$Exercices\ MP/MP^*$

Table des matières

1 Suites et séries de fonctions

2

1 Suites et séries de fonctions

Exercice 1.1. Pour $x \ge 0$ et $n \in \mathbb{N}^*$, on note

$$F_n(x) = \frac{1}{n} \prod_{k=1}^{n} (n+kx)^{\frac{1}{n}}$$

Étudier la convergence simple et la convergence uniforme de $(F_n)_{n\geqslant 1}$.

Exercice 1.2. Soit $-\alpha \notin \mathbb{N}^*$. Pour $n \geqslant 1$, soit

$$u_n(x) = \frac{1 \times 3 \times \dots \times (2n-1)}{(1+\alpha) \times \dots \times (2n-1+\alpha)} x^n$$

pour $x \in \mathbb{R}$.

- 1. Donner la nature de $\sum_{n\geqslant 1} u_n(x)$.
- 2. Trouver les valeurs de α telle que $\sum_{n\geq 1} u_n$ converge uniformément sur [0,1[.
- 3. Trouver les valeurs de α telle que $\sum_{n\geqslant 1}u_n$ converge uniformément sur]-1,0]

Exercice 1.3. On forme

$$f(x) = \sum_{k=0}^{+\infty} \arctan(k+x) - \arctan(k) = \sum_{k=0}^{+\infty} f_k(x)$$

Quel est le domaine de définition de f? Montrer que f est C^1 sur ce domaine. Donner un équivalent de f en $+\infty$.

Exercice 1.4. On pose

$$f(t) = \sum_{n=1}^{+\infty} \ln\left(1 - e^{-nt}\right)$$

Montrer que f est définie pour t>0 et donner un équivalent de f(t) quand $t\to 0^+$. On admet l'existence de $I=\lim_{x\to +\infty}\int_0^x \ln{(1-\mathrm{e}^{-u})}\,du$.

Exercice 1.5. Soit

$$f_n: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{n^2 x^2}{1 + n^4 x^4} \tag{1}$$

 $(a_p)_{p\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ et $g_n(x)=\sum_{p=0}^{+\infty}\frac{1}{2^p}f_n(x-a_p).$

- 1. g_n est-elle définie? Étudier la convergence simple de $(g_n)_{n\in\mathbb{N}}$.
- 2. Soit $[a,b] \subset \mathbb{R}$. Montrer que $(g_n)_{n \in \mathbb{N}}$ converge uniformément sur [a,b] si et seulement si pour tout $p \in \mathbb{N}$, $a_p \notin [a,b]$.

Exercice 1.6. Convergence simple de

$$f(x) = \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2} = \sum_{n=1}^{+\infty} f_n(x).$$
 (2)

 $f\ est\text{-elle}\ \mathcal{C}^1\ ?\ Donner\ la\ limite\ de\ f\ en\ 0\ et\ +\infty.\ Donner\ un\ \'equivalent\ en\ 0.$

Exercice 1.7. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions \mathcal{C}^1 sur [a,b] telle qu'il existe $M\geqslant 0$ tel que pour tout $n\in\mathbb{N}$, $\|f'_n\|_{\infty,[a,b]}\leqslant M$. On suppose que $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur [a,b]. Montrer qu'il y a convergence uniforme.

Exercice 1.8. Soit $x \ge 1$. Soit $f_n(x) = \sum_{p=1}^n \frac{1}{\sqrt{n^2 + p^2}}$. Étudier la convergence.

Exercice 1.9 (Produit Eulérien).

1. Soit $(A, \|\cdot\|)$ une algèbre normée et pour $n \ge 1$

$$f_n: \mathcal{A} \to \mathcal{A}$$

$$a \mapsto \left(1_{\mathcal{A}} + \frac{a}{n}\right)^n. \tag{3}$$

Montrer que

$$\left\| \sum_{k=0}^{n} \frac{a^{k}}{k!} - f_{n}(a) \right\| \leqslant \sum_{k=0}^{n} \frac{\|a\|^{k}}{k!} - \left(1 + \frac{\|a\|}{n}\right)^{n}. \tag{4}$$

On pourra montrer que pour tout $(n,k) \in \mathbb{N} \times [0,n]$, $\frac{1}{n^k} \binom{n}{k} \leqslant \frac{1}{k!}$. En déduire que $(f_n)_{n\geqslant 1}$ converge simplement vers exp, avec convergence uniforme sur les compacts de A.

