BEST AVAILABLE COPY

31.07.03

日本国特許庁 JAPAN PATENT OFFICE

REC'D 1 9 SEP 2003

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2002年 7月31日

出 顯 番 号 Application Number:

特願2002-223892

[ST. 10/C]:

[JP2002-223892]

出 願 人
Applicant(s):

科学技術振興事業団

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 9月 4日

【書類名】

特許願

【整理番号】

NP02267-JN

【提出日】

平成14年 7月31日

【あて先】

特許庁長官 殿

【国際特許分類】

C12N 5/00

【発明の名称】

生体由来の細胞または組織の自動培養装置

【請求項の数】

11

【発明者】

【住所又は居所】

大阪府茨木市南春日丘5-1-55-211

【氏名】

高木 睦

【発明者】

【住所又は居所】

大阪府吹田市山田西2-4-A1-505

【氏名】

吉田 敏臣

【発明者】

【住所又は居所】

長野県松本市大村379-1-101

【氏名】

脇谷 滋之

【特許出願人】

【識別番号】

396020800

【氏名又は名称】

科学技術振興事業団

【代理人】

【識別番号】

100093230

【弁理士】

【氏名又は名称】 西澤 利夫

【電話番号】

03-5454-7191

【手数料の表示】

【予納台帳番号】

009911

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1 【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0013341

【プルーフの要否】 要

【発明の名称】 生体由来の細胞または組織の自動培養装置

【特許請求の範囲】

【請求項1】 閉鎖され、かつ、無菌状態の内部空間を有する箱体の培養装置内で、培養容器において生体由来の細胞または組織を培養する自動培養装置であって、培養装置の箱体内には、ガスインキュベーター、培養液の供給装置と排出装置、培養状態の観察装置並びにこれら装置に培養容器を連続的もしくは断続的に移動させる移動装置が配置されているとともに、培養状態の観察装置からのデータ信号によって、前記の装置の少なくともいずれかのものの動作を電気信号により指示制御する指示制御装置が具備されていることを特徴とする生体由来の細胞または組織の自動培養装置。

【請求項2】 細胞または組織の洗浄のための装置が配設され、培養容器のこの洗浄装置への移動と、それらの動作が指示制御装置により行われる請求項1の自動培養装置。

【請求項3】 薬剤添加のための装置が配設され、培養容器のこの薬剤添加 装置への移動と、それらの動作が指示制御装置により行われる請求項1または2 の自動培養装置。

【請求項4】 培養装置の箱体内の環境条件を設定する装置が具備されていることを特徴とする請求項1ないし3いずれかの自動培養装置。

【請求項5】 培養装置箱体内の一部または全部に滅菌ガスを導入する環境 条件を設定装置が具備されていることを特徴とする請求項4の自動培養装置。

【請求項6】 培養装置箱体内の一部または全部を外部よりも陽圧とする環境条件の設定装置が具備されていることを特徴とする請求項4の自動培養装置。

【請求項7】 培養装置の箱体内が複数の空間に区分けされ、空間同士は相互に閉鎖可能とされていることを特徴とする請求項1ないし6いずれかの自動培養装置。

【請求項8】 請求項1ないし7いずれかの自動培養装置であって、培養装置箱体内には培養容器から培養物を剥離もしくは回収するための装置が配設され、この装置への培養容器の移動が移動装置により可能とされていることを特徴と

する自動培養装置。

【請求項9】 剥離または回収のための装置が、振動装置または回転装置であることを特徴とする請求項8の自動培養装置。

【請求項10】 請求項1ないし9いずれかの自動培養装置であって、培養装置箱体内には培養環境条件を変更する圧迫装置が配設され、この装置への培養容器の移動が移動装置により可能とされていることを特徴とする自動培養装置。

【請求項11】 圧迫装置は磁石の着脱もしくは機械的押圧によるものであることを特徴とする請求項10の自動培養装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この出願の発明は、細胞または組織の自動培養装置に関するものである。さらに詳しくは、この出願の発明は、再生医療等を目的とする細胞または組織の培養操作および培養環境の制御が自動化された培養装置に関するものである。

[0002]

【従来の技術】

近年、生体細胞や生体組織を体外で培養して得られた細胞や組織を体内あるいは体表面の欠陥や欠損もしくは不完全部位の修復に用いるという再生医療が、多くの基礎研究の蓄積と展開によりその実現性が高まり、社会的にも大きく期待されている。実際、これまでの研究で、皮膚、軟骨、骨、血管、肝細胞、膵臓等の多くの組織が再生医療の対象と成り得ることが報告されている。このような再生医療のための細胞または組織の起源としては、皮膚や軟骨等の分化した組織あるいはその組織中の細胞、骨髄液中等に存在すると言われている造血幹細胞、間葉系幹細胞や肝臓中に存在する肝幹細胞等の体性幹細胞、さらには受精卵の内部細胞塊に由来し、体内のほとんどの組織の細胞に分化する能力を有する胚性幹細胞(ES細胞)等がある。

