RNN and Generative Deep Learning

Agenda

- 1. Recurrent Neural Network
- 2. Generative Models
- 3. Generative Adversarial Network

Recurrent Neural Network

Sequential Data

Machine learning models should capture this kind of order information in **sequential** data (time-series and NLP data)

Recurrent Neural Network (Elman 1990)

 Recurrent neural network is proposed to utilize information from previous time steps and current information to make reasoning at the current step

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks

Neuron computation of RNN

 Model parameters are tied across all time steps (run the same RNN cell)

Hidden layers vector at time step t $\mathbf{h}_t = \sigma(\mathbf{W}^{hh}\mathbf{h}_{t-1} + \mathbf{W}^{hx}\mathbf{x}_t)$ Predictions at time step t $\mathbf{\tilde{y}}_t = softmax(\mathbf{W}^s\mathbf{h}_t)$

- We need $h_0 \in \mathbb{R}^{D_h}$ as the initialization vector for the hidden layer at time step **0**.
- Inputs enter and move forward at each time step

Focus on certain time step

Sequence Tagging

predict

RNN-based Language Model

- A language model computes a probability for a sequence of words:
 - P(w1,..., wT)
 - Useful for machine translation, Chatbot and Question Answer Systems.
- Language Modelling can be formulated as a tagging problem
- Each label/tag is the next word!

Sequence Classification

RNN-based Time Series Prediction

Discrete/Continuous Labels

Time, Frequency and Time-frequency domain Analysis

Quantity	Equations
RMS	$z_{rms} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} z_i^2}$
Variance	$\frac{1}{n}\sum_{i=1}^{n}(z_i-\bar{z})^2$
Maximum	max(z)
Skewness	$E\left[\left(\frac{z-\mu}{\sigma}\right)^3\right]$
Kurtosis	$E\left[\left(\frac{z-\mu}{\sigma}\right)^4\right]$
Peak-to-Peak	max(z) - min(z)
Spectral Skewness	$\sum_{i=1}^{k} \left(\frac{f_i - f_i}{\sigma}\right)^3 S(f_i)$
Spectral Kurtosis	$\sum_{i=1}^{k} \left(\frac{f_i - f}{\sigma}\right)^4 S(f_i)$
Spectral Power	$\sum_{i=1}^{k} (f_i)^3 S(f_i)$
Wavelet Energy	$\sum_{i=1}^{N} wt_{\phi}^{2}(i)/N$

Feature Extraction/
Downsampling

RNN Training is Hard

Real experiments on Language Models

Rough Error Surface of RNN

Toy Example

$$w = 1 \implies y_{1000} = 1$$

$$w = 1.01 \implies y_{1000} = 200000$$

$$w = 0.99 \implies y_{1000} \sim = 0$$

$$w = 0.01 \implies y_{1000} \sim = 0$$

Backpropagation Through Time

Chain rule => Multiplications

$$\frac{\partial E_t}{\partial \mathbf{W}} = \sum_{k=0}^t \frac{\partial E_t}{\partial \mathbf{o_t}} \frac{\partial \mathbf{o_t}}{\partial \mathbf{s_t}} \frac{\partial \mathbf{s_t}}{\partial \mathbf{s_k}} \frac{\partial \mathbf{s_k}}{\partial \mathbf{W}}$$
 Can explode or vanish

Exploding Gradient Solutions

- Truncated BPTT
 - Do not take the derivative all the way back to the beginning of the input sequence

$$\frac{\partial E_t}{\partial \mathbf{W}} = \sum_{\mathbf{k}=t-T}^t \frac{\partial E_t}{\partial \mathbf{o_t}} \frac{\partial \mathbf{o_t}}{\partial \mathbf{s_t}} \frac{\partial \mathbf{s_t}}{\partial \mathbf{s_k}} \frac{\partial \mathbf{s_k}}{\partial \mathbf{W}}$$

Only through T time steps if t>= T

- Clip gradients at threshold
- RMSprop to adjust learning rate
 - Adapt learning rate by dividing by the root of squared gradient

Vanishing Gradient Problem

- The error at a time step ideally can tell a previous time step from many steps away to change during backprop
- Can not capture long-term dependency
- The representation from time steps 0 and t can not travel to influence the time step t+1
- Harder to detect

