MovieLens data – Item based CF with dot production 5조 - 인생이 핀다

빅데이터처리및응용

신우현, 윤서환, 윤성호

20192040, 2019204045, 2019204023

Outline

1. Introduction

- 1.1 Project goal
- 1.2 Pipeline
- 2. Data preprocessing
 - 2.1 Genre missing value
 - 2.2 Title duplicated
 - 2.3 Dataset
- 3. Item genre
 - 3.1 Baseline
 - **3.2 TF-IDF**
- 4. Item user
 - 4.1 Baseline
 - **4.2 KNN**
 - 4.3 SVD
- 5. Result
 - 5.1 How to use
 - **5.2** Limitation

Introduction

Project goal

- MovieLens dataset
- Item based CF with dot production

다양한 접근 📥 최적의 추천

Introduction

Pipeline 추천 Item-genre Baseline 데이터 데이터 • TF-IDF 전처리 수집 추천 Item-user Baseline KNN • SVD

Outline

- 1. Introduction
 - 1.1 Project goal
 - 1.2 Pipeline
- 2. Data preprocessing
 - 2.1 Genre missing value
 - 2.2 Title duplicated
 - 2.3 Dataset
- 3. Item genre
 - 3.1 Baseline
 - **3.2 TF-IDF**
- 4. Item user
 - 4.1 Baseline
 - **4.2 KNN**
 - 4.3 SVD
- 5. Result
 - 5.1 How to use
 - **5.2** Limitation

Genre missing value

- IMDB에서 Crawling을 통한 결측 대체
- KNN 시도 → domain 지식 이용

Crawling

Title duplicated

- Baseline code에서 title 중복 발생
- 연도 제거에 따른 중복 title 발생

movieId 9703 title 9428 year 106 genres 950 dtype: int64

```
Hamlet
Jane Eyre

Misérables, Les
Christmas Carol, A
Three Musketeers, The

All That Heaven Allows
Barefoot Contessa, The
Cries and Whispers (Viskningar och rop)
Garden of the Finzi-Continis, The (Giardino dei Finzi-Contini, Il)
Andrew Dice Clay: Dice Rules
Name: title, Length: 9428, dtype: int64
```


Title duplicated

	movieId	title	genres	year
6	7	Sabrina1	Comedy Romance	1995
27	28	Persuasion1	Drama Romance	1995
65	73	Misérables, Les1	Drama War	1995
79	88	Black Sheep1	Comedy	1996
84	95	Broken Arrow1	Action Adventure Thriller	1996
9601	176413	Blis <mark>:</mark> 2	Drama	2012
9615	177763	Murder on the Orient Express 2	Crime Drama Mystery	2017
9686	184349	Elsa & Frec 2	Comedy Drama Romance	2005
9691	184931	Death Wish 2	Action Crime Drama Thriller	2018
9714	189111	Spira 2	Documentary	2018
527 rov	vs × 4 col	umns		

중복 데이터 전처리

Dataset

	userId	movieId	rating	title	genres	year
0	1	1	4.0	Toy Story	Adventure Animation Children Comedy Fantasy	1995
1	1	3	4.0	Grumpier Old Men	Comedy Romance	1995
2	1	6	4.0	Heat	Action Crime Thriller	1995
3	1	47	5.0	Seven (a.k.a. Se7en)	Mystery Thriller	1995
4	1	50	5.0	Usual Suspects, The	Crime Mystery Thriller	1995
100831	610	166534	4.0	Split	Drama Horror Thriller	2017
100832	610	168248	5.0	John Wick: Chapter Two	Action Crime Thriller	2017
100833	610	168250	5.0	Get Out	Horror	2017
100834	610	168252	5.0	Logan	Action Sci-Fi	2017
100835	610	170875	3.0	The Fate of the Furious	Action Crime Drama Thriller	2017
100836 rc	ws × 6 c	olumns				

