```
In [17]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [46]: df=pd.read_csv("/Users/bob/Downloads/13_placement.csv")
 df.fillna(0,inplace=True)
 df

Out [46]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
995	8.87	44.0	1
996	9.12	65.0	1
997	4.89	34.0	0
998	8.62	46.0	1
999	4.90	10.0	1

1000 rows × 3 columns

In [47]: df.head()

Out [47]:

		cgpa	placement_exam_marks	placed
,	0	7.19	26.0	1
	1	7.46	38.0	1
	2	7.54	40.0	1
	3	6.42	8.0	1
	4	7.23	17.0	0

```
In [48]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1000 entries, 0 to 999
         Data columns (total 3 columns):
          #
              Column
                                    Non-Null Count
                                                     Dtype
                                    1000 non-null
                                                     float64
          0
              cgpa
                                    1000 non-null
                                                     float64
          1
              placement_exam_marks
                                    1000 non-null
                                                     int64
              placed
          2
         dtypes: float64(2), int64(1)
         memory usage: 23.6 KB
In [49]: df.columns
```

Out[49]: Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')

In [50]: sns.pairplot(df)

Out[50]: <seaborn.axisgrid.PairGrid at 0x7f8ef4ba2b00>


```
In [51]: sns.displot(df['placement_exam_marks'])
```

Out[51]: <seaborn.axisgrid.FacetGrid at 0x7f8ecfee3370>


```
In [52]: df1=df.drop(['placed'],axis=1)
    df1
    df1=df1.drop(df1.index[1537:])
    df1.isna().sum()
```

```
In [53]: sns.heatmap(df1.corr())
```

Out[53]: <Axes: >

In [54]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [55]: df1.isna().sum()

```
In [56]: y=df1['placement_exam_marks']
         x=df1.drop(['placement_exam_marks'],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         print(x_train)
              cgpa
         206
              7.50
              6.63
         191
         702 6.24
         467
              6.65
         507
              6.77
               . . .
         . .
         277 6.45
         710
             7.56
         587
              7.58
         441
             7.80
         74
              6.16
         [700 rows x 1 columns]
In [57]:
         model=LinearRegression()
         model.fit(x_train,y_train)
         model.intercept_
Out[57]: 36.78350248626957
In [58]: model.coef_
Out[58]: array([-0.5123083])
```

In [59]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

Out[59]: <matplotlib.collections.PathCollection at 0x7f8ef4ba2fb0>

In [60]: model.score(x_test,y_test)

Out [60]: -0.031875624215878195

In []: