数值分析笔记 Python version

Jiaqi Z.

2023年9月14日

目录

1	绪论																					5
	1.1	误差 .																				5
		1.1.1	诗	差	来源	与	分差	烂.														5
		1.1.2	诗	是差	既念																	6
		1.1.3	相	对ì	吴差	限	和不	有效	文 娄	女气	ŻÉ	的	关	系								9
	1.2	数值运	吴差	估i	十															10		
		1.2.1	Д	则i	玄算	误	差值	古讠	+													10
		1.2.2	逐	i数(直误	差	估讠	+.														11
	1.3	算法数	位	稳划	官性																	12
	1.4	数值计	上算	中区	立该	注	急的	j –	<u>-</u> 脏	:厉	텣											15
		1.4.1	退	绝	两相	近	数材	目》	戓													15

4 目录

Chapter 1

绪论

1.1 误差

1.1.1 误差来源与分类

1. (模型误差): 从实际模型中抽象出数学模型;

例如,一个质量为 m 的小球做自由落体运动,则位置 s 与时间 t 的关系式满足:

$$m\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = mg$$

不难想见,该式仅在不考虑阻力时成立.

- 2. (观测误差): 通过测量得到模型中参数的值;
- 3. (方法误差 (或称截断误差)): 求近似解时所引入的误差;

例 1.1.1. 考虑函数 f(x) 做 Taylor 多项式展开所导致的截断误差.

解. 对函数 f(x) 计算 Taylor 多项式, 有

$$P_n(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

由于有限项, 因此多项式有截断误差

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} x^{n+1}$$

其中, $\xi \in (x,0)$

4. (含入误差): 机器字长有限所引起的误差

其中, 方法误差和舍入误差是数值分析所重点考虑的误差, 同时, 方法误差是可以避免的.

1.1.2 误差概念

绝对误差与绝对误差限

定义 1.1.1 (绝对误差与绝对误差限). 设 x 是准确值, x^* 是 x 的一个近似值, 则称

$$e(x^*) = x^* - x$$

为 x* 的绝对误差, 简称误差.

同时, 误差的绝对值的上限 $\varepsilon(x^*)$, 即有

$$|e(x^*)| = |x^* - x| \le \varepsilon(x^*)$$

 $\varepsilon(x^*)$ 称为绝对误差限.

注意: 误差有正有负,而误差限恒为正值.

习惯上, 我们把精确值和测量值的关系表示为

$$x = x^* \pm \varepsilon$$

相对误差与相对误差限

定义 1.1.2 (相对误差与相对误差限). 设 x 为准确值, x^* 为近似值, 称

$$e_r^* = e_r^*(x^*) = \frac{e(x^*)}{x} = \frac{x^* - x}{x}$$

为近似值 x^* 的相对误差.

同时, 其绝对值的上限 ε_r^* , 即有

$$\left| \frac{x - x^*}{x} \right| \le \varepsilon_r^*$$

 ε_r^* 称为相对误差限.

可以证明, 当 e_r^* 较小时, 有

$$e_r^* \approx \frac{x^* - x}{x^*}$$

同时易得

$$\varepsilon_r^* = \frac{\varepsilon^*}{|x^*|}$$

1.1. 误差

7

有效数字

定义 1.1.3 (有效数字, 有效位数, 有效数). 若近似值 x^* 误差满足

$$|x - x^*| \le \frac{1}{2} \times 10^{-n}$$

则称 x^* 近似表示 x 准确到小数点后第 n 位,并从第 n 位起一直到最左边非零数字之间的一切数字称为有效数字,位数为有效位数.

若所有数字均为有效数字,则称为有效数

例 1.1.2. 考虑圆周率 π , 且有近似值 $\pi_1 = 3.14, \pi_2 = 3.1415, \pi_3 = 3.1416, <math>\pi_4 = 3.14159$. 考虑它们的有效数字, 且判断是否为有效数.

解. 对于 $\pi_1 = 3.14$, 有 $|\pi - \pi_1| \approx 0.00159 \le 0.5 \times 10^{-2}$, 即 π_1 精确到小数点后 2 位, 有效数字是 3 位, 是有效数.

