

PROJECT-BASED LEARNING REPORT

TEKNOLOGI REKAYASA MULTIMEDIA POLITEKNIK NEGERI BATAM 2024

GROUP MEMBER

TRM4A MALAM

4312211009 - Azahra Nouvanda Guzka

4312211017 - Lidya Khairani Kisan

4312211002 - Luiz gonzalez

4312211024 - Dendra dara lucky

4312211022 - Muhammad Rifai

June, 2024

MULTIMEDIA ENGINEERING TECHNOLOGY BATAM STATE POLYTECHNIC

Compiled by: Evening 4A Group TRM-4A02

PROJECT IDENTITY

Project Title : Scale Mobile Application

Project Owner : Sandi Prasetyaningsih, S.T., M. Media

Project Manager : Agung Riyadi, S.Si. M.Kom

Project Co-Manager

Client : Agung Riyadi, S.Si. M.Kom

Outputs

Final Report

Product: Mobile Application/Hardware/video*

Demo video /trailer*

Scientific Poster

Intellectual Property Rights Document

Handover Document

Contest Proposal (optional)

Group PBL TRM-4A02:

1. Azahra Nouvanda Guzka - 4312211009

2. Lidya Khairani Kisan - 4312211017

3. Muhammad Rifai - 4312211022

4. Luiz Gonzalez - 4312211024

5. Dendra Dara Lucky - 4312211002

> Approved by, Batam, 26 June 2024

Agung Riyadi, S.Si. M.Kom

NIK. 119221

LIST OF CONTENT

PROJECT IDENTITY	iii
LIST OF CONTENT	iv
LIST OF FIGURES	v
LIST OF TABLES	vi
1. PROJECT-BASED LEARNING PRODUCT	xii
1.1 Product Description	xii
1.2 Product Design	xii
2. PRODUCT IMPLEMENTATION	xviii
2.1 Product Implementation	xviii
3. CONCLUSION	1
3.1 Obstacle	1
3.2 Learning Process	1
APPENDIX I – LOGBOOK	2
APPENDIX II – TEAM SCHEDULE	3
APPENDIX III – PROJECT BOARD	3
APPENDIX IV – PRESENTATION SLIDES	4
APPENDIX V	11

LIST OF FIGURES

Picture 1 Use Case	xiv
Picture 2 Er Diagram	XV
Picture 3 Interface Design	xvii
Picture 4 Scheme Design	xvii
Picture 5 Logo	xix
Picture 6 Previous Logo	xix
Picture 7 Welcome Page	xix
Picture 8 Dashboard	XX
Picture 9 Start Scale	XX
Picture 10 Automatic Scale Page	XX
Picture 11 Welcome Page	xxi
Picture 12 Dashboard	xxii
Picture 13 Automatic Scale	xxiv
Picture 14 Logbook History	2
Picture 15 Pnt presentation	

LIST OF TABLES

Table 1 Document History	vii
Table 2 Project Work History	ix
Table 3 Function Requirement	xii
Table 4 Non-Function Requirement	xiv

