Recherche Opérationnelle 1A Programmation Linéaire Étape 1 de l'algorithme du simplexe

Zoltán Szigeti

Ensimag, G-SCOP

Énoncé de l'EXO. 8.5.

- Dans un atelier on peut fabriquer quatre types de cartes électroniques
 I, II, III et IV qui se vendent toutes à prix unique de 40€ l'unité.
- Les coûts de production sont différents pour chaque carte (respectivement 10€, 18€, 18€ et 32€ par carte) et varient linéairement en fonction du nombre de cartes fabriquées.
- Les composants sont disponibles en quantité illimitée mais la principale contrainte réside dans le temps.
- Chaque semaine l'atelier dispose de seulement
 - 1 2000 heures de temps de production,
 - 2 300 heures pour la vérification du fonctionnement et
 - **160** heures peuvent être consacrées à l'empaquetage.
- Les cartes nécessitent respectivement :
 - 40, 40, 30 et 10 minutes de production par pièce,
 - **2 4**, **5**, **3** et **2** minutes pour la vérification du fonctionnement et
 - 3 2, 2, 1 et 1 minute pour l'empaquetage.

Énoncé de l'EXO. 8.5.

- (a) Ecrire et résoudre le programme linéaire qui modélise le problème de la maximisation du profit net, quand on décide de fabriquer seulement les cartes dont la marge bénéficiaire dépasse 25% du prix unitaire de vente.
- (b) Est-ce que la possibilité de l'introduction à la production de la carte abandonnée dans (a) change le plan optimal ? Que se passe-t-il ?

Solution (a)

Tableau de données :

Cartes	ı	П	Ш	IV	disp.
Production	40	40	30	10	120000
Vérification	4	5	3	2	18000
Empaquetage	2	2	1	1	9600
Profit	30	22	22	8	

2 La marge bénéficiaire du prix unitaire de vente :

I :
$$\frac{30}{40} = 75\%$$
, II : $\frac{22}{40} = 55\%$, III : $\frac{22}{40} = 55\%$, IV : $\frac{8}{40} = 20\%$, on ne fabriquera donc pas la carte IV.

Il s'agit d'un problème de production, le PL est donc :

$$40x_1 + 40x_2 + 30x_3 \le 120000$$

$$4x_1 + 5x_2 + 3x_3 \le 18000$$

$$2x_1 + 2x_2 + 1x_3 \le 9600$$

$$x_1, x_2, x_3 \ge 0$$

$$30x_1 + 22x_2 + 22x_3 = z(\max) - 0$$

Solution (a)

1 La forme standard du PL est la suivante :

$$\begin{array}{llll} 4x_1 & +4x_2 & +3x_3+1y_1 & = 12000 \\ 4x_1 & +5x_2 & +3x_3 & +1y_2 & = 18000 \\ 2x_1 & +2x_2 & +1x_3 & +1y_3 & = 9600 \\ x_1, & x_2, & x_3, & y_1, & y_2, & y_3 \geq 0 \\ 30x_1 + 22x_2 + 22x_3 & = z(\max) - 0 \end{array}$$

- ② C'est la forme standard par rapport à la base réalisable $J = \{4, 5, 6\}$.
- 3 On peut donc le résoudre par l'Étape 2.

Solution (a)

4	4	3	1	0	0	12000
4	5	3	0	1	0	18000
2	2	1	0	0	1	9600
30	22	22	0	0	0	0

$$\ell_2$$

$$\ell_3$$

$$\ell_4$$

$$\ell'_1 = \ell_1/4$$

$$\ell'_2 = \ell_2 - 4\ell'$$

 ℓ_1

- $\ell'_{1} = \ell_{1}/4$ $\ell'_{2} = \ell_{2} 4\ell'_{1}$ $\ell'_{3} = \ell_{3} 2\ell'_{1}$ $\ell'_{4} = \ell_{4} 30\ell'_{1}$
- Tous les coefficients dans la fonction objectif sont non-positifs, $\{1,5,6\}$ est donc une base réalisable optimale.
- La solution de base optimale associée est $(\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{y}_1, \overline{y}_2, \overline{y}_3) = (3000, 0, 0, 0, 6000, 3600)$ de valeur 90000.
- La solution optimale du PL initial est $(\overline{x}_1, \overline{x}_2, \overline{x}_3) = (3000, 0, 0)$.

