Multimedia Systems

CS-538 Advanced Operating Systems

(Slides include materials from *Operating System Concepts*, 7th ed., by Silbershatz, Galvin, & Gagne and from *Modern Operating Systems*, 2nd ed., by Tanenbaum)

Outline

- What is multi-media?
- Requirements and challenges for audio and video in computer systems
 - CD devices and formats
- Systems for multimedia
- Compression and bandwidth
- If time:-
 - Processor and disk scheduling
 - Network streaming and management

Silbershatz, Chapter 20 Tanenbaum, Chapter 7

What do we mean by "multimedia"

- Audio and video within a computer system
 - CD's & DVD's
 - Computer hard drive
 - Interactive
- Live broadcast & web casts
 - Radio stations, Network TV, Webcams, Skype, ...
- Video on demand
 - Pause, fast forward, reverse, etc.
- Interactive activities involving audio, video, images
 - Meetings and presentations with 2-way audio
 - Teleconferencing
- Handheld devices
 - iPod, MP-3 players; personal video; mobile phones, ...

• ...

Multimedia Data and Delivery

- Stored in file system like ordinary data.
- Must be accessed with specific timing requirements.
- E.g., video *must* be displayed at 24-30 frames per second.
 - System must guarantee timely delivery
- Continuous-media data
 - Data with specific rate requirements

Multimedia Characteristics

- Multimedia files can be very large.
- Continuous media data may require very high data rates.
- Multimedia applications are usually sensitive to timing delays during playback.
- *Note:* human ear is more sensitive to *jitter* in audio than eye is to *jitter* in video!

Requirements

- "Smooth" audio and video
 - Deterioration in quality ⇒ jerky playback
- Multiple concurrent streams
 - Video & multimedia servers
 - TiVo, etc.
- Wide range of network bandwidths
- Audio/video while PC is doing something else

System and OS Challenges

Bandwidths and Compression

Jitter

Processor Scheduling

Disk Scheduling

Network Streaming

Some System Architectures

Simple:

Data paths for audio/video that are separate from computational data paths

Modern

Fast system bus, CPU, devices

Video server

Disk farm and multiple streams

System Organization (a decade ago)

- Separate data path for audio stream
 - Or headphone jack and volume control on CD drive itself
- Main system bus and CPU were too busy/slow to handle real-time audio

System Organization (typical Pentium PC today)

DVD devices

- Similar in concept, different in details
- More data, higher bandwidth

- Track spacing: 0.834μ vs. 1.6μ

- Bit spacing: 0.4μ vs. 0.74μ

- Capacity: 4.7 Gbytes vs. 650 Mbytes

Compression

An essential part of audio and video representation as files

Why Compression? – CD-quality audio

- 22,050 Hz \Rightarrow 44,100 samples/sec
 - 16 bits per sample
- Two channels \Rightarrow 176,400 bytes/sec \cong 1.4 mbits/sec
 - Okay for a modern PC
 - Not okay for 56 kb/sec modem (speed) or iPod (space)!
- MP-3 \cong 0.14 mbits/sec (10:1)
 - Same audio quality!
 - Compression ratio varies with type of music

Why Compression? – Video

- "Standard" TV frame = 640 × 480 pixels @ 25-30 frames/sec (fps) ⇒
 - \Rightarrow 9,216,000 pixels/sec = 27,648,000 bytes/sec
- Hollywood "standard" movie ≤ 133 minutes
 - ⇒ approx. 210 gigabytes (standard resolution)!
- HDTV = 1280 × 720 pixels @ 30 fps
 - \Rightarrow 82,944,000 bytes/sec (and rising!)
- DVD holds ~ 4.7 gigabytes
 - ⇒ average of ~ 620 kilobytes/sec!
- "Standard" movie of 133 minutes requires serious compression just to *fit* onto DVD

Video Compression Requirements

- Compression ratio > 50:1
 - i.e., 210 gigabytes:4.7 gigabytes
- Visually indistinguishable from original
 - Even when paused
- Fast, cheap decoder
 - Slow encoder is okay
- VCR controls
 - Pause, fast forward, reverse

Video Compression Standards

- MPEG (Motion Picture Experts Group)
 - Based on JPEG (Joint Photographic Experts Group)
 - Multi-layer
 - Layer 1 = system and timing information
 - Layer 2 = video stream
 - Layer 3 = audio and text streams
- Three standards
 - MPEG-1 352×240 frames; < 1.5 mb/sec (< VHS quality)
 - Layer 3 = MP3 Audio standard
 - Typical uses:
 – video clips on internet; video for handhelds
 - MPEG-2 standard TV & HDTV; 1.5-15 mb/sec
 - DVD encoding
 - MPEG-4 combined audio, video, interactive graphics
 - 2D & 3D animations

JPEG compression (single frame)

Convert RGB into YIQ

- Y = luminance (i.e., brightness) ~ black-white TV
- *I, Q = chrominance* (similar to *saturation* and *hue*)

Reason: Human eye is more sensitive to luminance than to color (rods vs. cones)

