Fondamenti dell'Informatica

1 semestre

Quiz sugli ASF

Prof. Giorgio Gambosi a.a. 2021-2022

Problema 1: Dato il seguente AFD,

Individuare tre stringhe accettate e tre stringhe rifiutate dall'automa. Descrivere il linguaggio accettato dall'automa.

Problema 2: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

 $L = \{w | w \text{ ogni } 0 \text{ in } w \text{ è seguito immediatamente da almeno due } 1\}$

Problema 3: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

 $L = \{w | w \neq \varepsilon \text{ e il primo simbolo di } w \text{ e l'ultimo sono uguali } \}$

Problema 4: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

$$L=\{w|\mid w\mid=7i, i\geq 0\}$$

.

Problema 5: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

$$L = \{0,1\}^* - \{\varepsilon\}$$

.

Problema 6: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

 $L = \{w | w \text{ inizia con } 1 \text{ e termina con } 0\}$

.

Problema 7: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

 $L = \{w | w \text{ contiene un numero pari di } 0, \text{ o contiene esattamente due } 1\}$

.

Problema 8: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

 $L = \{w | w \text{ contiene esattamente due} 0\}$

•

Problema 9: Definire un ASFD che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

 $L = \{w|w \ {\rm contiene} \ {\rm esattamente} \ {\rm due} 0 \ {\rm e} \ {\rm almeno} \ {\rm due} \ 1\}$

.

Problema 10: Definire un ASFD che riconosce il linguaggio $L \subseteq \{0,1\}^*$ definito come

$$L = \{w \mid \mid w \mid mod5 = 1\}$$

•

Problema 11: Utilizzare gli ASF per dimostrare che:

- 1. $L = \{a^n | n \ge 4\}$ è regolare
- 2. Se L è regolare allora $L \cup \{\varepsilon\}$ è regolare
- 3. Se L è regolare allora \overline{L} è regolare

Problema 12: Dato il seguente AFND,

Quali tra le stringhe aa, ba, aba, aba, abab sono accettate dall'automa?

Problema 13: Definire un ASFND avente 3 stati e che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

$$L = 0^*1^*0^+$$

L è quindi l'insieme delle stringhe composte da una sequenza (eventualmente nulla) di 0 seguita da una sequenza (eventualmente nulla) di 1 seguita da una sequenza di almeno uno 0.

Problema 14: Definire un ASFND che riconosce il linguaggio $L \subseteq \{a,b\}^*$ definito come

$$L_1 = \{a^n b a^m | n, m \ge 0\}$$

Problema 15: Definire un ASFND che riconosce il linguaggio $L \subseteq \{a,b\}^*$ definito come

$$L_1 = \{a^n b a^m | n, m \ge 0\}$$

.

Problema 16: Trasformare l'ASFND del problema precedente in un ASFD equivalente.

Problema 17: Dato il seguente AFND,

derivare un ASFD equivalente.

Problema 18: Dato il seguente AFND con ε -transizioni,

derivare un ASFND privo di ε -transizioni equivalente.

Problema 19: Dato il linguaggio L_1 del problema precedente, definire un ASFND che riconosce il linguaggio $\overline{L_1} \cup L_1^R$.

Problema 20: Definire un ASFND avente 3 stati e che riconosce il linguaggio $L\subseteq\{0,1\}^*$ definito come

$$L = 0^*1^*0^+$$

Problema 21: Per ogni automa definito ai punti precedenti, dimostrare che accetta esattamente il corrispondente linguaggio. A tal fine, dimostrare che l'automa (1) accetta tutte le stringhe del linguaggio e (2) non accetta nessuna stringa che non appartiene al linguaggio.

Problema 22: Dato il seguente grafo di transizione,

- 1. Il grafo rappresenta un ASFND $\mathcal{A}_N=(Q,\Sigma,\delta,q_0,F)$. Descrivere ognuna di tali componenti per l'automa in questione.
- 2. Costruire un ASFD $\mathcal{A}_D=(Q',\Sigma,\delta',q_0',F')$ equivalente a \mathcal{A}_N : definire gli elementi Q',δ',q_0',F' e descrivere poi l'automa mediante il relativo grafo di transizione.

Problema 23: Definire gli ASFND che accettano i linguaggi descritti dalle seguenti espressioni regolari.

- 1. $(0+1)^*000(0+1)^*$
- 2. $(((00)^*(11)) + 01)^*$
- 3. ε^*

Problema 24: Definire gli ASFND che accettano i linguaggi descritti dalle seguenti espressioni regolari.

- 1. $\varepsilon + a(a+b)^*$
- 2. $(ab^*)^* + (ba^*)^*$

Problema 25: Dato il seguente ASFD,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Problema 26: Dato il seguente ASFD,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Problema 27: Dato il seguente ASFND,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Problema 28:

Dato il seguente ASFND,

derivare una espressione regolare che descriva il linguaggio riconosciuto dall'automa.

