Building a model for the solar system using ordinary differential equations

¹ Oline A. Ranum

 1 University of Oslo, Institute of physics, olinear@student.matnat.uio.no $\,$

November 21, 2019

In this project code is developed for simulating the solar system using the Verlet Algorithm

I. INTRODUCTION

.

TABLE I: The mass of the Sun and the masses of all relevant planets and their distances from the sun listed in units of kg and AU, 1 AU = 1.5×10^{11} m.

Planet	Mass [kg]	Distance to sun [AU]
Earth	$M_{\rm Earth} = 6 \times 10^{24}$	1
Jupiter	$M_{\mathrm{Jupiter}} = 1.9 \times 10^{27}$	5.20
Mars	$M_{\rm Mars} = 6.6 \times 10^{23}$	1.52
Venus	$M_{\rm Venus} = 4.9 \times 10^{24}$	0.72
Saturn	$M_{\mathrm{Saturn}} = 5.5 \times 10^{26}$	9.54
Mercury	$M_{\rm Mercury} = 3.3 \times 10^{23}$	0.39
Uranus	$M_{\rm Uranus} = 8.8 \times 10^{25}$	19.19
Neptun	$M_{\rm Neptun} = 1.03 \times 10^{26}$	30.06
Sun	$M_{\rm sun} = M_{\odot} = 2 \times 10^{30}$	-

II. THEORY

A. Newton's law of gravitation

Newton's law of gravitation is given by a force F_G

$$F_G = \frac{GM_{\odot}M_{\text{Earth}}}{r^2} = \frac{M_{\text{Earth}}v^2}{r} \tag{1}$$

where M_{\odot} is the mass of the Sun and $M_{\rm Earth}$ is the mass of the Earth. G is the gravitational constant, r is the distance between the Sun and the Earth and v is the velocity of Earth. This implies that

$$v^2 r = GM_{\odot} = 4\pi^2 \frac{(AU)^3}{(vr)^2}$$
 (2)

B. Co-planar motion

If it is assumed that the orbit of the Sun and the Earth is co-planer in the xy-plane, one can employ Newton's law of motion to derive the following equations

$$\frac{d^2x}{dt^2} = \frac{F_{G,x}}{M_{\text{Earth}}} \tag{3}$$

$$\frac{d^2y}{dt^2} = \frac{F_{G,y}}{M_{\text{Earth}}} \tag{4}$$

where $F_{G,x}$ and $F_{G,y}$ are the x and y components of the gravitational force.

C. Planetary sizes

III. NUMERICAL ALGORITHMS

Euler's forward algorithm states that

$$\frac{du(x)}{dt} = \frac{u(x+h) - u(x)}{h} + \mathcal{O}() \tag{5}$$

IV. METHOD

It is assumed that the Sun has a mass which is much larger than the mass of the Earth, so that the motion of the Sun is neglected. In order to discretize equation 2 a discrete time axis $t \in [t_0, t_f]$ of N points is defined, where $t_i = t_0 + ih$ for $i \in [0, N]$. This implies that $h = (t_f - t_0)/N$. The discretized positions and velocities are then functions of the discretized time $x_i = x(t_i)$ and $v_i = v(t_i)$, and equivalently for y. The acceleration is then $a_{xi} = a_x(x_i, y_i)$.

The differential equation 2 is then solved by Euler's forward algorithm and the velocity Verlet method.

Compute the motion of the earth using different methods for solving odrinary differential equations

1. Initial conditions

The NASA jet propulsion laboratory's HORIZONS Web-Interface is used to generate a cartesian state vector table of any object with respect to any major body, to extract initial conditions for each planet.

V. RESULTS

VI. DISCUSSION

VII. CONCLUSION

IX. APPENDIX