Contrôle garanti par réseaux de neurones pour des robots mobiles

Pôle Systèmes Cyber-Physiques

Tarek OMRAN Ali RAMLAOUI 1er juin 2022

Encadré par Adnane SAOUD

Mise en contexte

Système dynamique

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
$$(x(k), u(k)) \mapsto F(x(k), u(k)) = x(k+1)$$

muni d'un contrôleur prenant des décisions sur l'entrée en fonction de l'état x(k)

Mise en contexte

Système dynamique

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
$$(x(k), u(k)) \mapsto F(x(k), u(k)) = x(k+1)$$

muni d'un contrôleur prenant des décisions sur l'entrée en fonction de l'état x(k)

Schéma bloc du système

Mise en contexte

Système dynamique

$$F: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$$
$$(x(k), u(k)) \mapsto F(x(k), u(k)) = x(k+1)$$

muni d'un contrôleur prenant des décisions sur l'entrée en fonction de l'état x(k)

Schéma bloc du système

- Contrôleur : réseau de neurones
- Analyse d'atteignabilité par intervalles
- Images d'intervalles par la fonction F

Notion d'intervalle

Définition (Intervalle de dimension n)

Considérons l'espace \mathbb{R}^n , avec $n \in \mathbb{N}^*$. Alors un intervalle de dimension n est un ensemble pouvant s'écrire $\left[\underline{a_1}, \overline{a_1}\right] \times \ldots \times \left[\underline{a_n}, \overline{a_n}\right]$, où $\left(\underline{a_i} \leq \overline{a_i}\right) \in \mathbb{R}^2$, $\forall i \in \llbracket 1, n \rrbracket$. On notera l'intervalle [a].

Notion d'intervalle

Définition (Intervalle de dimension n)

Considérons l'espace \mathbb{R}^n , avec $n \in \mathbb{N}^*$. Alors un intervalle de dimension n est un ensemble pouvant s'écrire $\left[\underline{a_1}, \overline{a_1}\right] \times \ldots \times \left[\underline{a_n}, \overline{a_n}\right]$, où $\left(\underline{a_i} \leq \overline{a_i}\right) \in \mathbb{R}^2$, $\forall i \in \llbracket 1, n \rrbracket$. On notera l'intervalle [a].

Definition (Sur-approximation par un intervalle)

Pour tout ensemble $\mathcal{H} \subset \mathbb{R}^n$, on appelle $\mathcal{I}_{\mathcal{H}}$, le plus petit intervalle de \mathbb{R}^n tel que $\mathcal{H} \subset \mathcal{I}_{\mathcal{H}}$.

Notion d'intervalle

Définition (Intervalle de dimension n)

Considérons l'espace \mathbb{R}^n , avec $n \in \mathbb{N}^*$. Alors un intervalle de dimension n est un ensemble pouvant s'écrire $\left[\underline{a_1}, \overline{a_1}\right] \times \ldots \times \left[\underline{a_n}, \overline{a_n}\right]$, où $\left(\underline{a_i} \leq \overline{a_i}\right) \in \mathbb{R}^2$, $\forall i \in \llbracket 1, n \rrbracket$. On notera l'intervalle [a].

Definition (Sur-approximation par un intervalle)

Pour tout ensemble $\mathcal{H} \subset \mathbb{R}^n$, on appelle $\mathcal{I}_{\mathcal{H}}$, le plus petit intervalle de \mathbb{R}^n tel que $\mathcal{H} \subset \mathcal{I}_{\mathcal{H}}$.

Definition (Longueur d'un intervalle)

$$\rho(\mathcal{I}) = \max_{i \in [\![1,n]\!]} (\underline{a_i} - \overline{a_i})$$

Atteignabilité

Atteignabilité Système

Atteignabilité

Atteignabilité

Atteignabilité boucle fermée

Contrôle par Reinforcement Learning

Systèmes considérés - Mountain car

$$F: \begin{cases} x(k+1) &= x(k) + v(k+1) \\ v(k+1) &= u(k)P - 0.0025\cos(3x(k)) \end{cases}$$

où P, constante, $u \in [-1,1]$, $x \in [-1.2,0.6]$, position horizontale, et vitesse, $v \in [-0.07,0.07]$

Systèmes considérés - Mountain car

$$F: \begin{cases} x(k+1) &= x(k) + v(k+1) \\ v(k+1) &= u(k)P - 0.0025\cos(3x(k)) \end{cases}$$

où P, constante, $u \in [-1,1]$, $x \in [-1.2,0.6]$, position horizontale, et vitesse, $v \in [-0.07,0.07]$

