

Università di Bologna - Scuola di Scienze

Esame scritto di Calcolo delle Probabilità e Statistica 24 gennaio 2023

Esercizio 1

Una confezione di palle da biliardo ne contiene 7, numerate da 1 a 7. Queste vengono ripartite in modo casuale fra 3 scatole, numerate da 1 a 3. I possibili esiti dell'operazione sono quindi dati da vettori $\omega = (s_1, \ldots, s_7)$, dove $s_i \in \{1, 2, 3\}$ è la scatola in cui viene riposta la palla numero i.

- 1) Introdurre lo spazio campionario Ω con cui si intende risolvere il problema. Si scelga Ω finito e con esiti equiprobabili. Qual è la cardinalità di Ω ?
- 2) Si calcoli la probabilità che le palle vengano riposte tutte in una stessa scatola.
- 3) Si calcoli la probabilità che due palle siano nella scatola 1 e tre palle siano nella scatola 2 (quindi due palle sono nella scatola 3).
- 4) Si calcoli la probabilità che le palle di indice dispari siano nella scatola 2.

SOLUZIONE

- 1) $\Omega = \mathbf{DR}_{3,7}$, quindi $|\Omega| = 3^7 = 2187$.
- 2) L'evento di cui è richiesta la probabilità è

$$A = \{(1,\ldots,1),(2,\ldots,2),(3,\ldots,3)\}.$$

Quindi $\mathbb{P}(A) = \frac{1}{3^6} = \frac{1}{729} \approx 0.137\%.$

- 3) Sia B= "due palle sono nella scatola 1 e tre palle sono nella scatola 2". Determiniamo |B| con le seguenti scelte successive:
 - scelta delle due palle che sono nella scatola 1, ossia scelta di $i \in j$, $i \neq j$, tali che nel vettore $\omega = (s_1, \ldots, s_7)$ si ha $s_i = 1$ e $s_j = 1$: $\binom{7}{2}$ possibilità;
 - scelta delle tre palle (tra le cinque rimaste) che sono nella scatola 2: $\binom{5}{3}$ possibilità.

Quindi

$$\mathbb{P}(B) = \frac{\binom{7}{2}\binom{5}{3}}{3^7} = \frac{70}{729} \approx 9.6\%.$$

- 4) Sia C= "le palle di indice dispari sono nella scatola 2". Determiniamo |C| con le seguenti scelte successive:
 - scelta delle scatole in cui si trovano le palle con indice pari: $|\mathbf{DR}_{3,3}| = 3^3 = 27$ possibilità.

Quindi

$$\mathbb{P}(C) = \frac{3^3}{3^7} = \frac{1}{81} \approx 1.2\%.$$

Esercizio 2

Consideriamo una moneta equilibrata e un'urna contenente cinque palline: tre blu e due rosse. Si lancia la moneta e si procede come segue:

- se esce testa, si estraggono (simultaneamente) due palline dall'urna;
- se esce croce, si estraggono (simultaneamente) tre palline dall'urna.

Siano

$$X=$$
 "vale 2 se esce testa, vale 3 se esce croce", $Y=$ "nº palline blu estratte dall'urna".

- 1) Determinare densità discreta congiunta e marginali di X e Y
- 2) Calcolare $\mathbb{E}[X]$, $\mathbb{E}[Y]$ e Cov(X, Y)?
- 3) X e Y sono indipendenti?
- 4) Calcolare $\mathbb{P}(Y = X)$.

SOLUZIONE

1) Abbiamo che $S_X = \{2,3\}$ e $S_Y = \{0,1,2,3\}$. Per quanto riguarda la densità discreta congiunta, si calcola con la regola della catena. Ad esempio

$$p_{(X,Y)}(2,1) = \mathbb{P}(X=2,Y=1) = \mathbb{P}(Y=1|X=2)\mathbb{P}(X=2) = \frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}} \cdot \frac{1}{2}.$$

In generale, otteniamo la seguente tabella:

