# Treinamento Paralelo de Redes Neurais usando o Modelo de Atores

## Andre Rauber Du Bois, Ariam Moresco Bartsch

<sup>1</sup>Laboratory of Ubiquotous and Parallel Systems
Universidade Federal de Pelotas (UFPel)
R. Gomes Carneiro, 01 – 96.010-6100 – Pelotas – RS – Brazil

{dubois,ambartsch}@inf.ufpel.edu.br

**Resumo.** O Modelo de Atores usa concorrência baseada em processos que não compartilham memória e que se comunicam por troca de mensagens, e tem sido usado no treinamento federado de redes neurais. Esse artigo é um trabalho em andamento que investiga o treinamento paralelo de redes neurais em dispositivos multiprocessados, utilizando o Modelo de Atores para distribuir e processar batches de treinamento, com objetivo de melhorar algoritmos de treinamento.

# 1. Introdução

Algoritmos de aprendizado de máquina, em especial de redes neurais, muitas vezes precisam ser treinados em dispositivos que possuem hardware subótimo ou ineficiente, devido a fatores como distribuição de dados em dispositivos geograficamente distantes, limitação de largura de banda para transferência de dados, ou privacidade dos dados [Yuan et al. 2022]. Além desses dispositivos não terem hardware dedicado para execução de algoritmos de treinamento, os poucos recursos que eles tem podem ser mal aproveitados devido a heterogeneidade dos dispositivos ou a não exploração da arquitetura multiprocessada que dispositivos embarcados podem apresentar.

O Modelo de Atores, definido por [Hewitt et al. 1973], é um modelo conceitual de computação concorrente. Nele, "atores" são unidades primitivas de computação, que não compartilham memória entre si, e que se comunicam por meio de troca de mensagens assíncronas. O Modelo de Atores permite explorar paralelismo em diferentes arquiteturas, e hoje está presente em diversas linguagens como Erlang [erl 2023], Elixir [eli 2023], Scala [Sca 2023] e Java [Srirama et al. 2021]. Recentemente, devido ao seu modelo distribuído, o Modelo de Atores tem sido usado para o treinamento federado de redes neurais, como por exemplo em [Srirama and Vemuri 2023, Xu et al. 2022].

O objetivo desse trabalho em andamento é investigar o treinamento paralelo de redes neurais em dispositivos com vários núcleos usando o Modelo de Atores para distribuir e processar os *batches* em paralelo. Espera-se que o trabalho proposto possa ser aproveitado dentro do contexto de arquiteturas que usam o modelo de Atores para o treinamento distribuído de redes neurais, como por exemplo [Srirama and Vemuri 2023, Xu et al. 2022].

#### 2. Conceitos

#### 2.1. Modelo de Atores

O Modelo de Atores é um modelo de concorrência, onde os processos não compartilham memória e se comunicam apenas por troca de mensagens. Cada ator possui um endereço

e uma caixa de correspondência para a comunicação assíncrona. Esse endereço pode ser um endereço IP com porta, o que permite que dois agentes em dispositivos geograficamente distantes se comuniquem [Srirama and Vemuri 2023]. Dado o grau de isolamento dos atores, cada um deles possui um estado próprio, que não pode ser alterado por outros atores. O modelo pode ser usado em diferentes arquiteturas, não sendo restrito ao processamento distribuído, permintindo a exploração de recursos de paralelismo locais aos dispositivos.

#### 2.2. Elixir

Elixir é uma linguagem de programação funcional que executa sobre a máquina virtual do Erlang [Ruokolainen et al. 2017]. De memória imutável e organizada em módulos, o código Elixir é compilado para *bytecode* antes de ser interpretado pela máquina virtual BEAM (Björn/Bogdan's Erlang Abstract Machine). Com foco em concorrência e escalabilidade, Elixir adotou o Modelo de Atores e o implementou nativamente em sua linguagem de forma eficiente, se beneficiando da natureza de escalabilidade do Erlang.

#### 3. Trabalhos Relacionados

Em [Srirama and Vemuri 2023], faz-se o uso de aprendizagem federada em um ambiente de *fog computing* para predição de incêndios florestais, usando o Modelo de Atores disponibilizado pelo ferramental *Akka* – em Java – para coordenação da distribuição dos atores. No trabalho, usa-se dispositivos Raspberry Pi para construção da *fog*, e é usado de paralelismo de dados para fazer o treinamento federado de uma rede neural. O paralelismo interno de cada nodo não é explorado.

No contexto da linguagem Elixir, esta é usada por [Xu et al. 2022] para a realização do treinamento federado de redes neurais e, diferente do trabalho anterior, o treinamento nesse trabalho foi realizado numa máquina com grande capacidade de hardware dedicado. Nesse trabalho, o paralelismo local de cada nodo também não é explorado.

Em [Monteiro et al. 2018], observa a performance de treinamento de uma rede neural em uma Raspberry Pi, e nota-se que existe possibilidade de exploração de paralelismo, mesmo em dispositivos mais limitados como a Raspberry Pi.

#### 4. Desenvolvimento

Para esse trabalho, foi desenvolvido código Elixir voltado ao treinamento de redes neurais. Ele conta com funções para criação de camadas, definição de funções de ativação e cálculos de precisão e perda. As operações de multiplicação matricial são feitas utilizando a biblioteca Matrex, que usa código C otimizado para multiplicação de matrizes em baixo nível [mat 2023]. O código não faz uso de hardware dedicado (GPUs).

