Министерство образования и науки Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

Ю.С. Белов, С.С. Гришунов

MAPREDUCE

Методические указания по выполнению лабораторной работы по курсу «Технологии обработки больших данных»

УДК 004.62 ББК 32.972.5 Б435

Методические указания составлены в соответствии с учебным планом КФ МГТУ им. Н.Э. Баумана по направлению подготовки 09.03.04 «Программная инженерия» кафедры «Программного обеспечения ЭВМ, информационных технологий и прикладной математики».

Методические указания рассмотрены и одобрены:

- Кафедрой «Программного обеспечения ЭВМ, информационных технологий и прикладной математики» (ФН1-КФ) протокол № 6_ от «_12_», января 2018 г.
Зав. кафедрой ФН1-КФ
- Методической комиссией факультета ФНК протокол № $\underline{\rlap/}$ от « $\underline{\rlap/}$ от « $\underline{\rlap/}$ — $\underline{\rlap/}$ $\underline{\rlap/}$ 0/ 2018 г.
Председатель методической комиссии факультета ФНК ———————————————————————————————————
- Методической комиссией КФ МГТУ им.Н.Э. Баумана протокол № <u>/</u> от « <u>р6</u> » <u>р</u> 2 2018 г.
Председатель методической комиссии КФ МГТУ им.Н.Э. Баумана
Рецензент: к.т.н., зав. кафедрой ЭИУ2-КФ И.В. Чухраев
Авторы к.фм.н., доцент кафедры ФН1-КФ ассистент кафедры ФН1-КФ ————————————————————————————————————

Аннотация

Методические указания по выполнению лабораторной работы по курсу «Технологии обработки больших данных» содержат краткое описание принципа MapReduce и всех его этапов работы, а также пример решения задачи подсчета количества слов в файлах, использующий принцип MapReduce.

Предназначены для студентов 4-го курса бакалавриата КФ МГТУ им. Н.Э. Баумана, обучающихся по направлению подготовки 09.03.04 «Программная инженерия».

- © Калужский филиал МГТУ им. Н.Э. Баумана, 2018 г.
- © Ю.С. Белов, С.С. Гришунов, 2018 г.

ОГЛАВЛЕНИЕ

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ	ВВЕДЕНИЕ	4
ИССЛЕДОВАНИЯ 6 ПРИМЕР МАРКЕDUCE ЗАДАЧИ 9 ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ 15 ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ 15 ВАРИАНТЫ ЗАДАНИЙ 15 КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ 17 ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ 17 ОСНОВНАЯ ЛИТЕРАТУРА 18		
ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ	·	6
ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ	ПРИМЕР MAPREDUCE ЗАДАЧИ	9
ВАРИАНТЫ ЗАДАНИЙ	ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ	. 15
КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ	ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ	. 15
ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ17 ОСНОВНАЯ ЛИТЕРАТУРА18	ВАРИАНТЫ ЗАДАНИЙ	. 15
ОСНОВНАЯ ЛИТЕРАТУРА18	КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ	.17
	ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ	. 17
ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА18	ОСНОВНАЯ ЛИТЕРАТУРА	.18
	ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА	.18

ВВЕДЕНИЕ

Настоящие методические указания составлены в соответствии с программой проведения лабораторных работ по курсу «Технологии обработки больших данных» на кафедре «Программное обеспечение ЭВМ, информационные технологии и прикладная математика» факультета фундаментальных наук Калужского филиала МГТУ им. Н.Э. Баумана.

Методические указания, ориентированные на студентов 4-го курса направления подготовки 09.03.04 «Программная инженерия», содержат краткое описание принципа MapReduce и всех его этапов работы, а также примеры решения задач и задание на выполнение лабораторной работы.

Методические указания составлены для ознакомления студентов с подходом MapReduce для обработки больших данных. Для выполнения лабораторной работы студенту необходимы минимальные знания по программированию на высокоуровневом языке программирования (Java, Python или др.).

ЦЕЛЬ И ЗАДАЧИ РАБОТЫ, ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ЕЕ ВЫПОЛНЕНИЯ

Целью выполнения лабораторной работы является формирование практических навыков использования парадигмы MapReduce для обработки больших данных.

Основными задачами выполнения лабораторной работы являются:

- 1. Изучить подход MapReduce.
- 2. Изучить принципы работы Hadoop MapReduce.
- 3. Получить практические навыки реализации MapReduce задач.
- 4. Уметь обрабатывать большие текстовые файлов с помощью MapReduce.

