

DIPARTIMENTO DI NGEGNERIA ELETTRICA E TECNOLOGIE DELL' NFORMAZIONE SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

PROTOTIPAZIONE VIRTUALE

PROGETTO RH FACILITY INSTALLATION TOOL

Giulia Gelsomina Romano, Vito Daniele Perfetta

Prof. Giuseppe Di Gironimo

SOMMARIO

- > Introduzione
- > Requisiti e Problematiche chiave
- > Soluzione proposta
- > Analisi FEM
- > Simulazione Cinematica nelle configurazioni critiche
- > Analisi Ergonomica in Jack
- Osservazioni e Conclusioni

Introduzione

➤ Il progetto consiste nella Prototipazione Virtuale del sistema di attrezzature ausiliarie che fungano da supporto agli operatori della RH Facility nella movimentazione dei moduli Inboard First Wall ed Outboard First Wall.

Requisiti

- Consentire al lavoratore di operare all'interno dell'ambiente dei mockup
- Garantire il corretto afferraggio dei moduli IFW e OFW
- Garantire il corretto posizionamento dei moduli IFW e OFW in tutte le possibili posizioni di test
- Trasportare i moduli IFW e OFW (assumendo una massa massima di 250 kg)
- Consentire l'ispezione visiva da parte degli operatori dei mockup di First Wall e divertore
- Non arrecare danno al lavoratore durante il suo utilizzo
- Non arrecare danno ai moduli First Wall durante il suo utilizzo
- Non arrecare danno agli altri componenti del sistema di mockup durante il suo utilizzo 8)
- Cooperare ed essere attuato dagli operatori in modo ergonomico
- 10) Consentire al lavoratore di avere sempre "a portata di mano" la cassetta degli attrezzi.

Problematiche chiave

- ➤ Lavorare in spazi ridotti
- Manipolare ingenti carichi (anche ad elevate altezze)
- Assicurare coordinamento con operatore umano

La nostra idea:

> Per consentire l'accesso all'ambiente dei mockup, l'operatore può avvalersi di una passerella a cui è collegata una scala a castello.

Supporto Piede Passerella

La nostra idea:

Per manovrare in sicurezza i moduli IFW ed OFW, è stato realizzato un sistema costituito da un manipolatore allungabile con supporto mobile similare ad un manipolatore per vetri.

https://www.jekko.co.uk/products/mpk10/

Componenti Supporto Mobile:

Giunzione Albero posteriore -Corpo

Manubrio

Ruota

Albero

Corpo

Accoppiamenti Supporto Mobile:

- Per l'accoppiamento albero-ruota è stata usata una linguetta, mentre il bloccaggio assiale è assicurato da un dado con rondella
- Per consentire la rotazione relativa alberocorpo sono stati utilizzati i cuscinetti orientabili a sfere SKF 2310, protetti da appositi coperchi

Accoppiamenti Supporto Mobile:

- Per consentire il controllo della rotazione delle ruote posteriori da parte dell'operatore, è stato inserito un accoppiamento con albero a sezione quadrata tra manubrio e giunzione albero-corpo
- Per consentire la rotazione relativa corpomanubrio e corpo-base manipolatore sono stati rispettivamente utilizzati i cuscinetti assiali a sfere SKF 51110 e SKF 51410

Componenti Manipolatore:

Braccio Base

Braccio Allungabile

Pistone 1 Base

Pistone 1 Stelo

Base Manipolatore

Componenti End-Effector:

Tramite i seguenti componenti è possibile controllare l'End-Effector attraverso gli angoli Roll-Pitch-Yaw

Pistone2 Base

Pistone2 Stelo

1 EE

Componente 2_EE

Componente 3_EE

Componente 4_EE

Componenti End-Effector:

Sono state ideate due varianti del Componente 5_EE con

- un sistema di ventose terminali per realizzare l'afferraggio dei moduli IFW ed OFW (collegamento con bullone)
- > un manubrio per consentire la diretta manovrabilità da parte dell'operatore

Componente 5_EE (versione1)

Componente 5_EE (versione2)

Ventosa

Componenti End-Effector:

