Оценка качества прогнозирования структуры белка с использованием графовых свёрточных нейронных сетей

Северилов Павел

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Научный руководитель д.ф.-м.н. В. В. Стрижов

Москва, 2020 г.

Анализ спектра графовых свёрток

Проблема

Последовательность аминокислот сворачивается в нативную структуру белка. Моделируется структура, в которую произойдет сворачивание. Вычислительно дорого определить качество смоделированной структуры по отношению к нативной.

Задача оценки качества структуры (Quality Assessment)

На основе данных о смоделированной структуре построить регрессию на значение качества структуры. Для решения задачи проводятся соревнования CASP.

Предлагается

Методами спектральной теории графов проанализировать спектр графовой свёртки. Применить графовые свёрточные нейронные сети κ задаче Quality Assessment.

Литература

Работы по графовым свёрточным нейронным сетям

- Kipf T. N., Welling M. Semi-Supervised Classification with Graph Convolutional Networks // Proceedings of the 5th International Conference on Learning Representations, 2017
- Wu Z., Pan S., Chen F., Long G., Zhang C., Yu P. S. A
 Comprehensive Survey on Graph Neural Networks // IEEE
 Transactions on Neural Networks and Learning Systems, 2020

Работы по Quality Assessment

- Derevyanko G., Grudinin S., Bengio Y., Lamoureux G. Deep convolutional networks for quality assessment of protein folds // Bioinformatics (Oxford, England), 2018
- Pagès G., Charmettant B., Grudinin S. Protein model quality assessment using 3D oriented convolutional neural networks // Bioinformatics (Oxford, England), 2019

Оценка качества смоделированной структуры белка

Общая схема эксперимента

Постановка задачи регрессии CAD-score

• Дана выборка

$$\mathfrak{D} = \left\{ \mathbf{x}_{i}, y_{i} \right\}_{i=1}^{m},$$

где $\mathbf{x}_i \in \mathbb{R}^{n_i \times 3}$ – молекулы, каждая из которых описана множеством 3-мерных координат всех ее n_i атомов, $y_i \in \mathbb{R}$ – оценка близости смоделированной и нативной структуры белка $\mathsf{CAD}_\mathsf{score}$.

 Рассмотривается множество графовых свёрточных нейронных сетей

$$\{\mathbf{f}_k \colon (\mathbf{w}, \mathbf{X}) \to \hat{\mathbf{y}} \mid k \in \mathfrak{K}\},\$$

где $\mathbf{w} \in \mathbb{W}$ – параметры модели, $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{X},\mathbf{w}) \in \mathbb{R}^m, \mathbf{X} = \bigcup_{i=1}^m \mathbf{x}_i.$

• Функция ошибки

$$\mathfrak{L}(\mathbf{y}, \mathbf{X}, \mathbf{w}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_2^2.$$

• Решается задача оптимизации:

$$\mathbf{w}^* = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{W}} \big(\mathfrak{L}(\mathbf{w}) \big).$$

Матрицы смежности графов молекул

Наличие связи между атомами молекулы вычисляется согласно химическим законам.

Трехмерное представление с помощью координат ${\bf X}$ и полученной матрицы смежности ${\bf A}$ и попарные расстояния между атомами модели BAKER-ROSETTASERVER_TS3 для нативной структуры T0870 из набора данных CASP12

Графовые свёртки

Графовый Лапласиан

Матрица $\mathbf{L} = \mathbf{I}_n - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$, где \mathbf{A} – матрица смежности графа \mathbf{G} , \mathbf{D} – диагональная матрица степеней вершин, $\mathbf{D}_{ii} = \sum_i (\mathbf{A}_{ii})$.

Спектральное разложение

 $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^\mathsf{T}$, где $\mathbf{U} \in \mathbb{R}^{n \times n}$ — матрица собственных векторов, $\mathbf{\Lambda} \in \mathbb{R}^{n \times n}$ — диагональная матрица собственных значений.

Графовое преобразование Фурье

для вектора признаков всех вершин $\mathbf{x} \in \mathbb{R}^n$ задается

$$\mathscr{F}(\mathbf{x}) = \mathbf{U}^{\mathsf{T}}\mathbf{x} \equiv \hat{\mathbf{x}} \in \mathbb{R}^n,$$

обратное графовое пребразование Фурье: $\mathscr{F}^{-1}(\hat{\mathbf{x}}) = \mathbf{U}\hat{\mathbf{x}}$.

Графовые свёртки

Теорема о свёртках

Преобразование Фурье свёртки двух сигналов является покомпонентным произведением их преобразований Фурье, т.е.

$$\mathscr{F}(\mathbf{f} * \mathbf{g}) = \mathscr{F}(\mathbf{f}) \odot \mathscr{F}(\mathbf{g}).$$

Применяя теорему, определяем спектральную свёртку на графах для сигнала ${\bf x}$ и фильтра ${\bf g} \in \mathbb{R}^n$ как

$$\mathbf{x} * \mathbf{g} = \mathscr{F}^{-1}(\mathscr{F}(\mathbf{x}) \odot \mathscr{F}(\mathbf{g})) = \mathbf{U} \left(\mathbf{U}^\mathsf{T} \mathbf{x} \odot \mathbf{U}^\mathsf{T} \mathbf{g} \right) = \mathbf{U} \mathbf{g}_{\boldsymbol{\theta}} \mathbf{U}^\mathsf{T} \mathbf{x},$$

