CRYPTOGRAPHY HANDOUT 15

NUMBER THEORY PRACTICE

1.	Use the Euclidean Algorithm to find the gcd for the following pairs of numbers: a. $\gcd(14129, 9353)$
	b. gcd(30073, 12749)
2.	Compute the Euler Phi Function for the following: a. $\varphi(25)$
2.	
2.	
2.	
2.	a. $\varphi(25)$
2.	a. $\varphi(25)$
	a. $\varphi(25)$
	a. $\varphi(25)$ b. $\varphi(40)$

	d. $\varphi(17)$
	e. $\varphi(p)$ where p is a prime
3.	Use Fermat's Little Theorem to evaluate the following: a. $11^{12} \mod 13$
	b. 11 ¹³ mod 13
	c. 88 ¹⁰⁰ mod 101
	d. $a^{100} \mod 101$ for some number a
	e. $88^{203} \mod 101$
4.	Use Euler's Theorem to evaluate the following: a. $23^{20} \mod 25$

	b. $23^{21} \mod 25$
	2416
	c. $31^{16} \mod 40$
	d. $a^{16} \mod 40$ for some number a
	e. 17 ⁵⁵ mod 40
5.	Determine the order of the following numbers a and primes p (recall the order is the smallest power k in which $a^k \equiv 1 \bmod p$): a. $a = 3, p = 7$
	b. $a = 2, p = 7$
	c. $a = 3, p = 23$

d. a = 7, p = 13

6	In	tho	provious	amostion	which	valuos	aro	primitive	roote	(i o	the or	dor	ic r	ı — 1	1)?
v.	111	011C	previous	auconon.	WILLCII	varues	$a_{\rm I}$	DIMINITAR	1000	11.0.	THE OIL	ucı	ν	<i>,</i> — ,	L I i

7. Given an integer a and an odd prime p, determine if a is a square mod p (use Euler's Criterion).

a.
$$a = 3, p = 7$$

 $3^{\frac{7-1}{2}} \equiv -1 \mod 7$ so 3 is not a square mod 7.

b.
$$a = 10, p = 13$$

c.
$$a = 10, p = 17$$

d.
$$a = 45, p = 199$$

8. Use the Legendre symbol $\left(\frac{a}{p}\right)$ to determine whether a=-1 is a square or not for the following primes p:

a.
$$p = 17$$

b. $p = 59$			
c. $p = 83$			
		ving table. Then use Euler's Criterion and	Quadratic
Reciprocit	ty to determine	the next questions.	
	Prime p	Congruent to 1 mod 4 or 3 mod 4?	
	19		
	29		
	61		
(19)	67		
a. $(\frac{19}{29})$			
b. $(\frac{29}{19})$			
c. $\left(\frac{29}{61}\right)$			
d. $(\frac{61}{29})$			
e. $(\frac{67}{19})$			
f. $(\frac{19}{67})$			