XGBoost

Contents

-	Uple 1.1 1.2 1.3 1.4 1.5 1.6 1.7	Reading the Data	2 2 3 4 5 6 7 8 12
	Dow 2.1 2.2 2.3 2.4 2.5 2.6	Reading the Data	15 15 17 17 18 18 22
lib	3.1 3.2 3.3 3.4 3.5 3.6	Reading the Data	25 25 27 27 28 28 32
lib: lib: lib:	rary rary rary rary	y(mlr3) y(mlr3learners) y(mlr3pipelines) y(mlr3tuning) y(mlr3filters)	
fut	ure	::plan("multiprocess")	

```
## Warning: Strategy 'multiprocess' is deprecated in future (>= 1.20.0). Instead, ## explicitly specify either 'multisession' or 'multicore'. In the current R ## session, 'multiprocess' equals 'multisession'.
```

1 Upload-Rate Prediction

1.1 Reading the Data

```
data_dir = "../datasets/"
results_dir = "../prediction_results/"
dataset_ul = read_csv(
 str_c(data_dir, "dataset_ul.csv"),
 col_types = cols(
   drive_id = col_integer(),
   scenario = col_factor(),
   provider = col_factor(),
   ci = col_factor(),
   enodeb = col_factor()
) %>% select(
 drive_id,
 timestamp,
 scenario,
 provider,
 velocity_mps,
 rsrp_dbm,
 rsrq_db,
 rssnr_db,
 cqi,
 ta,
 enodeb,
 f mhz,
 payload_mb,
 throughput_mbits
) %>% drop_na() %>% rowid_to_column(var="row_id_original")
dataset_ul_o2 = filter(dataset_ul, provider=="o2")
glimpse(dataset_ul_o2)
## Rows: 2,039
## Columns: 15
## $ row_id_original <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
                    ## $ drive_id
## $ timestamp
                    <dttm> 2018-12-10 09:08:57, 2018-12-10 09:09:08, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    ## $ velocity mps
                    <dbl> 11.80, 11.49, 7.93, 10.44, 10.92, 12.02, 10.28, 0....
                    <dbl> -99, -97, -96, -82, -101, -106, -112, -99, -98, -9...
## $ rsrp_dbm
## $ rsrq_db
                    <dbl> -9, -12, -12, -11, -14, -13, -18, -15, -15, -14, -...
                    <dbl> -1, -2, 5, 11, -3, -3, -6, -4, -6, -4, -6, -3, -2,...
## $ rssnr_db
                    <dbl> 8, 9, 5, 15, 6, 6, 3, 4, 7, 4, 4, 5, 6, 5, 1, 4, 6...
## $ cqi
## $ ta
                    <dbl> 9, 7, 7, 7, 7, 7, 12, 13, 13, 13, 13, 11, 13, 1...
## $ enodeb
                    <fct> 54016, 52410, 52410, 52410, 52410, 52410, 52410, 5...
## $ f_mhz
                    <dbl> 1750, 1750, 1750, 1750, 1750, 1750, 1750, 880, 880...
                    <dbl> 1.0, 6.0, 5.0, 7.0, 5.0, 8.0, 9.0, 7.0, 10.0, 2.0,...
## $ payload_mb
## $ throughput_mbits <dbl> 4.66, 3.97, 6.52, 1.37, 0.80, 1.04, 2.34, 4.09, 2....
```

```
dataset_ul_tmobile = filter(dataset_ul, provider=="tmobile")
glimpse(dataset_ul_tmobile)
## Rows: 2,301
## Columns: 15
## $ row_id_original <int> 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 20...
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:08:57, 2018-12-10 09:09:07, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> tmobile, tmobile, tmobile, tmobile, tmobile, tmobile...
## $ velocity_mps
                    <dbl> 11.83, 11.45, 8.15, 9.42, 10.61, 11.84, 9.75, 0.00...
## $ rsrp dbm
                    <dbl> -85, -84, -74, -92, -90, -101, -93, -94, -94, -94,...
                    <dbl> -5, -6, -5, -6, -6, -10, -8, -11, -11, -10, -9, -1...
## $ rsrq_db
                    <dbl> 22, 11, 29, 13, 16, 13, 7, 0, 8, 2, 24, 10, 22, 15...
## $ rssnr_db
## $ cqi
                    <dbl> 10, 13, 15, 12, 9, 15, 10, 9, 9, 7, 10, 9, 12, 15,...
## $ ta
                    ## $ enodeb
                    <fct> 103068, 114809, 114809, 114809, 114809, 114809, 11...
## $ f_mhz
                    <dbl> 1720, 1720, 1720, 1720, 1720, 1720, 1720, 1720, 1720, 17...
## $ payload_mb
                    <dbl> 4.0, 2.0, 4.0, 9.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, ...
## $ throughput_mbits <dbl> 24.52, 14.86, 16.27, 12.68, 14.59, 13.13, 16.37, 1...
dataset_ul_vodafone = filter(dataset_ul, provider=="vodafone")
glimpse(dataset_ul_vodafone)
## Rows: 1.828
## Columns: 15
## $ row_id_original <int> 4341, 4342, 4343, 4344, 4345, 4346, 4347, 4348, 43...
## $ drive id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:09:03, 2018-12-10 09:09:21, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> vodafone, vodafone, vodafone, vodafone, ...
## $ velocity_mps
                    <dbl> 11.70, 8.22, 8.00, 10.30, 12.28, 0.00, 0.00, 0.00,...
## $ rsrp_dbm
                    <dbl> -121, -108, -111, -106, -110, -94, -95, -92, -98, ...
                    <dbl> -15, -9, -13, -8, -9, -7, -7, -8, -6, -10, -7, -8,...
## $ rsrq_db
## $ rssnr_db
                    <dbl> -8, 2, 6, 5, 9, 23, 23, 24, 14, 1, 14, 12, 14, 7, ...
## $ cqi
                    <dbl> 4, 2, 6, 11, 10, 15, 12, 15, 12, 6, 15, 10, 11, 7,...
## $ ta
                    ## $ enodeb
                    <fct> 51044, 52316, 50026, 50026, 50026, 50026, 50026, 5...
                    <dbl> 1770, 1770, 1770, 1770, 1770, 1770, 1770, 1770, 1770, 17...
## $ f_mhz
## $ payload_mb
                    <dbl> 6.0, 10.0, 0.1, 2.0, 6.0, 0.1, 0.1, 0.5, 7.0, 0.1,...
## $ throughput mbits <dbl> 1.29, 3.18, 0.05, 2.93, 8.79, 5.16, 4.73, 10.13, 1...
```

1.2 Create the Prediction Tasks for Each Provider

```
make_task = function(dataset, task_id, target="throughput_mbits") {
  task = TaskRegr$new(
    id = task_id,
    backend = dataset %>% select(-drive_id, -timestamp, -provider, -scenario),
    target = target
)

task$col_roles$name = "row_id_original"
  task$col_roles$feature = setdiff(task$col_roles$feature, "row_id_original")
```

```
return(task)
}
task_ul_o2 = make_task(dataset_ul_o2, "task_ul_o2")
task_ul_o2
## <TaskRegr:task_ul_o2> (2039 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity_mps
##
     - fct (1): enodeb
task_ul_tmobile = make_task(dataset_ul_tmobile, "task_ul_tmobile")
task_ul_tmobile
## <TaskRegr:task_ul_tmobile> (2301 x 10)
## * Target: throughput mbits
## * Properties: -
## * Features (9):
   - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity mps
     - fct (1): enodeb
##
task_ul_vodafone = make_task(dataset_ul_vodafone, "task_ul_vodafone")
task_ul_vodafone
## <TaskRegr:task ul vodafone> (1828 x 10)
## * Target: throughput mbits
## * Properties: -
## * Features (9):
   - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity_mps
     - fct (1): enodeb
##
```

