UNDERSTANDING & PREDICTING LIFE EXPECTANCY

Scott Schirkofsky
Data Science Practicum II
Regis University

OVERVIEW

The Global Health Observatory indicates that life expectancy globally increased from 66.8 years in 2000 to 73.4 in 2019. Life expectancy is also regarded as the key metric for assessing population's health.

This project seeks to better understand the various factors that affect life expectancy and their relationship with each other and life expectancy itself. The project will also use various machine learning techniques to predict various life expectancy by country and other indicators and provide the metrics needed to evaluate the predictions.

Blog: https://sschirko.edublogs.org/
Github: https://github.com/schirko

UNDERSTANDING & PREDICTING LIFE EXPECTANCY

Life Expectancy	"Life expectancy is a statistical measure of the average time an organism is expected to live, based on the year of its birth, its current age, and other demographic factors including biological sex." - Wikipedia
Factors	HIV, Polio, Socio-economic, Alcohol & Drug Use, Income, Education, BMI, Country GDP, Population etc.

THE DATA

WHO Mortality database

The WHO Mortality Database is a compilation of mortality data by age, sex and cause of death, as reported annually by Member States from their civil registration systems.

Original datasets from The Global Health Observatory (GHO), the data repository for the World Health Organization (WHO). This data tracks the health status and more than health related 1000 indicators for the 193 countries that are members of the United Nations.

- 2938 rows and 22 columns.
- Collected over 15-year period from 2000 to 2015.
- Sourced from Kaggle.

DATA SCIENCE TASKS

MULTIPLE LINEAR REGRESSION

DECISION TREE

RANDOM FOREST

ANALYZING THE DATA

DATASET

This dataset was obtained from Kaggle challenges via the World Health Organization. It is comprised of data from around the world and includes many indicators for each country during the time frame of 2000-2015. The data essentially represents a times series for the countries and features included.

Feature	Description	Туре
country	the country of origin	String
year	year data were collected	Integer
life_expectancy	life expectancy of the country's people in years from 2000-1015	String
adult_mortality	adult mortality rate per 1000 population	Integer
infant_deaths	population's infant deaths per 1000	Integer
alcohol	a country's alcohol consumption rate in liters per capita	Integer
percentage_expenditure	health expenditure as a percentage of Gross Domestic Product	Integer
hepatitis_b	number of 1 year olds with Hepatitis B immunization over all 1 year olds in population	Integer
measles	number of reported Measles cases per 1000 population	Integer
bmi (Interval/Ordinal)	average Body Mass Index (BMI) of a country's total population	Integer
under-five_deaths	number of people under the age of five deaths per 1000 population	Integer
polio	number of 1 year olds with Polio immunization over the number of all 1 year olds in population	Integer
total_expenditure	government expenditure on health as a percentage of total government expenditure	Integer
diphtheria	diphtheria tetanus toxoid and pertussis (DTP3) immunization rate of 1 year olds	Integer
hiv/aids	deaths per 1000 live births caused by HIV/AIDS for people under 5; number of people under 5 who die due to HIV/AIDS per 1000 births	Integer
gdp	Gross Domestic Product per capita	Integer
population	population of a country	Integer
thinness_1-19years	rate of thinness among people aged 10-19	Integer
thinness_5-9_years	rate of thinness among people aged 5-9	Integer
income_composition_of_resources	human development Index in terms of income composition of resources (index ranging from 0 to 1)	Integer
schooling	average number of years of schooling of a population	Integer

EDA – RENAMING COLUMNS

Before Renaming Columns

dtypes():	
Country	object
Year	int64
Status	object
Life expectancy	float64
Adult Mortality	int64
infant deaths	int64
Alcohol	float64
percentage expenditure	float64
Hepatitis 8	float64
Measles	18164
BMI	float64
under-five deaths	int64
Polio	float64
Total expenditure	float64
Diphtheria	float64
MIV/AIDS	float64
GOP	float64
Population	float64
thinness 1-19 years	float64
thinness 5-9 years	float64
Income composition of resources	float64
Schooling	float64
dtype: object	

