

Computer Vision (2주차)

Young-Gon Kim DLI Instructor

DEEP LEARNING INSTITUTE

DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare and robotics
- Training, optimizing, and deploying deep neural networks

TOPICS

- Week 1 Review
- Overfitting
- Big Data
- Transfer Learning

WEEK 1 REVIEW

Louie! Image Classification Model

Predictions Not Louie 96.52% Louie 3.48%

- Type of 'overfitting'
 - **Green**: little overfitting
 - → Model capacity is not high enough!
 - Blue: strong overfitting
 - → Model's complexity is too high!

- How to solve the 'overfitting'?
 - 1. Regularization
 - 2. Early stopping
 - 3. Dropout

- How to solve the 'overfitting'?
 - Regularization
 - Loss function에 **penalty term**을 추가 (L1/L2 regularization)
 - **Variance를 낮춰서** model의 complexity를 낮춤 (smoothing)
 - Early stopping
 - Dropout

L1 regularization =
$$\frac{1}{n} \sum_{i=1}^{n} \{L(y_i, \hat{y}_i) + \frac{\lambda}{2} |w|\}$$
L2 regularization =
$$\frac{1}{n} \sum_{i=1}^{n} \{L(y_i, \hat{y}_i) + \frac{\lambda}{2} |w|^2\}$$

(b) with regularization

- How to solve the 'overfitting'?
 - 1. Regularization
 - 2. Early stopping
 - Validation set accuracy가 멈추거나 낮아지는 지점 존재
 - 이 시점에서 학습 중지
 - 3. Dropout

- How to solve the 'overfitting'?
 - Regularization
 - Early stopping
 - **Dropout**
 - Network의 일부를 생략하고 학습
 - Model ensemble 효과

(a) Standard Neural Net

(b) After applying dropout.

Training, Validation, Test

DATASET SPLIT

Training Validation **Test**

Source: IDC's Data Age 2025 study, sponsored by Seagate, April 2017

- Big data와 Deep learning
 - **방대한 데이터를 다룰 수 있는 기술**의 발전
 - → Deep learning의 발전에 큰 역할
 - → 우리 생활에서 큰 역할을 하기 시작

- Examples about deep learning using big data
 - → Dog & Cat classification

Task 2 BIG DATA

Deep Learning Approach **Errors** Train: Cat Raccoon Deploy: Dog

- How do I use a trained neural network as part of a solution?

Neural network training and inference

Step 1: Optimize trained model

Step 2: Deploy optimized plans with runtime

Task 3 DEPLOYMENT

- Why do we use "transfer learning"?
 - → 충분한 양의 데이터를 갖고 있기가 쉽지 않음
 - → 다른 사람들이 **미리 학습한 모델**을 이용

- Major types of transfer learning
 - 1. ConvNet as fixed feature extractor
 - 2. Fine-tuning the ConvNet
 - 3. Pretrained models

- Major types of transfer learning
 - 1. ConvNet as fixed feature extractor
 - Pretrained된 ConvNet의 마지막 Fully-connected layer 제거
 - 이 network를 new dataset의 feature extractor로 사용
 - new dataset에 대해 linear classifier 학습 (Linear SVM, Softmax classifier, ...)
 - 2. Fine-tuning the ConvNet
 - 3. Pretrained models

- Major types of transfer learning
 - 1. ConvNet as fixed feature extractor
 - 2. Fine-tuning the ConvNet
 - Classifier on top of the ConvNet을 new dataset에 대해 replace & retrain
 - Fine-tune the weights of the pretrained network by continuing the backpropagation
 - Fine-tune **all the layers** of the ConvNet
 - Keep some of the earlier layers fixed
 - Fine-tune **some higher-level portion** of the network
 - 3. Pretrained models

- Major types of transfer learning
 - 1. ConvNet as fixed feature extractor
 - 2. Fine-tuning the ConvNet
 - 3. Pretrained models
 - ImageNet으로 미리 학습한 모델 사용

Examples of transfer learning

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Reference

- http://cs231n.stanford.edu/slides/2019/cs231n_2019_lecture08.pdf
- http://cs231n.github.io/neural-networks-3/
- https://nittaku.tistory.com/289
- https://laonple.blog.me/220527647084
- https://laonple.blog.me/220542170499
- https://m.etnews.com/20171128000218
- https://www.samsungsds.com/global/ko/support/insights/1196843_2284.html
- https://becominghuman.ai/building-an-image-classifier-using-deep-learning-in-python-totally-from-a-beginners-perspective-be8dbaf22dd8
- http://cs231n.github.io/transfer-learning/
- http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

