

FOM Hochschule für Oekonomie & Management

university location Bonn

Bachelor Thesis

in the study course Wirtschaftsinformatik

to obtain the degree of

Bachelor of Science (B.Sc.)

on the subject

Development of a Query Language for Full-Text Search in Relational Databases

by

Sebastian Bunge

Advisor: Prof. Dr. Peter Steininger

Matriculation Number: 539441

Submission: August 21, 2022

Contents

In	dex o	f Figur	es	III
In	dex o	of Table	es	IV
In	dex o	f Abbr	eviations	٧
In	dex o	of Symb	pols	VI
In	dex o	f Form	ulae	VII
1	Abs	tract		1
2	The	ory		2
	2.1	Full-Te	ext Search	2
		2.1.1	MS SQL Server Search Architecture	3
		2.1.2	MS SQL Server Full-Text Query Features	5
	2.2	Doma	in-Specific Languages	6
	2.3	Buildir	ng a language	7
		2.3.1	Syntax	8
		2.3.2	Extended Backus-Naur Form	8
3	lmp	lement	ation	10
4	Cod	le		11
5	Sun	nmary		12
Bi	bliog	raphy		13

Index of Figures

Figure 1:	Architecture	of MS SQL	Server Full-Text Search													4
-----------	--------------	-----------	-------------------------	--	--	--	--	--	--	--	--	--	--	--	--	---

In	dex	of	Tabl	les

Table 1. Demiler DCL a														-
Table 1: Popular DSLs	 													- 1

Index of Abbreviations

APT Automatically Programmed Tools

DDL Data Definition Language

DSL Domain-Specific Language

EBNF Extended Backus-Naur Form

GPL General-Purpose Language

HTML Hypertext Markup Language

MS Microsoft

PDF Portable Document Format

SQL Structured Query Language

XML Extensible Markup Language

Index of Symbols

p precision

Index of Formulae

Formula 1: Calculating precision .																							2
------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Abstract

Abstract

2 Theory

2.1 Full-Text Search

Commercial database management has long focused on structured data and the industry requirements have matched those of structured storage applications quite well. The problem is that only a small part of the data stored is completely structured, while most of it is completely unstructured or only semi-structured, in the form of documents, emails, web pages, etc. (cf. Hamilton, Nayak 2001, p. 7) Full-text search describes a search technique in which all words of a document or a full-text database are matched with search criteria, whereby not only exact matches but also word reflections and the like can be searched. A full-text database, as opposed to a regular bibliographic database, contains not only metadata but also the complete textual content of books and similar documents. (cf. Tenopir, Ro 1990, pp. 2-3)

With large amounts of data, matching every word of all entries is time-consuming and non-performant. To improve this process, a full-text search is divided into an indexing and query phase. In the indexing phase, all words found to be irrelevant, e.g. 'and' or 'the', are ignored by matching them against stoplists, words are normalized, e.g. the capitalization of words, and are merged into an index. (cf. Coles, Cotter 2009, p. 11) In the query phase, full-text query predicates are used to execute search queries. These allow not only a search for exact matches but also generational forms. Generational forms can be, for example, words that stem from the same word or alternative search terms using a language-specific thesaurus. A query processor then calculates the most efficient query plan which delivers the required results. The previously created index is searched for documents and text passages that match the search, and the results are returned in a ranked order. (cf. Coles, Cotter 2009, pp. 11-12)

To determine a rank for a search result the quality has to be measured. One symbol is precision p. (cf. Coles, Cotter 2009, pp. 13-15)

Formula 1: Calculating precision

$$p = \frac{n}{d} \tag{1}$$

Source: Coles, Cotter 2009, p. 14

2.1.1 MS SQL Server Search Architecture

Structured Query Language (SQL) Server uses the same access method and infrastructure for full-text search as other Microsoft (MS) products and the Index Service for file systems. This decision enables standardized semantics for full-text search of data in relational databases, web-hosted data, and data stored in the file system and mail systems. On SQL servers, not only simple strings can be indexed, but also data structures, such as Hypertext Markup Language (HTML) and Extensible Markup Language (XML), and even complex documents, such as Portable Document Format (PDF), Word, PowerPoint, Excel and other custom document formats. (cf. Hamilton, Nayak 2001, p. 7)

The architecture can be divided into five modules, which interact with each other to perform a full-text search. (See Figure 1)

The **content reader** scans indexed data stored in SQL Server tables to assemble data and its associated metadata packets. These packets are then injected into the main search engine, which triggers the search engine filter daemon to consume the data.

Depending on the content, the **filter daemon** calls different filters, which parse the content and output so-called chunks of the processed text. A chunk is a related section with relevant information about this section like the language-id of the text. These chunks are output separately for any properties, which can be elements like the title, an author or other content-specific elements.

