

BAKALÁŘSKÁ PRÁCE

Mikuláš Matoušek

Srážky elektronů s dvouatomovými molekulami

Ústav teoretické fyziky

Vedoucí bakalářské práce: RNDr. Karel Houfek, Ph.D.

Studijní program: fyzika

Studijní obor: obecná fyzika

	zalářskou práci vypracoval(a) samostatně a výhradně enů, literatury a dalších odborných zdrojů.
zákona č. 121/2000 Sb., auto	noji práci vztahují práva a povinnosti vyplývající ze orského zákona v platném znění, zejména skutečnost, rávo na uzavření licenční smlouvy o užití této práce odst. 1 autorského zákona.
V dne	Podpis autora

Poděkování.

Název práce: Srážky elektronů s dvouatomovými molekulami

Autor: Mikuláš Matoušek

Ústav: Ústav teoretické fyziky

Vedoucí bakalářské práce: RNDr. Karel Houfek, Ph.D., Ústav teoretické fyziky

Abstrakt: Abstrakt.

Klíčová slova: klíčová slova

Title: Collisions of electrons with diatomic molecules

Author: Mikuláš Matoušek

Institute: Institute of theoretical physics

Supervisor: RNDr. Karel Houfek, Ph.D., Institute of theoretical physics

Abstract: Abstract.

Keywords: key words

Obsah

Ú	vod	2
1	Teorie 1.1 </th <th>3 3 3 4</th>	3 3 3 4
2	Výsledky	5
$\mathbf{Z}_{\mathbf{z}}$	ávěr	9
Se	eznam použité literatury	10
Se	eznam obrázků	11
Se	eznam tabulek	12
Se	eznam použitých zkratek	13
A	Přílohy A.1 První příloha	14 14

$\mathbf{\acute{U}vod}$

Kvantová chemie je !!!TODO!!!!

1. Teorie

1.1

Základní cíl kvantově chemických výpočtů je najít řešení stacionární schrödingerovy rovnice

$$\mathbf{\hat{H}}|\Psi\rangle = E|\Psi\rangle,\tag{1.1}$$

kde $|\Psi\rangle$ je mnohačásticová vlnová funkce a $\hat{\mathbf{H}}$ je hamiltonián popisující danou molekulu. Protože se jedná o dost složitý problém na numerické výpočty, je nutné zavést několik zjednodušení.

První je Born-Oppenhaimerova aproximace, která vzhledem k řádově rozdílným hmotnostem jader a elektronů rozděluje pohyb jader a elektronů, čímž pádem $|\Psi\rangle$ závisí na souřadnicích jader jen parametricky, a nevystupují jako proměnné v řešené rovnici.

Další snahou je popis mnohaelektronové vlnové funkce $|\Psi\rangle := f(\vec{x}_1 \dots \vec{x}_N)$, kde \vec{x}_i jsou polohy jednotlivých elektronů, pomocí součinu jednoelektronových funkcí $|\Psi\rangle := f_1(\vec{x}_1) f_2(\vec{x}_2) \dots f_N(\vec{x}_N)$. Pak ale narážíme na požadavek antisymetrie vlnové funkce vůči prohození libovolných 2 elektronů. Proto používáme vlnové funkce ve tvaru Slaterova determinantu

$$|\Psi\rangle = \frac{1}{\sqrt{N!}} \begin{vmatrix} f_1(\vec{x}_1) & f_2(\vec{x}_2) & \cdots & f_N(\vec{x}_1) \\ f_1(\vec{x}_2) & f_2(\vec{x}_2) & & f_N(\vec{x}_2) \\ \vdots & & \ddots & \vdots \\ f_1(\vec{x}_N) & f_2(\vec{x}_N) & \cdots & f_N(\vec{x}_N) \end{vmatrix}$$
(1.2)

Dále musíme tuto funkci rozvinout do nějaké báze. Úplná báze prostoru, na kterém pracujeme, by byla nekonečná. Proto musíme najít takovou bázi, abychom mohli problém řešit s dostatečnou přesností v konečné bázi. 1