1.3 Create Data Splitting Strategies for Testing and Validation

The outer resampling is used for the train/validation split.

```
get_row_ids_by_drive_ids = function(task, dataset, drive_ids) {
    result = (tibble(task$row_names) %>%
        inner_join(dataset, by=c("row_name"="row_id_original")) %>%
        filter(drive_id %in% drive_ids))$row_id
    return(result)
}

make_outer_resampling = function(task, dataset, drive_ids_train, drive_ids_test) {
    row_ids_train = get_row_ids_by_drive_ids(task, dataset, drive_ids_train)
    row_ids_test = get_row_ids_by_drive_ids(task, dataset, drive_ids_test)

    result = rsmp("custom")
    result$instantiate(task, train_sets=list(row_ids_train), test_sets=list(row_ids_test))

    return(result)
}
```

The inner resampling is used for the parameter tuning on the training set.

```
make_inner_resampling = function(task, dataset, last_drive_id) {
    train_sets = list()

for (cur_last_drive_id_train in 2:(last_drive_id-1)) {
    drive_ids_train = 1:cur_last_drive_id_train
    drive_ids_test = cur_last_drive_id_train + 1

    row_ids_train = get_row_ids_by_drive_ids(task, dataset, drive_ids_train)
    row_ids_test = get_row_ids_by_drive_ids(task, dataset, drive_ids_test)

    train_sets[[length(train_sets)+1]] = row_ids_train
    test_sets[[length(test_sets)+1]] = row_ids_test
}

result = rsmp("custom")
    result$instantiate(task, train_sets=train_sets, test_sets=test_sets)

return(result)
}
```

1.4 Create the Prediction Pipeline

```
make_learner = function(nrounds=100, eta=NULL, gamma=NULL, lambda=NULL) {
  factor_encoding = po(
    "encode",
   method = "one-hot",
   affect_columns = selector_type("factor")
  xgboost = lrn("regr.xgboost")
  if (!is.null(nrounds)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
      list(nrounds=nrounds)
   )
  }
  if (!is.null(eta)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
      list(eta=eta)
    )
  }
  if (!is.null(gamma)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
      list(gamma=gamma)
   )
  }
  if (!is.null(lambda)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
```

```
list(lambda=lambda)
)
}

pipe = factor_encoding %>>% PipeOpLearner$new(xgboost)
learner = GraphLearner$new(pipe)
return(learner)
}
```

Here we can see the prediction pipeline:

```
make_learner()$graph$plot()
```


1.5 Parameter Tuning

```
parameter_space = ParamSet$new(list(
   ParamInt$new("regr.xgboost.nrounds", lower=100, upper=1000),
   ParamDbl$new("regr.xgboost.eta", lower=0.01, upper=1),
   ParamDbl$new("regr.xgboost.gamma", lower=0, upper=10),
   ParamDbl$new("regr.xgboost.lambda", lower=0, upper=10)
))

get_tuning_result = function(task, dataset, grid_resolution, n_evals) {
   tuning_instance = TuningInstanceSingleCrit$new(
     task = task,
     learner = make_learner(),
```

```
resampling = make_inner_resampling(task, dataset, last_drive_id=7),
   measure = msr("regr.mae"),
   terminator = trm("evals", n_evals=n_evals),
   search_space = parameter_space$clone(deep = TRUE),
   store_benchmark_result = TRUE,
    check_values = TRUE
  )
  tuner = tnr("grid_search", resolution = grid_resolution)
  tuner$optimize(tuning_instance)
 return(tuning_instance)
tuning_result_ul_o2 = get_tuning_result(task_ul_o2, dataset_ul, grid_resolution = 20, n_evals = 10)
tuning_result_ul_tmobile = get_tuning_result(task_ul_tmobile, dataset_ul, grid_resolution = 20, n_evals
tuning_result_ul_vodafone = get_tuning_result(task_ul_vodafone, dataset_ul, grid_resolution = 20, n_eva
tuning_result_ul = bind_rows(
  tibble(tuning_result_ul_o2$result) %>% mutate(provider="o2"),
 tibble(tuning_result_ul_tmobile$result) %>% mutate(provider="tmobile"),
  tibble(tuning_result_ul_vodafone$result) %>% mutate(provider="vodafone"),
) %>% select("provider", "regr.xgboost.nrounds", "regr.xgboost.eta", "regr.xgboost.gamma", "regr.xgboos
knitr::kable(tuning_result_ul)
```

provider	regr.xgboost.nrounds	regr.xgboost.eta	regr.xgboost.gamma	regr.xgboost.lambda
o2	1000	0.1663158	7.894737	7.368421
tmobile	526	0.1142105	7.368421	2.631579
vodafone	289	0.0621053	2.631579	10.000000

1.6 Create Learners with Tuned Hyperparameters

```
learner_ul_o2 = make_learner(
    nrounds = tuning_result_ul_o2$result$regr.xgboost.nrounds,
    eta = tuning_result_ul_o2$result$regr.xgboost.eta,
    gamma = tuning_result_ul_o2$result$regr.xgboost.gamma,
    lambda = tuning_result_ul_o2$result$regr.xgboost.lambda
)

learner_ul_tmobile = make_learner(
    nrounds = tuning_result_ul_tmobile$result$regr.xgboost.nrounds,
    eta = tuning_result_ul_tmobile$result$regr.xgboost.eta,
    gamma = tuning_result_ul_tmobile$result$regr.xgboost.gamma,
    lambda = tuning_result_ul_tmobile$result$regr.xgboost.lambda
)

learner_ul_vodafone = make_learner(
    nrounds = tuning_result_ul_vodafone$result$regr.xgboost.nrounds,
    eta = tuning_result_ul_vodafone$result$regr.xgboost.eta,
```

```
gamma = tuning_result_ul_vodafone$result$regr.xgboost.gamma,
lambda = tuning_result_ul_vodafone$result$regr.xgboost.lambda
)
```

