Spintronics and Nanomagnetics ECS 521/641

Instructor: Dr. Kuntal Roy

Electrical Engineering and Computer Science (EECS) Dept.

Indian Institute of Science Education and Research (IISER) Bhopal

Email: <u>kuntal@iiserb.ac.in</u>

Spin relaxation

Magnetoresistance

Spin waves

Magnetic Force Microscopy

Spin relaxation

Kuntal Roy IISER Bhopal

Spin relaxation

Spin relaxes due to spin diffusion

$$\frac{d^2V^z(y)}{dy^2} = \frac{V^z(y)}{\lambda^2}$$
 \quad \text{diffusion} \text{length}

Spin circuit

Charge circuit

No shunt elements

$$G_1 = G_{\lambda} \tanh\left(\frac{t}{2\lambda}\right)$$
 $G_2 = G_{\lambda} \operatorname{csch}\left(\frac{t}{\lambda}\right)$

Dispersion relation: $B=0, \nu=0$

$$E_{\pm} = \frac{\hbar^2 (k_x^2 + k_z^2)}{2m^*} \pm \sqrt{\left(\frac{g\mu_B B_z}{2} + \eta k_x - \nu k_z\right)^2 + \left(\frac{g\mu_B B_x}{2} - \eta k_z + \nu k_x\right)^2}$$

$$E_{\pm} = \frac{\hbar^2 k^2}{2m^*} \pm \eta k$$

$$k_2 - k_1 = \frac{2m^*\eta}{\hbar^2}$$

$$m^* = 0.05m_0$$

$$\eta = 10^{-11} eV - m$$

$$\frac{\hbar^2}{2m^*} = 7.4566e - 19 \ eV - m^2$$

SOC splitting = $1.3411e+07 \text{ m}^{-1}$

Spin-orbit magnetic field

$$E_{\pm} = \frac{\hbar^2 k^2}{2m^*} \pm \eta k$$

$$k_2 - k_1 = \frac{2m^*\eta}{\hbar^2}$$

Dresselhaus SOC

$$v_1(E) = \frac{1}{\hbar} \frac{\partial E_+}{\partial k} = \frac{\hbar k_1(E)}{m^*} + \frac{\eta}{\hbar}$$

$$v_2(E) = \frac{1}{\hbar} \frac{\partial E_-}{\partial k} = \frac{\hbar k_2(E)}{m^*} - \frac{\eta}{\hbar}$$

$$v_1(E) = v_2(E) = v(E)$$

Velocity is spin-independent

$$v(E) = \frac{v_1(E) + v_2(E)}{2} = \frac{\hbar}{m^*} \frac{k_1(E) + k_2(E)}{2} = \frac{\hbar k_{av}(E)}{m^*}$$

$$\boldsymbol{B_{Rashba}} = \frac{2a_R}{g\mu_B}(\boldsymbol{E} \times \boldsymbol{k})$$

$$|\mathbf{B}_{Rashba}| = \frac{2a_R}{g\mu_B}(\mathbf{E} \times \mathbf{k}) \quad |\mathbf{B}_{Rashba}| = \frac{2\eta}{g\mu_B} k_{av} = \frac{2\eta m^*}{g\mu_B \hbar} v = \frac{2^{3/2} \eta m^{*1/2}}{g\mu_B \hbar} \sqrt{E}$$

Elliott-Yafet spin relaxation

In a crystal, the Bloch states may not be spin eigenstates

The actual polarization depends on the wavevectors

Each wavevector state still has two possible spin orientations that are mutually anti-parallel

A momentum changing collision event e.g., phonon scattering changes the wavevector k_1 to k_2

- R. J. Elliott, Phys. Rev. 96, 266 (1954)
- Y. Yafet, Phys. Lett. A 98, 287 (1983)

D'yakonov Perel' spin relaxation

$$|\mathbf{B}_{Rashba}| = \frac{2\eta}{g\mu_B} \mathbf{k} = \frac{2\eta m^*}{g\mu_B \hbar} \mathbf{v}$$

$$|\mathbf{B}_{Dresselhaus}| = \frac{2\nu}{g\mu_B} \mathbf{k} = \frac{2\nu m^*}{g\mu_B \hbar} \mathbf{v}$$