End-Effector (versione1)

- > Maggior controllo del modulo manovrato
- > Distanza variabile tra le ventose

End-Effector (versione2)

Minor ingombro

Analisi FEM – Scala

Carico

Materiale	Alluminio
$\sigma_{\scriptscriptstyle S}$	95 <i>MPa</i>
С	1,5
σ_{am}	63 <i>MPa</i>

1000 N

Mesh Gl	obale	Mesh Lo	ocale
Dimensione Sagitta		Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

Analisi FEM – Passerella

Materiale	Alluminio
$\sigma_{\scriptscriptstyle S}$	95 <i>MPa</i>
С	1,5
σ_{am}	63 MPa

2000 N

Carico

Mesh Gl	obale	Mesh Lo	ocale
Dimensione Sagitta		Dimensione	Sagitta
10 mm	2 mm	4 mm	1 mm

 $\sigma_{Von\;Mises}=19,7\;MPa<\sigma_{am}$

Analisi FEM – Passerella

Materiale	Alluminio
σ_{s}	95 <i>MPa</i>
С	1,5
σ_{am}	63 <i>MPa</i>
Carico	2000 N

Mesh Globale		Mesh Locale	
Dimensione Sagitta		Dimensione	Sagitta
10 mm	2 mm	4 mm	1 mm

Analisi FEM – Manipolatore

Materiale	Acciaio
$\sigma_{\scriptscriptstyle S}$	250 <i>MPa</i>
С	1,5
σ_{am}	167 MPa
Carico	2500 N

Mesh Gl	obale	Mesh Lo	ocale
Dimensione Sagitta		Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

 $\sigma_{Von\ Mises} = 117\ MPa < \sigma_{am}$

Analisi FEM – Manipolatore

Materiale	Acciaio
$\sigma_{\scriptscriptstyle S}$	250 <i>MPa</i>
С	1,5
σ_{am}	167 <i>MPa</i>
Carico	2500 N

Mesh Gl	obale	Mesh Lo	ocale
Dimensione Sagitta		Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

Sensor Name	Fx	Fy	Fz	Mx	Му	Mz
Reaction Sensor.1	-5,222e- 007N	-3,909e- 007N	14791,736N	-0,005Nxm	-23995,145Nxm	-1,553e- 006Nxm

Dal sensore di reazione è possibile ricavare le informazioni necessarie al corretto dimensionamento del cuscinetto assiale tra Supporto Mobile e Manipolatore.

Z <u>k</u> y

Materiale	Acciaio
$\sigma_{\scriptscriptstyle \mathcal{S}}$	250 <i>MPa</i>
С	1,5
σ_{am}	167 MPa
Carico	2500 N

Mesh Globale		Mesh Locale	
Dimensione	Sagitta	Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

 $\sigma_{Von\ Mises} = 125\ MPa < \sigma_{am}$

Materiale	Acciaio	
$\sigma_{\scriptscriptstyle S}$	250 <i>MPa</i>	
С	1,5	
σ_{am}	167 MPa	
Carico	2500 N	

Mesh Globale		Mesh Locale	
Dimensione	Sagitta	Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

 $\sigma_{Von\ Mises} = 125\ MPa < \sigma_{am}$

Materiale	Acciaio	
$\sigma_{\scriptscriptstyle S}$	250 <i>MPa</i>	
С	1,5	
σ _{am} 167 MPa		

Carico	2500 N
--------	--------

Mesh Globale		Mesh Locale	
Dimensione	Sagitta	Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

Von Mises stress (nodal values).2

 $\sigma_{Von\ Mises} = 113\ MPa < \sigma_{am}$

Materiale	Acciaio
$\sigma_{\scriptscriptstyle S}$	250 <i>MPa</i>
С	1,5
σ_{am}	167 MPa
Carico	2500 N

Mesh Globale		Mesh Locale	
Dimensione	Sagitta	Dimensione	Sagitta
20 mm	2 mm	4 mm	1 mm

$$\sigma_{Von\ Mises} = 113\ MPa < \sigma_{am}$$

Considerando il pavimento come elemento fisso, il cinematismo è stato realizzato considerando i seguenti giunti controllati:

- Giunto rotoidale tra Corpo e Base manipolatore
- Giunto prismatico tra Pistone 1 Base e Pistone 1 Stelo
- ➤ Giunto prismatico tra Braccio Base e Braccio Allungabile
- Giunto prismatico tra Pistone2 Base e Pistone2 Stelo
- ➤ Giunto rotoidale tra Componente 3_EE e Componente 4_EE
- ➤ Giunto rotoidale tra Componente 4_EE e Componente 5_EE
- Giunto rotoidale tra Manubrio e Corpo
- Giunto rotoidale tra Albero Anteriore e Cuscinetto
- Giunto rotoidale tra Albero Posteriore e Boccola

Applicando un'opportuna sequenza di giunti controllati, è possibile raggiungere tutti i moduli IFW e OFW senza arrecare danni all'ambiente circonstante ed all'operatore.

Configurazioni
critiche OFW con
Manipolatore v1

Applicando un'opportuna sequenza di giunti controllati, è possibile raggiungere tutti i moduli IFW e OFW senza arrecare danni all'ambiente circonstante ed all'operatore.

Configurazioni critiche OFW con Manipolatore v2

Applicando un'opportuna sequenza di giunti controllati, è possibile raggiungere tutti i moduli IFW e OFW senza arrecare danni all'ambiente circonstante ed all'operatore.

Configurazioni critiche IFW con Manipolatore v1

Analisi Ergonomica

L'analisi ergonomica è stata realizzata con il software Jack

- Sono stati utilizzati i modelli umani di default, corrispondenti ad un uomo ed una donna caucasici del 50esimo percentile, rispettivamente di altezza 174.2 cm e 163.0 cm con massa 77.7 kg e 61.3 kg
- Nella simulazione è stato inserito un avvitatore di 1.5 kg

Sono state effettuate 3 tipologie di analisi:

- > Montaggio del modulo OFW in basso
- > Montaggio del modulo OFW centrale
- > Montaggio del modulo OFW in alto

Analisi Ergonomica - OFW in Basso

Le coppie sulle vertebre L4/L5 rimangono al di sotto del valore critico 3400 N

 Gli angolo più critici sono raggiungibili dal 60esimo percentile della popolazione

Analisi Ergonomica - OFW Centrale

➤ Le coppie sulle vertebre L4/L5 rimangono al di sotto del valore critico 3400 N

> Gli angolo più critici sono raggiungibili dal 70esimo percentile della popolazione

Analisi Ergonomica - OFW in Alto

Le coppie sulle vertebre L4/L5 rimangono al di sotto del valore critico 3400 N

Gli angolo più critici sono raggiungibili dal 70esimo percentile della popolazione

Osservazioni e Conclusioni

- ➤ Dalle simulazioni ergonomiche effettuate è possibile osservare come l'operatore è in grado di cooperare all'interno dell'ambiente dei mockup con il manipolatore soddisfacendo così i requisiti (1), (5), (9) e (10).
- ➤ Dall'Analisi FEM è possibile constatare come il manipolatore è in grado di sostenere e trasportare i moduli IFW e OFW soddisfacendo così il requisito (4).
- ➤ L'utilizzo delle ventose insieme alle due varianti dell'End-Effector consente di soddisfare i requisiti (2), (3) e (9).
- ➤ Dalle simulazioni cinematiche eseguite è possibile osservare come il manipolatore è in grado di soddisfare i requisiti (3), (4), (6), (7), (8).

Osservazioni e Conclusioni

- La tecnologia impiegata, essendo basata su quella del manipolatore per vetri, è già testata e diffusa
- Il manipolatore progettato può essere impiegato anche per svolgere altre operazioni all'interno dell'ambiente di lavoro
- ➤ I vari componenti del manipolatore sono facilmente smontabili e sostituibili sia per interventi di manutenzione che per adattare la struttura ad altre situazioni
- > Una possibile ottimizzazione è includere dei supporti laterali antiribaltamento per poter sollevare carichi maggiori

Grazie per l'attenzione!

