

PCB 设计同步分析 6 大隐藏技巧(二): 信号耦合干扰 Coupling 快筛

以往 PCB 设计工程师在考虑布线质量两大基本议题 Coupling 耦合干扰和 Impedance 阻抗时,因为没有适当的工具和简易的流程,往往都得在布线后 很谨慎地呈一版给 SI Team 作分析,但分析完后 SI 人员也难以明确地标示出 各问题的位置,让 PCB 设计人员清楚知道该 "处理" 哪些 Layout 进行适当 调整,以符合信号特性和质量的需求。

本文将介绍如何使用 Allegro 的 Coupling 同步分析功能,在 PCB Layout 过程中进行信号耦合分析,帮助 Layout 工程师快速找出可能发生耦合干扰的布线状况,并能立即排除。

. Date: 2020 / 9

. Author: Eric Chen

. Revision: 1.2

. Version: SPB 17.4

. 备注:

Graser http://www.graser.com.cn

什么是 Coupling?

隔音不好的公寓楼

在现实生活中,我们居住的环境充斥着各种噪声,不管是楼下街道的喇叭声、隔壁邻居的电视声,甚是在电话或对讲机中偶而还会听到别人的对话。当这些杂音影响到我们真正想听的内容时,就会形成所谓的干扰。所以现在市面上有双层的气密窗,或是有强调主动降噪功能的耳机出现,就是希望能隔绝这些杂音,让您能多点清净或是只留下您想听的美妙乐音。

同样的, 对 PCB 设计上来说·在信号传输上随着布线越密越近·信号运作时会发生耦合而干扰旁边(左右还有上下层间)的信号·可能引起误判而造成产品发生问题。

以下图一例子中传输信号的传输线·称之为 aggressor line (攻击走线)或 active line(动态线)·会将一部份的信号传到无信号的传输在线·称为 victim line(受害走线)或 quite line(静态线)而造成问题。

Coupling/ Crosstalk

When traces are coupled, a change in current flow in one trace will cause current to flow in an adjacent trace

Graser

Coupling 的挑战

Models vs.准确度

一般在设计 PCB 时·为避免 Coupling(耦合)或 Crosstalk(串扰)的状况发生·有些公司会有 3W 三倍线宽这样的规范·所以可能会在 Constraint Manager (规则管理器)中设定 Spacing 的间距值·或少数人会利用 Parallelism 设定可并行的间距与允许长度的搭配检查值。这两种的好处是可以不须套用 Models,但缺点是准确度不足。

如以下左图的情况·当介质层很厚时· 3W 的三倍线宽下虽然间距值够了·但真的不会干扰吗? 再者·即使是用 Parallelism 的间距/允许长度检查·也可能会有不能跨层检查相邻层干扰等等的问题。

Spacing Constraints

- No SI Models required
- Geometrical rules like "3W" may not work and are expensive w.r.t. real estate

Parallelism Constraints

- · May not be enough "buckets"
- · May or may not be cumulative
- May or may not include adjacent layers

图二

这就是如下图(三)在各种干扰检查准确比较中,左侧所示的两种 Constraints 方式: **Spacing** 和 **Parallelism**。 另外,若是要更准确就是如下图(三)右侧两种方式: **Estimated Xtalk** 和 **Simulated Xtalk**,但这就需牵扯到零件要挂上 Models 或是要拜托 SI team 执行相关分析,因而需要更多的设定时间和经验及资源才能实现。

如何预防信号耦合干扰?

设计同步分析 鱼与熊掌兼得

Allegro 设计同步分析(In-Design Analysis, IDA)新流程中的 Coupling 分析检查其特点为:既不需要 Models 又可做够精准的快速分析,简单来说就是-- " *Model 不用、经验不拘* "。

现在您只要依照后面的检查步骤,就有机会在 Layout 工具中实现耦合干扰快筛分析的目的,而不需担心是否有 Models 或是否还要拜托谁才能检查,以提升 Layout 的质量并且减少产品量产后因信号不稳而需要召回的重大损失。

接下来将通过设计实例来详解 Coupling 同步分析功能:

PS. IDA 中的另外一项 Impedance 阻抗分析也是一样 " Model 不用、经验不拘 " 照着检查流程执行就可以很快实现布线阻抗的快筛分析,我们将在下一篇 Impedance 分析技巧分享更多细节,请持续关注 【 PCB In-Design 分析】系列专题。

Graser

如何执行 Coupling 耦合分析

我们可以利用 Allegro PCB Designer 中 Analyze 功能底下的 Workflow Manager 来启动 Coupling 分析功能 (图 4)。

图 4. Workflow Manager

在 Workflow Manager 的下拉选单中选择 Coupling 分析功能。(图 5)

图 5. Coupling Workflow

在开始执行分析之前,我们会建议可以的话,先把叠构中的相关数据定义清楚。

在选取信号的 Analysis Mode 分析模式中·有 Net Based(信号选取)和 Directed Group(零件群组)两种模式 (图 6) · 我们先以 Net Based 信号选取当例子。

