Market Analysis

Task Details

You're a marketing analyst and you've been told by the Chief Marketing Officer that recent marketing campaigns have not been as effective as they were expected to be. You need to analyze the data set to understand this problem and propose data-driven solutions.

Section 01: Exploratory Data Analysis

- Are there any null values or outliers? How will you wrangle/handle them?
- Are there any variables that warrant transformations?
- Are there any useful variables that you can engineer with the given data?
- Do you notice any patterns or anomalies in the data? Can you plot them?

In [4]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime

#Load data set
data=pd.read_csv('/content/marketing_data.csv')
data.head()
```

Out[4]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWines	MntFrui
0	1826	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	0	189	10
1	1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	0	464	
2	10476	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	0	134	
3	1386	1967	Graduation	Together	\$32,474.00	1	1	5/11/14	0	10	
4	5371	1989	Graduation	Single	\$21,474.00	1	0	4/8/14	0	6	
4				1							· · · · · ·

```
In [5]:
```

```
#Detemine number of rows and columns
data.shape
Out[5]:
(2240, 28)
In [6]:
```

```
Out[6]:
```

data.describe()

#Determine data summary

count	2240.0000 (D)	2 24@a0<u>0</u>B000	224 15idb0000	2 2749e000000 0	224 Recede 09	22 M0n0000000	22 40 r0 5 0008	MntMeatProchage	MntFi
mean	5592.159821	1968.805804	0.444196	0.506250	49.109375	303.935714	26.302232	166.950000	
std	3246.662198	11.984069	0.538398	0.544538	28.962453	336.597393	39.773434	225.715373	
min	0.000000	1893.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	2828.250000	1959.000000	0.000000	0.000000	24.000000	23.750000	1.000000	16.000000	
50%	5458.500000	1970.000000	0.000000	0.000000	49.000000	173.500000	8.000000	67.000000	
75%	8427.750000	1977.000000	1.000000	1.000000	74.000000	504.250000	33.000000	232.000000	
max	11191.000000	1996.000000	2.000000	2.000000	99.000000	1493.000000	199.000000	1725.000000	
4)

In [7]:

#Check featues, data types and null values
data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):

#	Column	Non-Nu	ll Count	Dtype
0	ID	2240 n	on-null	int64
1	Year Birth	2240 n	on-null	int64
2	_ Education	2240 n	on-null	object
3	Marital Status	2240 n	on-null	object
4	Income	2216 n	on-null	object
5	Kidhome	2240 n	on-null	int64
6	Teenhome	2240 n	on-null	int64
7	Dt Customer	2240 n	on-null	object
8	Recency	2240 n	on-null	int64
9	MntWines	2240 n	on-null	int64
10	MntFruits	2240 n	on-null	int64
11	MntMeatProducts	2240 n	on-null	int64
12	MntFishProducts	2240 n	on-null	int64
13	MntSweetProducts	2240 n	on-null	int64
14	MntGoldProds	2240 n	on-null	int64
15	NumDealsPurchases	2240 n	on-null	int64
16	NumWebPurchases	2240 n	on-null	int64
17	NumCatalogPurchases	2240 n	on-null	int64
18	NumStorePurchases	2240 n	on-null	int64
19	NumWebVisitsMonth	2240 n	on-null	int64
20	AcceptedCmp3	2240 n	on-null	int64
21	AcceptedCmp4	2240 n	on-null	int64
22	AcceptedCmp5	2240 n	on-null	int64
23	AcceptedCmp1		on-null	int64
24	AcceptedCmp2		on-null	int64
25	Response		on-null	int64
26	Complain		on-null	int64
27	Country		on-null	object
dtype	es: $int64(23)$, object	(5)		

dtypes: int64(23), object(5)
memory usage: 490.1+ KB

Observations:

- Column 'Income' with space at the begining.
- Column 'Income' with null values.
- Column 'Income' with data type 'object'.
- Column 'Income' with missing values.

Next Step:

- nemove space from column name income.
- Convert Income data type to 'float'.

#Remove space from column name 'Income'.

Imputation of null values for feature 'Income'.

In [8]:

2 Education

Marital Status

```
data.columns=data.columns.str.replace(" ","")
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):
 # Column
                           Non-Null Count Dtype
     _____
                             -----
 0
   ID
                            2240 non-null int64
 1 Year_Birth
2 Education
                           2240 non-null int64
                           2240 non-null object
 3 Marital Status
                           2240 non-null object
 4 Income
                            2216 non-null object
 5 Kidhome
                            2240 non-null int64
 6 Teenhome
                            2240 non-null int64
 7 Dt_Customer
8 Recency
                           2240 non-null object
                            2240 non-null int64
10 MntFruits
11 Mn+Ma
    MntWines
                            2240 non-null int64
10 MntFruits 2240 non-null int64
11 MntMeatProducts 2240 non-null int64
12 MntFishProducts 2240 non-null int64
13 MntSweetProducts 2240 non-null int64
14 MntGoldProds 2240 non-null int64
 15 NumDealsPurchases 2240 non-null int64
 16 NumWebPurchases 2240 non-null int64
 17 NumCatalogPurchases 2240 non-null int64
 18 NumStorePurchases 2240 non-null int64
 19 NumWebVisitsMonth 2240 non-null int64