 (100836×6)

Dataset 구축

Outline

- 1. Introduction
 - 1.1 Project goal
 - 1.2 Pipeline
- 2. Data preprocessing
 - 2.1 Genre missing value
 - 2.2 Title duplicated
 - 2.3 Dataset
- 3. Item genre
 - 3.1 Baseline
 - **3.2 TF-IDF**
- 4. Item user
 - 4.1 Baseline
 - **4.2 KNN**
 - 4.3 SVD
- 5. Result
 - 5.1 How to use
 - **5.2** Limitation

Baseline

- 장르 존재 유무 \rightarrow one hot encoding
- Pearson, Cosine 유사도 측정

	Documentary	Adventure	IMAX	History	Action	Family	Drama	Musical	Fantasy	Music	 Sci- Fi	Biography S
title												
Sabrina1	0	0	0	0	0	0	0	0	0	0	0	0
Persuasion1	0	0	0	0	0	0	1	0	0	0	0	0
Misérables, Les1	0	0	0	0	0	0	1	0	0	0	0	0
Black Sheep1	0	0	0	0	0	0	0	0	0	0	0	0
Broken Arrow1	0	1	0	0	1	0	0	0	0	0	0	0
Black Butler: Book of the Atlantic	0	0	0	0	1	0	0	0	1	0	0	0
No Game No Life: Zero	0	0	0	0	0	0	0	0	1	0	0	0
Flint	0	0	0	0	0	0	1	0	0	0	0	0
Bungo Stray Dogs: Dead Apple	0	0	0	0	1	0	0	0	0	0	0	0
Andrew Dice Clay: Dice Rules	0	0	0	0	0	0	0	0	0	0	0	0
9737 rows × 2	4 columns											

Baseline – Pearson

• Pearson 유사도 계산

피어슨 상관계수를 계산하여 유사도 행렬 생성
pearson_similarity = movie_genre.T.corr(method='pearson')

	userId	title	pred_rating
0	1	Sabrina1	4.080404
1	1	Persuasion 1	4.421699
2	1	Misérables, Les1	4.549232
3	1	Black Sheep1	4.149004
4	1	Broken Arrow1	4.222394
9732	610	Black Butler: Book of the Atlantic	3.608077
9733	610	No Game No Life: Zero	3.703827
9734	610	Flint	3.941182
9735	610	Bungo Stray Dogs: Dead Apple	3.531496
9736	610	Andrew Dice Clay: Dice Rules	3.714786
5939570	rows ×	3 columns	

MAE : 0.7458

<u>MSE</u> : 0.94524,

Baseline – Cosine

• Cosine 유사도 계산

from sklearn.metrics.pairwise import cosine_similarity
코사인 유사도 행렬
movie_similarity_matrix = cosine_similarity(movie_genre)

	userId	title	pred_rating
0	1	Sabrina1	4.206213
1	1	Persuasion1	4.374184
2	1	Misérables, Les1	4.423022
3	1	Black Sheep1	4.209127
4	1	Broken Arrow1	4.270043
9732	610	Black Butler: Book of the Atlantic	3.649271
9733	610	No Game No Life: Zero	3.689688
9734	610	Flint	3.863857
9735	610	Bungo Stray Dogs: Dead Apple	3.615727
9736	610	Andrew Dice Clay: Dice Rules	3.703244
5939570	rows ×	3 columns	

Pearson 대비 성능 향상

MAE : 0.70819

MSE : 0.81511

TF-IDF

- 장르에 대해 TF-IDF 적용
- Pearson, Cosine 유사도 측정

	Horror	Film- Noir	Short	IMAX	Thriller	Western	Crime	Adventure	Romance	Sci- Fi	 Mystery	Comedy	Animation	Action	₩ar
title															
Sabrina1	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.026552	0.0	0.0	0.016454	0.0	0.000000	0.000000
Persuasion1	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.026552	0.0	0.0	0.000000	0.0	0.000000	0.000000
Misérables, Les1	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.0	0.000000	0.0	0.000000	0.054905
Black Sheep1	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.000000	0.000000	0.0	0.0	0.018592	0.0	0.000000	0.000000
Broken Arrow1	0.0	0.0	0.0	0.0	0.022757	0.0	0.0	0.028956	0.000000	0.0	0.0	0.000000	0.0	0.023502	0.000000