1.2 Metody

1.2.1 Báze

Jako základ pro konstrukci řešení se v kvantové chemii berou orbitaly vodíku podobných atomů, se středem na jednotlivých jádrech. Jejich lineární kombinací získáváme molekulové orbitaly, kde optimalizací koeficientů této lineární kombinace se snažíme dosáhnout toho, aby získané orbitaly byly vlastními stavy hamiltoniánu dané molekuly. Prvním krokem ovšem je napočítat skalární součiny mezi jednotlivými bázovými vektory a matici hamiltoniánu v dané bázi. To se ukázalo být výpočetně náročné, neboť je třeba numericky řešit velké množství integrálů. Proto se radiální část aproximuje lineární kombinací několika gausovských funkcí, kde již velká část integrálů má analytické vyjádření, čímž se řádově sníží čas výpočtu.

¹I když pořád platí: "Čím víc, tím líp."

1.2.2 Hartree-Fock

Hartree-Fockova metoda (HF), též nazývaná metoda self-konzistentního pole, je jedna z nejjednodušších ab-initio metod, spočívající v optimalizaci jediného Slaterova determinantu.

2. Výsledky

Zkoumali jsme molekuly BeH/BeH⁻ a OH/OH⁻, protože se jedná o molekuly, které mají vázaný jak základní stav, tak anion, a zároveň se jedná o dostatečně malé systémy, aby bylo možné provádět výpočty přesnými metodami.

Ke kvantově chemickým výpočtům jsme používali program MOLPRO.[1][2]. Pro určitý soubor mezijaderných vzdáleností jsme napočítali energii základního stavu molekuly pro fixovaná jádra, u základního stavu, tak u aniontu. Ze znalosti těchto křivek jsme poté zjišťovali parametry molekul, které je možné nalézt experimentálně, což jsou disociační energie aniontu i neutrální molekuly a elektronové afinity vázané i úplně disociované² molekuly. Protože ale experimentální data nejsou určená minimem potenciální energie molekuly, ale základní vibrační hladinou, bylo třeba napočítat energetické hladiny získaného potenciálu. K tomu jsme použili ??? metodu výpočtu na na mříži ??? . Vzhledem k počtu geometrií, pro které jsme prováděli kvantově-chemické výpočty, který byl nedostatečný pro další numerické výpočty ³, jsme získané hodnoty proložili kubickým splinem, ze kterého jsme pak interpolovali hodnotu potenciálu v několika stovkách bodů. Poté jsme numericky získali energetické hladiny v daném potenciálové křivce pro částici o (redukované) hmotnosti $\mu = m_1 m_2/(m_1 + m_2)$, kde m_1, m_2 jsou hmotnosti jednotlivých jader. Získané vlastní stavy pak odpovídají vibračním stavům dané molekuly.

¹cca 35 hodnot

²Ta odpovídá odpovídá elektronové afinitě některého z prvků v molekule.

³a extrémní výpočetní náročnosti při případném výpočtu v dostatečném počtu geometrií

Obrázek 2.1: Nejnižší vibrační hladiny molekul $\mathrm{BeH/BeH^-}$

	Tabulka 2.1: BeH	[
Method	$E_a(BeH)["eV"]$	$E_a(H)["eV"]$	$D_a(BeH)["eV"]$	$D_a(BeI$
Experimental:	0.70 ± 0.1	0.754195	2.18 ± 0.02	
FCI /aug-cc-pVDZ	0.542	0.679	1.895	
RCCSD(T) /aug-cc-pVDZ	0.534	0.679	1.888	
${ m CI}$ 5,1,1,0 /aug-cc-pVDZ	0.536	-0.325	1.892	
CI~6,2,2,0~/aug-cc-pVDZ	0.542	0.678	1.893	
FCI /aug-cc-pCVDZ	0.546	0.679	1.901	
RCCSD(T) /aug-cc-pCVDZ	0.538	0.679	1.894	
${ m CI}$ 5,1,1,0 /aug-cc-pCVDZ	0.540	0.603	1.898	
${ m CI}$ 6,2,2,0 /aug-cc-pCVDZ	0.528	0.670	1.899	
FCI/cc- $pVTZ$	0.326	-0.091	1.990	
RCCSD(T) / cc-pVTZ	0.320	-0.091	1.983	
CI~6,2,2,0~/cc-pVTZ	0.325	-0.091	1.988	
FCI /aug-cc-pVTZ	0.570	0.734	2.010	
RCCSD(T) /aug-cc-pVTZ	0.562	0.734	2.003	
CI~6,2,2,0~/aug-cc-pVTZ	0.569	0.732	2.006	
RCCSD(T) /aug-cc-pVQZ	0.566	0.746	2.034	
${ m CI}$ 5,1,1,0 /aug-cc-pVQZ	0.565	0.744	2.038	
${ m CI}$ 6,2,2,0 /aug-cc-pVQZ	0.572	0.746	2.039	
CI 9,3,3,1 / aug-cc-pVQZ	0.573	0.746	2.039	
${ m CI}$ 5,1,1,0 /aug-cc-pV5Z	0.567	0.750	2.044	
CI 6,2,2,0 /aug-cc-pV5Z	0.575	0.752	2.046	

