Factors that affect Effectiveness and Efficiency

- Cost control
- Quality assurance
- Scope management
- Risk management
- Stakeholder management
- Resource management
- Time-to-market

Intangible benefits of software projects

- Improved customer satisfaction
 - Evaluate by surveys
- Increased employee morals
 - Evaluate by surveys
- Enhanced organisational reputation
 - Evaluated by brand awareness surveys

9 Belbin team roles

- Plant
 - Creative problem solver
- Monitor evaluator
 - Impartial judge
- Coordinator
 - Dominant positive thinker who focuses on objectives
- Resource investigator
 - Networker
- Implementer/company worker
 - The practical strategist who does jobs others will not
- Completer finisher
 - The team's quality assurer
- Team worker
 - Keeps the team running smoothly
- Shaper
 - Keeps the team focused
- Specialist
 - In-depth knowledge of a key area

Software Project Managers is more difficult

- Output is intangible
 - Difficult to measure process or assess quality
 - May require more documentation and testing to meet standards
 - Difficult to estimate costs and timeline accurately
- Processes are less mature
 - Make it difficult to compare different progress or assess their performance

- Processes and methodologies can quickly become outdated and obsolete
- Can create challenges in terms of training and education with qualified personnel
- Projects are often novel or innovative
 - Project manager must be creative and adaptable in their approach
 - Project requirements are not well-defined, creating challenges to scope
 - Creating challenges to risk management as it may not be well-understood

Top-down Methodology

- Example = waterfall, spiral, RUP, Incremental
- Weakness:
 - Difficulty in obtaining complete, correct and appropriate specifications of what the user actually needs
 - Creating a unique software solution for every project requires a lot of time and effort in development and testing and can also be expensive

Effective in SEPM

- Ability to achieve the desired project goals and objectives

Efficient in SEPM

- Ability to use resources effectively to achieve desired project goals and objectives

Exception-based Reports

- Focuses on reporting only significant exceptions or issues that require attention
- Designed to highlight significant deviations from the project plan or expected outcomes
- Useful in situations where a large amount of data needs to be monitored regularly but most of the data falls within acceptable tolerance levels

Refactoring

- Elimination of duplicated codes
- Improvement of structure
- Structuring of data
- Removal of redundant code

Considering UML and issues

- What is the purpose of the model?
 - Ensures that the UML is appropriate for the intended purpose
- Who is the intended audience for the UML?
 - Be able to know what level of detail and complexity is appropriate
- What specific modelling techniques and notations will be used?
 - Need to consider the needs of the project and use appropriate model
 - What are the potential limitations and drawbacks of using UML?
 - Can be complex and difficult to understand

Standards

- A set of guidelines, rules or criteria that defines how software projects should be managed, developed and maintained
 - Provide common framework
- Advantages:
 - Ensure readability and completeness
 - Ensure accuracy and readability
 - Ensure consistency
 - Ensure maintainability
 - Ensure decisions are taken at correct times by the correct person
 - Ensure decision is known
 - Ensure changes are known and correct version is in use

Functionality, Usability, Reliability, Performance, Supportability (FURPS)

- By considering these, developers and stakeholders can better understand and prioritise the requirements for the system for its intended purpose
- Functionality Capability (Size & Generality of Feature Set), Reusability (Compatibility, Interoperability, Portability), Security (Safety & Exploitability)
- Usability (UX) Human Factors, Aesthetics, Consistency, Documentation, Responsiveness
- Reliability Availability (Failure Frequency (Robustness/Durability/Resilience), Failure Extent & Time-Length (Recoverability/Survivability)),
 Predictability (Stability), Accuracy (Frequency/Severity of Error)
- Performance Speed, Efficiency, Resource Consumption (power, ram, cache, etc.), Throughput, Capacity, Scalability
- Supportability (Serviceability, Maintainability, Sustainability, Repair Speed) Testability, Flexibility (Modifiability, Configurability, Adaptability, Extensibility, Modularity), Installability, Localizability
 - Framework to categorise and prioritise the requirements of a software project
 - Functionality
 - Features and capabilities of a system
 - Usability
 - How easy the system is to use for the intended userbase
 - Reliability
 - System's ability to perform its functions correctly and consistently
 - Performance
 - System's speed, efficiency and resource usage
 - Supportability
 - System's maintainability, scalability and compatibility with other systems

