co2amp

Mikhail Polyanskiy

September 5, 2014

Contents

1	Gen	neral notes	2
	1.1	Program capabilities	2
	1.2	Availability	3
	1.3	Acknowledgements	3
2	Get	ting started manual	4
	2.1	Basic concepts	4
	2.2	Input pulse and calculation grid	5
	2.3	Optical layout and beam propagation	5
		2.3.1 Components	5
		2.3.2 Layout	6
		2.3.3 Beam propagation	7
	2.4	Active medium and amplification	8
	2.5	Program output	8
3	Mod	dels	9
	3.1	Molecular dynamics	9
	0.1	3.1.1 Pumping by electric discharge	9
		3.1.2 Pumping and vibrational relaxation dynamics	13
	3.2	Amplification	15
	3.3		16
	0.0	Molecular constants	-
	3.4	Propagation	16
	3.5	Optical elements	24
	3.6	Properties of optical materials	25
Bi	bliog	graphy	27

Chapter 1

General notes

1.1 Program capabilities

1. Ultrashort pulse amplification in CO₂ active medium

Rotational numbers up to J=60

Hot- and sequence- bands

Isotopic CO_2

2. Molecular dynamics

Realistic pumping

Collisional relaxation processes

Stimulated transitions

Independent consideration of active media regions at different elongation from optical axis

3. Diffraction-based beam propagation

Beam manipulation with common optical elements

Arbitrary optical configuration

4. Linear dispersion and non-linear effects in optical materials

Pulse chirping

Kerr lensing

Self-phase modulation

5. Advanced optics

Chirped-pulse amplification

Trains of pulses

Staging (program output as an input for the next stage stage)

6. User's interface

Easy parameter specification

Graphical output

Save/recall your work

1.2 Availability

The entire code base of the co2amp program is published in the GitHub website (https://github.com/polyanskiy/co2amp) and is freely available for use, modification and re-distribution under the terms of the General Public License (GPL) (http://www.gnu.org/copyleft/gpl.html). The binary package is provided in the form of a Windows installer that contains pre-compiled executables, documentation and the source-code (all found in the installation directory after installation) at https://github.com/polyanskiy/co2amp/releases. User interface is built using a cross-platform library QT (http://qt-project.org/) and thus should compile under other platforms supported by QT (MacOS, Linux). Third-party components used in the package (gnuplot, 7-zip) are also freely available for multiple platforms (http://www.gnuplot.info/, http://www.7-zip.org/).

1.3 Acknowledgements

Viktor Platonenko provided the Mathcad code for pulse amplification in the CO₂ active medium that was used as a starting point of the development of the co2amp code; he also provided valuable input on the early stage of the work.

Chapter 2

Getting started manual

2.1 Basic concepts

The co2amp code allows simulating propagation of an ultrashort pulse through an arbitrary optical system that can include CO₂ amplifiers. Pulse amplification and fast molecular dynamics (stimulated transitions, rotational relaxation) calculations are performed in time domain in the time-frame moving with the pulse. Processes that are much slower than the pulse duration (discharge pumping, vibrational relaxation) are modelled separately in the laboratory time-frame. The program input parameters include initial pulse characteristics, optical configuration, active medium composition and excitation parameters (e.g. discharge profile), and number of nodes in the calculation grids for the time- (pulse time frame) and space- (radial) coordinates. Axial symmetry is assumed at all times. Optical system can include multiple amplifiers if they have same gas composition and pumping dynamics; sequential amplification in different amplifiers can be modeled using the staging option as described later. Temporal pulse shape (averaged across the beam) and beam profile (averaged for the entire pulse duration) at every element of the optical layout are saved and can be accessed in both graphical and tabulated-numerical representation. Complete pulse/beam information (complex field in every node of the time-space calculation grid) at the output of the system can also be saved and used as an input for another system (staging). The user interface program allows saving all inputs and outputs of the calculations as a single compressed file ('.co2' or '.co2x' extension). The difference between the two formats is that the files with extension ending with 'x' ("extended") include the complete output field record and thus are suitable for staged calculations. Fig. 2.1 shows the user interface of the co2amp program described in the following sections.

Figure 2.1: co2amp user interface: Input- (left) and output- (right) tabs.

2.2 Input pulse and calculation grid

Unless the output of another simulation is used as an input (staged calculations), both temporal shape of the input pulse and the input beam profile are assumed to be Gaussian; and the pulse is assumed to be transform-limited (no initial chirping). Pulse energy, duration, central frequency, and beam radius are entered in the corresponding fields in the input tab. "Injection moment" parameter specifies the time-delay between the beginning of the pumping of the active medium and pulse injection into the optical system. It is also possible to simulate amplification of a train of identical and equidistant pulses; number of pulses in the train and time-delay between them must be specified in this case. Number of nodes in the calculation grid has to be specified for the radial coordinate and for the fast time-frame associated with the pulse (time-frame for the slow processes uses a fixed 1-ns step and does not require a user input). Number of nodes is always a power of two that allows utilization of fast Fourier transform (FFT) algorithms. Calculations with a larger number of nodes are usually more accurate but, on the other hand, take longer and require more computer memory (both calculation time and required memory are roughly proportional to the product of the number of nodes in the time- and space- grids). This is therefore recommended to start from running the simulation with a smaller number of nodes and then repeat it several times, each time with a denser grid. Absence of considerable change in the program output with increase of the number of nodes will indicate that the grid density is sufficient. Limits of the pulse time-frame ("time range") specify the time interval considered in the calculations. Initially, the pulse is centered at t=0 and it tends to shift to the longer delays upon amplification due to the limited medium response time and spectrum modulation. Thus, optimum time range is usually asymmetric with a short negative and a longer positive part. Time-step $\Delta t = (t_{max} - t_{min})/(n_0 - 1)$, where t_{max} and t_{min} define the time range and n_0 is the number of nodes in the time grid, must be small enough to accurately describe the pulse profile at all stages of the propagation through the optical system. It is also important to keep in mind that time range and number of nodes in the time grid also define the range and step in the frequency domain: $\Delta \nu = 1/(t_{max} - t_{min})$ and $(\nu_{max} - \nu_{min}) = 1/\Delta t$. This means that the time range must be long enough to provide sufficient resolution in the frequency domain and at the same time the time step must be sufficiently short to provide a bandwidth that fits the whole spectral region of interest. Maximum radial coordinate is defined separately for every element of the optical system. This is described in the next section. Identifying an appropriate calculation grid is very important for building an accurate model of an optical system. An effort put in this part of the simulation process will pay off by fast and reliable calculations.

2.3 Optical layout and beam propagation

The co2amp code uses a concept of optical surfaces similar to that employed in the ray-tracing algorithms. In this concept optical system is represented by a series of thin optical components (surfaces) each of which can alter the wave front. Between surfaces, beam propagates undisturbed. In order to specify the optical system one has to 1) describe all optical components and 2) describe the location of the components in respect to each other. In co2amp's user interface program, this is done by editing text in the two dedicated fields ("Components" and "Layout"). The format of these fields is described below.

2.3.1 Components

Each optical component is described in a separate line by several tab- or space- separated entries:

- Entry 1 'ID': An arbitrary user-defined alpha-numeric string for identifying the component;
- Entry 2 'Type': Type of the component; must be one of the types listed in the table;
- Entry 3 'Field': Maximum radial coordinate in centimeters to be considered in the simulations;
- Entry 4 'Parameter 1' and Entry 5 'Parameter 2': Meaning of these fields depend on the type of the component as summarized in the table:

Type	Description	Parameter 1	Parameter 2
AM	Active medium	Length [cm]	-
PROBE	Passive surface, may be used as limiting aperture	-	-
MASK	Opaque circular screen	Radius [cm]	-
ABSORBER	Absorber	Transmittance	-
LENS	Ideal lens (no spherical or chromatic aberrations)	Focal length [cm]	-
WINDOW	Transparent flat window (zero reflection- and absorption- losses)	Window material: KCl, NaCl, ZnSe, GaAs, CdTe, Ge, or Si	Thickness [cm]
STRETCHER	Stretcher or compressor	Pulse chirping [ps/THz] (positive for red-chirp)	-

The following example defines several 2.5-cm diameter components: A probe surface, two 120-cm-long amplifier sections, a 5-cm-thick NaCl window and an absorber for modelling 4% reflection losses:

p	PROBE	1.25		
am1	AM	1.25	120	
am2	AM	1.25	120	
win	WINDOW	1.25	NaCl	5
abs	ABSORBER	1.25	0.96	

2.3.2 Layout

Optical configuration is specified as a sequence of the components identified by their ID's. All components are separated by non-negative distances expressed in centimeters. Components and distances must be separated by spaces, tabs, new-line symbols or dashes. The following is an example of an optical configuration that uses the components defined in the previews example:

$$p-0-abs-0-win-0-abs-100-am1-200-am2-100-abs-0-win-0-abs-0-p$$

This example defines the configuration shown in the Fig. 2.2.

Figure 2.2: Example optical configuration.

In this example beam propagates twice through the same amplifier. However, we consider this configuration as two identical but independent active volumes (am1 and am2) because at each pass the beam interacts with a different zone of the active medium.

