■ Chapitre 2 ■

Séries numériques

Notation.

 \blacksquare \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

I. Séries

Définition 1 (Série).

Soit (u_n) une suite d'éléments de \mathbb{K} . La série de terme général u_n est la suite (s_p) où pour tout p entier naturel, $s_p = \sum_{n=0}^p u_n$. Elle est notée $\sum u_n = \left(\sum_{n=0}^p u_n\right)_{p\in\mathbb{N}}$. L'élément s_p est la somme partielle d'ordre p de la série $\sum u_n$.

Exercice 1. Soit $\rho \in \mathbb{C}$. Décrire le comportement asymptotique des séries $\sum \frac{1}{n}$ et $\sum \rho^n$.

Propriété 1.

| En posant $v_0 = u_0$ et $u_n = v_n - v_{n-1}$ pour tout entier naturel n, alors $s_n = v_n$.

Exercice 2.

- 1. Déterminer, sous une forme simple, la somme partielle de la série de terme général $\frac{1}{n(n+1)}$.
- 2. Déterminer le comportement asymptotique de la série de terme général $\arctan \frac{2}{n^2}$.

Définition 2 (Convergence).

La série $\sum u_n$ est convergente si la suite (s_p) est convergente. La limite de cette suite, notée $\sum_{n=0}^{+\infty} u_n$, est appelée la somme de la série.

Propriété 2 (Divergence grossière).

Si (u_n) ne converge pas vers 0, alors la série $\sum u_n$ diverge.

Exercice 3.

- 1. Montrer que la réciproque est fausse.
- **2.** Déterminer la nature de la série de terme général $\frac{(-1)^n \sinh(n)}{\cosh(n)}$.

Propriété 3 (Structure).

L'ensemble des séries convergentes est un K-espace vectoriel.

Exercice 4. Déterminer la somme de la série de terme général $\frac{\cos(n)}{2^n}$.

Définition 3 (Reste).

Si $\sum u_n$ est une série convergente, l'élément $\sum_{n=p+1}^{+\infty} u_n$ est le reste d'ordre p de la série.

Exercice 5. Soit $\rho \in \mathbb{C}$ tel que $|\rho| < 1$. Déterminer le reste de la série géométrique de raison ρ .

II. Séries de termes réels

Théorème 1 (Théorème des séries alternées).

Soit (u_n) une suite de nombres réels telle que

(i).
$$u_n u_{n+1} < 0$$
,

(ii). (|u_n|) soit décroissante, (iii).
$$\lim_{n \to +\infty} u_n = 0$$
.

Alors, $\sum u_n$ est convergente. De plus, le reste r_p est du signe de u_{p+1} et $|r_p| \leqslant |u_{p+1}|$

Exercice 6.

- 1. Montrer que la série de terme général $\frac{(-1)^n}{\sqrt{n}}$ est convergente.
- 2. Déterminer la nature puis la somme de la série de terme général $\frac{(-1)^{n+1}}{n+1}$.

II.1 Séries de termes réels positifs

Théorème 2.

La série $\sum u_n$ de nombres réels positifs converge si et seulement si la suite (s_p) des sommes partielles est majorée.

Propriété 4.

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes réels positifs.

- (i). On suppose que, à partir d'un certain rang, $0 \le u_n \le v_n$.
 - (a) Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.
 - (b) Si $\sum v_n$ converge, alors $\sum u_n$ converge.
- (ii). Si $u_n \sim v_n$, alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Exercice 7.

- **1.** Montrer que, si à partir d'un certain rang, $0 \le u_n \le a\rho^n$ et $\rho \in]0,1[$, alors $\sum u_n$ converge.
- **2.** Déterminer la nature de la série de terme général $n \sin^2\left(\frac{1}{n}\right)$.

3. En considérant la série de terme général $\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}$, montrer que ce résultat est faux sans l'hypothèse de positivité.

Propriété 5 (Séries de RIEMANN).

