Package 'Manifoldgstat'

March 21, 2019

Type Package

Title Kriging prediction for manifold-valued data.

Version 1.0.0
Description Inference and prediction for manifold-valued data analysis. This package provides a C++ implementation of the functions to create a model, for spatial dependent manifold valued data, in order to perform kriging. In each location, specified by a vector of coordinates ([lat,long], [x,y] or [x,y,z]), the datum is supposed to be a symmetric and positive definite matrix (possibly a correlation matrix). The algorithm exploits a projection of these data on a tangent space, where the tangent point is either provided by the user or computed as intrinsic mean of the data in input.
Depends R (>= 3.2.0), Rcpp (>= 0.12.16), RcppEigen (>= 0.3.3.4.0), plyr(>= 1.8.4)
LinkingTo Rcpp, RcppEigen
NeedsCompilation yes
SystemRequirements C++11
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
R topics documented:
bootstrapVar

2 distance_manifold

boo	tst	ran	Var

Bootstrap variance

Description

Bootstrap variance

Usage

```
bootstrapVar(res.boot, res.aggr, K, metric_manifold)
```

distance_manifold

Distance on the manifold

Description

Compute the manifold distance between symmetric positive definite matrices

Usage

```
distance_manifold(data1, data2, metric_manifold = "Frobenius")
```

Arguments

data1 list or array [p,p,B1] of B1 symmetric positive definite matrices of dimension

p*p. Or a single p*p matrix

data2 list or array [p,p,B2] of B2 symmetric positive definite matrices of dimension

p*p. Or a single p*p matrix.

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot", "Correlation"

Details

If B2=B1 then the result is a vector of length B1=B2 containing in position i the manifold distance beetween data1[,,i] and data2[,,i]. Instead if B2=1 and B1!=1 the result is a vector of length B1 containing in position i the manifold distance between data1[,,i] and data2[,,1]

Value

A double or a vector of distances

Examples

```
data_manifold_model <- Manifoldgstat::rCov
distances <-distance_manifold(data_manifold_model, diag(2), metric_manifold = "Frobenius")
print(distances)</pre>
```

full_RDD 3

full_RDD	Perform full_RDD
–	

Description

Perform full_RDD

Usage

```
full_RDD(data_coords, data_val, K, grid, nk_min = 1, B = 100,
    suppressMes = F, tol = 1e-12, max_it = 100, n_h = 15,
    tolerance_intrinsic = 10^(-6), X = NULL, X_new = NULL,
    ker.width.intrinsic = 0, ker.width.vario = 1.5,
    graph.distance.complete, data.grid.distance, N_samples, p,
    aggregation_mean, aggregation_kriging, method.analysis = "Local mean",
    metric_manifold, metric_ts, model_ts, vario_model, distance = NULL)
```

Arguments

data_coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees	
data_val	array [p,p,N] of N symmetric positive definite matrices of dimension p*p	
K	number of neighborhood (i.e., centers) to sample at each iteration	
grid	prediction grid	
nk_min	minimum number of observations within a neighborhood	
В	number of \texitdivide iterations to perform	
suppressMes	{TRUE, FALSE} controls the level of interaction and warnings given	
tol	tolerance for the main loop of model_kriging	
max_it	maximum number of iterations for the main loop of model_kriging	
n_h	number of bins in the empirical variogram	
tolerance_intrinsic		
	tolerance for the computation of the intrinsic mean. Not needed if Sigma is provided	
X	matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL	
X_new	matrix (with the same number of rows of new_coords) of additional covariates for the new locations, possibly NULL	
ker.width.intrinsic		
	parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0, no kernel is used)	
ker.width.vario		

parameter controlling the width of the Gaussian kernel for the computation of the empirical variogram (if 0, no kernel is used)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

4 intrinsic_mean

data.grid.distance

N*dim(grid)[1] distance matrix between locations where the datum has been

observed and locations where the datum has to be predicted

N_samples number of samples

p dimension of the manifold matrices

aggregation_mean

"Weighted" ...

aggregation_kriging

"Weighted" if the prediction must be aggregated using different weights, "Equal" to use equal weights

method.analysis

"Local mean" to predict just with the mean, "Kriging" to predict via Kriging

procedure

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Value

According to the analysis chosen:

- If method.analysis = "Local mean" it returns a list with the following fields
 - resBootstrap...
 - resAggregated...
- If method.analysis = "Kriging" it returns a list with the following fields
 - resBootstrap...
 - resAggregated...
 - resLocalMean...

intrinsic_mean

Intrinsic mean

Description

Evaluate the intrinsic mean of a given set of symmetric positive definite matrices