2. On pose pour tout $n \in \mathbb{N}$,

$$P_n(X) = \frac{\left(1 + \frac{iX}{2n+1}\right)^{2n+1} - \left(1 - \frac{iX}{2n+1}\right)^{2n+1}}{2i}.$$
 (5)

Montrer que $(P_n)_{n\in\mathbb{N}}$ converge simplement vers sin sur \mathbb{C} .

3. Déterminer le degré de P_n , les racines de P_n et son coefficient en X. En déduire que

$$P_n = X \prod_{k=1}^n \left(1 - \frac{X^2}{(2n+1)^2 \tan^2 \left(\frac{k\pi}{2n+1} \right)} \right). \tag{6}$$

- 4. Soit $(a_{n,p})_{(n,p)\in\mathbb{N}^2}\in\mathbb{C}^{\mathbb{N}^2}$. On suppose que
 - (i) Il existe $(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{R}^N_+$ avec $\sum_{n=0}^{+\infty}\alpha_n<+\infty$ et pour tout $(n,p)\in\mathbb{N}^2$, $|a_{n,p}|\leqslant\alpha_n$.
 - (ii) $\forall n \in \mathbb{N}$, il existe $\beta_n = \lim_{p \to +\infty} a_{n,p} \in \mathbb{C}$.

Montrer que $\lim_{p \to +\infty} \sum_{n=0}^{+\infty} a_{n,p} = \sum_{n=0}^{+\infty} \beta_n$.

5. En déduire que pour tout $x \in \mathbb{R}$, $\sin(x) = x \prod_{k=1}^{+\infty} \left(1 - \frac{x^2}{k^2 \pi^2}\right)$. On pourra montrer que pour tout $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, $|\tan(t)| \geqslant |t|$.

Exercice 1.10. Soit $[a, b] \subset]0, 1[$ et

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto 2x(1-x)$$
(7)

On définit $f^1 = f$ et pour tout $n \in \mathbb{N}$, $f_{n+1} * f \circ f_n$.

- 1. Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers $\frac{1}{2}$ sur [a,b]. A-t-on convergence uniforme sur [0,1]?
- 2. Soit $\mathbb{Q}_2 = \left\{ \frac{p}{2^n} \middle| p \in \mathbb{Z}, n \in \mathbb{N} \right\}$. Montrer que pour tout $P \in \mathbb{R}[X]$, pour tout $\varepsilon > 0$, il existe $Q \in \mathbb{Q}_n[X]$ tel que $\|P Q\|_{\infty,[a,b]} \leqslant \varepsilon$.
- 3. En déduire que pour tout $f \in C^0([a,b],\mathbb{R})$, il existe $A \in \mathbb{Z}[X]$ telle que

$$||f_n - A||_{\infty, [a, b]} \leqslant \varepsilon. \tag{8}$$

Peut-on généraliser à d'autres intervalles?

Exercice 1.11. Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'applications convexes de $I\subset\mathbb{R}\to\mathbb{R}$ qui converge simplement vers $u\colon I\to\mathbb{R}$.

1. Soit $[a,b] \subset \mathring{I}$. Montrer qu'il existe $A \in \mathbb{R}$ tel que pour tout $(x,y) \in [a,b]$,

$$|u_n(x) - u_n(y)| \leqslant A|x - y|. \tag{9}$$

On pourra former $(\alpha, \beta) \in I^2$, $\alpha < a < b < \beta$, et étudier les taux d'accroissements des u_n .

2. En déduire que $(u_n)_{n\in\mathbb{N}}$ converge uniformément vers u sur [a,b].

Exercice 1.12. Soit $[a,b] \subset \mathbb{R}$ et $E = \mathcal{C}^0([a,b],\mathbb{R})$ muni de $\|\cdot\|_{\infty}$. Soit $\varphi \colon \colon \mathbb{R} \to \mathbb{R}$ continue. Montrer que

$$\psi: E \to E
f \mapsto \varphi \circ f$$
(10)

est continue.

Exercice 1.13. On pose, sous réserve d'existence,

$$f(t) = \sum_{n=0}^{+\infty} \frac{e^{-nt}}{1+n^2} = \sum_{n=0}^{+\infty} f_n(t).$$
 (11)

- 1. Donner le domaine de définition E de f.
- 2. f est-elle continue sur E? Évaluer $\lim_{t\to +\infty} f(t)$.
- 3. Montrer que f est C^{∞} sur $E \setminus \{0\}$. Donner l'équation différentielle satisfaite par f.

