§ 21 时间平移和时间反演 § 21-1 时间平移

一、量子力学中的时空观

在量子力学中,系统或粒子的空间坐标是物理量,有厄米算符与之对应,有本征值和本征矢量,但是时间却不是物理量,没有算符与之对应,它在理论中的地位只是一个实数参数,所以系统的哈密顿量在时间变换方面的不变性或对称性,与对空间变换的不变性是不完全一样的。

二、时间平移操作以及对态函数和算符的作用

在位置表象中

1. 时间平移算符及对态函数的作用

设系统处于某一含时态 $\psi(t) = \psi(\mathbf{r}, t)$ 中,其态函数满足 Schr ödinger方程

$$i\hbar \frac{\partial}{\partial t} \psi(t) = \hat{H}(\hat{\mathbf{R}}, \hat{\mathbf{P}}, t) \psi(t)$$

 $\psi(t)$ 态的时间平移态 $\psi'(t)$ 是一个运动变化完全与 $\psi(t)$ 相同,但全面推迟时间 τ 发生的态,即

$$\psi'(t+\tau) = \psi(t)$$

$$\psi'(t) = \psi(t - \tau)$$

定义 $Q(\tau)$ 为作用于时间参量上的时间平移操作,即

$$Q(\tau)t = t + \tau$$

定义 $\hat{D}(\tau)$ 为作用于时间函数上的时间平移算符,这是一个函数空间上的幺正算符,其对函数的作用可写为

$$\psi'(\mathbf{r},t) = \hat{D}(\tau)\psi(\mathbf{r},t) = \psi[\mathbf{r},Q^{-1}(\tau)t] = \psi(\mathbf{r},t-\tau)$$

2. 时间平移算符对其他算符的作用

Hilbert空间中的算符 $\hat{A}(\hat{\mathbf{R}},\hat{\mathbf{P}},t)$ 的时间平移 $\hat{A}'(\hat{\mathbf{R}},\hat{\mathbf{P}},t)$ 为

$$\hat{A}'(\hat{\mathbf{R}}, \hat{\mathbf{P}}, t) = \hat{D}(\tau)\hat{A}(\hat{\mathbf{R}}, \hat{\mathbf{P}}, t)D^{-1}(\tau)$$

$$= \hat{A}(\hat{\mathbf{R}}, \hat{\mathbf{P}}, Q^{-1}(\tau)t) = \hat{A}(\hat{\mathbf{R}}, \hat{\mathbf{P}}, t - \tau)$$

不显含时间的算符不受时间平移的影响,如

即

$$\hat{\mathbf{R}}' = \hat{D}(\tau)\hat{\mathbf{R}}\hat{D}^{-1}(\tau) = \hat{\mathbf{R}}$$

$$\hat{\mathbf{P}}' = \hat{D}(\tau)\hat{\mathbf{P}}\hat{D}^{-1}(\tau) = \hat{\mathbf{P}}$$

用时间平移算符 $\hat{D}(\tau)$ 作用于Schrödinger方程两边:

$$i\hbar\hat{D}(\tau)\frac{\partial}{\partial t}\hat{D}^{-1}(\tau)\hat{D}(\tau)\psi(t) = \hat{D}(\tau)\hat{H}\hat{D}^{-1}(\tau)\hat{D}(\tau)\psi(t)$$
$$i\hbar\frac{\partial}{\partial t}\psi'(t) = \hat{H}(t-\tau)\psi'(t)$$

此式一般来说与原来Schr ödinger方程不同,因为 $\hat{H}(t-\tau)$

不一定与 $\hat{H}(t)$ 相同,因此 $\psi'(t)$ 不一定是系统一个可能实现的状态。

三、哈密顿具有时间平移对称性的情况

如果系统的 \hat{H} 具有时间平移对称性,即 $\hat{H}(t-\tau) = \hat{H}(t)$ 对一切 τ 成立,则Schr ödinger方程任何状态的时间平移态也是系统 的一个可能的状态,

$$i\hbar \frac{\partial}{\partial t} \psi'(t) = \hat{H}(t-\tau)\psi'(t)$$

哈密顿具有时间平移的对称性即是要求它不明显依赖于时间,不显含时间的哈密顿本身是一个守恒量,因此说:

系统的哈密顿如果具有时间平移的不变性 $\hat{H}(t-\tau) = \hat{H}(t)$ 则导致系统的能量守恒。

注意:时间平移与时间演化是两个不同的概念。波函数经时间平移后不一定再满足Schrödinger方程,而时间演化算符作用后的波函数要服从Schrödinger方程。

