The spectral localiser via E-theory

Based on joint work with Bram Mesland, arXiv:2506.17143

Yuezhao Li

Mathematical institute, Leiden university

04-07-2025, Hannover

Sketch of the talk

- K-theory of C*-algebras can be used to classify the topology of a quantum system.
- The spectral localiser is a computational tool that allows for finite-dimensional computation of index pairings.
- We provide a (bivariant) K-theoretic framework for it.
- This may have impacts on index theorems.

C*-algebra: norm-closed *-subalgebra of $\mathbb{B}(\mathcal{H})$ for a Hilbert space \mathcal{H} . Theorem (Gelfand–Naimark) Every commutative C*-algebra is *-isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

commutative C*-algebras ←→ spaces.

C*-algebra: norm-closed *-subalgebra of $\mathbb{B}(\mathcal{H})$ for a Hilbert space \mathcal{H} .

Theorem (Gelfand–Naimark) Every commutative C*-algebra is *-isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

noncommutative C*-algebras ←→ "noncommutative" spaces.

C*-algebra: norm-closed *-subalgebra of $\mathbb{B}(\mathcal{H})$ for a Hilbert space \mathcal{H} .

Theorem (Gelfand–Naimark) Every commutative C*-algebra is *-isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

noncommutative C*-algebras ←→ "noncommutative" spaces.

K-theory: a (co)homology theory for "noncommutative spaces":

 $I \rightarrow E \rightarrow Q$ short exact sequence of C*-algebras

gives

$$\cdots \rightarrow \mathsf{K}_i(I) \rightarrow \mathsf{K}_i(E) \rightarrow \mathsf{K}_i(Q) \rightarrow \mathsf{K}_{i-1}(I) \rightarrow \cdots$$

long exact sequence of abelian groups

C*-algebra: norm-closed *-subalgebra of $\mathbb{B}(\mathcal{H})$ for a Hilbert space \mathcal{H} .

Theorem (Gelfand–Naimark) Every commutative C*-algebra is *-isomorphic to $C_0(X)$ for some locally compact Hausdorff space X.

noncommutative C*-algebras ←→ "noncommutative" spaces.

K-theory: a (co)homology theory for "noncommutative spaces":

 $I \rightarrow E \rightarrow Q$ short exact sequence of C*-algebras

gives

$$\cdots \rightarrow \mathsf{K}_i(I) \rightarrow \mathsf{K}_i(E) \rightarrow \mathsf{K}_i(Q) \rightarrow \mathsf{K}_{i-1}(I) \rightarrow \cdots$$

long exact sequence of abelian groups

Theorem (Bott periodicity) $K_i(A) \simeq K_{i+2}(A)$.

Kasparov's bivariant K-theory

Kasparov's KK-theory generalises both K-theory and its "dual theory".

A, B: (separable) C*-algebras \Rightarrow abelian groups $KK_j(A, B)$, $j \in \{0, 1\}$.

- ► $A = \mathbb{C}$: $KK_i(\mathbb{C}, B) \simeq K_i(B)$ K-theory.
- ► $B = \mathbb{C}$: $KK_i(A, \mathbb{C})$ K-homology.

Kasparov's bivariant K-theory

Kasparov's KK-theory generalises both K-theory and its "dual theory".

A, B: (separable) C*-algebras \Rightarrow abelian groups $KK_j(A, B)$, $j \in \{0, 1\}$.

- ► $A = \mathbb{C}$: $KK_i(\mathbb{C}, B) \simeq K_i(B)$ K-theory.
- ► $B = \mathbb{C}$: $KK_i(A, \mathbb{C})$ K-homology.

