Lehrstuhl für Steuerungs- und Regelungstechnik / Lehrstuhl für Informationstechnische Regelung

Technische Universität München

5. Übung

Betrachtet wird der in der 4. Übung, 1. Aufgabe, behandelte Manipulator.

Aufgabe 1:

Der Punkt C soll in oben skizzierter Konfiguration mit konstanter Geschwindigkeit entlang der x-Achse von x(0)=0 zu x(T)=2l bewegt werden.

- 1.1 Berechnen Sie den zeitlichen Verlauf der Gelenkkoordinaten $\Theta_1(t)$ und $\Theta_2(t)$.
- 1.2 Skizzieren Sie die Verläufe von $\Theta_1(t)$, $\dot{\Theta}_1(t)$, $\Theta_2(t)$ und $\dot{\Theta}_2(t)$.
- 1.3 Was bewirkt eine Beschränkung der Geschwindigkeiten der Achsservos für Θ_i auf $|\dot{\Theta}_i| \leq \dot{\Theta}_{i,max}$ mit $\dot{\Theta}_{2,max} = 2\dot{\Theta}_{1,max}$?
- 1.4 Berechnen Sie für $\dot{\Theta}_{1,max}=\frac{5}{3}\cdot\frac{1}{T}$, $\dot{\Theta}_{2,max}=\frac{10}{3}\cdot\frac{1}{T}$ den Zeitpunkt T' mit x(T')=2l. Ergänzen Sie die Skizze zu 1.2 um die geänderten Verläufe für Winkel und Winkelgeschwindigkeit.
- 1.5 Welcher Effekt tritt auf, wenn für das Verhältnis der Geschwindigkeitsbegrenzungen $\frac{\dot{\Theta}_{2,max}}{\dot{\Theta}_{1,max}} \neq 2$ gilt?

Aufgabe 2:

Für die Bewegung entlang der x-Achse werde nun das Verfahren der linearen Interpolation mit quadratischen Übergängen im kartesischen Raum verwendet. t_{Be} sei zu $\frac{T}{10}$ gewählt.

- 2.1 Skizzieren Sie den Verlauf von x(t).
- 2.2 Bestimmen Sie für den Beschleunigungs- und den Bremsvorgang die Größen ΔB , ΔC und τ gemäß Arbeitsblatt 12. Geben Sie x(t), $\dot{x}(t)$ und $\ddot{x}(t)$ für $0 \le t \le T$ formelmäßig an.

Aufgabe 3:

Mit Hilfe des Manipulators soll im Punkt $(x,y)^T$, $x^2+y^2 \le 4l^2$, eine Kraft $\underline{F}=(F_x,F_y)^T$ aufgebracht werden.

- 3.1 Berechnen Sie allgemein die erforderlichen Gelenkmomente.
- 3.2 Geben Sie für die Kraft $\underline{F}=(0,10{\rm N})^T$ die erforderlichen Gelenkmomente für die Punkte $(2l,0)^T$, $(l,l)^T$ und $(0,2l)^T$ an.