$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} & B = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

- a. Find the eigenvalues and eigenvectors of the given matrices.
- b. Find the transformation matrices to obtain JCF of the given matrices.
- c. Find the JCF of the given matrices.
- d. Find the characteristic polynomials of the given matrices.
- e. Find the minimal polynomials of the given matrices.

A matrix Solution

$$A = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
$$det(A - \lambda I) = 0$$
$$det \begin{pmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \end{pmatrix} = 0$$
$$det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & 1 & 3 \\ 0 & 2 - \lambda & 0 \\ 0 & 0 & 5 - \lambda \end{bmatrix} \end{pmatrix} = 0$$
$$(\lambda - 2)^{2}(\lambda - 5) = 0 \rightarrow \lambda(A) = \{2, 2, 5\}$$

There are two different eigenvalues 2 and 3.

If there were 3 distinct eigenvalues, we would say directly that the matrix A can be diagonalized.

However, for this situation, if we can find two linearly independent eigenvectors that correspond to $\overline{\lambda = 2}$, we would say that the matrix A can be diagonalized. In other words, if

$$\dim\{\mathcal{N}(A-(2)I)\}=2 \rightarrow A \ can \ be \ diagonalized.$$

If we see that that is not the case, we will conclude that "A cannot be diagonalized, but we can find its Jordan Canonical Form".

Therefore, let us compute $\dim \{\mathcal{N}(A-(2)I)\}$.

$$\dim\{\mathcal{N}(A-(2)I)\}=1$$

[For that we can simply use Matlab]

Ok, we can at this point conclude that A cannot be diagonalized and we can not only find its Jordan Canonical Form.

To obtain the JCF, let us check the eigenvectors that correspond to $\overline{\lambda=2}$ and $\overline{\lambda=5}$

$\lambda = 2$	$\lambda = 5$
$\mathcal{N}(A - (2)I) = span \begin{Bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{Bmatrix}$	$\mathcal{N}(A - (5)I) = span \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$
[([₀])	Let's call this vector w_1 .
where, let's call the vector $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, v_1 .	Let's can this vector w ₁ .
Now, we need to find the generalized	w_1 is the eigenvector that corresponds to $\lambda = 5$.
eigenvector associated with v_1 .	
(which corresponds to $\lambda = 2$)	
We only need one vector.	
Let us call the generalized vector v_2 .	
v_2 can be computed using the natural basis vectors, that are,	
([1] [0] [0])	
$ \{ 0 , 1 , 0 \}.$	
If we will check all three of them,	
Recall that the relation between v_1 and v_2 is	
given as, $[A - (2)I]v_2 = v_1$	
Let us check the three basis vectors.	
$[A - (2)I] \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} #1$	
$[A - (2)I] \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = #2$ $[A - (2)I] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} = #3$	
Now the question is, which one of those satisfies	
the constraint [the relation b/w v_1 and v_2]	Let's check #3,
$[A - (2)I] \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow v_2 \neq \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	Let's theat is,
[0] [0] [0]	[0] [3] [0]
Because v_1 is not linearly dependent on $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.	$[A - (2)I] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} \rightarrow v_2 \neq \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
because v_1 is not initially dependent on $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	L1J L3J L1J F31
	Because v_1 is not linearly dependent on $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
Let's check #2,	[3]
$[A - (2)I] \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow v_2 \ can \ be \ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$	
Because v_1 is linearly dependent on, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$,	
In fact,	
$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	
L0J Finally, [just for the sake of completeness]	
• •	•

Therefore, T [the transformation matrix], can be written as

$$T = \begin{bmatrix} v_1 & v_2 & w_1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And JCF is

$$J = T^{-1}AT$$

$$J = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Finally, JCF and the transformation matrix to obtain JCF are given as

$$J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}, T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For this matrix, the characteristic polynomial is obtained as,

$$\chi_A(\lambda) = (\lambda - 2)^{\boxed{2}} (\lambda - 5)^{\boxed{1}}$$

For this matrix, the minimal polynomial is obtained as,

$$m_A(\lambda) = (\lambda - 2)^{\boxed{1}} (\lambda - 5)^{\boxed{1}}$$

[Algebraic multiplicity and geometric multiplicity]

For $\lambda = 2$, the algebraic multiplicity is 2 and the geometric multiplicity is 1.

For $\lambda = 5$, the algebraic multiplicity is 1 and the geometric multiplicity is 1.

B matrix Solution

$$B = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$
$$det(B - \lambda I) = 0$$
$$det \begin{pmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \end{pmatrix} = 0$$
$$det \begin{pmatrix} \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{bmatrix} \end{pmatrix} = 0$$
$$(\lambda - 2)^3 = 0 \to \lambda(A) = \{2, 2, 2\}$$

There is only one distinct eigenvalue.

If there were 3 distinct eigenvalues, we would know that "B can be diagonalized" but we cannot conclude that right away.

