FR2691456

Publication Title:

Mixture of grains and particles of vitreous silica, and new material made of sintered vitreous silica

Abstract:

Abstract not available for FR2691456 Abstract of corresponding document: US5389591

The invention relates especially to a mixture of grains and particles of fused vitreous silica produced by dry mixing: (i) a moderately coarse particle size fraction of fused vitreous silica, (ii) a fine particle size fraction of fused vitreous silica, in which at least 95% by weight of the grains are smaller than 40 mu m, (iii) substantially spherical particles of fume silica, and (iv) optionally, at least one particle size fraction of fused vitreous silica which is coarser than fraction (i), the constituents (i) to (iv) being employed in the following proportions by weight: (i) 15-70%, (ii) 15-55%, (iii) 3-15% and (iv) 0-52%. The mixture can be used for the production of articles made of sintered vitreous silica.

Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

This Patent PDF Generated by Patent Fetcher(TM), a service of Stroke of Color, Inc.

(à n'utiliser que pour les commandes de reproduction)

RÉPUBLIQUE FRANÇAISE

(51) Int Cl⁵ : C 04 B 35/14

DEMANDE DE BREVET D'INVENTION

Α1

- Date de dépôt : 22.05.92.
- Priorité:

(12)

Demandeur(s): Société anonyme dite: SOCIETE EUROPEENNE DES PRODUITS REFRACTAIRES —

Inventeur(s): Guigonis Jacques, Marius, Louis et Jorge Eric, Thierry, Georges.

- (43) Date de la mise à disposition du public de la demande: 26.11.93 Bulletin 93/47.
- Liste des documents cités dans le rapport de recherche: Se reporter à la fin du présent fascicule.
- (60) Références à d'autres documents nationaux apparentés:
- 73**) T**itulaire(s) :
- Mandataire : Cabinet de Boisse Conseils en Brevets d'Invention.
- Nouveau procédé de production d'un matériau réfractaire en silice vitreuse frittée, nouveau mélange de grains et particules de silice vitreuse, et nouveau matériau en silice vitreuse frittée.

(57) L'invention concerne notamment un mélange de grains et particules de silice vitreuse fondue produit en mélangeant à sec:

(i) une fraction granulométrique modérément grossière de silice vitreuse fondue dont au moins 80% en poids des grains sont compris entre 40 µm et 1 mm; (ii) une fraction granulométrique fine de silice vitreuse fondue, dont au moins 95% en poids des grains sont inférieurs à 40 µm, lesdits grains (ii) ayant une surface spécifique BET de 6 à 9 m²/g et un diamètre médian par sédigraphie de 5 à 6 μm; (iii) des particules sensiblement sphériques de fumée de silice, et (iv) facultativement, au moins une fraction granulo-métrique de silice vitreuse fondue plus grossière que la fraction (i), les constituants (i) à (iv) étant utilisés dans les proportions pondérales suivantes: (i) 15-70%, (ii) 15-55%, (iii) 3-15% et (iv) 0-52%.

Ce mélange est utile pour la production d'articles en silice vitreuse frittée.

L'invention concerne un nouveau procédé de production d'un matériau réfractaire en silice vitreuse frittée, un nouveau mélange de grains et particules de silice vitreuse et un nouveau matériau en silice vitreuse 5 frittée.

Les pièces en silice vitreuse frittée sont utiles dans des applications nécessitant l'emploi d'un matériau réfractaire ayant un faible coefficient de dilatation, une faible conductivité thermique et une bonne inertie 10 chimique.

A ce jour des pièces en silice vitreuse frittée sont utilisées industriellement :

*en métallurgie, surtout en métallurgie des non-ferreux comme par exemple en fonderie des alliages d'aluminium, 15 du laiton et du bronze (goulottes de coulée, busettes, louches, creusets), du zinc (protection des

thermocouples), et du magnésium (blocs de cellule d'électrolyse);

*en chimie, pour la fabrication du titane et en pétrochimie (pièces pour tubes d'échangeur à chlore); en équipements de laboratoire; en revêtement anti-acide; *en éléments de four tels que les rouleaux de fours de traitement thermique en verrerie et en sidérurgie;

*en pièces de moule pour composites thermoformables ou 25 plateaux de formage de tôles fines ;

*en verrerie, par exemple pour la réalisation de registres de fours à verre "flotté", de pièces consommables tant pour les fours à verre sodocalcique que pour les fours à verres spéciaux (par exemple comme poinçons, agitateurs, 30 chemises, cuvettes), et comme blocs de cuve pour fours à

verres optiques. L'emploi de silice frittée est avantageux dans le domaine verrier du fait de sa faible dilatation thermique qui la rend résistante aux chocs thermiques et du fait que, au contact des verres fondus, la silice se

35 corrode mais n'entraîne pas de défauts, tels que pierres ou cordes, dans le verre, car elle est "digérée" par celui-ci dont elle est l'un des principaux constituants. Cet emploi est toutefois limité par sa résistance relativement faible à la corrosion par les verres fondus.

