

Redes de Computadores

Capítulo 4.4 – IP (Internet Protocol)

Profa. Cíntia B. Margi Outubro/2009

A camada de rede da Internet

Escola de Artes, Ciências e Humanidades Protocolo Internet (IP)

da Universidade de São Paulo

- IP v4 RFC 791
 - em uso na Internet.
- IP v6 RFC 2373 e 2460
 - proposta para substituir IP v4.
- Funções na Internet:
 - endereçamento;
 - repasse (ou encaminhamento ou comutação).

Formato do Datagrama IPv4

Figure 4.13 ♦ IPv4 datagram format

Fragmentação e reconstrução IP

- Enlaces de rede diferentes possuem MTU diferentes
- Ethernet: 1.518 bytes
- Datagramas IP grandes devem ser divididos dentro da rede (fragmentados).
- O cabeçalho IP é usado para identificar e ordenar datagramas relacionados.

Fragmentação e reconstrução IP

- Exemplo
- datagrama de 4000 bytes
- MTU = 1500 bytes

1480 bytes no campo de dados

offset (em múltiplos de 8 bytes) = 1480/8 = 185

tamanho	ID	frag flag	offset	
=4000	=x	=0	=0	

Um grande datagrama se torna vários datagramas menores


```
tamanho ID frag flag offset
=1060 =x =0 = 370
```


Fragmentação e reconstrução IP

 Applet com exemplo de cálculo de fragmentos em: http://media.pearsoncmg.com/aw/aw_kur ose_network_2/applets/ip/ipfragmentation .html

Endereçamento IP

Endereços IP

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

 "Um endereço IP é um número binário de 32 bits único atribuído a um host e usado para toda a comunicação com este".

- Escritos em notação decimal separada por pontos (dotted-decimal notation)
- Ex.: 223.1.1.1 =

11011111 00000001 00000001 00000001

Endereços IP

Hierarquia de Endereços IP

- Cada endereço IP é dividido em 2 partes: prefixo e sufixo.
 - prefixo: identifica a rede física ao qual o computador está conectado;
 - sufixo: identifica um *host* na rede específica.

ACH2026 - 2009

Endereçamento IP de Classes

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

- ou Classfull IP Addressing
- 3 classes primárias e 1 para *multicast*.
- 4 bits iniciais determinam a classe.

bits 0 1 2 3 8 16 24 31

Classe A 0 prefixo sufixo

Classe B 10 prefixo sufixo

Classe C 110 prefixo sufixo

Classe D 1110 endereço multicast

Classe E 1111 reservado para uso futuro

Endereçamento IP de Classes

- Faixa de valores do sufixo:
 - Classe A 0 a 127
 - Classe B 128 a 191
 - Classe C 192 a 223
 - Classe D 224 a 239
 - Classe E 240 a 255

Classe do Endereço	Bits no prefixo	Número máximo de redes	Bits no sufixo	Número máximo de hosts/rede
Α	7	128	24	16777216
В	14	16384	16	65536
С	21	2097152	8	256

Como separar sufixos e prefixos IP?

- Roteadores decidem caminhos baseados em endereços, porém utilizam somente o sufixo (parte da rede)!
- Como separar o sufixo do prefixo?
 - Através de máscaras de rede!
- Máscaras das classes de endereço:
 - classe A 255.0.0.0 (8 bits)
 - classe B 255.255.0.0 (16 bits)
 - classe C 255.255.255.0 (24 bits)

Escola de Artes, Ciências e Humanidado Que São Sub-redes? da Universidade de São Paulo

∀ Interfaces de dispositivo com o mesmo sufixo do endereço IP.

∀ Podem alcançar fisicamente uns aos outros sem intervenção de roteador.

∀ Mesmo domínio de broadcast!

Exemplo: Quantas sub-redes?