[0003]

いずれの起源の細胞にせよ、生体から得られる細胞数には限りがあるため、これらを再生医療に用いる場合には一般に体外で培養、増殖、分化させる必要があ

[0004]

一方、生体の細胞や組織の由来には、本人自身の細胞や組織を用いる場合と、本人以外のヒト由来の細胞や組織を用いる場合とがある。前者の場合、移植の際における拒絶反応の可能性が低いと言う利点がある反面、移植を受ける患者ごとに材料となる細胞や組織を準備する必要がある。後者の場合は、同じ個体由来の細胞や組織を用いて多くの患者の再生医療を行える可能性があるが、患者によって必要とする再生組織の形や大きさが異なる等の医療内容が異なるため、患者ごとに異なるロットでの細胞または組織の培養が必要となる。さらに、再生医療を目的とした細胞または組織の培養は、その培養スケールは非常に小さいと言う特徴を有している。たとえば、骨髄液10mlに含まれる間葉系幹細胞を増殖させた後、軟骨細胞に分化させ、軟骨の再生医療に用いる場合の培養スケールは100ml以下と考えられている。すなわち、再生医療を目的とした細胞または組織の培養には、「小スケール、多ロット並行培養」が求められている。

[0005]

また、細胞または組織の培養の際には、ウイルスや細菌、種々の化学物質等による汚染を防止するための注意および対策を厳格に講じる必要がある。移植等の再生医療を目的とする場合は、ウイルスや細菌、種々の化学物質等が混入し、汚染が発生した場合、培養中の細胞や組織がガン化する等、その性質が著しく変化する可能性があり、この性質が変化した細胞や組織を生体に移植する事は、ガンの発生誘発等の新たな疾患、また汚染の原因となったウイルスや細菌等が新たな病因となる可能性を有するため、厳重に汚染の防止を実践しなければならない。そのため、細胞または組織の培養には、厳重な管理体制を有する施設内で行い、高度な無菌操作等の培養操作基準を設ける必要がある。たとえば、産業技術総合

[0006]

そして、再生医療を目的とする細胞または組織の培養には、長い期間を要する。一般に哺乳類等の動物由来の培養細胞は、生体外における増殖速度は遅く、細胞数の倍化にかかる時間は2~3日要する。一方、細菌等の雑菌の増殖速度は速く、その倍化時間は20分~1時間ほどであるため、わずか1個でも細菌等の雑菌が混入した場合、培養中の細胞または組織の増殖よりも、細菌等の雑菌の方が大量に増殖してしまい、培養中の細胞または組織は全くの使い物にならなくなる。

[0007]

以上のような問題を解決するため、多くの改善策が構想され、試行されてきたが、次のような問題点が依然と残されていた:

- 1. 手作業のため、汚染の可能性がわずかでも存在する;
- 2.作業者自身がウイルスやマイコプラズマ、細菌等の感染源となる可能性がある;
- 3. 厳重な管理の下にあるような条件や環境等が整備された特殊な培養施設が必要である;
- 4.作業効率が低いこと;および
- 5.作業には高度な熟練性を要するため、作業者が限られ、人件費が高くなる。

[0008]

そこで、これら問題点を解決するために、環境条件を任意に制御できる培養チャンバとこれに培養液貯留容器と廃培養液貯留器が配管により接続された装置(特開2001-238663)やAutomation Partnership社(米国)の「Cell mate」、同社の「Select T」等が開発されてきている。しかしながら、これらいずれのものも、再生医療を目的とした細胞や組織の培養で要求される特徴である「小スケール、多ロット並行培養」という特徴を有していない、専用の培養容器を必要としており、一台の培養装置だけでは同時に複数の培養の実施ができず、長期間の培養

時における定期的洗浄等のメンテナンスへの対応や培養中に任意に培養条件の変 更ができない等の問題がある。

[0009]