      20
      AcceptedCmp3
      2240 non-null int64

      21
      AcceptedCmp4
      2240 non-null int64

      22
      AcceptedCmp5
      2240 non-null int64

23 AcceptedCmp1
24 AcceptedCmp2
                           2240 non-null int64
                          2240 non-null int64
25 Response
                           2240 non-null int64
                    2240 non-null int64
2240 non-null object
 26 Complain
 27 Country
dtypes: int64(23), object(5)
memory usage: 490.1+ KB
In [9]:
#Delete $
data['Income'] = data['Income'].str.replace('$','')
#Delete ','
data['Income'] = data['Income'].str.replace(',','')
#Convert 'Income' data type to 'float'.
data['Income'] = data['Income'].astype('float')
In [10]:
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 28 columns):
 # Column
                           Non-Null Count Dtype
 0
   ID
                           2240 non-null int64
 1 Year Birth
                           2240 non-null int64
```

2240 non-null object

```
2210 11011 11411
    ..... .... .....
                                     2216 non-null
                                     float64
    Income
    Kidhome
                       2240 non-null
                                     int64
                       2240 non-null int64
    Teenhome
                       2240 non-null object
 7
    Dt Customer
   Recency
 8
                       2240 non-null int64
 9
   MntWines
                      2240 non-null int64
10 MntFruits
                      2240 non-null int64
11 MntMeatProducts
                     2240 non-null int64
12 MntFishProducts
                     2240 non-null int64
13 MntSweetProducts
                      2240 non-null int64
14 MntGoldProds
                      2240 non-null int64
15 NumDealsPurchases 2240 non-null int64
16 NumWebPurchases 2240 non-null int64
17 NumCatalogPurchases 2240 non-null int64
18 NumStorePurchases 2240 non-null int64
19 NumWebVisitsMonth 2240 non-null int64
                                   int64
20 AcceptedCmp3
                      2240 non-null
21 AcceptedCmp4
                                    int64
                      2240 non-null
                                    int64
 22 AcceptedCmp5
                      2240 non-null
                                    int64
 23
    AcceptedCmp1
                       2240 non-null
24 AcceptedCmp2
                       2240 non-null
 25 Response
                       2240 non-null int64
26 Complain
                       2240 non-null int64
27 Country
                       2240 non-null object
dtypes: float64(1), int64(23), object(4)
memory usage: 490.1+ KB
```

Observation:

Null values in feature 'Income'

In [11]:

```
data.Income.plot(kind='box')
plt.grid()
```


Observation:

There are outliers in feature 'Income', some customers have very high income which are most likely natural outliers. So we will impute null values with median to minimize the effect the outliers.

```
In [12]:
```

```
data['Income'] = data['Income'].fillna(data.Income.median())
```

In [13]:

```
data.isnull().sum()
```

Out[13]:

ID 0 0 Year Birth 0 Education Marital Status 0 0 Income Kidhome 0 Teenhome Dt Customer Recency MntWines 0 0 MntFruits 0 MntMeatProducts MntFishProducts 0 MntSweetProducts 0 MntGoldProds 0 NumDealsPurchases 0 NumWebPurchases NumCatalogPurchases 0 NumStorePurchases 0 NumWebVisitsMonth 0 AcceptedCmp3 0 AcceptedCmp4 0 0 AcceptedCmp5 AcceptedCmp1 0 AcceptedCmp2 0 Response Complain 0 Country dtype: int64

In [14]:

#Plot numerical variables
data_plot=data.drop(['ID', 'Education', 'Marital_Status', 'AcceptedCmp1', 'AcceptedCmp2',
'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'Response', 'Complain'], axis=1)
data_plot.plot(subplots=True, layout=(4,4), kind='box', figsize=(12,10))

Out[14]:

Year Birth AxesSubplot (0.125, 0.71587; 0.168478x0.16413) Income AxesSubplot(0.327174,0.71587;0.168478x0.16413) Kidhome AxesSubplot(0.529348,0.71587;0.168478x0.16413) Teenhome AxesSubplot (0.731522, 0.71587; 0.168478x0.16413) Recency AxesSubplot(0.125,0.518913;0.168478x0.16413) MntWines AxesSubplot (0.327174, 0.518913; 0.168478x0.16413) MntFruits AxesSubplot (0.529348, 0.518913; 0.168478x0.16413) MntMeatProducts AxesSubplot (0.731522, 0.518913; 0.168478x0.16413) MntFishProducts AxesSubplot (0.125, 0.321957; 0.168478x0.16413) MntSweetProducts AxesSubplot (0.327174, 0.321957; 0.168478x0.16413) MntGoldProds AxesSubplot(0.529348,0.321957;0.168478x0.16413) NumDealsPurchases AxesSubplot(0.731522,0.321957;0.168478x0.16413) NumWebPurchases AxesSubplot(0.125,0.125;0.168478x0.16413) NumCatalogPurchases AxesSubplot (0.327174, 0.125; 0.168478x0.16413) NumStorePurchases AxesSubplot(0.529348,0.125;0.168478x0.16413) NumWebVisitsMonth AxesSubplot (0.731522, 0.125; 0.168478x0.16413) dtype: object

Observation:

- Outliers can be found in many cloumns, probably because of different buying behaviour.
- 'Year_Birth' before 1900 is not possible.

Next step:

- Convert 'Year_Birth' to 'Age'.
- Impute values of age >120.

