Appunti molto belli di Calculus

Floppy Loppy

March 2022

Contents

1	Nur	Vumeri Reali			
	1.1	Sottoinsiemi particolari di \mathbb{R}			
		1.1.1	Intervalli limitati	3	
		1.1.2	Intervalli illimitati	3	
	1.2	Domin	nio e Codominio	3	

Todo list

/

1 Numeri Reali

Sottoinsiemi di \mathbb{R} sono:

- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z} \land n \in \mathbb{N}^* \}$

Osservazione 1.1. In particolare \mathbb{Q} è detto denso ovvero presi due qualunque punti $x, y \in \mathbb{R}$ esiste sempre un razionale \mathbb{Q} tra di essi.

Proprietà 1.1. Fondamentale proprietà di \mathbb{R} è un insieme totalmente ordinato.

Lemma 1.1. $\forall x, y \in \mathbb{R} \text{ con } x < y$

1.1 Sottoinsiemi particolari di $\mathbb R$

Esistono diversi tipi di intervalli, elenchiamoli per categoria

1.1.1 Intervalli limitati

- $(a,b) = \{x \in \mathbb{R} : x > a \land x < b\}$ intervallo aperto
- $[a, b] = \{x \in \mathbb{R} : x \ge a \land x \le b\}$ intervallo chuso
- $[a,b) = \{x \in \mathbb{R} : x \ge a \land x < b\}$ intervallo semi-aperti
- $(a, b] = \{x \in \mathbb{R} : x > a \land x \le b\}$ itervallo semi-aperti

1.1.2 Intervalli illimitati

Gli intervalli illimitati sono rappresentate geometricamente da semirette

- $(a, +\infty) = \{x \in \mathbb{R} : x > a \land x < +\infty\}$ intervallo aperto
- $[a, +\infty] = \{x \in \mathbb{R} : x \ge a \land x \le +\infty\}$ intervallo chuso
- $[-\infty, b) = \{x \in \mathbb{R} : x \ge -\infty \land x < b\}$ intervallo semi-aperti
- $(-\infty, b] = \{x \in \mathbb{R} : x > -\infty \land x \le b\}$ itervallo semi-aperti

1.2 Dominio e Codominio

Tratteremo funzioni f che hanno un dominio $A \subseteq \mathbb{R}$ e sottointendiamo che si parla di funzioni reali:

$$f: \mathbb{R} \to \mathbb{R}$$

e che quindi il dominio è il più grande insieme di definizione.

Definizione 1.1. (Funzione) Una funzione $f:A\to R$ non è altro che una associazione <u>univoca</u> di un elemento di A con uno di \mathbb{R} .

In particolare:

$$\forall x \in A \quad \exists! y \in \mathbb{R} : f(x) = g.$$

Proprietà 1.2. Una particolarità dei reali è che possiamo rappresentare il grafico della funzione:

Figure 1

Come la retta rappresenta l'insieme $\mathbb R$ il piano rappresenta l'insieme:

$$\mathbb{R} \times \mathbb{R} = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}\}$$

Il grafico di f non è altro che:

$$graph(f) = \{(x, f(x)) : x \in A = dom(f)\} \le \mathbb{R}^2$$

Osservazione 1.2. Data una curva $M \subseteq \mathbb{R}^2$, essa è grafico di una funzione solo se $\forall x \in \mathbb{R}$ esiste al più un punto y tale che $(x,y) \in M$, cioè M intergetta le rette verticali al più di un punto

Immaginiamo per esempio le parabole nella forma $ax^2 + bx + c$.

Ciao come va?

