476 Statistics, Spring 2022.

Lecturer: Sergey Nadtochiy.

Lecture 4. Relative efficiency, sufficiency, completeness and MVUE. (Sections 9.1–9.5)

In this lecture, we learn how to choose a (point) estimator with the smallest MSE (i.e., the best estimator in terms of its finite-sample properties).

1 Relative efficiency

Recall that, for an unbiased estimator, its mean squared error (MSE) equals its variance.

Def 1. For unbiased estimators $\hat{\theta}_1$ and $\hat{\theta}_2$, the efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$ is

$$Eff(\hat{\theta}_1, \hat{\theta}_2) = \frac{V(\hat{\theta}_2)}{V(\hat{\theta}_1)}$$

If $Eff(\hat{\theta}_1, \hat{\theta}_2) > 1$, then $\hat{\theta}_1$ is better.

Ex 1. Consider Y_1, \ldots, Y_n - i.i.d. $U(0, \theta)$ and the two unbiased estimators:

$$\hat{\theta}_1 = 2\bar{Y}, \quad \hat{\theta}_2 = \frac{n+1}{n} Y_{(n)},$$

where $Y_{(k)}$ denotes the k-th smallest element of the sample (i.e., $Y_{(n)}$ is the largest one).

Q 1. Find $Eff(\hat{\theta}_1, \hat{\theta}_2)$.

We know that \bar{Y} is unbiased. To verify that $\frac{n+1}{n}Y_{(n)}$ is unbiased We only need to recall the cdf of $Y_{(n)}$

$$\mathbb{P}(Y_{(n)} \le y) = \mathbb{P}(Y_1 \le y, \dots, Y_n \le y) = (y/\theta)^n,$$

which gives us the pdf of $Y_{(n)}$:

$$\frac{n}{\theta}(y/\theta)^{n-1}, \quad y \in (0,\theta).$$

Thus,

$$\mathbb{E}\hat{\theta}_2 = \frac{n}{\theta^n} \int_0^\theta y^n dy = \frac{n}{n+1} \theta$$

Let's check the variances:

$$\begin{split} V(\hat{\theta}_1) &= \frac{\theta^2}{3n},\\ \mathbb{E}\hat{\theta}_2^2 &= \frac{n}{\theta^n} \int_0^\theta y^{n+1} dy = \frac{n}{n+2} \theta^2,\\ V(\hat{\theta}_2) &= \frac{\theta^2}{n(n+2)},\\ \mathit{Eff}(\hat{\theta}_1, \hat{\theta}_2) &= \frac{3}{n+2}. \end{split}$$

We conclude that for $n \geq 2$, the second estimator is better.

2 Sufficiency

Consider a sequence of indep. Bernoulli r.v.'s $\{X_n\}$ with unknown success probability p. Typically, we use \bar{X} as an estimator for p.

Q 2. Does there exist a different estimator with lower MSE?

Note that

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n \,|\, \bar{X} = y/n) = \frac{p^y (1-p)^{n-y}}{C_n^y p^y (1-p)^{n-y}} = 1/C_n^y,$$

if $x_1 + \cdots + x_n = y$ (and $\mathbb{P}(X_1 = x_1, \dots, X_n = x_n | \bar{X} = y/n) = 0$ otherwise). As a side remark, in the above, we use C_n^y to denote the combinatorial expression "n choose y":

$$C_n^y = \frac{y!(n-y)!}{n!}.$$

The above means that, given the value of \bar{X} , the conditional distribution of the sample is independent of p! Intuitively, the latter means that, given the value of \bar{X} , we cannot deduce any additional information about p from the sample values.

Def 2. A statistic U is **sufficient** for θ if the conditional distr. of (Y_1, \ldots, Y_n) given U does not depend on θ .

The next theorem shows how one can improve any estimator by using a sufficient statistic.

Thm 1. (Rao-Blackwell) Let $\hat{\theta}$ be an unbiased estimator for θ , with $V(\hat{\theta}) < \infty$, and let U be sufficient statistic. Then,

$$\hat{\theta}^* := \mathbb{E}(\hat{\theta}|U)$$

is also an unbiased estimator, and $V(\hat{\theta}^*) \leq V(\hat{\theta})$.

