In [1]:

```
import csv
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from sklearn import linear_model
import pandas as pd

from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
```

In [39]:

```
def save_to_csv(file_path, X, Y):
    with open(file_path, 'w', newline='') as csv_file:
        csv_writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_M
        for i in range(0, len(X)):
            csv_writer.writerow([X.item(i), Y.item(i)])
```

In [297]:

poly_reg_path = "C:\\Users\\Ihor\\GSN\\PUM\\Laboratorium 3\\FlapPyBird\\data\\polynomial_mo
lin_reg_path = "C:\\Users\\Ihor\\GSN\\PUM\\Laboratorium 3\\FlapPyBird\\data\\linear_regresi
lin_reg_impl_path = "C:\\Users\\Ihor\\GSN\\PUM\\Laboratorium 3\\FlapPyBird\\data\\linear_re

In [2]:

train_df = pd.read_csv('C://Users//Ihor//GSN//PUM//Laboratorium 3//FlapPyBird//outfile.csv'

In [3]:

```
train_df.head()
```

Out[3]:

	X	у
0	52	68.518519
1	56	68.518519
2	60	68.518519
3	64	68.518519
4	68	68.518519

```
In [4]:
```

```
train_df['x'].head()
Out[4]:
0
     52
1
     56
2
     60
3
     64
4
     68
Name: x, dtype: int64
In [5]:
train_df['y'].head()
Out[5]:
     68.518519
0
1
     68.518519
2
     68.518519
     68.518519
3
4
     68.518519
Name: y, dtype: float64
In [6]:
plt.figure(figsize=(20, 7))
plt.scatter(train_df['x'], train_df['y'])
plt.show()
175
```

Użycie Linear Regression sk-learn

```
In [7]:
```

```
X_train = train_df.iloc[:, 0].values.reshape(-1, 1)
Y_train = train_df.iloc[:, 1].values.reshape(-1, 1)
```

In [8]:

```
%%time

sk_linreg = linear_model.LinearRegression()
sk_linreg = linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True,
Y_Pred = sk_linreg.predict(np.array(X_train).reshape(-1, 1))
plt.figure()
plt.figure(figsize=(20, 7))
plt.scatter(X_train, Y_train)
plt.plot(X_train, Y_Pred, color='red')
plt.title('Linear regression')
plt.show()
```

<Figure size 432x288 with 0 Axes>

Wall time: 368 ms

Użycie PolinomialFeatures + PipeLine + LinearRegression sklearn

In [62]:

<Figure size 432x288 with 0 Axes>

In [64]:

```
save_to_csv(lin_reg_path, X_poly_predict, Y_poly_predict)
```

bez normalizacji flappy móg przelecieć tylko 3 rury, co oznacza że normalizacja dannych ma wielki wplyw na dopasowanie polymonialnej regresji linjowej

z normalizają dopasowanie jest o wielie lepszę i flappy sprawnie kończy trasę

Użycie PolinomialFeaturesPipeLine sk-learn + Ridge

In [63]:

C:\Users\Ihor\anaconda3\lib\site-packages\sklearn\linear_model_ridge.py:14
8: LinAlgWarning: Ill-conditioned matrix (rcond=2.73379e-70): result may not be accurate.
 overwrite_a=True).T

<Figure size 432x288 with 0 Axes>

In [41]:

```
save_to_csv(poly_reg_path, X_poly_predict, Y_poly_predict)
```

test funkcji Ridge

Flappy pokonal trase bez normalizacji

Implementacja Linear Regression

In [278]:

from sklearn.preprocessing import MinMaxScaler

In [466]:

```
class LinearRegresionImpl:
   def __init__(self, X, y, degree=4):
       self.X = X
        self.y = y
        self.X_ = np.column_stack((np.ones((X.size, 1)), X))
        self.a = a_opt(self.X_, y)
        self.degree = [i for i in range(1, degree+1)]
   def a_opt(X,y) : # linear regression solution a = (X'X)^{-1}X'y = pinv(X)y
        a opt = np.dot( np.linalg.pinv(X), y)
       return a_opt
   def predict_linear(self, X_predict): #funkcja Linearna
        return self.a[0] + self.a[1]*X_predict
   def predict_polymonial(self, xt, degree = 5): # funkcja polymonialna
        polyfit = np.polyfit(self.X, Y_lin_reg, degree)
        polycurve1d = np.poly1d(polyfit)
       return polycurve1d(xt)
```

In [304]:

```
X_lin_reg = train_df.iloc[:, 0].values
Y_lin_reg = train_df.iloc[:, 1].values
```

In [305]:

```
linreg = LinearRegresionImpl(X_linear_reg, Y_linear_reg)
Y_pred = linreg.predict_linear(X_poly_predict)
```

