Salm: extra - Poisson variation in dose - reponse study

BRUNO LOPES Matheus, , TRIOMPHE Amaury

15/04/2024

Lien vers notre Github: https://github.com/mblmatheus/projet_bayes_2.git

Données étudiées ()

0	10	33	100	333	1000
15	16	16	27	33	20
21	18	26	41	38	27
29	21	33	69	41	42

Table 1: Dose de quinoléine (mg par plaque)

Cadre mathématique

Hypothèses sur nos données ()

Hypothèses sur nos données ()

Si μ_{ij} est la moyenne des réversion observées avec une dose de quinoline i sur la plaque j, alors il est supposé que le comptage des réversions y_{ij} sur la plaque j avec chaque niveau de dose de quinoline i suit une distribution de Poisson :

$$y_{ij} \sim Poisson(\mu_{ij})$$

De plus, la modélisation de la moyenne est effectuée par une fonction logarithmique de la dose x_i avec un ajustement pour traiter la surdispersion, qui est représenté par le terme γx_i . En d'autres termes :

$$\log(\mu_{ij}) = \alpha + \beta \log(x_i + 10) + \gamma x_i + \lambda_{ij} \text{ où } \lambda_{ij} \sim \mathcal{N}(0, \tau)$$

 $\alpha, \beta, \gamma, \tau$ ont des priors indépendants "non informatifs" fournis, qui seront supposés comme suit :

$$\alpha, \beta, \gamma \sim \mathcal{N}(0, 10^{-6}), et\tau \sim \text{gamma}(10^{-3}, 10^{-3})$$

Une dernière hypothèse que nous ferons également est que y_{ij} sont indépendants.

$$y_{ij} \sim Poisson(\mu_{ij})$$

Graphe acyclique orienté ()

Lois conditionnelles ()

Comme nous allons appliquer Hastings-within-Gibbs, nous devrons avoir les lois conditionnelles de tous les paramètres de l'expression de $log(\mu_{ij})$, c'est-à-dire que nous devrons obtenir toutes les lois postérieures. Pour α , nous aurons :

$$\pi(\alpha|\beta,\gamma,\lambda,y,\tau) \propto \pi(\beta,\gamma,\lambda,y,\tau|\alpha)\pi(\alpha)$$

Dans le contexte de H-W-Gibbs, comme nous allons mettre à jour les paramètres séparément en considérant les autres comme des valeurs fixes, nous aurons :

$$\pi(\alpha|\beta,\gamma,\lambda,y,\tau) \propto \pi(y|\beta,\gamma,\lambda,\tau)\pi(\alpha) = \pi(\alpha) \prod_{i=1}^{n_{doses}} \prod_{j=1}^{n_{plates}} \pi(y_{ij}|\beta,\gamma,\lambda_{ij},\tau) = \pi(\alpha) \prod_{i=1}^{n_{doses}} \prod_{j=1}^{n_{plates}} \frac{\mu_{ij}^{y_{ij}}}{y_{ij}!} e^{-\mu_{ij}}$$

Comme tous suivent la même loi a priori, nous aurons des expressions similaires pour β et γ . Pour τ , nous devrons, comme τ dépend de λ qui suit une loi normale, qui dans ce cas est conjuguée par la loi gamma (loi a priori de τ), obtenir directement la loi a posteriori de τ :

$$\tau | \alpha_0, \alpha_1, \alpha_{12}, \alpha_2, i, b, r \sim gamma(10^{-3} + \frac{n_{doses} + n_{plates}}{2}, 10^{-3} + \frac{\sum_{i=1}^{n_{doses}} \sum_{j}^{n_{plates}} \lambda_{ij}^2}{2})$$

Une fois τ mis à jour dans l'algorithme, nous pourrons mettre à jour chaque λ_{ij} , pour $i \in \{1, ..., n_{doses}\}$ et $j \in \{1, ..., n_{plates}\}$, où chacun aura la loi a posteriori suivante :

$$\pi(\lambda_{ij}|\alpha,\beta,\gamma,y_{ij},\tau) \propto \pi(\alpha,\beta,\gamma,y_{ij},\tau|\lambda_{ij})\pi(\lambda_{ij})$$

En considérant que $\alpha, \beta, \gamma, \tau$ sont des paramètres déjà fixes et que $\lambda_{ij} \sim N(0, \tau)$, nous pouvons écrire :

$$\pi(\lambda_{ij}|\alpha,\beta,\gamma,y_{ij},\tau) \propto \pi(y_{ij}|\lambda_{ij},\alpha,\beta,\gamma,\tau)\pi(\lambda_{ij}) = \frac{\mu_{ij}^{y_{ij}}}{y_{ii}!} \exp\left(-\frac{\lambda_{ij}^2}{2\tau} - \mu_{ij}\right)$$

Maintenant, ayant toutes les lois conditionnelles, nous pouvons appliquer notre algorithme Hastings-within-Gibbs.

Résultats de l'implémentation algorithmique ()

	Moyenne		Ecart-type	
Paramètres	Résultat	Énoncé	Résultat	Énoncé
α_0	-0.5562	-0.5525	0.1865	0.1852
α_1	0.0706	0.08382	0.3252	0.3031
α_{12}	-0.8021	-0.8165	0.4564	0.4109
α_2	1.3511	1.346	0.2745	0.2564
σ	0.3198	0.267	0.0661	0.1471

Table 2: Résultats de notre algorithme Hastings within Gibbs

- Allure des chaines de Markov (Matheus)
- Allure des densités des chaines (Najib)

Analyse des résultats ()