Proof:

Note that $\hat{\theta}^*$ is a function of U and, hence, a function of the sample. This function, in general may depend on θ , as the conditional expectation depends on the joint distribution of $(\hat{\theta}, U)$, which in turn depends on θ . However, the defining property of sufficient statistic yields that the aforementioned function does not depend on θ . Thus, $\hat{\theta}^*$ is a statistic (and hence an estimator).

To see that $\hat{\theta}^*$ is unbiased, we use the tower property of conditional expectation:

$$\mathbb{E}\hat{\theta}^* := \mathbb{E}\left[\mathbb{E}(\hat{\theta}|U)\right] = \mathbb{E}\hat{\theta} = \theta.$$

Finally, let us check the variance. Note that

$$V(\hat{\theta}) = \mathbb{E}\hat{\theta}^2 - \theta^2, \quad V(\hat{\theta}^*) = \mathbb{E}(\hat{\theta}^*)^2 - \theta^2.$$

Hence, it suffices to show that $\mathbb{E}(\hat{\theta}^*)^2 \leq \mathbb{E}\hat{\theta}^2$, which is done as follows:

$$\mathbb{E}(\hat{\theta}^*)^2 = \mathbb{E}(\mathbb{E}(\hat{\theta}|U))^2 \leq \mathbb{E}(\mathbb{E}(\hat{\theta}^2|U)) = \mathbb{E}\hat{\theta}^2,$$

where we used Jensen's inequality and the tower property.

Q 3. How to find a sufficient statistic?

Def 3. For a sample of i.i.d. r.v.'s Y_1, \ldots, Y_n , their **likelihood function** $L(y_1, \ldots, y_n; \theta)$ is defined as

$$L(y_1,\ldots,y_n;\theta):=f(y_1;\theta)\cdots f(y_n;\theta),$$

where

- $f(\cdot;\theta)$ is the density of Y_i , if the latter has absolutely continuous distribution (i.e., a distribution with a pdf),
- and $f(\cdot; \theta)$ is the probability function of Y_i , if the latter has a discrete distribution.

Thm 2. (Fisher-Neyman) U is a sufficient statistic if and only if there exist functions g and h such that

$$L(y_1, \dots, y_n; \theta) = g(U(y_1, \dots, y_n), \theta) \cdot h(y_1, \dots, y_n).$$

(Note that only g is allowed to depend on θ !)

Proof:

We will only show one implication: if U is sufficient, then the above decomposition holds. For concreteness, assume that Y_i has a discrete distribution. Consider any set of potential sample values (y_1, \ldots, y_n) and denote $z := U(y_1, \ldots, y_n)$. Then,

$$\mathbb{P}^{\theta} [Y_1 = y_1, \dots, Y_n = y_n]$$

$$= \mathbb{P}^{\theta} [Y_1 = y_1, \dots, Y_n = y_n | U(Y_1, \dots, Y_n) = z] \cdot \mathbb{P}^{\theta} [U(Y_1, \dots, Y_n) = z]$$

$$= h(y_1, \dots, y_n) \cdot g(U(y_1, \dots, y_n), \theta),$$

where

$$h(y_1, \dots, y_n) := \mathbb{P}^{\theta} [Y_1 = y_1, \dots, Y_n = y_n | U(Y_1, \dots, Y_n) = z] \big|_{z = U(y_1, \dots, y_n)},$$
$$g(z, \theta) := \mathbb{P}^{\theta} [U(Y_1, \dots, Y_n) = z],$$

and we recall that h does not depend on θ by the definition of a sufficient statistic.

- **Ex 2.** Let $\{Y_i\}_{i=1}^n$ be i.i.d. $Exp(1/\theta)$.
- **Q 4.** Find a sufficient statistic for θ .

