

Республиканская олимпиада по химии Областной этап (2021-2022). Официальный комплект решений 9 класса

Инструкции и рекомендации для проверки работ:

Как вы можете заметить, перед каждой задачей есть таблица разбалловки, в которой указано общее количество баллов за задачу (столбец «Всего») и вес задачи (столбец «Все (%)»). Финальный балл за задачу расчитывается следующим образом:

балл за задачу =
$$\frac{\text{кол-во правильных очков ученика} \times \text{вес задачи}}{\text{общее кол-во баллов за задачу (Всего)}}$$

Обратите внимание, что общее количество баллов за каждую задачу не суммируется к 70 или 100 баллам. А вот «Вес» задач суммируется именно к 70. Система «внутренних баллов» и «весов» упрощает процесс проверки (т.к. предотвращает необходимость выдачи дробных баллов) и позволяет лучше корректировать сложность задач в контексте всей олимпиады.

Для вашего удобства мы создали шаблон таблицы оценивания в формате «Excel» с готовыми формулами – достаточно вбить внутренние баллы и файл сам посчитает итоговый результат каждого ученика. Будем сильно признательны, если вы отправите заполненный файл на почту results@qazcho.kz. Полученные результаты будут использованы исключительно для обезличенных статистических исследований.

Шаблон оценивания можно скачать по этому адресу: https://qazcho.kz/problems/

Решения этой олимпиады опубликованы на сайте www.qazcho.kz

Рекомендации по подготовке к олимпиадам по химии есть на сайте www.kazolymp.kz.

1																	18
1 H 1.008	2											13	14	15	16	17	2 He _{4.003}
3	4											5	6	7	8	9	10
Li 6.94	Be 9.01											B 10.81	C 12.01	N 14.01	O 16.00	F 19.00	Ne 20.18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.31	3	4	5	6	7	8	9	10	11	12	Al 26.98	Si 28.09	P 30.97	S 32.06	CI 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.63	74.92	78.97	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.95	Tc	Ru 101.1	Rh 102.9	Pd 106.4	Ag	Cd	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	 126.9	Xe 131.3
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	57-71	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	-	-	-
87	88	89-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	89- 103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og
	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
								I						ı			
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			138.9	140.1	140.9	144.2	-	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			-	232.0	231.0	238.0	-	-	-	-	-	-	-	-	-	-	-

Задача №1. Неизвестный Гидрид (Загрибельный Б.)

1.1	1.2	1.3	Всего	Bec (%)
7	1	2	10	12

Массовая доля водорода в некотором гидриде равна 2.60%. Установите брутто-формулу гидрида и его структурную формулу, если известно, что сумма чисел атомов элементов в молекуле гидрида равна 6. Напишите реакцию горения этого гидрида в кислороде.

1. Брутто-формула гидрида.

В общем виде неизвестный гидрид имеет брутто-формулу ЭхНу

1 б балл за вывод общей брутто-формулы гидрида

Массовая доля водорода в гидриде будет вычисляться по формуле (1):

$$w(H) = \frac{Ar(H) * y}{Ar(H) * y + Ar(\Im) * x}$$

1 б за вывод уравнения для массовой доли элемента

Обозначим $Ar(\Im) = \Im$ а.е.м., поскольку Ar(H) = 1 а.е.м., то уравнение (2), основанное на формуле (1), приобретает вид:

$$0.026 = \frac{y}{y + \Im x}$$

Преобразуем уравнение (2) в следующий вид:

$$\Im = \frac{37.46y}{x}$$

1 б за вывод уравнения для нахождения Ar неизвестного элемента в гидриде

Согласно условию задачи сумма атомов элементов в молекулу гидрида строго меньше 7, на основании чего можно составить следующее уравнение (3):

$$x + y = 6$$

1 б за вывод уравнения о сумме чисел атомов элементов

На первый взгляд получаем систему из преобразованного уравнения (2) и уравнения (3) с тремя неизвестными:

$$\begin{cases} 3 = \frac{37.46y}{x} \\ x + y = 6 \end{cases}$$

В то же время, х и у – целые и положительные числа, поэтому набор возможных значений х и у строго ограничен. Приведем все возможные наборы х и у и вычислим Э, исходя из преобразованного уравнения (2):

Х	1	2	3	4	5
у	5	4	3	2	1
Э	187.3	74.92	37.46	18.73	7.49

1 б за вычисление Э используя все возможные значения х и у

Из всех пар x и у только одна дает осмысленное значение Э с точки зрения атомных весов элементов, приведенных в Таблице Менделеева -74.92, что соответствует мышьяку, As. Таким образом брутто-формула гидрида - As₂H₄.

