

- Research done for the NSF funded <u>SESAME</u>
 <u>Project</u>.
 - PI (and my thesis adviser): Dr. Heejun Chang
 - Ecosystem Services in the Tualatin and Yamhill basins.

Anthropogenic Changes to the Hydrologic Cycle

- Urban Development
 - More impervious surfaces
 - Accelerated runoff
- Climate Change
 - Effects on flow, sediment and nutrients
 - Annual
 - Seasonal

How We Respond

- Use models to
 - Better understand current and future conditions
 - Locate critical source areas (CSAs) of pollutants (Niraula et al 2013)
 - Project future changes
 - Explore management options
 - Vegetated Filter Strips (VFS) (Arnold et al 2012)

Research Questions

- How do water, sediment and nutrient yields change annually and seasonally under climate change and urban growth?
- What are the locations of CSAs, and will these locations shift in the future?
- What effect does the implementation of vegetated filter strips have on sediment and nutrient yields?

Soil and Water Assessment Tool (SWAT)

Data Inputs

Model Construction

- Reservoir Characteristics
 - Bureau of Reclamation
 - USGS
- Waste Water Treatment Plant Effluent & flow augmentation
 - Clean Water Services
 - No nutrient data

Sediment and Nutrient Load Estimates

- USGS LOADEST software
- USGS and DEQ grab samples paired with USGS daily flow measurements
- Aggregated to monthly loads for calibration

Model Calibration & Validation

- Manual Calibration (1981-2005)
 - Monthly
- Validation (2006-2010)
- Metrics
 - Nash-Sutcliffe Efficiency (NSE)
 - Percent Bias
 - RSR

Climate Scenarios

Urbanization Scenarios

Critical Source Areas

Sediment

Total Nitrogen Total Phosphorus

Vegetated Filter Strip (VFS) Model

- Sub-basins with indices in the top 5% in Yamhill
- Two representative years: Water Year: 1994 95

Goal NSE > 0.5

NSE

%BIAS

Goal

Flow: %BIAS < 25%

Sediment: %BIAS < 55%

Nutrients: %BIAS < 70%

RSR

Goal RSR <= 0.7

Fanno Creek and West Linn (Calibration Period)

■ Flow

■ TN

■ TP

■ Sediment

Sediment **Sediment Yield** (Tons/ha*yr) 0.87 0.19 Yamhill **Tualatin**

No in-stream processes calibrated

Vegetative Filter Strips

Effects on CSAs

Dominant Land Use: Hay

Dominant Soil: Moderate hydraulic

conductivity

Dominant Slope: >12%

Rank	
No management	VFS
1	1
2	16
3	19
4	25
6	33

Discussion

- Uncertainty
 - GCM Structure
 - Sediment calibrations
 - In-stream sources and sinks of sediment
 - "Second-storm" effect
- Land cover thresholds
 - Clearly outline project goals
- Validation of CSA Identification
 - Field studies verifying SWAT accuracy

Conclusions

- 1. Basin wide effects are more sensitive to climate change than urbanization
- 2. Flows exhibit some seasonal lag in non-urban areas
- 3. Urban areas respond more immediately to precipitation patterns due to increased impervious surfaces
- 4. The largest increases in sediment and nutrients occur in urban and high sloping agricultural areas
- CSAs show moderate changes in response to climate change and urban growth
- 6. VFS reduce sediment and nutrient yields by 58%, suggesting they are an effective method of pollutant reduction

References

- Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., van Griensven, A., Van Liew, M.W., Kannan, N., Jha, M.K. 2012. SWAT: Model use, calibration and validaiton. Transactions of the ASABE 55(4): 1491-1508
- Hoyer, W, and Chang, H. 2014. Development of Future Land Cover Change Scenarios in the Metropolitan Fringe, Oregon, U.S.A. with Stakeholder Involvement, Land 3(1): 322-341.
- Niraula, R., Kalin, L, Srivastava, P., and Anderson, C.J. 2013. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling: 123-133.

