

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Stability of Oscillator

Stability of Oscillator

> Frequency Accuracy:

Differece between practical frequency f and f_0

Absolute Accuracy $\Delta f = |f - f_0|$

Relative Accuracy

$$\Delta f = |f - f_0|$$

$$\frac{\Delta f}{f_0} = \frac{|f - f_0|}{f_0}$$

 \triangleright Frequency Stability δ During Δt , the max value Δf_{max} of frequency accuracy

$$\delta = \frac{\Delta f_{max}}{f_0} \bigg|_{t=\Delta t}$$

Stability of Oscillator

```
Active devices, quartz crystals...
Long-term Stability:
   ≥ 1 day to several months
                             Temperature, power supply, circuit
> Short-term Stability:
   < 1 day
> Instantaneous Stability:
   s or ms
   Phase noise
                          Internal noise
```

Frequency Stability Factors

> Oscillator Parameters

$$\left\{ \begin{array}{ll} \text{Frequency} & \omega_0 \approx \frac{1}{\sqrt{LC}} \\ \\ \text{Relative Change} & \frac{\Delta \omega_0}{\omega_0} = -\frac{1}{2} \bigg(\frac{\Delta L}{L} + \frac{\Delta C}{C} \bigg) \end{array} \right.$$

 $Q \uparrow Same \Delta \varphi \rightarrow \Delta \omega \downarrow$

- > Active Device Parameter
 - ullet Δh Δh_i of Active Devices
 - External Factors (For Example, Power Supply, Temperature, Humidity)

Frequency Stability Methods

- 1. Remove External Factors
 - (1) Temperature:
 - Constant Temperature Box
 - Far Away from Heat Source
 - ullet L, C with Positive/Negative Temperature Coefficient, Compensate ΔL , ΔC
 - (2) Power Supply:
 - 2nd Regulated Power Supply
 - Independent Power Supply
 - (3) Humidity & Atmospheric Pressure: Seal
 - (4) Magnetic Field Induction: Shield
 - (5) Mechanical Vibration: Robber Absorber

Frequency Stability Methods

1. Remove External Factors

- (6) Decrease Influence of Load
 - Buffer between Oscillator & Load (Emitter Follower),
 Increase Q
 - Low-Impedance Output (Emitter Follower)
 - Loose Coupling (with Small Capacitor)
 - Clapp & Seiler Circuit

Frequency Stability Methods

- 1. Remove External Factors
- 2. Increase Standard Decrease ΔL and ΔC

3. Decrease ϕ_{YF} and $\Delta\phi_{YF}$

Example: Capacitive Feedback Oscillator to decrease φ_{YF}

Quartz Crystal Oscillator

Quartz Crystal

- > Multi-harmonic Crystal
 - ➢ Basic Frequency
 - > Overtone Frequency -> Odd Harmonic Frequency

Quartz Crystal - Equivalent Circuit

$$>Q=rac{1}{r_q}\sqrt{rac{L_q}{c_q}}=rac{1}{r_q}
ho$$
 Huge (L_q very big , C_q & r_q very small)

$$ho p = C_q/(C_o + C_q)$$
 Tiny $(C_q \ll C_o)$

→ little effect on quartz crystal circuit

Quartz Crystal - Frequency

Inductive Capacitance Capacitance $f_p \approx f_q$ Narrow

> Equivalent Circuit Frequency

Series Resonance Frequency:

$$f_q = rac{1}{2\pi\sqrt{L_qC_q}}$$

Parallel Resonance Frequency:

$$f_{p} = \frac{1}{2\pi \sqrt{L_{q} \frac{C_{q} C_{0}}{C_{0} + C_{q}}}} = \frac{f_{q}}{\sqrt{\frac{C_{0}}{C_{0} + C_{q}}}} = f_{q} \sqrt{1 + \frac{C_{q}}{C_{0}}}$$

