INTERACTION DEVICES

Sameer Kharel

Interaction Devices

- Interaction devices is a term used to cover the various devices used to interact with a computer.
- The feature of computing is likely to include gestural input, two-handed input, threedimensional pointing, more voice inputoutput, wearable devices, and whole-body involvement for some input and output tasks.

Keyboards layouts

QWERTY layout

Sameer Kharel

put frequently used letter pairs far apart, thereby increasing finger travel distances

Dvorak layout

- -1920
- -reduces finger travel distances by at least one order of magnitude
- -it takes about 1 week of regular typing to make the switch, but most users have been unwilling to invest the effort

ABCD style

 26 letters of the alphabet laid out in alphabetical order nontypists will find it easier to locate the keys

Studies show no improvement vs. QWERTY

Additional keys

IBM PC Keyboard

- IBM PC keyboard was widely criticized because of the placement of a few keys
 - backslash key where most typists expect SHIFT key
 - placement of several special characters near the ENTER key

Full-size keyboard

- Number pads
 - -telephone layout (1-2-3) slightly advantage
 - -calculator layout (7-8-9)

Keyboard Layouts (Contd...)

Function keys

- users must either remember each key's function, identify them from the screen's display, or use a template over the keys in order to identify them properly
- can reduce number of keystrokes and errors
- meaning of each key can change with each application
- placement on keyboard can affect efficient use
- special-purpose displays often embed function keys in monitor bezel
- lights next to keys used to indicate availability of the function, or on/off status
- typically simply labeled F1, F2, etc, though some may also have meaningful labels, such as CUT, COPY, etc.
- frequent movement between keyboard home position and mouse or function keys can be disruptive to use
- alternative is to use closer keys (e.g. ALT or CTRL) and one letter to indicate special function

Keyboard Layouts (Contd...)

Cursor movement keys

- up, down, left, right
- some keyboards also provide diagonals
- best layout is natural positions
- inverted-T positioning allows users to place their middle three fingers in a way that reduces hand and finger movement
- cross arrangement better for novices than linear or box
- typically include typamatic (auto-repeat) feature
- important for form-fillin and direct manipulation
- other movements may be performed with other keys, such as TAB, ENTER, HOME, etc.

Inverted –T Arrangement

Pointing Devices

Pointing devices are applicable in six types of interaction tasks:

1. Select:

- user chooses from a set of items.
- used for traditional menu selection, identification of a file in a directory, or marking of a part in an automobile design.

2. Position:

- user chooses a point in a one-, two-, three-, or higher-dimensional space
- used to create a drawing, to place a new window, or to drag a block of text in a figure.

3. Orient:

- user chooses a direction in a two-, three-, or higher-dimensional space.
- direction may simply rotate a symbol on the screen, indicate a direction of motion for a space ship, or control the operation of a robot arm.

• 4. Path:

- user rapidly performs a series of position and orient operations.
- may be realized as a curving line in a drawing program, the instructions for a cloth cutting machine, or the route on a map.

• 5. Quantify:

- user specifies a numeric value.
- usually a one-dimensional selection of integer or real values to set parameters, such as the page number in a document, the velocity of a ship, or the amplitude of a sound.

• 6. Text:

- user enters, moves, and edits text in a two-dimensional space. The
- pointing device indicates the location of an insertion, deletion, or change.
- more elaborate tasks, such as centering; margin setting; font sizes; highlighting, such as boldface or underscore; and page layout.

Direct-control pointing devices

Lightpen

 enabled users to point to a spot on a screen and to perform a select, position, or other task

it allows direct control by pointing to a spot on the

display

Sameer Kharel

Direct-control pointing devices (Contd...)

Touchscreen

- allows direct control touches on the screen using a finger
- lift-off strategy enables users to point at a single pixel
- the users touch the surface
- then see a cursor that they can drag around on the display
- when the users are satisfied with the position, they lift their fingers off

the display to activate

Indirect-Control Pointing

• Pros:

- Reduces hand-fatigue
- Reduces obscuration problems

Cons:

- Increases cognitive load
- Spatial ability comes more into play

Mouse

- Pros:

- Familiarity
- Wide availability
- Low cost
- Easy to use
- Accurate

– Cons:

- Time to grab mouse
- Desk space
- Encumbrance (wire), dirt
- Long motions aren't easy or obvious (pick up and replace)

Trackball

 usually implemented as a rotating ball 1 to 15 centimeters in diameter that moves a cursor on the screen as it moved.

