Research Summary

Yookoon Park Jan 25th, 2019

Publications

- Yookoon Park, Chris Donjoo Kim, Gunhee Kim. Variational Laplace Autoencoders. In submission to ICML 2019.
- Yookoon Park, Jaemin Cho, Gunhee Kim. A hierarchical latent structure for variational conversation modeling. In *NAACL*, 2018 (Oral).
- Yookoon Park*, Juyong Kim*, Gunhee Kim, Sung Ju Hwang.
 SplitNet: Learning to semantically split deep networks for parameter reduction and model parallelization. *In ICML*, 2017. (* equal contribution)

- Start from a whole base network
- Split layers into a tree structure through learning
- 3. Place branches on separate GPUs for efficient parallelization

- The problem boils down to learning
 - 1) Group assignments \mathbf{P},\mathbf{Q}
 - 2) Corresponding *block-diagonal* weight matrix ${f W}$

$$Q \in \mathbb{R}^{G imes K}$$
 (class-to-group assignments) K $\mathbf{W} \in \mathbb{R}^{D imes K}$ $\mathbf{P} \in \mathbb{R}^{G imes D}$ (feature-to-group assignments)

- Regularization objectives
 - Group-sparsity

$$\sum_{g} \sum_{i} \left\| \left((\mathbf{I} - \mathbf{P}_g) \mathbf{W} \mathbf{Q}_g \right)_{i*} \right\|_{2} + \sum_{g} \sum_{i} \left\| \left(\mathbf{P}_g \mathbf{W} (\mathbf{I} - \mathbf{Q}_g) \right)_{*i} \right\|_{2}$$

Disjoint group assignments

$$\sum_{i < j} \boldsymbol{p}_i \cdot \boldsymbol{p}_j + \sum_{i < j} \boldsymbol{q}_i \cdot \boldsymbol{q}_j$$

Balanced group assignments

$$\sum_{g} \left(\left(\sum_{i} \boldsymbol{p}_{gi} \right)^{2} + \left(\sum_{i} \boldsymbol{q}_{gj} \right)^{2} \right)$$

- Learned weight matrices
 - The weight blocks can be distributed onto separate GPUs

Conversation Modeling Using VAEs

- RNN+VAE suffers from uninformative latent variables
 - The model does not use z at all
- Two causes:
 - Inefficient latent information coding due to variational gap
 - Diagonal Gaussian posterior assumption is too weak
 - 2. Expressiveness of autoregressive model is powerful
 - Prefer modeling data with autoregressive power

Conversation Modeling Using VAEs

- 1. Hierarchical latent variable model
 - Efficient coding by sharing global information
 - More flexible posterior approximation

Conversation Modeling Using VAEs

- 2. Regularize the autoregressive power of RNNs
 - Randomly drop hidden states of encoder RNN

- Two challenges for VAEs
 - 1. Reducing amortization error
 - 2. Using expressive posterior assumptions
- We tackle both challenges using:
 - 1. Iterative update for finding the mode of posterior
 - 2. Local full-covariance Gaussian assumption
- In the paper, we show that this is in principle equivalent to the *Laplace approximation*

- Probabilistic PCA
 - A linear Gaussian latent variable model:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I}),$$
$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{W}\mathbf{z} + \mathbf{b}, \sigma^2 \mathbf{I}),$$

Posterior can be calculated in closed-form:

$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\frac{1}{\sigma^2} \mathbf{\Sigma} \mathbf{W}^T (\mathbf{x} - \mathbf{b}), \mathbf{\Sigma}),$$

where $\mathbf{\Sigma} = (\frac{1}{\sigma^2} \mathbf{W}^T \mathbf{W} + \mathbf{I})^{-1}.$

Neural network model:

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{0}, \mathbf{I}),$$
$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(g_{\theta}(\mathbf{z}), \sigma^2 \mathbf{I}),$$

- ReLU networks are piece-wise linear
 - It *locally* perform probabilistic PCA
 - $g_{\theta}(\mathbf{z}_t) \approx \mathbf{W}_t \, \mathbf{z}_t + \mathbf{b}_t$

