2016—2017学年第二学期考试试券答案

- -. 填空题(40分,每空4分)
 - 1. $\frac{13}{48}$
 - 2. $\frac{63}{64}$, $\frac{1}{16}$
 - 3. $\frac{11}{3}$, $\frac{4}{3}$
 - 4. $\log(2)$, $\log(2)$
 - **5.** $40 \pm \frac{1.96}{4} = (39.51, 40.49)$

6.
$$\sum_{n=k}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!} C_n^k p^k (1-p)^{n-k} = \frac{(\lambda p)^k e^{-\lambda p}}{k!}, \frac{C_m^k p^k (1-p)^{m-k} \frac{\lambda^m e^{-\lambda}}{m!}}{\sum_{n=k}^{\infty} \frac{\lambda^n e^{-\lambda}}{n!} C_n^k p^k (1-p)^{n-k}} = \frac{(\lambda (1-p))^{m-k} e^{-(\lambda (1-p))}}{(m-k)!}$$

- 二. (20分) 解: $(1)(\xi, \eta)$ 的联合密度为 $p(x, y) = 2, 0 < x \le y < 1; <math>p(x, y) = 0$, 其它.
 - (2) ξ 的边缘密度 $p_1(x) = \int_x^1 2dy = 2(1-x), \ 0 < x < 1;$

 η 的边缘密度 $p_2(y) = \int_0^y 2dx = 2y, \ 0 < y < 1.$

- (3)当0 < y < 1时,条件密度 $p(x|\eta = y) = \frac{p(x,y)}{p_2(y)} = \frac{1}{y}, \ 0 < x \le y.$ (4) $E(\xi|\eta = y) = \int_0^y xp(x|\eta = y)dx = \int_0^y \frac{x}{y}dx = \frac{y}{2}.$
- 三. (15分) 解: (1) $\hat{\theta}_1 = \bar{x} 1$, $\hat{\theta}_2 = x_{(1)}$
 - (2) $E(\hat{\theta}_1) = \theta$, $E(\hat{\theta}_2) = \theta + \frac{1}{n}$, 所以 $\hat{\theta}_1$ 是无偏估计,而 $\hat{\theta}_2$ 不是无偏估计,修正为无 偏估计 $\tilde{\theta}_2 = x_{(1)} - \frac{1}{n}$
 - (3) $Var(\hat{\theta}_1) = \frac{1}{n}, Var(\tilde{\theta}_2) = \frac{1}{n^2},$ 所以当n > 1时, $\tilde{\theta}_2$ 更有效。
- 四. (15分) 解: 分别用X和Y表示甲设备和乙设备生产螺丝钉的长度, 且由题意 知 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$ 利用数据可得, $\hat{\mu}_1 = 16, \hat{\mu}_2 = 19, \hat{\sigma}_1^2 = 5.6$ 和 $\hat{\sigma}_{2}^{2} = 4$.
 - (1)假设检验问题为: $H_0:\sigma_1^2=\sigma_2^2\longleftrightarrow H_1:\sigma_1^2\neq\sigma_2^2$. F检验统计量为

$$F = \frac{\hat{\sigma}_1^2}{\hat{\sigma}_2^2} = 1.4,$$

自由度为(5,5). 因为 $F_{0.025}(5,5) = 7.146$ 和 $F_{0.975}(5,5) = 1/F_{0.025}(5,5) = 0.140$, 所 以 $F_{0.975}(5,5) < F < F_{0.025}(5,5)$,则接受原假设,即两种设备质量的方差相等.

(2)假设检验问题为: $H_0: \mu_1 = \mu_2 \longleftrightarrow H_1: \mu_1 < \mu_2$. 记 $S_w^2 = (5\hat{\sigma}_1^2 + 5\hat{\sigma}_2^2)/10 = 4.8$, 两样本t检验统计量为

$$T = \frac{\hat{\mu}_1 - \hat{\mu}_2}{S_w \sqrt{1/6 + 1/6}} = -2.3717,$$

自由度为10. 因为 $t_{0.05}(10) = 1.812$, 所以 $T < -t_{0.05}(10)$, 则拒绝原假设,即乙设备 生产螺丝钉的平均长度显著地高于甲设备.

五. (10分) 解:设原假设为:作品《理智与情感》,《爱玛》以及《劝导》之间在选择 常用词比例没有差异. 在原假设下,《理智与情感》,《爱玛》以及《劝导》选择 常用词比例的期望值为 那么, 检验统计量为,

单词	理智与情感	爱玛	劝导
a	159.32368	190.33299	167.34333
an	28.04343	33.50155	29.45502
this	31.12513	37.18304	32.69183
that	79.50776	94.98242	83.50982

$$T = \sum_{i=1}^{2} \sum_{j=1}^{3} \frac{(n_{ij} - E(n_{ij}))^{2}}{E(n_{ij})} = 19.722,$$

自由度为6. 由于 $T > \chi^2_{0.05}(6) = 12.591$,则拒绝原假设,即作品《理智与情感》,《爱玛》以及《劝导》之间在选择常用词比例有显著差异.

附录 分位数: $u_{0.025} = 1.960$, $u_{0.05} = 1.645$, $t_{0.025}(10) = 2.228$, $t_{0.05}(10) = 1.812$, $t_{0.025}(11) = 2.201$, $t_{0.05}(11) = 1.796$, $t_{0.025}(12) = 2.178$, $t_{0.05}(12) = 1.782$, $\chi^2_{0.05}(1) = 3.841$, $\chi^2_{0.05}(2) = 5.991$, $\chi^2_{0.05}(6) = 12.591$, $F_{0.05}(5,5) = 5.050$, $F_{0.025}(5,5) = 7.146$, $F_{0.05}(6,6) = 4.284$ $F_{0.025}(6,6) = 5.820$.