

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 63308797 A

(43) Date of publication of application: 16.12.88

(51) Int. CI

G11C 17/00 H01L 27/10 H01L 29/78

(21) Application number: 62144033

(22) Date of filing: 11.06.87

(71) Applicant:

OKI ELECTRIC IND CO LTD

(72) Inventor:

KITAZAWA SHOJI ONO TAKASHI

(54) SEMICONDUCTOR STORAGE DEVICE

(57) Abstract:

PURPOSE: To obtain a memory capable of erasure and write for an EPROM base by providing a control means to a memory matrix comprising a MOSFET having a floating and a control gate and applying a prescribed voltage to both the gates and 1st and 2nd electrodes.

CONSTITUTION: Memory elements M₁₁WM₃₂ having floating/control gate are arranged in a matrix. A voltage switching circuit 26 is connected to a common line B of the matrlx, a common line B is connected to ground at write/readout and a high voltage below the breakdown voltage of the memory element M and its vicinity is supplied in response to an erasure signal. A row decoder 25 is connected to a word line to turn on all FETs 21aW21c of the selection circuit in response to the erasure signal. A block 28 is provided with a means 29 outputting a write signal to a node 27 of the selection circuit in response to the write control signal, a circuit 30 having a function keeping a constant voltage and outputting an output in response to the current and a sense amplifier 31 amplifying the output of the circuit 30 at readout and stopping the readout by the signal of the signal line A at erasure. Through the constitution above, write/erasure is applied

to the memory element having a floating gate quickly by a minute current to improve the function and circuit integration.

COPYRIGHT: (C)1988,JPO&Japio

⑬ 日本 国特 許 庁 (JP)-

⑩ 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭63-308797

<pre>⑤Int Cl,¹</pre>	識別記号	庁内登理番号		國公開	昭和63年(198	38) 12月 16日
G 11 C 17/	00 309	C - 7341 - 5B B - 7341 - 5B				
H 01 L 27/ 29/		8624-5F 7514-5F	審查請求	未請求	発明の数 1	(全13頁)

②発明の名称 半導体記憶装置

②特 願 昭62-144033

❷出 願 昭62(1987)6月11日

②発 明 者 北 沢 章 司 東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内 ③発 明 者 小 野 隆 東京都港区虎ノ門1丁目7番12号 沖電気工業株式会社内 ②出 願 人 沖電気工業株式会社 東京都港区虎ノ門1丁目7番12号

②出 願 人 沖電気工業株式会社 ③代 瑆 人 弁理士 清 水 守

明 短 智

1、発明の名称

半项体記也装置

2、特許請求の範囲

(1)

- (a) メモリセルがフローティングゲート及びコントロールゲートを有し、マトリックス状に配置された複数のMOSトランジスタからなるメモリマトリックスと、
- (b) データ消去動作時に、前記MOSトランジスタのコントロールゲートに接地電位を供給する手段と、
- (c) データ消去動作時に、メモリマトリックスの MOSトランジスタの第1の電優にメモリセルの 時状電圧以下であり、かつ、該路伏電圧の近傍の 電圧を印加する手段と、
- (d) データ構去動作時に、メモリマトリックスの MOSトランジスタの第2の電極にMOSトラン ジスタに電波が流れない程度の電圧を印加する手

段を具備するようにしたことを特徴とする半導体 程度装備

- (2) データ鉄取り時に、前記メモリセルのフローティングゲート内の電荷量と、前記メモリセルのコントロールゲートに印加される電位とに応じて、前記メモリセルの第1の電極と第2の電極との間に流れる電流により、データを誘取る手段を有することを特徴とする特許請求の範囲第1項記載の半導体記憶装置。
- (3) 前紀メモリセルのコントロールゲートに、 該メモリセルの第1の電極と第2の電極とを導通 させる電位を与え、かつ、第1の電極に電圧を与 えて、第1の電極と第2の電極の間に電波を決す ことにより、前記メモリセルのフローティングゲート内の電荷量を変化させる手段を有することを 特徴とする特許請求の範囲第1項記載の半導体記 使装置。
- (4) 前記プモリセルのコントロールゲートに、 前記ノモリセルの第1の電極と第2の電極とを非 遅速とする電位を与え、かつ、第1の電極又は第

特開昭 63-308797(2)

2の電磁に、前記第1の電圧と異なる第2の電圧 を与えることにより、前記メモリセルのフローティングゲート内の電荷量を変化させる手段を有す ることを特徴とする特許請求の短囲第1項記載の 半導体記憶装置。

