第一周作业

董仕强

Monday 24th February, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明	0
	Problem Set for 17-Feb-2025 1.1 Problem 1	1 1
2	Problem Set for 20-Feb-2025	1
	2.1 Problem 1	1
	2.2 Problem 2	2
	2.3 Problem 3	2
	2.4 Problem 4	3

1 Problem Set for 17-Feb-2025

1.1 Problem 1

Let \mathbb{F} be an arbitrary field, and let $\mathbb{F}[x]$ denote the polynomial ring(algebra) in one indeterminate. For the sake of convention, assume that $x^0 = 1$.

问题 1.1. Demonastrate that |FF[x]| forms a vactor space over \mathbb{F} with the basis $\{x^n\}_{n\geq 0}$.

解答 $\forall f, g, h \in \mathbb{F}[x]$, f + g = g + f and (f + g) + h = f + (g + h).

 $\forall f \in \mathbb{F}[x], a.b \in \mathbb{F}, a(bf) = (ab)f \text{ and } (a+b)f = af + bf.$

 $\forall f, g \in \mathbb{F}[x], a \in \mathbb{F}, a(f+g) = af + ag.$

 $\forall f \in \mathbb{F}[x], 1 \cdot f = f.$

 $\forall f \in \mathbb{F}[x], 0 \cdot f = 0.$

 $\forall f \in \mathbb{F}[x], \exists g \in \mathbb{F}[x] \text{ such that } f + g = 0.$

 $\forall f \in \mathbb{F}[x], \exists a_i \in \mathbb{F} \text{ such that } f = \sum_{i=0}^n a_i x^i.$

问题 1.2. Determine whether the set $\{x^n + 2 \cdot x^{n-1}\}_{n \ge 1}$ constitutes a basis for $\mathbb{F}[x]$, and provide your reasoning.

解答 no.

For example, 1 can not be expressed as a linear combination of $\{x^n + 2 \cdot x^{n-1}\}_{n \ge 1}$.

问题 1.3. Investigate whether the series $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$ belongs to $\mathbb{F}[x]$.

解答 no.

For $f \in \mathbb{F}[x], f = \sum_{i=0}^{\infty} a_i x^i$, only a finite number of a_i are non-zero.

问题 1.4. Is it posible to define a linear map $\mathcal{L}: \mathbb{F}\langle x \rangle \to \mathbb{F}$ such that $\mathcal{L}(f) = l(f)$ for any $f \in \mathbb{F}[x]$.

解答 yes.

$$\mathcal{L}(f) = \lim_{n \to infty} \sum_{i=0}^{n} a_i$$

if f is a finate degree polynomial, higher degree terms are zero.

2 Problem Set for 20-Feb-2025

2.1 Problem 1

Find two linear maps

$$\alpha, \beta : \mathbb{F}[x] \to \mathbb{F}[x],$$

such that

$$\alpha(\beta(f)) - \beta(\alpha(f)) = f$$

for any $f \in \mathbb{F}[x]$,

is it posible to find such $\alpha, \beta: V \to V$ when V is of finite dimension?

解答

- 1. Let $\alpha(f) = f'$, $\beta(f) = xf$.
- 2. no.for finite V, $\alpha: V \to V$ can be represented by a matrix A, $\beta: V \to V$ can be represented by a matrix B, then $\alpha(\beta(f)) \beta(\alpha(f)) = f$ is equivalent to AB BA = I, but $tr(AB BA) = tr(AB) tr(BA) = 0 \neq n$

2.2 Problem 2

Prove the following:

- 1. If f is irreducible in $\mathbb{Z}[x]$, then it is also irreducible in $\mathbb{Q}[x]$;
- 2. If f is irreducible in $\mathbb{R}[x]$, then it is also irreducible in $\mathbb{Q}[x]$.

解答

- 1. If f is reducible in $\mathbb{Q}[x]$, then f = gh, $g, h \in \mathbb{Q}[x]$, g, h can be written as $g = \frac{a}{b}g_1$, $h = \frac{c}{d}h_1$, $a, b, c, d \in \mathbb{Z}$, $g_1, h_1 \in \mathbb{Z}[x]$, then $f = \frac{ac}{bd}g_1h_1$, f is reducible in $\mathbb{Z}[x]$.
- 2. If f is reducible in $\mathbb{Q}[x]$, then f = gh, $g, h \in \mathbb{Q}[x]$, g, h can be written as $g = \frac{a}{b}g_1$, $h = \frac{c}{d}h_1$, $a, b, c, d \in \mathbb{R}$, $g_1, h_1 \in \mathbb{R}[x]$, then $f = \frac{ac}{bd}g_1h_1$, f is reducible in $\mathbb{R}[x]$.

