LABORATORY MANUAL

CS-3505 Computer Graphics & Multimedia Fundamentals

Devi Ahilya Vishwavidyalaya

School of Computer Science & IT

"We make things happen . . ."

Producing world – class

IT Professionals

Since 1986

www.scs.dauniv.ac.in

MISSION OF SCS

- To produce world-class professionals who have excellent analytical skills, communication skills, team building spirit and ability to work in cross cultural environment.
- To produce international quality IT professionals, who can independently design, develop and implement computer applications.
- To develop professionals who dedicate themselves to mankind, are environment conscious, follow social norms and ethics.

SCHOOL OF COMPUTER SCIENCE & IT DEVI AHILYA VISWAVIDYALAYA

Takshashila Campus, Khandwa Road, Indore – 452017

Email: head.scs@dauniv.ac.in

CS-3505 Computer Graphics & Multimedia Fundamentals

AIM:

The aim of the course is to provide students a good understanding of basic concepts of computer graphics and the need of developing graphics applications.

OBJECTIVES:

The objectives of the course are to:

- Understand the need of developing graphics applications.
- Learn the hardware involved in building graphics applications.
- Learn algorithmic development of graphics primitives like: line, circle, ellipse, polygon.
- Learn the representation and transformation of graphical images and pictures.
- Learn the concept of Color Generation.

ASSIGNMENTS SCHEDULE:

Week	Торіс
Week 1	Assignment 1:
	1. What are the characteristics of Video Display Devices?
	2. Compare and contrast the operating characteristics of Raster Refresh Systems,
	Plasma Panels and LCDs.
	3. Write application of CG in Education and Training.
	4. Compare Refresh type and Storage type CRT display.
Week 2	Assignment 2:
	1. Write a program to implement DDA algorithm.
	2. Write a program to draw the following figure:-
	A
	В
	All sides are equal and point A and B is input.
	3. Write a program to implement Bresenham's line algorithm.
	4. What are the advantages of Bresenham's line algorithm over DDA algorithm.
	5. How can the Bresenham's line algorithm be modified to accommodate all types
	of lines?
	6. Modify the Bresenham's line algorithm so that it will produce a dashed-line
	pattern. Dash length should be independent of slope.
Week 3	Assignment 3:
	1. Write a program to implement Midpoint circle generating algorithm.
	2. Write a program to implement Bresenham's circle generating algorithm.
	3. Differentiate between Midpoint & Bresenham's circle generating algorithm.

4. Write short note on different input devices. 5. Write a program to draw the following figure:-Point A and B is input. 6. Write figure:program to draw the following a Input is radius of circle as r. Week 4 Test-1 Week 5 **Assignment 4:** 1. Write a program to implement outline character. 2. Write a program to implement bitmap character. 3. Write a program to implement ellipse generating algorithm 4. Write program draw the following to figure:-Input is rx, ry and center coordinates. Week 6 Assignment 5: 1. Write a procedure to scan the interior of a specified ellipse into a solid color. 2. Modify the 4-connected boundary fill algorithm to avoid excess stacking. 3. Write the Scan line filling algorithm. Week 7 **Assignment 6:** 1. Write a short note on viewing transformation. 2. Distinguish between viewport and window. 3. What do you mean by normalization transformation? Why it is needed? 4. Write a program to implement Line Clipping Algorithm using Cohen Sutherland Algorithm. 5. Write a program to implement Line Clipping Algorithm using Liang Barsky Algorithm. 6. Explain Sutherland and Cohen subdivision algorithm for the line clipping. 7. Explain Liang-Barsky line clipping algorithm.

Week 8	Assignment 7:
	1. Explain Sutherland-Hodgeman algorithm for polygon clipping.
	2. Write a program to Implement Polygon Clipping Algorithm using
	Sutherland -Hodgman Algorithm.
	3. Modify the Liang-Barsky line clipping algorithm to polygon clipping.
	4. What do you mean by interior and exterior clipping?
	5. Explain how exterior clipping is useful in multiple window environments.
Week 9	Test-2
Week 10	Assignment 8:
week 10	e e e e e e e e e e e e e e e e e e e
	1. Write a program to implement scaling on polygon.
	2. Write a program to implement transferring on polygon.
	3. Write a program to implement rotation on polygon.
	4. Write a program to implement reflection on polygon.
	5. Write a Program to implement set of Basic Transformations on Polygon i.e.
	Translation,Rotation and Scaling.
Week 11	Assignment 9:
	1. Why are matrices used for implementing transformations?
	2. What is the significance of homogeneous co-ordinates? Give the homogeneous
	co-ordinates for the basic transformations.
	3. Write a program to implement set of Composite Transformations on Polygon
	i.e Reflection, Shear (X &Y), rotation about an arbitrary point.
	4. Derive the transformation matrix for rotation about an arbitrary axis.
	5. Derive the transformation matrix for rotation about an arbitrary plane.
Week 12	Assignment 10:
	1. Find a transformation of triangle (coordinates will be given) by Rotating 45
	degree about the origin and then translating one unit in X and Y direction.
	2. Derived transformation matrix for the following figure.
	^
	A B
	A D
	2 Determine the sequence of basic transformations that are equivalent to the v
	3. Determine the sequence of basic transformations that are equivalent to the x-direction and y-direction shearing matrix.
	4. Show that two successive reflections about any line passing through the
	coordinate origin is equivalent to single rotation about the origin.
	5. Show that transformation matrix for a reflection about the line y=x, is
	equivalent to a reflection relative to the x axis followed by a counterclockwise
*** * 4.0	rotation of 90 degrees.
Week 13	Revision
Week 14	End Semester Lab Exam