1.7 Validation Results

Columns: 18

```
resampling_result_ul_o2 = resample(
  task = task_ul_o2,
  learner = learner ul o2,
 resampling = make_outer_resampling(task_ul_o2, dataset_ul, drive_ids_train=1:7, drive_ids_test=8:10),
  store models = TRUE
)
resampling_result_ul_tmobile = resample(
  task = task_ul_tmobile,
  learner = learner_ul_tmobile,
 resampling = make_outer_resampling(task_ul_tmobile, dataset_ul, drive_ids_train=1:7, drive_ids_test=8
  store_models = TRUE
resampling_result_ul_vodafone = resample(
  task = task_ul_vodafone,
  learner = learner_ul_vodafone,
  resampling = make_outer_resampling(task_ul_vodafone, dataset_ul, drive_ids_train=1:7, drive_ids_test=
  store models = TRUE
)
predictions_ul_o2 = as.data.table(resampling_result_ul_o2$prediction())
glimpse(tibble(predictions_ul_o2))
## Rows: 615
## Columns: 3
## $ row_id <int> 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148...
## $ truth
              <dbl> 4.47, 2.59, 2.26, 1.09, 0.77, 0.19, 0.26, 0.65, 1.45, 1.12...
## $ response <dbl> 3.4680877, 2.3749433, 3.8357697, 2.9707620, 3.4179711, 1.1...
predictions_ul_tmobile = as.data.table(resampling_result_ul_tmobile$prediction())
predictions_ul_vodafone = as.data.table(resampling_result_ul_vodafone$prediction())
validation_results_ul = bind_rows(
  tibble(predictions ul o2) %>%
    inner_join(tibble(task_ul_o2$row_names), by="row_id") %>%
    inner_join(dataset_ul, by=c("row_name"="row_id_original")),
  tibble(predictions_ul_tmobile) %>%
    inner_join(tibble(task_ul_tmobile$row_names), by="row_id") %>%
    inner_join(dataset_ul, by=c("row_name"="row_id_original")),
  tibble(predictions_ul_vodafone) %>%
    inner_join(tibble(task_ul_vodafone$row_names), by="row_id") %>%
    inner_join(dataset_ul, by=c("row_name"="row_id_original"))
glimpse(validation_results_ul)
## Rows: 1,840
```

```
<int> 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, ...
## $ row id
## $ truth
                   <dbl> 4.47, 2.59, 2.26, 1.09, 0.77, 0.19, 0.26, 0.65, 1....
## $ response
                   <dbl> 3.4680877, 2.3749433, 3.8357697, 2.9707620, 3.4179...
                   <int> 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, ...
## $ row_name
## $ drive id
                   ## $ timestamp
                   <dttm> 2018-12-11 09:04:11, 2018-12-11 09:04:22, 2018-12...
## $ scenario
                   <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                   ## $ velocity_mps
                   <dbl> 0.00, 6.11, 9.39, 8.45, 11.68, 0.00, 0.00, 0.00, 4...
## $ rsrp_dbm
                   <dbl> -89, -92, -94, -98, -102, -100, -101, -101, -100, ...
## $ rsrq_db
                   <dbl> -9, -12, -14, -15, -16, -17, -16, -16, -17, -14, -...
                   <dbl> 13, 3, -1, -3, -5, -7, -6, -5, -8, 1, -7, -1, -2, ...
## $ rssnr_db
## $ cqi
                   <dbl> 11, 5, 5, 4, 2, 3, 4, 4, 4, 6, 3, 5, 5, 2, 4, 6, 3...
## $ ta
                   ## $ enodeb
                   <fct> 52410, 52410, 52410, 52410, 52410, 52900, 52900, 5...
## $ f_mhz
                   <dbl> 0.1, 0.5, 3.0, 9.0, 7.0, 3.0, 2.0, 2.0, 6.0, 3.0, ...
## $ payload_mb
## $ throughput_mbits <dbl> 4.47, 2.59, 2.26, 1.09, 0.77, 0.19, 0.26, 0.65, 1....
all(validation_results_ul\$truth == validation_results_ul\$throughput_mbits)
## [1] TRUE
validation_results_ul = validation_results_ul %>%
 rename(prediction_xgboost=response) %>%
 select(-truth, -row_id, -row_name)
# write_csv(validation_results_ul, str_c(results_dir, "predictions_xqboost_ul.csv"))
```

1.7.1 Scatter Plots

```
ggplot(filter(validation_results_ul, provider=="02"), aes(x=throughput_mbits, y=prediction_xgboost)) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Upload-Rate Predictions for Provider 02")
```

Upload-Rate Predictions for Provider O2


```
ggplot(filter(validation_results_ul, provider=="tmobile"), aes(x=throughput_mbits, y=prediction_xgboost
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Upload-Rate Predictions for Provider T-Mobile")
```

Upload-Rate Predictions for Provider T-Mobile


```
ggplot(filter(validation_results_ul, provider=="vodafone"), aes(x=throughput_mbits, y=prediction_xgboos
geom_point(aes(color=scenario, shape=scenario)) +
    xlab("Measured Data Rate [MBit/s]") +
    ylab("Predicted Data Rate [MBit/s]") +
    ggtitle("Upload-Rate Predictions for Provider Vodafone")
```

Upload-Rate Predictions for Provider Vodafone

1.8 Feature Importance

1.8.1 XGBoost Gain

```
importance_ul_o2 = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_ul_o2$learners[[1]]$model$regr.xgboost$model$feature_names,
  model = resampling_result_ul_o2$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "o2")
## [21:01:52] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_ul_tmobile = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_ul_tmobile$learners[[1]]$model$regr.xgboost$model$feature_names,
  model = resampling_result_ul_tmobile$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "tmobile")
## [21:01:52] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_ul_vodafone = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_ul_vodafone$learners[[1]]$model$regr.xgboost$model$feature_names,
  model = resampling_result_ul_vodafone$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "vodafone")
## [21:01:53] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance ul = bind rows(
  importance_ul_o2,
  importance_ul_tmobile,
```

```
importance_ul_vodafone
) %>% filter(!str_starts(Feature, "enodeb"))

ggplot(importance_ul) +
   geom_bar(position = "dodge", aes(x = Feature, y = Gain, fill = provider), stat="identity") +
   xlab("feature") +
   ylab("Gain") +
   scale_x_discrete(guide = guide_axis(angle = 20)) +
   ggtitle("XGBoost Gain Feature Importance for Upload-Rate Prediction")
```

XGBoost Gain Feature Importance for Upload-Rate Prediction

1.8.2 Permutation

```
uninstantiate_resampling = function(resampling) {
  new_resampling = new.env()
  class(new_resampling) = class(resampling)
  for (val in ls(resampling, all.names = TRUE)) {
    if (val != "is_instantiated") {
      assign(val, get(val, envir=resampling), envir = new_resampling)
    }
  }
  new_resampling$is_instantiated = FALSE

  return(new_resampling)
}
```

```
num_permutation_sims_ul = 1
filter permutation o2 ul = flt("permutation",
 learner = learner ul o2$clone(),
  resampling = uninstantiate resampling(
   make_outer_resampling(task_ul_o2, dataset_ul, drive_ids_train=1:7, drive_ids_test=8:10)
 ),
 measure = msr("regr.mae"),
 standardize = TRUE,
  nmc=num_permutation_sims_ul
filter_permutation_o2_ul$calculate(task_ul_o2)
permutation_ul_o2 = tibble(as.data.table(filter_permutation_o2_ul)) %>% mutate(provider="o2")
filter_permutation_tmobile_ul = flt("permutation",
 learner = learner_ul_tmobile$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(task_ul_tmobile, dataset_ul, drive_ids_train=1:7, drive_ids_test=8:10)
  ),
 measure = msr("regr.mae"),
 standardize = TRUE,
 nmc=num_permutation_sims_ul
filter_permutation_tmobile_ul$calculate(task_ul_tmobile)
permutation_ul_tmobile = tibble(as.data.table(filter_permutation_tmobile_ul)) %>% mutate(provider="tmob
filter_permutation_vodafone_ul = flt("permutation",
 learner = learner_ul_vodafone$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(task_ul_vodafone, dataset_ul, drive_ids_train=1:7, drive_ids_test=8:10)
  ),
 measure = msr("regr.mae"),
  standardize = TRUE,
  nmc=num_permutation_sims_ul
filter_permutation_vodafone_ul$calculate(task_ul_vodafone)
permutation_ul_vodafone = tibble(as.data.table(filter_permutation_vodafone_ul)) %>% mutate(provider="vo
permutation_ul = bind_rows(
  permutation_ul_o2,
 permutation_ul_tmobile,
 permutation_ul_vodafone
ggplot(permutation_ul) +
  geom_bar(position = "dodge", aes(x = feature, y = score, fill = provider), stat="identity") +
  xlab("feature") +
 ylab("MAE difference") +
  scale x discrete(guide = guide axis(angle = 20)) +
  ggtitle("Permutation Feature Importance for Upload-Rate Prediction")
```


