

ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Физический факультет

Лавороторная работа №1.5 Генератор Ван де Граафа.

> Практикум выполнил: Мамонтов Владислав Эдуардович Курс 1, группа 1

Преподаватель практикума: Михаил Игоревич Банников

Содержание

1.	Измерение тока генератора.	3
	1.1. Схема установки	
	1.2. Ход работы и вычисления	3
2.	Измерение напряженности пробоя воздуха	тановки 3 ты и вычисления 3 апряженности пробоя воздуха 5 ты 5
	2.1. Теория	5
	2.2. Ход работы	5
	2.3. Вывод	7

1. Измерение тока генератора.

1.1. Схема установки

Оборудование: Генератор Ван де Граафа, источник постоянного тока для питания электродвигателя, осциллограф, щуп для осциллографа — 1 шт., мультиметр, высоковольтный кабель для подключения к сфере генератора, провода для заземления.

1.2. Ход работы и вычисления

Подключим к сфере генератора амперметр. Так весь индуцированный генератором заряд будет стекать в нулевой потенциал земли, образуя тем самым ток через амперметр. В установившемся движении, когда валик движется с постоянной скоростью, ток будет постоянным. Снимим зависимость подаваемого напряжения от тока, стекающего со сферы. Подгоним зависимость какой-нибудь известной нам элементарной функцией. Получим, что

$$I = a \cdot U + b$$

Рис. 1. Зависимость стекающего тока от подаваемого напряжения значение параметров подгоночной прямой с погрешностями

2. Измерение напряженности пробоя воздуха

2.1. Теория

Зная, какой ток стекал бы со сферы генератора, будь она заземлена, рассчитаем заряд, накапливающийся на изолированной сфере:

$$I(U) = \frac{dq(U)}{dt} \tag{1}$$

$$q(U) = I(U) \cdot t = (aU + b)t \tag{2}$$

Система из двух проводящих шаров имеет какую-то емкость, которую можно приближенно оценить емкостью большого шара генератора. Между шарами в процессе работы генератора будет нарастать разность потенциалов, а следовательно и напряженность поля между шарами. Возрастать она будет до значения, при котором произойдет пробой тока через воздух. тогда:

$$\Delta U = \frac{\Delta q}{C} \tag{3}$$

Так как одна клемма конденсатора заряженна до q=q(U) а вторая имеет нулевой заряд, значение заряда самого конденсатора: q=q(U)/2

$$\Delta U = E \cdot d \tag{4}$$

$$E = \frac{\Delta U}{d} = \frac{q(U)}{2Cd} = \frac{(aU+b)t}{2Cd} \tag{5}$$

Так как считать емкость системы постоянной и мерять зависимость изменяя при этом расстоние между сферами сразу кажется несостоятельной идеей, попробуем аналитически найти емкость системы из двух произвольных сфер.

Воспользуемся формулой [?]:

$$c = \frac{\varepsilon a}{2} \sum_{n=1}^{\infty} \frac{\sinh\left(\ln\left(D + \sqrt{D^2 - 1}\right)\right)}{\sinh\left(n\ln\left(D + \sqrt{D^2 - 1}\right)\right)}, D = \frac{r}{2a}$$
 (6)

$$c = \frac{\varepsilon a}{2} \left\{ 1 + \frac{1}{2D} + \frac{1}{4D^2} + \frac{1}{8D^3} + \frac{1}{8D^4} + \frac{3}{32D^5} + O\left(\frac{1}{D^6}\right) \right\}$$
 (7)

$$c \approx \frac{\varepsilon a}{2} \left\{ \ln 2 + \gamma - \frac{1}{2} \ln \left(\frac{d}{a} - 2 \right) \right\}$$
 (8)

2.2. Ход работы

Отключим амперметр от генератора и установим рядом вторую, заземленную сферу, меняя расстояние между ними и измеряя период между двумя соседними разрядами тока. снимим зависимость трех величин: Расстояния между сферами, времени между двумя разрядами и напряжением, которое затрачивает генератор. Откуда, получим данные, отраженные в таблице, из которой:

$$E_a = 2,5MV/m, \delta = 0,1MV/m, \epsilon = 0,2\%$$

d, cm	C, cm	In voltage, V	Out cur, mkA	delta t, csec	E, sgs	E, mV/m
1	25,0	5	2,85	17,8	60,7	1,8
1	25,0	7	4,81	11,7	67,4	2,0
1	25,0	9	6,77	10,9	88,2	2,6
1	25,0	11	8,73	8,3	86,5	2,6
2	20,2	3	0,89	117,3	77,2	2,3
2	20,2	5	2,85	40,1	84,7	2,5
2	20,2	7	4,81	23,6	84,2	2,5
2	20,2	9	6,77	17,9	89,8	2,7
2	20,2	11	8,73	13,4	86,8	2,6
3	17,3	3	0,89	145,3	74,2	2,2
3	17,3	5	2,85	46,2	75,8	2,3
3	17,3	7	4,81	25,8	71,4	2,1
3	17,3	9	6,77	17,5	68,2	2,0
3	17,3	11	8,73	14,9	75,0	2,3
4	15,3	3	0,89	185,0	80,2	2,4
4	15,3	5	2,85	70,1	97,6	2,9
4	15,3	7	4,81	42,5	99,9	3,0
4	15,3	9	6,77	31,0	102,6	3,1
4	15,3	11	8,73	23,6	100,7	3,0

Рис. 2. Таблица полученных и обработанных данных

2.3. Вывод

Внутри заданной модели формула дает неплохую точность, но все же, модель не точно отражает действительность, что некоторый ток все-таки рассеивается в воздух, емкость системы считается не идеально, разряд проходит не моментально. Если учесть эти факторы, модель даст более близкое к истине значение напряженности пробоя.

Список литературы

[1]Max Maxwell, J. C. A Treatise on Electricity and Magnetism — Dover, 1873. — C. 266 ff. — ISBN 0-486-60637-6.