MATH1081 Discrete Mathematics UNSW 2019T1

$$ullet$$
 Commutative laws $A \cap B = B \cap A$

$$A \cup B = B \cup A$$

• Commutative laws
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

$$\textbf{ } Associative laws } A\cap (B\cap C)=(A\cap B)\cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Commutative laws
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Commutative laws
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

• Commutative laws
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

$$A \cup \emptyset = \emptyset \cup A = A$$

• Commutative laws
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

• Identity laws
$$A \cap U = U \cap A = A$$

$$A \cup \varnothing = \varnothing \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Commutative laws
$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

$$A \cup \varnothing = \varnothing \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (A \cap B) = A$$

• Identity laws
$$A \cap U = U \cap A = A$$

$$A \cup \varnothing = \varnothing \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

• Difference law
$$A - B = A \cap B^c$$

$$A \cup B = B \cup A$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

• Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

$$A \cup \emptyset = \emptyset \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

• Difference law
$$A - B = A \cap B^c$$

$${\color{red} {\color{red} {\wp}}}$$
 Domination or universal bound laws
$$A \cap \varnothing = \varnothing \cap A = \varnothing \\ A \cup U = U \cup A = U$$

• Associative laws
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (A \cap B) = A$$

• Identity laws
$$A \cap U = U \cap A = A$$

$$A \cup \emptyset = \emptyset \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

• Difference law
$$A - B = A \cap B^c$$

$$A \cap \varnothing = \varnothing \cap A = \varnothing$$
$$A \cup U = U \cup A = U$$

• Intersection and union with complement
$$A \cap A^c = A^c \cap A = \emptyset$$

$$A \cap A^c = A^c \cap A = \emptyset$$
$$A \cup A^c = A^c \cup A = U$$

• Distributive laws
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cup (A \cap B) = A$$

• Identity laws
$$A \cap U = U \cap A = A$$

$$A \cup \varnothing = \varnothing \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Difference law
$$A - B = A \cap B^c$$

$$A \cup U = U \cup A = U$$

• Intersection and union with complement
$$A \cap A^c = A^c \cap A = \emptyset$$

$$A \cup A^c = A^c \cup A = U$$

• Absorption laws
$$A \cap (A \cup B) = A$$

$$A \cup (A \cap B) = A$$

$$A \cup \varnothing = \varnothing \cup A = A$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

• Difference law
$$A - B = A \cap B^c$$

• Domination or universal bound laws
$$A \cap \emptyset = \emptyset \cap A = \emptyset$$

$$A \cup U = U \cup A = U$$

• Intersection and union with complement
$$A \cap A^c = A^c \cap A = \emptyset$$

$$A \cup A^c = A^c \cup A = U$$

• Identity laws
$$A \cap U = U \cap A = A$$

$$A \cup \varnothing = \varnothing \cup A = A$$

$$A \cup A = A$$

• Difference law
$$A - B = A \cap B^c$$

$$A \cup U = U \cup A = U$$

$${\color{blue} {\bf _}}$$
 Intersection and union with complement ${\color{blue} A} \cap A^c = A^c \cap A = \varnothing$

$$A \cup A^c = A^c \cup A = U$$

$$A \cap A = A$$

$$A \cup A = A$$

• Double complement law
$$(A^c)^c = A$$

$$(A^c)^c = A$$

$$A - B = A \cap B^c$$

$$A \cap \varnothing = \varnothing \cap A = \varnothing$$

$$A \cup U = U \cup A = U$$

• Intersection and union with complement
$$A \cap A^c = A^c \cap A = \emptyset$$

$$A \cap A^c = A^c \cap A = \emptyset$$

$$A \cup A^c = A^c \cup A = U$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

$$A \cap \emptyset = \emptyset \cap A = \emptyset$$
$$A \cup U = U \cup A = U$$

• Intersection and union with complement
$$A \cap A^c = A^c \cap A = \varnothing$$