1 б за установление элемента

1 б за установление брутто-формулы гидрида

2. Структурная формула гидрида.

Структурная формула As₂H₄:

1 б за установление структурной формулы гидрида

3. Реакция горения гидрида в кислороде.

Уравнение горения гидрида в кислороде:

$$As_2H_4 + 2.5O_2 = As_2O_3 + 2H_2O$$

2 б за верно написанное уравнение горения гидрида. При указании As_2O_5 в продуктах баллы за пункт не засчитывать

Задача №2. Кристаллические структуры (Курамшин Б.)

2.1	2.2	2.3	2.4	2.5	2.6	Всего	Bec (%)
4	3	8	6	8	3	32	16

Один из распространенных структурных типов бинарных веществ атомного состава 1:1 – структурный тип NaCl. На рисунке ниже представлена элементарная ячейка данного структурного типа. Элементарная ячейка — фрагмент пространства, параллельным переносом которого по трем направлениям получается кристаллическая решетка вещества. Помните, что традиционно атомы изображают на некотором расстоянии друг от друга, хотя в действительности кристалл упаковывается так, что каждый атом касается нескольких соседних (число шаров, которых касается данный шар, называется его координационным числом).

1. Ячейку обычно описывают параметром ячейки (в данном случае — ребро куба, a), и числом формульных единиц вещества в одной ячейке (Z).

Определите, сколько формульных единиц NaCl содержится в одной элементарной ячейке, и покажите, как связан параметр ячейки a с радиусами катиона (r_+) и аниона (r_-) .

Атомов натрия -8 в вершинах (по 1/8, поскольку каждый атом делится восемью элементарными ячейками), 6 в гранях (по $\frac{1}{2}$, поскольку каждый атом делится гранью пополам), итого 4 атома.

Атомов хлора -12 в ребрах (по $\frac{1}{4}$, поскольку атом на ребре делится между 4 элементарными ячейками), 1 в центре, итого 4 атома (как и должно быть в соответствии с формулой NaCl).

Значит, в ячейке всего 4 формульных единицы NaCl, Z = 4.

верное Z - 2 балла

(неверное Z, но верный подсчет атомов Na или Cl-1 балл)

На ребре кубика укладывается полный диаметр атома хлора и, с концов ребра, два радиуса атома натрия. Значит, $a = 2r_- + 2r_+$.

верное выражение или эквивалентное ему -2 **балла**

2. Рассчитайте параметр ячейки NaCl, если плотность кристаллического NaCl равна 2.165 г/см³.

Если параметр ячейки равен a, то объём 1 кубика равен a^3 . Поскольку в каждом кубике всего Z формульных единиц NaCl, то объём a^3N_A соответствует Z моль NaCl, то есть ZM грамм NaCl. То есть:

$$\rho = \frac{ZM}{N_A a^3} \Rightarrow a = \sqrt[3]{\frac{ZM}{N_A \rho}} = \sqrt[3]{\frac{4 \cdot (35.45 + 22.99)}{6.02 \cdot 10^{23} \cdot 2.165}} = 5.64 \cdot 10^{-8} \text{cm} = 5.64 \text{Å}$$

3 балла

3. Радиус аниона хлора на 0.51 Å больше радиуса катиона натрия. Рассчитайте радиусы обоих ионов. Сравните: a) радиус атома натрия с радиусом катиона натрия, δ) радиус атома хлора с радиусом аниона хлора.

$$r_{-} = r_{+} + 0.51$$
.
 $a = 2 r_{-} + 2 r_{+} = 2(r_{+} + 0.51) + 2 r_{+} = 4r_{+} + 1.02 = 5.64$
 $r_{+} = 1.11 \text{ Å}$
 $r_{-} = 1.11 + 0.51 = 1.62 \text{ Å}$

По 2 балла за радиус аниона и катиона

Когда атом теряет электрон, при тех же силах притяжения к ядру силы межэлектронного отталкивания уменьшаются, поэтому $r(\mathrm{Na}^+) < r(\mathrm{Na})$.

