Algebra

Wykład 1 - Rozwiązywanie układów równań liniowych

Oskar Kędzierski

6 października 2019

Kontakt

email: O.Kedzierski@wit.edu.pl,

Kontakt

email: O.Kedzierski@wit.edu.pl,

i) T. Jurlewicz, Z. Skoczylas, *Algebra liniowa 1. Definicje, twierdzenia, wzory.*, GiS, 2002.

- i) T. Jurlewicz, Z. Skoczylas, *Algebra liniowa 1. Definicje, twierdzenia, wzory.*, GiS, 2002.
- ii) T. Jurlewicz, Z. Skoczylas, *Algebra i geometria analityczna. Przykłady i zadania.*, GiS, 2008.

- i) T. Jurlewicz, Z. Skoczylas, *Algebra liniowa 1. Definicje, twierdzenia, wzory.*, GiS, 2002.
- ii) T. Jurlewicz, Z. Skoczylas, *Algebra i geometria analityczna. Przykłady i zadania.*, GiS, 2008.
- iii) T. Koźniewski, *Wykłady z Algebry Liniowej I*, Uniwersytet Warszawski, 2008.

- i) T. Jurlewicz, Z. Skoczylas, *Algebra liniowa 1. Definicje, twierdzenia, wzory.*, GiS, 2002.
- ii) T. Jurlewicz, Z. Skoczylas, *Algebra i geometria analityczna. Przykłady i zadania.*, GiS, 2008.
- iii) T. Koźniewski, *Wykłady z Algebry Liniowej I*, Uniwersytet Warszawski, 2008.
- iv) J. Rutkowski, Algebra liniowa w zadaniach., PWN 2018.

- i) T. Jurlewicz, Z. Skoczylas, *Algebra liniowa 1. Definicje, twierdzenia, wzory.*, GiS, 2002.
- ii) T. Jurlewicz, Z. Skoczylas, *Algebra i geometria analityczna. Przykłady i zadania.*, GiS, 2008.
- iii) T. Koźniewski, *Wykłady z Algebry Liniowej I*, Uniwersytet Warszawski, 2008.
- iv) J. Rutkowski, Algebra liniowa w zadaniach., PWN 2018.
- v) Algebra liniowa z geometrią analityczną, Ważniak, https://goo.gl/8RdpXo

Przez \mathbb{R} będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to -1,

Przez \mathbb{R} będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to -1,0,

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},$

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},$

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,$

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,\pi$.

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,\pi.$

Przez \mathbb{R}^n będziemy oznaczać zbiór n-elementowych ciągów liczb rzeczywistych.

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,\pi$.

Przez \mathbb{R}^n będziemy oznaczać zbiór n-elementowych ciągów liczb rzeczywistych. Na przykład, $(1,-2,4)\in\mathbb{R}^3$.

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,\pi$.

Przez \mathbb{R}^n będziemy oznaczać zbiór n-elementowych ciągów liczb rzeczywistych. Na przykład, $(1,-2,4)\in\mathbb{R}^3$.

Wyrażenie $\forall_{x \in X} p(x)$ oznacza "dla każdego elementu x ze zbioru X zachodzi p(x)".

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,\pi.$

Przez \mathbb{R}^n będziemy oznaczać zbiór n-elementowych ciągów liczb rzeczywistych. Na przykład, $(1,-2,4)\in\mathbb{R}^3$.

Wyrażenie $\forall_{x \in X} p(x)$ oznacza "dla każdego elementu x ze zbioru X zachodzi p(x)".

Wyrażenie $\exists_{x \in X} q(x)$ oznacza "istnieje element x ze zbioru X taki, że zachodzi q(x)".

Przez $\mathbb R$ będziemy oznaczać zbiór liczb rzeczywistych. Przykładowe liczby rzeczywiste to $-1,0,\sqrt{2},\frac{3}{2},3,\pi.$

Przez \mathbb{R}^n będziemy oznaczać zbiór n-elementowych ciągów liczb rzeczywistych. Na przykład, $(1,-2,4)\in\mathbb{R}^3$.

Wyrażenie $\forall_{x \in X} p(x)$ oznacza "dla każdego elementu x ze zbioru X zachodzi p(x)".

Wyrażenie $\exists_{x \in X} q(x)$ oznacza "istnieje element x ze zbioru X taki, że zachodzi q(x)".

Definicja

Ciałem nazywamy zbiór \mathbb{K} wyposażony w dwa działania na parach elementów z \mathbb{K} , oznaczane przez + (dodawanie) i · (mnożenie), które spełniają następujące warunki:

i) $\forall_{a,b,c\in\mathbb{K}} (a+b)+c=a+(b+c)$ oraz $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (łączność dodawania i mnożenia),

Definicja

- i) $\forall_{a,b,c\in\mathbb{K}} (a+b)+c=a+(b+c)$ oraz $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (łączność dodawania i mnożenia),
- ii) $\forall_{a,b\in\mathbb{K}}\ a+b=b+a$ oraz $a\cdot b=b\cdot a$ (przemienność dodawania i mnożenia),

Definicja

- i) $\forall_{a,b,c\in\mathbb{K}} (a+b)+c=a+(b+c)$ oraz $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (łączność dodawania i mnożenia),
- ii) $\forall_{a,b\in\mathbb{K}}\ a+b=b+a$ oraz $a\cdot b=b\cdot a$ (przemienność dodawania i mnożenia),
- iii) istnieje $0\in\mathbb{K}$ takie, że $\forall_{a\in\mathbb{K}}\ a+0=a$ oraz istnieje $1\in\mathbb{K}$ (różne od 0) takie, że $\forall_{a\in\mathbb{K}}\ a\cdot 1=a$ (istnienie elementów neutralnych względem dodawania i mnożenia),

Definicja

- i) $\forall_{a,b,c\in\mathbb{K}} (a+b)+c=a+(b+c)$ oraz $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (łączność dodawania i mnożenia),
- ii) $\forall_{a,b\in\mathbb{K}}\ a+b=b+a$ oraz $a\cdot b=b\cdot a$ (przemienność dodawania i mnożenia),
- iii) istnieje $0 \in \mathbb{K}$ takie, że $\forall_{a \in \mathbb{K}} \ a + 0 = a$ oraz istnieje $1 \in \mathbb{K}$ (różne od 0) takie, że $\forall_{a \in \mathbb{K}} \ a \cdot 1 = a$ (istnienie elementów neutralnych względem dodawania i mnożenia),
- iv) $\forall_{a \in \mathbb{K}} \exists_{-a \in \mathbb{K}} a + (-a) = 0$ oraz $\forall_{a \in \mathbb{K}, a \neq 0} \exists_{a^{-1} \in \mathbb{K}} a \cdot a^{-1} = 1$ (istnienie elementów odwrotnych względem dodawania i mnożenia),

Definicja

- i) $\forall_{a,b,c\in\mathbb{K}} (a+b)+c=a+(b+c)$ oraz $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (łączność dodawania i mnożenia),
- ii) $\forall_{a,b\in\mathbb{K}}\ a+b=b+a$ oraz $a\cdot b=b\cdot a$ (przemienność dodawania i mnożenia),
- iii) istnieje $0 \in \mathbb{K}$ takie, że $\forall_{a \in \mathbb{K}} \ a + 0 = a$ oraz istnieje $1 \in \mathbb{K}$ (różne od 0) takie, że $\forall_{a \in \mathbb{K}} \ a \cdot 1 = a$ (istnienie elementów neutralnych względem dodawania i mnożenia),
- iv) $\forall_{a \in \mathbb{K}} \exists_{-a \in \mathbb{K}} a + (-a) = 0$ oraz $\forall_{a \in \mathbb{K}, a \neq 0} \exists_{a^{-1} \in \mathbb{K}} a \cdot a^{-1} = 1$ (istnienie elementów odwrotnych względem dodawania i mnożenia),
- v) $\forall_{a,b,c\in\mathbb{K}} \ a\cdot (b+c) = a\cdot b + a\cdot c$ (rozdzielność mnożenia względem dodawania).