Problema 29:

Dato il seguente ASFND,

derivare un ASFD che riconosca lo stesso linguaggio.

Problema 30: In un ASFD $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, un cammino di lunghezza $n\geq 1$ è una sequenza di stati q_1,\dots,q_n tale che per ogni $1\leq i\leq n-1$ abbiamo $\delta(q_i,a)=q_{i+1}$ per qualche $a\in\Sigma$. Si noti che ogni singolo stato può esser visto come un cammino di lunghezza 1. Un ciclo di lunghezza $n\geq 1$ è un cammino con il vincolo aggiuntivo che $\delta(q_n,a)=q_1$ per qualche $a\in\Sigma$: si noti che uno stato q tale che $\delta(q,a)=q$ per qualche $a\in\Sigma$ definisce un ciclo. Si dimostri il seguente enunciato:

Sia $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ un ASFD che riconosce un linguaggio L infinito. Esiste allora (almeno) uno stato $q'\in Q$ per cui valgono le seguenti proprietà:

- Esiste un cammino da q_0 a q^\prime
- Esiste un ciclo che include q'
- Esiste un cammino da q' a qualche stato in F.

Problema 31: In un ASFD $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$, un cammino di lunghezza $n\geq 1$ è una sequenza di stati q_1,\dots,q_n tale che per ogni $1\leq i\leq n-1$ abbiamo $\delta(q_i,a)=q_{i+1}$ per qualche $a\in\Sigma$. Si noti che ogni singolo stato può esser visto come un cammino di lunghezza 1. Un ciclo di lunghezza $n\geq 1$ è un cammino con il vincolo aggiuntivo che $\delta(q_n,a)=q_1$ per qualche $a\in\Sigma$: si noti che uno stato q tale che $\delta(q,a)=q$ per qualche $a\in\Sigma$ definisce un ciclo. Si dimostri il sequente enunciato:

Sia $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$ un ASFD che riconosce un linguaggio L infinito. Esiste allora (almeno) uno stato $q'\in Q$ per cui valgono le seguenti proprietà:

- Esiste un cammino da q_0 a q'
- Esiste un ciclo che include q'
- Esiste un cammino da q^\prime a qualche stato in F.

Problema 32: Per ogni stringa $w \in \{0,1\}^*$ sia $\mathsf{double}(w)$ la stringa ottenuta sostituendo in w ogni occorrenza di 0 con 00 ed ogni occorrenza di 1 con 11. Per ogni linguaggio $L \subseteq \{0,1\}^*$ sia $\mathsf{double}(L) = \{\mathsf{double}(w) \mid w \in L\}$. Si definisca un procedimento che, dato un linguaggio L riconosciuto da un ASFD \mathcal{A} , derivi da esso l'automa \mathcal{A}' che riconosce $\mathsf{double}(L)$.

Problema 33: Sia dato l'ASFND con ε -transizioni $\mathcal{A}=(Q,\Sigma,\delta_N,q_0,\{q_F\})$ tale che non esistono né transizioni in q_0 né transizioni da q_F . Detto L il linguaggio accettato da \mathcal{A} , specificare quali linguaggi vengono accettati dai seguenti automi:

- 1. L'automa \mathcal{A}_1 ottenuto da \mathcal{A} aggiungendo una arepsilon-transizione da q_F a q_0 .
- 2. L'automa A_2 ottenuto da A aggiungendo una arepsilon-transizione da q_0 a ogni stato raggiungibile da q_0 .
- 3. L'automa A_3 ottenuto da A aggiungendo una ε -transizione da ogni stato a partire da cui q_F è raggiungibile a q_F stesso.
- 4. L'automa \mathcal{A}_4 ottenuto applicando contemporaneamente le modifiche ai due punti precedenti.

Problema 34: Una stringa u è un prefisso di una stringa w se esiste v tale che w=uv. Dato un ASFND $\mathcal A$ che accetta un linguaggio L=L(A) derivare un ASFND $\mathcal A_p$ che accetta il linguaggio $L_s=\{w\mid \exists x\in L, w \text{ è un prefisso di } x\}$.

Problema 35: Una stringa u è un suffisso di una stringa w se esiste v tale che w=vu. Dato un ASFND $\mathcal A$ che accetta un linguaggio L=L(A) derivare un ASFND $\mathcal A_s$ che accetta il linguaggio $L_p=\{w\mid \exists x\in L, w \text{ è un suffisso di } x\}$

Problema 36: Sia $\mathcal A$ un ASFD con $\Sigma=\{a,b\}, Q=\{q_1,\ldots,q_8\}, q_0=q_1, F=\{q_3,q_4\}$ e δ definita nel modo seguente:

Determinare un automa minimo equivalente a \mathcal{A} .

Problema 37:(Prova d'esame del 30-1-2006). Definire un ASFD che riconosca il linguaggio $L\subset\{a,b\}$ comprendente tutte le stringhe he non contengono la stringa aba al loro interno.

