

Report No.: FR842412AL

FCC Test Report

FCC ID : 2AEUPBHALP021

Equipment : Wi-Fi enabled Video Doorbell

Brand Name : RING

Model Name : Video Doorbell Pro

Applicant : Ring, Inc

1523 26th St, Santa Monica, CA 90404, USA

Manufacturer : Chicony Electronics (Dong Guan) Co.,Ltd.

San Zhong Guan Li Qu, Qingxi Town, Dongguan City

Guangdong 523651 China

Standard : 47 CFR FCC Part 15.247

The product was received on Apr. 24, 2018, and testing was started from Apr. 27, 2018 and completed on May 02, 2018. We, SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Allen Lin

SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-3273456 FAX: 886-3-3270973

Report Template No.: HE1-C10 Ver2.0

FCC ID: 2AEUPBHALP021

Page Number

: 1 of 24

Issued Date

: May 25, 2018

Report Version

: 01

Table of Contents

HISTO	RY OF THIS TEST REPORT	3
SUMM	ARY OF TEST RESULT	4
1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	6
1.3	Testing Location Information	7
1.4	Measurement Uncertainty	7
2	TEST CONFIGURATION OF EUT	8
2.1	Test Condition	8
2.2	Test Channel Mode	
2.3	The Worst Case Measurement Configuration	
2.4	Accessories	
2.5	Support Equipment	
2.6	Test Setup Diagram	.11
3	TRANSMITTER TEST RESULT	.13
3.1	AC Power-line Conducted Emissions	
3.2	DTS Bandwidth	
3.3	Maximum Conducted Output Power	
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	
3.6	Emissions in Restricted Frequency Bands	.19
4	TEST EQUIPMENT AND CALIBRATION DATA	.23
APPE	NDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPE	NDIX B. TEST RESULTS OF DTS BANDWIDTH	
APPE	NDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPE	NDIX D. TEST RESULTS OF POWER SPECTRAL DENSITY	
APPE	NDIX E. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPE	NDIX F. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPEI	NDIX G. TEST PHOTOS	
РНОТ	OGRAPHS OF EUT v01	

TEL: 886-3-3273456 FAX: 886-3-3270973

Report Template No.: HE1-C10 Ver2.0

FCC ID: 2AEUPBHALP021

Page Number : 2 of 24

Issued Date : May 25, 2018

Report No.: FR842412AL

Report Version : 01

History of this test report

Report No.	Version	Description	Issued Date
FR842412AL	01	Initial issue of report	May 25, 2018

TEL: 886-3-3273456 Page Number : 3 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0

FCC ID: 2AEUPBHALP021

Report Version : 01

Report No.: FR842412AL

Summary of Test Result

Report No.: FR842412AL

: 01

Report Clause	Ref. Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Reviewed by: Sam Tsai

Report Producer: Jackson Tsai

TEL: 886-3-3273456 Page Number : 4 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number
2400-2483.5	LE	2402-2480	0-39 [40]

Report No.: FR842412AL

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE(1Mbps)	1.0	1TX

Note:

- Bluetooth LE uses a GFSK (1Mbps) modulation for DSSS.
- BWch is the nominal channel bandwidth.

1.1.2 Antenna Information

Ant.	Port	Brand	Model Name	Antenna Type	Connector
1	1	-	Ring Wifi Antenna	PIFA Antenna	Fixed on board

2.	4G	5	G	В	Т
Frequency (MHz)	Gain (dBi)	Frequency (MHz)	Gain (dBi)	Frequency (MHz)	Gain (dBi)
2412	1.37	5180	1.4	2402	1.37
2417	1.37	5200	1.4	2440 / 2441	1.08
2422	1.37	5240	2.5	2480	1.09
2427	1.08	5190	1.4	-	-
2432	1.08	5230	2.5	-	-
2437	1.08	5745	3.12	-	-
2442	1.08	5785	2.65	-	-
2447	1.08	5825	1.67	-	=
2452	1.08	5755	3.12	-	-
2457	1.08	5795	2.65	-	-
2462	1.08	-	-	-	-

For 2.4 GHz function:

For IEEE 802.11b/g/n mode (1TX/1RX)

Only Ant. 1 (port 1) can be used as transmitting/receiving antenna.

For 5 GHz function:

For IEEE 802.11a/n mode (1TX/1RX)

Only Ant. 1 (port 1) can be used as transmitting/receiving antenna.

For Bluetooth function:

For Bluetooth mode (1TX/1RX)

Only Ant. 1 (port 1) can be used as transmitting/receiving antenna.

TEL: 886-3-3273456 Page Number : 5 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

FCC Test Report No.: FR842412AL

1.1.3 EUT Information

	Operational Condition								
EUT	Power T	уре	Fro	m Battery / Trans	sformer				
EUT	Function	n	\boxtimes	Point-to-multipo	oint			Point-to-point	
					Type of	EUT			
\boxtimes	Stand-alo	ne							
	Combine	d (EUT where	the	radio part is full	y integra	ated within	а	nother device)	
	Combine	d Equipment	- Bra	and Name / Mod	el No.:				
	Plug-in radio (EUT intended for a variety of host systems)								
	Host System - Brand Name / Model No.:								
	Other:								

1.1.4 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-LE(1Mbps)	0.626	2.034	391.25u	3k

1.1.5 Table for Multiple Listing

Difference	Description				
SKU #1					
SKU #2					
SKU #3	The sample is the same one, only the color is different.				
SKU #4					
Note. For more detailed features description, please refer to the specifications or user's manual.					

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- KDB 558074 D01 v04

TEL: 886-3-3273456 Page Number : 6 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

1.3 Testing Location Information

	Testing Location							
\boxtimes	HWA YA ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)							
		TEL	:	886-3-327-3456	FAX : 886-3-327-0973			
	Test site Designation No. TW1190 with FCC.							
	JHUBEI	ADD	:	No.8, Ln. 724, Bo'ai St.	, Zhubei City, Hsinchu County, Taiwan (R.O.C.)			
	TEL: 886-3-656-9065 FAX: 886-3-656-9085							
	Test site Designation No. TW0006 with FCC.							

Report No.: FR842412AL

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
AC Conduction	CO04-HY	Daniel	22.8°C / 53%	02/May/2018
RF Conducted	TH07-HY	Andy	23.5°C / 65%	02/May/2018
Radiated	03CH09-HY	Jerry	23.5°C / 55%	02/May/2018

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	3.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.9 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.3 dB	Confidence levels of 95%
Temperature	0.7 °C	Confidence levels of 95%
Humidity	4 %	Confidence levels of 95%

TEL: 886-3-3273456 Page Number : 7 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

2 Test Configuration of EUT

2.1 Test Condition

RF Conducted	Abbreviation	Remark
TnomVnom	Tnom	20°C
-	Vnom	120V

Report No.: FR842412AL

: 01

2.2 Test Channel Mode

Test Software	DoS
---------------	-----

Mode	Power Setting
BT-LE(1Mbps)	-
2402MHz	Normal
2440MHz	Normal
2480MHz	Normal

TEL: 886-3-3273456 Page Number : 8 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version

2.3 The Worst Case Measurement Configuration

Т	The Worst Case Mode for Following Conformance Tests	
Tests Item	AC power-line conducted emissions	
Condition	AC power-line conducted measurement for line and neutral	
Operating Mode	CTX	
1	AC mode	

Report No.: FR842412AL

Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition	Conducted measurement at transmit chains		

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts
Tests Item	Emissions in Restricted Fro	equency Bands	
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.), the radiated test should
Operating Mode < 1GHz	CTX		
1	AC mode		
Operating Mode > 1GHz	CTX		
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			
Worst Planes of EUT			V

TEL: 886-3-3273456 Page Number : 9 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

FCC Test Report No.: FR842412AL

2.4 Accessories

		Accesso	ries	
5 "	Brand Name	Fuji	Model Name	334060
Battery	Power Rating	3.8 Vdc, 300 mAh	Туре	Li-ion

Reminder: Regarding to more detail and other information, please refer to user manual.

2.5 Support Equipment

	Support Equipment – RF Conducted			
No.	Equipment	Brand Name	Model Name	FCC ID
1	Notebook	DELL	E5410	DoC
2	Adapter for NB	DELL	HA65NM130	DoC
3	Transformer	TRIAD	VPL24-1100	DoC

Note: Support equipment No.3 was provided by customer.

