Static Analysis of Functional Programs

using Tree Automata

Thomas Genet & Yann Salmon

INRIA/IRISA/Université de Rennes 1

Outline

- Motivating example
- Background on tree automata completion
- What is missing for a decent static analysis of functional programs?

... Related work scattered in subsections

Motivating example

OCaml type checking

Motivating example

OCaml type checking

Motivating example

OCaml type checking

We would like to have... more than simple types

```
# val rev: 'a list -> empty list
```

Motivating example (II)

OCaml type checking

Motivating example (II)

OCaml type checking

```
We would like to have...
```

val rev: list of As then Bs -> list of Bs then As

Sets of symbols and variables

- Set of ranked symbols $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}$
- Set of variables

$$\mathcal{X} = \{x, y, z, \ldots\}$$

Sets of symbols and variables

- Set of ranked symbols $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}$
- Set of variables

$$\mathcal{X} = \{x, y, z, \ldots\}$$

Sets of terms

- Ground terms $\mathcal{T}(\mathcal{F}) = \{a, nil, cons(a, nil), cons(a, cons(a, nil)), \ldots\}$
- Terms

$$\mathcal{T}(\mathcal{F}, \mathcal{X}) = \{x, cons(x, y), app(nil, a), \ldots\}$$

Sets of symbols and variables

- Set of ranked symbols $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}$
- Set of variables

$$\mathcal{X} = \{x, y, z, \ldots\}$$

Sets of terms

- Ground terms $\mathcal{T}(\mathcal{F}) = \{a, nil, cons(a, nil), cons(a, cons(a, nil)), \ldots\}$
- Terms $\mathcal{T}(\mathcal{F}, \mathcal{X}) = \{x, cons(x, y), app(nil, a), \ldots\}$

Term Rewriting Systems (TRS)

Set of rewrite rules $I \to r$ with $I, r \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ and $Var(r) \subseteq Var(I)$ e.g.

$$\mathcal{R} = \left\{ egin{array}{l} \mathsf{app}(\mathit{nil}, x)
ightarrow x \ \mathsf{app}(\mathit{cons}(x, y), z)
ightarrow \mathit{cons}(x, \mathit{app}(y, z)) \end{array}
ight\}$$

Sets of symbols and variables

- Set of ranked symbols $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}$
- Set of variables

$$\mathcal{X} = \{x, y, z, \ldots\}$$

Sets of terms

- Ground terms $\mathcal{T}(\mathcal{F}) = \{a, nil, cons(a, nil), cons(a, cons(a, nil)), \ldots\}$
- Terms $\mathcal{T}(\mathcal{F}, \mathcal{X}) = \{x, cons(x, y), app(nil, a), \ldots\}$

Term Rewriting Systems (TRS)

Set of rewrite rules $I \to r$ with $I, r \in \mathcal{T}(\mathcal{F}, \mathcal{X})$ and $Var(r) \subseteq Var(I)$ e.g.

$$\mathcal{R} = \left\{ egin{array}{l} \mathsf{app}(\mathit{nil}, x)
ightarrow x \ \mathsf{app}(\mathit{cons}(x, y), z)
ightarrow \mathit{cons}(x, \mathit{app}(y, z)) \end{array}
ight\}$$

• Rewriting term app(cons(a, nil), cons(b, nil)) using

$$\mathcal{R} = \left\{ egin{array}{l} \mathsf{app}(\mathit{nil}, x)
ightarrow x \ \mathsf{app}(\mathit{cons}(x, y), z)
ightarrow \mathit{cons}(x, \mathit{app}(y, z)) \end{array}
ight\}$$

• Rewriting term app(cons(a, nil), cons(b, nil)) using

$$\mathcal{R} = \left\{ \begin{array}{l} app(\textit{nil}, x) \rightarrow x \\ app(\textit{cons}(x, y), z) \rightarrow \textit{cons}(x, app(y, z)) \end{array} \right\}$$
$$app(\textit{cons}(a, \textit{nil}), \textit{cons}(b, \textit{nil})) \quad \rightarrow_{\mathcal{R}} \textit{cons}(a, app(\textit{nil}, \textit{cons}(b, \textit{nil})))$$

• Rewriting term app(cons(a, nil), cons(b, nil)) using

$$\mathcal{R} = \left\{ \begin{array}{l} app(nil,x) \to x \\ app(cons(x,y),z) \to cons(x,app(y,z)) \end{array} \right\}$$

$$app(cons(a,nil),cons(b,nil)) \quad \to_{\mathcal{R}} cons(a,app(nil,cons(b,nil)))$$

$$\to_{\mathcal{R}} cons(a,cons(b,nil))$$

• Rewriting term app(cons(a, nil), cons(b, nil)) using

$$\mathcal{R} = \left\{ \begin{array}{l} app(nil, x) \to x \\ app(cons(x, y), z) \to cons(x, app(y, z)) \end{array} \right\}$$

$$app(cons(a, nil), cons(b, nil)) \quad \to_{\mathcal{R}} cons(a, app(nil, cons(b, nil)))$$

$$\to_{\mathcal{R}} cons(a, cons(b, nil))$$

• Set of reachable terms: $\mathcal{R}^*(\mathcal{L}) = \{u \mid s \in \mathcal{L} \land s \rightarrow_{\mathcal{R}}^* u\}$