If we can compute 3 linearly independent eigenvectors that correspond to $\overline{\lambda=2}$, we can conclude that "B can be diagonalized".

In other words, if

$$\dim\{\mathcal{N}(A-(2)I)\}=3\rightarrow B \ can \ be \ diagonalized$$

If we see that $\boxed{\dim\{\mathcal{N}(A-(2)I)\}\neq 3}$ we will conclude that "B cannot be diagonalized only JCF can be computed"

Therefore, let's compute $\dim \{\mathcal{N}(A-(2)I)\}\$,

$$\dim\{\mathcal{N}(A-(2)I)\}=1$$

[For that we can simply use Matlab]

Ok, we can at this point conclude that B cannot be diagonalized and we can not only find its Jordan Canonical Form.

So, let's start computing the eigenvector that correspond to $\lambda = 2$,

$$\mathcal{N}(A - (2)I) = span \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$$

And therefore,

$$Rank\{\mathcal{N}(A-(2)I)\}=1$$

There is "1" Jordan block that corresponds to $|\lambda = 2|$.

So, the JCF can be written directly as

$$J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

We need to find the generalized eigenvectors,

 v_1, v_2, v_3

The relation between those vectors can be written as

$$[A - (2)I]v_1 = 0$$

 $[A - (2)I]v_2 = v_1$
 $[A - (2)I]v_3 = v_2$

These constraints must be satisfied.

Starting from v_1 , we write $\begin{bmatrix} v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Then, we need to compute v_2, v_3 vectors.

Or we can start from v_3 and compute v_2 and then [by using v_2] compute v_1 . [we have already found v_1]

First, we can see that,

$$Rank{\mathcal{N}([A-(2)I]^1)} = 1$$

 $Rank{\mathcal{N}([A-(2)I]^2)} = 2$
 $Rank{\mathcal{N}([A-(2)I]^3)} = 3$

 v_3 can be one of the three standard basis vectors

namely
$$\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$$
.

Let's try three of them simultaneously.

$$[A - (2)I]v_{3} = v_{2}$$

$$[A - (2)I]\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow v_{3} \neq \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$[A - (2)I]\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow v_{3} can be \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$[A - (2)I]\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \rightarrow v_{3} can be \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Thus, the pair (v_3, v_2) , can be one of the pairs

in the set
$$\left\{ \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \right\}, \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{0} \end{bmatrix} \right\}$$
.

Then, by using v_2 [or candidate v_2 vectors] we will compute v_1 .

$$[A - (2)I]v_2 = v_1$$

$$[A - (2)I]\begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow v_2 \neq \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

$$[A - (2)I]\begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \rightarrow v_2 \ can \ be \ \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{0} \end{bmatrix}$$

And we can conclude that,

 v_1, v_2, v_3 vectors can be given as

$$\left\{ \begin{bmatrix} 2\\0\\0 \end{bmatrix}, \begin{bmatrix} \mathbf{1}\\\mathbf{2}\\\mathbf{0} \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}.$$

Therefore, the transformation matrix T can be obtained as

$$T = \begin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And JCF,

$$J = T^{-1}BT$$

$$J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} \frac{1}{2} & -\frac{1}{4} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}, T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The characteristic polynomial is

$$\chi_A(\lambda) = (\lambda - 2)^{\boxed{3}}$$

And the minimal polynomial is

$$m_{A}(\lambda) = (\lambda - 2)^{\boxed{1}}$$

[Algebraic multiplicity and geometric multiplicity]

For $\lambda = 2$, the algebraic multiplicity is 3 and the geometric multiplicity is 1.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

- a. Find a set of basis vectors that span $\mathcal{R}(A)$.
- b. Find a set of basis vectors that span $\mathcal{N}(A)$.

Part a

Let's do ref-procedure

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 5 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 0 & 5 \\ 0 & \boxed{1} & -2 \\ 0 & 0 & 0 \end{bmatrix} = ref(A)$$

It can be seen that the 1st and 2nd columns are pivot columns and therefore 1st and 2nd columns of the "original matrix" span $\mathcal{R}(A)$.

$$\mathcal{R}(A) = span \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix} \right\}$$

Part b

$$\mathcal{N}(A) = \left\{ x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3 | Ax = 0 \right\}$$
$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By using the ref expression,

$$\begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{matrix} x_1 + 5x_3 = 0 \\ x_2 - 2x_3 = 0 \end{matrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -5x_3 \\ 2x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -5 \\ 2 \\ 1 \end{bmatrix}$$

Therefore,

$$\mathcal{N}(A) = span \left\{ \begin{bmatrix} -5\\2\\1 \end{bmatrix} \right\}$$

a.
$$v_1 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
 is defined on the standard basis, i.e., $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

Compute the vector that corresponds to v_1 in $\left\{\begin{bmatrix}1\\0\\2\end{bmatrix},\begin{bmatrix}2\\1\\0\end{bmatrix},\begin{bmatrix}0\\3\\5\end{bmatrix}\right\}$ basis.