2 Download-Rate Prediction

2.1 Reading the Data

```
dataset_dl = read_csv(
  str_c(data_dir, "dataset_dl.csv"),
  col_types = cols(
    drive_id = col_integer(),
    scenario = col_factor(),
    provider = col_factor(),
    ci = col_factor(),
    enodeb = col_factor()
  )
) %>% select(
  drive_id,
  timestamp,
  scenario,
  provider,
  velocity_mps,
  rsrp_dbm,
  rsrq_db,
  rssnr_db,
  cqi,
  ta,
  enodeb,
```

```
f_mhz,
 payload_mb,
 throughput mbits
) %>% drop_na() %>% rowid_to_column(var="row_id_original")
dataset_dl_o2 = filter(dataset_dl, provider=="o2")
glimpse(dataset_dl_o2)
## Rows: 2,033
## Columns: 15
## $ row_id_original <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:08:56, 2018-12-10 09:09:15, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <dbl> 11.80, 8.02, 7.93, 10.08, 12.44, 12.03, 11.52, 0.0...
## $ velocity_mps
## $ rsrp_dbm
                    <dbl> -99, -96, -96, -100, -101, -105, -112, -99, -98, -...
                    <dbl> -9, -12, -12, -13, -14, -15, -18, -15, -13, -14, -...
## $ rsrq_db
## $ rssnr_db
                    <dbl> -1, 5, 5, -1, -3, -4, -6, -4, -6, -4, -6, -3, -2, ...
                    <dbl> 8, 5, 5, 7, 5, 5, 3, 4, 6, 4, 5, 5, 6, 5, 1, 4, 6,...
## $ cqi
## $ ta
                    <dbl> 9, 7, 7, 7, 7, 7, 12, 13, 13, 13, 13, 11, 13, 1...
## $ enodeb
                    <fct> 54016, 52410, 52410, 52410, 52410, 52410, 52410, 5...
## $ f_mhz
                    <dbl> 1845, 1845, 1845, 1845, 1845, 1845, 1845, 850, 850...
                    <dbl> 6.0, 10.0, 7.0, 7.0, 9.0, 3.0, 3.0, 0.5, 5.0, 2.0,...
## $ payload mb
## $ throughput_mbits <dbl> 2.38, 0.90, 1.09, 0.45, 0.51, 0.42, 0.71, 0.63, 0....
dataset_dl_tmobile = filter(dataset_dl, provider=="tmobile")
glimpse(dataset dl tmobile)
## Rows: 2,300
## Columns: 15
                   <int> 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 20...
## $ row_id_original
## $ drive_id
                    <dttm> 2018-12-10 09:08:57, 2018-12-10 09:09:08, 2018-12...
## $ timestamp
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> tmobile, tmobile, tmobile, tmobile, tmobile, tmobile...
                    <dbl> 11.83, 11.45, 8.15, 9.42, 10.61, 11.84, 9.75, 0.00...
## $ velocity_mps
## $ rsrp_dbm
                    <dbl> -85, -84, -74, -92, -90, -101, -93, -94, -94, -94,...
                    <dbl> -5, -6, -5, -6, -6, -10, -8, -11, -11, -10, -9, -1...
## $ rsrq_db
## $ rssnr db
                    <dbl> 22, 11, 29, 13, 16, 13, 7, 0, 8, 2, 24, 10, 22, 15...
                    <dbl> 10, 13, 15, 12, 9, 15, 10, 9, 9, 7, 10, 9, 12, 15,...
## $ cqi
## $ ta
                    ## $ enodeb
                    <fct> 103068, 114809, 114809, 114809, 114809, 114809, 11...
## $ f mhz
                    <dbl> 1815, 1815, 1815, 1815, 1815, 1815, 1815, 1815, 18...
                    <dbl> 0.1, 2.0, 2.0, 3.0, 5.0, 8.0, 3.0, 0.1, 5.0, 9.0, ...
## $ payload mb
## $ throughput_mbits <dbl> 6.84, 9.71, 7.31, 3.95, 8.55, 11.30, 6.78, 4.30, 1...
dataset dl vodafone = filter(dataset dl, provider=="vodafone")
glimpse(dataset_dl_vodafone)
## Rows: 2,170
## Columns: 15
## $ row_id_original <int> 4334, 4335, 4336, 4337, 4338, 4339, 4340, 4341, 43...
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:09:03, 2018-12-10 09:09:21, 2018-12...
```

```
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
                    <fct> vodafone, vodafone, vodafone, vodafone, ...
## $ provider
## $ velocity_mps
                    <dbl> 11.70, 8.22, 8.00, 10.60, 10.30, 12.28, 11.45, 0.0...
## $ rsrp_dbm
                    <dbl> -121, -108, -111, -113, -106, -110, -93, -94, -95,...
                    <dbl> -15, -9, -13, -11, -8, -9, -5, -7, -7, -8, -6, -6,...
## $ rsrq_db
                    <dbl> -8, 2, 6, 1, 5, 9, 21, 23, 23, 24, 14, 23, 13, 1, ...
## $ rssnr db
## $ cqi
                    <dbl> 4, 2, 6, 6, 11, 10, 14, 15, 12, 15, 12, 14, 15, 6,...
                    ## $ ta
## $ enodeb
                    <fct> 51044, 52316, 50026, 50026, 50026, 50026, 50026, 5...
## $ f_mhz
                    <dbl> 1865, 1865, 1865, 1865, 1865, 1865, 1865, 1865, 18...
## $ payload_mb
                    <dbl> 0.1, 5.0, 1.0, 3.0, 8.0, 4.0, 0.5, 5.0, 6.0, 0.5, ...
## $ throughput_mbits <dbl> 3.54, 18.57, 5.22, 3.97, 11.68, 35.91, 25.32, 62.7...
```

2.2 Create the Prediction Tasks for Each Provider

```
task_dl_o2 = make_task(dataset_dl_o2, "task_dl_o2")
task_dl_o2
## <TaskRegr:task_dl_o2> (2033 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity_mps
     - fct (1): enodeb
task_dl_tmobile = make_task(dataset_dl_tmobile, "task_dl_tmobile")
task_dl_tmobile
## <TaskRegr:task_dl_tmobile> (2300 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
##
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
       velocity_mps
     - fct (1): enodeb
task_dl_vodafone = make_task(dataset_dl_vodafone, "task_dl_vodafone")
task_dl_vodafone
## <TaskRegr:task_dl_vodafone> (2170 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
##
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity mps
##
     - fct (1): enodeb
```

2.3 Parameter Tuning

```
tuning_result_dl_o2 = get_tuning_result(task_dl_o2, dataset_dl, grid_resolution = 20, n_evals = 10)
tuning_result_dl_tmobile = get_tuning_result(task_dl_tmobile, dataset_dl, grid_resolution = 20, n_evals
tuning_result_dl_vodafone = get_tuning_result(task_dl_vodafone, dataset_dl, grid_resolution = 20, n_evals
```

```
tuning_result_dl = bind_rows(
   tibble(tuning_result_dl_o2$result) %>% mutate(provider="o2"),
   tibble(tuning_result_dl_tmobile$result) %>% mutate(provider="tmobile"),
   tibble(tuning_result_dl_vodafone$result) %>% mutate(provider="vodafone"),
) %>% select("provider", "regr.xgboost.nrounds", "regr.xgboost.eta", "regr.xgboost.gamma", "regr.xgboost.kable(tuning_result_dl)
```

provider	regr.xgboost.nrounds	regr.xgboost.eta	regr.xgboost.gamma	regr.xgboost.lambda
o2	1000	0.3226316	6.315790	0.0000000
tmobile	621	0.1142105	8.947368	0.5263158
vodafone	479	0.3226316	4.736842	7.8947368

