第三章 复积分

§6 莫雷拉定理

李太玉、孙海伟

山东大学(威海) 数学与统计学院

Spring Semester, 2022

定理 3.15 (莫雷拉定理). 若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一简单闭曲线 C, 有

$$\oint_C f(z)dz = 0,$$

则 f(z) 在 D 内解析.

定理 3.15 (莫雷拉定理). 若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一简单闭曲线 C, 有

$$\oint_C f(z)dz = 0,$$

则 f(z) 在 D 内解析.

证. 在假设条件下, 任意选定 $z_0\in D$, 由定理 3.8 知变上限积分函数 $F(z):=\int_{z_0}^z f(\zeta)d\zeta$

定理 3.15 (莫雷拉定理). 若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一简单闭曲线 C, 有

$$\oint_C f(z)dz = 0,$$

则 f(z) 在 D 内解析.

证. 在假设条件下, 任意选定 $z_0 \in D$, 由定理 3.8 知变上限积 分函数 $F(z) := \int_{z_0}^{z} f(\zeta) d\zeta$ 在 D 内解析, 且 F'(z) = f(z).

定理 3.15 (莫雷拉定理). 若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一简单闭曲线 C, 有

$$\oint_C f(z)dz = 0,$$

则 f(z) 在 D 内解析.

证. 在假设条件下, 任意选定 $z_0 \in D$, 由定理 3.8 知变上限积分函数 $F(z) := \int_{z_0}^z f(\zeta) d\zeta$ 在 D 内解析, 且 F'(z) = f(z). 而解析函数的导数还是解析的, 故 f(z) 在 D 内解析.

定理 3.15 (莫雷拉定理). 若函数 f(z) 在单连通区域 D 内连续, 且对 D 内任一简单闭曲线 C, 有

$$\oint_C f(z)dz = 0,$$

则 f(z) 在 D 内解析.

证. 在假设条件下, 任意选定 $z_0 \in D$, 由定理 3.8 知变上限积分函数 $F(z) := \int_{z_0}^z f(\zeta) d\zeta$ 在 D 内解析, 且 F'(z) = f(z). 而解析函数的导数还是解析的, 故 f(z) 在 D 内解析.

定理 3.8. 设 f(z) 在单连通区域 D 内连续、沿 D 内任一可求长简单闭曲线的积分为零,则由变上限积分定义的函数 $F(z)=\int_{z_0}^z f(\zeta)d\zeta$ 在 D 内解析,且 F'(z)=f(z).

定理 3.16 (解析的等价命题.IV). 函数 f(z) 在(单连通或多连通)区域 D 内解析的充要条件是:

- (1) f(z) 在 D 内连续;
- (2) 对任一简单闭曲线 C 满足 C 及其内部全含于 D 内, 都有

$$\oint_C f(z)dz = 0.$$

定理 3.16 (解析的等价命题.IV). 函数 f(z) 在(单连通或多连通)区域 D 内解析的充要条件是:

- (1) f(z) 在 D 内连续;
- (2) 对任一简单闭曲线 C 满足 C 及其内部全含于 D 内, 都有

$$\oint_C f(z)dz = 0.$$

证. 必要性. 由"可微必连续"及柯西-古萨定理可得.

定理 3.16 (解析的等价命题.IV). 函数 f(z) 在(单连通或多连通)区域 D 内解析的充要条件是:

- (1) f(z) 在 D 内连续;
- (2) 对任一简单闭曲线 C 满足 C 及其内部全含于 D 内, 都有

$$\oint_C f(z)dz = 0.$$

证. 必要性. 由"可微必连续"及柯西-古萨定理可得.

充分性. 任取 $z_0 \in D$, 以 z_0 为心作半径充分小的圆盘 U, 使 $U \subset D$.

定理 3.16 (解析的等价命题.IV). 函数 f(z) 在(单连通或多连通)区域 D 内解析的充要条件是:

- (1) f(z) 在 D 内连续;
- (2) 对任一简单闭曲线 C 满足 C 及其内部全含于 D 内, 都有

$$\oint_C f(z)dz = 0.$$

证. 必要性. 由"可微必连续"及柯西-古萨定理可得.

充分性. 任取 $z_0 \in D$, 以 z_0 为心作半径充分小的圆盘 U, 使 $U \subset D$. 由莫雷拉定理, 知 f(z) 在单连通区域 U 内解析, 从而 f(z) 在点 z_0 解析.

定理 3.16 (解析的等价命题.IV). 函数 f(z) 在(单连通 或多连通)区域 D 内解析的充要条件是:

- (1) f(z) 在 D 内连续;
- (2) 对任一简单闭曲线 C 满足 C 及其内部全含于 D 内, 都有

$$\oint_C f(z)dz = 0.$$

证. 必要性. 由"可微必连续"及柯西-古萨定理可得.

充分性. 任取 $z_0 \in D$, 以 z_0 为心作半径充分小的圆盘 U, 使 $U \subset D$. 由莫雷拉定理, 知 f(z) 在单连通区域 U 内解析, 从 而 f(z) 在点 z_0 解析. 再由 z_0 的任意性, 可知 f(z) 在 D 内解 析.

(ndx-vdy) + i (vdxfndy) = 3y = 3y