Claims

1. A platinum complex represented by the following general formula [1]:

[where in the formula, any two of a ring A, a ring B, and a ring C each independently represent a nitrogen-containing aromatic heterocyclic group coordinating to a platinum atom through a nitrogen atom, which may be substituted, and the other represents an aryl group which may be substituted, or a heteroaryl group which may be substituted, and Y represents a halogen atom, or an aryl group which may be substituted, or a heteroaryl group which may be substituted, or a heteroaryl group which may be substituted, bonded directly or through an oxygen atom (-O-) or a sulfur atom (-S-) (provided that when the adjacent two rings are nitrogen-containing aromatic heterocyclic groups, the cases where Y is a chlorine atom are excluded, and that when the nonadjacent two rings are nitrogen-containing aromatic heterocyclic groups, the cases where Y is a group other than a halogen atom are excluded)].

2. The platinum complex according to claim 1, represented by the following general formula [1']:

(where in the formula, a ring A_1 and a ring B_1 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, a ring C_1 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and X represents a halogen atom.)

3. The platinum complex according to claim 2, represented by the following general formula [la']:

$$(R^{2})m^{2}$$

$$(R^{1})m^{1}$$
 C'_{1}
 $C-Pt$
 X

$$(R^{3})m^{3}$$

$$(R^{3})m^{3}$$

(where in the formula, a ring C'_1 represents an aryl group or a heteroaryl group; R^1 , R^2 , and R^3 each independently represent a hydrogen atom, an alkyl group, a haloalkyl group, an aralkyl group, an alkenyl group, an alkynyl group, an aryl group, an amino group, a mono- or di-alkylamino group, a mono-

or di-arylamino group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, an acyloxy group, acylamino group, an alkoxycarbonylamino group, sulfonylamino aryloxycarbonylamino group, a group, sulfamoyl group, a carbamoyl group, an alkylthio group, an arylthio group, a heteroarylthio group, a sulfonyl group, a sulfinyl group, an ureido group, a phosphoramide group, a hydroxyl group, a mercapto group, a halogen atom, a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an aliphatic heterocyclic group, an aromatic heterocyclic group, a substituted silyl group, or a polymerizable group; further, a plurality of R^1 s, a plurality of R^2 s, or/and a plurality of R³s may together form a fused ring with pyridine rings or the ring C to which they are bonded; X represents a halogen atom; m^1 , m^2 , and m^3 represent numbers of the substituents R^1 , R^2 , and R³, respectively, and m¹ represents an integer of 0 to 3, and m² and m³ each represent an integer of 0 to 4; and further, when m^1 , m^2 , and m^3 each is an integer of 2 or more, a plurality of R¹s, a plurality of R²s, and a plurality of R³s may be mutually the same or different.)

4. The platinum complex according to claim 2 or 3, represented by the following general formula [1b']:

$$(R^2)m^2$$

$$N$$

$$(R^1)m^1$$

$$N$$

$$(R^3)m^3$$

$$(R^3)m^3$$

(where in the formula,, R^1 , R^2 , R^3 , X, m^1 , m^2 , and m^3 represent the same meanings as described above.)

5. The platinum complex according to claim 1, represented by the following general formula [1'']:

(where in the formula, a ring B_2 and a ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, a ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted; further, the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 , and the ring C_2 may be mutually bonded to form a fused ring; and C_2 and C_2

- a fluorine atom, a bromine atom, or an iodine atom).
- 6. The platinum complex according to claim 5, represented by the following general formula [1a'']:

$$(R^{1})m^{1}$$

$$(R^{3})m^{3}$$

$$C'_{2}$$

$$N$$

$$A_{2}$$

$$[1a'']$$

(where in the formula, a ring A₂ represents an aryl group which may be substituted or a heteroaryl group which may be substituted; R¹ and R³ each independently represent a hydrogen atom, an alkyl group, a haloalkyl group, an aralkyl group, an alkenyl group, an alkynyl group, an aryl group, an amino group, a mono- or di-alkylamino group, a mono- or di-arylamino group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfonylamino group, a sulfamoyl group, a carbamoyl group, a sulfonyl group, a sulfinyl group, an ureido group, a phosphoramide group, a hydroxyl group, a carboxyl group, a nitro group, a hydroxamic acid group, a sulfino group, a

