Mathematical Logic (II)

Yijia Chen

1 The Syntax of First-order Logic

Example 1.1 (Addition over \mathbb{Z}).

- (G1) For all x, y, z we have (x + y) + z = x + (y + z).
- (G2) For all x we have x + 0 = x.
- (G3) For every x there is a y such that x + y = 0.

Example 1.2 (Equivalence Relations).

(E1) For all x we have $(x, x) \in R$.

(E2) For all x and y if $(x, y) \in R$ then $(y, x) \in R$.

(E3) For all x, y, z if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

An equivalence relation is specified by a structure $A = (A, R^A)$ in which R^A satisfies (E1)–(E3). \dashv

1.1 Alphabets

Definition 1.3. An **alphabet** is a nonempty set of **symbols**.

Definition 1.4. Let \mathbb{A} be an alphabet. Then a **word** w over \mathbb{A} is a finite sequence of symbols in \mathbb{A} , i.e.,

$$w = w_1 w_2 \cdots w_n$$

where $n \in \mathbb{N}$ and $w_i \in \mathbb{A}$ for every $i \in [n] = \{1, ..., n\}$. In case n = 0, then w is the **empty word**, denoted by ε . The **length** |w| of w is n. In particular, $|\varepsilon| = 0$. \mathbb{A}^* denotes the set of all words over \mathbb{A} , or equivalently

$$\mathbb{A}^* = \bigcup_{n \in \mathbb{N}} A^n = \bigcup_{n \in \mathbb{N}} \{ w_1 \dots w_n \mid w_1, \dots, w_n \in \mathbb{A} \}.$$

 \forall

+

+

Countable sets

Later on, we will need to count the number of words over a given alphabet.

Definition 1.5. A set M is **countable** if there exists an **injective** function α from \mathbb{N} **onto** M, i.e., $\alpha : \mathbb{N} \to M$ is a bijection. Thereby, we can write

$$M = \big\{\alpha(n) \ \big| \ n \in \mathbb{N}\big\} = \big\{\alpha(0), \alpha(1), \ldots, \alpha(n), \ldots\big\}.$$

A set M is at most countable if M is either finite or countable.

Lemma 1.6. Let M be a non-empty set. Then the following are equivalent.

- (a) M is at most countable.
- (b) There is a surjective function $f : \mathbb{N} \to M$.
- (c) There is an injective function $f: M \to \mathbb{N}$.

Lemma 1.7. Let \mathbb{A} be an alphabet which is at most countable. Then \mathbb{A}^* is countable.

1.2 The alphabet of a first-order language

Definition 1.8. The alphabet of a first-order language consists of the following symbols.

+

- (a) v_0, v_1, \ldots (variables).
- (b) \neg , \wedge , \vee , \rightarrow , \leftrightarrow , (negation, conjunction, disjunction, implication, if and only if).
- (c) \forall , \exists , (for all, exists).
- (d) \equiv , (equality).
- (e) (,), (parentheses).
- (f) (1) For every $n \ge 1$ a set of n-ary relation symbols.
 - (2) For every $n \ge 1$ a set of n-ary function symbols.
 - (3) A set of constants.

Note any set in (f) can be empty.

We use \mathbb{A} to denote the set of symbols in (a)–(e), i.e., the set of **logic symbols**, while S is the set of remaining symbols in (f). Then a first-order language has

$$\mathbb{A}_{S} := \mathbb{A} \cup S$$

as its alphabet and S as its symbol set.

Thus every first-order language has the same set \mathbb{A} of logic symbols but might have different symbol set \mathbb{S} .

1.3 Terms and formulas

Throughout this section, we fix a symbol set S.

Definition 1.9. The set T^S of S-**terms** contains precisely those words in \mathbb{A}_S^* which can be obtained by applying the following rules finitely many times.

- (T1) Every variable is an S-term.
- (T2) Every constant in S is an S-term.
- (T3) If t_1, \ldots, t_n are S-terms and f is a n-ary function symbol in S, then $ft_1 \ldots t_n$ is an S-term. \dashv

Definition 1.10. The set L^S of S-formulas contains precisely those words in \mathbb{A}_S^* which can be obtained by applying the following rules finitely many times.

