Authors:

Erick Rosete Beas — er165@uni-freiburg.de Jessica Lizeth Borja Diaz — jb986@uni-freiburg.de

Principles of AI Planning

Exercise Sheet 7

13.12.2019

Exercise 7.1 - Innacuracy of h_{max}

Prove that the heuristic h_{max} is arbitrarily innacurate.

We need to prove that $c \cdot h_{max}(I) < h^+(I) \quad \forall c \in \mathbb{R}^+$

Select an arbitrary c then we will construct a relaxed planning task Π where the previous equation holds.

The planning task is constructed as follows:

Given a constant c, we select an n such that $n \geq c$ where n is a natural number.

$$\Pi = \langle A, I, O^+, \gamma \rangle$$

$$A = \{a_i \mid 1 \le i \le n\} \cup \{b_i \mid 1 \le i \le n\}$$

$$I = \{a_i \mapsto 1 \mid 1 \le i \le n\} \cup \{b_i \mapsto 0 \mid 1 \le i \le n\}$$

$$O^+ = \{\langle a_i, b_i \rangle \mid 1 \le i \le n\}$$

$$\gamma = \bigwedge_{i=1}^n b_i$$

By solving this relaxed planning task we can see that

$$h_{max}(I) = 1$$

Because when we apply the parallel operators we can reach the goal state in one step as all b_i are turned true at the same time.

Whereas the minimal amount of sequential operators to be applied $h^+(I)$ will be equal to the amount of operators:

$$h^+(I) = n$$

Then:

$$c \cdot h_{max}(I) \le h^{+}(I)$$

$$\iff c \cdot 1 \le n$$

$$\iff n > c$$

Exercise 7.2 - Stability of h_{add}

Show that it is important to test for stability when computing h_{add} by giving an example where you get an unnecessairly high overestimation when not performing this test.

Exercise 7.3 - Relaxed planning graph and heuristics

Consider the relaxed planning task Π^+ with variables $A = \{a, b, c, d, e\}$, operators $O = \{o_1, o_2, o_3\}$, $o_1 = \langle d, c \wedge (c \triangleright e) \rangle$, $o_2 = \langle c, a \rangle$, $o_3 = \langle a, b \rangle$, goal $\gamma = b \wedge e$ and initial states $s = \{a \mapsto 0, b \mapsto 0, c \mapsto 0, d \mapsto 1, e \mapsto 0\}$. Solve the following by drawing the relaxed planning graph for the lowest depth k that is necessary to extract a solution

(a) Calculate $h_{max}(s)$ for Π^+

h_{max}

(b) Calculate $h_{add}(s)$ for Π^+

h_{add}

