Normalized Cross Correlation:

$$NCC = \cos \theta = \frac{ab}{|a||b|} = \frac{\sum_{i=0}^{N} a_i \cdot b_i}{\sqrt{\sum_{i=0}^{N} a_i^2} \sqrt{\sum_{i=0}^{N} b_i^2}}$$

$$\cos \theta = [-1,1]$$

#### Link:

https://www.sciencedirect.com/topics/computer-science/normalized-cross-correlation

Therefore, Normalized Cross correlation formula for the two signals:

$$NCC = \cos \theta = \frac{\sum_{i=0}^{N} (x_i - \mu) \cdot (y_i - \mu)}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \mu)^2}} * \frac{1}{N}$$

 $x_i$  are the ECG signal values,  $y_i$  are the oscilloscope signal values  $\mu$  is the mean of the respective values,

N is the total number of samples in the oscilloscope signal window.

**Standard Deviation:** 

$$sD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

 $x_i$  are the data points,  $\mu$  is the mean of the data, N is the total number of data points. Ideally, NCC = 1

% Error = 
$$\left(1 - \frac{Actual \ NCC}{Ideal \ NCC}\right) * 100$$

Patient 100 - Without Filter Normalized cross-correlation value: 0.482490



Patient 100 - Without Filter Normalized cross-correlation value: 0.865190





Patient 102 - Without Filter Normalized cross-correlation value: 0.907207



Patient 103 - Without Filter Normalized cross-correlation value: 0.448286



Patient 103 - Without Filter Normalized cross-correlation value: 0.925462



Patient 104 - Without Filter Normalized cross-correlation value: 0.552939



Patient 104 - Without Filter Normalized cross-correlation value: 0.942190



#### Before the filter:

#### 

#### After the filter:



Patient 104 - With Filter Normalized cross-correlation value: 0.474590



This shows that there is not much change in correlation value after apply the bandpass filter of 0.5 Hz to 125 Hz.

Code Link: <a href="https://colab.research.google.com/drive/1RalvVolny4">https://colab.research.google.com/drive/1RalvVolny4</a> K-AQ28NRhkKvd7SW1uQvb?usp=sharing

| Patient Number | Cross - correlation for single peak without filter | Percentage of error |
|----------------|----------------------------------------------------|---------------------|
| 100            | 0.865                                              | 13.5%               |
| 102            | 0.907                                              | 9.3%                |
| 103            | 0.925                                              | 7.5%                |
| 104            | 0.942                                              | 5.8%                |

# Obtaining emulator output in mV



## Obtaining emulator output in mV – Square output





## Obtaining emulator output in mV – ECG output







#### For 2 peaks:



### For 2 peaks:

Normalized cross-correlation value for patient 100: 0.527142

Normalized cross-correlation value for patient 102: 0.749451

Normalized cross-correlation value for patient 103: 0.587138

#### For One peaks:



### For 1 peaks:

Normalized cross-correlation value for patient 100: 0.951835

Normalized cross-correlation value for patient 102: 0.783558

Normalized cross-correlation value for patient 103: 0.717931



For V reading 2 peaks,



### For Volt reading 2 peaks:

Normalized cross-correlation value for patient 100: 0.558320

Normalized cross-correlation value for patient 102: 0.440430

Normalized cross-correlation value for patient 103: 0.807007

#### For V reading One peaks:



#### For Volt reading one peaks:

Normalized cross-correlation value for patient 100: 0.905598

Normalized cross-correlation value for patient 102: 0.949064

Normalized cross-correlation value for patient 103: 0.905941