Tema 5 – Nivel de Transporte

Redes de Computadores

Grado en Ingeniería Informática en Tecnologías de la Información

ÍNDICE

- 1. Introducción
- 2. Elementos de protocolos de transporte
- 3. El protocolo UDP
- 4. El protocolo TCP

1.- INTRODUCCIÓN

- Proporciona una comunicación lógica entre procesos que se ejecutan en hosts diferentes (comunicación extremo a extremo)
 - Aísla a la capa de aplicación de los detalles de la red o redes intermedias
 - Host origen: divide el mensaje en segmentos y se los pasa al nivel de red
 - Host destino: junta los segmentos en mensajes y se los pasa a la capa de aplicación

Introducción

- Abstracción mediante sockets: Utilización de primitivas para facilitar el diseño y la programación a través de interfaces
- Se permite el intercambio de datos en ambos sentidos de forma simultánea: full-dúplex
- Existen dos tipos de protocolos:
 - Orientados a conexión: Segmentos
 - No orientados a conexión: Datagramas
- Comparación con la capa de red Hosts vs Procesos
- Redundancia de tareas de la capa de enlace:
 - Control de flujo
 - Control de errores
 - Secuenciación

Introducción

- Se emplean dos protocolos principalmente:
 - TCP (Transmission Control Protocol)
 - Fiable
 - Entrega de información ordenada
 - Establecimiento de conexión
 - Control de flujo mediante ventana deslizante
 - Control de congestión explícita e implícita
 - UDP (User Datagram Protocol)
 - No fiable
 - Entrega de información no ordenada

2.- ELEMENTOS DE PROTOCOLOS DE TRANSPORTE

Direccionamiento

Conocer el punto de acceso al servicio de transporte
 (TSAP), que suele ser un número de puerto

Protocolo	Nº de Puerto
20 - 21	FTP
22	SSH
23	Telnet
25	SMTP
53	DNS
80	HTTP
443	HTTPS

Direccionamiento

 Si el puerto no pertenece a un protocolo conocido, es necesario "negociar" con el host el puerto de acceso: portmapper

- Gestión de la conexión
 - Problema de los dos ejércitos ¿Podemos asegurar que se nuestras comunicaciones llegan?

Gestión de la conexión

- Establecimiento: Gestión de paquetes perdidos o que llegan con retardo
- Acuerdo de tres vías:Three-way handshake
- Emisor y receptor acuerdan
 y confirman los números
 de inicio de secuencia

[1]

Gestión de la conexión

 Pérdida o retraso de los paquetes en el establecimiento

Gestión de la conexión

- Liberación de la conexión:
 - Asimétrica Línea telefónica tradicional
 - Simétrica Evitar pérdidas abruptas de datos

[1]

- Gestión de la conexión
 - Pérdida o retraso de los paquetes en la liberación

- Gestión de la conexión
 - Pérdida o retraso de los paquetes en la liberación

Control de congestión

- Evitar la saturación del sistema por enviar una cantidad de paquetes mayor de la que admite
- Tarea compartida por las capas de red y de transporte
- Principales causas:
 - Ancho de banda y fiabilidad de la red
 - Capacidad del receptor

Parada y espera

- El emisor envía un paquete y espera la confirmación del receptor para enviar el siguiente
- No son necesarios buffers y únicamente se almacena el último paquete enviado

Ventana deslizante

- El emisor mantiene una lista con los W números de secuencia de los paquetes que puede transmitir -> Ventana emisora de tamaño W
- El receptor mantiene una lista con los W números de secuencia de los paquetes que está autorizado a recibir -> Ventana receptora de tamaño W
- Como los paquetes pueden perderse, el emisor guarda una copia de todos los paquetes que están enviados pero no asentidos por si hay que reenviarlos

Ventana deslizante

- Asentimientos:
 - Cada asentimiento puede asentir a un grupo de paquetes o hacerlo de forma individual
 - Controlan el flujo y notifican el resultado de la transmisión de un paquete
 - Indican el número de paquete que se espera en la siguiente transmisión