Soit $\alpha \in \mathbb{R}$. La série de terme général $\frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Exercice 8. Soit $a \in \mathbb{R}_+$. Déterminer la nature des séries de terme général $\frac{1}{n^2+a^2}$, puis $\frac{a^n}{n^2}$.

Théorème 3 (Règle de d'ALEMBERT).

On suppose que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell$.

- (i). Si $\ell < 1$, alors $\sum u_n$ converge. (ii). Si $\ell > 1$, alors $\sum u_n$ diverge.

Exercice 9.

- 1. Montrer que, lorsque $\ell=1$ dans le théorème précédent, on ne peut en général pas conclure.
- **2.** Soit x > 0. Étudier la convergence des séries de terme général
 - a) $\binom{n+4}{n} x^n$.

b) $\frac{x^n}{n!}$.

c) $n!x^{n^2}$

3. Déterminer une suite (u_n) à valeurs strictement positive telle que $\sum u_n$ converge et $\left(\frac{u_{n+1}}{u_n}\right)$ n'admet pas de limite.

II.2 Développement décimal

Définition 4.

Soit $(a_n)_{n\geqslant 1}$ une suite d'entiers naturels compris entre 0 et 9. Alors, la série $\sum_{n\geqslant 1} a_n 10^{-n}$ converge. La série $\sum_{n\geqslant 1} a_n 10^{-n}$ est un développement décimal du réel $\sum_{n=1}^{+\infty} a_n 10^{-n}$. Ce développement décimal est propre si la suite $(a_n)_{n\geqslant 1}$ n'est pas stationnaire de limite égale à 9.

Théorème 4.

Tour réel $x \in]0,1[$ possède un unique développement décimal propre.

Exercice 10. Écrire sous forme de fraction le nombre rationnel 3, 142857 142857 ...

II.3 Comparaison d'une série à une intégrale

Théorème 5 (Intégrale & Séries à termes positifs).

Exercice 11. (Séries de BERTRAND)

- 1. Soit $(\alpha, \beta) \in \mathbb{R}^2$. Déterminer la nature de la série de terme général $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$.
- 2. Déterminer un équivalent de la somme partielle de la série de terme général \sqrt{n} .
- 3. Déterminer un équivalent du reste de la série de terme général $\frac{1}{n^2}$.

III. Séries absolument convergentes

III.1 Absolue convergence

Définition 5 (Convergence absolue).

La série $\sum u_n$ est absolument convergente si la série $\sum |u_n|$ converge.

Exercice 12. Donner un exemple de série convergente mais non absolument convergente.

Théorème 6.

| Si la série $\sum u_n$ converge absolument, alors elle est convergente.

Exercice 13. Montrer que la réciproque est fausse.

Théorème 7 (Comparaison à une série à termes positifs).

Soient (u_n) et (b_n) telles que (b_n) soit à termes réels positifs et $u_n = O(b_n)$. Si $\sum b_n$ converge, alors $\sum u_n$ est absolument convergente donc convergente.

Exercice 14.

- **1.** Soit $a \in \mathbb{R}$. Déterminer la nature des séries de terme général $\left|\tan \frac{a}{n} \sin \frac{a}{n}\right|^{\frac{1}{2}}$.
- 2. Montrer que la suite $\left(\sum_{k=1}^{n} \frac{1}{k} \ln(n)\right)$ est convergente. Sa limite, notée γ est la constante d'Euler.

3. Soit (u_n) une suite telle que $u_n = \frac{(-1)^n}{\sqrt{n}} + O\left(\frac{1}{n^2}\right)$. Montrer que $\sum u_n$ converge.

Théorème 8 (Formule de STIRLING).

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

Exercice 15. Déterminer un équivalent de la suite $(2^{-2n}\binom{2n}{n})$.

III.2 Produit de CAUCHY

Définition 6 (Série produit).

