Finite Model Theory

Heinz-Dieter Ebbinghaus Jörg Flum

June 6, 2021

Contents

1	Preliminaries				
	1.1	Structures	1		
		1.1.1 Graph	1		
		1.1.2 Orderings			
		1.1.3 Operations on Structures	2		
	1.2	Syntax and Semantics of First-Order Logic	3		
	1.3	Some Classical Results of First-Order Logic	4 5		
	1.4	Model Classes and Global Relations	5		
	1.5	Relational Databases and Query Languages	6		
2	Ehrenfeucht-Fraïssé Method				
	2.1	Elementary Classes	6		
	2.2	Ehrenfeucht's Theorem	8		
	2.3	Examples and Fraïssé's Theorem	12		
3	Pro	blem List	15		

1 Preliminaries

1.1 Structures

Vocabularies are finite sets that consist of **relation symbols** and **constant symbols**. We denote vocabularies by τ , σ ,.... A **vocabulary** is relational if it does not contain constants.

1.1.1 Graph

Let $\tau = \{E\}$ with a binary relation symbol E. A **graph** (or **undirected graph**) is a τ -structure $\mathcal{G} = (G, E^G)$ satisfying

- 1. for all $a \in G$: not E^Gaa
- 2. for all $a, b \in G$: if $E^G ab$ then $E^G ba$

By GRAPH we denote the class of **finite** graphs. If only (1) is required, we speak of a **digraph**

A subset *X* of the universe of a graph *G* is a **clique**, if E^Gab for all $a, b \in X$, $a \neq b$

Let G be a digraph. If $n \ge 1$ and

$$E^{G}a_{0}a_{1}, E^{G}a_{1}a_{2}, \dots, E^{G}a_{n-1}a_{n}$$

then $a_0, ..., a_n$ is a **path** from a_0 to a_n of **length** n. If $a_0 = a_n$, then $a_0, ..., a_n$ is a **cycle**. A path $a_0, ..., a_n$ is **Hamiltonian** if $G = \{a_0, ..., a_n\}$ and $a_i \neq a_j$ for $i \neq j$. If, in addition, $E^G a_n a_0$ we speak of a **Hamiltonian circuit**

Let G be a graph. Write $a \sim b$ if a = b or if there is a path from a to b. The equivalence class of a is called the **(connected) component** of a. Let CONN be the class of finite connected graphs

Denote by d(a,b) the length of a shortest path from a to b; more precisely, define the **distance function** $d: G \times G \to \mathbb{N} \cup \{\infty\}$ by

$$d(a, b) = \infty$$
 iff $a \nsim b$, $d(a, b) = 0$ iff $a = b$

and otherwise

$$d(a, b) = \min\{n \ge 1 \mid \text{there is a path from } a \text{ to } b \text{ of length } n\}$$

We give the following definitions only for **finite** digraphs. A vertex b is a successor of a vertex a if E^Gab . The **in-degree** of a vertex is the number of its predecessors, the **out-degree** the number of its successors.

A **root** of a digraph is a vertex with in-degree 0 and a **leaf** a vertex with out-degree 0.

A **forest** is an acyclic digraph where each vertex has in-degree at most 1. A **tree** is a forest with connected underlying graph. Let TREE be the class of finite trees.

1.1.2 Orderings

Let $\tau = \{<\}$ with a binary relation symbol. A τ -structure $\mathcal{A} = (A, <^A)$ is called an **ordering** if for all $a, b, c \in A$:

- 1. not $a <^A a$
- 2. $a <^A b \text{ or } b <^A a \text{ or } a = b$
- 3. if $a <^A b$ and $b <^A c$ then $a <^A c$

1.1.3 Operations on Structures

Two τ -structures A and B are **isomorphic**, written $C \cong B$, if there is an isomorphism from A to B, i.e., a bijection $\pi:A\to B$ preserving relations and constants, that is

• for *n*-ary $R \in \tau$ and $a_1, \dots, a_n \in A$

$$R^A a_1 \dots a_n$$
 iff $R^B \pi(a_i) \dots \pi(a_n)$

• for $c \in \tau$, $\pi(c^A) = \pi(c^B)$

For relational τ we introduce the **union** (or, **disjoint union**) of structures. Assume that A and B are τ -structures with $A \cap B = \emptyset$. Then $A \dot{\cup} B$, the **union** of A and B, is the τ -structure with domain $A \cup B$ and

$$R^{A\dot{\cup}B} := R^A \cup R^A$$

for any R in τ

Note that the union of ordered structures is not an ordered structure. The situation is different for the so-called **ordered sum**: let τ with $< \in \tau$ be relational and let A and B be ordered τ -structures. Assume that $A \cap B = \emptyset$. Define $A \triangleleft B$, the **ordered sum** of A and B as $A \cup B$ but setting

$$<^{A \dot{\cup} \mathcal{B}} := <^A \cup <^{\mathcal{B}} \cup \{(a,b) \mid a \in A, b \in B\}$$

