Zaprojektuj układ wysyłający "1" logiczną na wyjście układu kontrolnego jeśli którekolwiek drzwi samochodu są otwarte i kierowca siedzi w środku.

Zaprojektuj układ wysyłający "1" logiczną na wyjście układu kontrolnego jeśli którekolwiek drzwi samochodu są otwarte i kierowca siedzi w środku.

Multiplekserem nazywamy układ kombinacyjny, który wybiera informację binarną z jednej z pośród wielu linii wejściowych i kieruje ją do jednego wyjścia. Wybór odpowiedniego wejścia jest sterowany zbiorem zmiennych wejściowych zwanych wejściami adresowymi. Zwykle jest 2^n linii wejściowych i n linii adresowych.

Tablicę prawdy oraz schemat logiczny multipleksera 2 na I linię można przedstawić w następujący sposób:

S	I ₀	I	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	I

$$Y = \overline{S}I_0 + SI_1$$

Jeśli wejście I_i jest równe 1, to minterm m_i jest dołączony do bramki OR, w przeciwnym wypadku minterm m_i zastępowany jest 0. Zastosowanie funkcji wymuszania stałych wartości logicznych na wejściach I_i zapewnia metodę implementacji funkcji boolowskiej n zamiennych na multiplekserze mającym n wejść adresowych i 2^n wejść danych po jednym dla każdego mintermu.

minterm - pełny iloczyn logiczny wyrażenia

Przy pomocy multipleksera o n wejściach adresowych oraz 2ⁿ wejściach danych można zrealizować funkcję boolowską o n+l zmiennych.

Wykonać to można w następujący sposób: funkcje boolowską wpisujemy do tablicy prawdy, pierwsze *n* zmiennych z tablicy jest podanych na wejście adresowe multipleksera, dla każdej kombinacji zmiennych adresowych obliczamy wyjście jako funkcję ostatniej zmiennej.

Funkcja ta może być 0, 1, ta zmienna lub negacja tej zmiennej.

A	В	С	D	F	
0	0	0	0 I	0 I	F = D
0	0	1	0 I	0 I	F = D
0	1	0	0 I	0	F = ~D
0	1	1	0 I	0	F = 0
1	0	0	0 I	0	F = 0
1	0	1 1	0 I	0 I	F = D
1	1	0	0 I	1	F = 1
 	1 1	I I	0 I	 	F = 1

$$F(A,B,C,D) = \sum m(1,3,4,11,12,13,14,15)$$

Zaprojektuj konwerter kodu zamieniający kod 2 z 10 na naturalny kod binarny

y9 y8 y7 y6 y5 y4 y3 y2 y1 y0	a b c d
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_3) + (y_4 \oplus y_5) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_3) + (y_4 \oplus y_5) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_3) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_3) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_7) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_7) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_7) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_2 \oplus y_7) + (y_6 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_2 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_2 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_2 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_1 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_1 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_1 \oplus y_2) + (y_2 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_2 \oplus y_3) + (y_1 \oplus y_7)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_1 \oplus y_3) + (y_2 \oplus y_3)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_1 \oplus y_3) + (y_2 \oplus y_3)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_1 \oplus y_3) + (y_2 \oplus y_3) + (y_2 \oplus y_3)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_2 \oplus y_3) + (y_3 \oplus y_3) + (y_4 \oplus y_3) + (y_4 \oplus y_3)$$

$$A = (y_0 \oplus y_1) + (y_1 \oplus y_2) + (y_2 \oplus y_3) + (y_3 \oplus y_3) + (y_4 \oplus y_4) + (y_4$$

Zaprojektuj dekoder zamieniający informację z kodu naturalnego binarnego na kod 1 z 10

a b c d	у9	y8	y7	y6	у5	y4	уЗ	y2	y1	y0
000	0	0	0	0	0	0	0	0	0	1
0001	0	0	0	0	0	0	0	0	1	0
0010	0	0	0	0	0	0	0	1	0	0
0011	0	0	0	0	0	0	1	0	0	0
0100	0	0	0	0	0	1	0	0	0	0
0101	0	0	0	0	1	0	0	0	0	0
0110	0	0	0	1	0	0	0	0	0	0
0111	0	0	1	0	0	0	0	0	0	0
1000	0	1	0	0	0	0	0	0	0	0
1001	1	0	0	0	0	0	0	0	0	0

DEKODER:

- 1. Odrzucający fałszywe kombinacje wejściowe Równania wprost z tabelki zerojedynkowej.
- 2. Nieodrzucający fałszywych kombinacji wejściowych Tabela Karnaugha, prostsze równania.

$$\frac{70-006}{70-00}$$

$$\frac{70-006}{7$$

 $y_{2} - b_{0}$ $y_{3} - b_{0}$ $y_{6} = b_{0}$ $y_{6} - a_{0}$ $y_{6} - a_{0}$ $y_{6} - a_{0}$ $y_{6} - a_{0}$

Witodran cajach

Zaprojektuj układ konwertujący kod natralny binarny NKB na kod Aikena

NKB (8421)	Aikena (2421)				
$b_3 b_2 b_1 b_0$	$\mathbf{a_3} \mathbf{a_2} \mathbf{a_1} \mathbf{a_0}$				
0000	0000				
0001	0001				
0010	0010				
0011	0011				
0100	0100				
0101	1011				
0110	1100				
0111	1101				
1000	1110				
1001	1111				

00	01	11	10
0		1	0
0	7	7	\bigcirc
_			_
0	1	_	_
	0	00 01	00 01 11

\b1b0					
b3b2	00	01	11	10	
00	0	Û	0	9	
01		Ċ	7		
11					
10		Ŋ	l	1	

an					
√ b1b0			ı		
b3b2	00	01	11	10	
00	U	J		1	
01	0	h	0	0	
11				_	
10				_	

a,					
5	b1b0	00	01	11	10
	b3b2	00		11	10
	00	<u>U</u>	Ú	ا ا	Ü
	01				
	11		H	1	
	10	5		l	_

$$a_{1} = b_{2}b_{1} + b_{3}b_{1} + b_{3}b_{1}b_{0}$$

$$a_{2} = b_{2}b_{1} + b_{3}b_{1} + b_{3}b_{1}b_{0}$$

$$a_{2} = b_{2}b_{1} + b_{3}b_{1} + b_{3}b_{1}$$

$$ag = b_3 b_1 + b_2 b_0 + b_2 b_1$$