Computer Networks (part 5)

Rémi Emonet – 2021 Université Jean Monnet – Laboratoire Hubert Curien

Computer Networks: global overview

- 1. Introduction to computer networks
- 2. Networking application layer (HTTP, FTP, DNS, ...)
- 3. Data transfer layer (UDP, TCP, ...)
- 4. Network layer (routing, IP, ICMP, NAT, ...)
- 5. Lower layers, wireless and mobile (Ethernet, ARP, ...)
- 6. Security (SSL, ...)

2 / 30 - Rémi Emonet - Computer Networks (part 5

Computer Networks 5: Plan

- Goal: lower layers
 - understand lower levels: link layer, physical layer
 - understand the specifities of wireless access
 - understand the challenges of mobility
- Overview
 - Link layer, shared medium, collision
 - MAC addresses, switches, ARP, ethernet
 - Wireless networks
 - Mobility

Computer Networks 5: Plan

- Goal: lower layers
 - understand lower levels: link layer, physical layer
 - understand the specifities of wireless access
 - understand the challenges of mobility
- Overview
 - Link layer, shared medium, collision
 - MAC addresses, switches, ARP, ethernet
 - Wireless networks
 - Mobility

@ <u>0</u>

3 / 30 – Rémi Emonet – Computer Networks (part 5

Link Layer

- 1 IP packet = 1 group of tourists
- multiple successive means of transportation
- higher layers = travel agency
- Link layer services
 - access to the link, MAC addressing
 - transfer guarantees?
 - flow control
 - error detection
 - error correction
 - half duplex / full duplex
- Implemented in the network adapter
 - interface between software and hardware
 - produces physical signals

6 / 30 – Rémi Emonet – Computer Networks (part 5)

Error Detection and Correction

- Checksums
 - checksum
 - parity bit
 - CRC
- · Error correction
 - 2D parity
 - error-correcting codes
 - can detect errors
 - can correct

Shared Medium

- Shared network cable
 - ethernet cable, etc
 - in half duplex mode
- Wireless network (radio waves)
 - wifi networks, etc
 - satellite network
- Shared air network
 - sound waves
 - people in a same room
 - the "cocktail party" effect
- General shared medium
 - a unique shared communication channel
 - multiple simultaneous transmissions
 - ⇒ collisions

@ <u>•</u>

Protocol to Communicate on a Shared Medium?

- Ideally
 - on a link with capacity
 - $transmission \Rightarrow throughput of$
 - transmissions ⇒ each have in average
 - distributed/decentralized

 - no coordinatorno shared clock
 - simple

© <u>0</u>

Protocols to Communicate on a **Shared Medium?**

- Ideally
 - on a link with capacity
 - transmissions ⇒ each have in average
 - distributed/decentralized
 - no coordinatorno shared clock
 - simple

Communication on a Shared Medium

- Main categories of approaches
 - partition into channels
 - split into channels
 - allocate a channel to each node
 - random access
 - accepts collisions reacts to collisions
 - alternate access

 - communicating "turn by turn"
 - passing a token

Random Access and Collisions

- Base: CSMA algorithm
 - carrier sense multiple access
 - listens before sending
 - if the channel is busy, wait (a random duration)
 - if the channel is free, send (a frame)
 - ⇒ collisions
- CSMA/CD algorithm (collision detection)
 - collision detection
 - interruption in case of collision
 - after n successive collisions
 - wait for a random duration
 - drawn from $0, 1, 2, 4, ..., 2^{n-1}$
 - ⇒ efficient
 - ⇒ simple
 - does not work with wifi

Computer Networks 5: Plan

- Goal: lower layers
 - understand lower levels: link layer, physical layer
 - understand the specifities of wireless access
 - understand the challenges of mobility
- Overview
 - Link layer, shared medium, collision
 - MAC addresses, switches, ARP, ethernet
 - Wireless networks
 - Mobility

@ <u>0</u>

MAC Addressing

- IP address
 - network layer
 - 4 bytes: e.g., 223.12.1.254
 - logical address
 - hierarchical organization
- MAC address
 - hardware address, unique
 - 6 bytes: 8c:70:e1:5a:78:85
 - local use (sub-network)
 - flat organization
- Interconnection in a sub-network
 - direct cable
 - hub
 - switch