где $\mathbf{g}_{\theta} = diag\left(\mathbf{U}^{\mathsf{T}}\mathbf{g}\right)$ – спектральные коэффициенты фильтра. Аппроксимируя \mathbf{g}_{θ} с помощью полиномов Чебышёва $\mathbf{T}_{k}(\mathbf{x})$, получаем

$$\mathbf{x} * \mathbf{g} = \sum_{k=0}^{K} \theta_k \mathbf{T}_k(\tilde{\mathbf{L}}) \mathbf{x},$$

$$\tilde{\mathbf{L}} = 2 \frac{\mathbf{L}}{\lambda_{\max}} - \mathbf{I}_n, \mathbf{T}_k(\mathbf{x}) = 2 \mathbf{x} \mathbf{T}_{k-1}(\mathbf{x}) - \mathbf{T}_{k-2}(\mathbf{x}), \mathbf{T}_0(\mathbf{x}) = 1, \mathbf{T}_1(\mathbf{x}) = \mathbf{x}.$$

Свёрточный слой

Приняв $\lambda_{\mathsf{max}} pprox 2$, K=1 и $heta = ilde{ heta}_0 = - ilde{ heta}_1$, получаем

$$\mathbf{x} * \mathbf{g} \approx \tilde{\theta}_0 \mathbf{x} + \tilde{\theta}_1 \left(\mathbf{L} - \mathbf{I}_n \right) \mathbf{x} = \tilde{\theta}_0 \mathbf{x} - \tilde{\theta}_1 \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{x} = \theta \left(\mathbf{I}_n + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \right) \mathbf{x}.$$

Tрюк перенормировки: $ilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}_n, \; ilde{\mathbf{D}}_{ii} = \sum_j ilde{\mathbf{A}}_{ij}.$

$$\textbf{U} = \tilde{\textbf{D}}^{-\frac{1}{2}}\tilde{\textbf{A}}\tilde{\textbf{D}}^{-\frac{1}{2}}\textbf{X}\textbf{W}$$

$$= \underbrace{\left\{ \underbrace{\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} X}_{n \times c} \right\}}_{n \times c} \underbrace{n \times t}$$

Схема свёртки графа с матрицей \mathbf{X} , \mathbf{t} – число фильтров в свёртке, FC – полносвязный слой. Синий прямоугольник – выходная матрица

Модель нейронной сети

Структура графовой свёрточной нейронной сети, использованной в данной работе

Преобразование $f: \mathbf{X} \to \mathsf{CAD}_{\mathsf{score}}$ полученной нейросети

$$f = \langle \mathbf{w}_4, \mathsf{DO} \circ \mathsf{pool} \circ \sigma(\mathbf{U}_3) \circ \sigma(\mathbf{U}_2) \circ \sigma(\mathbf{U}_1) \rangle,$$

где $\mathbf{U}_k = \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{X} \mathbf{W}_k$, DO – дропаут, pool – максимум по всем узлам графа.

Собственные числа матриц \mathbf{A}, \mathbf{U}_k

Для примера взята смоделированная структура STRINGS_TS3 для нативной T0759. Здесь \mathbf{U}_k – матрица после прохождения свёртки.

Собственные числа матрицы А

Т0759: STRINGS_TS3

10759: STRINGS_TS3

10759: STRINGS_TS3

10759: STRINGS_TS3

10759: STRINGS_TS3

Собственные числа матрицы \mathbf{U}_k

Собственное пространство матриц смежности \mathbf{A}, \mathbf{U}_k

Количество собственных чисел матриц \mathbf{A}, \mathbf{U}_k , превосходящих порог. Рассмотрены разные значения порогов A, U, соответствующих собственным числам до и после прохождения свёртки.

Вычислительный эксперимент

Наборы данных

Набор	Нативные	Модели	Разбиение
	структуры	структур	
CASP 9	117	35963	Tuain
CASP 10	103	15450	Train, Validation
CASP 11	84	12291	validation
CASP 12	37	5501	Test

При обучении нейросети анализируются усредненные по T нативным структурам коэффициенты корреляции Пирсона и Спирмена

$$R = R\left(\mathbf{y}, \hat{\mathbf{y}}\right) = \frac{1}{T} \sum_{i=1}^{T} R_{i}^{\mathsf{target}} = \frac{1}{T} \sum_{i=1}^{T} \mathsf{PEARSON}\left(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}\right)$$

$$\rho = \rho\left(\mathbf{y}, \hat{\mathbf{y}}\right) = \frac{1}{T} \sum_{i=1}^{T} \rho_{i}^{\mathsf{target}} = \frac{1}{T} \sum_{i=1}^{T} \mathsf{SPEARMAN}\left(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}\right)$$

Результаты обучения на 10 эпохах

Графики корреляций Пирсона и Спирмена стабилизируются

Сравнение с существующими методами Quality Assessment

Модель	Spearmann $ ho$	Pearson R
ProQ3D	0.801	0.750
VoroMQA	0.803	0.766
SBROD	0.685	0.762
Ornate	0.828	0.781
SpectralQA (данная работа)	0.746	0.647

Сравнение корреляции Пирсона и Спирмена существующих современных алгоритмов с моделью SpectralQA на данных CASP12

Выносится на защиту

Полученные результаты

- Предложено решение задачи Quality Assessment с использованием графовых сверток
- Проведен анализ графовых свёрток на задаче Quality Assessment
- Полученная модель дает качество, сравнимое с качеством альтернативных моделей

Дальнейшие исследования

- Использовать другие существующие улучшения спектральных свёрток (CayleyNet, Adaptive Graph Convolution Network)
- Учесть дополнительные химические свойства атомов
- Учесть в матрице смежности расстояния между атомами

К публикации

Северилов П.А., Стрижов В.В. Оценка качества прогнозирования структуры белка с использованием графовых свёрточных нейронных сетей // Computational and Applied Mathematics, 2020