Sprawozdanie - Laboratorium 5

Diagonalizacja macierzy metodą potęgową z wykorzystaniem Redukcji Hotellinga

Zuzanna Grzesik

1 kwietnia 2020

1 Wstęp teoretyczny [1]

1.1 Metoda potęgowa wyznaczania pojedynczych wartości własnych i wektorów własnych

Załóżmy, że istnieje n liniowo niezależnych wektorów własnych macierzy A, stanowią bazę przestrzeni liniowej, oznaczanych dalej jako $\mathbf{x}_1, \mathbf{x}_2, \cdots \mathbf{x}_n$. Wówczas dla dowolnego wektora v_0 zachodzi równość:

$$\mathbf{v}_0 = \sum_{i=1}^n a_i \mathbf{x}_i. \tag{1}$$

Jeśli λ_i stanowią wartości własne macierzy **A**, to:

$$\mathbf{A}\mathbf{v}_0 = \sum_{i=1}^n a_i \lambda_i \mathbf{x}_i,\tag{2}$$

$$\mathbf{v}_m = \mathbf{A}^m \mathbf{v}_0 = \sum_{i=1}^n a_i \lambda_i^m \mathbf{x}_i, \tag{3}$$

gdzie zakładamy, że wartości własne tworzą ciąg $|\lambda_1| \geqslant |\lambda_2| \geqslant |\lambda_3| \geqslant \cdots \geqslant |\lambda_n|$. Jeśli λ_1 jest dominującą wartością własną (tzn., że zachodzi zależność, że $\frac{\lambda_j}{\lambda_1} < 1$ dla $j \neq 1$) oraz \mathbf{v}_0 ma składową w kierunku \mathbf{x}_1 to wówczas zachodzi:

$$\lim_{m \to \infty} \frac{\mathbf{A}^m \mathbf{v}_0}{\lambda_1^m} = a_1 \mathbf{x}_1. \tag{4}$$

Korzystając z zależności z równania (3) możemy wyliczać wartość własną w następujący sposób:

$$\lambda_1 = \lim_{m \to \infty} \frac{\mathbf{y}^T \mathbf{v}_{m+1}}{\mathbf{v}^T \mathbf{v}_m},\tag{5}$$

dla dowolnego wektora y nieortogonalnego do \mathbf{x}_1 .

Wektory własne macierzy wyznacza się w następujący sposób.

$$\mathbf{v}_m \approx \lambda_1^m a_1 \mathbf{x}_1 \tag{6}$$

więc unormowany wektor własny będzie miał postać:

$$\mathbf{x} = \frac{\mathbf{v}_m}{|\mathbf{v}_m|} \tag{7}$$

Jeśli wartość własna jest pierwiastkiem wielokrotnym równania charakterystycznego to metoda jest zbieżna bo składnik z λ_1 dominuje:

$$\mathbf{v}_m = \mathbf{A}^m \mathbf{v}_0 = \lambda_1^m \sum_{i=1}^k a_i \mathbf{x}_i + \sum_{i=k+1}^n \lambda_i^m a_i \mathbf{x}_i.$$
 (8)

Powyższa metoda w tej postaci pozwala nam na wyznaczanie tylko pierwszych wartości wektorów własnych. By wyznaczyć kolejne należy skorzystać z jednej z trzech metod, jakimi są:

- metoda redukcji wektora,
- metoda zerowania składowej,
- metoda redukcji macierzy.

Metoda, którą należało zaimplementować z trakcie laboratoriów korzystała z ostatniej z wymienionych czyli redukcji macierzy.

1.2 Redukcja macierzy, redukcja Hotellinga

Twierdzenie: Jeżeli λ_1 jest wartością własną macierzy **A** i \mathbf{x}_1 odpowiadającym jej wektorem własnym oraz dla dowolnego wektora \mathbf{v} o własności:

$$\mathbf{v}^T \mathbf{x}_1 = 1, \tag{9}$$

to wtedy macierz zredukowana:

$$\mathbf{W}_1 = \mathbf{A} = \lambda_1 \mathbf{x}_1 \mathbf{v}^T \tag{10}$$

ma te same wartości co macierz A, oprócz λ_1 , która jest zerem.

W zadaniu obliczeń dokonywalismy na macierzy symetrycznej, dlatego korzystaliśmy z redukcji Hotellinga. W metodzie tej za wektor \mathbf{v} przyjmujemy lewy wektor własny przynależny do wartości własnje λ_1 , jednak zwykle nie znamy ich, dlatego metoda skuteczna jest tylko w przypadku macierzy symetrycznych, gdzie lewe wektory są identyczne z prawymi. Wówczas, gdy $\mathbf{v} = \mathbf{x}_1$

$$\mathbf{W}_1 = \mathbf{A} - \lambda_1 \mathbf{x}_1 \mathbf{x}_1^T. \tag{11}$$

W postaci rekurencyjnej:

$$\mathbf{W}_{0} = \mathbf{A}$$

$$\mathbf{W}_{i} = \mathbf{W}_{i-1} - \lambda_{i-1} \mathbf{x}_{i-1} \mathbf{x}_{i-1}^{T}$$

$$i = 1, 2, \dots, n-1.$$
(12)

2 Zadanie do wykonania

2.1 Opis problemu

Głównym zadaniem w trakcie laboratoriów było dokonanie diagonalizacji macierzy $\bf A$ korzystając z metody potęgowej. Macierz $\bf A$ była postaci:

$$A_{ij} = \frac{1}{\sqrt{2 + |i - j|}}\tag{13}$$

dla $i, j = 0, 1, \dots, n - 1$, dla n = 7.