2.3.3 Beam propagation

When two components of an optical configuration are separated by a non-zero distance, beam propagation between them is simulated using the Huygens-Fresnel diffraction integral in the assumption of axial symmetry. Propagation is simulated separately for each moment of time from the time calculation grid. Optical surface model assumes that components of the optical layout are infinitely thin. Propagation is calculated between the middle points of the components; for the purpose of simulating pulse interaction with a prolonged optical element, beam is assumed to be collimated inside this element. For instance, the sequence of calculations for the previews example is:

- 1. Interaction with the window (including reflection losses);
- 2. 100 cm propagation to the middle of the first pass through the amplifier (no amplification so far);
- 3. Amplification by a 120-cm amplifier section assuming that the beam is collimated;
- 4. $200 \text{ cm } (100 \times 2)$ propagation to the middle of the second pass through the active volume;
- 5. Amplification by the second 120-cm amplifier section assuming that the beam is collimated;
- 6. 100 cm propagation to the window;
- 7. Interaction with the windows.

Accuracy of the model can be improved if one divides a long amplifier into several shorter sub-sections. For instance, we can modify our example configuration as shown in the Fig. 2.3.

Figure 2.3: Example configuration modified for improved accuracy.

Components and Layout entries for the modified configuration are as follows:

Components:

p	PROBE	1.25		
am1a	AM	1.25	60	
am1b	AM	1.25	60	
am2a	AM	1.25	60	
am2b	AM	1.25	60	
win	WINDOW	1.25	NaCl	5
abs	ABSORBER	1.25	0.96	

Layout:

p-0-abs-0-win-0-abs-70-am1a-60-am1b-140-am2b-60-am2a-70-abs-0-win-0-abs-0-p

Population dynamics in all amplifier sections is modeled separately and thus splitting a long amplifier into shorter sections provides also a more realistic model of the active medium.

2.4 Active medium and amplification

All active medium sections used in a single simulation must have same gas composition and pumping conditions (staged simulations can be used for complex systems with two or more non-identical amplifiers). Composition (including isotopic enrichment of carbon dioxide) and initial temperature of the active medium are specified in the "Gas Mixture" fields of the input tab of the user interface. Pumping by electric discharge is the primary pumping scheme of the co2amp code. Rudimentary support for optical pumping is also included but not discussed here. For discharge pumping, geometry of the discharge volume (discharge volume and the distance between electrodes) and discharge profile (tabulated values of discharge current expressed in amperes and voltage in volts at time moments in microseconds) must be provided. Pumping dynamics calculations are done using a Boltzmann equation that takes into account elastic collisions between electrons and molecules and inelastic collisions with molecular rotational-, vibrational- and electronic- excitations and ionization. Tabulated empirical values of corresponding cross-sections as functions of electron energy are used. The Boltzmann equation is solved repeatedly in order to accurately describe the variation of pumping efficiency by the electric field varying during the discharge.

2.5 Program output

The output of the program is given as a temporal pulse structure and its spectrum (both averaged across the beam) and beam profile (averaged on the duration of the pulse) at each element of the optical layout. The user can chose an optical component to display from the list of all the available components. In the case if the selected component is used several times in the optical configuration, it is also possible to specify which passes through the component will be displayed. Also, integral pulse energy can be provided either at every pass through a selected component or at all passes through all components of the system layout. Output for the layout components of type AM (active medium) provides additional information that includes gain, discharge profile, population dynamics, and the dynamics of pumping energy distribution (fractions of discharge energy going into excitation of laser levels and excitation of molecular translations and ionization). Right-mouse-click on a figure allows the user to copy either the graphics or the numerical data for future use.

Chapter 3

Models

3.1 Molecular dynamics

Simulations of active medium pumping by electric discharge and vibrational relaxation are done following Karlov and Konev [1].

3.1.1Pumping by electric discharge

Pumping is described by the Boltzmann equation in the following form (Karlov and Konev cite [2] and [3])

$$-\frac{1}{3} \left(\frac{E}{N}\right)^{2} \frac{d}{du} \left[u \left(\sum_{j} y_{j} Q_{mj}(u) \right)^{-1} \frac{df}{du} \right] =$$

$$1.09 \times 10^{-3} \frac{d}{du} \left[u^{2} f \sum_{j} \frac{y_{j}}{M_{j}} Q_{mj}(u) \right] + \sum_{j=1,2} y_{j} C_{j} \frac{d}{du}(uf) + 6By_{2} \frac{d}{du}(uQ(u)f) + \sum_{j} y_{j} \sum_{k} (u + u_{jk}) Q_{jk}(u + u_{jk}) f(u + u_{jk}) - (uf) \sum_{j} y_{j} \sum_{k} Q_{jk}(u)$$

$$(3.1)$$

where left part describes energy of electrons in the electric field, the first component of the sum of the right part represents energy transfer via elastic collisions between electrons and molecules, second and third components describe collisions with molecular rotation excitation, and the two last components relate to inelastic collisions with transfer of the energy u_{jk} into vibrational and electronic excitation and ionization.

Electron energy u is expressed in eV;

Ration of the field to the full molecular density E/N is expressed in the units of 10^{-16} V·cm²;

 y_j are the relative molecule concentrations (j = 1 corresponds to CO_2 , j = 2 to N_2 and j = 3 to He);

 $M_1 = 44, M_2 = 28, M_3 = 4$ are the molar masses, $C_1 = 8.2 \times 10^{-4} \text{ eV} \cdot \text{Å}^2$ [4];

 $C_2 = 5.06 \times 10^{-4} \text{ eV} \cdot \text{Å}^2 [5];$

 $B = 2.5 \times 10^{-4}$ is the N₂ rotational constant;

Effective crossections are expressed in Å; their numerical values in the nodes are given in the tables below (linear interpolation must be used for determining the values in intermediate points); the data and citations are reproduced from [1].

The following notation for cross-sections is used:

 Q_{m1} - Transport cross-section of CO_2 [6];

 Q_{m2} - Transport cross-section of N_2 [5];

Table 3.1: Tabulated data on the cross-sections for discharge pumping

							5° P 4111.
u_i	Q_{m1}	u_i	Q_{m2}	u_i	Q_{m3}	u_i	Q
0	140	0	1.4	0	5	0.0015	0
0.04	84	0.001	1.4	0.01	5.4	0.05	0.1
0.1	55	0.002	1.6	0.1	5.8	0.25	0.65
0.3	21	0.008	2	0.2	6.2	0.5	1.15
0.5	10.8	0.01	2.2	1	6.5	0.8	2
0.6	9.4	0.04	4	2	6.1	1	2.65
1	5.7	0.08	6	7	5	1.5	5.6
1.7	5	0.1	6.5	10	4.1	1.8	7.5
2	5.1	0.2	8.8	20	3	1.9	8.2
2.5	6	0.3	9.8			2	8.6
3	7.7	0.4	10			2.15	8.95
4.1	9.4	1	10			2.43	9
5	14.5	1.2	11			2.6	8.9
7.4	10	1.4	12.5			2.75	8.4
10	11.7	1.8	20			2.9	7.65
20	16	2	25			3.25	6.2
27	16.3	2.5	30			3.6	5.1
50	13	3	26			4	4.5
		4	15			4.5	4.16
		5	12			5	3.97
		7	10			5.5	3.93
		10	10			7	4.17
		14	11			9	4.46
		18	12.2			11	4.42
		20	12			15	3.94
		30	10			22	3.15
		100	10			25	3.05

TD 11 00 TD 1 1	1 1 , , , 1	ı · · · · ·	1. 1		1 1
Table 3.2: Tabulat	ed data on the	cross-sections for	discharge	pumping - contir	nied I

Tabl	e 3.2. 1al	uiateu u		C1088-86		dischai	ge pumpin	g - com	mueu i
u_i	Q_{11}	u_i	Q_{12}	u_i	Q_{13}	u_i	Q_{14}	u_i	Q_{15}
0.083	0	0.167	0	0.252	0	2.37	0	2.37	0
0.085	0.36	0.2	0.54	2.7	0.25	3	0.26	3	0.17
0.09	1.04	0.25	0.82	3	0.4	3.5	0.52	3.65	0.33
0.1	1.6	0.3	0.82	3.3	0.6	4	0.5	3.8	0.31
0.12	1.84	0.5	0.68	3.6	0.65	4.5	0.22	4	0.21
0.14	2.12	0.7	0.56	4.5	0.23	4.6	0.1	4.3	0.1
0.16	2.16	1	0.47	4.6	0.1	5	0	5	0
0.2	2.08	1.4	0.45	5	0				
0.3	1.76	2	0.55						
0.4	1.52	3	1.15						
0.5	1.28	3.9	1.83						
0.6	1.08	4.5	1.4						
0.8	0.8	5	0.4						
1	0.58	6	0.28						
1.2	0.48	10	0.2						
1.6	0.34	20	0.1						
1.8	0.35								
2	0.4								
2.5	0.64								
3	1.04								
3.7	1.4								
4	1.36								
4.2	1.2								
4.5	0.92								
5	0.53								
6	0.4								
8	0.36								
9	0.28								
10	0.16								
10.1	0								
$u_{11} = 0$	0.083 eV	$u_{12} = 0$	0.167 eV	$u_{13} = 0$	0.252 eV	$u_{14} =$	0.339 eV	$u_{15} =$	0.422 eV
u_i	Q_{16}	u_i	Q_{17}	u_i	Q_{18}	u_i	Q_{19}	u_i	$Q_{1,10}$
2.5	0	0.29	0	7	0	10.5	0	13.8	0
3	0.19	0.3	0.44	8	0.5	11.5	0.56	15	0.1
3.6	0.245	0.35	0.65	8.4	0.6	14	0.8	16	0.13
4	0.21	0.4	0.73	9	0.46	20	1.2	17	0.17
5.07	0	0.5	0.84	10	0.175	30	2	30	1.55
		0.8	1	10.5	0	50	4	40	2.1
		1	1						
		2	0.78						
		6	0.37						
		10	0.25						
		50	0						
$u_{16} =$	$2.5 \mathrm{~eV}$	$ u_{17} =$	0.29 eV	$u_{18} =$	= 7 eV	$ u_{19} $	= 10.5 eV	$u_{1,10}$	= 13.8 eV

