Difference Amplifiers

Q1

For the circuit shown below, assuming the op amp is ideal, and given that $R_2 = R_4 = 90 \text{ k}\Omega$, $R_1 = R_3 = 10 \text{ k}\Omega$, $v_1 = 1 \text{ V}$ and $v_2 = 2 \text{ V}$,

- a) Find I_1 and I_2 ;
- b) Find v_a and v_b ;
- c) Find I_3 , I_F and v_o .

Q2

For the circuit shown below, assuming the op amp is ideal,

- a) Find the voltage at the input terminals by applying nodal analysis at the non-inverting input terminal,
- b) Hence find v_o by applying nodal analysis at the inverting input terminal.

Cascaded Amplifiers

Q3 [Modified from Alexander Problem 5.57]

For the circuit in Figure 5.84, assuming the op amps are ideal, given $v_{s1} = 1$ V and $v_{s2} = 2$ V,

- a) Find i_1 , i_2 , and v_{o1} ;
- b) Find i_3 , i_4 , and v_{o2} ;
- c) Find i_5 ;
- d) Hence find v_o .

Figure 5.84

Q4 [Alexander Problem 5.60]

Assuming the op amps are ideal, obtain v_0/v_i for the circuit in Figure 5.87.

Practical Limits

Q5

For the circuit below, given $R_F = 10k\Omega$, $R_S = 2k\Omega$, $V_{S^+} = 5V$, and $V_{S^-} = -5V$,

- a) Find V_{out} when Vs = 1.2V.
- b) Sketch the graph of $V_{out} \ (\text{y-axis}) \ vs. \ V_S \ (\text{x-axis}).$

Copyright@The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Figure for Q5

Numerical solutions

Q1

- a) $I_1 = 0 A$, $I_2 = 0 A$
- b) $v_a = 1.8 \text{ V}, v_b = 1.8 \text{ V}$
- c) $I_3 = -0.08 \text{ mA}$, I = -0.08 mA, $v_0 = 9 \text{ V}$

$\mathbf{Q2}$

- a) Input voltages = 5 mV
- b) $V_0 = 10 \text{ mV}$

Q3 [Modified from Alexander Problem 5.57]

- a) $i_1 = 0.04 \text{ mA}$, $i_2 = 0.04 \text{ mA}$, $v_{o1} = -2 \text{ V}$
- b) $i_3 = 0.04 \text{ mA}$, $i_4 = 0.02 \text{ mA}$, $v_{o2} = -2 \text{ V}$
- c) $i_5 = -0.04 \text{ mA}, v_0 = -6 \text{ V}$

Q4 [Alexander Problem 5.62]

Closed loop gain $v_o/v_i = -0.6 \text{ V}$

Q5

a) $V_{out} = -5 \text{ V}$