- (5) 前記非承遇とする電位は半導体券件にバイアスされる電位と同一であることを特徴とする特許求の範囲第4項記載の半導件集積回路整置。
- (6) データ消去動作時に、前記第2の電圧は前記メモリセルの第1の電腦又は第2の電極に降伏を生ぜしめない電圧を印加することを特徴とする 特許請求の範囲第4項記載の半導体記憶装置。
- (7) 前記第2の電圧をマトリックス状の列に選択的に与える手段を具備していることを特徴とする特許請求の範囲第4項記載の半導体記憶装置。
- (8) 前記非潔過とする電位をプトリックス状の 行に選択的に与える手段を具備していることを特 散とする特許請求の範囲第4項記載の半導体記憶 装置。
- (9) 前記第1又は第2の電圧を前記列に与えた

回数を記憶する手段を有することを特徴とする特 許請求の範囲第7項記載の半導体記憶装置。

3、発明の詳細な説明

(産業上の利用分野)

本発明は、半導体記憶装置に係り、特に、電気 的に拍去可能な不運発性半導体記憶装置に関する ものである。

(従来の技術)

従来、統出し専用不揮発性半導体配位装置において、それに審込まれたデータの電気的な消去方法としては、各種の提高がなされている。特に、EEPRON (Electrically Erasable PRON)として知られる記憶装置では、薄い酸化限中の電子のトンネル現象を利用してデータの書替えが可能となり、製品は市販されている。しかし、EEPRONでは、1つのメモリセルを構成するために2つのトランスタを用いていること。又、トンネル現象は、例えば、21 V程度の高い電圧を必要とすることにより、銀種度の点で EPRON (Brasable PRON) と比べて不利となっていた。このため、フローティング

を持つことにより、書替え可能な集積回路装置としては、最も集積度の高い EPRON (紫外線により 視去可能なPRON)と、類似なメモリ素子を用いて 電気的な書替え、特に、消去を行う提案がなされ

その第1はトンネル現象を利用するもので、予め、高電値を印加する配線層を決定しておき、他のコントロール手段で、極力フローティングゲートの電位を低下させて。フローティングゲート内の電子を抜き取る方法である。番込みは EPRONと 同機にドレイン近傍で発生するホットエレクトロンによるフローティングゲートへの電子注入によ

第3 図は EPROHメモリ素子の等価固路であり、 図中、1はコントロールゲート、2はフローティ ングゲート、3 はドレイン、4 はソースである。 また、第4 図は、更に、電極5を追加したもの であるが、これを特に消去電極とすることもでき る。フローティングゲート2 と他の四種の電極1.

3. 4. 5は、敵化腴により絶縁されているため、

酸化酸の酸厚を制御すれば、トンネル現象により 電子をフローティングゲートより抜き取ることは 可能である。

第2の方法として、 EPROHメモリ索子のドレイ ンのプレークダウン (路伏) を用いる方法が提案 されている。

この方法は、第3図に示す EPRONメモリ索子を 用いて、 お込みは連常の EPRONと同一に、コントロールゲート1とドレイン3に高電圧を印加し・ P型の差板及びソース4は接地とし、ドレイン3 傍にアパランシェを発生させて・フローティング ゲート2に電子を注入する。 消去は、ドレイン3 を高電圧、P型基板を接地電圧とし・コントロールゲート1に負電圧を印加し、ドレイン3近傍に ブレークダウンを発生させ、その際、発生する高 エネルギーのホールをフローティングゲート2に 注入することにより実行させる、

なお。上記した先行技術は、例えば、特公昭61 -6475号、特公昭61-20958号。特公昭61-30351 号、特公昭61-30354号。特開昭61-165895号等

		*
	¥-1	

特開昭 63-308797(3)

に記載されている、

(発明が解決しようとする問題点)

しかしながら、上記した第1の方法は、電子を 抜き取った後のフローティングゲートの電位調御 が難しく、又、トンネル現象を引き起こす電位が 比較的高いことにより、 BPROMに比べて、製造の 国致さと、無程度の低下とを免れ得なかった。

また、上記した第2の方法は、消去時に多量の 電流を必要とすると共に、 食電位を必要とする。 食電位はP型基板の電位以下の電位となるため、 N型不統物拡散層、即ち、 N型 トランジスタのソ ~ス、トレインにパイテスすることができない、

従って、Nウェル(well)CMOSのPMOSトランジス 夕及び多結晶シリコン等の抵抗素材のみを用いて 論理調御せねばならず、回路形成上の側約が非常 に大きい。また、現在 EPROMの主波であるE-DMOS (Enbancement-Depletion MOS) 型集板回路には適 用できない。