Ventana deslizante

(a) Desde el punto de vista del transmisor

(b) Punto de vista del receptor

- Ventana deslizante
 - http://www2.rad.com/networks/2004/sliding_window/

3.- EL PROTOCOLO UDP

- User Datagram Protocol
- Protocolo no orientado a conexión
 - Cada segmento se trata de forma independiente de los demás
- Es un protocolo no fiable

 ofrece un servicio "best effort"
 - Sus mensajes pueden llegar fuera de secuencia o perderse
- No se envían asentimientos: se reduce el tráfico de la red
- No controla la congestión
- Reduce la información suplementaria a enviar

- Proporciona interfaz intermedia entre la capa de aplicación y la de red
 - Gestión del uso de los puertos
 - Puede proporcionar control de errores
- Adecuado para situaciones con requisitos de conexión bajos
 - Servicio DNS
 - Vídeo bajo demanda
 - Radio en Internet
 - Telefonía en Internet
 - Algunos modelos cliente-servidor

Cabecera UDP

- Puerto de origen: contiene el número de puerto por si es necesario responder al origen
- Puerto de destino: contiene el número de puerto del destino
- Longitud: longitud de los datos del datagrama IP
- Suma de comprobación: asegura la integridad del datagrama. Se calcula utilizando la cabecera UDP y el campo de datos

- Remote Procedure Call (RPC)
 - Hacer que una llamada a un procedimiento remoto sea parecida a una a un procedimiento local

Real-time Transport Protocol (RTP)

- Está ubicado justo por encima de UDP en la capa de transporte
- Se suele utilizar en la transmisión de paquetes de audio y vídeo en tiempo real
- Puede ser unidifusión o multidifusión
- Los números de paquetes son incrementales y consecutivos

- Real-time Transport Protocol (RTP)
 - Puede transmitir información relacionada a través de varios flujos
 - Utiliza las estampas de tiempo (timestamping) para sincronizar los diferentes flujos y reducir la variación de retardo o jitter
 - Empleo de buffers para el control del tráfico

4.- EL PROTOCOLO TCP

- Transmission Control Protocol
- Protocolo orientado a conexión:
 - 3 fases: establecimiento de conexión, transferencia, cierre de conexión
- Proporciona una capa fiable por encima del protocolo IP:
 - Se utilizan asentimientos (ACK)
 - Solicita reenvíos
- Se encarga de fragmentar la información que recibe del nivel superior
 - Tamaños máximos de 64 KB
 - Habitualmente 1460 bytes

- Emplea puertos que son llamados a través de sockets
- Utiliza un sistema de ventana deslizante para el control de flujo a este nivel
- Utiliza buffers para la transferencia haciéndola más eficiente
 - Acumula datos hasta que tiene suficientes para llenar un datagrama
 - También se puede forzar el envío
- Se intercambian flujos de bytes, divididos en segmentos
- Realiza control de la congestión a nivel de transporte. Se necesitan algoritmos diferentes a los utilizados en niveles más bajos

- Puerto de origen y destino: contiene los números de los puertos de envío y recepción
- Número de secuencia: identifica el número de secuencia del primer byte de datos del segmento. Si es un segmento SYN, es el número de secuencia inicial
- Nº confirmación de recepción: indica el número del siguiente byte que se desea recibir, no el último byte recibido
- Longitud encabezado: cantidad de palabras de 32 bits incluidas en el encabezado
- Campo reservado para posibles usos

- CWR (Congestion Window Reduced): bit para indicar reducción del tamaño de la ventana
- ECN (Explicit Congestion Notification): identificador que se utiliza para indicar que se está congestionando la red
- URG (Urgent): utilizado para indicar que el valor del campo "apuntador de urgente" es válido
- ACK (Acknowledgment): se utiliza para indicar que la respuesta también confirma datos recibidos
- PSH (Pushed Data): indica la entrega inmediata de los datos al nivel superior. No se espera a que se llene el buffer

