

- · Temos variaveis independentes X e a variavel dependente y
- · Objetivo: Constaur models preditivo

- · Para construir o modelo (aprender os parametros)
 - Define uma função de perda
 - Aplica um abjoritmo de otimização

- · Não temos variavel dependente não tem classe verdadeira!
- · Objetivo: avalise exploratória para obter insight

Exemplo: clustering

$$\hat{y} = h(x, \theta)$$

parametros

cluster

· Ao inves de otimitar uma "função de porda (pis não tem y), otimizar algum critério de "quélidade do clustering".

Quais os agrupamentos naturais?

Clustering

- k-means Mean Shift
- Clustering Hierarquico

- 1. Definir quantos clusters queremos $k = n^2$ clusters
- 2. Inicializació:
 Sorteia le pontos
 como "centroides" de
 cluster

· Associa cada ponto ao centroide mais próximo

mapa de Voronoi

Johal

triangulação de

Delaunay

Computational
Geometry

· Recalcula os centroides

- Repetir até convergencia:

 - · Associar pontos · Recalcular centra de

Vantagens

- Simples
- 50 deponde da definição de distancia entre pontos
- Escalável

Desvantagens

- Tem que definir a priori o numero de clusters.
- Sonsivel as chute inicial dos controides
- 0 gremais!

Mean-shift clustering

Inicialização:

Escolhe varios pontos do dataset como "sementes"

L00p:

· Cada semente identifica seus novos "amigos" num raro R

Mean-shift clustering

<u> Toob:</u>

· Cada semente identifica seus novos "amigos" num raio R

Mean-shift clustering

<u> 1000</u>:

- · Corre obraçar os amigos!"

 Recalcula posição da semente

 Como a media dos pontos
 selecionados
- · Se duas sementes "se encontram"

 p fusão!

Repetir até convergir

Agglomerative clustering

