Programación para Analítica de Datos MODULO EN PYTHON – PANDAS

POR: Guillermo Andres De Mendoza Corrales

PANDAS LIBRERIA

Link: https://pandas.pydata.org/

Libreria que facilita las operaciones de:

- Analisis
- Limpieza
- Exploracion
- Manipulacion

PANDAS IMPLEMETACION

import pandas as pd

```
pd.read_
  read_clipboard function
  read_csv
                 function
                 function
  read_excel
                 function
  read_feather
                 function
  read_fwf
                 function
  read_gbq
                 function
   read_hdf
                 function
   read_html
                 function
  read_json
   read_orc
                 function .
```


PYTHON CON PANDAS

```
path = "C:\\Users\\Memo\\Desktop\\git\\MaterialMaestriaProgramacionDatos\\clases\\p7 - Pandas\\"
file = "boston_housing.csv"

data = pd.read_csv(path+file)
data
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

506 rows × 14 columns

PYTHON CON PANDAS

data.d	data.describe()													
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.653063	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.141062	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.950000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.360000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.955000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.970000	

PYTHON CON PANDAS - describir

```
data.info()
                                                data.dtypes
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
                                                            float64
                                                CRIM
Data columns (total 14 columns):
                                                ΖN
                                                            float64
    Column
             Non-Null Count Dtype
                                                INDUS
                                                            float64
                                                               int64
                                                CHAS
             506 non-null
                            float64
    CRIM
                                                            float64
                                                NOX
    ΖN
             506 non-null
                            float64
                                                            float64
    INDUS
             506 non-null
                            float64
                                                RM
                            int64
    CHAS
             506 non-null
                                                AGE
                                                            float64
    NOX
             506 non-null
                            float64
                                                DIS
                                                            float64
    RM
             506 non-null
                            float64
                                                RAD
                                                               int64
    AGE
             506 non-null
                            float64
                                                TAX
                                                            float64
                            float64
    DIS
             506 non-null
                                                            float64
                                                PTRATIO
    RAD
             506 non-null
                            int64
    TAX
             506 non-null
                            float64
                                                В
                                                            float64
    PTRATIO 506 non-null
                            float64
                                                            float64
                                                LSTAT
11 B
             506 non-null
                            float64
                                                MEDV
                                                            float64
                            float64
    LSTAT
             506 non-null
                                                dtype: object
13 MEDV
             506 non-null
                            float64
dtypes: float64(12), int64(2)
```

memory usage: 55.5 KB

PYTHON CON PANDAS - describir

7.07

7.07

data.head(3) CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO LSTAT MEDV 0.00632 2.31 15.3 396.90 18.0 0.538 6.575 65.2 4.0900 296.0 4.98 24.0

78.9

61.1

4.9671

4.9671

2 242.0

242.0

17.8 396.90

17.8 392.83

0 0.469 6.421

0.469

7.185

0.02731

data.tail(3)

2 0.02729

0.0

0.0

head

tail

DIS RAD CRIM ZΝ INDUS CHAS NOX RM AGE TAX PTRATIO LSTAT MEDV 0.06076 6.976 273.0 396.90 23.9 503 0.0 11.93 0 0.573 91.0 2.1675 21.0 5.64 **504** 0.10959 0 0.573 6.794 89.3 2.3889 1 273.0 21.0 393.45 0.0 11.93 6.48 22.0 0.04741 11.93 6.030 80.8 2.5050 1 273.0 396.90 7.88 11.9 0.0 0 0.573

21.6

34.7

9.14

4.03

PYTHON CON PANDAS - describir

