

2010—2011 学年第一学期 《大学物理 (2-2) » 期末试卷

专业班级。	
姓 名_	
学 号_	
开课系室_	基础物理系
考试日期 2	2011年1月4日(14:30-16:30)

题号	_		三				总分
			21	22	23	24	
得分							
阅卷人							

注意:选择题和填空题答案要填写在试卷相应的位置!计算题在 各题空白处答题。

一、选择题(共30分)

1、(本题3分)(1001)

Γ

一均匀带电球面,电荷面密度为 σ ,球面内电场强度处处为零,球面上面元 dS 带有 σdS 的电荷,该电荷在球面内各点产生的电场强度

- (A) 处处为零. (B) 不一定都为零.
- (C) 处处不为零. (D) 无法判定.
- 2、(本题3分)(1355)

如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球 壳,则在球壳中一点P处的场强大小与电势(设无穷远处为电势零点)分 别为:

- (A) E = 0, U > 0. (B) E = 0, U < 0.
- (C) E = 0, U = 0. (D) E > 0, U < 0.
- 3、(本题3分)(1204)

Γ

两只电容器, $C_1 = 8$ μF, $C_2 = 2$ μF, 分别把它们充电到 1000 V, 然后将它们反接(如图所示),此时两极板间的电势差为:

(A) 0 V. (B) 200 V.

- (C) 600 V. (D) 1000 V
- 4、(本题3分) (2050)

7

若要使半径为 4×10³ m 的裸铜线表面的磁感强度为 7.0×10⁵ T,则铜线中需要通过的 电流为($\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m} \cdot \text{A}^{-1}$)

- (A) 0.14 A. (B) 1.4 A.
- (C) 2.8 A. (D) 14 A.

5、(本题 3 分) (2608)

]

磁介质有三种,用相对磁导率 μ_r 表征它们各自的特性时,

- (A) 顺磁质 $\mu_r > 0$, 抗磁质 $\mu_r < 0$, 铁磁质 $\mu_r > > 1$.
- (B) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r = 1$, 铁磁质 $\mu_r > > 1$.
- (C) 顺磁质 $\mu_r > 1$, 抗磁质 $\mu_r < 1$, 铁磁质 $\mu_r > > 1$.
- (D) 顺磁质 μ_r < 0, 抗磁质 μ_r < 1, 铁磁质 μ_r > 0.
- 6、(本题3分)(2809)

7

一个电阻为 R, 自感系数为 L 的线圈,将它接在一个电动势为 $\varepsilon(t)$ 的交变电源上,线圈 的自感电动势为 $\varepsilon_L = -L \frac{\mathrm{d} I}{\mathrm{d} t}$, 则流过线圈的电流为:

- (A) $\varepsilon(t) / R$ (B) $\left[\varepsilon(t) \varepsilon_L\right] / R$
- (C) $\left[\varepsilon(t) + \varepsilon_L\right] / R$ (D) ε_L / R

7、(本题3分)(2415)

用导线围成如图所示的回路(以O点为心的圆,加一直径),放在轴线通过O点垂直于图 面的圆柱形均匀磁场中,如磁场方向垂直图面向里,大小随时间减小,则感应电流的流向为

第2页共9页

8、(本题 3 分)(4190)

Γ 7

要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成 的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是

- (A) 1.5 eV.
- (B) 3.4 eV.
- (C) 10.2 eV. (D) 13.6 eV.

9、(本题3分)(5619)

Γ

波长 $\lambda = 5000$ Å 的光沿 x 轴正向传播,若光的波长的不确定量 $\Delta\lambda = 10^{-3}$ Å,则利用不确定 关系式 $\Delta p_x \Delta x \ge h$ 可得光子的 x 坐标的不确定量至少为

- (A) 25 cm. (B) 50 cm.
- (C) 250 cm. (D) 500 cm.

10、(本题 3 分) (4225)

7

Γ

在激光器中利用光学谐振腔

- (A) 可提高激光束的方向性,而不能提高激光束的单色性.
- (B) 可提高激光束的单色性, 而不能提高激光束的方向性.
- (C) 可同时提高激光束的方向性和单色性.
- (D) 既不能提高激光束的方向性也不能提高其单色性.

