

RBF: Learning Models (2/2)

- Use iterative approach (similar to EM algorithm):
 - Fix γ , solve for $\underline{\boldsymbol{w}}$ (one-step learning)
 - Fix $\underline{\mathbf{w}}$, solve for γ (gradient descent)
- Step 1
 - ullet Assume γ is known and fixed
 - Learn w
- Impose perfect interpolation:

$$E_{in} = \frac{1}{n} \sum (h(\underline{x}_i) - y_i)^2 = 0$$

Problem:

$$h(\underline{\mathbf{x}}_j) = \sum_i w_i \exp(-\gamma \|\underline{\mathbf{x}}_i - \underline{\mathbf{x}}_j\|^2) = \sum_i w_i \phi_{i,j} = \underline{\phi}_j^T \underline{\mathbf{w}} = y_i$$

- N equations (one per point) and N unknowns w
- Φ is known, function of data set and γ

Learning RBF Models

• The problem in matrix form is:

$$\underline{\underline{\Phi}} \cdot \underline{w} = \underline{y}$$

- If $\underline{\underline{\Phi}}$ is invertible, then $\underline{\underline{w}} = \underline{\underline{\Phi}}^{-1}\underline{\underline{y}}$. Desired values on training points

 - Exponential interpolates other points
- If Φ is not invertible, optimize in least square sense:

$$\operatorname{argmin}_{\underline{\boldsymbol{w}}} E_{in} = \sum_{i} (h(\underline{\boldsymbol{x}}_{j}) - y_{i})^{2}$$

- Compute pseudo-inverse (assuming $\underline{\Phi}^T\underline{\Phi}$ is invertible)
- Assign weights:

$$\underline{\mathbf{w}} = (\underline{\underline{\mathbf{\Phi}}}^T \underline{\underline{\mathbf{\Phi}}})^{-1} \underline{\underline{\mathbf{\Phi}}}^T \underline{\mathbf{y}}$$

- Step 2
 - Assume w is known and fixed
 - Learn γ

RBF Network vs Neural Networks

- The regression model for Neural Networks and RBF model is similar:
 - RBF:

$$h(\underline{\mathbf{x}}) = \sum_{i} w_{i} e^{-\gamma \|\underline{\mathbf{x}} - \underline{\mathbf{x}}_{i}\|^{2}} = \underline{\mathbf{w}}^{T} \underline{\boldsymbol{\phi}}$$

Neural networks:

$$h(\underline{\mathbf{x}}) = \Theta(\underline{\mathbf{w}}^{(L)T}\underline{\mathbf{x}}^{(L)}) = \Theta(\underline{\mathbf{w}}^{(L)T}\underline{\Theta}(\underline{\underline{\mathbf{W}}}^{(L-1)}...))$$

- Difference:
 - RBF has a single layer
 - Neural networks have multiple layers
- Similarities:
 - Combine features with weights using dot product
 - Extract features from inputs
 - RBF features: $e^{-\gamma \|\underline{x} \underline{x}_i\|^2}$, always > 0
 - NN hidden layers: features can be > 0 or < 0

RBF Network vs SVM

- The model form is the same:
 - RBF:

$$h(\underline{x}) = \operatorname{sign}(\sum_{i} w_{i} e^{-\gamma \|\underline{x} - \underline{x}_{i}\|^{2}})$$

• SVM:

$$h(\underline{\mathbf{x}}) = \operatorname{sign}(\underline{\mathbf{w}}^T \underline{\mathbf{x}} + b)$$

- The interpretation is completely different (interpolation vs large margin)
 - RBF: all vectors (or centers of few clusters) contribute to the model
 - SVM: only support vectors contribute to the model

K-Nearest Neighbor (KNN) Model

• The model form is like:

$$h_{\underline{w}}(\underline{x}) = \frac{1}{n} \sum_{\underline{x}, \text{closest to } \underline{x}} w$$

- Idea:
 - Closeness implies a distance (e.g., euclidean metric) or similarity (e.g., a kernel)
 - Consider the k closest points to the evaluation point <u>x</u>
 - Take an average of their response

KNN: Intuition of Number Degrees of Freedom

- Nearest neighbor model (k = 1)
 - Use response of closest point to \underline{x}
 - Similar to Voronoi tessellations: each point has a region where it is the closest and assigns its output to that region
- k is the only parameter for KNN
 - For k = 1 ⇒ N neighborhoods, one around each training point
 - For $k = N \implies$ single neighborhood
 - Effective number of parameters: $\frac{N}{k}$, imagining N/k non-overlapping neighborhoods

