Dispositivos Lógicos Programáveis

Prof. MSc. André Macário Barros 12/03/2019

PLD - Conceito

• PLD (*Programmable Logic Device*): é um dispositivo que recebe a programação de um circuito digital determinado pelo projetista.

PLD – Vantagem

- Através dos PLDs é possível a utilização de lógicas específicas para determinado fim, criando-se desta forma um *chip*, para determinadas funções.
- Antes disto, usavam-se "n" chips TTL associados, ocupando espaço, trilha e consumo de corrente nos circuitos impressos para se fazer a mesma função.

PLD – Vantagem

- Através dos PLDs foi possível trazer para laboratórios de desenvolvimento uma tecnologia que até então estava disponível para a fabricação de chips em larga escala, que eram os ASICs (Application Specific Integrated Circuits).
- Porém, o custo de produção de um ASIC é altíssimo quando comparado com os poucos dólares desembolsados em um PLD.

PLD – Exemplo

• Considere a seguinte função lógica:

$$-y = (A + B)' \cdot (C \oplus B)$$

- Esta função tem:
 - 1 OR, 1 NOT, 1 AND e 1 XOR

PLD – Exemplo (cont.)

- Se fôssemos utilizar CIs TTL para implementar este circuito:
 - Um 7432 (OR): 3 portas não usadas
 - Um 7404 (NOT): 5 portas não usadas
 - Um 7408 (AND): 3 portas não usadas
 - Um 7486 (XOR): 3 portas não usadas
- Todos com 14 pinos.

PLD – Exemplo (cont.)

- Usando um PLD necessitaríamos somente de um *chip* e escolheríamos um modelo com três entrada e uma saída.
- Menos espaço, menos consumo, menos chances de falhas (1 chip versus 4 usando TTL).

PLD – Classificação

- Os PLDs são classificados conforme segue:
 - SPLDs (Simple PLDs):
 - PAL
 - PLA
 - GAL / PALCE
 - CPLDs; e
 - FPGAs

Primeiros PLDs

- Foram as PALs (*Programmable Array Logic*) e as PLAs (*Programmable Logic Arrays*). A diferença entre uma e outra consistia no esquema de programação.
- Em grande parte de sua existência, as PALs/PLAs só permitiam a implementação de circuitos combinacionais e, com o avanço da tecnologia, buscou-se mantê-las no mercado oferecendo-se recursos para a implementação de circuitos sequenciais, desde que fossem simples (veja o código de um contador na Fig. 4).

Primeiros PLDs

 A tecnologia para a programação das PLAs/PALs era do tipo fusível/antifusível. Logo, admitem uma única programação, isto é, caso o projetista necessitasse efetuar uma alteração no circuito programado, um outro dispositivo deveria ser usado.

PAL - Estrutura

• Um exemplo de como era uma PAL está apresentado na Figura 1, que contém um arranjo programável de interconexões para portas AND e um arranjo fixo de interconexões para portas OR.

PAL Figura 1

PAL - Programação

- Qualquer função lógica pode ser escrita nas formas Soma de produtos (SOP) ou Produtos de somas (POS).
- Para estes dispositivos serem programados, bastam as formas SOP ou POS.
- PALs eram programados através de uma ferramenta (Fig. 4) que dispunha de *solvers* capazes de obter as expressões SOP ou POS a partir de uma função lógica qualquer.

PAL – Programação

				PAL DESIGN SPECIFICAT						
CNT45										
4 bit	cc	unte	er	with	syn	chro	nous	clea	r	
Micha	ael	Hol!	Ley	and	Dave	Pe.	lleri	n		
Clk										
OE	NC		NC	/03	/02	/01	/00	NC	NC	vcc
Q3		Cle								
	+	/03	*	/02	* /9	1 * .	/00			
	+	Q3	*	20						
	+	Q3	*	Q1						
	+	Q3	*	Q2						
Q2	:= Clear									
					* /2	0				
		Q2								
	+	Q2	*	Q1						
Q1		Cl								
		/01								
	+	Q1	*	00						
20		Cl								
	+	/00								
FUNC										
OE C					/01					
L	н	c		L	L	L	L			
L	L	. с		H	L	L	L			
L	L	С		L	H	L	L			
L	L	C		H	H	L	L			
L	L	C		L	L	н	L			
L	H	C		L	L	L	L			

Figura 2

PAL - Programação

 Por exemplo, as funções lógicas a seguir seriam programadas no arranjo conforme está apresentado na Figura 3

$$-f_1 = ab + abcd' + bd$$

$$-f_2 = abc + d$$

PAL – Exemplo

PAL – Exemplo de Código para Contador 4 *bits*

PAL16R4 PAL PAL DESIGN SPECIFICATION CNT4SC 4 bit counter with synchronous clear Michael Holley and Dave Pellerin Clk Clear NC NC NC NC NC NC NC GND NC /Q3 /Q2 /Q1 /Q0 NC NC VCC O3 := Clear + /Q3 * /Q2 * /Q1 * /Q0 Q3 * + /02 * /01 * /00 + Q2 * Q0 Q1 := Clear + /01 * /00 01 * 00 Q0 := Clear FUNCTION TABLE OE Clear Clk /Q0 /Q1 /Q2 /Q3

Figura 4

PLA

- As PLAs operam de forma análoga às PALs, entretanto oferecem vantagem de oferecer arranjos programáveis para interconexões AND e OR.
- Veja Figura 5.

PLA Figura 5

GAL

- A GAL (*Generic Array Logic*) é um PLD que oferece os seguintes avanços tecnológicos frente às PALs/PLAs:
 - São organizadas em um arranjo com portas
 AND e com macrocélulas;
 - Têm um sinal de retorno; e
 - São reprogramáveis.

