Technika Cyfrowa. Ćwiczenie 2.

Maciej Pieta

Piotr Koproń Rafał Piwowar Jakub Woś

 $Marzec\ 2023$

1 Zadanie 2a

Treść zadania Na podstawie dostępnych tabel prawdy, zaprojektować i praktycznie zrealizować synchroniczny przerzutnik D w oparciu o dostępny synchroniczny przerzutnik T, po czym proszę jednoznacznie przetestować poprawność jego działania w programie Multisim.

1.1 Ogólna idea rozwiązania

Jako że realizacja ma opierać się o synchroniczny przerzutnik T, to schemat przyjmuje postać:

W celu wyznaczenia bramek logicznych zastosujemy następujący algorytm:

- 1. Wyznaczymy wzory przejścia dla przerzutników D oraz T.
- 2. Nadamy równoważność wzorom przejścia.
- 3. Otrzymamy zależność między sygnałami D,T, oraz Q.
- 4. Przekształcimy otrzymaną zależność do funkcji T od D i Q.

Wzory przejścia Dla przerzutnika T:

```
T Q Q_T^+

0 0 0 0

0 1 1 \Longrightarrow Z definicji xor otrzymujemy Q_T^+ = T xor Q. (1)

1 0 1

1 1 0

Dla przerzutnika D:

D Q Q_D^+

0 0 0
```

D Q
$$Q_D^+$$

0 0 0 0
0 1 0 \Longrightarrow Bezpośrednio otrzymujemy $Q_D^+ = D$. (2)
1 0 1
1 1 1

Z (1) i (2), podstawiając $Q_T^+=Q_D^+$ otrzymujemy D=Txor Q (3).

Przekształcenie do funkcji Chcemy utworzyć funkcję T od D i Q, tak aby (3) zawsze było spełnione. Tworzymy tabelę, gdzie po lewej stronie będziemy mieć wartości niezależne, w środku - wyrażenie wymuszające, po prawej - wyrażenia zależne.

D	Q	$D = T \operatorname{xor} Q$	$T \operatorname{xor} Q$	Τ
0	0	1	0	0
0	1	1	0	1
1	0	1	1	1
1	1	1	1	0

Usuwając kolumny 'D=T xor Q' i 'T xor Q' z powyższej tabeli, otrzymujemy:

D Q T
$$0 \quad 0 \quad 0$$

$$0 \quad 1 \quad 1 \quad \Longrightarrow \quad \text{Z definicji xor otrzymujemy } T = D \text{ xor } Q.$$

$$1 \quad 0 \quad 1$$

$$1 \quad 1 \quad 0$$

1.2 Implementacja w programie Multisim

Rysunek 1: Implementowany przerzutnik D.

Rysunek 2: Układ SC1 powyższego rysunku.

Rysunek 4: Ustawienia generatora słów (XWG1) i rezultat alalizatora logicznego (XLA1).

1.3 Wnioski

Alternatywne koncepcje Rozważaliśmy podejście alternatywne, w którym zamiast przekształcać sygnał wejściowy, przekształcalibyśmy sygnał wyjściowy.

Szybko doszliśmy jednak do wniosku że takie podejście wymagałoby zastosowania drugiego przerzutnika, co mijałoby się z celem zadania, więc skupiliśmy się na opisanym wyżej podejściu.

Zastosowania Przerzutniki typu D mogą być stosowane na przykład w rejestrach, co zademonstrujemy w dalszej części sprawozdania - w którym zbudowaliśmy czterobitowy rejestr PISO w oparciu właśnie o przerzutniki D.

2 Zadanie 2b

Treść zadania Korzystając z wybranych przerzutników, proszę zbudować czterobitowy rejestr PISO. Tak jak w przypadku pozostałych zadań, proszę skutecznie przetestować działanie układu. Następnie proszę zbudować praktyczny układ, który za pomocą przełączników binarnych pozwoli ustawić żądaną czterobitową wartość, a następnie przy pomocy piątego przełącznika uruchomi szeregową transmisję odczytywanej wartości.

2.1 Komentarz twórczy

Co tutaj?