Геометрия и топология

Солынин А. А.1

11.09.2023 - ...

¹ "Записал Сергей Киселев"

Оглавление

1 Векторное пространство		торное пространство	2	
	1.1	Определение векторного пространства	2	
	1.2	Линейная комбинация, линейная зависимость и линейная неза-		
		висимость	3	
Haveyer 1. Daymanyaa waamayama				
Лекция 1: Векторное пространство			09 09 2023	

Глава 1

Векторное пространство

1.1 Определение векторного пространства

```
Определение 1. Пусть V - множество; +: V \times V \longrightarrow V \cdots : \mathbb{R} \times V \longrightarrow V \forall u, w, v \in V : \forall \alpha, \beta 1. (u+v)+w=(u+v)+w (ассоциативность сложения) 2. u+v=v+u (коммутативность сложения) 3. \exists !0 \in V : u+0=0+u=u (нейтральный элемент по сложению) 4. \exists u; -u: u+(-u)=0 (обратный элемент по сложению) 5. \alpha(u+v)=\alpha u+\alpha v (дистрибутивность) 6. (\alpha \cdot \beta)u=\alpha(\beta \cdot u) (ассоциативность умножения) 7. 1 \cdot u=u (нейтральный элемент по умножению) Если 1-8 выполняются, то V - (вещественное) векторное пространство.
```

Пример. 1. $\mathbb{R}^n=\mathbb{R}\times\mathbb{R}\times...\times\mathbb{R}$ - n-мерное пространство $(a_1...a_n)+(b_1...b_n)=(a_1+b_1...a_n+b_n)$

- 2. Множество многочленов V Множество многочленов n степени не веркторное пространство, т. к. $(x^n+1)+(-x^n+x)=x+1$ сложение не определено Множество многочленов степени $n\leqslant n$ векторное пространство
- 3. Множество определенных на [a..b], непрерывных и имеющих непрерывную производную функций векторное пространство.
- 4. Матрицы $n \times m$ векторное пространство.

5. Множество вращений шара (сложение — композиция, умножение — умножение угла на число на число) — не векторное пространство. (Упражнение: докажите почему)

Свойство. (Доказуемые свойства)

- 1. $\overline{1}$ единственный.
- 2. $\begin{cases} u + v = 0 \\ u + w = 0 \end{cases} \Rightarrow v = w$
- $3. \ -\overline{1} \cdot u = -u$
- 4. $u \cdot 0 = 0$

1.2 Линейная комбинация, линейная зависимость и линейная независимость

Определение 2. V - векторное пространство и векторы $v_1, v_2, v_3, ..., v_n \in V$. Система $v_1, ..., v_n$ называется линейно независимой (ЛНЗ), если из $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0 \Rightarrow \alpha_1 = \alpha_2 = ... = \alpha_n = 0$.

Определение 3. Если $\alpha_1, ..., \alpha_n \in \mathbb{R}, v_1, ..., v_n \in V$. То $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$ – линейная комбинация (ЛК) векторов $v_1, ..., v_n$.

Определение 4. Если $\exists \alpha_1,...,\alpha_n$, не все =0, но $\alpha_1v_1+\alpha_2v_2+...+\alpha_nv_n=0$, то система $v_1,...,v_n$ называется линейно зависимой (ЛЗ).

Теорема 1. $v_1,...,v_n$ – ЛЗ \Leftrightarrow один из этих векторов можно представить как ЛК остальных. $\exists i: v_i = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_{i-1} v_{i-1} + \alpha_{i+1} v_{i+1} + ... + \alpha_n v_n$

Доказательство. \Rightarrow : $\exists \alpha_1,...,\alpha_n (\exists i: \alpha_i \neq 0)$

$$\alpha_1v_1 + \alpha_2v_2 + \ldots + \alpha_nv_n = 0$$

$$\alpha_iv_i = -\alpha_1v_1 - \alpha_2v_2 - \ldots - \alpha_{i-1}v_{i-1} - \alpha_{i+1}v_{i+1} - \ldots - \alpha_nv_n$$

$$\alpha_i \neq 0 \quad v_i = -\frac{\alpha_1}{\alpha_i}v_1 - \ldots - \frac{\alpha_n}{\alpha_i}v_n$$

$$\Leftarrow: v_i = \alpha_1v_1 + \ldots + \alpha_nv_n \text{ без i-ого слагаемого}$$

$$\alpha_1v_1 + \alpha_2v_2 + \ldots + (-1)v_i + \ldots + \alpha_nv_n = 0$$

$$\mathsf{JK} = 0 \text{ не все коэффициенты} = 0$$

Предположение 1. $v_1, ..., v_n$ – ЛНЗ, то любой его поднабор тоже ЛНЗ. $v_1, ..., v_n$ – ЛЗ, то при добавлении векторов, набор останется ЛЗ.

Теорема 2. $v_1,...,v_n$ – ЛНЗ \Leftrightarrow если

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \beta_1 v_1 + \dots + \beta_n v_n$$

$$\Rightarrow \alpha_1 = \beta_1; \alpha_2 = \beta_2; \dots; \alpha_n = \beta_n$$

Доказательство.

$$(\alpha_1-\beta_1)v_1+(\alpha_2-\beta_2)v_2+\ldots+(\alpha_n-\beta_n)v_n=0$$

$$\alpha_i-\beta_i=0\Leftrightarrow v_1,\ldots,v_n\text{--}\Pi\text{H3}$$