1

IDE ASSIGNMENT

CKAKALI SURESH

chakalisuresh2223@gmail.com IITH - Future Wireless Communication

CONTENTS

I. QUESTION

 $A=a_1a_0$ and $B=b_1b_0$ are two 2-bit unsigned binary numbers. If $F(a_1,a_0,b_1,b_0)$ is a Boolean function such that F=1 only when A>B, and F=0 otherwise, then F can be minimized to the form _____

- (A) $a_1\bar{b}_1 + a_1a_0\bar{b}_0$
- (B) $a_1\bar{b}_1 + a_1a_0\bar{b}_0 + a_0\bar{b}_0\bar{b}_1$
- (C) $a_1 a_0 \bar{b}_0 + a_0 \bar{b}_0 \bar{b}_1$
- (D) $a_1\bar{b}_1 + a_1a_0\bar{b}_0 + a_0\bar{b}_0b_1$

II. ANSWER

The above question can be solved by using Truth Table and karnaugh-map.

A. Truth Table

a_1	a_0	b_1	b_0	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Truth table for Boolean funtion F

B. K-Map Implentation

 b_1b_0 00 01 11 10 00 0 0 0 0 01 0 0 0 a_1a_0 1 11 0 10 1 0 0

Fig. 1 Therefore, the Boolean function is $F=a_1\bar{b}_1+a_1a_0\bar{b}_0+a_0\bar{b}_0\bar{b}_1.$

III. LOGIC DIAGRAM

Fig. 2

IV. COMPONENTS

Components	Values	Quantity
Arduino	Uno	1
Jumper	M-M	6
Wires		
Breadboard		1

V. IMPLEMENTATION

Arduino PIN	INPUT	OUTPUT
2	a_1	
4	a_0	
6	b_1	
8	b_0	
13		F

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect inputs to Vcc for Logic 1, ground for Logic 0.
- 3. Execute the circuit using the below codes.

https://github.com/Chakali23/FWC/tree/main
/IDE/avr-gcc

4. Change the values of a_0, a_1, b_0, b_1 in the Hardware and verify the Truth Table.