

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V2

MODEL 2014

MEMORANDUM

PUNTE: 150

Hierdie memorandum bestaan uit 13 bladsye.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord het, merk slegs die EERSTE poging.
- Indien 'n kandidaat 'n poging om 'n vraag te beantwoord gekanselleer het en die vraag nie weer gedoen het nie, merk die gekanselleerde poging.
- Volgehoue akkuraatheid is van toepassing in **ALLE** aspekte van die nasien-memorandum.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, is ONAANVAARBAAR.

VRAAG 1

1.1	Indien die aantal dae wat 'n atleet oefen toeneem, neem die tyd	✓ verduideliking
	waarin die 100m naelloop afgelê word, af.	
	OF	
	Indien die aantal dae wat 'n atleet oefen afneem, neem die tyd	
	waarin die 100m naelloop afgelê word, toe.	
	\mathbf{OF}	
	Hoe meer dae 'n atleet oefen, hoe korter is die tyd wat hy die 100m	
	naelloop aflê.	(1)
1.2	(60; 18,1)	✓
		(1)
1.3	a = 17,81931464	$\checkmark \checkmark a$
	b = -0.070685358	✓ b
	$\hat{y} = -0.07x + 17.82$	✓ vergelyking
		(4)
1.4	$\hat{y} \approx -0.07(45) + 17.82$	✓ substitusie
	≈ 14,67 sekondes	✓ antwoord
	1,0000000000000000000000000000000000000	(2)
1.5	r = -0.74 (-0.740772594)	$\checkmark \checkmark r$
		(2)
1.6	Daar is 'n redelike sterk verwantskap tussen die veranderlikes.	✓ redelik sterk
		(1)
		[11]

Wiskunde/V2 3 DBE/2014

VRAAG 2

2.1 170 160 150 140 130 120 110 90 80 80 50 60 50 40		✓anker by 0 ✓plot by boonste limiete ✓ gladde kurwe	
30 20 10 0			3)
$2.2 40 \le t < 60$		√ klas)) —
$\begin{array}{ c c c c c } 2.2 & 40 \le t < 60 \end{array}$			1)
2.3 (96; 164) :: 172 – 16	4 = 8 leerders	√164 √8	
	$ = \frac{25 \times 10 + 44 \times 30 + 60 \times 50 + 28 \times 70 + 9 \times 90 + 6 \times 110}{172} $	✓ frekwensie ✓ middelpunte	,
$=\frac{80}{17}$	1/2	$\begin{array}{c} \checkmark \frac{8000}{172} \\ \checkmark \text{ antwoord} \end{array}$	
		[10	0]