b. Defined on the basis
$$\left\{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}0\\2\\0\end{bmatrix},\begin{bmatrix}1\\2\\3\end{bmatrix}\right\}$$
, the vector $\begin{bmatrix}x\\y\\z\end{bmatrix}$, is written on the basis $\left\{\begin{bmatrix}1\\1\\0\end{bmatrix},\begin{bmatrix}2\\0\\1\end{bmatrix},\begin{bmatrix}0\\0\\3\end{bmatrix}\right\}$ as $\begin{bmatrix}a\\b\\c\end{bmatrix}$. Therefore, Express the relation between $\begin{bmatrix}x\\y\\z\end{bmatrix}$ and $\begin{bmatrix}a\\b\\c\end{bmatrix}$.

Part a

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 2 & 0 & 5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 2 & 0 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \left(\frac{1}{17} \begin{bmatrix} 5 & -10 & 6 \\ 6 & 5 & -3 \\ -2 & 4 & 1 \end{bmatrix} \right) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \left(\frac{1}{17} \begin{bmatrix} 5 & -10 & 6 \\ 6 & 5 & -3 \\ -2 & 4 & 1 \end{bmatrix} \right) \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{17} \begin{bmatrix} 1 \\ 25 \\ 3 \end{bmatrix}$$

Part b

$$\begin{cases}
\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{cases} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 & -1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & 5 & -3 \\ 2 & 1 & -3 \\ -1 & -1 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

- a. The basis $\left\{\begin{bmatrix}r\\2\\s\end{bmatrix},\begin{bmatrix}r+1\\2\\1\end{bmatrix},\begin{bmatrix}3\\s\\1\end{bmatrix}\right\}$ is known to span the vector space $(\mathbb{R}^3,\mathbb{R})$. What is the relation between \underline{r} and \underline{s} ?
- b. The basis $\left\{\begin{bmatrix} 4\\5\\6\end{bmatrix}, \begin{bmatrix} r\\5\\1\end{bmatrix}, \begin{bmatrix} 4\\3\\2\end{bmatrix}\right\}$ is known to not span the vector space $(\mathbb{R}^3, \mathbb{R})$. Find \underline{r} .

Part a

$$span \left\{ \begin{bmatrix} r \\ 2 \\ s \end{bmatrix}, \begin{bmatrix} r+1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ s \\ 1 \end{bmatrix} \right\} = \mathbb{R}^3 \to \det \left(\begin{bmatrix} r & r+1 & 3 \\ 2 & 2 & s \\ s & 1 & 1 \end{bmatrix} \right) \neq 0$$

$$\det \left(\begin{bmatrix} r & r+1 & 3 \\ 2 & 2 & s \\ s & 1 & 1 \end{bmatrix} \right) = r \begin{vmatrix} 2 & s \\ 1 & 1 \end{vmatrix} - (r+1) \begin{vmatrix} 2 & s \\ s & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 2 \\ s & 1 \end{vmatrix}$$

$$= r[2-s] - (r+1)[2-s^2] + 3[2-2s]$$

$$= [2r-sr] - [2(r+1) - s^2(r+1)] + [6-6s]$$

$$= [2r-sr] - [(2r+2) + (-rs^2 - s^2)] + [6-6s]$$

$$= [2r-sr] + [(-2r-2) + (-rs^2 + s^2)] + [6-6s]$$

$$= [2r-sr] + [(-2r-2) + (-rs^2 + s^2)] + [6-6s]$$

$$= [2r-sr - 2r + rs^2 + s^2 + 6 - 6s]$$

$$= [2r-sr - 2r + rs^2 + s^2 + 4 - 6s]$$

$$\det \left(\begin{bmatrix} r & r+1 & 3 \\ 2 & 2 & s \\ s & 1 & 1 \end{bmatrix} \right) = [-sr + rs^2 + s^2 + 4 - 6s]$$

Therefore the relation between r and s is given as

$$-sr + rs^2 + s^2 + 4 - 6s \neq 0$$

Part b

$$span \left\{ \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} r \\ 5 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix} \right\} \subset \mathbb{R}^3 \to \det \left(\begin{bmatrix} 4 & r & 4 \\ 5 & 5 & 3 \\ 6 & 1 & 2 \end{bmatrix} \right) = 0$$

$$\det \left(\begin{bmatrix} 4 & r & 4 \\ 5 & 5 & 3 \\ 6 & 1 & 2 \end{bmatrix} \right) = 4 \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} - (r) \begin{vmatrix} 5 & 3 \\ 6 & 2 \end{vmatrix} + 4 \begin{vmatrix} 5 & 5 \\ 6 & 1 \end{vmatrix}$$

$$= 4[7] - (r)[-8] + 4[-25]$$

$$= 28 + 8r - 100 \to 8r - 72 \to 8r = 72 \to \boxed{r = 9}$$

The set \mathcal{U} is consist of the continuous real functions defined on [0,1].

