

Optimal European Soccer Matches Scheduling

Andrea ZANON (MBAn '23), Hamza ZERHOUNI (MBAn '23)

15.093 Optimization – Fall 2022

Problem Statement

The goal is to optimize 5 top European soccer leagues schedule to maximize rest time. The best

model has the best trade-off between performance and computation time.

We consider a single league: N=20 teams, W=N-1=19weeks (first half of the season) LaLiga

LIGUE 1

SERRE A

"We are going to kill the players!" – Ex-PSG/Chelsea Head Coach Tuchel

"We play so much, too much ..." Tottenham/ex-Juve Head Coach Conte

- Injuries doubled over the last 20 years.
- Optimizing schedule is beneficial for players, supporters, sponsors and TV broadcasters.

Data

- ➤ 2022 schedules of European soccer leagues used as baseline.
- No other external data but required domain expertise and knowledge of soccer schedule rules.

How to solve the problem?

Mixed-integer optimization problem & multiple heuristics to make the solution scalable

General formulation

$$\min_{x} \sum_{i,j,k,w,d,d'} C_{7w+d,7(w+1)+d'} x_{ijwd} x_{ik(w+1)d'}$$

Variables:

$$x_{ijwd} = \begin{cases} 1, & \text{if i plays j on day d of week w} \\ 0, & \text{otherwise} \end{cases}$$

Parameters:

$$C_{tt'} = \begin{cases} \frac{1}{t'-t}, & \text{if } t' > t \\ 0, & \text{otherwise} \end{cases}$$

$$\frac{\text{Seq}}{(1, 0)}$$

Sequence	$\frac{1}{t'-t}$	t'-t
(1, 3, 5)	$\frac{1}{2} + \frac{1}{2} = 1$	2 + 2 = 4
(1, 2, 5)	$\frac{1}{1} + \frac{1}{3} = 1.33$	1 + 3 = 4

Constraints:

- One opponent per week
- N-1 games per team
- Teams play each other once
- No games on Tuesday, Wednesday & Thursday

Different approaches

Optimal approach

Solve the optimization problem

Split teams in groups

Solve the problem for 4 groups of 5 teams

Greedy approaches

Optimize P weeks at a time and freeze the results

Greedy approaches & random restart

Re-optimize randomly subsets of weeks k times

Results and impact

Models	Objective function	Time (s)
Baseline (Real life)	55.76	/
Freeze entire period optimized (5.3)	56.95	3,084
Freeze first week of period optimized (5.4)	51.68	9,881
$(5.3) + { m Random\ restart}$	56.20	5,373
$(5.4) + { m Random\ restart}$	51.68	11,932
Optimal model (time limit)	51.46	21,600

- Best heuristic approach: Freeze first week of period optimized
 - 7.3% improvement over the baseline
 - 54.25 % faster with 0.3% gap to optimality

Improvements

Consider adding international competitions and international breaks

- Consider the environmental impact of traveling
- Formulate problem at **player level** instead of team level