本発明は、以上の欠点を除去して。 EPROMと同一構造のメモリ素子を用い、 EPROMと同一の集積

度を可能としながら、電気的なデータの消去と再 書込みを可能とする半尋体記憶整置を提供することを目的とする。

(問題点を解決するための手段)

本発明は、上記問題点を解決するために、メモリセルがフローティングゲート及びコントロールゲートを有する複数のMOSFETからなるメモリマトリックスと、データ補去動作時、そのメモリマトリックスのMOSFETのゲートに接地電位を供給する手段と、データ補去動作時、そのメモリマトリックスのMOSトランジスタの第1の電性にメモリセルの存伏電圧以下であり、かつ、腹降伏電圧の近傍の電圧を印加する手段と、データ補去動作時、そのメモリマトリックスのMOSトランジスタの第2の電性に、MOSトランジスタに電波が流れない程度の電圧を印加する手段を設けるようにしたものである、

(作用)

本発明によれば、第1回に示すように、メモリ 素子M::~M:=はフローティングゲート及びコン

トロールゲートを有し、マトリックス状に配置さ れる、電圧切換回路26はメモリマトリックスの共 通線Bに結合され、かつ、データ替込み及び流出 し動作時は、共通線Bに接地電位を供給し、消去 信号に応答して、データ消去動作時、メモリ業子 の降伏電圧以下であつて、かつ、その降伏電圧近 傍の高電圧を供給する。行デコーダ25はメモリマ トリックスのワード級に結合され、かつ、データ 消去動作時、データ消去信号に応答して、全ワー ド線を接地電位又はその近傍の電位にする、一方、 列デコーダ24は書込み及び読出し時には、選択国 路のNOSFET21 a ~21 c のいすれかを選択し、掲去 動作時には、データ消去信号に応答して選択函路 の全80SFET21 a ~21 c をオン動作させる、ブロッ ク28には雲込み制御信号に応答して、選択回路の ノード27に雲込み信号(+7V)を出力する手段 29と、選択回路のノード27を定電圧(例えば+2 、V)に保持するブルアップ機能と、ノード27へ出 力される電波に応答する出力信号を出力する回路 30と、読出し動作時に回路30の出力信号を増幅し、

構去動作時、消去信号線Aからの消去信号により 読出し動作を停止するセンスアンプ回路31を設け ェ

このように、簡単な構造からなるEPROM を基本 構成として、かつ、100 μA程度の微少な電流で 短期間にフローティングゲートを有するメモリ素 子のデータの書込み、消去が可能であり、使用電 圧も最大14 V程度に低速することができるので、 大幅な機能及び集積度の向上を図ることができる、 (実施例)

以下、本発明の実施例について図面を参照しな がら詳細に説明する。

本発明は、プレークダウン以前に発生するジャンクション電視とチャネル電流のアバランシェにより発生する高エネルギー電子とを用いて、フローティングゲートへの電荷の出し入れを行うように辞成する。

まず、書込み、即ち、フローティングゲートへ の電子の注入について説明する。

第5図及び第6図は本発明に用いるフローティ

特開昭 63-308797(4)

ングゲートを有するメモリ素子の構成図であり、 第5図はモのメモリ素子の平面図、第6図は第5 図のVI-VI線断面図である。

図中、10はP型基板、11はドレインを形成する N型不純物拡散階、12はポリサイドで形成される コントロールゲート、13はボリシリコンで形成さ れるフローティングゲート、14はソースを形成す るN型不純物拡散層である。これは EPRONのメモ リ希子と同一であり、哲込みの原理も EPROMと同 ーである。具体的に示すと、P型基板10を0V、 ソース14に 0 V、コントロールゲート12に14V、 Fレイン11に 7 Vを印加する。前記パイプス条件 により、ドレイン11近傍のチャネル部に高電界領 娘が発生し、そこで、生成された高エネルギーの エレクトロンがフローティングゲート13を頭む酸 化膜のエネルギー障壁を乗り越えて、フローティ ングゲート13に流入する。これにより。メモリ索 子のコントロールゲートをゲートとする MOSトラ ンジスタの閾値毎圧が上昇する。

この書込み条件は、ドレイン電圧が7Vであり、

適常の EPROMの書込み電圧 8 ~10 Vに比べて低く 設定されている。

第7図にこの場合の著込み後のメモリ累子の段 値電圧の変化の実別値を示す。

なお、電圧としては? V を印加し、総軸にはメモリ素子の関値電圧、統軸には径過時間を示す。 第7 関より、登込み条件としては、余裕を持っていることが分かる。関には示さないが、実測結果より、ドレイン電圧は 4 V 以上あれば電込みは実行できる。

