

BUILDING 41

CIE4125 Structural Design – Case study

Inhoudsopgave

Ir	nleiding	3
1	L. Voorlopig ontwerp	4
	1.1 Aannames en introductie	4
	1.2 Lift	5
	1.3 Positionering kern	6
	1.4 Stabiliteit	7
	1.4.1 Krachten in stabiliteitswanden	8
	1.5 Brandveiligheid	13
	1.6 Dilataties	14
	1.7 Functioneel Plan	15
2	2. Algemene gegevens	16
	2.1 Uitgangspunten en plattegrond	16
	2.2 Belasting factoren	17
	2.3 Brandveiligheid	17
	2.4 Gebruikte materialen	17
	2.5 Vervorming	17
	2.6 Isolatiewaarde	18
3	3. Belastingen	19
	3.1 Belastingen per vloer	19
	3.1.1 Dak	19
	3.1.2 Verdiepingsvloer	19
	3.1.3 Begane grondvloer	20
	3.2 Windbelasting	20
	3.3 Sneeuwbelasting	21
	3.4 Regenwater	22
	3.5 Buitengewone belastingen	22
	3.5.1 Stootbelastingen veroorzaakt door wegvoertuigen	22
	3.5.2 Ontploffingen in bouwwerken	23
	3.5.3 Tweede draagweg	23
	3.6 Maatgevende belasting	
	3.6.1 Dakvloer	23
	3.6.2 Verdiepingsvloeren	24

	3.6.3 Begane grondvloer	26
4.	Berekening	27
	4.1 Composiete plaat	27
	4.1.1 Buigend moment	27
	4.1.2 Weerstand verticale schuifsterkte	29
	4.1.3 Longitudinale schuifweerstand	30
	4.1.4 Ponsweerstand	30
	4.1.5 Weerstand van stiftdeuvels	30
	4.1.6 Brandwerendheid	31
	4.1.7 Conclusie	31
	4.2 Composiete ligger	32
	4.2.1 Buigend moment	32
	4.2.2 Weerstand verticale schuifspanning	33
	4.2.3 Doorbuiging	34
	4.2.4 Lateral torsional buckling	34
	4.2.5 Brandwerendheid	34
	4.2.5 Conclusie	36
	4.3 Kolommen	37
	4.4 Verbindingen	40
5.	Fundering	42
Dis	scussie	43
Bik	bliografie	44
Bij	jlage A: Plattegrond en doorsnede constructie	45
Bij	jlage B: Berekening lift	47
Bij	lage C: Berekening positionering stabiliteitswanden	48
Bij	jlage D: Berekening composiete plaat	49
Bij	ilage E: Berekening brandwerend materiaal	51
Bij	ilage F: Berekening ligger	54
Bij	ilage G: Berekening verbinding, component method	57

Inleiding

In dit verslag zal er een volledig ontwerp van gebouw 41 worden gemaakt. In hoofdstuk 1 zal er een voorlopig ontwerp worden gemaakt. Dit ontwerp is gebaseerd op enkele factoren waar vanaf het begin van het ontwerp rekening mee dient te worden gehouden. In hoofdstuk 2 zullen enkele algemene gegevens worden uitgewerkt. In hoofdstuk 3 zullen alle verschillende types belastingen worden bepaald en zal de maatgevende belasting per vloer worden bepaald. De berekeningen van de vloeren, liggers, kolommen en verbindingen wordt in hoofdstuk 4 uitgewerkt. In hoofdstuk 5 wordt de berekening van de fundering behandeld.

1. Voorlopig ontwerp

Het voorlopig ontwerp wordt gemaakt gebaseerd op enkele factoren. Doordat deze factoren een grote invloed hebben op het ontwerp dienen deze in de eerste ontwerpfases overwogen te worden. Deze factoren bestaan uit:

- Lift, trappen en ander verticaal transport. Hiermee kan de grootte van de stabiliteitskern bepaald worden
- Positionering van de kern
- Stabiliteit
- Brandveiligheid
- Dilataties

1.1 Aannames en introductie

Dit gebouw zal een aantal nieuwe startups en kleine bedrijven huisvesten. Het is daarom belangrijk dat er een mogelijkheid is om de verschillende bedrijven in het gebouw van elkaar te scheiden en een gezamenlijke ingang en kantine te creëren. Van belang in dit gebouw is dat er zo veel mogelijk open ruimte wordt gecreëerd, zodat het gebouw vrij in te richten is. Op deze manier kan het gebouw zo langere tijd zijn functie behouden.

Het gebouw wordt gebouwd in een gebied dat niet aardbevingsgevoelig is. Aardbevingsbestendigheid wordt daarom niet meegenomen in dit verslag.

Voor de verdiepingshoogte is 3,5 meter aangehouden.

Bij de gedane aannames is gepoogd om de aanname te doen die het meest realistisch is, of de aanname te doen die het meest maatgevend is.

Er is aangenomen dat alle gebruikte staalprofielen in cross section class 1 of 2 vallen en er dus een plastische calculatie kan worden gedaan.

1.2 Lift

De totale oppervlakte van het gehele gebouw bedraagt 360*5 + 240*4 = 2760 m². Van deze oppervlakte zal er ongeveer 2500 m² uit werkplekken bestaan. Een werkplek neemt ongeveer 12 m² in beslag. Dus zullen er rond de 200 personen werken in het gebouw. Tijdens piektijden, zoals het begin of eind van de werkdag en tijdens de lunch gebruikt ongeveer 10 procent van de werknemers de lift per 5 minuten. Elke 5 minuten zullen er 20 personen de lift gebruiken, aangenomen dat niemand de trap gebruikt. (Wit, 2019) Hieruit kan geconcludeerd worden dat 2 liften, ieder voor 5 personen voldoende zal zijn. Er zijn dan twee liften nodig die beide 1,6 bij 1,4 meter groot zijn. (kevlarelevators.com, 2020) Zie bijlage B.

1.3 Positionering kern

Naast deze twee liften is er ook ruimte nodig voor een trap, een open ruimte voor beweging en een opening voor het aanbrengen van verticale leidingen. Een snelle berekening geeft dat de kern ongeveer 25 m² zal innemen. In deze paragraaf wordt er gekeken naar de mogelijke positionering van deze kern. Drie mogelijke varianten worden vergeleken, zie figuur 1.

Figuur 1: 3 mogelijke varianten

De ingang van het gebouw met bijbehorende ontvangstruimte zal in de buurt van de kern worden geplaatst. Het is logischer om deze ingang in het midden van het gebouw te positioneren. Hier hebben variant A en B de voorkeur.

De kern werkt ook als stabiliteitskern. Het heeft de voorkeur om een stabiliteitskern zo te plaatsen in een gebouw dat deze centraal gelegen is, zodat de rotatiestabiliteit zo klein mogelijk is. (de mogelijkheid dat het gebouw kan roteren om de kern.) Hier heeft variant A de voorkeur, gevolgd door Variant B en C.

Variant A lijkt het optimaalst wanneer het gebouw bestaat uit meerdere verschillende bedrijven. Het gebouw wordt namelijk als het ware opgesplitst in twee delen door de kern. Variant B is een goede optie wanneer één bedrijf zich in het gebouw huisvest. Er wordt aangenomen dat er meerdere bedrijven zich huisvesten in het gebouw. Daarom wordt voor variant A gekozen.

1.4 Stabiliteit

Voor de onderstaande stabiliteitsberekening worden grootheden afgerond om zo eenduidige getallen te krijgen in de berekeningen.

Voor de berekening van de stabiliteit is het gebouw als een vierkant gebouw van 10x54x17.5 gemodelleerd. Het gevolg van deze aanname is dat de daadwerkelijke windbelasting zal afwijken van de berekende windbelasting. Een uitgebreidere berekening of een test in de windtunnel zal gedaan moeten worden om te voldoen aan de Eurocode.

Er zijn verschillende manieren waarop de stabiliteit van het gebouw wordt voorzien. Allereerst werken de verdiepingsvloeren als schrijven. In de dwarsrichting worden er stabiliteitswanden in de gevels voorzien, welke ter hoogte van de verdiepingsvloeren en dakvloer, op de assen 1 en 10 staan, aangegeven met rood in figuur 2. De schrijfwerking in deze wanden zal de windbelasting afdragen. De opdrachtbeschrijving laat weten dat er geen stabiliteitsvoorzieningen in de gevel in langsrichting (evenwijdig aan de cijferassen) mag worden aangebracht. De rotatiestabiliteit wordt volledig door de kern opgenomen.

Figuur 2: Positionering stabiliteitswanden

Er is gekozen om de stabiliteitswanden van beton te maken. De reden hiervoor is dat de positie van de stabiliteitswanden gecombineerd kunnen worden met de positie van de vluchtwegen, zie paragraaf 1.5. De belemmering van het zicht van de betonnen stabiliteitswand is dus niet van belang. Verder zal een betonnen stabiliteitswand goedkoper zijn dan een stalen stabiliteitswand.

1.4.1 Krachten in stabiliteitswanden

De stuwdruk op de gevel van het gebouw is 1,03 kN/m². De cpe factor voor de loefzijde is 0,80 en de cpe factor voor de lijzijde is 0,50. De totale stuwdruk (winddruk + windzuiging) is dus 0,8*1,03 + 0,5*1,03 = 1,34 kN/m². Deze getallen volgen uit de windberekening, zie figuur 3

De kracht op de gevel $F_i = q_i * h_1 *$ breedte

De kracht op de gevel $F_1 = 1,34 * 17,5 * 36 = 845 \text{ kN}$

De kracht op de gevel $F_2 = 1,34 * 14 * 24 = 450 \text{ kN}$

De kracht op de gevel $F_3 = 1,34 * 17.5 * 10 = 235 \text{ kN}$

De kracht op de gevel $F_4 = 1,34 * 17.5 * 5 = 117 \text{ kN}$

Figuur 4: Krachten F₁ tot en met F₄

 $F_2 = 450 \text{ kN}$

Voor de onderstaande berekeningen is aangenomen dat de vloeren en het frame in het dak oneindig stijf zijn. De stabiliteitselementen worden als veren aangenomen met veerstijfheid ki.

1.4.1.2 Kracht F₁

De kracht F1 creëert een reactiekracht in het windverband in de gevel van 385 kN, zie figuur 5. Deze kracht grijpt aan op de helft van de hoogte. Deze kracht creëert een moment die wordt opgevangen met een opwaartse en neerwaartse kracht in de fundering. Deze kracht in de fundering bedraagt 385/5*8.75 = 675 kN. Het eigengewicht van het gebouw op deze positie dient groter dan 675 kN te zijn. Anders dienen er maatregelen te worden genomen.

Figuur 5: Reactiekracht veroorzaakt door kracht F₁

Het eigen gewicht van het gebouw op de hoekkolom bedraagt ongeveer voor de vloeren:

$$5*1,62kN/m^2*2,5 m*3,0 m = 61 kN$$

Verder is er nog het eigengewicht van de stabiliteitswand

Het eigengewicht is in totaal 61 + 206 = 267 kN. De wind zorgt echter voor een opwaartse kracht in de fundering van 675 kN. Conclusie is dus dat het toepassen van slechts een stabiliteitswand niet voldoende

is. Het is dus nodig om een extra stabiliteitswand toe te voegen. Beide stabiliteitswanden zullen dezelfde stijfheid hebben.

Een Python script geeft de mogelijke positie van deze extra stabiliteitswand en de bijbehorende krachten. Zie bijlage C en figuur 6. Voor de stabiliteitskern is een kern van 6 bij 5 meter met een dikte van 200mm aangenomen. Voor de stabiliteitswanden is een massieve wand van 5 meter met een dikte van 200mm aangehouden.

De gebruikte stabiliteitselementen zijn twee stabiliteitswanden en een stabiliteitskern. Deze kracht is verdeeld over de stabiliteitselementen

Figuur 6 Stabiliteitswanden S₁ en S₂

gebaseerd op de ratio van de veerstijfheid van het stabiliteitselement ten opzichte van de totale veerstijfheid.

$$R_i = \frac{k_i}{\sum k_i} * F$$

 k_i is de veerstijfheid van stabiliteitselement i. Deze veerstijfheid is gelijk aan het oppervlaktetraagheidsmoment maal de E-modulus van het element. Omdat dezelfde E-modulus is gebruikt voor alle stabiliteitselementen wordt deze waarde niet meegenomen in de berekening.

Het rotatiemoment voegt nog een extra kracht toe in de stabiliteitselementen die moet worden meegenomen. Om het rotatiemoment te vinden wordt als eerst het zwaartepunt als volgt bepaald:

$$c.o.g. = \frac{\sum (k_i * x_i)}{\sum k_i}$$

 $met \ x_i$ is de afstand van het zwaartepunt van stabiliteitselement i.

De rotatie stijfheid wordt als volgt bepaald.

$$C = \sum k_i * L_i^2$$

met Li is de afstand tussen de positie van het stabiliteitselement i en het zwaartepunt.

De rotatie is gelijk aan.

$$\varphi = \frac{M}{C}$$

met

$$M = (18 - c.o.g) * F$$

De extra kracht in de stabiliteitselementen wordt nu als volgt berekend.

$$\Delta R_i = k_i * \varphi * L_i$$

Door deze kracht bij de eerder gevonden kracht op te tellen wordt de totale kracht per stabiliteitselement gevonden.

