Phage Isolation, Genome Analysis and Comparative Genomics Workshop

Bioinformatics Analysis

By Fredrick Kebaso

Outline

- Pre-processing raw reads
 - ✓ Trimming
 - ✓ post-trim QC
- Genome assembly
 - ✓ Long and short read sequences
- Post-assembly QC

Pre-processing Raw Reads

Includes initial QC checks

Tools: **FastQC** or **MultiQC** to identify read quality issues:

- Per-base quality
- Adapter contamination
- Overrepresented sequences

Common issues in raw data

- Low base quality in 3' ends
- Presence of adapter/primer sequences
- Contaminating host reads (e.g., bacterial host, not the phage)

Read Trimming

Tools: Trimmomatic, Cutadapt, Trimgalore etc

Why Trimming

- ✓ Trim low-quality bases at read ends
- ✓ Remove adapter sequences
- ✓ Isolate contaminating sequences (if known)

Parameters to consider

- ✓ Minimum Phred quality score cutoff (e.g., Q20 or Q30)
- ✓ Minimum read length after trimming (avoid too short reads)
- √ Adapter sequence trimming

Impact on assembly

- ✓ Improves accuracy
- ✓ Reduces errors in overlap/extension

Post-trim QC

Tools: FastQC or MultiQC again

QC checks after trimming

- Evaluate if the quality improved
- Confirm adapter sequences are removed

Coverage estimation

 Roughly estimate read coverage for the phage genome (if reference or approximate genome size is known)

Potential issues

- Over-trimming leading to short reads
- Persisting low-quality regions if trimming settings were too lenient

Genome Assembly Overview

Adapted from; https://www.arraygen.com/De-novo-Assembly.php

Short vs. Long Read Genome assemblies

Short reads (Illumina)

- Pros: high accuracy, high throughput
- Cons: difficulty spanning large repeats, potential fragmentation of the assembly

Long reads (Nanopore/PacBio)

- Pros: resolves repetitive regions, produces more contiguous assemblies
- Cons: higher error rates (though improving), requires careful error correction

Assembly Approaches

De novo assembly (most common for unknown or highly variable phage genomes)

Reference-guided assembly (less common, used if a closely related reference is available)

Tools for short-read assembly:

- ✓ SPAdes (commonly used for phage/bacterial genomes)
- ✓ Velvet, Unicycler (also used for microbial assemblies)

Tools for long-read assembly

✓ Flye, Canu, Minimap2/Minasm (for error correction and assembly)

Hybrid assembly:

✓ Combining short and long reads for better contiguity and accuracy

Short vs. Long Read Assembly

Short Reads (Illumina)

Pros:

✓ High accuracy (low error rates ~0.1–1%), High throughput, cost-effective

Cons:

✓ Struggles with large repeats → fragmented assemblies, Contigs may remain short/disjointed

Long Reads (Nanopore/PacBio)

Pros:

- ✓ Spans repetitive regions → more contiguous assemblies
- ✓ Better detection of large structural variants

Cons:

- √ Higher error rates (needs polishing)
- ✓ More expensive, specialized equipment

Post-assembly QC

Tools: CheckV

Assembly quality metrics

- Assembly statistics (N50, total length, GC content)
- Check for completeness

Contiguity checks

- Look for large contigs vs. many small contigs
- Evaluate if assembly represents the expected genome size

Confirmation

Map reads back to the assembled genome to check coverage uniformity

Common Challenges & Best Practices

Challenges

- Host DNA contamination
- Small genome size leading to coverage misinterpretation
- Repetitive elements or terminal redundancies

Best Practices

- Thorough QC at every step
- Use multiple tools for assembly and compare results
- Manual inspection of genome ends (especially for phages)
- Keep metadata organized (host strain, isolation details, library prep methods)

Lets get our hands dirty

Terminal
is your

Magic

Wand

Wand

Wand

Magic

Wand

Magic

Wand

Magic

Wand

Magic

Magi

Ctrl+Alt+T

Time for Practicals