Algebrske strukture, 2.del

Homomorfizmi grupoidov, polgrup in monoidov

Homomorfizmi so preslikave, ki ohranjajo strukturo. Bolj natančno:

Definicija homomorfizma

Naj bosta (M_1, \circ_1) in (M_2, \circ_2) dva grupoida. Pravimo, da je preslikava $f \colon M_1 \to M_2$ homomorfizem grupoidov, če za vsaka $x, y \in M_1$ velja

$$f(x \circ_1 y) = f(x) \circ_2 f(y) \tag{1}$$

Homomorfizem polgrup je tak homomorfizem grupoidov, ki slika iz polgrupe v polgrupo. **Homomorfizem monoidov** je tak homomorfizem polgrup, ki slika iz monoida v monoid in preslika enoto v enoto.

Primeri homomorfizmov

Preslikava f(x) = 2x je homomorfizem polgrup iz $(\mathbb{N}, +)$ v $(\mathbb{N}, +)$, ker velja f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y) za vsaka $x, y \in \mathbb{N}$.

Preslikava $f(x) = x^2$ je homomorfizem monoidov iz (\mathbb{N}, \cdot) v (\mathbb{N}, \cdot) , ker velja $f(xy) = (xy)^2 = x^2y^2 = f(x)f(y)$ za vsaka $x, y \in \mathbb{N}$ in f(1) = 1.

Primer: Homomorfizem polgrup, ki ne slika enote v enoto

Vemo, da je (\mathbb{Z},\cdot) polgrupa z enoto 1 in da je $(\mathbb{Z}\times\mathbb{Z},\circ)$, kjer $(a,b)\circ(c,d)=(ac,bd)$, polgrupa z enoto (1,1). Preslikava

$$f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, \quad f(x) = (x, 0)$$

je homomorfizem polgrup, ker $f(xy) = (xy, 0) = (x, 0) \circ (y, 0) = f(x) \circ f(y)$, ampak ne slika enote v enoto, ker $f(1) = (1, 0) \neq (1, 1)$.

Primer: Homomorfizem grupoidov

Naj bo $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$ taka 3×3 matrika, katere stolpci zadoščajo $\mathbf{a}_1 \times \mathbf{a}_2 = \mathbf{a}_3$, $\mathbf{a}_2 \times \mathbf{a}_3 = \mathbf{a}_1$ in $\mathbf{a}_3 \times \mathbf{a}_1 = \mathbf{a}_2$. Potem je preslikava $\mathbf{x} \mapsto A\mathbf{x}$ homomorfizem grupoidov iz (\mathbb{R}^3, \times) v (\mathbb{R}^3, \times) . Velja namreč

$$A\mathbf{x} \times A\mathbf{y} = (x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3) \times (y_1\mathbf{a}_1 + y_2\mathbf{a}_2 + y_3\mathbf{a}_3)$$

$$= (x_1y_2 - x_2y_1)\mathbf{a}_1 \times \mathbf{a}_2 + (x_3y_1 - x_1y_3)\mathbf{a}_3 \times \mathbf{a}_1 + (x_2y_3 - x_3y_2)\mathbf{a}_2 \times \mathbf{a}_3$$

$$= (x_1y_2 - x_2y_1)\mathbf{a}_3 + (x_3y_1 - x_1y_3)\mathbf{a}_2 + (x_2y_3 - x_3y_2)\mathbf{a}_1 = A(\mathbf{x} \times \mathbf{y})$$

Pokažimo, da homomomorfizem monoidov slika inverze v inverze.

Trditev

Recimo, da je f homomorfizem monoidov iz monoida (M_1, \circ_1) v monoid (M_2, \circ_2) . Če je a obrnljiv element v (M_1, \circ_1) , potem je f(a) obrnljiv element v (M_2, \circ_2) in velja $f(a)^{-1} = f(a^{-1})$.

