Shannon's Noisy Channel Theorem over a Binary Symmetric Channel

Ramesh Balaji

Rutgers University August 23, 2023

Context

- Data transfer is unreliable
- Eg. sending data over a network, eg. using TCP or UDP
- Have to find a way to correct data
- Error-correcting codes (ECCs): method to correct data after transmission

Context: Representing Data

- Data transmitted can be represented as an array of bits.
- Array of bits as a column vector of 3 bits:
 1
 1
- The set of all bitstrings with 3 bits is denoted as $\{0,1\}^3$. Similarly, for n bits, this is given as $\{0,1\}^n$.

Context: Encoder and Decoder Function

- ECCs have a encoder and decoder
- Encoder adds additional data to original data.
 - This extra data is used after transmission to recover the original data
 - Given as a function $f: \{0,1\}^n \rightarrow \{0,1\}^m$.
 - Since there are more bits in the result, m > n.
- Decoder converts the *transmitted data* to the original message.
 - Given as a function $g: \{0,1\}^m \rightarrow \{0,1\}^n$.
- *Noise* from transmitting $f(\vec{x})$ over the channel.
 - Given as a vector $E \in \{0, 1\}^m$
 - Mathematically, added to the result $f(\vec{x})$ where addition is mod 2 (example will be provided later).

Context: Encoder and Decoder

Context: Binary Symmetric Channel

- How is the error vector $E \in \{0, 1\}^n$ generated?
- Different kinds of channels generate different types of noise.
- Binary Symmetric Channel (BSC): the probability of a bit flip in the input is p.
 - More mathematically, if E_i represents the ith bit in E_i , then $E_i = \begin{cases} 1 & \text{w.p. } p \\ 0 & \text{w.p. } 1-p \end{cases}$
 - Then, when E is added to the input vector $f(\vec{x})$, it represents the output data after transmission over the channel.

Example: Basic Error-Correction Code over a BSC

■ Encoder will repeat every bit 3 times. Of every block, decoder will choose the bit in the block that occurs the most.

•
$$f: \{0,1\}^n \to \{0,1\}^{3n}$$

• $a: \{0,1\}^{3n} \to \{0,1\}^n$

- Our message is $\vec{x} = \begin{bmatrix} 1 \end{bmatrix}$. Using row vectors to save space.
- $f(\vec{x}) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$
- Suppose p = 0.1 and $E = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$. $f(x) & 1 & 1 & 1 \\
 + & E & 0 & 1 & 0 \\
 \hline
 f(x) + E & 1 & 0 & 1$

Example: Basic Error-Correction Code over a BSC (Cont.)

- Decoding: $f(\vec{x}) + E = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$
 - Most common bit is 1, so the output is [1].
- Output $g(f(\vec{x}) + E) = \lceil 1 \rceil = \vec{x}$.
 - Despite errors in the transmission, we still could decode the original message.

Statistics on Example Transmission Scheme

- The encoder function is defined as $f: \{0, 1\}^m \to \{0, 1\}^n$
- The rate of transmission is defined as $\frac{m}{n}$.
 - For the example code, the rate of transmission $R = \frac{1}{3}$.
- Probability of failure of our sample code:
 - We need to find the probability that either E has two 1s or three 1s.
 - $\binom{3}{2}p^2(1-p) + \binom{3}{3}p^3 = 0.028$

Tradeoff Between Rate of Transmission and Probability of Failure

- What if we copy the bit more times?
 - If repeated *n* times, then $R = \frac{1}{n}$
 - Probability of failure? Must be at least $\lceil \frac{n}{2} \rceil$ 1s in E for failure.
 - $P[g(f(x) + E) \neq x] = \sum_{i=\lceil \frac{n}{2} \rceil}^{n} {n \choose i} p^{i} (1-p)^{n-i}$
 - Probability of failure for n repeated bits

• Observation: worse rate of transmission $(\frac{1}{n})$, but lower probability of failure.

Shannon's Noisy Channel Coding Theorem over BSC

- Shannon's Noisy Channel Coding Theorem proves the existence ECC scheme with *theoretical* rate of transmission and failure probability.
- For a BSC with bit-flip probabliity p, for some arbitrarily small $\epsilon > 0$, there exists some ECC scheme with rate of transmission $1 H(p) \epsilon$, and probability of failure less than ϵ .
 - Note that $H(p) = -p \log_2 p (1-p) \log_2 1 p$, which is the binary entropy function.
- Does not tell us what that ECC scheme is, but states there exists one.

"Proving" the Noisy Channel Coding Theorem

- Not a formal proof.
- Two steps:
 - 1. Define a coding scheme with the appropriate rate of transmission
 - 2. Prove that its probability of failure is less than ϵ .

