Candidate of the microlensing planet not toward the bulge ~ AT2021uey (Gaia21dnc) ~

- Team OAUW: M. Ban, R. Poleski, L. Wyrzykowski, P. Zielinski
- Team Fink: P. Voloshyn, E. Bachelet, J. Peloton

Makiko Ban Astronomical Observatory, University of Warsaw

25th International Microlensing Conference 31st August 2022 in Paris

Microlensing Event Alert

Date of alert	Telescope	Anormary detection
7 July 2021	ASAS-SN (21mc)	Yes
~7 July 2021	ZTF	Yes
27 July 2021	Gaia EDR3	No

Facility code	Telescope name	Longitude	Latitude	Mirror size	Instrument	Pixel scale
*	and location	[deg] + for E	[deg] + for N	[m]		[arcsec/pixel]
ASAS-SN	The All Sky Automated Survey for SuperNovae global network of telescopes	=	-	24x0.14	FLI ProLine PL230	7.80
LCO-1m	Las Cumbres Observatory, global network of 1-m telescopes	1 117 .	Ent.	1.00	Sinistro	0.39
Gaia	ESA space mission	<u></u>	_	1.4×0.5	CCD 4500×1966	0.20
ZTF	The Zwicky Transient Facility, Samuel Oschin telescope, Palomar Observatory, California, US	-116.86	33.36	1.22	CCD 16x6144x6160	1.00
ZAO	Znith Astronomy Observatory, Malta	14.47	35.91	0.20	Moravian G2-1600	0.99
Slooh	network of 10 telescopes, Tenerife, Canary Islands, Spain	-16.64	28.27	0.36, 0.50	CCD	0.63, 0.73
HAO68	Horten telescope, Horten Videregaende Skole, Norway	10.39	59.43	0.68	Moravian G2-1600	0.79
AstroLAB-IRIS	AstroLAB IRIS, Ypres, Belgium	02.91	50.82	0.68	SBIG STL 6303E	0.62
Maidenhead	Commercial telescopes, Maidenhead, UK	-0.78	51.53	various	various	various
Loiano	Cassini telescope, Loiano Observatory, Italy	11.33	44.26	1.52	BFOSC	0.58
Flarestar	Meade SSC-10, Flarestar Observatory, Malta	14.47	35.91	0.25	Moravian G2-1600	0.99
Tacande	Tacande Observatory, La Palma, Canary Islands, Spain	-17.87	28.64	0.40	SX814 CCD	0.29

Source is not toward the Bulge

Source properties (Gaia ERD3):

RA, Dec = 21:38:10.81, +26:27:59.65

Baseline G-mag = 15.47

Parallax = 0.438 ± 0.047 mas

 $\mu_{RA} = -7.912 \pm 0.045 \text{ mas/yr}$

 $\mu_{dec} = -0.527 \pm 0.029 \text{ mas/yr}$

ruwe = 1.478

Distance = 2.15 ± 0.08 kpc

Spectra data	FLOYDS	OHP/Mistral	
Type	sub giant red gian		
T _{eff} [K]	6035 ± 1200	5440 ± 300	
logg	3.02 ± 0.60	2.50 ± 0.50	
$A_{\!\scriptscriptstyle{V}}$	0.26	0.21	
Distance [kpc]	2.50 ± 0.50	7.64 ± 1.93	

Fitting the Light Curve

by MulensModel (Poleski and Yee 2018) & pyLIMA (Bachelet, et al., 2017)

Best fit:

 $t_o = 2459438.690$ $u_o = 0.303$ $t_E = 27.945 \text{ [day]}$ q = 2.589e-3 $s = 1.849 \text{ [}\theta_E\text{]}$ a = 192.717 [deg] $\rho = 1.544e-3 \text{ [}\theta_E\text{]}$

 $X^2/dof \sim 1.12-1.62$

Fitting the Light Curve

by MulensModel (Poleski and Yee 2018) & pyLIMA (Bachelet, et al., 2017)