- (A1) Let t_1 and t_2 be two S-terms. Then $t_1 \equiv t_2$ is an S-formula.
- (A2) Let t_1, \ldots, t_n be S-terms and R an n-ary relation symbol in S. Then $Rt_1 \cdots t_n$ is also an S-formula.
- (A3) If φ is an S-formula, then so is $\neg \varphi$.
- (A4) If φ and ψ are S-formulas, then so is $(\varphi * \psi)$ where $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$.

(A5) Let φ be an S-formula and x a variable. Then $\forall x \varphi$ and $\exists x \varphi$ are S-formulas, too.

The formulas in (A1) and (A2) are **atomic**, as they don't contain any other S-formulas as subformulas.

- $\neg \varphi$ is the **negation** of φ .
- $(\phi \wedge \psi)$ is the **conjunction** of ϕ and ψ .
- $(\phi \lor \psi)$ is the **disjunction** of ϕ and ψ .
- $(\phi \rightarrow \psi)$ is the **implication** from ϕ to ψ .
- $(\phi \leftrightarrow \psi)$ is the **equivalence** between ϕ and ψ .

Lemma 1.11. Let S be at most countable. Then both TS and LS are countable.

Definition 1.12. Let t be an S-term. Then var(t) is the set of variables in t. Or inductively,

$$\begin{split} var(x) &:= \{x\}, \\ var(c) &:= \emptyset, \\ var(ft_1 \dots t_n) &:= \bigcup_{i \in [n]} var(t_i). \end{split} \label{eq:var}$$

+

+

Definition 1.13. Let φ be an S-formula. Then $SF(\varphi)$ is the set of subformulas in φ (which include φ itself). Or inductively,

$$\begin{split} SF(t_1 \equiv t_2) &:= \big\{t_1 \equiv t_2\big\}, \\ SF(Rt_1 \cdots t_n) &:= \big\{Rt_1 \cdots t_n\big\}, \\ SF(\neg \phi) &:= \big\{\neg \phi\big\} \cup SF(\phi), \\ SF(\phi * \psi) &:= \big\{\phi * \psi\big\} \cup SF(\phi) \cup SF(\psi) \quad \text{with } * \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \\ SF(\forall x \phi) &:= \big\{\forall x \phi\big\} \cup SF(\phi), \\ SF(\exists x \phi) &:= \big\{\exists x \phi\big\} \cup SF(\phi). \end{split}$$

Definition 1.14. Let φ be an S-formula and x a variable. We say that **an occurrence of** x **in** φ **is free** if it is not in the scope of any $\forall x$ or $\exists x$. Otherwise, the occurrence is **bound**.

free (ϕ) is the set of variables which have free occurrences in ϕ . Or inductively,

$$\begin{split} & free(t_1 \equiv t_2) := var(t_1) \cup var(t_2), \\ & free(Rt_1 \cdots t_n) := \bigcup_{i \in [n]} var(t_i), \\ & free(\neg \phi) := free(\phi), \\ & free(\phi * \psi) := free(\phi) \cup free(\psi) \quad with * \in \{ \land, \lor, \rightarrow, \leftrightarrow \}, \\ & free(\forall x \phi) := free(\phi) \setminus \{ x \}, \\ & free(\exists x \phi) := free(\phi) \setminus \{ x \}. \end{split}$$

Example 1.15. The formula below shows that a variable might have both free and bound occurrences in the same formula.

$$\begin{split} \text{free}((\mathsf{R} \mathsf{x} \mathsf{y} \to \forall \mathsf{y} \neg \mathsf{y} \equiv \mathsf{z})) &= \text{free}(\mathsf{R} \mathsf{x} \mathsf{y}) \cup \text{free}(\forall \mathsf{y} \neg \mathsf{y} \equiv \mathsf{z}) \\ &= \{\mathsf{x}, \mathsf{y}\} \cup \left(\text{free}(\mathsf{y} \equiv \mathsf{z}) \setminus \{\mathsf{y}\}\right) = \{\mathsf{x}, \mathsf{y}, \mathsf{z}\}. \end{split}$$

Definition 1.16. An S-formula is an S-sentence if free(φ) = \emptyset .

Recall that **actual** variables we can use are v_0, v_1, \ldots

Definition 1.17. Let $n \in \mathbb{N}$. Then

$$L_n^S := \big\{ \phi \mid \phi \text{ an S-formula with free}(\phi) \subseteq \{\nu_0, \dots, \nu_{n-1}\} \big\}.$$

In particular, L_0^S is the set of S-sentences.

The Semantics of First-order Logic

2.1 Structures and interpretations

We fix a symbol set S.

Examples 2.2.

Definition 2.1. An S-structure is a pair $A = (A, \mathfrak{a})$ which satisfies the following conditions.

- 1. $A \neq \emptyset$ is the **universe** of A.
- 2. a is a function defined on S such that:
- constant

 p symbol

 symbol

 symbol

 symbol

 less (a) Let $R \in S$ be an n-ary relation symbol. Then $\mathfrak{a}(R) \subseteq A^n$.
 - (b) Let $f \in S$ be an n-ary function symbol. Then $\mathfrak{a}(f): A^n \to A$. $A(f) \to -f$
- (c) $\mathfrak{a}(c) \in A$ for every constant $c \in S_{\alpha(1)=1} \rightarrow 1 \in \mathbb{N}$ $\alpha(t) (x_i Y) = x + Y \in \mathbb{N}^2 \rightarrow \mathbb{N}$ For better readability, we write \mathbb{R}^A , f^A , and f^A , or even f^A , f^A , and f^A , instead of f^A , and f^A , and

 $\mathfrak{a}(c)$. Thus for $S = \{R, f, c\}$ we might write an S-structure as

$$\mathcal{A} = (A, R^{\mathcal{A}}, f^{\mathcal{A}}, c^{\mathcal{A}}) = (A, R^{\mathcal{A}}, f^{\mathcal{A}}, c^{\mathcal{A}}).$$

is the standard model of natural numbers with addition, multiplication, and constants 0 and

H

2. For $S_{Ar}^<:=\left\{+,\cdot,0,1,<\right\}$ we have an $S_{Ar}^<\text{-structure}$

$$\mathcal{N}^{<} = (\mathbb{N}, +^{\mathbb{N}}, \cdot^{\mathbb{N}}, 0^{\mathbb{N}}, 1^{\mathbb{N}}, <^{\mathbb{N}}), \quad \alpha(\mathcal{L}) = \{(n_{1}m) \mid n_{1}m \in (\mathbb{N}, n < m)\}$$

i.e., the standard model of \mathbb{N} with the natural ordering <.

Definition 2.3. An **assignment** in an S-structure A is a mapping

$$\beta: \{v_i \mid i \in \mathbb{N}\} \to A.$$

Definition 2.4. An S-interpretation \mathfrak{I} is a pair (\mathcal{A}, β) where \mathcal{A} is an S-structure and β is an assignment in A.

Definition 2.5. Let β be an assignment in A, $\alpha \in A$, and α a variable. Then $\beta \frac{\alpha}{\alpha}$ is the assignment defined by

 $\int_{0}^{\infty} \beta \frac{a}{x}(y) := \begin{cases} a, & \text{if } y = x, \\ \beta(y), & \text{otherwise.} \end{cases}$

Then, for the S-interpretation $\mathfrak{I}=(\mathcal{A},\beta)$ we use $\mathfrak{I}^{\underline{\alpha}}_{x}$ to denote the S-interpretation $(\mathcal{A},\beta^{\underline{\alpha}}_{x})$

Definition 2.6. Let \mathcal{A} and \mathcal{B} be two S-structures. Their **direct product** $\mathcal{A} \times \mathcal{B}$ is the S-structure defined as follows.