- TF-IDF Pearson
 - Pearson 유사도 계산

```
# TF-IDF 변화
transformer = TfidfTransformer()
genre_tfidf = transformer.fit_transform(movie_genre.T).T
# TF-IDF 결과를 데이터프레임으로 변환
genre_tfidf_df = pd.DataFrame(genre_tfidf.toarray(), columns=movie_genre.columns, index=movie_genre.index)
# 결과 출력
genre_tfidf_df
```

이전 대비 성능 감소

MAE : 0.79618

MSE : 1,11368

RMSE : 1.05531

- TF-IDF Cosine
 - Cosine 유사도 계산

```
# TF-IDF 변화
transformer = TfidfTransformer()
genre_tfidf = transformer.fit_transform(movie_genre.T).T
# TF-IDF 결과를 데이터프레임으로 변환
genre_tfidf_df = pd.DataFrame(genre_tfidf.toarray(), columns=movie_genre.columns, index=movie_genre.index)
# 결과 출력
genre_tfidf_df
```

Pearson 대비 성능 향상

MAE : 0.7096

<u>MSE</u> : 0.81163

Item-genre results

- 전체적으로 Cosine 유사도의 지표가 높게 나타남
- TF-IDF가 가장 좋은 성능

	Baseline Pearson	Baseline Cosine	TF-IDF Pearson	TF-IDF Cosine
MAE	0.7548	0.70819	0.79618	0.7096
MSE	0.94524	0.81511	1.11368	0.81163
RMSE	0.97224	0.90283	1.05531	0.9009

Outline

- 1. Introduction
 - 1.1 Project goal
 - 1.2 Pipeline
- 2. Data preprocessing
 - 2.1 Genre missing value
 - 2.2 Title duplicated
 - 2.3 Dataset
- 3. Item genre
 - 3.1 Baseline
 - **3.2 TF-IDF**
- 4. Item user
 - 4.1 Baseline
 - **4.2 KNN**
 - 4.3 SVD
- 5. Result
 - 5.1 How to use
 - **5.2** Limitation

Baseline

- Rating 점수 결측 0
- Pearson, Cosine 유사도 측정

userId	1	2	3	4	5	6	7	8	9	10	 601	602	603	604	605	606	607	608	609	610
title																				
'71	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0
'Hellboy': The Seeds of Creation	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
'Round Midnight	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
'Salem's Lot	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
'Til There Was You	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
eXistenZ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	4.5	0.0	0.0
хХх	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.5	0.0	2.0
xXx: State of the Union	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5
¡Three Amigos!	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
À nous la liberté (Freedom for Us)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9719 rows × 610 columns																				

Baseline - Pearson

• Pearson 유사도 계산

	userId	title	rating	pred_rating
0	453	South Park: Bigger, Longer and Uncut	5.0	3.951813
1	318	Story of Film: An Odyssey, The	4.0	3.862937
2	448	L.A. Story	3.0	2.925399
3	19	Back to School	3.0	2.644714
4	182	Aliens	4.5	3.530559
19995	220	National Lampoon's Vacation	4.0	3.958189
19996	288	Dick	3.5	3.131384
19997	313	In the Line of Fire	3.0	3.377299
19998	202	Return of the Pink Panther, The	4.0	3.810838
19999	452	Fast and the Furious, The	4.0	4.468303
20000 ro	ws × 4 c	olumns		

