Parametric Portfolio Policy Adaptive Elastic Net

Bingbing Li Mark Salmon

August 2017

Outline

- Parametric Portfolio Policy
 - Utility Maximization
 - Transaction cost
- 2 Adaptive Elastic Net
- Stimation
 - Including transaction cost
 - Cross Validation
 - Overview of PPPAENET
- 4 Illustration: PPPAENET Trend following

Outline

- Parametric Portfolio Policy
 - Utility Maximization
 - Transaction cost
- 2 Adaptive Elastic Net
- Estimation
 - Including transaction cost
 - Cross Validation
 - Overview of PPPAENET
- 4 Illustration: PPPAENET Trend following

PPP: Parametric Portfolio Policy

- Find portfolio weights $(w_{i,t})$ that maximize a given utility function.
- Solve for the optimal portfolio weights:

$$w_{i,t} = f(x_{i,t}; \theta)$$

$$= \bar{w}_{i,t} + \frac{\theta^{T} x_{i,t}}{N_{t}}$$

$$= \bar{w}_{i,t} + \left(\theta_{1} x_{i,t}^{1} + \theta_{2} x_{i,t}^{2} + \dots + \theta_{p} x_{i,t}^{p}\right) \frac{1}{N_{t}}$$
(1)

where:

- $\bar{w}_{i,t}$ is weight of asset i in the benchmark portfolio at time t
- N_t is number of asset at time t
- $x_{i,t}$ is a vector of characteristic
- $oldsymbol{ heta}$ is a vector of coefficients to be estimated

PPP: Examples

Trend following strategy

 $ar{w}_{i,t} = 0$, and $x_{i,t}^j = ext{trend signals}$

Cross sectional strategy

 $\bar{w}_{i,t}$ benchmark weights, and $x_{i,t}^j$ cross sectional signals (carry, momentum, value, and economic)

Time series strategy

 $\bar{w}_{i,t} =$ benchmark weghts, and $x_{i,t}^j =$ time series signals (carry, momentum, value, and economic)

PPP: portfolio returns

• Given the portfolio weight function, we compute portfolio returns:

$$r_{p,t+1} = \sum_{i=1}^{N_t} w_{i,t} r_{i,t+1}$$

$$= \sum_{i=1}^{N_t} \left(\bar{w}_{i,t} + \frac{\theta^T x_{i,t}}{N_t} \right) r_{i,t+1}$$

$$= r_{ben,t+1} + r_{\theta,t+1}$$
(2)

where:

- ullet $r_{ben,t+1}$ is the benchmark portfolio return
- $r_{\theta,t+1}$ is parametric portfolio return

Utility Maximization

• Find θ that maximizes expected utility:

$$\max_{\theta} E\left[u\left(r_{p,t+1}\right)\right] \tag{3}$$

Estimated b y maximizing average realized utility in sample:

$$\max_{\theta} \frac{1}{T} \sum_{t=1}^{I} u(r_{\rho,t+1}) \tag{4}$$

Power Utility:

$$u(r_{p,t+1}) = \frac{(1+r_{p,t+1})^{1-\gamma}}{1-\gamma}$$
 (5)

Mean Variance (quadratic) utility:

$$u(r_{p,t+1}) = E_t(r_{p,t+1}) - \frac{\gamma}{2} Var_t(r_{p,t+1})$$
 (6)

Utility Maximization

• In the case of power utility:

$$\min_{\theta} - \frac{1}{T} \sum_{t=1}^{T} \frac{(1 + r_{p,t+1})^{1-\gamma}}{1 - \gamma} \tag{7}$$

In the case of mean variance utility:

$$\min_{\theta} \frac{\gamma}{2} \theta^{T} \hat{\Sigma}_{c} \theta + \gamma \theta^{T} \hat{\sigma}_{ben} - \theta^{T} \hat{\mu}_{c}$$
 (8)

- $\hat{\Sigma}_c$: sample covariance matrix of the characteristic return vector
- $\hat{\sigma}_{ben}$: sample covariance (vector) between the characteristic return vector and benchmark portfolio return
- $\hat{\mu}_c$: sample mean of the characteristic return vector