Joystick

- begin in aircraft-control device
- are appealing for tracking purposes

Graphics Tablet

- a touch-sensitive surface separate from the screen
- enables a user to hand-draw images and graphics, similar to the way a person draws images with a pencil and paper

Touchpad

- featuring a tactile sensor, a specialized surface that can translate the motion and position of a user's fingers to a relative position on screen
- common feature of laptop computers, and are also used as a substitute for a mouse where desk space is scarce

Comparing pointing devices

- Direct pointing
 - Study: Faster but less accurate than indirect (Haller '84)
- Lots of studies confirm mouse is best for most tasks for speed and accuracy
- Trackpoint < Trackballs & Touchpads < Mouse
- Short distances cursor keys are better
- Disabled prefer joysticks and trackballs
 - If force application is a problem, then touch sensitive is preferred

Fitts's Law

- Paul Fitts (1954) developed a model of human hand movement
- Used to predict time to point at an object
- What are the factors to determine the time to point to an object?
 - D distance to target
 - W size of target
- Just from your own experience, is this function linear?
 - No, since if Target A is D distance and Target B is 2D distance, it doesn't take twice as long
 - What about target size? Not linear there either
- $T = a + b \log_2(D/W + 1)$
 - a = time to start/stop in seconds (empirically measured per device)
 - b = inherent speed of the device (empirically measured per device)
 - Ex. a = 300 ms, b = 200 ms/bit, D = 14 cm, W = 2 cm
 - Ans: $300 + 200 \log_2(14/2 + 1) = 900 \text{ ms}$

- Index of difficulty = log2 (2D / W)
- Time to point = C1 + C2 (index of difficulty)
- C1 and C2 and constants that depend on the device
- Index of difficulty is log2(2*8/1) = log2(16) = 4 bits
- A three-component equation was thus more suited for the highprecision pointing task:
- Time for precision pointing = C1 + C2 (index of difficulty) + C3 log2 (C4 / W)

Novel Devices

Themes:

- Make device more diverse
 - Users
 - Task
- Improve match between task and device
- Improve affordance
- Refine input
- Feedback strategies
- Foot controls
 - Already used in music where hands might be busy
 - Cars
 - Foot mouse was twice as slow as hand mouse
 - Could specify 'modes'

Speech Recognition, Digitization, and Generation

- Speech recognition still does not match the fantasy of science fiction:
 - demands of user's working memory
 - background noise problematic
 - variations in user speech performance impacts effectiveness
 - most useful in specific applications, such as to benefit handicapped users

Discrete-Word Recognition

- Recognize individual words spoken by a specific person
- 90-98% for 100-10000 word vocabularies
- Training
 - Speaker speaks the vocabulary
 - Speaker-independent
- Still requires
 - Low noise operating environment
 - Microphones
 - Vocabulary choice

- Helps:
 - Disabled
 - Elderly
 - Cognitive challenged
 - User is visually distracted
 - Mobility or space restrictions
- Apps:
 - Telephone-based info

Continuous Speech Recognition

- Not generally available:
 - difficulty in recognizing boundaries between spoken words
 - normal speech patterns blur boundaries
 - many potentially useful applications if perfected

Speech store and forward

- Voice mail users can
 - receive messages
 - replay messages
 - reply to caller
 - forward messages to other users, delete messages
 - archive messages
 - Stored speech commonly used to provide information about tourist sites, government services, after-hours messages for organizations
 - Low cost
 - Voice prompts

Speech generation

- is an example of a successful technology
- have been used in
 - Cameras ("too dark- use flash")
 - Automobiles ("your door is ajar")
 - Children's game
 - Utility-control rooms ("danger")
- Applications for the blind are an important sucsess story

- Michaelis and Wiggins (1982) suggest that speech generation is "frequently preferable" under these circumstances:
 - The message is simple.
 - The message is short.
 - The message will not be referred to later.
 - The message deals with events in time.
 - The message requires an immediate response.
 - The visual channels of communication are overloaded.
 - The environment is too brightly lit, too poorly lit, subject to severe vibration, or otherwise unsuitable for transmission of visual information.
 - The user must be free to move around.
 - The user is subjected to high G forces or anoxia

Audio tones, audiolization, and music

- Sound feedback can be important:
 - to confirm actions
 - offer warning
 - for visually-impaired users
 - music used to provide mood context, e.g. in games

Display Devices

- Monochrome displays (single color)
 - Low cost
 - Greater intensity range (medical)
- Color
 - Raster Scan CRT
 - LCD thin, bright
 - Plasma very bright, thin
 - LED large public displays

Heads-up and helmet mounted displays

is any transparent display that presents data
without requiring users to look away from their

usual viewpoints

Sameer Kharel

 A helmet/head mounted display (HMD) moves the image with the user

Printers

- Important criteria for printers:
 - Speed
 - Print quality
 - Cost
 - Compactness
 - Quiet operation
 - Use of ordinary paper (fanfolded or single sheet)
 - Character set
 - Variety of typefaces, fonts, and sizes
 - Highlighting techniques (boldface, underscore, and so on)
 - Support for special forms (printed forms, different lengths, and so on)
 - Reliability

Dot-matrix printers

- print more than 200 characters per second, have multiple fonts, can print boldface, use variable width and size, and have graphics capabilities

Sameer Kharel

- Inkjet printers
 - offer quiet operation and high-quality output

- Thermal printers or fax machines
 - offer quiet, compact, and inexpensive output on specially coated papers

Sameer Kharel

- Laser printers
 - operate at 30,000 lines per minute
 - support graphic and produce high quality images

- resolution ranges from 200 to 1200 points per

inch

- Color printers
 - allow users to produce hardcopy output of color graphics, usually by an inkjet approach with three colored and black inks

- Photographic printers
 - allow the creation of 35-millimeter or larger slides (transparencies) and photographic prints

Sameer Kharel

THANK YOU!!!