Ingeniería de Software II

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

 $$\operatorname{\mathbf{TP2}}$$ Alerta y Vigliancia de Yacimientos Semi-Automatico $$\operatorname{\mathbf{AVYSA}}$$ 19 de junio de 2017

Integrante	LU	Correo electrónico
Christian Cuneo	755/13	chriscuneo93@gmail.com
Federico Beuter	827/13	federicobeuter@gmail.com
Mauro Cherubini	835/13	cheru.mf@gmail.com
Mario Ezequiel Ginsberg	145/14	ezequielginsberg@gmail.com
Martin Baigorria	575/14	martinbaigorria@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

$\acute{\mathbf{I}}\mathbf{ndice}$

1.	Casos de uso
	.1. Diagrama
	.2. Descripcion
	.3. Especificacion
2.	Atributos de calidad
	2.0.1. Performance
	2.0.2. Disponibilidad
	2.0.3. Seguridad
	2.0.4. Usabilidad
	2.0.5. Modificabilidad
3.	Arquitectura
	Arquitectura 3.1. Diagrama general
	3.2. Procesamiento de mediciones
	3.3. Detector de anomalias
	3.4. Gestor de anomalias

1. Casos de uso

1.1. Diagrama

Figura 1: Diagrama de casos de uso

1.2. Descripcion

- 1. **Autenticarse**: La primera acción que tiene que realizar cualquier usuario, no importe su perfil, para poder seguir interactuando con el sistema con los permisos que tenga su perfil.
- 2. **Registrar usuario**: La forma que tiene el administrador de ingresar un nuevo usuario al sistema, indicando el perfil que va a utilizar.
- 3. Remover usuario: El administrador le saca el acceso al sistema a un usuario en particular.
- 4. Consultar usuarios actuales: El administrador lista los usuarios actuales.
- 5. **Registrar pozo**: De esta forma el ingeniero hace que el sistema considere un nuevo pozo en su procesamiento y lo agregue al simulador de simoil entre otras cosas.
- 6. **Registrar sensor de pozo**: El ingeniero registra un nuevo sensor indicando el pozo al que pertenece para que el sistema sepa a que pozo pertenece.
- 7. **Registrar válvula semiautomática**: El ingeniero registra una nueva válvula semiautomática indicando el pozo al que pertenece y su función.
- 8. Modificar rangos de sistema ARS: Se modifican los rangos de limpieza de datos.
- 9. Consultar estado actual o pasado de los pozos: Para consultar una historia de los valores de los sensores, posiciones de las válvulas y estados de alerta para cada pozo.
- 10. **Consultar formulario de informes**: Se listan los informes detallados de eventos detectados por el sistema.

- 11. Consultar alarmas activas: De esta forma el jefe de operaciones tiene acceso a las alarmas activas.
- 12. **Indicar falsa alarma**: El jefe de operaciones cierra una alarma indicando que fue falsa alarma.
- 13. **Indicar acción correctiva tomada**: El jefe de operaciones cierra una alarma indicando la acción correctiva tomada.

1.3. Especificacion

En esta seccion identificaremos los tres casos de uso principales y los especificaremos en detalle utilizando la tabla de curso normal/alternativo.

Caso de Uso: Registrar válvula semiautomática		
Curso Normal	Curso Alternativo	
1. El ingeniero selecciona la opción de ingresar		
una válvula		
2. El sistema carga el listado de pozos actuales y		
sus válvulas		
3. El ingeniero selecciona un pozo al que corres-		
ponde la válvula		
4. El sistema carga el listado de tipos de válvula		
5. El ingeniero selecciona que tipo de válvula a	5.1. La válvula del tipo seleccionado ya fue ingre-	
ingresar	sada para ese pozo. Vuelve a 5.	
6. El ingeniero confirma selección		
7. El sistema persiste la válvula		
8. El sistema informa éxito de operación		
9. Fin del caso		

Caso de Uso: Indicar acción correctiva tomada		
Curso Normal	Curso Alternativo	
1. El jefe de operaciones selecciona la opción de		
indicar acción correctiva para la alarma seleccio-		
nada en la lista de alarmas activas		
2. El sistema carga en detalle la alarma seleccio-		
nada		
3. El jefe de operaciones indica de forma detallada		
la acción tomada		
4. El jefe de operaciones confirma la operación	4.1 Descripción es muy corta, vuelve a 3	
5. El sistema persiste la acción		
6. El sistema completa el informe de la alarma		
7. Fin del caso		