DOCUMENT HISTORY

Table 1 Document History

Date	Writer	Description	
18 / 1 / 24	All members	Pbl group creation	
29 / 1 / 24	All members	Creation of a pbl group with the project manager	
12 / 2 / 24	All members	Understand and analyze project requirements (RPP)	
15 / 2 / 24	All members	Conduct and search for reviews of the progress of the	
13/2/24	All illelilocis	application you want to make on the internet	
17 / 2 / 24	All members	Met with mapro and discussed the creation of an IoT system-	
1//2/24	All illelillocis	based application	
20 / 2 / 24	All members	Collect data, what materials and equipment you want to use	
20/2/24	All illelilocis	in this PBL	
29 / 2 / 24	All members	Experiment with the tool with project manager tools needed	
29/2/24	All illelillocis	for this scale mobile application	
1 / 3 / 24	All members	Select the title of the application you want to create	
2/3/24	Azahra	Making UI designs for mobile scale applications	
3 / 3 / 24	Lidya	Carry out UX application design	
4/3/24	Azahra, Rifai	Purchase of tools	
7 / 3 / 24	Dendra	Creation of application logo	
13 / 3 / 24	Rifai	IoT device connector	
15 / 3 / 24	Luiz	Running a test of the Arduino Lolin weighing sensor, IoT	
13/3/24	Luiz	Device Programming	
17 / 3 / 24	Dendra	Creating application use cases	
18 / 3 / 24	Azahra	Creating entity relationship diagram applications	
21 / 3 / 24	Lidya	Making PBL progress reports	
20 / 3 / 24	Luiz	Running the scale sensor	
21 / 3 / 24	Lidya	Manufacture of weighing boards	
	Dendra,		
29 / 4 / 24	Azahra,	Making an Indonesian insight poster	
	Lidya		
8 / 5 / 24	Azahra	Demonstration of application UI projects using Visual Studio	
0/3/24	Azanra	Code and Android Studio	
<u>I</u>			

13 / 6 / 24	All members	Meeting with the examining lecturer, discussing connecting
13/0/24		fluter to an IoT device
21 / 6 / 24	Dendra	Pbl poster making
22 / 6 / 24	Rifai, Azahra	Making pbl powerpoint
2270721	Lidya	preparation of PBL reports

PROJECT WORK HISTORY

Table 2 Project Work History

Stages	Completion Date	The resulting output
		Conduct the first meeting
Planning	15 – 22 February 2024	with the manpro, plan the
1 lamming	13 – 22 i Coluary 2024	budget, products, tools, and
		fill out the RPP
		Hold meetings between
Planning	22 – 23 February 2024	groups. Discuss and make a
Flaming	22 – 23 February 2024	comprehensive list of tools
		to be purchased and used
		Designing user interfaces,
Design	26 – 28 February 2024	logos, colors and application
Design	20 – 28 February 2024	names for mobile scales
		based on nationality
		meeting with manpro.
		discuss and practice directly,
Analysis	29 February – 2 March 2024	the tools that will be used
		later. for mobile scale we
		use Arduino-MCU Lolin V3
		Create and design UI
		Design. welcome page, star
Design	4 – 8 March 2024	page, dashboard, automatic
Design	4 0 Water 2024	scale page. Adapt the design
		to the application you want
		to use. carry out UX design
		Assembling IoT devices,
		ensuring sensors are
Implementation	11 – 16 March 2024	connected and lollin works,
		carrying out the process of
		implementing UI into Flutter

Implementation	18 – 21 March 2024	Make improvements to the sensor section, by making a sensor base (tray/container) at the top. Where the container will be made using cardboard which can support the weight of an object +- 10 kg
Implementation	15 – 26 April 2024	Carrying out the process of creating application UI using Android Studio and Visual Studio Code. displays the UI on the emulator
Implementation	01 – 17 May 2024	The final result is a Flutter prototype, maximizing functions, features and also making adjustments to the IoT Flutter device in Visual Studio Code
Implementation	20 – 27 May 2024	Ensure that IoT devices in the form of sensors and lollin node mcu are connected to the Arduino IDE, so that they can display results
Implementation	28 May – 05 June 2024	Trying to connect flutter to IoT device. Try weighing light items up to under 10 kilograms using a sensor connected to the ARDUINO IDE application
Implementation	10 – 13 June 2024	Hold a meeting with a mobile device programming

		lecturer. Namely discussing
		solutions on how to connect
		Flutter to IoT devices
		directly
		Made a series of iterative
		improvements in connecting
		flutter to IoT devices. Try
		various trial error
Implementation	14 – 22 June 2024	approaches until you
		succeed in connecting it. We
		also test integration on
		smartphones to ensure
		optimal compatibility
		Combining application files,
		creates a way to install
In alam sutation	24 26 4 2024	applications without going
Implementation	24 – 26 June 2024	through Google Play so that
		they are easy to access and
		download

1. PROJECT-BASED LEARNING PRODUCT

Product Description 1.1

The mobile scale application is an application designed to help users measure various types of kitchen spices precisely and accurately using their smartphone. This application allows users to measure the weight of kitchen spices such as salt, sugar, spices, flour, and so on. These apps usually have user interfaces that are intuitive and easy to use, with clear buttons and controls so users can easily access the features they need.

