

Generative modeling of mixed tabular data with the R package arf

Jan Kapar^{1,2}, David S. Watson, Kristin Blesch, and Marvin N. Wright

 $^1\mbox{Leibniz}$ Institute for Prevention Research & Epidemiology – BIPS $^2\mbox{Faculty}$ of Mathematics and Computer Science, University of Bremen

July 10, 2024 UseR! 2024

Generative modeling of mixed tabular data with arfMotivation

2

The hype about generative modeling

Generative modeling of mixed tabular data with arf Motivation

2

The hype about generative modeling

Generative AI is revolutionizing content creation by producing human-like text, images, and music. Its ability to generate high-quality, original content quickly is driving widespread interest and adoption.

Generative modeling of mixed tabular data with arf Motivation

2

The hype about generative modeling

Generative AI is revolutionizing content creation by producing human-like text, images, and music.

Its ability to generate high-quality, original content quickly is driving widespread interest and adoption.

Generative modeling of mixed tabular data with arfMotivation

2

The hype about generative modeling

Generative modeling of mixed tabular data with arf Motivation

2

The hype about generative modeling

- Text, speech, image and video synthesis
- Deep-learning-based methods
- Implementations almost exclusively in Python

Generative modeling of mixed tabular data with arf

2

The hype about generative modeling

- Text, speech, image and video synthesis
- Deep-learning-based methods
- Implementations almost exclusively in Python

What about tabular data?

- Less research
- Existing deep learning solutions often fail

Generative modeling of mixed tabular data with arf

2

The hype about generative modeling

- Text, speech, image and video synthesis
- Deep-learning-based methods
- Implementations almost exclusively in Python

What about tabular data?

- Less research
- Existing deep learning solutions often fail

 \implies arf package for tabular data synthesis based on ranger

Definition

3

Given a data set consisting of vectors $x \in \mathbb{R}^d$:

Definition

З

Given a data set consisting of vectors $x \in \mathbb{R}^d$:

• Generative modeling = modeling the joint density $p(\boldsymbol{x})$

Definition

Ć

Given a data set consisting of vectors $x \in \mathbb{R}^d$:

• Generative modeling = modeling the joint density p(x) (vs. discriminative modeling = directly modeling the conditional density p(y|X=x) for some dependent variable $y \in \mathbb{R}$)

Given a data set consisting of vectors $x \in \mathbb{R}^d$:

- Generative modeling = modeling the joint density p(x) (vs. discriminative modeling = directly modeling the conditional density p(y|X=x) for some dependent variable $y \in \mathbb{R}$)
- Not always explicit density estimation

Use cases for synthetic data

4

- Direct usage:
 - Chatbots
 - Translation
 - Transcription
 - Image generation
 - ...

Use cases for synthetic data

4

- Direct usage:
 - Chatbots
 - Translation
 - Transcription
 - Image generation
 - ...
- Indirect usage:
 - Data augmentation
 - Data balancing
 - Missing data imputation
 - Privacy preservation
 - ...

Overview

5

¹Watson et al. [2023]

5

- Fast
 - Built on data.table
 - Optional parallelization via future, doParallel
 - Fast random forest implementation ranger

Ę

Implementation of adversarial random forests¹:

- Fast
 - Built on data.table
 - Optional parallelization via future, doParallel
 - Fast random forest implementation ranger

Easy-to-use

5

- Fast
 - Built on data.table
 - Optional parallelization via future, doParallel
 - Fast random forest implementation ranger

- Easy-to-use
- No tuning required

- Fast
 - Built on data.table
 - Optional parallelization via future, doParallel
 - Fast random forest implementation ranger

- Easy-to-use
- No tuning required
- Able to handle missing values (ranger branch 'missing_values')

- Fast
 - Built on data.table
 - Optional parallelization via future, doParallel
 - Fast random forest implementation ranger

- Easy-to-use
- No tuning required
- Able to handle missing values (ranger branch 'missing_values')
- Comparable or superior performance on (mixed) tabular data