Le procédé classique de production de pièces en silice vitreuse frittée met en jeu le coulage d'une 5 barbotine (mélange fluide aqueux) de particules de silice vitreuse dans un moule en plâtre dont la porosité permet l'élimination par succion capillaire de la plus grande partie de l'eau contenue dans la barbotine et une rigidification ou prise de la pièce coulée permettant son démoulage. La pièce coulée est ensuite mûrie, séchée et frittée par cuisson à haute température, par exemple vers 1100-1150°C. Après refroidissement la pièce obtenue peut être usinée.

La barbotine utilisée dans ce procédé présente, 15 toutefois, le défaut de nécessiter un long temps de préparation. Typiquement, on part de grains de silice vitreuse fondue qu'on broie finement en milieu humide, par exemple dans un broyeur à boulets, puis on incorpore à la suspension résultante de fines particules (10-40μm 20 environ) diverses fractions granulométriques plus grossières de silice vitreuse fondue jusqu'à obtention d'une suspension homogène. Il faut alors "stabiliser" cette suspension produite en milieu humide en l'agitant en permanence dans une cuve pendant une durée de 8-13 jours. 25 Cette longue opération de stabilisation est indispensable pour obtenir un comportement rhéologique stable de la suspension ou barbotine. En son absence, on rencontre des problèmes lors du coulage de la barbotine, tels que formation de retassures et texture hétérogène, qui ont 30 pour effet de conduire à un matériau final présentant après cuisson des propriétés dégradées.

Typiquement, les matériaux en silice vitreuse frittée obtenus par le procédé ci-dessus ont une masse volumique de 1,9 T/m³, une porosité ouverte de 12-13%, un coefficient de dilatation thermique de 0,6 x 10-6/°K, et un module de rupture de 12-20 MPa.

Il existe donc un besoin pour un procédé de production d'un matériau réfractaire en silice vitreuse frittée qui soit plus aisé et moins laborieux à mettre en oeuvre, tout en produisant un matériau à propriétés non 5 dégradées, et même améliorées.

L'invention a pour objet de fournir un tel procédé.

Plus précisément l'invention concerne un procédé de production d'un article réfractaire en silice vitreuse frittée par coulage d'un mélange fluide d'eau et de particules de silice vitreuse dans un moule poreux, à laisser s'éliminer la plus grande partie de l'eau contenue dans le mélange coulé à travers les pores dudit moule de façon que la pièce coulée dans le moule se solidifie, à extraire la pièce solidifiée du moule, à sécher cette pièce, et à fritter la pièce séchée à haute température, caractérisé en ce qu'on prépare le mélange fluide comme suit :

- A) on prépare un mélange des grains et particules de silice vitreuse fondue en mélangeant à sec :
- (i) une fraction granulométrique modérément grossière de silice vitreuse fondue, dont au moins 80% en poids des grains sont compris entre 40 μm et 1 mm,

20

- (ii) une fraction granulométrique fine de silice vitreuse fondue, dont au moins 95% en poids des grains sont inférieurs à 40 μm, lesdits grains de silice (ii) ayant une surface spécifique BET de 6 à 9 m²/g et un diamètre médian par sédigraphie de 5 à 6 μm;
 - (iii) des particules sensiblement sphériques de fumée de silice, et
- (iv) facultativement, au moins une fraction granulométrique de silice vitreuse fondue plus grossière que la fraction (i), les constituants (i), (ii), (iii) et (iv) étant utilisés dans les proportions pondérales suivantes, par rapport au poids total de (i) + (ii) + (iii) + (iv) : (i) 15-70%, (ii) 15-55%, (iiii) 3-15% et (iv) 0-52%.

B) on prépare un mélange fluide à partir du mélange obtenu en (A) et d'une quantité d'eau représentant au plus 10% en poids par rapport au poids total du mélange obtenu en (A).

Le mélange fluide ainsi produit est utilisable immédiatement et ne requiert pas d'opération de stabilisation, ce qui est très avantageux.

5

25

On peut diviser les mélanges fluides en deux catégories, selon qu'ils contiennent ou non l'ingrédient 10 optionnel (iv).

Les mélanges fluides sans ingrédient (iv) peuvent être utilisés comme barbotine dans un procédé de coulée de barbotine classique où l'élimination de l'eau s'opère par un effet de succion capillaire à travers les pores du 15 moule poreux, habituellement en plâtre. Dans ce cas le mélange fluide contiendra habituellement 8 à 10% d'eau. Par ailleurs, les mélanges fluides comprenant l'ingrédient (iv) peuvent être employés dans un processus de coulée dans un moule poreux avec application de vibrations 20 (vibrocoulée) visant à améliorer le remplissage du moule et où l'élimination de l'eau s'opère principalement par évaporation. Dans ce cas le mélange fluide contiendra habituellement une quantité d'eau moindre que dans le cas précédent, à savoir une quantité de l'ordre de 5 à 7%.