Caso de Uso: Consultar estado actual o pasado de los pozos

Curso Normal

Curso Alternativo

- $1.\ El usuario selecciona la opción de listar los pozos$
- 2. El sistema lista los pozos
- 3. El usuario selecciona el pozo a consultar
- 4. El sistema encuentra los registros de estados de válvulas para ese pozo
- $5.\ El$ sistema encuentra los registros de estados de sensores para ese pozo
- $6.\ El sistema encuentra los registros de alertas para ese pozo$
- 7. El sistema muestra de forma detallada el historial y el estado actual de este pozo
- 8. Fin del caso

2. Atributos de calidad

Luego del Quality Attribute Workshop (QAW), la priorización de los atributos de calidad fue la siguiente:

- Performance
- Disponibilidad
- Seguridad
- Usabilidad

Para cada tipo de atributo de calidad definimos distintos escenarios de acuerdo a lo relevado.

2.0.1. Performance

1)

- Descripción: La búsqueda de eventos en el sistema debe tardar a lo sumo medio segundo.
- Fuente: Auditor.
- Estímulo: Escribe en el buscador el evento a buscar y aprieta el botón Buscar.
- Artefacto: Sistema de Informes de Eventos.
- Entorno: Normal.
- Respuesta: Se obtienen los datos del evento buscado. Si la búsqueda es idéntica a otra realizada hace menos de 1 hora, la respuesta llegará más rápido.
- Medición: El sistema responderá la búsqueda en menos de 100 ms en el caso de una búsqueda repetida recientemente, y en menos de 500 ms en cualquier otro caso.

2)

- \blacksquare Descripción: La limpieza de datos deberá remover aproximadamente el 80 % de los picos no realistas del conjunto de datos.
- Fuente: Interna.
- Estímulo: Llegan nuevos datos a ser limpiados de datos no realistas.
- Artefacto: Sistema de Procesamiento de Mediciones.
- Entorno: Normal.
- Respuesta: El sistema realiza la limpieza de datos correctamente.
- Medición: Aproximadamente el 80 % de los picos fuera de los límites superior e inferior fueron eliminados del conjunto de datos.

- Descripción: La detección de anomalías no debe tardar más de 5 minutos.
- Fuente: Interna.
- Estímulo: Llegan nuevos datos anómalos a ser analizados.
- Artefacto: Detector de Anomalías.
- Entorno: Normal.
- Respuesta: Se detectan las anomalías y se da aviso al Gestor de Anomalías.

■ Medición: Las anomalías son detectadas en menos de 5 minutos.

4)

- Descripción: Ante un pronóstico catastrófico, la alarma debe ser envíada inmediatamente.
- Fuente: Interna.
- Estímulo: Evento catastrófico detectado por el módulo Detector de Anomalías.
- Artefacto: Gestor de Anomalías.
- Entorno: Normal.
- Respuesta: Envío inmediato de SMS al Jefe de Operaciones del yacimiento.
- Medición: El SMS se envía en menos de 50 ms.

2.0.2. Disponibilidad

1)

- Descripción: El sistema de procesamiento de mediciones debe estar en funcionamiento todo el tiempo para garantizar la mayor efectividad de detección de catástrofes.
- Fuente: Interna.
- Estímulo: Llegan datos a ser analizados.
- Artefacto: Sistema de Procesamiento de Mediciones.
- Entorno: Degradado.
- Respuesta: El sistema envía los datos a otra instancia de procesamiento de mediciones.
- Medición: En el 99.9999999 % de los casos los datos se procesaron correctamente.

2)

- Descripción: El formulario de eventos debe estar disponible en todo momento para el Ministerio y para el Ente Regulador de Seguridad Medio Ambiental.
- Fuente: Externa.
- Estímulo: Petición para visualizar el formulario de eventos.
- Artefacto: Sistema de Informes de Eventos.
- Entorno: Degradado.
- Respuesta: El balanceador de carga asigna otro sistema de informes de eventos para realizar la petición.
- \blacksquare Medición: En el 99.99999999 % de los casos los datos se visualizaron correctamente.

