1 PCA

1

```
[ 2.81035710e+02+0.000000000e+00j -5.81067532e-15+0.000000000e+00j 9.64290269e-01+0.00000000e+00j -3.23092317e-15+0.00000000e+00j 1.33527898e-18+2.05406773e-17j 1.33527898e-18-2.05406773e-17j]
```

2

By hand:

$$XX^{T} = \begin{bmatrix} 112 & 137 \\ 137 & 170 \end{bmatrix}$$
$$|XX^{T} - \lambda I| = \begin{bmatrix} 112 - \lambda & 137 \\ 137 & 170 - \lambda \end{bmatrix}$$
$$(112 - \lambda)(170 - \lambda) - 137^{2} = 0$$
$$\lambda_{1} = 0.96429 \quad \lambda_{2} = 281.03571$$

when $\lambda_1 = 0.96429$:

$$(XX^T - \lambda_1 I)x = \begin{pmatrix} 111.03571 & 137 \\ 137 & 169.03571 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$

so, after normalization

$$x_1 = -0.77688 \ x_2 = 0.62965$$

$$\xi_1 = \begin{pmatrix} -0.77688 \\ 0.62965 \end{pmatrix}$$

when $\lambda_2 = 281.03571$:

$$(XX^{T} - \lambda_{2}I)x = \begin{pmatrix} -169.03571 & 137 \\ 137 & -111.03571 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = 0$$

 $so, after\ normalization$

$$x_1 = 0.62965 \ x_2 = 0.77688$$

$$\xi_2 = \left(\begin{array}{c} 0.62965 \\ 0.77688 \end{array}\right)$$

By code:

```
> 0: array([-0.7768816 , -0.62964671])
> 1: array([ 0.62964671, -0.7768816 ])
```

They are the same.

The eigenvalues and eigenvectors of X^TX are: $\lambda_1v_1 = X^TXv_1$ Multiply matrix X at the left: $X\lambda_1v_1 = XX^TXv_1$ λ_1 is a number and thus, λ_1 $(Xv_1) = XX^T(Xv_1)$ The eigenvalues and eigenvectors of XX^T are: $\lambda_2v_2 = XX^Tv_2$ Let $Xv_1 = v_2$, then $\lambda_2Xv_1 = XX^TXv_1$ After compared: $(\lambda_1 - \lambda_2)Xv_1 = 0$ If and only if $\lambda_1 = 0$ and $\lambda_2 = 0$ or $\lambda_1 = \lambda_2$ can we get the =. Thus, the they have the same non - zero eigenvalues.

4

By hand:

after subtract mean:

$$X = \begin{pmatrix} -2 & -1 & -1 & 0 & 1 & 3 \\ -3 & -1 & 0 & 0 & 1 & 3 \end{pmatrix}$$

$$XX^{T} = \begin{pmatrix} 16 & 17 \\ 17 & 20 \end{pmatrix}$$

$$\begin{vmatrix} \frac{1}{6}XX^{T} - \lambda I \end{vmatrix} = \begin{vmatrix} \frac{16}{6} - \lambda & \frac{17}{6} \\ \frac{17}{6} & \frac{20}{6} - \lambda \end{vmatrix}$$

$$\begin{pmatrix} \frac{16}{6} - \lambda \end{pmatrix} \begin{pmatrix} \frac{20}{6} - \lambda \end{pmatrix} - \frac{17^{2}}{6^{2}} = 0$$

$$\lambda_{1} = 0.147 \quad \lambda_{2} = 5.853$$

when $\lambda_1 = 0.147$:

$$\xi_1 = \begin{pmatrix} 0.747 \\ -0.665 \end{pmatrix}$$

when $\lambda_2 = 5.853$:

$$\xi_2 = \begin{pmatrix} 0.665 \\ 0.747 \end{pmatrix}$$

1 - dimension data:

$$Y = (0.665 \quad 0.747) \begin{pmatrix} -2 & -1 & -1 & 0 & 1 & 3 \\ -3 & -1 & 0 & 0 & 1 & 3 \end{pmatrix}$$
$$= (-3.571 \quad -1.412 \quad -0.665 \quad 0 \quad 1.412 \quad 4.235)$$

By code:

```
> 0: array([-3.57085518])
> 1: array([-1.41178986])
> 2: array([-0.66451439])
> 3: array([0.])
> 4: array([1.41178986])
> 5: array([4.23536958])
```

2 EM

2.1

No. it can not be solved directly. Because we do not know which coins were flipped after we flipped A. There are some latent data in this problem.

Also, the Eq $\hat{\theta} = argmaxlogP(Y|\theta)$ is difficult to maximize.

