Lecture 1: Introduction

ECE 481 - Digital Control Systems

Yash Vardhan Pant

Based on course notes by Professor Chris Nielsen.

[Txx] a	
[X] Course outline	
[] Some examples of Digital Control	
[] Digital Feedback Control	
[] Sampled-data systems and themes in this course	
[] Sampled-data systems and themes in this course	
[] Continuous-time Control Systems	
[] Discrete-time Control Systems	
II Complete data Control Control	
[] Sampled-data Control Systems	
[] Discretizing Continuous-time Controllers	
Ideal sampling and zero-order hold	
Preserving linearity with discretizations	
17 reserving inicarity with discretizations	
X = The upcoming topic	
- = Topic that has been covered	

[-]·Course outline										
[] Course outline										
[X] Some examples of Digital Control						• •				
Erid Seine entwickten ou a Britan e einer eine eine						• • •				
[] Digital Feedback Control										
[] Sampled-data systems and themes in this course						• •				,
	• • •		• • •			• •	• •	• • •	• • • •	
						• • •				
[] Continuous-time Control Systems										
[] Disarata-tima Control Systems										
[] Discrete-time Control Systems										
						• •				
[] Sampled-data Control Systems						• • •				
L'I Sampled data Control Systems										
[] Discretizing Continuous-time Controllers										
Ideal sampling and zero-order hold										
Preserving linearity with discretizations		• • • •			• • •	• •		• • •	• • •	
	• • •	• • • •		• • •	• • •	• • •		• • •	• • •	
X'='The upcoming topic'										
- = Topic that has been covered										

	• •			 			•	•				•	• •	 	۰
				 			•							 	
				 			0					0		 	0
[-] Course outline	• •			 			•					0		 	۰
	• •	•		 •	• • •	• •	•	•	• •	• •	• •	۰	• •	 	۰
	• •	•	• •	 • •	• • •		•	•	• •	• •		٠	• •	 	۰
[-] Some examples of Digital Control	• •			 			•					0		 	۰
	0 0			 			0	•				0		 	
				 			•					•		 	
[X] Digital Feedback Control														 	
[] Sampled-data systems and themes in this cours	se ·			 										 	
	• •			 			•					٠		 	•
	• •			 			•					٠		 	٠
[] Continuous-time Control Systems	• •		• •	 •			•					۰		 	۰
	0 0			 								0		 	
	• •			 	• • •		•	•		• •		۰		 	۰
[] Discrete-time Control Systems				 			•	•				•		 	
[] Sampled-data Control Systems				 							0 0			 	
	• •			 										 	۰
	• •			 			•					•		 	۰
[] Discretizing Continuous-time Controllers	• •			 			•					0		 	۰
Ideal sampling and zero-order hold	• •			 								0		 	۰
~ ~		• •		 •	• • •		0		• •	• •		۰		 	
Preserving linearity with discretizations	• •			 	• • •		•	•		• •		٠	• •	 	۰
	•			 			•					•		 	
				 							0 0			 	
X = The upcoming topic				 							0 0			 	
	• •			 			•							 	
- = Topic that has been covered				 										 	

.

Example: A cart with a motor drive

Feedback control with a computer in the loop

r(t): Reference position signal

Computer: Gets a measurement and computes a control input.

A more detailed model

-- CONTINUOUS TIME (LT)
-- DISCRETE TIME (DT)

A.D.C: Analog-to-Digital converter

D.A.C: Digital-to-Analog converter

Let T be the sampling period, and k an integer (positive)

A Proportional controller is implemented on the computer

$$= \frac{1}{U(kT)} = \frac{1}{k_b} \left(\frac{\pi(kT) - \gamma(kT)}{\pi(kT) - \gamma(kT)} \right)$$

$$U(kT) = \frac{1}{k_b} \left(\frac{\pi(kT) - \gamma(kT)}{\pi(kT) - \gamma(kT)} \right)$$

$$= \frac{1}{k_b} \left(\frac{\pi(kT) - \gamma(kT)}{\pi(kT) - \gamma(kT)} \right)$$

The DT control signal is interpolated to a CT control signal that is applied to the motor

$$u(t) = u(kT) + t - kT \leq k \leq (kT)T$$

$$u(t) = u(t)$$

$$t =$$

What does the processor see (CT or DT)?

what the processor sees

What does the cart see (CT or DT)?