• Rewriting term app(cons(a, nil), cons(b, nil)) using

$$\mathcal{R} = \left\{ \begin{array}{l} app(nil, x) \to x \\ app(cons(x, y), z) \to cons(x, app(y, z)) \end{array} \right\}$$

$$app(cons(a, nil), cons(b, nil)) \quad \to_{\mathcal{R}} cons(a, app(nil, cons(b, nil)))$$

$$\to_{\mathcal{R}} cons(a, cons(b, nil))$$

• Set of reachable terms: $\mathcal{R}^*(\mathcal{L}) = \{u \mid s \in \mathcal{L} \land s \rightarrow_{\mathcal{R}}^* u\}$ $\mathcal{R}^*(\{app(cons(a, nil), cons(b, nil))\}) = \{app(cons(a, nil), cons(b, nil)), cons(a, app(nil, cons(b, nil))), cons(a, cons(b, nil))\}$

$$\mathcal{R} = \left\{ egin{array}{l} (1) \ f(x,y)
ightarrow f(g(x),y) \ (2) \ f(x,y)
ightarrow f(x,h(y)) \end{array}
ight. \quad ext{prove that } f(a,b)
eq_{\mathcal{R}}^* \ f(a,h(g(b)))?$$

(f(a,b))

$$\mathcal{R} = \begin{cases} (1) \ f(x,y) \to f(g(x),y) \\ (2) \ f(x,y) \to f(x,h(y)) \end{cases} \text{ prove that } f(a,b) \not\to_{\mathcal{R}}^* f(a,h(g(b))?$$

$$\mathcal{R} = \begin{cases} (1) \ f(x,y) \to f(g(x),y) \\ (2) \ f(x,y) \to f(x,h(y)) \end{cases} \text{ prove that } f(a,b) \not\rightarrow_{\mathcal{R}}^* f(a,h(g(b))?$$

$$\mathcal{R} = \left\{ \begin{array}{l} (1) \ f(x,y) \to f(g(x),y) \\ (2) \ f(x,y) \to f(x,h(y)) \end{array} \right. \quad \text{prove that } f(a,b) \not\to_{\mathcal{R}}^* f(a,h(g(b))?$$

$$\mathcal{R} = \left\{ \begin{array}{l} (1) \ f(x,y) \to f(g(x),y) \\ (2) \ f(x,y) \to f(x,h(y)) \end{array} \right. \quad \text{prove that } f(a,b) \not\to_{\mathcal{R}}^* f(a,h(g(b))?$$

$$\mathcal{R} = \begin{cases} (1) f(x,y) \to f(g(x),y) \\ (2) f(x,y) \to f(x,h(y)) \end{cases} \text{ prove that } f(a,b) \not\to_{\mathcal{R}}^* f(a,h(g(b))?$$

$$\mathcal{R} = \begin{cases} (1) \ f(x,y) \to f(g(x),y) \\ (2) \ f(x,y) \to f(x,h(y)) \end{cases} \text{ prove that } f(a,b) \not\rightarrow_{\mathcal{R}}^* f(a,h(g(b))?$$

$$\mathcal{R} = \begin{cases} (1) f(x,y) \to f(g(x),y) \\ (2) f(x,y) \to f(x,h(y)) \end{cases} \text{ prove that } f(a,b) \not\to_{\mathcal{R}}^* f(a,h(g(b))?$$

$$f(a,b) \not\rightarrow^*_{\mathcal{R}/F} f(a,h(g(b)))$$

$$\mathcal{R} = \begin{cases} (1) \ f(x,y) \to f(g(x),y) \\ (2) \ f(x,y) \to f(x,h(y)) \end{cases} \text{ prove that } f(a,b) \not\rightarrow_{\mathcal{R}}^* f(a,h(g(b))?$$

$$f(a,b) \not\to_{\mathcal{R}/\mathcal{F}}^* f(a,h(g(b))) \Rightarrow f(a,b) \not\to_{\mathcal{R}}^* f(a,h(g(b)))$$

Recognized language $\mathcal{L}(\mathcal{A}, q)$

Recognized language
$$\mathcal{L}(\mathcal{A},q) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\wedge}^{*} q\}$$

Recognized language
$$\mathcal{L}(\mathcal{A},q) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\wedge}^{*} q\}$$

Recognized language
$$\mathcal{L}(\mathcal{A},q) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Lambda}^* q\}$$

$$\mathcal{A} = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta
angle$$
 with $\mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\}$ $\mathcal{Q}_f = \{q_f\}$ and $\Delta = \left\{egin{array}{l} a
ightarrow q_a \ b
ightarrow q_{la} \ nil
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ight. cons(q_a, q_{la})
ightarrow q_{la} \ cons(q_b, q_{lb})
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ight. cons(q_b, q_{lb})
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ight. cons(q_b, q_{lb})
ightarrow q_{lb} \ \end{array}
ight.$

Recognized language
$$\mathcal{L}(\mathcal{A},q) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Lambda}^* q\}$$

$$\mathcal{A} = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta
angle$$
 with $\mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\}$ $\mathcal{Q}_f = \{q_f\}$ and $\Delta = \left\{egin{array}{l} a
ightarrow q_a \ b
ightarrow q_b \ nil
ightarrow q_{la} \ nil
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ightarrow q_b \ cons(q_a, q_{la})
ightarrow q_{la} \ cons(q_b, q_{lb})
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ight. \ app(q_{la}, q_{lb})
ightarrow q_f \ \end{array}
ight.$

Recognized language
$$\mathcal{L}(\mathcal{A},q) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\wedge}^{*} q\}$$

$$\mathcal{A} = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta
angle$$
 with $\mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\}$ $\mathcal{Q}_f = \{q_f\}$ and $\Delta = \left\{egin{array}{l} a
ightarrow q_a \ b
ightarrow q_b \ nil
ightarrow q_{la} \ nil
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ightarrow q_b \ cons(q_a, q_{la})
ightarrow q_{la} \ cons(q_b, q_{lb})
ightarrow q_{lb} \ \end{array}
ight.$ $\Delta = \left\{egin{array}{l} a
ight. \ app(q_{la}, q_{lb})
ightarrow q_f \ \end{array}
ight.$