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu *iii*).

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia. Elementy -a oraz a^{-1} są wyznaczone jednoznacznie.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia. Elementy -a oraz a^{-1} są wyznaczone jednoznacznie. Przypuśćmy, że dla $a \in \mathbb{K}$ istnieją $a', a'' \in \mathbb{K}$ takie, że a + a' = a + a'' = 0.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia. Elementy -a oraz a^{-1} są wyznaczone jednoznacznie. Przypuśćmy, że dla $a \in \mathbb{K}$ istnieją $a', a'' \in \mathbb{K}$ takie, że a+a'=a+a''=0. Do obu stron równania a+a'=0 dodajmy a'' z lewej strony. Stąd a'=a''. Podobnie dla mnożenia.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia. Elementy -a oraz a^{-1} są wyznaczone jednoznacznie. Przypuśćmy, że dla $a \in \mathbb{K}$ istnieją $a', a'' \in \mathbb{K}$ takie, że a+a'=a+a''=0. Do obu stron równania a+a'=0 dodajmy a'' z lewej strony. Stąd a'=a''. Podobnie dla mnożenia. Wykażemy, że $0 \cdot a=0$.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia. Elementy -a oraz a^{-1} są wyznaczone jednoznacznie. Przypuśćmy, że dla $a \in \mathbb{K}$ istnieją $a', a'' \in \mathbb{K}$ takie, że a+a'=a+a''=0. Do obu stron równania a+a'=0 dodajmy a'' z lewej strony. Stąd a'=a''. Podobnie dla mnożenia. Wykażemy, że $0 \cdot a=0$. Weźmy $0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a$.

W dowolnym ciele $\mathbb K$ zero i jedynka sa wyznaczone jednoznacznie. Przypuśćmy, że mamy dwa zera $0,0'\in\mathbb K$. Wtedy

$$0 = 0 + 0' = 0',$$

z aksjomatu iii). Analogicznie dowodzimy dla mnożenia. Elementy -a oraz a^{-1} są wyznaczone jednoznacznie. Przypuśćmy, że dla $a \in \mathbb{K}$ istnieją $a', a'' \in \mathbb{K}$ takie, że a + a' = a + a'' = 0. Do obu stron równania a + a' = 0 dodajmy a'' z lewej strony. Stąd a' = a''. Podobnie dla mnożenia.

Wykażemy, że $0 \cdot a = 0$. Weźmy $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. Po dodaniu do obu stron równania $-(a \cdot 0)$ otrzymujemy, że

$$0=0\cdot a$$
.

Przykłady ciał

Ciałami są:

Przykłady ciał

Ciałami są:

i) ciało $\mathbb R$ liczb rzeczywistych z naturalnymi działaniami dodawania + i mnożenia \cdot ,

Ciałami są:

- i) ciało $\mathbb R$ liczb rzeczywistych z naturalnymi działaniami dodawania + i mnożenia \cdot ,
- ii) ciało $\mathbb Q$ liczb wymiernych z naturalnymi działaniami dodawania + i mnożenia \cdot .

Ciałami są:

- i) ciało $\mathbb R$ liczb rzeczywistych z naturalnymi działaniami dodawania + i mnożenia \cdot ,
- ii) ciało $\mathbb Q$ liczb wymiernych z naturalnymi działaniami dodawania + i mnożenia \cdot .

Ciałami nie są:

Ciałami są:

- i) ciało $\mathbb R$ liczb rzeczywistych z naturalnymi działaniami dodawania + i mnożenia \cdot ,
- ii) ciało $\mathbb Q$ liczb wymiernych z naturalnymi działaniami dodawania + i mnożenia \cdot .

Ciałami nie są:

 i) zbiór N liczb naturalnych z naturalnymi działaniami dodawania + i mnożenia ·,

Ciałami są:

- i) ciało $\mathbb R$ liczb rzeczywistych z naturalnymi działaniami dodawania + i mnożenia \cdot .
- ii) ciało $\mathbb Q$ liczb wymiernych z naturalnymi działaniami dodawania + i mnożenia \cdot .

Ciałami nie są:

- i) zbiór N liczb naturalnych z naturalnymi działaniami dodawania + i mnożenia ·,
- ii) zbiór $\mathbb Z$ liczb całkowitych z naturalnymi działaniami dodawania + i mnożenia \cdot ,

Ciałami są:

- i) ciało $\mathbb R$ liczb rzeczywistych z naturalnymi działaniami dodawania + i mnożenia \cdot ,
- ii) ciało $\mathbb Q$ liczb wymiernych z naturalnymi działaniami dodawania + i mnożenia \cdot .

Ciałami nie są:

- i) zbiór $\mathbb N$ liczb naturalnych z naturalnymi działaniami dodawania + i mnożenia \cdot ,
- ii) zbiór $\mathbb Z$ liczb całkowitych z naturalnymi działaniami dodawania + i mnożenia \cdot ,
- iii) zbiór wszystkich funkcji $f: \mathbb{R} \longrightarrow \mathbb{R}$ z działaniami określonymi wzorami (f+g)(x) = f(x) + g(x) oraz $(f \cdot g)(x) = f(x) \cdot g(x)$ dla $x \in \mathbb{R}$.

$$\begin{cases} x_1 - x_2 = 1 \\ x_1 + 2x_2 = 4 \end{cases}$$

jedno rozwiązanie (2,1)

$$\begin{cases} x_1 & - & x_2 & = & 1 \\ x_1 & - & x_2 & = & -3 \end{cases}$$

brak rozwiązań

$$\begin{cases} x_1 & - & x_2 & = & 1 \\ 2x_1 & - & 2x_2 & = & 2 \end{cases}$$

nieskończenie wiele rozwiązań postaci $(x_2 + 1, x_2), x_2 \in \mathbb{R}$

Równanie liniowe to równanie postaci:

Równanie liniowe to równanie postaci:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
, gdzie

Równanie liniowe to równanie postaci:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
, gdzie

 x_1, \ldots, x_n to niewiadome,

Równanie liniowe to równanie postaci:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
, gdzie

 x_1, \ldots, x_n to niewiadome,

 $a_1, \ldots, a_n \in \mathbb{K}$ to współczynniki,

Równanie liniowe to równanie postaci:

$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
, gdzie

 x_1, \ldots, x_n to niewiadome,

 $a_1, \ldots, a_n \in \mathbb{K}$ to współczynniki,

 $b \in \mathbb{K}$ to wyraz wolny.

