Honework 2 Honors Analysis II

Homework 2

ALECK ZHAO

February 9, 2018

Chapter 14: The Riemann-Stieltjes Integral

- 1. If $f, g \in \mathcal{R}_{\alpha}[a, b]$ with $f \leq g$, show that $\int_a^b f \, d\alpha \leq \int_a^b g \, d\alpha$.
- 3. If $f \in \mathcal{R}_{\alpha}[a, b]$, show that $|f| \in \mathcal{R}_{\alpha}[a, b]$ and that $\left| \int_{a}^{b} f \, d\alpha \right| \leq \int_{a}^{b} |f| \, d\alpha$. (Hint: $U(|f|, P) L(|f|, P) \leq U(f, P) L(f, P)$. Why?)
- 6. Define increasing functions α, β , and γ on [-1,1] by $\alpha = \chi_{(0,1]}, \beta = \chi_{[0,1]}$, and $\gamma = \frac{1}{2}(\alpha + \beta)$. Given $f \in B[-1,1]$, show that:
 - (a) $f \in \mathcal{R}_{\alpha}[-1,1]$ if and only if f(0+) = f(0).
 - (b) $f \in \mathcal{R}_{\beta}[-1, 1]$ if and only if f(0-) = f(0).
 - (c) $f \in \mathcal{R}_{\gamma}[-1, 1]$ if and only if f is continuous at 0.
 - (d) If $f \in \mathcal{R}_{\gamma}[-1, 1]$, then $\int_{-1}^{1} f d\alpha = \int_{-1}^{1} f d\beta = \int_{-1}^{1} f d\gamma = f(0)$.
- 7. Let $P = \{x_0, \dots, x_n\}$ be a (fixed) partition of [a, b], and let α be an increasing step function on [a, b] that is constant on each of the open intervals (x_{i-1}, x_i) and has jumps of size $\alpha_i = \alpha(x_i +) \alpha(x_i -)$ at each of the x_i , where $\alpha_0 = \alpha(a+) \alpha(a)$ and $\alpha_n = \alpha(b) \alpha(b-)$. If $f \in B[a, b]$ is continuous at each of the x_i , show that $f \in \mathcal{R}_{\alpha}$ and $\int_a^b f \, d\alpha = \sum_{i=1}^n f(x_i) \alpha_i$.
- 9. If f is monotone and α is continuous (and still increasing), show that $f \in \mathcal{R}_{\alpha}[a, b]$.
- 10. If $f \in \mathcal{R}_{\alpha}[a, b]$, show that $f \in \mathcal{R}_{\alpha}[c, d]$ for every subinterval [c, d] of [a, b]. Moreover, $\int_a^b f \, d\alpha = \int_a^c f \, d\alpha + \int_c^b f \, d\alpha$ for every a < c < b. In fact, if any two of these integrals exist, then so does the third and the equation above still holds.
- 23. Suppose that φ is a strictly increasing continuous function from [c,d] onto [a,b]. Given $f \in \mathcal{R}_{\alpha}[a,b]$, show that $g = f \circ \varphi \in \mathcal{R}_{\beta}[c,d]$, where $\beta = \alpha \circ \varphi$. Moreover, $\int_{c}^{d} g \, d\beta = \int_{a}^{b} f \, d\alpha$.
- 27. Give an example of a sequence of Riemann integrable functions on [0,1] that converges pointwise to a non-integrable function.