Soient $\sum u_n$ et $\sum v_n$ deux séries. Leur série produit (ou produit de Cauchy) est la série de terme général

$$\sum_{k=0}^{n} u_k v_{n-k}.$$

Exercice 16. Soit $(x,y) \in \mathbb{K}^2$. Déterminer le produit de Cauchy des suites de terme général $\frac{x^n}{n!}$ et $\frac{y^n}{n!}$.

Théorème 9.

Soient $\sum u_n$ et $\sum v_n$ deux séries telles que $\sum u_n$ et $\sum v_n$ convergent absolument. Alors, leur produit de Cauchy, noté $\sum w_n$ converge absolument et

$$\sum_{n=0}^{+\infty} u_n \cdot \sum_{n=0}^{+\infty} v_n = \sum_{n=0}^{+\infty} w_n.$$

Exercice 17.

- **1.** On pose $u_n = v_n = \frac{(-1)^n}{\sqrt{n+1}}$. Montrer que $\sum u_n$ et $\sum v_n$ convergent alors que leur produit de
- **2.** Soit $x \in]-1,1[$. En étudiant $\left(\sum_{n=0}^{+\infty} x^n\right)^2$, montrer que $\sum_{n=0}^{+\infty} (n+1)x^n = \frac{1}{(1-x)^2}$.

Exemple d'étude asymptotique de suite récurrente

Exercice 18. Soit $x_0 > 0$. Pour tout $n \ge 0$, on définit $x_{n+1} = x_n + \frac{1}{x_n}$.

- **1.** Montrer que la suite (x_n) est monotone et préciser sa monotonie.
- **2.** Montrer que la suite (x_n) admet une limite et la déterminer.
- **3.** Déterminer la nature de la série de terme général $\frac{1}{x_n}$.
- **4.** Montrer que la suite $(x_{n+1}^2 x_n^2)_{n \in \mathbb{N}}$ converge.
- **5. Intermède.** Soient (a_n) et (b_n) des suites de réels strictement positifs tels que $a_n \sim b_n$ et $\sum a_n$ diverge

- a) Montrer que $\sum b_n$ diverge vers $+\infty$.
- **b)** Montrer que, pour tout $\varepsilon > 0$, il existe un entier n_0 tel que pour tout $n \ge n_0$, $|a_n b_n| \le \varepsilon b_n$.
- c) En déduire qu'il existe un entier n_1 tel que pour tout $n \ge n_1$,

$$\left| \sum_{k=0}^{n} a_k - \sum_{k=0}^{n} b_k \right| \leqslant 2\varepsilon \sum_{k=0}^{n} b_k.$$

- **d)** En déduire que $\sum_{k=0}^{n} a_k \sim \sum_{k=0}^{n} b_k$.
- **6.** Montrer que la suite $\left(\frac{x_n^2}{n}\right)_{n\in\mathbb{N}^*}$ converge et en déduire un équivalent de (x_n) .
- 7. Déterminer un équivalent de $\left(\sum_{k=0}^{n} \frac{1}{x_k^2}\right)$.
- **8.** En déduire que $x_n = \sqrt{2n} \left(1 + \frac{1}{8} \frac{\ln(n)}{n} + o\left(\frac{\ln(n)}{n}\right) \right)$.

Séries numériques (p. 28)

₹ Programme officiel (PSI)

Suites et Séries - A - Séries numériques (p. 12)

Mathématiciens

Wallis John (23 nov. 1616 à Ashford-28 oct. 1703 à Oxford).

STIRLING James (mai 1692 à Garden-5 déc. 1779 à Edimbourg).

EULER Leonhard (15 avr. 1707 à Basel-18 sept. 1783 à St Pétersbourg).

ALEMBERT Jean Le Rond d' (17 nov. 1717 à Paris-29 oct. 1783 à Paris).

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux).

BERTRAND Joseph (11 mar. 1822 à Paris-3 avr. 1900 à Paris).

RIEMANN Georg Friedrich Bernhard (17 sept. 1826 à Breselenz-20 juil. 1866 à Selasca).