图 6. Analysis Modes 分析模式

A. Net Based 信号选取

A1. 在 Select Net 中选择要执行 Coupling 分析的对象信号,若先前已设定过 BUS/Xnet/Diffpair,Views 模式切换至 Hierarchical 后,可整把选取。若是切换至 Flat,则显示所有信号名可搭配 Shift 区间选取,或 Control 多个选取,当确认后点选中间的 -> 键,将所选信号添加到右侧中。

图 7. Select Net 选取信号

A2. 设定 Coupling 检测条件

设定标准的检查条件如下图 8 所示,Coupling 耦合值超过或 RisingTime 小于设定值就会被检测出来。 若要以范围做检查,可另外定 GeoWindow 值,此表示信号旁所定范围内的都会检查。

图 8. Coupling 检测条件设定

之后便可以点击开始分析。(图 9)

Graser

图 9. Start Analysis 开始分析

Coupling 分析结果解析

Graser

待分析完成便可选择要检视的结果。在 IDA 的 Coupling 分析结果项目中的呈现方式有两种选择,分别是 Coupling **Table 以及** Coupling **Vision**。

图 11. 结果检视模式

选择 Coupling Table 以数据表方式呈现分析结果如下图 12.可以对各栏点击来排序评估,或在其下方的 Detailed Table 中再展开其细项,查看与其他信号的相互耦合值。

图 12. Coupling Table 自动平移到相对应的位置上

当您对那个单项连点两下,画面也会自动平移到相对应的位置上,如图 13 所示。

图 13. Coupling Table 自动平移到相对应的位置上

选择 Coupling Vision 的呈现方式则会更为直观,在图面上会显示其 Coupling 程度的色阶图,如下图 14

图 14. Coupling 色阶表

当您把游标停在线段上也会显现其 Coupling 状况,如下图 15

图 15. 线段上 Coupling 状况显示

您也可选择 Victim 模式,查看受影响信号,如图 16

图 16. Victim 模式选择,查看受害走线

或在搭配右侧色阶 BAR 的调整,筛选出要查看的严重程度或范围 (图 17)

图 17.色阶表-查看严重程度或范围

B. Directed Group 零件群组选取

您也可用此方式-先设定两端零件,再来选择要检查的信号。

点右侧的 Select Directed Group,会显示出如下图 18 选单。选择信号两端的零件,选取后底下会列出零件间的各相关信号群组,您可再筛选要执行分析的各组信号。

图 18. Directed Group 零件选取设定

当确认后选择底下的 Create 键,会自动建出各信号的 Directed Group (图 19)

图 19. Create 键-创建各信号 Directed Group

此种方式执行后除了先前的 Coupling Table/Coupling Vision 之外,还多了 Coupling Plot 耦合图模式,显示如下图 20,以长度当 x 轴显示信号各段的 Coupling 严重程度。

图 20. Coupling Plot 模式

另一种 Scatter/Collapsed (散布图/折叠式) 显示,严重程度当 y 轴、长度当 x 轴。

图 20. Scatter/Collapsed 显示

当您游标停在线段上也会显现其 Coupling 耦合状况·连续点击两下·画面也会自动平移到相对应的 Layout 位置上 (图 21)

图 21. 线段 Coupling 状况和自动平移到相对应位置显示

总结

掌握耦合干扰问题 ~ Model 不用、经验不拘

以往 PCB 设计工程师在考虑布线质量两大基本议题 Coupling 耦合干扰和 Impedance 阻抗时,因为没有适当的工具和简易的流程,往往都得在布线后很谨慎地呈一版给 SI Team 作分析,但分析完后 SI 人员也难以明确标示出各问题的位置,让 PCB 设计工程师清楚知道该 "处理"哪些 Layout 进行适当调整,以符合信号特性和质量的需求。 如果有一个实时又直觉的帮手来帮助工程师做初步确认,就能够降低失败的机率,并且减少重工的时间。

现在 Allegro PCB Designer 中导入了 Sigrity 专业的仿真分析技术,将 IDA (In-Design Analysis, 设计同步分析)带入 PCB 设计流程之中,帮助 PCB 设计工程师预先且快速实时的分析耦合干扰问题,使设计效率提升,不良机率减少。更重要的是 Coupling 检查-- "*Model 不用、经验不拘"*,不需要 Models 并且只需简单的流程,就可轻易实现!

上一期回顾: IR Drop 分析技巧【手机端】/【电脑端】

下一期预告:Impedance 阻抗分析技巧

【温馨小叮咛】

若欲完整执行上述 Coupling 分析功能需要搭载 Cadence 相关软件 Licenses。

【PCB 设计同步分析六大隐藏技巧】系列专题主要解锁 IR Drop 压降、Coupling 耦合、Impedance 阻抗、Crosstalk 串扰、Reflection 反射、Return Path 回流路径等 6 种分析技巧,帮助 EE、Layout 人员在设计前期阶段不需依靠 SI/PI 专家就能做初步的模拟分析,快速找出并排除常见信号/电源问题,提升设计质量和效率,欢迎共同探讨。

Graser

本版 Technic Note 版权为 苏州敦众软件科技有限公司 所有,未经允许不得任意转用。