さらに、動物細胞は、そのほとんどは何かの基質に物理的に接着していないと 生存できない接着依存性を有している。そのため、一般にはプラスチック製等の 培養容器底面に細胞を接着させて、培養している。増殖や分化させた細胞を生体 に移植する等をして、再生医療に利用するように培養後の細胞を用いる際には、 培養容器に接着したままで使用するような一部の場合を除き、細胞を培養容器か ら剥離させ、浮遊状態にする必要がある。従来は、このような細胞の脱着、剥離 のために、トリプシンやコラーゲナーゼ等の蛋白質分解酵素を用いている。しか しながら、酵素処理だけでは完全に細胞を剥離することは難しく、また細胞が培 養容器表面から剥離しても、細胞の凝集塊が残ることが多い。そこでこのよう場 合には、通常、ピペットを用いて、培養液あるいは洗浄液を培養容器の細胞接着 面に噴出させて剥離あるいは細胞塊の解離させる操作を繰り返す、ピペッティン グ操作を行うことになる。このピペッティング操作は、培養操作において重要で あるが、噴出させる速度の調整や噴出方向と培養容器内の細胞接着面との角度の 調節等、その操作には熟練を要することから、作業者を限定されたものとなって いた。

[0010]

また、細胞培養において、機能や活性が高い細胞を得るために生体内で各組織および各細胞が置かれている生理的な環境を模倣した培養環境の制御は重要であるが、この生体内における環境因子には、張力、箭断力、静圧力、圧迫力等の物理的な力がある。たとえば、血管内皮細胞は血流による箭断力により細胞形態が変化し、またサイトカイン産生量が増減することが知られている。従来では張力、箭断力および静圧力に関する培養環境の制御法や装置についての報告は多いが、圧迫力を制御する装置の例はない。

[0011]

【発明が解決しようとする課題】

この出願の発明は、以上のとおりの事情に鑑みて、従来のような特殊な無菌施

[0012]

【課題を解決するための手段】

この出願は、前記の課題を解決するための発明としてなされたものであって、 閉鎖され、かつ、無菌状態の培養装置内で一連の培養操作を自動化した培養装置 を提供する。

[0013]

すなわち、この出願の発明は、第1には、閉鎖され、かつ、無菌状態の内部空間を有する箱体の培養装置内で、培養容器において生体由来の細胞または組織を培養する自動培養装置であって、培養装置の箱体内には、ガスインキュベーター、培養液の供給装置と排出装置、培養状態の観察装置並びにこれら装置に培養容器を連続的もしくは断続的に移動させる移動装置が配置されているとともに、培養状態の観察装置からのデータ信号によって、前記の装置の少なくともいずれかのものの動作を電気信号により指示制御する指示制御装置が具備されていることを特徴とする生体由来の細胞または組織の自動培養装置を提供する。

[0014]

また、この出願の発明は、第2には、細胞または組織の洗浄のための装置が配設され、培養容器のこの洗浄装置への移動と、それらの動作が指示制御装置により行われる自動培養装置を、第3には、薬剤添加のための装置が配設され、培養容器のこの薬剤添加装置への移動と、それらの動作が指示制御装置により行われる自動培養装置を提供する。

[0015]

第4には、この出願の発明は、培養装置の箱体内の環境条件を設定する装置が 具備されていることを特徴とする上記いずれかの自動培養装置を提供し、第5に は、培養装置箱体内の一部または全部に滅菌ガスを導入する環境条件を設定装置

[0016]

第6には、培養装置箱体内の一部または全部を外部よりも陽圧とする環境条件 の設定装置が具備されていることを特徴とする自動培養装置を提供する。

[0017]

また、この出願の発明は、第7には、培養装置の箱体内が複数の空間に区分けされ、空間同士は相互に閉鎖可能とされていることを特徴とする自動培養装置を 提供する。

[0018]

第8には、上記いずれかの自動培養装置であって、培養装置箱体内には培養容器から培養物を剥離もしくは回収するための装置が配設され、この装置への培養容器の移動が移動装置により可能とされていることを特徴とする自動培養装置を提供する。

[0019]

第9には、剥離もしくは回収のための装置が、振動装置または回転装置である ことを特徴とする自動培養装置を提供する。

[0020]

さらにこの出願の発明は、第10には、以上いずれかの自動培養装置であって、培養装置箱体内には培養環境条件を変更する圧迫装置が配設され、この装置への培養容器の移動が移動装置により可能とされていることを特徴とする自動培養装置を提供し、第11には、圧迫装置は磁石の着脱もしくは機械的押圧によるものであることを特徴とする自動培養装置を提供する。

[0021]

【発明の実施の形態】

この出願の発明は、上記のとおりの構成によって、閉鎖され、かつ、無菌状態 の培養装置内で細胞または組織の培養の一連の培養操作および各種の培養環境制 御を自動化した培養装置であることを特徴としており、さらには、培養装置内が 複数の空間に区分けされていることを特徴としてもいる。

[0022]