MAE : 0.68918 MSE : 0.77199

|RMSE : 0.87<u>863</u>|

Baseline - Cosine

• Cosine 유사도 계산

	userId	title	rating	pred_rating
0	453	South Park: Bigger, Longer and Uncut	5.0	3.975045
1	318	Story of Film: An Odyssey, The	4.0	3.860701
2	448	L.A. Story	3.0	2.980069
3	19	Back to School	3.0	2.658977
4	182	Aliens	4.5	3.530183
•••				
19995	220	National Lampoon's Vacation	4.0	4.002504
19996	288	Dick	3.5	3.149933
19997	313	In the Line of Fire	3.0	3.416253
19998	202	Return of the Pink Panther, The	4.0	3.833738
19999	452	Fast and the Furious, The	4.0	4.493864
20000 ro	ws × 4 c	olumns		

Pearson 대비 성능 감소

MAE : 0.69465

MSE : 0.7918

KNN

- Rating 점수 결측 KNN 으로 결측 처리
- Pearson, Cosine 유사도 측정
- K = 1, 3, 5에 대해 각각 비교 실험 진행

K Nearest Neighbors

	1	2	3	4	5	6	7	8	9	10	 601	602	603	604	605	606	607	608	609	610
title																				
'71	4.0	2.500000	0.5	5.0	4.0	3.0	0.5	4.0	5.0	3.0	4.5	2.0	1.0	4.0	3.0	4.5	4.0	5.0	3.00000	4.0
'Hellboy': The Seeds of Creation	4.0	4.500000	0.5	5.0	3.0	3.0	4.0	3.0	5.0	2.5	5.0	5.0	4.0	3.0	3.5	3.5	3.0	4.5	4.00000	5.0
'Round Midnight	4.0	4.000000	0.5	4.0	4.0	5.0	4.5	3.0	4.0	3.0	4.0	5.0	1.0	3.0	3.0	3.5	3.0	5.0	3.00000	4.0
'Salem's Lot	4.0	3.948276	0.5	5.0	3.0	4.0	4.0	3.0	5.0	3.5	5.0	2.0	5.0	2.0	2.0	4.0	3.0	4.0	3.27027	4.5
'Til There Was You	4.0	3.948276	0.5	5.0	3.0	3.0	2.0	3.0	5.0	3.5	5.0	5.0	5.0	3.0	3.0	4.0	3.0	4.0	4.00000	4.5
eXistenZ	5.0	2.500000	0.5	4.0	4.0	4.0	3.5	3.0	3.0	0.5	4.5	3.0	5.0	4.0	3.5	4.0	3.0	4.5	3.00000	4.0
xXx	4.0	5.000000	4.5	2.0	3.0	2.0	1.0	3.0	1.0	1.5	4.0	4.0	3.0	3.0	3.0	4.0	3.0	3.5	3.00000	2.0
xXx: State of the Union	3.0	5.000000	0.5	2.0	3.0	3.0	0.5	3.0	1.0	4.5	3.5	3.0	5.0	4.0	3.0	1.0	4.0	3.0	3.00000	1.5
¡Three Amigos!	4.0	2.000000	4.5	3.0	3.0	3.0	4.5	3.0	3.0	3.0	4.5	3.0	4.0	3.0	4.0	4.0	3.0	4.5	3.00000	1.0
À nous la liberté (Freedom for Us)	5.0	3.948276	0.5	5.0	5.0	3.0	3.0	5.0	5.0	0.5	5.0	5.0	3.0	3.0	4.0	4.0	5.0	4.0	3.00000	3.5
9719 rows × 610 columns																				

KNN - 1

K = 1, Pearson, Cosine 유사도 측정

```
# KNNImputer 객체 생성
imputer = KNNImputer(n_neighbors=1)

# pandas dataframe을 numpy array로 변환
matrix = movie_user.to_numpy()

# KNNImputer를 이용하여 결측치를 채움
matrix_imputed = imputer.fit_transform(matrix)

# numpy array를 다시 pandas dataframe으로 변환
movie_user_imputed = pd.DataFrame(matrix_imputed, index=movie_user.index, columns=movie_user.columns)
```

