2018/10/13 IE598 F18 HW7

# My Name (yuhangm2)

### **IE598 MLF F18**

# **Module 7 Homework (Random Forest)**

Using the Wine dataset, described in Raschka chapter 4 and 10 fold cross validation;

#### Part 1: Random forest estimators

Fit a random forest model, try several different values for N\_estimators, report in-sample accuracies.

|                       | 0    | 1     | 2     | 3     | 4     | 5     | 6     | 7      | 8      | 9      | 10      |
|-----------------------|------|-------|-------|-------|-------|-------|-------|--------|--------|--------|---------|
| n_estimators          | 1.0  | 2.0   | 5.0   | 10.0  | 50.0  | 100.0 | 500.0 | 1000.0 | 2500.0 | 5000.0 | 10000.0 |
| in_sample_accuracy(%) | 86.3 | 87.9  | 91.1  | 96.8  | 96.8  | 97.6  | 97.6  | 97.6   | 97.6   | 97.6   | 97.6    |
| sys time(ms)          | 0.2  | 101.8 | 102.8 | 104.1 | 104.3 | 104.1 | 104.6 | 104.7  | 307.0  | 508.9  | 944.8   |

## Part 2: Random forest feature importance

Display the individual feature importance of your best model in Part 1 above using the code presented in Chapter 4 on page 136. {importances=forest.feature\_importances\_}

```
{'n_estimators': 100}
```

best score: 0.981481

| 1)  | Alcohol                      | 0.194819  |
|-----|------------------------------|-----------|
| 2)  | Malic acid                   | 0. 164348 |
| 3)  | Ash                          | 0. 145228 |
| 4)  | Alcalinity of ash            | 0.119075  |
| 5)  | Magnesium                    | 0.088747  |
| 6)  | Total phenols                | 0.080266  |
| 7)  | Flavanoids                   | 0.061579  |
| 8)  | Nonflavanoid phenols         | 0.039190  |
| 9)  | Proanthocyanins              | 0.029782  |
| 10) | Color intensity              | 0.023107  |
| 11) | Hue                          | 0.022962  |
| 12) | OD280/OD315 of diluted wines | 0.016638  |
| 13) | Proline                      | 0.014258  |
|     |                              |           |

2018/10/13 IE598 F18 HW7



#### **Part 3: Conclusions**

#### Write a short paragraph summarizing your findings.

- What is the relationship between n\_estimators, in-sample CV accuracy and computation time?
- What is the optimal number of estimators for your forest?
- Which features contribute the most importance in your model according to scikit-learn function?
- What is feature importance and how is it calculated? (If you are not sure, refer to the Scikit-Learn.org documentation.)
- 1.As table shown on Part 1, with the increasing of n\_estimators, both in-sample CV accuracy and computation time rising.
- 2. The optimal number of estimators is 100.
- 3.'Alcohol' is the most important feature contributed in my model.
- 4. The feature importance is the mean decrease impurity (here is gini importance) for all decision trees. The results are shown after normalization, so their sum are 1.

## Part 4: Appendix

Link to github repohttps://github.com/YHM3/IE598\_F18/tree/master/IE%20598\_F18\_HW7 (https://github.com/YHM3/IE598\_F18/tree/master/IE%20598\_F18\_HW7)

Toggle Code