Układ równań liniowych w ciele K

Układem m równań linowych z n zmiennymi x_1,\ldots,x_n w ciele $\mathbb K$ nazywamy układ postaci

$$L: \begin{cases} a_{11}x_1 & + & a_{12}x_2 & + & \dots & + & a_{1n}x_n & = b_1 \\ a_{21}x_1 & + & a_{22}x_2 & + & \dots & + & a_{2n}x_n & = b_2 \\ \vdots & & \vdots & & \ddots & & \vdots & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \dots & + & a_{mn}x_n & = b_m \end{cases}$$

Układ równań liniowych w ciele K

Układem m równań linowych z n zmiennymi x_1,\ldots,x_n w ciele $\mathbb K$ nazywamy układ postaci

$$L: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

ze współczynnikami $a_{ij}\in\mathbb{K},\ i=1,\ldots,m,\ j=1,\ldots,n$ oraz wyrazami wolnymi $b_i\in\mathbb{K}$ dla $i=1,\ldots,m.$

Układ równań liniowych w ciele K

Układem m równań linowych z n zmiennymi x_1, \ldots, x_n w ciele $\mathbb K$ nazywamy układ postaci

$$L: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

ze współczynnikami $a_{ij} \in \mathbb{K}, \ i=1,\ldots,m, \ j=1,\ldots,n$ oraz wyrazami wolnymi $b_i \in \mathbb{K}$ dla $i=1,\ldots,m$. Jeśli $b_1=b_2=\ldots=b_m=0$ układ nazywamy **jednorodnym.**

Dowolny n-elementowy ciąg $(c_1,\ldots,c_n)\in\mathbb{K}^n$ spełniający wszystkie równania układu L, to jest

$$\forall_{i=1,...,m} \ a_{i1}c_1 + a_{i2}c_2 + \cdots + a_{i(n-1)}c_{n-1} + a_{in}c_n = b_i,$$

Dowolny n-elementowy ciąg $(c_1,\ldots,c_n)\in\mathbb{K}^n$ spełniający wszystkie równania układu L, to jest

$$\forall_{i=1,...,m} \ a_{i1}c_1 + a_{i2}c_2 + \cdots + a_{i(n-1)}c_{n-1} + a_{in}c_n = b_i,$$

nazywamy **rozwiązaniem** układu *L*.

Dowolny *n*-elementowy ciąg $(c_1,\ldots,c_n)\in\mathbb{K}^n$ spełniający wszystkie równania układu L, to jest

$$\forall_{i=1,...,m} \ a_{i1}c_1 + a_{i2}c_2 + \cdots + a_{i(n-1)}c_{n-1} + a_{in}c_n = b_i,$$

nazywamy **rozwiązaniem** układu L. Na przykład, ciąg $(0, \ldots, 0)$ jest rozwiązaniem jednorodnego układu równań.

Dowolny n-elementowy ciąg $(c_1,\ldots,c_n)\in\mathbb{K}^n$ spełniający wszystkie równania układu L, to jest

$$\forall_{i=1,...,m} \ a_{i1}c_1 + a_{i2}c_2 + \cdots + a_{i(n-1)}c_{n-1} + a_{in}c_n = b_i,$$

nazywamy **rozwiązaniem** układu L. Na przykład, ciąg $(0, \ldots, 0)$ jest rozwiązaniem jednorodnego układu równań.

Układ, który nie posiada rozwiązań nazywamy sprzecznym.

Dowolny n-elementowy ciąg $(c_1,\ldots,c_n)\in\mathbb{K}^n$ spełniający wszystkie równania układu L, to jest

$$\forall_{i=1,...,m} \ a_{i1}c_1 + a_{i2}c_2 + \cdots + a_{i(n-1)}c_{n-1} + a_{in}c_n = b_i,$$

nazywamy **rozwiązaniem** układu L. Na przykład, ciąg $(0, \ldots, 0)$ jest rozwiązaniem jednorodnego układu równań.

Układ, który nie posiada rozwiązań nazywamy sprzecznym.

Dwa układy równań nazywamy **równoważnymi** jeśli posiadają te same zbiory rozwiązań.

Działania na równaniach liniowych

Równanie $a_1x_1+a_2x_2+\ldots+a_nx_n=b$ w ciele $\mathbb K$ można **pomnożyć** przez element $c\in\mathbb K,c\neq 0$ i otrzymać równanie postaci $ca_1x_1+ca_2x_2+\ldots+ca_nx_n=cb$.

Działania na równaniach liniowych

Równanie $a_1x_1+a_2x_2+\ldots+a_nx_n=b$ w ciele $\mathbb K$ można **pomnożyć** przez element $c\in\mathbb K,c\neq 0$ i otrzymać równanie postaci $ca_1x_1+ca_2x_2+\ldots+ca_nx_n=cb$.

Dwa równania linowe $a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$, $a'_1x_1 + a'_2x_2 + \ldots + a'_nx_n = b'$ można **dodać** i otrzymać równanie

$$(a_1 + a'_1)x_1 + (a_2 + a'_2)x_2 + \ldots + (a_n + a'_n)x_n = b + b'.$$

Twierdzenie

Następujące działania, nazywane **operacjami elementarnymi**, nie zmieniają zbioru rozwiązań układu liniowego w ciele $\mathbb K$ (to znaczy, prowadzą do równoważnego układu równań)

Twierdzenie

Następujące działania, nazywane **operacjami elementarnymi**, nie zmieniają zbioru rozwiązań układu liniowego w ciele $\mathbb K$ (to znaczy, prowadzą do równoważnego układu równań)

i) zamiana miejsc dwóch równań,

Twierdzenie

Następujące działania, nazywane **operacjami elementarnymi**, nie zmieniają zbioru rozwiązań układu liniowego w ciele $\mathbb K$ (to znaczy, prowadzą do równoważnego układu równań)

- i) zamiana miejsc dwóch równań,
- ii) pomnożenie równania przez element ciała K, różny od 0,

Twierdzenie

Następujące działania, nazywane **operacjami elementarnymi**, nie zmieniają zbioru rozwiązań układu liniowego w ciele $\mathbb K$ (to znaczy, prowadzą do równoważnego układu równań)

- i) zamiana miejsc dwóch równań,
- ii) pomnożenie równania przez element ciała K, różny od 0,
- iii) dodanie jednego równania do innego.

Twierdzenie

Następujące działania, nazywane **operacjami elementarnymi**, nie zmieniają zbioru rozwiązań układu liniowego w ciele \mathbb{K} (to znaczy, prowadzą do równoważnego układu równań)

- i) zamiana miejsc dwóch równań,
- ii) pomnożenie równania przez element ciała K, różny od 0,
- iii) dodanie jednego równania do innego.

Dowód.

Powyższe działania są odwracalne.

Macierze

Macierzą A o **współczynnikach** a_{ij} w ciele \mathbb{K} nazywamy prostokątną tablicę m wierszy i n kolumn, to jest

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

 $\mathsf{gdzie}\ \mathit{a_{ij}} \in \mathbb{K}.$

Macierze

Macierzą A o **współczynnikach** a_{ij} w ciele \mathbb{K} nazywamy prostokątną tablicę m wierszy i n kolumn, to jest

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

gdzie $a_{ij} \in \mathbb{K}$. Piszemy $A = [a_{ij}]_{i=1,...,m,j=1,...,n}$.

Macierze

Macierzą A o **współczynnikach** a_{ij} w ciele \mathbb{K} nazywamy prostokątną tablicę m wierszy i n kolumn, to jest

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

gdzie $a_{ij} \in \mathbb{K}$. Piszemy $A = [a_{ij}]_{i=1,\dots,m,j=1,\dots,n}$. Zbiór wszystkich macierzy o m wierszach i n kolumnach ze współczynnikami w ciele \mathbb{K} oznaczamy $M(m \times n; \mathbb{K})$.

Macierz układu równań liniowych

Każdemu układowi równań liniowych

$$L: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

przyporządkowujemy macierz układu L

$$M(L) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Macierz układu równań liniowych

Każdemu układowi równań liniowych

$$L: \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

przyporządkowujemy macierz układu L

$$M(L) = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

oraz macierz uzupełnioną układu L

$$M(L)^{U} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \dots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_{m} \end{bmatrix}$$

Operacją elementarną na macierzy A o współczynnikach z ciała $\mathbb K$ nazywamy

Operacją elementarną na macierzy A o współczynnikach z ciała $\mathbb K$ nazywamy

i) zamianę miejsc dwóch wierszy macierzy A,

Operacją elementarną na macierzy A o współczynnikach z ciała $\mathbb K$ nazywamy

- i) zamianę miejsc dwóch wierszy macierzy A,
- ii) pomnożenie wszystkich współczynników w wierszu macierzy A przez element $c \in \mathbb{K}, c \neq 0$,

Operacją elementarną na macierzy A o współczynnikach z ciała $\mathbb K$ nazywamy

- i) zamianę miejsc dwóch wierszy macierzy A,
- ii) pomnożenie wszystkich współczynników w wierszu macierzy A przez element $c \in \mathbb{K}, c \neq 0$,
- iii) dodanie jednego wiersza macierzy A do drugiego.

