Лабораторная работа №2.

ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНЫХ ЭЛЕМЕНТОВ.

1. Исследование биполярного транзистора (рис. 1).

Рисунок 1

1.1 Зарисуйте макетную схему и ознакомьтесь с назначением элементов схемы:

- делитель напряжения R_1-R_5 , ключи J_1-J_5 и резистор R_6 задают пять значений тока базы (I_5);
- мультиметр XMM1 измеряет ток базы (І_Б);
- мультиметр XMM2 измеряет напряжение база эмиттер (U_{E9});
- мультиметр ХММЗ измеряет ток коллектора биполярного транзистора;
- напряжение коллектор-эмиттер (U_{κ_9}) устанавливается источником V2 и фиксируется мультиметром XMM4.

1.2 Снимите и постройте семейство выходных ВАХ биполярного транзистора в схеме ОЭ при ступенчатом изменении входного тока базы (I_Б).

$$I_k = f(U_{\kappa_9}) npu I_B = const$$

Таблица 1

$U_{\kappa 9}$	0.3	1	3	5	7	10	В
I _{к1} (при I _{Б1})							мА
I _{к2} (при I _{Б2})							мА
I _{к3} (при I _{Б3})							мА
I _{к4} (при I _{Б4})							мА
I _{к5} (при I _{Б5})							мА

Методика выполнения работы:

а) откройте все приборы на экране дисплея (курсор на окошке мультиметра, два щелчка по левой клавише мышки) и установите их для удобного снятия показаний (рис. 1) (Показания получены при разомкнутых ключах).

Рисунок 2

- б) мультиметры XMM1 и XMM3 включите в режим измерения постоянного тока, а мультиметры XMM2 и XMM4 в режим измерения постоянного напряжения;
- в) выставьте значение V_2 равное 5 B;
- г) включая последовательно клавиши $J_1 J_5$ зафиксируйте значения токов базы ($I_{\text{Б1}} I_{\text{Б5}}$);
- д) выставьте напряжение U_{K9} = 0.3 B и последовательно изменяя ток базы от
- $I_{\text{b1}} I_{\text{b5}}$ запишите значения токов коллектора $I_{\text{K1}}\text{-}\ I_{\text{K5}}$ в таблицу;
- е) повторите данное измерение для других значений U_{κ_9} (см. таблицу 1).

1.3 По таблице рассчитайте параметры биполярного транзистора: коэффициент усиления по току (β) и выходное диффиренциальное сопротивление ($r_{\text{вых}}$).

$$\beta = \frac{\Delta I_{\kappa}}{\Delta I_{\kappa}} npu U_{\kappa 9} = 5B \text{ M } r_{\text{\tiny GLXX}} = \frac{\Delta U_{\kappa 9}}{\Delta I_{\kappa}} npu I_{\delta} = I_{\delta 3}$$

Для вычисления $r_{\text{вых}}$ необходимо взять ближайшие показания U_{κ_9} 3В или 7В.

Рисунок 3

1.4 Снимите и постройте входную ВАХ биполярного транзистора при $U_{\rm K9}$ = 5В.

$$I_{\text{Б}} = f (U_{\text{БЭ}})$$
 при $U_{\text{KЭ}} = 5 \text{ B}$.

Таблица 2

	I_{51}	I_{52}	I_{E3}	I_{54}	${ m I}_{55}$	
$I_{\mathtt{F}}$						мкА
$U_{{\scriptscriptstyle \mathrm{B}}{\scriptscriptstyle \mathrm{B}}}$						В

1.5 По таблице рассчитайте дифференциальное сопротивление (Гвх).

$$r_{\rm ex} = \frac{\Delta U_{\rm E3}}{\Delta I_{\rm E}} npu I_{\rm G} = I_{\rm G3}$$

Рисунок 4 Для вычисления $r_{\scriptscriptstyle BX}$ необходимо взять ближайшие показания $I_{\scriptscriptstyle E4}$ или $I_{\scriptscriptstyle E2}$.

2. Исследование полевого транзистора с р-п затвором (рис. 5).

2.1 Зарисуйте макетную схему и ознакомьтесь с назначением элементов схемы:

- мультиметр XMM6 измеряет ток стока (I_{C});
- мультиметры XMM5 и XMM7 показывают напряжение $U_{3\text{и}}$ и U_{Cu} ;
- потенциометр \mathbf{R}_9 задает напряжение на затворе относительно истока;
- источник постоянного напряжения V4 задает напряжение U_{CИ};

2.2 Снимите и постройте стоко-затворную характеристику полевого транзистора.

$$I_C = f(U_{3H})$$
 при $U_{CH} = 5$ В.

Таблица 3

U _{зи}	0				U _{OTC} =	В
I_{C}	$I_{C.HAC}=$				$I_C = 0$	мА

Рисунок 6.

Методика выполнения работы:

- а) откройте необходимые приборы на экране дисплея (см. п. 1.2а);
- б) мультиметр XMM6 включите в режим измерения постоянного тока, а мультиметры XMM5 и XMM7 в режим постоянного напряжения;
- в) при помощи потенциометра R_9 установите напряжение $U_{3\text{M}}=0$ (максимально близким к нулю) и запишите значение $I_{\text{C.HAC}}$.
- г) при помощи потенциометра R_9 добейтесь показания I_C близкое к нулю и запишите значение напряжения отсечки (U_{OTC});
- д) разбейте напряжение U_{3H} от U_{OTC} до U_{3H} = 0 на 5 6 точек и заполните таблицу.
- 2.3 Рассчитайте крутизну в крайних точках таблицы ($S_{\text{мин}}$ при минимальном токе стока и $S_{\text{макс}}$ при максимальном).

$$S = \frac{\Delta I_C}{\Delta U_{3M}} \left(\frac{MA}{B} \right)$$

2.4 Снимите и постройте стоковую BAX при двух значениях напряжения на затворе

$$U_{3\text{И}} = 0$$
 и $U_{omc} = \frac{U_{omc}}{2}$

$$I_C = f(U_{CM})$$
 при $U_{3M} = const.$

U _{СИ}	1	2	3	4	6	8	10	В
$I_{C.U3M} = 0$								мА
$I_{\text{C.U3M}} = U_{\text{OTC}}/2$								мА

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ.

- 1. Гусев В.Г., Электроника. / В.Г. Гусев, Ю.М Гусев. М. : Высшая школа, 1991 г. 617 с
- 2. Титце У., Полупроводниковая схемотехника. В 2 т. : Пер. с нем. / У. Титце, К. Шенк. М. : Додэка-XXI, 2008. 832 с