

Ricerca operativa e pianificazione delle risorse

spitfire

A.A. 2024-2025

Contents

1	\mathbf{Pre}	equisiti di Algebra Lineare	3
	1.1	Matrici e vettori	3
	1.2	Equazioni lineari	4
		1.2.1 Metodo di eliminazione	6
		1.2.2 Metodo di eliminazione di Gauss	6
2	\mathbf{Pre}	equisiti di Analisi Matematica	6
	2.1	Funzioni di una variabile	6
		Funzioni in due o più variabili	9
3	Mo	elli nella Ricerca Operativa	12
	3.1	Programmazione matematica	13
	3.2	Ottimi globali e ottimi locali	14
4	Pro	grammazione lineare	15
	4.1	Assunzione di Proporzionalità	16
	4.2	Assunzione di additività	17
	4.3	Assunzione di continuità	17
	4.4	Assunzione di certezza	17
	4.5	Soluzione grafica ad un problema di programmazione lineare	17
		4.5.1 Vincolo di uguaglianza	17
		4.5.2 Vincoli funzionali di \leq	18
		4 5 3 Vincoli funzionali di > e -	10

1 Prerequisiti di Algebra Lineare

1.1 Matrici e vettori

Una matrice è una tabella contenente numeri. Se la tabella è costituita da m righe e n colonne si parla di una matrice $m \times n$. Una matrice viene detta **matrice quadrata** se il numero di righe e colonne coincidono.

Una matrice $1 \times m$ viene detto vettore riga m-dimensionale

Una matrice $m \times 1$ viene detto vettore colonna m-dimensionale.

La notazione maggiormente utilizzata per indicare una matrice è

$$A = [a_{ij}]$$

Con a_{ij} elemento generico della i-esima riga e j-esima colonna della matrice A. Se $A = [a_{ij}]$ è una matrice $m \times n$, la matrice $n \times m$

$$A^T = [a_{ij}]$$

viene detta matrice trasposta della matrice A.

Se $A = [a_{ik}]$ è una matrice $m \times p$ e $B = [b_{kj}]$ è una matrice $p \times n$ la loro **matrice prodotto** è $m \times n$ e definita come:

$$A \cdot B = C = [c_{ij}] \ con \ c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

Date due matrici $m \times n$, $A = [a_{ij}]$ e $B = [b_{ij}]$, la loro **matrice somma** è definita come segue:

$$A + B = C = [c_{ij}] con c_{ij} = a_{ij} + b_{ij}$$

La moltiplicazione di una matrice A per una costante α fornisce come risultato quanto segue:

$$\alpha \cdot A = [\alpha \cdot a_{ij}]$$

Questa moltiplicazione è commutativa.

Siano $v_1, v_2, ..., v_n$ n vettori, riga o colonna; essi vengono detti **linearmente indipendenti** tra loro se, prendendo n coefficienti $a_1, a_2, ..., a_n$ la seguente uguaglianza

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n = 0$$

risulta verificata solo se $a_1 = a_2 = \dots = a_n = 0$.

Al contrario, se esistono coefficienti $a_1, a_2, ..., a_n$ non tutti nulli per cui

$$a_1 \cdot v_1 + a_2 \cdot v_2 + \dots + a_n \cdot v_n = 0$$

i vettori $v_1, v_2, ..., v_n$ sono detti linearmente dipendenti.

Un insieme di n vettori ad n dimensioni linearmente indipendenti costituisce una base per uno spazio a n dimensioni. Se un insieme di vettori $v_1, v_2, ..., v_n$ costituisce una base per uno spazio ad n dimensioni, allora ogni vettore x che appartiene a quello spazio è combinazione lineare dei vettori della base.

Una matrice quadrata $m \times m$ si dice **matrice singolare** se l'insieme degli m vettori riga

(o colonna), ottenuti considerando ogni riga (o colonna) come un vettore, è **linearmente dipendenti**. Se, viceversa, l'insieme degli m vettori è linearmente indipendente, la matrice si dice **matrice non singolare**.

Una matrice quadrata $A = [a_{ij}]$ con $a_{ij} = 0$ per ogni $i \neq j$ viene detta **matrice** diagonale.