Reward function : Critiquer l'action du contrôleur

$$q(k) = \begin{cases} 100 & \text{si } x(k) \ge 0.6 \\ q(k-1) - 0.1u(k)^2 & \text{sinon} \end{cases}$$

Objectif d'atteignabilité

Exemple classique en Reinforcement Learning

Systèmes considérés - Pendule

Pendule

$$F: \begin{cases} \theta(k+1) &= \theta(k) + \delta_t \dot{\theta}(k) \\ \dot{\theta}(k+1) &= \dot{\theta}(k) + \frac{3g\delta_t}{2I} \sin(\theta(k)) + \frac{3}{ml^2} u(k) \delta_t \end{cases}$$
 où δ_t, g, I, m , constantes, $u(k) \in [-2, 2]$ et
$$X(k) = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}, X(k) \in [0, 2\pi] \times [-8, 8]$$

Systèmes considérés - Pendule

Pendule

$$F: \begin{cases} \theta(k+1) &= \theta(k) + \delta_t \dot{\theta}(k) \\ \dot{\theta}(k+1) &= \dot{\theta}(k) + \frac{3g\delta_t}{2l} \sin(\theta(k)) + \frac{3}{ml^2} u(k) \delta_t \end{cases}$$
 où δ_t, g, l, m , constantes, $u(k) \in [-2, 2]$ et
$$X(k) = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}, X(k) \in [0, 2\pi] \times [-8, 8]$$

Reward function : Critiquer l'action du contrôleur

$$q(k+1) = m(\theta(k))^2 + 0.01\dot{\theta}(k)^2 + 0.001(u(k))^2$$
, où $\theta(k) \in [-\pi, \pi]$

où m est la mesure principale de l'angle

Objectif de stabilité

Systèmes considérés - Dubins car

Dubins car

$$F: \begin{cases} x(k+1) &= x(k) + u_1(k)\cos(\theta(k)) \\ y(k+1) &= y(k) + u_1(k)\sin(\theta(k)) \\ \theta(k+1) &= \theta(k) + u_2(k) \end{cases}$$
 où $u_1 \in [-0.05, 0.05], \ u_2 \in [-0.2, 0.2], \ x, y \in [-2, 2],$ $\theta \in [-\pi, \pi]$

Systèmes considérés - Dubins car

Dubins car

$$F: \begin{cases} x(k+1) &= x(k) + u_1(k)\cos(\theta(k)) \\ y(k+1) &= y(k) + u_1(k)\sin(\theta(k)) \\ \theta(k+1) &= \theta(k) + u_2(k) \end{cases}$$
 où $u_1 \in [-0.05, 0.05], \ u_2 \in [-0.2, 0.2], \ x, y \in [-2, 2],$ $\theta \in [-\pi, \pi]$

Cost function

$$C(k) = d_{goal} + a\Delta\theta + b||u(k)||^2$$

Objectif de stabilité

Principe du Deep Reinforcement Learning

- Objectif : maximiser la fonction récompense sur l'ensemble des décisions prises
- Toute itération est représentée par un état s_t, une action a_t, une récompense r_t et un nouvel état s_{t+1}
- Critique d'une action : Récompense à l'instant t+ "récompense potentiel" à partir du nouvel état (valeur Q) $q_t = r_t + \gamma q_{t+1}, 0 < \gamma < 1$

Principe du Deep Reinforcement Learning

- Objectif : maximiser la fonction récompense sur l'ensemble des décisions prises
- Toute itération est représentée par un état s_t, une action a_t, une récompense r_t et un nouvel état s_{t+1}
- Critique d'une action : Récompense à l'instant t+ "récompense potentiel" à partir du nouvel état (valeur Q) $q_t = r_t + \gamma q_{t+1}, 0 < \gamma < 1$

Il faut introduire un décalage entre le réseau qui renvoie q_t et q_{t+1} pour maintenir la stabilité numérique.

