# Pertemuan ke\_13 PDA (Push Down Automata)

Tim pengampu

2022

- PDA meruapakan sebuah teknik pengujian kalimat/string menggnakan pendekatan stack .
- Stack/tumpukan memiliki ciri ciri:
- 1. Memiliki Top of Stack/puncak
- 2. Aturan pengenisian LIFO(Last In First Out)
- 3. Pop: pengambilan elemen dari stack
- 4. Push: memasukan element ke dalam stack



Bila dilakukan Opreasi Push, konsidi stack menjadi



Bila dilakukan Opreasi Pop, konsidi stack menjadi



- 1. Q = himpunan State
- 2.  $\Sigma$  = himpunan Simbol input
- 3.  $\Gamma = \text{simbol-simbol stack}$
- 4.  $\Delta = \text{fungsi transisi}$
- S = State awal
- 6. F = Himpunan Final State
- 7. Z = Simbol awal tumpukan/top of stack

- Komponen yang sama dengan FSA adalah Q,  $\Sigma$ , S, F
- Tuple baru Γ, Z
- $\Delta$  memiliki kemiripan dengan  $\delta$

FSA sebagai transisi

#### Move:

• Fungsi Transisi (move) pada PDA didefinisikan sebagai :

$$\Delta(q_1, a, Z) = \{(q_2, AZ)\}$$

#### Dimana:

 $q_1, q_2$ : state

 $a \in \Sigma$ 

Z: Top of Stack

#### Penting:

$$\Delta(q_1, a, A) = \{(q_1, AA)\}.$$
 Push/Insert  $\Delta(q_1, b, A) = \{(q_2, \varepsilon)\}.$  Pop/Delete

1. 
$$Q = \{q_1, q_2\}$$

2. 
$$\Sigma = \{a, b\}$$

$$\beta$$
.  $\Gamma = \{A, B, Z\}$ 

4. 
$$S = q_1$$

5. 
$$F = \{q_2\}$$

6. 
$$Z = Z$$

• Memiliki fungsi transisi:

$$\Delta(q_1, \varepsilon, Z) = \{(q_2, Z)\}$$

$$\Delta(q_1, a, Z) = \{(q_1, AZ)\}$$

$$\Delta(q_1, b, Z) = \{(q_1, BZ)\}$$

$$\Delta(q_1, a, A) = \{(q_1, AA)\}$$

$$\Delta(q_1, b, A) = \{(q_1, \varepsilon)\}$$

$$\Delta(q_1, a, B) = \{(q_1, \varepsilon)\}$$

$$\Delta(q_1, b, B) = \{(q_1, \varepsilon)\}$$

Kita bisa membaca fungsi transisi tsb:

$$\Delta(q_1, a, Z) = \{(q_1, AZ)\}\$$

State  $q_1$  dan top stack Z membaca input 'a'

#### Misal ingin mengetahui apakh string 'abba' diterima oleh PDA?

7

Konfigurasi awal mesin state  $q_1$  top stack Z, membaca input 'a' fungsi transisinya  $\Delta(q_1,a,Z)=\{(q_1,AZ)\}$  Konfigurasi mesin menjadi : state  $q_1$ , A di push

A

Z

Membaca input b Fungsi transisinya  $\Delta(q_1,b,A)=\{(q_1,\varepsilon)\}$  Konfigurasi mesin menjadi : state  $q_1$  top stack di Pop

7

Membaca input b Fungsi transisinya  $\Delta(q_1,b,Z)=\{(q_1,BZ)\}$  Konfigurasi mesin menjadi : state  $q_1$ , B di push

$$\Delta(q_1, \varepsilon, Z) = \{(q_2, Z)\}$$

$$\Delta(q_1, a, Z) = \{(q_1, AZ)\}$$

$$\Delta(q_1, b, Z) = \{(q_1, BZ)\}$$

$$\Delta(q_1, a, A) = \{(q_1, AA)\}$$

$$\Delta(q_1, b, A) = \{(q_1, \varepsilon)\}$$

$$\Delta(q_1, a, B) = \{(q_1, \varepsilon)\}$$

$$\Delta(q_1, b, B) = \{(q_1, \varepsilon)\}$$

В

Z

Membaca input a Fungsi transisinya  $\Delta(q_1,a,B)=\{(q_1,\varepsilon)\}$  Konfigurasi mesin menjadi : state  $q_1$ , top of stack dipop

Z

Semua input sudah selesai di baca Fungsi transisinya  $\Delta(q_1, \varepsilon, Z) = \{q_2, Z\}$ Konfigurasi mesin menjadi :  $q_2$ 

