Análise de algoritmos

José Eduardo De Lucca Depto Informática – UFSC delucca@inf.ufsc.br

Projeto de algoritmos

- Em geral, há mais de uma solução
 - Melhor algoritmo para solucionar problema
- Técnicas básicas
 - Dividir para conquistar
 - Algoritmos aleatorizados
 - programação dinâmica
 - algoritmos gulosos
 - heurísticas
 - redução a outro problema
 - estruturas de dados

O que analisar em um algoritmo?

Eficiência, custo

Tempo

- atualmente, o mais importante
- quanto tempo para resolver um problema
- função da quantidade ou tamanho da entrada

Espaço

- já foi crítico, hoje menos
- quanta memória necessita
- função da quantidade ou tamanho da entrada

Pensemos: algoritmo para jogar xadrez

Tempo de execução

- Tempo de execução
 - varia com a entrada
 - cresce com o tamanho da entrada
- Difícil definir o "caso médio"
- Foco no "pior caso"
 - mais fácil de analisar
 - fundamental para algumas aplicações
 - jogos, finanças, robótica

Estudos experimentais

- 1. Escrever um programa que implemente o algoritmo sendo estudado
- 2. Executar o programa com entradas de tamanhos e composições diferentes
- 3. Usar uma rotina para obter medida de tempo precisa
 - System.currentTimeMillis()
- 4. Traçar os resultados

Experimental - limitações

- Necessário implementar o algoritmo
- Resultados podem não representar todo o universo de entradas possível
- Resultados podem estar associados à (in)competência do implementador
- Para comparação, o mesmo hardware e software devem ser utilizado

Análise teórica

- Usa uma descrição de alto-nível do algoritmo
- Leva em consideração todas as entradas possíveis
- Permite avaliar a velocidade independente do ambiente hard/soft

Modelos computacionais

- Estudo de algoritmos
 - modelo abstrato completo
 - prova, análise e comparação de algoritmos
- Máquina de Turing (Alan Turing)
 - modelo mais básico
 - autômato finito
 - não adequado para avaliação de custos reais em um programa.

Modelos computacionais (ii)

- Máquina RAM de custo fixo
 - simplificação de computador real
 - Custo (tempo) fixo
 - todos os acessos à memória
 - todas as operações
 - conjunto de instruções básicas
 - atribuições/acessos, vetores
 - if, while, for
 - Muito mais realista que M.Turing
 - Problema
 - irreal quanto ao custo de cada instrução

```
a <- 3
b <- a*5
if b == 5 then
    a <- 2
else
    a <- 1
end if
```


Máquina RAM de custo variável

- Cada instrução tem custo próprio
- Custo (tempo) do exemplo3 C1 + C2 + C3
 - C1 custo de atribuição
 - C2 custo de multiplicação
 - C3 custo de teste

```
a <- 3
b <- a*5
if b == 5 then
    a <- 2
else
    a <- 1
end if</pre>
```


Exercício cálculo xy – Potencia (x.y)

```
• Requer: x>0
if y==0 then
  return 1
ese
   result <- x
  for I = 1 to y-1 do
     result <- result * x
  end for
end if
return result
```

```
Calcular o custo (tempo)
supondo que y > 0 (o que
ocorrerá na maioria das vezes)
```

C1 = custo de teste C2 = custo de atribuição C3 = custo de multiplicação

```
C1 + C2 + (y-1)*(C3+C1)
Eficiente?
28 = 2*2*2*2*2*2*2*2
```


Outro algoritmo? Potencia2(x.y)

```
Requer x>0
if y==0 then
   return 1
end if
r <- 1
if y>1 then
   r <- Potencia2(x.y/2)
   r <- r*r
end if
if y mod 2 == 1 then
   r < -r*x
end if
return r
```

Melhora? Avaliar c/ Potencia2(2.7) Qual é o custo (tempo)?

Operações primitivas

- Independentes de linguagem
- Computações básicas de um algoritmo
- Pseudo-código
 - Avaliação de expressão
 - Atribuição de valor a variável
 - Atribuição de valor para posição de vetor
 - Chamar uma rotina
 - Retornar de uma rotina

Contando operações primitivas

```
MaiorDoArray(A, n)

 Nº de operações

atual <- A[0]
for i <- 1 to n-1 do
                          2 + n
  if A[i] > atual then
                           (n-1)*2
                          (n-1)*2
     atual <- A[i]
  end if
                           (n-1)*2
{incremento do i}
return atual
                           Total 7n-1
```


Ordem de um algoritmo

- Cálculo do custo incômodo
- Difícil para comparação entre algoritmos
- Importa quanto demora EXATAMENTE um algoritmo?
- Importa a relação dados X tempo
- Ordem de um algoritmo
 - taxa de crescimento do tempo em função da quantidade ou tamanho dos dados de entrada

