2022 年 10 月 25 日高中数学作业

一、单选题

1. 己知 $a = \log_2 0.2, b = 2^{0.2}, c = 0.2^{0.3}$,则

- A. a < b < c B. a < c < b C. c < a < b D. b < c < a

2. 下列函数中是增函数的为()

- A. f(x) = -x B. $f(x) = \left(\frac{2}{3}\right)^x$ C. $f(x) = x^2$ D. $f(x) = \sqrt[3]{x}$

3. 已知 $f(x) = ax^2 + bx$ 是定义在 $\left[a-1,2a\right]$ 上的偶函数,那么 $y = f\left(a^n + b\right)$ 的最大值是

- A. 1 B. $\frac{1}{3}$ C. $\sqrt[3]{3}$ D. $\frac{4}{27}$

二、填空题

4. 函数 $f(x) = x \left(\frac{1}{2^x - a} + \frac{1}{2} \right)$ 定义域为 (.∞, 1) U (1, +∞), 则满足不等式 $ax \ge f(a)$ 的实数x的集合为_____.

5. 写出一个同时具有下列性质(1)(2)(3)的函数 f(x) = .

①定义域为R; ②值域为 $(-\infty,1)$; ③对任意 $x_1,x_2 \in (0,+\infty)$ 且 $x_1 \neq x_2$, 均有

$$\frac{f\left(x_1\right) - f\left(x_2\right)}{x_1 - x_2} > 0.$$

三、解答题

6. 已知函数 $f(x) = -\frac{2^x}{2^x + 1}$.

- (1) 用定义证明函数 f(x) 在($-\infty$, $+\infty$)上为减函数;
- (2) 若 $x \in [1,2]$, 求函数 f(x) 的值域;

1. B

【分析】运用中间量0比较a,c,运用中间量1比较b,c

【详解】 $a = \log_2 0.2 < \log_2 1 = 0$, $b = 2^{0.2} > 2^0 = 1$, $0 < 0.2^{0.3} < 0.2^0 = 1$, 则 0 < c < 1, a < c < b. 故选B.

【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养. 采取中间变量法,利用转化与化归思想解题.

2. D

【分析】根据基本初等函数的性质逐项判断后可得正确的选项.

【详解】对于 A, f(x) = -x 为 R 上的减函数, 不合题意, 舍.

对于 B,
$$f(x) = \left(\frac{2}{3}\right)^x$$
 为 R 上的减函数, 不合题意, 舍.

对于 C, $f(x) = x^2 \pm (-\infty, 0)$ 为减函数, 不合题意, 舍.

对于 D, $f(x) = \sqrt[3]{x}$ 为 R 上的增函数, 符合题意,

故选: D.

3. D

【分析】根据题意,由函数奇偶性的定义分析 a 、b 的值,即可得 $y = f(a^n + b)$ 的解析式,由复合函数单调性的判断方法分析 $y = f(a^n + b)$ 的单调性,据此分析可得答案.

【详解】解:根据题意, $f(x) = ax^2 + bx$ 是定义在[a-1, 2a]上的偶函数,则有

$$(a-1)+2a=3a-1=0$$
, $\iiint a=\frac{1}{3}$,

同时 f(-x) = f(x), 即 $ax^2 + bx = a(-x)^2 + b(-x)$, 则有 bx = 0, 必有 b = 0,

则
$$f(x) = \frac{1}{3}x^2$$
, 其定义域为 $[-\frac{2}{3}, \frac{2}{3}]$,

则
$$y = f(a^n + b) = f[(\frac{1}{3})^n]$$
, 设 $t = (\frac{1}{3})^n$, 若 $-\frac{2}{3} \le (\frac{1}{3})^n \le \frac{2}{3}$, 则有 $n \ge -\log_3 \frac{2}{3} > 0$,

在区间 $[-\log_3 \frac{2}{3}, +\infty)$ 上, t > 0且为减函数,

$$f(x) = \frac{1}{3}x^2$$
在区间(0, $\frac{2}{3}$]上为增函数,

则
$$y = f[(\frac{1}{3})^n]$$
 在 $[-\log_3 \frac{2}{3}, +\infty)$ 上为减函数,其最大值为 $f(\frac{2}{3}) = \frac{4}{27}$,

故选: D.

4. $\{x | x \ge 1\}$

【分析】由题意可得 a=2, $f(x)=x\left(\frac{1}{2^x-2}+\frac{1}{2}\right)$, f(a)=f(2)=2,由 $ax \ge f(a)$,结合指数函数单调性可求 x

【详解】解: 由函数 $f(x) = x \left(\frac{1}{2^x - a} + \frac{1}{2} \right)$ 定义域为 $(\infty, 1) \cup (1, +\infty)$,可知 a = 2 $\therefore f(x) = x \left(\frac{1}{2^x - 2} + \frac{1}{2} \right)$, f(a) = f(2) = 2

由 $ax \ge f(a)$ 可得, $2x \ge 2$

∴x≥1

故答案为: $\{x|x\geq 1\}$

5.
$$f(x)=1-\frac{1}{2^x}$$
 (答案不唯一)

【分析】直接按要求写出一个函数即可.

【详解】
$$f(x) = 1 - \frac{1}{2^x}$$
, 定义域为 R ; $\frac{1}{2^x} > 0$, $f(x) = 1 - \frac{1}{2^x} < 1$, 值域为 $(-\infty, 1)$;

是增函数,满足对任意 $x_1, x_2 \in (0, +\infty)$ 且 $x_1 \neq x_2$,均有 $\frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0$.

故答案为: $f(x) = 1 - \frac{1}{2^x}$ (答案不唯一).

6. (1) 证明见解析; (2) $\left[-\frac{4}{5}, -\frac{2}{3}\right]$.

【分析】(1) 取任意 $x_1 > x_2$,根据函数解析式判断 $f(x_1) - f(x_2)$ 的符号即可证明结论.

(2) 令
$$t = 2^x = [2,4]$$
, 可得 $g(t) = \frac{1}{t+1} - 1$, 由其单调性即可求 $f(x)$ 的值域.

【详解】(1) 取任意 $x_1 > x_2$,则有

$$f(x_1) - f(x_2) = \frac{2^{x_2}}{2^{x_2} + 1} - \frac{2^{x_1}}{2^{x_1} + 1} = \frac{2^{x_1 + x_2} + 2^{x_2} - 2^{x_1 + x_2} - 2^{x_1}}{(2^{x_1} + 1)(2^{x_2} + 1)} = \frac{2^{x_2} - 2^{x_1}}{(2^{x_1} + 1)(2^{x_2} + 1)},$$

 $\mathbb{Z} 2^{x_2} - 2^{x_1} < 0, (2^{x_1} + 1)(2^{x_2} + 1) > 0$

∴
$$f(x_1) - f(x_2) < 0$$
, $\exists f(x_1) < f(x_2)$.

:: f(x)在($-\infty, +\infty$)上为减函数.

(2)
$$x \in [1,2]$$
, $[1,2]$ $[1,2]$ $[2,4]$,

$$\therefore g(t) = -\frac{t}{t+1} = \frac{1}{t+1} - 1$$
,易知 $g(t)$ 在[2,4] 上单调递减,

又
$$g(2) = -\frac{2}{3}$$
, $g(4) = -\frac{4}{5}$, 故 $g(t) \in [-\frac{4}{5}, -\frac{2}{3}]$, 即 $f(x)$ 的值域为 $[-\frac{4}{5}, -\frac{2}{3}]$.