#### **Note**

· Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

```
In [8]: # Dependencies and Setup
    import pandas as pd
    # File to Load (Remember to Change These)
    file_to_load = "Resources/purchase_data.csv"
    # Read Purchasing File and store into Pandas data frame
    purchase data = pd.read csv(file to load)
    purchase_data.head()
```

#### Out[8]:

|   | Purchase<br>ID | SN            | Age | Gender | Item<br>ID | Item Name                                    | Price |
|---|----------------|---------------|-----|--------|------------|----------------------------------------------|-------|
| 0 | 0              | Lisim78       | 20  | Male   | 108        | Extraction, Quickblade Of Trembling<br>Hands | 3.53  |
| 1 | 1              | Lisovynya38   | 40  | Male   | 143        | Frenzied Scimitar                            | 1.56  |
| 2 | 2              | Ithergue48    | 24  | Male   | 92         | Final Critic                                 | 4.88  |
| 3 | 3              | Chamassasya86 | 24  | Male   | 100        | Blindscythe                                  | 3.27  |
| 4 | 4              | Iskosia90     | 23  | Male   | 131        | Fury                                         | 1.44  |

### **Player Count**

· Display the total number of players

```
In [9]:
    total_players = len(purchase_data["SN"].unique())
    total players pd = pd.DataFrame({"Total Players":[total players]})
    total_players_pd
```

#### Out[9]:

|   | Total Players |  |
|---|---------------|--|
| 0 | 576           |  |

## **Purchasing Analysis (Total)**

- Run basic calculations to obtain number of unique items, average price, etc.
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting

· Display the summary data frame

#### Out[10]:

|   | Total Items  Average Price |        | Total Number Purchases | Total Revenue |  |
|---|----------------------------|--------|------------------------|---------------|--|
| 0 | 179                        | \$3.05 | 780                    | \$2,379.77    |  |

## **Gender Demographics**

- · Percentage and Count of Male Players
- · Percentage and Count of Female Players
- · Percentage and Count of Other / Non-Disclosed

```
In [11]:
     total gender = purchase data["Gender"].count()
     male = purchase_data["Gender"].value_counts()['Male']
     female = purchase data["Gender"].value counts()['Female']
     non gender = total gender - male - female
     male percent = male/total gender *100
     female_percent = female/total_gender *100
     non gender percent = non gender/total gender * 100
     gender breakdown = pd.DataFrame({"Total Gender":[total gender],
                                         "Male":[male],
                                         "Female":[female],
                                         "Non Gender Spe":[non gender],
                                         "% Male":[male_percent],
                                         "% Female":[female percent],
                                         "% Non Gender Spe":[non gender percent],
     gender_breakdown = gender_breakdown[["Total Gender", "Male", "Female", "Non Gender
     gender breakdown = gender breakdown.round(2)
     gender_breakdown
```

#### Out[11]:

|   | Total Gender | Male | Female | Non Gender Spe | % Male | % Female | % Non Gender Spe |
|---|--------------|------|--------|----------------|--------|----------|------------------|
| 0 | 780          | 652  | 113    | 15             | 83.59  | 14.49    | 1.92             |

