Quantifying Corruption

Exploring the impact of donations on legislation

Background

Prior to 2010 until the FEC V Citizens
United Decision by SCOTUS the FEC tried
to limit campaign contributions to US Reps.

SCOTUS determined that individual contributions cannot be limited*.

Neat!

*Subject to some restrictions

Background

This limitless contribution ability means that an individual who has more money can spend more money contributing to a campaign.

The obvious issue being those with more money can pay more to elect people they like.

Goal:

To determine the impact on voting record that these contributions display and to understand if the concerns of equal representation are well founded.

Collecting Data

- A lot of webscraping!
 - Python and BeautifulSoup are amazing

Data came from govtrack.us & OpenSecrets.org

Collecting Data Cont.

- Issues
 - Multiple links
 - JQuery
 - Download links

Cleaning Donation Data

- Data was nasty, no header
- |2014|,|H2MD08159|,|N00012668|,|Ken Timmerman (R)|,|R|,|MD08|,| |,| |,| |,| |,| |,| |
- :%s/|,|//g sed
- Then took out name, party, and candidate ID

Cleaning Voting Data

- 705 votes cast
- Data wasn't too nasty
 - 1st line description of the vote then
 - Person ID, state, district, vote, name, party
- Strip out state, district

Donation & Voting Data

- Python script to link the two
 - Voting data has PersonID
 - Donation data has Candidate ID
- Needed for clustering

Building Donation Profiles

- Collect Data
 - Candidate ID
 - Donation Amount
 - Party
- Normalize Data

Building Donation Profiles

- Set Benchmarks
 - Average
 - Standard Deviation
 - Variance
- Group into Categories by Candidate

Building Donation Profiles

- Benchmarks
 - Up to 580.49
 - o 580.49 to 1526.17
 - o 1526.17 to 4012.47
 - o 4012.47 to 10549.24
 - Over 10549.24

Clustering Donation Profiles

- Allows us to look at broader trends
- Effectively filters out anomalous donations

Clustering Donation Profiles

Picking a value of k

Visualizing Clusters

Large: Top 2 donation Categories

Small: Bottom 2
Donation Categories

Cluster 0: mostly small contributions

Cluster 1: Some of small and large contributions

Cluster 2: Mostly Large Contributions

Visualizing Clusters

Looking in terms of percentages.

Donation Categories

0: 0 to 580.49

1: 580.49 to 1526.17

2: 1526.17 to 4012.47

3: 4012.47 to 10549.24

4: over 10549.24

Visualizing Clusters

Although the Republican candidates have a broader range and tend to receive larger single

contributions neither party is limited to a single cluster and both recieve a range of donations

- To get a sense for how each cluster voted, we averaged all votes for each cluster
- An average value of 1 means all members voted yes

- Three aggregate voting records
- Each cluster votes on the same bills, so we have data on paired "events"
- Paired T-Test

- T-Test for every pair of clusters
- Highest p-value between clusters: ~0.000051

- This suggests there's less than a ~0.005%
 chance differences are due to chance
- But, the t-test assumes that the observations follow a normal distribution

- We can try a different tact using logistic regression
- Train a logistic regression model on the data, using cluster ID as a categorical variable
- The magnitude of the 2nd and 3rd coefficients is our confidence (those clusters are different)

The percentage of bills that showed significance

Conclusions

- Explicitly stating your question (and workflow) is important
- Real data is messy
 - Collecting it is not always straightforward
- Model assumptions matter

What We Didn't Do

- We didn't prove a causal relationship between donations and voting behavior
- We didn't consider the identity of donors
- We didn't examine the content of bills

Are Politicians Corrupt?

Ya