Universidad Autónoma del Estado de México

Facultad de Ciencias

Licenciatura en Matemáticas

Álgebra Lineal

Profesora:

Socorro López Olvera

Tarea 2

Alumnos:

Peña Mateos Jesús Jacob Santana Reyes Osmar Dominique Gallegos Torres Gonzalo

Semestre: 2022B

- 1. Diga si las siguientes proposiciones son falsas o verdaderas y justifique su respuesta.
 - i. La matriz identidad es una matriz triangular superior.

Af: La matriz identidad es una matriz triangular superior.

Dem.

Sea $I_n = [a_{ij}]$ la matriz identidad. Por definición,

$$I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Ya que $a_{ij} = 0 \ \forall i > j$, entonces I_n es una matriz triangular superior, por definición.

ii. Si V es un K - espacio vectorial, $W \le V$ y $U \le W$ entonces $U \le V$.

Af: $U \leq V$.

Dem.

Como $W \leq V$ y $U \leq W$ entonces $W \subseteq V$ y $U \subseteq W$. De esta menera, como $U \subseteq W$ y $W \subseteq V$, entonces $U \subseteq V$.

Luego, sea $\overline{0} \in V$ el neutro aditivo. Como $W \leq V$ entonces $\overline{0} \in W$, por el inciso i de la proposición 5. Y ya que $U \leq W$ entonces $\overline{0} \in U$, por el inciso i de la proposición 5.

Después, como $W \leq V$ entonces la adición es cerrada en W, por el inciso ii de la proposición 5. Y ya que $U \leq W$ entonces la adición es cerrada en U, por el inciso ii de la proposición 5.

Y finalmente, como $W \leq V$ entonces el producto por escalar es cerrado en W, por el inciso iii de la proposición 5. Y ya que $U \leq W$ entonces el producto por escalar es cerrado en U, por el inciso iii de la proposición 5.

En conclusión, como $\overline{0} \in U$, la adición es cerrada en U y el producto por escalar es cerrado en U, entonces $U \leq V$, por la proposición 5.

iii. Si A es una matriz con tr(A) = 0, entonces A es matriz antisimétrica.

Af: A no es matriz antisimétrica.

Dem.

Considerando la matriz

$$A = \begin{pmatrix} 1 & 5 & 7 \\ -5 & -1 & 9 \\ -7 & -9 & 0 \end{pmatrix}$$

Por definición, la traza de A es tr(A) = 1 + (-1) + 0 = 0. Así, tr(A) = 0.

Luego,

$$A^{t} = \begin{pmatrix} 1 & -5 & -7 \\ 5 & -1 & -9 \\ 7 & 9 & 0 \end{pmatrix} \quad \mathbf{y} \quad -A = \begin{pmatrix} -1 & -5 & -7 \\ 5 & 1 & -9 \\ 7 & 9 & -0 \end{pmatrix} = \begin{pmatrix} -1 & -5 & -7 \\ 5 & 1 & -9 \\ 7 & 9 & 0 \end{pmatrix}$$

Como $A^t \neq -A$ entonces la matriz A no es transpuesta. Por lo tanto, no es cierto que si A es una matriz con tr(A) = 0, entonces A es matriz antisimétrica.

2. Sean $n \in \mathbb{N}$, K un campo, $A \in M_n[K]$ y A^t su transpuesta.

- i. Demuestra que $A+A^t$ es una matriz simétrica.
- ii. Sea $U = \{A \in M_n[K] \mid A \text{ es antisimétrica}\} \subseteq M_n[K]$. Demuestre que $U \leq M_n[K]$.
- iii. ¿Cuántas entradas diferentes puede tener una matriz simétrica de orden n? Argumente su respuesta.
- 3. Demuestre el corolario 13.
- 4. Sea V un K espacio vectorial y $W\subseteq V$ no vacío. Demuestre que $W\leq V$, si y solo si se cumple:
 - i. $u-z\in W$ para cualesquiera $u,\,z\in W$.
 - ii. $\lambda u \in W$, $\forall \lambda \in K \mathbf{y} \ \forall u \in W$.
- 5. Sean $V=\mathbb{R}^3$, un \mathbb{R} espacio vectorial, con las operaciones usuales de suma y producto por escalar, W_1 y W_2 subconjuntos de V, definidos como, $W_1=\left\{(a,b,c)\in\mathbb{R}^3\,\big|\,3a-b+4c=0\right\}$ y $W_2=\left\{(a,b,c)\in\mathbb{R}^3\,\big|\,b=-a,2c=a\right\}$ ¿Es $V=W_1\oplus W_2$? Demuéstrelo o dé un contraejemplo de la propiedad que no se cumpla.