If the velocity/wavevector changes randomly owing to scattering

The axis about which spin precesses changes

Frequency of precession changes

Frequent momentum relaxing collisions tend to slow down electrons and suppress DP spin relaxations

$$au_{DP} \propto \frac{1}{ au_m}$$

M. I. Dyakonov and V. I. Perel, Sov. Phys. Solid State 13, 3023 (1972)

Spin diffusion length

Drude model

$$\sigma = ne^2 \tau_m / m^*$$

$$\lambda_{sf} = \sqrt{D \ \tau_{sf}}$$

D: Diffusions coefficient D_{OS} : Density of states

$$D = \sigma/e^2 D_{OS}$$

$$\tau_{Sf} = \left(\frac{\lambda_{Sf}^2 m^* D_{OS}}{n}\right) \frac{1}{\tau_m}$$

EY spin relaxation

$$au_{EY} \propto au_m$$

$$\lambda_{sf} \propto \sigma$$

DP spin relaxation

$$\tau_{DP} \propto \frac{1}{\tau_m}$$

$$\lambda_{sf} = constant$$

Other spin relaxation mechanisms

Bir-Arnov-Pikus spin relaxation

Spin relaxation in semiconductors when there is a significant concentration of both electrons and holes

Hyperfine interactions with nuclear spins

Nuclear spins generate a magnetic field which interacts with the electron spins via hyperfine interactions and can cause spin relaxation

Spin-galvanic effect

Charge current without a battery!

Spin-down band has higher energy

An electron from a filled state in the down-spin band to scatter to an empty state in the up-spin band

Asymmetric *k*-dependent scattering makes velocity asymmetric → current flow

No violation of energy conservation

Spin-polarized carrier population using circularly polarized light

Ganichev et al, Spin-galvanic effect, Nature 417, 153 (2002)

Magnetoresistance

Nobel Prize in Physics (2007)

Giant Magneto-Resistance (GMR)

The Nobel Prize in Physics 2007

Photo: U. Montan Albert Fert Prize share: 1/2

Photo: U. Montan Peter Grünberg Prize share: 1/2

The Nobel Prize in Physics 2007 was awarded jointly to Albert Fert and Peter Grünberg "for the discovery of Giant Magnetoresistance"

- A. Fert, M.N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988)
- P. Grunberg, G. Binash et al., Phys. Rev. B 39, 4828 (1989)

1988

Magneto-Resistance (MR)

Ferromagnet

J

 $\frac{\Delta \rho}{\rho} = a \left(\frac{H}{\rho}\right)^2$

MR can be positive or negative

Resistance, R

$$MR = \frac{\Delta R}{R} [\%] = \frac{R(H) - R(0)}{R(0)} \times 100$$

Magnetic Field, H

Anisotropic Magneto-Resistance (AMR)

Anisotropic mixing of spin-up and spin-down conduction bands due to **spin-orbit coupling**

Giant Magneto-Resistance (GMR)

A. Fert, M.N. Baibich et al., Phys. Rev. Lett. **61**, 2472 (1988)

GMR: 2-current model

$$R_P = \left(\frac{1}{2r + R_{ch}} + \frac{1}{2R + R_{ch}}\right)^{-1}$$

$$R_{AP} = \frac{r + R + R_{ch}}{2}$$

GMR: 2-current model

$$MR = \frac{R_{AP} - R_P}{R_P} = \frac{(R - r)^2}{4rR}$$

$$MR = \frac{p^2}{1 - p^2}$$

$$R_{ch} \simeq 0$$

Polarization

$$p = \frac{R - r}{R + r}$$

CIP and CPP geometry

A. Fert, M.N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988)

Tunneling Magneto-Resistance (TMR)

- > Reported (1975) prior to GMR
- > TMR >500% using MgO spacer

Julliere, M. Tunneling between ferromagnetic films. *Phys. Lett. A* **54**, 225–226 (1975) Moodera, J. S. et al., *Phys. Rev. Lett.* **74**, 3273 (1995)

