Exercício Prático 3 Laboratório de ac2

Objetivo:

Construir uma Unidade Lógica e Aritmética (ULA) de 1 bit e implementar no Arduino.

Parte 1 (O Arduino)

Estaremos neste exercício construindo uma ULA de 1 bit e que irá evoluir para os 4 bits nos próximos exercícios.

O primeiro passo é conhecer como a comunicação entre a sua máquina e o Hardware externo irá ocorrer. Nesse semestre iremos utilizar a plataforma Arduino para tal.

As seguintes ações deverão ser realizadas para essa aula:

- a) Para este exercício será necessário o Tinkercad.
- b) Em uma pasta conhecida da sua máquina, baixar e descompactar o arquivo EP03 2024 1 Arduino.zip.
- c) Abrir o arquivo Introducao_Arduino.pdf que estará dentro da pasta descompactada.

Para os exercícios a seguir tenha em mente os seguintes Leds conectados ao arduino (esta montagem já está pronta no usuário "pucminas lab" e a montagem é a "Placa_Lab_1":

Exercício 1

Saída do Arduino	13	12	11	10
Cor do Led	Verm.	Amar.	Verde	Azul

Com a tabela acima, você deverá elaborar um programa que simule um semáforo temporizado.

O led Azul deverá sempre piscar de um em um segundo.

Durante os primeiros 3 ciclos de azul ligado, apenas o vermelho deverá estar ligado, em seguida durante 4 ciclos de azul ligado, apenas o verde ficará ligado e finalmente durante 2 ciclos de azul ligado, apenas o amarelo ficará ligado. O ciclo continua indefinidamente.

Exercício 2

Você deverá simular uma unidade lógica de 1 bit no arduino. Sua unidade lógica deverá executar 4 operações diferentes:

Op. Code (Operation)	Instrução (Result)
0	AND (a,b)
1	OR (a,b)
2	NOT (a)
3	SOMA(a,b)

Através da comunicação serial três valores deverão ser passados ao Arduino. O valor de a, b e o OP. Code.

Ao passarmos os valores, deveremos passar os três números de uma vez, observe os exemplos a seguir:

- se enviarmos 100 significa que a=1, b=0 e queremos a operação 0 ou and(a.b), a saída será 0 e vai1 também 0.
- se enviarmos 012 significa que a=0, b=1 e queremos a operação 2 ou not(a), a saída será 1 e vai1 também 0.
- se enviarmos 113 significa que a=1, b=1 e queremos a operação 3 ou soma(a,b), a saída será 0 e vai1 será 1.

Utilize a seguinte configuração para mostrar as entradas e saídas:

O valor de a no led vermelho (saída 13)

O valor de b no led amarelo (saída 12)

O valor da saída da ULA no led verde (saída 11)

O valor de vai1 no led azul (saída 10)

Considere o seguinte programa a ser executado em uma Unidade Lógica e Aritmética (ULA) considerando números de 1 bit:

Inicio:

A=0; (ou A=0)

B=1; (ou B=1)

AND(A,B); (esta é a operação bit a bit entre A e B)

B=0; (ou B=0)

A=1; (ou A=1)

OR(A,B);

SOMA(A,B); (esta é a operação aritmética da soma entre A e B)

A=0; (ou A0)

NOT(A);

B=1; (ou B=1)

AND(B,A);

Fim.

Para o programa de teste acima, preencher a tabela a seguir considerando que cada linha corresponderá à execução de uma instrução (a primeira linha já foi realizada, observe que a palavra de código deverá conter 4 bits, para escrevermos em hexa 0x na frente do número):

Instrução	Binário	Valor em Hexa	Resultado em
realizada	(A,B,Op.code)	$(0x \ldots)$	binário
AND(A,B)	0 1 00	0x4	0
OR(A,B)			
SOMA(A,B)			
NOT(A)			
AND(B,A)			

O que apresentar nesse exercício:

Exercício 1

- Um print da tela do Tinkercad mostrando a montagem e o programa.

Exercício 2

- Preencher a tabela com as instruções e os resultados.
- Um print da tela do Tinkercad mostrando a montagem e o programa. A seguir executar o teste (o mesmo programa de teste usado para a parte 1 para a unidade de 1 bit) e mostrar o resultado para cada uma das instruções executadas.

Mostrar os prints apenas da execução da instrução, não é necessário prints quando apenas uma atribuição de valores às variáveis for realizada.