Обратно, когда атом приобретает электрон, при тех же силах притяжения к ядру силы межэлектронного отталкивания усиливаются, поэтому $r(Cl^-) > r(Cl)$.

По 2 балла за каждое верное сравнение

Много совершенно непохожих друг на друга веществ часто имеют один тип кристаллической решетки. Так, например, вещества $\bf A$ и $\bf B$, не имеющие друг с другом общих элементов, кристаллизуются в структурном типе NaCl, но имеют другой параметр ячейки. В таблице ниже представлены параметры ячейки и плотность веществ $\bf A$ и $\bf B$.

	A	Б
a, Å	4.960	4.244
ρ, г/cm ³	13.61	5.38

4. Рассчитайте молярные массы веществ А и Б.

Аналогично выражению выше, можно рассчитать молярные массы:

$$\rho = \frac{ZM}{N_A a^3} \Rightarrow M_A = \frac{\rho_A N_A a_A^{-3}}{Z} = \frac{13.61 \cdot 6.02 \cdot 10^{23} \cdot (4.96 \cdot 10^{-8})^3}{4} = \mathbf{249.94} \, \mathbf{\Gamma/моль}$$

$$M_B = \frac{\rho_B N_B a_B^{-3}}{Z} = \frac{5.38 \cdot 6.02 \cdot 10^{23} \cdot (4.244 \cdot 10^{-8})^3}{4} = \mathbf{61.89} \, \mathbf{\Gamma/моль}$$

По 3 балла

A можно получить нагреванием простого вещества — металла в атмосфере метана. **Б** — взаимодействием другого металла с одним из основных компонентов воздуха.

5. Определите формулы веществ **A** и **Б** и запишите уравнения реакций их получения.

Оба вещества бинарные и имеют состав 1:1. **A** содержит углерод, значит, на металл приходится 249.94 - 12.01 = 237.93 г/моль – это уран. **A – это UC**, карбид урана.

Б содержит либо кислород, либо азот. Если это оксид, то на металл приходится 61.89 - 16 = 45.89 г/моль — такого металла нет. Если это нитрид, то на металл приходится 61.89 - 14 = 47.89 г/моль, это титан. **Б** — **это TiN**.

Формулы – по 3 балла

Уравнения реакций:

$$U + CH_4 \xrightarrow{t} UC + 2H_2$$

$$2Ti + N_2 \xrightarrow{t} 2TiN$$

Уравнения реакций – **по 1 баллу**

Вещество \mathbf{A} можно получить взаимодействием с углем бинарного вещества \mathbf{B} , кристаллизующегося в структурном типе флюорита (фторида кальция). Побочным продуктом при этом является только газ легче воздуха.

6. Определите вещество В и запишите уравнение описанной реакции.

В структурном типе флюорита (CaF_2) должно кристаллизоваться вещество атомного состава 1:2. Такой состав, а также образование газа легче воздуха наводит на мысль о том, что **В** – это UO_2 .

Уравнение реакции:

$$UO_2 + 3C \xrightarrow{t} UC + 2CO\uparrow$$
.

Формула **B** – **2 балла**

Уравнение реакции – 1 балл

Задача №3. Эксперимент с «Тассай» (Мадиева М.)

3.1	3.2	Всего	Bec (%)
2	9	11	12

Начинающий химик *Пробирочкин* решил провести небольшой эксперимент. В магазине наш юный друг купил газированную воду «Тассай» ($\rho = 1 \text{ г/мл}$) и отправился в свою небольшую лабораторию. Там он перелил часть купленной воды в коническую колбу и надел на горлышко резиновый шарик. Собранную конструкцию *Пробирочкин* поместил на нагретую до 70°C плитку. После продолжительного нагревания объем шарика составил 0.8 см^3 , а в воде совсем не осталось пузырьков (испарениями воды пренебречь). Далее экспериментатор увеличил температуру до 140° С. По истечению длительного времени в колбе не осталось воды, а объем шарика при данных условиях увеличился на 468.3 см^3 . После окончания эксперимента юный химик обнаружил на стенках колбы белые пятна. Привес составил 0.8 мг. Эксперимент проводился при нормальном давлении, его изменением в ходе эксперимента и процессами передачи энергии пренебречь.