Escola de Artes, Ciências e Humanidades ndereços "Especiais"

∀ *Loopback*: 127.0.0.1

da Universidade de São Paulo

- ∀ Redes Privativas (sufixos):
 - 10.0.0.0 (classe A)
 - 172.16.0.0 a 172.31.0.0 (16 classes B contíguas)
 - 192.168.0.0 a 192.168.16.255.0 (256 classes C contíguas)
- ∀ *Broadcast*: 255.255.255.255
 - broadcast restrito: prefixo da rede mais sufixo com todos os bits 1.

Endereçamento IP CIDR

- CIDR = Classless InterDomain Routing
- O uso de endereços IP com classes não é flexível!
- Ex.: USP possui endereço 143.107.0.0
 - qual a classe desse endereço?
 - como distribuir entre as diversas unidades?
 - como ficam as tabelas de roteamento?

Endereçamento IP CIDR

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ A porção de endereço de rede tem tamanho arbitrário.

∀ Formato do endereço: a.B.C.D/x, em que x é o número de bits na parte de rede do endereço.

∀ Ex.: 200.23.16.0/24

11001000 00010111 00010000 00000000

Escola de Artes, Ciências e Humanidades Criação de Sub-redes da Universidade de São Paulo

- Assuma que empresa ACME possui o endereço de rede 195.169.173.0.
- Gerente de TI quer criar 3 sub-redes, cada uma com no máximo 30 clientes e/ou servidores.
- Como fazer???

ACH2026 - 2009

Como a interface de rede obtém IP?

- ∀ Definido pelo administrador do sistema em "arquivos de configuração".
- ∀ DHCP: Dynamic Host Configuration Protocol
 - obtém dinamicamente endereços IP de um servidor.

E o endereço IP da rede?

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

∀ ICANN: Internet Corporation for Assigned Names and Numbers

- aloca endereços;
- gerencia DNS;
- atribui nomes de domínios e resolve disputas.

∀ Brasil:

- LACNIC: http://www.lacnic.net/pt/registro/
- através de ISPs (provedores de serviço).

Tradução de Endereços de Rede

Tradução de Endereços de Rede

- ∀ NAT = Network Address Translation
- ∀ Motivação:
 - número reduzido de IPs disponíveis;
 - simplificar configurações:
 - redes locais podem utilizar apenas um endereço IP!
 - pode-se mudar de ISP sem alterar os endereços dos dispositivos na rede local.
 - Segurança: dispositivos da rede local não são explicitamente endereçáveis ou visíveis pelo mundo exterior.

NAT: Funcionamento

Escola de Artes, Ciências e Humanidade da Universidade de São Paulo

∀ O roteador que implementa NAT deve:

- Datagramas que saem: substituir (endereço IP de origem, porta #) de cada datagrama para (endereço IP do NAT, nova porta #).
- . . . clientes/servidores remotos responderão usando (endereço IP do NAT, nova porta #) como endereço de destino.
- Lembrar (na tabela de tradução do NAT) cada (endereço IP de origem, porta #) para o par de tradução (endereço IP do NAT, nova porta #).

ACH2026 - 2009

NAT: Funcionamento

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo **(2)**

∀ O roteador que implementa NAT deve:

 Datagramas que chegam: substituir (endereço IP do NAT, nova porta #) nos campos de destino de cada datagrama pelos correspondentes (endereço IP de origem, porta #) armazenados da tabela NAT.

NAT

Figure 4.20 ♦ Network address translation

NAT: considerações

- ∀ Campo número de porta com 16 bits:
 - -60.000 conexões simultâneas com um único endereço de LAN.
- ∀ NAT é controverso:
 - roteadores deveriam processar somente até a camada 3;
 - -violação do argumento fim-a-fim;
 - a possibilidade de NAT deve ser levada em conta pelos desenvolvedores de aplicações;
 - ex.: aplicações P2P.
 - -escassez de endereços resolvida pelo IPv6.

ICMP: Internet Control Message Protocol

ICMP: Internet Control Message Protocol

- ∀ Usado por computadores e roteadores para troca de informação de controle da camada de rede:
 - -comunicação de erros: hospedeiro, rede, porta ou protocolo.
 - -requisição/resposta de eco (usado pela aplicação ping).

