19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 Nº de publication :

(à n'utiliser que pour les commandes de reproduction)

②1 Nº d'enregistrement national :

2 801 211

99 16267

(51) Int CI7: A 61 K 7/42

DEMANDE DE BREVET D'INVENTION

41

22 Date de dépôt : 22.12.99.

(30) Priorité: 19.11.99 FR 09914585.

(71) **Demandeur(s)** : *L'OREAL Société anonyme* — FR.

Date de mise à la disposition du public de la demande : 25.05.01 Bulletin 01/21.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule

Références à d'autres documents nationaux apparentés :

(72) Inventeur(s): FORESTIER SERGE

73 Titulaire(s):

74 Mandataire(s): L OREAL

(54) COMPOSITIONS COSMETIQUES AUTOBRONZANTES.

La présente invention concerne de nouvelles compositions cosmétiques destinées au bronzage artificiel de la peau, comprenant au moins un agent autobronzant, en particulier la DHA, et au moins un dérivé d'acide naphtalène mono- ou polycarboxylique.

COMPOSITIONS COSMETIQUES AUTOBRONZANTES

La présente invention concerne de nouvelles compositions cosmétiques à usage topique plus particulièrement destinées au bronzage et/ou au brunissage artificiel de la peau (compositions ci-après dénommées plus simplement compositions autobronzantes), ainsi que leur utilisation dans l'application cosmétique susmentionnée. Plus précisément encore, elle concerne des compositions autobronzantes comprenant au moins un agent d'autobronzage, préférentiellement de la dihydroxyacétone, et au moins un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol.

On sait que la dihydroxyacétone, ou DHA, est un produit particulièrement intéressant qui est couramment utilisé en cosmétique comme agent de bronzage artificiel de la peau ; appliqué sur cette dernière, notamment sur le visage, il permet d'obtenir un effet de bronzage ou de brunissage d'apparence semblable à celui qui peut résulter d'une exposition prolongée au soleil (bronzage naturel) ou sous une lampe UV. Une telle utilisation présente en outre pour avantage d'éviter totalement les risques de réaction cutanée généralement attachés aux expositions prolongées précitées (érythèmes, brûlures, perte d'élasticité, apparition de rides, vieillissement prématuré de la peau, et autres).

La plupart des produits cosmétiques destinés au bronzage artificiel de la peau utilisent la dihydroxyacétone (DHA) comme actif, mais son utilisation n'est pas entièrement satisfaisante.

L'un des problèmes rencontrés avec les compositions cosmétiques autobronzantes actuelles à base de DHA est que l'homogénéité de la coloration obtenue sur la peau et/ou sa tenue au cours du temps (résistance aux lavages notamment), sont souvent jugés comme insuffisants par les utilisateurs.

Par ailleurs, une autre difficulté réside dans le fait que la DHA présente une fâcheuse tendance, plus ou moins prononcée selon la nature du milieu dans lequel elle est formulée, à se dégrader au cours du temps, occasionnant par là des problèmes de stockage et/ou de conservation qui se traduisent généralement à terme par un jaunissement non souhaitable des compositions qui la contiennent.

En outre, la coloration cutanée conférée par la DHA est peu naturelle car de nuance jaune-orangée.

C'est avec étonnement que la demanderesse a constaté que l'association d'un actif autobronzant, en particulier de la dihydroxyacétone ou DHA, avec un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol permettait d'obtenir une coloration artificielle de la peau à la fois proche du bronzage naturel, homogène et ayant une bonne tenue dans le temps, en particulier une bonne résistance au lavage.

La demanderesse a découvert de manière surprenante que l'utilisation d'un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol dans une composition autobronzante à base d'un actif autobronzant tel que la DHA permettait d'améliorer sensiblement sa stabilité au stockage.

Ces découvertes sont à la base de la présente invention.

55

-30

La présente invention a donc pour objet une composition cosmétique utilisables pour le bronzage et/ou le brunissage artificiels de la peau caractérisée par le fait qu'elle contient, dans un support cosmétiquement acceptable au moins un actif auto-bronzant et au moins un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol.

La présente invention a également pour objet l'utilisation d'un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol dans une composition cosmétique contenant au moins un actif autobronzant dans le but d'améliorer la tenue de la couleur sur la peau dans le temps et/ou l'homogénéité de la couleur sur la peau et/ou stabilité au stockage.

