www.bioalgorithms.inf

Multiple Alignment

AN INTRODUCTION TO BIOINFORMATICS ALGORITHMS, NEIL C. JONES AND PAVEL A. PEVZNER, Chapters: 6.10-6.14

Outline

- Dynamic Programming in 3-D
- Progressive Alignment
- Profile Progressive Alignment (ClustalW)
- Scoring Multiple Alignments
- Entropy
- Sum of Pairs Alignment
- Partial Order Alignment (POA)
- A-Bruijin (ABA) Approach to Multiple Alignment

0_

Multiple Alignment versus Pairwise Alignment

 Up until now we have only tried to align two sequences.

0_

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two?And what for?

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two?And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

0

Multiple Alignments: What Are They Good For???

Main applications of multiple sequence alignments			
Application	Procedure		
Extrapolation	A good multiple alignment can help convincing you that an uncharacterized sequence is really a member of a protein family.		
Phylogenetic analysis	If you carefully chose the sequences to include in your multiple alignment, you can reconstruct the history of these proteins.		
Pattern Identification	By discovering very conserved positions you can identify a region that is characteristic of a function (in proteins or in nucleic acid sequences).		
Domain identification	It is possible to turn a multiple sequence alignment into a profile that describes a protein family or a protein domain. You can use this profile to scan databases for new members of the family.		
DNA regulatory elements	You can turn a DNA multiple alignment of a binding site into a weight matrix and scan other DNA sequences for potential similar binding sites.		
Structure prediction	A good multiple alignment can give you an almost perfect prediction of your protein secondary structure for proteins or RNA. Sometimes it can also help building a 3-D model.		
PCR analysis	A good multiple alignment can help you identifying the less degenerated portions of a protein family		
nsSNP	Identify the nsSNP that are the most likely to alter the function		

0

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

 Score: more conserved columns, better alignment

_

Alignments = Paths in

 Align 3 sequences: ATGC, AATC,ATGC

Alignment Paths

0	1	1	2	3	4
	Α		Т	G	С

x coordinate

```
A A T -- C
```

)__

Alignment Paths

Align the following 3 sequences:

ATGC, AATC, ATGC

0	1	1	2	3	4
	Α		Т	G	С
0	1	2	3	3	4
	Α	Α	Т		С

x coordinate y coordinate

-- A T G C

Alignment Paths

0	1	1	2	3	4
	A		Т	G	С
0	1	2	3	3	4
	A	Α	Т		С
0	0	1	2	3	4
		Α	Т	G	С

x coordinate y coordinate

z coordinate

Resulting path in (x,y,z) space:

$$(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$$

0_

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

0

2-D vs 3-D Alignment Grid

2-D edit graph

3-D edit graph

2-D cell versus 2-D Alignment

In 2-D, 3 edges in each unit square

In 3-D, 7 edges in each unit cube

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

 $\forall \delta(x, y, z)$ is an entry in the 3-D scoring matrix

0

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is $7n^3$; $O(n^3)$
- For k sequences, build a k-dimensional Manhattan, with run time (2^k-1)(n^k); O(2^kn^k)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

D___

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

D__

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

0_

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC-GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

can we construct a multiple alignment that induces them?

NOT ALWAYS

Pairwise alignments may be inconsistent

0

Inferring Multiple Alignment from Pairwise Alignments • From an optimal multiple alignment, we

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences

0

Combining Optimal Pairwise Alignments into Multiple Alignmer*

Can combine pairwise alignments into multiple alignment

Can *not* combine pairwise alignments into multiple alignment

(a) Compatible pairwise alignments

(b) Incompatible pairwise alignments

D_

Profile Representation of Multiple Alignment

```
T A G - C T A C C A - - - G
C A G - C T A T C A C - G
C A G - C T A T C A C - G
C A G - C T A T C G C - G
G
```

```
A 1 1 .8 C .6 .6 1 .4 1 .6 .2 G .2 .4 1 T .2 .2 .8 .4 .8 .4
```

D___

Profile Representation of Multiple Alignment

```
T A G G C T A T C A C C T G
T A G G C T A C C A - - - G
C A G - C T A C C A - - - G
C A G - C T A T C A C - G G
C A G - C T A T C A C - G G
C A G - C T A T C G C - G G
C A G - C T A T C G C - G G
C A G - C T A T C G C - G G
C A G - C T A T C G C - G G
C A G - C T A T C G C - G G
C A G - C T A T C G C - G G
```

In the past we were aligning a sequence against a sequence

Can we align a sequence against a profile?