- a. Show that $(\mathcal{U}, \mathbb{R})$ is a linear vector space. State the dimension of the $(\mathcal{U}, \mathbb{R})$.
- b. $y = \mathcal{L}(x)$ is given where the operator is defined as $\boxed{\mathcal{L}: (\mathcal{U}, \mathbb{R}) \to (\mathcal{U}, \mathbb{R})}$. The operator is defined as $\boxed{y(t) = \int_0^1 g(t-\tau)x(\tau)d\tau}$ where \boxed{g} is a continuous real function defined on [-1,1]. Show that the operator $\mathcal{L}(\cdot)$ is a linear operator.

PART A

 \mathbb{V} is a linear vector space defined on the field \mathbb{F} (the field can be \mathbb{R} or \mathbb{C}).

 $\ensuremath{\mathbb{V}}$ must satisfy the constraints that are listed below,

Property 1	$u,v\in\mathbb{V} o u+v\in\mathbb{V}$	Closed under vector addition
Property 2	$\boldsymbol{u} \in \mathbb{V}, c \in \mathbb{F} \to c \cdot \boldsymbol{u} \in \mathbb{V}$	Closed under scalar multiplication
Property 3	$\exists 0 \in \mathbb{V}, \qquad \mathbf{u} + 0 = 0 + \mathbf{u} = \mathbf{u}, \forall \mathbf{u} \in \mathbb{V}$	Identity element of vector addition
Property 4	$u,v\in\mathbb{V},u+v=v+u\in\mathbb{V}$	Commutativity of vector addition
Property 5	$u, v, w \in \mathbb{V}, (u+v)+w=u+(v+w) \in \mathbb{V}$	Associativity of vector addition
Property 6	$\forall u \in \mathbb{V}, \exists \overline{-u} \in \mathbb{V}, \qquad u + \overline{-u} = u + \overline{-u} = 0$	Inverse elements of vector addition
Property 7	$u, v \in V, c \in F \rightarrow c(u + v) = cu + cv$	Distributivity of scalar multiplication with respect to vector addition
Property 8	$c, d \in \mathbb{F}, \mathbf{u} \in \mathbb{V} \to (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$	Distributivity of scalar multiplication with respect to field addition
Property 9	$c, d \in \mathbb{F}, u \in \mathbb{V} \to c(du) = (cd)u$	Compatibility of scalar multiplication with field multiplication
Property 10	$\exists 1 \in \mathbb{F} \ s. \ t. \ 1 \boldsymbol{u} = \boldsymbol{u}, \forall \boldsymbol{u} \in \mathbb{V}$	Identity element of scalar multiplication
Property 11	$\exists 0 \in \mathbb{F} \ s. \ t. \ 0 \ \boldsymbol{u} = \boldsymbol{0}, \forall \boldsymbol{u} \in \mathbb{V}$	Identity element of field-addition

We need to check each one of them one by one,

Property 1	$u,v\in\mathbb{V} o u+v\in\mathbb{V}$	
	The sum of the given two continuous real functions that are defined on [0,1] are again a	
	continuous real function that are defined on the same range.	
Property 2	$\boldsymbol{u} \in \mathbb{V}, c \in \mathbb{F} \to c \cdot \boldsymbol{u} \in \mathbb{V}$	
	The multiplication of a real scalar and a continuous real function defined on [0,1] is	
	again a continuous real function defined on the same range.	
Property 3	$\exists 0 \in \mathbb{V}, \qquad \mathbf{u} + 0 = 0 + \mathbf{u} = \mathbf{u}, \forall \mathbf{u} \in \mathbb{V}$	
	The existence of an additive-identity [aka zero vector].	
	And additive-identity is a function that identically zero on [0,1]	
Property 4	$u,v\in\mathbb{V},u+v=v+u\in\mathbb{V}$	
	The addition operation is commutative.	
	$f(t) + g(t) = g(t) + f(t), \forall t \in [0,1]$	
Property 5	$u,v,w \in \mathbb{V}, (u+v)+w=u+(v+w) \in \mathbb{V}$	
	The associativity of the addition operation.	
	$(f(t) + g(t)) + h(t) = f(t) + (g(t) + h(t)), \forall t \in [0,1]$	
Property 6	$\forall u \in \mathbb{V}, \exists \underline{-u} \in \mathbb{V}, \qquad u + \underline{-u} = u + \underline{-u} = 0$	