$$A \cap A^c = A^c \cap A = \emptyset$$
$$A \cup A^c = A^c \cup A = U$$

• Idempotent laws
$$A \cap A = A$$

$$A \cup A = A$$

$$A \cap \emptyset = \emptyset \cap A = \emptyset$$
$$A \cup U = U \cup A = U$$

• Intersection and union with complement $A \cap A^c = A^c \cap A = \emptyset$

$$A \cap A^c = A^c \cap A = \varnothing$$
$$A \cup A^c = A^c \cup A = U$$

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

$$A \cup A = A$$

$$A \cap \emptyset = \emptyset \cap A = \emptyset$$
$$A \cup U = U \cup A = U$$

Intersection and union with complement

$$A \cap A^c = A^c \cap A = \varnothing$$
$$A \cup A^c = A^c \cup A = U$$

For a set expression involving only unions, intersections and complements, its **dual** is obtained by replacing \cap with \cup , \cup with \cap , \varnothing with U, and U with \varnothing . The laws of set algebra mostly come in dual pairs.

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

Example. Proof of De Morgan's law $(A \cup B)^c = A^c \cap B^c$:

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$,

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

Example. Proof of De Morgan's law $(A \cup B)^c = A^c \cap B^c$:

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

Example. Proof of De Morgan's law $(A \cup B)^c = A^c \cap B^c$:

(i) Suppose that $x \in (A \cup B)^c$. Then we have $x \notin A \cup B$ so $x \notin A$ and $x \notin A$

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$,

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

Then $x \in A^c$ and $x \in B^c$,

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

Then $x \in A^c$ and $x \in B^c$, so $x \notin A$ and $x \notin B$.

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

Then $x \in A^c$ and $x \in B^c$, so $x \notin A$ and $x \notin B$.

Thus, $x \notin A \cup B$,

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

Example. Proof of De Morgan's law $(A \cup B)^c = A^c \cap B^c$:

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

Then $x \in A^c$ and $x \in B^c$, so $x \notin A$ and $x \notin B$.

Thus, $x \notin A \cup B$, so $x \in (A \cup B)^c$.

• De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

Example. Proof of De Morgan's law $(A \cup B)^c = A^c \cap B^c$:

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

Then $x \in A^c$ and $x \in B^c$, so $x \notin A$ and $x \notin B$.

Thus, $x \notin A \cup B$, so $x \in (A \cup B)^c$.

This proves that $A^c \cap B^c \subseteq (A \cup B)^c$.

- Laws of set algebra:
 - De Morgan's Laws $(A \cup B)^c = A^c \cap B^c$ $(A \cap B)^c = A^c \cup B^c$

(i) Suppose that $x \in (A \cup B)^c$.

Then we have $x \notin A \cup B$, so $x \notin A$ and $x \notin B$.

Thus, $x \in A^c$ and $x \in B^c$, so $x \in A^c \cap B^c$.

This proves that $(A \cup B)^c \subseteq A^c \cap B^c$.

(ii) Suppose now that $x \in A^c \cap B^c$.

Then $x \in A^c$ and $x \in B^c$, so $x \notin A$ and $x \notin B$.

Thus, $x \notin A \cup B$, so $x \in (A \cup B)^c$.

This proves that $A^c \cap B^c \subseteq (A \cup B)^c$.

Combining (i) and (ii), we conclude that $(A \cup B)^c = A^c \cap B^c$.

Example. We can use the laws of set algebra to simplify $(A^c \cap B)^c \cup B$:

Example. We can use the laws of set algebra to simplify $(A^c \cap B)^c \cup B$:

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
= $(A \cup B^c) \cup B$ Double complement law
= $A \cup (B^c \cup B)$ Associative law

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
 $= (A \cup B^c) \cup B$ Double complement law
 $= A \cup (B^c \cup B)$ Associative law
 $= A \cup U$ Union with complement

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A \cap (A \cap B)^c) \cup B^c$$

= $(A \cap (A^c \cup B^c)) \cup B^c$ De Morgan's law

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A \cap (A \cap B)^c) \cup B^c$$

