Description

Image

Caption

1. Close-up of the material. © Granta Design 2. The Basilica of Pisa. © Granta Design

The material

Marble is the purest form of limestone. It is almost pure calcium carbonate that has been compacted and heated such that it has recrystallized. It is used for ornamental building, statuary, ornamental furniture and for electric power panels. The purest marble (Italian Carrara marble is an example) is very white, delicate in texture and hard. Other marbles are dark green, red, black or gray, allowing their use for decorative patterning like that of the Basilica shown in the picture.

Composition (summary)

Calcium carbonate (CaCO3).

Thermal expansion coefficient

General properties

Density	170	_	178	lb/ft^3		
Price	* 0.186	_	0.472	USD/lb		
Date first used	-10000		0.472	OSD/ID		
Date first used	-10000					
Mechanical properties						
Young's modulus	7.25	-	10.2	10^6 psi		
Shear modulus	* 3.19	-	4.06	10^6 psi		
Bulk modulus	* 3.77	-	5.22	10^6 psi		
Poisson's ratio	0.14	-	0.22	·		
Yield strength (elastic limit)	0.87	-	1.45	ksi		
Tensile strength	0.87	-	1.45	ksi		
Compressive strength	7.98	-	15.2	ksi		
Elongation	0			% strain		
Hardness - Vickers	16	-	20	HV		
Fatigue strength at 10^7 cycles	* 0.725	-	1.16	ksi		
Fracture toughness	0.546	-	1.09	ksi.in^0.5		
Mechanical loss coefficient (tan delta)	* 5e-4	-	0.001			
Thermal properties						
Melting point	2.25e3	-	2.44e3	°F		
Maximum service temperature	1.17e3	-	1.26e3	°F		
Minimum service temperature	-459	-	-458	°F		
Thermal conductor or insulator?	Poor ins	Poor insulator				
Thermal conductivity	2.89	-	3.47	BTU.ft/h.ft^2.F		
Specific heat capacity	0.203	-	0.213	BTU/lb.°F		

Translucent

0.118

EI	CE	==	=	O	5
31	~=			u	J
8	=;	11 11		90	'K

1.67 2.78 µstrain/°F

0.13

lb/lb

Electrical properties

Electrical conductor or insulator?	Semico			
Electrical resistivity	* 1e8	-	1e12	µohm.cm
Dielectric constant (relative permittivity)	* 6	-	8	
Dissipation factor (dielectric loss tangent)	* 5e-4	-	0.001	
Dielectric strength (dielectric breakdown)	* 127	-	305	V/mil

Optical properties

ransparency	ranslucent			
Processability Machinability	3	-	4	
Eco properties Embodied energy, primary production	195	_	238	kcal/lb

CO2 footprint, primary production Recycle

Supporting information

Design guidelines

Marble, nearly pure calcium carbonate, is easily cut and carved. Its fine grain size makes it ideal for detailed carving. Marble is hard and dense, and takes a near-perfect polish. It has a wonderful translucency, making it the choice of many sculptors. Like limestone, it weathers well in a clean environment but is attacked by acid, and thus by industrial emissions.

Technical notes

Good marble is expensive. Marblelite is an artificial substitute used for casting statues and small objects. Crushed marble is used as an aggregate in flooring.

Typical uses

Buildings, facings, floors, stairs, statuary and ornamental furniture, electric-power panels.

Tradenames

Carerra marble

Links

Reference

ProcessUniverse

Producers