A bird's eye view of quantum simulation

Qiskit Global Summer School 2022

Jeffrey Cohn

IBM Research Staff Member

Part I

What is quantum simulation?

What models do we want to simulate?

Brief look at classical Methods

Part II

Broad overview of modern methods used for quantum simulation on quantum computers

What is quantum Simulation?

For a particular model of a quantum system its simulation consists of the ability to emulate how the state of the system changes in time.

A simulation with the ability to track $|\mathfrak{D}(t)\rangle$ precisely can also estimate observables:

$$\langle \mathfrak{B}(t) | \widehat{0} | \mathfrak{B}(t) \rangle$$

The models we examine will be described by a Hamiltonian as long as our systems are closed.

$$H = H^{\dagger}$$

If *H* is time-independent then its propagator is given by:

$$|\psi(t)\rangle = U(t,0)|\psi_0\rangle = e^{-iHt}|\psi(0)\rangle$$

If H(t) is time-dependent then the propagator is given by:

$$|\psi(t)\rangle = \mathcal{T} \exp\left[\int_0^t dt' \ H(t')\right]$$

$$= 1 - i \int_0^t dt_1 H(t_1) + (-i)^2 \int_0^t \int_0^{t_1} dt_1 dt_2 H(t_1)H(t_2) + \cdots$$

Why simulation?

1. Model validation with experiment

2. Model to Model validation

Emergent effective models

Savings in terms of time and resources compared to running experiments.

4. Emergence of states and phases

Equilibrium/steady state properties

> Under certain conditions we know what type of states a system will reach in equilibrium...

- * System is weakly coupled to a bath at inverse temperature $\beta \to \frac{e^{-\beta H}}{Tr[e^{-\beta H}]}$
 - $= Z^{-1}(\beta) \sum_{n} e^{-\beta E_n} |E_n\rangle \langle E_n|$
- If: $\frac{1}{\beta} \ll (E_1 E_0)$ or under relaxation properties:
 - $|\psi\rangle \to |E_0\rangle := \min_{|\phi\rangle} \frac{\langle \phi|H|\phi\rangle}{\langle \phi|\phi\rangle}$
 - Behavior is dominated by ground state properties

Dynamics

Quench

$$|\psi_0\rangle = G.S.of H_0$$

At
$$t = 0$$
: $H_0 \rightarrow H$

$$|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle$$

Interested in certain observables vs. time: $\langle \psi(t)|O|\psi(t)\rangle$

Un-equal time correlators

$$C_{ab}(t_1, t_2) = \langle \psi_0 | O_a(t_1) O_b(t_2) | \psi_0 \rangle$$

$$= \langle \psi_0 | e^{iHt_1} O_a e^{iH(t_2 - t_1)} O_b e^{-iHt_2} | \psi_0 \rangle$$

k – point correlators:

$$C_{a_1,a_2,...,a_k}(t_1,t_2,...,t_k) = \langle O_{a_1}(t_1)O_{a_2}(t_2)...O_{a_k}(t_k) \rangle$$

What models are we interested in simulating?

Coulomb Hamiltonian

IBM **Quantum**

$$H = T_e + T_n + U_{ee} + U_{nn} + U_{en}$$

$$H = T_e + T_n + U_{ee} + U_{nn} + U_{en}$$

$$T_e = \sum_i \frac{1}{2m_i} \nabla_{r_i}^2$$

$$H = T_e + T_n + U_{ee} + U_{nn} + U_{en}$$

$$T_n = \sum_i \frac{1}{2M_i} \nabla_{R_i}^2$$

$$H = T_e + T_n + U_{ee} + U_{nn} + U_{en}$$

$$U_{ee} = \frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{1}{|\vec{r}_i - \vec{r}_j|}$$

$$H = T_e + T_n + U_{ee} + U_{nn} + U_{en}$$

$$U_{nn} = \frac{1}{2} \sum_{i} \sum_{j \neq i} \frac{Z_i Z_j}{\left| \vec{R}_i - \vec{R}_j \right|}$$

Coulomb Hamiltonian

$$H = T_e + T_n + U_{ee} + U_{nn} + U_{en}$$

$$U_{en} = -\sum_{i} \sum_{j} \frac{Z_i}{\left| \vec{R}_i - \vec{r}_j \right|}$$

Born-Oppenheimer Approximation

(anti)-symmetric wave functions

• For Fermionic wavefunction we have the pauli exclusion principle requiring the wavefunction to be antisymmetric under the exchange of 2 particles:

