Class:	Spring-2025	Subject:	Computer Architecture	
Course Code:	Lab Instructor:		Mr. Tabassum Javed	

----- LAB 07-----

Learning Objective:

- Understand the Clear Screen (CLS) operation.
- Define and implement Complement Accumulator (CMA) in CPU Sim.
- Observe how Skip if Positive (SPA) and Skip if Negative (SNA) affect instruction flow.
- Apply CLS, CMA, SPA, and SNA in conditional execution and control flow.

Essential Tools in Our Lab:

- Computer System: The main machine
- **CPU Sim**: CPU Sim is a tool used for simulating simple CPU architectures, helping students understand processor design, instruction execution, and debugging.

Program-1

START:

INP ; Take an input from the user

STA NUM ; Store the input value in memory location NUM

INP ; Take another input from the user

ADD NUM ; Add the value stored in NUM to the second input

STA NUM ; Store the input value in memory location NUM

SPA

ADD NUM1

OUT ; Output the result

HLT ; Halt (end program)

NUM: .data 10; Define memory location NUM, initialized with 0

NUM1: .data 1 100

Basic Machine Instructions

Basic Computer Instructions

Memory Reference			Register Reference		
Symbol	Hex		Symbol Symbol	Hex	
AND	0xxx		CLA	E800	
ADD	2xxx		CLE	E400	
LDA	4xxx	Direct Addressing	CMA	E200	
STA	6xxx		CME	E100	
BUN	8xxx		CIR	E080	
			CIL	E040	
ISZ	Cxxx		INC	E020	
AND_I	1xxx	Indirect Addressing	SPA	E010	
ADD_I	3xxx		SNA	E008	
LDA_I	5xxx		SZA	E004	
STA_I	7xxx		SZE	E002	
BUN_I	9xxx		HLT	E001	
ISZ_I	Dxxx				

Step-by-Step Execution:

- 1. ISZ 009 (Increment and Skip if Zero)
 - Reads the value stored at memory location 009.
 - o Increments it by 1.
 - o If the new value becomes 0, it skips the next instruction (OUT).
 - o Otherwise, it proceeds to the next instruction.
- 2. OUT (Output the value in AC)
 - If ISZ does not skip, this instruction executes.
 - Outputs the value in the accumulator (AC) to the display/output device.
- 3. HLT (Halt Execution)
 - o Stops program execution.

Step 1: Navigate to the Microinstructions Section

• Open your simulator/tool and access the Microinstructions Section.

Step 2: Define CLA Microinstruction

Step 2: Define CMA Microinstruction

Working Mechanism of SPA

- 1. Checks the sign bit of the accumulator:
 - If the most significant bit (MSB) is 0, the value is positive, and the next instruction is skipped.
 - If the MSB is 1, the value is negative, and execution continues without skipping.

Results:

Lab Task-1

Task Requirements:

1. Design a machine to solve the Program-1 given at start of the document.

Lab Task-2

Read the following code, write explanation of each line in front of each line. Implement this code using CPUSim submit screenshot and .cpu machine along with this code.

START:

- 1. INP
- 2. STA NUM
- 3. LDA NUM
- 4. SPA
- 5. JMP NEGATIVE
- 6. CLA
- 7. LDA POS_MSG
- 8. OUT
- 9. JMP END
- 10. NEGATIVE:
- 11. SNA
- 12. JMP ZERO
- 13. CLA
- 14. LDA NEG_MSG
- 15. OUT
- 16. JMP END
- 17. ZERO:
- 18. CLA
- 19. ISZ ZERO_MSG
- 20. OUT
- 21. END:
- 22. HLT
- 23. NUM: .data 1 0
- 24. POS_MSG: .data 1 1
- 25. NEG_MSG: .data 1 -1
- 26. ZERO_MSG: .data 1 0