Al 5090: Stochastic Processes

LECTURE 15

SCRIBE: ADHITH T & MADINE KARTHIKEYA VARMA

25 FEBRUARY 2025

Contents

1	Recap	1
	1.1 Binary Pseudo Random Number Generator	1
2	m-Sequences	1
	2.1 Example	1
	2.2 Properties of m-Sequences	2
3	Generating non-binary m-sequences	2
	3.1 Power Residue Method	2
	3.2 Examples	2
4	σ -Algebra Generated by a Random Variable	3
	σ -Algebra Generated by a Random Variable 4.1 σ -Algebra Generated by a Random Vector	4
	Filtrations	4
6	Stopping Times	4

1 Recap

1.1 Binary Pseudo Random Number Generator

Pseduo Random Number Generator although seemingly random, is actually produced by a deterministic algorithm (as seen in the previous lecture). Binary PRNG produces pseduo random sequence of usually two values (0,1 generally). In order to obtain a better random sequence we increase the value of the period (N) to a higher value.

2 m-Sequences

Maximal period binary sequences generated by a Linear Feedback Shift Registers (LFSR) are called m-sequences. In m-sequences the number of zeroes and the numbers of ones are approximately equal.

2.1 Example

For N=4, set the tap gains as:

$$(g_0, g_1, g_2, g_3, g_4) = (1, 0, 0, 1, 1) = (23)_8.$$

This setting gives us the maximum possible periodic binary sequence in 4-Stage Binary Linear Feedback Shift Register. Any other tap gain may not give the maximum possible periodic sequence.

2.2 Properties of m-Sequences

- **Period**: They are periodic with period $2^N 1$.
- Balanced Distribution: Contain approximately equal number of ones and zeros in any one period.
- Autocorrelation Property: Autocorrelation function is nearly identical to that of IID Ber(0.5) process. Indeed, suppose X_1, X_2, \cdots for $x \in [0, 5]$. Then,

$$M_X(t) = 0.5, \quad R_X(s,t) = E[X_s X_t] = \begin{cases} \frac{1}{2}, & s = t, \\ \frac{1}{4}, & s \neq t. \end{cases}$$

Given a discrete-time signal $\{x[n]\}_{n=0}^{\infty}$ with period N, its autocorrelation is given by

$$R_X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k], \quad k \in \{0, 1, 2, \dots\}.$$

Considering the single period output (1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0), we have

$$R_X[k] = \begin{cases} \frac{8}{15}, & k = 0, \\ \frac{4}{15}, & 1 \le k \le 14, \end{cases} \quad R_X[k+15] = R_X[k].$$

3 Generating non-binary m-sequences

3.1 Power Residue Method

Here we are going to discuss about a specific method for this called **power residue method**. Given numbers (a, x_0, p) , let

$$x_n = a \cdot x_{n-1} \mod p$$

where

- p is typically a large prime number. For instance, $p=2^{31}-1$ (an instance of a Mersenne prime number).
- $x_0 \neq 0$ is called seed value. Python and other programs use the computer's internal time to generate this seed value (if seed is not explicitly specified).
- $a \neq 1$ is called multiplicative factor.

Due to mod p, $x_n \in \{1, \dots, p-1\}$ for all n. Furthermore, x_n will always be periodic, with a maximal period of p-1. Choice of (a, p) is crucial for obtaining m-sequence.

3.2 Examples

LECTURE 15

• If (a, p) = (4, 7), then the output sequence (with $x_0 = 1$) is:

$$\begin{aligned} x_1 &= 4 \times 1 & \mod 7 = 4, \\ x_2 &= 4 \times 4 & \mod 7 = 2, \\ x_3 &= 4 \times 2 & \mod 7 = 1, \\ x_4 &= 4 \times 1 & \mod 7 = 4, \\ x_5 &= 4 \times 4 & \mod 7 = 2. \end{aligned}$$

Hence, the sequence is (1, 4, 2, 1, 4, 2, ...). Notice that the period of this sequence is 3, which is smaller than the maximal possible period of p - 1 = 6.

• If (a, p) = (3, 7), then the output sequence (with $x_0 = 1$) is:

$$\begin{split} x_1 &= 3 \times 1 \mod 7 = 3, \\ x_2 &= 3 \times 3 \mod 7 = 2, \\ x_3 &= 3 \times 2 \mod 7 = 6, \\ x_4 &= 3 \times 6 \mod 7 = 4, \\ x_5 &= 3 \times 4 \mod 7 = 5, \\ x_6 &= 3 \times 5 \mod 7 = 1. \end{split}$$

Hence, the sequence is $(1,3,2,6,4,5,1,3,2,\ldots)$. Notice that the period of this sequence is p-1=6.

• Most programming languages use $a = 7^5$ and $p = 2^{31} - 1$.

4 σ -Algebra Generated by a Random Variable

In this section, we will review the concept of σ -algebra generated by a random variable. In essence, this σ -algebra is the smallest σ -algebra with respect to which a given random variable will continue to remain a random variable.

