Hafta 1 İŞARETLER VE SİSTEMLER

2019-2020

GÜZ

İşaretler ve Sistemler

- İşaretler ve Sistemler bilim dalı sinyalleri işleyen sistemleri tanımlamak ve analiz etmek için matematiksel teknikleri kullanır
- İşaret: bilgi taşıyan bir yada daha fazla değişkene bağlı değişen büyüklük

Radar Örneği

Hız Sabitleyici

Ayrık-zamanlı işaretler

Ayrık-zamanlı işaret: Resim pikselleri

Sürekli-zaman işaretleri

Basit bir RC devresinde kaynak veya kondansatör

üzerindeki gerilim

Ses kaydetme

Sinyallerin Grafiksel Gösterimi

Continuous-time signals x(t) or x_c(t)

Discrete-time signals x[n] or x_d[n]

Zaman üzerinde öteleme

Zaman üzerinde Tersini Alma

Zaman üzerinde Ölçekleme

$$t \rightarrow t/2$$

ÖRNEK

Örnek

ÖRNEK

ÖRNEK

ÖZET

```
    x(t) → x(at-b)
    |a| < 1 Doğrusal genişleme</li>
    |a| > 1 Doğrusal sıkıştırma
    a < 1 Zaman üzerinde tersini alma</li>
    b > 0 Geriye doğru zamanı öteleme
    b < 0 İleriye doğru zamanı öteleme</li>
```

Önemli İşaretler

- Birim Basamak
- Delta Dirak
- Birim Rampa

Önemli İşaretler: Birim Basamak

• Birim Basamak: u(t) = $\begin{cases} 1 & \text{for } t > 0, \\ 0 & \text{for } t < 0. \end{cases}$

İki adet birim basamak işaretinden kare dalga elde etme

$$u(t-1) - u(t-3)$$

Lojik '1'

İşaretleri açma / kapama için kullanma

• $x(t) = \cos(2\pi t)u(t)$ sıfır anında açar

• $x(t) = e^t(u(t) - u(t-1))$ sadece 0 ve 1 arasında : sıfırdan farklıdır

BIRIM RAMPA

Birim Rampa işaretini kullanarak yeni işaretler üretme

$$r(t) + 3r(t-1) - 9r(t-2) + 5r(t-3)$$
:

$$v(t) = (2t+1)[u_0(t) - u_0(t-1)] + 3[u_0(t-1) - u_0(t-2)] + (-t+3)[u_0(t-2) - u_0(t-3)]$$

Dirak İmpuls «Fonksiyonu»

Birim Basamak ve Birim İmpuls arasındaki fark

Birim Darbe Fonksiyonu

Toplamı 1 olan son derece kısa bir sinyal

Delta Dirak Fonksiyonu Özellikleri

- zero for all $t \neq 0$, yet integrates to one: $\int_{-\infty}^{\infty} \delta(t) dt = 1$
- Integrates to unit step: $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$
- derivative of unit step: $\delta(t) = \frac{d}{dt}u(t)$
- Sampling property:
 Multiplying anything by a delta function yields a scaled delta function:

$$x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0)$$

· Sifting property:

$$\int_{-\infty}^{\infty} x(t) \delta(t - t_0) dt = x(t_0)$$

Nasıl Çizilir?

İşaretlerin Kategorize Edilmesi

- Tek, Çift, ne tek ne çift
- Periyodik, periyodik olmayan
- nedensel, nedensel olmayan
- "enerji" (sonlu enerji, sıfır enerji)
- "güç" (sonsuz enerji, sonlu güç)

Tek, Çift

Cift: x(-t) = x(t)

Tek: x(-t) = -x(t)

örnek: t^4 , $e^{-|t|}$, cos(t), ...

örnek: t³, sin(t), ...

Teorem: herhangi bir sinyal tek ve çift parçalara ayrılabilir.

$$x(t) = x_e(t) + x_o(t)$$

$$x_e(t) = \frac{x(t) + x(-t)}{2}$$

$$x_o(t) = \frac{x(t) - x(-t)}{2}$$

Periyodiklik

Bir x(n) işareti tüm n değerleri ve sabit bir N sayısı için,

$$x(n) = x(n + N)$$

koşulunu sağlıyorsa periyodiktir.

 $x(n) = e^{j\omega_0 n}$ için $2\pi/\omega_0$ tam sayı olursa periyodiktir.

Periyot: $N = 2\pi / \omega_0$

1.
$$x(n) = e^{j(\frac{\pi}{8})n}$$
 periyodiktir. $\omega_0 = \frac{\pi}{8}$, $N = \frac{2\pi}{\omega_0} = \frac{2\pi}{\pi/8} = 16$ tam sayı

2.
$$x(n) = e^{j(\frac{6\pi}{25})n}$$
 periyodiktir. $\omega_0 = \frac{6\pi}{25}$, $N = \frac{2\pi}{\omega_0} = \frac{2\pi}{6\pi/25} = 25/3$, $N = \frac{25}{3}3 = 25$

3.
$$x(n) = e^{j(\frac{n}{8})}$$
 periyodik değildir. $\omega_0 = \frac{1}{8}$, $N = \frac{2\pi}{\omega_0} = \frac{2\pi}{1/8} = 16\pi$

Nedensel vs. nedensel olmayan

For a causal system the output at time t_o depends only on the input for $t \le t_o$, i.e., the system cannot anticipate the input.

Enerji ve Güç

• Enerji:

$$E = \int_{-\infty}^{\infty} x^2(t) dt$$

• Güç:

$$P = \lim_{\tau \to \infty} \frac{1}{2\tau} \int_{-\tau}^{\tau} x^2(t) dt$$