		Support Equipment – R	adiated Emission	
No.	Equipment	Brand Name	Model Name	FCC ID
1	Transformer	TRIAD	VPL24-1100	-

Note: Support equipment No.1 was provided by customer.

		Support Equipment –	AC Conduction	
No.	Equipment	Brand Name	Model Name	FCC ID
1	Transformer	TRIAD	VPL24-1100	-

Note: Support equipment No.1 was provided by customer.

TEL: 886-3-3273456 Page Number : 10 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

Report No.: FR842412AL

Test Setup Diagram 2.6

TEL: 886-3-3273456 Page Number : 11 of 24 FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

Test Setup Diagram – Radiated Test AC Mains Transformer **EUT** Turn Table Item Connection Shielded Length(m) Remark 1 AC Power line No 1.8m 2 DC Power line No 0.15m

Report No.: FR842412AL

TEL: 886-3-3273456 Page Number : 12 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit			
Frequency Emission (MHz)	Quasi-Peak	Average	
0.15-0.5	66 - 56 *	56 - 46 *	
0.5-5	56	46	
5-30	60	50	

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Ī	Test Method
Ī	■ Refer as ANSI C63.10-2013, clause 6.2 foray power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

TEL: 886-3-3273456 Page Number : 13 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0

FCC ID: 2AEUPBHALP021

Report Version : 01

Report No.: FR842412AL

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit					
Systems using digital modulation techniques:					
■ 6 dB bandwidth ≥ 500 kHz.					

Report No.: FR842412AL

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method						
•	For the emission bandwidth shall be measured using one of the options below:						
Refer as KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.							
	Refer as KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.						
	Refer as ANSI C63.10, clause 6.9.3 for occupied bandwidth testing.						
	Refer as RSS-Gen, clause 6.7 for occupied bandwidth testing.						

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-3273456 Page Number : 14 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

Maximum Conducted Output Power 3.3

Maximum Conducted Output Power Limit 3.3.1

Maxi	mur	n Conducted Output Power Limit					
	•	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)					
	•	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm					
	■ Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
	•	Smart antenna system (SAS):					
		- Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm					
		- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm					
		- Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm					
e.i.r.p	o. P	ower Limit:					
• 2	2400	0-2483.5 MHz Band					
	•	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)					
	•	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$					
	•	Smart antenna system (SAS)					
		- Single beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm					
	- Overlap beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm						
		- Aggregate power on all beams: P _{eirp} ≤ MAX(36, [P _{Out} + G _{TX} + 8]) dBm					
	out = maximum peak conducted output power or maximum conducted output power in dBm, orx = the maximum transmitting antenna directional gain in dBi.						

Report No.: FR842412AL

3.3.2 **Measuring Instruments**

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-3273456 Page Number : 15 of 24 FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

Report No.: FR842412AL

3.3.3 **Test Procedures**

	Test Method
•	Maximum Peak Conducted Output Power
	☐ Refer as KDB 558074, clause 9.1.1 Option 1 (RBW ≥ EBW method).
	Refer as KDB 558074, clause 9.1.2 Option 2 (integrated band power method)
	☐ Refer as KDB 558074, clause 9.1.3 Option 3 (peak power meter for VBW ≥ DTS BW)
•	Maximum Average Conducted Output Power
	Duty cycle ≥ 98%
	Refer as KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).
	Duty cycle < 98%
	Refer as KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)
	RF power meter and average over on/off periods with duty factor or gated trigger
	Refer as KDB 558074, clause 9.2.3.1 Method AVGPM (using an RF average power meter).
•	For conducted measurement.
	If the EUT supports multiple transmit chains using options given below: Refer as KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	If multiple transmit chains, EIRP calculation could be following as methods: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

Test Setup 3.3.4

Test Result of Maximum Conducted Output Power 3.3.5

Refer as Appendix C

TEL: 886-3-3273456 Page Number : 16 of 24 FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version Report Template No.: HE1-C10 Ver2.0 : 01

3.4 **Power Spectral Density**

3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

Report No.: FR842412AL

: 01

Power Spectral Density (PSD)≤8 dBm/3kHz

Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 **Test Procedures**

Test Method

- Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).
 - Refer as KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz; Detector=peak).
- For conducted measurement.
 - If The EUT supports multiple transmit chains using options given below:
 - Measure and sum the spectra across the outputs. Refer as KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.

