

Passive Elements

Linear Resistor: 1827 – G. S. Ohm and later Henry Cavendish

"Voltage across conducting materials is proportional to the current flowing through it"

$$V \propto I$$
 $V = IR$ or $R = \frac{V}{I}$

where R is constant of proportionality - resistance

Unit of resistance – ohm "
$$\Omega$$
" $1\Omega = \frac{1V}{1A}$

$$1\Omega = \frac{1V}{1A}$$
 $\frac{1A}{1V} = 1S$ where S is unit of Conductance 'G' $G = \frac{I}{V} = \frac{1}{R}$

$$V = IR$$

$$I = \frac{V}{R}$$

$$I = \frac{10}{1 \times 10^{3}}$$

$$I = 10^{-2} \text{ A}$$

I = 10mA

Power

When current flows – from higher potential to lower potential, V=IR – from lower potential to higher potential V=-IR

Power absorbed by an element (in a circuit) = product of voltage across it and the current flowing through it.

$$P = VI = (IR)I = I^2R$$

Terminal B is 5V +ve w.r.t. A

a)
$$(-5)(+2) = -10W$$
 ???

b)
$$(+5)(+2) = +10W$$

(d)

(c)

Terminal A is 5V +ve w.r.t. B

c)
$$(+5)(+2) = +10W$$

d)
$$(+5)(+2) = +10W$$

Power – Passive Sign Convention

Negative Power – Object is losing energy or supplying energy to another object! OR - GENERATING Energy -> It is a Source!

One terminal of an element is V volts +ve w.r.t. other, and if current I enters the element through that terminal, power P = VI is absorbed by the element OR Power P is delivered to the element (by a source)

Passive Sign Convention – Power absorbed or dissipated is positive!

Linear Resistor

Non-linear Resistor

Non-linear resistor does NOT obey Ohm's law!

Simple Example

V drop across R1 = +10V

SI Prefixes

Not highlighted are the ones which are frequently used

Factor	Name	Symbol	Factor	Name	Symbol
10^{-24}	yocto	y	10 ²⁴	yotta	Y
10^{-21}	zepto	z	10 ²¹	zetta	Z
10^{-18}	atto	a	1018	exa	Е
10^{-15}	femto	f	1015	peta	P
10^{-12}	pico	p	1012	tera	Т
10^{-9}	nano	n	10^{9}	giga	G
10^{-6}	micro	μ	10^{6}	mega	M
10^{-3}	milli	m	10^{3}	kilo	k
10^{-2}	centi	С	10^{2}	hecto	h
10^{-1}	deci	d	10^{1}	deka	da

Nodes, Branches and Loops

Electrical Network: Interconnection of two or more circuit elements

Electrical Circuit ?? It is a network which has at least one closed path

NODE: A point at which two or more elements have a common connection

How many nodes? 3

PATH: If we start from one node in a network and pass through different elements, as long as no node is encountered more than once, we have defined a *path*.

Nodes, Branches and Loops

PATH: If we start from one node in a network and pass through different elements, as long as no node is encountered more than once, we have defined a path.

LOOP: If the node that we start is the same as the node we end, then the path is called as a *loop*.

Move from node 2 to node 1, then upper right resistor to node 3 – **path or loop?**

When will it become a loop? End at node 2

BRANCHES: A single path which is composed of one element and a node at each end of the element.

How many branches in the circuit? 5

Kirchhoff's Current and Voltage laws

Gustav Robert Kirchhoff – German Univ. Professor - same time as G. S. Ohm – 2 world famous physical laws

One law (KCL) –
Principle of conservation of charge

The total charge of the system has not and will never change.

Algebraic sum of currents entering any node is zero

Second law (KVL) – Principle of conservation of energy

Energy is neither created nor destroyed

Algebraic sum of voltages around any closed path is zero

Kirchhoff's Current law (KCL)

$$i_A + i_B = i_C + i_D$$

Algebraic sum of currents entering any node is zero

Entering the node $i_A + i_B + (-i_C) + (-i_D) = 0$

Leaving the node $(-i_A) + (-i_B) + i_C + i_D = 0$

$$\sum_{n=1}^{N} i_n = 0$$

Example: If the voltage source supplies 3A of current, compute the current through resistor R₃

Strategy for such questions

- 1) Identify goal of the problem
- 2) Collect known info
- 3) Devise a plan
- 4) Construct proper set of equations.

Kirchhoff's Current law (KCL)

Example: If the voltage source supplies 3A of current, compute the current through resistor R₃

- Identify goal of the problem:
 Labelled 'i' on the figure
- Collect known info:
 Top node of R₃ connected to 3 branches.
 Current flowing into this node will have currents from these 3 branches.
- 3) <u>Devise a plan</u>: Label current thr' R1 and write KCL at the top node of R₃
- 4) Construct proper set of equations: Summing up the currents flowing into the node - $i_{R_1} - 2 - i + 5 = 0$

$$i_{R_1} - 2 - i + 5 = 0$$

$$3 - 2 + 5 = i$$

$$i = 6A$$