## CLAIMS

1. The present invention provides a compound of formula (I):

$$R^{1}-(Q)_{m}-(CR^{2}R^{3})_{n}-T$$
  $X^{2}-X^{1}$   $X^{3}-X^{4}$   $X^{3}-X^{4}$   $X^{3}-X^{4}$ 

s wherein

Z is  $CR^4R^5$ , C(O) or  $CR^4R^5$ -Z<sup>1</sup>:

Z<sup>1</sup> is C<sub>1-4</sub> alkylene, C<sub>2-4</sub> alkenylene or C(O)NH;

R<sup>1</sup> represents a C<sub>1</sub>-C<sub>12</sub> alkyl group optionally substituted by one or more substituents independently selected from cyano, hydroxyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>3-7</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl and phenyl (itself optionally substituted by one or more of halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl); or R<sup>1</sup> represents C<sub>2</sub>-C<sub>6</sub> alkenyl optionally substituted by phenyl (itself optionally substituted by one or more of halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy C<sub>1</sub>-C<sub>6</sub> haloalkoxy S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub> are harman O<sub>2</sub>-C<sub>6</sub>

15 C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl); or

R<sup>1</sup> represents a 3- to 14-membered saturated or unsaturated ring system which optionally comprises up to two ring carbon atoms that form carbonyl groups and which optionally further comprises up to 4 ring heteroatoms independently selected from nitrogen, oxygen and sulphur, wherein the ring system is optionally substituted by one or more substituents independently selected from: halogen, cyano, nitro, oxo, hydroxyl, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1-6</sub> alkoxy(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), c<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl), arylS(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl),

heterocyclylS(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, carboxy-substituted C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> hydroxyalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylcarboxy-substituted C<sub>1</sub>-C<sub>6</sub> alkoxy, aryloxy, heterocyclyloxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkylthio), C<sub>3</sub>-C<sub>6</sub> alkynylthio, C<sub>1</sub>-C<sub>6</sub> alkylcarbonylamino, C<sub>1</sub>-C<sub>6</sub> haloalkylcarbonylamino, SO<sub>3</sub>H, -NR<sup>7</sup>R<sup>8</sup>, -C(O)NR<sup>23</sup>R<sup>24</sup>,

S(O)<sub>2</sub>NR<sup>18</sup>R<sup>19</sup>, S(O)<sub>2</sub>R<sup>20</sup>, R<sup>25</sup>C(O), carboxyl, C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl, aryl and heterocyclyl;

wherein the foregoing aryl and heterocyclyl moieties are optionally substituted by one or more of halogen, oxo, hydroxy, nitro, cyano,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl, phenyl( $C_1$ - $C_6$  alkyl),  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  haloalkoxy,  $S(O)_2(C_1$ - $C_6$  alkyl),  $C(O)NH_2$ , carboxy or  $C_1$ - $C_6$  alkoxycarbonyl;

5 m is 0 or 1;

Q represents an oxygen or sulphur atom or a group NR<sup>9</sup>, C(O), C(O)NR<sup>9</sup>, NR<sup>9</sup>C(O) or CH=CH;

n is 0, 1, 2, 3, 4, 5 or 6 provided that when n is 0, then m is 0; each  $R^2$  and  $R^3$  independently represents a hydrogen atom or a  $C_1$ - $C_4$  alkyl group, or  $(CR^2R^3)_n$  represents  $C_3$ - $C_7$  cycloalkyl optionally substituted by  $C_1$ - $C_4$  alkyl;

T represents a group NR<sup>10</sup>, C(O)NR<sup>10</sup>, NR<sup>11</sup>C(O)NR<sup>10</sup> or C(O)NR<sup>10</sup>NR<sup>11</sup>; X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup> and X<sup>4</sup> are, independently, CH<sub>2</sub>, CHR<sup>12</sup> {wherein each R<sup>12</sup> is, independently, C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>4</sub> alkyl)} or C=O; or, when they are CHR<sup>12</sup>, the R<sup>12</sup> groups of X<sup>1</sup> and X<sup>3</sup> or X<sup>4</sup>, or, X<sup>2</sup> and X<sup>3</sup> or X<sup>4</sup> join to form a two or three atom chain

which is CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>OCH<sub>2</sub> or CH<sub>2</sub>SCH<sub>2</sub>; provided always that at least two of X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup> and X<sup>4</sup> are CH<sub>2</sub>;

