

SPÉCIFICATIONS Projet IEC61499 – Universal Automation

Formation Informatique et Systèmes Intelligents Embarqués Année 2025 – 2026

PRI 5A

Membres de l'équipe :

Damien LORIGEON - Chef de projet/Dev IEC61131 & IEC61499

Client:

Jean Paul CHEMLA – Professeur Polytech

Arthur OUSSOUNKIRI ELIEZER GAMBO – Doctorant Université de

Reims

Bernard RIERA – Professeur Université de Reims Stéphane LECASSE – Professeur Université de Reims

Auteur: Damien LORIGEON

Version 1.0 - 18/09/25

Objectifs

Ce document a pour objectif de définir les spécifications techniques et fonctionnelles du projet de preuve de concept (POC) visant à comparer la norme IEC 61131 et la norme IEC 61499 à travers la mise en place d'un système de tri de pièces simulé dans Factory IO.

Il précise:

- L'architecture générale du système,
- Les fonctions principales et secondaires,
- Les interfaces matérielles et logicielles,
- Les contraintes et exigences de conception,
- Les modalités de validation et de tests.

Référence

1. Internes

Référence :	Titre	Lien
PRI Polytech Tours	Projet Dépôt GIT :	
	IEC61499 -	https://github.com/ElDLOR/PRI-IEC61499-
	Universal	UniversalAutomation.git
	Automation	Équipe Teams :
		Général Projet - Universal Automation -
		IEC 61499 Microsoft Teams

2. Externes

Référence :	Titre	Lien
UniversalAutomation.org	Ressources IEC	https://universalautomation.org
	61499 / EAE	

Définition

- **IEC 61131**: norme historique de programmation des automates (POU, Grafcet, ST, etc.).
- IEC 61499 (EAE): norme orientée événements, blocs fonctionnels distribués.
- Factory IO: outil de simulation 3D de systèmes industriels.
- **EAE**: EcoStruxure Automation Expert.
- **ECE**: EcoStruxure Control Expert.

SPÉCIFICATIONS

« Projet IEC61499 – Universal Automation»

Descriptions			
Projet :	Projet IEC61499 – Universal Automation		
Clients	Jean Paul CHEMLA	jean- paul.chemla@univ- tours.fr	
Auteurs	Damien LORIGEON	damien.lorigeon@univ- tours.fr	
Date d'émission :	19/09/2025		

Validation			
Nom	Date	Valide (O/N)	Commentaires
LORIGEON	02/10/2025	0	
CHEMLA			
RIERA			
GAMBO			

Suivis des versions			
Version	Date	Description de la modifications	
1	02/10/2025	Première version	

Sommaires

1	Arc	hitecture générale	9
	1.1	Composants principaux	9
	1.2	Flux de données	9
2	Exig	gences fonctionnelles	9
	2.1	Fonction principale	9
	2.2	Fonctions secondaires	9
	2.3	Cas d'utilisation	10
3	Exig	gences techniques	10
	3.1	Contraintes matérielles	10
	3.2	Contraintes logicielles	10
	3.3	Interfaces	10
4	Cor	nception logicielle	11
	4.1	IEC 61131 (ECE)	11
	4.2	IEC 61499 (EAE)	11
5	Vali	idation et tests	11
	5.1	Tests unitaires	11
	5.2	Tests d'intégration	11
	5.3	Tests comparatifs	11
6	Cor	ntraintes et risques	12
7	Livr	ables associés	12

1 Architecture générale

1.1 Composants principaux

- EcoStruxure Control Expert (ECE): implémentation IEC 61131.
- EcoStruxure Automation Expert (EAE): implémentation IEC 61499.
- Factory IO: simulateur 3D du système de tri de pièces.
- PC Windows: environnement de développement et simulation (VM ou poste école présentiel ou accès à distance via VPN).
- Microsoft Teams + Git : gestion documentaire et configuration logicielle (voir les liens dans le fichier : PLAN_DE_DEVELOPPEMENT_PRI_PROJET-IEC61499_V0_1.pdf)

1.2 Flux de données

- Entrées : capteurs de présence pièce, capteurs de type pièce (Factory IO).
- Traitements : séquence de tri (ECE / Grafcet IEC 61131) ou blocs fonctionnels IEC 61499 (EAE).
- Sorties: commandes convoyeurs, trieurs, compteurs, voyants (Factory IO).
- Communication: Modbus TCP.

2 Exigences fonctionnelles

2.1 Fonction principale

Réaliser un tri de pièces en fonction de leur type et les acheminer vers les convoyeurs associés.

2.2 Fonctions secondaires

- Compter le nombre de pièces triées par type.
- Gérer plusieurs modes de marche :
 - o Auto (démarrage cycle),
 - Stop (arrêt cycle en cours + évacuation pièce),
 - o Reset (remise à zéro compteurs après 5s),
 - o Arrêt d'urgence (E-Stop, nécessite remise en état initiale).
- Permettre l'extension du système (ajout 2e, 3e trieur) avec un minimum de modifications.

2.3 Cas d'utilisation

- L'utilisateur lance le cycle → une pièce est détectée → acheminement → tri → comptage.
- L'utilisateur appuie sur Stop → la pièce en cours est évacuée → le cycle s'arrête.
- L'utilisateur appuie sur Reset (5s) → compteurs remis à zéro.
- L'utilisateur appuie sur Arrêt d'urgence → tout s'arrête → nécessite reset complet avant reprise.

3 Exigences techniques

3.1 Contraintes matérielles

- PC avec Windows et VM possible ou prise en main à distance d'un PC de l'université de la salle AUTO1.
- Accès à licences ECE, EAE, Factory IO.

3.2 Contraintes logicielles

- Respect de la méthodologie IEC 61131 pour ECE : Grafcet, POU, séquencement.
- Respect de la méthodologie IEC 61499 pour EAE : FBs, événements, modularité.
- Utilisation du protocole Modbus TCP comme couche de communication standard.

3.3 Interfaces

- Factory IO
 ⇔ ECE via Modbus TCP.
- Possibilité d'OPC UA pour tests secondaires.

4 Conception logicielle

4.1 IEC 61131 (ECE)

- Grafcet de fonctionnement général :
 - États: Attente, Acheminement, Tri, Comptage.
 - o Transitions: pièce détectée, trieur disponible, stop, reset.
- Variables: capteurs, sorties convoyeurs/trieurs, compteurs.
- Organisation POU (Program Organization Unit): programme principal + blocs fonctions.

4.2 IEC 61499 (EAE)

- Blocs fonctionnels (FBs):
 - o FB_Détection_Pièce, FB_Tri, FB_Compteur, FB_Sécurité.
- Événements: EV_START, EV_STOP, EV_RESET, EV_ESTOP.
- Flux de données : type_piece, compteur, commande_trieur.

5 Validation et tests

5.1 Tests unitaires

- Vérifier fonctionnement Grafcet IEC 61131.
- Vérifier activation FBs IEC 61499.

5.2 Tests d'intégration

- Vérifier communication Factory IO

 EAE (IEC 61499).

5.3 Tests comparatifs

- Temps de développement.
- · Complexité des architectures.
- Facilité d'extension (ajout trieur).
- Modularité et réutilisation.

6 Contraintes et risques

- Disponibilité licences logicielles.
- Courbe d'apprentissage IEC 61499 (moins connue).
- Respect du planning (120h, rendu 11/02/26).

7 Livrables associés

- Spécifications.
- Livret de conception générale (Grafcet, FBs).
- Livret de conception détaillée (diagrammes, tables variables).
- Projets ECE et EAE.
- Rapport comparatif.