

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

1° **Referencia.** Ejercicio N°(2.15) propuesto en Wackerly&Mendenhall&Scheaffer (2010, p.33).

- 2º Enunciado. Una empresa de exploración petrolera encuentra petróleo o gas en 10% de sus perforaciones. Si la empresa perfora dos pozos, los cuatro posibles eventos simples y tres de sus probabilidades asociadas se dan en la tabla siguiente. Encuentre la probabilidad de que la compañía encuentre petróleo o gas
- a. En la primera perforación pero no en la segunda.
- b. En al menos una de las dos perforaciones.

Evento simple	Resultado de la primera	Resultado de la segunda	Probabilidad
E1	Encuentra	Encuentra	0,01
E2	Encuentra	No encuentra	?
E3	No encuentra	Encuentra	0,09
E4	No encuentra	No encuentra	0,81

Figura 1. *Tabla de eventos y probabilidades asociadas al ejercicio 2.15. Datos copiados de Wackerly&Mendenhall&Scheaffer* [1]. Editado con hoja de cálculo de Excel dentro de Power Point.

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

3° Teoría aplicada. Para el desarrollo de este ejercicio se utilizara la definición 2.6 de Wackerly&Mendenhall&Scheaffer [1]:

DEFINICIÓN 2.6: [1] "Suponga que S es un espacio muestral asociado con un experimento. A todo evento A en S (A es el subconjunto de S) le asignamos un número, P(A), llamado probabilidad de A, de modo que se cumplen los siguientes axiomas:

Axioma 1: $P(A) \ge 0$.

Axioma 2: P(S) = 1.

Axioma 3: Si A1, A2, A3,... forman una secuencia de eventos por pares mutuamente excluyentes en S (es decir,

 $Ai \cap Aj = \emptyset \text{ si } i \neq j)$, entonces

 $P(A_1 \cup A_2 \cup A_3 ...,) = \sum_{i=1}^{\infty} P(A_i)$."

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

4° Desarrollo de procedimientos

Paso 1: Para resolver el punto "a" debemos encontrar la probabilidad del evento 2 que es el evento que nos están pidiendo, hacemos la sumatoria de la probabilidad de los eventos y la igualamos a 1 (debido a que la suma de todos los eventos debe ser igual a 1), denotando a la probabilidad del evento 2 como "x" se desarrolla la ecuación para despejarla:

a.
$$(0.01 + x + 0.09 + 0.81) = 1$$
$$(0.91 + x) = 1$$
$$x = 1 - 0.91$$
$$x = 0.09$$

Paso 2: Para resolver el problema del punto "b" sumamos la probabilidad de los eventos en los que encuentran petróleo o gas en alguna de las 2 perforaciones (E1, E2 y E3 respectivamente):

b. (0.01 + 0.09 + 0.09) = 0.19También cabe resaltar que su complemento "c" (no encontrar petróleo ni gas en ningún caso) se calcula de la siguiente forma:

$$(0.19 + c) = 1$$

 $c = 1 - 0.19 = 0.81$

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

5° Resultado

• Como resultado del punto "a" nos da que la probabilidad de encontrar petróleo en la primera perforación pero no en la segunda (evento E2) es de 0.09.

Probabilidad de cada evento

Figura 2. Gráfica de probabilidades de cada evento. Elaboración propia. Editado con gráficos de Power Point.

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

5° Resultado

• Como resultado del punto "b" nos da que la probabilidad de encontrar petróleo o gas en al menos una de las 2 perforaciones es de 0.19.

Probabilidad de encontrar petróleo o gas

Figura 3. Gráfica de probabilidades de encontrar petróleo o gas. Elaboración propia. Editado con gráficos de Power Point.

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

5° Resultado

• Para complementar esta información se desarrollo una aplicación que permite editar las probabilidades iniciales de los eventos E1, E3 y E4, dicha aplicación se puede encontrar dando <u>click aquí</u>.

21/02/23 Subtema a tratar:

Un modelo probabilístico para un experimento: el caso discreto Omar Armando Neira Ordoñez_(20192020110)(20201020002)_2.15_1_1 correo institucional: oaneirao@udistrital.edu.co

Referencias

[1] Wackerly&Mendenhall&Scheaffer. (2010). Estadística Matemática (Séptima ed.). Mexico D.F.: Cengage Learning.