GENI: Global Environment for Network Innovations

Larry Peterson
Princeton University

March 10, 2006

GENI Initiative

- Research Program
 - e.g., FIND program in NeTS solicitation
- Experimental Facility
 - proposal to MREFC program
 - > jointly from CISE and the research community
 - funds (cutting-edge) facility construction, not research
 - we currently have a "Conceptual Design" document
 - will eventually require Congressional approval

Planning Group

- Tom Anderson, Washington
- Dan Blumenthal, *UCSB*
- Dean Casey, Ngenet Research
- David Clark, MIT
- Deborah Estrin, *UCLA*
- Larry Peterson, *Princeton* (Chair)
- Dipankar Raychaudhuri, Rutgers
- Mike Reiter, *CMU*
- Jennifer Rexford, *Princeton*
- Scott Shenker, *Berkeley*
- John Wrocławski, USC/ISI

Project Summary

- GENI is an open, large-scale, realistic experimental facility that will revolutionize research in global communication networks.
- A central goal of GENI is to change the nature of networked and distributed systems design; to move from a fully empirical to a more rigorously understood design process.

Change the Process

Broader Impact

- Lead to artifacts that provide value to society
 - An Internet for tomorrow
 - ➤ more secure, available, manageable, usable
 - > suited for computing in the next decade
 - Catalyze the distributed digitized world
 - > personal control of your personal life
 - ➤ real time sensing of the planet
- Lead to artifacts that provide value to science
 - Enhanced services that improve the scientific process

Intellectual Merit

- GENI will allow us to experimentally answer questions about complex systems, giving us an increased understanding about their dynamics, stability, evolvability, emergent behaviors, and so on. [Science]
- GENI will allow us to evaluate alternative architectural structures, and reconcile the contradictory goals a network architecture must meet. [Architecture]
- GENI will help us evaluate engineering tradeoffs, and test theories about how different architectual elements might be designed. [Engineering]

Outline

- Project Rationale
 - scientific case
 - need for a new facility
- Facility Design
 - physical substrate
 - software management framework
- Construction Plan
 - management organization
 - development teams

Research Scope

- Security and robustness
- New network technologies
 - wireless
 - optical transport
- New computing technologies
 - sensors, embedded systems, consumer electronics
- New distributed applications and services
- Service in times of crisis
- Network management
- Economic incentives

Research Scope (cont)

- Theoretical underpinnings
 - science of design
- Architectural limits
 - overlays versus new core
- Analysis and modeling
 - instrumentation built-in from the start
- Cross-boundary opportunities
 - network, distributed systems, wireless, optical
- Interdisciplinary opportunities
 - privacy, legal, societal, economic issues

Research Landscape

- Industry alone will not solve the problem
 - no incentive for architectural work
- Academic "research as usual" is not enough
 - not being "Internet compatible" is viewed as risky
- Architectural research starting to be done
 - vision papers, preliminary designs, feasibility studies
- Strategic choices
 - clean slate is a process, not an end goal
 - leverage different aspects of today's architecture
 - work across traditional layers (not just "new IP")
 - multiple "tech transfer" paths

Need for Infrastructure

Goal: Seamless conception-to-deployment process

(measurements)

Existing Tools

- Simulators
 - ns
- Emulators
 - Emulab
 - WAIL
- Wireless Testbeds
 - ORBIT
 - Emulab
- Wide-Area Testbeds
 - PlanetLab
 - RON
 - X-bone
 - DETER

Today's Tools Have Limitations

- Simulation based on simple models
 - topologies, admin policies, workloads, failures...
- Emulation (and "in lab" tests) are similarly limited
 - only as good as the models
- Traditional testbeds are targeted
 - often of limited reach
 - often with limited programmability
- Testbed dilemma
 - production: real users but incremental change
 - research: radical change but no real users

PlanetLab

- New paradigm for network research infrastructure
 - Support experimental validation of new services
 - > simultaneously support real users and clean slate designs
 - ➤ allow a thousand flowers to bloom
 - Provide plausible deployment path
- Key ideas
 - Virtualization
 - ➤ multiple architectures on a shared infrastructure
 - Programmable
 - ➤ virtually no limit on new designs
 - Opt-in on a per-user / per-application basis
 - ➤ attract real users
 - ➤ demand drives deployment / adoption

PlanetLab (cont)

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

- 645 machines spanning 310 sites and 35 countries nodes within a LAN-hop of > 3M users
- Supports distributed virtualization each of 375 network services running in their own slice
- Carries real user traffic
 3-4 TB per day / connects to over 1M unique IP address each day