Solution (b)

• Le nouveau PL est le suivant :

$$4x_1 + 4x_2 + 3x_3 + 1x_4 \le 12000$$

 $4x_1 + 5x_2 + 3x_3 + 2x_4 \le 18000$
 $2x_1 + 2x_2 + 1x_3 + 1x_4 \le 9600$
 $x_1, x_2, x_3, x_4 \ge 0$
 $30x_1 + 22x_2 + 22x_3 + 8x_4 = z(max) - 0$

2 dont la forme standard est :

$$4x_1 + 4x_2 + 3x_3 + 1x_4 + 1y_1 = 12000$$

$$4x_1 + 5x_2 + 3x_3 + 2x_4 + 1y_2 = 18000$$

$$2x_1 + 2x_2 + 1x_3 + 1x_4 + 1y_3 = 9600$$

$$x_1, x_2, x_3, x_4, y_1, y_2, y_3 \ge 0$$

$$30x_1 + 22x_2 + 22x_3 + 8x_4 = z(\max) - 0$$

- **3** C'est la forme standard par rapport à la base réalisable $J = \{5, 6, 7\}$.
- On peut donc le résoudre par l'Étape 2.

Solution (b)

4	4	3	1	1	0	0	12000
4	5	3	2	0	1	0	18000
2	2	1	1	0	0	1	9600
30	22	22	8	0	0	0	0

1	1	<u>3</u> 4	1 4	1 4	0	0	3000
0	1	0	1	-1	1	0	6000
0	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	0	1	3600
0	-8	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{15}{2}$	0	0	-90000

1	<u>3</u>	<u>3</u>	0	1/2	$-\frac{1}{4}$	0	1500
0	1	0	1	-1	1	0	6000
0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	1	600
0	$-\frac{17}{2}$	$-\frac{1}{2}$	0	-7	$-\frac{1}{2}$	0	-93000

$$\ell_1$$
 ℓ_2
 ℓ_3
 ℓ_4

$$\begin{array}{l} \ell_1' = \ell_1/4 \\ \ell_2' = \ell_2 - 4\ell_1' \\ \ell_3' = \ell_3 - 2\ell_1' \\ \ell_4' = \ell_4 - 30\ell_1' \end{array}$$

$$\ell_1'' = \ell_1' - \frac{1}{4}\ell_2'$$

$$\ell_2'' = \ell_2'$$

$$\ell_3'' = \ell_3' - \frac{1}{2}\ell_2'$$

$$\ell_4'' = \ell_4' - \frac{1}{2}\ell_2'$$

1	<u>3</u>	<u>3</u>	0	<u>1</u> 2	$-\frac{1}{4}$	0	1500
0	1	0	1	-1	1	0	6000
0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	0	$-\frac{1}{2}$	1	600
0	$-\frac{17}{2}$	$-\frac{1}{2}$	0	-7	$-\frac{1}{2}$	0	-93000

Solution (b)

- Tous les coefficients dans la fonction objectif sont non-positifs, {1, 4, 7} est donc une base réalisable optimale.
- La solution de base optimale associée est $(\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \overline{y}_1, \overline{y}_2, \overline{y}_3) = (1500, 0, 0, 6000, 0, 0, 600).$
- La solution optimale du PL initial est $(\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4) = (1500, 0, 0, 6000)$ de valeur 93000.

Etape 1 de l'algorithme du simplexe

Définition

Un PL avec $b \ge 0$ et

le PL auxiliaire :

(P)
$$A \cdot x = b \\ x \ge 0$$
 (P')
$$x \cdot x = b \\ (\mathbf{1}^T \cdot A) \cdot x \qquad = z'(\max) + \mathbf{1}^T \cdot b$$

Théorème

Il existe une solution réalisable de (P) si et seulement si z'(max) = 0.

Remarque

- Les variables de y forment une base réalisable du (P'), puisque on a la matrice identité et $b \ge 0$,
- (P') est sous forme standard par rapport à y.
- On peut le résoudre avec l'Etape 2.

EXO 8.6.

Énoncé

Trouver une solution réalisable de base du système suivant en appliquant l'Etape 1 de l'algorithme du simplexe.

$$1x_1 + 1x_2 + 1x_3 + 1x_4 = 4$$

$$1x_1 - 1x_2 - 2x_3 - 3x_4 = 2$$

$$x_1, \quad x_2, \quad x_3, \quad x_4 \ge 0$$

Solution

1 Le PL auxiliaire est le suivant :

$$1x_1 + 1x_2 + 1x_3 + 1x_4 + 1y_1 = 4$$

$$1x_1 - 1x_2 - 2x_3 - 3x_4 + 1y_2 = 2$$

$$x_1, x_2, x_3, x_4, y_1, y_2 \ge 0$$

$$2x_1 - 1x_3 - 2x_4 = z(\max) + 6$$

② On peut donc le résoudre avec l'Étape 2.

