Cognome:	: Nome:	: matricola:	•
Cognonic.	, INOTHE	_ , manicola	•

ESERCIZI (Max 24 punti)

Tempo a disposizione: 45 minuti

CONSEGNARE SOLO QUESTO FOGLIO

X =;

Y =;

 $W = \dots$;

 $Z = \dots$;

 $S = \dots$;

 $T = \dots$;

Dovunque appaiano, utilizzare i seguenti valori delle variabili indicate negli esercizii.

X = (numero di lettere che compongono il Cognome) - 2. (max 9)

Y = (numero di lettere che compongono il 1° Nome) - 2. (max 9)

W = 1 se Y è pari; W = 0 se Y è dispari;

Z = 1 se X è pari; Z = 0 se X è dispari; S =(penultima cifra del numero di Matricola).

T = (ultima cifra del numero di Matricola).

1. Scrivere *il comando per copiare* tutti i file con suffisso xls dalla directory /spool/alla directory /home/giacomo

2. Scrivere *la pipe di comandi* per leggere il contenuto del file **elenco** e riportare sul file **conteggi** il numero di linee, di parole e di byte contenuti nel file **elenco**.

Si consideri la seguente snapshot di un sistema

	Alloc.	Max	Available
	ABCD	ABCD	ABCD
\mathbf{P}_0	0 0 1 2	0 0 1 2	1 5 2 0
\mathbf{P}_1	1 0 0 0	1 7 5 0	
P_2	1 3 5 4	2 3 5 6	
P_3	0 6 3 2	0 6 5 2	
P_4	0 0 1 4	0 6 5 6	

Il sistema è in uno stato sicuro? Perché?

3. Specificare l'effetto della seguente *pipe* di comandi:

\$ who | cut -d' ' -f1 | sort | uinq | wc -1

Se, nello stato indicato, arrivasse dal processo P_1 una richiesta per (0,4,2,0), potrebbe essere garantita immediatamente? Perché?

4. Specificare l'effetto della seguente *pipe* di comandi:

\$ ps aux | grep gianni

- 8. La Memory Management Unit (MMU) opera la traduzione da indirizzo logico (relativo al *program address space*) a indirizzo fisico assoluto (relativo alla RAM). Se un riferimento alla memoria richiede 200 nsec, quanto vale il *tempo di accesso ad una memoria paginata*? Se si fa uso di un *Translation Look-aside Buffer* e il X5% dei dei casi si fa riferimento a pagine che si trovano nei registri associativi, quale sarà l'*effettivo tempo di accesso*?
- 5. Specificare *il comando* per conoscere il numero di file nascosti presente in una directory.
- 9. Si consideri un disco fisso costituito da 200 cilindri, 40 tracce per cilindro e 50 blocchi peer traccia. *Quali saranno le coordinate fisiche dell'elemento della linked list* all'indirizzo Y00000?

6. Indicare l'effetto del seguente comando

grep -w "casa" *.c

e quello, invece, del comando

grep -r "*fer" /home/videoteca/

10. Perché la *dimensione di una pagina* è sempre una potenza di 2?

11. Siano date le partizioni di memoria di 100K, 500K, 200K, 300K e 600K (nell'ordine). Come saranno utilizzate, rispettivamente, dagli algoritmi di *First-fit*, *Best-fit*, and *Worst-fit* per allocare i processes di 212K, 417K, 112K e 426K (nell'ordine)? Quale degli algoritmi farà l'uso più efficiente di memoria?

Proc.	Part. 100K	Part. 500K	Part. 200K	Part. 300K	Part. 600K	New Part.
212K						
417K						
112K						
426K						

12. Si consideri un sistema demand-paging con le seguenti percentuali di utilizzo:

CPU 20% Paging disk 97.7% Altri I/O devices 5%

Motivare sinteticamente se i seguenti interventi potranno o no produrre un miglioramento nell'utilizzo della CPU.

CPU più veloce →

Paging disk più capiente →

Riduzione multi processing →

Incremento memoria principale →

Incremento multi processing →

13. Quanti saranno i *blocchi di indicizzazione allocati* da un SO UNIX-like per un file che abbia richiesto la scrittura di 6T000 blocchi?

14. Si consideri la seguente sequenza di richieste di pagina:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

Quanti page fault provocheranno gli algoritmi FIFO e LRU, assumendo una memoria costituita da 1, 2, 3, 4, 5, 6, 7 page-frame?

Numero di page-frame	LRU (# page fault)	FIFO (# page fault)
1	(Taga and a)	(] "8" """ ")
2		
3		
4		
5		
6		_
7		

15. Qual è l'utilità, in caso di *system failure*, dell'introduzione di *checkpoint nel file di log*?

16. In cosa consiste, nelle reti di calcolatori, il cosiddetto *approccio a datagramma* della commutazione? Qual è l'alternativa a tale approccio?

17. Qual è la funzione di un *protocollo*? E quali sono i livelli del *modello ISO-OSI* dei protocolli di una rete di calcolatori?

Nel seguito vengono riportate affermazioni vere e affermazioni false:

- barra la casella "Sicuramente Vera" (SV), se sei sicuro che l'affermazione è vera;
- barra la casella "Sicuramente Falsa" (SF), se sei sicuro che l'affermazione è falsa;

Per ogni corretta risposta ottieni 1 punto. Per ogni erronea risposta ottieni -1 punto. Le affermazioni senza risposta comportano 0 punti.

Affermazione	SV	SF
La <i>deadlock avoidance</i> è una tecnica per evitare di incorrere in un deadlock.		
Nei sistemi transazionali un lock evita che altre transazioni accedano ad una risorsa.		
Un <i>thread</i> è l'unità base di utilizzo della CPU.		
L'algoritmo di scheduling della CPU noto come "priorità dinamica" è di tipo nonpreemptive		
Per consentire la <i>commit a due fasi</i> è necessario che l'atomicità sia garantita dall'uso del file di log.		
La <i>frammentazione esterna</i> è più bassa se il memory manager adotta una dimensione di pagina più piccola.		

POLITECNICO DI BARI		Corso di Laurea in Ing. Informatica		
Cognome:	; Nome:	; matricola:;		
<u>Problema</u>				
7	Tomno a disnosiziono: 40 minuti	Mar 6 nunti		

CONSEGNARE SOLO QUESTO FOGLIO e UTILIZZARE ANCHE IL RETRO

Si progetti, mediante flow-chart o linguaggio strutturato, una <u>procedura</u> che determini, al termine di un intervallo statistico, l'ordine, per il prossimo intervallo, con cui servire N processi per cui sia adottato l'*algoritmo del merito*, anche noto come *priorità dinamica*.

In particolare si vuole che la procedura, ricevuti in input il numero N dei processi, il vettore PROG_ID degli identificatori dei processi, il vettore TS_CONS dei time-slice completamente utilizzati ed il vettore TS_ASS dei time-slice assegnati, restituisca il vettore PROGRAM ID ordinato secondo l'algoritmo del merito.

<u>Utilizzare unicamente i nomi indicati</u> e descrivere l'algoritmo con un <u>flow-chart (o pseudocodice) rigorosamente strutturato</u>.

Avvertenze

I risultati della prova saranno pubblicati sul sito.

La data, l'ora e l'aula della prova orale saranno rese note in calce ai risultati della prova scritta.