Ch 1b Lecture 10 January 29th, 2013

Next few lectures – Moving toward chemical reactivity, we'll start with the gaseous state.

Today: The kinetic theory of gases.

Reading: OGC Chapter 9, esp. sections 9.5, 9.8.

Objective:

Understand the origins of the IDEAL GAS LAW

IDEAL GAS LAW: PV = nRT

P = Pressure

V = Volume

n = # moles

R = ideal gas constant

= 8.314 Joules Kelvin-1 Mol-1

T = Temperature

The Ideal Gas Law - first written in 1834 by Emil Clapeyron (shown here relaxing at home)

The Kinetic Theory of Ideal Gases - Assumptions

- An ideal gas consists of discrete particles (could be molecules or atoms).
- 2. The particles are far apart and occupy zero volume.
- The particles are in constant motion Newtonian type physics describes those motions

The Kinetic Theory of Ideal Gases - Assumptions

- An ideal gas consists of discrete particles (could be molecules or atoms).
- 2. The particles are far apart and occupy zero volume.
- The particles are in constant motion Newtonian type physics describes those motions
- The particles couldn't care less about each other or the container that holds them (no attractive forces).
- The particles do collide with one another and the sides of the container.
- 6. Energy is conserved. A particle may gain energy if another loses an equal amount.

A few things to remember:

k_BT = an energy – each degree of freedom in a particle contains ½ k_BT of energy (3/2 k_BT total – WHY??)

Momentum = mv = (mass)(velocity)

 $d(mv)/dt = a Force = \Delta p/\Delta T$ (p = momentum)

Force/Area, or Force per unit Area = Pressure

h = 6.626e-34 J·s (kg m² s⁻¹) = Planck's constant $k_B = 1.381e-23 J \cdot K^{-1}$ T = temperature (in K)

Particle of mass m striking a wall within a container.

With the below assumptions, what does the above picture imply?

Redacted Assumptions

Particles move

Energy is conserved

Particles collide Newtonian physics is good.

What is momentum change upon collision?

Particle has momentum (p) = mass × velocity (= mv_x) before striking wall (moving in x-direction) = - mv_x after striking wall

$$\Delta p = 2m\Delta v = 2m|v_x|$$

Redacted Assumptions

The particles move Energy is conserved They collide (with walls)
Newtonian physics is good.

How about per unit time?

$$\Delta p = 2m\Delta v = 2m|v_x|$$

Unit time = Δt Distance particle travels in $\Delta t = |\mathbf{v}_{\mathbf{x}}| \Delta t$

Redacted Assumptions

The particles move Energy is conserved

Volume containing all striking particles

$$\Delta p = 2m\Delta v = 2m|v_x|$$

Wall area = A

Distance particle travels $\Delta t = |\mathbf{v}_{\mathbf{x}}| \Delta t$

 $|\mathbf{v_x}|\mathbf{A}\Delta\mathbf{t}$ = a Volume element containing all particles that *might* strike the wall within $\Delta\mathbf{t}$

Redacted Assumptions

The particles move Energy is conserved

particles per volume strike wall per unit time?

$$\Delta p = 2m\Delta v = 2m|v_x|$$

Wall area = A

Distance particle travels $\Delta t = |\mathbf{v}_{\mathbf{x}}| \Delta t$

 $V = |v_x| A \Delta t = \text{contains all particles}$ that *might* strike wall within Δt

Define the # particles/unit Volume as n

Then, there exist $\eta | \mathbf{V_x} | \mathbf{A} \Delta \mathbf{t}$ particles of interest

Redacted Assumptions

The particles move Energy is conserved

particles per volume strike wall per unit time?

 $\eta |\mathbf{v}_{x}| \mathbf{A} \Delta \mathbf{t}$ = # of particles of interest

 $\frac{1}{2}$ have a $v_x \xrightarrow{+v_x}$ And $\frac{1}{2}$ have a $v_x \xleftarrow{-v_x}$

So...

 $\frac{1}{2} \eta | \mathbf{v}_{\mathbf{x}} | \mathbf{A} \Delta \mathbf{t}$

molecules strike wall in given unit of time

Redacted Assumptions

The particles move Energy is conserved

Total momentum change per unit time

Total momentum change = $\frac{1}{2} \eta A |v_x| \Delta t \cdot 2m |v_x| = \eta A m v_x^2 \Delta t$

= (# particles)· (momentum change per particle)

Redacted Assumptions

The particles move Energy is conserved

Force from all of those particle striking events?

Total momentum change

$$= \Delta p = \eta Amv_x^2 \Delta t$$

According to Newton – the time derivative of momentum is a force

$$\Delta p/\Delta t = \eta Amv_x^2 = Force$$

Redacted Assumptions

The particles move Energy is conserved

Converting Force to Pressure

Total momentum change

$$= \Delta p = \eta Amv_x^2 \Delta t$$

According to Newton – the time derivative of momentum is a force

 $\Delta p/\Delta t = \eta Am v_x^2 = Force$

And ... force per unit Area = Pressure

$$\eta m v_x^2 = Pressure = Force/A$$

Redacted Assumptions

The particles move Energy is conserved

Generalizing pressure for all particle velocities

 $\eta m v_x^2$ = Pressure on 1 wall

Measured Pressure reflects the average velocity = $<V_x^2>$ The magnitude of velocity is speed =

$$\langle v^2 \rangle = \langle v_x^2 \rangle + \langle v_y^2 \rangle + \langle v_z^2 \rangle = 3 \langle v_x^2 \rangle = c^2$$

= mean square speed.

