Turning Linear Models into Nonlinear Models using Kernel Methods

CS771: Introduction to Machine Learning
Piyush Rai

Linear Models

Nice and interpretable but can't learn "difficult" nonlinear patterns

■ So, are linear models useless for such problems?

Consider the following one-dimensional inputs from two classes

Can't separate using a linear hyperplane

• Consider mapping each x to two-dimensions as $x \to z = [z_1, z_2] = [x, x^2]$

Classes are now linearly separable in the two-dimensional space

■ The same idea can be applied for nonlinear regression as well

lacktrians Can assume a feature mapping ϕ that maps/transforms the inputs to a "nice" space

$$\phi: \mathbb{R}^2 \to \mathbb{R}^3$$
 $(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}) \times (x_1, x_2, x_2^2)$

.. and then happily apply a linear model in the new space!

Not Every Mapping is Helpful

- Not every higher-dim mapping helps in learning nonlinear patterns
- Must be a <u>nonlinear</u> mapping
- For the nonlin classfn problem we saw earlier, consider some possible mappings

How to get these "good" (nonlinear) mappings?

- Can try to learn the mapping from the data itself (e.g., using deep learning later)
- Can use pre-defined "good" mappings (e.g., defined by kernel functions today's topic)

Even if I knew a good mapping, it seems I need to apply it for every input. Won't this be computationally expensive?

Also, the number of features will increase? Will it not slow down the learning algorithm?

 $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ $(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2}) x_1 x_2, x_2^2)$

Thankfully, using kernels, you don't need to compute these mappings explicitly

In a high-dim space implicitly defined by an underlying mapping ϕ associated this this kernel function k(.,.)

ullet Kernel: A function k(.,.) that gives dot product similarity b/w two inputs, say $oldsymbol{x}_n$ and $oldsymbol{x}_m$

Important: As we will see, computing k(.,.) does not require computing the mapping ϕ

$$k(\boldsymbol{x}_n, \boldsymbol{x}_m) = \phi(\boldsymbol{x}_n)^{\mathsf{T}} \phi(\boldsymbol{x}_m)$$

Kernels as (Implicit) Feature Maps

- Consider two inputs (in the same two-dim feature space): $\mathbf{x} = [x_1, x_2], \mathbf{z} = [z_1, z_2]$
- Suppose we have a function k(.,.) which takes two inputs \boldsymbol{x} and \boldsymbol{z} and computes

 $(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{z})^2$

$$k(\pmb{x},\pmb{z}) = (\pmb{x}^{\mathsf{T}}\pmb{z})^2 <$$
 Can think of this as a not of similarity b/w \pmb{x} and \pmb{z}

Can think of this as a notion

This is not a dot/inner product similarity but similarity using a more general function of \boldsymbol{x} and \boldsymbol{z} (square of dot product)

Didn't need to compute $\phi(x)$ explicitly. Just using the definition of the kernel k(x,z) = $(x^{\mathsf{T}}z)^2$ implicitly gave us this mapping for each input

Thus kernel function k(x, z) =

 ϕ such that for $x = [x_1, x_2]$,

 $\phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$

implicitly defined a feature mapping

$$= (x_1z_1 + x_2z_2)^2$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$

$$= (x_1^2, \sqrt{2}x_1x_2, x_2^2)^{\mathsf{T}}(z_1^2, \sqrt{2}z_1z_2, z_2^2)$$

$$= \phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{z})$$

Dot product similarity in the new feature space defined by the mapping ϕ

Remember that a kernel does two things: Maps the data implicitly into a new feature space (feature transformation) and computes pairwise similarity between any two inputs under the new feature representation

■ Also didn't have to compute $\phi(x)^{\mathsf{T}}\phi(z)$. Defin $k(x,z)=(x^{\mathsf{T}}z)^2$ gives that

Kernel Functions

As we saw, kernel function $k(x,z)=(x^{\mathsf{T}}z)^2$ implicitly defines a feature mapping ϕ such that for a two-dim $x=[x_1,x_2]$, $\phi(x)=\left(x_1^2,\sqrt{2}x_1x_2,x_2^2\right)$

the new feature space ${\mathcal F}$) can be very high-dimensional

or even be infinite dimensional (but we don't need to

compute it anyway, so it is not an issue)

- lacktriangle Every kernel function k implicitly defines a feature mapping $oldsymbol{\phi}$
- ullet ϕ takes input $x \in \mathcal{X}$ (e.g., \mathbb{R}^D) and maps it to a new "feature space" \mathcal{F}
- The kernel function k can be seen as taking two points as inputs and computing their inner-product based similarity in the \mathcal{F} space For some kernels, as we will see shortly, $\phi(x)$ (and thus

$$oldsymbol{\phi}$$
 : $\mathcal{X}
ightarrow \mathcal{F}$

$$k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})^{\top} \phi(\mathbf{z})$$