領法については、ドレインに書込み時より十分 高い電圧を印加する。以下実施例では14 V を印加・

一般に知られているように、 PNジャンクションに逆方向電圧を印加すると、 遊話な時電波が流れるが、 電圧の上昇に従って、 空乏層内で衝突電 超が発生し、 それによる電流が変乏層と、 中性の 半導体との界面で捕獲される中性の半導体内の少数キャリア及び空乏層中で生成される電子正孔対による電流を上回るようになる。 一般に定義され

る坩倍保数Mは実験式として、

 $M = 1 \times (1 - (V \times V_{+})^{*}) \cdots (1)$

V。:プレークダウン気圧

п :素材による因子

として安される。M→∞がブレークダウンと定義 されている。

又、HOS トランジスタのドレイン電圧上昇によるプレークダウンについてはゲート電圧依存性があり、N型 HOSトランジスタの場合、ゲート電圧が低い程プレークダウン電圧は低下する。これはドレイン近傍の空乏層中の電界強度がゲート電圧に依存するためである。

第8図に、第7図に示されたものと同一形状の EPRON メモリ素子のドレインに高電圧を印加した 場合のドレイン電波の変化を示す。緑粒にはドレ イン電波、横軸にはドレイン電圧が示されている。 図中、a はフローティングゲートの電位を-4

Vに固定したものであり、 b. c. d はそれぞれ - 2 v. 0 v. 2 vに固定したものである、ソース電位は 2 v、 益板電位は 0 v である。図中、 c このジャンクション電流は、フローティングゲート内の過剰負電病を消滅させる働きを持つ。 第9図はその実測例を示す「であり、図中、』はフローティングゲートに電子が注入されていない 状態での関値電圧を、」はフローティングゲート 内に注入された電荷が、ドレィンのジャンクション電流によって中和されていく様子を関値の変化

特開昭 63-308797(5)

又、第10回にメモリ 煮子のフローティングゲートの電位を示すための容量分布状態を示す。

図中、Crはコントロールゲートとフローティングゲートとの、Crはチャネル部とフローティングゲートとの、Csはソースとフローティングゲートとのそれぞれの容量を示す。Crはチャネル部と基板間の空乏層を介した容量であり、CrはCrとCrの

レイン及びソース電圧が上昇すると、容量Cs. Cs. の影響により、フローティングゲートの電位も上昇する。徒って、前記パイアス条件での第9図のフローティングゲートの電位は客込まれた状態のメモリ素子で-2 V程度であり、消去された状態で1.5 V程度である。

第8図、第9図より、ドレイン電流は最大100° #A 程度であり、同時に多数のメモリ素子を補去 したり、 L51の内部昇圧によって消去したりする ことが可能な電流量である。又、今までの説明から明らかなように、ドレイン電圧の上昇と共にド レインジャンクション電流が急激に増加するので あるから、ドレイン電圧の上昇速度を制御して、 消去時間内の電流を平均化することは容易である。 これはドレイン電圧供給郷に一定の負荷抵抗を持 たせることによっても実現し得るものである。

第1図は本発明の第1の実施例を示す半球体記 位装硬の回路図、第2図はその回路の各部の動作 フローチャートであって、第5図及び第6図に示 すフローティングゲートを有するメモリ君子が2 経列接続された容量を示す。メモリ素子のフローチィングゲートが関係電圧以下の場合は、チャネル電荷が存在しないため、容量C。が有効となり、 関値電圧以上では容量C。が有効となる。

前記容量はメモリ索子の形状が複雑であること から、数値的に求めることは疑しいが、過常これ らの容量関係は、

C./(C.+C.+C.+C.) - 0.6 ~ (2)
となる程度に設計される。又、適常、 書込み後に必要とされる、メモリ素子の簡値電圧は読出し時、Vec電圧、即ち、 5 V程度である。メモリ素子の初期関値は 1.5 Vであるから、変化量は 3.5 Vであり、その場合、注入された可荷は関値測定時には容量C.に 選えられていることになる。 従って、関値変化量 3.5 Vのメモリ素子のコントロールゲート、ソース、ドレインすべてが接地されている状態でのフローティングゲートの電位は (2) 式よれ、