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.1	K(7;0)	✓ antwoord
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1		(1)
3.4 $\tan P\hat{S}K = m_{PM} = \frac{1}{3}$ $\forall \tan P\hat{S}K = m_{PM}$ $P\hat{S}K = \tan^{-1}(\frac{1}{3}) = 18,43^{\circ}$ $\Rightarrow \theta = 180^{\circ} - 90^{\circ} - 18,43^{\circ} = 71,57^{\circ}$ (3.5) 3.5 $\cos 71,57^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $\forall korrekte$ verhouding $\Rightarrow PS = \frac{3}{\cos 71,57^{\circ}} = 9,49 \text{ eenhede}$ OF $\sin 18,43^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $\forall korrekte$ verhouding $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 1$	3.2		
3.4 $\tan P\hat{S}K = m_{PM} = \frac{1}{3}$ $\forall \tan P\hat{S}K = m_{PM}$ $P\hat{S}K = \tan^{-1}(\frac{1}{3}) = 18,43^{\circ}$ $\Rightarrow \theta = 180^{\circ} - 90^{\circ} - 18,43^{\circ} = 71,57^{\circ}$ (3.5) 3.5 $\cos 71,57^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $\forall korrekte$ verhouding $\Rightarrow PS = \frac{3}{\cos 71,57^{\circ}} = 9,49 \text{ eenhede}$ OF $\sin 18,43^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $\forall korrekte$ verhouding $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 18,43^{\circ}} = 9,49 \text{ eenhede}$ $\Rightarrow PS = \frac{3}{\sin 1$	3.3	$m_{PM} = \frac{3-1}{7-1} \\ = \frac{1}{3}$	
3.5 $\cos 71,57^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $PS = \frac{3}{\cos 71,57^{\circ}}$ $= 9,49 \text{ eenhede}$ OF $\sin 18,43^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $\Rightarrow \frac{3}{PS}$ $\Rightarrow \frac{3}{\sin 18,43^{\circ}}$ $\Rightarrow \frac{3}{\sin 18,43^{\circ}}$ $\Rightarrow \frac{3}{\sin 18,43^{\circ}}$ $\Rightarrow 9,49 \text{ eenhede}$ 3.6 $\Rightarrow \frac{3}{\sin 18,43^{\circ}}$ $\Rightarrow $	3.4	$\tan P\hat{S}K = m_{PM} = \frac{1}{3}$ $P\hat{S}K = \tan^{-1}\left(\frac{1}{3}\right) = 18,43^{\circ}$	✓ PŜK
PS = $\frac{3}{\sin 18,43^{\circ}}$ = 9,49 eenhede N(x; -2x + 17) $m_{TN} = m_{PM}$ $\frac{-2x + 17 - 5}{x - (-1)} = \frac{1}{3}$ $-6x + 36 = x + 1$ $-7x = -35$ $x = 5$ ∴ $y = -2(5) + 17 = 7$ ∴ N(5; 7) PS onderwerp ✓ antwoord ✓ N in terme van x ✓ gelyke gradiënte ✓ substitusie ✓ x -waarde ✓ y -waarde ✓ y -waarde	3.5	$\cos 71,57^{\circ} = \frac{PK}{PS} = \frac{3}{PS}$ $PS = \frac{3}{\cos 71,57^{\circ}}$ $= 9,49 \text{ eenhede}$	verhouding ✓ PS onderwerp
3.6 $N(x; -2x + 17)$ $\sim N$ in terms van x \checkmark gelyke gradiënte $\sim 2x + 17 - 5 = \frac{1}{3}$ $\sim (TN \mid \mid PM)$ $\sim 2x + 17 - 5 = \frac{1}{3}$ $\sim (TN \mid \mid PM)$ $\sim (TN \mid PM)$ \sim		$PS = \frac{3}{\sin 18,43^{\circ}}$	verhouding ✓ PS onderwerp
	3.6	$m_{TN} = m_{PM}$ $\frac{-2x+17-5}{x-(-1)} = \frac{1}{3}$ $-6x+36 = x+1$ $-7x = -35$ $x = 5$ $\therefore y = -2(5) + 17 = 7$ $\therefore N(5;7)$ (TN PM)	✓ N in terme van <i>x</i> ✓ gelyke gradiënte ✓ substitusie ✓ <i>x</i> -waarde

NSS – Graad 12 Model – Memorandum

	$m_{TM} = \frac{1}{3}$ (TN PM) vergelyking van TM:	✓ m _{TM}
	$y - y_1 = \frac{1}{3}(x - x_1)$ $y - 5 = \frac{1}{2}(x - (-1))$ $y = \frac{1}{3}x + c$	
	$y - y_1 = \frac{1}{3}(x - x_1)$ $y - 5 = \frac{1}{3}(x - (-1))$ $y - 5 = \frac{1}{3}x + \frac{1}{3}$ $y = \frac{1}{3}x + 5$	✓ vergelyking van
	$y = \frac{1}{3}x + 5\frac{1}{3}$ $-2x + 17 = \frac{1}{3}x + 5\frac{1}{3}$	TM ✓ stel gelyk aan mekaar
	$-2\frac{1}{3}x = -11\frac{2}{3}$ $x = 5$ $y = -2(5) + 17 = 7$ $N(5; 7)$	$\checkmark x$ -waarde $\checkmark y$ -waarde (5)
3.7.1	y = 5	✓ vergelyking (1)
3.7.2	A(a; 5) T A(a; 5) 45° 45° 45° 45°	$\checkmark m_{AQ} = 1 \text{ of}$
	gradiënt van AQ = $\tan 45^{\circ}$ of $\tan 135^{\circ}$ = 1 of -1 $m_{AQ} = \frac{5-1}{a-1} = \pm 1$ $\therefore a-1 = 4 \text{ of } -4$ $\therefore a = 5 \text{ of } -3$	

