9.3 Radicals

1. Do Now: Given a triangle $\triangle ABC$ having angles with measures $m\angle A=60^\circ$ and $m\angle C=90^\circ$. Find the measure of the third angle, $m\angle B$.

2. Do Now: Write down the slope perpendicular to the given slope. (negative reciprocal)

(a)
$$m = 4$$
 $m_{\perp} =$

(b)
$$m = -\frac{5}{2}$$
 $m_{\perp} =$

- 3. $\triangle ABC$ is shown with $m\angle C=90^\circ$ and the lengths of the triangle's sides are BC=6, AC=8, and AB=10. (not drawn to scale)
 - (a) How long is the side opposite $\angle A$?
 - (b) How long is the side adjacent to $\angle A$?
 - (c) How long is the *hypotenuse*?

Use Graspable Math to verify the tangent calculation.

$$\tan 36.87^\circ = \frac{6}{8}$$

4. $\triangle ABC$ is shown with $m\angle C=90^\circ,\ m\angle A=58^\circ,$ and the base with length AC=20. Find the height BC=x.

Use Graspable Math and the tangent function: $\tan 58^{\circ} = \frac{x}{20}$

- 5. $\triangle ABC$ is shown with $m\angle C=90^\circ$ and $m\angle A=x^\circ$. The lengths of the legs are AC=10 and BC=7.
 - (a) Express $\tan x$ as a fraction.

$$\tan x^{\circ} = \frac{?}{?}$$

- (b) Which side is opposite $\angle B$?
- (c) Which leg is adjacent to $\angle B$?

6. $\triangle ABC$ is shown with $m \angle C = 90^{\circ}$, $m \angle A = 55^{\circ}$, and the base with length AC = 14. Find the height BC = x.

Use Graspable Math and paste the solution starting with the substitution step.

7. $\triangle ABC$ is shown with $m \angle C = 90^\circ$, $m \angle A = 60^\circ$, and height AC = 14. Find the base AC = x.

Use Graspable Math and paste the solution starting with the substitution step.

- 8. Right $\triangle ABC$ is drawn in *standard position* with vertex A on the origin and right $\angle C$ on the x-axis, as shown.
 - (a) Find the slope of the line segment \overline{AB} .
 - (b) Find the measure of $\angle A$. Hint: isosceles triangle
 - (c) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)

