ET 2060 - Tín hiệu và hệ thống Biến đổi z

TS. Đặng Quang Hiếu

Trường Đại học Bách Khoa Hà Nội Viện Điện tử - Viễn thông

2017-2018

Giới thiệu về biến đổi z

- Do Ragazzini và Zadeh giới thiệu vào năm 1952.
- ► Tương đương với biến đổi Laplace trong hệ thống liên tục.
- ▶ Chập trên miền $n \equiv$ tích trên miền z.
- Phân tích, tổng hợp, đánh giá hệ thống LTI.

Định nghĩa biến đổi z

trong đó z là biến số phức $z=re^{j\omega}$, và

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

Miền hôi tu:

$$ROC\{X(z)\} = \{z \in \mathbb{C} : |X(z)| < \infty\}$$

Ví dụ: Tìm biến đổi z của $x_1[n] = \delta[n]$ và $x_2[n] = u[n]$.

Liên hệ với biến đổi Fourier

▶ Biến đổi Fourier là biến đổi z xét trên vòng tròn đơn vị $z=e^{j\omega}$.

$$X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

▶ Biến đổi z là biến đổi Fourier của $x[n]r^{-n}$

$$X(z) = \sum_{n=-\infty}^{\infty} x[n](re^{j\omega})^{-n} = FT\{x[n]r^{-n}\}$$

Điều kiện hội tụ:

$$\sum^{\infty} |x[n]r^{-n}|dt < \infty$$

Ví dụ

Tìm biến đổi z và vẽ miền hội tụ cho các trường hợp sau:

(a)
$$x[n] = 2\delta[n-2] + \delta[n] - 3\delta[n+1]$$

(b)
$$x[n] = a^n u[n]$$

(c)
$$x[n] = -a^n u[-n-1]$$

(d)
$$x[n] = 2^n u[n] - (3j)^n u[-n-1]$$

(e)
$$x[n] = (-3)^n u[n] + 2^n u[-n-1]$$

(f)
$$x[n] = \cos(\omega_0 n)u[n]$$

Các điểm cực và không

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z + \dots + b_M z^M}{a_0 + a_1 z + \dots + a_N z^N}$$

- lacktriangle Các điểm không (zeros) z_{0r} : $X(z_{0r})=0
 ightarrow {
 m nghiệm}$ của N(z)
- Các điểm cực (poles) z_{pk} : $X(z_{pk}) = \infty o ext{nghiệm của } D(z)$

Ví dụ: Cho dãy $x[n] = a^n \operatorname{rect}_N[n]$.

- (a) Tìm biến đổi z và miền hội tụ.
- (b) Tìm các điểm cực, điểm không và vẽ trên mặt phẳng phức.

Các tính chất của ROC

- (i) ROC có dạng tổng quát là hình vành khuyên: $r_1 < |z| < r_2$.
- (ii) ROC không chứa các điểm cực
- (iii) Nếu x[n] có chiều dài hữu hạn thì ROC sẽ là cả mặt phẳng phức (có thể bỏ đi 0 hoặc ∞).
- (iv) Nếu x[n] là dãy một phía (trái hoặc phải) thì ROC ntn?
- (v) Nếu x[n] là dãy hai phía thì ROC ntn?
- (vi) Nếu X(z) hữu tỷ với các điểm cực z_{pk} ?

Biến đổi z ngược

Áp dụng biến đổi Fourier ngược:

$$x[n]r^{-n} = \frac{1}{2\pi} \int_{2\pi} X(re^{j\omega})e^{j\omega n} d\omega$$

Ta có:

$$x[n] = \frac{1}{2\pi i} \oint_{C} X(z) z^{n-1} dz$$

trong đó, $\mathcal C$ là đường cong khép kín nằm trong $\mathrm{ROC}\{X(z)\}.$

Các tính chất

- Tuyến tính
- ▶ Dịch thời gian: $x[n-n_0] \stackrel{z}{\longleftrightarrow} z^{-n_0}X(z)$
- ► Co dãn trên miền z: $a^n x[n] \stackrel{z}{\longleftrightarrow} X(z/a)$
- ▶ Đảo trục thời gian: $x[-n] \stackrel{z}{\longleftrightarrow} X(1/z)$
- ▶ Liên hợp phức: $x^*[n] \longleftrightarrow X^*(z^*)$
- $\qquad \qquad \mathsf{Chập:} \ \, x_1[n] * x_2[n] \overset{\mathsf{z}}{\longleftrightarrow} X_1(z) X_2(z)$
- ▶ Đạo hàm trên miền z: $nx[n] \stackrel{z}{\longleftrightarrow} -z \frac{dX(z)}{dz}$
- ▶ Định lý giá trị đầu: Nếu tín hiệu nhân quả $(x[n] = 0, \forall n < 0)$ thì

$$x[0] = \lim_{z \to \infty} X(z)$$

Tương quan, tích?

Biến đổi z ngược: Khai triển thành chuỗi lũy thừa

Cho trước X(z) và ROC, khai triển X(z) thành chuỗi lũy thừa có dạng

$$X(z) = \sum_{n=-\infty}^{\infty} c_n z^{-n}$$

hội tụ trong ROC đã cho. Khi đó, $x[n] = c_n, \, \forall n$.

Nếu X(z) là hàm hữu tỷ, thực hiện phép chia đa thức.

