- 1. (1 балл) В каких четвертях знаки синуса и косинуса совпадают?
- 2. (1 балл) Какой четверти может принадлежать угол x, если tg x отрицательный?
- 3. (1 балл) Переведите 30 градусов в радианы.
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, косинус которого равен 1.
- 5. (1 балл) Сформулируйте основное тригонометрическое тождество.
- 6. (1 балл) Вычислите $\cos(-30^{\circ})$.
- 7. (1 балл) Вычислите $\sin 405^{\circ}$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \cos y$.
- 9. (2 балла) Выведите формулу $\cos x \cos y$.
- 10. (3 балла) Вычислите $\sin(2x-\pi)\cos(x-3\pi)+\sin(2x-\frac{9\pi}{2})\cos(x+\frac{\pi}{2})$
- 11. (3 балла) Упростите выражение $sin(-1,3\pi)cos(-1,7\pi)tg(-0,7\pi) + \sin 0, 8\pi \cos 1, 8\pi \tan 1, 2\pi$
- 12. (3 балла) Упростите выражение $\sin^2 x (1+\sin^{-1}x+\operatorname{ctg}x)(1-\sin^{-1}x+\operatorname{ctg}x)$

Билет 2

- 1. (1 балл) В каких четвертях отрицательный синус, тангенс?
- 2. (1 балл) Какой четверти принадлежит x, если $\cos x$ отрицательный?
- 3. (1 балл) Переведите 150 градусов в радианы.
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором sin равен 1
- 5. (1 балл) Выразите тангенс через синус и косинус
- 6. (1 балл) Вычислите $tg(-45^{\circ})$
- 7. (1 балл) Вычислите $\cos(390^{\circ})$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \sin y$
- 9. (2 балла) Выведите формулу cosx + cos y.
- 10. (3 балла) Вычислите $\frac{\operatorname{tg}(\frac{3\pi}{2}-x)-\cos(\pi-x)\sin(3\pi+x)}{(\cos(3,5\pi-x)+\sin(1,5\pi+x))^2-1}$
- 11. (3 балла) Упростите выражение $\sin(x+2\pi)\cos(2x-\frac{7\pi}{2})+\sin(\frac{3\pi}{2}-x)\sin(2x-\frac{5\pi}{2})$
- 12. (3 балла) Упростите выражение $\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 \sin^{-1} x + \operatorname{ctg} x)$

- 1. (1 балл) Есть ли четверти, в которых тангенс и синус положительны одновременно?
- 2. (1 балл) Какой четверти принадлежит x, если $\cos x$ положительный?
- 3. (1 балл) Переведите 120 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором \cos равен 0, 5.
- 5. (1 балл) Чему равно произведение тангенса и котангенс.
- 6. (1 балл) Вычислите $\sin(-60^{\circ})$.
- 7. (1 балл) Вычислите $\cos 420^{\circ}$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \cos y$.
- 9. (2 балла) Выведите формулу $\sin x \sin y$.

10. (3 балла) Вычислите
$$(\frac{\cos(2,5\pi+x)}{\cot(3\pi+x)}-\sin(-x)\tan(\frac{5\pi}{2}+x))^2+\frac{\tan x}{tg(\frac{3\pi}{2}+x)}$$

11. (3 балла) Упростите выражение
$$\frac{\cot(270^\circ-x)}{1-\tan^2(x-180^\circ)}\cdot\frac{\cot^2(360^\circ-x)-1}{\cot(180^\circ+x)}$$

12. (3 балла) Упростите выражение $\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 - \sin^{-1} x + \operatorname{ctg} x)$

Билет 4

- 1. (1 балл) В каких четвертях знаки синуса и косинуса совпадают?
- 2. (1 балл) Какой четверти принадлежит x, если tg x положительный?
- 3. (1 балл) Переведите 30 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором tg равен 1
- 5. (1 балл) Выразите котангенс через синус и косинус
- 6. (1 балл) Вычислите $tg(-45^{\circ})$
- 7. (1 балл) Вычислите $tg(420^{\circ})$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \cos y$
- 9. (2 балла) Выведите формулу cosx + cos y.
- 10. (3 балла) Вычислите $\sin(-1, 3\pi)\cos(-1, 7\pi) \operatorname{tg}(-0, 7\pi) + \sin 0, 8\pi \cos 1, 8\pi \operatorname{tg} 1, 2\pi$

11. (3 балла) Упростите выражение
$$\frac{\cos^2(x-270^\circ)}{\sin^{-2}(x+90^\circ)-1} + \frac{\sin^2(x+270^\circ)}{\cos^{-2}(x-90^\circ)-1}$$

12. (3 балла) Упростите выражение $\sin^2 x (1+\sin^{-1}x+\operatorname{ctg}x)(1-\sin^{-1}x+\operatorname{ctg}x)$

2

- 1. (1 балл) Назовите четверти, в которых положителен синус, косинус
- 2. (1 балл) Какой четверти принадлежит x, если $\sin x$ положительный?
- 3. (1 балл) Переведите 90 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором \sin равен 0, 5.
- 5. (1 балл) Выразите котангенс через синус и косинус.
- 6. (1 балл) Вычислите $\sin(-45^{\circ})$.
- 7. (1 балл) Вычислите $\sin 405^{\circ}$.
- 8. (2 балла) Выведите формулу $\cos x \cdot \cos y$.
- 9. (2 балла) Выведите формулу $\sin x + \sin y$.