2.4 Create Learners with Tuned Hyperparameters

```
learner_dl_o2 = make_learner(
    nrounds = tuning_result_dl_o2$result$regr.xgboost.nrounds,
    eta = tuning_result_dl_o2$result$regr.xgboost.eta,
    gamma = tuning_result_dl_o2$result$regr.xgboost.gamma,
    lambda = tuning_result_dl_o2$result$regr.xgboost.lambda
)

learner_dl_tmobile = make_learner(
    nrounds = tuning_result_dl_tmobile$result$regr.xgboost.nrounds,
    eta = tuning_result_dl_tmobile$result$regr.xgboost.eta,
    gamma = tuning_result_dl_tmobile$result$regr.xgboost.gamma,
    lambda = tuning_result_dl_tmobile$result$regr.xgboost.lambda
)

learner_dl_vodafone = make_learner(
    nrounds = tuning_result_dl_vodafone$result$regr.xgboost.nrounds,
    eta = tuning_result_dl_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_dl_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_dl_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_dl_vodafone$result$regr.xgboost.eta,
    lambda = tuning_result_dl_vodafone$result$regr.xgboost.lambda
)
```

2.5 Validation Results

```
resampling_result_dl_o2 = resample(
  task = task_dl_o2,
  learner = learner_dl_o2,
  resampling = make_outer_resampling(task_dl_o2, dataset_dl, drive_ids_train=1:7, drive_ids_test=8:10),
  store_models = TRUE
)

resampling_result_dl_tmobile = resample(
  task = task_dl_tmobile,
  learner = learner_dl_tmobile,
  resampling = make_outer_resampling(task_dl_tmobile, dataset_dl, drive_ids_train=1:7, drive_ids_test=8
  store_models = TRUE
)
```

```
resampling_result_dl_vodafone = resample(
  task = task_dl_vodafone,
 learner = learner_dl_vodafone,
 resampling = make_outer_resampling(task_dl_vodafone, dataset_dl, drive_ids_train=1:7, drive_ids_test=
  store models = TRUE
predictions_dl_o2 = as.data.table(resampling_result_dl_o2$prediction())
glimpse(tibble(predictions_dl_o2))
## Rows: 609
## Columns: 3
             <int> 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157...
## $ row id
## $ truth
             <dbl> 3.72, 2.56, 0.69, 0.36, 0.55, 0.36, 0.37, 0.28, 0.12, 1.36...
## $ response <dbl> 7.83577538, 0.96934938, 1.91151321, 0.62662381, 1.08720112...
predictions dl tmobile = as.data.table(resampling result dl tmobile$prediction())
predictions_dl_vodafone = as.data.table(resampling_result_dl_vodafone$prediction())
validation_results_dl = bind_rows(
  tibble(predictions dl o2) %>%
    inner_join(tibble(task_dl_o2$row_names), by="row_id") %>%
    inner_join(dataset_dl, by=c("row_name"="row_id_original")),
  tibble(predictions_dl_tmobile) %>%
    inner_join(tibble(task_dl_tmobile$row_names), by="row_id") %>%
    inner_join(dataset_dl, by=c("row_name"="row_id_original")),
  tibble(predictions_dl_vodafone) %>%
    inner_join(tibble(task_dl_vodafone$row_names), by="row_id") %>%
    inner_join(dataset_dl, by=c("row_name"="row_id_original"))
glimpse(validation_results_dl)
## Rows: 1,923
## Columns: 18
## $ row id
                     <int> 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, ...
                     <dbl> 3.72, 2.56, 0.69, 0.36, 0.55, 0.36, 0.37, 0.28, 0....
## $ truth
## $ response
                     <dbl> 7.83577538, 0.96934938, 1.91151321, 0.62662381, 1....
                     <int> 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, ...
## $ row name
## $ drive id
                     <int> 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, ...
## $ timestamp
                     <dttm> 2018-12-11 09:04:12, 2018-12-11 09:04:23, 2018-12...
## $ scenario
                     <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                     ## $ velocity_mps
                     <dbl> 0.00, 7.20, 8.74, 9.01, 9.00, 11.68, 0.00, 0.00, 1...
                     <dbl> -89, -92, -88, -99, -105, -102, -100, -101, -100, ...
## $ rsrp_dbm
## $ rsrq_db
                     <dbl> -9, -12, -12, -15, -16, -16, -17, -16, -14, -16, -...
                     <dbl> 13, 3, 7, -4, -3, -5, -7, -5, 1, -4, -7, -6, 0, -2...
## $ rssnr_db
                     <dbl> 11, 5, 6, 4, 3, 2, 3, 4, 6, 5, 3, 4, 5, 6, 5, 6, 4...
## $ cqi
                     <dbl> 7, 7, 7, 7, 7, 12, 12, 12, 7, 12, 12, 12, 12, 12, 1...
## $ ta
## $ enodeb
                     <fct> 52410, 52410, 52410, 52410, 52410, 52410, 52900, 5...
## $ f mhz
                     <dbl> 6.0, 2.0, 7.0, 2.0, 8.0, 2.0, 8.0, 6.0, 0.5, 1.0, ...
## $ payload_mb
## $ throughput_mbits <dbl> 3.72, 2.56, 0.69, 0.36, 0.55, 0.36, 0.37, 0.28, 0....
```

```
all(validation_results_dl$truth == validation_results_dl$throughput_mbits)

## [1] TRUE

validation_results_dl = validation_results_dl %>%
    rename(prediction_xgboost=response) %>%
    select(-truth, -row_id, -row_name)

# write_csv(validation_results_dl, str_c(results_dir, "predictions_xgboost_dl.csv"))
```

2.5.1 Scatter Plots

```
ggplot(filter(validation_results_dl, provider=="o2"), aes(x=throughput_mbits, y=prediction_xgboost)) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Download-Rate Predictions for Provider 02")
```

Download-Rate Predictions for Provider O2


```
ggplot(filter(validation_results_dl, provider=="tmobile"), aes(x=throughput_mbits, y=prediction_xgboost
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Download-Rate Predictions for Provider T-Mobile")
```



```
ggplot(filter(validation_results_dl, provider=="vodafone"), aes(x=throughput_mbits, y=prediction_xgboos
geom_point(aes(color=scenario, shape=scenario)) +
    xlab("Measured Data Rate [MBit/s]") +
    ylab("Predicted Data Rate [MBit/s]") +
    ggtitle("Download-Rate Predictions for Provider Vodafone")
```