3.4.4 **Test Setup**

3.4.5 **Test Result of Power Spectral Density**

Refer as Appendix D

TEL: 886-3-3273456 : 17 of 24 Page Number FAX: 886-3-3270973 Issued Date : May 25, 2018 Report Version

Report Template No.: HE1-C10 Ver2.0

3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dB)			
Peak output power procedure	20			
Average output power procedure	30			

Report No.: FR842412AL

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

	Test Method
•	Refer as KDB 558074, clause 11 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-3273456 Page Number : 18 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	0.490~1.705 24000/F(kHz) 33.8 - 23		30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Report No.: FR842412AL

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-3273456 Page Number : 19 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

3.6.3 Test Procedures

Test Method

Report No.: FR842412AL

- The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].
- Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
- For the transmitter unwanted emissions shall be measured using following options below:
 - Refer as KDB 558074, clause 12 for unwanted emissions into restricted bands.
 - Refer as KDB 558074, clause 12.2.5.3 (ANSI C63.10, clause 4.1.4.2.3), Reduced VBW≥1/T.
 - Refer as KDB 558074, clause 12.2.4 measurement procedure peak limit.
- For the transmitter band-edge emissions shall be measured using following options below:
 - Refer as KDB 558074 clause 13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.
 - Refer as KDB 558074, clause 13.2 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements.
 - Refer as KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
- For conducted and cabinet radiation measurement, refer as KDB 558074, clause 12.2.2.
 - For conducted unwanted emissions into restricted bands (absolute emission limits).
 Devices with multiple transmit chains using options given below:
 - (1) Measure and sum the spectra across the outputs or
 - (2) Measure and add 10 log(N) dB
 - For KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.

TEL: 886-3-3273456 Page Number : 20 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

Report No.: FR842412AL

3.6.4 **Test Setup**

TEL: 886-3-3273456 Page Number : 21 of 24 FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

Report No.: FR842412AL

3.6.5 Test Result of Emissions in Restricted Frequency Bands (Below 30MHz)

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.6.6 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-3273456 Page Number : 22 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Version

: 01

Report Template No.: HE1-C10 Ver2.0

4 Test Equipment and Calibration Data

Instrument for AC Conduction

Strainent for Ao Conduction						
Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
EMI Test Receiver	Rohde & Schwarz	ESCS 30	838251/003	9 kHz ~ 2.75 GHz	13/Jun/2017	12/Jun/2018
LISN	R&S	ENV216	101295	9 kHz ~ 30 MHz	17/Nov/2017	16/Nov/2018
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9 kHz ~ 30 MHz	06/Oct/2017	05/Oct/2018
AC POWER	APC	AFC-11005G	F310050055	47 Hz ~ 63 Hz 5~300V	NCR	NCR
Impuls Begrenzer Pulse Limiter	SCHWARZBECK	VTSD 9561-F	9561-F041	9 kHz ~ 30 MHz	12/Oct/2017	11/Oct/2018

Report No.: FR842412AL

NCR : Non-Calibration Require

Instrument for Radiated Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	109-HY 30 MHz ~ 1 GHz		22/Apr/2019
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH09-HY	1 GHz ~ 18 GHz	20/Jun/2017	19/Jun/2018
Microwave Preamplifier	Agilent	8449B	3008A02326	1 GHz ~ 26.5 GHz	17/Jul/2017	16/Jul/2018
Amplifier	EMC	EMC9135	980232	9 kHz ~ 1 GHz	27/Apr/2018	26/Apr/2019
EXA Signal Analyzer	KEYSIGHT	N9010A	MY54200885	10 Hz ~ 44 GHz	20/Jul/2017	19/Jul/2018
Bilog Antenna & 5dB Attenuator	TESEQ & MTJ	CBL6111D & MTJ6102-05	35418 / 3	30 MHz ~ 1 GHz	09/Sep/2017	08/Sep/2018
Double Ridged Guide Horn Antenna	SCHWARZBECK	BBHA 9120 D	BBHA9120 D 1534	1 GHz ~ 18 GHz	30/Apr/2018	29/Apr/2019
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170614	18 GHz ~ 40 GHz	09/Feb/2018	08/Feb/2019
Preamplifier	MITEQ	TTA1840-35-H G	1864481	18 GHz ~ 40 GHz	24/Aug/2017	23/Aug/2018
Loop Antenna	TESEQ	HLA 6120	31244	9k – 30 MHz	29/Mar/2018	28/Mar/2019
RF Cable-R03m	Jye Bao	RG142	CB031	9 kHz ~ 1 GHz	02/Feb/2018	01/Feb/2019
RF Cable-high	SUHNER	SUCOFLEX104	MY34918/4	1 GHz ~ 40 GHz	02/Feb/2018	01/Feb/2019

