These slides are being provided with permission from the copyright for in-class (CS2208B) use only. The slides must not be reproduced or provided to anyone outside of the class.

All download copies of the slides and/or lecture recordings are for personal use only. Students must destroy these copies within 30 days after receipt of final course evaluations.

Tutorial 05: Floating-point Numbers

Computer Science Department

CS2208: Introduction to Computer Organization and Architecture

Winter 2020-2021

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: <u>elsakka@csd.uwo.ca</u> **Phone:** 519-661-2111 x86996

Music: "Corporate Success" by Scott Holmes, used under Attribution-NonCommercial License

Example 1: Convert 5.877472₁₀×10⁻³⁹ into a 32-bit single-precision IEEE-754 FP value.

Log₂(10) = $1/\log_{10}(2)$

$$10^{-39} = 2^{z} \implies \log_{2}(10^{-39}) = z \implies -39 \times \log_{2}(10) = z \implies z = -129.5551957$$

$$10^{-39} = 2^{-129.5551957} = 2^{-129} \times 2^{-0.5551957} = 2^{-129} \times 0.680564734_{10}$$

$$5.877472_{10} \times 10^{-39} = 5.877472_{10} \times 0.680564734_{10} \times 2^{-129}$$

$$= 4_{10} \times 2^{-129} = 2^{2} \times 2^{-129} = 2^{-127} = 1_{2} \times 2^{-127}$$

- Convert 1₂ into a fixed-point binary
 - $1_2 = 1.0_2$ (already normalized)
- o True exponent is less than -126 → underflow case
 - The exponent needs to be -126: -127₁₀ = -126 -1
 - Hence, the significant needs to be adjusted to compensate the -1
 - After moving the radix point backward by 1 position \rightarrow 0.1₂ i.e., 1.0₂ × 2⁻¹²⁷ = 0.1₂ × 2⁻¹²⁶
 - After Taking 23 bits → 0. 100 0000 0000 0000 0000 0000₂
- The sign bit, S, is 0 because the number is positive

Example 2: Convert $9.0_{10} \times 10^{-44}$ into a 32-bit single-precision IEEE-754 FP value.

```
10^{-44} = 2^z \rightarrow \log_2(10^{-44}) = z \rightarrow -44 \times \log_2(10) = z \rightarrow z = -146.164836175

10^{-44} = 2^{-146.164836175} = 2^{-146} \times 2^{-0.164836175} = = 2^{-146} \times 0.892029808_{10}

9.0_{10} \times 10^{-44} = 9.0_{10} \times 0.892029808_{10} \times 2^{-146} = 8.028268272_{10} \times 2^{-146}
```

- o Convert 8.028268272₁₀ into a fixed-point binary
 - \bullet 8₁₀ = 1000₂ and
 - $0.028268272_{10} = 0.00000111001111001001..._2$.
 - Therefore, 8.028268272₁₀ = $1000.00000111001111001001..._2$.
- o Normalization: $9.0_{10} \times 10^{-44} = 8.028268272_{10} \times 2^{-146} = 1000.00000111001111001001..._2 \times 2^{-146} = 1.00000000111001111001001..._2 \times 2^{-143}$
- o True exponent is less than -126 → underflow case
 - The exponent needs to be -126: -143₁₀ = -126 -17
 - Hence, the significant needs to be adjusted to compensate the -17

 - After Taking only 23 bits → 0. 000 0000 0000 0000 0100 0000 0011...₂
- The sign bit, S, is 0 because the number is positive
- The final number is 0000 0000 0000 0000 0000 0100 0000 or 00000040₁₆

- □ <u>Example 3</u>: Convert 3.6₁₀ into a 32-bit single-precision IEEE-754 FP value.
 - Convert 3.6₁₀ into a fixed-point binary

$$\mathbf{I}_{10} = 11_2 \text{ and}$$

$$\bullet$$
 0.6₁₀ = 0.1001 1001 ... ₂.

- Therefore, $3.6_{10} = 11.1001 \ 1001 \ \dots \ _2$
- Normalize 11.1001 1001 ... ₂ to
 1.11001 1001 ... ₂ × 2¹.

 $0.6 \times 2 = 1.2$ $0.2 \times 2 = 0.4$ $0.4 \times 2 = 0.8$ $0.8 \times 2 = 1.6$ $0.6 \times 2 = 1.2$...

- The sign bit, S, is 0 because the number is positive
- o The *biased exponent* is the *true exponent* plus 127; that is, $1 + 127 = 128_{10} = 1000\ 0000_2$
- The fractional significand is 110 0110 0110 0110 0110 0110 0110 ...
 - the leading 1 was stripped and
 - to be rounded to 23 bits (rounded to nearest FP number).
- o The final number is 0100 0000 0110 0110 0110 0110 0110, or 40666666_{16} . → 3.5999999046325684_{10}

□ Example 4:

Convert 16777216.75₁₀ into a 32-bit single-precision IEEE-754 FP value.

- Convert 16777216.75₁₀ into a fixed-point binary
 - $16777216_{10} = 1\,0000\,0000\,0000\,0000\,0000\,0000_2$ and
 - $0.75_{10} = 0.11_2.$
 - Therefore, 16777216.75₁₀ = 1 0000 0000 0000 0000 0000 0000.11₂.
- Normalize 1 0000 0000 0000 0000 0000 0000.11₂ to
 1.0000 0000 0000 0000 0000 0000 11₂ × 2²⁴.
- The sign bit, S, is 0 because the number is positive
- o The *biased exponent* is the *true exponent* plus 127; that is, $24 + 127 = 151_{10} = 1001 \ 0111_2$
- The fractional significand is 000 0000 0000 0000 0000 011
 - the leading 1 was stripped and
 - to be rounded to 23 bits (rounded to nearest FP number).