- Introduire des réseaux "target" qui marquent ce décalage (copie décalée des réseaux principaux)
- Implémentation sur TensorFlow et Gym (OpenAI) + parallélisation de la boucle d'entraînement

Deep Deterministic Policy Gradient (DDPG)

Réseau acteur

- C'est le contrôleur
- Couches 1 et 2 : 16 neurones, ReLU
- Couche 3: 1 neurone, tanh
- Sortie ramenée à l'échelle des actions

Deep Deterministic Policy Gradient (DDPG)

Réseau acteur

Réseau critique

- C'est le contrôleur
- Couches 1 et 2 : 16 neurones, ReLU
- Couche 3 : 1 neurone, tanh
- Sortie ramenée à l'échelle des actions

- Concaténation des états et des actions
- Couches 1 et 2 : 16 neurones, ReLU
- Couche 3 : 1 neurone

Mountain Car - Contrôleur DDPG

Mountain car

Position de la voiture

Reward sur 200 épisodes

Actions du contrôleur

Dubins Car - Contrôleur DDPG

Dubins Car

GridSearch:

- 200 expériences à 40 itérations
- Paramètres aléatoires
- Choix des plus prometteurs

Paramètres à calibrer :

- Learning rates (actor et critic)
- Bruit d'exploration
- Fonction reward (paramètres a et b) (Difficile)

Etats sur un épisode

Pendule - Contrôleur DDPG

Pendule

Position du pendule

Reward sur 200 épisodes

Actions du contrôleur

Contrôleur DDPG - Régularisation continue

- Problème : Les actions du contrôleur présentent des discontinuités en fonction des états
- Analyse d'atteignabilité par intervalles : Pour éviter une propagation des incertitudes

Terme de régularisation rajouté à la fonction de coût de l'acteur

$$\mathcal{R}_{s} = \lambda_{s} \underset{s \in \mathcal{B}}{\mathbb{E}} \max_{s' \in \mathbb{B}(s,\epsilon)} ||\mu(s) - \mu(s')||_{2}^{2}$$

 λ_s , intensité de la pénalisation

- ϵ , taille de l'espace d'application de la régularisation
 - Calcul du gradient : D_s points aléatoires situés autour de s pendant l'entraînement pour simuler la boule

Contrôleur DDPG - Régularisation continue

Pendule - Sans régularisation

Pendule - Avec régularisation

Contrôleur DDPG - Régularisation continue

Épisodes joués - Sans régularisation

Épisodes joués - Avec régularisation

Contrôle MPC

Systèmes considérés - double intégrateur

$$F: \begin{cases} x(k+1) &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ y(k) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) \end{cases}$$
où $u(k) \in [-1, 1]$ et
$$X(k) = \begin{bmatrix} x1 \\ x2 \end{bmatrix}, X(k) \in [-\infty, +\infty] \times [-\infty, +\infty]$$

Double intégrateur

Systèmes considérés - double intégrateur

$$F: \begin{cases} x(k+1) &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \\ y(k) &= \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) \end{cases}$$
où $u(k) \in [-1, 1]$ et
$$X(k) = \begin{bmatrix} x1 \\ x2 \end{bmatrix}, X(k) \in [-\infty, +\infty] \times [-\infty, +\infty]$$

Double intégrateur

Cost function (à minimiser)

$$\sum_{t=0}^{\infty} x^{'}(t) Q x(t) + Ru^{2}(t)$$

Objectif de stabilité

Contrôleur MPC (explicit)

- Problème : Stockage d'informations dans le cas où il y a plusieurs régions
- Solution : Représentation de ce MPC par des réseaux de neurones
- On utilise un simple modèle de réseaux de neurones composés de deux couches intermédiaires
- Chaque couche est composée de 16 neurones, avec des fonctions ReLU

Contrôleur MPC (explicit)

Partition polyédrique de l'espace d'état et trajectoires MPC en boucle fermée

Contrôleur MPC (explicit)

Actions du contrôleur

Actions du contrôleur

1ère composante de l'état X

2ème composante de l'état X

Atteignabilité du réseau de neurones

- Fonctions d'activation croissantes
- Réseau de neurone Φ à couches denses et L couches intermédiaires
- Paramètres $(n_0, n_1, \dots, n_L) \in \mathbb{N}^{L+1}$, $W^l \in \mathbb{R}^{n_l \times n_{l-1}}$, $b^l \in \mathbb{R}^{n_l}$, $\sigma_l : \mathbb{R}^{n_l} \to \mathbb{R}^{n_l}$
- Objectif : Image d'un intervalle [x] par le réseau de neurones ?