TEL: 886-3-3273456 Page Number : 23 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

FCC Test Report

Instrument for Conducted Test

Instrument	Manufacturer	Model No.	Serial No.	Spec.	Calibration Date	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101515	9 kHz ~ 40 GHz	08/Dec/2017	07/Dec/2018
Power Sensor	Anritsu	MA2411B	1339407	300 MHz ~ 40 GHz	10/May/2017	09/May/2018
Power Meter	Anritsu	ML2495A	1517010	300 MHz ~ 40 GHz	06/Nov/2017	05/Nov/2018
RF Cable-0.2m	HUBER+SUHNER	SUCOFLEX_104	MY10710/4	30 MHz ~ 26.5 GHz	25/Aug/2017	24/Aug/2018
RF Cable-0.2m	HUBER+SUHNER	SUCOFLEX_104	MY10709/4	30 MHz ~ 26.5 GHz	25/Aug/2017	24/Aug/2018
RF Cable-0.5m	HUBER+SUHNER	SUCOFLEX_104	MY10713/4	30 MHz ~ 26.5 GHz	25/Aug/2017	24/Aug/2018
Signal Generator	R&S	SMR40	100116	10 MHz ~ 40 GHz	27/Jul/2017	26/Jul/2018

Report No.: FR842412AL

TEL: 886-3-3273456 Page Number : 24 of 24
FAX: 886-3-3270973 Issued Date : May 25, 2018

Report Template No.: HE1-C10 Ver2.0 Report Version : 01

TEL: 886-3-327-3456 Page Number : A1 of A2

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

TEL: 886-3-327-3456 Page Number : A2 of A2

EBW-DTS Result Appendix B

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	711.25k	1.056M	1M06F1D	707.5k	1.052M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

Result

Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	707.5k	1.056M
2440MHz	Pass	500k	708.75k	1.053M
2480MHz	Pass	500k	711.25k	1.052M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

TEL: 886-3-327-3456 Page No. : B1 of B2

TEL: 886-3-327-3456 Page No. : B2 of B2

Appendix C

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-LE(1Mbps)	7.56	0.00570

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	1.37	7.56	30.00
2440MHz	Pass	1.08	7.36	30.00
2480MHz	Pass	1.09	7.36	30.00

TEL: 886-3-327-3456 Page No. : C1 of C1

PSD-DTS Result

Appendix D

Summary

Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	-
BT-LE(1Mbps)	-7.11

RBW=3kHz.

Result

Mode	Result	Gain	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	1.37	-8.49	8.00
2440MHz	Pass	1.08	-8.02	8.00
2480MHz	Pass	1.09	-7.11	8.00

RBW=3kHz.

TEL: 886-3-327-3456 Page No. : D1 of D2

Appendix D

TEL: 886-3-327-3456 Page No. : D2 of D2

CSE Non-restricted Band-DTS Result

Appendix E

Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz			-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	2.402171G	6.90	-23.10	147.216M	-39.99	2.39998G	-51.75	2.485184G	-59.19	24.535638G	-52.21	1

Result

Itoouit													
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.402171G	6.90	-23.10	147.216M	-39.99	2.39998G	-51.75	2.485184G	-59.19	24.535638G	-52.21	1
2440MHz	Pass	2.402171G	6.90	-23.10	147.216M	-40.31	2.399952G	-58.12	2.484576G	-58.25	24.479352G	-52.34	1
2480MHz	Pass	2.402171G	6.90	-23.10	147.216M	-40.11	2.399776G	-59.11	2.484608G	-56.86	24.408994G	-53.22	1