Durante a execução do código, o *dataset* é dividido em *batches*, que são entregues a um ator coordenador que serve como uma fila de trabalho, delegando os *batches* como tarefas a cada ator processador – usando a técnica de paralelismo de dados, também explorada por [Srirama and Vemuri 2023]. O resultado de erro dos atores é então acumulado no ator coordenador para atualização da rede neural. No código, cada ator é um processo sem paralelismo interno, que recebe o seu *batch* e retorna sua taxa de erro calculada ao coordenador por meio de troca de mensagens. Portanto, a execução com apenas um ator e um único *batch* é análoga a sequencial.

#### 5. Resultados Preliminares

O conjunto de dados utilizado na execução dessas funções foi o MNIST, um *dataset* de imagens de dígitos usado para treinamento de sistemas de reconhecimento de imagens [mni 2023]. A rede neural construída para a execução possui uma camada de entrada com 784 neurônios, um para cada pixel da imagem, seguido por uma camada densa com 512 neurônios e função de ativação ReLU, outra camada densa com 256 neurônios e função de ativação ReLU, e uma camada de saída com 10 neurônios (um para cada classe — ou dígito — de classificação). O método de cálculo de erro é *Mean Squared Error*.

Foram utilizadas 20 épocas de treinamento, e 30 testes para cada configuração de número de atores. O treinamento ocorreu numa máquina com 4 processadores AMD Opteron 6367, 128 Gigabytes de memória RAM, e sistema operacional Ubuntu 12.04.5 LTS Precise Pangolin.



Figura 1. Comparação entre diferentes números de atores

A figura 1 mostra o tempo, em minutos, de cada configuração de atores no formato de diagrama de caixa. A execução com 1 ator é a execução sequencial, com sua média destacada na linha pontilhada para comparação com outros resultados. A execução com 4 atores foi a que apresentou melhor redução de tempo com esse *dataset*, constatando um *speedup* médio de 2,35 em relação ao sequencial. Também foram realizados testes com 2 atores (1,69 de *speedup*), 8 atores (2,01 de *speedup*), 16 atores (1,42 de *speedup*) e 32 atores (0,82 de *speedup*). Também foi observado que as redes neurais geradas com e sem paralelismo apresentaram precisão semelhante.

#### 6. Conclusões

O Modelo de Atores, bastante utilizado em arquiteturas distribuídas, também pode ser aplicado fora desse contexto. Com uso de técnicas oriundas de algoritmos de aprendizado federado distribuído – em especial, a função agregação de modelos e o paralelismo de dados – é possível fazer uma rede federada local, baseada no Modelo de Atores, sem uma infraestrutura de rede, onde todos os atores estão localizados no mesmo dispositivo.

Para que isso seja possível, é necessário que o *dataset* de treinamento seja particionado de modo a ser exclusivo a cada ator (assim como em uma rede federada distribuída onde os dados são privados a cada dispositivo). A definição de uma quantidade ótima de atores num mesmo dispositivo é um desafio que pode reduzir o tempo em que agentes ociosos esperam resultados para a realização da agregação dos submodelos.

Dessa forma, esse trabalho explora a utilização o Modelo de Atores na paralelização de redes neurais. É necessário a realização de testes com outros *datasets*, de forma a observar o impacto do tamanho dos *batches* nas taxas de *speedup*. Também espera-se que o modelo concorrente baseado em Atores desenvolvido neste trabalho, possa ser usado para o processamento paralelo de redes neurais em outros trabalhos que já utilizam esse modelo no treinamento federado de redes neurais, como [Srirama and Vemuri 2023, Xu et al. 2022].

### Referências

- (2023). Matrex. WWW page, https://hex.pm/packages/matrex.
- (2023). The Elixir Language. WWW page, https://elixir-lang.org/.
- (2023). The Erlang Language. WWW page, https://www.erlang.org/.
- (2023). The MNIST Database. WWW page, http://yann.lecun.com/exdb/mnist/.
- (2023). The Scala Language. WWW page, https://www.scala-lang.org/.
- Hewitt, C., Bishop, P., and Steiger, R. (1973). Session 8 formalisms for artificial intelligence a universal modular actor formalism for artificial intelligence. In *Advance Papers of the Conference*, volume 3, page 235. Stanford Research Institute Menlo Park, CA.
- Monteiro, A., De Oliveira, M., De Oliveira, R., and Da Silva, T. (2018). Embedded application of convolutional neural networks on raspberry pi for shm. *Electronics Letters*, 54(11):680–682.
- Ruokolainen, T. et al. (2017). Development of a distributed web server utilizing elixir.
- Srirama, S. N., Dick, F. M. S., and Adhikari, M. (2021). Akka framework based on the actor model for executing distributed fog computing applications. *Future Generation Computer Systems*, 117:439–452.
- Srirama, S. N. and Vemuri, D. (2023). Canto: An actor model-based distributed fog framework supporting neural networks training in iot applications. *Computer Communications*, 199:1–9.
- Xu, R., Michala, A. L., and Trinder, P. (2022). Caefl: composable and environment aware federated learning models. In *Proceedings of the 21st ACM SIGPLAN International Workshop on Erlang*, pages 9–20.
- Yuan, B., Wolfe, C. R., Dun, C., Tang, Y., Kyrillidis, A., and Jermaine, C. (2022). Distributed learning of fully connected neural networks using independent subnet training. *Proc. VLDB Endow.*, 15(8):1581–1590.