10. (3 балла) Вычислите
$$(\frac{\cos(2,5\pi+x)}{\cot(3\pi+x)} - \sin(-x) \tan(\frac{5\pi}{2}+x))^2 + \frac{\tan x}{tg(\frac{3\pi}{2}+x)}$$

11. (3 балла) Упростите выражение
$$\frac{\cos^2(x-270^\circ)}{\sin^{-2}(x+90^\circ)-1} + \frac{\sin^2(x+270^\circ)}{\cos^{-2}(x-90^\circ)-1}$$

12. (3 балла) Упростите выражение $\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 - \sin^{-1} x + \operatorname{ctg} x)$

Билет 6

- 1. (1 балл) Назовите четверти, в которых положителен синус, косинус
- 2. (1 балл) Какой четверти принадлежит x, если $\sin x$ отрицательный?
- 3. (1 балл) Переведите 90 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором \cos равен 0,5
- 5. (1 балл) Напишите основное тригонометрическое тождество
- 6. (1 балл) Вычислите $\cos(-30^{\circ})$
- 7. (1 балл) Вычислите $\sin(390^{\circ})$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \cos y$
- 9. (2 балла) Выведите формулу cos x cos y.
- 10. (3 балла) Вычислите $\sin(-1,3\pi)\cos(-1,7\pi) \operatorname{tg}(-0,7\pi) + \sin 0, 8\pi \cos 1, 8\pi \operatorname{tg} 1, 2\pi$
- 11. (3 балла) Упростите выражение $\sin(2x-\pi)\cos(x-3\pi)+\sin(2x-\frac{9\pi}{2})\cos(x+\frac{\pi}{2})$
- 12. (3 балла) Упростите выражение $\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 \sin^{-1} x + \operatorname{ctg} x)$

- 1. (1 балл) В каких четвертях знаки синуса и косинуса совпадают?
- 2. (1 балл) Какой четверти принадлежит x, если $\cos x$ положительный?
- 3. (1 балл) Переведите 150 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором tg равен 1.
- 5. (1 балл) Напишите основное тригонометрическое тождество.
- 6. (1 балл) Вычислите $tg(-45^{\circ})$.
- 7. (1 балл) Вычислите $\sin 390^{\circ}$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \cos y$.
- 9. (2 балла) Выведите формулу $\sin x \sin y$.

10. (3 балла) Вычислите
$$(\frac{\cos(2,5\pi+x)}{\cot(3\pi+x)} - \sin(-x) \tan(\frac{5\pi}{2}+x))^2 + \frac{\tan x}{tg(\frac{3\pi}{2}+x)}$$

- 11. (3 балла) Упростите выражение $\sin(x+2\pi)\cos(2x-\frac{7\pi}{2})+\sin(\frac{3\pi}{2}-x)\sin(2x-\frac{5\pi}{2})$
- 12. (3 балла) Упростите выражение $\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 \sin^{-1} x + \operatorname{ctg} x)$

Билет 8

- 1. (1 балл) В каких четвертях отрицательный синус, тангенс?
- 2. (1 балл) Какой четверти принадлежит x, если $\lg x$ положительный?
- 3. (1 балл) Переведите 90 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором сов равен 0, 5
- 5. (1 балл) Выразите тангенс через синус и косинус
- 6. (1 балл) Вычислите $\sin(-60^{\circ})$
- 7. (1 балл) Вычислите $\cos(420^{\circ})$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \sin y$
- 9. (2 балла) Выведите формулу $\cos x + \cos y$.

10. (3 балла) Вычислите
$$\frac{\operatorname{tg}(\frac{3\pi}{2}-x)-\cos(\pi-x)\sin(3\pi+x)}{(\cos(3,5\pi-x)+\sin(1,5\pi+x))^2-1}$$

11. (3 балла) Упростите выражение
$$\frac{\cot(270^\circ - x)}{1 - \cot^2(x - 180^\circ)} \cdot \frac{\cot^2(360^\circ - x) - 1}{\cot(180^\circ + x)}$$

12. (3 балла) Упростите выражение
$$\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 - \sin^{-1} x + \operatorname{ctg} x)$$

4

- 1. (1 балл) Есть ли четверти, в которых тангенс и синус положительны одновременно?
- 2. (1 балл) Какой четверти принадлежит x, если $\sin x$ отрицательный?
- 3. (1 балл) Переведите 30 градусов в радианы
- 4. (1 балл) Назовите хотя бы один угол в радианной мере, при котором \sin равен 0, 5.
- 5. (1 балл) Выразите тангенс через синус и косинус.
- 6. (1 балл) Вычислите $\cos(-30^{\circ})$.
- 7. (1 балл) Вычислите $\cos 420^{\circ}$.
- 8. (2 балла) Выведите формулу $\sin x \cdot \sin y$.
- 9. (2 балла) Выведите формулу $\sin x + \sin y$.
- 10. (3 балла) Вычислите $\sin(-1,3\pi)\cos(-1,7\pi) \operatorname{tg}(-0,7\pi) + \sin 0, 8\pi \cos 1, 8\pi \operatorname{tg} 1, 2\pi$
- 11. *(3 балла)* Упростите выражение $\sin(x+2\pi)\cos(2x-\frac{7\pi}{2})+\sin(\frac{3\pi}{2}-x)\sin(2x-\frac{5\pi}{2})$
- 12. (3 балла) Упростите выражение $\sin^2 x (1 + \sin^{-1} x + \operatorname{ctg} x) (1 \sin^{-1} x + \operatorname{ctg} x)$