ACTIVITIES 5.1 - 5.11

Notes and Solutions

Notes and solutions are only given where appropriate.

5.2 3 'odds' and 3 'evens' in the first six throws of the dice. This has a probability of

$$\left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^3 \times 20 = 0.3125$$

since there are 20 distinct ways of arranging three 'evens' and three 'odds'.

5.4 1. 3 small loops; 1 small loop and 1 medium loop; 1 large loop.

- 2. Probabilities $\frac{1}{15}, \frac{6}{15}, \frac{8}{15}$
- 4. About 16!

5.5 Win/Lose 1. **Stake Outcome Balance** -£10£10 L -£10£20 -£20-£30L -£70£40 L -£40-£80-£150£80 L £160 W + £160+ £10

- 2. For the same sequence of L's and W's, the final answer and number of plays is not affected the maximum negative balance could be though.
- **5.6** 1. Yes, you should change choice; or, at least toss a coin to show which of the two doors you now go for if you stay with your original choice, your original chance of winning, $\left(\frac{1}{3}\right)$, will not change!

(You might need to write a computer simulation, as suggested, to argue this!)

5.7 2. (a) 2 (b) 800 (c) $\frac{1}{4000}$

Continued...

ACTIVITIES 5.1 - 5.11

Notes and Solutions

5.7 Continued...

3.	Symbols	Number of ways	Probability
	3 STRAWBERRIES	56	$\frac{56}{8000}$ $(1 \times 8 \times 7 = 56)$
	3 GRAPES	42	$\frac{42}{8000}$
	3 APPLES	64	$\frac{64}{8000}$
	3 BARS	94	$\frac{94}{8000} \left(2 \times 1 \times 19 + 2 \times 19 \times 1 + 18 \times 1 \times 1 = 94\right)$
	2 CHERRIES	280	$\frac{280}{8000} (2 \times 7 \times 20 = 280)$

- On average, you will lose almost 5p per go.
- **5.8** 2. (a) $\frac{2}{3}$ (b) $\frac{1}{3}$ 3. (a) $\frac{7}{11}$ (b) $\frac{4}{11}$

5.
$$p(PCPP) = \frac{56}{495}$$
, $p(PPP) = \frac{14}{55}$, $p(PPCP) = \frac{56}{495}$, $p(CPPP) = \frac{56}{495}$

$$6. \qquad \frac{98}{165} \approx 0.6$$

- **5.10** 1.
- $\frac{364}{365}$ 2. $\frac{363}{365}$ 3. $1 \frac{364}{365} \cdot \frac{363}{365} \approx 0.008$
- 0.0164

5.
$$n = 10 \Rightarrow p = 0.117$$
; $n = 30 \Rightarrow p = 0.706$; $n = 10 \Rightarrow p = 0.117$

5.11 1.
$$(0.25)^{10} \approx 9.54 \times 10^{-7} \Rightarrow \text{approx 1 in a million}$$

2.
$$(0.5)^{10} \approx 9.76 \times 10^{-4} \Rightarrow 1 \text{ in } 1024 \text{ chance}$$

3. 15 bands should suffice.