Morphological Operations Applied to Digital Art Restoration

M. Kirbie Dramdahl

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

29 April 2014 UMM CSci Senior Seminar Conference University of Minnesota, Morris

Why?

Art restoration preserves objects of artistic, cultural, or historical value.

Digital art restoration provides:

- a comparatively inexpensive alternative.
- a nondestructive tool.
- an approximation of the initial appearance.

- Edge Detection
- Morphological Operations
- Methods of Crack Detection
- Inpainting
- 6 Results
- 6 Conclusions

- Edge Detection
- 2 Morphological Operations
- Methods of Crack Detection
- Inpainting
- 6 Results
- 6 Conclusions

Criteria

- Accuracy low error rate
- Localization minimal distance between detected and actual edge
- Uniqueness only one response to a single edge

Canny Algorithm

- Edge Detection
- Morphological Operations
 - Erosion
 - Dilation
 - Opening
 - Closing
- Methods of Crack Detection
- 4 Inpainting
- 6 Results

Morphological Operations

Binary and Greyscale Images

Two Inputs:

- Original Image
- Structuring Element

Erosion

Dilation

Opening

Closing

- Edge Detection
- Morphological Operations
- Methods of Crack Detection
 - Top-Hat Transform
 - Alternative Method
- Inpainting
- 6 Results
- 6 Conclusions

Top-Hat Algorithm

Three Variations:

- Black Top-Hat
- White Top-Hat
- Multiscale Top-Hat

Black Top-Hat Transform

Darker Details on a Lighter Background

$$BTH = (f \bullet s) - f$$

White Top-Hat Transform

Lighter Details on a Darker Background

$$WTH = f - (f \circ s)$$

- Edge Detection
- Morphological Operations
- Methods of Crack Detection
- Inpainting
- 6 Results
- 6 Conclusions

Inpainting Process

The image is broken down into regions, which are further broken down into neighborhoods. For each defective pixel *i*:

- Find the context of *i*.
- 2 Examine all other neighborhoods within the region of *i*.
- Find neighborhood most similar to context of i by sum of squared differences.
- If the sum of squared errors is below a set threshold, replace all defective pixels in the neighborhood of i with corresponding pixels from most similar neighborhood.
- Otherwise, replace pixel i with the median value of all non-defective pixels within its neighborhood.

- Edge Detection
- Morphological Operations
- Methods of Crack Detection
- Inpainting
- 6 Results
 - Top-Hat Transform Results
 - Alternative Method Results
- 6 Conclusions

- Edge Detection
- 2 Morphological Operations
- Methods of Crack Detection
- Inpainting
- 6 Results
- 6 Conclusions

Thanks!

Questions?

References

