elleptic equations are time independent. They describen only problem that are time independent. Such problem are known as steady state problems.

Povorbolux equations for which $B^2-4Ae=0$ describes the powblem that depend upon space 8 turne variables.

A famour parabolic type of equation is the study of heat flow in one-dimentional direction in an insulated road.

such powblems are governed by both initial & boundary.

M(x,+) supresents the temp of rod at any foretion re at

Heat equation

$$3x\frac{\partial^2 u}{\partial x^2} = ce\frac{\partial u}{\partial t} \qquad --- (1)$$

K = Thurmal conductively

D C = specific heat of material

Q = density of material

$$\frac{\mathcal{K}}{C\ell} \frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t} - 2$$

At
$$\left[\frac{x}{ce} = x^2\right] - 3$$

equation (2) (theat regulation) can be written as.

$$\alpha'^{2} \frac{\partial u}{\partial x^{2}} = \frac{\partial u}{\partial t}$$

$$\alpha'^{2} u_{xx} = u_{t} (x_{t})$$

$$\alpha'^{2} u_{xx} = u_{t} (x_{t})$$

initial condition 2(21,0) = 20(21), $0 \le 2 \le L$ temperature all points along the 200d.

Boundary conditions (
$$2(0,t) = c_1 \quad 0 \leq t \leq \infty$$

$$2(L,t) = c_2$$

Assuming that temp at both ends points rumain constant with time.

-equation (3) can be solved by using diffuunce formula

$$\alpha^{2}\left[\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{4^{2}}\right]=\frac{1}{k}\left[u_{i,j+1}-u_{i,j}\right]$$

$$\frac{k \alpha^{2}}{\hbar^{2}} \left[u_{i+1,j} - 2u_{i,j} + u_{i+1,j} \right] = u_{i,j+1} - u_{i,j}$$

This formula is called Schmidt explicit formula

for given "h" if choose "k" such that 1-27=0 カニュ under this anolition. $T = \frac{k d^2}{4^2} = \frac{1}{2}$ $t = \frac{t^2}{2d^2}$ equation 6 reduces to. Ui,j+1 = 1 (2i+1,j + Ui-1,j) This is called Bender-Schmidth recurrence formula. equation (7) is valid (stable) if and only if i tabular form equation 7 can be supresented as above. $f_A = \left(\frac{f_B + f_C}{2} \right)$ similarly equation 6 can be written ou (1-221) 2

 $\int f_A = r f_B + (1-2r) f_c + r f_D$

Scanned with CamScanner

Problem of this formula is its lengthy computation proposed the another process. Crank-Necolson proposed the another method by replacing Usin - by average value on the jth and (J+1)th rows.

equation 4 can be written as

$$\frac{\chi^{2}\left[\frac{(u_{i+1},j-2u_{i,j}+u_{i+1,j})}{h^{2}}+\frac{(u_{i+1,j+1}-2u_{i,j+1}+u_{i-1,j+1})}{h^{2}}\right]}{h^{2}}$$

$$= \frac{1}{k} \left[u_{i,j+1} - u_{i,j} \right]$$

$$\frac{k \alpha^{2}}{h^{2}} \left[u_{i+1,j} - 2u_{i,j} + u_{i+1,j} + u_{i+1,j+1} - 2u_{i,j+1} + u_{i+1,j+1} \right]$$

$$= 2 u_{i,j+1} - 2u_{i,j}$$

let 2= kx2

$$2(1+\pi) \mathcal{U}_{i,j+1} = \pi \mathcal{U}_{i+1,j} + 2(1-\pi) \mathcal{U}_{i,j} + \pi \mathcal{U}_{i+1,j} + \pi \mathcal{U}_{i+1,j+1} - 8$$

if n=1 (chouse value of "k" for given h such that n=1)

$$\frac{k x^2}{k^2} = 1 \cdot \left[k = \frac{k^2}{x^2} \right] - 9$$

for n=1; equation (8) can be wretten as,

$$u_{i+j+1} = \frac{1}{4} \left[u_{i+1,j} + u_{i-1,j} + u_{i+1,j+1} + u_{i+1,j+1} \right]$$

crank-Micolson formula.

Example solve $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$; given u(0,t) = u(4,t) = 0u(x,0) = x(4-x) assuming h=k=1. Find the value of u upto t=5.

solution:
$$-\frac{2^{2}y}{9x^{2}} = \frac{3y}{9t}; \quad \chi^{2}=1$$

$$6 \leq x \leq 4$$

$$6 \leq t \leq 5$$

$$u(0,t) = y(4,t) = 0$$

$$u(x,0) = x(4-x)$$

$$x = \frac{t^{2}x^{2}}{t^{2}} = 1$$

not used).

$$y_{z=1}$$
 $(1-2x_1)=-1$ y_z $y_{z=1}$ y_{z

fA = fB - fc+fD for n=1

J 3 A - 3 13 VC 3 2								
				1 2	3	4		
1	= '	0	 	2	3	4		
8 t=	jk		9	.4	. 3	0		
0	0	0 ;	3		-	0		
1	1	0			1	6		
2	2	0		0	□	6		
3	3	0	-1.	2		<u> </u>		
4	4	0	3	-4	3	-		
5	5	0	-7	10	-7	-		
-		•			Scannoc	 With Camso		

Scanned with CamScanner

Example: - solve vox= ut, subject to u(0,6)=u(1,4)=0 u(x,0) = sint a. 0 < x < 1 by Bender schmidt method for three time steps

$$d^{2}=1$$
, $0<2<1$

Let $b=0.25=1/4$
 $r=\frac{1}{4}$, Bender Schmidt method $r=1$

This give $\frac{kx^2}{h^2} = \frac{1}{2}$: $k = \frac{h^2}{2x^2} = \frac{1}{32}$

30		*			1 2	/-
N	i	•		2	3	9
3	ezih Ezik	6	4=0.25	2 =0.5	0.75	1.0
b	0	6	0.707)	1 1 1	0.7071	0
1	132	0	0.5	0,7071	6.5	6
2	2/32	0	0.3536	0.5	0,3536	0
3	3 32	0	0.25	0.3536	0.25	. 0

Example: Using Crank. Newton method, notre $21_{200} = 161_{\text{L}}$ 0 < 21 < 1, given 1(21,0) = 1(0,1) = 0, 1(1,1) = 100 + 0. Compute a for one step in t direction taking h = 1/4.

Notation: -
$$u_{xx} = 16 u_t$$
, $\frac{1}{16} u_{xx} = u_t$
 $d^2 = 1/16$, $h = 1/4$

for method $h = 1$, $h = \frac{1}{4} \times 16 = 1$
 $h = \frac{h^2}{4^2} = \frac{1}{16} \times 16 = 1$
 $h = \frac{h^2}{4^2} = \frac{1}{14} = 4$

		•	3 4			
K	ા	٥	1	2	3	
2	x=ih	0	0.25	0.50	0.75	1.0
	t=3t				0	O
0	0	0	0.			-
-	- 6			/	,	100
1	1	0 —	પર ₁ —	- U2	પર	
				0		<u> </u>

$$u_1 = (0+0+0+4u_2) = u_2$$
 $u_2 = (u_1 + u_2)$
 $u_3 = (000 + u_2)$
 $u_4 = (000 + u_2)$
 $u_5 = (000 + u_2)$
 $u_6 = (000 + u_2)$
 $u_7 = (000 + u_2)$
 $u_8 = (000 + u_2)$
 $u_9 = (000 + u_2)$

Hyporbolic Equation

-example: - Newbration of structures such as buildings, bearing & machines.

if take an example of Vibrating string fixed at both ends, lateral displacement varies with time t and distance a along the string.