D'autres objets de l'invention apparaîtront à la lecture de la description et des exemples qui suivent.

Les composés naphtaléniques conformes à l'invention ont une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol.

Les énergies de niveau excité triplet peuvent être déterminées par les techniques de perturbation par l'oxygène ou de phosphorescence telles que décrites dans l'article de J. Gonzenbach, T. J. Hill, T.G. Truscott « The Triplet Energy Levels in UVA and UVB Sunscreens », J. Photochem. Photobiol. B : Biol, vol. 16, pages 337-379 (1992). La technique de pertubation par l'oxygène consiste à mesurer le spectre d'absorption UV d'un composé lorsque celui-ci est placé dans un environnement sous forte pression d'oxygène : le 2000 psi. Sous ces conditions, les règles de sélection du spin sont perturbées et l'exposition du composé aux UV conduit au niveau excité triplet le plus bas par excitation directe de l' état fondamental. La longueur d'onde λ (en μm) à laquelle la transition s'effectue est utilisée pour calculer l'énergie du niveau triplet en kcal/mol par la formule E= 28,635/λ qui est dérivée de l'équation E = hv où E est l'énergie, h la constante de Planck et v la fréquence de l'onde électromagnétique.

La technique de phosphorescence se base sur le fait que de nombreux composés émettent une phosphorescence lors de la désactivation de leur niveau excité triplet. En mesurant la longueur d'onde à laquelle la phosphorescence intervient les énergies de niveau excité triplet peuvent être calculées comme précédemment. Les énergies de niveau excité triplet peuvent être déterminées en mesurant les spectres de phosphorescence d'échantillons avec un spectrophotomètre équipé d'un accessoire de phosphorescence. De tels niveaux excités triplets ont été largement reportés par exemple dans l'article de A. J. Gordon, R. A. Ford, « The Chemist Companion », John Wiley & Sons, pages 351-355 (1992).

Les composés naphtaléniques conformes à l'invention peuvent être choisis parmi les composés comprenant au moins un motif répondant à la structure suivante :

$$\begin{array}{c|c}
 & O \\
 & (C - A)_{x} \\
 & (I) \\
 & - (B)_{y}
\end{array}$$

45

dans laquelle:

A, identiques ou différents, désignent un atome d' hydrogène, un groupe OR_1 ; un groupe NR_2R_3 ou un cation M

x est un nombre de 1 à 8;

- 5 y est un nombre de 0 à 7 avec x+y ≤ 8;
 - B, identiques ou différents, désignent hydrogène, OR_1 ; un groupe NR_2R_3 ou un groupe $-(C=0)R_1$;
 - R_1 , R_2 , R_3 , identiques ou différents, désignent hydrogène; un alkyle en C_1 - C_{30} , linéaire ou ramifié acyclique ou cyclique, éventuellement interrompu par un ou plusieurs hétéroatomes et éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un alcényle en C_2 - C_{30} , linéaire ou ramifié acyclique ou cyclique, éventuellement interrompu par un ou plusieurs hétéroatomes (tels que O, S, N) et éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un groupement aryle, aralkyle ou alkylaryle en C_6 - C_{30} , éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un hétérocycle en C_3 - C_{12} , éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un halogène (tel que fluor, brome ou chlore); un groupe nitrile; un groupe amino; un groupe nitro; un groupe cyano; un groupe SO_3H ou SO_3M ; un groupement comportant au moins un atome de silicium;
- 20 M représente un cation de métal alcalin, de métal alcalino-terreux, un groupe ammonium ou un reste d'amine ou d'alcanolamine quatemisée.

Parmi les composés de formule (I) connus dans l'art antérieur et utilisables conformément à l'invention, on peut citer