Następnie należało zaimpelementować algorytm służący do wyzanczania wartości wektorów własnych macierzy, metodą iteracyjną, korzystającą z rozkładu Hotellinga.

$$W_{0} = A$$

$$for(k = 0; k < K_{val}; k + +) \{$$

$$\mathbf{x}_{k}^{0} = [1, 1, \dots, 1] \quad (inicjalizacjawektorastartowego)$$

$$for(i = 1; i <= IT_MAX; i + +) \{$$

$$\mathbf{x}_{k}^{i+1} = W_{k}\mathbf{x}_{k}^{i}$$

$$\lambda_{k}^{i} = \frac{(\mathbf{x}_{k}^{i+1})^{T}\mathbf{x}_{k}^{i}}{(\mathbf{x}_{k}^{i})^{T}\mathbf{x}_{k}^{i}}$$

$$\mathbf{x}_{k}^{i} = \frac{\mathbf{x}_{k}^{i+1}}{\|\mathbf{x}_{k}^{i+1}\|_{2}}$$

$$\mathbf{x}_{k}^{i} = \frac{\mathbf{x}_{k}^{i+1}}{\|\mathbf{x}_{k}^{i+1}\|_{2}}$$

$$\}$$

$$W_{k+1} = W_{k} - \lambda_{k}\mathbf{x}_{k}^{i}(\mathbf{x}_{k}^{i})^{T} \quad (iloczyntensorowy)$$

$$\}$$

gdzie k - numer wyznaczanej wartości własnej, i - numer iteracji dla określonego k, A - macierz pierwotna, W_k - macierz iteracji, λ_k^i - i-te przybliżenie k-tego wektora własnego, \mathbf{x}_k^i - i-te przybliżenie k-tego wektora własnego, $K_{val} = n$ - liczba wartości własnych do wyznaczania, $IT_MAX = 12$ - maksymalna liczba iteracji dla każdego k. Wyniki pośrednie obliczania wartości własnych należało zapisać do pliku. Na

potrzebę powyższego algorytmu stworzyłam następujące funkcje pomocnicze: mnożącą dwie macierze, obliczającą iloczyn skalarny dwóch wektorów, dokonującą transpozycji macierzy oraz obliczającą macierz iteracji.

Następnym zadaniem było wyznaczyć postać macierzy \mathbf{D} zdefiniowanej jako iloczyn $\mathbf{D} = \mathbf{X}^T \mathbf{A} \mathbf{X}$. Dla wszystkich obliczeń przyjęłam podwójną precyzję (typ double).

2.2 Wyniki

Obliczone w zadaniu wektory własne miały postać:

$$\mathbf{x}_{0} = \begin{pmatrix} 0.352941 \\ 0.377935 \\ 0.392221 \\ 0.396889 \\ 0.392221 \\ 0.377935 \\ 0.352941 \end{pmatrix} \mathbf{x}_{1} = \begin{pmatrix} 0.477239 \\ 0.164774 \\ 0.314852 \\ 0.540298 \\ 0.314852 \\ 0.164774 \\ 0.477239 \end{pmatrix} \mathbf{x}_{2} = \begin{pmatrix} 0.364007 \\ 0.461327 \\ 0.138849 \\ 0.518756 \\ 0.141987 \\ 0.466589 \\ 0.358362 \end{pmatrix} \mathbf{x}_{3} = \begin{pmatrix} -0.478726 \\ -0.447176 \\ -0.266515 \\ 0.000635757 \\ 0.26617 \\ 0.44604 \\ 0.479611 \end{pmatrix}$$

$$\mathbf{x}_{4} = \begin{pmatrix} 0.130626 \\ -0.338022 \\ 0.476991 \\ -0.531333 \\ 0.476992 \\ -0.33802 \\ 0.130628 \end{pmatrix} \mathbf{x}_{5} = \begin{pmatrix} -0.449005 \\ 0.518245 \\ -0.172676 \\ 0.518245 \\ -0.172676 \\ 0.449005 \end{pmatrix} \mathbf{x}_{6} = \begin{pmatrix} 0.262282 \\ -0.520312 \\ 0.400604 \\ -3.40684e - 13 \\ -0.400604 \\ 0.520312 \\ -0.262282 \end{pmatrix}$$

$$(15)$$

Obliczone wartości własne były równe:

$$\lambda_0 = 3.59586$$

$$\lambda_1 = 0.284988$$

$$\lambda_2 = 0.122786$$

$$\lambda_3 = 0.590387$$

$$\lambda_4 = 0.0865954$$

$$\lambda_5 = 0.170974$$

$$\lambda_6 = 0.0981544$$
(16)

Kolejne przybliżenia znalezionych wartości własnych λ_k , dla IT_MAX = 12 zostały przedstawione na wykresie (Rysunek 1).

