Continuous-time systems 1

March 2, 2015

Linear differential equations

2 Laplace transform

3 Solving LDEs with the Laplace transform

Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform

Linear differential equations (LDE) are of the following form:

$$L[y(t)] = f(t),$$

where L is some linear operator.

Linear differential equations (LDE) are of the following form:

$$L[y(t)] = f(t),$$

where L is some linear operator.

The linear operator L is of the following form:

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}},$$

with given functions $A_{1:n}$.

Linear differential equations (LDE) are of the following form:

$$L[y(t)] = f(t),$$

where L is some linear operator.

The linear operator L is of the following form:

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}},$$

with given functions $A_{1:n}$.

The **order of a LDE** is the index of the highest derivative of y.

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}} = f(t).$$

 y is a scalar function → ordinary differential equation (ODE)

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}} = f(t).$$

- y is a scalar function → ordinary differential equation (ODE)
- y is a vector function \rightarrow partial differential equation (PDE)

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}} = f(t).$$

- y is a scalar function \rightarrow ordinary differential equation (ODE)
- y is a vector function \rightarrow partial differential equation (PDE)
- $f = 0 \rightarrow$ homogeneous equation
 - → solutions are called **complementary functions**

$$L_n(y) = \sum_{i=0}^n A_i(t) \frac{d^{n-i}y}{dt^{n-i}} = f(t).$$

- y is a scalar function → ordinary differential equation (ODE)
- y is a vector function \rightarrow partial differential equation (PDE)
- f = 0 → homogeneous equation
 → solutions are called complementary functions
- if $A_{0:n}(t)$ are constants (ie. not functions of time), the LDE is said to have **constant coefficients**

Example: radioactive decay 1/2

Let N(t) be the number of radioactive atoms at time t, then:

$$\frac{dN(t)}{dt} = -kN(t),$$

for some constant k > 0.

Example: radioactive decay 1/2

Let N(t) be the number of radioactive atoms at time t, then:

$$\frac{dN(t)}{dt} = -kN(t),$$

for some constant k > 0.

This is a first order homogeneous LDE with constant coefficients.

Example: radioactive decay 2/2

Decay of Carbon - 14

Solutions of LDEs must be of the form e^{zt} with $z \in \mathbb{C}$.

Solutions of LDEs must be of the form e^{zt} with $z \in \mathbb{C}$.

We assume an LDE with constant coefficients:

$$\sum_{i=0}^n A_i y^{(n-i)} = 0.$$

Solutions of LDEs must be of the form e^{zt} with $z \in \mathbb{C}$.

We assume an LDE with constant coefficients:

$$\sum_{i=0}^n A_i y^{(n-i)} = 0.$$

Replacing $y = e^{zt}$ leads to:

$$\sum_{i=0}^{n} A_i z^{n-i} e^{zt} = 0$$

Solutions of LDEs must be of the form e^{zt} with $z \in \mathbb{C}$.

We assume an LDE with constant coefficients:

$$\sum_{i=0}^n A_i y^{(n-i)} = 0.$$

Replacing $y = e^{zt}$ leads to:

$$\sum_{i=0}^{n} A_i z^{n-i} e^{zt} = 0$$

Dividing by e^{zt} yields the *n*th order **characteristic polynomial**:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

- **1** Solving the polynomial F(z) yields n zeros z_1 to z_n .
- ② Substituting a given zero z_i into e^{zt} gives a solution e^{z_it} .

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

- **1** Solving the polynomial F(z) yields n zeros z_1 to z_n .
- ② Substituting a given zero z_i into e^{zt} gives a solution e^{z_it} .

Homogeneous LDEs obey the superposition position:

 \rightarrow any linear combination of solutions $e^{z_1t}, \dots, e^{z_nt}$ is a solution

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

- **1** Solving the polynomial F(z) yields n zeros z_1 to z_n .
- 2 Substituting a given zero z_i into e^{zt} gives a solution e^{z_it} .

Homogeneous LDEs obey the superposition position:

- \rightarrow any linear combination of solutions $e^{z_1t}, \dots, e^{z_nt}$ is a solution
- $\rightarrow e^{z_1t}, \dots, e^{z_nt}$ form a basis of the solution space of the LDE

Characteristic equation:

$$F(z) = \sum_{i=0}^{n} A_i z^{n-i} = 0.$$

- **1** Solving the polynomial F(z) yields n zeros z_1 to z_n .
- ② Substituting a given zero z_i into e^{zt} gives a solution e^{z_it} .

Homogeneous LDEs obey the superposition position:

- \rightarrow any linear combination of solutions $e^{z_1t}, \dots, e^{z_nt}$ is a solution
- $\rightarrow e^{z_1t},\ldots,e^{z_nt}$ form a basis of the solution space of the LDE

The specific linear combination depends on initial conditions.