## **Purchasing Analysis (Gender)**

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [12]: # male count
     male_purchase_data = purchase_data.loc[purchase_data["Gender"] == "Male", :]
     male_purchase_count = len(male_purchase_data)
     # male average purchase price
     avg_male_purchase_price = purchase_data.loc[purchase_data["Gender"] == "Male", [
     # total male purchase
     total_male_purchase_value = purchase_data.loc[purchase_data["Gender"] == "Male",
     # female count
     female_purchase_data = purchase_data.loc[purchase_data["Gender"] == "Female", :]
     female_purchase_count = len(female_purchase_data)
     # female average purchase price
     avg_female_purchase_price = purchase_data.loc[purchase_data["Gender"] == "Female"
     # total female purchase
     total_female_purchase_value = purchase_data.loc[purchase_data["Gender"] == "Femal
     # other count
     other_purchase_data = purchase_data.loc[purchase_data["Gender"] == "Other / Non-I
     other_purchase_count = len(other_purchase_data)
     # other average purchase price
     avg other purchase price = purchase data.loc[purchase data["Gender"] == "Other /
     # total other purchase
     total other purchase value = purchase data.loc[purchase data["Gender"] == "Other
     # average purchase per person
     avg_male_purchase_total_person = total_male_purchase_value / male
     avg female purchase total person = total female purchase value / female
     avg_other_purchase_total_person = total_other_purchase_value / non_gender
     # create data table
     gender_purchase_ana_table = pd.DataFrame([{
         "Gender": "Female", "Purchase Count": female_purchase_count,
         "Average Purchase Price": "${:.2f}".format(avg female purchase price[0]),
         "Total Purchase Value": "${:.2f}".format(total_female_purchase_value[0]),
         "Avg Total Purchase per Person": "${:.2f}".format(avg_female_purchase_total_i
         {"Gender": "Male", "Purchase Count": male purchase count,
           "Average Purchase Price": "${:.2f}".format(avg_male_purchase_price[0]),
          "Total Purchase Value": "${:,.2f}".format(total_male_purchase_value[0]),
           "Avg Total Purchase per Person": "${:.2f}".format(avg_male_purchase_total_person)
         {"Gender": "Other / Non-Disclosed", "Purchase Count": other_purchase_count,
           "Average Purchase Price": "${:.2f}".format(avg_other_purchase_price[0]),
          "Total Purchase Value": "${:.2f}".format(total_other_purchase_value[0]),
          "Avg Total Purchase per Person": "$\{:.2f\}".format(avg other purchase total |
         }], columns=["Gender", "Purchase Count", "Average Purchase Price", "Total Pu
     gender_purchase_ana_table = gender_purchase_ana_table.set_index("Gender")
     gender_purchase_ana_table.index.name = None
     gender_purchase_ana_table
```

Out[12]:

|                           | Purchase<br>Count | Average Purchase<br>Price | Total Purchase<br>Value | Avg Total Purchase per<br>Person |
|---------------------------|-------------------|---------------------------|-------------------------|----------------------------------|
| Female                    | 113               | \$3.20                    | \$361.94                | \$3.20                           |
| Male                      | 652               | \$3.02                    | \$1,967.64              | \$3.02                           |
| Other / Non-<br>Disclosed | 15                | \$3.35                    | \$50.19                 | \$3.35                           |

# **Age Demographics**

- Establish bins for ages
- Categorize the existing players using the age bins. Hint: use pd.cut()
- · Calculate the numbers and percentages by age group
- · Create a summary data frame to hold the results
- Optional: round the percentage column to two decimal points
- Display Age Demographics Table

```
In [13]: # Establish Bins for Ages & Create Corresponding Names For Bins
     age_bins = [0, 9, 14, 19, 24, 29, 34, 39, 46]
     groups_names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40-
     # Place Data Series Into New Column Inside DataFrame
     purchase data["Age Group"] = pd.cut(purchase data["Age"], bins=age bins, labels=
     purchase data
     # Create a GroupBy Object Based Upon "Age Group"
     age_group = purchase_data.groupby("Age Group")
     # Count Total Players by Age Category
     total_age_count = age_group["SN"].nunique()
     # Calculate Percentages by Age Category
     percentage_by_age = round(total_age_count / total_players * 100,2)
     # Create Summary DataFrame
     age_demographics_table = pd.DataFrame({
          "Total Count": total age count,
          "Percentage of Players": percentage by age
     })
     age_demographics_table["Percentage of Players"] = age_demographics_table["Percentage"]
     age demographics table.index.name = None
     age demographics_table
```

#### Out[13]:

|       | <b>Total Count</b> | Percentage of Players |
|-------|--------------------|-----------------------|
| <10   | 17                 | 2.95%                 |
| 10-14 | 22                 | 3.82%                 |
| 15-19 | 107                | 18.58%                |
| 20-24 | 258                | 44.79%                |
| 25-29 | 77                 | 13.37%                |
| 30-34 | 52                 | 9.03%                 |
| 35-39 | 31                 | 5.38%                 |
| 40+   | 12                 | 2.08%                 |

## **Purchasing Analysis (Age)**

- Bin the purchase\_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [14]: # Number of Unique Items
     unique items = len(purchase data["Item ID"].unique())
     # Average Purchase Price
     avg_purchase_price = purchase_data["Price"].mean()
     # Total Number of Purchases
     total purchases = len(purchase data["Purchase ID"].unique())
     # Total Revenue
     total_revenue = purchase_data["Price"].sum()
     # Create Summary DataFrame
     purchasing analysis table = pd.DataFrame([{
          "Number of Unique Items": unique_items,
          "Average Price": avg_purchase_price,
          "Number of Purchases": total purchases,
          "Total Revenue": total_revenue,
     }], columns=["Number of Unique Items", "Average Price", "Number of Purchases", "
     purchasing_analysis_table["Average Price"] = purchasing_analysis_table["Average
     purchasing analysis table["Total Revenue"] = purchasing analysis table["Total Revenue"]
     purchasing_analysis_table
```

