Practice paper HL

Andy Zhao

June 2025

Paper 1

Section A

1. [Maximum mark: 5]

Consider the probability density function $f(x) = \frac{x^2}{9}$ where $x \in [0, 3]$.

- a) Check that f(x) is a valid probability density function. [2]
- **b)** Find $P(X \in [0,1])$. [3]
- 2. [Maximum mark: 5]

Use the principle of mathematical induction to prove that:

$$\prod_{i=1}^{n} (1 - \frac{1}{i+1}) = \frac{1}{n+1}$$

3. [Maximum mark: 5]

Let $f'(x) = \frac{1-x}{1+x}$. Given that f(0) = 1, find f(x)

4. [Maximum mark: 5]

Find the shortest distance between the skew lines $x=t,\,y=1-t,\,z=2+t$ and $3-s,\,-1+2s,\,z=4-s$ where $s,t\in\mathbb{R}.$

5. [Maximum mark: 5]

Find |z| given that 3|z+1|=|z+9|, where $z\in\mathbb{C}$.

6. [Maximum mark: 8]

Given the function $f(x) = \frac{3x^2 + x - 2}{x - 1}$. Find the axes intercepts and the asymptotes.

7. [Maximum mark: 7]

Solve for x:

$$\log_{27}(\frac{1}{x}) + \log_3(x^4) = \log_3 10$$

8. [Maximum mark: 7]

Find the derivative of $f(x) = \sin x$ from first principles.

9. [Maximum mark: 8]

Find:

$$\int \frac{dx}{1 + \cos^2 x}$$

Section B

10. [Maximum mark: 16]

In an RL-circuit, the current I amps changes according to the differential equation

$$L\frac{dI}{dt} + RI = E$$

L is the induction in henrys, R is the resistance in ohms, E is the voltage drop in volts, t is the time in seconds.

- a) Find a particular solution for I(t) if I(0) = 0 amps. [8]
- **b)** By considering I as $t \to \infty$, find the limiting current. [4]
- **c)** Find the time required for the current to reach 99 percent of its limiting value. [4]

11. [Maximum mark: 22]

Laplace transforms provide a useful link between improper integrals and differential equations. The Laplace transform of a function f(x) is defined

as $F(s) = \mathcal{L}\{f(x)\} = \int_0^\infty (e^{-sx} f(x)) dx$.

a) Show that: [6]

$$\mathcal{L}\lbrace e^{ax}\rbrace = \frac{1}{s-a}, s > a$$

$$\mathcal{L}\lbrace x\rbrace = \frac{1}{s^2}, s > 0$$

$$\mathcal{L}\lbrace \sin ax\rbrace = \frac{a}{s^2 + a^2}, s > 0$$

b) Show that: [7]

$$\mathcal{L}\{f'(x)\} = s\mathcal{L}\{f(x)\} - f(0)$$

$$\mathcal{L}\{f''(x)\} = s^2 \mathcal{L}\{f(x)\} - sf(0) - f'(0)$$

c) Consider the differential equation f''(x) + f(x) = x, f(0) = 0, f'(0) = 2Show that:

$$\mathcal{L}{g(x) + h(x)} = \mathcal{L}{g(x)} + \mathcal{L}{h(x)}$$

Hence, show that:

$$\mathcal{L}\{f(x)\} = \frac{1}{s^2} + \frac{1}{s^2 + 1}$$

and find a possible solution function f(x), and check your answer. [9]

12. [Maximum mark: 17]

a) Write out the power series of $\frac{1}{1+x}$ and of $\frac{1}{1+x^2}$. [4]

b) Hence, find the Maclaurin series for $\tan^{-1} x$. [4]

c) Write the first three non-zero terms in the Maclaurin series for $\tan^{-1} 2x$ and $e^{\tan x}$, and find: [9]

$$\lim_{x \to 0} \frac{\tan^{-1}(2x)}{e^{\tan x} - 1}$$