

Control Theory Lecture 10: Control System Design (2)

Prof Simon Maskell CHAD-G68 s.maskell@liverpool.ac.uk 0151 794 4573

Cascade Compensators C(s) F(s) P(s) Designing PID/Lead-lag Compensators Designing PID/Lead-lag Compensators

ELEC 207 Part B

This lecture covers:
Design of a Control System via root loctes.

Control Theory Lecture 10: Control System Design (2)

Prof Simon Maskell
CHAD-G68
s.maskell@liverpool.ac.uk
0151 794 4573

This lecture covers:

• Design of a Control System via root locus.

SLEC 2078: Timeli

No. of the No. of the No.

ELEC 207B: Timeline

This lecture covers:

• Design of a Control System via root locus.

SLEC 2078: Timeli

No. of the No. of the No.

Compensators

Cascade Compensators

Compensators

Compensators

Cascade Compensators

Improving Steady-state Error

Input		System Type [3]		
		Type-0	Type-1	Type-2
Step	x(t) = u(t)	$\frac{1}{1+K_p}$	0	0
Ramp	x(t) = t	∞	$\frac{1}{K_v}$	0
Parabola	$x(t) = \frac{t^2}{2}$	∞	∞	$-\frac{1}{K_a}$

$$K_p + \frac{K_I}{s} = K_p \frac{s + \frac{K_I}{K_p}}{s}$$

Lag Compensator

Consider an exemplar ramp input to a type-1 system:

$$\lim_{t \to \infty} e(t) = \frac{1}{K_v}$$

$$K_v = \lim_{s \to 0} sG(s)$$

Add a pole and zero:

$$\tilde{K}_v = \lim_{s \to 0} sG(s) \frac{s - z_c}{s - p_c} = K_v \frac{z_c}{p_c}$$

Lag compensators only require passive components (resistors and capacitors) whereas PI compensators require active components (Op Amps).

System Type

Unity Negative Feedback (Representation of) System

$$G(s) = \frac{1}{(s-3)(s-0)(s-4)(s-5)(s-0)}$$

$$= \frac{1}{s^2(s-3)(s-4)(s-5)}$$

Improving Steady-state Error

Input		System Type [3]		
		Type-0	Type-1	Type-2
Step	x(t) = u(t)	$\frac{1}{1+K_p}$	0	0
Ramp	x(t) = t	∞	$\frac{1}{K_v}$	0
Parabola	$x(t) = \frac{t^2}{2}$	∞	∞	$-\frac{1}{K_a}$

$$K_p + \frac{K_I}{s} = K_p \frac{s + \frac{K_I}{K_p}}{s}$$

Lag Compensator

Consider an exemplar ramp input to a type-1 system:

$$\lim_{t \to \infty} e(t) = \frac{1}{K_v}$$

$$K_v = \lim_{s \to 0} sG(s)$$

Add a pole and zero:

$$\tilde{K}_v = \lim_{s \to 0} sG(s) \frac{s - z_c}{s - p_c} = K_v \frac{z_c}{p_c}$$

Lag compensators only require passive components (resistors and capacitors) whereas PI compensators require active components (Op Amps).

PI Control / "Ideal Integration Compensation"

$$K_p + \frac{K_I}{s} = K_p \frac{s + \frac{K_I}{K_p}}{s}$$

Improving Steady-state Error

Input		System Type [3]		
		Type-0	Type-1	Type-2
Step	x(t) = u(t)	$\frac{1}{1+K_p}$	0	0
Ramp	x(t) = t	∞	$\frac{1}{K_v}$	0
Parabola	$x(t) = \frac{t^2}{2}$	∞	∞	$-\frac{1}{K_a}$

$$K_p + \frac{K_I}{s} = K_p \frac{s + \frac{K_I}{K_p}}{s}$$

Lag Compensator

Consider an exemplar ramp input to a type-1 system:

$$\lim_{t \to \infty} e(t) = \frac{1}{K_v}$$

$$K_v = \lim_{s \to 0} sG(s)$$

Add a pole and zero:

$$\tilde{K}_v = \lim_{s \to 0} sG(s) \frac{s - z_c}{s - p_c} = K_v \frac{z_c}{p_c}$$

Lag compensators only require passive components (resistors and capacitors) whereas PI compensators require active components (Op Amps).

Lag Compensator

Consider an exemplar ramp input to a type-1 system:

$$\lim_{t \to \infty} e(t) = \frac{1}{K_v}$$

$$K_v = \lim_{s \to 0} sG(s)$$

Add a pole and zero:

$$\tilde{K}_v = \lim_{s \to 0} sG(s) \frac{s - z_c}{s - p_c} = K_v \frac{z_c}{p_c}$$

Lag compensators only require passive components (resistors and capacitors) whereas PI compensators require active components (Op Amps).

