MATH 104 TUTORIAL 1

In exercises below, find an antiderivative for each function. Check your answers by

a.
$$2x^{-3}$$

b.
$$\frac{x^{-3}}{2} + x^2$$

b.
$$\frac{x^{-3}}{2} + x^2$$
 c. $-x^{-3} + x - 1$

2-

a.
$$\frac{4}{3}\sqrt[3]{x}$$

b.
$$\frac{1}{3\sqrt[3]{x}}$$

b.
$$\frac{1}{3\sqrt[3]{x}}$$
 c. $\sqrt[3]{x} + \frac{1}{\sqrt[3]{x}}$

a.
$$\pi \cos \pi x$$

b.
$$\frac{\pi}{2}\cos\frac{\pi x}{2}$$

b.
$$\frac{\pi}{2}\cos\frac{\pi x}{2}$$
 c. $\cos\frac{\pi x}{2} + \pi\cos x$

4- In exercises, find the most general antiderivative or indefinite integral.

a)
$$\int \left(\frac{1}{5} - \frac{2}{x^3} + 2x\right) dx$$
 b) $\int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right) dx$ c) $\int x^{-3}(x+1) dx$

$$\int \left(\frac{\sqrt{x}}{2} + \frac{2}{\sqrt{x}}\right) dx$$

$$\int x^{-3}(x+1) dx$$

$$\int (-5\sin t) dt$$

e)
$$\int 3\cos 5\theta \,d\theta$$

d)
$$\int (-5\sin t) dt$$
 e) $\int 3\cos 5\theta d\theta$ f) $\int \frac{2}{5}\sec \theta \tan \theta d\theta$

$$\int \frac{1}{2} (\csc^2 x - \csc x \cot x) \, dx$$

$$\int \frac{1}{2} (\csc^2 x - \csc x \cot x) dx \qquad \int (2 + \tan^2 \theta) d\theta \qquad \int \frac{\csc \theta}{\csc \theta - \sin \theta} d\theta$$

5- Use finite approximations to estimate the area under the graph of the function using

- a. a lower sum with two rectangles of equal width.
- b. a lower sum with four rectangles of equal width.

$$f(x) = 1/x$$
 between $x = 1$ and $x = 5$.

- c. an upper sum with two rectangles of equal width.
- d. an upper sum with four rectangles of equal width.

6- Write the sums in exercises without sigma notation. Then evaluate them.

a)
$$\sum_{k=1}^{3} \frac{k-1}{k}$$
 b) $\sum_{k=1}^{4} (-1)^k \cos k\pi$

7. Evaluate the sums in Exercises

a.
$$\sum_{k=1}^{n} \left(\frac{1}{n} + 2n \right)$$
 b. $\sum_{k=1}^{n} \frac{c}{n}$

b.
$$\sum_{k=1}^{n} \frac{c}{n}$$

$$\mathbf{c.} \ \sum_{k=1}^{n} \frac{k}{n^2}$$

c.
$$\sum_{k=1}^{n} \frac{k}{n^2}$$
 d) $\sum_{k=1}^{6} (k^2 - 5)$

- **8-** For the functions below , find a formula for the Riemann sum obtained by dividing the interval [a,b] into n equal subintervals and using the right-hand endpoint for each c_k . Then take the limit of these sums as n-> inf. to calculate the area under the curve over [a,b].
- a) $f(x) = 3x^2$ over the interval [0, 1]. b) $f(x) = 2x^3$ over the interval [0, 1].
- 9- Evaluate the integrals in exercises

a)
$$\int_0^{\sqrt{2}} (t - \sqrt{2}) dt$$
 b) $\int_1^0 (3x^2 + x - 5) dx$