MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A baseball is lo	cated at the surface	of the earth. Which	n statements abou	t it are correct?	1)
(There may be a	more than one corre	ect choice.)			-
A) The gravi	tational force on the	e ball is independen	nt of the mass of t	he earth.	
B) The gravi	tational force on the	e ball due to the ear	rth is exactly the s	ame as the	
gravitatio	nal force on the ear	th due to the ball.			
C) The gravi	tational force on the	e ball is independen	nt of the mass of t	he ball.	
D) The earth	exerts a much grea	ter gravitational fo	rce on the ball tha	n the ball exerts	
on the ear	rth.	_			
E) The ball ϵ	exerts a greater grav	ritational force on t	he earth than the	earth exerts on	
the ball.					
2) A very small ro	und ball is located r	near a large solid sp	here of uniform of	lensity. The	2)
-	rge sphere exerts or			Ž	
	the same as it would		s of the sphere we	re concentrated	
_	ter of the sphere.		•		
B) is indeper	ndent of the mass of	the sphere.			
C) is approxi	imately the same as	it would be if all the	he mass of the spl	nere were	
concentra	ted at the center of	the sphere.	-		
D) can only l	be calculated using	calculus.			
E) is indeper	ndent of the mass of	the ball.			
3) Planet Z-34 has	a mass equal to 1/3	that of Earth, a ra	dius equal to 1/3 t	hat of Earth,	3)
and an axial spi	n rate 1/2 that of Ea	orth. With g represe	enting, as usual, th	e acceleration	
due to gravity o	n the surface of Ear	th, the acceleration	n due to gravity or	the surface of	
Z-34 is					
A) $g/9$.	B) 3 <i>g</i> .	C) 6 <i>g</i> .	D) $g/3$.	E) 9 <i>g</i> .	
	ed on the Moon. Whic				4)
	weight and your mas		•	th.	
	weight and your mas			111 .1	
	would be less than y	our mass on Earth, t	out your weight wo	uld be the same as	
it is on Ear	rtn. ht would be less than	wour woight on Far	th hist warm mass w	rould be the same	
as it is on 1		your weight on Ear	in, but your mass w	outa be the same	
as 1t 15 OH 1	zarur.				
5) Why are astronau	uts weightless in the S	Space Station?			5)
-	ere is no gravity in sp	_			<u> </u>
	e Space Station is trav				
	e Space Station is mo	•	ocity		
	e Space Station is con	O .	-		
6) A certain planet	has an escape spee	d V. If another plan	net of the same siz	e has twice the	6)
mass as the first	t planet, its escape s				
A) $2V$	в) <i>V</i> √ 2	C) $\sqrt{2}V$	D) <i>V</i> /2	E) V	

7) A certain planet ha		-	net has twice size a	and twice the	7)
mass of the first pl A) $V/2$.	lanet, its escape sp B) $V\sqrt{2}$.	c) 2 V.	D) <i>V</i> .	E) $\sqrt{2}V$.	
8) A satellite is orbiti satellite's mass, the					8)
orbit will not be at A) True		-	alse		
9) An astronaut is in asteroid X and 581 centers of the aster	km from the centeroids. What is the	er of asteroid <i>Y</i> , a ratio of the masse	long the straight lies X/Y of the astero	ne joining the ids?	9)
A) 0.241	B) 4.15	C) 0	.0581	D) 17.2	
10) Three identical ve	rv small 50-kg ma	sses are held at th	ne corners of an eq	uilateral	10)
triangle, 0.30 m or acceleration if the two masses? (G = A) 2.5×10^{-8} n B) 3.7×10^{-8} n C) 4.2×10^{-8} n D) 6.4×10^{-8} n E) 1.9×10^{-8} n	n each side. If one only forces acting 6.67 × 10 ⁻¹¹ N·1 n/s ² n/s ² n/s ² n/s ²	of the masses is a on it are the grav	released, what is its	s initial	
11) A small planet have object that is 500 leplanet, the gravitation	km above its surfactional force on it w	ce. If this object i	s moved 500 km f	arther from the	11)
A) 56 N.	B) 75 N.	C) 25 N.	D) 71 N.	E) 50 N.	
12) The gravitational a gravitational accel the planet?					12)
A) 1.60 m/s^2					
B) 5.33 m/s^2					
C) 4.00 m/s^2					
D) 8.00 m/s^2					
E) 1.78 m/s^2					

- 13) The weight of spaceman Speff at the surface of planet X, solely due to its gravitational pull, is 389 N. If he moves to a distance of 1.86 \times 10⁴ km above the planet's surface, his weight changes to 24.31 N. What is the mass of planet X, if Speff's mass is 75.0 kg? $(G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2)$
- 13) _____

A) $2.99 \times 10^{18} \text{ kg}$

B) $1.59 \times 10^{18} \text{ kg}$

C) $2.99 \times 10^{24} \text{ kg}$

- D) $2.99 \times 10^{17} \text{ kg}$
- 14) From what height above the surface of the earth should an object be dropped to initially experience an acceleration of 0.9200g? The radius of the earth is 6.38×10^6 m.
- 14) _____

- A) 260 km
- B) 554 km
- C) 510 km
- D) 272 km
- 15) Ekapluto is an unknown planet that has two spherical moons in circular orbits. The table summarizes the hypothetical data about the moons. Both moons have low axial spin rates. ($G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)

15)	

	Mass	Radius	Orbital radius	Orbital
				period
Moon A	$4.0\times10^{20}~kg$		$2.0 \times 10^8 \text{ m}$	$4.0 \times 10^6 \text{ s}$
Moon B	$1.5 \times 10^{20} \text{ kg}$	$2.0 \times 10^{5} \text{ m}$	$3.0 \times 10^{8} \text{ m}$	

The acceleration due to gravity at the surface of Moon B is

- A) 0.30 m/s^2 .
- B) 0.10 m/s^2 .
- C) 0.15 m/s^2 .
- D) 0.25 m/s^2 .
- E) 0.20 m/s^2 .
- 16) What is the ratio of the escape speed of a rocket launched from sea level to the escape speed of one launched from Mt. Everest (an altitude of 8.85 km)? The radius of the earth is 6.38×10^6 m.
- 16) _____

- A) 0.9986
- B) 1.0001
- C) 1.0007
- D) 1.0014
- E) 0.9993
- 17) A huge cannon is assembled on an airless planet having insignificant axial spin. The planet has a radius of 5.00×10^6 m and a mass of 3.95×10^{23} kg. The cannon fires a projectile straight up at 2000 m/s. An observation satellite orbits the planet at a height of 1000 km. What is the projectile's speed as it passes the satellite? ($G = 6.67 \times 10^{-11}$ N·m²/kg²)
- 17) _____

- A) 1500 m/s
- B) 1280 m/s
- C) 1610 m/s
- D) 1380 m/s

		1 . 6 . 5 . 4 . 1	1 (1401 /	1	
	center. What is the m	our moon's orbit, a dis neteroid's speed as it hit nosphere, and any moti	a speed of 14.8 km/s retance of 3.84 \times 10 ⁸ m to the earth? You can not one of the earth. ($G = 6$.	from the earth's glect the effects of	18)
	A) 18.5 km/s	B) 21.5 km/s	C) 32.4 km/s	D) 87.3 km/s	
	19) A certain spherical a the minimum speed to $G = 6.67 \times 10^{-11} \text{ N}$	needed to escape from	$5 \times 10^{16} \text{ kg}$ and a radii the surface of this aster		19)
	A) 520 m/s	B) 16 m/s	C) 730 m/s	D) 23 m/s	
	_	re atmospheric friction, $(G = 6.67 \times 10^{-11} \text{ N} \cdot$	altitude of 1200 km about with what speed does the m ² /kg ² , $M_{\text{earth}} = 5.97$	the object strike the	20)
2		with an orbital speed of ace of the asteroid is 14 roid is closest to	of 2300 km above the suf 5.9 km/s. The minimu 4.6 km/s, and $G = 6.67$	m speed needed to	21)
SHOR	Γ ANSWER. Write the w	ord or phrase that best c	ompletes each statement	or answers the question	1.
2		ed in place. Where sho	n from a small-sized 27 uld you place a third sn due to the original two	nall-sized	

23) Using the known radius of the Earth and that $g=9.80 \text{ m/s}^2$ at the Earth's surface, find the average density of the Earth.