Mobile scale is a simple application targeted at housewives. By removing the login step, users can immediately use the application without having to remember or enter login information every time they want to use it. As an application aimed at housewives, simplicity and ease of use are priorities. Removing the login feature will strengthen the impression that the application is user-friendly and easy to use for those who may not be very familiar with technology.

With a combination of user-friendly UI design and the right use of colors and patterns, it is hoped that the "Great Scale" application will provide a pleasant and effective experience for users without the need to involve a login or database.

1.2 **Product Design**

Product design for a mobile application project should have the following design:

1. General system description.

The mobile scale application is software designed as a portable weight measuring tool. Various types of mobile scale applications exist, including those used to measure the weight of small objects such as kitchen spices that weigh under 10 kilograms.

In this general design, the sustainability and maintenance of the system is also taken into account. Application development and firmware updates on IoT Systems must be well organized to ensure the availability of the latest features and performance improvements. Additionally, integration with cloud services enables efficient data storage and analysis. The overall design aims to create a solution that is easy to use, secure and responsive, providing users with an up-to-date and connected weight measurement experience.

2. Functional system requirements.

Functional system requirements for mobile scale applications can include various aspects that ensure the application can operate well and meet user needs.

- > The application is able to provide accurate weight measurements for spice types, with minimal margin of error.
- The user UI/UX should be well designed and easy for the user to understand.
- The application must respond quickly to user commands and provide realtime weight readings.
- The application must be compatible with various types of smartphones and commonly used operating systems such as Android.
- > Applications must be accompanied by clear documentation and adequate user guidance.

Functional Requirement

Functional requirements are the basic requirements needed by the system to receive and process actions from its users. The following are the functional requirements of a mobile scale application system.

Table 3 Function Requirement

FR-01	The application does not require a login feature for user efficiency
FR-02	The application displays a list of functions according to the access rights
	of each user
FR-03	Users should be able to select the unit of measurement (e.g., grams,
	kilograms, ounces, pounds) according to their preference or requirement.
FR-04	The application displays something about the scales
FR-05	Users should have the ability to adjust the zero point of the scale for precise
	measurements.
FR-06	The application should be available on major mobile platforms such as iOS
	and Android to cater to a broader user base.
FR-07	The application is able to provide information on each material that is
	being weighed

❖ Non-Functional Requirement

Non-Functional Requirements specify quantitative measures that must be met by mobile scale applications. Following are several Non-Functional requirements based on the criteria and parameters.

Table 4 Non-Function Requirement

Criteria	Parameter	
Avaibility	The system is capable of running 24 hours non-stop, unless	
Avaionity	there is system maintenance or system updates.	
Ergonomy The system can be accessed easily or is user friendly.		
Language Using Indonesian (optional English)		
Safety The browser must accept the SSL certificate from the s		
Product Website and desktop based applications.		
Visual	Designed with a simple appearance that can attract the	
visuai	attention of website users.	

3. Use case.

Picture 1 Use Case

In the use case image above, it explains that the user (actor) interacts with a system to achieve a goal to explain the functionality between users and the mobile scale application in the context of weighing spices.

This mobile application has one user actor, namely, housewives. The scenario of this use case is that the user can open the application page, view the application and run the dashboard.

4. ER Diagram.

ER Diagram is a form of diagram that includes relationships between data objects and relationships. ER Diagram functions as a structure and relationship between data and so on.

Picture 2 Er Diagram

In the ERD above you can see that the application diagram has 5 entities and each entity has several attributes. When users can manage the welcome page, start page, dashboard and automatic scale page features. Product interface/architecture design.

