Projet de Programmation

Benoit Donnet Année Académique 2023 - 2024

1

Agenda

Partie 1: Techniques Avancées de C

- Chapitre 1: Définition de Type
- Chapitre 2: Généricité
- Chapitre 3: Arguments d'un Programme

Agenda

- Chapitre 2: Généricité
 - Principe
 - Duplication de Code
 - Pointeur de Fonction

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Agenda

- Chapitre 2: Généricité
 - Principe
 - Duplication de Code
 - Pointeur de Fonction

Principe

- On souhaite pouvoir appliquer le même traitement à plusieurs types de données
 - objectif?
 - ✓ factoriser le code
- Polymorphisme
 - mécanisme orienté objet
 - cfr. INFO0062
- Pas de formalisme simple pour la généricité en C
 - il faut "bricoler"
 - ✓ duplication de code
 - ✓ pointeurs de fonctions
 - ✓ liste d'arguments variable

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

4

Agenda

- Chapitre 2: Généricité
 - Principe
 - Duplication de Code
 - ✓ Principe
 - ✓ Exemples
 - ✓ Limites
 - Pointeur de Fonction

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Principe

- Ecrire autant de routines que de types de données à traiter
 - réservé aux fragments de petites tailles
 - maintenabilité difficile
- Automatisation des routines via les macros
 - passage de code en paramètre textuel des macros
 - utilisation de la direction ##
 - permet de joindre 2 termes accolés pour faire un seul identifiant

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

7

Exemples

- Exemple 1
 - addition pour des int et des float

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Exemples (2)

- Exemple 1 (cont.)
 - addition pour des int et des float

```
int main(){
  int a=3, int b=4;
  float x=3.5, y=4.6;

  printf("%d\n", plus_int(a, b));
  printf("%f\n", plus_float(x, y));

  return 0;
}//fin programme
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

q

Exemples (3)

- Exemple 1 (cont.)
 - addition pour des int et des float
- Que se passe-t-il à la compilation?

```
$>gcc -E duplication.c | more

...
int plus_int ( int a, int b) { return (a + b); }
float plus_float ( float a, float b) { return (a + b); }

int main(){
  int a=3, b=4;
  float x=3.5, y=4.6;
  printf("%d\n", plus_int(a,b));
  printf("%f\n", plus_float(x,y));
  return 0;
}//fin programme
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

1(

Exemples (4)

- Quid si l'opérateur n'est pas le même en fonction du type?
 - on peut passer l'opérateur en paramètre
- Exemple 2
 - division

Limites

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

- La duplication de code ne résout pas tous les problèmes
 - évolutivité?
 - quid d'un nouveau type n'utilisant pas des opérateurs "primitifs"?
 - √ tous les opérateurs devraient être des fonctions!
 - modularité?
 - un nouveau type implique de toucher au code de la routine principale, puis recompiler
 - nécessité de disposer du code source
 - pas de livraison du code sous forme de bibliothèque

Limites (2)

- Idéalement
 - passer en paramètre le code que l'on souhaite voir exécuter par la routine
- Problème
 - on ne peut pas passer des fragments de code en paramètre
 - exécution d'instructions sur la pile interdite
 - cfr. INFO0045
- Solution
 - on peut passer la référence à un fragment de code déjà compilé
 - √ pointeur
 - **✓ pointeur sur fonction**

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

13

Agenda

- Chapitre 2: Généricité
 - Principe
 - Duplication de Code
 - Pointeur de Fonction
 - ✓ Principe
 - ✓ Déclaration
 - ✓ Pointeur sur void
 - ✓ Exemples

Principe

- Une fonction, comme tout élément manipulé par un programme dispose d'une adresse
 - identification univoque
- Adresse d'une fonction?
 - adresse du début de la fonction
 - spécifie l'emplacement mémoire de la 1ère instruction
 - opération sur une fonction
 - √ exécution
 - √ et non lecture/écriture du contenu

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

15

Principe (2)

- Analogie tableaux/fonctions
 - tableaux
 - t[i] représente la valeur retournée par la lecture de la (i+1)ème case du tableau
 - √ l'adresse de début est t
 - fonctions
 - f (i) représente la valeur retournée par l'exécution de la fonction f avec comme paramètre i
 - √ l'adresse de début est f
- Dans certains langages, on ne fait pas la distinction entre l'un et l'autre
 - les parenthèses servent aux 2

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

. .

Déclaration

• Comment déclarer un pointeur de fonction?

```
nom de la fonction

type (* id) ([type1[, type2] [,...]]]);

pointeur type des arguments

type de retour
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

17

Déclaration (2)

- Les parenthèses autour du * sont obligatoires
 - int (*fonction) (int, double);
 - pointeur sur fonction renvoyant un int
 - int *fonction (int, double);
 - ✓ fonction renvoyant un pointeur sur un int
- On lit toujours une déclaration en partant du nom de l'objet déclaré et en allant vers l'extérieur de la déclaration

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Déclaration (3)

- Exemple 1
 - int (*fonction)(int, int);
 - pointeur de fonction prenant deux entiers en argument et retournant un entier
- Exemple 2
 - void (*procedure)(float);
 - pointeur de procédure prenant un float en argument

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

10

Pointeur sur void

- Possibilité d'écrire des routines manipulant des données dont le type n'est pas connu à l'avance
- Comment manipuler des données de types non connus?
 - void *
 - routines de manipulation mémoire
 - ✓ e.g., memcpy()
- Attention
 - la taille des données doit être passée au "client"
 - utilisation (abusive?) des conversions de type
 - √ type cast

Pointeur sur void (2)

Exemple

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

21

Exemples

- Exemple 1
 - trouver la pente d'une fonction f de $\mathbb{R} \to \mathbb{R}$ en un point x

```
#include <stdio.h>
#include <math.h>

//Calcule la pente pour la fonction f en un point x
double pente(double (* f)(double), double x){
  const double EPSILON = 0.00001;

  double res = ((*f)(x + EPSILON) - (*f)(x))/EPSILON;
  return res;
}//fin pente()
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Exemples (2)

• Exemple 1 (cont.)

```
//calcule le carré d'un nombre
double carre(double x){
  return x*x;
}//fin carre()

int main(){
  printf("%lf\n", pente(carre, 2));
  printf("%lf\n", pente(acos, 0));
  return 0;
}//fin programme()
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

23

Exemples (3)

- Exemple 2
 - manipulation d'une fonction de tri

```
#include <stdlib.h>
        tableau taille tableau taille élément tableau
void qsort(void *base, size_t nmemb, size_t size,
        int (*compar)(const void *, const void *));
        fonction de comparaison d'éléments 2 à 2
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Exemple (4)

- Exemple 2 (cont.)
 - utilisation de *compar

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

25

Exemple (5)

- Exemple 2 (cont.)
 - implémentation de la comparaison

```
int compare_int(const void *a, const void *b){
  const int *a_int = (int *)a;
  const int *b_int = (int *)b;

return (*a_int - *b_int);
}//fin compare_int()
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet

Exemple (6)

- Exemple 2 (cont.)
 - utilisation

```
int main(){
  int tab[6] = {40, 10, 100, 90, 20, 25};

  affiche(tab, 6);
  qsort(tab, 6, sizeof(int), compare_int);
  affiche(tab, 6);

return 0;
}//fin programme
```

INFO0030 - ULiège - 2023/2024 - Benoit Donnet