2. Down-sample *I, Q* channels

- i.e., average over 2×2 pixels to reduce resolution
- lossy compression, but barely noticeable to eye

3. Partition each channel into 8×8 blocks

4800 Y blocks, 1200 each I & Q blocks (for 640 × 480)

JPEG (continued)

JPEG (continued)

JPEG (continued)

- 4. Calculate *Discrete Cosine Transform* (DCT) of each 8×8 block
- 5. Divide 8×8 block of DCT values by 8×8 quantization table
 - Effectively throwing away higher frequencies
- Linearize 8×8 block, run-length encode, and apply a Huffman code to reduce to a small fraction of original size (in bytes)

JPEG (concluded)

- 7. Store or transmit 8×8 quantization table followed by list of compressed blocks
- Achieves 20:1 compression with good visual characteristics
 - Higher compression ratios possible with visible degradation
- JPEG algorithm executed backwards to recover image
 - Visually indistinguishable from original @ 20:1
- JPEG algorithm is symmetric
 - Same speed forwards and backwards

MPEG

- JPEG-like encoding of each frame
- Takes advantage of temporal locality
- I.e., each frame usually shares similarities with previous frame
 - ⇒ encode and transmit only differences
- Sometimes an object moves relative to background
 - ⇒ find object in previous frame, calculate difference, apply *motion vector*

Temporal Locality (example)

Consecutive Video Frames

MPEG organization

- Three types of frames
 - I-frame: Intracoded or Independent.
 - Full JPEG-encoded frame
 - Occurs at intervals of a second or so
 - Also at start of every scene
 - P-frame: Predictive frame
 - Difference from previous frame
 - B-frame: Bidirectional frame
 - Like p-frame but difference from both previous and next frame

MPEG Characteristics

- Non-uniform data rate!
- Compression ratios of 50:1 80:1 are readily obtainable
- Asymmetric algorithm
 - Fast decode (like JPEG)
 - Encode requires image search and analysis to get high quality differences
- Cheap decoding chips available for
 - graphics cards
 - DVD players, etc.

MPEG Problem – Fast Forward/Reverse

- Cannot simply skip frames
 - Next desired frame might be B or P derived from a skipped frame

Options:

- Separate fast forward and fast reverse files
 - MPEG encoding of every nth frame
 - Often used in video-on-demand server
- Display only I and P frames
 - If B frame is needed, derive from nearest I or P

"Movie" File Organization

- One MPEG-2 video stream
 - Possible fast forward, fast reverse sub-streams
- Multiple audio streams
 - Multiple languages
- Multiple text streams
 - Subtitles in multiple languages
- All interleaved
 - Possibly in multiple files!

Frame

Operating System Challenge

- How to get the contents of a movie file from disk or DVD drive to video screen and speakers.
 - Fixed frame rate (25 or 30 fps)
 - Steady audio rate
 - Bounded jitter
- Such requirements are known as Quality-of-Service (QoS) guarantees.
- Classical problem in real-time scheduling
 - Obscure niche become mainstream!
 - See Silbershatz, §19.1–19.5

QoS Guarantees

- Building a system to guarantee QoS effects the following:—
 - CPU processing
 - Scheduling and interrupt handling
 - File systems
 - Network protocols

Requirement of Multimedia Operating Systems

- There are three levels of QoS
 - Best-effort service: the system makes a best effort with no attempt to guarantee
 - Soft QoS: allows different traffic streams to be prioritized, but no QoS guarantees are made
 - Hard QoS: system ensures QoS requirements are always met
 - Prioritization
 - Admission control
 - Bounded latency on interrupt handling, processing, etc.

Parameters Defining QoS

- Throughput: the total amount of work completed during a specific time interval
- Delay: the elapsed time from when request is first submitted to desired result Jitter: delays that occur during playback of a stream.

Reliability: how errors are handled during transmission and processing of continuous media

Further QoS Issues

- QoS may be negotiated between the client and server.
- Operating systems may use an admission control algorithm
 - Admits a request for service only if the server has sufficient resources to satisfy the request

Two common methods

- Rate Monotonic Scheduling
- Earliest Deadline First

- Many variations
- Many analytic methods for proving QoS (Quality of Service)

Processor Scheduling for Real-Time Rate Monotonic Scheduling (RMS)

- Assume *m* periodic processes
 - Process *i* requires t_i msec of processing time every p_i msec.
 - Equal processing every interval like clockwork!