- The universe of $A \times B$ is $A \times B$.
- For every n-ary relation symbol R ∈ S

$$\mathsf{R}^{\mathcal{A}\times\mathcal{B}}:=\left\{\left((\mathfrak{a}_1,\mathfrak{b}_1),\ldots,(\mathfrak{a}_n,\mathfrak{b}_n)\right) \mid (\mathfrak{a}_1,\ldots,\mathfrak{a}_n)\in \mathsf{R}^{\mathcal{A}} \text{ and } (\mathfrak{b}_1,\ldots,\mathfrak{b}_n)\in \mathsf{R}^{\mathcal{B}}\right\}.$$

• For every n-ary function symbol $f \in S$

$$f^{\mathcal{A}\times\mathcal{B}}((a_1,b_1),\ldots,(a_n,b_n)):=\left(f^{\mathcal{A}}(a_1,\ldots,a_n),f^{\mathcal{B}}(b_1,\ldots,b_n)\right).$$

• For every constant $c \in S$

$$c^{\mathcal{A} \times \mathcal{B}} := (c^{\mathcal{A}}, c^{\mathcal{B}}).$$

The satisfaction relation $\mathfrak{I} \models \varphi$

We fix an S-interpretation $\mathfrak{I} = (A, \beta)$

Definition 2.7. For every S-term t we define its **interpretation** $\mathfrak{I}(t)$ by induction on the construction of t.

- (a) $\Im(x) = \beta(x)$ for a variable x.
- (b) $\Im(c) = c^{\mathcal{A}}$ for a constant $c \in S$.
- (c) Let $f \in S$ be an n-ary function symbol and t_1, \ldots, t_n S-terms. Then

$$\Im(ft_1\cdots t_n) = f^{\mathcal{A}}(\Im(t_1),\ldots,\Im(t_n)).$$

 $\mathfrak{I}\big(\mathsf{ft}_1\cdots \mathsf{t}_n\big) = \mathsf{f}^{\mathcal{A}}\big(\mathfrak{I}(\mathsf{t}_1),\ldots,\mathfrak{I}(\mathsf{t}_n)\big). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{x}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{x}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{x}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{x}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{x}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{Y}). \qquad \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) + L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{x}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) + L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}\boldsymbol{t}\boldsymbol{t}_{\boldsymbol{Y}) = L(\boldsymbol{X}). \qquad \\ + \sum_{\{\boldsymbol{x}\in\boldsymbol{Y}\}} (\boldsymbol{X}\boldsymbol{t}_{\boldsymbol{Y}}) = L(\boldsymbol{X}\boldsymbol{t$ Then

$$\begin{split} \Im \big(\nu_0 \circ (e \circ \nu_2) \big) &= \Im (\nu_0) + \Im (e \circ \nu_2) \\ &= 2 + \big(\Im (e) + \Im (\nu_2) \big) = 2 + (0+6) = 2+6 = 8. \end{split}$$

Definition 2.9. Let φ be an S-formula. We define $\mathfrak{I} \models \varphi$ by induction on the construction of φ .

- (a) $\mathfrak{I} \models \mathfrak{t}_1 \equiv \mathfrak{t}_2 \text{ if } \mathfrak{I}(\mathfrak{t}_1) = \mathfrak{I}(\mathfrak{t}_2).$
- (b) $\mathfrak{I} \models \mathsf{Rt}_1 \cdots \mathsf{t}_n \text{ if } (\mathfrak{I}(\mathsf{t}_1), \dots, \mathsf{I}(\mathsf{t}_n)) \in \mathsf{R}^{\mathcal{A}}$
- (c) $\mathfrak{I} \models \neg \varphi$ if $\mathfrak{I} \not\models \varphi$ (i.e., it is **not** the case that $\mathfrak{I} \models \varphi$).
- (d) $\mathfrak{I} \models (\varphi \land \psi)$ if $\mathfrak{I} \models \varphi$ and $\mathfrak{I} \models \psi$. (e) $\mathfrak{I} \models (\varphi \lor \psi)$ if $\mathfrak{I} \models \varphi$ or $\mathfrak{I} \models \psi$.
- (f) $\mathfrak{I} \models (\varphi \rightarrow \psi)$ if $\mathfrak{I} \models \varphi$ implies $\mathfrak{I} \models \psi$.
- (g) $\mathfrak{I} \models (\varphi \leftrightarrow \psi)$ if $(\mathfrak{I} \models \varphi)$ if and only if $\mathfrak{I} \models \psi$.
- (h) $\mathfrak{I} \models \forall x \varphi$ if for all $\alpha \in A$ we have $\mathfrak{I}^{\underline{\alpha}}_{x} \models \varphi$.
- (i) $\mathfrak{I} \models \exists x \varphi$ if for some $\mathfrak{a} \in A$ we have $\mathfrak{I}^{\underline{\mathfrak{a}}}_{x} \models \varphi$.
- If $\mathfrak{I} \models \varphi$, then \mathfrak{I} is a model of φ , $\mathfrak{D}\mathfrak{I}$ satisfies φ .

