Problem 1 (8.5). Let $R = \mathbb{Z}[\sqrt{-5}]$. Show that $2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$ are irreducibles of R and no two of which are associate in R , and that $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$ are two distinct factorizations of 6 into irreducibles in R . So R is not a UFD.
\square
Problem 2 (9.1). Prove that every irreducible element of a UFD is a prime. Proof. □
Problem 3 (9.3). Give an example of a UFD which is not a PID.
\square
Problem 4 (9.4). 1. Determine whether the following polynomials are irreducible in the rings indicated and prove your assertions. For those that are reducible, determine their factorization into irreducibles.
(a) $x^3 + x + 1$ in $\mathbb{Z}_3[x]$. (b) $x^4 + 1$ in $\mathbb{Z}_5[x]$. (c) $x^4 + 10x^2 + 1$ in $\mathbb{Z}[x]$. (d) $x^4 - 4x^3 + 6$ in $\mathbb{Z}[x]$. (e) $x^6 + 30x^5 - 15x^3 + 6x - 120$ in $\mathbb{Z}[x]$. (f) $x^2 + y^2 + xy + 1$ in $\mathbb{Q}[x, y]$.
2. Prove that the following polynomials are irreducible in $\mathbb{Z}[x]$.
(a) $x^4 + 4x^3 + 6x^2 + 2x + 1$ (Substitute $x - 1$ for x). (b) $\frac{(x+2)^p - 2^p}{x}$ where p is an odd prime. (c) $\prod_{1}^{n} (x-i) - 1$, where $n \in \mathbb{Z}_{>0}$
3. Find all irreducible polynomials of degree ≤ 3 in $\mathbb{Z}_2[x]$, and the same for $\mathbb{Z}_3[x]$.
4. Prove that if n is composite number, then $\sum_{0}^{n-1} x^{n-1}$ is reducible over \mathbb{Z} .
Proof.
Problem 5 (9.5). Let R be a PID and $a, b \in R$. Prove that if a, b are relatively prime, then $(a) + (b) = R$, and a^i, b^j are relatively prime for all $i, j \in \mathbb{Z}_{>0}$.
Proof.

Problem 6 (9.6). 1. Let F be a finite field of order q and f(x) a polynomial of degree n. Prove that the quotient ring F[x]/(f(x)) has q^n elements.

2. Show that $f(x) = x^3 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$ and that $K = \mathbb{Z}_2/(f(x))$ is a field. Find a generator of the cyclic group K^X .
Proof.
Problem 7 (G4). Let $G = GL(2, \mathbb{F}_p)$ be the group of invertible 2×2 matrices with entries in the finite field \mathbb{F}_p , where p is prime.
1. Show that G has order $(p^2-1)(p^2-p)$.
2. Show that for $p = 2$ the group G is isomorphic to the symmetric group S_3 .
Proof.
Problem 8 (G5). Let G be the group of units of the ring $\mathbb{Z}/247\mathbb{Z}$.
1. Determine the order of G .
2. Determine the structure of G (as in the classification theorem for finitely generated abelian groups). (Hint: Use the Chinese Remainder Theorem).
Proof.
Problem 9 (G8). List all abelian groups of order 8 up to isomorphism. Identify which groups on your list is isomorphic to each of the following groups of order 8. Justify your answer.
1. $(\mathbb{Z}/15\mathbb{Z})^* = \text{the group of units of the ring } \mathbb{Z}/15\mathbb{Z}.$
2. The roots of the equation $z^8 - 1 = 0$ in \mathbb{C} .
3. \mathbb{F}_8^+ = the additive group of the field \mathbb{F}_8 with eight elements.
Proof.
Problem 10 (R4). Let \mathbb{F} be a field and let $R = \mathbb{F}[X,Y]$ be the ring of polynomials in X and Y with coefficients from \mathbb{F} .
1. Show that $M = \langle X+1, Y-2 \rangle$ is a maximal ideal of R .
2. Show that $P = \langle X + Y + 1 \rangle$ is a prime ideal of R .
3. Is P a maximal ideal of R. Justify your answer.
Proof.

Problem 11 (R6). Let R be a commutative ring with identity and let I and J be ideals of R.

1. Define

$$(I:J) = \{r \in R | rx \in I, \forall x \in J\}$$

Show that (I:J) is an ideal of R containing I.

2. Show that if P is a prime ideal of R and $x \notin P$, then $(P : \langle x \rangle) = P$, where $\langle x \rangle$ denotes the principal ideal generated by x.

 \square

Problem 12 (R7). Let R be a commutative ring with identity, and let I and J be ideals of R.

- 1. Define what is meant by the sum I + J and the product IJ of the ideals I and J.
- 2. If I and J are distinct maximal ideals, show that I + J = R and $I \cap J = IJ$.

Proof.