Example multilayer neural network

output units

hidden units

input units

figure from Huang & Lippmann, NIPS 1988

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context "h d"

Decision regions of a multilayer neural network

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context "h d"

Learning in multilayer networks

- work on neural nets fizzled in the 1960's
 - single layer networks had representational limitations (linear separability)
 - no effective methods for training multilayer networks

- revived again with the invention of backpropagation method [Rumelhart & McClelland, 1986; also Werbos, 1975]
 - key insight: require neural network to be differentiable; use gradient descent

Gradient descent in weight space

Given a training set $D = \{(x^{(1)}, y^{(1)})...(x^{(m)}, y^{(m)})\}$ we can specify an error measure that is a function of our weight vector w

This error measure defines a surface over the hypothesis (i.e. weight) space

Gradient descent in weight space

gradient descent is an iterative process aimed at finding a minimum in the error surface

on each iteration

- current weights define a point in this space
- find direction in which error surface descends most steeply
- take a step (i.e. update weights) in that direction

Gradient descent in weight space

calculate the gradient of
$$E$$
: $\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$

The sigmoid function

- to be able to differentiate E with respect to w_i , our network must represent a continuous function
- to do this, we use sigmoid functions instead of threshold functions in our hidden and output units

The sigmoid function

for the case of a single-layer network

Batch neural network training

given: network structure and a training set $D = \{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$ initialize all weights in w to small random numbers until stopping criteria met do

initialize the error E(w) = 0

for each $(x^{(d)}, y^{(d)})$ in the training set

input $x^{(d)}$ to the network and compute output $o^{(d)}$

increment the error
$$E(\mathbf{w}) = E(\mathbf{w}) + \frac{1}{2} (y^{(d)} - o^{(d)})^2$$

calculate the gradient

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

update the weights

$$\Delta w = -\eta \ \nabla E(w)$$

Online vs. batch training

- Standard gradient descent (batch training): calculates error gradient for the entire training set, before taking a step in weight space
- Stochastic gradient descent (online training): calculates error gradient for a single instance, then takes a step in weight space
 - much faster convergence
 - less susceptible to local minima

Online neural network training (stochastic gradient descent)

given: network structure and a training set $D = \{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$ initialize all weights in w to small random numbers until stopping criteria met do

for each $(x^{(d)}, y^{(d)})$ in the training set

input $\mathbf{x}^{(d)}$ to the network and compute output $o^{(d)}$ calculate the error $E(\mathbf{w}) = \frac{1}{2} \left(y^{(d)} - o^{(d)} \right)^2$

calculate the gradient

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

update the weights

$$\Delta w = -\eta \ \nabla E(w)$$

Convergence of gradient descent

- gradient descent will converge to a minimum in the error function
- for a <u>multi-layer network</u>, this may be a *local minimum* (i.e. there may be a "better" solution elsewhere in weight space)

 for a <u>single-layer network</u>, this will be a global minimum (i.e. gradient descent will find the "best" solution)

Taking derivatives in neural nets

recall the chain rule from calculus

$$y = f(u)$$

$$u = g(x)$$

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

we'll make use of this as follows

$$\frac{\partial E}{\partial w_i} = \frac{\partial E}{\partial o} \frac{\partial o}{\partial net} \frac{\partial net}{\partial w_i}$$

$$net = w_0 + \sum_{i=1}^n w_i x_i$$

Gradient descent: simple case

Consider a simple case of a network with one linear output unit and no hidden units:

$$o^{(d)} = w_0 + \sum_{i=1}^n w_i x_i^{(d)}$$

let's learn w_i 's that minimize squared error

$$E(w) = \frac{1}{2} \sum_{d \in D} (y^{(d)} - o^{(d)})^2$$

batch case

$$\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} \left(y^{(d)} - o^{(d)} \right)^2$$

online case

$$\frac{\partial E^{(d)}}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \left(y^{(d)} - o^{(d)} \right)^2$$

Gradient descent with a sigmoid

Now let's consider the case in which we have a sigmoid output unit and no hidden units:

$$net^{(d)} = w_0 + \sum_{i=1}^{n} w_i x_i^{(d)}$$

$$o^{(d)} = \frac{1}{1 + e^{-net^{(d)}}}$$

useful property:

$$\frac{\partial o^{(d)}}{\partial net^{(d)}} = o^{(d)}(1 - o^{(d)})$$

Backpropagation

- now we've covered how to do gradient descent for single-layer networks with
 - linear output units
 - sigmoid output units
- how can we calculate $\frac{\partial E}{\partial w_i}$ for every weight in a multilayer network?
 - → <u>backpropagate</u> errors from the output units to the hidden units

Backpropagation notation

let's consider the online case, but drop the (d) superscripts for simplicity

we'll use

- subscripts on y, o, net to indicate which unit they refer to
- subscripts to indicate the unit a weight emanates from and goes to

