DS Tutorial-1

Question 1:

Based on advertising data, find out the residual standard error(RSE), R^2 and F-statistics with respect to TV, radio, newspaper advertising budgets. Comment on the values.

	TV	
Beta1	0.04753664	
Beta0	7.03259355	
RSS	2102.53856	
RSE	3.26	
TSS	5417.14875	
R^2	0.61187358	
F-statistic	312.143059	

Radio			
Beta1	0.202495783		
Beta0	9.311638095		
RSS	3618.479549		
RSE	4.27		
TSS	5417.14875		
R^2	0.332032455		
F-statistic	98.42158757		

Newspaper			
Beta1	0.054693098		
Beta0	12.35140707		
RSS	5134.804544		
RSE	5.09		
TSS	5417.14875		
R^2	0.052120445		
F-statistic	10.88729908		

Answer:

TV: The strongest predictor, with the lowest RSE (3.26), high R² (0.6119), and a very significant F-statistic (312.14).

Radio: A moderate predictor, with a higher RSE (4.27), moderate R² (0.3320), and a significant F-statistic (98.42).

Newspaper: The weakest predictor, with the highest **RSE** (5.09), very low **R**² (0.0521), and the lowest **F-statistic** (10.89).

Question 2:

Create a dataset of your own choice, explain the dataset and using logistic regression predict the value for unknown inputs.

Answer:

Let's create a dataset to predict whether a student will pass or fail an exam based on their study hours.

Data:

Study Hours (X)	Pass (Y)
2	0
4	0
6	1
8	1
10	1
12	1
14	1
16	1

X: Study Hours (independent variable)

Y: Pass (dependent variable, binary: 0 = Fail, 1 = Pass)

Logistic Regression:

Logistic regression is suitable for this binary classification problem. We'll model the probability of passing (P(Y=1)) as a function of study hours using the sigmoid function:

$$P(Y=1) = 1 / (1 + exp(-(b0 + b1*X)))$$

where:

- **b0**: Intercept
- **b1**: Coefficient for study hours

To predict whether a student with unknown study hours will pass, we plug the study hours value into the fitted model and calculate the probability. If the probability is above a certain threshold (e.g., 0.5), we predict that the student will pass; otherwise, we predict that they will fail.

Implementation:

Python

```
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split

X = np.array([[2], [4], [6], [8], [10], [12], [14], [16]])
y = np.array([0, 0, 1, 1, 1, 1, 1])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
intercept = model.intercept_
coef = model.coef_
```

BY
KEERTHANA SURESH.D
S5 IT
ROLL NUMBER:33