DATA 621 - Group Assignment 3 Write Up: Logistic Regression on Crime Rates: Write Up

(Group 4) Eddie Xu, Mohamed Hassan-El Serafi, Chun Shing Leung, Keith Colella, Yina, Qiao 2024-10-30

Contents

Introduction	1
Data Exploration	1
Data Preparation	1
Data Set	2
Build Model	2
Select Model	2
Appendix	2

Introduction

Data Exploration

Describe the size and the variables in the crime training data set. Consider that too much detail will cause a manager to lose interest while too little detail will make the manager consider that you aren't doing your job.

Data Preparation

Describe how you have transformed the data by changing the original variables or creating new variables. If you did transform the data or create new variables, discuss why you did this.

A simple exploratory data analysis will be conducted and the training data provided will be used to determine the property and value of the dataset. The DataExplorer package will be used to provide a full profile for the data frame.

Data Set

With the data set given, there are 466 rows, 13 columns and 6058 observations. There is no missing values or observations and all columns have continuous values. The chas variable is the only dummy variable out of 13 columns and is used to determine if the suburb borders the Charles River. Based on the histograms, both rm and medv variables are normally distributed, while other variables are skewed. Both tax and rad variables have very high outliers. That could be a data quality issue.

Build Model

Using the training data, build at least three different binary logistic regression models, using different variables (or the same variables with different transformations). You may select the variables manually, use an approach such as Forward or Step wise, use a different approach, or use a combination of techniques. Describe the techniques you used. If you manually selected a variable for inclusion into the model or exclusion into the model, indicate why this was done. Be sure to explain how you can make inferences from the model, as well as discuss other relevant model output.

Select Model

Decide on the criteria for selecting the best binary logistic regression model. Will you select models with slightly worse performance if it makes more sense or is more parsimonious? Discuss why you selected your model.