Vanishing Gradient Solutions

- RMSprop
 - Adapt learning rate by dividing by the root of squared gradient
- Advanced activation functions such as leakyRelu function

- Gated RNN (LSTM and GRUs)
 - Using gates in cell computation to control information flow

Partially Solved

RNN's Bottleneck

- RNN is not suitable for parallel computation.
- RNN's training is not easy
 - Gradient Vanishing
 - Gradient Exploding

Generative Models

Generative Models

Given training data, generate new samples from same distribution

Generated samples $\sim p_{model}(x)$

- Want to learn p_{model}(x) similar to p_{data}(x)
- Address density estimation, a core problem in ? learning

Generative Models

Realistic samples for artwork, super-resolution, colorization, etc

 Generate data samples that can be used for simulation and planning (reinforcement learning applications)

Generative Adversarial Network

LeCun's Comment

What are some recent and potentially upcoming breakthroughs in deep learning

Yann LeCun, Director of Al Research at Facebook and Professor at NYU

Answered Jul 29, 2016 · Upvoted by Joaquin Quiñonero Candela, studied Machine
Learning and Thamme Gowda, M.S. Computer Science, University of Southern
California (2017)

2

There are many interesting recent development in deep learning, probably too many for me to describe them all here. But there are a few ideas that caught my attention enough for me to get personally involved in research projects.

The most important one, in my opinion, is adversarial training (also called GAN for Generative Adversarial Networks). This is an idea that was originally proposed by lan Goodfellow when he was a student with Yoshua Bengio at the University of Montreal (he since moved to Google Brain and recently to OpenAI).

This, and the variations that are now being proposed is the most interesting idea in the last 10 years in ML, in my opinion.

Generative Adversarial Networks

- GANs: do not try to find density function, but only want to sample from distribution
- Two sub-modules:

Generator: sample from a simple distribution (random gaussian). Learn transformation to training distribution.

o Discriminator: detect the sample whether it is from real distribution

Generator vs Discriminator

- Generator: try to fool the discriminator by generating real-looking images
- Discriminator: try to distinguish between real and fake images

Frenemy

- Generator: try to fool the discriminator by generating real-looking images
- Discriminator: try to distinguish between real and fake images

Frenemy Love-hate relationship

Ideas behind GAN

Ideas behind GAN

Generator and Discriminator are transformation, i.e., neural networks

Algorithms for GAN

Get the real data collection:

- Randomly initialize generator network
 and discriminant network
- During training, iteratively train
 and

Algorithms for GAN

Step 1: Fix Generator G, Train discriminant D

Discriminator are updated to assign high scores to real objects and low scores to generated objects

Algorithms for GAN

Step 2: Update Generator G, Fix discriminant D

Generator learn to fool the discriminator

Train GAN over mnist dataset

Epoch 0

Epoch 500

Epoch 1000

Epoch 1500

Final Output

It is very hard to trainGAN

Non-convergence: the model parameters oscillate and never converge

Model collapse: the generator collapses which produces limited modes of

samples

 Diminished gradient: the discriminator gets too successful that the generator gradient vanishes and learns nothing.

Game Theory and GAN

- GAN is the minimax/zero-sum non-cooperative game
- GAN's minimax equation as:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_r(x)}[logD(x)] + \mathbb{E}_{z \sim p_z(z)}[log(1-D(G(z)))]$$
 Classify image as real or fake better Fool the discriminator most

- D's actions are to maximize them and G wants to minimize its actions
- In game theory, GAN model converges when the D and G reach a Nash Equilibrium

Nash equilibrium

- In minimax game, both sides want to beat the others
- Nash equilibrium is that when one player will not change its action regardless of what the opponent may do
- Consider two players A and B which control the value of x and y, Player A wants to maximize the value xy while B wants to minimize it

$$\displaystyle \mathop{minmax}_{B} V(A,B) = xy$$

What are the values of x and y for the nash equilibrium?

Gradient Descent for Nash equilibrium

Update parameter x and y following the gradient of the value function

$$iggraphi \Delta x = lpha rac{\partial (xy)}{\partial x}$$
 $iggraphi \Delta y = -lpha rac{\partial (xy)}{\partial y}$

During training iterations, start with the initial guess of x=2 and y=2

Can not Converge i.e. x=y=0

GAN progress on face generation from Ian Goodfellow