Summary Statistics

- The sample mean : $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$
- The sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i \bar{y})^2$ or $s^2 = \frac{1}{n-1} \left[\left(\sum_{i=1}^n y_i^2 \right) n(\bar{y}^2) \right]$
- The sample standard deviation: $s = \sqrt{s^2}$.
- The k^{th} percentile: Find the $(\frac{k}{100})(n+1)$ location, then use the "rounding rule".
- The median (\tilde{y}) is the 50^{th} percentile.
- The five number summary is: Min, Q_1, \tilde{y}, Q_3 , Max.
- The lower cutoff is: $Q_1 1.5(Q_3 Q_1)$
- The upper cutoff is: $Q_3 + 1.5(Q_3 Q_1)$

Probability Theory

Consider events A and B.

- Rule 1: $0 \le Pr\{A\} \le 1$.
- Rule 2: If there are k events A_1, A_2, \ldots, A_k that make up all possible events, then $\sum_{i=1}^k Pr\{A_i\} = 1$
- Rule 3: The probability that A does not occur is: $P\{A^C\} = 1 - Pr\{A\}$
- Rule 4: For any two events A and B, the probability of "A occurs or B occurs or both occur" is: $P\{A \text{ or } B\} = Pr\{A\} + Pr\{B\} Pr\{A \text{ and } B\}$
- Rule 5: If A and B are mutually exclusive (or disjoint), then $Pr\{A \text{ and } B\} = 0$
- Rule 6: The conditional probability of A given B has occurred is: $Pr\{A|B\} = \frac{Pr\{A \text{ and } B\}}{Pr\{B\}}$
- Rule 7: $Pr\{A \text{ and } B\} = Pr\{A|B\}Pr\{B\}$
- Rule 8: $Pr\{A \text{ and } B^c\} = Pr\{A\} Pr\{A \text{ and } B\}$
- Rule 9: $Pr\{A^C|B\} = 1 Pr\{A|B\}$
- Rule 10: If an event A is split by multiple events B_1, B_2, \ldots, B_k , then the following is true: $Pr\{A\} = Pr\{A \text{ and } B_1\} + Pr\{A \text{ and } B_2\} + \cdots + Pr\{A \text{ and } B_k\}$

For two events A and B: $Pr\{A\} = Pr\{A \text{ and } B\} + Pr\{A \text{ and } B^C\}$

- For two events A and B which are independent, both of the following properties hold true:
 - 1. $Pr\{A \text{ and } B\} = Pr\{A\}Pr\{B\}$
 - 2. $Pr\{A|B\} = Pr\{A\}$

Discrete Random Variables

- The mean of a discrete random variable is: $\mu_Y = \sum_{y_i} y_i Pr\{Y = y_i\}$
- The variance of a discrete random variable is: $\sigma_Y^2 = \sum_{y_i} (y_i \mu_Y)^2 Pr\{Y = y_i\}$ $= \left(\sum_{y_i} y_i^2 Pr\{Y = y_i\}\right) (\mu_Y)^2$
- The standard deviation of a discrete random variable is: $\sigma_Y = \sqrt{\sigma_Y^2}$

Linear Combinations of R.V.s

For any random variable X with mean μ_X and standard deviation σ_X , if Y = a + bX (where a, b are constants) then

- $\bullet \ \mu_Y = a + b\mu_X$
- $\bullet \ \sigma_Y^2 = b^2 \sigma_X^2$

Binomial Random Variables

If Y is a binomial random variable;

- $Pr{Y = j} = \binom{n}{j} p^j (1-p)^{n-j}$ where $\binom{n}{j} = \frac{n!}{j!(n-j)!}$
- $\mu_Y = np$
- $\sigma_V^2 = np(1-p)$

Normal Random Variables

If Y is a normal random variable with mean μ_Y , standard deviation σ_Y (i.e $Y \sim N(\mu_Y, \sigma_Y)$) then;

- $Z = \frac{Y \mu_Y}{\sigma_Y}$ is standard normal, i.e. $Z \sim N(0, 1)$.
- $Pr\{Z > a\} = 1 Pr\{Z < a\}$ for some constant a.
- $Pr\{a < Z < b\} = Pr\{Z < b\} Pr\{Z < a\}$ for some constants a and b.
- The k^{th} percentile of Y is: $Y^{(k)} = \mu_Y + Z^{(k)}\sigma_Y$ where $Z^{(k)}$ is the k^{th} percentile of a Z.