Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №6 з дисципліни «Архітектура комп'ютерів» на тему «Побудова блоку обробки даних»

> Виконав: студент ННІКІТ СП-225 Клокун В. Д. Перевірив: Зіньков Ю. Г.

1 Мета роботи

Вивчення схемотехніки та системи мікрооперацій процесорного елементу К1804ВС1, побудова блоку обробки даних на його основі та розробка мікропрограм обчислення функцій.

2 Завдання

При виконанні роботи ставляться такі завдання:

- 1. Розробити принципову схему блоку обробки даних на основі процесорного елементу ВС1.
- 2. Розробити алгоритми та мікропрограми обчислення функцій (табл. 2.0.1), представити результати їх виконання: стани регістрів RAM, шини DO та ін.
- 3. Обчислити часові параметри мікрокоманд мікропрограми.
- 4. Підготувати дані для прикладної програми «Емулятор К1804ВС1».

№	Ф-ція	Джерела операндів		Приймачі результату		Значення операндів			БОД			
		RAM[i]	D1	Q	RAM(i)	Q	DO	x_2	x_1	n	BP1	RGC
4	3	6(X ₂)	x_1		7		+	4	3	16	+	+
4	13	$5(X_2)$		x_1	10		+	3	-2	16	+	+

Табл. 2.0.1: Завдання

3 Хід роботи

3.1 Процесорний елемент К1804ВС1

Процесорний елемент ВС1 (структурна схема на рис. 3.1.1) має 4-розрядну організацію. Його використовують для побудови операційних блоків процесорів з довільною розрядністю. Блок внутрішньої пам'яті містить в собі 2-портовий регістровий запам'ятовуючий пристрій з організацією RAM ємністю 16 4-розрядних слів та зміщувач даних SHL1.

Вибір довільного регістра в якості джерела інформації виконують шляхом задання його адреси на входах A (3:0) (порт A) або B (3:0) (порт B). Є можливість одночасного зчитування двох слів із RAM. Зчитані дані заносять в регістри RGA та RGB. Запис даних в RAM можливий тільки за адресою B (3:0) під час переходу тактового сигналу CLK зі стану «1» в стан «0». Можна записувати інформацію в RAM як без зсуву, так і зі зсувом вправо або вліво на 1 розряд. Сигнали SB3, SB0 виникають на однойменних двонаправлених виводах процесорного елемента при виконанні

Рис. 3.1.1: Структура процесорного елемента К1804ВС1

операції зсуву даних перед їх записом в RAM. Якщо зсуви на зміщувачі SHL1 не виконуються, то вказані виводи перебувають у третьому стані.

Арифметично-логічний блок складається з мультиплексора вибору даних MUX1, арифметично-логічного пристрою та мультиплексора вихідних даних MUX2. Функції, які реалізує арифметично-логічний пристрій, визначаються мікрокодом I (8:0), який дешифрується в блоці керування. При цьому формуються внутрішні керуючі сигнали. Мультиплексор MUX1 забезпечує вибір пар операндів на входах арифметично-логічного пристрою R та S. Джерелами операндів арифметично-логічного пристрою $\mathfrak E$:

- 1. Зовнішня шина даних *DI* (3:0).
- 2. Константа «0».
- 3. Pericтр RGQ.
- 4. Регістри RAM, зчитані з каналів A та B.

Керування вибором пар операндів забезпечується полем I(2:0) (табл. 3.1.1).

Арифметично-логічний пристрій виконує вісім арифметичних та логічних операцій. Тип операцій в арифметично-логічному пристрої задається полем мікрокоманди I(5:3), а їх список визначається за визначеними правилами (табл. 3.1.2). Арифметичні операції виконують з урахуванням значення вхідного переносу CI за правилами доповнювального коду. При цьому формуються 4 ознаки результату:

- 1. СО перенесення зі старшого розряду.
- 2. *V* переповнення.
- 3. N знак або вміст старшого розряду на виході арифметично-логічного пристрою.
- 4. Z ознака нульового значення F на виході арифметично-логічного пристрою.

	Ι	(2:0	Вих	оди АЛП	
12	11	10	8-a c.o.	R	S
0	0	0	С	\overline{A}	Q
0	0	1	1	\boldsymbol{A}	Q
0	1	0	2	0	Q
0	1	1	3	0	Q
1	0	0	4	0	Q
1	0	1	5	D	Q
1	1	0	6	D	Q
1	1	1	7	D	Q

Табл. 3.1.1: Джерела операндів

Крім того формуються сигнали генерації G та розповсюдження (поширення) переносу P в арифметико-логічному пристрої, які потрібні для організації прискореного переносу в багаторозрядній схемі, яка побудована із кількох процесорних елементів.