Algorithm and functions

6

Step 1: Grow adversarial random forests (adversarial_rf())

The package arf Algorithm and functions

6

Step 1: Grow adversarial random forests (adversarial_rf())

• Iterative approach: Train random forest classifiers to distinguish real data from naive synthetic data drawn from marginals of real data

Algorithm and functions

6

Step 1: Grow adversarial random forests (adversarial_rf())

- Iterative approach: Train random forest classifiers to distinguish real data from naive synthetic data drawn from marginals of real data
- Partitioning of data manifold into areas where independence w.r.t. the variables can be assumed locally

Algorithm and functions

6

Step 1: Grow adversarial random forests (adversarial_rf())

- Iterative approach: Train random forest classifiers to distinguish real data from naive synthetic data drawn from marginals of real data
- Partitioning of data manifold into areas where independence w.r.t. the variables can be assumed locally

Step 2: Estimate mixture distribution (forde())

Algorithm and functions

6

Step 1: Grow adversarial random forests (adversarial_rf())

- Iterative approach: Train random forest classifiers to distinguish real data from naive synthetic data drawn from marginals of real data
- Partitioning of data manifold into areas where independence w.r.t. the variables can be assumed locally

Step 2: Estimate mixture distribution (forde())

Estimate univariate densities per variable within leaves

Algorithm and functions

6

Step 1: Grow adversarial random forests (adversarial_rf())

- Iterative approach: Train random forest classifiers to distinguish real data from naive synthetic data drawn from marginals of real data
- Partitioning of data manifold into areas where independence w.r.t. the variables can be assumed locally

Step 2: Estimate mixture distribution (forde())

- Estimate univariate densities per variable within leaves
- Form mixture distribution over leaves weighted by share of real data

Algorithm and functions

7

Step 3: Use mixture distribution for

Algorithm and functions

7

Step 3: Use mixture distribution for

• (Conditional) sampling (forge())

Algorithm and functions

7

Step 3: Use mixture distribution for

- (Conditional) sampling (forge())
- (Conditional) likelihood computation (lik())

Algorithm and functions

7

Step 3: Use mixture distribution for

- (Conditional) sampling (forge())
- (Conditional) likelihood computation (lik())
- (Conditional) expectation computation (expct())

Machine learning utility evaluation

8

Dataset	Characteristics	Model	Accuracy (sd)	F1 (sd)	Time in sec
adult	classes = 2 $n = 32,561$ $d = 14$	Real ARF CTGAN CTABGAN+ TVAE	0.828 (0.006) 0.819 (0.006) 0.786 (0.020) 0.808 (0.008) 0.804 (0.007)	0.884 (0.004) 0.877 (0.005) 0.853 (0.019) 0.869 (0.006) 0.865 (0.006)	2.9 263.3 561.6 115.1
census	classes = 2 $n = 298,006$ $d = 40$	Real ARF CTGAN CTABGAN+ TVAE	0.922 (0.002) 0.903 (0.019) 0.916 (0.015) 0.912 (0.026) 0.928 (0.007)	0.957 (0.001) 0.946 (0.012) 0.954 (0.009) 0.952 (0.016) 0.961 (0.004)	53.2 4287.8 10182.1 1814.9
covertype	classes = 7 $n = 581,012$ $d = 54$	Real ARF CTGAN CTABGAN+ TVAE	0.895 (0.000) 0.707 (0.006) 0.633 (0.009) NA 0.698 (0.013)	0.838 (0.000) 0.549 (0.006) 0.400 (0.009) NA 0.459 (0.013)	103.5 13387.2 >24h 4882.0

