examine_and_save_results

February 21, 2019

1 Detailed analysis of results.

This notebook loads the output of the scripts in the directory cluster_scripts (particularly, the final script, run_slurm_pred_error.py). It produces the Rdata file that is used for the graphs in the paper as well as a number of supplemental analyses.

```
In [1]: library(tidyverse)
        library(gridExtra)
        library(repr) # For setting plot sizes
        source("load_python_data_lib.R")
        py_main <- InitializePython()</pre>
 Attaching packages tidyverse 1.2.1
 ggplot2 3.1.0
                    purrr
                            0.2.5
tibble 1.4.2
                            0.7.8
                    dplyr
tidyr
        0.8.1
                    stringr 1.3.1
 readr
        1.1.1
                    forcats 0.3.0
 Conflicts tidyverse_conflicts()
 dplyr::filter() masks stats::filter()
dplyr::lag()
                 masks stats::lag()
Attaching package: gridExtra
The following object is masked from package:dplyr:
    combine
Attaching package: reshape2
The following object is masked from package:tidyr:
    smiths
In [2]: # Choose the initialization method.
        init_method <- "kmeans" # This is the choice for the paper.
```

```
#init_method <- "warm"

# Choose whether or not to re-run the regressions before calculating test error.
use_rereg <- FALSE # This is the choice for the paper.
#use_rereg <- TRUE

# This is the file that is used in the paper's knitr.
save_dir <- "../../fits"
save_filename <- sprintf("paper_results_init_%s_rereg_%s.Rdata", init_method, use_rereg)</pre>
```

1.0.1 Load the saved data for all dfs and k

```
In [3]: dfs <- list()</pre>
        metadata_dfs <- list()</pre>
        for (lo_num_times in 1:3) {
           cat("lo_num_times ", lo_num_times)
          for (df in 4:8) {
             cat(".")
             load_res <- LoadPredictionError(df, lo_num_times, init_method)</pre>
             this_refit_err_df <- load_res$refit_err_df
             this_metadata_df <- load_res$metadata_df
             this_refit_err_melt <- MeltErrorColumns(this_refit_err_df)</pre>
             dfs[[length(dfs) + 1]] <- this_refit_err_melt</pre>
             metadata_dfs[[length(metadata_dfs) + 1]] <- this_metadata_df</pre>
          }
          cat("\n")
        }
        cat("Done.\n")
        refit_err_melt <- do.call(bind_rows, dfs)</pre>
        metadata_df <- do.call(bind_rows, metadata_dfs)</pre>
lo_num_times 1...
lo_num_times 2...
lo_num_times 3...
Done.
```

1.0.2 Metadata (timing, parameter dimensions)

Make a tidy dataframe with the metadata. The parameter length, Hessian time, and initial optimization time are all reported in the text of the paper. Their values will be derived from this dataframe in knitr.

```
print(names(metadata_df))
        select(metadata_df, df, param_length) %>%
            group_by(df) %>%
            summarize(param_length=unique(param_length))
        select(metadata_df, df, initial_hess_time, initial_opt_time) %>%
            group_by(df) %>%
            summarize(initial_hess_time=median(initial_hess_time),
                       initial_opt_time=median(initial_opt_time))
        round(median(metadata_df$initial_opt_time), digits=-1)
 [1] "num_comb"
                          "total_lr_time"
                                               "total_refit_time"
 [4] "initial_opt_time"
                          "initial_reg_time"
                                               "initial_hess_time"
                                               "df"
[7] "gmm_param_length"
                          "reg_param_length"
[10] "lo_num_times"
                          "init_method"
                                               "lr_hess_time"
[13] "avg_lr_time"
                          "avg_refit_time"
                                               "param_length"
    df | param_length
       25325
     5
       31643
     6 38661
     7
       46379
     8 | 54797
    df | initial_hess_time | initial_opt_time
       275.7295
                         31.44656
       295.0325
     5
                         41.84182
       359.6855
                         35.11145
     7
       478.7345
                         50.88843
     8 | 584.4987
                         77.02919
   40
   Make a dataframe for the timing plot from the metadata.
In [5]: metadata_graph_df <-</pre>
            metadata_df %>%
            select(df, lo_num_times, total_refit_time, lr_hess_time, initial_opt_time) %>%
            melt(id.vars=c("lo_num_times", "df"))
        head(metadata_graph_df)
    lo num times
                   df
                       variable
                                       value
                       total_refit_time 338.1638
                1
```

param_length=gmm_param_length + reg_param_length)

total_refit_time 391.6006

total_refit_time 423.8322

total refit time 632.2635

total refit time 599.0894

total_refit_time 1123.7316

1 | 5

1 6

1

2

1 | 7

8

1.0.3 Calculate prediction errors

Make summaries of prediction error for various methods and datasets.

```
rename(error=value) %>%
 mutate(output="lin_in_sample")
# In-sample CV error.
cv_df <-
  refit_err_melt %>%
 filter(rereg==use_rereg, method=="ref", test==FALSE, measure=="err") %>%
  rename(error=value) %>%
 mutate(output="cv_in_sample")
# In-sample training error (no points left out).
train df <-
  refit_err_melt %>%
 filter(rereg==use_rereg, method=="ref", test==FALSE, measure=="train_err") %>%
  rename(error=value) %>%
 mutate(output="train_error")
# Out-of-sample test error.
test_df <-
  refit_err_melt %>%
 filter(rereg==use_rereg, method=="ref", test==TRUE, measure=="train_err") %>%
 rename(error=value) %>%
 mutate(output="test_error")
refit_for_df_choice <- bind_rows(</pre>
  lr_df, cv_df, test_df, train_df)
```

