

Computação Evolucionária

Daniel Reis

Universidade Federal de Ouro Preto UFOP 2017

Código

- numexecucoes = 30 [Número de execuções];
- geracoes = 100 [Número de gerações];
- tamPop = 1000 [Tamanho da população];
- pSelecionados = 0.05 [Percentual de selecionados da população];
- pCrossover = 0.7 [Percentual de crossover];
- pMutacao = 0.05 [Percentual de mutação];
- pBuscaLocal = 0.75 [Percentual de busca local];

Arquivos: berlin52 e att48

Main

- rnd [1,2]
 - Caso 1: AG
 - Caso 2: NOVO

Obs: Busca local -> troca u por v

- Cria e avalia pop inicial
- Para cada **geração**
 - Gera (tamPop)
 - Se rnd [0,1] <= taxa de crossover
 - Seleciona 2 pais aleatórios na novaPop
 - Crossover OX -> cria 2 descendentes combinando os 2 pais
 - Mutação SWAP no descendente1
 - Avalia descendentes
 - Se rnd [0,1] <= taxa busca local -> busca local no descendente1
 - Se rnd [0,1] <= taxa busca local -> busca local no descendente2
 - Adiciona descendentes na novaPop
 - Define sobreviventes: insere (pop += novaPop) -> ordena (novaPop) -> corta (novaPop [tamPop])

- Cria e avalia pop inicial binária
- Calcula numr (melhores indivíduos selecionados para novaPop)
- Para cada **geração**
 - Move os numr (pop -> novaPop)
 - Gera (tamPop numr) -> descendentes com base nos x melhores
 - Se rnd [0,1] <= taxa crossover
 - Seleciona 2 pais aleatórios na novaPop
 - Crossover OX -> cria 2 descendentes combinando os 2 pais
 - Mutação SWAP no descendente1
 - Avalia descendentes
 - Se rnd [0,1] <= taxa busca local -> busca local no descendente1
 - Se rnd [0,1] <= taxa busca local -> busca local no descendente2
 - Adiciona descendentes na novaPop
 - Se rnd [0,1] >= taxa mutação
 - Cria descendente usando pai aleatório na pop
 - Mutação SWAP no descendente
 - Avalia descendente
 - Se rnd [0,1] <= taxa busca local -> busca local no descendente
 - Adiciona descendente na novaPop
 - Define sobreviventes: insere (pop += novaPop) -> ordena (novaPop) -> corta (novaPop [tamPop])

Boxplot [ATT 48]

Melhor Resultado ~ Caso

Média ~ Caso

Boxplot [ATT 48]

Desvio Padrão ~ Caso

Tempo ~ Caso

Teste T + Resultados [ATT 48]

Caso	melhor	dp	media
1	16050	606.783815580619	17749.2333333333
2	10922	1025.70663559268	12426.03333333333

Caso	Tipo	pv alor	pv alorL	pv alorG
1-2	MelhorResultado ~ Caso	2.03889502566081e-28	1	1.0194475128304e-28
1-2	PiorResultado ~ Caso	0.505436978197011	0.747281510901495	0.252718489098505
1-2	Media ~ Caso	3.16471474048073e-60	1	1.58235737024036e-60
1-2	DesvioPadrao ~ Caso	4.75067441788163e-48	2.37533720894082e-48	1
1-2	Tempo ~ Caso	6.41376583146505e-33	3.20688291573252e-33	1

• 1 e 2 -> melhor, media (1 > 2); dp, tempo (1 < 2); [2]

Boxplot [BERLIN 52]

Melhor Resultado ~ Caso

Média ~ Caso

Boxplot [BERLIN 52]

Desvio Padrão ~ Caso

Tempo ~ Caso

Teste T + Resultados [BERLIN 52]

Caso	melhor	dp	media	
1	12036.2264517108	329.651926583879	12588.5014243297	
2	7790.49461584654	571.940478501201	8921.91627832543	

Caso	Tipo	pv alor	pv alorL	pv alorG
1-2	MelhorResultado ~ Caso	2.80927319269287e-32	1	1.40463659634644e-32
1-2	PiorResultado ~ Caso	0.884862563812905	0.557568718093547	0.442431281906453
1-2	Media ~ Caso	6.48208737002271e-86	1	3.24104368501136e-86
1-2	DesvioPadrao ~ Caso	1.19090465416907e-71	5.95452327084537e-72	1
1-2	Tempo ~ Caso	2.91821624834869e-28	1.45910812417435e-28	1

• 1 e 2 -> melhor, media (1 > 2); dp, tempo (1 < 2); [2]

Referências

Código disponível em:

https://github.com/UFOP-CSI557/2017-02-atividades-danieel-reis