CSI 3125 Fall 1999 Midterm

Professor: Ken Barker

Monday, Novermber 1, 14:30

Family Name	Barker
Given Name	Ken
Student Number	1001001

Notes:

- 1. This is a closed book midterm. Textbooks, notes, cheat sheets and microfiche are **not** allowed.
- 2. Calculators, computers, Palm V's and all other computing devices are **not** allowed.
- 3. There are 10 pages. Write your name and student number on **every** page.
- 4. There are 6 questions. Answer **all** 6 of them.
- 5. Write **all** answers and work in the space provided. Use **no** other paper.
- 6. You have 80 minutes to complete the midterm.

Marks:

Question						
1 (7 marks)	2 (4 marks)	3 (3 marks)	4 (5 marks)	5 (6 marks)	6 (1 mark)	Total (25 marks)
4 3	2/2	3	5	6	(26

Name:	Barker	Student Number:	1001001

Question 1: Extended BNF Grammars

- a) Write an extended BNF (EBNF) grammar for the language of freight trains. Here is some information about freight trains:
 - the terminal symbols are:
 engine cattlecar tanker fridgecar lumbercar caboose
 - the goal symbol is: <train>
 - every train starts with one or two engines and ends with a caboose
 - a tanker must not come right after an engine
 - a lumbercar must not come right after an engine
 - sequences of cattlecar must be preceded and followed by a lumbercar

Here are some legal sentences in the language:

- engine fridgecar lumbercar lumbercar caboose
- engine engine caboose
- engine fridgecar lumbercar tanker tanker tanker caboose
- engine fridgecar lumbercar cattlecar cattlecar lumbercar caboose

Many answers possible. Here's one that assumes that engines and cabooses don't appear in the middle of a train:

```
<train> ::= engine [ engine ] [ <cars> ] caboose
<cars> ::= fridgecar { <anycars> }
<anycars> ::= tanker | fridgecar | <cattleseq>
<cattleseq> ::= lumbercar cattlecar { cattlecar } <cattleseq>
<cattleseq> ::= lumbercar
```

b) Here is an EBNF grammar for some language:

Show a parse tree for the sentence djjnvjnpdn

Name:	Barker	Student Number:	1001001	

Question 2: Names, Binding, Scope

Here is a Pascal program that does nothing of interest

```
program main;
var X, Y: integer;
   procedure foo(A: integer);
   var X: integer;
   begin
     X := 10;
      bar(X)
   end;
   procedure bar(foo: integer);
   var Z: integer;
      procedure foobar(X: integer);
      begin
         Z := X * foo
      end;
   begin
      foobar(foo);
      x := Z
   end;
begin
   X := 5;
   Y := 13;
   foo(Y)
end.
```

Name:	Barker	
-------	--------	--

Student Number: ____ lOOlOOl

a) Give the *scope* of the following names:

main.X	S(main) S(main.bar)
main.foo	S(main) S(main.foo)
main.bar.foo	S(main.bar) S(main.bar.foobar)
main.bar.foobar.X	S(main.bar.foobar)

b) Give the *referencing environment* for the following statements. s(*procedurename*) refers to the statements in procedure *procedurename*.

S(main)	main.X main.Y main.foo main.bar
S(main.foo)	<u>main.Y main.foo main.bar</u> main.foo.A main.foo.X
S(main.bar)	main.X main.Y main.bar main.bar.foo main.bar.Z main.bar.foobar
S(main.bar.foobar)	main.Y main.bar main.bar.foo
	main.bar.Z main.bar.foobar
	main.bar.foobar.X

Name: Student Number: 1001001

Question 3: Data Types

The following Pascal program is perfectly correct given the proper variable declarations. Show the variable declarations necessary to make the program correct.

```
program p;
 var t: _____integer
          char
    u: ____
    v: boolean ;
    w: set of char ;
          set of char
    y: <u>set of char</u>;
          integer
begin
 . . .
 w := x * y;
 u := chr(z + 3);
 v := u in w;
  t := ord(v)
end.
```

