NÉV:		neptun kód:	
A feladatokat önál	llóan meg nem	engedett segédeszközök használata n	élkül oldottam
meg:	noun, meg nem	ongouou sogouosznozon nusznaiaia n	
8	Olvasható alá	írás:	
válaszokat - ahol lehe	et - mindig a felad	aláírás rovatokkal kezdje! Az alábbi kérdé latlapon adja meg! A feladatok megoldása s ént, ha szükséges külön papíron v	során a E:
(egyértelműen jelölje	e, hogy melyik la	ap melyik feladathoz tartozik, a papírra	már a F2:
kérdésekre a táblázat	ok vagy a pontoz	t) és ezeket a papírokat is adja be a dolgozat ott vonalak értelemszerű kitöltésével válas ndenütt a legegyszerűbb megoldás éri a	szoljon, \sum
Ellenőrző kérdések ((27p)		
E1. Konvertálja az alá	•	rt formátumra! (3p)	
kiinduló formátum	konvertálandó szám	kért formátum	konvertált szám
6 bites 2-es komplemens decimális	101101 1642	8 bites 2-es komplemens BCD (16 bites)	
Fixpontos decimális	3.25	8 bites fixpontos 2-es komplemens, 4 db 2-edes jegy	
E3. (2p) Megadtuk eg funkcionális elem nev wire [7:0] A,B; wire [rét! (2p)	ális elem Verilog leírásának egy jellemző rés	szletét. Adja meg a
assign $O = \{A < B, A =$		neve:	
	ire a megfelelő jele) (2p)	i 3 változós logikai függvényt kell megvaleket és konstansokat a következők közül: C, $\frac{ f(A,B,C) }{ Y }$	/C, 0, 1! (Írja oda a
feladatokat! (C	az LSB) $assign F = (\{A, B\})$	gikai függvény Verilog leírását. Végezze el a (C)>3'b001) & ({A,B,C}<3'b100) / ({A,B,C}) i a függvény Verneyelt tábláját! (2a)	
a. Töltse ki a függvény Karnaugh tábláját! (2p) b. Adja meg a függvény egyszerűsítetlen SOP alakját Verilog logikai kifejezésként! (1p)			
c. Adja meg a f	tiggvény legegysze	erűbb SOP alakját Verilog logikai kifejezésk	
E6. a. Rajzolja le egy o	lyan logika blokkváz	latát tanult funkcionális elemekkel, amely a beme özül a nagyobbat teszi a 4 bites O[3:0] kimenetér	
b. Adja meg a fenti lo	gika Verilog leírás	át! (2p) assign O =	

E7. Röviden írja le, mi történik egy szubrutin meghívásakor a MiniRISC CPU esetén! (2p)					
1	2				
E8. Melyik tanult kombinációs funkcionális elem Verilo	og leírását adtuk meg alább? (1p)				
wire [3:0] In0, In1, Y;					
wire s;	assign $Y = In0 & \{4\{\sim s\}\} \mid In1 & \{4\{s\}\};$				
6 1 : 71: 1					
funkcionális elem neve:					
E9. Rajzolja le az USRT soros adatátvitel idődiagramját (start bit, 8 adat bit, 1 stop bit esetére)! (Egészítse ki az					
alábbi rajzot!) (2p)					
clk					
tx					
E10. Mely állítások igazak és melyek hamisak? Jelölje +-al az	igaz,al a hamis állításokat! (5p)				
1. Csak NOR kapukkal és a 0 logikai konstanssal minden lo					
2. Egy D flip-flopból egyetlen EXOR kapuval 1 bites enged					
3. Az aszinkron RAM-ok az /WR alacsony szintje alatt írják be az adatot.					
4. A processzorhoz a perifériától érkező interrupt kérés mindig érvényre jut.					
5. A MiniRISC processzor 3 regiszter címes architektúrával rendelkezik.					
Feladatok:					
F1. (13p) Adott egy FSM az alábbi kódolt állapotgráfjával. Végezze el az alábbi feladatokat!					
//A konstans és változó deklarációk	c.//Next_state logika (6p): always@()				
localparam [1:0] $A = 2'b00$, $B = 2'b01$,	case (state)				
C = 2'b10, D = 2'b11;	A: next_state <=;				
reg [1:0] state;	D.				
reg [1:0] next_state;					
a. Mealy vagy Moore modell szerint működik?	C: if(x)				
(1p)					

b. Adja meg az állapotregiszter Verilog leírását! //Állapotregiszter (2p): always@(.....)

if (rst) state <=

else state <= else

default:;

d. Az FSM kimenete az állapotkód és a z változó. Adja meg a z kimenet Verilog leírását! Elkezdtük, folytassa! (2p)

wire z;

assign z =.....

e. Az automata bemenetére x=0-át adunk folyamatosan. Milyen ismert funkcionális elemnek megfelelően viselkedik az FSM? Adja meg a nevét és tulajdonságait! (2p)