Table 3.3: Tabulated data on the cross-sections for discharge pumping - continued 2

Table	3.3: Tabı	nateu ua						ing - co	
u_i	Q_{21}	u_i	Q_{22}	u_i	Q_{23}	u_i	Q_{24}	u_i	Q_{25}
0.29	0	1.83	0	1.9	0	2.05	0	2.1	0
0.5	0.0052	1.9	0.208	2	0.416	2.1	0.416	2.15	0.208
0.8	0.0083	2	1.46	2.1	1.33	2.2	1.16	2.2	0.541
1	0.0104	2.05	2.29	2.2	1.87	2.26	1.58	2.3	0.915
1.2	0.0166	2.1	1.66	2.3	1.25	2.55	0	2.46	1.12
1.3	0.0728	2.2	0.79	2.36	0.208	2.75	0.832	2.5	1.12
1.4	0.135	2.35	0.208	2.42	0	2.77	0	2.6	0.208
1.6	0.25	2.45	1.98	2.5	0.499	3	0.208	2.62	0
1.8	0.52	2.5	1.78	2.61	0.433	3.05	0.208	2.68	0
1.9	0.832	2.62	0.208	2.7	0.624	3.25	0.200	2.8	0.416
2	3.02	2.75	1.04	2.75	0.024	3.20	0	2.9	0.410
$\frac{2}{2.05}$	3.12	2.75	1.66	2.73	0.208			3	0.75
2.03		1		1				11	
1	2.08	3.05	0.624	2.92	0.416			3.2	0.25
2.15	1.25	3.2	0.208	3	0.208			3.3	0.125
2.2	0.832	3.4	0.208	3.25	0.208			3.35	0
2.3	2.9	4	0	3.31	0				
2.45	1.04								
2.53	1.25								
2.6	1.75								
2.62	2.08								
2.68	1.73								
2.73	0.416								
2.85	0.32								
2.92	0.416								
3.12	0.700								
ປ.1⊿	0.728								
3.3	0.728								
1									
3.3	0.52	$u_{22} =$: 0.58 eV	u ₂₃ =	= 0.87 eV	$u_{24} =$	1.16 eV	u ₂₅ =	= 1.45 eV
$ \begin{array}{c c} 3.3 \\ 4 \\ u_{21} = \end{array} $	0.52 0 0 0.29 eV								
$ \begin{array}{c c} 3.3 \\ 4 \\ u_{21} = \\ \hline u_i \end{array} $	0.52 0 $0.29 eV$	u_i	Q_{27}	u_i	Q_{28}	u_i	Q_{29}	u_i	$Q_{2,10}$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 2.3 \end{array} $	0.52 0 0.29 eV Q_{26} 0	u_i 2.4	$Q_{27} = 0$	u_i 2.6	$Q_{28} = 0$	u_i 5	$Q_{29} = 0$	u_i 6.8	$Q_{2,10} = 0$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 2.3 \\ 2.4 \end{array} $	$\begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \end{array}$ $\begin{array}{c c} Q_{26} \\ 0 \\ 0.75 \\ \end{array}$	$ \begin{array}{c c} u_i \\ 2.4 \\ 2.5 \end{array} $	Q_{27} 0 0.208	u_i 2.6 2.7	Q_{28} 0 0.208	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \end{array} $	Q_{29} 0 0.41	u_i 6.8 7.1	$Q_{2,10} = 0 = 0.57$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 2.3 \\ 2.4 \\ 2.5 \end{array} $	$\begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ \end{array}$	u_i 2.4 2.5 2.75	Q_{27} 0 0.208 0.75	u_i 2.6 2.7 2.9	Q_{28} 0 0.208 0.29	u_i 5 5.9 6.1	Q_{29} 0 0.41 0.41	u_i 6.8 7.1 8.1	$Q_{2,10}$ 0 0.57 0.57
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 0 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \end{array} $	$\begin{array}{c} 0.52 \\ 0 \\ = 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ \end{array}$	u_i 2.4 2.5 2.75 3	Q_{27} 0 0.208 0.75	$\begin{array}{ c c c c c } & u_i & & & \\ & 2.6 & & \\ & 2.7 & & \\ & 2.9 & & \\ & 3 & & \\ \end{array}$	Q_{28} 0 0.208 0.29 0.208	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	u_i 6.8 7.1 8.1 8.6	$Q_{2,10}$ 0 0.57 0.57 0.25
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ \end{array} $	$\begin{array}{c} 0.52 \\ 0 \\ = 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ \end{array}$	u_i 2.4 2.5 2.75 3 3.2	Q_{27} 0 0.208 0.75 0 0.166	$ \begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \end{array} $	Q_{28} 0 0.208 0.29 0.208 0	u_i 5 5.9 6.1	Q_{29} 0 0.41 0.41	$ \begin{array}{c c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \end{array} $	$\begin{array}{c} 0.52 \\ 0 \\ = 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \end{array}$	Q_{28} 0 0.208 0.29 0.208 0 0	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	u_i 6.8 7.1 8.1 8.6	$Q_{2,10}$ 0 0.57 0.57 0.25
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.66 \\ 2.65 \\ 2.7 \end{array} $	$\begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ \end{array}$	u_i 2.4 2.5 2.75 3 3.2	Q_{27} 0 0.208 0.75 0 0.166	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \end{array}$	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	$ \begin{array}{c c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline $	$\begin{array}{c c} 0.52 \\ 0 \\ \hline & 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \end{array}$	Q_{28} 0 0.208 0.29 0.208 0 0	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	$ \begin{array}{c c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline $	0.52 0 0 0.29 eV Q ₂₆ 0 0.75 1.04 1.12 1.04 0.624 0.416 0.208 0.125	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \end{array}$	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	$ \begin{array}{c c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.66 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ \end{array}$	$\begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \end{array}$	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	$ \begin{array}{c c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline $	$\begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \end{array}$	$ \begin{array}{c c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \end{array} $	Q_{29} 0 0.41 0.41 0.07	$ \begin{array}{c c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline $	$\begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ \hline 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ \end{array}$	$ \begin{array}{r} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \end{array} $	Q_{27} 0 0.208 0.75 0 0.166 0.146 0	$\begin{array}{c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \end{array}$	Q_{28} 0 0.208 0.29 0.208 0 1.04 0	u_i 5 5.9 6.1 7 9	Q_{29} 0 0.41 0.41 0.07 0	$ \begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \end{array} $	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \end{array}$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline $	$\begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ \end{array}$	$ \begin{array}{r} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \end{array} $	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \end{array}$	$\begin{array}{c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \end{array}$	Q_{28} 0 0.208 0.29 0.208 0 1.04 0	u_i 5 5.9 6.1 7 9	Q_{29} 0 0.41 0.41 0.07 0	$ \begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \end{array} $	$Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ \end{array}$	$ \begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ \hline \\ 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ \hline \end{array} $	$ \begin{array}{c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \end{array} $	Q_{27} 0 0.208 0.75 0 0.166 0.146 0 $Q_{2,12}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$	u_i 5 5.9 6.1 7 9	Q_{29} 0 0.41 0.41 0.07 0	$ \begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \end{array} $	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ = 6.8 \text{ eV} \\ \\ Q_{2,15} \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ 8.4 \\ \end{array}$	$\begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ 0 \\ \hline 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ \hline \end{array}$	$ \begin{array}{r} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \\ \end{array} $ $ \begin{array}{r} u_{27} = \\ u_i \\ 11.25 \\ \end{array} $	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ u_i \\ 12.5 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$	u_{i} 5 5.9 6.1 7 9 u_{29} u_{4} 14	$ \begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \end{array} $ $ 0 $ $ \begin{array}{c} = 5 \text{ eV} \\ Q_{2,14} \\ 0 \end{array} $	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ = 6.8 \text{ eV} \\ \hline Q_{2,15} \\ 0 \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ \end{array}$	$ \begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ \hline \\ 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ \hline \end{array} $	$ \begin{array}{c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \end{array} $	