Transaction cost

• Turnover of the portfolio:

$$T_t = \sum_{i=1}^{N_t} |w_{i,t} - w_{i,t-1}| \tag{9}$$

Re-balancing costs:

$$Cost_{t} = \sum_{i=1}^{N_{t}} c_{i,t} |w_{i,t} - w_{i,t-1}|$$
 (10)

Utility Maximization with transaction cost

• In the case of power utility:

$$\min_{\theta} -\frac{1}{T} \sum_{t=1}^{T} \frac{(1+r_{p,t+1})^{1-\gamma}}{1-\gamma}$$
 (11)

where:

$$r_{p,t+1} = \sum_{i=1}^{N_t} w_{i,t} r_{i,t+1} - \sum_{i=1}^{N_t} c_{i,t} |w_{i,t} - w_{i,t-1}|$$
 (12)

In the case of mean variance utility:

$$\min_{\theta} \frac{\gamma}{2} \theta^{T} \hat{\Sigma}_{c} \theta + \gamma \theta^{T} \hat{\sigma}_{ben} - \theta^{T} \hat{\mu}_{c} + \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_{t}} c_{i,t} |w_{i,t} - w_{i,t-1}|$$
 (13)

Outline

- Parametric Portfolio Policy
 - Utility Maximization
 - Transaction cost
- 2 Adaptive Elastic Net
- Estimation
 - Including transaction cost
 - Cross Validation
 - Overview of PPPAENET
- 4 Illustration: PPPAENET Trend following

Adaptive Elastic Net

Estimator:

$$\hat{\theta}_{Aenet} = \arg\min_{\theta} f(\theta) + \underbrace{\lambda_1 \sum_{j=1}^{p} \hat{\omega}_j |\theta_j|}_{Lasso} + \underbrace{\lambda_2 \sum_{j=1}^{p} |\theta_j|^2}_{Ridge}$$
(14)

- Lasso term: shrinkage (variables selection).
- Ridge term: stabilize solution path.
- Adaptive Elastic Net takes care of over-fitting issue and has the oracle property when there are large number of variables that are correlated.

Adaptive Elastic Net

• Let $\lambda_2=0$ and $\hat{\varpi}_j=1$, we have the Lasso estimator:

$$\hat{\theta}_{Lasso} = \arg\min_{\theta} f(\theta) + \lambda_1 \sum_{j=1}^{p} |\theta_j|$$
 (15)

• Let $\lambda_1 = 0$, we have the Ridge estimator:

$$\hat{\theta}_{Ridge} = \arg\min_{\theta} f(\theta) + \lambda_2 \sum_{j=1}^{p} |\theta_j|^2$$
 (16)

• Let $\hat{\omega}_i = 1$, we have the Elastic Net estimator:

$$\hat{\theta}_{Enet} = \arg\min_{\theta} f(\theta) + \lambda_1 \sum_{j=1}^{p} |\theta_j| + \lambda_2 \sum_{j=1}^{p} |\theta_j|^2$$
 (17)

• In Adaptive Elastic Net estimator

$$\hat{arphi}_{j} = rac{1}{\left|\hat{ heta}_{ extit{Enet}}
ight|^{lpha}} \simeq rac{1}{\left|\hat{ heta}_{ extit{Enet}} + 1/n
ight|^{lpha}}$$

Outline

- Parametric Portfolio Policy
 - Utility Maximization
 - Transaction cost
- 2 Adaptive Elastic Net
- Stimation
 - Including transaction cost
 - Cross Validation
 - Overview of PPPAENET
- 4 Illustration: PPPAENET Trend following

Estimation

- PPPAENET with No transaction cost:
 - Quadratic approximation (optional)
 - Coordinate descent algorithm.
- PPPAENET with transaction cost:
 - L1 norm approximation.
 - Gradient based algorithm (e.g. BFGS, Newton Conjugate Gradient)

