Probeklausur zur Einführung in die Festkörperphysik

Prof. Christian Pfleiderer

Wintersemester 2017/2018 25. Januar 2018

Hinweise:

- Notieren Sie auf jedem beschriebenen Blatt Name und Matrikelnummer!
- Fertigen Sie Ihre Lösung ausschließlich auf den ausgeteilten DIN A4 Bögen an! Notizen auf dieser Angabe werden bei der Korrektur nicht berücksichtigt!
- Diese Klausurangabe umfasst 6 Aufgaben.
- Bearbeitungszeit: 90 min
- Zugelassene Hilfsmittel:
 - Nicht programmierbarer, netzunabhängiger Taschenrechner.
 - Wörterbuch
 - Ein DIN A4 Formelblatt, beidseitig ausschließlich handschriftlich beschrieben.

Konstanten:

Wirkungsquantum	$h = 6.63 \times 10^{-34} \mathrm{Js}$
red. Wirkungsquantum	$\hbar = 1.05 \times 10^{-34} \mathrm{Js}$
Elementarladung	$e = 1.60 \times 10^{-19} \mathrm{C}$
Elektronenmasse	$m_{\rm e} = 9.11 \times 10^{-31} {\rm kg}$
Atomare Masseneinheit	$u = 1.66 \times 10^{-27} \mathrm{kg}$
Boltzmann-Konstante	$k_{\rm B} = 1.38 \times 10^{-23} {\rm J K^{-1}}$
Avogadro-Konstante	$N_{\rm A} = 6.02 \times 10^{23} {\rm mol}^{-1}$
Elektrische Feldkonstante	$\epsilon_0 = 8.85 \times 10^{-12} \text{As/(Vm)}$
Magnetische Feldkonstante	$\mu_0 = 4\pi \times 10^{-7} \mathrm{N}\mathrm{m}^{-2}$

1 Zweidimensionale Struktur

Abbildung 1.1 zeigt eine zweidimensionale Verbindung aus drei Elementen mit den Atomradien $r_{\rm A}$ (Atom A: Schachbrettmuster), $r_{\rm B}$ (Atom B: gefüllt) und $r_{\rm C}$ (Atom C: vertikal gestreift).

- (a) Wie viele Atome jedes Typs sind in der primitiven Einheitszelle?
- (b) Geben Sie die chemische Formeleinheit des Kristalls an.
- (c) Geben Sie die Einheitsvektoren einer primitiven Einheitszelle an.
- (d) Geben Sie die Vektoren für die B-Atome dieser Einheitszelle an.
- (e) Welche geometrische Form hat die Wigner-Seitz-Zelle?
- (f) Wie viele akustische und wie viele optische Phononenzweige gibt es?

Figure 1.1: Zweidimensionale Struktur

2 Zinkblende-Struktur

Die meisten Halbleiter in optoelektronischen Anwendungen besitzen die Zinkblende-Struktur (ZnS). Diese besteht aus einer zweiatomigen Basis, angeordnet in einem fcc Gitter mit einem Atom am Ursprung und dem Zweiten bei $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4})$. Bei GaAs, dem wichtigsten Vertreter der III-V Halbleiter, beträgt die Gitterkonstante a = 5.56 Å.

- (a) Was ist der kleinste Abstand zweier Ga Atome und zwischen einem Ga und As Atom?
- (b) Die Ebenen, die senkrecht auf der dreizähligen Rotationsachse stehen, bestehen entweder aus Ga oder As. Wie groß ist der Abstand benachbarter Ebenen?
- (c) Berechnen Sie die Dichte von GaAs (in SI Einheiten). Benutzen dazu die Atommassen aus dem Periodensystem ($m_{\rm Ga}=69.72\,u,\,m_{\rm As}=74.92\,u$).
- (d) Bestimmen Sie den Strukturfaktor für GaAs.

