NMMB538 - DÚ4 Jan Oupický

1

Předpokládejme $a^2 \neq 4b, b \neq 0$ viz předchozí úkol. Definujme polynom $w(x,y) = y^2 - x^3 + 2ax^2 - x(a^2 - 4b)$ neboli máme dokázat, že F je dáno w(u,v) = 0. Tento polynom je Weirstrassův, tedy víme, že je ireducibilní. Chceme ověřit, že v F platí w(u,v) = 0.

Z minulého úkolu víme $(t=\frac{y}{x},s=\frac{b-x^2}{x})$, že $K(t,s)=F'\supset F=K(t^2,st)=K(u,v)$. Dále víme, že platí rovnost $s^2=t^4-2at^2+(a^2-4b)$ v F'. Tedy $u=t^2,v=st\implies s=\frac{v}{t}$ v F'. Dosadíme-li $\frac{v^2}{t^2}=\frac{v^2}{u}=u^2-2au+(a^2-4b)\implies v^2=u^3-2au^2+u(a^2-4b)$. Daná rovnost platí v F', ale obsahuje jen prvky z F tedy platí i v F. Tudíž platí w(u,v)=0 v F.

Ukážeme, že w(x,y) je hladký, tedy genus F je 1.

$$\frac{\partial w}{\partial x}(x,y) = -3x^2 + 4ax - a^2 + 4b$$
$$\frac{\partial w}{\partial y}(x,y) = 2y$$

Spočteme řešení $-3x^2 + 4ax - a^2 + 4b = 0$. Máme řešení $x_{1,2} = \frac{1}{3}(2a \pm \sqrt{a^2 + 12b})$. Tedy pokud existuje singularita, tak je v bodě $(x_1, 0)$ nebo $(x_2, 0)$. Ověříme opět, zda pro tyto body platí také w(x, y) = 0.

Pro případ $w(x_1,0)=0$: zajímá tedy kdy $-x_1^3+2ax_1^2-x_1(a^2-4b)=x_1(-x_1^2+2ax_1-(a^2-4b))=0$. $x_1=0\iff 2a-\sqrt{a^2+12b}=0\iff 4b=a^2$ což nejde z předpokladů. Zbývá tedy $-x_1^2+2ax_1-(a^2-4b)=0$. Pokud dosadíme za x_1 , tak dostaneme $\frac{-2}{9}\left(a\sqrt{a^2+12b}+a^2-12b\right)=0$, kde řešení musí splňovat b=0 nebo $4b=a^2$. w(x,y) je tedy smooth, tedy je F eliptické funkční těleso, tedy je rodu 1.

Víme, že F'/F je konečné jednoduché algebraické rozšíření. V předchozím úkolu jsme ukázali $K(t,s)\supset K(t^2,st)$ a $K(t,s)=K(t^2,st)(t)$ a že $m_{t,F}(T)=T^2-t^2$. Tento polynom je ireducibilní nad F a jeho kořeny jsou $t,-t\in F'$. Tedy je t separabilní nad F a F'=F(t), tedy F'/F je separabilní a zároveň $-t\in F'$ tedy je F'/F normální \Longrightarrow Galoisovo.

2

Definujme $w'(x,y)=y^2-x^3-ax^2-bx\in K[x,y], b\neq 0, 4b\neq a^2.$ Dále obdobně $w(x,y)=y^2-x^3+2ax^2-x(a^2-4b)\in K[x,y], b\neq 0, 4b\neq a^2.$

Máme definováno, že F' = K(x,y) kde w'(x,y) = 0 a F' = K(u,v), kde w(u,v) = 0. Oba polynomy w',w jsou Weirstrassovy a pro funkční tělesa dáná těmito polynomy víme, že platí

$$P'_{\infty} \in \mathbb{P}_{F'/K} : v_{P'_{\infty}}(x) = -2, v_{P'_{\infty}}(y) = -3$$

