A

PCG-2011

આ પુસ્તિકાના કુલ 24 પાના છે.

પ્રશ્ન પુસ્તિકાનો નંબર :

153485

જ્યાં સુધી આ પ્રશ્ન પુસ્તિકા ખોલવાની સૂચના ન મળે ત્યાં સુધી ખોલવી નહીં.

મહત્ત્વની સૂચનાઓ :

- 1. આ પ્રશ્ન પુસ્તિકામાં ભૌતિક-રસાયન વિજ્ઞાનના કુલ 80 હેતુલક્ષી પ્રશ્નો આપેલા છે. પ્રત્યેક પ્રશ્નનો 1 ગુણ છે. 1 સાચા પ્રત્યુત્તરનો 1 ગુણ મળશે. પ્રત્યેક ખોટા પ્રત્યુત્તર માટે $\frac{1}{4}$ ગુણ કાપવામાં આવશે. વધુમાં વધુ 80 ગુણ પ્રાપ્ત થઈ શકશે.
- 2. આ કસોટી 2 કલાકની રહેશે.
- 3. પ્રશ્નના પ્રત્યુત્તર માટે આપવામાં આવેલ OMR ઉત્તર પત્રિકામાં પ્રત્યુત્તર માટેની નિયત જગ્યામાં ફકત કાળી શાહીવાળી બોલપેન વડે ● જ કરવું.
- 4. રફકામ કરવા માટે પ્રશ્ન પુસ્તિકામાં દરેક પાના ઉપર નિયત જગ્યા આપવામાં આવેલી છે, તે જ જગ્યામાં રફકામ કરવું.
- 5. આ વિષયની કસોટી પૂર્ણ થયા બાદ ઉમેદવારે તેમની ઉત્તર પત્રિકા ખંડ નિરીક્ષકને ફરજિયાત સોંપવાની રહેશે. ઉમેદવાર કસોટી પૂર્ણ થયા બાદ પ્રશ્ન પુસ્તિકા તેમની સાથે લઈ જઈ શકશે.
- 6. આ પ્રશ્ન પુસ્તિકાનો પ્રકાર (CODE) A છે. પ્રશ્ન પુસ્તિકાનો પ્રકાર અને તમોને આપવામાં આવેલ ઉત્તર પત્રિકાનો પ્રકાર સરખા જ હોવા જાઈએ. આ અંગે કોઈ ફેરફાર હોય તો નિરીક્ષકનું તાત્કાલિક ધ્યાન દોરવું, જેથી પ્રશ્ન પુસ્તિકા અને ઉત્તર પત્રિકા સરખા પ્રકાર ધરાવતી આપી શકાય.
- 7. ઉમેદવાર ઉત્તર પત્રિકામાં ગળ ન પડે, લીટા ન પડે, તે રીતે સાચવીને ઉત્તરો આપવાં.
- 8. ઉત્તર પત્રિકા પ્રશ્ન પુસ્તિકામાં નિયત કરેલ જગ્યા સિવાય ઉમેદવારે તેમને ફાળવેલ બેઠક નંબર લખવો નહિ કે અન્ય કોઈ જગ્યાએ ઓળખ થાય તેવી નિશાની / ચિહ્નો કરવા નહીં. આવું કરનાર ઉમેદવાર સામે ગેરરીતિનો કેસ નોંધવામાં આવશે.
- 9. વ્હાઈટ ઈંક લગાડવા માટે પરવાનગી નથી.
- 10. દરેક ઉમેદવારે પરીક્ષા ખંડમાં પ્રવેશ માટે ખંડ નિરીક્ષકને પ્રવેશપત્ર બતાવવું જરૂરી છે.
- 11. કોઈપણ ઉમેદવારને અપવાદ રૂપ સંજોગો સિવાય પરીક્ષાખંડ છોડવાની પરવાનગી મળશે નહીં. આ અંગેની પરવાનગી ખંડ નિરીક્ષક-સ્થળ સંચાલક સંજોગો ધ્યાને લઈને આપશે.
- 12. ઉમેદવાર ફક્ત સાદુ ગણનયંત્ર વાપરી શકશે.
- 13. દરેક ઉમેદવારે પરીક્ષાખંડ છોડ્યા પહેલા ઉત્તર પત્રિકા ખંડ નિરીક્ષકને સોંપી ઉત્તર પત્રિકા પરત કર્યા બદલની સહી પત્રક 01 (હાજરી પત્રક) માં કરવાની રહેશે. જો ઉમેદવારે ઉત્તર પત્રિકા આપ્યા બદલની સહી પત્રક 01 માં કરેલ નહિ હોય, તો ઉત્તર પત્રિકા આપેલ નથી તેમ માનીને ગેર રીતિનો કેસ નોંધવામાં આવશે.
- 14. દરેક ઉમેદવારે પરીક્ષા માટેના બોર્ડ દ્વારા બહાર પાડેલ નિયમો અને બોર્ડના નીતિ નિયમોનું ચુસ્તપણે પાલન કરવાનું રહેશે. દરેક પ્રકારના ગેરરીતિના કેસોમાં બોર્ડના નિયમો લાગુ પડશે.
- 15. કોઈપણ સંજોગોમાં પ્રશ્ન પુસ્તિકા ઉત્તર પુસ્તિકાનો કોઈ ભાગ જુદો પાડવો નહીં.
- 16. ઉમેદવારે પત્રક 01 (હાજરી પત્રક) અને પ્રવેશપત્રમાં પ્રશ્ન પુસ્તિકા અને ઉત્તર પુસ્તિકા ઉપર છાપેલ પ્રકાર લખવાનો રહેશે.