After Renaming Columns

Data	columns (total 22 columns)):	
	Column	Non-Null Count	Dtype
8	Country	2928 mon-null	object
1	Year	2928 mon-null	int64
2	Status	2928 mon-null	object
3	Life_Expectancy	2928 mon-null	float64
4	Adult_Mortality	2928 mon-null	1nt64
5	Infant_Deaths	2090 mon-null	float64
6	Alcohol	2735 mon-null	float64
7	Pct_Expenditure	2928 mon-null	float64
8	Mepatitis_B	2375 mon-null	float64
9	Measles	2928 mon-null	int64
10	BMI	2896 mon-null	float64
11	Under-Five_Deaths	2153 mon-null	float64
12	Polio	2909 mon-null	float64
13	Ttl_Expend	2702 mon-null	float64
14	Diphtheria	2909 mon-null	float64
15	HIV_AIDS	2928 mon-null	float64
16	GOP	2485 mon-null	float64
17	Population	2284 mon-null	float64
18	Thinness_18-19_Years	2896 mon-null	float64
19	Thinness_5-9_Years	2896 mon-null	float64
20	Income_Comp_Of_Resources	2768 mon-null	float64
21	Schooling	2768 mon-null	float64

EDA – MISSING VALUES (INEXPLICIT NULLS)

describ	describe():								
	Life_Expectancy	Adult_Mortality	Infant_Deaths	Alcohol	Pct_Expenditure	Hepatitis_B	Measles	BMI	Under-Five_Deaths
count	2928.000000	2928.000000	2928.000000	2735.000000	2928,000000	2375.000000	2928.000000	2896.000000	2928.000000
nean	69.224932	164.796448	30.407445	4.614856	740.321185	80.960842	2427.855874	38.235394	42.179303
std	9.523867	124.292879	118.114458	4.858749	1998.938685	25.018337	11485.978937	19.959598	169.788547
min	36.300000	1.00000	0.00000	0.010000	8.888888	1.000000	0.00000	1.080000	0.00000
25%	63.100000	74.886868	0.000000	8.905000	4.853964	77.888688	8.888888	19.300000	0.00000
58%	72.100000	144.080000	3,000000	3.778888	65.611455	92.888888	17.000000	43.350000	4.000000
75%	75.700000	228.000000	22.000000	7,715000	442.614322	97.000000	362,250000	56.100000	28.000000
nax	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.000000	212183.000000	77.600000	2500.000000

- Adult mortality has a 1 value for min.
- Infant Deaths has a min of 0 and max of 1800.
- BMI has min of 1.
- Under-Five_Deaths has min of 0.

EDA - MISSING VALUES (EXPLICIT NULLS)

- 14 columns that contain nulls, that's 63.64%!
- Big contributors toward remaining null values in the features BMI, Population, GDP, and Infant Deaths.

```
[iloc = 5] Infant_Deaths has 838 null values: 28.62% null
[iloc = 6] Alcohol has 193 null values: 6.59% null
[iloc = 8] Hepatitis_B has 553 null values: 18.89% null
[iloc = 10] BMI has 1446 null values: 49.39% null
[iloc = 11] Under-Five_Deaths has 775 null values: 26.47% null
[iloc = 12] Polio has 19 null values: 0.65% null
[iloc = 13] Ttl_Expend has 226 null values: 7.72% null
[iloc = 14] Diphtheria has 19 null values: 0.65% null
[iloc = 16] GDP has 443 null values: 15.13% null
[iloc = 17] Population has 644 null values: 21.99% null
[iloc = 18] Thinness_10-19_Years has 32 null values: 1.09% null
[iloc = 19] Thinness_5-9_Years has 32 null values: 1.09% null
[iloc = 20] Income_Comp_Of_Resources has 160 null values: 5.46% null
[iloc = 21] Schooling has 160 null values: 5.46% null
14 out of 22 columns contain null values; 63.64% columns contain null values.
```

EDA – MISSING VALUES (IMPUTATION)

Imputation can be used to estimate new values for the missing values

0 out of 21 columns contain null values; 0.0% columns contain null values.