Can we align a profile against a profile?

Aligning alignments

Given two alignments, can we align them?

```
x GGGCACTGCAT
```

y GGTTACGTC-- Alignment 1

z GGGAACTGCAG

w GGACGTACC-- Alignment 2

v GGACCT----

O___

Aligning alignments

- Given two alignments, can we align them?
- Hint: use alignment of corresponding profiles

```
x GGGCACTGCAT
```

y GGTTACGTC--

Combined Alignment

z GGGAACTGCAG

w GGACGTACC--

v GGACCT----

0_

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of k-1 sequences/profiles. Repeat
- This is a heuristic greedy method

```
k = ACGTACGTACGT...
u_1 = ACg/tTACg/tTACg/cT...
u_2 = TTAATTAATTAA...
u_3 = ACTACTACTACT...
u_k = CCGGCCGGCCGGC...
u_k = CCGGCCGGCCGGC...
```

0

Greedy Approach: Example Consider these 4 sequences

```
s1 GATTCA
```

s2 GTCTGA

s3 GATATT

s4 GTCAGC

__

Greedy Approach: Example (cont'd)

• There are $\binom{4}{2}$ = 6 possible alignments

```
GTCTGA
                         s1 GATTCA--
s2
   GTCAGC (score = 2)
                        s4 G-T-CAGC(score = 0)
s4
s1
   GAT-TCA
                         s2 G-TCTGA
                            GATAT-T (score = -1)
s2 G-TCTGA (score = 1)
                         s3
s1 GAT-TCA
                         s3 GAT-ATT
   GATAT-T (score = 1) s4 G-TCAGC (score = -1)
s3
```

0

Greedy Approach: Example (cont'd)

 s_2 and s_4 are closest; combine:

new set of 3 sequences:

```
S<sub>1</sub> GATTCA
S<sub>3</sub> GATATT
S<sub>4</sub> GTCt/aGa/c
```

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise

- Alignment
 Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

```
\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3 \quad \mathbf{v}_4
\mathbf{v}_{2} | .17 -
|v_3| .87 .28 - |v_4| .59 .33 .62 -
                                                  (.17 means 17 % identical)
```

Step 2: Guide Tree

Create Guide Tree using the similarity matrix

ClustalW uses the neighbor-joining method

Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

```
= alignment (v_1, v_3)
            V_{1,3}
                    = alignment((v_{1,3}), v_4)
            V_{1,3,4}
                     = alignment((v_{1,3,4}), v_2)
            V_{1,2,3,4}
```

**:

Algorithms

Step 3: Progressive

Astarbyanghing the two most similar sequences

 Following the guide tree, add in the next sequences, aligning to the existing alignment

FOS MOUSE PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD FOS CHICK SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD PGPGPLAEVRDLPG----STSAKEDGFGWLLPPPPPPP------LPFO FOSB MOUSE PGPGPLAEVRDLPG----SAPAKEDGFSWLLPPPPPPP-----FOSB HUMAN

→:··

Dots and stars show how well-conserved a column is.