wave equation under this condution can be written

as.
$$T \frac{\partial^2 u}{\partial x^2} = e \frac{\partial^2 u}{\partial t^2} \qquad \int we \frac{\partial^2 u}{\partial t^2} dx = \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial t} = \frac{\partial^2 u}{\partial$$

T= tension in string

C= mars poi unit length

Hyperbolic problems are also governed by boundary and initial conditions 1 t

solution of Hypuboluc equations

$$T \frac{\partial^2 y}{\partial x^2} = \ell \frac{\partial^2 y}{\partial x^2}$$

$$\frac{T}{\ell} \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial x^2} \Rightarrow \begin{bmatrix} x^2 \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial x^2} & x^2 = \frac{1}{\ell} \\ -1 \end{bmatrix}$$

$$= \begin{bmatrix} u_{i+1,j} - 2u_{i,j} + u_{i-1,j} \end{bmatrix} = \begin{bmatrix} u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \end{bmatrix}$$

$$= \begin{bmatrix} u_{i,j+1} - 2u_{i,j} + u_{i,j-1} \end{bmatrix}$$

$$\frac{k^{2}}{h^{2}} \dot{a}^{2} \left[u_{i+1,j} - 2u_{i,j} + u_{i+1,j} \right] = u_{i,j+1,j} - 2u_{i,j} + u_{i,j-1}$$

Scanned with CamScanner

$$\lambda^{2} d^{2} \left[u_{i+1,j} - 2u_{i,j} + 2u_{i-1,j} \right] = u_{i,j+1} - 2u_{i,j} + u_{i,j-1}$$

$$\mathcal{U}_{i,j+1} = \lambda^2 d^2 \mathcal{U}_{i+1,j} + 2(1-\lambda^2 a^2) \mathcal{U}_{i,j} + \lambda^2 d^2 \mathcal{U}_{i-1,j} - \mathcal{U}_{i,j-1}$$

for $\lambda^2 d^2 = 1$; above equation can be rewritten as $[\lambda d = 1]$

$$u_{i,j+1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1} - 2$$

$$u_{i,j-1} = u_{i+1,j} + u_{i-1,j} - u_{i,j-1} - 2$$

$$u_{i-1,j} = u_{i+1,j} + u_{i+1,j} = u_{i+1,j} + u_{i+1,j} = u_{i+1,j} + u_{i+1,j} = u_{i+1,j} + u_{i+1,j} = u_{i+1,j$$

Thousever Ist for calculation is meeded.

In order to find out firest for lets use equation

(2)

given Boundary condition $U_{\pm}(2e,0)=0$ (Most Common Case)

$$\left[\frac{2i,j+1}{2k} - 2i,j-1\right] = 0$$

from equation 3 & 4) we can write

$$u_{i,1} = (u_{i+1,0} + u_{i-1,0}) - 5$$

used to create Ist now ()=1 & for all v)

equation 5 & 3 helps in calculation.

Example: - Evalute $u_{xx} = u_{tt}$, given u(0,t) = u(4,t) = 0 $u(x,0) = \frac{1}{2}x(4-x)$ and $u_{tt}(x,0) = 0$,

Take h = 1, find the solution who 5 steps in t-direction

Solution: - $21 \times 21 \times (3,0) = 0$; genes condute $31 \times (3,0)$

 $\lambda d = 1$, $\frac{k}{h} \alpha = 1$, $k = \frac{h}{\lambda} = \frac{1}{1} \Rightarrow k = 1$

0.5x 54

		i	0	1	2	3	4
	ð	センタド センタド	٥	. !	2	3	4
	0	Ó	. 0	1.5	2	1.5	0
using egn (5)	1	. (٥	$\frac{0+2}{2} = 1$	1.5	1.0	8
uring —	2	2	٥	0	0	. 0	0
	3	3	0	-1	-1.5	-1·6·	0
-	4	4 .	6	-1·5·	-2.0	-1.5	0
	5	5.	0	-1.0	-1.5	-1.0	Ŏ
		Ξ.			T		