Pearson

MAE : 0.69627 MSE : 0.78939 RMSE : 0.88848

Cosine

MAE : 0.72991 MSE : 0.87398 RMSE : 0.93487

- KNN 3
 - K = 3, Pearson, Cosine 유사도 측정

```
# KNNImputer 객체 생성
imputer = KNNImputer(n_neighbors=3)
# pandas dataframe을 numpy array로 변환
matrix = movie_user.to_numpy()
# KNNImputer를 이용하여 결측치를 채움
matrix_imputed = imputer.fit_transform(matrix)
# numpy array를 다시 pandas dataframe으로 변환
movie_user_imputed = pd.DataFrame(matrix_imputed, index=movie_user.index, columns=movie_user.columns)
```

K=1 대비 성능 감소

Pearson

MAE : 0.70055 MSE : 0.80323 RMSE : 0.89623

Cosine

MAE : 0.73027 MSE : 0.87472 RMSE : 0.93527

- KNN 5
 - K = 5, Pearson, Cosine 유사도 측정

```
# KNNImputer 객체 생성
imputer = KNNImputer(n_neighbors=5)
# pandas dataframe을 numpy array로 변환
matrix = movie_user.to_numpy()
# KNNImputer를 이용하여 결측치를 채움
matrix_imputed = imputer.fit_transform(matrix)
# numpy array를 다시 pandas dataframe으로 변환
movie_user_imputed = pd.DataFrame(matrix_imputed, index=movie_user.index, columns=movie_user.columns)
```

K=1, 3 대비 성능 감소

Pearson

MAE : 0.70398 MSE : 0.81116 RMSE : 0.90065

Cosine

MAE : 0.73038 MSE : 0.87495 RMSE : 0.93539

SVD

- Rating 점수 결측 각각의 컬럼 평균 대체
- 이후, 각각의 행을 빼줌
- Pearson, Cosine 유사도 측정
- N_component 10, 25, 50% 조정 후 측정
- Iter = 5 설정
- 잠재요인 기반 CF

Only Normalization

- Rating 점수 결측 각각의 컬럼 평균 대체
- 이후, 각각의 행을 빼줌
- Cosine 유사도 측정

```
# 결측을 컬럼 평균으로 채워주는 함수

def R_filled_in(rating_table):
    for col in range(len(rating_table.columns)):
        col_update=[]
    # 컬럼의 평균을 구한다.
        col_num = [i for i in rating_table.iloc[:,col] if math.isnan(i)==False]
        col_mean = sum(col_num)/len(col_num)

# NaN을 가진 행은 위에서 구한 평균 값으로 채워준다.
        col_update = [i if math.isnan(i)==False else col_mean for i in rating_table.iloc[:,col]]

# 리스트로 만든 업데이트된 한 컬럼을 기존에 데이터 프레임 컬럼에 새로 입혀준다.
        rating_table.iloc[:,col] = col_update

return rating_table
```

MAE : 0.72477 MSE : 0.85644 RMSE : 0.92544

- SVD 60
 - N_ component = 60

```
svd = TruncatedSVD(n_components=60, n_iter=5)
svd.fit(np.array(rating_R_norm))
# 특이값 분해 요소 정의
U=svd.fit_transform(np.array(rating_R_norm))
Sigma=svd.explained_variance_ratio_
VT= svd.components_
# 시그마 행렬에 요소들에 루트
Sigma_sqrt=[]
for i in range(len(Sigma)):
    tmp=[]
    tmp=[math.sqrt(s) for s in np.diag(Sigma)[i]]
    Sigma_sqrt.append(tmp)
Sigma_sqrt=np.array(Sigma_sqrt)
# 특이값분해
ratings reduced= pd.DataFrame(np.matmul(np.matmul(U, np.diag(Sigma)), VT), columns=movie user.columns, index=movie user.index)
```

