Theorem 12. An integral domain R is a GUFD iff it is an

HCF-GKD.

(1) every non zero non unit of R is contained in a finite number of minimal prime ideals (Gor. 3 and the fact that every non zero non unit of R is the preduct of a finite number of prime quanta)

(2) for every minimal prime P, R_p is a valuation domain(

Prop. μ and Cor. 6)

(3) $R = \bigcap R_p$, where P ranges over all minimal prime ideals of R.

Proof of (2), Obviously $R \subseteq \cap R_p$ where P ranges over minimal primes. Let $x \in \cap R_p$, then since R is an HCF domain, we manimal prime P implies that R is a unit in each R_p , consequently R is in no minimal prime ideal and so has no prime quantum as a factor which in a GUFD is possible only if R is a unit and hence R is R.

The properties (1),(2) and (3) as we have mentioned at the beginning of this section, show that R is a GKD and with the help of Prop, 4 we have proved that a GUFD is an HCF-GKD. Conversely let R be an HCF-GKD, Let x be a non zero non

unit element of B, then by the definition of a GKD, x is contained in a finite number of minimal prime ideals $P_1, P_2, \cdot P_n$ say. We may assume that there is no other minimal prime which contains x. Now since P_i are distinct there exists an element $y \in P_i$ such that $y \notin P_2$. We claim that $(x,y) \neq 1$, for otherwise (x,y) = 1 in a implies that $x \in P_1$ or a said so wise (x,y) = 1 in a implies that $(x,y) \neq 1$, for othermal (x,y) = 1 in P_2 in P_3 . But P_4 being a valuation domain implies that (x,y) = 1 in P_4 . But P_6 being a valuation domain