Wand 1 zal zich in de gevel worden geplaatst. Dus op x= 36 meter, zie figuur 6.

positie x wand 2 [m]	F kern [kN]	F wand 1 [kN]	F wand 2 [kN]
18	370	309	165
24	393	265	186
30	426	225	194
33	443	207	194

Figuur 7: Gevonden krachten in stabiliteitswanden S_1 en S_2

Door de stabiliteitswand op een afstand x=33 meter zijn de krachten in de stabiliteitswanden goed verdeeld, zie figuur 7. Figuur 8 geeft deze posities van de stabiliteitswanden aan in rood.

Figuur 8: Positionering stabiliteitswanden S₁ en S₂

1.4.1.3 Kracht F₂

De kracht F_2 creëert een reactiekracht in het windverband in de gevel van 193 kN, zie figuur 9. Deze kracht grijpt aan op de helft van de hoogte. Deze kracht creëert een moment die wordt opgevangen met een opwaartse en neerwaartse kracht in de fundering. Deze kracht in de fundering bedraagt 193/5*7 = 270 kN. Het eigengewicht van het gebouw op deze positie dient groter dan 270 kN te zijn. Anders dienen er maatregelen te worden genomen.

Figuur 9 Reactiekrachten veroorzaak door kracht F₂

Het eigen gewicht van het gebouw op de hoekkolom bedraagt ongeveer voor de vloeren:

$$4*1,62kN/m^2*2,5 m*3,0 m = 49 kN$$

Verder is er nog het eigengewicht van de stabiliteitswand

Het eigengewicht is in totaal 296 kN. De wind zorgt voor een opwaartse kracht in de fundering van 270 kN. Dus de stabiliteitswand in stramien 1 is voldoende, zie figuur 2.

1.4.1.4 Krachten F_3 en F_4

Figuur 10 Reactiekrachten veroorzaakt door kracht F3 en F4

De krachten F₃ en F₄ worden opgenomen door de kern, echter zullen deze krachten een rotatiemoment teweegbrengen, zie figuur 10. Dit rotatiemoment zal worden opgevangen door de stabiliteitswanden in dwarsrichting.

$$M_3 = L * F_3 = 2.5 * 235 = 588 \, kNm$$

$$M_4 = L * F_4 = 5.0 * 117 = 585 \, kNm$$

Dit rotatiemoment kan worden opgenomen door de buitenste twee stabiliteitswanden. Zie figuur 11. Dit moment zal twee krachten in de stabiliteitswanden opleveren. Deze krachten zijn gelijk aan 588/60 = 9.8 kN. De stabiliteitswanden kunnen deze krachten opnemen. De krachten F_3 en F_4 zijn dus niet maatgevend.

Figuur 11 Opname rotatiemoment

Het is ook mogelijk dat de wind niet loodrecht op het gebouw aangrijpt, maar onder een hoek. Om de stabiliteitsvoorziening in dat geval te bepalen dient extra onderzoek te worden gedaan. Het ontwerp voldoet verder op stabiliteit.

1.5 Brandveiligheid

Voor het gebouw geldt dat het hoogste verblijfgebied zich op een hoogte hoger dan 5 meter bevindt. Dus mag bezwijken van de constructie pas na 90 minuten plaatsvinden. Voor utiliteitsbouw is de maximale grote van een brandcompartiment 2500 m². Een brandcompartiment moet een vuurseparatie van minimaal 60 minuten garanderen. Dit is omdat een brand in 60 minuten gemiddeld door alle brandstof heen is. Het testen van de hoofddraagconstructie op basis van de eis van bezwijken na 90 minuten kan in een verdere ontwerpfase gedaan worden. Het garanderen van een brandcompartiment met een vuurseparatie van minimaal 60 minuten is te bereiken door het ontwerp aan te passen. Door voor variant A te kiezen, zal het gebouw opgedeeld worden in twee verschillende ruimtes, van 210 en 330 m². Dit voldoet aan de eis van een maximale grote van 2500 m². Verder is dit qua brandveiligheid de veiligste optie van de drie varianten.

Verder dienen er vluchtwegen beschikbaar zijn, en hiervoor geldt ook een eis van bezwijken van 90 minuten net als voor de hoofddraagconstructie. Hiervoor zal zowel tussen stramien 1 en 2, als tussen stramien 9 en 10 een brandtrap worden geplaatst, zie figuur 12.

Figuur 12 Plattegrond inclusief positionering brandtrappen

1.6 Dilataties

In het voorontwerp dient ook gekeken te worden naar het toepassen van dilataties mits nodig. In het gebouw wordt er geen gebruik gemaakt van metselwerk. Verder geldt er dat een stalen gebouw van 100 meter gemaakt kan zonder dilataties. Dit komt doordat het krimpen en kruipen van staal niet voor problemen zorgt. Verder kunnen ter plaatse gestorte betonnen gebouwen 40 tot 50 meter lang zijn zonder dilataties (Bouwen met Staal, 1997). Voor het gebouw geldt dat het stalen frame minder lang is dan 100 meter, en dat de ter plaatse gestorte betonnen vloeren maximaal 36 meter lang zijn. Vanwege deze redenen zullen er geen dilataties toegepast hoeven te worden in het gebouw.

1.7 Functioneel Plan

Figuur 13 laat het functionele plan van de begane grond zien. Verdiepingsvloeren zullen identiek zijn, het enige verschil is dat de ontvangstruimte ook uit kantoorfunctie bestaat. Kantoren kunnen worden ingedeeld naar eigen inzicht door het plaatsen van licht scheidingswerk. Ook kunnen vergaderzalen naar eigen inzicht gecreëerd worden.

Figuur 13 Functioneel plan begane grond

2. Algemene gegevens

2.1 Uitgangspunten en plattegrond

De volgende gegevens zijn gebaseerd op de uitgangspunten van de opdracht.

Gebouwtype	Kantoorfunctie
Gevolgklasse Bouwdeel 1	CC2a - 4 bouwlagen
Gevolgklasse Bouwdeel 2	CC2b - >4 bouwlagen
K _{FL} factor	1.0
Betrouwbaarheidsklasse	RC2
Ontwerplevensduur	50 jaar
Windgebied	2, onbebouwd
Brandveiligheid	90 minuten

De plattegrond van het gebouw is gegeven in figuur 14. Hierin zijn de bouwdelen 1 en 2 aangegeven. Er is een verdiepingshoogte van 3.5 meter aangenomen.

Figuur 14 Bouwdeel 1 en 2

2.2 Belasting factoren

Voor de ultimate limit state zijn de volgende belasting factoren aangehouden.

 $q_{d;1}$ $\gamma_G = 1,20$ Ongunstig

 $\gamma_G = 0.90 \text{ Gunstig}$

 $y_Q = 1,50$

 $q_{d;2}$ $\gamma_G = 1,35$

Voor de serviceability limit state zijn de volgende belasting factoren aangehouden.

 $q_{d;1}$ $\gamma_G = 1,00$ Ongunstig

 $y_G = 1,00 \text{ Gunstig}$

 $y_{Q} = 1,00$

 $q_{d;2}$ $\gamma_G = 1,00$

2.3 Brandveiligheid

Het betreft een kantoorgebouw waarbij het hoogste verblijfgebied zich meer dan 5 meter boven het maaiveld bevindt. Daarom dient een brandwerendheid van 90 minuten te worden aangenomen. Er is echter een eventuele reductie van 30 min mogelijk, mits er gebruik wordt gemaakt van compartimenten. Er moet gelden per compartiment <500MJ/m². De berekening voor deze reductie wordt als lastig ervaren (Bouwen met staal, 2017). Deze berekening zal dan ook niet worden uitgevoerd in dit verslag. Aangenomen is dat er geen reductie mogelijk is.

Voor de constructie van een brandcompartimenten en voor scheidingsconstructies gelden eisen. Naast de hoofddraagconstructie, dienen ook bepaalde bouwkundige constructies te worden beschouwd. Dit omvat de bouwkundige constructies die een veilige brandscheiding of vluchtroute moeten waarborgen. NEN-EN-1991-1-2 beschrijft de karakteristiek waarden van belasting bij brand en hoe deze bepaald dient te worden.

2.4 Gebruikte materialen

Beton (in het werk gestort)	C45/55	$f_{cd} = 13,3N/mm^2$
Betonstaal	B500	$f_{yd} = 435N/mm^2$
Constructiestaal	S235	$f_{vd} = 235 N/mm^2$

2.5 Vervorming

Zowel de vervorming van de vloeren als de vervorming van de gevels dient te worden gecheckt. Voor de vervorming van de vloeren geldt $w_2 + w_3 < 0.003*L$. De vervorming van de gevels wordt verder niet op ingegaan in dit verslag.

2.6 Isolatiewaarde

Het bouwbesluit geeft een minimale isolatiewaarde voor de vloeren, de gevels en het dak van een gebouw. Tijdens het ontwerp van het gebouw dient hier rekening mee te worden gehouden.

De volgende Rc-waardes zijn de minimumeis

vloer = $3.5 \text{ m}^2\text{K/W}$

gevel = $4.5 \text{ m}^2\text{K/W}$

 $dak = 6.0 \text{ m}^2\text{K/W}$

De keuze voor een geïsoleerde kanaalplaatvloer en een isolatielaag op de dakvloer zullen voldoende isolatie bieden. Voor de gevel dient een ontwerp met voldoende isolatie te worden gekozen.

3. Belastingen

3.1 Belastingen per vloer

Onderstaand is per vloer aangegeven welke belastingen zijn gebruikt in de verdere berekeningen. Deze belastingen worden verder in het verslag uitgewerkt. Enkele belastingen zijn aangenomen. Dit zijn de belasting voor de afwerking van de dakvloer, de afwerking en het systeemplafond van de verdiepingsvloeren. Voor het lichte scheidingswerk en de afwerklaag van de begane grondvloer zijn de meest gebruikelijke belastingen aangenomen.

3.1.1 Dak

Permanent

stalen dakplaat 0,20 kN/m²

isolatie, dakbedekking en liggers 0,30 kN/m²

plafond 0,20 kN/m²

Veranderlijk

H (daken) $1,00 \text{ kN/m}^2$ $\psi_0 = 0,0$ $\psi_1 = 0,0$ $\psi_2 = 0,0$

H (daken) geconcentreerd F = 1,50 kN

Winddruk -2,06 kN/m²

Windzuiging 0,52 kN/m²

Sneeuw 0,56 kN/m² $\psi_0 = 0,0$ $\psi_1 = 0,2$ $\psi_2 = 0,0$

3.1.2 Verdiepingsvloer

Permanent

Afwerking 0,10 kN/m²

Composiet vloer 2,60 kN/m²

systeemplafond 0,40 kN/m².

Veranderlijk

B (kantoor) 2,50 kN/m² $\psi_0 = 0.5$ $\psi_1 = 0.5$ $\psi_2 = 0.3$

B (kantoor) geconcentreerd F = 3,00 kN

3.1.3 Begane grondvloer

Permanent

Dekvloer $70 \text{ mm} * 20,00 = 1,40 \text{ kN/m}^2$

Geïsoleerde kanaalplaatvloer 260mm 3,82 kN/m²

Veranderlijk

B (kantoor) 2,50 kN/m² $\psi_0 = 0.5$ $\psi_1 = 0.5$ $\psi_2 = 0.3$

B (kantoor) geconcentreerd F = 3,00 kN

lichte scheidingswanden 1,20 kN/m²

3.2 Windbelasting

Voor de berekening van de windbelasting is het gebouw als een vierkant gebouw van 10x54x17.5 gemodelleerd. Het gevolg van deze aanname is dat de daadwerkelijke windbelasting altijd kleiner is dan de berekende windbelasting.

Windgebied = 2

Omgeving = onbebouwd

LxBxH = 10x54x17,5

 $q_p(z_e) = 1,03 \text{ kN/m}^2$

ontwerplevensduur = 50 jaar

Allereerst wordt de waarschijnlijkheidsfactor c_{prob} bepaald.

p=1/50

n=0.5 (aanbevolen waarde eurocode)

K = 0,2 (aanbevolen waarde eurocode)

$$c_{\text{prob}} = \left(\frac{1 - K \cdot \ln(-\ln(1-p))}{1 - K \cdot \ln(-\ln(0.98))}\right)^n$$

Dus, $c_{prob} = 1.0$

Voor de bouwwerkfactor $c_s c_d$ geldt dat de hoogte van het gebouw kleiner is dan 4 maal de gebouwdiepte in de richting van de wind: 17.5 < 4 * 10

Dus, $c_s c_d = 1.0$

$$F_i = c_s c_d * c_f * q_p(z_e) * A_{ref} = 1.0 * 1.0 * 1.03 * 1 = 1.03 kN$$

Dit geeft een kracht van 1,03 kN op een oppervlakte van 1 bij 1 meter.

Er is aangenomen dat het gebouw scherpe dakranden heeft. Verder is er aangenomen dat de façade zeer ruw is. Dit geeft $c_{fr} = 0.04 \text{ kN/m}^2$. Zie figuur 15.

