CS 611: Theory of Computation

Hongmin Li

Department of Computer Science California State University, East Bay

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty?

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating.

Emptiness Problem

Given a CFG G with start symbol S, is L(G) empty? Solution: Check if the start symbol S is generating. How long does that take?

Determining generating symbols

Algorithm

```
\begin{array}{l} \texttt{Gen} \ = \ \{\} \\ \texttt{for every rule} \ A \to x \ \texttt{where} \ x \in \Sigma^* \\ \texttt{Gen} \ = \ \texttt{Gen} \ \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule} \ A \to \gamma \\ \texttt{if all variables in} \ \gamma \ \texttt{are generating then} \\ \texttt{Gen} \ = \ \texttt{Gen} \ \cup \ \{A\} \\ \texttt{until Gen does not change} \end{array}
```

Determining generating symbols

Algorithm

```
\begin{array}{l} \texttt{Gen} = \{ \} \\ \texttt{for every rule } A \to x \texttt{ where } x \in \Sigma^* \\ \texttt{Gen} = \texttt{Gen} \ \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule } A \to \gamma \\ \texttt{ if all variables in } \gamma \texttt{ are generating then } \\ \texttt{Gen} = \texttt{Gen} \ \cup \ \{A\} \\ \texttt{until Gen does not change} \end{array}
```

• Both for-loops take O(n) time where n = |G|.

Determining generating symbols

Algorithm

```
\begin{array}{l} \texttt{Gen} = \{ \} \\ \texttt{for every rule } A \to x \texttt{ where } x \in \Sigma^* \\ \texttt{Gen} = \texttt{Gen} \ \cup \ \{A\} \\ \texttt{repeat} \\ \texttt{for every rule } A \to \gamma \\ \texttt{if all variables in } \gamma \texttt{ are generating then } \\ \texttt{Gen} = \texttt{Gen} \ \cup \ \{A\} \\ \texttt{until Gen does not change} \end{array}
```

- Both for-loops take O(n) time where n = |G|.
- Each iteration of repeat-until loop discovers a new variable. So number of iterations is O(n). And total is $O(n^2)$.

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$?

Membership Problem

Given a CFG $G = (V, \Sigma, R, S)$ in Chomsky Normal Form, and a string $w \in \Sigma^*$, is $w \in L(G)$? Central question in parsing.

• Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n - 1 iff $w \in L(G)$

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size 2n-1 is k^{2n-1} where k is the number of variables in G. So algorithm is exponential in n!

- Let |w| = n. Since G is in Chomsky Normal Form, w has a parse tree of size 2n 1 iff $w \in L(G)$
- Construct all possible parse (binary) trees and check if any of them is a valid parse tree for w
- Number of parse trees of size 2n-1 is k^{2n-1} where k is the number of variables in G. So algorithm is exponential in n!
- We will see an algorithm that runs in $O(n^3)$ time (the constant will depend on k).

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n$, $j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n$, $j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

Notation

Suppose $w = w_1 w_2 \cdots w_n$, where $w_i \in \Sigma$. Let $w_{i,j}$ denote the substring of w starting at position i of length j. Thus, $w_{i,j} = w_i w_{i+1} \cdots w_{i+j-1}$

Main Idea

For every $A \in V$, and every $i \leq n$, $j \leq n+1-i$, we will determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Now, $w \in L(G)$ iff $S \stackrel{*}{\Rightarrow} w_{1,n} = w$; thus, we will solve the membership problem.

How do we determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$ for every A, i, j?

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

Since G is in Chomsky Normal Form, G does not have any
ε-rules, nor any unit rules.

Base Case

Substrings of length 1

Observation

For any A, i, $A \stackrel{*}{\Rightarrow} w_{i,1}$ iff $A \rightarrow w_{i,1}$ is a rule.

• Since G is in Chomsky Normal Form, G does not have any ϵ -rules, nor any unit rules.

Thus, for each A and i, one can determine if $A \stackrel{*}{\Rightarrow} w_{i,1}$.

