#### Concorrência



# Introdução

- Sistema monoprogramável:
  - Utilização ineficiente de recursos
    - Ao realizar uma operação de E/S o processador fica ocioso.
    - Ao realizar uma operação lógico-aritmética os dispositivos de E/S ficam ociosos
- Sistema multiprogramável:
  - Evolução do sistema anterior
    - Compartilhamento eficiente de recursos entre os programas

<del>--</del> --

# Introdução

Monoprogramável vs Multiprogramável



-- 3

- Eventos que geram desvios do fluxo de execução:
- Interrupção (Inesperados)
  - Sinalização de dispositivos
- Exceção (Esperados)
  - Exceções de software
- Conceito fundamental para a multiprogramação.

<del>--</del> --

- Funcionamento
  - Unidade de Controle verifica interrupção após cada instrução.
    - Caso exista alguma, programa é interrompido e a interrupção tratada.
    - Gravação do estado do programa atual.
    - Execução da rotina de tratamento
    - Retorno da execução do programa interrompido





1 – Processador executando um fluxo (programa) qualquer



2 – Um pacote vindo da rede é recebido pela placa Ethernet

-- --

8



3 – A placa envia uma solicitação de IRQ ao processador

9



4 – Acontece a troca de contexto para o tratamento da Interrupção



5 – Rotina de tratamento e executada e transferências são realizadas



6 – Rotina de tratamento acaba e nova troca de contexto ocorre

- Várias interrupções podem ocorrer ao mesmo tempo
  - Apenas uma é tratada
    - Processador trata uma das interrupções e ignora as demais (Interrupções Mascaráveis).
  - Todas são tratadas
    - Processador trata primeiro a considerada mais importante (noção de prioridade).

- Exceção
  - Evento síncrono gerado pelo próprio programa em execução.
    - Divisão por zero, overflow, violação de regras de negócio
    - Síncrono, pois se a execução for repetida com a mesma entrada de dados a exceção voltará a ocorrer.

#### Operações de E/S

- Primeiros Sistemas Computacionais
  - Forte dependência entre processador e dispositivos
    - Exemplo: processador especificava trilha e setor para a leitura de dados em um HD.
- Controlador/Interface de Dispositivos
  - Permitiu independência do processador

# Operações de E/S





#### Buffering

- Resolve Problemas de disparidade entre velocidade das unidades funcionais
- Tamanho depende do tipo de dispositivo
  - Bloco, linha de impressão, caractere do teclado, etc.



17

# Spooling

- Sequência de tarefas armazenadas em memória para serem entregues ao processador
- Usado inicialmente em sistemas batch
- Usado principalmente como técnica para impressão.



#### Reentrância

- Capacidade de vários usuários usarem o mesmo código
- Melhor aproveitamento da memória
- Aumento do desempenho do sistema



#### Proteção do Sistema

- Concorrência é bom, mas deve permitir
  - Separação dos códigos dos usuários
  - Arquivos protegidos para cada usuário
  - Utilização justa do processador
- Sistema Operacional deve gerenciar essas tarefas.