hydrazino group, an aliphatic heterocyclic group, an aromatic heterocyclic group, a substituted silyl group, or a polymerizable group; further, a plurality of R^1 s or/and a plurality of R^3 s may together form a fused ring with pyridine rings to which they are bonded; further, the ring B'_2 and the ring C'_2 , and C'_2 and the ring A_2 , or the ring B'_2 , the ring C'_2 , and the ring A_2 may be mutually bonded to form a fused ring; m^1 and m^3 represent the numbers of the substituents R^1 and R^3 , respectively, and m^1 represents an integer of 0 to 3, and m^3 represents an integer of 0 to 4; and further, when m^1 and m^3 are each an integer of 2 or more, a plurality of R^1 s and a plurality of R^3 s may be mutually the same or different; and X^1 is the same as described above).

7. The platinum complex according to claim 1, represented by the following general formula [1''']:

(where in the formula, a ring B_2 and a ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, a ring A_2 and a ring E each

independently represent an aryl group which may be substituted, or a heteroaryl group which may be substituted; the ring A_2 and the ring C_2 , and the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 , and the ring C_2 may be mutually bonded to form a fused ring; further, in the case where the ring C_2 , the ring C_2 , or/and the ring C_2 each have a substituent, when the substituent is a substituent capable of coordinating or bonding to a metal, a metal atom may be coordinated or bonded through a coordinatable or bondable atom in the substituent.)

8. The platinum complex according to claim 7, represented by the following general formula [1a''']:

$$(R^{1})m^{1}$$
 $N - R^{1}$
 E
 $[1a^{11}]$
 $(R^{3})m^{3}$

(where in the formula, the ring A_2 and the ring E are the same as described above; R^1 and R^3 each independently represent an alkyl group, a haloalkyl group, an aralkyl group, an alkenyl group, an alkynyl group, an aryl group, an amino group, a monoor di-alkylamino group, a mono- or di-arylamino group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an

alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfonylamino group, sulfamoyl group, a carbamoyl group, an alkylthio group, an arylthio group, a heteroarylthio group, a sulfonyl group, a sulfinyl group, an ureido group, a phosphoramide group, a hydroxyl group, a mercapto group, a halogen atom, a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an aliphatic heterocyclic group, an aromatic heterocyclic group, a substituted silyl group, or a polymerizable group; further, R¹ and R³ may together form a fused ring with two pyridine rings to which they are bonded; R^1 and the ring A_2 , or R^1 , R^3 , and the ring A₂ may together form a fused ring; m¹ and m³ represent the numbers of the substituents R1 and R3, respectively, m1 represents an integer of 0 to 3, and m³ represents an integer of 0 to 4; and further, when m¹ and m³ are each an integer of 2 or more, a plurality of R¹s and a plurality of R³s may be mutually the same or different; further, a plurality of R1s or/and a plurality of R3s may together form a fused ring with the pyridine rings to which they are bonded; and further when R^{1} , R^{3} , and each substituent in the ring A_{2} or/and the ring Eare each a substituent capable of coordinating to a metal or capable of bonding to a metal, a metal atom may be coordinated or bonded through a coordinatable or bondable atom in the

substituent.)

