Заметки семинаров по курсу «Уравнения математической физики»

Автор: Хоружий Кирилл

От: 25 сентября 2021 г.

1 Семинар от 25.09.21 (Фурье и Лаплас)

Про Фурье. Как раньше нашли

$$L(\partial_t)G(t) = \delta(t), \quad \Rightarrow \quad \hat{x}(\omega) = \int_{\mathbb{R}} e^{-i\omega t} x(t) dt, \quad x(t) = \int_{\mathbb{R}} e^{i\omega t} \hat{x}(\omega) \frac{d\omega}{2\pi}.$$

Для этого должно выполняться

$$\int |x(t)| \, dd < +\infty.$$

Hanpumep, для $\partial_t + \gamma$:

$$(\partial_t + \gamma)G(t) = \delta(t), \quad \Rightarrow \quad \int_{\mathbb{R}} \frac{dt}{dt} e^{-i\omega t} dt = x(t)e^{-i\omega t} \Big|_{-\infty}^{+\infty}, \quad \Rightarrow \quad (i\omega + \gamma)\hat{G}(\omega) = 1, \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{i\omega + \gamma}.$$

Так приходим к уравнению

$$G(t) = \int_{\mathbb{R}} \frac{e^{i\omega t}}{\omega - i\gamma} \frac{d\omega}{2\pi} = \left\{ e^{-\gamma t}, \quad t > 00, \quad t < 0 \qquad \Rightarrow \qquad \hat{G}(\omega) = \theta(t)e^{-|t|}.$$

Однако, при $\hat{L} = \partial_t - \gamma$ мы бы получили

$$G_A(t) = \theta(-t)e^{\gamma t},$$

хотя вообще должно быть (если посчитать через неопределенные коэффициенты)

$$G_R(t) = \theta(t)e^{\gamma t},$$

которая растёт.

В методе с Фурье будут получаться функции Грина затухающие, но, возможно, без причинности. В методе неопределенных коэффициентов исходим из причинности, но может быть рост $\sim e^{\gamma t}$.

Кроме того, в Фурье всегда предполагается $x(t \to -\infty) = 0$ и $x(t \to +\infty) = 0$. Также может случиться

$$(\partial_t^2 + \omega_0^2)G(t) = \delta(t), \quad \Rightarrow \quad \hat{G}(\omega) = \frac{1}{\omega^2 - \omega_0^2},$$

с особенностями на вещественной оси, что можно решить, сместив полюса в С.

Свёртка. Рассмотрим уравнение

$$L(\partial_t)x(t) = f(t), \quad L(\partial_t)G(t) = \delta(t).$$

Фурье переводит

$$\int_{\mathbb{R}} \partial_x^n x(t) e^{-i\omega t} dt = (i\omega)^n \hat{x}(\omega).$$

Тогда

$$L(i\omega)\hat{x}(\omega) = \hat{f}(\omega), \qquad L(i\omega)\hat{G}(\omega) = 1, \qquad \Rightarrow \qquad \hat{G}(\omega) = \frac{1}{L(i\omega)}.$$

Также нашли, что

$$\hat{x}(\omega) = \frac{\hat{f}(\omega)}{L(i\omega)} = \hat{f}(\omega)\hat{G}(\omega), \quad \Rightarrow \quad x(t) = \int_{-\infty}^{+\infty} G(t-s)f(s) ds.$$

Преобразование Лапласа. Пусть есть некоторое преобразование

$$\tilde{f}(p) = \int_0^\infty e^{-pt} f(t) \, dt,$$

где подразумевается, что $\operatorname{Re} p \geqslant 0$ и, вообще, в Фурье можно $p \in \mathbb{C}$.

Пусть $p = i\omega$, где $\omega \in \mathbb{R}$. Тогда

$$\tilde{f}(i\omega) = \int_{\mathbb{R}} e^{-i\omega t} f(t) dt = \hat{f}(\omega), \quad \Rightarrow \quad f(t) = \int_{\mathbb{R}} \hat{f}(\omega) e^{i\omega t} \frac{d\omega}{2\pi} = \int_{\mathbb{R}} \tilde{f}(i\omega) e^{i\omega t} \frac{d\omega}{2\pi} = \int_{-i\infty}^{i\infty} e^{pt} \tilde{f}(p) \frac{dp}{2\pi}.$$

В вычислениях выше мы предполагали, что $f(t \to \infty) = 0$.

Обойдём это, пусть $|f(t)| < Me^{st}$, при s > 0. Возьмём $p_0 > s$, тогда

$$\tilde{f}(p) = \int_{\mathbb{R}} e^{-p_0 t} e^{-(p-p_0)t} f(t) dt = \tilde{g}(p-p_0),$$

где вводе $g(t) = e^{-ip_0t}f(t)$, которая уже убывает на бесконечности. Обратно:

$$g(t) = \int_{-i\infty}^{+i\infty} \tilde{g}(p)e^{pt} \frac{dp}{2\pi} = \int_{p_0 - i\omega}^{p_0 + i\omega} \tilde{g}(p - p_0)e^{-p_0 t}e^{pt} \frac{dp}{2\pi i}.$$

Так пришли к форме обращения

$$f(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \tilde{f}(p) \frac{dp}{2\pi i}, \qquad \tilde{f}(p) = \int_{\mathbb{R}} e^{-p_0 t} e^{-(p - p_0)t} f(t) dt = \tilde{g}(p - p_0), \tag{1}$$

где $g(t) = e^{-ip_0t} f(t)$.

Забавный факт, из леммы Жордана: при t < 0 f(t < 0) = 9, по замыканию дуги по часовой стрелке (вправо). Выбирая p_0 так, чтобы все особенности лежали левее p_0 , можем получать причинные функции.

Производная. Найдём преобразование Лапласа для $\partial_t f(t)$:

$$\int_0^\infty \frac{df}{dt} e^{-pt} \, dt = f e^{-pt} \bigg|_0^\infty + p \int_0^\infty f(t) e^{-pt} \, dt = p\tilde{f}(p) - f(+0).$$

Но, для функции Грина $L(\partial_t)G(t) = \delta(t)$, тогда

$$L(\partial_t)G_{\varepsilon}(t) = \delta(t-\varepsilon), \qquad G_{\varepsilon}(t) = G(t-\varepsilon), \qquad \Rightarrow \qquad G_{\varepsilon}(0) = 0,$$

где $G_{\varepsilon} \to G(t)$ при $\varepsilon \to 0$.

Преобразуем¹ по Лапласу уравнения выше

$$L(p)G(p) = e^{p\varepsilon} = 1, \quad \Rightarrow \quad G_{\varepsilon}(p) = \frac{1}{L(p)}, \quad \stackrel{\varepsilon \to 0}{\Rightarrow} \quad G(p) = \frac{1}{L(p)}.$$

Так получаем

$$G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{\tilde{L}(p)} \frac{dp}{2\pi i},\tag{2}$$

где p_0 правее всех особенностей.

Пример. Рассмотрим $L = \partial_t + \gamma$, тогда

$$(p+\gamma)G(p)=1, \quad \Rightarrow \quad G(p)=\frac{1}{p+\gamma}, \quad \Rightarrow \quad G(t)=\int_{-i\infty}^{i\infty}\frac{e^{pt}}{p+\gamma}\frac{dp}{2\pi i}=\theta(t)e^{-\gamma t}.$$

Аналогично, пусть $L=\partial_t^2+\omega^2$, тогда $LG(t)=\delta(t)$, и

$$G(p) = \frac{1}{p^2 + \omega^2}, \quad \Rightarrow \quad G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{p^2 + \omega^2} \frac{dp}{2\pi i} = \begin{cases} 0, & t < 0 \\ \dots, & t > 0 \end{cases} = \theta(t) \left(\frac{e^{i\omega t}}{2i\omega} + \frac{e^{-i\omega t}}{-2i\omega t} = \theta(t) \frac{\sin \omega t}{\omega} \right)$$

В общем виде, пусть $L(\partial_t)G(t) = \delta(t)$, тогда

$$L(p)G(p) = 1, \quad \Rightarrow \quad G(p)\frac{1}{L(p)}, \quad \Rightarrow \quad G(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{e^{pt}}{L(p)} \frac{dp}{2\pi i}$$

Поговорим про свёртку:

$$Lx = f, \quad \Rightarrow \quad L(p)x(p) = f(p), \quad L(p)G(p) = 1, \quad \Rightarrow \quad G(p) = \frac{1}{L(p)}.$$

Тогда получается

$$x(p) = \frac{f(p)}{L(p)} = f(p)G(p), \quad \Rightarrow \quad x(t) = \int_0^t G(t-s)f(s) ds.$$

Уравнение Вольтера. Иногда бывает уравнения на x(s) вида

$$f(t) = \int_0^t x(s)K(t-s) ds.$$
 (3)

Через преобразрвание Лапласа, находим

$$f(p) = x(p)K(p), \quad \Rightarrow \quad x(p) = \frac{f(p)}{K(p)}.$$
 (4)

¹Здесь и далее f(t) – функция, $f(\omega) = \hat{f}(\omega)$ – Фурье образ, $f(p) = \tilde{f}(p)$ – преобразование Лапласа.

