Now let's consider remains
$$\times \Gamma \to S \times \Gamma$$
. The notion is impossible of \mathbb{Z}_{N} and \mathbb{Z}_{N} are closed remains as \mathbb{Z}_{N} and \mathbb{Z}_{N} are closed \mathbb{Z}_{N} and \mathbb{Z}_{N} are larger \mathbb{Z}_{N} and \mathbb{Z}_{N} are larger \mathbb{Z}_{N} and \mathbb{Z}_{N} are larger \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} and \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N} are \mathbb{Z}_{N}

Clarically, with expect $\angle \phi(sx_1), ..., \phi(sx_n) > b$ reals with b as $\left(\frac{d-2}{2}\right)^n$.

The fine reality dimension is $\Delta \phi = \frac{d^{-2}}{2} + 3\phi$

Ka Flow

To legin, support we short from a theory where the couplings $q_i = q_i^*$ s.t. $p_i(q_i^*) = 0$ e.g. the Common throng with $n^2 = 0$ and $q_i^* = 0$ Hor generally, we could now a throng where either 1) domical direction of all compliags are zero + greaten consections vanish, or 2) the quantum consections compensate for non-zero ulmich dimension.

In either earl, the complings git are independent of real 7 + (g;*) = 7 \$ too in independent of reals. the Rla egh for the 2-point function then becomes $0 = \left(\Lambda_{\partial \Lambda}^{2} + hi (g_{i}^{*}) g_{i}^{2} + 2 \gamma_{\phi}(g_{i}^{*}) \right) \Gamma_{\Lambda}^{(2)} (x, y)$ => $\Lambda_{2\Lambda}^{2} \Gamma_{\Lambda}(x,y) = -2 \gamma_{\beta} \Gamma_{\Lambda}^{(2)}(x,y)$ On directional grounds, $\Gamma_{\Lambda}^{(2)}(x,y;g;^*) = f(\Lambda|x-y|,g;^*)\Lambda^{d-2}$. Then the RG 4th tells as $\Gamma_{\Lambda}^{(2)}(x,y;g;^*) = \frac{\Lambda^{d-2} c(g;^*)}{\Lambda^{2\Delta\phi}|x-y|^{2\Delta\phi}} \propto \frac{c(g;^*)}{|x-y|^{2\Delta\phi}}$ so the anomalous dimensions "consect" the dependence on 1x-y1. Now suppose on start close to, but not at, a real-invovious sheary. Let the gi = gi + dgi. W. Low 1 39: | 5: + 69: = Bij (29: 3) 59; + 0 (592) ruce $\beta(g_i^k)=0$ by de_i^k . Let σ_i be an eigenvector of B_{ij} where Δ_i and Δ_i .

The eigencompling σ_i corresponds to turning on some combinations of interactions in S. Chanceally, ruch at operator would have man dim his, and no define Ti = Di - di to be the anomalous dimension of the operator. =7 $\Lambda \frac{\partial \sigma_i}{\partial \Lambda} = (\Lambda_i - \lambda) \sigma_i$ => $\sigma_i(\Lambda) = \left(\frac{\Lambda}{\Lambda_0}\right)^{\Delta_i - \lambda} \sigma_i(\Lambda_0)$ to the ander Case 1) Di > d. Then on we lower the cut-off from No to N -> 0, we hove $\sigma:(\Lambda) \to 0$. Some flow back to the theory at g: as we make to low awayed. (00-dim)

The operators are called inclusions. with Di>d

There are always infaitely many such operators, because we can
increase D: by adding nort derivations / fields (d72).

Lane 2) If Di Ld Hun o(1) inormed as we go to the IR. There are only finishely many much relevant apretors (d > 2). Any RG trajectory emonating from g. is called a certical trajectory.

A more generic QFT will start at scale Nove the both vilovant + involvent appratures turned on. The RG flows of their theories focus on the crubical trajectory in the IK. This focusing as called misservabily: it's the reason physics works!