Oppervlakken	Wrijvingscoëfficiënt cfr
Glad (bijvoorbeeld staal, glad beton)	0,01
Ruw (bijvoorbeeld ruwe beton, beteerde boorden)	0,02
Zeer ruw (bijvoorbeeld rimpels, ribben, kronkelingen)	0,04

Figuur 15 Wrijvingscoëfficiënt van de façade

Voor de winddruk gelden de volgende c_{pi} en c_{pe} waarden

uitwendigedrukcoefficient $c_{pe} = +0.3$

inwendigedrukcoefficient $c_{pi} = -0.2$

Voor de windzuiging gelden de volgende c_{pi} en c_{pe} waarden

uitwendigedrukcoefficient cpe -1,8

inwendigedrukcoefficient c_{pi} = +0,2

Dit geeft:

$$\begin{aligned} &\text{Winddruk} &= \text{qp*}(c_{\text{pe}} - c_{\text{pi}}) &= 1,03 * (0,3--0,2) = 0,52 \text{ kN/m}^2 \\ &\text{Windzuiging} &= \text{qp*}(c_{\text{pe}} - c_{\text{pi}}) &= 1,03 * (-1,8-0,2) = -2,06 \text{ kN/m}^2 \\ &\text{Wrijving} &= 0,04 * 0,700 * 10 &= 0,28 \text{ kN/m} \end{aligned}$$

3.3 Sneeuwbelasting

Voor de sneeuwbelasting is aangenomen dat de constructie een plat dak heeft. Oftewel, de hoek van het dak α = 0°. Dus geldt er vormfactor μ_1 = 0,8. De karakteristieke sneeuwbelasting op de grond in Nederland is s_k = 0,7 kN/m². Verder is er aangenomen dat de thermische doorlaatbaarheid van het dak kleiner is dan 1 W/m²K. Dat betekent dat C_t = 1,0. Ook zijn er geen plannen voor verdere uitbereiding van het gebouw, oftewel C_e =1,0.

$$s = \mu_1 * C_e * C_t * s_k = 0.8 * 1.0 * 1.0 * 0.7 = 0.56 kN/m^2$$

Verder gelden de volgende factoren voor de sneeuwbelasting:

$$\psi_0 = 0.0$$
 $\psi_1 = 0.2$ $\psi_2 = 0.0$

3.4 Regenwater

De noodoverlaten op het dak dienen te garanderen dat de belasting door regenwater niet groter wordt dan de sneeuwbelasting. De maximale waterhoogte op het dak van d_{hw} = 100mm wordt aangehouden, volgens, in overeenstemming met NEN-EN1991-1-3. Dit is het uitgangspunt voor het constructieve ontwerp waarbij wateraccumulatie niet is beschouwd.

3.5 Buitengewone belastingen

Er zijn enkele buitengewone belastingen die beschouwd dienen te worden. Deze buitengewone belastingen worden in onderstaande paragrafen kort behandeld.

3.5.1 Stootbelastingen veroorzaakt door wegvoertuigen

Voor de stootbelasting veroorzaak door wegvoertuigen geldt de volgende vergelijking.

$$F_d = F_0 * \sqrt{1 - \frac{d}{d_b}}$$

F_d is de gereduceerde botskracht

F₀ is botskracht conform figuur 16

 $d_{\text{\scriptsize b}}$ is remafstand conform figuur 16

d is afstand hart rijbaan tot element

Verkeersca	tegorie	F _d [kN]	d _b [m]
Α	Autosnelwegen, provinciale wegen	2000	20
В	Rijkswegen landelijk	1500	15
С	Wegen in stedelijke gebieden	1000	10
D1	Binnenplaatsen / parkeergarages voor voertuigen < 3,5 ton	100	4
D2	Binnenplaatsen / parkeergarages voor voertuigen > 3,5 ton	200	5

Figuur 16 Verkeerscategorie en bijbehorende gereduceerde botskracht en remafstand

Verkeerscategorie C wordt aangenomen. Verder wordt een afstand van het hart van de rijbaan tot element van 5 meter aangenomen. Dit geeft:

$$F_d = 1000 * \sqrt{1 - \frac{5}{10}} = 707 \, kN$$

Om te bepalen of er voorzieningen in de constructie of het terrein dienen te worden opgenomen in verband met stootbelasting veroorzaakt door wegvoertuigen wordt NEN-EN-1991-1-7 gebruikt.

3.5.2 Ontploffingen in bouwwerken

In een ruimte waar een gasexplosie zich kan voordoen, mag deze explosie niet leiden tot voortschrijdende instorting van het gebouw. De stookruimte is de enige ruimte waar een gasexplosie zich kan voordoen. Daarom dienen de wanden vloeren en deuren van deze stookruimte in staat te zijn de explosiedruk op te nemen.

3.5.3 Tweede draagweg

Het gebouw dient te voldoen aan de eisen gesteld in de Eurocode met betrekking tot de tweede draagweg.

3.6 Maatgevende belasting

3.6.1 Dakvloer

De vloer van het platte dak zal uit stalen platen bestaan. Dit zorgt voor een lichtgewichte dakvloer. De maatgevende belastingen voor de ULS op de platte dakvloer zijn 2,34 kN/ m^2 en -2,46 kN/ m^2 , zie figuur 18. De windzuiging zorgt voor een aanzienlijke negatieve belasting op de dakvloer. De maatgevende belasting voor de SLS op de dakvloer is 0,80 kN/ m^2 . De berekeningen van deze dakvloer van stalen platen worden verder niet uitgewerkt in dit verslag.

G_rep	0,7 kN/m2
Q_rep	1 kN/m2
Q_wind_over	0,52 kN/m2
Q_wind_onder	-2,06 kN/m2
Q_sneeuw	0,56 kN/m2
F_rep	1,5 kN

Figuur 17 Maatgevende belastingen dakvloer

	Dakvloer													
G_rep	0,7	kN/m2		ULS.1	р :	= yG1	* G_rep					0,95	kN/m2	
Q_rep	1	kN/m2		ULS.2	р :	yG2	* G_rep					0,63	kN/m2	
Q_wind_over	0,52	kN/m2		ULS.3	p :	yG3	* G_rep	+	yQ	*Q_rep		2,34	kN/m2	
Q_wind_onder	-2,06	kN/m2		ULS.4	р :	yG3	* G_rep	+	yQ	*Q_wind_over		1,62	kN/m2	
Q_sneeuw	0,56	kN/m2		ULS.5	p :	= yG2	* G_rep	+	yQ	*Q_wind_onder		-2,46	kN/m2	
F_rep	1,5	kN		ULS.6	р :	yG3	* G_rep	+	yQ	*Q_sneeuw		1,68	kN/m2	
yG1	1,35			ULS.7	p :	yG3	* G_rep					0,84	kN/m2	
yG2	0,9				F :	yQ	* F_rep					2,25	kN	
yG3	1,2			SLS.1	p :	=	G_rep					0,70	kN/m2	
yQ	1,5			SLS.2	р :	=	G_rep	+	Ψ1,wind	*Q_wind_over		0,80	kN/m2	
Ψ1,wind	0,2			SLS.3	p :	=	G_rep	+	Ψ1,wind	*Q_wind_onder		0,29	kN/m2	

Figuur 18 Belastingcombinaties dakvloer

3.6.2 Verdiepingsvloeren

Er is aangenomen dat het eigengewicht van de composiete vloer en de composiete liggers samen voor 2,5 kN/m^2 belasting zorgen. Verder zorgt de afwerking ook nog voor een belasting van 0,5 kN/m^2 .

Figuur 19 Maatgevende belastingen verdiepingsvloer

	Verdiepingsvloer												
G_rep	3 kN	/m2	ULS.1	p :	= yG1	* G_rep					4,05	kN/m2	
Q_rep	3,7 kN	/m2	ULS.2	р	= yG2	* G_rep					2,70	kN/m2	
Q_wind_over	0 kN	/m2	ULS.3	p :	= yG3	* G_rep	+	yQ	*Q_rep		9,15	kN/m2	
Q_wind_onder	0 kN	/m2	ULS.4	p :	yG3	* G_rep	+	yQ	*Q_wind_over		3,60	kN/m2	
Q_sneeuw	0 kN	/m2	ULS.5	p :	= yG2	* G_rep	+	yQ	*Q_wind_onder		2,70	kN/m2	
F_rep	3 kN		ULS.6	p :	yG3	* G_rep	+	yQ	*Q_sneeuw		3,60	kN/m2	
yG1	1,35		ULS.7	р	= yG3	* G_rep					3,60	kN/m2	
yG2	0,9			F :	= yQ	* F_rep					4,50	kN	
yG3	1,2		SLS.1	p :	=	G_rep					3,00	kN/m2	
yQ	1,5		SLS.2	р	=	G_rep	+	Ψ1,wind	*Q_wind_over		3,00	kN/m2	
Ψ1,wind	0,2		SLS.3	p :	=	G_rep	+	Ψ1,wind	*Q_wind_onder		3,00	kN/m2	

Figuur 20 Belasting combinaties verdiepingsvloeren

Omdat de composiete plaat een lengte van 6 meter moet overspannen, is er gekozen om gebruik te maken van deep decking. Er is voor een Comflor210 vloer gekozen, zie figuur 21. Op deze manier is het mogelijk om deze overspanning te creëren zonder dat er onderstempeling nodig is. Voor de gekozen Comflor210 vloer is een staaldikte van 1,25 mm aangenomen.

Figuur 21 Comflor210 vloer (TATA Steel, 2020)

Deze Comflor210 vloer zal door liggers ondersteund worden. De afstand tussen twee van

deze liggers is 6 meter. De maatgevende belasting in de ULS per ligger wordt dan 6 * 9.15 kN/m2 = 54.9 kN/m. Voor deze belasting wordt het benodigde profiel bepaald voor de lengtes 5, 10 en 15 meter. Deze verschillende lengtes worden in een snelle handberekening gecheckt op benodigde momentcapaciteit.

$$M_{Ed} = \frac{1}{8} q_{Ed} L^2$$

$$M_{Rd} = f_{v} * W_{v}$$

Op deze manier kan het benodigde weerstandsmoment W_y worden bepaald. En dus het bijbehorende profiel. Er wordt een staalsoort S355 aangehouden in de berekening.

 $L = 5m. -> W_y > 483*10^3 \text{ mm}^3 -> HE220A$

 $L = 10m. -> W_v > 1933*10^3 \text{ mm}^3 -> HE260M$

 $L = 15m. -> W_v > 4349*10^3 \text{ mm}^3 -> \text{HE}400M$

In dit ontwerp zal de ligger niet de volledige belasting afdragen, dus het uiteindelijke benodigde profiel zal kleiner zijn dan bovenstaand bepaald. De hoogte van het profiel voor L = 5m en voor L = 10m is beide mogelijk. Om een zo open mogelijke kantoorruimte te creëren is er gekozen om een afstand van L=10m aan te houden, zie figuur 22.

Figuur 22 Positie liggers

Er zijn enkele liggers toegepast met een lengte van 10 meter. Enkele van deze liggers zijn 5 meter lang en verbonden aan de kern. Verder zijn deze liggers op 6 meter van elkaar geplaatst. Deze gekozen lengte zorgt voor een maatvoering waarbij het nog mogelijk is om een composiete plaat toe te passen. Er is gekozen om geen dwarsliggers toe te passen. Dit is gedaan om zo de totale hoogte van een vloer zo klein mogelijk te houden, waardoor de totale gebouwhoogte kleiner wordt. Omdat de liggers op twee steunpunten liggen, is het niet nodig om het negatieve buigende moment te bepalen, maar zal het ontwerp afhankelijk zijn van het positief buigend moment.

De liggers die zich op stramien 2, 3, 6, 7, 8 of 9 bevinden zijn maatgevend.

3.6.3 Begane grondvloer

Voor de begane grondvloer is er gebruik gemaakt van een geïsoleerde kanaalplaatvloer met een dikte van 260mm. Deze geïsoleerde kanaalplaatvloer zal een lengte van 6 meter overspannen. Dit is te doen met de gegeven belasting. Een gespecialiseerde berekening dient gemaakt te worden om de wapeningspatronen in de geïsoleerde kanaalplaatvloer te bepalen. Hier zal verder niet op worden ingegaan in dit verslag.

G_rep	5,22 kN/m2
Q_rep	3,7 kN/m2
Q_wind_over	0 kN/m2
Q_wind_onder	0 kN/m2
Q_sneeuw	0 kN/m2
F_rep	3 kN

Figuur 23 Maatgevende belastingen begane grondvloer

Begane grondvloer														
G_rep	5,22	kN/m2		ULS.1	р	=	yG1	* G_rep					7,05	kN/m2
Q_rep	3,7	kN/m2		ULS.2	р	=	yG2	* G_rep					4,70	kN/m2
Q_wind_over	0	kN/m2		ULS.3	р	=	yG3	* G_rep	+	yQ	*Q_rep		11,81	kN/m2
Q_wind_onder	0	kN/m2		ULS.4	р	=	yG3	* G_rep	+	yQ	*Q_wind_over		6,26	kN/m2
Q_sneeuw	0	kN/m2		ULS.5	p	=	yG2	* G_rep	+	yQ	*Q_wind_onder		4,70	kN/m2
F_rep	3	kN		ULS.6	p	=	yG3	* G_rep	+	yQ	*Q_sneeuw		6,26	kN/m2
yG1	1,35			ULS.7	p	=	yG3	* G_rep					6,26	kN/m2
yG2	0,9				F	=	yQ	* F_rep					4,50	kN
yG3	1,2			SLS.1	р	=		G_rep					5,22	kN/m2
yQ	1,5			SLS.2	p	=		G_rep	+	Ψ1,wind	*Q_wind_over		5,22	kN/m2
Ψ1,wind	0,2			SLS.3	р	=		G_rep	+	Ψ1,wind	*Q_wind_onder		5,22	kN/m2

Figuur 24 Belastingcombinaties begane grondvloer

4. Berekening

Voor de berekeningen zijn de volgende factoren gebruikt

$$\Upsilon_{c} = 1.5$$
, $\Upsilon_{a} = 1.0$.