2.3 Problem 3

- 1. Let $f \in \mathbb{Z}[x]$ be a monic polynomial of degree n. Denote the zaros of f in \mathbb{C} by $(z_i)_{i=1}^n$. Show that, if there is existly one z_i such that $|z_i| \geq 1$ and $f(0) \neq 0$, then f is irreducible in $\mathbb{Q}[x]$.
- 2. Let $f \in \mathbb{Z}[x]$ be a polynomial such that f(0) is a prime. DEnote the zeros of f in \mathbb{C} by $(z_i)_{i=1}^n$. Show that, if $|z_i| > 1$ for all i, then f is irreducible.
- 3. Let $f(x) = \sum_{k=0}^{n} a_k \cdot x^k \in \mathbb{Z}[x]$ be a polynomial with f(0) prime. Suppose that $|a_0| > \sum_{k=1}^{n} |a_k|$. Show that F is irreducible.

解答

1. only prove f is irreducible in $\mathbb{Z}[x]$.(Similarly hereinafter) If f is reducible in $\mathbb{Z}[x]$, then f=gh, $g,h\in\mathbb{Z}[x]$.Let the absolute value of all the zeros of g in \mathbb{C} is less than 1, then $|g(0)|=|g(z_1)g(z_2)\cdots g(z_n)|<1$, and $g(0)\in\mathbb{Z}$, so g(0)=0, f(0)=g(0)h(0)=0.

- 2. If f is reducible in $\mathbb{Z}[x]$, then f = gh, $g, h \in \mathbb{Z}[x]$. |f(0)| = |g(0)||h(0)| and |f(0)| is a prime. Let |g(0)| = 1, so at least one of absolute value of zeros of g is less than 1.
- 3. If exists $z \in \mathbb{C}$ such that f(z) = 0 and $|z| \le 1$, then $|a_0| = |\sum_{i=1}^n a_i z^i| \le \sum_{i=1}^n |a_i|$.

2.4 Problem 4

- 1. Is there any irreducible $f(x) \in \mathbb{Z}[x]$ such that f(f(x)) is reducible?
- 2. Prove that $1 + \prod_{k=1}^{2025} (x-k)^2$ is irreducible in $\mathbb{Z}[x]$;
- 3. Prove that $\prod_{k=1}^{n} (x x_k) + 1$ is either irreducible in $\mathbb{Z}[x]$, or a perfect square;
- 4. $(f \in \mathbb{Z}[x])$ Prove that if f(x) = 1 has ≥ 4 solutions in \mathbb{Z} , then f(x) = -1 has no solutions in \mathbb{Z} .
- 5. Prove that the partial sum $(e^x)_{\deg \le n}$ is always irreducible in $\mathbb{Q}[x]$.

解答

- 1. Noticed that $f(x) = x^2 + 10x + 17$ satisfies the condition.
- 2. can't solve
- 3. Let $f(x) = \prod_{k=1}^{n} (x x_k) + 1$, $(x_1 < x_2 < \dots < x_n)$. If f is reducible, Let $f = gh, g, h \in \mathbb{Z}[x]$ and $0 < \deg(g), \deg(h) < n$, then $\forall k$, $g(x_k)h(x_k) = 1$, so $g(x_k) = h(x_k) = 1$, so g = h. That means $f = g^2$.
- 4. If $f(x) = (x a_1)(x a_2)(x a_3)(x a_4)g(x) + 1$, $a_1, a_2, a_3, a_4 \in \mathbb{Z}$, $g \in \mathbb{Z}[x]$, then $f(k) = -1 \Leftrightarrow (k a_1)(k a_2)(k a_3)(k a_4)g(k) = -2$. so -2 must be divisible by $(k a_1)(k a_2)(k a_3)(k a_4)g(k) = -2$, but -2 is not divisible by 4.
- 5. Let $f(x) = 1 + \sum_{k=1}^{n} \frac{x^k}{k!}$, $n! \cdot f(x) = x^n + nx^{n-1} + \dots + \frac{n!}{2!}x^2 + n!x + n! = g(x)$ is irreducible in $\mathbb{Z}[x]$.

Schur?