Проект: Исследование стартапов

Введение

Я решил провести исследование на основании нескольких таблиц с данными о стартапах: — информация о самих стартапах и их финансировании различными фондами; — сведения о сотрудниках этих стартапов и их образовательном фоне.

В ходе работы я поставил перед собой следующие задачи:

оценить полноту и качество исходных данных;

выполнить предобработку для дальнейшего анализа;

проанализировать ключевые метрики, представляющие интерес;

при возможности выделить признаки, наиболее сильно коррелирующие с успешной сделкой по покупке стартапа.

Главная цель исследования — выявить стартапы с наибольшим потенциалом для последующего приобретения, развития и перепродажи.

Шаг 1. Знакомство с данными: загрузка и первичная предобработка

Названия файлов:

- acquisition.csv
- company_and_rounds.csv
- degrees.csv
- education.csv
- fund.csv
- investment.csv
- people.csv

1.1. Вывод общей информации, исправление названия столбцов

```
In [2]: !pip install -q missingno

[notice] A new release of pip is available: 25.0.1 -> 25.1.1
[notice] To update, run: python.exe -m pip install --upgrade pip

In [3]: import pandas as pd
   import matplotlib.pyplot as plt
   import matplotlib.ticker as mticker
   import seaborn as sns
```

```
import numpy as np
        import missingno as msno
        acquisition = pd.read_csv('/datasets/acquisition.csv')
In [4]:
        company_and_rounds = pd.read_csv('/datasets/company_and_rounds.csv')
        degrees = pd.read_csv('/datasets/degrees.csv')
        education = pd.read_csv('/datasets/education.csv')
        fund = pd.read_csv('/datasets/fund.csv')
        investment = pd.read_csv('/datasets/investment.csv')
        people = pd.read_csv('/datasets/people.csv')
In [5]: for df in [acquisition, company_and_rounds, degrees, education, fund, investment
            print(df.columns)
            print()
       Index(['id', 'acquiring_company_id', 'acquired_company_id', 'term_code',
              'price amount', 'acquired at'],
            dtype='object')
       Index(['company ID', 'name', 'category code', 'status', 'founded at',
              'closed at', 'domain', 'network username', 'country code',
              'investment rounds', 'funding rounds', 'funding total', 'milestones',
             'funding round id', 'company id', 'funded at',
             'funding round type', 'raised amount', 'pre money valuation',
              'participants', 'is first round', 'is last round'],
            dtype='object')
       Index(['id', 'object id', 'degree type', 'subject'], dtype='object')
       Index(['id', 'person_id', 'instituition', 'graduated_at'], dtype='object')
       Index(['id', 'name', 'founded_at', 'domain', 'network_username',
              'country_code', 'investment_rounds', 'invested_companies',
              'milestones'],
            dtype='object')
       Index(['id', 'funding_round_id', 'company_id', 'fund_id'], dtype='object')
       Index(['id', 'first_name', 'last_name', 'company_id', 'network_username'], dtype
       ='object')
        Видим, что в датафрейме company_and_rounds столбцы не приведены к snake_case.
In [6]: acquisition.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 9407 entries, 0 to 9406
      Data columns (total 6 columns):
       # Column
                                 Non-Null Count Dtype
       --- -----
                                 -----
       0 id
                                9407 non-null int64
       1 acquiring_company_id 9407 non-null int64
       2 acquired_company_id 9407 non-null int64
                               1831 non-null object
       3 term_code
       4 price_amount
                               9407 non-null int64
                                9378 non-null object
       5
           acquired_at
       dtypes: int64(4), object(2)
      memory usage: 441.1+ KB
```

```
acquisition.head()
In [7]:
Out[7]:
                acquiring_company_id acquired_company_id term_code price_amount
                                                                                    acquired_
             1
         0
                                  11
                                                       10
                                                                NaN
                                                                          20000000
                                                                                    2007-05-
             7
                                  59
                                                       72
                                                                cash
                                                                          60000000
                                                                                    2007-07-
             8
         2
                                  24
                                                      132
                                                                cash
                                                                         280000000
                                                                                    2007-05-
             9
                                  59
                                                      155
                                                                cash
                                                                         100000000
                                                                                    2007-06-
            10
                                212
                                                      215
                                                                          25000000
                                                                                    2007-07-
                                                                cash
In [8]:
         acquisition.isna().mean().sort_values(ascending=False).to_frame().style.backgrou
Out[8]:
                                   0
                              0.8054
                   term_code
                              0.0031
                  acquired_at
                              0.0000
                           id
         acquiring_company_id
                              0.0000
         acquired_company_id
                              0.0000
                              0.0000
                 price_amount
         Проверим наличие явных дубликатов:
         acquisition_duplicates = acquisition.duplicated()
In [9]:
         acquisition_duplicates.sum()
Out[9]: 0
         Столбец acquired_at можно привести к datetime.
         Явных дубликатов нет.
```

company_and_rounds.info()

In [10]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217774 entries, 0 to 217773
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	company ID	217472 non-null	float64
1	name	217471 non-null	object
2	category code	143886 non-null	object
3	status	217472 non-null	object
4	founded at	109956 non-null	object
5	closed at	3449 non-null	object
6	domain	147159 non-null	object
7	network username	95534 non-null	object
8	country code	108607 non-null	object
9	investment rounds	217472 non-null	float64
10	funding rounds	217472 non-null	float64
11	funding total	217472 non-null	float64
12	milestones	217472 non-null	float64
13	funding round id	52928 non-null	float64
14	company id	52928 non-null	float64
15	funded at	52680 non-null	object
16	funding round type	52928 non-null	object
17	raised amount	52928 non-null	float64
18	pre money valuation	52928 non-null	float64
19	participants	52928 non-null	float64
20	is first round	52928 non-null	float64
21	is last round	52928 non-null	float64
d+vn	oc: float64(12) object	(10)	

dtypes: float64(12), object(10)

memory usage: 36.6+ MB

In [11]: company_and_rounds.head().T

1]:		0	1	2	3	4
	company ID	1.0	1.0	1.0	10.0	100.0
	name	Wetpaint	Wetpaint	Wetpaint	Flektor	There
	category code	web	web	web	games_video	games_video
	status	operating	operating	operating	acquired	acquired
	founded at	2005-10-17	2005-10-17	2005-10-17	NaN	NaN
	closed at	NaN	NaN	NaN	NaN	NaN
	domain	wetpaint- inc.com	wetpaint- inc.com	wetpaint- inc.com	flektor.com	there.com
	network username	BachelrWetpaint	BachelrWetpaint	BachelrWetpaint	NaN	NaN
	country code	USA	USA	USA	USA	USA
	investment rounds	0.0	0.0	0.0	0.0	0.0
	funding rounds	3.0	3.0	3.0	0.0	0.0
	funding total	39750000.0	39750000.0	39750000.0	0.0	0.0
	milestones	5.0	5.0	5.0	0.0	4.0
	funding round id	888.0	889.0	2312.0	NaN	NaN
	company id	1.0	1.0	1.0	NaN	NaN
	funded at	2005-10-01	2007-01-01	2008-05-19	NaN	NaN
	funding round type	series-a	series-b	series-c+	NaN	NaN
	raised amount	5250000.0	9500000.0	25000000.0	NaN	NaN
	pre money valuation	0.0	0.0	0.0	NaN	NaN
	participants	2.0	3.0	4.0	NaN	NaN
	is first round	0.0	0.0	1.0	NaN	NaN
	is last round	1.0	0.0	0.0	NaN	NaN

In [12]: company_and_rounds[(company_and_rounds['company ID'] != company_and_rounds['company ID'].notna()) &

```
(company_and_rounds['company id'].notna())]['company ID'].c

Out[12]: 0
```

Out[13]:

	company ID	name	category code	status	founded at	closed at	domain	network username	coun
217472	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217473	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217474	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217475	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217476	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
•••									
217769	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217770	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217771	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217772	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N
217773	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	N

302 rows × 22 columns

Выводим те данные, где нет пропусков и где столбцы **company_ID** и **company_id** HE равны и видим, что таких данных нет.