Voor alle berekening is een schuifverbinding op volledig sterkte (full strength shear connection) aangenomen.

De gedane berekeningen worden eerst uitgevoerd met een aangenomen dikte van de betonlaag of aangenomen profiel. Aan het eind van de paragraaf wordt deze berekening geoptimaliseerd en worden de bijbehorende unity checks bepaald.

4.1 Composiete plaat

Er is gekozen voor een Comflor 210 vloer die 6 meter kan overspannen, zodat er geen gebruik hoeft te worden gemaakt van stempels. De geometrie van de stalen plaat is al bekend. Vervolgens dient te worden bepaald hoe dik de laag beton op deze stalen plaat dient te zijn. Deze vloer wordt berekend op basis van buigend moment en schuifsterkte. Voor de berekening zijn is de aanduiding gebruikt die is aangegeven in figuur 25.

Figuur 25 Gebruikte parameters berekening

4.1.1 Buigend moment

Voor de bepaling van het buigend moment dient eerst bepaald te worden of de neutrale as van de doorsnede zich boven de stalen plaat of in de stalen plaat bevindt. De parameter die veranderd wordt is de dikte van de laag beton die op de stalen plaat wordt gestort, aangegeven met h_1 . In deze voorbeeldberekening wordt gerekend met een dikte h1 van 50 mm.

Allereerst kan de totale oppervlakte van de stalen plaat A_{pe} worden bepaald. Deze oppervlakte wordt omgerekend zodat hij de oppervlakte per strekkende meter aangeeft.

$$A_{pe} = (2*L1 + b2 + b3)*t*\frac{1000}{b3 + b4} = (2*218 + 56 + 425)*1*\frac{1000}{425 + 175} = 1529 \, mm^2$$

Vervolgens kan de neutrale as worden bepaald van de totale doorsnede, en van de stalen plaat. Deze doorsnedes worden gemeten vanaf het bovenste punt in de doorsnede, zie figuur 25.

$$n.a. = \frac{A_{pe} * f_{y,pd}}{0.85 * b_t * f_{cd}}$$

$$n.a. = \frac{1529 * 350}{0.85 * 1000 * 45/1.5} = 21 mm$$

$$n.a.s. = \frac{\sum A_i * L_i}{\sum A_i} = \frac{b2 * (h1 + h2) * t + 2 * L1 * (h1 + 0.5 * h2) * t}{(2 * L1 + b2 + b3) * t} = 112.8 mm$$

Nu kan de afstand z worden bepaald

$$z = n. a. s. -0.5 * n. a. = 112.8 - 0.5 * 21 = 102.3 mm$$

Nu wordt gecheckt of n.a. $< h_1$. Er geldt: 37.8 mm < 50 mm. Dus de neutrale as ligt boven de stalen plaat. Dan geldt:

$$M_{pl,Rd} = A_{pe} * f_{v,pd} * z * 10^{-6} = 1529 * 350 * 102.3 * 10^{-6} = 54.7 \text{ kNm}$$

Als geldt n.a. > h₁ dan is het plastisch moment niet te bepalen met de beschikbare gegevens.

Om de q-last op de doorsnede te bepalen, dient het eigen gewicht van de composiete vloer te worden bepaald. Hiervoor wordt de totale hoeveelheid beton per strekkende meter bepaald.

$$A_c = ((b_2 + b_1) * h_2) + ((b_3 + b_4) * h_1) * 1000/(b3 + b4) = 74255 mm^2$$

$$G_{rep,floor} = (\rho_P * A_{pe} + \rho_c * A_c) * 9.81 * 10^{-9} = (7800 * 1529 + 2400 * 74255) * 9.81 * 10^{-9}$$

$$= 1.87 \, kN/m^2$$

Nu het eigen gewicht is gevonden, kan de q-last bepaald worden. Met deze q-last kan het moment bepaald worden.

$$q_{Ed} = 1.2*(G_{rep,floor} + G_{rep,overig}) + 1.5*Q_{rep} = 1.2*(1.87 + 0.5) + 1.5*3.7 = 8.4 \, kN/m^2$$

$$M_{Ed} = \frac{1}{8}*q_{Ed}*L^2 = \frac{1}{8}*8.4*6^2 = 37.8 \, kNm$$

$$unity \ check = \frac{M_{Ed}}{M_{nl,Rd}} = \frac{37.8}{54.7} = 0.69$$

4.1.2 Weerstand verticale schuifsterkte

Om de schuifsterkte te bepalen dient eerst de afstand d_p te worden bepaald. De afstand d_p is gelijk aan de afstand van de neutrale as van de stalen plaat tot de bovenzijde van de doorsnede. (n.a.s.) Dus, d_p = 112.8 mm. b_0 kan geometrisch worden bepaald. b4 = 175mm. Hier moet tweemaal het deel af worden getrokken dat b_0 kleiner is aan een zijde.

$$b_0 = b_4 - (((d_p - h_1)/h_2) * (2 * b_1))$$

$$b_0 = 175 - (((112.8 - 50)/210) * (2 * 59.5)) = 139.4 \, mm$$

$$v_{min} = 0.035 * (1 + \sqrt{\frac{200}{d_p}})^{3/2} * \sqrt{f_{ck}} = 0.035 * (1 + \sqrt{\frac{200}{112.8}})^{3/2} * \sqrt{45} = 0.836 \, N/mm^2$$

$$V_{v,Rd} = b_0 * d_p * v_{min} = 139.4 * 112.8 * 0.836 = 13143 \, N = 13.1 \, kN$$

$$V_{v,Rd,rib} = V_{v,Rd}/(b_3 + b_4) * 1000 = 13.1/(425 + 175) * 1000 = 21.91 \, kN/m$$

De verticale schuifweerstand van het beton van een rib is dus 21,91 kN per strekkende meter. De belasting per rib is

$$V_{Ed} = \frac{1}{2} * q_{Ed} * L = \frac{1}{2} * 8.4*6 = 25.2 \text{ kN/m}.$$

De unity check is

unity check =
$$\frac{V_{Ed}}{V_{v,Rd,rib}} = \frac{25.2}{21.91} = 1.149$$

Deze check is gebaseerd op de berekening voor gewapend betonnen vloeren. In deze berekening wordt de stalen plaat niet meegenomen. Omdat de stalen plaat een gedeelte van de verticale schuifweerstand omvat, zal de vloer waarschijnlijk voldoen. Deze statement dient verder te worden berekend of besproken met de begeleider. Dit is om dit moment niet mogelijk, daarom is besloten dat een unity check onder de 1.15 zal worden

Figuur 26 Gebruikte parameters voor bepaling verticale schuifsterkte

aangenomen als voldoende. (Pereira et Al, 2019)

4.1.3 Longitudinale schuifweerstand

De longitudinale schuifweerstand kan met twee methodes worden bepaald. De m-k methode en de Tu methode Voor beide methodes dienen er testen te worden gedaan om benodigde parameters te bepalen. In dit verslag zal er dus verder niet op worden ingegaan.

4.1.4 Ponsweerstand.

De bepaalde ponsweerstand is gebaseerd op de maximale geconcentreerde belasting gegeven in paragraaf 3.1.2. Deze geconcentreerde belasting is 3 kN aangebracht op een oppervlakte van 100 bij 100 mm.

d is de gemiddelde hoogte van twee lagen wapening. Er is aangenomen dat d = 20 mm en ρ = 0.02.

De kracht is aangebracht op een oppervlakte van 100 bij 100mm, dus $b_p = a_p = 100$ mm.

Figuur 27 Gebruikte parameters voor berekening ponsweerstand

De waardes voor h_1 en h_f zijn gevonden in paragraaf 4.1.1

$$v_{Rd} = \frac{0.18}{\gamma_c} * (1 + \sqrt{\frac{200}{d}}) * \sqrt[3]{100 * \rho * f_{ck}} = \frac{0.18}{1.5} * (1 + \sqrt{\frac{200}{20}}) * \sqrt[3]{100 * 0.02 * 45} = 2.24 \text{ N/mm}^2$$

$$C_p = 2 * \pi * h_1 + 2 * (b_p + 2 * h_f) + 2 * (a_p + 2 * h_f + 2 * d_p - 2 * h_1)$$

$$C_p = 2 * \pi * 50 + 2 * (100 + 2 * 0) + 2 * (100 + 2 * 0 + 2 * 112.8 - 2 * 50) = 965.2 \text{ mm}$$

$$V_{p,Rd} = v_{Rd} * C_p * d = 2.24 * 965.2 * 20 = 43248 \text{ N} = 43.25 \text{ kN}$$

$$unity check = \frac{V_{Ed}}{V_{v,Rd,rib}} = \frac{4.5}{43.25} = 0.10$$

4.1.5 Weerstand van stiftdeuvels

Bij Comflor210 vloeren wordt er geen gebruik gemaakt van stiftdeuvels. (TATA Steel, 2020)

Bij de berekening van het aantal benodigde stiftdeuvels in de composiete plaat wordt duidelijk waarom er geen gebruik gemaakt wordt van stiftdeuvels. De reductie factor k_t kan namelijk als volgt worden bepaald.

$$k_t = \frac{0.7}{\sqrt{n_r}} \frac{b_0}{h_n} (\frac{h_{sc}}{h_n} - 1)$$

$$P_{Rd,rt} = k_t * P_{Rd}$$

Doordat de waarde voor h_{sc} voor deep decking relatief hoog is. In dit geval 210 mm, zal de waarde voor k_t relatief klein worden. Doordat de reductiefactor zo klein is, zijn er veel stiftdeuvels nodig om de schuifweerstand over te brengen via stiftdeuvels. Doordat er verder geen alternatieve berekening is gevonden om de schuifweerstand over te dragen, is hier verder niet aan gerekend. Er is echter wel aangenomen dat de er de schuifweerstand volledig wordt overgedragen in de berekeningen.

4.1.6 Brandwerendheid

De berekening van de brandwerendheid van een composiete plaat is erg uitgebreid. Daarom zijn er door leveranciers tabellen beschikbaar gesteld om de benodigde dikte van een vloer te bepalen om zo een bepaalde brandwerendheid te garanderen. (TATA Steel, 2020) geeft dat voor een Comflor210 vloer en een benodigde brandwerendheid van de vloer van 90 minuten, een dikte van de vloer van minimaal 290 mm nodig is. Daarom zal er een dikte van 290 mm voor de vloeren worden aangehouden.

4.1.7 Conclusie

De maatgevende ontwerprestrictie is de brandwerendheid. De brandwerendheid vereist een vloer van minimaal 290 mm dik. ($h_1 = 80$ mm.) Deze dikte zal de volgende resultaten geven voor de unity checks:

Negatief buigend moment: u.c. = 0.48

Verticale schuifweerstand: u.c. = 1.11

Ponsweerstand: u.c. = 0.09

De calculaties zijn te vinden in bijlage D

4.2 Composiete ligger

Voor onderstaande berekeningen is aangenomen dat de schuifweerstand volledig wordt overgedragen tussen het staal en beton. Alle berekeningen zijn op een HE240B profiel gebaseerd.

4.2.1 Buigend moment

Voor de ligger wordt een sterkte S355 aangehouden. De composiete liggers liggen elk zes meter uit elkaar. De maatgevende ligger is 10 meter lang. Deze ligger zal worden berekend. Voor onderstaande berekening wordt een profiel HE240B aangenomen. Er is gebruik gemaakt van C45/55 beton.

Om de rekenwaarde van het buigend moment te bepalen, dient eerst de effectieve breedte te worden bepaald.

$$l_{ef} = 0.85 * l_{sys} = 0.85 * 10.0 m = 8.5 m$$

$$b_e = \frac{l_{ef}}{4} = \frac{8.5 m}{4} = 2.13 m$$

Figuur 28 Gebruikte parameters voor _bepaling buigend moment

Vervolgens wordt er bepaald of de neutrale as in de betonnen plaat, de stalen flens of het stalen web ligt.

 $A * f_{vd} < h_c * b_e * 0.85 * f_{cd}$ Neutrale lijn ligt in betonnen plaat:

 $A * f_{vd} > h_c * b_e * 0.85 * f_{cd} > h_w * t_w * f_{vd}$ Neutrale lijn ligt in stalen flens:

 $h_c * b_e * 0.85 * f_{cd} < h_w * t_w * f_{vd}$ Neutrale lijn ligt in stalen web:

In de voorbeeldberekening geldt: $A*f_{yd} < h_c*b_e*0.85*f_{cd}$

$$A * f_{yd} = 10600 * 355 = 3.76 * 10^{3} kN$$

$$h_c * b_e * 0.85 * f_{cd} = 290 * 2130 * 0.85 * \frac{45}{1.5} = 15.75 * 10^{3} kN$$

$$h_w * t_w * f_{vd} = 176 * 10 * 355 = 0.62 * 10^3 kN$$

De neutrale lijn ligt dus in de betonnen plaat.

