

EFT studies in the same-sign WW VBS signature at the LHC

Technical slides

V. Del Tatto, P. Govoni, A. Massironi, D. Valsecchi

SM Effective Field Theory (EFT)

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{c^{(5)}}{\Lambda} \mathcal{O}^{(5)} + \frac{1}{\Lambda^2} \sum_{i} c_i^{(6)} \mathcal{O}_i^{(6)} + \dots$$
to additional simplestries

Wilson coefficients

Odd terms violate additional simmetries

• Adding a single EFT operator (for example Q_W) the probability amplitude A(v) (v is a generic observable) changes as:

$$A_{EFT}(v) = A_{SM}(v) + c_W A_{Q_W}(v)$$

If f(v) is the probability distribution for the variable v, since $f(v) \sim |A(v)|^2$:

$$f_{EFT}(v) = f_{SM}(v) + c_W f_{LIN}(v) + c_W^2 f_{QUAD}(v)$$

6-th dimension EFT operators considered:

$$Q_W = \epsilon_{ijk} W_\mu^{i\nu} W_\nu^{j\rho} W_\rho^{k\mu}$$

$$Q_{HW} = H^\dagger H W_{\mu\nu}^i W^{i\mu\nu}$$
 Wilson coefficients: c_W , c_{HW}

MC generations and preselections

• Same-sign WW VBS:

Three distributions for each variable:

- 1. SM
- 2. Linear
- 3. Quadratic
- MadGraph, $\sqrt{s} = 13 \text{ TeV}$

(EFT models from https://arxiv.org/abs/1709.06492)

Variables and preselections:

(Source: Jasper Lauwer, Study of Electroweak $W^{\pm}W^{\pm}jj$ production with the CMS detector)

Variable	Selection	
met	> 30 GeV	
m_{jj}	> 500 GeV	
m_{ll}	> 20 GeV	
p_{tl1}	> 25 GeV	
p_{tl2}	> 20 GeV	
p_{tj1}	> 30 GeV	
p_{tj2}	> 30 GeV	
$ \eta_{j1} $	< 5	
$ \eta_{j2} $	< 5	
$\Delta\phi_{jj}$	> 2.5 GeV	

Scaling relations and normalization

ightharpoonup Test values of c_W and ${
m c_{HW}}$:

ex) $c_W = 0.1$ from the distribution with $c_W = 0.3$

- Linear term: histo->Scale(0.1/0.3)
- Quadratic term: histo->Scale(0.1*0.1/0.3*0.3)
- \triangleright Normalization of the histograms to the number of expected events at $L_{int}=100~{\rm fb}^{-1}$:

histo->Scale(cross_section*integrated_luminosity)

ightharpoonup Choice of the binning: bin width $=\frac{1}{3}$ RMS

Multiples in the tails (variable width binning):

- To reduce SM fluctuations
- To include the tails avoiding empty bins (requested by Combine for the likelihood scans)

Comparison between Q_W and Q_{HW} distributions

Results:

- 1. The BSM deviations are more significant for Q_W than for Q_{HW} (larger integrals)
- 2. The relative contribution of the linear term is greater for Q_{HW} than for Q_{W}

QUAD

SM + BSM + INT

Cross sections:

Coefficient	$c_W = 0.3$	$c_{HW}=0.3$	
SM	3.95 fb		
Linear	0.04 fb	0.13 fb	
Quadratic	0.27 fb	0.02 fb	

Consistency checks of the MC generations

> Plot of the difference between MC distributions and the distributions generated through

0.2

0.6

scaling relations

Expected behaviour: fluctuations around 0

Results: scaling relations verified (for every c_W and every variable)

- Weighted mean of bin contents compatible with 0
- Dispersion (standard error of the weighted mean of bin contents) vs c_W :
 - linear trend for the difference between the linear distributions
 - quadratic trend for the difference between the quadratic distributions

0.2

8.0

Comparison between linear and quadratic terms

 \succ Plot of the difference between quadratic and linear distributions: $f_{QUAD}(v) - |f_{LIN}(v)|$

When the plot is under the red line the linear term is preponderant

N.B. The linear term is an interference term, so it is not positive definite

Results:

With small values of c_W , the linear term prevails in a limited region at the beginning of the distribution

Explanation: the linear distribution is concentrated in a smaller and initial region, while the tails of the quadratic term spread in a wider range.