Cascade Compensators

Improving Transient Reponse

- The dominant poles are poles that are 5 times closer to the imaginary axis than the others.
- We can approximate the transient response by considering the first-order or second-order system defined by the closest poles to the imaginary axis

$$\frac{\%OS}{100} = e^{-\zeta\pi\sqrt{1-\zeta^2}} \quad t_s \approx \frac{4}{\zeta\omega}$$

Faster Transient Response

Improving Transient Reponse

- The dominant poles are poles that are 5 times closer to the imaginary axis than the others.
- We can approximate the transient response by considering the first-order or second-order system defined by the closest poles to the imaginary axis

$$\frac{\%OS}{100} = e^{-\zeta\pi\sqrt{1-\zeta^2}} \quad t_s \approx \frac{4}{\zeta\omega}$$

PD Control / "Ideal Derivative Compensation"

$$K_p + K_d s = K_d \left(s + \frac{K_p}{K_d} \right)$$

Adding PD control will be likely to alter (ie not necessary improve) the steady-state error.

Improving Transient Reponse

- The dominant poles are poles that are 5 times closer to the imaginary axis than the others.
- We can approximate the transient response by considering the first-order or second-order system defined by the closest poles to the imaginary axis

$$\frac{\%OS}{100} = e^{-\zeta\pi\sqrt{1-\zeta^2}} \quad t_s \approx \frac{4}{\zeta\omega}$$

Lead Compensator

Add a zero and a pole:

- Lead compensators only require passive components (resistors and capacitors) whereas PD compensators require active components (Op Amps).
- A lead compensator also avoids amplification of high-frequency noise.

Improving Transient Reponse

- The dominant poles are poles that are 5 times closer to the imaginary axis than the others.
- We can approximate the transient response by considering the first-order or second-order system defined by the closest poles to the imaginary axis

$$\frac{\%OS}{100} = e^{-\zeta\pi\sqrt{1-\zeta^2}} \quad t_s \approx \frac{4}{\zeta\omega}$$

Cascade Compensators

Designing PID/Lead-lag Compensators

Design Process

- Longit the PD controller or such-compensation to meet the transient response specifications; this moves the root locus to where it needs to be
 Verify that the transient response is as predicted and invarie if neospary
- The poles nearest the imaginary axis may not be dominant poles
 Design the PL centroller of lag-compensator to achieve the required
- Verify that the steady-state error and transient response are as predicted and iterate the design if necessary
- The "areal" changes to the root locus may be larger than anticipated

Improving Transient Reponse

- The dominant poles are poles that are 5 times closer to the imaginary axis than the others.
- We can approximate the transient response by considering the first-order or second-order system defined by the closest poles to the imaginary axis

$$\frac{\%OS}{100} = e^{-\zeta\pi\sqrt{1-\zeta^2}} \quad t_s \approx \frac{4}{\zeta\omega}$$

Design Process

- Design the PD controller or lead-compensator to meet the transient response specifications; this moves the root locus to where it needs to be.
- Verify that the transient response is as predicted and iterate if necessary
 - The poles nearest the imaginary axis may not be dominant poles
- Design the PI controller or lag-compensator to achieve the required steady-state error.
- Verify that the steady-state error and transient response are as predicted and iterate the design if necessary
 - The "small" changes to the root locus may be larger than anticipated.

Designing PID/Lead-lag Compensators

Design Process

- Longit the PD controller or such-compensation to meet the transient response specifications; this moves the root locus to where it needs to be
 Verify that the transient response is as predicted and invarie if neospary
- The poles nearest the imaginary axis may not be dominant poles
 Design the PL centroller of lag-compensator to achieve the required
- Verify that the steady-state error and transient response are as predicted and iterate the design if necessary
- The "areal" changes to the root locus may be larger than anticipated

Improving Transient Reponse

- The dominant poles are poles that are 5 times closer to the imaginary axis than the others.
- We can approximate the transient response by considering the first-order or second-order system defined by the closest poles to the imaginary axis

$$\frac{\%OS}{100} = e^{-\zeta\pi\sqrt{1-\zeta^2}} \quad t_s \approx \frac{4}{\zeta\omega}$$

Cascade Compensators

Compensators

This lecture covers:

• Design of a Control System via root locus.

SLEC 2078: Timeli

No. of the No. of the No.