9. The platinum complex according to claim 7 or 8, represented by the following general formula [1b''']:

$$(R^{2})m^{2}$$
 $N-Rt$
 $(R^{4})m^{4}$
 $(R^{3})m^{3}$
 $(R^{3})m^{3}$

(where in the formula, R^1 , R^2 , R^3 , and R^4 each independently represent an alkyl group, a haloalkyl group, an aralkyl group, an alkenyl group, an alkynyl group, an aryl group, an amino group, a mono- or di-alkylamino group, a mono- or di-arylamino group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an acyloxy group, an acylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, a sulfonylamino group, sulfamoyl group, a carbamoyl group, an alkylthio group, an arylthio group, a heteroarylthio group, a sulfonyl group, a sulfinyl group, an ureido group, a phosphoramide group, a hydroxyl group, a mercapto group, a halogen atom, a cyano group, a sulfo group, a carboxyl group, a nitro group, a hydroxamic acid group, a sulfino group, a hydrazino group, an aliphatic heterocyclic group, an aromatic heterocyclic group,

substituted silyl group, or a polymerizable group; further, R^1 and R^2 , R^1 and R^3 , or/and R^1 , R^2 , and R^3 may together form a fused ring with the two pyridine rings, or the pyridine ring and the benzene ring to which they are bonded; m¹, m², m³, and m^4 represent the numbers of the substituents R^1 , R^2 , R^3 , and R^4 , respectively, m^1 represents an integer of 0 to 3, m^2 and m^3 each represent an integer of 0 to 4, and m4 represents an integer of 0 to 5; and further, when m¹, m², m³, and m⁴ are each an integer of 2 or more, a plurality of R¹s, a plurality of R²s, a plurality of R^3 s, and a plurality of R^4 may be mutually the same or different; further, R1s, R2s, R3s, or/and R4s may together form a fused ring with the pyridine rings or the benzene rings to which they are bonded; and further when R¹, R², R³, and/or R⁴ are each a substituent capable of coordinating to a metal or capable of bonding to a metal, a metal atom may be coordinated or bonded through a coordinatable or bondable atom in the substituent.)

10. A method for producing the platinum complex according to claim 5, characterized by allowing a platinum diene complex represented by the general formula [2]:

$$Pt(X^1)_2(D)$$
 [2]

(where in the formula, D represents a nonconjugated diene compound, and X^1 represents a fluorine atom, a bromine atom, or an iodine atom) and a compound represented by the general

formula [3]:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 may be mutually bonded to form a fused ring) to react with each other.

11. A method for producing the platinum complex according to claim 5, characterized by allowing a platinum diene complex represented by the general formula [2a]:

(where in the formula, D represents a nonconjugated diene compound), a compound represented by the general formula [3]:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 and the ring C_2 and the ring C_3 and a halogenating agent for substituting a halogen atom other than chlorine to mutually react.

- 12. The production method according to claim 11, wherein the platinum diene complex represented by the general formula [2a] is first allowed to react with the compound represented by the general formula [3], and then, allowed to react with the halogenating agent for substituting a halogen atom other than chlorine.
- 13. The production method according to claim 12, wherein the reaction of the platinum diene complex represented by the

general formula [2a] and the compound represented by the general formula [3], and the subsequent reaction with the halogenating agent are carried out in one pot.

14. A method for producing the platinum complex according to claim 5, characterized by allowing a platinum complex represented by the general formula [1b'']:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 and the ring C_3 and the ring C_4 and the

15. A method for producing a platinum complex having a tridentate ligand, and having a halogen atom, characterized

by using a platinum diene complex represented by the general formula [2b]:

$$Pt(X)_{2}(D)$$
 [2b]

(where in the formula, D represents a nonconjugated diene compound, and X represents a halogen atom) as a platinum source.

16. The production method according to claim 15, wherein the platinum complex having a tridentate ligand, and having a halogen atom is a platinum complex represented by the following general formula [1c'']:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 may be mutually bonded to form a fused ring; and X represents a halogen atom).

17. A method for producing a platinum complex represented by

the general formula [1c'']:

(where in the formula, the ring B_2 , the ring C_2 , the ring A_2 , and X are the same as described above.), characterized by allowing a platinum diene complex represented by the general formula [2b]:

$$Pt(X)_{2}(D)$$
 [2b]

(where in the formula, D represents a nonconjugated diene compound, and X represents a halogen atom.) and a compound represented by the general formula [3]:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and

the ring C_2 , the ring C_2 and the ring A_2 , or the ring B_2 , the ring C_2 , and the ring A_2 may be mutually bonded to form a fused ring) to react with each other.

