### Ecuaciones de Recurrencia

Davis Garcia Fernandez

25 de junio de 2019

## Ecuación de recurrencia de primer orden

Solución general a la ecuación de recurrencia:

$$S_n = aS_{n-1} + c \qquad \forall n \in \mathbb{N}$$

Se da en dos partes:

$$Si \ a = 1, \quad S_n = S_0 + nc \qquad \forall n \in \mathbb{N}$$
  
 $Si \ a \neq 1 \qquad S_n = a^n [S_0 - \frac{c}{1-a}] + \frac{c}{1-a} \quad \forall n \in \mathbb{N}$ 

## **Aplicación**

#### Torres de Hanói

n := Número de discos

 $a_n := M$ ínimo número de movimientos necesario para transportar los n discos desde una aguja a otra.



# Ecuación de recurrencia de segundo orden

#### Definición

$$S_{n+2} = aS_{n+1} + bS_n + c$$
,  $\forall$  n en el dominio de  $S$ 

### **Teorema**

• 
$$S_n = A(r_1)^n + B(r_2)^n \text{ si } r_1 \neq r_2,$$
 //Si  $\Delta \neq 0$ 

• 
$$S_n = A(r)^n + Bn(r)^n \text{ si } r_1 = r_2 = r,$$
 //Si  $\Delta = 0$ 

# **Aplicación**

#### Modelo de la cunicultura

$$F_n = F_{n-1} + F_{n-2}$$
; la ecuación de Fibonacci.

Fibonacci partía de ciertas hipótesis, a saber:

- Los conejos viven eternamente.
- Cada mes, un par de adultos de distinto sexo da lugar a un nuevo par de conejos de distinto sexo.
- Cada conejo se hace adulto a los dos meses de vida, momento en el que comienza a tener descendencia.