Recognized language
$$\mathcal{L}(\mathcal{A},q) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Lambda}^* q\}$$

$$\mathcal{A} = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta
angle$$
 with $\mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\}$ $\mathcal{Q}_f = \{q_f\}$ and $\Delta = \left\{egin{array}{l} a
ightarrow q_a \ b
ightarrow q_b \ \hline nil
ightarrow q_{lb} \ \hline cons(q_a, q_{la})
ightarrow q_{la} \ cons(q_b, q_{lb})
ightarrow q_{lb} \ \hline app(q_{la}, q_{lb})
ightarrow q_f \end{array}$

Recognized language: $\mathcal{L}(A, q) = \{s \mid s \rightarrow^* q\}$

$$\Delta = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta \rangle \\ \text{with } \mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\} \\ \mathcal{Q}_f = \{q_f\} \text{ and } \\ \Delta = \begin{cases} a \to q_a \\ b \to q_b \end{cases} \\ \alpha = \begin{cases} a \to q_a \\ b \to q_b \end{cases}$$

$$\Delta = \begin{cases} a \to q_a \\ cons(q_a, q_{la}) \to q_{la} \\ cons(q_b, q_{lb}) \to q_{lb} \end{cases}$$

$$\Delta = \begin{cases} cons(q_a, q_{lb}) \to q_f \\ cons(q_{la}, q_{lb}) \to q_f \end{cases}$$
 Genet & Salmon (IRISA)

$$\mathcal{L}(\mathcal{A}, q_{la}) = \{\textit{nil}, \textit{cons}(\textit{a}, \textit{nil}), \textit{cons}(\textit{a}, ...)\}$$

Recognized language:
$$\mathcal{L}(\mathcal{A}, q) = \{s \mid s \rightarrow_{\Lambda}^* q\}$$

$$\mathcal{A} = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta \rangle$$
 with $\mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\}$
$$\mathcal{Q}_f = \{q_f\} \text{ and}$$

$$\mathcal{L}(\mathcal{A}, q_{la}) = \{nil, cons(a, nil), cons(a, ...)\}$$

$$\mathcal{L}(\mathcal{A}, q_{lb}) = \{nil, cons(b, nil), cons(b, ...)\}$$

Recognized language:
$$\mathcal{L}(\mathcal{A}, q) = \{s \mid s \rightarrow_{\Lambda}^* q\}$$

$$\mathcal{L}(\mathcal{A}, q_{la}) = \{nil, cons(a, nil), cons(a, ...)\}$$
 $\mathcal{L}(\mathcal{A}, q_{lb}) = \{nil, cons(b, nil), cons(b, ...)\}$
 $\mathcal{L}(\mathcal{A}, q_f) = \{app(la, lb) \mid la \in \mathcal{L}(\mathcal{A}, q_{la}) \land lb \in \mathcal{L}(\mathcal{A}, q_{lb})\}$

Recognized language:
$$\mathcal{L}(\mathcal{A}, q) = \{s \mid s \rightarrow_{\Lambda}^{*} q\}$$

$$\Delta = \langle \mathcal{F}, \mathcal{Q}, \mathcal{Q}_f, \Delta \rangle$$
 with $\mathcal{Q} = \{q_a, q_b, q_{la}, q_{lb}, q_f\}$
$$\mathcal{Q}_f = \{q_f\} \text{ and }$$

$$\Delta = \begin{cases} a \rightarrow q_a \\ b \rightarrow q_b \end{cases}$$

$$\mathcal{L}(\mathcal{A}, q_{la}) = \{nil, cons(a, nil), cons(a, ...)\}$$

$$\mathcal{L}(\mathcal{A}, q_{lb}) = \{nil, cons(b, nil), cons(b, ...)\}$$

$$\mathcal{L}(\mathcal{A}, q_{lb}) = \{nil, cons(b, nil), cons(b, ...)\}$$

$$\mathcal{L}(\mathcal{A}, q_{lb}) = \{app(la, lb) \mid la \in \mathcal{L}(\mathcal{A}, q_{la}) \land lb \in \mathcal{L}(\mathcal{A}, q_{lb})\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{F}) \mid s \rightarrow_{\Delta}^* q \land q \in \mathcal{Q}_f\}$$

$$\mathcal{L}(\mathcal{A}) = \{s \in \mathcal{T}(\mathcal{A}) \mid s \in \mathcal{L}(\mathcal{A}) = \{s \in \mathcal{L}(\mathcal{A}) \mid$$

 $lb \in \mathcal{L}(\mathcal{A}, q_{lb})$

Tree Automata Completion to approximate $\mathcal{R}^*(\mathcal{L})$

Tree automata completion semi-algorithm (particular ARTMC)

- ullet Input: a TRS ${\cal R}$, a tree automaton ${\cal A}$ and approximation equations E
- ullet Output: an automaton $\mathcal{A}_{\mathcal{R},\mathcal{E}}^*$

Tree Automata Completion to approximate $\mathcal{R}^*(\mathcal{L})$

Tree automata completion semi-algorithm (particular ARTMC)

- ullet Input: a TRS \mathcal{R} , a tree automaton \mathcal{A} and approximation equations E
- Output: an automaton $\mathcal{A}_{\mathcal{R}, \mathcal{E}}^*$

$$\mathcal{R}^*(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}_{\mathcal{R},\mathcal{E}}^*) \subseteq \mathcal{R}_{\mathcal{E}}^*(\mathcal{L}(\mathcal{A}))$$

[with V. Rusu, 2010]

Theorem 1 (Upper bound)

Given a left-linear TRS \mathcal{R} , a tree automaton \mathcal{A} and a set of equations E, if completion terminates on $\mathcal{A}^*_{\mathcal{R},E}$ then $\mathcal{L}(\mathcal{A}^*_{\mathcal{R},E}) \supseteq \mathcal{R}^*(\mathcal{L}(\mathcal{A}))$.

Theorem 2 (Lower bound)

Given a left-linear TRS \mathcal{R} , a tree automaton \mathcal{A} and a set of equations E, if \mathcal{A} is R/E-coherent then $\mathcal{L}(\mathcal{A}_{\mathcal{R},E}^i) \subseteq \mathcal{R}_E^*(\mathcal{L}(\mathcal{A}))$.

Tree Automata Completion Demo: Timbuk

[with V. Viet Triem Tong, Y. Boichut, B. Boyer, V. Murat] (Around 13000 lines of Ocaml)

Timbuk provides

- Tree automata completion
- Equational approximations
- Coq checker for completion results
- Beta: CEGAR, Abstract Domains (e.g. integer intervals)

Used for Cyptographic Protocol, Java and JavaScript verification

Demo:

- demo_basic.txt
- o demo_reverseBug.txt

What is missing for static analysis of functional languages?

- Define equations guaranteeing termination of completion
- ② Deal with higher order functions
- Take evaluation strategies into account
 - ▶ call by value (e.g. Ocaml) \approx innermost rewrite strategy
 - ▶ call by need (e.g. Haskell) \approx outermost rewrite strategy + sharing
 - ▶ order in pattern matching ≈ priority rewrite strategy
- Oeal with built-in types (int,float,char,strings, ...)
- Have a modular analysis
- Have a user friendly way to display/define language annotations . . .

What is missing for static analysis of functional languages?

- Define equations guaranteeing termination of completion
- 2 Deal with higher order functions
- Take evaluation strategies into account
 - ▶ call by value (e.g. Ocaml) \approx innermost rewrite strategy
 - ▶ call by need (e.g. Haskell) \approx outermost rewrite strategy + sharing
 - ▶ order in pattern matching ≈ priority rewrite strategy
- Deal with built-in types (int,float,char,strings, ...)
- Have a modular analysis
- Mave a user friendly way to display/define language annotations . . .

Intuition: finite set of E-equivalence classes \Rightarrow completion terminates

$$\mathcal{T}(\mathcal{F})/_{=_E}$$
 is $egin{pmatrix} \mathsf{u} & \mathsf{t} & \mathsf{v} & \mathsf{w} \\ \mathsf{s} & & \mathsf{k} & \ldots \end{pmatrix}$

Intuition: finite set of E-equivalence classes \Rightarrow completion terminates

$$\mathcal{T}(\mathcal{F})/_{=_E}$$
 is $\begin{pmatrix} u & t \\ s & * \\ & * \\ & * \\ & * \end{pmatrix}$

Intuition: finite set of E-equivalence classes \Rightarrow completion terminates

$$\mathcal{T}(\mathcal{F})/_{=_{\it E}}$$
 is

Finite set of states

⇒
terminating completion

Intuition: finite set of E-equivalence classes \Rightarrow completion terminates

$$\mathcal{T}(\mathcal{F})/_{=_{\boldsymbol{\mathit{E}}}}$$
 is

Finite set of states

⇒
terminating completion

Example 3 (Equations for the append function)

Let $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}.$

Intuition: finite set of E-equivalence classes \Rightarrow completion terminates

$$\mathcal{T}(\mathcal{F})/_{=_{\boldsymbol{\mathit{E}}}}$$
 is

Finite set of states

⇒
terminating completion

Example 3 (Equations for the append function)

Let $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}.$

With
$$E = \{cons(x, cons(y, z)) = cons(x, z)\}$$

Intuition: finite set of E-equivalence classes \Rightarrow completion terminates

$$\mathcal{T}(\mathcal{F})/_{=_{\boldsymbol{\mathit{E}}}}$$
 is

Finite set of states

⇒
terminating completion

Example 3 (Equations for the append function)

Let $\mathcal{F} = \{app : 2, cons : 2, nil : 0, a : 0\}.$

With
$$E = \{cons(x, cons(y, z)) = cons(x, z)\}$$

But $\mathcal{T}(\mathcal{F})/_{=E}$ is not finite!

With $E = \{cons(x, cons(y, z)) = cons(x, z)\}, \mathcal{T}(\mathcal{F})/_{=_E}$ is not finite!

Infinitely many classes of ill-typed terms

are all in different classes!

III-typed terms incompatible with cons: α -> α list -> α list

With $E = \{cons(x, cons(y, z)) = cons(x, z)\}, \mathcal{T}(\mathcal{F})/_{=_E}$ is not finite!

Infinitely many classes of ill-typed terms

are all in different classes!

III-typed terms incompatible with cons: α -> α list -> α list

We restrict to well-typed terms $\mathcal{T}(\mathcal{F})^{\mathcal{S}}$

With $E = \{cons(x, cons(y, z)) = cons(x, z)\}, \mathcal{T}(\mathcal{F})/_{=_E}$ is not finite!

Infinitely many classes of ill-typed terms

are all in different classes!

III-typed terms incompatible with cons: α -> α list -> α list

We restrict to well-typed terms $\mathcal{T}(\mathcal{F})^{\mathcal{S}}$

With $E = \{cons(x, cons(y, z)) = cons(x, z)\}, \mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=_{E}}$ is not finite!

With $E = \{cons(x, cons(y, z)) = cons(x, z)\}$, $\mathcal{T}(\mathcal{F})/_{=_E}$ is not finite!

Infinitely many classes of ill-typed terms

are all in different classes!

III-typed terms incompatible with cons: $\alpha \rightarrow \alpha$ list $\rightarrow \alpha$ list

We restrict to well-typed terms $\mathcal{T}(\mathcal{F})^{\mathcal{S}}$

With
$$E = \{cons(x, cons(y, z)) = cons(x, z)\}, \mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=_{E}}$$
 is not finite!

Infinitely many classes of partially evaluated terms

are all in different classes!

Partially evaluated terms

Proposed solution: use $\mathcal{F} = \mathcal{C} \uplus \mathcal{D}$ and $E = E_{\mathcal{C}}^c \cup E_{\mathcal{R}}$

ullet \mathcal{D} efined and \mathcal{C} onstructor $\emph{e.g.}$ $\mathcal{D} = \{\emph{app}\}$ and $\mathcal{C} = \{\emph{a, cons, nil}\}$

Proposed solution: use $\mathcal{F} = \mathcal{C} \uplus \mathcal{D}$ and $E = E_{\mathcal{C}}^c \cup E_{\mathcal{R}}$

- \mathcal{D} efined and \mathcal{C} onstructor e.g. $\mathcal{D} = \{app\}$ and $\mathcal{C} = \{a, cons, nil\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x, cons(y, z)) = cons(x, z)

Proposed solution: use $\mathcal{F} = \mathcal{C} \uplus \mathcal{D}$ and $E = E_{\mathcal{C}}^c \cup E_{\mathcal{R}}$

- \mathcal{D} efined and \mathcal{C} onstructor e.g. $\mathcal{D} = \{app\}$ and $\mathcal{C} = \{a, cons, nil\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_{\mathcal{R}} = \{I = r \mid I \rightarrow r \in \mathcal{R}\}$ and $E = E_{\mathcal{C}}^{c} \cup E_{\mathcal{R}}$

Proposed solution: use $\mathcal{F}=\mathcal{C}\uplus\mathcal{D}$ and $E=E^{\mathtt{c}}_{\mathcal{C}}\cup E_{\mathcal{R}}$

- \mathcal{D} efined and \mathcal{C} onstructor e.g. $\mathcal{D} = \{app\}$ and $\mathcal{C} = \{a, cons, nil\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_R = \{I = r \mid I \rightarrow r \in R\}$ and $E = E_C^c \cup E_R$
- Theorem: If \mathcal{R} is sufficiently complete then $\mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=\mathcal{E}}$ is finite

\mathcal{R} Sufficiently complete:

$$\forall s \in \mathcal{T}(\mathcal{F})^{\mathcal{S}}. \exists t \in \mathcal{T}(\mathcal{C})^{\mathcal{S}}. s \rightarrow_{\mathcal{R}}^* t$$

Proposed solution: use $\mathcal{F}=\mathcal{C}\uplus\mathcal{D}$ and $E=E^c_{\mathcal{C}}\cup E_{\mathcal{R}}$

- ullet ${\mathcal D}$ efined and ${\mathcal C}$ onstructor e.g. ${\mathcal D}=\{{\it app}\}$ and ${\mathcal C}=\{{\it a,cons,nil}\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_{\mathcal{R}} = \{I = r \mid I \to r \in \mathcal{R}\}$ and $E = E_{\mathcal{C}}^{c} \cup E_{\mathcal{R}}$
- Theorem: If \mathcal{R} is sufficiently complete then $\mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=\mathcal{E}}$ is finite

${\cal R}$ Sufficiently complete:

$$\forall s \in \mathcal{T}(\mathcal{F})^{\mathcal{S}}. \exists t \in \mathcal{T}(\mathcal{C})^{\mathcal{S}}. s \rightarrow_{\mathcal{R}}^* t$$

Proposed solution: use $\mathcal{F}=\mathcal{C}\uplus\mathcal{D}$ and $E=E^c_{\mathcal{C}}\cup E_{\mathcal{R}}$

- \mathcal{D} efined and \mathcal{C} onstructor e.g. $\mathcal{D} = \{app\}$ and $\mathcal{C} = \{a, cons, nil\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_{\mathcal{R}} = \{I = r \mid I \to r \in \mathcal{R}\}$ and $E = E_{\mathcal{C}}^{c} \cup E_{\mathcal{R}}$
- Theorem: If \mathcal{R} is sufficiently complete then $\mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=\mathcal{E}}$ is finite

${\mathcal R}$ Sufficiently complete:

$$\forall s \in \mathcal{T}(\mathcal{F})^{\mathcal{S}}. \exists t \in \mathcal{T}(\mathcal{C})^{\mathcal{S}}. s \rightarrow_{\mathcal{R}}^* t$$

Proposed solution: use $\mathcal{F}=\mathcal{C}\uplus\mathcal{D}$ and $E=E^c_\mathcal{C}\cup E_\mathcal{R}$

- \mathcal{D} efined and \mathcal{C} onstructor e.g. $\mathcal{D} = \{app\}$ and $\mathcal{C} = \{a, cons, nil\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_{\mathcal{R}} = \{I = r \mid I \rightarrow r \in \mathcal{R}\}$ and $E = E_{\mathcal{C}}^{c} \cup E_{\mathcal{R}}$
- Theorem: If \mathcal{R} is sufficiently complete then $\mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=\mathcal{E}}$ is finite

\mathcal{R} Sufficiently complete:

$$\forall s \in \mathcal{T}(\mathcal{F})^{\mathcal{S}}. \exists t \in \mathcal{T}(\mathcal{C})^{\mathcal{S}}. s \rightarrow_{\mathcal{R}}^* t$$

