Unsupervised Learning of Distributional Relation Vectors

(Modeling Semantic Relatedness using Global Relation Vectors)

Shoaib Jameel

Zied Bouraoui

Steven Schochaert

ACL 2018

Mingshi Cai

i@unoiou.com

Contents

- 1. Introduction
- 2. Problem Formulation
- 3. Learning Relation Vectors
- 4. Evaluation
- 5. Conclusion

Introduction

a is to **b** what **c** is to ?

$$\cos(w_b - w_a + w_c, w_d)$$

Induction with learned entity embeddings

Introduction

word pair	cos
(horse, horses)	0.84
(boy, girl)	0.79
(madrid, spain)	0.73
(london, england)	0.69
(spain, madrid)	0.68
(walk, walks)	0.65

(Mikolov et al, 2013)

What about relations?

Introduction

What about relations?

Problem formulation

• Given a pair of *words* (*i*, *k*), we want to learn a vector that represents their relationship.

 Main strategy: use the distribution of context words that appear in sentences which contains word i and word k.

Standard approach: averaging word vectors

Pass the popcorn: Oscar movie reviews!

GloVe word embedding model

(Pennington et al., 2014)

Variant GloVe

$$\sum_{i} \sum_{\substack{j \\ x_{ij} \neq 0}} f(x_{ij})(w_i \cdot \tilde{w_j} + b_i + \tilde{b_j} - PMI_X(i,j))^2$$

$$\sum_{i} \sum_{j \in J_i} \frac{1}{\sigma_j^2} (w_i \cdot \tilde{w_j} + \tilde{b_j} - PMI_S(i,j))^2$$

"target vector" for word i

$$\sum_{i} \sum_{j \in J_{i}} \frac{1}{\sigma_{j}^{2}} (\mathbf{w_{i}} \cdot \mathbf{\tilde{w}_{j}} + \tilde{b_{j}} - PMI_{S}(i, j))^{2}$$

"context vector" for word j

$$\sum_{i} \sum_{j \in J_i} \frac{1}{\sigma_j^2} (w_i \cdot \tilde{w_j} + \tilde{b_j} - PMI_S(i,j))^2$$

Smoothed estimation of pointwise mutual information

$$PMI_S(i,j) = \log\left(\frac{P(i,j)}{P(i)P(j)}\right)$$

$$P(i) = \frac{x_{i*} + \alpha}{x_{**} + n\alpha}$$
$$P(i,j) = \frac{x_{ij} + \alpha}{x_{**} + n^2\alpha}$$

$$\sigma_j^2 = \frac{1}{|J_j^{-1}|} \sum_{i \in J_i^{-1}} (w_i \cdot \tilde{w_j} + \tilde{b_j} - PMI_S(i, j))^2$$

$$PMI_W(i,j) = w_i \cdot \tilde{w_i} + \tilde{b_i}$$

$$PMI_S(i,j) = \log \left(\frac{P(i,j)}{P(i)P(j)} \right)$$

$$PMI_W(i,j) \approx PMI_S(i,j)$$

Learning global relation vectors

- The main idea is r_{ik} will capture which context words j are most closely associated with the word pare (i, k).
- We need statistics on (source word, context word, target word) triples.

Learning global relation vectors Co-occurrence statistics for triples

$$y_{ijk} = \sum_{l=1}^{m} \sum_{p \in \mathcal{P}_i^l} \sum_{q \in \mathcal{P}_j^l} \sum_{r \in \mathcal{P}_k^l} weight(p, q, r)$$

$$\mathcal{P}_i^l \subseteq \{1, ..., n_l\}$$

$$weight(p, q, r) = \max(\frac{1}{q-p}, \frac{1}{r-q})$$

$$(p < q < r \ and \ r - p <= W)$$

Learning global relation vectors Co-occurrence statistics for triples

$$\begin{split} \mathit{SI}^{1}(i,j,k) &= \log \left(\frac{P(i,j)P(i,k)P(j,k)}{P(i)P(j)P(k)P(i,j,k)} \right) \\ \mathit{SI}^{2}(i,j,k) &= \log \left(\frac{P(i,j,k)}{P(i)P(j)P(k)} \right) \\ \mathit{SI}^{3}(i,j,k) &= \log \left(\frac{P(i,j,k)}{P(i,k)P(j)} \right) \\ \mathit{SI}^{4}(i,j,k) &= \log \left(\frac{P(i,k|j)}{P(i|j)P(k|j)} \right) \\ \mathit{PMI}(i,j) + \mathit{PMI}(j,k) - \mathit{SI}^{1}(i,j,k) = \mathit{SI}^{3}(i,j,k) \\ \mathit{SI}^{2}(i,j,k) - \mathit{PMI}(i,j) - \mathit{PMI}(j,k) = \mathit{SI}^{4}(i,j,k) \end{split}$$

