5. Координатни системи

Ще въведем първоначално някой означения:

Означаваме множеството от точките в пространството с P, а множеството от вектори в пространството с V.

Ако l е права, то ще означаваме множеството от точките върху l с P_1 и множеството от векторите колинеарни на l с V_1 .

Ако π е равнина, ще означаваме множеството от точките върху π с P_2 , а съответно множеството от векторите, които са компланарни на π с V_2 .

Аналогично дефинираме P_n и V_n . От предния въпрос ни става ясно, че V_n , n=1,2,... е n-мерно реално линейно пространство.

Дефиниция.1: $A \phi$ инна координатна система в P_n е двойка състояща се т. $O \in P_n$ и базис $(e_1, e_2, ..., e_n) \in V_n$ (пишем $K = Oe_1e_2...e_n$).

Точката се нарича начало на координатната система, а $(e_1, e_2, ..., e_n)$ се наричат координатни (базисни) вектори.

Ако е фиксирана единична отсечка за измерване, $|e_1| = |e_2| = ... = |e_n| = 1$ и $e_1 \perp e_2 \perp ... \perp e_n$, то координатната система се нарича *ортонормирана*.

Нека $v \in V_n$. Тъй като $(e_1, e_2, ..., e_n)$ е базис на V_n , то съществуват единствени $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$, такива че $v = x_1e_1 + x_2e_2 + ... + x_ne_n$. Числата $(x_1, x_2, ..., x_n)$ се наричат координати на v спрямо координатната система $K = Oe_1e_2...e_n$ и пишем $v(x_1, x_2, ..., x_n)$. Нека т. $\in P_n$. Тогава координатите $(x_1, x_2, ..., x_n)$ на вектора \overrightarrow{OA} , се наричат координати на т.A относно K (пишем $P(x_1, x_2, ..., x_n)$).

Правата през т.O, която е колинеарна с вектора e_1 и е ориентирана чрез e_1 , се нарича абсцисна ос и се бележи с Ox_1 . Правата през т.O, която е колинеарна с вектора e_2 и е ориентирана чрез e_2 , се нарича ординатна ос и се бележи с Ox_2 . Аналогично се определя Ox_3 , която се нарича апликатна ос.

Сега ще си припомним някой факти от Линейната алгебра: Нека $e=(e_1,e_2,...,e_n)$ и $l=(l_1,l_2,...,l_n)$ са два базиса на пространството V_n . Матрицата:

$$T = \left(\begin{array}{ccc} t_{11} & \dots & t_{1n} \\ \dots & \dots & \dots \\ t_{n1} & \dots & t_{nn} \end{array}\right),$$

за която

$$\begin{split} l_1 &= t_{11}e_1 + t_{12}e_2 + \ldots + t_{1n}e_n, \\ l_2 &= t_{21}e_1 + t_{22}e_2 + \ldots + t_{2n}e_n, \\ & \ldots \\ l_n &= t_{n1}e_1 + t_{n2}e_2 + \ldots + t_{nn}e_n, \end{split}$$

се нарича матрица на прехода от от базиса e към базиса l. Тези равенства се пишат : $(l_1, l_2, ..., l_n)' = T(e_1, e_2, ..., e_n)'$ (тук с l е означено действоето транспониране транспониране). Това може и по-кратко да се напише:

$$b' = Ta'$$
.

В частност, ако $det(T) \neq 0$ матрицата T е обратина, т.е съществува матрица T^{-1} , такава че $TT^{-1} = E$, където E е единичната матрица.

Дефиниция.2: Нека и l са два базиса на V_n и нека е матрицата на прехода от към l. Казваме, че и l са еднакво ориентирани, ако det(T) > 0. Съответно, ако det(T) < 0, то казваме, че са противоположно ориентирани.

Твърдение: • Релацията " \sim " еднаква ориентираност на базиси е релация на еквивалентност в множеството от базисите на V_n .

• Класовете на еквивалентснот относно тази релация са два. Ако e(1, 2, ..., n) е базис на V_n , то те са $l: l \sim e$ и $l: l \sim e$.

Втората част на твърдение означава, че всички всевъзможни базиси на V_n , могат да се разделят на две множества (класове), единият клас съдържа тези базиси които са еднакво ориентиранни с e, а другият клас се състои от противоположно ориентираните на e базиси.

Доказателство:

Първо ще докажем, че \sim е релация на еквивалентност.

- 1) Рефлексивно свойство: $e \sim e$.
- Матрицата на прехода е единичната матрица E, защото e' = Ee'. det(E) = 1 > 0, следователно $e \sim e$.
- 2) Симетрично свойство: ако $e \sim l$, то $l \sim e$.

Нека l'=Te' e и l са еднакво ориентирани, следователно det(T)>0. Следователно $e'=T^{-1}l'\Rightarrow det(T^{-1})=\frac{1}{det(T)}>0$, т.е $l\sim e$.

3) Транзитивно свойство: трябва да докажем, че ако $e \sim h$ и $h \sim l$, то $e \sim l$.

Нека h' = Se' и l' = Th'. Оттук следва, че det(S) > 0 и det(T) > 0.

l' = Th' = TSe', т.е. матрицата TS е матрица на прехода от $\,$ към l. Освен това имаме,

че det(TS) = det(T)det(S) > 0. Следователно $e \sim l$.

С това доказахме, че релацията еднаква ориентираност на базиси е релация на еквивалентност. Сега ще докажем втората част на твърдението.

Нека e е базис. По дефиниция $l: l \sim e$ е клас на еквивалентност. Трябва да докажем, че и $l: l \sim e$ е клас на еквивалентност.

Достатъчно е да докажем от $e \nsim h$ и $l \nsim h$ следва $e \sim l$.

Нека h'=Se' и l'=Th'. Ясно е, че det(S)<0 и det(T)<0. l'=Th'=TSe', det(TS)=det(T)det(S)>0. Следователно $e\sim l$.

С това и втората част на твърдението е доказана.

Примери: Нека $e(e_1, e_2, ..., e_n)$ и $e(-e_1, e_2, ..., e_n)$ са базиси. Тогава те са противоположно ориентирани базиси.

 $e(e_1,e_2,...,e_n)$ и $e(e_2,e_1,...,e_n)$ също са противоположно ориентирани. $e(e_1,e_2,e_3)$ и $e(e_2,e_3,e_1)$ са еднакво ориентирани базиси.

Дефиниция.3: Ориентация в пространството V_n е клас на еквивалентност относно релацията еднаква ориентираност на базиси. Казваме, че V_n е ориентирано, ако е избрана едната от двете ориентации. Избраната ориентация я наричаме положителна, а другата отрицателна. Съответно избора се прави спрямо произволен базис .

Дефиниция.4: Афинна координатна система $K = Oe_1e_2...e_n$ в ориентираното пространство се начича положително ориентирана, ако базиса $e_1e_2...e_n$ задава положителната ориентация.