Usage

```
intrinsic_mean(data, metric_manifold = "Frobenius",
  metric_ts = "Frobenius", tolerance = 1e-06,
  weight_intrinsic = NULL, weight_extrinsic = weight_intrinsic,
  tolerance_map_cor = 1e-06)
```

kriging 5

Arguments

data list or array [p,p,B] of B symmetric positive definite matrices of dimension p*p metric_manifold metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot", "Correlation"

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

tolerance tolerance for the computation of the intrinsic_mean

weight_intrinsic

vector of length B to weight the matrices in the computation of the intrinsic

mean. If NULL a vector of ones is used

weight_extrinsic

vector of length B to weight the matrices in the computation of the extrinsic

mean. If NULL weight_intrinsic are used

tolerance_map_cor

tolerance to use in the maps. Required only if metric_manifold== "Correlation"

Value

A matrix representing the intrinsic mean of the data

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov
Sigma <-intrinsic_mean(data_manifold_tot, metric_manifold = "Frobenius", metric_ts = "Frobenius")
print(Sigma)</pre>
```

kriging

Kriging prediction given the model

Description

Given the GLS model kriging prediction on new location is performed.

Usage

```
kriging(GLS_model, coords, new_coords, model_ts = "Additive",
  vario_model = "Gaussian", metric_manifold = "Frobenius",
  X_new = NULL, distance = "Geodist", tolerance_map_cor = 1e-06)
```

Arguments

GLS_model the object returned by model_GLS, or a list containing the fields: Sigma (tangent

point), beta (vector of the beta matrices of the fitted model), gamma_matrix

(N*N covariogram matrix), residuals (vector of the N residual matrices) fitted_par_vario

(estimates of *nugget*, *sill-nugget* and *practical range*)

coords N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are sup-

posed to be provided in signed decimal degrees

new_coords matrix of coordinates for the new locations where to perform kriging

6 kriging

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive" vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential" metric_manifold metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation" X_new matrix (with the same number of rows of new_coords) of additional covariates for the new locations, possibly NULL type of distance between coordinates. It must be either "Eucldist" or "Geodist" distance tolerance_map_cor tolerance to use in the maps. Required only if metric_manifold== "Correlation" data_grid_dist_mat

Matrix of dimension N*M of distances between data points and grid points. If not provided it is computed using distance

Details

The model provided is used to perform simple kriging on the tangent space in correspondence of the new locations. The estimates are then mapped to the manifold to produce the actual prediction.

Value

A list with a single field:

y.max=max(coords_tot[,2])
dimgrid=dim(coords_tot)[1]

prediction vector of matrices predicted at the new locations

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov</pre>
data_manifold_model <- Manifoldgstat::rCov</pre>
coords_model <- Manifoldgstat::rGrid</pre>
coords_tot <- Manifoldgstat::gridCov</pre>
Sigma <- matrix(c(2,1,1,1), 2,2)
model = model_GLS(data_manifold = data_manifold_model, coords = coords_model, Sigma = Sigma,
              metric_manifold = "Frobenius", metric_ts = "Frobenius", model_ts = "Coord1",
                 vario_model = "Spherical", n_h = 15, distance = "Eucldist", max_it = 100,
                    tolerance = 1e-7, plot = TRUE)
result = kriging (GLS_model = model, coords = coords_model, new_coords = coords_model, model_ts="Coord1",
             vario_model= "Spherical", metric_manifold = "Frobenius", distance="Eucldist")
result_tot = kriging (GLS_model = model, coords = coords_model, new_coords = coords_tot, model_ts="Coord1",
               vario_model= "Spherical", metric_manifold = "Frobenius", distance="Eucldist")
x.min=min(coords_tot[,1])
x.max=max(coords_tot[,1])
y.min=min(coords_tot[,2])
```

mixed_RDD 7

```
radius = 0.02
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max), xlim=c(x.min, x.max), pch='', xlab='', yla
for(i in 1:dimgrid)
{ if(i %% 3 == 0) { car::ellipse(c(coords_tot[i,1],coords_tot[i,2]), data_manifold_tot[,,i], radius=radius, ce
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]), data_manifold_model[,,i], radius=radius, center.cex=.
rect(x.min, y.min, x.max, y.max)
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max),xlim=c(x.min, x.max), pch='', xlab='', ylab
for(i in 1:dimgrid)
{ if(i %% 3 == 0) { car::ellipse(c(coords_tot[i,1],coords_tot[i,2]), (result_tot$prediction[[i]]), radius=rad
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(coords_model[i,1],coords_model[i,2]), (result$prediction[[i]]), radius=radius, center.cex=.
rect(x.min, y.min, x.max, y.max)
```