Operacją elementarną na macierzy A o współczynnikach z ciała $\mathbb K$ nazywamy

- i) zamianę miejsc dwóch wierszy macierzy A,
- ii) pomnożenie wszystkich współczynników w wierszu macierzy A przez element $c \in \mathbb{K}, c \neq 0$,
- iii) dodanie jednego wiersza macierzy A do drugiego.

Elementarne operacje na macierzy uzupełnionej układu L odpowiadają operacjom elementarnym na równaniach, zatem prowadzą do macierzy innego układu, który jest równoważny układowi L.

Postać schodkowa i schodkowa zredukowana macierzy

Definicja

Schodkiem macierzy $A=[a_{ij}]$ nazywamy taki niezerowy element tej macierzy $a_{kl}\neq 0$, że na lewo i poniżej elementu a_{kl} w macierzy A znajdują sie same zera, to jest $a_{ij}=0$ dla $i\geq k$ oraz $j\leq l$ oprócz i=k, j=l.

Postać schodkowa i schodkowa zredukowana macierzy

Definicja

Schodkiem macierzy $A=[a_{ij}]$ nazywamy taki niezerowy element tej macierzy $a_{kl}\neq 0$, że na lewo i poniżej elementu a_{kl} w macierzy A znajdują sie same zera, to jest $a_{ij}=0$ dla $i\geq k$ oraz $j\leq l$ oprócz i=k, j=l.

Macierz A znajduje sie w **postaci schodkowej**, gdy w każdym niezerowym wierszu znajduje się schodek a wiersze zerowe są poniżej niezerowych.

Postać schodkowa i schodkowa zredukowana macierzy

Definicja

Schodkiem macierzy $A=[a_{ij}]$ nazywamy taki niezerowy element tej macierzy $a_{kl}\neq 0$, że na lewo i poniżej elementu a_{kl} w macierzy A znajdują sie same zera, to jest $a_{ij}=0$ dla $i\geq k$ oraz $j\leq l$ oprócz i=k, j=l.

Macierz A znajduje sie w **postaci schodkowej**, gdy w każdym niezerowym wierszu znajduje się schodek a wiersze zerowe są poniżej niezerowych.

Macierz A znajduje sie w **postaci schodkowej zredukowanej**, gdy znajduje sie w postaci schodkowej oraz każdy schodek jest jedynym niezerowym elementem kolumny równym 1.

Poniższa macierz jest w postaci schodkowej ale nie schodkowej zredukowanej (schodki zaznaczone są kółkami):

$$\begin{bmatrix}
0 & \textcircled{1} & 2 & 0 & 3 & 2 & 5 \\
0 & 0 & \textcircled{2} & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \textcircled{1} & 2 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Poniższa macierz jest w postaci schodkowej ale nie schodkowej zredukowanej (schodki zaznaczone są kółkami):

$$\begin{bmatrix}
0 & \textcircled{1} & 2 & 0 & 3 & 2 & 5 \\
0 & 0 & \textcircled{2} & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \textcircled{1} & 2 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Poniższa macierz jest w postaci schodkowej zredukowanej:

$$\begin{bmatrix}
0 & \textcircled{1} & 0 & 0 & 0 & 2 & 5 \\
0 & 0 & \textcircled{1} & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \textcircled{1} & 2 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Poniższa macierz jest w postaci schodkowej ale nie schodkowej zredukowanej (schodki zaznaczone są kółkami):

$$\begin{bmatrix}
0 & \textcircled{1} & 2 & 0 & 3 & 2 & 5 \\
0 & 0 & \textcircled{2} & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \textcircled{1} & 2 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Poniższa macierz jest w postaci schodkowej zredukowanej:

$$\begin{bmatrix}
0 & \textcircled{1} & 0 & 0 & 0 & 2 & 5 \\
0 & 0 & \textcircled{1} & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \textcircled{1} & 2 & 6 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

Twierdzenie

Stosując operacje elementarne na dowolnej macierzy można sprowadzić ją do postaci schodkowej.

Twierdzenie

Stosując operacje elementarne na dowolnej macierzy można sprowadzić ją do postaci schodkowej.

Dowód.

Indukcją na liczbę na liczbę kolumn (czyli n) wykażemy, że każdą macierz można sprowadzić do postaci schodkowej.

Twierdzenie

Stosując operacje elementarne na dowolnej macierzy można sprowadzić ją do postaci schodkowej.

Dowód.

Indukcją na liczbę na liczbę kolumn (czyli n) wykażemy, że każdą macierz można sprowadzić do postaci schodkowej. Niech

$$A=[a_{ij}]\in M(m imes 1;\mathbb{K}).$$
 Jeśli $A
eq egin{bmatrix} 0\ dots\ 0 \end{bmatrix}$, np. $a_{11}
eq 0$, to

$$\begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} \xrightarrow{w_{m} - \frac{\dot{a}_{m1}}{a_{11}} w_{1}} \begin{bmatrix} a_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Dowód.

Niech $A = [a_{ij}] \in M(m \times n; \mathbb{K})$ oraz n > 1.

Dowód.

Niech $A=[a_{ij}]\in M(m\times n;\mathbb{K})$ oraz n>1. Niech $k\in\mathbb{N}$ oznacza numer pierwszej niezerowej kolumny, po zmianie kolejności wierszy można założyć, że $a_{1k}\neq 0$.

Dowód.

Niech $A=[a_{ij}]\in M(m\times n;\mathbb{K})$ oraz n>1. Niech $k\in\mathbb{N}$ oznacza numer pierwszej niezerowej kolumny, po zmianie kolejności wierszy można założyć, że $a_{1k}\neq 0$. Wtedy

$$\begin{bmatrix} 0 & \cdots & 0 & a_{1k} & a_{1(k+1)} & \cdots & a_{1n} \\ \hline 0 & \cdots & 0 & a_{2k} & a_{2(k+1)} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{mk} & a_{m(k+1)} & \cdots & a_{mn} \end{bmatrix} \xrightarrow{w_2 - \frac{a_{2k}}{a_{1k}} w_1} \begin{bmatrix} w_m - \frac{a_{mk}}{a_{1k}} w_1 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{mk} & a_{1(k+1)} & \cdots & a_{1n} \\ \hline 0 & \cdots & 0 & 0 & b_{2(k+1)} & \cdots & b_{2n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & b_{m(k+1)} & \cdots & b_{mn} \end{bmatrix}$$

dla pewnych $b_{ii} \in \mathbb{K}$.

Dowód.

Z założenia indukcyjnego macierz z prawego dolnego rogu, tj.

$$\begin{bmatrix} b_{2(k+1)} & \cdots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{m(k+1)} & \cdots & b_{mn} \end{bmatrix}$$

można sprowadzić operacjami elementarnymi do postaci schodkowej.

Dowód.

Z założenia indukcyjnego macierz z prawego dolnego rogu, tj.

$$\left[\begin{array}{ccc} b_{2(k+1)} & \cdots & b_{2n} \\ \vdots & \ddots & \vdots \\ b_{m(k+1)} & \cdots & b_{mn} \end{array}\right]$$

można sprowadzić operacjami elementarnymi do postaci schodkowej. Te same operacje na macierzy

$$\begin{bmatrix} 0 & \cdots & 0 & a_{1k} & a_{1(k+1)} & \cdots & a_{1n} \\ 0 & \cdots & 0 & 0 & b_{2(k+1)} & \cdots & b_{2n} \\ 0 & \cdots & 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & b_{m(k+1)} & \cdots & b_{mn} \end{bmatrix}$$

doprowadzą ją do postaci schodkowej.

