Principles of Information Filtering in Metric Spaces

Paolo Ciaccia and Marco Patella DEIS, Università di Bologna – Italy

SISAP 2009 - August 29-30 2009, Prague

Information Filtering

- ◆ The IF problem:
 - Deliver to users only the information that is relevant to them, filtering out all irrelevant new data items
 - News, papers, ads, CfP, ...
- Compared to IR:

	IR	IF
Goal	Selecting relevant items for each query	Filtering out the many irrelevant data items
Type of use; Type of users	Ad-hoc use; one-time users	Repetitive use; long-term users
Representation of information needs	Queries	User profiles
Index	Items	User profiles

User Profiles

- Common (text-based) VSM approach:
 - Profile = vector in some appropriate space (terms, topics,...)
 - Built using e.g., TF-IDF text analysis

$$x_i = ((t_{i,1}, w_{i,1}), ..., (t_{i,n}, w_{i,n}))$$

Matching profiles with a new data item q: Cosine similarity

Limitations

- Suitable only for text
 - No analogous of content-based MM search
- VSM profiles capture only the "position" of users
- ◆ They do not model the (subjective) notion of similarity

OBJECTIVE:

◆ Extend the IF model to metric spaces (MIF), thus allowing also distance to depend on user preferences

Preferences change the distance

- My preferences:
 - Highways
- Marco's preferences (driving his bike):
 - Scenery roads
- According to ViaMichelin:

Other examples: RF for MM information retrieval

The Metric Information Filtering problem

Given a set X of user profiles $u_i = (x_i, d_i)$, where x_i is the profile centroid and d_i is the user-specific distance, and a new data item q

Determine the profiles for which q is relevant

- lacktriangle Relevance of q to user u_i measured as $d_i(x_i,q)$
- Wlog we set a threshold/radius r_i to discriminate among relevant and irrelevant items

$$d_i(x_i,q) \le r_i \Rightarrow q$$
 is relevant to u_i

Metric Search vs Metric Filtering

- ◆ Both can use a user-specified distance d_i, but:
 - Metric search: one d_i at a time
 - MIF: N users = N distances at the same time!
- ◆ Lesson learned from metric search [Ciaccia, Patella; TODS 2002]:

If objects are indexed by a metric index using a distance δ and \exists a finite $s_{\delta,d}$ s.t. $\delta(x,q) \leq s_{\delta,d} d(x,q)$ holds $\forall x,q$

Then the index can also process queries based on d

• The minimum of such $s_{\delta,d}$ is called the (optimal) scaling factor of d wrt δ

Examples of scaling factors

• Weighted Lp norms: $d_i(a,b) = (\sum_k w_i[k] |a[k] - b[k]|^p)^{1/p}$

$$d_i(a,b) \le \max_k \{(w_i[k]/w_j[k])^{1/p}\} d_j(a,b)$$

Sum of metrics:

Weights	Marco	Paolo
Km	1	2
Time	2	5
Cost	3	1

$$d_i(a,b) = w_i[km]d[km](a,b)+$$
 $w_i[time]d[time](a,b)+$
 $w_i[cost]d[cost](a,b)$

$$d_{Marco}(a,b) \le 3/1 d_{Paolo}(a,b)$$

 $d_{Paolo}(a,b) \le 5/2 d_{Marco}(a,b)$

Pivot-based methods for MIF

- Profiles X = $\{(x_1,d_1),...,(x_n,d_n)\}$
- Pivots $P = \{(p_1, \delta_1), ..., (p_m, \delta_m)\}$

Assumption (Lipschitz equivalence):

 $\forall d, \delta \exists s_{d,\delta} \text{ and } s_{\delta,d}$: $d(a,b) \leq s_{d,\delta} \delta(a,b)$ $\delta(a,b) \leq s_{\delta,d} d(a,b)$

Goal: to provide a (tight) lower bound to d(x,q)

d(x,q)=?

The "classical" triangle inequality cannot be used!

Pivot-space

lack The index stores $\delta(x,p)$

 By using both scaling factors two other LB's can be obtained, but they are always looser

Approximation can help

- ◆ Consider (7): $d(x,q) \ge [\delta(p,q)-\delta(x,p)]/s_{\delta,d}$ and the classical inequality: $d(x,q) \ge d(p,q)-d(x,p)$
- ♦ It can well be $[δ(p,q)-δ(x,p)]/s_{δ,d} ≥ d(p,q)-d(x,p),$ thus working in pivot-space can be even better!

d(p,q)	high
d(x,p)	medium
$\delta(p,q)/s_{\delta,d}$	medium
$\delta(x,p)/s_{\delta,d}$	very low

Point/profile-space (1)

- lack The index stores d(x,p)
- "Large" pivot-point distance

$$d(x,q) \ge d(x,p) - s_{d,\delta} \delta(p,q) \quad (10)$$

Point-space (2)

"Small" pivot-point distance

◆ (11) is always dominated by (7):

$$\delta(p,q)/s_{\delta,d} - \delta(x,p)/s_{\delta,d} \ge \delta(p,q)/s_{\delta,d} - d(x,p)$$

Symmetric Scaling Factors

lacktriangle Define the Symmetric Scaling Factor of d and δ as:

$$SSF(d,\delta) = s_{d,\delta} * s_{\delta,d}$$

SSF Properties

- SSF(d, δ) = SSF(δ ,d)
- SSF(d, δ) \geq 1 (= 1 iff d is a scaled version of δ)
- $SSF(d,\delta) \leq SSF(d,d') * SSF(d',\delta) \forall d'$

log SSF is a pseudo-metric on every space of Lipschitz-equivalent metrics

- lack SSF can be used to measure how well δ approximates d
 - Also known as the "distortion" of the two metrics

Q: What does SSF measure?

A: How much, in the worst-case (red points), we relax d by approximating it with δ (and vice versa)

Experimental settings

- ◆ 3D synthetic datasets w weighted Euclidean distance:
 - uniform
 - clustered (5 Gaussian clusters)
 - random walk (points/weights obtained by slightly perturbing the previous point/weight)
 - radii = about 3% of data items are relevant for each profile
- Strategies:
 - lacktriangle Δ (classical triangle inequality only for reference purpose)
 - Δ-pivot (pivot-space: (7)+(9))
 - Δ-point (point-space: (10)+(11))
 - Δ-both (pivot- and point-space: (7)+(9)+(10))

Experiment I: the best strategy

- external distances: distances between q and profiles
- total distances: external distances + distances between q and pivots

Experiment II: optimal # of pivots

Δ-both strategy

Experiment III: sorting pivots

- Pivots are sorted so as to minimize the number of comparisons
- Strategies:
 - QD: increasing distance toq
 - PP: decreasing pruning power (computed using the distance distribution of each pivot)

Δ-both strategy, 30K points

Conclusions and open issues

- Introduced basic principles of Metric Information Filtering
 - Suitable for any family of Lipschitz-equivalent metrics
 - Not limited to pivot-based methods
 - Space-time tradeoff on what to index (pivot- vs point-space)
- ◆ Is MIF also suitable for collaborative filtering?
 - Relevance of a new item now depends on profiles' similarity
- Can MIF exploit batch arrivals of new items?
 - Need some "default" metric to compare items
- Can SSF be used for choosing pivots?
- What if a pivot does not use its own metric?
 - Can we decouple pivot position from pivot preferences?

Thanks for your attention!