Homework 2

MATH 110 | Introduction to Number Theory | Summer 2023

Whenever you use a result or claim a statement, provide a **justification** or a **proof**, unless it has been covered in the class. In the later case, provide a **citation** (such as "by the 2-out-of-3 principle" or "by Coro. 0.31 in the textbook").

You are encouraged to *discuss* the problems with your peers. However, you must write the homework by yourself using your words and acknowledge your collaborators.

Problem 1. Prove that if n is a positive integer, and $\sigma_0(n)$ is prime then n is a power of a prime number.

Problem 2 (Mersenne, 1644). Describe all circumstances under which $\sigma_1(n)$ is odd. *Hint*. Consider the prime factorization of n.

Problem 3. Recall that an *integer polynomial* is an expression of the form

$$P(T) = c_d T^d + \dots + c_1 T + c_0$$

where each c_i is an integer.

- (a) **Find** a nonzero integer polynomial P(T) that has $\sqrt{3} + \sqrt[3]{5}$ as a root.
- (b) **Prove that** $\sqrt{3} + \sqrt[3]{5}$ is irrational using 3.(a).

Problem 4. By evaluating the Taylor series for the exponential function:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

at x = 1, we get the formula

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

In this problem, you will prove that e is irrational.

(a) Let $s_n := \sum_{k=0}^n \frac{1}{k!}$, the *n*-th partial sum of above series. Show that

$$0 \le e - s_n \le \frac{1}{n} \cdot \frac{1}{n!}.$$

(b) Assume e is rational, and say a/b is the reduced fraction representing e. Apply the previous result to n=b and arrive at a contradiction.

1

Problem 5. Consider the *Fibonacci numbers*, define recursively by

$$F_0 = 0, F_1 = 1$$
, and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 2$;

so the first few terms are

$$0, 1, 1, 2, 3, 5, 8, 13, \cdots$$

For all $n \geq 2$, define the rational number r_n by the fraction $\frac{F_n}{F_{n-1}}$; so the first few terms are

$$\frac{1}{1}, \frac{2}{1}, \frac{3}{2}, \frac{5}{3}, \frac{8}{5}, \cdots$$

- (a) Prove that for all $n \geq 4$, we have $r_n = r_{n-1} \vee r_{n-2}$.
- (b) Prove that the sequence r_n converges (to a real number).
- (c) Prove that r_n converges to the golden ratio:

$$\phi = \frac{1 + \sqrt{5}}{2}.$$

For this problem, you can use any result that you may have seen in your Calculus classes.