そこで以下にこの出願の発明について、その実施の形態について詳しく説明する。

[0023]

まず、この出願の発明における「無菌状態」とは、クリーン度がクラス1000以下、望ましくは100以下としている。

[0024]

また、この出願の発明の自動化培養装置が対象としている細胞または組織について説明すると、これらは、いずれも生体由来である。ここで、「生体」とは、植物、昆虫および動物であり、動物としては鳥類、爬虫類、両生類、魚類、哺乳類等が挙げられる。さらに、哺乳類としては、ヒト、サル、ブタ、ウシ、ヒツジ、ネズミ、ウマ等が例示できる。

[0025]

培養する「細胞」は、いかなる由来の培養細胞でもよく、たとえば植物細胞、昆虫細胞、動物細胞があり、また異種由来の細胞同士あるいは細胞とコラーゲンゲル膜、繭糸、マイクロチップやナイロンメッシュ等の非細胞との融合細胞でもよい。もちろん、初代細胞や株化細胞でもよい。特に動物細胞であることを好ましい態様としている。さらに、動物細胞における初代細胞としては、ラット初代肝細胞、マウス初代骨髄細胞、ブタ初代肝細胞、ヒト初代臍帯血細胞、ヒト初代骨髄造血細胞、ヒト初代神経細胞等が例示される。また、株化細胞では、チャイニーズハムスター卵巣細胞由来のCHO細胞、ヒト子宮ガン由来のHeLa細胞、ヒト肝ガン由来のHuh7細胞等が例示できる。また、これら細胞にプラスミド導入やウイルス感染等の遺伝子操作により得られた細胞もこの出願の発明に用いることができる。なお、「初代細胞」とは、一般に生体から細胞を採取して、50回程度の限られた回数のみ増殖および分裂する細胞を指し、「株化細胞」は、生体から細胞を採取した後も、50回以上の増殖および分裂する細胞のことを言う。

[0026]

一方、「組織」とは、たとえば肝臓、心臓、腎臓、皮膚、骨、軟骨、骨髄等や、 これら例示した組織から派生して形成された組織等が挙げられる。

細胞を培養する際、任意の種類の細胞または組織を得るため、分化を促進させる因子として分化誘導因子と呼ばれる薬剤を用いることもあるが、この種々の分化誘導因子の中から、最も適した分化誘導因子を用いるには、分化前の細胞の種類と分化後に得られる細胞の種類に依存する。また、単独あるいは複数の分化誘導因子の利用が可能である。これら分化誘導因子として、赤血球細胞に分化誘導させるエリスロポエチン、骨芽細胞への分化誘導を促進させるbone morphogenic protein (BMP) 、肝実質細胞等への分化誘導を行うhepatocyte growth factor (HGF) 、軟骨細胞へ分化を促進させるtumor growth factor- β (TGF- β) 等が例示できる。

[0028]

この出願の発明における移植に用いる細胞または組織の由来および移植対象 は、両者が同じ個体である場合の自家移植、両者が同じ生物種であるが、個体が 異なる場合の多家移植、または両者が異なる生物種である場合の異種移植等が例 示できる。

[0029]

そしてこの出願の発明に用いる「培養容器」については、その素材はいかなるものでも良く、たとえばプラスチック製、ガラス製がある。たとえば、プラスチックの素材としては、セルロース等の天然繊維、ポリスチレン、ポリスルフォン、ポリカーボネイト等の合成化合物およびこれらを組み合わせた混合物等がある。また、ポリ乳酸、ポリグリクロン酸等のような生体吸収性または生体分解高分子を用いてもよい。さらに、これらプラスチック素材をコラーゲン、ゼラチン、フィブロネクチン等の天然細胞外マトリックスやエチレンビニルアルコール共重合体等の人工化合物によりコーティングし親水化させて、培養容器として利用してもよい。ジエチルアミン、ジエチルアミノエチル等により修飾したものやプラズマ放電処理等を施し、表面に荷電基を導入したものも利用できる。

[0030]

このような培養容器は、一般の研究室や実験室で使用されることを主な目的として設計されて市販されているものでもよく、その内容積は一般的には100 μ L~

[0031]

また、培養容器の形状は、受け皿部と蓋部とからなるディッシュ型、液体等を 出し入れする開口部が一つまたは複数備えたフラスコ型が例示できる。ディッシュ型の培養容器において、ディッシュ内が複数に区分けされたマルチウェル型や フラスコ型の培養器において、内面の全部または一部がガス透過性を有する多孔 質膜からなるものもあり、これらも当然に使用することができる。

[0032]