时间平移算符: $\hat{D}(\tau) = e^{-\tau \frac{d}{dt}}$

演化算符: $U^{-1}(\tau,0) = e^{\frac{i}{\hbar}\tau \hat{H}}$ (\hat{H} 不显含时间)

所以: $\hat{D}(\tau) = e^{-\tau \frac{d}{dt}} \neq e^{\frac{i}{\hbar}\tau \hat{H}}$

§ 21-2 时间反演

一、态函数的时间反演变换

1. 时间反演算符 \hat{T}_0

设系统的 \hat{H} 为实算符(不含虚数),且不含时,无自 旋。系统的态满足Schrödinger方程:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \hat{H} \psi(\mathbf{r}, t)$$

*t*换成-t:

$$i\hbar \frac{\partial}{\partial (-t)} \psi(\mathbf{r},-t) = \hat{H} \psi(\mathbf{r},-t)$$

两边取复共轭:
$$i\hbar \frac{\partial}{\partial t} \psi^*(\mathbf{r}, -t) = \hat{H} \psi^*(\mathbf{r}, -t)$$

$$\psi'(\mathbf{r},t) = \psi^*(\mathbf{r},-t) = \hat{T}_0 \psi(\mathbf{r},t)$$

则 $\psi'(\mathbf{r},t)$ 为时间反演态, \hat{T}_0 称为时间反演算符。每一个含时态都有一个时间反演态与之对应,当哈密顿在时间反演下不变时,时间反演态与原状态满足相同的Schr ödinger方程。

 \hat{T}_0 满足下列条件:

$$\hat{T}_0^{-1} = \hat{T}_0$$
 $\hat{T}_0 \hat{T}_0 = 1$

位置算符 x , 动量算符 p 和轨道角动量 L

的时间反演是

$$\hat{\mathbf{X}}' = \hat{T}_0 \hat{\mathbf{X}} \hat{T}_0^{-1} = \hat{\mathbf{X}}$$

$$\hat{\mathbf{P}}' = \hat{T}_0 \hat{\mathbf{P}} \hat{T}_0^{-1} = -\hat{\mathbf{P}}$$

$$\hat{\mathbf{L}}' = \hat{T}_0 \hat{\mathbf{L}} \hat{T}_0^{-1} = -\hat{\mathbf{L}}$$

Proof: 取任意函数 $\psi(\mathbf{r},t)$,有

$$\hat{T}_0 \hat{P}_x \hat{T}_0^{-1} \psi(\mathbf{r}, t) = \hat{T}_0 [-i\hbar \frac{\partial}{\partial x} \psi^*(\mathbf{r}, -t)]$$

$$= i\hbar \frac{\partial}{\partial x} \psi(\mathbf{r}, t) = -\hat{P}_x \psi(\mathbf{r}, t)$$

$$\hat{T}_0 \hat{P}_x \hat{T}_0^{-1} = -\hat{P}_x$$

所以,

如果无自旋系统的 \hat{H} 不显含时间,又是动量 \hat{P}

的二次式,则有

$$\hat{T}_0 \hat{H} \hat{T}_0^{-1} = H$$

此时该系统(及其哈密顿)具有时间反演不变性或时间反演对称性。这时系统的每一个含时态的时间 反演态也是系统的一个可能实现的状态。

2. 时间反演态

在经典力学中,若单粒子所受的外力 F(r) 只是位置的函数而与速度无关,则其运动方程满足牛顿第二定律,即

$$m\frac{d^2\mathbf{r}(t)}{dt^2} = \mathbf{F}(\mathbf{r})$$

$$t$$
 换成- t :
$$m\frac{d^2\mathbf{r}(-t)}{dt^2} = \mathbf{F}(\mathbf{r})$$

令粒子的时间反演态为 $\mathbf{r}'(t) = \mathbf{r}(-t)$

则 $\mathbf{r}'(t)$ 满足与 $\mathbf{r}(t)$ 相同的运动方程。

反演态的物理图象:

当粒子从初始态 $(\mathbf{r}_i,\mathbf{p}_i)$ 经过 Δt 时间运动到 \mathbf{r}_f 点,动量为 \mathbf{p}_f 时,则其时间反演态如以 $(\mathbf{r}_f,-\mathbf{p}_f)$ 为初始态,经过时间 后 Δt 粒子将按原路径回到 ,而那时动量为 ,情况与将原过程拍成电影倒过来放映一样。

FIGURE 4.9. (a) Classical trajectory which stops at t = 0 and (b) reverses its motion $\mathbf{p}|_{t=0} \to -\mathbf{p}|_{t=0}$.

在量子力学中,以无自旋粒子系统为例,原来的含时态 $\psi(\mathbf{r},t)$ 与其时间反演态 $\psi'(\mathbf{r},t)$ 两者都满足同一个

Schrödinger方程,而 $\psi(\mathbf{r},t)$ 的最一般解是

$$\psi(\mathbf{r},t) = \sum_{ni} a_{ni} \psi_{ni}(\mathbf{r}) e^{-\frac{i}{\hbar} E_n t}$$

式中

$$\hat{H}\psi_{ni}(\mathbf{r}) = E_n\psi_{ni}(\mathbf{r})$$
 $i = 1, 2, \dots, d_n$

 d_n 是能级 E_n 的简并度。

时间反演态:
$$\psi'(\mathbf{r},t) = \hat{T}_0 \psi(\mathbf{r},t) = \psi^*(\mathbf{r},-t) = \sum_{ni} a_{ni}^* \psi_{ni}^*(\mathbf{r}) e^{-\frac{t}{\hbar} E_n t}$$

可见:
$$\psi'(\mathbf{r},t) \neq \psi(\mathbf{r},-t)$$

所以,当 \hat{H} 中不含虚数的情况下, $\psi'(\mathbf{r},t)$ 虽然仍旧满足原 \mathbf{Schr} ödinger方程,但不一定等于原过程的倒放。

其原因是:

- ①经典力学只涉及实数,而量子力学涉及复数;
- ②量子力学中有状态叠加原理;
- ③ $\psi_{ni}(\mathbf{r})$ 与 $\psi_{ni}^*(\mathbf{r})$ 之间有较为复杂的关系。

3. 时间反演算符的数学性质

无自旋系统的时间反演算符可以写成

$$\hat{T}_0 = \hat{K}T_1$$

$$\hat{K}\psi(\mathbf{r},t) = \psi^*(\mathbf{r},t)$$

$$T_1\psi(\mathbf{r},t) = \psi(\mathbf{r},-t)$$

不寻常的数学性质:

(1) 时间反演算符 \hat{T}_0 不是线性算符,它是反线性算符。

它虽然满足
$$\hat{T}_0(\psi_1 + \psi_2) = \hat{T}_0\psi_1 + \hat{T}_0\psi_2$$

但是
$$\hat{T}_0(a\psi) = a^*\hat{T}_0\psi \neq a\hat{T}_0\psi$$

(2) 时间反演算符 $\hat{K}(\hat{T}_0)$ 在单一空间的函数空间中不存在厄米共轭算符。

根据定义, \hat{K} 的厄米共轭算符 \hat{G}

$$\int [\hat{G}\varphi(\mathbf{r})]^* \psi(\mathbf{r}) d\mathbf{r} = \int \varphi^*(\mathbf{r}) \hat{K}\psi(\mathbf{r}) d\mathbf{r} = \int \varphi^*(\mathbf{r}) \psi^*(\mathbf{r}) d\mathbf{r}$$

无论 \hat{G} 是什么算符,都不能上式成立。所以 \hat{G} 不存在。

但
$$\hat{K}$$
满足 $(\hat{K}\varphi, \hat{K}\psi) = (\varphi^*, \psi^*) = (\psi, \varphi) = (\varphi, \psi)^*$
$$\left|\hat{K}\psi\right| = |\psi|$$

因此,时间反演算符是反幺正算符。

- (3)由于不存在厄米共轭,时间反演算符不是厄米算符,所以没有物理量与之对应,没有守恒律与之对应
- 4. Hilbert空间中的时间反演算符
- (1) 反线性算符对左右矢的作用:

对线性算符,
$$\langle \varphi | A | \psi \rangle = \langle \langle \varphi | A \rangle \psi \rangle = \langle \varphi | \langle A | \psi \rangle \rangle$$

对反线性算符, $\langle \varphi | A | \psi \rangle$?= $\{ \langle \varphi | A \} \psi \rangle \neq \langle \varphi | \{ A | \psi \rangle \}$

例如:可以设 $|\psi\rangle = |\chi\rangle a$ 则对反线性算符A,有

$$A|\psi\rangle = (A|\chi\rangle)a^*$$

$$\langle \varphi | \{A|\psi\rangle\} = \langle \varphi | (A|\chi\rangle)a^*$$

$$\langle \varphi | A \} | \psi\rangle = (\langle \varphi | A) | \chi\rangle a$$

若对任意 $|\varphi\rangle$, $|\psi\rangle$, $\{\langle \varphi | A \} \psi\rangle = \langle \varphi | \{A | \psi\rangle\}$ 成立,则 $\langle \varphi | (A | \chi\rangle) a^* = (\langle \varphi | A) | \chi\rangle a$,且有 $\langle \varphi | (A | \chi\rangle) = (\langle \varphi | A) | \chi\rangle$ 那么必须要求 $a^* = a$

不符合矢量的任意性, 所以对反线性算符,

$$\{\langle \varphi | A \} \psi \rangle \neq \langle \varphi | \{A | \psi \rangle \}$$

所以对反线性算符要分别表示:

$$\langle \varphi | , A | \psi \rangle$$
 和 $\langle \varphi | A, | \psi \rangle$

(2) 时间反演算符对态矢量的作用:

在Hilbert空间中,无自旋系统的时间反演算符 \hat{T}_0

对右矢的作用:
$$\psi'(\mathbf{r},t) = \psi^*(\mathbf{r},-t) = \hat{T}_0 \psi(\mathbf{r},t)$$

$$\langle \mathbf{r} | T_0 | \psi \rangle = \langle \mathbf{r} | \psi(-t) \rangle^* = \langle \psi(-t) | \mathbf{r} \rangle$$

利用: $\int |\mathbf{r}\rangle\langle\mathbf{r}|d\mathbf{r}=1$ 左乘 $|\mathbf{r}\rangle$ 并积分,得

$$T_0 |\psi\rangle = \int d\mathbf{r} |\mathbf{r}\rangle \langle \psi(-t) |\mathbf{r}\rangle$$

在Hilbert空间中仍有 $T_0^{-1} = T_0$ 仍可写成 $T_0 = KT_1$

其中
$$K|\psi(t)\rangle = \int d\mathbf{r}|\mathbf{r}\rangle\langle\psi(t)|\mathbf{r}\rangle$$

左矢形式
$$\langle \psi(t)|K^{+} = \int d\mathbf{r} \langle \mathbf{r}|\psi(t)\rangle \langle \mathbf{r}| = \langle \psi(t)|K^{+}$$

内积
$$\langle \varphi | K^{+}, K | \psi \rangle = \int d\mathbf{r}' \int d\mathbf{r} \langle \mathbf{r}' | \varphi \rangle \langle \mathbf{r}' | \mathbf{r} \rangle \langle \psi | \mathbf{r} \rangle$$

 $= \int d\mathbf{r} \langle \psi | \mathbf{r} \rangle \langle \mathbf{r} | \varphi \rangle$
 $= \langle \psi | \varphi \rangle$

与函数空间中的 $(\hat{K}\varphi, \hat{K}\psi) = (\psi, \varphi)$ 对应

(3) Hilbert空间中算符之间的关系

定义一个符号 "*" :
$$\langle \varphi | * | \psi \rangle \equiv \langle \varphi | \psi \rangle^* = \langle \psi | \varphi \rangle$$
 用这个符号可以把 $\langle \varphi | K^+, K | \psi \rangle = \langle \psi | \varphi \rangle$ 写成 $\langle \varphi | K^+, K | \psi \rangle = \langle \varphi | * | \psi \rangle$ 所以 $\langle \varphi | K^+, K | \psi \rangle = \langle \varphi | * | \psi \rangle$

20

以上关系只有处于左右矢之间时才有意义。由此可见反幺正算符与幺正算符的异同之处。

在Hilbert空间中,位置算符,动量算符和轨道角动量算符的时间反演变换为

$$T_0 \mathbf{R} T_0^{-1} = \mathbf{R}$$
 $T_0 \mathbf{P} T_0^{-1} = -\mathbf{P}$ $T_0 \mathbf{L} T_0^{-1} = -\mathbf{L}$