La matrice diagonale $A = [a_{ij}]$, con $a_{ii} = 1$ per ogni i viene detta **matrice identità**, solitamente indicata con I. Se A NON è una matrice singolare, allora esiste una matrice A^{-1} detta **matrice inversa** della matrice A, tale per cui vale la seguente relazione di uguaglianza:

$$A \cdot A^{-1} = A^{-1} \cdot A = I$$

Il **determinante** di una matrice quadrata A si indica con det(A) ed è un numero (esiste solo per matrici quadrate), nel caso specifico di una matrice 2×2 si definisce come segue:

$$det(A) = det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Il determinante di una matrice quadrata $A \ m \times m$ si ottiene utilizzando la seguente regola ricorsiva, detta **formula di Laplace**: Se A_{ij} è la matrice $(m-1) \times (m-1)$, ottenuta togliendo la i-esima riga e la j-esima colonna di A, il determinante di A risulta:

$$det(A) = \sum_{j=1}^{m} (-1)^{i+j} \cdot a_{ij} \cdot det(A_{ij}) \ (formula \ per \ righe)$$

$$det(A) = \sum_{i=1}^{m} (-1)^{i+j} \cdot a_{ij} \cdot det(A_{ij}) \ (formula \ per \ colonne)$$

Se la matrice è singolare, allora det(A) = 0.

Una matrice quadrata A ammette inversa se e solo se non è singolare.

1.2 Equazioni lineari

Un' **equazione lineare** nelle variabili $x_1, x_2, ..., x_n$ è un'equazione nella seguente forma:

$$a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n = b$$

dove $a_1, a_2, ..., a_n$ e b sono delle costanti. Si dice **soluzione dell'equazione** un qualsiasi vettore $|y_1, y_2, ..., y_n| \in \mathbb{R}^n$ tale che:

$$a_1 \cdot y_1 + a_2 \cdot y_2 + \dots + a_n \cdot y_n = b$$

Un sistema di m equazioni lineari in n variabili è definito come segue:

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2 \\ \dots \\ a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \dots + a_{mn} \cdot x_n = b_m \end{cases}$$

dove a_{ij} e b_j , i=1,...,n; j=1,...,m sono costanti. Una **soluzione del sistema** lineare è un qualsiasi vettore $|y_1,y_2,...,y_n| \in \mathbb{R}^n$ tale che le m equazioni del sistema

lineare siano contemporaneamente soddisfatte. Trovare le soluzioni del sistema lineare equivale a individuare il punto di intersezione tra le sue equazioni, ammesso che un tale punto esista.

Un sistema di equazioni lineari può essere:

- Consistente: se ammette almeno una soluzione, in caso contrario viene detto inconsistente
- **Determinato**: se costituito da un numero di equazioni uguale al numero di incognite m = n. Un tale sistema ha **una sola soluzione**
- Sovradeterminato: se costituito da più equazione che incognite m > n. Un tale sistema è spesso, ma non sempre, inconsistente
- Sottodeterminato: se costituito da meno equazioni che incognite m < n. Un tale sistema ammette infinite soluzioni

Consideriamo la forma matriciale del sistema costituito da m equazioni lineari in n incognite

$$A \cdot x = b$$

dove

- A è una matrice $m \times n$ (nota)
- x è un vettore colonna in n dimensioni (incognito)
- b è un vettore colonna in m dimensioni (noto)

Si definisce rango della matrice A come segue:

- Rango di riga: numero massimo di righe linearmente indipendenti
- Rango di colonna: numero massimo di colonne linearmente indipendenti

Se rango di riga = rango di colonna allora $rk(A) \leq min(m,n)$

Se rk(A) = min(m, n), allora la matrice A viene detta a rango pieno.

Data la matrice dei coefficienti A, si dice **matrice aumentata** la matrice C = A, b ottenuta dalla matrice A aggiungendo come colonna aggiuntiva il vettore dei termini noti b. Avremo quanto segue:

- rk(C) > rk(A): Il sistema lineare non ammette soluzione
- rk(C) = rk(A): il sistema lineare ammette soluzione

Assumiamo rk(C) = rk(A), allora:

- Caso $m \ge n$
 - Se rk(A) = n, allora il sistema ha una soluzione unica
 - $-\operatorname{Se} rk(A) < n$, allora il sistema ha infinite soluzioni
- Caso m < n
 - Se $rk(A) \leq m$, allora il sistema ha infinite soluzioni

Come si risolve un sistema di equazioni lineari? Abbiamo due metodi:

1.2.1 Metodo di eliminazione

Procediamo come segue:

- 1. Selezionare una variabile, e risolvere una delle equazioni rispetto ad essa e eliminare la variabile in questione dalle altre equazioni
- 2. Tralasciare l'equazione utilizzata nel passo di eliminazione e tornare al passo 1)
- 3. Applicare il processo di **Back-walk substitution**: dall'ultima equazione, tornare indietro e risolvere le restanti

1.2.2 Metodo di eliminazione di Gauss

Il metodo di eliminazione di Gauss è un metodo di eliminazione che utilizza solo le operazioni elementari su matrici, cioé:

- Moltiplicare una riga per uno scalare non nullo
- Sommare una riga moltiplicata per uno scalare non nullo con un'altra riga
- Permutare le righe

Teorema 1.2.1 Applicare operazioni elementari a un sistema di equazioni lineari non cambia l'insieme delle sue soluzioni.

