Exercise

Introduction

Task 1. Trigonometry

Solve the following equation for the range $0 \le x \le 2\pi$:

a)
$$6\cos^2(x) - \sin(x) - 4 = 0$$

b)
$$\sin^2(2x) - 2\sin^2(x) + \cos(4x) - 2\cos^2(x) + 1 = 0$$

Task 2. Vectors and Matrices

a) Given are the vectors
$$\underline{v}_1 = \begin{pmatrix} 1 \\ 3 \\ 7 \end{pmatrix}$$
 und $\underline{v}_2 = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$

- 1. Calculate the lengths of the vectors \underline{v}_1 and \underline{v}_2
- 2. Normalise the vectors \underline{v}_1 and \underline{v}_2
- 3. Calculate $3\underline{v}_1 + 2\underline{v}_2$, $\underline{v}_1 \cdot \underline{v}_2$ and $\underline{v}_1 \times \underline{v}_2$
- 4. Show that $\underline{v}_1 \times \underline{v}_2$ is orthogonal to \underline{v}_1 and \underline{v}_2
- 5. Calculate the angle between \underline{v}_1 and \underline{v}_2

b) Given is the matrix
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{bmatrix}$$

- 1. Calculate the determinant $|\underline{A}|$
- 2. Calculate the transposed matrix A^T
- 3. Calculate the inverse matrix A^{-1}
- 4. Is \underline{A} an orthonormal matrix? Justify your answer.

Task 3. Laplace Transform

a) Determine the Laplace transform $F(s) = L\{f(t)\}\$ for

1.
$$f(t) = t$$

2.
$$f(t) = e^{-\alpha t}$$

3.
$$f(t) = e^{-\alpha t} \sin(\omega t)$$

b) Determine the inverse Laplace transform $f(t) = L^{-1} \{F(s)\}$ for

1.
$$F(s) = \frac{4}{s^2 + 6s + 9}$$

2.
$$F(s) = \frac{4}{s^2 + 8}$$

3.
$$F(s) = \frac{10s+8}{s(s^2+3s+2)}$$

c) Solve the following differential equations

1.
$$\ddot{y}(t) + 2\dot{y}(t) + 2y(t) = 5\sin(t)$$

with $y(0) = -2$

and
$$\dot{y}(0) = 0$$

2.
$$\dot{x}(t) + 2\dot{y}(t) - 3y(t) = 3e^t$$

$$\dot{x}(t) - \dot{y}(t) - 6x(t) = 6$$

with
$$x(0) = y(0) = 0$$

