Neural Computation

Attention

Thanks to Constantin Pape and Alex Ecker!

Attention

Self-attention:

- every element in sequence can influence every other element
- learn weighting ("attention")
 for each pair of elements

Attention: learnable pairwise weighting that depends on other sequence

Self-Attention: use input sequence for attention

Key-Value Pairs

JSON-Files:

```
{
    "first_name": "John",
    "last_name": "Smith",
    "is_alive": true,
    "age": 27,
    "address": {
        "street_address": "21 2nd Street",
        "city": "New York",
        "state": "NY",
        "postal_code": "10021-3100"
    },
    "phone_numbers": [
        {
            "type": "home",
            "number": "212 555-1234"
```

Python Dictionary:

```
thisdict = {
   "brand": "Ford",
   "model": "Mustang",
   "year": 1964
}
```

Key-Value Pairs

Query		Keys	Values
Date of birth	+	Name	Jane Doe
	11 -	Address	37 Coronation street B12 9TK
	,,,	Date of birth	May 5th 2000
	*	Place of birth	Hull

Key-Value Pairs

Idea:

- Every token makes:
 - Key
 - Value
 - Query

Query		
$[0.3, 1.2, 2.2]^T$		
$[0.1, 6.2, 2.1]^T$		
$[2.1, 2.5, 5.2]^T$		
$[1.1, 6.6, 4.3]^T$		

Keys	Values
$[0, 4, 1, 4, 0]^T$	$[2.3, 1.1, 3.5]^T$
$[0.2, -1.1, 0]^T$	$[3.0, 1.0, 0.5]^T$
$[0.3, 1.2, 4]^T$	$[-2.2, 4.1, 2.5]^T$
$[0.3, 1.2, 4]^T$	$[-2.2, 4.1, 2.5]^T$

Query

$$z = \sum_{j=1}^{n} \mathbf{1}(\boldsymbol{q} = \boldsymbol{k}_{j}) \boldsymbol{v}_{j}$$

Relaxed Query

$$\mathbf{z} = \sum_{j=1}^{n} \text{score}_{j} \mathbf{v}_{j}$$

$$\text{score}_{j} = \text{softmax}(\text{similarity}(q, \mathbf{k}_{j}))$$

$$\frac{\mathbf{q}^{T} \mathbf{k}_{j}}{\sqrt{\mathbf{d}_{j}}}$$

Application to sequence: matrix multiplication

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Q, **K**, **V** are computed from **X** (embedding of input sequence) with *learned* weight matrix

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{Q}{\sqrt{d_k}})$$

Attention
$$(Q, K, V) = \text{softmax}($$

 $\operatorname{Attention}(Q,K,V) =$

Attention Matrix

Self-Attention vs. Feed-Forward

Perceptron / Feed-Forward:

Fixed weight matrix

Self-Attention:

- Dynamic weight matrix
- Computed form inputs

Multi-headed self-attention

Multi-headed self-attention

Multiple attention heads for increased model capacity

Multi-headed self-attention

Multiple attention heads for increased model capacity

Combine with additional feedforward layer

Concat z_i outputs, project to z with learned weight matrix

Ashish Vaswani et al. https://arxiv.org/pdf/1706.03762.pdf

Decoder

Output Probabilities

