Contents

Ford-Fulkerson con DFS .		 	 	 1
$ventaja \dots \dots$		 	 	 1
desventaja		 	 	 1
Edmonds y Karp				1
propusieron estas dos	alternativas	 	 	 1
Algunos libros lo llam buena forma d		 	 	 2
		 	 	 2
Otra cosa que tienen				

Ford-Fulkerson con DFS

- 1 Creamos una pila con s.
- 2 Si la pila es vacia, terminamos, no hay camino. Si no es vacia, tomamos x =el primer elemento de la pila y buscamos algún vécino de x que satisfaga las condiciones de Ford-Fulkerson.
- 3 Si no hay, sacamos a x de la pila y repetimos 2). 4 Si hay tal vécino, tomamos z uno de ellos. 5 Si z=t encontramos nuestro camino.
- 6 Si no, agregamos z a la pila y repetimos 2).

ventaja

DFS es O(m) asi que la búsqueda de caminos es polinomial.

desventaja

con DFS Ford-Fulkerson puede no terminar nunca,

Edmonds y Karp

propusieron estas dos alternativas.

aumentar eligiendo caminos de longitud mínima, y aumentar eligiendo caminos de aumento máximo.

Algunos libros lo llaman "heurística"

porque no es un nuevo algoritmo, sino que es Ford-Fulkerson con la especificación de usar BFS para la búsqueda.

buena forma de recordarlo

es que EK=FF+BFS.

Otra cosa que tienen que hacer

siempre verificar que v(f) sea igual a cap(S), calculando ambos en forma independiente.