F. 0																			
	mpio																		
	Scrive	ere in	forma	Cahol	ni(a e	in for	ma de	l polin	nomio d	Lag	range	il poli	homi0	d'int	erpola	zione d	i Sih(x	<i>(</i>)	
			di Xo=0, X		_														
Solver		J.:	, ,	1 6, 6					> p(x) =	70L0	(x)++ /	/nLn(x))						
						. ,		14	1 11				,	,			1,		
		١.				di La	grange	elt) (3110	90216	si ha	imme	diata	mente	che il	polinom	io di	interpol	bzione
		di si	in <i>(x</i>) Su	X0, X4,	x _i e'														
)(x)=	Sih(Ko))Lo(x)+	Sih(xi))L((x) +	f sih(x	1) Lz(x)	=									
				- Ci h	(v) (x-x,)(x-x,)	1 Sih	$(x_i)\frac{(x_i)}{(x_i)}$	- x ₀)(x	- X ₁) +	Sin(x,) (x-x	(,)(x-X,	,)				
				ן יוול =	x.) ()	(,-K,)(;	X0-X1)	7 7	(X4)	- X _o)(x,	-X¹)	`	(x _i -x	∞)(x ₁ -x	· ₄)				
					,							, _							
				= 0	(X-X.)(x-x,) +, +	1 x((X - 1/4) (1/6 - 4)	1	2 X	(X-10)							
									1			,	,						
				1;	$x(x-\frac{\overline{10}}{4})$	1	x/x	10)	1 x(x		ve xl	$\left(x-\frac{\overline{\mu}}{\epsilon}\right)$		F	واسياء	di logra	1,00		
				$=i$ \bar{j}	1 (- 10)	1 7	10/10	i)	1 x(x 1 <u>M</u> 71	1 +	7	<u></u>	/ /	27.	/ mon		ryc		
					, ,						4	48							
		Uh Coh	n Grollo	direct	· perme	:C6e di	veri Si	icare (she p	(K _o) =0	, p(×1):	1, PC	$(x_1) = \frac{N_2}{2}$						
		Per s	icri vere	P(x) il	h form	nd Car	oni (d	Scrivia	mo pl	(x) ih	form	a can	iohi ()	ادم و	tire	dsi a	oe Sfic	ienti	
				Sormula					,					,					
					C. I	y s													
				21/2	-3(1	8-1	1 Vz												
			D(x)=	24 Vi -	- X 1	r J	; X												
																			;

Csei	r(i e j																		
	D S	Scriver	e in E	for ma) Caho	hica e	in S	forma	di L	. agra	nge i	l pol	j homi o	d'ir	terp	واعجاه	ne de	ella S	Un Elc
								0-45 X											
								/	,										
						<i>(</i> -1	(-	1	ΓI	1/5	1 6								
					P(x)=1	/x. Lo(x) + 1/×, (L1(x) +	VxLz	(x) +1/^.	3 L341								
							- /			, ,	′)/	\		M., v	V		()	,)/	
					p(x)=1	/x. (x.	x1)(x-)	x ₁)(x-x ₃) + Vx.	(x-x0)	(X-X ₂)(x	$\frac{(-x_3)}{(x_1)} + 1$	/x, (x-x	(0)(X-x,)(x-x ₃)	+ 1/x3	(x-x0)((x-×,)(x- (x ₃ ×,)(x ₃	×)
						[×o-1	K1)[N=^	ı](⊁。-۲×sj		(×, ~ 0) (A, ~ 2)(1.	· / s/	(1.	0/(1 1	1112 -		(3 , 0) (3.446.2	2)
					O(x)=	0.4 —	x x - 0.	.43)(x-1) .0.43)(0.1)) + C	7 —	x (x - 0,1	()(x-1)	$\frac{1}{x} + \frac{x}{x}$	(x-0,16)(x - 0, 43)	×	0-0,16	r-0,43×+	0,0784
						0.	16 (0.16-	0.43)(0.1	6-1)	0.45	\$ (0.43-0,	16)(0,43	-1) (1-916)(1	-0,13)				
					p(x)=	0.4	x3-1	1, 49 × ² + 0, 0 4 4 3	0,48%	+ O. F	x3-1,1	(6x + 0,	16X +	× 3- 0,	65 12 40,	07840	-		
								0,0443	95		- 0,	006 41	6 7	υ,	4184				
1 0.	1	07		1			, [A .	2 213				1,01	97	2 14				
0, 04	435	0,082	467	0,47	84))	$x^3+($	0,044	36 35	0,082	 467	0,65	λ^{l}	0,00	<u> </u>	0.082	467	0,01	$\left(\frac{84}{84}\right)_{\infty} =$	
`																			
		2.8	36518	88 88 9	ر ا	- 5,10	8467	711 x 1	+ 3,2	441	78737	2 × ^	v»	$f_{a}tt$	ا دا د	Prova	con O,	16	
		-		-															

2 (2 + 1) (2 + 1) (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ((12.		.)	1.	1	· .							
