Студент: Карабанов Егор

Группа: 2362 Вариант: 34

Дата: 19 мая 2024 г.

Комбинаторика и теория графов

Индивидуальное домашнее задание №2

Задание 1. Определить, является ли данный граф эйлеровым, полуэйлеровым, гамильтоновым, полугамильтоновым, двудольным, вершинно-двусвязным, рёберно-двусвянным. Построить дерево блоков и точек сочленения.

Решение.

- Не является эейлеровым, т.к. не все вершины имеют четную степень
- Является полуэйлеровым, т.к. ровно 2 вершины имеют нечентную степень: В, Ј
- Не является гамильтоновым
- Является полугамильтоновым, т.к. существует путь, проходящий по всем вершинам ровно 1 раз: B, A, D, E, F, J, I, K, L, H, G, C
- Не является двудольным, т.к. смежные вершины I, J, F оказываются одного цвета при раскрашивании графа

- Не является вершинно двусвязным, т.к. в графе присутствуют шарниры: А, D
- Не является реберно двусвязным, т.к. в графе присутствуют мосты: ВА, АD
- Дерево блоков и точек сочленения:

Задание 2. Найдите хроматический многочлен данного графа:

Решение.

Обозначим исодный граф за Gr

$$P_G = P_J = P_F = (t-1)$$

Удалим вершины G, J, F из графа:

 $P_{KL} = (t-1)^2$

Удалим вершины К, L из графа:

 $P_C = (t-2)$

Удалим вершину С из графа:

 $P_{AB} = (t-1)(t-2)$

Удалим вершины А, В графа:

$$\begin{array}{c|c} D & \longrightarrow & E \\ & & & \\ H & \longrightarrow & I \end{array}$$

$$P_{DEFI} = P_{C_4} = (t-1)^4 + (t-1)$$

$$\begin{split} P_{DEFI} &= P_{C_4} = (t-1)^4 + (t-1) \\ P_{Gr} &= P_{DEFI} \cdot P_{AB} \cdot P_C \cdot P_{KL} \cdot P_G \cdot P_J \cdot P_F = [(t-1)^4 + (t-1)](t-1)^6 (t-2)^2 = a(t-1)^7 (t-2)^2 [(t-1)^3 + 1] \end{split}$$

Ответ: $P_{Gr} = t(t-2)^2(t-1)^7(t^2-3t+3)$

Задание 3. Из полного графа на 133 вершинах, удалили рёбра AB, BC, EF и DF. Постройте хроматический многочлен получив- шегося графа. Упрощать ответ не обязательно.

Решение.

Обозначим исходный граф за G.

Хроматический многочлен графа с объединенными вершинами будем обозначать как P_{XY} , где X, Y вершины, которые были объединены

Хроматический многочлен графа с добавленным ребром между вершинами будем обозначать как $P_{\overline{XY}}$, где X, Y - вершины, вершины, между которыми было проведено ребро.

Изобразим ребра, которые были удалены из графа:

$$P_G = P_{AB} + P_{\overline{AB}}$$

$$P_{AB} = P_{EF} + P_{\overline{EF}}$$

$$P_{EF} = P_{K_{131}}$$

$$P_{EF} = P_{K_{131}}$$

$$P_{\overline{EF}} = P_{FD} + P_{\overline{FD}}$$

$$P_{FD}^{EF} = P_{K_{131}}$$

$$P_{\overline{FD}} = P_{K_{132}}$$

$$P_{AB} = 2P_{K_{131}} + P_{K_{132}}$$

$$P_{\overline{AB}} = P_{BC} + P_{\overline{BC}}$$

$$P_{BC} = P_{FE} + P_{\overline{FE}}$$

$$P_{FE} = P_{K_{121}}$$

$$\begin{split} P_{FE} &= P_{K_{131}} \\ P_{\overline{FE}} &= P_{DF} + P_{\overline{DF}} = P_{K_{131}} + P_{K_{132}} \Rightarrow P_{BC} = 2P_{K_{131}} + P_{K_{132}} \end{split}$$

$$\begin{split} P_{\overline{BC}}^{FE} &= P_{EF_1} + P_{\overline{EF_1}}^{FF} = 2P_{K_{132}} + P_{K_{133}} \\ P_{\overline{AB}} &= 3P_{K_{132}} + 2P_{K_{131}} + P_{K_{133}} \end{split}$$

$$P_{\overline{AB}} = 3P_{K_{132}} + 2P_{K_{131}} + P_{K_{133}}$$

$$P_G = 4P_{K_{131}} + 4P_{K_{132}} + P_{K_{133}}$$

Ответ:
$$4A_t^{131} + 4A_t^{132} + A_t^{133}$$

Задание 4.