Twierdzenie

Stosując operacje elementarne na dowolnej macierzy można sprowadzić ją do postaci schodkowej zredukowanej.

Twierdzenie

Stosując operacje elementarne na dowolnej macierzy można sprowadzić ją do postaci schodkowej zredukowanej.

Dowód.

Załóżmy, że macierz $A = [a_{ij}] \in M(m \times n; \mathbb{K})$ została sprowadzona operacjami elementarnymi do postaci schodkowej ze schodkami w kolumnach $a_{1j_1}, a_{2j_2}, \ldots, a_{m'j_{m'}},$ gdzie $j_1 < j_2 < \ldots < j_{m'}$ oraz $m' \leq m$, tj. wiersze $m' + 1, m' + 2, \ldots, m$ są zerowe.

Twierdzenie

Stosując operacje elementarne na dowolnej macierzy można sprowadzić ją do postaci schodkowej zredukowanej.

Dowód.

Załóżmy, że macierz $A = [a_{ij}] \in M(m \times n; \mathbb{K})$ została sprowadzona operacjami elementarnymi do postaci schodkowej ze schodkami w kolumnach $a_{1j_1}, a_{2j_2}, \ldots, a_{m'j_{m'}}$, gdzie $j_1 < j_2 < \ldots < j_{m'}$ oraz $m' \leq m$, tj. wiersze $m' + 1, m' + 2, \ldots, m$ są zerowe.

Dowód.

Następujące operacje elementarne na macierzy A sprowadzą ją do postaci schodkowej zredukowanej

$$w_k - rac{a_{kj_i}}{a_{ij_i}}w_i$$
 for $i=2,\ldots,m',\, k=1,\ldots,i-1,$ w_i/a_{ij_i} for $i=1,\ldots,m'.$

Dowód.

Następujące operacje elementarne na macierzy A sprowadzą ją do postaci schodkowej zredukowanej

$$w_k - rac{a_{kj_i}}{a_{ij_i}}w_i$$
 for $i=2,\ldots,m',\, k=1,\ldots,i-1,$ w_i/a_{ij_i} for $i=1,\ldots,m'.$

W skrócie, w każdej z kolumn $j_1, j_2, \ldots, j_{m'}$ używamy schodka aby wyzerować wyrazy powyżej niego a potem dzielimy aby schodek był równy 1.

Dowód.

Następujące operacje elementarne na macierzy A sprowadzą ją do postaci schodkowej zredukowanej

$$w_k - \frac{a_{kj_i}}{a_{ij_i}}w_i$$
 for $i = 2, \ldots, m', k = 1, \ldots, i-1,$ w_i/a_{ij_i} for $i = 1, \ldots, m'.$

W skrócie, w każdej z kolumn $j_1, j_2, \ldots, j_{m'}$ używamy schodka aby wyzerować wyrazy powyżej niego a potem dzielimy aby schodek był równy 1.

Dowód.

Twierdzenie

Niech macierz A będzie macierzą $M(L)^U$ (tj. macierzą uzupełnioną układu równań liniowych L) sprowadzoną do postaci schodkowej zredukowanej.

Twierdzenie

Niech macierz A będzie macierzą $M(L)^U$ (tj. macierzą uzupełnioną układu równań liniowych L) sprowadzoną do postaci schodkowej zredukowanej. Jeśli w A schodek występuje w ostatniej kolumnie wyrazów wolnych to układ L jest **sprzeczny**.

Twierdzenie

Niech macierz A będzie macierzą $M(L)^U$ (tj. macierzą uzupełnioną układu równań liniowych L) sprowadzoną do postaci schodkowej zredukowanej. Jeśli w A schodek występuje w ostatniej kolumnie wyrazów wolnych to układ L jest **sprzeczny**. W przeciwnym razie zmienne odpowiadające schodkom A (zmienne **związane** lub **zależne**) wyrażają sie przez pozostałe zmienne, to jest **parametry** (lub **zmienne niezależne**).

Twierdzenie

Niech macierz A będzie macierzą $M(L)^U$ (tj. macierzą uzupełnioną układu równań liniowych L) sprowadzoną do postaci schodkowej zredukowanej. Jeśli w A schodek występuje w ostatniej kolumnie wyrazów wolnych to układ L jest **sprzeczny**. W przeciwnym razie zmienne odpowiadające schodkom A (zmienne **związane** lub **zależne**) wyrażają sie przez pozostałe zmienne, to jest **parametry** (lub **zmienne niezależne**). Parametry mogą przyjmować dowolne wartości z ciała \mathbb{K} .

Twierdzenie

Niech macierz A będzie macierzą $M(L)^U$ (tj. macierzą uzupełnioną układu równań liniowych L) sprowadzoną do postaci schodkowej zredukowanej. Jeśli w A schodek występuje w ostatniej kolumnie wyrazów wolnych to układ L jest **sprzeczny**. W przeciwnym razie zmienne odpowiadające schodkom A (zmienne **związane** lub **zależne**) wyrażają sie przez pozostałe zmienne, to jest **parametry** (lub **zmienne niezależne**). Parametry mogą przyjmować dowolne wartości z ciała $\mathbb K$. **Rozwiązanie ogólne** to wyrażenie zmiennych związanych przez parametry.

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 & - & 2x_2 & + & x_3 & - & x_4 & = & 2 \\ 2x_1 & - & 4x_2 & + & 3x_3 & + & x_4 & = & 0 \end{cases}$$

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 - 2x_2 + x_3 - x_4 = 2 \\ 2x_1 - 4x_2 + 3x_3 + x_4 = 0 \end{cases}$$

Macierz uzupełniona tego układu to

$$M(L)^{U} = \left[\begin{array}{ccc|c} 1 & -2 & 1 & -1 & 2 \\ 2 & -4 & 3 & 1 & 0 \end{array} \right]$$

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 - 2x_2 + x_3 - x_4 = 2 \\ 2x_1 - 4x_2 + 3x_3 + x_4 = 0 \end{cases}$$

Macierz uzupełniona tego układu to

$$M(L)^{U} = \begin{bmatrix} 1 & -2 & 1 & -1 & 2 \\ 2 & -4 & 3 & 1 & 0 \end{bmatrix}$$

Wykonując operację elementarną w_2-2w_1 (odejmujemy pomnożony przez 2 wiersz pierwszy od drugiego), otrzymujemy macierz w postaci zredukowanej

$$\left[\begin{array}{ccc|ccc|c}
1 & -2 & 1 & -1 & 2 \\
0 & 0 & 1 & 3 & -4
\end{array}\right]$$

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 - 2x_2 + x_3 - x_4 = 2 \\ 2x_1 - 4x_2 + 3x_3 + x_4 = 0 \end{cases}$$

Macierz uzupełniona tego układu to

$$M(L)^{U} = \left[\begin{array}{ccc|c} 1 & -2 & 1 & -1 & 2 \\ 2 & -4 & 3 & 1 & 0 \end{array} \right]$$

Wykonując operację elementarną w_2-2w_1 (odejmujemy pomnożony przez 2 wiersz pierwszy od drugiego), otrzymujemy macierz w postaci zredukowanej

$$\left[\begin{array}{ccc|ccc} 1 & -2 & 1 & -1 & 2 \\ 0 & 0 & 1 & 3 & -4 \end{array}\right]$$

Wykonując operację elementarną w_1-w_2 (odejmujemy wiersz drugi od pierwszego), otrzymujemy macierz schodkową zredukowaną.