Значит, эти столбцы связаны. Но есть одна особенность, есть строки, где значения встречаются либо в первом, либо во втором столбце.

```
In [14]: company_and_rounds.isna().mean().sort_values(ascending=False).to_frame().style.b
```

Out[14]: **0**

```
0.9842
           closed at
          funded at
       is last round
funding round type
       is first round
        participants
pre money valuation
     raised amount
   funding round id
        company id
 network username
                     0.5613
      country code
                     0.5013
        founded at
                     0.4951
      category code
                     0.3393
                     0.3243
            domain
                     0.0014
              name
        company ID
                     0.0014
         milestones
                     0.0014
    funding rounds
                     0.0014
 investment rounds
                     0.0014
                     0.0014
             status
      funding total
                     0.0014
```

```
In [15]: company and rounds['investment rounds'].unique()
Out[15]: array([ 0.,
                            3., 32.,
                                                  9., 30., 17.,
                      1.,
                                       2.,
                                             4.,
                                                                 7.,
                            5., 25.,
                                      19., 49., 21., 16., 14., 37.,
                      18.,
                                                                       96.,
                22., 10., 12., 478., 15., 89., 11., 24., 297., 20.,
                                                                        29.,
               125., 33., 40., 38.,
                                           13., 44., 58., 51., nan])
                                      68.,
In [16]: company_and_rounds['funding rounds'].unique()
Out[16]: array([ 3., 0., 1., 5., 2., 7., 4., 6., 8., 10., 9., 13., 11.,
               15., 14., 12., nan])
In [17]: company and rounds['milestones'].unique()
Out[17]: array([ 5., 0., 4., 1., 3., 2., 6., 8., 7., 9., nan])
```

Проверим наличие явных дубликатов:

```
In [18]: company_and_rounds_duplicates = company_and_rounds.duplicated()
    company_and_rounds_duplicates.sum()
```

Out[18]: 0

В датафрейме **company_and_rounds** следует изменить тип данных у следующих столбцов:

- founded at, closed at, funded at на datetime
- company ID, investment rounds, funding rounds, milestones после работы пропусками можно изменить на int.

В остальных столбцах слишком много пропусков, чтобы изменить тип их данных. Явных дубликатов нет.

In [19]: people.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 226709 entries, 0 to 226708

Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	id	226709 non-null	int64
1	first_name	226700 non-null	object
2	last_name	226705 non-null	object
3	company_id	34615 non-null	float64
4	network_username	38867 non-null	object

dtypes: float64(1), int64(1), object(3)

memory usage: 8.6+ MB

In [20]: people.head()

Out[20]:

	id	first_name	last_name	company_id	network_username
0	10	Mark	Zuckerberg	5.0	NaN
1	100	Peter	Lester	27.0	NaN
2	1000	Dr. Steven	E. Saunders	292.0	NaN
3	10000	Neil	Capel	2526.0	NaN
4	100000	Sue	Pilsch	NaN	NaN

In [21]: people.isna().mean().sort_values(ascending=False).to_frame().style.background_gr

Out[21]:

company_id 0.8473
network_username 0.8286
first_name 0.0000
last_name 0.0000
id 0.0000

Проверим наличие явных дубликатов:

```
In [22]: people_duplicates = people.duplicated()
         people_duplicates.sum()
Out[22]: 0
         В датафрейме people всё оставляем как есть.
         Явных дубликатов нет.
In [23]: education.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 109610 entries, 0 to 109609
        Data columns (total 4 columns):
             Column
                           Non-Null Count
                                            Dtype
            ----
                           -----
         0
            id
                          109610 non-null int64
                         109610 non-null int64
             person_id
         1
            instituition 109555 non-null object
             graduated_at 58054 non-null object
        dtypes: int64(2), object(2)
        memory usage: 3.3+ MB
In [24]: education.head()
Out[24]:
            id person_id
                                          instituition graduated_at
          0
             1
                    6117
                                                NaN
                                                             NaN
             2
                    6136 Washington University, St. Louis
                                                        1990-01-01
             3
                    6136
          2
                                      Boston University
                                                        1992-01-01
             4
                    6005
                                 University of Greenwich
                                                        2006-01-01
             5
                    5832
                                        Rice University
                                                             NaN
         education.isna().mean().sort_values(ascending=False).to_frame().style.background
In [25]:
Out[25]:
                           0
          graduated_at 0.4704
           instituition
                       0.0005
                   id
                       0.0000
             person_id
                       0.0000
         Проверим наличие явных дубликатов:
In [26]: education_duplicates = education.duplicated()
         education_duplicates.sum()
Out[26]: 0
```

Столбец **graduated_at** можно привести к datetime.

```
Явных дубликатов нет.
In [27]: degrees.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 109610 entries, 0 to 109609
        Data columns (total 4 columns):
         # Column
                        Non-Null Count
                                           Dtype
                        109610 non-null int64
         0 id
            object_id 109610 non-null object
         1
            degree_type 98389 non-null object
           subject
                       81298 non-null object
        dtypes: int64(1), object(3)
        memory usage: 3.3+ MB
In [28]: degrees.head()
Out[28]:
            id object_id degree_type
                                                         subject
                                                           NaN
         0
             1
                  p:6117
                                MBA
                                                   English, French
                  p:6136
                                  BA
                                             Mass Communication
             3
                  p:6136
                                 MS
                  p:6005
                                  MS
                                               Internet Technology
                                 BCS Computer Science, Psychology
             5
                  p:5832
         degrees.isna().mean().sort_values(ascending=False).to_frame().style.background_g
In [29]:
Out[29]:
                          0
                      0.2583
              subject
         degree_type
                      0.1024
                      0.0000
            object_id
                      0.0000
         Проверим наличие явных дубликатов:
In [30]: degrees_duplicates = degrees.duplicated()
         degrees_duplicates.sum()
Out[30]: 0
         В датафрейме degrees ничего не меняем.
         Явных дубликатов нет.
```

fund.info()

In [31]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11652 entries, 0 to 11651
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	id	11652 non-null	int64
1	name	11649 non-null	object
2	founded_at	4605 non-null	object
3	domain	7362 non-null	object
4	network_username	2149 non-null	object
5	country_code	7053 non-null	object
6	<pre>investment_rounds</pre>	11652 non-null	int64
7	<pre>invested_companies</pre>	11652 non-null	int64
8	milestones	11652 non-null	int64

dtypes: int64(4), object(5)
memory usage: 819.4+ KB

In [32]: fund.head()

Out[32]:

country_code	network_username	domain	founded_at	name	id	•
NaN	NaN	NaN	NaN	NaN	13131	0
US <i>F</i>	greylockvc	greylock.com	1965-01-01	Greylock Partners	1	1
US <i>‡</i>	NaN	missionventures.com	1996-01-01	Mission Ventures	10	2
US <i>‡</i>	NaN	kei.com	NaN	Kapor Enterprises, Inc.	100	3
NaN	NaN	NaN	NaN	Speed Ventures	1000	4
•						4

In [33]: fund.isna().mean().sort_values(ascending=False).to_frame().style.background_grad

Out[33]:

0

network_username	0.8156
founded_at	0.6048
country_code	0.3947
domain	0.3682
name	0.0003
id	0.0000
investment_rounds	0.0000
invested_companies	0.0000
milestones	0.0000

```
Out[34]: investment_rounds 529 invested_companies 441 milestones 7
```

dtype: int64

Проверим наличие явных дубликатов:

```
In [35]: fund_duplicates = fund.duplicated()
  fund_duplicates.sum()
```

Out[35]: 0

Здесь мы можем провести следующие изменения:

- founded_at приведём к datetime
- investment_rounds, invested_companies, milestones снизим разрядность типа integer

Явных дубликатов нет.

```
In [36]: investment.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 61403 entries, 0 to 61402
Data columns (total 4 columns):
```

Column Non-Null Count Dtype
--- 0 id 61403 non-null int64
1 funding_round_id 61403 non-null int64
2 company_id 61403 non-null int64

61403 non-null int64

dtypes: int64(4)
memory usage: 1.9 MB

In [37]: investment.head()

3 fund_id

Out[37]:

	id	tunding_round_id	company_id	tund_id
0	1	1	4	1
1	2	1	4	2
2	3	3	5	4
3	4	4	5	1
4	5	4	5	5

Проверим наличие явных дубликатов:

```
in [38]: investment_duplicates = investment.duplicated()
investment_duplicates.sum()
```

Out[38]: 0

В датафрейме **investment** мы ничего не меняем. Явных дубликатов нет.

Подведём итог:

- Все данные были загружены, имена столбцов совпадают, но в датафрейме **company_and_rounds** их нужно привести к snake_case.
- Датафрейм acquisition:

9407 строк, 6 столбцов. Столбец **acquired_at** привести к datetime.

• Датафрейм company_and_rounds:

217774 строки, 22 столбца. Убрать ненужные пробелы, мешающие работе с данными. Столбцы **founded at**, **closed at**, **funded at** привести к datetime. Столбцы **company ID**, **investment rounds**, **funding rounds**, **milestones** после работы пропусками можно изменить на int.