In dat geval geldt:
$$M_{pl.Rd} = F_{ad} * (0.5 * h_a + h_c - 0.5 * x)$$

$$x = \frac{A*f_{yd}}{b_e*0.85*f_{cd}}$$

Ligt de neutrale as in de stalen flens dan geldt:

$$M_{pl.Rd} = F_{cd} * (0.5 * h_a + 0.5 * h_c) + \frac{F_{ad} - F_{cd}}{2} * (h_a - a)$$
$$x = \frac{A*f_{yd}}{b_e*0.85*f_{cd}} = \frac{10600*355}{2130*0.85*\frac{45}{15}} = 69.4 \text{ mm}$$

$$M_{pl.Rd} = F_{ad} * (0.5 * h_a + h_c - 0.5 * x) = 10600 * 355 * (0.5 * 240 + 290 - 0.5*69.4)$$

= 1412 *10⁶ Nmm = 1412 kNm

Om het buigend moment te bepalen, dient de q-last op de ligger te worden bepaald.

De belasting op de composiete plaat wordt via de composiete ligger afgedragen naar de kolommen. De veranderlijke belasting op de composiete plaat is 3,7 kN/m². Dit komt overeen met een q-last van 3,7*6 = 22.2 kN/m op de ligger. De permanente belasting bestaat uit het eigen gewicht van de plaat, de dekvloer, het systeemplafond en van de ligger zelf. Het eigen gewicht van de plaat, de dekvloer en het systeemplafond is 3,1 kN/m². Dit komt overeen met een q-last van 18.6 kN/m op de ligger. Het eigengewicht van de ligger is afhankelijk van de gekozen ligger.

in dit geval is het eigengewicht gelijk aan

$$q_{g,ligger} = G * 9.81 * 1000 = 83.2 * 9.81/1000 = 0.82 \, kN/m$$

Dit geeft een moment van

$$q_{E,d} = 1.2 * G_{rep} + 1.5 * Q_{rep} = 1.2 * (18.6 + 0.82) + 1.5 * 22.2 = 56.6 \, kN/m$$

$$M_{E,d} = \frac{1}{8} * q_{E,d} * L^2 = \frac{1}{8} * 56.6 * 10^2 = 707.5 \, kNm$$

$$Unity \, check \, = \frac{M_{E,d}}{M_{DLRd}} = \frac{707.5}{1412} = 0.50$$

De elastische rekenwaarde van het moment van de ligger zelf is $M_{el,Rd} = \sigma * W_{y,el} = 355*938000 = 333$ kNm. Dit betekent dat de composiete werking van de plaat en de ligger samen ervoor zorgen dat het de rekenwaarde van het moment 1412/333 = 4.25 maal hoger is. Hierdoor is de benodigde ligger aanzienlijk kleiner dan in paragraaf 3.6.2 werd berekend.

4.2.2 Weerstand verticale schuifspanning

$$\begin{split} A_v &= A_a - 2*(b_a*t_f) + t_f*(t_w + 2*r) = \ 10600 \ - \ 2*(240*17) + 17*(10 + 2*15) \\ &= \ 3120 \ mm^2 \\ V_{pl,Rd} &= \frac{A_v*f_{yd}}{\sqrt{3}} = \frac{3120*350}{\sqrt{3}} = 630466 \ N = 630 \ kN \\ V_{Ed} &= \frac{1}{2}*q_{Ed}*L = \frac{1}{2}*56.6*10 = 283 \ kN \\ Unity \ check &= \frac{V_{E,d}}{V_{pl,Rd}} = \frac{283}{630} = 0.45 \end{split}$$

4.2.3 Doorbuiging

Voor de berekening van de doorbuiging dient er rekening gehouden te worden met de kruip van het beton. Doordat er geen positieve momenten zijn, hoeft er geen rekening te worden gehouden met scheuren, slip of het vloeien van de wapening voordat het beton is uitgehard.

Doordat het eigengewicht gedragen wordt door het staal, hoeft krimp van het beton niet te worden meegenomen in deze berekening.

Verder dient de q-last in de SLS aangehouden te worden voor het bepalen van de doorbuiging. Deze q-last is gelijk aan het totale eigengewicht maal de afstand tussen twee liggers.

Voor E_{cm} is 36000 N/mm² aangenomen (Walraven, 2018).

$$n = \frac{E_a}{E_{cm}} = \frac{210000}{36000} = 5.83$$

$$A_{c,n} = \frac{b_e}{n} * h_c = \frac{2130}{5.83} * 250 = 91286 \ mm^2$$

$$z_{nc} = \frac{A_{c,n} * 0.5 * h_c + A_a * (0.5 * h_a + h_p + h_c)}{A_{c,n} * A_a} = \frac{91286 * 0.5 * 250 + 10600 * (0.5 * 240 + 210 + 250)}{91286 + 10600} = 172.4$$

$$I_{y,c} = I_{y,a} + A_a * (0.5 * h_a + h_p + h_c - z_{nc}) + \frac{b_e}{12 * n} * h_c^3 + A_{c,n} * (0.5 * h_c - z_{nc})^2 = 2.5 * 10^9 \ mm^4$$

$$w = \frac{5}{384} * \frac{19.4 * L^4}{E_a I_{y,c}} = \frac{5}{384} * \frac{19.4 * 10000^4}{21000 * 2.5 * 10^9} = 6.0 \ mm$$

$$w_{max} = \frac{L}{300} = \frac{10000}{300} = 33.3 \ mm$$
 unity check
$$= \frac{6.0}{33.3} = 0.18$$

4.2.4 Lateral torsional buckling

Doordat de composiete plaat op de ligger rust, is de ligger laterally restrained. Lateral torsional buckling zal dus niet een maatgevend faalmechanisme zijn.

4.2.5 Brandwerendheid

Een brandwerendheid van 90 minuten is vereist voor de hoofddraagconstructie. Voor de berekening van de brandwerendheid van het staalprofiel wordt de "critical temperature method" gebruikt. Of het nodig is om brandwerend materiaal toe te passen op de ligger wordt gekeken bij welke temperatuur de constructie zal falen kijkend naar dwarskracht en moment.

De composiete constructie wordt echter telkens in totaal gebruikt voor deze berekening, in plaats van de ligger los. Doordat de ligger en het beton samen de belasting afdragen is een aparte berekening voor

beide delen onvoldoende. Deze berekening zal duidelijk maken of het nodig is brandwerend materiaal toe te passen op de ligger.

Het toegepaste moment tijdens de brand limiet is

$$q_{fi,Ed} = \eta_{fi} * q_{Ed} = 0.65 * 56.6 = 36.79 \text{ kN/m}$$

$$M_{fi,Ed} = \frac{1}{8} q_{fi,Ed} * L^2 = \frac{1}{8} * 36.79 * 10^2 = 459.9 \text{ kNm}$$

Vervolgens wordt de "degree of utilization" bepaald. De plastische rekenwaarde van het moment is gevonden in paragraaf 4.2.1

$$\mu_0 = \frac{M_{fi,Ed}}{M_{pl,Rd}} = \frac{459.9}{1412} = 0.326$$

$$q_{fi,Ed} = \eta_{fi} * q_{Ed} = 0.65 * 56.6 = 36.79 \, kN/m$$

$$V_{fi,Ed} = \frac{1}{2} q_{fi,Ed} * L = \frac{1}{2} * 36.79 * 10 = 184 kN$$

 $A_v = 3120 \text{ mm}^2$, zie paragraaf 4.2.2.

At collapse: $V_{pl,y,fi,Rd} = V_{fi,Ed}$

$$V_{pl,y,fi,Rd} = \frac{A_v * k_{y,\theta} * f_y}{\sqrt{3} * \gamma_{M1,fi}} = \frac{3120 * k_{y,\theta} * 355}{\sqrt{3} * 1.0} = V_{fi,Ed} = 184000 \, N$$

 $k_{y,\theta} = 0.288$

$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0.9674 k_{v,\theta}^{3.833}} - 1 \right] + 482$$

 $\theta_{a,cr} = 670 \text{ }^{\circ}\text{C}$

Dit is een hogere temperatuur dan de temperatuur voor instorting voor het moment. De temperatuur gevonden voor het moment is dus maatgevend.

Nu kan de kritieke temperatuur worden bepaald:

$$\theta_{a,cr} = 39.19 \ln \left[\frac{1}{0.9674 \,\mu_0^{3.833}} - 1 \right] + 482$$

Gevonden wordt $\theta_{a,cr}$ = 651 °C

Deze waardes vallen buiten het nomogram voor niet-beschermde stalen profielen. Duidelijk is dus dat brandwerende bescherming nodig is. Het nomogram voor beschermde stalen profielen geeft dat, zie bijlage E

$$\frac{A_p}{V}\frac{\lambda_p}{d_p} > 1180 \, W/(m^3 K)$$

Voor het gekozen HE240B profiel, geldt $\frac{A_p}{V}=91$ en voor de thermische geleidbaarheid van een gipsplaat geldt: $\lambda_p=0.20$, zie bijlage E

$$d_p > \frac{\frac{A_p}{V}}{1180} * \lambda_p$$

$$d_p > \frac{91}{1180} * 0.20 = 0.0154 m = 15.4 mm$$

Het gebruik van een gipsplaat met een dikte van 15.4 mm om de ligger zal voldoende brandwerendheid bieden.

4.2.5 Conclusie

De maatgevende ontwerprestrictie is het buigend moment. De unity check van verschillende profielen wordt bepaald in Spyder om zo tot een optimale keuze te komen. Voor alle profielen is r=15mm aangenomen

HE240B: u.c. = 0.50

HE200A: u.c. = 0.99

HE160B: u.c. = 1.03

HE180B: u.c. = 0.85

zie bijlage F

De keuze voor een HE200A profiel zal de volgende resultaten geven voor de unity checks:

Verticale schuifweerstand: u.c. = 0.78

Doorbuiging u.c. = 0.19

Brandwerendheid Een gipsplaat met een dikte van 38.6 mm is nodig. ($\theta_{a,cr}$ = 537 $^{\circ}$ C)

De keuze voor een HE180B profiel zal de volgende resultaten geven voor de unity checks:

Verticale schuifweerstand: u.c. = 0.68

Doorbuiging u.c. = 0.18

Brandwerendheid Een gipsplaat met een dikte van 24.4 mm is nodig. ($\theta_{a,cr} = 569 \, ^{\circ}\text{C}$)

Er wordt gekozen voor het HE180B profiel, omdat dit een lagere vloerhoogte zal opleveren en er minder brandwerend materiaal nodig is. Verder zit de unity check voor het buigend moment van het HE200A profiel net op het randje.

De calculaties zijn te vinden in bijlage F

4.3 Kolommen

De maatgevende kolommen in dit gebouw zijn de kolommen die de liggers dragen die tien meter overspannen. Per verdieping draagt zo een kolom 6 meter maal 7.5 meter aan belastingen op het vloeroppervlak. Dit is 45 m². Doordat bouwdeel 1 de meeste vloeren bevat, zal hier zich ook de maatgevende belasting per kolom bevinden.

Voor dit gebouw zal alleen de maatgevende kolom worden berekend en zullen kolommen worden gebruikt die uniform zijn over de gehele hoogte van het gebouw.

Figuur 29 geeft de belastingcombinaties van de verdiepingsvloeren.

Verdiepingsvloer exact														
G_rep	3,1	kN/m2		ULS.1	p	=	yG1	* G_rep					4,19	kN/m2
Q_rep	3,7	kN/m2						* G_rep					2,79	kN/m2
Q_wind_over	0	kN/m2		ULS.3	p	=	yG3	* G_rep	+	yQ	*Q_rep		9,27	kN/m2
Q_wind_onder	0	kN/m2		ULS.4	p	=	yG3	* G_rep	+	yQ	*Q_wind_over		3,72	kN/m2
Q_sneeuw	0	kN/m2		ULS.5	p	=	yG2	* G_rep	+	yQ	*Q_wind_onder		2,79	kN/m2
F_rep	3	kN		ULS.6	p	=	yG3	* G_rep	+	yQ	*Q_sneeuw		3,72	kN/m2
yG1	1,35			ULS.7	p	=	yG3	* G_rep					3,72	kN/m2
yG2	0,9				F	=	yQ	* F_rep					4,50	kN
yG3	1,2			SLS.1	p	=		G_rep					3,10	kN/m2
yQ	1,5			SLS.2	p	=		G_rep	+	Ψ1,wind	*Q_wind_over		3,10	kN/m2
Ψ1,wind	0,2			SLS.3	p	=		G_rep	+	Ψ1,wind	*Q_wind_onder		3,10	kN/m2

Figuur 29 Belastingcombinaties verdiepingsvloeren

Het eigengewicht van de comflor210 vloer met dikte 290 mm is 3.1 kN/m^2 . De veranderlijke belastingen zijn 3.7 kN/m^2 . De maatgevende belastingcombinatie geeft een belasting van 9.27 kN/m^2 . Dit geeft een belasting per verdiepingsvloer van 9.27*45 = 417 kN.

Hier moet nog het eigengewicht van de liggers, de gevel en de kolommen bij opgeteld worden.

Er wordt gebruik gemaakt van een HE180B profiel, dit profiel heeft een eigengewicht van 51.2 kg/m. De helft van dit profiel draagt af op een kolom. Dus 51.2*5 = 256 kg = 2.5 kN. De belasting in de ULS zal dan 2.5*1.2 = 3 kN bedragen.