2 Prerequisiti di Analisi Matematica

2.1 Funzioni di una variabile

Si dice **funzione** una terna (A, B, f) con:

- A, B due insiemi non vuoti
- f una legge che ad ogni elemento $x \in A$ associa uno ed uno solo elemento $f(x) \in B$ dove:
 - A è detto dominio della funzione f, anche indicato con dom(f)
 - B è detto codominio della funzione f
 - Scriviamo $f: A \to B$ e $x \in dom(f) \to f(x)$, per indicare la legge che alla variabile indipendente x associa la sua immagine f(x)

Data una funzione $f: A \to B$, se esiste, finito o meno, il limite:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \frac{f(x) - f(x_0)}{x - x_0}$$

esso viene chiamato derivata della funzione f nel punto x_0 e viene indicato con

$$f'(x_0) = \frac{d}{dx}f(x_0)$$

Se $f'(x_0) \in \mathbb{R}$, allora f si dice derivabile in x_0 .

Riportiamo le derivate elementari:

- Se $f(x) = c, \forall x \in \mathbb{R}$ allora $f'(x) = 0, \forall x \in \mathbb{R}$
- Se $f(x) = x^n, n \in \mathbb{N}, n \ge 2$ allora $f'(x) = n \cdot x^{n-1}, \forall x \in \mathbb{R}$
- Se $f(x) = \frac{1}{x}, \forall x \in \mathbb{R}^+$ allora $f'(x) = -\frac{1}{x^2}, \forall x \in \mathbb{R}^+$
- Se $f(x) = log(x), x \in \mathbb{R}^+$ allora $f'(x) = \frac{1}{x}, \forall x \in \mathbb{R}^+$

Data una funzione $f: \mathbb{R} \to \mathbb{R}$ e un punto $x_0 \in \mathbb{R}$, allora

- f derivabile in $x_0 \Rightarrow f$ continua in x_0
- f continua in $x_0 \not\Rightarrow f$ derivabile in x_0

Se $f, g : \mathbb{R} \to \mathbb{R}$ sono derivabili in $x_0 \in \mathbb{R}$, allora

- $\forall c \in \mathbb{R}$, la funzione $c \cdot f$ è derivabile in x_0 e $(c \cdot f)'(x_0) = c \cdot f'(x_0)$
- La funzione f + g è derivabile in x_0 e $(f + g)'(x_0) = f'(x_0) + g'(x_0)$

Se $f, g : \mathbb{R} \to \mathbb{R}$ sono derivabili in $x_0 \in \mathbb{R}$, allora anche la funzione $f \cdot g$ è derivabile in x_0 e si ha quanto segue

$$(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

Date due funzioni $f, g : \mathbb{R} \to \mathbb{R}$, con f derivabile in $x_0 \in \mathbb{R}$ e g derivabile in $f(x_0)$, allora $g \circ f$ è derivabile in x_0 e si ha quanto segue:

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

La derivata della **derivata prima** f' in $x_0 \in \mathbb{R}$ viene detta **derivata seconda** e indicata come $f''(x_0)$.

La derivata è il **coefficiente angolare** della retta tangente alla funzione nel punto di derivazione x_0 .