= $(A \cap (A^c \cup B^c)) \cup B^c$ De Morgan's law
= $((A \cap A^c) \cup (A \cap B^c)) \cup B^c$ Distributive law

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$
 De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
 Distributive law
$$= (\varnothing \cup (A \cap B^c)) \cup B^c$$
 Intersection with complement

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\varnothing \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$
Identity law

$$(A^c \cap B)^c \cup B = ((A^c)^c \cup B^c) \cup B$$
 De Morgan's law
$$= (A \cup B^c) \cup B$$
 Double complement law
$$= A \cup (B^c \cup B)$$
 Associative law
$$= A \cup U$$
 Union with complement
$$= U$$
 Domination

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\emptyset \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$

$$= B^c$$
Absorption law

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$

$$= (\varnothing \cup (A \cap B^c)) \cup B^c$$

$$= (A \cap B^c) \cup B^c$$

$$= B^c$$

De Morgan's law

Distributive law

Intersection with complement

Identity law

Absorption law

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\emptyset \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$
Identity law

Absorption law

Exercise. Use the laws of set algebra to simplify

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

 $= B^c$

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
Distributive law

$$= (\varnothing \cup (A \cap B^c)) \cup B^c$$
 Intersection with complement

$$= (A \cap B^c) \cup B^c$$
 Identity law

$$= B^c$$
 Absorption law

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

= $[(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)]$ Associative and commutative law

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\emptyset \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$
Identity law
$$= B^c$$
Absorption law

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

$$= [(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)] \quad \text{Associative and commutative law}$$

$$= (A \cup B^c) \cap [B \cup (A \cap A^c)] \quad \text{Idempotent and distributive laws}$$

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\emptyset \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$
Identity law
$$= B^c$$
Absorption law

$$\begin{split} &[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)] \\ &= [(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)] \quad \text{Associative and commutative law} \\ &= (A \cup B^c) \cap [B \cup (A \cap A^c)] \quad \text{Idempotent and distributive laws} \\ &= (A \cup B^c) \cap (B \cup \varnothing) \quad \text{Intersection with complement} \end{split}$$

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\emptyset \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$
Identity law
$$= B^c$$
Absorption law

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

$$= [(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)]$$
 Associative and commutative law
$$= (A \cup B^c) \cap [B \cup (A \cap A^c)]$$
 Idempotent and distributive laws
$$= (A \cup B^c) \cap (B \cup \varnothing)$$
 Intersection with complement
$$= (A \cup B^c) \cap B$$
 Identity law

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
De Morgan's law
$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
Distributive law
$$= (\emptyset \cup (A \cap B^c)) \cup B^c$$
Intersection with complement
$$= (A \cap B^c) \cup B^c$$

$$= B^c$$
Absorption law

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

$$= [(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)]$$
 Associative and commutative law
$$= (A \cup B^c) \cap [B \cup (A \cap A^c)]$$
 Idempotent and distributive laws
$$= (A \cup B^c) \cap (B \cup \varnothing)$$
 Intersection with complement
$$= (A \cup B^c) \cap B$$
 Identity law
$$= (A \cap B) \cup (B^c \cap B)$$
 Distributive laws