•
$$\psi(r_1, r_2, ..., r_i, ..., r_j, ..., r_N) = -\psi(r_1, r_2, ..., r_j, ..., r_i, ..., r_N)$$

Where as for Boson we have symmetry under exchange:

•
$$\psi(r_1, r_2, ..., r_i, ..., r_j, ..., r_N) = +\psi(r_1, r_2, ..., r_i, ..., r_i, ..., r_N)$$

Slater Determinate

 Simplest way to approximate wavefunctions is to express them as products of single particle wavefunctions:

•
$$\psi(r_1, r_2, ..., r_N) = \phi_1(r_1)\phi_2(r_2)...\phi_N(r_n)$$

But this wavefunction is not anti-symmetric...

Anti-symmetrize via Slater determinate:

$$\psi(r_1, r_2, \dots, r_N) = \frac{1}{\sqrt{N}} \begin{vmatrix} \phi_1(r_1) & \phi_2(r_1) & \cdots & \phi_N(r_1) \\ \phi_1(r_2) & \phi_2(r_2) & \cdots & \phi_N(r_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(r_N) & \phi_2(r_N) & \dots & \phi_N(r_N) \end{vmatrix}$$

- For M modes and N particles:
- Define creation and annihilation operators:

•
$$|n_1 n_2 ... n_M\rangle = (c_1^{\dagger})^{n_1} (c_2^{\dagger})^{n_2} ... (c_M^{\dagger})^{n_M} |0\rangle$$
, $n_j \in \{0,1\}$

•
$$\{c_i,c_j\}=c_ic_j+c_jc_i=\{c_i^\dagger,c_j^\dagger\}=0$$
 , $\{c_i,c_j^\dagger\}=\delta_{ij}$

• *General wavefunction*:

•
$$\sum_{n_1,n_2,\ldots,n_M} \alpha_{n_1,n_2,\ldots,n_M} |n_1 n_2 \ldots n_M\rangle$$

• |0100111) represents a Slater determinate of 4 particles that fills modes 2,5,6,7

• The electronic Hamiltonian will now have a structure that looks like:

•
$$H_e = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \frac{1}{2} \sum_{pqrs} v_{pqrs} c_p^{\dagger} c_r^{\dagger} c_s c_q$$

•
$$t_{pq} = \int dr \ \phi_p^*(r) f(r) \phi_p(r)$$

•
$$v_{pqrs} = \int \int dr_1 dr_2 \phi_p^*(r_1) \phi_r^*(r_2) g(r_1, r_2) \phi_q(r_1) \phi_s(r_2)$$

Effective Models

IBM **Quantum**

Band Models:

$$\sum_{i,k} \epsilon_{i,\vec{k}} \ c_{i,\vec{k}}^{\dagger} \ c_{i}, \vec{k}$$

Hubbard like Models:

$$t \sum_{\langle i,j \rangle, \sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{j,\downarrow}$$

Electron-Phonon Models

$$t \sum_{\langle ij \rangle} c_i^{\dagger} c_j + \omega a_i^{\dagger} a_i + \lambda (a_i^{\dagger} + a_i) c_j^{\dagger} c_k$$

BSC Type Models:

$$\sum_{ij} t c_i^{\dagger} c_j + \left(\Delta c_i^{\dagger} c_j^{\dagger} + \Delta^* c_i c_j \right)$$

Impurity Models

$$\sum_{k,\sigma} \epsilon_k c_k^{\dagger} c_k + \sum_{\sigma} \epsilon_d d_{\sigma}^{\dagger} d_{\sigma} + U d_{\uparrow}^{\dagger} d_{\uparrow} d_{\downarrow}^{\dagger} d_{\downarrow}$$
$$+ \sum_{k,\sigma} V_k (d_{\sigma}^{\dagger} c_{k,\sigma} + c_{k,\sigma}^{\dagger} d_{\sigma})$$

Heisenberg Models

$$\sum_{ij} J_{ij} \, \overrightarrow{S_i} \cdot \overrightarrow{S_j}$$

Classical Methods

Hartree-Fock

IBM Quantum

- Minimal energy for single determinate
- Define an Orbital rotation as : $e^{-\kappa}$, $\kappa=\sum_{pq} \theta_{pq} \ c_p^\dagger c_q c_q^\dagger c_p$
 - Single particle change of basis: $e^{\kappa}c_{p}e^{-\kappa}=\sum_{q}\alpha_{q}\;c_{q}$

