

DEPARTAMENTO DE AUTOMÁTICA ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES

Máster en Ciberseguridad CRIPTOGRAFÍA APLICADA

Implementación del algoritmo paso gigante-paso enano para el cómputo de logaritmos discretos

OBJETIVO

En esta práctica se pretende implementar mediante lenguaje de programación Java el algoritmo conocido como *paso gigante-paso enano*¹ para el cálculo de logaritmos discretos.

ENTREGABLE

Se espera que, como resultado de la ejecución de la práctica, el alumno entregue el código fuente preparado para ser compilado y ejecutado. Además, deberá redactar un informe describiendo los pasos realizados para la implementación y comentando los resultados obtenidos. Todo ello deberá ser entregado en la plataforma dentro del plazo marcado.

ASPECTOS TEÓRICOS

Supongamos un grupo (multiplicativo) G, de orden m, y un generador del grupo, g. Por definición de generador, se verifica que cualquier elemento del grupo se puede obtener por medio de alguna potencia de g. Dicho formalmente, para cualquier $h \in G$ se tiene que

$$h = g^{\alpha}$$
,

donde $\alpha \in \mathbb{Z}$ es lo que llamamos el *logaritmo discreto* de h en base g, esto es

$$\alpha = \log_{g} h$$
.

Obtener el logaritmo discreto no es fácil desde un punto de vista computacional, pues los algoritmos (clásicos) más eficientes que conocemos necesitan un tiempo (sub)-exponencial. En esta práctica se trata de implementar uno de ellos conocido con el nombre de algoritmo de paso gigante-paso enano, cuyo tiempo esperado de ejecución es

$$\mathcal{O}\left(2^{\frac{1}{2}\log m}\cdot\operatorname{pol}(\log m)\right),$$

donde m es, como se ha dicho, el orden del grupo G.

Descripción del algoritmo

Dado el grupo G, de orden m y el generador g, se nos da un $y \in G$, y se nos pide calcular su logaritmo, β , es decir, aquel valor tal que $y = g^{\beta}$.

El algoritmo se desarrolla en dos fases, de donde el algoritmo recibe su nombre. La primera parte es el *paso de gigante*:

¹Conocido en inglés como baby step-giant step.

- Se calcula t como la raíz cuadrada entera de m.
- Se calculan y almacenan las parejas (j,g^{jt}) , para $0 \le j \le t$, ordenadas por la segunda componente.

La segunda parte es el paso de enano:

- Desde i=0, se calcula ahora $y \cdot g^i = g^{\beta+i}$ y se busca en la segunda componente de la tabla anterior, incrementando el valor de i si no se encuentra.
- Antes o después, algún valor de i, digamos i*, dará coincidencia con alguna entrada, digamos j*, es decir

 $y \cdot g^{i^*} = g^{\beta + i^*} = g^{j^*t},$

y, despejando en los exponentes el valor de β , obtenemos finalmente el logaritmo buscado como

$$\beta = j^*t - i^* \pmod{m}.$$

```
SALIDA:
                  El logaritmo discreto de y en base g
01: PGPE(p,g,y) {
02:
       t = \lfloor \sqrt{p-1} \rfloor
03:
04:
       // Paso de gigante
05:
       s = InitKeyHash()
       for j \in \{0, ..., t\} {
07:
          v = g^{jt}
08:
          InsertKeyValue(s,v,j)
09:
10:
11:
       // Paso de enano
12:
       for i \in \{0, ..., t\} {
13:
          v = y \cdot g^i
```

Un primo p, un generador g en \mathbb{Z}_p^* , y un $y \in \mathbb{Z}_p^*$

Figura 1: Algoritmo paso gigante-paso enano

DESARROLLO DE LA PRÁCTICA

return $jt-i \pmod{p-1}$

j = SearchKey(s,v)
if (j <> NO-ENCONTRADO)

return NO-ENCONTRADO

15:

16: 17:

18:

19: 20: }

Utilizando el entorno NetBeans se trata de implementar el algoritmo paso gigante-paso enano.

El grupo que se debe utilizar es \mathbb{Z}_p^* multiplicativamente, junto con un generador de él, cuyo orden es, obviamente, m=p-1. Es importante recordar que las operaciones en el grupo son todas ellas módulo p.

Además, es también necesario usar la biblioteca de números grandes BigInteger (u otra equivalente), para poder manejar y operar con números de tamaño arbitrariamente grande. En Java puede importarse la biblioteca BigInteger mediante la orden:

```
import java.math.BigInteger;
```

Los pasos del algoritmo descrito más arriba están resumidos en "pseudo-código" en la figura 1.

APLICACIÓN

Como aplicación del algoritmo, se pide utilizarlo para encontrar el logaritmo discreto de cada y en sus respectivos grupos \mathbb{Z}_p^* , con generador g:

Caso	p del grupo \mathbb{Z}_p^*	g del grupo	\mathcal{Y}
1	65537	3	27861
2	1073741827	2	503593909
3	4294967311	3	3333860011
4	1099511627791	3	73096380924
5	35184372088891	3	24056225665222
6	1125899906842679	11	12761818229206

Se pide representar gráficamente el tiempo necesario para encontrar cada logaritmo discreto en función del número de bits de cada candidato. A la vista de la gráfica, ¿nos encontramos ante un algoritmo de tiempo polinómico?

Nota: En el caso 6 el programa podría quedarse "atascado" por la gran cantidad de memoria necesaria para almacenar la tabla.