同理, 有 $|\pi - \pi_2| \approx 0.0000926 \le 0.5 \times 10^{-3}$, 即 π_2 精确到小数点后 3 位, 有效数字是 4 位, 不是有效数.

 $|\pi - \pi_3| \approx 0.0000073 \le 0.5 \times 10^{-4}$, 即 π_3 精确到小数点后 4 位, 有效数字是 5 位, 是有效数.

 $|\pi - \pi_4| \approx 0.0000026 \le 0.5 \times 10^{-5}$,即 π_4 精确到小数点后 5 位, 有效数字是 6 位, 是有效数.

从上例中不难看出,有效数通常是采取四舍五入所得到的近似值.

扩展: 我们可以简单给出关于四舍五入的证明.

证明. 设准确值为 x, 其近似值为 x^* , 考虑近似值精确到小数点后 n 位, 即

$$|x - x^*| < 5 \times 10^{-(n+1)}$$

若其为有效数,则 x^* 为小数点后 n 位,不妨设

$$x^* = a + b \cdot 10^{-n}$$

其中 $b \in [1, 10)$

特别地, 分两种情况讨论.

若 $x > x^*$, 即真实值大于近似值, 此时有

$$x \le x^* + 5 \times 10^{-(n+1)} = a + b \cdot 10^{-n} + 5 \times 10^{-(n+1)}$$

即当小数点后第n+1位小于等于5时,舍去后面的数字可以得到有效数.

若 $x < x^*$, 即真实值小于近似值, 此时有

$$x \ge x^* - 5 \times 10^{-(n+1)} = a + b \cdot 10^{-n} - 5 \times 10^{-(n+1)}$$
$$= a + (b-1) \cdot 10^{-n} + 5 \times 10^{-(n+1)}$$

即当小数点后第 n+1 位大于等于 5 时, 进位可以得到有效数.

十进制浮点表示法

定义 1.1.4. 设 x^* 为任一十进制数, 则 x^* 可表示为

$$x^* = \pm 0.a_1 a_2 \cdots a_n \cdots \times 10^m$$

其中, a_1 为 1 到 9 之间的一个数字, $a_2 \cdots a_n$ 为 0 到 9 之间的一个数字, m 为整数. 这样表示的 x^* 称为十进制浮点数 (规格化浮点数).

有效数字的等价定义 (基于浮点表示法)

定义 1.1.5. 若近似值 $x^* = \pm 0.a_1a_2\cdots a_na_{n+1}\cdots a_{n+p}\times 10^m(a_1\neq 0)$ 的误差限是某一位上的半个单位. 即

$$|x - x^*| \le \frac{1}{2} \times 10^{m-n} \tag{1.1}$$

则称 x^* 有 n 位有效数字.

例 1.1.3. 设 $x_1^* = 0.0051, x_2^* = 5.100$, 两数均为四舍五入得到, 求两个数字的有效位数.

解. 由于有

$$\varepsilon(x_1^*) = 0.5 \times 10^{-4}, x_1^* = 0.51 \times 10^{-2}$$
$$\varepsilon(x_2^*) = 0.5 \times 10^{-3}, x_2^* = 0.51 \times 10^{1}$$

可得

$$\varepsilon(x_1^*) = 0.5 \times 10^{-2-2}$$

 $\varepsilon(x_2^*) = 0.5 \times 10^{1-4}$

即, x_1^* 有两位有效数字, x_2^* 有四位有效数字.

1.1. 误差 9

例 1.1.4. 设 $x_1^* = 2.180, x_2^* = 10.210$, 均具有四位有效数字, 求绝对误差限和相对误差限.

解. 对 x_1^* , 有

$$x_1^* = 0.2180 \times 10^1$$

即 m=1, 且具有四位有效数字, 即 n=4, 则根据公式 (1.1), 有

$$\varepsilon(x_1^*) = 0.5 \times 10^{1-4} = 0.5 \times 10^{-3}$$

其相对误差限为

$$\varepsilon_r(x_1^*) = \frac{\varepsilon(x_1^*)}{|x_1^*|} = 0.023\%$$

同理可得, 对于 x_2^* , 有

$$\varepsilon(x_2^*) = 0.5 \times 10^{-2}, \varepsilon_r(x_2^*) = 0.049\%$$

1.1.3 相对误差限和有效数字的关系

关于有效数字和相对误差限之间的关系, 有如下定理.