Example

- Periodic process i requires the CPU at specified intervals (periods)
- p_i is the duration of the period
- t_i is the processing time
- d_i is the deadline by when the process must be serviced
 - Often same as end of period

Processor Scheduling for Real-Time Rate Monotonic Scheduling (RMS)

- Assume *m* periodic processes
 - Process *i* requires t_i msec of processing time every p_i msec.
 - Equal processing every interval like clockwork!
- Assume

$$\sum_{i=1}^{m} \frac{t_i}{p_i} \le 1$$

- Assign priority of process i to be
 - Statically assigned
- Let priority of non-real-time processes be 0

 $\frac{1}{p_i}$

Rate Monotonic Scheduling (continued)

- Scheduler simply runs highest priority process that is ready
 - May pre-empt other real-time processes
 - Real-time processes become ready in time for each frame or sound interval
 - Non-real-time processes run only when no realtime process needs CPU

Example

- $p_1 = 50$ msec; $t_1 = 20$ msec
- $p_2 = 100$ msec; $t_2 = 35$ msec
- Priority(p_1) > Priority(p_2)
- Total compute load is 75 msec per every 100 msec.
- Both tasks complete within every period
 - 25 msec per 100 msec to spare

39

Example 2

- $p_1 = 50$ msec; $t_1 = 25$ msec
- $p_2 = 80$ msec; $t_2 = 35$ msec
- Priority(p_1) > Priority(p_2)
- Total compute load is ~ 94% of CPU.
- Cannot complete both tasks within some periods
 - Even though there is still CPU capacity to spare!

18/04/2018 40

Processor Scheduling for Real-Time Earliest Deadline First (EDF)

 When each process i become ready, it announces deadline D_i for its next task.

- Scheduler always assigns processor to process with earliest deadline.
 - May pre-empt other real-time processes

Earliest Deadline First Scheduling (continued)

- No assumption of periodicity
- No assumption of uniform processing times

- Theorem: If any scheduling policy can satisfy QoS requirement for a sequence of real time tasks, then EDF can also satisfy it.
 - *Proof:* If *i* scheduled before i+1, but $D_{i+1} < D_i$, then *i* and i+1 can be interchanged without affecting QoS guarantee to either one.

Earliest Deadline First Scheduling (continued)

- EDF is more complex scheduling algorithm
 - Priorities are dynamically calculated
 - Processes must know deadlines for tasks
- EDF can make higher use of processor than RMS
 - Up to 100%

 There is a large body of knowledge and theorems about EDF analysis

Example 2 (again)

- Priorities are assigned according to deadlines:
 - the earlier the deadline, the higher the priority;
 - the later the deadline, the lower the priority.

Network Management (continued)

Broadcasting

- Like cable TV
- Fixed portion of network bandwidth dedicated to set of broadcast streams; inflexible

Multicasting

- Typical webcast
- Multicast tree set up through internet to reach customers
- Customers can come and go

Unicast

- Dedicated connection between server and client
- Streaming version of familiar transport protocols

Streaming – Delivery of Multimedia Data over Network

- Two types of streaming:-
 - Progressive download: client begins playback of multimedia file during delivery.
 - File is ultimately stored on client computer
 - (Hopefully) download speed > playback speed
 - Real-time streaming: multimedia file is delivered to, but not stored on, client computer
 - Played back at same speed as delivery
 - Limited amount of buffering to remove jitter

Two Types of Real-time Streaming

- Live streaming: to deliver a live event while it is occurring.
 - Broadcast or multicast

- On-demand streaming: to deliver archived media streams
 - Movies, lectures, old TV shows, etc.
 - Events *not* delivered when they occur.
 - Playback with pause, fast forward, reverse, etc.
 - Unicast (usually)

Network Streaming

- Traditional HTTP
 - Stateless
 - Server responds to each request independently
- Real-Time Streaming Protocol (RTSP)
 - Client initiates a "push" request for stream
 - Server provides media stream at frame rate

Pull (HTTP) vs. Push (RTSP) server

RTSP States

- SETUP: server allocates resources for client session.
- *PLAY:* server delivers stream to a client session.
- PAUSE: server suspends delivery of a stream.
- TEARDOWN: server releases resources and breaks down connection.

RTSP state machine

Bandwidth Negotiation

- Client application provides feedback to server to adjust bandwidth
- E.g.,
 - Windows Media Player
 - RealPlayer
 - Quicktime

Video Server

- Multiple CPUs
- Disk farm
 - 1000s of disks
- Multiple high-bandwidth network links
 - Cable TV
 - Video on demand
 - Internet

Multimedia File & Disk Management

- Single movie or multimedia file on disk
 - Interleave audio, video, etc.
 - So temporally equivalent blocks are near each other
 - Attempt contiguous allocation
 - Avoid seeks within a frame

File organization – Frame *vs.* Block

Frame organization

- Small disk blocks (4-16 Kbytes)
- Frame index entries point to starting block for each frame
- Frames vary in size (MPEG)
- Advantage: very little storage fragmentation
- Disadvantage: large frame table in RAM

Block organization

- Large disk block (256 Kbytes or more)
- Block index entries point to first *I-frame* of a sequence
- Multiple frames per block
- Advantage: much smaller block table in RAM
- Disadvantage: large storage fragmentation on disk

Frame vs. Block organization

18/04/2018 56

File Placement on Server

- Random
- Striped
- "Organ pipe" allocation
 - Most popular video in center of disk
 - Next most popular on either side of it, etc.
 - Least popular at edges of disk
 - Minimizes seek distance

Resources on a file server

Conclusion

- Multimedia computing is challenging
- Possible with modern computers
 - Compression is essential, especially for video
- Real-time computing techniques move into mainstream
 - Processor and disk scheduling

There is much more to this subject than fits into one class

Thank You.....

For your attentions