- Determinate of configuration $C := |C\rangle$
- $E_0^{HF} = \min_{\kappa} \langle C | e^{\kappa} H e^{-\kappa} | C \rangle$, $|\Phi_0^{HF} \rangle = e^{-\kappa} | C \rangle$

•
$$|\Psi_0\rangle = \alpha_0 |\Phi_0^{HF}\rangle + \sum_{ia} \alpha_i^a |\Phi_i^a\rangle + \sum_{i < j, a < b} \alpha_{ij}^{ab} |\Phi_{ij}^{ab}\rangle + \sum_{i < j < k, a < b < c} \alpha_{ijk}^{abc} |\Phi_{ijk}^{abc}\rangle + \cdots$$

• Vary α coefficients to minimize energy

$$c_a^{\dagger}c_i$$
 = ----

Define cluster operator: $T = T_1 + T_2 + \cdots$

$$T_1 = \sum_{ia} \tau_i^a c_a^{\dagger} c_i$$

$$T_2 = \sum_{ab,ij} \tau_{ij}^{ab} c_a^{\dagger} c_i c_b^{\dagger} c_j$$

Solve coupled cluster equations:

$$\begin{split} \left\langle \Phi_0^{HF} | e^{-T} H e^T | \Phi_0^{HF} \right\rangle &= E_{CC} \\ \left\langle \mu | e^{-T} H e^T | \Phi_0^{HF} \right\rangle &= 0 \end{split}$$

$$\langle \mu | \in \left\{ \langle \Phi^a_i |, \langle \Phi^{ab}_{ij} |, \dots \right\}$$

FCI Method

IBM **Quantum**

- Krylov space methods: $\{|\psi\rangle, H|\psi\rangle, H^2|\psi\rangle, ... H^k|\psi\rangle\}$
 - Power iteration, Lanczos, Davidson
 - Convergence : $\sim C \left(\frac{1}{\left|\langle \psi | E_0 \rangle\right|^2}\right) \rho^{-2(k-1)}$, $\rho = \frac{(E_1 E_0)}{(E_n E_1)}$

• Sparsity of basis functions will become exponentially dense with k.

Matrix Product States

The density-matrix renormalization group in the age of matrix product states

Ulrich Schollwöck

$$d^{N} \qquad |\psi\rangle = \sum_{n_1, n_2, \dots n_N}$$

$$|\psi\rangle = \sum \quad \alpha_{n_1,n_2,\dots,n_N} |n_1 n_2 \dots n_N\rangle$$

$$Nd\chi^2$$

 χ is controlled by the amount of entanglement/correlations in the system

Applying 2 — qubit gates will generally increase the entanglement which increases χ .

- Density functional Theory
- Quantum Monte Carlo
- Dynamical Mean Field Theory
- Density Matrix Embedding Theory
- Green's Function Methods
- All struggle in different manner eventually
- Each has their advantages for certain properties or types of problems

Part II: Quantum Simulation Methods IBM **Quantum**

Digital Quantum Simulation

1) Map degrees of freedom onto qubits

Jordan Wigner Mapping

Qubits can naturally store the orbital occupations in the computational basis:

•
$$c_j^{\dagger} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \frac{X_j - iY_j}{2}$$

•
$$c_j = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \frac{X_j + iY_j}{2}$$

•
$$c_j^{\dagger} c_j = \frac{I - Z_j}{2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = |1\rangle\langle 1\rangle$$

But this does not obey the anti-commutation relations:

•
$$c_j c_k = -c_k c_j$$

$$\bullet \quad \left(\frac{X_j + iY_j}{2}\right) \left(\frac{X_k + iY_k}{2}\right) = \frac{1}{4} \left(X_j X_k + iX_j Y_k + iY_j X_k + Y_j Y_k\right) = \frac{1}{4} \left(X_k X_j + iX_k Y_j + iY_k X_j + Y_k Y_j\right) = \underbrace{+ \left(\frac{X_k + iY_k}{2}\right) \left(\frac{X_j + iY_j}{2}\right) \left(\frac{X_j + iY_j$$

JW Mapping

- Note that the Pauli operators anti-commute: ZX = -XZ
- We can fix our original construction by tracking the parity before each c_i operator:

$$c_{1}^{\dagger} = \frac{X_{1} - iY_{1}}{2}$$

$$c_{2}^{\dagger} = Z_{1} \left(\frac{X_{2} - iY_{2}}{2} \right)$$

$$c_{3}^{\dagger} = Z_{1}Z_{2} \left(\frac{X_{3} - iY_{3}}{2} \right)$$

$$c_{N}^{\dagger} = Z_{1}Z_{2} \dots Z_{N-1} \left(\frac{X_{N} - iY_{N}}{2} \right)$$

JW Mapping of ES Hamiltonian

$$H_e = \sum_{pq} t_{pq} \ c_p^{\dagger} c_q + \frac{1}{2} \sum_{pqrs} v_{pqrs} \ c_p^{\dagger} c_r^{\dagger} c_s c_q$$

•
$$c_p^{\dagger} c_p = \left(\frac{1-Z_p}{2}\right)$$
, $c_p^{\dagger} c_q + c_q^{\dagger} c_p = \frac{1}{2} \prod_{j=q+1}^{p-1} Z_j \left(X_p X_q + Y_p Y_q\right)$

•
$$n_p n_q = \frac{1}{4} \left(I - Z_p - Z_q + Z_p Z_q \right)$$

•
$$c_p^{\dagger} c_q^{\dagger} c_q c_r = \frac{1}{2} \prod_{j=r+1}^{p-1} Z_j \left(X_p X_r + Y_p Y_r \right) \left(\frac{1 - Z_s}{2} \right)$$

• $c_p^{\dagger} c_q^{\dagger} c_r c_s = (XXXX - XXYY + XYXY + YXXY + YXYX - YYXX + XYYX + YYYY)$

First order Totter

$$H = \sum_{j=1}^{L} h_j$$

 $Exact: e^{-itH}$

$$Trotter: S_1(t; n) = \left[\prod_{j=1}^{L} e^{-i\frac{t}{n}h_j} \right]^n$$

$$\epsilon = \left| e^{-itH} - \mathcal{S}_1(t) \right| = \frac{t^2}{2n} \sum_{j>i} \left| \left[h_i, h_j \right] \right| + \mathcal{O}(t^3) \le \frac{t^2 L^2 \Lambda^2}{n} + \mathcal{O}(t^3) \Longrightarrow n = \frac{(tL\Lambda)^2}{\epsilon} \ \textit{Totter steps }, \Lambda = \max(h_j)$$

$$1 step = L gates \left(e^{-i\Delta t h_j}\right)$$

Total gates
$$\left(e^{-i\Delta t h_j}\right)$$
 to simulate e^{-itH} to precision $\epsilon = \frac{L^3(\Lambda t)^2}{\epsilon}$

IBM **Quantum**

$$S_2(t:n) = \left[\prod_{j=1}^L e^{-i\frac{t}{2n}h_j} \prod_{j=L}^1 e^{-i\frac{t}{2n}h_j} \right]^n$$

$$\epsilon = \left| e^{-itH} - \mathcal{S}_2(t;n) \right| \le \frac{(L\Lambda t)^3}{n^2} + \mathcal{O}(t^4) \to n = \frac{(L\Lambda t)^{3/2}}{\sqrt{\epsilon}} \ steps$$

of gates
$$(e^{-i\Delta t h_j}) = \frac{L^{5/2} (\Lambda t)^{3/2}}{\sqrt{\epsilon}}$$

$$S_{2k}(t;n) = \left[S_{2k-2}^2\left(u_k\frac{t}{n}\right)S_{2k-2}\left(\frac{(1-4u_k)t}{n}\right)S_{2k-2}^2\left(u_k\frac{t}{n}\right)\right]^n$$

$$u_k = \frac{1}{\left(4 - 4^{\frac{1}{2k-1}}\right)}$$

of gates
$$\left(e^{-i\Delta t h_j}\right) = \frac{L^{2+\frac{1}{2k}}(\Lambda t)^{1+\frac{1}{2k}}}{\epsilon^{\frac{1}{2k}}}$$

QDRIFT

A random compiler for fast Hamiltonian simulation

Earl Campbell¹

Randomized product formula (QDRIFT)

Inputs: Hamiltonian $H = \sum_{j=1}^{L} h_j$ with interaction strength $\lambda = \sum_{j} ||h_j||$, evolution time t, and number of steps N.

