Institut national des sciences appliquées de Rouen

INSA DE ROUEN

Projet MMSN GM3 - Vague 3 - Sujet 4

Résolution de système linéaire par la méthode du gradient conjugué

Auteurs:
Thibaut André-Gallis
thibaut.andregallis@insa-rouen.fr
Kévin Gatel
kevin.gatel@insa-rouen.fr

 $Enseign ant: \\ Bernard~GLEYSE \\ bernard.gleyse@insa-rouen.fr$

4 Janvier 2021

Table des matières

Introduction							
1	Présentation du problème						
	1.1	Princip	pe	4			
	1.2		tion mathématique				
		1.2.1	Choix de la fonctionnelle à minimiser	4			
		1.2.2	Choix optimal de α_k dans une direction fixée p_k	5			
		1.2.3	Méthode du gradient conjugué	5			
2 Résolution numérique							
	2.1	Algori	thmes et langage utilisés	6			
	2.2	Résult	ats obtenus	6			
		2.2.1	Sans perturbation				
		2.2.2	Avec perturbation	6			
Conclusion							
Annexes							
Bibliographie							

Table des figures

	2.1	Algorithme du gradient conjugué muni du test d'arrêt t1	6
	2.2	Algorithme du gradient conjugué muni du test d'arrêt t2	6
Aı	nnex	es s	8
	Mat	ice elec	8
	Mat	ice elecmodif	8
	Mat	ice dif de dim 8	8
	Mat	ice de Hilbert de dim 5	8
	Mat	ice Laplacienne 3 (de dim 3^2)	8
	Mat	ice tri α de dim 10 avec $\alpha = 5$	8
	Mat	ice de $\overline{\mathrm{Wilson}}$	8

Introduction

La méthode présentée dans ce rapport est celle du gradient conjugué. Il ne s'agit non seulement d'une des techniques les plus utiles pour résoudre des grands systèmes linéaires, mais elle peut même être adaptée de telle manière à ce qu'elle résout des problèmes d'optimisation non-linéaires. Ces deux variantes, reposant sur la même idée de base, sont respectivement appelées méthodes du gradient conjugué linéaire et non-linéaire. Dans la suite nous nous intéresserons uniquement à la méthode du gradient conjugué linéaire.

La méthode a été trouvée dans les années 50 par Magnus Hestenes et Eduard Stiefel, deux mathématiciens. Cette dernière se base sur la recherche de directions successives permettant d'atteindre la solution exacte d'un système linéaire de matrice symétrique et définie positive et représente une alternative à l'algorithme d' élimination de Gauss. Elle est même souvent préférée à cette dernière lorsque les systèmes d'équations sont de grandes tailles.

Les résultats obtenus ont été calculés avec deux machines différentes afin d'observer et de discuter des éventuelles différences. Les caractéristiques des deux ordinateurs sont indiquées dans le fichier "README".

1. Présentation du problème

1.1 Principe

La méthode du gradient conjugué linéaire est une méthode qui résout deux problèmes équivalents possédant la même solution unique. Ces problèmes sont le système d'équations linéaires

$$Ax = b$$

et le problème de minimisation suivant :

$$J(x) = (Ax, x) - 2(b, x)$$

où A est une matrice carrée symétrique définie positive de taille n, x et b deux vecteurs de taille n et (.,.) représente le produit scalaire dans \mathbb{R}^n .

1.2 Résolution mathématique

1.2.1 Choix de la fonctionnelle à minimiser

La solution \overline{x} du problème Ax = b est le vecteur pour lequel J(x) atteint son minimum. On a l'expression :

$$J(\overline{x}) = -(b, A^{-1}b).$$

Posons

$$g(x) = 2(Ax - b) = -2r(x)$$

où $r(x) = b - Ax = A\overline{x} - Ax$ est le vecteur résidu du système Ax = b.

Si on pose $\overline{x} - x = e(x)$, on a:

$$E(x) = (Ae(x), e(x))$$

Il est équivalent de minimiser J ou E comme définies ci-dessus.

Puisque A est symétrique et définie positive, alors (Ax, y) est un produit scalaire et $E(x) = ||e(x)||_A^2$, avec $||e||_A^2 = (Ae, e)^{\frac{1}{2}}$ norme associée à ce produit scalaire. Le minimum de E est nul et est atteint en \overline{x} .

E(x) peut aussi s'exprimer en fonction du résidu $r(x) = A\overline{x} - Ax$:

$$E(x) = (r(x), A^{-1}r(x)).$$

Pour minimiser la fonctionnelle E, les méthodes de descente comme celle du gradient conjugué donnent x_{k+1} à partir de x_k en choisissant à la $(k+1)^{me}$ itération une direction de descente $p_k \neq 0$ (un vecteur de \mathbb{R}^n) et un scalaire α_k avec

$$x_{k+1} = x_k + \alpha_k p_k$$

de manière à ce que $E(x_k + 1) < E(x_k)$.

1.2.2 Choix optimal de α_k dans une direction fixée p_k

On suppose la direction p_k fixée.

Le choix local optimal de α_k est obtenu lorsqu'à chaque itération, on minimise $E(x_{k+1})$. dans la direction p_k :

$$E(x_k + \alpha_k p_k) = \min_{\alpha \in \mathbb{R}} E(x_k + \alpha p_k)$$

Son minimum est atteint pour

$$\alpha_k = \frac{(r_k, p_k)}{(Ap_k, p_k)}.$$

Lemme 1.1. $\forall p_k \neq 0$, pour α_k optimal local, on a la relation suivante valable pour $k \geq 0$:

$$\frac{(r_k, p_k)^2}{(Ap_k, pk)(A^{-1}r_k, r_k)} \ge \frac{1}{cond(A)} \left(\frac{r_k}{\|r_k\|_2}, \frac{p_k}{\|p_k\|_2}\right)^2$$

Ce lemme permet notamment le choix des directions de descente.