Результатами работы являются:

- Входные файлы с данными
- МарReduce-программа, обрабатывающая данные согласно варианту задания
- Выходные файлы с результатами вычислений
- Подготовленный отчет

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИЗУЧЕНИЯ, ИССЛЕДОВАНИЯ

Обработка больших данных стандартными приемами приведет к ряду проблем:

- 1. Объем обрабатываемых данных ограничен памятью сервера.
- 2. Невозможно распараллелить обработку данные на нескольких серверах.

Можно сформулировать основные принципы работы с большими данными:

- 1. Горизонтальная масштабируемость. Поскольку данных может быть сколь угодно много любая система, которая подразумевает обработку больших данных, должна быть расширяемой.
- 2. Отказоустойчивость. Принцип горизонтальной масштабируемости подразумевает, что машин в кластере может быть много. Например, Наdoop-кластер Yahoo имеет более 42000 машин. Это означает, что часть этих машин будет гарантированно выходить из строя. Методы работы с большими данными должны учитывать возможность таких сбоев и переживать их без каких-либо значимых последствий.
- 3. Локальность данных. В больших распределённых системах данные распределены по большому количеству машин. Если данные физически находятся на одном сервере, а обрабатываются на другом расходы на передачу данных могут превысить расходы на саму обработку. Поэтому одним из важнейших принципов проектирования BigData-решений является принцип локальности данных по возможности обрабатываем данные на той же машине, на которой они хранятся.

Все современные средства работы с большими данными так или иначе следуют этим трём принципам.

MapReduce — это модель распределенной обработки данных, предложенная компанией Google для обработки больших объёмов данных на компьютерных кластерах.

MapReduce предполагает, что данные организованы в виде некоторых записей. Обработка данных происходит в 3 стадии (рис. 1):

Рис. 1 – Стадии работы MapReduce задачи

Рассмотрим каждую из стадий:

1. Стадия Мар. На этой стадии данные предобрабатываются при помощи функции map(), которую определяет пользователь. Работа этой стадии заключается в предобработке и фильтрации данных. Работа очень похожа на операцию map в функциональных языках программирования — пользовательская функция применяется к каждой входной записи.

Функция map() примененная к одной входной записи и выдаёт множество пар ключ-значение. Данная функция может выполняться на каждом сервере независимо и параллельно над тем набором данным, которым оперирует данный сервер.

- **2.** Стадия Shuffle. Проходит незаметно для пользователя. В этой стадии вывод функции map «разбирается по корзинам» каждая корзина соответствует одному ключу вывода стадии map. В дальнейшем эти корзины послужат входом для reduce.
- **3.** Стадия Reduce. Каждая «корзина» со значениями, сформированная на стадии shuffle, попадает на вход функции reduce().

Функция reduce задаётся пользователем и вычисляет финальный результат для отдельной «корзины». Множество всех значений, возвращённых функцией reduce(), является финальным результатом MapReduce-задачи.

Свойства MapReduce задач:

- 1. Все запуски функции тар работают независимо и могут работать параллельно, в том числе на разных машинах кластера.
- 2. Все запуски функции reduce работают независимо и могут работать параллельно, в том числе на разных машинах кластера.
- 3. Shuffle внутри себя представляет параллельную сортировку, поэтому также может работать на разных машинах кластера. Пункты 1-3 позволяют выполнить принцип горизонтальной масштабируемости.
- 4. Функция тар, как правило, применяется на той же машине, на которой хранятся данные это позволяет снизить передачу данных по сети (принцип локальности данных).

ПРИМЕР MAPREDUCE ЗАДАЧИ

Классическим примером MapReduce задачи является подсчет слов в большом количестве документов (Word count).

Задача формулируется следующим образом: имеется большой корпус документов. Задача — для каждого слова, хотя бы один раз встречающегося в корпусе, посчитать суммарное количество раз, которое оно встретилось в корпусе.

Входной записью для MapReduce задачи будет являться каждый отдельный документ. Функция <u>map</u> обрабатывает каждое слово в документе и превращает один входной документ в набор пар (word, 1). Стадия <u>shuffle</u> прозрачно для пользователя группирует данные пары по словам (word, [1,1,1,1,1]). Функция <u>reduce</u> суммирует единицы, возвращая финальный результат для каждого слова (word, count).

