Homework 5

1

Mark Petersen

Exercise 1. Compute the first fundamental form for the following surfaces

- 1) $r(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u)$
- 2) $r(u,v) = (au\cos v, bu\sin v, u^2)$

Each surface is a surface in \mathbb{R}^3 parameterized by r(u,v) which is an immersion. The first fundamental form allows us pull back the standard inner product defined on \mathbb{R}^3 to the surface S. Let $\gamma:(-\epsilon,\epsilon)\to S$ with $\gamma(0)=p$, and $z=\gamma'(0)$. Then, we can measure the length of z using the standard inner product defined on \mathbb{R}^3 as

$$\left\langle \frac{d}{dt} \left(r \circ \gamma \right) \right|_{t=0}, \frac{d}{dt} \left(r \circ \gamma \right) \right|_{t=0} \right\rangle = \left\langle \frac{\partial r}{\partial x} \frac{d\gamma}{dt} \right|_{t=0}, \frac{\partial r}{\partial x} \frac{d\gamma}{dt} \Big|_{t=0} \right\rangle$$

$$= \left(\frac{\partial r}{\partial x} \frac{d\gamma}{dt} \Big|_{t=0} \right)^{\top} \left(\frac{\partial r}{\partial x} \frac{d\gamma}{dt} \Big|_{t=0} \right)$$

$$= \frac{d\gamma}{dt} \Big|_{t=0}^{\top} \left(\frac{\partial r}{\partial x} \frac{\tau}{\partial x} \frac{\partial r}{\partial t} \right) \frac{d\gamma}{dt} \Big|_{t=0}$$

where the fundamental form is given by $\left(\frac{\partial r}{\partial x}^{\top} \frac{\partial r}{\partial x}\right)$. In the first problem, we have

$$\frac{\partial r}{\partial x} = \begin{bmatrix} a\cos u\cos v & -a\sin u\sin v \\ b\cos u\sin v & b\sin u\cos v \\ -c\sin u & 0 \end{bmatrix},$$

thus

$$\begin{pmatrix} \frac{\partial r}{\partial x}^{\top} \frac{\partial r}{\partial x} \end{pmatrix} = \begin{bmatrix} a \cos u \cos v & b \cos u \sin v & -c \sin u \\ -a \sin u \sin v & b \sin u \cos v & 0 \end{bmatrix} \begin{bmatrix} a \cos u \cos v & -a \sin u \sin v \\ b \cos u \sin v & b \sin u \cos v \\ -c \sin u & 0 \end{bmatrix}$$

$$= \begin{bmatrix} a^2 \cos^2 u \cos^2 v + b^2 \cos^2 u \sin^2 v + c^2 \sin^2 u & -a^2 \cos u \sin u \sin v \cos v + b^2 \sin u \cos u \sin v \cos u \\ -a^2 \cos u \sin u \sin v \cos v + b^2 \sin u \cos u \sin v \cos u & a^2 \sin^2 u \sin^2 v + b^2 \sin^2 u \cos^2 v \end{bmatrix}$$

and the fundamental form is

$$E = a^2 \cos^2 u \cos^2 v + b^2 \cos^2 u \sin^2 v + c^2 \sin^2 u$$

$$F = -a^2 \cos u \sin u \sin v \cos v + b^2 \sin u \cos u \sin v \cos u$$

$$G = a^2 \sin^2 u \sin^2 v + b^2 \sin^2 u \cos^2 v.$$

In the second problem we have $r(u, v) = (au \cos v, bu \sin v, u^2)$

$$\frac{\partial r}{\partial x} = \begin{bmatrix} a\cos v & -au\sin v \\ b\sin v & bu\cos v \\ 2u & 0 \end{bmatrix},$$

thus

$$\begin{split} \left(\frac{\partial r}{\partial x}^{\top} \frac{\partial r}{\partial x}\right) &= \begin{bmatrix} a\cos v & b\sin v & 2u \\ -au\sin v & bu\cos v & 0 \end{bmatrix} \begin{bmatrix} a\cos v & -au\sin v \\ b\sin v & bu\cos v \\ 2u & 0 \end{bmatrix} \\ &= \begin{bmatrix} a^2\cos^2 v + b^2\sin^2 v + 4u^2 & -a^2u\cos v\sin v + b^2u\cos v\sin v \\ -a^2u\cos v\sin v + b^2u\cos v\sin v & a^2u^2\sin^2 v + b^2u^2\cos^2 v \end{bmatrix}, \end{split}$$