1.2 Syntax and Semantics of First-Order Logic

Fix a vocabulary τ . Each formula of first-order logic will be a string of symbols taken from the alphabet consisting of

variables

- connectives
- existential quantifier
- equality symbol
-)(
- the symbols in τ

Denote FO[τ] the set of formulas of first-order logic of vocabulary τ . The axioms for graphs stated above have the following formalizations in FO[$\{E\}$]

$$\forall x \neg Exx$$
$$\forall x \forall y (Exy \rightarrow Eyx)$$

When only taking into consideration finite structures, we use the notation $\Phi \models_{\mathrm{fin}} \psi$

The **quantifier rank** $qr(\varphi)$ of a formula φ is the maximum number of nested quantifiers occurring in it

It can be shown that every first-order formula is logically equivlent to a formula in prenex normal form, that is, to a formula of the form $Q_1x_1,\ldots,Q_sx_s\psi$ where $Q_1,\ldots,Q_s\in\{\forall,\exists\}$, and where ψ is quantifierfree. Such a formula is called Σ_n if the string of n consecutive blocks, where in each block all quantifiers all of the same type, adjacent blocks contain quantifiers of different type, and the first block is existential. Π_n formulas are defined in the same way but now we require that the first block consists of universal quantifiers. A Δ_n -formula is a formula logically equivalent to both a Σ_n -formula and a Π_n -formula

Given a formula $\varphi(x,\bar{z})$ and $n \ge 1$,

$$\exists^{\geq n} x \varphi(x, \bar{z})$$

is an abbreviation for the formula

$$\exists x_1, \ldots \exists x_n (\bigwedge_{1 \leq i \leq n} \varphi(x_i, \bar{z}) \land \bigwedge_{1 \leq i < j \leq n} \neg x_i = x_j)$$

We set

$$\varphi_{\geq n} := \exists^{\geq n} x \; x = x$$

Clearly

$$A \models \varphi_{\geq n} \quad \text{iff} \quad \|A\| \geq n$$

1.3 Some Classical Results of First-Order Logic

Theorem 1.1. The set of logically valid sentences of first-order logic is r.e.

Theorem 1.2 (Compactness Theorem). Φ *is satisfiable iff every finite subset of* Φ *is satisfiable*

Neither Theorem 1.1 nor 1.2 remain valid if one only considers finite structures. A counterexample for the Compactness Theorem is given by the set $\Phi_{\infty} := \{ \varphi_{\geq n} \mid n \geq 1 \}$: Each finite subset of Φ_{∞} has a finite model, but Φ_{∞} has no finite model

The failure of Theorem 1.1 is documented by

Theorem 1.3 (Trahtenbrot's Theorem). *The set of sentences of first-order logic valid in all finite structures is not r.e.*

Lemma 1.4. *Let* $\varphi \in FO[\tau]$ *and for* $i \in I$ *, let* $\Phi^i \subseteq FO[\tau]$ *. Assume that*

$$\models \varphi \leftrightarrow \bigvee_{i \in I} \bigwedge \Phi^i$$

Then there is a finite $I_0 \subseteq I$ and for every $i \in I_0$, a finite $\Phi_0^i \subseteq \Phi^i$ s.t.

$$\models \varphi \leftrightarrow \bigvee_{i \in I_0} \bigwedge \Phi_0^i$$

Proof. For simplicity we assume that φ is a sentence and that every Φ^i is a set of sentences. By hypothesis, for some $i \in I$, we have $\Phi^i \models \varphi$; hence, by the Compactness Theorem, $\Phi^i_0 \models \varphi$ for some finite $\Phi^i_0 \subseteq \Phi^i$.

If there is not such I_0 with $\models \varphi \to \bigvee_{i \in I_0} \bigwedge \Phi_0^i$, then each finite subset of $\{\varphi\} \cup \{\neg \bigwedge \Phi_0^i \mid i \in I\}$ has a model. Hence by the Compactness Theorem, there is a contradiction

Corollary 1.5. Let Φ be a set of first-order sentences. Assume that any two structures that satisfy the same sentences of Φ are elementarily equivalent. Then any first-order sentence is equivalent to a boolean combination of sentences of Φ

Proof. For any structure A set

$$\Phi(\mathcal{A}) := \{ \psi \mid \psi \in \Phi, \mathcal{A} \models \psi \} \cup \{ \neg \psi \mid \psi \in \Phi, \mathcal{A} \models \neg \psi \}$$

Let φ be any first-order sentence. By the preceding lemma it suffices to show that

$$\models \varphi \leftrightarrow \bigvee_{A \models \phi} \bigwedge \Phi(A)$$

If $\mathcal{B} \models \varphi$ then $\mathcal{B} \models \bigvee_{A \models \varphi} \bigwedge \Phi(A)$. Suppose $A \models \bigvee_{A \models \varphi} \bigwedge \Phi(A)$. Then for some model A of φ , $\mathcal{B} \models \Phi(A)$. By the definition of $\Phi(A)$, A and B satisfy the same sentences of Φ

1.4 Model Classes and Global Relations

Fix a vocabulary τ . For a sentence φ of FO[τ] we denote by Mod(φ) the class of **finite** models of φ .

