

電紙オルガンを作ろう

概要

- * 導入
- * デジタル電子工作の基礎知識
- *電紙オルガンを作ろう
- *まとめ

デジタル電子工作に必要な知識

電気回路/電子回路

*回路は回路(circuit)です。全体が輪っかとして繋がっていなければ動きません。

* 回路ではない

電子部品と回路図

配線

- *電気を流す線で金銀銅(ほとんどが銅)が使われます。
- *他の線と意図しない接触をさせないために被覆されています。
- * 回路図では線として書かれます。
- * 交差点では接続するかしないかの注意が必要です。
- * デジタル回路では何本かをまとめてI本の線として書かれることも 多いです。

スイッチ

- *基本は単純に配線をつないだり切ったりする装置です。 (配線を切ったら回路ではなくなります。)
- *様々なスイッチがあり、入力のセンサーとしても良く利用されます。

電源/グランド

- *電源[Vcc, Vdd]
 - *複数の電源(電圧)が必要な場合がある。
 - * 5V, 3.3V, 12V
- * グランド[GRND, Vss]
 - * 回路のグランド
 - * アース
 - * 筐体

抵抗

- *電流を熱に変換(発熱します)
 - * 電流制限や電圧の変更に利用します。
 - * 昔と今では記号が違う
 - * JISカラーコードについて
 - * 黒いo服, 茶をェ杯, 赤い2ンジン, 橙三の男, 黄4恵子, 緑5
 - * 青二才の6でなし、紫7部、灰 8(や)ー、白(ホワイト)9リスマス

コンデンサ

* デジタル回路では電源関係および、ノイズ除去に使います。

その他

- * ダイオード
 - * 一方向にしか電流が流れません。

- * 発光ダイオード
 - *流れた電流が光に変換されます。

オームの法則

V = IR

- * V電圧 単位 V (ボルト)
- * I 電流 単位 A (アンペア)
- * R抵抗 単位 Ω (オーム)

- 「ボルタ」さんの名前より
- 「アンペール」さんの名前より
 - 「オーム」さんの名前より

その他

*電力W=I×V 単位W

*静電容量 F(ファラッド)

*インダクタンス H(ヘンリー)

「ワット」さんの名前より

「ファラデー」さんの名前より

「ヘンリー」さんの名前より

*mAとかΚΩとかMΩとかは

*m(ミリ) r/1000を表す

*µ(マイクロ) 1/10000000

*n(ナノ) 1/000000000

*K(キロ) 1000倍を表す

*M(メガ) 1000000倍を表す

電圧/電流を制御する。

- * 抵抗で分圧する。
 - * LEDをつける場合
 - *スイッチを入力にする場合

部品の取り扱いについて

- *部品の定格
 - * 通常電流, 最大電流, 通常電圧, 最大電圧
 - *超えると壊れます。
- * ICなど..静電気で壊れます。(人によります)
- * 配線ケーブル
 - * 曲げたり、潰したりすると断線や性能劣化が起こります。

Tips

- *電源について
 - *電源電圧と電源容量
- * LEDについて
 - * 壊れます
 - * 物理的破壊, 温度(半田付けの場合), 過電流
 - * arduinoでは直付け(直接GPIOに刺す)しても壊れないようです。
 - *電流制限 or 電流限界
- * コンデンサについて
 - * デジタル工作ではノイズを防ぐためにICの電源に入れる

arduinoの概要

arduinoの概要

- * 入力
- * 演算
- * 出力
- *独立して動く

入力

- * デジタル入力とアナログ入力
- * 通信によるセンサー入力

出力

* デジタル出力(o,1) → (GND, Vcc)

* PWM(高速にo,iを繰り返す) on/offの時間の割合でアナログ的に制御

演算

* 入力を取り込み,出力する。

IDEの設定

- * IDEをダウンロードし、インストールする。
 (http://arduino.cc/ のDownloadより)
- * IDEプログラムを立ち上げて最初にすること
 - * arduinoの種類の選択 ("Arduino UNO")
 - *接続ポートの指定(/dev/cu.xxxxx)
 - * programmerの指定("ArduinoISP")
 - ※カッコ内はMac OSの場合の例

- 電紙オルガンを作ろう -

準備するもの

- * arduino 本体
- * キーボード用紙
- * 8pinケーブル
- * 1pinケーブル×2
- * 圧電ブザー

キーボードの回路

- * キーボードは12個
 - * GPIO端子が足りない??
- * たくさんのスイッチを検出するためマ トリクスを使います。

キーボードを組み立てる。

組み立ての前に確認

- * 印刷の確認
- * 絶縁テープ(セロハンテープ)を貼る

折り曲げと差し込み

* キー折り曲げて白鍵, 黒鍵を順に差し込みます。

キーボードにケーブルを貼り付ける

- * 銅製の導電テープで黒鍵と白鍵の配線しながらケーブルをテープで貼り付けるます。
- * 配線
 - * 黒 Do Do#, 茶 Re Re#, 赤 Mi Mi#, 橙 Fa
 - * 黄 So So#, 緑 La La#, 青 Si, 紫 Do(高音)
 - *灰色黑鍵,白白鍵,

arduinoにつなぐ

- * キーボードのケーブルをarduinoにつなぎます。
 - * 鍵盤8pinケーブルの0~7をGPIO0~7 に差し込む。(C, C#側が0)
 - *黒鍵用の1pinケーブルをGPIO8に差し込む。
 - * 白鍵用の1pinケーブルをGPIO9に差し込む。
- *圧電ブザーの端子(黒)をGNDに端子(赤)をGPIO13に差し込む。

スケッチ

*スケッチは(https://github.com/akitam/paperkey)
よりダウンロードできます。

やること

- * キーが押されていたらそのキーに対応する音を出す。
- * キーが離されたら音を止める
- *別のキーが押されたら、音を止めて、押されているキー の音を出す

制限事項

- * 今回はtone関数を使う(2音以上は出ません)
- *押されているキーが変わったら音を変える
- * キーのデジタル入力はプルアップとする。(キーが押されたら0,離されたら1が返る)

if 文を使う

- * キーが押されているかどうかを順にチェックする。
- *まずは一行目(白鍵)をチェック
 - *押されていれば、指定された音階の音を出す。
- * どこも押されていなければ、二行目(黒鍵)をチェック
 - *押されていれば、指定された音階の音を出す。
- * どこも押されていなければ、音を止める

完成

*しましたか?

よく使うアドレス

- * arduino本家 http://arduino.cc/
- * http://www.adafruit.com/
- * https://www.sparkfun.com/
- * http://akizukidenshi.com/catalog/top.aspx
- * http://eleshop.jp/shop/default.aspx
- * https://www.switch-science.com/
- * http://www.sengoku.co.jp/