At each t/N interval: evolve a random term in Hamiltonian

$$V_k = \exp(-\mathrm{i}(t/N)X_k) \tag{4}$$

according to its importance

$$X_k \overset{i.i.d.}{\sim} X = egin{cases} rac{\lambda}{\|h_1\|} h_1 & ext{ with prob. } p_1 = rac{\|h_1\|}{\lambda} \ & dots \ rac{\lambda}{\|h_L\|} h_L & ext{ with prob. } p_L = rac{\|h_L\|}{\lambda} \end{cases}.$$

Output: the unstructured (randomly generated) product formula

$$V^{(N)} = V_N \cdots V_1.$$

Concentration for random product formulas

Chi-Fang Chen,^{1,*} Hsin-Yuan Huang,^{2,3,*} Richard Kueng,^{2,3,4} and Joel A. Tropp³

IBM **Quantum**

QDRIFT

A random compiler for fast Hamiltonian simulation ${\mbox{\bf Earl \ Campbell}}^1$

	Protocol	Gate count (upper bound)
ı	1 st order Trotter DET	$O(L^3(\Lambda t)^2/\epsilon)$
	2^{nd} order Trotter DET	$O(L^{5/2}(\Lambda t)^{3/2}/\epsilon^{1/2})$
	$(2k)^{th}$ order Trotter DET	$O(L^{2+\frac{1}{2k}}(\Lambda t)^{1+\frac{1}{2k}}/\epsilon^{1/2k})$
	(2k) th order Trotter RANDOM	$O(L^2(\Lambda t)^{1+\frac{1}{2k}}/\epsilon^{1/2k})$
	qDRIFT (general result)	$O((\lambda t)^2/\epsilon)$
	qDRIFT (when $\lambda = \Lambda L$)	$O(L^2(\Lambda t)^2/\epsilon)$
	qDRIFT (when $\lambda = \Lambda \sqrt{L}$)	$O(L(\Lambda t)^2/\epsilon)$

Linear Combination of Unitaries (LCU)

Simulating Hamiltonian dynamics with a truncated Taylor series

Dominic W. Berry¹, Andrew M. Childs^{2,3,4,5}, Richard Cleve^{2,5,6}, Robin Kothari^{2,6,7}, and Rolando D. Somma⁸

$$H = \sum_{j=1}^{L} \alpha_j h_j$$
 , each h_j is unitary

$$e^{itH} = \sum_{k=0}^{\infty} \frac{(itH)^k}{k!} \approx \sum_{k=0}^{K} \frac{(itH)^k}{k!}$$

$$e^{itH} \approx \sum_{k=0}^K \sum_{l_1,l_2,\dots,l_k} \alpha_{l_1} \alpha_{l_2} \dots \alpha_{l_k} \ h_{l_1} h_{l_2} \dots h_{l_k} = \sum_j \beta_j \ V_j = \widetilde{U}(t)$$

$$B|0\rangle = \frac{1}{\sqrt{s}} \sum_{j} \sqrt{\beta_{j}} |j\rangle$$
 , $s = \sum_{j} |\beta_{j}|$

$$select(V)|j\rangle = V_j|j\rangle$$

$$W = B^{\dagger} select(V)B$$

$$W|0\rangle|\psi\rangle = \frac{1}{s} \sum_{j} \beta_{j}|0\rangle V_{j}|\psi\rangle + \sqrt{1 - \frac{1}{s^{2}}}|\perp\rangle$$

The $|0\rangle$ state is measured with propability $\frac{1}{s^2}$

which returns the state: $\frac{1}{s}\widetilde{U}(t)$

LCU

Now define reflection operator: $R = (1 - 2|0\rangle\langle 0|) \otimes I$

If $\widetilde{U}(t)$ is close to unitary then we have: $-\left(\frac{1}{s} - \frac{4}{s^3}\right)\widetilde{U}(t)$

whose amplitude can be boosted to 1 if we set s = 2!

