Zkouška KG1, Martin Koutecký

Prezenční zkouška bude probíhat následovně. Na dalších stranách najdete okruhy - jsou rozděleny do třech skupin (početní, grafové, kombinatorické struktury), v každé skupině je několik podtémat a každé z nich obsahuje seznam a) definic, b) tvrzení/vět. Na zkoušce dostanete z každé skupiny a) definici z jedné podskupiny a b) větu z jiné podskupiny. Tedy např. ze skupiny "Grafové" můžete dostat definici z toků (např. co je to nasycený tok) a větu z Ramseyovy teorie (třeba nekonečnou vícebarevnou grafovou).

Potom, co témata dostanete, je vaším úkolem **zformulovat** zadané definice/tvrzení. V první fázi od vás **nechci**, abyste je dokazovali. Až budete mít sepsané formulace, přivoláte mě nebo cvičícího, pokud budete mít vše správně, zeptáme se vás, jak byste dokazovali jedno z tvrzení - přibližně strategie/struktura důkazu. Pokud i to bude správně, máte za 1 a jdete domů. Pokud ne, necháme vás důkaz sepsat pořádně. Pokud nastanou problémy už ve formulacích, budeme se dále doptávat a podle množství vašich chybějících znalostí a nutných nápověd se bude zhoršovat vaše známka.

Distanční zkouška bude probíhat jinak. Je to z toho důvodu, že ve výše popsaném formátu zkoušky je příliš jednoduché podvádět. Proto na distanční zkoušce budu za všech okolností chtít důkaz nějakého netriviálního tvrzení. Může to být jedno z tvrzení ze seznamu níže, ale může to být i nějaké jednoduché cvičení, které se znalostí definic a vět z přednášky jde relativně snadno dokázat, ale nejde (jednoduše) si jeho řešení předpřipravit.

Početní

Odhady

- Definice
 - Stirlingova formule: $n! \approx \sqrt{2\pi n} (n/e)^n$
 - Náhodná procházka
- Větv / důležitá tvrzení
 - $\circ e(n/e)^n \le n! \le en(n/e)^n$
 - o Pro malé k je OK odhad $\binom{n}{k} \le n^k$
 - $\circ \quad \frac{2^n}{n+1} \le \binom{n}{n/2} \le 2^n$
 - $\circ \quad \frac{2^{2m}}{2\sqrt{m}} \le \binom{2m}{m} \le \frac{2^{2m}}{\sqrt{2m}}$
 - o Střední hodnota počtu návratů do počátku během náhodné procházky jde k s rostoucím počtem kroků n k nekonečnu

Vytvořující funkce

- Definice
 - Mocninná řada
 - Vytvořující funkce posloupnosti
 - o Operace s funkcemi a posloupnostmi jen vyjmenovat; zejména konvoluce
 - o Zobecněné binomické číslo $\binom{r}{k}$ pro r záporné a neceločíselné
- Věty / důležitá tvrzení
 - Operace s funkcemi a posloupnostmi (ukázat, proč $\alpha a(x) \approx (\alpha a_0, \alpha a_1, ...)$ nebo $x \, a(x) \approx (0, a_0, a_1, \dots)$ atd.); zejména konvoluce
 - Zobecněná binomická věta (bez důkazu)
 - Odvození uzavřeného vzorce pro Fibonacciho čísla
 - o Odvození uzavřeného vzorce pro Catalanova čísla

Počítání dvěma způsoby

- Definice
 - Množinový systém, řetězec, antiřetězec
 - o kostry, ...
- Věty / důležitá tvrzení
 - Spernerova věta
 - o Graf bez čtyřcyklu má nanejvýš $\frac{1}{2} (n^{3/2} + n)$ hran o Cayleyho formule: $\kappa(n) = n^{n-2}$

Grafové

Toky

- Definice
 - o síť, tok, velikost toku
 - o řez, kapacita řezu, elementární řez
 - o nasycená/nenasycená cesta, nasycený tok
 - o Ford-Fulkersonův algoritmus
 - o párování, perfektní párování, vrcholové pokrytí
 - o systém různých reprezentantů
- Věty / důležitá tvrzení
 - Max-flow min-cut: pro každou síť je velikost max toku = kapacita min řezu
 - Pro každou $A \subseteq V, z \in A, s \in V \setminus A$ a libovolný tok platí $w(f) = f(A, V \setminus A) f(V \setminus A, A)$
 - o f je maximální právě když f je nasycený
 - F-F doběhne a dá racionální tok pokud jsou kapacity racionální; pokud jsou celočíselné, dá celočíselný tok
 - Celočíselný tok lze rozdělit na celočíselný součet cest a cyklů
 - Königova věta: v bipartitním grafu |max. párování| = |min. vrcholové pokrytí|
 - Hallova věta: SRR / párování pokrývající partitu existuje právě když platí Hallova podmínka
 - Doplňování latinských obdélníků

