## Relatório, Laboratório 5. Servo 1

Felipe Bandeira da Silva

Utilizar o Matlab para analisar a resposta transitória de sistemas de  $2^a$  ordem e estudar o efeito do controle proporcional sobre a resposta transitória.

## Lista de Figuras

| 1 | Variações de $\omega_w$ | 4 |
|---|-------------------------|---|
| 2 | Variações de $\zeta$    | 5 |

# 1 Efeitos do coeficiente de amortecimento $\zeta$ e a frequência natural não amortecida $\omega_n$

Neste problema é necessário analisar a resposta ao degrau para o sistema padrão de segunda ordem para as diversas variações de  $\zeta$  e  $\omega$ .

#### 1.1 Variação de $\omega_n$

Para este item  $\zeta$  é fixo e de valor 0.4. Mas  $\omega_n$  assume os seguintes valores: 0, 0.4, 0.6, 0.8, 1.0 e 1.4.

A equação padrão para a analise é,

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{1}$$

Utilizando o seguinte código para facilitar a analise,

```
1 zeta = 0.4;
2 wn = [10 5 1];
3 t = 0:0.01:10;
4 cor = ['b', 'g', 'r']
5 for c = 1:length(wn)
6     gs = tf([wn(c)^2], [1 2*zeta*wn(c) wn(c)^2]);
7     [y(c,:)] = step(gs, t);
8     hold on;
9     plot(t, y(c,:), cor(c));
10     grid on;
11 end
12 xlabel('tempo segundos');
```

A figura 1, mostra a resposta para as diversas variações de  $\omega_n$ 



Figura 1: Variações de  $\omega_w$ 

#### 1.2 Variação de $\zeta$

Neste problema  $\omega_n$  é fixo com valor de 5 e  $\zeta$  assume os seguintes valores: 0, 0.4, 0.6, 0.8, 1.0, 1.4.

Para tanto o mesmo código utilizado anteriormente para a analise de  $\omega_n$  pode ser alterado para as variações de  $\zeta$  de tal forma que fica,

```
1 zeta = [0 0.4 0.6 0.8 1 1.4];
2 wn = 5;
3 t = 0:0.001:4;
4 cor = ['b', 'g', 'r', 'c', 'm', 'y'];
5 for c = 1:length(zeta)
6     gs = tf([wn^2], [1 2*zeta(c)*wn wn^2]);
7     [y(c,:)] = step(gs, t);
8     hold on;
9     plot(t, y(c,:), cor(c));
10     grid on;
11 end
12 xlabel('tempo segundos');
```

A resposta para as diversas variações de  $\zeta$  é apresentada na figura 2.



Figura 2: Variações de  $\zeta$ 

### 2 Grafico 3D