この出願の発明における、「培養液」および「培養操作」において説明する と、基本的には公知の組成成分および方法を用いることができる。もちろん、こ れに限定されることはない。図には例示していないが、「播種操作」についても 、この出願の発明により自動化が可能である。たとえば、培養物が入った任意の 容器やカートリッジ等を、培養装置1内に用意された培養容器2に培養物を播種す るための装置である播種装置に設置し、該播種装置から該培養物を該培養容器に 注入あるいは播種する等が考えられる。なお、「培養液」において、血清含有あ るいは血清不含でもよく、また必要に応じ各種の増殖因子や分化誘導因子を加え て利用してもよい。増殖因子や分化誘導因子としては、表皮成長因子、血小板由 来成長因子、トランスフェリン、インシュリン、血清アルブミン等が例示され、 またコラーゲン、フィブロネクチン、ラミニン等の細胞外マトリックス等も例示 できる。これらは、脳下垂体、黄体、網膜、腎臓、胸腺、胎盤等の生体の臓器、組 織、細胞等から抽出される場合、また遺伝子操作技術等の遺伝子工学的に製造さ れた場合も含む。さらに、これら因子の修飾体であって増殖因子や分化誘導因子 として作用するものも含み、たとえば上記の因子群のアミノ酸配列に別のアミノ 酸を付加したもの、あるいは他のアミノ酸に置換したもの、またあるいはアミノ

酸の一部が欠損したもの等が例として挙げられる。さらにまた、上記増殖因子に おいて、由来によってタイプが異なる場合はヒト型でも他の動物型等でもよい。

[0033]

「培養操作」としての「薬剤の添加」は、培養中の細胞または組織に特定の培地因子の添加を行う操作であり、通常は該培地因子の溶液を培養容器内の培養液に注入することを意味している。該培地因子としては、血清、各種の増殖因子や分化誘導因子、グルコースやサッカロース等の糖類、アンピシリンやG418、テトラサイクリン等の抗生物質、ベクターウイルス等がある。

[0034]

この出願の発明の培養装置では前記のとおり、一連の培養工程が自動化されており、そして培養環境の制御も自動化されている。ここで、「培養環境の制御」とは、培養における細胞の代謝、形態、機能等に影響する要因を操作する事である。培養中の細胞や組織の形態観察、細胞数の計測、活性測定等の分析操作も含まれる。培養中の細胞や組織に影響を及ぼす要因の操作は、具体的には培養液の温度、ガスの濃度、培養液内の静圧、培養液への栄養分供給速度、培養液中の老廃物濃度、培養液のpH等が例示できる。そして、培養工程および培養環境の制御が自動化されることにより、コンタミネーションの防止、細胞や組織の増殖挙動にも対応、作業効率の向上等の効果が得られる。またこの出願の発明に使用する「ガス」については、気体であればいかなるものでもよく、好ましくは炭酸ガスとしている。

[0035]

さらにこの出願の発明の自動培養装置では、培養装置箱体内を複数の空間に区分けされたものとしてもいる。ここで、「区分け」とは、培養装置箱体内の空間が複数の閉鎖された空間に区分け可能な状態をいう。隣接する区分けされた空間同士の間に、たとえば遮断板が置かれて、遮断閉鎖されており、必要に応じて、開閉が可能となっている。なお、該遮断板の表面積に占める開口部の割合は、好ましくは10%、さらに好ましくは1%未満とすることが考慮される。これにより、多ロットの細胞または組織が並行に培養でき、さらに各ロットの細胞や組織の増殖挙動にも対応でき、さらにまた区分けごとの滅菌や洗浄等のメンテナンスが

[0036]

さらにこの出願の発明の培養装置では、連続的または間欠的、または周期的に有限方向から圧迫しながら培養物を培養することを可能としている。これにより、培養環境因子の一つである圧迫力の自動制御を可能とする。圧迫の動力源としては、たとえば重力および磁石の磁力を利用することができる。なお、「磁石」は、磁力を有するものであればいかなるものでもよく、また固体でも液体でもよいが、固体が好ましい。磁力の大きさは一定でもよいし、電磁石のような任意に変化できるものでもよい。

[0037]

次に、添付した図面に沿って、この出願の発明の実施の形態についてさらに詳細に説明するが、この出願の発明はこれらの例に限定されるものではない。なお、添付した図面では、ガスボンベ4の設置場所を培養装置1内として例示してあるが、培養装置1の外でもよい。また図面に例示していないが、細胞含有培養液から細胞と培養液とを分離するための装置として、培養装置1内に遠心分離装置の設置も可能としている。

[0038]