Example:

$$y^{(4)}(t) - 2y^{(3)}(t) + 2y^{(2)}(t) - 2y^{(1)}(t) + y(t) = 0.$$

Example:

$$y^{(4)}(t) - 2y^{(3)}(t) + 2y^{(2)}(t) - 2y^{(1)}(t) + y(t) = 0.$$

This is a 4th order homogeneous LDE with constant coefficients.

Example:

$$y^{(4)}(t) - 2y^{(3)}(t) + 2y^{(2)}(t) - 2y^{(1)}(t) + y(t) = 0.$$

This is a 4th order homogeneous LDE with constant coefficients.

The corresponding characteristic equation:

$$F(z) = z^4 - 2z^3 + 2z^2 - 2z + 1 = 0.$$

Example:

$$y^{(4)}(t) - 2y^{(3)}(t) + 2y^{(2)}(t) - 2y^{(1)}(t) + y(t) = 0.$$

This is a 4th order homogeneous LDE with constant coefficients.

The corresponding characteristic equation:

$$F(z) = z^4 - 2z^3 + 2z^2 - 2z + 1 = 0.$$

The zeros of F(z) are $(j = \sqrt{-1})$:

$$z_1 = j$$
, $z_2 = -j$, $z_{3,4} = 1$.

Example:

$$y^{(4)}(t) - 2y^{(3)}(t) + 2y^{(2)}(t) - 2y^{(1)}(t) + y(t) = 0.$$

This is a 4th order homogeneous LDE with constant coefficients.

The corresponding characteristic equation:

$$F(z) = z^4 - 2z^3 + 2z^2 - 2z + 1 = 0.$$

The zeros of F(z) are $(j = \sqrt{-1})$:

$$z_1 = j$$
, $z_2 = -j$, $z_{3,4} = 1$.

These zeros correspond to the following basis functions t:

$$e^{jt}$$
, e^{-jt} , e^t , te^t .

Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform

The Laplace transform of f(t), for all real numbers $t \geq 0$:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt.$$

The Laplace transform of f(t), for all real numbers $t \ge 0$:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt.$$

The parameter $s = \sigma + j\omega$ is the complex number frequency.

The Laplace transform of f(t), for all real numbers $t \ge 0$:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt.$$

The parameter $s = \sigma + j\omega$ is the complex number frequency.

The initial value theorem states $f(0^+) = \lim_{s \to \infty} sF(s)$.

The Laplace transform of f(t), for all real numbers $t \ge 0$:

$$F(s) = \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt.$$

The parameter $s = \sigma + j\omega$ is the complex number frequency.

The initial value theorem states $f(0^+) = \lim_{s \to \infty} sF(s)$.

The final value theorem states $f(\infty) = \lim_{s\to 0} sF(s)$, if all poles of sF(s) are in the left half plane (ie. real part < 0).

property	time domain	s-domain
linearity	af(t) + bg(t)	aF(s) + bG(s)

property	time domain	s-domain
linearity	af(t) + bg(t)	aF(s) + bG(s)
differentiation	$f^{(1)}(t)$	sF(s) - f(0)

property	time domain	s-domain
linearity	af(t) + bg(t)	aF(s) + bG(s)
differentiation	$f^{(1)}(t)$	sF(s) - f(0)
integration	$\int_0^t f(\tau)d\tau = (u*f)(t)$	$\frac{1}{s}F(s)$

property	time domain	s-domain
linearity	af(t) + bg(t)	aF(s) + bG(s)
differentiation	$f^{(1)}(t)$	sF(s) - f(0)
integration	$\int_0^t f(\tau)d\tau = (u*f)(t)$	$\frac{1}{s}F(s)$
convolution	$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$	$F(s) \cdot G(s)$

Important properties of the Laplace transform

property	time domain	s-domain
linearity	af(t)+bg(t)	aF(s) + bG(s)
differentiation	$f^{(1)}(t)$	sF(s)-f(0)
integration	$\int_0^t f(\tau)d\tau = (u*f)(t)$	$\frac{1}{s}F(s)$
convolution	$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$	$F(s) \cdot G(s)$
time scaling	f(at)	$\frac{1}{a}F(\frac{s}{a})$

Important properties of the Laplace transform

property	time domain	s-domain
linearity	af(t)+bg(t)	aF(s) + bG(s)
differentiation	$f^{(1)}(t)$	sF(s) - f(0)
integration	$\int_0^t f(\tau)d\tau = (u*f)(t)$	$\frac{1}{s}F(s)$
convolution	$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$	$F(s) \cdot G(s)$
time scaling	f(at)	$\frac{1}{a}F(\frac{s}{a})$
time shifting	f(t-a)u(t-a)	$e^{-as}F(s)$

Important properties of the Laplace transform

property	time domain	s-domain
linearity	af(t) + bg(t)	aF(s) + bG(s)
differentiation	$f^{(1)}(t)$	sF(s) - f(0)
integration	$\int_0^t f(\tau)d\tau = (u*f)(t)$	$\frac{1}{s}F(s)$
convolution	$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$	$F(s) \cdot G(s)$
time scaling	f(at)	$\frac{1}{a}F(\frac{s}{a})$
time shifting	f(t-a)u(t-a)	$e^{-as}F(s)$

with $u(t) = \int_{\infty}^{t} \delta(t) dt$ (Heaviside) and $\delta(t)$ the Dirac delta.