 $\operatorname{\mathsf{Mod}}(\varphi)$ is closed under isomorphisms

For $\varphi(x_1, ..., x_n) \in FO[\tau]$ and a structure A let

$$\varphi^{\mathcal{A}}(-) := \{(a_1, \dots, a_n) \mid \mathcal{A} \models \varphi[a_1, \dots, a_n]\}$$

be the set of *n*-tuples **defined by** φ **in** A. For n = 0 this be read as

$$\varphi^{A} := \begin{cases} \text{TRUE} & \text{if } A \vDash \varphi \\ \text{FALSE} & \text{if } B \nvDash \varphi \end{cases}$$

Use this notation we have

if
$$\pi : A \cong \mathcal{B}$$
 then $\pi(\varphi^{A}(-) = \varphi^{\mathcal{B}}(-))$

where for $X \subseteq A^n$ we set $\pi(X) := \{\pi(a_1), \dots, \pi(a_n) \mid (a_1, \dots, a_n) \in X\}$

Throughout the book all classes K of structures considered will tacitly be assumed to be closed under isomorphisms, i.e.

$$A \in K$$
 and $A \cong B$ implies $B \in K$

Definition 1.6. Let K be a class of τ -structures. An n-ary **global relation** Γ **on** K is a mapping assigning to each $A \in K$ an n-ary relation $\Gamma(A)$ on A satisfying

$$\Gamma(A)a_1 \dots a_n$$
 iff $\Gamma(B)\pi(a_1) \dots \pi(a_n)$

for every isomorphism $\pi: A \cong \mathcal{B}$ and every $a_1, \dots, a_n \in A$. If K is the class of all finite τ -structures, then we just speak of an n-ary **global relation**

Example 1.1. 1. Any formula $\varphi(x_1, ..., x_n) \in FO[\tau]$ defines the global relation $A \mapsto \varphi^A(-)$

2. The "transitive closure relation" TC is the binary global relation on GRAPH with

$$TC(G) := \{(a,b) \mid a,b \in G, \text{ there is a path from } a \text{ to } b\}$$

3. For $m \ge 0$, Γ_m is a unary global relation on GRAPH, where

$$\Gamma_m(G) := \{ a \mid ||\{b \in G \mid E^G ab\}|| = m \}$$

is the set of elements of \mathcal{G} of degree m

An important issue in model theory is the study of properties of classes of structures that are axiomatizable in a given logic $\mathcal L$ and in particular to determine what classes of structures are axiomatizable are what global relations are definable in $\mathcal L$.

1.5 Relational Databases and Query Languages

2 Ehrenfeucht-Fraïssé Method

2.1 Elementary Classes

Proposition 2.1. Every finite structure can be characterized in first-order logic up to isomorphism, i.e., for every finite structure A there is a sentence ϕ_A of first-order logic s.t. for all structures B we have

$$\mathcal{B} \models \varphi_{A} \quad \textit{iff} \quad \mathcal{A} \cong \mathcal{B}$$

Proof. Suppose $A = \{a_1, \dots, a_n\}$. Set $\bar{a} = a_1 \dots a_n$. Let

$$\Theta_n := \{ \psi \mid \psi \text{ has the form } Rx_1 \dots x_k, x = y \text{ or } c = x,$$
 and variables among $v_1, \dots, v_n \}$

and

$$\begin{split} \varphi_{\mathcal{A}} &:= \exists v_1 \dots \exists v_n (\bigwedge \{\psi \mid \psi \in \Theta_n, \mathcal{A} \models \psi[\bar{a}]\} \wedge \\ & \bigwedge \{\neg \psi \mid \psi \in \Theta_n, \mathcal{A} \models \neg \psi[\bar{a}]\} \wedge \forall v_{n+1} (v_{n+1} = v_n \vee \dots \vee v_{n+1} = v_n)) \end{split}$$

Corollary 2.2. *Let* K *be a class of finite structures. Then there is a set* Φ *of first-order sentences s.t.*

$$K = Mod(\Phi)$$

that is, K is the class of finite models of Φ

Proof. For each n there is only a finite number of pairwise nonisomorphic structures of cardinality n. Let A_1, \ldots, A_k be a maximal subset of K of pairwise nonisomorphic structures of cardinality n. Set

$$\psi_n := (\varphi_{=n} \to (\varphi_{A_1} \lor \dots \lor \varphi_{A_k}))$$

Then
$$K = Mod(\{\psi_n \mid n \ge 1\})$$

Definition 2.3. Let K be a class of finite structures. K is called **axiomatizable** in first-order logic or elementary if there is a setence φ of first-order logic s.t. $K = \operatorname{Mod}(\varphi)$