R<sup>4</sup> and R<sup>5</sup> each independently represent a hydrogen atom or a C<sub>1</sub>-C<sub>4</sub> alkyl group;
R<sup>6</sup> is aryl or heterocyclyl, both optionally substituted by one or more of: halogen, cyano, nitro, oxo, hydroxyl, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1-6</sub> alkoxy(C<sub>1</sub>-C<sub>6</sub>

alkyl), C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkylthio(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, carboxy-substituted C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> hydroxyalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylcarboxy-

substituted C<sub>1</sub>-C<sub>6</sub> alkoxy, aryloxy, heterocyclyloxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkylthio), C<sub>3</sub>-C<sub>6</sub> alkynylthio, C<sub>1</sub>-C<sub>6</sub> alkylcarbonylamino, C<sub>1</sub>-C<sub>6</sub> haloalkylcarbonylamino, SO<sub>3</sub>H, -NR<sup>16</sup>R<sup>17</sup>, -C(O)NR<sup>21</sup>R<sup>22</sup>, S(O)<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>, S(O)<sub>2</sub>R<sup>15</sup>, R<sup>26</sup>C(O), carboxyl, C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl, aryl and heterocyclyl; wherein the foregoing aryl and heterocyclyl moieties are optionally substituted by one or more of halogen, nitro,

cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl;

PCT/GB00/03179

 $R^7$ ,  $R^8$ ,  $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{16}$ ,  $R^{17}$ ,  $R^{18}$ ,  $R^{19}$ ,  $R^{21}$ ,  $R^{22}$ ,  $R^{23}$  and  $R^{24}$  are, independently hydrogen,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl,  $C_1$ - $C_6$  hydroxyalkyl,  $C_3$ - $C_7$  cycloalkyl,  $C_3$ - $C_7$  cycloalkyl,  $C_3$ - $C_7$  cycloalkyl) or phenyl( $C_1$ - $C_6$  alkyl); and,

121

- R<sup>15</sup> and R<sup>20</sup> are, independently, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>4</sub> alkyl) or C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted by phenyl;

  R<sup>25</sup> and R<sup>26</sup> are, independently, C<sub>1</sub>-C<sub>6</sub> alkyl or phenyl (optionally substituted by one or more of halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl);
- or a pharmaceutically acceptable salt thereof, or solvate thereof, or a solvate of a salt thereof; provided that when T is C(O)NR<sup>10</sup> and R<sup>1</sup> is optionally substituted phenyl then n is not 0.
- 2. A compound according to claim 1, wherein Q represents a sulphur atom or a group NH, C(O) or NHC(O).

Sub AI

- 3. A compound according to claim 1 or claim 2, wherein T represents a group NH, C(O)NH or NHC(O)NH.
- 4. A compound according to any one of claims 1 to 3, wherein X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup> and X<sup>4</sup> are all CH<sub>2</sub>.
  - 5. A compound as defined in any one of Examples 1 to 416.
- 25 6. A process for the preparation of a compound of formula (I) as defined in claim 1 which comprises:
  - (a) when n is at least 1, the CR<sup>2</sup>R<sup>3</sup> group attached directly to T is CHR<sup>3</sup> and T is NR<sup>10</sup>, reacting a compound of general formula

$$R^{1}$$
- $(Q)_{m}$ - $(CR^{2}R^{3})_{n}$ - $C \nearrow Q$ 

wherein n' is 0 or an integer from 1 to 3 and R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, m and Q are as defined in formula (I), with a compound of general formula

$$R^{10}$$
  $X^{2}-X^{1}$   $N-Z-R^{6}$  (III)

or a salt thereof, wherein  $X^1$ ,  $X^2$ ,  $X^3$ ,  $X^4$ , Z,  $R^6$  and  $R^{10}$  are as defined in formula (I), in the presence of a reducing agent; or

(b) when n is at least 1, the  $CR^2R^3$  group attached directly to T is  $C(C_1-C_4 \text{ alkyl})_2$  and T is  $NR^{10}$ , reacting a compound of general formula

$$R^{1}$$
- $(Q)_{m}$ - $(CR^{2}R^{3})_{n}$ - $C$ - $NHR^{10}$ 

10

wherein n' is 0 or an integer from 1 to 3,  $R^2$  and  $R^3$  each independently represent a  $C_1$ - $C_4$  alkyl group, and  $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^{10}$ , m and Q are as defined in formula (I), with a compound of general formula

$$0 = X^{2} - X^{1}$$
 $N - Z - R^{6}$ 
 $X^{3} - X^{4}$ 
 $(V)$ 

15

wherein  $X^1$ ,  $X^2$ ,  $X^3$ ,  $X^4$ , Z and  $R^6$  are as defined in formula (I), in the presence of a reducing agent; or

(c) when T is C(O)NR<sup>10</sup>, reacting a compound of general formula

20

wherein  $R^1$ ,  $R^2$ ,  $R^3$ , Q, m and n are as defined in formula (I), with a compound of formula (III) or a salt thereof as defined in (a) above; or

(d) when m is 1 and Q is  $NR^9$ , reacting a compound of general formula (VII),  $R^1 - L^1$ , wherein  $L^1$  represents a leaving group (e.g. a halogen atom) and  $R^1$  is as defined in formula (I), with a compound of general formula

NHR<sup>9</sup>-
$$(CR^2R^3)_n$$
-T- $X^2-X^1$   
N-- Z-R<sup>6</sup>  
(VIII)

or a salt thereof, wherein n, T, X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup>, X<sup>4</sup>, Z, R<sup>2</sup>, R<sup>3</sup>, R<sup>6</sup> and R<sup>9</sup> are as defined in formula (I); or

(e) when at least one of R<sup>4</sup> and R<sup>5</sup> represents a hydrogen atom, reacting a compound of general formula

$$R^{1}-(Q)_{m}-(CR^{2}R^{3})_{n}-T$$
 $X^{2}-X^{1}$ 
 $X^{3}-X^{4}$ 
 $(IX)$ 

or a salt thereof, wherein  $R^1$ ,  $R^2$ ,  $R^3$ , Q, m, n,  $X^1$ ,  $X^2$ ,  $X^3$ ,  $X^4$  and T are as defined in formula (I), with a compound of general formula (X),  $R^6$  - C(O) -  $R^{20}$ , wherein  $R^{20}$  represents a hydrogen atom or a  $C_1$ - $C_4$  alkyl group and  $R^6$  is as defined in formula (I), in the presence of a reducing agent; or

(f) reacting a compound of formula (IX) as defined in (e) above, with a compound of general formula

wherein L<sup>2</sup> represents a leaving group (e.g. a halogen atom) and Z and R<sup>6</sup> are as defined in formula (I); or

(g) when T is NR<sup>10</sup>, reacting a compound of general formula

124

$$R^{1}-(Q)_{m}-(CR^{2}R^{3})_{n}-L^{3}$$

wherein L<sup>3</sup> represents a leaving group (e.g. a halogen atom) and R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, m, n and Q are as defined in formula (I), with a compound of formula (III) or a salt thereof as defined in (a) above; or

(h) when T is NHC(O)NR<sup>10</sup>, reacting a compound of general formula

$$R^{1}-(Q)_{m}-(CR^{2}R^{3})_{n}-N=C=O_{(XIII)}$$

wherein R<sup>1</sup>, R<sup>2</sup>, R<sup>3</sup>, Q, m and n are as defined in formula (I), with a compound of formula (III) or a salt thereof as defined in (a) above; or

(i) when T is C(O)NH, Z is CH<sub>2</sub>, n is 1, R<sup>2</sup> and R<sup>3</sup> are hydrogen or C<sub>1</sub>-C<sub>4</sub> alkyl and Q is oxygen or sulphur, reacting a compound of formula (XIV):

Hal 
$$= \frac{R^2 O}{N} = \frac{X^2 - X^1}{N - z - R^6}$$
 (XIV)

wherein Hal is a suitable halogen,  $R^2$ ,  $R^3$ ,  $X^1$ ,  $X^2$ ,  $X^3$ ,  $X^4$ , Z and  $R^6$  are as defined in formula (I), with  $R^1$ OH or  $R^1$ SH in the presence of a suitable base;

and optionally after (a), (b), (c), (d), (e), (f), (g), (h) or (i) forming a pharmaceutically acceptable salt or solvate of the compound of formula (I) obtained.

- 7. A pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as claimed in any one of claims 1 to 4 in association with a pharmaceutically acceptable adjuvant, diluent or carrier.
- 8. A process for the preparation of a pharmaceutical composition as claimed in claim 7 which comprises mixing a compound of formula (I), or a pharmaceutically acceptable salt or solvate thereof, as claimed in any one of claims 1 to 4 with a pharmaceutically acceptable adjuvant, diluent or carrier.

