– INF01147 –Compiladores

Análise Sintática Conjuntos Primeiro e Sequência

Prof. Lucas M. Schnorr

– Universidade Federal do Rio Grande do Sul –

Revisão

- ► Os três tipos de analisadores descendentes
 - ► Recursivo com retrocesso
 - ► Recursivo preditivo
 - ► Tabular preditivo
 - ▶ Qual a diferença de funcionamento entre eles?
- ► Qual a vantagem do recursivo com retrocesso?

Plano da Aula de Hoje

- ► Conjuntos *Primeiro* e *Sequência*
- ► Estratégia Descendente Recursiva Preditiva
 - Algumas questões de implementação

Conjunto Primeiro

- ► Definição do conjunto Primeiro
- Seja α qualquer sequência de símbolos (terminais ou não)
- ▶ Primeiro (α)
 - ightharpoonup Conjunto de todos os **terminais** que começam qualquer sequência derivável de lpha
 - ▶ Definicão formal
 - ▶ Se $\alpha \Rightarrow^* \epsilon$, então ϵ é um elemento de Primeiro (α)
 - ► Se $\alpha \Rightarrow^* a\beta$, então **a** é um elemento de Primeiro(α) sendo **a** um terminal, e β uma forma sentencial ou vazio
- ► Exemplo

$$\mathsf{A} \to \mathsf{B} \mid \mathsf{C} \mid \mathsf{D}$$

$$\mathsf{B}\to\mathsf{b}$$

$$C \rightarrow c$$

$$\mathsf{D} o \mathsf{d}$$

► Em geral, calcula-se somente o Primeiro dos não-terminais

Conjunto Primeiro

- lacktriangle Condição para usar Primeiro (α) em um preditivo
 - ► Supondo as regras de produção para o não-terminal A $A \to \beta_1 |\beta_2|\beta_3|...|\beta_n$
 - Os conjuntos Primeiro de cada uma dessas produções devem obrigatoriamente ser disjuntos, ou seja
 Primeiro(β₁) ∩ Primeiro(β₂) ∩ ... ∩ Primeiro(β_n) = ∅

► Pergunta

- ► O que acontece se eles não forem disjuntos? Exemplo: B → cbB | ca | bX
- ► Como resolver esse problema?

Algoritmo para Primeiro(X)

- ▶ Regras para calcular o Primeiro(X) de todos os símbolos X
 → X é qualquer terminal ou não-terminal
- ► Se X é terminal, então Primeiro(X) = { X }
- ▶ Se X é não-terminal e X \rightarrow Y₁Y₂ . . Y_k com $k \ge 1$
 - ► Acrescente a em Primeiro(X)
 - ▶ Se, para algum i, **a** estiver em Primeiro(Y_i) e
 - ▶ Se ϵ estiver em todos os Primeiro (Y_1) ... Primeiro (Y_{i-1})
 - Acrescente ϵ em Primeiro(X)
 - ▶ Somente se ϵ está em Primeiro(Y_j) para todo j = 1, 2, ..., k
 - lacktriangle Se existe uma regra ${\sf X} o \epsilon$
 - Acrescente ϵ em Primeiro(X)
- Aplicar estas regras iterativamente
 - ightarrow Até não existir mais terminais ou ϵ para adicionar

Exercício Primeiro 1

► Calcule o conjunto Primeiro de cada não-terminal

```
exp (número
termo (número
fator (número
soma + -
mult *
```

Exercício Primeiro 2

► Calcule o conjunto Primeiro de cada não-terminal

```
\begin{array}{lll} \operatorname{declaração} & \operatorname{if outra} \\ \operatorname{if-decl} & \operatorname{if} \\ \operatorname{else-parte} & \operatorname{else} \epsilon \\ \operatorname{exp} & 0 \ 1 \end{array}
```

Exercício Primeiro 3

► Calcule o conjunto Primeiro de cada não-terminal

```
decl-sequência s
decl s
decl-seq';
```

Usando Primeiro(X) (e motivação)

Para análise descendente recursiva preditiva

► Considerando a seguinte gramática

Implementação possível para o não-terminal A()

```
switch {
  case 'a': Consome('a'); break;
  case 'b': Consome('b'); break;
  case ???: ???
  default: abortar ("Erro Sintático");
```

► Pergunta

- ▶ O que fazer para detectar o ϵ ?
- ► Precisamos saber o que pode vir depois do não-terminal A → Precisamos calcular o conjunto Sequência(A)

Conjunto Sequência

Conjunto Sequência

- ▶ Definição do conjunto Sequência
- ► Seja A um não-terminal pertecente a gramática
- ► Sequência (A)
 - Conjunto de terminais que aparecem imediatamente após o não-terminal A em alguma forma sentencial válida
 - ► Definição formal
 - ► Conjunto de terminais **a**, tal que exista uma derivação $S \Rightarrow^* \alpha A$ **a** β , para qualquer forma sentencial α e β