For structures A and B and $m \in \mathbb{N}$ we write $A \equiv_m B$ and say that A and B are m-equivalent if A and B satisfy the same first-order sentences of quantifier rank $\leq m$

Theorem 2.4. Let K be a class of finite structures. Suppose that for every m there are finite structures A and B s.t.

$$A \in K, B \notin K$$
, and $A \equiv_m B$

Then K is not axiomatizable in first-order logic

Proof. Let φ be any first-order sentence. Set $m := \operatorname{qr}(\varphi)$. By out assumption there are A and B s.t. $A \in K$, $B \notin K$, and $A \equiv_m B$. Hence $K \neq \operatorname{Mod}(\varphi)$

2.2 Ehrenfeucht's Theorem

Definition 2.5. Assume A and B are structures. Let p be a map with $dom(p) \subseteq B$. Then p is said to be a **partial isomorphism** from A to B if

- 1. *p* is injective
- 2. for every $c \in \tau$: $c^{A} \in \text{dom}(p)$ and $p(c^{A}) = c^{B}$
- 3. for every n-ary $R \in \tau$ and all $a_1, \dots, a_n \in \text{dom}(p)$

$$R^{\mathcal{A}}a_1 \dots a_n$$
 iff $R^{\mathcal{B}}p(a_1) \dots p(a_n)$

We write Part(A, B) for the set of partial isomorphisms from A to B

In the following we identify a map p with its graph $\{(a, p(a)) | a \in \text{dom}(p)\}$. Then $p \subseteq q$ means that q is an extension of p

- *Remark.* 1. The empty map, $p = \emptyset$, is a partial isomorphism from A to B just in case the vocabulary contains no constants
 - 2. If $p \neq \emptyset$ is a map with $dom(p) \subseteq A$ and $ran(p) \subseteq B$, then p is a partial isomorphism from A to B iff dom(p) contains c^A for all constants $c \in \tau$ and $p : dom(p)^A \cong ran(p)^B$
 - 3. For $\bar{a}=a_1\dots a_s\in A$ and $\bar{b}=b_1\dots b_s\in B$ the following statements are equivalent
 - (a) the clauses

$$p(a_i) = b_i \text{ for } i = 1, ..., s$$

and

$$p(c^{A}) = c^{B}$$
 for c in τ

define a map, which is a partial isomorphism from A to B (henceforth denoted by $\bar{a}\mapsto \bar{b}$)

- (b) for all quantifier-free $\varphi(v_1, \dots, v_s)$: $A \models \varphi[\bar{a}]$ iff $B \models \varphi[\bar{b}]$
- (c) for all atomic $\varphi(v_1,\ldots,v_s)$: $A \vDash \varphi[\bar{a}]$ iff $B \vDash \varphi[\bar{b}]$

In general, a partial isomorphism does not preserve the validity of formulas with quantifiers: Let $\tau = \{<\}$, $\mathcal{A} = (\{0,1,2\},<)$, $\mathcal{B} = (\{0,1,2,3\},<)$ whre in both cases < denotes the natural ordering. Then $p_0 := 02 \mapsto 01$ is a partial isomorphism from \mathcal{A} to \mathcal{B} s.t.

$$\mathcal{A} \vDash \exists v_3(v_1 < v_3 \land v_3 < v_2)[0,2]$$

but

$$\mathcal{B} \nvDash \exists v_3(v_1 < v_3 \land v_3 < v_2)[p_0(0), p_0(2)]$$

Let A and B be τ -structures, $\bar{a} \in A^s$, $\bar{b} \in B^s$, and $m \in \mathbb{N}$. The **Ehrenfeucht game** $G_m(A, \bar{a}, B, \bar{b})$ is played by two players called the **spoiler** and the **duplicator**. Each player has to make m moves in the course of a play. In his i-th move the spoiler first selects a structure, A or B, and an element in this structure. If the spoiler chooses e_i in A then the duplicator in his i-th move must choose an element f_i in B. If the spoiler chooses f_i in B then the duplicator must choose an element e_i in A

	A, \bar{a}	$\mathcal{B},ar{b}$
first move	e_1	f_1
second move	e_2	f_2
:	÷	:
<i>m</i> -th move	e_m	f_m

The duplicator **wins** iff $\bar{a}\bar{e} \mapsto \bar{b}\bar{f} \in \text{Part}(A, \mathcal{B})$.

Equivalently, the spoiler wins if after some $i \leq m$, $\bar{a}e_1 \dots e_i \mapsto \bar{b}f_1 \dots f_i$ is not a partial isomorphism. We say that a player, the spoiler or the duplicator, has a **winning strategy** in $G_m(A, \bar{a}, B, \bar{b})$, or shortly, that he **wins** $G_m(A, \bar{a}, B, \bar{b})$, if it is possible for him to win each play whatever choices are made by the opponent.