Tabulka 2.2: BeH vibration states						
Method	$v_0["eV"]$	$v_1["eV"]$	$v_2["eV"]$	v_3 [" eV "]		
FCI /aug-cc-pVDZ	0.1240	0.3648	0.5953	0.8152		
RCCSD(T) /aug-cc-pVDZ	0.1244	0.3661	0.5975	0.8186		
${ m CI}$ 5,1,1,0 /aug-cc-pVDZ	0.1240	0.3649	0.5954	0.8153		
CI~6,2,2,0~/aug-cc-pVDZ	0.1240	0.3648	0.5953	0.8152		
FCI /aug-cc-pCVDZ	0.1245	0.3658	0.5966	0.8168		
RCCSD(T) /aug-cc-pCVDZ	0.1249	0.3670	0.5988	0.8201		
CI 5,1,1,0 / aug-cc-pCVDZ	0.1245	0.3658	0.5967	0.8169		
CI 6,2,2,0 / aug-cc-pCVDZ	0.1245	0.3658	0.5966	0.8168		
FCI /cc-pVTZ	0.1254	0.3688	0.6021	0.8252		
RCCSD(T) / cc-pVTZ	0.1257	0.3698	0.6039	0.8281		
CI 6,2,2,0 / cc-pVTZ	0.1254	0.3688	0.6021	0.8252		
FCI /aug-cc-pVTZ	0.1252	0.3682	0.6010	0.8234		
RCCSD(T) /aug-cc-pVTZ	0.1255	0.3692	0.6028	0.8263		
CI~6,2,2,0~/aug-cc-pVTZ	0.1254	0.3691	0.6032	0.8275		
RCCSD(T) /aug-cc-pVQZ	0.1261	0.3713	0.6065	0.8314		
${ m CI}$ 5,1,1,0 /aug-cc-pVQZ	0.1258	0.3704	0.6047	0.8287		
CI~6,2,2,0~/aug-cc-pVQZ	0.1258	0.3704	0.6047	0.8286		
CI 9,3,3,1 / aug-cc-pVQZ	0.1258	0.3704	0.6047	0.8286		
CI~5,1,1,0~/aug-cc-pV5Z	0.1259	0.3707	0.6052	0.8293		
CI~6,2,2,0~/aug-cc-pV5Z	0.1259	0.3707	0.6052	0.8293		

Tabulka 2.3: OH						
Method	$E_a(OH)["eV"]$	$E_a(O)["eV"]$	$D_a(OH)["eV"]$	$D_a(OH^-)["eV"]$		
Experimental:	1.82767	1.461	4.3914	5.120435		
CI 4,1,1,0 /aug-cc-pVDZ	1.345	-1.637	4.054	7.035		
CI 4,2,2,0 / aug-cc-pVDZ	1.559	1.084	4.090	4.565		
CI 6,2,2,0 / aug-cc-pVDZ	1.609	1.182	4.104	4.531		
CI 8,2,2,0 /aug-cc-pVDZ	1.614	1.188	4.101	4.527		
CI 4,1,1,0 / aug-cc-pVTZ	1.376	-1.517	4.234	7.127		
CI 4,2,2,0 / aug-cc-pVTZ	1.629	1.158	4.269	4.739		
CI 6,2,2,0 /aug-cc-pVTZ	1.687	1.303	4.306	4.690		
CI 8,2,2,0 /aug-cc-pVTZ	1.693	1.308	4.296	4.681		
CI 4,1,1,0 /aug-cc-pVQZ	1.413	-1.480	4.292	7.185		
CI 4,2,2,0 / aug-cc-pVQZ	1.674	1.218	4.332	4.789		
CI 6,2,2,0 /aug-cc-pVQZ	1.733	1.362	4.369	4.740		
CI 8,2,2,0 /aug-cc-pVQZ	1.740	1.368	4.359	4.730		