ઉમેદવારનું નામ :	
પરીક્ષા બેઠક નંબર : (અંકમાં)	(શબ્દોમાં)
પરીક્ષા કેન્દ્રનં નામ :	પરીક્ષા કેન્દ્ર ક્રમાંક
પ્રશ્ન પુસ્તિકાનો પ્રકાર :	પ્રક્ષ પુસ્તિ! 1ision/Japers
Candidate's Sign	Block Si
	10TH 12TH JEE NEET

153485

Like. Share. Bookmark. Download. Mark Notes. Print. Your Favourite Questions. Join Vision Papers. Blogspot. Com

PCG-2011
BOOKLET A

PHYSICS

	(Spac	e for Rough Work)	
	(C) $\left[\frac{4\pi^2 m r^4}{kq_1 q_2}\right]^{1/2}$	(D) $\left[\frac{4\pi^2mr^2}{kq_1q_2}\right]^{1/2}$	
	(A) $\left[\frac{4\pi^2 m r^3}{kq_1 q_2}\right]^{\frac{1}{2}}$	(B) $\left[\frac{kq_{1}q_{2}}{4\pi^{2}mr^{3}}\right]^{1/2}$	
5.	m દળનો q_2 વિદ્યુતભાર, સ્થિર વિદ્યુત છે. આથી વિદ્યુતભાર q_2 નો કક્ષીય અ	ભાર q_1 ની આસપાસ r ત્રિજ્યાની વર્તુળાકાર કક્ષામાં ભ્રમણ ાવર્તકાળ થશે.	કરે
	(C) $2.0 \text{ Nm}^2/\text{C}$	(D) શૂન્ય	
	(A) $1.0 \text{ Nm}^2 / \text{C}$	(B) $10.0 \text{ Nm}^2 / \text{C}$	
4.	1 N/C નું વિદ્યુત ક્ષેત્ર Y દિશામાં અસ્ બાજુવાળા ચોરસમાંથી પસાર થતું ફ્લ	તત્વમાં છે. તો આ વિદ્યુત ક્ષેત્રનું XY સમતલમાં મૂકેલા 1 m સ હશે.	ની
	(C) JC ⁻¹	(D) $C^2N^{-1}m^{-2}$	^
	$(A) NC^{-1}$	(B) Vm^{-1}	
3.		ભૌતિક રાશિનો એકમ છે.	
	$(C) 45 \times 10^{-2} \text{ J}$	(D) $9 \times 10^{-1} \text{ J}$	
	$(A) 9 \times 10^4 \text{ J}$	$(B) 18 \times 10^4 \text{ J}$	
		છે. ($K = 9 \times 10^9 SI$)	
2.		નારો એકબીજાથી 1 m દૂર રહેલા છે. તેમને હવે એકબીજા	થી
	(C) 8 વોલ્ટ	(D) શૂન્ય	
	(A) 80 વોલ્ટ	(B) 800 વોલ્ટ	
	મળે છે તો પોલા ગોળાના કેન્દ્ર પર સ્થિ	તિમાન કેટલું હશે?	
1.	10 સે.મી. ત્રિજ્યાવાળા ધાતુના પોલા ગ	ાોળાને વિદ્યુતભારિત કરતાં તેની સપાટી પર 80 વોલ્ટનું સ્થિતિમ	.lન

6.	વિદ્યુતભાર વિતરણને લીધે વિદ્યુત ક્ષેત્રની ગણતરી કરવા માટે કેવું ગાઉસીયન પૃષ્ઠ લેવામાં આવે છે?				
	(A)	વિદ્યુતભાર વિતરણની નજકનું કોઈપણ બંધ	પૃષ્ઠ.		
	(B)	હંમેશા ગોલીય પૃષ્ઠ.			
	(C)	એક એવું વિદ્યુતભાર વિતરણને ઘેરતું સંમિત	(symr	netric) બંધ પૃષ્ઠ કે જેના દરેક બિંદુ પર	
		વિદ્યુત ક્ષેત્રનું એક જ મૂલ્ય મળે.			
	(D)	આપેલામાંથી એક પણ નહીં.			
7.	ચલિત	ા ગૂંચળાવાળા ગેલ્વેનોમીટરનો અવરોધ 99 Ω	2 છે. તે	માંથી મુખ્ય પ્રવાહનો 10% પ્રવાહ પસાર કરવો	
	હોય,	તો તેની સાથે કેટલો શન્ટ જોડવો જોઈએ?			
	(A)	9 Ω	(B)	11Ω	
	(C)	10 Ω	(D)	$9.9.\Omega$	
8.	આદશ	ર્શ વોલ્ટમીટરનો અવરોધ હોય છે			
	(A)	શૂન્ય	(B)	શૂન્ય કરતાં વધુ પરંતુ કોઈ એક ચોક્કસ મૂલ્યનો	
	(C)	અનંત	(D)	5000 Ω	
9.	કંડા જ	૪ંક્શનનું તાપમાન −300°C હોય તેવા થર્મો	કપલમાં	ઉદ્ભવતું emf $E = 40 t + \frac{1}{10} t^2$ સૂત્ર વડે	
	મળે દ	છે. તો આ થર્મોકપલનું પ્રતિ તાપમાન			
	(A)	200°C	(B)	400°C	
	(C)	-200°C	(D)	– 100°C	
10.	જયારે	બાહ્ય અવરોધ R ને, emf E અને આંતરિક	અવરોધ	ા <i>r</i> ધરાવતા વિદ્યુત કોષ સાથે જોડવામાં આવે,	
	ત્યારે તેમા વિખેરણ પામતો (dissipated) મહત્તમ પાવર થશે.				
•	(\(\(\(\) \)	$\mathbf{E^2}$	(B)	$\mathbf{E^2}$	
	(11)	r .		2r	
		$\mathbf{E^2}$	(D)	\mathbf{E}^2	
	(0)	3 <i>r</i>	(1)	4r	
		(Space for Ro	ough	Work)	

