Reflection Removal Using Ghosting Cues

•••

Bhaktipriya Shridhar & Navyasri Reddy

Implementation of paper

Reflection removal using Ghosting cues

http://ieeexplore.ieee.org/document/7298939/?reload=true &arnumber=7298939

Introduction

When taking a picture through a window pane, reflections of objects are often captured.

Challenge

Traditional imaging model:

$$I=T+R$$

As both T and R are natural, separating them is ill-posed since both T and R are natural images and appear the same statistical properties.

What paper accomplishes...

Separate the reflection layer using

- the double reflection imaging model
- with patch-based image prior

How can we do this?

Key idea...

Break the symmetry of T and R using Ghosting

What's Ghosting? Appearance of secondary image on the main display.

Observation: Window reflection often appear multiple times.

Modelling Ghosting

Using a two-pulse kernel k.

Parameterize k by the separation of the two reflections **d** and an attenuation factor **c** depending on the camera view angle $k(\mathbf{x}) = \delta(\mathbf{x}) + \alpha \delta(\mathbf{x} - \mathbf{d})$

Toy Example

A synthetic example with a circle as the transmission layer and a rectangle as the reflection layer.

We compare the log likelihoods of the various possible decompositions under a GMM Model.

The log likelihood of the a) is the highest, (implying is most "Natural") which is indeed the ground truth.

Why GMM?

It performs well for image restoration when compared to other methods.

Expected Patch Log Likelihood: Image denoising

(a) Noisy Image - PSNR: 20.17

(b) KSVD - PSNR: 28.72

(c) LLSC - PSNR: 29.30

(d) EPLL GMM - PSNR: 29.39

Expected Patch Log Likelihood: Image deblurring

Figure 8: Deblurring experiments

The BIG PICTURE...

Estimating KERNEL PARAMETERS

Estimating KERNEL PARAMETERS

Shift and Compute

Optimization

Minimizing COST:

To recover the transmission T and reflection R, we minimize the following:

$$\frac{1}{\underline{\sigma^2}} \left\| I - T - R \otimes k \right\|_2^2 - \sum_i \log(GMM(P_iT)) - \sum_i \log(GMM(P_iR)) \quad \underbrace{s.t. \ 0 \leq T, \ R \leq 1}_{i}$$

Reconstruction cost Image prior (Gaussian Mixture Model) Non-negativity [3]

Non Convex Due to GMM prior

Per Patch Auxiliary Variables

$$\min_{T,R,z_T,z_R} \frac{1}{\sigma^2} \|I - T - R \otimes k\|_2^2$$
 (7a)

$$+\frac{\beta}{2}\sum_{i}\left(\|P_{i}T-z_{T}^{i}\|^{2}+\|P_{i}R-z_{R}^{i}\|^{2}\right) \tag{7b}$$

$$-\sum_{i} \log(\text{GMM}(z_T^i)) - \sum_{i} \log(\text{GMM}(z_R^i)) \quad (7c)$$

s.t.
$$0 \le T, R \le 1$$
 (7d)

Alternating minimization

Solve for T and R

Naturalize or Restore T and R

Update Auxiliary variables

Auxiliary variables fixed

Solve using LBFGS

zir

Solve using Estimated Patch log likelihood (EPLL)

$$\frac{\beta}{2}\sum_{i} (\|P_{i}T - z_{T}^{i}\|^{2} + \|P_{i}R - z_{R}^{i}\|^{2})$$

$$\min_{T,R,z_T,z_R} \frac{1}{\sigma^2} \|I - T - R \otimes k\|_2^2 \\ + \frac{\beta}{2} \sum_i \left(\|P_i T - z_T^i\|^2 + \|P_i R - z_R^i\|^2 \right) - \sum_i \log(\text{GMM}(z_T^i)) - \sum_i \log(\text{GMM}(z_R^i))$$

$$\sum \log(\mathsf{GMM}(z_T^i)) - \sum_i \log(\mathsf{GMM}(z_R^i))$$

As Beta tends to infinity, zix's need to be equated to pix's to get a finite product value

s.t. $0 \le T, R \le 1$

Estimated Patch Log Likelihood

(EPLL)

Restored Patch

Post-processing

Failure cases

Failure cases

Limitations

- Requires double paned windows
- Sensitive to patterned reflection layers
- We assume spatially-invariant ghosting.
 - the reflection layer does not have large depth variations
 - when the angle between camera and glass normal is not too oblique

Applications : Rain Streak Removal Using Layer Priors

$$O = B + R$$
.

$$\min_{\mathbf{B},\mathbf{R}} \|\mathbf{O} - \mathbf{B} - \mathbf{R}\|_F^2 + \alpha \|\nabla \mathbf{B}\|_1 + \beta \|\mathbf{R}\|_F^2 - \gamma \sum_i \log \left(\mathcal{G}_{\mathbf{B}}(\mathcal{P}(\mathbf{B}_i)) + \log \mathcal{G}_{\mathbf{R}}(\mathcal{P}(\mathbf{R}_i)) \right)$$
s. t. $\forall i \ 0 \leq \mathbf{B}_i, \mathbf{R}_i \leq \mathbf{O}_i$.

Future Work : Obstruction Removal

Future Work: Approach

- Using Obstruction Priors
- Using Repetitions/Patterns in an image