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$

$$= (\varnothing \cup (A \cap B^c)) \cup B^c$$

$$= (A \cap B^c) \cup B^c$$

$$= B^c$$

De Morgan's law

Distributive law

Intersection with complement

Identity law

Absorption law

Exercise. Use the laws of set algebra to simplify

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

$$= [(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)]$$

$$= (A \cup B^c) \cap [B \cup (A \cap A^c)]$$

$$= (A \cup B^c) \cap (B \cup \varnothing)$$

$$= (A \cup B^c) \cap B$$

$$=(A\cap B)\cup (B^c\cap B)$$

$$=(A\cap B)\cup\varnothing$$

Associative and commutative law

Idempotent and distributive laws

Intersection with complement

Identity law

Distributive laws

Intersection with complement

$$(A \cap (A \cap B)^c) \cup B^c$$

$$= (A \cap (A^c \cup B^c)) \cup B^c$$
 De Morgan's law

$$= ((A \cap A^c) \cup (A \cap B^c)) \cup B^c$$
 Distributive law

$$= (\varnothing \cup (A \cap B^c)) \cup B^c$$
 Intersection with complement

$$= (A \cap B^c) \cup B^c$$
 Identity law

$$= B^c$$
 Absorption law

$$[A \cup (A \cup B^c)] \cap [(A \cup B) \cap (B \cup A^c)]$$

$$= [(A \cup A) \cup B^c] \cap [(B \cup A) \cap (B \cup A^c)]$$
 Associative and commutative law

$$=(A\cup B^c)\cap [B\cup (A\cap A^c)]$$
 Idempotent and distributive laws

$$=(A \cup B^c) \cap (B \cup \varnothing)$$
 Intersection with complement

$$= (A \cup B^c) \cap B$$
 Identity law

$$=(A\cap B)\cup(B^c\cap B)$$
 Distributive laws

$$=(A\cap B)\cup\varnothing$$
 Intersection with complement

$$=A\cap B$$
 Identity law

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \dots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \dots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k =$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3 = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\}$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3 = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3 = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\bigcap_{k=1}^{3} A_k =$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3 = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\bigcap_{k=1}^{3} A_k = A_1 \cap A_2 \cap A_3$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3 = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\bigcap_{k=1}^{5} A_k = A_1 \cap A_2 \cap A_3 = \{1, 2\} \cap \{2, 3\} \cap \{3, 4\}$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=1}^{3} A_k = A_1 \cup A_2 \cup A_3 = \{1, 2\} \cup \{2, 3\} \cup \{3, 4\} = \{1, 2, 3, 4\}$$

$$\bigcap_{k=1}^{3} A_k = A_1 \cap A_2 \cap A_3 = \{1, 2\} \cap \{2, 3\} \cap \{3, 4\} = \emptyset$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$= \{2, 3, 4\} \cup \{3, 4, \dots, 9\} \cup \{4, 5, \dots, 16\}$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$= \{2, 3, 4\} \cup \{3, 4, \dots, 9\} \cup \{4, 5, \dots, 16\}$$

$$= \{2, 3, \dots, 16\}$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$= \{2, 3, 4\} \cup \{3, 4, \dots, 9\} \cup \{4, 5, \dots, 16\}$$

$$= \{2, 3, \dots, 16\}$$

$$\bigcap_{k=3}^{6} A_k$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$= \{2, 3, 4\} \cup \{3, 4, \dots, 9\} \cup \{4, 5, \dots, 16\}$$

$$= \{2, 3, \dots, 16\}$$

$$\bigcap_{k=2}^{6} A_k = A_3 \cap A_4 \cap A_5 \cap A_6$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$= \{2, 3, 4\} \cup \{3, 4, \dots, 9\} \cup \{4, 5, \dots, 16\}$$

$$= \{2, 3, \dots, 16\}$$

$$\bigcap_{k=3}^{6} A_k = A_3 \cap A_4 \cap A_5 \cap A_6$$

$$= \{3, \dots, 9\} \cap \{4, \dots, 16\} \cap \{5, \dots, 25\} \cap \{6, \dots, 36\}$$

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{and} \qquad \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \cdots \cap A_n$$

$$\bigcup_{k=2}^{4} A_k = A_2 \cup A_3 \cup A_4$$

$$= \{2, 3, 4\} \cup \{3, 4, \dots, 9\} \cup \{4, 5, \dots, 16\}$$

$$= \{2, 3, \dots, 16\}$$

$$\bigcap_{k=3}^{0} A_k = A_3 \cap A_4 \cap A_5 \cap A_6$$

$$= \{3, \dots, 9\} \cap \{4, \dots, 16\} \cap \{5, \dots, 25\} \cap \{6, \dots, 36\}$$

$$= \{6, 7, 8, 9\}$$

A set may contain another set as one of its elements.
This raises the possibility that a set may contain itself as an element.