	Ι	(5:3	Операція	
15	14	13	8-a o.o.	
0	0	0	0	R + S + CI
0	0	1	1	S - R - 1 + CI
0	1	0	2	R - S - 1 + CI
0	1	1	3	$R \vee S$
1	0	0	4	$R \wedge S$
1	0	1	5	$\neg R \wedge S$
1	1	0	6	$R \oplus S$
1	1	1	7	$\neg (R \oplus S)$

Табл. 3.1.2: Операції в арифметично-логічному пристрої

Результат операції на виході арифметично-логічного пристрою задається словом F та видається в шину DO, в RAM або регістр RGQ відповідно до розрядів мікрокоду I (8:6) (табл. 3.1.3). Запис слова F в RAM здійснюється через канал B прямо (RAM[B] = F), зсувом вправо (RAM[B] = R1(F)) або зсувом вліво (RAM[B] = L1(F)). В двох останніх випадках одночасно може зсуватись і вміст регістра RGQ: (RGQ = R1(RGQ)) або RGQ = L1(RGQ)).

Мультиплексор MUX2 забезпечує передачу слова F з виходу арифметично-логічного пристрою або виходу A на вихідну шину DO(3:0). Блок регістра Q складається з регістра RGQ та зміщувача SHL2. Регістр RGQ забезпечує прийом слова F(RGQ = F) та зсув свого вмісту на один розряд вліво (RGQ = L1(RGQ)) або вправо (RGQ = L1(RGQ))

		I (8	:6)			
8	7	6	8-a o.o.	RAM[B]	RGQ	DO
0	0	0	0		F	F
0	0	1	1			F
0	1	0	2	F		\boldsymbol{A}
0	1	1	3	F		F
1	0	0	4	R1(F)	R1(RGQ)	F
1	0	1	5	R1(F)		F
1	1	0	6	R1(F)	R1(RGQ)	F
1	1	1	7	R1(F)		F

Табл. 3.1.3: Приймачі результату

L1(RGQ)) за допомогою зміщувача *SHL2*. Сигнали *SQ3*, *SQ0* виникають на однойменних двонапрямлених виводах процесорного елемента при зсуві інформації в регістрі *RGQ*. Якщо зсув не виконується, то вказані виводи знаходяться в третьому стані. Запис інформації в регістр *RGQ* виконується при переході тактового сигналу *SCL* зі стану «0» в «1».

Блок керування формує внутрішні керуючі сигнали шляхом декодування відповідних полів мікрокода:

$$I(8:0) = I(8:6).I(5:3).I(2:0),$$

де I(8:0) — поле вибору пари джерел операндів, I(8:0) — поле операції в арифметично-логічному пристрої, I(8:0) — поле вибору приймача результату.

Процесорний елемент BC1 (умовно-графічне позначення на рис. 3.1.2, призначення виводів у табл. 3.1.4) виконаний у пластмасовому корпусі типу 2123.40-17.

Рис. 3.1.2: Умовно-графічне позначення процесорного елемента К1804ВС1

Виводи	Позначення	Призначення
1–4	A3—A0	Входи адреси RAM по каналу <i>А</i>
20-17	B3—B0	Входи адреси RAM по каналу <i>В</i>
6, 7, 5, 27, 28,	A4— $A0$	Входи мікрокоду I (8:0)
25, 14, 13, 12		
22-26	DI3—DI0	Входи даних
30-36	DO3—DO0	Виходи даних
15	CLK	Тактові сигнали
21	SQ0	Вхід/вихід молодшого розряду зміщувача <i>SHL2</i>
16	SQ3	Вхід/вихід старшого розряду зміщувача <i>SHL2</i>
9	SB0	Вхід/вихід молодшого розряду зміщувача <i>SHL1</i>
8	SB3	Вхід/вихід старшого розряду зміщувача <i>SHL1</i>
29	CI	Вхід переносу в АЛП
32, 35	$\overline{P},\overline{G}$	Виходи прискореного переносу
11	Z	Вихід ознаки нульового результату в АЛП
31	N	Вихід старшого розряду АЛП
34	V	Вихід ознаки переповнення результату
33	CO	Вихід переносу з АЛП
40	\overline{EN}	Вхід дозволу видачі даних <i>DO</i>
10	$U_{ m cc}$	5 V
1–4	GND	Загальний

