Fundamentals of Machine Learning

OPTIMIZATION

Amit K Roy-Chowdhury

- Convex Function
- Gradient Descent
- Newton's Method
- Stochastic Gradient Descent
- Constrained Optimization

Optimization

The core problem in machine learning is parameter estimation (aka model fitting).

This requires solving an optimization problem, where we try to find the values for a set of variables, $\theta \in \Theta$, that minimize a scalar-valued loss function or cost function, $\mathcal{L}(\theta)$.

$$\boldsymbol{\theta}^* \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \mathcal{L}(\boldsymbol{\theta})$$

Global / Local Optimization

$$\boldsymbol{\theta}^* \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \mathcal{L}(\boldsymbol{\theta})$$

Definitions: Gradient, Hessian, Jacobian

$$abla f(p) = egin{bmatrix} rac{\partial f}{\partial x_1}(p) \ dots \ rac{\partial f}{\partial x_n}(p) \end{bmatrix}. egin{bmatrix} \mathbf{H}_f = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_n \partial x_1} & rac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{pmatrix}.$$

$$\mathbf{H}(f(\mathbf{x})) = \mathbf{J}(\nabla f(\mathbf{x})).$$

$$\mathbf{f}: \mathbf{R}^n \to \mathbf{R}^m$$

$$\mathbf{J} = \left[egin{array}{ccc} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{array}
ight] = \left[egin{array}{ccc}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{array}
ight] = \left[egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots \
abla^{\mathrm{T}} & \ddots & dots \
rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{array}
ight]$$

Global / Local minima

Let $g(\theta) = \nabla \mathcal{L}(\theta)$ be the gradient vector,

$$\mathbf{H}(\theta) = \nabla^2 \mathcal{L}(\theta)$$
 be the Hessian matrix.

- Necessary condition: If θ^* is a local minimum, then we must have $g^* = 0$ (i.e., θ^* must be a stationary point), and \mathbf{H}^* must be positive semi-definite.
- Sufficient condition: If $g^* = 0$ and H^* is positive definite, then θ^* is a local optimum.

Constrained / Unconstrained Optimization

Inequality constraints

Equality constraints

We define the **feasible set** as the subset of the parameter space that satisfies the constraints:

$$C = \{\theta : g_j(\theta) \leq 0 : j \in \mathcal{I}, h_k(\theta) = 0 : k \in \mathcal{E}\} \subseteq \mathbb{R}^D$$

Our constrained optimization problem now becomes

$$\theta^* \in \operatorname*{argmin}_{\theta \in \mathcal{C}} \mathcal{L}(\theta)$$

If $C = \mathbb{R}^D$, it is called unconstrained optimization.

If too many constraints, empty feasible sets

A common strategy to solve constrained problem is add penalty to the loss function such as using Lagrangian multiplier.

Convex / Concave Optimization

We say S is a **convex set** if, for any $x, x' \in S$, we have

$$\lambda x + (1 - \lambda)x' \in \mathcal{S}, \ \forall \ \lambda \in [0, 1]$$

Convex Function

We say f is a **convex function** if its **epigraph** (the set of points above the function, illustrated in Figure 8.4a) defines a convex set. Equivalently, a function f(x) is called convex if it is defined on a convex set and if, for any $x, y \in \mathcal{S}$, and for any $0 \le \lambda \le 1$, we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
(8.7)

Convex Function

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Convex Function

Neither convex nor concave

Types of Convex Function

Figure 8.6: The quadratic form $f(x) = x^{\mathsf{T}} \mathbf{A} x$ in 2d. (a) A is positive definite, so f is convex. (b) A is negative definite, so f is convex. (c) A is positive semidefinite but singular, so f is convex, but not strictly. Notice the valley of constant height in the middle. (d) A is indefinite, so f is neither convex nor concave. The stationary point in the middle of the surface is a saddle point. From Figure 5 of [She94].

Smooth and Non-Smooth Optimization

(b)

(a)
$$|f(x_1) - f(x_2)| \le L|x_1 - x_2|$$

Lipschitz constant – quantify the degree of smoothness

- Gradient descent
- Step size/ learning rate
- Convergence rate
- Momentum Method

Taylor series:
$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2!}f''(x)\Delta x^2 + \frac{1}{3!}f'''(x)\Delta x^3 + \dots$$

Gradient Descent

We need
$$\mathcal{L}(\theta + \eta d) < \mathcal{L}(\theta)$$

Gradient at current iterate:
$$g_t \triangleq \nabla \mathcal{L}(\theta)|_{\theta_t} = \nabla \mathcal{L}(\theta_t) = g(\theta_t)$$

