过数

向量的范数

- <u>Def</u>: (向量的范数) 对任一向量 $\vec{x} \in \mathbb{R}^n$,可以找到唯一与之对应的非负实数 $\|\vec{x}\|$,满足:
 - 1. 非负性: $\forall \vec{x} \in \mathbb{R}^n, ||\vec{x}|| \ge 0$, 且 $||\vec{x}|| = 0 \Leftrightarrow \vec{x} = \vec{0}$ 。
 - 2. 奇次性: $\forall \vec{x} \in \mathbb{R}^n, \alpha \in \mathbb{R}, \quad \|\alpha \vec{x}\| = |\alpha| \cdot \|\vec{x}\|$ 。
 - 3. 三角不等式: $\forall \vec{x}, \vec{y} \in \mathbb{R}^n$, $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ 。

则称实数||x||为向量求的范数。

• Def: (向量的距离)两个向量求和对的距离可以定义为 $\|x - y\|$ 。

• Example: 向量 $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ 的 L_p 范数:

$$\|\overrightarrow{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \quad 1 \le p \le +\infty$$

$$L_1$$
范数: $\|\vec{x}\|_1 = \sum_{i=1}^n |x_i|$

$$L_2$$
范数: $\|\vec{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$

$$L_{\infty} 范数: \|\vec{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

RK: 当 0 \vec{x} = (1,0,\cdots,0), \vec{y} = (0,\cdots,0,1) 不满足三角不等式。 $\|\vec{x}\|_p = 1$, $\|\vec{y}\|_p = 1$, $\|\vec{x} + \vec{y}\| = 2^{1/p} > 2$

• Thm: (范数等价原理) 若 $R_1(\vec{x})$ 和 $R_2(\vec{x})$ 是 \mathbb{R}^n 上的两种不同的范数,则存在 $0 < m < M < \infty$,使得

$$m \le \frac{R_1(\overrightarrow{x})}{R_2(\overrightarrow{x})} \le M$$
, or $mR_2(\overrightarrow{x}) \le R_1(\overrightarrow{x}) \le MR_2(\overrightarrow{x})$, $\forall \overrightarrow{x} \in \mathbb{R}^n$

• Example:

$$\|\overrightarrow{x}\|_2 \leq \|\overrightarrow{x}\|_1 \leq \sqrt{n} \|\overrightarrow{x}\|_2$$

$$\|\overrightarrow{x}\|_{\infty} \leq \|\overrightarrow{x}\|_{1} \leq n \|\overrightarrow{x}\|_{\infty}$$

$$\|\overrightarrow{x}\|_{\infty} \le \|\overrightarrow{x}\|_{2} \le \sqrt{n} \|\overrightarrow{x}\|_{\infty}$$

向量序列的极限

• <u>Def</u>: (向量序列的极限) 设 $\{\vec{x}^{(k)}\}_{k=1}^{\infty}$ 为 \mathbb{R}^n 上的向量序列,若存在 $\vec{x} \in \mathbb{R}^n$,使得 $\lim_{k \to \infty} ||\vec{x}^{(k)} - \vec{x}|| = 0$,则称向量序列 $\vec{x}^{(k)}$ 是收敛的, \vec{x} 称 为该向量序列的极限。

- 利用范数的等价性: 如果 $\vec{x}^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)}) \in \mathbb{R}^n$ 收敛至 $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$,当且仅当每个分量都收敛 $\lim_{k \to \infty} x_i^{(k)} = x_i, i = 1, \dots, n$ 。
- 收敛性与范数无关。

矩阵的范数

- Def: (矩阵的范数)设 $A \in \mathbb{R}^{m \times n}$,则 $||A|| \in \mathbb{R}$ 为范数,如果它满足
 - 1. 非负性: ||A|| ≥ 0, ||A|| = 0 ⇔ A = 0
 - 2. 齐次性: $\forall \lambda \in \mathbb{R}, ||\lambda A|| = |\lambda| \cdot ||A||$
 - 3. 三角不等式: $\forall A, B \in \mathbb{R}^n, ||A + B|| \le ||A|| + ||B||$
 - 4. 相容性: $\forall \vec{x} \in \mathbb{R}^n, ||A\vec{x}|| \le ||A|| \cdot ||\vec{x}||$

特别的,如果 $A \in \mathbb{R}^{n \times n}$ 为方阵,还要求 $||AB|| \le ||A|| \cdot ||B||$, $\forall A, B \in \mathbb{R}^{n \times n}$.

· RK: 类似的, 矩阵的范数相互等价。

• Example: (从属范数)

$$||A|| = \sup_{\overrightarrow{x} \in \mathbb{R}^n} \frac{||A\overrightarrow{x}||}{||\overrightarrow{x}||} = \sup_{\overrightarrow{x} \in \mathbb{R}^n} \frac{||(A\overrightarrow{x}/||\overrightarrow{x}||)||}{||(\overrightarrow{x})/||\overrightarrow{x}|||} = \sup_{||\overrightarrow{x}||=1} ||A\overrightarrow{x}||$$

$$||A||_1 = \max_{1 \le j \le n} \left(\sum_{i=1}^n |a_{ij}| \right)$$
 (列和最大值)

$$||A||_2 = \sqrt{\max_{1 \le i \le n} |\lambda_i|}$$
, λ_i 为 $A^T \cdot A$ 的特征值

$$||A||_{\infty} = \max_{1 \le i \le n} \left(\sum_{j=1}^{n} |a_{ij}| \right)$$
 (行和最大值)

矩阵收敛和极限

• <u>Def</u>: (矩阵收敛和极限) 设 $\{A^{(k)}\}_{k=1}^{\infty}$ 为 $\mathbb{R}^{n\times n}$ 上的矩阵序列,若存在 $A \in \mathbb{R}^{n\times n}$,使得 $\lim_{k\to\infty} ||A^{(k)} - A|| = 0$,则称序列 $\{A^{(k)}\}_{k=1}^{\infty}$ 是收敛的,A为该序列的极限。

• 类似的,收敛性与范数无关。

$$\lim_{k \to \infty} A^{(k)} = A \Leftrightarrow \lim_{k \to k} A^{(k)}_{ij} = A_{ij}, i, j = 1, \dots, n$$

收敛矩阵

• Def: (收敛矩阵) A称为收敛矩阵, 如果 $\lim_{k\to\infty} A^k = 0$ 。

• Thm: A 为收敛矩阵 \Leftrightarrow 谱半径 $\rho(A) = \max |\lambda_i(A)| < 1$ 。

• RK: 考虑A的特征值A和对应的特征向量x

$$|\lambda| \cdot ||\overrightarrow{x}|| = ||\lambda \overrightarrow{x}|| = ||A \overrightarrow{x}|| \le ||A|| \cdot ||\overrightarrow{x}|| \quad \Rightarrow |\lambda| \le ||A|| \quad \Rightarrow \rho(A) \le ||A||$$

如果存在范数满足 $||A|| \le 1$,则 $\lim_{k \to \infty} A^k = 0$ 。

条件数

• <u>Def</u>: (矩阵的条件数) 若A为非奇异($Det(A) \neq 0$),则定义A的条件数 $Cond_p(A) = ||A||_p \cdot ||A^{-1}||_p$

• RK: 矩阵的条件数以来所取的范数定义, 且

$$Cond_p(A) = ||A||_p \cdot ||A^{-1}||_p \ge ||A \cdot A^{-1}||_p = ||I||_p = 1$$

• \underline{RK} : 当 $Cond_p(A)$ 大的时候,矩阵称为"病态矩阵"。一般来说,当A的最大特征值和最小特征值之比较大时,矩阵呈病态。