Final de Lógica 2008

- 1. V o F, justifique.
 - (a) Sea P ⊆ P(N), y supougamos (P,⊆) es un reticulado. Entonces la operación ínfimo del reticulado (P,⊆) es la operación intersección de conjuntos.
 - (b) Por definición una teoría (Σ, τ) es inconsistente si hay una sentencia φ de tipo τ tal que $(\Sigma, \tau) \models (\varphi \land \neg \varphi)$.
 - (c) Si $(\varphi \to \psi)$ no es universalmente válida entonces en el algebra de Lindenbaum $\mathcal{A}_{(\emptyset,(\emptyset,\emptyset,\emptyset,\emptyset))}$ se tiene que $[\varphi] \not\leq [\psi]$.
 - (d) Sea θ una congruencia del reticulado acotado (L, s, i, 0, 1). Si $(0, 1) \in \theta$, entonces $\theta = L \times L$.
- 2. Sea $\tau = (\emptyset, \{\cdot^2\}, \{r^1\}, a)$ y sea Σ el conjunto formado por los axiomas: .

$$\forall x, y, z \ (x \cdot (y \cdot z) \equiv (x \cdot y) \cdot z)$$

$$\forall x \exists y \ (y \cdot y \equiv x \land r(y)) \quad .$$

$$\forall y \ (r(y) \to (\forall x \ x \cdot y \equiv y \cdot x))$$

De una prueba formal que atestigüe que $(\Sigma, \tau) \vdash \forall x, y \ (x \cdot y \equiv y \cdot x)$.

3. Sea $\tau = (\mathcal{C}, \mathcal{F}, \mathcal{R}, a)$ un tipo. Sea c_N un nombre de cte. que no pertenece a \mathcal{C} , y tal que $\tau_N = (\mathcal{C} \cup \{c_N\}, \mathcal{F}, \mathcal{R}, a)$ es un tipo. Dado un modelo A de tipo τ y un $a \in A$, con (A, a) denotaremos el modelo de tipo τ_N con universo igual a A y tal que

$$c^{(\mathbf{A},a)} = c^{\mathbf{A}}$$
, para todo $c \in \mathcal{C}$

$$c_N^{(A,a)} = a$$

$$f^{(\mathbf{A},a)} = f^{\mathbf{A}}$$
, para todo $f \in \mathcal{F}$

$$r^{(\mathbf{A},a)} = r^{\mathbf{A}}$$
, para todo $r \in \mathcal{R}$.

(a) Si $\varphi(v)$ es una formula de tipo τ , entonces

$$(A, a) \models \varphi(c_N)$$
 si y solo si $A \models \varphi[a]$

- (b) Toda sentencia de tipo τ_N es de la forma $\varphi(c_N)$, con $\varphi = \varphi(v)$, una formula de tipo τ .
- 4. Sean A y B τ -álgebras, y sean p = p(x, y), q = q(x, y) términos de tipo τ . Pruebe que si A y B satisfacen la sentencia $\varphi = \exists x \forall y \ (p \equiv q)$, entonces $A \times B \models \varphi$.