Let us write the likelihood function:

$$L(y_1, \dots, y_n; \theta) = \theta^{-n} e^{-y_1/\theta} \dots e^{-y_n/\theta} = \theta^{-n} \exp\left(-\frac{1}{\theta} \sum_{i=1}^n y_i\right) = h(y_1, \dots, y_n) g(U(y_1, \dots, y_n), \theta),$$

where

$$U(y_1, \dots, y_n) := \bar{y}, \quad g(\bar{y}, \theta) := \theta^{-n} \exp\left(-\frac{n}{\theta}\bar{y}\right), \quad h(y_1, \dots, y_n) := 1.$$

Thus, \bar{Y} is sufficient.

Thm 3. If U is a sufficient statistic and G is a strictly monotone function, then g(U) is also sufficient.

Exercise 1. Prove the above theorem using the Fisher-Neyman theorem.

3 Completeness and MVUE

Recall that we aim to estimate an unknown parameter θ that takes values in a given set Θ . The most efficient estimator is known as MVUE.

Def 4. Minimal variance unbiased estimator (MVUE) is an unbiased estimator for θ s.t. it has the smallest variance among all unbiased estimators of θ .

Q 5. How to find MVUE?

For this, we need to introduce the notion of a complete statistic.

Def 5. A statistic U is **complete** if, for any function g, the equality

$$\mathbb{E}^{\theta} q(U) = 0$$
 for all values of the unknown parameter $\theta \in \Theta$

implies $g \equiv 0$.

Completeness means that the family of pdf's (or probability functions) $\{f(y;\theta)\}$ of U, over all θ , is sufficiently large, so that it is impossible to find a function that is orthogonal to $f(\cdot;\theta)$ for every θ .

Rem 1. If U is complete, then G(U) is also complete, for any strictly monotone function G.

Once we have found a complete sufficient statistic, we can construct a MVUE from it.

Thm 4. (Lehmann-Scheffe) If $\hat{\theta}$ is an unbiased estimator of θ and U is a sufficient and complete statistic. Then,

$$\hat{\theta}^* := \mathbb{E}(\hat{\theta}|U)$$

is MVUE. In particular, if U is complete and sufficient, then, any unbiased estimator G(U) is MVUE.

Q 6. How to find a complete sufficient statistic?

Very often, the sufficient statistic obtained via Fischer theorem is also complete. This is because of the following result.

Thm 5. Assume that the likelihood ratio $\frac{L(y_1,\ldots,y_n;\theta)}{L(x_1,\ldots,x_n;\theta)}$ is well defined for all possible $y_1,\ldots,y_n,x_1,\ldots,x_n$ and $\theta\in\Theta$, and that there exists a minimal sufficient statistic. Assume also that statistic U is such that

$$\frac{L(y_1,\ldots,y_n;\theta)}{L(x_1,\ldots,x_n;\theta)} \text{ does not depend on } \theta \in \Theta \text{ if and only if } U(y_1,\ldots,y_n) = U(x_1,\ldots,x_n).$$

Then, U is sufficient and complete.

In this course, unless stated otherwise, we always assume that, if you are asked to compute MVUE, a minimal sufficient statistic does exist!

The sufficient statistics obtained from Fisher-Neyman thm are usually complete. Indeed, assume that L satisfies the representation in Fisher-Neyman thm:

$$L(y_1, \ldots, y_n; \theta) = g(U(y_1, \ldots, y_n), \theta) \cdot h(y_1, \ldots, y_n).$$

Then, the likelihood ratio is

$$\frac{L(y_1,\ldots,y_n;\theta)}{L(x_1,\ldots,x_n;\theta)} = \frac{g(U(y_1,\ldots,y_n),\theta)}{g(U(x_1,\ldots,x_n),\theta)} \frac{h(y_1,\ldots,y_n)}{h(x_1,\ldots,x_n)}.$$

Notice that, if $U(y_1, \ldots, y_n) = U(x_1, \ldots, x_n)$, then the above ratio does not depend on θ . However, it may happen that there exist $z \neq z'$ such that $g(z, \theta) = g(z', \theta)$ for all $\theta \in \Theta$. Then, there are two (or more) different values of U for which the above ratio still does not depend on θ . The above theorem says that if we can exclude such a (degenerate) situation, then U is not only sufficient but also complete.

Ex 3. Consider a sample Y_1, \ldots, Y_n of i.i.d. r.v.'s from Ber(p) distr..

