

Licence L2 STS Mention SPI Parcours Informatique Unité 174EN007 Sécurité Informatique

TD2

Ce second TD porte sur l'algorithme de hachage SHA-256 et son implémentation en C (cf. implémentation de Brad Conte sur https://github.com/B-Con/crypto-algorithms).

Exercice n°1

Etudiez les principes de fonctionnement de l'algorithme SHA-256 à partir de la documentation issue de la fiche Wikipédia.

Exercice n°2

- Dans la construction de Merkle-Damgård a quoi correspond *IV* ?
- Dans le prétraitement, à quoi sert de compléter (bourrage ou padding) le message M?
- Calculer la valeur de k pour le message "Hello World!" (codage ASCII étendu)
- Expliciter l'objectif et le fonctionnement de la fonction de compression.

Exercice nº 3

Rappels:

Туре	Taille	Signé	Non signé
char	>= 8 bits	-127 à +127	0 à 0xFF
unsigned char			
signed char			
short	>= 16 bits	-32 767 à +32767	0 à 0xFFFF
signed short (défaut)			
unsigned short			
int	>= 16bits	-32 767 à +32768	0 à 0xFFFF
signed int (défaut)	(taille bus de		
unsigned int	données)		
long	>= 32 bits	-2 147 483 647 à	0 à 0xFFFFFFF
signed long (défaut)		+2 147 483 647	
unsigned long			
long long	>= 64 bits	-9 223 372 036 854 775 807 à	0 à
signed long long (défaut)		+9 223 372 036 854 775 807	0xFFFFFFFFFFFFF
unsigned long long			

Pour une machine 16bits, un entier prend 16 bits, pour une machine 32 bits, un entier prend 32 bits et ainsi de suite.

Les opérations binaires sont les suivantes :

- opération binaire \(\lambda \) (AND) : &
- opération binaire v (OR) :
- opération binaire ⊕ (XOR) : ^
- complément binaire ¬ (not) : ~

- (a) Etudiez l'implémentation des fonctions suivantes :
 - fonction décalage binaire à gauche $ROTR^{n}(x)$: $(x >> n) \lor (x << (32 n))$
 - fonction décalage binaire à droite $SHR^n(x): x >> n$
 - fonction $Ch(x, y, z) : (x \land y) \oplus (\neg x \land y)$
 - function $Maj(x, y, z) : (x \land y) \oplus (x \land z) \oplus (y \land z)$
 - fonction $\sum_{0}^{\{256\}}(x) : ROTR^{2}(x) \oplus ROTR^{13}(x) \oplus ROTR^{22}(x)$ fonction $\sum_{1}^{\{256\}}(x) : ROTR^{6}(x) \oplus ROTR^{11}(x) \oplus ROTR^{25}(x)$

 - function $\sigma_0^{\{256\}}(x) : ROTR^7(x) \oplus ROTR^{18}(x) \oplus SHR^3(x)$
 - function $\sigma_1^{\{256\}}(x) : ROTR^{17}(x) \oplus ROTR^{19}(x) \oplus SHR^{10}(x)$

D'après vous, pourquoi sont-elles définies comme macros?

(b) Etudiez l'implémentation de la fonction de compression sha256 compress.

Comment est implémentée la boucle *Pour i* = 1 à N de l'algorithme ? Comment est calculée la valeur W_t ?

(c) Etudiez la fonction sha256 compute.

Comment se fait le découpage des données en bloc de 512 bits ? Expliquer comment le bourrage a été implémenté.

(d) Etudiez la fonction sha256 convert.

Quelle est l'utilité de cette fonction ? Donnez un exemple de fonctionnement.