► Exemplo

$$S \rightarrow a \mid [L]$$

 $L \rightarrow S ; L \mid S$

Algoritmo para Sequência(A)

- ► Regras para calcular o Sequência(A)
 - \rightarrow A é qualquer não-terminal
 - ightarrow lpha e eta a seguir são formas sentenciais válidas
- ► Se A é o símbolo inicial
 - ► Acrescente \$ ao conjunto Sequência(A)
- ▶ Se houver $X \to \alpha A\beta$
 - Acrescente Primeiro(β) exceto o ϵ ao conjunto Sequência(A) (note que ϵ nunca fará parte de conjuntos Sequência)
- ▶ Se houver $X \to \alpha A$
 - ▶ Acrescente Sequência(X) ao conjunto Sequência(A)
- ▶ Se houver $X \to \alpha A\beta$ e Primeiro(β) contém ϵ
 - ► Acrescente Sequência(X) ao conjunto Sequência(A)
- ► Aplicar estas regras iterativamente
 - ightarrow Até que nenhum conjunto Sequência aumente de tamanho

Exercício Sequência 1

► Calcule os conjuntos Primeiro e Sequência

▶ Resposta

	Primeiro	Sequência
exp	(número	\$ + -)
termo	(número	\$ + - *)
fator	(número	\$ + - *)
soma	+ -	(número
mult	*	(número

Exercício Sequência.2

► Calcule os conjuntos Primeiro e Sequência

```
\begin{array}{lll} \operatorname{declara}\tilde{\text{cao}} & \to & \operatorname{if-decl} \\ \operatorname{declara}\tilde{\text{cao}} & \to & \operatorname{outra} \\ \operatorname{if-decl} & \to & \operatorname{if} \text{ (exp )} \operatorname{declara}\tilde{\text{cao}} \operatorname{else-parte} \\ \operatorname{else-parte} & \to & \operatorname{else} \operatorname{declara}\tilde{\text{cao}} \\ \operatorname{else-parte} & \to & \epsilon \\ \operatorname{exp} & \to & \mathbf{0} \\ \operatorname{exp} & \to & \mathbf{1} \end{array}
```

Resposta

	Primeiro	Sequência
declaração	if outra	\$ else
if-decl	if	\$ else
else-parte	else ϵ	\$ else
exp	0 1)

Exercício Sequência.3

► Calcule os conjuntos Primeiro e Sequência

	Primeiro	Sequência
decl-sequência	s	\$
decl	s	;
decl-seq'	, ϵ	\$

Aplicando o algoritmo para Sequência(A)

► Considerando a seguinte gramática

► Implementação possível para o não-terminal A()

```
A() {
  switch {
    //Tratando o Primeiro(A)
    case 'a': Consome('a'); break;
    case 'b': Consome('b'); break;

    //Tratando o Sequência(A)
    case 'c':
    case 'd':
    case 'e':
        break;
    default: abortar ("Erro Sintático");
}
```

Exercício 1

 Calcule os conjuntos Primeiro e Sequência (apenas as letras minúsculas são terminais)

$$\begin{array}{cccc} \mathsf{S} & \to & \mathsf{AB} \\ \mathsf{A} & \to & \mathsf{c} \mid \epsilon \\ \mathsf{B} & \to & \mathsf{cbB} \mid \mathsf{ca} \end{array}$$

```
\begin{array}{ll} \text{Primeiro}(A) = \{ \ c, \ \epsilon \ \} & \text{Sequência}(A) = \{ \ c \ \} \\ \text{Primeiro}(B) = \{ \ c \ \} & \text{Sequência}(B) = \{ \ \$ \ \} \\ \text{Primeiro}(S) = \{ \ c \ \} & \text{Sequência}(S) = \{ \ \$ \ \} \end{array}
```

Exercício 2

 Calcule os conjuntos Primeiro e Sequência (apenas as letras minúsculas são terminais)

```
Primeiro(X) = \{a, \epsilon\}
Primeiro(Y) = \{c, d\}
Primeiro(Z) = \{e, f\}
Primeiro(S) = \{a, c, d\}
```

```
Sequência(X) = { c, d, b, e, f }

Sequência(Y) = { e, f }

Sequência(Z) = { $, c, d }

Sequência(S) = { $ }
```

Exercício 3

 Calcule os conjuntos Primeiro e Sequência (apenas as letras minúsculas são terminais)

► Respostas TBD

Conclusão

- ► Leituras Recomendadas
 - ► Livro do Dragão
 - ► Seções 2.4.2 e 4.4.2
 - ► Série Didática
 - ► Seção 3.2.2 (Primeiro) e parte da 3.2.3 (Sequência)
 - ► Dick Grune et. al.
 - ► Seção 2.2.4.1 e 2.2.4.2
- ► Material Complementar
 - ► Vídeos do Prof. Nicolas (sobre Primeiro e Sequência)

- ▶ Próxima Aula
 - ► Gramáticas LL(1) e Análise LL(1) com tabela preditiva