IBM **Quantum**

Block Encoding + Quantum Signal Processing

$$W = \begin{pmatrix} H/S & \cdot \\ \cdot & \cdot \end{pmatrix}$$

 $W = \begin{pmatrix} H/S \\ \cdot \end{pmatrix}$ Optimal Hamiltonian Simulation by Quantum Signal Processing Guang Hao Low, Isaac L. Chuang Guang Hao Low, Isaac L. Chuang

$$\begin{bmatrix} V_N \end{bmatrix} = \begin{bmatrix} U_{\phi_1} \end{bmatrix} \begin{bmatrix} U_{\phi_2} \end{bmatrix} \dots \begin{bmatrix} U_{\phi_N} \end{bmatrix} = \begin{bmatrix} P_N(H/S) & \vdots \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Measuring H

$$H = sum \ of \ Pauli's = \sum_{j=1}^{L} \alpha_j \ P_j$$

Measure $\langle \psi | H | \psi \rangle$ *to precision* ϵ :

We can measure in the basis of each Pauli string: .

$$Var(P_j) = \langle \psi | P_j^2 | \psi \rangle - (\langle \psi | P_j | \psi \rangle)^2 = 1 - \langle P_j \rangle^2$$

$$\epsilon = \sum_{j} \sqrt{\frac{\alpha_{j}^{2} Var(P_{j})}{S_{j}}} = \sum_{j} \sqrt{\frac{\alpha_{j}^{2} \left(1 - \left\langle \psi \middle| P_{j} \middle| \psi \right\rangle^{2}\right)}{S_{j}}} , \qquad S_{j} = number\ of\ shots\ for\ P_{j}$$

I = Z basis H = X basis HS = Y basis Measurements

If $S_j = \frac{S}{L}$ where S is total number of shots:

$$\epsilon = \sum_{j} \sqrt{\frac{\alpha_{j}^{2} Var(P_{j})}{S_{j}}} = \sqrt{\frac{L}{S} \sum_{j} \alpha_{j}^{2} Var(P_{j})}$$

$$S = L \sum_{j} \frac{\alpha_{j}^{2} Var(P_{j})}{\epsilon^{2}}$$

If H is a generic Fermionic Hamiltonian:

$$L \sim N^4 \to S \sim \frac{N^4}{\epsilon^2}$$

- Set $S_j \sim |\alpha_j|$
- Trucate terms with $|\alpha_i| \le \epsilon$
- Qubit wise Commuting
- Rotate to mutually commuting basis

Group Commuting Terms

$$H = \sum_{j} h_{j}$$
 , $h_{j} = \sum_{i} \alpha P_{i}$, such that $\forall ij [P_{i}, P_{j}] = 0$

Rotate to diagonal basis of grouped Pauli terms with a Clifford circuit

Quantum Phase Estimation

Quantum Phase Estimation

Quantum Phase Estimation

Adiabatic State Preparation

Define:
$$H(s) = (1 - s)H_{easy} + sH_{hard}$$
, $s \in [0,1]$

- 1. Prepare GS of H_{easy} on QC
- 2. Evolve $|\psi_0\rangle = |GS\rangle_{easy}$ under H(s) slowly changing s from 0 to 1:

3. $\frac{ds}{dt}$ is upper bounded buy $\Delta = \min_{s} (E_1(s) - E_0(s))$

Variational Quantum Eigensolver (VQE)

IBM **Quantum**

$$E(\theta) = \langle \psi_0 \big| U^{\dagger} (\vec{\theta}) H U (\vec{\theta}) \big| \psi_0 \rangle$$

$$\frac{dE(\vec{\theta})}{d\theta_j} = \left\langle \psi_0 \left| \left(\frac{dU^{\dagger}(\vec{\theta})}{d\theta_j} \right) HU(\vec{\theta}) \right| \psi_0 \right\rangle + \left\langle \psi_0 \left| U^{\dagger}(\vec{\theta}) H\left(\frac{U(\vec{\theta})}{d\theta_j} \right) \right| \psi_0 \right\rangle$$