```
In [15]:
```

```
#Converting birthdate to age
import datetime
now = datetime.datetime.now()
data['Age'] = now.year - data['Year_Birth']
```

```
In [16]:
```

```
data.head()
```

Out[16]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recency	MntWines	MntFruits
0	1826	1970	Graduation	Divorced	84835.0	0	0	6/16/14	0	189	104
1	1	1961	Graduation	Single	57091.0	0	0	6/15/14	0	464	5
2	10476	1958	Graduation	Married	67267.0	0	1	5/13/14	0	134	11
3	1386	1967	Graduation	Together	32474.0	1	1	5/11/14	0	10	0
4	5371	1989	Graduation	Single	21474.0	1	0	4/8/14	0	6	16
4				1							Þ

```
In [17]:
```

```
#Checking correlation of other variables with 'Age'
data_corr = data.corr(method='kendall').unstack().sort_values(kind='quicksort', ascendin
g=False).reset_index()
data_corr.rename(columns={'level_0':'Variable 1','level_1':'Variable 2', 0:'Correlation c
oefficient'}, inplace=True)
data_corr[data_corr['Variable 1']=='Age']
```

Out[17]:

		Variable 1	Variable 2	Correlation coefficient
	0	Age	Age	1.000000
1	27	Age	Teenhome	0.316054
1	95	Age	MntWines	0.161118
2	:03	Age	Income	0.151713
2	16	Age	NumCatalogPurchases	0.131685
2	23	Age	NumStorePurchases	0.119001
2	27	Age	NumWebPurchases	0.116628
2	:55	Age	MntMeatProducts	0.078941
2	:66	Age	NumDealsPurchases	0.065301
2	:69	Age	AcceptedCmp4	0.055132
2	75	Age	MntGoldProds	0.051854
3	06	Age	MntFishProducts	0.020495
3	18	Age	MntFruits	0.015737
3	23	Age	Recency	0.013955
3	31	Age	AcceptedCmp2	0.011130
3	50	Age	Complain	0.007115
3	60	Age	AcceptedCmp1	0.005108
3	84	Age	ID	-0.001701
3	94	Age	MntSweetProducts	-0.004110
4	19	Age	AcceptedCmp5	-0.012288
4	42	Age	Response	-0.017128
5	13	Age	AcceptedCmp3	-0.052968
5	37	Age	NumWebVisitsMonth	-0.096313
5	80	Age	Kidhome	-0.211408
6	23	Age	Year_Birth	-1.000000

Observation:</h1>

• There no strong correlation of 'Age' with other variables, so we will replace 'Age'>120 will median value.

```
In [18]:
data['Age'].median
Out[18]:
<bound method Series.median of 0</pre>
                                        51
1
      60
2
       63
3
       54
        32
2235
      45
2236
      44
2237
        45
2238
        43
2239
Name: Age, Length: 2240, dtype: int64>
In [19]:
data['Age'] = np.where(data['Age']>120, 51, data['Age'])
data.describe()
```

	ID	Year_Birth	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeat
count	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	224
mean	5592.159821	1968.805804	52237.975446	0.444196	0.506250	49.109375	303.935714	26.302232	16
std	3246.662198	11.984069	25037.955891	0.538398	0.544538	28.962453	336.597393	39.773434	22
min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	2828.250000	1959.000000	35538.750000	0.000000	0.000000	24.000000	23.750000	1.000000	1
50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000	173.500000	8.000000	6
75%	8427.750000	1977.000000	68289.750000	1.000000	1.000000	74.000000	504.250000	33.000000	23
max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000	1493.000000	199.000000	172
4]						<u> </u>

Compressing the data by merging similar columns into one

- Minors = Kidhome + Teenhome
- Total amount spent = Amount spent for wine + fruits + meat + fish + sweet + gold
- Number of all purchases = Purchases in store + catalog + web + deals
- Remote purchases = Purchases in catalog + web
- Marketing responsiveness = AcceptedCmp1 + AcceptedCmp2 + AcceptedCmp3 +AcceptedCmp4 + AcceptedCmp5 + Response

Transformation:

- Feature "Dt_customer" converted to "Customer_since"
- Delete "Year_birth", but keep "Age"

In [20]:

```
#Minors in household
data['Minors'] = data['Kidhome'] + data['Teenhome']
#Total amount spent
data['Amount spent'] = data['MntWines'] + data['MntFruits'] + data['MntMeatProducts'] + d
ata['MntFishProducts'] + data['MntSweetProducts'] + data['MntGoldProds']
#Amount spent on luxury items
data['Lux spent'] = data['MntGoldProds'] + data['MntWines']
#Number of total purchases
data['NumPur'] = data['NumStorePurchases'] + data['NumCatalogPurchases'] + data['NumWebPur
chases'] + data['NumDealsPurchases']
#Number of remote purchases
data['RemPur'] = data['NumCatalogPurchases'] + data['NumWebPurchases']
#Marketing responsiveness
data['Responsiveness'] = data['AcceptedCmp1'] + data['AcceptedCmp2'] + data['AcceptedCmp3'
] + data['AcceptedCmp4'] + data['AcceptedCmp5']
#Convert 'Dt customer' to 'Customer since'
data['Customer since'] = pd.DatetimeIndex(data['Dt_Customer']).year
data=data.drop(['Dt Customer'], axis=1)
#Drop 'Year Birth'
data= data.drop(['Year Birth'], axis=1)
data.head()
```

Out[20]:

	ID	Education	Marital_Status	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFis
0	1826	Graduation	Divorced	84835.0	0	0	0	189	104	379	
1	1	Graduation	Single	57091.0	0	0	0	464	5	64	
2	10476	Graduation	Married	67267.0	0	1	0	134	11	59	
3	1386	Graduation	Together	32474.0	1	1	0	10	0	1	
4	5371	Graduation	Single	21474.0	1	0	0	6	16	24	
4											Þ

In [21]:

```
data.columns
```

Out[21]:

Explore dataset with correlation matrix

In [22]:

```
data_corr= data.drop(columns=['ID', 'Kidhome', 'Teenhome']).select_dtypes(include= np.nu
mber)

#Compute correlation matrix
corr= data_corr.corr()

#Generate a mask for upper triangle
mask= np.triu(np.ones_like(corr, dtype=bool))

#Set up matplotlib fig
f, ax= plt.subplots(figsize=(19, 19))

#Generate a custom diverging colormap
cmap = sns.diverging_palette(20, 230, as_cmap=True)

#Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(corr, mask=mask, cmap=cmap, vmin= -1, vmax= 1, annot=True, fmt= '.2f', cente
r=0, square=True, linewidths= .5, cbar_kws={'shrink': .5})
```

Out[22]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd4096ada10>

- 0.75

Explore effects of Income

```
In [23]:
```

```
data_corr= data.corr().unstack().sort_values(kind='quicksort', ascending=False).reset_in
dex()
data_corr.rename(columns={'level_0': 'Column_1', 'level_1': 'Column_2', 0: 'Correlation
Coefficient'}, inplace= True)
data_corr[data_corr['Column_1']== 'Income']
```

Out[23]:

	Column_1	Column_2	Correlation Coefficient
27	Income	Income	1.000000
78	Income	Amount_spent	0.664775
101	Income	NumCatalogPurchases	0.586826
104	Income	Lux_spent	0.585988
105	Income	RemPur	0.585698
109	Income	MntMeatProducts	0.577805
111	Income	MntWines	0.576903
122	Income	NumPur	0.563450
133	Income	NumStorePurchases	0.526600
196	Income	MntFishProducts	0.437564
198	Income	MntSweetProducts	0.436131
204	Income	MntFruits	0.428791
236	Income	NumWebPurchases	0.380554
263	Income	AcceptedCmp5	0.334893
272	Income	MntGoldProds	0.321938
279	Income	Responsiveness	0.307122
297	Income	AcceptedCmp1	0.274891

360	Colucum <u>n</u> é		Correlation Cole 16272116
384	Income	Age	0.162232
416	Income	Response	0.132867
443	Income	AcceptedCmp2	0.087581
515	Income	Customer_since	0.022381
533	Income	Teenhome	0.018965
564	Income	ID	0.012996
634	Income	Recency	-0.004061
679	Income	AcceptedCmp3	-0.016064
736	Income	Complain	-0.027187
787	Income	NumDealsPurchases	-0.082315
887	Income	Minors	-0.290858
923	Income	Kidhome	-0.425326
958	Income	NumWebVisitsMonth	-0.549785

In [24]:

sns.boxplot(x="Education", y='Income', data=data)

Out[24]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3ff3ef350>

In [25]:

sns.boxplot(x= 'Minors', y='Income', data=data)

Out[25]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3ff3a6e50>

Observations

Income is highly corrrelated with:

- Total Amount spent
- Catalog purchases
- · Total amount spent on luxury items
- Total amount spent on remote purchases
- · Amount spent for meat purchases
- Amount spent for wine purchases
- Number of purchases
- Number of store purchases
- Higher education (above basic)

Income is negatively correlated with:

- . Monthly websote visits
- · Presence of minors in household

Effect of minor on other variables

```
In [26]:
```

```
data_corr= data.corr().unstack().sort_values(kind='quicksort', ascending=False).reset_in
dex()
data_corr.rename(columns={'level_0': 'Column_1', 'level_1': 'Column_2', 0: 'Correlation
Coefficient'}, inplace= True)
data_corr[data_corr['Column_1']== 'Minors']
```

Out[26]:

	Column_1	Column_2	Correlation Coefficient
5	Minors	Minors	1.000000
70	Minors	Teenhome	0.698433
71	Minors	Kidhome	0.689971
192	Minors	NumDealsPurchases	0.439684
214	Minors	NumWebVisitsMonth	0.418419
438	Minors	Age	0.095494
498	Minors	Customer_since	0.032215
500	Minors	Complain	0.031066
539	Minors	Recency	0.018053
617	Minors	ID	-0.000146
694	Minors	AcceptedCmp3	-0.020402
777	Minors	AcceptedCmp2	-0.069823
793	Minors	AcceptedCmp4	-0.087563
823	Minors	NumWebPurchases	-0.146361
842	Minors	Response	-0.169163
867	Minors	AcceptedCmp1	-0.224887
872	Minors	Responsiveness	-0.244282
874	Minors	NumPur	-0.245790
882	Minors	MntGoldProds	-0.266095

886	Column 1	Accepted Cinps	Correlation Coefficient
888	Minors	Income	-0.290858
894	Minors	NumStorePurchases	-0.321125
900	Minors	MntWines	-0.351909
904	Minors	RemPur	-0.357523
908	Minors	Lux_spent	-0.367552
914	Minors	MntSweetProducts	-0.383137
918	Minors	MntFruits	-0.394853
926	Minors	MntFishProducts	-0.425503
931	Minors	NumCatalogPurchases	-0.439904
939	Minors	Amount_spent	-0.498888
945	Minors	MntMeatProducts	-0.502208

Observations:

Minor is positively correlated with:

- Number of deals purchased
- Number of web visits per month

The presence of Minors in household is negatively correlated with:

- Amount spent on meat purchases
- Total amount spent
- Number of catalogue purchases
- · Amount spent on fish porducts
- Amount spent on Fruits
- · Amount spent of sweets
- Luxury items
- Remote purchases
- Amount spent on wine purchases
- Number of store purchases
- Income

Section 02: Statistical Analysis

Please run statistical tests in the form of regressions to answer these questions & propose data-driven action recommendations to your CMO. Make sure to interpret your results with non-statistical jargon so your CMO can understand your findings.

- What factors are significantly related to the number of store purchases?
- . Does US fare significantly better than the Rest of the World in terms of total purchases?
- Your supervisor insists that people who buy gold are more conservative. Therefore, people who spent an above average amount on gold in the last 2 years would have more in store purchases. Justify or refute this statement using an appropriate statistical test.
- Fish has Omega 3 fatty acids which are good for the brain. Accordingly, do "Married PhD candidates" have a significant relation with amount spent on fish? What other factors are significantly related to amount spent on fish? (Hint: use your knowledge of interaction variables/effects).
- Is there a significant relationship between geographical regional and success of a campaign?

1. What factors are significantly related to the number of store purchases?

In [27]:

```
plt.figure(figsize=(8,3))
sns.distplot(data['NumStorePurchases'], kde=False, hist=True, bins=12)
plt.title('NumStorePurchases distribution', size=10)
plt.ylabel('count')
plt.grid()

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `dis
tplot` is a deprecated function and will be removed in a future version. Please adapt you
r code to use either `displot` (a figure-level function with similar flexibility) or `his
tplot` (an axes-level function for histograms).
```


warnings.warn(msg, FutureWarning)

In [28]:

```
# Dropping 'ID' column since it is unique to every customer
data_reg= data.drop(['ID'], axis =1)
data_reg.head()
```

Out[28]:

	Education	Marital_Status	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishProduc
0	Graduation	Divorced	84835.0	0	0	0	189	104	379	1
1	Graduation	Single	57091.0	0	0	0	464	5	64	
2	Graduation	Married	67267.0	0	1	0	134	11	59	
3	Graduation	Together	32474.0	1	1	0	10	0	1	
4	Graduation	Single	21474.0	1	0	0	6	16	24	
4			1							Þ

In [29]:

```
# Perform one-hot encoding of categorical variables (basically creating separate column f
or each category of a variable column)
def create_dummies(data,column_name):
   dummies = pd. get_dummies(data[column_name], prefix= column_name)
   data=pd.concat([data,dummies], axis=1)
   return data

data_reg= create_dummies(data_reg, 'Education')
data_reg= create_dummies(data_reg, 'Marital_Status')
data_reg= create_dummies(data_reg, 'Country')
data_reg.head()
```

Out[29]:

	Education	Marital_Status	Income	Kidhome	Teenhome	Recency	MntWines	MntFruits	MntMeatProducts	MntFishProduc
0	Graduation	Divorced	84835.0	0	0	0	189	104	379	1
1	Graduation	Single	57091.0	0	0	0	464	5	64	
2	Graduation	Married	67267.0	0	1	0	134	11	59	

```
3 @dduation Maritalosettes 226749 Kidhomé Teenhomé Recency MntWinés MntFruits MntMeatProducts MntFishProduc
                  Single 21474.0
4 Graduation
In [30]:
data reg.columns
Out[30]:
Index(['Education', 'Marital Status', 'Income', 'Kidhome', 'Teenhome',
       'Recency', 'MntWines', 'MntFruits', 'MntMeatProducts',
       'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
       'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
       'NumStorePurchases', 'NumWebVisitsMonth', 'AcceptedCmp3',
       'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2',
       'Response', 'Complain', 'Country', 'Age', 'Minors', 'Amount_spent',
       'Lux_spent', 'NumPur', 'RemPur', 'Responsiveness', 'Customer_since',
       'Education_2n Cycle', 'Education_Basic', 'Education_Graduation',
       'Education Master', 'Education PhD', 'Marital Status Absurd',
       'Marital_Status_Alone', 'Marital_Status_Divorced',
       'Marital_Status_Married', 'Marital_Status_Single', 'Marital_Status_Together', 'Marital_Status_Widow',
       'Marital Status YOLO', 'Country AUS', 'Country CA', 'Country GER',
       'Country IND', 'Country ME', 'Country SA', 'Country SP', 'Country US'],
      dtype='object')
In [31]:
# Dropping the categorical variables and NumStorePurchases and storing rest in a separate
data frame
data reg dropped= data_reg.drop(['Education', 'Marital_Status', 'Country', 'NumStorePurch
ases'], axis=1)
data reg dropped.head()
Out[31]:
```

Income Kidhome Teenhome Recency MntWines MntFruits MntMeatProducts MntFishProducts MntSweetProducts Mnt 0 84835.0 189 0 0 0 189 104 379 111 1 57091.0 7 0 0 464 5 64 59 2 67267.0 0 11 15 134 3 32474.0 0 10 n n n 1 1 1 4 21474.0 0 0 6 16 24 11 0

```
In [32]:
```

```
X= data_reg_dropped
y= data_reg['NumStorePurchases']
```

- Fit linear regression model to training data (70% of dataset)
- Evaluate predictions on test data (30% of dataset).

In [33]:

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
train_X, test_X, train_y, test_y = train_test_split(data_reg_dropped, y, test_size=0.3,r
andom_state=1)
#Liner Regression model
```

```
reg = LinearRegression(normalize=True)
reg.fit(train_X, train_y)

#Predictions
y_pred = reg.predict(test_X)

mean_absolute_error(test_y, y_pred)
```

Out[33]:

9.381714981601806e-15

Identify features that significantly affect the number of store purchases, using permutation importance:

```
In [34]:
```

```
!pip install eli5
Collecting eli5
  Downloading eli5-0.11.0-py2.py3-none-any.whl (106 kB)
                                     | 106 kB 5.5 MB/s
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from eli5
(1.4.1)
Requirement already satisfied: tabulate>=0.7.7 in /usr/local/lib/python3.7/dist-packages
(from eli5) (0.8.9)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from eli
5) (2.11.3)
Requirement already satisfied: scikit-learn>=0.20 in /usr/local/lib/python3.7/dist-packag
es (from eli5) (0.22.2.post1)
Requirement already satisfied: graphviz in /usr/local/lib/python3.7/dist-packages (from e
115) (0.10.1)
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.7/dist-packages (fr
om eli5) (1.19.5)
Requirement already satisfied: attrs>16.0.0 in /usr/local/lib/python3.7/dist-packages (fr
om eli5) (21.2.0)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from eli5)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (fr
om scikit-learn>=0.20->eli5) (1.0.1)
Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages
(from jinja2->eli5) (2.0.1)
Installing collected packages: eli5
Successfully installed eli5-0.11.0
```

In [35]:

```
import eli5
from eli5.sklearn import PermutationImportance

perm=PermutationImportance(reg, random_state=0).fit(test_X, test_y)
eli5.show_weights(perm, feature_names= test_X.columns.tolist(), top=10)
```

/usr/local/lib/python3.7/dist-packages/sklearn/utils/deprecation.py:144: FutureWarning: T he sklearn.feature_selection.base module is deprecated in version 0.22 and will be remov ed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.feature_selection. Anything that cannot be imported from sklearn.feature_selection is now part of the private API.