De façade van het gebouw zal bestaan uit een glazen vliesgevel. Het eigengewicht van een glazen vliesgevel ligt rond de 0.6 kN/m^2 (Bangash & Bangash, 2003). Het eigengewicht van de gevel op een kolom zal dan gelijk zijn aan 0.6 * breedte * hoogte = 0.6 * 6 * 3.5 = 12.6 kN per verdiepingsvloer. De belasting in de ULS zal dan 12.6 * 1.2 = 15.1 kN bedragen.

Per verdiepingsvloer is de belasting op de kolom dus in de ULS: 417+3+15.1 = 435.1 kN. Hier moet het eigengewicht van de kolom nog bij worden opgeteld.

Er is gekozen voor stalen kolommen, omdat deze gemakkelijk te verbinden zijn met de stalen liggers. Verder zijn ze slanker zijn dan het betonnen alternatief wat voor een meer open plattegrond zal zorgen. Tot slot vergemakkelijkt dit de connectie met de glazen vliesgevel.

Dakvloer														
G_rep	0,7	kN/m2		ULS.1	р	=	yG1	* G_rep					0,95	kN/m2
Q_rep	1	kN/m2		ULS.2	р	=	yG2	* G_rep					0,63	kN/m2
Q_wind_over	0,52	kN/m2		ULS.3	р	=	yG3	* G_rep	+	yQ	*Q_rep		2,34	kN/m2
Q_wind_onder	-2,06	kN/m2		ULS.4	p	=	yG3	* G_rep	+	yQ	*Q_wind_over		1,62	kN/m2
Q_sneeuw	0,56	kN/m2		ULS.5	p	=	yG2	* G_rep	+	yQ	*Q_wind_onder		-2,46	kN/m2
F_rep	1,5	kN		ULS.6	p	=	yG3	* G_rep	+	yQ	*Q_sneeuw		1,68	kN/m2
yG1	1,35			ULS.7	p	=	yG3	* G_rep					0,84	kN/m2
yG2	0,9				F	=	yQ	* F_rep					2,25	kN
yG3	1,2			SLS.1	p	=		G_rep					0,70	kN/m2
yQ	1,5			SLS.2	p	=		G_rep	+	Ψ1,wind	*Q_wind_over		0,80	kN/m2
Ψ1,wind	0,2			SLS.3	p	=		G_rep	+	Ψ1,wind	*Q_wind_onder		0,29	kN/m2

Figuur 30 Belastingcombinaties dakvloer

Voor de belasting van de dakvloer geldt: De veranderlijke belasting is 1.0 kN/m^2 . Het eigengewicht is 0.7 kN/m^2 . De maatgevende belastingcombinatie geeft een belasting van 2.34 kN/m^2 . Dit geeft een belasting per verdiepingsvloer van 2.34*45 = 105.3 kN.

De totale normaalkracht op de onderste kolom is 4 maal de belasting per verdiepingsvloer plus 1 maal de belasting van de dakvloer. $N_{Ed} = 435.1*4 + 105.3 = 1845.7 \text{ kN}$

Voor de kolommen kan een HD of een UC-profiel worden gebruikt. Er is gekozen voor de UC profielen (ArcelorMittal, 2020). Dit zijn profielen met een wijde flens die ideaal zijn voor kolommen. Het profiel wordt aan de hand van de knikkracht in de zwakke richting bepaald. Dan kan aangenomen worden dat het profiel ook zal voldoen voor de knikkracht in de sterke richting inclusief moment.

In de eerste check wordt het UC 254 x 254 x 89 profiel berekend.

De profielen zijn "rolled sections". Verder geldt h/b < 1.2 en t_f < 100 mm. Daarom is de buckling curve c van toepassing in knik om de z-z as. Dus α = 0.49

Het eigen gewicht van dit profiel is 88.9 kg/m. De lengte van de kolom is 17.5 m. Dit geeft een extra belasting van $1.2 \times 17.5 \times 88.9 \times 9.81/1000 = 18.3 \text{ kN}$.

$$N_{Ed} = 1845.7 + 18.3 = 1864 \text{ kN}$$

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$$

$$N_{cr} = \frac{\pi^2 E * I_y}{L^2} = \frac{\pi^2 * 210000 * 4860 * 10^4}{3500^2} = 8222800 \, kN$$

$$\lambda = \sqrt{\frac{A * f_y}{N_{cr}}} = \sqrt{\frac{11300 * 355}{8222800}} = 0.70$$

$$\phi = 0.5 * (1 + \alpha * (\lambda - 0.2) + \lambda^2) = 0.5 * (1 + 0.49 * (0.7 - 0.2) + 0.7^2) = 0.87$$

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - \lambda^2}} = \frac{1}{0.87 + \sqrt{0.87^2 - 0.7^2}} = 0.72$$

$$N_{b,Rd} = \frac{\chi * A * f_y}{\gamma_{M1}} = \frac{0.72 * 11300 * 355}{1.0} = 2892 \, kN$$
$$u. \, c. = \frac{N_{Ed}}{N_{b,Rd}} = \frac{1864}{2892} = 0.63$$

Het profiel UC 203 X 203 X 71 geeft een unity check van 0.92 en wordt dus gekozen als kolom.

4.4 Verbindingen

Dit hoofdstuk betreft de verbinding tussen het gevonden maatgevende profiel voor de ligger en voor de kolom. De Ligger is een HE180B profiel en de maatgevende kolom is een UC 203 X 203 X 71 profiel.

Bij de berekening is een verbinding die geen buigend moment overbrengt gebruikt. De verbinding is dus een "pinned connection". Voor de verbinding is gekozen voor een fin plate.

Om de verbinding te checken is gebruik gemaakt van de component method. Bij deze methode wordt de weerstand van alle componenten van de verbinding bepaald om zo het zwakste component te vinden. In Paragraaf 4.2.2 was gevonden dat $V_{Ed,ULS}=283$. Verder is er geen normaalkracht in de ligger aanwezig wanneer de dwarskracht maximaal is, dus $N_{Ed}=0$

Deze volledige berekening is te vinden in bijlage G. Twee details van de verbinding zijn gemaakt gebaseerd op de gevonden waardes in de berekening.

Figuur 31 Zijaanzicht verbinding kolom en ligger

Figuur 32 Bovenaanzicht verbinding kolom en ligger

5. Fundering

De maximale puntlast op de fundering bevindt zich ter plaatse van de maatgevende kolom. In paragraaf 4.3 is al berekend dat de belasting op de maatgevende kolom 1864 kN bedraagt. Hier dient nog een deel van de belasting van de begane grondvloer bij op te worden geteld.

Verder is het gebouw zo ontworpen dat er geen trekkracht in de fundering zullen optreden ten gevolge van de windbelasting.

Discussie

Er zijn enkele keuzes gemaakt in het ontwerp, die twijfelachtig zijn. Deze keuzes worden hier toegelicht en alternatieve keuzes worden besproken.

De vloerdikte van de Comflor210 vloer is vergroot om de juiste brandwerendheid te bereiken. Een andere optie is om brandwerend materiaal toe te passen.

Een mogelijke alternatieve ontwerpkeuze is het toepassen van dwarsliggers tussen de hoofdliggers. Zo kan de overspanningslengte van de composiete plaat worden verkleind. Op deze manier kan een dunnere, lichtere composiete vloer worden toegepast.

Voor de verbinding is gekozen voor een fin plate. Deze fin plate heeft een dikte van 40 mm. De uitvoerbaarheid hiervan is twijfelachtig. Gekozen kan worden voor een ander type verbinding, zoals een angle cleats of flush edge plates.

Bibliografie

•	NEN-EN-1990	Eurocode	Grondslagen van het constructief ontwerp
•	NEN-EN-1991	Eurocode 1	Belastingen op constructies
•	NEN-EN-1993	Eurocode 3	Ontwerp en berekening van staalconstructies
•	NEN-EN-1994	Eurocode 4	Ontwerp en berekening van staal- en betonconstructies

- Wit, J. (2019). Highrise lifts MEGA2019 [Powerpoint slides]. Retrieved from Brightspace, AR0026
- kevlarelevators.com (2020) Retrieved March 23rd, 2020.
- Bouwen met staal (1997) Hybride draagconstructie heeft grote potentie. (Bouwen met staal, 134)
 Retrieved from: https://www.brandveiligmetstaal.nl/upload/File/Kantoren-Draagconstructies/pdf/Staal-betonconstructies/134 42.pdf
- Bouwen met staal (2017) Brandswerendsheideisen 30 minuten reduceren? (Bouwen met staal,
 259) Retrieved from:
 - https://www.brandveiligmetstaal.nl/upload/File/259 54 Brand NEN6090.pdf
- TATA Steel (2020) Comflor manual Retrieved from:
 https://www.tatasteelconstruction.com/static_files/Tata%20Steel/content/products/Building%2
 OSystems/Comflor/ComFlor%20manual.pdf
- Pereira, Miguel & Simões, Rui. (2019). Contribution of steel sheeting to the vertical shear capacity of composite slabs. Journal of Constructional Steel Research. 161. 275-284.
 10.1016/j.jcsr.2019.07.005.
- Walraven, J.C. (2008) Eurocode 2: Design of concrete structures EN1992-1-1 [Powerpoint slides]
 Retrieved from: https://eurocodes.jrc.ec.europa.eu/doc/WS2008/EN1992 1 Walraven.pdf
- Bangash, T. & Bangash, M. Y. H. (2003) *Elements of Spatial Structures: Analysis and Design*, Thomas Telford Publishing
- ArcelorMittal (2020) Universal columns UC Section properties Dimensions and properties.
 Retrieved from: https://orangebook.arcelormittal.com/design-data/uk-na/columns/universal-columns/section-properties-dimensions-and-properties/)

Bijlage A: Plattegrond en doorsnede constructie

*afmetingen kolommen en liggers en gevels niet op schaal.

Bijlage B: Berekening lift

Gauss

Derns Capacity analysis

Peak flows (HC5):

Office up: 10-13% per 5 minutes (up)
Office lunch: 11-14% per 5 minutes (two-way)
Residential: 5-6% per 5 minutes (down)
Hotel breakfast: 10-18% per 5 minutes (two-way)

Population:

Office: 1 desk per 8-15 m² GFA Residential: 1 persons per 30 m² GFA

Hotel: 1,5-1,8 person per room (business or tourist?), 20-50 m² per room

Occupation (due to absenteism):

Office: 70-100% (depends on office type, call-center et cetera)

Residential: 90%

Hotel: 80-100% (depends on business or tourist)

These numbers are all very project specific: rational and bespoke approach with sensitivity analysis required. What is the location, culture, type of use, quality ambition et cetera.

39

Load		LiftS	Shaft	Carl	nside	Clear	Mach	ine room	Pit	Overhead	
Person	Kgs	width depth width		depth	opening	width	depth				
4	272	1600	1300	1100	700	700	3200	3500	1500	4250	
5	340	1600 1400		1100	850	700	32a00	3500	1500	4250	
		1700	1300	1200	750	700	3200	3500	1500	4250	
6	408	1600	1600	1100	1000	700	3200	3500	1500	4250	
		1700	1500	1200	925	700	3200	3500	1500	4250	
8	544	1800	1700	1300	1100	800	3500	4000	1500	4250	
		1900	1900 1600		1000	800	3500	4000	1500	4250	
10	680	1900	1900	1350	1300	800	4000	4000	1500	4250	
		1800	2000	1300	1350	800	4000	4000	1500	4250	
13	884	2000	2000	1500	1450	900	4000	4000	1500	4250	
		2400	2400 1800 190		1150	900	4000	4000	1500	4250	
16	1088	2500	2200	2000	1500	1000	4000	4000	1500	4250	

Bijlage C: Berekening positionering stabiliteitswanden

```
#======
#dimensions
#=======
F = 845 \# kN
#Core (all in m)
C \text{ width} = 6
C \text{ height} = 5
C t = 0.2
CL = 3 #length to the y axis
#Stability wall 1
S1 \text{ width} = 5
S1^{-}t = 0.2
S1_L = 36
\#S\overline{t}ability wall 2
S2 \text{ width} = 5
S2^{-}t = 0.2
S2^{-}L = 33
#Calculation
I C = (1/12*C \text{ width*C height**3}) - (1/12*(C \text{ width-2*C t})*(C \text{ height-2*C t})**3) #m4
I_S1 = (1/12*S1_t*S1_width**3)
I_S2 = (1/12*S2_t*S2_width**3)
I_TOT = (I_C+I_S1+I_S2)
RC = I_C/I_TOT * F
R1 = I_S1/I_TOT * F
R2 = I S2/I T0T * F
cog = (C_L*I_C+S1_L*I_S1+S2_L*I_S2)/(I_T0T)
M = (18 - cog) *F
ROT_ST = (I_C*(C_L-cog)**2) + (I_S1*(S1_L-cog)**2) + (I_S2*(S2_L-cog)**2)
D_RC = I_C*M/ROT_ST*(C_L-cog)
DR1 = IS1*M/R0TST*(S1 L-cog)
DR2 = IS2*M/R0TST*(S2L-cog)
RC tot = D RC+RC
RS\overline{1} tot = \overline{D} R1+R1
RS2 \text{ tot} = D R2+R2
print(RC tot, RS1 tot, RS2 tot)
```

