

b, b, (ig-i) = ban (ig-i)

Dashpot: A deshpot is a mechanical device, a damper which resists motion via viscous friction.

-> The mosulting force is proportioned to the valority, but acts in the opposite direction, Slowing the motion and obsorbing energy.

Example 3:3:

PTO

 $U(s) - K_1 \times_1(s) - K_2 (\times (s) - \times_2(s)) - bs (\times_1(s) - \times_2(s))$ $= m_{s^2} \times (s) - 0$ $-K_3 \times_2(5) - K_2 (\times_2(5) - \times_1(5)) - bs(\times_2(5) - \times_1(5))$ $=m_2\varsigma^2\times_2(\varsigma)$ -3 $\times_{1}(s) = m_{1}s^{2} + bs + k_{1} + k_{3}$ U(s) $(m_1s^2+bs+K_1+K_1)(m_2s^2+bs+K_2+K_3)-(bs+K_1)^2$ $\frac{\times_{2}(s)}{V(s)} = \frac{bs + k_{2}}{(m_{1}s^{2} + bs + k_{1} + k_{2})(m_{2}s^{2} + bs + k_{2} + k_{3}) - (bs + k_{2})^{2}}$ # Example 3.5: l cora

Inverted pendulum: Pendulum that has its Conte of mass above its pivote point.

eg - human being

 \Rightarrow 2 DOF System (θ, x)

Imput force = U

 $X_{G} = x + l Si_{O}$ $Y_{G} = l Co>0$

IO = VISINO - HICONO - O

 $H = M \frac{d^2}{dt^2} (x + l si - Q) - Q$

 $V-mg=m\frac{d^2}{dt^2}(1\cos\phi)-3$

 $M \frac{d^2x}{dt^2} = U - H - G$

The chove four eaudion is the methandied model of the given System.

		_	
⇒	For electrical circuit, i the Laplace - transformed without writing the diffe	equation directly	
=>	The Complex impedance Z(s) of a two-termind Cucuit is the salio of E(s), the Laplace transform of the Vollage across the terminds to I(s), the Laplace transform of Consent through the climate. Virdante assumption initial Condition is zero)		
	- Clement_	Ampedonie	
1)	Resistance (R)	R	
2)	Capacitana (() $V(t) = \frac{1}{5} \text{ fidt}$	CS	
3)	Andretace (L)	L.S	
	V(t)= Ldi		

The total impedance is the Sum of the individual complex impedances.

$$I_1 = \frac{Z_3 + Z_4}{Z_1 + Z_5 + Z_4} = \frac{Z_2}{Z_2 + Z_5 + Z_4} = \frac{Z_2}{Z_2 + Z_5 + Z_4} = \frac{Z_2}{Z_2 + Z_5 + Z_4}$$

$$E_{1} = Z_{1}T + Z_{2}T_{1}$$

$$= Z_{1}T + Z_{2}(Z_{3}+Z_{4}) T_{2}$$

$$= Z_{2}+Z_{3}+Z_{4}$$

$$E_0 = Z_1 I_2 = Z_1 Z_2 I_2 I_2 I_3 I_3 I_4 I_5$$

$$\frac{E_{6}}{E_{1}} = \frac{Z_{1}Z_{2}}{Z_{1}Z_{3}+Z_{4}} = \frac{Z_{4}Z_{2}}{Z_{1}Z_{2}+Z_{1}Z_{3}+Z_{1}Z_{4}}$$

$$= \frac{Z_{1}Z_{2}}{Z_{1}Z_{3}+Z_{4}} = \frac{Z_{4}Z_{2}}{Z_{1}Z_{2}+Z_{1}Z_{3}+Z_{1}Z_{4}}$$

$$= \frac{Z_{1}Z_{2}}{Z_{1}Z_{3}+Z_{4}} + Z_{2}Z_{3}+Z_{2}Z_{4}$$

$$\frac{E_{o}(s)}{E_{i}(s)} = \frac{1}{R_{i}C_{1}C_{2}S^{2} + (R_{i}C_{1} + R_{2}C_{2} + R_{i}C_{2})S + 1}$$

Tonasser Function of Nonloading Coscaded

The transfer furtion of a septem consisting of two monloading concaded element can be obtained by eliminating the intermediate input to Output

$$\frac{E_0(s)}{E_1(s)} = \left(\frac{1}{1+R,c,s}\right) K \left(\frac{1}{1+R_2c_1s}\right)$$

$$\frac{E_{0}(9)}{E_{1}(9)} = \frac{1}{(1+P_{1}(1,5))(1+P_{2}(1,5))}$$

classmate Dote
$e_0 = i(R_1 + R_2)$
$e_o = \kappa \left(e_i - i R_i \right)$
$e_0 = K\left(e_i - \frac{e_0 R_i}{R_i + R_1}\right)$
eo(1+ KR) - Kei
$\frac{e_{0}}{e_{1}} = \frac{K}{1 + KR}$ $\frac{R_{1} + R_{2}}{R_{1} + R_{2}}$
$\Rightarrow \underbrace{e_{i}}_{e_{0}} = \underbrace{\bot}_{K} + \underbrace{\frac{R_{1}}{R_{1}+R_{2}}} \underbrace{\downarrow}_{K} \underbrace{\frac{R_{1}}{R_{1}+R_{1}}}$
$\frac{c_0}{c_1} = 1 + \frac{R_2}{R_1}$

$$-E_{1}(s) + I_{1}(s)R_{1} + I_{1}(s)R_{2} + R_{1}(s)R_{3}$$

$$-CsR_{3}E_{1}(s) + E_{0}(s) = 0$$

$$T_{s}(s) \left\{ R_{s} + R_{s} + R_{s} + R_{s} + R_{s} \right\} - E_{s}(s) \left\{ 1 + cs R_{s} \right\}$$

$$+ E_{0}(s) = 0$$

$$E_{o}(s) = -KE_{i}(s) + KR_{i} \left\{ E_{i}(s) \left\{ 1 + (sR_{i}) - E_{o}(s) \right\} \right\}$$

$$\left(\frac{E_{o}(s) + KR_{1}}{R_{1} + R_{3} + R_{1}R_{5}(s)}\right)$$