Definition 1 (σ -Algebra Generated by a Random Variable). Fix a measurable space (Ω, \mathscr{F}) . Let $X : \Omega \to \mathbb{R}$ be a random variable with respect to \mathscr{F} .

The σ -algebra generated by X, denoted $\sigma(X)$, is defined as:

$$\sigma(X):=\left\{A\in\mathscr{F}:A=X^{-1}(B)\text{ for some }B\in\mathscr{B}(\mathbb{R})\right\}.$$

- The σ -algebra $\sigma(X)$ is the smallest σ -algebra on Ω that makes X measurable.
- The structure of $\sigma(X)$ is closely related to the Borel σ -algebra $\mathscr{B}(\mathbb{R})$ on \mathbb{R} .

Example

Consider the following example:

$$\Omega = \{1, \dots, 6\}, \qquad \mathscr{F} = 2^{\Omega} = \text{power set of } \Omega.$$

Define a function $X:\Omega\to\mathbb{R}$ as follows:

$$X(\omega) = \begin{cases} 0, & \omega = 1, 2, \\ 4, & \omega = 5, 6, \\ 6, & \omega = 3, 4. \end{cases}$$

We then readily observe that

$$X^{-1}(-\infty, x] = \begin{cases} \emptyset, & x < 0, \\ \{1, 2\}, & 0 \le x < 4, \\ \{1, 2, 5, 6\}, & 4 \le x < 6, \\ \Omega, & x \ge 6. \end{cases}$$

Furthermore, we note that

$$X^{-1}(\{x\}) = \begin{cases} \{1,2\}, & x = 0, \\ \{3,4\}, & x = 6, \\ \{5,6\}, & x = 4, \\ \emptyset, & x \notin \{0,4,6\}. \end{cases}$$

Combining the above observations, we have

$$\sigma(X) = \bigg\{\emptyset, \Omega, \{1,2\}, \{3,4\}, \{5,6\}, \{1,2,3,4\}, \{3,4,5,6\}, \{1,2,5,6\}\bigg\}.$$

4.1 σ -Algebra Generated by a Random Vector

The above definition for the σ -algebra generated by a random variable may be extended naturally to random vectors as follows.

Definition 2 (σ -Algebra Generated by a Random Vector). Fix a measurable space (Ω, \mathscr{F}) and $n \in \mathbb{N}$. Let $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ be a random vector with respect to \mathscr{F} . The σ -algebra generated by (X_1, \ldots, X_n) , denoted $\sigma(X_1, \ldots, X_n)$, is defined as:

$$\sigma(X_1,\ldots,X_n):=\left\{A\in\mathscr{F}:A=(X_1,\ldots,X_n)^{-1}(B)\text{ for some }B\in\mathscr{B}(\mathbb{R}^n)\right\}.$$

5 Filtrations

The idea of filtrations plays a crucial role in the study of stochastic processes. Formally, a filtration is a non-decreasing collection of σ -algebras, and is defined below.

Definition 3 (Filtration). Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let \mathcal{T} be an ordered index set. A collection of σ -algebras $\mathcal{G}_{\bullet} = \{\mathcal{G}_t : t \in \mathcal{T}\}$ such that $\mathcal{G}_t \subseteq \mathscr{F}$ for all $t \in \mathcal{T}$ is called a **filtration** if

$$\mathcal{G}_s \subseteq \mathcal{G}_t, \quad \forall s \leq t.$$

Suppose that $\{X_t: t \in \mathcal{T}\}$ is a stochastic process defined with respect to \mathscr{F} . Then, the **natural filtration** associated with the process $\{X_t\}_{t \in \mathcal{T}}$ is given by

$$\mathcal{G}_t = \sigma(X_s : s \le t), \qquad t \in \mathcal{T}.$$

The concept of filtrations is closely associated with that of stopping times, defined next.

6 Stopping Times

Definition 4 (Stopping Time). Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$. Let \mathcal{T} be an ordered index set. Fix a filtration $\mathcal{G}_{\bullet} = \{\mathcal{G}_t : t \in \mathcal{T}\}$. A random variable $\tau : \Omega \to \mathcal{T} \cup \{+\infty\}$ is called a **stopping time** with respect to the filtration \mathcal{G}_{\bullet} if

$$P(\tau < \infty) = 1$$
,

and for each $t \in \mathcal{T}$, the event

$$\{\tau < t\} \in \mathcal{G}_t$$
.

Simply put, the latter condition above dictates that the answer to the question "Is the value of τ lesser than or equal to t?" may be determined by simply looking at the process up to (and including) time t.

Example 1. Let $\{X_t\}_{t\in\mathcal{T}}$ be a stochastic process. Define τ as the first time X_t exceeds a threshold a, i.e.,

$$\tau := \inf\{t \in \mathcal{T} : X_t \ge a\}.$$

Then, we observe that for every $t \in \mathcal{T}$,

$$\{\tau \le t\} = \{\exists s \le t, X_s \ge a\} \in \mathcal{G}_t.$$

Therefore, under the additional condition that $\mathbb{P}(\tau < +\infty) = 1$, it follows that τ as defined above is a stopping time with respect to the natural filtration of the process $\{X_t\}_{t \in \mathcal{T}}$.