

## Cálculo II Prova Escrita 1

Eng. Informática 24/04/20010 [2h]

| licações |        |
|----------|--------|
|          |        |
|          |        |
| Nome     | Número |

## Justifique convenientemente todas as respostas.

Exercício 1. Os gráficos das funções f(x,y) = sen(xy) e g(x,y) = sen(xy) + 2 alguma vez se intersectam?

Exercício 2. Sejam 
$$A = \{(x,y) \in \mathbb{R}^2 : -2 < x < 2 \land -2 < y < 2\}$$
 e  $f: A \longrightarrow \mathbb{R}$ .  $(x,y) \longmapsto e^{-2x^2-y^2}$ 

Defina as linhas de nível de f que correspondem às cotas  $-1,\,1$  e  $\frac{1}{e^2}$  e represente-as graficamente.

Exercício 3. Calcule, se existir,  $\lim_{(x,y)\to(0,0)} \frac{10xy}{2x^2+3y^2}$ .

Exercício 4. Seja f a função, real de duas variáveis reais, cujo gráfico é apresentado na figura, onde está também assinalado o ponto de coordenadas (a,b,f(a,b)). Indique o sinal de  $\frac{\partial f}{\partial x}(a,b)$ .



Exercício 5. Sejam h a função definida por  $h(x,y)=\text{sen}\left(\pi(x^2-y)\right)$  e  $\vec{u}=\left(\frac{3}{5},-\frac{4}{5}\right)$ .

- a) Verifique que o  $\vec{u}$  é um vector unitário.
- b) Calcule  $f_{\vec{u}}(1,2)$ .

Exercício 6. Determine a equação do plano tangente à superfície definida por  $z = e^y + x + x^2 + 6$ , no ponto de coordenadas (1,0,9).

Exercício 7. Considere a função 
$$f(x,y)=\begin{cases} \frac{x^3}{x^2+y^2} & \text{se } (x,y)\neq (0,0),\\ 0 & \text{se } (x,y)=(0,0). \end{cases}$$

- a) Verifique que f é contínua em  $\mathbb{R}^2$ .
- b) Calcule  $\frac{\partial f}{\partial x}(0,0)$  e  $\frac{\partial f}{\partial y}(0,0)$ .
- c) Verifique se f é diferenciável em (0,0).