KNN: Assumptions on the Data

- KNN makes no assumption on data
 - Opposite of linear model with strong data assumption
- KNN assumes locality in parameter space
 - Model is constant in example's neighborhood
 - E.g., k = 1: Voronoi tessellation (low-bias/high-variance)
 - E.g., k = N: Average value (high-bias/low-variance)

KNN: Training and Test Error

- For k = 1
 - No error on training set (low bias / high variance) assuming non-noisy target
 - Eout larger than Ein
- Increasing k
 - Training error *E*_{in} increases
 - Test error E_{out} decreases, then increases
 - Typical model complexity behavior in bias-variance diagrams

KNN vs RBF Models

- Similarities
 - K-Nearest Neighbor is a discrete version of the RBF model
- Differences:
 - Consider only the k closest examples to the point \underline{x} (not all examples in the training set)
 - Use a constant kernel (responses are not weighted by distance)

- Clustering
- Anomaly Detection

K-Means Clustering: Problem Formulation

- N unlabeled points $\{x_1, x_2, ..., x_N\}$
- Partition points into K clusters $S_1, ..., S_K$

 - Each cluster defined by center $\underline{\mu}_k$ Each point \underline{x}_i assigned to cluster $c(\underline{x}_i)$
 - Unknowns are $c(\underline{x}_1),...,c(\underline{x}_N),\mu_1,...,\mu_{\kappa}$
- Minimize distance between each $\underline{m{x}}_i$ and assigned center $m{\mu}_{
 u}$ where $k = c(\mathbf{x}_i)$

$$J(c_1, ..., c_N, \mu_1, ..., \mu_K) = \sum_{k=1}^K \sum_{\underline{\mathbf{x}}_n \in S_k} \|\underline{\mathbf{x}}_n - \underline{\boldsymbol{\mu}}_k\|^2 \text{(scanning the clusters)}$$

$$= \sum_{i=1}^N \|\underline{\mathbf{x}}_i - \underline{\boldsymbol{\mu}}_{c(\underline{\mathbf{x}}_i)}\|^2 \quad \text{(scanning the points)}$$

- K-means clustering is NP-hard (combinatorial) and thus intractable
 - In fact there are K^N possible assignments

K-Means Clustering: Lloyd's Algorithm

- Start with a random assignment of N points to K clusters
 - Better than picking random centroids
- Each iteration has 2 steps
 - Step 1: Move centroid
 - · Move each cluster's centroid to the mean point
 - Iterate over K clusters
 - $\underline{\mu}_k \leftarrow \frac{1}{|S_k|} \sum_{\underline{x}_n \in S_k} \underline{x}_n$
 - Step 2: Cluster assignment
 - Assign each \underline{x}_n to the closest cluster center
 - Iterate over N points
 - $S_k \leftarrow \{\underline{\mathbf{x}}_n : \|\underline{\mathbf{x}}_n \underline{\boldsymbol{\mu}}_k\| \le \|\underline{\mathbf{x}}_n \underline{\boldsymbol{\mu}}_l\| \ \forall l \ne k\}$

K-Means Clustering: Convergence

- K-means algorithm converges since:
 - Finite number of possible partitions (and values of objective functions)
 - Objective function $J(\cdot)$ always decreases
- Objective function always decreases
 - Cost function $J(\mu_1,...,\mu_{\kappa},c_1,...,c_N)$ depends on:
 - Centroids $c_1, ..., c_N$
 - Point assignments $\underline{\mu}_1,...,\underline{\mu}_K$
 - K-means minimizes J by:
 - Adjusting centroids (fixed assignments)
 - Adjusting assignments (fixed centroids)
 - Similar to coordinate descent
- Generally converges to a local minimum
 - Run K-means multiple times with different random initializations
 - Choose best result

K-Means Clustering: Non-Separable Clusters

- For simplicity, you tend to imagine a clear separation between clusters
 - Clusters, especially in high dimensions, are not obviously separable
- Using K-means on data not obviously separated
 - E.g., market segmentation
 - E.g., t-shirt sizing
 - Collect height and width of customers
 - Run K-means
 - Find optimal way to split population into 3 sizes (S, M, L)