苦中是最后的,那么他一个一个是别的

Bil. 1+1=1 -> 1+3=7

(H)+(= (+(H)

Let Φ be a set of S-formulas. Then $\mathfrak{I} \models \Phi$ if $\mathfrak{I} \models \varphi$ for all $\varphi \in \Phi$. Similarly as above, we say that \mathfrak{I} is a model of Φ , or \mathfrak{I} satisfies Φ .

I > Yx, K=x

5

=) for all
$$a \in A$$
 $I = k = k$
i.e. $(\beta = k)(k) = (\beta = k)(k) = k$

Example 2.10. Let $S:=S_{Gr}$ and $\mathfrak{I}:=(\mathcal{A},\beta)$ with $\mathcal{A}=(\mathbb{R},+,0)$ and $\beta(x)=9$ for all variables x. Then

$$\mathfrak{I} \models \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0 \iff \text{for all } r \in \mathbb{R} \text{ we have } \mathfrak{I} \frac{r}{\nu_0} \models \nu_0 \circ e \equiv \nu_0,$$

$$\iff \text{for all } r \in \mathbb{R} \text{ we have } r+0=r. \qquad \exists$$

Definition 2.11. Let Φ be a set of S-formulas and φ an S-formula. Then φ is a **consequence of** Φ , written $\Phi \models \varphi$, if for any interpretation \mathfrak{I} it holds that $\mathfrak{I} \models \Phi$ implies $\mathfrak{I} \models \varphi$.

For simplicity, in case $\Phi = \{\psi\}$ we write $\psi \models \varphi$ instead of $\{\psi\} \models \varphi$.

Example 2.12. Let

逻辑说《根释诗解释》

$$\begin{split} \Phi_{Gr} \coloneqq & \big\{ \forall \nu_0 \forall \nu_1 \forall \nu_2 \ (\nu_0 \circ \nu_1) \circ \nu_2 \equiv \nu_0 \circ (\nu_1 \circ \nu_2), \\ & \forall \nu_0 \ \nu_0 \circ e \equiv \nu_0, \forall \nu_0 \exists \nu_1 \ \nu_0 \circ \nu_1 \equiv e \big\}. \end{split}$$

Then it can be shown that

$$\Phi_{Gr} \models \forall v_0 \ e \circ v_0 \equiv v_0.$$

and

$$Φ_{Gr} \models \forall v_0 \exists v_1 v_2 \circ v_0 \equiv e.$$
FILM THE PROPERTY OF THE PROPERTY OF

Definition 2.13. An S-formula φ is valid, written $\models \varphi$, if $\emptyset \models \varphi$. Or equivalently, $\mathfrak{I} \models \varphi$ for any $\mathfrak{C} : \mathfrak{I} : \mathfrak{I}$

Definition 2.14. An S-formula φ is **satisfiable**, if there exists an S-interpretation $\mathfrak I$ with $\mathfrak I \models \varphi$. A set Φ of S-formulas is satisfiable if there exists an S-interpretation $\mathfrak I$ such that $\mathfrak I \models \varphi$ for every $\varphi \in \Phi$.