2.2

$$\begin{split} \mu_j^{i+1} &= \frac{\pi^i (p^i)^{y_j} (1-p^i)^{1-y_j}}{\pi^i (p^i)^{y_j} (1-p^i)^{1-y_j} + (1-\pi^i) (q^i)^{y_j} (1-q^i)^{1-y_j}} \Rightarrow \\ \mu_j^1 &= \frac{\pi^0 (p^0)^{y_j} (1-p^0)^{1-y_j}}{\pi^0 (p^0)^{y_j} (1-p^0)^{1-y_j} + (1-\pi^0) (q^0)^{y_j} (1-q^0)^{1-y_j}} \end{split}$$

j	1	2	3	4	5	6	7	8	9	10
μ_j^1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

2.3

$$\pi^{i+1} = \frac{1}{10} \sum_{j=1}^{10} \mu_j^{i+1} \Rightarrow$$

$$\pi^1 = \frac{1}{10} \sum_{j=1}^{10} \mu_j^1$$

$$p^{i+1} = \frac{\sum_{j=1}^{10} \mu_j^{i+1} \, y_j}{\sum_{j=1}^{10} \mu_j^{i+1}} \Rightarrow$$

$$p^1 = \frac{\sum_{j=1}^{10} \mu_j^1 \, y_j}{\sum_{j=1}^{10} \mu_j^1}$$

$$q^{i+1} = \frac{\sum_{j=1}^{10} (1 - \mu_j^{i+1}) y_j}{\sum_{j=1}^{10} (1 - \mu_j^{i+1})} \Rightarrow$$

$$q^{1} = \frac{\sum_{j=1}^{10} (1 - \mu_{j}^{1}) y_{j}}{\sum_{j=1}^{10} (1 - \mu_{j}^{1})}$$

π^1	0.5
p^1	0.6
q^1	0.6

2.4

$$\mu_j^2 = \frac{\pi^1(p^1)^{y_j}(1-p^1)^{1-y_j}}{\pi^1(p^1)^{y_j}(1-p^1)^{1-y_j} + (1-\pi^1)(q^1)^{y_j}(1-q^1)^{1-y_j}}$$

j	1	2	3	4	5	6	7	8	9	10
μ_j^2	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

2.5

$$\pi^2 = \frac{1}{10} \sum_{j=1}^{10} \mu_j^2$$

$$p^2 = \frac{\sum_{j=1}^{10} \mu_j^2 \, y_j}{\sum_{j=1}^{10} \mu_j^2}$$

$$q^2 = \frac{\sum_{j=1}^{10} (1 - \mu_j^2) y_j}{\sum_{j=1}^{10} (1 - \mu_j^2)}$$

π^2	0.5
p^2	0.6
q^2	0.6

2.6

$$\mu_j^1 = \frac{\pi^0(p^0)^{y_j}(1-p^0)^{1-y_j}}{\pi^0(p^0)^{y_j}(1-p^0)^{1-y_j} + (1-\pi^0)(q^0)^{y_j}(1-q^0)^{1-y_j}}$$

j	1	2	3	4	5	6	7	8	9	10
μ_j^1	0.3636	0.3636	0.4706	0.3636	0.4706	0.4706	0.3636	0.4706	0.3636	0.3636

$$\pi^1 = \frac{1}{10} \sum_{j=1}^{10} \mu_j^1$$

$$p^1 = \frac{\sum_{j=1}^{10} \mu_j^1 \, y_j}{\sum_{j=1}^{10} \mu_j^1}$$

$$q^{1} = \frac{\sum_{j=1}^{10} (1 - \mu_{j}^{1}) y_{j}}{\sum_{j=1}^{10} (1 - \mu_{j}^{1})}$$

π^1	0.4064
p^1	0.5368
q^1	0.6433

$$\mu_j^2 = \frac{\pi^1(p^1)^{y_j}(1-p^1)^{1-y_j}}{\pi^1(p^1)^{y_j}(1-p^1)^{1-y_j} + (1-\pi^1)(q^1)^{y_j}(1-q^1)^{1-y_j}}$$

j	1	2	3	4	5	6	7	8	9	10
μ_j^2	0.3636	0.3636	0.4706	0.3636	0.4706	0.4706	0.3636	0.4706	0.3636	0.3636

$$\pi^2 = \frac{1}{10} \sum_{j=1}^{10} \mu_j^2$$

$$p^2 = \frac{\sum_{j=1}^{10} \mu_j^2 \, y_j}{\sum_{j=1}^{10} \mu_j^2}$$

$$q^2 = \frac{\sum_{j=1}^{10} (1 - \mu_j^2) y_j}{\sum_{j=1}^{10} (1 - \mu_j^2)}$$

π^2	0.4064
p^2	0.5368
q^2	0.6433

 θ^2 is not the same as that in Question 2.5.

2.7

The results are not the same with different initialization.

