Introdução aos modelos DSGE

Expectativas racionais e a crítica de Lucas

João Ricardo Costa Filho

Expectativas racionais

Nas palavras do mestre

While rational expectations is often thought of as a school of economic thought, it is better regarded as a ubiquitous modeling technique used widely throughout economics.

Thomas J. Sargent

Como as expectativas são formadas?

Sem desperdício de informações.

- Sem desperdício de informações.
- As expectativas dependem de toda a estrutura da economia.

- Sem desperdício de informações.
- As expectativas dependem de toda a estrutura da economia.
- Sabedoria das massas: as expectativas médias são mais acuradas do que as expectativas individuais.

- Sem desperdício de informações.
- As expectativas dependem de toda a estrutura da economia.
- Sabedoria das massas: as expectativas médias são mais acuradas do que as expectativas individuais.
- Isso não implica que (i) o comportamento dos agentes se assemelha a um ssitema de equações,

- Sem desperdício de informações.
- As expectativas dependem de toda a estrutura da economia.
- Sabedoria das massas: as expectativas médias são mais acuradas do que as expectativas individuais.
- Isso não implica que (i) o comportamento dos agentes se assemelha a um ssitema de equações, (ii) nem que as previsões são perfeitas

- Sem desperdício de informações.
- As expectativas dependem de toda a estrutura da economia.
- Sabedoria das massas: as expectativas médias são mais acuradas do que as expectativas individuais.
- Isso não implica que (i) o comportamento dos agentes se assemelha a um ssitema de equações, (ii) nem que as previsões são perfeitas (iii) ou que são iguais entre os agentes.

Assuma que os desvios da tendência de longo prazo do preço (p_t) de um produto seja fracamento estacionário.

Assuma que os desvios da tendência de longo prazo do preço (p_t) de um produto seja fracamento estacionário. Sabemos, portanto, que pela decomposição de Wold (Wold 1938), podemos escrevê-lo como uma função linear de variáveis não correlacionadas.

Assuma que os desvios da tendência de longo prazo do preço (p_t) de um produto seja fracamento estacionário. Sabemos, portanto, que pela decomposição de Wold (Wold 1938), podemos escrevê-lo como uma função linear de variáveis não correlacionadas. Por simplicidade, assuma que $p_t \sim \text{MA}(2)$:

$$p_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

onde ε_t é um ruído branco.

Assuma que os desvios da tendência de longo prazo do preço (p_t) de um produto seja fracamento estacionário. Sabemos, portanto, que pela decomposição de Wold (Wold 1938), podemos escrevê-lo como uma função linear de variáveis não correlacionadas. Por simplicidade, assuma que $p_t \sim \text{MA}(2)$:

$$p_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

onde ε_t é um ruído branco. Temos que $E_t = \mu$.

E se houver agentes com vieses cognitivos?

E se houver agentes com vieses cognitivos? Assuma uma economia com dois agentes, A e B tais que, individualmente, eles acreditam que os preços seguem o seguinte processo, respectivamente:

E se houver agentes com vieses cognitivos? Assuma uma economia com dois agentes, A e B tais que, individualmente, eles acreditam que os preços seguem o seguinte processo, respectivamente:

$$p_t^A = \mu + \varepsilon_t + \alpha \theta_1 \varepsilon_{t-1} + \alpha \theta_2 \varepsilon_{t-2},$$

E se houver agentes com vieses cognitivos? Assuma uma economia com dois agentes, A e B tais que, individualmente, eles acreditam que os preços seguem o seguinte processo, respectivamente:

$$p_t^A = \mu + \varepsilon_t + \alpha \theta_1 \varepsilon_{t-1} + \alpha \theta_2 \varepsilon_{t-2},$$

$$p_t^B = \mu + \varepsilon_t + \beta \theta_1 \varepsilon_{t-1} + \beta \theta_2 \varepsilon_{t-2},$$

com $\alpha \neq 0$ e $\beta \neq 0$.

Se as expectativas são enviesadas, as expectativas do mercado ainda podem ser racionais?

Se as expectativas são enviesadas, as expectativas do mercado ainda podem ser racionais? **Sim!**

Se as expectativas são enviesadas, as expectativas do mercado ainda podem ser racionais? **Sim!** Mas como?

$$E_t^M[p_t]$$

$$E_t^M[p_t] = \omega_A E_t^A[p_t] + (1 - \omega_A) E_t^B[p_t]$$

$$E_t^M[p_t] = \omega_A E_t^A[p_t] + (1 - \omega_A) E_t^B[p_t] = \omega_A \mu + (1 - \omega_A) \mu = \mu$$

Se as expectativas são enviesadas, as expectativas do mercado ainda podem ser racionais? **Sim!** Mas como? Seja ω_A a parcela de agentes do tipo A e $(1-\omega_A)$ a parcela de agentes do tipo B. Temos, então que:

$$E_t^M[p_t] = \omega_A E_t^A[p_t] + (1 - \omega_A) E_t^B[p_t] = \omega_A \mu + (1 - \omega_A) \mu = \mu$$

Se os disturbios nos preços forem independentes, o viés não importa!