- Датафрейм **people**:
 - 226709 строк, 5 столбцов.
- Датафрейм education:

109610 строк, 4 столбца. Столбец **graduated_at** привести к datetime.

• Датафрейм degrees:

109610 строк, 4 столбца.

• Датафрейм **fund**:

11652 строки, 9 столбцов. Столбец **founded_at** привести к datetime.

- Датафрейм investment:
 - 61403 строки, 4 столбца.
- Во всех столбцах, имеющих тип данных integer попробовать снизить разрядность типа, чтобы сэкономить ресурсы.
- Во всех датафреймах имеется значительное количество пропусков.

1.2. Смена типов и анализ пропусков

• Оценим полноту данных:

В датафрейме **company_and_rounds** почти все столбцы названы с использованием нескольких пробелов, что неудобно для работы.

Напишем функцию для замены пробелов на нижнее подчеркивание, приводить к нижнему регистру не будем, так как в данных есть два столбца с похожим названием.

```
In [41]: def replace_spaces(df):
             list_columns = []
             for column in df.columns:
                 new_column = []
                 space count = 0
                 for char in column:
                      if char == " ":
                          space_count += 1
                      else:
                         if space_count == 1:
                              new_column.append('_')
                          elif space_count > 1:
                              new_column.append('_')
                          space_count = 0
                          new_column.append(char)
                  if space_count == 1:
                      new_column.append('_')
                 elif space_count > 1:
                      new_column.append('_')
                 list_columns.append(''.join(new_column))
             print('old: ', df.columns)
             df.columns = list_columns
             print('new: ', df.columns)
```

In [42]: replace_spaces(company_and_rounds)

```
In [43]: company_and_rounds['founded_at'] = pd.to_datetime(company_and_rounds['founded_at']
          company_and_rounds['closed_at'] = pd.to_datetime(company_and_rounds['closed_at']
         company_and_rounds['funded_at'] = pd.to_datetime(company_and_rounds['funded_at']
In [44]:
         company_and_rounds[['founded_at', 'closed_at', 'funded_at']].dtypes
Out[44]: founded at
                        datetime64[ns]
          closed at
                        datetime64[ns]
          funded at
                        datetime64[ns]
          dtype: object
         education['graduated_at'] = pd.to_datetime(education['graduated_at'], errors='co
In [45]:
In [46]: education.dtypes
Out[46]: id
                                   int64
                                   int64
          person id
          instituition
                                  object
          graduated_at
                          datetime64[ns]
          dtype: object
In [47]: # Оптимизация числовых типов данных
         def optimize_memory_usage(df: pd.DataFrame, print_size: bool=True) -> pd.DataFra
             Function optimizes memory usage in dataframe
             df: pd.DataFrame - data table
             print_size: bool - display of optimization results
             return pd.DataFrame - amount of optimized memory
             numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] # Tu
             # Размер занимаемой памяти до оптимизации (в Мб)
             before size = df.memory usage().sum() / 1024**2
             for column in df.columns:
                  column_type = df[column].dtypes
                  if column_type in numerics:
                      column min = df[column].min()
                      column_max = df[column].max()
                      if str(column type).startswith('int'):
                          if column_min > np.iinfo(np.int8).min and column_max < np.iinfo(</pre>
                              df[column] = df[column].astype(np.int8)
                          elif column_min > np.iinfo(np.int16).min and column_max < np.iin</pre>
                              df[column] = df[column].astype(np.int16)
                          elif column min > np.iinfo(np.int32).min and column max < np.iin</pre>
                              df[column] = df[column].astype(np.int32)
                          elif column_min > np.iinfo(np.int64).min and column_max < np.iin</pre>
                              df[column] = df[column].astype(np.int64)
                      else:
                          if column min > np.finfo(np.float32).min and column max < np.fin</pre>
                              df[column] = df[column].astype(np.float32)
                          else:
                              df[column] = df[column].astype(np.float64)
             # Размер занимаемой памяти после оптимизации (в Мб)
             after_size = df.memory_usage().sum() / 1024**2
             if print size: print('Размер использования памяти: до {:5.2f} Mb - после {:5
                                   .format(before_size, after_size, 100 * (before_size - a
             return df
```

```
for df in [acquisition, company_and_rounds, degrees, education, fund, investment optimize_memory_usage(df)
Pasmep использования памяти: до 0.43 Mb - после 0.31 Mb (29.2%)
```

```
Размер использования памяти: до 36.55 Mb - после 26.58 Mb (27.3%)
Размер использования памяти: до 3.35 Mb - после 2.93 Mb (12.5%)
Размер использования памяти: до 3.35 Mb - после 2.91 Mb (25.0%)
Размер использования памяти: до 3.35 Mb - после 2.51 Mb (25.0%)
Размер использования памяти: до 0.80 Mb - после 0.52 Mb (34.7%)
Размер использования памяти: до 1.87 Mb - после 0.82 Mb (56.2%)
Размер использования памяти: до 8.65 Mb - после 6.92 Mb (20.0%)
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9407 entries, 0 to 9406 Data columns (total 6 columns): # Column Non-Null Count Dtype --- -----_____ 9407 non-null int16 0 1 acquiring_company_id 9407 non-null int32 2 acquired_company_id 9407 non-null int32 1831 non-null object 9407 non-null int64 3 term_code 4 price_amount 5 acquired_at 9378 non-null datetime64[ns] dtypes: datetime64[ns](1), int16(1), int32(2), int64(1), object(1) memory usage: 312.5+ KB <class 'pandas.core.frame.DataFrame'> RangeIndex: 217774 entries, 0 to 217773 Data columns (total 22 columns): # Column Non-Null Count Dtype --- ----------0 company_ID 217472 non-null float32 1 name 217471 non-null object 1 name 217471 non-null object 2 category_code 143886 non-null object 3 status 217472 non-null object
4 founded_at 109956 non-null datetime64[ns]
5 closed_at 3449 non-null datetime64[ns]
6 domain 147159 non-null object
7 network_username 95534 non-null object
8 country_code 108607 non-null object
9 investment_rounds 217472 non-null float32 funding_rounds 217472 non-null float32

funding_total 217472 non-null float32

milestones 217472 non-null float32

milestones 217472 non-null float32

funding_round_id 52928 non-null float32

company_id 52928 non-null float32

funded_at 52680 non-null datetime64[ns]

funding_round_type 52928 non-null object

raised_amount 52928 non-null float32 17 raised amount 52928 non-null float32 18 pre_money_valuation 52928 non-null float32 19 participants 52928 non-null float32 20 is_first_round 52928 non-null float32 21 is_last_round 52928 non-null float32 dtypes: datetime64[ns](3), float32(12), object(7) memory usage: 26.6+ MB <class 'pandas.core.frame.DataFrame'> RangeIndex: 109610 entries, 0 to 109609 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ----------0 id 109610 non-null int32 1 object_id 109610 non-null object 2 degree_type 98389 non-null object 3 subject 81298 non-null object dtypes: int32(1), object(3) memory usage: 2.9+ MB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 109610 entries, 0 to 109609

Non-Null Count

Dtype

Data columns (total 4 columns):

Column

```
0 id
                     109610 non-null int32
 1 person_id 109610 non-null int32
 2 instituition 109555 non-null object
 3 graduated_at 58054 non-null datetime64[ns]
dtypes: datetime64[ns](1), int32(2), object(1)
memory usage: 2.5+ MB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11652 entries, 0 to 11651
Data columns (total 9 columns):
# Column Non-Null Count Dtype

0 id 11652 non-null int16
1 name 11649 non-null object
2 founded_at 4605 non-null object
3 domain 7362 non-null object
4 network_username 2149 non-null object
5 country_code 7053 non-null object
--- -----
 6 investment_rounds 11652 non-null int16
     invested_companies 11652 non-null int16
 7
 8 milestones 11652 non-null int8
dtypes: int16(3), int8(1), object(5)
memory usage: 534.9+ KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 61403 entries, 0 to 61402
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- ----
0 id 61403 non-null int32
---
 0 id
                          61403 non-null int32
     funding_round_id 61403 non-null int32
 2 company_id 61403 non-null int32
3 fund_id 61403 non-null int16
dtypes: int16(1), int32(3)
memory usage: 839.6 KB
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 226709 entries, 0 to 226708
Data columns (total 5 columns):
# Column Non-Null Count Dtype

0 id 226709 non-null int32
1 first_name 226700 non-null object
2 last_name 226705 non-null object
3 company_id 34615 non-null float32
--- -----
      network_username 38867 non-null object
dtypes: float32(1), int32(1), object(3)
memory usage: 6.9+ MB
```

Мы оптимизировали типы данных и сэкономили ресурсы, можно продолжать!

Оценка полноты данных:

Из данных, исследованных выше можно сделать следующие выводы о связи таблиц:

• Датафреймы acquisition и company_and_rounds можно соединить по столбцам acquiring_company_id или acquired_company_id и company_id

- Датафреймы education и degrees можно соединить по id
- Датафреймы people и education можно соединить по столбцам id и person_id

Проверим это:

```
In [49]: # Функция проверяет количество совпадающих данных в двух датафреймах по столбцам
         def check_column_matches(df1, column1, df2, column2):
             unique_values = df1[column1].unique()
             existing_values = set(unique_values) & set(df2[column2].unique())
             missing_values = set(unique_values) - set(df2[column2].unique())
             total_values = len(unique_values)
             percent_existing = len(existing_values) / total_values * 100
             percent_missing = len(missing_values) / total_values * 100
             print(f"Cовпадения для столбца {column1} в первом датафрейме и {column2} во
             print(f"> Найдены в {len(existing_values)} ({percent_existing:.2f}%) строках
             print(f"> Отсутствуют в {len(missing_values)} ({percent_missing:.2f}%) строк
In [50]: check_column_matches(acquisition, 'acquiring_company_id', company_and_rounds, 'c
         check_column_matches(acquisition, 'acquired_company_id', company_and_rounds, 'co
        Совпадения для столбца acquiring_company_id в первом датафрейме и company_id во в
        тором:
        > Найдены в 1506 (31.42%) строках.
        > Отсутствуют в 3287 (68.58%) строках.
        Совпадения для столбца acquired_company_id в первом датафрейме и company_id во вт
        ором:
        > Найдены в 2563 (27.67%) строках.
        > Отсутствуют в 6701 (72.33%) строках.
In [51]: check column matches(education, 'id', degrees, 'id')
        Совпадения для столбца id в первом датафрейме и id во втором:
        > Найдены в 109610 (100.00%) строках.
        > Отсутствуют в 0 (0.00%) строках.
In [52]: check_column_matches(education, 'person_id', people, 'id')
        Совпадения для столбца person_id в первом датафрейме и id во втором:
        > Найдены в 68071 (99.44%) строках.
        > Отсутствуют в 380 (0.56%) строках.
         Также проверим, совпадают ли данные о сотрудниках в people и
         company_and_rounds по company_id или network_username
In [53]: check_column_matches(company_and_rounds, 'company_id', people, 'company_id')
        Совпадения для столбца company_id в первом датафрейме и company_id во втором:
        > Найдены в 6372 (19.95%) строках.
        > Отсутствуют в 25568 (80.05%) строках.
In [54]: check_column_matches(company_and_rounds, 'company_ID', people, 'company_id')
```

Совпадения для столбца company_ID в первом датафрейме и company_id во втором:

- > Найдены в 22922 (11.66%) строках.
- > Отсутствуют в 173632 (88.34%) строках.

```
In [55]: check_column_matches(company_and_rounds, 'network_username', people, 'network_us
```

Совпадения для столбца network_username в первом датафрейме и network_username во втором:

- > Найдены в 2200 (2.76%) строках.
- > Отсутствуют в 77372 (97.24%) строках.

Исследовав данные, а так же их связи и пропуски, можно сделать вывод, что данные соответствуют здравому смыслу, но в них много пропусков.

Однако не все из них помешают анализу, некоторые обоснованы тем, что информация о компании есть, но она не финансировалась.

Также данные о сотрудниках практически не пересекаются с данными о компаниях, поэтому их можно будет исследовать отдельно от компаний.

Шаг 2. Предобработка данных, предварительное исследование

2.1. Раунды финансирования по годам

Я решил провести анализ раундов финансирования стартапов по годам, используя данные из файла company_and_rounds.csv.

После этого я отвечу на вопросы:

- В каком году «типичный» объём финансирования за раунд достиг максимума?
- Как изменялись количество раундов и средний (типичный) размер раунда в 2013 году?

	funded_at	funding_rounds	funds_per_round
0	1999	76	2000000.0
1	2000	125	4200000.0
2	2001	96	3000000.0
3	2002	116	4200000.0
4	2003	159	3000000.0
5	2004	291	5000000.0
6	2005	1633	5500000.0
7	2006	2436	5000000.0
8	2007	3279	3973320.0
9	2008	3774	3110000.0
10	2009	4151	2000000.0
11	2010	6221	1602500.0
12	2011	9204	1200000.0
13	2012	9970	1000000.0
14	2013	11072	1200000.0

Out[56]:

```
In [57]: plt.figure(figsize=(12, 8))
         ax1 = sns.pointplot(data=pivot, x='funded_at', y='funds_per_round', label='Cymma
                             color='red', marker='o', markersize=5, linewidth=2)
         ax2 = ax1.twinx()
         sns.pointplot(data=pivot, x='funded_at', y='funding_rounds', label='Раунды финан
                       color='blue', marker='o', markersize=5, linewidth=2, ax=ax2)
         plt.title('Раунды финансирования и сумма финансирования за раунд')
         ax1.set_xlabel('Год', fontsize=10)
         ax1.set_ylabel('Сумма финансирования за раунд', color='red', fontsize=12)
         ax2.set_ylabel('Раунды финансирования', color='blue', fontsize=12)
         ax1.set_xticks(ax1.get_xticks())
         ax1.set_xticklabels(pivot['funded_at'], rotation=45, fontsize=10)
         ax1.set yticks(np.arange(0, pivot['funds per round'].max() + 1, 1 000 000)) # C
         ax2.set_yticks(np.arange(0, pivot['funding_rounds'].max() + 1, 1000)) # Ocb Y d
         ax1.grid(axis='x', linestyle='--', alpha=0.7)
         ax1.legend(loc='lower right')
         ax2.legend(loc='lower right', bbox_to_anchor=(1, 0.05))
         ax1.yaxis.set_major_formatter(mticker.StrMethodFormatter('{x:,.0f}'))
         plt.show()
```


На основе полученных данных, отвечаем на вопросы:

Типичный размер средств, собранных в рамках одного раунда был максимален в 2005 году и составил 5,5 миллионов.

Изучая тендецию финансирования в 2013 году, мы видим рост количества раундов финансирования, которые превысили отметку в 11000 раундов, а также рост суммы финансирования в среднем за раунд, выросший до 1,2 миллионов.

2.2. Люди и их образование

Я решил исследовать, как полнота сведений об образовании сотрудников соотносится с размером компаний.

```
In [58]: people_education = pd.merge(people, education, how='left', left_on='id', right_o
```

Соединяем данные с помощью left, так как не у всех сотрудников есть информация об образовании

```
In [59]: people_education.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 267694 entries, 0 to 267693
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	id_people	267694 non-null	int32
1	first_name	267685 non-null	object
2	last_name	267690 non-null	object
3	company_id	44789 non-null	float32
4	network_username	50775 non-null	object
5	id_education	109056 non-null	float64
6	person_id	109056 non-null	float64
7	instituition	109002 non-null	object
Q	graduated at	57691 non-null	datatimas

8 graduated_at 57691 non-null datetime64[ns]

dtypes: datetime64[ns](1), float32(1), float64(2), int32(1), object(4)

memory usage: 16.3+ MB

In [60]: people_education.head()

Out[60]:		id_people	first_name	last_name	company_id	network_username	id_education	pe
	0	10	Mark	Zuckerberg	5.0	NaN	2415.0	
	1	100	Peter	Lester	27.0	NaN	NaN	
	2	1000	Dr. Steven	E. Saunders	292.0	NaN	NaN	
	3	10000	Neil	Capel	2526.0	NaN	NaN	
	4	100000	Sue	Pilsch	NaN	NaN	NaN	
	4 (•

In [61]: msno.heatmap(people_education)
plt.show()

network_username имеет незначительное количество пропусков.

id_education, person_id и instituition имеют схожую корреляцию, что означает, что если отсутствует id_education, скорее всего, нет и информации об учебном заведении instituition.

graduated_at коррелирует с id_education и person_id, что логично, ведь если нет информации об образовании, то и дата выпуска отсутствует.

```
In [62]:
          people_education.groupby('company_id')['id_people'].nunique().sort_values(ascend
Out[62]:
          company_id
                      244
          59.0
          29.0
                      150
          1242.0
                      138
          231067.0
                       72
          499.0
                       63
          63585.0
                        1
          7258.0
          63581.0
                        1
          63580.0
                        1
          70884.0
                        1
          Name: id_people, Length: 22922, dtype: int64
```