Табл. 3.1.4: Виводи процесорного елемента К1804ВС1

3.2 Побудова блоку обробки даних

Необхідна довжина розрядної сітки процесора забезпечується шляхом з'єднання кількох процесорних елементів ВС1 (рис. 3.2.1) за умови, що n=16. Шини A, B та I підключаються паралельно при кожному процесорному елементі ВС1 аналогічно лініями EN та CLK. Вихід переносу CO молодшого процесорного елемента DD1 підключається до входу переносу CI процесорного елемента DD2 і так далі. Послідовна передача переносу між процесорними елементами ВС1 знижує швидкодію процесора. Для прискорення поширення переносу використовуються інтегральна мікросхема K1804BP1. Виходи ознак CO, F15, V, Z (процесорний елемент DD4) підключаються до регістра стану RGC.

Рис. 3.2.1: Об'єднання процесорних елементів ВС1 при послідовному поширенні переносу

В блок дані поступають із шини DI (15:0). Результат перетворення видається на шину даних DO (15:0). Керування 16-розрядним операційним блоком процесора відбувається за допомогою макрокоманди:

де I(8:0) — мікрокод, який керує роботою процесорного елемента, B(3:0), A(3:0) — адреси регістрів RAM на входах портів B та A, CI — однобітне поле, яке визначає значення сигналу на одноіменному вході процесорного елемента.

3.3 Схема прискореного переносу К1804ВР1

Схема прискореного переносу ВР1 (умовно-графічне позначення на рис. 3.3.1, виводи у табл. 3.3.1) служить для організації ланцюга паралельного переносу в 16-

розрядних процесорах, побудованих на базі 4 процесорних елементів ВС1. Були розроблені схеми з'єднання процесорних елементів ВС1 при використанні схем прискореного переносу ВР1 для n=16 (рис. 3.3.2) та n=32 (рис. 3.3.3).

Рис. 3.3.1: Умовно-графічне позначення схеми прискореного переносу ВР1

Виводи	Позначення	Призначення
4, 2, 15, 6	$\overline{P0}$, $\overline{P3}$	Входи розповсюдження переносу
3, 1, 14, 5	$\overline{G0}, \overline{G3}$	Входи генерації переносу
7, 10	$\overline{P},\overline{G}$	Входи розповсюдження і генерації переносу
12, 11, 9	C1, C2, C3	Входи переносу молодшої, середньої та старшої груп
18	CI	Вхідний переніс
16	$U_{ m cc}$	5 V
8	GND	

Табл. 3.3.1: Виводи схеми прискореного переносу В1804ВР1

Рис. 3.3.2: Блок обробки даних з використанням схеми прискореного переносу ВР1 для n=16

Для обчислення швидкодії блоку обробки даних наведемо часові характеристики мікросхем K1804BC1 та K1804BP1 (табл. 3.3.2).

Рис. 3.3.3: Каскадне з'єднання схем прискореного переносу ВР1

Звідки	Куди	Значення, нс			
$\overline{A(B)}$	DO, N	85			
A(B)	CO	80			
A(B)	V	90			
A(B)	$\overline{P},\overline{G}$	70			
A(B)	SB3, SB0	100			
I	DO, CO, N	80			
I	V,Z	70			
I	SB3, SB0, SQ3, SQ0	35			
DI	DO, N, CO	50			
DI	SB3, SB0	70			
DI	$\overline{P},\overline{G}$	40			
CI	DO, N	35			
CI	CO	25			
CI	Z, SB3, SB0	55			
Тривалість сигналу <i>СLK</i> 30					

Табл. 3.3.2: Часові параметри мікросхеми К1804ВС1

3.4 Стани регістрів

Після виконання роботи та виконання необхідних операцій перевіряємо значення регістрів (табл. 3.4.1).

Регістр	Стан
R0	000008
R1	000004
<i>R2</i>	000000
<i>R3</i>	000000
<i>R4</i>	000000
R5	000000
<i>R6</i>	000000
<i>R7</i>	000000
<i>R8</i>	000000
R9	000000
R10	000000
R11	000000
R12	000000
R13	000000
R14	000000
R15	000000
DO	000004
RO	000004
CO	0
F15	0
SQ15	0
SB15	0
SQO	0
SBO	0
DO	0

Табл. 3.4.1: Стан регістрів

4 Висновок

Під час виконання даної лабораторної роботи ми вивчили схемотехніку та систему мікрооперацій процесорного елементу К1804ВС1, побудували блок обробки даних на його основі та розробили мікропрограми обчислення функцій.