Dokaz: Ker je element $a \in M_1$ obrnljiv, obstaja tak element $b \in M_1$, da velja $a \circ_1 b = e_1$ in $b \circ_1 a = e_1$. Ker je $f : M_1 \to M_2$ homomorfizem monoidov, odtod sledi $f(a) \circ_2 f(b) = f(a \circ_1 b) = f(e_1) = e_2$ in $f(b) \circ_2 f(a) = f(b \circ_1 a) = f(e_1) = e_2$. Torej je element f(a) obrnljiv in velja $f(a)^{-1} = f(b)$. Ker je $b = a^{-1}$, sledi $f(a)^{-1} = f(a^{-1})$.

Primer

Determinanta $\det\colon M_n(\mathbb{R})\to\mathbb{R}$ zadošča $\det AB=\det A\det B$ in $\det I_n=1$. Torej je det homomorfizem monoidov iz $(M_n(\mathbb{R}),\cdot)$ v (\mathbb{R},\cdot) . Po zgornji trditvi det slika obrnljive matrike v neničelna realna števila in velja $\det A^{-1}=\frac{1}{\det A}$.

Primer: Homomorfizmi monoidov

Naj bo M množica vseh funkcij iz \mathbb{R} v \mathbb{R} oblike $\phi_{k,l}(x) = kx + l$ in naj bo operacija \circ kompozitum funkcij. Iz k(k'x+l')+l=kk'x+kl'+l sledi $\phi_{k,l}\circ\phi_{k',l'}=\phi_{kk',kl'+l}$. Enota te polgrupe je $\phi_{1,0}=\mathrm{id}$. Preslikava

$$f(\phi_{k,l}) = \left[\begin{array}{cc} k & l \\ 0 & 1 \end{array} \right]$$

je homomorfizem monoidov iz (M,\circ) v $(M_2(\mathbb{R}),\cdot)$, ker je

$$f(\mathrm{id}) = f(\phi_{1,0}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

$$f(\phi_{k,l} \circ \phi_{k',l'}) = f(\phi_{kk',kl'+l}) = \begin{bmatrix} kk' & kl'+l \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} k & l \\ 0 & 1 \end{bmatrix} \begin{bmatrix} k' & l' \\ 0 & 1 \end{bmatrix} = f(\phi_{k,l})f(\phi_{k',l'})$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Homomorfizmi grup

Struktura grupe se sestoji iz treh delov: produktov, enote in inverzov. Homomorfizem grup slika produkte v produkte, enoto v enoto in inverze v izverze. Pokazali bomo, da druga in tretja lastnost sledita iz prve lastnosti. Za definicijo torej lahko vzamemo samo prvo lastnost.

Definicija homomorfizma grup

Homomorfizem grup iz grupe (G_1, \circ_1) v grupo (G_2, \circ_2) je taka preslikava $f: G_1 \to G_2$, ki zadošča $f(x \circ_1 y) = f(x) \circ_2 f(y)$ za vsaka $x, y \in M_1$.

Trditev

Homomorfizem grup slika enoto prve grupe v enoto druge grupe in inverz vsakega elementa iz prve grupe v inverz njegove slike.

Dokaz: Za vsak homomorfizem grup f velja

$$f(e_1) \circ_2 f(e_1) = f(e_1 \circ_1 e_1) = f(e_1) = e_2 \circ_2 f(e_1)$$

Če to pomnožimo z $f(e_1)^{-1}$ z desne, dobimo $f(e_1) = e_2$. Drugi del je posledica prvega dela in prejšnje trditve.

Primeri homomorfizmov grup

- Determinanta je homomorfizem grup iz $(GL_n(\mathbb{R}), \cdot)$ v $(\mathbb{R}^{\times}, \cdot)$, ker velja det $AB = \det A \det B$.
- Preslikava $\sigma \mapsto P_{\sigma} := [\mathbf{e}_{\sigma(1)} \dots \mathbf{e}_{\sigma(n)}]$ je homomorfizem grup iz (S_n, \circ) v $(\mathrm{GL}_n(\mathbb{R}), \cdot)$, ker velja $P_{\sigma \circ \tau} = P_{\sigma} P_{\tau}$.
- Signatura permutacije je homomorfizem grup iz (S_n, \circ) v $(\mathbb{R}^{\times}, \cdot)$, ker velja $\operatorname{sgn}(\sigma \circ \tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$.

Opomba: Tretji homomorfizem je kompozitum prvega in drugega.