Figure 1: Architecture of MS SQL Server Full-Text Search

Source: Hamilton, Nayak 2001, p. 8

Word breakers split the chunks into keywords and additionally provide alternative keywords and the corresponding position in the text. Word breakers can recognize human languages and on SQL Server several word breakers for different languages are installed by default. The generated keywords and metadata are passed on to the MS Search process, which processes the data with an indexer.

The **indexer** generates an inverted keyword list with a batch containing all keywords of one or more items. These indexes are compressed to use memory efficiently, this may lead to high costs for updates of these indexes. Therefore a stack of indexes is maintained. New documents first create their small indexes, which are regularly merged into a larger index, which in turn is merged into the base index. This stack can be deeper than three, but the concept remains and allows a strongly compressed index without driving the update costs too high. If a keyword is searched, all indexes are accessed, so the depth should still be kept reasonable.

A **query processor** manages the insertion and merge operations and collects statistics on distribution and frequency for ranking purposes and query execution. (cf. Hamilton, Nayak 2001, pp. 8-9)

2.1.2 MS SQL Server Full-Text Query Features

2001, p. 9)

Full-text indexes can be created on SQL Servers with the Data Definition Language (DDL) statement CREATE INDEX and can make use of other SQL Server utilities; these include backup and restore and attachment of databases. There are three options to create and manage indexes on SQL Servers. **Full Crawl** always rebuilds the whole full-text index by scanning the entire table. **Incremental Crawl** logs the timestamp of the last re-index and retains changes by storing them in a column. **Change Tracking** enables a near real-time validity between the full-text index and the table by tracking changes to the indexed data using the SQL Server Query Processor. (cf. Hamilton, Nayak 2001, p. 9)
Full-text search is represented in SQL with three possible constructs: (cf. Hamilton, Nayak

- 1. Contains Predicate: A contains predicate is true if one of the specified columns contains terms that satisfy the specified search condition. E.g. Contains (author, ('Ag* or "Marc Miller")) will match entries where the column author contains words like 'Ag', 'Agatha', or 'Marc Miller'.
- Freetext Predicate: Freetext predicates are true if one of the specified columns contains terms that stem from the terms in the specified search condition. E.g. Freetext (content, 'fishing') will match entries where content contains words like 'fishing', 'fish', or 'fisher'.
- 3. ContainsTable and FreetextTable: ContainsTable and FreetextTable are functions that match entries similar to their corresponding function, but additionally return multiple matches including a ranking for each entry and the entire corpus.

The search conditions of these constructs can be of various types to find the intended results: (cf. Hamilton, Nayak 2001, p. 9)

- 1. Keyword, phrase, prefix: E.g. 'fishing', 'Marc Miller', 'Ag*'
- 2. Inflections and Thesaurus: E.g. Contains(*, 'FORMSOF(INFLECTIONAL, fishing) AND FORMSOF(THESAURUS, boat)') will find all entries containing words that stem from 'fishing' and all words sharing the meaning with 'boat' (Thesaurus support).
- 3. Weighted terms: Keywords and phrases can be assigned a relative weight to impact the rank of entries. E.g. ContainsTable(*, 'ISABOUT(generator weight (.7), full-text weight (.3))') will rank entries higher in the result corpus which mention 'generator' over 'full-text'.

- 4. Proximity: E.g. Contains(*, 'corn NEAR salad') contains the proximity term 'NEAR' to match entries where 'corn' appears close to 'salad'.
- 5. Composition: E.g. Contains (*, 'full-text AND NOT database') uses two search query components that are composed using a term like 'AND', 'OR', or 'AND NOT'.

2.2 Domain-Specific Languages

Commonly known programming languages, such as C or Java, are also called a General-Purpose Language (GPL). GPLs are designed to handle any problem with relatively equal levels of efficiency and expressiveness. However, many applications do not require a multifunctional GPL and can describe a problem more naturally using a Domain-Specific Language (DSL). DSLs are languages that have been developed specifically for a particular application or domain, to be able to develop faster and more effectively. (cf. Hudak 1997, p. 1) By tailoring notations and constructs to the domain in question, DSLs offer significant gains in expressiveness and usability compared to GPLs for the domain in question, with corresponding productivity gains and lower maintenance costs. (cf. Mernik, Heering, Sloane 2005, p. 317) DSLs are by no means a product of modern software development but have existed since the beginning of programming. One of the first DSLs ever designed was Automatically Programmed Tools (APT), which was used for the development of numerically controlled machine tools in 1957. (cf. Ross 1978, pp. 283-284)

DSLs can be found everywhere in the world of IT, for example, this thesis was written with the help of LATEX to design layout and formatting. Table 1 lists some well-known DSLs and their application/domain to give examples of what is classified as a DSL.