- \blacksquare \mathcal{F} needs to be a vector space with a dot product defined on it (a.k.a. a Hilbert space)
- Is any function $k(x,z) = \phi(x)^{\mathsf{T}}\phi(z)$ for some ϕ a kernel function?
 - \blacksquare No. The function k must satisfy Mercer's Condition

Kernel Functions

- For k(.,.) to be a kernel function
 - k must define a dot product for some Hilbert Space
 - \blacksquare Above is true if k is symmetric and positive semi-definite (p.s.d.) function (though there are

exceptions; there are also "indefinite" kernels)

For all "square integrable" functions f (such functions satisfy $\int f(x)^2 dx < \infty$

$$k(\mathbf{x}, \mathbf{z}) = k(\mathbf{z}, \mathbf{x})$$

$$\iint f(\mathbf{x})k(\mathbf{x},\mathbf{z})f(\mathbf{z})d\mathbf{x}d\mathbf{z} \ge 0$$

■ The above condition is essentially known as Mercer's Condition

Can easily verify that the Mercer's Condition holds

Loosely speaking a PSD <u>function</u> here

will be PSD (also called a kernel matrix)

means that if we evaluation this function for

N inputs (N^2 pairs) then the $N \times N$ matrix

- Let k_1 , k_2 be two kernel functions then the following are as well
 - $k(x,z) = k_1(x,z) + k_2(x,z)$: simple sum
 - $k(x,z) = \alpha k_1(x,z)$: scalar product
 - $k(x,z) = k_1(x,z)k_2(x,z)$: direct product of two kernels

Can also combine these rules and the resulting function will also be a kernel function

Some Pre-defined Kernel Functions

■ Linear kernel: $k(x, z) = x^{T}z$

Several other kernels proposed for non-vector data, such as trees, strings, etc

Remember that kernels are a notion of similarity between pairs of inputs

■ Quadratic Kernel: $k(x,z) = (x^Tz)^2$ or $k(x,z) = (1 + x^Tz)^2$

Kernels can have a pre-defined form or can be learned from data (a bit advanced for this course)

- Polynomial Kernel (of degree d): $k(x,z) = (x^Tz)^d$ or $k(x,z) = (1+x^Tz)^d$
- Radial Basis Function (RBF) or "Gaussian" Kernel: $k(x,z) = \exp[-\gamma ||x z||^2]$
 - Gaussian kernel gives a similarity score between 0 and 1
 - $\gamma > 0$ is a hyperparameter (called the kernel bandwidth parameter) be converted into a similarity

Controls how the distance between two inputs should be converted into a similarity

- The RBF kernel corresponds to an infinite dim. feature space \mathcal{F} (i.e., you can't actually write down or store the map $\phi(x)$ explicitly but we don't need to do that anyway \odot)
- Also called "stationary kernel": only depends on the distance between x and z (translating both by the same amount won't change the value of k(x,z))
- Kernel hyperparameters (e.g.,d, γ) can be set via cross-validation

RBF Kernel = Infinite Dimensional Mapping

- We saw that the RBF/Gaussian kernel is defined as $k(x, z) = \exp[-\gamma ||x z||^2]$
- Using this kernel corresponds to mapping data to infinite dimensional space

$$k(x,z) = \exp[-(x-z)^2] \qquad \text{(assuming } \gamma = 1 \text{ and } x \text{ and } z \text{ to be scalars)}$$

$$= \exp(-x^2) \exp(-z^2) \exp(2xz)$$

$$= \exp(-x^2) \exp(-z^2) \sum_{k=1}^{\infty} \frac{2^k x^k z^k}{k!}$$

$$= \phi(x)^{\mathsf{T}} \phi(z)$$
Thus an infinite-dim vector (ignoring the particle) and the property of the particle particle particle particles.

- Here $\phi(x) = [\exp(-x^2)x^1, \exp(-x^2)x^2, \exp(-x^2)x^3, ..., \exp(-x^2)x^\infty]$
- But again, note that we never need to compute $\phi(x)$ to compute k(x,z)
 - k(x,z) is easily computable from its definition itself $(\exp[-(x-z)^2]$ in this case)

constants coming from the 2^k and k! terms

Kernel Matrix

- Kernel based ML algos work with kernel matrices rather than feature vectors
- lacktriangle Given N inputs, the kernel function k can be used to construct a Kernel Matrix $m{K}$
- The kernel matrix K is of size $N \times N$ with each entry defined as

$$K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathsf{T}} \phi(\mathbf{x}_j)^{\mathsf{T}}$$

Note again that we don't need to compute ϕ and this dot product explicitly

 $lacksquare K_{ij}$: Similarity between the i^{th} and j^{th} inputs in the kernel induced feature space $oldsymbol{\phi}$

Coming up next...

Applying kernel methods for SVM and ridge regression