Kasparov product: there is a natural group homomorphism

$$\mathsf{KK}_i(A,B) \times \mathsf{KK}_i(B,C) \to \mathsf{KK}_{i+i}(A,C), \quad (\alpha,\beta) \mapsto \alpha \times \beta.$$

In particular: let $\beta \in KK_i(A, B)$, then it induces a group homomorphism

$$K_i(A) \xrightarrow{\times \beta} K_{i+j}(B).$$

- ▶ If $B = \mathbb{C}$ and $i + j = 0 \mod 2$: $K_0(\mathbb{C}) \simeq \mathbb{Z}$ generated by finite-rank projections in $\mathbb{K}(\mathcal{H})$.
- ⇒ K-homology is a "dual" theory of K-theory.

Quantum mechanics describes dynamics by Schrödinger equation.

Quantum mechanics describes dynamics by Schrödinger equation.

▶ Hamiltonian H: (possibly) unbounded, self-adjoint operator acting on a Hilbert space \mathcal{H} .

Quantum mechanics describes dynamics by Schrödinger equation.

- ▶ Hamiltonian H: (possibly) unbounded, self-adjoint operator acting on a Hilbert space \mathcal{H} .
- ▶ Observable algebra A: C*-algebra that contains the resolvent of H.

Quantum mechanics describes dynamics by Schrödinger equation.

- ▶ Hamiltonian H: (possibly) unbounded, self-adjoint operator acting on a Hilbert space \mathcal{H} .
- ▶ Observable algebra A: C*-algebra that contains the resolvent of H.
- H describe an insulator if H is invertible. Then

$$[\chi_{(-\infty,0)}(H)]$$

defines an element in $K_0(A)$.

- $ightharpoonup K_0(A)$ classifies Hamiltonians "up to stable homotopy".
- ▶ In the presence of symmetries: replace $K_0(A)$ by $K_i(A)$ or $KO_i(A)$.

Quantum mechanics describes dynamics by Schrödinger equation.

- ▶ Hamiltonian H: (possibly) unbounded, self-adjoint operator acting on a Hilbert space \mathcal{H} .
- ▶ Observable algebra A: C*-algebra that contains the resolvent of H.
- H describe an insulator if H is invertible. Then

$$[\chi_{(-\infty,0)}(H)]$$

defines an element in $K_0(A)$.

- K₀(A) classifies Hamiltonians "up to stable homotopy".
- ▶ In the presence of symmetries: replace $K_0(A)$ by $K_i(A)$ or $KO_i(A)$.
- ▶ Index pairing: extract numerical information from a K-theory class.
- \leftarrow Kasparov product with an element in $KK_i(A, B)$.

The odd index pairing

Setup:

- ▶ A a unital C*-algebra, $v \in A$ a unitary;
- ▶ (A, H, D) an odd (=ungraded) spectral triple over A.
 - \triangleright *D* is an unbounded, self-adjoint operator on \mathcal{H} such that [D, a] is bounded, and *D* has compact resolvent.
 - D may be thought of as an first-order differential operator.

The odd index pairing is the Kasparov product

$$\mathsf{K}_1(A) \times \mathsf{KK}_1(A,\mathbb{C}) \to \mathsf{K}_0(\mathbb{C}) \simeq \mathbb{Z}, \quad [\nu] \times [D] \mapsto \mathsf{ind}(\underbrace{P \nu P + 1 - P}),$$
 Fredholm

where P is the positive spectral projection of D:

$$P:=\chi_{(0,+\infty)}(D).$$

The odd spectral localiser, 1

Loring and Schulz-Baldes have introduced a method called spectral localiser to compute the odd index pairing $[v] \times [D]$. Input:

- ▶ an odd spectral triple (A, H, D);
- \triangleright a unitary $\nu \in \mathcal{A}$;
- ightharpoonup a tuning parameter $\kappa > 0$;
- ightharpoonup a threshold $\lambda > 0$.

Output:

► a (family of) unbounded self-adjoint operators

$$L_{\kappa} := \begin{pmatrix} \kappa D & \nu \\ \nu^* & -\kappa D \end{pmatrix};$$

- ▶ a finite-dimensional matrix $L_{\kappa,\lambda}$;
- ▶ half-signature $\frac{1}{2}$ sig($L_{\kappa,\lambda}$).