- 25 (1) les naphtaldéhydes tels que :
 - le 1-naphtaldéhyde, (disponible chez ALDRICH)
 - le 2-naphtaldéhyde, (disponible chez ALDRICH)
 - (2) les naphtones telles que
- 30 le 1-acétonaphtone (disponible chez ALDRICH)
 - le 2- acétonaphtone (disponible chez ALDRICH)
 - (3) les acides naphtalène mono- ou polycarboxyliques et leurs sels tels que :
 - l'acide 1-naphtalène carboxylique (disponible chez ALDRICH-catalogue 1999-2000)
- 35 l'acide 2-naphtalène carboxylique (disponible chez ALDRICH) ;
 - l'acide 1-hydroxy 2-naphtalène carboxylique (disponible chez ALDRICH)
 - l'acide 2-hydroxy 1-naphtalène carboxylique (disponible chez ALDRICH)
 - l'acide 3-hydroxy 2-naphtalène carboxylique (disponible chez ALDRICH)
 - l'acide 6-hydroxy 2-naphtalène carboxylique (disponible chez ALDRICH)
- 40 l'acide 1,4-naphtalène dicarboxylique (disponible chez ALDRICH) ;
 - l'acide 2,3-naphtalène dicarboxylique (disponible chez ALDRICH)
 - l'acide 2,6-naphtalène dicarboxylique (disponible chez ALDRICH)
 - l'acide 2,6-naphtalène dicarboxylique
 - l'acide 1,3-naphtalène dicarboxylique
- l'acide 1,2-naphtalène dicarboxylique
 - l'acide 1,5-naphtalène dicarboxylique
 - l'acide 1,6-naphtalène dicarboxylique
 - l'acide 1,7-naphtalène dicarboxylique
 - l'acide 2,7-naphtalène dicarboxylique
- 50 le sel de potassium de l'acide 4-sulfo 1,8-naphtalène dicarboxylique
 - l'acide 1,2,3-naphtalène tricarboxylique
 - l'acide 1,2,3-naphtalène tricarboxylique
 - l'acide 1,2,4-naphtalène tricarboxylique
 - l'acide 1,2,5-naphtalène tricarboxylique
- l'acide 1,2,6-naphtalène tricarboxylique

BNSDOCID: <FR_____2801211A1_1_>

- l'acide 1,2,7-naphtalène tricarboxylique
- l'acide 1,2,8-naphtalène tricarboxylique
- l'acide 1,3,5-naphtalène tricarboxylique
- l'acide 1,3,7-naphtalène tricarboxylique
- l'acide 1,3,8-naphtalène tricarboxylique
 - l'acide 1,4,5-naphtalène tricarboxylique
 - l'acide 1,4,6-2-naphtalène tricarboxylique
 - l'acide 2,3,5-naphtalène tricarboxylique
- l'acide 2,3,6-naphtalène tricarboxylique
- 10 l'acide 1,4,5,8-naphtalène tétracarboxylique (disponible chez ALDRICH)
 - l'acide 1,2,3,4-naphtalène tétracarboxylique
 - l'acide 1,2,5,8-naphtalène tétracarboxylique
 - l'acide 1,3,6,8-naphtalène tétracarboxylique
 - l'acide 1,4,5,8-naphtalène tétracarboxylique
- 15 l'acide 2,3,6,7-naphtalène tétracarboxylique
 - (4) les mono- ou polyesters d'acide naphtalène mono- ou polycarboxylique tels que :
 - le diméthylester de l'acide 2,3-naphtalène dicarboxylique
 - le diméthylester de l'acide 2,3-naphtalène dicarboxylique
- 20 le méthylester de l'acide 2-naphtalène carboxylique (disponible chez ALDRICH).
 - (5) les mono- ou polyamides d'acide naphtalène mono- ou polycarboxylique tels que le diamide de l'acide 2,3-naphtalène dicarboxylique.
- On utilisera plus préférentiellement les diesters et polyesters d'acide naphtalène dicarboxylique d'alcool, de diol ou de polyglycol de faibles poids moléculaires tels que décrits et préparés dans le brevet US 5,993,789 (faisant partie intégrante du contenu de la demande de brevet) et choisis des diesters ou des polyesters d'acide naphtalène dicarboxylique choisis parmi
- 30 (i) les diesters de formule (II) suivante :

$$R_4O_2C$$
 CO_2R_4 (II)

(ii) les diesters ou les polyesters de formule (III) suivante :

$$HO-R_6-O_2C- - CO_2R_5-OH \qquad (III)$$

(iii) les diesters ou les polyesters bloqués par un alcool de formule (IV) suivante :

$$R_4O_2C - CO_2 R_5O_2C - CO_2 R_4 \qquad (IV)$$

(iv) leurs mélanges

40 dans lesquelles:

- les radicaux R₄, identiques ou différents, désignent un radical alkyle en C₁-C₂₂, linéaire ou ramifié ;

les radicaux R₅ et R₆, identiques ou différents, désignent un radical alkylène, linéaire ou ramifié en C₁-C₆;

 k et l sont des nombres de 1 à 100, de préférence de 1 à 10 et plus préférentiellement de 2 à 7.

