Limits of Computation

8 - Our first non-computable problem

Bernhard Reus

Last time

- We have defined a self-interpreter in WHILE (universal program for WHILE).
- It takes as input a WHILE-program (as data object = binary tree) and an input value, interprets this program with the given input, and writes the result as output.

A non-computable problem

THIS TIME

- we define formally what computability and decidability means (for WHILE)
- we consider a decision problem: the *Halting Problem*, and prove it is WHILE undecidable!

"What is the Ultimate Answer to Life, the Universe, and Everything?"

a

Problems Revisited

Remember

- we restricted to problems of the form:
 - can we compute a given function of type L-data $\rightarrow L$ -data \downarrow ?
 - can we decide membership in a set
 (i.e. can we compute whether a given element is in a given set yes or no?)
- we now narrow this down to our chosen notion of computability:

Definition A partial function $f: \mathbb{D} \to \mathbb{D}_{\perp}$ is WHILE-computable if there is a WHILE-program p such that $f = [p]^{\text{WHILE}}$, in other words if f is equal to the semantics of p (we can also say "if p implements f").

Slogan: a WHILE-computable function on trees is one that can be implemented in WHILE.

partial function $f: \mathbb{D} \to \mathbb{D}_{\perp}$ so

Notation $f(d) = \perp$ means that f is undefined at a means that f is defined at a

WHILE decidability (formally)

Definition A set $A \subseteq \mathbb{D}$ is WHILE-decidable if, and only if, there is a WHILE-program p such that $\llbracket p \rrbracket^{\text{WHILE}}(d) \downarrow$ (meaning $\llbracket p \rrbracket^{\text{WHILE}}(d)$ is defined) for all d in \mathbb{D} , and, moreover, $d \in A$ if, and only if, $\llbracket p \rrbracket^{\text{WHILE}}(d) = \text{true}$.

Slogan: a WHILE-decidable set or problem on trees is one for which the membership test can be implemented in WHILE.

Our first undecidable (non-computable) problem

1

A decision problem:

Definition 8.3 The *Halting problem*—as set HALT $\subseteq \mathbb{D}$ —is defined as follows:

$$\text{HALT} = \{ [p, d] \in \mathbb{D} \mid \llbracket p \rrbracket^{\text{WHILE}}(d) \downarrow \}$$

WHILE-program as data

WHILE-data

the list (and thus the program) are encoded but we drop the encoding brackets for simplicity

Big Question:

is HALT WHILE-decidable?

About the Halting Problem

- Solving the Halting Problem would be most useful, e.g. a compiler could check for termination of function calls and warn about non-termination like a type checker warns about incompatible types.
- Note that simply interpreting the program on its input does not work: if the interpreter does not terminate, one cannot return the answer 'no'.

Proof of the Undecidability of the Halting Problem

- Assume a WHILE-program h exists that DOES solve the Halting Problem.
- With h's help write a new WHILE-program r
- establish a contradiction
- so that the assumption that h exists must be wrong.

Establishing a contradiction to destroy a robot or computer is a very popular SciFi plot line (a.k.a. Logic Bombs).

1

The Barber of Seville Paradox

strictly speaking not a "paradox" as the contradiction can be resolved.

http://www.wno.org.uk/4299

The Barber of Seville says:

"In my town Seville, I shave all men who do **not** shave themselves. Those who actually shave themselves, I do not shave."

This is a version of Bertrand Russell's paradox (Famous Welsh logician, 1872-1970)

The Barber of Seville Paradox

The Barber of Seville says:

"In my town Seville, I shave all men who do **not** shave themselves. Those who actually shave themselves I do not shave."

Does the barber shave himself? (note that he lives in Seville and is a man):

No implies he shaves himself Yes implies he does not shave himself

http://www.wno.org.uk/4299

contradiction

"paradox" can be resolved by saying such a Barber does not exist:-). Does not contradict any laws of nature.

dia <u>g</u> onal			man o	ı	l .	ı					
shaves		1	2	3	4	5	6		3466	3467	
man of Seville no.	 3466	no no yes no yes 	yes yes no yes 	yes no no no no no	no no no no no no	-	no yes yes		no no no yes no yes yes yes	no yes yes no yes yes	

Barber's row is the negated diagonal. It thus can't be one of the rows of the table, so Barber can't be a male from Seville, but he is!

What is the table entry (x,y)?

At row x and column y we put yes if man # x shaves man # y and false

contradiction otherwise.

Barber's row no yes yes yes yes no ... no yes ...

The problem is the implicit self-reference.

More on that theme

AUTHOR KATHARINE GATES RECENTLY ATTEMPTED TO MAKE A CHART OF ALL SEXUAL FETISHES.

LITTLE DID SHE KNOW THAT RUSSELL AND WHITEHEAD HAD ALREADY FAILED AT THIS SAME TASK.

https://www.youtube.com/watch?v=O7ZezObYZTM

Proof of HALT's Undecidability

Assume a program deciding the Does $r\downarrow hold?$ Halting Problem existed:

h read A {B} write C then define r as:

```
r read X {
A := [X, X];
B;
Y := C;
while Y { Y:=Y }
write Y
```

and derive a contradiction. Then h cannot exist.

 $\mathbf{Y} = \mathbf{C} = \llbracket h \rrbracket^{\text{WHILE}}$ [r, r]

in other words: does program r terminate when run

Y = true means h says termination but rbehaves otherwise.

Y =false means h says non-termination but r behaves otherwise.

if $||\mathbf{r}||(\mathbf{r})\downarrow$ then r doesn't terminate #lse r terminates if $r\downarrow$ then $r = \bot$

if $r = \bot thenr \downarrow$

Proof of HALT's Undecidability

- The proof was using the Barber paradox technique.
- Can we also understand (reformulate) this as a proof by diagonalisation?
- In order to do that, first note that we can enumerate all WHILE-programs (like we could enumerate all men in Seville). Why is that?

The Halting Problem as Diagonalisation

- How does r behave for arbitrary input programs X:
- If X run on input X terminates, r does not terminate.
- If X run on input X does not terminate, r does terminate.
- So r behaves a bit like the Barber.

```
r read X {
A := [X,X];
Y := C;
while Y {
   Y := Y
write Y
```

read A {B} write C assumed to decide the Halting Problem

The Halting Problem as Diagonalisation

does program A terminate when	WHILE program B no								ī		
input is program B?	1	2	3	4	5	6	•••	3466	3467	<u></u>	r
1 2 3 4 5 6 3466 3467	no no yes no yes yes	no yes yes no yes yes yes	yes no no no no no yes	no no no no no no no	no yes no no yes yes	yes no yes no yes yes yes		no no no yes no yes yes yes	no yes yes yes no yes yes yes	r's row is the negated diagonal. It thus can't be one of the rows of the table, so r can't be a WHILE program, but it is!	"r terminates if its argument (program) does not terminate when it is given itself as input; otherwise r does not terminate."

Diagonalisation Idea

- ... is very clever
- ... needs items of interest to be enumerable
- ... was discovered by Cantor in 1891 to show the existence of sets that are larger than the set of natural numbers.

Georg Cantor 1845-1918

END

© 2008-25. Bernhard Reus, University of Sussex

Next time:
More on semi-decidability
and more undecidable
problems