EDA – OUTLIERS (CORRELATION MATRIX)

EDA – OUTLIERS (SUMMARY)

Life_Expectancy Outliers
Count: 10
Percentage of Data: 0.34%
Adult_Mortality Outliers
Count: 82
Percentage of Data: 2.8%
Infant_Deaths Outliers
Count: 135
Percentage of Data: 4.61%
Alcohol Outliers
Count: 3
Percentage of Data: 0.1%
Pct_Expenditure Outliers
Count: 388
Percentage of Data: 13.25%
Hepatitis_B Outliers
Count: 220
Percentage of Data: 7.51%
Measles Outliers
Count: 542
Percentage of Data: 18.51%
Under-Five_Deaths Outliers
Count: 142
Percentage of Data: 4.85%
Polio Outliers
Count: 278
Percentage of Data: 9.49%

Ttl_Expend Outliers
Count: 49
Percentage of Data: 1.67%
Diphtheria Outliers
Count: 297
Percentage of Data: 10.14%
HTH ATPC CONTINUE
HIV_AIDS OutliersCount: 542
Percentage of Data: 18.51%
relocations of base, 10.016
GDP Outliers
Count: 300
Percentage of Data: 10.25%
Population Outliers
Count: 203
Percentage of Data: 6.93%
Thinness_10-19_Years Outliers
Count: 100
Percentage of Data: 3.42%
Thinness_5-9_Years Outliers
Count: 99
Percentage of Data: 3.38%
Income_Comp_Of_Resources Outliers
Percentage of Data: 4.44%
relocation of Data: 4.448
Schooling Outliers
Count: 75
Percentage of Data: 2.56%

EDA – OUTLIERS (WINSORIZING)

Remove outliers by setting upper and lower limits.

EDA – CORRELATION MATRIX HEATMAP

EDA – FEATURE PAIR PLOTS

EDA – LIFE EXPECTANCY

EDA – LIFE EXPECTANCY

Average Life Expectancy by Country Status

EDA – LIFE EXPECTANCY

Top Life 15 Expectancy by Country (MEAN)

Country	
Japan	82.537500
Sweden	82.518750
Iceland	82,443750
Switzerland	82.331250
France	82.218750
Italy	82.187500
Spain	82.068750
Australia	81.812500
Norway	81.793750
Canada	81.687500
Austria	81.481250
Singapore	81.475000
New Zealand	81.337500
Israel	81.300000
Greece	81.218750

Top 15 Life Excpectancy by Country (Median)

Life_Expectancy

Country	
Japan	82.550000
Switzerland	82.200000
Iceland	81.950000
Singapore	81.850000
Sweden	81.800000
Australia	81.800000
Spain	81.750000
Italy	81.700000
Israel	81.600000
France	81.600000
Canada	81.350000
Norway	81.200000
Netherlands	81.100000
Austria	81.050000
New Zealand	81.000000

Bottom 15 Life Expectancy by Country (MEAN) Life_Expectancy

Country	
Sierra Leone	47.518750
Central African Republic	48.512500
Lesotho	48.925000
Angola	49.037500
Malawi	50.375000
Côte d'Ivoire	50.387500
Chad	50.387500
Zimbabwe	50.781250
Swaziland	51.325000
Nigeria	51.356250
Somalia	53.318750
Mozambique	53.393750
South Sudan	53.875000
Cameroon	54.018750
Zambia	54.087500

Bottom 15 Life Expectancy by Country (MEDIAN) Life_Expectancy

Country		
Sierra Leone	46.6	50000
Central African Republic	47.2	00000
Zimbabwe	47.4	00000
Angola	48.4	50000
Lesotho	48.5	50000
Malawi	49.2	50000
Chad	49.5	00000
Côte d'Ivoire	50.4	50000
Swaziland	50.7	00000
Nigeria	51.8	00000
Somalia	52.7	50000
Mozambique	53.9	00000
Cameroon	53.9	00000
South Sudan	53.9	50000
Equatorial Guinea	55.2	00000