定理 1.1.1. 对于用式 (??) 表示的近似数 x^* , 若 x^* 具有 n 位有效数字,则其相对误差限为

$$\varepsilon_r^* \le \frac{1}{2a_1} \times 10^{-(n-1)}$$

证明. 由式??可得

$$a_1 \times 10^m \le |x^*| \le (a_1 + 1) \times 10^m$$

当 x^* 有 n 位有效数字时, 有

$$|x - x^*| = |x^*| \varepsilon_r^* \le (a_1 + 1) \times 10^m \times \frac{1}{2(a_1 + 1)} \times 10^{-n+1} = 0.5 \times 10^{m-n+1}$$

故
$$x^*$$
 有 n 位有效数字.

上述定理表明: 有效位数越多, 相对误差限越小.

例 1.1.5. 令 $\sqrt{20}$ 的近似值相对误差限小于 0.1%, 则需要取多少位有效数字?

解. 由定理 1.1.1可知

$$\varepsilon_r^* \le \frac{1}{2a_1} \times 10^{-n+1}$$

由于 $\sqrt{20} \approx 4.4$, 故 $a_1 = 4$, 只需要取 n = 4, 有

$$\varepsilon_r^* \le 0.125 \times 10^{-3} < 10^{-3} = 0.1\%$$

即只需要对 $\sqrt{20}$ 的近似值取 4 位有效数字, 其相对误差限就可以小于 0.1%, 此时有

$$\sqrt{20} \approx 4.472.$$

1.2 数值运算的误差估计

1.2.1 四则运算误差估计

两个近似数分别为 x_1^* 和 x_2^* , 误差限分别为 $\varepsilon(x_1^*)$, $\varepsilon(x_2^*)$, 进行四则运算的误差限分别为:

$$\begin{split} \varepsilon(x_1^* \pm x_2^*) &= \varepsilon(x_1^*) + \varepsilon(x_2^*) \\ \varepsilon(x_1^* x_2^*) &\approx |x_1^*| \varepsilon(x_2^*) + |x_2^*| \varepsilon(x_1^*) \\ \varepsilon(x_1^* / x_2^*) &\approx \frac{|x_1^*| \varepsilon(x_2^*) + |x_2^*| \varepsilon(x_1^*)}{|x_2^*|^2} \end{split}$$

下面试着给出加减法误差的证明,对于乘法和除法的证明,将在后面给出.

证明.

$$|e(x_1^* \pm x_2^*)| = |(x_1^* \pm x_2^*) - (x_1 \pm x_2)|$$

$$= |(x_1^* - x_1) \pm (x_2^* - x_2)|$$

$$\leq |x_1^* - x_1| + |x_2^* - x_2|$$

$$\leq \varepsilon(x_1^*) + \varepsilon(x_2^*)$$

1.2.2 函数值误差估计

一元函数误差估计

设 f(x) 是一元函数, x 的近似值为 x^* , 以 $f(x^*)$ 近似 f(x), 其误差限记作 $\varepsilon(f(x^*))$, 可用 Taylor 展开

$$f(x) - f(x^*) = f'(x^*)(x - x^*) + \frac{f''(\xi)}{2}\varepsilon^2(x^*)$$

其中, ξ 介于 x, x^* 之间, 取绝对值有

$$|f(x) - f(x^*)| \le |f'(x^*)| \varepsilon(x^*) + \frac{|f''(\xi)|}{2} \varepsilon^2(x^*)$$

假定 $f'(x^*)$ 与 $f''(x^*)$ 的比值不大, 可忽略 $\varepsilon(x^*)$ 的高阶项, 于是可得误差限为

$$\varepsilon(f(x^*)) \approx |f'(x^*)|\varepsilon(x^*)$$

相对误差限为

$$\varepsilon_r(f(x^*)) \approx \frac{|f'(x^*)|\varepsilon(x^*)}{|f(x^*)|} = C_p(f, x^*)\varepsilon_r(x^*)$$

其中,

$$C_p(f, x^*) = \frac{|x^*f'(x^*)|}{|f(x^*)|}$$

称为 $f(x^*)$ 的条件数.