Data una funzione f(x) definita su un intervallo chiuso [a,b] diremo che la funzione è:

- Crescente: nell'intervallo [a, b] quando per ogni coppia di punti $x_1, x_2 \in [a, b]$ con $x_1 < x_2$ risulta che $f(x_1) < f(x_2)$
- **Decrescente**: nell'intervallo [a,b] quando per ogni coppia di punti $x_1, x_2 \in [a,b]$ con $x_1 < x_2$ risulta che $f(x_1) > f(x_2)$

Per determinare se la funzione $f:[a,b] \to \mathbb{R}$ sia crescente o decrescente in un punto $x_0 \in [a,b]$ è possibile ricorrere alla valutazione della sua derivata nel punto x_0 , infatti:

- Se $f'(x_0) > 0$ allora è crescente nel punto considerato x_0
- Se $f'(x_0) < 0$ allora la funzione è decrescente nel punto considerato x_0

Una funzione $f:[a,b]->\mathbb{R}$ si dice **convessa** se $\forall x_1,x_2\in[a,b]$ con $x_1< x_2$ vale la seguente relazione

$$f(x) \le f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) \ \forall x \in [a, b]$$

strettamente convessa se:

$$f(x) < f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) \ \forall x \in [a, b]$$

Una funzione $f:[a,b]->\mathbb{R}$ si dice **concava** se $\forall x_1,x_2\in[a,b]$ con $x_1< x_2$ vale la seguente relazione

$$f(x) \ge f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) \ \forall x \in [a, b]$$

strettamente concava se:

$$f(x) > f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1} \cdot (x - x_1) \ \forall x \in [a, b]$$

Data una funzione continua $f:[a,b]\to\mathbb{R}$ possiamo affermare che

- Essa è crescente (decrescente) in un punto $x \in [a, b]$ se la sua derivata prima è positiva (negativa) in x
- I **punti di stazionarietà** (estremanti) della funzione sono i punti in cui la derivata prima della funzione f si annulla cambiando di segno, nello specifico si ha un punto di **massimo** in $x \in [a, b]$ quando f' passa da un valore **positivo** a un valore **negativo**, mentre si ha un punto di **minimo** in $x \in [a, b]$ quando f' passa da un valore negativo a un valore positivo
- È detta lineare se la sua derivata prima è una funzione costante

Data una funzione continua $f:[a,b] \to \mathbb{R}$ e un punto $x_0 \in [a,b]$, si dice che f ha un minimo o massimo locale (o relativo) nel punto x_0 quando esiste un intorno $l(x_0)$ nel quale risulta

- $f(x) \ge f(x_0) \forall x \in l(x_0)$ allora x_0 è un minimo locale
- $f(x) \le f(x_0) \forall x \in l(x_0)$ allora x_0 è un massimo locale
- x_0 è un minimo locale relativo se la funzione è decrescente immediatamente a sinistra di x_0 e crescente immediatamente a destra
- x_0 è un massimo locale relativo se la funzione è crescente immediatamente a sinistra di x_0 e decrescente immediatamente a destra

Il punto minimo (massimo) locale in cui la funzione f assume il valore minimo (massimo) viene detto minimo (massimo) globale o assoluto.

2.2 Funzioni in due o più variabili

Una funzione continua definita come $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ che associa ad ogni coppia di numeri reali $(x_1, x_2) \in \mathbb{R} \times \mathbb{R} = R^2$ uno e un solo valore $y \in \mathbb{R}$ viene detta **funzioni in due variabili** (x_1, x_2) , che vengono dette **variabili indipendenti**, mentre la variabile y viene riferita con il termine di **variabile dipendente**. Questo concetto è generalizzabile al caso in cui si considerino n variabili indipendenti $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$. In questo caso si parla di funzione $f: \mathbb{R}^n \to \mathbb{R}$ in n variabili indipendenti, funzione che descrive una "regola" per ottenere dall'insieme delle n variabili indipendenti $(x_1, x_2, ..., x_n)$ un singolo valore reale di y.

Una funzione in n variabili $f: \mathbb{R}^n \to \mathbb{R}$ viene detta **funzione lineare** nelle variabili $(x_1, x_2, ..., x_n)$ se è nella forma:

$$f(x_1, x_2, ..., x_n) = a_0 + a_1 \cdot x_1 + a_2 \cdot x_2 + ... + a_n \cdot x_n$$

dove $a_0, a_1, ..., a_n$ sono parametri che assumono valore reale.