EXO 8.6.

Solution

1	1	1	1	1	0	4
1	-1	-2	-3	0	1	2
2	0	-1	-2	0	0	6

$$\ell_1$$
 ℓ_2

$$\ell_1' = \ell_1$$

$$\ell_2' = \ell_2$$

$$\begin{array}{|c|c|c|} \hline 2 \\ 2 \\ \hline 2 \\ \hline \end{array} \begin{array}{|c|c|c|} \ell'_1 = \ell_1 - 1\ell'_2 \\ \ell'_2 = \ell_2 \\ \hline \ell'_3 = \ell_3 - 2\ell'_2 \\ \end{array}$$

$$\ell_1'' = \ell_1'/4
\ell_2'' = \ell_2' - (-3)\ell_1''
\ell_3'' = \ell_3' - 4\ell_1''$$

Puisque $c_s = 0$, on s'arrête avec z'(max) = 0, $\{4, 1\}$ est donc une base réalisable du PL initial.

EXO 8.6.

Remarque

0	1/2	<u>3</u>	1	<u>1</u> 4	$-\frac{1}{4}$	$\frac{1}{2}$
1	$\frac{\overline{1}}{2}$	<u>i</u> 4	0	<u>3</u> 4	$\frac{1}{4}$	1/2 7/2
0	0	0	0	-1	-1	0

La forme standard du PL initial par rapport à $\{4,1\}$ est :

$$\frac{1}{2}x_2 + \frac{3}{4}x_3 + 1x_4 = \frac{1}{2}$$

$$1x_1 + \frac{1}{2}x_2 + \frac{1}{4}x_3 = \frac{7}{2}$$

$$x_1, \quad x_2, \quad x_3, \quad x_4 \ge 0$$

Énoncé

Soit le système linéaire suivant :

$$2x_1 + 3x_2 - 5x_3 = 2$$

 $1x_1 - 4x_2 - 8x_3 = 3$
 $x_1, x_2, x_3 \ge 0$

- (a) En étudiant la soustraction de deux lignes conclure que ce système n'a pas de solution réalisable.
- (b) Appliquer à ce système l'Etape 1 de l'algorithme du simplexe.

Solution (a)

$$2x_1 + 3x_2 - 5x_3 = 2$$

$$1x_1 - 4x_2 - 8x_3 = 3$$

$$x_1, \quad x_2, \quad x_3 \ge 0$$

Lemme de Farkas : Il n'existe pas de solution réalisable de ce système si et seulement si il existe un vecteur \overline{y} tel que $\overline{y}^T A \ge 0$ et $\overline{y}^T b < 0$.

Pour
$$\overline{y}^T = (1, -1): 0 \le 1x_1 + 7x_2 + 3x_3 = -1 < 0.$$

Solution (b)

$$2x_1 + 3x_2 - 5x_3 = 2$$

 $1x_1 - 4x_2 - 8x_3 = 3$
 $x_1, x_2, x_3 \ge 0$

Le PL auxiliaire est le suivant:

$$\begin{array}{lll} 2x_1 + 3x_2 - 5x_3 + 1y_1 & = 2 \\ 1x_1 - 4x_2 - 8x_3 & + 1y_2 = 3 \\ x_1, & x_2, & x_3, & y_1, & y_2 \ge 0 \\ 3x_1 - 1x_2 - 13x_3 & = z'(\mathsf{max}) + 5 \end{array}$$

Solution (b)

2	3	-5	1	0	2
1	-4	-8	0	1	3
3	-1	-13	0	0	5

$$\ell_1$$
 ℓ_2
 ℓ_3

$$\ell'_1 = \ell_1/2
\ell'_2 = \ell_2 - 1\ell'_1
\ell'_3 = \ell_3 - 3\ell'_1$$

Puisque $c_s = -\frac{3}{2} < 0$, on s'arrête avec $z'(\max) = -2 \neq 0$, il n'existe donc pas de solution réalisable du PL initial.

<u>É</u>noncé

Appliquer l'algorithme du simplexe pour résoudre ce programme linéaire.

$$2x_1 + 1x_2 \ge 2$$

$$1x_1 + 3x_2 \le 3$$

$$x_2 \le 4$$

$$x_1 \quad x_2 \ge 0$$

$$3x_1 - 1x_2 = z(\max)$$

Solution

① On ajoute les nouvelles variables x_3 , x_4 , x_5 qui sont non-négatives et on obtient le programme linéaire suivant (P_2) :

- (P_2) est sous forme standard mais on n'a pas une base réalisable. $(\{3,4,5\}$ est une base mais elle n'est pas réalisable.)
- 3 On a donc besoin de l'Etape 1.