Download-Rate Predictions for Provider Vodafone

2.6 Feature Importance

2.6.1 XGBoost Gain

```
importance_dl_o2 = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_dl_o2$learners[[1]]$model$regr.xgboost$model$feature_names,
  model = resampling_result_dl_o2$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "o2")
## [21:05:00] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_dl_tmobile = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_dl_tmobile$learners[[1]]$model$regr.xgboost$model$feature_names,
  model = resampling_result_dl_tmobile$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "tmobile")
## [21:05:01] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_dl_vodafone = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_dl_vodafone$learners[[1]]$model$regr.xgboost$model$feature_names,
  model = resampling_result_dl_vodafone$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "vodafone")
## [21:05:01] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance dl = bind rows(
  importance_dl_o2,
  importance_dl_tmobile,
```

```
importance_dl_vodafone
) %>% filter(!str_starts(Feature, "enodeb"))

ggplot(importance_dl) +
    geom_bar(position = "dodge", aes(x = Feature, y = Gain, fill = provider), stat="identity") +
    xlab("feature") +
    ylab("Gain") +
    scale_x_discrete(guide = guide_axis(angle = 20)) +
    ggtitle("XGBoost Gain Feature Importance for Download-Rate Prediction")
```

XGBoost Gain Feature Importance for Download–Rate Prediction

2.6.2 Permutation

```
num_permutation_sims_dl = 1

filter_permutation_o2_dl = flt("permutation",
    learner = learner_dl_o2$clone(),
    resampling = uninstantiate_resampling(
        make_outer_resampling(task_dl_o2, dataset_dl, drive_ids_train=1:7, drive_ids_test=8:10)
    ),
    measure = msr("regr.mae"),
    standardize = TRUE,
    nmc = num_permutation_sims_dl
)

filter_permutation_o2_dl$calculate(task_dl_o2)
permutation_dl_o2 = tibble(as.data.table(filter_permutation_o2_dl)) %>% mutate(provider="o2")
```

```
filter_permutation_tmobile_dl = flt("permutation",
  learner = learner_dl_tmobile$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(task_dl_tmobile, dataset_dl, drive_ids_train=1:7, drive_ids_test=8:10)
 ),
 measure = msr("regr.mae"),
 standardize = TRUE,
 nmc = num permutation sims dl
filter_permutation_tmobile_dl$calculate(task_dl_tmobile)
permutation_dl_tmobile = tibble(as.data.table(filter_permutation_tmobile_dl)) %>% mutate(provider="tmob
filter_permutation_vodafone_dl = flt("permutation",
 learner = learner_dl_vodafone$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(task_dl_vodafone, dataset_dl, drive_ids_train=1:7, drive_ids_test=8:10)
 measure = msr("regr.mae"),
 standardize = TRUE,
 nmc = num_permutation_sims_dl
filter_permutation_vodafone_dl$calculate(task_dl_vodafone)
permutation_dl_vodafone = tibble(as.data.table(filter_permutation_vodafone_dl)) %>% mutate(provider="vo
permutation dl = bind rows(
 permutation_dl_o2,
 permutation_dl_tmobile,
  permutation_dl_vodafone
ggplot(permutation_dl) +
  geom_bar(position = "dodge", aes(x = feature, y = score, fill = provider), stat="identity") +
 xlab("feature") +
 ylab("MAE difference") +
  scale x discrete(guide = guide axis(angle = 20)) +
  ggtitle("Permutation Feature Importance for Download-Rate Prediction")
```


3 Link Lifetime Prediction

3.1 Reading the Data

```
dataset_linklifetime = read_csv(
  str_c(data_dir, "dataset_context.csv"),
  col_types = cols(
    drive_id = col_integer(),
    scenario = col_factor(),
    provider = col_factor(),
    ci = col_factor(),
    enodeb = col_factor()
  )
) %>% select(
  drive_id,
  timestamp,
  scenario,
  provider,
  velocity_mps,
  rsrp_dbm,
  rsrq_db,
  rssnr_db,
  cqi,
  ta,
  enodeb,
```

```
rsrp_neighbor,
    rsrq_neighbor,
    link lifetime
) %>% drop_na() %>% rowid_to_column(var="row_id_original")
dataset_linklifetime_o2 = filter(dataset_linklifetime, provider=="o2")
glimpse(dataset linklifetime o2)
## Rows: 22,040
## Columns: 15
## $ row_id_original <int> 1, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30, 33, ...
## $ drive_id
                                              ## $ timestamp
                                              <dttm> 2018-12-10 09:08:46, 2018-12-10 09:08:47, 2018-12-...
## $ scenario
                                              <fct> campus, campus, campus, campus, campus, campus, cam...
## $ provider
                                              ## $ velocity_mps
                                              <dbl> 6.76, 7.65, 8.57, 10.08, 10.73, 10.93, 11.19, 11.66...
## $ rsrp_dbm
                                              <dbl> -98, -101, -101, -94, -94, -98, -98, -94, -94, -94, ...
                                              <dbl> -10, -12, -12, -9, -9, -8, -8, -9, -9, -9, -9, -9, ...
## $ rsrq_db
                                              <dbl> -1, -1, -1, 5, 5, 1, 1, -2, -2, -2, -1, -1, -3, -3,...
## $ rssnr_db
                                              <dbl> 9, 6, 6, 12, 12, 10, 10, 5, 5, 5, 8, 8, 6, 6, 5, 5,...
## $ cqi
## $ ta
                                              ## $ enodeb
                                              <fct> 54016, 54016, 54016, 54016, 54016, 54016, 54016, 54...
## $ rsrp_neighbor
                                              <dbl> -99, -104, -104, -100, -100, -98, -98, -98, -98, -9...
                                              ## $ rsrq neighbor
## $ link_lifetime
                                              <dbl> 18.01, 17.00, 16.00, 15.00, 14.00, 13.00, 12.00, 11...
dataset_linklifetime_tmobile = filter(dataset_linklifetime, provider=="tmobile")
glimpse(dataset linklifetime tmobile)
## Rows: 23,741
## Columns: 15
## $ row_id_original <int> 3, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 34, 37,...
## $ drive_id
                                              <dttm> 2018-12-10 09:08:47, 2018-12-10 09:08:48, 2018-12-...
## $ timestamp
## $ scenario
                                              <fct> campus, campus, campus, campus, campus, campus, cam...
## $ provider
                                              <fct> tmobile, tmobile, tmobile, tmobile, tmobile, tmobil...
                                              <dbl> 3.35, 3.81, 9.01, 10.84, 11.14, 11.22, 11.44, 11.75...
## $ velocity_mps
## $ rsrp_dbm
                                              <dbl> -91, -91, -88, -88, -88, -86, -86, -88, -88, -85, -...
                                              <dbl> -6, -6, -6, -6, -6, -6, -7, -7, -5, -5, -5, -5, ...
## $ rsrq_db
## $ rssnr db
                                              <dbl> 12, 12, 18, 18, 18, 20, 20, 19, 19, 22, 22, 18, 18,...
                                              <dbl> 11, 11, 15, 15, 15, 12, 12, 15, 15, 10, 10, 10, 10, ...
## $ cqi
                                              ## $ ta
## $ enodeb
                                              <fct> 103068, 103068, 103068, 103068, 103068, 103068, 103...
                                              <dbl> -Inf, -
## $ rsrp_neighbor
                                              <dbl> -Inf, -
## $ rsrq neighbor
                                              <dbl> 19.01, 18.00, 16.99, 16.00, 15.00, 14.01, 13.01, 12...
## $ link lifetime
dataset linklifetime vodafone = filter(dataset linklifetime, provider=="vodafone")
glimpse(dataset_linklifetime_vodafone)
## Rows: 22,553
## Columns: 15
## $ row_id_original <int> 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 57, 60,...
## $ drive_id
                                             <dttm> 2018-12-10 09:08:52, 2018-12-10 09:08:53, 2018-12-...
## $ timestamp
```

```
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, cam...
                     <fct> vodafone, vodafone, vodafone, vodafone, v...
## $ provider
## $ velocity_mps
                     <dbl> 3.45, 3.45, 3.88, 9.69, 10.89, 11.01, 11.33, 11.63,...
## $ rsrp_dbm
                     <dbl> -109, -114, -114, -120, -120, -117, -117, -118, -11...
## $ rsrq_db
                     <dbl> -9, -10, -10, -18, -18, -11, -11, -11, -11, -15, -1...
                     <dbl> 3, 7, 7, -4, -4, -6, -6, -16, -16, -8, -8, -5, -5, ...
## $ rssnr db
## $ cqi
                     <dbl> 10, 10, 10, 4, 4, 7, 7, 3, 3, 4, 4, 6, 6, 6, 6, 6, ...
                     <dbl> 24, 24, 24, 63, 63, 63, 63, 63, 63, 63, 63, 17, 17,...
## $ ta
## $ enodeb
                    <fct> 52316, 52316, 52316, 51044, 51044, 51044, 51044, 51...
## $ rsrp_neighbor
                    <dbl> -Inf, -115, -115, -111, -111, -111, -111, -119, -11...
## $ rsrq_neighbor
                    <dbl> -Inf, -12, -12, -13, -13, -13, -14, -14, -13, ...
                    <dbl> 3.01, 2.00, 1.00, 13.00, 12.00, 11.00, 10.00, 9.00,...
## $ link_lifetime
```