Inverse Laplace transform

The inverse Laplace transform converts *s*-domain to time domain:

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{j2\pi} \int_{\gamma-jT}^{\gamma+jT} e^{st} F(s) ds.$$

Inverse Laplace transform

The inverse Laplace transform converts *s*-domain to time domain:

$$f(t) = \mathcal{L}^{-1}{F(s)} = \frac{1}{j2\pi} \int_{\gamma-jT}^{\gamma+jT} e^{st} F(s) ds.$$

Practically, the inverse Laplace transform takes two steps:

- \bullet write F(s) in terms of partial fractions
- 2 transform each term in the partial fraction based on tables of s/t-domain pairs (course notes p 4.32-4.33)

Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform

Solving LDEs with the Laplace transform 1/3

The Laplace transform can be used to solve LDEs with given initial conditions (the previous approach gave us the basis functions).

Solving LDEs with the Laplace transform 1/3

The Laplace transform can be used to solve LDEs with given initial conditions (the previous approach gave us the basis functions).

This is done by using the following property (differentiation):

$$\mathcal{L}\{f^{(1)}\} = sF(s) - f(0),$$

$$\mathcal{L}\{f^{(2)}\} = s^2F(s) - sf(0) - f^{(1)}(0).$$

Solving LDEs with the Laplace transform 1/3

The Laplace transform can be used to solve LDEs with given initial conditions (the previous approach gave us the basis functions).

This is done by using the following property (differentiation):

$$\mathcal{L}\lbrace f^{(1)}\rbrace = sF(s) - f(0),$$

$$\mathcal{L}\lbrace f^{(2)}\rbrace = s^2F(s) - sf(0) - f^{(1)}(0).$$

Via induction, the Laplace transform of the *n*th order derivative:

$$\mathcal{L}\{f^{(n)}\} = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$

Solving LDEs with the Laplace transform 2/3

$$\mathcal{L}\{f^{(n)}\} = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$

Solving LDEs with the Laplace transform 2/3

$$\mathcal{L}\{f^{(n)}\} = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$

We want to solve the following LDE:

$$\sum_{i=0}^{n} A_i y^{(n-i)}(t) = f(t),$$

$$y^{(i)}(0) = c_i \quad \forall i = 0 \dots n.$$

Solving LDEs with the Laplace transform 2/3

$$\mathcal{L}\lbrace f^{(n)}\rbrace = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$

We want to solve the following LDE:

$$\sum_{i=0}^{n} A_i y^{(n-i)}(t) = f(t),$$

$$y^{(i)}(0) = c_i \quad \forall i = 0 \dots n.$$

Via the linearity of the Laplace transform:

$$\sum_{i=0}^{n} A_i \mathcal{L}\{y^{(n-i)}(t)\} = \mathcal{L}\{f(t)\}$$

Solving LDEs with the Laplace transform 3/3

$$\sum_{i=0}^{n} A_i \mathcal{L}\{y^{(n-i)}(t)\} = \mathcal{L}\{f(t)\}$$
 (1)

$$\mathcal{L}\{f^{(n)}\} = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$
 (2)

Solving LDEs with the Laplace transform 3/3

$$\sum_{i=0}^{n} A_i \mathcal{L}\{y^{(n-i)}(t)\} = \mathcal{L}\{f(t)\}$$
 (1)

$$\mathcal{L}\{f^{(n)}\} = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$
 (2)

Expanding Eq. (2) into (1) yields:

$$Y(s)\sum_{i=0}^{n}A_{i}s^{i}-\sum_{i=1}^{n}\sum_{j=1}^{i}A_{i}s^{i-j}y^{j-1}(0)=F(s)$$

Solving LDEs with the Laplace transform 3/3

$$\sum_{i=0}^{n} A_i \mathcal{L}\{y^{(n-i)}(t)\} = \mathcal{L}\{f(t)\}$$
(1)

$$\mathcal{L}\{f^{(n)}\} = s^n F(s) - \sum_{i=1}^n s^{n-i} f^{(n-i)}(0)$$
 (2)

Expanding Eq. (2) into (1) yields:

$$Y(s)\sum_{i=0}^{n}A_{i}s^{i}-\sum_{i=1}^{n}\sum_{j=1}^{i}A_{i}s^{i-j}y^{j-1}(0)=F(s)$$

The solution in the time domain is obtained via the inverse Laplace transform: $y(t) = \mathcal{L}^{-1}\{Y(s)\}.$