In [306]:

<Figure size 432x288 with 0 Axes>

In [307]:

```
linregpoly = LinearRegresionImpl(X_linear_reg, Y_linear_reg)
Y_pred_poly = linregpoly.predict_polymonial(X_poly_predict, degree=15)
```

In [308]:

<Figure size 432x288 with 0 Axes>

In [310]:

```
save_to_csv(lin_reg_impl_path, X_poly_predict, Y_poly_predict)
```


Zaimplementowana Regresja liniowa działa w miarę szybko i pozwala na przejścię Flappy przez wszystkie rury, ale nie zawiera normalizaji dannych

Była też próba zaiplementowania regresji polimonialnej za dopomogą:

```
class LinearRegresionImpl:
   def __init__(self, X, y, degree=4):
       self.X = X
        self.y = y
        self.X_ = np.column_stack((np.ones((X.size, 1)), X))
        self.a = a_opt(self.X_, y)
        self.degree = [i for i in range(1, degree+1)]
   def a_opt(X,y) : # linear regression solution a = (X'X)^{-1} X'y = pinv(X)y
        a_opt = np.dot( np.linalg.pinv(X), y)
        return a opt
   def predict linear(self, X predict): #funkcja linearna
       return self.a[0] + self.a[1]*X_predict
   def predict_polymonial(self, xt): # funkcja polymonialna
       X = np.column_stack( (np.ones((self.X.size,1)) , self.X, self.X**2, self.X**3 )) #
construct the augmented matrix X
        polyfit = np.polyfit(self.X, Y_lin_reg, degree)
        polycurve1d = np.poly1d(polyfit)
```

```
return self.a[0] + self.a[1]*X_predict + self.a[2]*X_predict**2 +
self.a[3]*X_predict**3 + self.a[4]*X_predict**4
```

Ale niestety funkcja predict_polymonial nie mogla się dopasować do skomplikowanej ścieżki Flappy przy takiej implementacji

Partje

```
In [442]:
election_df = pd.read_csv('C://Users//Ihor//GSN//PUM//Laboratorium 3//GoesGold//ElectionDat
In [443]:
election_df = election_df.sort_values(by='time')
In [450]:
election_df['time_delta'] = (election_df['time'] - election_df['time'].min()) / np.timedel
```

In [451]:

election_df

Out[451]:

sPercentage	nullVotes	 pre.subscribedVoters	pre.totalVoters	Party	Mandates	Percentage	va
2.50	8874	 813743	428546	PS	0	38.29	
1.86	139	 13766	8489	Α	0	0.37	
1.86	139	 13766	8489	R.I.R.	0	0.41	
1.86	139	 13766	8489	L	0	0.51	
1.86	139	 13766	8489	PAN	0	1.25	
2.40	2232	 181378	104223	MPT	0	0.24	
2.40	2232	 181378	104223	PNR	0	0.26	
2.40	2232	 181378	104223	PURP	0	0.29	
3.38	3814	 390947	220211	CDS- PP	0	3.48	
2.81	3700	 371931	190712	JPP	0	0.07	

In [610]:

```
parties = list(set(election_df['Party']))
print(parties)
```

```
['PURP', 'PS', 'PPM', 'B.E.', 'CDS-PP', 'JPP', 'CH', 'PCP-PEV', 'PAN', 'A', 'MPT', 'R.I.R.', 'L', 'IL', 'PPD/PSD', 'PDR', 'PTP', 'PCTP/MRPP', 'MAS', 'N C', 'PNR']
```

```
In [611]:
election_df.loc[election_df['Party'] == 'PS']['Mandates'].sum()
Out[611]:
6068
In [612]:
time_ = {party:(election_df.loc[election_df['Party'] == party].groupby(['time_delta']).sum(
                election_df.loc[election_df['Party'] == party].groupby(['time_delta']).sum(
                 for party in parties }
```

Plot with sk_learn linear regression

```
In [467]:
```

```
parties = list(set(election_df['territoryName']))
print(parties)
['Território Nacional', 'Viana do Castelo', 'Porto', 'Évora', 'Leiria', 'Bej
a', 'Coimbra', 'Madeira', 'Portalegre', 'Castelo Branco', 'Vila Real', 'Vise
u', 'Guarda', 'Setúbal', 'Bragança', 'Lisboa', 'Açores', 'Braga', 'Aveiro',
'Santarém', 'Faro']
```

In [613]:

<Figure size 432x288 with 0 Axes>

In [614]:

```
plt.figure()
plt.figure(figsize=(15, 15))
[plt.scatter(time_[party][0], time_[party][1]) for party in parties]
for party in parties:
    sk_linreg.fit(time_[party][0].reshape(-1, 1),time_[party][1].reshape(-1, 1))
    prediction = sk_linreg.predict(time_[party][0].reshape(-1, 1))
    plt.plot(time_[party][0], prediction, linewidth=2)
plt.xlim(election_df['time_delta'].min(), election_df['time_delta'].max())
plt.show()
```

