G 7 2 2020/11/18 Jian Questions précédents. TX 1er blong Tmax: le temps naxinal de xilleray (34'): Tmax, sel regulière. Alors. pour Q>3Ht E(0,T), $\| u(\cdot,\pm)\|_{L^{2}} > \frac{Cp}{(\sqrt{-x})^{1-\frac{3}{2}}}$ Cp depend de p, non $u(x,\pm)$ Quentitatif

Non Critique 1 Tmax: le temps maximal d'existence. La Lx espace critique Seregin (141) Non telle uniformée forezion. Soit If to fee > o as E > o. et 114(1,2) 132 f(+2) En effet, pow t=0, || U(,0) || 3 2f(7) $\mathcal{N}^{\lambda}(y,s) = \lambda \mathcal{N}(\lambda y, \lambda^{i} s)$ Tao (19') Supposons T* Ler Lemps blow-up. Alors. lim (ly by log (T*))

Supposons
$$T^*$$
 Ler temps about up. Alors. $\lim_{z \to T^*} (\log \log \left(\frac{C}{T^* + 2} \right))^c$

$$\implies \lim_{z \to T^*} ||u(\cdot, z)||_{L^3} > C \log \log \log \left(\frac{C}{T^* + 2} \right), \text{ Non uniformement.}$$

$$\text{depend de } u$$

ex: $f_n(z) = n^{-2} + \lim_{z \to \infty} \frac{f_n(z)}{t^2} = + \infty$ $\lim_{z \to \infty} f_n(z)$ $\lim_{z \to \infty} \frac{1}{z} \frac{\forall n}{z}$

V

- 2: blow-up:

The first instant of time T when singularities occur is called a blow up time. By definition, $z_0 = (x_0, t_0)$ is a regular point of v if it is essentially bounded in a nonempty parabolic ball with the center at the point z_0 . The point z_0 is *singular* if it is not regular.

3: Différence: ESS 03'

limsup || U(·,2)||2 =00

Seregin 12'
Lim || U(1, 2)||_3 = 00
2-7" plus forde

Voir livre de PG 02' ou l'arctide de Jia & Sverak 14 **Definition 3.1** (Leray solution) A vector field $u \in L^{\frac{2}{10c}}(\mathbb{R}^3 \times [0, \infty))$ is called a Leray solution to Navier-Stokes equations with initial data u_0 if it satisfies:

a Leray solution to Navier-Stokes equations with initial data
$$u_0$$
 if it satisfies:

(i) $\operatorname{ess\,sup}_{0 \le t < R^2} \sup_{x_0 \in R^3} \int_{B_R(x_0)} \frac{|u|^2}{2}(x,t) dx + \sup_{x_0 \in R^3} \int_0^{R^2} \times \int_{B_R(x_0)} |\nabla u|^2 dx dt < \infty$, and

$$\int_{B_R(x_0)} |\nabla u|^2 dx dt < \infty, \text{ and}$$

$$\lim_{|x_0| \to \infty} \int_0^{R^2} \int_{B_R(x_0)} |u|^2 (x, t) dx dt = 0, \quad \text{decay con distinuition } p \text{ in } R^3 \times (0, \infty), \ (u, p) \text{ verifies Navier Stokes equations}$$

$$\partial_t u - \Delta u + u \cdot \nabla u + \nabla p = 0$$

$$\operatorname{div} u = 0$$
in $R^3 \times (0, \infty)$, (3.1)
in the sense of distributions and for any compact set $K \subseteq R^3$,
$$\lim_{t \to 0+} \|u(\cdot, t) - u_0\|_{L^2(K)} = 0.$$