1. Объясните природу появления белых пятен.

Белые пятна на стенках сосуда — соли щелочных и щелочноземельных металлов, входящих в состав минеральной воды (сульфаты, хлориды магния, кальция, натрия и пр). Их масса $0.8 \, \mathrm{mr}$. $2 \, \mathrm{баллa}$

2. Определите степень газирования (концентрация газа, %масс) купленной воды.

Газ, входящий в состав минеральной газированной воды— СО2. 1 балл

Нагревание колбы при 70°C приводит к полной дегазации. Объем шарика равен объему всего CO2:

$$V_{CO_2} = 0.8 \text{ см}^3 = 0.8 * 10^{-3} \pi \, \mathbf{1} \, \mathbf{балл}$$

$$n_{CO_2} = \frac{PV}{RT} = \frac{101.3*0.8*10^{-3}}{8.31*(273+70)} = 2.84*10^{-5}$$
 моль **1 балл**

$$m_{CO_2} = n * M = 2.8 * 10^{-5} * 44 = 125 * 10^{-5}$$
 грамм 1 балл

При повышении температуры до 140С, вся вода испаряется, и ее объем равен $468.3 \text{ см}^3 = 0.4683 \text{ л.} \, \mathbf{1} \, \mathbf{балл}$

$$n_{H_2O} = \frac{PV}{RT} = \frac{1*0.4683}{0.082*(273+140)} = 13.8*10^{-3}$$
 моль **1 балл**

$$m_{H_2O}=n*M=13.8*10^{-3}*18=248.4*10^{-3}$$
 грамм 1 балл
$$\omega_{CO_2}=\frac{m_{CO_2}}{m_{H_2O}+m_{CO_2}+m_{\text{солей}}}=\frac{125*10^{-5}}{248.4*10^{-3}+125*10^{-5}+0.8*10^{-3}}\approx 0.005$$
 или 0.5% 2 балла. 1 балл при не учёте массы одного слагаемого, 0.5 баллов – при не учете двух.

Задача №4. Газовая смесь (Черданцев В.)

4.1	4.2	4.3	4.4	Всего	Bec (%)
7	5	4	2	18	14

Газовая смесь (смесь 1), состоящая из метана и этана, имеет плотность 1.186 г/л при 60°C и давлении 1.5 атм. При сжигании данной смеси объемом 10.92 л (при тех же условиях) выделилось 695.2 кДж тепла.

Другую смесь (смесь 2), так же состоящую из метана и этана, объемом 8.96 л (н.у.) полностью сожгли при в замкнутом сосуде в присутствии необходимого количества кислорода. После приведения к исходной температуре и конденсации водяных паров давление в сосуде уменьшилось в 2.382 раза, при этом выделилось 543.9 кДж тепла.

Справочные данные:

Энтальпия образования $\Delta_{\rm f} {\rm H}^{\rm o} ({\rm H}_2 {\rm O}_{(\mathfrak{m})}) = -285.8 \ кДж/моль$

$$C_2 H_{6_{(\Gamma)}} = C_2 H_{2_{(\Gamma)}} + 2 H_{2_{(\Gamma)}} \ \Delta_{\Gamma} H^o = 311.1 \ кДж/моль$$

Считайте, что вода во всех реакциях образуется в жидком состоянии.

1. Установите количественный состав (в мольных долях) обеих смесей.

