On rappelle les définitions et résultats suivants :

- Si $(v_i)_{1 \leqslant i \leqslant n}$ est une série statistique, la moyenne et la variance empiriques, notées respectivement \overline{v} et s_v^2 , sont données par : $\overline{v} = \frac{1}{n} \sum_{i=1}^n v_i$ et $s_v^2 = \frac{1}{n} \sum_{i=1}^n (v_i \overline{v})^2 = \frac{1}{n} \sum_{i=1}^n v_i^2 \overline{v}^2$.
- Si $(v_i)_{1 \le i \le n}$ et $(w_i)_{1 \le i \le n}$ sont deux séries statistiques, la covariance empirique de la série double $(v_i, w_i)_{1 \le i \le n}$, notée Cov(v, w), est donnée par : $Cov(v, w) = \frac{1}{n} \sum_{i=1}^{n} (v_i \overline{v})(w_i \overline{w}) = \frac{1}{n} \sum_{i=1}^{n} v_i w_i \overline{v} \overline{w} = \frac{1}{n} \sum_{i=1}^{n} (v_i \overline{v})w_i$.
- 9.a) Montrer que pour tout $i \in [1, n]$, la variable aléatoire T_i suit la loi normale $\mathcal{N}(au_i + b, \sigma^2)$.
 - b) Les variables aléatoires T_1, T_2, \dots, T_n sont-elles indépendantes ?

Pour tout $i \in [1, n]$, soit φ_i la densité continue sur \mathbf{R} de T_i : $\forall d \in \mathbf{R}$, $\varphi_i(d) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2} \left(d - (au_i + b)\right)^2\right)$.

Soit \mathcal{F} l'ouvert défini par $\mathcal{F} =]0,1[\times \mathbf{R}$ et M la fonction de \mathcal{F} dans \mathbf{R} définie par : $M(a,b) = \ln \Big(\prod_{i=1}^n \varphi_i(t_i)\Big)$. On suppose que : $0 < \text{Cov}(u,t) < s_u^2$.

10.a) Calculer le gradient $\nabla(M)(a,b)$ de M en tout point $(a,b) \in \mathcal{F}$.

- b) En déduire que M admet sur \mathcal{F} un unique point critique, noté (\hat{a}, \hat{b}) .
- c) Exprimer \hat{a} et \hat{b} en fonction de Cov(u,t), s_u^2 , \bar{t} et \bar{u} . (\hat{a} et \hat{b} sont les estimations de a et b par la méthode dite du maximum de vraisemblance)
- 11.a) Soit $\nabla^2(M)(a,b)$ la matrice hessienne de M en $(a,b) \in \mathcal{F}$. Montrer que : $\nabla^2(M)(a,b) = -\frac{n}{\sigma^2}\begin{pmatrix} s_u^2 + \overline{u}^2 & \overline{u} \\ \overline{u} & 1 \end{pmatrix}$
 - b) En déduire que M admet au point (\hat{a}, \hat{b}) un maximum local.
- 12. Soit (h, k) un couple de réels non nuls. Calculer $M(\hat{a} + h, \hat{b} + k) M(\hat{a}, \hat{b})$. En déduire que M admet en (\hat{a}, \hat{b}) un maximum global.
- 13. On rappelle qu'en Scilab, les commandes variance et corr permettent de calculer respectivement la variance d'une série statistique et la covariance d'une série statistique double.

Si $v = (v_i)_{1 \le i \le n}$ et $w = (w_i)_{1 \le i \le n}$ sont deux séries statistiques, alors la variance de $(v_i)_{1 \le i \le n}$ est calculable par variance (v) et la covariance de $(v_i, w_i)_{1 \le i \le n}$ est calculable par corr(v,w,1).

On a relevé pour n=16 entreprises qui produisent le bien considéré à l'époque donnée, les deux séries statistiques $(u_i)_{1\leqslant i\leqslant 16}$ et $(t_i)_{1\leqslant i\leqslant 16}$ reproduites dans les lignes (1) et (2) du code *Scilab* suivant dont la ligne (5) est incomplète :

- (1) u=[1.06,0.44,2.25,3.88,0.61,1.97,3.43,2.10,1.50,1.68,2.72,1.35,2.94,2.78,3.43,3.58];
- (2) t=[2.58,2.25,2.90,3.36,2.41,2.79,3.32,2.81,2.62,2.70,3.17,2.65,3.07,3.13,3.07,3.34]
- (3) plot2d(u,t,-4) // -4 signifie que les points sont représentés par des losanges.
- (4) plot2d(u,corr(u,t,1)/variance(u)*u+mean(t)-corr(u,t,1)/variance(u)*mean(u))// équation de la droite de régression de t en u.
- (5) plot2d(u,....)// équation de la droite de régression de u en t.

Le code précédent complété par la ligne (5) donne alors la figure suivante :

- a) Compléter la ligne (5) du code permettant d'obtenir la figure précédente (on reportera sur sa copie, uniquement la ligne (5) complétée).
- b) Interpréter le point d'intersection des deux droites de régression.
- c) Estimer graphiquement les moyennes empiriques \overline{u} et \overline{t} .
- d) Le coefficient de corrélation empirique de la série statistique double (u_i, t_i)_{1≤i≤16} est-il plus proche de −1, de 1 ou de 0?
- e) On reprend les lignes (1) et (2) du code précédent que l'on complète par les instructions (6) à (11) qui suivent et on obtient le graphique ci-dessous :
- (6) a0=corr(u,t,1)/variance(u)
- (7) b0=mean(t)-corr(u,t,1)/variance(u)*mean(u)
- (8) t0=a0*u+b0
- (9) e=t0-t
- (10) p=1:16

(11) plot2d(p,e,-1) // -1 signifie que les points sont représentés par des symboles d'addition.

Que représente ce graphique? Quelle valeur peut-on conjecturer pour la moyenne des ordonnées des 16 points obtenus sur le graphique? Déterminer mathématiquement la valeur de cette moyenne.

- 14. Pour tout entier $n \ge 1$, on pose : $A_n = \frac{1}{ns_u^2} \sum_{i=1}^n (u_i \overline{u}) T_i$. On suppose que le paramètre σ^2 est connu.
 - a) Calculer l'espérance $E(A_n)$ et la variance $V(A_n)$ de la variable aléatoire A_n . Préciser la loi de A_n .
 - b) On suppose que a est un paramètre inconnu. Soit α un réel donné vérifiant $0 < \alpha < 1$. On note Φ la fonction de répartition de la loi normale centrée réduite et d_{α} le réel tel que $\Phi(d_{\alpha}) = 1 - \frac{\alpha}{2}$. Déterminer un intervalle de confiance du paramètre a au niveau de confiance $1 - \alpha$.