Root Finding

Part-12

MA2103 - 2023

Root's are very interesting

we have to find x such that f(x) = 0.

Which is not possible analytically except for a very few special case. Here numerical methods are important

Let's Look at Another problem

Equation of motion for a simple particle, in 1-D, with potential V(x)

We use energy conservation E=K. E+P. E

$$E = \frac{m}{2}v^2 + V(x)$$

$$\frac{2}{m} \left[E - V(x) \right] = v^2$$

We use energy conservation E=K. E+P. E

$$E = \frac{m}{2}v^2 + V(x)$$

$$\frac{2}{m} \left[E - V(x) \right] = v^2$$

Find the position x_0 at which velocity v = 0

In the problem
$$V(x) = x - 12x^2 + x^4$$

There are two way to solve the problem:

♦ given
$$E$$
 and find the x_0 \Longrightarrow solve x_0 such that $E - x_0 + 12x_0^2 - x_0^4 = 0$

⇒ given
$$\{x_1, v_1\}$$
 find x_0 ⇒ Find $E_1 = \frac{m}{2}v_1^2 + x_1 - 12x_1^2 + x_1^4$

solve
$$x_0$$
 such that $E_1 - x_0 + 12x_0^2 - x_0^4 = 0$

Graphical Method

The Regular Falsi Method

The Regular Falsi method

For a function f(x) continuous in the interval [a,b], there exists at least one root in the interval (a,b) if f(a)f(b) < 0 then we have root $\in [a,b]$

1. Find c such that,
$$c = b - f(b) \frac{(b-a)}{f(b) - f(a)} = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

If f(a)f(c) < 0 then replace b by c If f(c)f(b) < 0 then replace a by c

Another trick for stopping is put the condition $|f(c)| < \epsilon$

If
$$|f(c)| > \epsilon$$
 repeat the steps

Algorithm

- 1. start with interval $[a_0, b_0]$ such that $f(a_0) * f(b_0) < 0$
- 2. n th iteration is compute using:
- 3. next point for each iteration is $c = \frac{af(b) bf(a)}{f(b) f(a)}$
- **4.** if $f(a_n)f(c) < 0$ then $a_{n+1} = a_n$ and $b_{n+1} = c$ else $a_{n+1} = c$ and $b_{n+1} = b_n$
- 5. Repeat 3 to 4 till $|f(c)| < \epsilon$ or n reached ITMAX
- 6. ϵ the error in the root.

Newtons Method or Newton-Raphson Method

Approximate the function with st.line at $x = x_n$

Algorithm

- 1. start with point x_1 such that $f(x_1) \neq 0$
- 2. n th iteration is compute using:
- 3. next point for each iteration is $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- 4.5. Repeat 3 to 4 till $|f(c)| < \epsilon$ or n reached ITMAX
- 6. ϵ the error in the root.