Choosing the Number of Clusters

- Often unclear how many clusters K exist
 - Visual analysis can be inconclusive in 2D or 3D
 - More difficult in high dimensions

Elbow Method

- Vary clusters K
- Compute optimal cost function $J(\cdot)$
- Choose K at "elbow" point if visible
- Elbow absent if curve resembles hyperbole $\approx 1/K$

End-to-end approach

- Choose K to optimize later stages
- E.g., more t-shirt sizes (more clusters) \implies
 - Satisfy customers
 - Complicates manufacturing
 - Increases inventory management

Interpretation of Clusters

- Cluster meaning often interpreted manually (difficult to automate)
 - Examine cluster centroids
 - · Centroid values show "typical" point in each cluster
 - High, low, or zero feature values highlight key characteristics
 - Analyze distribution of features per cluster
 - Plot histograms or boxplots for each feature
 - Identify features that vary sharply across clusters
 - Visualize clusters in 2D or 3D
 - E.g., PCA, t-SNE, UMAP
 - Understand separation and internal structure
 - Compare clusters to external labels if available
 - See if clusters align with known real-world groups
 - Train a classifier like decision tree
 - Important features for predicting cluster reveal their meaning
- Example: Customer Segmentation

Cluster	Age	Annual Income	Spending Score	Label
Cluster 1	25 yrs	30K	90	Young Big Spenders
Cluster 2	50 yrs	80K	40	Comfortable Mid-Lifers
Cluster 3	35 yrs	120K	20	High Income, Low Spending Customers

- Clustering
- Anomaly Detection

Anomaly Detection: Problem Formulation

Problem:

- $\{\underline{x}_1,...,\underline{x}_N\}$ examples with features $\underline{x} \in \mathbb{R}^P$ for good instances
- Detect bad/anomalous instances

• Algorithm:

- Unknown characteristics of "bad instances"
- Learn common traits of "good instances" using unsupervised learning
 - Find distribution for x_i : Pr(x is good)
- Pick features
 - Find "sensitive" features, e.g., ratio between CPU load and network traffic
- Estimate distribution Pr(x is good)
- Choose threshold ε
- For new instance \underline{x}_{new} , if $\Pr(\underline{x}_{new} \text{ is good}) \leq \varepsilon$ flag as anomaly

Anomaly Detection: Example of Aircraft Engines

- Problem
 - Test aircraft engines to identify anomalies in a new engine
- Solution:
 - Features x, can be:
 - Heat generated
 - Vibration intensity
 - •
 - Collect data for all engines
 - Model Pr(<u>x</u> is good)
 - Decide if a new engine is acceptable $\Pr(\underline{x}_{new} \text{ is good}) \leq \varepsilon$ or needs more testing

Anomaly Detection: Example of Hacked Account

- Problem
 - Find if an account for a given user i was hacked
- Solution:
 - Model features that represent "user i activity"
 - Features x_i can be:
 - How many times s/he logs a day
 - How many times s/he fails to enter the password
 - How fast s/he types
 - How many pages s/he visits
 - How many times s/he posts comments
 - ...
 - Model Pr(<u>x</u> is good)
 - Identify unusual users by checking $\Pr(\underline{x}_{new} \text{ is good}) \leq \varepsilon$

Anomaly Detection: Example of Data Center

- Problem
 - Monitor servers in a data center to find malfunctioning or hanged servers
- Solution:
 - Features x, can be:
 - Memory in use
 - CPU load
 - Network traffic
 - Number of reads/writes per sec
 - CPU load / network activity
 - ٠..
 - Model Pr(<u>x</u> is good)
 - Identify unusual systems by checking $\Pr(\underline{x}_{new} \text{ is good}) \leq \varepsilon$

Using a Gaussian Model for Anomaly Detection

- Aka "density estimation"
- Given N examples $\underline{x}_1, ..., \underline{x}_N \in \mathbb{R}^p$
- Ensure that the features have a Gaussian distribution
 - If not, apply some transformations, e.g., $log(x_i + k)$
- Estimate the parameters of the Gaussian model $f_X(\underline{x})$
- Given a new example \underline{x}_{new} compute $\Pr(\underline{x}_{new} \text{ is good}) \leq \varepsilon$ to flag an anomaly