X Y	0	1	2	3	p_X
2	$\frac{\binom{3}{0}\binom{2}{2}}{\binom{5}{2}}\cdot\frac{1}{2}$	$\frac{\binom{3}{1}\binom{2}{1}}{\binom{5}{2}}\cdot\frac{1}{2}$	$\frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}}\cdot\frac{1}{2}$	0	
3	0	$\frac{\binom{3}{1}\binom{2}{2}}{\binom{5}{3}}\cdot\frac{1}{2}$	$\frac{\binom{3}{2}\binom{2}{1}}{\binom{5}{3}}\cdot\frac{1}{2}$	$\frac{\binom{3}{3}\binom{2}{0}}{\binom{5}{3}} \cdot \frac{1}{2}$	
p_Y					1

Quindi, svolgendo i conti, otteniamo:

X Y	0	1	2	3	p_X
2	$\frac{1}{20}$	$\frac{3}{10}$	$\frac{3}{20}$	0	$\frac{1}{2}$
3	0	$\frac{3}{20}$	$\frac{3}{10}$	$\frac{1}{20}$	$\frac{1}{2}$
p_Y	$\frac{1}{20}$	$\frac{9}{20}$	$\frac{9}{20}$	$\frac{1}{20}$	1

2)

$$\mathbb{E}[X] = \sum_{i} x_{i} p_{X}(x_{i}) = \frac{5}{2},$$

$$\mathbb{E}[Y] = \sum_{j} y_{j} p_{Y}(y_{j}) = \frac{3}{2},$$

$$\mathbb{E}[XY] = \sum_{i,j} x_{i} y_{j} p_{(X,Y)}(x_{i}, y_{j}) = \frac{39}{10},$$

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y] = \frac{3}{20} = 0.15.$$

- 3) No, infatti una condizione necessaria per l'indipendenza è che la covarianza sia uguale a zero, mentre dal punto precedente sappiamo che Cov(X, Y) = 0.15.
- 4) Si ha che

$$\mathbb{P}(Y = X) = \sum_{i,j: x_i = y_j} p_{(X,Y)}(x_i, y_j) = p_{(X,Y)}(2,2) + p_{(X,Y)}(3,3) = \frac{1}{5} = 20\%.$$

Esercizio 3

Sia X una variabile aleatoria continua con funzione di ripartizione

$$F_X(x) = \begin{cases} 0, & x \le 0, \\ \frac{1}{2}x, & 0 \le x \le 1, \\ 1 - \frac{1}{2x^2}, & x \ge 1. \end{cases}$$

- 1) Determinare la densità f_X della variabile aleatoria X.
- 2) Calcolare $\mathbb{P}(X \geq 2)$ e $\mathbb{E}[X]$.

Si consideri la variabile aleatoria

$$Y = \begin{cases} 1, & \text{se } X \le 1, \\ X+1, & \text{se } X > 1. \end{cases}$$

- 3) Calcolare la probabilità che simultaneamente $Y \leq 3$ e X > 1.
- 4) Calcolare $\mathbb{P}(Y \leq 3)$.

SOLUZIONE

1) Si ha che

$$f_X(x) = \begin{cases} 0, & x \le 0, \\ \frac{1}{2}, & 0 < x \le 1, \\ \frac{1}{x^3}, & x > 1, \end{cases}$$

dove abbiamo posto arbitrariamente $f_X(0) = 0$ e $f_X(1) = \frac{1}{2}$.

2)

$$\mathbb{P}(X \ge 2) = 1 - F_X(2) = \frac{1}{8},$$

$$\mathbb{E}[X] = \int_0^1 \frac{1}{2} x \, dx + \int_1^{+\infty} \frac{1}{x^2} \, dx = \frac{5}{4}.$$

3) Dobbiamo calcolare la probabilità $\mathbb{P}(Y \leq 3, X > 1)$. Si ha che

$$\mathbb{P}(Y \le 3, X > 1) = \mathbb{P}(X + 1 \le 3, X > 1) = \mathbb{P}(1 < X \le 2) = F_X(2) - F_X(1) = \frac{3}{8}.$$