- RST (Reset): empleado para reiniciar la conexión
- SYN (Synchronize): se utiliza para establecer la conexión.
 Únicamente los primeros mensajes tendrían este bit a 1
- FIN: corta la conexión y es el último mensaje enviado por cada transmisor
- Tamaño de ventana: indica el tamaño de la ventana. Puede ser igual a 0
- Suma de verificación: sirve para comprobar que el mensaje se ha transmitido sin errores
- Apuntador de urgente: es un offset que permite conocer el último valor de byte de los datos urgentes

- Options: permite definir nuevas opciones que no estén entre las incluidas por defecto en la cabecera
 - Tamaño máximo del segmento
 - Escala de ventana
 - Estampa de tiempo
 - Selective ACK

- Establecimiento de conexión
 - Handshake de triple vía

- Cierre de conexión
 - Handshake de cuatro vías

Fiabilidad en el protocolo TCP

- Pérdida de segmentos:
 - Los segmentos tienen número de secuencia
 - Se responderá a la llegada de segmentos correctos mediante asentimientos (ACK)
 - Los asentimientos hacen referencia al flujo de bytes recibidos, no a segmentos individuales
 - Se utilizarán temporizadores para controlar la pérdida de tramas: retransmisión

– Duplicados:

- Cuando TCP considera que se ha perdido un segmento enviará un duplicado
- El receptor detectará el doble envío gracias al número de secuencia y descartará la trama

Fiabilidad en el protocolo TCP

- Eficiencia y control de flujo:
 - Se utiliza un sistema de ventana deslizante para gestionar el flujo
 - Se utiliza un tamaño de ventana variable controlado por el receptor
 - Se utiliza el sistema de superposición para el ahorro de ancho de banda consumido por los ACKs
- Control de errores:
 - Entrega los datos sin errores
 - Suma de comprobación

Control del flujo mediante ventana deslizante

- La ventana es de tamaño variable y está controlada por el receptor
- No controla el número de segmentos recibidos, sino el número de bytes
- Ventana del emisor: número de bytes que puede enviar sin recibir asentimiento
- Ventana del receptor: número de bytes que puede aceptar
- Las respuestas transportan el número de bytes recibidos correctamente y el tamaño de la ventana receptora, que puede aumentar o disminuir
- Se pueden realizar asentimientos acumulativos con el objetivo de reducir el ancho de banda utilizado

- Control del flujo mediante ventana deslizante
 - Los datos con el flag URG siempre pueden enviarse
 - Si la ventana está llena, puede enviarse un segmento de tamaño 1 byte
 - Algoritmo de Naggle: Adecuado para situaciones de envío con paquetes pequeños
 - Se envía el primer segmento de información que llegue
 - La nueva información se almacena en un *buffer* hasta que llegue la confirmación del anterior segmento
 - Reducir el gasto de ancho de banda por culpa de las cabeceras

Control de la congestión

- El reloj de confirmación de recepción (ack clock)
- Utilización de temporizadores para evitar sobrecargar la red
- Ventana de congestión
- Algoritmos de control:
 - Inicio lento
 - Retransmisión rápida
 - Recuperación rápida
 - Asentimientos selectivos

Control de la congestión – Ack clock

- La velocidad de la red por la que se emite, está limitada por su enlace más lento
- El emisor necesita adaptar su velocidad a la máxima permitida por dicho enlace
- Se utiliza el llamado reloj de confirmación de recepción o ack clock

- Control de congestión Temporizadores
 - Retransmission TimeOut (RTO)
 - Tiempo que se espera antes de reenviar un segmento RTO = Tiempo medio ida y vuelta + 4 · desviación media

Control de congestión - Temporizadores

- Temporizador de Persistencia
 - El receptor envía un ACK con tamaño de ventana 0
 - Cuando actualiza el tamaño de ventana, el paquete se pierde
 - El emisor envía un mensaje de sondeo para forzar que el receptor le confirme el tamaño de la ventana
- Temporizador Keep Alive
 - Después de tiempo sin mensajes, una de las partes envía un mensaje vacío para confirmar que el otro extremo sigue activo