mixed_RDD

Perform mixed_RDD

Description

Perform mixed_RDD

Usage

```
mixed_RDD(data_coords, data_val, K, grid, nk_min = 1, B = 100,
   suppressMes = F, ker.width.intrinsic = 0, graph.distance.complete,
   data.grid.distance, N_samples, p, aggregation_mean, metric_ts,
   tol = 1e-12, max_it = 100, n_h = 15,
   tolerance_intrinsic = 10^(-6), X = NULL, X_new = NULL,
   create_pdf_vario = FALSE, pdf_parameters = NULL, metric_manifold,
   model_ts, vario_model, distance)
```

Arguments

data_coords	N*2 or N*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
data_val	array $[p,p,N]$ of N symmetric positive definite matrices of dimension $p*p$
K	number of neighborhood (i.e., centers) to sample at each iteration
grid	prediction grid
nk_min	minimum number of observations within a neighborhood
В	number of \texitdivide iterations to perform
suppressMes	{TRUE, FALSE} controls the level of interaction and warnings given

8 mixed_RDD

ker.width.intrinsic

parameter controlling the width of the Gaussian kernel for the computation of the local mean (if 0, no kernel is used)

graph.distance.complete

N*N distance matrix (the [i,j] element is the length of the shortest path between points i and j)

data.grid.distance

N*dim(grid)[1] distance matrix between locations where the datum has been observed and locations where

N_samples number of samples

p dimension of the manifold matrices

aggregation_mean

"Weighted" ...

metric_ts metric used on the tangent space. It must be chosen among "Frobenius", "Frobe-

niusScaled", "Correlation"

tol tolerance for the main loop of model_kriging

max_it maximum number of iterations for the main loop of model kriging

n_h number of bins in the empirical variogram

tolerance_intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is

provided

X matrix (N rows and unrestricted number of columns) of additional covariates for

the tangent space model, possibly NULL

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

create_pdf_vario

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

metric_manifold

metric used on the manifold. It must be chosen among "Frobenius", "LogEu-

clidean", "SquareRoot"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

Value

it returns a list with the following fields

- resBootstrap...
- resAggregated...
- model_pred...

model_GLS 9

model_GLS	Create a GLS model	
-----------	--------------------	--

Description

Given the coordinates and corresponding manifold values, this function creates a GLS model on the tangent space.

Usage

```
model_GLS(data_manifold, coords, X = NULL, Sigma = NULL,
  metric_manifold = "Frobenius", metric_ts = "Frobenius",
  model_ts = "Additive", vario_model = "Gaussian", n_h = 15,
  distance = "Geodist", max_it = 100, tolerance = 1e-06,
  weight_intrinsic = NULL, tolerance_intrinsic = 1e-06,
  max_sill = NULL, max_a = NULL, param_weighted_vario = NULL,
  plot = FALSE, suppressMes = FALSE, weight_extrinsic = NULL,
  tolerance_map_cor = 1e-06)
```

Arguments

data_manifold	list or array $[p,p,N]$ of N symmetric positive definite matrices of dimension $p*p$	
coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees	
Χ	matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL	
Sigma	p*p matrix representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of data_manifold	
metric_manifol	d	
	metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"	
metric_ts	metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation"	
model_ts	type of model fitted on the tangent space. It must be chosen among "Intercept", "Coord1", "Coord2", "Additive"	
vario_model	type of variogram fitted. It must be chosen among "Gaussian", "Spherical", "Exponential"	
n_h	number of bins in the emprical variogram	
distance	type of distance between coordinates. It must be either "Eucldist" or "Geodist"	
max_it	max number of iterations for the main loop	
tolerance	tolerance for the main loop	
weight_intrinsic		
	vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided	
tolerance_intrinsic		
	tolerance for the computation of the intrinsic mean. Not needed if Sigma is	

provided

10 model_GLS

max_sill maximum value allowed for sill in the fitted variogram. If NULL it is defined as 1.15*max(emp_vario_values)

as 1.15^illax (ellip_val 10_values)

max_a maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max param_weighted_vario

List of 7 elements to be provided to consider Kernel weights for the variogram: weight_vario (vector of length N_tot to weight the locations in the computation of the empirical variogram), distance_matrix_tot (N_tot*N_tot matrix of distances between the locations), data_manifold_tot (list or array [p,p,N_tot] of N_tot symmetric positive definite matrices of dimension p*p), coords_tot (N_tot*2 or N_tot*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees), X_tot (matrix with N_tot rows and unrestricted number of columns, of additional covariates for the tangent space model. Possibly NULL), h_max (maximum value of distance for which the variogram is computed) indexes_model (indexes corresponding to coords in coords_tot). Required only in the case metric_manifold = "Correlation"

plot boolean. If TRUE the empirical and fitted variograms are plotted

suppressMes boolean. If TRUE warning messagges are not printed

weight_extrinsic

vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold== "Correlation"

tolerance_map_cor

tolerance to use in the maps. Required only if metric_manifold== "Correlation"

computed using distance

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals (residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise.

