AN ANALYTICAL APPROACH IN SOLVING A SYSTEM OF NONLINEAR DIFFERENCE EQUATIONS

Jerico B. Bacani and Julius Fergy T. Rabago

Department of Mathematics and Computer Science College of Science, University of the Philippines Baguio Baguio City 2600, Benguet, Philippines jicderivative@yahoo.com and jfrabago@gmail.com

ABSTRACT

We re-examine the system of difference equations given by

$$x_{n+1} = \frac{x_{n-(2k-1)}}{\varepsilon + \delta x_{n-(2k-1)} y_{n-(k-1)}}, \qquad y_{n+1} = \frac{y_{n-(2k-1)}}{\rho + \sigma y_{n-(2k-1)} x_{n-(k-1)}},$$

where $\varepsilon, \delta, \rho, \sigma \in \{-1,1\}$ and $k \in \mathbb{N}$, with the real initial values $\{x_n\}_{n=-(2k-1)}^0$ and $\{y_n\}_{n=-(2k-1)}^0$ such that $\delta x_{m-(k-1)} \neq -\varepsilon$ and $\sigma y_{m-(2k+1)} \neq -\rho$ for all possible values of m and k. We present an analytical approach to derive the closed-form solution of the given system. Our technique uses appropriate substitutions on the phase variables coupled with the application of the method of differences.