Смесь 1:

Рассчитаем среднюю молярную массу смеси:

$$pV=nRT\Rightarrow pV=rac{m}{M}RT\Rightarrow M=rac{m}{V}\cdotrac{RT}{p}=rac{
ho RT}{p}=rac{1.186\cdot 8.314\cdot (60+273)}{1.5\cdot 101.325}=21.6\ \Gamma/$$
моль (2 балла)

Используя значение средней молярной массы, рассчитаем мольные доли компонентов смеси:

$$M_{cp} = x_{CH_4} M_{CH_4} + x_{C_2H_6} M_{C_2H_6} = x_{CH_4} \cdot M_{CH_4} + (1 - x_{CH_4}) M_{C_2H_6}$$
$$= 16 \cdot x_{CH_4} + 30 \cdot (1 - x_{CH_4}) = 21.6$$

$${
m x_{CH_4}}=0.6$$
, ${
m x_{C_2H_6}}=0.4$ (по 0.5 балла за каждое значение = 1 балл)

Смесь 2:

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

$$C_2H_6 + \frac{7}{2}O_2 = 2CO_2 + 3H_2O$$

Обозначим исходное количество метана в смеси за x, а количество этана — за y. Тогда, согласно стехиометрии реакций сжигании обоих газов, исходное количество кислорода в смеси равно 2x + 3.5y, а количество углекислого газа после сгорания равно x + 2y.

Давление в сосуде прямо пропорционально количеству газа в нем (метан, этан и кислород до сгорания и углекислый газ после сгорания):

$$\frac{\left(n_0(\text{CH}_4) + n_0(\text{C}_2\text{H}_6) + n_0(\text{O}_2)\right)}{n(\text{CO}_2)} = \frac{x + y + 2x + 3.5y}{x + 2y} = \frac{3x + 4.5y}{x + 2y} = 2.382 \text{ (2 балла за уравнение)}$$

Количество вещества газов в исходной смеси равно:

$$n = \frac{8.96}{22.4} = 0.4$$
 моль

Таким образом, чтобы рассчитать количество метана и этана в смеси, необходимо решить следующую систему уравнений:

$$\begin{cases} \frac{3x + 4.5y}{x + 2y} = 2.382\\ x + y = 0.4 \text{ (1 балл за второе уравнение)} \end{cases}$$

Решив систему, получаем x = 0.12 и y = 0.28

$$x_{CH_4} = \frac{0.12}{0.4} = 30\%$$
, $x_{C_2H_6} = \frac{0.28}{0.4} = 70\%$ (по 0.5 балла за каждое значение = 1 балл)

2. Вычислите теплоты сгорания метана и этана в кДж/моль.

$$n(\text{смесь 1}) = \frac{\text{pV}}{\text{RT}} = \frac{1.5 \cdot 101.325 \cdot 10.92}{8.314 \cdot (60 + 273)} = 0.6 \text{ моль}$$

$$n_1(\text{CH}_4) = 0.6 \cdot 0.6 = 0.36 \text{ моль, } n_1(\text{C}_2\text{H}_6) = 0.6 \cdot 0.4 = 0.24 \text{ моль}$$

$$n(\text{смесь 2}) = \frac{8.96}{22.4} = 0.4 \text{ моль}$$

$$n_2(\text{CH}_4) = 0.3 \cdot 0.4 = 0.12 \text{ моль, } n_1(\text{C}_2\text{H}_6) = 0.7 \cdot 0.4 = 0.28 \text{ моль}$$

Обозначим за $Q_{crop}(CH_4)$ за x, а $Q_{crop}(C_2H_6)$ – за y и составим систему уравнений:

$$\begin{cases} 0.36x + 0.24y = 695.2\\ 0.12x + 0.28y = 543.9 \end{cases}$$

По 2 балла за каждое правильно составление уравнение в системе = 4 балла

Решив систему, получаем x = 890.6, y = 1560.8

Таким образом, $Q_{crop}(CH_4) = 890.6 \text{ кДж/моль}, Q_{crop}(C_2H_6) = 1560.8 \text{ кДж/моль}$

По 0.5 балла за каждое значение теплоты сгорания = 1 балл

Если соблюдена логика решения, но ученик использовал другие значения мольных долей, рассчитанные в первом пункте, ставится **полный балл**

Примечание: если вы не смогли рассчитать данные теплоты сгорания, то используйте значения $Q_{\text{сгор}}(CH_4) = 900 \text{ кДж/моль}, Q_{\text{сгор}}(C_2H_6) = 1600 \text{ кДж/моль}$ для дальнейших расчетов.