$P(s) = \frac{1}{2} \frac{(k-k_1)(k-k_2)(k-k_3)}{(k-k_1)(k-k_2)} + \frac{1}{2} \frac{(k-k_2)(k-k_3)(k-k_3)}{(k-k_2)(k-k_3)} + \frac{1}{2} \frac{(k-k_2)(k-k_3)(k-k_3)}{(k-k_2)(k-k_3)} + \frac{1}{2} \frac{(k-k_2)(k-k_3)(k-k_3)}{(k-k_2)(k-k_3)(k-k_3)} + \frac{1}{2} \frac{(k-k_2)(k-k_3)(k-k_3)}{(k-k_3)(k-k_3)(k-k_3)} + \frac{1}{2} \frac{(k-k_3)(k-k_3)(k-k_3)}{(k-k_3)(k-k_3)(k-k_3)} + \frac{1}{2} (k-k_3)(k-k_3)(k-k$	3 7																				
$P(x) = \frac{1}{2} \frac{(x-x_1)(x-x_2)(x-x_3)}{(x-x_1)(x-x_2)} + \frac{1}{2} \frac{(x-x_2)(x-x_1)(x-x_2)}{(x-x_2)(x-x_2)(x-x_3)} + \frac{1}{2} \frac{(x-x_2)(x-x_2)(x-x_3)}{(x-x_2)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_2)(x-x_3)(x-x_3)}{(x-x_2)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_2)(x-x_3)(x-x_3)}{(x-x_2)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_2)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)} + \frac{1}{2} \frac{(x-x_3)(x-x_3)(x-x_3)}{(x-x_3)(x-x_3)(x-x_3)} + $		cei vi	olori !	Yo=7, Y1	: 7.4,	%=7.8,	Y3 = 3.7	C Sui h	rodi	(X:	V;	-> e'	quest.	2 la so	oluzione	٤					
$=\frac{2(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{0}-x_{1})(x_{0}-x_{3})} + \frac{2.4}{(x_{1}-x_{0})(x_{1}-x_{2})(x_{2}-x_{3})} + \frac{2.8}{(x_{1}-x_{0})(x_{1}-x_{3})} + \frac{2.8}{(x_{1}-x_{0})(x_{1}-x_{0})} + \frac{2.8}{$,	X .: 1 , X ; =	= 1.2, ×2	1.4,	x3: 1.6			PCx)= ZX										
$= \frac{2(x-x_1)(x-x_2)(x-x_1)}{(x_0-x_1)(x_0-x_2)} + \frac{2.4}{(x_1-x_2)(x_1-x_2)} \frac{(x-x_2)(x-x_2)(x-x_1)(x-x_2)}{(x_1-x_2)(x_1-x_2)} + \frac{3.2}{(x_1-x_2)(x_1-x_2)} \frac{(x-x_2)(x_1-x_1)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} = \frac{2(x-x_1)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{2.4}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} = \frac{2(x-x_1)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{2.4}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} = \frac{2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{2.4}{(x_2-x_2)(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} = \frac{2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{2.4}{(x_2-x_2)(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} = \frac{2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{2.4}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} = \frac{2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x_2-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_2-x_2)(x_2-x_2)} \frac{(x-x_2)(x_2-x_2)}{(x_2-x_2)(x_2-x_2)} + \frac{3.2}{(x_$																					
$=\frac{2(x-x_1)(x-x_1)(x-x_2)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + \frac{2.4}{(x_1-x_0)(x_1-x_2)(x_1-x_2)} + \frac{2.8}{(x_1-x_0)(x_1-x_2)(x_1-x_2)} + \frac{2.8}{(x_1-$,																