Parmi ces diesters et polyesters d'acide naphtalène dicarboxylique de formule (II), (III), ou (IV), on utilisera de préférence les diesters et les polyesters de l'acide 2,6-naphtalène dicarboxylique et plus particulièrement les polyesters répondant à la formule (IV) résultant de la réaction de l'acide 2,6-naphtalène dicarboxylique et du tripropylèneglycol et bloqués par le 2-butyloctanol ainsi que les polyesters répondant à la formule (IV) résultant de la réaction de l'acide 2,6-naphtalène dicarboxylique, du tripropylèneglycol et du diéthylèneglycol et bloqués par le 2-éthylhexanol.

Parmi les diesters et polyesters d'acide naphtalène dicarboxylique de formule (II), (III), ou (IV) disponibles sur le marché, on citera en particulier les produits vendus sous la dénomination commerciale HALLBRITE TQ par la société C.P. HALL et notamment le 2,6-diéthylhexyle naphtalate.

Les composés naphtaléniques conformes à l'invention sont généralement présents dans les compositions selon l'invention à une concentration totale comprise entre 0,1 et 20 % en poids environ, et de préférence entre 0,5 et 10 % en poids environ, par rapport au poids total de la composition.

L'actif auto-bronzant peut être choisi parmi : les dérivés mono ou polycarbonylés, comme la DHA, l'isatine, l'alloxane, la ninhydrine, le glycéraldéhyde, l'aldéhyde mésotartrique, les dérivés de pyrazoline-4,5-dione. L'actif auto-bronzant préférentiellement utilisé dans la présente invention est la dihydroxyacétone.

Ces actifs auto-bronzants peuvent être éventuellement associés à des colorants directs ou à des dérivés indoliques.

L'actif auto-bronzant, préférentiellement la dihydroxyacétone ou DHA, est présent dans les compositions selon l'invention dans des proportions suffisantes pour conférer à la peau, après application, une coloration similaire à la coloration obtenue à la suite d'un bronzage naturel. Elle est ainsi généralement présente dans des proportions comprises entre 0,1 et 20%, avantageusement entre 2 et 7% en poids par rapport au poids total de la composition, et de préférence comprises entre 3 et 6% en poids par rapport au poids total de la composition.

L'homme du métier saura, par de simples essais, adapter la proportion relative d'actif auto-bronzant et de dérivé d'acide naphtalène mono- ou polycarboxylique pour obtenir l'effet recherché.

Un autre objet de la présente invention est constitué par l'utilisation des compositions telles que ci-dessus définies pour la fabrication de produits pour le bronzage et/ou le brunissage artificiels de la peau.

Les compositions autobronzantes conformes à l'invention peuvent se présenter sous forme de crèmes, de laits, de gels, de gel-crèmes, d'émulsions huile-dans-eau, de dispersions vésiculaires, de lotions fluides, en particulier de lotions fluides vaporisables, ou tout autre forme généralement utilisée en cosmétique, en particulier celle convenant habituellement aux compositions cosmétiques autobronzantes

55

45

10

15

20

Le milieu cosmétiquement acceptable (ou support) dans ces compositions peut classiquement contenir de l'eau, un mélange d'eau et d'un ou plusieurs solvants organiques, ou un solvant ou un mélange de solvants organiques cosmétiquement acceptables. Ce milieu contient également, sous une forme de réalisation préférentielle, des corps gras et/ou des silicones cosmétiquement acceptables.

Les solvants peuvent être plus particulièrement choisis parmi les alcools polyhydriques comme par exemple le glycérol, l'éthylèneglycol, le propylèneglycol, le diéthylèneglycol et le sorbitol, ou bien encore parmi les alcools inférieurs hydrosolubles tels que l'éthanol, l'isopropanol ou le butanol.

Les différents corps gras utilisables peuvent être, quant à eux, choisis, seuls ou en mélanges, parmi les huiles d'origine végétale, animale ou minérale, les cires naturelles ou synthétiques, et analogues.