- 11. $4\pi\,\mathrm{Am^2}$ ચુંબકીય ચાકમાત્રાવાળા એક ચુંબકીય તારને અર્ધવર્તુળાકારે વાળવામાં આવે છે, તો તેની નવી ચુંબકીય ચાકમાત્રા થશે.
 - (A) $4\pi \text{ Am}^2$

(B) $8\pi \text{ Am}^2$

(C) 4 Am²

- (D) આમાંથી એક પણ નહીં.
- 12. તાંબાના ત્રણ તારોના દળોનો ગુણોત્તર 5:3:1 અને તેમની લંબાઈઓનો ગુણોત્તર 1:3:5 છે. તો તેમના વિદ્યુત અવરોધોનો ગુણોત્તર
 - (A) 5:3:1

(B) $\sqrt{125}:15:1$

(C) 1:15:125

- (D) 1:3:5
- 13. આપેલા પરિપથમાં A અને B બિંદુઓ વચ્ચેનો સમતુલ્ય અવરોધ છે.

(A) 3Ω

(B) 6 Ω

(C) 12Ω

- (D) 1.5Ω
- - $(A) \quad \frac{\mu_0 M}{4\pi z^3} \hat{M}$

 $(B) \quad \frac{2\mu_0 M}{4\pi z^3} \hat{M}$

(C) $\frac{4\pi M}{\mu_0 z^3} \hat{M}$

(D) $\frac{\mu_0 M}{2\pi z^3} \hat{M}$

(Space for Rough Work)

15.	ચુંબક	ચુંબકીય ક્ષેત્રમાં ડાયામેગ્નેટિક પદાર્થ પર પરિણામી બળ લાગે છે.				
	(A)	(A) ચુંબકીય ક્ષેત્રના પ્રબળથી નિર્બળ ભાગ તરફ				
	(B) ચુંબકીય ક્ષેત્રના નિર્બળથી પ્રબળ ભાગ તરફ					
	(C) ચુંબકીય ક્ષેત્રને લંબ દિશામાં					
	(D)	ચુંબકીય ક્ષેત્ર સાથે 60° નો ખૂણો બનાવતી (દેશામાં			
16.		. 2 mA નો વિદ્યુતપ્રવાહ વહેતો હોય ત્યારે આપે ો આ ગુંચળાનું આત્મપ્રેરકત્વ કેટલું હશે?	ોલ ગુંચ	ળા સાથે 10 μ Wb નું ચુંબકીય ફ્લક્સ સંકળાય		
	(A)	10 mH	(B)	5 mH		
	(C)	15 mH	(D)	20 mH		
17.	31.4 કેટલું લ		ધરાવત	ા, 10^3 આંટાવાળા સોલેનોઈડનું આત્મપ્રેરકત્વ		
	(A)	4 mH	(B)	4 H		
	(C)	40 H	(D)	0.4 H		
18.		V, 50 Hz ના પ્રાપ્તિસ્થાન (supply) સાથે કે મ પ્રવાહ 0.9 A નો થાય?	કેટલા ચ	માત્મપ્રેરકત્વનો ઈન્ડક્ટર જોડવાથી તેમાંથી વહેતો		
	(A)	11 H	(B)	2 H		
	(C)	1.1 H	(D)	5 H		
	···	(Space for Ro	ugh	Work)		

19.	ઉલટસુલટ (alternating) પ્રવાહનું મહત્તમ (pe	ak) મૂલ્ય 5 A છે અને તેની આવૃત્તિ 60 Hz છે. તો
	તેનું rms મૂલ્ય અને શૂન્ય થી શરૂ કરી પ્રવાહનું મહ	કુત્તમ મૂલ્ય પ્રાપ્ત કરવાનો સમય શોધો.
	(A) 3.536 A; 4.167 ms	(B) 3.536 A; 15 ms
	(C) 6.07 A; 10 ms	(D) 2.536 A; 4.167 ms
20.		મેક ગજિયા ચુંબકને સ્થિ <mark>ર સમ</mark> તોલન સ્થિતિમાં રહે તેમ
	મૂકેલ છે. તેને 180° જેટલું ભ્રમણ કરાવવા માટે કર	લું પડતુંજેટલું છે.
	M = ગજિયા ચુંબકની ચુંબકીય ચાકમાત્રા છે.	
	(A) MB	(B) 2 MB
	$\frac{\mathbf{MB}}{\mathbf{C}}$	(D) શુન્ય
	2	
21.	પ્રિઝમના દ્રવ્યનો વક્કીભવનાંક 1.5 છે. જો $\delta_m = 1$	A હોય, તો આપેલ પ્રિઝમનો પ્રિઝમકોણ કેટલો હશે?
	(જ્યાં $\delta_m =$ લઘુતમ વિચલનકોણ, $A = પ્રિઝમક$	ોણ)
	(A) 82.8°	(B) 41.4°
	(C) 48.6°	(D) 90°
22.	2.0 m કેન્દ્રલંબાઈવાળા એક બહિર્ગોળ અરીસાની	અક્ષ પર એક વ્યક્તિએ અરીસાના ધ્રુવથી કેટલા અંતરે
	સીધા ઊભા રહેવું જોઈએ કે જેથી તેનું પ્રતિબિંબ તેન	ી સાચી ઊંચાઈ કરતાં અડધું મળે?
	(A) - 2.60 m	(B) - 4.0 m
	(C) - 0.5 m	(D) -2.0 m
23.	હર્ટ્ઝના પ્રયોગમાં ઈન્ડક્શન કોઈલ સાથે જોડેલા સર્િ	ગેયાઓ તરીકે વર્તે છે.
	(A) ઈન્ડક્ટર	(B) કેપેસિટર
	(C) અવરોધક	(D) ઈન્ડક્શન કોઈલ
	(Space for Ro	ugh Work)