$= \frac{2}{(x-1)(x-14)(x-16)} + 2.4 + \frac{(x-1)(x-14)(x-16)}{(12-1)(12-14)(12-16)} + 2.8 + \frac{(x-1)(x-12)(x-16)}{(14-1)(14-12)(14-16)} + 3.2 + \frac{(x-1)(x-12)(x-14)}{(16-1)(x-12)(x-14)} = \frac{2}{(x-1)(x-14)(x-16)} + 2.4 + \frac{x^2-4x^2+5}{(12-1)(x-16)} + 2.8 + \frac{x^2-3}{(14-1)(x-12)(x-16)} + 3.2 + \frac{(x-1)(x-12)(x-14)}{(16-1)(x-12)(x-14)} = \frac{2}{(x-1)(x-12)(x-16)} + 2.4 + \frac{x^2-4x^2+5}{(12-1)(x-16)} + 2.8 + \frac{x^2-3}{(14-1)(x-12)(x-16)} + 3.2 + \frac{x^2-3}{(x-1)(x-12)(x-14)} = \frac{2}{(x-1)(x-12)(x-14)} + \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-14)} = \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} = \frac{2}{(x-1)(x-12)(x-12)(x-16)} = \frac{2}{(x-1)(x-12)(x-12)(x-12)(x-12)} = \frac{2}{(x-1)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)} = \frac{2}{(x-1)(x-12)(x-12)(x-12)(x-12)} = \frac{2}{(x-1)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)} = \frac{2}{(x-1)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)(x-12)(x-1$		p(x)=	70 L0	(k) + 4	L1(x)+	+ / L	2(x)+7,	, L,(x)													
$= \frac{2}{(x-1)(x-14)(x-16)} + 2.4 + \frac{(x-1)(x-14)(x-16)}{(12-1)(42-14)(42-16)} + 2.8 + \frac{(x-1)(x-12)(x-16)}{(14-1)(42-12)(42-16)} + 3.2 + \frac{(x-1)(x-12)(x-14)}{(42-1)(42-12)(42-16)} = \frac{2}{(x-1)(x-14)(x-16)} + \frac{2}{(x-1)(x-14)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} = \frac{2}{(x-1)(x-14)(x-16)} + \frac{2}{(x-1)(x-14)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} = \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} + \frac{2}{(x-1)(x-12)(x-16)} = \frac{2}{(x-1)(x-12)(x-12)(x-16)} = \frac{2}{(x-1)(x-12)(x-12)(x-12)(x-12)} = \frac{2}{(x-1)(x-12)($, ,	\ <u>\</u>						
$= \frac{2(x-1)(x-14)(x-16)}{(1-12)(1-14)(1-16)} + 2.4 + \frac{(x-1)(x-14)(x-16)}{(12-1)(12-14)(12-16)} + 2.8 + \frac{(x-1)(x-12)(x-16)}{(14-1)(14-12)(14-16)} + 3.2 + \frac{(x-1)(x-12)(x-14)}{(16-1)(14-12)(14-16)} = \frac{2(x^2-4,2x^2+5,84x-2688)}{(12-1)(12-14)(12-14)} + \frac{2.4}{(12-1)(12-14)(12-16)} + \frac{2.8}{(14-1)(14-12)(14-16)} + \frac{3.2}{(16-1)(16-12)(16-14)} + \frac{3.2}{(16-1)(16-12)(16-14)} = \frac{2(x^2-4,2x^2+5,84x-2688)}{(16-1)(16-12)(16-14)} + \frac{2.4}{(16-1)(14-12)(14-16)} + \frac{2.8}{(16-1)(16-12)(16-14)} + \frac{3.2}{(16-1)(16-12)(16-14)} + 3.2$			= 2 (x	-*1)(x°-	(1)(x-x ₃) x ₁)(x ₀ -x	7 2.4	$(x-X_0)(x-X_0)$	x-x ₂)(x (x-x.)(x	$\frac{(-x^2)}{(-x^2)} + 2$	1.8 (x-x)(x-x ₁)(x-x ₂)	+ 3.2 ((x-x,),	- ½,)(x- > - ∪ .)/x-	(-,) = _)					
$= \frac{2}{0.048} \times \frac{x^{2} + 3.2x^{2} + 5.84x - 2.688}{-0.048} + \frac{7.4}{0.048} \times \frac{x^{2} - 3.8x^{2} + 4.72x - 1.92}{0.016} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.72x - 1.92}{0.048} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.72x - 1.92}{0.048} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.72x - 1.92}{0.048} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.72x - 1.92}{0.048} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.72x - 1.92}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.72x - 1.92}{0.0$,	, ,,,			(A, 101)	, "c)(· ₁	/5/	(×í ~	ما(×ز۲۰)(F ₁ -~3)		(⊁ ₅ -~0 ₁ (··	\$ P4/(r _{>} /	U					
