Series 8

1. Theoretical study of the PSOR algorithm

a) Consider a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ and two vectors $b, c \in \mathbb{R}^n$ and consider the following linear complementarity problem (LCP): Find $\underline{x} \in \mathbb{R}^N$ such that

$$\mathbf{A}\underline{x} \ge \underline{b},$$

$$\underline{x} \ge \underline{c},$$

$$(\underline{x} - \underline{c})^{\top} (\mathbf{A}\underline{x} - \underline{b}) = \underline{0}.$$
(1)

Show that the LCP (1) is equivalent to the following problem: Find $x \in \mathbb{R}^n$ such that

$$(\underline{y} - \underline{x})^{\top} (\mathbf{A}\underline{x} - \underline{b}) \ge \underline{0}, \quad \forall y \in \mathcal{K},$$

 $\underline{x} \in \mathcal{K},$ (2)

where

$$\mathcal{K} = \{ \underline{y} \in \mathbb{R}^n : \underline{y} \ge \underline{c} \} .$$

- **b)** Assume now the following:
 - i) There exist constants $C_1, C_2 > 0$ such that $C_1 \underline{v}^{\top} \underline{v} \leq \underline{v}^{\top} \mathbf{A} \underline{v} \leq C_2 \underline{v}^{\top} \underline{v}$.
 - ii) The matrix **A** is diagonally dominant, i.e. $|A_{ii}| > \sum_{j \neq i} |A_{ij}|$, $\forall i$.

Let $\psi = \psi(\omega)$ be the mapping

$$\psi : \underline{x} \mapsto \underline{z} :$$

$$\forall i = 1, \dots, n, \quad z_i = \max(y_i, c_i), \quad \text{and } y_i \text{ is given by}$$

$$\frac{1}{\omega} \mathbf{A}_{ii} y_i + \sum_{j < i} \mathbf{A}_{ij} z_j = b_i + \left(\frac{1}{\omega} - 1\right) \mathbf{A}_{ii} x_i - \sum_{j > i} \mathbf{A}_{ij} x_j .$$

In the lecture it was shown that for each $0 < \omega \le 1$, ψ is a self-mapping contraction and hence admits a unique fixed-point $\underline{x}^* = \underline{x}^*(\omega)$. Show that if \underline{x} is the unique solution to the LCP (1), then \underline{x} is the unique fixed point of ψ , i.e. $\psi(\underline{x}) = \underline{x}$. In particular, this shows that the fixed-point \underline{x} of $\psi(\omega)$ is independent of the choice of ω .

Hint: Let \underline{u} be the solution to (1) and denote $\underline{z} = \psi(\underline{u})$. Show by induction on the components, that $\underline{z} = \underline{u}$.

2. Lookback option

In this exercise, we consider a first example of an *exotic option* in the Black-Scholes model: Let the price process of a given underlying be modeled by the SDE

$$dS_t = rS_t dt + \sigma S_t dW_t$$

for a Brownian motion W and with initial price $S_0 = s$, interest rate $r \ge 0$ and volatility $\sigma > 0$. A Lookback call option written at time 0 with strike K and maturity T yields the payoff

$$H(S) = \max\left(\max_{t \in [0,T]} S_t - K, 0\right)$$

at maturity.

The goal of this exercise is to verify that for $K \ge S_0 = s$, the following closed-form expression for the fair value of a lookback option at time t = 0 holds true:

$$\mathbb{E}[e^{-rT}H(S)|S_0 = s] = s\Phi(d) - e^{-rT}K\Phi(d - \sigma\sqrt{T}) + e^{-rT}\frac{\sigma^2}{2r}s\left[-\left(\frac{s}{K}\right)^{\frac{-2r}{\sigma^2}}\Phi\left(d - \frac{2r}{\sigma}\sqrt{T}\right) + e^{rT}\Phi(d)\right],$$

where

$$d = \frac{\log(\frac{s}{K}) + (r + \frac{\sigma^2}{2})T}{\sigma\sqrt{T}}$$

and Φ cumulative density function of the standard normal distribution.

a) Calculate the price of a digital lookback option

$$\mathbb{E}\left[\mathbf{1}_{\left\{\max_{t\in[0,T]}S_{t}\geq K\right\}}\right].$$