Kopiereg voorbehou

4.1	M(-1;-1)	✓ antwoord
		(1)
4.2	$m_{NT} = \frac{2-1}{3-4} = -1$	$\checkmark m_{NT} $ $\checkmark m_{AT}$
	$\therefore m_{AT} = 1 \qquad \text{(radius } \perp \text{ raaklyn)}$	✓ rede ✓ substitusie van
	y-1 = 1(x-4) $y = x-3$	$m \text{ en } (4; 1)$ $\checkmark \text{ vergelyking}$ (5)
4.3	$MR \perp AB$ (lyn vanaf midpt na midpt van koord) $MB^2 = MR^2 + RB^2$ (Stelling van Pythagoras)	✓ MR ⊥ AB
	$9 = (\frac{\sqrt{10}}{2})^2 + RB^2$	✓MB = 3
	$RB^2 = \frac{13}{2}$ $RB = \sqrt{\frac{13}{2}}$	✓ substitusie in stelling van
		Pythagoras
	$AB = 2\left(\sqrt{\frac{13}{2}}\right) = \sqrt{26} \text{ eenhede}$	✓ AB in wortelvorm
4.4	$MN^{2} = (-1 - 3)^{2} + (-1 - 2)^{2}$ $= 16 + 9$ $= 25$	✓ substitusie in afstandformule
	MN = 5 eenhede	✓ antwoord (2)
4.5	$r = 5 - 3 = 2 \text{ eenhede}$ ∴ $(x - 3)^2 + (y - 2)^2 = 4$ ∴ $x^2 + y^2 - 6x - 4y + 9 = 0$	✓ r ✓ substitusie in sirkelvergelyking ✓ vergelyking (3) [15]

5.1.1	$-\sin \alpha$	✓ reduksie	
	$= -(-\frac{4}{5}) = \frac{4}{5}$	✓ antwoord	(2)
5.1.2	$(-4)^{2} + b^{2} = 5^{2}$ $b^{2} = 25 - 16 = 9$ $b = -3$ $\cos \alpha = \frac{-3}{5}$ $(-3; -4)$	$\checkmark b = -3$ ✓ antwoord	(2)
5.1.3	$ \sin (\alpha - 45^{\circ}) \\ = \sin \alpha \cos 45^{\circ} - \cos \alpha \sin 45^{\circ} \\ = -\frac{4}{5} \cdot \frac{1}{\sqrt{2}} - (-\frac{3}{5}) \cdot \frac{1}{\sqrt{2}} \\ = -\frac{1}{5\sqrt{2}} $ OF $ \sin (\alpha - 45^{\circ}) \\ = \sin \alpha \cos 45^{\circ} - \cos \alpha \sin 45^{\circ} \\ = -\frac{4}{5} \cdot \frac{\sqrt{2}}{2} - (-\frac{3}{5}) \cdot \frac{\sqrt{2}}{2} \\ = -\frac{\sqrt{2}}{10} $	✓ uitbreiding ✓ $\frac{1}{\sqrt{2}}$ ✓ antwoord in eenvoudigste vorm ✓ uitbreiding ✓ $\frac{\sqrt{2}}{2}$ ✓ antwoord in eenvoudigste	(3)
5.2.1	$LHS = \frac{8\sin x \cdot \cos x}{\sin^2 x - \cos^2 x}$ $= \frac{4(2\sin x \cdot \cos x)}{\sin^2 x - \cos^2 x}$ $= \frac{4\sin 2x}{-(\cos^2 x - \sin^2 x)}$ $= \frac{4\sin 2x}{-\cos 2x}$	vorm	(3)
5.2.2	$= -4 \tan 2x$ Ongedefinieer as $\cos 2x = 0$ of $\tan 2x = \infty$:	√ 45°	(6)
	$x = 45^{\circ} \text{ en}$ $x = 135^{\circ}$	√ 45° √ 135°	(2)

5.3	$1 - 2\sin^2\theta + 4\sin^2\theta - 5\sin\theta - 4 = 0$ $2\sin^2\theta - 5\sin\theta - 3 = 0$ $(2\sin\theta + 1)(\sin\theta - 3) = 0$ $\therefore \sin\theta = -\frac{1}{2} \text{of } \sin\theta = 3 \text{ (geen oplossing)}$ $\therefore \theta = 210^\circ + 360^\circ k \text{of } \theta = 330^\circ + 360^\circ k ; k \in \mathbb{Z}$	\checkmark 1-2sin ² θ \checkmark standaardvorm \checkmark faktore \checkmark geen oplossing \checkmark 210° \checkmark 330° \checkmark + 360°k ; k ∈ Z (7)
	OF $\therefore \theta = 210^{\circ} + 360^{\circ}k \text{ of } \theta = 30^{\circ} + 360^{\circ}k \text{ ; } k \in \mathbb{Z}$	[22]