	The existence of an inverse for each element in the set.
	$f(t) + \boxed{-f(t)} = 0, \forall t \in [0,1]$
Property 7	$u, v \in V, c \in F \rightarrow c(u + v) = cu + cv$
	The Distributivity property.
	$\alpha(f(t) + g(t)) = \alpha f(t) + \alpha g(t), \forall t \in [0,1]$
Property 8	$c, d \in \mathbb{F}, \mathbf{u} \in \mathbb{V} \to (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
	It is evident that holds, by using the equality
	$(\alpha + \beta)f(t) = \alpha f(t) + \beta f(t), \forall t \in [0,1]$
Property 9	$c, d \in \mathbb{F}, \boldsymbol{u} \in \mathbb{V} \to c(d\boldsymbol{u}) = (cd)\boldsymbol{u}$
	It is evident that holds, by using the equality
	$\alpha(\beta f(t)) = (\alpha \beta) f(t), \forall t \in [0,1]$
Property	$\exists 1 \in \mathbb{F} \ s. \ t. \ 1 u = u, \forall u \in \mathbb{V}$
10	
	It is evident that holds, by using the equality
	$1f(t) = f(t), \forall t \in [0,1]$
Property	$\exists 0 \in \mathbb{F} \ s. \ t. \ 0 \ \boldsymbol{u} = \boldsymbol{0}, \forall \boldsymbol{u} \in \mathbb{V}$
11	
	It is evident that holds, by using the equality
	$0f(t) = 0 \equiv 0, \forall t \in [0,1]$

The dimension of this space is infinite, the space can be spanned by the set of vectors given as,

$$\{1,x,x^2,x^3,\dots,x^\infty\}, \forall x \in \mathbb{R}[0,1]$$

The set \mathcal{U} is consist of the continuous real functions defined on [0,1].

- a. Show that $(\mathcal{U}, \mathbb{R})$ is a linear vector space. State the dimension of the $(\mathcal{U}, \mathbb{R})$.
- b. $y = \mathcal{L}(x)$ is given where the operator is defined as $\boxed{\mathcal{L}: (\mathcal{U}, \mathbb{R}) \to (\mathcal{U}, \mathbb{R})}$. The operator is defined as $\boxed{y(t) = \int_0^1 g(t-\tau)x(\tau)d\tau}$ where \boxed{g} is a continuous real function defined on [-1,1]. Show that the operator $\mathcal{L}(\cdot)$ is a linear operator.

PART B

To show that the operator $\mathcal{L}(\cdot)$ is a linear one, superposition property must be checked.

$$y_1 = \mathcal{L}(x_1) \& y_2 = \mathcal{L}(x_2) \to \alpha y_1 + \beta y_2 = \mathcal{L}(\alpha x_1 + \beta x_2)$$

If that is satisfied by the operator then it can be concluded that the operator is linear on the given vector space,

$$y_{1}(t) = \int_{0}^{1} g(t - \tau)x_{1}(\tau)d\tau$$

$$y_{2}(t) = \int_{0}^{1} g(t - \tau)x_{2}(\tau)d\tau$$

$$\alpha y_{1}(t) + \beta y_{2}(t) = \int_{0}^{1} g(t - \tau)[\alpha x_{1}(\tau) + \beta x_{2}(\tau)]d\tau$$

$$= \int_{0}^{1} g(t - \tau)[\alpha x_{1}(\tau)]d\tau + \int_{0}^{1} g(t - \tau)[\beta x_{2}(\tau)]d\tau$$

$$= \alpha \int_{0}^{1} g(t - \tau)[x_{1}(\tau)]d\tau + \beta \int_{0}^{1} g(t - \tau)[x_{2}(\tau)]d\tau$$

$$= \alpha \underbrace{\int_{0}^{1} g(t - \tau)[x_{1}(\tau)]d\tau}_{y_{1}(t)} + \beta \underbrace{\int_{0}^{1} g(t - \tau)[x_{2}(\tau)]d\tau}_{y_{2}(t)}$$

It can be seen that the operator satisfies the superposition principle therefore, the operator is linear on the given vector space.

 $T: \mathbb{R}^2 \to \mathbb{R}^2 \& S: \mathbb{R}^2 \to \mathbb{R}^2$ are two functions, given as

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x + y \\ 0 \end{bmatrix}, S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + y \\ xy \end{bmatrix}$$

- a. Determine if the function T is linear? If it is linear, explicitly obtain the matrix that corresponds to the given function.
- b. Determine if the function T is linear? If it is linear, explicitly obtain the matrix that corresponds to the given function.
- c. Determine if the function $S\left(T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)\right)$ is linear? If it is linear, explicitly obtain the matrix that corresponds to the given function.

Part a

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x + y \\ 0 \end{bmatrix} \to T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \to T \text{ is a linear operator on } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

Part b

$$S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+y \\ xy \end{bmatrix} \to S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) \neq M\begin{bmatrix} x \\ y \end{bmatrix} \to S \text{ is NOT a linear operator on } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

Part c

$$S\left(T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)\right) = S\left(\begin{bmatrix} 2x + y \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 2x + y \\ 0 \end{bmatrix} \to S\left(T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)\right) = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\to S \circ T \text{ is a linear operator on } \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} 5 & 1 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

- a. Compute e^{At} .
- b. Compute e^{Bt} .