Rysunek 1: Kolejne przyblizenia znalezionych wartości własnych λ_k w funkcji numeru iteracji.

Macierz **D** miała postać:

```
3.59586
                    -1.2268e - 13
                                      -1.27676e - 15
                                                           8.88178e - 16
                                                                              1.09357e - 14
                                                                                                  1.77636e - 15
                                                                                                                     -1.77636e - 15
                      0.284988
                                       -6.25256e - 06
                                                           -7.6505e - 09
                                                                             -3.81633e - 09
                                                                                                                     6.93889e - 17
-1.22548e - 13
                                                                                                 -1.31839e - 16
 1.26635e - 15
                    -6.25256e - 06
                                         0.122802
                                                             -0.00332763
                                                                               -0.000329115
                                                                                                  -3.70643e - 12
                                                                                                                      -2.25514e - 17
 \begin{aligned} 7.49401e - 16 \\ 1.09201e - 14 \\ 1.8735e - 15 \end{aligned} 
                   -7.6505e - 09
                                        -0.00332763
                                                             0.590389
                                                                              8.23117e - 07
                                                                                                  1.03251e - 14
                                                                                                                      1.38778e - 17
                                                                               0.0865957
                   -3.81633e - 09
                                       -0.000329115
                                                           8.23117e - 07
                                                                                                  -2.97259e - 09
                                                                                                                     -1.56455e - 14
                                      -3.70639e - 12
-5.55112e - 17
                                                           1.02071e - 14
                   -1.38778e - 16
                                                                             -2.97259e - 09
                                                                                                    0.170974
                                                                                                                      -1.03402e - 08
                                                           2.94903e - 17
 2.12504e - 15
                   6.76542e-17
                                                                             -1.56485e - 14
                                                                                                 -1.03402e - 08
                                                                                                                       0.0981544
                                                                                                                               (17)
```

Dodatkowo dokonałam obliczeń dla różnych liczb iteracji (IT_MAX) i wyniki przedstawiłam w tabeli (Tabela 1)

IT_MAX	λ_0	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
12	3.59586	0.284988	0.122786	0.590387	0.0865954	0.170974	0.0981544
50	3.59586	0.590116	0.28512	0.122787	0.170974	0.0865947	0.0981544
100	3.59586	0.59039	0.284988	0.170683	0.122996	0.0865947	0.0981544
200	3.59586	0.59039	0.284988	0.170974	0.122787	0.0865956	0.0981534
250	3.59586	0.59039	0.284988	0.170974	0.122787	0.0976684	0.0870256
287	3.59586	0.59039	0.284988	0.170974	0.122787	0.0981544	0.0865948
288	3.59586	0.59039	0.284988	0.170974	0.122787	0.0981544	0.0865947
289	3.59586	0.59039	0.284988	0.170974	0.122787	0.0981544	0.0865947
300	3.59586	0.59039	0.284988	0.170974	0.122787	0.0981544	0.0865947
500	3.59586	0.59039	0.284988	0.170974	0.122787	0.0981544	0.0865947

Tabela 1: Końcowe wartości λ_k w zależności od wartości IT_MAX

Jak widać powyżej, dokładność przybliżeń wzrasta wraz z liczbą iteracji. Liczba 288 to graniczna liczba, kiedy przybliżone wartości λ_k już się nie zmieniają w znacznym stopniu (dla dalszych liczb po przecinku liczby są dalej coraz dokładniejsze). Warto zauważyć też, że obliczone wartości własne dla 300 i więcej iteracji, to wartości obliczone przy mniejszej liczbie iteracji, ale w innej kolejności (czyli np. $\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6$ dla IT_MAX=12 są odpowiednio równe $\lambda_2, \lambda_4, \lambda_1, \lambda_6, \lambda_3, \lambda_5$ dla IT_MAX=300).

Dla dokładniejszych wartości własnych, zmieni się również postać macierzy D.

3 Wnioski

Metoda iteracyjna z Redukcją Hotellinga jest w tym przypadku dość szybką i prostą w implementacji metodą znajdowania wartości i wektorów własnych macierzy o wymiarach 7×7 . Jednak, na podstawie wyników, można zauważyć, że dobra dokładność (do 7 miejsca po przecinku) i poprawna kolejność wartości własnych występuje dopiero przy 288 iteracjach. W przypadku małych macierzy, jak ta, na której dokonywaliśmy obliczeń, taka ilość iteracji nie wydłuża w znacznym stopniu czasu obliczeń, ale dla macierzy większego wymiaru metoda ta może być dość wolna.

Literatura

[1] Tomasz Chwiej, Wyznaczanie wartości i wektorow własnych macierzy http://galaxy.agh.edu.pl/chwiej/mn/diagonalizacja_2018.pdf