3.2 Create the Prediction Tasks for Each Provider

```
task_linklifetime_o2 = make_task(dataset_linklifetime_o2, "task_linklifetime_o2", target = "link_lifetime_o2"
task_linklifetime_o2
## <TaskRegr:task_linklifetime_o2> (22040 x 10)
## * Target: link_lifetime
## * Properties: -
## * Features (9):
    - dbl (8): cqi, rsrp_dbm, rsrp_neighbor, rsrq_db, rsrq_neighbor,
##
       rssnr_db, ta, velocity_mps
     - fct (1): enodeb
task_linklifetime_tmobile = make_task(dataset_linklifetime_tmobile, "task_linklifetime_tmobile", target
task_linklifetime_tmobile
## <TaskRegr:task_linklifetime_tmobile> (23741 x 10)
## * Target: link_lifetime
## * Properties: -
## * Features (9):
    - dbl (8): cqi, rsrp_dbm, rsrp_neighbor, rsrq_db, rsrq_neighbor,
       rssnr_db, ta, velocity_mps
     - fct (1): enodeb
##
task_linklifetime_vodafone = make_task(dataset_linklifetime_vodafone, "task_linklifetime_vodafone", tar
task_linklifetime_vodafone
## <TaskRegr:task_linklifetime_vodafone> (22553 x 10)
## * Target: link_lifetime
## * Properties: -
## * Features (9):
##
    - dbl (8): cqi, rsrp_dbm, rsrp_neighbor, rsrq_db, rsrq_neighbor,
```

3.3 Parameter Tuning

- fct (1): enodeb

rssnr_db, ta, velocity_mps

##

##

```
tuning_result_linklifetime_o2 = get_tuning_result(task_linklifetime_o2, dataset_linklifetime, grid_reso
tuning_result_linklifetime_tmobile = get_tuning_result(task_linklifetime_tmobile, dataset_linklifetime,
tuning_result_linklifetime_vodafone = get_tuning_result(task_linklifetime_vodafone, dataset_linklifetime)
```

```
tuning_result_linklifetime = bind_rows(
   tibble(tuning_result_linklifetime_o2$result) %>% mutate(provider="o2"),
   tibble(tuning_result_linklifetime_tmobile$result) %>% mutate(provider="tmobile"),
   tibble(tuning_result_linklifetime_vodafone$result) %>% mutate(provider="vodafone"),
) %>% select("provider", "regr.xgboost.nrounds", "regr.xgboost.eta", "regr.xgboost.gamma", "regr.xgboost.
knitr::kable(tuning_result_linklifetime)
```

provider	regr.xgboost.nrounds	regr.xgboost.eta	regr.xgboost.gamma	regr.xgboost.lambda
o2	669	0.2184211	4.210526	8.421053
tmobile	669	0.0621053	5.263158	10.000000
vodafone	431	0.0621053	2.631579	9.473684

3.4 Create Learners with Tuned Hyperparameters

```
learner_linklifetime_o2 = make_learner(
    nrounds = tuning_result_linklifetime_o2$result$regr.xgboost.nrounds,
    eta = tuning_result_linklifetime_o2$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_o2$result$regr.xgboost.gamma,
    lambda = tuning_result_linklifetime_o2$result$regr.xgboost.lambda
)

learner_linklifetime_tmobile = make_learner(
    nrounds = tuning_result_linklifetime_tmobile$result$regr.xgboost.nrounds,
    eta = tuning_result_linklifetime_tmobile$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_tmobile$result$regr.xgboost.gamma,
    lambda = tuning_result_linklifetime_tmobile$result$regr.xgboost.lambda
)

learner_linklifetime_vodafone = make_learner(
    nrounds = tuning_result_linklifetime_vodafone$result$regr.xgboost.nrounds,
    eta = tuning_result_linklifetime_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_vodafone$result$regr.xgboost.gamma,
    lambda = tuning_result_linklifetime_vodafone$result$regr.xgboost.lambda
)
```

3.5 Validation Results

```
resampling_result_linklifetime_o2 = resample(
  task = task_linklifetime_o2,
  learner = learner_linklifetime_o2,
  resampling = make_outer_resampling(task_linklifetime_o2, dataset_linklifetime, drive_ids_train=1:7, d
  store_models = TRUE
)

resampling_result_linklifetime_tmobile = resample(
  task = task_linklifetime_tmobile,
  learner = learner_linklifetime_tmobile,
  resampling = make_outer_resampling(task_linklifetime_tmobile, dataset_linklifetime, drive_ids_train=1
  store_models = TRUE
)
```

```
resampling_result_linklifetime_vodafone = resample(
 task = task_linklifetime_vodafone,
 learner = learner_linklifetime_vodafone,
 resampling = make_outer_resampling(task_linklifetime_vodafone, dataset_linklifetime, drive_ids_train=
 store_models = TRUE
predictions_linklifetime_o2 = as.data.table(resampling_result_linklifetime_o2$prediction())
glimpse(tibble(predictions_linklifetime_o2))
## Rows: 6,610
## Columns: 3
            <int> 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735, 1736...
## $ row id
## $ truth
            <dbl> 59.01, 58.01, 57.00, 56.00, 55.00, 54.01, 53.01, 52.01, 51...
## $ response <dbl> 62.65211, 62.65211, 76.24164, 76.24164, 76.24164, 67.36938...
predictions linklifetime tmobile = as.data.table(resampling result linklifetime tmobile$prediction())
predictions_linklifetime_vodafone = as.data.table(resampling_result_linklifetime_vodafonesprediction())
validation_results_linklifetime = bind_rows(
 tibble(predictions linklifetime o2) %>%
   inner_join(tibble(task_linklifetime_o2$row_names), by="row_id") %>%
   inner_join(dataset_linklifetime, by=c("row_name"="row_id_original")),
 tibble(predictions_linklifetime_tmobile) %>%
   inner_join(tibble(task_linklifetime_tmobile$row_names), by="row_id") %>%
   inner_join(dataset_linklifetime, by=c("row_name"="row_id_original")),
 tibble(predictions_linklifetime_vodafone) %>%
   inner_join(tibble(task_linklifetime_vodafone$row_names), by="row_id") %>%
   inner_join(dataset_linklifetime, by=c("row_name"="row_id_original"))
glimpse(validation_results_linklifetime)
## Rows: 20,207
## Columns: 18
## $ row id
                 <int> 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735,...
                 <dbl> 59.01, 58.01, 57.00, 56.00, 55.00, 54.01, 53.01, 52.0...
## $ truth
## $ response
                 <dbl> 62.65211, 62.65211, 76.24164, 76.24164, 76.24164, 67....
                 <int> 6247, 6250, 6253, 6256, 6259, 6262, 6265, 6268, 6271,...
## $ row name
## $ drive id
                 ## $ timestamp
                 <dttm> 2018-12-11 09:04:04, 2018-12-11 09:04:05, 2018-12-11...
## $ scenario
                 <fct> campus, campus, campus, campus, campus, campus, campu...
## $ provider
                 ## $ velocity_mps
                <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,...
                 <dbl> -88, -88, -89, -89, -89, -89, -89, -86, -86, -91, -91...
## $ rsrp_dbm
                 <dbl> -11, -11, -8, -8, -8, -9, -9, -7, -7, -9, -9, -13, -1...
## $ rsrq_db
## $ rssnr_db
                 <dbl> 7, 7, 12, 12, 12, 13, 13, 11, 11, 6, 6, 4, 4, 4, 4, 3...
                 <dbl> 2, 2, 8, 8, 8, 11, 11, 9, 9, 7, 7, 6, 6, 6, 6, 6, 6, ...
## $ cqi
                 ## $ ta
## $ enodeb
                 <fct> 52410, 52410, 52410, 52410, 52410, 52410, 52410, 52410...
## $ link_lifetime <dbl> 59.01, 58.01, 57.00, 56.00, 55.00, 54.01, 53.01, 52.0...
```

```
all(validation_results_linklifetime$truth == validation_results_linklifetime$link_lifetime)

## [1] TRUE

validation_results_linklifetime = validation_results_linklifetime %>%
    rename(prediction_xgboost=response) %>%
    select(-truth, -row_id, -row_name)

# write_csv(validation_results_linklifetime, str_c(results_dir, "predictions_xgboost_linklifetime.csv")
```