Descent direction:
$$d^{\mathsf{T}}g_t = ||d|| \ ||g_t|| \ \cos(\theta) < 0$$

pick
$$d_t = -g_t$$

- Gradient descent
- Step size/ learning rate
- Convergence rate
- Momentum Method

steepest descent will have global convergence iff the step size satisfies

$$\rho < \frac{2}{\lambda_{\max}(\mathbf{A})}$$

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{2}\boldsymbol{\theta}^\mathsf{T} \mathbf{A} \boldsymbol{\theta} + \boldsymbol{b}^\mathsf{T} \boldsymbol{\theta} + c \text{ with } \mathbf{A} \succeq \mathbf{0}.$$

λmax = max eigenvalue

- Gradient descent
- Step size/ learning rate
- Convergence rate, μ
- Momentum Method

$$\mathcal{L}(\theta) = \frac{1}{2}\theta^{\mathsf{T}} \mathbf{A} \theta + b^{\mathsf{T}} \theta + c \text{ with } \mathbf{A} \succeq \mathbf{0}.$$

$$\mu = \left(\frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{max}} + \lambda_{\text{min}}}\right)^2$$

$$\mu = \left(\frac{\kappa - 1}{\kappa + 1}\right)^2$$
, where $\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$ is the condition number of **A**.

The condition number measures how "skewed" the space is, in the sense of being far from a symmetrical "bowl"

- Gradient descent
- Step size/ learning rate
- Convergence rate
- Momentum Method

Thinking like a ball rolling downward. At flat surface, it rolls down slowly. At sharp region, roll down faster.

$$m_t = \beta m_{t-1} + g_{t-1}$$
 $\theta_t = \theta_{t-1} - \rho_t m_t$

(exponentially weighted moving average of past gradients)

Normally β =0.9, if β = 0 - gradient descent

Adaptive Moment Estimation (Adam)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$

 $s_t = \beta_2 s_{t-1} + (1 - \beta_2) g_t^2$

$$\beta_1 = 0.9, \, \beta_2 = 0.999 \text{ and } \epsilon = 10^{-6}.$$

$$\eta_t = 0.001$$

$$\Delta \theta_t = -\eta_t \frac{1}{\sqrt{s_t} + \epsilon} m_t$$

Consider we want to minimize this loss function, $f(\theta)$.

What if we use line search (iterative method to find θ *)

Start with random number, θ_t

Start with random number, θ_t

Compute the gradient at x_k

$$f'(\theta_t) = \frac{f(\theta) - f(\theta_t)}{\theta - \theta_t}$$

Start with random number, θ_k

Compute the gradient at θ_k

$$f'(\theta_t) = \frac{f(\theta) - f(\theta_t)}{\theta - \theta_t}$$

If $f'(\theta_t)$ is negative, move θ_t to the right

Start with random number, θ_k

Compute the gradient at x_k

$$f'(\theta_t) = \frac{f(\theta) - f(\theta_t)}{\theta - \theta_t}$$

If $f'(\theta_t)$ is negative, move θ_t to the right If $f'(\theta_t)$ is positive, move θ_t to the left

Start with random number, θ

Compute the gradient at x_k

$$f'(\theta_t) = \frac{f(\theta) - f(\theta_t)}{\theta - \theta_t}$$

If $f'(\theta_t)$ is negative, move x_k to the right If $f'(\theta_t)$ is positive, move x_k to the left

$$\theta_{t+1} = \theta_t - \alpha f'(\theta_t)$$

Large step size, α will overshoot Small step size, α will be very slow

Second Order Method – Newton Method

Approximate with non linear graph

Compute the second derivative at θ_k

$$f''(\theta_k) = \frac{f'(\theta) - f'(\theta_k)}{\theta - \theta_k}$$

$$\theta_{t+1} = \theta_k - \alpha f'(\theta_k)$$

For Newton's method, the update formula is

$$\theta_{t+1} = \theta_k - \alpha \frac{1}{f''(\theta_k)} f'(\theta_k)$$

Faster convergence

Second Order Method - Newton Method

Higher dimension

$$\theta_{t+1} = \theta_t - \rho_t \mathbf{H}_t^{-1} g_t$$

where

$$\mathbf{H}_t \triangleq \nabla^2 \mathcal{L}(\boldsymbol{\theta})|_{\boldsymbol{\theta}_t} = \nabla^2 \mathcal{L}(\boldsymbol{\theta}_t) = \mathbf{H}(\boldsymbol{\theta}_t)$$

$$\begin{split} & \textbf{H} = \textbf{Hessian matrix} \\ & \rho = \textbf{step size} \\ & \textbf{g}_t = \textbf{gradient} \end{split} \quad \mathbf{H}_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}, \end{split}$$

Consider a quadratic approximation

$$\mathcal{L}_{\text{quad}}(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}_t) + \boldsymbol{g}_t^\mathsf{T}(\boldsymbol{\theta} - \boldsymbol{\theta}_t) + \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}_t)^\mathsf{T}\mathbf{H}_t(\boldsymbol{\theta} - \boldsymbol{\theta}_t)$$