多元函数误差估计

当 f 为多元函数时计算 $A = f(x_1, x_2, \cdots x_n)$, 如果 $x_1, x_2, \cdots x_n$ 的近似值为 $x_1^*, x_2^*, \cdots, x_n^*$, 则 A 的近似值为 $A^* = f(x_1^*, x_2^*, \cdots, x_n^*)$, 于是函数值 A^* 的误差 $e(A^*)$ 由 Taylor 展开, 得

$$e(A^*) = A^* - A = f(x_1^*, x_2^*, \dots, x_n^*) - f(x_1, x_2, \dots, x_n)$$

$$\approx \sum_{k=1}^n \left(\frac{\partial f(x_1^*, x_2^*, \dots, x_n^*)}{\partial x_k} \right) (x_k^* - x_k) = \sum_{k=1}^n \left(\frac{\partial f}{\partial x_k} \right)^* e_k^*$$

于是误差限为

$$\varepsilon(A^*) \approx \sum_{k=1}^{n} \left| \left(\frac{\partial f}{\partial x_k} \right)^* \right| \varepsilon(x_k^*)$$
 (1.2)

而 A* 的相对误差限为

$$\varepsilon_r^* = \varepsilon_r(A^*) = \frac{\varepsilon(A^*)}{|A^*|} \approx \sum_{k=1}^n \left| \left(\frac{\partial f}{\partial x_k} \right)^* \right| \frac{\varepsilon(x_k^*)}{|A^*|}$$

例 1.2.1. 已测得某场地长 l 的值为 $l^*=110\,\mathrm{m}$,宽 d 的值为 $d^*=80\,\mathrm{m}$,已知 $|l-l^*|\leq 0.2\,\mathrm{m}$, $|d-d^*|\leq 0.1\,\mathrm{m}$,试求面积 S=ld 的绝对误差限与相对误差限.

解. 因为
$$S = ld$$
, $\frac{\partial S}{\partial l} = d$, $\frac{\partial S}{\partial d} = l$, 由式 1.2可知

$$\varepsilon(S^*) \approx \left| \left(\frac{\partial S}{\partial l} \right)^* \right| \varepsilon(l^*) + \left| \left(\frac{\partial S}{\partial d} \right)^* \right| \varepsilon(d^*)$$

其中,

$$\left(\frac{\partial S}{\partial l}\right)^* = d^* = 80\,\mathrm{m}, \left(\frac{\partial S}{\partial d}\right)^* = l^* = 110\,\mathrm{m}$$

而

$$\varepsilon(l^*) = 0.2 \,\mathrm{m}, \varepsilon(d^*) = 0.1 \,\mathrm{m}$$

于是绝对误差限为

$$\varepsilon(S^*) \approx (80 \times 0.2 + 110 \times 0.1) \text{m}^2 = 27 \text{ m}^2$$

相对误差限为

$$\varepsilon_r(S^*) = \frac{\varepsilon(S^*)}{|S^*|} = \frac{\varepsilon(S^*)}{l^*d^*} \approx \frac{27}{8800} = 0.31\%$$

注意: 绝对误差限有量纲,而相对误差限没有量纲.

1.3 算法数值稳定性

定义 1.3.1 (数值稳定). 一个算法如果初始数值有微小扰动 (即有误差), 而计算过程中舍入误差不增长, 使得结果产生微小误差. 则称该算法为数值稳定的. 反之称为数值不稳定.

例 1.3.1. 计算定积分

$$I_n = \int_0^1 \frac{x^n}{n+5} \, \mathrm{d}x, n = 0, 1, 2, \cdots, 8$$

解. 对被积函数变形, 得

$$I_n = \int_0^1 \frac{(x+5) - 5}{x+5} x^{n-1} dx$$
$$= \int_0^1 x^{n-1} dx - 5 \int_0^1 \frac{x^{n-1}}{x+5} dx$$
$$= \frac{1}{n} - 5I_{n-1}$$

其中, $n = 1, 2, \dots, 8$.