```
data.shape
(506, 14)
```


PYTHON CON PANDAS - acceso

data.head(3)														
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7

index possition

data.loc	[0]	data.ilo	c[0]			
CRIM	0.00632	CRIM	0.00632			
ZN	18.00000	ZN	18.00000			
INDUS	2.31000	INDUS	2.31000			
CHAS	0.00000	CHAS	0.00000			
NOX	0.53800	NOX	0.53800			
RM	6.57500	RM	6.57500			
AGE	65.20000	AGE	65.20000			
DIS	4.09000	DIS	4.09000			
RAD	1.00000	RAD	1.00000			
TAX	296.00000	TAX	296.00000			
PTRATIO	15.30000	PTRATIO	15.30000			
В	396.90000	В	396.90000			
LSTAT	4.98000	LSTAT	4.98000			
MEDV	24.00000	MEDV	24.00000			
Name: 0,	dtype: float64	Name: 0,	dtype: float64			

PYTHON CON PANDAS - filtro

```
data["AGE"]
                                                   data["AGE"].iloc[0]
       65.2
                                                   65.2
       78.9
       61.1
       45.8
       54.2
       . . .
501
       69.1
       76.7
502
503
       91.0
504
       89.3
505
       80.8
Name: AGE, Length: 506, dtype: float64
```


PYTHON CON PANDAS - filtros

```
data_filtered = data[ data["AGE"] > 80 ]
data_filtered
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
7	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311.0	15.2	386.71	17.10	18.9
10	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311.0	15.2	392.52	20.45	15.0
11	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311.0	15.2	396.90	13.27	18.9
491	0.10574	0.0	27.74	0	0.609	5.983	98.8	1.8681	4	711.0	20.1	390.11	18.07	13.6
492	0.11132	0.0	27.74	0	0.609	5.983	83.5	2.1099	4	711.0	20.1	396.90	13.35	20.1
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9

240 rows × 14 columns

len(data_filtered)

240

PYTHON CON PANDAS - filtros

data_sorted = data.sort_values("AGE")
data_sorted

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	age_category	money
41	0.12744	0.0	6.91	0	0.448	6.770	2.9	5.7209	3	233.0	17.9	385.41	4.84	26.6	Child	481
74	0.07896	0.0	12.83	0	0.437	6.273	6.0	4.2515	5	398.0	18.7	394.92	6.78	24.1	Child	945
73	0.19539	0.0	10.81	0	0.413	6.245	6.2	5.2873	4	305.0	19.2	377.17	7.54	23.4	Child	778
43	0.15936	0.0	6.91	0	0.448	6.211	6.5	5.7209	3	233.0	17.9	394.46	7.44	24.7	Child	544
70	0.08826	0.0	10.81	0	0.413	6.417	6.6	5.2873	4	305.0	19.2	383.73	6.72	24.2	Child	327
386	24.39380	0.0	18.10	0	0.700	4.652	100.0	1.4672	24	666.0	20.2	396.90	28.28	10.5	Senior	727
158	1.34284	0.0	19.58	0	0.605	6.066	100.0	1.7573	5	403.0	14.7	353.89	6.43	24.3	Senior	987
383	7.99248	0.0	18.10	0	0.700	5.520	100.0	1.5331	24	666.0	20.2	396.90	24.56	12.3	Senior	765
406	20.71620	0.0	18.10	0	0.659	4.138	100.0	1.1781	24	666.0	20.2	370.22	23.34	11.9	Senior	427
420	11.08740	0.0	18.10	0	0.718	6.411	100.0	1.8589	24	666.0	20.2	318.75	15.02	16.7	Senior	888

Crear dataframes desde cero

```
data_1 = pd.DataFrame({
    "A": [10, 20, 30, 40, 50, 60],
    "B": [40, 50, 60, 70, 80, 90],
    "C": [20, 10, None, 30, 40, 50],
    "D": [10, 20, 90, 80, 70, 60],
    "E": [90, 20, 70, 60, 50, 40],
    "F": [40, 70, None, 30, 20, 10]
}, index=[100, 200, 300, 400, 500, 600])
data_1
```

