Índice general

1.	Introducción 4									
	1.1.	Proces	samiento digital de imágenes	4						
2.	Planteamiento del problema									
	2.1.		8	5						
	2.2.	Objeti	r	5						
	2.3.	Alcand		5						
	2.4.	Justifie	cación	5						
	2.5.	Especi	ficaciones técnicas	5						
3.	Procedimiento 7									
	3.1.	Carga	de los datos del dataset	7						
				7						
	3.2.	Proces	sado de la imagen	7						
		3.2.1.	Conversión de BGR a RGB	7						
		3.2.2.	Creación de las regiones de interés	8						
		3.2.3.	Creación de la máscara	8						
		3.2.4.	Enmascaramiento de las regiones de interés	8						
		3.2.5.		8						
		3.2.6.	Segmentación de la imagen	9						
		3.2.7.	Clasificación de la hoja	9						
	3.3.	Presen		9						
		3.3.1.		9						
		3.3.2.	Imagen original	0						
		3.3.3.		1						
		3.3.4.		1						
		3.3.5.		1						
		3.3.6.		1						
4.	Res	ultado	$_{ m s}$	3						
	4.1.	Casos	especiales	3						
		4.1.1.	•	3						
		412		3						

5.	Conclusiones							
	5.1.	Conclusiones específicas	14					
	5.2.	Conclusiones generales	14					
Re	efere	ncias	14					

Índice de códigos

1.	Cargar las anotaciones del dataset	7
2.	La clase CoffeeLeaf	8
3.	Convertir imgen BGR a RGB	8
4.	Crear máscara	9
5.	Enmascarar las regiones de interés	9
6.	Cálcular histograma de la región de interés	9
7.	Segmentar la región de interés	0
8.	Clasificar hoja de café	0
9.	Mostrar resumen de la clasificación	1
10.	Mostrar imagen original	1
11.	Mostrar máscara	1
12.	Mostrar regiones de interés	2
13.	Mostrar segmentación de la imagen	2
14.	Mostrar histograma de la región de interés	2

Introducción

1.1. Procesamiento digital de imágenes

Planteamiento del problema

2.1. Objetivo general

Demostrar las habilidades adquiridas durante el seminario *Procesamiento Digital de Imágenes: Fundamentos y Aplicaciones con GNU Octave y Open CV* aplicando los principios y técnicas básicas de manera práctica a un proyecto en particular.

2.2. Objetivo específico

Crear un algoritmo que clasifique hojas de café como sanas o infectadas y su nivel de afectación, y evaluar su eficiencia comparando los resultados obtenidos con los proporcionados en el conjunto de datos.

2.3. Alcance

A pesar de que el conjunto de datos de prueba contiene seis clasificaciones para las hojas, el algoritmo desarrollado sólo incluirá la clasificación sana y los cuatro niveles de afectación, excluyendo la clasificación $ara\~na$ roja debido a las retricciones en el tiempo del proyecto.

2.4. Justificación

El algoritmo y las técnicas utilizadas pueden aplicarse de manera directa en el mundo real dentro del área de la agricultura y/o agronomía, e idealmente puede servir como base para desarollar procesos automatizados para el control de calidad en el campo del café.

2.5. Especificaciones técnicas

Se utilizará Python como lenguaje de programación para la implementación del algoritmo debido a su facilidad de uso y al amplio número de bibliotecas disponibles para el

procesamiento de imágenes tales como OpenCV.

Procedimiento

A continuación se describen los procesos del algoritmo que permiten solucionar el problema especificado. El código fuente está disponible de manera digital en la plataforma de GitHub [1].

3.1. Carga de los datos del dataset

Se comienza por leer los datos que conforman el dataset y que contiene información que ha sido etiquetada de manera manual por los autores del mismo.

```
import json
annotations_file = "RoCoLe.json"
with open(annotations_file, "r") as f:
    annotations = json.load(f)
```

Código 1: Cargar las anotaciones del dataset

La variable annotations contiene la siguiente información:

3.1.1. La clase CoffeeLeaf

3.2. Procesado de la imagen

3.2.1. Conversión de BGR a RGB

```
class CoffeeLeaf:
   def __init__(self,leaf_id,state,classification,image_bgr,geometry):
       self.id = leaf_id
       self.state_manual = state
       self.state_computed = None
       self.classification_manual = classification
        self.classification_computed = None
       self.image_bgr = image_bgr
        self.image_rgb = None
       self.roi_rgb = None
       self.roi_hsv = None
       self.masked_roi_rgb = None
       self.masked_roi_hue = None
       self.mask = None
        self.area = None
       self.affected_percentage = None
       self.histogram_hue = None
       self.limit_below = None
        self.limit_above = None
       self.binary = None
       self.contours = None
       self.contours_canvas = None
       self.polygon = None
       self.geometry = geometry
        self._processed = False
```