Contoh kasus: Deterministic PDA
 Jika diketahui sebuah PDA M = (Q, Σ, Γ, q<sub>0</sub>, Z<sub>0</sub>, δ, A) merupakan sebuah PDA deterministik untuk pengujian palindrome memiliki tuple sebagai berikut.
 Q = {q<sub>0</sub>, q<sub>1</sub>, q<sub>2</sub>}, A = {q<sub>2</sub>}, Σ = {a, b, c}, Γ = {a, b, Z<sub>0</sub>}, dan fungsi transisi δ terdefinisi melalui tabel berikut:

| No. | Stata            | Input | TopStack | Hasil         |
|-----|------------------|-------|----------|---------------|
| 1   | $q_0$            | a     | $Z_0$    | $(q_0, aZ_0)$ |
| 2   | $\mathbf{q_{0}}$ | b     | $Z_0$    | $(q_0, bZ_0)$ |
| 3   | $\mathbf{q_{0}}$ | a     | a        | $(q_0, aa)$   |
| 4   | $q_{0}$          | b     | a        | $(q_0, ba)$   |
| 5   | $\mathbf{q_{0}}$ | a     | b        | $(q_0, ab)$   |
| 6   | $q_{0}$          | b     | b        | $(q_0, bb)$   |

| No. | Stata            | Input | TopStack | Hasil             |
|-----|------------------|-------|----------|-------------------|
| 7   | $q_0$            | c     | $Z_0$    | $(q_1, Z_0)$      |
| 8   | $q_{\text{o}}$   | c     | a        | $(q_1, a)$        |
| 9   | $\mathbf{q}_{0}$ | c     | b        | $(q_1, b)$        |
| 10  | $\mathbf{q_1}$   | a     | a        | $(q_1, \epsilon)$ |
| 11  | ${\bf q_1}$      | b     | b        | $(q_1, \epsilon)$ |
| 12  | $\mathbf{q_1}$   | 3     | $Z_0$    | $(q_2, \epsilon)$ |

Pada tabel transisi tersebut terlihat bahwa pada stata q<sub>0</sub> PDA akan melakukan PUSH jika mendapat input a atau b dan melakukan transisi stata ke stata q<sub>1</sub> jika mendapat input c. Pada stata q<sub>1</sub> PDA akan melakukan POP.

Pengujian string palindrome abcba.

abcba : 
$$(q0, abcba, Z_0)$$
  $\Rightarrow (q_0, bcba, aZ_0)$  (1)  
 $\Rightarrow (q_0, cba, baZ_0)$  (4)

$$\Rightarrow$$
 (q<sub>1</sub>, ba, baZ<sub>0</sub>) (9)

$$\Rightarrow (q_1, a, aZ_0) \tag{11}$$

$$\Rightarrow (q_1, \varepsilon, Z_0)$$
 (10)

$$\Rightarrow$$
 (q<sub>2</sub>,  $\epsilon$ , Z<sub>0</sub>)



#### Latihan 1.

**Problem 1:** Berdasarkan contoh kasus sebelumnya, lakukanlah pengujian string berikut menggunkaan metode *pushdown automata*:

- abcccba,
- 2. abca.

Contoh kasus: Non-Deterministic PDA
 Jika diketahui sebuah PDA M = (Q, Σ, Γ, q<sub>0</sub>, Z<sub>0</sub>, δ, A) merupakan sebuah PDA deterministik untuk pengujian palindrome memiliki tuple sebagai berikut.
 Q = {q<sub>0</sub>, q<sub>1</sub>, q<sub>2</sub>}, A = {q<sub>2</sub>}, Σ = {a, b}, Γ = {a, b, Z<sub>0</sub>}, dan fungsi transisi δ terdefinisi melalui tabel berikut:

| No. | St.              | In. | TS    | Hasil                     |
|-----|------------------|-----|-------|---------------------------|
| 1   | $\mathbf{q}_{0}$ | a   | $Z_0$ | $(q_0, aZ_0), (q_1, Z_0)$ |
| 2   | $q_0$            | b   | $Z_0$ | $(q_0, bZ_0), (q_1, Z_0)$ |
| 3   | $\mathbf{q}_{0}$ | a   | a     | $(q_0, aa), (q_1, a)$     |
| 4   | $\mathbf{q}_{0}$ | b   | a     | $(q_0, ba), (q_1, a)$     |
| 5   | $\mathbf{q}_{0}$ | a   | b     | $(q_0, ab), (q_1, b)$     |
| 6   | $\mathbf{q_0}$   | b   | b     | $(q_0, bb), (q_1, b)$     |