Реализация Word Count на Java

Для реализации MapReduce задачи подсчета слов будем использовать систему Hadoop, установленную и настроенную в лабораторной работе №1. Hadoop имеет встроенный MapReduce framework, работающий с файловой системой HDFS.

Для запуска MapReduce задачи нужно указать как минимум расположение входных/выходных файлов, задать функцию тар и reduce, реализовав соответствующие интерфейсы. Эти и другие параметры являются конфигурацией задачи (job). После конфигурации задача передается Менеджеру ресурсов (Resource Manager), который отвечает за распределение и планирование выполнения задач по всем узлам.

```
public void map(Object key, Text value, Context context)
      throws IOException, InterruptedException {
      StringTokenizer itr = new StringTokenizer(value.toString());
      while (itr.hasMoreTokens()) {
         word.set(itr.nextToken());
         context.write(word, one);
      }
   }
}
public static class IntSumReducer
   extends Reducer<Text,IntWritable,Text,IntWritable> {
      private IntWritable result = new IntWritable();
      public void reduce(Text key, Iterable<IntWritable> values,
      Context context)
         throws IOException, InterruptedException {
      int sum = 0:
      for (IntWritable val: values) {
         sum += val.get();
      result.set(sum);
      context.write(key, result);
   }
}
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
   Job job = Job.getInstance(conf, "word count");
   job.setJarByClass(WordCount.class);
   job.setMapperClass(TokenizerMapper.class);
   job.setCombinerClass(IntSumReducer.class);
   job.setReducerClass(IntSumReducer.class);
   job.setOutputKeyClass(Text.class);
   job.setOutputValueClass(IntWritable.class);
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   System.exit(job.waitForCompletion(true)? 0:1);
}
```

Класс Маррег выполняет функцию Мар в MapReduce задаче. Он преобразует входные пары ключ-значение в промежуточные пары ключ-значение. Типы промежуточных записей могут отличаться от входных пар ключ-значение.

Реализация Маррег передается задаче через вызов метода Job.setMapperClass. Затем фреймворк самостоятельно вызывает функцию тар для каждой входной записи. Преобразованные пары ключ-значение передаются на следующий этап вызовом метода context.write.

Все преобразованные пары ключ-значение группируются фреймворком и передаются в Reducer. Пользователь может контролировать группировку, определив класс Comparator и установив его вызовом Job.setGroupingComparatorClass.

Также дополнительно можно определить класс Combiner, который будет выполнять локальную группировку промежуточных пар. Combiner помогает снизить количество информации, передаваемое от Маррег к Reducer.

Функция тар обрабатывает по одному текстовому файлу. С помощью объекта StringTokenizer текст разделяется на токены, разделенные пробельными символами. Для каждого токена возвращается пара ключ-значение (word, 1).

В качестве тестового примера создадим 2 файла:

```
file01:
Hello World Bye World
file02:
Hello Hadoop Goodbye Hadoop

Для тестового примера первый вызов тар вернет:
(Hello, 1)
(World, 1)
(Bye, 1)
(World, 1)

Второй вызов тар вернет:
(Hello, 1)
(Hadoop, 1)
(Goodbye, 1)
(Hadoop, 1)
```

Затем результат работы функций тар передается объекту Combiner. Combiner выполняется локально для каждого файла и используется для локальной группировки ключей. В данном случае Combiner и Reducer будут одинаковы. Reducer и Combiner суммируют значения, которые и являются количеством появления слов в тексте. Combiner складывает значения в рамках одного файла, результатом его работы будут:

Для первого файла:

```
(Bye, 1)
(Hello, 1)
(World, 2)
Для второго файла:
(Goodbye, 1)
(Hadoop, 2)
(Hello, 1)
```

Реализация Reducer передается задаче через вызов метода Job.setReducerClass. Затем фреймворк самостоятельно вызывает функцию reduce для каждой сгруппированной по ключу паре. Результат работы Reducer является результатом работы всей MapReduce задачи:

```
(Bye, 1)
(Goodbye, 1)
(Hadoop, 2)
(Hello, 2)
(World, 2)
```

Метод main определяет параметры конфигурации задачи, такие как пути ввода/вывода (передаются через командную строку), типы ключей и значений, форматы ввода/вывода. Затем вызывается метод job.waitForCompletion, который ожидает завершения выполнения задачи.