6.1	1	✓ waarde van b	
	$b=\frac{1}{2}$		(1)
6.2	$A(30^{\circ}; 1)$	✓ 30°	
		√ 1	
			(2)
6.3	$x = 160^{\circ}$	$\checkmark x = 160^{\circ}$	
			(1)
6.4	$h(x) = 2\cos(x - 30^\circ) + 1$		
	$y \in [-1; 3]$	✓ kritiese waardes	
	OF	✓ notasie	
	$-1 \le y \le 3$		(2)
	•		[6]

7.1	Trek CD \perp AB	✓ konstruksie
/.1	In ΔACD:	Konstruksie
	/ 1 \	✓ sin A
	$\sin A = \frac{\text{CD}}{b}$:: CD = b. $\sin A$	✓ maak CD die
	b b	onderwerp
	In ΔCBD:	
	CD	
	$\sin B = \frac{1}{a}$: $CD = a \cdot \sin B$ A D B	✓ sin B
	и	
	$\therefore b \cdot \sin A = a \cdot \sin B$	$\checkmark b$. sin A = a. sin B
	$\therefore \frac{\sin A}{\sin A} = \frac{\sin B}{\sin A}$	6. Sm 71 – a. Sm B
	$\therefore {a} = {b}$	(5)
7.2.1	$\hat{SPQ} = 180^{\circ} - 2x$ (teenoorst \angle e van koordevierh)	$\checkmark \hat{SPQ} = 180^{\circ} - 2x$
	$P\hat{S}Q + P\hat{Q}S = 2x$ (som van $\angle e$ in \triangle)	(S/R)
	$\hat{PSQ} = \hat{PQS} = x$ (som van Ze in Z) $\hat{PSQ} = \hat{PQS} = x$ (\angle e teenoor gelyke sye)	, ,
	$PSQ = PQS = x$ (\angle e teenoor gelyke sye)	✓ rede
		(2)
7.2.2	$\frac{\sin \hat{SPQ}}{\sin \hat{SQ}} = \frac{\sin \hat{PSQ}}{\sin \hat{PSQ}}$	
	SO PO	✓ substitusie in
	$\frac{\sin(180^\circ - 2x)}{\sin(x)} = \frac{\sin x}{\cos(x)}$	korrekte formule $\checkmark \sin 2x$
	so b	V SIII ZX
	$SQ = \frac{k \sin 2x}{\sin x}$	✓ SQ onderwerp
	SIII X	$\sqrt{2\sin x \cdot \cos x}$
	$SQ = \frac{k(2\sin x \cdot \cos x)}{\sin x} = 2k\cos x$	(4)
	OF	
	$SQ^2 = PQ^2 + PS^2 - 2PQ.PS.\cos SPQ$,
	$= k^{2} + k^{2} - 2.k.k. \cos (180^{\circ} - 2x)$	✓ substitusie in
	$= 2k^{2} + 2k^{2} \cos 2x$	korrekte formule $\checkmark - \cos 2x$
	$= 2k^{2} + 2k^{2} \cos^{2} x - 1$ $= 2k^{2} + 2k^{2} (2\cos^{2} x - 1)$	$\sqrt{2\cos^2 x} - 1$
	$=4k^2\cos^2 x$	\checkmark vereenvoudig
	$SQ = 2k \cos x$	(4)
7.2.3	3	
	$\tan y = \frac{3}{k}$	✓ tan-verhouding
	$k = \frac{3}{}$	
	$k = \frac{1}{\tan y}$	
		1 k onderworn on
	$SQ = 2\cos x \left(\frac{3}{\tan y}\right)$	✓ <i>k</i> onderwerp en substitusie
		Substitusic
	$=\frac{6\cos x}{\cos x}$	
	tan y	(2)
		[13]