 $P_{\infty} \in \mathbb{P}_{F/K} : v_{P_{\infty}}(u) = -2, v_{P_{\infty}}(v) = -3$

Dále spočteme valuace pro x, y, u, v v místech $P'_{(0,0)}, P_{(0,0)}$. y, v nejsou tečny v (0,0) a $(0,0) \in V_w \cap V_{w'}$, takže jejich valuace je 1. Pro x, u to vychází stejně, jelikož oba polynomy mají $mult_y = 2$.

$$P'_{(0,0)} \in \mathbb{P}_{F'/K} : v_{P'_{(0,0)}}(x) = 2, v_{P'_{(0,0)}}(y) = 1$$

 $P_{(0,0)} \in \mathbb{P}_{F/K} : v_{P_{(0,0)}}(u) = 2, v_{P_{(0,0)}}(v) = 1$

(a) Dle definice $\operatorname{div}_{F'/K}(x) = \sum_{P \in \mathbb{P}_{F'/K}} v_P(x) P$. Víme, že jediná místa, kde $v_P(x) \neq 0$ jsou $P'_{(0,0)}$ a P'_{∞} . Takže $\operatorname{div}_{F'/K}(x) = v'_0(x) P'_{(0,0)} + v'_{\infty}(x) P'_{\infty} = 2 P'_{(0,0)} - 2 P'_{\infty}$. Obdobně pro zbytek:

$$\operatorname{div}_{F'/K}(y) = v'_0(y)P'_{(0,0)} + v'_{\infty}(y)P'_{\infty} = 1P'_{(0,0)} - 3P'_{\infty}$$
$$\operatorname{div}_{F/K}(u) = v_0(u)P_{(0,0)} + v_{\infty}(u)P_{\infty} = 2P_{(0,0)} - 2P_{\infty}$$
$$\operatorname{div}_{F/K}(v) = v_0(v)P_{(0,0)} + v_{\infty}(v)P_{\infty} = 1P_{(0,0)} - 3P_{\infty}$$

- (b) Použijeme The Fundamental Equality (F.7) a Proposition F.6. Uvažujme nejprve $P=P_{\infty}$. Víme, že [F':F]=2. Dále dle proposition F.6 pro taková místa P' platí $\deg_{F'/K}(P')[K:K]=f(P'|P)\deg_{F/K}(P)$. Víme ale že pro naše $P=P_{\infty},P_{0,0}:\deg_{F/K}(P)=1$. Tedy $f(P'|P)=\deg_{F'/K}(P')$. Dle F.7 tedy máme 3 možnosti:
 - (a) Existují právě 2 místa $P' \in \mathbb{P}_{F'/K}: P'|P, \deg_{F'/K}(P') = 1$ a platí e(P'|P) = 1 = f(P'|P).
 - (b) Existuje jedno místo $P' \in \mathbb{P}_{F'/K}: P'|P, \deg_{F'/K}(P') = 1$ a platí e(P'|P) = 2 a f(P'|P) = 1.
 - (c) Existuje jedno místo $P' \in \mathbb{P}_{F'/K}: P'|P, \deg_{F'/K}(P') = 2$ a platí e(P'|P) = 1 a f(P'|P) = 2.

Uvažujme nyní případ $P=P_{\infty}$. Víme, že $v_P(u)=-2 \implies u^{-2} \in P$. Spočteme $v_{\infty}'(u)=v_{\infty}'(\frac{y^2}{x^2})=2v_{\infty}'(y)-2v_{\infty}'(x)=2\cdot(-3)-2\cdot(-2)=-2 \implies u^{-2} \in P_{\infty}'$.

Víme, že $P_{\infty}' \cap F$ je místo F/K a toto místo obsahuje u^{-2} . P_{∞} je jediné místo F/K co obsahuje u^{-2} . Nezbývá tedy než $P_{\infty}' \cap F = P_{\infty} \implies P_{\infty}' | P_{\infty}$.