Q 7. Find MVUE for p.

Let us compute the likelihood ratio:

$$L(y_1, \dots, y_n; p) = \mathbb{P}^p(Y_1 = y_1, \dots, Y_n = y_n) = p^{n\bar{y}}(1-p)^{n-n\bar{y}}$$

$$\frac{L(y_1, \dots, y_n; p)}{L(x_1, \dots, x_n; p)} = \frac{p^{n\bar{y}}(1-p)^{n-n\bar{y}}}{p^{n\bar{x}}(1-p)^{n-n\bar{x}}} = (p/(1-p))^{n(\bar{y}-\bar{x})}$$

The above does not depend on p if and only if $\bar{y} = \bar{x}$. Therefore, by Theorem 5, \bar{Y} is a complete sufficient statistic. As \bar{Y} is also an unbiased estimator of p, it is a MVUE.

Ex 4. Consider a sample Y_1, \ldots, Y_n of i.i.d. r.v.'s with the Weibull distribution, that has the pdf

$$f(y;\theta) = e^{-y^2/\theta} (2y/\theta) \quad y > 0,$$

and zero for $y \leq 0$.

Q 8. Find MVUE for θ .

$$L(y_1, \dots, y_n; p) = 2^n \theta^{-n} e^{-\frac{1}{\theta} \sum_{i=1}^n y_i^2} \prod_{i=1}^n y_i, \quad y_1, \dots, y_n > 0,$$

$$\frac{L(y_1, \dots, y_n; p)}{L(x_1, \dots, x_n; p)} = \frac{e^{-\frac{1}{\theta} \sum_{i=1}^n y_i^2} \prod_{i=1}^n y_i}{e^{-\frac{1}{\theta} \sum_{i=1}^n x_i^2} \prod_{i=1}^n x_i} = e^{-\frac{1}{\theta} (\sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2)} \frac{\prod_{i=1}^n y_i}{\prod_{i=1}^n x_i}$$

The above does not depend on θ if and only if $\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} x_i^2$. Therefore, by Theorem 5, $U = \sum_{i=1}^{n} Y_i^2$ is a complete sufficient statistic.

We need to construct an unbiased estimator of θ in a form if a function of U. It is easy to check that

$$\mathbb{E}Y_i^2=\theta.$$

Then, we the statistic

$$\frac{1}{n} \sum_{i=1}^{n} Y_i^2$$

is unbiased and s a function of U. Thus, it is a MVUE for θ .

Exercise 2. Consider a sample Y_1, \ldots, Y_n of i.i.d. r.v.'s with the uniform distribution $U(0,\theta)$. Show that $\frac{n+1}{n}Y_{(n)}$ is a MVUE for θ .

The notions of sufficient and complete statistics extend in a straightforward way to vector-valued functions, which is relevant when θ is a vector.

Ex 5. Consider a sample Y_1, \ldots, Y_n of i.i.d. r.v.'s with distr. $N(\mu, \sigma^2)$, where both μ and σ^2 are unknown.

Q 9. Find MVUE for μ and σ^2 .

$$L(y_1, \dots, y_n; p) = (2\pi)^{-n/2} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2},$$

$$\frac{L(y_1, \dots, y_n; p)}{L(x_1, \dots, x_n; p)} = \frac{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2}}{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}} = \frac{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i^2 - 2\mu y_i)}}{e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}} = e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i^2 - 2\mu x_i)} = e^{-\frac{1}{2\sigma^2} (\sum_{i=1}^n y_i^2 - \sum_{i=1}^n x_i^2) + \frac{\mu}{\sigma^2} (\sum_{i=1}^n y_i - \sum_{i=1}^n x_i)}$$

The above does not depend on (μ, σ^2) if and only if $\sum_{i=1}^n y_i^2 = \sum_{i=1}^n x_i^2$ and $\sum_{i=1}^n y_i = \sum_{i=1}^n x_i$. Thus, Thm 5 yields that the pair of statistics $U = (\sum_{i=1}^n Y_i, \sum_{i=1}^n Y_i^2)$ is sufficient and complete for (μ, σ^2) .