Power Utility with no transaction cost

Coordinate descent algorithm

$$\arg\min_{\theta} -\frac{1}{T} \sum_{t=1}^{T} \frac{(1+r_{p,t+1})^{1-\gamma}}{1-\gamma} + \lambda_1 \sum_{j=1}^{p} \hat{\varpi}_j |\theta_j| + \lambda_2 \sum_{j=1}^{p} |\theta_j|^2$$
 (18)

- Initialize all the $\theta_j=0$. Cycle over $j=1,2,\ldots,p,1,2,\ldots$ till convergence:
- Compute: r_{t+1}^* , δ_j , ρ_j
- Update θ_i by soft-thresholding:

$$\theta_{j} \leftarrow \frac{S(\rho_{j}, \lambda_{1}\hat{\varpi}_{j})}{\delta_{j} + \lambda_{2}}$$

$$= \frac{sign(\rho_{j})(|\rho_{j}| - \lambda_{1}\hat{\varpi}_{j})}{\delta_{j} + 2\lambda_{2}}$$
(19)

Power Utility with no transaction cost

Coordinate descent algorithm

where:

•
$$r_{t+1}^* = \sum_{i=1}^{N_t} \left(\bar{w}_{i,t} + \hat{\theta}^T x_{i,t} / N_t \right) r_{i,t+1}$$

•
$$\delta_j = -\frac{1}{T} \sum_{t=1}^{T} u''(r_{t+1}^*) \left[\sum_{i=1}^{N_t} \left(x_{i,t}^j r_{i,t+1} \frac{1}{N_t} \right) \right]^2$$

•
$$\rho_j = \frac{1}{T} \sum_{t=1}^{T} u'(r_{t+1}^*) \sum_{i=1}^{N_t} \left(x_{i,t}^j r_{i,t+1} \frac{1}{N_t} \right)$$

Mean Variance Utility with no transaction cost

Coordinate descent algorithm

$$\arg\min_{\theta} \frac{\gamma}{2} \theta^{T} \hat{\Sigma}_{c} \theta + \gamma \theta^{T} \hat{\sigma}_{ben} - \theta^{T} \hat{\mu}_{c} + \lambda_{1} \sum_{j=1}^{p} \hat{\varpi}_{j} |\theta_{j}| + \lambda_{2} \sum_{j=1}^{p} |\theta_{j}|^{2}$$
 (20)

- Initialize all the $\theta_j=0$. Cycle over $j=1,2,\ldots,p,1,2,\ldots$ till convergence:
- Compute: $\rho_j = \gamma \sum_{k=1}^p \theta_k \sigma_{j,k} + \gamma \hat{\sigma}_{ben}^j \hat{\mu_c}$
- Update θ_j by soft-thresholding:

$$\theta_j \leftarrow \frac{S\left(-\rho_j, \lambda_1 \hat{\omega}_j\right)}{\gamma \sigma_i^2 + 2\lambda_2} \tag{21}$$

Including transaction cost

Problem:

Transaction cost term: $\sum_{i=1}^{N_t} c_{i,t} |w_{i,t} - w_{i,t-1}|$

- The computation depends on θ .
- L1 norm is not differential-able.

Including transaction cost

- No cost
 - No transaction cost in optimization process.
 - Not optimally re-balancing the portfolio.
 - Coordinate descent works as before.
- Extra cost
 - Approximation: cost associated with trading each characteristic independently.
 - Ignore the reduction in re-balancing the portfolio.
 - Coordinate descent works well.
- Exact cost
 - Approximation of L1 norm by a smooth function.
 - Reduction in transaction cost via optimally re-balancing the portfolio.
 - Gradient based algorithm works.