A matrix solution

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

$$det(A - \lambda I) = 0$$

$$det \begin{pmatrix} \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \end{pmatrix} = 0$$

$$det \left(\begin{bmatrix} 3-\lambda & 1 & 1\\ 0 & 3-\lambda & 1\\ 0 & 0 & 3-\lambda \end{bmatrix} \right) = 0$$

$$(\lambda - 3)^3 = 0 \rightarrow \lambda(A) = \{3,3,3\}$$

If there can be found 3 linearly independent eigenvectors that correspond to $\overline{\lambda=3}$ it can be concluded that "A can be diagonalized"

If,

$$\dim\{\mathcal{N}(A-(3)I)\}=3$$

If that is the case, "A can be diagonalized", if not, only JCF can be found.

$$\dim\{\mathcal{N}(A-(3)I)\}=1$$

Therefore, JCF of A must be computed.

$$\lambda = 3$$

$$\mathcal{N}(A - (3)I) = span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$

And,

$$Rank\{\mathcal{N}(A-(3)I)\}=\boxed{1}$$

Which signifies that "there is 1 Jordan block".

And JCF can be written directly as

$$J = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}$$

But we need to determine the transformation matrix. We need 3 generalized eigenvectors that correspond to the one eigenvalue.

Let's call them v_1, v_2, v_3 ,

These vectors must satisfy the equalities,

$$[A - (3)I]v_1 = 0$$

$$[A - (3)I]v_2 = v_1$$

$$[A - (3)I]v_3 = v_2$$

Let us check,

$$Rank{\mathcal{N}([A-(3)I]^1)} = 1$$

 $Rank{\mathcal{N}([A-(3)I]^2)} = 2$
 $Rank{\mathcal{N}([A-(3)I]^3)} = 3$

We will start with v_3 and then we will find v_2 [by using v_3]. Then we will find v_1 [by using v_2]. First,

 v_3 vector can be picked from the standard basis vectors, i.e., $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$.

But it is not clear at this point which one satisfies the constraints given above.

So, we will test all three of the basis vectors simultaneously.

The first constraint is $[A - (3)I]v_3 = v_2$, let's check that

$$[A - (3)I] \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} \mathbf{0}\\\mathbf{0}\\\mathbf{0} \end{bmatrix} \rightarrow \mathbf{it} \ \mathbf{cannot} \ \mathbf{be} \rightarrow v_3 \neq \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
$$[A - (3)I] \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} = \begin{bmatrix} \mathbf{1}\\\mathbf{0}\\0\\0 \end{bmatrix} \rightarrow \mathbf{it} \ \mathbf{can} \ \mathbf{be}$$
$$[A - (3)I] \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} = \begin{bmatrix} \mathbf{1}\\\mathbf{1}\\\mathbf{0} \end{bmatrix} \rightarrow \mathbf{it} \ \mathbf{can} \ \mathbf{be}$$

From this, (v_3, v_2) pair can be one of the given pairs that are $\left\{ \begin{pmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ 1 \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} \right\}$.

Now, we need to test the relation between v_2 and v_1 . Recall that the relation is

$$[A - (3)I]v_2 = v_1$$

$$[A-(2)I]\begin{bmatrix}\mathbf{1}\\\mathbf{0}\\\mathbf{0}\end{bmatrix} = \begin{bmatrix}0\\0\\0\end{bmatrix} \rightarrow it \ cannot \ be \rightarrow (v_3,v_2,v_1) \neq \left\{\begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}\mathbf{1}\\\mathbf{0}\\0\end{bmatrix}, \begin{bmatrix}0\\0\\0\end{bmatrix}\right\}$$

Therefore, the transformation matrix can be obtained as,

$$T = [v_1 \ v_2 \ v_3] = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

And the JCF,

$$J = T^{-1}AT$$

$$J = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$J = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix}, T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Characteristic polynomial of matrix A,

$$\chi_A(\lambda) = (\lambda - 3)^{\boxed{3}}$$

Minimal polynomial of matrix A,

$$m_A(\lambda) = (\lambda - 3)^{\boxed{1}}$$

To compute the term e^{At} , JCF of A is used as

$$A = TJT^{-1}$$

$$At = T(Jt)T^{-1}$$

$$\begin{bmatrix} 3 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} t = T \begin{pmatrix} \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} t \end{pmatrix} T^{-1}$$

$$\begin{bmatrix} 3t & t & t \\ 0 & 3t & t \\ 0 & 0 & 3t \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 3t & t & 0 \\ 0 & 3t & t \\ 0 & 0 & 3t \end{bmatrix} \end{pmatrix} T^{-1}$$

$$e^{At} = T(e^{Jt})T^{-1}$$

$$e^{\begin{bmatrix} 3t & t & t \\ 0 & 3t & t \\ 0 & 0 & 3t \end{bmatrix}} = T \begin{pmatrix} e^{\begin{bmatrix} 3t & t & 0 \\ 0 & 3t & t \\ 0 & 0 & 3t \end{bmatrix}} \end{pmatrix} T^{-1}$$

