

CoolMOS^{TM 1)} Power MOSFET

ISOPLUS™ - electrically isolated surface to heatsink Surface Mount Power Device

 V_{DSS} = 600 V I_{D25} = 50 A $R_{DS(on) max}$ = 45 m Ω

Preliminary data

MOSFET T						
Symbol	Conditions	Maximum Ra	tings			
V _{DSS}	$T_{VJ} = 25^{\circ}C$ to $150^{\circ}C$	600	V			
V_{GS}		±20	V			
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$	50	Α			
I _{D80}	$T_C = 80^{\circ}C$	38	A			
Eas	single pulse $I_D = 11 \text{ A}; T_C = 25^{\circ}\text{C}$	1950	mJ			
E _{AR}	repetitive $\int_{0}^{1} = 11 \text{ A}, I_{c} = 25 \text{ C}$	3	mJ			
dV/dt	MOSFET dV/dt ruggedness V _{DS} = 0480 V	50	V/ns			

Symbol Conditions

Characteristic Values

 $(T_{VJ} = 25^{\circ}C, \text{ unless otherwise specified})$

		min.	typ.	max.	
R _{DSon}	I _D = 44 A; V _{GS} = 10 V		40	45	mΩ
V _{GS(th)}	$I_D = 3 \text{ mA}; V_{DS} = V_{GS}$	2.5	3	3.5	V
I _{DSS}	$V_{DS} = V_{DSS}; V_{GS} = 0 \text{ V}; T_{VJ} = 25^{\circ}\text{C} $ $T_{VJ} = 125^{\circ}\text{C}$		50	10	μ Α μ Α
I _{GSS}	$V_{DS} = 0 V_{;} V_{GS} = \pm 20 V$			100	nA
$\begin{aligned} & \mathbf{t_{d(on)}} \\ & \mathbf{t_{r}} \\ & \mathbf{t_{d(off)}} \\ & \mathbf{t_{f}} \\ & \mathbf{E_{on}} \\ & \mathbf{E_{off}} \\ & \mathbf{E_{rec}} \end{aligned}$	Inductive switching boost mode with diode D $V_{DS} = 380 \text{ V}; I_{D} = 30 \text{ A}$ $V_{GS} = 10 \text{ V}; R_{G} = 33 \Omega$		80 40 750 40 1.3 0.45 0.35		ns ns ns ns mJ mJ
\mathbf{C}_{iss} \mathbf{C}_{oss}	$V_{GS} = 0 \text{ V}; V_{DS} = 100 \text{ V}; f = 1 \text{ MHz}$		6800 320		pF pF
\mathbf{Q}_{g} \mathbf{Q}_{gs} \mathbf{Q}_{gd}	$\begin{cases} V_{DS} = 400 \text{ V}; I_{D} = 44 \text{ A} \\ V_{GS} = 10 \text{ V}; R_{G} = 3.3 \Omega \end{cases}$		150 35 50	190	nC nC nC
R _{thJC}	with heatsink compound (IXYS test setup)		tbd	0.4 tbd	K/W K/W

Features

- Fast CoolMOS^{TM 1)}
 power MOSFET 4th generation
- high blocking capability
- lowest resistance
- avalanche rated for unclamped inductive switching (UIS)
- low thermal resistance due to reduced chip thickness

• Package

- isolated surface to heatsink
- low coupling capacity between pins and heatsink
- PCB space saving
- enlarged creepage towards heatsink
- application friendly pinout
- low inductive current path
- high reliability

Applications

- Buck / boost chopper
- Optimized for boost configuration
- PFC stage

¹⁾ CoolMOS™ is a trademark of Infineon Technologies AG.

Source-Drain Diode of MOSFET T							
Symbol	Conditions	Maximum Ratings					
I _{S25} I _{S80}	$T_C = 25$ °C $T_C = 80$ °C			50 38	A A		
Symbol	Conditions	Characteristic Values					
	$(T_{VJ} = 25^{\circ})$	$(T_{VJ} = 25^{\circ}C, \text{ unless otherwise specified})$					
		min.	typ.	max.			
$\mathbf{V}_{\mathtt{SD}}$	$I_F = 44 \text{ A}; V_{GS} = 0 \text{ V}$		0.9	1.0	V		
t _{rr} Q _{RM} I _{RM}	$I_F = 44 \text{ A}; -di_F/dt = 100 \text{ A/}\mu\text{s}; V_R = 400 \text{ V}$		600 17 60		ns µC A		

Symbol	Conditions		Maximum Rating			
I _{F25} I _{F80}	$T_C = 25$ °C; DC $T_C = 80$ °C; DC				96 61	Δ Δ
Symbol	Conditions		C	haract	eristic V	alues
		$(T_{VJ} = 25^{\circ}C$, unles	s other	wise spe	cified)
			min.	typ.	max.	
\mathbf{V}_{RRM}		$T_{VJ} = 25^{\circ}C$			600	٧
V _F	I _F = 25 A	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		1.2 1.3	1.4	٧
I _R	$V_R = V_{RRM}$	$T_{VJ} = 25^{\circ}C$ $T_{VJ} = 125^{\circ}C$		tbd	150	μA mA
I _{RM}	$I_F = 30 \text{ A}; V_R = 350 \text{ V}$ -di/dt = 240 A/µs	T _{VJ} = 100°C		10		Δ
t _{rr}	$I_F = 1 A; V_R = 30 V$ -di/dt = 100 A/µs	T _{VJ} = 100°C		35	50	ns
R _{thJC}	per diode with heatsink compound	(IXYS test setup)		tbd	0.7	K/W k/W

Compone	ent					
Symbol	Conditions		Maximum Ratings			
T _{VJ}		-55+150			°C	
T _{stg}			-55	+125	°C	
V _{ISOL}	$I_{ISOL} \le 1 \text{ mA}; 50/60 \text{ Hz}$	2500			٧~	
F _c	mounting force	40 130			N	
Symbol	Conditions	C	Characteristic Values			
		min.	typ.	max.		
C _P	coupling capacity between shorted pins and backside metal		90		pF	
d _{s.} d _A	pin - pin	1.65			mm	
$d_{s,}d_{A}$	pin - backside metal	4			mm	
СТІ		400				
Weight			8		g	

Ordering	Part Number	Marking on Product	Delivering Mode	Base Qty	Ordering Code
Standard	MKE38RK600DFELB-TRR	MKE38RK600DFELB	Tape & Reel	200	510479
	MKE38RK600DFELB	MKE38RK600DFELB	Blister	45	510231

20111102a

Fig.1 Drain source breakdown voltage versus temperature $T_{\rm VJ}$

Fig. 3 Typical output characteristics

Fig.5 Drain source on-state resistance $R_{DS(on)}$ vs. junction temperature $T_{V,J}$

Fig. 2 Typ. transfer characteristics

Fig. 4 Typical output characteristics

Fig. 6 Drain source on-state resistance, $R_{\mathrm{DS(on)}}$ versus I_{D}

20111102a

Fig. 7 Typ. turn-on gate charge

Fig. 8 Typ. capacities, MOSFET only

Fig. 9 Typ. turn-on energy and switching times vs. collector current, induktive switching

Fig. 10 Typ. turn-off energy and switching times vs. collector-current, induktive switching

Fig. 11 Typ. turn-on energy and switching times vs. gate resistor, induktive switching

Fig. 12 Typ. turn-off energy and switching times vs. gate resistor, induktive switching

20111102a

Fig. 13 Typ. forward characteristics of diode D

Fig. 14 Typ. reverse recovery characteristics of diode D

Fig. 15 Typ. reverse recovery characteristics of diode D

