

CCNA Discovery

Designing and Supporting Computer Networks

Lab 7.3.3 Configuring and Testing the Rapid Spanning Tree Prototype

Device Designation	Device Name	IP Address	Subnet Mask	Default Gateway
R1	BR4	Fa0/0.1 10.0.0.1 Fa0/0.10 10.10.10.254 Fa0/0.20 10.10.20.254	255.255.255.0 255.255.255.0 255.255.255.0	
S1	FC-ASW-1	VLAN1: 10.0.0.2	255.255.255.0	10.0.0.1
S2	ProductionSW	VLAN1: 10.0.0.3	255.255.255.0	10.0.0.1
H1	H1	10.10.10.10	255.255.255.0	10.10.10.254
H2	H2	10.10.20.10	255.255.255.0	10.10.20.254
H3	H3	10.10.10.11	255.255.255.0	10.10.10.254
H4	H4	10.10.20.11	255.255.255.0	10.10.20.254

Objectives

- Configure trunking on trunk ports to provide access to a router on the network.
- Configure separate VLANs for separate logical networks for production users and the server farm.
- Verify inter-VLAN connectivity.
- Enable RSTP and configure the root switch and backup root switch.
- Verify that the network can converge after inducing link and switch failures.

640-802 CCNA Exam Objectives

This lab contains skills that relate to the following CCNA exam objectives:

- Describe enhanced switching technologies, including: VTP, RSTP, VLAN, PVSTP, 802.1q.
- Verify network status and switch operation using basic utilities (including: ping, traceroute, Telnet, SSH, arp, ipconfig), and show and debug commands.
- Configure, verify, and troubleshoot RSTP operation.

Expected Results and Success Criteria

Background / Preparation

The network designer has developed a test plan for the proposed FilmCompany server farm. The tests depend on the ability of the technicians to configure the switches to use STP, because the server farm test topology implements redundant switched links. In this lab, you will review the basic functionality Cisco Rapid PVST.

Task 1: Configure all devices

Step 1: Configure S1 and S2

Configure the host name, access, and command mode passwords on each switch.

Step 2: Configure interface VLAN 1

Configure the VLAN1 IP address and default gateway on each switch.

Step 3: Configure FC-ASW-1 for server and end user VLANs

VLAN Number	VLAN Name
10	Servers
20	Users

Step 4: Configure ProductionSW for server and end user VLANs

VLAN Number	VLAN Name
10	Servers
20	Users

Step 5: Assign ports to VLANs on FC-ASW-1

```
FC-ASW-1#configure terminal
FC-ASW-1(config)#interface Fa0/5
FC-ASW-1(config-if)#switchport mode access
FC-ASW-1(config-if)#switchport access VLAN10
FC-ASW-1(config-if)#interface Fa0/6
FC-ASW-1(config-if)#switchport mode access
FC-ASW-1(config-if)#switchport access VLAN20
```

Step 6: Assign ports to VLANs on ProductionSW

```
ProductionSW#configure terminal
ProductionSW(config)#interface Fa0/5
ProductionSW(config-if)#switchport mode access
ProductionSW(config-if)#switchport access VLAN10
ProductionSW(config-if)#interface Fa0/6
ProductionSW(config-if)#switchport mode access
ProductionSW(config-if)#switchport access VLAN20
```

Step 7: Configure trunk ports on FC-ASW-1 to the router and ProductionSW

```
FC-ASW-1(config)#interface Fa0/1
FC-ASW-1(config-if)#switchport mode trunk
FC-ASW-1(config-if)#interface Fa0/2
FC-ASW-1(config-if)#switchport mode trunk
FC-ASW-1(config-if)#interface Fa0/4
FC-ASW-1(config-if)#switchport mode trunk
```

Step 8: Configure trunk ports on ProductionSW to FC-ASW-1

```
ProductionSW(config)#interface Fa0/2
ProductionSW(config-if)#switchport mode trunk
ProductionSW(config-if)#interface Fa0/4
ProductionSW(config-if)#switchport mode trunk
```

Step 9: Configure VTP on both switches

FC-ASW-1#vlan database
FC-ASW-1(vlan)#vtp server

Step 10: Configure ProductionSW to be a VTP client

```
ProductionSW#vlan database
ProductionSW(vlan)#vtp client
ProductionSW(vlan)#vtp domain ServerFarm
```

Step 11: Configure Rapid Spanning Tree Protocol

On each switch, configure Per-VLAN Rapid Spanning Tree Protocol.

```
FC-ASW-1(config)#spanning-tree mode rapid-pvst
ProductionSW(config)#spanning-tree mode rapid-pvst
```

Step 12: Perform basic router configuration

Configure hostname, passwords, and line access on R1.