The minimum of \mathcal{L}_{quad} is at

$$heta = heta_t - \mathbf{H}_t^{-1} g_t$$

Gradient Descent vs Newton's method

We need $\mathcal{L}(\theta + \eta d) < \mathcal{L}(\theta)$

Gradient at current iterate: $g_t \triangleq \nabla \mathcal{L}(\theta)|_{\theta_t} = \nabla \mathcal{L}(\theta_t) = g(\theta_t)$

Gradient Descent: $d^{\mathsf{T}}g_t = ||d|| \ ||g_t|| \cos(\theta) < 0$

pick $d_t = -g_t$

Consider only first two terms of Taylor series

Newton's method: $d_t = -\mathrm{H}_t^{-1} g_t$

Consider only first three term of Taylor series

Stochastic Gradient Descent

Stochastic Optimization:

$$\mathcal{L}(\theta) = \mathbb{E}_{q(z)} \left[\mathcal{L}(\theta, z) \right]$$

$$\theta_{t+1} = \theta_t - \eta_t \nabla \mathcal{L}(\theta_t, z_t) = \theta_t - \eta_t g_t$$

(distribution of random variable is independent of parameter we are optimizing over)

Consider loss function:

$$\mathcal{L}(\theta_t) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, f(x_n; \theta_t)) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}_n(\theta_t)$$

$$g_t = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\boldsymbol{\theta}} \mathcal{L}_n(\boldsymbol{\theta}_t) = \frac{1}{N} \sum_{n=1}^{N} \nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{y}_n, f(\boldsymbol{x}_n; \boldsymbol{\theta}_t))$$

This requires summing over all N training examples, and thus can be slow if N is large.

$$\text{Minibatch:} \quad g_t \approx \frac{1}{|\mathcal{B}_t|} \sum_{n \in \mathcal{R}} \nabla_{\theta} \mathcal{L}_n(\theta_t) = \frac{1}{|\mathcal{B}_t|} \sum_{n \in \mathcal{R}} \nabla_{\theta} \ell(y_n, f(x_n; \theta_t))$$

Minibatch sampling, training epochs

where \mathcal{B}_t is a set of randomly chosen examples to use at iteration t.

Constrained Optimization

$$\theta^* = \arg\min_{\theta \in \mathcal{C}} \mathcal{L}(\theta)$$

where the feasible set, or constraint set, is

$$C = \{ \theta \in \mathbb{R}^D : h_i(\theta) = 0, i \in \mathcal{E}, \ g_j(\theta) \le 0, j \in \mathcal{I} \}$$

Taylor series:

$$h(\theta + \epsilon) \approx h(\theta) + \epsilon^{\mathsf{T}} \nabla h(\theta)$$

Since both θ and $\theta + \epsilon$ are on the constraint surface, we must have $h(\theta) = h(\theta + \epsilon)$ and hence $\epsilon^{\mathsf{T}} \nabla h(\theta) \approx 0$. Since ϵ is parallel to the constraint surface, $\nabla h(\theta)$ must be perpendicular to it.

$$\nabla \mathcal{L}(\theta)$$
 is also orthogonal to the constraint surface $\nabla \mathcal{L}(\theta^*) = \lambda^* \nabla h(\theta^*)$

Lagrangian:
$$L(\theta, \lambda) \triangleq \mathcal{L}(\theta) + \lambda h(\theta)$$

$$\nabla_{\theta,\lambda} L(\theta,\lambda) = 0 \iff \lambda \nabla_{\theta} h(\theta) = \nabla \mathcal{L}(\theta), \ h(\theta) = 0$$

Constrained Optimization

Lagrangian: $L(\theta, \lambda) \triangleq \mathcal{L}(\theta) + \lambda h(\theta)$

$$\nabla_{\theta,\lambda}L(\theta,\lambda) = 0 \iff \lambda\nabla_{\theta}h(\theta) = \nabla\mathcal{L}(\theta), \ h(\theta) = 0$$

$$L(\theta_1, \theta_2, \lambda) = \theta_1^2 + \theta_2^2 + \lambda(\theta_1 + \theta_2 - 1)$$

$$\frac{\partial}{\partial \theta_1} L(\theta_1, \theta_2, \lambda) = 2\theta_1 + \lambda = 0$$

$$\frac{\partial}{\partial \theta_2} L(\theta_1, \theta_2, \lambda) = 2\theta_2 + \lambda = 0$$

$$\frac{\partial}{\partial \lambda} L(\theta_1, \theta_2, \lambda) = \theta_1 + \theta_2 - 1 = 0$$

$$2\theta_1 = -\lambda = 2\theta_2, \text{ so } \theta_1 = \theta_2.$$

$$2\theta_1 = 1$$

$$\theta^* = (0.5, 0.5)$$

