Tanzania Water Well Classification

Author: Chris Kucewicz

Introduction and Contents

- 1. Business Understanding
- 2. Data Understanding
- 3. Data Preparation
- 4. Exploratory Data Analysis
- 5. Modeling and Evaluation
- 6. Limitations
- 7. Recommendations
- 8. Next Steps

Background

Goals

Success Criteria

- Tanzania faces challenges providing clean water
- Costly & complex:
 - 70k water wells
 - o **67 million** citizens
 - NGO seeks efficient well-repair solutions

Background

Goals

Success Criteria

- Assist NGO in identifying wells needing repair
- Prioritize minimizing false negatives for safety
- Ensure reliable access to clean water

Background Goals **Success Criteria Negative**: Repair not needed Correctly identified **Positive: Needs Repair** Correctly identified

Background Goals **Success Criteria Negative**: **False Positive:** Repair not needed Repair not needed Correctly identified Wrongly flagged **Positive**: **Needs Repair** Correctly identified

Background

Goals

Success Criteria

Negative:

Repair not needed

+

Correctly identified

Repair not needed

4

Wrongly flagged

False Negative:

Needs Repair

+

Missed

Positive:

Needs Repair

+

Correctly identified

Background

Goals

Success Criteria

Negative:

Repair not needed

+

Correctly identified

False Positive:

Repair not needed

4

Wrongly flagged

False Negative:

Needs Repair

+

Missed

Positive:

Needs Repair

+

Correctly identified

Background

Goals

Success Criteria

Key Metric: Recall

Minimizes false negatives

False Negative:

Needs Repair

+

Missed

Positive:

Needs Repair

+

Correctly identified

Data Understanding

Data: 41 features, almost 60k wells

Features: Included location, water

source, installer

Data Understanding

Target: Well functionality with 3 classes

Data Understanding

Target: Well functionality with 3 classes

Data Preparation

- 1. Handled Duplicates
- 2. Processed features reducing cardinality:
- 3. Handled Null Values
- 4. Reclassified the Target Variable to Binary
- Cleaned Dataset Overview:
 - Reduced to 19 features, 47k rows

Data Preparation: Reclassified Target to Binary

Exploratory Data Analysis

Findings

- 1. Government installer = higher non-functioning well rates
- 2. Ruvuma/Southern Coast and Lake Rukwa basins = higher non-functioning well rates
- 3. High-Priority Areas:
 - Areas with high repair needs, low functional wells, and high population density.

Exploratory Data Analysis: High-Priority Areas

Areas with high repair needs, low functional wells, and/or high population density.

Modeling and Evaluation

	Model Name	Training Recall (%)	Test/Val Recall (%)	Difference (Training - Test/Val Recall) (%)	False Negatives (%)
0	Decision Tree with RFE (val data)	100.00	78.60	21.40	9.70
1	Final Decision Tree (test data)	45.03	44.36	0.67	24.80
2	Final Random Forest (test data)	58.86	58.80	0.06	18.40
3	Initial Random Forest (test data)	99.90	77.45	22.45	10.10
4	Baseline Logistic Regression (test data)	66.85	66.00	0.85	15.20

Modeling and Evaluation

	Model Name	Training Recall (%)	Test/Val Recall (%)	Difference (Training - Test/Val Recall) (%)	False Negatives (%)
0	Decision Tree with RFE (val data)	100.00	78.60	21.40	9.70
1	Final Decision Tree (test data)	45.03	44.36	0.67	24.80
2	Final Random Forest (test data)	58.86	58.80	0.06	18.40
3	Initial Random Forest (test data)	99.90	77.45	22.45	10.10
4	Baseline Logistic Regression (test data)	66.85	66.00	0.85	15.20

Modeling and Evaluation: Confusion Matrices

Decision Tree Model with RFE

Train recall score: **100**% Test recall score: **78.6**%

Logistic Regression Model

Train recall score: 66.85%

Test recall score: **66**%

Modeling and Evaluation: Confusion Matrices

Decision Tree Model with RFE

Train recall score: **100**%

Validation recall score: **78.6**%

Logistic Regression Model

Train recall score: 66.85%

Test recall score: 66%

Limitations

- Data Quality:
 - Model is only as good as its data
- Computing Constraints:
 - Restricted parameter grid exploration
- Time Constraints:
 - Impacted model optimization
- Domain Knowledge:
 - Lack of local expertise affected feature selection

Recommendations

Recommendation 1: **High-Demand Areas**

Recommendation 2: Logistic Model

Recommendation 3: Reduce Model Complexity

Focus repairs in following regions:

- Northwest (Kigoma)
- Southeast (Dar Es Salaam, Mtwara)

Choose **logistic regression model** for unseen data

To reduce overfitting

- Improve feature selection
- Apply cross-validation

Recommendations

Recommendation 1: **High-Demand Areas**

Recommendation 2: Logistic Model

Recommendation 3: Reduce Model Complexity

Focus repairs in following regions:

- Northwest (Kigoma)
- Southeast (Dar Es Salaam, Mtwara)

Choose **logistic regression model** for unseen data

To reduce overfitting

- Improve feature selection
- Apply cross-validation

Recommendations

Recommendation 1: **High-Demand Areas**

Recommendation 2: Logistic Model

Recommendation 3: Reduce Model Complexity

Focus repairs in following regions:

- Northwest (Kigoma)
- Southeast (Dar Es Salaam, Mtwara)

Choose **logistic regression model** for unseen data

To reduce overfitting

- Improve feature selection
- Apply cross-validation

Next Steps

- Enhance Data Collection
- 2. Reduce Overfitting in Models
- 3. Explore Advanced Algorithms

Github Repository:

https://github.com/ckucewicz/water_well_classification

Contact Chris Kucewicz at cfkucewicz@gmail.com with additional questions