令和 6 年度 東北大学 大学院理学研究科 数学専攻 入学試験問題

数学 選択問題

令和5年8月23日(13時30分から15時30分まで)

注意事項

- 1) 開始の合図があるまで問題冊子を開けないこと.
- 2) 問題は8題ある.3題を選択して解答すること.
- 3) 各問題ごとに 1 枚の解答用紙を用いること.
- 4) 解答用紙の左肩上部の に選択した問題番号を記入し、受験番号をすべての解答用紙の()内に記入すること、また、氏名は書かないこと.
- 5) 問題冊子は、このページを含め全7ページである、

記号

Z:整数全体のなす集合

ℤ>0: 正の整数全体のなす集合

Q:有理数全体のなす集合

ℝ: 実数全体のなす集合

ℂ:複素数全体のなす集合

- $oxed{1}$ 群 G の正規部分群 N および N の部分群 K を考える. また N の自己同型写像全体がなす群を $\mathrm{Aut}(N)$ と表す. 以下の問いに答えよ.
 - (1) 次の命題が真であることを示せ.

命題: K が G の正規部分群であるならば, K は N の正規部分群である.

(2) 群 G の各元 g に対して、写像

$$i(g): G \longrightarrow G, \ n \mapsto gng^{-1}$$

は、N が G の正規部分群であることから、N から N への写像 $I(g):=i(g)|_N$ を定める。ただし、 $i(g)|_N$ は i(g) の N への制限を表す。このとき、 $I(g)\in \operatorname{Aut}(N)$ であることを示せ、さらに写像

$$I: G \longrightarrow \operatorname{Aut}(N), \ g \mapsto I(g)$$

は群準同型であることを示せ.

- (3) $\mathrm{Aut}(N)$ の各元 σ に対して $\sigma(K) \subset K$ が成り立つとき,K は G の正規部分群であることを示せ.
- (4) 群 G が 4 次対称群 S_4 であるとき、(1) の命題の逆が成立しないことを具体的に 反例を与えることで示せ、すなわち、N は $G=S_4$ の正規部分群かつ K は N の 正規部分群であるが K は $G=S_4$ の正規部分群でないような N, K の例を理由と ともに与えよ、
- 2 多項式 $f(x) = x^3 2$ の \mathbb{C} における \mathbb{Q} 上の最小分解体を K とおく、複素数体 \mathbb{C} において -3 の平方根のひとつを $\sqrt{-3}$ と表し、2 の 3 乗根であって実数であるものを $\sqrt[3]{2}$ と表す、以下の問いに答えよ、
 - (1) f(x) は Q 上の既約多項式であることを示せ.
 - ・(2) $K = \mathbb{Q}(\sqrt[3]{2}, \sqrt{-3})$ であることを示せ.
 - (3) Kの \mathbb{Q} 上の拡大次数は 6 であることを示せ、またガロア群 $G = \operatorname{Gal}(K/\mathbb{Q})$ は 3 次 対称群 S_3 と群として同型であることを示せ、
 - (4) K の部分体であって、 \mathbb{Q} 上の拡大次数が3 であるものをすべて与えよ.

3 3 次元ユークリッド空間 \mathbb{R}^3 上で定義される滑らかな関数 $f:\mathbb{R}^3 o \mathbb{R}$ を

$$f(x, y, z) = x^4 - 4xy + y^4 + z^2$$
 $((x, y, z) \in \mathbb{R}^3)$

とし, $S = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = 1\}$ とおく. 以下の問いに答えよ.

- (1) S は \mathbb{R}^3 の 2 次元部分多様体であることを示せ.
- (2) S 上で定義される滑らかな関数 $g:S \to \mathbb{R}$ を

$$g(x, y, z) = z$$

とするとき、gの臨界点をすべて求めよ.

 $\boxed{4}$ 3次元ユークリッド空間 \mathbb{R}^3 において、

$$X = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + \frac{y^2}{4} + \frac{3z^2}{4} = 1 \right\}$$

および

$$Y = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + \frac{3y^2}{4} + \frac{z^2}{4} = 1 \right\}$$

とおく. 以下の問いに答えよ.

- (1) すべての非負の整数 q に対して、X の q 次の整係数ホモロジー群 $H_q(X)$ を求めよ.
- (2) すべての非負の整数 q に対して、 $X\cap Y$ の q 次の整係数ホモロジー群 $H_q(X\cap Y)$ を求めよ.
- (3) すべての非負の整数 q に対して, $X \cup Y$ の q 次の整係数ホモロジー群 $H_q(X \cup Y)$ を求めよ.

5 正の整数 $n \ge k = 1, \ldots, 2^n - 1$ に対して

$$a_{n,k} = \frac{k}{2^n}$$

とおき, \mathbb{R} の開区間 I=(0,1) 上の関数 $f_{n,k}:I \to \mathbb{R}$ を

$$f_{n,k}(x) = \begin{cases} \frac{1}{\sqrt{a_{n,k} - x}} & (0 < x < a_{n,k}) \\ 0 & (a_{n,k} \le x < 1) \end{cases}$$

と定める. またmを \mathbb{R} におけるルベーグ測度とする. 以下の問いに答えよ.

