Homework 6

D. Zack Garza

October 23, 2019

Contents

1		nework Problems	1
	1.1	Problem 1	1
	1.2	Problem 2	1
	1.3	Problem 3	2
		1.3.1 Part 1	2
		1.3.2 Part 2	2
	1.4	Problem 4	3
	1.5	Problem 5	3
	1.6	Problem 6	3
2	Qua	al Problems	3
	2.1	Problem 1	3
	2.2	Problem 2	3
	2.3	Problem 3	3

1 Homework Problems

1.1 Problem 1

Todo

1.2 Problem 2

We can note that since f has 4 roots, the Galois group G of its splitting field will be a subgroup of S_4 . Moreover, G must be a transitive subgroup of S_4 , i.e. the action of G on the roots of f should be transitive. This reduces the possibilities to $G \cong S^4$, A^4 , D^4 , \mathbb{Z}_4 , \mathbb{Z}_2^2 .

Since f has exactly 2 real roots and thus a pair of roots that are complex conjugates, the automorphism given by complex conjugation is an element of G. But this corresponds to a 2-cycle $\tau = (ab)$, and we can then make the following conclusions:

- Not A_4 : A_4 contains only even cycles, and τ is odd.
- Not Z_4 : This subgroup is generated by a single 4-cycle σ , which up to conjugacy is (1234), and σ^n is not a 2-cycle for any n.

• Not \mathbb{Z}_2^2 : In order to be transitive, this subgroup must be $\{e, (12)(34), (13)(24), (14)(23)\}$, which does not contain τ .

The only remaining possibilities are S^4 and D^4 .

1.3 Problem 3

1.3.1 Part 1

To see that $\phi(n)$ is even for all n > 2, we can take a prime factorization of n and write

$$\phi(n) = \phi\left(\prod_{i=1}^{m} p_i^{k_i}\right) = \prod_{i=1}^{m} \phi(p_i^{k_i}) = \prod_{i=1}^{m} p^{k_i - 1} (p - 1) = \prod_{i=1}^{m} p^{k_i - 1} \prod_{i=1}^{m} (p - 1)$$

where each $k_i \ge 1 \implies k_i - 1 \ge 0$. But every prime power is odd, and a product of odd numbers is odd, so the first product is odd. It is also true that p-1 is even for every prime p, and the second term is a product of even terms and thus even. So $\phi(n)$ is the product of an even and an odd number, which is always even.

1.3.2 Part 2

Suppose $\phi(n) = 2$. Take a prime factorization of n, so we have

$$2 = \phi(n) = \prod_{i=1}^{m} \phi(p_i^{k_i})$$

Since the only factors of 2 are 1 and 2, we must have $\phi(p_i^{k_i}) = 2$ for exactly one i, and the rest must be equal to 1.

Consider the term that equals 2. We have $\phi(p_i^{k_i}) = p^{k_i-1}(p-1) = 2$, so we must have either

- Case 1: p-1=2 and $p^{k_i-1}=1$, so p=3 and $k_i=1$. So $3\mid n$, but 3^{ℓ} does not divide n for any $\ell>1$.
- Case 2: $p^{k_i-1}=2$ and (p-1)=1, so p=2 and $k_i=2$. Thus 2^2 divides n but 2^ℓ does not for any $\ell>2$.

In either case, it remains to check are whether the other factors where $\phi(p_j^{k_j}) = 1$ can contribute any other distinct divisors to n. We can note that $\phi(p_j^{k_j})$ iff $p^{k_j-1}(p-1) = 1$, so this forces p=2 and $k_j=1$. So n may or may not contain a single factor of 2, but by uniqueness of prime factorization, this can only happen in case 1. Note that this also forces $2 \mid n$ but 2^2 does not divide n.

In summary, we've found that $\phi(n) = 2$ implies that

- $3 \mid n,9 \mid n$, and $-2 \mid n,4 \mid n$ $-2 \mid n$
- $2^2 \mid n, 2^3 / \mid n$.

This reduces the possibilities to the finite set $n \in \{6, 3, 4\}$, and $\phi(6) = \phi(3) = \phi(4) = 2$.

1.4 Problem 4

Suppose $F = K[\alpha_1, \dots, \alpha_n]$ where $\alpha_1^{n_1} \in K$ for some n_1 and β or each i we have $\alpha_i^{n_i} \in K[\alpha_1, \dots, \alpha_{i-1}]$ for some powers n_i . We want to show that $F = E[\beta_1, \dots, \beta_m]$ where each β_i satisfy a similar condition.

Let $A = \{\alpha_i \ni \alpha_i \notin E\}$, then it is since $E \hookrightarrow F$, adjoining all elements of A to E will yield exactly F.

- 1.5 Problem 5
- 1.6 Problem 6
- 2 Qual Problems
- 2.1 Problem 1
- 2.2 Problem 2
- 2.3 Problem 3