Raízes: "Zeros reais de funções reais"

Equações Não-Lineares

O problema de calcular uma raiz pode ser dividido em duas fases:

Fase I: Isolamento da raiz, isto é, encontrar um intervalo [a, b] que contenha uma, e somente uma, raiz de f(x) = 0.

Fase II: Refinamento da raiz, que consiste em, escolhidas aproximações iniciais no intervalo encontrado na Fase I, melhorá-las sucessivamente até obter uma aproximação para a raiz dentro de uma precisão ϵ pré-fixada.

Fase I: Isolamento das Raízes

Teorema . Seja f(x) uma função **contínua** num intervalo [a,b]. Se $f(a) \cdot f(b) < 0$ então existe pelo menos um ponto $\overline{x} \in [a,b]$ tal que $f(\overline{x}) = 0$. Além disso, se f'(x) não muda de sinal em [a,b] então \overline{x} é a única raiz de f(x) neste intervalo.

GRAFICAMENTE

Se f(a)f(b) > 0 então podemos ter várias situações no intervalo [a, b], conforme mostram os gráficos:

A análise gráfica da função f(x) ou da equação f(x) = 0 é fundamental para obter boas aproximações para a raiz. Para tanto, podemos executar os seguintes procedimentos:

- 1. Esboçar o gráfico da função f(x) e localizar as abscissas dos pontos onde a curva intercepta o eixo \overrightarrow{ox} ;
- 2. A partir da equação f(x)=0, obter a equação equivalente g(x)=h(x), esboçar os gráficos das funções g(x) e h(x) no mesmo eixo cartesiano e localizar os pontos x onde as duas curvas se interceptam, pois neste caso $f(\overline{x})=0 \iff g(\overline{x})=h(\overline{x})$;
- 3. Usar os programas que traçam gráficos de funções, disponíveis em algumas calculadoras ou softwares matemáticos.

Fase II: Refinamento

Serão apresentados aqui três métodos numéricos de refinamento da raiz: o método da Bisseção, de Newton e das Secantes. A forma como se efetua o refinamento é o que diferencia os métodos. Porém, antes de descrever estes métodos, veremos os critérios de parada adotados.

Estudaremos neste item vários métodos numéricos de refinamento de raiz. A forma como se efetua o refinamento é que diferencia os métodos. Todos eles pertencem à classe dos métodos iterativos.

Um *método iterativo* consiste em uma seqüência de instruções que são executadas passo a passo, algumas das quais são repetidas em ciclos.

A execução de um ciclo recebe o nome de *iteração*. Cada iteração utiliza resultados das iterações anteriores e efetua determinados testes que permitem verificar se foi atingido um resultado próximo o suficiente do resultado esperado.

Observamos que os métodos iterativos para obter zeros de funções fornecem apenas uma aproximação para a solução exata.

Os métodos iterativos para refinamento da aproximação inicial para a raiz exata podem ser colocados num diagrama de fluxo:

Critério de Parada

O *critério de parada* interrompe a seqüência gerada pelos métodos. Este deve avaliar quando x_k , na k-ésima iteração, está suficientemente próximo da raiz exata. Contudo, o valor exato da raiz é desconhecido na maioria dos casos, logo, o processo é interrompido quando pelo menos um dos critérios a seguir é satisfeito:

1. Avaliação do ponto na função:

$$|f(x_k)| \le \epsilon$$
;

2. Avaliação do tamanho do intervalo:

$$|x_k - x_{k-1}| \le \epsilon$$
 ou $\left| \frac{x_k - x_{k-1}}{x_k} \right| \le \epsilon$;

para ϵ suficientemente pequeno (precisão desejada).

MÉTODOS ITERATIVOS PARA SE OBTER ZEROS REAIS DE FUNÇÕES

I. MÉTODO DA BISSECÇÃO

Seja a função f(x) contínua no intervalo [a, b] e tal que f(a)f(b) < 0.

Vamos supor, para simplificar, que o intervalo (a, b) contenha uma única raiz da equação f(x) = 0.

O objetivo deste método é reduzir a amplitude do intervalo que contém a raiz até se atingir a precisão requerida: $(b - a) < \varepsilon$, usando para isto a sucessiva divisão de [a, b] ao meio.

