Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Grafos: legal demais!

Marcelo Machado Lage

Monografia Final mac 499 — Trabalho de Formatura Supervisionado

Supervisor: Prof. Dr. Guilherme Oliveira Mota

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da FAPESP

São Paulo

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License)

Resumo

Marcelo Machado Lage. **Grafos: legal demais!**. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2025.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Marcelo Machado Lage. **Graphs: so cool!**. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2025.

Keywords: Keyword1. Keyword2. Keyword3.

Sumário

1	Res	ultados clássicos	1
2	Álgebras de flag		
	2.1	Preliminares	3
	2.2	Aplicações para a Conjectura 1	3
3	Gra	u limitado	5
D.	. C		7
K	eferêi	10188	/

Capítulo 1

Resultados clássicos

Seja G um grafo. Defininimos D(G) como o menor tamanho de um $F \subseteq E(G)$ tal que G - F é bipartido.

Teorema 1 (Mantel). Seja G um grafo livre de triângulos com n vértices. Então $e(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor$. Além disso, se vale a igualdade então G é bipartido completo.

Teorema 2 (Estabilidade). Seja $m \ge 0$ um inteiro e seja G um grafo livre de triângulos com n vértices e $\frac{n^2}{4} - m$ arestas. Então $D(G) \le m$.

Conjectura 1 (Erdős, 1975). Seja G um grafo livre de triângulos com n vértices. Então G pode ser tornado bipartido pela remoção de no máximo $\frac{n^2}{25}$ arestas, i.e.

$$D(G) \le \frac{n^2}{25}.$$

Uma Conjectura relacionada:

Conjectura 2 (Erdős, 1975). Seja G um grafo livre de triângulos com n vértices. Então existe $X \subseteq V(G)$ com $X = \left\lfloor \frac{n}{2} \right\rfloor$ tal que $e(G[X]) \le \frac{n^2}{50}$.

Observe que o Teorema 2 prova a Conjetura para grafos suficientemente densos (com pelo menos $\frac{n^2}{4} - \frac{n^2}{25}$ arestas).

Definição 1. Sejam G um grafo e H um blow-up de G, com $\phi: V(H) \to V(G)$ sendo um homomorfismo que define esse blow-up. Dizemos que um $S \subseteq E(H)$ é canônico com relação $a \phi$ se para quaisquer $e, f \in E(H)$ com $\phi(e) = \phi(f)$ vale que $e \in S \iff f \in S$. Em outras palavras, entre cada par de classes de H escolhemos ou todas as arestas entre essas classes ou não escolhemos nenhuma dessas arestas.

Se ϕ for claro do contexto, iremos omitir e dizer apenas que o conjunto de arestas do blow-up é simplesmente canônico.

Teorema 3 (Simetrização). Seja G um grafo livre de triângulos e seja H um blow-up de G. Então existe $F \subseteq E(H)$ canônico com |F| = D(H) e tal que G - F é bipartido.

Corolário 1. Seja H um blow-up balanceado de C₅ com n vértices. Então

$$D(H) = \frac{n^2}{25}.$$

Em particular, a Conjectura 1 (se verdadeira) dá a melhor constante possível.

Teorema 4 (EFPS). Seja G um grafo livre de triângulo com n vértices e m arestas. Então

$$D(G) \le \left\{ m - \frac{m^2}{4n}, \frac{m}{2} - \frac{2m(2m^2 - n^3)}{n^2(n^2 - 2m)} \right\}.$$

Teorema 5. Para todo n inteiro positivo, a Conjectura 1 é verdadeira para grafos com n vértices e pelo menos $\frac{n^2}{5}$ arestas.

Teorema 6 (Erdős - Győri - Simonovits). Seja G um grafo livre de triângulos com n vértices e pelo menos $\frac{n^2}{25}$ arestas. Então existe um grafo H também com n vértices tal que H é um blow-up de C_5 e, além disso, $e(G) \le e(H)$ e $D(G) \le D(H)$.

A prova é algorítmica.

Capítulo 2

Álgebras de flag

2.1 Preliminares

Seja $k \ge 0$ um inteiro. Um *tipo* de *tamanho* k é um grafo G com V(G) = [k], i.e. é um grafo com todos os seus vértices rotulados. O tipo vazio é denotado por \emptyset .

Seja σ um tipo de tamanho k. Um σ -flag é um par (F, ϕ) em que $\phi : [k] \to V(F)$ é um homomorfismo de grafos injetor tal que $F[\phi([k])] \cong \sigma$.

Exemplo 1 (Mantel). Se
$$= 0$$
, então $\le \frac{1}{2}$.

2.2 Aplicações para a Conjectura 1

Teorema 7. Se
$$= 0$$
 e $\geq \frac{2}{25}$, então $= \frac{2}{1}$ $\leq \frac{2}{25}$.