Exercice 1.14. Soit $a \in \mathbb{R}$ et

$$u_n: [0,1] \rightarrow \mathbb{R}$$

$$x \mapsto \frac{xe^{-nx}}{n^a}$$
(12)

- 1. Montrer que $\sum_{n=1}^{+\infty} u_n$ converge simplement sur [0,1]. On note $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.
- 2. Pour quelles valeurs de a a-t-on convergence normale sur [0,1]?
- 3. Calculer S pour a = 1 et a = 2.

Exercice 1.15. Donner le domaine de définition de

$$f(x) = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} \times \frac{1}{1 + nx^{\frac{3}{2}}}.$$
 (13)

Étudier la continuité de f sur son domaine de définition. f est-elle intégrable sur son domaine de définition?

Exercice 1.16.

1. Donner le domaine de définition de

$$S(x) = \sum_{n=2}^{+\infty} \frac{x e^{-nx}}{\ln(n)} = \sum_{n=2}^{+\infty} f_n(x).$$
 (14)

2. Montrer que l'on a converge uniforme sur $[0, \infty[$. A-t-on convergence normale?

- 3. Montrer que S est C^1 sur \mathbb{R}_+^* , mais n'est pas dérivable à droite en 0.
- 4. Montrer que pour tout $k \in \mathbb{N}$, $S(x) = \underset{x \to +\infty}{o} \left(\frac{1}{x^k}\right)$.

Exercice 1.17 (Théorème de Weierstrass trigonométrique). On pose, pour $k \in \mathbb{N}$,

$$Q_k: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto c_k \left(\frac{1+\cos(t)}{2}\right)^k \tag{15}$$

où $c_k \in \mathbb{R}$ tel que $\frac{1}{2\pi} \int_{-\pi}^{\pi} Q_k(t) dt = 1$.

- 1. Montrer que pour tout $\delta \in]0,\pi]$, $\lim_{k\to +\infty} \sup_{\delta \leq |t| \leq \pi} Q_k(t) = 0$.
- 2. Soit f continue 2π -périodique de \mathbb{R} dans \mathbb{C} . On définit

$$P_k: \mathbb{R} \to \mathbb{C}$$

$$t \mapsto \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t-s)Q_k(s) ds.$$
(16)

Montrer que $(P_k)_{k\in\mathbb{N}}$ converge uniformément vers f sur \mathbb{R} . On utilisera, en la justifiant, la continuité uniforme de f et son caractère borné sur \mathbb{R} .

3. On note, pour tout $k \in \mathbb{Z}$,

$$\varepsilon_k : \mathbb{R} \to \mathbb{C}$$

$$t \mapsto e^{ikt}.$$
(17)

On pose $F = \text{Vect}(\varepsilon_k)_{k \in \mathbb{Z}}$ (« polynômes trigonométriques » 2π -périodiques). Montrer que F est dense dans E, \mathbb{C} -espace vectoriel des fonctions continues 2π -périodiques pour $\|\cdot\|_{\infty}$.

Exercice 1.18. Soit $(u_n)_{n\in\mathbb{N}}$ une suite monotone de fonctions continues qui converge simplement vers u continue sur un compact $K \subset E$ où E est un espace vectoriel normé.

- 1. Montrer que l'on peut se ramener au cas d'une suite $(f_n)_{n\in\mathbb{N}}$ décroissante de fonctions continues qui converge simplement vers 0.
- 2. Soit $\varepsilon > 0$ et pour tout $n \in \mathbb{N}$, $F_{n,\varepsilon} = \{x \in K | f_n(x) \geqslant \varepsilon\}$. Montrer que $F_{n,\varepsilon}$ est fermé, que $F_{n+1,\varepsilon} \subset F_{n,\varepsilon}$ et que $\bigcap_{n \in \mathbb{N}} F_{n,\varepsilon} = \emptyset$. En déduire qu'il existe $N \in \mathbb{N}$ tel que $F_{N,\varepsilon} = \emptyset$, puis que $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers 0 sur K.
- 3. Prouver le résultat en considérant pour tout $n \in \mathbb{N}$, $x_n \in K$ tel que $f_n(x_n) = \max_{x \in K} f_n(x)$.