

Real-Time Inference of Defects and Impedance Using Deep Operator Networks

Dibakar Roy Sarkar and Somdatta Goswami Civil and Systems Engineering Johns Hopkins University

Outline

- Motivation
- Forward wave scattering
- Numerical implementation
- Neural Operators
- Results
- Future work

Motivation

Source: South Florida Surgical Oncology. (n.d.). Liver Tumor Ablation. Retrieved from https://southfloridasurgicaloncology.com/liver-tumor-ablation/

Liver tumor radiofrequency ablation:

 The tumor boundary changes during treatment as tissue is destroyed.

Source: Malekimoghadam, R., Krause, S., & Czichon, S. (2020). A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades. (pp. 409-438).

Wind Turbine Blade Monitoring:

 Dynamic shape changes in turbine blades under operational loads can indicate potential failures.

Wave scattering

Wave scattering is a physical phenomenon that occurs when waves encounter an obstacle or a medium with different properties, causing the waves to change direction, amplitude, or phase.

Source: https://arturgower.github.io/publication/effectivewaves-3d/

Forward scattering problem

Find the total field $u = u^i + u^s$ such that:

$$\Delta u + k^2 u = 0$$
 in $\mathbb{R}^2 \setminus \overline{D}$ (Helmholtz equation)

$$\frac{\partial u}{\partial \nu} + ik\lambda u = 0$$
 on ∂D (Impedance boundary condition)

$$\lim_{r \to \infty} \sqrt{r} \left(\frac{\partial u^s}{\partial r} - iku^s \right) = 0 \quad \text{(Sommerfeld radiation condition)}$$

The incident field u^i is typically a plane wave:

$$u^i(x) = e^{ikx \cdot d}$$

 u^i : Incident wave

u^s: Scattered wave

u: Total field

 ∂D : Obstacle boundary

λ: Impedance

k: Wave number

ν: Normal vector

r: Radius

d: direction unit vector

 u_{∞} : Far field solution

Boundary Integral Equation approach (Nyström Method)

General solution: Green's function, $\Phi(x,y) = \frac{i}{4}H_0^{(1)}(k|x-y|)$

 $H_0^{(1)}$: Hankel function of the first kind of order zero

Single-Layer Potential Representation, $u^s(x)=\int_{\partial D}\Phi(x,y)\phi(y)\,ds(y),\quad x\in\mathbb{R}^2\setminus\overline{D}$

Apply boundary condition:

$$\phi(x) - (K'\phi)(x) - ik\lambda(x)(S\phi)(x) = 2\frac{\partial u^i}{\partial \nu}(x) + 2ik\lambda(x)u^i(x), \quad x \in \partial D$$

where,

$$(S\phi)(x) = 2 \int_{\partial D} \Phi(x, y) \phi(y) \, ds(y), \quad x \in \partial D$$
$$(K'\phi)(x) = 2 \int_{\partial D} \frac{\partial \Phi(x, y)}{\partial \nu(x)} \phi(y) \, ds(y), \quad x \in \partial D$$

$$u_{\infty}(\hat{x}) = \frac{e^{i\pi/4}}{\sqrt{8\pi k}} \int_{\partial D} e^{-ik\hat{x}\cdot y} \phi(y) \, ds(y)$$

$$u^{s}(x) = \frac{e^{ik|x|}}{\sqrt{|x|}} \left\{ u_{\infty}(\hat{x}) + O\left(\frac{1}{|x|}\right) \right\},$$

Numerical example

k = 5 (wave number)

 $\lambda = 5$ (impedance)

n = 64 (quadrature points)

d = [1, 0] (direction normal vector)

Kress, Rainer, and William Rundell. "Inverse scattering for shape and impedance revisited." *The Journal of Integral Equations and Applications* 30.2 (2018): 293-311.

Boundary integral equations for BVPs, and their high-order Nystr¨om quadratures: a tutorial Alex Barnett

Data generation

$$r(\theta) = r_base * (1 + shape_param * (0.2 * cos (2 * \theta) + 0.15 * sin (3 * \theta) + 0.1 * cos (5 * \theta))))$$

 $r_base \sim N(1, 0.2)$

 $shape_param \sim N(0,1)$

 $\lambda \sim N(5, 1.5)$

of Samples: 2000

Operator learning framework

Deep Operator Networks (DeepONet)

- Generalized Universal Approximation Theorem for Operator [Chen '95, Lu et al. '19]
- Branch net: Input $\{u(x_i)\}_{i=1}^m$, output: $[b_1, b_2, \dots, b_p]^T \in \mathbb{R}^p$
- **Trunk net**: Input y, output: $[t_1, t_2, ..., t_p]^T \in \mathbb{R}^p$
- Input u is evaluated at the fixed locations $\{y_i\}_{i=1}^m$

Our framework

Loss: Mean Square Error (predicted field, Data)

Prediction:

if value < 0.5 value = 0 if value > 0.5 value = 1

Impedance (λ) prediction

Best prediction λ

True value: 4.407370

Predicted value: 4.408105 Absolute error: 0.000735

Worst prediction λ

True value: 5.626672

Predicted value: 4.350400

Absolute error: 1.276272

Phase density prediction

Phase density prediction

MSE across 200 test samples = $4.04 \times 10^{(-3)}$

Phase density prediction (with noisy data)

Summary

- We generated data by solving wave scattering problem.
- Utilized DeepONet to learn the inverse mapping between the far field pattern to the obstacle boundary and impedance.
- The framework is robust against 20% Gaussian noise.

Future work

- Mapping of partial far field pattern measurement to the phase density?
- Solve the problem in 3D. (3D reconstruction)