Corolário 2. Seja G um grafo com n vértices e pelo menos $\frac{n^2}{5}$ arestas. Então a Conjectura 1 vale para G.

O ponto é que ter a linguagem de flag algebras facilita obter cotas a partir da ideia de "cortes locais" e daí pode automatizar o processo.

Teorema 8 (Balogh-Clemen-Lidický). Seja G um grafo livre de triângulos com n vértices. Então, vale que

1.
$$D(G) \leq \frac{n^2}{23.5}$$
;

2.
$$D(G) \le \frac{n^2}{25}$$
 se $e(G) \ge 0.3197 \binom{n}{2}$;

3.
$$D(G) \le \frac{n^2}{25}$$
 se $e(G) \le 0.2486 \binom{n}{2}$.

Capítulo 3

Grau limitado

Vamos tentar resolver quando $\delta(G)$ é grande? Ok, ok, você vai dizer "mas o resultado do capítulo 2 já cobre isso". Verdade, mas queremos mais *estrutura* sobre os conjuntos que geram D(G), então ainda vale a pena estudar esses casos!

Seja $d \ge 1$ um inteiro positivo.

Definição 2. Seja $d \ge 1$ um inteiro positivo. O *grafo de Andrásfai F_d* é o grafo com vértices $\{0, 1, ..., 3d - 2\}$ e arestas entre i e i + d + j para cada $j \in \{0, 1, ..., d - 1\}$. Uma forma de representar os grafos de Andrásfai é colocar os vértices em uma circunferência em sentido horário como vértices de (3d - 1)-ágono regular e ligar cada vértice com os d vértices mais distantes dele.

Figura 3.1: Grafos de Andrásfai para d = 1 a d = 4. Observe que F_d é d-regular e livre de triângulos.

Teorema 9 (Jin, 1995). Seja G um grafo livre de triângulos com n vértices e grau mínimo maior que 10n/29. Então $G \stackrel{hom}{\longleftrightarrow} F_9$.

Teorema 10 (Chen et al., 1997). Seja G um grafo livre de triângulos com n vértices e $\chi(G) \leq 3$. Se $\delta(G) > \frac{d+1}{3d+2}n$, então G está contido em um blow-up de F_d .

Lema 1. Seja G um grafo e suponha que existem conjuntos dois a dois disjuntos $E_1, E_2, E_3, E_4, E_5 \subseteq E$ tais que $G - F_i$ é bipartido para cada $i \in \{1, 2, 3, 4, 5\}$. Então G satisfaz a Conjectura 1.

Demonstração. Se $e(G) \ge \frac{n^2}{5}$, então o resultado segue do Teorema 5. Por outro lado, se $e(G) < \frac{n^2}{5}$, então

$$5\min\{|E_1|,|E_2|,|E_3|,|E_4|,|E_5|\} \le |E_1|+|E_2|+|E_3|+|E_4|+|E_5| \le e(G) < \frac{n^2}{5},$$

de forma que para $|E_i|=\min\{|E_1|,|E_2|,|E_3|,|E_4|,|E_5|\}$ temos $G-E_i$ bipartido com $|E_i|<\frac{n^2}{25}$.

Esse Lema vai funcionar para F_4 , mas não para F_5 .

Teorema 11. Se G é um grafo livre de triângulo com n vértices e $\delta(G) > 4n/11$, então $D(G) \le \frac{n^2}{25}$.

Demonstração. Veja que 4/11 > 10/29, logo pelo Teorema 9, temos que $G \xrightarrow{hom} F_9$. Em particular, $\chi(G) \le \chi(F_9) = 3$. Assim, pelo Teorema 10 com d = 3, vale que $G \xrightarrow{hom} F_4$. Considere a seguinte partição das arestas de G, em que cada classe está representada por um vértice e todos as arestas entre o mesmo par de classes estão na mesma parte:

Como a remoção de cada uma das partes deixa G bipartido, podemos aplicar o Lema 1 a G. Isso conclui a prova do Teorema.

Referências

- [Chen et al. 1997] Chuan-Chong Chen, Guoping P Jin e Khee Meng Koh. "Triangle-free graphs with large degree". *Combinatorics, Probability and Computing* 6.4 (1997), pp. 381–396 (citado na pg. 5).
- [Erdős 1975] Paul Erdős. "Problems and results in graph theory and combinatorial analysis". *Proc. British Combinatorial Conj.*, *5th* (1975), pp. 169–192 (citado na pg. 1).
- [Jin 1995] Guoping Jin. "Triangle-free four-chromatic graphs". *Discrete Mathematics* 145.1-3 (1995), pp. 151–170 (citado na pg. 5).