HW 1: PMATH 945 Due Jan. 17 at 11:59 pm

- (1) (a) Suppose E is a topological space equipped with a continuous map $E \to X$. Show that continuous sections of this map form a sheaf of sets on X. More precisely, to each open set U of X, we associate the set of continuous maps of $\sigma: U \to E$ such that $\pi \circ \sigma = \mathrm{id}_U$. Show that this forms a sheaf \mathcal{F}_E .
 - (b) For a presheaf \mathcal{F} of sets on X, let $E_{\mathcal{F}}$ be the disjoint union of the stalks \mathcal{F}_x equipped with the obvious map to X (we'll write elements of this as (x,s) for $x \in X, s \in \mathcal{F}_x$), given the topology with basis $U_{V,f} = \{(v, f_v) \text{ for all } v \in V\}$ for V open, $f \in \mathcal{F}(V)$. Show that if \mathcal{F} is a sheaf, the continuous sections of the map $\pi \colon E_{\mathcal{F}} \to X$ are isomorphic to the sheaf \mathcal{F} .
 - (c) For a presheaf \mathcal{F} on X, let $S(\mathcal{F}) = \mathcal{F}_{E_{\mathcal{F}}}$. Show that S is a functor $Set_X^{pre} \to Set_X$ that sends every presheaf to its sheafification.
- (2) Suppose $0 \to \mathscr{F} \to \mathscr{G} \to \mathscr{H}$ is an exact sequence of sheaves of abelian groups on a topological space X. If $\pi: X \to Y$ is a continuous map, show that

$$0 \longrightarrow \pi_* \mathscr{F} \longrightarrow \pi_* \mathscr{G} \longrightarrow \pi_* \mathscr{H}$$

is exact.

- (3) (a) State a universal property which can be used to define the tensor product of \mathcal{O}_X modules on a ringed space (X, \mathcal{O}_X) .
 - (b) Give an explicit construction of a sheaf (be sure it is not just a presheaf) satisfying this property for given \mathcal{F} and \mathcal{G} .
 - (c) Show that the stalk of a tensor product of sheaves over \mathcal{O}_X is the tensor product of the stalks over the local ring $\mathcal{O}_{X,p}$.

1