Solution

1 Pour avoir la matrice identité il faut ajouter une nouvelle variable y_1 qui est non-négative et on veut minimizer $y_1 \iff \max imiser -y_1$.

- ② Maintenant la base $J' = \{6, 4, 5\}$ est réalisable mais $c'_{\mu} \neq 0$.
- **3** En ajoutant la première ligne, on obtient (P^*) :

$$2x_1 + 1x_2 - 1x_3 + 1y_1 = 2$$

$$1x_1 + 3x_2 + 1x_4 = 3$$

$$1x_2 + 1x_5 = 4$$

$$x_1, x_2, x_3, x_4, x_5, y_1 \ge 0$$

$$2x_1 + 1x_2 - 1x_3 = z'(\max) + 2$$

Solution

• Maintenant on peut utiliser l'Etape 2 pour résoudre (P^*) .

2	1	-1	0	0	1	2
1	3	0	1	0	0	3
0	1		0	1	1 0 0	4
2	1	-1	0	0	0	2

1	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	$\frac{1}{2}$	1
0	2 5 2	$\frac{1}{2}$	1	0	$-\frac{1}{2}$	2
0	1	0	0	1	0	4
0	0	0	0	0	-1	0

- Dans le dernier tableau la fonction objectif est non-positive,
- 3 la base $J'' := \{1, 4, 5\}$ est donc optimale et
- la valeur de la fonction objectif pour la solution de base associée est 0.
- J'' est donc une base réalisable de (P_2) .

1	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	1/2	1
0	1 2 5 2	$\frac{1}{2}$	1	0	$\frac{\frac{1}{2}}{-\frac{1}{2}}$	2
0	1	Ō	0	1	Ō	1 2 4
0	0	0	0	0	-1	0

Solution

- En utilisant le dernier tableau et la fonction objectif originale on a un PL (P'_2) qui est équivalent à (P_2) et pour qui on a $A''_{\mu\nu} = I$.
- ② II faut encore changer la fonction objectif car $c_{J''} \neq 0$ $(c_1 \neq 0)$.
- Il faut soustraire 3 fois la première ligne de la fonction objectif.

Solution

① On a finalement le PL sous forme standard par rapport à J''.

$$x_{1} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} = 1$$

$$+ \frac{5}{2}x_{2} + \frac{1}{2}x_{3} + x_{4} = 2$$

$$1x_{2} + x_{5} = 4$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0$$

$$- \frac{5}{2}x_{2} + \frac{3}{2}x_{3} = z(\max) - 3$$

2 Maintenant on peut utiliser l'Etape 2.

1	<u>1</u> 2	$-\frac{1}{2}$	0	0	1
0	<u>5</u>	$\frac{1}{2}$	1	0	2
0	1	0	0	1	4
0	$-\frac{5}{2}$	<u>3</u> 2	0	0	-3

1	3	0	1	0	3
0	5	1	2	0	4
0	1	0	0	1	4
0	-10	0	-3	0	-9

- 3 Dans le dernier tableau la fonction objectif est non-positive,
- une solution optimale est donc $(\overline{x}_1, \overline{x}_2) = (3, 0)$ de valeur 9.

<u>É</u>noncé

Appliquer l'algorithme du simplexe pour résoudre ce programme linéaire :

$$\begin{array}{ll} 1x_1 + 1x_2 - 2x_3 \leq 4 \\ 1x_1 - 1x_2 & \leq -3 \\ 1x_1 + 1x_2 + 1x_3 \leq 5 \\ x_1, \quad x_2, \quad x_3 \geq 0 \\ 3x_1 + 2x_2 + 1x_3 = z(\max) \end{array}$$

Solution: Forme standard

① On ajoute les nouvelles variables x_4 , x_5 , x_6 qui sont non-négatives et on obtient le programme linéaire suivant P_2 :

$$\begin{array}{lll} 1x_1 + 1x_2 - 2x_3 + 1x_4 & = 4 \\ -1x_1 + 1x_2 & -1x_5 & = 3 \\ 1x_1 + 1x_2 + 1x_3 & +1x_6 = 5 \\ x_1, & x_2, & x_3, & x_4, & x_5, & x_6 \ge 0 \\ 3x_1 + 2x_2 + 1x_3 & = z(\max) \end{array}$$

② Pour trouver d'abord une base réalisable on a besoin de l'Etape 1. Pour avoir la matrice identité, il faut ajouter une nouvelle variable $y_1 \ge 0$ et l'ancienne deuxième ligne sera la fonction objectif.

$$1x_1 + 1x_2 - 2x_3 + 1x_4 = 4$$

$$-1x_1 + 1x_2 - 1x_5 + y_1 = 3$$

$$1x_1 + 1x_2 + 1x_3 + 1x_6 = 5$$

$$x_1, x_2, x_3, x_4, x_5, x_6, y_1 \ge 0$$

$$-1x_1 + 1x_2 - 1x_5 = z'(\text{max}) + 3$$

Solution: Etape 2 pour Etape 1

Maintenant on peut utiliser l'Etape 2 pour résoudre (P*).

