SVNIT,Surat Computer Engineering Department Data Warehousing and Mining Tutorial-5

- 1. Given a decision tree, you have the option of (a) converting the decision tree to rules and then pruning the resulting rules, or (b) pruning the decision tree and then converting the pruned tree to rules. What advantage does (a) have over (b)?
- 2. The following table consists of training data from an employee database. The data have been generalized. For example, "31:::35" for age represents the age range of 31 to 35. For a given row entry, count represents the number of data tuples having the values for department, status, age, and salary given in that row.

department	status	age	salary	count
sales	senior	3135	46K50K	30
sales	junior	2630	26K30K	40
sales	junior	3135	31K35K	40
systems	junior	2125	46K50K	20
systems	senior	3135	66K70K	5
systems	junior	2630	46K50K	3
systems	senior	$41 \dots 45$	66K70K	3
marketing	senior	3640	46K50K	10
marketing	junior	3135	41K45K	4
secretary	senior	4650	36K40K	4
secretary	junior	2630	26K30K	6

Let status be the class label attribute.

- (a) How would you modify the basic decision tree algorithm to take into consideration the count of each generalized data tuple (i.e., of each row entry)?
- (b) Use your algorithm to construct a decision tree from the given data.
- (c) Given a data tuple having the values "systems," "26 . . . 30," and "46–50K" for the attributes department, age, and salary, respectively, what would a na "ive Bayesian classification of the status for the tuple be?

3. The data tuples of the table given below are sorted by decreasing probability value, as returned by a classifier. For each tuple, compute the values for the number of true positives .TP/, false positives .FP/, true negatives .TN/, and false negatives .FN/. Compute the true positive rate .TPR/ and false positive rate .FPR/. Plot the ROC curve for the data.

Tuple #	Class	Probability
1	P	0.95
2	N	0.85
3	P	0.78
4	P	0.66
5	N	0.60
6	P	0.55
7	N	0.53
8	N	0.52
9	N	0.51
10	P	0.40

- 4. Outline methods for addressing the class imbalance problem. Suppose a bank wants to develop a classifier that guards against fraudulent credit card transactions. Illustrate how you can induce a quality classifier based on a large set of non fraudulent examples and a very small set of fraudulent cases.
- 5. Experiment with any dataset of your choice using a decision tree model, logistic regression, naïve Bayes classifier, and a support vector model. Make a table of your results. Are the differences in model performance significant?