S 0/2

10

15

WO 01/14333

PCT/GB00/03179

125

50b

- 9. A compound of formula (I), or a pharmaceutically-acceptable salt or solvate thereof, as claimed in any one of claims 1 to 4 for use in therapy.
- 10. Use of a compound of formula (I),

$$R^{1}-(Q)_{m}-(CR^{2}R^{3})_{n}-T$$
  $X^{2}-X^{1}$   $X^{3}-X^{4}$   $X^{3}-X^{4}$   $X^{3}-X^{4}$ 

wherein

Z is  $CR^4R^5$ , C(O) or  $CR^4R^5$ -Z<sup>1</sup>;

Z1 is C14 alkylene, C24 alkenylene or C(0)NH;

- R<sup>1</sup> represents a C<sub>1</sub>-C<sub>12</sub> alkyl group optionally substituted by one or more substituents independently selected from cyano, hydroxyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>3-7</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl and phenyl (itself optionally substituted by one or more of halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl); or
- R<sup>1</sup> represents C<sub>2</sub>-C<sub>6</sub> alkenyl optionally substituted by phenyl (itself optionally substituted by one or more of halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl); or
- R<sup>1</sup> represents a 3- to 14-membered saturated or unsaturated ring system which optionally comprises up to two ring carbon atoms that form carbonyl groups and which optionally further comprises up to 4 ring heteroatoms independently selected from nitrogen, oxygen and sulphur, wherein the ring system is optionally substituted by one or more substituents independently selected from: halogen, cyano, nitro, oxo, hydroxyl, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1-6</sub> alkoxy(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkyl),
- C<sub>1</sub>-C<sub>6</sub> alkylthio(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkylcarbonyloxy(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkylS(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl), arylS(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), heterocyclylS(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, carboxy-substituted C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> hydroxyalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylcarboxy-substituted C<sub>1</sub>-C<sub>6</sub> alkoxy, aryloxy, heterocyclyloxy,
- C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkylthio), C<sub>3</sub>-C<sub>6</sub> alkynylthio, C<sub>1</sub>-C<sub>6</sub>

alkylcarbonylamino,  $C_1$ - $C_6$  haloalkylcarbonylamino,  $SO_3H$ ,  $-NR^7R^8$ ,  $-C(O)NR^{23}R^{24}$ ,  $S(O)_2NR^{18}R^{19}$ ,  $S(O)_2R^{20}$ ,  $R^{25}C(O)$ , carboxyl,  $C_1$ - $C_6$  alkoxycarbonyl, aryl and heterocyclyl; wherein the foregoing aryl and heterocyclyl moieties are optionally substituted by one or more of halogen, oxo, hydroxy, nitro, cyano,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  haloalkyl, phenyl( $C_1$ - $C_6$  alkyl),  $C_1$ - $C_6$  alkoxy,  $C_1$ - $C_6$  haloalkoxy,  $S(O)_2(C_1$ - $C_6$  alkyl),  $C(O)NH_2$ , carboxy or  $C_1$ - $C_6$  alkoxycarbonyl;

m is 0 or 1;

Q represents an oxygen or sulphur atom or a group NR<sup>9</sup>, C(O), C(O)NR<sup>9</sup>, NR<sup>9</sup>C(O) or CH=CH;