Obdobně $v_0'(u) = v_0'(\frac{y^2}{x^2}) = 2v_0'(y) - 2v_0'(x) = 2 \cdot 1 - 2 \cdot 2 = -2 \implies u^{-2} \in P_{(0,0)}'.$ Stejně jako výše tedy platí $P_{(0,0)}' \cap F = P_{\infty} \implies P_{(0,0)}' | P_{\infty}.$

Pro $P=P_{\infty}$ tedy máme 2 různá místa F'/K co ho obsahují $(P'_{\infty},P'_{(0,0)})$. Platí možnost a) $\implies e(P'_{\infty}|P)=e(P'_{(0,0)}|P)=1$ a $f(P'_{\infty}|P)=f(P'_{(0,0)}|P)=1$

Uvažujme nyní $P=P_{(0,0)}$. Víme, že místo $P'\in \mathbb{P}_{F'/K}: P'|P$ nemůže už být P'_{∞} ani $P'_{(0,0)}$ jinak by $P_{(0,0)}=P'\cap F=P_{\infty}\implies P_{\infty}=P_{(0,0)}\implies \text{spor}.$

Chceme místo P', pro které platí $v_{P'}(u) \geq 2$, protože $P'|P \implies v_{P'}(u) \geq v_P(u) = 2$. Platí $v_{P'}(u) = v_P'(\frac{y^2}{x^2}) = 2(v_{P'}(y) - v_{P'}(x)) \geq 2 \iff v_{P'}(y) - v_{P'}(x) \geq 1$. Rozebereme možné hodnoty $v_{P'}(\cdot)$.

Pokud $v_{P'}(x) < 0 \implies P' = P'_{\infty} \implies$ spor. Pokud $v_{P'}(x) > 0, v_{P'}(y) > 0 \implies$ $P' = P'_{(0,0)} \implies$ spor. Zbývá tedy $v_{P'}(x) = 0$ nebo $v_{P'}(y) = 0$. Druhá možnost nemůže nastat jelikož by neplatilo $v_{P'}(y) - v_{P'}(x) \ge 1$. Hledáme tedy místo F'/K, kde $v_{P'}(x) = 0, v_{P'}(y) \ge 1$.

Chceme tedy najít body $(x',0) \in V_{w'} \implies x(x^2 + ax + b) = 0$. Pokud x = 0, tak máme místo $P'_{(0,0)}$, které nemůžeme použít. Chceme tedy místa příslušná zbylým kořenům. Řešení kvadratické rovnice jsou $x_{1,2} = \frac{1}{2}(-a \pm \sqrt{a^2 - 4b})$. Z přepokladů to pod odmocninou není 0, tedy máme vždy 2 kořeny za předpokladu že existuje daná odmocnina v K.

Označme místa příslušná těmto bodům $(x_1,0),(x_2,0) \in V_{w'}$ jako P'_1,P'_2 . Máme tedy 2 různá místa stupně 1 t.ž. $v_{P'}(y) \geq 1, v_{P'}(x) = 0 \implies v_{P'}(u) \geq 2$ (jelikož dále $e(P'|P) = 1 \implies v_{P'}(u) = 2$). Tedy daná místa obsahují $P_{(0,0)}$ a platí e(P'|P) = f(P'|P) = 1.

Pokud neexistuje $\sqrt{a^2-4b}$. Tak neexistuje jiné místo stupně 1 obsahující y. Tedy zbývá možnost P' je jediné místo obsahující $P_{(0,0)}$, P' je stupně 2. Dále se nebudeme tímto případem zabývat.