Q_{27} 0 0.208 0.75 0 0.166 0.146 0 $Q_{2,12}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$	u_{i} 5 5.9 6.1 7 9	Q_{29} 0 0.41 0.41 0.07 0	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ u_{2,10} \\ \\ u_i \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ = 6.8 \text{ eV} \\ \\ Q_{2,15} \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ 8.4 \\ \end{array}$	$\begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ 0 \\ \hline 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ \hline \end{array}$	$ \begin{array}{r} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \\ \end{array} $ $ \begin{array}{r} u_{27} = \\ u_i \\ 11.25 \\ \end{array} $	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ u_i \\ 12.5 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$	u_{i} 5 5.9 6.1 7 9 u_{29} u_{4} 14	$ \begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \end{array} $ $ 0 $ $ \begin{array}{c} = 5 \text{ eV} \\ Q_{2,14} \\ 0 \end{array} $	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ u_{2,10} \\ \\ u_i \\ 15.6 \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ = 6.8 \text{ eV} \\ \hline Q_{2,15} \\ 0 \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ 8.4 \\ 8.7 \\ \end{array}$	$\begin{array}{c} 0.52 \\ 0 \\ 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ 0 \\ 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ 0 \\ 0.42 \\ \end{array}$	$\begin{array}{c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ \\ u_{27} = \\ \hline \\ u_i \\ 11.25 \\ 13.8 \\ \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$ $\begin{array}{c} 2.03 \text{ eV} \\ Q_{2,12} \\ 0 \\ 0.41 \\ \end{array}$	$\begin{array}{c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ u_i \\ 12.5 \\ 13 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$ $= 2.32 \text{ eV}$ $\begin{array}{c} Q_{2,13} \\ 0 \\ 0.4 \\ \end{array}$	u_i 5 5.9 6.1 7 9 u_{29} u_{4} 14 14.3	$\begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \\ \end{array}$ $= 5 \text{ eV}$ $\begin{array}{c} Q_{2,14} \\ 0 \\ 1.7 \\ \end{array}$	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ u_{2,10} \\ \hline u_i \\ 15.6 \\ 18 \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ \hline Q_{2,15} \\ 0 \\ 0.1 \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ 8.4 \\ 8.7 \\ 9.1 \\ \end{array}$	$ \begin{array}{c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ \hline 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ 0 \\ 0.42 \\ 0.42 \\ \end{array} $	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ \\ u_{27} = \\ \hline \\ u_i \\ 11.25 \\ 13.8 \\ 14 \\ \\ \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ \hline u_i \\ 12.5 \\ 13 \\ 13.6 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$ $= 2.32 \text{ eV}$ $\begin{array}{c} Q_{2,13} \\ 0 \\ 0.4 \\ 0.4 \\ \end{array}$	u_i 5 5.9 6.1 7 9 u_{29} u_i 14 14.3 14.8	$\begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \\ \end{array}$ $= 5 \text{ eV}$ $\begin{array}{c} Q_{2,14} \\ 0 \\ 1.7 \\ 1.7 \\ \end{array}$	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ u_{2,10} \\ \hline u_i \\ 15.6 \\ 18 \\ 20 \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ \hline Q_{2,15} \\ 0 \\ 0.1 \\ 0.21 \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ \\ u_i \\ 8.4 \\ 8.7 \\ 9.1 \\ 10 \\ \end{array}$	$ \begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ 0 \\ 0.42 \\ 0.42 \\ 0.3 \\ \end{array} $	$ \begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \end{array} $ $ \begin{array}{c} u_{27} = \\ u_i \\ 11.25 \\ 13.8 \\ 14 \\ 14.7 \end{array} $	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$ $\begin{array}{c} 2.03 \text{ eV} \\ Q_{2,12} \\ 0 \\ 0.41 \\ 1 \\ 1 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ \hline u_i \\ 12.5 \\ 13 \\ 13.6 \\ 14 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$ $= 2.32 \text{ eV}$ $\begin{array}{c} Q_{2,13} \\ 0 \\ 0.4 \\ 0.4 \\ 0.16 \\ \end{array}$	$\begin{array}{c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \\ 9 \\ \\ u_{29} \\ \\ u_i \\ 14 \\ 14.3 \\ 14.8 \\ 15.6 \\ \end{array}$	$\begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \\ \end{array}$ $= 5 \text{ eV}$ $\begin{array}{c} Q_{2,14} \\ 0 \\ 1.7 \\ 1.7 \\ 0.2 \\ \end{array}$	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ \\ u_{2,10} \\ \\ u_i \\ \hline 15.6 \\ 18 \\ 20 \\ 50 \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ \hline Q_{2,15} \\ 0 \\ 0.1 \\ 0.21 \\ 2.52 \\ \end{array}$
$\begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ u_i \\ 8.4 \\ 8.7 \\ 9.1 \\ 10 \\ \end{array}$	$ \begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ 0 \\ 0.42 \\ 0.42 \\ 0.3 \\ \end{array} $	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ \\ u_{27} = \\ \hline \\ u_i \\ 11.25 \\ 13.8 \\ 14 \\ 14.7 \\ 15 \\ \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$ $\begin{array}{c} 2.03 \text{ eV} \\ \hline Q_{2,12} \\ 0 \\ 0.41 \\ 1 \\ 1 \\ 0.25 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ \hline u_i \\ 12.5 \\ 13 \\ 13.6 \\ 14 \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$ $= 2.32 \text{ eV}$ $\begin{array}{c} Q_{2,13} \\ 0 \\ 0.4 \\ 0.4 \\ 0.16 \\ \end{array}$	$\begin{array}{c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \\ 9 \\ \\ u_{29} \\ \\ u_i \\ 14 \\ 14.3 \\ 14.8 \\ 15.6 \\ 20.6 \\ \end{array}$	$\begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \\ \end{array}$ $= 5 \text{ eV}$ $\begin{array}{c} Q_{2,14} \\ 0 \\ 1.7 \\ 1.7 \\ 0.2 \\ 0.2 \\ \end{array}$	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ \\ u_{2,10} \\ \\ u_i \\ \hline 15.6 \\ 18 \\ 20 \\ 50 \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ \hline Q_{2,15} \\ 0 \\ 0.1 \\ 0.21 \\ 2.52 \\ \end{array}$
$ \begin{array}{c} 3.3 \\ 4 \\ u_{21} = \\ \hline \\ u_i \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.55 \\ 2.6 \\ 2.65 \\ 2.7 \\ 2.8 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ u_{26} = \\ \hline \\ \\ u_i \\ \hline \\ 8.4 \\ 8.7 \\ 9.1 \\ 10 \\ 20.7 \\ \\ \end{array} $	$ \begin{array}{c c} 0.52 \\ 0 \\ \hline 0.29 \text{ eV} \\ \hline \\ Q_{26} \\ 0 \\ 0.75 \\ 1.04 \\ 1.12 \\ 1.04 \\ 0.624 \\ 0.416 \\ 0.208 \\ 0.125 \\ 2.5 \\ 0.166 \\ 0 \\ 1.74 \text{ eV} \\ \hline \\ Q_{2,11} \\ 0 \\ 0.42 \\ 0.42 \\ 0.3 \\ \end{array} $	$\begin{array}{c c} u_i \\ 2.4 \\ 2.5 \\ 2.75 \\ 3 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ \\ u_{27} = \\ \hline \\ u_i \\ \hline 11.25 \\ 13.8 \\ 14 \\ 14.7 \\ 15 \\ 65 \\ \\ \end{array}$	$\begin{array}{c} Q_{27} \\ 0 \\ 0.208 \\ 0.75 \\ 0 \\ 0.166 \\ 0.146 \\ 0 \\ \end{array}$ $\begin{array}{c} 2.03 \text{ eV} \\ \hline Q_{2,12} \\ 0 \\ 0.41 \\ 1 \\ 1 \\ 0.25 \\ \end{array}$	$\begin{array}{c c} u_i \\ 2.6 \\ 2.7 \\ 2.9 \\ 3 \\ 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ \\ u_{28} = \\ \hline u_i \\ \hline 12.5 \\ 13 \\ 13.6 \\ 14 \\ 20.7 \\ \\ \end{array}$	$\begin{array}{c} Q_{28} \\ 0 \\ 0.208 \\ 0.29 \\ 0.208 \\ 0 \\ 0 \\ 1.04 \\ 0 \\ \end{array}$ $= 2.32 \text{ eV}$ $\begin{array}{c} Q_{2,13} \\ 0 \\ 0.4 \\ 0.4 \\ 0.16 \\ \end{array}$	$\begin{array}{c} u_i \\ 5 \\ 5.9 \\ 6.1 \\ 7 \\ 9 \\ \\ u_{29} \\ \\ u_i \\ 14 \\ 14.3 \\ 14.8 \\ 15.6 \\ 20.6 \\ 25.4 \\ 100 \\ \end{array}$	$\begin{array}{c} Q_{29} \\ 0 \\ 0.41 \\ 0.41 \\ 0.07 \\ 0 \\ \end{array}$ $= 5 \text{ eV}$ $\begin{array}{c} Q_{2,14} \\ 0 \\ 1.7 \\ 1.7 \\ 0.2 \\ 0.2 \\ 2.8 \\ \end{array}$	$\begin{array}{c} u_i \\ 6.8 \\ 7.1 \\ 8.1 \\ 8.6 \\ 9.5 \\ 20.7 \\ \\ \\ u_{2,10} \\ \\ u_i \\ \hline 15.6 \\ 18 \\ 20 \\ 50 \\ 100 \\ \\ \end{array}$	$\begin{array}{c} Q_{2,10} \\ 0 \\ 0.57 \\ 0.57 \\ 0.25 \\ 0.12 \\ 0 \\ \\ \hline Q_{2,15} \\ 0 \\ 0.1 \\ 0.21 \\ 2.52 \\ \end{array}$