Pelo exemplo trabalhado inicialmente em sala de aula, temos a seguinte tabela de iterações:

Iteração	x	f(x)	b-a
1	.5	-1.375	.5
2	.25	.765625	.25
3	.375	322265625	.125
4	.3125	.218017578	.0625
5	.34375	0531311035	.03125
6	.328125	.0822029114	.015625
7	.3359375	.0144743919	7.8125×10^{-3}
8	.33984375	0193439126	3.90625×10^{-3}
9	.337890625	$-2.43862718 \times 10^{-3}$	1.953125×10^{-3}
10	.336914063	$6.01691846 \times 10^{-3}$	9.765625 × 10

Então $\bar{x} = .337402344$ em dez iterações. Observe que neste exemplo escolhemos

$$\bar{x} = \frac{a+b}{2}$$

Método de Newton

Isaac Newton (1642–1727) publicou seu método para encontrar raízes de equações não-lineares em 1687. Este método também é conhecido como *Newton-Raphson*, devido à sistematização apresentada por Joseph Raphson em 1690.

O método de Newton combina duas idéias comuns nas aproximações numéricas: **linearização** e **iteração**. A linearização substitui a curva y = f(x) por sua reta tangente.

Seja x_0 uma aproximação inicial da raiz, como ilustra a Figura 3.7. Aproximando a curva y = f(x) por sua reta tangente traçada no ponto $(x_0, f(x_0))$ obtemos a aproximação linear. Encontrando o ponto de intersecção desta reta com o eixo x, obteremos uma nova aproximação para a raiz, o ponto x_1 da figura.

Para estabelecer expressões analíticas que permitam o cálculo de x_1, x_2, \ldots observamos que a tangente do ângulo θ pode ser obtida tanto da definição da função trigonométrica tangente quanto pela derivada de f(x) no ponto x_0 (inclinação da reta tangente). Assim, da Figura 3.7, temos:

$$tg(\theta) = \frac{f(x_0)}{x_0 - x_1} = f'(x_0) \longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$tg(\beta) = \frac{f(x_1)}{x_1 - x_2} = f'(x_1) \longrightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Genericamente, o processo consiste em evoluir da aproximação x_k para a aproximação x_{k+1} usando a fórmula:

$$x_{x+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

Exemplo Aplique o método de Newton para encontrar a raiz de $f(x) = x^3 - 9x + 3$ tomando $x_0 = 0.5$, para $\epsilon = 10^{-4}$ (a Tabela 3.2 apresenta os passos deste exemplo).

k	X _k	$f(x_k)$	$f'(x_k)$	$ x_{k+1}-x_k $
0	0.5	-1.375	-8.25	1.6667
1	0.3333	0.0370	-8.6667	0.0042735
2	0.3376068	0.0000183	-8.6581	0.0000021
3	0.337609	4.545×10^{-12}		

Tabela 3.2: Resultado do Exemplo

Método da Secante

Uma grande desvantagem do método de Newton é a necessidade de se obter f'(x) e calcular seu valor numérico a cada iteração. Uma alternativa é usar retas secantes como aproximações lineares locais da função, em vez de tangentes. Neste caso, são necessárias duas aproximações para inicializarmos o processo, x_0 e x_1 .

No método da Secante, tomamos a reta que passa pelos pontos $(x_0, f(x_0))$ e $(x_1, f(x_1))$ como uma aproximação linear da curva y = f(x)

Para estabelecermos a relação de recorrência do *Método da Secantes*, usamos a semelhança de triângulos *ABC* e *AED*:

$$\frac{f(x_0)}{x_0 - x_2} = \frac{f(x_1)}{x_1 - x_2}$$

onde x_2 é o ponto denotado por A na Figura 3.8. Explicitando o valor da incógnita x_2 teremos:

$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}.$$

Generalizando, no método das secantes usamos duas aproximações x_{k-1} e x_k , para calcular uma nova aproximação x_{k+1} , através da fórmula:

$$x_{k+1} = \frac{x_{k-1}f(x_k) - x_kf(x_{k-1})}{f(x_k) - f(x_{k-1})}.$$