Lecture 12

Classification

Readings: Zelterman, 2015, Chapter 10.1-10.4; Izenman, 2008 Chapter 8.1-8.4; ISLR, 2021 Chapter 9

DSA 8070 Multivariate Analysis November 7 - November 11, 2022

> Whitney Huang Clemson University

Notes			

Agenda

- Overview
- 2 Binary Linear Classification
- Support Vector Machines

Notes				
-				
-				

Classification

Data:

 $\{\boldsymbol{X}_i, Y_i\}_{i=1}^n,$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

Quantity of interest: $P(Y = k_{th} \text{ category} | \boldsymbol{X} = \boldsymbol{x})$

In this lecture we will focus on binary linear classification

Classification	
Overview	

Notes			

Toy Example

Wish to classify a new observation $x_i=(x_{1i},x_{2i})$, denoted by (*), into one of the two groups (class 1 or class 2)

Notes

Toy Example Cont'd

We can compute the distances from this new observation ${m x}=(x_1,x_2)$ to the groups, for example,

$$d_1 = \sqrt{(x_1 - \mu_{11})^2 + (x_2 - \mu_{12})^2},$$

$$d_2 = \sqrt{(x_1 - \mu_{21})^2 + (x_2 - \mu_{22})^2}.$$

We can assign \boldsymbol{x} to the group with the smallest distance

Classification

Overview

Binary Linear Classification Support Vector

Notes

Variance Corrected Distance

In this one-dimensional example, $d_1=|x-\mu_1|>|x-\mu_2|$. Does that mean x is "closer" to group 2 (red) than group 1 (blue)?

We should take the "spread" of each group into account. $\tilde{d}_1=|x-\mu_1|/\sigma_1<\tilde{d}_2=|x-\mu_2|/\sigma_2$

verview

Classification
Support Vector

Notes			

General Covariance Adjusted Distance: Mahalanobis Distance

The Mahalanobis distance [Mahalanobis, 1936] is a measure of the distance between a point x and a multivariate distribution of X:

$$D_M(\boldsymbol{x}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})},$$

where μ is the mean vector and Σ is the variance-covariance matrix of \boldsymbol{X}

One can use the Mahalanobis distance, by computing the Mahalanobis distance between an observations x_i and the "center" of the k_{th} population μ_k , to carry out classification

Binary Classification with Multivariate Normal Populations

Assume $\textbf{\textit{X}}_1 \sim \mathrm{MVN}(\pmb{\mu}_1, \pmb{\Sigma}), \, \textbf{\textit{X}}_2 \sim \mathrm{MVN}(\pmb{\mu}_2, \pmb{\Sigma}),$ that is, $\Sigma_1 = \Sigma_2 = \Sigma$

• Maximum Likelihood of group membership:

Group 1 if
$$\ell(\boldsymbol{x}, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) > \ell(\boldsymbol{x}, \boldsymbol{\mu}_2, \boldsymbol{\Sigma})$$

Linear Discriminant Function:

Group 1 if
$$(\mu_1 - \mu_2)^T \Sigma^{-1} x - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$$

Minimize Mahalanobis distance:

Group 1 if
$$(x-\mu_1)^T \Sigma^{-1} (x-\mu_1) < (x-\mu_2)^T \Sigma^{-1} (x-\mu_2)$$

All the methods above are equivalent

Notes

Notes

Priors and Misclassification Costs

In addition to the observed characteristics of units $\{x_i\}_{i=1}^n$, other considerations of classification rules are:

Prior probability:

If one population is more prevalent than the other, chances are higher that a new unit came from the larger population. Stronger evidence would be needed to allocate the unit to the population with the smaller prior probability.

Costs of misclassification:

It may be more costly to misclassify a seriously ill subject as healthy than to misclassify a healthy subject as being ill.

Classification
CLEMS#N
Binary Linear Classification

Notes			

Classification Regions and Misclassifications

 \bullet The probability of misclassifying an object into π_2 when it belongs in π_1 is

$$P(2|1) = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_2 | \pi_1)$$

• The probability of misclassifying an object into π_1 when it belongs in π_2 is

$$P(1|2) = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_1 | \pi_2)$$

Source: Figure 11.3 from Applied Multivariate Statistical Analysis, 6th Ed (Johnson & Wichern).

Probability and Expected Cost of Misclassification

Let p_1 and p_2 denote the prior probabilities of $\pi_1,\pi_2,$ and c(1|2),c(2|1) be the costs of nisclassification:

• Then probabilities of the four possible outcomes are:

```
\begin{array}{ll} \mathbb{P}(\text{correctly classified as }\pi_1) & = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_1 | \pi_1) \mathbb{P}(\pi_1) = P(1 | 1) p_1 \\ \mathbb{P}(\text{incorrectly classified as }\pi_1) & = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_1 | \pi_2) \mathbb{P}(\pi_2) = P(1 | 2) p_2 \\ \mathbb{P}(\text{correctly classified as }\pi_2) & = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_2 | \pi_2) \mathbb{P}(\pi_2) = P(2 | 2) p_2 \\ \mathbb{P}(\text{incorrectly classified as }\pi_2) & = \mathbb{P}(\boldsymbol{X} \in \mathcal{R}_2 | \pi_1) \mathbb{P}(\pi_1) = P(2 | 1) p_1 \end{array}
```

 Classification rules are often evaluated in terms of the expected cost of misclassification (ECM):

$$ECM = c(2|1)P(2|1)p_1 + c(1|2)P(1|2)p_2,$$

and we seek rules that minimize the ECM

Notes

Notes

....

