

Visual Semantic Context Encoding for Aerial Data Introspection and Domain Prediction

KRIEGLER, Andreas (Master thesis), STEININGER, Daniel and WÖBER, Wilfried

Motivation

Semantic context only learned implicitly

Domain prediction for downstream tracking

Contributions

Simple context extraction for explicit priors

SemanticAircraft: Harvested & filtered

Domain prediction via novel baseline,
neural network & mixture model

Data introspection gives important insights

Algorithm 3 Thresholding domain prediction

Requisites: Set of context vectors $C_{\mathbf{i}/\mathbf{q}}$. Set of domains \mathbf{d} and for every domain and superclass \mathbf{s} consisting of classes c a certain range $\mathbf{r}_{x,y}$ and weight $\mathbf{w}_{x,y}$. Domain-prediction threshold of th and a decrease th_d .

```
1: function TDP(C_{i/q}, \mathcal{D}, \mathcal{S}, \mathcal{R}, \mathcal{W}, th, th_d)
 2:
           for c in \mathcal{C} do
                                                                                           ▶ For every context vector
                d_s \leftarrow \mathbf{0} : \mathbf{0} \in \mathbb{R}^{n \times 1}
 3:
                                                                                        ▶ Initialize the domain score
                for d in \mathcal{D} do
 4:
                                                                                               ▶ And for every dataset
                                                                                 \triangleright And superclass in that dataset
                     for s in S do
 5:
                          \begin{array}{l} \textbf{s\_s} \leftarrow \sum_i c_i, \forall c \in \textbf{s} \\ \textbf{if} \ \textbf{s\_s} \in [\textbf{r}_{d,s,l}, \textbf{r}_{d,s,u}] \ \textbf{then} \end{array}
                                                                                ▶ Aggregate context of all classes
 6:
                                                                                          ▷ Check if score is in range
 7:
                                d_s_d \leftarrow d_s_d + \mathbf{w}_{d,s}
                                                                            ▶ Add a weight to the domain score
 8:
 9:
                if max(d_s) > th then
                                                                                              ▶ Take the top-1 domain
                     l_{\mathbf{c}} \leftarrow argmax(d_{\mathbf{s}})
10:
                                                                                    ▶ And assign the domain label
11:
                 else
12:
                                                             ▷ Or decrease threshold until domain is found
                      th \leftarrow th - th_d
13:
                                                             ▶ Return domain labels for every image patch
           return l
```

Table 1: Visual percentage-wise context for the *SemanticAircraft* dataset showing dominant sky-context. Context across all four quadrants was merged.

	building	elevation	object	pavement	person	plant	sky	soil	vehicle	waterbody
Instances Quadrants		3.2 2.8	1. 5	15.8 17.4						1.3 1.9

Table 2: Accuracy of all three models predicting domains of airplane instances and quadrants from *SemanticAircraft*.

Inst	ances	Quadrants			
Including Other	Excluding Other	Including Other	Excluding Other		
 0.588 ± 0.015	0.796 ± 0.011	0.639 ± 0.017	0.799 ± 0.006		
 0.586 ± 0.048 0.716 ± 0.015	0.712 ± 0.06 0.854 ± 0.011	0.539 ± 0.029 0.692 ± 0.013	$0.637 \pm 0.083 \\ 0.778 \pm 0.006$		