 Q_{m3} - Transport cross-section of He [6];

Q - Cross-section of resonant excitation of N_2 rotation [7,8];

 Q_{11} - Cross-section of the process $(000) \rightarrow (01^{1}0)$ [6];

 Q_{12} - Cross-section of the process $(000) \rightarrow (100 + 020)$ [6];

 $Q_{13}...Q_{16}$ - Cross-sections of resonant processes around 3.8 eV [6];

 Q_{17} - Cross-section of the process $(000) \rightarrow (001)$ [6];

 $Q_{18}...Q_{1,10}$ - Cross-sections of electronic excitation and ionization of CO₂ [4];

 $Q_{21}...Q_{28}$ - Cross-sections of the process $N_2(v=0) \rightarrow N_2(v=1...8)$ [9–11];

 $Q_{29}...Q_{2,15}$ - Cross-sections of electronic excitation and ionization of N₂ [11].

Equation 3.1 is solved numerically using the tridiagonal matrix algorithm. Rate constant $omega_{jk}$ and electron drift speeds v_d are defined as:

$$\omega_{jk} \left[\frac{\text{cm}^3}{\text{s}} \right] = 5.93 \times 10^{-9} \int_0^\infty u Q_{jk}(u) f(u) du \tag{3.2}$$

$$v_d \left[\frac{\text{cm}}{\text{s}} \right] = -5.93 \times 10^7 \left(\frac{1}{3} \frac{E}{N} \right) \frac{df}{du} \int_0^\infty u \left(\sum_j y_j Q_{mj}(u) \right)^{-1} du \tag{3.3}$$

Fraction of electron energy transmitted via inelastic processes is defined as:

$$z_{jk} = 10^6 \frac{y_j u_{jk} \omega_{jk}}{\left(\frac{E}{N}\right) v_d} \tag{3.4}$$

Fraction of electron energy transmitted to translations and rotations are:

$$z_t = 5.93 \times 10^7 \frac{\int\limits_0^\infty u^2 \left(\sum_j \frac{y_j}{M_j} Q_{mj}(u)\right) f(u) du}{\left(\frac{E}{N}\right) v_d}$$

$$(3.5)$$

$$z_{r} = 5.93 \times 10^{7} \frac{\sum_{j=1,2} y_{j} C_{j} \int_{0}^{\infty} u f(u) du + 6y_{2} B \int_{0}^{\infty} u Q(u) f(u) du}{\left(\frac{E}{N}\right) v_{d}}$$
(3.6)

Then, for 4-temperature model we get:

 $q_2 = \sum_{k=1}^{6} z_{1k}$ - fraction of energy transferred to CO₂ symmetric stretch (ν_1) and bending (ν_2) modes;

 $q_3 = z_{17}$ - fraction of energy transferred to CO₂ asymmetric stretch mode (ν_3);

 $q_4 = \sum_{k=1}^{8} z_{2k}$ - fraction of energy transferred to N₂ vibrations;

 $q_T = z_t^{-1} + z_r$ - fraction of energy transferred to translation and rotation;

 $q_{ei} = \sum_{k=9}^{15} z_{2k} + \sum_{k=8}^{10} z_{1k}$ - fraction of energy spent on electronic levels excitation and ionization.

3.1.2 Pumping and vibrational relaxation dynamics

3-temperature model is used for describing vibrational dynamics of the laser system

 T_2 – vibrational temperature of ν_1 and ν_2 vibrations of CO_2 ;

 T_3 – vibrational temperature of the ν_3 vibration of CO₂;

 T_4 – vibrational temperature of N_2 .

Vibrational temperatures are related to average number of quanta e_x in the corresponding vibrations as:

$$e_{2} = \frac{2}{\exp(960/T_{2}) - 1}$$

$$e_{3} = \frac{1}{\exp(3380/T_{3}) - 1}$$

$$e_{4} = \frac{1}{\exp(3350/T_{4}) - 1}$$
(3.7)

("2" in the first equation is due to 2-fold degeneracy of the bend vibration levels). Pumping/relaxation dynamics is described by the following equations [1]

$$\frac{de_4}{dt} = p_{e4} - r_a(e_4 - e_3)$$

$$\frac{de_3}{dt} = p_{e3} + r_c(e_4 - e_3) - r_3 f_3$$

$$\frac{de_2}{dt} = f_2 (p_{e2} + 3r_3 f_3 - r_2(e_2 - e_{2T}))$$
(3.8)

where

$$p_{e4} = 0.8 \times 10^{-3} \frac{q_4}{ny_2} W(t); \quad p_{e3} = 0.8 \times 10^{-3} \frac{q_3}{ny_1} W(t); \quad p_{e2} = 2.8 \times 10^{-3} \frac{q_2}{ny_1} W(t);$$

$$f_2 = \frac{2(1+e_2)^2}{2+6e_2+3e_2^2}; \quad f_3 = e_3(1+e_2/2)^3 - (1+e_3)(e_2/2)^3 \exp(-500/T);$$

$$r_a = kny_1; \quad r_c = kny_2; \quad r_2 = k_2n; \quad r_3 = k_3n;$$

$$k_2 = \sum_{i=1}^3 y_i k_{2i}; \quad k_3 = \sum_{i=1}^3 y_i k_{3i};$$

$$n = 273 \frac{p[\text{bar}]}{T_0[\text{K}]},$$

where W(t) is measured in kW/cm³, p_e - in μ s, and constants k are calculated using the following expressions [12,13]:

$$\begin{split} k &= 240/T^{1/2}; \\ k_{31} &= A(t) \exp(4.138 + 7.945x - 631.24x^2 + 2239x^3); \\ k_{32} &= A(t) \exp(-1.863 + 213.3x - 2796.2x^2 + 9001.9x^3); \\ k_{33} &= A(t) \exp(-3.276 + 291.4x - 3831.8x^2 + 12688x^3); \\ k_{21} &= 1.16 \times 10^3 \exp(-59.3x); \\ k_{22} &= 8.55 \times 10^2 \exp(-69x); \\ k_{22} &= 1.3 \times 10^3 \exp(-40.6x), \end{split}$$

where $x = T^{-1/3}$, $A(t) = (T/273)(1 + e_{2T}/2)^{-3}$, and temperature is expressed in K. Finally, the gas temperature dynamics is described by the Equation 3.9

$$\frac{dT}{dt} = \frac{y_1}{C_V} (500r_3 f_3 + 960r_2 (e_2 - e_{2T})) + 2.7 \frac{W(t)q_T}{nC_V}, \tag{3.9}$$

where $C_V = 2.5(y_1 + y_2) + 1.5y_3$.

3.2 Amplification

Amplification is simulated using the equations from Volkin's paper [14]

$$\frac{\partial \varepsilon}{\partial z} = -\sum_{J} \rho_{J},$$

$$\frac{\partial \rho_{J}}{\partial t} + \left(i(\omega_{c} - \omega_{0J}) + \frac{1}{T_{2}} \right) \rho_{J} = -\frac{\sigma_{J} n_{J} \varepsilon}{2T_{2}},$$

$$\frac{\partial n_{J}}{\partial t} + \frac{n_{J} - n_{J}^{0}}{\tau_{R}} = 4(\rho_{J} \varepsilon^{*} + c.c.),$$
(3.10)

where $\varepsilon(z,t)$ is the complex field envelope, ω_c the carrier frequency, ω_{0J} the frequency in the line center and σ_J the stimulated emission (or absorption) cross-section in the line center:

$$\sigma_J[{\bf m}^2] = \frac{(\lambda_J[{\bf m}])^2 A_J[{\bf s}^{-1}]}{4} \times \frac{T_2[{\bf s}]}{\pi},$$

where the first term defines the integral cross-section σ_0 of the rotational line [15] and the second term is the maximum of the normalized Lorentzian profile of a line with linewidth $\Delta \omega_{FWHM} = 2\pi \Delta \nu = 2/T_2$,

$$n_J^0 = z(J)(N^U - N^L),$$

where z(J) is the Boltzmann distribution:

$$z(J) = 2\frac{hB}{kT}(2J+1)\exp\left(-\frac{hB}{kT}J(J+1)\right)$$
 626, 636, 828, 838
$$z(J) = \frac{hB}{kT}(2J+1)\exp\left(-\frac{hB}{kT}J(J+1)\right)$$
 628, 638

 $h = 6.62606957 \times 10^{-34} \text{ J} \cdot \text{s}$ $k = 1.3806488 \times 10^{-23} \text{ J/K}$ $B: [\text{s}^{-1}]$

T: [K]

Field amplitude is related to the intensity as follows:

$$I[W/m^{2}] = 2h[J \cdot s]\nu_{c}[s^{-1}]\varepsilon^{2}$$
(3.11)

Additional equations:

$$\frac{d}{dt}N^{U} = 2\sum_{J}(\rho_{J}\varepsilon_{J}^{*} + c.c.),$$

$$\frac{d}{dt}N^{L10} = -2\sum_{J10}(\rho_{J}\varepsilon_{J}^{*} + c.c.),$$

$$\frac{d}{dt}N^{L9} = -2\sum_{J9}(\rho_{J}\varepsilon_{J}^{*} + c.c.)$$
(3.12)

Relaxation times are defined from the following equations:

$$T_2[s] = \frac{10^{-6}}{\pi \times 7.61 \times 750 \times (P_{CO2} + 0.733P_{N2} + 0.64P_{He})}$$
(3.13)

$$\tau_R[s] = \frac{10^{-7}}{750 \times (P_{CO2} + 1.2P_{N2} + 0.6P_{He})}$$
(3.14)

P is measured in Bar.

$$\Delta \nu_{FWHM} = \frac{1}{\pi T_2}$$

Useful relations for Lorentzian distribution:

$$\Delta \nu_{HWHM} = \frac{1}{2\pi T_2}; \quad \Delta \omega_{HWHM} = \frac{1}{T_2}$$

3.3 Molecular constants

Vibrational and rotational constants are listed in the Table 3.4

Einstein coefficients A or the laser transitions included in the simulations are summarized in the Tables 3.5-3.10

3.4 Propagation

Beam propagation between layout elements is calculated using Huygens-Fresnel integration at each timestep of the pulse time-frame. In the general case, the field in a given position (x', y') of the output plane is calculated by integrating contributions from each point (x, y) of the input plane taken into account the phase delay.

$$E(x',y') = \int_{x} \int_{y} E(x,y) \frac{e^{ikR}}{i\lambda R} dx dy,$$

where k is the wave number, λ the wavelength, and R is the distance between points (x,y) in and (x',y') in the output plane: $R = \sqrt{(x-x')^2 + (y-y')^2 + \Delta z^2}$. Δz is the distance between the centers of the input and the output planes.

