Pulse Width Modulation (PWM)

Darbe Genişlik Modülasyonu:

- PWM dijital bir kaynak kullanarak analog sinyal üretmek için kullanılan bir yöntemdir.
- Bir PWM sinyali iki ana bileşenden oluşur: Görev döngüsü (duty cycle) ve frekans.
- Görev döngüsü bir çevrimde yüksek seviyenin döngüyü tamamlamak için geçen süreye yüzdesel oranı olarak tanımlıdır.

Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM)

PWM sinyalleri çok çeşitli kontrol uygulamalarında kullanılır. Başlıca kullanımları, DC motorları kontrol etmek içindir. Aşağıda birkaç uygulama ve bazı tipik minimum PWM frekansları gerekli:

- Yavaş tepki süresine sahip ısıtma elemanları veya sistemler: 10-100 Hz veya daha yüksek
- DC elektrik motorları: 5-10 kHz veya daha yüksek
- Güç kaynakları veya ses yükselticileri: 20-200 kHz veya daha yüksek

Timers

Timerların periyodik kesme, PWM gibi periyodik sinyaller üretme ve belirli zaman bekleme gibi kullanım alanları vardır.

STM32F4 mikrokontrolcüsünde 3 çeşit timer vardır.

- TIM6, TM7: Temel Timer
- TIM2-TIM5, TIM9-TIM14 : Genel Amaçlı Timer:
- TIM1, TIM8: Gelişmiş Kontrollü Timer

Temel zamanlayıcı (TIM6 ve TIM7) özellikleri şunları içerir:

- 16-bit otomatik yeniden yükleme sayacı (Auto Reload)
- 16-bit programlanabilir ön ölçekleme sayacı (Prescaler)
- DAC'yi tetiklemek için senkronizasyon devresi
- Güncellemede (sayaç taşması overflow) Interrupt / DMA (Kesme / Direct Memory Access)

RM0090 Reference manual Figure 204-212

TIM6 and TIM7 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Reserved							ARPE		Reserved			URS	UDIS	CEN		
	T COOL V CU							rw		reserved		rw	rw	rw	rw	

Bit 7 ARPE: Auto-reload preload enable

TIMx_ARR register is not buffered.

1: TIMx_ARR register is buffered.

Bit 0 CEN: Counter enable

0: Counter disabled 1: Counter enabled

TIM6 and TIM7 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 12 7 5 13 8 2 14 11 10 9 1 0 UDE UIE Reserved Reserved ΓW ΓW

Bit 0 **UIE**: Update interrupt enable

0: Update interrupt disabled.

1: Update interrupt enabled.

TIM6 and TIM7 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.

0: No update occurred.

1: Update interrupt pending. This bit is set by hardware when the registers are updated:

8/10

rc_w0

TIM6 and TIM7 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNT[15:0]															
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 CNT[15:0]: Counter value

TIM6 and TIM7 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PSC[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to $f_{CK\ PSC}$ / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event

TIM6 and TIM7 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ARR[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.