Backpropagation

each weight is changed by

$$\Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}}$$

 $= \eta \delta_i o_i$

$$= -\eta \frac{\partial E}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

where
$$\delta_{j} = -\frac{\partial E}{\partial net_{j}}$$

 x_i if i is an input unit

Backpropagation

each weight is changed by $\Delta w_{ii} = \eta \delta_i o_i$

where
$$\delta_j = -\frac{\partial E}{\partial net_j}$$

$$\delta_j = o_j (1 - o_j) (y_j - o_j) \quad \text{if } j \text{ is an output unit} \\ \text{single-layer net with sigmoid output}$$

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj} \quad \text{if } j \text{ is a hidden unit}$$

sum of backpropagated contributions to error

Backpropagation illustrated

1. calculate error of output units

$$\delta_j = o_j (1 - o_j)(y_j - o_j)$$

2. determine updates for weights going to output units

$$\Delta w_{ji} = \eta \ \delta_j \ o_i$$

Backpropagation illustrated

3. calculate error for hidden units

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{kj}$$

 determine updates for weights to hidden units using hidden-unit errors

$$\Delta w_{ji} = \eta \ \delta_j \ o_i$$

Neural network jargon

- activation: the output value of a hidden or output unit
- epoch: one pass through the training instances during gradient descent
- transfer function: the function used to compute the output of a hidden/ output unit from the net input

Initializing weights

- Weights should be initialized to
 - <u>small values</u> so that the sigmoid activations are in the range where the derivative is large (learning will be quicker)

- <u>random values</u> to ensure symmetry breaking (i.e. if all weights are the same, the hidden units will all represent the same thing)
- typical initial weight range [-0.01, 0.01]

Setting the learning rate

convergence depends on having an appropriate learning rate

Stopping criteria

- conventional gradient descent: train until local minimum reached
- empirically better approach: early stopping
 - use a validation set to monitor accuracy during training iterations
 - return the weights that result in minimum validation-set error

Input (feature) encoding for neural networks

nominal features are usually represented using a 1-of-k encoding

$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad G = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad T = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$G = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\mathsf{T} = \left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right]$$

ordinal features can be represented using a thermometer encoding

$$\mathsf{small} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$$

$$small = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad medium = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \qquad large = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

real-valued features can be represented using individual input units (we may want to scale/normalize them first though)

precipitation =
$$[0.68]$$

Output encoding for neural networks

regression tasks usually use output units with linear transfer functions

binary classification tasks usually use one sigmoid output unit

k-ary classification tasks usually use k sigmoid or softmax output units

$$O_i = \frac{e^{net_i}}{\sum_{j \in outputs} e^{net_j}}$$

Recurrent neural networks

recurrent networks are sometimes used for tasks that involve making sequences of predictions

- Elman networks: recurrent connections go from hidden units to inputs
- Jordan networks: recurrent connections go from output units to inputs

Alternative approach to training deep networks

use <u>unsupervised learning</u> to to find useful hidden unit representations

Learning representations

- the feature representation provided is often the most significant factor in how well a learning system works
- an appealing aspect of multilayer neural networks is that they are able to change the feature representation
- can think of the nodes in the hidden layer as new features constructed from the original features in the input layer
- consider having more levels of constructed features,
 e.g., pixels -> edges -> shapes -> faces or other objects

Competing intuitions

- Only need a 2-layer network (input, hidden layer, output)
 - Representation Theorem (1989): Using sigmoid activation functions (more recently generalized to others as well), can represent any continuous function with a single hidden layer
 - Empirically, adding more hidden layers does not improve accuracy, and it often degrades accuracy, when training by standard backpropagation

Deeper networks are better

- More efficient representationally, e.g., can represent *n*-variable parity function with polynomially many (in *n*) nodes using multiple hidden layers, but need exponentially many (in *n*) nodes when limited to a single hidden layer
- More structure, should be able to construct more interesting derived features

The role of hidden units

- Hidden units transform the input space into a new space where perceptrons suffice
- They numerically represent "constructed" features
- Consider learning the target function using the network structure below:

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	0000010
00000001	\rightarrow	00000001

The role of hidden units

In this task, hidden units learn a compressed numerical coding of the inputs/outputs

Input		Hidden				Output		
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

How many hidden units should be used?

 conventional wisdom in the early days of neural nets: prefer small networks because fewer parameters (i.e. weights & biases) will be less likely to overfit

 somewhat more recent wisdom: if early stopping is used, larger networks often behave as if they have fewer "effective" hidden

units, and find better solutions

Figure from Weigend, *Proc. of the CMSS* 1993

Another way to avoid overfitting

- Allow many hidden units but force each hidden unit to output mostly zeroes: tend to meaningful concepts
- Gradient descent solves an optimization problem add a "regularizing" term to the objective function
- Let X be vector of random variables, one for each hidden unit, giving average output of unit over data set. Let target distribution s have variables independent with low probability of outputting one (say 0.1), and let ŝ be empirical distribution in the data set. Add to the backpropagation target function (that minimizes δ's) a penalty of KL(s(X)||ŝ(X))

Backpropagation with multiple hidden layers

- in principle, backpropagation can be used to train arbitrarily deep networks (i.e. with multiple hidden layers)
- in practice, this doesn't usually work well
 - there are likely to be lots of local minima
 - diffusion of gradients leads to slow training in lower layers
 - gradients are smaller, less pronounced at deeper levels
 - errors in credit assignment propagate as you go back