Machine Learning (CSE 446): Decision Trees

Sham M Kakade

© 2018

University of Washington skakade@cs.washington.edu

Announcements

- ► First assignment posted. Due Thurs, Jan 18th. Remember the late policy (see the website).
- ► TA office hours posted. (Please check website before you go, just in case of changes.)
- ▶ Midterm: Weds, Feb 7.
- ► Today: Decision Trees, the supervised learning

Features (a conceptual point)

Let ϕ be (one such) function that maps from inputs x to values. There could be many such functions, sometimes we write $\Phi(x)$ for the feature "vector" (it's really a "tuple").

- ▶ If ϕ maps to $\{0,1\}$, we call it a "binary feature (function)."
- ▶ If ϕ maps to \mathbb{R} , we call it a "real-valued feature (function)."
- $ightharpoonup \phi$ could map to categorical values.
- ordinal values, integers, ...

Often, there isn't much of a difference between x and the tuple of features.

Features

categorica/

Data derived from https://archive.ics.uci.edu/ml/datasets/Auto+MPG

mpg; cy	linde	rs; displacen	nent; horsepower;	weight; acc	celeration; yea	ar; ori	gin
18.0	8	307.0	130.0	3504.	12.0	70	1
15.0	8	350.0	165.0	3693.	11.5	70	1
18.0	8	318.0	150.0	3436.	11.0	70	1
16.0	8	304.0	150.0	3433.	12.0	70	1
17.0	8	302.0	140.0	3449.	10.5	70	1
15.0	8	429.0	198.0	4341.	10.0	70	1
14.0	8	454.0	220.0	4354.	9.0	70	1
14.0	8	440.0	215.0	4312.	8.5	70	1
14.0	8	455.0	225.0	4425.	10.0	70	1
15.0	8	390.0	190.0	3850.	8.5	70	1
15.0	8	383.0	170.0	3563.	10.0	70	1
14.0	8	340.0	160.0	3609.	8.0	70	1
15.0	8	400.0	150.0	3761.	9.5	70	1
14.0	8	455.0	225.0	3086.	10.0	70	1
24.0	4	113.0	95.00	2372.	15.0	70	3
22.0	6	198.0	95.00	2833.	15.5	70	1
18.0	6	199.0	97.00	2774.	15.5	70	1
21.0	6	200.0	85.00	2587.	16.0	70	1
27.0	4	97.00	88.00	2130.	14.5	70	3
26.0	4	97.00	46.00	1835.	20.5	70	2
25.0	4	110.0	87.00	2672.	17.5	70	2
24.0	4	107.0	90.00	2430.	14.5	70	2

Input: a row in this table. a feature mapping corresponds to a column.

Goal: predict whether mpg is < 23 ("bad" = 0) or above ("good" = 1) given other attributes (other columns).

201 "good" and 197 "bad"; guessing the most frequent class (good) will get 50.5% accuracy.

Let's build a classifier!

- Let's just try to build a classifier.

 (This is our first learning algorithm)
- ► For now, let's ignore the "test" set and trying to "generalize"
- ► Let's start with just looking at a simple classifier. What is a simple classification rule?

Contingency Table

	values of featur				$ure\;\phi$
values of y		v_1	v_2		v_K
values of g	0				
	1				

2.1	maker				
y	america	europe	asia		
0	174	14	9		
1	75	56	70		
	<u></u>				
	0	1	1		

y	maker				
	america	europe	asia		
0	174	14	9		
1	75	56	70		
	<u></u>		<u></u>		
	0	1	1		

	maker			
y	america	europe	asia	
0	174	14	9	
1	75	56	70	
	<u></u>			
	0	1	1	

Errors: 75 + 14 + 9 = 98 (about 25%)

Errors: 1 + 20 + 1 + 11 + 3 = 36 (about 9%)

Key Idea: Recursion

Miside l'Conquer

A single feature partitions the data.

For each partition, we could choose another feature and partition further.

Applying this recursively, we can construct a **decision tree**.

Decision Tree: Making a Prediction ϕ_1 ? φ₂?

 ϕ_4 ?

n₁₀:p₁₀

φ₃?

