Protein Contact-Map Prediction using Variational Autoencoder

Presented by: Anowarul Kabir

Background

- Protein structure prediction
 - Primary structure
 - Secondary structure
 - Tertiary or quaternary structure
- Protein primary sequence
- Distance matrix
 - O Beta-beta carbon
 - O Alpha-alpha for Glycine
- Contact-map
 - o <12 angstrom

Fig 1: Primary sequence to contact-map generation

Methodology

- Datasets
 - o Train: 900
 - o Validation: 300
 - Test: 300
- Model: Variational
 - Autoencoder
- Loss computation
 - O BCE
 - o BCE + KLD

Fig 2: Model architecture and loss computation

Models with Hyperparameters

$$BCE = L(y, y') = \sum_{i=0}^{N} (y_i * log(y'_i) + (1 - y_i) * log(1 - y'_i))$$

$$KLD = L(\mu, \sigma) = -.5 * \sum_{i=0}^{N} (1 + log(\sigma_i) - \mu_i^2 - \sigma_i^2)$$

$$loss = BCE \ or \ loss = BCE + KLD$$

Model	Initial	epochs	Batch	Loss	Final
id	Learn-		size	func-	train
	ing			tion	loss
	rate				
M14	1e-5	40	30	BCE	28064.9
M16	1e-6	70	40	BCE	28204.6
M17	1e-7	100	40	BCE	28234.7
M24	1e-5	40	40	BCE +	28391.3
				KLD	
M25	1e-6	70	40	BCE +	28391.3
				KLD	
M26	1e-7	100	40	BCE +	28391.3
				KLD	

Table 1. Model with hyper-parameters

Model Evaluation

#	M14	M16	M17
Precision	0.65637	0.60495	0.27361
Recall	0.62372	0.69132	0.80867
f_score	0.73700	0.73691	0.61137

Table 2. Model evaluation

Figure 3. Train and validation losses

Outputs

 Right most column: ground truth contact map 1j3mA

2zsiB

4mt8A

- Three predicted contact map using M14, M16 and M24 from left
- Each row corresponds to a protein

Fig 4: Sample outputs

Miscellaneous

- Model is trained and evaluated in <u>GMU</u> <u>Argo Cluster</u>.
 - o 64GB Memory
 - o 16GB GPU
- Project code could be found in <u>Github</u>.
 - Github page describes how to run the code