Mathon, J. et al., *Phys. Rev. B* **63**, 220403 (2001), Butler, W. et al., *Phys. Rev. B* **63**, 054416 (2001) Yuasa, S. et al., *Nature Mater.* **3**, 868 (2004), Parkin, S. et al., *Nature Mater.* **3**, 862–867 (2004)

Tunneling Magneto-Resistance (TMR)

Conductance is proportional to the density of states N_I^{\uparrow} , N_R^{\uparrow} , N_I^{\downarrow} , N_R^{\downarrow}

$$G^{\uparrow\uparrow} \propto N_L^{\uparrow} N_R^{\uparrow}$$
 $G^{\downarrow\downarrow} \propto N_L^{\downarrow} N_R^{\downarrow}$ $G^{\uparrow\downarrow} \propto N_L^{\uparrow} N_R^{\downarrow}$ $G^{\downarrow\uparrow} \propto N_L^{\downarrow} N_R^{\uparrow}$

$$G^{\downarrow\downarrow} \propto N_L^{\downarrow} N_R^{\downarrow}$$

$$G^{\uparrow\downarrow} \propto N_L^{\uparrow} N_R^{\downarrow}$$

$$G^{\downarrow\uparrow} \propto N_L^{\downarrow} N_R^{\uparrow}$$

$$TMR = \frac{G_P - G_{AP}}{G_{AP}} = \frac{N_L^{\uparrow} N_R^{\uparrow} + N_L^{\downarrow} N_R^{\downarrow} - N_L^{\uparrow} N_R^{\downarrow} - N_L^{\downarrow} N_R^{\uparrow}}{N_L^{\uparrow} N_R^{\downarrow} + N_L^{\downarrow} N_R^{\uparrow}}$$

$$= \frac{\left(N_L^{\uparrow} - N_L^{\downarrow}\right)\left(N_R^{\uparrow} - N_R^{\downarrow}\right)}{\frac{1}{2}\left[\left(N_L^{\uparrow} - N_L^{\downarrow}\right)\left(N_R^{\uparrow} - N_R^{\downarrow}\right) - \left(N_L^{\uparrow} - N_L^{\downarrow}\right)\left(N_R^{\uparrow} - N_R^{\downarrow}\right)\right]}$$

Tunneling Magneto-Resistance (TMR)

Conductance is proportional to the density of states

$$TMR = \frac{\left(N_L^{\uparrow} - N_L^{\downarrow}\right)\left(N_R^{\uparrow} - N_R^{\downarrow}\right)}{\frac{1}{2}\left[\left(N_L^{\uparrow} - N_L^{\downarrow}\right)\left(N_R^{\uparrow} - N_R^{\downarrow}\right) - \left(N_L^{\uparrow} - N_L^{\downarrow}\right)\left(N_R^{\uparrow} - N_R^{\downarrow}\right)\right]}$$

$$p_{L,R} = \frac{N_{L,R}^{\uparrow} - N_{L,R}^{\downarrow}}{N_{L,R}^{\uparrow} + N_{L,R}^{\downarrow}}$$

$$TMR = \frac{2p_L p_R}{1 - p_L p_R}$$

Magnetic Tunnel Junction (MTJ)

The magnetic offset caused by fields emanating from the pinned layer can be avoided by replacing a simple pinned layer with a **synthetic antiferromagnetic layer (SAF)**, a pair of ferromagnetic layers antiferromagnetically coupled through a **ruthenium (Ru) spacer layer**.