- ① Approaching to a planet lens
- ② Crossing caustics
- ③ Approaching to a host lens → Main peak of the curve

Fitting the Light Curve

by MulensModel (Poleski and Yee 2018) & pyLIMA (Bachelet, et al., 2017)

Mean & uncertainty of parameters:

 $t_0 = 245938.696 \pm 0.039$

 $u_0 = 0.303 \pm 0.002$

 $t_F = 27.912 \pm 0.142 \text{ [day]}$

 $q = (2.611 \pm 0.088)e-3$

 $s = 1.850 \pm 0.005 [\theta_{E}]$

 $a = 192.670 \pm 0.077$ [deg]

 $\rho = (1.246 \pm 0.575) \text{e-3} [\theta_{E}]$

Other facts:

- No clear microlensing parallax
- Blending <10.6% of the source flux

Lens properties

Event simulation using Besançon Galactic Model (Robin, et al. 2003, 2014, 2017)

Data

- V=15-16 for source, V=20-99 for lenses
- Distance = 0.01-15.00 kpc with 0.01 interval
- Population is treated as the solid angle

<u>Sampling</u>

- Source probability: D_s, A_v, M_v, T_{eff}, logg, Metallicity
 Lens probability: solid angle of the data
- Lens probability: solid angle of the data
- Other constraints : t_{F} , ρ

<u>Two D</u> candidates

- Close source case (FLOYDS)
- Distant source case (OHP/Mistral)

Lens properties (Close source case)

Mean & uncertainty of sample parameters:

$$D_s = 2.531 \pm 0.328$$

$$R_{s} = 1.465 \pm 0.218$$

$$A_{y} = 0.258 \pm 0.0235$$

$$T_{eff} = 5981 \pm 160$$

$$logg = 4.010 \pm 0.165$$

$$[a/Fe] = 0.296 \pm 0.043$$

$$D_{i} = 1.527 \pm 0.515$$

$$M_1 = 0.382 \pm 0.208$$

Lens system parameters:

$$M_* = 0.381 \pm 0.207 M_{sun}$$

 $M_{pl} = 1.045 \pm 0.569 M_{jupiter}$
 $s_{\Delta II} = 7.283 \pm 3.196 \text{ AU}$

Lens properties (Distant source case)

Mean & uncertainty of sample parameters:

Lens system parameters:

$$M_* = 0.449 \pm 0.190 M_{sun}$$

 $M_{pl} = 1.231 \pm 0.522 M_{jupiter}$
 $s_{\Delta II} = 37.422 \pm 18.045 \text{ AU}$

Summary

The lens of the event (AT2021uey) possibly be ...

- M-dwarf
- Jupiter-mass planet beyond the snow line
- → In thin or thick disc?
- → At 5 50 AU?

Reference

- Amôres, E. B., et al., 2017, A&A, 602: A67.
- Bachelet, E. et al., 2017, arXiv: 1709.08704.
- Bienaymé, O., et al., 2015, A&A, 581: A123.
- Bozza, V., 2010, MNRAS, 408: 2188-2200.
- Bozza, V., et al., 2018, MNRAS, 479: 5157-5167.
- Czekaj, M. A., et al., 2014, A&A, 564: A102.
- Foreman-Mackey, D., et al., 2013, PASP, 125: 306-312.
- Fortney, J. J., et al., 2007, AJ, 659: 1661-1672.
- Mulders, G. D., et al., 2015, AJ, 807(1).
- Poleski, R. & Yee, J., 2019, Astronomy and Computing, 26, 35.
- Persons, S. G., et al., 2018, MNRAS, 481: 1083-1096.
- Robin, A. C., et al., 2003, A&A, 409: 523-540.
- Robin, A. C., et al., 2014, A&A, 569: A13.
- Robin, A. C., et al., 2017, A&A, 605: A1.