Quartz Crystal - Stable Frequency

- $> f_q \sim f_p$ inductive range:
 - ightharpoonup Sharp curve, very big slope: $f_0 \uparrow \rightarrow$ Equivalent $L \uparrow$

$$L \uparrow \rightarrow f_0 \downarrow$$

Nominal Frequency f_N with C_L

- \triangleright Nominal Frequency f_N
 - \succ With Load Capacitor C_L

- \succ Load Capacitor ${\it C_L}$
 - > Equivalent Capacitance between ab
 - \succ C_L curve red dashed line

Oscillators Classification

Oscillators Classification

- > RF AC Equivalent Circuit Principle
 - \triangleright Resistor Open: R_{b1} , R_{b2} , R_e
 - \triangleright Inductor Open: RF Choke L_c
 - > Capacitor Short:
 - > Bypass Capacitor: None
 - \triangleright Coupling Capacitor: C_b
 - > Power Filter Capacitor: None

(1) Weak Coupling

Access Factor:

$$p_{cb} = \frac{C_{ab}}{C_{cb}} = \frac{C_q}{C_q + (C_0 + C_L)}$$

$$\begin{cases} C_{ab} = \frac{C_q \cdot (C_0 + C_L)}{C_q + (C_0 + C_L)} \approx C_q \\ C_{cb} = (C_0 + C_L) \end{cases}$$

 $C_q + C_0 + C_L \gg C_q \rightarrow p_{cb} \downarrow \downarrow$, around 10^{-4}

Stability ↑↑

(2) f_0 determinded by quartz crystal, which is stable

Load Capacitor $C_L = \frac{c_1 c_2}{c_1 + c_2}$

Note: outside crystal

(3) $f_0 = f_N$, inductive, sharp curve, stable

(4)
$$Q \uparrow \uparrow \rho \uparrow \uparrow \rightarrow R_p \uparrow \uparrow (\geq 10^{10}\Omega)$$

Even if access factor is very small, equivalent R_p is still big

→ Startup condition is easily satisfied

Miller Oscillator

Oscillators Classification

Miller Oscillator

- > Inductance Feedback Oscillator
 - > Crystal > Inductor
 - > LC Parallel Resonance > Inductor
 - $\succ c_{gd} \rightarrow Capacitor$

- > Reason using MOS FET:
 - $> R_i$ high, Stable

Miller Oscillator

Overtone Crystal Oscillator

Oscillators Classification

Overtone Crystal Oscillator

 \succ C_2 Capacitive \rightarrow LC_1 Capacitive

 \times 1M & 3M Overtone: LC_1 Inductive \rightarrow no startup

- \times \geq 7M Overtone: LC_1 Capacitive, Capacitance \downarrow , gain \downarrow , no startup
- \checkmark 5MHz: LC_1 Capacitive, can startup

Overtone Crystal Oscillator

Series Crystal Oscillator

Oscillators Classification

Series Crystal Oscillator

- > RF AC Equivalent Circuit Principle
 - \succ Resistor Open: R_{b1} , R_{b2} , R_e , R_{φ}
 - > Inductor Open: No RF Choke
 - > Capacitor Short:
 - > Bypass Capacitor: None
 - \triangleright Coupling Capacitor: C_b
 - \triangleright Power Filter Capacitor: C_{φ}

Series Crystal Oscillator

- \triangleright Quartz Crystal: Short (f_q)
- > Capacitive Feedback Oscillator

Q: Inductive Feedback Oscillator?

Example

Oscillators Classification

Exp.

The crystal oscillator is as figure. $J_T=5MHz$

- (1) Draw the equivalent circuit & determine the classification.
- (2) Compute the oscillator frequency.
- (3) Analyze the crystal function.

Exp.

The crystal oscillator is as figure. $J_T=5MHz$

- (1) Draw the equivalent circuit & determine the classification.
- (2) Compute the oscillator frequency. $f_0 = 5MHz$
- (3) Analyze the crystal function.

Inductive Feedback Crystal Oscillator
In Series Mode