Synchronous Down Counter

A Synchronous Down Counter is a counter in which all flip-flops are triggered by the same clock signal, and the counter counts downward in binary sequence (for example: $111 \rightarrow 110 \rightarrow 101 \rightarrow ... \rightarrow 000$).

Since all flip-flops receive the clock pulse simultaneously, there is no ripple delay, and the operation is fast and synchronized.

Key Points

- All flip-flops share a common clock.
- The count decreases by one with each clock pulse.
- The next state of each flip-flop depends on the present states of the other flip-flops.
- Implemented using JK or T flip-flops.
- Faster and more accurate than asynchronous counters.

Example: 3-bit Synchronous Down Counter

Clock Pulses	Q2	Q1	Q0
0	1	1	1
1	1	1	0
2	1	0	1
3	1	0	0
4	0	1	1
5	0	1	0
6	0	0	1
7	0	0	0

module sync_down_counter_4bit (input clk, reset, output reg [3:0] q); always @(posedge clk or posedge reset) begin if (reset) q <= 4'b1111; else q <= q - 1'b1; end endmodule</pre>

• 1.2) Test Bench Code

```
tb.v
module tb_sync_down_counter_4bit;
    reg clk, reset;
    wire [3:0] q;
    // Instantiate DUT
    sync_down_counter_4bit uut (.clk(clk), .reset(reset), .q(q));
    // Clock generation
    initial begin
        clk = 0;
        forever #5 clk = ~clk; // 10ns clock period
    end
    // Stimulus
    initial begin
        reset = 1; \#10;
        reset = 0;
        #160 $finish;
    end
    // Monitor outputs
    initial begin
        $monitor("Time=%0t | Q=%b", $time, q);
    end
endmodule
```

• 1.3) Schematic

• 1.4) Wave Forms

Applications

- Digital clocks (for countdown timers)
- Sequence generators
- Reverse counting systems
- Frequency dividers