$$e^{\begin{bmatrix} 3t & t & t \\ 0 & 3t & t \\ 0 & 0 & 3t \end{bmatrix}} = T \begin{pmatrix} e^{(3t)} & te^{(3t)} & \frac{t^2}{2!}e^{(3t)} \\ 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} \end{pmatrix} T^{-1}$$

$$e^{\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix} t} = e^{\begin{bmatrix} \lambda t & t & 0 \\ 0 & \lambda t & t \\ 0 & 0 & \lambda t \end{bmatrix}} = \begin{bmatrix} e^{\lambda t} & \frac{t^{1}}{1!} e^{\lambda t} & \frac{t^{2}}{2!} e^{\lambda t} \\ 0 & e^{\lambda t} & \frac{t^{1}}{1!} e^{\lambda t} \\ 0 & 0 & e^{\lambda t} \end{bmatrix}$$

Which comes from

$$f(J_k(\lambda t)) = \begin{bmatrix} f(\lambda t) & tf'(\lambda t) & \frac{t^2}{2!}f''(\lambda t) & \cdots & \frac{t^{k-1}}{(k-1)!}f^{(k-1)}(\lambda t) \\ & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \ddots & \frac{t^2}{2!}f''(\lambda t) \\ & & & \ddots & tf'(\lambda t) \\ 0 & & & f(\lambda t) \end{bmatrix}$$

Continuing, we obtain

$$e^{At} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{(3t)} & te^{(3t)} & \frac{t^2}{2!}e^{(3t)} \\ 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{(3t)} & te^{(3t)} & \frac{t^2}{2!}e^{(3t)} \\ 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$e^{At} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{(3t)} & te^{(3t)} & \frac{t^2}{2!}e^{(3t)} \\ 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{(3t)} & te^{(3t)} - e^{(3t)} & \frac{t^2}{2!}e^{(3t)} \\ 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} e^{(3t)} & te^{(3t)} - e^{(3t)} + e^{(3t)} & \frac{t^2}{2!}e^{(3t)} + te^{(3t)} \\ 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} e^{(3t)} & te^{(3t)} - e^{(3t)} + e^{(3t)} & \frac{t^2}{2!}e^{(3t)} + te^{(3t)} \\ 0 & 0 & e^{(3t)} & e^{(3t)} \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} e^{(3t)} & te^{(3t)} & \frac{t^2}{2!}e^{(3t)} + te^{(3t)} \\ 0 & 0 & e^{(3t)} & te^{(3t)} \\ 0 & 0 & e^{(3t)} & te^{(3t)} \end{bmatrix}$$

B matrix solution

$$B = \begin{bmatrix} 5 & 1 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
$$det(B - \lambda I) = 0$$
$$det \begin{pmatrix} \begin{bmatrix} 5 & 1 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \end{pmatrix} = 0$$
$$det \begin{pmatrix} \begin{bmatrix} 5 - \lambda & 1 & -1 \\ 0 & 5 - \lambda & 0 \\ 0 & 0 & 5 - \lambda \end{bmatrix} \end{pmatrix} = 0$$
$$(\lambda - 5)^3 = 0 \rightarrow \lambda(B) = \{5, 5, 5\}$$

There is 1 distinct eigenvalue. If there were 3 distinct eigenvalues, we would certainly know that B matrix can be diagonalizable. In this case, for $\lambda=5$, there must be 3 linearly independent eigenvector must be found for B to be diagonalizable.

If,

$$\dim\{\mathcal{N}(B-(5)I)\}=3$$

It can be determined that B can be diagonalizable. If not, it cannot be diagonalizable. But, since,

$$\dim\{\mathcal{N}(B-(5)I)\}=2$$

It can be determined that ${\it B}$ cannot be diagonalizable. We can only transform it to a Jordan Normal Form.

$$\mathcal{N}(B - (5)I) = span \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix} \right\}$$

And therefore,

$$Rank\{\mathcal{N}(B-(5)I)\}=\mathbf{2}$$

That means, there are 2 Jordan block corresponds to $\lambda = 5$, i.e.

$$J = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

That means, we need to find v_1 , v_2 , w_1 vectors, such that,

$$[B - (5)I]v_1 = 0$$

 $[B - (5)I]w_1 = 0$

$$[B - (5)I]v_2 = v_1$$

Such that,

 $\{v_1, v_2, w_1\}$ is linearly independent

At this stage, we do not know which one of these

vectors
$$\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix},\begin{bmatrix} 0\\1\\1\end{bmatrix}\right\}$$
 must be chosen as v_1 and w_1 .