| No | . St.              | In. | TS    | Hasil             |
|----|--------------------|-----|-------|-------------------|
| 7  | $q_0$              | 3   | $Z_0$ | $(q_1, Z_0)$      |
| 8  | $q_0$              | 3   | a     | $(q_1, a)$        |
| 9  | $q_0$              | 3   | ь     | $(q_1, b)$        |
| 10 | $\mathbf{q}_1$     | a   | a     | $(q_1, \epsilon)$ |
| 11 | $\mathbf{q}_1$     | b   | b     | $(q_1, \epsilon)$ |
| 12 | $\boldsymbol{q}_1$ | 3   | $Z_0$ | $(q_2, \epsilon)$ |

Pada tabel transisi tersebut terlihat bahwa pada stata  $q_0$  PDA akan melakukan PUSH jika mendapat input a atau b dan melakukan transisi stata ke stata  $q_1$  jika mendapat input  $\epsilon$ . Pada stata  $q_1$  PDA akan melakukan POP.

Pengujian string palindrome baab.

```
(q_0, baab, Z_0) \Rightarrow (q_0, aab, bZ_0) (2 \text{ kiri})

\Rightarrow (q_0, ab, abZ_0) (5 \text{ kiri})

\Rightarrow (q_1, ab, abZ_0) (3 \text{ kanan})

\Rightarrow (q_1, b, bZ_0) (11)

\Rightarrow (q_1, \epsilon, Z_0) (10)

\Rightarrow (q_2, \epsilon, Z_0) (12)
```

#### Latihan 2.

**Problem 1:** Berdasarkan contoh kasus sebelumnya, lakukanlah pengujian string berikut menggunkaan metode *pushdown automata*:

- abba,
- abcbcba.

# PDA Untuk Bahasa Bebas Konteks

- Definisi
- 1. Q = himpunan State
- 2.  $\Sigma$  = himpunan Simbol input
- 3.  $\Gamma$  = simbol-simbol stack
- 4.  $\Delta = \text{fungsi transisi}$
- 5. S = State awal
- 6. F = Himpunan Final State
- 7. Z = Simbol awal tumpukan/top of stack

- Mesin ini dimulai dengan mempush Z pada top stack. Pada langkah berikutnya:
- Jika top stack dari simbol stack adl suatu variable (missal A), kita menggantinya dengan ruas kanan dari A missal A->w, maka di ganti w
- jika top stack dari simbol tumpukan adl sebuah terminal dan jika ia menyamai simbol masukan berikutnya kita pop dari tumpukan.

## #Lanjutan

- $\Delta(q_1, \varepsilon, Z) = \{(q_2, SZ)\}$ , untuk mempush simbol S ke stack
- $\Delta(q_1, \varepsilon, A) = \{(q_2, w)\}| A \rightarrow w$  adl sebuah tata bahasa bebas kontek untuk semua variable A
- $\Delta(q_1, a, a) = \{(q_2, \varepsilon)\}$  untuk setiap simbol terminal (untuk mempop pembandingan terminal)
- $\Delta(q_2, \varepsilon, Z) = \{(q_3, Z)\}$ , bila selesai membaca string. Top stack adl Z berarti string input sukses diterima oleh PDA

- Contoh peneraoan:
- Misalkan sebuah tata bahasa bebas konteks dgn simbol awal D:

 $D \rightarrow aDa|bDb|c$ 

Dapat dikontruksi PDA:

$$Q = \{q_0, q_1, q_2\}.$$
  
 $\Sigma = \{a, b, c\}$   
 $\Gamma = \{D,a,b,c,Z\}$   
 $S = q_1$   
 $F = q_3$ 

#### **Fungsi tansisinya**

$$\Delta(q_{1}, \varepsilon, Z) = \{(q_{2}, DZ)\}$$

$$\Delta(q_{1}, \varepsilon, D) = \{(q_{1}, aDa), (q_{2}, bDb), (q_{2}, c)\}$$

$$\Delta(q_{2}, a, a) = \Delta(q_{2}, b, b) = \Delta(q_{2}, c, c) = \{(q_{2}, \varepsilon)\}$$

$$\Delta(q_{2}, \varepsilon, Z) = \{(q_{3}, Z)\}$$

#### Referensi

• <a href="https://ocw.upj.ac.id/files/Handout-INF305-Bab-7-Pushdown-Automata.pdf">https://ocw.upj.ac.id/files/Handout-INF305-Bab-7-Pushdown-Automata.pdf</a>