TEL: 886-3-327-3456 Page No. : E1 of E2

TEL: 886-3-327-3456 Page No. : E2 of E2

RSE TX below 1GHz Result

Appendix F

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE(1Mbps)	Pass	PK	31.94M	28.86	40.00	-11.14	-14.32	3	Vertical	0	1.00	-

TEL: 886-3-327-3456 Page No. : F1 of F18

RSE TX below 1GHz Result

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2440MHz	Pass	PK	31.94M	28.86	40.00	-11.14	-14.32	3	Vertical	0	1.00	-
2440MHz	Pass	PK	127M	30.47	43.50	-13.03	-19.11	3	Vertical	0	1.00	-
2440MHz	Pass	PK	264.74M	29.68	46.00	-16.32	-15.73	3	Vertical	0	1.00	-
2440MHz	Pass	PK	336.52M	24.62	46.00	-21.38	-15.62	3	Vertical	0	1.00	-
2440MHz	Pass	PK	431.58M	25.50	46.00	-20.50	-12.93	3	Vertical	0	1.00	-
2440MHz	Pass	PK	860.32M	28.76	46.00	-17.24	-6.78	3	Vertical	0	1.00	-
2440MHz	Pass	PK	57.16M	28.51	40.00	-11.49	-25.32	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	103.72M	24.39	43.50	-19.11	-20.61	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	255.04M	32.12	46.00	-13.88	-16.14	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	357.86M	25.16	46.00	-20.84	-15.07	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	575.14M	23.25	46.00	-22.75	-10.60	3	Horizontal	360	1.00	-
2440MHz	Pass	PK	858.38M	30.82	46.00	-15.18	-6.79	3	Horizontal	360	1.00	-

TEL: 886-3-327-3456 Page No. : F2 of F18

TEL: 886-3-327-3456 Page No. : F3 of F18

TEL: 886-3-327-3456 Page No. : F4 of F18

RSE TX above 1GHz Result

Appendix F

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-		-	-	-	-	-	-
BT-LE(1Mbps)	Pass	AV	2.4968G	48.22	54.00	-5.78	34.07	3	Horizontal	39	1.55	-

