Fontes de Tensão

Fontes de Tensão

- Circuitos eletrônicos necessitam de alimentação
 - Circuitos valvulados;
 - Circuitos transistorizados;
 - Circuitos integrados, digitais, entre outros.
- Fonte Linear versus Fonte Chaveada
 - Eficiência energética;
 - Aplicação;
 - Custo;
 - Volume, peso;
 - Confiabilidade;
 - Facilidade de projeto.

Fonte Linear versus Fonte Chaveada

Fonte chaveada de 65 W

Fonte linear de 29 W

Fonte Linear versus Fonte Chaveada

Fonte Linear versus Fonte Chaveada

Fontes Lineares

Tensão de Ripple

1. Sem Carga –
$$R_L = \infty$$

2. Com Carga –
$$R_L < \infty$$

Descarga do Capacitor

$$v_L = V_m e^{-\frac{t}{RC}} = V_m e^{-\frac{t}{\tau}}$$

Descarga do Capacitor

$$v_L = V_m e^{-\frac{t}{RC}} = V_m e^{-\frac{t}{\tau}} \cong \begin{cases} V_m e^{-\frac{T}{2RC}} & (Onda\ Completa) \\ V_m e^{-\frac{T}{RC}} & (Meia\ Onda) \end{cases}$$

Se $T_2 \approx \frac{T}{2}$:

$$v_L = V_m - V_r$$

$$v_{L} = V_{m} - V_{r}$$

$$v_{L} = V_{m}e^{-\frac{T}{2RC}} \approx V_{m} \left[1 - \frac{T}{2RC}\right]$$

$$V_{r} = \frac{V_{m}T}{2RC} = \frac{V_{m}}{2fRC}$$

$$V_r = \frac{V_m T}{2RC} = \frac{V_m}{2fRC}$$

Ripple para Meia Onda

$$V_{r} = \frac{V_{m}T}{RC} = \frac{V_{m}}{fRC}$$

Filtros Capacitivos – Em cascata

Filtros Capacitivos – Em cascata

Fontes de Tensão

Reguladores de Tensão - Cl

Reguladores de Tensão - Cl

Reguladores de Tensão - Cl

Absolute maximum ratings:

Input voltage 40 V Continuous total dissipation 2 W Operating free-air temperature range -65 to 150°C

Nominal output voltage	Regulator	
5 V	7805	
6 V	7806	
8 V	7808	
10 V	7810	
12 V	7812	
15 V	7815	
18 V	7818	
24 V	7824	

µA 7812C electrical characteristics:

Parameter	Min.	Тур.	Max.	Units
Output voltage	11.5	12	12.5	V
Input regulation		3	120	mV
Ripple rejection	55	71		dB
Output regulation		4	100	mV
Output resistance		0.018		Ω
Dropout voltage		2.0		V
Short-circuit output current		350		mA
Peak output current		2.2		A

Ex.: Fonte Regulada

Reguladores de Tensão Ajustáveis

Fontes Chaveadas

Fontes Comerciais

Fontes de Laboratório