4 D > 4 D > 4 D > 4 D > 2 9 9 9

Jaka Cimprič (FMF UL)

Pokažimo, da je kompozitum dveh homomorfizmov vedno homomorfizem.

Trditev

Če je f homomorfizem grup iz grupe (G_1, \circ_1) v grupo (G_2, \circ_2) in je g homomorfizem grup iz grupe (G_2, \circ_2) v grupo (G_3, \circ_3) , potem je $g \circ f$ homomorfizem grup iz grupe (G_1, \circ_1) v grupo (G_3, \circ_3) .

Podobno velja tudi za homomorfizme grupoidov, polgrup in monoidov.

Dokaz: Vzemimo poljubna $x, y \in G_1$. Ker je f homomorfizem, velja

$$f(x\circ_1 y)=f(x)\circ_2 f(y).$$

Ker je g homomorfizem, velja

$$g(f(x) \circ_2 f(y)) = g(f(x)) \circ_3 g(f(y)).$$

Torej je

$$(g \circ f)(x \circ_1 y) = g(f(x \circ_1 y)) = g(f(x) \circ_2 f(y)) =$$

= $g(f(x)) \circ_3 g(f(y)) = g(f(x)) \circ_3 g(f(y)) = (g \circ f)(x) \circ_3 (g \circ f)(y).$

Izomorfizem grup

Definicija izomorfizma

Bijektivnemu homomorfizmu grup pravimo **izomorfizem** grup. Dve grupi sta **izomorfni**, če obstaja izomorfizem grup in ene v drugo.

Podobno definiramo tudi izomorfizme grupoidov, polgrup in monoidov.

Opomba: Izomorfizem grup je v resnici samo preimenovanje elementov. Pri tem se mora ustrezno preimenovati tudi tabela produktov.

Primer izomorfizma grup

Naj bo $G_1=\{0,1,2\}$ in $G_2=\{e,a,b\}$. Operaciji naj bosta definirani z

\circ_1	0	1	2	in -	02	e	a	b
	0				e	е	а	Ь
	1				a	a	b	e
2	2	0	1		b	Ь	e	a

Potem sta (G_1, \circ_1) in (G_2, \circ_2) grupi. Izomorfizem je $0 \mapsto e, 1 \mapsto a, 2 \mapsto b$. S preimenovanjem elementov v tabeli za \circ_1 smo dobili ravno tabelo za \circ_2 .

Pokažimo, da je inverz izomorfizma spet izomorfizem.

Trditev

Če je f homomorfizem grup iz grupe (G_1, \circ_1) v grupo (G_2, \circ_2) in če je f bijektivna preslikava, potem je preslikava f^{-1} tudi homomorfizem grup iz grupe (G_2, \circ_2) v grupo (G_1, \circ_1) .

Podobno velja tudi za homomorfizme grupoidov, polgrup in monoidov.

Dokaz: Za poljubna elementa $x, y \in G_2$ velja

$$f(f^{-1}(x) \circ_1 f^{-1}(y)) = f(f^{-1}(x)) \circ_2 f(f^{-1}(y)) = x \circ_2 y = f(f^{-1}(x \circ_2 y))$$

Če upoštevamo, da je f injektivna, odtod sledi

$$f^{-1}(x) \circ_1 f^{-1}(y) = f^{-1}(x \circ_2 y).$$

Cayleyev izrek

Vsaka grupa je izomorfna kaki podgrupi v kaki grupi permutacij.

Dokaz: Naj bo (G,*) grupa in naj bo $(\mathcal{P}(G),\circ)$ grupa vseh permutacij množice G. Ideja je, da konstruiramo injektiven homomorfizem grup ϕ iz (G,*) v $(\mathcal{P}(G),\circ)$. Potem je $\phi(G)$ podgrupa v $(\mathcal{P}(G),\circ)$ in ϕ je bijektiven homomorfizem grup iz (G,*) v $(\phi(G),\circ_{\phi(G)})$. Torej sta grupi (G,*) in $(\phi(G),\circ_{\phi(G)})$ izomorfni.