18. A method for producing a platinum complex represented by the general formula [1d'']:

(where in the formula, the ring B_2 , the ring C_2 , and the ring A_2 are the same as described above; and X^3 represents a halogen atom (provided that the cases where X and X^3 are the same are excluded)), characterized by allowing a platinum diene complex represented by the general formula [2b]:

$$Pt(X)_2(D)$$
 [2b]

(where in the formula, D represents a nonconjugated diene compound, and X represents a halogen atom), a compound represented by the general formula [3]:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 may be mutually bonded to form a fused ring), and a halogenating agent for substituting a halogen atom other than C_2 to mutually react.

- 19. The production method according to claim 18, wherein the platinum diene complex represented by the general formula [2b] is first allowed to react with the compound represented by the general formula [3], and then, allowed to react with the halogenating agent for substituting a halogen atom other than X.
- 20. The production method according to claim 19, wherein the reaction of the platinum diene complex represented by the general formula [2b] and the compound represented by the general formula [3], and the subsequent reaction with the halogenating agent are carried out in one pot.
- 21. A method for producing a platinum complex represented by the general formula [1d'']:

(where in the formula, the ring B_2 , the ring C_2 , and the ring A_2 are the same as described above; and X^3 represents a halogen atom (provided that the cases where X and X^3 are the same are excluded)), characterized by allowing a platinum complex represented by the general formula [1c'']:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 and the ring C_2 , and the ring C_2 and the ring C_2 , and the ring C_2 and a halogenating agent

for substituting a halogen atom other than X to react with each other.

22. A method for producing the platinum complex according to claim 7, characterized by allowing a platinum diene complex represented by the general formula [2b]:

$$Pt(X)_{2}(D)$$
 [2b]

(where in the formula, D represents a nonconjugated diene compound, and X represents a halogen atom) and a compound represented by the general formula [3]:

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 and the ring C_3 and the ring C_4 and the

(where in the formula, the ring B_2 , the ring C_2 , the ring A_2 , and X are the same as described above), and then, allowing a Grignard reagent represented by the general formula [4]:

 $EMgX^2$ [4]

(where in the formula, E represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and X^2 represents a halogen atom) to act thereon.

23. A method for producing the platinum complex according to claim 7, characterized by allowing a platinum compound represented by the general formula [5]:

 M_2PtX_4 [5]

(where in the formula, M represents an alkali metal atom, and X represents a halogen atom.)) and a compound represented by the general formula [3]:

(where in the formula, the ring B_2 , the ring C_2 , and the ring A_2 are the same as described above) to react with each other, and thereby forming a platinum complex represented by the general formula [1c'']:

(where in the formula, the ring B_2 , the ring C_2 , the ring A_2 , and X are the same as described above), and then, allowing a Grignard reagent represented by the general formula [4]:

$$EMgX^2$$
 [4]

(where in the formula, E represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and X^2 represents a halogen atom) to act thereon.

24. A method for producing the platinum complex according to

claim 7, characterized by, on a platinum diene complex represented by the general formula [2b]:

$$Pt(X)_{2}(D)$$
 [2b]

(where in the formula, D represents a nonconjugated diene compound, and X represents a halogen atom), allowing a Grignard reagent represented by the general formula [4]:

$$EMgX^2$$
 [4]

(where in the formula, E represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and X^2 represents a halogen atom) to act, and then, allowing a compound represented by the general formula [3]:

$$B_2$$
 A_2
 B_2
 A_2
 B_3

(where in the formula, the ring B_2 and the ring C_2 each independently represent a nitrogen-containing aromatic heterocyclic group which may be substituted, the ring A_2 represents an aryl group which may be substituted or a heteroaryl group which may be substituted, and the ring B_2 and the ring C_2 , the ring C_2 and the ring C_2 , or the ring C_2 , the ring C_2 and the ring C_2 , and the ring C_2 may be mutually bonded to form a fused ring) to react therewith.