

(19) **RU** (11) **2 497 030** (13) **C1** (51) MIIK **F16H 1/32** (2006.01) **F16H 25/06** (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: действует (последнее изменение статуса: 27.01.2017 Пошлина: учтена за 6 год с 21.04.2017 по 20.04.2018

(21)(22) Заявка: 2012116161/11, 20.04.2012

(24) Дата начала отсчета срока действия патента: **20.04.2012**

Приоритет(ы):

(22) Дата подачи заявки: 20.04.2012

(45) Опубликовано: <u>27.10.2013</u> Бюл. № 30

(56) Список документов, цитированных в отчете о поиске: RU 2123627 C1, 20.12.1998. US 5145468 A, 08.09.1992. BE 748250 A1, 05.12.1973.

Адрес для переписки:

445024, Самарская обл., г. Тольятти, ул. Северная, 111, ООО "ВМЗ", ТО СДП, С.В. Шеховцову

(72) Автор(ы):

Семенов Сергей Анатольевич (RU), Севостьянов Сергей Николаевич (RU), Матрин Дмитрий Владимирович (RU)

(73) Патентообладатель(и):
Общество с ограниченной ответственностью "Волжский машиностроительный завод" (RU)

(54) ЦИКЛОИДНАЯ ПЕРЕДАЧА С ТЕЛАМИ КАЧЕНИЯ

(57) Реферат:

Изобретение относится к машиностроению и может быть использовано в редукторах совместно с сервомоторами для привода роботов, станков с ЧПУ, радаров и т.д., где требуются большие передаточные отношения, высока точность движения исполнительного механизма и повторяемость запрограммированных перемещений. Циклоидная передача содержит корпус (1), составное водило, в центре одной части (4) которого закреплен выходной вал (5), а в центре другой части (6) выполнено отверстие, через которое проходит входной кривошипный вал (7). Обе части (4, 6) составного водила в сборе имеют соосные отверстия (8), равномерно расположенные по окружности. Тела качения (9) одновременно обкатываются по поверхностям отверстий (8) и находятся в контакте с элементом силового замыкания (10), закрепленным с помощью опорного подшипника (11) на кривошипном валу (7), и опорными элементами (2), расположенными на осях (3) корпуса с возможностью вращения. Элемент силового замыкания (10) размещен между частями (4, 6) составного водила. Изобретение позволяет расширить технологические возможности большого за счет числа передаточных отношений.

Изобретение относится к машиностроению и может быть использовано в редукторах совместно с сервомоторами для привода роботов, станков с ЧПУ, радаров и т.д., где требуются большие передаточные отношения, высокая точность движения исполнительного механизма и повторяемость запрограммированных перемещений.

Современные научные разработки и технологии позволили довести до совершенства производство столь необходимых для этого волновых и циклоидных передач. Но изучение опыта использования этих устройств, а также влияния на экономические показатели оборудования с их применением подводит к необходимости дальнейших поисков в этом направлении.

Известны подшипниковые редукторы типа ТвинСпин с применением высокотехнологичных циклоидных передач (см. стр.1 каталога с реквизитами web: www.spinea.sk), где сателлит g и центральное колесо K близки по числу сцепляющихся элементов и водило и звено B связаны специальной муфтой с двумя осями подвижки (по принципу крестовой муфты). Схема перемещения в 5-ти фазах представлена на стр.2 упомянутого каталога.

В реальных редукторах циклоидная передача такого типа содержит сателлит с нарезкой зубьев трахоидного профиля, трудоемких и сложных в производстве, что приводит к непреодолимым сложностям при ремонтно-восстановительных работах и само по себе освоение производства таких передач является процессом весьма дорогостоящим.

Так как запрессованные ролики солнечного колеса не имеют прокрутки в момент сопряжения с сателлитом, то происходят потери КПД из-за трения хотя и при небольших относительных скоростях скольжения. Именно поэтому редукторы такого типа под нагрузкой заметно нагреваются, происходит износ самых сложных элементов редуктора и нарастание гистерезиса крутильной жесткости. Несмотря на имеющиеся технические решения по выборке зазоров в редукторах типа твинспин, производить такую операцию без специального оборудования не представляется возможным.

Многоэлементность редукторов этого типа, где число важных деталей с микронной точностью измеряется десятками штук, так же является существенным препятствием для более широкого их применения по экономическим причинам и не ремонтопригодности.