Redacted Assumptions

The particles move Energy is conserved

Generalizing pressure for all particle velocities

$$\eta m v_x^2 = P \text{ on 1 wall}$$

$$3 < v_x^2 > = c^2$$
 = mean square speed

Substituting

$$P_{total} = 1/3\eta mc^2$$

Redacted Assumptions

The particles move Energy is conserved

Moving towards the Ideal Gas Law...

$$P_{total} = 1/3\eta mc^2$$

 η (= particle density) = N/V where (N = total # particles in chamber)

N = nL, where n = # moles; L = Avogadro's number

Then $P = 1/3(nL/V)mc^2$ or $PV = 1/3 nLmc^2$

Redacted Assumptions

The particles move Energy is conserved

Moving towards the Ideal Gas Law...

Since Kinetic Energy = ½ mv²

Redacted Assumptions

The particles move Energy is conserved

Here we need Ludvig Boltzmann

 $\frac{1}{2}$ PV = 1/3 nL[$\frac{1}{2}$ mc²]

= 1/3 nL × avg. kinetic energy per particle

Boltzmann showed that each translational degree of freedom (there are 3 (why?)) from a particle contributes $\frac{1}{2} \mathbf{k_B T}$ kinetic energy yielding

3/2k_BT kinetic energy particle-1

So ... $3/2 k_BT = \frac{1}{2} mc^2$

Ludvig Boltzmann

THE IDEAL GAS LAW!!

 $\frac{1}{2}$ PV = $\frac{1}{3}$ nL[$\frac{1}{2}$ mc²]

= 1/3 nL × avg. kinetic energy per particle

Since $3/2 k_B T = \frac{1}{2} mc^2$

$$\frac{1}{2}$$
 PV = (1/3) (3/2) nL k_BT or **PV = nLk_BT** = **nRT**

since $R = k_B \cdot L$

L = Avagadro's #

Thus, velocity distributions are key!

Let's look a bit closer...

Maxwell

For a generalized Boltzmann distribution, $f(E) = Ae^{-E/kT}$

where A serves to normalize things.

If we only worry about kinetic energy, $f(v_z)dv_z = A \exp(-mv_z^2/2kT) dv_z$

$$\int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

$$f(v_z) = \sqrt{\frac{m}{2\pi kT}} e^{\frac{-mv_z^2}{2kT}}$$

Full velocity distribution:

$$F(v_{x}, v_{y}, v_{z}) = f(v_{x})f(v_{y})f(v_{z})$$
and
$$\frac{1}{2}(mv^{2})_{avg} = \frac{1}{2}(mv_{x}^{2})_{avg} + \frac{1}{2}(mv_{y}^{2})_{avg} + \frac{1}{2}(mv_{z}^{2})_{avg}$$

Thus, to get the *molecular speed* (call it u) distribution, we need to multiply F(v) by the number of molecules with speeds between u and u+du. This involves the volume of the spherical shell across the interval, or $4\pi u^2 du$, to give:

 $f(u)du = 4\pi(m/2\pi kT)^{3/2} u^2 \exp(-mu^2/2kT) du$

Molecular Speed Distributions:

Maxwell-Boltzmann Molecular Speed Distribution for Noble Gases

Can define numerous speeds: Most probable, average, rms, etc. (so $c^2=int(u^2f(u))du = 3kT/m$, which we saw on p. 19)

Here at room temp., clearly depends on mass as it should. The sound speed is roughly $c_{sound}^2 \sim RT/M$ (331 m/s in air).

Mean Free Path:

Consider molecules of diameter *d*:

The gas density is η , let's have stationary targets for now:

For actual gases, the average relative velocity is sqrt(2) the average velocity, so M.F.P. $\lambda = (\sqrt{2} \pi d^2 \eta)^{-1}$

For CO₂ at STP, λ ~ 56 nm.

Collisional Rates:

- •The maximum rate at which a chemical reaction can occur is the rate of collisions between partners.
- •For a single component gas, the rate, in s⁻¹, would just be the average molecular velocity times the mean free path just calculated, or:

$$Z_1 = v_{avg}/\lambda = (8kT/\pi m)^{1/2} \cdot \sqrt{2\pi d^2 \eta}$$
 s⁻¹

$$Z_1 = v_{avg}/\lambda = 4\eta d^2 \bullet (\pi kT/m)^{1/2}$$
 s⁻¹

$$Z_1 = v_{avg}/\lambda = 4\eta d^2 \cdot (\pi RT/M)^{1/2}$$
 s⁻¹

For
$$CO_2$$
 at STP, $Z_1 \sim 3 \times 10^9 \text{ s}^{-1}$.