CMSC 141 Automata and Language Theory Regular Languages

Mark Froilan B. Tandoc

September 10, 2014

Finite Automata and Regular Expressions

Finite automata and regular expressions describe exactly the same class of languages - the class of regular languages

What's next?

Simplification of regular expressions and Minimization of finite automata

Simplification of Regular Expressions

Identity elements for union and concatenation

concatenation
$$\emptyset + x = x + \emptyset = x$$
 and

■ Annihilation element for concatenation $\emptyset x = x\emptyset = \emptyset$

Commutativity of union x + y = y + x

 $\varepsilon x = x\varepsilon = x$

Associativity of union, concatenation (x + y) + z = x + (y + z) and (xy)z = x(yz)

More Identities Exercise: proofs

Distributive properties

$$x(y+z) = xy + xz$$

and
 $(x+y)z = xz + yz$
but
 $(x+y)^* \neq x^* + y^*$

Idempotency of union and Kleene closure

$$x + x = x$$

and
 $(x^*)^* = x^*$
and
 $(x^+)^+ = x^+$

More Identities Exercise: proofs

- **Absorption property** If $x \subseteq y$ then x + y = y
- Kleene star properties

$$arepsilon^* = arepsilon^+ = arepsilon$$
 and $\emptyset^* = arepsilon$ and $(x^*y^*)^* = (x+y)^*$

Minimization of Finite Automata

- Idea is to identify states which are essentially the same, or *indistinguishable*, and merge them into a single state.
- Easy to do with graphical tools like JFLAP where we can drag states around.

Distinguishable States

- \blacksquare States p and q are **distinguishable** if
 - one is a final state and the other is a non-final state, or
 - there is some string $x \in \Sigma^*$, such that $\delta(p, x)$ and $\delta(q, x)$ are distinguishable

Minimization of FA

	0	1	2
0	-		Χ
1		-	X
2	Х	Χ	-

States 0 and 1 are indistinguishable

for any string x, $\delta(0, x)$ and $\delta(1, x)$ are both non-final states.

Minimized FA

Regular Grammars

- Grammars are rule-based systems for describing languages.
 - Regular grammars is for regular languages
- Example: The regular grammar below consists of a single variable $\{S\}$, two terminals $\{rose, red\}$ and two production rules $\{S \rightarrow rose, S \rightarrow red S\}$ (can also be written as $\{S \rightarrow rose|red S\}$)
- This grammar generates the language {rose, red rose, red red rose, ...}

Formal Definition of Regular Grammars

A **regular grammar** is a 4-tuple (V, T, P, S) where

- V is a finite set of variables
- T is a finite set of terminal symbols = Σ
- P is a finite set of production rules, each of the form

```
< variable > 	o < terminal >^*
```

or

$$<$$
 variable $>$ \rightarrow $<$ terminal $>$ * $<$ variable $>$

S is the start variable, $S \in V$

Derivation

■ A grammar *G* is said to generate a string *x*, if *x* can be derived from the start variable *S*, by finite sequence of variable replacements based on the production rules

Example Derivation

Production rules: $\{S \rightarrow rose | red S\}$ **String:** "red red rose"

linear derivation

 $S \rightarrow red S$ $\rightarrow red red S$

ightarrow red red rose

Note that $L(G) = (red)^* rose$

Regular Grammars = FA

Idea of proof:

- FA *states* are *variables* in the regular grammar
- The *start state* is the *start symbol*
- $\delta(X, a) = Y$ if and only if the rule $X \to aY$ is present
- X is a final state if and only if the rule $X \to \varepsilon$ is present

Example

Regular Expression

$$(0+1)^*11(0+1)^*$$

Regular Grammar

$$S \rightarrow 0S \mid 1S \mid 11T$$
$$T \rightarrow 0T \mid 1T \mid \varepsilon$$

Derivation Example

Regular Grammar

$$S \rightarrow 0S \mid 1S \mid 11T$$
$$T \rightarrow 0T \mid 1T \mid \varepsilon$$

0110

 $S \rightarrow 0S$ $\rightarrow 011T$ $\rightarrow 0110T$ $\rightarrow 0110$

References

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org