Gradients IBM Quantum

$$\theta_j = e^{-i\theta_j G}$$

$$U(\vec{\theta}) = \prod_{l=L}^{1} \left[\left(\prod_{j=N}^{1} e^{-i\theta_{j+l-1}G} \right) V_{ent} \right]$$

$$\frac{\partial U(\vec{\theta})}{\partial \theta_{k,l'}} = \prod_{l=L}^{l'-1} \left[\left(\prod_{j=N}^{1} e^{-i\theta_{j+l-1}G} \right) V_{ent} \right] \left(G_k \prod_{j=N}^{1} e^{-i\theta_{j+l-1}G} \right) V_{ent} \prod_{l=l'+1}^{1} \left[\left(\prod_{j=N}^{1} e^{-i\theta_{j+l-1}G} \right) V_{ent} \right]$$

$$U_R = \left(\prod_{j=N}^1 e^{-i\theta_{j+l-1}G} \right) V_{ent} \prod_{l=l'+1}^1 \left[\left(\prod_{j=N}^1 e^{-i\theta_{j+l-1}G} \right) V_{ent} \right]$$

$$U_L = \prod_{l=L}^{l'-1} \left[\left(\prod_{j=N}^{1} e^{-i\theta_{j+l-1}G} \right) V_{ent} \right]$$

$$\frac{\partial E(\vec{\theta})}{\partial \theta_{k,l'}} = i \langle \psi_0 | U_R^{\dagger} [G_k, U_L^{\dagger} H U_L] U_R | \psi_0 \rangle$$

VQE Notes

IBM **Quantum**

- · Requires many measurements and circuits to converge to minimum energy state
- Construct circuit ansatz and initial states and initial parameter wisely

Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states

Jarrod R. McClean, 1,* Mollie E. Kimchi-Schwartz, 2 Jonathan Carter, 1 and Wibe A. de Jong 1

- 1. Prepare an initial estimate of the G.S. : $|\psi\rangle$
- 2. Define subspace states: $\mathcal{B}^k = \left\{c_{i_1}^\dagger c_{j_1} c_{i_2}^\dagger c_{j_2} \dots c_{i_k}^\dagger c_{j_k} | \psi \rangle \right\}$, $i_l \in [1, M]$
- 3. Measure subspace Hamiltonian : $\widetilde{H}_{ij} = \langle \psi | O_i H O_j | \psi \rangle$ and overlap matrix: $S_{ij} = \langle \psi | O_i O_j | \psi \rangle$, $O_i \in \mathcal{B}^k$
- 4. Classically solve the generalized Eigen problem: $\widetilde{HC} = \epsilon SC$

- Polynomial overhead of extra Pauli strings to measure.
- \diamond Measuring a symmetry operator in the subspace O_S allows one to project the subspace Hamiltonian to the proper symmetry sector.
- Can extract excited state energies. Also see:

Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor

Pauline J. Ollitrault¹, Abhinav Kandala,³ Chun-Fu Chen,³ Panagiotis Kl. Barkoutsos¹, Antonio Mezzacapo,³ Marco Pistoia¹,³ Sarah Sheldon,³ Stefan Woerner¹, Jay M. Gambetta,³ and Ivano Tavernelli¹,³

Subspace Methods (2)

- Build subspace with reference state $|\psi\rangle$ as : $\{e^{-in\delta tH}|\psi\rangle\}$, $n\in 0,1,2,...,k$
- K-time steps span the k-dimensional Krylov space if δt is small.
- Construct \widetilde{H}_{ij} and S_{ij} and solve: $\widetilde{H}\mathcal{C} = \epsilon S\mathcal{C}$
 - $\widetilde{H}_{nm} = \langle \psi | e^{im\delta tH} H e^{-in\delta tH} | \psi \rangle \stackrel{?}{\rightarrow} \langle e^{i(m-n)\delta tH} H \rangle$
 - $S_{nm} = \langle \psi | e^{im\delta tH} e^{-in\delta tH} | \psi \rangle \stackrel{?}{\rightarrow} \langle e^{i(m-n)\delta t} \rangle$

IBM Quantum

Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware

Katherine Klymko, ^{1,2,*} Carlos Mejuto-Zaera[©], ^{1,3,†} Stephen J. Cotton[©], ^{4,5} Filip Wudarski[©], ^{4,6} Miroslav Urbanek, ¹ Diptarka Hait[©], ^{3,7} Martin Head-Gordon, ^{3,7} K. Birgitta Whaley, ³ Jonathan Moussa, ⁸ Nathan Wiebe, ⁹ Wibe A. de Jong, ^{1,‡} and Norm M. Tubman^{4,§}

A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons

Nicholas H. Stair, Renke Huang, and Francesco A. Evangelista*

Quantum Krylov subspace algorithms for ground- and excited-state energy estimation