Przykład cd.

$$\left[\begin{array}{ccc|c}
\textcircled{1} & -2 & 0 & -4 & 6 \\
0 & 0 & \textcircled{1} & 3 & -4
\end{array}\right]$$

$$\left[\begin{array}{cc|cc|c}
① & -2 & 0 & -4 & 6 \\
0 & 0 & ① & 3 & -4
\end{array}\right]$$

W ostatniej kolumnie nie ma schodka, zatem układ posiada rozwiązania.

$$\left[\begin{array}{cc|cc|c}
① & -2 & 0 & -4 & 6 \\
0 & 0 & ① & 3 & -4
\end{array}\right]$$

W ostatniej kolumnie nie ma schodka, zatem układ posiada rozwiązania. Zmienne związane x_1, x_3 odpowiadają kolumnom ze schodkami a pozostałe zmienne x_2, x_4 to parametry.

$$\left[\begin{array}{ccc|c}
① & -2 & 0 & -4 & 6 \\
0 & 0 & ① & 3 & -4
\end{array}\right]$$

W ostatniej kolumnie nie ma schodka, zatem układ posiada rozwiązania. Zmienne związane x_1, x_3 odpowiadają kolumnom ze schodkami a pozostałe zmienne x_2, x_4 to parametry.

W rozwiązaniu ogólnym zmienne związane wyrażają sie przez

parametry
$$\begin{cases} x_1 = 2x_2 + 4x_4 + 6 \\ x_3 = -3x_4 - 4 \end{cases}, x_2, x_4 \in \mathbb{R}$$

$$\left[\begin{array}{ccc|c}
① & -2 & 0 & -4 & 6 \\
0 & 0 & ① & 3 & -4
\end{array}\right]$$

W ostatniej kolumnie nie ma schodka, zatem układ posiada rozwiązania. Zmienne związane x_1, x_3 odpowiadają kolumnom ze schodkami a pozostałe zmienne x_2, x_4 to parametry.

W rozwiązaniu ogólnym zmienne związane wyrażają sie przez

parametry
$$\begin{cases} x_1 = 2x_2 + 4x_4 + 6 \\ x_3 = -3x_4 - 4 \end{cases}, x_2, x_4 \in \mathbb{R}$$

Każde rozwiązanie układu L jest postaci

$$(2x_2+4x_4+6,x_2,-3x_4-4,x_4), x_2,x_4 \in \mathbb{R}.$$

Stosujemy zapis

$$\begin{bmatrix} 1 & -2 & 1 & -1 & 2 \\ 2 & -4 & 3 & 1 & 0 \end{bmatrix} \xrightarrow{w_2 - 2w_1} \begin{bmatrix} 1 & -2 & 1 & -1 & 2 \\ 0 & 0 & 1 & 3 & -4 \end{bmatrix} \xrightarrow{w_1 - w_2}$$
$$\begin{bmatrix} \textcircled{1} & -2 & 0 & -4 & 6 \\ 0 & 0 & \textcircled{1} & 3 & -4 \end{bmatrix}$$

Stosujemy zapis

$$\begin{bmatrix} 1 & -2 & 1 & -1 & 2 \\ 2 & -4 & 3 & 1 & 0 \end{bmatrix} \xrightarrow{w_2 - 2w_1} \begin{bmatrix} 1 & -2 & 1 & -1 & 2 \\ 0 & 0 & 1 & 3 & -4 \end{bmatrix} \xrightarrow{w_1 - w_2}$$
$$\begin{bmatrix} \textcircled{1} & -2 & 0 & -4 & 6 \\ 0 & 0 & \textcircled{1} & 3 & -4 \end{bmatrix}$$
$$\begin{cases} x_1 & = & 2x_2 & + & 4x_4 & + & 6 \\ x_3 & = & & - & 3x_4 & - & 4 \end{cases}, x_2, x_4 \in \mathbb{R}$$

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 & - x_4 = 2 \\ 2x_1 + x_3 + x_4 = 0 \end{cases}$$

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 & - x_4 = 2 \\ 2x_1 + x_3 + x_4 = 0 \end{cases}$$

Macierz uzupełniona tego układu to

$$M(L)^{U} = \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 & 2 \\ 2 & 0 & 1 & 1 & 0 \end{array} \right]$$

. Po operacji elementarnej

$$M(L)^{U} = \begin{bmatrix} 1 & 0 & 0 & -1 & 2 \\ 2 & 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{w_{2}-2w_{1}} \begin{bmatrix} 1 & 0 & 0 & -1 & 2 \\ 0 & 0 & 1 & 3 & -4 \end{bmatrix}$$

otrzymujemy macierz w postaci schodkowej zredukowanej.

W ciele liczb rzeczywistych rozpatrzmy układ

$$L: \begin{cases} x_1 & - x_4 = 2 \\ 2x_1 + x_3 + x_4 = 0 \end{cases}$$

Macierz uzupełniona tego układu to

$$M(L)^{U} = \left[\begin{array}{ccc|c} 1 & 0 & 0 & -1 & 2 \\ 2 & 0 & 1 & 1 & 0 \end{array} \right]$$

. Po operacji elementarnej

$$M(L)^{U} = \begin{bmatrix} 1 & 0 & 0 & -1 & 2 \\ 2 & 0 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{w_{2}-2w_{1}} \begin{bmatrix} 1 & 0 & 0 & -1 & 2 \\ 0 & 0 & 1 & 3 & -4 \end{bmatrix}$$

otrzymujemy macierz w postaci schodkowej zredukowanej.W rozwiązaniu ogólnym zmienne związane wyrażają sie przez

parametry
$$\begin{cases} x_1 = & x_4 + 2 \\ x_3 = - 3x_4 - 4 \end{cases}, x_2, x_4 \in \mathbb{R}$$

$$\begin{cases} x_1 & = & x_4 + 2 \\ x_3 & = - 3x_4 - 4 \end{cases}, x_2, x_4 \in \mathbb{R}$$

Dowolne rozwiązanie układu jest postaci

$$(x_4+2,x_2,-3x_4-4,x_4)=x_2(0,1,0,0)+x_4(1,0,-3,1)+(2,0,-4,0)$$
 dla pewnych $x_2,x_4\in\mathbb{R}.$

Stwierdzenie

Niech $A \in M(m \times n; \mathbb{R})$ będzie macierzą. Jeśli macierze $B, C \in M(m \times n; \mathbb{R})$ w postaci schodkowej **zredukowanej** powstały z macierzy A przez ciąg operacji elementarnych na wierszach macierzy A, to B = C.

Stwierdzenie

Niech $A \in M(m \times n; \mathbb{R})$ będzie macierzą. Jeśli macierze $B, C \in M(m \times n; \mathbb{R})$ w postaci schodkowej **zredukowanej** powstały z macierzy A przez ciąg operacji elementarnych na wierszach macierzy A, to B = C.

Dowód.

Niech j będzie numerem pierwszej kolumny od prawej różnej dla macierzy B i C. Niech

$$1 \le j_1 < j_2 < \ldots < j_k < j,$$

będą numerami kolumn, mniejszymi od j, zawierającymi schodki w B oraz C. Niech B' oraz C' będą odpowiednio podmacierzami macierzy B oraz C składającymi się z kolumn j_1,\ldots,j_k,j . Niech U_B,U_C będą układami równań liniowych, których macierze uzupełnione, to odpowiednio B' oraz C'. Z założenia, układy U_B oraz U_C są równoważne.