Hint: For a given constant $\alpha \in \mathbb{R}$, denote the supremum of a Brownian motion with drift α as the random variable $Y = \sup_{t \in [0,T]} \alpha t + W_t$. Use without proof that Y has the distribution function

$$P(Y \le y) = \Phi\left(\frac{y - \alpha T}{\sqrt{T}}\right) - \exp(2\alpha y)\Phi\left(\frac{-y - \alpha T}{\sqrt{T}}\right)$$

for y > 0 and $P(Y \le y) = 0$ for $y \le 0$.

b) Show that

$$\mathbb{E}\left[\left(\max_{t\in[0,T]}S_{t}\right)\mathbf{1}_{\left\{\max_{t\in[0,T]}S_{t}\geq K\right\}}\right] = \left(1-\frac{\sigma^{2}}{2r}\right)s\left(\frac{K}{s}\right)^{\frac{2r}{\sigma^{2}}}\Phi\left(d-\frac{2r}{\sigma}\sqrt{T}\right) + \left(1+\frac{\sigma^{2}}{2r}\right)e^{rT}s\Phi(d).$$

Hint: Derive the probability density function of Y from the hint to part 2a).

c) Combine the results from 2a) and 2b) to deduce the desired expression for the price of the lookback option.

3. Dimension reduction for the Asian option pricing equation

Consider an Asian option on a stock under the Black–Scholes model with volatility $\sigma > 0$, risk-free interest rate $r \geq 0$ and spot price $s_0 > 0$. The value function $V : J \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is given for the interval J = (0, T) by

$$V(t, s, y) = \mathbb{E}\left[e^{-r(T-t)}g(S_T, Y_T) \mid S_t = s, Y_t = y\right], \text{ for } t \in J, s, y \in \mathbb{R}_+,$$

where $g: \mathbb{R}_+ \to \mathbb{R}_{\geq 0}$ is the payoff function, and $Y_t := \int_0^t S_\tau d\tau$ for all $t \in J$. Then, the vector (S, Y) is the solution to two-dimensional SDE

$$dS_t = rS_t dt + \sigma S_t dW_t, \quad t \in J, \qquad S_0 = s_0,$$

$$dY_t = S_t dt, \qquad \qquad t \in J, \qquad Y_0 = 0.$$

Under appropriate smoothness assumptions, the corresponding backward Kolmogorov equation for the option value $V: J \times \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ reads

$$\begin{cases}
\partial_t V + \frac{1}{2}\sigma^2 s^2 \partial_{ss} V + rs \partial_s V + s \partial_y V - rV = 0 & \text{on} \quad J \times \mathbb{R}_+ \times \mathbb{R}_+, \\
V(T, s, y) = g(s, y) & \text{on} \quad \mathbb{R}_+ \times \mathbb{R}_+.
\end{cases}$$
(3)

By switching to the variables $(t, s, y) \to (t, z)$ with a suitable change of variable $z = \xi(t, s, y) = \zeta(s, y) + q(t)$ with $\zeta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ and $q : J \to \mathbb{R}$, one may transform (3) to

$$\begin{cases}
\partial_t H + \frac{1}{2}\sigma^2 (q(t) - z)^2 \partial_{zz} H + r(q(t) - z) \partial_z H = 0 & \text{on } J \times \mathbb{R}, \\
H(T, z) = \max\{z, 0\} & \text{on } \mathbb{R},
\end{cases}$$
(4)

where $sH(t, \xi(t, s, y)) = V(t, s, y)$.

- a) Derive (4) from (3) in the case of a fixed strike call for $g(s,y)=(\frac{y}{T}-K)_+$ using $z=\xi(t,s,y)=\frac{1}{s}(\frac{y}{T}-K)+q(t)$ with $q(t)=1-\frac{t}{T}$.
- **b)** Derive (4) from (3) in the case of a *floating strike call* for $g(s,y)=(s-\frac{y}{T})_+$ using $z=\xi(t,s,y)=\frac{1}{s}(-\frac{y}{T})+q(t)$ with $q(t)=\frac{t}{T}$.

Due: Wednesday, May 1st, at 2pm.