Bioinformatics CS300 Domains according to UniProt and String

Fall 2019 Oliver BONHAM-CARTER

Nucleation, Rapid Folding, and Globular Intrachain Regions in Proteins

Donald B. Wetlaufer

Wetlaufer, Donald B. "Nucleation, rapid folding, and globular intrachain regions in proteins." *Proceedings of the National Academy of Sciences* 70.3 (1973): 697-701.

Abstract

Distinct structural regions have been found in several globular proteins composed of single polypeptide chains. The existence of such regions and the continuity of peptide chain within them, coupled with kinetic arguments, suggests that the early stages of three-dimensional structure formation (nucleation) occur independently in separate parts of these molecules. A nucleus can grow rapidly by adding peptide chain segments that are close to the nucleus in aminoacid sequence. Such a process would generate three-dimensional (native) protein structures that contain separate regions of continuous peptide chain. Possible means of testing this hypothesis are discussed.

Different regions in same protein (domains) performing specific tasks.

ALLEGHENY COLLEGE

Structures For Functions

Structures for Functions

Windows to allow driver to see out while driving

Headlights for driving at night

License plate: for Identification

Door for letting driver into the car

Wheels, necessary for mobility

Protein Data Bank: 5WLG

- A protein domain is a conserved part of a given protein sequence and (tertiary) structure.
- Can evolve, function, and exist independently of the rest of the protein chain
- Each domain forms a compact threedimensional structure
- Often can be independently stable and folded.

SMART domain 'bubblegram' for human fibroblast growth factor (FGF) receptor 1 (type P11362 into web site: smart.embl.de)

Protein Modularity

- Discrete functional units
- Found domains do not occur in the same order across proteins.
- Domains are considered separately in protein function predictions

Finding a Domain?

- Alignment across proteins may show domains
- Use databases to match similar parts of proteins
 - Pfam, Smart, Interpro and others

Alignment?!

- Provide more info about a protein's family, relatedness and other details.
- Domain landmarks include: low-complexity or disorder to suggest that these regions may have a specific syntax or pronounced grammar.

Domains By PDB

- Domains give the protein special qualities:
 - Domain Names: Alpha1, Alpha2, Alpha3, Ig-like C1-type

Protein Data Bank ID: 5WLG

- This protein:
 - https://www.rcsb.org/pdb/explore/explore.do?structureId=5WLG
- Help with features
 - https://www.rcsb.org/pages/help/featureView

- Domains give the protein special qualities:
 - Domain Names: Alpha1, Alpha2, Alpha3, Ig-like C1-type

Family & Domains

Domains and Repeats

Feature key	Position(s)	Description	Actions	Graphical view	Length
Domain ⁱ	209 - 297	Ig-like C1-type	🖮 Add 🔧 BLAST		89

Region

Feature key	Position(s)	Description	Actions	Graphical view	Length
Region i	25 - 114	Alpha-1	🖮 Add 🔧 BLAST		90
Region i	115 - 206	Alpha-2	🖮 Add 🔧 BLAST		92
Region i	207 - 298	Alpha-3	🖮 Add 🔧 BLAST		92
Region i	299 - 309	Connecting peptide	🖮 Add 🔧 BLAST		11

UniProt ID: P01899

A Protein Knowledge Base

http://www.uniprot.org/uniprot/P01899#family_and_domains

STRING		Search Download Help My	y Data
Protein by name	>	SEARCH	
Protein by sequence	>	Single Protein by Name / Identifier	
Multiple proteins	>		
Multiple sequences	>	Protein Name: (examples: #1 #2 #3)	
Organisms	>	P01899	
Protein families ("COGs")	>	Organism:	
Examples	>	auto-detect ▼	
Random entry	>		
		SEARCH	

String DB ID P01899

http://string-db.org/

STRING: Functional Protein Association Networks

- Known and predicted protein-protein interactions
- How does a protein interact with others?
- What types of interactions are these (across all known genomes, of any organism)?

• Question: What proteins (from genes) interact with **HBB** protein (from the gene)?

*STRING			Search Download
Protein by name	>	SEARCH	
Protein by sequence	>	Single Pro	otein by Name / Identifier
Multiple proteins	>		,
Multiple sequences	>	Protein Name:	(examples: #1 #2 #3)
Proteins with Values/Ranks New	>	нвв	
Organisms	>	Organism:	
Protein families ("COGs")	>	auto-detect	▼
Examples	>		

https://string-db.org/

Answer: Lots!

https://string-db.org/

What kinds of interactions?

Criteria to Determine Relations

Proteins

- There are many ways to measure the distance between two different proteins
 - Text Mining

String: by Text Mining

HBB's interactions according to the literature

https://string-db.org/

Experiments performed to show that protein are related

String: Linked Experimentally

Learn about the experiments

LAB EXPERIMENTS

Relevant datasets in Mus musculus:

protein-protein interaction (intact) Detected by psi-mi:"MI:0027"(cosedimentation) assay	● H2-D1 ● B2m [and 1527 other proteins]
protein-protein interaction (mint) Detected by psi-mi:"MI:0027"(cosedimentation) assay	● H2-D1 ● B2m [and 1527 other proteins]
protein-protein interaction (dip) Detected by x-ray crystallography assay	● H2-D1 ● B2m
protein-protein interaction (intact) Detected by psi-mi:"MI:0114"(x-ray crystallography) assay	● H2-D1 ● B2m

Global survey of organ and organelle protein expression in mouse; combined proteomic and transcriptomic profiling. ▼ Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, Rossant J, Hughes TR, Frey B, Emili A

Cell. 125(1):173-86 (2006) Cell. 125(1):173-86 (2006).

Criteria to Determine Relations

Other ways to measure the distance

between two different proteins

- Neighborhood
- Experiments
- Databases
- Co-Expression
- And others...

More Information?

- Unify the representation of gene and gene product attributes across all species information
 - AmiGO 2: Gene ontology
 - http://amigo.geneontology.org/amigo/landing

- Information of effects of genetic variation on human health
 - Genetics Home Reference
 - https://ghr.nlm.nih.gov/

Header

- Pick your favorite protein and head-over to:
 - http://www.uniprot.org/

example: P01899, gene name: H2-D1

Then check out the networks at:

https://string-db.org/