#### Out[14]:

|   | Number of Unique Items | Average Price | Number of Purchases | Total Revenue |  |
|---|------------------------|---------------|---------------------|---------------|--|
| 0 | 183                    | \$3.05        | 780                 | \$2,379.77    |  |

### **Top Spenders**

- · Run basic calculations to obtain the results in the table below
- · Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [15]: top spenders = purchase data.groupby("SN")
     # Calculate "Purchase Count"
     spender purchase count = top spenders["Purchase ID"].count()
     # Calculate "Average Purchase Price"
     average spender purchase price = round(top spenders["Price"].mean(),2)
     # Calculate "Total Purchase Value"
     total_spender_purchase_value = top_spenders["Price"].sum()
     # Create Summary DataFrame
     top_spenders_table = pd.DataFrame({
          "Purchase Count": spender purchase count,
          "Average Purchase Price": average spender purchase price,
          "Total Purchase Value": total_spender_purchase_value
     })
     sort_top_spenders = top_spenders_table.sort_values(["Total Purchase Value"], asc
     sort top spenders["Average Purchase Price"] = sort top spenders["Average Purchase
     sort top spenders["Total Purchase Value"] = sort top spenders["Total Purchase Value"]
     sort_top_spenders
```

#### Out[15]:

|             | Purchase Count | Average Purchase Price | Total Purchase Value |
|-------------|----------------|------------------------|----------------------|
| SN          |                |                        |                      |
| Lisosia93   | 5              | \$3.79                 | \$18.96              |
| Idastidru52 | 4              | \$3.86                 | \$15.45              |
| Chamjask73  | 3              | \$4.61                 | \$13.83              |
| Iral74      | 4              | \$3.40                 | \$13.62              |
| Iskadarya95 | 3              | \$4.37                 | \$13.10              |

### **Most Popular Items**

- Retrieve the Item ID, Item Name, and Item Price columns
- Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [16]:
     popular items list = purchase data[["Item ID", "Item Name", "Price"]]
     popular items = popular items list.groupby(["Item ID","Item Name"])
     item purchase count = popular items["Price"].count()
     item price = popular items["Price"].sum()
     item purchase value = item price / item purchase count
     # create data frame
     most_popular_items = pd.DataFrame({
         "Purchase Count": item_purchase_count,
         "Item Price": item_purchase_value,
         "Total Purchase Value": item price
     })
     popular_items_formatted = most_popular_items.sort_values(["Purchase Count"], asc
     popular_items_formatted["Item Price"] = popular_items_formatted["Item Price"].as
     popular items formatted["Total Purchase Value"] = popular items formatted["Total
     popular items formatted
```

#### Out[16]:

|            |                                                 | Purchase<br>Count | Item<br>Price | Total Purchase<br>Value |
|------------|-------------------------------------------------|-------------------|---------------|-------------------------|
| Item<br>ID | Item Name                                       |                   |               |                         |
| 178        | Oathbreaker, Last Hope of the Breaking<br>Storm | 12                | \$4.23        | \$50.76                 |
| 145        | Fiery Glass Crusader                            | 9                 | \$4.58        | \$41.22                 |
| 108        | Extraction, Quickblade Of Trembling Hands       | 9                 | \$3.53        | \$31.77                 |
| 82         | Nirvana                                         | 9                 | \$4.90        | \$44.10                 |
| 19         | Pursuit, Cudgel of Necromancy                   | 8                 | \$1.02        | \$8.16                  |

## **Most Profitable Items**

- · Sort the above table by total purchase value in descending order
- · Optional: give the displayed data cleaner formatting
- · Display a preview of the data frame

In [17]: popular\_items\_formatted = most\_popular\_items.sort\_values(["Total Purchase Value"
popular\_items\_formatted["Item Price"] = popular\_items\_formatted["Item Price"].as popular\_items\_formatted["Total Purchase Value"] = popular\_items\_formatted["Total
popular\_items\_formatted

#### Out[17]:

|            |                                                 | Purchase<br>Count | Item<br>Price | Total Purchase<br>Value |
|------------|-------------------------------------------------|-------------------|---------------|-------------------------|
| Item<br>ID | Item Name                                       |                   |               |                         |
| 178        | Oathbreaker, Last Hope of the Breaking<br>Storm | 12                | \$4.23        | \$50.76                 |
| 82         | Nirvana                                         | 9                 | \$4.90        | \$44.10                 |
| 145        | Fiery Glass Crusader                            | 9                 | \$4.58        | \$41.22                 |
| 92         | Final Critic                                    | 8                 | \$4.88        | \$39.04                 |
| 103        | Singed Scalpel                                  | 8                 | \$4.35        | \$34.80                 |