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

(i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that $S \in S$, also a contradiction.

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that $S \in S$, also a contradiction.

Hence, neither $S \in S$ nor $S \notin S$.

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that $S \in S$, also a contradiction.

Hence, neither $S \in S$ nor $S \notin S$. This is *Russell's paradox*.

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that $S \in S$, also a contradiction.

Hence, neither $S \in S$ nor $S \notin S$. This is *Russell's paradox*.

Why does this paradox occur?

- A set may contain another set as one of its elements.
 This raises the possibility that a set may contain itself as an element.
- ullet Problem: Try to let S be the set of all sets that are not elements of themselves, i.e.,

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \notin S$, a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that $S \in S$, also a contradiction.

Hence, neither $S \in S$ nor $S \notin S$. This is *Russell's paradox*.

Why does this paradox occur?

Example. (The Barber Puzzle) In a certain town there is a barber who shaves all those men, and only those, who do not shave themselves. Does the barber shave himself?

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

Russell's paradox: Neither $S \in S$ nor $S \notin S$.

Why does this paradox occur?

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

Russell's paradox: Neither $S \in S$ nor $S \notin S$.

Why does this paradox occur?

ullet Solution: let U be some known set and define S by

$$S = \{A \mid A \in U \text{ and } A \notin A\}.$$

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

Russell's paradox: Neither $S \in S$ nor $S \notin S$.

Why does this paradox occur?

ullet Solution: let U be some known set and define S by

$$S = \{A \mid A \in U \text{ and } A \notin A\}.$$

(i) If $S \in S$, then the definition of S implies that $S \in U$ and $S \notin S$, which is a contradiction.

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

Russell's paradox: Neither $S \in S$ nor $S \notin S$.

Why does this paradox occur?

ullet Solution: let U be some known set and define S by

$$S = \{A \mid A \in U \text{ and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \in U$ and $S \notin S$, which is a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that either $S \notin U$ or $S \in S$. To avoid a contradiction with $S \notin S$, we must have $S \notin U$.

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

Russell's paradox: Neither $S \in S$ nor $S \notin S$.

Why does this paradox occur?

ullet Solution: let U be some known set and define S by

$$S = \{A \mid A \in U \text{ and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \in U$ and $S \notin S$, which is a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that either $S \not\in U$ or $S \in S$. To avoid a contradiction with $S \notin S$, we must have $S \not\in U$.

Hence, we conclude that $S \notin S$ and $S \notin U$.

Thus, the paradox does not occur as long as we have $S \notin U$.

$$S = \{A \mid A \text{ is a set and } A \notin A\}.$$

Russell's paradox: Neither $S \in S$ nor $S \notin S$.

Why does this paradox occur?

ullet Solution: let U be some known set and define S by

$$S = \{A \mid A \in U \text{ and } A \notin A\}.$$

- (i) If $S \in S$, then the definition of S implies that $S \in U$ and $S \notin S$, which is a contradiction.
- (ii) If $S \notin S$, then the definition of S implies that either $S \notin U$ or $S \in S$. To avoid a contradiction with $S \notin S$, we must have $S \notin U$.

Hence, we conclude that $S \notin S$ and $S \notin U$.

Thus, the paradox does not occur as long as we have $S \notin U$.

The paradox occurs because our first definition of S refers to itself.

Example. (The Barber Puzzle) In a certain town there is a barber who shaves all those men, and only those, who do not shave themselves. Does the barber shave himself?

Example. (The Barber Puzzle) In a certain town there is a barber who shaves all those men, and only those, who do not shave themselves. Does the barber shave himself?

Example. (The Barber Puzzle continued)

Define

$$U = \{\text{all men in town except the barber}\}\$$

 $S = \{A \subseteq U \mid A \text{ does not shave himself}\}\$
 $= \{A \subseteq U \mid A \text{ is shaved by the barber}\}\$

Then there is no more contradiction.