1	1	-2	1	0	0	0	4
-1	1	0	0	-1	0	1	3
1	1	1	0	0	1	0	5
-1	1 1 1	0	0	-1	0	0	3

$$\ell_3$$
 ℓ_4
 $\ell'_1 = \ell_1 - 1\ell'_2$
 $\ell'_2 = \ell_2$

 ℓ_1

- $\ell'_2 = \ell_2$ $\ell'_3 = \ell_3 1\ell'_2$ $\ell'_4 = \ell_4 1\ell'_2$
- ② Dans le dernier tableau la fonction objectif est non-positive donc la base $J = \{4, 2, 6\}$ est optimale et la valeur de la fonction objectif pour la solution de base associée est 0.

Solution : Etape 2

- **1** En utilisant le dernier tableau et la fonction objectif originale, on a un programme linéaire (P'_2) qui est équivalent à (P_2) et pour qui on a $A_J = I$.
- ② Il faut encore changer la fonction objectif car $c_J \neq 0$ ($c_2 \neq 0$).
- Il faut soustraire deux fois la deuxième ligne de la fonction objectif.

$$\begin{array}{lllll} 2x_1 & -2x_3+1x_4+1x_5 & = 1 \\ -1x_1+1x_2 & -1x_5 & = 3 \\ 2x_1 & +1x_3 & +1x_5+1x_6 = 2 \\ x_1, & x_2, & x_3, & x_4, & x_5, & x_6 \ge 0 \\ 5x_1 & +1x_3 & +2x_5 & = z(\max)-6 \end{array}$$

Solution: Etape 2

2	0	-2	1	1	0	1	
-1	1	0	0	-1	0	1 3 2	
-1 2	0	1	0	1	1		
5	0	1	0	2	0	-6	
1	0	-1	<u>1</u> 2	1/2	0	<u>1</u> 2	1
0	1	-1	$\frac{\frac{1}{2}}{\frac{1}{2}}$ -1	$-\frac{1}{2}$ $-\frac{1}{2}$	0	$\frac{\frac{1}{2}}{\frac{7}{2}}$	
0	0	3		0	1		
0	0	6	$-\frac{5}{2}$	$-\frac{1}{2}$	0	$-\frac{17}{2}$ $\frac{5}{6}$ $\frac{23}{6}$ $\frac{1}{3}$ $-\frac{21}{2}$]
1 0	0	0	1 6	$\frac{1}{2}$	<u>1</u> 3	<u>5</u>	1
0	1	0	$\frac{1}{6}$	$-\frac{1}{2}$ $-\frac{1}{2}$	<u>1</u>	23 6	
0	0	1	$\frac{\frac{1}{6}}{\frac{1}{6}}$ $-\frac{1}{3}$ $-\frac{1}{2}$	0	1 31 31 3	$\frac{1}{3}$	
0	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	-2	$-\frac{21}{2}$	

$$\ell_{1}$$

$$\ell_{2}$$

$$\ell_{3}$$

$$\ell_{4}$$

$$\ell'_{1} = \ell_{1}/2$$

$$\ell'_{2} = \ell_{2} - (-1)\ell'_{1}$$

$$\ell'_{3} = \ell_{3} - 2\ell'_{1}$$

$$\ell'_{4} = \ell_{4} - 5\ell'_{1}$$

$$\ell''_{1} = \ell'_{1} - (-1)\ell''_{3}$$

$$\ell''_{2} = \ell'_{2} - (-1)\ell''_{3}$$

$$\ell''_{3} = \ell'_{3}/3$$

$$\ell''_{4} = \ell'_{4} - 6\ell''_{2}$$

Dans le dernier tableau la fonction objectif est non-positive, une solution optimale est donc $(\overline{x}_1, \overline{x}_2, \overline{x}_3) = (\frac{5}{6}, \frac{23}{6}, \frac{1}{3})$ de valeur $\frac{21}{2}$.