1. ÜBUNGSBLATT

- (1) FOLGEN IN METRISCHEN RÄUMEN: Sei (X, d) ein metrischer Raum und $(x_n)_{n \in \mathbb{N}}$ eine Folge in X. Zeigen Sie:
 - (a) Ist $(x_n)_{n\in\mathbb{N}}$ konvergent, so ist der Grenzwert eindeutig.
 - (b) Ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge, so ist $(x_n)_{n\in\mathbb{N}}$ beschränkt.
 - (c) Ist $(x_n)_{n\in\mathbb{N}}$ konvergent, so ist die Folge eine Cauchy-Folge.
 - (d) Ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge und besitzt $(x_n)_{n\in\mathbb{N}}$ eine konvergente Teilfolge, so ist die Folge selbst konvergent.
 - (e) Ist $(x_n)_{n\in\mathbb{N}}$ konvergent gegen $x\in X$ und ist $(y_n)_{n\in\mathbb{N}}$ eine Folge, die gegen $y\in X$ konvergiert, so gilt $\lim_{n\to\infty} d(x_n,y_n)=d(x,y)$.
- (2) TOPOLOGIEN BEISPIELE: Überprüfen Sie, ob folgenden Mengensysteme Topologien auf den jeweiligen Mengen definieren.
 - (a) Sei X eine Menge und $\mathcal{T}_{cofin} := \{A \subset X : X \setminus A \text{ endlich}\} \cup \{\emptyset\}.$
 - (b) $S = \{0, 1, 2\}, \mathcal{T} := \{\emptyset, S, \{0, 1\}, \{1, 2\}\}.$
 - (c) $X = \mathbb{R}, \mathcal{T}_1 := \{(-\infty, a) \colon a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
 - (d) $X = \mathbb{R}, \mathcal{T}_2 := \{A \subset \mathbb{R} \colon \forall x \in A \exists r \in \mathbb{Q}_+ \text{ mit } B(x,r) \subset A\}$, wobei

$$B(x,r) = \{ y \in \mathbb{R} : d(x,y) < r \}$$
 für $d(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|.$

(3) TOPOLOGISCH ÄQUIVALENTE METRIKEN: Sei (X, d) ein metrischer Raum. Zeigen Sie, dass

$$\tilde{d}(x,y) = \frac{d(x,y)}{1 + d(x,y)}, \quad x, y \in X$$

eine Metrik auf X definiert, so dass für die durch die Metriken induzierte Topologie gilt $\mathcal{T}_d = \mathcal{T}_{\tilde{d}}$. Hinweis: Verwenden Sie die Monotonie-Eigenschaften der Funktion $[0,\infty) \to \mathbb{R}, x \mapsto \frac{1}{1+x}$.

(4) P-ADISCHE METRIK: Für $X = \mathbb{Z}$, eine feste Primzahl p und $x, y \in X$ setzen wir

$$d_{(p)}(x,y) := \begin{cases} 0, & x = y, \\ \frac{1}{p^{n(p)}}, & x \neq y, \ x - y = \pm \Pi_{q \text{ prim }} q^{n(q)} \end{cases}.$$

Dabei ist $\pm \Pi_{q \text{ prim}} q^{n(q)}$ die eindeutige Primfaktorenzerlegung von x - y.

(a) Zeigen Sie die Ungleichung

$$d_{(p)}(x,y) \le \max\{d_{(p)}(x,z),d_{(p)}(z,y)\}$$

für $x, y, z \in \mathbb{Z}$ und folgern Sie, dass $d_{(p)}$ eine Metrik ist.

(b) Sei p eine feste Primzahl. Zeigen Sie, das $(p^n)_{n\in\mathbb{N}}$ bezüglich $d_{(p)}$ gegen Null konvergiert.

(5) DISKRETE METRIK: Sei $X \neq \emptyset$ eine Menge und $d: X \times X \rightarrow [0, \infty),$

$$d(x,y) := \begin{cases} 0, & x = y, \\ 1, & x \neq y. \end{cases}$$

die diskrete Metrik auf X. Zeigen Sie folgende Aussagen:

- (a) d definiert eine Metrik auf X.
- (b) Ist $(x_n)_{n\in\mathbb{N}}$ eine konvergente Folge in (X,d), so ist die Folge ab einem gewissen Index konstant.
- (c) (X, d) ist vollständig.
- (d) d induziert auf X die diskrete Topologie \mathcal{T}_d .
- (e) Jede Teilmenge von X ist offen und abgeschlossen.
- (f) Sei (Y, \mathcal{T}) ein topologischer Raum. Jede Abbildung $(X, \mathcal{T}_d) \to (Y, \mathcal{T})$ ist stetig.