A crítica de Lucas

A crítica de Lucas Jr (1976), Lucas and Sargent (1978): modelos macroeconométricos **não servem** para formulação de políticas.

A crítica de Lucas Jr (1976), Lucas and Sargent (1978): modelos macroeconométricos **não servem** para formulação de políticas. Trabalhemos com dois exemplos:

A crítica de Lucas Jr (1976), Lucas and Sargent (1978): modelos macroeconométricos **não servem** para formulação de políticas. Trabalhemos com dois exemplos:

• Critério de avaliação e as escolhas dos alunos.

A crítica de Lucas Jr (1976), Lucas and Sargent (1978): modelos macroeconométricos **não servem** para formulação de políticas. Trabalhemos com dois exemplos:

- Critério de avaliação e as escolhas dos alunos.
- Viés na estimativa de uma função consumo.

Duas possibilidades: média aritmética (MA) ou média geométrica (MG):

$$MA = 0.5N_1 + 0.5N_2$$

$$MG = \sqrt{N_1 N_2}$$

Duas possibilidades: média aritmética (MA) ou média geométrica (MG):

$$MA = 0.5N_1 + 0.5N_2$$

$$MG = \sqrt{N_1 N_2}$$

Assuma que a aprovação ocorre com média 5.

Duas possibilidades: média aritmética (MA) ou média geométrica (MG):

$$MA = 0.5N_1 + 0.5N_2$$

$$MG = \sqrt{N_1 N_2}$$

Assuma que a aprovação ocorre com média 5. Qual formato vocês preferem?

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
				•

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58

Cenários	N_1	N_2	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58
F	8,00	2,00	5,00	4,00

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58
F	8,00	2,00	5,00	4,00
G	2,00	8,00	5,00	4,00

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58
F	8,00	2,00	5,00	4,00
G	2,00	8,00	5,00	4,00
Н	9,00	1,00	5,00	3,00

Cenários	N_1	N_2	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58
F	8,00	2,00	5,00	4,00
G	2,00	8,00	5,00	4,00
Н	9,00	1,00	5,00	3,00
I	1,00	9,00	5,00	3,00

Cenários	N_1	N_2	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58
F	8,00	2,00	5,00	4,00
G	2,00	8,00	5,00	4,00
Н	9,00	1,00	5,00	3,00
I	1,00	9,00	5,00	3,00
J	10,00	0,00	5,00	0,00

Cenários	N_1	N ₂	MA	MG
А	5,00	5,00	5,00	5,00
В	6,00	4,00	5,00	4,90
С	4,00	6,00	5,00	4,90
D	7,00	3,00	5,00	4,58
Е	3,00	7,00	5,00	4,58
F	8,00	2,00	5,00	4,00
G	2,00	8,00	5,00	4,00
Н	9,00	1,00	5,00	3,00
I	1,00	9,00	5,00	3,00
J	10,00	0,00	5,00	0,00
K	0,00	10,00	5,00	0,00

 Você s acreditam que o comportamento dos alunos se altera caso o professor escolha a média geométria ao invés da média aritmética?

Você s acreditam que o comportamento dos alunos se altera caso o professor escolha a média geométria ao invés da média aritmética? Por quê?

- Você s acreditam que o comportamento dos alunos se altera caso o professor escolha a média geométria ao invés da média aritmética? Por quê?
- As notas (N₁ e N₂) dos semestres anteriores seriam adequadas para avaliar a taxa de aprovação dada uma alteração de média aritmética para média geométria?

- Você s acreditam que o comportamento dos alunos se altera caso o professor escolha a média geométria ao invés da média aritmética? Por quê?
- As notas (N₁ e N₂) dos semestres anteriores seriam adequadas para avaliar a taxa de aprovação dada uma alteração de média aritmética para média geométria? Por quê?

Trabalhemos agora com um exemplo inspirado na seção 5 de Gomes da Silva and Reis Gomes (2022).

Trabalhemos agora com um exemplo inspirado na seção 5 de Gomes da Silva and Reis Gomes (2022). Considere uma função de consumo keynesiana:

$$C_t = c_0 + cY_{d,t}$$

na qual C_t representa o consumo agregado no período t, c_0 o consumo autônomo, c a propensão marginal a consumir e $Y_{d,t}$ a renda disponível.

