Diszkrét matematika 1.

2. előadás

Fancsali Szabolcs (Ligeti Péter diái alapján)

nudniq@cs.elte.hu www.cs.elte.hu/~nudniq

Rendezett pár

Motiváció

Függvényeknél általánosabb kapcsolatok leírása (több érték)

Definíció

Bármely x,y esetén az (x,y) rendezett pár legyen

$$(x,y) = \{\{x\}, \{x,y\}\}.$$

Az (x, y) rendezett pár első koordinátája x, második koordinátája pedig y.

Definíció

Az X, Y halmazok Descartes-szorzata legyen a következő:

$$X \times Y = \{(x, y) : x \in X, y \in Y\}.$$

Binér relációk

Definíció

Adott X, Y halmazok esetén az $R \subset X \times Y$ halmazok a binér relációk. R binér reláció esetén $(x,y) \in R$ helyett xRy írható (x relációban áll y -nal).

Definíció

```
\begin{aligned} & \textit{Az} \ R \subset X \times Y \ \textit{reláció \'ertelmez\'esi tartom\'anya} \\ & \textit{dmn}(R) = \{x \in X : \exists y \in Y : xRy\}. \\ & \textit{Az} \ R \subset X \times Y \ \textit{rel\'aci\'o\'ert\'ekk\'eszlete} \\ & \textit{rng}(R) = \{y \in Y : \exists x \in X : xRy\}. \end{aligned}
```

Relációk inverze

Definíció

Egy R binér reláció inverze az $R^{-1} = \{(y, x) : (x, y) \in R\}.$

Definíció

Legyen $R \subset X \times Y$ binér reláció és A halmaz. Az A halmaz képe az $R(A) = \{y \in Y : \exists x \in A : (x,y) \in R\}$. Egy B halmaz inverz képe az $R^{-1}(B)$.

Relációk kompozíciója

Definíció

Legyen R,S binér reláció. Ekkor az $R\circ S$ kompozíció reláció:

$$R \circ S = \{(x,y): \exists z: (x,z) \in S \land (z,y) \in R\}$$

Állítás

Legyen R, S, T binér relációk. Ekkor

- Ha $rng(S) \supset dmn(R)$, akkor $rng(R \circ S) = rng(R)$
- $R \circ (S \circ T) = (R \circ S) \circ T$ (asszociativitás)
- $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$

Relációk tulajdonságai

Definíció

Legyen R binér reláció X-en. Ekkor az R reláció

- reflexív, ha $\forall x \in X : xRx$;
- 2 irreflexív, ha $\forall x \in X : \neg xRx$;
- **3** szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx;$
- **4** antiszimmetrikus, ha $\forall x, y \in X : xRy \land yRx \Rightarrow x = y;$
- **1** *tranzitív, ha* $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$;
- **1** dichotóm, ha $\forall x, y \in X : xRy \lor yRx$;
- trichotóm, ha $\forall x, y \in X : x = y, xRy, yRx$ közül pontosan az egyik teljesül;

Relációk tulajdonságai

Definíció

Legyen R binér reláció X-en. Ekkor az R reláció

- reflexív, ha $\forall x \in X : xRx$;
- 2 irreflexív, ha $\forall x \in X : \neg xRx$;
- **3** szimmetrikus, ha $\forall x, y \in X : xRy \Rightarrow yRx;$
- **4** antiszimmetrikus, ha $\forall x, y \in X : xRy \land yRx \Rightarrow x = y;$
- **1** *tranzitív, ha* $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$;
- **1** dichotóm, ha $\forall x, y \in X : xRy \lor yRx$;
- trichotóm, ha $\forall x, y \in X : x = y, xRy, yRx$ közül pontosan az egyik teljesül;

Ekvivalenciareláció és osztályozás

Definíció

Legyen X halmaz és R reláció X-en. Az R reláció ekvivalenciareláció, ha reflexív, szimmetrikus és tranzitív.

Definíció

Az X részhalmazainak egy $\mathcal O$ rendszerét osztályozásnak nevezzük, ha páronként diszjunkt nem-üres halmazokból áll és $\cup \mathcal O = X$.

Osztályfelbontás

Tétel

Valamely X halmazon értelmezett \sim ekvivalenciareláció esetén az $\overline{x} = \{y \in X : x \sim y\}$ ekvivalenciaosztályok X-nek egy osztályozását adják.