Notice that \bar{Y} is an unbiased estimator of μ and S^2 is an unbiased estimator of σ^2 , and both are functions of U.

Thus, (\bar{Y}, S^2) is a MVUE of (μ, σ^2) .

Sometimes, we can re-use a complete sufficient statistic for θ to find a MVUE for a function of θ (provided this function is strictly monotone).

Ex 6. Consider a sample Y_1, \ldots, Y_n of i.i.d. r.v.'s with $Exp(1/\theta)$ distribution.

Q 10. Find MVUE for θ^2 .

First we find a complete sufficient statistic for θ *:*

$$L(y_1, \dots, y_n; p) = \theta^{-n} e^{-\frac{1}{\theta} \sum_{i=1}^n y_i}, \quad y_1, \dots, y_n > 0,$$
$$\frac{L(y_1, \dots, y_n; p)}{L(x_1, \dots, x_n; p)} = e^{-\frac{n}{\theta} (\bar{y} - \bar{x})},$$

The above does not depend on θ if and only if $\bar{y} = \bar{x}$. Thus, \bar{Y} is a complete sufficient statistic for θ .

Since on $\theta \geq 0$, the function $\theta \mapsto \theta^2$ is strictly monotone. Therefore, \bar{Y} is a complete sufficient statistic for θ^2 .

Thus, we only need to find an unbiased function of \bar{Y} . Since $V(Y_i) = \theta^2$, we compute $\mathbb{E}\bar{Y}^2$ and reverse-engineer a MVUE

$$\frac{n}{n+1}\bar{Y}^2.$$

Indeed, the above is a function of a complete sufficient statistic \bar{Y} and

$$\mathbb{E}\frac{n}{n+1}\bar{Y}^2 = \frac{n}{n+1}\mathbb{E}\bar{Y}^2 = \frac{n}{n+1}(V(\bar{Y}) + (\mathbb{E}\bar{Y})^2) = \frac{n}{n+1}(\theta^2/n + \theta^2) = \theta^2.$$

Sufficient (especially, if also complete) statistic can be used to construct a pivot (if its distr. is known) and, in turn, a confidence interval. Such confidence intervals are typically the shortest at a given confidence level, for a given sample size.

Ex 7. The lifetime of an electronic component in a navigation system of a missile (measued in 100s of hrs) has the Weibull pdf

$$f(y;\theta) = e^{-y^2/\theta} (2y/\theta), \quad y > 0.$$

A sample of 10 i.i.d. realizations is taken:

$$.637, 1.531, .733, 2.256, 2.364, 1.601, .152, 1.826, 1.8681.126$$

Q 11. Construct a 0.95-confidence interval for θ .

Recall that $\sum_{i=1}^{n} Y_i^2$ is a complete sufficient statistic for θ . Note also that

$$\frac{2Y_i^2}{\theta} \sim Exp(1/2) = Gamma(1,2) = \chi^2(2).$$

To verify the above, we compute the cdf of $\frac{2Y_i^2}{\theta}$:

$$\mathbb{P}\left(\frac{2Y_i^2}{\theta} \le y\right) = \mathbb{P}(Y_i \le \sqrt{y\theta/2}) = F_{Y_i}(\sqrt{y\theta/2}),$$

where F_{Y_i} is the cdf of Y_i . Then, the pdf of $\frac{2Y_i^2}{\theta}$ is

$$\frac{d}{dy}F_{Y_i}(\sqrt{y\theta/2}) = \frac{\sqrt{\theta/2}}{2}y^{-1/2}e^{-(y\theta/2)/\theta}2\sqrt{y\theta/2}/\theta = \frac{1}{2}e^{-y/2}, \quad y > 0,$$

which is the pdf of Exp(1/2).

Therefore,

$$\sum_{i=1}^{10} \frac{2Y_i^2}{\theta} \sim \chi^2(20)$$

Using the above as a pivot, we obtain

$$0.95 = \mathbb{P}\left(\frac{2\sum_{i=1}^{10} Y_i^2}{34.17} \le \theta \le \frac{2\sum_{i=1}^{10} Y_i^2}{9.591}\right),\,$$

which gives the realized confidence interval