and the fundamental form is

$$E = a^2 \cos^2 v + b^2 \sin^2 v + 4u^2$$

$$F = -a^2 u \cos v \sin v + b^2 u \cos v \sin v$$

$$G = a^2 u^2 \sin^2 v + b^2 u^2 \cos^2 v$$

Exercise 2. If (M_1, g_1) and (M_2, g_2) are Riemannian manifolds, show that the mapping g defined by

$$g(p_1, p_2) = ((X_1, X_2), (Y_1, Y_2)) = (g_1)(p_1)(X_1, Y_1) + (g_2)(p_2)(X_2, Y_2)$$

defines a Riemannian metric on $M_1 \times M_2$, where $X_1, Y_1 \in T_{p_1}M$ and $X_2, Y_2 \in T_{p_2}M_2$. Recall that $T_{(p_1,p_2)}(M_1 \times M_2) \cong T_{p_1}M_1 \oplus T_{p_2}M_2$.

Proof: By definition, a Riemannian metric is an inner product that is a smooth function. An inner product is a function on a vector space that must satisfy the following conditions for all vectors $X_i, Y_i \in T_{p_i}M_i$ and all scalars $a \in \mathbb{R}$ (assuming that the field is the real numbers).

- 1) $g_i(aX_i, Y_i) = ag_i(X_i, Y_i)$ linearity
- 2) $g_i(X_i, Y_i) = g_i(Y_i, X_i)$ conjugate symmetry
- 3) $g_i(X_i, X_i) > 0$ if $X_i \neq 0$.

Thus, we must show that $g(p_1, p_2)$ is a smooth function that satisfies these properties on $T_{(p_1, p_2)}(M_1 \times M_2)$. Since the sum of two smooth functions is smooth, $g(p_1, p_2)$ is also smooth. For the linearity property

$$g(a(X_1, X_2), (Y_1, Y_2)) = (g_1)(p_1)(aX_1, Y_1) + (g_2)(p_2)(aX_2, Y_2)$$
$$= a((g_1)(p_1)(X_1, Y_1) + (g_2)(p_2)(X_2, Y_2)).$$

where we used to property that g_i is linear to pull out the scalar a. For conjugate symmetry property

$$g((X_{1}, X_{2}), (Y_{1}, Y_{2})) = (g_{1})(p_{1})(Y_{1}, X_{1}) + (g_{2})(p_{2})(Y_{2}, X_{2})$$

$$= (g_{1})(p_{1})(X_{1}, Y_{1}) + (g_{2})(p_{2})(X_{2}, Y_{2})$$

$$= g((X_{1}, X_{2}), (Y_{1}, Y_{2})),$$

where we used the property that q_i is conjugate symmetric. For the positive definite property

$$g((X_1, X_2), (X_1, X_2)) = (g_1)(p_1)(X_1, X_1) + (g_2)(p_2)(X_2, X_2),$$

which is positive definite since each g_i is positive definite.

Exercise 3. If (M,g) is a Riemannian manifold, and $\left\{\left(U_i,\left(x_i^j\right)\right)\right\}$ is a covering of coordinate charts on M, prove that the functions

$$(g_i)_{k,\ell}(p) = \left\langle \frac{\partial}{\partial x_i^k}, \frac{\partial}{\partial x_i^\ell} \right\rangle_p$$

uniquely determine the Riemannian metric g on M.

Proof: To show that the functions g_i uniquely determine the Riemannian metric g on M, we must show that the length of a vector in one chart has the same length in another chart. Let g_a be the metric in (U_a, φ_a) and g_b be the metric (U_b, φ_b) as defined above with $U_a \cap U_b \neq \emptyset$. Also, let $v, u \in T_pM$. The vectors in the chart (U_a, φ_a) can be represented as $v_a^k \frac{\partial}{\partial x_a^k}$ and $u_a^k \frac{\partial}{\partial x_a^k}$, then the metric g_a acting on v and u is

$$(g_a)_{k,\ell}(p)(v,u) = \langle v, u \rangle = \sum v_a^k u_a^\ell \left\langle \frac{\partial}{\partial x_a^k}, \frac{\partial}{\partial x_a^\ell} \right\rangle_p.$$

