数字电路与数字系统实验

EX01:选择器

191220029 傅小龙 周一 5-6 节班 1830970417@qq.com 2020 年 9 月 14 日

目录

实验 内 绞	3
2.1 模型概述	·•3
2.2 数字抽象	·•3
2.2 建立档刑	1
2.5 仿真测试	5
2.6. 分配引期	6
M-1	-
实验总结	·•7
	实验内容····································

一、实验内容

1. 实验要求

用 case 语句实现一个 2 位 4 选 1 的选择器。选择器有 5 个 2 位输入端,分别为 X0, X1, X2, X3 和 Y,输出端为 F; X0, X1, X2, X3 是四个 2 位的输入变量。输出 F 端受控制端 Y 的控制,选其中的一个 X 输出,当 Y = 00 时,输出端输出 X0,即 F = X0;当 Y = 01 时,输出端输出 X1,即 F = X1…以此类推。

选择开发板上的 SWO 和 SW1 作为控制端 Y, SW2—SW9 作为四个两位数据输入端 XO-X3,将两位的输出端 F 接到发光二极管 LEDRO 和 LEDR1 上显示输出,完成设计,对自己的设计进行功能仿真,并下载到开发板上验证电路性能。

2. 实验工具

软件环境:

设计、编译、仿真: Quartus Prime Version 17.1.0 Build 590 10/25/2017 SJ Lite Edition DE10_Standard_SystemBuilder

硬件环境: DE-10 Standard 开发平台 FPGA 芯片: Cyclone V 5CSXFC6D6F31C6

二、实验过程

1. 模型概述

用 Verilog HDL 实现一个 2 位 4 选 1 的选择器。选择器将根据控制端输入的 2 位 信号选择 4 组输入信号中的一组输出至输出端。

2. 数字抽象

1)输入:

数据输入 X[7:0]: X0~X3,每个输入为 2 位 控制端(输入)Y[1:0]: 2 位输入,选择对应的数据输入 X_i输出 II)输出:

输出端 F[1:0]:两位输出,为 X0~X3 中的某一个输入。 下表\图给出了以上输入输出信号在 DE10 平台对应的信号:

	信号名称	DE2-70 平台信号
输入	[7:0]X	SW[9:2]
	[1:0]Y	SW[1:0]
输出	[1:0]F	LEDR

表 2-1:输入输出信号与 DE10 平台信号对应关系

3. 建立模型

下表给出了实验中要设计的 2 位 4 选 1 选择器的输出与控制信号 Y 的关系:

输入信号[7:0]X	控制信号[1:0]Y	输出[1:0]F
X[7:0]	00	X0(X[1:0])
X[7:0]	01	X1(X[3:2])
X[7:0]	10	X2(X[5:4])
X[7:0]	11	X3(X[7:6])

表 2-2:2 位 4 选 1 的选择器行为表

4. 分析/综合

分析/综合实验成功,如下图所示:

图 2-1: 分析/综合成功

分析/综合给出的 RTL 视图

图 2-2:RTL 视图

5. 仿真测试

在 Test Bench Template Writer 提供的仿真文件模板的基础上给出以下测试样例:

输入[9:0]SW	期望输出[1:0]F
10 01 11 00 00	00
10 01 11 00 01	11
10 01 11 00 10	01
10 01 11 00 11	10

表 2-3:仿真测试样例与期望输出

```
// code that executes only once

// insert code here --> begin

//select **

SW=10'b1001110000; #10;

SW=10'b1001110001; #10;

SW=10'b1001110010; #10;

SW=10'b1001110011; #10;
```

图 2-3 仿真样例

通过 ModelSim 得到的仿真波形图与期望输出一致:

图 2-4 仿真测试波形图

6. 分配引脚

引脚分配由 DE10_Standard_SystemBuilder 生成。

图 2-5 引脚分配图

7. 全编译

图 2-6 全编译

三、实验总结

本次实验实现了2位4选1的选择器,通过仿真、实操验证了设计正确性。

Verilog HDL 中的 case 语句大大简化了该选择器的实现,相比传统的逻辑表达式更加直观,也更易理解。