warnings.warn(message, FutureWarning)

Out[35]:

Weight	Feature
11.7184 ± 0.9437	NumPur
0.8250 ± 0.0583	RemPur
0.6097 ± 0.0352	NumDealsPurchases
0.5911 ± 0.0378	NumCatalogPurchases
0.5270 ± 0.0291	NumWebPurchases
0.0021 ± 0.0001	Amount_spent
0.0007 ± 0.0000	Lux_spent
0.0004 ± 0.0000	Education_Graduation
0.0003 ± 0.0000	MntMeatProducts
0.0003 ± 0.0000	Education_PhD

Weight 40 Feature

Most important features of Store purchases are Remore purchases, Number of deals purchased, Number of web purchases, Number of catalogue purchases.

2. Does US fare significantly better than the Rest of the World in terms of total purchases?

In [36]:

```
plt.figure()
data.groupby('Country')['NumPur'].sum().sort_values(ascending=False).plot(kind='bar')
plt.title('Number of Purchases per country')
plt.ylabel('Number of Purchases')
plt.grid()
```


US does not fare better in Total Purchases. Spain, South Africa, Canada, Australia and India have higher number of purchases than US.

3. Your supervisor insists that people who buy gold are more conservative. Therefore, people who spent an above average amount on gold in the last 2 years would have more in store purchases. Justify or refute this statement using an appropriate statistical test

 Plot relationship between amount spent in gold in last 2 years (MntGoldProds) and Number of in store purchases.

In [37]:

```
sns.lmplot(x= 'MntGoldProds', y='NumStorePurchases', data= data);
```



```
0 50 100 150 200 250 300 350
MntGoldProds
```

Findings: There is a positive relationship, but is it significant?

```
In [38]:
```

```
! pip install scipy
```

Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (1.4.1) Requirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.7/dist-packages (f rom scipy) (1.19.5)

```
In [39]:
```

```
from scipy import stats
tau, p_value = stats.kendalltau(data['MntGoldProds'], data['NumStorePurchases'])
p_value
```

Out[39]:

4.752746314649227e-152

Findings: People who spent an above average amount on gold have indeed more in store purchases. This correlation is statistically significant, however, this does not prove causation that people who spent money on gold are more conservative and prefer buying in stores.

4. Fish has Omega 3 fatty acids which are good for the brain. Accordingly, do "Married PhD candidates" have a significant relation with amount spent on fish?

We will compare MntFishProducts between Married PhD candidates and all other customers:

```
In [40]:
```

```
plt.figure(figsize=(25,5))
sns.boxplot(x= data['Education'], y= data['MntFishProducts'], hue= data['Marital_Status'])
```

Out[40]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd3adcb1b50>

Findings: Ph.d Married people do not spend more on Fish Products.

Now to find out what other factors are significantly related to amount spent of Fish:

- Like with the analysis of NumStorePurchases above, we will use use a linear regression model with MntFishProducts as the target variable, and then use machine learning explainability techniques to get insights about which features predict the amount spent on fish
- Begin by plotting the target variable:

In [41]:

plt.figure(figsize=(8,5))

```
sns.distplot(data['MntFishProducts'], kde= 'False', hist=True, bins=12)
plt.title('MntFishProducts distribution')
plt.ylabel('count')
plt.grid()
```

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2557: FutureWarning: `dis tplot` is a deprecated function and will be removed in a future version. Please adapt you r code to use either `displot` (a figure-level function with similar flexibility) or `his tplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

In [42]:

```
# now drop categorical columns like we did before for applying regression model
X= data_reg_dropped2= data_reg.drop(['Education', 'Marital_Status', 'Country', 'MntFishProducts'], axis=1)
y= data_reg_dropped['MntFishProducts']
```

- Fit linear regression model to training data (70% of dataset)
- Evaluate predictions on test data (30% of dataset)

In [43]:

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error

train_X, test_X, train_y, test_y= train_test_split(data_reg_dropped2, y, test_size= 0.2,
random_state=42)

#Linear Regression model
reg= LinearRegression(normalize=True)
reg.fit(train_X, train_y)

#prediction
y_pred= reg.predict(test_X)
mean_absolute_error(test_y, y_pred)
```

Out[43]:

5.026247275528663e-13

Identify features that significantly affect the amount spent on fish, using permutation importance:

In [44]:

```
import eli5
from eli5.sklearn import permutation_importance
```

```
perm= PermutationImportance(reg, random_state=0).fit(test_X, test_y)
eli5.show_weights(perm, feature_names = test_X.columns.tolist(), top=10)
```

Out[44]:

Weight	Feature				
321.0849 ± 22.6471	Amount_spent				
42.3584 ± 1.8337	MntMeatProducts				
27.4869 ± 2.4586	MntWines				
27.2073 ± 2.1624	Lux_spent				
1.4830 ± 0.1643	MntSweetProducts				
1.3452 ± 0.1872	MntFruits				
0.6726 ± 0.0701	MntGoldProds				
0.1741 ± 0.0136	RemPur				
0.0752 ± 0.0065	NumPur				
0.0279 ± 0.0023	Responsiveness				
40 more					

Significant features are: Amount_spent, MntMeatPriducts, MntWines, Lux_spent

Section 03: Data Visualization

Please plot and visualize the answers to the below questions.

1. Which marketing campaign is most successful?

In [45]:

```
# Plot marketing campaign overall acceptance rates.
# Calculate success rate
campaign_success_rate= pd.DataFrame(data[['AcceptedCmp1', 'AcceptedCmp2', 'AcceptedCmp3',
'AcceptedCmp4', 'AcceptedCmp5', 'Response']].mean()*100, columns=['Percent']).reset_inde
x()

# plot
sns.barplot(x='Percent', y='index', data=campaign_success_rate.sort_values('Percent'), p
alette='Blues')
plt.xlabel('Accepted %')
plt.ylabel('Campaign')
plt.title('Marketing Campaign Success Rate', size=12)
```

Out[45]:

Text(0.5, 1.0, 'Marketing Campaign Success Rate')

Findings: The most recent campaign (column name: Response) is the most successful one.

2. What does the average customer look like for this company?

```
In [46]:
```

data.columns

```
uu uu , uu zu.....
Out[46]:
'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
       'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
       'NumStorePurchases', 'NumWebVisitsMonth', 'AcceptedCmp3',
       'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2',
       'Response', 'Complain', 'Country', 'Age', 'Minors', 'Amount_spent', 'Lux_spent', 'NumPur', 'RemPur', 'Responsiveness', 'Customer_since'],
      dtype='object')
In [47]:
age= round(data['Age'].mean())
print('Avg age=', age)
#income
income= round(data['Income'].mean())
print('Avg Income=', income)
#customer since
customer since= round(data['Customer since'].mean())
print('Customer Since=', customer since)
#TotalAmountSpent
TotalAmountSpent= round(data['Amount spent'].mean())
print('Avg Amount Spent=', TotalAmountSpent)
#Responsiveness
Resp= data['Responsiveness'].mean()
print('Avg Responsiveness=', Resp)
#Number of minors in household
MinorHH= data['Minors'].mean()
print('Avg no. of minors=', MinorHH)
#Educatiom
edu= data['Education'].value counts()
print('Avg Education Qualification=', edu)
#Marital Status
marsta= data['Marital Status'].value counts()
print('Marital Status=', marsta)
#Recency
rec=data['Recency'].mean()
print('Recency=', rec)
Avg age= 52
Avg Income= 52238
Customer Since= 2013
Avg Amount Spent= 606
Avg Responsiveness= 0.29776785714285714
Avg no. of minors= 0.9504464285714286
Avg Education Qualification = Graduation
                                           1127
PhD
               486
               370
Master
2n Cycle
               203
Basic
Name: Education, dtype: int64
Marital Status= Married 864
Together 580
Single
            480
Divorced 232
             77
Widow
             3
Alone
Absurd
             2
Name: Marital Status, dtype: int64
```

An average customer:

- 1. is 52 years old
- 2. earns around 53k USD
- 3. is a custome since 2013
- 4. spent 606 USD in total
- 5. has responded to almost 0.3 campaigns
- 6. has one minor in household
- 7. is graduated
- 8. is married
- 9. made last purchase 49 days ago

3. Which products are performing best?

```
In [63]:
```


Findings: Best performing products are Wines followed by Meat Products

3. Which channels are underperforming?

```
In [69]:
```

```
'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2',
'Response', 'Complain', 'Country', 'Age', 'Minors', 'Amount_spent',
'Lux_spent', 'NumPur', 'RemPur', 'Responsiveness', 'Customer_since'],
dtype='object')
```

In [73]:

Findings: Catalog is the most underperforming channel followed by Deals. Store is the strongest channel.

Conclusion

- The most successful advertising campaign was the most recent campaign (column name: Response)
- Advertising campaign acceptance is positively correlated with income and negatively correlated with having kids/teens
 - Suggested action: Create two streams of targeted advertising campaigns, one aimed at high-income individuals without kids/teens and another aimed at lower-income individuals with kids/teens
- The most successful products are wines and meats (i.e. the average customer spent the most on these items)
 - Suggested action: Focus advertising campaigns on boosting sales of the less popular items
- The underperforming channels are deals and catalog purchases (i.e. the average customer made the fewest purchases via these channels)
- The best performing channels are web and store purchases (i.e. the average customer made the most purchases via these channels)
 - Suggested action: Focus advertising campaigns on the more successful channels, to reach more customers

```
In [ ]:
```