3.5.1 Scatter Plots

```
ggplot(filter(validation_results_linklifetime, provider=="02"), aes(x=link_lifetime, y=prediction_xgboo
geom_point(aes(color=scenario, shape=scenario)) +
    xlab("Measured Link-Lifetime [s]") +
    ylab("Predicted Link-Lifetime [s]") +
    ggtitle("Link-Lifetime Predictions for Provider 02")
```

Link-Lifetime Predictions for Provider O2


```
ggplot(filter(validation_results_linklifetime, provider=="tmobile"), aes(x=link_lifetime, y=prediction_geom_point(aes(color=scenario, shape=scenario)) +
    xlab("Measured Link-Lifetime [s]") +
    ylab("Predicted Link-Lifetime [s]") +
    ggtitle("Link-Lifetime Predictions for Provider T-Mobile")
```



```
ggplot(filter(validation_results_linklifetime, provider=="vodafone"), aes(x=link_lifetime, y=prediction
geom_point(aes(color=scenario, shape=scenario)) +
    xlab("Measured Link-Lifetime [s]") +
    ylab("Predicted Link-Lifetime [s]") +
    ggtitle("Link-Lifetime Predictions for Provider Vodafone")
```

Link-Lifetime Predictions for Provider Vodafone

3.6 Feature Importance

3.6.1 XGBoost Gain

```
importance_linklifetime_o2 = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_linklifetime_o2$learners[[1]]$model$regr.xgboost$model$feature_name
  model = resampling_result_linklifetime_o2$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "o2")
## [21:12:21] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_linklifetime_tmobile = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_linklifetime_tmobile$learners[[1]]$model$regr.xgboost$model$feature
  model = resampling_result_linklifetime_tmobile$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "tmobile")
## [21:12:22] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_linklifetime_vodafone = tibble(xgboost::xgb.importance(
  feature_names = resampling_result_linklifetime_vodafone$learners[[1]]$model$regr.xgboost$model$featur
  model = resampling_result_linklifetime_vodafone$learners[[1]]$model$regr.xgboost$model
)) %>% mutate(provider = "vodafone")
## [21:12:23] WARNING: amalgamation/../src/objective/regression_obj.cu:174: reg:linear is now deprecate
importance_linklifetime = bind_rows(
  importance_linklifetime_o2,
  importance_linklifetime_tmobile,
```

```
importance_linklifetime_vodafone
) %>% filter(!str_starts(Feature, "enodeb"))

ggplot(importance_linklifetime) +
    geom_bar(position = "dodge", aes(x = Feature, y = Gain, fill = provider), stat="identity") +
    xlab("feature") +
    ylab("Gain") +
    scale_x_discrete(guide = guide_axis(angle = 20)) +
    ggtitle("XGBoost Gain Feature Importance for Link-Lifetime Prediction")
```

XGBoost Gain Feature Importance for Link–Lifetime Prediction

3.6.2 Permutation

```
num_permutation_sims_linklifetime = 1

filter_permutation_o2_linklifetime = flt("permutation",
    learner = learner_linklifetime_o2$clone(),
    resampling = uninstantiate_resampling(
        make_outer_resampling(task_linklifetime_o2, dataset_linklifetime, drive_ids_train=1:7, drive_ids_te
    ),
    measure = msr("regr.mae"),
    standardize = TRUE,
    nmc = num_permutation_sims_linklifetime
)

filter_permutation_o2_linklifetime$calculate(task_linklifetime_o2)
    permutation_linklifetime_o2 = tibble(as.data.table(filter_permutation_o2_linklifetime)) %>% mutate(prov
```

```
filter_permutation_tmobile_linklifetime = flt("permutation",
    learner = learner_linklifetime_tmobile$clone(),
    resampling = uninstantiate_resampling(
         make_outer_resampling(task_linklifetime_tmobile, dataset_linklifetime, drive_ids_train=1:7, d
    ),
    measure = msr("regr.mae"),
    standardize = TRUE,
    nmc = num_permutation_sims_linklifetime
filter_permutation_tmobile_linklifetime$calculate(task_linklifetime_tmobile)
permutation_linklifetime_tmobile = tibble(as.data.table(filter_permutation_tmobile_linklifetime)) %>% m
filter_permutation_vodafone_linklifetime = flt("permutation",
    learner = learner_linklifetime_vodafone$clone(),
    resampling = uninstantiate_resampling(
         make_outer_resampling(task_linklifetime_vodafone, dataset_linklifetime, drive_ids_train=1:7, drive_
    measure = msr("regr.mae"),
    standardize = TRUE,
    nmc = num_permutation_sims_linklifetime
filter_permutation_vodafone_linklifetime$calculate(task_linklifetime_vodafone)
permutation_linklifetime_vodafone = tibble(as.data.table(filter_permutation_vodafone_linklifetime)) %>%
permutation_linklifetime = bind_rows(
    permutation_linklifetime_o2,
    permutation_linklifetime_tmobile,
    permutation_linklifetime_vodafone
ggplot(permutation_linklifetime) +
    geom_bar(position = "dodge", aes(x = feature, y = score, fill = provider), stat="identity") +
    xlab("feature") +
    ylab("MAE difference") +
    scale_x_discrete(guide = guide_axis(angle = 20)) +
    ggtitle("Permutation Feature Importance for Link-Lifetime Prediction")
```

