Machine Learning Lecture 2: Linear Models

Radoslav Neychev

Outline

- 1. Previous lecture recap
- 2. Linear models overview
- 3. Linear Regression under the hood
- 4. Gauss-Markov theorem
- 5. Regularization in Linear regression
- 6. Model validation and evaluation
- 7. Gradient descent recap

Previous lecture recap

- Dataset, observation, feature, design matrix, target
- i.i.d. property
- Model, prediction, loss/quality function
- Parameter, Hyperparameter

$$Y = X_1 + X_2 + X_3$$

Dependent Variable Independent Variable

Outcome Variable Predictor Variable

Response Variable Explanatory Variable

Regression models

- Regression models
- Classification models

- Regression models
- Classification models
- Unsupervised models (e.g. PCA analysis):

- Regression models
- Classification models
- Unsupervised models (e.g. PCA analysis):
- Building block of other models (ensembles, NNs, etc.):

Actually, it's a neural network. We will meet it later.

Linear regression problem statement:

• Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$.

Linear regression problem statement:

- Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y} = w_0 + \sum_{k=1}^{p} x_k \cdot w_k = //\mathbf{x} = [1, x_1, x_2, \dots, x_p]// = \mathbf{x}^T \mathbf{w}$$

Linear regression problem statement:

- Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y} = w_0 + \sum_{k=1}^p x_k \cdot w_k = //\mathbf{x} = [1, x_1, x_2, \dots, x_p]// = \mathbf{x}^T \mathbf{w}$$
 where $\mathbf{w} = (w_0, w_1, \dots, w_n)$, w_0 is bias term

Linear regression problem statement:

- ullet Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n, y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y}=w_0+\sum_{k=1}^p x_k\cdot w_k=//\mathbf{x}=[1,x_1,x_2,\dots,x_p]//=\mathbf{x}^T\mathbf{w}$$
 where $\mathbf{w}=(w_0,w_1,\dots,w_n)$, w_0 is bias term

we added an additional column of 1's to the design matrix to simplify the formulas

Linear regression problem statement:

- Dataset $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^N$, where $\mathbf{x}_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$.
- The model is linear:

$$\hat{y} = w_0 + \sum_{k=1}^{P} x_k \cdot w_k = //\mathbf{x} = [1, x_1, x_2, \dots, x_p]// = \mathbf{x}^T \mathbf{w}$$
 where $\mathbf{w} = (w_0, w_1, \dots, w_n)$, w_0 is bias term.

Least squares method (MSE minimization) provides a solution:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \|Y - \hat{Y}\|_{2}^{2} = \arg\min_{\mathbf{w}} \|Y - X\mathbf{w}\|_{2}^{2}$$

Analytical solution

Denote quadratic loss function:

$$Q(\mathbf{w}) = (Y - X\mathbf{w})^T (Y - X\mathbf{w}) = ||Y - X\mathbf{w}||_2^2$$
,

where $X=[\mathbf{x}_1,\ldots,\mathbf{x}_n],\ \mathbf{x}_i\in\mathbb{R}^p\ Y=[y_1,\ldots,y_n],\ y_i\in\mathbb{R}$. To find optimal solution let's equal to zero the derivative of the

equation above:

$$\nabla_{\mathbf{w}} Q(\mathbf{w}) = \nabla_{\mathbf{w}} [Y^T Y - Y^T X \mathbf{w} - \mathbf{w}^T X^T Y + \mathbf{w}^T X^T X \mathbf{w}] =$$

$$= 0 - X^T Y - X^T Y + (X^T X + X^T X) \mathbf{w} = 0$$

 $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$ $\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$ what if this matrix is *singular*?

Analytical solution

$$\hat{\mathbf{w}} = (X^T X)^{-1} X^T Y$$

what if this matrix is singular?

Unstable solution

In case of multicollinear features the matrix $\boldsymbol{X}^T\boldsymbol{X}$ is almost singular .

It leads to unstable solution:

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577, 184.41701118])
```

Unstable solution

In case of multicollinear features the matrix $\boldsymbol{X}^T\boldsymbol{X}$ is almost singular .

It leads to unstable solution:

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577, 184.41701118])
```

corresponding features are almost collinear

Unstable solution

In case of multicollinear features the matrix $\boldsymbol{X}^T\boldsymbol{X}$ is almost singular .