If s = 0, we denote the game by $G_m(A, B)$

Lemma 2.6. 1. If $A \cong B$ then the duplicator wins $G_m(A, B)$

2. If the duplicator wins $G_{m+1}(A, B)$ and $||A|| \leq m$ then $A \cong B$

Lemma 2.7. Let A and B be structures, $\bar{a} \in A^s$, $\bar{b} \in B^s$, and $m \ge 0$

- 1. The duplicator wins $G_0(A, \bar{a}, \mathcal{B}, \bar{b})$ iff $\bar{a} \mapsto \bar{b}$ is a partial isomorphism
- 2. For m > 0 the following are equivalent
 - (a) The duplicator wins $G_m(A, \bar{a}, B, \bar{b})$
 - (b) For all $a \in A$ there is $b \in B$ s.t. the duplicator wins the game $G_{m-1}(A, \bar{a}a, \mathcal{B}, \bar{b}b)$ and for all $b \in B$ there is $a \in A$ s.t. the duplicator wins $G_{m-1}(A, \bar{a}a, \mathcal{B}, \bar{b}b)$
 - (c) If the duplicator wins $G_m(A, \bar{a}, \mathcal{B}, \bar{B})$ and if m' < m the duplicator wins $G_{m'}(A, \bar{a}, \mathcal{B}, \bar{b})$

Let A be given. For $\bar{a}=a_1\dots a_s\in A$ and $m\geq 0$ we introduce a formula $\varphi^m_{\bar{a}}(v_1,\dots,v_s)$ that describes the game-theoretic properties of \bar{a} in any game $G_m(A,\bar{a},\dots)$ s.t. for any $\mathcal B$ and $\bar{b}=b_1\dots b_s\in B$

$$\mathcal{B} \vDash \varphi_{\bar{a}}^m[\bar{b}] \quad \text{iff} \quad \text{the duplicator wins } G_m(\mathcal{A}, \bar{a}, \mathcal{B}, \bar{b})$$

Definition 2.8. Let \bar{v} be v_1, \dots, v_s

$$\varphi^0_{\bar{a}} := \bigwedge \{ \varphi(\bar{v}) \mid \varphi \text{ atomic or negated atmoic}, A \vDash \varphi[\bar{a}] \}$$

(atomic diagram of A) and for m > 0

$$\varphi^m_{\bar{a}}(\bar{v}) := \bigwedge_{a \in A} \exists v_{s+1} \varphi^{m-1}_{\bar{a}a}(\bar{v}, v_{s+1}) \wedge \forall v_{s+1} \bigvee_{a \in A} \varphi^{m-1}_{\bar{a}a}(\bar{v}, v_{s+1})$$

 $\varphi_{\bar{a}^0}$ describes the isomorphism type of the substructure generated by \bar{a} in A; and for m>0 the formula $\varphi^m_{\bar{a}}$ tells us to which isomorphism types the tuple \bar{a} can be extended in m steps adding one element in each step. $\varphi^m_{\bar{a}}$ is called the m-isomorphism type (or m-Hintikka formula) of \bar{a} in A

Since $\varphi(v_1, \dots, v_s) \mid \varphi$ atomic or negated atmoic is finite, a simple induction on *m* shows

Lemma 2.9. For $s, m \geq 0$, the set $\{\varphi^m_{A,\bar{a}} \mid A \text{ a structure and } \bar{a} \in A^s\}$ is finite

1. $\operatorname{qr}(\varphi_{\bar{a}}^m) = m$ Lemma 2.10.

- 2. $A \models \varphi_{\bar{a}}^m[\bar{a}]$
- 3. For any \mathcal{B} and \bar{b} in B

$$\mathcal{B} \vDash \varphi_{\bar{a}}^0[\bar{b}] \quad \textit{iff} \quad \bar{a} \mapsto \bar{b} \in \textit{Part}(\mathcal{A}, \mathcal{B})$$

Theorem 2.11 (Ehrenfeucht's Theorem). *Given* A *and* B, $\bar{a} \in A^s$ *and* $\bar{b} \in B^s$, and $m \geq 0$, the following are equivalent

- 1. The duplicator wins $G_m(A, \bar{a}, B, \bar{b})$
- 2. $\mathcal{B} \models \varphi_{\bar{a}}^m[\bar{b}]$
- 3. \bar{a} and \bar{b} satisfy the same formulas of quantifier rank $\leq m$, that is, if $\varphi(x_1,\ldots,x_s)$ is of quantifier rank $\leq m$, then

$$\mathcal{A} \vDash \varphi[\bar{a}] \quad \textit{iff} \quad \mathcal{B} \vDash \varphi[\bar{b}] \tag{1}$$

Proof. $1 \leftrightarrow 2$. Induction on m. For m = 0

the duplicator wins
$$G_0(\mathcal{A}, \bar{a}, \mathcal{B}, \bar{b})$$
 iff $\bar{a} \mapsto \bar{b} \in \operatorname{Part}(\mathcal{A}, \mathcal{B})$ iff $\mathcal{B} \models \varphi^0_{\bar{q}}[\bar{b}]$