이전 대비 성능 향상

MAE : 0.66377

MSE : 0.77411

- SVD 150
 - N_ component = 150

```
# SVD 정의
svd = TruncatedSVD(n_components=150, n_iter=5)
svd.fit(np.array(rating_R_norm))
# 특이값 분해 요소 정의
U=svd.fit_transform(np.array(rating_R_norm))
Sigma=svd.explained_variance_ratio_
VT= svd.components_
# 시그마 행렬에 요소들에 루트
Sigma_sqrt=[]
for i in range(len(Sigma)):
    tmp=[]
    tmp=[math.sqrt(s) for s in np.diag(Sigma)[i]]
   Sigma sqrt.append(tmp)
Sigma_sqrt=np.array(Sigma_sqrt)
# 특이값분해
ratings_reduced= pd.DataFrame(np.matmul(np.matmul(U, np.diag(Sigma)), VT), columns=movie_user.columns, index=movie_user.index)
```

이전 대비 성능 비슷

<u>MAE</u> : 0.66346,

MSE : 0.77341

- SVD 300
 - N_ component = 300

```
# SVD 정의
svd = TruncatedSVD(n_components=300, n_iter=5)
svd.fit(np.array(rating_R_norm))
# 특이값 분해 요소 정의
U=svd.fit_transform(np.array(rating_R_norm))
Sigma=svd.explained_variance_ratio_
VT= svd.components_
# 시그마 행렬에 요소들에 루트
Sigma sgrt=[]
for i in range(len(Sigma)):
    tmp=[]
    tmp=[math.sqrt(s) for s in np.diag(Sigma)[i]]
    Sigma_sqrt.append(tmp)
Sigma_sqrt=np.array(Sigma_sqrt)
# 특이값분해
ratings_reduced= pd.DataFrame(np.matmul(np.matmul(U, np.diag(Sigma)), VT), columns=movie_user.columns, index=movie_user.index)
```

이전 대비 성능 비슷

MAE : 0.66344

MSE : 0.77336

Item-user results

- Baseline, SVD가 전반적으로 가장 좋은 지표
- Baseline Pearson이 가장 좋은 성능을 보임
- Item-genre 대비 우수한 성능

	Baseline Pearson	Baseline Cosine	KNN1 Pearson	KNN1 Cosine	KNN3 Pearson	KNN3 Cosine	KNN5 Pearson	KNN5 Cosine	Normaliz ation	SVD n_comp 60	SVD n_comp 150	SVD n_comp 300
MAE	0.68918	0.69465	0.69627	0.72991	0.70055	0.73027	0.70398	0.73038	0.72477	0.66377	0.66346	0.66344
MSE	0.77199	0.7918	0.78939	0.87398	0.80323	0.87472	0.81116	0.87495	0.85644	0.77411	0.77341	0.77336
RMSE	0.87863	0.88983	0.88848	0.93487	0.89623	0.93527	0.90065	0.93539	0.92544	0.87983	0.87943	0.87941

Outline

- 1. Introduction
 - 1.1 Project goal
 - 1.2 Pipeline
- 2. Data preprocessing
 - 2.1 Genre missing value
 - 2.2 Title duplicated
 - 2.3 Dataset
- 3. Item genre
 - 3.1 Baseline
 - **3.2 TF-IDF**
- 4. Item user
 - 4.1 Baseline
 - **4.2 KNN**
 - 4.3 SVD
- 5. Result
 - 5.1 How to use
 - **5.2** Limitation