Proposed solution: use $\mathcal{F}=\mathcal{C}\uplus\mathcal{D}$ and $E=E^c_\mathcal{C}\cup E_\mathcal{R}$

- ullet ${\mathcal D}$ efined and ${\mathcal C}$ onstructor e.g. ${\mathcal D}=\{{\it app}\}$ and ${\mathcal C}=\{{\it a,cons,nil}\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_{\mathcal{R}} = \{I = r \mid I \rightarrow r \in \mathcal{R}\}$ and $E = E_{\mathcal{C}}^{c} \cup E_{\mathcal{R}}$
- Theorem: If \mathcal{R} is sufficiently complete then $\mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=\mathcal{E}}$ is finite

\mathcal{R} Sufficiently complete:

$$\forall s \in \mathcal{T}(\mathcal{F})^{\mathcal{S}}. \exists t \in \mathcal{T}(\mathcal{C})^{\mathcal{S}}. s \rightarrow_{\mathcal{R}}^* t$$

Proposed solution: use $\mathcal{F}=\mathcal{C}\uplus\mathcal{D}$ and $E=E^c_{\mathcal{C}}\cup E_{\mathcal{R}}$

- \mathcal{D} efined and \mathcal{C} onstructor e.g. $\mathcal{D} = \{app\}$ and $\mathcal{C} = \{a, cons, nil\}$
- Define $E_{\mathcal{C}}^c$ a set of contracting equations on $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$, such that $\mathcal{T}(\mathcal{C})^{\mathcal{S}}/_{=E_{\mathcal{C}}^c}$ is finite, e.g. cons(x,cons(y,z))=cons(x,z)
- Define $E_R = \{I = r \mid I \to r \in R\}$ and $E = E_C^c \cup E_R$
- Theorem: If \mathcal{R} is sufficiently complete then $\mathcal{T}(\mathcal{F})^{\mathcal{S}}/_{=\mathcal{E}}$ is finite

\mathcal{R} Sufficiently complete:

$$\forall s \in \mathcal{T}(\mathcal{F})^{\mathcal{S}}. \exists t \in \mathcal{T}(\mathcal{C})^{\mathcal{S}}. s \rightarrow_{\mathcal{R}}^* t$$

Demo: demo_reverse.txt

Static analysis of higher-order functional programs

• use higher-order formalisms: e.g. HORS [L. Ong, 2006], PMRS [L. Ong&S. Ramsay, 2011]

Static analysis of higher-order functional programs

- use higher-order formalisms: e.g. HORS [L. Ong, 2006], PMRS [L. Ong&S. Ramsay, 2011]
- use first-order formalisms (e.g tree automata and TRS) with an encoding of higher-order into first-order e.g. [N. Jones,1987]

Static analysis of higher-order functional programs

- use higher-order formalisms: e.g. HORS [L. Ong, 2006], PMRS [L. Ong&S. Ramsay, 2011]
- use first-order formalisms (e.g tree automata and TRS) with an encoding of higher-order into first-order e.g. [N. Jones,1987]

Example 4 (Encoding of H.O. functions into TRS)

Use an explicit function application operator '@'.

```
let rec map f |1| = match |1| with |1| -> |1| h :: t -> (f h) :: (map f t);;
```

_becomes _

$$\mathbb{Q}(\mathbb{Q}(map, f), nil) \rightarrow nil$$

 $\mathbb{Q}(\mathbb{Q}(map, f), cons(h, t)) \rightarrow cons(\mathbb{Q}(f, h), \mathbb{Q}(\mathbb{Q}(map, f), t))$

Is the @-encoding enough?

• Auhors of H.O. formalisms claim that the @-encoding is too imprecise

Is the @-encoding enough?

- Auhors of H.O. formalisms claim that the @-encoding is too imprecise
- On H.O. examples of [L. Ong&S. Ramsay, 2011], we obtained similar results with the @-encoding, TRSs, and tree automata completion

Is the @-encoding enough?

- Auhors of H.O. formalisms claim that the @-encoding is too imprecise
- On H.O. examples of [L. Ong&S. Ramsay, 2011], we obtained similar results with the @-encoding, TRSs, and tree automata completion

```
Example 5 (filter nz on any nat list, results in a list without 0)

let if 2 c t e = match c with | let nz i= match i with | S(x) -> true;;

let rec filter p l= match l with | let nz i= match i with | let nz i= match i with | let nz i= let nz i= match i with | let nz i= match i with | let nz i= let nz i= match i with | let nz i= match i with |
```

Is the @-encoding enough?

- Auhors of H.O. formalisms claim that the @-encoding is too imprecise
- On H.O. examples of [L. Ong&S. Ramsay, 2011], we obtained similar results with the @-encoding, TRSs, and tree automata completion

```
Example 5 (filter nz on any nat list, results in a list without 0)

let if 2 c t e = match c with | let nz i= match i with | true -> t | 0 \rightarrow false | 0 \rightarrow false | S(x) \rightarrow true;

let rec filter p |= match | with | [] -> [] | h::t -> if 2 (p h) (h::(filter p t)) (filter p t);
```

Successful on some examples but needs to be investigated further!

