ПРИКЛАДНАЯ ИНФОРМАТИКА

Лектор Иванов Сергей Евгеньевич

Лабораторная работа 2. Алгоритмы решения обыкновенных дифференциальных уравнений ОДУ

Цель работы

Изучить алгоритмы решения обыкновенных дифференциальных уравнений ОДУ.

Теоретические основы

Задача Коши пусть дано дифференциальное уравнение: $\frac{dy}{dx} = f(x, y)$ и начальное условие: y(x0) = y0

Требуется найти функцию y(x) удовлетворяющую как указанному уравнению, так и начальному условию.

Метод Рунге - Кутта

Наиболее распространенный метод. Метод Рунге - Кутта требует на каждом шаге четырёхкратного вычисления правой части уравнения f(x, y).

Требует большого объема вычислений, однако это окупается повышенной точностью.

у
$$i+1 = y_i + \frac{k_0 + 2*k_1 + 2*k_2 + k_3}{6}$$
, где
$$\frac{y_{i+1} = y_i + \frac{k_0 + 2*k_1 + 2*k_2 + k_3}{6}}{k_0 = h \cdot f(x_i, y_i)},$$
 $k_1 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_0}{2}),$ $k_2 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}),$ $k_3 = h \cdot f(x_i + h, y_i + k_2).$

Методы прогноза и коррекции

На каждом шаге вводятся два этапа, использующие многошаговые методы:

1. С помощью явного метода (предиктора) по известным значениям формул в

предыдущих узлах находится начальное приближение $y_{i+1} = y^{(0)}_{i+1}$

в новом узле:

$$y_{i+1} = y_i + \frac{h}{24} (55 f_i - 59 f_{i-1} + 37 f_{i-2} - 9 f_{i-3}).$$

2. Используется неявный метод (корректор) в результате итераций находится приближения

$$y_{i+1}^{(1)}, y_{i+1}^{(2)} \dots \qquad y_{i+1} = y_i + \frac{h}{24} (9f_{i+1} - 19f_i - 5f_{i-1} + f_{i-2}).$$

Этот вариант метода прогноза и коррекции построен на основе метода Адамса четвертого порядка. Явная схема используется на каждом шаге один раз, а с помощью неявной схемы строится итерационный процесс вычисляется yi+1, поскольку это значение входит в правую часть выражения fi+1=f(xi+1,yi+1). Здесь необходимы значения формулы в четырех предыдущих узлах: yi, yi-1, yi-2, yi-3 необходимые при этом значения y1, y2, y3 находятся по методу Рунге-Кутты, y0 задается начальным условием. Этим характеризуется особенность многошаговых методов.

Метод Адамса

Широко распространенное семейство многошаговых методов. Простейший из них, получающийся при k=1, совпадает с методом Эйлера первого порядка точности. В практических расчетах чаще всего используется вариант метода Адамса, имеющий четвертый порядок точности и использовавший на каждом шаге результаты предыдущих четырех. Именно его и называют обычно методом Адамса. Пусть найдены значения в четырех последовательных узлах (k=4). При этом имеются также вычисленные ранее значения правой части. В случае постоянного шага h конечные разности в узле xi имеют вид:

$$\Delta f_i = f_i - f_{i-1}$$

$$\Delta^2 f_i = f_i - 2f_{i-1} + f_{i-2}$$

$$\Delta^3 f_i = f_i - 3f_{i-1} + 3f_{i-2} - f_{i-3}$$

тогда разностная сумма четвертого порядка метода Адамса запишется в виде:

$$y_{i+1} = y_i + h \cdot y_i + \frac{h^2}{2} \cdot \Delta f_i + \frac{5 \cdot h^3}{12} \cdot \Delta^2 f_i + \frac{3 \cdot h^4}{8} \cdot \Delta^3 f_i.$$

Сравнивая метод Адамса с методом Рунге - Кутты той же точности, отмечаем его экономичность. Но метод Адамса неудобен тем, что невозможно начать счет лишь по известному значению y0. Метод Адамса не позволяет (без усложнения формул) изменить шаг h в процессе счета; этого недостатка лишены одношаговые методы.

Метод последовательных приближений

При методе последовательных приближений в качестве начального приближения у0, можно выбирать любую функцию, достаточно близкую к точному решению у.

$$y'=f(x,y)$$

$$\frac{dy}{dx} = f(x,y)$$

$$dy=f(x,y) dx$$

$$\int_{y_0}^{y} dy = \int_{x_0}^{x} f(x,y) dx$$

$$y=y_0 + \int_{x_0}^{x} f(x,y) dx$$

Первое приближение:

$$y_1(x) = y_0 + \int_{x_0}^x f(x, y_0) dx$$

Второе приближение:

$$y_2(x) = y_0 + \int_{x_0}^x f(x, y_1) dx$$

Третье приближение:

$$y_3(x) = y_0 + \int_{x_0}^x f(x, y_2) dx$$

n-е приближение:

$$y_n(x) = y_0 + \int_{x_0}^x f(x, y_{n-1}) dx$$

Оценка погрешности метода

$$|y-y_n| \le N^n M \frac{h^{n+1}}{(n+1)!}$$

где $M = \max |f(x, y)|$

$$N = \max |f'_y(x, y)|$$

$$h = \min\left(a, \frac{b}{M}\right)$$

Содержание работы

Реализовать средствами ООП (С#, С++) программу решения задачи для дифференциальных уравнении методами:

1. Рунге-Кутты четверного порядка

- 2. Прогноза и коррекции. Для расчета начальных значений применить метод Рунге-Кутта.
- 3. Адамса. Для расчета начальных значений применить метод Рунге-Кутта.
- 4. Последовательных приближений. Количество приближений оценивать в соответствии с оценкой погрешности метода.

В программе выполнить оценку точности методов.

Отчётность по работе

После выполнения лабораторной работы обучаемый представляет отчет. Отчет записывается в личную папку студента на сервере и также отправляется на почту преподавателя.

Отчёт должен содержать:

- 1. Титульный лист.
- 2. Название и цель работы.
- 3. Результаты. Исходный код (С#, С++), блок-схема алгоритма и тестовый расчет примера.
- 4. Выводы, что выполнено в работе.