- 3、5 V × 0、6-- 2、1 V となる。未審込み状態では 0 V である。ここに F

×3のマトリックス状に配列されたものである。

図において、M.i.~Mazは2×3のマトリック ス状に配列されたメモリ素子、21 a ~ 21 c はテー 夕線22 a ~22 c を共通ノード27に選択的に接線す る NOSトランジスタ、23 a , 23 b はメモリ素子の コントロールゲートに結ばれるワード線、24はト ランジスタ21コー21cに選択信号を送出する列デ コーグ、25はワード線に選択は号を送出する行デ コーダである。26は電圧切換回路であり、14 V が 印加される端子26 a 、 C V が印加される端子26 b 、 O·HOSFET26 c 、26 d 、HOSFET26 e , 26 f 、消去信 号が入力される端子33に接続さるインバータ26 h を有する。プロック28は、普込み制御回路29、洗 出し回路30、センスアンブ31を含む。その音込み 期御回路29は、 v.,9 V が印加される嫡子36、書 込み調知信号が印加される第子37、D、NOSP2729 a 、 MOSPET29 b、29cを有し、読出し回路30は Vec 5 Vが即加される端子38、NOSFET30a、30b、30c、 30 e、0-MOSFET30 d を有する。31はセンスアンプ、 39はデータ出力端子である。

特開昭 63-308797(6)

次に、誘出しの場合は、第2回に示すように、 例えば、A級及びB線は 0 V、C線に 2 Vが印加 される。また、行アドレスは写に基づき、行デコ ーグ25からの出力により、ワード線23 2 のみが選 訳され、 Vec 5 V がメモリ素子h... , hs... , hs... のコントロールゲートのみに印加される。また、

要込まれたデータを消去するためには、ブロック28により共通ノード27の電位を 2 ∨ とし、金ワード級23 a . 23 b を 0 ∨ とし、トランジスタ21 a ~21 b を高電圧とし、共通ノード27の電圧 2 ∨ を各データ級22 a ~22 c に疎く。また、電圧切換回

列アドレス伝号に基づき、列デコーダ24からの出力信号により、デーク級22cのみが選択され、ノモリ器子Na., Naa のドレインにのみに 2 V が印加される。すると、メモリ常子Na. に記憶されたデータのみが設出される。

次に、視去の場合について説明する。 第2図に示すように、慎去は号が送出され、A級に Vcc5 V 印加されると、電圧切換回路26からは 14 Vが日線に出力され、また、C 級に 2 V が印加される、更に、ワード級23 * 及び23 b は 0 V となり、デーク級22 * ~ 22 c に 2 V が印加される。すると、2 × 3 の全てのメモリ案子のデータが消去される。

このように、嫡子33からの消去信号により消去時、行デコーダ25は全出力0 Vを、列デコーダ24は全出力高性位を与える。又、電圧切換回路26は第子33からの消去信号に応じて消去時、嫡子26 aより与えられる高電位14 Vを、書込み及び誘出し時には嫡子26 bより与えられる接地電位 0 Vを、メモリ第子の共通ノード35に送出する限能を有す

数26により嫡子25 a の電圧を14 V とする、この状 虚ですべてのメモリ紫子は消去動作に入る。電子 住人量の多いフローティングゲートを有するメモ リ業子の一部は、プレークダウンを一時的に引き 起こす場合があるが、それによって生じるフロー、 ティングゲートの負電荷損失により、プレークダ カンは自動的に停止する。この状態で適当な時間 を経過させると、初期よりフローティングゲート 内に負電荷を育するものは、その電荷を失う。初 期より負責荷を有しないものは、そのドレインに 微弱な電流が発生するのみであるから、電荷の変 動はほとんどない。これにより、フローティング ゲート内にお込まれたデータは消去され、メモリ **岩子は初期化される。この場合、消去の終了点は** ・ ドレイン電流、即ち、電圧切換回路26より送出さ れる電波量の減少を検出することによることが可 能である。又、1つの勇績回路装置内に電圧切換 回路26を複数持ち、消去をプロック化することに より、より少ない健滋量で消去を実行することも 可能である。

特開昭 63-308797(プ)

次に、本発明の訳2の実施例を第11回を用いて 説明する。

第11回では書込み特高電圧となるデータ線に消去時にも更に高い電圧を印加することにより、消去を実行する回路構成となっている。

図中、第1図と同様のものは同じ番号を付し、 異なるものについては、第1図とは異なった番号 を付与した。

プロック44は設出し及び容込みについては、第 1 図及び第2 図と同様であるが、消去時には14 V を送出するものとする。

また、NOS トランジスタ43は熟出し及び書込み時には平温し、端子35を 0 Vとし、消去時には非思温となって端子35の単位を上昇させるものである。但し、ダイオード接続された MOSトランジスタ42により端子35の電位は 2 V以上にはならない。一般にはダイオード接続された MOSトランジスタ42を複数経列接続して、電位を 2 Vとするが、ここでは簡略のため1つの MOSダイオードで示す。図中、端子35の電位を上昇する要因は、メモリ素

子を経由して彼れる電波である。

否込みと銃出しに関しては、第1の実施例と同 一の手順によって実行される。この時のパイアス 電位も同一である。書込みと消去とにメモリ衆子 の同一の電板を用いることは、否込み時に既に書 込まれている非選択メモリ素子に微弱な損去を引 き起こさないようにしなければならない。第8図 に示すように、7Vのドレイン電圧でのジャンク ション電流は、フローティングゲートの電圧が一 **4 V (グラフ a 参照) であっても、10^{+ ■} A 以下で** あり、実質的に領去に要する数×A~数10×Aの 電波と比べて、大きな比を有している。又、邪8 図と第9図を比べてみると、同一電流であっても フローティングゲートの電位が上昇すると、閾値 の変化量は電流減少に比べて、更に大きく減少し ている。つまり、第9図に示されるように、情去 の初期にはΔV r は 2.5 V / Insec 程度であるが、 函値が 1.5 V に近くなると、0.25 V / 200 m sec 程 度となりその差は2000倍である。第8因に示され るドレイン]4Vでの電波変化を見ると V to + 2 V

(グラフも参照) で1μA、Vェニー4Vで 100 μ A である。コントロールゲート、ソース及びド レインが定電圧でのフローティングゲートの電位 の変化量と閾値の変化量の関係は (2)式より 0.6 倍であるから、第8図の範囲は△V・10 Vの範囲。 を示していることになる。しかし、第3図での△ V,は約5 Vである。従って、第8図のグラフb に対応する電流変化量は最大!00倍以内であり、 前記の2000倍の消去速度と対比すると、フローテ ィングゲートの電子量が減少するに従って、ドレ イン電流に対する消去効率は1桁以下低下してい る。従って、昔込み時データ線を共有する既審込 みメモリ君子の消去は否込み時ドレイン電圧1V であれば実質的には発生しない。済去は列デコー ダ41の出力を同時に高電位とし、複数のデータ線 に連なるメモリ素子を同時に選択して実行するこ ともできるし、データ線毎に選択的に実行するこ とも可能である。具体的にはブロック44で生成さ れた高電位14 V がトランジスタ21 2 ~21 c を介し てテータ線22コ~22cに浮かれる。共通ノード35

は初期には 0 V であるが、メモリ常子のプレークダウン及びテーリング電流により電位は上昇する。しかし、 nos ダイオード 42により電位は 2 V に限定される。又、ブレークダウンを起こしたメモリニテムはソースで位の上昇及びフローティングゲート内の負電荷を失うことにより、ブレークダウンを停止し、共通ノード議子35の電位は 2 V を維持し、補去が実行される。消去時、行デコーダ25の出力はすべて 0 V であることは第1の実施例を周は、例えば、現在の遊気ディスクに用いられるセクタの担合を取り入れて、データ級と対応させ、セクタ単位での忠込み及び消去が可能な気積固路装置を提供で

次に、本発明の第3の実施例を第12回を用いて 説明する。

第12図はビット単位で担込み及び消去が可能な 半率体記憶装置の国路図である。

図中、第1図と比べて機能の異なるもの及び追加したもののみに第1図の番号とは異なる番号を

特開昭 63-308797(8)

付与した。

この図において、第1の行デコーダ52は容込み 及び読出し時は1つの行線を選択して高電位14~ とし、他は0Vとする。又、消去時には極性を反 転し、1つの行線を選択して0~とし、他は高電 位9Vとする。務会時の第2行線 54,55を超動す る第2の行デコーダ53は、消去時、選択された1 つの出力を2Vとし、他の出力は9Vとする、又、 第2の行デコ~ダ53は銃出し及び客込み時には全 ての出力を0Vとする、列デコーダ51は選択され た出力を高電位とし、他はOVとする。ブロック 56は読出し時2~の電圧を出力し、又。同時に波 出する電流を検出する、書込み時には、想込みデ - 夕に従って 7 V又は 0 Vを出力する、消去時に は14 Vを出力する、例えば、メモリ衆子Miの書 込みを行う場合、列デコーダ51によりトランジス タ21 b のみが導選とされ、プロック56より印加さ れる7Vがデータ線22ヵに浮かれ、メモリ君子の ドレインに印加される、第1の行デコーグ52は第 l 行線23 a を14 V とし、第 1 行線23 b は 0 V とす

る。第2の行デコーダ53により、第2行線54.55 は共に0 Vとする。この状態でメモリ素子はMェロのみが電波を波すため、そのフローティングゲートに電子が往入さる。又、メモリ素子Mェルを構去する場合は、列デコーグ51によって選択されたトランジスタ21 b が導過状態となってプロック56より印加される14 V がデータ線22 b に与えられる、第1の行デコーダ52によ選択された第1行線23 a は0 Yとなり、第1行線23 b は高電位 9 Vとなる、