Посмотрим, какие количества сотрудников есть в данных, чтобы выбрать границы групп.

```
In [63]: company_sizes = people_education.groupby('company_id')['id_people'].nunique().re
    company_sizes = company_sizes.rename(columns={'id_people':'num_people'})
    company_sizes['num_people'].value_counts(normalize=True).sort_index().to_frame()
```

num_people

nun_people	
1	0.7904
2	0.1182
3	0.0402
4	0.0196
5	0.0103
6	0.0060
7	0.0044
8	0.0026
9	0.0020
10	0.0011
11	0.0013
12	0.0007
13	0.0007
14	0.0003
15	0.0001
16	0.0002
17	0.0002
18	0.0001
19	0.0001
20	0.0001
21	0.0001
22	0.0001
23	0.0001
25	0.0001
26	0.0000
29	0.0001
31	0.0000
32	0.0000
35	0.0000
36	0.0000
39	0.0000
47	0.0000

proportion

48	0.0000
51	0.0000
56	0.0001
61	0.0000
63	0.0000
72	0.0000
138	0.0000
150	0.0000
244	0.0000

79% сотрудников работают в соло-стартапах.

```
In [64]: bins = [0, 1, 3, company_sizes['num_people'].max()]
labels = ['Соло-стартап', 'Маленькая команда', 'Средние и крупные стартапы']
company_sizes['size_category'] = pd.cut(company_sizes['num_people'], bins=bins,
people_education = people_education.merge(company_sizes[['company_id', 'size_category']])
```

Out[64]:		id_people	first_name	last_name	company_id	network_username	id_education	pe
	0	10	Mark	Zuckerberg	5.0	NaN	2415.0	
	1	100	Peter	Lester	27.0	NaN	NaN	
	2	1000	Dr. Steven	E. Saunders	292.0	NaN	NaN	
	3	10000	Neil	Capel	2526.0	NaN	NaN	
	4	100000	Sue	Pilsch	NaN	NaN	NaN	
	4							•

In [65]: people_education.isna().sum()

```
Out[65]: id_people
                             0
        first_name
        last name
                             4
        company_id 222905
        network_username 216919
                       158638
        id_education
                       158638
        person_id
        instituition
                       158692
        graduated_at
                       210003
        size_category
                       222905
        dtype: int64
```

Данные разделили на группы, исходя из следующих предположений:

- 1 сотрудник соло стартап. Такие стартапы часто находятся на стадии идеи или прототипа.
- до 3 сотрудников маленькая команда. Основная команда из нескольких человек, часто ключевые специалисты.
- от 4 и больше средние и крупные стартапы. Мы объединим их в одну группу, так как их очень мало, по сравнению с остальными.

Теперь посмотрим на количество стартапов в каждой категории:

```
In [66]:
         category_counts = people_education.groupby('size_category', observed=False)['id_
         category_counts
Out[66]: size_category
                                        23292
          Соло-стартап
                                        10512
          Маленькая команда
          Средние и крупные стартапы
                                       10985
          Name: id_people, dtype: int64
In [67]: category_counts.sum()
Out[67]: 44789
In [68]: people_education['id_people'].count()
Out[68]: 267694
In [69]: category_shares = category_counts / category_counts.sum()
         category_shares
Out[69]: size category
                                        0.520038
          Соло-стартап
          Маленькая команда
                                        0.234700
          Средние и крупные стартапы
                                        0.245261
          Name: id_people, dtype: float64
         52% всех стартапов - это соло-стартапы, в которых состоит один человек.
         23.5% - маленькие команды до 3 человек.
         24.5% - средние и крупные стартапы от 4 человек.
```

Теперь ответим на вопрос об образовании сотрудников.

```
In [70]: people_education['education'] = people_education['instituition'].notna()
```

Доля сотрудников с образованием:

```
In [71]: education_share = people_education.drop_duplicates(subset='id_people').groupby('
    education_share.to_frame().style.background_gradient(cmap='coolwarm').format("{:
```

Out[71]: education

size_category

Соло-стартап	0.54
Маленькая команда	0.53
Средние и крупные стартапы	0.53

Доля сотрудников без образования:

```
In [72]: no_education_share = 1 - education_share
    no_education_share.to_frame().style.background_gradient(cmap='coolwarm').format(
```

Out[72]: education

size_category

Соло-стартап	0.46
Маленькая команда	0.47
Средние и крупные стартапы	0.47

Доля сотрудников без образования примерно одинакова для всех стартапов - 47%. У соло-стартапов - 46%.

Оценим возможность присоединить таблицу degrees.csv

In [73]: degrees.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 109610 entries, 0 to 109609
Data columns (total 4 columns):

```
# Column Non-Null Count Dtype

0 id 109610 non-null int32

1 object_id 109610 non-null object

2 degree_type 98389 non-null object

3 subject 81298 non-null object
```

dtypes: int32(1), object(3)
memory usage: 2.9+ MB

In [74]: degrees.head(10)

subject	degree_type	object_id	id	
NaN	MBA	p:6117	1	0
English, French	ВА	p:6136	2	1
Mass Communication	MS	p:6136	3	2
Internet Technology	MS	p:6005	4	3
Computer Science, Psychology	BCS	p:5832	5	4
Computer Science	BS	p:1017	6	5
Computer Science	BS	p:6176	7	6
Politics	MS	p:5412	8	7
International Business & Marketing	ВА	p:1243	9	8
Economics	BS	p:6265	10	9

Таблица **degrees** имеет тип данных **object**, поскольку каждый идентификатор сотрудника имеет приставку **"p:"**.

Исправим это и сменим тип данных на числовой.

```
In [75]: degrees['object_id'] = degrees['object_id'].str.replace('p:', '')
In [76]: degrees.head()
Out[76]: id object_id degree_type subject
```

subject	degree_type	object_id	id	
NaN	MBA	6117	1	0
English, French	ВА	6136	2	1
Mass Communication	MS	6136	3	2
Internet Technology	MS	6005	4	3
Computer Science, Psychology	BCS	5832	5	4

```
In [77]: degrees['object_id'] = pd.to_numeric(degrees['object_id'], downcast='integer')
In [78]: degrees['object_id'].dtypes
```

Out[78]: dtype('int32')

Out[74]:

Теперь можно присоединить данные о типе образования к основному датафрейму.

```
In [79]: people_education_degrees = people_education.merge(degrees, how='left', left_on='
In [80]: people_education_degrees.head()
```

Out[80]:		id_people	first_name	last_name	company_id	network_username	id_education	pe
	0	10	Mark	Zuckerberg	5.0	NaN	2415.0	
	1	100	Peter	Lester	27.0	NaN	NaN	
	2	1000	Dr. Steven	E. Saunders	292.0	NaN	NaN	
	3	10000	Neil	Capel	2526.0	NaN	NaN	
	4	100000	Sue	Pilsch	NaN	NaN	NaN	
	4 (•
In [81]:	<pre>new_education_share = ((people_education_degrees['instituition'].isna()) & (people_education_degrees['id'].notna())).mean() round(new_education_share * 100, 2)</pre>							

Out[81]: 0.02

Нам удалось присоединить таблицу **degrees** к данным, теперь у нас есть полная информация об образовании сотрудников.

При этом количество строк, в которых раньше не было информации об образовании, а теперь появилась увеличилось на 0.02%.

Таким образом, эта информация не изменит результаты исследования, проведенного выше.

2.3. Объединять или не объединять — вот в чём вопрос

При предварительном анализе обнаружено, что некоторые названия столбцов повторяются в разных таблицах. Например, столбец company_id содержит множество совпадающих значений между датасетами, что позволяет использовать его для объединения данных.

Теперь необходимо проверить другой повторяющийся столбец — network_username. Интересно выяснить, встречаются ли одни и те же значения в этом столбце между различными таблицами, и если да, то насколько часто это происходит.

Поставим цель: оценить, можно ли использовать network_username в качестве ключа для объединения данных из разных источников.

Используем ранее написанную функцию.

Совпадения для столбца network_username в первом датафрейме и network_username во втором:

- > Найдены в 80 (0.21%) строках.
- > Отсутствуют в 38342 (99.79%) строках.

Таким образом, столбец **network_username** нецелесообразно использовать для объединения таблиц **people** и **fund**, так как они практически не имеют пересечений - всего 0.21%.

2.4. Проблемный датасет и причина возникновения пропусков

В ходе работы с данными оказалось, что наибольшее количество вопросов вызывает таблица company_and_rounds.csv. Пропуски затрагивают в основном информацию о раундах финансирования, которая является ключевой для понимания структуры инвестиций. Несмотря на то что аналогичные сведения о суммах встречаются и в других таблицах, именно значения из company_and_rounds.csv считаются наиболее достоверными.