а) построить код Прюфера для данного дерева:

б) Построить дерево по коду Прюфера: 2 11 2 3 3 4 5 9 5

Решение.

- а) Код Прюфера: 177559856
- б) Получившиеся дерево по коду Прюфера:

Задание 5. При помощи плеоритма Козагаји найти компоненты сильной связности данного графа:

Решение.

Начинаем поиски в глубину с вершин: А, Е, L

Полученный стек: [I, C, D, F, B, A, E, H, G, J, M, N, K, O, P, L

Транспонированный граф:

 Γ раф после поисков в глубину в порядке доставания вершин из стека и окрашивания вершин в рамках одного поиска:

Таким образом, граф герца для данного графа:

Задание 6. Найдите максимальный поток через данную плоскую сеть:

Peшeнue.

${\rm ABEHK} - 2$

Остаточная сеть:

ABFHKN - 3

Остаточная сеть:

ACFILN - 1

Остаточная сеть:

ACGJLN - 4 Остаточная сеть:

ACGJMN - 2

Ответ: 2 + 3 + 1 + 4 + 2 = 12

Задание 7. Найдите максимальный поток через данную сеть:

Решение.

ACGIMN - 7

Остаточная сеть:

ADFHLN - 10

Остаточная сеть:

 $\ensuremath{\mathsf{ADGJMN}}$ - 4

Остаточная сеть:

ABEHKN - 3

Остаточная сеть:

ABFJMN - 4

Остаточная сеть:

ACEHKN - 2

Остаточная сеть:

ACEIKN - 1

Остаточная сеть:

Максимальный поток в этой сети равен 31. Проверим это с помощью пропускной способности ребер, составляющих минимальный разрез. Минимальный разрез для данного графа = $\{EH, EI, FH, FJ, GI, GJ\}$, пропускная способность которых также равна 31.

Ответ: 31

Задание 8. Найдите наибольшее паросочетание в двудольном графе, заданном набором рёбер (a, γ) (a, δ) (a, ϵ) (b, β) (b, θ) (c, θ) (d, δ) (d, ζ) (d, θ) (e, α) (e, β) (e, η) (f, ζ) (g, γ) (g, δ) (h, γ)

Решение.

Изначальный граф:

Пройденные пути:

 $\{S, a, \gamma, F\}, \{S, g, \delta, F\}, \{S, h, \gamma, a, \varepsilon, F\}, \{S, b, \beta, F\}, \{S, c, \theta, F\}, \{S, d, \zeta, F\}, \{S, e, \alpha, F\}$ Граф после применения алгоритма:

Otbet: $\tilde{E} = \{a\varepsilon, g\delta, h\gamma, b\beta, c\theta, d\zeta, e\alpha\}$

Задание 9. Найдите радиус, диаметр и центр данного дерева:

Решение.

```
1
        2
           3
                        7
                            8
                               9
                                  10
                                       11
                                           max
              4
                  5
                     6
        1
              3
                  3
                            2
                                   4
                                        4
                                             4
1
           4
                     4
                        1
                               4
2
              2
                  2
                        2
                                        3
                                             3
                            1
                                   3
3
        3
           0
              1
                  3
                        5
                            2
                                             5
    4
                     4
                               4
                                   4
                                        4
    3
        2
                  2
4
           1
              0
                     3
                        4
                            1
                               3
                                   3
                                        3
                                             4
5
    3
        2
           3
              2
                  0
                            1
                               1
                                             4
                     1
                        4
                                   1
                                        1
6
        3
              3
                  1
                     0
                        5
                            2
                               2
                                   2
                                             5
    4
           4
7
        2
                            3
           5
              4
                  4
                     5
                        0
                               5
                                   5
                                        5
                                             5
8
    2
        1
           2
              1
                  1
                     2
                        3
                            0
                               2
                                   2
                                        2
                                             3
9
        3
                     2
                        5
                            2
                                        2
                                             5
    4
           4
              3
                  1
                            2
                                       2
10
    4
        3
          4
              3
                 1
                     2
                        5
                               2
                                   0
                                             5
        3
              3
                     2
                        5
                            2
                                        0
                                             5
    4
           4
                  1
```

радиус: 3 диаметр: 5 центры: 2, 8

Задание 10. Найдите радиус, диаметр и центр данного графа:

Решение.

радиус: 3 диаметр: 5

центры: C, D, J, K

Задание 11. Постройте пример графа, для которого хроматическим многочленом является $t^4(t-1)^8(t-2)^3(t-3)^2$

Решение.
$$t^2(t-1)^2(t-2)^2(t-3)^2$$

$$t(t-1)^3$$

$$t(t-1)^3(t-2)$$

