TITLE:

Optical glass with improved light transmission contains oxides of boron, silicon, lithium, lanthanum,

zinc, zirconium, tungsten and niobium.

DERWENT CLASS:

L01

PATENT ASSIGNEE(S): (OHAR-N) OHARA OPTICAL GLASS

COUNTRY COUNT:

PATENT INFORMATION:

PATENT NO		DATE			 MAIN	
JP 52103412 JP 53047368	A	19770830 19781220	(197741)*	 	

PRIORITY APPLN. INFO: JP 1976-19437

19760226

INT. PATENT CLASSIF.: C03C003-14

BASIC ABSTRACT:

JP 52103412AUPAB: 19930901

Optical glass consists of 18-30 wt.% B2O3, 5.1-10 wt.% SiO2, 0.1-0.5 wt.% Li20, 30-45 wt.% La203, 5-14 wt.% ZnO, 3-8 wt.% ZrO2, 1-10 wt.% WO3, 2-20 wt.% Nb205, 0.20 wt.% Ta205, 0-2 wt.% Al203, 0-5 wt.% PbO, 0-5 wt.% Ti02, 0-0.5 wt.% Na2O, 0-0.5 wt.% K2O and 0-4.5 wt.% total of >=1 of MgO, CaO, SrO and BaO.

The glass has refractive index ca. 1.77-1.85 and Abbe's number (d) ca. 35-47. The transmissivity of the glass is superior to that of prior art giving reduced colouring.

FILE SEGMENT:

CPI

FIELD AVAILABILITY:

AB

MANUAL CODES:

CPI: L01-A01C; L01-A02; L01-A03A; L01-A03C; L01-A06D;

L01-L05

19日本国特許庁

①特許出願公告

許 公 報

昭53-47368

60 Int.Cl.2 C 03 C 3/08 C 03 C 3/30 識別記号 62日本分類

101

21 A 22

庁内整理番号

昭和53年(1978) 12 月 20 日

7417-4G 7417 -4G

発明の数 1

③光学ガラス

②特 ·願 昭 5 1 一 1 9 4 3 7

29出 願 昭51(1976)2月26日

公 開 昭52-103412

43昭52(1977)8月30日

79発. 明 者 松尾端降

相模原市小山673の1

同 中原宗雄

相模原市小山1の15の46

包出 人 株式会社小原光学硝子製造所

相模原市小山1の15の30

砂代 弁理士 羽柴隆

の特許請求の範囲

1 重量百分率で、B₂O₃18~30%、SiO₂ $5.1 \sim 1.0 \%$, $Li_2O 0.1 \sim 0.5 \%$, $La_2O_3 30$ $\sim 45\%$, $Z \times 05 \sim 14\%$, $Z \times 07 \times 37 \approx 8\%$, $WO_3 \times 17 \times 10$ %, Nb, O, 2~20%, Ta, O, 0~20%, ~5%, Na, O 0~0.5%, K,O 0~0.5%, MgO、CaO、SrO およびBaO の1種または2 種以上の合計0~4.5%、の組成からなることを 特徴とする光学 ガラス。

発明の詳細な説明

本発明は、人体に有害なCdO、BeO、ThO。等 の成分を含まず、屈折率 (nd) 約1.77~1.85、 アッペ数 (vd)約35~47の範囲の光学性能を 有し、基本的にB₂O₃-SiO₂-Li₂O-らなることを特徴とする光学ガラスに関する。

従来、上記光学性能の範囲にある光学ガラスと しては、B2O3-La2O3-CdO(そしてまたは Z_{nO}) $-Z_{rO_{2}} - Ta_{2}O_{5} - Nb_{2}O_{5} - WO_{3}$ XにB₂O₃、La₂O₃および二価金属酸化物を基礎 成分とし、これにガラスの失透を防止し、高屈折 率を維持するため、ZrO2、Ta2O5、Nb2O5お よびWO。等の高原子価酸化物を比較的多量に導 入している。

