SEMINAR ON INDUSTRIAL ROBOTICS

SUBMITED BY
YOGENDRA SINGH RAJPOOT
M.TECH
134103082

Industrial Robotics

Sections:

- Robot Anatomy
- Robot Control Systems
- 3. End Effectors
- 4. Industrial Robot Applications
- 5. Robot Programming

Industrial Robot Defined

A general-purpose, programmable machine possessing certain anthropomorphic characteristics

- Hazardous work environments
- Repetitive work cycle
- Consistency and accuracy
- Difficult handling task for humans
- Multishift operations
- Reprogrammable, flexible
- Interfaced to other computer systems

- Manipulator consists of joints and links
 - Joints provide relative motion
 - Links are rigid members between joints
 - Various joint types: linear and rotary
 - Each joint provides a "degree-of-freedom"
 - Most robots possess five or six degrees-offreedom
- Robot manipulator consists of two sections:
 - Body-and-arm for positioning of objects in the robot's work volume
 - Wrist assembly for orientation of objects

Manipulator Joints

- Translational motion
 - Linear joint (type L)
 - Orthogonal joint (type O)
- Rotary motion
 - Rotational joint (type R)
 - Twisting joint (type T)
 - Revolving joint (type V)

Joint Notation Scheme

- Uses the joint symbols (L, O, R, T, V) to designate joint types used to construct robot manipulator
- Separates body-and-arm assembly from wrist assembly using a colon (:)
- Example: TLR : TR
- Common body-and-arm configurations ...

Polar Coordinate Body-and-Arm Assembly

• Notation TRL:

• Consists of a sliding arm (L joint) actuated relative to the body, which can rotate about both a vertical axis (T joint) and horizontal axis (R joint)

Cylindrical Body-and-Arm

Assembly

• Notation TLO:

- Consists of a vertical column, relative to which an arm assembly is moved up or down
- The arm can be moved in or out relative to the column

Cartesian Coordinate

Body-and-Arm Assembly

- Notation LOO:
- Consists of three sliding joints, two of which are orthogonal
- Other names include rectilinear robot and x-y-z robot

Jointed-Arm Robot

• Notation TRR:

SCARA Robot

- Notation VRO
- SCARA stands for Selectively Compliant Assembly Robot Arm
- Similar to jointed-arm robot except that vertical axes are used for shoulder and elbow joints to be compliant in horizontal direction for vertical insertion tasks

Wrist Configurations

- Wrist assembly is attached to end-of-arm
- End effector is attached to wrist assembly
- Function of wrist assembly is to orient end effector

Body-and-arm determines global position of end effector

Two or three degrees of freedom:

- Roll
- Pitch
- Yaw
- Notation :RRT

Example

- Sketch following manipulator configurations
- (a) TRT:R, (b) TVR:TR, (c) RR:T.

Solution:

Joint Drive Systems

- Electric
 - Uses electric motors to actuate individual joints
 - Preferred drive system in today's robots
- Hydraulic
 - Uses hydraulic pistons and rotary vane actuators
 - Noted for their high power and lift capacity
- Pneumatic
 - Typically limited to smaller robots and simple material transfer applications

Robot Control Systems

- Limited sequence control pick-and-place operations using mechanical stops to set positions
- Playback with point-to-point control records work cycle as a sequence of points, then plays back the sequence during program execution
- Playback with continuous path control greater memory capacity and/or interpolation capability to execute paths (in addition to points)
- **Intelligent control** exhibits behavior that makes it seem intelligent, e.g., responds to sensor inputs, makes decisions, communicates with humans

End Effectors

- The special tooling for a robot that enables it to perform a specific task
- Two types:
 - Grippers to grasp and manipulate objects (e.g., parts) during work cycle

Tools – to perform a process, e.g., spot welding, spray

painting

Grippers and Tools

Working Envelope

Nestricted Envelope

Operating Envelope

Industrial Robot Applications Material handling applications

- - Material transfer pick-and-place, palletizing
 - Machine loading and/or unloading
- 2. Processing operations
 - Welding
 - Spray coating
 - Cutting and grinding
- 3. Assembly and inspection

TOP 10 COUNTRIES BY ROBOT DENSITY (Industrial robots per 10 000 manufacturing workers)

Robotic Arc-Welding Cell

 Robot performs flux-cored arc welding (FCAW) operation at one workstation while fitter changes parts at the other workstation

Robot Programming

- Leadthrough programming
 - Work cycle is taught to robot by moving the manipulator through the required motion cycle and simultaneously entering the program into controller memory for later playback
- Robot programming languages
 - Textual programming language to enter commands into robot controller
- Simulation and off-line programming
 - Program is prepared at a remote computer terminal and downloaded to robot controller for execution without need for leadthrough methods

Coordinate Systems

World coordinate system

Tool coordinate system

Motion Commands

MOVE P1

HERE P1 - used during lead through of manipulator

MOVES P1

DMOVE(4, 125)

APPROACH P1, 40 MM

DEPART 40 MM

DEFINE PATH123 = PATH(P1, P2, P3)

MOVE PATH123

SPEED 75

THANK YOU