4) Si noti che l'evento $\{Y \leq 3\}$ si verifica se e solo se si verifica l'evento $\{X \leq 1\}$ oppure l'evento $\{X+1\leq 3\}\cap \{X>1\}$. Poiché gli eventi $\{X\leq 1\}$ e $\{X+1\leq 3\}\cap \{X>1\}$ sono disgiunti, per la proprietà di additività otteniamo

$$\mathbb{P}(Y \le 3) = \mathbb{P}(X \le 1) + \mathbb{P}(X + 1 \le 3, X > 1) = F_X(1) + \frac{3}{8} = \frac{7}{8}.$$

Esercizio 4

Un bambino saltella tra cinque sassi, numerati da 1 a 5, disposti come in figura:

Inizialmente si trova nel sasso 1. A ogni istante, lancia un dado regolare a sei facce: se il risultato del lancio corrisponde a un sasso connesso da una linea tratteggiata al sasso su cui si trova, ci salta; in caso contrario, resta nella sua posizione. Descriviamo il moto del bambino con una catena di Markov $(X_n)_{n\geq 1}$ in cui

 $X_n =$ "nº del sasso su cui si trova il bambino all'istante n", $n \geq 1$.

- 1) Determinare spazio degli stati e matrice di transizione e disegnare il corrispondente grafo orientato.
- 2) Quali sono le classi comunicanti?
- 3) Calcolare $\mathbb{P}(X_3 = 4)$.
- 4) Trovare l'unica distribuzione invariante.

1)
$$S = \{1, 2, 3, 4, 5\},\$$

$$\Pi = \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{5}{6} & 0 & 0 & 0 \\ \frac{1}{6} & 0 & \frac{5}{6} & 0 & 0 \\ \frac{1}{6} & 0 & 0 & \frac{5}{6} & 0 \\ \frac{1}{6} & 0 & 0 & 0 & \frac{5}{6} \end{pmatrix}$$

- 2) C'è un'unica classe comunicante, che è quindi $S = \{1, 2, 3, 4, 5\}$. La catena di Markov è dunque irriducibile.
- 3) Sappiamo che $X_1=1$, quindi

$$\mathbb{P}(X_3 = 4) = \sum_{i=1}^{5} p_{X_1}(i) \, \pi_{i4}^{(2)} = \pi_{14}^{(2)}.$$

Si ha che

$$\pi_{14}^{(2)} = \frac{1}{3} \cdot \frac{1}{6} + \frac{1}{6} \cdot \frac{5}{6} = \frac{7}{36} \approx 19.4\%.$$

Quindi $\mathbb{P}(X_3 = 4) \approx 19.4\%$.

4) Ricordiamo che una distribuzione invariante è un vettore riga $\vec{\boldsymbol{\pi}} = (\pi_1, \pi_2, \pi_3, \pi_4, \pi_5)$ tale che

$$\vec{\boldsymbol{\pi}} = \vec{\boldsymbol{\pi}} \Pi$$
 e $\sum_{i=1}^{5} \pi_i = 1$.

Queste due uguaglianze corrispondono al seguente sistema:

$$\begin{cases} \pi_1 &= \frac{1}{3}\pi_1 + \frac{1}{6}\pi_2 + \frac{1}{6}\pi_3 + \frac{1}{6}\pi_4 + \frac{1}{6}\pi_5 \\ \pi_2 &= \frac{1}{6}\pi_1 + \frac{5}{6}\pi_2 \\ \pi_3 &= \frac{1}{6}\pi_1 + \frac{5}{6}\pi_3 \\ \pi_4 &= \frac{1}{6}\pi_1 + \frac{5}{6}\pi_4 \\ \pi_5 &= \frac{1}{6}\pi_1 + \frac{5}{6}\pi_5 \\ \pi_1 + \pi_2 + \pi_3 + \pi_4 + \pi_5 &= 1. \end{cases}$$

Le equazioni dalla seconda alla penultima, diventano:

$$\pi_2 = \pi_1, \qquad \pi_3 = \pi_1, \qquad \pi_4 = \pi_1, \qquad \pi_5 = \pi_1.$$

Quindi necessariamente $\pi_i = \frac{1}{5}$, per ogni i = 1, 2, 3, 4, 5. Perciò

$$\vec{\pi} = \left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right).$$