1 Die Spektralsequenz eines filtrierten Komplexes

Definition 1. Eine Filtrierung eines Kokettenkomplexes C^{\bullet} ist eine absteigende Folge

$$C^{\bullet} \supseteq \ldots \supseteq F^{p-1}C^{\bullet} \supseteq F^{p}C^{\bullet} \supseteq F^{p+1}C^{\bullet} \supseteq \ldots$$

von Unterkomplexen.

Lemma 2. Es sei C^{\bullet} ein filtrierter Kokettenkomplex. Es gibt eine Spektralsequenz mit

$$E_1^{pq} = H^{p+q}(F^p C^{\bullet}/F^{p+1}C^{\bullet}).$$

Angenommen, die Filtrierung ist

- a) gradweise nach unten beschränkt, d.h. für alle $q \in \mathbb{Z}$ gibt es ein $p \in \mathbb{Z}$ mit $F^pC^q = 0$,
- b) ausschöpfend, d. h. für alle $q \in \mathbb{Z}$ ist $\bigcup_{p} F^{p}C^{q} = C^{q}$ und
- c) für alle $q \in \mathbb{Z}$ gibt es ein $P \in \mathbb{Z}$, sodass für alle $p \leq P$ gilt: Die Inklusion $F^pC^{\bullet} \hookrightarrow C^{\bullet}$ induziert einen Isomorphismus $H^q(F^pC^{\bullet}) \cong H^q(C^{\bullet})$ in Kohomologie.

Dann konvergiert die Spektralsequenz gegen $H^*(C^{\bullet})$.

Wir führen zunächst etwas neue Notation ein. Diese hilft, den Beweis verständlicher zu formulieren. Wir fassen im Folgenden den Kettenkomplex als ein einziges Modul $C := \bigoplus_{n \in \mathbb{Z}} C^n$ anstatt als Folge von Moduln auf. Dieses Modul ist filtriert durch die Untermodule $F^p := \bigoplus_{n \in \mathbb{Z}} F^p C^n$. Wir setzen $F^{-\infty} := C$ und $F^{\infty} := 0$. Die Korandabbildung fassen wir als Homomorphismen $d : C \to C$ mit $d \circ d = 0$ auf, der die Filtrierung von C respektiert.

Wir sind interessiert an der Kohomologie von C^{\bullet} , also an $H^*(C) := \ker(d)/\operatorname{im}(d)$ und an der Kohomologie von F^p/F^{p+1} , also $H^*(F^p/F^{p+1}) \cong (d|_{F^p})^{-1}(F^{p+1})/d(F^p)$. Wir geben nun eine Verallgemeinerung der Definition der Kohomologie von C^{\bullet} und der Kohomologie des Quotientenkomplexes F^p/F^q : Statt Zykeln (d. h. Elementen $c \in C$ mit d(c) = 0) betrachten wir z-Zykel, das sind Elemente $c \in C$ mit $d(c) \in F^z$. Wir teilen diese durch die Menge $d(F^b)$ der b-Ränder anstatt durch die Menge d(C) der Ränder. Wir setzen

$$S[z,q,p,b] := \frac{F^p \cap d^{-1}(F^z)}{(F^p \cap d^{-1}(F^z)) \cap (F^q + d(F^b))}.$$

Wir haben als Spezialfälle

$$S[p,q,p,q] \cong F^p/F^q$$
 und $S[q,q,p,p] \cong H^*(F^p/F^q)$.

Lemma 3. Es sei $z_1 \ge q_1 \ge p_1 = z_2 \ge b_1 = q_2 \ge p_2 \ge b_2$. Dann ist folgende Abbildung ein wohldefinierter Homomorphismus:

$$d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1], [c] \mapsto [d(c)].$$

Beweis. Falls [c] = 0 in $S[z_2, q_2, p_2, b_2]$, so existieren $x \in F^{q_2}$ und $y \in F^{b_2}$ mit c = x + d(y). Somit gilt $d^*[c] = [dc] = [d(x) + d^2(y)] = [d(x)] = 0$ in $S[z_1, q_1, p_1, b_1]$, da $F^{b_1} = F^{q_2}$.

Lemma 4. Es seien Filtrierungsindizes wie folgt gegeben:

Dann ist

$$\alpha: S[q_1, q_2, p_2, p_3] \to \frac{\ker(d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])}{\operatorname{im}(d^*: S[z_3, q_3, p_3, b_3] \to S[z_2, q_2, p_2, b_2])}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis. Sei A der Quotient auf der rechten Seite.