F2. (18p) A feladat egy páros reflexidő játék tervezése adatstruktúra-vezérlő felbontásban. A készülék nyomógombjai lenyomáskor 1 órajel hosszú impulzust adnak a rendszerórajellel szinkronban (nem kell megtervezni). A játékot a START nyomógombbal indítja a játékmester. Ennek hatására a készülék véletlenszerűen kigyújtja valamelyik játékos LED-jét (LD0 vagy LD1). (Rendelkezésre áll egy külső 1 bites jel (RND), melynek állapota a START impulzus megjelenése után véletlenszerű). Ugyanekkor elindul a másik játékoshoz tartozó 2 számjegyes pont számláló (BCD_cnt0 vagy BCD_cnt1) és 0.1sec-onként lép 1-et. (A léptetéshez adott egy külső 0.1 sec-onként 1 órajelig aktív sig_01s jel.) A játékosok feladata, hogy a saját LED-jük kigyulladásakor minél gyorsabban nyomják le a nyomógombjukat (PB0 ill. PB1), hogy a másik játékos pontszámlálója minél kevesebbet lépjen. Amint az aktuális játékos lenyomta a nyomógombját, leáll a másik ponszámlálója, elindul a sajátja és kigyullad a másik játékos LED-je. Most neki kell minél gyorsabban lenyomni a nyomógombját. A játék addig tart, amig valamelyik játékos pont számlálója el nem éri a 99-et (ez a játékos nyer), ekkor ponszámlálók megállnak, LD0 és LD1 kialszik. Ezután a START újboli megnyomására kezdhető újra a játék. Az áramkör órajele egy néhány MHz-es clk jel (pontos értéke itt lényegtelen). A kijelzés megvalósításától az egyszerűsítés végett eltekintünk.

A feladat megoldását részfeladatokra bontottuk.

- a. Tervezzen meg egy BCD_cnt, 10-es modulusú felfele számláló egységet! (Adja meg a Verilog leírását!) Legyen szinkron törölhető (rst), engedélyezhető (e)! A leírást alább elkezdtük, fejezze be! (5p)
- b. Példányosítson az a-pontbeli modulból kettőt-kettőt úgy, hogy azok páronként egy 2 dekádos BCD számlálót alkossanak (BCD_cnt0L ill. BCD_cnt1L a kisebb helyiértékű digit). Ezek a pont számlálók. A számlálókat törölje az rst és a vezérlő cnt_cl jele is, 0.1sec-onként lépjen (sig_01s), amelyiket a vezérlő engedélyezi a cnt e0 vagy cnt e1 jellel! (6p)

 BCD_cnt
 BCD_cnt0L (.clk(.....), rst(......), .e(............), .tc(tc0L), .q(q0L));

 BCD_cnt
 BCD_cnt0H (.clk(......), rst(........), .e(........), .tc(tc0H), .q(q0H));

 BCD_cnt
 BCD_cnt1L (.clk(......), rst(.......), .e(................), .tc(tc1L), .q(q1L));

BCD_cnt BCD_cnt1H (.clk(.....), rst(.....), .e(....), .tc(tc1H), .q(q1H)); c. Adja meg azt az f feltételt, amely jelzi, hogy két **a.** BCD számlálóVerilog leírása: kaszkádosított számláló közül valamelyik module BCD cnt (input clk, rst, e, output végállapotban van! (a q0H, q0L, q1H, q1L tc, output reg [3:0] q); jeleket használja) (1p) assign $tc = e \& \dots$ always @(.....) assign f = begin if (rst) else Tervezze meg a vezérlő Moore állapotgráfját és if (.....) rajzolja le! A rajzot elkezdtük, fejezze be! (Hiányzó állapotátmenetek (nyilak), hiányzó if(.....) állapotátmeneti feltételek, hiányzó kimenetek! Feltétel nélküli állapotátmenet esetén ne írjon else semmit a nyílra!) (6p) end endmodule LD1 =..... /START cnt_cl = cnt_e0 = 1 WAIT PB1 $\langle \cdot \rangle_{l}$ cnt e1 = ... START PB1&....

IMSC (5p) Külön lapon adja meg a sig01s jelet előállító modul Verilog leírását! A modul a rendszer 16MHz-es órajeléből állítja elő a 0.1sec-onként 1 órajelig aktív *sig_01s* jelet.

LD1 =0

cnt_cl = 0 cnt_e0 = 0

cnt e1 = 0

LD1 =...

cnt_cl = 1 cnt_e0 = .

cnt e1 =

WAIT PBO

LD0 =

cnt_cl = cnt_e0 = cnt_e1 =

F3. (17p) Egy külső adatfogadó egységet kell kezelni a MiniRSIC processzorhoz illesztett logika segítségével. A külső egység 4 bites részletekben képes 8 bites adatokat fogadni a PD3-0 adatvonalain. Egy BUSY jellel jelzi, amikor nem képes adat fogadására. A 8 bites adat beírása két DWR impulzussal történik. Az alsó 4 bitjet az első DWR, felső 4 bitjet a második DWR impulzus lelfutó éle írja be. A 2. DWR hatására a BUSY jel 1-be áll, amíg a periféria újabb adat fogadására nem képes. A DWR impulzus minimális hossza legalább 1 MiniRISC Tclk.