In [8]: head(refit_for_df_choice)

test	method	comb	rereg	gene	df	lo_num_times	time	measure	error	output
FALSE	lin	0	FALSE	0	4	1	0	err	1.0088933	lin_in_sam
FALSE	lin	0	FALSE	1	4	1	0	err	0.1243607	lin_in_sam
FALSE	lin	0	FALSE	2	4	1	0	err	-0.4340983	lin_in_sam
FALSE	lin	0	FALSE	3	4	1	0	err	-0.2203431	lin_in_sam
FALSE	lin	0	FALSE	4	4	1	0	err	1.9032786	lin_in_sam
FALSE	lin	0	FALSE	5	4	1	0	err	-0.2876837	lin_in_sam

Make a tidy dataframe for choosing df. The graph in the paper will be based on this dataframe. Note that most of the signal for choosing df is already in the training data error. However, there is an uptick in error in both CV and IJ for df=8 which is not captured by the training data error.

```
qlow=quantile(esize, 0.25),
                qhigh=quantile(esize, 0.75))
   ggplot(refit_err_summary) +
     geom_line(aes(x=df, y=mean, group=output, color=output)) +
     geom_errorbar(aes(x=df, ymin=mean - 2 * se, ymax=mean + 2 * se,
                         group=output, color=output)) +
     facet_grid(~ lo_num_times) +
     ggtitle(sprintf("%d times left out", lo_num_times))
     3 times left out
                                                       3
  0.55 -
  0.50 -
                                                                    output
                                                                       cv_in_sample
mean
                                                                        lin_in_sample
                                                                        test_error
                                                                       train_error
  0.45
  0.40 -
```

1.0.4 Gene-by-gene accuracy measures.

df

We now look at the correlation between the CV and IJ prediction errors across genes. For each df and k, there are a number of different combinations of left-out points. We report the median, min, and max correlation coefficients across these combinations of left-out points.

First, we show the correlation between the raw prediction errors. Although the correlation is quite high, this is because the training error at the original optimum is the principle source of variation in the errors across genes, and this quantity is common to both CV and IJ.

```
In [11]: err_corr <- refit_err_plot %>%
           filter(test==FALSE, rereg==use_rereg) %>%
           group_by(df, lo_num_times, comb) %>%
           summarize(r=cor(lin_err, ref_err)) %>%
           group_by(df, lo_num_times) %>%
           summarize(med_r=median(r), min_r=min(r), max_r=max(r))
         print("Correlation between error: ")
         print(err_corr)
[1] "Correlation between error: "
# A tibble: 15 x 5
# Groups:
            df [?]
      df lo_num_times med_r min_r max_r
                <int> <dbl> <dbl> <dbl>
 1
                    1 0.974 0.949 0.984
 2
       4
                    2 0.975 0.902 0.992
 3
                    3 0.967 0.871 0.991
 4
       5
                    1 0.963 0.856 0.983
 5
                    2 0.966 0.860 0.984
 6
       5
                    3 0.947 0.759 0.981
 7
       6
                    1 0.980 0.807 0.985
 8
       6
                    2 0.968 0.835 0.986
 9
       6
                    3 0.929 0.759 0.983
10
                    1 0.962 0.794 0.974
11
       7
                    2 0.952 0.737 0.976
       7
12
                    3 0.914 0.599 0.974
13
       8
                    1 0.962 0.703 0.971
14
       8
                    2 0.941 0.663 0.974
15
       8
                    3 0.829 0.251 0.958
```

A more meaningful measure is the correlation in the excess error for IJ and CV over the error at the original fit.

```
summarize(r=cor(lin_e_diff, ref_e_diff)) %>%
          group_by(df, lo_num_times) %>%
          summarize(med_r=median(r), min_r=min(r), max_r=max(r))
         print("Correlation between difference from train error: ")
         print(diff_corr)
[1] "Correlation between difference from train error: "
# A tibble: 15 \times 5
# Groups:
           df [?]
      df lo_num_times med_r
                            min_r max_r
               <int> <dbl>
                            <dbl> <dbl>
   <int>
 1
      4
                   1 0.483 0.0956 0.844
 2
      4
                    2 0.577 0.277 0.828
 3
                    3 0.605 0.303 0.833
 4
      5
                    1 0.464 0.143 0.728
 5
      5
                    2 0.510 0.330 0.709
 6
      5
                   3 0.510 0.312 0.671
 7
      6
                    1 0.655 0.368 0.783
8
                    2 0.588 0.218 0.845
      6
9
                    3 0.499 0.0701 0.737
      6
10
                    1 0.660 0.512 0.760
      7
11
      7
                    2 0.564 0.224 0.863
12
      7
                    3 0.491 0.0344 0.801
13
      8
                   1 0.744 0.380 0.900
14
                    2 0.646 0.166 0.862
      8
                    3 0.214 -0.226 0.767
15
```

For higher degrees of freedom, increasing the number of left-out points seems to decrease the IJ's accuracy, as you might expect.

Plot the densities of the IJ and CV with points to show outliers. This is a graphical version of the results summarized by the correlation tables above.

```
geom_abline(aes(slope=1, intercept=0)) +
facet_grid(df ~ rereg) +
xlim(qlim[1], qlim[2]) + ylim(qlim[1], qlim[2])
```

Warning message:

Removed 10770 rows containing non-finite values (stat_density2d). Warning message: Removed 10770 rows containing missing values (geom_point).

1.0.5 Save results for plotting in the paper.