9

The package arf

Machine learning utility evaluation

Dataset	Characteristics	Model	Accuracy (sd)	F1 (sd)	Time in sec
credit	classes = 2 $n = 284,807$ $d = 30$	Real ARF CTGAN CTABGAN+ TVAE	0.997 (0.001) 0.995 (0.001) 0.881 (0.099) 0.998 (0.000) 0.998 (0.000)	0.607 (0.029) 0.527 (0.036) 0.047 (0.031) 0.000 (0.000) 0.000 (0.000)	32.2 4898.0 7497.3 3847.6
intrusion	classes = 5 $n = 494,021$ $d = 40$	Real ARF CTGAN CTABGAN+ TVAE	0.998 (0.001) 0.993 (0.001) 0.944 (0.088) NA 0.990 (0.002)	0.833 (0.001) 0.656 (0.001) 0.645 (0.088) NA 0.598 (0.002)	68.2 8749.3 >24h 4306.0

Omitted IT-GAN and RCC-GAN.

Runtime

Simple examples: Data synthesis

11

Generate synthetic samples from the palmerpenguins dataset:

Simple examples: Data synthesis

11

Generate synthetic samples from the palmerpenguins dataset:

```
library(arf)
arf <- adversarial_rf(penguins)</pre>
## Iteration: 0. Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%
params <- forde(arf, penguins)
forge(params, 5)
## # A tibble: 5 x 8
     species island bill length mm bill depth mm flipper length mm body mass g
     <fct>
             <fct>
                              <dbl>
                                             <dbl>
                                                               <int>
                                                                           <int>
## 1 Adelie Dream
                                41.4
                                              17.1
                                                                 197
                                                                            3380
## 2 Adelie
            Biscoe
                                42
                                              18.8
                                                                 190
                                                                            4152
## 3 Chinstrap Dream
                               51.3
                                             19.2
                                                                 193
                                                                            3407
## 4 Adelie
              Dream
                                36.5
                                             17 2
                                                                 191
                                                                            3779
## 5 Adelie
            Riscoe
                                40.5
                                              19.2
                                                                 193
                                                                            3919
## # i 2 more variables: sex <fct>, vear <int>
```

Simple examples: Data synthesis

11

Generate synthetic samples from the palmerpenguins dataset:

```
library(arf)
arf <- adversarial rf(penguins, num trees = 10, min node size = 2)
## Iteration: 0. Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%
params <- forde(arf, penguins)
forge(params, 5)
## # A tibble: 5 x 8
     species island bill length mm bill depth mm flipper length mm body mass g
     <fct>
             <fct>
                              <dbl>
                                            <dbl>
                                                              <int>
                                                                          <int>
## 1 Adelie Dream
                               41.4
                                             17.1
                                                                197
                                                                           3380
## 2 Adelie
            Biscoe
                               42
                                             18.8
                                                                190
                                                                           4152
## 3 Chinstrap Dream
                               51.3
                                            19.2
                                                                193
                                                                           3407
## 4 Adelie
              Dream
                               36.5
                                             17 2
                                                                191
                                                                           3779
## 5 Adelie
            Riscoe
                               40.5
                                             19.2
                                                                193
                                                                           3919
## # i 2 more variables: sex <fct>, vear <int>
```

Simple examples: Data synthesis

11

Generate synthetic samples from the palmerpenguins dataset:

```
library(arf)
arf <- adversarial rf(penguins)
## Iteration: 0. Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%
params <- forde(arf, penguins, family = 'truncnorm', finite bounds = 'no')
forge(params, 5)
## # A tibble: 5 x 8
     species island bill length mm bill depth mm flipper length mm body mass g
     <fct>
             <fct>
                              <dbl>
                                            <dbl>
                                                              <int>
                                                                         <int>
## 1 Adelie Dream
                               41.4
                                             17.1
                                                                197
                                                                           3380
## 2 Adelie
            Biscoe
                               42
                                             18.8
                                                               190
                                                                          4152
## 3 Chinstrap Dream
                            51.3
                                            19.2
                                                               193
                                                                           3407
## 4 Adelie
              Dream
                               36.5
                                            17 2
                                                                191
                                                                           3779
## 5 Adelie
            Biscoe
                               40.5
                                             19.2
                                                                193
                                                                           3919
## # i 2 more variables: sex <fct>, vear <int>
```