Tétel

Valamely X halmaz bármely $\mathcal O$ osztályozása esetén az $R=\cup\{Y\times Y:Y\in\mathcal O\}$ reláció egy ekvivalenciareláció, aminek ekvivalenciaosztályait éppen $\mathcal O$ adja.

Részbenrendezés, rendezés

Definíció

Az X halmazon értelmezett reflexív, antiszimmetrikus és tranzitív relációt részbenrendezésnek nevezzük. (Jele: \leq) Ha \leq egy részbenrendezés X-en, akkor az (X, \leq) párt részbenrendezett halmaznak nevezzük.

Definíció

 (X, \leq) részbenrendezett halmaz és $x, y \in X$ esetén x és y összehasonlíthatóak, ha $x \leq y \lor y \leq x$.

Az X halmazon értelmezett részbenrendezést rendezésnek nezezzük, ha $\forall x,y \in X$ összehasonlítható.

Hasse diagram

- ullet (X, \leq) ábrázolására
- X elemei csúcsok
- $a, b \in X$ között megy irányított él, ha $a < b \land \nexists c : a < c < b$
- ekkor azt mondjuk, hogy a megelőzi b-t
- ábrázolása: irányított él helyett a csúcs a b alatt

Legkisebb, legnagyobb és társai

Definíció

```
Az (X, \leq) részbenrendezett halmaz legkisebb eleme: olyan x \in X: \forall y \in X, \ x \leq y; legnagyobb eleme: olyan x \in X: \forall y \in X, \ y \leq x; minimális eleme: olyan x \in X: \nexists y \in X, \ x \neq y, \ y \leq x; maximális eleme: olyan x \in X: \nexists y \in X, x \neq y, \ x \leq y.
```

Megjegyzés

- minimális és maximális elem több is lehet
- rendezett halmazban a minimális és a legkisebb (maximális és a legnagyobb) elem egybeesik

Függvények

Definíció

Egy $f \subset X \times Y$ relációt függvénynek nevezünk, ha

$$\forall x, y, y'(((x, y) \in f \land (x, y') \in f) \Rightarrow y = y').$$

Függvények esetében az $(x, y) \in f$ helyett az f(x) = y jelölést használjuk. Az y az f függvény x helyen felvett értéke.

Ha dmn(f) = X, akkor az $f : X \to Y$ jelölést használjuk.

Definíció

 $Az f: X \rightarrow Y$ függvény

- injektív, ha $\forall x, x', y((f(x) = y \land f(x') = y) \Rightarrow x = x');$
- szürjektív, ha rng(f)=Y;
- bijektív, ha injektív és szürjektív.

Függvények kompozíciója

Emlékeztető

• R, S binér relációk kompozíciója: $R \circ S = \{(x,y): \exists z: (x,z) \in S \land (z,y) \in R\}$

Tétel

- Ha f és g függvény, akkor $g \circ f$ is függvény.
- ② Ha f és g függvény, akkor $g \circ f(x) = g(f(x))$.
- **3** Ha f és g injektív, akkor $g \circ f$ is injektív.
- Ha $f: X \to Z$ és $g: Z \to Y$ szürjektív, akkor $g \circ f: X \to Y$ is szürjektív.

Függvények kompozíciója

Emlékeztető

- $f \subset X \times Y$ reláció függvény, ha $\forall x, y, y'(((x, y) \in f \land (x, y') \in f) \Rightarrow y = y').$
- R, S binér relációk kompozíciója: $R \circ S = \{(x, y) : \exists z : (x, z) \in S \land (z, y) \in R\}$

Tétel

- Ha f és g függvény, akkor $g \circ f$ is függvény.
- 2 Ha f és g függvény, akkor $g \circ f(x) = g(f(x))$.
- **3** Ha f és g injektív, akkor $g \circ f$ is injektív.
- **4** Ha $f: X \to Z$ és $g: Z \to Y$ szürjektív, akkor $g \circ f: X \to Y$ is szürjektív.

Műveletek

Definíció

Legyen X halmaz.

 $Egy*: X \times X \to X$ függvényt X-en értelmezett binér műveletnek nevezünk. *(x,y) a művelet eredménye, helyette x*y-t írhatunk. $Egy*: X \to X$ függvényt X-en értelmezett unér műveletnek nevezünk.

Definíció

 $Az * : X \times X \rightarrow X$ binér művelet

- asszociatív, ha $\forall x, y, z \in X : (x * y) * z = x * (y * z)$
- kommutatív, ha $\forall x, y \in X : x * y = y * x$