Za vsak $g \in G$ lahko definiramo preslikavo $\phi_g \colon G \to G$, $\phi_g(x) = g * x$. Pokažimo, da je ϕ_g permutacija množice G. Če je $\phi_g(x) = \phi_g(y)$, potem je $x = g^{-1} * (g * x) = g^{-1} * (g * y) = y$, torej je ϕ_g injektivna. Iz $x = g * (g^{-1} * x) = \phi_g(g^{-1} * x)$ sledi, da je ϕ_g surjektivna.

Preslikavo $\phi\colon G\to \mathcal{P}(G)$ definirajmo z $\phi(g):=\phi_g$. Pokažimo najprej, da je ϕ injektivna. Iz $\phi_g=\phi_h$ sledi $g=\phi_g(e)=\phi_h(e)=h$. Pokažimo še, da je ϕ homomorfizem, se pravi, da je $\phi_{g*h}=\phi_g\circ\phi_h$ za vsaka $g,h\in G$. To sledi iz $\phi_{g*h}(x)=(g*h)*x=g*(h*x)=\phi_g(\phi_h(x))=(\phi_g\circ\phi_h)(x)$.

Polkolobarji in kolobarji

Množici z dvema operacijama pravimo tudi **bigrupoid**. Operaciji običajno označimo s + in \cdot , čeprav ni nujno, da imata enake lastnosti kot običajno seštevanje in množenje. Kadar med operacijama ni nobene zveze, je vseeno, če študiramo vsako zase. To pomeni, da je študij bigrupoida $(M, +, \cdot)$ enak ločenemu študiju grupoidov (M, +) in (M, \cdot) .

Primer zanimive zveze med obema operacijama je **distributivnost**:

$$(x+y)\cdot z = (x\cdot z) + (y\cdot z)$$
 in $z\cdot (x+y) = (z\cdot x) + (z\cdot y)$.

Definicija polkolobarja in kolobarja

Distributiven bigrupoid $(M, +, \cdot)$ je **polkolobar**, če je (M, +) komutativna polgrupa. Polkolobar $(M, +, \cdot)$ je **kolobar**, če je (M, +) Abelova grupa.

Opomba: Naj bo $(M, +, \cdot)$ kolobar. Enoto Abelove grupe (M, +) označimo z 0. Iz distributivnosti sledi, da je $x \cdot 0 = 0$ in $0 \cdot x = 0$ za vsak $x \in M$.

12 / 21

Primeri polkolobarjev, ki niso kolobarji

- $(\mathbb{N}, +, \cdot)$ je polkolobar, ki ni kolobar. $(\mathbb{Z}, +, \cdot)$ je kolobar.
- Naj bo M_S množica vseh podmnožic dane množice S. Potem je M_S polkolobar za operaciji unija in presek množic.
- ullet $(\mathbb{R}^{>0},+,\cdot)$ je polkolobar, ki ni kolobar. $(\mathbb{R},+,\cdot)$ je kolobar
- Na \mathbb{R} vzemimo za a+b maksimum a in b in za $a\cdot b$ običajno vsoto a in b. Potem dobimo polkolobar.

Definicija lastnosti kolobarjev

Kolobar $(M, +, \cdot)$ je

- asociativen, če je grupoid (M, \cdot) asociativen.
- **komutativen**, če je grupoid (M, \cdot) komutativen.
- **kolobar z enoto**, če ima grupoid (M, \cdot) enoto.

Primeri kolobarjev

- \bullet ($\mathbb{R}^3,+, imes$) je kolobar, ki ni asociativen, ni komutativen in nima enote.
- $(M_n(\mathbb{R}), +, \cdot)$ je asociativen kolobar z enoto, ki ni komutativen.
- $(\mathbb{Z},+,\cdot)$ je komutativen in asociativen kolobar z enoto.
- $(\mathbb{R}[x], +, \cdot)$ je komutativen in asociativen kolobar z enoto.

Primer: Kolobar funkcij

Naj bo S neprazna množica. Označimo z \mathbb{R}^S množico vseh funkcij iz S v \mathbb{R} . Za dve funkciji $f,g\in\mathbb{R}^S$ definiramo funkciji f+g in $f\cdot g$ takole:

$$(f+g)(x) := f(x) + g(x)$$
 in $(f \cdot g)(x) := f(x) \cdot g(x)$

za vsak $x \in S$. $(\mathbb{R}^S, +, \cdot)$ je komutativen in asociativen kolobar z enoto.

