Για την ταξινόμηση χρησιμοποιήθηκαν οι ακόλουθες ταξινομητές:

- 1. k-πλησιέστερων γειτόνων
- 2. ελάχιστης ευκλείδειας απόστασης
- 3. αφελής ταξινομητής κατά Bayes.

Οι ταξινομητές εκπαιδεύτηκαν με το Σύνολο Εκπαίδευσης (Training Set). Ακολουθούν τα μητρώα σύγχυσης και η οπτικοποιήση της ταξινόμησής του Συνόλου Αξιολόγησης (Test Set):

	1	2	3	4	5
1	652				
2		337	5		
3			549		
4				271	4
5				9	338
Ταξινομητής k-Πλησιέστερων Γειτόνων (k = 1)					

	1	2	3	4	5		
1	652						
2		321	21				
3			549				
4				270	5		
5		2		25	320		
Ταξινομητής Ελάχιστης Ευκλείδειας Απόστασης							

	1	2	3	4	5	
1	652					
2	2	333	7			
3		4	545			
4				267	8	
5	3	1		12	331	
Αφελής Ταξινομητής κατά Bayes						

Πίνακας 1: Μητρώα Σύγχυσης για το Σύνολο Αξιολόγησης (Test Set)

Εικόνα 1.1: Ετικέτες Συνόλου Αξιολόγησης

Εικόνα 1.2: Ταξινομητής k-Πλησιέστερων Γειτόνων (k=2)

Εικόνα 1.3: Ταξινομητής Ελάχιστης Ευκλείδειας Απόστασης

Εικόνα 1.4: Αφελής Ταξινομητής κατά Bayes

Ενώ για τις αποδόσεις των ταξινομητών, αθροίζοντας τα στοιχεία της κύριας διαγώνιου των μητρώων σύγχυσης έχουμε:

99.169 %

- 1. Ταξινομητής k-πλησιέστερω γειτόνων:
- 2. Ταξινομητής ελάχιστης ευκλείδειας απόστασης: 97.552 %
- 3. Αφελής Ταξινομητής κατά Bayes: 98.291 %

Στη συνέχεια παρουσιάζονται τα μητρώα σύγχυσης και οι αντίστοιχες εικόνες για το Σύνολο Λειτουργίας (Operational Set):

	1	2	3	4	5
1	1157				
2		530	4		
3			958		
4				444	7
5				19	490
Ταξινομητής k-Πλησιέστερων Γειτόνων					

		_			
1	1155			1	1
2		505	29		
3			958		
4				446	5
5		4		61	444
Ταξινομητής Ελάχιστης Ευκλείδειας					

	1	2	3	4	5		
1	1157						
2	4	520	10				
3		12	946				
4				438	13		
5	9	1		20	479		
A so a) de a Terfu se sucerdo sucerdo Desses							

αξινομητής k-Πλησιέστερων Γειτόνων (k = 1)

Ταξινομητής Ελάχιστης Ευκλείδειας Απόστασης Αφελής Ταξινομητής κατά Bayes

Πίνακας 2: Μητρώα Σύγχυσης για το Σύνολο Λειτουργίας (Operational Set)

Εικόνα 2.2: Ταξινομητής k-Πλησιέστερων Γειτόνων

Εικόνα 2.3: Ταξινομητής Ελάχιστης Ευκλείδειας Απόστασης

Εικόνα 2.4: Αφελής Ταξινομητής κατά Bayes

Για τις αποδόσεις των ταξινομητών στο Σύνολο Λειτουργίας, έχουμε:

- 1. Ταξινομητής k-πλησιέστερω γειτόνων: 99.169 %
- 2. Ταξινομητής ελάχιστης ευκλείδειας απόστασης: 97.201 %
- 3. Αφελής Ταξινομητής κατά Bayes: 98.088 %

Για τον Ταξινομητή κατά Bayes

Στη γενική περίπτωση, λόγω την "κατάρας των μεγάλων διάστασεων" (curse of dimensionality), αν Ν το πλήθος στοιχεία θα αρκούσαν για την εκπαίδευση ενός ταξινομητή στη μία διάσταση θα χρειαζόμασταν Ν^d σημεία για να εκπαιδεύσουμε έναν ταξινομητή στον d-διάστατο χώρο.

Παρ' όλα αυτά οι υποθέσεις που έχουμε κάνει παραπάνω για την χρήση πιο αφελών ταξινομητών, φαίνεται να λειτουργούν στην συγκεκριμένη περίπτωση. Συγκεκριμένα:

- 1. Το γεγονός πως ο Αφελής Ταξινομητής κατά Bayes δουλεύει πολύ ικανοποιητικά, μας δείχνει πως πράγματι οι Τ.Μ. των χαρακτηριστικών των σημείων της κάθε κλάσης είναι ανεξάρτητες (σε μεγάλο βαθμό), ο Σ_ι είναι διαγώνιος για κάθε κλάση i.
- 2. Το γεγονός πως ο Ταξινομητής Ελάχιστης Ευκλείδειας απόστασης δουλεύει ικανοποιητικά, μας δείχνει πως $\Sigma_i \approx I_d$. Συνεπώς στην συγκεκριμένη περίπτωση θα μπορούσαμε απλώς να υποθέσουμε πως $\Sigma_i = I_d$ για κάθε κλάση i.
- 3. Για το **μ**_i, το γεγονός πως ο Ταξινομητής Ελάχιστης Ευκλείδειας Απόστασης δουλεύει ικανοποιητικά δείχνει ότι μάλλον το πλήθος των στοιχείων αρκεί για να εκτιμήσουμε το **μ**_i.

Παρατηρήσεις:

- Για την δημιουργία της εφαρμογής χρησιμοποιήθηκε Octave 4.2.2.
- Το πρόγραμμα τρέχει με την εντολή octave ./project στον φάκελο της εφαρμογής