Selayang Pandang

Regresi Logistik

Ali Akbar Septiandri

Universitas Al-Azhar Indonesia aliak bars@live.com

April 5, 2020

BAHAN BACAAN

- Septiandri, A.A. (2019). Artificial Intelligence Kuliah 3: Regresi Logistik. Github.
- 2 Murray, I. (2016). MLPR class notes. (Regression and Gradients; Logistic Regression) http://www.inf.ed.ac.uk/teaching/courses/mlpr/2016/notes/(graduate level)

- 1 Ulasan
- 2 Regresi Logistik
- **3** Optimasi
- 4 Klasifikasi

ULASAN

Minggu lalu...

- Bias-variance trade off

• Generalisasi error

- Optimasi model: pembagian dataset
- Metrik evaluasi

Memprediksi kategori

- Apa yang harus dilakukan jika kita ingin memprediksi kategori alih-alih nilai riil?
- Contoh: Prediksi apakah komentar-komentar berikut termasuk *spam* atau *ham* (bukan spam) jika dilihat dari kemunculan kata-kata 'order' dan 'password'.
- Kita asumsikan spam = 1 dan ham = 0. Bagaimana memaksa keluaran dari regresi linear $y \in (-\infty, \infty)$ menjadi $y \in \{0, 1\}$?

REGRESI LINEAR

Gambar: Mencari hubungan $\mathbf{y}=X\mathbf{w}$ dengan meminimalkan $E(\mathbf{w})=\sum_{i=1}^N(y_i-\mathbf{w}^T\mathbf{x}_i)^2$

Regresi Logistik

MENGUBAH KELUARAN

- Berdasarkan keluaran regresi linear, kita bisa memaksanya menjadi [0, 1]
- Gunakan fungsi sigmoid:

$$P(y = 1|\mathbf{x}) = f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

- Nilai [0, 1] dapat diartikan sebagai probabilitas dari kelas
- Karena probabilitas harus memiliki total 1, maka

$$P(y=0|\mathbf{x}) = 1 - P(y=1|\mathbf{x})$$

DECISION BOUNDARY

- Dalam kasus satu variabel prediktor, kemiringan dari batas keputusan diatur oleh nilai w_1 , sedangkan w_0 (intercept) hanya menggesernya
- Batas keputusan yang dihasilkan akan berupa
 $\frac{hyperplane}{yang}$ yang akan tegak lurus terhadap vektor
 \mathbf{w}
- Dari **w**, kita bisa menggambarkan batas keputusan (decision boundary) ketika $p(y=1|\mathbf{x}) = p(y=0|\mathbf{x}) = 0.5$, i.e. $\mathbf{w}^T \mathbf{x} = 0$

Fungsi Sigmoid

Gambar: Fungsi sigmoid/logistik $\sigma(z) = \frac{1}{1 + exp(-z)}$

DECISION BOUNDARY

GAMBAR: Batas keputusan dan vektor bobot untuk klasifikasi dua kelas

Bagaimana cara mencari nilai w?

Solusi

- Nilai optimum untuk kasus ini unik, i.e. convex
- Untuk memaksimalkan nilainya, gunakan gradien

$$\frac{\partial L}{\partial w_j} = \sum_{i=1}^{N} (y_i - \sigma(\mathbf{w}^T \mathbf{x}_i)) x_{ij}$$

• Tidak ada solusi tertutup sehingga harus menggunakan optimasi numerik, e.g. dengan gradient descent

LIKELIHOOD

- Asumsi i.i.d.
- Dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$
- *Likelihood*-nya menjadi

$$p(\mathcal{D}|\mathbf{w}) = \prod_{i=1}^{N} p(y = y_i|\mathbf{x}_i, \mathbf{w})$$
$$= \prod_{i=1}^{N} p(y = 1|\mathbf{x}_i, \mathbf{w})^{y_i} (1 - p(y = 1|\mathbf{x}_i, \mathbf{w}))^{1-y_i}$$

• Log likelihood $L(\mathbf{w}) = log \ p(\mathcal{D}|\mathbf{w})$

$$L(\mathbf{w}) = \sum_{i=1}^{N} y_i log \ \sigma(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) log (1 - \sigma(\mathbf{w}^T \mathbf{x}_i))$$

OPTIMASI

ALASAN MELAKUKAN OPTIMASI

Mengapa dinamakan machine learning?

- \bullet Belajar \to masalah optimasi kontinu
- Contoh: regresi linear, regresi logistik, jaringan saraf tiruan, SVM
- Salah satu caranya adalah dengan maximum likelihood

CARA MELAKUKAN OPTIMASI

"Berapa peluangnya kita melihat data ini jika diketahui parameternya?"