Value

A list with the following fields:

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

residuals vector of the N residual matrices

emp_vario_values

vector of empircal variogram values in correspondence of h_vec vector of positions at which the empirical variogram is computed

h_vec vector of fitted_par_vario

estimates of nugget, sill-nugget and practical range

iterations number of iterations of the main loop

Sigma tangent point

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

model_kriging

Create a GLS model and directly perform kriging

Description

Given the coordinates and corresponding manifold values, this function firstly creates a GLS model on the tangent space, and then it performs kriging on the new locations.

Usage

```
model_kriging(data_manifold, coords, X = NULL, Sigma = NULL,
    metric_manifold = "Frobenius", metric_ts = "Frobenius",
    model_ts = "Additive", vario_model = "Gaussian", n_h = 15,
    distance = NULL, data_dist_mat = NULL, data_grid_dist_mat = NULL,
    max_it = 100, tolerance = 1e-06, weight_intrinsic = NULL,
    tolerance_intrinsic = 1e-06, max_sill = NULL, max_a = NULL,
    param_weighted_vario = NULL, new_coords, X_new = NULL,
    create_pdf_vario = TRUE, pdf_parameters = NULL,
    suppressMes = FALSE, weight_extrinsic = NULL,
    tolerance_map_cor = 1e-06)
```

Arguments

data_manifold	list or array [p,p,N] of N symmetric positive definite matrices of dimension p*p
coords	N*2 or $N*3$ matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees
X	matrix (N rows and unrestricted number of columns) of additional covariates for the tangent space model, possibly NULL
Sigma	$p*p$ matrix representing the tangent point. If NULL the tangent point is computed as the intrinsic mean of data_manifold
metric_manifold	
	metric used on the manifold. It must be chosen among "Frobenius", "LogEuclidean", "SquareRoot", "Correlation"
metric_ts	metric used on the tangent space. It must be chosen among "Frobenius", "FrobeniusScaled", "Correlation"

model_ts type of model fitted on the tangent space. It must be chosen among "Intercept",

"Coord1", "Coord2", "Additive"

vario_model type of variogram fitted. It must be chosen among "Gaussian", "Spherical",

"Exponential"

n_h number of bins in the emprical variogram

distance type of distance between coordinates. It must be either "Eucldist" or "Geodist"

data_dist_mat Matrix of dimension N*N of distances between data points. If not provided it is

computed using distance

data_grid_dist_mat

Matrix of dimension N*M of distances between data points and grid points. If not

provided it is computed using distance

max_it max number of iterations for the main loop

tolerance tolerance for the main loop

weight_intrinsic

vector of length N to weight the locations in the computation of the intrinsic mean. If NULL a vector of ones is used. Not needed if Sigma is provided

tolerance_intrinsic

tolerance for the computation of the intrinsic mean. Not needed if Sigma is

provided

max_sill maximum value allowed for sill in the fitted variogram. If NULL it is defined

as 1.15*max(emp_vario_values)

max_a maximum value for a in the fitted variogram. If NULL it is defined as 1.15*h_max

param_weighted_vario

List of 7 elements to be provided to consider Kernel weights for the variogram: weight_vario (vector of length N_tot to weight the locations in the computation of the empirical variogram), distance_matrix_tot (N_tot*N_tot matrix of distances between the locations), data_manifold_tot (list or array [p,p,N_tot] of N_tot symmetric positive definite matrices of dimension p*p, coords_tot (N_tot*2 or N_tot*3 matrix of [lat,long], [x,y] or [x,y,z] coordinates. [lat,long] are supposed to be provided in signed decimal degrees), X_tot (matrix with N_tot rows and unrestricted number of columns, of additional covariates for the tangent space model. Possibly NULL), indexes_model (indexes corresponding to coords in coords_tot)

new_coords matrix of coordinates for the new locations where to perform kriging

X_new matrix (with the same number of rows of new_coords) of additional covariates

for the new locations, possibly NULL

create_pdf_vario

boolean. If TRUE the empirical and fitted variograms are plotted in a pdf file

pdf_parameters list with the fields test_nr and sample_draw. Additional parameters to name

the pdf

suppressMes boolean. If TRUE warning messagges are not printed

weight_extrinsic

vector of length N to weight the locations in the computation of the extrinsic mean. If NULL weight_intrinsic are used. Needed only if Sigma is not provided and metric_manifold== "Correlation"

tolerance_map_cor

tolerance to use in the maps. Required only if metric_manifold== "Correlation"