Likelihood Scans

For a counting experiment (all the observations in one bin):

• Considering several bins $(i = 1, ..., N_{bin})$:

$$\mathcal{L} = \prod_{i=1}^{N_{bin}} Poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{LIN} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{QUAD})$$

$$poisson(n_i \mid n_i^{SM} + c_W n_i^{SM} + c_W^2 n_i^{SM} + c_W$$

where in this case $n_i = n_i^{SM}$

Likelihood Scans

Best estimation of the POI (Wilson coefficient), i.e. higher probability that the model describes the observations:

maximization of
$$\mathcal{L} = \mathcal{L}(c_W)$$
 \iff minimization of $-2\Delta \log \mathcal{L}$ (Δ : shift to have min $(\log \mathcal{L}) = 0$)

Profile of $\mathcal{L} = \mathcal{L}(c_W)$: depends on the sensibility to the Wilson coefficient:

higher sensibility \iff best estimation of the Wilson coefficient

- Cramér-Rao theorem:
 - $-2\Delta \log \mathcal{L} < 1$ defines the 68% confidence range in the estimation of the Wilson coefficient
 - $-2\Delta \log \mathcal{L} < 3.84$ defines the 95% confidence range in the estimation of the Wilson coefficient

Likelihood Scans

Background generation

- Model used (from previous studies at CMS, https://arxiv.org/abs/1709.05822):
 - Generation of 10^6 events with the distribution e^{-x/x_0}
 - Normalization: ratio 1:1 between the integrals of the background and the signal
 - Best choice of x_0 : ratio 1:1 between the partial integrals (contents of the single bins), $x_0 = 100$ GeV

• Examples:

$$(c_W = 0.05)$$

https://github.com/UniMiBAnalyse s/EFT/blob/master/DatacardCreato r/createFilesPTL1 lum.cpp

https://github.com/UniMiBAnalyse s/EFT/blob/master/DatacardCreato r/createFilesPTL2 lum.cpp

Confidence ranges vs x_0

\triangleright Variation of x_0 in the range [100 GeV, 600 GeV]

https://github.com/UniMiBAnalyse s/EFT/blob/master/DatacardCreato r/createFilesPTL1 bkg.cpp

Results:

- Likelihood scans seem mostly affected by the tails of the distributions
- $x_0 = 100 \text{ GeV}$ is a reasonable choice

Increasing x_0 the backround contribution in the tail becomes predominant

The sensibility to the Wilson coefficient is expected to decrease; this trend is verified

https://github.com/UniMiBAnal yses/EFT/blob/master/Datacard Creator/range vs x0.cpp

Asymptotic study of systematic errors

- Background systematic error: 5%
- Increasing the integrated luminosity L

Reducing the statistical errors, since $N = \sigma L$ and the relative error on N is $1/\sqrt{N}$ (N: expected event at the luminosity L, σ : cross section of the process)

Variation of L with a logarithmic trend to study this asymptotic behaviour

When L is high enough, only systematic errors contribute to the confidence ranges

ob/master/DatacardCreator/range vs lum (similar plot for p_{tl2} , Q_{HW})

https://github.com/UniMiBAnalyses/EFT/bl ob/master/DatacardCreator/range vs lum

<u>Fit results</u> (parameter A):

Wilson coefficient	$c_W(p_{tl1})$	$c_{HW}\left(p_{tl2}\right)$
68% confidence range	0.034 ± 0.005	0.95 ± 0.09
95% confidence range	0.050 ± 0.006	1.32 ± 0.13

Future perspectives

- Applying the same methods on other EFT operators
- Multivariate analysis considering both of the operators at the same time
- Comparing the results with the Full Simulation
- Application to the data analysis