__

Multiple Alignments: Scoring

Scoring
Number of matches (multiple longest common subsequence score)

Entropy score

Sum of pairs (SP-Score)

)_

Multiple LCS Score

 A column is a "match" if all the letters in the column are the same

> AAA AAA AAT ATC

Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment
 - $p_A = 1$, $p_T = p_G = p_C = 0$ (1st column)
 - $p_A = 0.75$, $p_T = 0.25$, $p_G = p_C = 0$ (2nd column)
 - $p_A = 0.50$, $p_T = 0.25$, $p_C = 0.25$ $p_G = 0$ (3rd column)
- Compute entropy of each column $P_X = A, T, G, C$

AAA AAT ATC

Entropy: Example

$$entropy \begin{pmatrix} A \\ A \\ A \\ A \end{pmatrix} = 0$$
 Best case

Worst case
$$entropy \begin{pmatrix} A \\ T \\ G \\ C \end{pmatrix} = -\sum \frac{1}{4} \log \frac{1}{4} = -4(\frac{1}{4} \times -2) = 2$$

D___

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$\sum_{\text{over all columns}} \sum_{X=A,T,G,C} p_X \log p_X$$

Algorithms

0

Entropy of an Alignment: Example

column entropy:

$$-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)$$

•Column 1 =
$$-[1*log(1) + 0*log0 + 0*log0 + 0*log0]$$

= 0

•Column 2 =
$$-[(1/4)*log(1/4) + (3/4)*log(3/4) + 0*log0 + 0*log0]$$

= $-[(1/4)*(-2) + (3/4)*(-.415)] = +0.811$

•Column 3 =
$$-[(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)+(1/4)*log(1/4)]$$

= $4*-[(1/4)*(-2)] = +2.0$

•Alignment Entropy =
$$0 + 0.811 + 2.0 = +2.811$$

D___

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

```
x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG
```

Induces:

```
x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
```

0

Inferring Pairwise Alignments from Multiple Alignments • From a multiple alignment, we can infer

 From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal

 This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube **Algorithms**

0

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

nt

Algorithms

Sum of Pairs Score(SP-

Score)
Consider pairwise alignment of sequences a_i and a_i

imposed by a multiple alignment of *k* sequences

 Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$s^*(a_i, a_j)$$

Sum up the pairwise scores for a multiple alignment:

$$s(a_1,\ldots,a_k)=\sum_{i,j}s^*(a_i,a_j)$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given a_1, a_2, a_3, a_4 :

$$s(a_1...a_4) = \Sigma s^*(a_i,a_j) = s^*(a_1,a_2) + s^*(a_1,a_3) + s^*(a_1,a_4) + s^*(a_2,a_3) + s^*(a_2,a_4) + s^*(a_3,a_4)$$

SP-Score: Example

a₁ ATG-C-AAT
 A-G-CATAT
 a_k ATCCCATTT

To calculate each column:

$$s'(a_1...a_k) = \sum_{i,j} s^*(a_i,a_j) \leftarrow \binom{n}{2}$$
 Pairs of Sequences

$$\begin{array}{c|cccc} G \\ -\mu & 1 \\ C & -\mu \\ G & G \end{array}$$

D___

Multiple Alignment: History

1975 Sankoff

Formulated multiple alignment problem and gave dynamic programming solution

1988 Carrillo-Lipman

Branch and Bound approach for MSA

1990 Feng-Doolittle

Progressive alignment

1994 Thompson-Higgins-Gibson-ClustalW

Most popular multiple alignment program

1998 Morgenstern et al.-DIALIGN

Segment-based multiple alignment

2000 Notredame-Higgins-Heringa-T-coffee

Using the library of pairwise alignments

2004 MUSCLE

What's next?

Problems with Multiple Alignment

- Multidomain proteins evolve not only through point mutations but also through domain duplications and domain recombinations
- Although MSA is a 30 year old problem, there were no MSA approaches for aligning rearranged sequences (i.e., multi-domain proteins with shuffled domains) prior to 2002
- Often impossible to align all protein sequences throughout their entire length

Problems with Multiple Alignment

- Multidomain proteins evolve not only through point mutations but also through domain duplications and domain recombinations
- Although MSA is a 30 year old problem, there were no MSA approaches for aligning rearranged sequences (i.e., multi-domain proteins with shuffled domains) prior to 2002
- Often impossible to align all protein sequences throughout their entire length