Open³Toolbox

Beschreibung

Im Zuge des Projekts wurden 2 unterschiedliche Platinen erstellt. Hierbei wurde besonders darauf geachtet, dass eine große Anzahl verschiedener Komponenten integriert werden. Eine der Platinen ist kompatibel mit einem Arduino UNO und wurde als Shield designed. Die andere Platine wurde so entwickelt, dass ein esp32 aufgesteckt werden kann. Insgesamt beinhalten die Platinen eine vielzahl verschiedener Sensoren: GPS, Luftqualität, Temeratur, Luftfeuchtigkeit, Druck und Flammensensor.

Beide Platinen wurden mithilfe von Eagle gezeichnet und können auch damit geöffnet und weiter bearbeitet werden. Auf diesem Wege können zum Beispiel weitere Sensoren hinzugefügt werden. Um die Platinen zu fertigen müssen noch mithilfe von Eagle Gerber-Datein erzeugt werden. Eine detailierte Beschreibung wie dies Funktioniert: https://support.jlcpcb.com/article/137-how-to-generate-gerber-and-drill-files-in-autodesk-eagle Eine detailierte Beschreibung wie die einzelnen Komponenten mit den Mikrocontrollern verbunden sind ist unter https://support.jlcpcb.com/article/137-how-to-generate-gerber-and-drill-files-in-autodesk-eagle Eine detailierte Beschreibung wie die einzelnen Komponenten mit den Mikrocontrollern verbunden sind ist unter https://support.jlcpcb.com/article/137-how-to-generate-gerber-and-drill-files-in-autodesk-eagle Eine detailierte Beschreibung wie die einzelnen Komponenten mit den Mikrocontrollern verbunden sind ist unter https://support.jlcpcb.com/article/137-how-to-generate-gerber-and-drill-files-in-autodesk-eagle Eine detailierte Beschreibung wie die einzelnen Komponenten mit den Mikrocontrollern verbunden sind ist unter https://support.jlcpcb.com/article/137-how-to-generate-gerber-and-drill-files-in-autodesk-eagle Eine detailierte Beschreibung wie die einzelnen komponenten wie detail eine deta

ESP32 und Copernicus2-GPS kommunizieren mittels Serieller UART-Schnittstelle, während sowohl der Luftqualizätssensor als auch der Temperatur/Feuchtigkeitssensor mittels I2C angebunden sind.

Bei der Platine für den Arduino wurde hauptsächlich auf eine analoge Kommunikation zurückgegriffen. Sowohl Druck als auch Flammensensor kommunizieren mittels analoger Signale. Die Leds werden jedoch mithilfe der digitalen Ausgänge des Arduino ein und ausgeschaltet.

Komponenten Dokumentation

Komponente	Herstellernummer	Dokumentation
Copernicus2-GPS	GPS-10922	http://cdn.sparkfun.com/datasheets/Sensors/GPS/63530-10 Rev-B Manual Copernicus-II.pdf
Luftqualität	ZMOD4410Al3V	https://www.renesas.com/eu/en/document/dst/zmod4410-datasheet?r=454426
Temperatur/Feuchtigkeit	HS3003	https://www.mouser.at/datasheet/2/698/REN_HS300x_Datasheet_DST_20210809-1997723.pdf
Infineon Drucksensor	KP212K1409XTMA1	https://www.mouser.at/datasheet/2/196/Infineon_KP212K1409_DataSheet_v01_00_EN- 1921364.pdf
Flammensensor	DEBO FLAME SENS	https://cdn-reichelt.de/documents/datenblatt/A300/SE033.pdf

Hardware

Esp Board

PCB Layout

Schematics

ESP32

Copernicus Gps

Komponenten

ESP32

Copernicus2 GpsModul

- Uart Pins: ESP25 ⇒ CopernicusTX ESP26 ⇒ CopernicusRX
- Antenne via SMA Connector

ZMOD4410Al3V Luftqualität

• I2c: Addr: 0×32

• INT: ESP32

• RESET(activeLow): ESP27

HS3003 Temperatur/Feuchtigkeit

• i2c: Addr: 0×44

• Berechnung:

Humidity [%RH] =
$$\left(\frac{Humidity [13:0]}{2^{14}-1}\right) * 100$$

Temperature [
$${}^{\circ}$$
C] = $\left(\frac{Temperature [15:2]}{2^{14}-1}\right) * 165-40$

Arduino Board

PCB Layout

Schematics

Arduino

LEDs

Flammensensor

Komponenten

Arduino

Infineon Drucksensor

• AnalogOut ⇒ A0 Arduino

Leds

- Red ⇒ D2 Arduino
- Green ⇒ D0 Arduino
- Blue ⇒ D1 Arduino

Flammensensor

AnalogOut ⇒ A1 Arduino