図1は、培養工程および培養環境制御が自動化された形態を例示している。この図1の例では、閉鎖された空間を有する箱体である培養装置1の内部には、ガスボンベ4およびガス供給装置5により、ガス濃度を一定に保つことが可能で、培養物を有した培養容器2を静置可能とした箱体であるガスインキュベーター3があり、この中に静置された培養容器2の中で細胞または組織が培養される。培養中の培養容器2は、培養容器移動装置6により、任意に順行または逆行に培養装置1の内部を移動する。この移動の過程で、新鮮培地貯槽7内の新鮮培地供給装置8による培養液吸引量の位置制御によって一定量吸引し、培養容器2へ培養液が注入されたり、培養容器2の培養液上清を使用済み培地移送装置10の下端を培養容器2内に入れ、貯槽内が陰圧に保たれた使用済み培地移送装置10の下端を培養容器2内に入れ、貯槽内が陰圧に保たれた使用済み培地移送装置10の下端を培養容器2内に入れ、貯槽内が陰圧に保たれた使用済み培地お送装置10の下端を培養容器2

。また、図に示していないが、緩衝液等の洗浄液が入った貯槽や、薬剤の入った 貯槽も培養装置1内に設置することによって、洗浄や薬剤を培養液に加えること も可能とされる。もちろん、これら各々の工程を繰り返したり、あるいはスキップしたりすることも培養容器移動装置6と制御コンピュータ16により任意に制御 可能とされている。また、培養容器2は顕微鏡ステージ11へも移動可能で、たとえば顕微鏡CCDカメラ12を使用して観察され、その観察画像データは観察画像データ移送装置13を介して制御コンピュータ16に送られる。また、温度、ガス 濃度等の培養環境のデータが培養装置1から計測データ移送装置14を介し、同様 に制御コンピュータ16に送られ、これらのデータを元に演算を行い、培養容器2 の移動や、温度制御のためのデータ、ガス濃度の制御等の制御信号が制御信号伝 達装置15を通じて培養装置1に伝達される。このように、ほとんど全ての培養操作 が培養装置1内で行われるため、培養中に培養装置外からの化学物質、埃や雑菌 等の汚染発生の可能性は極めて低い。

[0039]

図2では、図1に例示した培養装置1に遮断板17によって複数の空間に区分けされている実施の形態を例示している。培養装置1の内部は、遮断板17により3つの空間、すなわちインキュベート区分領域-a 19、操作および測定区分領域20、インキュベート区分領域-b 21、に仕切られている。培養容器2は、遮断板17にある開閉自在な遮断板ドア18を通じて、各空間に任意に順行または逆行で移動することが可能で、この3つの空間を往来可能とされている。また、遮断板ドア18を閉じることによって3つの空間は互いに封鎖され、独立した空間となる。滅菌ガス発生装置22より滅菌ガスが、滅菌ガス導入管23および滅菌ガス導入弁24、25および26を介して、任意の空間に注入されて、滅菌が可能とされている。さらに、この図中の例示したインキュベート区分領域-a 19内に滅菌ガスを注入する際、任意にインキュベーター3の扉の開閉を行うことによって、インキュベーター3の内部にも滅菌ガスが注入することが可能となっている。滅菌中の空間に注入された滅菌ガスは他の空間には全く混入しないため、影響を及ぼさない。滅菌終了後、滅菌ガスは、滅菌中であった空間の滅菌ガス排出弁27、28および29および滅菌ガス排出管30を介して、滅菌ガス排出装置31に排出され、該空間内には滅菌ガスは

[0040]

図3では、圧力制御の機能を備えた培養装置1の実施形態を例示している。こ の例では、培養装置1の内部の気体は、排出風管34および排出弁37を介して空気 循環ポンプ39に送られる。ここで外気取り込み管35および外気取り込み弁38を介 し、培養装置1の外の気体も取り入れ、両者を合わせた気体が返送風管33および 返送風弁36を介し、さらに除菌フィルター32を通過し培養装置1の内部に戻され る。この気体の循環により、培養装置1内は、清浄な空気が維持される。培養装 置1内部の静圧は、培養容器内圧力計40により測定され、そのデータは圧力信号 伝送装置41を介し圧力制御器42に送られる。そして、培養装置1内を外部より陽 圧に保つために、圧力制御器42は、排出風速度、外気取り込み速度、返送風速度 等の設定値を演算、計算し、その結果をポンプ運転制御信号43として空気循環ポ ンプ39に伝達する。その結果、培養装置1の内部の空気は、常時清浄に維持され 、また培養装置外より陽圧に保持される。このため、培養装置の外部からの汚染 物質の混入も極めて効果的に抑えられる。またこの図 3 では、圧力制御器42で陽 圧の制御を行っている例示をしたが、制御コンピュータ16をさらに連結設置させ た場合、制御コンピュータ16による圧力制御器42の制御が可能となり、この制御 を介して、陽圧の制御も可能となる。