In the case of radially symmetric beam used in our model, calculations can be considerably accelerated by taken into account that the field is the same in all points at equal distance from the beam axis. In this case integration can be done by summing the contributions of concentric rings in the input plane as shown in the Fig. 3.1.

Figure 3.1: Huygens-Fresnel integration in the axial-symmetric system: Contribution of a field from a concentric ring in the input plane to a field in a point in the output plane.

 $1.040347357162\mathrm{e}{10}$ 3.078588436561e131.031909579289e101.039898242205e10 $\frac{1.103309137756e10}{1.104838028891e10}$ 1.095417207032e103.061096273608e136381.161016490148e10 $\frac{1.168344168872e10}{1.171936491647e10}$ 2.738379258341e13 3.050865923183e13Table 3.4: Molecular constants of CO₂ molecules, Hz - no data -- no data -- no data - $00^{0}2 \rightarrow [10^{0}1, 02^{0}1]_{I,II}$ ('Sequence band') $01^{1f}2 \rightarrow [11^{1f}1, 03^{1f}1]_{I,II}$ ('Hot-f band') $01^{1e}2 \rightarrow [11^{1e}1, 03^{1e}1]_{I,II} \text{ ('Hot-e band')}$ $00^01 \rightarrow [10^00, 02^00]_{I,II}$ ('Regular band') 33901e13 2.898859706882e13 2.7383' 1.041489423454e101.038852773874e101.031555954654e103.248919295228e131.095102264016e10 $1.104772438281e10 \\ 1.103600443963e10$ 2.896801233901e13 3.215835064653e13 $\begin{array}{c} 2.880881382455e13 \\ 3.188996017636e13 \end{array}$ 1.160620695034e101.169756942611e101.170636464791e10 $1.161973380275e10 \\ 1.170418896804e10$ 1.171423844198e101.163765342668e101.173189960044e101.174257849725e102.77954498750e13 2.77954498750e13 3.2124022241e133.2124022241e133.1791e131.1576e101.1485e101.1586e102.8736e13979 $\frac{B([11^1f_1', 03^1f_1]_I)}{B([11^1f_1, 03^1f_1]_{II})}$ $B([11^{1e}1,03^{1e}1]_I)$ $B([11^{1e}1,03^{1e}1]_{II})$ $B(00^02) B([10^01, 02^01]_I)$ $B([10^00,02^00]_{II})$ $B([10^01,02^01]_{II})$ $B([10^00,02^00]_I)$ $V(01^{1}f_2 - II)$ $V(01^{1e}2-II)$ $V(00^{0}2 - II)$ $V(01^{1}f2 - I)$ $V(01^{1e}2 - I)$ $V(00^01 - II)$ $V(00^{0}2 - I)$ $B(01^{1}f2)$ $B(01^{1e}2)$ $B(00^{0}1)$

Regular 10P 10R 9P 9	egular 9P	Д	0.	9R	10P	Sequence 10R 9I	ence 9P	9R	10P	Ho 10R	9R Hot-e Hot-e Hot-e	9R	10P	Hot-f 10R	t-f 9P	9R
0.134 - 0.149 -	- 0.149 0.824	0.149 - 0.824	0.824		0	0.331	0.812	0.326		0.108		0.131	1 1	1 1		
0.267 0.172 0.296 0.192 -	0.296 0.192 -	0.192 - 0.493	0.493			-0.369	0.486	0.364	0.191	0.150	0.230	0.182	0.179	0.137	0.216	0.167
	0.252 0.205 -	0.205 0.456	- 0 - 2 - 2 - 2 - 2 - 3 - 3		• •	383	- 0	- 0 379	100	- 0 169	- 0000	197	0.191	0.158	0.231	0.191
	0.240 0.211	0.211 -			5 0			5 - 6	1 0	01.0	0 0		0.189	0.166	0.228	0.201
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} - & 0.440 \\ 0.216 & - \\ 0.450 & - \end{array}$	0.440		<u> </u>	0.392	0.434	0.388	0.187	0.168	0.220	0.204	0.186	0.170	0.224	0.207
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} - & 0.432 \\ 0.219 & - \end{array}$	0.432		o o	0.396	0.425	0.394	0.185	0.171	0.223	0.208	0.184	0.173	0.222	0.210
	$\begin{vmatrix} - & - & 0.425 \\ 0.227 & 0.221 \end{vmatrix}$	$\begin{array}{c c} - & 0.425 \\ 0.221 & - \end{array}$	0.425		0	0.400	0.420	0.399	0.183	0.174	0.221	0.212	0.183	0.175	0.219	0.213
0.204 0.195 0.225 0.224 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} - & 0.421 \\ 0.224 & - \end{vmatrix}$	0.421		0	0.402	0.416	0.403	0.182	0.175	0.219	0.214	0.181	0.176	0.218	0.215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} - & 0.417 \\ 0.226 & - \end{array}$	0.417		0.	0.404	0.413	0.406	0.181	0.177	0.217	0.216	0.180	0.177	0.216	0.217
0.201 0.197 0.221 0.228 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} & 0.413 \\ 0.228 & - \end{array}$	0.413		0.	0.405	0.411	0.409	0.179	0.178	0.215	0.218	0.179	0.178	0.214	0.218
0.197 0.220 0.230 -	0.220 0.230	0.230	0.410		0.	0.406	0.409	0.412	0.178	0.179	0.213	0.219	0.178	0.179	0.213	0.220
0.407	0.407	0.407	0.407		0	0.407	0.408	0.415	0.177	0.180	0.212	0.220	1 1	9 9	1 - 6	
$\begin{bmatrix} 0.197 & 0.219 & 0.231 \\ - & - & - \end{bmatrix}$	0.219 0.231 - - 0.404	0.231 - - 0.404	0.404		0.	0.407	0.406	0.417	0.176	0.180	0.211	0.222	0.177	0.180	0.211	0.221
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.218 0.233 - - 0.400	0.233 -	0.400		0	0.407	0.405	0.421	0.175	0.181	0.209	0.223	0.176	0.181	0.210	0.222
	0.217 0.235	0.235	0 307			- 0704	- 0	0	- 127	- 0	8060	- 0	0.175	0.181	0.209	0.223
	0.216 0.237	0.237	65.0			- 0	# 6 6 7 7	24.0	# : - :	0.102	0.4.0	# 1	0.174	0.182	0.207	0.224
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.238 0.395	0.395		0	0.406	0.403	0.425	0.174	0.182	0.207	0.225	0.173	0.182	0.206	0.225
0.392	0.215 0.240	0.392	0.392		0.	0.406	0.402	0.428	0.173	0.183	0.205	0.225	0.172	0.183	0.205	0.226
0.388	0.388	0.388	0.388		0	0.406	0.402	0.431	0.172	0.183	0.204	0.226	0.171	0.183	- 0.203	- 0 226
0.385	0.385	0.385	0.385		0.	0.405	0.401	0.434	0.171	0.183	0.203	0.227	0 170	183	- 000	- 0 227
0.195 0.213 0.346	0.383	0.383	0.383		0	0.403	0.401	0.437	0.170	0.184	0.202	0.228	0.169	0.184	- 0 201	8660
0.380	0.380	0.380	0.380		0	0.402	0.400	0.439	0.169	0.184	0.201	0.229				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.212 0.248 - 0.376	0.248 - 0.376	0.376		0	0.401	0.399	0.442	0.168	0.185	0.199	0.229	0.108	0.184	0.200	0.229
0.194 0.212 0.249 - - - 0.373	0.212 0.249 - - 0.373	0.249 - 0.373	0.373		0	0.400	0.400	0.446	0.167	0.185	0.198	0.230	0.168	0.184	0.198	0.229
0.184 0.193 0.211 0.251 - 0.369 0	0.211 0.251 -	0.251 -	- 0.369		0	- 398	0.400	- 0.448	0.167	- 185	0.197	0.231	0.167	0.185	0.197	0.230
	0.211 0.253	0.253) (1 0) ,) 1	. (0.166	0.185	0.196	0.230
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.255 -	0.300		o.	397	0.400	0.451	001.0		0.196	0.231	0.165	0.185	0.195	0.231
0.179 0.191 0.210 0.257 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.362	0.362		0	0.394	0.400	0.455	0.165	0.186	0.194	0.232	0.164	0.185	0.193	0.232
0.359	0.359	0.359	0.359		0.	0.393	0.399	0.458	0.164	0.186	0.193	0.232	0 162) - C	- 0	- 0
0.150 0.203 0.253	0.309 0.259 0.354	0.354	0.354		0	0.391	0.401	0.462	0.163	0.186	0.192	0.233	0.100	0.100	0.134	207.0
0.189 0.209	0.209 0.262	0.262		0.351		0.388	0.401	0.464	0.162	0.186	0.191	0.234	0.162	0.185	0.191	0.233
0.187 0.209	0.209 0.264	0.264		0.347		0.385	0.400	0.467	0.161	0.186	0.189	0.234	0.161	0.186	0.189	0.233
0.186 0.209 0.266	0.209 0.266	0.266		0.344			0.401	0.471	0.160	0.186	0.188	0.234	0.160	0.186	0.188	0.234
0.171 - 0.208		-	1		- 1			-	-	-			0.159		0.187	-

9R 9P no data 10RTable 3.6: Einstein coefficients A of laser transitions of '628' $\rm CO_2$, $\rm s^{-1}$ 10P9R9Pno data -Hot-e 10R 9 9RSequence 10R 9P no data 10P9R 0.190 0.229 0.229 0.2273 0.2273 0.2282 0.2283 0.2393 0.2303 0. $\begin{array}{c} 0.340 \\ 0.340 \\ 0.340 \\ 0.323 \\ 0.324 \\ 0.325 \\$ Regular 0R 9P $\begin{array}{c} 0.000 \\ 0.101 \\ 0.122 \\ 0.131 \\ 0.142 \\$ 10R $\begin{array}{c} 0.0202\\$ 10P