L'invention concerne également un mélange de grains et particules de silice vitreuse fondue, utile notamment pour la mise en oeuvre du procédé de l'invention, caractérisé en ce qu'il est produit en mélangeant à sec :

- (i) une fraction granulométrique modérément 30 grossière de silice vitreuse fondue dont au moins 80% en poids des grains sont compris entre 40 µm et 1 mm,
- (ii) une fraction granulométrique fine de silice vitreuse fondue, dont au moins 95% en poids des grains sont inférieurs à 40 μ m, lesdits grains de silice (ii) 35 ayant une surface spécifique BET de 6 à 9 m²/g et un diamètre médian par sédigraphie de 5 à 6 μ m;

(iii) des particules sensiblement sphériques de fumée de silice, et

(iv) facultativement, au moins une fraction
granulométrique de silice vitreuse fondue plus grossière
gue la fraction (i), les constituants (i), (ii), (iii) et
(iv) étant utilisés dans les proportions pondérales
suivantes, par rapport au poids total de (i) + (ii) +
(iii) + (iv) : (i) 15-70%, (ii) 15-55%, (iii) 3-15% et
(iv) 0-52%.

Avantageusement, on utilise les ingrédients (i), (ii), (iii) et (iv) dans les pourcentages suivants, selon que l'on veut produire une barbotine ou un mélange fluide à vibrocouler.

	·				
15	ingrédients	barbotine		mélange à vibrocouler	
		large	préféré	large	préféré
20					
	(i)	30-70	40-60	15-35	20-30
	(ii)	15-55	27-40	15-35	20-30
25	(iii)	3-15	7-13	3-15	7-13
	(iv)	-	-	27-52	33-47
30					

De préférence, la grosseur des grains de la ou les fractions granulométriques (iv) n'excède pas 10 mm.

L'invention concerne, en outre, un nouveau matériau réfractaire formé de grains de silice vitreuse fondue frittés, caractérisé en ce qu'il contient 3 à 15% en poids de particules sensiblement sphériques de fumée de silice, visibles sous forme d'entités distinctes dispersées sur une microphotographie du matériau.

Selon un mode de réalisation préféré, ce nouveau matériau réfractaire formé de silice vitreuse fondue frittée est caractérisé en ce qu'il présente une microstructure formée (i) de grains de silice vitreuse

fondue d'une grosseur de 40 µm à 1 mm liés par un mélange (ii) de particules de silice vitreuse fondue d'une grosseur inférieure à 40 µm, (iii) de particules sensiblement sphériques de fumée de silice et (iv) 5 facultativement, au moins une fraction granulométrique de silice vitreuse fondue plus grossière que la fraction (i), les constituants (i), (ii), (iii) et (iv) étant présents, en % en poids sur la base du poids du matériau, dans les proportions suivantes : (i) 15-70%, (ii) 15-55%, (iii) 3-10 15%, de préférence 7-13%, et (iv) 0-52 %, les particules (iii) étant visibles sous forme d'entités distinctes sur une microphotographie du matériau.

Selon un mode de réalisation, exempt d'ingrédient (iv), (i) représente 30-70%, de préférence 45-60%, et (ii) 15 représente 15-55%, de préférence 27-40%.

Selon un autre mode de réalisation, l'ingrédient (iv), (i) représente 15-35%, de préférence 20-30 %, (ii) représente 15-35%, de préférence 20-30%, et (iv) représente 27-52%, de préférence 33-47%.

20

Il faut veiller au cours de la fabrication de l'article réfractaire à introduire le moins possible d'éléments se comportant comme des fondants pour la silice ou d'éléments (appelés "minéralisateurs") susceptibles de promouvoir la dévitrification de la silice vitreuse en 25 cristobalite, car cette dernière présente une anomalie de dilatation thermique au refroidissement à une température de 200 à 230°C qui entraîne la rupture des articles. Des exemples de tels éléments sont ${\rm Al_2\,O_3}$, ${\rm Fe_2\,O_3}$, des composés des métaux alcalins (tels que Na₂O et K₂O) et des métaux alcalino-terreux (tels que CaO). 30

Il faut veiller également à exclure le plus possible les éléments, tels que SiC et le carbone, qui provoquent un bullage du matériau au contact des verres fondus.

On utilisera, donc, avantageusement des grains de 35 silice vitreuse fondue ayant une teneur en silice d'au moins 99% en poids, de préférence d'au moins 99,5%.

Une analyse type de silice vitreuse fondue utilisable pour constituer les grains (i), (ii) et (iv) est la suivante, en % en poids : TiO_2 : < 0,05% ; Al_2O_3 : \leq 0,2%; Fe_2O_3 : \leq 0,03%; MgO : < 0,05% ; CaO : \leq 0,02% ; Na_2O \leq 0,05% ; K_2O : \leq 0,01 ; et SiO, : le complément à 100%.