[0041]

図4では、培養装置1に回収培養物貯槽101、回収培養物移送装置102および振動・回転装置44を備えた実施形態を例示している。なお、図4では、顕微鏡CCDカメラ12、観測画像データ伝送装置13および制御コンピュータ16の図による例示は省略しているが、顕微鏡CCDカメラ12および観測画像データ伝送装置13としての機能動作、また制御コンピュータ16による、培養装置1内の環境等の各制御機

構は働いている。培養容器2中の細胞は、培地置換、洗浄、酵素処理により細胞の脱着および剥離等といった一連の培養操作により、培養容器内部の細胞接着面から脱着する傾向がある。しかしながら、全ての細胞が脱着には至らなく、また細胞同士も凝集している場合が多々ある。この状態にある培養容器2を培養容器移動装置6により、振動・回転装置44に移動させて、任意に振動および回転を与えることで、ほとんどの細胞が脱着および剥離し、また凝集した細胞も解離し、細胞が均一に分散した細胞懸濁液を得ることができる。この細胞懸濁液を含んだ培養容器2を培養容器移動装置6により回収培養物貯槽101まで移動させ、回収培養物移送装置102を介して、回収培養物貯槽101に回収される。拡大概略図として図5に例示したように、振動・回転装置44では、振動発生器45により培養容器2に振動が伝えられ、また回転盤46により培養容器2に回転を与えることができる

[0042]

図6は、培養装置1に培養容器圧迫装置47を備えた例を示したものである。なお、顕微鏡CCDカメラ12、観測データ伝送装置13および制御コンピュータ16の図による例示は省略しているが、設置および使用することはもちろん可能である。この例では、培養装置1内のガスインキュベーター3の中で、培養中の培養容器2の培養物に培養容器圧迫装置47により任意の周期で、また任意の強度の圧迫力を加えることができるようにしている。このような圧迫力が加えられることによって、圧迫力という刺激によって、インターロイキン、サイトカイン、TNF- a やキナーゼ等、種々の生体因子の活性化、抑制や分泌等の制御機構が働き、またこの刺激信号が次々と分子レベルで伝達(カスケード)され、その結果細胞や組織の成長に対する作用効果が得られ、細胞や組織の培養環境を制御できる。さらにまた、三次元培養の場合、圧迫により培養物が伸縮し、それにより培養物の外と中との間で強制的に培養液の流れが起こり、物質の移動が促進することも期待できる。培養容器の圧迫装置47としては、各種の方式、機構によるものとすることができ、たとえば以下の図7および8が例示することができる。

[0043]

そして図7では、磁石式の場合の培養容器圧迫装置48の構造概略図を例示して

いる。圧迫装置48内の培養容器2の上蓋内側に錘51が設置され、また培養容器2の上蓋の上には電磁石52が設置され、電流回路53およびスイッチ54により、その磁力のオンオフを制御コンピュータ16により自動制御するようにしている。図7-(A)のように、電流回路がオンの状態であれば、電磁石の作用により錘51は培養容器2内で上方に設置された電磁石52に引き寄せられ、培養容器2内部の培養液49中にある培養物50から隔てられる。また図7-(B)のように、電源がオフの状態では、電磁石の作用は消失し、錘51が培養物50の上に落下して、培養物50に圧迫力が加えられる。

[0044]

また図8は、隔離式の場合の培養容器圧迫装置48の構造概略図例示している。 圧迫装置48内にある培養容器2の伸縮性培養容器上蓋55は、伸縮性のあるやわら かい素材で作製されている。一方、培養容器2の外側上部では上下駆動装置58と 作用軸57との作用により圧迫物56が、制御コンピュータ16により任意、かつ、自 動的に上下運動させることが可能とされている。図8-(B)に示したように、この 圧迫物56が下降した時、伸縮性培養容器上蓋55を押し下げ、培養容器2内部の培 養液49中の培養物50を圧迫する。また、図8-(A)にあるように、圧迫物56が上方 に移動した時は、圧迫物56は引き上げられ、伸縮性培養容器上蓋55が通常の上蓋 の形に戻り、培養物50は圧迫されない。つまり、圧迫物56の上下運動により、培 養物50に対する圧迫作用を制御する。

[0045]

【発明の効果】

以上、詳しく説明したとおり、この出願の発明によって、培養工程のほとんどが自動化され、特殊な無菌施設を必要とせず、極めてクリーンな無菌的環境で、しかも培養環境の環境因子も任意、かつ、培養経過に応じて自動制御が可能な培養装置が提供される。