Dowód.

$$B' = \begin{bmatrix} 1 & 0 & \cdots & 0 & b_{1j} \\ 0 & 1 & \vdots & b_{2j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & b_{kj} \\ \hline 0 & 0 & \cdots & 0 & b_{(k+1)j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & b_{mj} \end{bmatrix}, \qquad C' = \begin{bmatrix} 1 & 0 & \cdots & 0 & c_{1j} \\ 0 & 1 & \vdots & c_{2j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & c_{kj} \\ \hline 0 & 0 & \cdots & 0 & c_{(k+1)j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & c_{mj} \end{bmatrix}$$

Jeśli $b_{(k+1)j}=0$, to $b_{ij}=0$ dla $i\geq k+1$, a jeśli $c_{(k+1)j}=0$, to $c_{ij}=0$ dla $i\geq k+1$.

Dowód.

$$B' = \begin{bmatrix} 1 & 0 & \cdots & 0 & b_{1j} \\ 0 & 1 & \vdots & b_{2j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & b_{kj} \\ \hline 0 & 0 & \cdots & 0 & b_{(k+1)j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & b_{mj} \end{bmatrix}, \qquad C' = \begin{bmatrix} 1 & 0 & \cdots & 0 & c_{1j} \\ 0 & 1 & \vdots & c_{2j} \\ \vdots & \ddots & 0 & \vdots \\ \hline 0 & 0 & \cdots & 1 & c_{kj} \\ \hline 0 & 0 & \cdots & 0 & c_{(k+1)j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & c_{mj} \end{bmatrix}$$

Jeśli $b_{(k+1)j}=0$, to $b_{ij}=0$ dla $i\geq k+1$, a jeśli $c_{(k+1)j}=0$, to $c_{ij}=0$ dla $i\geq k+1$. Jeśli $b_{(k+1)j}=0$, $c_{(k+1)j}\neq 0$ lub $b_{(k+1)j}\neq 0$, $c_{(k+1)j}=0$, to jeden z układów U_B , U_C jest sprzeczny a drugi niesprzeczny, co prowadzi do sprzeczności.

Dowód.

$$B' = \begin{bmatrix} 1 & 0 & \cdots & 0 & b_{1j} \\ 0 & 1 & \vdots & b_{2j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 1 & b_{kj} \\ \hline 0 & 0 & \cdots & 0 & b_{(k+1)j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & b_{mj} \end{bmatrix}, \qquad C' = \begin{bmatrix} 1 & 0 & \cdots & 0 & c_{1j} \\ 0 & 1 & \vdots & c_{2j} \\ \vdots & \ddots & 0 & \vdots \\ \hline 0 & 0 & \cdots & 1 & c_{kj} \\ \hline 0 & 0 & \cdots & 0 & c_{(k+1)j} \\ \vdots & \ddots & 0 & \vdots \\ 0 & 0 & \cdots & 0 & c_{mj} \end{bmatrix}$$

Jeśli $b_{(k+1)j}=0$, to $b_{ij}=0$ dla $i\geq k+1$, a jeśli $c_{(k+1)j}=0$, to $c_{ij} = 0$ dla $i \ge k + 1$. Jeśli $b_{(k+1)j} = 0, c_{(k+1)j} \ne 0$ lub $b_{(k+1)i} \neq 0, c_{(k+1)i} = 0$, to jeden z układów U_B, U_C jest sprzeczny a drugi niesprzeczny, co prowadzi do sprzeczności. Kolumna i—ta nie zawiera schodka ani w B, ani w C (ten schodek znajdowałby się w (k + 1)-ym wierszu, a wtedy j-ta kolumna byłaby taka sama w B oraz C), zatem nie zachodzi $b_{(k+1)i} \neq 0, c_{(k+1)i} \neq 0$. W pozostałym przypadku $b_{(k+1)j} = 0, c_{(k+1)j} = 0$ układ U_B ma jednoznaczne rozwiązanie $(b_{1i}, b_{2i}, \dots, b_{ki})$, a układ U_C ma jednoznaczne rozwiązanie $(c_{1i}, c_{2i}, \ldots, c_{ki})$, co ponownie prowadzi do sprzeczności.

←□ → ←□ → ←□ → □ → ○○○

Uwaga

Postać schodkowa nie jest jednoznaczna.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{w_2 - w_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{w_1 \leftrightarrow w_2} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{w_2 - w_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Uwaga

Postać schodkowa nie jest jednoznaczna.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \stackrel{w_2-w_1}{\longrightarrow} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{w_1 \leftrightarrow w_2} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{w_2 - w_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Postać schodkowa **zredukowana** macierzy $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ to

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Na zbiorze par liczb rzeczywistych \mathbb{R}^2 wprowadzamy działania dodawania + i mnożenia \cdot

Na zbiorze par liczb rzeczywistych \mathbb{R}^2 wprowadzamy działania dodawania + i mnożenia \cdot

$$(a,b)+(c,d)=(a+c,b+d),$$

Na zbiorze par liczb rzeczywistych \mathbb{R}^2 wprowadzamy działania dodawania + i mnożenia \cdot

$$(a,b)+(c,d)=(a+c,b+d),$$

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc).$$

Na zbiorze par liczb rzeczywistych \mathbb{R}^2 wprowadzamy działania dodawania + i mnożenia \cdot

$$(a,b)+(c,d)=(a+c,b+d),$$

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc).$$

Twierdzenie

Zbiór \mathbb{R}^2 wraz z powyższymi działaniami to ciało \mathbb{C} , nazywane ciałem liczb zespolonych.

Na zbiorze par liczb rzeczywistych \mathbb{R}^2 wprowadzamy działania dodawania + i mnożenia \cdot

$$(a,b)+(c,d)=(a+c,b+d),$$

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc).$$

Twierdzenie

Zbiór \mathbb{R}^2 wraz z powyższymi działaniami to ciało \mathbb{C} , nazywane ciałem liczb zespolonych.

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem mnożenia jest (1,0), bo $(a,b)\cdot(1,0)=(a,b)$.

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem mnożenia jest (1,0), bo $(a,b)\cdot (1,0)=(a,b)$.

Elementem odwrotnym względem mnożenia do (a,b) jest $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$, bo $(a,b)\cdot(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})=(1,0)$, dla $(a,b)\neq(0,0)$.

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem mnożenia jest (1,0), bo $(a,b)\cdot(1,0)=(a,b)$.

Elementem odwrotnym względem mnożenia do (a,b) jest $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$, bo $(a,b)\cdot(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})=(1,0)$, dla $(a,b)\neq(0,0)$.

Zauważmy, że (a,0)+(c,0)=(a+c,0) oraz $(a,0)\cdot(c,0)=(ac,0)$ zatem działania na pierwszej współrzędnej odpowiadają naturalnym działaniom na zbiorze liczb rzeczywistych.

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem mnożenia jest (1,0), bo $(a,b)\cdot(1,0)=(a,b)$.

Elementem odwrotnym względem mnożenia do (a,b) jest $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$, bo $(a,b)\cdot(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})=(1,0)$, dla $(a,b)\neq(0,0)$.

Zauważmy, że (a,0)+(c,0)=(a+c,0) oraz $(a,0)\cdot(c,0)=(ac,0)$ zatem działania na pierwszej współrzędnej odpowiadają naturalnym działaniom na zbiorze liczb rzeczywistych. Wprowadźmy oznaczenie (a,b)=a+bi, gdzie i=(0,1).

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem mnożenia jest (1,0), bo $(a,b)\cdot(1,0)=(a,b)$.

Elementem odwrotnym względem mnożenia do (a,b) jest $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$, bo $(a,b)\cdot(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})=(1,0)$, dla $(a,b)\neq(0,0)$.

Zauważmy, że (a,0)+(c,0)=(a+c,0) oraz $(a,0)\cdot(c,0)=(ac,0)$ zatem działania na pierwszej współrzędnej odpowiadają naturalnym działaniom na zbiorze liczb rzeczywistych. Wprowadźmy oznaczenie (a,b)=a+bi, gdzie i=(0,1). Wtedy $i^2=(0,1)\cdot(0,1)=(-1,0)=-1$.