The odd spectral localiser, 2

Theorem (Loring–Schulz-Baldes 2017, 2019) For sufficiently small tuning parameter κ and sufficiently large threshold λ , then

$$ind(PvP + 1 - P) = \frac{1}{2} sig(L_{K,\lambda})$$

where $L_{\kappa,\lambda}$ is the truncation of L_{κ} onto the spectral subspace

$$\mathcal{H}_{\lambda} := \chi_{|x| < \lambda}(D \oplus D)(\mathcal{H} \oplus \mathcal{H}).$$

(finite-dimensional, if D has discrete spectrum)

Examples from topological insulators:

- D is the position operator.
- ⇒ Finite-volume computation of index pairing.

Signature versus rank

Let \mathcal{K} be a fin.-dim'l Hilbert space. Then $\mathbb{B}(\mathcal{K}) \simeq \mathbb{M}_{\dim \mathcal{K}}(\mathbb{C})$.

▶ The signature of a self-adjoint matrix L is

sig(L) = #(pos. eigenvalues of L) - #(neg. eigenvalues of L)
= rank(
$$\chi_{(0,+\infty)}(L)$$
) - rank($\chi_{(-\infty,0)}(L)$).

▶ If p is a projection on K, then

$$sig(2p - id_{\kappa}) = rank(p) - rank(id_{\kappa} - p).$$

Signature versus rank

Let \mathcal{K} be a fin.-dim'l Hilbert space. Then $\mathbb{B}(\mathcal{K}) \simeq \mathbb{M}_{\dim \mathcal{K}}(\mathbb{C})$.

The signature of a self-adjoint matrix L is

sig(L) = #(pos. eigenvalues of L) - #(neg. eigenvalues of L)
= rank(
$$\chi_{(0,+\infty)}(L)$$
) - rank($\chi_{(-\infty,0)}(L)$).

▶ If p is a quasi-projection on K, then

$$sig(2p - id_{\mathcal{K}}) = rank(\kappa_0(p)) - rank(\kappa_0(id_{\mathcal{K}} - p)).$$

$$\kappa_0: \mathbb{C} \setminus \{z \in \mathbb{C} \mid \text{Re } z = \frac{1}{2}\} \to \{0, 1\}, \quad \kappa_0(z) := \begin{cases} 1, & \text{Re } z > \frac{1}{2}; \\ 0, & \text{Re } z < \frac{1}{2}. \end{cases}$$

Signature versus rank

Let \mathcal{K} be a fin.-dim'l Hilbert space. Then $\mathbb{B}(\mathcal{K}) \simeq \mathbb{M}_{\dim \mathcal{K}}(\mathbb{C})$.

► The signature of a self-adjoint matrix L is

$$sig(L) = \#(pos. eigenvalues of L) - \#(neg. eigenvalues of L)$$

= $rank(\chi_{(0,+\infty)}(L)) - rank(\chi_{(-\infty,0)}(L)).$

▶ If p is a quasi-projection on K, then

$$\operatorname{sig}(2p-\operatorname{id}_{\mathcal{K}})=\operatorname{rank}(\kappa_0(p))-\operatorname{rank}(\kappa_0(\operatorname{id}_{\mathcal{K}}-p)).$$

$$\kappa_0: \mathbb{C} \setminus \{z \in \mathbb{C} \mid \text{Re } z = \frac{1}{2}\} \to \{0, 1\}, \quad \kappa_0(z) := \begin{cases} 1, & \text{Re } z > \frac{1}{2}; \\ 0, & \text{Re } z < \frac{1}{2}. \end{cases}$$

 $\Rightarrow L_{\kappa,\lambda}$ may come from a quasi-projection representative of K-theory.

Quasi-projections and quasi-idempotents

- Quasi-projection: $||p^2 p|| < \frac{1}{4}$, $p = p^*$;
- ▶ Quasi-idempotent: $||e^2 e|| < \frac{1}{4}$.