Table 1: Popular DSLs

DSL	Applicaiton								
Lex and Yacc	program lexing and parsing								
PERL	text/file manipulation/scripting								
VDL	hardware description								
T _E X, L ^A T _E X, troff	document layout								
HTML, SGML	document markup								
SQL, LDL, QUEL	databases								
pic, postscript	2D graphics								
Open GL	high-level 3D graphics								
Tcl, Tk	GUI scripting								
Mathematica, Maple	symbolic computation								
AutoLisp/AutoCAD	computer aided design								
Csh	OS scripting (Unix)								
IDL	component technology (COM/CORBA)								
Emacs Lisp	text editing								
Prolog	logic								
Visual Basic	scripting and more								
Excel Macro Language	spreadsheets and many things never intended								

Source: Hudak 1997, p. 3

Programs written in a DSL are considered to be more concise, quicker to write, easier to maintain and easier to reason about and most importantly they can be written by non-programmers. In particular, experts in the domain for which the DSL was developed can use DSLs to program applications without having to acquire programming skills. An expert of a domain already knows the semantics of the domain, all that is needed to start development is the corresponding notation that expresses these semantics. (cf. Hudak 1997, pp. 2-4)

2.3 Building a language

For a compiler or an interpreter to be able to interpret a DSL, the language must be accurately and precisely defined. Accurately means that the language must be defined consistently down to the smallest detail. Precisely means in this case that all aspects of the language must be laid out. If parts of the language are inconsistent or too vague, authors of compilers are forced to interpret these aspects themselves. This inevitably leads to different authors having different approaches to the same problem. If a DSL is to be created that meets the criteria described above, two components are needed. The first component is a set of rules, also called syntax. The second component is a formal definition of the meaning, also called semantics. (cf. Farrell 1995, p. 2)

2.3.1 Syntax

The first step when defining syntax is defining an alphabet. This alphabet consists of to-kens, which do not necessarily have to be letters. Several tokens, formulated according to a set of rules, make up a sentence or string. The alphabet of the English language is, in the context of syntax, not a list of the permissible characters, which is predominantly called the alphabet or 'ABC', but the permissible tokens. E.g. in the sentence 'the donkey screams' the tokens 'the', 'donkey' and 'screams' are part of the alphabet of the English language. The token 'gHArFk' consists of permissible characters but is not part of the valid alphabet. However, the use of permissible tokens alone does not make a sentence correct. The sentence 'on sleep blue' consists of tokens that are part of the English alphabet, but it is still not a valid sentence. The correct application of the rule set is still missing, in this example a missing object. Only the correct use of the alphabet AND the set of rules make a sentence syntactically correct. (cf. Farrell 1995, p. 2)

If the alphabet and the set of rules are notated in a normal form, they can be called grammar. Relevant to this thesis is the Extended Backus-Naur Form (EBNF), which will be described in section 2.3.2.

2.3.2 Extended Backus-Naur Form

EBNF, as the name suggests, is based on the Backus-Naur Form, which was proposed by a group of thirteen international representatives in 1960, to serve as a basic reference and guide for building compilers. Backus-Naur Form is a notation for describing computational processes and rules as arithmetic expressions, variables, and functions. (cf. Backus et al. 1960, p. 300)

The syntax can be described as a set of metalinguistic formulae best described with an example. The grammar describing a number can be written in Backus-Naur Form as:

```
\langle number \rangle ::= \langle positive \rangle | -\langle positive \rangle | 0
\langle positive \rangle ::= \langle digit \ not \ zero \rangle \langle optional \rangle
\langle optional \rangle ::= \langle digit \rangle \langle optional \rangle | 0
\langle digit \rangle ::= \langle digit \ not \ zero \rangle | 0
\langle digit \ not \ zero \rangle ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

Characters contained in angel brackets '<>' represent a metalinguistic variable. The character '::=' describes a definition of this variable. The character '|' represents the metalinguistic connective 'or'. Other characters in this example have no special meaning but only represent themselves. So the first line of the grammar means that the variable <number> can be defined or replaced as <positive> or -<positive> or as 0. Since the variable

<positive> is mentioned in the definition, there must be a definition for this variable in the grammar, otherwise, the grammar would be incomplete. In the third line, we see a metalinguistic connective without content on its right side. This means that the variable <optional> can also be empty and thus without value. Furthermore, in this line, a variable calls itself recursively, which is allowed. (cf. Backus et al. 1960, pp. 301-303)

So following this grammar, numbers such as 42 or -3141592 are valid.

In 1977 Wirth proposed a new variant of the Backus-Naur Form to further improve language definition notation. The main goals of this new notation were to (cf. Wirth 1977, p. 822)

- · distinguish clearly between metaterminal and nonterminal symbols
- not exclude metaterminals as possible symbols of the language
- · enable iteration without using recursion

This proposal was the basis for the ISO/IEC 14977:1996(E) which now defines the standard for EBNF. The major changes that EBNF brought can be summarized as: (cf. ISO/IEC 14977:1996(E) 1996, p. VI)

- Terminal symbols must be quoted so any symbol can be a terminal symbol of the language
- Added square brackets to indicate optional symbols and avoid the use of a <empty> symbol
- Added curly brackets to indicate repetition
- Every rule must have a final character
- Normal Brackets group items together, similar to their arithmetic use

The number example from above can be rewritten in EBNF as:

```
\langle number \rangle ::= (['-']\langle digit\ not\ zero \rangle \langle digit \rangle)|'0';
\langle digit \rangle ::= \langle digit\ not\ zero \rangle|'0';
\langle digit\ not\ zero \rangle ::= '1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9';
```

This version of the grammar produces the same set of numbers but is more concise and arguably more readable for humans.

3 Implementation

Implementation

4 Code

Code

5 Summary

Summary

Bibliography

BACKUS, J. W. et al.: Report on the algorithmic language ALGOL 60. en. In: *Communications of the ACM* 3 (May 1960) Nr. 5. Ed. by NAUR, Peter, pp. 299–314. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/367236.367262. URL: https://dl.acm.org/doi/10.1145/367236. 367262 (visited on 08/16/2022)

COLES, Michael; COTTER, Hilary: *Pro full-text search in SQL Server 2008*. The expert's voice in SQL server. Berkeley, CA: Apress, 2009. ISBN: 978-1-4302-1594-3

FARRELL, James Alan: Compiler Basics. en. In: (Aug. 1995), p. 7. URL: http://www.cs.man. ac.uk/~pjj/farrell/compmain.html (visited on 08/16/2022)

HAMILTON, James R.; NAYAK, Tapas K.: Microsoft SQL server full-text search. In: *IEEE Data Eng. Bull.* 24 (2001) Nr. 4. Publisher: Citeseer, pp. 7–10

HUDAK, Paul: Domain-specific languages. In: *Handbook of programming languages* 3 (1997) Nr. 39-60, p. 21

ISO/IEC 14977:1996(E): Information Technology - Syntactic Metalanguage - Extended BNF. In: (1996). URL: https://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf (visited on 08/16/2022)

MERNIK, Marjan; HEERING, Jan; SLOANE, Anthony M.: When and how to develop domain-specific languages. en. In: *ACM Computing Surveys* 37 (Dec. 2005) Nr. 4, pp. 316–344. ISSN: 0360-0300, 1557-7341. DOI: 10.1145/1118890.1118892. URL: https://dl.acm.org/doi/10.1145/1118890.1118892 (visited on 08/15/2022)

ROSS, Douglas T.: Origins of the APT language for automatically programmed tools. enin: Wexelblat, Richard L. (ed.): *History of programming languages*. New York, NY, USA: ACM, June 1978, pp. 279–338. ISBN: 978-0-12-745040-7. DOI: 10.1145/800025.1198374. URL: http://dl.acm.org/doi/10.1145/800025.1198374 (visited on 08/15/2022)

TENOPIR, Carol; Ro, Jung Soon: *Full text databases*. New directions in information management no. 21. New York: Greenwood Press, 1990. ISBN: 978-0-313-26303-3

WIRTH, Niklaus: What can we do about the unnecessary diversity of notation for syntactic definitions?. en. In: *Communications of the ACM* 20 (Nov. 1977) Nr. 11, pp. 822–823. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/359863.359883. URL: https://dl.acm.org/doi/10.1145/359863.359883 (visited on 08/16/2022)

Declaration in lieu of oath

I hereby declare that I produced the submitted paper with no assistance from any other party and without the use of any unauthorized aids and, in particular, that I have marked as quotations all passages which are reproduced verbatim or near-verbatim from publications. Also, I declare that the submitted print version of this thesis is identical with its digital version. Further, I declare that this thesis has never been submitted before to any examination board in either its present form or in any other similar version. I herewith agree that this thesis may be published. I herewith consent that this thesis may be uploaded to the server of external contractors for the purpose of submitting it to the contractors' plagiarism detection systems. Uploading this thesis for the purpose of submitting it to plagiarism detection systems is not a form of publication.

Bonn, 21.8.2022

(Location, Date)

(handwritten signature)