Name:	Barker	Student Number:	1001001	

Question 4: Parameter Passing

Show the output (if any) for the following Pascal-style program for each of the five parameter passing modes. Use the table below to show your answers.

```
program main;
var X, i: integer;
    A: array[1..5] of integer;
   procedure p(mode U, V: integer);
   var i: integer;
   begin
      U := U + V;
      V := U;
      write(U); write(', '); writeln(V)
   end;
begin
   X := 1;
   for i := 1 to 5 do
      A[i] := 5 - i;
   p(X, A[X]);
   write(X); write(', '); writeln(A[X])
end.
```

parameter passing mode program output 5, 5 pass-by-value 1, 4 pass-by-result illegal! 5, 5 pass-by-value-result 5, 5 (or 5, 0)5, 5 pass-by-reference 5, 0 5, 5 pass-by-name 5, 5

Question 5: Subprogram Implementation

Here is yet another useless Pascal program

```
L01
         program main;
L02
         var X: integer;
L03
             B: boolean;
L04
            function f(W: integer): integer;
L05
            begin
L06
               if B then begin
L07
                  B := false;
                  f := f(W + 1)
L08
L09
               end
L10
               else begin
L11
                  write(W);
L12
                  f := W
L13
               end
L14
            end;
            procedure p(U: integer);
L15
            var X, i: integer;
L16
L17
            begin
L18
               X := U;
L19
               for i := 1 to 4 do
L20
                  X := X * U;
L21
               write(f(X))
L22
            end;
L23
         begin
L24
           B := true;
L25
           X := 2;
           p(X);
L26
L27
           writeln(X)
L28
        end.
```

Using the empty stack on the next page, draw the complete activation stack when IP = L12. Twenty-five rows in the stack should be *more* than enough.

(dynamic link	(main)
(
(static link)	
(return address	rs)
(return value))
X	2
B fals	se
SOI	P
SOI	
L27	
U	2
X 3	32
i	5
507	ç
SOI	
L22	
retval	
W 3	32
514	ę
SOI	
LO9	
retval	
W	33
	(return address (return value X B SOI SOI L17 V X i SO7 SOI L11 retval W SI4 SOI L09 retval

Name:	Barker	Student Number:	1001001	

Question 6: Concepts of Programming Languages

- 1. The term *orthogonality* refers to
 - a) a kind of abstraction in which the same symbol is used for different operations
 - (b) the extent to which constructs in a language can be combined freely
 - c) the incompatibility between row-major and column-major arrays
 - d) the use of prostheses for amputated limbs
- 2. A non-terminal symbol
 - a) is a name that cannot be resolved by the compiler due to a circular reference
 - b) is a symbol in a grammar that is *not* composed of sequences of other symbols
 - c) appears on the left side of production rules
 - d) is used for public washrooms in museums and theatres, but not bus stations
- 3. Which of the following is a *primitive type* in most languages?
 - (a) float
 - b) enum
 - c) pointer
 - d) CSI 3125 prof
- 4. Row-major and column-major refer to
 - (a) conventions for mapping multi-dimensional arrays to one-dimensional memory
 - b) conventions for determining whether two arrays are compatible
 - c) conventions for the Baton Twirlers Association
 - d) two different designations of the Bachelor of Arts degree
- 5. A dangling reference
 - a) is prohibited in strongly-typed languages
 - b) may go undetected by a Pascal compiler
 - c) is the sort of nonsense up with which I will not put
 - d) can get you arrested in this town
- 6. Control statements
 - a) prevent the evaluation of the rest of an expression once the value of the expression has been unambiguously determined
 - b) determine the order of execution of statements in a program
 - c) were often overheard due to Cone of Silence malfunctions
 - d) or the government will control them for you!
- 7. Yashin should
 - a) swallow it and hook up with the Sens on their next road trip
 - b) listen to his agent, 'cause agents are really smart
 - c) seriously consider a U of O degree: The right choice. The right University.
 - d) come out Sunday nights... it's only 10 bucks!
- 8. This exam
 - a) bites
- b) stinks
- c) rocks
- d) grooves, daddy-o