	Α	В	C	D	E	F
100	10	40	20.0	10	90	40.0
200	20	50	10.0	20	20	70.0
300	30	60	NaN	90	70	NaN
400	40	70	30.0	80	60	30.0
500	50	80	40.0	70	50	20.0
600	60	90	50.0	60	40	10.0


```
data_1 = pd.DataFrame({
    "A": [10, 20, 30, 40, 50, 60],
    "B": [40, 50, 60, 70, 80, 90],
    "C": [20, 10, None, 30, 40, 50],
    "D": [10, 20, 90, 80, 70, 60],
    "E": [90, 20, 70, 60, 50, 40],
    "F": [40, 70, None, 30, 20, 10]
}, index=[100, 200, 300, 400, 500, 600])
```

```
data 1.isna()
100 False False False False False
200 False False False False False
300 False False True False False
400 False False False False False
500 False False False False False
600 False False False False False
```



```
data_1 = pd.DataFrame({
    "A": [10, 20, 30, 40, 50, 60],
    "B": [40, 50, 60, 70, 80, 90],
    "C": [20, 10, None, 30, 40, 50],
    "D": [10, 20, 90, 80, 70, 60],
    "E": [90, 20, 70, 60, 50, 40],
    "F": [40, 70, None, 30, 20, 10]
}, index=[100, 200, 300, 400, 500, 600])
```

```
      data_2 = data_1.dropna()

      data_2
      A
      B
      C
      D
      E
      F

      100
      10
      40
      20.0
      10
      90
      40.0

      200
      20
      50
      10.0
      20
      20
      70.0

      400
      40
      70
      30.0
      80
      60
      30.0

      500
      50
      80
      40.0
      70
      50
      20.0

      600
      60
      90
      50.0
      60
      40
      10.0
```

Crea un nuevo dataframe sin las filas que tienen valores nulos


```
data_1 = pd.DataFrame({
    "A": [10, 20, 30, 40, 50, 60],
    "B": [40, 50, 60, 70, 80, 90],
    "C": [20, 10, None, 30, 40, 50],
    "D": [10, 20, 90, 80, 70, 60],
    "E": [90, 20, 70, 60, 50, 40],
    "F": [40, 70, None, 30, 20, 10]
}, index=[100, 200, 300, 400, 500, 600])

data_1.fillna(0)
```

	Α	В	C	D	E	F
100	10	40	20.0	10	90	40.0
200	20	50	10.0	20	20	70.0
300	30	60	0.0	90	70	0.0
400	40	70	30.0	80	60	30.0
500	50	80	40.0	70	50	20.0
600	60	90	50.0	60	40	10.0


```
data_1 = pd.DataFrame({
    "A": [10, 20, 30, 40, 50, 60],
    "B": [40, 50, 60, 70, 80, 90],
    "C": [20, 10, None, 30, 40, 50],
    "D": [10, 20, 90, 80, 70, 60],
    "E": [90, 20, 70, 60, 50, 40],
    "F": [40, 70, None, 30, 20, 10]
}, index=[100, 200, 300, 400, 500, 600])

data_1.fillna(data_1.mean())
```

Α	В	С	D	E	F
10	40	20.0	10	90	40.0
20	50	10.0	20	20	70.0
30	60	30.0	90	70	34.0
40	70	30.0	80	60	30.0
50	80	40.0	70	50	20.0
60	90	50.0	60	40	10.0
	10 20 30 40 50	10 40 20 50 30 60 40 70 50 80	10 40 20.0 20 50 10.0 30 60 30.0 40 70 30.0 50 80 40.0	10 40 20.0 10 20 50 10.0 20 30 60 30.0 90 40 70 30.0 80 50 80 40.0 70	ABCDE104020.01090205010.02020306030.09070407030.08060508040.07050609050.06040


```
data_1 = pd.DataFrame({
    "A": [10, 20, 30, 40, 50, 60],
    "B": [40, 50, 60, 70, 80, 90],
    "C": [20, 10, None, 30, 40, 50],
    "D": [10, 20, 90, 80, 70, 60],
    "E": [90, 20, 70, 60, 50, 40],
    "F": [40, 70, None, 30, 20, 10]
}, index=[100, 200, 300, 400, 500, 600])
data_1.fillna({"C": -1})
```