(c) Pro přehlednost označme $P_0' \coloneqq P_{(0,0)}', P_0 \coloneqq P_{(0,0)}$. Dle b) tedy $P_0', P_\infty' | P_\infty$ a $P_1', P_2' | P_0$. Víme, že $\operatorname{div}_{F/K}(u) = 2P_0 - 2P_\infty$. Dále jsme zjistili, že jediná místa $P' \in \mathbb{P}_{F'/K}$, kde $v_{P'}(u) < 0$ jsou P_0' a P_∞' . Kdyby totiž existovalo jiné místo F'/K t.ž. $v_{P'}(u) < 0 \Longrightarrow P' \cap F = P \in \mathbb{P}_{F/K}$ neboli místo t.ž. $v_P(u) < 0$ což musí být P_∞ a jiná místa co ho dělí už nejsou, tedy spor. Stejně tak jiná místa $P' \in \mathbb{P}_{F'/K} : v_{P'}(u) > 0$ než P_1', P_2' nejsou.

Z toho plyne $\operatorname{div}_{F'/K}(u) = 2P'_1 + 2P'_2 - 2P'_0 - 2P'_{\infty}$. Spočteme $\operatorname{Con}_{F'/F}(\operatorname{div}_{F/K}(u)) = 2(\sum_{P'|P_0} 1 \cdot P') - 2(\sum_{P'|P_\infty} 1 \cdot P') = 2(P'_1 + P'_2) - 2(P'_0 + P'_\infty)$.

Rovnost tedy platí.

(d) Máme $\operatorname{Con}_{F'/F}(P_{\infty}) = \sum_{P'|P} 1 \cdot P' = P'_0 + P'_{\infty}$. Potom $\deg_{F'/K}(P'_0 + P'_{\infty}) = \deg_{F'/K}(P'_0) + \deg_{F'/K}(P'_{\infty}) = 1 + 1 = 2$. První deg značí stupeň divisoru a druhý deg je stupeň místa.

Na druhé straně $\deg_{F/K} P_{\infty} = 1$ a [F':F] = 2 tedy rovnost platí.

(e) $\operatorname{div}_{F'/K}(x) = 2P'_0 - 2P'_{\infty}$. $P'_0 \cap F = P_{\infty} = P'_{\infty} \cap F$ a $f(P'_{\infty}|P_{\infty}) = 1 = f(P'_0|P_{\infty})$ jak jsme zjistili výše. Hodnota $\operatorname{N}_{F'/F}(\operatorname{div}_{F'/K}(x)) = \operatorname{N}_{F'/F}(2P'_0 - 2P'_{\infty}) = 2(1P_{\infty}) - 2(1P_{\infty}) = 0$.

[F':F]=2 a F'/F je Galoisovo rozšíření, tedy $|\mathrm{Gal}(F'|F)|=2$. Zřejmě jeden automorfismus je identita, tedy $\sigma_1(x)=x$.

V minulém úkolu, jsme dokázali, že F' = K(s,t) = F(t) a že $min_{t,F}(T) = T^2 - t^2$. Tedy prvky Gal(F'|F) permutují kořeny zmíněného minimálního polynomu (t, -t). Víme, že $\sigma_1 = id \implies \sigma_2(t) = -t$.

Nyní vyjádříme $x \in F'$ v bázi (1,t) nad F. Použijeme vzorec z minulého úkolu pro výpočet x pomocí t a s. Výsledkem je:

$$x = \frac{2bt^6 - 2abt^4}{(t^4 - at^2)^2 - (st)^2t^2} + t \cdot \frac{-2bst^3}{(t^4 - at^2)^2 - (st)^2t^2}$$

Díky tomu můžeme spočítat tedy $\sigma_2(x)$:

$$\sigma_2(x) = \frac{2bt^6 - 2abt^4}{(t^4 - at^2)^2 - (st)^2t^2} + \sigma_2(t) \cdot \frac{-2bst^3}{(t^4 - at^2)^2 - (st)^2t^2} = \frac{2bt^6 - 2abt^4}{(t^4 - at^2)^2 - (st)^2t^2} + (-t) \cdot \frac{-2bst^3}{(t^4 - at^2)^2 - (st)^2t^2}$$

Po dosazení za t, s vyjde, že $\sigma_2(x) = bx^{-1}$

Dle S.12 tedy $N_{F'/F}(x) = \sigma_1(x) \cdot \sigma_2(x) = x \cdot bx^{-1} = b$ a zřejmě div $_{F/K}(b) = 0$, jelikož $b \in K$. Rovnost tedy platí.