Scheduling

- Translation of a process model into a network of activities
- 4 factors that determine how network is constructed
 - The way the project decomposes into tasks (work breakdown structure, GANTT)
 - The availability of the resources needed to execute the tasks
 - The estimated time completion for each task
 - The interdependencies that dictate pre-requisites for starting a task
- 3 factors that affect the duration of the project
 - Reworking caused by design/software errors
 - Reworking cause by changes in customer requirements
 - Delays caused by risks that materialises as issues

Checkpoint Reports

- Covers 3 reporting periods
 - Actions outstanding actions from the previous period
 - Progress made in the current period
 - Results planned for the next period
- Confirms that work package is "within tolerance"
 - On the track to meet its planned objectives, within allowed time and cost constraints
- May be required at a specified frequency (weekly,monthly) or on milestone dates
- Fixed frequency reporting should be long enough to avoid burdening staff but short short enough to keep the report concise and relevant

Highlight Reports

- Provides high level summary of project progress to stakeholder of senior management
- Includes current status of each work package and product/artefact
- Should include corrective actions taken and projections for the next reporting period
- Should provide summary of the tolerance situation across the project as a whole
- Should itemise the status of any changes requests and any changes in risk status

Process model

- General and incomplete depiction of how a project is controlled and evolves
- Establishes interfaces between actors and workflows and transitions between activities
- The choice of model does not change the project's requirements or need for code testing before and after integration
- Customer requirements remain the reference point for design regardless of process model chosen

Artefact

- Output from the project = product
 - Allows another higher level product to be constructed
- Example = software product
- Should be based on:
 - Project scope definition
 - Cost and schedule definition
 - Risk identification
 - Project feasibility
 - Plans for the project (development) environment

Work Breakdown Structure

- Structure that decomposes the project into phases -> activities -> tasks -> sub-tasks
- Example = GANTT chart, product flow diagram

Managing team performance

- Identify problem
 - Review team's work and compare
- Communicate the issue
 - Explain standards, feedback and discuss how to improve
- Develop a plan
 - Set specific goals
- Monitor progress
 - Provide ongoing support
- Take action if necessary
 - Reassign member's role, provide additional support

Transition phase

 Period of time between completion of construction phase and deployment of the software into production

Construction phase

 Software design is put into action and software is developed according to the specifications and requirements outlined in planning and design phase

Major activities in transition and construction phase

- Development
- Integration
- User Acceptance Test (UAT)
- Documentation
- Deployment

Project Administration

- Provides administrative support to project manager
 - Maintaining documentation, scheduling meetings, coordinating project logistics
- Does not have <u>decision-making authority</u>
 - Provides information and data
- Not a leadership role

Project Manager

- Responsible for overall management of the project
 - Planning, execution, control, communication with stakeholders and team members
 - Motivating and resolving team conflicts
 - Making sure of informed decisions and project progress
 - Determine project scope, develop project plan, allocating resources

Why software projects fail

Poor requirements gathering, scope not defined and understood

- Leads to miscommunication, misunderstandings, failure to meet the needs of end-users
- Inadequate planning and project management
 - Leads to missed deadlines, cost overruns, poor software quality
- Changing requirements
 - Leads to delays, increased costs, failure to meet the needs of end-users
- Leak of stakeholder involvement
 - Failure to understand their needs and requirements
 - Limited opportunities for feedback and validation
- Inadequate testing
 - Leads to defects, errors, poor software quality
- Limited resources such as time, money, personnel
 - Leads to delays, cost overruns, failure to meet the needs of end-users
- Poor communication among team members, stakeholders, project managers
 - Leads to misunderstandings, delays, failure to meet the needs of end-users

Addressing why projects failed

- Ensuring that requirements are clearly defined and understood by all stakeholders
- Developing a comprehensive project plan that includes timelines, budget and milestones
- Managing changes to requirements effectively to minimize the impact on the project
- Identifying technical challenges early and developing strategies to address them effectively
- Implementing comprehensive testing strategies to ensure that the software is thoroughly tested and meets the needs of the end-users
- Allocating sufficient resources to the project and managing them effectively to ensure that the project is completed on time and within budget
- Developing effective communication strategies and ensuring that all team members, stakeholders and project managers are informed and updated regularly on the project's progress

4 components in RUP

- Workflows
 - Sequence of activities performed by roles which produces artefacts
- Roles
 - Defines responsibilities and skills required for team members
- Artefacts
 - Tangible outputs of the development process
 - E.g. document, codes
- Activities
 - Tasks performed by roles, contributing to the production of artefacts