24.	એક પારદર્શક પ્લાસ્ટિક બેગમા હવા ભરતાં તે અંતર્ગો તે તરીકે વર્તે છે.	ળ લેન્સ બને છે. હવે આ બેગને પાણીમાં સંપૂર્ણ ડૂબાડતા
	(A) અપસારી લેન્સ	(B) અભિસારી લેન્સ
	(C) સમબાજુ પ્રિઝમ	(D) લંબચોરસ સ્લેબ
25.		સ્કોપને કેન્દ્રિત (focus) કરવામાં આવે છે. હવે આ ડાઘ માઈક્રોસ્કોપને આ સહીના ડાઘ પર કેન્દ્રિત (focus) કરવા
	(A) 2 cm ઉપર तरફ	(B) 2 cm નીચે તરફ
	(C) 1 cm (चेपर तर\$	(D) 1 cm નીચે તરફ
26.	વ્યતિકરણના યંગના બે સ્લિટના પ્રયોગની ગોઠ પહોળાઈ	યણીને હવામાંથી પાણીમાં લઈ જતાં તેની શલાકાની
-	(A) અનંત બને છે.	(B) धटे छे.
	(C) वधे छे.	(D) બદલાતી નથી.
27.		ત્નો) દર્શાવે છે . બધી વક્ર સપાટીઓની વક્રતા ત્રિજ્યાઓ લંબાઈઓ (focal lengths) નો ગુણોત્તર છે.
	(P) (Q)	$ \begin{pmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	(A) 1:1:1	(B) $1:1:-1$
	(C) 2:1:1	(D) 2:1:2

(Space for Rough Work)

- **28.** એક ઈલેક્ટ્રોનને 182~V વિદ્યુત સ્થિતિમાન તફાવતે પ્રવેગિત કરતા, તેનો મહત્તમ વેગ થશે. ઈલેક્ટ્રોનનો વિદ્યુતભાર = $1.6 \times 10^{-19}~\mathrm{C}$ અને ઈલેક્ટ્રોનનું દળ = $9.1 \times 10^{-31}~\mathrm{kg}$ લો.
 - (A) $5.65 \times 10^6 \, \text{m/s}$

(B) 4×10^6 m/s

(C) 8×10^6 m/s

- (D) 16×10^6 m/s
- 29. બીજી ઉત્તેજીત અવસ્થામાં ઈલેક્ટ્રોનની કુલ ઊર્જા –2E છે. આજ અવસ્થામાં તેની યોગ્ય સંજ્ઞા (proper sign) સાથે સ્થિતિઊર્જા કેટલી હશે?
 - (A) -2E

(B) - 4E

(C) 4 E

- (D) E
- 30. એક ઈલેક્ટ્રોન અને એક પ્રોટોન એક જ દિશામાં સમાન ગતિ ઊર્જાથી ગતિ કરે છે. તો આ કણોની દ બ્રોગ્લી તરંગલંબાઈઓનો ગુણોત્તર છે.
 - (A) $\frac{m_e}{m_p}$

 $(\mathbf{B}) \quad \frac{m_p}{m_e}$

(C) $\sqrt{\frac{m_p}{m_e}}$

- (D) $m_p \cdot m_e$
- 31. એક ફોટો સંવેદી ધાતુની સપાટીનું કાર્ય વિઘેય ϕ છે. જ્યારે 3 ϕ ઊર્જાવાળો ફોટોન તે સપાટી પર આપાત થાય ત્યારે મહત્તમ વેગ $6 \times 10^6 \ \mathrm{m/s}$ ધરાવતો ઈલેક્ટ્રોન તેના પરથી બહાર આવે છે. હવે જો ફોટોનની ઊર્જા વધારીને 9 ϕ કરવામાં આવે, તો ફોટો ઈલેક્ટ્રોનની મહત્તમ ઊર્જા થશે.
 - (A) 12×10^6 m/s

(B) 6×10^6 m/s

(C) 3×10^6 m/s

(D) 24×10^6 m/s

(Space for Rough Work)

- - (A) $I_1 t_2 I_2 t_1$

(B) $I_1 - I_2$

(C) $\frac{I_1 - I_2}{\tau_{\frac{1}{2}}}$

- (D) $(I_1 I_2) \tau_{1/2}$
- 33. બૉહર પરમાણુ મૉડેલ અનુસાર મુખ્ય ક્વોન્ટમ નંબર (n) અને કક્ષીય ત્રિજ્યા (r) વચ્ચેનો સંબંધ છે.
 - (A) $r \propto n^2$

(B) $r \propto \frac{1}{n^2}$

(C) $r \propto \frac{1}{n}$

- (D) $r \propto n$
- 34. 100 eV ઊર્જાવાળા ફોટોનની આવૃત્તિ Hz છે.
 - $(h = 6.62 \times 10^{-34} \text{ J s}; 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J})$
 - (A) 2.417×10^{-16}

(B) 2.417×10^{16}

(C) 2.417×10^{17}

- (D) 10.54×10^{17}
- 35. P-N જંક્શન ડાયોડને લાગુ પાડવામાં આવેલ રીવર્સબાયસ તેના -
 - (A) પોટેન્શિયલ બેરીયરમાં ઘટાડો કરે છે.
 - (B) મેજોરીટી ચાર્જ કેરીયરમાં ઘટાડો કરે છે.
 - (C) પોટેન્શિયલ બેરીયરમાં વધારો કરે છે.
 - (D) P-N જંક્શન ડાયોડનું દળ બદલે છે.