Details

The manifold values are mapped on the tangent space and then a GLS model is fitted to them. A first estimate of the beta coefficients is obtained assuming spatially uncorrelated errors. Then, in the main the loop, new estimates of the beta are obtained as a result of a weighted least square problem where the weight matrix is the inverse of gamma_matrix. The residuals (residuals = data_ts - fitted) are updated accordingly. The parameters of the variogram fitted to the residuals (and used in the evaluation of the gamma_matrix) are computed using Gauss-Newton with backtrack method to solve the associated non-linear least square problem. The stopping criteria is based on the absolute value of the variogram residuals' norm if ker.width.vario=0, while it is based on its increment otherwise. Once the model is computed, simple kriging on the tangent space is performed in correspondence of the new locations and eventually the estimates are mapped to the manifold.

Value

list with the following fields:

beta vector of the beta matrices of the fitted model

gamma_matrix N*N covariogram matrix

residuals vector of the N residual matrices

emp_vario_values

vector of empircal variogram values in correspondence of h_vec

h_vec vector of positions at which the empirical variogram is computed

fitted_par_vario

estimates of nugget, sill-nugget and practical range

iterations number of iterations of the main loop

Sigma tangent point

dimgrid=dim(coords_tot)[1]

prediction vector of matrices predicted at the new locations

References

D. Pigoli, A. Menafoglio & P. Secchi (2016): Kriging prediction for manifold-valued random fields. Journal of Multivariate Analysis, 145, 117-131.

Examples

```
data_manifold_tot <- Manifoldgstat::fieldCov
data_manifold_model <- Manifoldgstat::rCov
coords_model <- Manifoldgstat::rGrid
coords_tot <- Manifoldgstat::gridCov
Sigma <- matrix(c(2,1,1,1), 2,2)

result = model_kriging (data_manifold = data_manifold_model, coords = coords_model, Sigma = Sigma, metric_manimetric_ts = "Frobenius", model_ts = "Coord1", vario_model = "Spherical", n_h = 15, distance = "max_it = 100, tolerance = 10e-7, new_coords = coords_model)

result_tot = model_kriging (data_manifold = data_manifold_model, coords = coords_model, Sigma = Sigma, metric_manimetric_ts = "Frobenius", model_ts = "Coord1", vario_model = "Spherical", n_h = 15, distance max_it = 100, tolerance = 10e-7, new_coords = coords_tot, create_pdf_vario = FALSE)

x.min=min(coords_tot[,1])
x.max=max(coords_tot[,1])
y.min=min(coords_tot[,2])
y.max=max(coords_tot[,2])</pre>
```

```
radius = 0.02
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max), xlim=c(x.min, x.max), pch='', xlab='', yla
for(i in 1:dimgrid)
{ if(i %% 3 == 0) { car::ellipse(c(coords_tot[i,1],coords_tot[i,2]) , data_manifold_tot[,,i],radius=radius, ce
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
 \{ \ car:: ellipse(c(coords\_model[i,1],coords\_model[i,2]) \ , \ data\_manifold\_model[,,i], radius=radius, \ center.cex=. \ details a constant of the coordinate of the coordi
rect(x.min, y.min, x.max, y.max)
par(cex=1.25)
plot(0,0, asp=1, col=fields::tim.colors(100), ylim=c(y.min,y.max),xlim=c(x.min, x.max), pch='', xlab='', ylab
for(i in 1:dimgrid)
\{ if(i \% 3 == 0) \{ car::ellipse(c(coords_tot[i,1],coords_tot[i,2]) , (result_tot$prediction[[i]]),radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=radius=
rect(x.min, y.min, x.max, y.max)
for(i in 1:250)
{ car::ellipse(c(rGrid[i,1],rGrid[i,2]) , (result$prediction[[i]]),radius=radius, center.cex=.5, col='red')}
 rect(x.min, y.min, x.max, y.max)
```

Index

```
bootstrapVar, 2
distance_manifold, 2
full_RDD, 3
intrinsic_mean, 4
kriging, 5
mixed_RDD, 7
model_GLS, 9
model_kriging, 11
```