracted to check the summary represented the article content well. Table 1 shows some samples of items in our dataset after applying LDA. We see that while the summaries extracted are not perfect, they still represent the general meaning of the article. Two common issues we saw were:

- Unordered words in the summary words representing the topics seemed to be unordered. To a human reading the summary by itself, they might be able to see that the words are all keywords of the article but put together in a sentence, will not completely make sense. We hypothesize that this could have caused sub-optimal results when we started scraping articles using the summaries.
- Appearance of stop words and other meaningless non-topic words in the summary As a flow on issue from our preprocessing, our summary was left with words such as "wa" (from "was") or "ha" (from "has"). This would have impacted the meaning of our summary and later article scraping.

We will discuss the possibility of extracting better summaries using a more robust model in Section 6.1.

ID	Article extract	Summary
118_Real	FBI Director James Comey said Sunday that the bureau won't change the conclusion it made in July after it examined newly revealed emails related to the Hillary Clinton probe. "Based on our review, we have not changed our conclusions that we expressed in July with respect to Secretary Clinton" Comey wrote in a letter to 16 members of Congress. []	email review fbi clinton said july comey news new wa
15_fake	After hearing about 200 Marines left stranded after returning home from Operation Desert Storm back in 1991, Donald J.Trump came to the aid of those Marines by sending one of his planes to Camp Lejuene, North Carolina to transport them back home to their families in Miami, Florida. Corporal Ryan Stickney was amongst the group that was stuck in North Carolina and could not make their way back to their homes. []	home marines trump wa stickney way north plane family

Table 1: Examples of summary extraction on items in dataset.

Article scraping

We feed the summary of the input article into Google News and collect the top three articles. We use Google News since it essentially provides a free PageRank algorithm which we can leverage to get the most popular articles during the time period. We will treat the articles we find as Real articles for purposes of comparison, i.e. an input article that is very different to our contextual article is likely to be Fake.

For our research, we will only manually feed in all summaries for our dataset. Our motivation for this research was to develop a tool that a user could potentially use to figure out if the current news they are reading contains misinformation. We acknowledge there exists APIs that provide either a wrapper around Google News or implement their own news search algorithm that we could have looked into. However, given the size of the dataset and our scope, this was not necessary to demonstrate our system.

SETUP: We use a virtual machine with a freshly installed latest version of Google Chrome. Searches are condicted in "Incognito Mode" tabs. We also use a VPN to the West coast of the US. These invariants serve the main purpose so that Google's does not give any personalized results based on a browser fingerprint or IP address. We chose the US as the VPN destination since our dataset articles were extracted from US news sources and we wanted to scrape for articles with a similar style of writing. If you were to use the tool in Australia, Google would usually return articles from local sources. We restrict our scope to specifically this dataset rather than train on a wide dataset from all sources.

Another invariant we implement is to add a before: 2020 to our summary. This forces Google News to only find articles before this year so that the news we get won't be from recent news. A common discussion topic from our dataset was Donald Trump's 2016 election campaign and we know that the news regarding Trump in 2023 is much different to that of 2016. This makes sense as we are not using a very recent dataset so clamping the date we find contextual articles assumes that if were looking for fake articles at the time of reading the imput article, we wouldn't have too much future articles available.

PROCESS: We attempt to get the top three articles and save the URL for each input article. Not all summaries returned three articles so we perform scraping in three passes:

- 1. We enter the whole summary without any changes. This is the most ideal approach and most machine-replicable. This covered 70% of our dataset.
- 2. Still performing only generic actions, we remove any bad words or non-important connectives then searched again. This should still be machine-replicable with further work. This covered the next 20% of our dataset.
- 3. For the last 10% of our dataset, we had to manually look at the input article content and summary generated to figure out why we still received no results. Our hypothesis was that this was a combination of our non-tuned summary extraction and the fact that some outrageous Fake articles simply didn't have any similar articles that could be found. We will discuss this limitation in Section 6.1.

From the above passes, we were not able to find context articles for four input articles described in a table in Appendix B. Furthermore, we were only able to find one or two articles for some inputs but we can still continue with our similarity model.

Figure 2: Sample of articles found in Google after searching an article summary.

After gathering three URL links for each context article, we use the Python newspaper3k [2] library to download the article and automatically extract its title and content.

Similarity model

[Methods/Feature — Similarity model] **Duke**: Write

3.3 Feature — Non-latent features

[Methods/Feature — Non-latent features] **Duke**: Write

3.4 Feature — BERT embeddings

[Methods/Feature — BERT embeddings] **Duke**: Write

3.5 Model — Machine learning

[Methods/Model — Machine learning] Jim: Write

3.6 Model — Neural networks

[Methods/Model — Neural networks] Dhruv: Write

4 Experimental setup

4.1 Dataset

[Experimental setup/Dataset] Jim: write

4.2 Evaluation metrics

[Experimental setup/Evaluation metrics] Jim: write

5 Results and discussion

[Results and discussion] Jim: Machine learning

[Results and discussion] Dhruv: Neural nets

6 Conclusion

[Conclusion] Summarise the study and discuss directions for future improvement

6.1 Limitations

[Conclusion/Limitations] Convert list of limitations to subsubsections with discussion

- \bullet Summary extraction didn't produce perfect results
- Article scraping sometimes returned no results even after manually figuring out why
- Models trained on only US news, may be a problem

References

- [1] Radim Řehůřek and Petr Sojka. "Software Framework for Topic Modelling with Large Corpora". English. In: *Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks*. Valletta, Malta: ELRA, May 2010, pp. 45–50.
- [2] Lucas Ou-Yang. newspaper3k. 2013. URL: https://newspaper.readthedocs.io/en/latest/.
- [3] Benjamin Horne and Sibel Adali. "This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news". In: *Proceedings of the international AAAI conference on web and social media.* Vol. 11. 1. 2017, pp. 759–766.

A Individual contributions

Jim Dhruv Duke

A.1 Jim

[Individual contributions] \mathbf{Jim} : \sim 1pg detailing individual contributions

A.2 Dhruv

[Individual contributions] \mathbf{Dhruv} : \sim 1pg detailing individual contributions

A.3 Duke

[Individual contributions] \mathbf{Duke} : \sim 1pg detailing individual contributions

Article scraping \mathbf{B}

COMP9491: Project Report

ID	Article extract	Summary
128_Real	[]I have a prediction. I know exactly what November 9 will bring. Another day of God's perfect sovereignty. He will still be in charge. His throne will still be occupied. He will still manage the affairs of the world. Never before has His providence depended on a king, president, or ruler. And it won't on November 9, 2016. "The LORD can control a king's mind as he controls a river; he can direct it as he pleases" (Proverbs 21:1 NCV). On one occasion the Lord turned the heart of the King of Assyria so that he aided them in the construction of the Temple. On another occasion, he stirred the heart of Cyrus to release the Jews to return to Jerusalem. []	god wa one never every king novem- ber still heart
2_Fake	Washington, D.C. – South African Billionaire, Femi Adenugame, has released a statement offering to help African-Americans leave the United States if Donald Trump is elected president. According to reports, he is offering \$1 Million, a home and car to every Black family who wants to come to South Africa. Concerns about Donald Trump becoming president has prompted a South African billionaire to invest his fortune in helping African-Americans leave the United States to avoid further discrimination and inequality. []	ha adenugame africanamericans south femi united states africa presi- dent donald
10_Fake	The Internet is buzzing today after white supremacist presidential candidate Donald Trump was caught by hotel staff snorting cocaine. Maria Gonzalez an employee at the Folks INN & Suites Hotel in Phoenix brought room service to his room witnessed it all. "When I walked in I saw 3 naked prostitutes and maybe 100,000 in hundred dollars bills and a mountain of white powder on the table, I thought it was a dog on the floor sleep but it was his hair piece, he was bald and sweating like crazy." []	wa room hotel maria told em- ployee gonzalez hit video get
34_Fake	It has been more than fifteen years since Rage Against The Machine have released new music. The members of the band have involved themselves in various other projects during their lengthy hiatus, but one pressing issue has forced the band to team up once again. In a statement posted online, Rage Against The Machine announced they would be releasing a brand new album aimed at spreading awareness about "how awful Donald Trump is". []	trump rage album machine band ha donald music out- side year

Table 2: Articles we were not able to find context articles for.