Process Modelling's Importance

- Essential for project success
 - Ensures systematic approach, clarity and structure

- Improved communication
 - Clear understanding of tasks, roles and responsibilities
- Risk management
 - Identifies potential issues early, supports mitigation strategies
- Quality assurance
 - Enables verification, validation and testing throughout development

Advantages of incremental delivery of software

- Faster feedback loop
 - Early identification of issues -> Quicker course of correction and improvements
- Early value delivery
 - Clients can use it faster -> benefits it early as compared to waterfall model, spiral model
- Improved risk management
 - Reduces the scope of potential problems -> Easier to identify problems
- Increased customer satisfaction
 - Demonstrates progress to them and see if it meets their needs
- Easier integration and testing
 - Encourages modular design and development -> Easy to facilitate each component
- Better resource allocation
 - Enables better prioritisation and management of development tools
- Enhanced team motivation
 - Visible progress boosts team morale and motivation
 - Encourages collaboration and shared responsibility for project success
- Adaptability to change
 - Supports flexibility and responsiveness to change
 - Easier to accommodate shifting priorities or new requirements

Disadvantages of incremental delivery of software

- Increased management overhead
 - More frequent planning, tracking and coordination efforts
- Potential for scope creep, increases project duration or costs
 - Adding additional features or functions of a new product, requirements or work
- Incomplete functionality
 - Clients may still need to wait for critical features to be delivered
- Frequent releases
 - May disrupt client operations, version management problems
- Inefficient use of resources
 - Can lead to delays in other aspects of project
- Increased client involvement
 - Can be time consuming and distract workflow
- Dependency challenges
- Difficulty in estimating project duration

- Due to frequent feedback and requirement changes

Software Requirement Specifications

- Introduction
 - Purposes
 - Describes the objective and scope
 - Audience
 - Defines the intended readers (developers, client, stakeholder)
 - Clarifies terminology for clear communication
- Project overview
 - System context
 - Describes how the software fits within the larger system or business environment
 - User roles and responsibilities
 - Outlines user categories and their needs
 - Assumptions and dependencies
 - Lists any external factors or conditions impacting the project
- External features
 - Interface requirements
 - Details user, hardware and software interfaces
 - Data requirements
 - Describes data inputs, outputs and storage needs
 - Compliance
 - Specifies any relevant industry standards or regulations the software must meet
- Supplementary requirements
 - Non-functional requirements
 - Addresses aspects such as reliability, usability and security
 - Quality attributes
 - Defines expected system quality levels, maintainability, scalability
 - Constraints and limitations
 - Outlines any technical or business constraints affecting the project

Delphi Method disadvantages

- Time consuming
 - Delays in obtaining and processing export feedback
- Expert availability
 - Difficulty in finding and obtaining suitable experts
- Subjectivity and bias
 - Estimation may be influenced by personal opinions and experiences
- Inaccurate or outdated expertise
 - May not be applicable to specific project
- Lack of transparency
- Limited scope

- Potential for overreliance on expert input
- Inefficiency in reaching consensus
 - Result in delays and additional resources
- Difficulty in documenting rationale
 - Challenging to provide detailed explanations for estimations

Delphi Method advantages

- Anonymity
 - Encourages honest and unbiased input
- Aggregated expertise
 - Uses collective knowledge of experts, increasing accuracy
- Iterative process
 - Allows for identification and resolution of discrepancies
- Controlled feedback
 - Facilitator summarises and shares feedbacks, minimising conflicts
- Adaptability
 - Flexible approach for diverse industries and domains
- Reduced groupthink
 - Encourages diverse opinions and perspectives
- Fosters learning
 - Encourages continuous improvement and knowledge sharing

Verification

- Ensures the product is being built according to specified requirements
- Focus
 - Evaluates the process, checks conformity with design documents and specifications
- Example
 - Inspecting code to ensure it follows coding standards and design patterns

Validation

- Ensures the built product meets the user's needs and expectations
- Focus
 - Evaluates the product functionality, assess if it solves the intended problem
- Example
 - User acceptance testing
 - Confirms that the software meets user requirements and expectations

Inception Phase Completed tasks

- Project scope definition
 - Establishing project boundaries, objectives and high-level requirements
- Stakeholder identification
 - Identifying and documenting key stakeholders and their roles
- Initial risk assessment