Trabalhemos agora com um exemplo inspirado na seção 5 de Gomes da Silva and Reis Gomes (2022). Considere uma função de consumo keynesiana:

$$C_t = c_0 + cY_{d.t}$$

na qual C_t representa o consumo agregado no período t, c_0 o consumo autônomo, c a propensão marginal a consumir e $Y_{d,t}$ a renda disponível. Imagine que uma gestora de política econômica tenha o objetivo de influenciar a renda disponível da economia para maximizar o consumo. Como ela poderia (tentar) operacionalizar isso?

Trabalhemos agora com um exemplo inspirado na seção 5 de Gomes da Silva and Reis Gomes (2022). Considere uma função de consumo keynesiana:

$$C_t = c_0 + c Y_{d,t},$$

na qual \mathcal{C}_t representa o consumo agregado no período t, c_0 o consumo autônomo, c a propensão marginal a consumir e $Y_{d,t}$ a renda disponível. Imagine que uma gestora de política econômica tenha o objetivo de influenciar a renda disponível da economia para maximizar o consumo. Como ela poderia (tentar) operacionalizar isso? Ela poderia (i) estimar a função com base em dados históricos

Trabalhemos agora com um exemplo inspirado na seção 5 de Gomes da Silva and Reis Gomes (2022). Considere uma função de consumo keynesiana:

$$C_t = c_0 + c Y_{d,t},$$

na qual C_t representa o consumo agregado no período t, c_0 o consumo autônomo, c a propensão marginal a consumir e $Y_{d,t}$ a renda disponível. Imagine que uma gestora de política econômica tenha o objetivo de influenciar a renda disponível da economia para maximizar o consumo. Como ela poderia (tentar) operacionalizar isso? Ela poderia (i) estimar a função com base em dados históricos e (ii) a partir dos coeficientes, calibrar a política econômica para esse fim.

A regressão linear seria dada por:

A regressão linear seria dada por:

$$C_t = \beta_0 + \beta_1 Y_t + \varepsilon_t,$$

onde β_0 e β_1 são, respectivamente, os valores populacionais correspondentes a c_0 e c e ε_t é o termo de erro.

A regressão linear seria dada por:

A regressão linear seria dada por:

$$C_t = \beta_0 + \beta_1 Y_t + \varepsilon_t,$$

onde β_0 e β_1 são, respectivamente, os valores populacionais correspondentes a c_0 e c e ε_t é o termo de erro.

E se a propensão marginal a consumir não for constante, mas sim uma função do tipo de política econômica (m) implmentada?

E se a propensão marginal a consumir não for constante, mas sim uma função do tipo de política econômica (m) implmentada? Ou seja, para fins da regressão linear, e se $\beta_1 = f(m)$?

E se a propensão marginal a consumir não for constante, mas sim uma função do tipo de política econômica (m) implmentada? Ou seja, para fins da regressão linear, e se $\beta_1 = f(m)$? Teríamos que

$$C_t = \beta_0 + f(m)Y_t + \epsilon_t$$

O problema é que m não é observado e/ou fora incluído na regressão.

E se a propensão marginal a consumir não for constante, mas sim uma função do tipo de política econômica (m) implmentada? Ou seja, para fins da regressão linear, e se $\beta_1 = f(m)$? Teríamos que

$$C_t = \beta_0 + f(m)Y_t + \epsilon_t$$

O problema é que m não é observado e/ou fora incluído na regressão. Dessa forma, a estimativa para a propensão marginal consumir, $\hat{\beta}_1$ vem de uma especificação de modelo que ignora a relação entre as escolhas dos agentes e as escolhas de política econômica.

Ao ignorar o fato de que β_1 é uma função de m e simplesmente estimar $\hat{\beta}_1$ a partir da regressão linear, a gestora de política econômica estaria, na verdade, estimando uma relação enviesada entre o consumo agregado e a renda disponível. Vamos compreender o viés:

• O modelo estimado seria: $C_t = \beta_0 + f(m)Y_t + \varepsilon_t$

- O modelo estimado seria: $C_t = \beta_0 + f(m)Y_t + \varepsilon_t$
- O modelo teórico correto seria $C_t = \hat{eta}_0 + \hat{eta}_1 Y_t + arepsilon_t$

- O modelo estimado seria: $C_t = \beta_0 + f(m)Y_t + \varepsilon_t$
- O modelo teórico correto seria $C_t = \hat{eta}_0 + \hat{eta}_1 Y_t + arepsilon_t$
- O viés pode ser calculado por meio da entre o β_1 correto (que é f(m)) e o estimado $(\hat{\beta}_1)$:

- O modelo estimado seria: $C_t = \beta_0 + f(m)Y_t + \varepsilon_t$
- O modelo teórico correto seria $C_t = \hat{eta}_0 + \hat{eta}_1 Y_t + arepsilon_t$
- O viés pode ser calculado por meio da entre o β_1 correto (que é f(m)) e o estimado $(\hat{\beta}_1)$: Viés $(\hat{\beta}_1) = E[\hat{\beta}_1] \beta_1$.