Parmi les huiles pouvant rentrer dans la composition de la phase grasse, on peut ainsi notamment citer :

- les huiles minérales telles que l'huile de paraffine et l'huile de vaseline,
- les huiles d'origine animale telles que le perhydrosqualène,
- les huiles d'origine végétale telles que l'huile d'amande douce, l'huile d'avocat, l'huile de ricin, l'huile d'olive, l'huile de jojoba, l'huile de sésame, l'huile d'arachide, l'huile de pépins de raisin, l'huile de colza, l'huile de coprah, l'huile de noisette, le beurre de karité, l'huile de palme, l'huile de noyau d'abricot, l'huile de calophyllum, l'huile de son de riz, l'huile de germes de mais, l'huile de germes de blé, l'huile de soja, l'huile de tournesol, l'huile d'onagre, l'huile de carthame, l'huile de passiflore et l'huile de seigle,
- les huiles de synthèse telles que l'huile de purcellin, le myristate de butyle, le myristate d'isopropyle, l'adipate d'isopropyle, l'adipate d'isopropyle, l'adipate d'éthylhéxyle, le stéarate de butyle, le stéarate d'isopropyle, le dicaprylate de propylène glycol et les esters dérivés d'acide lanolique tels que le lanolate d'isopropyle et le lanolate d'isopropyle, le myristate de butyle, le myristate de butyle, l'adipate d'isopropyle, l'adipate d'isopropyle, le stéarate d'i

Comme autres huiles utilisables, on peut encore citer les benzoates d'alcools gras en C₁₂-C₁₅ (Finsolv TN de FINETEX), les acétylglycérides, les octanoates et décanoates d'alcools et de polyalcools tels que ceux de glycol et de glycérol, les ricinoléates d'alcools et de polyalcools tels que ceux de cétyle, les triglycérides d'acides gras tels que les triglycérides caprylique/caprique, les triglycérides d'acides gras saturés en C₁₀-C₁₈, les huiles fluorées et perfluorées, la lanoline, la lanoline hydrogénée, la lanoline acétylée, les huiles de silicones, volatiles ou non, ou encore les solutions organiques de gommes et/ou de résines d'organosiloxanes.

Bien entendu, les compositions selon l'invention peuvent également contenir un ou plusieurs adjuvants cosmétiques, lipophiles ou hydrophiles, classiques, notamment ceux qui sont déjà utilisés de manière habituelle dans la fabrication et l'obtention des compositions cosmétiques autobronzantes.

Ainsi, parmi les adjuvants cosmétiques classiques susceptibles d'être contenus dans les compositions conformes à l'invention, on peut citer notamment les, les adoucissants, les antioxydants, les opacifiants, les stabilisants, les émollients, les filtres solaires organiques actifs dans l'UV-A et/ou l'UV-B, les pigments et les nanopigments minéraux photoprotecteurs, les agents hydratants, les vitamines, les parfums, les conservateurs,

.

20

. .

45

BNSDOCID: <FR_____2801211A1_I

les charges, les séquestrants, les colorants, ou tout autre ingrédient habituellement utilisé dans le domaine des produits autobronzants.

Les filtres solaires organiques actifs dans l'UVA et/ou l'UVB (absorbeurs), peuvent être hydrosolubles, liposolubles ou sous forme de particules insolubles dans les mileieux cosmétiques usuels. Ces filtres solaires organiques peuvent être notamment choisis parmi les dérivés cinnamiques; les dérivés de dibenzoylméthane; les dérivés salicyliques, les dérivés du camphre; les dérivés de triazine tels que ceux décrits dans les demandes de brevet US 4367390, EP863145, EP517104, EP570838, EP796851, EP775698, EP878469 et EP 933376; les dérivés de la benzophénone; les dérivés de β,β'-diphénylacrylate, les dérivés de benzimidazole; les dérivés bis-benzoazolyle tels que ceux décrits dans les brevets EP-A-0669323 et US 2,463,264; les dérivés de bis-hydroxyphénolbenzotriazole tels que ceux décrits dans les demandes US 5237 071, US 5 166 355, GB-A-2 303 549, DE 197 26 184 et EP-A-893 119; les dérivés de l'acide p-aminobenzoïque; les polymères hydrocarbonés filtres et les silicones filtres tels que ceux décrits notamment dans la demande WO-93/04665

Comme exemples de filtres solaires actifs dans l'UV-A et/ou l'UV-B, on peut citer : l'acide p-aminobenzoïque,

20 le p-aminobenzoate oxyéthyléné (25mol),

le p-diméthylaminobenzoate de 2-éthylhexyle,

le p-aminobenzoate d'éthyle N-oxypropyléné

le p-aminobenzoate de glycérol,

le salicylate d'homomenthyle,

le salicylate de 2-éthylhexyle,

le salicylate de triéthanolamine,

le salicylate de 4-isopropylbenzyle,

le 4-ter-butyl-4'-méthoxy-dibenzoylméthane,

le 4-isopropyl-dibenzovlméthane.