	9R																														
s^{-1}	Hot-f 10R 9P	- no data -																													
0.02,	10P																														
sitions of 828 , CO ₂ ,	Hot-e 10R 9P 9R	- no data -																													
tran:	10P																														
f laser	9R																														
Einstein coefficients A of laser transitions of	Sequence 10R 9P	- no data -																													
coeffi	10P																														
linstein	9R	0.121	0.166	0.171	0.175	0.178	0.179	0.182	0.183	0.185	0.187	0.187	0.189	0.191	0.192	0.193	0.195	0.196	0.198	0.200	0.201	0.202	0.204	0.205	0.207	0.208	0.210	0.213	0.214	0.216	
3.7: E	Regular R 9P	0.240	0.204	0.195	0.190	0.187	0.184	0.183	0.181	0.179	0.178	0.178	0.177	0.176	0.175	0.174	0.174	0.174	0.173	0.173	0.172	0.172	0.171	0.171	0.170	0.170	0.170	0.170	0.170	0.170	0.169
Table 3.7:	Reg 10R	0.038	0.051	0.053	0.054	0.054	0.054	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.054	0.054	0.054	0.054	0.054	0.054	0.053	0.053	0.052	0.052	
	10P	0.075	0.064	0.061	0.059	0.059	0.058	0.057	0.057	0.056	0.056	0.056	0.055	0.055	0.055	0.054	0.054	0.054	0.053	0.053	0.052	0.052	0.052	0.051	0.051	0.050	0.050	0.049	0.049	0.049	0.048
	J	0 1 2	g 4	១១០១	~ oc	10	112	14	15	18	20	22	24.2	26	28	30	32	34	36	388	40	47	3 4 4 4 4 7	46	48	500	52	5.4 4.7	56 57	. 20 E	09

	9R																															
s^{-1}	$\frac{\mathrm{Hot-f}}{10\mathrm{R}}$		- no data -																													
	10P																															
536' (9R																															
s of	Hot-e)R 9P		no data -																													
ition	Ho 10R		ou -																													
trans	10P																															
laser	9R																															
A of	ence 9P		ata -																													
$_{ m ients}$	Sequence 10R 9P		- no data																													
coeffic	10P																															
Table 3.8: Einstein coefficients A of laser transitions of '636' CO_2	9R	0.077	0.099	0.106	0.109	0.111	0.113	0.114	0.115	0.116	0.117	0.118	0.119	0.120	0.121	0.122	0.122	0.123	0.124	0.125	0.126	0.127	0.128	0.129	0.130	0.131	0.132	0.133	0.133	0.133	0.133	-
3.8: E	Regular R 9P		0.153	0.131	0.124	0.121	0.119	0.118	0.117	0.116	0.115	0.114	0.114	0.113	0.113	0.112	0.112	0.112	0.111	0.111	0.111	0.111	0.110	0.110	0.110	0.110	0.110	0.110	0.109	0.109	0.109	0.109
Table	$_{10\mathrm{R}}^{\mathrm{Reg}}$	0.147	0.189	0.201	0.207	0.210	0.212	0.214	0.215	0.216	0.216	0.217	0.217	0.217	0.217	0.217	0.217	0.217	0.216	0.216	0.215	0.215	0.214	0.214	0.213	0.212	0.211	0.210	0.209	0.208	0.208	
	10P	ı	0.293	0.251	0.239	0.233	0.229	0.226	0.224	0.222	0.220	0.219	0.217	0.216	0.215	0.213	0.212	0.210	0.209	0.207	0.206	0.204	0.203	0.201	0.199	0.198	0.196	0.194	0.192	0.191	0.191	0.191
	r	0 +	- 67 6	υ 4 п	100	~ ∞ ‹	9 10	112	14	15	18	20	22	22.2	5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	788	30	31 32	34	30	38	40 40	41	44 44 7	24 46 7	484	50	52	554	56	- 20 r.	09

	9R	99. 1	
	-t ЭБ	1 6 9P 1 9	
-	Hot 10R	Hot-f 10R 9	
$0_2, s^{-1}$	10P		
'638' CO ₂	9R	80 Hg	
	9P		
ions (Hot-e 10R	no data	
ansit	10P		
ser tı	9R 1		
of la	0		
S A	uence 9P	Sequence 10R 99 no data	
cient	Sequ 10R	2 Segundary 10R	
coeffi	10P	100	
Table 3.9: Einstein coefficients A of laser transitions of	9R	9R 0.221 0.221 0.199 0.198 0.183 0.173 0.173 0.173 0.173 0.173 0.180 0.180 0.182 0.182 0.182 0.183 0.183 0.184 0.185 0.1	0.192 0.193 0.194 0.195 0.195 0.196 0.198 0.200 0.200 0.203 0.204 0.206 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208 0.208
3.9: E	ılar 9P	1 1 1 1 1 1 1 1 1 1	0.149 0.149 0.149 0.148 0.148 0.148 0.148 0.144 0.147 0.146 0.146 0.146
Table	$_{10R}^{ m Regu}$	Regular 10R 9 10.231 0.231 0.221 0.223 0.223 0.223 0.223 0.223 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.220 0.221 0.220 0.221 0.2	0.215 0.216 0.216 0.216 0.217 0.217 0.217 0.218 0.218 0.218 0.219 0.219 0.219 0.219
	10P	10P 	0.130 0.155 0.154 0.157 0.151 0.151 0.151 0.148 0.148 0.146 0.147 0.143 0.133 0.138 0.135 0.135 0.135
	J	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.7 3.8 3.8 3.9 3.9 3.9 3.9 3.9 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 5.5 5.5

	9R																															
s^{-1}	$\frac{\mathrm{Hot-f}}{10\mathrm{R}}$		- no data -																													
of '838' CO_2 ,	10P																															
	9R																															
	9-e 9P	5	ata -																													
	Hot-e 10R		- no data																													
	10P																															
	9R																															
	nce 9P	5	ata -																													
	Sequence 10R 9P		- no data																													
	10P																															
linstein	9R	0.070	0.090	960.0	960.0	0.101	0.102	0.103	0.105	0.105	0.106	0.107	0.108	0.109	0.110	0.111	0.111	0.112	0.113	0.114	0.115	0.116	0.116	0.117	0.118	0.119	0.120	0.121	0.122	0.123	0.124	1
Table 3.10: E	ılar 9P	5	0.138	0.118	0.112	0.109	0.107	0.106	0.105	0.104	0.103	0.103	0.102	0.102	0.101	0.101	0.100	0.100	0.100	0.099	0.099	0.099	0.099	0.098	0.098	0.098	0.098	0.098	0.098	0.098	860.0	0.097
	Regular 10R 9	0.053	0.068	0.072	0.074	0.075	0.076	0.076	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.076	0.076	0.076	0.075	0.075	0.075	0.075	0.074	0.073	0.073	'
	10P	-	0.105	0.090	0.086	0.083	0.082	0.081	0.080	0.080	0.079	0.079	0.078	0.077	0.077	0.077	0.076	0.075	0.075	0.074	0.074	0.073	0.073	0.072	0.071	0.071	0.070	0.070	0.069	0.068	890.0	0.067
	J	0	120	ω 4 r	ဂ ပ ဂ	~ oo o	015	12	5 4 ;	16	18	20	222	2 2 2 2 4 7	70 70 70 71	28	30	32	25 to	30	38	39 40	4 4 2 5 4 5	444	46	4 4 6	4.9 5.0 1.1	52	65 4 7	55 70 74	- 20 C	09

The field in a given point with radial coordinate ρ' in the output plane is then calculated as

$$E(\rho') = \int_{\rho} E(\rho) \frac{e^{-ikR}}{i\lambda R} J_0(k\Delta R/2) dS$$
(3.15)

where $dS = \pi(\rho + d\rho/2)^2 - \pi(\rho - d\rho/2)^2$ is the area of the ring, $R = (R_{max} + R_{min})/2$, $\Delta R = R_{max} - R_{min}$, $R_{max} = \sqrt{(\rho + \rho')^2 + \Delta z^2}$, $R_{min} = \sqrt{(\rho - \rho')^2 + \Delta z^2}$, and J_0 is the Bessel function.

3.5 Optical elements

Optical elements change the electric field as described by the following formulas. In these formulas $E(t, \rho)$ is the field in the input of the element and $E'(t, \rho)$ - after passing through the element.

Probe

(Passive surface, may be used as limiting aperture)

$$E'(t,\rho) = E(t,\rho),$$

Mask

(Opaque circular screen)

$$E'(t,\rho) = 0, \qquad \rho < R$$

$$E'(t,\rho) = E(t,\rho), \qquad \rho \ge R$$

where R is the radius of the mask.

Absorber

(Ideal ND filter)

$$E'(t,\rho) = E(t,\rho)\sqrt{T},$$

where T is the transmittance.

Lens

(Ideal lens without aberrations)

$$E'(t,\rho) = E(t,\rho) \exp\left(\pi i \frac{\rho^2}{\lambda_c F}\right),$$

where F is the focal length of the lens and λ_c is the central wavelength.