Learning global relation vectors Co-occurrence statistics for triples

$$\sum_{i} \sum_{j \in J_i} \frac{1}{\sigma_j^2} (w_i \cdot \tilde{w_j} + \tilde{b_j} - PMI_S(i,j))^2$$

$$\sum_{j \in J_{i,k}} (r_{ik} \cdot \tilde{w_j} + \tilde{b_j} - SI(i,j,k))^2$$

Overall representation of relationship between words i and k:

Overall representation of relationship between words i and k:

relation vectors obtained from context words that occur

between i and k

Overall representation of relationship between words i and k:

Overall representation of relationship between words i and k:

relation vectors obtained from context words that occur after i and k

Evaluation relation induction

Table 1: Results for the relation induction task.

	Google Analogy								
	Diff	Conc	Avg	R^1_{ik}	R_{ik}^2	R_{ik}^3	R_{ik}^4		
Acc	90.0	89.0	89.9	90.0	92.3	90.9	90.4		
Pre	81.6	78.7	80.8	79.9	87.1	83.2	81.1		
Rec	82.6	83.9	83.9	86.0	84.8	84.8	85.5		
F1	82.1	81.2	82.3	82.8	85.9	84.0	83.3		

	DiffVec								
	Diff	Conc	Avg	R^1_{ik}	R_{ik}^2	R_{ik}^3	R_{ik}^4		
Acc		28.9							
Pre	19.6	18.7	20.4	21.5	22.9	21.9	22.3		
Rec		22.9							
F1	21.5	20.6	21.9	22.4	24.2	23.5	22.6		

Evaluation: relation induction

Table 2: Results for the relation induction task using alternative word embedding models.

		Glo	oVe		SkipGram			CBOW				
	Goo	ogle	Diff	Vec	Goo	ogle	Diff	Vec	Goo	ogle	Diff	Vec
	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1	Acc	F1
Diff	90.0	81.9	21.2	13.9	89.8	81.9	21.7	14.5	89.9	82.1	17.4	9.7
Conc	88.9	80.4	20.2	11.9	89.2	81.6	20.5	12.0	89.1	81.1	16.4	7.7
Avg	89.8	82.1	21.4	13.9	90.2	82.4	21.8	14.4	89.8	82.2	17.5	10.0
R^1_{ik}	89.7	81.7	20.9	12.5	89.4	81.2	21.1	12.3	89.8	81.9	17.2	9.2
R_{ik}^2	90.0	82.8	21.2	13.4	89.1	81.3	21.1	12.9	90.2	82.4	17.7	10.0
R_{ik}^3	90.0	82.3	20.0	11.2	89.5	81.1	20.5	12.3	89.5	81.1	17.2	9.6
R_{ik}^4	90.0	82.5	20.0	11.4	88.9	80.8	20.6	12.1	90.5	82.2	17.1	8.4

Evaluation: relation induction

Table 3: Relation induction without position weighting (left) and without the relation vectors s_{ik} and t_{ik} (right).

	Goo	ogle	DiffVec		
	Acc	F1	Acc	F1	
R^1_{ik}	89.7	82.4	30.2	22.2	
R_{ik}^2	91.0	83.4	30.8	24.1	
R_{ik}^3	90.4	83.2	30.1	22.3	
R_{ik}^4	90.2	82.9	29.1	21.2	
		1	D:00	Y 7	

	Goo	ogle	DiffVec		
	Acc	F1	Acc	F1	
R^1_{ik}	90.0	82.5	29.9	22.3	
R_{ik}^2	92.3	85.8	31.2	24.2	
R_{ik}^3	90.5	83.2	30.2	23.0	
R^4_{ik}	90.3	83.1	29.8	22.3	

Evaluation: Measuring Degrees of Prototypicality

Table 4: Results for measuring degrees of prototypicality (Spearman $\rho \times 100$).

Diff	Conc	Avg	R^1_{ik}	R_{ik}^2	R_{ik}^3	R_{ik}^4
17.3	16.7	21.1	22.7	23.9	21.8	22.2

Evaluation: relation extraction

Figure 1: Results for the relation extraction from the NYT corpus: comparison with the main baselines.

Evaluation: relation extraction

Figure 2: Results for the relation extraction from the NYT corpus: comparison with state-of-the-art neural network models.

Conclusions

- Unsupervised method to learn relation vectors from cooccurrence statistics
- Main motivation:
 - Supporting analogical inferences for knowledge base completion
 - Supporting relation induction for knowledge base completion
 - Use relation vectors to complement word vectors in NLP tasks
- Future Work:
 - Dimensionality reduction of relation vectors
 - Learn commonsense knowledge from relation vectors