Mecánica de fluidos

BMJIvan

12 de septiembre de 2021

1. Conceptos fundamentales

$$\begin{array}{c} {\rm T\'ecnicas\;o} \\ {\rm m\'etodos\;o\;anal\'iticos} \end{array} \left\{ \begin{array}{c} {\rm Anal\'iticos} \\ {\rm Experimentales} \\ {\rm Computacionales} \end{array} \right. \left\{ \begin{array}{c} {\rm Diferenciales} \\ {\rm Integrales} \end{array} \right.$$

Presión, esfuerzo normal: Genera deformaciones lineales

$$P = \lim \frac{\Delta F_n}{\Delta A} = \frac{dF_n}{dA}$$

Esfuerzo cortante: Genera deformaciones angulares

$$\tau = \lim \frac{\Delta F_t}{\Delta A} = \frac{dF_t}{dA}$$

1.1. Propiedades de los fluidos

Densidad

$$\rho = \frac{m}{v} \left[{^{kg}}/{_{m^3}}.^{lbm}/_{pie^3}, {^{slug}}/_{pie^3} \right]$$

Peso especifico

$$\gamma = \frac{W_g}{v} = \frac{mg}{v} = \rho g \left[{^N/_{m^3}, ^{lb}/_{pie^3}} \right]$$

Densidad relativa

$$sg = GE = \rho_r = \frac{\rho_{fluido}}{\rho_{H_2O\ T=4^{\circ}C}}$$

Viscosidad dinámica o absoluta

$$\mu = \frac{\tau}{d\vec{u}/dy} \ \ \frac{\text{Esfuerzo cortante}}{\text{Gradiente de velocidad}}$$

$$\mu = \frac{\tau y}{\vec{u}} \ \left[^{N \cdot s}/m^2, ^{lb \cdot s}/pie^2\right]$$

Viscosidad cinemática

$$\nu = \frac{\mu}{\rho} \ \left[{m^2/s,^{pie^2}/s} \right]$$