Gallagher, W. J. & Parkin, S. S. P., IBM J. Res. Dev. 50, 5–23 (2006)

Kuntal Roy IISER Bhopal

SAF: Interlayer exchange coupling

Ruderman–Kittel–Kasuya–Yosida

RKKY interaction

Indirect Exchange

Second-order perturbation theory

$$t_{Ru} = 0.8 nm$$

$$J_{12} \propto \frac{\sin\left(\phi + \frac{2\pi t_{Ru}}{\lambda_F}\right)}{t_{Ru}^p} \quad \lambda_F = 11.5 \, \dot{A}$$

$$p = 1.8$$

Parkin, S. S. P. et al, Phys. Rev. B (Rapid Comm.) 44, 7131 (1991)

Spin waves and Magnons

Spin wave

Ferromagnetic resonance

$$\frac{d\mathbf{M}}{dt} = -|\gamma|\mathbf{M} \times \mathbf{H}_{eff}$$

Neglecting damping

Ground state, U_0

An excited state, U_1

$$U = -2J \sum_{p=1}^{N} \mathbf{S}_{p} \cdot \mathbf{S}_{p+1} \quad \mathbf{S}_{p} \cdot \mathbf{S}_{p+1} = S^{2}$$

$$S_p \cdot S_{p+1} = S^2$$

$$U_0 = -2JNS^2$$

$$U_1 = U_0 + 8JS^2$$

Excitation of much lower energy if all spins share the reversal

Precessing Magnetization

Spin-wave spin current

Interconnect between devices

Ground state,
$$U_0$$

$$U_0 = -2JNS^2$$

$$U = -2J \sum_{p=1}^{N} \mathbf{S}_{p} \cdot \mathbf{S}_{p+1}$$

Magnetic moment at site p

$$\boldsymbol{\mu_p} = -g\mu_B \boldsymbol{S_p}$$

Nearest neighbor exchange interaction

$$-2JS_p \cdot (S_{p-1} + S_{p+1}) = -\mu_p \cdot B_p$$

$$\Rightarrow \boldsymbol{B_p} = (-2J/g\mu_B) \cdot (\boldsymbol{S_{p-1}} + \boldsymbol{S_{p+1}})$$

$$\frac{dS_p}{dt} = -|\gamma|S_p \times B_p = \frac{2J}{\hbar} (S_p \times S_{p-1} + S_p \times S_{p+1})$$

$$S_p^z = S \qquad S_p^x, S_p^y \ll S$$

$$\begin{array}{c} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ \text{Ground state, } U_0 \\ U_0 = -2JNS^2 \end{array}$$

$$U = -2J \sum_{p=1}^{N} S_p \cdot S_{p+1}$$

$$S_p^z = S$$

$$S_p^x, S_p^y \ll S$$

$$\frac{dS_p}{dt} = -|\gamma|S_p \times B_p = \frac{2J}{\hbar} (S_p \times S_{p-1} + S_p \times S_{p+1})$$

$$\frac{dS_{p}^{x}}{dt} = \frac{2J}{\hbar} \left[S_{p}^{y} \left(S_{p-1}^{z} + S_{p+1}^{z} \right) + S_{p}^{z} \left(S_{p-1}^{y} + S_{p+1}^{y} \right) \right]$$

$$\frac{dS_{p}^{x}}{dt} = \frac{2JS}{\hbar} \left[2S_{p}^{y} - S_{p-1}^{y} - S_{p+1}^{y} \right]$$

$$\frac{dS_p^z}{dt} = 0$$

$$\frac{dS_{p}^{y}}{dt} = -\frac{2JS}{\hbar} \left[2S_{p}^{x} - S_{p-1}^{x} - S_{p+1}^{x} \right]$$

Kuntal Roy IISER Bhopal 2

$$U = -2J \sum_{p} S_p \cdot S_{p+1}$$

Ground state, U_0

$$U_0 = -2JNS^2$$

$$\frac{dS_p^y}{dt} = -\frac{2JS}{\hbar} \left[2S_p^x - S_{p-1}^x - S_{p+1}^x \right]$$

$$S_p^x = ue^{i(pka - \omega t)}$$

$$S_p^{\mathcal{Y}} = ve^{i(pka - \omega t)}$$

$$ue^{i(pka-\omega t)}(-i\omega)$$

$$ue^{i(pka-\omega t)}(-i\omega)$$

$$= \frac{2JS}{\hbar} \left[2ve^{i(pka-\omega t)} - ve^{i((p-1)ka-\omega t)} - ve^{i((p+1)ka-\omega t)} \right]$$

$$-i\omega u = \frac{2JS}{\hbar} \left[2 - e^{-ika} - e^{ika} \right] v = \frac{4JS}{\hbar} \left[1 - \cos ka \right] v$$