Наиболее близким техническим решением к заявляемой циклоидной передаче является планетарная передача по патенту РФ №2124661, МПК F16H 13/08, содержащая корпус, внутри которого установлено водило с радиально

расположенными отверстиями, тела качения, выполненные в виде одинаковых колец, которые изнутри поджаты к кривошипу роликами, расположенными в радиально расположенных отверстиях водила и жестко закрепленными на несущем элементе, входной вал и выходной вал, жестко соединенный с водилом, кулачок, охватывающий тела качения и кривошип. Она работает по принципу планетарной передачи с телами качения без зубчатого зацепления, где источником движения является кривошип, фрикционно связанный с сателлитами-кольцами, свободно установленными внутри неподвижного кулачка специального профиля математически рассчитанного для частного случая, силовое замыкание в которой обеспечивается водилом с роликами, контролирующими угловое положение колец.

При высокой точности и отсутствии износа за счет кинематических связей без скольжения, можно отметить недостаточную жесткость передачи из-за упругости колец и невозможности получения больших значений передаточных чисел редукторов, выполненных по такой схеме.

Технической задачей, решаемой данным изобретением является улучшение механических характеристик передачи (повышение крутильной жесткости и передаваемого момента), а также расширение технологических возможностей за счет большого числа передаточных отношений, реализуемых передачей.

Поставленная цель достигается тем, что циклоидная передача с телами качения, содержащая корпус, внутри которого установлено водило с радиально расположенными отверстиями, тела качения, входной вал и выходной вал, жестко соединенный с водилом, снабжена опорными элементами, установленными с возможностью вращения на осях, радиально расположенных и жестко закрепленных в корпусе, подшипником, установленным на входном валу, и элементом силового замыкания в виде диска, закрепленного на упомянутом подшипнике. Входной вал выполнен в виде кривошипного вала, опорные элементы выполнены в виде роликов, а тела качения - в виде цилиндров, размещенных в радиальных отверстиях водила с возможностью обкатки по их внутренним поверхностям и одновременного контакта с наружной поверхностью элемента силового замыкания и с опорными элементами. Водило выполнено из двух жестко связанных между собой частей, в центре одной из которых закреплен выходной вал, а в центре другой выполнено отверстие, через который проходит входной вал, при этом элемент силового замыкания расположен между двумя частями водила, воспринимая реакции от всех тел качения.

На фиг.1 изображена циклоидная передача с телами качения, в разрезе; на фиг.2 - кинематическая схема по сечению A-A на фиг.1; на фиг.3 - план сил одной группы взаимодействующих тел; на фиг.4 - расчетная схема геометрических параметров.

Циклоидная передача состоит из корпуса 1, несущего опорные элементы 2, расположенные на осях 3 с возможностью вращения, составного водила, выполненного из двух жестко связанных между собой частей, в центре одной 4 из которых закреплен выходной вал 5, а в центре другой 6 выполнено отверстие, через которое проходит входной вал 7, выполненный в виде кривошипного вала. Обе части составного водила 4 и 6 в сборе, образуя одно целое, имеют соосные отверстия 8, равномерно расположеные по окружности, причем центры этих отверстий расположены по диаметру Dц, по поверхностям которых могут обкатываться тела качения 9, находящиеся одновременно в контакте с элементом силового замыкания 10, закрепленным с помощью опорного подшипника 11 на кривошипном валу 7, и опорными элементами 2. Элемент силового замыкания 10 размещен между частями 4 и 6 составного водила.

```
Основные параметры передачи выражаются следующим образом: передаточное число определяется отношением: i=\omega_{2/0}/\omega_{3/0}, где i - передаточное число; \omega_{2/0} - угловая скорость кривошипного вала; \omega_{3/0} - угловая скорость системы тел качения, образующих сателлит, или i=n_{T.K.}/(n_{T.K.}-n_{0}), где i - передаточное число; n_{T.K.} - число тел качения, n_{0} - число опорных элементов, из чего следует, что передаточное число возрастает с увеличением числа опорных элементов. Угловой ход выходного вала за один оборот кривошипного вала равен 360^{\circ}/n_{T.K.}
```

```
Связь диаметра тел качения и отверстия водила: D_{\text{о.в.}}\text{-d}_{\text{т.к.}}\text{=2e}, где D_{\text{о.в.}} - диаметр отверстия водила, d_{\text{т.к.}}\text{- диаметр тела качения,} е - эксцентриситет кривошипного вала. Максимальное количество отверстий водила (фиг.1): n\text{=}\pi\text{×}D_{\text{ц}}/D_{\text{о.в.}}, где D_{\text{ц}} - диаметр расположения центров отверстий водила,
```

 $D_{o.в.}$ - диаметр расположения отверстий водила,

фактически меньше на $2\div 3$ отверстия для обеспечения несущей перемычки. Радиус элемента силового замыкания 10 (фиг.4) определяется при заданном передаточном числе или угловом ходе, радиусах тел качения, опорных элементов: R_3 =BO- R_2 -e,

где R_3 - радиус замыкающего звена,

BO - максимальное расстояние от центра передачи O для мгновенного центра тела качения (\cdot)B определяется тригонометрическим методом,

R₂ - радиус тел качения,

е - эксцентриситет кривошипного вала.

На фиг.4: R₁ - радиус опорных элементов;

R₄ - радиус расположения центров опорных элементов.

Циклоидная передача работает следующим образом.

При вращении кривошипного вала 7 элементу силового замыкания 10 передается через подшипник 11 плоскопараллельное перемещение, создающее силовое воздействие в радиальном направлении на группу тел 9 качения, кинематически связанных с составным водилом 4, 6 передающим вращение выходному валу 5. Так как элемент силового замыкания 10, не имея фрикционной связи с кривошипным валом 7, способен только повторять круговое вращение по радиусу, равному эксцентриситету, тела качения 9 соответственно воспринимают лишь радиальную составляющую сил, возникающих в точках контакта с элементом силового замыкания 10. В результате силового замыкания тел качения 9 с опорными элементами 2 корпуса 1 в местах сопряжения с отверстиями 8 составного водила 4, 6 возникает сила $F_{\rm B}$, создающая вращающий момент, который складывается из отдельных составляющих сил, возникающих в каждой группе контактирующих элементов. Из схемы циклоидной передачи видно, что при вращении элемента силового замыкания 10 в любом направлении, в передаче момента задействованы не менее 50% тел качения 9. Остальные, находясь в силовом контакте, отслеживая вращение составного водила 4, 6, исключают появление зазоров и люфта и не допускают разрыва кинематической связи всех элементов системы. Линейная скорость любой точки контакта тел качения 9 строго одинакова за счет фрикционной связи с элементом силового замыкания 10, что обеспечивает плавность хода и отсутствие износа, а свободное вращение опорных элементов 2 на осях 3 корпуса 1 практически исключает потери на трение скольжения во всех кинематически связанных парах передачи.

Конструктивная простота всех узлов передачи гарантирует технологические преимущества при сохранении функциональных свойств подшипниковых циклоидных редукторов.

Формула изобретения

Циклоидная передача с телами качения, содержащая корпус, внутри которого установлено водило с радиально расположенными отверстиями, тела качения, входной вал и выходной вал, жестко соединенный с водилом, отличающаяся тем, что она снабжена опорными элементами, установленными с возможностью вращения на осях, радиально расположенных и жестко закрепленных в корпусе, подшипником, установленным на входном валу, и элементом силового замыкания в виде диска, который закреплен на упомянутом подшипнике, при этом входной вал выполнен в виде кривошипного вала, опорные элементы выполнены в виде роликов, а тела качения - в виде цилиндров, размещенных в радиальных отверстиях водила с возможностью обкатки по их внутренним поверхностям и одновременного контакта с наружной поверхностью элемента силового замыкания и с опорными элементами, причем водило выполнено из двух жестко связанных между собой частей, в центре одной из которых закреплен выходной вал, а в центре другой выполнено отверстие, через которое проходит входной вал, при этом элемент силового замыкания расположен между двумя частями водила, воспринимая реакции от всех тел качения.

извещения

ММ4А Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 21.04.2015

Дата публикации: 10.02.2016

NF4A Восстановление действия патента

Дата, с которой действие патента восстановлено: 20.04.2016

Дата внесения записи в Государственный реестр: 04.04.2016

Дата публикации: 20.04.2016

РС4А Государственная регистрация договора об отчуждении исключительного права

Дата и номер государственной регистрации договора: 01.11.2016 РД0209477

(73) Патентообладатель(и):

Открытое акционерное общество "ABTOBA3" (RU)

Приобретатель исключительного права: Открытое акционерное общество "ABTOBA3" (RU)

Лицо(а), передающее(ие) исключительное право:

Общество с ограниченной ответственностью "Волжский машиностроительный завод" (RU)

Адрес для переписки:

445043, Самарская обл., г. Тольятти, ул. Заставная, 2, корп. 3/2, каб. 2119, начальнику отдела нематериальных активов УКВиНМА ЮС ОАО "АВТОВАЗ" Гурскому М.О.

Дата внесения записи в Государственный реестр: 01.11.2016

Дата публикации: 20.11.2016