(iii)
$$u$$
 is suitable in the sense of Caffarelli-Kohn-Nirenberg, more precisely, the following local energy inequality holds:
$$\int_0^\infty \int_{R^3} |\nabla u|^2 \phi(x,t) dx dt \le \int_0^\infty \int_{R^3} \frac{|u|^2}{2} (\partial_t \phi + \Delta \phi) + \frac{|u|^2}{2} u \cdot \nabla \phi$$

$$+ pu \cdot \nabla \phi dx dt \qquad (3.2)$$
 for any smooth $\phi \ge 0$ with supp $\phi \in R^3 \times (0, \infty)$. The set of all Leray

solutions starting from u_0 will be denoted as $\mathcal{N}(u_0)$

us $decompose^1 \ u_0 = u_0^1 + u_0^2 \ with \ div \ u_0^1 = 0, \ u_0^1|_{B_{4/3}} = u_0, \ supp \ u_0^1 \in B_2(0)$ and $\|u_0^1\|_{B^m(R^3)} \leq C(M,m)$. Let a be the locally in time defined mild solution to Navier-Stokes equations with initial data u_0^1 . Then there exists a positive $T = T(\alpha, m, M) > 0$, such that any Leray solution $u \in \mathcal{N}(u_0)$ satisfies: $u - a \in C_{par}^{\gamma}(\overline{B_{1/2}} \times [0,T]), \ and \ \|u - a\|_{C_{par}^{\gamma}(\overline{B_{1/2}} \times [0,T])} \leq C(M,m,\alpha), \ for some \ y = \gamma(m) \in (0,1).$

2 B2(0) \\ \(\rightarrow\)

B2(0) \\
\(\rightarrow\)

 $U_0|_{4/3} = U_0$ $||u_0||_{1/2}$ $||u_0||_{1/2}$ $||u_0||_{1/2}$ $||u_0||_{1/2}$ $||u_0||_{1/2}$

E-régulanité: β ∂e V - Δ V + α· ∇ V + div(a⊗ V) + U· ∇V + ∇ 9 = 0 }

Theorem 212 (Improved ϵ -regularity criteria) Let (V, \mathcal{P}) be a suitable weak solution to Eq. (2.1) in Q_1 , with $a \in L^m(Q_1)$, div a = 0, $||a||_{L^m(Q_1)} \leq M$, for some M > 0 and m > 5. Then there exists $\epsilon_1 = \epsilon_1(m, M) > 0$ with the following properties: if

$$\left(\int_{Q_1} |\mathbf{v}|^3 dx dt \right)^{1/3} + \left(\int_{Q_1} |\mathbf{v}|^{3/2} dx dt \right)^{2/3} \le \epsilon_1,$$

then V is Hölder continuous in $Q_{1/2}$ with exponent $\alpha = \alpha(m) > 0$ and

$$\|\mathbf{V}\|_{C^{\alpha}_{par}(Q_{1/2})} \le C(m, \epsilon_1, M) = C(m, M).$$
 (2.22)

à faire

V=U-a Pf of The II: a est une al mild de NS. avec Vo. ∫ 22 α - Δα + α· γα + ∇ρ = 0

div α = 0 , α(·, 0) = u. 1 ∈ 1 κ 3. par la thy des sol mild: 1P(dea - 00 + 0.00) + 1P(00) =0 => 22a = 0a + 1p (a. va) => a(12x) = e 10,1x)+ 5 2 (2-5) = [Pdivlaga)(x, s) ds Blasa) B: X x X -> X . bilicem et contin $\|\mathbf{B}(\mathbf{a}, \mathbf{a})\|_{\mathbf{X}} \leq C\|\mathbf{a}\|_{\mathbf{X}}\|\mathbf{a}\|_{\mathbf{X}}$ pour les espaces critiques: x 23 = { f: (0, T) x 1p3 → 1p3: 11f11 23 = sup2= 21 quend q = 3. difficile. cor 11B1c.a) 1/x3 n'est par borné dans C(0, T; L3(1R3)). Oru 981 mais ici, on a Ui E Lm (123). m>3. Non critique.