Step 13: Configure Subinterface Fa0/0

```
BR4#configure terminal
BR4(config)#interface Fa0/0
BR4(config-if)#no shut
BR4(config-if)#interface Fa0/0.1
BR4(config-subif)#description VLAN1
BR4(config-subif)#encapsulation dot1q 1
BR4(config-subif)#ip address 10.0.0.1 255.255.255.0
BR4(config-subif)#interface Fa0/0.10
BR4(config-subif)#description VLAN10
BR4(config-subif)#encapsulation dot1q 10.
BR4(config-subif)#ip address 10.10.10.254 255.255.25.0
BR4(config-subif)#interface Fa0/0.20
BR4(config-subif)#description VLAN20
BR4(config-subif)#encapsulation dot1q20
BR4(config-subif)#ip address 10.10.20.254 255.255.255.0
BR4(config-subif)#end
BR4#
```

Step 14: Configure two hosts for server VLAN, and two hosts for end user VLAN

- a. H1 and H3 should be given IP addresses in the Servers VLAN, with a default gateway of 10.10.10.254.
- b. H2 and H4 should be given IP addresses in the Users VLAN, with a default gateway of 10.10.20.254.

Task 2: Perform basic connectivity tests

Step 1: Test intra-VLAN connectivity

a. Ping from H1 to H3.
Is the ping successful? _____
If the ping fails, troubleshoot the configuration on the hosts and the VLAN configuration on the switches.

b. Ping from H2 to H4.

Is the ping successful? _____

If the ping fails, troubleshoot the configuration on the hosts and the VLAN configuration on the switches.

Step 2: Test inter-VLAN connectivity

Ping from a host on the Servers VLAN to a host on the Users VLAN.

Is the ping successful? _____

If the ping fails, troubleshoot the router and switch configurations.

Task 3: Introduce link and device failures into the network, and observe results

Step 1: Determine the port status of the spanning tree on the server switch

	ratus of the spanning					
FC-ASW-1#sho	w span					
VLAN0010						
Spanning tree enabled protocol ieee						
Root ID	Priority 32778					
	Address 0030.F2	2C9.90A0				
	Hello Time 2 sec	Max Age 20 s	sec Forward Delay 15 sec			
Bridge ID	Priority 32778	(priority 32'	768 sys-id-ext 10)			
	Address 0090.23	LAC.OC10				
	Aging Time 300					
Interface	Role Sts Cost	Prio.Nbr	Type			
Fa0/1	Desg FWD 19	128.3	Shr			
	Root FWD 19					
Fa0/4	Altn BLK 19	128.3	Shr			
	Desg FWD 19					
VLAN0020	J					
Spanning t	ree enabled protocol	l ieee				
Root ID	Priority 32788					
	Address 0030.F2	2C9.90A0				
			sec Forward Delay 15 sec			
Bridge ID	Priority 32788					
	Address 0090.23					
	Aging Time 300					
Interface	Role Sts Cost	Prio.Nbr	Туре			
Fa0/1	Desg FWD 19	128.3	Shr			
Fa0/2	Root FWD 19	128.3	Shr			
Fa0/4	Altn BLK 19	128.3	Shr			
Fa0/6	Desg FWD 19	128.3	Shr			

Which port is not currently participating in forwarding data?

Step 2: Induce a link failure on the server switch

Remove the cable from one of the forwarding ports on FC-ASW-1.

Step 3: View the adjustment to the spanning-tree

Re-issue the **show span** command.

How long did it take the switches to determine and utilize a backup link? _____

Step 4: Induce a device failure on the network
Turn off the ProductionSW switch.
Ping from H1 to H2.
Was the ping successful?
Step 5: Reflect on the test results
In a network with multiple branch offices, why is the use of Rapid Spanning Tree Protocol important?
Why is it important when implementing a server farm?