[0046]

また、この出願の発明の培養装置内は、複数の培養室に区分けされているため、ロットごとに異なる増殖挙動にも対応でき、また小スケールで多ロット並行の 培養も可能となり、さらにまた個別に洗浄および殺菌等のメンテナンスも行うこ

とができるため長期間の培養が可能な培養装置が提供される。

【図面の簡単な説明】

【図1】

培養操作および培養環境の自動制御化を行った培養装置の実施形態を例示した 概略図である。

【図2】

図1における培養装置を遮断板により複数に区分けした培養装置の実施形態を 例示した概略図である。

【図3】

図1における培養装置に空気制御を施し、清浄、かつ、陽圧に維持させた培養 装置の実施形態を例示した概略図である。

【図4】

図1における培養装置に回収培養物貯槽、回収培養物移送装置および振動・回 転装置を備えた、本発明の培養装置の実施形態を例示した概略図である。

【図5】

振動・回転装置を拡大例示した模式図である。

【図6】

図1における培養装置に圧迫装置を備えた培養装置の実施形態を例示した概略 図である。

【図7】

図6における圧迫装置で、磁石式圧迫装置の拡大模式図である。

【図8】

図6における圧迫装置で、隔離式圧迫装置の拡大模式図である。

【符号の説明】

- 1 培養装置
- 2 培養容器
- 3 ガスインキュベーター
- 4 ガスボンベ
- 5 ガス供給装置

- 7 新鮮培地貯槽
- 8 新鮮培地供給装置
- 9 使用済み培地貯槽
- 10 使用済み培地移送装置
- 11 顕微鏡観察ステージ
- 1 2 顕微鏡CCDカメラ
- 13 観察画像データ移送装置
- 14 計測データ移送装置
- 15 制御信号伝達装置
- 16 制御コンピュータ
- 17 遮断板
- 18 遮断板ドア
- 19 インキュベート区分領域-a
- 20 操作および測定区分領域
- 21 インキュベート区分領域ーb
- 22 滅菌ガス発生装置
- 23 滅菌ガス導入管
- 24 インキュベート区分領域-b用滅菌ガス導入弁
- 25 操作および測定区分領域用滅菌ガス導入弁
- 26 インキュベート区分領域-a用滅菌ガス導入弁
- 27 インキュベート区分領域-b用滅菌ガス排出弁
- 28 操作および測定区分領域用滅菌ガス排出弁
- 29 インキュベート区分領域-a用滅菌ガス排出弁
- 30 滅菌ガス排出管
- 31 滅菌ガス排出装置
- 32 除菌フィルター
- 33 返送風管
- 34 排出風管

- 35 外気取り込み管
- 36 返送風弁
- 37 排出風弁
- 38 外気取り込み弁
- 39 空気循環ポンプ
- 40 培養装置内圧力計
- 4 1 圧力信号伝送装置
- 42 圧力制御器
- 43 ポンプ運転制御信号
- 4.4 振動·回転装置
- 45 振動発生器
- 4 6 回転盤
- 47 培養容器の圧迫装置
- 48 圧迫装置
- 49 培養液
- 50 培養物
- 51 錘
- 5 2 電磁石
- 53 電流回路
- 54 スイッチ
- 5 5 伸縮性培養容器上蓋
- 5 6 圧迫物
- 57 作用軸
- 58 上下駆動装置
- 101 回収培養物貯槽
- 102 回収培養物移送装置

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図6】

【図7】

【図8】

【書類名】 要約書

【要約】

【課題】 培養工程のほとんどが自動化され、培養環境の環境因子であるも任意 、かつ、培養経過に応じて自動制御が可能な培養装置を提供する。

【解決手段】 閉鎖され、かつ、無菌状態の内部空間を有する箱体の培養装置内で、培養容器において生体由来の細胞または組織を培養する自動培養装置であって、培養装置の箱体内には、ガスインキュベーター、培養液の供給装置と排出装置、培養状態の観察装置並びにこれら装置に培養容器を連続的もしくは断続的に移動させる移動装置が配置されているとともに、培養状態の観察装置からのデータ信号によって、前記の装置の少なくともいずれかのものの動作を電気信号により指示制御する指示制御装置が具備されていることを特徴とする。

【選択図】 なし

特願2002-223892

出願人履歴情報

識別番号

[396020800]

1. 変更年月日 [変更理由] 住 所 氏 名 1998年 2月24日 名称変更 埼玉県川口市本町4丁目1番8号 科学技術振興事業団