Since we can determine,

$$Rank\{\mathcal{N}([B-(5)I]^1)\} = 2$$

 $Rank\{\mathcal{N}([B-(5)I]^2)\} = 3$

We can start selecting v_2 among the standard

basis vectors, i.e.,
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$[B - (5)I] \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$[B - (5)I] \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$[B - (5)I] \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$
 So, (v_1, v_2) can be either,
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$
 or

So, (v_1, v_2) can be either, $\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\end{bmatrix}\right\}$ or

$$\begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix}$$

And we can select w_1 as $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Therefore, we can select $\{v_1, v_2, w_1\}$ as, either,

$$\{v_1, v_2, w_1\} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$$

or

$$\{v_1, v_2, w_1\} = \left\{ \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} \mathbf{0}\\\mathbf{1}\\1 \end{bmatrix} \right\}$$

Let use choose,

So, we can construct T, transformation matrix, as,

$$T = \begin{bmatrix} v_1 & v_2 & w_1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

To compute a Jordan Normal Form of B,

$$J = T^{-1}BT$$

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 1 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 1 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$J = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}, T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

The characteristic polynomial of B is given as,

$$\chi_A(\lambda) = (\lambda - 5)^{\boxed{3}}$$

Because *B* has $\lambda = 5$ with algebraic multiplicity $\boxed{3}$.

The minimal polynomial of B is given as,

$$m_A(\lambda) = (\lambda - 5)^{\boxed{2}}$$

Because *B* has $\lambda = 5$ with **geometric multiplicity** $\boxed{2}$.

To determine e^{Bt} , we need to use Jordan Normal Form of B matrix.

$$B = TJT^{-1}$$

$$Bt = T(Jt)T^{-1}$$

$$\begin{bmatrix} 5 & 1 & -1 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} t = T \begin{pmatrix} \begin{bmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} t \end{pmatrix} T^{-1}$$

$$\begin{bmatrix} 5t & t & -t \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 5t & t & 0 \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

$$e^{Bt} = T(e^{Jt})T^{-1}$$

$$e^{\begin{bmatrix} 5t & t & -t \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix}} = T \begin{pmatrix} \begin{bmatrix} 5t & t & 0 \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix} \end{pmatrix} T^{-1}$$

Let us first focus on the term, $e^{\begin{bmatrix}5t&t&0\\0&5t&0\\0&0&5t\end{bmatrix}}$,

$$e^{\begin{bmatrix} 5t & t & 0 \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix}} = e^{\begin{bmatrix} 5t & t & 0 \\ 0 & 5t & 0 \\ 0 & 0 & \boxed{5t} \end{bmatrix}} = \begin{bmatrix} e^{\underbrace{5t} & t} & 0 \\ 0 & 5t & 0 \\ 0 & 0 & e^{\boxed{5t}} \end{bmatrix}$$

And,

$$e^{\underbrace{\begin{bmatrix} 5t & t \\ 0 & 5t \end{bmatrix}}} = \begin{bmatrix} e^{5t} & te^{5t} \\ 0 & e^{5t} \end{bmatrix}$$

Therefore,

$$e^{\begin{bmatrix} 5t & t & 0 \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix}} = \begin{bmatrix} e^{\begin{bmatrix} 5t & t \\ 0 & 5t \end{bmatrix}} & 0 \\ 0 & 0 & e^{\underbrace{5t}} \end{bmatrix} = \begin{bmatrix} e^{5t} & te^{5t} & 0 \\ 0 & e^{5t} & 0 \\ 0 & 0 & e^{\underbrace{5t}} \end{bmatrix}$$

As a result of this,

$$e^{\begin{bmatrix} 5t & t & -t \\ 0 & 5t & 0 \\ 0 & 0 & 5t \end{bmatrix}} = T \begin{pmatrix} e^{(5t)} & te^{(5t)} & 0 \\ 0 & e^{(5t)} & 0 \\ 0 & 0 & e^{(5t)} \end{pmatrix} T^{-1}$$

$$\begin{split} e^{Bt} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} e^{(5t)} & te^{(5t)} & 0 \\ 0 & e^{(5t)} & 0 \\ 0 & 0 & e^{(5t)} \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{-1} \\ e^{Bt} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{(5t)} & te^{(5t)} & 0 \\ 0 & e^{(5t)} & 0 \\ 0 & 0 & e^{(5t)} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \\ e^{Bt} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{(5t)} & te^{(5t)} & -te^{(5t)} \\ 0 & e^{(5t)} & -e^{(5t)} \\ 0 & 0 & e^{(5t)} \end{bmatrix} \\ e^{Bt} &= \begin{bmatrix} e^{(5t)} & te^{(5t)} & -te^{(5t)} \\ 0 & e^{(5t)} & e^{(5t)} - e^{(5t)} \\ 0 & 0 & e^{(5t)} \end{bmatrix} \\ e^{Bt} &= \begin{bmatrix} e^{(5t)} & te^{(5t)} & -te^{(5t)} \\ 0 & e^{(5t)} & e^{(5t)} - te^{(5t)} \\ 0 & e^{(5t)} & 0 \\ 0 & 0 & e^{(5t)} \end{bmatrix} \end{split}$$