Let A be a unital C*-algebra. Then

$$K_0(A) = Gr(homotopy classes of projections in $\mathbb{M}_n A)$
= $Gr(homotopy classes of quasi-projections in $\mathbb{M}_n A)$.$$$

Class of quasi-projection p =class of the projection $\kappa_0(p)$.

Quasi-projections and quasi-idempotents

- Quasi-projection: $||p^2 p|| < 1/4$, $p = p^*$;
- ▶ Quasi-idempotent: $||e^2 e|| < \frac{1}{4}$.

Let A be a unital C*-algebra. Then

$$K_0(A) = Gr(homotopy classes of projections in $\mathbb{M}_n A)$
= $Gr(homotopy classes of quasi-projections in $\mathbb{M}_n A)$.$$$

Class of quasi-projection p =class of the projection $\kappa_0(p)$.

Physical intuition:

A quasi-idempotent may arise as the image of a projection under an asymptotic morphism.

Goal Compute the index pairing $K_1(A) \times KK_1(A, B) \to K_0(B)$ between a unitary $v \in A$ and an odd unbounded Kasparov A-B-module (A, E, D).

1. Construct an asymptotic morphism $(\Phi_t^D)_{t \in [1,\infty)}$ which gives the same index pairing $K_1(A) \to K_0(\mathbb{K}_R(E))$.

- 1. Construct an asymptotic morphism $(\Phi_t^D)_{t \in [1,\infty)}$ which gives the same index pairing $K_1(A) \to K_0(\mathbb{K}_R(E))$.
- 2. Pair $(\Phi_t^D)_t$ with ν to obtain a quasi-projection representative $[e_t] [f_t]$ of $([\nu], [D]) \in K_0(\mathbb{K}_R(E))$ when $t \gg 0$.

- 1. Construct an asymptotic morphism $(\Phi_t^D)_{t \in [1,\infty)}$ which gives the same index pairing $K_1(A) \to K_0(\mathbb{K}_B(E))$.
- 2. Pair $(\Phi_t^D)_t$ with ν to obtain a quasi-projection representative $[e_t] [f_t]$ of $([\nu], [D]) \in K_0(\mathbb{K}_R(E))$ when $t \gg 0$.
- 3. Spectrally truncate $[e_t] [f_t]$ to a submodule to get yet another quasi-projection representative $[p_{t,\lambda}^e] [p_{t,\lambda}^f]$. This depends on another parameter λ .

- 1. Construct an asymptotic morphism $(\Phi_t^D)_{t \in [1,\infty)}$ which gives the same index pairing $K_1(A) \to K_0(\mathbb{K}_B(E))$.
- 2. Pair $(\Phi_t^D)_t$ with ν to obtain a quasi-projection representative $[e_t] [f_t]$ of $([\nu], [D]) \in K_0(\mathbb{K}_R(E))$ when $t \gg 0$.
- 3. Spectrally truncate $[e_t] [f_t]$ to a submodule to get yet another quasi-projection representative $[p_{t,\lambda}^e] [p_{t,\lambda}^f]$. This depends on another parameter λ .
- 4. The spectral localiser $L_{t^{-1},\lambda}$ is congruent to $2p_{t,\lambda}^e 1$, and $p_{t,\lambda}^f$ contributes to zero signature.

Unbounded Kasparov module, 1

Definition Let A and B be C*-algebras. An odd unbounded Kasparov A-B-module is a triple (A, E, D), where:

- E is a Hilbert B-module;
- ▶ $\varrho: A \to \operatorname{End}_B^*(E)$ is a *-homomorphism onto the C*-algebra of adjointable operators; and $A \subseteq A$ is a dense *-subalgebra;
- ▶ D: dom $D \subseteq E \rightarrow E$ is a self-adjoint and regular operator.

such that:

- $\triangleright \varrho(a)(D+i)^{-1} \in \mathbb{K}_B(E)$ for all $a \in A$ (and hence for all $a \in A$);
- ► For every $a \in A$, $\varrho(a)$ maps dom D into dom D, and $[D, \varrho(a)]$ extends to an element of End $_{B}^{*}(E)$.