	• • • • •	 		
[.]. O				
[-] Course outline		 		
[-] Some examples of Digital Control		 	 	
[-] Digital Feedback Control		 	 	
[X] Sampled-data systems and themes in this cours	se · · · ·	 	 	
		 	 	• • •
		 • • • • •	 	• • •
[] Continuous-time Control Systems		 	 	
[] Discrete-time Control Systems		 	 	
[] Sampled-data Control Systems		 	 	
[] Discretizing Continuous-time Controllers		 	 	
Ideal sampling and zero-order hold		 	 	
Preserving linearity with discretizations		 • • • • •	 	• • •
X = The upcoming topic		 	 	
- = Topic that has been covered		 	 	

Sampled-data Systems:

Definition: Feedback systems that have a mixture of continuous-time and discrete-time elements are called sampled-data systems.

Some themes in the course:

- 1. DT signals and systems theory is similar to CT theory, and has parallels such as:
 - DT has difference equations instead of differential equations.
 - z-transforms instead of Laplace transforms.
- 2. Sampled-data systems are fundamentally not time-invariant
 - They are, in fact, periodically time-varying.
 - The C2D and D2C conversions (A.D.C, D.A.C) cause this.
- 3. Digital control implementations are subject to hardware limitations, but, can achieve specifications that are hard to achieve via analog control alone. e.g.,
 - Obstacle avoidance in autonomous navigation: https://www.youtube.com/watch?v=tltYkv8bjAw
 - Multi-UAV timed-tasks: https://www.youtube.com/watch?v=xBQnEweVwZs
- 4. Physical systems (such as the cart) are represented as a sampled-data system. However there are also applications that are purely discrete-time control systems, e.g., inventory/supply-chain control.

	۰
[-] Course outline	
[-] Some examples of Digital Control	
[-] Digital Feedback Control	•
[-] Sampled-data systems and themes in this course	•
[X] Continuous-time Control Systems	
[] Discrete-time Control Systems	•
[] Sampled-data Control Systems	
[] Discretizing Continuous-time Controllers	
Ideal sampling and zero-order hold	
<> Preserving linearity with discretizations	
X = The upcoming topic	
- = Topic that has been covered	

Continuous Time Control:

Typical control objectives:

- Closed-loop stability
- Transient performance (e.g., maximum overshoot, settling time etc.)
- Robustness to model uncertainty
- Disturbance rejection
- Tracking: y(t) tracks r(t)

Continuous time Control Design Problem.

Given a set of control objectives and a plant model P(s), design a control law C(s) such that the closed-loop system satisfies the objectives

Continuous Time Control:

Continuous control implementations were implemented using analog devices and circuits (mostly in the past). This leads to disadvantages such as:

- Inflexible: Changes in control require changes in the circuit, making them difficult to maintain too.
- Difficult to adapt controller to changes in the plant (adaptive control).
- Difficult to implement sophisticated controllers, e.g., Obstacle-avoidance in racing: https://www.youtube.com/watch?v=tltYkv8bjAw

With computers becoming cheaper, most modern control designs and implementations have moved to the discrete-time domain.

[-] Course outline [-] Some examples of Digital Control [-] Digital Feedback Control [-] Sampled-data systems and themes in this course [-] Continuous-time Control Systems [X] Discrete-time Control Systems [] Sampled-data Control Systems Discretizing Continuous-time Controllers <> Ideal sampling and zero-order hold Preserving linearity with discretizations X = The upcoming topic - = Topic that has been covered

Discrete-time Control Systems

Consider a discrete-time (DT) system that takes in DT inputs and outputs DT signals (recall: z-transforms)

$$\begin{array}{c} u[k] \\ ---- \\ \end{array}$$

$$\begin{array}{c} p[z] \\ \end{array}$$

$$\begin{array}{c} y[k] \\ \end{array}$$

$$\begin{array}{c} \\ \end{array}$$

$$\begin{array}{c} \\ \end{array}$$

Discrete-time signals:

Discrete-time Control Systems

Discrete-time feedback control system (from the embedded processor's perspective).

Outline [-] Course outline [-] Some examples of Digital Control [-] Digital Feedback Control [-] Sampled-data systems and themes in this course [-] Continuous-time Control Systems [-] Discrete-time Control Systems [X] Sampled-data Control Systems [] Discretizing Continuous-time Controllers <> Ideal sampling and zero-order hold Preserving linearity with discretizations X = The upcoming topic - = Topic that has been covered

Sampled-data Control Systems

Mixture of CT and DT elements

Sampled-data Control Design Problem

Given: a) continuous-time performance specifications, b) Plant model P(s), design a digital control law D[z] such that the closed-loop system satisfies the specifications

Two common approaches to solving this design problem:

1. Emulation:

- Ignore the ADC and DAC and design a CT controller
- Discretize the controller to get D[z] (22)
- Advantage: Straightforward, lets you use what you learn in ECE380/equivalent.
- Disadvantage: Needs fast sampling, otherwise inaccurate

2. Direct (DT) design:

- Discretize P(s) to get P[z]
- Treat the sampled-data system as a DT system
- Design D[z] to make P[z] satisfy discrete-time specifications
- Advantage: Accounts for sampling periods explicitly
- Disadvantage: Analysis can be intricate

D[z]

Outline [-] Course outline [-] Some examples of Digital Control [-] Digital Feedback Control [-] Sampled-data systems and themes in this course [-] Continuous-time Control Systems [-] Discrete-time Control Systems [-] Sampled-data Control Systems [X] Discretizing Continuous-time Controllers Ideal sampling and zero-order hold Preserving linearity with discretizations

X = The upcoming topic- = Topic that has been covered

A first look at discretization of continuous-time controllers

Let us start with a continuous controller C(s) that works well for the plant P(s)

We want to design a discrete-time controller D(z) so that the system above is well-approximated.

Outline [-] Course outline [-] Some examples of Digital Control [-] Digital Feedback Control [-] Sampled-data systems and themes in this course [-] Continuous-time Control Systems [-] Discrete-time Control Systems

- [-] Sampled-data Control Systems
- [-] Discretizing Continuous-time Controllers <X> Ideal sampling and zero-order hold Preserving linearity with discretizations
- X = The upcoming topic
- = Topic that has been covered

Ideal sample and zero-order hold

We want to approximate the continuous-time control law

Approximation method:

- Model the A.D.C as an ideal sampler
- Model the D.A.C using zero-order hold

Ideal sampler

Get a discrete-time representation of a continuous time signal

y[k]: Output of S

Ideal sample and zero-order hold

We want to approximate the continuous-time control law

Approximation method:

- Model the A.D.C as an ideal sampler
- Model the D.A.C using zero-order hold

Zero-order hold

Get a continuous-time signal from a discrete-time signal

u[k]: Input to the ZOH

Zero-order hold

Get a continuous-time signal from a discrete-time signal

$$u(kT)$$
 H
 $u(t)$

u[k]: Input to the ZOH

$$u(t) = u(t)$$

$$u(t) = u(t)$$

$$u(t)$$

$$u(t)$$

$$v(t)$$

$$v(t)$$

u(t): Output of the ZOH

Outline [-] Course outline [-] Some examples of Digital Control [-] Digital Feedback Control [-] Sampled-data systems and themes in this course [-] Continuous-time Control Systems [-] Discrete-time Control Systems [-] Sampled-data Control Systems [-] Discretizing Continuous-time Controllers <-> Ideal sampling and zero-order hold

Y> Preserving linearity with discretizations

X = The upcoming topic

- = Topic that has been covered

Preserving linearity with ideal sampling and ZOH

Excercise: Prove that the ideal sampler S, and zero-order hold H are both linear systems.

As a consequence, the compositions sample-and-hold and hold-and-sample are both linear systems (ignoring quantization).

$$u(t) = H(S(yt))$$

$$u(t) = S(H(\omega(R)))$$

Preserving linearity with ideal sampling and ZOH

Excercise: Prove that the ideal sampler S, and zero-order hold H are both linear systems.

As a consequence, the compositions sample-and-hold and hold-and-sample are both linear systems (ignoring quantization).

Sample-then-hold: H o S

$$u(k) = H(S(y(k)))$$

$$H \circ S$$

$$(ompoS1710N)$$

H o S: Not a Linear Time-Invariant System!

(No transfer function representation, see Section 4.2 in notes

$$W[k]$$

$$H$$

$$S$$

$$C[k]$$

Hold-then-sample: S o H

S o H: Simply the identity system

Summary [-] Course outline [-] Some examples of Digital Control [-] Digital Feedback Control [-] Sampled-data systems and themes in this course [-] Continuous-time Control Systems [-] Discrete-time Control Systems [-] Sampled-data Control Systems [-] Discretizing Continuous-time Controllers <-> Ideal sampling and zero-order hold <-> Preserving linearity with discretizations X = The upcoming topic

- = Topic that has been covered