Pour ces mêmes raisons on évitera d'utiliser, comme ingrédient (iii) les fumées de silice provenant de la fabrication des ferro-siliciums et du silicium car ces fumées sont riches en Na₂O (0,3% en poids et plus), en SiC (> 0,2% en poids), en carbone (> 0,2% en poids) et en Fe₂O₃ (>0,15% en poids) et on ne connaît pas, à l'heure actuelle, de procédé permettant de les purifier efficacement. Ces fumées de silice, lorsqu'on tente de les utiliser dans le procédé de l'invention, donnent un matériau qui, en plus d'une coloration réduisant fortement sa valeur commerciale, est sujet au bullage au contact des verres fondus.

On a, par contre, trouvé que les fumées de silice 20 produites au cours de la fusion et de la réduction du zircon en four électrique, par exemple comme décrit dans FR-A 1 191 665, convenaient bien pour le procédé de l'invention.

Ces fumées de silice sont formées de particules 25 sensiblement sphériques, présentent l'analyse-type suivante, en % en poids

```
ZrO, =
                       1,3-2,5%
              A1, O_3 = 2, 1-3%
              Fe_{2}O_{3} = 0,10-0,16%
              Na_2O =
                       0,09-0,16%
30
                       0,05-0,07%
              K_2O =
              Ca0 =
                       0,01-0,06%
              TiO, =
                       0,01-0,02%
              C < 0,015%
              SiC : non détectable
35
              SiO, ≈ 95% (par différence);
```

ont une masse volumique d'environ 2,2 tonnes/m³, une surface spécifique BET de 12 à 18 m²/g environ, et un diamètre médian par sédigraphie des particules de 0,2 à 0,6 µm. Moins de 30% des particules de ces fumées de silice ont un diamètre supérieur à 1 µm, mais il peut arriver que quelques particules s'agglomèrent en amas de plusieurs micromètres.

L'eau utilisée pour la préparation du mélange fluide sera avantageusement une eau déminéralisée, toujours pour 10 réduire l'introduction d'impuretés néfastes et minimiser le risque de dévitrification.

La production des divers grains (i) et (ii) de silice vitreuse fondue s'effectue avantageusement par broyage à sec de silice fondue concassée disponible dans le commerce, par exemple dans des broyeurs à boulets dont les parois sont revêtues d'un matériau réfractaire protecteur, par exemple à base d'alumine ou du type dit AZS (alumine - zircone - silice) ou d'un autre doublage protecteur et dont les éléments broyants sont en un matériau visant à limiter la pollution, notamment par le fer, du produit broyé. Les propriétés définies pour les grains fins (ii) sont typiques de grains produits par broyage à sec.

La présence des deux fractions granulométriques (i)
25 et (ii) combinée à celle de la fumée de silice (iii)
permet de maximaliser la masse volumique du matériau final
grâce à la compacité de l'arrangement des grains et des
particules de fumée de silice.

A titre indicatif, on peut utiliser comme grains 30 (i), une fraction granulométrique présentant la distribution suivante :

	Ouverture du tamis	Refus cumulés	(en % en poids)
	en µm	Minimum	Maximum
35	1000	0	5
	500	5	15
	200	30	50

9

100	60	80
40	80	95

La présence de la fumée de silice a, par ailleurs, pour effet, de façon surprenante, de renforcer la résistance à la corrosion des parties du matériau fritté final constituées par la fraction fine et permet, en quelque sorte, de plus ou moins uniformiser des résistances à la corrosion des parties du matériau issues de la fraction grossière (qui sont normalement plus résistantes) et des parties issues de la fraction fine (qui sont normalement plus facilement attaquées). En outre, l'emploi de la fumée de silice permet de minimiser la quantité d'eau requise pour la préparation du mélange fluide, ce qui réduit le temps de prise de l'article coulé et permet, par conséquent, un démoulage plus rapide.

Il est à noter que, de façon remarquable, les particules de la fumée de silice demeurent sous forme d'entités discrètes identifiables sur des microphotographies du matériau fritté final, qu'il soit nouvellement fabriqué ou après usage. Ces particules disséminées dans le matériau, retiennent leurs constituants mineurs caractéristiques, tels que Al₂O₃ et ZrO₂, comme s'ils ne diffusaient pas dans la masse du matériau. Ces constituants mineurs ne sont donc pas critiques vis-à-vis des phénomènes de dévitrification.

Outre les ingrédients essentiels et optionnels susmentionnés, on peut inclure dans le mélange fluide une
petite quantité, habituellement 0,05 à 1% en poids par
rapport au poids total du mélange fluide, d'un agent
30 tensio-actif dans le but de modifier ses propriétés
rhéologiques. Cet agent tensio-actif doit être exempt de
sodium et on peut, par exemple, utiliser un composé
d'ammonium tensio-actif tel qu'un polycarboxylate
d'ammonium ou un polyacrylate d'ammonium.

Un exemple spécifique d'un tel agent tensio-actif est le produit DISPEX'R) A40 vendu par la Société ALLIED COLLOIDS.

35

Les exemples non limitatifs suivants sont donnés dans le but d'illustrer l'invention.