5. Programming language.

The programming language we use in this mobile scale application is as follows:

1.) Phyton

In the context of scaled mobile applications, Python may not be the first choice for live application development. However, Python can still play a role in various aspects of scalable mobile application development. Data processing, Backend Services, Machine Learning and Artificial Intelligence, Automation and Automation, Development of Tools.

2.) C++

C++ has a significant role in the development of scaled mobile applications, especially in several contexts, one of which is full Control of Devices and Hardware: Large-scale mobile application development may require full control of devices and hardware, such as accessing sensors, cameras, or other specialized hardware.

The following is the code for the Arduino IDE:

```
#include <WiFi.h>
#include <WebServer.h>
#include "HX711.h"
const char* ssid = "SKSD";
const char* password = "19910011";
const int LOADCELL DOUT PIN = 4; // DOUT pin of HX711 connected to ESP32
GPIO 4
const int LOADCELL_SCK_PIN = 2; // SCK pin of HX711 connected to ESP32
GPIO 2
HX711 scale;
WebServer server(80);
void handleRoot() {
  server.send(200, "text/plain", "ESP32 Scale with HX711 initialized");
}
void handleData() {
 float weight = scale.get_units(10); // Get weight in grams
  if (weight < 1) {
    weight = 0;
 String data = String(weight, 1);  // Convert float to String with 1
decimal place
  server.send(200, "text/plain", data); // Respond with weight data
void setup() {
 Serial.begin(115200);
 delay(100);
  // Initialize the scale
  scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);
  scale.set_scale(2280.f); // Set calibration factor
                            // Reset scale to 0
  scale.tare();
Serial.println("HX711 initialized");
  // Connect to Wi-Fi
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
   delay(1000);
    Serial.println("Connecting to WiFi...");
  }
```



```
Serial.println("WiFi connected");
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());
  // Configure web server routes
  server.on("/", handleRoot);
  server.on("/data", handleData);
  // Start server
  server.begin();
  Serial.println("HTTP server started");
}
void loop() {
  server.handleClient(); // Handle client requests
  // Get the weight in grams
  float weight = scale.get_units(10);
  if (weight < 1) {</pre>
   weight = 0;
  // Display the weight on Serial Monitor
  Serial.print("Weight: ");
  Serial.print(weight, 1); // Print weight with 1 decimal place
  Serial.println(" g");
  delay(2000); // Update every 500ms
}
```


2. PRODUCT IMPLEMENTATION

2.1 **Product Implementation**

Product implementation for mobile application projects:

1. Implementation for user interface / product design.

Product implementation for application projects:

❖ Application Architecture

Picture 3 Interface Design

The image above is the application architecture design for a mobile scale application. Where users can access websites using the internet network so they will be connected to this mobile scale (great scale) server.

❖ Application Scheme

Picture 4 Scheme Design

2. Product testing result.

- 2.1 Implemented features
 - ❖ Logo Implementation

Picture 5 Logo

The logo display for this mobile scale application has a design with a concept on the curve that resembles a scale. And the left and right sides of this logo are inspired by Indonesian batik cloth, namely rangrang batik. The blue and yellow colors were chosen to provide a bright and attractive appearance without being too flashy. The batik pattern inserted provides a touch of local culture that can attract the user's attention. The harmony of colors and patterns helps create a consistent visual identity for the "Scale".

Previous logo display:

Picture 6 Previous Logo

Main Page Implementation

Picture 7 Welcome Page

This part of the main page makes it easier for users to use the application without having to log in first, just press the next button in the bottom right corner "next".

Dashboard Page Implementation

Picture 8 Dashboard

The dashboard design is very simple and simple, so that users are not confused when they want to use this application. We have two features on this page namely "Manual Scale" and "Automatic Scale".