(Space for Rough Work)

નો ફેરફાર કરતાં, બેઝ (base) પ્રવ	ાહમાં ફેરફાર થશે.
(A) 9.6 mA	(B) 0.4 mA
(C) 19.6 mA	(D) 24 mA

C)
$$\frac{\lambda}{4}$$
 (D) $\frac{\lambda}{5}$

38. પૃથ્વીની સપાટી પરના કેટલામા ભાગના વિસ્તારમાં એક જીઓ સ્ટેશનરી સેટેલાઈટ દ્વારા કમ્યુનિકેશન સ્થાપિત કરી શકાય?

- (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{1}{8}$
- 39. NOR ગેટની સંજ્ઞાત્મક રજૂઆત છે.

40. ટી.વી. ટાવરની ઊંચાઈ $150~\mathrm{m}$ છે. આ ટી.વી. ટાવરની આસપાસ સરેરાશ વસ્તી ઘનતા $10^3~\mathrm{km}^{-2}$ છે, તો કેટલા લોકોને આ ટી.વી. ટાવર દ્વારા સાંકળી શકાય? પૃથ્વીની ત્રિજ્યા $6.4 \times 10^6~\mathrm{m}$ છે.

(A) 60.288 lakhs

(B) 40.192 lakhs

(C) 100 lakhs

(D) 20.228 lakhs

(Space for Rough Work)

(Space for Rough Work)

41. ઈલેક્ટ્રોનનું દળ 9.109×10^{-28} ગ્રામ છે. જો તેની તરંગલંબાઈ $0.15~\mathrm{nm}$. હોય તો, ઝડપ કેટલી હશે? $(h = 6.626 \times 10^{-27}~\mathrm{eV})$ અર્ગ. સેકન્ડ)

- (A) 2.062×10^{-8} સે.મી. સેકન્ડ $^{-1}$
- (B) $2.062 imes 10^{-15}$ ਜ਼ੇ. ਮੀ. ਜੇਂક-ડ $^{-1}$
- (C) 2.062×10^{-10} સે.મી. સેકન્ડ $^{-1}$
- (\mathbf{D}) 2.062×10^{-9} સે.મી. સેકન્ડ $^{-1}$

42. N કક્ષામાં ઈલેક્ટ્રોનની સંખ્યા, કક્ષકની સંખ્યા અને કક્ષકનાં પ્રકાર અનુક્રમે નીચેનાં પૈકી કયું સાચુ છે?

(A) 4, 4 અને 8

(B) 4, 8 અને 16

(C) 32, 16 અને 4

(D) 4, 16 અને 32

43. ક્ષ કિરણો દ્વારા સ્ફટિકનું પ્રથમ ક્રમી (n=1) પરાવર્તન કૉપર એનોડ ટયુબ દ્વારા 1.54 Å તરંગલંબાઇ ધરાવતા વિકિરણ 45° નાં ખૂણે થાય છે. આ વિવર્તન કરનારા સ્ફટિકનાં સ્તરો વચ્ચેનું અંતર કેટલું થશે?

(A) 0.1089 nm.

(B) 0.1089 m.

(C) 10.89 Å

(D) 1.089×10^{-9} m.

44. પદાર્થની સ્ફટિક રચનામાં સોડિયમ પરમાણુ સ્ફટિક ઘનનાં પ્રત્યેક ખૂણા પર, ઑક્સિજન પરમાણુ પ્રત્યેક ધારી પર અને ટંગસ્ટન (W) પરમાણુ ઘનનાં કેન્દ્રમાં હોય તો, મળતાં પદાર્થનું અણુસૂત્ર કયું હશે?

(A) Na₂WO₄

(B) $NaWO_3$

(C) Na₃WO₃

 $(D) Na_2WO_3$

(Space for Rough Work)

45. 25° સે. તાપમાને સલ્ફયુરિક ઍસિડનાં 200 મિ.લિ. જલીય દ્રાવણ માટે $[H_3O^+\,]$ ની સાંદ્રતાનું મૂલ્ય $1~\mathrm{M}$ હોય તો, તેમાં કેટલા ગ્રામ સલ્ફયુરિક ઍસિડ ઓગાળેલો હશે?

[H=1, O=16, S=32 ગ્રામ/મોલ]

(A) 4.9 ગ્રામ

(B) 19.6 ગ્રામ

(C) 9.8 श्राभ

(D) 0.98 ગ્રામ

46. ક્ષારના દ્રાવણની સાંદ્રતા વધારતા નીચેનાં પૈકી કઈ ઘટના સાચી બને?

- (A) ઉત્કલનબિંદુ વધે અને બાષ્પદબાણ ઘટે.
- (B) ઉત્કલનબિંદુ ઘટે અને બાજ્પદબાણ વધે.
- (C) ઠારબિંદુ ઘટે અને બાજ્યદબાણ વધે.
- (D) ઠારબિંદુ વધે અને બાજ્યદબાણ ઘટે.

47. 1 મોલ આદર્શવાયુ ભરેલા એક લીટર પાત્રને શૂન્યાવકાશ ધરાવતા 9 લીટર પાત્ર સાથે જોડતાં એન્ટ્રોપીમાં થતો ફેરફાર જણાવો. (R = 1.987 Cal.)

- (A) 0.188 કેલરી કેલ્લીન $^{-1}$ મોલ $^{-1}$
- (B) 0.4576 કેલરી કેલ્વીન⁻¹ મોલ⁻¹
- (C) 4.576 કેલરી કેલ્લીન $^{-1}$ મોલ $^{-1}$
- (D) 4.366 કેલરી કેલ્વીન⁻¹ મોલ⁻¹

48. આદર્શ વાયુ ભરેલાં પાત્રનું નિયત તાપમાને પ્રારંભિક દબાણ કરતાં અંતિમ દબાણ વધુ હોય તો, સંતુલન અચળાંકનું મૂલ્ય કેટલું થાય?