- Menggunakan fungsi galat/error $E(\mathbf{w})$ yang akan diminimalkan
- e.g. dapat berupa $-L(\mathbf{w})$
- \bullet Beda nilai \mathbf{w} , beda besar error
- Belajar \equiv menuruni permukaan error

Menuruni Permukaan Fungsi Error

GAMBAR: Menuruni lembah fungsi error E(w)

LEARNING RATE

- η (baca: "eta") dikenal sebagai step size atau learning rate dengan nilai $\eta>0$
- η terlalu kecil \rightarrow lambat
- η terlalu besar \rightarrow tidak stabil

GRADIENT DESCENT

```
\begin{array}{c|c} \mathbf{begin} \\ & \mathbf{Inisialisasi} \ \mathbf{w} \\ & \mathbf{while} \ E(\mathbf{w}) \ masih \ terlalu \ besar \ \mathbf{do} \\ & \mathbf{Hitung} \ \mathbf{g} \leftarrow \frac{\partial E}{\partial \mathbf{w}} \\ & \mathbf{w} \leftarrow \mathbf{w} - \eta \mathbf{g} \\ & \mathbf{end} \\ & \mathbf{return} \ \mathbf{w} \\ \mathbf{end} \end{array}
```

Algorithm 1: Melatih dengan gradient descent

Gambar: Fungsi $E(w) = w^2 - 6w + 9$, kiri: $\eta = 0.1$, kanan: $\eta = 0.9$

Menuruni Permukaan Fungsi Error

GAMBAR: Menuruni lembah fungsi error

GRADIENT DESCENT (BATCH)

$\begin{array}{|c|c|c|} \textbf{begin} \\ & \textbf{Inisialisasi w} \\ & \textbf{while } E(\textbf{w}) \ \textit{masih terlalu besar do} \\ & \textbf{Hitung g} \leftarrow \sum_{i=1}^{N} \frac{\partial E_i}{\partial \textbf{w}} \\ & \textbf{w} \leftarrow \textbf{w} - \eta \textbf{g} \\ & \textbf{end} \\ & \textbf{return w} \\ \textbf{end} \end{array}$

Algorithm 2: Melatih dengan batch gradient descent

BATCH VS ONLINE

- Untuk data yang sedikit, kita bisa menjumlahkan semua error sebelum memperbarui nilai **w** (batch)
- Bagaimana untuk 10 juta data?
- Ternyata, kita bisa memperbarui nilai \mathbf{w} untuk setiap satu data (online)

STOCHASTIC GRADIENT DESCENT

```
\begin{array}{|c|c|c|c|} \textbf{begin} \\ \hline & \textbf{Inisialisasi w} \\ & \textbf{while } E(\textbf{w}) \ \textit{masih terlalu besar do} \\ \hline & \textbf{Pilih } j \ \text{sebagai integer acak antara 1..N} \\ \hline & \textbf{Hitung g} \leftarrow \frac{\partial E_j}{\partial \textbf{w}} \\ \hline & \textbf{w} \leftarrow \textbf{w} - \eta \textbf{g} \\ \hline & \textbf{end} \\ \hline & \textbf{return w} \\ \hline & \textbf{end} \\ \hline \end{array}
```

Algorithm 3: Stochastic gradient descent (SGD)

KELEBIHAN DAN KEKURANGAN

- Batch lebih powerful
- Batch lebih mudah dianalisis
- Online lebih praktikal untuk data yang besar

REGRESI LINEAR DENGAN GRADIENT DESCENT

https://github.com/aliakbars/uai/blob/gh-pages/images/line.gif

PENGEMBANGAN GRADIENT DESCENT (NON-EXAMINABLE)

- "Why Momentum Really Works" [Goh, 2017]
- Performance-dependent η , e.g. "NewBOB": η berubah menjadi setengahnya saat validation set tidak menjadi lebih baik
- Time-dependent schedules, e.g. eksponensial: $\eta(t) = \eta(0)exp(-t/r)$ ($r \sim$ ukuran data latih)

TENTANG METODE OPTIMASI

- Masih banyak metode optimasi yang tidak dibahas, e.g. linear programming, Newton's method, dll.
- Optimasi merupakan bidang matematika yang kompleks
- Masalah convex: optimum global. Non-convex: optimum lokal.
- Pahami mengapa gradient descent bisa mengalami masalah

Klasifikasi

Klasifikasi Multikelas

- Buat vektor bobot \mathbf{w}_k untuk setiap kelas, untuk mengklasifikasikan k dan bukan-k
- Gunakan fungsi softmax

$$p(y = k|\mathbf{x}) = \frac{exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{j=1}^{C} exp(\mathbf{w}_j^T \mathbf{x})}$$

• Perhatikan bahwa $0 \le p(y=k|\mathbf{x}) \le 1$ dan $\sum_{j=1}^{C} p(y=j|\mathbf{x}) = 1$

Model Generatif dan Diskriminatif

• Naïve Bayes memodelkan bagaimana kelas "menghasilkan" vektor fitur $p(\mathbf{x}|y)$ untuk kemudian diklasifikasikan dengan

$$p(y|\mathbf{x}) \propto p(\mathbf{x}|y)p(y)$$

- Regresi logistik langsung memodelkan $p(y|\mathbf{x})$, i.e. diskriminatif
- Keuntungan metode diskriminatif: Buat apa memodelkan $p(\mathbf{x})$? Kita selalu punya input.
- Keuntungan metode generatif: Bisa menangani kasus data yang hilang, mendeteksi pencilan, atau mungkin *memang* perlu menghasilkan input

IKHTISAR

- Klasifikasi dengan regresi logistik dan gradient descent
- Menggunakan $-L(\mathbf{w})$ sebagai pengganti $E(\mathbf{w})$
- Model generatif vs diskriminatif

Referensi

Gabriel Goh (2017)

"Why Momentum Really Works"

Distill http://distill.pub/2017/momentum/

Terima kasih