Defining an ECC

- Define δ such that $p + \delta < 0.5$, and $H(p + \delta) < H(p) + \frac{\epsilon}{2}$.
- Encoder: $f: \{0,1\}^{n(1-H(p)-\epsilon)} \to \{0,1\}^n$. Thus the rate of transmission is correct.
 - Given an input, f will output a random vector in {0, 1}ⁿ (there are some problems with this, namely that f could end up not being a function, but I think the probability is low)
- **Decoder:** $q: \{0,1\}^n \to \{0,1\}^{n(1-H(p)-\epsilon)}$.
 - Given transmitted data $f(\vec{x}) + E$, choose the value $\vec{y} \in f(\{0,1\}^n)$ such that the number of differing bits (called Hamming Distance) between \vec{y} and $f(\vec{x}) + E$ is less than $n(p + \delta)$

Probability of Failure

■ Two ways for failure to occur:

- 1. There is no vector in the range of f that is within $n(p + \delta)$ from $f(\vec{x}) + E$.
- 2. There is a vector $\vec{z} \in f(\{0,1\}^n)$, where \vec{z} is closer to $f(\vec{x}) + E$ than \vec{x} itself.
 - ► Mathematically, $\exists \vec{z} \in f(\{0,1\}^n)$ such that $\Delta(\vec{z}, f(\vec{x}) + E) < \Delta(\vec{x}, f(\vec{x}) + E)$ (note that $\Delta(\vec{a}, \vec{b})$ represents the Hamming Distance between \vec{a} and \vec{b})

Case 1: Vector not Within $n(p + \delta)$

- In this case, the random variable $\Delta(E, f(\vec{x}) + E)$ represents the number of 1s in E. This must be greater than $n(p + \epsilon)$
- Chernoff bound is decreasing. Note $np + np\epsilon < np + n\epsilon$, so $Pr[\Delta(E, f(\vec{x}) + E) > np + n\epsilon] < Pr[\Delta(E, f(\vec{x}) + E) > np + np\epsilon]$.
- We can use the Chernoff bound to know $Pr[\Delta(E, f(\vec{x}) + E) > np(1 + \epsilon)] < e^{-np\epsilon^2}$
- Thus $Pr[\Delta(E, f(\vec{x}) + E) > n(p + \epsilon)] < e^{-np\epsilon^2}$
- For *n* arbitrarily large, this probability exponentially decreases, and the probability will be less than epsilon.

Case 2: Vector Closer to Output than \vec{x}

Take an arbitrary $f(\vec{x}) \in f(\{0,1\}^n)$

Figure: Hamming ball of volume $n(p + \delta)$

- The probability that a vector \vec{y} exists within the Hamming ball is $\frac{Vol(n(p+\delta),f(\vec{x}))}{2^n}$, where $Vol(r,\vec{x})$ is the volume of the Hamming ball of radius r centered at \vec{x} .
- Note there are 2^n vectors in $\{0, 1\}^n$.

Case 2: Vector Closer to Output than \vec{x} (cont.)

Let V_i represent the event that for \vec{x}_i , the ith vector in $\{0,1\}^{1-H(p)-\epsilon}$, there exists a \vec{y} such that $\Delta(\vec{y}, f(\vec{x}_i) + E) < \Delta(\vec{x}_i, f(\vec{x}_i) + E)$. Already done on previous slide: $V_i = Vol(r, \vec{x})2^{-n}$

The probability of the union of these events (there are exactly $2^{n(1-H(p)-\epsilon)}$ events) can be bounded with the union bound.

$$\Pr\left[\bigcup_{i=0}^{n(1-H(p)-\epsilon)} V_i\right] \leq \sum_{i=0}^{n(1-H(p)-\epsilon)} V_i = Vol(r, \vec{x}) 2^{-n} 2^{n(1-H(p)-\epsilon)}$$

Case 2: Vector Closer to Output than \vec{x} (cont.)

Volume of a Hamming Ball

- Found through summing each "ring" of the ball
- Each "ring" has $\binom{n}{i}$ vectors in it (for a vector of size n)
- Total is $\sum_{i=0}^{n(p+\delta)} \binom{n}{i}$, where $n(p+\delta)$ is the radius

Approximation of Hamming Ball Volume

- Entropy function *H*(*p*) is involved here
- Can use Stirling's approximation to expand and exponent properties to expand $2^{nH(p)}$ and find $\binom{n}{pn} \approx 2^{nH(p)}$.

Case 2: Vector Closer to Output than \vec{x} (cont.)

First simplify bounds for approximation of Hamming ball volume:

$$\sum_{i=0}^{n(p+\delta)} \binom{n}{i} \le \binom{n}{p(n+\delta)}$$
$$\le 2^{nH(p+\delta)}$$
$$\le 2^{n(H(p)+\frac{\epsilon}{2})}$$

We need to expand $Vol(r, \vec{x})2^{-n}2^{n(1-H(p)-\epsilon)}$:

$$Vol(r, \vec{x}) 2^{-n} 2^{n(1-H(p)-\epsilon)} \le 2^{n(H(p)+\epsilon)-n+n(1-H(p)-\epsilon)}$$
$$\le 2^{nH(p)+\frac{n\epsilon}{2}-n+n-nH(p)-n\epsilon}$$
$$< 2^{-\frac{n\epsilon}{2}}$$

Evidently, for n large, the probability of the vector being within the Hamming ball is exponentially small and thus less than ϵ .