WELL LOG-CASE STUDY

 \Diamond

INDIAN INSTITUTE OF TECHNOLOGY(INDIAN SCHOOL OF MINES), DHANBAD

GROUP-4: Gorgonichthys-1

Created by

Ayush Babukumar

INSTRUCTOR

Dr. PARTHA PRATIM MANDAL

1) PROPOSE NECESSARY INSTRUMENTATION AND ECONOMIC REQUIREMENT TO DESIGN DENSITY TOOL IF DEPARTMENT WANTS TO BUILD IT.

- Necessary instruments that one would need to build a Formation Density tool.
 - 1. A gamma-ray source
 - 2. Gamma-Ray Detectors
 - 3. Detector Electronics
 - Data AcquisitionSystem
 - 5. Telemetry System
 - 6. Shielding Materials
 - 7. Tool Housing
 - 8. Calibration Blocks

Component wise price distribution is given in the following table:-

Overall a basic field deployable research tool would cost between 10 to 20 Lacs.

Equipment & Component Costs					
Cesium-137 Source	₹ 1,50,000-3,,00,0000				
Nal(TI) Scintillation Detector	₹ 1,00,000-2,50,000				
Signal Conditioning Electronics	₹ 50,000-1,00,000				
Data Acquisition System	₹ 30,000-70,000				
Telemetry System	₹ 50,000-1,50,000				
Lead Shielding / Collimator	₹ 20,000-60,000				
Tool Housing (SS/Inconel)	₹ 50,000-1,00,000				
Calibration Biocks	₹ 30,000-80,000				
Mechanical Design & Machining	₹ 40,000-1,00,000				
Lab Infrastructure & Safety					
Radiation Handling Setup	₹1,00,000+				
Safety Gear & Mouitoring	₹ 30,000-60,000				
Licensing and Regulatory Fees	₹ 20,000 - 50,000				
Human & Academic Resources					
Faculty/Project Guide	_				
Technicians, Research Students					
Total Estimated Budget (INR)					
Basic Simulator (No Source	₹1-2 Lakhs				
Lab-Grade Prototype (With Source)	₹ 5 -10 Lakhs				

Quality control of Wireline Logs

Pre Job QC:

- Tool calibration
- Tool functionality
- Logging plan review

During Logging (Real-Time QC):

- Log response monitoring
- Depth control
- Tool speed
- Cable tension and movement
- Environmental corrections

Post-Job QC:

- Data validation
- Repeat section analysis
- Crossplot and cross-tool checks
- Log editing
- Documentation

- Bit size is 8.5 inches over the depth zone and is constant
- The zones where the calliper is varying more than 2 inches are the bad borehole zone (washouts or borehole swelling)

 Bad Borehole zones are not reliable since they hinder with the actual valuable data and create errors in our interpretation.

OUTLIERS

- An outlier is a data point that is significantly different from the rest of the data..
- These points are bad for our data and should be removed while we proceed with the interpretation.
- We can point out outliers from histograms, scatter plots or even cross plot

OUTLIERS

Some more outliers !!!

Calculation of total porosity and Max porosity from the density and neutron combination.

$$\varphi = \frac{\rho_{ma} - \rho_b}{\rho_{ma} - \rho_{fl}}$$

 ρ_{ma} = the density of the rock matrix

 ρ_b = the bulk density of formation [from log]

 ρ_{fl} = the density of pore fluid

For gas bearing

formation

$$\Phi_{N-D} = \sqrt{\frac{\Phi_N^2 + \Phi_D^2}{2}}$$

Max Porosity = 0.76 @4499.5m depth

VELOCITY AND DENSITY DEPTH PROFILE (COMPRESSIONAL, SHEAR AND BULK DENSITY LOG) COLOUR CODED WITH TOTAL POROSITY.

$$I_{GR} = \frac{GR - GR_{min}}{GR_{max} - GR_{min}}$$

$$Vshc = 0.33 \times (2^{(2 \times I_{GR})} - 1)$$

GENERATED RESERVOIR FLAG WHERE VOLUME OF SHALE, VSH <= 0.35 AND SW <= 0.7.

REPORT TOTAL POROSITY, WATER SATURATION, AND VSH WITH STANDARD DEVIATION OF THE RESERVOIR ZONE.

	DEPTH	Volume of Shale	Water Saturation	Total Porosity
0	4717.2372	0.330737	0.032171	0.418864
1	4717.0848	0.206753	0.032171	0.418864
2	4716.9324	0.137325	0.032171	0.418864
3	4716.7800	0.117112	0.032171	0.418864
4	4716.6276	0.112621	0.032171	0.418864
****	***			
2279	3913.6320	0.343723	0.032171	0.418864
2280	3912.7176	0.347925	0.032171	0.418864
2281	3912.5652	0.343723	0.032171	0.418864
2282	3912.4128	0.337114	0.032171	0.418864
2283	3911.0412	0.326857	0.032171	0.418864
2284 rows × 4 columns				

REFERENCE:-

- Google Collab workbook used for this case study
- Basic Petrophysics python file earlier provided during practical

Thank you very much!