EDA – RANKINGS

SCOTT SCHIRKOFSKY | REGIS UNIVERSITY

LINEAR REGRESSION

Linear regr.predict: [[1351.02549826]]

Linear lr_coef: [[0.14705833]]

Linear r2 Score: 0.920254296978608

Mean Absolute Error: 50943.94783778521

Mean Squared Error: 3456291221.6604424

Root Mean Squared Error: 58790.23066514063

MULTIPLE LINEAR REGRESSION

MLR r2 Error: 0.09821875898006727

```
mlr_df = wins_df.dropna().copy() # Copy winsorized dataframe
mlr_df.drop(["Country", "Status"], axis=1, inplace=True) # Drop because the are categorical
x = mlr_df.iloc[:, [-2, -1]].values # The dependent variables/features
print("print X: ", x)
y = mlr_df['Pct_Expenditure'].values.reshape(-1, 1) # The independent variable/features
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42) # split data
regr = LinearRegression()
model = regr.fit(x_train, y_train) # Fit the LR model
print("mlr_intercept_: ", regr.intercept_)
print("intercept_coef_: ", regr.coef_)
new_data = [[0.4, 8], [0.5, 10]] # Random data to test
new_data = pd.DataFrame(new_data).T
model.predict(new_data)
# Mean squared error regression loss
mserl = np.sqrt(mean_squared_error(y_train, model.predict(x_train)))
print("Mean squared error regression loss: ", mserl)
# Train and predict model
model.score(x_train, y_train) # Coefficient of determination
cross_val_score(model, x_train, y_train, cv=10, scoring="r2").mean() # Evaluate the score by cross-validation
y_head = model.predict(x_test)
y_head[0:5] # Get first 5
# Calculate r2 score
r2_degeri = r2_score(y_test, y_head)
print("\nTest r2 Error = ", r2_degeri)
```

def multiple_linear_regression():

POLYNOMIAL REGRESSION

Polynomial r2 Value: 0.6496357950943772

```
def polynomial_regression():
    poly_df = wins_df.dropna().copy() # Copy winsorized dataframe
    regr = LinearRegression()
   x = poly_df.GDP.values.reshape(-1, 1)
   y = poly_df['Pct_Expenditure'].values.reshape(-1, 1)
   regr.fit(x, y) # Fit linear model first
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42) # Split data
    poly_regr = PolynomialFeatures(degree=15)
    x_polynomial = poly_regr.fit_transform(x)
    regr.fit(x_polynomial, y) # Fit the polynomial features model
    y_head = regr.predict(x_polynomial)
    poly_features = PolynomialFeatures(degree=8)
   level_poly = poly_features.fit_transform(x_train)
    regr.fit(level_poly, y_train) # Fit the trained model
   y_head = regr.predict(poly_features.fit_transform(x_train))
   y_test = np.array(range(0, len(y_train)))
   r2 = r2_score(y_train, y_head)
   print("r2 Value: ", r2) # percentage of significance
   plt.scatter(y_test, y_train, color="blue")
    plt.scatter(y_test, y_head, color="orange")
    plt.xlabel("GDP")
    plt.ylabel("Percentage Expenditure")
   plt.title("Polynomial Regression - Percentage Expenditure", fontweight='bold', fontsize=13)
    plt.savefig('charts/Polynomial_Regression.png', dpi=None, facecolor='w', edgecolor='g', orientation='landscape',
               format=None, transparent=False, bbox_inches=None, pad_inches=0.10, metadata=None)
   plt.show()
```

DECISION TREE REGRESSION

Decision Tree Prediction: [98.68367951]

```
def decision_tree_regression():
    dtr_df = wins_df.dropna().copy()  # Copy winsorized dataframe

x = dtr_df.GDP.values.reshape(-1, 1)
    y = dtr_df['Pct_Expenditure'].values.reshape(-1, 1)
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)  # split data
    regr = DecisionTreeRegressor()  # created model
    regr.fit(x_train, y_train)  # fitted model according to train values

print("Decision Tree Prediction: ", regr.predict([[1000]]))

x_array = np.arange(min(x), max(x), 0.01).reshape(-1, 1)  # line information to be drawn as a predict
    y_head = regr.predict(x_array)  # percentage of spend estimate
```