二、填空题(共30分)

11、(本题 3 分) (1382)

电荷分别为 q_1 , q_2 , q_3 的三个点电荷分别位于同一圆周的三个点上, 如图所示. 设无穷远处为电势零点, 圆半径为 R, 则 b 点处的电势

U = \circ

12、(本题 3 分) (1446)

A、B 两个导体球,它们的半径之比为 2:1,A 球带正电荷 Q,B 球不带电,若使两球接触一下再分离,当 A、B 两球相距为 B 时,(B 远大于两球半径,以致可认为 B 是点电荷)则两球间的静电力 B = ______。

13、(本题 B 分)(5667)

均匀磁场的磁感强度 \bar{B} 与半径为 r 的圆形平面的法线 \bar{n} 的夹角为 α ,今以圆周为边界,作一个半球面 S,S 与圆形平面组成封闭面如图.则通过 S 面

的磁通量 $\boldsymbol{\sigma}$ =_____。

14、(本题 3 分) (5480)

在真空中,电流由长直导线 1 沿半径方向经 a 点流入一由电阻均匀的导线构成的圆环,再由 b 点沿切向从圆环流出,经长直导线 2 返回电源(如图). 已知直导线上的电流强度为 I,圆环半径为 R. a、b 和圆心 O 在同一直线上,则 O

处的磁感强度 B 的大小为_____。

15、(本题 3 分) (2097)

如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为 λ ,圆环可绕通过环心 O 与环面垂直的转轴旋转. 当圆环以角速度 ω 转动时,圆环受到的磁力矩为

_____,其方向____。

16、(本题 3 分) (2333

一长直导线旁有一长为 b,宽为 a 的矩形线圈,线圈与导线共面,长度为 b 的边与导线平行且与直导线相距为 d,如图. 线圈与导线的互感系数为

17、	(本题 3 分) (2346)
	圆形平行板电容器,从 $q=0$ 开始充电,则充电过程中,极板间某点 P
处电	₽• □场强度的方向为
磁场	强度的方向为。
18、	(本题 3 分) (4967)
	锂($Z=3$)原子中含有 3 个电子,电子的量子态可用 (n, l, m_l, m_s) 四个量子数来描述,若
己知	1 基态锂原子中一个电子的量子态为 $(1,0,0,\frac{1}{2})$,则其余两个电子的量子态分别为
()和()。
19、	(本题 3 分) (5374)
	已知 $T=0$ K 时锗的禁带宽度为 0.78 eV,则锗能吸收的辐射的最长波长是
	μm。 (普朗克常量 $h = 6.63 \times 10^{-34} \text{J} \cdot \text{s}$, $1 \text{eV} = 1.60 \times 10^{-19} \text{J}$)
20、	(本题 3 分) (8036)
	激光器的基本结构包括三部分,即、、和和。

三、计算题(共40分)

21、(本题 10 分) (5130)

一半径为 R的各向同性均匀电介质球体均匀带电,其自由电荷体密度为 ρ ,球体的介电常量为 ε_{r1} ,球体外充满介电常量为 ε_{r2} 的各向同性均匀电介质. 求球内外任一点的场强大小和电势 (设无穷远处为电势零点)。

22、(本题 10 分) (5130)

半径为R的半圆线圈ACD通有电流 I_2 ,置于电流为 I_1 的无限长直线电流的磁场中,直线电流 I_1 恰过半圆的直径,两导线相互绝缘。求半圆线圈受到长直线电流 I_1 的磁力。

23、(本题 10 分) (2498)

载流长直导线与矩形回路 ABCD 共面,导线平行于 AB,如图所示. 求下列情况下 ABCD 中的感应电动势:

- (1) 长直导线中电流 $I = I_0$ 不变,ABCD 以垂直于导线的速度 \bar{v} 从图示初始位置远离导线 匀速平移到某一位置时(t 时刻)。
 - (2) 长直导线中电流 $I = I_0 \sin \omega t$, ABCD 不动。
- (3) 长直导线中电流 $I=I_0\sin\omega t$,ABCD 以垂直于导线的速度 $\bar{\upsilon}$ 远离导线匀速运动,初始位置也如图。

24、(本题共10分)

(1)(5366)假定在康普顿散射实验中,入射光的波长 λ_0 = 0.0030 nm,反冲电子的速度 v = 0.6c,求散射光的波长 λ 。

(电子的静止质量 m_e =9.11×10⁻³¹ kg ,普朗克常量 h =6.63×10⁻³⁴ J•s,1 nm = 10⁻⁹ m,c 表示真空中的光速)

(2) (4525) 已知第一玻尔轨道半径 a,试计算当氢原子中电子沿第 n 玻尔轨道运动时,其相应的德布罗意波长是多少?