Chapter 8 – Thermochemistry

Michael Brodskiy

Instructor: Mr. Morgan

January 7, 2021

- Reactions either absorb heat or release it:
 - 1. Exothermic Reaction Releases heat
 - 2. Endothermic Reaction Intakes heat
- $q = cm\Delta T$, where c is the specific heat and q is the heat/energy
- Units of specific heat are $\left[\frac{J}{gC}\right]$
- Enthalpy (ΔH) Reaction heat content. If $\Delta H < 0$ the reaction is exothermic, but if $\Delta H > 0$, the reaction is endothermic.
- ΔH for a reaction is equal but opposite in sign for reverse.
- Hess's Law $-\Delta H$ for a reaction is same whether it occurs directly or in a series.
 - 1. The enthalpy is the same for the following reactions:

$$A \to D$$

$$A \rightarrow B \rightarrow C \rightarrow D$$

- The Enthalpy of formations, ΔH_f , is the energy to form compounds: $\Delta H = \sum$ products $-\sum$ reactants
 - 1. Single, non-charged atoms (ex. O_2) equal zero
- ΔH may also be calculated through bond energies. $\Delta H = \text{Break} \text{Make}$.
- First line, heat of fusion, second line, heat of vaporization (it takes more energy to boil something than to melt something)
- Energy is only given off when a bond is made. It takes energy to break bonds.

Figure 1: Heating/Cooling Curve for ${\rm H_2O}$