

Geodetic Coordinate Calculation Based on Monocular Vision on UAV Platform

Zhi Li¹, Tao Yang¹, Guangpo Li¹, Jing Li², Yanning Zhang¹

¹School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, China

²School of Telecommunications Engineering, XiDian University, Xi'an, China

1. Introduction

2. Proposed Algorithm

3. Experiment Results

Introduction

Vision Measurement Technology based on UAV Platform

Goal

Precise location of ground targets based on Monocular Vision.

Challenges

- Uncertain motion of the UAVs & camera Pose information
- Small (size) objects tracking

Related Approaches

- Sensor-based: Satellite, laser, ultrasonic, etc.
- Vision-based: Monocular vision, stereo vision and multi-view system.

Introduction

- Vision Measurement Technology based on UAV Platform
 - Our system

1. Introduction

2. Proposed Algorithm

3. Experiment Results

- Calculation 3D Coordinate
 - The framework of our algorithm

Calculation 3D Coordinate

A. Estimate Camera Pose with ORB-SLAM

Estimate the relative poses of camera

Calculation 3D Coordinate

A. Estimate Camera Pose with ORB-SLAM

Monocular scale calculation based on calibration board

- Select 5 KeyFrames evenly $\{f_1, f_2, f_3, f_4, f_5\}$
- Calibration external parameters $\{P_1, P_2, P_3, P_4, P_5\}$
- Calculate real poses

$$Pose_{truei} = P_i P^{-1}$$

 Calculate scale compare the real and relative poses

Calculation 3D Coordinate

B. Tracking the Target

- We make the image coordinate calculation of the target as a tracking problem
- We adopt one of the most successful tracking algorithm STC

Calculation 3D Coordinate

C. Calculation and Optimization

We calculate the initial value X using double KeyFrame positioning method

Calculation 3D Coordinate

C. Calculation and Optimization

We optimize the value of X using the method of multiple view projective

reconstruction

BA (Bundle Adjustment)

Calculation 3D Coordinate

C. Calculation and Optimization

BA (Bundle Adjustment)

1. Introduction

2. Proposed Algorithm

3. Experiment Results

Experiment Results

Scale, Relative and Real Poses of Keyframes

Scene	Scale	Relative Poses			Real Poses				
	/m	kf1	kf2	kf3	kf4	kf1	kf2	kf3	kf4
1	3.75	-0.38107	-0.55692	-1.04067	-1.06467	-1.51670	-2.98702	-3.90339	-3.97602
		-0.06016	-0.11677	-0.237356	-0.28363	-0.22949	-0.40928	-0.89217	-1.10984
		0.087729	0.151738	0.551887	0.611086	0.267462	0.777607	1.996418	2.22229
2	3.95	-0.53457	-0.41344	0.23116	0.25755	-2.14142	-1.64356	0.91398	1.04209
		-0.03906	-0.01658	-0.00601	-0.00489	-0.14621	-0.12191	-0.04197	-0.03159
		0.25177	0.21582	0.10269	0.086608	0.99082	0.78864	0.35710	0.32269
3	8.90	0.04316	-0.16993	0.06805	0.07750	-1.81466	-3.50321	-1.31856	0.69146
		0.27279	0.014856	-0.29751	-0.21015	1.71391	-1.33897	-4.71583	0.95745
		-0.04291	-0.03585	-0.00054	-0.08687	-0.30023	0.00374	0.42791	-0.67724

Experiment Results

The 3D geodetic coordinate result in our experiments

Scene	Experiment result /m	Ground true /m
flight reight m	[0.2824, 0.3169, -0.018] [0.6299, 0.1539, -0.002] [0.6197, 0.3146, -0.007] [0.4661, 0.4746, -0.004] [1.7613, 2.3836, -0.001]	[0.3200, 0.3200, 0.0000] [0.6400, 0.1600, 0.0000] [0.6400, 0.3200, 0.0000] [0.4800, 0.4800, 0.0000] [1.8000, 2.4000, 0.0000]
flight height 3.5m	[0.1897, 0.1496, 0.0215] [0.6625, 0.1479, 0.0195] [0.3395, 0.3024, 0.0160] [0.6500, 0.6237, 0.0141]	[0.1600, 0.1600, 0.0000] [0.6400, 0.1600, 0.0000] [0.3200, 0.3200, 0.0000] [0.6400, 0.6400, 0.0000]
flight height 15m	[0.3168, 0.0962, 1.1042] [0.1794, 0.3485, 0.9823] [0.0582, 0.4781, 1.0234] [0.3055, 0.4622, 0.9827]	[0.6400, 0.1600, 0.0000] [0.1600, 0.3200, 0.0000] [0.1600, 0.4800, 0.0000] [0.3200, 0.4800, 0.0000]

Experiment Results

Accuracy evaluation

- Indoor
 - Total 10 sets of data, 5 scenes
 - <1cm level accuracy</p>
- outdoor
 - Total 8 sets of data, 3 scenes
 - <1m level accuracy in the range of 30m</p>

1. Introduction

2. Proposed Algorithm

3. Experiment Results

Conclusion

Contribution:

- Extend the monocular to multi-view camera system with ORB-SALM.
- Proposed a multiple KeyFrames location method.

Limitation:

Lower measurement accuracy in large scale scenes.

Future work:

- Solve the accuracy of target tracking in large scene.
- Improve the accuracy of pose estimation.

Thank you!