Simple examples: Data synthesis

12

Generate samples under some desired conditions:

Simple examples: Data synthesis

12

Generate samples under some desired conditions:

```
library(arf)
arf <- adversarial rf(penguins)
## Iteration: 0. Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%
params <- forde(arf, penguins)
forge(params, 5, evidence = data.frame(island = 'Torgersen'))
## # A tibble: 5 x 8
    species island
                       bill length mm bill depth mm flipper length mm body mass g
     <fct>
            <fct>
                                <dbl>
                                              <db1>
                                                                <int>
                                                                            <int>
## 1 Adelie Torgersen
                                45.8
                                               20.8
                                                                  192
                                                                             4612
## 2 Adelie Torgersen
                                45 6
                                               19 3
                                                                  196
                                                                             3484
                                                                             3746
## 3 Adelie Torgersen
                                               20.9
                                                                  190
## 4 Adelie Torgersen
                                 36 6
                                               20.8
                                                                  191
                                                                             3563
## 5 Adelie Torgersen
                                 40 6
                                               17 7
                                                                  180
                                                                             3162
## # i 2 more variables: sex <fct>. vear <int>
```

Simple examples: Data synthesis

12

Generate samples under some desired conditions:

```
library(arf)
arf <- adversarial rf(penguins)
## Iteration: 0. Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%
params <- forde(arf, penguins)
forge(params, 5, evidence = data.frame(island = 'Torgersen', bill_length_mm = '>40'))
## # A tibble: 5 x 8
    species island
                       bill length mm bill depth mm flipper length mm body mass g
    <fct>
            <fct>
                                <dbl>
                                              <db1>
                                                                <int>
                                                                            <int>
## 1 Adelie Torgersen
                                41.7
                                               19.8
                                                                  208
                                                                             3647
## 2 Adelie Torgersen
                                41.1
                                               21.3
                                                                  200
                                                                             4535
## 3 Adelie Torgersen
                                45.4
                                               18.8
                                                                  204
                                                                             4852
## 4 Adelie Torgersen
                                40 2
                                               19 3
                                                                  197
                                                                             3661
## 5 Adelie Torgersen
                                 43 6
                                               20 9
                                                                  194
                                                                             4268
## # i 2 more variables: sex <fct>. vear <int>
```

Simple examples: (Conditional) likelihoods

Simple examples: (Conditional) likelihoods

```
library(arf)
arf <- adversarial_rf(penguins)

## Iteration: 0, Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%

params <- forde(arf, penguins)
lik(params, penguins[1:3,])</pre>
```

```
## [1] -3.655597 -4.023504 -4.154264
```


[1] 0.02584605 0.01789017 0.01569734

Simple examples: (Conditional) likelihoods

```
Lnibniz
```

```
library(arf)
arf <- adversarial_rf(penguins)

## Iteration: 0, Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%

params <- forde(arf, penguins)
lik(params, penguins[1:3,], log = F)</pre>
```

Simple examples: (Conditional) likelihoods

```
Lnibniz
```

```
library(arf)
arf <- adversarial_rf(penguins)

## Iteration: 0, Accuracy: 79.88%,
## Iteration: 1, Accuracy: 44.95%,

params <- forde(arf, penguins)
lik(params, penguins[1:3,], evidence = data.frame(sex = 'female'))

## [1] -4.179873 -3.654580 -4.259066</pre>
```

Simple examples: (Conditional) expectations

Simple examples: (Conditional) expectations

```
Lnibniz
```

```
library(arf)
arf <- adversarial rf(penguins)
## Iteration: 0, Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%
params <- forde(arf, penguins)
expct(params)
## # A tibble: 1 x 8
    species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
   <fct> <fct>
                            <dh1>
                                          <dh1>
                                                            <dh1>
                                                                        <db1>
## 1 Adelie Riscoe
                            43 9
                                           17 2
                                                             201
                                                                        4200.
## # i 2 more variables: sex <fct>, year <int>
```

