HMC with Normalizing Flows

Sam Foreman¹, Taku Izubuchi² Luchang Jin³, Xiao-Yong Jin¹, James C. Osborn¹, Akio Tomiya³

¹Argonne National Laboratory ²RIKEN-BNL ³University of Connecticut

Normalizing Flows

For a random variable z with a given distribution $z \sim r(z)$, and an invertible function x = f(z)with $z = f^{-1}(x)$, we can use the change of variables formula to write

$$p(x) = r(z) \left| \det \frac{\partial z}{\partial x} \right| = r(f^{-1}(x)) \left| \det \frac{\partial f^{-1}}{\partial x} \right|$$
 (1)

Where r(z) is the (simple) prior density, and our goal is to generate independent samples from the (difficult) target distribution p(x). This can be done using normalizing flows to construct a model density q(x) that approximates the target distribution, i.e. $q(\cdot) \approx p(\cdot)$ for a suitably-chosen flow f.

Figure 1. Using a Flow to generate data x'. Image adapted from [5]

We can construct a normalizing flow by composing multiple invertible functions f_i so that $x \equiv 1$ $[f_1 \circ f_2 \circ \cdots \circ f_K](z)$. In practice, the functions f_i are usually implemented as coupling layers, which update an "active" subset of the variables, conditioned on the complimentary "frozen" variables.

Affine Coupling Layers

A particularly useful template function for constructing our normalizing flow is the affine coupling layer which is defined as

$$f(x_1, x_2) = \left(e^{s(x_2)}x_1 + t(x_2), x_2\right), \quad \text{with} \quad \log J(x) = \sum_{l} [s(x_2)]_k$$
 (2)

$$f^{-1}(x_1', x_2') = \left((x_1' - t(x_2'))e^{-s(x_2')}, x_2' \right) \quad \text{with} \quad \log J(x') = \sum_{k}^{n} -[s(x_2')]_k \tag{3}$$

where $s(x_2)$ and $t(x_2)$ are of the same dimensionality as x_1 and the functions act elementwise on the inputs.

In order to effectively draw samples from the correct target distribution $p(\cdot)$, our goal is to minimize the error introduced by approximating $q(\cdot) \approx p(\cdot)$. To do so, we use the (reverse) Kullback-Leibler (KL) divergence from Eq. 4, which is minimized when p=q.

$$D_{\mathrm{KL}}(q||p) \equiv \int dy \, q(y) [\log q(y) - \log p(y)] \approx \frac{1}{N} \sum_{i=1}^{N} \left[\log q(y_i) - \log p(y_i) \right] \quad \text{where} \quad y_i \sim q. \tag{4}$$

Hamiltonian Monte Carlo (HMC)

Metropolis-Hastings:

1. Introduce $v \sim \mathcal{N}(0, \mathbb{I}_n) \in \mathbb{R}^n$ and write the joint distribution:

$$p(x,v) = p(x)p(v) \propto e^{-S(x)}e^{-\frac{1}{2}v^{T}v} = e^{-H(x,v)}.$$
 (5)

 $\int x' \quad \text{w/ prob.} \quad A(\xi'|\xi) \equiv \min \left\{ 1, \frac{p(\xi')}{p(\xi)} \left| \frac{\partial \xi'}{\partial \xi^T} \right| \right\}$

- 2. Evolve the joint system $\xi \equiv (\dot{x}, \dot{v})$ using Hamilton's equations along H = const.
- 3. Accept or reject the proposal configuration using the Metropolis-Hastings test.

Leapfrog Integrator:

- 1. $\tilde{v} \leftarrow v \frac{\varepsilon}{2} \partial_x S(x)$
- 2. $x' \leftarrow x + \varepsilon \tilde{v}$
- 3. $v' \leftarrow \tilde{v} \frac{\varepsilon}{2} \partial_x S(x')$

HMC

Trivializing Map

Figure 2. Normalizing Flow with inner HMC block.

