Stat 526

1. A land rehabilitation experiment was designed to compare the mean grass coverage for 6 fertilizer combinations of (A, B, C, D, E and F) applied to a strip mined site. The reclamation site was divided into six strip plots with 20 feet left untreated between each plot. Each strip plot was divided into 6 subplots with 4 untreated feet between each subplot. Within each strip plot the 6 fertilizers were assigned to the 6 subplots. The diagram shows the experimental layout with the fertilizer and percent coverage listed in each subplot. Plots 1 to 6 are oriented from north to south. SAS code to read in the data set will be sent to you.

Row	A 61	C	E	F	B	D
1		59	49	53	50	59
Row 2	D 64	E 51	B 55	A 59	C 58	F 50
Row 3	F 55	A 63	C 59	B 55	D 62	E 47
Row 4	C 62	B 60	D 67	E 50	F 51	A 57
Row 5	E	D	F	C	A	B
	53	69	59	60	61	51
Row 6	B	F	A	D	E	C
	62	59	66	68	50	56

- (a) (2pt) You are told to analyze the experimental results assuming a randomized complete block design (RCBD) was run. Prepare an ANOVA table to test the hypotheses regarding fertilizers. Using an $\alpha = .05$ level, what do you conclude?
- (b) (2pt) Perform Tukey's test on the fertilizer means. What do you conclude?
- (c) (1pt) Make a normal probability plot of the residuals and a plot of residuals vs predicted values. Comment on the results.
- (d) (5pt) Unfortunately, the experiment was set up by another researcher who used a a latin square design with plot column as the second blocking variable. Reanalyze the data as a latin square design by answering questions (a), (b), and (c) again.
- (e) (1pt) Identify any significant changes that occurred between analyses.
- (f) (2pt) Calculate the row block and column block means. In terms of a physical context, interpret any patterns (if they exist) across the row and column means.
- 2. (4pt) For the following four cases, what are the model matrix X the parameter vector θ for the RCBD in Problem 4.8 on page 177.
 - I: Where X has a + b + 1 columns and assuming constraints $\sum \tau_i = 0$ and $\sum \beta_j = 0$
 - II: Where X has a+b-1 columns and assuming constraints $\sum \tau_i = 0$ and $\sum \beta_j = 0$
 - III: Where X has a+b+1 columns and assuming constraints $\tau_1=0$ and $\beta_1=0$
 - IV: Where X has a+b-1 columns and assuming constraints $\tau_1=0$ and $\beta_1=0$

- 3. Answer the following for the design and data in Problem 4.8, page 177.
 - (a) (2pt) Set up the normal equations for μ , each τ_i , and each β_j . No constraints are assumed at this stage.
 - (b) (2pt) Solve these equations assuming $\tau_1 = 0$ and $\beta_1 = 0$.
 - (c) (1.5pt) For Stat 541 students: Can the normal equations be solved assuming $\beta_4 = 0$ and $\sum \tau_i = 0$? If so, what are the parameter estimates? If no, why not?
 - (d) (1.5pt) For Stat 541 students: Can the normal equations be solved assuming $\mu = 0$ and $\tau_1 = 0$? If so, what are the parameter estimates? If no, why not?
- 4. (2pt) For the design and data in Problem 4.8, page 177 set up the normal equations for μ , each τ_i , and each β_j assuming $y_{11} = 250$ and $y_{22} = 525$ are missing. You do not have to solve the system of equations. No constraints are assumed at this stage.