CONTROLE FUZZY

Sergio Ribeiro Augusto

Controle Fuzzy

- ✓ É uma forma de controle inteligente
- ✓Implementa uma parte da experiência do engenheiro de processo ou do operador , a qual não pode ser facilmente expressa em termos de eqs. diferenciais mas sim em regras

Situação -> Ação

- **✓O mapeamento Situação** → Ação é *não linear*
- ✓ Pode ser visto como um modo heurístico e modular de definir sistemas de controle não linear baseados em tabela

Histórico

Em 1974, o Prof. Mandani, do Queen Mary College, Universidade de Londres, após várias tentativas frustadas em controlar uma máquina a vapor com vários tipos de controladores, incluindo PID, conseguiu fazê-lo através da aplicação do raciocínio difuso. Este sucesso serviu de gatilho para muitas outras aplicações.

Histórico (cont.)

Em 1980, um primeiro exemplo de uma aplicação industrial baseada em controle fuzzy foi realizado: o controle da operação de um forno de cimento.

Vantagens

- √Implementa conhecimento especialista;
- ✓ Ideal para resolver problemas onde imprecisão e conceitos lingüísticos estão presentes e uma descrição verbal é necessária;
- ✓ Conhecimento do modelo do sistema não é requerido.

Desvantagens

- √ Controladores "caixa-preta"
- ✓ Análise analítica difícil
- ✓ Possui mais parâmetros de projeto que um controlador convencional
- ✓ Construir um bom controlador fuzzy em muitos casos é mais arte do que ciência

Por que tem sido tão popular?

Manipulando os vários componentes de um sistema fuzzy, através de simulações e procedimento de tentativa e erro, um profissional que não seja da área de controle consegue, freqüentemente, controladores com bom desempenho e de projeto rápido, tornando-se uma ferramenta poderosa para aplicações industriais.

Quando normalmente se utiliza controle fuzzy?

- O modelo matemático do sistema não é disponível mas sabe-se que o sistema é altamente não linear, variante no tempo e/ou tem atrasos elevados.
- 2. Normalmente em aplicações industriais onde um controle PID não gera um sistema com desempenho adequado.

Arquiteturas de Aplicação do Controle Fuzzy

Controle Supervisório

SECS: Supervisory Expert Control System

Controle Direto

DECS: Direct Expert Control System

CONTROLADORES FUZZY

- -Visão genérica de um controlador Fuzzy
- Exemplos

Estrutura de um controlador Fuzzy

Módulos de Normalização e Desnormalização

- ·Realizam uma transformação de escala;
- •Os parâmetros de projeto para este módulo são os fatores de escala (ganhos).

"Fuzzificação"

√ Converte o valor numérico (crisp) de cada variável de entrada em valores linguisticos, associados aos conjuntos fuzzy de entrada

✓O resultado dessa conversão atribui a cada variável de entrada um grau de pertinência em relação aos conjuntos fuzzy de entrada.

"Fuzzificação" (cont.)

Parâmetros de Projeto do "Fuzzificador"

Escolha da funções de pertinência para cada variável de entrada:

- Quantidade (conjunto dos termos lingüísticos)
- ·Formato e tamanho (suporte) das funções.

Escolha do Número de Conjuntos Lingüísticos

- ✓ O número de conjuntos lingüísticos determina a granularidade da ação de controle;
- ✓ Se deseja-se uma melhor resolução de controle em torno de um set-point igual a zero, pode-se considerar uma faixa maior de valores lingüísticos (Ex: ZO, PZO (positivo zero), NZO (negativo zero));

Escolha das Funções de Pertinência

✓ todo valor de entrada numérico x deve pertencer no mínimo a uma função de pertinência A (valor lingüístico associado) com $\mu_A(x) > 0$. Tal fato evita descontinuidades na saída de controle.

Influência dos Conjuntos Fuzzy

Alterando-se o formato/tamanho de conjuntos fuzzy específicos, altera-se o ganho em regiões específicas do universo de discurso.

Base do Conhecimento

Consiste de:

- Base de dados:
 - fatores de escala
 - domínios de entrada e saída
 - conjuntos fuzzy:
 - variáveis lingüísticas/funções de pertinência
- Base de regras

Regras Fuzzy

Representam o conhecimento e/ou experiência do especialista, relacionando as variáveis de entrada com as saídas de controle, na forma:

SE <estado do processo> ENTÃO <saída(s) de controle>

antecedente

Regras Fuzzy Mamdani

·Forma Geral:

SE x_1 é C_1 E...E x_n é C_n ENTÃO u_1 é $S_{1,...}$ u_p é S_p

•Exemplo:

SE velocidade é alta E aceleração é pequena ENTÃO frenagem é modesta

Disparo de uma Regra

- ✓ Uma regra é ativada (disparada) se todos os componentes do seu antecedente possuem grau de pertinência não nulo
- ✓ Para m variáveis de entrada, cada uma com P_i conjuntos fuzzy, o número máximo de regras é dado por:

$$N_R = \prod_{i=1}^m Pi$$

Parâmetros de Projeto Envolvidos na Construção da Base de Regras

- 1. Escolha dos estados do processo (variáveis de entrada e das variáveis manipuladas (saídas de controle)
- 2. Escolha do conjunto de termos (faixas das variáveis lingüísticas, ex: NS, PM,..) para os estados do processo e variáveis de saída de controle
- 3. Escolha dos antecedentes e dos consequentes das regras
- 4. Dedução do conjunto de regras (conjunto SE..Então)

Motor de Inferência Fuzzy

Sua função básica é computar o valor total (fuzzy) da variável de saída baseando-se na contribuição individual de cada regra que for disparada.

Método de Agregação das regras

Para regras Mamdani, se utiliza o operador lógico fuzzy OU, sendo o tipo mais comum o de Zadeh:

 $\max(\mu_{wi}, \mu_{wj})$

"Defuzzificação"

✓ Converte o conjunto fuzzy resultante do módulo de inferência em um valor numérico único.

- ✓ PARÂMETROS DE PROJETO:
 - Escolha do Método de "Defuzzificação"

Métodos de Defuzzificação Controladores Mandani

Existem vários métodos na literatura:

- Centro de área/gravidade (centróide)
- Centro das somas
- Centro da maior área
- Primeiro dos máximos
- Meio dos Máximos
- Altura
- Altura modificado

Centro de Área

Altura (mais utilizado)

$$u^* = \frac{\sum_{k=1}^{N} \mu_k . \beta_k}{\sum_{k=1}^{N} \mu_k}$$

Controlador Mamdani -SISO

Controlador Mamdani - MISO

Figure 2.5 Structure of a typical MISO Mamdani fuzzy controller.