Appendix

```
## Data Exploration
# pull in the training data set
crime_training_data <- read.csv("https://raw.githubusercontent.com/eddiexunyc/crime_binary_logistic_reg</pre>
# pull in the test data
crime_test_data <- read.csv("https://raw.githubusercontent.com/eddiexunyc/crime_binary_logistic_regress</pre>
glimpse(crime_training_data)
introduce(crime_training_data)
# par on plots
par(mfrow = c(1, 4))
plot intro(crime training data)
describeBy(crime_training_data)
plot_histogram(crime_training_data)
# boxplot on variables
crime_box_plot <- crime_training_data %>%
  gather(key, value, -target) %>%
  mutate(key = factor(key),
         target = factor(target)) %>%
  ggplot(aes(x = key, y = value)) +
```

```
geom_boxplot(aes(fill = target)) +
  facet_wrap(~ key, scales = 'free', ncol = 4) +
  scale_fill_manual(values=c("lightblue", "pink")) +
  coord flip() +
  theme_minimal()
# correlation plot on variables
par(mfrow = c(1,2))
crime_box_plot
corPlot(crime_training_data, upper = FALSE)
# fit a linear regression before VIF score
vif_model_all <- lm(target ~ ., data = crime_training_data)</pre>
summary(vif_model_all)
# perform VIF
vif_value = vif(vif_model_all)
vif_value
# tax removed
crime_training_data_tax_removed <- crime_training_data %>%
 dplyr::select(-c(tax))
vif_model_tax <- lm(target ~., data = crime_training_data_tax_removed)</pre>
vif2_score <- vif(vif_model_tax)</pre>
# rad removed
crime_training_data_rad_removed <- crime_training_data %>%
  dplyr::select(-c(rad))
vif_model_rad <- lm(target ~., data = crime_training_data_rad_removed)</pre>
vif3_score <- vif(vif_model_rad)</pre>
# print score
vif2_score
vif3_score
## Data Preparation
# perform a log transformation on rad and dis variables
crime_training_data_transformed <- crime_training_data %>%
 mutate(log(crime_training_data$age + 1),
         log(crime_training_data$dis + 1),
         log(crime_training_data$lstat + 1))
# remove the skewed variables
crime_training_data_updated <- crime_training_data %>%
 filter(crime_training_data$rad != 24)
head(crime_training_data_updated)
## Build Model
# set seed
set.seed(123)
```

```
crime_binary_model_1 <- glm(crime_training_data, family = 'binomial', formula = target ~.)</pre>
summary(crime_binary_model_1)
plot(crime_binary_model_1)
### Model 2
crime_binary_model_2 <- glm(crime_training_data_transformed, family = 'binomial', formula = target ~.)</pre>
summary(crime_binary_model_2)
plot(crime_binary_model_2)
### Model 3
crime_binary_model_3 <- glm(crime_training_data_tax_removed, family = 'binomial', formula = target ~.)</pre>
summary(crime_binary_model_3)
plot(crime_binary_model_3)
### Model 4
crime_binary_model_4 <- glm(crime_training_data_updated, family = 'binomial', formula = target ~.)</pre>
summary(crime_binary_model_4)
plot(crime_binary_model_4)
## Select Model
### Model 1 Assessment
data_split_model_1 <- createDataPartition(y = crime_training_data$target, p = 0.8, list = FALSE)
crime_train_data_model_1 <- crime_training_data[data_split_model_1,]</pre>
crime_test_data_model_1 <- crime_training_data[-data_split_model_1,]</pre>
crime_binary_test_model_1 <- glm(crime_train_data_model_1, family = 'binomial', formula = target ~.)</pre>
crime_binary_prediction_1 <- predict(crime_binary_test_model_1, crime_test_data_model_1, type = "respon</pre>
crime_predicted_class_1 <- ifelse(crime_binary_prediction_1 > 0.5, 1, 0)
crime_confusion_matrix_1 <- confusionMatrix(data = as.factor(crime_predicted_class_1), reference = as.f</pre>
print(crime_confusion_matrix_1)
roc(crime_test_data_model_1$target, crime_binary_prediction_1 , percent=TRUE, plot=TRUE, ci=TRUE, print
### Model 2 Assessment
data_split_model_2 <- createDataPartition(y = crime_training_data_transformed$target, p = 0.8, list = F
crime_train_data_model_2 <- crime_training_data_transformed[data_split_model_2,]</pre>
crime_test_data_model_2 <- crime_training_data_transformed[-data_split_model_2,]</pre>
crime_binary_test_model_2 <- glm(crime_train_data_model_2, family = 'binomial', formula = target ~.)</pre>
crime_binary_prediction_2 <- predict(crime_binary_test_model_2, crime_test_data_model_2, type = "respon</pre>
\label{lem:crime_predicted_class_2} \begin{picture}(crime_binary_prediction_2 > 0.5, 1, 0) \end{picture}
crime_confusion_matrix_2 <- confusionMatrix(data = as.factor(crime_predicted_class_2), reference = as.f</pre>
print(crime_confusion_matrix_2)
roc(crime_test_data_model_2$target, crime_binary_prediction_2, percent=TRUE, plot=TRUE, ci=TRUE, print.
### Model 3 Assessment
data_split_model_3 <- createDataPartition(y = crime_training_data_tax_removed$target, p = 0.8, list = F
crime_train_data_model_3 <- crime_training_data_tax_removed[data_split_model_3,]</pre>
crime_test_data_model_3 <- crime_training_data_tax_removed[-data_split_model_3,]</pre>
crime_binary_test_model_3 <- glm(crime_train_data_model_3, family = 'binomial', formula = target ~.)</pre>
crime_binary_prediction_3 <- predict(crime_binary_test_model_3, crime_test_data_model_3, type = "respon</pre>
```

```
crime_predicted_class_3 <- ifelse(crime_binary_prediction_3 > 0.5, 1, 0)
crime_confusion_matrix_3 <- confusionMatrix(data = as.factor(crime_predicted_class_3), reference = as.f
print(crime_confusion_matrix_3)

roc(crime_test_data_model_3$target, crime_binary_prediction_3, percent=TRUE, plot=TRUE, ci=TRUE, print.

### Model 4 Assessment
data_split_model_4 <- createDataPartition(y = crime_training_data_updated$target, p = 0.8, list = FALSE
crime_train_data_model_4 <- crime_training_data_updated[data_split_model_4,]
crime_test_data_model_4 <- crime_training_data_updated[-data_split_model_4,]
crime_binary_test_model_4 <- glm(crime_train_data_model_4, family = 'binomial', formula = target ~.)
crime_binary_prediction_4 <- predict(crime_binary_test_model_4, crime_test_data_model_4, type = "respon
crime_predicted_class_4 <- ifelse(crime_binary_prediction_4 > 0.5, 1, 0)
crime_confusion_matrix_4 <- confusionMatrix(data = as.factor(crime_predicted_class_4), reference = as.f

print(crime_confusion_matrix_4)

roc(crime_test_data_model_4$target, crime_binary_prediction_4, percent=TRUE, plot=TRUE, ci=TRUE, print.</pre>
```