Lung Disease Classification

with LungNet22 and EfficientNetV2

DATA 586 - Group 13

Craig Adlam Kulaphong Jitareerat Nijiati Abulizi

The Growing Need for Al-powered Lung Disease Classification

Traditional

LungNet22: A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images

Data Preprocessing

Model Architecture (LungNet22)

Pre-trained VGG16

Additional blocks of VGG16

Our Goals

Replicate the Paper

VGG16

Explore other Architectures

EfficientNetV2B0

EfficientNetV2B1

EfficientNetV2B2

EfficientNetV2B3

VGG19

2

Experiment OptimizerAdam vs AdamW

3

Workflow

Model's Performance - Accuracy

Model's Performance - Precision

Model's Performance - Recall

Model's Performance - F1-Score

X-Ray Test Images

True: pneumothorax Predicted: pneumothorax

True: nodule Predicted: nodule

True: nodule Predicted: nodule

True: nodule Predicted: nodule

True: mass Predicted: mass

True: effusion Predicted: effusion

True: pneumonia Predicted: pneumonia

True: mass Predicted: mass

True: covid Predicted: covid

True: control Predicted: control

True: effusion Predicted: effusion

True: effusion Predicted: effusion

True: control Predicted: control

True: pneumonia Predicted: pneumonia

True: pneumonia Predicted: pneumonia

Key Findings

- Successful replication of the original paper's results.
- EfficientNetV2 performs better than VGG in general.
- AdamW optimizer performs significantly better than Adam in VGG.
- Adam and AdamW performs similarly when EfficientNetV2 is used.

Limitations and Future work

- Preprocessing of images
- Dataset size
- Hardware GPU
- Different pretrained models

Thank You

Question?

Performance Evaluation - Overall

- F1-Score
- Highlight the best performing model
 EfficientNetV2B1 with AdamW optimizer.
- Briefly discuss the performance of other models (e.g., EfficientNet variants, LungNet22)

Performance Evaluation - Each Lung Disease