	Α	В	C	D	E	F
100	10	40	20.0	10	90	40.0
200	20	50	10.0	20	20	70.0
300	30	60	-1.0	90	70	NaN
400	40	70	30.0	80	60	30.0
500	50	80	40.0	70	50	20.0
600	60	90	50.0	60	40	10.0

PYTHON CON PANDAS – crear columna

```
def categorize_age(age):
    if age < 13:
        return "Child"
    elif 13 <= age < 18:
        return "Teen"
    elif 18 <= age < 60:
        return "Adult"
    else:
        return "Senior"

data["age_category"] = data["AGE"].apply(categorize_age)
data</pre>
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	age_category
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0	Senior
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6	Senior
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7	Senior
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4	Adult
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2	Adult
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273.0	21.0	391.99	9.67	22.4	Senior
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273.0	21.0	396.90	9.08	20.6	Senior
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273.0	21.0	396.90	5.64	23.9	Senior
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273.0	21.0	393.45	6.48	22.0	Senior
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273.0	21.0	396.90	7.88	11.9	Senior

PYTHON CON PANDAS

```
data["age_category"].unique()
array(['Senior', 'Adult', 'Teen', 'Child'], dtype=object)
```


PYTHON CON PANDAS – crear columna

```
TAX PTRATIO
money =
                                                                   0 0.00632 18.0
                                                                                       0 0.538 6.575 65.2 4.0900
                                                                                                            1 296.0
for _ in range(len(data)):
                                                                   1 0.02731
                                                                                       0 0.469 6.421 78.9 4.9671
                                                                                                            2 242.0
                                                                                                            2 242.0
       value = random.randint(0,1000)
                                                                                                            3 222.0
                                                                                       0 0.458 7.147 54.2 6.0622
                                                                                                            3 222.0
                                                                   4 0.06905
       money.append( value )
                                                                                                            1 273.0
                                                                                       0 0.573 6.120 76.7 2.2875
                                                                  502 0.04527
                                                                                                            1 273.0
data["money"] = money
                                                                                       0 0.573 6.976 91.0 2.1675
                                                                                                            1 273.0
                                                                  503 0.06076
                                                                                11.93
                                                                                                            1 273.0
data
                                                                                       0 0.573 6.030 80.8 2.5050
                                                                                                            1 273.0
                                                                  505 0.04741
```


B LSTAT MEDV age_category money

Senior

Senior

Senior

Adult

Adult

Senior

Senior

Senior

Senior

Senior

106

309

742

737

24.0

21.6

36.2

22.4

20.6

23.9

9.14

5.64

17.8 396.90

21.0 396.90

21.0 396.90

21.0 396.90

```
import matplotlib.pyplot as plt

data["AGE"].hist(bins=5, edgecolor="black")

# Personalizar el gráfico
plt.title("Histograma de la columna AGE")
plt.xlabel("Valores")
plt.ylabel("Frecuencia")

# Mostrar el gráfico
plt.show()
```



```
data[["money", "AGE"]].sum().plot(kind="bar", color=["blue", "orange"])
plt.title("Suma de valores en A y B")
plt.show()
```



```
data["TAX"].plot(kind="line", marker="o", linestyle="--", color="red")
plt.title("Evolución TAX")
plt.show()
```



```
data.plot.scatter(x="AGE", y="TAX", color="green")
plt.title("Relación entre AGE y TAX")
plt.show()
```



```
data.boxplot(column=["AGE"])
plt.title("Diagrama de Caja de AGE")
plt.show()
```

Diagrama de Caja de AGE