RANDOM FOREST REGRESSION

Random Forest Prediction: [73.33903837]

```
random_forest_regression():
    rfr_df = wins_df.dropna().copy()

x = rfr_df.GDP.values.reshape(-1, 1)
y = rfr_df['Pct_Expenditure'].values
    regr = RandomForestRegressor(n_estimators=100, random_state=42)
    regr.fit(x, y) # The ideal fit line

print("Random Forest Prediction: ", regr.predict([[1000]]))
print("\n")

x_array = np.arange(min(x), max(x), 0.01).reshape(-1, 1) # line information to be drawn as a predict
y_head = regr.predict(x_array) # percentage of spend predict
```

Confusion Matrix:

array([[<mark>169,</mark> 73]

[45, 1362]])

Accuracy Score: .9284414796846574

Classification Report:

		precision	recall	f1-score	support
	0	0.79	0.70	0.74	242
	1	0.95	0.97	0.96	1407
accui	racy			0.93	1649
macro	avg	0.87	0.83	0.85	1649
weighted	avg	0.93	0.93	0.93	1649

Cross Value Score: 0.9330426854925429

PREDICTION/ TUNE MODEL

ROC CURVE

Visualize the True False Positives and True False Negatives

SUMMARY

- The dataset began with 21 variables that were processed down to 12 independent variables (features) that describe Life Expectancy, the dependent variable.
- The data was cleaned by first cleaning up the headings, then detecting and dealt with missing values, both inexplicit and explicit. The data was also imputed and winsorized to address various missing values and outliers. From this a model was born.
- A number of machine learning methods were applied to the model including Linear Regression, Multiple Regression, Decision Tree regression, Random Forest Regression, and ttest.
- Accuracy metrics like Confusion Matrix, Accuracy Score,
 Classification Report, and Cross Value Score were run and the model scored an excellent 93% accuracy.

FUTURE PROJECTS/ QUESTIONS

While this project was more focused on predictions and the exploratory data process, future projects would benefit from what was learned here.

Additional questions to be answered in future projects:

- What is the impact of disease in developed versus developing nations?
- What are the impacts of vaccines on Life Expectancy in developing nations?
- Which immunizations have the highest correlation to greater life expectancy?
- What 5 features would be most impactful on life expectancy in developing countries?

REFERENCES

CODING AND OTHER VALUABLE RESOURCES

I wish I could acknowledge each piece of code I used for inspiration but there are far too many to list. So, I've listed a few of the more useful resources I used below.

Topic	Sources
Regression	 https://scikit- learn.org/stable/auto examples/linear model/plot ols.html#sphx-glr-auto- examples-linear-model-plot-ols-py https://www.kaggle.com/mathchi/life-expectancy-who-with-several-ml- techniques#Logistic-Regression-Model
Winsorize	https://www.kaggle.com/philbowman212/life-expectancy-exploratory- data-analysis/
Matpltlib	https://stackoverflow.com/questions/46664082/python-how-to-save- statsmodels-results-as-image-file
EDA	 https://www.kaggle.com/philbowman212/life-expectancy-exploratory-data-analysis/ https://towardsdatascience.com/an-extensive-guide-to-exploratory-data-analysis-ddd99a03199e
Training & Testing Model	 https://www.kaggle.com/rishavchowdhury0123/life-expectancy-eda-and-prediction#Training-and-Testing-the-Model https://www.kaggle.com/mathchi/life-expectancy-who-with-several-ml-techniques#Logistic-Regression-Model
Plotting	 https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51 https://stackabuse.com/matplotlib-box-plot-tutorial-and-examples/ https://thecleverprogrammer.com/2021/01/06/life-expectancy-analysis-with-python/
Predicting	 https://www.datasciencesociety.net/using-machine-learning-to-explain-and-predict-the-life-expectancy-of-different-countries/ https://www.kaggle.com/mathchi/life-expectancy-who-with-several-ml-techniques#Logistic-Regression-Model