Integrated Superconducting Energy Recovery System for Advanced Tokamaks

Your Name

February 15, 2025

Nomenclature

HTS	High-Temperature Superconductor
TPV	Thermophotovoltaic
LCOE	Levelized Cost of Energy
REBCO	Rare-Earth Barium Copper Oxide
LiPb	Lithium-Lead Breeder
COP	Coefficient of Performance
Q	Fusion Energy Gain Factor
D-T	Deuterium-Tritium
MHD	Magnetohydrodynamic
SPARC	Soonest/Smallest Private-Funded Affordable Robust Compact
ITER	International Thermonuclear Experimental Reactor
DEMO	Demonstration Power Plant

1 System Architecture

2 Technical Specifications

2.1 Superconducting Magnets

- REBCO coils at 20 K with 20 T field strength
- Integrated cryogenic Tesla turbine system
- He cooling loop: $4 \,\mathrm{K} \to 20 \,\mathrm{K} \to 50 \,\mathrm{K}$

2.2 Thermionic Divertor

$$J = A_{\rm SC} T^2 e^{-\frac{\phi - \Delta}{k_B T}} \tag{1}$$

 $A_{\rm SC} = 2 \times 10^6 \, {\rm A/m^2 K^2}$

 ϕ 4.3 eV (LaB₆ work function)

 Δ 20 meV (YBCO gap)

 $T = 3000 \,\mathrm{K} \,\mathrm{(Plasma-facing \,temp)}$

3 Performance Metrics

4 Experimental Validation

Data Availability

- SPICE/CFD models: https://github.com/SPARC-Energy-Recovery
- CAD files: https://example.com/sparc-v2-cad
- Experimental data: DIII-D 2025 campaign (DOI: 10.xxxx/yyyy)

Figure 1: Integrated energy recovery system architecture showing plasma core (red), HTS magnets (blue), thermionic divertor (orange), neutron-TPV blanket (green), and ambient cooling loop (gray).

Table 1: System Performance Summary

Table 11 System I distinctive Sammary					
Component	Input Power	Output Power	Efficiency Gain		
Superconducting Magnets	$50\mathrm{MW}$	$15\mathrm{MW}$	+30%		
Thermionic Divertor	$100\mathrm{MW}$	$25\mathrm{MW}$	+25%		
Neutron-TPV Blanket	$1\mathrm{GW}$	$140\mathrm{MW}$	+14%		
Ambient Absorption	$50\mathrm{kW}$	$50\mathrm{kW}$	+0.5%		

Table 2: Validation Roadmap

Component	Timeline	Partners
HTS Divertor	2025	MIT/GA
TPV Blanket	2027	CFS/ORNL
Full Integration	2028	DOE