Homework 8

MATH 417: INTRODUCTION TO ABSTRACT ALGEBRA

NAME: DATE:

(Exercises are taken from Introduction to Abstract Algebra by Christopher J Leininger.)

Exercise 3.4.1 Let $\tau \in S_n$ and suppose that $\sigma = (k_1 \ k_2 \ \dots \ k_j)$ is a j-cycle. Prove that the conjugate of σ by τ is also a j-cycle, and is given by

$$\tau \sigma \tau^{-1} = (\tau(k_1) \ \tau(k_2) \ \dots \ \tau(k_j)).$$

Further prove that if $\sigma' \in S_n$ is any other j-cycle, then σ and σ' are conjugate. Hint: For the second part, you should explicitly find a conjugating element $\tau \in S_n$.

The **cycle structure** of an element $\sigma \in S_n$ denotes the number of cycles of each length in the disjoint cycle representation of σ . We can encode the cycle structure with a **partition of** n:

$$n = j_1 + j_2 + \dots + j_r,$$

where $\{j_r\}$ are positive integers giving the length of the distinct cycles (where we include "1's" for every number that is fixed, which we view as a "1–cycle" i.e. the identity). For example, the cycle structure of $(1\ 2\ 3)(5\ 6) \in S_6$ is 1+2+3=6, since there is a 1–cycle, a 2–cycle, and a 3–cycle in the disjoint cycle representation.

Exercise 3.4.2 Suppose $\sigma_1, \sigma_2 \in S_n$. Using the previous exercise, prove that σ_1 and σ_2 have the same cycle structure if and only if they are conjugate.

Exercise 3.4.3 Proposition 1.3.9 shows that every permutation is a composition of 2-cycles, and thus the set of all 2-cycles generates S_n (i.e. the subgroup $G < S_n$ generated by the set of all 2-cycles is all of S_n). Prove that (1 2) and (1 2 3 ... n) generates S_n ; that is, prove

$$H = \langle (1 \ 2), (1 \ 2 \ 3 \ \dots \ n) \rangle = S_n.$$

Hint: Consider $\sigma = (1\ 2)(1\ 2\ 3\ \dots\ n) \in H$ and then $\sigma^k(1\ 2)\sigma^{-k} \in H$ for $k \ge 1$. See also Exercise 3.4.1.

Exercise 3.4.6 Prove $D_3 \cong S_3$.