Example 6 (Terminating with call-by-need but not for call-by-value)

```
let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i<=0 then x else nth (i-1) l
let sum x= nth x (sumList(0,0));;
```

```
Example 6 (Terminating with call-by-need but not for call-by-value)

let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i<=0 then x else nth (i-1) l;
let sum x= nth x (sumList(0,0));;

(sum 4) = 10 with call by need and diverges with call-by-value
```

```
Example 6 (Terminating with call-by-need but not for call-by-value)

let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i<=0 then x else nth (i-1) l

let sum x= nth x (sumList(0,0));;

(sum 4) = 10 with call by need and diverges with call-by-value
```

```
Completion covers all reachable terms (for all strategies) \mathcal{R}^*((\mathit{sum}\,4)) \subseteq \mathcal{L}(\mathcal{A}_{\mathcal{R},E}^*) \text{ contains } 10 \qquad \text{(and intermediate computations)}
```

```
Example 6 (Terminating with call-by-need but not for call-by-value)

let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i <=0 then x else nth (i-1) l
let sum x= nth x (sumList(0,0));;
(sum 4) = 10 with call by need and diverges with call-by-value
```

```
Completion covers all reachable terms (for all strategies)
```

```
\mathcal{R}^*((\textit{sum}\,4))\subseteq\mathcal{L}(\mathcal{A}_{\mathcal{R},\textit{E}}^*)\;\text{contains}\;10 \qquad (\text{and intermediate computations})
```

Call-by-value \leftrightarrow innermost strategy for TRSs

```
Example 6 (Terminating with call-by-need but not for call-by-value)

let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i<=0 then x else nth (i-1) l

let sum x= nth x (sumList(0,0));;

(sum 4) = 10 with call by need and diverges with call-by-value
```

Completion covers all reachable terms (for all strategies)

 $\mathcal{R}^*((\mathit{sum}\,4))\subseteq\mathcal{L}(\mathcal{A}_{\mathcal{R},E}^*) \text{ contains } 10$ (and intermediate computations)

Call-by-value ↔ innermost strategy for TRSs

Adapted tree automata completion for innermost strategy [with Y. Salmon]

A word about evaluation strategies

```
Example 6 (Terminating with call-by-need but not for call-by-value)

let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i<=0 then x else nth (i-1) l

let sum x= nth x (sumList(0,0));;

(sum 4) = 10 with call by need and diverges with call-by-value
```

Completion covers all reachable terms (for all strategies)

 $\mathcal{R}^*((sum 4)) \subseteq \mathcal{L}(\mathcal{A}_{\mathcal{R}, \mathcal{E}}^*)$ contains 10 (and intermediate computations)

Call-by-value \leftrightarrow innermost strategy for TRSs

Adapted tree automata completion for innermost strategy [with Y. Salmon]

 $\mathcal{R}_{in}^*((sum \, x)) \subseteq \mathcal{L}(\mathcal{A}_{\mathcal{R}_{in},F}^*)$ contains no normal form (no result)

A word about built-in types

Recall this example:

```
Example 7 (filter nz on any nat list, results in a list without 0)

let if 2 c t e = match c with | let nz i= match i with | true \rightarrow t | 0 \rightarrow false | S(x) \rightarrow true;;
```

Programs usually use machine integers instead of Peano numbers

A word about built-in types

Recall this example:

```
Example 7 (filter nz on any nat list, results in a list without 0)

let if 2 c t e = match c with | let nz i= match i with | true \rightarrow t | 0 \rightarrow false | S(x) \rightarrow true;;
```

Programs usually use machine integers instead of Peano numbers

Lattice Tree Automata completion [with Legay, Le Gall, Murat, 2013] LTA completion permits to seamlessly plug abstract domains in ARTMC

A word about built-in types

Recall this example:

```
Example 7 (filter nz on any nat list, results in a list without 0)

let if 2 c t e = match c with | let nz i= match i with | true \rightarrow t | 0 \rightarrow false | S(x) \rightarrow true;;
```

Programs usually use machine integers instead of Peano numbers

Lattice Tree Automata completion [with Legay, Le Gall, Murat, 2013]

LTA completion permits to seamlessly plug abstract domains in ARTMC

e.g. integer lists with no zero:

$$egin{array}{c} cons(q_i,q_l)
ightarrow q_l & [-\infty;-1]
ightarrow q_i \ nil
ightarrow q_l & [1;+\infty]
ightarrow q_i \ \end{array}$$

A simple automaton for the A then B lists

```
Automaton A0
States qA, qB, qnil, qlB, qlAB
Final States qIAB
Transitions
  A \rightarrow gA
  B \rightarrow qB
  nil -> qnil
  cons(qB, qnil) \rightarrow qlB
  cons(qB, qIB) \rightarrow qIB
  cons(qA, qIB) \rightarrow qIAB
  cons(qA, qIAB) \rightarrow qIAB
```

Any suggestion for a short textual/graphical format is welcome!

Contracts [D. Xu, 2009]

```
contract rev = {1 | ab 1} -> {1 | ba 1};;
```

where ab and ba are user defined functions discriminating the «A then B lists» etc. Contracts can be dynamically or statically checked.

Contracts [D. Xu, 2009]

```
contract rev = {1 | ab 1} -> {1 | ba 1};;
```

where ab and ba are user defined functions discriminating the «A then B lists» etc. Contracts can be dynamically or statically checked.

Liquid Types (and variants) [N. Vazou, P. Rondon, R. Jhala, 2013]

rev :: [a]<{\h v -> h <= v}> -> [a]<{\h v -> h >= v}

Liquid types are statically checked.

Contracts [D. Xu, 2009]

```
contract rev = {1 | ab 1} -> {1 | ba 1};;
```

where ab and ba are user defined functions discriminating the «A then B lists» etc. Contracts can be dynamically or statically checked.

rev :: [a]<{\h v -> h <=
$$v$$
}> -> [a]<{\h v -> h >= v }

Liquid types are statically checked.