GAL – Macrocélula

- Uma macrocélula contém:
 - Um flip-flop;
 - Uma porta XOR; e
 - Cinco multiplexadores.
- Esta estrutura permite vários modos de funcionamento, inclusive circuitos sequenciais mais complexos do que os que eram obtidos nas PALs/PLAs. Veja Fig. 6.

GAL – Sinal de Retorno

- As GALs têm um sinal (uma conexão) de retorno que sai de cada macrocélula e conecta-se ao arranjo programável de portas AND.
- Este recurso assegura uma maior versatilidade para a implementação de circuitos idealizados pelo projetista.
- Veja Figura 7.

GAL – Figura 7

25

GAL – Reprogramabilidade

 As GALs são reprogramáveis, pois suas interconexões são feitas com a tecnologia das EEPROMs, ao invés dos fusíveis/antifusíveis usados para programar-se uma única vez as PALs/PLAs.

PALCE

• PALCE (*PAL CMOS electrically erasable/programmable device*) é outro nome em que podem ser encontrados *chips* programáveis com as mesmas características das GALs.

CPLD

- CPLD (*Complex PLD*) é um dispositivo programável que apresenta os seguintes avanços tecnológicos frente às GAL/PALCE:
 - Interface JTAG;
 - − *Drivers* modernos de I/O;
 - Grande número de pinos; e
 - Baixo custo.

CPLD – Interface JTAG

• O CPLD possuir uma interface de programação e teste do tipo JTAG (*Joint Test Action Group*) com outros dispositivos é vista como uma vantagem, pois é padronizada sob a norma IEEE 1149.1 e por isso não é um padrão proprietário.

CPLD – Drivers de I/O

 Acompanhando a tendência dos dispositivos atuais, a sinalização dos CPLDs oferece níveis como LVTTL e LVCMOS.

CPLD – Pinos

- Com o aumento da complexidade do sistema digital que um CPLD consegue implementar, aumenta também o número de pinos que o dispositivo precisa ter para conectar-se a outros sistemas.
- E neste sentido os CPLDs têm um barramento de pinos, isto é, pinos organizados e estruturados em número para serem conectados via conector/soquete.

CPLD – Custo

 Há CPLDs no mercado cujo preço é tão baixo que podem ser encontrados a um dólar. Esta característica, juntamente com a complexidade que é capaz de receber, mantém o CPLD disponível no mercado (PALs, PLAs e GALs, foram descontinuados) juntamente com as FPGAs.

CPLD – Arquitetura Básica

- A Figura 8 apresenta a arquitetura básica dos CPLDs.
- Para que se tenha uma noção do aumento da complexidade deste dispositivo em comparação aos anteriores, na Figura 8, cada bloco PLD é uma GAL.

CPLD – Figura 8

Prof. André M. Barros

CPLD – Programação

- CPLDs são encontrados avulsos ou também inseridos em *kits* de desenvolvimento, que não só são placas que têm dentro de si o dispositivo programável, mas também têm outros recursos práticos para o projetista como chaves digitais, *push buttons*, *leds*, relés, *displays*, etc e interfaces (JTAG, serial, paralela, USB, etc).
- Os fabricantes fornecem *kits* já contendo CPLD e FPGA (veja FPGAs na próxima apresentação).

CPLD – Fabricante Altera

CPLD – XC2C64A da Xlinx Kit Spartan 3E

CPLD – *Kit* Spartan 3E de Desenvolvimento

FPGA

- FPGA: é um PLD que, quando comparado com os CPLDs:
 - Possui uma matriz de blocos lógicos, ao invés de uma coluna deles; e
 - Tais blocos, são menores, em maior número e mais sofisticados.
 - Veja a arquitetura simplificada da FPGA na Figura 9.

FPGA XC3S500E da Xilinx Placa Spartan 3E

FPGA – XC3S100E da Xilinx Kit Basys 2

FPGA – Blocos Adicionais

- Devido aos avanços tecnológicos obtidos, é possível de se encontrar FPGAs com blocos adicionais, como:
 - SRAM (Static Random Acess Memory);
 - DSP (Digital Signal Processor); e
 - PLL (Phase Looked Loop).

FPGA – SRAM

- Os blocos SRAM contidos na FPGA contribuirão para o desenvolvimento de aplicações que requeiram memória e dela possam se dispor sem necessitarem de *chips* externos para tal.
- Este tipo de acesso é mais rápido, pois ocorre dentro do *chip*.

FPGA – DSP

Os blocos DSP são empregados nas aplicações de processamento de sinais, como áudio e vídeo. Para isto, estes blocos são especializados em multiplicar em paralelo as amostras, acumular valores e efetuar o deslocamento destas, dispensando o uso de *chips* DSPs externos para tais funções.

FPGA - PLL

- Os blocos PLL são responsáveis por, entre outras funções, aumentarem a frequência de um *clock* recebido.
- Devido a isto, seu emprego em aplicações de alto desempenho vem sendo necessário frequentemente, por exemplo, circuitos com VCOs (Voltage Controlled Oscillators).

FPGA – Programação

- A programação das FPGAs, da mesma forma que nos anteriores é feita geralmente através de ferramentas de computador do tipo EDA (*Electronic Design Automation*).
- A ferramenta de EDA para os dispositivos da Xilinx era o ISE (atualmente o Vivado) e, para os dispositivos da Altera, era o Quartus (atualmente o Quartus Prime).

FPGA – Programação

FPGA - ISE

Obras Consultadas

- PEDRONI, Volnei. A. Eletrônica Digital Moderna e VHDL. Rio de Janeiro: Elsevier, 2010. CAPÍTULO 18.
- TAUB, Herbert. Circuitos Digitais e Microprocessadores. São Paulo: Mc-Graw-Hill, 1984.