PhD Diary

Nathan Hughes

March 27, 2019

CONTENTS March 27, 2019

Contents

1.1	DONE Redo Kitagawa et al. [2] data figures	3
	1 1 1 DONE III I C	9
	1.1.1 DONE Write optimising procedure for q	3
	1.1.2 DONE minimise difference of model to data	4
1.2	TODO Does it make sense to use D_{eff} even for intra-cellular diffusion	5
	1.2.1 TODO Test effect of using D vs D_{eff}	5
1.3	TODO Move towards fully node based graph model with proof of results	5
1.4	TODO Test D_{eff} vector idea	5
1.5	DONE Finish presentation	6
1.6	TODO Finish chapter 1.5 of report	6
1.7	TODO Give practice presentation to Morris group	6
1.8	TODO Follow up on images of bombardment assays with Christine	6
1.9	TODO Use Deinum [1] A.69 with numerical solution	6
•		6
	1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 Ques	1.2 TODO Does it make sense to use D_{eff} even for intra-cellular diffusion 1.2.1 TODO Test effect of using D vs D_{eff} 1.3 TODO Move towards fully node based graph model with proof of results 1.4 TODO Test D_{eff} vector idea 1.5 DONE Finish presentation 1.6 TODO Finish chapter 1.5 of report 1.7 TODO Give practice presentation to Morris group 1.8 TODO Follow up on images of bombardment assays with Christine

1 Tasks [3/9]

1.1 **DONE** Redo Kitagawa et al. [2] data figures

1.1.1 DONE Write optimising procedure for q

```
from node diffusion import do internode diffusion
    from diffusion functions import D eff
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.optimize import leastsq
    cells = 151 # need to take two extra measurements to get sample of 5 without slicing
    cell um = 100
    points per cell = 10 \# \text{Needs} to be divisible by 2
    Xs = cells*points per cell
10
    dx = cell\_um//points\_per\_cell
11
    dx2 = dx^{**}2
12
13
    b = 0.0
14
    dt = 0.01
15
    # convert to seconds
16
    t = 1/dt
17
    num seconds = 60*60*14
    ts = int(t * num\_seconds)
19
20
    moss values = [0.08, 0.15, 0.3, 0.2, 0.1]
21
22
    err = 1
23
    q = 0.0015
24
25
26
    def optimize q(q):
27
       u = np.zeros((Xs, 1))
28
       u[(Xs//2)-(points\_per\_cell//2):(Xs//2)+(points\_per\_cell//2)]=1
29
       D = D eff(83, q, cell um)
30
       nds, u = do internode diffusion(
31
           u, dx2, D, dt, b, cell um, points per cell, ts)
32
       fig = plt.figure(0, figsize=(10, 10))
33
       fig.clf()
34
       fig, ax = plt.subplots(1, 1, figsize=(5, 5), num=0)
35
36
       ax.plot(np.arange(-(cells*cell_um)//2, +(cells*cell_um)//2, step=cell_um)+50,
37
              nds, marker='o', label='Model')
38
39
       ax.set x\lim(-250, 250)
40
       ax.set ylim(-0.02, 1)
41
42
       ax.set xlabel(r'\$\mu m\$')
43
       ax.plot(np.linspace(-200, 200, num=5), moss values,
44
              label='Kitawga et al.', marker='o')
45
46
       err = np.square((nds[(len(nds)//2)-2:(len(nds)//2)+3] - moss values)).sum()
47
48
       fig.suptitle('Q=\{0\} \setminus t \text{ err}^2 = \{1\}' \cdot format(q, err))
49
       fig.tight layout()
50
       fig.savefig('./images/{0}.png'.format(str(q).replace('.', ' ')))
51
52
```

```
# Minimise sum of squared errors
return err
return err
result = leastsq(optimize_q, [q])
rint(result)
```

1.1.2 DONE minimise difference of model to data

Figure 1: Testing against Kitagawa data

1.1.2.1 Mock treatment

Figure 2: Testing against Kitagawa data with aba treatment

1.1.2.2 ABA treatment

1.2 TODO Does it make sense to use D_{eff} even for intra-cellular diffusion

1.2.1 **TODO** Test effect of using D vs D_{eff}

1.3 **TODO** Move towards fully node based graph model with proof of results

Still use a low Δx but just use dist = cell to approx

• Cell length / 10 works consistently

Figure 3: Sketch of idea

1.4 **TODO** Test D_{eff} vector idea

```
def diffuse_vectorise(un, g, b, dt, dx2, dy2, a):

Takes a state, rate of decay, production, delta time, delta space and
flux of molecule. Uses these data to compute next time state

"""

return (un[1:-1, 1:-1] + a *

(((un[2:, 1:-1] - 2 * un[1:-1, 1:-1] + un[:-2, 1:-1]))/dx2 +

((un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, :-2]) / dy2))) *\

g + b
```

- 1.5 **DONE** Finish presentation
- 1.6 **TODO** Finish chapter 1.5 of report
- 1.7 **TODO** Give practice presentation to Morris group
- 1.8 **TODO** Follow up on images of bombardment assays with Christine
- 1.9 TODO Use Deinum [1] A.69 with numerical solution
- 2 Questions
- 2.1 How best to make use of D_{eff}

Not sure how best to use, as it will give a linear curve for diffusion.

• Could probably do a D_{eff} with a k, for cell number, term

$$\alpha = \frac{Dql}{D+ql} \tag{1}$$

References

- [1] E E Deinum. Simple Models for Complex Questions on Plant Development. PhD thesis, s.n., S.l., 2013. 00011.
- [2] Munenori Kitagawa, Takumi Tomoi, Tomoki Fukushima, Yoichi Sakata, Mayuko Sato, Kiminori Toyooka, Tomomichi Fujita, and Hitoshi Sakakibara. Abscisic Acid Acts as a Regulator of Molecular Trafficking through Plasmodesmata in the Moss iPhyscomitrella patens/i. *Plant and Cell Physiology*, December 2018. ISSN 0032-0781. doi: 10.1093/pcp/pcy249.