Financial Derivatives

MATTHEW ADNER

UNION COLLEGE STUDENT INVESTMENT FUND

But First!

Buying

Selling

Selling Short

Buying to Cover

What is a Derivative?

A financial contract whose value is derived from some other asset called "the underlying"

Types of Derivatives

Futures

Forwards

Swaps

Options

Futures

Deliverable

Date

Price

• 1000 bushels of corn

• March 22, 2024

• \$5.50 per bushel

Futures

Deliverable

Date

Price

• The Value in US Dollars of 1000 Swiss Francs

• January 1, 2024

• \$1200

Details

What are the implications of futures being traded exclusively through exchanges?

Forwards

Similar to Futures Except for:

Over the Counter (OTC)

Unregulated and Privately Negotiated

Subject to Counterparty Risk

Swaps

Typically OTC

Cashflow swap

Dividend Swap

Dividend Swap

Dividend Swap

Party A

Notional Principal amount

• \$30,000 Coca Cola Stock

Leg

Coca Cola Dividend Payments

Party B

Notional Principal Amount

• \$30,000 Pepsi Co Stock

Leg

Pepsi Co Dividend Payments

Interest Rate Swaps

Party A

Notional Principal Amount

• \$1,000,000

Leg

 A bank's floating interest rate payment on a loan for the principal amount

Party B

Notional Principal Amount

• \$1,000,000

Leg

4% Annual percent interest rate

Life Insurance (Not a swap but good as an example)

Party A

Policy Holder

Potential payout of \$1,000,000

Leg

- 0.05% per year
 - \$500 yearly

Party B

Insurance Company

Potential payout of \$1,000,000

Leg

Party A

Policy Holder

Potential payout of \$1,000,000

Leg

- 0.05% per year
 - \$500 yearly

Party B

Insurance Company

• \$1,000,000

Leg

Party A

Notional Principal Amount

Credit of \$10,000,000

Leg

- 0.05% per year
 - \$500 yearly

Party B

Notional Principal Amount

Credit of \$10,000,000

Leg

Party A

Notional Principal Amount

Credit of \$10,000,000

Leg

- 1% per year
 - \$25,000 quarterly

Party B

Notional Principal Amount

Credit of \$10,000,000

Leg

Party A

Notional Principal Amount

Credit of \$10,000,000

Leg

- 1% per year
 - \$25,000 quarterly

Party B

Notional Principal Amount

Credit of \$10,000,000

Leg

 In the event of Party A's debtor defaulting on their debt, Party B pays the debt, \$10,000,000

Options

Deliverable

Type (Call or Put)

Strike Price

Expiration Date

Option Premium

Options

Call Options

Put Options

In the Money vs Out of the Money (ITM/OTM)

Call Options ITM/OTM

Put Options

Profit/Loss

Selling Call Options

Selling Put Options

Naked (Uncovered) Options

Selling Options Without Owning the Underlying

Leverage

Options Strategies

- Covered Call
- Married Put
- Collar
- Strangle
- Straddle
- A Ton of Others

Selling Calls + Owning the Underlying

Selling Calls + Owning the Underlying

Profit/Loss of the Underlying at Expiration:

f(expirationPrice) = expirationPrice - costBasis

Selling Calls + Owning the Underlying

Profit/Loss of Selling Call Option at Expiration:

$$f(expirationPrice) = \left\{ \begin{array}{ll} optionPremium & \text{if } expirationPrice < strikePrice \\ -expirationPrice + optionPremium + strikePrice & \text{if } expirationPrice > strikePrice \end{array} \right.$$


```
Selling Calls +
```

Owning the Underlying

```
f(expirationPrice) = \begin{cases} optionPremium + expirationPrice - costBasis & \text{if } expirationPrice < strikePrice \\ optionPremium + strikePrice - costBasis & \text{if } expirationPrice < strikePrice \\ optionPremium = $10 \end{cases}
```

costBasis = \$45

strikePrice = \$50

Selling Calls +

Owning the Underlying

optionPremium = \$10

costBasis = \$45

strikePrice = \$50

$$f(expirationPrice) = \begin{cases} optionPremium + expirationPrice - costBasis & \text{if } expirationPrice < strikePrice \\ optionPremium + strikePrice - costBasis & \text{if } expirationPrice < strikePrice \\ \end{cases}$$

Option Collar

Owning the Underlying

Selling Calls

+ Buying Puts

Option Collar

Covered Call

+ Buying Puts

Option Collar

Married Put

Owning the Underlying

+ Buying Puts

Married Put

Who Invests in Derivatives?

Hedgers

Speculators

Arbitragers

Sources

forbes.com/advisor/investing/derivatives/

cmegroup.com

investopedia.com

youtube.com/@PBoyle/videos

https://workplace.schwab.com/learning-center

Questions?

MATLAB Files

LinkedIn Let's Connect!