Extra cost

Transaction costs approximation:

$$\begin{split} &\sum_{i=1}^{N_{t}} c_{i,t} \left| w_{i,t} - w_{i,t-1} \right| \\ &= \sum_{i=1}^{N_{t}} c_{i,t} \left| \bar{w}_{i,t} + \left(\theta_{1} x_{i,t}^{1} + \theta_{2} x_{i,t}^{2} + \dots + \theta_{p} x_{i,t}^{p} \right) \frac{1}{N_{t}} \\ &- \bar{w}_{i,t-1} - \left(\theta_{1} x_{i,t-1}^{1} + \theta_{2} x_{i,t-1}^{2} + \dots + \theta_{p} x_{i,t-1}^{p} \right) \frac{1}{N_{t-1}} \right| \\ &= \sum_{i=1}^{N_{t}} c_{i,t} \left| \Delta \bar{w}_{i,t} + \left(\theta_{1} \Delta x_{i,t}^{1} + \theta_{2} \Delta x_{i,t}^{2} + \dots + \theta_{p} \Delta x_{i,t}^{p} \right) \right| \\ &\approx \sum_{i=1}^{N_{t}} c_{i,t} \left[\left| \Delta \bar{w}_{i,t} \right| + \left| \theta_{1} \right| \left| \Delta x_{i,t}^{1} \right| + \left| \theta_{2} \right| \left| \Delta x_{i,t}^{2} \right| + \dots + \left| \theta_{p} \right| \left| \Delta x_{i,t}^{p} \right| \right] \end{split}$$

Extra cost

- Approximate the transaction cost with the sum of the cost associated with trading each characteristic independently.
- Works when combining various trading strategies (each strategy trades individual characteristic).
- Over estimate the transaction cost when combining characteristic.

Extra cost: Mean Variance Utility

Coordinate descent algorithm

$$\arg\min_{\theta} \frac{\gamma}{2} \theta^{T} \hat{\Sigma}_{c} \theta + \gamma \theta^{T} \hat{\sigma}_{ben} - \theta^{T} \hat{\mu}_{c}$$

$$+ \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_{t}} c_{i,t} \left[\left| \Delta \bar{w}_{i,t} \right| + \left| \theta \right|^{T} \left| \Delta x_{i,t} \right| \right] + \lambda_{1} \sum_{j=1}^{p} \hat{\varpi}_{j} \left| \theta_{j} \right| + \lambda_{2} \sum_{j=1}^{p} \left| \theta_{j} \right|^{2}$$
 (22)

- Initialize all the $\theta_j=0$. Cycle over $j=1,2,\ldots,p,1,2,\ldots$ till convergence:
- Compute: $\rho_j = \gamma \sum_{k=1}^p \theta_k \sigma_{j,k} + \gamma \hat{\sigma}_{ben}^j \hat{\mu}_c$, $\delta_j = \gamma / T \sum_{t=1}^T \sum_{k=1}^p |\theta_k| \left| \Delta x_{i,t}^k \right|$
- Update θ_i by soft-thresholding:

$$\theta_j \leftarrow \frac{S(-\rho_j, \delta_j + \lambda_1 \hat{\omega}_j)}{\gamma \sigma_i^2 + 2\lambda_2} \tag{23}$$

Exact cost: approximation of L1 norm

Definition

The pseudo-Huber function $\phi_{\varepsilon}:\Re\to\Re$

$$\phi_{\varepsilon}(x) = \sqrt{\varepsilon^2 + x^2} - \varepsilon \tag{24}$$

with first and second derivatives:

$$\phi_{\varepsilon}'(x) = \frac{x}{\sqrt{\varepsilon^2 + x^2}} \tag{25}$$

$$\phi_{\varepsilon}''(x) = \frac{\varepsilon^2}{(\varepsilon^2 + x^2)^{3/2}} \tag{26}$$

