

DONGGUAN NANJING ELECTRONICS.

SOT-23 Encapsulate Adjustable Reference Source

AZ431 Adjustable Accurate Reference Source

DEVICE DESCRIPSION

The AZ431 is a three-terminal a djustable shunt regulator offering excellent temperature stability . This device has a typical dynamic output impedance of 0.2Ω . The device can be used as a replacement for zener diodes in many applications.

FEATURES

- The output voltage can be adjusted to 36V
- Low dynamic output impedance, its typical value is 0.2Ω
- Trapping current capability is 1 to 100mA
- Low output noise voltage
- Fast on -state response
- The effective temperature compensation in the working range of full temperature
- The typical value of the equivalent temperature factor in the whole temperature scope is 50 ppm/°C

- Shunt Regulator
- High-Current Shunt Regulator
- Precision Current Limiter

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Unit
Cathode Voltage	V _{KA}	37	V
Cathode Current Range (Continuous)	I _{KA}	-100~+150	mA
Reference Input Current Range	Iref	0.05~+10	mA
Power Dissipation	P _D	300	mW
Thermal Resistance from Junction to Ambient	$R_{ heta JA}$	417	°C/W
Operating Junction Temperature	Tj	150	$^{\circ}$
Operating Ambient Temperature Range	Topr	0~+70	\mathbb{C}
Storage temperature Range	Tstg	-65~+150	°C

ELECTRICAL CHARACTERISTICS (Ta=25℃ unless otherwise specified)

Parameter	Symbol	Test conditions		Min	Тур	Max	Unit
Reference input voltage (Fig.1)	V _{ref}	V _{KA} =V _{REF} , I _{KA} =10mA		2.450	2.5	2.550	V
Deviation of reference input voltage over temperature (note) (Fig.1)	$\triangle V_{ref}/\triangle T$	$V_{KA} = V_{REF}, I_{KA} = 10mA$ $T_{min} \le T_a \le T_{max}$			4.5	17	mV
Ratio of change in reference input	△V _{ref} /△V _{KA} I _K	I _{KA} =10mA	△V _{KA} =10V~V _{REF}		-1.0	-2.7	mV/V
voltage to the change in cathode voltage (Fig.2)		V ret 1 △ V KA IKA – I UI	IKA-TOTTIA	△V _{KA} =36V~ 10V		-0.5	-2.0
Reference input current (Fig.2)	I _{ref}	I_{KA} = 10mA, R_1 =10kΩ R_2 =∞			1.5	4	μΑ
Deviation Of reference input current over full temperature range (Fig.2)	△I _{ref} /△T	I_{KA} =10mA, R ₁ =10kΩ R_2 =∞ T_a =full Temperature			0.4	1.2	μΑ
Minimum cathode current for regulation (Fig.1)	I _{KA(min)}	V _{KA} =V _{REF}			0.45	1.0	mA
Off-state cathode Current (Fig.3)	I _{KA(OFF)}	V _{KA} =36V,V _{REF} =0			0.05	1.0	μA
Dynamic impedance	Z _{KA}	V _{KA} =V _{REF,} I _{KA} =1 to 100mA f≤1.0kHz			0.15	0.5	Ω

note: T_{MIN} =0°C , T_{MAX} =+70°C

CLASSIFICATION of Vref

Rank	0.4%	0.5%		
Range	2.49-2.51	2.487-2.513		

Test Circuit for V_{KA}=V_{ref}

Test Circuit for $V_{KA}=V_{ref}(1+R1/R2)+R1*I_{ref}$

Test Circuit for I_{ref}

Test Circuit for I_{off}