#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

#### Университет ИТМО

Факультет систем управления и робототехники

#### ОТЧЁТ

по лабораторной работе N = 3 по дисциплине «Линейные системы автоматического управления»

#### по теме: ВЫНУЖДЕННОЕ ДВИЖЕНИЕ И ПОКАЗАТЕЛИ КАЧЕСТВА (ВАРИАНТ 12)

Студент:

Группа R3343 Ткачёв И.Ю.

Предподаватель:

ассистент Пашенко А.В.

# СОДЕРЖАНИЕ

| 1 | ВЫНУЖДЕННОЕ ДВИЖЕНИЕ                           |                                   |                |    |  |  |  |
|---|------------------------------------------------|-----------------------------------|----------------|----|--|--|--|
|   | 1.1                                            | Структурная схема системы         |                |    |  |  |  |
|   | 1.2                                            | Значения коэффициентов $a_1, a_0$ |                |    |  |  |  |
|   | 1.3 Графики сигналов $y(t)$ , их сопоставление |                                   |                |    |  |  |  |
|   |                                                | 1.3.1                             | Эксперимент 1  | 4  |  |  |  |
|   |                                                | 1.3.2                             | Эксперимент 2  | 5  |  |  |  |
|   |                                                | 1.3.3                             | Эксперимент 3  | 7  |  |  |  |
|   | 1.4                                            | Вывод                             |                | 8  |  |  |  |
| 2 | КАЧЕСТВО ПЕРЕХОДНЫХ ПРОЦЕССОВ                  |                                   |                |    |  |  |  |
|   | 2.1 Результаты моделирования                   |                                   |                |    |  |  |  |
|   |                                                | 2.1.1                             | Эксперимент 1  | 10 |  |  |  |
|   |                                                | 2.1.2                             | Эксперимент 2  | 11 |  |  |  |
|   |                                                | 2.1.3                             | Эксперимент 3  | 13 |  |  |  |
|   |                                                | 2.1.4                             | Эксперимент 4  | 14 |  |  |  |
|   |                                                | 2.1.5                             | Эксперимент 5  | 15 |  |  |  |
|   |                                                | 2.1.6                             | Эксперимент 6  | 17 |  |  |  |
|   |                                                | 2.1.7                             | Эксперимент 7  | 18 |  |  |  |
|   |                                                | 2.1.8                             | Эксперимент 8  | 19 |  |  |  |
|   |                                                | 2.1.9                             | Эксперимент 9  | 21 |  |  |  |
|   |                                                | 2.1.10                            | Эксперимент 10 | 22 |  |  |  |
|   | 2.2                                            | Вывод                             |                | 24 |  |  |  |
| 3 | вын                                            | ЗОЛ                               |                | 25 |  |  |  |

#### 1 ВЫНУЖДЕННОЕ ДВИЖЕНИЕ

Рассмотрим математическую модель системы в виде дифференциального уравнения:

$$\ddot{y} + a_1 \dot{y} + a_0 y = u$$

с некоторыми начальными условиями  $y(0), \dot{y}(0)$ .

#### 1.1 Структурная схема системы

С помощью блоков элементарных операций построим структурную схему системы.



Рисунок 1 — Структурная схема системы в Simulink

#### **1.2** Значения коэффициентов $a_1, a_0$

Возьмем три набора коэффициентов из Задания 1 Лабораторной работы 2:

1. 
$$a_0 = 198.89, a_1 = 3.4$$

2. 
$$a_0 = 196, a_1 = 0$$

3. 
$$a_0 = 198.89, a_1 = -3.4$$

Выполним моделирование движения системы при различных начальных условиях:

1. 
$$y(0) = -1, \dot{y}(0) = 0$$

2. 
$$y(0) = 0, \dot{y}(0) = 0$$

3. 
$$y(0) = 1, \dot{y}(0) = 0$$

И различных входных воздействиях:

1. 
$$u(t) = 2.5$$

2. 
$$u(t) = 0.8t$$

3. 
$$u(t) = \sin 4t$$

### 1.3 Графики сигналов y(t), их сопоставление

### 1.3.1 Эксперимент 1

Проведем эксперимент для системы с коэффициентами  $a_0=198.89, a_1=3.4.$ 



Рисунок 2 — Входное воздействие u(t)=2.5



Рисунок 3 — Входное воздействие u(t)=0.8t



Рисунок 4 — Входное воздействие u(t) = sin4t

# 1.3.2 Эксперимент 2

Проведем эксперимент для системы с коэффициентами  $a_0=196, a_1=0.$ 



Рисунок 5 — Входное воздействие u(t) = 2.5



Рисунок 6 — Входное воздействие u(t)=0.8t



Рисунок 7 — Входное воздействие u(t)=sin4t

### 1.3.3 Эксперимент 3

Проведем эксперимент для системы с коэффициентами  $a_0=198.89, a_1=-3.4.$ 



Рисунок 8 — Входное воздействие u(t)=2.5



Рисунок 9 — Входное воздействие u(t)=0.8t



Рисунок 10 — Входное воздействие u(t) = sin4t

#### 1.4 Вывод

Как можно наблюдать по графикам, начальные условия отражают стартовую позицию движения системы. Также, в наших экспериментах началь-

| ные условия и входные воздействия не поменяли характер устойчивости си- |
|-------------------------------------------------------------------------|
| стемы.                                                                  |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |
|                                                                         |

#### 2 КАЧЕСТВО ПЕРЕХОДНЫХ ПРОЦЕССОВ

Рассмотрим систему 3-го порядка, заданную передаточной функцией:

$$W(s) = \frac{|\lambda_1 \lambda_2 \lambda_2|}{(s - \lambda_1)(s - \lambda_2)(s - \lambda_3)}$$