Для дальнейшего анализа необходимо привести эти данные к форме, которая позволит исследовать информацию на уровне отдельных компаний. Это может включать преобразование структуры таблицы, переименование столбцов, изменение формата хранения или пересборку данных из разных источников.

Следует обратить внимание:

на структуру текущего датасета;

на то, как распределены данные по строкам;

на корректность и согласованность значений;

на возможность связать информацию с другими таблицами без потерь.

Цель — получить таблицу, где каждая строка соответствует одной компании и при этом сохраняется как можно больше информации из исходного набора. Такой формат должен позволять фильтрацию по условиям (например, по типу раунда, объёму финансирования, дате привлечения инвестиций), а также вычисление агрегированных и относительных метрик на уровне одной компании.

Для того, чтобы проводить анализ в разрезе отдельных компаний, отдельно от раундов финансирования, нам нужно разделить датасет на два.

```
In [83]: companies = company_and_rounds.loc[:, :'milestones']
In [84]: companies.info()
```

```
Data columns (total 13 columns):
         # Column
                               Non-Null Count Dtype
        ---
                                _____
                              217472 non-null float32
         0 company_ID
                              217471 non-null object
143886 non-null object
217472 non-null object
109956 non-null datetime64[ns]
         1 name
         2 category_code
         3 status
            founded_at
         4
                         3449 non-null datetime64[ns]
147159 non-null object
         5 closed_at
         6 domain
         7 network_username 95534 non-null object
8 country_code 108607 non-null object
         9 investment_rounds 217472 non-null float32
         10 funding_rounds 217472 non-null float32
         11 funding_total 217472 non-null float32
12 milestones 217472 non-null float32
         12 milestones
                               217472 non-null float32
        dtypes: datetime64[ns](2), float32(5), object(6)
        memory usage: 17.4+ MB
         Для приведения всех данных к общему виду, заменим название столбца
         company_ID на company_id.
In [85]: companies = companies.rename(columns={'company_ID': 'company_id'})
In [86]: companies.columns
Out[86]: Index(['company_id', 'name', 'category_code', 'status', 'founded_at',
                 'closed_at', 'domain', 'network_username', 'country_code',
                 'investment_rounds', 'funding_rounds', 'funding_total', 'milestones'],
                dtype='object')
In [87]: funding_rounds = company_and_rounds.loc[:, 'funding_round_id': 'is_last_round']
In [88]: funding_rounds.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 217774 entries, 0 to 217773
        Data columns (total 9 columns):
         # Column
                                 Non-Null Count Dtype
        --- -----
                                  -----
         0 funding_round_id 52928 non-null float32
         1 company_id 52928 non-null float32
2 funded_at 52680 non-null datetime64[ns]
         3 funding_round_type 52928 non-null object
         4 raised_amount
                                 52928 non-null float32
         5 pre_money_valuation 52928 non-null float32
         6 participants 52928 non-null float32
            is_first_round 52928 non-null float32
is_last_round 52928 non-null float32
         7
        dtypes: datetime64[ns](1), float32(7), object(1)
        memory usage: 9.1+ MB
         companies.duplicated().sum()
In [89]:
Out[89]: 21220
In [90]:
        companies.shape[0]
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 217774 entries, 0 to 217773

Out[90]: 217774

In [91]: companies[companies.duplicated(subset='company_id', keep=False)]

1]:	company_id		name	category_code	status	founded_at	closed_at	doma
	0	1.0	Wetpaint	web	operating	2005-10-17	NaT	wetpai inc.co
	1	1.0	Wetpaint	web	operating	2005-10-17	NaT	wetpai inc.co
	2	1.0	Wetpaint	web	operating	2005-10-17	NaT	wetpai inc.co
	21	10015.0	Fitbit	health	operating	2007-10-01	NaT	fitbit.co
	22	10015.0	Fitbit	health	operating	2007-10-01	NaT	fitbit.co
	•••							
	217769	NaN	NaN	NaN	NaN	NaT	NaT	N
	217770	NaN	NaN	NaN	NaN	NaT	NaT	N
	217771	NaN	NaN	NaN	NaN	NaT	NaT	N
	217772	NaN	NaN	NaN	NaN	NaT	NaT	N
	217773	NaN	NaN	NaN	NaN	NaT	NaT	Ν

In [92]: companies = companies.drop_duplicates()

In [93]: companies.shape[0]

Out[93]: 196554

In [94]: funding_rounds.duplicated().sum()

Out[94]: **164845**

In [95]: funding_rounds.shape[0]

Out[95]: 217774

In [96]: funding_rounds[funding_rounds.duplicated(subset=['funding_round_id'], keep=False

Out[96]:		funding_round_id	company_id	funded_at	funding_round_type	raised_amount	
	3	NaN	NaN	NaT	NaN	NaN	
	4	NaN	NaN	NaT	NaN	NaN	
	5	NaN	NaN	NaT	NaN	NaN	
	6	NaN	NaN	NaT	NaN	NaN	
	7	NaN	NaN	NaT	NaN	NaN	
	•••		•••				
	217457	NaN	NaN	NaT	NaN	NaN	
	217460	NaN	NaN	NaT	NaN	NaN	
	217461	NaN	NaN	NaT	NaN	NaN	
	217462	NaN	NaN	NaT	NaN	NaN	
	217468	NaN	NaN	NaT	NaN	NaN	
	164846 rows × 9 columns						
	1					>	
In [97]:	<pre>funding_rounds = funding_rounds.drop_duplicates()</pre>						
In [98]:	funding_rounds.shape[0]						

Таким образом, мы разделили данные на два датасета, для удобства анализа каждой компании по отдельности.

При необходимости мы можем присоединить датасеты снова по столбцу **company_id**.

Также мы удалили пропуски, которые возникли при прошлом объединении таблиц.

Шаг 3. Исследовательский анализ объединённых таблиц

3.1. Объединение данных

Out[98]: 52929

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 61855 entries, 0 to 61854
Data columns (total 27 columns):

Мы объединили данные в один датафрейм, чтобы в будущем работать только с ним.

3.2. Анализ выбросов

Хочется понять, какие значения общего объёма финансирования — по столбцу funding_total — можно считать типичными для компаний в этом наборе данных, а какие — аномальными или выбивающимися из общей картины. Также стоит проверить, насколько данные асимметричны, чтобы понять, применимы ли стандартные методы оценки или лучше использовать устойчивые к выбросам подходы.

```
In [102... pd.options.display.float_format = '{:.2f}'.format
In [103... df['funding_total'].describe().to_frame().style.background_gradient(cmap='coolwa")
```

Out[103... funding_total

count	61855.00
mean	21134482.00
std	90028936.00
min	0.00
25%	59700.00
50%	2477000.00
75%	15950000.00
max	5699999744.00

```
In [104... plt.figure(figsize=(8,4))
    sns.boxplot(x=df['funding_total'])
    plt.xscale('log')
    plt.xlabel('Общий объем финансирования')
    plt.title('Суммы финансирования компаний')
    plt.show()
```

Суммы финансирования компаний


```
In [105... log_funding = np.log10(df[df['funding_total'] > 0]['funding_total'] + 1)
plt.figure(figsize=(14,6))
sns.histplot(log_funding, bins=50, kde=True)

plt.xlabel('Логарифм (log10) общего объема финансирования компаний')
plt.ylabel('Количество компаний')
plt.title('Распределение логарифма сумм финансирования')

percentiles = np.percentile(log_funding, [90, 85, 75, 50])
percentile_labels = ['90%', '85%', '75%', '50%']
percentile_colors = ['green', 'purple', 'brown', 'red'] # разные цвет для каждо
for percentile, label, color in zip(percentiles, percentile_labels, percentile_c
    plt.axvline(percentile, color=color, linestyle='--', label=f'{label}: {percentile}
```

```
plt.legend(title='Перцентили')
plt.show()
```


Основная часть значений сосредоточена в интервале 7 по log10, что соответствует 10 млн долларов.

In [106... df['funding_total'].describe(percentiles=[0.25, 0.5, 0.75, 0.9, 0.95]).to_frame(

Out[106...

funding_total

count	61855.00
mean	21134482.00
std	90028936.00
min	0.00
25%	59700.00
50%	2477000.00
75%	15950000.00
90%	49860000.00
95%	85500000.00
max	5699999744.00

```
In [107... Q1 = np.percentile(df['funding_total'], 25)
    Q2 = np.percentile(df['funding_total'], 50)
    Q3 = np.percentile(df['funding_total'], 75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5 * IQR
    upper = Q3 + 1.5 * IQR

    print(f"Нижний ус: {lower}")
    print(f"Верхний ус: {upper}")
```

Нижний ус: -23775750.0 Верхний ус: 39785450.0