Cristian L. Cortes and Stephen K. Gray

Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation

Robert M. Parrish^{1,*} and Peter L. McMahon^{1,2}

Quantum Filter Diagonalization with Compressed Double-Factorized Hamiltonians

Jeffrey Cohn, 1, Mario Motta, 1, and Robert M. Parrish2, and Robert M. Parrish2, 1

$$\frac{1}{\sqrt{2}}[|0\rangle|\psi\rangle + |1\rangle O_1|\psi\rangle]$$

$$\frac{1}{2} \left[\langle \psi | O_1^{\dagger} U^{\dagger}(t) \langle 1 | + \langle \psi | U^{\dagger}(t) O_3^{\dagger} \langle 0 | \right] \left[| 0 \rangle \langle 1 | \otimes I + | 1 \rangle \langle 0 | \otimes I \right] \left[| 0 \rangle O_3 U(t) | \psi \rangle + | 1 \rangle U(t) O_1 | \psi \rangle \right]$$

$$=\frac{1}{2}\big<\psi\big|O_1^{\dagger}U^{\dagger}(t)O_3U(t)\big|\psi\big>+\frac{1}{2}\big<\psi\big|U^{\dagger}(t)O_3^{\dagger}U(t)O_1\big>=Re\big\{\langle\psi|O_1^{\dagger}(0)O_3(t)|\psi\rangle\big\}=Re\big\{C_{1,3}(0,t)\big\}$$

Gibbs State Preparation

• We want to sample eigenstates $\{|E_n\rangle\}$ of H with probability: $p_n(\beta) = \frac{e^{-\beta E_n}}{\sum_n e^{-\beta E_n}}$

Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution

Mario Motta,^{1,*} Chong Sun,¹ Adrian T. K. Tan,² Matthew J. O'Rourke,¹ Erika Ye,² Austin J. Minnich,² Fernando G. S. L. Brandão,³ and Garnet Kin-Lic Chan^{1,†}

QITE:

 $H = \sum_{m} h[m]$, where each h[m] act on at most k neighboring qubits

$$e^{-\beta H} = \left[e^{-\Delta \tau h[1]} e^{-\Delta \tau h[2]} \dots e^{-\Delta \tau h[m]} \right]^n$$
, $\Delta \tau = \frac{\beta}{n}$

After a single Trotter step we have: $|\Psi'\rangle = c^{-1} e^{-\Delta \tau h[m]} |\Psi\rangle$

where
$$c = \langle \Psi | e^{-2\Delta \tau h[m]} | \Psi \rangle = 1 - 2\Delta \tau \langle \Psi | h[m] | \Psi \rangle + \mathcal{O}(\Delta \tau^2)$$

We want to generate: $|\Psi'\rangle = e^{-i\Delta\tau A[m]}|\Psi\rangle$

A[m] can be expanded into the Pauli basis on k qubits: $A[m] = \sum_{i_1,i_2,\dots,i_k} a_{i_1,i_2,\dots,i_k} \ \sigma_{i_1} \dots \sigma_{i_k} = \sum_I a[m]_I \ \sigma_I$

QITE

• Now to 1st order in $\Delta \tau$ the coefficients, $a[m]_I$, can be defined by the linear system:

•
$$Sa[m] = b$$

•
$$S_{I,I'} = \langle \Psi | \sigma_I \sigma_{I'} | \Psi \rangle$$
 , $b_I = -\frac{i}{\sqrt{c}} \langle \Psi | \sigma_I h[m] | \Psi \rangle$

- The wavefunction is restricted to real values if the σ_I 's are restricted to
- Pauli strinigs with an odd number of Y terms.
- QMETTS (Quantum Minimally Entangled Typical Thermal States)
- 1. Apply QITE to $|\psi_0\rangle$ iterated to β and measure in the computational basis
- 2. Use most measured state as new inital state for QITE.
- 3. Iterate until convergence of $\frac{1}{N}\sum_i \langle \psi_i | O | \psi_i \rangle$

Further Reading for Gibbs States

Quantum Metropolis Sampling

K. Temme 1, T.J. Osborne2, K. Vollbrecht3, D. Poulin4, and F. Verstraete1

Variational ansatz-based quantum simulation of imaginary time evolution

Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Simon C. Benjamin & Xiao Yuan ⊠

Finite correlation length implies efficient preparation of quantum thermal states

Fernando G.S.L. Brandão¹ and Michael J. Kastoryano²