三、自旋1/2粒子系统的时间反演算符

取常用的 S_z 表象来讨论,自旋1/2粒子的时间反演算符T除了符合 T_0 所满足的21.10式或21.19式之外,还应满足

$$TST^{-1} = -S$$

S是粒子的自旋算符。令 $T = UT_0$

其中 $T_0 = KT_1$, U 是一个 2×2 矩阵,为自旋空间中的算符。

$$TST^{-1} = UT_0ST_0^{-1}U^{-1} = US^*U^{-1}$$

在 S_z 表象中,

$$S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

 S_x 和 S_z 都是实矩阵,而 S_y 是纯虚的,所以 U 应满足

$$US_{x}U^{-1} = -S_{x}$$
 $US_{y}^{*}U^{-1} = S_{y}$ $US_{z}U^{-1} = -S_{z}$

才能使
$$T\mathbf{S}T^{-1} = U\mathbf{S}^*U^{-1} = -\mathbf{S}$$

取
$$U = i\sigma_y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 $U^{-1} = -i\sigma_y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ 即可

时间反演算符
$$T$$
 为 $T = UT_0 = UKT_1$

满足
$$T^2 = TT = -1$$
 $T^{-1} = -T$

四、哈密顿本征函数的时间反演态

由于定态 $\psi(r,t) = \psi(r)e^{-\frac{1}{\hbar}Et}$ 中的时间因子 $e^{-\frac{1}{\hbar}Et}$ 在时间反演下不变,有时可以讨论哈密顿本征函数的时间反演。如果态不含时,时间反演实际上是 K 起作用—取复共轭。

对无自旋粒子,对 $\hat{H}\psi_{ni}(\mathbf{r}) = E_n\psi_{ni}(\mathbf{r})$ 两边取复共轭,

得 $\hat{H}\psi_{ni}^*(\mathbf{r}) = E_n\psi_{ni}^*(\mathbf{r})$ $\psi_{ni}^*(\mathbf{r})$ 即 $\psi_{ni}(\mathbf{r})$ 的时间反演态,

可见,当哈密顿量具有时间反演不变性时,它的本征函数的时间反演仍是其本征函数,而本征值不变。

§ 21-3 实表示和复表示

主要内容:讨论了一个空间对称变换群 $\{Q\}$ 的d维表示矩阵D(Q)与其复共轭表示 $D^*(Q)$ 之间的关系,并重点介绍了如何判断他们之间的关系属于哪种类型。

一、变换算符的矩阵表示

设 $\{D(Q)\}$ 是群 $\{Q\}$ 的一组幺正的不可约表示,其基函数为 $\{\psi_{ni}\}$,其中n是一个给定的数,i=1,2,3,...,d

$$\hat{D}(Q)\psi_{ni}(\mathbf{r}) = \sum_{j} \psi_{nj}(\mathbf{r})D_{ji}(Q)$$

两边取复共轭,得
$$\hat{D}^*(Q)\psi_{ni}^*(\mathbf{r}) = \sum_j \psi_{nj}^*(\mathbf{r})D_{ji}^*(Q)$$

在上式中,
$$\psi_{ni}^* = \hat{T}_0 \psi_{ni} = \psi_{ni}'$$

算符的复共轭的定义为:在位置及 S_z 表象中将算符中的

$$i \rightarrow -i$$
 所以 $\hat{\mathbf{R}}^* = \hat{\mathbf{R}}$ $\hat{\mathbf{P}}^* = -\hat{\mathbf{P}}$ $\hat{\mathbf{L}}^* = -\hat{\mathbf{L}}$ $S_x^* = S_x$ $S_y^* = -S_y$ $S_z^* = S_z$

因此,空间对称变换中的平移,转动和反演算符都满足

$$\hat{D}^* = \hat{D}$$

例如:
$$\hat{D}(\lambda) = e^{-\frac{i}{\hbar}\lambda \cdot \mathbf{P}} = \hat{D}^*(\lambda) = e^{+\frac{i}{\hbar}\lambda \cdot (-\mathbf{P})}$$

所以有
$$\hat{D}(Q)\psi_{ni}^*(\mathbf{r}) = \sum_j \psi_{nj}^*(\mathbf{r})D_{ji}^*(Q)$$

上式表明: 矩阵元为 D_{ji}^* 的一组矩阵 $\{D_{ji}^*(Q)\}$

也是群 $\{Q\}$ 的一组幺正的不可约表示,

其基函数是 $\{\psi_{ni}^*(\mathbf{r})\}$

二、表示矩阵的分类

类型1:对所有的Q,D(Q)全是实矩阵,

这种表示称为实表示;

或者虽然不全是实矩阵,但与一个实表示等价, 这时可以说 D(Q) 是实质上的实表示。

另有: 当表示D(Q)不全是实矩阵,但与实表示等价时,D(Q)必定与 $D^*(Q)$ 等价。

类型2.