Our goal is to evaluate expectation values of the form

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int dx \, \mathcal{O}(x) e^{-S(x)}.$$
 (6)

. Using a normalizing flow, we can perform a change of variables x=f(z) so Eq. 6 becomes

$$\begin{split} \langle \mathcal{O} \rangle &= \frac{1}{\mathcal{Z}} \int dz \, |\det[J(z)]| \, \mathcal{O}(f(z)) \, e^{-S(f(z))}, \quad \text{where} \quad J(z) = \frac{\partial f(z)}{\partial z} \\ &= \frac{1}{\mathcal{Z}} \int dz \, \mathcal{O}(f(z)) e^{-S(f(z)) + \log|\det[J(z)]|}. \end{split} \tag{2}$$

The Jacobian matrix J(z) must satisfy

- 1. Injective (1-to-1) between domains of integration
- 2. Continuously differentiable (or, differentiable with continuous inverse).

The function f is a trivializing map when $S(f(z)) - \log |\det J(z)| = \text{const.}$, and our expectation value simplifies to

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}^*} \int dz \, \mathcal{O}(f(z))$$
 where $\frac{1}{\mathcal{Z}^*} = \frac{1}{\mathcal{Z}} \exp(-\text{const}).$ (9)

HMC with Normalizing Flows

We can implement the trivializing map defined above using a normalizing flow model. For conjugate momenta π , we can write the Hamiltonian

$$H(z,\pi) = \frac{1}{2}\pi^2 + S(f(z)) - \log|\det J(f(z))|$$
(10)

and the associated equations of motion as

$$\dot{z} = \frac{\partial H}{\partial \pi} = \pi \tag{11}$$

$$\dot{\pi} = -J(z)S'(f(z)) + \operatorname{tr}\left[J^{-1}\frac{d}{dz}J\right]$$
(12)

If we introduce a change of variables $\pi = J(z)\rho = J(f^{-1}(x))\rho$ and $z = f^{-1}(x)$, the determinant of the Jacobian matrix reduces to 1 and we obtain the modified Hamiltonian

$$\tilde{H}(x,\rho) = \frac{1}{2}\rho^{\dagger}\rho + S(x) - \log|\det J|. \tag{13}$$

As shown in Fig. 2, we can use $f^{-1}: z \to x$ to perform HMC updates on the transformed variables x, and $f: x \to z$ to recover the physical target distribution.

2D U(1) Gauge Theory

Figure 3. Plaquette

where $x_{\mu}(n)$ is a link at the site n oriented in the direction $\hat{\mu}$. We can write our target distribution, p(x), in terms of the Wilson action

 $p(x) \propto e^{-S(x)}$, where $S(x) \equiv \sum_{P} 1 - \cos x_P$ and

$$x_P = x_{\mu}(n) + x_{\nu}(n + \hat{\mu}) - x_{\mu}(n + \hat{\nu}) - x_{\nu}(n)$$
(15)

as shown in Figure. 3. For a given lattice configuration, we can define

$$Q = \frac{1}{2\pi} \sum_{P} \arg(x_P), \quad \text{where} \quad \arg(x_P) \in [-\pi, \pi]$$
 (16)

Results

the topological charge $Q \in \mathbb{Z}$ as

Figure 4. Topological charge vs MC trajectory for HMC, demonstrating topological freezing resulting in large integrated autocorrelation times.

Figure 5. Topological charge vs MC trajectory for ftHMC demonstrating an improvement in the topological tunneling, indicating an improvement against HMC.

References

- [1] Michael S. Albergo, Denis Boyda, Daniel C. Hackett, Gurtej Kanwar, Kyle Cranmer, Sébastien Racanière, Danilo Jimenez Rezende, and Phiala E. Shanahan. Introduction to normalizing flows for lattice field theory, 2021.
- [2] Luigi Del Debbio, Joe Marsh Rossney, and Michael Wilson. Efficient modelling of trivializing maps for lattice ϕ^4 theory using normalizing flows: A first look at scalability, 2021.
- [3] Martin Lüscher. Trivializing maps, the wilson flow and the hmc algorithm. Communications in Mathematical Physics, 293(3):899-919, Nov 2009.
- [4] Martin Lüscher. Trivializing maps, the wilson flow and the hmc algorithm. Communications in Mathematical Physics, 293(3):899-919, Nov 2009.
- [5] Lilian Weng. Flow-based deep generative models. lilianweng.github.io/lil-log, 2018.