Simple examples: (Conditional) expectations

```
Lnibmiz
```

```
library(arf)
arf <- adversarial_rf(penguins)

## Iteration: 0, Accuracy: 79.88%
## Iteration: 1, Accuracy: 44.95%

params <- forde(arf, penguins)
expct(params, query = "flipper_length_mm", evidence = data.frame(body_mass_g = 3300))

## # A tibble: 1 x 1
## flipper_length_mm
## <dbl>
## 1 189.
```

Simple examples: Shortcut functions

Simple examples: Shortcut functions

```
Libniz
```

```
library(arf)
rarf(penguins, 3)
## # A tibble: 3 x 8
     species
             island bill length mm bill depth mm flipper length mm body mass g
     <fct>
             <fct>
                              <dh1>
                                             <dh1>
                                                               <int>
                                                                           <int>
## 1 Adelie Dream
                               41.1
                                             17.6
                                                                200
                                                                            3408
## 2 Adelie Biscoe
                               41.4
                                                                183
                                                                           3749
                                             19
                               50.7
## 3 Chinstrap Dream
                                             19.4
                                                                190
                                                                            3484
## # i 2 more variables: sex <fct>. vear <int>
darf(penguins, query = penguins[1:3,])
## [1] -5.490055 -5.394553 -5.905513
earf(penguins)
## # A tibble: 1 x 8
     species island bill length mm bill depth mm flipper length mm body mass g
    <fct> <fct>
                            <dbl>
                                           <db1>
                                                             <db1>
                                                                         <dbl>
## 1 Adelie Biscoe
                             43.9
                                           17.2
                                                              201.
                                                                         4201.
```

Simple examples: Parallelization

Simple examples: Parallelization

```
Lnibniz
```

```
library(arf)
doFuture::registerDoFuture()
future::plan("multisession", workers = 4)
rarf(penguins, 5)
## # A tibble: 5 x 8
     species
             island bill length mm bill depth mm flipper length mm body mass g
     <fct>
               <fct>
                               <dbl>
                                             <db1>
                                                               <int>
                                                                           <int>
## 1 Chinstrap Dream
                                52.1
                                              17.9
                                                                 185
                                                                            3409
  2 Gentoo
              Riscoe
                                44.3
                                              13.9
                                                                 210
                                                                            5479
## 3 Chinstrap Dream
                                51.5
                                              19.8
                                                                 198
                                                                            4063
## 4 Gentoo
              Riscoe
                                50.7
                                              14.9
                                                                 219
                                                                            6256
## 5 Gentoo
            Biscoe
                                49.3
                                              16.1
                                                                 224
                                                                            5951
## # i 2 more variables: sex <fct>. vear <int>
```

3 Chinstrap Dream

Dream

i 2 more variables: sex <fct>. vear <int>

Biscoe

4 Adelie

5 Adelie

Simple examples: Parallelization

```
library(arf)
doParallel::registerDoParallel(cores = 4)
rarf(penguins, 5)
## # A tibble: 5 x 8
     species
             island bill length mm bill depth mm flipper length mm body mass g
     <fct>
             <fct>
                              <dbl>
                                            <db1>
                                                              <int>
                                                                          <int>
## 1 Adelie Dream
                               41.4
                                             17.1
                                                                 197
                                                                           3380
## 2 Adelie
            Riscoe
                               42
                                             18.8
                                                                190
                                                                           4152
```

19.2

17.2

19.2

51.3

36.5

40.5

191 3779 193 3919

193

193 3919

3407

Znibniz

Biscoe

i 2 more variables: sex <fct>. vear <int>

5 Adelie

Simple examples: Parallelization

```
library(arf)
doParallel::registerDoParallel(cores = 4)
rarf(penguins, 5, parallel = F)
## # A tibble: 5 x 8
     species
             island bill length mm bill depth mm flipper length mm body mass g
     <fct>
             <fct>
                              <dbl>
                                            <db1>
                                                              <int>
                                                                          <int>
                               41.4
                                             17.1
                                                                 197
                                                                           3380
## 1 Adelie Dream
## 2 Adelie
            Riscoe
                               42
                                             18.8
                                                                190
                                                                           4152
## 3 Chinstrap Dream
                               51.3
                                             19.2
                                                                193
                                                                           3407
## 4 Adelie
              Dream
                               36.5
                                             17.2
                                                                191
                                                                           3779
```

