Discrete Mathematics (2008 Spring) Final

(total:110 points, max:100 points)

- 1. (30 points) For each of the following statements, determine and explain (required) whether it is correct or not.
 - (1). The number of derangements of 1,2,3,4,5 is 44.
 - (2). The number of integer solutions for $c_1 + c_2 + c_3 + c_4 + c_5 = 30$, $1 \le c_i$ for all *i*, with c_2 even and c_3 odd is equal to the coefficient of x^{25} in $(x+x^2+x^3+...)^3(x^2+x^4+...)(x+x^3+x^5+...)$.

(3).
$$\sum_{k=0}^{n} (-1)^{k} \binom{n}{n-k} (n-k)^{n} = 0.$$

- (4). The coefficient of x^{50} in $(x^6+x^7+x^8+...)^7$ is $\binom{13}{8}$.
- (5). 1/(1-x) is the exponential generating function for the sequence 0!, 1!, 2!, 3!,....
- (6). $(p \lor q) \to [q \to (\phi \subset \{\phi\})]$ is a tautology.
- 2. (10 points) (a) Find the coefficient of x^3y^2z in the expansion of $[(x/2) + 4y^2 3z]^5$. (b) What is the sum of all coefficients in the complete expansion?
- 3. (10 points) (1) Determine the sequence generated by the generating function $f(x) = \frac{1}{(3-2x)}$. (2) What is the generating function for the number of partitions of $n \in \mathbb{N}$ into summands that cannot exceed 12 and cannot occur more than five times?
- 4. (10 points, 4, 6) Determine how many integer solutions there are to $x_1 + x_2 + x_3 + x_4 = 18$, if (1) $1 \le x_i$ for all i, (2) $0 \le x_1 \le 4$, $0 \le x_2 \le 6$, $2 \le x_3 \le 7$, $3 \le x_4 \le 7$.
- 5. (10 points) (1) How many ways can one distributes eight distinct prizes among four students with exactly two students getting nothing? (2) How many ways have at least two students getting nothing?
- 6. (10 points) For A={1, 2, 3, 4, 5} and B={u, v, w, x, y}, determine the number of one-to-one functions $f: A \rightarrow B$ where $f(1) \neq v$, w, $f(2) \neq u$, w, $f(3) \neq x$, y and $f(4) \neq v$, x, y.
- 7. (10 points, 2,2,3,3) Let $A=\{a, b, c, d\}$, $f: A \rightarrow A$ and $g:AxA \rightarrow A$. (1) How many one-to-one correspondence functions in f? (2) How many commutative functions in g? (3) How many closed binary operations on A have c as the identity? (4) How many functions in part (3) are commutative?
- 9. (10 points) Solve the recurrence relation a_{n+2} -2 a_{n+1} + a_n =2ⁿ. $n \ge 0$, a_0 =1, a_1 =2 by the method of *generating functions*.