It leads to unstable solution:

```
w_true
array([ 2.68647887, -0.52184084, -1.12776533])

w_star = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(Y)
w_star
array([ 2.68027723, -186.0552577 , 184.41701118])
```

the coefficients are huge and sum up to almost 0

Regularization

To make the matrix nonsingular, we can add a diagonal matrix:

$$\hat{\mathbf{w}} = (X^T X + \lambda I)^{-1} X^T Y ,$$

Regularization

To make the matrix nonsingular, we can add a diagonal matrix:

$$\hat{\mathbf{w}} = (X^T X + \lambda I)^{-1} X^T Y ,$$

where $I = \operatorname{diag}[1_1, \dots, 1_p]$.

Regularization

To make the matrix nonsingular, we can add a diagonal matrix:

$$\mathbf{\hat{w}} = (X^T X + \lambda I)^{-1} X^T Y ,$$

where $I = \operatorname{diag}[1_1, \dots, 1_p]$

Actually, it's a solution for the following loss function:

$$Q(\mathbf{w}) = ||Y - X\mathbf{w}||_2^2 + \lambda^2 ||\mathbf{w}||_2^2$$

exercise: derive it by yourself

Gauss-Markov theorem

Gauss-Markov theorem

Suppose target values are expressed in following form:

$$Y = X^T \mathbf{w} + oldsymbol{arepsilon}$$
 , where $oldsymbol{arepsilon} = [arepsilon_1, \ldots, arepsilon_N]$

are random variables

Gauss-Markov assumptions:

- $\mathbb{E}(\varepsilon_i) = 0 \quad \forall i$
- $Var(\varepsilon_i) = \sigma^2 < \inf \forall i$
- $Cov(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$

•
$$\mathbb{E}(\varepsilon_i) = 0 \quad \forall i$$
 Gauss-Markov theorem

•
$$Var(\varepsilon_i) = \sigma^2 < \inf \forall i$$

•
$$Cov(\varepsilon_i, \varepsilon_j) = 0 \quad \forall i \neq j$$

$$\mathbf{\hat{w}} = (X^T X)^{-1} X^T Y$$

delivers Best Linear Unbiased Estimator

Loss functions in regression

$$MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|_{2}^{2} = \frac{1}{N} \sum_{i} (y_{i} - \hat{y}_{i})^{2}$$
$$MAE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \|\mathbf{y} - \hat{\mathbf{y}}\|_{1} = \frac{1}{N} \sum_{i} |y_{i} - \hat{y}_{i}|$$

Different norms

Once more: loss functions:

$$MSE = \frac{1}{n} \|\mathbf{x}^T \mathbf{w} - \mathbf{y}\|_2^2$$

Regularization terms:

$$\bullet$$
 L_2 : $\|\mathbf{w}\|_2^2$

only works for Gauss-Markov theorem

$$MAE = \frac{1}{n} \|\mathbf{x}^T \mathbf{w} - \mathbf{y}\|_1$$

$$\bullet L_1: \|\mathbf{w}\|_1$$

What's the difference?

- MSE (L₂)
 - delivers BLUE according to Gauss-Markov theorem
 - differentiable
 - sensitive to noise
- MAE (L₁)
 - non-differentiable
 - not a problem
 - much more prone to noise

What's the difference?

- L₂ regularization
 - constraints weights
 - delivers more stable solution
 - o differentiable
- L₁ regularization
 - non-differentiable
 - not a problem
 - selects features

Loss functions in regression

Other functions to measure the quality in regression:

- R2 score
- MAPE
- SMAPE
- ...

Model validation and evaluation

Supervised learning problem statement

Let's denote:

- Training set $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^n$, where
 - \circ $(x \in \mathbb{R}^p, y \in \mathbb{R})$ for regression
 - $x_i \in \mathbb{R}^p$, $y_i \in \{+1, -1\}$ for binary classification
- ullet Model $f(\mathbf{x})$ predicts some value for every object
- Loss function $Q(\mathbf{x}, y, f)$ that should be minimized

Overfitting vs. underfitting

Overfitting vs. underfitting

Overfitting vs. underfitting

- We can control overfitting / underfitting by altering model's capacity (ability to fit a wide variety of functions):
- select appropriate hypothesis space
- learning algorithm's effective capacity may be less than the representational capacity of the model family

Is it good enough?

Image credit: Joseph Nelson @josephofiowa

Cross-validation

Backup