Una funzione in n variabili $f: \mathbb{R}^n \to \mathbb{R}$ viene detta **funzione quadratica** nelle variabili $(x_1, x_2, ..., x_n)$ se è nella forma:

$$f(x_1, x_2, ..., x_n) = a_0 + \sum_{k=1}^n b_k \cdot x_k + \sum_{i=1}^n \sum_{j \neq i, 1}^n h_{ij} \cdot x_i \cdot x_j + \sum_{k=1}^n h_{kk} \cdot x_k^2$$

$$f(x_1, x_2) = x_1^2 + x_2^2$$

$$f(x_1, x_2) = x_1^2 - x_2^2$$

Le **curve di livello** di una funzione $f: \mathbb{R}^n \to \mathbb{R}$ sono ottenute disegnando i punti $(x_1, x_2, ..., x_n)$ in cui la funzione ha valore constante k, vale a dire tutti i punti $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ per i quali vale la seguente uguaglianza

$$f(x_1, x_2, ..., x_n) = k$$

Dal punto di vista geometrico, le linee di livello sono le **proiezioni ortogonali** sul piano Oxy delle curve ottenute intersecando il piano z=k e il grafico della funzione $z=f(x_1,x_2,...,x_n)$

Data la funzione in 2 variabili $f: \mathbb{R}^2 \to \mathbb{R}$:

 $\bullet\,$ Si dice derivata parziale rispetto a x_1 la seguente funzione:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = f_{x_1} = f'_{x_1}$$

Essa rappresenta il tasso con cui varia la funzione $f(x_1, x_2)$ al variare della variabile x_1 , quando sia fissato e mantenuto costante il valore della variabile x_2 .

• Si dice derivata parziale rispetto a x_2 la seguente funzione:

$$\frac{\partial f(x_1, x_2)}{\partial x_2} = f_{x_2} = f'_{x_2}$$

Essa rappresenta il tasso con cui varia la funzione $f(x_1, x_2)$ al variare della variabile x_2 , quando sia fissato e mantenuto costante il valore della variabile x_1

• Si dice **gradiente** il vettore i cui coefficienti sono le derivate parziali della funzione $f(x_1, x_2)$ rispetto alle variabili x_1 e x_2 , esso è denotato nel seguente modo:

$$\nabla f(x_1, x_2) = \begin{pmatrix} \frac{\partial f(x_1, x_2)}{\partial x_1} \\ \frac{\partial f(x_1, x_2)}{\partial x_2} \end{pmatrix} = \begin{pmatrix} f'_{x_1} \\ f'_{x_2} \end{pmatrix}$$

Data la funzione in 2 variabili $f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2)$:

• Si dice derivata parziale seconda rispetto a x_1 e x_1 la seguente funzione:

$$\frac{\partial}{\partial x_1} \frac{\partial f(x_1, x_2)}{\partial x_1} = f_{x_1, x_1} = f'_{x_1, x_1}$$

• Si dice derivata parziale seconda rispetto a x_1 e x_2 la seguente funzione:

$$\frac{\partial}{\partial x_1} \frac{\partial f(x_1, x_2)}{\partial x_2} = f_{x_1, x_2} = f'_{x_1, x_2}$$

• Si dice derivata parziale seconda rispetto a x_2 e x_1 la seguente funzione:

$$\frac{\partial}{\partial x_2} \frac{\partial f(x_1, x_2)}{\partial x_1} = f_{x_2, x_1} = f'_{x_2, x_1}$$

• Si dice derivata parziale seconda rispetto a x_2 e x_2 la seguente funzione:

$$\frac{\partial}{\partial x_2} \frac{\partial f(x_1, x_2)}{\partial x_2} = f_{x_2, x_2} = f'_{x_2, x_2}$$

In particolare:

$$\frac{\partial}{\partial x_1} \frac{\partial f(x_1, x_2)}{\partial x_2} = f_{x_1, x_2} = f'_{x_1, x_2} = \frac{\partial}{\partial x_2} \frac{\partial f(x_1, x_2)}{\partial x_1} = f_{x_2, x_1} = f'_{x_2, x_1}$$

Data la funzione in 2 variabili $f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2)$, si dice **matrice Hessiana** la matrice quadrata delle derivate parziali:

$$H = \begin{pmatrix} f_{x_1, x_1} & f_{x_1, x_2} \\ f_{x_2, x_1} & f_{x_2, x_2} \end{pmatrix}$$

Condizione necessaria del primo ordine: Data la funzione in 2 variabili $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2)$, un punto (x_1, x_2) può essere un punto critico (minimo, massimo o sella) solo se il suo gradiente nel punto (x_1, x_2) è nullo:

$$\nabla f(x_1, x_2) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Non ne conosciamo però la natura! (Minimo? Massimo? Sella?)