- (1) 正の整数 n と $k=1,\ldots,2^n-1$ に対して関数 $f_{n,k}$ は I 上のルベーグ可測関数であることを示せ、さらにルベーグ積分 $\int_I f_{n,k}(x) \, m(dx)$ の値を求めよ.
- (2) 正の整数 n に対して

$$\sum_{k=1}^{2^n-1} \sqrt{k} \le 2^{\frac{3}{2}n}$$

が成り立つことを示せ.

(3) I 上の関数 f を

$$f(x) = \sum_{n=1}^{\infty} \sum_{k=1}^{2^{n}-1} \frac{f_{n,k}(x)}{2^{2n}} \qquad (x \in I)$$

と定めると、fはI上でほとんどいたるところ有限な値をとることを示せ、

| 例数空間 $X = C([0,1]) = \{u: [0,1] \to \mathbb{R} \mid u \text{ it } [0,1] \text{ 上の連続関数 }$ のノルムを $\|u\|_X = \max_{x \in [0,1]} |u(x)|$ $(u \in X)$ と定めることで与えられる実バナッハ空間 $(X,\|\cdot\|_X)$ を考える. さらに $K: [0,1] \times [0,1] \to \mathbb{R}$ を連続関数とする. X 上の有界線形作用素 $T: X \to X$ を

$$(Tu)(x) = \int_0^x K(x,y)u(y) dy$$
 $(u \in X, x \in [0,1])$

によって定める. 以下の問いに答えよ.

(1) 任意の正の整数 n に対して、次の不等式が成り立つことを示せ。

$$|(T^n u)(x)| \le M^n \frac{x^n}{n!} ||u||_X \qquad (u \in X, \ x \in [0, 1])$$

ただし $M = \max\{|K(x,y)| \mid (x,y) \in [0,1] \times [0,1]\}$ とする.

(2) X 上の有界線形作用素全体からなる線形空間 $\mathcal{B}(X)$ のノルムを

$$||F|| = \sup\{||Fu||_X \mid u \in X, ||u||_X \le 1\}$$
 $(F \in \mathcal{B}(X))$

と定めることで与えられる実バナッハ空間 ($\mathcal{B}(X), \|\cdot\|$) を考える. このとき, 級数

$$S = \sum_{n=0}^{\infty} T^n = \lim_{N \to \infty} \sum_{n=0}^{N} T^n$$

が $\mathcal{B}(X)$ 上で収束することを示せ、ただし $T^0=I$ は X 上の恒等作用素を表すものとする、

(3) S を (2) で与えた X 上の有界線形作用素とする.このとき,任意の $f\in X$ に対して, $u=Sf=\sum_{n=0}^{\infty}T^nf$ は,条件

$$u - Tu = f$$

を満たすただ一つの X の元であることを示せ.

- p(z) を複素数を係数とする多項式とする. さらに f(z), F(z) を複素平面 \mathbb{C} 上で定義された正則関数とする. 以下の問いに答えよ.
 - (1) 任意の $z \in \mathbb{C}$ に対して $f(z) = F(\overline{f(z)})$ が成り立つと仮定する. ただし $\overline{f(z)}$ は f(z) の共役複素数を表す. このとき、関数 f(z) は定数関数であることを示せ.
 - (2) $|z| \ge 1$ を満たす任意の $z \in \mathbb{C}$ に対して $|f(z)| \le |p(z)|$ が成り立つと仮定する. このとき、関数 f(z) は z についての多項式で定義される関数であることを示せ.
 - (3) p(z) は 0 でない多項式とし、その次数を n とする. $|z| \le 1$ を満たす任意の $z \in \mathbb{C}$ に対して $|p(z)| \le |z|^n$ が成り立つと仮定する.このとき、ある複素数 c が存在し、任意の $z \in \mathbb{C}$ に対して $p(z) = cz^n$ が成立することを示せ.

- - (1) $C \subseteq \mathbb{R}$ を空でない高々可算な集合とし、 \mathbb{R} における C を含む最小の \mathbb{Q} 上の部分ベクトル空間を $\langle C \rangle$ と表す.このとき $\kappa = |\langle C \rangle|$ は以下の (a) から (f) のいずれを満たすか,理由とともに答えよ.
 - (a) $\kappa = \aleph_0$
 - (b) $\aleph_0 < \kappa < 2^{\aleph_0}$
 - (c) $\kappa = 2^{\aleph_0}$
 - (d) $2^{\aleph_0} < \kappa < 2^{2^{\aleph_0}}$
 - (e) $\kappa = 2^{2^{\aleph_0}}$
 - (f) $2^{2^{\aleph_0}} < \kappa$
 - (2) $B \subseteq \mathbb{R}$ を \mathbb{Q} 上のベクトル空間としての \mathbb{R} の基底とする. このとき $\kappa = |B|$ は (1) の (a) から (f) のいずれを満たすか、理由とともに答えよ.
 - (3) $\mathcal{H} = \{ f : \mathbb{R} \to \mathbb{R} \mid f \text{ は } \mathbb{Q} \text{-線形写像 } \}$ とする. このとき $\kappa = |\mathcal{H}|$ は (1) の (a) から (f) のいずれを満たすか、理由とともに答えよ.
 - (4) (3) で与えた \mathcal{H} に対して $\mathcal{H}_c = \{ f \in \mathcal{H} \mid f \text{ は } \mathbb{R} \text{ の通常のユークリッド位相につ いて連続 } とする. このとき <math>\kappa = |\mathcal{H}_c|$ は (1) の (a) から (f) のいずれを満たすか、理由とともに答えよ.