Problema 38:(Prova d'esame del 24-2-2006). Definire un algortmo che, dato un ASFD \mathcal{A} , determina intempo finito se $L(\mathcal{A})$ contiene almeno 100 stringhe.

Problema 39:(Prova d'esame del 24-2-2006). Sia dato l'ASFND A con $\Sigma=\{0,1\}, Q=\{q_0,q_1\}, F=\{q_1\}$ e δ definita dalla tabella sequente:

entrambe il linguaggio $L(\mathcal{A})$ accettato da \mathcal{A} .

Problema 40:(Prova d'esame del 4-7-2006). Costruire un ASFND che accetti il linguaggio definito dall'espressione regolare $a(aa+ab)^*ab$

Problema 41:(Prova d'esame del 4-7-2006). Sia dato l'ASFD $\mathcal A$ con $\Sigma=\{a,b\}$, $Q=\{q_0,q_1,q_2,q_3,q_4,q_5\}$, $F=\{q_4,q_5\}$ e δ definita dalla tabella seguente:

Derivare l'automa minimo equivalente ad \mathcal{A} .

Problema 42:(Prova d'esame del 13-9-2006). Sia dato l'ASFND $\mathcal A$ con $\Sigma=\{0,1\}, Q=\{q_0,q_1,q_2,q_3\}, F=\{q_3\}$ e δ definita dalla tabella sequente:

Derivare un ASFD, contenente soltanto stati raggiungibili, equivalente ad ${\cal A}$.

Problema 43:(Prova d'esame del 18-6-2007). Sia dato l'ASFND $\mathcal A$ con $\Sigma=\{a,b\}$, $Q=\{q_0,q_1,q_2,q_3\}$, $F=\{q_3\}$ e δ definita dalla tabella seguente:

Derivare un ASFD, contenente soltanto stati raggiungibili, equivalente ad \mathcal{A} .

Problema 44:(Prova d'esame del 11-7-2007). Definire un ASFD che accetti il linguaggio $L\subset\{a,b\}^*$ tale che, per ogni $\sigma\in\{a,b\}^*$, $\sigma\in L$ se e solo se in σ compaiono non più di tre caratteri a.

Problema 45:(Prova d'esame del 12-9-2007). Si supponga di avere due linguaggi L_1, L_2 riconosciuti dai due automi a stati finiti deterministici $\mathcal{A}_1, \mathcal{A}_2$. Si descriva l'automa a stati finiti \mathcal{A} che riconosce la differenza simmetrica di L_1 e L_2 .

Problema 46:(Prova d'esame del 24-1-2008). Sia dato l'ASFND $\mathcal A$ con $\Sigma=\{0,1\}$, $Q=\{q_0,q_1,q_2,q_3\}$, $F=\{q_3\}$ e δ definita dalla tabella seguente:

	q_0	q_1	q_2	q_3
0	$\{q_1\}$	Ø	$\{q_2\}$	Ø
1	Ø	$\{q_3\}$	$\{q_2,q_3\}$	Ø
ε	q_2	Ø	Ø	Ø

Derivare un automa a stati finiti deterministico equivalente ad ${\cal A}$

Problema 47:(Prova d'esonero del 25-2-2015). Data l'espressione regolare $a^*b^*+b^*a^*$, costruire una automa a stati finiti deterministico che riconosca il linguaggio descritto da essa.

Problema 48:(Prova d'esonero del 9-2-2016). Si definisca un automa a stati finiti che riconosca l'insieme delle stringhe corrispondenti a numeri reali in notazione esponenziale e base 2, del tipo cioé xey dove x è un numero (eventualmente) con punto e parte decimale ed eventualmente con segno e y è un numero con eventuale segno, diverso da 0 e 1.

Si assume che un numero debba iniziare con una cifra diversa da 0 e che una parte decimale non termini per 0. Esempi: 1,-10,+1.011,110e10,101e-10,10.01e1001,+1.0001e100.

Problema 49:(Prova d'esonero del 4-3-2016). Sia dato il linguaggio

$$L = \{w \in \{a, b, c\}^+ | \text{ I'ultimo carattere in } w \text{ non è comparso prima} \}$$

Si definisca un automa a stati finiti che accetti ${\cal L}.$

Problema 50:(Prova d'esame del 18-7-2016). Costruire un ASFD che riconosca il linguaggio descritto dall'espressione regolare $a((ab+aba)^*a)^*$

Problema 51:(Prova d'esame del 17-2-2016). Si consideri una estensione dei DFA in cui le transizioni sono associate ad espressioni regolari arbitrarie su Σ . Ad esempio:

Mostrare che l'insieme dei linguaggi riconoscibili dal modello esteso corrisponde ai linguaggi di tipo 3, mostrando l'equivalenza tra il modello esteso e i DFA.