For m > 0

the duplicator wins $G_m(A, \bar{a}, \mathcal{B}, b)$

- for all $a \in A$, there is $b \in B$ s.t. the duplicator wins $G_{m-1}(A, \bar{a}a, \mathcal{B}, bb)$, and for all $b \in B$ there is $a \in A$ s.t. the duplicator wins $G_{m-1}(A, \bar{a}a, \mathcal{B}, \bar{b}b)$
- iff for all $a \in A$, there is $b \in B$ with $\mathcal{B} \models \varphi_{\bar{a}a}^{m-1}[\bar{b}b]$, and for all $b \in B$, there is $a \in A$ with $\mathcal{B} \models \varphi_{\bar{a}a}^{m-1}[\bar{b}b]$ iff $\mathcal{B} \models \bigwedge_{a \in A} \exists v_{s+1} \varphi_{\bar{a}a}^{m-1}(\bar{v}, v_{s+1}) \land \forall v_{s+1} \bigvee_{a \in A} \varphi_{\bar{a}a}^{m-1}(\bar{v}, v_{s+1})[\bar{b}]$
- iff $\mathcal{B} \models \varphi_{\bar{a}}^m[\bar{b}]$

$$3 \rightarrow 1$$
. $qr(\varphi_{\bar{a}}^m) = m$ and $A \models \varphi_{\bar{a}}^m[\bar{a}]$

 $1 \to 3$. Induction on m. The case m=0 is handled as above. Let m>0 and suppose that the duplicator wins $G_m(A,\bar a,\mathcal B,\bar b)$. Clearly the set of formulas $\varphi(x_1,\dots,x_s)$ satisfying 1 contains the atomic formulas and is closed under \neg and \lor (Since duplicator wins the game, there are partial isomorphisms). Suppose that $\varphi(\bar a)=\exists y\psi$ and $\operatorname{qr}(\varphi)\leq m$. Since $y\notin\operatorname{free}(\varphi)$, we can assume that y is distinct from the variables in $\bar x$. Hence $\psi=\psi(\bar x,y)$. Assume, for instance, $A\models\varphi(\bar a)$. Then there is $a\in A$ s.t. $A\models\psi[\bar a,a]$. As by 1, the duplicator wins $G_m(A,\bar a,\mathcal B,\bar b)$, there is $b\in B$ s.t. the duplicator wins $G_{m-1}(A,\bar aa,\mathcal B,\bar bb)$. Since $\operatorname{qr}(\psi)\leq m-1$, the induction hypothesis yields $\mathcal B\models\psi[\bar b,b]$, hence $\mathcal B\models\varphi[\bar b]$

Corollary 2.12. For structures A, B and $m \ge 0$ the following are equivalent

- 1. The duplicator wins $G_m(A, B)$
- 2. $\mathcal{B} \models \varphi_{\lambda}^{m}$
- 3. $A \equiv_m B$

Corollary 2.13. *Let* A *be a structure with* $||A|| \leq m$. *Then for all* B

$$\mathcal{B} \vDash \varphi_{\mathcal{A}}^{m+1} \quad \textit{iff} \quad \mathcal{A} \cong \mathcal{B}$$

The next result shows that the formulas $\varphi_{\bar{a}}^m$ give a clear picture of the expressive power of first-order logic

Theorem 2.14. Let $\varphi(v_1, \dots, v_s)$ be a formula of quantifier rank $\leq m$. Then

$$\models \varphi \leftrightarrow \bigvee \{\varphi^m_{A,\bar{a}} \mid A \text{ a structure }, \bar{a} \in A, \text{ and } A \models \varphi[\bar{a}]\}$$

Proof. Suppose first that $\mathcal{B} \models \varphi[\bar{b}]$. Then the formula $\varphi^m_{\mathcal{B},\bar{b}}$ is a member of the disjunction on the right side of the equivalence, which therefore is satisfied by \bar{b} .

Conversely, suppose $\mathcal{B} \models \bigvee \{\varphi^m_{\mathcal{A},\bar{a}}[\bar{a}]\}[\bar{b}]$. Then for some \mathcal{A} and \bar{a} s.t. $\mathcal{A} \models \varphi[\bar{a}]$ we have $\mathcal{B} \models \varphi^m_{\mathcal{A},\bar{a}}[\bar{b}]$. By Theorem 2.11 \bar{a} and \bar{b} satisfy the same formulas of quantifier rank $\leq m$ and therefore $\mathcal{B} \models \varphi[\bar{b}]$.