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width), 3 species (setosa, versicolor, and virginica)

Task: Classify flowers into different species based on lengths and widths of sepal and petal

Notes			

Fisher's Iris Data Cont'd

Let's focus on the latter two classes (versicolor, and virginica)

Classification
CLEMS N
Binary Linear Classification
12.13

Notes			

Fisher's iris Data Cont'd

To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

Notes				

Screen Plot

Classification
CLEMS N
Binary Linear Classification

12.15

Notes			

Linear Discriminant Analysis

Main idea: Use Bayes rule to compute

 $P(Y=k|\boldsymbol{X}=\boldsymbol{x}) = \frac{P(Y=k)P(\boldsymbol{X}=\boldsymbol{x}|Y=k)}{P(\boldsymbol{X}=\boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})}{\sum_{k=1}^K \pi_k f_k(\boldsymbol{x})} \frac{\pi_k f_k$

Assuming $f_k(x) \sim \text{MVN}(\mu_k, \Sigma), \quad k = 1, \cdots, K$ and use $\hat{\pi}_k = \frac{n_k}{n} \Rightarrow$ it turns out the resulting classifier is linear in X

(x) Out-view

if k (x) y Unear

Kupport Vector

Machines

Notes

Classification Performance Evaluation

fit.LDA
versicolor virginica
versicolor 47 3
virginica 1 49

Notes

Logistic Regression Classifier

Main idea: Model the logit $\log\left(\frac{P(Y=1)}{1-P(Y=1)}\right)$ as a linear function in \boldsymbol{x}

Classification

CLEMS®N

UNIVERSITY

Overview

Binary Linear

Classification

Support Vector
Machines

Notes

Logistic Regression Classifier Cont'd

versicolor virginica versicolor 48 2 virginica 1 49

Notes			
-			

Linear Discriminant Analysis Versus Logistic Regression

For a binary classification problem, one can show that both linear discriminant analysis (LDA) and logistic regression are linear classifiers. The difference is in how the parameters are estimated:

- \bullet Logistic regression uses the conditional likelihood based on $\mathrm{P}(Y|\boldsymbol{X}=\boldsymbol{x})$
- ullet LDA uses the full likelihood based on multivariate normal assumption on $oldsymbol{X}$
- Despite these differences, in practice the results are often very similar

otes		

Quadratic Discriminant Analysis

In linear discriminant analysis, we **assume** $\{f_k(x)\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier.

What if $\Sigma_1 \neq \Sigma_2? \Rightarrow$ we get quadratic discriminant analysis

Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 154

Notes			

An Algorithmic Approach to Classification

Find a hyperplane that "best" separates the classes in feature space

- what we mean by "separateness"?
- what is the feature space?

Classification CLEMS N V E R S T Y
Overview Binary Linear Classification Support Vector Machines

Notes

Maximal Margin Classifier

Main idea: among all separating hyperplanes, find the one that creates the biggest gap ("margin") between the two classes

doing so leads to the following optimization problem:

$$\begin{aligned} & \mathsf{maximzie}_{\beta_0,\beta_1,\beta_2} \mathbf{M} \\ & \mathsf{subject to} \sum_{j=1}^2 \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}) \geq M, \\ & i = 1, \cdots, n \end{aligned}$$

This problem can be solved efficiently using techniques from quadratic programming

Notes

Supper Vector Classifier

- Sometimes the data can not be separated by a line
- data can be noisy which leads to unstable maximal-margin classifier

The support vector classifier maximizes a "soft" margin

	4	_			٠.			10
	60	`	\		,	٠.,	٠.	
. 63	2	ļ.,		\		8	``	9.
X_2	-	ļ `	```	٠,,	1	\	\	
	0	3	4	12.	```.			
	7	Ļ	6			2.		$ \bot $
		-0.5	0.0	0.5	1.0	1.5	2.0	2.5
					X_1			

Classification	
CLEMS N	
Support Vector Machines	

Notes			

Beyond Linear Classifier

- A linear boundary can fail to separate classes
- \bullet Can expand the feature space by including transformations, e.g., $X_1^2, X_2^2, X_1X_2, \cdots \Rightarrow$ gives non-linear decision boundaries in the original feature space
- However, polynomials basis can be unstable, a more general way to introduce non-linearities is through the use of kernels, e.g.,

$$f(\boldsymbol{x}) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i \exp(-\gamma \sum_{j=1}^p (x_j - x_{ij})^2)$$

Classification CLEMS IN Y
Support Vector Machines

SVM Vesus Logistic Regression (LR) and LDA

- When classes are (nearly) separable, SVM does better than LR and LDA
- Use LR to estimate class probabilities as SVM is a non-probabilistic classifier
- For nonlinear boundaries, kernel SVMs are popular

N	otes	

Notes

Summary

In this lecture we learned about:

- Some classical classifiers for performing classification
- How to assess the efficacy of a classifier
- Support vector classifier and SVMs

Notes				