An unbounded Kasparov module is essential if $\overline{\varrho(A)E} = E$.

Unbounded Kasparov module, 2

Let $\chi: \mathbb{R} \to [-1, 1]$ be any chopping function (i.e. $\lim_{x \to \pm \infty} \chi(x) = \pm 1$). Then the bounded transform

$$(A, E, D) \longmapsto (A, E, \chi(D))$$

gives a odd, bounded Kasparov A-B-module.

Every class in $KK_1(A, B)$ can be represented by an essential odd, unbounded Kasparov A-B-module.

Example

- $ightharpoonup \left(\mathsf{C}^\infty_\mathsf{c}(\mathbb{R}), L^2(\mathbb{R}), -\mathrm{i} \frac{\mathsf{d}}{\mathsf{d} x} \right)$: odd, unbounded Kasparov $\mathsf{C}_0(\mathbb{R})$ - \mathbb{C} -module.
- ▶ $(\mathbb{C}, C_0(\mathbb{R}), x)$: odd, unbounded Kasparov \mathbb{C} - $C_0(\mathbb{R})$ -module.
- ► A spectral triple is an odd unbounded Kasparov A-C-module.

Asymptotic morphism, 1

Definition An asymptotic morphism $A \longrightarrow B$ is a family of maps $(\Phi_t : A \to B)_{t \in [1,\infty)}$ such that:

- 1. $t \mapsto \Phi_t(a)$ is continuous for all $a \in A$;
- 2. for all $\alpha, \alpha' \in A$ and $\lambda \in \mathbb{C}$,

$$\left. \begin{array}{l} \Phi_t(a^*) - \Phi_t(a)^* \\ \Phi_t(aa') - \Phi_t(a)\Phi_t(a') \\ \Phi_t(a + \lambda a') - \Phi_t(a) - \lambda \Phi_t(a') \end{array} \right\} \to 0 \quad \text{as } t \to \infty.$$

An asymptotic morphism $A \longrightarrow B$ represents a class in $E(SA, B) =: E_1(A, B)$ in E-theory of Connes and Higson.

This is another bivariant K-theory, characterised by different universal properties from Kasparov's KK-theory.

Asymptotic morphism, 2

There is a natural transformation $KK_1 \Rightarrow E_1$, making the following diagram commutes:

$$K_{1}(A) \xrightarrow{KK_{1}(A,B)} K_{0}(B)$$

$$\downarrow \text{ind} \qquad \qquad \downarrow \pm 1$$

$$K_{0}(SA) \xrightarrow{E_{1}(A,B)} K_{0}(B).$$

The following result is folklore.

Theorem (Higson–Kasparov 2001; L–Mesland 2025) Let (A, E, D) be an essential odd unbounded Kasparov A-B-module. The asymptotic morphism

$$\Phi_t^D: C_0(\mathbb{R}) \otimes A \to \mathbb{K}_B(E), \quad f \otimes \alpha \mapsto f(t^{-1}D)\alpha,$$

represents the class of the image of $[D] \in KK_1(A, B)$ in $E_1(A, B)$ under the natural transformation $KK_1 \rightarrow E_1$.

Quasi-projection representative

The image of $[v] \in K_1(A)$ in $K_0(SA)$ is given by

$$\begin{bmatrix} \left(s(x)^2 \otimes 1 & c(x)s(x) \otimes v \\ c(x)s(x) \otimes v^* & c(x)^2 \otimes 1 \end{bmatrix} - \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}.$$

where $c, s: \mathbb{R} \to [0, 1]$ are continuous functions satisfying

$$c^{2}(x) + s^{2}(x) = 1$$
, $\lim_{x \to \infty} s(x) = 1$, $\lim_{x \to -\infty} c(x) = 1$.