30 le 4-méthoxy cinnamate de 2-éthylhexyle,

le disopropyl cinnamate de méthyle,

le 4-méthoxy cinnamate d'isoamyle,

le 4-méthoxy cinnamate de diéthanolamine,

l'anthranilate de menthyle,

35 le 2-éthylhexyl-2-cyano-3,3'-diphénylacrylate,

l'éthyl-2-cyano-3,3'-diphénylacrylate,

l'acide 2-phényl benzimidazole 5-sulfonique et ses sels,

le 3-(4'-triméthylammonium)-benzylidèn-bornan-2-on-méthylsulfate,

le 2-hydroxy-4-méthoxybenzophénone,

40 le 2-hydroxy-4-méthoxybenzophénone-5-sulfonate,

le 2,4-dihydroxybenzophénone,

le 2,2',4,4'-tétrahydroxybenzophénone,

le 2,2'-dihydroxy-4,4'diméthoxybenzophénone,

le 2-hydroxy-4-n-octoxybenzophénone,

45 le 2-hydroxy-4-methoxy-4'-methylbenzophénone,

l'acide α-(2-oxoborn-3-ylidène)-tolyl-4-sulfonique et ses sels solubles

le 3-(4'-sulfo)benzylidèn-bornan-2-one et ses sels solubles,

le 3-(4'méthylbenzylidène)-d,l-camphre,

le 3-benzylidène-d,l-camphre,

50 l'acide benzène 1,4-di(3-méthylidène-10-camphosulfonique) et ses sels solubles, l'acide urocanique.

la 2,4,6-tris-[p-(2'-éthylhexyl-1'-oxycarbonyl)anilino]-1,3,5-triazine,

la 2-[p-(tertiobutylamido)anilino]-4,6-bis-[(p-(2'-éthylhexyl-1'-oxycarbonyl)anilino]-1,3,5-triazine

BNSDOCID: <FR_____2801211A1_I

la 2,4-bis {[4-2-éthyl-hexyloxy)]-2-hydroxy]-phenyl}-6-(4-méthoxy-phenyl)-1,3,5-triazine le polymère de N-(2 et 4)-[(2-oxobom-3-ylidèn)méthyl] benzyl]-acrylamide, l'acide 1,4-bis-benzimidazolyl-phénylen-3,3',5,5'-tétrasulfonique et ses sels solubles. le 2,2'-méthylène-bis-[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tétraméthylbutyl)phénol], le composé (2,2'-méthylène-bis-[6-(2H-benzotriazol-2-yl)-4-(methyl)phénol], les polyorganosiloxanes à fonction benzalmalonate les polyorganosiloxanes à fonction benzotriazole tel que le Drometrizole Trisiloxane.

Les pigments et les nanopigments minéraux photoprotecteurs (taille moyenne des particules primaires: généralement entre 5 nm et 100 nm, de préférence entre 10 nm et 50 nm) sont des pigments ou des nanopigments d'oxydes métalliques enrobés ou non comme par exemple des nanopigments d'oxyde de titane (amorphe ou cristallisé sous forme rutile et/ou anatase), de fer, de zinc, de zirconium ou de cérium qui sont tous des agents photoprotecteurs UV bien connus en soi. Des agents d'enrobage classiques sont par ailleurs l'alumine et/ou le stéarate d'aluminium. De tels nanopigments d'oxydes métalliques, enrobés ou non enrobés, sont en particulier décrits dans les demandes de brevets EP-A-0518772 et EP-A-0518773.

Un autre objet de l'invention consiste en des compositions cosmétiques ou dermatologiques caractérisées par le fait qu'elle comprennent au moins une émulsion telle que définie précédemment.

Un autre objet de la présente invention réside dans un procédé de traitement cosmétique de la peau destiné à la bronzer et/ou la brunir artificiellement et qui consiste essentiellement à appliquer sur celle-ci une quantité efficace d'une composition cosmétique telle que définie ci-dessus.

BNSDOCID: <FR_____2801211A1_I_

Un exemple concret, mais nullement limitatif, destiné à illustrer l'invention va maintenant être donné.