Código 2: La clase CoffeeLeaf

```
def _generate_image_rgb(self):
    self.image_rgb = cv.cvtColor(self.image_bgr, cv.COLOR_BGR2RGB)
```

Código 3: Convertir imgen BGR a RGB

- 3.2.2. Creación de las regiones de interés
- 3.2.3. Creación de la máscara
- 3.2.4. Enmascaramiento de las regiones de interés
- 3.2.5. Histograma de las regiones de interés

```
def _create_mask(self):
    self.mask = np.zeros(self.roi_hsv.shape[:2], np.uint8)
    polygon_start = self.polygon.min(axis=0)
    polygon_at_zero = self.polygon - polygon_start
    CONTOURS = -1  # All contours
    COLOR = (255, 255, 255)  # White
    THICKNESS = -1  # Fill
    self.mask = cv.drawContours(
        self.mask, [polygon_at_zero], CONTOURS, COLOR, THICKNESS)
    )
    self.area = cv.countNonZero(self.mask)
```

Código 4: Crear máscara

Código 5: Enmascarar las regiones de interés

Código 6: Cálcular histograma de la región de interés

- 3.2.6. Segmentación de la imagen
- 3.2.7. Clasificación de la hoja
- 3.3. Presentación de los datos
- 3.3.1. Resumen

Código 7: Segmentar la región de interés

```
def _categorize(self):
   healthy_area = cv.countNonZero(self.binary)
    affected_area = self.area - healthy_area
    self.affected_percentage = int((affected_area / self.area) * 100)
    if self.affected_percentage < 1:</pre>
        self.state_computed = "healthy"
        self.classification_computed = "healthy"
    elif self.affected_percentage < 6:</pre>
        self.state_computed = "unhealthy"
        self.classification_computed = "rust_level_1"
    elif self.affected_percentage < 21:</pre>
        self.state_computed = "unhealthy"
        self.classification_computed = "rust_level_2"
    elif self.affected_percentage < 51:</pre>
        self.state_computed = "unhealthy"
        self.classification_computed = "rust_level_3"
    else:
        self.state_computed = "unhealthy"
        self.classification_computed = "rust_level_4"
```

Código 8: Clasificar hoja de café

3.3.2. Imagen original

Código 9: Mostrar resumen de la clasificación

```
def show_original_image(self):
   plt.imshow(self.image_rgb)
   plt.title("Imagen Original")
   plt.axis("off")
   plt.show()
```

Código 10: Mostrar imagen original

3.3.3. Máscara

```
def show_mask(self):
    plt.imshow(self.mask, cmap="gray")
    plt.title("Máscara")
    plt.axis("off")
    plt.show()
```

Código 11: Mostrar máscara

- 3.3.4. Regiones de interés
- 3.3.5. Imagen segmentada
- 3.3.6. Histograma

```
def show_roi(self, hue=False):
    if hue:
        colorspace = "Hue"
        plt.imshow(self.masked_roi_hue, cmap="hsv")
    else:
        colorspace = "RGB"
        plt.imshow(self.masked_roi_rgb)
    plt.title(f"Región de Interés ({colorspace})")
    plt.axis("off")
    plt.show()
```

Código 12: Mostrar regiones de interés

```
def show_binary(self):
    plt.imshow(self.binary, cmap="gray")
    plt.title(f"Segmentación")
    plt.axis("off")
    plt.show()
```

Código 13: Mostrar segmentación de la imagen

```
def show_histogram(self):
    fig, ax = plt.subplots()
    ax.plot(self.histogram_hue)
    colorbar = plt.colorbar(self.hsv_mappable, ax=ax, location="bottom")
    colorbar.set_ticks([])
    idx_max = np.argmax(self.histogram_hue)
    plt.title(f"Histograma (Hue) Máx={idx_max}")
    plt.margins(x=0)
    plt.show()
```

Código 14: Mostrar histograma de la región de interés

Resultados

- 4.1. Casos especiales
- 4.1.1. Iluminación
- 4.1.2. Envés de la hoja

Conclusiones

- 5.1. Conclusiones específicas
- 5.2. Conclusiones generales

Referencias

[1] L. Dominguez, "Coffee Leaves Classification," 07 2025. [Online]. Available: https://github.com/LindermanDgz/coffee-leaves-classification