Start page implementation (manual scale)

Picture 9 Start Scale

On the manual scale, users can directly weigh any material, with a maximum weighing of 10 kilograms. This page is where users can start the assessment or measurement process directly without inputting anything. The start button is used to start weighing.

❖ Autoscale Page implementation

Picture 10 Automatic Scale Page

And in the automatic scale section there is a feature where the user can enter the desired product and weight, the start button starts weighing and there will be a notification if the scale exceeds or is less than the specified weight.

3. Functional testing of the system by the user

a) Welcome Page

Picture 11 Welcome Page

On the main screen of this application is designed minimally, similar to the interface we created, the only difference being the absence of a logo. There is the application title and a brief explanation as its characteristic. This application does not use a login feature because it facilitates users to use the application without having to register first.

b) Dashboard

Picture 12 Dashboard

On the second page of this application, there are 2 interesting features for users to use. The first feature is manual scale, which is useful for directly weighing basic ingredients without entering data beforehand. In the second feature, automatic scale functions to weigh according to the user's desire by entering the required numbers.

c) Automatic scale

Picture 13 Automatic Scale

On this page displays two buttons that must be filled according to user needs and press the star button if you want to start weighing. After pressing the star button, a circle will appear, which is useful for displaying the weight of the desired need by explaining that the weight being weighed is in accordance with what is filled in the type of object and the desired weight button. This page displays the weight of the object being weighed in a circle already shown on the screen. If you want to weigh other materials, users simply click the reset button.

4. System Implementation Method

The system implementation method used to create this application is the Agile Development Approach method, namely an iterative development approach. The development methods we use to achieve our goals include:

- 1. Planning (planning)
- 2. Analysis (analysis)
- 3. Design (design)
- 4. Implementation (application)
- 5. Maintenance (application maintenance)
- 6. Testing and integration (testing and integration)

3. CONCLUSION

Obstacle 3.1

There were several obstacles that we encountered when working on this PBL project, including:

- a) At the start of the we experienced problems with a lack of tools such as breadboards and sensor support equipment.
- b) Arduino cannot be connected to the laptop.
- c) Create coding for scale applications.

3.2 Learning Process

The process for working on this PBL is as follows:

- a) In the first week we were still learning the tools and their functions.
- b) There are several logo image references that we took from the internet.
- c) Solution to the Arduino problem that is not connected, we looked for information on YouTube, from the same PBL team and used reason.

APPENDIX I - LOGBOOK

Politeknik Negeri Batam Batam Centre, Jl. Ahmad Yani, Tlk. Tering, Kec. Batam Kota, Kota Batam, Kepulauan Riau 29461

PROJECT STATUS REPORT

PROJECT SUMMARY				
PROJECT NAME	MANAGER PROJECT	CLIENT PROJECT	TEAM PROJECT	
Aplikasi Mobile Scale TRM409	Agung Riyadi, S.Si, M.Kom	Agung Riyadi, S.Si, M.Kom	4312211009 [Azahra Nouvanda Guzka] 4312211002 [Dendra Dara Lucky] 4312211017 [Lidya Khairani Kisan] 4312211022 [Muhammad Rifai] 4312211024 [Luiz Gonzalez]	