(A) K = 1.0

(B) K = 10.0

(C) K > 1.0

(D) K < 1.0

(Space for Rough Work)

49. પિગાળેલા $Cu(NO_3)_2$ અને $Al(NO_3)_3$ નાં જુદા જુદા બે વિદ્યુત્તવિભાજન કોષ શ્રેણીબધ્ધ કરી વિદ્યુત્તપ્રવાહ પસાર કરતાં 2.7 ગ્રામ Al વિદ્યુતધ્રુવ ઉપર જમા થાય ત્યારે કૉપર ધાતુ (Cu) કેટલી ઉત્પન્ન થશે?

$$[Cu = 63.5; Al = 27.0 \text{ }214/\text{H}]$$

(A) 190.5 ગ્રામ

(B) 9.525 ગ્રામ

(C) 63.5 ગ્રામ

(D) 31.75 ગ્રામ

50. 25° સે. તાપમાને નીચે આપેલા વિદ્યુત રાસાયણિક કોષ માટે કઈ પ્રક્રિયા સાચી છે?

$${\rm Pt}\,/\,{\rm Br}_{\!2(g)}^{-}\,/\,{\rm Br}_{\!(aq)}^{-}\,//\,{\rm Cl}_{\!(aq)}^{-}\,/\,{\rm Cl}_{\!(aq)}^{-}\,/\,{\rm Pt}$$

$$(\mathbf{A}) \quad 2\mathbf{Br}_{(aq)}^- + \mathbf{Cl}_{2(g)} \to 2\mathbf{Cl}_{(aq)}^- + \mathbf{Br}_{2(g)}$$

(B)
$$Br_{2(g)} + 2Cl_{(aq)}^- \rightarrow 2Br_{(aq)}^- + Cl_{2(g)}$$

(C)
$$\operatorname{Br}_{2(g)} + \operatorname{Cl}_{2(g)} \to 2\operatorname{Br}_{(aq)}^- + 2\operatorname{Cl}_{(aq)}^-$$

(D)
$$2Br_{(aq)}^{-} + 2Cl_{(aq)}^{-} \rightarrow Br_{2(g)} + Cl_{2(g)}$$

51. $CuSO_4$ નાં જલીય દ્રાવણનું ગ્રેફાઈટનાં વિદ્યુત ધ્રુવો વડે વિદ્યુત વિભાજન કરતાં વિદ્યુત વિભાજન કોષનાં જલીય દ્રાવણનો pH કેટલો હશે?

(A) pH = 14.0

(B) pH > 7.0

(C) pH < 7.0

(D) pH = 7.0

52. પ્રથમ ક્રમની એક પ્રક્રિયા માટે પ્રક્રિયકની શરૂઆતની સાંદ્રતા $0.05~\mathrm{M}$ છે. 45 મિનિટ પછી તેની સાંદ્રતામાં $0.015~\mathrm{M}$ જેટલો ઘટાડો થાય છે. તો પ્રક્રિયાનો અર્ઘ આયુષ્ય સમય $(t_{1/2})$ શોધો.

(A) 87.42 મિનિટ

(B) 25.90 મિનિટ

(C) 78.72 મિનિટ

(D) 77.20 મિનિટ

(Space for Rough Work)

53. (n-1) ક્રમની પ્રક્રિયા માટે અર્ધ પ્રક્રિયા સમય અને શરૂઆતની સાંદ્રતા વચ્ચેનો સંબંધ કયો છે?

(A)
$$t_{1/2} \propto [R]_0$$

(B)
$$t_{1/2} \propto [R]_0^{2-n}$$

(C)
$$t_{1/2} \propto [R]_0^{n+1}$$

(D)
$$t_{1/2} \propto [R]_0^{n-2}$$

54. નીચેનાં પૈકી કયાં સંયોજનની ફેરિક હાઈડ્રોકસાઈડ સોલ સાથે સૌથી મહત્તમ સ્કંદન શક્તિ ધરાવે છે?

(A) ક્રાયોલાઈટ

 $(B) \quad \mathbf{K_2C_2O_4}$

(C) $K_3[Fe(CN)_6]$

(D) $K_4[Fe(CN)_6]$

55. ગાય, ભેંસ જેવા પ્રાણીઓમાં કાગળ, કાપડ વગેરે સંયોજનોનાં પાચન માટે કયો ઉત્સેચક હોય છે?

(A) <u>य</u>ुरेअ

(B) સેલ્યુલેઝ

(C) સિલિકોન્સ

(D) सुक्रेअ

56. $\mathrm{Na_5P_3O_{10}}$ નાં સંશ્લેષણ પ્રક્રિયા માટે સોડિયમ ડાય હાઇડ્રોજન ઓર્થોફોસ્ફેટ અને સોડિયમ હાઇડ્રોજન ઓર્થોફોસ્ફેટનું તત્ત્વ યોગમિતિય ગુણોત્તર પ્રમાણ કયો છે?

