How Close Are NBS Students To Their Classmates?

Cheng Jin Yee (**Jinny**) **Jeremy** Jerome Chia

CE9010 Introduction to Data Science AY1718 S2

1. Data Problem

2. Data Acquisition

3. Data Exploration

4. Pre-Processing

z-Scoring of Data

$$z_i = rac{(x_i - ar{x}_i)}{\sigma_i}$$

What makes me feel close to my frie⊢ =	How often do I € =	Le =	ıssmi \Xi	cCan =
Common interest/topic	Every week		6	6
2/	2-3 Times a Month		8	3
same timetable	2-3 Times a Week		8	5
Our friendship	Every week	kkwu	10	8
their sincerity	2-3 Times a Week		10	5
Things done	2-3 Times a Week		3	1
It makes me feel close to my friends when	Almost every day	yloke	10	9
More time together	Almost every day		9	7
Frequent interaction	2-3 Times a Week	ctay0	10	2
They cares about me	Almost every day		6	1
Time spent hanging out, common talking to	2-3 Times a Week		3	0
depth	2-3 Times a Month		7	2

5. Data Analysis

Regression Analysis

$$y_i = w_1 x_1 + w_2 x_2 + w_3 x_3 + \ldots$$

Add <u>regularisation</u> to the validation set and evaluate generalisation of the validation set

5. Data Analysis

Regression Analysis

- Without Normalisation
- Reducing Numbers of Features
- K-Fold Cross Validation

$y_i = w_1 x_1 + w_2 x_2 + w_3 x_3 + .$	y_i =	$= w_1 x_1$	$+ w_2 x_2$	$+ w_3 x_3 +$	
---	---------	-------------	-------------	---------------	--

Techinque	Optimal d	λ	Train Loss	Val Loss
With Normalisation	2	0.794	0.91	0.92
Pre-processing	2	0.316	7.25	6.67
Removal of Feature 1	3	0.398	1.00	1.01
Removal of Feature 2	2	0.316	0.94	0.94
Removal of Feature 3	2	1.000	0.98	0.68
K-Fold Cross Validation	1	0.100	0.87	0.85

6. Analysis of Results

Observations

- Normalisation increases the performance of the model.
- Regularisation strikes a balance between bias and variance, and generalises the well-fitted model.
- Cross-Validation reduces the loss.
- Data Features may not be the most suitable, though there is evidence of some relationship.
 - Loss does not go below 0.6 for the training data even after overfitting; may not be the most appropriate features.

Improvements

- Collect More Data
 - Reach maximum learning capacity
 - At high capacity, collecting a large number of data will not cause overfitting and can greatly reduce loss (fix high variance)
- Select more representative features
 - Handcrafting Features
 - Fix High Variance

The END