TEL: 886-3-327-3456 Page No. : F5 of F18

RSE TX above 1GHz Result

Result

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	AV	2.3762G	47.69	54.00	-6.31	34.04	3	Vertical	325	2.59	-
2402MHz	Pass	AV	2.402G	104.13	Inf	-Inf	34.05	3	Vertical	325	2.59	-
2402MHz	Pass	PK	2.3574G	59.25	74.00	-14.75	34.05	3	Vertical	325	2.59	-
2402MHz	Pass	PK	2.4018G	105.12	Inf	-Inf	34.05	3	Vertical	325	2.59	-
2402MHz	Pass	AV	2.3758G	47.45	54.00	-6.55	34.04	3	Horizontal	33	1.22	-
2402MHz	Pass	AV	2.402G	104.56	Inf	-Inf	34.05	3	Horizontal	33	1.22	-
2402MHz	Pass	PK	2.3892G	58.58	74.00	-15.42	34.05	3	Horizontal	33	1.22	-
2402MHz	Pass	PK	2.4018G	105.57	Inf	-Inf	34.05	3	Horizontal	33	1.22	-
2402MHz	Pass	AV	4.80394G	39.18	54.00	-14.82	4.23	3	Vertical	321	1.02	-
2402MHz	Pass	PK	4.80394G	51.15	74.00	-22.85	4.23	3	Vertical	321	1.02	-
2402MHz	Pass	AV	4.80394G	35.94	54.00	-18.06	4.23	3	Horizontal	175	1.27	-
2402MHz	Pass	PK	4.80394G	48.18	74.00	-25.82	4.23	3	Horizontal	175	1.27	-
2440MHz	Pass	AV	2.3804G	47.53	54.00	-6.47	34.05	3	Vertical	328	2.59	-
2440MHz	Pass	AV	2.44G	104.13	Inf	-Inf	34.06	3	Vertical	328	2.59	-
2440MHz	Pass	AV	2.4888G	47.94	54.00	-6.06	34.07	3	Vertical	328	2.59	-
2440MHz	Pass	PK	2.3736G	59.25	74.00	-14.75	34.05	3	Vertical	328	2.59	-
2440MHz	Pass	PK	2.44G	105.19	Inf	-Inf	34.06	3	Vertical	328	2.59	-
2440MHz	Pass	PK	2.484G	58.54	74.00	-15.46	34.07	3	Vertical	328	2.59	-
2440MHz	Pass	AV	2.3412G	47.42	54.00	-6.58	34.05	3	Horizontal	39	1.55	-
2440MHz	Pass	AV	2.44G	104.44	Inf	-Inf	34.06	3	Horizontal	39	1.55	-
2440MHz	Pass	AV	2.4968G	48.22	54.00	-5.78	34.07	3	Horizontal	39	1.55	-
2440MHz	Pass	PK	2.352G	58.39	74.00	-15.61	34.05	3	Horizontal	39	1.55	-
2440MHz	Pass	PK	2.4396G	105.49	Inf	-Inf	34.06	3	Horizontal	39	1.55	-
2440MHz	Pass	PK	2.4952G	58.81	74.00	-15.19	34.07	3	Horizontal	39	1.55	-
2440MHz	Pass	AV	4.87994G	39.48	54.00	-14.52	4.51	3	Vertical	318	1.05	-
2440MHz	Pass	PK	4.87994G	50.88	74.00	-23.12	4.51	3	Vertical	318	1.05	-
2440MHz	Pass	AV	4.87994G	36.26	54.00	-17.74	4.51	3	Horizontal	175	1.25	-
2440MHz	Pass	PK	4.87994G	47.66	74.00	-26.34	4.51	3	Horizontal	175	1.25	-
2480MHz	Pass	AV	2.48G	103.47	Inf	-Inf	34.07	3	Vertical	345	2.19	-
2480MHz	Pass	AV	2.4924G	47.85	54.00	-6.15	34.06	3	Vertical	345	2.19	-
2480MHz	Pass	PK	2.4798G	104.49	Inf	-Inf	34.07	3	Vertical	345	2.19	-
2480MHz	Pass	PK	2.4986G	58.89	74.00	-15.11	34.07	3	Vertical	345	2.19	-
2480MHz	Pass	AV	2.48G	104.30	Inf	-Inf	34.07	3	Horizontal	39	1.01	-
2480MHz	Pass	AV	2.4866G	47.64	54.00	-6.36	34.07	3	Horizontal	39	1.01	-
2480MHz	Pass	PK	2.4798G	105.34	Inf	-Inf	34.07	3	Horizontal	39	1.01	-
2480MHz	Pass	PK	2.4888G	59.18	74.00	-14.82	34.07	3	Horizontal	39	1.01	-
2480MHz	Pass	AV	4.95994G	41.02	54.00	-12.98	4.82	3	Vertical	323	1.08	-
2480MHz	Pass	PK	4.95994G	52.54	74.00	-21.46	4.82	3	Vertical	323	1.08	-
2480MHz	Pass	AV	4.95982G	36.83	54.00	-17.17	4.82	3	Horizontal	175	1.44	-
2480MHz	Pass	PK	4.95982G	47.88	74.00	-26.12	4.82	3	Horizontal	175	1.44	-

TEL: 886-3-327-3456 Page No. : F6 of F18

TEL: 886-3-327-3456 Page No. : F7 of F18

TEL: 886-3-327-3456 Page No. : F8 of F18

TEL: 886-3-327-3456 Page No. : F9 of F18

TEL: 886-3-327-3456 Page No. : F10 of F18

TEL: 886-3-327-3456 Page No. : F11 of F18

TEL: 886-3-327-3456 Page No. : F12 of F18

TEL: 886-3-327-3456 Page No. : F13 of F18

TEL: 886-3-327-3456 Page No. : F14 of F18

TEL: 886-3-327-3456 Page No. : F15 of F18

TEL: 886-3-327-3456 Page No. : F16 of F18

TEL: 886-3-327-3456 Page No. : F17 of F18

TEL: 886-3-327-3456 Page No. : F18 of F18