	Notas	
	1	
Nome: RA:	2	
4ª Prova - MA 211 - Turma 28 de novembro de 2008.	3	
É proibido usar calculadora e desgrampear as folhas da prova. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. BOA PROVA!	4	

1. (2,5 pontos) Calcular a integral de superfície

$$\iint_{S} f(x, y, z) dS$$

onde f
$$(x,y,z)=\sqrt{x^2+y^2}$$
 e S é parametrizada por
$$r(u,v)=(u\cos v,u\sin v,v),\quad 0\leqslant u\leqslant 1,\quad 0\leqslant v\leqslant \pi.$$

- 2. (2,5 pontos) Determine a área da superfície do parabolóide hiperbólico $z = y^2 x^2$ que está entre os cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$.
- 3. (2,5 pontos) Calcule o trabalho realizado pelo campo de forças

$$F(x, y, z) = (\arctan(x) + z^2) \overrightarrow{i} + (y^y + x^2) \overrightarrow{j} + (\ln z^2 + y^2) \overrightarrow{k},$$

quando uma partícula se move sob sua influência ao redor da borda da parte da esfera $x^2+y^2+z^2=4$ que está no primeiro octante, na direção anti-horária quando vista por cima.

Dica:
$$\int \sin^3 u du = -1/3(2 + \sin^2 u) \cos u + C.$$

4. (2,5 pontos) Calcule o fluxo do campo vetorial $F(x,y,z)=(x^3+e^z)\overrightarrow{i}+x^2y\overrightarrow{j}+\sin(xy)\overrightarrow{k}$, através da superfície formada pelo parabolóide $z=4-y^2$ e pelos planos x=0, z=0 e x+z=5.