COMPOSITION	% en poids
Mélange d'alcool cetylstearylique et d'alcool cetylstearylique oxyethylene (33 OE) 80/20 (SINNOWAX AO -HENKEL)	7
Melange de mono et distearate de glycerol (CERASYNT SD-V ISP)	2
Alcool cétylique	1.5
Polydimethyl siloxane (DOW CORNING 200 FLUID -DOW CORNING)	.1
Benzoate d'alcools en C12/C15 (WITCONOL TN -WITCO)	15
Dihydroxyacétone	5
Glycerine	15
2,6-diéthylhexyle naphtalate vendu sous la dénomination HALLBRITE TQ par la société CP HALL	4
Triéthanolamine	qs pH 7
Conservateurs	qs
Eau déminéralisée qsp	100 g

BNSDOCID: <FR 2801211A1 | >

REVENDICATIONS

- 1. Composition cosmétique utilisable pour le bronzage et/ou le brunissage artificiels de la peau, caractérisée par le fait qu'elle contient, dans un support cosmétiquement acceptable au moins un actif auto-bronzant et au moins un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol.
- 2. Composition selon la revendication 1, où le ou les composés naphtaléniques sont choisis parmi les composés comprenant au moins un motif répondant à la structure suivante :

dans laquelle

- A, identiques ou différents, désignent un atome d'hydrogène, un groupe OR₁; un groupe NR₂R₃ ou un cation M
 - x est un nombre de 1 à 8;
 - y est un nombre de 0 à 7 avec x+y ≤ 8;
 - B, identiques ou différents, désignent hydrogène, OR_1 ; un groupe NR_2R_3 ou un groupe $-(C=O)R_1$;
 - R₁, R₂, R₃, identiques ou différents, désignent hydrogène ; un alkyle en C₁-C₃₀, linéaire ou ramifié acyclique ou cyclique, éventuellement interrompu par un ou plusieurs hétéroatomes et éventuellement substitué par un ou plusieurs groupements B différents
- d'hydrogène; un alcenyle en C_2 - C_{30} , linéaire ou ramifié acyclique ou cyclique, éventuellement interrompu par un ou plusieurs hétéroatomes (tels que O, S, N) et éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un groupement aryle, aralkyle ou alkylaryle en C_6 - C_{30} , éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un hétérocycle en C_3 - C_{12} , éventuellement substitué par un ou plusieurs groupements B différents d'hydrogène; un
- halogène (tel que fluor, brome ou chlore); un groupe nitrile; un groupe amino; un groupe nitro; un groupe cyano; un groupe SO₃H ou SO₃M; un groupement comportant au moins un atome de silicium;
 - M représente un cation de métal alcalin, de métal alcalino-terreux, un groupe ammonium ou un reste d'amine ou d'alcanolamine quaternisée.
- Composition selon la revendication 1 ou 2, où le ou les dérivés d'acide naphtalène mono- ou poly-carboxylique sont choisis dans le groupe constitué par :
 - (1)les naphtaldéhydes:
 - (2)es naphtones
- 40 (3) les acides naphtalène mono- ou polycarboxyliques et leurs sels ;
 - (4) les mono- ou polyesters d'acide naphtalène mono- ou polycarboxylique et leurs sels ;
 - (5)les mono- ou polyamides d'acide naphtalène mono- ou polycarboxylique et leurs sels

- 4. Composition selon l'une quelconque des revendications 1 à 3, où le ou les composés naphtaléniques sont des diesters ou des polyesters d'acide naphtalène dicarboxylique choisis parmi :
- (i) les diesters de formule (II) suivante :

$$R_4O_2C$$
 CO_2R_4 (II)

(ii) les diesters ou les polyesters de formule (III) suivante :

$$HO = \begin{bmatrix} R_6 - O_2C & CO_2 \\ R_5 - OH \end{bmatrix}$$
 (III)

(iii) les diesters ou les polyesters bloqués par un reste d'alcool de formule (IV) suivante :

$$R_4O_2C - CO_2 R_5O_2C - CO_2 R_4$$
 (IV)

(iv) leurs mélanges ;

dans lesquelles:

 - les radicaux R₄, identiques ou différents, désignent un radical alkyle en C₁-C₂₂, linéaire ou ramifié :

les radicaux R₅ et R₆, identiques ou différents, désignent un radical alkylène, linéaire ou ramifié en C₁-C₆;

- k et l sont des nombres de 1 à 100.

