演習ミクロ経済学 I 第9回*

2017年6月21日

定義 1 (VNM 効用関数). 効用関数 $u\colon \mathcal{G}\to \mathbb{R}$ が VNM 効用関数であるとは、任意の $g\in \mathcal{G}$ に対して

$$u(g) = \sum_{i=1}^{n} p_i u(a_i)$$

が成り立つことである. ただし $(p_1 \circ a_1, \ldots, p_n \circ a_n)$ は g が導く簡単ギャンブルである.

定義 2 (リスク回避, リスク中立, リスク愛好). $u(\cdot)$ を非負の賞金上のギャンブルに対する VNM 効用関数とする. 任意の簡単ギャンブル $q=(p_1\circ w_1,\ldots,p_n\circ w_n)$ について,

- 1. $u(E(g)) > u(g) \Rightarrow$ リスク回避的
- 2. $u(E(q)) = u(q) \Rightarrow$ リスク中立的
- $3. \ u(E(g)) < u(g) \Rightarrow$ リスク愛好的

という.

命題 1 (Jensen の不等式). $\sum_{i=1}^i p_i = 1$ とする. $f: \mathbb{R} \to \mathbb{R}$ が厳密な凹関数のとき,以下の関係が成り立つ.

$$\sum_{i=1}^{n} p_i f(w_i) < f\left(\sum_{i=1}^{n} p_i w_i\right)$$

問題

問題 1.

- (a) 関数 $f\colon\mathbb{R}\to\mathbb{R}$ が厳密な凹関数のとき,任意の $x^0\in\mathbb{R}$ における f の接線は f の上方に位置することを示しなさい.
- (b) 命題1を証明しなさい.

^{*} 講義ホームページ: http://k-kumashiro.github.io/website/KobeU_microex2017.html

問題 2. u と v を G 上の選好 \gtrsim を表す(必ずしも VNM でない)効用関数とする. 「v が u の正アフィン変換である \iff 互いに無差別でない任意のギャンブル $g^1, g^2, g^3 \in G$ について,

$$\frac{u(g^1) - u(g^2)}{u(g^2) - u(g^3)} = \frac{v(g^1) - v(g^2)}{v(g^2) - v(g^3)}$$

が成り立つ」を示しなさい.

問題 3. VNM 効用関数 $u(w) = \alpha + \beta \log(w)$ について以下の問に答えなさい.

- (a) この関数がリスク回避的な選好を表すとき β が満たすべき条件を求めなさい. 以下ではこの条件を満たすとする.
- (b) ギャンブル

$$g = ((1/2) \circ (w+h), (1/2) \circ (w-h))$$

について,確実性同値額とリスクプレミアムを求めなさい.

(c) 絶対的リスク回避度が逓減することを示しなさい.

問題 4. 任意の $w \in \mathbb{R}_+$ における絶対的リスク回避度が α で一定になるような VNM 効用関数を求めなさい.

問題 5. 二人の個人 1 と 2 は異なる VNM 効用関数を持つ. 個人 i の VNM 効用関数を u_i , 絶対的リスク回避度を R_a^i と書く. u_1 と u_2 は厳密な増加関数であり、任意の $w \in \mathbb{R}_+$ において彼らの絶対的リスク回避度には $R_a^1(w) > R_a^2(w)$ という関係があるとする. また任意の $w \in \mathbb{R}_+$ について $u_i(w) \geqslant 0$ とする. 以下の間に答えなさい.

- (a) 任意の $x \in \mathbb{R}_+$ に対し $h(x) = u_1(u_2^{-1}(x))$ と定義する. h が厳密な増加関数であり、かつ厳密な凹関数であることを示しなさい.
- (b) ギャンブル $g=(p_1\circ w_1,\dots,p_n\circ w_n)$ について考える。ただし $w_i,\,i=1,2,\dots,n$ は非負の賞金額である。個人 i の確実性同値額を $\hat{w_i}$ と書くとき, $\hat{w_1}<\hat{w_2}$ となることを示しなさい。