Exact cost: approximation of L1 norm

Problem: Mean Variance Utility with Transaction Cost

$$\arg \min_{\theta} \frac{\gamma}{2} \theta^{T} \hat{\Sigma}_{c} \theta + \gamma \theta^{T} \hat{\sigma}_{ben} - \theta^{T} \hat{\mu}_{c} + \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_{t}} c_{i,t} |w_{i,t} - w_{i,t-1}| + \lambda_{1} \sum_{j=1}^{p} \hat{\varpi}_{j} |\theta_{j}| + \lambda_{2} \sum_{j=1}^{p} |\theta_{j}|^{2}$$
 (27)

$$f(\theta) = \frac{\gamma}{2} \theta^{T} \hat{\Sigma}_{c} \theta + \gamma \theta^{T} \hat{\sigma}_{ben} - \theta^{T} \hat{\mu}_{c} + \lambda_{2} \sum_{j=1}^{p} |\theta_{j}|^{2}$$
 (28)

$$c(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_t} c_{i,t} |w_{i,t} - w_{i,t-1}|$$
 (29)

$$\simeq \frac{1}{T} \sum_{i=1}^{T} \sum_{i=1}^{N_t} c_{i,t} \phi_{\varepsilon} \left(w_{i,t} - w_{i,t-1} \right) \tag{30}$$

Exact cost: approximation of L1 norm

$$f'(\theta) = \gamma \hat{\Sigma}_c \theta + \gamma \hat{\sigma}_{ben} - \hat{\mu}_c + 2\lambda_2 \theta$$
 (31)

$$\frac{\partial c}{\partial \theta_j} = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_t} c_{i,t} \phi_{\varepsilon}'(w_{i,t} - w_{i,t-1})$$
(32)

$$= \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{N_t} c_{i,t} \frac{\Delta \bar{w}_{i,t} + \theta^T \Delta x_{i,t}}{\sqrt{\varepsilon^2 + (\Delta \bar{w}_{i,t} + \theta^T \Delta x_{i,t})^2}} \Delta x_{i,t}^j$$
(33)

The problem can be solved by the Orthant-Wise Limited- memory Quasi-Newton (OWL-QN) optimization algorithm.

OWL-QN is a modified Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm that allows for allow for L1 penalties.

Cross Validation

- Cross validation
 - k-folds cross validation is performed to determine the tuning parameters.
 - Model is firstly estimated on the training set. The coefficients are then re-estimated for validation set.
 - Average sample criterion is calculated across folds and tuning parameters are chosen based on minimizing the criterion.
 - CEG: Certainty Equivalent Gain
 - SR: Sharpe Ratio
 - SOR: Sortino Ratio
 - OMG: Omega Ratio
 - Inference
 - Bootstrapping Method for Standard Errors and Confidence Intervals
 - Significance and Marginal contributions of characteristic
- Backtesting: Access the performance of the model in test set.

PPPAENET

- Characteristics/signals selection.
- Utility functions.
- Transaction cost functions.
- Statistical inference.
- Cross Validation.
- Backtesting.

Inputs

- ullet Benchmark weights $ar{w}_{i,t}$
- Asset prices/returns
- Transcation costs $c_{i,t}$

Notes

Benchmark weights:

- zero weighted
- equally weighted
- long only volatility parity

Utility Function

- Utility function to be optimised u(.)
- Parameters γ

Notes

- Power Utility
- Mean Variance Utility

Inputs

- ullet Benchmark weights $ar{w}_{i,t}$
- Asset prices/returns
- Transcation costs c_{i,t}

Notes

Benchmark weights:

- zero weighted
- equally weighted
- long only volatility parity

Utility Function

- Utility function to be optimised u(.)
- Parameters γ

Notes

- Power Utility
- Mean Variance Utility

Transaction Cost

 Method to include Transaction Cost in the optimisation

Notes

- No Cost
- Extra Cost
- Exact Cost

Cross validation

- Training set
- Criterion
- Determine the optimal tuning parameters
- Statistical inference

Notes

- 80% data set for Cross Validation
- Criterion: SR
- Bootstrapping

Backtest

 Strategy/Portfolio performance in Test set Bingbing Li, Mark Salmon

Notes

• 20% data set for Testing

Transaction Cost

 Method to include Transaction Cost in the optimisation

Notes

- No Cost
- Extra Cost
- Exact Cost

Cross validation

- Training set
- Criterion
- Determine the optimal tuning parameters
- Statistical inference