P 7	
Regarde l'eq de la cheleur. Joeh-sh =0 \(h(\cdot,0) = h0.	
$\Rightarrow \ h\ _{L^{p}_{L^{\infty}}} \lesssim \ h_{0}\ _{L^{\infty}_{X}} \text{ avec} : \frac{1}{p} = \frac{3}{2}(\frac{1}{r} - \frac{3}{r})$	$\frac{1}{2}$
Ici on a uie Lim(IR3). m>3.	J
=) 11 et us 11 ag & 11 us 11 ===	$\frac{3}{2}(\frac{1}{\gamma}-\frac{1}{9})$
=) e 2 1 1 1 5m < 1 1 1 m Lx	$9 = \frac{5m}{3}. > 5$
=) Estimations pour (a, p)	m>3
=) Estimations pour (a, \hat{p}) sup $\int a ^2(x,a) dx + \int_0^{T_1} 2 \sqrt{2}a ^2(x,a) dx dx \leq C \ U$ often	1 m < Cmm.
(a.F). sol mild.	_ φ
$\frac{d}{d\ell} \int \alpha ^2 \ell = 2 \int d_{\ell} \alpha \cdot \alpha \cdot \ell$ $= -2 \int \alpha \cdot \ell \left(\Delta \alpha - \alpha \cdot \nabla \alpha \right)$	+ VP) Bulxol
\$ desiai2 +25 1780012 =0	∫aq)·(a·7)·a >0 √diva=
3)	S (a y). √p =0

Estimation pour P. pour stand to EIR3. IPI dede & Cmm 72a-Da+ a. Va+ PF=0 1/ divoliv & 11 => OP =- divdiv (a Da) => (\(\int \|\bar{P}\|^{\frac{3}{2}}\) \dx\) = ||\(\bar{P}\phi\)|\(\bar{P}\|^{\frac{3}{2}}\) \quad \(\bar{P}\|^{\frac{3}{2}}\) \quad \(\bar{P} B1(0) =11- divdiv (a@a) \$ 11 13/2 1/23) = 11 (a@a) Pd - [a@a P) \$ 11/3/6 < C | a @a | 3/2 + correctours < C | | a | | 23 (B (0)) =) | |P| = < C || a || 3 | 3 | Pf = fpd - [f, p] +
principale error derme.

on a actorinitif => actor interpolation + Hölder

P9
Posons $V=u-a$, alors V vertire l'éq au sers de distribution $\int_{\mathcal{A}} V - \Delta V + \alpha \cdot \nabla V + \operatorname{div}(a \otimes V) + V \cdot \nabla V + \nabla Q = 0$ $\int_{\mathcal{A}} \operatorname{div} V = 0$ $\operatorname{Ed} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
NS: 28/11/2-2/11/2+ 2/2012+ div(101/20) +2div(up)=0
50il le Co (By310)) Inzegrale en x
$ \frac{\int_{\mathbb{R}^{3}} V ^{2} \psi(x) - div(V ^{2}(v+a))\psi(x) - 2Vdiv(ab)(Y x) - 2div(V ^{2})\psi(x) dx}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} (V ^{2}(v+a)) \nabla \psi}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} (V ^{2}(v+a)) \nabla \psi}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} V ^{2} dv}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} V ^{2} V ^{2} dv}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} V ^{2} V ^{2} dv}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} V ^{2} V ^{2} dv}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} V ^{2} V ^{2} dv}{\int_{\mathbb{R}^{3}} V ^{2} dv} = \frac{\int_{\mathbb{R}^{3}} V ^{2} dv}{\int_{\mathbb{R}^{3}$
Indégrée en t
∫ (V(x, 2)) (p(x) dx + 2) (v (x) s) (v x) dx dς
\[\int_{\text{P}}^{\text{f}} \left \frac{1}{2} \psi \ + \left \frac{1}{2} \left \frac{1}{2} \psi \ \psi \psi
+ S (V(2,0)) ² φ(2) dx U ² EM3 E C ((V(·,0)) 2 (B4(3(0)) ~ lim)(V(·,2))((By))
- 0 " LOVIS" 150" (1913)

PLO DE BLIXO)