Mensagens ICMP

- ∀ Mensagens ICMP transportadas em datagramas IP.
- ∀ Messagem ICMP: tipo, código, mais primeiros 8 bytes do datagrama IP que causou o erro.

ACH2026 - 2009

ICMP: Internet Control Message Protocol

ICMP Type	Code	Description
0	0	echo reply (to ping)
3	0	destination network unreachable
3	1	destination host unreachable
3	2	destination protocol unreachable
3	3	destination port unreachable
3	6	destination network unknown
3	7	destination host unknown
4	0	source quench (congestion control)
8	0	echo request
9	0	router advertisement
10	0	router discovery
11	0	TTL expired
12	0	IP header bad

traceroute e ICMP

- ∀ O transmissor envia uma série de segmentos UDP para o destino:
 - -1° possui TTL = 1, 2° possui TTL = 2, etc.
 - -nº de porta improvável.
- ∀ Quando o enésimo datagrama chega ao enésimo roteador:
 - -o roteador descarta o datagrama;
 - -e envia à origem uma mensagem ICMP (type 11, code 0);
 - -a mensagem inclui o nome do roteador e o endereço IP.
- ∀ Quando a mensagem ICMP chega, a origem calcula o RTT.
- ∀ O traceroute faz isso três vezes.
- **∀** Critério de interrupção:
 - -segmento UDP finalmente chega ao hospedeiro de destino;
 - -destino retorna o pacote ICMP "hospedeiro unreachable" (type 3, code 3).
- ∀Quando a origem obtém esse ICMP, ela pára.

IP v6

IPv6

- ∀ Motivação inicial: o espaço de endereços de 32 bits está próximo de esgotar-se.
- ∀ Motivação adicional:
 - -melhorar formato do cabeçalho para aumentar velocidade de processamento e de transmissão;
 - -mudanças no cabeçalho para incorporar mecanismos de controle de QOS.
- ∀ Formato do datagrama IPv6:
 - o cabeçalho fixo de 40 bytes;
 - O não é permitida fragmentação.

Cabeçalho IPv6

32 bits					
Versão	Classe de tráfego	de tráfego Rótulo de fluxo			
Comprimento da carga útil		Próximo cabeçalho (Hdr)	Limite de saltos		
Endereço da fonte (128 bits)					
Endereço do destino (128 bits)					
Dados					

Prioridade: prioridades diferenciadas para vários fluxos de informação Rótulo de Fluxol: identifica datagramas do mesmo "fluxo." (conceito de "fluxo" não é bem definido).

Próximo cabeçalho:: identifica o protocolo da camada superior ou um cabeçalho auxiliar.

Endereço: 128 bits definidos na RFC 2373.

Outras mudanças

- ∀ Checksum: removido para reduzir o tempo de processamento em cada salto.
- ∀ Options: permitidas, mas alocadas em cabeçalhos suplementares, indicados pelo campo "Next header".
- ∀ ICMPv6: nova versão de ICMP (RFC2463)
 - tipos de mensagens adicionais, ex.: "Packet Too Big".
 - funções de gerenciamento de grupos multicast.

Transição IPv4 para IPV6

- ∀ Nem todos os roteadores poderão ser atualizados simultaneamente!
- ∀ Como a rede irá operar com roteadores mistos de IPV4 e IPV6?
 - Tunelamento: IPv6 transportado dentro de pacotes IPv4 entre roteadores IPv4.

Transição IPv4 para IPV6

(encapsulando IPv6)

Escola de Artes, Ciências e Humanidades da Universidade de São Paulo

Visão lógica

Visão física

(encapsulando IPv6)

Mudança do Sílabo

- 05/Out Camada de Rede (Cap 4).
- 09/Out Camada de Rede -Endereçamento IP (Cap 4).
- 12/Out Feriado (Padroeira Brasil)
- 16/Out Lab 3 (wireshark).
- 19/Out Camada de Rede Roteamento (Cap 4)
- 23/Out Lab 4 (Roteamento)