Tabulka 2.4: OH vibration states					
Method	$v_0["eV"]$	$v_1["eV"]$	$v_2["eV"]$	v_3 ["eV"]	
CI 4,1,1,0 /aug-cc-pVDZ	0.225	0.657	1.065	1.451	
CI 4,2,2,0 / aug-cc-pVDZ	0.224	0.656	1.063	1.448	
CI 6,2,2,0 /aug-cc-pVDZ	0.224	0.656	1.064	1.450	
CI 8,2,2,0 /aug-cc-pVDZ	0.224	0.656	1.063	1.449	
CI 4,1,1,0 /aug-cc-pVTZ	0.227	0.665	1.081	1.474	
CI 4,2,2,0 /aug-cc-pVTZ	0.227	0.664	1.078	1.469	
CI 6,2,2,0 /aug-cc-pVTZ	0.227	0.664	1.079	1.473	
CI 8,2,2,0 /aug-cc-pVTZ	0.227	0.664	1.078	1.471	
CI 4,1,1,0 /aug-cc-pVQZ	0.228	0.668	1.085	1.481	
CI 4,2,2,0 /aug-cc-pVQZ	0.227	0.665	1.080	1.474	
CI 6,2,2,0 /aug-cc-pVQZ	0.227	0.667	1.084	1.479	
CI 8,2,2,0 / aug-cc-pVQZ	0.227	0.666	1.083	1.477	

Tabulka 2.5: OH- vibration states						
Method	$v_0["eV"]$	$v_1["eV"]$	$v_2["eV"]$	$v_3["eV"]$		
CI 4,1,1,0 /aug-cc-pVDZ	0.228	0.662	1.069	1.449		
CI 4,2,2,0 / aug-cc-pVDZ	0.221	0.647	1.047	1.426		
CI 6,2,2,0 /aug-cc-pVDZ	0.224	0.654	1.059	1.440		
CI 8,2,2,0 / aug-cc-pVDZ	0.224	0.653	1.057	1.437		
CI 4,1,1,0 / aug-cc-pVTZ	0.212	0.636	1.047	1.448		
CI 4,2,2,0 / aug-cc-pVTZ	0.221	0.649	1.054	1.439		
CI 6,2,2,0 /aug-cc-pVTZ	0.225	0.661	1.072	1.460		
CI 8,2,2,0 / aug-cc-pVTZ	0.225	0.660	1.070	1.457		
CI 4,1,1,0 / aug-cc-pVQZ	0.212	0.637	1.051	1.455		
CI 4,2,2,0 /aug-cc-pVQZ	0.224	0.657	1.065	1.450		
CI 6,2,2,0 /aug-cc-pVQZ	0.225	0.663	1.077	1.467		
CI 8,2,2,0 /aug-cc-pVQZ	0.225	0.662	1.075	1.463		

Závěr

Seznam použité literatury

- [1] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz. Molpro: a general-purpose quantum chemistry program package. *WIREs Comput Mol Sci*, 2:242–253, 2012.
- [2] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang. Molpro, version 2012.1, a package of ab initio programs, 2012. see.

Seznam obrázků

2.1 Nejnižší vibrační hladiny molekul BeH/BeH ⁻	6
--	---

Seznam tabulek

2.1	ВеН	6
2.2	BeH vibration states	7
2.3	ОН	7
2.4	OH vibration states	8
2.5	OH- vibration states	8

Seznam použitých zkratek

A. Přílohy

A.1 První příloha