3. Используя данные пункта 2, а также *справочные данные* задачи, рассчитайте изменение энтальпии реакции сгорания ацетилена.

$$\begin{split} (1) \ \mathsf{C}_2 \mathsf{H}_{6_{(\Gamma)}} + & \frac{7}{2} \mathsf{O}_{2_{(\Gamma)}} = 2 \mathsf{CO}_{2_{(\Gamma)}} + 3 \mathsf{H}_2 \mathsf{O}_{(\mathfrak{K})} \quad \Delta_{\Gamma} \mathsf{H}_1^{\mathfrak{o}} = -1560.8 \ \kappa \text{Дж/моль} \\ (2) \ \mathsf{C}_2 \mathsf{H}_{6_{(\Gamma)}} = \mathsf{C}_2 \mathsf{H}_{2_{(\Gamma)}} + 2 \mathsf{H}_{2_{(\Gamma)}} \quad \Delta_{\Gamma} \mathsf{H}_2^{\mathfrak{o}} = 311.1 \ \kappa \text{Дж/моль} \\ (3) \ \mathsf{H}_{2_{(\Gamma)}} + & \frac{1}{2} \mathsf{O}_{2_{(\Gamma)}} = \mathsf{H}_2 \mathsf{O}_{(\mathfrak{K})} \quad \Delta_{\Gamma} \mathsf{H}_3^{\mathfrak{o}} = -285.8 \ \kappa \text{Дж/моль} \\ (4) \ \mathsf{C}_2 \mathsf{H}_{2_{(\Gamma)}} + & \frac{5}{2} \mathsf{O}_{2_{(\Gamma)}} = 2 \mathsf{CO}_{2_{(\Gamma)}} + \mathsf{H}_2 \mathsf{O}_{(\mathfrak{K})} \quad \Delta_{\Gamma} \mathsf{H}_4^{\mathfrak{o}} = ? \end{split}$$

Чтобы получить реакцию (4) из реакций (1), (2), и (3), необходимо произвести следующие действия:

$$(4) = (1) - (2) - 2 \cdot (3)$$
 (2.5 балла за соотношение)

Тогда, согласно закону Гесса, $\Delta_r H_4^o = \Delta_r H_1^o - \Delta_r H_2^o - 2 \cdot \Delta_r H_3^o = -1300.3$ кДж/моль (1.5 балла)

Если ученик использовал значение $Q_{\text{сгор}}(C_2H_6) = 1600 \text{ кДж/моль}$, то конечный ответ равен = -1339.5 кДж/моль, за который ученик получает **полный балл**.

Примечание: если вы не смогли рассчитать данную энтальпию сгорания, то используйте значение $\Delta_c H^o(C_2 H_2) = -1350$ кДж/моль для дальнейших расчетов.

4. Какое количество (в молях) ацетилена требуется, чтобы получить такое же количество тепла, как при сжигании 1 моль смеси 2?

$$Q_{crop}(C_2H_2) = -\Delta_rH_4^o = 1300.3 \ кДж/моль$$

При сгорании 0.4 моль смеси 2 выделилось 543.9 кДж тепла, следовательно при сжигании одного моль выделяется $Q_{\text{сгор}}(\text{смесь 2}) = \frac{543.9}{0.4} = 1359.8$ кДж/моль (1 балл)

$$\frac{Q_{\text{сгор}}(\text{смесь 2})}{Q_{\text{сгор}}(C_2H_2)} = 1.05 \text{ (1 балл)}$$

Таким образом, необходимо сжечь 1.05 моль ацетилена, чтобы получить такое же количество тепла, как при сжигании 1 моль смеси 2.

Если ученик использовал значение $\Delta_c H^o(C_2 H_2) = -1350$ кДж/моль, то конечный ответ равен 1.01, за который ученик получает **полный балл**.

Если ученик использовал значение $\Delta_c H^o(C_2 H_2) = -1339.5$ кДж/моль, то конечный ответ равен 1.02, за который ученик получает **полный балл**.

Задача №5. Синтез душистых веществ (Молдағұлов Ғ.)