La fumée de silice employée dans les exemples provenait d'un processus de fusion et de réduction de 5 zircon et titrait, en % en poids, SiO_2 : $\stackrel{\triangle}{\sim}$ 95%, ZrO_2 : 2,1%, Al_2O_3 : 2,3%, Fe_2O_3 : 0,15%, Na_2O : 0,1%, CaO: 0,01%, K_2O : 0,06%, TiO_2 : 0,015%, C = 0,0105%, et SiC: non détectable.

La silice vitreuse formant les grains (i) et (ii) titrait 99,5% en poids de silice. La fraction (ii) a été préparée par broyage à sec d'une fraction plus grossière (2-4,76 mm) de grains de silice vitreuse jusqu'à obtention de la fraction (ii). Le broyeur utilisé était un broyeur à boulets d'alumine comportant des parois internes revêtues d'un matériau électrofondu du type alumine-zircone-silice.

EXEMPLE 1

On a préparé des pièces consommables pour l'industrie verrière, telles que rondelles d'écoulement, 20 chemises, plongeurs, par coulage en moule en plâtre d'une barbotine formée, en poids, de :

grains (40-1000 μ m) de silice = 54% grains (< 40 μ m) de silice vitreuse = 33% fumée de silice = 13%

25 avec ajout de 0,09% de dispersant "DISPEX A40" et 9% d'eau déminéralisée.

Cette fabrication s'effectue de la façon suivante :

On a prémélangé à sec les trois composants, puis on les a introduit progressivement dans un mélangeur à 30 palette dans lequel se trouvait l'eau minéralisée et le dispersant de façon à former une suspension ou barbotine.

Cette barbotine a été ensuite dégazée sous vide (opération souhaitable mais non obligatoire) avant son coulage dans des moules en plâtre munis d'entonnoirs de remplissage et adaptés à la forme des pièces à obtenir.

On a laissé durcir ces pièces, puis on les a séchées

dans une étuve ventilée à 200°C et enfin disposées dans un four et cuites à 1050°C afin de les fritter.

Caractéristiques du produit fritté cuit :

Masse volumique: 1,910 T/m3

Porosité ouverte : 13%

Résistance à la flexion : 20 MPa

Coefficient de dilatation : 0,6* 10-6/°K

Analyse chimique:

 $Al_2O_3 \le à 1\%$ $ZrO_3 \le à 1\%$

 $2rO_2 \le a 1$

5

 $\text{Fe}_2\text{O}_3 \leq \text{à }0.05\%$

CaO ≤ à 0,05%

 $Na_2O \le à 0,05$ %

autres = traces

15 SiO₂: le complément à 100%

Analyse cristallographique:

Cristobalite ≤ à 2%

La microstructure de ces nouveaux produits est nouvelle et caractéristique.

La figure unique, qui est une microphotographie faite à un grossissement d'environ 800 X d'un échantillon poli d'un matériau selon l'invention, révèle l'existence de gros grains 1 de silice vitreuse liés par une dispersion relativement continue de grains plus fins 2 et de particules sphériques 3 de fumées de silice.

Les articles de l'exemple 1 étant destinés à venir au contact de verres fondus, on a effectué sur eux divers essais mentionnés ci-dessous, en les comparant à des articles similaires du commerce dont les caractéristiques

Masse volumique : 1,900 T/m³

Porosité ouverte: 13%

Résistance à la flexion : 12 à 20 MPa Coefficient de dilatation : $0.6*10^{-6}/K^{-1}$

35 Analyse chimique:

sont :

30

 $SiO_2 \ge 99,5\%$

 $Al_{2}O_{3} = 0.2\%$

 $Fe_2O_3 = 0.03\%$ CaO = 0.05% $Na_2O = 0.05\%$ $TiO_2 = 0.03$ MqO = 0.01

5

Analyse cristallographique:

Cristobalite ≤ à 2%

- * Comportement au contact d'un verre socalcique :
- Indice de bullage : (1 heure à 1100°C et 1 10 heure à 1350°C) - selon la méthode décrite par A. AUERBACH dans les Comptes Rendus du Symposium sur l'Elaboration du verre, MADRID, 11-14 Septembre 1973, page 259-312.

Produit de l'invention : 1 et 1
Produit de référence : 1 et 1

- Indice de lacher de pierres (1300°C pendant 24 heures)

Produit de l'invention : 0 Produit de référence : 0

Cet indice de lacher de pierres est réalisé en 20 utilisant l'essai dit "T-test" décrit par A. AUERBACH en Octobre 1972 au Vortrag in Fachausschuss 2 der DGG, FRANKFURT-AM-MEIN.

- Indice de corrosion dynamique (à 1250°C pendant 24 heures et à 1250°C pendant 48 heures)

25 Produit de l'invention : 120 Produit de référence : 100

Cet indice de corrosion dynamique est réalisé en utilisant l'essai dit de PILKINGTON, décrit par A. AUERBACH en Octobre 1972, référence ci-dessus.