8.1	die hoek onderspan in	die teenoorstaande sirkelsegment	√korrekte st	elling
				(1)
8.2.1	$\hat{B}_{1} = \hat{E}_{1} = 68^{\circ}$	(rkl-koordst)	$\checkmark \hat{E}_1 = 68^\circ$	
	1 1		✓ rede	
				(2)
8.2.2	$\hat{E}_1 = \hat{B}_3 = 68^{\circ}$	(verwiss∠e; AE BC)	$\checkmark \hat{B}_3 = 68^\circ$	(S/R)
	1 3			(1)
8.2.3	$\hat{D}_1 = \hat{B}_3 = 68^{\circ}$	(buite∠ v koordevh)	$\checkmark \hat{D}_1 = 68^{\circ}$	
	1 3		✓ rede	
				(2)
8.2.4	$\hat{E}_2 = 20^\circ + 68^\circ$	(buite∠ v Δ)		
	= 88°		$\checkmark \hat{E}_2 = 88^\circ$	(S/R)
			_	(1)
8.2.5	$\hat{C} = 180^{\circ} - 88^{\circ}$	(tos ∠e v koordevh)	$\checkmark \hat{C} = 92^{\circ}$	
	= 92°		✓ rede	
				(2)
				[9]

9.1	$\hat{\mathbf{D}}_4 = \hat{\mathbf{A}} = x \qquad \text{(rkl-ke)}$	oordstelling)	$\checkmark \hat{A} = x$
	$\hat{A} = \hat{D}_2 = x \qquad (\angle e \text{ to}$	os gelyke sye)	\checkmark rede \checkmark $\hat{A} = \hat{D}_2 = x$ (S/R)
			(3/K)
9.2	$\hat{M}_1 = 2x$ (buite	$\angle v\Delta$) OF (\angle by midpt = 2 \angle by omtr)	$\checkmark \hat{M}_1 = 2x (S/R)$
	$\hat{M}_2 = 90^\circ \qquad \text{(radiu)}$ $\hat{M}_2 = 90^\circ - 2x$	$s \perp rkl$)	$\checkmark \hat{MDE} = 90^{\circ}$ (S/R)
	$\hat{E} = 180^{\circ} - (90^{\circ} + 90^{\circ} - 2x)$ $= 2x$	$(\text{som } \text{v} \angle \text{e in } \Delta \text{MDE})$	$\checkmark \hat{\mathbf{E}} = 2x$
	∴ CM is 'n rkl (omgek r	kl-koordst)	✓ rede (4)
9.3	$\hat{M}_3 = 90^{\circ}$	(EM ⊥ AC)	$\checkmark \hat{M}_3 = 90^\circ$
	ADB = 90° ∴ FMBD is koordevh	(∠ in halfsirkel) (buite∠ v vh = tos binne ∠) OF	$\checkmark \hat{ADB} = 90^{\circ} (S/R)$ $\checkmark \text{ rede}$ (3)
	$\hat{EMC} = 90^{\circ}$	$(EM \perp AC)$	✓ EMC = 90°
	ADB = 90° ∴ FMBD is koordevh	(∠ in halfsirkel) (tos ∠e v vh suppl)	$\checkmark \hat{ADB} = 90^{\circ} (S/R)$ $\checkmark \text{ rede}$ (3)
9.4	$DC^{2} = MC^{2} - MD^{2}$ $= (3BC)^{2} - (2BC)^{2}$ $= 9BC^{2} - 4BC^{2}$ $= 5BC^{2}$	(Pythagoras) (MB = MD = radii)	✓ Pythagoras ✓ substitusie ✓ 9BC² – 4BC² (3)
9.5	In ΔDBC en ΔDFM:		
	$\hat{\mathbf{D}}_4 = \hat{\mathbf{D}}_2 = x$	(bewys in 9.1)	$\checkmark \hat{\mathbf{D}}_4 = \hat{\mathbf{D}}_2$
	$\hat{B}_1 = \hat{F}_2$	(buite ∠ v koordevh)	$4 \hat{B}_1 = \hat{F}_2$
	$\hat{\mathbf{C}} = \hat{\mathbf{M}}_2$		✓ rede
	∴ ΔDBC ΔDFM (∠; ∠; ∠	<u> </u>	$\checkmark \hat{C} = \hat{M}_2 \text{ of}$ $(\angle; \angle; \angle)$ (4)
9.6	$\frac{DM}{FM} = \frac{DC}{BC}$	(ΔDBC ΔDFM)	✓ S
	$= \frac{\sqrt{5}BC}{BC}$ $= \sqrt{5}$		✓ antwoord (2) [19]