If in 11 V(., x) -
$$\frac{1}{10^{2}} \frac{1}{10^{2}} \frac{1}{10^$$

Estimations pour
$$Q$$
:

$$\Delta Q = -div (v \cdot \nabla v + a \cdot \nabla v + div (a \otimes v))$$

$$= -div div (v \otimes v + v \otimes a + a \otimes v)$$

$$\downarrow^{10/3} 5/3$$

$$\Rightarrow Q \in L_{ba, 2, x} \leftarrow (C - Z + cut - off)$$

$$\Rightarrow \int_{0}^{2} \int_{B_{10}} |Q|^{3/2} \leq C_{M.m.x} t^{\frac{1}{2}}$$

$$\int_{0}^{2} \int_{0}^{2} |Q|^{3/2} dx^{\frac{1}{2}}$$

$$\int_{0}^{2} |Q|^{3/2} dx^{\frac{1}{2}}$$

$$\int_{0}^{2$$

Theorem 10 (Improved ϵ -regularity criteria) Let (V,Q) be a suitable weak solution to Eq. (2.1) in Q_1 , with $a \in L^m(Q_1)$, div a = 0, $\|a\|_{L^m(Q_1)} \leq M$, for some M > 0 and m > 5. Then there exists $\epsilon_1 = \epsilon_1(m, M) > 0$ with the following properties: if $(\int_{Q_1} |V|^3 dx dt)^{1/3} + \left(\int_{Q_1} |Q|^{3/2} dx dt \right)^{2/3} \leq \epsilon_1,$ then V is Hölder continuous in $Q_{1/2}$ with exponent $\alpha = \alpha(m) > 0$ and $|V|_{C^{\alpha}_{par}(Q_{1/2})} \leq C(m, \epsilon_1, M) = C(m, M).$ (2.22)

P13 (9..V) Extension -1+10 10 on a des estimatione pour (V, q) sur [0, to] ment pour appliquer Thm III, il fant gonter des valeure sur l'internal]-1+ to. 0]. (-1+do,0) V={ ,, (0, to) s; on prend to << 1. (5to 5 1 V13) >3+(5to 5 19)3/3 > C(to) < E. Hölder contin de Biz10) XI-1+to, to] => V est **Theorem 3.** Let $u_0 \in L^2_{loc}(R^3)$ with $\sup_{x_0 \in R^3} \int_{B_1(x_0)} |u_0|^2(x) dx \le \alpha < \infty$. Suppose u_0 is in $L^m(B_2(0))$ with $||u_0||_{L^m(B_2(0))} \le M < \infty$ and m > 3. Let us decompose¹ $u_0 = u_0^1 + u_0^2$ with div $u_0^1 = 0$, $u_0^1|_{B_{4/3}} = u_0$, supp $u_0^1 \in B_2(0)$ and $\|u_0^1\|_{L^m(\mathbb{R}^3)} \leq C(M,m)$. Let a be the locally in time defined mild solution to Navier-Stokes equations with initial data u_0^1 . Then there exists a positive $T = T(\alpha, m, M) > 0$, such that any Leray solution $u \in \mathcal{N}(u_0)$ satisfies: u - m

 $a \in C_{\text{par}}^{\gamma}(\overline{B_{1/2}} \times [0, T]), \text{ and } \|u - a\|_{C_{\text{par}}^{\gamma}(\overline{B_{1/2}} \times [0, T])} \le C(M, m, \alpha), \text{ for some }$

 $\gamma = \gamma(m) \in (0, 1).$

111

P14

Theorem 312 (Local Hölder regularity of Leray solutions) Let $u_0 \in L^2_{loc}(R^3)$ with $\sup_{x_0 \in R^3} \int_{B_1(x_0)} |u|^2(x) dx \le \alpha < \infty$. Suppose u_0 is in $C^{\gamma}(B_2(0))$ with $\|u_0\|_{C^{\gamma}(B_2(0))} \le M < \infty$. Then there exists a positive $T = T(\alpha, \gamma, M) > 0$, such that any Leray solution $u \in \mathcal{N}(u_0)$ satisfies:

$$u \in C^{\gamma}_{\mathrm{par}}\big(\overline{B_{1/4}} \times [0,T]\big), \quad and \quad \underline{\|u\|_{C^{\gamma}_{\mathrm{par}}(\overline{B_{1/4}} \times [0,T])}} \leq C(M,\alpha,\gamma). \quad (3.12)$$

Pf:
$$u_0 = u_0^1 + u_0^2$$
,
 $d: u_0^1 = 0$
 $\sup_{x \in \mathbb{R}^{2}} (u_0^1) \subseteq B_{2}(0)$
 $\|u_0^1\|_{C^{2}(B_{2}(0))} \le M < \infty$.