Notes

- 80% data set for Cross Validation
- Criterion: SR
- Bootstrapping

Backtest

• Strategy/Portfolio performance in Test set Bingbing Li, Mark Salmon

Notes

20% data set for Testing

Outline

- Parametric Portfolio Policy
 - Utility Maximization
 - Transaction cost
- Adaptive Elastic Net
- Estimation
 - Including transaction cost
 - Cross Validation
 - Overview of PPPAENET
- 4 Illustration: PPPAENET Trend following

Trend following strategy

Trend following strategy:

$$r_{p,t+1}^{TF} = \sum_{i=1}^{N_t} \frac{s_{i,t}}{N_t} r_{i,t+1}$$
 (34)

- where:
- s_{i,t} is trend signal
 - binary signal: sign
 - time series signal
 - cross sectional signal

Trend following strategy

Constant volatility Trend following strategy

$$r_{p,t+1}^{CV,TF} = \frac{\sigma_{TGT}}{\sigma_t^{TF}} \sum_{i=1}^{N_t} s_{i,t} r_{i,t+1}$$
 (35)

Volatility Parity Trend following strategy

$$r_{p,t+1}^{VP,TF} = \frac{\sigma_{TGT}}{\sigma_t^{TF}} \sum_{i=1}^{N_t} s_{i,t} \frac{(\sigma_i)^{-1}}{\sum_{j=1}^{N} (\sigma_J)^{-1}} r_{i,t+1}$$
(36)

Data Description

- Futures Data
 - Source: Quandl.
 - Daily futures prices for 42 assets over the period 01/01/1995 to 11/05/2017.
 - Contract details:
 - Equity contracts:
 - Currency contracts:
 - Government Bond contracts:
 - Commodity contracts:
 - Energy contracts:

Trend signals

- Momentum:
 - s =past N months returns
 - signal $x = s/\sigma_{250}(s)$
 - *N* =5, 10 days, 1, 3, 6, 9, 12, 18, 24, 36, 48, 54, 60 months
- EMA1(n) Exponential Moving Average:
 - s = Closes EMA(n)
 - signal $x = s/\sigma_{250}(s)$
 - *n* =10, 20, 50, 100, 200, 300, 400, 600, 800 days
- EMA2 (n_1, n_2) Exponential Moving Average Crossover:
 - $s = EMA(n_1) EMA(n_2)$
 - signal $x = s/\sigma_{250}(s)$
 - $(n_1, n_2) = (10,20), (20,50), (40,80), (50,200), (100,300), (200,400), (300,500), (400,800)$ days

Trend signals

- MACD(nFAST, nSlow, nSig)MACD Oscillator:
 - s = MACDline MACDsignal
 - signal $x = s/\sigma_{250}(s)$
 - (nFAST, nSlow, nSig) = (10,20,9), (20,50,9), (40,80,9), (500,200,9), (100,300,9), (200,400,9), (300,500,9), (400,800,9) days
- TRIX(n, nSig)Triple Smoothed Exponential Oscillator:
 - s = TRIX.value TRIX.signal
 - signal $x = s/\sigma_{250}(s)$
 - (*n*, *nSig*) = (10,10), (20,10), (50,10), (100,10), (200,10), (300,10), (400,10), (600,10), (800,10) days
- RSI(n)Relative Strength Index:
 - s = RSI 1/2
 - *n* =10, 20, 50, 100, 200, 300, 400, 600, 800 days

PPPAENET Trend following: set up

PPPAENET:

- Zero Benchmark weights.
- $\gamma = 50$, $\alpha = 1$
- Transaction cost: 10bps.
- Training set (cross validation):
 - 01/01/1995 to 22/11/2012
 - Criterion: Omega Ratio
- Test set: 23/11/2012 to 11/05/2017
- In-sample:
 - initial window to estimate: 265
 - 04/02/2000 to 22/11/2012
- Out-of-sample:
 - 23/11/2012 to 11/05/2017

PPPAENET Trend following: signals

- Trend signals (54):
 - $x_{i,t}^j$: Momentum, EMA1, EMA2, MACD, TRIX, RSI
- Volatility adjusted signals (54):
 - $\frac{x_{i,t}^j}{\sigma_{60}(r_t)}$: Volatility Adjusted Trend signals

