矩形件排样优化的背包算法

华中理工大学 曹 炬 周 济 余 俊

摘要 根据矩形件排样的实际下料工艺要求,将一个二维排样问题转化为一个一维下料问题,并构造了一个利用背包问题解法的矩形件排样的近似优化算法。

关键词 矩形件排样 背包算法 近似算法 最优化

矩形件排样优化是指在给定长和宽一定数量 的板材上,尽可能多地排放所需要的矩形件,使得 所需要的板材尽可能少,以达到节省材料的目 的。矩形件排样优化问题实际上是一个十分困难 的问题,从数学计算复杂性理论看,它属于具有最 高计算复杂性的一类问题——NP 完全问题。也 就是说在一般情况下,即使使用当今最快的计算 机,在人们可接受的时间内也不可能求出这类问 题的最优解。另一方面由于生产实际的需要,人们 又迫切需要利用现代科技对这一问题给出一些能 满足生产需要的求解方法。这些方法应该是能以 较高的计算速度给生产者一个好的解。所谓好的 解是指虽然不是最优解,但接近最优解,并且应比 人工排样的效率高,能达到或超过人们所期望的 材料利用率。国外有不少学者在这方面已做了许 多工作,构造了一些近似算法[1~6]。近似算法是指 这些算法的计算结果接近或达到最优解,同时计 算速度非常快。

矩形件的排样在机械制造、轻工、家具及玻璃切割等行业经常遇到,因此在排样算法的构造方面必须考虑到这些行业的下料工艺。例如玻璃和木材的切割,一般采用直线通割,即一刀或一锯到头,切割中一般不允许转角 90°。即使对于机械制造中的钢板下料,在钢板厚度不超过 15 mm 的条件下,也可采用剪板机进行钢板的直线剪裁。为了适应这些下料工艺的要求,笔者构造了一个矩形件的排样算法。

1 排样算法

设板材的长为L,宽为 $W(L \geqslant W)$,板材的数量足以排下所有要排的矩形件。所有要排的矩形件,所有要排的矩形件共有k种,第i种矩形件的个数为 n_i ,长度为 l_i ,宽度为 w_i ($1 \leqslant i \leqslant k$),则全部要排的矩形件总数为

$$n=\sum_{i=1}^k n_i$$

收稿日期:1993-12-17

1.1 板宽条料的产生

首先对给定的 i,计算下式的非负最小值 $\min\{(W-u_iw_i)l_i, (w-v_il_i)w_i\}$ (1) 并对于当前所有未排的矩形件计算

$$w = \min_{i} \{w_i\}$$

这里 $1 \leq u_i, v_i \leq n_i$ 。若 $W - v_i l_i < w$ 或 $W - u_i w_i < w$

则在式(1)中选择小的一个,并决定产生一个条料 $u_i w_i l_i$ 或 $v_i l_i w_i$,其效果见图 1。

这时令 $n_i := n_i - u_i$ 或 $n_i := n_i - v_i$ 。而对于那些 $l_i > w_i$ 的矩形件 i,则直接产生 c_i 个宽度为 l_i ,长度为 $r_i \cdot w_i$ 的条料,其中

$$c_{i} = \min\{W/w_{i}, n_{i}\}\$$

$$c_{i} = \begin{cases} n_{i}/r_{i} + 1 & n_{i}\%r_{i} = 0\\ n_{i}/r_{i} & n_{i}\%r_{i} \neq 0 \end{cases}$$

这里, $n_i\%r_i$ 为 n_i 除以 r_i 的余数,第 c_i 个条料的长度为 $w_i \cdot n_i\%r_i$,并且令 $n_i := 0$ 。

1.2 条料的补充方案一

从以上产生条料的方案中可以看出,当第一种情况的两个条件 $W - v_i l_i < w$ 和 $W - u_i w_i < w$ 都不满足时,当第二种情况的 $W - r_i w_i < w$ 不满足时,就可能在矩形 $(W - r_i w_i) l_i$ 、 $(W - v_i l_i) w_i$ 或 $(W - u_i w_i) l_i$ 中排放其他未排的矩形件,因此有必要对以上产生条料的方案进行补充。

补充方案一是对上面相应矩形,按板材的横向试探是否能产生若干个长度接近 w_i 或 l_i 的条料,如果能产生这样的若干个条料,并且所有条料之和大于等于 $W-u_iw_i$ 或 $W-v_il_i$ 或 $W-r_iw_i$,这时采用背包算法,按板材的横向方向用这些条料补充先产生的条料,这样补充的效果见图 2。

1.3 条料的补充方案二

补充方案二是在补充方案一条件不满足的条

件下,先将已产生的条料全部补充到原始条料中去,这样做之后的效果图一般如图 3 所示。

然后继续填充图 3 中的空白部分直至不可再填充或不再有剩下的矩形件为止。在全部的矩形件都被排放到某个条料中之后,就采用背包算法,以所有条料的宽度基础,按板材长度 L 方向,排放这些条料。由此看出,在以上算

图 3

法中有两处采用了背包算法。并且是将二维排样 转化为一维下料问题,从而利用背包算法的。

1.4 背包问题

设 h, 为 m 个给定宽度的条料,L 为给定的长度,目的是合理地组合这些 h, 使得所用长为 L 的板材的数量最少。因此其数学模型为

这是一个 0-1 规划问题。笔者采用一种动态 规划方法求解上面的背包问题。

2 计算结果

根据以上算法,笔者对若干个实际问题进行了排样,这里给出其中 1 个问题的数据以及它们的排样效果图。数据见下表,排样板材的长和宽分别为 $L=12~030~\mathrm{mm}$ 和 $W=2~550~\mathrm{mm}$ 。其排样效果图见图 4。

从以上问题的计算结果看到,本算法的效果是令人满意的,材料利用率相当高,从直观判断它们离最优解差得不远了。本算法的计算速度也非常快。对于计算过的问题,在286型不带协处理器的微机上,所有的计算时间在10s之内。笔者已根据该算法,用C语言开发了一个矩形件排样系统。该系统操作简单、功能齐全,具有很大的推广价值。

数据表

i	$n_i(\uparrow)$	$l_i(mm)$	$w_i(mm)$
2	96	450	270
3	48	400	270
4	16	1 140	170
5	8	2 500	300
6	8	2 500	139
7	40	300	270
8	32	1 500	270
9	32	270	110
10	8	1 993	165
11	16	710	67 5
12	16	500	500
13	32	800	500
14	30	300	74
15	8	1 360	160
16	8	1 760	785

参 考 文 献

- 1 Christofides N. An Algorithm for Two—Dimensional Cutting Problems. Operations Research, 1977, 25(1): 30~40
- 2 Baker B S. Orthogonal Packings in Two Dimensions. SIAM J. Comput, 1980, 9(4):846~855
- Wang P T. Two Algorithms for Constrained Two—Dimensional Cuttings Stock Problems. Operations Rereasch, 1983, 31(3):573~586
- 4 Rhee W T. Optimal Bin Packing with Items of Random Sizes. Mathematics of Operations Research, 1988, 13 (1):140~151
- 5 Yanasee H H. Two—dinemsional Cuttion Stock with Multiple Stock Sizes. J. Opt Res. Soc, 1991, 42(8):673 ~683
- 6 Chauny F. A Two—phase Heuristic for the Two—dimensional Cutting—Stock Problem. J. Opt Res. Soc., 1991,42(1):39~47

(编辑:周佑启)

中国机械工程

CHINA MECHANICAL ENGINEERING

ISSN 1004-132X

中外合资衡山百富利客车制造有限公司

(C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net