(1) If κ , λ , and μ are cardinals, then $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$.

Proof. Given $\bar{K} = \kappa$, $\bar{L} = \lambda$, $\bar{M} = \mu$, and $L \cap M = \emptyset$. Given a function $f: L \cup M \mapsto K$. Construct $g: L \mapsto K = f \upharpoonright L$ and $h: M \mapsto K = f \upharpoonright M$. So $\kappa^{\lambda + \mu} \leq \kappa^{\lambda} \cdot \kappa^{\mu}$.

Given a pair of functions $g: L \mapsto K$ and $h: M \mapsto K$. Construct $f: L \cup M \mapsto K = g \cup h$. g and h have disjoint domains, so f is a function. Therefore $\kappa^{\lambda} \cdot \kappa^{\mu} \leq \kappa^{\lambda+\mu}$, and therefore they are equal. \square

(2) $2^{\aleph_0} \neq \aleph_{\omega_1 \cdot 49 + \omega}$

Proof. Let $\beta = \omega_1 \cdot 49 + \omega$. β is a limit ordinal, so cf $\aleph_{\beta} = \text{cf } \beta = \aleph_0$ (by Enderton's Theorem 9N). However, by König's theorem, $\aleph_0 < \text{cf } 2^{\aleph_0}$.

(3) If A is a set well-ordered by (<) and $f: A \mapsto A$ satisfies $x < y \Rightarrow f(x) < f(y)$, then for all $x \in A$, $x \le f(x)$.

Proof. If not, then there is a least x such that f(x) < x. Construct by recursion $R: \omega \mapsto A$ where R(0) = x; R(a+1) = f(R(a)). R(1) < R(0), and given R(n+1) < R(n), f(R(n+1)) < f(R(n)), so R(n+2) < R(n+1). Therefore R is an infinitely descending sequence in A, a contradiction.

(7) Given a set P of \aleph_0 -many people. There is an infinite subset of that set such that all people have met each other or all people have not met each other.

Proof. Let $M \cup \tilde{M} = P^{(2)}$, where $P^{(2)}$ is the set of 2-element subsets of P. M represents the set of pairs of people who have met, and \tilde{M} represents the set of pairs of people who have not. Then by Ramsey's theorem, there exists a $P' \subseteq P$ where $\bar{P}' = \aleph_0$ and either $P'^{(2)} \subseteq M$ or $P'^{(2)} \subseteq \tilde{M}$.