Pantosteus platyrhynchus

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 4.4.4(git:v4-series-26-ge85c6ff) [June-1-2019]

Compiled for a SYMMETRIC multiprocessors (Grandcentral)

Program started at Fri May 21 15:57:11 2021

Program finished at Fri May 21 17:10:35 2021 [Runtime:0000:01:13:24]

Options

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2802174365

Start parameters:

Theta values were generated RANDOM start value from the prior

M values were generated RANDOM start value from the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1 2 1 Great_Salt_lake * D 2 Sevier_Desert * *

Order of parameters:

1	Θ_1	<displayed></displayed>
2	Θ_2	<displayed></displayed>
3	$M_{2->1}^{2}$	<displayed></displayed>
4	$M_{1\rightarrow 2}$	<displayed></displayed>

								Pantosteus p	olatyrhynchus 2
5		Δ 2-	->1		<displa< td=""><td>yed></td><td></td><td></td><td></td></displa<>	yed>			
6		5 2			<displa< td=""><td>ved></td><td></td><td></td><td></td></displa<>	ved>			
		2-	->1		\ulletion \ullet	ycu>			
Mu	tation rate amor	ng lo	ci:					Mutation ra	ate is constant
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	alvaia atratamu							Davi	
	alysis strategy:	otim	ation:					-	esian inference
	opulation size e eneflow estimat		alion.					-	tial Distribution tial Distribution
	ivergence time (nation:		No	rmal Dietrik	oution Shorte	-	standard dev.)
٥- ا	ivergence time t	53um	iation.		INC	illiai Distili	Julion Shorte	ut (ilicali aliu	Standard dev.)
Pro	posal distribution	ons f	or paramete	er					
	ameter		•		oosal				
The	ta		M	letropolis sam	pling				
М			M	letropolis sam	pling				
Dive	ergence		M	letropolis sam	pling				
Dive	ergence Spread		M	letropolis sam	pling				
Gen	ealogy		N	1etropolis-Has	tings				
	or distribution fo	r pai							
	ameter	44	Prior	Minimum	MeanMa		Delta		JpdateFreq
1	Theta	**	Uniform	0.000000	0.050	0.100	0.010	1500	0.08333
2	Theta	**	Uniform Uniform	0.000000	0.050	0.100	0.010 100.0	1500	0.08333
3 4	M M	**	Uniform	0.000000 0.000000	500.0 500.0	1000. 1000.	100.0	1500 1500	0.08333 0.08333
	Splittime mean	**	Uniform	0.000000	0.250	0.500	0.050	1500	0.08333
6	Splittime std	**	Uniform	0.000000	0.250	0.500	0.050	1500	0.08333
	means priors w	ere :			0.200	0.000	0.000	1000	0.00000
'	aa pinara ii			ı					
Ма	rkov chain settir	ngs:							Long chain
Nu	mber of chains								1
F	Recorded steps	[a]							10000
l li	ncrement (recor	d ev	ery x step [b]					1000
١	Number of concu	urren	it chains (re	plicates) [c]					2
	isited (sampled								20000000
1	Number of disca	rd tre	ees per cha	in (burn-in)					1000
N 4	ltinla Markov ak	oine							
	Itiple Markov ch Static heating sc							4 chaine with	temperatures
	ratio neating 50	11 0 111	C			1000	0000.00		1.50 1.00
						1000	0000.00		ng interval is 1
								σπαρρι	

Print options:

Data file:	infile
Haplotyping is turned on:	NO
Output file:	outfile
Log file:	logfile
Posterior distribution raw histogram file:	bayesfile
Raw data from the MCMC run:	bayesallfile.gz
Print data:	No
Print genealogies [only some for some data type]:	None
Thin genealogies formy some for some data typoj.	140110

Data	summ	ary
------	------	-----

Data file: Datatype: Number of loci:						Ha	infile aplotype data 1
Mutationmodel:							
Locus Sublocus	s Mutation	nmodel M	lutationmodel	parameters			
1 1	HKY	[Bf:0.28	0.27 0.16 0.3	80, kappa=1°	1.220]		
1 2	HKY	[Bf:0.28	0.28 0.17 0.2	?7, kappa=1	1.220]		
1 3	HKY	[Bf:0.23	0.28 0.21 0.2	.8, kappa=1	1.220]		
1 4	HKY	[Bf:0.22	0.30 0.20 0.2	.8, kappa=1	1.220]		
1 5	HKY	[Bf:0.26	0.28 0.19 0.2	.8, kappa=1	1.220]		
1 6	HKY	[Bf:0.24	0.28 0.19 0.2	.8, kappa=1	1.220]		
Sites per locus							
Locus	Sites						
1	863	2357 975	1047	1673	1140		
Site rate variation			Probability	Patch size			
1 1	1	1.000	1.000	1.000			
1 2	1	1.000	1.000	1.000			
1 3	1	1.000	1.000	1.000			
1 4	1	1.000	1.000	1.000			
	1	4 000					
1 5		1.000	1.000	1.000			
1 5 1 6	1	1.000	1.000 1.000	1.000 1.000			
	· ·				ıs	Gene co	•
1 6 Population	1			1.000 Loc		data	opies (missing)
1 6 Population 1 Great_Salt_la	1 ke			1.000 Locu 1		data 2	•
1 6 Population 1 Great_Salt_la 2 Sevier_Deser	1 ke			1.000 Locu 1 1		data 2 3	(missing)
1 6 Population 1 Great_Salt_la	1 ke			1.000 Locu 1		data 2	•
1 6 Population 1 Great_Salt_la 2 Sevier_Deser	1 ke			1.000 Locu 1 1		data 2 3	(missing)
1 6 Population 1 Great_Salt_la 2 Sevier_Deser	1 ke			1.000 Locu 1 1		data 2 3	(missing)

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ1	0.00000	0.00000	0.00537	0.01140	0.01140	0.01390	0.02750
1	Θ_2	0.00000	0.00033	0.01257	0.02740	0.03040	0.01597	0.02148
1	M _{2->1}	0.000	212.000	375.667	440.667	516.000	289.000	546.741
1	M _{1->2}	0.000	0.000	0.333	84.667	350.000	85.000	139.293
1	D _{2->1}	0.00000	0.00000	0.00017	0.05767	0.19900	0.12317	0.25053
1	S _{2->1}	0.00000	0.00000	0.00017	0.10967	0.20433	0.12117	0.25040

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution for locus 1

Pantosteus platyrhynchus 7

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-13426.381728	(1a)
	-12744.936562	(1b)
Harmonic mean	-12765.859121	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1038049/1665816	0.62315
Θ_2	847478/1669173	0.50772
$M_{2\rightarrow 1}$	1332309/1666549	0.79944
$M_{1\rightarrow 2}$	642682/1664755	0.38605
$\Delta \stackrel{1>2}{_{2->1}}$	1662921/1667366	0.99733
$\sigma_{2\rightarrow 1}$	1662021/1666037	0.99759
Genealogies	431088/10000304	0.04311

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.06525	17550.67
Θ_{2}^{1}	0.04566	18269.25
$M_{2->1}$	0.13442	15271.21
$M_{1\rightarrow 2}$	0.35473	9577.73
Δ 2->1	0.01784	19296.81
$\sigma_{2\rightarrow 1}$	-0.00678	20270.91
Genealogies	-0.00678	20270.91

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run