Decision Tree: Making a Prediction


```
Data: decision tree t, input example x Result: predicted class if t has the form \operatorname{LEAF}(y) then return y; else \# t.\phi is the feature associated with t; \# t.\operatorname{child}(v) is the subtree for value v; return \operatorname{DTREETEST}(t.\operatorname{child}(t.\phi(x)), x)); end
```

Algorithm 1: DTREETEST

Decision Tree: Making a Prediction

Equivalent boolean formulas:

$$\begin{split} (\phi_1 = 0) \Rightarrow \llbracket \mathsf{n}_0 < \mathsf{p}_0 \rrbracket \\ (\phi_1 = 1) \wedge (\phi_2 = 0) \wedge (\phi_3 = 0) \Rightarrow \llbracket \mathsf{n}_{100} < \mathsf{p}_{100} \rrbracket \\ (\phi_1 = 1) \wedge (\phi_2 = 0) \wedge (\phi_3 = 1) \Rightarrow \llbracket \mathsf{n}_{101} < \mathsf{p}_{101} \rrbracket \\ (\phi_1 = 1) \wedge (\phi_2 = 1) \wedge (\phi_4 = 0) \Rightarrow \llbracket \mathsf{n}_{110} < \mathsf{p}_{110} \rrbracket \\ (\phi_1 = 1) \wedge (\phi_2 = 1) \wedge (\phi_4 = 1) \Rightarrow \llbracket \mathsf{n}_{111} < \mathsf{p}_{111} \rrbracket \end{split}$$

Tangent: How Many Formulas?

- ► Assume we have *D* binary features.
- ► Each feature could be set to 0, or set to 1, or excluded (wildcard/don't care).
- $ightharpoonup 3^D$ formulas.

We chose feature ϕ_1 . Note that $\mathbf{n} = \mathbf{n_0} + \mathbf{n_1}$ and $\mathbf{p} = \mathbf{p_0} + \mathbf{p_1}$.

We chose not to split the left partition. Why not?

Greedily Building a Decision Tree (Binary Features)

Data: data D, feature set Φ

Result: decision tree

if all examples in D have the same label y, or Φ is empty and y is the best guess then return LEAF(y);

else

```
for each feature \phi in \Phi do
```

```
partition D into D_0 and D_1 based on \phi-values; let mistakes(\phi) = (non-majority answers in D_0) + (non-majority answers in D_1);
```

end

```
let \phi^* be the feature with the smallest number of mistakes; return Node(\phi^*, \{0 \to \text{DTreeTrain}(D_0, \Phi \setminus \{\phi^*\}), 1 \to \text{DTreeTrain}(D_1, \Phi \setminus \{\phi^*\})\});
```

end

Algorithm 2: DTREETRAIN

What could go wrong?

- ► Suppose we split on a variable with many values? (e.g. a continous one like "displacement")
- ▶ Suppose we built out our tree to be very deep and wide?

Danger: Overfitting

Detecting Overfitting

If you use all of your data to train, you won't be able to draw the red curve on the preceding slide!

Detecting Overfitting

If you use all of your data to train, you won't be able to draw the red curve on the preceding slide!

Solution: hold some out. This data is called **development data**. More terms:

- Decision tree max depth is an example of a hyperparameter
- "I used my development data to tune the max-depth hyperparameter."

Detecting Overfitting

If you use all of your data to train, you won't be able to draw the red curve on the preceding slide!

Solution: hold some out. This data is called **development data**. More terms:

- ▶ Decision tree max depth is an example of a **hyperparameter**
- "I used my development data to tune the max-depth hyperparameter."

Better yet, hold out two subsets, one for tuning and one for a true, honest-to-science **test**.

Splitting your data into training/development/test requires careful thinking. Starting point: randomly shuffle examples with an 80%/10%/10% split.

The "i.i.d." Supervised Learning Setup

Let ℓ be a loss function; $\ell(y,\hat{y})$ is what we lose by outputting \hat{y} when y is the correct output. For classification:

$$\ell(y,\hat{y}) = [\![y \neq \hat{y}]\!]$$

- Let $\mathcal{D}(x,y)$ define the true probability of input/output pair (x,y), in "nature." We never "know" this distribution.
- ▶ The training data $D = \langle (x_1, y_1), (x_2, y_2), \dots, (x_N, y_N) \rangle$ are assumed to be identical, independently, distributed (i.i.d.) samples from \mathcal{D} .
- ▶ The test data are also assumed to be i.i.d. samples from \mathcal{D} .
- ▶ The space of classifiers we're considering is \mathcal{F} ; f is a classifier from \mathcal{F} , chosen by our learning algorithm.