USTHB 2020-2021 [1] H. Mosteghanemi

Série 1 : Algorithmique avancée, Outils mathématiques et ordre de complexité

Exercice 1

Ecrire six algorithmes différents pour déterminer si un nombre entier est premier ou composé. Evaluer la complexité pour chacun des algorithmes proposés.

Exercice 2

Considérer 7 algorithmes A0, A1, ..., A6 conçus pour résoudre un même problème de taille n. La complexité en temps de chacun de ces algorithmes est exprimée dans la table ci-dessous.

Algorithme	Complexité	Temps		
	temporelle	N = 10	N = 100	N = 1000
A0	0(1)			
A1	$O(\log_2 n)$			
A2	$O(\sqrt{n})$			
A3	O(n)			
A4	$O(n^2)$			
A5	$O(n^3)$			
A6	$O(2^n)$			

- 1) Calculer les ordres de grandeurs suivantes en secondes :
 - a) 1 heure
 - b) 1 jour
 - c) 1 semaine
 - d) 1 mois
 - e) 1 année
 - f) 1 siècle
 - g) 1 millénaire

- 1) En supposant qu'une unité de taille s'exécute en une milliseconde, calculer le temps nécessaire pour traiter des tailles respectivement égales à 10, 100 et 1000.
- 2) Répéter la question 2 avec une unité de temps égale à une microseconde.
- 3) Que peut-on en conclure ?
- 4) En vous basant sur ce que vous pouvez trouver sur internet, donnez des exemples algorithmes ou de problèmes qui ont une complexité du même ordre que les algorithmes $A_0, ..., A_6$.

Exercice 3

Supposons qu'on ait écrit une procédure pour additionner m matrices carrées de nxn. Si l'addition de deux matrices carrées nécessite un temps d'exécution de $O(n^2)$ quelle sera la complexité de cette procédure en fonction de m et n?

Exercice 4

Supposons que deux algorithmes résolvent le même problème l'un s'exécute en $T_1(n)=400n$ et l'autre en $T_2(n)=n^2$. Quelles sont les complexités de ces deux algorithmes ? Pour quelles valeurs de n doit-on préférer l'algorithme de complexité plus élevée ?

Exercice 5 Classer dans l'ordre croissant les complexités suivantes :

 $O(n^2)$, $O(3^n)$, $O(2^n)$, $O(n^2 \log n)$, O(1), $O(n \log n)$, $O(n^3)$, O(n!), $O(\log n)$, O(n).

Exercice 6 Quelles sont les complexités de :

- $T_1(n)=3n\log n + \log n$
- $T_2(n)=2^n+n^3+25$

• $T_3(n,k)=k+n \text{ où } k \leq n$

Classer les dans l'ordre croissant.

Exercice 7

Soit f(n) et g(n) deux fonctions positives asymptotique. En s'aidant de la définition de base de la notation Θ , prouver que :

$$max(f(n),g(n))=\Theta(f(n)+g(n))$$

Exercice 8

Montrer que pour deux constantes réelles a et b quelconques, avec b>0:

$$(n+a)^b = \Theta(n^b)$$

Exercice 9

Peut-on écrire : $2^{n+1} = O(2^n)$?

 $2^{2n}=O(2^n) ?$

Exercice 10 Montrer que les affirmations suivantes sont correctes :

- (a) $5n^2 6n = \Theta(n^2)$
- (b) $n !=O(n^n)$
- (c) $2n^2+n \log n=\Theta(n^2)$
- $(d) \sum_{i=0}^{n} i^2 = \Theta(n^3)$
- (e) $\sum_{i=0}^{n} i^3 = \Theta(n^4)$
- (f) $n^{2^n} + 6*2^n = \Theta(n^{2^n})$

Exercice 11

Déterminer l'invariant des boucles pour chacun des algorithmes suivants et en déduire l'ordre de complexité. Justifier votre réponse

```
Algo_A1()
Début
i:=1:
Pour i := 1 \text{ à N}
       Faire i=i*j;
       Fait:
Pour j:=1 à i
       Faire <opération>;
       Fait;
Fin.
Algo A2()
Début
i:=1;
Tant que ( i \le N )
       Faire
       i=2*i;
       pour j:=1 à N
               Faire <opération>;
               Fait:
       Fait;
Fin.
Algo_A3()
Début
I := 1:
Pour j := 1 à N faire
       I := i*i; Fait;
J := 1:
Tant que j<=i faire
J := 2*i;
Fait:
Fin.
```

```
Algo_A4()
Début
I := 2 ; i := 1 ;
Tant que i \le N
Faire I := i*i;
fait:
Fin.
Algo_A5()
Début
I := 1 ; j := 1 ;
Tant que (i \le N)
faire
        si i < N alors i := i+1;
        sinon j := j+1 ; i := j ;
        fsi;
fait:
Fin.
Algo A6()
Début
I := 1 : i := 1 :
Tant que (i \le N)
Faire si i mod 2 = 0 alors i := 1;
                       tant que j<=M
                       Faire i := i+1;
               Fait:
       Fsi;
       I := i+j;
Fait;
```

Fin.