Souvislost

- Definice
 - Hranový, vrcholový řez
 - o hranová, vrcholová souvislost
 - G je hranově/vrcholově k-souvislý
 - Ušatá dekompozice 2-souvislých grafů (definice)
- Věty / důležitá tvrzení
 - $\circ \quad k_e(G) 1 \le k_e(G e) \le k_e(G)$
 - $\circ k_v(G) 1 \le k_v(G e) \le k_v(G)$
 - Hlavní věta: $k_v(G) \le k_e(G)$
 - Ford-Fulkerson: G je hranově k-souvislý právě když existuje aspoň k hranově disjunktních cest mezi každými dvěma vrcholy
 - Menger: G je vrcholově k-souvislý právě když existuje aspoň k vrcholově vnitřně disjunktních cest mezi každými dvěma vrcholy
 - Ušatá dekompozice 2-souvislých grafů (důkaz)

Ramseyova teorie

- Definice
 - Ramseyovo číslo R(k,k)
 - o velikost max kliky $\omega(n)$, velikost max nz. mn. $\alpha(n)$
- Věty / důležitá tvrzení
 - ο Standardní grafová: pokud má G alespoň $\binom{k+l-2}{k-1}$ vrcholů, pak obsahuje buď K_k nebo E_l , neboli ω(G) ≥ k nebo α(G) ≥ l

- o Dolní odhad: $\binom{n}{k} 2^{1-\binom{k}{2}} \rightarrow r(k) > n$, tedy $r(k) > 2^{k/2}$
- o Königovo lemma o nekonečné větvi
- o Ramseyova vícebarevná (nekonečná)
- o Ramseyova vícebarevná pro p-tice (nekonečná)

Kombinatorické struktury

Konečné projektivní roviny

- Definice
 - Konečná projektivní rovina (tři axiomy)
 - Řád KPR
 - Incidenční graf množinového systému
 - Duál konečné projektivní roviny
 - o Konstrukce KPR řádu $n = p^k$ pro nějaké prvočíslo p (bez důkazu)
 - Latinský čtverec řádu n, ortogonalita LČ
- Věty / důležitá tvrzení
 - V KPR mají všechny přímky stejný počet bodů
 - Každým bodem prochází n+1 přímek
 - $|X| = n^2 + n + 1 = \#p\check{r}imek$
 - o Duál KPR je opět (ne nutně stejná) KPR
 - O Konstrukce KPR řádu $n = p^k$ pro nějaké prvočíslo p (s důkazem)
 - o Pro daný řád n může existovat nanejvýš n-1 NOLČ
 - o Existuje n-1 NOLČ právě tehdy když existuje KPR řádu n

Samoopravné kódy

- Definice
 - o abeceda, zpráva, slovo, kódové slovo, kód
 - o velikost kódu, délka kódu, dimenze kódu, minimální vzdálenost kódu, (n,k,d)-kód
 - o totální kód, opakovací kód, paritní kód
 - $\circ \quad A(n,d) = \max \log |C|$
 - o Lineární kód, min. vzdálenost lin. kódu, počet prvků, ...
 - Duální kód lineárního kódu
 - o Generující a kontrolní matice lineárního kódu
 - o Chybový vektor, syndrom, reprezentant
 - o perfektní kód
 - Hadamardův kód je duál Hammingova kódu a je dobrý pro obzvlášť nespolehlivé kanály
- Věty / důležitá tvrzení
 - Simpletonův odhad: $A(n,d) \le n d + 1$
 - o Parita: pro d sudé platí A(n,d) = A(n-1,d-1)
 - Kódování a dekódování lineárních kódů
 - O Hammingovy kódy konstrukce (pozorování, že pokudP je kontrolní matice C, pak $\Delta(C)$ =max. d t.ž. každých d-1 sloupců P je lineárně nezávislých), Hammingův kód je $[2^r 1, 2^r r 1, 3]$ -kód, dekódování Hammingova kódu
 - o Hammingův odhad na velikost kódu se zadanou $\Delta(C)$, důkaz že Ham. kód je perfektní