3 Fermi-Energie von Lithium und Kupfer

- (a) Bestimmen Sie unter der Annahme wechselwirkungsfreier Elektronen die Fermi-Energie $E_{\rm F}$ in eV, die Fermi-Temperatur $T_{\rm F}$ und den Fermi-Wellenvektor k_F für:
 - Lithium (bcc-Sruktur; $a = 3.2 \,\text{Å}$; ein Leitungselektron pro Atom)
 - Kupfer (fcc-Struktur; $a=3.6\,\text{Å}$; vier Leitungselektronen pro Atom).
- (b) Erklären Sie kurz, warum die gemessene Fermi-Energie von Lithium mit dem berechneten Wert gut übereinstimmt während die gemessene Fermi-Energie von Kupfer vom berechneten Wert stark abweicht.

4 Bindungsenergie im Neon-Kristall

- (a) Nennen Sie vier Bindungstypen in Festkörpern und geben Sie jeweils ein Beispiel an, in dem dieser Bindungstyp dominant ist.
- (b) Skizzieren Sie die fcc-Struktur.
- (c) Wieviele nächste Nachbarn besitzt in der fcc-Struktur jedes Atom?
- (d) Das Edelgas Neon kristallisiert in der fcc-Struktur. Die Bindungsenergie des Kristalls wurde zu $U_{\rm B}=-1.88\,{\rm kJ\,mol^{-1}}$ gemessen und die Gitterkonstante beträgt $a=4.466\,{\rm \AA}$. Die Wechselwirkung der Atome untereinander kann über das Lennard-Jones-Potential beschrieben werden:

$$U_{\text{Pot}}(r) = -4\epsilon \left[\left(\frac{\sigma}{r} \right)^6 - \left(\frac{\sigma}{r} \right)^{12} \right]$$
 (1)

Berechnen Sie die Parameter σ und ϵ . Gehen Sie von der Annahme aus, dass die Wechselwirkung nur zwischen nächsten Nachbarn auftritt.

5 Brillouin-Zone

Betrachten sie ein zweidimensionales quadratisches Gitter mit Gitterkonstante $a=2\,\text{Å}$ und einatomiger Basis.

- (a) Skizzieren Sie die erste und zweite Brillouin-Zone, indem Sie die entsprechenden Flächen im reziproken Gitter schraffieren.
- (b) Nehmen Sie an, jedes Atom trage zwei Leitungselektronen zum Elektronengas bei. Berechnen Sie den Fermi-Wellenvektor k_F in Einheiten π/a und die Fermi-Energie in Einheiten von $E_0 = h^2/(8m_0a^2)$ des zweidimensionalen Gases.
- (c) Tragen Sie die Fermi-Fläche in die Billouin-Zonen aus Teilaufgabe (a) ein.
- (d) Zeichnen Sie die Fermi-Fläche in der ersten und zweiten Brillouin-Zone im reduzierten Zonenschema.
- (e) Handelt es sich bei diesem Elektronengas um ein Metall oder einen Isolator?

6 Drei-Achsen-Spektrometer

- (a) Zeichnen Sie schematisch den Aufbau eines Drei-Achsen-Spektrometers und beschriften Sie die wichtigsten Komponenten. Kennzeichnen Sie in Ihrer Skizze den Streuwinkel 2θ .
- (b) Welcher Winkel muss variiert werden, um eine Messung bei konstantem Energieübertrag durchzuführen? Begründen Sie kurz Ihre Antwort.
- (c) Neutronen der Wellenlänge $\lambda_0=1.15\,\text{Å}$ werden an einem LiF-Kristall gestreut (fcc Gitter, $a=4.02\,\text{Å}$). Neutronenquelle, Probe und Detektor spannen eine Ebene parallel zu den (001)-Netzebenen des Kristalls auf. Fällt der Neutronenstrahl parallel zur [100]-Richung ein, so beobachtet man unter einem Ablenkwinkel von $2\Theta=30^\circ$ gestreute Neutronen der Wellenlänge $\lambda=1.8\,\text{Å}$. Skizzieren Sie den Streuvorgang im reziproken Raum unter der Annahme $G=(\bar{1}\,1\,0)$.
- (d) Werden Phononen erzeugt oder vernichtet?