19.2

40.5

193 3919

Znibniz

Statistical utility: Setup

17

Replication of published German national cohort health studies with arf-generated synthetic data.

Statistical utility: Setup

17

Replication of published German national cohort health studies with arf-generated synthetic data.

Procedure:

• Learn 5 arf models

Statistical utility: Setup

17

Replication of published German national cohort health studies with arf-generated synthetic data.

Procedure:

- Learn 5 arf models
- Sample 5 data sets from each
- \Rightarrow 25 synthetic datasets

Statistical utility: Setup

17

Replication of published German national cohort health studies with arf-generated synthetic data.

Procedure:

- Learn 5 arf models
- Sample 5 data sets from each
- \Rightarrow 25 synthetic datasets
 - Perform study analysis on every synthetic dataset
 - Calculate median and 95% confidence intervals

Statistical utility: Setup

17

Replication of published German national cohort health studies with arf-generated synthetic data.

Procedure:

- Learn 5 arf models
- Sample 5 data sets from each
- ⇒ 25 synthetic datasets
 - Perform study analysis on every synthetic dataset
 - Calculate median and 95% confidence intervals
 - Compare with original data results

Wienbergen et al. [2022] (n = 1,713, d = 12) - Myocardial infarction

Wienbergen et al. [2022] (n = 1,713, d = 12) - Myocardial infarction

18

Logistic regression:

Wienbergen et al. [2022] (n = 1,713, d = 12) - Myocardial infarction

18

Logistic regression:

Berger et al. [2021] (n = 82,205, d = 47) - Loneliness during COVID

Berger et al. [2021] (n = 82,205, d = 47) - Loneliness during COVID

19

Linear regression:

Berger et al. [2021] (n = 82,205, d = 47) - Loneliness during COVID

19

Linear regression:

Conclusion & Outlook

20

The package arf

- Little or no tuning required
- Fast computation
- Competitive performance on tabular data

Conclusion & Outlook

20

The package arf

- Little or no tuning required
- Fast computation
- Competitive performance on tabular data

Outlook

- (Conditional) variances, covariances, CDFs
- Missing data imputation
- Explainable Al
- Counterfactuals generation
- Privacy guarantees: Differential privacy

Download arf

21

https://cran.r-project.org/package=arf https://github.com/bips-hb/arf

References

- K. Berger, S. Riedel-Heller, A. Pabst, M. Rietschel, and D. Richter. Loneliness during the first wave of the SARS-CoV-2 pandemic—results of the German National Cohort (NAKO). Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz, 64:1157–1164, 2021.
- D. S. Watson, K. Blesch, J. Kapar, and M. N. Wright. Adversarial random forests for density estimation and generative modeling. In International Conference on Artificial Intelligence and Statistics, pages 5357–5375. PMLR, 2023.
- H. Wienbergen, D. Boakye, K. Günther, J. Schmucker, L. A. Mata Marín, H. Kerniss, R. Nagrani, L. Struß, S. Rühle, T. Retzlaff, et al. Lifestyle and metabolic risk factors in patients with early-onset myocardial infarction: a case-control study. European Journal of Preventive Cardiology, 29(16):2076–2087, 2022.
- L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling tabular data using conditional GAN. In Advances in Neural Information Processing Systems, volume 32, 2019.

Thank you for your attention

www.leibniz-bips.de/en

Contact
Jan Kapar
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
kapar@leibniz-bips.de

Machine learning utility evaluation (Setup)

24

Xu et al. [2019]