Запуск MapReduce задачи

Скомпилируем файл wordcount.java в jar архив wc.jar командой:

bin/hadoop com.sun.tools.javac.Main WordCount.java jar cf wc.jar WordCount*.class

Создадим входные файлы в локальной файловой системе и перенесем их в HDFS:

```
bin/hadoop fs -copyFromLocal /input/file01 bin/hadoop fs -copyFromLocal /input/file02
```

Запускаем приложение из wc.jar, в качестве параметров передаем входной и выходной путь:

bin/hadoop jar wc.jar WordCount/user/hduser/wordcount/input /user/hduser/wordcount/output

Результат работы приложения можно найти в user/hduser/wordcount/output.

```
bin/hadoop fs -cat /user/joe/wordcount/output/part-r-00000
Bye 1
Goodbye 1
Hadoop 2
Hello 2
```

Streaming

World 2

Несмотря на то, что Hadoop реализован на языке Java, существует возможность реализовывать MapReduce приложения на любом языке, позволяющем использовать стандартный консольный ввод-вывод.

Для этого необходимо использовать специальное приложение java-streaming:

```
$HADOOP_HOME/bin/hadoop jar

$HADOOP_HOME/hadoop-streaming.jar

-input myInputDirs \

-output myOutputDir \

-mapper org.apache.hadoop.mapred.lib.IdentityMapper \

-reducer /bin/wc
```

Команда Наdoop jar позволяет запустить в Нadoop jar файл. В качестве параметра команды необходимо указать имя jar файла, в роли которого выступает hadoop-streaming.jar. Далее в команде в виде ключей необходимо передать директорию с входными файлами в hdfs, директорию, в которую будет выводиться результат вычислений, а также скрипты, в которых описаны mapper и reducer.

ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

Выполнить задание с помощью подхода MapReduce согласно варианту. В качестве входных текстовых файлов можно использовать книги в txt формате из библиотеки Project Gutenberg: https://www.gutenberg.org.

Список стоп-слов: http://xpo6.com/wp-content/uploads/2015/01/stop-word-list.csv

ТРЕБОВАНИЯ К РЕАЛИЗАЦИИ

Программа может быть реализована на любом языке высокого уровня, для которого существует поддержка работы с HDFS (Java, Python, Scala или др.). Имена файлов должны передаваться приложению в качестве ключей при вызове в терминале.

ВАРИАНТЫ ЗАДАНИЙ

1. Подсчитать количество строк в файле. Результат должен быть сохранен в файле в виде:

file_name lines_count

2. Подсчитать количество появлений каждого буквенного символа в файле. Подсчет должен быть регистро-зависимым (т.е. буквы «а» и «А» считаются разными). Результат должен быть сохранен в файле в виде:

((a 484) (b 95) (c 187) ...)

3. Реализовать поиск слова в нескольких файлах. Результат должен содержать номера всех строк в каждом файле, в которых появляется заданное слово. Сохранить результат в файл в виде:

(word (7@file1 46@file1 52@file2 63@file2 ...))

4. Построить индекс файла. Для каждого слова в файле результат должен содержать номера всех строка, в которых появляется данное слово. Индекс должен быть регистро-независимым. Результат должен быть сохранен в файле в виде:

((word1 (1 42 58)), (word2 (34, 55, 776, 3456), ...)

- 5. Модифицировать программу подсчета слов WordCount для удаления стоп-слов, знаков пунктуации и цифр. Список стоп-слов должен находиться в отдельном файле.
- 6. Модифицировать программу подсчета слов WordCount для подсчета слов, начинающихся с заданной подстроки. Из результата должны быть удалены стоп-слова.
- 7. Модифицировать программу подсчета слов WordCount. Результат должен содержать 100 самых часто встречающихся слов. Из результата должны быть удалены стоп-слова.
- 8. Построить обратный индекс для файлов. Обратный индекс для каждого слова содержит список имен файлов, в которых оно встречается, и количество появлений слова в каждом файле. Результат должен быть сохранен в файле в виде:

(word1 (file1 42), (file2 25)), (word2 (file1, 55)), ...)