Theorem The odd index pairing $\langle [v], [D] \rangle$ is represented by: (t sufficiently large + certain commutators being bounded):

$$\underbrace{\begin{bmatrix} s_t^2 & \sqrt{c_t s_t} \vee \sqrt{c_t s_t} \\ \sqrt{c_t s_t} \vee^* \sqrt{c_t s_t} & c_t^2 \end{bmatrix}}_{\text{quasi-projection representative, =: } e_t} - \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}}_{\text{projection, =: } f_t}.$$

where $c_t := c(t^{-1}D)$ and $s_t := s(t^{-1}D)$.

Spectral truncation, 1

Setup:

- ▶ B a C*-algebra;
- \mathcal{E}
 a Hilbert B-module;
- $ightharpoonup \mathcal{D}$ an unbounded, self-adjoint and regular operator on \mathcal{E} .
- λ a positive real number ("spectral threshold")

Definition A spectral decomposition of \mathcal{E} is a pair of mutually complemented submodules $(\mathcal{E}_{\lambda}^{\downarrow}, \mathcal{E}_{\lambda}^{\uparrow})$ of \mathcal{E} , such that

$$\langle \mathcal{D}\xi, \mathcal{D}\xi \rangle \ge \lambda^2 \langle \xi, \xi \rangle$$
 for all $\xi \in \text{dom } \mathcal{D} \cap \mathcal{E}_{\lambda}^{\uparrow}$.

Remark For any $\lambda > 0$, a spectral decomposition $\mathcal{E} = \mathcal{E}_{\lambda}^{\downarrow} \oplus \mathcal{E}_{\lambda}^{\uparrow}$ always exists if $B = \mathbb{C}$; may not exist for general B.

Spectral truncation, 2

Let $(E_{\lambda}^{\downarrow}, E_{\lambda}^{\uparrow})$ be a spectral decomposition of $\widehat{E} := E \oplus E$ for the operator $D \oplus D$.

Then e_t decomposes as

$$e_t = \begin{pmatrix} p_{t,\lambda}^e & {m_{t,\lambda}^e}^* \\ m_{t,\lambda}^e & q_{t,\lambda}^e \end{pmatrix} \quad \cap \quad \begin{pmatrix} E_{\lambda}^{\downarrow} \\ E_{\lambda}^{\uparrow} \end{pmatrix}.$$

Theorem For $t \gg 0$ and $\lambda \gg 0$, the following quasi-projections are homotopic:

$$\begin{pmatrix} p_{t,\lambda}^e & m_{t,\lambda}^e \\ m_{t,\lambda}^e & q_{t,\lambda}^e \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} p_{t,\lambda}^e \\ q_{t,\lambda}^e \end{pmatrix}.$$

Therefore, as classes in $K_0(\mathbb{K}_R(E)^+)$:

$$[e_t] = [p_{t,\lambda}^e] + [q_{t,\lambda}^e].$$

Spectral truncation, 3

We have $[f_t] = [p_{t,\lambda}^f] + [q_{t,\lambda}^f]$, and

$$q_{t,\lambda}^e \sim q_{t,\lambda}^f$$

are asymptotically unitarily equivalent. So $[q_{t,\lambda}^e] = [q_{t,\lambda}^f]$. Summing up:

$$[e_t] - [f_t] = [p_{t,\lambda}^e] + [q_{t,\lambda}^e] - [p_{t,\lambda}^f] - [q_{t,\lambda}^f]$$
$$= [p_{t,\lambda}^e] - [p_{t,\lambda}^f],$$

both $p_{t,\lambda}^e$ and $p_{t,\lambda}^f$ are quasi-projections on E_λ^\downarrow .

If (A, E, D) is a spectral triple and D has discrete spectrum, then $p_{t,\lambda}^e$ and $p_{t,\lambda}^f$ are finite-dimensional quasi-projections.

