Lecture 28: Logistic Regression

Chapter 8.4

Binary Outcome Variables

Outcome Variable

Logit Transformation

Odds

Outcome Variable

Figure 8.13 from page 388

Simple Logistic Regression Example p.388

So say we fit a logistic regression with:

➤ Y_i is spam: binary variable of whether message was classified as spam (1 if spam)

Simple Logistic Regression Example p.388

So say we fit a logistic regression with:

- ► *Y_i* is spam: binary variable of whether message was classified as spam (1 if spam)
- x_i is to_multiple: binary variable indicating if more than one recipient listed

Simple Logistic Regression Example p.388

So say we fit a logistic regression with:

- ▶ *Y_i* is spam: binary variable of whether message was classified as spam (1 if spam)
- x_i is to_multiple: binary variable indicating if more than one recipient listed

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.1161	0.0562	-37.67	0.0000
to_multiple	-1.8092	0.2969	-6.09	0.0000

Inverse Logit Transformation

Fitted Probabilities

Fitted Model Using Backwards Regression

The following model was selected in the text using backwards selection using $\alpha=0.05$.

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
word winner used?	1.7251	0.3245	5.32	0.0000
special formatting?	-1.5857	0.1201	-13.20	0.0000
'RE:' in subject?	-3.0977	0.3651	-8.48	0.0000
attachment?	0.2127	0.0572	3.72	0.0002
word password used?	-0.7478	0.2956	-2.53	0.0114

Fitted Model Using Backwards Regression

The following variables increase the probability that the email is spam, since b>0

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
, ,				
word winner used?	1.7251	0.3245	5.32	0.0000
		0.00		
attachment?	0.2127	0.0572	3.72	0.0002
actuellinent.	0.2121	0.0012	3.12	0.0002

Fitted Model Using Backwards Regression

The following variables decrease the probability that the email is spam, since b < 0

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.8057	0.0880	-9.15	0.0000
to_multiple?	-2.7514	0.3074	-8.95	0.0000
special formatting?	-1.5857	0.1201	-13.20	0.0000
'RE:' in subject?	-3.0977	0.3651	-8.48	0.0000
word password used?	-0.7478	0.2956	-2.53	0.0114

Assumptions for Logistic Regression

Fitted Probabilities

These are all 3921 fitted probabilities:

Say we use a cutoff of 65% to classify an email spam or not:

Using a cutoff of 65%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3351	3	
	Spam	357	10	

Using a cutoff of 65%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3351	3	
	Spam	357	10	

▶ Of the emails classified as spam: $\frac{10}{10+3} = 76\%$ correct

▶ Of the emails classified not as spam: $\frac{3351}{3351+357} = 90.3\%$ correct

Now say we use a cutoff of 30% to classify an email spam or not:

Using a cutoff of 30%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3138	416	
	Spam	166	201	

Using a cutoff of 30%:

		Classification		
		Not Spam Spam		
Truth	Not Spam	3138	416	
	Spam	166	201	

▶ Of the emails classified as spam: $\frac{201}{201+416} = 32.6\%$ correct

▶ Of the emails classified not as spam: $\frac{3138}{3138+166} = 95.0\%$ correct

Moral of the Story: most classifiers are never perfect (like hypothesis tests). There will almost always be a trade-off between:

- ▶ Type I errors: labeling an email spam when it is not
- ▶ Type II errors: failing to label an email as spam when it is