9. Реализовать умножение матриц.

Входной файл имеет формат:

имя_матрицы, строка, столбец, значение.

Результат выполнения стадии Мар представить в виде пар ключ-значение, где ключ – индексы элемента вычисляемой матрицы, а значение — список значений, необходимых для вычисления данного элемента.

10. Подсчитать средний рейтинг фильма. Входный файл имеет формат:

userId, movieId, rating, timestamp.

Результат должен быть сохранен в файле в формате:

moiveId, av_rating

Входной файл: rating.csv

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Сформулируйте основные принципы работы с большими данными.
 - 2. Перечислите основные стадии решения MapReduce задачи.
 - 3. Опишите роль стадии Мар.
 - 4. Опишите роль стадии Shuffle.
 - 5. Опишите роль стадии Reduce.
 - 6. Как задать в java-приложении mapper-класс и reducer-класс.
- 7. Приведите команды для задания входных и выходных директорий файлов java MapReduce приложения.
 - 8. Опишите назначение Combiner класс.
- 9. Опишите процесс компиляции и запуска java MapReduce приложения.
- 10. Приведите команду для запуска MapReduce приложения, написанного на каком-либо языке, отлично от java.

ФОРМА ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

На выполнение лабораторной работы отводится 3 занятия (6 академических часов: 5 часов на выполнение и сдачу лабораторной работы и 1 час на подготовку отчета).

Номер варианта студенту выдается преподавателем.

Отчет на защиту предоставляется в печатном виде.

Структура отчета (на отдельном листе(-ax)): титульный лист, формулировка задания (вариант), этапы выполнения работы (со скриншотами), результаты выполнения работы. выводы.

ОСНОВНАЯ ЛИТЕРАТУРА

- 1. Федин Ф.О. Анализ данных. Часть 1. Подготовка данных к анализу [Электронный ресурс]: учебное пособие / Ф.О. Федин, Ф.Ф. Федин. Электрон. текстовые данные. М.: Московский городской педагогический университет, 2012. 204 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/26444.html
- 2. Федин Ф.О. Анализ данных. Часть 2. Инструменты Data Mining [Электронный ресурс]: учебное пособие / Ф.О. Федин, Ф.Ф. Федин. Электрон. текстовые данные. М.: Московский городской педагогический университет, 2012. 308 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/26445.html
- 3. Чубукова, И.А. Data Mining [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : , 2016. 470 с. Режим доступа: https://e.lanbook.com/book/100582. Загл. с экрана.
- 4. Воронова Л.И. Від Data. Методы и средства анализа [Электронный ресурс] : учебное пособие / Л.И. Воронова, В.И. Воронов. Электрон. текстовые данные. М. : Московский технический университет связи и информатики, 2016. 33 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/61463.html
- 5. Юре, Л. Анализ больших наборов данных [Электронный ресурс] / Л. Юре, Р. Ананд, Д.У. Джеффри. Электрон. дан. Москва : ДМК Пресс, 2016. 498 с. Режим доступа: https://e.lanbook.com/book/93571. Загл. с экрана.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

6. Волкова Т.В. Разработка систем распределенной обработки данных [Электронный ресурс] : учебно-методическое пособие / Т.В. Волкова, Л.Ф. Насейкина. — Электрон. текстовые данные. — Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2012. — 330 с. — 2227-8397. — Режим доступа: http://www.iprbookshop.ru/30127.html

- 7. Кухаренко Б.Г. Интеллектуальные системы и технологии [Электронный ресурс] : учебное пособие / Б.Г. Кухаренко. Электрон. текстовые данные. М. : Московская государственная академия водного транспорта, 2015. 116 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/47933.html
- 8. Воронова Л.И. Интеллектуальные базы данных [Электронный ресурс]: учебное пособие / Л.И. Воронова. Электрон. текстовые данные. М.: Московский технический университет связи и информатики, 2013. 35 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/63324.html
- 9. Николаев Е.И. Базы данных в высокопроизводительных информационных системах [Электронный ресурс] : учебное пособие / Е.И. Николаев. Электрон. текстовые данные. Ставрополь: Северо-Кавказский федеральный университет, 2016. 163 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/69375.html

Электронные ресурсы:

10. http://hadoop.apache.org/ (англ.)