Termodinámica - Clase 18

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

La física estadística

Combinatoria

Resumen

Conceptos en esta clase

- Conceptos fundamentales de la física cuántica
- Una partícula cuántica en una caja
- Conceptos de la física estadística
 - Niveles de energía
 - Degeneración
 - Números de ocupación
 - Tipos de estadística
 - Ensambles
- Combinatoria

Contenido

Conceptos en esta clase

La física estadística

Combinatoria

Resumer

La física estadística

La física estadística representa la descripción *fundamental* de las propiedades termodinámicas de un sistema:

- Termodinámica clásica: relaciones entre las propiedades termodinámicas, pero podemos obtener sus valores solamente por experimentos/observaciones.
- Física estadística: modelo microscópico de un sistema termodinámico que determina los valores de las propiedades termodinámicas (según el comportamiento estadístico de sus componentes).

Un concepto fundamental: cuantización

Necesitamos un concepto fundamental de la física cuántica:

Cuantización: las energías de las partículas/moléculas cuánticas no tienen valores continuas, sino discretas.

La función de onda

Según la física cuántica una partícula está representada por una función de onda. El momentum de la partícula viene dado por la relación de de Broglie: $p = h/\lambda$ donde h es la constante de Planck.

La función de onda

Para una partícula en una caja, su función de onda está restringida a tomar el valor cero en las paredes y fuera de la caja.

Una partícula restringida a una caja

Consideremos por ahora una caja unidimensional. La función de onda es una onda estacionaria, así que las posibles longitudes de onda en una caja de arista L son

$$\lambda_j = \frac{1}{n_i} 2L$$

donde $n_i = 1, 2, 3, ...$

Una partícula restringida a una caja

El momentum de la partícula en cada dirección es

$$p^{(x)} = \frac{h}{\lambda^{(x)}}$$

donde $\lambda^{(x)}$ es la longitud de onda en la dirección x. Entonces, los componentes del momentum de la partícula cuántica son

$$p_j^{(x)} = n_j^{(x)} \frac{h}{2L}$$
 $p_j^{(y)} = n_j^{(y)} \frac{h}{2L}$ $p_j^{(z)} = n_j^{(z)} \frac{h}{2L}$.

Una partícula restringida a una caja

La magnitud cuadrada de momentum es

$$p_j^2 = (p_j^{(x)})^2 + (p_j^{(y)})^2 + (p_j^{(z)})^2 = [(n_j^{(x)})^2 + (n_j^{(y)})^2 + (n_j^{(z)})^2] \frac{h^2}{4L^2}$$
$$= n_j^2 \frac{h^2}{4L^2}$$

donde hemos definido $n_j^2 \equiv (n_j^{(x)})^2 + (n_j^{(y)})^2 + (n_j^{(z)})^2$.

Energía cuantizada

La energía cinética asociada a esta magnitud de momentum es

$$\epsilon_j = \frac{p_j^2}{2m} = n_j^2 \frac{h^2}{8mL^2} = n_j^2 \frac{h^2}{8mV^{2/3}}.$$

Ahora vemos que la energía cinética está *cuantizada* (en este caso por las paredes de la caja que restringen las funciones de onda a tomar la forma de ondas estacionarias).

Números cuánticos

- El número n_j se llama un **número cuántico** (los números $n_i^{(x,y,z)}$ también).
- En la física cuántica hay varios números cuánticos que caracterizan el sistema aparte de la energía total (e.g. momentum angular en un orbital atómico)
- Cada valor de ϵ_j corresponde a un **nivel** de energía (indicado por j).

Degeneración

$$n_j^2 \equiv (n_j^{(x)})^2 + (n_j^{(y)})^2 + (n_j^{(z)})^2$$

Aparte del caso donde $n_j = 0$, hay varias formas de tener el mismo valor para n_j . Si hay g_j formas, decimos que el nivel de energía está **degenerado** con degeneración g_j .

Estados de energía, número de ocupación

- Cada combinación de los $n_i^{(x,y,z)}$ es un **estado** de energía.
- Cada **nivel** de energía tiene g_i **estados**.
- Si hay N partículas en la caja, el número de partículas en cada nivel de energía se llama el número de ocupación N_j.

$$\sum_{j} N_{j} = N, \qquad \sum_{j} \epsilon_{j} N_{j} = U$$

(si no hay energía potencial).

Microestados y macroestados de nuevo

- Macroestado: un estado definido por las variables termodinámicas como el número de partículas N, la energía total U y el volúmen del sistema V.
- Microestado: especificación de los estados de energía de las partículas y los números de ocupación en cada nivel. El sistema siempre está evolucionandose de un microestado a otro muy rápidamente.