We can express the vector $v_a^k \frac{\partial}{\partial x_a^k}$ in the chart (U_b, φ_b) as

$$v_b^k \frac{\partial}{\partial x_a^k} = \left. \frac{\partial \varphi_b \circ \varphi_a^{-1}}{\partial x_a^k} \right|_n v_a^k \frac{\partial}{\partial x_a^k},$$

thus the metric g_b is

$$(g_b)_{k,\ell}(p)(v,u) = \langle v, u \rangle = \sum_{a} v_a^k u_a^\ell \left\langle \frac{\partial \varphi_b \circ \varphi_a^{-1}}{\partial x_a^k} \Big|_p \frac{\partial}{\partial x_a^k}, \frac{\partial \varphi_b \circ \varphi_a^{-1}}{\partial x_a^k} \Big|_p \frac{\partial}{\partial x_a^\ell} \right\rangle_p$$

$$= \sum_{a} v_b^k u_b^\ell \left\langle \frac{\partial}{\partial x_b^k}, \frac{\partial}{\partial x_b^\ell} \right\rangle_p.$$

Exercise 4. Consider the Riemannian metric induced by \mathbb{R}^4 on the torus $S^1 \times S^1$, parameterized by $(\cos s, \sin s, \cos t, \sin t)$. Show that this induced metric is isometric to the torus $\mathbb{R}^2/\mathbb{Z}^2$ with the first fundamental form E = G = 1 and F = 0.

As done prevoiusly

$$\frac{\partial r}{\partial x} = \begin{bmatrix} -\sin s & 0\\ \cos s & 0\\ 0 & -\sin t\\ 0 & \cos t \end{bmatrix},$$

thus

$$\begin{pmatrix} \frac{\partial r}{\partial x}^{\top} \frac{\partial r}{\partial x} \end{pmatrix} = \begin{bmatrix} -\sin s & \cos s & 0 & 0\\ 0 & 0 & -\sin t & \cos t \end{bmatrix} \begin{bmatrix} -\sin s & 0\\ \cos s & 0\\ 0 & -\sin t\\ 0 & \cos t \end{bmatrix} \\
= \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix},$$

thus E = G = 1 and F = 0.

Exercise 5. Prove that the antipodal mapping $A: S^n \to S^n$ given by A(p) = -p is an isometry of S^n . Use this fact to introduce a Riemannian metric on the real projective space $P^n(R)$ such that the natural projection $\pi: S^n \to P^n(R)$ is a local isometry.

Proof: Let g be a Riemannian metric on S^n and $\gamma:(-\epsilon,\epsilon)\to S^n$ be a curve on S^n such that $\gamma(0)=p$, then $A\circ\gamma=-\gamma$, thus dA=-I where I is the identity matrix. Let $v,u\in T_pS^n$, then

$$\begin{split} g\left(v,u\right)_{p} &= g\left(-Iu,-Iv\right)_{A(p)} \\ &= g\left(u,v\right), \end{split}$$

thus A is an isometry of S^n . The real projective space $P^n(R)$ is the set of equivalence classes $\{[z_i]\}$ with the relation $z \sim y$ if z = ty for some $t \in \mathbb{R}$ with $z, y \in \mathbb{R}^{n+1}$. Let $p \in S^n$ with components $p = (p_1, \dots, p_n)$. The natural projection $\pi: S^n \to P^n(R)$ is defined as

$$\pi\left(p\right) = \left[p\right].$$

This is a surjective mapping such that if $\pi(p) = \pi(q)$, then p = q or p = A(q). Let us define the metric (h) on $P^n(R)$ as $\langle d\pi u, d\pi v \rangle \triangleq g(u, v)$.

In the latter case we get

$$\begin{split} g_{A(p)}\left(u,v\right) &= \left\langle d\pi_{A(p)} dA_p u, d\pi_{A(p)} dA_p v \right\rangle \\ &= \left\langle -d\pi_{A(p)} u, -d\pi_{A(p)} v \right\rangle \\ &= \left\langle -u, -v \right\rangle \\ &= g\left(-u, -v\right) \\ &= g\left(u, v\right). \end{split}$$

Since the projection π is a smooth map, we get that is is also a local isometry.