Theorem 2.15. For a class K of finite structures the following are equivalent

- 1. K is not axiomatizable in first-order logic
- 2. For each m there are finite structures A and B s.t.

$$A \in K, B \notin K \text{ and } A \equiv_m B$$

Proof. 2 \rightarrow 1 is proved in theorem 2.4. For the converse, suppose that 2 doesn't hold, i.e., that for some m and all finite A and B

$$A \in K$$
 and $A \equiv_m B$ imply $B \in K$

Then
$$K = \text{Mod}(\bigvee \{\varphi^m_{A} \mid A \in K\})$$
, and thus K is axiomatizable \square

2.3 Examples and Fraïssé's Theorem

Given structures A, B and $m \in \mathbb{N}$, let $W_m(A, B) :=$

$$\{\bar{a} \mapsto \bar{b} \mid s \geq 0, \bar{a} \in A^s, \bar{b} \in B^s, \text{ the duplicator wins } G_m(A, \bar{a}, \mathcal{B}, \bar{b})\}$$

be the set of winning positions for the duplicator. The sequence of the $W_M(\mathcal{A},\mathcal{B})$ has the back and forth properties as introduced in the following definition

Definition 2.16. Structures A and B are said to be m-isomorphic, written $A \cong_m B$, if there is a sequence $(I_i)_{i \leq m}$ with the following properties

- 1. Every I_i is a nonempty set of partial isomorphisms from A to B
- 2. (**Forth property**) For every j < m, $p \in I_{j+1}$ and $a \in A$ there is $q \in I_j$ s.t. $q \supseteq p$ and $a \in \text{dom}(q)$
- 3. **(Back property)** For every j < m, $p \in I_{j+1}$, and $b \in B$ there is $q \in I_j$ s.t. $q \supseteq p$ and $b \in \text{ran}(q)$

If $(I_j)_{j\leq m}$ has the properties 1,2 and 3, we write $(I_j)_{j\leq m}: A\cong_m \mathcal{B}$ and say that A and B are m-isomorphic via $(I_j)_{j\leq m}$

Exercise 2.3.1. Supppose $(I_j)_{j \leq m} : A \cong_m \mathcal{B}$. Then $(\tilde{I}_j)_{j \leq m} : A \cong_m \mathcal{B}$ with $\tilde{I}_j := \{q \in \operatorname{Part}(A, \mathcal{B}) \mid q \subseteq p \text{ for some } p \in I_j\}$. In particular, $\emptyset \mapsto \emptyset \in I_j$ for all $j \leq m$. Moreover

$$W_j(A, B) = W_j(A, B)$$

Proof. Forth property: Suppose j < m, $p \in \tilde{I}_{j+1}$ and $a \in A$. Then $p \subseteq p' \in I_{j+1}$. Then we have $q' \in I_j$ with $a \in \text{dom}(q')$ and $p' \subseteq q'$. We construct $q = p \cup \{(a, q'(a))\}.$ $q \in \text{Part}(A, B)$ since $q' \in \text{Part}(A, B)$.

Theorem 2.17. For structures A and B, $\bar{a} \in A^s$, $\bar{b} \in B^s$ and $m \ge 0$ the following are equivalent

1. The duplicator wins $G_m(A, \bar{a}, B, \bar{b})$

- 2. $\bar{a} \mapsto \bar{b} \in W_m(A, \mathcal{B})$ and $(W_i(A, \mathcal{B}))_{i \le m} : A \cong_m \mathcal{B}$
- 3. There is $(I_i)_{i \leq m}$ with $\bar{a} \mapsto \bar{b} \in I_m$ s.t. $(I_i)_{i \leq m} : A \cong_m \mathcal{B}$
- 4. $\mathcal{B} \vDash \varphi_{\bar{a}}^m[\bar{b}]$
- 5. \bar{a} satisfies in A the same formulas of quantifier rank $\leq m$ as \bar{b} in B

Proof. $1 \to 2$. For each $\bar{a} \mapsto \bar{b} \in W_m(A, \mathcal{B})$, by Lemma 2.7 the duplicator wins $G_0(A, \bar{a}, \mathcal{B}, \bar{b})$ as the duplicator wins $G_m(A, \bar{a}, \mathcal{B}, \bar{b})$. For j < m, $\bar{a} \mapsto \bar{b} \in W_{i+1}(A, \mathcal{B})$ and $a \in A$. We have $\bar{a}a \mapsto \bar{b}b \in W_i(A, \mathcal{B})$ for some $b \in B$.

- $2 \rightarrow 3$. Obvious
- $3 \to 1$. Suppose that $(I_j)_{j \le m} : A \cong_m \mathcal{B}$ and $\bar{a} \mapsto \bar{b} \in I_m$. We describe a winning strategy in $G_m(A, \bar{a}, \mathcal{B}, \bar{b})$ for the duplicator: in his *i*-th move he should choose the element e_i s.t. for $p_i : \bar{a}e_1 \dots e_i \mapsto \bar{b}f_1 \dots f_i$ it is true that $p_i \subseteq q$ for some $q \in I_{m-i}$; this is always possible because of the back and forth properties of $(I_j)_{j \le m}$

Corollary 2.18. For structures A, B and $m \ge 0$ the following are equivalent

- 1. the duplicator wins $G_m(A, \mathcal{B})$
- 2. $(W_i(\mathcal{A},\mathcal{B}))_{i \le m} : \mathcal{A} \cong_m \mathcal{B}$
- 3. $A \cong_m B$
- 4. $\mathcal{B} \models \varphi_{A}^{m}$
- $5. A \equiv_m \mathcal{B}$

the equivalence of 3 and 5 is known as Fraïssé's Theorem.