Microestados y macroestados de nuevo

Microestados y macroestados de nuevo

Los niveles de energía ϵ_j y su degeneración g_j están definidos **por** el sistema. Todavía hay libertad en elegir los números de ocupación N_j , siempre y cuando cumplen $N = \sum_j N_j$.

Ensambles estadísticos

Colectividad microcanónica: sistema con energía total fija y composición (N) fija. Cada microestado (consistente) tiene la misma probabilidad.

Ensambles estadísticos

Colectividad canónica: sistema con N fijo, en equilibrio térmico con un reservorio a T fija. La energía total puede variar, pero la composición no. Los microestados tienen distintas probabilidades, que dependen de su energía total.

Ensambles estadísticos

Colectividad macrocanónica o grancanónica: sistema con N variable que está en equilibrio térmico y químico con un reservorio termodinámico (tiene los μ_i definidos para cada tipo de partícula, y T definida). Los microestados tienen distintas probabilidades, que dependen de su energía total y N.

Límite termodinámico

El límite termodinámico de un sistema en la física estadística está definido como:

$$N \to \infty$$
, $V \to \infty$, $\frac{N}{V} = \text{constante}$

En este límite se puede aplicar la termodinámica clásica. En este límite las 3 colectividades estadísticas dan los mismos resultados (cómo esperamos).

Colectividad microcanónica

Colectividad canónica

Colectividad grancanónica

Ergodicidad

Para justificar la suposición de probabilidades iguales en el ensamble microcanónico, apelamos al siguiente principio:

Ergodicidad: un sistema ergodico se evoluciona (en el tiempo) a través de todos los microestados accesibles (con la misma energía y composición).

En la práctica, la mayoría de los sistemas no son ergodicos.

Ergodicidad

Ergodicidad

Tipos de estadística

Hay tres tipos de "estadística" en la física. Están definidas según las propiedades de las partículas que describen. Tienen los siguientes nombres:

- Maxwell-Boltzmann
- Fermi-Dirac
- Bose-Einstein

Maxwell-Boltzmann

Estadística clásica, donde las partículas están distinguibles y cualquier número pueden ocupar cualquier estado de energía disponible al sistema.

Bose-Einstein

Estadística cuántica que aplica a los bosones, que son partículas con espín entero. Los fotones, gluones, W^{\pm} , Z^0 , gravitones, Higgs, etc. son bosones (las partículas de las interacciones). Cualquier número de bosones puede ocupar un estado de energía. Son partículas indistinguibles.

Fermi-Dirac

Estadística **cuántica** que aplica a los fermiones, que son partículas con espín semi-entero. Los electrones. protones, neutrones, etc. son fermiones (las partículas de materia). Estas partículas cumplen el principio de exclusión de Pauli: sólo una partícula puede ocupar un estado de energía. Como los bosones, son **indistinguibles**.

Contando el número de microestados

- ¿Cómo podemos conectar las propiedades estadísticas de un sistema con la termodinámica clásica?
- Ya sabemos que S = k_B ln(Ω) donde Ω es el número de microestados disponible al sistema.
- Entonces, hay que determinar el valor de Ω, es decir contar el número de microestados disponible al sistema.
- Es imposible determinar Ω literalmente contando todos los microestados (en un litro de un gas real hay $N\sim 10^{23}$ moléculas) vamos a obtener un resultado **estadístico**.

Contando el número de microestados

Por ahora, supongamos que tenemos la siguiente información sobre el sistema:

- Los niveles de energía ϵ_j .
- La degeneración g_i de cada nivel.
- El número de ocupación N_j de cada nivel.

Típicamente en la practica no conocemos los N_j : hay que aproximar sus valores promedios...

Contenido

Conceptos en esta clase

La física estadística

Combinatoria

Resumer

Combinatoria

Primero, un poco de *combinatoria* (el ramo de la matemática que se centra en el estudio de combinaciones, permutaciones, etc.).

Si tenemos 3 objetos **distinguibles**, *a*, *b* y *c*, ¿cuántas permutaciones hay?

abc, bca, cab, acb, bac, cba

Hay 6 posibilidades. Este es igual a $3! = 3 \times 2 \times 1$, el factorial del número 3.

- Con N objetos, podemos elegir cualquier de los N como el primero.
- Queda N-1, y podemos elegir cualquier de esos.
- Ahora queda N-2, y podemos elegir cualquier de esos, etc.

Entonces el número de permutaciones de N objetos es $N \times (N-1) \times (N-2) \times \ldots \times 1 = N!$

3

Número de formas de elegir 1 objeto de un conjunto de 5: 5

1 2

3

Número de formas de elegir 2 objetos de un conjunto de 5 (en un órden particular): 20

- Podemos elegir 1 objeto de un conjunto de N objetos en N formas distintas.
- Podemos elegir 2 objetos de un conjunto de N objetos en N(N-1) formas distintas, si el órden importa.
- Podemos elegir n objetos de un conjunto de N objetos en $N \times (N-1) \times (N-2) \times \cdots \times (N-(n-1)) = N!/(N-n)!$ formas distintas, si el órden importa.
- Si el órden NO importa, podemos dividir por el número de permutaciones de los n objetos que elegimos:
 N!/(n!(N - n)!). Este es el coeficiente binomial.