```
In Γ108...
          log_funding.describe()
                  48503.00
Out[108...
          count
          mean
                       6.65
          std
                      0.96
          min
                      2.47
          25%
                      6.03
          50%
                       6.77
                       7.37
          75%
                       9.76
          max
          Name: funding_total, dtype: float64
```

Из полученных данных видим, что типичный размер финансирования - это медиана, равная примерно 5.9 млн долларов (10 в степени 6.77).

В исходных данных среднее значение сильно сдвинуто и составляет 21 миллион. Это происходит из-за большого количества выбросов в значениях. Эти выбросы, скорее всего, не являются ошибкой, так как речь идёт о финансировании компаний. Выбивающимися значениями будут те значения, которые превышают границу в 40 миллионов. Также стоит отметить, что из-за слишком большой разницы между 25 и 75 процентилями, нижний ус ящика уходит в отрицательные значения. Сумма финансирования не может быть отрицательной, поэтому реальных значений в этой области нет.

Всё это указывает на наличие крупных сумм в финансировании некоторых компаний.

3.3. Куплены забесплатно?

Возникает интересная аномалия: в таблице встречаются компании, которые были проданы либо за ноль, либо за один доллар, при этом у них есть данные о ненулевом объёме привлечённого финансирования. Это может быть признаком либо ошибок в данных, либо нестандартных кейсов (например, фиктивных продаж, банкротств или выкупов внутри группы компаний).

Для начала отфильтруем данные согласно условиям.

```
In [109... zero_sales = df[(df['funding_total'] > 0) & (df['price_amount'] <= 1)]
zero_sales = zero_sales.copy()

In [110... zero_sales.shape[0]

Out[110... 3059

In [111... zero_sales.head()</pre>
```

Out[111... company_id name category_code status founded_at closed_at domain 38 10054.00 Jumptap mobile acquired 2005-01-01 NaT jumptap.com 39 10054.00 Jumptap mobile acquired 2005-01-01 NaT jumptap.com 40 10054.00 Jumptap mobile acquired 2005-01-01 jumptap.com NaT 41 10054.00 mobile acquired 2005-01-01 Jumptap jumptap.com 42 10054.00 Jumptap mobile acquired 2005-01-01 NaT jumptap.com 5 rows × 27 columns zero_sales['status'].unique() In [112... Out[112... array(['acquired'], dtype=object) Сразу видим в данных множество дубликатов, которые отличаются в некоторых столбцах, но при этом запись о покупке (id) у них совпадает. Это может значить, что сделка проводилась несколько раз или это обозначение разных этапов одной сделки. Также это может быть ошибкой. В любом случае, для дальнейшего анализа нам эти дубликаты не понадобятся. zero_sales = zero_sales.drop_duplicates(subset='id') In [113... In [114... zero_sales.shape[0] 1618 Out[114... In [115... zero_sales.head() Out[115... company_id category_code founded_at closed_at d name status 38 10054.00 **Jumptap** mobile acquired 2005-01-01 NaT jumpta 99 101312.00 SideTour web acquired 2011-06-01 NaT sideto 106 101340.00 ChoicePass enterprise acquired 2011-07-01 NaT choicepa 107 10137.00 Producteev software acquired 2008-07-08 NaT productee 110 10139.00 TradeCard enterprise acquired 1999-01-01 NaT tradecai 5 rows × 27 columns In [116... plt.figure(figsize=(8,4)) sns.boxplot(x=zero_sales['funding_total']) plt.xlabel('Общий объем финансирования') plt.title('Суммы финансирования компаний') plt.show()

Суммы финансирования компаний

Теперь рассмотрим график без выбросов.

```
In [117...
plt.figure(figsize=(8,4))
sns.boxplot(x=zero_sales['funding_total'], showfliers=False)
plt.xlabel('Общий объем финансирования')
plt.title('Суммы финансирования компаний')
plt.show()
```

Суммы финансирования компаний

Судя по графику, верхняя граница "усов" находится в значении 35 миллионов.

```
In [118... Q1 = np.percentile(zero_sales['funding_total'], 25)
  Q2 = np.percentile(zero_sales['funding_total'], 50)
  Q3 = np.percentile(zero_sales['funding_total'], 75)
  IQR = Q3 - Q1
  lower = Q1 - 1.5 * IQR
```

```
upper = Q3 + 1.5 * IQR

print(f"Нижняя граница или 25 перцентиль: {Q1}")
print(f"Медиана или 50 перцентиль: {Q2}")
print(f"Верзняя граница или 75 перцентиль: {Q3}")
print(f"Нижний ус: {lower}")
print(f"Верхний ус: {upper}")
```

Нижняя граница или 25 перцентиль: 2000000.0

Медиана или 50 перцентиль: 6000000.0

Верзняя граница или 75 перцентиль: 15500000.0

Нижний ус: -18250000.0 Верхний ус: 35750000.0

In [119... percentiles = [i / 10 for i in range(11)]
 zero_sales['funding_total'].describe(percentiles=percentiles).to_frame().style.b

Out[119... funding_total

	runung_total
count	1618.000000
mean	18152964.000000
std	144503024.000000
min	3750.000000
0%	3750.000000
10%	513588.500000
20%	1400000.000000
30%	2600000.000000
40%	4000000.000000
50%	6000000.000000
60%	9400000.000000
70%	13000000.000000
80%	20000000.000000
90%	33015810.000000
100%	5699999744.000000
max	5699999744.000000

In [120... zero_sales['funding_total'].describe(percentiles=[.91]).to_frame().style.backgro

Out[120...

-				
tu	nd	ına	total	

count	1618.000000
mean	18152964.000000
std	144503024.000000
min	3750.000000
50%	6000000.000000
91%	35894000.000000
max	5699999744.000000

Расчёты это подтверждают, верхняя граница "усов" находится на значении 35.75 млн.

Эта граница соответствует примерно 91 перцентилю. Нижняя граница при расчётах уходит в минус, поэтому вместо неё будет приниматься 0.

In [121...

zero_sales.groupby('name')['company_id'].count().sort_values(ascending=False).he

Out[121...

company_id

Forrst	3
Photobucket	2
Navman Wireless OEM Solutions	2
Kanbox	2
GamerDNA	2

name

In [122...

zero_sales['category_code'].value_counts(normalize=True).head().to_frame().style

Out[122...

proportion

category_code

software	0.23
web	0.14
enterprise	0.08
mobile	0.08
advertising	0.05

In [123...

zero_sales['country_code'].value_counts(normalize=True).head().to_frame().style.

country_code

USA	0.80
GBR	0.04
CAN	0.03
DEU	0.02
ISR	0.02

```
In [124... data = zero_sales['acquired_at'].dt.year.value_counts(normalize=True).reset_inde
    data.columns = ['acquired_at', 'proportion']
    data['acquired_at'] = data['acquired_at'].astype('int')
    data.sort_values(by='acquired_at')
    data
```

Out[124...

	acquired_at	proportion
0	2012	0.21
1	2011	0.20
2	2013	0.18
3	2010	0.17
4	2009	0.11
5	2008	0.07
6	2007	0.04
7	2006	0.02
8	2005	0.00
9	2004	0.00
10	1998	0.00
11	2002	0.00
12	2001	0.00
13	2000	0.00
14	1997	0.00