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

• $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and C and some k < j such that $A \to BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,j-k}$

Inductive Step

Longer substrings

Suppose for every variable X and every $w_{i,\ell}$ $(\ell < j)$ we have determined if $X \stackrel{*}{\Rightarrow} w_{i,\ell}$

- $A \stackrel{*}{\Rightarrow} w_{i,j}$ iff there are variables B and C and some k < j such that $A \to BC$ is a rule, and $B \stackrel{*}{\Rightarrow} w_{i,k}$ and $C \stackrel{*}{\Rightarrow} w_{i+k,j-k}$
- Since k and j k are both less than j, we can inductively determine if $A \stackrel{*}{\Rightarrow} w_{i,j}$.

Cocke-Younger-Kasami (CYK) Algorithm

```
Algorithm maintains X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.

Initialize: X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}

for j = 2 to n do

for i = 1 to n - j + 1 do

X_{i,j} = \emptyset

for k = 1 to j - 1 do

X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, \ B \in X_{i,k}, \ C \in X_{i+k,j-k}\}
```

Cocke-Younger-Kasami (CYK) Algorithm

```
Algorithm maintains X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.
Initialize: X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}
for j = 2 to n do
for i = 1 to n - j + 1 do
X_{i,j} = \emptyset
for k = 1 to j - 1 do
X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, \ B \in X_{i,k}, \ C \in X_{i+k,j-k}\}
```

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each i.

Cocke-Younger-Kasami (CYK) Algorithm

```
Algorithm maintains X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}.
Initialize: X_{i,1} = \{A \mid A \rightarrow w_{i,1}\}
for j = 2 to n do

for i = 1 to n - j + 1 do

X_{i,j} = \emptyset
for k = 1 to j - 1 do

X_{i,j} = X_{i,j} \cup \{A \mid A \rightarrow BC, \ B \in X_{i,k}, \ C \in X_{i+k,j-k}\}
```

Correctness: After each iteration of the outermost loop, $X_{i,j}$ contains exactly the set of variables A that can derive $w_{i,j}$, for each i. Time $= O(n^3)$.

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a$$
 Let

$$w = baaba$$
. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

Example

$$S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3					
2					
1	{ <i>B</i> }	$\{A,C\}$	{ <i>A</i> , <i>C</i> }	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	а	b	а

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a \ \text{Let}$$
 $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3					
2	{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	{ <i>B</i> }	$\{A,C\}$	$\{A,C\}$	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	Ь	а	а	Ь	a

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a \ \text{Let}$$
 $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4					
3	Ø	{ <i>B</i> }	{ <i>B</i> }		
2	{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	{ <i>B</i> }	$\{A,C\}$	$\{A,C\}$	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	b	а	а	b	а

Example

$$S o AB \mid BC, \ A o BA \mid a, \ B o CC \mid b, \ C o AB \mid a \ \text{Let}$$
 $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

j/i	1	2	3	4	5
5					
4	Ø	{ <i>S</i> , <i>A</i> , <i>C</i> }			
3	Ø	{ <i>B</i> }	{ <i>B</i> }		
2	{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	{ <i>S</i> , <i>C</i> }	{ <i>S</i> , <i>A</i> }	
1	{ <i>B</i> }	$\{A,C\}$	$\{A,C\}$	{ <i>B</i> }	{ <i>A</i> , <i>C</i> }
	b	а	а	b	а

Example

$$S \rightarrow AB \mid BC, A \rightarrow BA \mid a, B \rightarrow CC \mid b, C \rightarrow AB \mid a$$
 Let $w = baaba$. The sets $X_{i,j} = \{A \mid A \stackrel{*}{\Rightarrow} w_{i,j}\}$:

• Is
$$L(G_1) = \Sigma^*$$
?

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?
- Is $L(G_1) = L(G_2)$?

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?
- Is $L(G_1) = L(G_2)$?
- Is G_1 ambiguous?

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?
- Is $L(G_1) = L(G_2)$?
- Is G_1 ambiguous?
- Is $L(G_1)$ inherently ambiguous?

Given a CFGs G_1 and G_2

- Is $L(G_1) = \Sigma^*$?
- Is $L(G_1) \cap L(G_2) = \emptyset$?
- Is $L(G_1) = L(G_2)$?
- Is G_1 ambiguous?
- Is $L(G_1)$ inherently ambiguous?

All these problems are undecidable.