Measuring Treasury Debt and Market Depth

Dr. Andrew Keinsley

Weber State University

November, 2023

The Basics

- US fiscal debt has come back into sharp focus recently
 - COVID-19
 - Industrial policy
 - Inflation
 - Rising interest rates
- Traditional view of the UST market focuses on size, not depth

- Contributions
 - Simple sum of USTs is incorrect
 - Derivation of user cost of USTs
 - Creation of index to track quantity, monetary services aggregates
 - Monetary services of USTs directly adds to fiscal sustainability

USTs are Imperfect Substitutes

Literature

- Krishnamurthy and Vissing-Jorgensen (2012, 2013)
- Nagel (2016) :
- All: the various maturities/types of USTs have different attributes/purposes

Findings

- Extension of Amihud and Mendelson (1991)
 - Match securities that mature within one day of each other
 - Regress YTM spreads against a variety of factors
- Contribution
 - Bills are a liquidity hedge
 - Bonds are a savings vehicle
 - They should not be linearly aggregated

The User Cost of Treasury Securities

- A proper index number
 - Not the aggregate, itself
 - Tracks the aggregate nonparmetrically
 - Must be derived from optimization
- Standard single-period user cost

$$\eta_t = \frac{R_t - r_t}{1 + R_t}$$

- Barnett (1978)
- Opportunity cost of holding the asset

- Partial equilibrium model: household
 - Standard utility maximization
 - Short- and long-term bonds, and a benchmark asset
- Contribution
 - Deriving the single-period user cost of a long-term asset

The User Cost of Long-Term Treasury Securities

$$\eta_t^L = \frac{\mathbb{E}_t \left[\frac{\mu_{t+1}}{\mu_t} \frac{1}{\pi_{t+1}} \left\{ R_t^n - (1 - \delta) \gamma_{3,t+1} \Delta R_{t+1}^n - \left(r_t^{L,n} - (1 - \alpha) \gamma_{4,t+1} \Delta r_{t+1}^{L,n} \right) \right\} \right]}{\mathbb{E}_t \left[\frac{\mu_{t+1}}{\mu_t} \frac{1}{\pi_{t+1}} \left\{ 1 + R_t^n - (1 - \delta) \gamma_{3,t+1} \Delta R_{t+1}^n \right\} \right]}$$

• $\delta, \alpha \in (0, 1]$ are the maturity rates

Data and Baseline Result

- Center for Research in Securities Pricing (CRSP)
- CUSIP-level, monthly data on US Treasuries: 1977-2020
- 1-month ahead forward rates used for expected values
- Fisher-ideal index functional form
 - Securities separated by type
 - Then separated by quarters to maturity

Extracting the Monetary Services of Treasury Securities

 $\%\Delta(Quantity + Monetary Services)$

 $-\%\Delta(Quantity)$

 $= \%\Delta(Monetary Services)$

It's all Relative

- This index is a measure of the "depth" of the market
- More recent movements align with
 - Budget surpluses of the 1990s
 - European debt crisis of the 2010s
 - COVID-19 "dash for cash"

The Value of Treasury Securities

- Traditional accounting of fiscal capacity relies on the simple sum of USTs
- The analysis here shows that this is incorrect
- USTs provide a monetary service to the economy

Brunnermeier, Merkel and Sannikov (2022)-like analysis

Contribution

- The value of USTs directly contributes to fiscal sustainability
- Also see the tradeoffs faced when considering a portfolio of USTs with varying maturities

Fiscal Capacity and the Value of USTs

$$\begin{array}{c} \text{Spread Component} \\ \text{Primary surplus} \\ \downarrow \\ \frac{B_{t-1} + B_{t-1}^L}{\rho_t} (1 + r_{t-1}) = \overset{\downarrow}{s_t} - (r_{t-1}^L - r_{t-1}) \frac{B_{t-1}^L}{\rho_t} + \beta \mathbb{E}_t \left[\frac{\mu_{1,t+1}}{\mu_{1,t}} \frac{B_t + B_t^L}{\rho_{t+1}} (1 + r_t) \right] \\ + \beta \mathbb{E}_t \left[\frac{\mu_{1,t+1}}{\mu_{1,t}} \frac{B_t^L}{\rho_{t+1}} (1 + r_t^L - (1 - \alpha) \gamma_{4,t+1} \Delta r_{t+1}^{L,n} - r_t) \right] + \gamma_{2,t} \frac{M_t}{\rho_t} \\ \uparrow \\ \text{Relative Holding-} \\ \text{Value of M} \end{array}$$

M_t is stock of monetary services

Period Return

Value of Monetary Services

- $\gamma_{2,t}$ is the price dual of those monetary services
- Thus, the value of these monetary services directly adds to fiscal capacity

The Value of these Monetary Services

- Price dual via Fisher's factor reversal
- Further exploration of this is needed
 - Fiscal sustainability
 - Inflation
 - Monetary policy

Conclusion

Contributions

- Simple sum of USTs is incorrect
- ② Derivation of user cost of USTs
- Oreation of index to track true aggregate
- Value of USTs directly impacts fiscal sustainability
- USTs are more than just the sum of their principal value

Extensions

- Applications to sovereign debt crises
- Expansion of the measure to include risk
- Refining the basket of securities
- Monetary-Fiscal interaction and inflation

Thank You!

Questions?

Appendix Slides

Bond Market Segmentation: Model

- Data
 - USTs: separated by nominal type
 - Oct 1996-Dec 2020 subsample
- Methodology
 - Matching by days to maturity
 - Bill matches: 6 months maturity or less
 - Dependent variable: YTM spread

spread: "senior" - "junior"

- Independent Variables
 - Relative bid-ask spread

$$\frac{\text{ask price } - \text{ bid price}}{\text{ask price } + \text{ accrued interest}} \times 100.$$

- Coupon rate spread
- Months/years to maturity
- 4 10y-2y spread
- Constant

	Notes–Bills	Bonds–Notes	Bonds–Bills
Relative Bid-Ask Spread	0.4163** (0.173)	0.0981 (0.074)	$-0.1424^{**} \ (0.074)$
Coupon Rate Spread	0.0210*** (0.001)	0.0170*** (0.005)	0.0076 (0.013)
10y-2y Spread	0.0234*** (0.003)	$-0.0124^{***} \ (0.002)$	-0.0484 (0.033)
<u>:</u>	:	:	:
Observations	2250	7430	78
R-Squared	0.207	0.505	0.399
F-statistic	99.48	207.2	20.19

Bonds in the Utility Function

- Analysis of USTs is relative to USTs only
 - Bonds are still liquid overall
 - Bills are still safe overall
 - Modeling this way avoids larger assumptions
- Simple frictions to capture liquidity, etc. can be represented in a money-in-the-utility setting
- Use of MB = MC
 - Left side: parametarized assumptions
 - Right side: equivalent, nonparametric form

$$\max \mathbb{E}_t \sum_{t=0}^{\infty} eta^t \left\{ u(c_t) + v\left(m_t
ight) + x(1-I_t)
ight\}$$

- *m_t*: monetary services ~ second-order translog function
 - an exact aggregator function
 - second-order Taylor approximation of unknown aggregator
 - second-order approximation to a CES function

(Boisvert, 1982)

Initial, Monthly Results

November, 2023