Bijlage D: Berekening composiete plaat

```
5 @author: Joris
 8 import numpy as np
10 # b1, b2, b3, h1 en h2 zie tekening
11 #==
12 G_{rep_overig} = 0.5 \#kN/m2
13 Q_rep = 3.7
14 t = 1.25
15 h1 = 80
                  #bepaal zelf
17 L = 6000 #span in m
19 rho_p = 7800 #kg/m3
20 rho_c = 2400 #kg/m3
22 fypd = 350
23 fck = 45
24 \text{ fcd} = \text{fck/1.5}
25 bt = 1000
26 Ecm=31476
28 b1 = 59.5
29 b2 = 56
30 b3 = 425
31 h2 = 210
32 ep = e = h2-95
34 \, \text{Mrd} = 62.1
35 V_Ed_pons = 4.5 #kN
37 b4 = b2+2*b1
38 L1 = np.sqrt((b1**2)+(h2**2))
40 Ape = ((2*L1+b2+b3)*t*1000/(b3+b4))

41 na = (Ape*fypd)/(0.85*bt*fcd) #neutrale as doorsnede

42 nas = ((b2*t*(h1+h2))+2*L1*t*(h1+0.5*h2)+b3*t*h1)/((2*L1+b2+b3)*t) #neutrale as van de stalen sheeting
```

```
43 #=====
44# Negatief buigende moment
45 #==========
46 dp = nas
47 z = dp - 0.5*na
49 \text{ if na} < h1:
     print ("neutrale as ligt boven de stalen plaat")
51
      Mpl Rd = Ape*fypd*z*10**-6 #kNm
     print('Mpl Rd = ', np.round(Mpl Rd,2), 'kNm')
53 if na > h1:
     print ("neutrale as ligt in de stalen plaat")
     print("Plastisch moment niet te bepalen met beschikbare gegevens")
55
56# Eigen gewicht vloer
57 \text{ Ac} = ((b2+b1)*h2)+(h1*(b3+b4))*1000/600 \text{ #per vierkante meter}
58 G rep fl = (\text{rho p*Ape+Ac*rho c})*10***-6*9.81/1000
60 print("G rep floor is ", np.round(G rep fl,2), "Kn/m2")
61# Unity check negatief buigend moment
62 q_Ed = 1.2*(G_rep_fl+G_rep_overig)+ 1.5*Q_rep #kN/m2
63 \text{ Med} = (1/8*q\_Ed*L**2) *10**-6 #kNm
64 print("G_rep_slab is", np.round(G_rep_fl+G_rep_overig,2) , "kN/m2" )
65 print("De unity check is", np.round(Med/Mpl_Rd,2))
67# Verticale Schuifweerstand
69 b0 = b4 - ((dp-h1)/h2)*(2*b1)
70 vmin = 0.035 * (1 + np.sqrt(200/dp)) **(3/2) * np.sqrt(fck) #N
71 Vv_Rd_rib = b0 * dp * vmin/1000 #kN/rib
72 \text{ Vv } \text{Rd} = \text{Vv } \text{Rd } \text{rib } * 1000 / (b3+b4)
73 print('Vv_Rd = ', np.round(Vv_Rd,2), 'kN/m')
74 V_Ed = 1/2*q_Ed*(L*10**-3)
75 print("De unity check is", np.round(V_Ed/Vv_Rd,2))
76 #==========
77 # Pons weerstand
79 \text{ gamma c} = 1.5
80 d = 20
81 \text{ rho} = 0.02
82 bp = 100 #width loaded area
83 ap = 100 #height loaded area
84 \text{ vRd} = (0.18/\text{gamma_c}) * (1+\text{np.sqrt}(200/\text{d}))*(100*\text{rho*fck})**(1/3)
85 hf = 0 #dikte afwerklaag
86 \text{ Cp} = 2*\text{np.pi*h1+2*(bp+2*hf)+2*(ap+2*hf+2*dp-2*h1)}
87 \text{ Vp } \text{Rd} = \text{vRd*Cp*d*10**-3}
88 print("De unity check is",np.round(V Ed pons/Vp Rd,2) )
neutrale as ligt boven de stalen plaat
Mpl Rd = 86.74 kNm
G rep floor is 2.6 Kn/m2
G rep slab is 3.1 kN/m2
De unity check is 0.48
Vv Rd = 25.13 kN/m
De unity check is 1.11
De unity check is 0.09
```

Bijlage E: Berekening brandwerend materiaal

6.1.1 Section factor for European sections

											_		_	_					
		_		\neg						. <u> </u>	200	Ψ,	1	1	HE 700 A	85	96	64	76
. ~		6 4	1-	- 1							1.T.	т.	JIII.	TH.	HE 700 B	72	82	55	65
A_p/N	7 1	***	1	- 1						HE	LT.	т.	Ш.	шп	HE 700 M	59	67	45	53
$I \ln / 1$	VΙ	ш	- 1	- 1						1,100	VTN	77	7	7					
- P		777	ъ.	- 1							-	_	_	_	HE 700 x 352	51	58	39	45
				- 1						HE 100 AA	290	355	181	245	HE 700 x 418	44	50	34	40
				- 1						HE 100 A	217	254	138	185	HE 800 AA	108	122	84	98
				-						HE 100 B	180	218	115	154	HE 800 A	84	94	66	76
										HE 100 M	96	116	85	85	HE 800 B	72	85	57	100000
	A TOTAL	217	000000	117	1	0000000		- Santanana	117			1.19							66
	17	-	$\overline{\mathbf{m}}$	m		1,000	nge	777	-11	HE 120 AA	295	361	162	247	HE 800 M	60	68	48	55
ine	I-8-		-111-	-111-		-11-	- 1-	-111-	-111-	HE 120 A	220	267	137	185	HE 800 x 373	52	59	41	48
IPE	-	-	442	ш	HP HP	1 100	-	ш	- W	HE 120 B	167	202	106	141	HE 800 x 444	44	50	35	41
	41,	217	111	111	II .	111	111	111	1	HE 120 M	92	222	51	80	HE 900 AA	101	113	81	93
IPE 80 A	437	509	317	389	HP 200 x 43	181	219	112	150	HE 140 AA	281	342							
													172	233	HE 900 A	81	90	65	74
PE 80	399	429	270	330	HP 200 x 53	145	176	90	121	HE 140 A	206	253	129	174	HE 900 B	70	78	57	55
IPE A 100	389	452	286	349	HP 220 x 57	143	174	85	119	HE 140 B	155	187	96	130	HE 900 M	62	69	50	57
IPE 100	334	387	247	300	HP 260 x 75	129	156	80	108	HE 140 M	88	106	58	76	HE 900 x 391	54	60	43	49
PE A 120	370	428	271	329	HP 260 x 87	111	135	70	94	HE 160 AA	244	297	150	203	HE 900 x 466	45	6.5	37	42
(DE 135	311	360	220	279	HP 305 x 79	147	178	91	121								_		
100	_	-00	2,00							HE 160 A	192	234	120	161	HE 1000 AA	98	106	79	90
IPE A 140	354	409	260	314	HP 305 x 88	132	159	81	109	HE 160 B	140	159	88	118	HE 1000 x 249	88	97	71	81
IPE 140	291	335	215	259	HP 305 x 95	122	148	76	101	HE 160 M	83	100	54	71	HE 1000 A	81	89	55	74
IPE A 160	332	382	245	296	HP 305 x 110	106	129	66	88	HE 180 AA	229	279	141	190	HE 1000 B	70	78	57	85
IPE 160	269	310	200	241	HP 305 x 126	94	113	58	78	HE 180 A	187	225	115	155	HE 1000 M				
IPE A 180	308	354	227	274												54	70	52	59
	-		-	1000	HP 305 x 149	80	97	50	67	HE 180 B	131	159	83	110	HE 1000 x 393	57	63	47	53
IPE 180	253	291	188	226	HP 305 x 180	67	81	42	56	HE 180 M	80	96	52	68	HE 1000 x 415	54	60	44	50
IPE 0 180	225	250	168	202	HP 305 x 186	65	79	41	55	HE 200 AA	211	256	130	175	HE 1000 x 438	51	57	42	48
PE A 200	283	375	210	253	HP 305 x 223	55	67	35	47	HE 200 A	174	211	108	145	HE 1000 x 454	46	51	38	43
PE 200	235	275	176	211	HP 320 x 88	128	155	81	108	HE 200 B	122	147	77	102	HE 1000 x 584	39	44	33	37
IPE 0 200	212	244	158	190	HP 320 x 103		23,000										_		
	_					111	135	70	94	HE 200 M	76	97	49	65	HL 920 x 345	69	79	52	62
IPE A 220	250	298	193	231	HP 320 x 117	98	119	62	83	HE 220 AA	200	242	122	165	HL 920 x 368	65	74	43	58
IPE 220	221	254	165	198	HP 320 x 147	80	96	51	68	HE 220 A	161	195	99	134	HL 920 x 390	62	70	45	55
PE 0 220	200	230	149	179	HP 320 x 184	65	78	42	55	HE 220 B	115	140	72	97	HL 920 x 420	58	66	43	51
IPE A 243	240	276	179	214	HP 360 x 84	162	198	98	132	HE 220 M	73	88	47	60					
PE 240	205	236	153	90.5			0.55	10.20							HL 920 x 449	54	61	41	48
	185			184	HP 360 x 109	126	153	77	103	HE 240 AA	185	225	114	154	HL 920 x 491	50	55	37	44
PE 0 240	-170	213	139	167	HP 360 x 133	104	126	54	86	HE 240 A	147	178	91	122	HL 920 x 537	46	52	35	41
IPE A 270	230	265	171	205	HP 360 x 152	92	111	56	76	HE 240 B	108	131	68	91	HL 920 x 588	42	48	32	37
IPE 270	197	227	147	176	HP 360 x 174	81	98	50	67	HE 240 M	61	73	39	52	HL 920 x 656	38	43	29	34
IPE 0 270	170	195	127	152	HP 360 x 180	78	95	48	05	HE 250 AA	176	214	108	146		35	39		
		_		-				_	-	100000000000000000000000000000000000000					HL 820 x 725			26	31
PE A 300	216	248	160	192	HP 400 x 122	116	141	70	95	HE 260 A =	141	171	88	117	HL 920 x 787	32	37	25	29
IPE 300	186	216	139	167	HP 400 x 140	102	124	61	83	HE 260 B	105	127	66	88	HL 920 x 970	27	30	20	24
IPE 0 300	163	187	121	145	HP 400 x 158	91	111	55	74	HE 260 M +	50	72	39	51	HL 1000 AA	82	92	63	73
IPE A 330	199	228	149	178	HP 400 x 176	82	100	50	67	HE 280 AA	168	204	104	139	HL 1000 A	76	85	58	68
IPE 330	175	200	131	157	HP 400 x 194	75	91	46	62	HE 280 A =	136	185	84						
							170.70							113	HL 1000 B	66	74	51	59
IPE O 330	152	175	114	137	HP 400 x 213	69	84	42	57	HE 280 B	102	123	64	85	HL 1000 M	60	67	45	54
IPE A 360	185	211	138	165	HP 400 x 231	64	77	39	53	HE 280 M I	59	71	38	50	HL 1000 x 443	55	63	43	50
IPE 360	163	186	122	146						HE 300 AA	158	192	97	131	HL 1000 x 483	51	58	40	46
IPE 0 390	142	162	107	127						HE 300 A	126	153	78	105	HL 1000 x 539	46	52	36	42
IPE A 400	175	200	133	158		20000000	111	90%	7.7	HE 300 B	96	116	60	80		-			
PE 400	152	174	116	137		17	T	m	-111-						HL 1000 x 554	45	51	35	41
					UD			-111-	-111-1	HE 300 M	50	60	33	43	HL 1000 x 591	42	48	33	39
PE 0 400	135	154	103	122	HD	-	Marie .	144	Less 1	HE 320 AA	152	184	95	127	HL 1000 x 642	39	44	31	36
IPE A 450	165	187	127	149		111	117	111	111	HE 320 A	117	141	74	98	HL 1000 x 748	34	38	27	31
IPE 450	143	162	110	130						HE 320 B	91	110	58	77	HL 1000 x 883	29	33	23	27
IPE 0 450	122	138	94	110	HD 260 x 54,1	176	214	108	146	HE 320 M	50	60	33	43	HL 1100 A				
IPE A 500	152	177	118	138	HD 260 x 68.2	141						_	-			75	85	59	68
			7.74		and the second of the second	2.7.7	171	88	117	HE 340 AA	147	177	94	123	HL 1100 B	67	75	52	60
IPE 500	134	151	104	121	HD 260 x 93,0	105	127	66	88	HE 340 A	112	134	72	54	HL 1100 M	61	68	47	55
PE 0 500	114	129	99	104	HD 260 x 114	88	104	55	73	HE 340 B	88	106	57	75	HL 1100 R	53	59	42	48
IPE A 550	142	160	111	129	HD 260 x 142	71	86	46	60	HE 340 M	50	60	34	43					
PE 550	124	140	97	113	HD 260 x 172	59	72	39	51	HE 360 AA	142	170	92	120					
IPE 0.550	105	121	85	98	HD 320 x 74.2														
			-24		COM THE STREET, CO. 1980.	152	184	95	127	HE 360 A	107	128	70	21					
IPE A 600	131	147	103	119	HD 320 x 97,6	117	141	74	96	HF 360 B	55	102	55	73					
IPE 600	115	129	91	105	HD 320 x 127	91	110	58	77	HE 360 M	51	61	34	44					
PE 0 500	93	104	73	85	HD 320 x 158	74	89	48	63	HE 400 AA	135	161	90	115					
750 x 137	128	144	101	116	HD 320 x 198	60		39											
			1700		112 122 12 12 12 12 12 12 12 12 12 12 12		72		51	HE 400 A	101	120	68	57					
750 x 147	120	134	94	109	HO 320 x 245	50	60	33	43	HE 400 B	82	97	56	71					
750 x 173	102	114	81	93	HD 320 x 300	42	50	28	36	HE 400 M	52	62	36	45					
750 x 196	91	102	72	83	HD 360 x 134	104	125	63	85	HE 450 AA	133	158	91	114					
F-200 A 1250				-			1000			T. 180 THE R. P. LEW.			-						
120 A 120					HD 360 x 147	95	114	58	78	HE 450 A	96	113	65	E3					