- * Comportement au contact de verres borosilicatés :
 - Indice de bullage à 1350° pendant 1 heure

Produit de l'invention : 2-3

Produit de référence : 7

- Indice de lacher de pierres (1300°C pendant 1

35 heure):

Produit de l'invention : 0
Produit de référence : 1

* Comportement au contact de verre opale au fluor :

Dans les mêmes conditions, le produit selon l'invention présente un très bon comportement au test de bullage et de lacher de pierres (indice 0) au contact de 5 verres opales au fluor.

Il est à noter que la barbotine de l'exemple 1 peut être également coulée dans des moules disposés sur une table vibrante, avec l'avantage que dans ce cas la quantité d'eau à incorporer à la barbotine peut être 10 réduite à moins 8% en poids.

EXEMPLE 2

20

Selon le même mode opératoire que dans l'exemple 1 on a préparé une grosse pièce dont l'épaisseur est supérieure à 100 mm, à savoir un registre de four pour la fabrication du verre flotté, à partir d'un mélange fluide de la composition pondérale suivante :

grains de silice vitreuse (2 à 4,76 mm) = 16% grains de silice vitreuse (0,84 à 2 mm) = 27% grains de silice vitreuse (40 μ m à 1 mm) = 25% grains de silice vitreuse (< à 40 μ m) = 25% fumée de silice = 7%

avec ajout de 0,09% de dispersant DISPEX A40 et 6% d'eau déminéralisée.

La seule différence par rapport à l'exemple 1 est 25 que dans ce cas le mélange fluide a été coulé dans des moules disposés sur une table vibrante soumise à des vibrations (100 Hertz) pendant 6 minutes.

Après cuisson, les caractéristiques de l'article étaient les suivantes :

30 Masse volumique : 1,960 à 2,000 T/m^3

Porosité ouverte : 9-10%

Résistance à la flexion à $20\,^{\circ}\text{C}$: 14-20MPa Coefficient de dilatation : $0,6*10^{-6}\,\text{K}^{-1}$

Analyse chimique:

35 $Al_2O_3 \le 1\%$ $ZrO_2 \le 1\%$ $Fe_2O_3 \le 0.05\%$

14

 $Ca0 \le 0.05$ %

 $Na, 0 \le 0,05\%$

autres : traces

SiO, : le complément à 100%

Analyse cristallographique:

Cristobalite ≤ 2%

5

25

Le matériau de cet article présente le même comportement que celui de l'exemple 1 aux essais de bullage et de lacher de pierres. En essai de corrosion 10 dynamique au contact du verre sodocalcique à 1250°C on a observé:

Matériau de l'ex. 2 = 130

Matériau de l'ex. 1 = 120

Matériau de référence = 100

Le matériau de l'exemple 2 présente la même 15 microstructure typique que celui de l'exemple 1.

Par ailleurs, fait surprenant, dans les essais de pièces consommables au contact des verres décrits cidessus il s'est avéré que les pièces de référence après 20 utilisation à chaud se fissurent totalement au refroidissement lors du remplacement de ces pièces ce qui rend délicate leur manipulation, alors que les pièces selon l'invention ne présentent pas cette fissuration et leur manipulation est aisée.

Ce phénomène est dû à la dévitrification importante des pièces de référence. Ces essais montrent que les impuretés majeures apportées par la fumée de silice utilisée dans l'invention, notamment l'oxyde d'aluminium et l'oxyde de zirconium ne sont pas critiques vis-à-vis 30 des phénomènes de dévitrification et confirment le fait que ces impuretés diffusent très peu dans la masse de la pièce.

EXEMPLE 3 (comparatif)

Afin de vérifier si la qualité de la fumée de silice 35 introduite était critique, nous avons essayé de réaliser trois essais répétant les exemples 1 et 2, mais en utilisant

a/ une fumée de silice du commerce provenant de la réduction du ferro-silicium

b/ de la silice colloïdale

c/ de la silice fondue broyée.

a) on a utilisé une silice thermique de type ferrosilicium du commerce dont l'analyse chimique (%) est :

 $SiO_{2} = 94-98\%$ $Al_{2}O_{3} = 0,1-0,3\%$ SiC = 0,2-0,7 $Fe_{2}O_{3} = 0,15-0,4$ $Na_{2}O = 0,3-0,5$ CaO = 0,1-0,3 $K_{2}O = 0,2-0,6$ $TiO_{2} = 0,01-0,02$

C = 0, 2-1, 3

15

Surface spécifique BET = environ 35 m²/g Diamètre médian au sédigraphie = 0,25 à 0,30 μ m.

On a constaté que la quantité d'eau de mise en oeuvre devait être augmentée d'environ 1% par rapport aux quantités indiquées dans les exemples selon l'invention et que les pièces après cuisson étaient colorées en rose, fissurées et avaient une masse volumique plus faible (1,8 T/m³).

Un test de bullage effectué selon la méthode 25 indiquée a donné un indice très élevé : 9-10.