Wohldefiniertheit: Sei [c] = 0 in $S[q_1, q_2, p_3, p_3]$, d. h. es gibt $e \in F^{q_2} = F^{b_1}$ und $f \in F^{p_1}$ mit c = e + d(f). Dann ist $d^*[c] = [d(c)] = [d(e)] = 0$ in $S[z_1, q_1, p_1, b_1]$, also $c \in \ker(d^* : S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1]$. Nun ist $f \in d^{-1}(F^{z_3})$, da $d(f) = c - e \in F^{p_2} = F^{z_3}$. Es gilt $[c] = [e + d(f)] = [d(f)] = d^*[f] = 0$ in A. Injektivität: Sei $c \in F^{p_2} \cap d^{-1}(F^{q_1})$ mit [c] = 0 in A. Das heißt, es gibt $e \in F^{q_2}$, $f \in F^{b_2}$ und $g \in F^{b_2}$ $F^{p_3} \cap d^{-1}(F^{z_3})$ mit c = e + d(f) + d(g). Dann ist [c] = [e + d(f+g)] = 0 in $S[q_1, q_2, p_2, p_3]$, da $f + g \in F^{p_3}$. Surjektivität: Sei $\tilde{c} \in F^{p_2} \cap d^{-1}(F^{z_2})$ mit $[\tilde{c}] \in \ker(d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])$. Das heißt, es gibt $e \in F^{q_1}$ und $f \in F^{b_1} = F^{q_2}$ mit $d(\tilde{c}) = e + d(f)$. Dann ist $[\tilde{c}] = [\tilde{c} - f]$ in $S[q_1, q_2, p_2, p_3]$ mit $\tilde{c} - f \in F^{p_2} \cap d^{-1}(F^{q_1})$, da $d(\tilde{c} - f) = e \in F^{q_1}$.

Beweis des Lemmas über Existenz der Spektralsequenz. Wir beachten jetzt wieder, dass C und damit S[z,q,p,b] graduiert und d ein Differential vom Grad +1 ist. Es sei $S[z,q,p,b]^n$ die n-te Komponente. Setze

$$E_r^{pq} := S[p+r, p+1, p, p-r+1]^{p+q}.$$

Die Differentiale sind

$$d_r^{pq} \ : \ \underbrace{S[p+r,p+1,p,p-r+1]^{p+q}}_{=E_r^{p,q}} \to \underbrace{S[p+2r,p+r+1,p+r,p+1]^{p+q+1}}_{=E_r^{p+r,q-r+1}}, \quad [c] \mapsto [d(c)].$$

Sie sind wohldefiniert nach Lemma 3.und wegen Lemma 4 ist

$$\alpha_r^{pq}: H^{p,q}(E_r) = \ker(d_r^{pq})/\operatorname{im}(d_r^{p-r,q+r-1}) \to E_{r+1}^{pq}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis der Konvergenz: Es seien $p, q \in \mathbb{Z}$. Wegen Bedingung a) gibt es ein $R_1 \geq 0$, sodass $F^{p+R_1}C^{p+q+1} =$ 0. Für $r \ge R_1$ ist damit $E_r^{p+r,q-r+1}$ als Subquotient (d. h. Quotient eines Untermoduls) von $F^{p+R_1}C^{p+q+1}$ Null. Folglich verschwindet auch das Differential d_r^{pq} . Wegen Bedingung c) gibt es ein $S \in \mathbb{Z}$, sodass $F^sC^{\bullet} \hookrightarrow C^{\bullet}$ und somit auch $F^sC^{\bullet} \hookrightarrow F^{s-1}C^{\bullet}$ für $s \leq S$ einen Isomorphismus in H^{p+q-1} und H^{p+q} induziert. Anhand der langen exakten Sequenz zu $0 \to F^sC^{\bullet} \to F^{s-1}C^{\bullet} \to F^{s-1}C^{\bullet}/F^sC^{\bullet} \to 0$ sieht man, dass $H^{p+q-1}(F^{s-1}C^{\bullet}/F^sC^{\bullet}) = 0$. Somit ist $E_r^{p-r,q+r-1}$ für $r \geq R_2 := p-s+1$ als Submodul von $H^{p+q-1}(F^{p-r}C^{\bullet}/F^{p-r+1}C^{\bullet})$ Null. Folglich verschwindet auch $d_r^{p-r,q+r-1}$. Mit $R := \max(R_1, R_2)$ gilt dann $E_R^{pq} \cong E_{R+1}^{pq'} \cong \ldots \cong E_{\infty}^{pq}$. Sei $H^n(C^{\bullet})$ absteigend filtriert durch $F^pH^n(C^{\bullet}) := \operatorname{im}(i^* : H^n(F^pC^{\bullet}) \to H^n(C^{\bullet}))$. Für $r \geq R$ ist

$$E^{pq}_{\infty} \cong E^{pq}_r = \frac{F^p C^{p+q} \cap d^{-1}(0)}{(F^p C^{p+q} \cap d^{-1}(0)) \cap (F^{p+1} C^{p+q} + d(F^{p-r+1} C^{p+q-1}))} = S[\infty, p+1, p, p-r+1]^{p+q}.$$

Es ist daher $F^pH^{p+q}(C^{\bullet})/F^{p+1}H^{p+q}(C^{\bullet})\cong S[\infty,p+1,p,-\infty]^{p+q}$ ein Quotient von E^{pq}_{∞} . Tatsächlich gilt $S[\infty,p+1,p,-\infty]^{p+q}\cong E^{pq}_{\infty}$, denn: Sei $c\in F^pC^{p+q}\cap d^{-1}(0)$ mit [c]=0 in $S[\infty,p+1,p,-\infty]^{p+q}$. Dann gibt es ein $e \in F^{p+1}C^{p+q}$ und ein $f \in C^{p+q-1}$ mit c = e + d(f). Wegen Bedingung b) gibt es ein $\tilde{p} \in \mathbb{Z}$ mit $f \in F^{\tilde{p}}C^{p+q+1}$. Wähle r so, dass $r \geq R$ und $p-r+1 \leq \tilde{p}$. Dann ist [c] = [e] + [d(f)] = 0 in $E_r^{pq} \cong E_{\infty}^{pq}$.