

Bearospace at UCLA (LoL) Leveling on Land 2020-2021 USLI CDR

Vehicle Overview

<u>Vehicle</u>

Length: 68 in Diameter: 6 in Weight: 19.5 lb

Payload

Height: 6.1 in Diameter: 4.4 in Weight: 0.905 lb

Launch Vehicle

Key Design Features

Nosecone

Material: ABS Plastic

Length: 7 in

Thickness: 0.07 in

Total Weight: 2 lb

Nosecone Shoulder

Length: 3 in

Thickness: 0.07 in

Key components: Bulkhead,

eyebolt, quicklink

Key Design Features Pt. 2

Upper Body Tube

Material: Carbon Fiber

Length: 35 in

Thickness: 0.07 in

Total Weight: 9.53 lb

Key components: locking mechanism, avionics bay, payload and retention assembly, eyebolts, quicklinks

Key Design Features Pt. 3

Lower Body Tube

Material: Carbon Fiber

Length: 25 in

Thickness: 0.07 in

Total weight: 4.76 lb

Key components: centering rings, eyebolts, quicklinks, phenolic tube, trapezoidal fins, FSM, aluminum rings

Points of Separation and Energetic Materials

Interfaces

Final Motor Selection: AeroTech K1103X-14

Motor Diameter	2.13in	Motor Length	15.8in
Average Thrust	1099 N	Max Thrust	1620 N
Burn Time	1.65s	Total Motor Mass	3.2 lbs.
Total Impulse	1810Ns	Propellant Mass	1.8 lbs.
Thrust to Weight	13.17	Post-burn Mass	1.4 lbs.

Electronics

Altimeters

- Stratologger SL100 Altimeter
- RRC3 Sports
 Altimeter

Power

2X 9V Battery

Flight Predictions

Rocket Flight Stability

CG: 37.08 in. from the tip of the nose cone

CP: 50.82 in. from the tip of the nose cone.

Together, with a 6 in. diameter body tube, the resulting static stability is anticipated to be 2.29.

Liftoff Figures

Thrust to Weight Ratio: 12.7

Rail Exit Velocity: 89.7 ft/s

Rail Size: 8 ft

Flight Profile, 10mph, 8ft

Parachutes

Drogue Chute Size: 2 ft diameter

Drogue Deployment Time: Apogee

Main Chute Size: 7 ft diameter

Main Deployment Time: 700 ft

Recovery Hardware

Drogue Chute

Recovery Harness: Kevlar

Size: 1/2"

Length: 23 ft

Main Chute

Recovery Harness: Kevlar

Size: 1/2"

Length: 20 ft

Descent

Descent Rate with Drogue Chute: 82 ft/s

Descent Rate with Main Chute: 19.4 ft/s

Kinetic Energy at Landing for Nosecone: 11.69 ft-lbf

Kinetic Energy at Landing for Upper Body Tube: 55.69 ft-lbf

Kinetic Energy at Landing for Lower Body Tube: 27.8 ft-lbf

Predicted Drift

5 mph winds: 520.6 ft

10 mph winds: 1041.3 ft

15 mph winds: 1561.9 ft

20 mph winds: 2032.8 ft

Vehicle Testing

Fin Flutter

Step-by-Step Execution:

- Using equation found on apogee rockets, calculate the maximum fin flutter velocity
- Using OpenRocket, find altitude and value of greatest velocity of rocket
- Computer fin flutter velocity at given altitude and compare to max rocket velocity
- If fin flutter is greater, fin design will not fail

$$V_f = 1.223 C_{s0} \exp \left(0.4 \frac{h}{H}\right) \sqrt{\frac{G}{P_0}} \sqrt{\frac{(2+B)}{(1+\lambda)}} \left(\frac{T}{B}\right)^{3/2}$$

symbol	SI	imperial	other
H	8077 m	26500 ft	_
P_0	101352 Pa	14.7 psi	_
C_{s0}	335 m/s	1100 ft/s	750 mph

fin parameters

r = root chord, L

 $c_t = \text{tip chord}, L$

= fin height, L

t = fin thickness, L

G = fin material shear modulus, R

atmospheric parameters

P(h) = pressure (function of altitude), R

 $C_s(h)$ = sound speed (function of altitude), V

derived parameters

$$S = \frac{h}{2}(c_r + c_t)$$
 fin area, L^2

$$\lambda = \frac{c_t}{c_r}$$
 fin taper ratio

$$B = \frac{b^2}{S} \text{ aspect ratio}$$

$$T = \frac{t}{c}$$
 normalized thickness

Airframe Bending

Objective:

Determine if the body tube may be subject to buckling under peak loading of the motor.

Step-by-Step Execution:

- 1. Fix upper face of upper body tube facing the nose cone
- Place total force over the bottom face of the lower body tube
- 3. Mesh components
- Examine results

Justification:

Since selected motor has a very high initial force, the body tube may be subject to buckling which can highly jeopardize the structure of the vehicle. By examining behavior we can make necessary changes to vehicle design as necessary.

Payload

Design Overview

Simple 3-legged lander

4.4" diam x 6.1" tall

14.48 oz

Camera mounted on continuous servo motor for 360° view of landing site

Exploded View of Payload

Epoxy is used to attach top cap and main cover with acrylic sheets

Legs are attached to servo motors using screw

M2.5 threaded heat set inserts and M2.5 screws are used to fasten electronics and the main cover

Payload Parachute Selection & Analysis

Apogee Components 18" nylon parachute with a hexagonal parachute shape

For 20 MPH Wind Speeds

-Drift of rocket at 700 ft AGL = 704 ft

-Descent rate = 23.95 ft/s

-Payload KE = 9.22 ft-lbf

-Descent time = 29.23 s

-Payload Drift = 857 ft

-Total Drift = 1561 ft

Payload Electronics

Device	Current Draw (Max)	Voltage	Power
*Powered by GPIO on PI ZERO			
Raspberry Pi Zero WH	1.2 A	5 V	6 W
MPU 6050 (Gyroscope + Accelerometer) *	100 mA	3.3 V	330 mW
Furious FPV Transmitter 2.4 GHz	20 mA	11.1V	200 mW
FEETECH Micro Servo Motor w/ Position	500 mA	5 V	2.5 W
Feedback			
FS90n Continuous Rotation Micro Servo	500 mA	5 V	2.5 W
ArduCAM for Raspberry PI *	250 mA	5 V	1.25 W
Standby Time: 4 hrs			

Payload Retention System

Composed of pine bulkhead blocks and aluminum reinforcement, 3/8" threaded rods, locknuts, and eyebolts.

Bottom & top grey components provide a flat surface for the payload

Green cover limits payload motion in one direction

Payload Integration Plans

Payload Testing

Retention System Bulkhead Virtual Testing

Force: 81.20 lbf total of axial force; 40.6 lbf on each of the two rods (safety factor of 4)

Max Stress: 967 psi

Yield Strength (Pine) (shear):

899 psi

Retention System Threaded Rod Virtual Testing

Approximation of a %" steel threaded rod

Force: 81.20 lbf total of axial force; 40.6 lbf on each of the two rods (safety factor of 4)

Max Stress: 193 psi

Yield Strength (Steel): 9000 psi

Payload Top Virtual Testing

Force: 3.62 lbf of axial force (safety factor of 4)

Max Stress: 6.879 psi

Yield Strength (ABS): 7000 psi

Questions?