10.1

Konstruksie: Verbind DC en BE en trek hoogtes k en h

$$\frac{\text{opp }\Delta ADE}{\text{opp }\Delta DEB} = \frac{\frac{1}{2}.AD.k}{\frac{1}{2}.DB.k} = \frac{AD}{DB}$$

(gelyke hoogtes)

$$\frac{\text{opp }\Delta ADE}{\text{opp }\Delta DEC} = \frac{\frac{1}{2}.AE.h}{\frac{1}{2}.EC.h} = \frac{AE}{EC}$$

(gelyke hoogtes)

Maar Opp $\triangle DEB = Opp \triangle DEC$ (dies basis, dies hoogte)

$$\therefore \frac{\text{opp } \Delta \text{ADE}}{\text{opp } \Delta \text{DEB}} = \frac{\text{opp } \Delta \text{ADE}}{\text{opp } \Delta \text{DEC}}$$

$$\therefore \frac{AD}{DB} = \frac{AE}{FC}$$

✓ konstruksie

$$\checkmark \frac{\text{opp } \Delta ADE}{\text{opp } \Delta DEB} = \frac{AD}{DB}$$

√ rede

$$\checkmark \frac{\text{opp } \Delta \text{ADE}}{\text{opp } \Delta \text{DEC}} = \frac{\text{AE}}{\text{EC}}$$

✓ Area $\triangle DEB = Area$ $\triangle DEC$ (S/R)

ΔD.

 $\frac{\text{opp }\Delta \text{ADE}}{\text{opp }\Delta \text{DEB}} = \frac{\text{opp }\Delta \text{ADE}}{\text{opp }\Delta \text{DEC}}$

(6)

Kopiereg voorbehou

Blaai om asseblief

10.2.1	$\frac{AB}{BE} = \frac{AC}{CD}$ (Ewered st; BC ED) $\frac{1}{3} = \frac{3}{CD}$	$\frac{AB}{BE} = \frac{AC}{CD}$ (S/R) $\sqrt{\text{substitusie}}$
	∴ CD = 9 eenhede	✓ antwoord (3)
10.2.2	$\frac{DG}{GA} = \frac{FD}{FE}$ (Ewered st; FG EA)	$\checkmark \frac{DG}{GA} = \frac{FD}{FE} (S/R)$
	$\frac{9-x}{3+x} = \frac{3}{6}$ $54 - 6x = 9 + 3x$ $-9x = -45$	✓ substitusie ✓ vereenvoudig
	-9x = -43 $x = 5$	✓ antwoord (4)
10.2.3	In $\triangle ABC$ en $\triangle AED$: \hat{A} is gemeen $A\hat{B}C = \hat{E}$ (ooreenk $\angle s$; BC ED) $A\hat{C}B = \hat{D}$ (ooreenk $\angle s$; BC ED) $\triangle ABC$ $\triangle AED$ ($\angle s$, $\angle s$) $\therefore \frac{BC}{ED} = \frac{AC}{AD}$ $\frac{BC}{9} = \frac{3}{12}$ $BC = 2\frac{1}{4}$ eenhede	$ \checkmark \hat{A} \text{ is gemeen} $ $ \checkmark \hat{ABC} = \hat{E} \text{ (S/R)} $ $ \checkmark \hat{ACB} = \hat{D} \text{ (S/R)} $ of $(\angle; \angle; \angle)$ $ \checkmark \frac{BC}{ED} = \frac{AC}{AD} $ $ \checkmark \text{ antwoord} $ $ (5)$
10.2.4	$\frac{\text{opp } \Delta ABC}{\text{opp } \Delta GFD} = \frac{\frac{1}{2}AC.BC.\sin A\hat{C}B}{\frac{1}{2}GD.FD.\sin \hat{D}}$ $= \frac{\frac{1}{2}(3)(2\frac{1}{4})\sin \hat{D}}{\frac{1}{2}(4)(3)\sin \hat{D}} \qquad \text{(ooreenk } \angle s; BC \mid \mid ED)$ $= \frac{9}{16}$	✓ gebruik v opp reël ✓ korrekte sye en ∠e ✓ substitusie v waardes ✓ sin AĈB = sin D (S/R) ✓ antwoord (5) [23]

TOTAAL: 150