第2の行デコーダ53は第2行級54に2 Vを与え、第2行級55は9 Vとする、この時、データ級22 a. 22 c はメモリ第子M.I. M.I.を介して第2行級55から充電されるが、それらのメモリ深子が未含込みであっても関値電圧が高いことにより、7 V 以上にはならない。この状態でメモリ素子M.I.はコントロールゲート 0 V、ドレイン14 V、ソース 2 V であるから、データは消去される。メモリ衆子M.I.とM.I.とM.I.とM.I.とM.I.に M.I.とM.I.にコントロールゲートを共有するメモリ衆子M.I.とM.I.に M.I.に M.I.に M.I.に M.I.に M.I.に C. M.I.

ールゲート 9 V、ソース 9 V、ドレイン 7 V となり、メモリ素子 M *** はコントロールゲート 9 V、ソース 9 V、ドレイン14 V となる、この状態では上記(2)式より、又、ソースドレインがパイアスされていることによりフローティングゲートの理位は未審込みで 7 V以上、審込み状態でも 3 V以上である。

第13図にドレイン電位とドレイン電流の関係を示す。

ソース 9 Vで機能にドレイン電圧、縦軸にドレイン電流を示す、第13回において 1、 b, c, d はそれぞれフローティングゲートの電圧が3 V. 5 V. 7 V. 9 Vの場合である。ドレイン電圧14 Vでもドレイン電流は10-*A以下となって、メチリ素子は積去されない。これにより、目のとするメモリ素子 M***のみが消去される。第3の実施例によれば、ピット単位又はバイト単位でのデータの消去が可能となる。これを実現した場合の消去が可能となる。これを実現した場合の消去が可能となる。これを実現した場合の消去が可能となる。これを実現した場合のが出去を扱り返した場合のが

ート内の電子を失っていくが、これは定期的にデータのリフレッシュを実行すれば良く、その観能を装置内に持つことは難しくない、又、リフレッシュを実行する期間を決定するために装置内に、 消去を実行したカウンタを備えることも、メモリ 素子を用いて容易である、

なお、本発明は上記実施例に限定されるもので はなく、本発明の理旨に基づいて種々の変形が可 能であり - これらを本発明の範囲から排除するも のではない、

(祭明の効果)

以上、詳細に親明したように、本発明によれば、 簡単な構造からなるEPRON を基本構成として、か つ、100 × A程度の微少な電流で短期間にフロー ティングゲートを有するメモリ案子のデータの電 込み、消去が可能であり、使用電圧も最大はV程 度に低減することができるので、大幅な機能及び 無限度の向上を図ることができる。使って、高級 程回路装置を構成するのにに好過である。具体的 には、

- (1) 紫外線照射用窓を持たないPROM回ち、OTPROMのデータ構法を可能とする。
- (2) 遊気ディスクに代わる外部記憶用集級回路装置の製造が可能となる。
- (3) データ処理装置と直接配線投続して、電池オフ時のデータ保持を可能とする集積回路装置の設 流が可能となる。

4. 図面の揺草な説明

第1図は本発明の第1の実施例を示す半事体記憶接置の回路図、第2図は第1個の回路の多部の動作を説明する図・第3図は EPRONメモリ素子の等価回路、第4図はBEPRONメモリ素子の等価回路、第4図は基子の平面図、第7図は第5図のVI-VI級断面図、第7図は書込み後のメモリ素子の函位電圧の変化の実測値を示す図、第8図に BPRONメモリ素子の下レインに高電圧を印加した場合のドレイン電波の変化を示す図、第10図はメモリ素子のフローティングゲートの電位を示すための容量分布を示す図、第11回は本発明の第

特開昭 63-308797(9)

2 の実施例を示す半導体記憶整定の回路図、第12 図は本発明の第3の実施例を示す半導体記憶装置の回路図、第13図はその回路におけるドレイン電位とドレイン電流の関係を示す図である。

10… P 型基板、11… ドレイン、12…コントロールゲート、13…フローティングゲート、14…ソース、M₁₁、~M₂₂…メモリ奈子、21 a ~21 c … トウンジスク、22 a ~22 c … データ線、23 a . 23 b … ワード線、24. 41. 51…列デコーダ、25…行デコーダ、26… 性圧切換回路、26 a . 33. 35… 端子、27…共趣ノード、28. 44. 56…ブロック、42. 43…nos トランジスタ・52…第1の行デコーダ、53 …第2の行デコーダ、54.55 …第 2 行縁。

特許出願人 冲電気工業株式会社 代理 人 弁理士 清 水 守

本発明の第/実施例を示すや事体記憶接近の回路図

第 1 図

特開昭63~308797(10)

本光明の第2実施例を示す半導体記憶衰進。回路図 第 11図

特開昭 63-308797(12)

手統補正書 (自発)

昭和62年10月 9日

特許庁長官 小川邦夫 段

1、事件の表示

W ...