Slices

Slices

User Opt-in

Assessment

- Borrow ideas from PlanetLab
 - virtualization (slice abstraction)
 - support for user opt-in
- Improve upon this start
 - better provisioned
 - gentler learning curve for users
- Incorporate advantages of other testbeds
 - containment
 - reproducibility
 - heterogeneity (more diverse set of components)
- Extend in completely new ways
 - can be extended to incorporate new technologies
 - support for federation

Summary of Requirements

- Architecture/Service Neutrality
 - substrate is programmable
- Shared across multiple experiments
 - substrate is virtualizable (sliceable)
- Attracts real users
 - low barrier-to-entry for user opt-in
 - global reach
 - connected to legacy Internet
- Sustainable / Unbounded Potential
 - federation across multiple countries and communities
- Diverse and Extensible
 - defines interfaces that permit new technologies

Success Scenarios

- Caveat: unexpected consequences (uses)
- Change the research process
- Possible outcomes (broad impact)
 - create new network services
 - converge on a single new architecture and deploy it
 - virtualization wins: plurality of architectures
 - architectural clarity for current incremental path
- Deployment scenarios
 - transformational pressure
 - alternative "ISPs" emerge

GENI Design

- Key Idea
 - Slices embedded in a substrate of networking resources
- Two central pieces
 - Physical network substrate
 - > expandable collection of building block components
 - ➤ nodes / links / subnets
 - Software management framework
 - > knits building blocks together into a coherent facility
 - ➤ embeds slices in the physical substrate

National Fiber Facility

+ Programmable Routers

+ Clusters at Edge Sites

+ Wireless Subnets

+ ISP Peers

Closer Look

Summary of Substrate

- Node Components
 - edge devices
 - customizable routers
 - optical switches
- Bandwidth
 - national fiber facility
 - tail circuits (including tunnels)
- Wireless Subnets
 - urban 802.11
 - wide-area 3G/WiMax
 - cognitive radio
 - sensor net
 - emulation

Management Framework

Hardware Components

Substrate HW

Substrate HW

Substrate HW

Virtualization Software

Component Manager

GENI Management Core (GMC)

Federation

User Front-End(s)

Virtualization

- Multiple levels possible
 - different level required by different experiments
 - different level depending on the technology
 - ➤ in the limit, we may need to slice "physical component array"
- Example "base cases"
 - virtual server (socket interface / overlay tunnels)
 - virtual router (virtual line card / static circuits)
 - virtual switch (virtual control interface / dynamic circuits)
 - virtual AP (virtual MAC / fixed spectrum allocation)
- Specialization
 - the ability to install software in your own virtual-*

Distributed Services

- Goals
 - Complete the GENI management story
 - Lower the barrier-to-entry for researchers (students)
- Example focus areas
 - Provisioning (Slice Embedder)
 - Security
 - Information Plane
 - Resource Allocation
 - File & Naming
 - Topology Discovery
 - Development Tools
 - Utility Networking (Internet in a Slice)

Containment & Auditing

- Limits placed on slice "reach"
 - restricted to slice and GENI components
 - restricted to GENI sites
 - allowed to compose with other slices
 - allowed to interoperate with legacy Internet
- Limits on resources consumed by slices
 - cycles, bandwidth, disk, memory
 - rate of particular packet types, unique addrs per second
- Mistakes (and abuse) will still happen
 - auditing will be essential
 - network activity → slice → responsible user(s)

Project Management

- GENI Community Consortium (GCC)
 - Executive Committee (EC)
 - > provides project oversight
 - ➤ appoints Project Director and Project Manager
 - ➤ directs sub-contract selection process
 - Technical Advisory Board (TAB)
 - > provides technical leadership for the project
 - ➤ establishes a set of working groups
 - GENI Project Office (GPO)
 - > serves as the "operational arm" of the effort
 - ➤ on the hook to deliver the facility

Management (cont)

Contracted Development & Assembly Teams

Working Groups

Research

- usage policy / requirements / instrumentation
- Clark (co-chair), Shenker (co-chair)

Architecture

- define core modules & interfaces
- Peterson (co-chair), Wrocławski (co-chair), Barford,
 Brassil, Schwab

Backbone

- fiber facility / routers & switches / tail circuits / peering
- Rexford (chair), Blumenthal, Casey, Lakshman,
 McKeown, Turner, Zhang

Working Groups (cont)

Wireless

- RF technologies / deployment
- Raychaudhuri (chair), Bahl, Estrin, Evans, Gerla,
 Heidemann, Minden, Seshan

Services

- edge sites / infrastructure & underlay services
- Anderson (chair), Andersen, Kaashoek, Pai, Reiter,
 Roscoe, Stoica, Vahdat

Education

- training / outreach / course development
- TBD

Workflow

Development Teams

More Information

www.geni.net

Chasm

