7주 3강

정보전송의 다중화

숭실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다.

*사용서체:나눔글꼴

- ◆ 정보전송의 다중화
 - 다중화
 - 전송로 하나에 데이터 신호 여러 개를 중복시켜 고속 신호 하나를 만들어 전송하는 방식
 - 하나의 통신로를 여러 가입자가 동시에 이용하여 통신
 - 전송로의 이용 효율이 매우 높음
 - 통신선로의 설치 공사비가 절감되며, 유지보수가 용이함 회 선 사용에 있어서 경제적

- ◆ 정보전송의 다중화
 - 주파수 분할 다중화(FDM)
 - 하나의 전송로 대역폭을 작은 대역폭(채널) 여러 개로 분할 하여 여러 단말기가 동시에 이용할 수 있게 하는 방식
 - 정보를 똑같은 시간에 전송하려고 별도의 주파수 채널을 설정해 이용
 - 채널 간에 상호 간섭을 막으려면 보호 대역이 필요
 - 구조가 간단하므로 비용이 저렴하고, 사용자가 추가하기 쉬우며, 각 사용자의 단말기에서 사용하는 코드와는 상관 없이 다중화가 가능

- ◆ 정보전송의 다중화
 - 주파수 분할 다중화(FDM)

그림 4-30 주파수 분할 다중화 방식

- ◆ 정보전송의 다중화
 - 시분할 다중화(TDM)
 - 전송로 대역폭 하나를 시간 슬롯으로 나눈 채널에 할당하여 채널 몇 개가 한 전송로의 시간을 분할해서 사용
 - 채널 간의 상호 간섭을 방지하기 위하여 사용되는 시간 간격을 가드 타임 사용
 - 시분할 다중화의 특징은 주로 점대점 시스템에서 사용
 - 내부에 버퍼 기억 장치가 필요하며, 고속 전송이 가능

- ◆ 정보전송의 다중화
 - 시분할 다중화(TDM)

그림 4-31 시분할 다중화 방식

◆ 정보전송의 다중화

• CCU : 통신 제어 장치 • TDM : 시분할 다중화 장치

그림 4-32 동기식 시분할 다중화와 비동기식 시분할 다중화 방식

- ◆ 정보전송의 다중화
 - 코드 분할 다중화(CDM)
 - 스펙트럼 확산, 다중화라고도 함

그림 4-33 스펙트럼 확산의 다중화 방식

- ◆ 정보전송의 다중화
 - 직교 주파수 분할 다중 접속(OFDMA)
 - 고속의 송신 신호를 수백 개 이상의 직교하는 협대역 부반송 파로 변조시켜 다중화하는 방식
 - 동시에 '변조' 및 '다중화'를 수행하며, 부반송파 간 직교성을 유지
 - 대역폭에 관계없이 동일한 기저대역 연산 구조를 유지하는 것이 가능

- ◆ 정보전송의 다중화
 - 직교 주파수 분할 다중 접속(OFDMA)

표 4-8 OFDMA의 주요 활용분야

분야	내용	
무선 LAN 분야	802,11a, 802,11g, 802,11n, 802,16 등	
이동전화 분야	Beyond IMT-2000(4G LTE)	
디지털 방송 분야	유럽식(DVB), 미국식(ATSC), 일본식 모두 OFDM 채용	

그림 4-34 OFDMA의 개념

- ◆ 정보전송의 다중화
 - 비직교 다중 접속
 - 동일한 시간, 주파수, 공간 자원 상에 두 대 이상의 단말에 대한 데이터를 동시 전송하는 방식
 - 5G 통신망에서 사용
 - 주파수의 직교성을 요구하지 않음
 - 같은 주파수를 사용하더라도 자율주행 제어신호를 전송할 수 있음
 - 고속통신과 높은 주파수 효율성이 있음

- ◆ 정보전송의 다중화
 - 비직교 다중 접속

표 4-9 OFDMA와 NOMA의 비교

구분	OFDMA	NOMA
개념도	Orthogonal between users freq., code CDMA, OFDMA	Non-Orthogonal: Superposition and power allocation freq.
원리	직교 자원 할당	전력 제어를 통한 부반송파 중첩 할당
주파수 효율성	높음	매우 높음
동일주파수 자원 할당	1대만 가능	동시에 2대 가능
직교성 유지	중요함	필요 없음
활용	4G 이동통신	5G 이동통신

수고하셨습니다.