(f) Máme $F' \supset F \supset K(v), [F':F] = 2$. Dále platí [F:K(v)] = 3, jelikož polynom w(x,y) z 1) dává minimální polynom u nad K(v). F/K(v) je tedy algebraické konečného stupně.

Dle lemma F.9 je tedy $N_{F'/K(v)}(\operatorname{div}_{F'/K}(x)) = 0$, protože dle e) $N_{F'/F}(\operatorname{div}_{F'/K}(x)) = 0$ a zřejmě $N_{F/K(v)}(0) = 0$.

Obdobně použitím proposition S.13 platí $N_{F'/K(v)}(x)=b$, jelikož dle e) $N_{F'/F}(x)=b$ a $N_{F/K(v)}(b)=b$. Poté $\mathrm{div}_{K(v)/K}(b)=0$

3

Proposition F.13 říká v našem případě:

$$\deg_{F'/K}(\operatorname{Con}_{F'/F}(P)) = \frac{[F':F]}{[K':K]} \cdot \deg_{F/K}(P) = \frac{2}{1} \cdot 1 = 2 \implies$$

$$\operatorname{Con}_{F'/F}(P) = \sum_{P'|P} e(P'|P)P' \implies \deg_{F'/K}(\operatorname{Con}_{F'/F}(P)) = \sum_{P'|P} e(P'|P) \deg_{F'/K}(P') \implies$$

$$\sum_{P'|P} e(P'|P) \deg_{F'/K}(P') = 2$$

Máme tedy 3 možnosti:

- 1. Máme $P_1 \neq P_2: P_1, P_2|P$. Poté už musí platit $\deg_{F'/K}(P_1)=1=\deg_{F'/K}(P_2)$ a $e(P_1|P)=1=e(P_2|P)$.
- 2. Nebo jediné P'|P, pro které buď e(P'|P)=2a následně musí být $\deg_{F'/K}(P')=1,$
- 3. nebo e(P'|P)=1 a následně musí $\deg_{F'/K}(P')=2$.

Dle proposition F.6 platí (v našem případě K'=K), že pokud P'|P, pak $\deg_{F'/K}(P')=f(P'|P)\cdot\deg_{F/K}(P)$. Jelikož $f(P'|P)\geq 1$ a předpokládáme, že $\deg_{F'/K}(P')=1$, nezbývá nic jiného, než $\deg_{F/K}(P)=1$.

V předpokladech proposition F.6 je pouze, že F'/F je algebraické rozšíření. Podívámeli se ale na důkaz podtvrzení $\deg_{F'/K}(P')[K':K] = f(P'|P) \deg_{F/K}(P)$, tak se v důkazu nikde algebraičnost nepoužívá. Jediný bod, kde se využívá znalost tvrzení dokázaných pro algebraická, je $O_P \cap P' = P$. Toto ale platí obecně pro P'|P:

$$O_P \cap P' = (P \cup O_P^*) \cap P' = (P \cap P') \cup (O_P^* \cap P')$$

Zřejmě $P \cap P' = P$. Chceme tedy zjistit jestli $O_P^* \cap P' = \emptyset$. Uvažujme pro spor $x \in O_P^* \cap P' \implies x \in F, v_{P'}(x) > 0$. Zvolme uniformující element P označme ho t. Poté $x = ut^k, u \in O_P^*, k \in Z$. Ale $0 < v_{P'}(x) = v_{P'}(ut^k) = v_{P'}(u)v_{P'}(t^k)$, ale zřejmě k = 0 tedy $0 < v_{P'}(x) = v_{P'}(u)v_{P'}(1) = 0$, což je spor. Tedy je průnik prázdný.