Wprowadzenie do automatyki

Sprawozdanie z laboratorium nr 2

Temat zajęć: "Implementacja maszyny stanowej na mikrokontrolerze"

Data laboratorium: 09.04.2024

Wykonawca: Kamil Borkowski 83374

Grupa: WCY22IY1S1

Prowadzący zajęcia: mgr. inż. Małgorzata Rudnicka

Schemat podłączenia sterownika Arduino do urządzenia sterowanego:

Definicja stanów maszyny stanowej:

kod stan	x ₁ (t)	x ₂ (t)
1	1	0
2	1	1
3	0	0
4	0	1

Stan 1: stan początkowy, lampka jest zapalona

Stan 2: wciśnięcie przycisku, lampka zostaje zgaszona

Stan 3: puszczenie przycisku, lampka pozostaje zgaszona

Stan 4: wciśnięcie przycisku, lampka zostaje zapalona

Sposób kodowania stanów:

Stany są kodowane na dwóch bitach – x_1 oraz x_2 . Stan 1 jest stanem początkowym. Do stanu początkowego możemy wrócić z stanu końcowego, czyli stanu 4. Funkcja u(t) = 1 oznacza wciśnięcie przycisku, natomiast u(t) = 0 oznacza zwolnienie przycisku.

Tabela przejść stanów:

u(t)	x ₁ (t)	x ₂ (t)	x₁(t+1)	X ₂ (t+1)
0	1	0	1	0
1	1	0	1	1
0	1	1	0	0
1	1	1	1	1
0	0	0	0	0
1	0	0	0	1
0	0	1	1	0
1	0	1	0	1

Wyrażenia algebraiczne do obliczania wartości funkcji przejścia:

Dla x₁(t+1):

x ₁ (t) x ₂ (t)	00	01	11	10
0	0	1	0	1
1	0	0	1	1

$$x_1(t+1) = u(t)x_1(t)+x_1(t)\overline{x}_2(t)+\overline{u(t)x}_1(t)x_2(t)$$

Dla $x_2(t+1)$:

x ₁ (t) x ₂ (t)	00	01	11	10
0	0	0	0	0
1	1	1	1	1

$$x_2(t+1) = u(t)$$

Tabela funkcji wyjścia:

x₁(t)	X ₂ (t)	Q
1	0	1
1	1	0
0	0	0
0	1	1

Wyrażenia algebraiczne do obliczania wartości funkcji wyjścia:

$x_1(t)$ $x_2(t)$	0	1
0	0	1
1	1	0

$$Q = x_1(t)\overline{x}_2(t) + \overline{x}_1(t)x_2(t)$$

Tabulogram programu ("szkicu") realizujący projekt na zestawie Arduino:

/*Kamil Borkowski

stan poczatkowy to zapalona dioda

stany:

x1 x2 Q

1 0 1

1 1 0

0 0 0

0 1 1

*/

int ButtonPin =12;//Przycisk

int DiodaPin=5;

boolean Q1 = 1;

boolean M1 = 1;

boolean M2 = 0;

boolean M1p = 0;

```
boolean M2p = 0;
boolean I1 = 1;
void setup() {
 pinMode(ButtonPin, INPUT);
 pinMode(DiodaPin, OUTPUT);
 char *hej="Setup passed";
 Serial.begin(9600);
 Serial.println(hej);
}
void loop() {
 char *cykl="Next loop passed ";
 char *drukP="Odczyt przycisku ";
 char *drukW="Ustawienie wyjscia ";
 Serial.println();
 Serial.print(drukP);
 I1 = digitalRead(ButtonPin);
 Serial.print(I1);
 Serial.println();
 M1p = 11&M1 | M1&!M2 | !!1&!M1&M2;
 M2p = 11;
 M1 = M1p;
 M2 = M2p;
 Q1 = M1&!M2 | !M1&M2;
 Serial.print(M1);
 Serial.print(M2);
 Serial.println();
 digitalWrite(DiodaPin,Q1);
 Serial.print(drukW);
 Serial.print(Q1);
 Serial.println();
 Serial.println(cykl);
 delay(100);
}
```

Wyniki:

Poprawność działania programu została sprawdzona za pomocą strony wokwi.com

Stan początkowy

Po ponownym wciśnięciu

Wnioski: Program działa zgodnie z założeniami zadania. Podczas sprawdzania zgodności projektu w LOGO!Soft Comfort dla schematu LD stanem początkowym nie jest stan 1, tylko stan o kodzie 00, w moim przypadku jest to stan 3, natomiast przejścia między stanami wykonują się poprawnie.