(A) 1.5:3

(B) 3:1.5

(C) 1:1

(D) 2:3

(Space for Rough Work)

	(A) 6	, 4, 2		(B)	1, 2, 3
	(C) 3		•	(D)	0, 3, 2
58.	કૉપર તે•	નાં સ્થાયી સંયોજ	નો માત્ર +2 ઑક્સિ	ડેશન અવસ્	થામાં જ આપે છે.
	(A) +2 અવસ્થામાં કૉપર સંક્રાન્તિ ધાતુ છે.				
	(B) §	તેપરનાં +2 સં	યોજનો ઉષ્માક્ષેપક પ્રા	ક્રેયા દ્વારા બ	ને છે.
	(C) -	⊦2 અવસ્થામાં ક	કૉપરનો ઈલેક્ટ્રોન વિન્ય	ાસ [Ar]3	$d^9 4s^0$ છે.
	(D) -	⊦2 અવસ્થામાં ક	ડ્રોપર રંગીન સંયોજનો	આપે છે.	
59.	પોટેશિય	મ ક્રોમેટનાં જલી	ય દ્રાવણમાં મંદ $ m H_2S$	O_4 ઉમેરત	ં દ્રાવણનાં પીળા રંગનું નારંગી રંગમાં
	થાય છે.	જે સૂચવે છે કે			
	(A) §	કોમેટ આયનનું રિ .	ડક્શન થાય છે.		
	(B) ક્રોમેટ આયનનું ઑક્સિડેશન થાય છે.				
	(C) =	બેક કેન્દ્રિય સંક <u>ી</u> ણ	નું ક્રિ કેન્દ્રિય સંકીર્ણમ	ાં રૂપાંતરણ	થાય છે.
	(D)	કોમેટ આયનમાંર્થ	ો ઓક્સિજન દૂર થાય ૧	3 .	
60.	જર્મન િ	સેલ્વર મિશ્ર ધાતુ	નાં ઘટકો કયાં છે?		
	(A)	ઝેક, સિલ્વર અને	કૉપર	(B)	નિકલ, સિલ્વર અને કૉપર
	(C) 6	જર્મેનિયમ, સિલ્વ	ાર અને કૉપર	(D)	ઝિંક, નિકલ અને કૉપર

- **61.** મધ્યસ્થ ધાત્વીય આયનનો સવર્ગાંક 6 ધરાવતા સંકીર્ણ $\operatorname{FeCl}_3\cdot 4\operatorname{NH}_3$ માંથી એમોનિયા વાયુ દૂર થતો નથી. પરંતુ AgNO_3 નાં જલીય દ્રાવણ સાથે સફેદ અવક્ષેપ આપે છે. તો તે સંકીર્ણનું IUPAC નામ કયું $\operatorname{\mathfrak{g}}$ શે?
 - (A) એમોનિયમ ટ્રાયક્લોરો ટ્રાયએમાઈન ફેરમ (III)
 - (B) ટેટ્રા એમાઈન ફેરમ (III) ક્લોરાઈડ
 - (C) ડાય ક્લોરો ટેટ્રા એમાઈન ફેરેટ (II) ક્લોરાઈડ
 - (D) ડાય ક્લોરો ટેટ્રા એમાઈન ફેરમ (III) ક્લોરાઈડ
- 62. $\mathrm{Mn^{+2}}$ નાં સંકીર્ણ ક્ષારની ચુંબકીય ચાકમાત્રાનું પ્રાયોગિક મૂલ્ય $5.96~\mathrm{B.M.}$ છે. તે સૂચવે છે કે
 - (A) ઈલેક્ટ્રોનનું કક્ષકીય ભ્રમણ અને ધરા ભ્રમણ એકજ દિશામાં છે.
 - (B) ઈલેક્ટ્રોનનું કક્ષકીય ભ્રમણ અને ધરા ભ્રમણ વિરુધ્ધ દિશામાં છે.
 - (C) ઈલેક્ટ્રોન કક્ષકીય ભ્રમણ ધરાવતો નથી. તે માત્ર ધરા ભ્રમણ ધરાવે છે.
 - (D) ઈલેક્ટ્રોન ધરા ભ્રમણ ધરાવતો નથી, માત્ર કક્ષકીય ભ્રમણ ધરાવે છે.
- **63.** રેડિયો એક્ટિવ જનક તત્ત્વમાં ન્યુટ્રોન કરતાં પ્રોટોનની સંખ્યા ઓછી હોય ત્યારે જનીત તત્ત્વની સ્થિરતા માટે કયો ગુણોત્તર રહેશે?
 - $(A) \quad \frac{N+1}{Z+1}$

(B) $\frac{N-1}{Z+1}$

 $(C) \quad \frac{N-1}{Z-1}$

- $(D) \quad \frac{N+1}{Z-1}$
- **64.** ${}^{7}_{3}\text{Li} + A \rightarrow {}^{4}_{2}\text{He} + B$ તો A અને B અનુક્રમે
 - (A) (D, α)

(B) (α, n)

(C) (n, α)

(D) (P, α)

(Space for Rough Work)

65.	અણુ કોણાત્મક સમઘટકલ	ાા નીચે પૈકી કયાં	ાં સંયોજનોમાં હોય	છે?
------------	---------------------	-------------------	-------------------	-----

(A) 2 - બ્યુટીન

(B) મેલિક એસિડ

(C) બ્યુટેન

(D) ફ્યુમેરિક એસિડ

66. કયાં સંયોજનનું બ્રોમીનેશન કરતાં મેસો 2, 3 ડાયબ્રોમોબ્યુટેન મળે છે?

(A) સીસ 2 - બ્યુટીન

(B) આયસો બ્યુટેન

(C) બ્યુટેન

(D) ટ્રાન્સ 2 -બ્યુટીન

67. ફિનોલમાં રહેલા C અને –OH સમૂહનાં ઑક્સિજનમાં થતું સંકરણ અનુક્રમે કયું છે?

(A) sp^2 , sp^2

(B) sp^3 , sp^3

(C) sp, sp^2

(D) sp^2 , sp^3

68. ક્લોરોબેન્ઝિન
$$\xrightarrow{\mathbf{X}}$$
 પ્રક્રિયા \rightarrow ફિનોલ $\xrightarrow{\mathbf{Y}}$ સેલિસાલ્ડીહાઈડ તો \mathbf{X} અને \mathbf{Y} અનુક્રમે કઈ પ્રક્રિયા છે?