```
data["age_category"].value_counts().plot(kind="pie", autopct="%1.1f%%")
plt.title("Distribución de valores en age_category")
plt.show()
```

Distribución de valores en age_category

PYTHON CON PANDAS – correlaciones

```
data_numbers = data.drop(columns=["age_category"])
correlation_matrix = data_numbers.corr()
print(correlation_matrix)

-1

0
1

Positiva
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	\		DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	\		money
CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352734		CRIM	-0.379670	0.625505	0.582764	0.289946	-0.385064	0.455621	-0.388305		CRIM	0.014138
ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569537		ZN	0.664408	-0.311948	-0.314563	-0.391679	0.175520	-0.412995	0.360445		ZN	0.009019
INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644779		INDUS	-0.708027	0.595129	0.720760	0.383248	-0.356977	0.603800	-0.483725		INDUS	0.025591
CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086518		CHAS	-0.099176	-0.007368	-0.035587	-0.121515	0.048788	-0.053929	0.175260		CHAS	-0.030683
NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731470		NOX	-0.769230	0.611441	0.668023	0.188933	-0.380051	0.590879	-0.427321		NOX	-0.044547
RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240265		RM	0.205246	-0.209847	-0.292048	-0.355501	0.128069	-0.613808	0.695360		RM	-0.070953
AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000000		AGE	-0.747881	0.456022	0.506456	0.261515	-0.273534	0.602339	-0.376955		AGE	0.010900
DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747881		DIS	1.000000	-0.494588	-0.534432	-0.232471	0.291512	-0.496996	0.249929		DIS	0.002717
RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456022		RAD	-0.494588	1.000000	0.910228	0.464741	-0.444413	0.488676	-0.381626		RAD	-0.009756
TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.506456		TAX	-0.534432	0.910228	1.000000	0.460853	-0.441808	0.543993	-0.468536		TAX	0.010659
PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261515		PTRATIO	-0.232471	0.464741	0.460853	1.000000	-0.177383	0.374044	-0.507787		PTRATIO	0.043152
В	-0.385064	0.175520	-0.356977	0.048788	-0.380051	0.128069	-0.273534		В	0.291512	-0.444413	-0.441808	-0.177383	1.000000	-0.366087	0.333461		В	0.062421
LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602339		LSTAT	-0.496996	0.488676	0.543993	0.374044	-0.366087	1.000000	-0.737663	_	LSTAT	0.018977
MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376955		MEDV	0.249929	-0.381626	-0.468536	-0.507787	0.333461	-0.737663	1.000000		MEDV	-0.036730
money	0.014138	0.009019	0.025591	-0.030683	-0.044547	-0.070953	0.010900		money	0.002717	-0.009756	0.010659	0.043152	0.062421	0.018977	-0.036730		money	1.000000

PYTHON CON PANDAS – correlaciones

Correlación	Significado
1	Correlación positiva perfecta
0.7 a 1	Fuerte correlación positiva
0.3 a 0.7	Correlación positiva moderada
0 a 0.3	Correlación débil o nula
-0.3 a -0.7	Correlación negativa moderada
-0.7 a -1	Fuerte correlación negativa
-1	Correlación negativa perfecta

PYTHON CON PANDAS – correlaciones

```
import seaborn as sns
import matplotlib.pyplot as plt

data_numbers = data.drop(columns=["age_category"])
correlation_matrix = data_numbers.corr()
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)

# Personalizar
plt.title("Matriz de Correlaciones")
plt.show()
```


PYTHON CON PANDAS – exportar

```
data.to_csv("data.csv", index=False)
```

```
data.to_clipboard function
data.to_csv
                  function
                  function
data.to_dict
                  function
data.to_excel
                  function
data.to_feather
                  function
data.to_gbq
                  function
data.to_hdf
                  function
data.to_html
                  function
data.to_json
                  function 💂
data.to_latex
```


