RSA

Faculdade de Informática- PUCRS Prof. Avelino Francisco Zorzo

RSA

- Rivest, Shamir & Adleman MIT 1977
- Mais conhecido e usado esquema de chave pública
- Baseado em exponenciação em um corpo finito sobre inteiros módulo um primo
- Usa grandes inteiros (e.g. 1024 bits)
- Segurança devido ao custo de fatorar grandes números

RSA: Estabelecendo chave

- Gerar chaves pública e privada:
 - Selecione 2 primos grandes p, q
 - Computar o módulo do sistema N=p.q
 - Lembre-se: $\varphi(N) = (p-1)(q-1)$
 - Selecione a chave de cifrar e tal que
 - $1 < e < \phi(N)$ **e** $gcd(e, \phi(N)) = 1$
 - Encontre a chave de decifrar d tal que e.d=1 mod ϕ (N) e0 \leq d \leq N
- Publique a chave de cifrar pública: PK={e, N}
- Mantenha a chave secreta: SK={d,p,q}

RSA: Uso

- Para cifrar uma mensagem M :
 - Obtenha a chave pública PK={e, N}
 - Computar: C=Me mod N, onde 0≤M<N
- Para decifrar o texto cifrado C:
 - Use a chave privada SK={d, p, q}
 - Compute: M=Cd mod N
- Mensagem M deve ser menor que o módulo N
 - Dividir a mensagem em blocos

Por que RSA funciona?

- Lembre-se do Teorema de Euler :
 - $-a^{\phi(N)}=1 \mod N$ onde gcd(a,N)=1
- RSA:
 - -N=p.q
 - $-\phi(N) = (p-1)(q-1)$
 - e e d inversos em Z_{Ø (N)}
 - -e.d=1+k. φ (N) em $Z_{\varphi(N)}$ para algum k
- Accim:
 - $C^{d} = (M^{e})^{d} = M^{1+k} \cdot \phi(N) = M^{1} \cdot (M^{\phi(N)})^{k}$ = $M^{1} \cdot (1)^{k} = M^{1} = M \mod N$

RSA: Exemplo

- 1. **Selecione primos**: p=5 e q=11 **e** N = $p \cdot q = 5 \times 11 = 55$
- 2. Compute $\varphi(N) = (p-1) \cdot (q-1)$ =4 × 10=40
- 3. **Selecione** e : gcd(e, 40) = 1; e=7
- 4. Compute d: d.e=1 in \mathbb{Z}_{40} e d<40, d=23 pois 23 × 7 = 161 = 4 × 40+1
- 5. Publique a chave pública PK={7,55}
- Mantenha secreta a chave privada SK={23,5,11}

RSA: Exemplo

- Dada a mensagem M = 8
- Cifrar:

 $C=8^7 \mod 55 = 2,097,152 \mod 55=2$

■ Decifrar:

 $M=2^{23} \mod 55=8,388,608 \mod 55=8$

Fim.

8

Attacks on textbook RSA

■ Fact 1

- Let <N,e> be an RSA public key. Given the private key d, one can efficiently factor the modulus N = pq. Conversely, given the factorization of N, one can efficiently recover d.
- Proof of the last part is simple
 - » If you factor N, then you can calculate ϕ (N) and e is given than you have to calculate the inverse of e mod ϕ (N) and you have found d.

Attacks on textbook RSA

- Proof of first part
 - N = 55, e = 7, d = 23, compute k = de -1, k = 7.23-1
 - k is a multiple of $\varphi(N)$ (in our case, $\varphi(N)$ =40, k = 160).
 - $\phi(N)$ is even ((p-1) is even (q-1) is even) therefore $\phi(N)$ is even
 - $-k = 2^5.5, r = 5 \text{ (odd)}, t = 5, t >= 1$
 - $-g^k = 1$ (from Eulers theorem $x^\phi(N) = 1 \mod N$)
 - square root unity module N is x such that x^2 congruent (=) to 1 mod N
 - $-x^2 = 21^2 = 441 \mod 55 = 1 \mod 5$
 - Now calculate gcd(x-1, N), gcd(20,55) = 5 or gcd(-x-1,N), gcd(-22,55) = gcd(33,55) = 11

Attack: Common modulus

- To avoid generating different modulus for each user, fix N=p.q to several users
- Provide a unique pair <e,d> for each user,
- Alice, e.g., has PK={e_a,N} and SK={d_a,N}
- Bob, e.g., has PK={e_b,N} and SK={d_b,N}
- Both Alice and Bob can factor N (Fact 1), and either knows the PK from the other, therefore, either can find the SK from the other.