■ Example 5:

Convert 16777219₁₀ into a 32-bit single-precision IEEE-754 FP value.

- Convert 16777219₁₀ into a fixed-point binary
 - $16777219_{10} = 1\,0000\,0000\,0000\,0000\,0000\,0011_2$ and
- Normalize 1 0000 0000 0000 0000 0000 0011₂ to
 1.0000 0000 0000 0000 0000 0011₂ × 2²⁴.
- The sign bit, S, is 0 because the number is positive
- The biased exponent is the true exponent plus 127; that is, $24 + 127 = 151_{10} = 1001 \ 0111_2$
 - round to even significand
- o The fractional significand is 000 0000 0000 0000 0000 0001
 - the leading 1 was stripped and
 - to be rounded to 23 bits (rounded to nearest FP number).

Example of IEEE-754 FP to Decimal to IEEE-754 FP Conversion

☐ Example 6:

Convert 4B800002₁₆ from the 32-bit single-precision IEEE-754 FP representation into decimal representation. <u>Then</u> add 1.0₁₀ to the result. And <u>finally</u> convert it back to the 32-bit single-precision IEEE-754 FP representation.

Convert the hexadecimal number (4B800002₁₆) into binary form

1	3 0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	Ö
0	1	0	0	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

- Unpack the number into sign bit, biased exponent, and fractional significand.
 - S = 0
 - E = 1001 0111
 - F =000 0000 0000 0000 0000 0010
- As the sign bit is 0, the number is positive.
- o We subtract 127 from the *biased exponent* 1001 0111₂ to get the *true exponent* \rightarrow 1001 0111₂ 0111 1111₂ = 0001 1000₂ = 24₁₀.
- \circ The fractional significand is .000 0000 0000 0000 0000 0010₂.
- Reinserting the leading one gives 1.000 0000 0000 0000 0000 0010₂.
- o The number is $+(1 + 2^{-22}) \times 2^{24} = 2^{24} + 2^2 = 1024_{10} \times 1024_{10} \times 16_{10} + 4_{10} = 16777220_{10}$ = $16777216_{10} + 4_{10} = 16777220_{10}$

Mid-way

round to even significand

Example of IEEE-754 FP to Decimal to IEEE-754 FP Conversion

- ☐ Example 6 (continution):
 - Adding 1.0_{10} to the result \rightarrow $16777220_{10} + 1.0_{10} = 16777221_{10}$

Converting the result back to the 32-bit single-precision IEEE-754 FP format

- Convert 16777221₁₀ into a fixed-point binary
 - $16777221_{10} = 1\,0000\,0000\,0000\,0000\,0000\,0101_2$ and
- Normalize 1 0000 0000 0000 0000 0000 0101₂ to
 1.0000 0000 0000 0000 0000 0101₂ × 2²⁴.
- The sign bit, S, is 0 because the number is positive
- o The *biased exponent* is the *true exponent* plus 127; that is, $24 + 127 = 151_{10} = 1001 \ 0111_2$
- The fractional significand is 000 0000 0000 0000 0000 0010
 - the leading 1 was stripped and
 - to be rounded to 23 bits (rounded to nearest FP number).

 $16777220_{10} + 1.0_{10} = 16777220_{10}!!!$ (This is due to the rounding error)

Example of IEEE-754 FP to Decimal to IEEE-754 FP Conversion

- □ Example 6 (continution):
- Run the following C program to verify Example 6:

```
#include <stdio.h>
int main()
{
   float f = 16777220, ff;
   ff = f + 1;
   printf("%f %f \n", f, ff);
}
```

The output will be:

16777220.000000 16777220.000000

Change the "float" to "int" and the "%f" to "%d" and repeat executing the program again.

The output after the "float" to "int" change will be: 16777220 16777221

Change the "float" to "double" and the "%f" to "%lf" and repeat executing the program again.

The output after the "float" to "double" change will be: 16777220.000000 16777221.000000

- □ Example 7: Convert 00200000₁₆ from 32-bit single-precision IEEE-754 FP value into a decimal value.
 - Convert the hexadecimal number (00200000₁₆) into binary form

- Unpack the number into sign bit, biased exponent, and fractional significand.
 - \blacksquare S = 0
 - E = 0000 0000
 - F =010 0000 0000 0000 0000 0000

We are subtracting 126, not 127, from the biased exponent, because the biased exponent = 0.

- As the sign bit is 0, the number is positive.
- o We subtract 126 from the *biased exponent* 0_2 to get the *true exponent* 0_2 0 0111 1110 0_2 = -126 0_1 0.

 As the true exponent is -126, then the F is not normalized
- \circ The fractional significand is .010 0000 0000 0000 0000 0000₂.
- o The number is $.01_2 \times 2^{-126} = 2^{-2} \times 2^{-126} = 2^{-128}$

$$2^{-128} = 10^z$$
 \rightarrow $\log_{10}(2^{-128}) = z$ \rightarrow $z = -38.53183944
 $2^{-128} = 10^{-38.53183944} = 10^{-38} \times 10^{-0.53183944} = 10^{-38} \times 0.293873587$
 $2^{-128} = 0.293873587 \times 10^{-38} = 2.9387358 \times 10^{-39}$$

Final Word!!

- ☐ How can you verify your FP conversion results?
- □ There are many online converters between IEEE FP format to float and vice versa.
 - For example, https://www.h-schmidt.net/FloatConverter/IEEE754.html