EE 224 Midterm Exam Solutions

1(a)

$$A = \sum_{k=0}^{N} x_k \cdot 2^k$$

$$B = \sum_{k=0}^{N} \bar{x_k} \cdot 2^k$$

$$= \sum_{k=0}^{N} (1 - x_k) \cdot 2^k$$

$$= \sum_{k=0}^{N} 2^k - \sum_{k=0}^{N} x_k \cdot 2^k$$

$$= (2^{N+1} - 1) - A$$

1(b)

$$(B-A)_{bottom\ N\ bits} = (B+2^{N+1}-A)_{bottom\ N\ bits}$$
$$= (B+[(2^{N+1}-1)-A]+1)_{bottom\ N\ bits}$$

Solution: Question 2

A logic circuit has n inputs x_0, x_1,x_{n-1} and its output is 1 iff the no. represented by these bits is a power of 2.

(a) We have to design a circuit so that it uses O(n) two-input logic gates and has a delay of $O(\log n)$ units.

Number is power of 2. \implies exactly 1 bit in x_0, x_1,x_{n-1} is set to 1

Therefore, Divide and Conquer.

Repeat to get log depth circuit

Figure 1: Divide and Conquer

Note : $Z = Z_1.Z_2$ $O = Z_1.O_2 + O_1.Z_2$

(b) Using two-input AND, OR and NOT gates we have to implement the above circuit for n=8.

Figure 2: Divide and Conquer for n = 8

Total delay = 7

Question 3 solution

1. The mealy FSM just requires two states :

Even : The number of 0's are evenOdd : The number of 0's are odd

2. The mealy FSM should look like this (with reset or initial state mentioned):

Evaluation scheme:

Part a: Mentioning of 2 states and their description carries a mark each

Part b: Meaningful FSMs are given 3 marks. +1 mark if only 2 states used. +1 mark if correct reset/initial state mentioned

EE 224 Midterm Exam Solutions

4(a)

q ₁ q ₀	00	01	11	10
00	1		X	
01		1	X	
11				
10				

Figure 1: $nq_0 = \bar{r}.x.\bar{q}_1.q_0 + \bar{r}.\bar{x}.q_1$

Figure 2: $nq_1 = \bar{q_1}.\bar{q_0}.\bar{r}.\bar{x} + \bar{r}.x.q_0$

q ₁ q ₀	00	01	11	10
00		1	X	
01			X	1
11				
10				

Figure 3: $z = q_0.\bar{r}.\bar{x} + \bar{r}.x.q_1$

4(b)

Figure 4: nq_0

Figure 5: nq_1

Figure 6: z

Figure 7: FSM diagram.

4(c)

It takes 8 time units to generate nq_1 , nq_0 , z after all the required inputs are available. Output 'z' must be ready at the most by time t

 nq_1 , nq_0 must be ready by t-2(setup and hold time). Consider that

at/before t = 0 z, nq_0 , nq_1 of previous cycle are ready. Clock edge arrives at t = 0, q_1 and q_0 are ready by t = 3 (clock to output delay). r, x become ready at T/2. Case 1: Assume that r, x arrive late as compared to q_1 , q_0 i.e. $T/2 \ge 3$

$$T \geq 6$$

For output z

$$T/2 + 8 \le T$$

for nq_1 , nq_0

$$T/2 + 8 \le T - 2$$

$$10 \le T/2$$

$$T \ge 20$$

which satisfies $T \ge 6$

Case 2:

$$T/2 \le 3$$

$$T \le 6$$

For z

$$3+8 \leq T$$

For nq_1 , nq_0

$$3+8 \le T-2$$

$$T \geq 13$$

assumption $T \leq 6$ is violated.