```
In [125... plt.figure(figsize=(14,8))
    sns.lineplot(data=data, x='acquired_at', y='proportion', linewidth=2, color='r')
    plt.grid(axis='x', alpha=0.2)
    plt.xticks(data['acquired_at'], rotation=45)
    plt.title('Доля компаний, купленных бесплатно')
    plt.xlabel('Год')
    plt.ylabel('Доля компаний')
    plt.show()
```


Изучив компании, которые были куплены за ноль или за один доллар, при этом имеющие финансирование, мы увидели следующее:

- Основные категории занимает IT сфера, такие как software 23%, web 14%, enterprise и mobile 8%.
- 83% всех сделок произошли в США.
- Начиная с 2006 года число подобных сделок начало расти.
- Пик пришелся на 2011-2012 годы.

Возможные причины - это расширение крупных IT гигантов, которые начали поглощать мелкие стартапы, а также кризис 2008 года, когда мелкие компании не способны были выжить и им приходилось идти на слияние компаний вместо банкротства.

In [126... df['funding_total'].describe().to_frame().style.background_gradient(cmap='coolwa

Out[126...

funding_total 61855.000000 count 21134482.000000 mean std 90028936.000000 0.000000 min 25% 59700.000000 50% 2477000.000000 **75%** 15950000.000000 5699999744.000000 max

Выше мы рассмотрели выбросы, границы и процентили по столбцу **funding_total** и проанализировали покупки за 0 и за 1 доллар.

Учитывая это, можем ответить на вопрос заказчика о замене нижней и верхней границы выбросов на процентили:

- Как мы уже отметили выше, такие высокие значения финансирования **не являются** выбросами, ведь речь идёт о крупных компаниях.
- Стандартный метод IQR получает нижнюю границу, которая будет отрицательной, а значит метод не совсем подходит для этих данных.
- Если заменить выбросы в данных процентилями, мы потеряем большое количество крупных компаний, либо информацию о слиянии мелких компаний с крупными.

В связи с этим, замена нижней и верхней границы процентилями **не рекомендуется**, так как это исказит данные и дальнейший анализ будет неточным.

3.4. Цены стартапов по категориям

Интерес представляют категории стартапов с самыми высокими ценами и наибольшим разбросом — они потенциально привлекательны для инвесторов, готовых к риску ради высокой прибыли.

In [127... category_prices = df.groupby('category_code')['price_amount'].median().sort_valu
category_prices

Out[127		category_code	price_amount
	0	nanotech	584000000.00
	1	real_estate	40000000.00
	2	manufacturing	40000000.00
	3	photo_video	40000000.00
	4	automotive	21500000.00
	5	biotech	17600000.00
	6	hospitality	10000000.00
	7	finance	1200000.00
	8	news	0.00
	9	nonprofit	0.00
	10	other	0.00
	11	public_relations	0.00
	12	advertising	0.00
	13	search	0.00
	14	security	0.00
	15	semiconductor	0.00
	16	social	0.00
	17	software	0.00
	18	sports	0.00
	19	transportation	0.00
	20	travel	0.00
	21	network_hosting	0.00
	22	messaging	0.00
	23	music	0.00
	24	fashion	0.00
	25	cleantech	0.00
	26	consulting	0.00
	27	design	0.00
	28	ecommerce	0.00
	29	education	0.00
	30	enterprise	0.00
	31	games_video	0.00
	32	mobile	0.00

category_code price_amount

33	hardware	0.00
34	health	0.00
35	legal	0.00
36	local	0.00
37	medical	0.00
38	analytics	0.00
39	web	0.00
40	government	NaN
41	pets	NaN

In [128... category_prices = category_prices[category_prices['price_amount'] > 0].copy()

category_prices['price_amount_mln'] = category_prices['price_amount'] / 1000000

category_prices

Out[128...

	category_code	price_amount	price_amount_mln
0	nanotech	584000000.00	584.00
1	real_estate	4000000.00	40.00
2	manufacturing	4000000.00	40.00
3	photo_video	4000000.00	40.00
4	automotive	21500000.00	21.50
5	biotech	17600000.00	17.60
6	hospitality	10000000.00	10.00
7	finance	1200000.00	1.20

```
In [129...
```

```
plt.figure(figsize=(14,8))
ax = sns.barplot(data=category_prices, x='price_amount_mln', y='category_code')
for p in ax.patches:
    ax.annotate(f'{p.get_width():.1f}',
                (p.get_x() + p.get_width(), p.get_y() + p.get_height() / 2),
                ha='left', va='center',
                xytext=(5, 0),
                textcoords='offset points',
                fontsize=10)
plt.title('Категории стартапов с наибольшими ценами')
plt.xlabel('Суммы сделок в миллионах')
plt.ylabel('Категория')
plt.show()
```


ut[130		category_code	price_amount
_	0	enterprise	104163452703.60
	1	public_relations	3802535900.24
	2	automotive	2147833365.67
	3	real_estate	2129788210.65
	4	biotech	1336462342.85
	5	other	1058850372.21
	6	health	987582038.97
	7	manufacturing	947980006.15
	8	software	729174792.66
	9	finance	700186990.28
1	0	security	670164691.32
1	1	semiconductor	658336021.76
1	2	games_video	653682393.77
1	3	mobile	577896477.29
1	4	hospitality	565065045.31
1	5	consulting	484946271.20
1	6	network_hosting	476613357.73
1	7	transportation	475559050.23
1	8	cleantech	442702307.12
1	9	hardware	387918560.77
2	20	sports	368870541.23
2	21	web	357097416.35
2	22	photo_video	339090315.44
2	23	advertising	242584653.29
2	24	search	170365963.84
2	25	ecommerce	152676491.91
2	26	education	106290717.53
2	27	news	97973302.51
2	28	medical	96553030.84
2	29	fashion	95433415.35
3	80	analytics	75107645.35
3	81	messaging	54169870.80
3	32	music	49449560.97

	category_code	price_amount
33	social	45093816.47
34	travel	44166917.47
35	local	9318548.81
36	legal	0.00
37	design	0.00
38	government	NaN
39	nanotech	NaN
40	nonprofit	NaN
41	pets	NaN

```
In [131...
category_std = category_std.iloc[:7].copy()
category_std['price_amount_mln'] = category_std['price_amount'] / 1000000
category_std
```

Out[131...

	category_code	price_amount	price_amount_mln
0	enterprise	104163452703.60	104163.45
1	public_relations	3802535900.24	3802.54
2	automotive	2147833365.67	2147.83
3	real_estate	2129788210.65	2129.79
4	biotech	1336462342.85	1336.46
5	other	1058850372.21	1058.85
6	health	987582038.97	987.58

Мы видим, что категории стартапов с наибольшими ценами возглавляет **nanotech** с ценами около 584 миллионов.

Этот показатель мы считали с помощью медианы, так как при подсчете среднего мы получим слишком большие значения, среднее гораздо выше медианы, как мы уже изучили выше.

Здесь мы выбрали топ 7, так как ниже по медиане ничего нет.

Наибольший разброс цен имеет категория **enterprise**, где разброс составляет 100 миллиардов долларов.

Здесь мы выбрали топ 7, чтобы не получился огромный график, а разброс цен был выше 1 миллиарда.

3.5. Сколько раундов продержится стартап перед покупкой

Out[133...

	status	funding_rounds
0	acquired	1.16
1	closed	1.88
2	ipo	3.99
3	operating	2.38

```
textcoords='offset points',
fontsize=10)
plt.title('Среднее количество раундов финансирования по статусу стартапа')
plt.xlabel('Статус стартапа')
plt.ylabel('Среднее количество раундов')
plt.show()
```


Стартапы со статусом **acquired** (куплены) имеют в среднем всего 1.16 раунда. Закрытые стартапы **closed** проходили в среднем 1.88 раунда финансирования. Стартапы, вышедшие на **IPO**, имеют самое высокое среднее число раундов — 3.99. Работающие стартапы (operating) имеют в среднем 2.38 раунда финансирования.

Из этих данных мы видим, что стартапы, которые были куплены другой компанией или закрыты, в среднем имеют меньшее количество раундов финансирования. А те стартапы, которые остались работать или вышли на IPO, имеют больше раундов финансирования.

Шаг 4. Итоговый вывод и рекомендации

В ходе проекта были исследованы данные о стартапах, их финансировании, а также их сотрудниках.

Что было сделано:

• предобратока данных:

Загружены и изучены данные о компаниях, инвестициях, покупках компаний, сотрудниках и их образовании.

Проведена проверка и обработка пропущенных значений.

Произведена смена типов данных у некоторых столбцов, в основном с датами.

Выполнено объединение таблиц для формирования целостного набора данных.

• фильтрация данных:

Отобраны компании, которые имели хотя бы один инвестиционный или финансовый раунд или были куплены.

• исследовательский анализ:

Анализ выбросов в финансировании.

Анализ нулевых покупок.

Анализ цен стартапов по категориям, а также их разброс.

Анализ раундов стартапов перед покупкой.

Выводы:

Типичный размер финансирования компаний имеет очень высокий разброс, это связано с тем, что некоторые стартапы получили крупное финансирование. При этом, некоторые компании, получившие финансирование, впоследствии были куплены бесплатно (за 0 или за 1 доллар). Эти данные могут указывать на совершение слияний компаний или поглощением мелких стартапов более крупными компаниями.

Изучая цены по категориям, можно выделить нанотехнологии (nanotech), которые имеют самые выоские цены на стартапы, в среднем - 584 миллиона.

Самый высокий разброс цен наблюдается в категории enterprise и превышает 100 миллиардов долларов.

Также, судя по раундам финансирования, чем больше раундов финансирования компания получила - тем вероятнее стартап останется "на плаву" или даже проведёт IPO.

Результаты анализа в целом подтверждают друг друга и дают целостную картину инвестиционной активности.

Однако наличие значительных выбросов требует осторожности при интерпретации некоторых метрик.