Nous estimons donc que l'utilisation de ce type de fumée de silice en l'état est rédhibitoire. Cependant, il va de soi que si des traitements de purification permettaient de réduire voire d'éliminer les éléments du type SiC et C, sans modifier la forme microsphérique des particules, cette fumée pourrait devenir utilisable dans l'invention.

 b) On a utilisé une silice colloïdale du commerce de marque LUDOX^(R) vendue par E.I. DU PONT DE NEMOURS, du
 35 type AS40 stabilisée à l'ammonium et contenant 40% de silice ayant un diamètre de particules de 21 nm. La substitution totale de la fumée de silice par cette silice colloïdale n'est pas envisageable car il faudrait dans l'ex. 1 introduire 32,5% de silice colloïdale (soit 13% de SiO₂ et 19,5% d'eau) ce qui 5 conduirait à un excès d'eau dans le mélange.

De même, dans l'ex. 2 il faudrait introduire 17,5% de silice colloïdale (7% de ${\rm SiO_2}$ et 10,5% d'eau).

L'association de fumée de silice avec la silice colloïdale, par ex. 6% de fumée de silice selon l'invention avec 3 à 7% de silice colloïdale est plus réaliste, mais cela conduit pour un pourcentage de 7% de silice colloïdale à des mélanges à viscosité élevée qu'il est difficile de dégazer et qui, au séchage, donnent une microfissuration des pièces.

c) Le remplacement de la fumée de silice par de la silice fondue broyée ou microbroyée à la même granulométrie a conduit à des pièces après cuisson n'ayant pas les caractéristiques physiques de l'invention à savoir faible masse volumique (1,7 T/m³) et très faible résistance à la flexion (< 5MPa) à 20°C.

Le matériau de l'invention constitue un matériau de choix pour toutes les applications où on emploie de la silice vitreuse frittée.

Il va de soi que les modes de réalisation décrits ne 25 sont que des exemples et l'on pourrait les modifier, notamment par substitution d'équivalents techniques, sans sortir pour cela du cadre de l'invention.

REVENDICATIONS

- 1. Un procédé de production d'un article réfractaire en silice vitreuse frittée comprenant les étapes consistant à couler un mélange fluide d'eau et de particules de silice vitreuse dans un moule poreux, à laisser s'éliminer la plus grande partie de l'eau contenue dans le mélange coulé à travers les pores dudit moule de façon que la pièce coulée dans le moule se solidifie, à extraire la pièce solidifiée du moule, à sécher cette pièce, et à fritter la pièce séchée à haute température, caractérisé en ce qu'on prépare le mélange fluide comme suit :
 - A) on prépare un mélange des grains et particules de silice vitreuse fondue en mélangeant à sec :
 - (i) une fraction granulométrique modérément grossière de silice vitreuse fondue, dont au moins 80% en poids des grains sont compris entre 40 μm et 1 mm,

15

35

- (ii) une fraction granulométrique fine de silice vitreuse fondue, dont au moins 95% en poids des 20 grains sont inférieurs à 40 μ m, lesdits grains de silice (ii) ayant une surface spécifique BET de 6 à 9 m²/g et un diamètre médian par sédigraphie de 5 à 6 μ m;
 - (iii) des particules sensiblement sphériques de fumée de silice, et
- (iv) facultativement, au moins une fraction granulométrique de silice vitreuse fondue plus grossière que la fraction (i), les constituants (i), (ii), (iii) et (iv) étant utilisés dans les proportions pondérales suivantes, par rapport au poids total de (i) + (ii) + (iii) + (iv) : (i) 15-70%, (ii) 15-55%, (iii) 3-15% et (iv) 0-52%.
 - B) on prépare un mélange fluide à partir du mélange obtenu en (A) et d'une quantité d'eau représentant au plus 10% en poids par rapport au poids total du mélange obtenu en (A).
 - 2. Un procédé selon la revendication 1, caractérisé

- en ce que (i) est présent à raison de 30-70%, (ii) de 15-55%, (iii) de 3-15%, et (iv) est absent.
- 3. Un procédé selon la revendication 2, caractérisé en ce que (i) est présent à raison de 45-60%, (ii) de 27-5 40% et (iii) de 7-13%.
 - 4. Un procédé selon la revendication 1, caractérisé en ce que (i) est présent à raison de 15-35%, (ii) de 15-35%, (iii) de 3-15%, et (iv) 27-52%.
- 5. Un procédé selon la revendication 4, caractérisé 10 en ce que (i) est présent à raison de 20-30%, (ii) de 20-30%, (iii) de 7-13% et (iv) de 33-47%.
 - 6. Un procédé selon la revendication 1, 4 ou 5, caractérisé en ce que la grosseur des grains (iv) n'excède pas 10 mm.
- 7. Un procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le mélange fluide comprend aussi un agent tensio-actif.
- 8. Matériau réfractaire formé de grains de silice vitreuse fondue frittés, caractérisé en ce qu'il contient 20 3 à 15% en poids de particules sensiblement sphériques de fumées de silice visibles sous forme d'entités distinctes dispersées sur une microphotographie.
- 9. Matériau selon la revendication 8, caractérisé en ce qu'il présente une microstructure formée (i) de grains de silice vitreuse fondue d'une grosseur de 40 µm à 1 mm liés par un mélange (ii) de particules de silice vitreuse fondue d'une grosseur inférieure à 40 µm, (iii) de particules sensiblement sphériques de fumée de silice et (iv) facultativement, au moins une fraction granulométrique de silice vitreuse fondue plus grossière que la fraction (i), les constituants (i), (ii), (iii) et (iv) étant présents, en % en poids sur la base du poids du matériau, dans les proportions suivantes : (i) 15-70%, (ii) 15-55%, (iii) 3-15%, de préférence 7-13%, et (iv) 0-35 52 %, les particules (iii) étant visibles sous forme d'entités distinctes sur une microphotographie du

matériau.

- 10. Matériau selon la revendication 9, caractérisé en ce que (i) est présent à raison de 30-70%, (ii) de 15-55%, (iii) de 3-15%, et (iv) est absent.
- 11. Un procédé selon la revendication 10,
 5 caractérisé en ce que (i) est présent à raison de 45-60%,
 (ii) de 27-40% et (iii) de 7-13%.
 - 12. Un procédé selon la revendication 9, caractérisé en ce que (i) est présent à raison de 15-35%, (ii) de 15-35%, (iii) de 3-15%, et (iv) 27-52%.
- 13. Un procédé selon la revendication 12, caractérisé en ce que (i) est présent à raison de 20-30%, (ii) de 20-30%, (iii) de 7-13% et (iv) de 33-47%.
- 14. Mélange de grains et particules de silice vitreuse fondue, caractérisé en ce qu'il est produit en 15 mélangeant à sec :
 - (i) une fraction granulométrique modérément grossière de silice vitreuse fondue dont au moins 80% en poids des grains sont compris entre 40 µm et 1 mm,
- (ii) une fraction granulométrique fine de 20 silice vitreuse fondue, dont au moins 95% en poids des grains sont inférieurs à 40 μ m, lesdits grains de silice (ii) ayant une surface spécifique BET de 6 à 9 m²/g et un diamètre médian par sédigraphie de 5 à 6 μ m;
- (iii) des particules sensiblement sphériques de 25 fumée de silice, et
- (iv) facultativement, au moins une fraction
 granulométrique de silice vitreuse fondue plus grossière
 que la fraction (i), les constituants (i), (ii), (iii) et
 (iv) étant utilisés dans les proportions pondérales
 30 suivantes, par rapport au poids total de (i) + (ii) +
 (iii) + (iv) : (i) 15-70%, (ii) 15-55%, (iii) 3-15% et
 (iv) 0-52%.
- 15. Un mélange selon la revendication 14, caractérisé en ce que (i) est présent à raison de 30-70%, 35 (ii) de 15-55%, (iii) de 3-15%, et (iv) est absent.
 - 16. Un mélange selon la revendication 15,

caractérisé en ce que (i) est présent à raison de 45-60%, (ii) de 27-40% et (iii) de 7-13%.

- 17. Un mélange selon la revendication 14, caractérisé en ce que (i) est présent à raison de 15-35%, 5 (ii) de 15-35%, (iii) de 3-15%, et (iv) 27-52%.
 - 18. Un procédé selon la revendication 17, caractérisé en ce que (i) est présent à raison de 20-30%, (ii) de 20-30%, (iii) de 7-13% et (iv) de 33-47%.

N° d'enregistrement national

INSTITUT NATIONAL

de la

PROPRIETE INDUSTRIELLE

3

RAPPORT DE RECHERCHE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FR 9206276 FA 473938

DOCU	MENTS CONSIDERES COMME PERTIN		
atégorie	Citation du document avec indication, en cas de besoin, des parties pertinentes	de la demande examinée	
۸	WO-A-9 112 216 (FERRO CORPORATION) * revendications 1-20 *	1,14	
١.	US-A-4 929 579 (LASSITER) * Le document entier *	1,14	
`	US-A-4 506 025 (KLEEB AND AL.) * revendications 1-5 *	8	
`	US-A-4 297 309 (NORTH)		
A	DATABASE WPIL Week 8744, Derwent Publications Ltd., London, GE AN 87-309515 & JP-A-62 216 959 (MITSUBISHI DENKI K Septembre 1987 * abrégé *		
			DOMAINES TECHNIQUES RECHERCHES (Int. Cl.5)
			C04B
			C03B
	Date d'achèvement de la reche		Examinatour
	08 FEVRIER 19		RIGONDAUD B.
X : na	ticulièrement pertinent à lui seul à la cé ticulièrement pertinent en combinaison avec un de de tre document de la même catéporie D : d'é-	ie ou principe à la base de l nent de brevet bénéficiant d late de dépôt et qui n'a été pôt ou qu'à une date postér lans la demande our d'autres raisons	'invention 'une date antérieure publié qu'à cette date ieure.