Elementem neutralnym względem dodawania jest (0,0), bo (a,b)+(0,0)=(a,b).

Elementem odwrotnym względem dodawania do (a, b) jest (-a, -b), bo (a, b) + (-a, -b) = (0, 0).

Elementem neutralnym względem mnożenia jest (1,0), bo $(a,b)\cdot(1,0)=(a,b)$.

Elementem odwrotnym względem mnożenia do (a,b) jest $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$, bo $(a,b)\cdot(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})=(1,0)$, dla $(a,b)\neq(0,0)$.

Zauważmy, że (a,0)+(c,0)=(a+c,0) oraz $(a,0)\cdot(c,0)=(ac,0)$ zatem działania na pierwszej współrzędnej odpowiadają naturalnym działaniom na zbiorze liczb rzeczywistych. Wprowadźmy oznaczenie (a,b)=a+bi, gdzie i=(0,1). Wtedy $i^2=(0,1)\cdot(0,1)=(-1,0)=-1$.

Niech $z=a+bi\in\mathbb{C}$ będzie liczbą zespoloną.

Niech $z = a + bi \in \mathbb{C}$ będzie liczbą zespoloną.

Definicja

Częścią rzeczywistą liczby z nazywamy Re(z) = a.

Niech $z = a + bi \in \mathbb{C}$ będzie liczbą zespoloną.

Definicja

Częścią rzeczywistą liczby z nazywamy $\mathrm{Re}(z)=a$. Częścią urojoną liczby z nazywamy $\mathrm{Im}(z)=b$.

Niech $z = a + bi \in \mathbb{C}$ będzie liczbą zespoloną.

Definicja

Częścią rzeczywistą liczby z nazywamy $\mathrm{Re}(z)=a$. Częścią urojoną liczby z nazywamy $\mathrm{Im}(z)=b$. Modułem liczby z nazywamy odległość pary (a,b) od 0=(0,0) czyli $|z|=\sqrt{a^2+b^2}$.

Niech $z = a + bi \in \mathbb{C}$ będzie liczbą zespoloną.

Definicja

Częścią rzeczywistą liczby z nazywamy $\operatorname{Re}(z)=a$. Częścią urojoną liczby z nazywamy $\operatorname{Im}(z)=b$. Modułem liczby z nazywamy odległość pary (a,b) od 0=(0,0) czyli $|z|=\sqrt{a^2+b^2}$. Argumentem liczby z nazywamy kąt $\operatorname{Arg}(z)$ pomiędzy osią 0x a odcinkiem łączącym 0 z liczbą z.

Niech $z = a + bi \in \mathbb{C}$ będzie liczbą zespoloną.

Definicia

Częścią rzeczywistą liczby z nazywamy Re(z) = a. Częścią urojoną liczby z nazywamy Im(z) = b. Modułem liczby z nazywamy odległość pary (a, b) od 0 = (0, 0) czyli $|z| = \sqrt{a^2 + b^2}$.

Argumentem liczby z nazywamy kąt Arg(z) pomiędzy osią 0x a odcinkiem łączącym 0 z liczbą z. Liczbą sprzężoną do z nazywamy $\overline{z} = a - bi$.

$$\varphi = \operatorname{Arg}(z)$$
$$|z| = \sqrt{a^2 + a^2}$$

$$\varphi = \mathsf{Arg}(z)$$

$$|z| = \sqrt{a^2 + b^2}$$

$$\sin \varphi = \frac{b}{|z|}$$

$$\varphi = \mathsf{Arg}(z)$$

$$|z| = \sqrt{a^2 + b^2}$$

$$\sin arphi = rac{b}{|z|}$$

$$\cos \varphi = \frac{a}{|z|}$$

$$\varphi = \operatorname{Arg}(z)$$

$$|z| = \sqrt{a^2 + b^2}$$

$$\sin \varphi = \frac{b}{|z|}$$

$$\cos \varphi = \frac{a}{|z|}$$

$$z = |z|(\cos \varphi + i \sin \varphi)$$

	0°	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Niech z = a + bi.

Niech z = a + bi. Szukamy w = c + di takiego, że $w^2 = z$.

Niech
$$z=a+bi$$
. Szukamy $w=c+di$ takiego, że $w^2=z$.
$$w^2=$$

Niech
$$z=a+bi$$
. Szukamy $w=c+di$ takiego, że $w^2=z$.
$$w^2=(c+di)(c+di)=$$

Niech
$$z=a+bi$$
. Szukamy $w=c+di$ takiego, że $w^2=z$.
$$w^2=(c+di)(c+di)=(c^2-d^2)+(2cd)i=$$

Niech
$$z=a+bi$$
. Szukamy $w=c+di$ takiego, że $w^2=z$.
$$w^2=(c+di)(c+di)=(c^2-d^2)+(2cd)i=a+bi.$$

Niech
$$z=a+bi$$
. Szukamy $w=c+di$ takiego, że $w^2=z$.
$$w^2=(c+di)(c+di)=(c^2-d^2)+(2cd)i=a+bi.$$

Daje to układ równań:

Niech
$$z = a + bi$$
. Szukamy $w = c + di$ takiego, że $w^2 = z$.

$$w^2 = (c + di)(c + di) = (c^2 - d^2) + (2cd)i = a + bi.$$

Daje to układ równań:

$$\begin{cases} a = c^2 - d^2 \\ b = 2cd \end{cases},$$

Niech z = a + bi. Szukamy w = c + di takiego, że $w^2 = z$.

$$w^2 = (c + di)(c + di) = (c^2 - d^2) + (2cd)i = a + bi.$$

Daje to układ równań:

$$\begin{cases} a = c^2 - d^2 \\ b = 2cd \end{cases},$$

który posiada dwa rozwiązania:

Niech z = a + bi. Szukamy w = c + di takiego, że $w^2 = z$.

$$w^2 = (c + di)(c + di) = (c^2 - d^2) + (2cd)i = a + bi.$$

Daje to układ równań:

$$\begin{cases} a = c^2 - d^2 \\ b = 2cd \end{cases},$$

który posiada dwa rozwiązania:

$$w = \pm \left(\frac{b}{\sqrt{2(|z|-a)}} + i\sqrt{\frac{|z|-a}{2}}\right).$$

Jeśli
$$z = |z|(\cos \varphi + i \sin \varphi)$$
 oraz $w = |w|(\cos \psi + i \sin \psi)$, to

Jeśli
$$z=|z|(\cos\varphi+i\sin\varphi)$$
 oraz $w=|w|(\cos\psi+i\sin\psi)$, to
$$z\cdot w=|z||w|(\cos(\varphi+\psi)+i\sin(\varphi+\psi)).$$

Jeśli
$$z=|z|(\cos\varphi+i\sin\varphi)$$
 oraz $w=|w|(\cos\psi+i\sin\psi)$, to
$$z\cdot w=|z||w|(\cos(\varphi+\psi)+i\sin(\varphi+\psi)).$$

Zadanie: wykorzystaj powyższy fakt i wzór z poprzedniej strony aby wykazać, że

Jeśli
$$z=|z|(\cos\varphi+i\sin\varphi)$$
 oraz $w=|w|(\cos\psi+i\sin\psi)$, to
$$z\cdot w=|z||w|(\cos(\varphi+\psi)+i\sin(\varphi+\psi)).$$

Zadanie: wykorzystaj powyższy fakt i wzór z poprzedniej strony aby wykazać, że

$$\sin 15^{\circ} = \frac{\sqrt{2 - \sqrt{3}}}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}.$$