Estimate Univariate Gaussian Model

- You have N (scalar) examples $\underline{x}_1,...,\underline{x}_N \in \mathbb{R}$ representing "good instances"
- Assume the data is generated by a Gaussian distribution

$$X \sim \mathcal{N}(\mu, \sigma)$$

which has a PDF:

$$f_X(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

• Estimate mean and sigma with maximum likelihood:

$$\mu = \frac{1}{N} \sum_{i} x_{i}$$

Estimate Multivariate Independent Gaussian Model

- You have N examples $\underline{x}_1,...,\underline{x}_N \in \mathbb{R}^p$ for "good instances"
- Assume independence of the features, the PDF of a multi-variate Gaussian X is:

$$f_X(\underline{\mathbf{x}};\underline{\mathbf{\mu}},\underline{\mathbf{\sigma}}) = \prod_{i=1}^p f_{X_i}(x_i;\mu_i,\sigma_i)$$

• Infer the parameters μ_i and σ_i using discrete formulas to get the complete model

Estimate a Multi-Variate Gaussian Model

Problem:

- Often features vary together (e.g., network use and CPU load), causing mis-classifications with independent assumptions
- Components of $\underline{\mathbf{x}}_{new}$ are within range but nonsensical together
 - E.g., low network use with high CPU load

Solution 1:

- Engineer features to highlight anomalies
- Address variable correlation not modeled in independent Gaussian models

Solution 2:

Estimate the entire multivariate model instead of assuming independence

Estimate a Multi-Variate Gaussian Model

• The PDF of a multi-variate Gaussian is:

$$f_X(\underline{x};\underline{\mu},\underline{\underline{\Sigma}}) = \frac{1}{(2\pi)^{\frac{n}{2}}|\underline{\Sigma}|^{\frac{1}{2}}} \exp(-\frac{1}{2}(\underline{x}-\underline{\mu})^T\underline{\underline{\Sigma}}^{-1}(\underline{x}-\underline{\mu}))$$

Estimate:

$$\underline{\mu} \in \mathbb{R}^d = \frac{1}{N} \sum_{k=1}^N \underline{\mathbf{x}}_k$$

$$\underline{\underline{\Sigma}} \in \mathbb{R}^{d \times d} = \{s_{ij}\} = \frac{1}{N-1} \sum_{k=1}^{N} (\underline{x}_k - \underline{\mu}) (\underline{x}_k - \underline{\mu})^T$$

- Model requires more examples to train due to more parameters
- Independence between variables decomposes multivariate Gaussian into product of Gaussian distributions

Evaluate Anomaly Detection Systems

- To evaluate models one needs to:
 - Compare different models
 - Tune hyperparameters (e.g., ε) of models
 - Estimate out-of-sample error
- As always we should use a single real number for comparison
 - Use any classification metric, e.g.,
 - True/false positive/negative rate
 - Precision or recall
 - F-score
- Labeled data is still needed to rate models

y = 0 good

y = 1 anomalous

Evaluate Anomaly Detection Systems

- Often, anomalous examples y = 1 are much fewer than good examples y = 0
 - E.g., 10,000 good vs 20 bad examples
 - Address class imbalance for accurate model performance
- Algorithm:
 - Pick 60% of y = 0 data to train (only on good examples)
 - Split remaining y = 0 and y = 1 into validation and test sets
 - Ensure both sets represent the overall dataset
 - Train, validation, and test sets should not overlap but have the same characteristics
 - Helps evaluate model performance accurately
 - Use validation set to compare models, estimate hyperparameters
 - E.g., ε is the threshold for anomaly detection
 - Use test set to evaluate final model
 - Train on normal data, test on both normal and anomalous data
- Aircraft engine example

Dataset	y = 0 (Good Engines)	y=1 (Bad Engines)	
Total Example	10,000	20	
Train Set	6,000	0	
Validation Set	2,000	10	
Test Set	2,000	10	

Anomaly Detection vs Supervised Learning

- Even in unsupervised learning, you need labeled data for model evaluation
- Difference with supervised learning:
 - Anomaly detection/unsupervised learning: Train only on good examples
 - Supervised learning: Train on both good and bad examples
- Use:
 - Anomaly detection/unsupervised learning:
 - Learn from good examples due to few anomalous examples
 - Strong prior on the model
 - Future anomalous examples unknown (no prior)
 - Supervised learning: Less skewed classes in training set
 - Not a clear-cut decision