Théorème 1.2. Pour α_k optimal local, toute direction p_k qui vérifie $\forall k \geq 0$:

$$\left(\frac{r_k}{\|r_k\|_2}, \frac{p_k}{\|p_k\|_2}\right)^2 > 0$$

Ce théorème implique que la suite $(x_k)_{k\geq 0}$ converge vers la solution \overline{x} qui minimise E(x).

1.2.3 Méthode du gradient conjugué

Recopier en gros le cours d'andré draux à partir de son introduction 2.3.1 page 44, toutes les propriétés sans démonstrations ni définitions + dire la définition 2.3.5 + rappeler l'inégalité du conditionnement + rappeler la complexité de l'algorithme

2. Résolution numérique

2.1 Algorithmes et langage utilisés

L'algorithme du gradient conjugué a été implémenté en Fortran. Le choix du langage a été influencé par la facilité d'écrire certaines opérations vectorielles mathématiques en Fortran. L'ensemble des variables sont déclarées en double précision afin d'avoir le plus de chiffres significatifs (précision autour de 10^{-16}). Un algorithme avec et sans perturbation de la matrice A a été implémenté avec un test d'arrêt différent chacun.

$$\begin{split} & \underline{\mathbf{x}} = \underline{\mathbf{x}}^0 \\ & \underline{\mathbf{r}} = A\underline{\mathbf{x}} - \underline{\mathbf{b}} \\ & \underline{\mathbf{p}} = \underline{\mathbf{r}} \\ & \mathbf{tant} \ \mathbf{que} \ \|\underline{\mathbf{r}}\| \geq \varepsilon \|\underline{\mathbf{r}}^0\| \ \mathbf{faire} \\ & \left| \begin{array}{c} \alpha = \frac{(\underline{\mathbf{r}},\underline{\mathbf{r}})}{(A\underline{\mathbf{p}},\underline{\mathbf{p}})} \\ \underline{\mathbf{x}} = \underline{\mathbf{x}} - \alpha \underline{\mathbf{p}} \\ \underline{\mathbf{r}} = \underline{\mathbf{r}} - \alpha A\underline{\mathbf{p}} \\ \end{array} \right| \\ \beta = \frac{(\underline{\mathbf{r}},\underline{\mathbf{r}})}{\alpha(A\underline{\mathbf{p}},\underline{\mathbf{p}})} \\ & \underline{\mathbf{p}} = \underline{\mathbf{r}} + \beta \underline{\mathbf{p}} \end{split}$$

FIGURE 2.1 – Algorithme du gradient conjugué muni du test d'arrêt **t1**

$$\begin{split} &\underline{\mathbf{x}} = \underline{\mathbf{x}}^0 \\ &\underline{\mathbf{r}} = A\underline{\mathbf{x}} - \underline{\mathbf{b}} \\ &\underline{\mathbf{p}} = \underline{\mathbf{r}} \\ &\text{tant que } \|\underline{\mathbf{r}}\| \geq \varepsilon \qquad \text{faire} \\ & \alpha = \frac{(\underline{\mathbf{r}},\underline{\mathbf{r}})}{(A\underline{\mathbf{p}},\underline{\mathbf{p}})} \\ &\underline{\mathbf{x}} = \underline{\mathbf{x}} - \alpha\underline{\mathbf{p}} \\ &\underline{\mathbf{r}} = \underline{\mathbf{r}} - \alpha A\underline{\mathbf{p}} \\ &\beta = \frac{(\underline{\mathbf{r}},\underline{\mathbf{r}})}{\alpha(A\underline{\mathbf{p}},\underline{\mathbf{p}})} \\ &\underline{\mathbf{p}} = \underline{\mathbf{r}} + \beta\underline{\mathbf{p}} \end{split}$$

FIGURE 2.2 – Algorithme du gradient conjugué muni du test d'arrêt **t2**

Le vecteur initial x_0 a été initialisé au vecteur nul, la tolérance ε a été fixée à 10^{-10} et le vecteur b est choisi tel que la solution du problème Ax = b soit un vecteur contenant uniquement des 1. En d'autres termes, b_i est la résultante des colonnes de la ligne i de la matrice A.

L'ensemble des matrices testées (à une dimension près) se trouvent en Annexes.

2.2 Résultats obtenus

Convergence des x_n , convergence des résidus, p.s. des résidus qui forment bien une base, inégalité du conditionnement...

2.2.1 Sans perturbation

2.2.2 Avec perturbation

Conclusion

Dans la conclusion, vous devez commenter les résultats numériques par rapport á ce que l'on pouvait espérer au vu des résultats théoriques.

Dire qu'avec une complexité comme celle ci (je crois que c'est O(n)) le gradient conjugué est très apprécié dans des problèmes d'optimisation de grande taille.

Annexes

13.0	-8.0	-3.0
-8.0	10.0	-1.0
-3.0	-1.0	11.0

Matrice elec

Matrice dif de dim 8

Matrice Laplacienne_3 (de dim 3²)

Matrice elecmodif

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{pmatrix}$$

Matrice de Hilbert de dim 5

Matrice tri α de dim 10 avec $\alpha = 5$

10 7 8 7 7 5 6 5 8 6 10 9 7 5 9 10

Matrice de Wilson

Bibliographie

- [1] André Draux Analyse numérique, poly, chapitre 2 Les méthodes de descente.
- [2] Maria Kazakova GM3 Analyse numérique I, Année 2020-2021, section 1.2.4
- [3] Daniel Kauth Les méthodes de Krylov Optimisation numérique Méthodes du gradient conjugué linéaire, chapitre 5.1, 5 novembre 2009.