

Le serie

Sia $\{a_k\}_{k\in\mathbb{N}}$ una successione, definiamo **serie** di termine generale a_k l'operazione che associa ad $\{a_k\}$ la successione $\{s_n\}_{n\in\mathbb{N}}$ dove $s_n=a_0+$ $a_1 + a_2 + ... + a_n$

Indichiamo come $\sum\limits^{+\infty}a_n$ la successione delle somme parziali

Esempio:

$$a_k = (-1)^k o (1+1-1+1-1+1 \ ecc)$$

Le somme parziali di a_k sono: $s_0=1, s_1=0, s_2=1, s_3=0, s_n=rac{1+(-1)^2}{2}$

SERIE CON TERMINE GENERALE DI SEGNO COSTANTE

Supponiamo che sia $a_k \geq 0 \forall k \in \mathbb{N}$ vale anche per \leq

 $ilde{f f igwedge}$ Sia $\sum\limits_{k=0}^{+\infty}a_k,a_k\geq 0$ allora la serie è regolare, ossia o converge o diverge.

CONVERGENZA

Diciamo che la serie di termine generale a_k è **convergente** se **esiste** ed **è finito** il limite di s_n per $n \to +\infty$, se questo limite esiste si chiamerà S e sarà la somma della serie: $\sum_{n=o}^{+\infty} a_n = S$

Teorema necessario per la convergenza

Se $\sum\limits_{k=o}^{+\infty}a_k$ converge, allora $\lim_{n o +\infty}a_n=0$ MA non è vero che se $\lim_{n o +\infty}a_n=0$ allora $\sum\limits_{k=o}^{+\infty}a_k$ converge.

Convergenza assoluta

Se data una serie $\sum\limits_{k=o}^{+\infty}a_k$ la serie $\sum\limits_{k=o}^{+\infty}|a_k|$ converge si dice che la serie è convergente assoluta, e se la serie con termine generale $|a_k|$ converge assolutamnete allora la serei con termine a_k converge semplicemente

DIVERGENZA

La serie tende a $\pm \infty$

PROPRIETA'

- Data $\sum_{n=o}^{+\infty} a_n$ cambiando un numero finito di valori della serie il suo carattere non cambia.
- Data $\sum\limits_{n=o}^{+\infty}a_n$ e c
 eq 0 la serie $\sum\limits_{n=o}^{+\infty}ca_n$ avrà lo stesso carattere di $\sum\limits_{n=o}^{+\infty}a_n=\pm\infty$ se diverge oppure $\sum\limits_{n=o}^{+\infty}a_n=cS$ se la serie converge
- Date due serie $\sum\limits_{n=o}^{+\infty}a_{n},\sum\limits_{n=o}^{+\infty}b_{n}$:

 $\circ~$ Se convergono una ad S e l'Ialtra ad S' allora $\sum\limits_{n=o}^{+\infty}(a_n+b_n)=S+S'$

 $\circ~$ Se $\sum\limits_{n=o}^{+\infty}a_n$ diverge allora $\sum\limits_{n=o}^{+\infty}(a_n+b_n)$ diverge

SERIE GEOMETRICA

$$\sum_{n=0}^{+\infty} x^n \qquad \qquad \sum_{n=0}^{+\infty} x^n$$
 ecc..

(si chiama serie (si chiama serie

geometrica di ragione x) geometrica di ragione 6)

Tutte le serie geometriche hanno $S_n = \frac{1-x^{n-1}}{1-x} \begin{cases} x>1 \text{ diveregnte a} +\infty \\ -1 < x < 1 \text{ convergente a} \frac{1}{1-x} \\ x \leq -1 \text{indeterminata} \end{cases}$

es:

$$\sum_{n=o}^{+\infty} rac{1}{5^n}$$
 base compresa tra -1 e 1 quindi converge a $rac{1}{1-rac{1}{5}}=rac{5}{4}$

SERIE TELESOPICHE

$$\sum_{n=o}^{+\infty} a_k ext{ dove } a_k = \sum_{n=o}^{+\infty} [rac{1}{n+1} - \lim_{n o +\infty} S_n = b_0 - \lim_{n o +\infty} b_{n+1} = 1 \ b_k - b_{k+1} = S_n$$

(si chiama serie geometrica di ragione x)