Training Deep Quantum Neural Networks

Alexandra-Maria **DOBRESCU**

MSc AI 1st Year UPB

Overview Why are Neural Networks important?

Used both in research and industry to solve complex problems to improve the decision process.

Classical Neural Networks

The perceptron

Feed Forward Neural Network

Quantum Machine Learning

Classical ML → Improve Quantum Tasks:

- Simulation of many body systems [2]
- Adaptive Quantum Computation [3]
- Quantum metrology [4]

Quantum algorithms & Classical Data:

Link to quantum states?

Quantum Computing Devices →

→ Learning Tasks with Quantum Data

"quantum learning of parametrised unitary operations" [5]

Quantum generalisation of the perceptron

The quantum architecture

quantum circuit of quantum perceptrons

How is the information processed?

The training algorithm [6] - part 1

Step 1: Initialisation procedure

- \circ State s = 0
- \circ Choose $U_1^{\text{out}}(0)$ and $U_2^{\text{out}}(0)$ randomly

Step 2: Feedforward

- o Input state: $|\Phi_x^{in}> = |\phi_x^{in}> \otimes |00>_{out}$
- O Unitaries to the input state:

$$|\psi_{x}\rangle = U_{2}^{\text{out}}(s)U_{1}^{\text{out}}(0)|\Phi_{x}\rangle$$

o Trace out: $\rho_x^{\theta}(s) = tr_{in} (|\psi_x\rangle < \psi_x|)$

Task: Learn an unknown unitary VSet of training data: N pairs $(|\phi_x^{in}>, V|\phi_x^{out}>)$

7/12

How is the information processed? The training algorithm [6] – part 2

Step 3: *Update parameters*

Update each perceptron unitary:

$$U_j^l(s+\varepsilon) = e^{i\varepsilon k_j^l(s)} U_j^l(s)$$

 The cost function: Fidelity - an essentially unique measure of closeness for pure quantum states.

$$C(s) = \frac{1}{N} \sum_{x=1}^{N} \langle \psi_x | \rho_{x(s)}^{\text{out}} | \psi_x \rangle$$

Classical case: minimise the cost function

Quantum case: maximise the fidelity

Learning

network, $\eta = \frac{1}{3}$, $\varepsilon = 0.1$

network, $\eta = \frac{1}{4}$, $\varepsilon = 0.1$

Generalisation

network, $\eta = 1, \varepsilon = 0.1, 10$ pairs

network, $\eta = 0.1$, $\varepsilon = \frac{2}{3}$, 10 pairs

Robustness to Noisy Data

network, $\eta = 1, \varepsilon = 0.1, 100$ pairs

network, $\eta = 1, \varepsilon = 0.1$, 100 pairs

References

- [1] Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., Scheiermann, D., & Wolf, R. (2020). Training deep quantum neural networks. *Nature communications*, 11(1), 1-6.
- [2] Carleo, G., & Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. *Science*, *355*(6325), 602-606.
- [3] Tiersch, M., Ganahl, E. J., & Briegel, H. J. (2015). Adaptive quantum computation in changing environments using projective simulation. *Scientific reports*, 5(1), 1-18.
- [4] Lovett, N. B., Crosnier, C., Perarnau-Llobet, M., & Sanders, B. C. (2013). Differential evolution for many-particle adaptive quantum metrology. *Physical review letters*, 110(22), 220501.

References

- [5] Carleo, G., & Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. *Science*, *355*(6325), 602-606.
- [6] Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., & Wolf, R. (2019). Efficient learning for deep quantum neural networks. arXiv preprint arXiv:1902.10445.