Kuntal Roy IISER Bhopal

$$U = -2J \sum_{p} S_p \cdot S_{p+1}$$

Ground state, U_0

$$U_0 = -2JNS^2$$

$$\frac{dS_{p}^{x}}{dt} = \frac{2JS}{\hbar} \left[2S_{p}^{y} - S_{p-1}^{y} - S_{p+1}^{y} \right]$$

$$\frac{dS_p^y}{dt} = -\frac{2JS}{\hbar} \left[2S_p^x - S_{p-1}^x - S_{p+1}^x \right]$$

$$S_p^x = ue^{i(pka - \omega t)}$$

$$S_p^y = ve^{i(pka - \omega t)}$$

$$-i\omega u = \frac{2JS}{\hbar} \left[2 - e^{-ika} - e^{ika} \right] v = \frac{4JS}{\hbar} (1 - \cos ka) v$$

$$-i\omega v = -\frac{2JS}{\hbar} \left[2 - e^{-ika} - e^{ika} \right] u = -\frac{4JS}{\hbar} (1 - \cos ka) u$$

Ground state, U_0

$$U_0 = -2JNS^2$$

a: lattice constant

$$S_p^x = ue^{i(pka - \omega t)}$$

$$S_p^y = ve^{i(pka - \omega t)}$$

$$-i\omega u = \frac{2JS}{\hbar} \left[2 - e^{-ika} - e^{ika} \right] v = \frac{4JS}{\hbar} (1 - \cos ka) v$$

$$-i\omega v = -\frac{2JS}{\hbar} \left[2 - e^{-ika} - e^{ika} \right] u = -\frac{4JS}{\hbar} (1 - \cos ka) u$$

$$\begin{vmatrix} i\omega & \frac{4JS}{\hbar}(1-\cos ka) \\ -\frac{4JS}{\hbar}(1-\cos ka) & i\omega \end{vmatrix} = 0$$

$$\omega = \frac{4JS}{\hbar}(1-\cos ka)$$

$$\omega = \frac{4JS}{\hbar}(1 - \cos ka)$$

31

$$v = -iu$$

a: lattice constant

$$S_p^x = ue^{i(pka - \omega t)}$$
$$S_p^y = ve^{i(pka - \omega t)}$$

$$\omega = \frac{4JS}{\hbar}(1 - \cos ka)$$

$$v = -iu$$

Taking real parts

$$S_p^x = u \cos(pka - \omega t)$$

$$S_p^y = u \sin(pka - \omega t)$$

Circular precession about z-axis

 $ka \ll 1$

$$\omega = \frac{4JSa^2}{\hbar}k^2 = Dk^2$$

D can be determined from spin-wave resonance

Magnon

a: lattice constant

$$\omega = \frac{4JS}{\hbar}(1 - coska)$$

33

$$S_p^x = u \cos(pka - \omega t)$$

$$ka \ll 1 \qquad S_p^y = u \sin(pka - \omega t)$$

Circular precession about z-axis

$$\omega = \frac{4JSa^2}{\hbar}k^2 = Dk^2$$

D can be determined from spin-wave resonance

Magnon: Quantized spin waves

The energy of a mode of frequency ω_k with n_k magnons

$$\epsilon_k = \left(n_k + \frac{1}{2}\right)\hbar\omega_k$$

Magnetic Force Microscopy

Magnetic Force Microscopy (MFM)

Forces from the magnetic sample act on the tip and cause a deflection

An image is formed by scanning sample relative to the tip

High resolution: ~10-100 nm

Contact mode: Tip is very near to sample (~0.1 nm)

Tapping mode (AC): Probe comes near the sample momentarily to avoid damaging the sample and breaking of the tip that may happen in contact mode

Single-domain and Multi-domain

Multi-domain

Single-domain

Magnetic force microscopy (MFM) images