Za vajo dokažimo asociativnost seštevanja funkcij. Ostale lastnosti kolobarja se dokaže podobno. Za vse $f, g, h \in \mathbb{R}^S$ in vse $x \in S$ velja

$$(f + (g + h))(x) = f(x) + (g + h)(x) = f(x) + (g(x) + h(x)) =$$

= $(f(x) + g(x)) + h(x) = (f + g)(x) + h(x) = ((f + g) + h)(x)$

Primer: Kolobar endomorfizmov Abelove grupe

Naj bo (G,+) Abelova grupa. **Endomorfizem** (G,+) je homomorfizem iz (G,+) v (G,+). Naj bo $\operatorname{End}(G,+)$ množica vseh endomorfizmov (G,+). Vsota in produkt dveh endomorfizmov $\phi,\psi\in\operatorname{End}(G,+)$ definirajmo z

$$(\phi + \psi)(x) := \phi(x) + \psi(x)$$
 in $(\phi \cdot \psi)(x) := \phi(\psi(x))$.

Ker je kompozitum homomorfizmov homomorfizem, je $\phi \cdot \psi \in \operatorname{End}(G,+)$. Pokažimo, da je tudi $\phi + \psi \in \operatorname{End}(G,+)$. Ker je (G,+) Abelova grupa, je $(\phi + \psi)(x + y) = \phi(x + y) + \psi(x + y) = \phi(x) + \phi(y) + \psi(x) + \psi(y) = \phi(x) + \psi(x) + \phi(y) + \psi(y) = \phi(x) + \psi(x) + \phi(y) + \psi(y) = \phi(x) + \psi(y) + \psi$

Radi bi pokazali, da je $(\operatorname{End}(G,+),+,\cdot)$ asociativen kolobar z enoto.

Očitno je $\operatorname{End}(G,+)$ Abelova grupa za seštevanje endomorfizmov in očitno je množenje endomorfizmov asociativno. Dokažimo sedaj distributivnost.

Velja

$$((\phi + \psi) \cdot \rho)(x) = (\phi + \psi)(\rho(x)) = \phi(\rho(x)) + \psi(\rho(x)) =$$
$$= (\phi \cdot \rho)(x) + (\psi \cdot \rho)(x) = (\phi \cdot \rho + \psi \cdot \rho)(x)$$

in

$$(\rho \cdot (\phi + \psi))(x) = \rho((\phi + \psi)(x)) = \rho(\phi(x) + \psi(x)) =$$

= $\rho(\phi(x)) + \rho(\psi(x)) = (\rho \cdot \phi)(x) + (\rho \cdot \psi)(x) = (\rho \cdot \phi + \rho \cdot \psi)(x)$

Enota za množenje je identični endomorfizem.

Primer: Boolov kolobar

Naj bo M_S množica vseh podmnožic dane množice S. Potem je M_S kolobar za operaciji

$$A + B := (A \setminus B) \cup (B \setminus A)$$
$$A \cdot B := A \cap B$$

Podkolobarji

Definicija podkolobarja

Podkolobar kolobarja $(M, +, \cdot)$ je taka podmnožica $N \subseteq M$, da je N podgrupa Abelove grupe (M, +) in podgrupoid grupoida (M, \cdot) .

Opomba: Preprosteje definicijo podkolobarja povemo takole. Podmnožica N v M je podkolobar, če za vsaka $x,y\in N$ velja $x-y\in N$ in $x\cdot y\in N$.

Opomba: Podkolobar spremenimo v kolobar tako, da ga opremimo s skrčitvami operacij + in \cdot .

Opomba: Podobno definiramo tudi podpolkolobar in podbigrupoid. V tem primeru zahtevamo samo, da je podmnožica zaprta za operaciji + in \cdot .

Primeri podkolobarjev in podpolkolobarjev

- \mathbb{N} je podpolkolobar v $(\mathbb{Z},+,\cdot)$.
- Števila deljiva s 3 so podkolobar v $(\mathbb{Z}, +, \cdot)$.
- \mathbb{Z} je podkolobar v $(\mathbb{Q}, +, \cdot)$.