Condizioni sufficienti del secondo ordine: Supponiamo che (x_1, x_2) sia un punto critico di $f(x_1, x_2)$. Calcoliamo il determinante della matrice Hessiana:

$$det(H) = f_{x_1,x_1}(x_1,x_2) \cdot f_{x_2x_2}(x_1,x_2) - (f_{x_1,x_2}(x_1,x_2))^2$$

Abbiamo i seguenti casi:

- det(H) > 0:
 - $-\ f_{x_1,x_1}>0 \Rightarrow (x_1,x_2)$ è un minimo relativo di $f(x_1,x_2)$
 - $-\ f_{x_1,x_1}<0 \Rightarrow (x_1,x_2)$ è un massimo relativo di $f(x_1,x_2)$
- $det(H) < 0 \Rightarrow (x_1, x_2)$ è un punto di sella di $f(x_1, x_2)$

Data la funzione in 2 variabili $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x_1, x_2)$, se la sua matrice Hessiana H è tale per cui $f_{x_1,x_1} > 0$ e det(H) > 0 allora la funzione è **convessa**. Se la funzione è convessa, allora ogni punto di minimo e di massimo sono **globali** poiché ammette solamente un punto dove il gradiente si annulla

3 Modelli nella Ricerca Operativa

Data una funzione

$$f: \mathbb{R}^n \to \mathbb{R}$$

la chiamiamo funzione obbiettivo. Un problema di ottimizzazione è formulabile come segue:

opt
$$f(x)$$

s.a. $x \in X$ $X \subseteq \mathbb{R}^n$

X è detta **regione ammissibile**, cioè l'insieme delle soluzioni x ammissibili dal problema. Inoltre, opt $\in \{\min, \max\}$.

Se opt = min, allora abbiamo un **problema di minimizzazione**, altrimenti un **problema di massimizzazione**.

Le variabili che indicano i vincoli ai quali è soggetto il problema sono dette **variabili** decisionali e identificano una soluzione del problema.

Quindi, un problema di ottimizzazione consiste nel determinare, se esistono, uno o più punti di minimo/massimo \mathbf{x}^* , assegnazione di valori alle variabili decisionali \mathbf{x} , della funzione obbiettivo f tra i punti \mathbf{x} che appartengono alla regione ammissibile X.

In particolare, se alcune zone di \mathbb{R}^n non sono ammissibili, si dice che non sono **eleggibili**. Quando parliamo di ottimizzazione di una funzione obbiettivo possiamo avere diversi tipi di ottimizzazione:

Ottimizzazione NON vincolata: la ricerca del/i punto/i di ottimo della funzione obbiettivo viene condotta su tutto lo spazio di definizione (quindi $X = \mathbb{R}^n$) della/e variabile/i di decisione

Ottimizzazione vincolata: la ricerca del/i punto/i di ottimo della funzione obbiettivo viene condotta su un sottoinsieme proprio dello spazio di definizione (cioè $X \subset \mathbb{R}^n$) della/e variabile/i di decisione Ottimizzazione intera: le variabili di decisione assumono solo valori interi (quindi $X = \mathbb{Z}^n$)

Ottimizzazione binaria: Le variabili assumono solo valore 0 e 1 (quindi $X \in \{0,1\}^n$) Ottimizzazione mista: Alcune variabili assumono valori interi mentre altre variabili assumono solo valori binari.

Se non specificato altrimenti, si deve intendere che le variabili decisionali assumono valori reali.

3.1 Programmazione matematica

Quando l'insieme X delle soluzioni ammissibili di un problema di ottimizzazione viene espresso attraverso un sistema di equazione e disequazione, esso prende il nome di problema di **programmazione matematica** (PM). In questo caso un **vincolo** è un espressione del tipo:

$$g_i(x) \begin{cases} \geq \\ = \\ \leq \end{cases} 0$$

Con $g_i: X \to \mathbb{R}$ funzione generica che lega tra loro le variabili decisionali. In generale, possiamo avere uno o più vincoli.

La **regione ammissibile** è quindi definita dall'insieme dei vincoli del problema, cioè:

$$X = \left\{ x \in \mathbb{R}^n \ con \ g_i(x) \begin{cases} \leq \\ = \\ \geq \end{cases}, i = 1, ..., m \right\}$$

Osserviamo, quindi, che abbiamo m vincoli ed n variabili. Inoltre

- Se $x \in X$ allora x è soluzione **ammissibile**
- Se $x \notin X$ allora x non è una soluzione ammissibile (soluzione inammissibile)

In un problema di ottimizzazione, abbiamo le seguenti possibilità riguardo la regione ammissibile:

- Problema non ammissibile: $X = \emptyset$ (regione ammissibile vuota, nessuna soluzione ammissibile, problema mal posto)
- Problema illimitato, cioè:
 - $\forall c \in \mathbb{R}, \exists x_c \in X | f(x_c) \le c \text{ se opt} = \min \text{ (illimitato inferiormente)}$
 - $\forall c \in \mathbb{R}, \exists x_c \in X | f(x_c) \ge c \text{ se opt} = \max \text{ (illimitato superiormente)}$

- Problema con soluzione ottima unica
- Problema con più di una soluzione ottima (anche infinite): tutte le soluzione ottime hanno egual valore della funzione obbiettivo

3.2 Ottimi globali e ottimi locali

La risoluzione di un problema di programmazione matematica consiste nel trovare una soluzione ammissibile che sia un **ottimo globale**, vale a dire un vettore $\mathbf{x}^* \in X$ tale che:

- $f(\mathbf{x}^*) \le f(x) \forall x \in X \text{ se opt} = \min$
- $f(\mathbf{x}^*) \ge f(x) \forall x \in X \text{ se opt} = \max$

Osservazione 3.2.1 Un problema di ottimizzazione può avere:

- Più di un ottimo locale
- Più di un ottimo globale

Osservazione 3.2.2 Un punto di ottimo globale è anche di ottimo locale

Osservazione 3.2.3 Nel caso di una funzione obbiettivo convessa, vi è un unico ottimo globale

Anche qui abbiamo diversi casi possibili:

• Programmazione lineare: in questo caso ci troviamo davanti ad un problema con questa formulazione:

opt
$$f(x) = \mathbf{c}^T \mathbf{x}$$
 (lineare)

La regione ammissibile è quindi formulabile in questo modo:

$$X = \left\{ x \in \mathbb{R}^n \middle| g_i(x) \left\{ \begin{matrix} \leq \\ = \\ \geq \end{matrix} \right\}, i = 1, ..., m \right\}$$

con $g_i(x) = \mathbf{a}_i^T \mathbf{x} - b_i$ vincoli **lineari**

• Programmazione Lineare Intera: in questo caso ci troviamo davanti ad un problema con questa formulazione:

opt
$$f(x) = \mathbf{c}^T \mathbf{x} \ (lineare)$$

La regione ammissibile è quindi formulabile in questo modo:

$$X = \left\{ x \in \mathbb{Z}^n \middle| g_i(x) \left\{ \begin{matrix} \leq \\ = \\ \geq \end{matrix} \right\}, i = 1, ..., m \right\}$$

con $g_i(x) = \mathbf{a}_i^T \mathbf{x} - b_i$ vincoli **lineari**

• Programmazione non lineare: in questo caso ci troviamo davanti ad un problema con questa formulazione:

opt
$$f(x)$$
 (lineare o non lineare)

La regione ammissibile è quindi formulabile in questo modo:

$$X = \left\{ x \in \mathbb{R}^n \middle| g_i(x) \begin{cases} \leq \\ = \\ \geq \end{cases}, i = 1, ..., m \right\}$$

con $q_i(\mathbf{x})$ vincoli **lineari** o **non lineari**. È importante notare come, in questo caso, almeno un vincolo o la funzione obbiettivo sono NON lineari

Programmazione lineare 4

La programmazione lineare (PL) è quella branca della ricerca operativa che si occupa di studiare algoritmi di risoluzione per problemi di ottimizzazione lineari. Un problema di programmazione lineare è strutturato come segue:

$$\operatorname{opt}_{\mathbf{x} \in X} Z = \sum_{j=1}^{n} c_{j} \cdot x_{j} \ (Funzione \ obbiettivo \ Z \ con \ n, \ numero \ di \ variabili \ decisionali)$$

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \leq b_i, i = 1, ..., m \ (Vincoli : regione \ ammissibile \ X \ con \ m, numero \ di \ vincoli)$$

Con:

 x_i variabili decisionali

 $\left. egin{aligned} c_j \text{ coefficienti di costo} \\ a_{ij} \text{ termini noti sinistri} \\ b_i \text{ termini noti destri} \end{aligned} \right\} \text{ Parametri}$

Un problema di programmazione lineare si poggia sulle seguenti assunzioni implicite:

- Proporzionalità: il contributo di ogni variabile decisionale, al valore della funzione obbiettivo, è proporzionale rispetto al valore assunto dalla variabile stessa
- Additività: ogni funzione è la somma dei contributi delle variabili decisionali
- Continuità: qualunque valore delle variabili decisionali in \mathbb{R}^n è accettabile
- Certezza: il valore assegnato ad ogni parametro è assunto essere noto o costante Vediamole nel dettaglio:

4.1 Assunzione di Proporzionalità

Il contributo di ogni attività al valore della **funzione obbiettivo** Z è proporzionale al **livello dell'attività** x_j secondo:

$$Z = \sum_{j=1}^{n} c_j \cdot x_j$$

Analogamente, il contributo di ogni attività al **vincolo** "i" è proporzionale al livello di attività x_j secondo

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

Vediamo un esempio:

4.2 Assunzione di additività

In un problema di programmazione lineare, il valore assunto da ogni funzione, sia essa **funzione obbiettivo** o vincolo, è dato dalla somma dei contributi individuali delle rispettive attività. Vediamo un esempio:

4.3 Assunzione di continuità

Le variabili decisionali in un problema di programmazione lineare (PL) sono libere di assumere qualsiasi valore, inclusi valori non interi che soddisfino i vincoli funzionali ed i vincoli di non negatività. In altri termini le variabili decisionali sono continue. In alcune condizioni può accadere che le variabili decisionali non possano che assumere valori interi; in questi casi si parla di problema di programmazione lineare intera o a numeri interi.

4.4 Assunzione di certezza

Il valore assegnato ad ogni parametro di un problema di programmazione lineare è assunto essere noto con certezza e costante.

4.5 Soluzione grafica ad un problema di programmazione lineare

Per risolvere i problemi di programmazione lineare, possiamo adottare una **procedura grafica**, determinando i valori delle variabili decisionali x_1, x_2 che rispettano i vincoli, ed al tempo stesso rendono massimo il valore Z della funzione obbiettivo. La **soluzione grafica** si compone di:

- Disegno della regione ammissibile
- Determinazione dell'ottimo

4.5.1 Vincolo di uguaglianza

I vincoli $g_i(\mathbf{x})$ possono essere:

• Rette: $g_i(x) = 0$

• Semipiani: $g_i(x) \leq 0$

Un vincolo del tipo $a_1 \cdot x_1 + a_2 \cdot x_2 = b$ è una **retta nel piano**. La retta è perpendicolare al vettore $\nu = (a_1, a_2)$. Abbiamo quindi i seguenti casi:

Come rappresentiamo però un semipiano?

- 1. Disegniamo la retta associata $(a_1 \cdot x_1 + a_2 \cdot x_2 \leq b)$
- 2. Scegliamo un punto non appartenente a tale retta (torna comodo 0)
 - Se il punto verifica la disuguaglianza allora scegliamo il semipiano che lo contiene
 - Altrimenti scegliamo l'altro semipiano

4.5.2 Vincoli funzionali di \leq

In maniera generalizzata, possiamo pensare che un problema di programmazione lineare è formulato in questo modo:

opt
$$Z = c_1 \cdot x_1 + c_2 \cdot x_2 + \dots + c_n \cdot x_n$$

s.a. $a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n \le b_1$
 $a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n \le b_2$
 $\dots + \dots + \dots + \dots + \dots \le \dots$
 $a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \dots + a_{mn} \cdot x_n \le b_m$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0 \dots, x_m \ge 0$

Con

• Z funzione obbiettivo

$$\begin{array}{l} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \ldots + a_{1n} \cdot x_n \leq b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + \ldots + a_{2n} \cdot x_n \leq b_2 \\ \ldots \ldots + \ldots \ldots + \ldots + \ldots \leq \ldots \\ a_{m1} \cdot x_1 + a_{m2} \cdot x_2 + \ldots + a_{mn} \cdot x_n \leq b_m \end{array} \right\} \text{ Vincoli funzionali}$$

• $x_1 \geq 0, x_2 \geq 0, x_3 \geq 0..., x_m \geq 0$ vincoli di non negatività

In particolare quindi:

- \bullet Z =valore della misura di prestazione
- $x_j = \text{livello dell'attività j}$
- c_j = incremento del valore della misura di prestazione Z corrispondente all'incremento di un'unità del valore dell'attività x_j
- b_i = quantità di risorsa "i" allocabile alle attività $x_j, j = 1, ..., n$
- $\bullet \ a_{ij} =$ quantità di risorsa "i" consumata da ogni unità di attività $x_j, j=1,...,n$

4.5.3 Vincoli funzionali di $\geq \mathrm{e} =$

Generalizzando al caso con *n* variabili decisionali ed *m* vincoli, otteniamo la seguente formulazione di un problema di programmazione lineare:
Funzione obbiettivo: