

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I. ET M.P.I.I.

Année 2024 - 2025

C8: Analyse des performances des systèmes asservis

TD 17 - Stabilité des systèmes asservis (C8-1)

Compétences

- Modéliser
 - o Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle.
- Résoudre
 - o Proposer une démarche permettant d'évaluer les performances des systèmes asservis.
 - o Déterminer la réponse fréquentielle.
 - o Déterminer les performances d'un système asservi.

Exercice 1 : Stabilité graphique et marge de gain

- Q1: Dans chacun des cas suivant, proposer et justifier un tracer asymptotique
- Q 2 : Conclure sur la stabilité des systèmes en boucle fermée. Dans le cas stable, déterminer les marges de gain et de phase.
 - 1. $FTBO(p) = \frac{4}{(1+p)(1+2p)(1+5p)}$ (figure 1).
 - 2. $FTBO(p) = \frac{20}{(1+p)(1+2p)(1+5p)}$ (figure 2).
 - 3. $FTBO(p) = \frac{4}{(1+0.1 p+p^2)(1+2 p)}$ (figure 3).
 - 4. $FTBO(p) = \frac{2}{(1+0.1 p)(1+0.3 p)(1+0.5 p)}$ (figure 4).

FIGURE 1 – Exemple 1

FIGURE 2 – Exemple 2

C8: Chaines de solides C8-1

FIGURE 3 – Exemple 3

C8: Chaines de solides C8-1

FIGURE 4 – Exemple 4

C8: Chaines de solides C8-1

Exercice 2: Performances du robot Lola

Source: Concours Commun Mines-Ponts PSI 2015

Diagramme des exigences

On s'intéresse ici à la mise en place d'une commande permettant d'assurer les performances dynamiques du robot Lola en terme de maintien d'une posture vertical. On note $\alpha(t)$, **l'angle de tangage**. Cet axe est actionné par un moteur à courant continu avec une **tension d'alimentation noté** $U_c(t)$.

1.3.2.1 Performance dynamique de chaque axe permet de modifier la posture							
Critère	Niveau	Flexibilité					
Marge de phase	$M\varphi = 50^{\circ}$	Mini					
Erreur Statique	0°	±0,5°					
Bande passante à 0 dB en boucle ouverte	$\omega_{BP} = 50 rad \cdot s^{-1}$	Mini					
Temps de réponse à 5%	0,2s	Maxi					
Dépassement	1°	Maxi					

On peut montrer que la fonction de transfert du robot Lola en boucle ouverte est de la forme :

$$F(p) = \frac{\alpha(p)}{U_c(p)} = \frac{K}{\left(1 + \tau_1 \cdot p\right) \left(-1 + \tau_1 \cdot p\right) \left(1 + \tau_2 \cdot p\right)}$$

Q 3 : Proposer un tracé asymptotique sur le diagramme de Bode de F(p)

Q 4 : En analysant les diagrammes de Bode ci-dessus, déterminer les valeurs de τ_1 , τ_2 et K.

ω	$0 o rac{1}{ au_1}$		$\frac{1}{ au_1}$	$\frac{1}{\tau_1} \to \frac{1}{\tau_2}$		$\frac{1}{ au_2}$	$\frac{1}{\tau_2} \to \infty$	
Tracé asymp- totique	Gain (dB/dec)	φ(°)	Gain (dB)	φ(°)	φ(°)	Gain (dB)	Gain (<i>dB/dec</i>)	$arphi(\degree)$
$\frac{K}{-1+\tau_1 \cdot p}$								
$\frac{1}{1+\tau_1 \cdot p}$								
$\frac{1}{1+\tau_2 \cdot p}$								
F(p)								

Par la suite, on simplifier F(p) par $\frac{K}{(1+\tau_1 \cdot p)(-1+\tau_1 \cdot p)}$.

Q 5: Justifier ce choix de simplification.

Q 6 : Représenter les pôles de F(p) dans le plan complexe.

Q7: Que pouvons-nous dire sur la stabilité en boucle ouverte du système.

Q8: Expliquer pourquoi le critère du revers ne peut pas être appliqué pour étudier la stabilité en boucle fermée.

Afin de résoudre ce problème, il est décidé d'asservir la chaîne directe en position et en vitesse. Pour cela, la centrale inertielle permet de mesurer l'angle de tangage $\alpha(t)$ ainsi que la vitesse angulaire $\frac{d\alpha(t)}{dt}$. L'asservissement ainsi réalisé est présenté sous la forme du schéma-bloc ci-dessous. $U_c(p)$ est la tension de commande en sortie du correcteur. La fonction de transfert de la centrale inertielle sera prise égale à $H_{ci}(p) = K_1 \cdot (p+1)$.

Q 9 : Déterminer deux conditions sur K_1 pour que la fonction de transfert en boucle ouverte non-corrigée soit stable.

Q 10 : Déterminer K_1 pour que la fonction de transfert $G(p) = \frac{\alpha(p)}{U_c(p)}$ ait un facteur d'amortissement $\xi = 1,7$. Vérifier que cette valeur est compatible avec les conditions obtenues précédemment. En déduire les valeurs de la pulsation propre ω_0 et du gain statique de la boucle ouverte K_{BO} .