The next lemma is essentially the method of **proof by contradiction**.

α = b -/=) # = (a = b)

Lemma 2.15. Let Φ be a set of S-formulas and φ an S-formula. Then $\Phi \models \varphi$ if and only if $\Phi \cup \{\neg \varphi\}$ is not satisfiable.

Proof:

$$\Phi \models \phi \iff \text{Every model of } \Phi \text{ is a model of } \phi, \\ \iff \text{there is no model } \mathfrak{I} \text{ with } \mathfrak{I} \models \Phi \text{ and } \mathfrak{I} \not\models \phi, \\ \iff \text{there is no model } \mathfrak{I} \text{ with } \mathfrak{I} \models \Phi \cup \{\neg \phi\}, \\ \iff \Phi \cup \{\neg \phi\} \text{ is not satisfiable.}$$

Definition 2.16. Two S-formulas φ and ψ are **logic equivalent** if $\varphi \models \psi$ and $\psi \models \varphi$.

Example 2.17. Let φ be an S-formula. We define a logic equivalent φ^* which does not contain the logic symbols \land , \rightarrow , \leftrightarrow , \forall .

$$\phi^* := \phi \quad \text{if } \phi \text{ is atomic,}$$

$$(\neg \phi)^* := \neg \phi^*,$$

$$(\phi \land \psi)^* := \neg (\neg \phi^* \lor \neg \psi^*),$$

$$(\phi \lor \psi)^* := (\phi^* \lor \psi^*),$$

$$(\phi \to \psi)^* := (\neg \phi^* \lor \psi),$$

$$(\phi \leftrightarrow \psi)^* := \neg (\phi^* \lor \psi^*) \lor \neg (\neg \phi^* \lor \neg \psi^*),$$

$$(\forall x \phi)^* := \neg \exists x \neg \phi^*,$$

$$(\exists x \phi)^* := \exists x \phi^*.$$

Thus, it suffices to consider \neg , \vee , \exists as the only logic symbols in any given φ .

-

3 Exercises

Exercise 3.1. Using first-order logic to express that

$$\lim_{n\to\infty} f(n) = 4.$$

In particular, please specify the symbol set S and the appropriate S-sentence.

Exercise 3.2. A directed graph G = (V, E) consists of a set V of vertices and a set E of directed edges. It can be viewed as an S-structure \mathcal{A} with $S = \{R\}$, where R is binary relation symbol. More precisely

A := V and $R^A := \{(u, v) \mid \text{there is a directed edge in } G \text{ from } u \text{ to } v\}.$

(i) Let $k \ge 3$. A **directed** k-cycle is the structure \mathcal{C}_k with

$$C_k := [k] = \{1, 2, \ldots\} \quad \text{and} \quad R^{C_k} := \big\{(i, i+1) \; \big| \; i \in [k-1] \big\} \cup \big\{(k, 1) \big\}.$$

What is $C_4 \times C_3$?

(ii) Let \mathcal{G}_1 and \mathcal{G}_2 be two directed graphs. Furthermore, let $\mathfrak{u}_1, \mathfrak{v}_1 \in G_1$ and $\mathfrak{u}_2, \mathfrak{v}_2 \in G_2$. Assume there is a directed path from \mathfrak{u}_1 to \mathfrak{v}_1 in \mathcal{G}_1 , i.e., for some $w_1, \ldots, w_n \in G_1$ we have $w_1 = \mathfrak{u}_1$, $w_n = \mathfrak{v}_1$, and $(w_i, w_{i+1}) \in R^{G_1}$ for all $i \in [n-1]$. And there is a directed path from \mathfrak{u}_2 to \mathfrak{v}_2 in \mathcal{G}_2 .

Is there a directed path from (u_1, u_2) to (v_1, v_2) in $\mathcal{G}_1 \times \mathcal{G}_2$?

Exercise 3.3. Prove Example 2.12.

Exercise 3.4. An S-formula is **positive** if it contains no logic symbols \neg , \rightarrow , and \leftrightarrow . Prove that every positive formula is satisfiable.