Проведем исследование качества переходного процесса в зависимости от выбора полюсов передаточной функции. Для оценки качества будем использовать такие показатели, как **перерегулирование**:

$$\sigma = \frac{|y_{max} - y_{ycr}|}{y_{ycr}} %$$

, а также время переходного процесса:

$$|y(t) - y_{\text{yet}}| < \epsilon, t_{\text{II}} > t$$

#### 2.1 Результаты моделирования

#### 2.1.1 Эксперимент 1

Полюса передаточной функции:

$$\lambda_1 = -2, \lambda_2 = -2, \lambda_3 = -2$$

$$\sigma = 0\%$$

$$t_{\rm II} = 3.76c$$



Рисунок 11 — Выходной сигнал



Рисунок 12 — Полюса передаточной функции

## 2.1.2 Эксперимент 2

Полюса передаточной функции:

$$\lambda_1 = -2, \lambda_2 = -2, \lambda_3 = -5$$



Рисунок 13 — Выходной сигнал



Рисунок 14 — Полюса передаточной функции

$$\sigma = 0\%$$

$$t_{\text{II}} = 3.26c$$

# 2.1.3 Эксперимент 3

Полюса передаточной функции:

$$\lambda_1 = -2, \lambda_2 = -5, \lambda_3 = -5$$



Рисунок 15 — Выходной сигнал

$$\sigma = 0\%$$

$$t_{\rm II}=2.48c$$



Рисунок 16 — Полюса передаточной функции

### 2.1.4 Эксперимент 4

Полюса передаточной функции:

$$\lambda_1 = -2, \lambda_2 = -1, \lambda_3 = -1$$

$$\sigma = 0\%$$

$$t_{\rm II}=6.44c$$



Рисунок 17 — Выходной сигнал



Рисунок 18 — Полюса передаточной функции

## 2.1.5 Эксперимент 5

Полюса передаточной функции:

$$\lambda_1 = -10, \lambda_2 = -1, \lambda_3 = -1$$



Рисунок 19 — Выходной сигнал



Рисунок 20 — Полюса передаточной функции

$$\sigma = 0\%$$

$$t_{\rm II}=5.92c$$

## 2.1.6 Эксперимент 6

Полюса передаточной функции:

$$\lambda_1 = -1 - i, \lambda_2 = -1 + i, \lambda_3 = -1$$



Рисунок 21 — Выходной сигнал

$$\sigma = 0\%$$

$$t_{\rm II}=4.3c$$



Рисунок 22 — Полюса передаточной функции

### **2.1.7** Эксперимент 7

Полюса передаточной функции:

$$\lambda_1 = -1 - 5i, \lambda_2 = -1 + 5i, \lambda_3 = -1$$

$$\sigma = 0\%$$

$$t_{\rm m}=4.14c$$



Рисунок 23 — Выходной сигнал



Рисунок 24 — Полюса передаточной функции

# 2.1.8 Эксперимент 8

Полюса передаточной функции:

$$\lambda_1 = -1 - 5i, \lambda_2 = -1 + 5i, \lambda_3 = -4$$



Рисунок 25 — Выходной сигнал



Рисунок 26 — Полюса передаточной функции

$$\sigma = 27\%$$

$$t_{\pi} = 0.59c$$

# 2.1.9 Эксперимент 9

Полюса передаточной функции:

$$\lambda_1 = -0.5 - 5i, \lambda_2 = -0.5 + 5i, \lambda_3 = -4$$



Рисунок 27 — Выходной сигнал

$$\sigma=41\%$$

$$t_{\rm II}=0.54c$$



Рисунок 28 — Полюса передаточной функции

### 2.1.10 Эксперимент 10

Полюса передаточной функции:

$$\lambda_1 = -0.5 - 2i, \lambda_2 = -0.5 + 2i, \lambda_3 = -4$$

$$\sigma = 40\%$$

$$t_{\rm II}=1.15c$$



Рисунок 29 — Выходной сигнал



Рисунок 30 — Полюса передаточной функции

#### 2.2 Вывод

| №  | $\lambda_1$ | $\lambda_2$ | $\lambda_3$ | $\sigma$ , % | t, c |
|----|-------------|-------------|-------------|--------------|------|
| 1  | -2          | -2          | -2          | 0            | 3.76 |
| 2  | -2          | -2          | -5          | 0            | 3.26 |
| 3  | -2          | -5          | -5          | 0            | 2.48 |
| 4  | -2          | -1          | -1          | 0            | 6.44 |
| 5  | -10         | -1          | -1          | 0            | 5.92 |
| 6  | -1-i        | -1+i        | -1          | 0            | 4.3  |
| 7  | -1-5i       | -1+5i       | -1          | 0            | 4.14 |
| 8  | -1-5i       | -1+5i       | -4          | 27           | 0.59 |
| 9  | -0.5-5i     | -0.5+5i     | -4          | 41           | 0.54 |
| 10 | -0.5-2i     | -0.5+2i     | -4          | 40           | 1.15 |

Качество переходного процесса зависит от вещественной и мнимой части полюсов передаточной функции. С увеличением  $|\lambda_1\lambda_2\lambda_3|$ , уменьшается время переходного процесса. С уменьшением, время увеличивается. Появление мнимой части помогает уменьшить время переходного процесса, но возникает перерегулирование

### 3 ВЫВОД

В данной лабораторной работе мы изучили вынужденное движение динамической системы, как начальные условия и входное воздействие влияют на её движение. Также ввели оценки качества переходного процесса и выяснили влияние полюсов системы на них.