- n is 0, 1, 2, 3, 4, 5 or 6 provided that when n is 0, then m is 0;
  each R<sup>2</sup> and R<sup>3</sup> independently represents a hydrogen atom or a C<sub>1</sub>-C<sub>4</sub> alkyl group, or
  (CR<sup>2</sup>R<sup>3</sup>)<sub>n</sub> represents C<sub>3</sub>-C<sub>7</sub> cycloalkyl optionally substituted by C<sub>1</sub>-C<sub>4</sub> alkyl;
  T represents a group NR<sup>10</sup>, C(O)NR<sup>10</sup>, NR<sup>11</sup>C(O)NR<sup>10</sup> or C(O)NR<sup>10</sup>NR<sup>11</sup>;
  X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup> and X<sup>4</sup> are, independently, CH<sub>2</sub>, CHR<sup>12</sup> (wherein each R<sup>12</sup> is, independently,
- C<sub>1</sub>-C<sub>4</sub> alkyl or C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>4</sub> alkyl)) or C=O; or, when they are CHR<sup>12</sup>, the R<sup>12</sup> groups of X<sup>1</sup> and X<sup>3</sup> or X<sup>4</sup>, or, X<sup>2</sup> and X<sup>3</sup> or X<sup>4</sup> join to form a two or three atom chain which is CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>CH<sub>2</sub>, CH<sub>2</sub>OCH<sub>2</sub> or CH<sub>2</sub>SCH<sub>2</sub>; provided always that at least two of X<sup>1</sup>, X<sup>2</sup>, X<sup>3</sup> and X<sup>4</sup> are CH<sub>2</sub>;
  - R4 and R5 each independently represent a hydrogen atom or a C1-C4 alkyl group;
- R<sup>6</sup> is aryl or heterocyclyl, both optionally substituted by one or more of: halogen, cyano, nitro, oxo, hydroxyl, C<sub>1</sub>-C<sub>8</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1-6</sub> alkoxy(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkylthio(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub> alkyl), aryl(C<sub>1</sub>-C<sub>6</sub>
- 25 C<sub>6</sub> alkyl)S(O)<sub>2</sub>, heterocyclyl(C<sub>1</sub>-C<sub>6</sub> alkyl)S(O)<sub>2</sub>, C<sub>2</sub>-C<sub>6</sub> alkenyl, C<sub>1</sub>-C<sub>6</sub> alkoxy, carboxysubstituted C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, C<sub>1</sub>-C<sub>6</sub> hydroxyalkoxy, C<sub>1</sub>-C<sub>6</sub> alkylcarboxysubstituted C<sub>1</sub>-C<sub>6</sub> alkoxy, aryloxy, heterocyclyloxy, C<sub>1</sub>-C<sub>6</sub> alkylthio, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>6</sub> alkylthio), C<sub>3</sub>-C<sub>6</sub> alkynylthio, C<sub>1</sub>-C<sub>6</sub> alkylcarbonylamino, C<sub>1</sub>-C<sub>6</sub> haloalkylcarbonylamino, SO<sub>3</sub>H, -NR<sup>16</sup>R<sup>17</sup>, -C(O)NR<sup>21</sup>R<sup>22</sup>, S(O)<sub>2</sub>NR<sup>13</sup>R<sup>14</sup>, S(O)<sub>2</sub>R<sup>15</sup>,
- R<sup>26</sup>C(O), carboxyl, C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl, aryl and heterocyclyl; wherein the foregoing aryl and heterocyclyl moieties are optionally substituted by one or more of halogen, nitro,



cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl; R<sup>7</sup>, R<sup>8</sup>, R<sup>9</sup>, R<sup>10</sup>, R<sup>11</sup>, R<sup>13</sup>, R<sup>14</sup>, R<sup>16</sup>, R<sup>17</sup>, R<sup>18</sup>, R<sup>19</sup>, R<sup>21</sup>, R<sup>22</sup>, R<sup>23</sup> and R<sup>24</sup> are, independently hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>4</sub> alkyl) or phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl); and, R<sup>15</sup> and R<sup>20</sup> are, independently, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> hydroxyalkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, C<sub>3</sub>-C<sub>7</sub> cycloalkyl(C<sub>1</sub>-C<sub>4</sub> alkyl) or C<sub>1</sub>-C<sub>6</sub> alkyl optionally substituted by phenyl; R<sup>25</sup> and R<sup>26</sup> are, independently, C<sub>1</sub>-C<sub>6</sub> alkyl or phenyl (optionally substituted by one or more of halogen, nitro, cyano, C<sub>1</sub>-C<sub>6</sub> alkyl, C<sub>1</sub>-C<sub>6</sub> haloalkyl, phenyl(C<sub>1</sub>-C<sub>6</sub> alkyl), C<sub>1</sub>-C<sub>6</sub> alkoxy, C<sub>1</sub>-C<sub>6</sub> haloalkoxy, S(O)<sub>2</sub>(C<sub>1</sub>-C<sub>6</sub> alkyl), C(O)NH<sub>2</sub>, carboxy or C<sub>1</sub>-C<sub>6</sub> alkoxycarbonyl); or a pharmaceutically acceptable salt thereof, or solvate thereof, or a solvate of a salt thereof; in the manufacture of a medicament for the modulation of a chemokine receptor.

11. A method of treating an inflammatory disease in a patient suffering from, or at risk of, said disease, which comprises administering to the patient a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt thereof, or solvate thereof, or a solvate of a salt thereof, as defined claim 10.