5.1	5.2	5.3	5.4	5.5	5.6	5.7	Всего	Bec (%)
4	4	3	1	4	1	2	19	16

Анисовое масло является ароматной смесью эфирных масел получаемых из аниса обыкновенного (лат. $Pimpinella\ anisum$). В этой задаче Вам предстоит расшифровать полный синтез основных компонентов анисового масла — душистых органических веществ L_1 , L_2 и M.

В качестве иходного материала можно взять бинарное соединение ${\bf A}$ – карбид некоего металла, содержащего 25.03% углерода по массе, для синтеза углеводорода ${\bf D}$ который широко используется в химической промышленности вкачестве исходного сырья и органического растворителя.

$$A \xrightarrow{H_2O} B \xrightarrow{t^\circ > 1000^\circ C} C \xrightarrow{C_{akT}} D$$

$$\omega(C): 92.26\%$$

1. Определите формулы зашифрованных веществ A - D.

A	В	С	D
Al ₄ C ₃	CH ₄	C ₂ H ₂	C ₆ H ₆
1 балл	1 балл	1 балл	1 балл

Далее следует последовательное алкилирование вещества **D** по Фриделю – Крафтсу и процесс Удриса – Сергеева, при котором **E** окисляясь на воздухе образует неустойчивый пероксо интермедиат **F**, содержащий 71.03% углерода и 7.95% водорода по массе.

2. Нарисуйте структуры зашифрованных веществ E - H.

При ацилировании вещества I по Фриделю-Крафтсу образуется смесь изомерных веществ J1 и J2.

$$H \xrightarrow{1) \text{NaOH}} I \xrightarrow{\text{CH}_3\text{CH}_2\text{COCI}} J_1 + J_2$$

Известно, что при ацилировании вещества I по Фриделю-Крафтсу образуется смесь изомерных веществ J_1 и J_2 , в которой доля образовавшегося вещества J_1 в разы меньше доли вещества J_2 .

3. Нарисуйте структуры зашифрованных веществ I, J1 и J2.

4. Кратко обоснуйте причину, по которой вещество ${\bf J2}$ образуется в больших количествах, чем ${\bf J1}$.

Из-за метокси-группы ацилирование в орто-позиции затруднено, соответственно образуется больше пара-продукта.

За правильное рассуждение о взаимном отталкивании двух больших групп в ортоположении относительно друг-друга присуждается полный балл. Итого 1 балл за пункт.

Далее из вещества J_2 образуется смесь геометрических изомеров L_1 и L_2 , содержащих 81.04% углерода и 8.16% водорода по массе, в ходе следующих двух превращений:

$$J_2 \xrightarrow{H_2, Pd} K \xrightarrow{H_2SO_4} L_1 + L_2$$

Финальной стадией синтеза M является последовательный озонолиз и восстановление диметилсульфидом смеси веществ L_1 и L_2 .

$$L_1 + L_2 \xrightarrow[2){Me_2S} M$$

Известно, что вещество \mathbf{M} содержит 70.58% углерода и 5.92% водорода по массе, а при добавлении к нему аммиачного раствора оксида серебра стенки сосуда покрываются блестящим налётом.

5. Нарисуйте структуры зашифрованных веществ K, L_1, L_2 и M.

6. Предположите, какое из веществ L_1 или L_2 образуется в больших количествах? Кратко поясните ваш ответ.

Транс-изомер образуется в больших количествах поскольку является менее стерически затрудненным, чем **цис-изомер**.

1 балл за упоминание стерического фактора

Если ученик нарисовал L1 как транс-изомер и сказал, что L1 образуется в больших количествах — полный балл. Если ученик нарисовал L2 как транс изомер и сказал, что L2 образуется в больших количествах — полный балл.

7. Запишите вышеупомянутую качественную реакцию вещества М.

$$R-CHO+2[Ag(NH_3)_2]OH\rightarrow R-COONH_4+2Ag+3NH_3+H_2O$$

2 балла за реакцию с коэффициентами. 1 балл если не расставлены коэффициенты. 1 балл если записана реакция (с коэффициентами) с образованием карбоновой кислоты (а не соли аммония). 0.5 баллов если указана реакция без коэффициентов и с образованием карбоновой кислоты.