Try again once you are ready

Grade received 60% To pass 80% or higher

Try again

1. Let two matrices be

$$A = \begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$$

- $\bigcirc \ \begin{bmatrix} 1 & 1 \\ -3 & -7 \end{bmatrix}$
- $\bigcirc \ \begin{bmatrix} 1 & -7 \\ -7 & 7 \end{bmatrix}$

- ⊗ Incorrect
- Let $x = \begin{bmatrix} 5 \\ 5 \\ 2 \\ 7 \end{bmatrix}$

What is 2*x?

- O [10 10 4 14]
- $\bigcirc \begin{bmatrix} \frac{5}{2} & \frac{5}{2} & 1 & \frac{7}{2} \end{bmatrix}$

To multiply the vector x by 2, take each element of x and multiply that element by 2.

3. Let u be a 3-dimensional vector, where specifically

$$u = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

What is u^{T} ?

- \bigcirc [1 5 3]

0/1 point

1/1 point

1/1 point

1/1 point

4. Let u and v be 3-dimensional vectors, where specifically

$$u = \begin{bmatrix} -3\\4\\3 \end{bmatrix}$$

and

$$v = \begin{bmatrix} 3 \\ 1 \\ 5 \end{bmatrix}$$

What is $u^T v$?

(Hint: \boldsymbol{u}^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of \boldsymbol{u}^T and \boldsymbol{v} .) Do not add brackets to your answer.

No answer

The answer you gave is not a number.

5. Let A and B be 3x3 (square) matrices. Which of the following

must necessarily hold true? Check all that apply.

If B is the 3x3 identity matrix, then A*B=B*A

⊘ Correct

Even though matrix multiplication is not commutative in general $(A*B \neq B*A \text{ for general matrices } A, B)$, for the special case where B=I, we have A*B=A*I=A, and also B*A=I*A=A. So, A*B=B*A.

If C = A * B, then C is a 3x3 matrix.

⊘ Correct

Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m \times n$. matrix, and B a $n \times o$ matrix, then C would be $m \times o$. (In our example, m = o = 3.)

 $\square \qquad \qquad A*B*A=B*A*B$

 $\square \qquad \qquad A*B = B*A$