5. Composition selon la revendication 4, où le ou les composés naphtaléniques de formule (II), (III) ou (IV) sont des diesters ou des polyesters d'acide 2,6-naphtalène dicarboxylique.

- 6. Composition selon la revendication 5, où le composé naphtalénique de formule (II) est le 2,6-diéthylhexyle naphtalate.
 - 7. Composition selon la revendication 5, où le ou les composés naphtaléniques de formule (IV) sont choisis parmi les polyesters de l'acide 2,6-naphtalène dicarboxylique et du tripropylèneglycol bloqués par le 2-butyloctanol ou les polyesters de l'acide 2,6-naphtalène dicarboxylique, du tripropylèneglycol et du diéthylèneglycol bloqués par le 2-éthylhexanol.
 - 8. Composition selon l'une quelconque des révendications 1 à 7, où le ou les composés naphtaléniques sont présents dans les compositions selon l'invention à une concentration totale comprise entre 0,1 et 20 % en poids environ, et de préférence entre 0,5 et 10 % en poids environ, par rapport au poids total de la composition.
- 9. Composition selon l'une quelconque des revendications 1 à 8, caractérisée par le fait que l'actif auto-bronzant est choisi parmi : les dérivés mono ou polycarbonylés, comme la

DHA, l'isatine, l'alloxane, la ninhydrine, le glycéraldéhyde, l'aldéhyde mésotartrique, les dérivés de pyrazoline-4,5-dione.

- 10. Composition selon la revendication 9, caractérisée par le fait que l'actif auto-bronzant est la dihydroxyacétone.
 - 11. Composition selon l'une quelconque des revendications 1 à 10, caractérisée par le fait qu'elle comporte en outre au moins un composé choisi parmi les colorants directs et les dérivés indoliques.
 - 12. Composition selon l'une quelconque des revendications 1 à 11, caractérisée par le fait l'actif auto-bronzant est présent dans des proportions allant de 0,1 à 20%,
- 13. Composition selon la revendication 12, où l'actif auto-bronzant est présent dans des proportions allant de 2 à 7% en poids par rapport au poids total de la composition, et de préférence de 3 à 6% en poids par rapport au poids total de la composition.
 - 14. Utilisation d'une composition telle que définie dans les revendication 1 à 13 pour la fabrication de produits pour le bronzage et/ou le brunissage artificiels de la peau.
 - 15. Procédé de traitement cosmétique de la peau destiné à la bronzer et/ou la brunir artificiellement et qui consiste essentiellement à appliquer sur celle-ci une quantité efficace d'une composition cosmétique telle que définie dans les revendication 1 à 13.
- 25 16. Utilisation d'un composé naphtalénique ayant une énergie de niveau excité triplet allant de 56 kcal/mol à 61 kcal/mol tel que défini dans les revendications 1 à 7 dans une composition cosmétique contenant au moins un actif autobronzant tel que défini dans les revendications 1, 9 et 10, dans le but d'améliorer la tenue de la couleur sur la peau dans le temps et/ou l'homogénéité de la couleur sur la peau et/ou stabilité au stockage.

20

RAPPORT DE RECHERCHE PRÉLIMINAIRE PARTIEL

établi sur la base des demières revendications déposées avant le commencement de la recherche

voir FEUILLE(S) SUPPLÉMENTAIRE(S)

2801211

N° d'enregistrement national

FA 586285 FR 9916267

DOCL	IMENTS CONSIDÉRÉS COMME PERTINENTS	Revendications concernées	Classement attribué à l'invention par l'INPI
atégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes		
,,D,	US 5 993 789 A (BONDA ET AL.) 30 novembre 1999 (1999-11-30) * le document en entier *	1-16	A61K7/42
	US 5 976 513 A (ROBINSON) 2 novembre 1999 (1999-11-02) * le document en entier *	1-16	
	US 4 515 773 A (HERLIHY). 7 mai 1985 (1985-05-07) * le document en entier *	1-16	
			DOMAINES TECHNIQUES RECHERCHES (Int.CL.7)
			A61K
	Date d'achèvement de la recherche		Examinaleur
: <u>1</u>	10 octobre 200		scher, J.P.
X : pa Y : pa	E document de articulièrement pertinent à lut seul à la date de	dépôt et qui n'a été qu'à une date poste demande	d'une date antérieure publie qu'à cette date