- (A) ફ્રાઇસ પુનઃ વિન્યાસ અને કોલ્બેસ્મિથ
- (B) ક્યુમીન અને રિમર-ટિમાન
- (C) ડાઉ અને રિમર-ટિમાન
- (D) ડાઉ અને ફ્રિડલ ક્રાફ્ટ

(Space for Rough Work)

69.	એસિટોનમાંથી સમાન કાર્બન સંખ્યા ધરાવતા હાઈડ્રોકાર્બન સંયોજન કઈ પ્રક્રિયા દ્વારા બને છે?				
	(A)	વૃલ્ફ કિશ્નર	(B)	હોફમેન	
	(C)	ગ્રિગ્નાર્ડ	(D)	LiAlH₄ વડે રિડક્શન	
70.	એસિરે	ટમાઈડને નિર્જલ ફોસ્ફરસ પેન્ટોક્સાઈડ સાથે ગ	ારમ કર	તાં મળતી નીપજનું IUPAC નામ કયું છે?	
	(A)	ઈથાઈલ એમાઈન	(B)	પ્રોપેન નાઈટ્રાઈલ	
	(C)	સાયેનો મિથેન	(D)	ઈથેન નાઈટ્રાઈલ	
71.	નીચેન	ાં પૈકી કેન્દ્રાનુરાગી યોગશીલ પ્રક્રિયા કઈ છે?			
	(A)	ઈથાઈલ ક્લોરાઈડનું NaOH દ્વારા જલ વિભ	ાજન		
	(B) એસિટાલ્ડીહાઈડનું NaHSO ₃ દ્વારા શુધ્ધિકરણ				
	(C) એનીસોલનું આલ્કીલેશન				
	(D)	એસેટિક ઍસિડનું ડિ–કાર્બોક્સિલેશન			
72 .	સમઘ	ટકીય આલ્કીલ એમાઈનનાં ઉત્કલનબિંદુની તુલ	ાના કરો		
	(A)	$1^{\circ} > 2^{\circ} > 3^{\circ}$	(B)	1° > 2° < 3°	
	(C)	1° < 2° < 3°	(D)	1° < 2° > 3°	
73.	બેન્ઝિ	ન નાઈટ્રાઈલમાં રહેલાં σ (Sigma) અને :	π (Pi)	સહસંયોજક બંધની સંખ્યા અનુક્રમે	
	(A)	5, 13	(B)	15, 3	
	(C)	13, 5	(D)	16, 2	
		(Space for Ro	ugh '	Work)	

•

74.	બેકેલ	ાઇટ કયાં પ્રકારનું પોલીમર છે?		· · · · · · · · · · · · · · · · · · ·	
	(A)	યોગશીલ પોલીમર	(B)	હોમો પોલીમર	
	(C)	સંઘનન પોલીમર	(D)	બાયો પોલીમર	
			-		
75.	ધ્રુવ ર	ાદેશોમાં પગરખાંની બનાવટ માટે કુદર તી :	રબરનો ઉપય	યોગ થતો નથી કારણ કે	
•	(A)	કુદરતી રબર 10° સે. થી નીચા તાપમાને	પોચુ બને દ	3.	
``	(B)	કુદરતી રબર 10° સે. થી નીચા તાપમાને	બરડ બને દ	3. ·	
	(C)	કુદરતી રબર 10° સે. થી નીચા તાપમાને	પીગળી જા	ય છે.	
	(D)	કુદરતી રબર 10° સે. થી નીચા તાપમાને	મજબૂત બ	ને છે.	•
					•
76.	ગ્લુકો:	ઝ અને ફ્રુક્ટોઝ વચ્ચે કયો સંબંધ છે?			
	(A)	ક્રિયાશીલ સમૂહ સમઘટકતા	(B)	રોટામર્સ	
	(C)	સ્થાનભેદ સમઘટકતા	(D)	ભૌમિતિક સમઘટકતા	
77.	ગ્લુકોઃ	ઝને તમે ચક્રિય સંયોજન શાથી કહી શકો?			
	(A)	ગ્લુકોઝ ટોલેન્સ પ્રક્રિયા આપે છે.			
	(B)	ગ્લુકોઝ ફિનાઈલ હાઈડ્રેઝીન સાથે પ્રક્રિયા	કરે છે.		
	(C)	ગ્લુકોઝ સોડિયમ હાઈડ્રોજન સલ્ફાઈટ સા	થે પ્રક્રિયા અ	ાપતુ નથી.	•
	(D)	ગ્લુકોઝ નાઈદ્રિક ઍસિડ સાથે પ્રક્રિયા કરે	છે.		
 		(Space for	Rough	Work)	

78. પ્રોજેસ્ટેરોન સ્નાવ કઈ ગ્રંથિમાંથી થાય છે?

(A) થાયરોઇડ

(B) અંડાશય

(C) એડ્રિનલ

(D) વૃષણ

79. નીચેનાં પૈકી કયું સંયોજન ફિરોમોન છે?

(A) લિનાલુલ (Linalool)

(B) ડિસપારલૂરે

(C) BHA

(D) એલિટેમ

80. એલિઝારીનની હાજરીમાં ધાતુ આયન (વિભાગ - 1) અને રંગ (વિભાગ - 2) ની યોગ્ય જોડ બનાવો.

વિભાગ - 2
(a) ભૂરો
(b) ગુલાબી
(c) જાંબલી
(d) લાલ

- (A) I a, II d, III c, IV b
- (B) I-b, II-a, III-d, IV-c
- (C) I-c, II-b, III-a, IV-d
- (D) I d, II c, III b, IV a

(Space for Rough Work)

(Space for Rough Work)

PCG-2011 BOOKLET A

[23]

(Space for Rough Work)

