

1A ADJUSTABLE LOW DROP VOLTAGE REGULATOR

The KIA78R00PI is a Low Drop Voltage Regulator suitable for various electronic equipments. The Regulator has multi function such as over current protection, overheat protection.

FEATURES

- Adjustable Output Voltage (Range : 1.5~30V)
- 1.0A Output Low Drop Voltage Regulator.
- Built in Over Current Protection, Over Heat Protection Function.

MAXIMUM RATINGS (Ta=25 °C)

CHARACTERISTIC	SYMBOL	RATING	UNIT	Remark
Input Voltage	V _{IN}	35	V	-
Output Current	I _{OUT}	1	A	-
Power Dissipation 1	P _{D1}	1.5	W	No heatsink
Power Dissipation 2	P _{D2}	15	W	Infinite heatsink
Operating Junction Temperature	T _{J(opr)}	-40~150	°C	-
Storage Temperature	T _{stg}	-45~150	°C	-
Soldering Temperature (10sec)	T _{sol}	260	°C	-

KIA78R00PI

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, $V_{IN}=15V$, $V_O=10V$, $I_O=0.5A$, $R_I=390 \Omega$ (Note1 : $V_{IN}=0.95V_{out}$))

CHARACTERISTIC	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input Voltage	V_{IN}	-	4.5	-	35	V
Output Voltage	V_O	$R_2=84 \Omega$ to $8.7k \Omega$	1.5	-	30	V
Load Regulation	Reg Load	$I_O=5mA \sim 1A$	-	-	2.0	%
Line Regulation	Reg Line	$V_{IN}=11V \sim 28V$	-	-	2.5	%
Ripple Rejection	$R \cdot R$	$C_{ref}=0$ Refer to Fig.2 $C_{ref}=3.3 \mu F$	45 55	55 65	- -	dB
Reference Voltage	V_{ref}	-	1.26	1.29	1.32	V
Temperature coefficient of reference Voltage	$T_C V_{ref}$	$T_j=0 \sim 125^\circ C$	-	± 1.0	-	%
DropOut Voltage	V_D	$I_O=1.0A$ (Note1)	-	-	0.5	V
Quiescent Current	I_Q	$I_Q=0A$	-	-	10	mA

BLOCK DIAGRAM

Pin NO	ITEM	KIA78R00PI (TO-220IS-4)
1	V_{IN}	
2	V_{OUT}	
3	GND	
4	Adj	
5	-	

KIA78R00PI

Fig. 1 Standard Test Circuit

$$V_{OUT} = V_{ref} \times \left(1 + \frac{R_2}{R_1} \right) = 1.29 \times \left(1 + \frac{R_2}{R_1} \right)$$

C_{IN} : More than 0.33μF required if regulator is located an appreciable distance from power supply filter.

You must use to prevent from the parasitic oscillation.

C_{OUT} : More than 47μF. You must use the Low-impedance-type(low ESR) capacitor.

Fig. 2 Ripple Rejection Circuit

KIA78R00PI

Fig. 3 I_O - V_O

Fig. 4 T_j - ΔV_O

Fig. 5 V_{IN} - V_O

Fig. 6 T_j - V_D

Fig. 7 T_j - I_q

Fig. 8 f - RR

KIA78R00PI

Fig. 9 I_O - RR

Fig. 10 R_2 - V_O

Fig.11 P_D - T_a (PI-Type : TO-220IS-4)

