Descriptive Statistics: Graphical Summary

Data Science Program

Outline

- Frequency table
 - For numerical
 - For categorical
- Cross tabulation
- Graphical Summary

Frequency Table

Frequency Table for categorical variable

Day	Visitor Count	
Saturday	87	
Sunday	76	
Thursday	62	
Friday	19	

Frequency Table for numerical variable

Tip Range (\$)	Visitor Count	
0 - 2.5	108	
2.5 - 4	95	
4 - 5.5	29	
5.5 - 7	9	

Cross Tabulation / Contingency Table

Cross Tabulation : Frequency

Day	Visitor Count (Male)	Visitor Count (Female)	
Saturday	87	32	
Sunday	76	9	
Thursday	62	28	
Friday	19	18	

Cross Tabulation : Percentage

Day	Visitor Count (Male)	Visitor Count (Female)	Total
Saturday	73.1	26.9%	100%
Sunday	89.4%	10.6%	100%
Thursday	68.8%	31.1%	100%
Friday	51.3%	48.6%	100%

Graphical Summary

Numerical:

- Histogram
- Boxplot
- Scatterplot, etc

Categorical

- Pie chart
- Barchart, etc

Both numerical and Categorical:

- Barplot
- Boxplot

Bar chart

- Represents categorical data with rectangular bars. Each bar has a height corresponds to the value it represents. It's useful when we want to compare a given numeric value on different categories.
- Each category can be consecutive and overlapping
- Can be used to see composition or comparison

Pie chart

- A circular plot, divided into slices to show numerical proportion of the categorical data. They are widely used in the business world.
- Each category are consecutive and non-overlapping
- Main purpose is composition
- Not recommended if there are too many categories

Boxplot

- Box plot, also called the box-and-whisker plot: a way to show the distribution of values based on the five-number summary: minimum, first quartile, median, third quartile, and maximum.
- Can be used to detect anomaly data/outliers

- Histogram is an accurate representation of the distribution of numeric data.
- A histogram is a graph that uses bars to portray the frequencies or the relative frequencies of the possible outcomes for a quantitative variable.

Histogram

Symmetric or Normally Distributed

Bimodal

Using histogram we can see how data spread.

Right Skewed

Left Skewed

Uniform

Boxplot

Symmetric or Normally Distributed

Using boxplot we can detect outliers

Right Skewed

Left Skewed

Scatterplot

- This type of plot shows all individual data points. Here, they aren't connected with lines.
- Each data point has the value of the x-axis value and the value from the y-axis values.
- This type of plot can be used to display trends or correlations.
- In data science, it shows relationship between two numerical variables.

Barplot

- Barplot is a general plot that allows you to aggregate some values in the categorical data based on some function (mean, sum, min, max, std, etc)
- In data science, it shows composition and relationship between a numerical variables and a categorical variables.

Statistics and Parameter

- A parameter is a numerical summary of the population. A statistic is a numerical summary of a sample taken from the population.
- Population parameter are unknown and sample statistic used to make inference about it

Reference

Reference

https://towardsdatascience.com/data-science-you-need-to-know-a-b-testing-f2f12aff619a

https://towardsdatascience.com/data-science-fundamentals-a-b-testing-cb371ceecc27

https://www.niagahoster.co.id/blog/ab-testing-adalah/

https://vwo.com/blog/ab-testing-examples/

https://www.scribbr.com/methodology/sampling-methods/