- Control de congestión Ventana congestión
 - Es el máximo número de bytes que el emisor puede poner en la red
 - Funciona en paralelo con la ventana deslizante del control de flujo – El valor más pequeño de ambas se corresponde con el valor de la ventana que se vaya a utilizar

- Control de congestión Ventana congestión
 - Hay que obtener su valor óptimo para evitar saturar la red
 - El valor ideal puede variar y es necesario que la ventana se adapte a dicho tamaño
 - Se intentan utilizar reglas AIMD (Additive Increase Multiplicative Decrease)

- Al inicio de la transmisión, se envía un único segmento
- Una vez que llega correctamente la confirmación, se envían dos segmentos
- Cuando llegan nuevamente las confirmaciones, se duplica de nuevo el tamaño de la ventana – cuatro segmentos
- La operación se repite hasta que ocurra algún evento que indique que hay congestión en la red
- Incremento exponencial La ventana de congestión puede crecer muy rápido

- Un crecimiento excesivamente rápido, hace que sea muy difícil encontrar el tamaño de ventana ideal
- Se puede establecer un umbral de inicio lento, a partir del cual el incremento pasa a ser lineal y no exponencial
- Cada vez que llegan todas las confirmaciones, el tamaño de la ventana se incrementa en un solo segmento en lugar de duplicarse
- Este umbral va aumentando cada vez que aumenta el tamaño de la ventana
- Esto permite encontrar de una forma más precisa el tamaño ideal de la ventana

- Control de congestión Pérdida de paquetes
 - ¿Cómo detectar que se pierde un paquete?
 - Salta uno de los temporizadores RTO Se considera que el paquete se ha perdido o que llegará demasiado tarde
 - Se reciben tres asentimientos repetidos
 - Están llegando segmentos nuevos al receptor, pero falta uno de los anteriores
 - El emisor no espera a que salte el RTO para enviar de nuevo el paquete, lo reenvía al recibir el tercer ACK repetido
 - Retransmisión rápida

Control de congestión – Pérdida de paquetes

- Control de congestión Pérdida de paquetes
 - ¿Cómo actuar cuando se pierde un paquete?
 - Reiniciar el valor de la ventana de congestión
 - Dividir entre dos el valor del umbral de inicio lento
 - Repetir el proceso para ir aumentando el valor de la ventana hasta que pueda volver a aparecer congestión

Control de congestión – TCP Tahoe

- Implementa inicio lento
- Utiliza umbral de inicio lento
- Detecta pérdida de paquetes mediante RTO y ACKs repetidos
- Cuando se pierde un paquete, reinicia el valor de la ventana de congestión a un segmento y el umbral de inicio lento a la mitad del valor actual

Control de congestión – TCP Tahoe

- Control de congestión Recuperación rápida
 - Se detecta que hay congestión en la red
 - El valor de la ventana de congestión se reinicia
 - No se utiliza una ventana de tamaño uno, sino una nueva ventana con la mitad del tamaño que la actual
 - Como el umbral de inicio lento tiene ese valor, los nuevos incrementos son lineales, no exponenciales
 - Algoritmo TCP Reno

Control de congestión – TCP Reno

- Control de congestión Asentimiento selectivo
 - El campo ACK de la cabecera, indica el último paquete que se ha recibido en orden y correctamente
 - Mediante el campo "options" se pueden hacer asentimientos selectivos de tramas que llegan fuera de orden
 - Se pueden agrupar paquetes consecutivos que puedan haber llegado fuera de orden

- Control de congestión Asentimiento selectivo
 - Ayuda en la velocidad de recuperación ante pérdidas, pero es un complemento a las técnicas anteriores

Problemas y futuro

- Desarrollado en los 80, apenas ha sufrido cambios significativos
- El aumento de las velocidades de las redes ha supuesto un problema importante
- Debido a su amplia implementación, es muy complicado cambiarlo por nuevos protocolos
- El control de la congestión aún debe ser mejorado

Referencias

– [1] Redes de ordenadores, 5ª Ed., Andrew S.
 Tanenbaum, Prentice Hall