Ehhez a külső egységhez kell periféria illesztő logikát tervezni a MiniRISC buszra (A[7:0], Din[7:0], Dou[7:0], RD, WR, IRQ, clk, rst). A periféria illesztő parancs regiszterrel (PR), státusregiszterrel (SR) és egy adatregiszterrel (DR) rendelkezik. A DWR impulzus előállítására a parancsregiszter beíró jelét használjuk (DWR = PR_wr, a kiírt adat értéke lényegtelen). A periféria BUSY jelének aktuális értéke a státusregiszter D0 bitjén olvasható be, a többi bit értéke a beolvasáskor bármi lehet. Az 4 bites adatot az illesztő adatregiszterének alsó 4 bitjére kell kiírni, a felső 4 bit értéke tetszőleges lehet. Az adat regiszter visszaolvasható. A periféria báziscíme 0xD0. A programozói felülete a következő:

funkció	Cím	D7 D6 D5 D4 D3 D2 D1 D0	olvasható/írható
Parancs regiszter PR	Báziscím +0	\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}	W (PR_wr)
Státus regiszter SR	Báziscím + 1	x x x x x x x BUSY	R (SR_rd)
Adat regiszter DR	Báziscím + 2	x x x x PD3 PD2 PD1 PD0	W/R (DR_wr , DR_rd),

Tervezze meg Verilog nyelven a periféria parancs regiszterbe írást engedélyező *PR_wr*, a státus regiszter és az adatregiszter olvasását engedélyező \hat{SR}_rd és DR_rd jeleit, továbbá a kimeneti adatregiszter írását engedélyező *DR_wr* jelet! (6p)

parameter base_addr =	// a periféria kezdőcíme
assign psel =	// aktív, ha a periféria címtartományához fordul a processzor
assign PR_wr =	
assign SR_rd =	
assign DR_rd =	
assign DR_wr = b. Adja meg Verilog nyelven az adatregiszter leírás	sát! Az adatregiszter 4 bites, a Dou[3:0] íródik bele, ha a

- **DR_wr** jel aktív. Az **rst** jel törli. Elkezdtük, folytassa! (2p) Adja meg Verilog nyelven a státus regiszter és adat regiszter visszaolvasásához szükséges logikát! Elkezdtük,

folytassa! (2p)	
b. reg [3:0] q;]	c. always(*)
always @()	case({SR_rd, DR_rd})
if(rst) q <= 4'b	2'b10: Din[0] <=
else	2'b01: Din[3:0] <=
if(q <=	default: Din <= 8'h;
	endcase
assign PD = q; // PD a periféria kimenete	
d. Folytassa az assembly programhoz szükséges	e. Irjon meg egy olyan szubrutint, amely az r0 regiszterben
definíciókat! (1p)	megadott 8 bites adatot két 4 bites részletben kiírja a
DEF PR 0xD0	perifériára, ha az nem foglalt! (2p)
DEF SR	
DEF DR	DatWR: mov r2,; státus olvasás
DEF BUSY	tst;BUSY bit tesztelése
DATA	;vissza, ha még foglalt
DatArrLen: DB 0x06	;adat alsó 4 bit kiírása DR-be
DatArr: DB 0xaa, 0xfd, 0xbf, 0x75, 0x79,0x55	; DWR generálás
CODE	;felső alsó 4 bit csere
	;adat felső 4 bit kiírása DR-be
	; DWR generálás
	;visszatérés

f. Az előbbi szubrutint felhasználva írjon olyan program részletet, amely a d. pontnál definiált DatArr területről kiír a **DatArrLen** címen található számú adatot a perifériába! (DatArrLen > 0 és DatArrLen < 32) (4p)

```
ArrWr: mov r10, #.....
                        ;tömb hossz címének betöltése
      mov r10,.....
                        ;tömb hossz beolvasása
      mov r11, #.....
                        ;tömb címének betöltése
                        ;adat beolvasása a memóriából
loop:
      mov r0, .....
                        ;adat kiírása a perifériába
      ;cím növelés
      ;adat számláló csökkentés
      ......
                        ;vissza, ha van még adat
```

IMSC (5p) A külső egység kezelése a fenti módon kicsit nehézkes. Használjon az illesztő eredeti 4 bites adatregisztere helyett 8 biteset, így a teljes 8 bites adat egyszerre beleírható! Tervezzen utána olyan logikát, amely a külső egység 4 bites PD[3:0] adat bemenetére az adatregiszterbe írás (DR wr) után az adatregiszter alsó 4 bitjét kapcsolja, a DWR impulzus (PR_wr) kiadása után pedig a felső 4 bitjét.

Rendelkezésre álló idő: 100 perc