Ví dụ: Tìm biến đổi z ngược của

$$X(z) = \frac{1 + 2z^{-1}}{1 - 2z^{-1} + z^{-2}}$$

khi

- (a) x[n] là dãy nhân quả
- (b) x[n] là dãy phản nhân quả

Khai triển thành các phân thức tối giản (1)

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1 z + \dots + b_M z^M}{a_0 + a_1 z + \dots + a_N z^N}$$

Xét M < N, khai triển X(z) về dạng

$$X(z) = \sum_{k=1}^{N} \frac{A_k}{z - z_{pk}}$$

trong đó z_{pk} là các cực đơn của X(z) và

$$A_k = (z - z_{pk})X(z)\big|_{z = z_{pk}}$$

Nếu $M \ge N$ thì chia đa thức: $X(z) = G(z) + \frac{N'(z)}{D(z)}$ với M' < N.

Ví dụ: Cho biến đổi z

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

 $Tim \times [n]$?

Khai triển thành các phân thức tối giản (2)

Trường hợp điểm cực bội z_{pk} bậc ℓ , khai triển của X(z) phải chứa các phân thức tối giản sau:

$$\frac{A_{1k}}{z - z_{pk}} + \frac{A_{2k}}{(z - z_{pk})^2} + \cdots + \frac{A_{\ell k}}{(z - z_{pk})^{\ell}}$$

- Phương pháp tính A_{ik}?
- ▶ Biến đổi ngược của $\frac{1}{(z-z_{pk})^m}$?

Ví dụ: Tìm biến đổi z ngược của

$$X(z) = \frac{z}{(z - \frac{1}{2})^2(z - 1)}$$

Trường hợp nghiệm phức? Tự đọc!

Hàm truyền đạt H(z) của hệ thống LTI rời rạc

$$x[n] \longrightarrow h[n] \longrightarrow y[n]$$

$$y[n] = x[n] * h[n]$$

Biến đổi z cả hai vế, áp dụng tính chất chập, ta có hàm truyền đạt của hệ thống:

$$H(z) = \frac{Y(z)}{X(z)}$$

$$X(z) \longrightarrow H(z) \longrightarrow Y(z)$$

Hàm truyền đạt (2)

Hệ thống LTI được biểu diễn bởi phương trình sai phân tuyến tính hệ số hằng

$$y[n] = -\sum_{k=1}^{N} a_k y[n-k] + \sum_{r=0}^{M} b_r x[n-r]$$

Biến đổi z cả hai vế, rút gọn

$$H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

- \rightarrow Hệ thống cực không (pole-zero system).
 - ▶ Nếu $a_k = 0$, $1 \le k \le N$ → hệ thống FIR gồm toàn điểm không và một điểm cực bội bậc M tầm thường tại gốc.
 - Nếu $b_r = 0$, $1 \le r \le M \to \text{hệ thống IIR gồm toàn điểm cực}$ và một điểm không bội bậc N tầm thường tại gốc.

Hệ thống LTI nhân quả và ổn định

- ▶ Nhân quả: $ROC\{H(z)\}$ nằm ngoài vòng tròn và có chứa ∞ .
- ổn định: $ROC\{H(z)\}$ chứa vòng tròn đơn vị $(z=e^{j\omega})$.
- Nhân quả, ổn định, H(z) hữu tỷ: Tất cả các điểm cực của H(z) nằm bên trong vòng tròn đơn vị.
- Tiêu chuẩn ổn định Jury, Schur-Cohn: Kiểm tra xem liệu tất cả các nghiệm của một đa thức có nằm trong vòng tròn đơn vị không. Thường được thực hiện trên máy tính.

Hàm truyền đạt và sơ đồ khối của hệ thống

Hãy viết phương trình sai phân của hệ thống LTI được biểu diễn bởi sơ đồ dưới đây

Biến đổi z một phía

$$X^{+}(z) = \mathrm{ZT}^{+}\{x[n]\} = \sum_{n=0}^{\infty} x[n]z^{-n}$$

Các tính chất tương tự như biến đổi z hai phía, ngoại trừ:

▶ Trễ

$$ZT^{+}\{x[n-k]\} = z^{-k}[X^{+}(z) + \sum_{n=1}^{k} x[-n]z^{n}], \quad k > 0$$
$$ZT^{+}\{x[n+k]\} = z^{-k}[X^{+}(z) - \sum_{n=0}^{k-1} x[n]z^{-n}], \quad k > 0$$

Định lý giá trị cuối

$$\lim_{n\to\infty} x[n] = \lim_{z\to 1} (z-1)X^+(z)$$

Giải phương trình sai phân tuyến tính hệ số hằng

Ví dụ: Giải phương trình sai phân (tìm y[n], $n \ge 0$):

$$y[n] - 3y[n-1] + 2y[n-2] = x[n]$$

với đầu vào $x[n] = 3^{n-2}u[n]$ và các điều kiện đầu:

$$y[-2] = -\frac{4}{9}, \quad y[-1] = -\frac{1}{3}$$

Bài tập Matlab

- Sử dụng hàm zplane để vẽ cực và không của một hệ thống LTI rời rạc.
- 2. Dùng hàm residuez để thực hiện biến đổi z ngược trong trường hợp X(z) là một hàm hữu tỷ.
- 3. Viết chương trình kiểm tra tính ổn định của hệ thống theo tiêu chuẩn Jury, Schur-Cohn