A survey of ML Based sales prediction

Team: Hinton's Heuristics

Members:

JatinKumar Janshali (24M2021)

Prashik Patil (24M2014)

Shoaib Ahamed (24M2102)

Course Instructor:

Prof. Preethi Jyothi

Task Description

Aim:

• Predict Walmart's sales for the next 28 days using the M5 dataset.

Dataset:

• 6 years of Walmart sales data across 3 states.

Method:

• Incorporate events, holidays, and promotions into the forecast.

Focus:

• Evaluate Linear Regression, LSTM and LightGBM models.

Evaluation:

• The RMSSE formula from the M5 competition is the following:

$$RMSSE = \sqrt{\frac{1}{h} \frac{\sum_{t=n+1}^{n+h} (Y_t - \widehat{Y}_t)^2}{\frac{1}{n-1} \sum_{t=2}^{n} (Y_t - Y_{t-1})^2}},$$

Dataset Details

Data Preprocessing

Memory Optimization with Down casting

- Purpose: large data types (float64) into smaller ones (float32) w/o losing precision.
- Implementation: Dynamically using NumPy.
- Impact: Optimized data storage and faster processing
- Result: Reduction in size upto 45% *.

Data Normalization with Min-Max Scaling

- **Purpose**: Standardize numeric data to a common scale (-1 to 1 in this case).
- Implementation: Utilizes MinMaxScaler while preserving the proportionality in features
- **Impact**: training stability and convergence for features with varying scales.

EDA

EDA

Linear Regression: Ridge regression model

Salient Features:

Tailored Predictions: Models can be optimized for specific category patterns and trends.

Reduced Noise: Less diverse data leads to better focus on relevant features.

Faster Training and Inference: Smaller datasets accelerate model training and prediction.

Improved Interpretability: Insights from individual models can inform targeted strategies.

Enhanced Accuracy: Specialized models can yield more accurate predictions.

RMSSE Score - 0.69725

Sample Prediction for HOBBIES 1 004 CA 1

LSTM

Key Training Parameters

Number of Epochs: 500 Number of Epochs: 500

Learning Rate: 1×10^-3

Hidden Size: 512

Number of Layers: 4

Optimizer: Adam with L2 Regularization

Learning Rate Scheduler: patience = 50, factor = 0.5

RMSSE - 0.76605

Time-Series Prediction Entire Set

LIGHTGBM

Purpose: To understand LightGBM and explore its features

Approach Taken:

Reduced the dataset from 6 years to 2 years
Prediction carried out for random item selected from the dataset for next 28 days

Evaluation Methodology:

Generated forecast for random items and compare it with proven prediction from kaggle

Feature Engineering:

Merging relevant features of three dataset into one Lag and rolling mean for last 7 days and 28 days

Model Parameters:

```
lgb_params = (
    'objective': 'regression',
    'metric': 'rmse',
    'boosting_type': 'gbdt',
    'num_leaves': 31,
    'learning_rate': 0.1,
    'feature_fraction': 0.5,
    'seed': 2000
}
```

LIGHTGBM-Results

Possible Reasons for difference in results:

- Tweedie Regression objective function and other parameters considered for tuning
- 2. Recursive prediction

TEAM TASK ALLOTMENT

Sr.	Task	Executed By
1	Data Preprocessing	Prashik
2	EDA	Team
3	LSTM	Shoaib
4	Linear Regression	Prashik
5	LGBM 11	JatinKumar

Mr Ambuj Nayan(24M0003) has not participated in any project activity for unknown reasons.