Two remarks and one question

+ Those techniques prove stronger properties (e.g. quicksort sorts)

Contracts [D. Xu, 2009]

```
contract rev = {1 | ab 1} -> {1 | ba 1};;
```

where ab and ba are user defined functions discriminating the «A then B lists» etc. Contracts can be dynamically or statically checked.

Liquid Types (and variants) [N. Vazou, P. Rondon, R. Jhala, 2013]

rev :: [a]<{\h v -> h <= v}> -> [a]<{\h v -> h >= v}

Liquid types are statically checked.

Two remarks and one question

- + Those techniques prove stronger properties (e.g. quicksort sorts)
- (Co)-Domains annotations are given by the user (we infer them)

Contracts [D. Xu, 2009]

```
contract rev = {1 | ab 1} -> {1 | ba 1};;
```

where ab and ba are user defined functions discriminating the «A then B lists» etc. Contracts can be dynamically or statically checked.

Liquid Types (and variants) [N. Vazou, P. Rondon, R. Jhala, 2013]

rev :: [a] $< \{ h v \rightarrow h <= v \} > \rightarrow [a] < \{ h v \rightarrow h >= v \}$

Liquid types are statically checked.

Two remarks and one question

- + Those techniques prove stronger properties (e.g. quicksort sorts)
- (Co)-Domains annotations are given by the user (we infer them)
- Can we define user friendly "language annotations" close to types?

Conclusion

Define equations guaranteeing termination of completion 🗸 🛦

- Deal with higher order functions 🚣
- Take evaluation strategies into account
 - ▶ call by value (e.g. Ocaml) \approx innermost rewrite strategy \checkmark
 - \triangleright call by need (e.g. Haskell) \approx outermost rewrite strategy + sharing
 - ▶ order in pattern matching ≈ priority rewrite strategy
- Deal with built-in types
- Modularity of the analysis
- User friendly way to display/define language annotations . . .

Further research

- Find a translation from OCaml to TRS s.t.
 - Typing is preserved
 - Higher-order functions can be encoded
 - ▶ OCaml pattern matching exhaustivity ⇒ TRS sufficient completeness

Further research

- Find a translation from OCaml to TRS s.t.
 - Typing is preserved
 - Higher-order functions can be encoded
 - ▶ OCaml pattern matching exhaustivity ⇒ TRS sufficient completeness
- ullet Find other criteria guaranteeing finiteness of $\mathcal{T}(\mathcal{F})/_{=\mathcal{E}}$ or $\mathcal{T}(\mathcal{C})/_{=\mathcal{E}}$

Further research

- Find a translation from OCaml to TRS s.t.
 - Typing is preserved
 - ▶ Higher-order functions can be encoded
 - ▶ OCaml pattern matching exhaustivity ⇒ TRS sufficient completeness
- ullet Find other criteria guaranteeing finiteness of $\mathcal{T}(\mathcal{F})/_{=E}$ or $\mathcal{T}(\mathcal{C})/_{=E}$
 - e.g. Discard the "sufficient completeness" requirement

```
Example 8 (sumList is not sufficiently complete)

let rec sumList(x,y)= (x+y)::sumList(x+y,y+1);;
let rec nth i (x::l)= if i<=0 then x else nth (i-1) l;
let sum x= nth x (sumList(0,0));;
```

Tree automata completion principle

lacksquare complete $\mathcal A$ with new transitions into $\mathcal A^1_{\mathcal R},\mathcal A^2_{\mathcal R},\dots$

Tree automata completion principle

• complete \mathcal{A} with new transitions into $\mathcal{A}^1_{\mathcal{R}}, \mathcal{A}^2_{\mathcal{R}}, \dots$ $\forall I \rightarrow r \in \mathcal{R}, \ \forall q \in \mathcal{Q}, \ \forall \sigma : \mathcal{X} \mapsto \mathcal{Q}$:

Tree automata completion principle

• complete \mathcal{A} with new transitions into $\mathcal{A}^1_{\mathcal{R}}, \mathcal{A}^2_{\mathcal{R}}, \dots$ $\forall I \rightarrow r \in \mathcal{R}, \ \forall q \in \mathcal{Q}, \ \forall \sigma : \mathcal{X} \mapsto \mathcal{Q}$:

Tree automata completion principle

• complete \mathcal{A} with new transitions into $\mathcal{A}^1_{\mathcal{R}}, \mathcal{A}^2_{\mathcal{R}}, \dots$ $\forall I \rightarrow r \in \mathcal{R}, \ \forall q \in \mathcal{Q}, \ \forall \sigma : \mathcal{X} \mapsto \mathcal{Q}$:

$$\begin{array}{c|c} I\sigma \xrightarrow{\mathcal{R}} r\sigma \\ \mathcal{A}_{\mathcal{R}}^{i} \middle| * & * \middle| \mathcal{A}_{\mathcal{R}}^{i+1} \\ q & \overbrace{\mathcal{A}_{i+1}} q' \end{array}$$

 $oldsymbol{2}$ use approximation equations of E to (possibly) converge on $\mathcal{A}_{\mathcal{R},E}^*$

Completion algorithm (II)

Definition 9 (Set E_c^c of contracting equations)

The set of well-sorted equations $E^c_{\mathcal{C}}$ is *contracting* if its equations are of the form $u=u|_p$ with u linear and $p\neq \Lambda$ and if the set of normal forms of $\mathcal{T}(\mathcal{C})^{\mathcal{S}}$ w.r.t. the TRS $\overrightarrow{E^c_{\mathcal{C}}}=\{u\rightarrow v\mid u=v\in E^c_{\mathcal{C}}\}$ is finite.

R/E-coherence

Languages recognized by states of \mathcal{A} (ϵ -free) are E -equivalent terms.