Properties of fire protection materials (ECCS, 1995)

Material	Unit mass, P _P	Moisture content, p	Thermal conductivity,	Specific λ_p heat, C_p
	[kg / m³]	%	[W / (mK)] [J/(kgK)]
Spays				
 mineral fibre 	300	1	0.12	1200
 vermiculite cement 	350	15	0.12	1200
 perlite 	350	15	0.12	1200
High density sprays				
 vermiculite (or perlit 	e)			
and cement	550	15	0.12	1100
 vermiculite (or perlit 	e)			
and gypsum	650	15	0.12	1100
Boards				
 vermiculite (or perlit 	e)			
and cement	800	15	0.20	1200
 fibre-silicate or 				
fibre-calcium -silicat	e 600	3	0.15	1200
- fibre-cement	800	5	0.15	1200
 gypsum boards 	800	20	0.20	1700
Compressed fiber board	S			
 fibre silicate, minera 	-			
wool, stone-wool	150	2	0.20	1200
Concrete	2300	4	1.60	1000
Light weight concrete	1600	5	0.80	840
Concrete bricks	2200	8	1.00	1200
Brick with holes	1000	-	0.40	1200
Solid bricks	2000	-	1.20	1200

Bijlage F: Berekening ligger

```
5 @author: Joris
 7
 8 import numpy as np
9 #======
10 # Gegevens
11 #=======
12 width = 6 #m until next beam
13 G slab = 3.1 \# kN/m2
140 = 3.7 \# kN/m2
15
16 G rep slab = G slab*width
170 \text{ rep} = 0*\text{width}
18 L = 10000
19 \text{ fypd} = 350
20 \text{ fck} = 45
21 \text{ fcd} = \text{fck/1.5}
22 \, \text{bt} = 1000
23 fyk=355;
                            fyd=fyk/gamma a
               gamma a=1;
24
25 \, hc = 290
26 \text{ hp} = 210
28 # Gekozen profiel ligger met dimensies
29 #======
30 #HE180B
31
32 Aa = 6530; Iya= 3831*10**4; Wy_pl=426*1000
33 ha= 180;
              Ea= 210000 #MPa
34 G = 51.2 \# kg/m
35 r=15; ba=180; tw=8.5;
                                tf=14
36 \text{ hf} = 0.5*(ba-tw-2*r)
37 \text{ hw} = \text{ha-2*(tf+r)}
38 \text{ eps=0.81}
39
40 #========
41 # Negatief buigend moment
42 #=========
```

```
43 \text{ Fad} = Aa*fvd
44 \text{ Fcd hc} = \text{Fad}
45 le=0.85*L; bei=le/8;
                                   be sag=2*bei:
46 if Aa*fvd < hc*be sag*0.85*fcd:
       print("neutrale lijn ligt in betonnen plaat")
48
       #Als neutrale lijn in betonnen plaat ligt:
49
       x = Fcd hc/(be sag*0.85*fcd)
50
       Mpl Rd =Fad*(0.5*ha+hc-0.5*x)
51
       print('Mpl Rd=',np.round(Mpl Rd*10**-6,2),"kNm")
52 if Aa*fyd > hc*be sag*0.85*fcd > hw*tw*fyd:
53
       print("neutrale lijn ligt in stalen flens")
54
       #Als neutrale lijn in stalen flens ligt:
55
       Fcd = hc*be sag*0.85*fcd
56
       a = (Fad-Fcd)/(2*ba*fyd)
57
       Mpl Rd = Fcd*(1/2*ha+1/2*hc)+(Fad-Fcd)*(ha-a)/2
58
       print('Mpl_Rd=',np.round(Mpl_Rd*10**-6,2) , "kNm")
59 if hc*be sag*0.85*fcd < hw*tw*fyd:
60
     print("neutrale lijn ligt in stalen web")
61 #====
62# Unity check moment
63 #========
64 G \text{ rep beam} = G*9.81/1000
65 G_rep_total = G_rep_beam + G_rep_slab
66 Q rep
67 qed = 1.2*G rep total+ 1.5*Q rep
68 \text{ Med} = \frac{1}{8} \cdot \text{qed} \cdot \text{L} \cdot \cdot \cdot 2
69 print("De unity check is", np.round(Med/Mpl_Rd,2) )
70 print(G rep total, Q rep)
71
72 #============
73 # Verticale schuifspanning
74 #======
75 \text{ Ved} = \frac{1}{2} \cdot \text{qed} \cdot \text{L}
76 \text{ Av} = \text{Aa- } 2*\text{ba*tf} + \text{tf*(tw+2*r)}
77 Vpl Rd = Av*fyd/np.sqrt(3)
78 if \overline{V}ed < 0.5*\overline{V}pl Rd:
       print("Geen reductie van MN_y_Rd")
80 if Ved > 0.5*Vpl Rd:
81
       print("Reductie van MN y Rd")
       rho = ((2*Ved/Vpl Rd) - 1)**2
83 print("De unity check is", np.round(Ved/Vpl_Rd,2) )
84 #=======
85 # Doorbuiging
86 #======
87 \text{ ged SLS} = G \text{ rep total}
88 \text{ Ecm} = 36000
89 n = Ea/Ecm;
                     b eff = be sag
90 Ac n = (b \text{ eff/n})*hc
91z \text{ nc} = [(Ac n*0.5*hc + Aa*(hc+hp+0.5*ha))/
92
            (Ac n + Aa)][0] #mm distance from top fiber
93 Iy_c = [Iya + Aa*(hc+hp+0.5*ha-z nc)**2 +
            (b eff/n)*hc**3/12 + Ac n*(0.5*hc-z_nc)**2][0]
95 \text{ w} = (5*\text{ged SLS}*(L)**4 / (384*Ea*Iv c))
96 print('Maximale doorbuiging is', np.round(w,1), 'mm')
97 \, \text{wmax} = L/300
98 print("De unity check is", np.round(w/wmax,2))
```

neutrale lijn ligt in betonnen plaat
Mpl_Rd= 831.31 kNm
De unity check is 0.85
19.102272000000003 22.200000000000003
Reductie van MN_y_Rd
De unity check is 0.68
Maximale doorbuiging is 5.9 mm
De unity check is 0.18

Bijlage G: Berekening verbinding, component method

#Beam—Column joint connecting HE180B with UC 203 X 203 X 71 #in compression

$$Ved := 283 \#kN$$
 $Ved := 283$
 $Ved := 283$
 $Ved := 283$

$$Ned := 0 (2)$$

#Simple joint - Fin plate connection S355

#Ductility and rotation requirements

$$b := 180 : tf := 14 : r := 15 : b := h - 2 \cdot tf - 2 \cdot r \text{ #web height} db := 122$$
 (3)

#Assumptions for 'hp', 'gh' and 'z'

 $\rightarrow hp := 110$; gh := 22; z := 100

$$hp := 110$$
$$gh := 22$$

$$z := 100$$
 (4)

 $\rightarrow hp \le db$; $evalb(hp \le db)$

$$110 \le 122$$

_#Rotation requirement

$$\rightarrow he := \frac{db - hp}{2}$$

$$he := 6 \tag{6}$$

(7)

(8)

>
$$z_boundaryvalueleft := evalf\left(\operatorname{sqrt}\left((z-gh)^2 + \left(\frac{hp}{2} + he\right)^2\right)\right)$$

 $z_boundaryvalueleft := 99.02019996$

$$evalb(z > z_boundaryvalueleft)$$

#Requirement to avoid premature weld failure

$$fyp := 355 : ym0 := 1 : ym1 := 1 : ym2 := 1.25 : Bw := 0.9 : tp := 40$$

$$tp := 40$$
(9)

true

>
$$a := ceil(0.55 \cdot tp) \# for S355$$

$$a := 22$$
(10)

#Non-preloaded bolts - M22/10.9 (Shear face through shank)

>
$$n := 3$$
; $e1 := 18 : e2 := 78$; $p1 := 37$; $p2 := 40$; $d0 := 22$; $z1 := gh + e1$
 $n := 3$
 $e2 := 78$
 $p1 := 37$
 $p2 := 40$

$$d0 := 22 \\ zI := 40$$

$$| 100 := 20$$

$$| 100 := 20 | 1000 := 1000 := 13.14159 : fup := 510 := 1000$$

$$\begin{array}{c} | & \frac{k1 \ edge \cdot alpha \ b \cdot fup \cdot tp \cdot d}{1000} \\ & \frac{ym2}{1000} \\ & \frac{k1 \ inner \cdot alpha \ b \cdot fup \cdot tp \cdot d}{ym2} \\ & \frac{k1 \ inner \cdot alpha \ b \cdot fup \cdot tp \cdot d}{ym2} \\ & \frac{k1 \ inner \cdot alpha \ b \cdot fup \cdot tp \cdot d}{ym2} \\ & \frac{kN}{1000} \\ & \frac{kN}{Fb \ Rd \ inner} = 167.2462810 \\ & \frac{kN}{Fb \ Rd \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 167.2462810 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ inner} = 187.54545453 \\ & \frac{kN}{Fb \ Po \ in$$

>
$$n := 3$$
; $alfa := 0$; beta := $\frac{6 \cdot z}{pl \cdot n \cdot (n+1)}$ $n := 3$ $alfa := 0$ $\beta := \frac{50}{37}$ (33)

> $Vrd2 := evalf \left(\frac{n}{sqrt} \left(\left(\frac{1 + n \cdot alfa}{Fb_perp_Rd} \right)^2 + \left(\frac{n \cdot beta}{Fb_par_Rd} \right)^2 \right) \right)$ $Vrd2 := evalf \left(\frac{n}{Fb_perp_Rd} \right)^2 + \left(\frac{n \cdot beta}{Fb_par_Rd} \right)^2 \right)$ (34)

> $UC2 := \frac{Ved}{Vrd2}$; $evalb(UC2 \le 1)$ $UC2 := 0.7889030299$ $evalb := \frac{evalf \left(\frac{hp \cdot pr}{1.27} \cdot \frac{hpr}{sqrt(3) \cdot ym0} \right)}{1000} \#kN$

> $Vrd3 := \frac{evalf \left(\frac{hp \cdot pr}{1.27} \cdot \frac{hpr}{sqrt(3) \cdot ym0} \right)}{1000} \#kN$

> $UC3 := \frac{Ved}{Vrd3}$; $evalb(UC3 \le 1)$ $UC3 := 0.3985380157$ $evalb := \frac{vevalf \left(Av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$

> $Vrd4 := \frac{evalf \left(Av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{1000} \#kN$

> $Vrd4 := \frac{vevalf \left(Av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{1000} \#kN$

| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{vevalf \left(av_net \cdot \frac{fipp}{sqrt(3) \cdot ym2} \right)}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{fipv}{sqrt(3) \cdot ym2} \#kN$
| $Vrd4 := \frac{fipv}{sqrt$

$$Vrd5 := \frac{Felf \ 2 \ Rd}{1000} \ \#kN$$

$$Vrd5 := 360.4598314$$

$$Vrd5 := \frac{Ved}{Vrd5} : evalb(UC5 \le 1)$$

$$UC5 := 0.7851082849$$

$$true$$

$$\#Fin plate in bending$$

$$Vrd6 is infinite$$

$$Vrd6 is infinite$$

$$Vrd6 is infinite$$

$$Vrd6 is infinite$$

$$Vrd6 := \infty$$

$$Wel := \frac{19 \cdot hp^2}{6}$$

$$Vrd6 := \frac{19 \cdot hp^2}{6}$$

$$Vrd6 := \frac{19 \cdot hp^2}{6}$$

$$Vrd6 := \frac{15 \cdot hp}{6}$$

$$Vrd7 := \frac{15 \cdot hp}{1.5 \cdot hp^2}$$

$$Vrd7 := \frac{15 \cdot hp^2}{1.5 \cdot hp^2}$$

$$Vrd7 := \frac{15 \cdot hp^2}{1.$$

(54)

	0.9928436273 Unity Check_I	(54)
> UC2 Unity Check_2	0.7889030299 Unity Check_2	(55)
> UC3 Unity Check_3	0.3985380157 Unity Check_3	(56)
> UC4 Unity Check_4	0.6826124922 Unity Check_4	(57)
> UC5 Unity Check_5	0.7851082849 Unity Check_5	(58)
> UC6 Unity Check_6	∞ Unity Check_6	(59)
> UC7 Unity Check_7	0.9882435106 Unity Check_7	(60)