In-sample performance: PPPAENET Trend Following

System	TF.EXACT.COST	TF.NO.COST	TF.EXTRA.COST
Period	Feb2000 - Nov2012	Feb2000 - Nov2012	Feb2000 - Nov2012
Cagr	6.44	5.32	3.23
Sharpe	1.94	1.71	1.1
DVR	1.9	1.67	1.06
Volatility	3.13	2.95	2.83
MaxDD	-4.06	-4.3	-4
AvgDD	-0.4	-0.4	-0.49
VaR	-0.28	-0.26	-0.28
CVaR	-0.4	-0.38	-0.38
Exposure	99.97	99.97	99.97
AveNetLeverage	11.73	18.69	11.04
AveGrossLeverage	99.94	99.95	99.97
MaxNetLeverage	96.65	96.87	90.99
MaxGrossLeverage	102.52	102.16	103.2

Out-of-sample performance: PPPAENET Trend Following

System	TF.EXACT.COST	TF.NO.COST	TF.EXTRA.COST
Period	Nov2012 - May2017	Nov2012 - May2017	Nov2012 - May2017
Cagr	4.15	2.42	2.6
Sharpe	1.78	1	1.58
DVR	1.75	0.93	1.53
Volatility	2.05	2.16	1.46
MaxDD	-1.73	-2.68	-1.43
AvgDD	-0.29	-0.41	-0.21
VaR	-0.19	-0.21	-0.13
CVaR	-0.26	-0.29	-0.2
Exposure	99.92	99.92	99.92
AveNetLeverage	-13.58	19.99	-22.06
AveGrossLeverage	99.94	99.95	99.97
MaxNetLeverage	36.35	92.52	20.16
MaxGrossLeverage	100.99	101.06	100.93

Backtesting Performance

- SG CTA Trend Index: calculates the net daily rate of return for a pool of trend following based hedge fund managers.
- Target volatility: 10%
- Max gross leverage: 600%

Out-of-sample performance: PPPAENET Trend Following v.s. CTA Index

legendnames	SG.Trend.Index	PPP.TF.NOCOST	PPP.TF.EXTRACOST	PPP.TF.EXACTCOS	
Period	Nov2012 - May2017	Nov2012 - May2017	Nov2012 - May2017	Nov2012 - May2017	
AveReturns	3.71	9.55	12.05	17.8	
Skewness	-33.02	31.74	0.93	22.3	
Volatility	10.24	10.45	7.94	10.11	
Sharpe	0.36	0.91	1.52	1.76	
MaxDD	-17.21	-13.87	-6.2	-8.05	
AveDD	-1.84	-2.06	-1.15	-1.44	
Win.Percent.Month	50.91	54.55	65.45	74.55	
Best.Month	7.29	9.96	6.41	11.18	
Worst.Month	-4.86	-4.86	-2.83	-3.47	

August 2017

47 / 49

PROFESSION STATES	- Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	MaxDD
2012												0.2	0.7	-1.8
2013	0.2	3.1	-1.6	3.5	3.3	2.5	2.4	1.7	2.3	-0.1	0.8	6.2	27.1	-4.1
2014	0.7	7.5	0.3	1.2	-0.3	1.8	-2.8	1.9	-3.4	11.2	0.7	1.2	21.0	-6.6
2015	7.2	3.1	-0.4	1.3	-0.1	5.0	4.5	-1.5	0.7	-3.5	4.3	2.5	25.1	-8.0
2016	3.7	-0.3	2.7	4.5	1.7	7.2	-1.5	0.8	0.2	1.6	0.1	-3.0	18.5	-5.6
2017	3.5	1.9	-2.9	0.6	0.3								3.4	-6.0
Avg	3.1	3.1	-0.4	2.2	1.0	4.1	0.7	0.7	-0.1	2.3	1.5	1.4	16.0	-5.4

Allocation for PPPAENET Trend Following in time

