MAC 4722 - Linguagens, Autômatos e Computabilidade

Rodrigo Augusto Dias Faria - NUSP 9374992 Departamento de Ciência da Computação - IME/USP

29 de março de 2016

Lista 2

L2.1 (Sipser 1.16) Resolva o exercício 1.16.

a) Resposta: Vamos chamar de M o AFN dado na questão. Seja $M_d = \{Q', \Sigma, \delta', q_{0'}, F'\}$ o AFD equivalente à M.

Estados de M_d : $Q' = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}.$

Estado inicial: $q_{0'} = E(\{1\}) = \{1\}$. É o conjunto de estados que são atingíveis a partir de $\{1\}$ viajando por setas ϵ , mais o próprio $\{1\}$.

Estados de aceitação: $F' = \{\{1\}, \{1,2\}\}$. Aqueles que contêm um estado de aceitação de M.

Função de transição: $\delta' =$

		a	b
· ·	{}	{}	{}
dos	{1}	{1,2}	{2}
Estados	$\{2\}$	{}	$\{1\}$
Ä	$\{1,2\}$	$\{1,2\}$	$\{1,2\}$

Tabela 1: Função de transição de M_d .

Figura 1: Diagrama de estados para o AFD M_d .

b) Resposta: Vamos chamar de N o AFN dado na questão. Seja $N_d = \{Q', \Sigma, \delta', q_{0'}, F'\}$ o AFD equivalente à N.

Estados de N_d : $Q' = \{\{\}, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. Estado inicial: $q_{0'} = E(\{1\}) = \{1, 2\}$.

Estados de aceitação: $F' = \{\{2\}, \{1,2\}, \{2,3\}, \{1,2,3\}\}$. Aqueles que contêm um estado de aceitação de N.

Função de transição: $\delta' =$

		a	b
Estados	{}	{}	{}
	{1}	{3}	{}
	{2}	$\{1,2\}$	{}
	$\{3\}$	{2}	$\{2,3\}$
	$\{1,2\}$	$\{1,2,3\}$	{}
	$\{1,3\}$	$\{2,3\}$	$\{2,3\}$
	$\{2,3\}$	$\{1,2\}$	$\{2,3\}$
	$\{1,2,3\}$	$\{1,2,3\}$	$\{2,3\}$

Tabela 2: Função de transição de N_d .

Figura 2: Diagrama de estados para o AFD N_d .

A figura 2 é o AFD simplificado que mostra apenas os estados que são alcançáveis a partir do estado inicial $\{1, 2\}$.

L2.2 (Sipser 1.6c) Dê um DFA/AFD para $A = \{w | w \text{ possui } 0101 \text{ por subcadeia}\}.$ Seja $M = \{Q, \Sigma, \delta, s, F\}$ o AFD da figura 3 que reconhece A, onde:

1
$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$

2
$$\Sigma = \{0, 1\}$$

3
$$\delta =$$

		0	1
Estados	q_0	q_1	q_0
	q_1	q_1	q_2
	q_2	q_3	q_0
	q_3	q_1	q_4
	q_4	q_4	q_4

4
$$s = q_0$$

5
$$F = \{q_4\}$$

Figura 3: Diagrama de estados do AFD M que reconhece A.

L2.3 Dada uma linguagem L, seja $Pref(L) = \{x | \text{ existe palavra } y \text{ tal que } xy \text{ está em } L\}$, $Suf(L) = \{y | \text{ existe palavra } x \text{ tal que } xy \text{ está em } L\}$, $Fat(L) = \{y | \text{ existem palavras } x \text{ e } z \text{ tais que } xyz \text{ estão em } L\}$.

Demonstre que se L é regular, então Pref(L), Suf(L) e Fat(L) também o são. Sugestão: Observe que Fat(L) = Suf(Pref(L)).

L2.4 Complete a demonstração do teorema 1.25.

Resposta: Vale lembrar, resumidamente, da construção dada na prova do teorema 1.25. Suponha que A_1 e A_2 são linguagens reconhecidas por M_1 e M_2 , respectivamente, onde

 $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ e } M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2).$

Construa M para reconhecer $A_1 \cup A_2$, onde $M = (Q, \Sigma, \delta, q_0, F)$.

$$1 Q = Q_1 \times Q_2.$$

2 Σ , o alfabeto, é o mesmo em M_1 e M_2 .

3 δ = para cada $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, faça $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$.

4
$$q_0 = (q_1, q_2).$$

5
$$F = (F_1 \times Q_2) \cup (Q_1 \times F_2).$$

Demonstração. Para demonstrar que M reconhece $A_1 \cup A_2$, devemos dividir a prova em duas partes.

AFIRMAÇÃO: Toda palavra pertencente à linguagem reconhecida por M está presente em $A_1 \cup A_2$.

Tome uma palavra w qualquer reconhecida pelo autômato M. Sabe-se que ao transitarmos através de δ por M, a partir do estado inicial q_0 , existe um passeio P no autômato M que leva a um estado final. Pela construção de M, cada estado nesse passeio é rotulado por um par ordenado (r_1, r_2) , onde $r_1 \in M_1$ e $r_2 \in M_2$. Se tomarmos o passeio P_1 , considerando de P apenas as coordenadas r_1 do par ordenado, este é equivalente ao passeio dado pelas transições δ_1 na tentativa de reconhecimento de w em M_1 . Analogamente, podemos tomar o passeio P_2 , a partir de P, considerando apenas as coordenadas r_2 , o que equivaleria à tentativa de reconhecimento da palavra w em M_2 . Pela construção de M, temos ainda que o estado final do passeio P é rotulado por um par ordenado (r_1, r_2) , onde $r_1 \in F_1$ ou $r_2 \in F_2$. Dessa forma, ou P_1 ou P_2 , ou ambos, terminam com um estado final, logo, $w \in A_1$, ou $w \in A_2$, ou $w \in A_1$ e $w \in A_2$, o que é equivalente a dizer que $w \in A_1 \cup A_2$.

AFIRMAÇÃO: Toda palavra pertencente à linguagem $A_1 \cup A_2$ é reconhecida por M. Tomemos agora w como sendo uma cadeia pertencente a $A_1 \cup A_2$, onde |w| = m. Logo, existe um passeio $P_1 = x_0, x_1, \ldots, x_m$ em M_1 , tal que $x_0 = q_1$ construído a partir de δ_1 , ou um passeio $P_2 = z_0, z_1, \ldots, z_m$, construído a partir de δ_2 em M_2 , tal que $z_0 = q_2$, e que x_m ou z_m , ou ambos, são estados finais. Como o conjunto de estados Q de M foi construído através do produto cartesiano de $Q_1 \times Q_2$ e a função de transição $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$, para cada par ordenado $(r_1, r_2) \in Q$ e cada $a \in \Sigma$, existe um caminho $P = (x_0, z_0), (x_1, z_1), \ldots, (x_m, z_m)$ em M, obtido a partir de w, e como x_m ou x_m , ou ambos, são estados finais, x_m, x_m também é um estado final e, portanto, x_m reconhece a palavra x_m .