Result

How to use

- 사용자 영화 추천을 위한 함수 구현
- 사용자 정보 입력시 추천

```
get_recommendations_with_ranking(model_name, user_id):
# 선호 장르 입력받기
print("장르 종류 : Film-Noir, Romance, Documentary, Drama, War, Fantasy, Musical, Family, Sci-Fi,
IMAX, Mystery, Action, Music, \n \t Crime, Western, Biography, Adventure, Children, Thriller, \
History, Comedy, Animation, Short, Horror", end='\n\n')
preferred_genre = input("선호하는 장르는 무엇인가요? (상관없으면 ENTER):")
print('', end='\n\n')
user_mov = df[df['userId'] == user_id]
user_mov_pred = model_name[model_name['userId'] == user_id]
user_mov = pd.merge(user_mov, user_mov_pred, on=['userId', 'title'], how='right')
user_mov = pd.merge(user_mov, movies[['title', 'genres']], on='title', how='left')
# 장르를 입력했다면 필터링
if preferred_genre.strip():
 user_mov = user_mov[user_mov['genres_y'].str.contains(preferred_genre)]
# 사용자가 아직 안 본 영화
movie_candidate = user_mov[user_mov['movieId'].isnull()]
movie_candidate = movie_candidate.sort_values(by='pred_rating', ascending=False)[:10]
# 랭킹 순으로 결과를 나타내기
ranked recommendations = movie candidate[['title']].reset index(drop=True)
# 인덱스에 1씩 추가
ranked_recommendations.index = ranked_recommendations.index + 1
ranked_recommendations = ranked_recommendations.rename(columns={'title': '좋아하실 만한 영화들이에요!'}
# 결과를 가운데 정렬하는 HTML 스타일 적용
styled_recommendations = (
   ranked_recommendations.style
    .set_properties(**{'text-align': 'center'})
    .set_table_styles([{'selector': 'th', 'props': [('text-align', 'center')]}])
return styled_recommendations
```

```
장르 종류 : Film-Noir, Romance, Documentary, Drama, War, Fantasy, Musical, Family, Sci-Fi, IMAX, Mystery, Action, Music,
           Crime, Western, Biography, Adventure, Children, Thriller, History, Comedy, Animation, Short, Horror
선호하는 장르는 무엇인가요? (상관없으면 ENTER):Music
         좋아하실 만한 영화들이에요!
       Nightmare Before Christmas, The
      Snow White and the Seven Dwarfs
              Wizard of Oz, The
     Willy Wonka & the Chocolate Factory
                 Pinocchio1
             Blues Brothers, The
               Mary Poppins
 8 South Park: Bigger, Longer and Uncut
             Little Mermaid, The
 10
                  Shrek 2
```


Result

Limitation

- 다양한 조합을 가지는 model hyperparameter tuning 한계
- Pyspark를 사용한 분산처리 어려움
- Tag data를 활용하지 못함

Q & A 감사합니다!

Result

```
from tqdm.notebook import tqdm
def modeling(similarity_matrix, data):
   df_pred_all = pd.DataFrame()
   users = sorted(data['userId'].unique())
   all_titles = similarity_matrix.index
   n_titles = len(all_titles)
   for user in tqdm(users):
       idx = data[data['userId'] == user].index
       # 유사도
       watched_title = data.loc[idx, 'title'].tolist()
       sub_sim_mat = similarity_matrix.loc[watched_title]
       sub_sim_mat = sub_sim_mat.T.to_numpy()
       sim_N = np.sum(sub_sim_mat, axis=1) + 1
       # 평점 예측
       watched_title_y = data.loc[idx, 'rating']
       watched_title_y = np.array(watched_title_y.tolist()).reshape(-1, 1)
       pred_y = np.matmul(sub_sim_mat, watched_title_y).flatten() / sim_N
       user_list = [user] * n_titles
       cur_pred = pd.DataFrame(zip(user_list, all_titles, pred_y),
                               columns=['userId', 'title', 'pred_rating'])
       # 결과 기록
       df_pred_all = pd.concat([df_pred_all, cur_pred], axis=0)
   return df_pred_all
```