$ = \frac{2}{0.048} \times \frac{x^{2} + 3.8x - 4688}{-0.048} + \frac{7.4}{0.048} \times \frac{x^{2} - 3.8x + 5.24x - 2.24}{0.046} + \frac{7.8}{0.048} \times \frac{3 - 3.8x^{2} + 4.72x - 1.92}{-0.046} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.28x - 468}{0.048} $ $ = \frac{2}{0.048} \times \frac{3 - 3.8x^{2} + 4.72x - 1.92}{-0.046} + \frac{3.2}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.28x - 468}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.2x^{2} + 5.26x^{2}}{0.048} \times \frac{x^{2} - 3.6x^{2} + 4.2x^{2} + 4.2x^{2}$			= 2 <u>(x</u>	(1)(x-1	4)(x-16)	12.4	(x-1)((x- 1,4)(x	k-(6)	8 (x-1)((x-1.1)(x-46)	+ 3.2	(x-1)(x-1,1)(x-	1,4)					
$\frac{2}{0,048} + \frac{2,4}{0,046} - \frac{2,8}{0,046} + \frac{3,2}{0,048} \right) \times^{3} + \left(+ \frac{8,4}{0,048} - \frac{9,6}{0,046} + \frac{40,68}{0,046} - \frac{41,52}{0,048} \right) \times^{2} + \left(-\frac{41,68}{0,048} + \frac{42,576}{0,046} - \frac{43,216}{0,046} + \frac{5,376}{0,046} - \frac{5,376}{0,046} - \frac{5,376}{0,046} - \frac{5,376}{0,048} \right) \times^{2} + \left(-\frac{11,68}{0,048} + \frac{42,576}{0,046} - \frac{43,216}{0,046} + \frac{5,376}{0,046} - \frac{5,376}{0,046} - \frac{5,376}{0,048} - \frac{5,376}{0,046} - \frac{5,376}{0,048} \right)$			(1	-ત ા)(ત -ત	4)(1-16))1 5.4	(4,1-4)(41-14)(h	r-48)	(1.4-1)	(1,4-1,7)	1.4-1,6	,)	(16-1)(1	6-1,2)(46-	1,4)					
$\left(\frac{2}{0,048} + \frac{2,4}{0,046} - \frac{2,8}{0,046} + \frac{3,1}{0,043}\right) \times \frac{3}{7} + \left(+\frac{8,4}{0,048} - \frac{9,6}{0,046} + \frac{40,63}{0,046} - \frac{41,51}{0,043}\right) \times \frac{1}{7} + \left(-\frac{41,68}{0,048} + \frac{42,576}{0,046} - \frac{43,216}{0,046} + \frac{5,376}{0,046} - \frac{5,376}{0,046} + \frac{5,376}{0,046} - \frac{5,376}{0,043}\right) \times \frac{1}{7} + \frac{11,68}{0,048} + \frac{12,576}{0,048} + \frac{13,636}{0,046} + \frac{13,636}{0,046} + \frac{5,376}{0,048} + \frac{5,376}{0,$) i				3	1								
$\frac{2}{0,048} + \frac{2,4}{0,046} - \frac{2,8}{0,046} + \frac{3,2}{0,048} \right) \times^{3} + \left(+ \frac{8,4}{0,048} - \frac{9,6}{0,046} + \frac{40,68}{0,046} - \frac{41,52}{0,048} \right) \times^{2} + \left(-\frac{41,68}{0,048} + \frac{42,576}{0,046} - \frac{43,216}{0,046} + \frac{5,376}{0,046} - \frac{5,376}{0,046} - \frac{5,376}{0,046} - \frac{5,376}{0,048} \right) \times^{2} + \left(-\frac{11,68}{0,048} + \frac{42,576}{0,046} - \frac{43,216}{0,046} + \frac{5,376}{0,046} - \frac{5,376}{0,046} - \frac{5,376}{0,048} - \frac{5,376}{0,046} - \frac{5,376}{0,048} \right)$			= 2	-0,048	+ 5, 84 × - 2	4688	$\frac{7.4 \times 7}{C}$	- 4× + 5	2,240-2,	124	1,8 x	-3,8×	-0,016	10-1,9	12 + -	3,2 x'-	3,6x + a	1,28x-	1,68		
	2 0,048	+ 2,4	2,8	- + 3,1	$-)$ \times^3 1	$t \left(+ \frac{8}{0} \right)$	$\frac{4}{048} - \frac{9}{0.6}$	$\frac{6}{46} + \frac{40}{9}$	1016 - 4	1,51 048 X	$+\left(-\frac{\mathcal{U}_{i}}{Q_{i}}\right)$	68 + 14	576 _ 13,	216 + 13	x 636	+ (+ 5,37	$\frac{16}{0.48} - \frac{5,37}{0,0}$	76 + 5,3 76 + 9,	576 - 5,	,3f6 048	
P(G= 0 x ³ + 0x' + 1x + 0		,				(,	1. 5/-			/ /	1	40 0,0	10		7.7	•				•	
			P(x)=	$0 x^3 +$	0x2+	lx + o	,														
																					-

	ويدين	che					3.6 70.	ə haa	, С.	G(3 G)	er (*47***)	n -		
Cime	50737	\(\frac{1}{2} \)	1 L;(6)	= 1	آای≪ ∀	l								