Falcon9 landing Prediction

Name: R.V. Jai Pratham

© IBM Corporation. All rights reserved.

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- Objective of this Project: Predicting successful landing of Falcon 9 first stage.
 - Stages involved:
 - Data Collection
 - Preprocessing
 - Analyzing using visualization tools.
 - Applying various ML algorithms to predict
 - Finding the best model which gives the best accuracy.

INTRODUCTION

- The first stage landing of space shuttles (or more accurately, rockets like those from SpaceX) plays a critical role in reducing the cost, waste, and risk of launching payloads into space
- Cost Savings:
 - The **first stage** is the **most expensive part** of a rocket (~60–80% of total cost).
 - Traditionally, it's discarded into the ocean after launch

Data Collection and Data Wrangling

	FlightNumber	r [Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	
4	1		010- 6-04	Falcon 9	NaN	LEO	CCSFS SLC 40	None None	1	False	False	False	
5	2)	012- 5-22	Falcon 9	525.0	LEO	CCSFS SLC 40	None None	1	False	False	False	
6	3)	013- 3-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False	False	False	
7	4	1	013- 9-29	Falcon 9	500.0	РО	VAFB SLC 4E	False Ocean	1	False	False	False	
8	5	•	013- 2-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	False	False	
89	86		020- 9-03	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	2	True	True	True	5e9e3032
90	87	7	020- 0-06	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	3	True	True	True	5e9e3032
91	88	2	020- 0-18	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	6	True	True	True	5e9e3032
92	89	à	020- 0-24	Falcon 9	15600.0	VLEO	CCSFS SLC 40	True ASDS	3	True	True	True	5e9e3033
93	90)	020- 1-05	Falcon 9	3681.0	MEO	CCSFS SLC 40	True ASDS	1	True	False	True	5e9e3032
90 r	rows × 17 colum	nns											
													-

- Data for this project is used from SpaceX API.
- Converting the JSON formatted data to Data Frame.
- Filtering out only Falcon9 air crafts as we are working on that.
- Dealing with missing values as the column PayLoadMass has 5 missing values.
- So now replacing the null values with mean of the data of the column PayLoadMass.

EDA and Interactive visual analytics

- Used Folium library to build interactive dashboards and visualisations.
- Marked all the launch sites on map
- Marked the success/failed launches for each site on the map for better understanding of the effect of sites on the launch.
- Caluclated the distances between a launch sites to its proximities.
- With above all steps we get clear understanding of effects of each factor on success rate of launches.

EDA results with SQL

```
%sql SELECT DISTINCT LAUNCH_SITE FROM SPACEXTBL;
* ibm_db_sa://cdm26718:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databa
ses.appdomain.cloud:30875/bludb
Done.
Out[71]:
   launch site
  CCAFS LC-40
 CCAFS SLC-40
   KSC LC-39A
  VAFB SLC-4E
  Task 2
  Display 5 records where launch sites begin with the string 'CCA'
  In [69]:
   %sql SELECT LAUNCH_SITE from SPACEXTBL where (LAUNCH_SITE) LIKE 'CCA%' LIMIT 5;
  * ibm db sa://cdm26718:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databa
  ses.appdomain.cloud:30875/bludb
  Done.
  Out[69]:
   launch site
  CCAFS LC-40
  CCAFS LC-40
  CCAFS LC-40
  CCAFS LC-40
  CCAFS LC-40
```

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

```
In [72]:
 %sql SELECT SUM(PAYLOAD MASS KG ) FROM SPACEXTBL WHERE Customer = 'NASA (CRS)';
* ibm db sa://cdm26718:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databa
ses.appdomain.cloud:30875/bludb
Done.
Out[72]:
45596
```

Task 4

Display average payload mass carried by booster version F9 v1.1

```
In [74]:
                                       METHODOLOGY
 %sq1 SELECT AVG(PAYLOAD MASS KG) FROM SPACEXTBL WHERE Booster_Version LIKE 'F9 v1.0%';
 * ibm db sa://cdm26718:***@98538591-7217-4024-b027-8baa776ffad1.c3n41cmd0nqnrk39u98g.databa
ses.appdomain.cloud:30875/bludb
Done.
Out[74]:
```

EDA interactive results with Folium

Predictive analysis Slides

TASK 4

Create a logistic regression object then create a GridSearchCV object logreg_cv with cv = 10. Fit the object to find the best parameters from the dictionary parameters.

We output the GridSearchCV object for logistic regression. We display the best parameters using the data attribute best_params_ and the accuracy on the validation data using the data attribute best score .

```
In [11]:
    print("tuned hpyerparameters :(best parameters) ",logreg_cv.best_params_)
    print("accuracy :",logreg_cv.best_score_)

tuned hpyerparameters :(best parameters) {'C': 0.01, 'penalty': '12', 'solver': 'lbfgs'}
accuracy : 0.8464285714285713
```

```
parameters = {'criterion': ['gini', 'entropy'],
       'splitter': ['best', 'random'],
       'max depth': [2*n for n in range(1,10) EDA and Interactive visual analytics
       'max_features': ['auto', 'sqrt'],
       'min_samples_leaf': [1, 2, 4],
       'min samples split': [2, 5, 10]}
 tree = DecisionTreeClassifier()
 tree_cv = GridSearchCV(tree,parameters,cv=10)
 tree_cv.fit(X_train, Y_train)
GridSearchCV(cv=10, estimator=DecisionTreeClassifier(),
             param_grid={'criterion': ['gini', 'entropy'],
                          'max_depth': [2, 4, 6, 8, 10, 12, 14, 16, 18],
                          'max_features': ['auto', 'sqrt'],
                         'min_samples_leaf': [1, 2, 4],
                          'min_samples_split': [2, 5, 10],
                         'splitter': ['best', 'random']})
In [21]:
 print("tuned hpyerparameters :(best parameters) ",tree_cv.best_params_)
 print("accuracy :",tree_cv.best_score_)
tuned hpyerparameters : (best parameters) {'criterion': 'gini', 'max_depth': 8, 'max_feature
s': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 2, 'splitter': 'random'}
accuracy : 0.8875
```

Create a support vector machine object then create a GridSearchCV object svm_cv with cv-10. Fit the object to find the best parameters from the dictionary parameters.

```
parameters = {'kernel':('linear', 'rbf', 'poly', 'rbf', 'sigmoid'),
                'C': np.logspace(-3, 3, 5),
               'gamma':np.logspace(-3, 3, 5)}
 svm cv = GridSearchCV(svm,parameters,cv=10)
 svm_cv.fit(X_train, Y_train)
GridSearchCV(cv=10, estimator=SVC(),
             param_grid={'C': array([1.00000000e-03, 3.16227766e-02, 1.00000000e+00, 3.16227
766e+01,
                                                              EDA and Interactive visual analytics
                         'gamma': array([1.00000000e-03, 3.16227766e-02, 1.00000000e+00, 3.1
6227766e+01,
      1.00000000e+03]),
                         'kernel': ('linear', 'rbf', 'poly', 'rbf', 'sigmoid')})
In [16]:
 print("tuned hpyerparameters :(best parameters) ",svm cv.best params)
print("accuracy :",svm_cv.best_score_)
tuned hpyerparameters :(best parameters) {'C': 1.0, 'gamma': 0.03162277660168379, 'kernel':
accuracy : 0.8482142857142856
```


Conclusions

- Used various techniques in data collection and data wrangling for cleaning data
- Used tools like Folium and Plotly for displaying various trends and insights for the given dataset.
- Used various ML algorithms:
- Logistic Regression:0.846
- Decision tree: 0.8875
- KNN:0.84821
- SVM:0.8332