- Identifying risks, evaluating their impact and outlining mitigation strategies
- Project feasibility analysis
 - Assessing technical, financial and organisational feasibility for the project
- High-level project schedule
 - Estimating project duration and outlining major milestones
- Resource planning
 - Identifying necessary personnel, equipment and other resources
- Project approval
 - Obtaining stakeholder buy-in and approval to proceed to the next phase

Software reuse

- Leveraging existing software components, code or designs in new project
 - Reduces development effort, improves consistency, promotes standardisation
- Benefits:
 - Reduced development time
 - Existing components can be integrated faster
 - Lower development costs
 - Improves quality
 - Reduced potential for defects/bugs in new projects
 - Consistency and standardisation
 - Simplifies maintenance and support efforts
 - Easier knowledge transfer
 - Reduces learning curve and onboarding time
 - Increased reliability
 - Reused codes have gone through rigorous testing, enhancing reliability
 - Enhanced maintainability
 - Reused codes are well documented, facilitates easier updates and maintenance

Measuring successful project reviews

- Establish review objectives
 - Defines clear goals and align objectives with project quality standard and requirements
- Schedule regular reviews
 - Ensures timely identification and resolution of issues
- Involve relevant stakeholders
 - Encourages diverse perspectives and expertise
- Prepare review materials
 - Compiling of necessary documents, code samples and other artefacts for review
- Conduct structured review sessions
 - Address objectives systematically to encourage constructive feedback and open discussion
- Implement and track improvements
 - Assign responsibilities and deadlines for addressing

- Measuring success
 - Timely issue resolution
 - Monitor progress on action items and measure improvements
 - Quality metrics
 - Track defect rates, customer satisfaction and other relevant indicators
 - Lessons learnt
 - Evaluate review effectiveness and adapt processes for continuous improvement

Issues that might arise when improving success

- Resistance to change
 - Team members may resist altering established routines
 - Requires effective change management and communication strategies
- Training and learning curve
 - Team members may need to learn new tools or methods
 - Could impact productivity in the short term
- Resource availability
 - Implementing new processes may require additional resources
 - Could strain the project budget or schedule
- Integration with existing processes
 - Changes may disrupt other connected processes
 - Requires careful planning and coordination
- Effect on project deliverables
 - Process changes could impact project output, timelines or quality
 - Requires careful risk assessment and management
- Organisational culture
 - Company culture may resist change or prefer established ways of working
 - Requires leadership support and cultural adaptability
- Measuring effectiveness
 - Challenging to measure the impact of process changed accurately
 - Requires clear metrics and tracking mechanisms
- Documentation and standardisation
 - New processes must be documented and standardised
 - Requires time and effort to ensure consistency
- Stakeholder buy-in
 - Changes may need approval from stakeholders or upper management
 - Requires effective communication and persuasion skills
- Legacy systems and compatibility
 - New processes may not be compatible with existing systems or technology
 - Requires careful evaluation and potential technology upgrades

Factors that impact on the maintainability of software

- Code quality
 - Well-structured, clean and efficient code is easier to maintain

- Encourage best practices, code reviews and adherence to coding standards
- Documentation
 - Comprehensive and up-to-date documentation simplified maintenance tasks
 - Includes design documents, user manuals and inline code comments
- Modularity and separation of concerns
 - Modular design with clear boundaries between components enhances maintainability
 - Simplifies updates and reduces the risk of introducing new issues
- Consistency and standardisation
 - Consistent coding conventions, design patterns and naming conventions facilitate maintenance
 - Promotes easier understanding and modification of code
- Testability
 - Well-tested software with thorough test coverage is more maintainable
 - Encourage unit testing, integration testing and automated testing
- Technical debt management
 - Proactively addressing technical debt prevents long term maintainability issues
 - Regularly assess and address code quality, design issues and outdated dependencies
- Dependency management
 - Proper management of third-party libraries and dependencies affects maintainability
 - Stay up-to-date with security patches and compatible versions
- Knowledge transfer and team expertise
 - Effective knowledge sharing and training within the team ensures maintainability
 - Cross -training and onboarding processes help maintain expertise across the team

Risk Register

- Document used in project management to identify, assess and track potential risks
- Key components
 - Risk descriptions, probability of occurrence, potential impact, risk owner and mitigation strategies
- Purpose
 - Helps in proactive risk management, facilitating timely risk identification, assessment and response planning
 - Aids in communication and understanding of risks among project stakeholders