易知, $I_0 = \ln 6 - \ln 5 = \ln 1.2$, 由于机器只能计算小数, 取三位有效数字, 即 $\ln 1.2 \approx 0.182$.

分析上述积分, 可知, $0 < I_n < 0.2$, 且随着 n 增大, I_n 逐渐减小, 当 $n \to \infty$ 时, $I_n \to 0$.

迭代计算上述积分, 可得结果为:

$$I_0 = 0.182, I_1 = 0.09, I_2 = 0.05, I_3 = 0.083, I_4 = -0.17$$

 $I_5 = 1.03, I_6 = -5.0, I_7 = 25.14, I_8 = -125.59$

可以发现,该算法数值不稳定.

若对上述积分递推公式进行变形, 可得

$$I_{n-1} = \frac{1}{5n} - \frac{1}{5}I_n, n = 9, 8, \dots, 1$$

由于当 $n\to\infty$ 时, $I_n\to0$, 因此当 n 充分大时, 可近似认为 $I_n=I_{n+1}$, 故有 $I_9\approx I_10$, 将其代入并求解方程, 可得 $I_9\approx0.017$.

迭代计算,可得结果为

$$I_0 = 0.182, I_1 = 0.088, I_2 = 0.058, I_3 = 0.043, I_4 = 0.034$$

 $I_5 = 0.028, I_6 = 0.024, I_7 = 0.021, I_8 = 0.019$

该算法为数值稳定的.

分析二者的误差, 可得对于第一个算法, 其误差为

$$e_n = |I_n - I_n^*| = 5|e_{n-1}| = 5^n|e_n|$$

而对于第二个算法, 其误差为

$$|e_{n-1}| = |I_{n-1} - I_{n-1}^*| = \frac{1}{5}|e_n| = \left(\frac{1}{5}\right)^n |e_9|$$

通过上述例子,可以看到对于同一个问题,使用不同算法,得到的误差结果可能有很大不同.

扩展:考虑到数值分析需要结合计算机使用,故在笔记的适当地方,将给出代码以供参考 (注:代码不唯一.且考虑到算法的设计原则,如无必要,不会引入相应的库函数).

本例的运行代码如下所示:

```
# 验证数值稳定性(例题) Exercise1-1.py
1
    # 方法1(数值不稳定)
2
    def I1(n):
3
        if n==0:
4
           return 0.182
5
        else:
6
           return 1/n-5*I1(n-1)
    # 方法2(数值稳定)
    def I2(n):
9
        if n==9:
10
           return 0.017
11
        else:
12
            return 1/(5*(n+1))-(1/5)*I2(n+1)
13
14
    for n in range (0,9):
15
        print(f"I1_{n}_{\sqcup}=_{\sqcup}\{I1(n)\}")
16
17
    for n in range (0,9):
18
        print(f"I2_{n}_{\perp} = \{I2(n)\}")
19
```

定义 1.3.2 (良态与病态). 对于一个数学问题, 若初始数据有微小扰动 (即误差), 导致计算结果产生较小误差, 则称此问题是良态的, 否则称其为病态的.

注意: 良态和病态是针对于数学问题本身的, 与算法无关.

1.4 数值计算中应该注意的一些原则

1.4.1 避免两相近数相减

使用两相近数相减, 将会导致有效数字损失. 下面的例子将有效说明这一点:

例 1.4.1. 计算函数 $y = \sqrt{x+1} - \sqrt{x}$ 在 x = 1000 处的取值. 已知 y 的四位有效数字为 0.01580

解. 若选择直接相减, 则有 $y = \sqrt{1001} - \sqrt{1000} \approx 31.64 - 31.62 = 0.02$, 只有两位有效数字.

若选择对其进行变形, 令

$$y = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

则可得

$$y = \frac{1}{\sqrt{1001} + \sqrt{1000}} \approx \frac{1}{31.64 + 31.62} = 0.01581$$

有三位有效数字.

注意: 在本例中,使用第二种方法得到的只有三位有效数字,这是因为 第四位有效数字是 0 而不是 1.