ID	STAGES	WORK DETAILS	оитрит	INITIAL DATE	DATE DUE	PROGRESS
ш	STAGES		OUIPUI	INITIAL DATE	DATEDUE	PROGRESS
1	Planning	Conduct the first meeting with the manpro, plan the budget, products, tools, and fill out the RPP	Dokumen RPP	2024-02-15	2024-02-22	5%
2	Planning	Hold meetings between groups. Discuss and make a comprehensive list of tools to be purchased and used	Tool list	2024-02-22	2024-02-23	8%
3	Design	$Designing \ user interfaces, logos, colors \ and \ application \ names \ for \ mobile \ scales \ based \ on \ nationality$	Design, logo and application name	2024-02-26	2024-02-28	15%
4	Analysis	meeting with manpro. discuss and practice directly, the tools that will be used later, for mobile scale we use Arduino-MCU Loli $V3$	Tool testing	2024-02-29	2024-03-02	25%
5	Design	Create and design UI Design. welcome page, star page, dashboard, automatic scale page. Adapt the design to the application you want to use, carry out UX design.	UI and UX design	2024-03-04	2024-03-08	32%
6	Implementation	$Assembling\ Io\ T\ devices, ensuring\ sensors\ are\ connected\ and\ lollin\ works, carrying\ out\ the\ process\ of\ implementing\ UI\ into\ Flutter$	Mobile app and IoT processes	2024-03-11	2024-03-16	40%
7	Implementation	Make improvements to the sensor section, by making a sensor base (tray/container) at the top. Where the container will be made using cardboard which can support the weight of an object +- $10\ kg$.	Weighing sensor housing	2024-03-18	2024-03-21	52%
8	Implementation	Carrying out the process of creating application UI using Android Studio and Visual Studio Code. displays the UI on the emulator.	Mobile scale UI application prototyping process	2024-04-15	2024-04-26	57%
9	Implementation	The final result is a Flutter prototype, maximizing functions, features and also making adjustments to the 1oT Flutter device in Visual Studio Code.	The final result of the flutter mobile scale application prototype	2024-05-01	2024-05-17	66%
10	Implementation	Ensure that IoT devices in the form of sensors and lollin node mcu are connected to the Arduino IDE, so that they can display results	Displays the results of the weighing sensor	2024-05-20	2024-05-27	73%
11	Implementation	Trying to connect flutter to IoT device. Try weighing light items up to under $10\mathrm{kilograms}$ using a sensor connected to the ARDUINO IDE application	Connecting flutter to IoT	2024-05-28	2024-06-05	78%
12	Implementation	$Hold\ a\ meeting\ with\ a\ mobile\ device\ programming\ lecturer.\ Namely\ discussing\ solutions\ on\ how\ to\ connect\ Flutter\ to\ IoT\ devices\ directly.$	Solution connecting Flutter to IoT	2024-06-10	2024-06-13	80%
13	Implementation	Made a series of iterative improvements in connecting flutter to IoT devices. Try various trial error approaches until you succeed in connecting it. We also test integration on smartphones to ensure optimal compatibility.	Successfully connected flutter to Iot devices, as well as smartphones	2024-06-10	2024-06-22	95%
14	Implementation	Combining application files, creates a way to install applications without going through Google Play so that they are easy to access and download.	Merge application files	2024-06-24	2024-06-22	100%

STUDY PROGRAMS – DEPARTMENTS
Teknologi Rekayasa Multimedia – Teknik Informatika

Picture 14 Logbook History

https://drive.google.com/file/d/1MpD6Acl5Cn_SOQ6Zd85PdElsdBhrtT7j/view?usp=sharing

APPENDIX II – TEAM SCHEDULE

APPENDIX III – PROJECT BOARD

APPENDIX IV – PRESENTATION SLIDES

https://drive.google.com/file/d/1flp7RuCH8TDDrNFaHiKuEo6fZKYHbPkR/view?usp=shari ng

Picture 15 ppt presentation

APPENDIX V

You can add appendices as needed such as:

1. Link of product : Produsct

2. Link of presentation : <u>Presentation</u>

3. Link of demo video /teaser : <u>Demo</u>4. Link of scientific poster : <u>Poster</u>

5. Link of Intellectual Property Rights Document: Property Rights Document

6. Link of handover document scan : <u>Handover Document</u>

7. Link Figma : Figma Design

8. Link of contest proposal (optional) : -

9. Link PPT : PPT Great Scale [Mobile Scale]

10. Link Logbook : Logbook

11. Link Manual Book : <u>Manualbook</u>

Make sure the link provided is set up to be accessible to the **public**.

trm.polibatam

https://if.polibatam.ac.id/teknologi-rekayasa-multimedia/index.html

kps-trm@polibatam.ac.id