<Figure size 432x288 with 0 Axes>

Plot with Wlasna implementacja

In [615]:

```
plt.figure()
plt.figure(figsize=(15, 15))
[plt.scatter(time_[party][0], time_[party][1]) for party in parties]
for party in parties:
    linreg = LinearRegresionImpl(time_[party][0], time_[party][1])
    prediction = linreg.predict_linear(time_[party][0])
# sk_linreg.fit(time_[party][0].reshape(-1, 1),time_[party][1].reshape(-1, 1))
# prediction = sk_linreg.predict(time_[party][0].reshape(-1, 1))
plt.plot(time_[party][0], prediction, linewidth=2)
plt.xlim(election_df['time_delta'].min(), election_df['time_delta'].max())
plt.show()
```

<Figure size 432x288 with 0 Axes>


```
In [ ]:
```

Wyszukiwanie najlepszego czasu dla otrzymania najlepszego wynniku partii sk_learn + bsearch

```
In [651]:
bigest_parties = ['PS', 'PPD/PSD', 'B.E.']
```

In [654]:

```
def binary_search(sequence, item):
    begin_index = 0
    end_index = len(sequence) - 1
    while begin_index <= end_index:
        midpoint = begin_index + (end_index - begin_index)//2
        midpoint_value = sequence[midpoint]
        if midpoint_value in list(range(item-4, item+4)):
            return midpoint
        elif item < midpoint_value:
            end_index = midpoint - 1
        else:
            begin_index = midpoint + 1
        return midpoint_value//2</pre>
```

In [655]:

PSparty needs minimum 215.0 time to get 212 mandates in election PPD/PSDparty needs minimum 130.0 time to get 154 mandates in election B.E.party needs minimum 130.0 time to get 38 mandates in election

In [660]:

PSparty needs minimum 198 time to get 212 mandates in election PPD/PSDparty needs minimum 150 time to get 154 mandates in election B.E.party needs minimum 52 time to get 38 mandates in election

Wyszukiwanie najlepszego czasu dla otrzymania najlepszego wynniku partii wlasna implementacja + bsearch

```
In [661]:
```

PSparty needs minimum 215.0 time to get 212 mandates in election PPD/PSDparty needs minimum 130.0 time to get 154 mandates in election B.E.party needs minimum 130.0 time to get 38 mandates in election

In [662]:

PSparty needs minimum 198 time to get 212 mandates in election PPD/PSDparty needs minimum 150 time to get 154 mandates in election B.E.party needs minimum 52 time to get 38 mandates in election

Przez osobliwości algorytmu B-Search brak możliwości wyznaczyć minimalny czas dla partii B.E

Porwnanie Linear Regression sk-learn i wlasnej implementacji

```
In [666]:
party = 'PS'
In [667]:
from sklearn import metrics
In [668]:
import tracemalloc
```

In [680]:

Current:0.151747MB; Peak was 0.159136MB Wall time: 6.87 s

In [681]:

```
abs_er_sk = metrics.mean_absolute_error(time_[party][1], prediction)
sq_er_sk = metrics.mean_squared_error(time_[party][1], prediction)
mean_sq = np.sqrt(metrics.mean_squared_error(time_[party][1], prediction))
print(abs_er_sk)
print(sq_er_sk)
print(mean_sq)
```

20.121296296296308 405.8975358987365 20.14689891518634

In [682]:

Current: 0.150058MB; Peak was 0.152554MB

Wall time: 2.14 s

```
In [684]:
```

```
abs_er = metrics.mean_absolute_error(time_[party][1], prediction)
sq_er = metrics.mean_squared_error(time_[party][1], prediction)
mean = np.sqrt(metrics.mean_squared_error(time_[party][1], prediction))
print(abs_er)
print(sq_er)
print(mean)
```

20.12129629629633 405.89753589873726 20.14689891518636

Algorytmy czasowo dzialają bardzo szybko i pochlaniają podobną ilość pamięci, ale algorytm wlasnej implementacji ma brak wszytej normalizacji, a także nie może dzialać z dopasowaniem do skąplikowanych krzywych które się znajdują w przestrzeniach większych niż 2D

Zaimplementowana przez mnie regressja linjowa ma nieco większy bląd przy większej dokladności co może być problemem dla zadan które potrzebują wielkiej dokladności predykcji

L 37	

Index of comments

8.1 predict powinien być oparty na A = linalg.inv(X.T @ X) @ (X.T @ y)