昭和62年特許顯第144033号

2. 免明の名称

半導体記憶装置

3. 補正をする者

平件との関係 特許出願人 注計 17 tv 注計 17 tv 東京都港区虎ノ門 1 丁目 7 智 1 2 号 名称 (0 2 9) 神電気工業株式会社 ルッ 計 1 に 代表者 機 本 南 第 男

4. 代理人

住所 〒(101) 東京都干代田区外神田 3 - 4 - 1 0

神田寺ビル

压名 (8963) 弁理士 清 水

5. 補正の対象

明細雲の「特許課求の範囲の楣」、「発明の詳細

な説明の篠」及び「図面」

6. 補正の内容 別紙の消り

り、降伏電圧の近接である第2の電圧を印加し、
フローティングゲート内の電極量を変化させる手段を具備することを特徴とする半導体記憶装置。
(2) 別記非鴻通とする電圧は半導体基件にバイアスされる電位と同一であることを特徴とする特性限求の範囲第1項記載の半導体記憶装置。

(3) 前記第2の電圧をマトリックス状の列に選択的に与える手段を具備していることを徐敬とする特許課の範囲第1項記載の半導体記憶装置。
(4) 前記非導通とする貴位をマトリックス状の行に選択的に与える手段を具備していることを特徴とする特許請求の範囲第1項記載の半導体記憶装置。

(5) 前記第1又は第2の電圧を前記列に与えた 回数を記憶する手段を有することを特徴とする特 許請求の範囲第3項記載の半導体記憶装置。

- (2) 発明の詳細な説明の簡を次の通り補正する。 (1) 明細書の第4員第20行目に記載の「フロー
- ティング」を「フローティングゲート」と補正する。

(1)特許請求の範囲の概を次の通り描正する。

(1)

(a) 半導体基体上に形成されたフローティングゲ ートを有するMOSトランジスタがマトリックス 状に配置されたメモリマトリックスと、

(b) 前記MOSトランジスタのフローティングゲート内の質荷量とコントロールゲートに印加される電圧とに応じて、前記MOSトランジスタの第1の関係と第2の関係との間に流れる可流により情報を読み取る手段と、

(c) 前記MOSトランジスタのコントロールゲートに前記MOSトランジスタの第1の電極と第2の電極と第2の電極とを存通させる電圧を与え、且つ第1の電極に落1の電圧を与えて、第1の電極と第2の電極と同じに電波を設すことによりフローティングゲート内の電荷量を変化させる手段と、

(d) 前記MOSトランジスタのコントロールケートに前記MOSトランジスタの第1の電腦と第2 の質価とを非薄通とする質圧を与え、且つ第1の 電腦又は第2の電腦に按電腦の降伏質圧以下であ

- (2) 明知書の第10頁第7行目に記載された「書 込み、」を削除する。
 - (3)明細書の第12頁第5行目に記載の「なお、 質圧としては7Vを印加し、」を翻除する。
 - (4) 明細書の第12頁第19行目に記載の「生成される」を「熟的に励起される」と補正する。
 - (5) 明細書の第14頁第2行目に記載の「庭前」 を「以前」と補正する。
 - (6) 明細書の第14頁第3行目に記載の「15V以上で、」を「15V以下で、」と補正する。
 - (7) 明報書の第15頁第18行乃至第19行目に記載の「フローティングゲートとの」と同頁第19行目に記載の「それぞれの容量」との間に「、C。はドレインとフローティングゲートとの」を挿入する。
 - (8) 明確書の第25頁第9行目乃至周頁第10行目 に記載された「フローティングゲートの電子母」 を「ドレイン電波」と補正する。
 - (9) 明都書の第25頁第11行目に記載の「1桁以下」を「1桁以上」と補正する。
 - (10) 明細書の第27頁第3行目に記載の「高質位

特開昭 63-308797(13)

14V」を「高電位14V又はVs゚電位」と被正する。

- (11) 明細書の第30頁第19行目に記載の「構成す
- るのにに」を「構成するのに」と禮正する。
- 〔3〕図面中第1図を別紙の通り補正する。

本菜明の第/奥施例 5示す学事体記憶機関の回路図

第 1 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.