- Descripción: El sistema en su totalidad debe ser tolerante a fallas.
- Fuente: Interna.
- Estímulo: Un módulo del sistema deja de funcionar.
- Artefacto: Sistema.
- Entorno: Normal.

- Respuesta: El sistema omite el módulo degradado.
- Medición: El sistema sigue en funcionamiento.

4)

- Descripción: El servicio de envío de SMS debe estar siempre en funcionamiento.
- Fuente: Externa.
- Estímulo: Se recibe un mensaje de error de envío de SMS.
- Artefacto: Gestor de Anomalías.
- Entorno: Normal.
- Respuesta: Se envía nuevamente el SMS por otro canal de envío de SMS.
- Medición: Se recibe una confirmación de envío del mensaje en menos de 1 minuto.

5)

- Descripción: En caso de siniestro, todos los registros deben mantenerse accesibles.
- Fuente: Interna.
- Estímulo: Se desea acceder a un registro.
- Artefacto: Gestor de Anomalías.
- Entorno: Degradado.
- Respuesta: El sistema redirige la petición al Gestor de Backups.
- \blacksquare Medición: Los datos son obtenidos en el 99.99999999% de las veces.

2.0.3. Seguridad

1)

- Descripción: La autenticación de los usuarios debe ser segura.
- Fuente: Agente Externo.
- Estímulo: Un agente externo intenta interceptar los datos de un usuario cuando son enviados al sistema para el logueo en el mismo.
- Artefacto: Sistema de Usuarios.
- Entorno: Normal.
- \blacksquare Respuesta: Los datos se envían de forma segura.
- Medición: Debido al método de seguridad usado para enviar los datos, en menos del 0.00000001 % de los casos el agente externo logra descifrar los datos en menos de 1 semana.

- Descripción: Los datos de los servicios externos se deben recibir de forma segura.
- Fuente: Agente Externo.
- Estímulo: Un agente externo intenta interceptar los datos de los servicios externos cuando son enviados al sistema para el procesamiento de los mismos.
- Artefacto: Controlador de válvula semiautomática.

- Entorno: Normal.
- Respuesta: Los datos son recibidos de forma segura.
- Medición: Debido al método de seguridad usado para enviar los datos, en menos del 0.00000001 % de los casos el agente externo logra descifrar los datos en menos de 1 semana.

3)

- Descripción: Un determinado perfil de usuario sólo puede ejecutar las acciones permitidas por dicho perfil.
- Fuente: Usuario.
- Estímulo: Intenta realizar una acción para la cual no está autorizado su perfil.
- Artefacto: Sistema.
- Entorno: Normal.
- Respuesta: El sistema invalida la acción y muestra un mensaje de error indicando la incompatibilidad de la acción con el perfil del usuario.
- Medición: En el 99.9999999 % de las veces la acción no va a ser permitida por el sistema.

2.0.4. Usabilidad

1)

- Descripción: El sistema debe ser fácil de aprendera usar y agradable a la vista.
- Fuente: Usuario.
- Estímulo: Interactúa con el sistema.
- Artefacto: Interfaz de Usuario.
- Entorno: Ejecución.
- Respuesta: Responde con mensajes claros y precisos, y muestra de forma simple y elegante las distintas acciones posibles dentro del sistema.
- Medición: Cualquier usuario debe poder aprender a usar el sistema en menos de 10 minutos.

2.0.5. Modificabilidad

- Descripción: El sistema debe poder permitir el agregado de nuevos procesos para trabajar con los datos almacenados sin mucha dificultad.
- Fuente: Desarrollador.
- Estímulo: Quiere agregar un nuevo proceso.
- Artefacto: Sistema.
- Entorno: En diseño.
- Respuesta: Se realizan los cambios sin afectar las otras funcionalidades.
- \blacksquare Medición: Se agregó el nuevo proceso modificando sólo 2 módulos.

3. Arquitectura

3.1. Diagrama general

Figura 2: Diagrama general de la arquitectura del sistema ARS de supervision automatica de yacimientos.

3.2. Procesamiento de mediciones

Figura 3: Diagrama de arquitectura de procesamiento de mediciones.

3.3. Detector de anomalias

Figura 4: Diagrama de arquitectura del detector de anomalias.

3.4. Gestor de anomalias

Gestor de Anomalias

Figura 5: Diagrama de arquitectura del gestor de mediciones.