Les Formes Normales en Bases de Données

Les **formes normales** (Normal Forms) sont des règles fondamentales en conception de bases de données. Elles permettent de structurer les tables afin de réduire la redondance, d'éliminer les anomalies lors des mises à jour et de garantir l'intégrité des données. Voici une présentation des principales formes normales :

1ère Forme Normale (1NF)

Définition: Une table est en 1NF si:

- Toutes les colonnes contiennent des valeurs atomiques (indivisibles).
- Aucune colonne ne contient de listes ou ensembles de valeurs.
- Chaque ligne est unique et identifiable par une clé primaire.

Exemple:

Considérons une table regroupant des commandes clients :

ID_Commande	Client	Produits
1	Alice	Pomme, Orange
2	Bob	Banane, Pêche

Problème: La colonne "Produits" contient plusieurs valeurs, ce qui n'est pas conforme à la 1NF.

Solution : Séparer les données en plusieurs lignes :

ID_Commande	Client	Produit
1	Alice	Pomme
1	Alice	Orange
2	Bob	Banane
2	Bob	Pêche

2ème Forme Normale (2NF)

Définition: Une table est en 2NF si:

1. Elle est déjà en 1NF.

2. **Toutes les colonnes non-clés** dépendent entièrement de la **clé primaire** et non d'une partie seulement (pas de dépendance partielle).

Exemple:

Voici une table listant des commandes :

ID_Commande	ID_Client	Nom_Client	Produit	Prix
1	101	Alice	Pomme	2.00
1	101	Alice	Orange	3.00
2	102	Bob	Banane	1.50

Problème : La colonne "Nom_Client" dépend de "ID_Client" et non de la clé primaire complète ("ID_Commande", "Produit").

Solution: Diviser la table en deux:

Table Commandes:

ID_Commande	ID_Client	Produit	Prix
1	101	Pomme	2.00
1	101	Orange	3.00
2	102	Banane	1.50

Table Clients:

ID_Client	Nom_Client
101	Alice
102	Bob

3ème Forme Normale (3NF)

Définition: Une table est en 3NF si:

- 1. Elle est déjà en 2NF.
- 2. Aucune colonne non-clé ne dépend d'une autre colonne non-clé (pas de dépendance transitive).

Exemple:

Voici une table avec des informations supplémentaires :

ID_Commande	ID_Client	Nom_Client	Ville_Client	Produit	Prix
1	101	Alice	Paris	Pomme	2.00
1	101	Alice	Paris	Orange	3.00
2	102	Bob	Lyon	Banane	1.50

Problème : La colonne "Ville_Client" dépend de "Nom_Client" et non de la clé primaire ("ID_Commande", "Produit").

Solution: Diviser en deux tables:

Table Commandes:

ID_Commande	ID_Client	Produit	Prix
1	101	Pomme	2.00
1	101	Orange	3.00
2	102	Banane	1.50

Table Clients:

ID_Client	Nom_Client	Ville_Client
101	Alice	Paris
102	Bob	Lyon

Forme Normale de Boyce-Codd (BCNF)

Définition : La BCNF est une version renforcée de la 3NF. Une table est en BCNF si :

- Elle est déjà en 3NF.
- Pour toute dépendance fonctionnelle non triviale $X \to Y$, X est une **clé candidate** (un attribut ou un ensemble d'attributs pouvant servir de clé primaire).

Exemple:

Professeur	Matière	Salle
Dupont	Mathématiques	A101
Durand	Physique	B202
Dupont	Physique	A101

Clé primaire : $\{Professeur, Matière\}$.

Problème : Salle o Professeur est une dépendance fonctionnelle où "Salle" n'est pas une clé candidate.

Solution: Diviser en deux tables:

Table Professeurs:

Salle	Professeur
A101	Dupont
B202	Durand

Table Matières:

Professeur	Matière
Dupont	Mathématiques
Dupont	Physique
Durand	Physique

Résumé des Formes Normales

Forme Normale	Conditions
1NF	Valeurs atomiques, clé primaire unique
2NF	1NF + pas de dépendance partielle des colonnes non-clés
3NF	2NF + pas de dépendance transitive des colonnes non-clés
BCNF	3NF + toute dépendance fonctionnelle implique une clé candidate

Conclusion

La normalisation des bases de données est essentielle pour structurer les tables de manière optimale. Elle réduit la redondance, élimine les anomalies lors des mises à jour et garantit une meilleure intégrité des données. Bien que la normalisation puisse augmenter le nombre de tables, elle permet de concevoir des bases de données cohérentes, fiables et faciles à maintenir.