D(Q)与 $D^*(Q)$ 等价,但不存在一个实表示与之等价,这种表示称之为赝实表示。

类型3.

D(Q)与 $D^*(Q)$ 不等价,

则 D(Q)为群 $\{Q\}$ 的复表示。

§ 21-4 时间反演引起的附加简并

一、附加简并

设系统的哈密顿为 \hat{H} ,已知某一特定能级E的一组本征函数(共d个)是其对称性群 $\{Q\}$ 的d维幺正不可约表示D(Q)的基函数

$$\hat{H}\psi_i = E\psi_i \qquad i = 1, 2, \dots d$$

$$\hat{D}(Q)\psi_i = \sum_j \psi_j D_{ji}(Q)$$

将证明: 这一能级的简并度只有d 和2d 两种可能。

当 Ĥ 没有时间反演对称性时,肯定是前者;

当 Ĥ 具有时间反演对称性时,在一定条件下,

可以发生后一种情况,

这时时间反演引起了多一倍的附加简并。

附加简并的解释:

当 \hat{H} 具有时间反演对称性时,它的任意一个本征函数 ψ_i 的时间反演 $\psi_i' = T_0 \psi_i = \psi_i^*$ 也是同一能级的本征函数。

如果这些时间反演态都在原来的表示空间之内,则能级E的简并度仍为d。

如果所有的时间反演态都在原来的表示空间之外, 又形成一个新的d维空间,这个能级的简并度是2d。

二、结论

对于没有自旋的系统,当表示D(Q)属于类型1时不发生附加简并,而当表示D(Q)属于类型2或类型3时,则发生附加简并。

三、例子

1.一维自由粒子:

$$\hat{H} = \frac{1}{2m} \hat{P}^2 \qquad \hat{P} = -i\hbar \frac{\partial}{\partial x}$$

哈密顿具有平移不变性。

一维位形空间中的平移算符Q(λ)的作用为

$$Q(\lambda)x = x + \lambda$$

Hilbert空间(函数空间)中的平移算符 $\hat{D}(\lambda)$ 及其作用为

$$\hat{D}(\lambda) = e^{-\frac{i}{\hbar}\lambda\hat{P}} \qquad \hat{D}(\lambda)\psi(x) = \psi(x - \lambda)$$

一维平移群 $\{Q(\lambda)\}$ 是一个单参量的连续Abel群,

它有无穷多个不可约表示,都是一维的,其形式取

$$D^{(k)}(\lambda) = e^{ik\lambda} \quad (k = 实数)$$

这是一个 1×1 矩阵。 $D^{(k)}(\lambda)$ 与 $D^{(k)*}(\lambda)$ 不等价,因此表示 $D^{(k)}(\lambda)$ 属于类型3。

所以有附加简并,每一能级的简并度为2。

 $D^{(k)}(\lambda)$ 及 $D^{(k)*}(\lambda)$ 的表示基矢(1维)分别是

$$\psi(x) = e^{-ikx}$$
 $\psi(x) = e^{ikx}$

乘以时间因子 $e^{-\frac{i}{\hbar}Et}$ 表示向正负两个方向传播的平面波。

2. 碱金属原子

 \hat{H} 具有空间转动性,转动群的表示属于类型1,所以不发生附加简并,能级 E_{nl} 的简并度等于2l+1。

$$D(\alpha\beta\gamma)$$
的基函数是 $Y_{lm}(\theta,\varphi)$

 $D^*(\alpha\beta\gamma)$ 的基函数是 $Y_{lm}^*(\theta,\varphi)$

$$\overrightarrow{\Pi} \qquad Y_{lm}^*(\theta,\varphi) = Y_{l,-m}(\theta,\varphi)$$

所以, $\{Y_{lm}^*(\theta,\varphi)\}$ 与 $\{Y_{lm}(\theta,\varphi)\}$ 是完全相同的表示空间,

这也是能级 E_{nl} 的本征子空间。也就不会有附加简并。

状态 ψ_{nlm} 与 ψ_{nlm}^* 两者的差别是平均概率流密度反向,相当于价电子在原子实外面的转动反向,符合时间反演的物理图象。