16.1 Vector Fields

Pages: 1068 - 1074

Joshua D. Ingram

Vector Fields

Definition - 2D Vecor Field

Let D be a set in \mathbb{R}^2 . A **vector field on** \mathbb{R}^2 is a function \mathbf{F} that assigns to each point (\mathbf{x}, \mathbf{y}) in D a two-dimensional vector $\mathbf{F}(\mathbf{x}, \mathbf{y})$

F can be written in terms of its component functions P and Q:

$$\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j} = \langle P(x,y), Q(x,y) \rangle$$

or in a shorter form,

$$\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$$

Example

Vector field such that $\mathbf{F}(x,y) = \langle y - x, \sin(y) \rangle$:

Definition - 3D Vector Field

Let E be a subset of \mathbb{R}^3 . A **vector field on** \mathbb{R}^3 is a function \mathbf{F} that assigns to each point $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ in E a three-dimensional vector $\mathbf{F}(\mathbf{x}, \mathbf{y}, \mathbf{z})$

$$\mathbf{F}(x,y,z) = P(x,y,z)\mathbf{i} + Q(x,y,z)\mathbf{j} + R(x,y,z)\mathbf{k} = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle$$

Gradient Fields

Definition - Gradient Vector

If f is a scalar function of three variables x, y, and z, then the **gradient** of f is the vector function $\nabla f(x, y, z)$ defined by

$$\nabla f(x,y,z) = f_x(x,y,z)\mathbf{i} + f_y(x,y,z)\mathbf{j} + f_z(x,y,z)\mathbf{k}$$

Definition - Conservative Vector Field

If there exists a function f such that $\mathbf{F} = \nabla f$, then \mathbf{F} is a **conservative vector field**.

Side Notes

- For a vector field function \mathbf{F} , $\mathbf{F}(x,y,z)$ can also be written as $\mathbf{F}(\mathbf{x})$, such that $\mathbf{x}=(x,y,z)$
- $\nabla f(x,y,z)$ is called a gradient vector field
- For $\mathbf{F} = \nabla f$, f is called the **potential function** of \mathbf{F}