В общем виде тогда находим

$$x(t) = \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{f(p)}{K(p)} e^{pt} \frac{dp}{2\pi i}.$$

Кстати, забавный факт:

$$\int_{p_0 - i\infty}^{p_0 + i\omega} 1 \cdot e^{pt} \frac{dp}{2\pi i} = e^{p_0 t} \int_{-i\infty}^{i\infty} e^{pt} \frac{dp}{2\pi i} = e^{p_0 t} \int_{-\infty}^{+\infty} e^{i\omega t} \frac{d\omega}{2\pi} = \delta(t), \tag{5}$$

то есть преобразование Лапласа от константы – дельта функция.

Рассмотрим, например

$$\int_{-i\infty}^{i\infty} \frac{p+1-1}{p+1} e^{pt} \frac{dp}{2\pi i} = \int_{-i\infty}^{i\infty} e^{pt} \frac{dp}{2\pi i} - \int_{-i\infty}^{+i\infty} \frac{e^{pt}}{p+1} \frac{dp}{2\pi} = \delta(t) - \theta(t)e^{-t}.$$

Также верно, что

$$\int_{-i\infty}^{i\infty} pe^{pt} \frac{dp}{2\pi i} = \delta'(t).$$

Действительно,

$$\frac{d}{dt}\left(\int_{-i\infty}^{i\infty} e^{pt} \frac{dp}{2\pi i}\right) = \frac{d}{dt}\delta(t) = \delta'(t).$$

Важно, что можно делать функции маленькими

$$\int_{p_0 - i\infty}^{p_0 + i\omega} f(p)e^{pt} \frac{dp}{2\pi i} = \left(\frac{d}{dt}\right)^n \int_{p_0 - i\infty}^{p_0 + i\omega} \frac{f(p)}{p^n} e^{pt} \frac{dp}{2\pi i}.$$
 (6)

Неоднородная релаксация. Рассмотрим уравнение

$$(\partial_t + \gamma(t))G(t,s) = \delta(t-s), \qquad x(t) = \int_{-\infty}^{+\infty} G(t,s)f(s) ds,$$

где продолжаем требовать причинность G(t,s>t)=0. Для начала, рассмотрим t>s, тогда

$$(\partial_t + \gamma(t))G(t) = 0, \quad \Rightarrow \quad \frac{dG}{G} = -\gamma(t) dt, \quad \Rightarrow \quad G(t,s) = A(s) \exp\left(-\int_{t_0}^t \gamma(t') dt'\right).$$

Также записываем граничные условия:

$$\int_{s-\varepsilon}^{s+\varepsilon} \dots ds, \quad \Rightarrow \quad G(s+0,s) = 1.$$

Так можем найти

$$A(s) \exp\left(-\int_{t_0}^{s} \gamma(t') dt'\right) = 1, \quad \Rightarrow \quad G(t, s) = \theta(t - s) \exp\left(-\int_{s}^{t} \gamma(t') dt'\right), \tag{7}$$

где мы разбили

$$\int_{t_0}^t = \int_{t_0}^s + \int_s^t,$$

и получили, что хотели.

Комментарий про дельта функцию. Главное, нужно показать, что

$$\int_{-\infty}^{+\infty} \delta_a(x) = 1, \qquad \lim_{a \to 0} \delta_a(x) = 0, \text{ при } x \neq 0.$$

Вообще можем плодить дельтаобразные последовательности, взяв f с единичным интегралом и

$$\delta_a(x) = \frac{1}{a} f\left(\frac{x}{a}\right).$$

Комментарий про преобразование Лапласа. Для функции вида

$$\frac{1}{\sqrt{p+\alpha}}$$
,

необходим аппарат разрезов, так что её можно сделать с шифтом на неделю.

На следующей недели будет контрольная. Необходим аппарат метода неопределенных коэффициентов, матричные экспоненты, решение диффуров через Фурье (не всегда причинный результат), а также преобразование Лапласа. Вычеты скорее всего в районе второго порядка и меньше. Ещё полезно вспонить, как записывать начальные условия: осцияллятор, осциллятор с затуханием.