Exercice 1 : langages vers expressions régulières Considérons l'alphabet $\Sigma = \{a, b\}$. Pour chacun des langages suivants sur Σ , donner une expression régulière qui le dénote.

- 1. L'ensemble des mots qui commencent par a et finissent par b. a(a+b)*b
- 2. L'ensemble des mots qui contiennent au moins trois occurrences du symbole a. $(a + b)^*a(a + b)^*a(a + b)^*a(a + b)^*$
- 3. L'ensemble des mots qui contiennent au moins trois occurrences consécutives du symbole a. $(a + b)^*aaa(a + b)^*$
- 4. L'ensemble des mots qui contiennent un nombre de a multiple de 3. $(b^*ab^*ab^*ab^*)^*$
- 5. L'ensemble des mots qui ne contiennent pas le facteur $a \cdot a$. $(b^*ab)^*b^*(a+\varepsilon)$
- 6. L'ensemble des mots qui commencent et finissent par le même symbole. $a(a+b)^*a + b(a+b)^*b$

Exercice 2 : Simplification d'expressions régulières Simplifier les expressions régulières suivantes.

- 1. $\varepsilon + ab + abab(ab)^* (ab)^*$
- 2. $(b^*ab^*ab^*)^*b^* + b^*a(b^*ab^*ab^*)^*b^* (a+b)^*$
- 3. $a(a^*b^*)^* + bb(a^*b^*)^* + ba(a+b^*)^* a(a+b)^* + b(a+b)^+$
- 4. $a(a+b)^* + aa(a+b)^* + aaa(a+b)^* a(a+b)^*$

Exercice 3 : Équivalence d'expressions régulières Donner une preuve ou un contre-exemple pour les équivalences suivantes.

1. $\varepsilon + aa^* = a^*$

Vrai :
$$a^* = \sum_{i=0}^{\infty} a^i = \varepsilon + \sum_{i=1}^{\infty} a^i = \varepsilon + a \sum_{i=0}^{\infty} a^i = \varepsilon + aa^*$$

2. $(a+b)^* = a^* + b^*$

Faux : ab appartient à $(a+b)^*$ mais pas à $a^* + b^*$.

3. $(ab+a)^*a = a(ba+a)^*$

Vrai :
$$(ab + a)^*a = (\sum_{i=0}^{\infty} (ab + a)^i)a = (\sum_{i=0}^{\infty} (ab + a)^ia) = (a + \sum_{i=1}^{\infty} (ab + a)^{i-1}(aba + a^2)) = (a + \sum_{i=1}^{\infty} (ab + a)^{i-1}a(ba + a)) = (a + \sum_{i=1}^{\infty} a(ba + a)^i) = a(ba + a)^*.$$

4. $(ab + a)^*ab = (aa^*b)^*$

Faux : ε appartient à $(aa^*b)^*$ mais pas à $(ab+a)^*ab$.

Exercice 4 : Langages réguliers ou non Prouver si les langages suivants sont réguliers ou non.

1. $\{a^i b^j c^{i+j} \mid i, j \in \mathbb{N}\}$

Supposons que $L=\{a^ib^jc^{i+j}\mid i,j\in\mathbb{N}\}$ soit régulier. Il satisfait donc le lemme de l'étoile. Soit N l'entier donné par le lemme de l'étoile pour L. On fixe $w=a^Nb^Nc^{2N}$. $w\in L$ et $|w|=4N\geq N$, donc selon le lemme de l'étoile, il existe x,y,z tels que

- --w = xyz
- |y| > 0
- $--|xy| \le N$
- $\forall k \geq 0, xy^k z \in L$

Comme $|xy| \le N$ et w commence par N occurrence de $a, y = a^m$ avec $0 < m \le N$. Le mot $xy^2z = a^{N+m}b^Nc^{2N} \notin L$, ce qui contredit notre supposition, donc L n'est pas régulier.

- $2. \{a^n a^n \mid n \in \mathbb{N}\} (aa)^*$
- 3. $\{w \cdot w \cdot w \mid w \in \{a,b\}^*\}$ Utiliser le mot $a^N b a^N b a^N b$
- 4. $(aa)^* \cap \{a^n \mid n \text{ est un nombre premier}\}$

Seul le mot aa appartient à cette intersection, un ensemble fini de mot est régulier.

5. $(aa)^* \cap \{a^n \mid n \text{ est un carr\'e}\}$

Supposons que $L = (aa)^* \cap \{a^n \mid n \text{ est un carré}\}$ soit régulier. Il satisfait donc le lemme de l'étoile. Soit N l'entier donné par le lemme de l'étoile pour L. Soit M un entier pair tel que M > N. On a donc que $w = a^{M^2} \in L$. Comme $|w| \ge N$, par le lemme de l'étoile, il existe x, y, z tels que

- --w = xyz
- |y| > 0
- $-|xy| \leq N$
- $-- \forall k \ge 0, xy^k z \in L$

Comme w ne contient que des $a, y = a^m$ pour $0 < m \le N$. On a $w' = xy^2z = a^{M^2+m}$. Par notre supposition, $w' \in L$, donc il existe $k \in \mathbb{N}$ tel que $k^2 = M^2 + m$. Comme m > 0, k > M. Par ailleurs, $(M+1)^2 = M^2 + 2M + 1 > M^2 + N \ge M^2 + m = k^2$. Donc k est un entier strictement entre M et M+1, ce qui est impossible. Donc $w' \notin L$, L ne satisfait pas le lemme de l'étoile, il n'est donc pas régulier.

Exercice 5 : Correct ou incorrect? Pour chacune des propositions suivantes, dire si elle est correcte ou non. Si elle est correcte, donner une preuve. Si elle est incorrecte, donner un contre-exemple.

1. Si A et B sont réguliers, alors $A \cup B$ est régulier.

Vrai. Comme A et B sont réguliers, il existe des expressions régulières r_A et r_B les représentant. Par définition, $r_A + r_B$ reconnait le langage $A \cup B$ qui est donc régulier.

2. Si $A \cup B$ et A ne sont pas réguliers alors B n'est pas régulier.

Faux. Supposons $A = \{a^n \mid n \text{ est premier}\}$ et $B = \{a\}$. Alors $A \cup B = A$ qui n'est pas régulier comme vu en cours, alors que B est régulier (d'expression $r_A = a$).

- 3. Si $A \cup B$ n'est pas régulier et A est régulier alors B n'est pas régulier. Vrai. Il s'agit simplement de la contraposée de la première proposition.
- 4. Si A est régulier et B est non-régulier, alors $A \cup B$ est non-régulier.

Faux. Supposons $A = \{a^n \mid n \in \mathbb{N}\}$ (régulier d'expression $r_A = a^*$) et $B = \{a^n \mid n \text{ est premier}\}$. Alors $A \cup B = B$ (qui est régulier) car le langage de A est inclue dans le langage de B. 5. Si A et B ne sont pas réguliers, alors A \cup B n'est pas régulier. Faux. Supposons A= $\{a^n \mid n \text{ est premier}\}$ et B= $\{a^n \mid n \text{ n'est pas premier}\}$. Ces deux langages sont irréguliers, mais leur union est le langage $\{a^n \mid n \in \mathbb{N}\}$ d'expression régulière a^* .