Emergence of the spectral localiser, 1

A choice of c(x) and s(x):

$$c(x) := \sqrt{\frac{1}{2} - \frac{1}{2}x(1+x^2)^{-1/2}}, \quad s(x) := \sqrt{\frac{1}{2} + \frac{1}{2}x(1+x^2)^{-1/2}}.$$

They satisfy the prescribed commutator estimates.

Emergence of the spectral localiser, 2

▶ $2p_{t,\lambda}^e - 1$ is given by $(D_t := t^{-1}D)$:

$$\begin{pmatrix} D_{t}(1+D_{t}^{2})^{-1/2} & (1+D_{t}^{2})^{-1/4}v(1+D_{t}^{2})^{-1/4} \\ (1+D_{t}^{2})^{-1/4}v^{*}(1+D_{t}^{2})^{-1/4} & -D_{t}(1+D_{t}^{2})^{-1/2} \end{pmatrix}$$

$$= \begin{pmatrix} (1+D_{t}^{2})^{-1/4} & 0 \\ 0 & (1+D_{t}^{2})^{-1/4} \end{pmatrix} \underbrace{\begin{pmatrix} D_{t} & v \\ v^{*} & -D_{t} \end{pmatrix}}_{L_{t}^{-1},\lambda} \begin{pmatrix} (1+D_{t}^{2})^{-1/4} & 0 \\ 0 & (1+D_{t}^{2})^{-1/4} \end{pmatrix}.$$

 $ightharpoonup 2
ho_{t,\lambda}^f-1$ is given by $egin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}$

and has no signature.

Emergence of the spectral localiser, 3

Theorem (Loring-Schulz-Baldes 2017, 2019; L-Mesland 2025)

Assume that $(E_{\lambda}^{\downarrow}, E_{\lambda}^{\uparrow})$ is a spectral decomposition of $\widehat{E} := E \oplus E$ (with spectral threshold λ). Define

$$L_{t^{-1}} := \begin{pmatrix} t^{-1}D & v \\ v^* & -t^{-1}D \end{pmatrix},$$

and $L_{t^{-1},\lambda}$ be its truncation onto E_{λ}^{\downarrow} . Let:

- ▶ ε, δ > 0 satisfy ε + δ < $\frac{1}{400}$;
- t, λ satisfy $t > 4\varepsilon^{-1} ||[D, v]||$ and $\lambda > t\delta^{-1}$,

Then

$$\frac{1}{2}\operatorname{sig}(L_{t^{-1},\lambda})=\langle [\nu],[D]\rangle\in \mathsf{K}_0(\mathbb{K}_B(E)).$$

Further remarks

Why unbounded Kasparov modules?

The data of an unbounded Kasparov module yield several commutator estimates that are used to construct:

- homotopies of quasi-projections/idempotents;
- homotopies of asymptotic morphisms.

Numerical index pairings with traces

The spectral truncation technique also applies to computing index pairings associated to certain semi-finite spectral triples, arising as

$$K_1(A) \xrightarrow{\times [D]} K_0(B) \xrightarrow{\tau_*} \mathbb{R},$$

and yields the semi-finite spectral localiser of Schulz-Baldes and Stoiber

Summary and outlook

Summary

- The index pairing ([v], [D]) may be computed via an E-theoretic index pairing.
- This yields quasi-projection representatives of K-theory.
 A spectral truncation may be applied, providing the existence of a suitable spectral decomposition.
- The spectral localiser occurs as such an index pairing. Similar story for its semi-finite analogue.

Summary and outlook

Summary

- The index pairing ([v], [D]) may be computed via an E-theoretic index pairing.
- This yields quasi-projection representatives of K-theory.
 A spectral truncation may be applied, providing the existence of a suitable spectral decomposition.
- The spectral localiser occurs as such an index pairing. Similar story for its semi-finite analogue.

Outlook

- Asymptotic morphisms arise also from deformations of C*-algebras. Possible application to index theorems?
- Van Suijlekom has defined a variant of K-theory for operator systems. Possible application to a definition of their K-homology?