Tempo de execução estimado

- O algoritmo anterior executa 7n-1 operações primitivas no pior caso
- Considere:
 - "a" tempo da op. primitiva mais rápida
 - "b" tempo da op. primitiva mais lenta
- Seja T(n) o tempo real de execução do pior caso do algoritmo

$$a(7n-1) \le T(n) \le b(7n-1)$$

 Ou seja, o tempo T(n) está limitado pelas duas funções lineares

Tempo de execução estimado

- T(m) varia dentro da área definida por Melhor – Pior
- Tempo cresce com o tamanho dos dados
- Não importa máquina nem implementação

ine

Taxa de crescimento do tempo de execução

- Alterar o ambiente de hardware/software
 - afeta T(n) com um fator constante
 - Mas não altera sua a taxa de crescimento
- Taxa de crescimento linear
 - propriedade intrínseca daquele algoritmo

Funções de taxas de crescimento

- Linear ~ n
- Quadrática ~ n²
- Cúbica ~ n³
- Taxa de crescimento não é afetada por
 - fatores constantes
 - termos de menores ordens

Notação Big-O

- Dadas duas funções f(n) e g(n)
- Diz-se que

se

$$f(n) \le k*g(n), com n >= n0$$

- Ou seja
 - se f é "menor" que g multiplicado por uma constante K, para um valor de n maior que um limite n0

Notação Big-O (ii)

- Quais funções estamos comparando?
 - f(n) e g(n) são algoritmos
- Para nosso uso
 - f(n) é o algoritmo que estamos estudando
 - g(n) será uma função básica
 - linear
 - quadrática
 - cúbica, etc

Notação Big-O (iii)

- f(n) é O(g(n)) significa que
 - a taxa de crescimento de f(n) não é maior que a taxa de crescimento de g(n)
- então
 - se f(n) é O(n), quero dizer que
 - a taxa de crescimento de f(n) é menor ou igual a uma taxa de crescimento linear
 - se f(n) é O(n²), quero dizer que
 - a taxa de crescimento de f(n) é no máximo igual a uma taxa de crescimento quadrática

Regras do Big-O

- Se f(n) é um polinômio de grau d
 - f(n) é O(n^d) ou seja
 - · joga-se fora termos de mais baixa ordem
 - despreza-se os fatores constantes
- Use a menor classe de funções
 - 2n é O(n) em vez de 2n ser O(2n)
- Use a expressão de classe mais simples
 - 3n+5 é O(n) em vez de 3n+5 ser O(3n)

Análise assintótica

- Define o tempo de execução de um algoritmo
 - usando a notação Big-O
- Análise assintótica
 - encontra-se o pior caso com operações primitivas em função do tam. da entrada
 - expressa-se esta função com notação Big-O
- Aquele nosso algoritmo MaiorDoArray
 - pior caso: 7n-1 operações primitivas
 - MaiorDoArray executa em tempo O(n)

Comparação de algoritmos

- Faz-se a análise assintótica de cada algoritmo
- Compara-se diretamente os resultados
- Algumas funções típicas por ordem de crescimento:
 - $k < \sqrt{n} < \log n < n < n \log n < n^c < x^n < n! < n^n$
- Quanto mais rápido o crescimento, pior o desempenho do algoritmo

Exemplo de comparação

- Considerando 2 algoritmos de ordenação
 - Com o desempenho fa(n) = 100n e $fb(n) = n^2$
 - Sendo n = número de elementos
- Qual é "melhor"?
 - Se tomarmos 30 elementos:
 - Fa(30) = 3000 e fb(30) = 900
 - Se tomarmos 30.000 elementos:
 - Fa(30000) = 3.000.000
 - Fb(30000) = 900.000.000

Análise dos algoritmos de algumas estruturas

Pilha

- Criar O(1)
- Esvaziar O(1)
- Top O(1)
- Push O(1)
- Pop O(1)

Filas

- Criar O(1)
- Entrar O(1)
- Sair O(1)

Deque – Fila dupla

- Criar O(1)
- Entrar-cabeça O(1)
- Sair-cabeça O(1)
- Entrar-cauda O(1)
- Sair-cauda O(1)

Listas

- Criar O(1)
- Inserir O(1) (sempre?)
- Excluir O(n) (por quê?)
- Buscar O(n) (por quê?)

Árvores binárias

- Criar O(1)
- Inserir O(h)
- Percorrer O(n)
- Buscar O(h)
- Excluir O(h)

onde n é o número de elementos h é a altura da árvore

 válido para árvores balanceadas

- Criar O(1)
- Inserir O(log n)
- Percorrer O(n)
- Buscar O(log n)
- Excluir O(log n)

onde

n é o número de elementos h é altura (log n)

- válido para árvores AVL
- custo de balancear é um fator constante em inserir e excluir

Algoritmos de ordenação

- Bolha
 - O (n²) pior caso
- Seleção Direta
 - $-O(n^2)$ pior caso
- Inserção Direta
 - $-O(n^2)$ pior caso
 - Mas O (n) no melhor caso

- Quicksort
 - O (n log n)
 - mas pode ser O(n²)