CS 341 Automata Theory Elaine Rich Homework 12 Due: Tuesday, April 10

This assignment covers Chapter 20.

1)	Let L_1, L_2, \ldots, L_k be a collection of languages over some alphabet Σ such that:	
	• For all $i \neq j$, $L_i \cap L_j = \emptyset$.	
	• $L_1 \cup L_2 \cup \cdots \cup L_k = \Sigma^*$. • $\forall i \ (L_i \text{ is in SD}).$	
	Prove that each of the languages L_1 through L_k is in D .	
	Proof.	
2)	If L_1 and L_3 are in D and $L_1 \subseteq L_2 \subseteq L_3$, what can we say about whether L_2 is in D?	
	Answer.	
3)	Let M be a Turing machine that lexicographically enumerates the language L . Prove that there exist Turing machine M' that decides L^R .	ts a
	Proof.	
4)	Construct a standard one-tape Turing machine M to enumerate the language A^nB^n . Assume that starts with its tape equal to \square . Also assume the existence of the printing subroutine P , defined in Sect 20.5.1.	
	Solution.	
5)	Recall the function mix , defined in Example 8.23. Neither the regular languages nor the context-languages are closed under mix . Are the decidable languages closed under mix ? Prove your answer.	
	Answer.	
	Proof.	
6)	Let $\Sigma = \{a, b\}$. Consider the set of all languages over Σ that contain only even length strings.	
	a) How many such languages are there?	
	Answer.	
	b) How many of them are semidecidable?	
	Answer.	