- Iteratively find the mode of posterior distribution
 - Using local linearity and the results of probabilistic PCA

```
Algorithm 1 Iterative Laplace Inference
 Input: piece-wise linear generative network g_{\theta},
 inference model e_{\phi}, update steps T, learning rate \alpha_t
 Output: approximate Gaussian posterior q(\mathbf{z}|\mathbf{x})
 Sample \mathbf{x} \sim p_{\text{data}}(\mathbf{x})
 \mu_0 = e_{\phi}(\mathbf{x})
 for t=0 to T-1 do
     Compute local linear map W_t using Eq.(18), (19)
     \Sigma_t \leftarrow (\sigma^{-2} \mathbf{W}_t^T \mathbf{W}_t + \mathbf{I})^{-1}
     \boldsymbol{\mu}' \leftarrow \sigma^{-2} \boldsymbol{\Sigma}_t \mathbf{W}_t^T (\mathbf{x} - \mathbf{b}_t)
     \boldsymbol{\mu}_{t+1} \leftarrow (1 - \alpha_t) \boldsymbol{\mu}_t + \alpha_t \boldsymbol{\mu}'
 end for
 Compute local linear map W_T using Eq.(18), (19)
 \Sigma_T \leftarrow (\sigma^{-2} \mathbf{W}_T^T \mathbf{W}_T + \mathbf{I})^{-1}
 q(\mathbf{z}|\mathbf{x}) \leftarrow \mathcal{N}(\boldsymbol{\mu}_T, \boldsymbol{\Sigma}_T)
 Return q(\mathbf{z}|\mathbf{x})
```


Illustration of updates on ELBO landscape

- Expressive posterior with full-covariance Gaussian
 - Compare to fully-factorized assumption of VAE
 - No additional parameters are required

Table 1. Comparison of the marginal log-likelihood $\log p(\mathbf{x})$ for Gaussian and Bernoulli output models, estimated with 100 importance samples. T refers to the number of updates for VLAE and SA-VAE (Kim et al., 2018) or the number of flows for VAE+HF (Tomczak & Welling, 2016).

	Gaussian					Bernoulli
	MNIST	OMNIGLOT	FASHIONMNIST	SVHN	CIFAR10	MNIST
VAE	612.9	343.5	606.3	4555	2364	-96.73
SA-VAE(T=1)	614.1	341.4	606.7	4553	2366	-96.85
SA-VAE(T=2)	615.2	346.6	604.1	4551	2366	-96.73
SA-VAE $(T=4)$	612.8	348.6	606.6	4553	2366	-96.71
SA-VAE $(T=8)$	612.1	345.5	608.0	4559	2365	-96.89
VAE+HF(T=1)	610.5	341.5	604.3	4557	2366	-96.75
VAE+HF(T=2)	613.1	343.1	606.5	4569	2361	-96.52
VAE+HF $(T=4)$	612.9	333.8	604.9	4564	2362	-96.44
VAE+HF $(T=8)$	615.6	332.6	605.5	4536	2357	-96.14
$\overline{\text{VLAE}(T=1)}$	638.6	362.0	614.9	4639	2374	-94.68
VLAE $(T=2)$	645.4	372.7	615.5	4681	2381	-94.46
VLAE $(T=4)$	649.9	372.3	615.6	4711	2387	-94.41
VLAE $(T=8)$	650.3	380.7	618.8	4718	2392	-94.57

Recent Interest

- Learning disentangled representations
 - In probabilistic PCA

$$p_{\theta}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\frac{1}{\sigma^2} \mathbf{\Sigma} \mathbf{W}^T (\mathbf{x} - \mathbf{b}), \mathbf{\Sigma}),$$

where $\mathbf{\Sigma} = (\frac{1}{\sigma^2} \mathbf{W}^T \mathbf{W} + \mathbf{I})^{-1}.$

- Using diagonal $q(\mathbf{z}|\mathbf{x})$ encourage diagonal Σ
- As a result, it drives columns of W to be orthogonal
- This may be the source of disentanglement in VAEs