$\pi^0 = 0.4, p^0 = 0.6, q^0 = 0.7$:

```
NumberIterations = 8
mu= [[0.3636366 0.3636366 0.47058824 0.3636366 0.47058824 0.47058824
0.36363636 0.47058824 0.36363636 0.36363636]
pi= 0.40641711229946526
q= 0.6324324324324311
p= 0.5368421052631581
NumberIterations = 9
mu= [[0.3636363 0.363636 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.64324324324324311
p= 0.536421052631581
NumberIterations = 10
mu= [[0.3636363 0.363636 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.6432432432432431
p= 0.5368421052631581
NumberIterations = 10
mu= [[0.363636 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.63243243243243241
p= 0.536842105631581
NumberIterations = 11
mu= [[0.3636363 0.363636 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.63243243243243241
p= 0.536842105631581
NumberIterations = 11
mu= [[0.3636363 0.363636 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.632432432432431
p= 0.536642105631581
NumberIterations = 12
mu= [[0.3636363 0.363636 0.47058824 0.36363636 0.47058824 0.47058824 0.36363636]
pi= 0.43641711229946526
q= 0.632432432432431
p= 0.536642105631581
NumberIterations = 12
mu= [[0.3636363 0.363636 0.47058824 0.36363636 0.47058824 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.633432432432432431
p= 0.5366421052631581
NumberIterations = 13
mu= [[0.363636 0.363636 0.363636 0.47058824 0.36363636 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.633432432432432431
p= 0.536421052631581
NumberIterations = 13
mu= [[0.3636360 0.3636360 0.47058824 0.36363636 0.47058824 0.47058824 0.36363636]
pi= 0.40641711229946526
q= 0.633432432433433411
p= 0.536642106 0.47058824 0.36363636 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36363636 0.47058824 0.36
```

```
NumberIterations = 15

mu= [[0.3636363 6 0.3636363 6 0.3636363 6 0.36363636]
pi= 0.40641711229946526
q= 0.6432432432431
p= 0.5368421652631581
NumberIterations = 16
mu= [[0.36363636 0.363636 6 0.36363636]]
pi= 0.40641711229946526
q= 0.6432432432431
p= 0.5368421652631581
NumberIterations = 16
mu= [[0.36363636 0.363636 0.3636363 6 0.36363636]]
pi= 0.40641711229946526
q= 0.6432432432431
p= 0.5368421652631581
NumberIterations = 18
mu= [[0.36363636 0.363636 6 0.36363636]]
pi= 0.40641711229946526
q= 0.643243243243131
p= 0.5368421652631581
NumberIterations = 18
mu= [[0.3636363 6 0.363636 6 0.36363636]]
pi= 0.40641711229946526
q= 0.643243243243131
p= 0.5368421652631581
NumberIterations = 19
mu= [[0.36363636 0.363636 6 0.36363636]]
pi= 0.40641711229946526
q= 0.6432432432432431
p= 0.5368421652631581
NumberIterations = 19
mu= [[0.36363636 0.36363636 0.36363636]]
pi= 0.40641711229946526
q= 0.6432432432432431
p= 0.5368421652631581
NumberIterations = 20
mu= [[0.36363636 0.36363636 0.36363636 0.36363636]]
pi= 0.40641711229946526
q= 0.6432432432432431
p= 0.5368421652631581
NumberIterations = 20
mu= [[0.36363636 0.36363636 0.36363636 0.36363636]]
pi= 0.40641711229946526
q= 0.6432432432432431
p= 0.5368421652631581
NumberIterations = 20
mu= [[0.36363636 0.3636366 0.36363636 0.36363636]]
pi= 0.40641711229946526
q= 0.64324324324324312
p= 0.5368421652631581
NumberIterations = 20
mu= [[0.36363636 0.36363636 0.36363636]]
pi= 0.40641711229946526
q= 0.64324324324324312
```

$\pi^0 = 0.5, p^0 = 0.5, q^0 = 0.5$:

```
NumberTterations =
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
NumberIterations = 2
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]
pi= 0.5
p = 0.6
p = 0.6
NumberIterations = 3
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
p = 0.6
NumberIterations = 4
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
p = 0.6
NumberIterations = 5
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
q= 0.6
p= 0.6
NumberIterations = 6
pi = 0.5
p = 0.6
.
NumberIterations = 7
 mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
p = 0.6
NumberIterations = 8
 mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi = 0.5
q= 0.6
p= 0.6
NumberIterations = 9
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
q= 0.6
NumberIterations = 10
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
q= 0.6
n= 0.6
```

```
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
q= 0.6
p= 0.6
.
NumberIterations = 12
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ]]
pi= 0.5
q= 0.6
.
NumberIterations = 13
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
p= 0.6
.
NumberIterations = 14
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
p = 0.6
pi= 0.5
q= 0.6
p= 0.6
NumberIterations = 16
nu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
q= 0.6
p= 0.6
NumberIterations = 17
 nu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ]]
pi= 0.5
q= 0.6
.
NumberIterations = 18
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
a= 0.6
p= 0.6
NumberIterations = 19
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
p = 0.6
NumberIterations = 20
mu= [[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]]
pi= 0.5
```