

Master 2-Introduction au Calcul stochastique

EXAMEN

Enseignant: H. El-Otmany

A.U.: 2014-2015

Exercice n°1 On note $=(F_t)_{t\geq 0}$ la filtration naturelle associée à $(B_t)_{t\geq 0}$.

- 1. Calculer pour tout couple (s, t) les quantités : $\mathbf{E}(B_s B_t^2)$, $\mathbf{E}(B_t | \mathcal{F}_s)$, $\mathbf{E}(B_t | B_s)$ et $\mathbf{E}(e^{2B_t} | B_s)$.
- 2. Calculer $\mathbf{E}(e^{B_t}|\mathcal{F}_s)$, $\mathbf{E}((e^{B_t}-1)^+|\mathcal{F}_s)$.
- 3. Donner la loi de $B_t + B_s$.

Exercice n°2 Parmi les processus suivants, quels sont ceux qui sont des martingales :

1.
$$\alpha \in \mathbb{R}, X_t = e^{-\alpha^2 t/2} \cosh(\alpha B_t)$$
.

2.
$$M_t = B_t^3 - 3 \int_0^t B_s ds$$
.

3.
$$Z_t = B_t^3 3t B_t$$
.

4.
$$N_t = tB_t - \int_0^t B_s \, ds$$

5.
$$U_t = \sin(B_t) + \frac{1}{2} \int_0^t \sin(B_s) ds$$
.

6.
$$Y_t = t^2 B_t - 2 \int_0^t B_s \, ds$$

Exercice n°3 On considère un mouvement brownien standard $(B_t)_{t\geqslant 0}$.

1. Donner le processus d'Itô des processus $(X_t)_{t\geqslant 0}$ et $(Y_t)_{t\geqslant 0}$ donnés ci-dessous :

a.
$$X_t = (2B_t + t)e^{-2B_t - t}$$

b.
$$Y_t = \cos(B_t)e^t$$
.

2. Donner la solution de l'équation différentielle stochastique suivante (on admet que cette solution est strictement positive) :

$$dX_t = \frac{1}{\sqrt{3}}X_t dt + X_t dB_t, \ Y_0 = 1$$

3. Donner une équation différentielle stochastique vérifiée par le processus suivant :

$$Y_t = \frac{2B_t}{1+t}.$$

Exercice $n^{\circ}4$ Soit $(X_t)_{t\geqslant 0}$ solution de l'équation différentielle stochastique suivante :

$$dX_t = \alpha(\beta - X_t)dt + \sigma\sqrt{X_t}dW_t.$$

où $(W_t)_{t\geqslant 0}$ est un mouvement Brownien standard, et α , β , $\sigma \in \mathbb{R}_+^*$. On note $(F_t)_{t\geqslant 0}$ la filtration naturelle associée à $(W_t)_{t\geqslant 0}$.

1. Que pouvez-vous dire sur le comportement des trajectoires du processus $(X_t)_{t\geq 0}$?

- 2. On pose $Y_t = e^{at}X_t$ pour $t \geqslant 0$, écrire une l'EDS satisfaite par le processus $(X_t)_{t\geqslant 0}$.
- 3. En déduire, pour $u\geqslant 0$, l'expression de Y_u en fonction de $u,Y_0,\alpha,\beta,\sigma$ et du processus $(M_u)_{u\geqslant 0}$ donné par :

$$\forall u \geqslant 0, \ M_u = \int_0^u e^{as} X_s \, dW s.$$

- 4. Montrer que $(M_u)_{u\geqslant 0}$ est une martingale relativement à la filtration $(F_t)_{t\geqslant 0}$. En déduire $\mathbf{E}(M_u)$ pour $u\geqslant 0$.
- 5. Exprimer $\mathbf{E}(Y_u)$ et $\mathbf{E}(X_u)$ en fonction $u, X_0 \alpha, \beta$ et σ .
- 6. Le processus $(X_t)_{t\geqslant 0}$ est-il une martingale, relativement à $(F_t)_{t\geqslant 0}$?