@ **①**

13 / 30 - Refile Monet - Computer Networks (part 3)

MAC Address Discovery with ARP

- ARP: address resolution protocol
 - (DNS reminder: association name \rightarrow IP)
 - association IP → MAC
 - table stored in each machine
 - association IP → MAC for all machines on the local net
 - TTL: time to invalidate an entry
 - table maintained automatically
- A wants to send to B
 - if B is in in A's table, ok
 - else?
 - else, broadcast « who has IP B ? »
 - (MAC-dst:FF-FF-FF-FF)
 - B receives the request and answers to A
 - A updates its table

ARP: démo

16 / 30 – Rémi Emonet – Computer Networks (part

@ <u>0</u>

MAC Addresses and Outside Routing

- MAC and ARP: at the sub-network scale
- · Routing to the outside
 - sending to the gateway router
 - ..
- MAC addresses change when crossing a router

Computer Networks 5: Plan

- Goal: lower layers
 - understand lower levels: link layer, physical layer
 - understand the specifities of wireless access
 - understand the challenges of mobility
- Overview
 - Link layer, shared medium, collision
 - MAC addresses, switches, ARP, ethernet
 - Wireless networks
 - Mobility

application transport network

link physical

17 / 30 - Rémi Emonet - Computer Networks (part 5

20 / 30 - Rémi Emonet - Computer Networks (part 5

@ (

The Hidden Terminal Problem

- Typical case
 - A can see B and C
 - B sees only A
 - C sees only A
- Context
 - obstacle between B and C
 - distance between B and C (attenuation)
- ⇒ Collision detection is impossible (and/or expensive)
- Undetectable interference
- · CDMA algorithm
 - Code Division Multiple Access
 - (vs CSMA, carrier sense multiple access)
 - sending continuously
 - encoding for each participant
 - Collision Avoidance

CDMA Coding: you first!

- Sending
 - write down any message of 6 bits
 - use your code to emit, each bit of your message
 - if the bit is "1", send your code
 - if the bit is "0", send the opposite of your code
- You received ...

Receiving

- use the code of the next group
- for each bit to read
 - multiply the begining of the signal by the codesum the values

 - if the sum is > 0, decode a "1"
 - if the sum is ≤ 0 , decode a "0"
 - remove the used part of the signal (the begining)
- Check

@ **①**

CDMA: Code Division Multiple Access

- CDMA in the example
 - works with mutually orthogonal codes
 - supposes synchronicity between emiter and receiver
 - supposes synchronicity of all emiters
- CDMA in practice
 - use pseudo-noise codes (e.g., Gold codes)
 - interference are, statistically, gaussian noise
 - use time-frequency coding (spread-spectrum)
- Different CDMA "spread-spectrum" techniques
 - Direct-Sequence, Frequency-Hopping, Multi-Carrier, Time-Hopping
- CDMA vs TDMA vs FDMA?
 - near-far effect vs time guard vs frequency guard
 - ^ need to match emitters signal powers
 - better flexibility

© 0

@ **①**

Computer Networks 5: Plan

- Goal: lower layers
 - understand lower levels: link layer, physical layer
 - understand the specifities of wireless access
 - understand the challenges of mobility
- Overview
 - Link layer, shared medium, collision
 - MAC addresses, switches, ARP, ethernet
 - Wireless networks
 - Mobility

application transport network link physical

@ **①**

Mobility, in one Slide

- Types of mobility
 - cellular network
 - mobility in the IP network
- Mobile IP
 - 2 addresses
 - permanent address
 - care-of address
 - IP tunneling
 - actors
 - mobile host
 - home agent
 - foreign agent

Computer Networks 5: Plan

- Goal: lower layers
 - understand lower levels: link layer, physical layer
 - understand the specifities of wireless access
 - understand the challenges of mobility
- Overview
 - Link layer, shared medium, collision
 - MAC addresses, switches, ARP, ethernet
 - Wireless networks
 - Mobility

End Of Part 30/30-Rémi Emonet - Computer Networks (part 5)