Example 2.1. Let τ be the empty vocabulary and \mathcal{A} and \mathcal{B} be τ -structures. Suppose $\|A\| \geq m$ and $\|B\| \geq m$. Then $\mathcal{A} \cong_m \mathcal{B}$. In fact, $(I_j)_{j \leq m} : \mathcal{A} \cong_m \mathcal{B}$ with $I_j := \{p \in \operatorname{Part}(\mathcal{A}, \mathcal{B}) \mid \|\operatorname{dom}(p)\| \leq m - j\}$

As a consequence the class EVEN[τ] of finite τ -structures of even cardinality is not axiomatizable in first-order logic. In fact, for each m>0, let A_m be a structure of cardinality m. Then $A_m \in \text{EVEN}[\tau]$ iff $A_{m+1} \notin \text{EVEN}[\tau]$, but $A_m \cong_m A_{m+1}$. Now apply Theorem 2.15.

Prove that for arbitrary τ that EVEN[τ] is not axiomatizable.

Example 2.2. Let $\tau = \{<, \min, \max\}$ be a vocabulary for finite orderings. Suppose that A and B are finite orderings, $||A|| > 2^m$ and $||B|| > 2^m$ and

 $m \ge 1$. Then $A \cong_m \mathcal{B}$. Hence the class of finite orderings of even cardinality is not axiomatizable in first-order logic. If we consider orderings as $\{<, S, \min, \max\}$ -structures, the last statements remains true

Given any ordering C, we define its distance function d by

$$d(a, a') := \|\{b \in C \mid (a < b \le a') \text{ or } (a' < b \le a)\}\|$$

And for $j \ge 0$, we introduce the "truncated" j-distance function d_j on $C \times C$ by

$$d_j(a,a') := \begin{cases} d(a,a') & \text{if } d(a,a') < 2^j \\ \infty \end{cases}$$

Now suppose that A and B are finite orderings with ||A||, $||B|| > 2^m$. For $j \le m$ set

$$I_i := \{ p \in \operatorname{Part}(A, B) \mid d_i(a, a') = d_i(p(a), p(a')) \text{ for } a, a' \in \operatorname{dom}(p) \}$$

Then $(I_j)_{j \leq m}: A \cong_m \mathcal{B}$: by assumption on the cardinalities of A and B we have $\{(\min^A, \min^B), (\max^A, \max^B)\} \in I_j$ for every $j \leq m$. To give a proof of the forth property of $(I_j)_{j \leq m}$, suppose $j < m, p \in I_{j+1}$ and $a \in A$. We distinguish two cases, depending on whether or the following condition

there is an
$$a' \in dom(p)$$
 s.t. $d_i(a, a') < 2^j$

is satisfied. If the condition holds then there is exactly one $b \in B$ for which $p \cup \{(a,b)\}$) is a partial isomorphism preserving d_j -distances. Now assume that the condition doesn't hold. let $\mathrm{dom}(p) = \{a_1, \dots, a_r\}$ with $a_1 < \dots < a_r$. We restrict outselves to the case $a_i < a < a_{i+1}$ for some i. Then $d_j(a_1,a) = \infty$ and $d_j(a,a_{i+1}) = \infty$; hence $d_{j+1}(a_i,a_{i+1}) = \infty$ and therefore $d_{j+1}(p(a_i),p(a_{i+1})) = \infty$. Thus there is a b s.t. $p(a_i) < b < p(a_{i+1}), d_j(p(a_i),b) = \infty$ and $d_j(b,p(a_{i+1})) = \infty$. We can verify that $q := p \cup \{(a,b)\}$ is a partial isomorphism

Example 2.3. Let $\tau = \{<, \min, \max\}$ be as in the preceding example and $\sigma = \tau \cup \{E\}$ with a binary relation symbol E. For $n \geq 3$ let A_n be the ordered τ -structure with $A_n = \{0, \dots, n\}$, $\min^{A_n} = 0$, $\max^{A_n} = n$, where $<^{A_n}$ is the natural ordering on A_n and

$$E^{A_n} = \{(i,j) \mid |i-j| = 2\} \cup \{(0,n), (n,0), (1,n-1), (n-1,1)\}$$

 (A_n, E^{A_n}) is a graph that is connected iff n is odd. Now let $m \ge 2$ and $l, k \ge 2^m$

3 Problem List

2.1