Coeficiente binomial

Número de formas de elegir n objetos de un conjunto de N es

$$\frac{N!}{n!(N-n)!}$$

Ahora consideremos que tenemos 4 objetos, y 2 cajas. Queremos poner 2 objetos en la caja A, y 2 objetos en la caja B.

Caso 1

Caso 2

1 4 2 3 CAJA B

Caso 3

- Queremos elegir 2 objetos para la caja A de un conjunto de 4. Ahora sabemos que el número de posibilidades viene dado por $N!/(n!(N-n)!) = 4!/(2!(4-2)!) = 24/(2 \cdot 2) = 6$.
- Pero también hay que elegir 2 objetos para la caja B. Después de elegir los 2 objetos para la caja A quedan solamente 2 objetos para la caja B, así que hay solamente 2!/(2!(2-2)!) = 2/(2·1) = 1 posibilidad.
- Entonces el número total de formas de organizar los objetos entre las dos cajas tal que hay 2 objetos en cada caja es $6 \cdot 1 = 6$.

Si hay N objetos, y queremos elegir N_A para la caja A, el número de posibilidades es

$$\frac{N!}{N_A!(N-N_A)!}$$

Ahora quedan $N-N_A$ objetos. Queremos elegir N_B para la caja B. El número de posibilidades es

$$\frac{(N-N_A)!}{N_B!(N-N_A-N_B)!}$$

Por lo tanto, el número de formas de poner N_A objetos en caja A, N_B objetos en caja B, de un conjunto total de N objetos es:

$$\frac{N!}{N_A!(N-N_A)!} \times \frac{(N-N_A)!}{N_B!(N-N_A-N_B)!} = \frac{N!}{N_A!N_B!(N-N_A-N_B)!}$$

Ahora supongamos que haya N objetos, L cajas y el número de objetos en cada caja es N_A , N_B , N_C , ..., N_L . Además, estipulamos que no hay ningún objeto fuera de las cajas. El número total de formas de organizar los objetos en las cajas es

$$\frac{N!}{N_{A}!(N-N_{A})!} \times \frac{(N-N_{A})!}{N_{B}!(N-N_{A}-N_{B})!} \times \frac{(N-N_{A}-N_{B})!}{N_{C}!(N-N_{A}-N_{B}-N_{C})!} \times \frac{(N-\ldots-N_{K})!}{N_{L}!(N-\ldots-N_{K}-N_{L})!} \times \frac{(N-\ldots-N_{K}-N_{L})!}{N_{L}!(N-\ldots-N_{K}-N_{L})!}$$

$$= \frac{N!}{N_{A}!N_{B}!N_{C}!\ldots N_{L}!(N-\ldots-N_{K}-N_{L})!}$$

Coeficiente multinomial

Ya que no hay ningún objeto fuera de una caja, $N = N_A + N_B + N_C + \cdots + N_K + N_L$, y tenemos

$$\frac{N!}{N_A!N_B!N_C!\dots N_L!(N-\dots-N_K-N_L)!} = \frac{N!}{N_A!N_B!N_C!\dots N_L!}$$
$$= N!\prod_j \frac{1}{N_j!}$$

Este es el **coeficiente multinomial**: el número de formas de organizar N objetos en L cajas, donde la caja j tiene N_j objetos (el órden dentro de la caja no importa).

Contenido

Conceptos en esta clase

La física estadística

Combinatoria

Resumen

Resumen

- La física estadística aplica conceptos de la física cuántica.
- Según la física cuántica la energía de una partícula (en una caja) está discretizada: hay niveles de energía.
- Los niveles de energía pueden tener **degeneración**: varios estados que corresponden a la misma energía.
- El número de partículas en un nivel se llama el número de ocupación.
- La física estadística ocupa los niveles de energía, degeneración y números de ocupación para calcular las propiedades termodinámicas de un sistema.

Resumen

- Las colectividades estadísticas definen las condiciones de contorno del sistema.
- En el límite termodinámico todas las colectividades dan el mismo resultado para las propiedades termodinámicas.
- Hay 3 "tipos" de estadística, según las propiedades de las partículas: Maxwell-Boltzmann (partículas clásicas), Bose-Einstein (bosones), Fermi-Dirac (fermiones).
- Para llegar a las propiedades termodinámicas desde el sistema estadístico necesitamos contar el número de microestados: usaremos la combinatoria.