Window

(Flat transparent window with zero reflection- and absorption- losses)

Linear dispersion

$$\widehat{E}(\nu,\rho) = \mathcal{F}(E(t,\rho)),$$

$$\widehat{E}'(\nu,\rho) = \widehat{E}(\nu,\rho) \exp\left(-2\pi i\nu \frac{\Theta}{c} \left(n_0(\nu) - n_0(\nu_c) - \nu_c \frac{dn_0}{d\nu}\right)\right),$$

$$E'(t,\rho) = \mathcal{F}^{-1}(\widehat{E}'(\nu,\rho)),$$

where $\widehat{E}(\nu,\rho)$ is the field in the frequency domain, \mathcal{F} and \mathcal{F}^{-1} the Fourier transform and inverse Fourier transform functions, ν the frequency, ν_c the central frequency, n_0 is the linear component of the index of refraction and Θ is the thickness of the window.

Nonlinear interaction

$$E'(t,\rho) = E(t,\rho) \exp\left(-2\pi i \nu_c \frac{\Theta}{c} n_2 I(t,\rho)\right),$$

where n_2 is the nonlinear refractive index and $I(t, \rho)$ is the field intensity.

Stretcher

(Stretcher or compressor)

$$\widehat{E}(\nu,\rho) = \mathcal{F}(E(t,\rho)),$$

$$\widehat{E}'(\nu,\rho) = \widehat{E}(\nu,\rho) \exp\left(-\pi i(\nu - \nu_c)^2 S\right),$$

$$E'(t,\rho) = \mathcal{F}^{-1}(\widehat{E}(\nu,\rho)),$$

where S is the stretching factor (in s/Hz, positive for red chirp).

3.6 Properties of optical materials

The following expressions and values for linear- (n_0) and nonlinear- (n_2) refractive indexes are used in the program (wavelength λ in the dispersion formulas must be expressed in μ m):

CdTe

$$n_0 = \sqrt{1 + \frac{6.1977889\lambda^2}{\lambda^2 - 0.1005326} + \frac{3.2243821\lambda^2}{\lambda^2 - 5279.518}} [16]$$

$$n_2 = -2.95 \times 10^{-13} \text{ cm}^2/\text{W at } 1.06 \ \mu\text{m} [17]$$

GaAs

$$n_0 = \sqrt{5.372514 + \frac{5.466742\lambda^2}{\lambda^2 - 0.4431307^2} + \frac{0.02429960\lambda^2}{\lambda^2 - 0.8746453^2} + \frac{1.957522\lambda^2}{\lambda^2 - 36.9166^2}}$$
 [18]
$$n_2 = -3.26 \times 10^{-13} \text{ m}^2/\text{W at } 1.06 \ \mu\text{m} \ [17]$$

Ge

$$n_0 = \sqrt{9.28156 + \frac{6.72880\lambda^2}{\lambda^2 - 0.44105} + \frac{0.21307\lambda^2}{\lambda^2 - 3870.1}} [19]$$

$$n_2 = 2.83 \times 10^{-13} \text{ cm}^2/\text{W at } 10.6 \ \mu\text{m} [17]$$

KCl

$$n_0 = \sqrt{1.26486 + \frac{0.30523\lambda^2}{\lambda^2 - 0.100^2} + \frac{0.41620\lambda^2}{\lambda^2 - 0.131^2} + \frac{0.18870\lambda^2}{\lambda^2 - 0.162^2} + \frac{2.6200\lambda^2}{\lambda^2 - 70.42^2}}}$$
 [20]

$$n_2 = 5.62 \times 10^{-16} \text{ cm}^2/\text{W at } 1.06 \ \mu\text{m} [17]$$

NaCl

$$n_0 = \sqrt{1.00055 + \frac{0.19800\lambda^2}{\lambda^2 - 0.050^2} + \frac{0.48398\lambda^2}{\lambda^2 - 0.100^2} + \frac{0.38696\lambda^2}{\lambda^2 - 0.128^2} + \frac{0.25998\lambda^2}{\lambda^2 - 0.158^2} + \frac{0.08796\lambda^2}{\lambda^2 - 40.50^2} + \frac{3.17064\lambda^2}{\lambda^2 - 60.98^2} + \frac{0.30038\lambda^2}{\lambda^2 - 120.34^2}}}{n_2 = 4.38 \times 10^{-16} \text{ cm}^2/\text{W at } 1.06 \ \mu\text{m}} [17]$$

Si

$$n_0 = 3.41983 + \frac{0.159906}{\lambda^2 - 0.028} - 0.123109 \left(\frac{1}{\lambda^2 - 0.028}\right)^2 + 1.26878 \times 10^{-6} \lambda^2 - 1.95104 \times 10^{-9} \lambda^4 \ [21]$$

$$n_2 = 1.0 \times 10^{-13} \ \text{cm}^2/\text{W} \ \text{at} \ 2.2 \ \mu\text{m} \ [22]$$

ZnSe

$$n_0 = \sqrt{1 + \frac{4.45813734\lambda^2}{\lambda^2 - 0.200859853^2} + \frac{0.467216334\lambda^2}{\lambda^2 - 0.391371166^2} + \frac{2.89566290\lambda^2}{\lambda^2 - 47.1362108^2}}$$
 [23]
$$n_2 = 2.87 \times 10^{-14} \text{ cm}^2/\text{W at } 1.06 \text{ } \mu\text{m} \text{ [17]}$$

Bibliography

- [1] N. V. Karlov and Y. B. Konev. High pressure pulsed CO₂ lasers. In A. M. Prokhorov, editor, *Handbook on lasers*. Sovetskoe Radio, Moscow, 1978 (in Russian).
- [2] T. Holstein. Energy distribution of electrons in high frequency gas discharges. Phys. Rev., 70:367–384, 1946.
- [3] W. L. Nighan. Electron energy distributions and collision rates in electrically excited N₂, CO, and CO₂. Phys. Rev. A, 2:1989–2000, 1970.
- [4] R. D. Hake and A. V. Phelps. Momentum-transfer and inelastic-collision cross sections for electrons in O₂, CO, and CO₂. Phys. Rev., 158:70–84, 1967.
- [5] L. S. Frost and A. V. Phelps. Rotational excitation and momentum transfer cross sections for electrons in H₂ and N₂ from transport coefficients. *Phys. Rev.*, 127:1621–1633, 1962.
- [6] J. J. Lowke, A. V. Phelps, and B. W. Irwin. Predicted electron transport coefficients and operating characteristics of CO₂-N₂-He laser mixtures. J. Appl. Phys., 44:4664–4671, 1973.
- [7] Y. D. Oksyuk. Excitation of the rotational levels of diatomic molecules by electron impact in the adiabatic approximation. Sov. J. Exp. Theor. Phys., 22:873, 1966.
- [8] N. Chandra and P. G. Burke. Rotational excitation cross sections for e⁻-N₂ scattering. J. Phys. B: At. Mol. Phys., 6:2355–2357, 1973.
- [9] A. V. Phelps. Rotational and vibrational excitation of molecules by low-energy electrons. Rev. Mod. Phys., 40:399–410, 1968.
- [10] G. J. Schulz. Vibrational excitation of nitrogen by electron impact. Phys. Rev., 125:229–232, 1962.
- [11] A. G. Engelhardt, A. V. Phelps, and C. G. Risk. Excitation of the rotational levels of diatomic molecules by electron impact in the adiabatic approximation. *Phys. Rev.*, 135:A1566–A1574, 1964.
- [12] A. S. Biryukov, V. K. Konyukhov, A. I. Lukovnikov, and R. I. Serikov. Relaxation of the vibrational energy of the (00⁰1) level of the CO₂ molecule. Sov. J. Exp. Theor. Phys., 39:610, 1974.
- [13] R. L. Taylor and S. Bitterman. Survey of vibrational relaxation data for processes important in the CO₂-N₂ laser system. *Rev. Mod. Phys.*, 41:26–47, 1969.
- [14] H. C. Volkin. Calculation of short-pulse propagation in a large CO₂-laser amplifier. *J. Appl. Phys.*, 50:1179–1188, 1979.
- [15] R. D. Hake and A. V. Phelps. Einstein coefficients, cross sections, f values, dipole moments, and all that. arXiv:physics/0202029, 2002.
- [16] A. G. DeBell, E. L. Dereniak, J. Harvey, J. Palmer J. Nissley, A. Selvarajan, and W. L. Wolfe. Cryogenic refractive indices and temperature coefficients of cadmium telluride from 6 μ m to 22 μ m. Appl. Opt., 18:3114–3115, 1979.

- [17] M. Sheik-Bahae. Dispersion of bound electron nonlinear refraction in solids. IEEE J. Quant. Electron., 27:1296–1309, 1991.
- [18] T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, L. Becouarn B. Gerard, and E. Lallier. Improved dispersion relations for gaas and applications to nonlinear optics. J. Appl. Opt., 94:6447–6455, 2003.
- [19] N. P. Barnes and M. S. Piltch. Temperature-dependent sellmeier coefficients and nonlinear optics average power limit for germanium. *J. Opt. Soc. Am.*, 69:178–180, 1979.
- [20] H. H. Li. Refractive index of alkali halides and its wavelength and temperature derivatives. *J. Phys. Chem. Ref. Data*, 5:329–528, 1976.
- [21] D. F. Edwards and E. Ochoa. Infrared refractive index of silicon. Appl. Opt., 19:4130-4131, 1980.
- [22] A. D. Bristow, N. Rotenberg, and H. M. van Driel. Two-photon absorption and kerr coefficients of silicon for 850–2200 nm. *Appl. Phys. Lett.*, 90:191104, 2007.
- [23] B. Tatian. Fitting refractive-index data with the sellmeier dispersion formula. Appl. Opt., 23:4477–4485, 1984.