Primeri podkolobarjev v $M_n(\mathbb{R})$

- Zgornje trikotne $n \times n$ matrike so podkolobar v $(M_n(\mathbb{R}), +, \cdot)$.
- Matrike z ničelno zadnjo vrstico so podkolobar v $(M_n(\mathbb{R}), +, \cdot)$.
- Matrike z elementi iz \mathbb{Z} so podkolobar v $(M_n(\mathbb{R}), +, \cdot)$.
- Matrike oblike $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$, kjer $a,b\in\mathbb{R}$, so podkolobar v $(M_2(\mathbb{R}),+,\cdot)$.

Primeri podkolobarjev v \mathbb{R}^S

Množico vseh funkcij iz intervala [a,b] v množico $\mathbb R$ označimo z $\mathbb R^{[a,b]}$.

- ullet Podmnožica vseh zveznih funkcij je podkolobar v $(\mathbb{R}^{[a,b]},+,\cdot)$.
- Podmnožica vseh odvedljivih funkcij je podkolobar v $(\mathbb{R}^{[a,b]},+,\cdot)$.
- Podmnožica vseh omejenih funkcij je podkolobar v ($\mathbb{R}^{[a,b]},+,\cdot$).
- Množica vseh funkcij $f:[a,b]\to\mathbb{R}$, ki zadoščajo f(b)=0 je podkolobar v $(\mathbb{R}^{[a,b]},+,\cdot)$.

∢ロト <部ト <きト <きト < き < の </p>

Homomorfizmi kolobarjev

Definicija homomorfizma

Homomorfizem kolobarjev iz kolobarja $(M_1, +_1, \cdot_1)$ v kolobar $(M_2, +_2, \cdot_2)$ je taka preslikava $f: M_1 \to M_2$, ki zadošča

$$f(x +_1 y) = f(x) +_2 f(y)$$
 in $f(x \cdot_1 y) = f(x) \cdot_2 f(y)$

za vsaka $x, y \in M_1$. Bijektivnemu homomorfizmu kolobarjev pravimo izomorfizem kolobarjev.

Opomba: Enako definiramo tudi homomorfizem/izomorfizem polkolobarjev/bigrupoidov. Pri homomorfizmih kolobarjev z enoto zahtevamo še, da slikajo multiplikativno enoto v multiplikativno enoto.

Opomba: Kompozitum dveh homomorfizmov/izomorfizmov kolobarjev je spet homomorfizem/izomorfizem kolobarjev. Inverz izomorfizma kolobarjev je spet izomorfizem kolobarjev.

Primer homomorfizma kolobarjev, ki ne slika enote v enoto

Preslikava

$$f: M_n(\mathbb{R}) \to M_{n+k}(\mathbb{R}), \quad f(A) := \left[egin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right]$$

je homomorfizem kolobarjev, ki ne slika enote v enoto.

Primer izomorfizma kolobarjev

Naj bo $B \in M_n(\mathbb{R})$ obrnljiva matrika. Preslikava

$$f: M_n(\mathbb{R}) \to M_n(\mathbb{R}), \quad f(A) := BAB^{-1}$$

je izomorfizem kolobarjev z enoto.

Primer

Preslikava

$$f: \mathbb{C} \to M_2(\mathbb{R}), \quad f(a+bi) := \left[egin{array}{cc} a & b \ -b & a \end{array}
ight]$$

je homomorfizem kolobarjev z enoto.

Primer

Naj bo a neko realno število. Preslikava

$$f_a: \mathbb{R}[x] \to \mathbb{R}, \quad f_a(p) := p(a)$$

je homomorfizem kolobarjev z enoto. Pravimo ji **evalvacija** v točki *a.*

Primer

Množica $\mathbb{Z} \times \mathbb{Z}$ je kolobar za operaciji (a,b)+(c,d):=(a+c,b+d) in $(a,b)\cdot(c,d):=(ac,bd)$. Preslikava

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}, \quad f((a,b)) = a$$

je homomorfizem kolobarjev z enoto.

4□ > 4□ > 4 = > 4 = > = 90