Apenas para exemplificar, vamos assumir que

$$\beta_1 = f(m) = \gamma_0 + \gamma m$$

onde γ_0 é o intercepto e γ representa a sensibilidade de β_1 às mudanças na política econômica (m).

Apenas para exemplificar, vamos assumir que

$$\beta_1 = f(m) = \gamma_0 + \gamma m$$

onde γ_0 é o intercepto e γ representa a sensibilidade de β_1 às mudanças na política econômica (m). Nesse caso, o modelo correto seria:

Apenas para exemplificar, vamos assumir que

$$\beta_1 = f(m) = \gamma_0 + \gamma m$$

onde γ_0 é o intercepto e γ representa a sensibilidade de β_1 às mudanças na política econômica (m). Nesse caso, o modelo correto seria:

$$C_t = \beta_0 + (\gamma_0 + \gamma m) Y_t + \varepsilon_t.$$

Apenas para exemplificar, vamos assumir que

$$\beta_1 = f(m) = \gamma_0 + \gamma m$$

onde γ_0 é o intercepto e γ representa a sensibilidade de β_1 às mudanças na política econômica (m). Nesse caso, o modelo correto seria:

$$C_t = \beta_0 + (\gamma_0 + \gamma_m) Y_t + \varepsilon_t.$$

Lembre-se que o modelo estimado é dado por $C_t = \hat{eta}_0 + \hat{eta}_1 Y_t + arepsilon_t$

Apenas para exemplificar, vamos assumir que

$$\beta_1 = f(m) = \gamma_0 + \gamma m$$

onde γ_0 é o intercepto e γ representa a sensibilidade de β_1 às mudanças na política econômica (m). Nesse caso, o modelo correto seria:

$$C_t = \beta_0 + (\gamma_0 + \gamma_m) Y_t + \varepsilon_t.$$

Lembre-se que o modelo estimado é dado por $C_t = \hat{\beta}_0 + \hat{\beta}_1 Y_t + \varepsilon_t$. Portanto, temos que $\hat{\beta}_1 = E[\gamma_0 + \gamma m] = \gamma_o + \gamma E[m]$

Apenas para exemplificar, vamos assumir que

$$\beta_1 = f(m) = \gamma_0 + \gamma m$$

onde γ_0 é o intercepto e γ representa a sensibilidade de β_1 às mudanças na política econômica (m). Nesse caso, o modelo correto seria:

$$C_t = \beta_0 + (\gamma_0 + \gamma_m) Y_t + \varepsilon_t.$$

Lembre-se que o modelo estimado é dado por $C_t = \hat{\beta}_0 + \hat{\beta}_1 Y_t + \varepsilon_t$. Portanto, temos que $\hat{\beta}_1 = E[\gamma_0 + \gamma m] = \gamma_o + \gamma E[m]$ e o viés é dado por: Viés $(\hat{\beta}_1) = \gamma_0 + \gamma E[m] - (\gamma_0 + \gamma m) = \gamma (E[m] - m)$.

Consequência (Lucas Jr 1976, 20)

[...]simulations using these models can, in principle, provide no useful information as to the actual consequences of alternative economic policies[...]

Robert E. Lucas

Referências i

Gomes da Silva, Cleomar, and Fábio Augusto Reis Gomes. 2022. "Using a Consumption Function to Explain the Lucas Critique to Undergraduate Students." *EconomiA* 23 (1): 44–61.

Lucas, Robert, and Thomas Sargent. 1978. "After the Phillips Curve: Persistence of High Inflation and High Unemployment." In *FRBB, Conference Series*, 49–68. 19.

Lucas Jr, Robert E. 1976. "Econometric Policy Evaluation: A Critique." In *Carnegie-Rochester Conference Series on Public Policy*, 1:19–46. 1.

Muth, John F. 1961. "Rational Expectations and the Theory of Price Movements." *Econometrica*, 315–35.

Referências ii

Wold, Herman. 1938. "A Study in the Analysis of Stationary Time Series." PhD thesis, Almqvist & Wiksell.