Representing Uncertainty in Transformations of GLM Parameters

Bruce A. Desmarais

GLM Lab

September 23, 2009

Interpretations by Transformation of θ_i

In the Generalized Linear Model

$$f(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = f(\mathbf{y}|\mathbf{X}, E[\mathbf{y}|\boldsymbol{\beta}, \mathbf{X}], \boldsymbol{\gamma})$$

= $f(\mathbf{y}|\mathbf{X}, h(\mathbf{X}\boldsymbol{\beta}), \boldsymbol{\gamma}) = f(\mathbf{y}|\mathbf{X}, h(\boldsymbol{\eta}), \boldsymbol{\gamma})$

What's all this stuff?

The known quantities in the above model are \mathbf{X} and \mathbf{y} . The quantities about which we are uncertain are the $\boldsymbol{\theta}$. Any interpretive quantity $(\Gamma(\hat{\boldsymbol{\theta}},\mathbf{X},\mathbf{y}))$, (such as the expected value, change in predicted probability etc.) is by necessity a function of $\hat{\boldsymbol{\theta}}$ and (possibly) \mathbf{X} and \mathbf{y} . The same arguments that mandate communication of uncertainty regarding the regression coefficients can be invoked to advocate the communication of uncertainty regarding important $\Gamma(\cdot)$.

Interpretations by Transformation of θ_i

In the Generalized Linear Model

$$f(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = f(\mathbf{y}|\mathbf{X}, E[\mathbf{y}|\boldsymbol{\beta}, \mathbf{X}], \boldsymbol{\gamma})$$

= $f(\mathbf{y}|\mathbf{X}, h(\mathbf{X}\boldsymbol{\beta}), \boldsymbol{\gamma}) = f(\mathbf{y}|\mathbf{X}, h(\boldsymbol{\eta}), \boldsymbol{\gamma})$

What's all this stuff?

The known quantities in the above model are \mathbf{X} and \mathbf{y} . The quantities about which we are uncertain are the $\boldsymbol{\theta}$. Any interpretive quantity $(\Gamma(\hat{\boldsymbol{\theta}},\mathbf{X},\mathbf{y}))$, (such as the expected value, change in predicted probability etc.) is by necessity a function of $\hat{\boldsymbol{\theta}}$ and (possibly) \mathbf{X} and \mathbf{y} . The same arguments that mandate communication of uncertainty regarding the regression coefficients can be invoked to advocate the communication of uncertainty regarding important $\Gamma(\cdot)$.

The form of Uncertainty

The quantity used in standard likelihood analysis to summarize uncertainty regarding parameter estimates is the asymptotic sampling distribution of the MLE...Which is a multivariate normal distribution with mean vector located at the parameter estimates and the covariance matrix given by the expected inverse negative Hessian....This is where you get standard errors, confidence intervals p-vals etc.

Since $\Gamma(\hat{\theta}, \mathbf{X}, \mathbf{y})$ is a function of $\hat{\theta}$, which, because it is a function of \mathbf{y} is a random variable, is itself a random variable...a function of

$$\hat{\boldsymbol{ heta}} \sim MVN(\hat{oldsymbol{ heta}},\hat{oldsymbol{\Sigma}})$$

The distribution of $\Gamma(\hat{\theta}, \mathbf{X}, \mathbf{y})$ is fully determined by $MVN(\hat{\theta}, \hat{\Sigma})$.

A Practical Approach

The distribution of $\Gamma(\hat{\theta}, \mathbf{X}, \mathbf{y})$ cannot be written in general for for any reasonable collection of $\Gamma(\cdot)$, and for any given function it may be difficult or impossible to compute analytically. The following technique is a general approach that, by the central limit theorem, provides a good approximation with any $\Gamma(\cdot)$...caveats of course.

- **1** Identify a $\Gamma(\cdot)$ of interest.
- ② Draw a large number of parameter vectors from $MVN(\hat{\theta},\hat{\Sigma})$
- **3** Compute $\Gamma(\hat{\theta}, \mathbf{X}, \mathbf{y})$ for each draw, substituting each $\hat{\theta}^{(i)}$ for $\hat{\theta}$
- The sample of $\Gamma(\hat{\theta}, \mathbf{X}, \mathbf{y})$'s provides a great approximation to what you'd get if you worked through the math.