しかし、B,O,をガラス形成酸化物とした上記

44公告

5 の系に比較的多量の高原子価酸化物を導入する場 合、ガラス構造中における高原子価酸化物の配位 の状態が周囲の原子によつて非常に影響をうけや すく、ガラス構造上不安定な状態になっているた めか、この系によつて得られたガラスは光学ガラ 10 スとして望ましくない着色を与えたり、高速の均 質性を賦与することができない等の問題点がある。 本発明者等は、ガラス構造に起因する上記の問 題について試験研究を重ねた結果、高屈折率低分 散領域にある B₂ O₃ - La₂ O₃ - 二価金属酸化物 15 -高原子価金属酸化物系ガラスに比較的多量の SiOzと適量のLizOを併用して導入することに より、カラス構造の安定性の増大にすぐれた効果 があることをみいだし、本発明をなすに至つた。 すなわち、本発明にかかる光学ガラスは、BoO。 $Al_2O_3O_2O_3$ PbO $O_2O_3O_3$ TiO₂ $O_2O_3O_3$ PbO O_2O_3 PbO O_2O_3 PbO O_2O_3 PbO O_3O_3 PbO WO₃-Nb₂O₅系であり、有害物質を含有せず、 前記光学性能を有し、着色性が改善され、量産に 適した極めて均質化しやすい性質を有しており、 重量百分率で、B₂O₃18~30%、SiO₂5.1 $25 \sim 1.0\%$, $Li_2O0.1 \sim 0.5\%$, $La_2O_3.30 \sim$ 4 5%, ZnO 5~14%, ZrO, 3~8%, $WO_3 1 \sim 1 0 \%$, $Nb_2 O_5 2 \sim 2 0 \%$, $Ta_2 O_5$ $0 \sim 20\%$, $Al_2O_3 0 \sim 2\%$, PbO $0 \sim 5\%$, $TiO_2 0 \sim 5\%$, $Na_2 0 0 \sim 0.5\%$, $K_2 0 0$ La₂O₃ - ZnO -ZrO₂-WO₃-Nb₂O₅ 系か 30 ~ 0.5%、MgO、CaO、SrO およびBaO の1 種または2種以上の合計0~4.5%、の組成から なる。本発明にかかるガラスの各成分の範囲を上 記のように限定した理由は、次のとおりである。 すなわち、本発明の実施に当つては、B2O3を がよく知られている。この系のガラスは、基本的 35 18%未満にすると失透傾向が増大し、30%を 超すと屈折率が低くなり、本発明の目的とする光 学性能を満足できなくなる。

SiOzは、LizOと併用してガラスの構造を安 定にし、着色や不均質性を抑止する等の効果があ るが、SiO2の量が5.1%より少ないとそれらの 効果が少なくなり、10%より多いと原料の溶融 が困難となるので好ましくない。

Li2Oは、SiO2と同時に使用することにより 上述の効果を生ずるが、Li2Oの量が 0.1%より 少ないとその効果が急減し、また 0.5%を超える と失透傾向が増大し安定なガラスを得ることがで きなくなる。

La, O, は、本発明のような高屈折率ガラスに は必要な成分であるが、その量が30%より少な いと本発明の目的とする光学性能を得ることがで きなくなり、また、その量が45%を超えると失 透傾向が著しく増大し、安定なガラスを得ること 15 増大し不安定となる。 ができなくなる。

ZrO は、失透に対する安定剤として有効な成 分であるが、ZnO の量が5%より少ないとその 効果が減少し、14%を超えると溶融時のガラス 粒の成長速度が著しく大きくなるので好ましくな

ZrO。は、屈折率を高め失透に対して安定なカ ラスをつくるのに有効な成分であるが、その量が ると原料の溶融が困難となりガラスが均質化し難

WOrは、失透に対して安定なガラスをつくるの に有効な成分であるが、WO3の量が1%より少な

いとその効果は期待できず、10%を超えるとガ ラスに著しい着色を与えるので好ましくない。

Nb₂ O₅ は、屈折率を高め、失透に対して安定 なガラスをつくるのに有効な成分であるが、 5 Nb₂O₅ の量が 2%より少ないとその効果が著し く 減 少 し、20%を超えると失透傾向が増大し 更にNb₂O₅ 自体による着色が生じ光学ガラスと しての透明性を阻害するようになる。

Ta₂O₅ は、屈折率を高めるのに有効な成分で 10 あるが、その量が20%を超えると原料の溶融が 困難となり均質化し難くなる。

Al2Os は、ガラスを溶融する際に発生しやれい B,O之 SiO, の相分離を防止するため導入し得 る。しかし、その量が2%を超えると失透傾向が

PbO およびTiOzの導入は、高屈折率のガラ スを得るために有効であるがそそれぞれ5%を超 えるとガラスの着色が増大するので好ましくない。 また、Na2OおよびK2O は、SiO, 原料の溶. の粘性が低下し、そのために失透原因である結晶 20 融を容易にするため導入し得るが、それぞれ 0.5 %を超えると失透しやすくなる。 Mg Q、 Ca Q SrO およびBaO は、溶融時にSiOzを容易に ガラス中に溶解させる融剤としての作用があるが、 それらの1種または2種以上の合計が4.5%を超 3%より少ないと失透しやすくなり、8%を超え 25 えると失透傾向が増大する。本発明にかかる光学 ガラスの組成例16例を低1ないし16とし、従 来の光学ガラスの組成例2例をAおよびBとして、 それらの光学性能を第1表に示す。

5

6

																				·
	7	d v	4 1.1	4 0.3	4 1.0	4 5.3	38.6	4 1.3	3 5. 3	3 8.6	3 9.4	3 9.6	3 9.3	4 1.1	3 5.1	3 8.6	4 6.7	4 4.1	3 9.5	4 0:3
	:重量パーセ	n d	1.8061	1.8152	1.7713	1.7955	1.8,118	1.7787	1.8092	1.8191	1.7949	1.7771	1.8317	1.8 0 3 4	1.8470	1.8 1.3 4	1.7715	1.8140	1.8170	1.8 1 2 0
	(単位			٠.	Na ₂ 0		-	-			A1203		TiO ₂ 5.0		K ₂ O 0.5	Mg 0 3.0			<u> </u>	
			BaO 3.0		BaO 4.4	Ba0 4.5	Sr0 3.0	Pb0 5.0			Pb0 4.0	Ba O	Ba0 4.5	Cs0 4.0	P 60	BaO 1.0	BaO 4.5	BaO 4.0		
·		Ta2 05		1 0.0	2.0	3.5				2 0.0		1 4.5	3, 5	4.0	6.5	8.0	1.5	1 2.4	4.0	1 0.0
		Li ₂ 0	0.2	0.2	0.1	0.2	0.2	0.1	0.1	0.2	0. 2	0.5	0.2	0.1	0.1	0.3	0.2	0.1		
П		Nb ₂ 0 ₅	9.3	7.8	1 1.0	2.0	7.8	8.0	2 0.0	7.8	8.7	1 1.0	2.0	1 0.0	1 3.8	9.0	2.0	2.0	1 2.0	1 0.0
		WO3	3.5	4.5	3.0	5.0	1 0.0	1.0	5.0	4.5	5.0	3,0	5.0	5.0	4.5	5.0	5.0	2.0	5.0	5.0
無		Zn0	1 4.0	1 4.0	5.0	5.0	1 0.0	1 0.0	1 0.0	7.0	1 0.0	5.0	5.0	1 0.0	5.0	1 0.7	5.0	5.0	1 3.0	8.0
		Zr02	5.0	6. 5	6.5	0 '2	8.0	6.5	5.0	ည ည	ა	3.0	7. 0	5.0	ະດ ເນ	5.0	2.0	6.0	5.0	5.0
		La2 03	3 7.0	3 3.5	3 2.6	4 5.0	3 5.0	3 5.4	3 1.0	3 3.5	3 6.1	3 0.0	4 0.0	3 5.9	3 7.1	3 3.0	4 3.0	4 3.0	3 5.0	3 7.0.
		\$ 102	6.0	5.5	5. 1	بې ت	5.5	6.0	6.0	5.5	5.5	1 0.0	5.5	6.0	r; z	6.0	5.5	6.0		
		B203	2 2.0	1 8.0	3 0.0	2 2.3	2 0.5	2 8.0	2 2.9	1 8.0	2 3.0	2 0.0	2 2.3	2 0.0	1 8.0	1 9.0	2 6.3	1 9.5	2 6.0	2 5.0
		1/2	1	2	က	4	5	9	7	œ	ග	1 0	1 1	1 2	1 3	1.4	1 5	1 6	A	В

-45-

○第1表の実施例162、8および14と従来のガ ラス例 A および B の光線透過曲線の比較図を第1 図に示す。

第1表に示された光学 ガラスは、原料を 溶融し、十分に混合し、炮切れを行つた後、適当 な温度まで降下し、金型に流し込んでアニールす ることにより極めて容易に均質に製造することが できる。

本発明の光学ガラスは、実施例に示されるとお 10 過曲線比較図。 り、屈折率(nd)約1.77~1.85、アツベ数

(v d)約35~47の光学性能を有しており、 しかも、従来の系のガラスよりも一段優れた光線 透過曲線を示し、着色が極めて少なくなるので、 従来のものより一層有用となるのみならず、不均 1250~1400℃で白金るつぼ等を使用して 5 質部分の発生が防止されるので、製造歩留りが向 上する等の効果を有する。

図面の簡単な説明

第1図は、本発明の光学ガラス実施例施2、8 および14と従来のガラス例AおよびBの光線透