16/26

Atteignabilité du réseau de neurones

- Fonctions d'activation croissantes
- Réseau de neurone Φ à couches denses et L couches intermédiaires
- Paramètres $(n_0, n_1, \dots, n_L) \in \mathbb{N}^{L+1}$, $W^l \in \mathbb{R}^{n_l \times n_{l-1}}$, $b^l \in \mathbb{R}^{n_l}$, $\sigma_l : \mathbb{R}^{n_l} \to \mathbb{R}^{n_l}$
- Objectif : Image d'un intervalle [x] par le réseau de neurones ?

$$\underline{x}^{l} = \sigma_{l}(\sum_{j=1}^{n_{l-1}} \underline{p}_{i,j} + b_{i}^{l}) \qquad \qquad \underline{p}_{i,j} = \begin{cases} & w_{i,j}^{l} \underline{x}_{j} \text{ si } w_{i,j}^{l} \geq 0 \\ & w_{i,j}^{l} \overline{x}_{j} \text{ si } w_{i,j}^{l} < 0 \end{cases}$$

$$\overline{x}^{l} = \sigma_{l}(\sum_{j=1}^{n_{l-1}} \overline{p}_{i,j} + b_{i}^{l}) \qquad \qquad \overline{p}_{i,j} = \begin{cases} & w_{i,j}^{l} \overline{x}_{j} \text{ si } w_{i,j}^{l} \geq 0 \\ & w_{i,j}^{l} \underline{x}_{j} \text{ si } w_{i,j}^{l} < 0 \end{cases}$$

Principe de l'algorithme d'atteignabilité

- Sur-approximation de l'image réelle en utilisant les formules
- L'erreur de sur-approximation diminue avec la taille des intervalles considérés
- Idée : Partitionner l'intervalle de départ en sous-intervalles permettant de garantir une erreur inférieure à δ fixé

Principe de l'algorithme d'atteignabilité

- Sur-approximation de l'image réelle en utilisant les formules
- L'erreur de sur-approximation diminue avec la taille des intervalles considérés
- Idée : Partitionner l'intervalle de départ en sous-intervalles permettant de garantir une erreur inférieure à δ fixé

Intervalle de départ avec $\epsilon = 0.0001$

Principe de l'algorithme d'atteignabilité

- Sur-approximation de l'image réelle en utilisant les formules
- L'erreur de sur-approximation diminue avec la taille des intervalles considérés
- Idée : Partitionner l'intervalle de départ en sous-intervalles permettant de garantir une erreur inférieure à δ fixé

Intervalle de départ avec $\epsilon = 0.0001$

Contrôle du découpage

Mountain car - Intervalle large

Mountain car - Petit Intervalle

Mountain car - $\epsilon = 0.001$

Mountain car - $\epsilon = 0.0001$

Atteignabilité du contrôleur du pendule

Atteignabilité du système dynamique

- Faire de l'arithmétique d'intervalles
- Remplacer les opérations de la dynamique F par des opérations sur des intervalles

Atteignabilité du système dynamique

- Faire de l'arithmétique d'intervalles
- Remplacer les opérations de la dynamique F par des opérations sur des intervalles

Exemples

$$[\underline{x}, \overline{x}]^{-1} = \begin{cases} [-\infty, \infty] & \text{ si } \underline{x} < 0 \text{ et } \overline{x} > 0 \\ \left[-\infty, \frac{1}{\underline{x}}\right] & \text{ si } \overline{x} = 0 \\ \left[\frac{1}{\overline{x}}, \infty\right] & \text{ si } \underline{x} = 0 \\ \left[\frac{1}{\overline{x}}, \frac{1}{\underline{x}}\right] & \text{ si } \underline{x} \overline{x} > 0 \\ \emptyset & \text{ si } \underline{x} = \overline{x} = 0 \end{cases}$$

Atteignabilité du système dynamique

- Faire de l'arithmétique d'intervalles
- Remplacer les opérations de la dynamique F par des opérations sur des intervalles

Exemples

$$[\underline{x}, \overline{x}]^{-1} = \begin{cases} [-\infty, \infty] & \text{si } \underline{x} < 0 \text{ et } \overline{x} > 0 \\ [-\infty, \frac{1}{\underline{x}}] & \text{si } \overline{x} = 0 \end{cases}$$

$$[\underline{x}, \overline{x}]^{-1} = \begin{cases} [-\infty, \infty] & \text{si } \underline{x} < 0 \text{ et } \overline{x} > 0 \\ [\frac{1}{\overline{x}}, \infty] & \text{si } \underline{x} = 0 \end{cases}$$

$$[\frac{1}{\overline{x}}, \frac{1}{\underline{x}}] & \text{si } \underline{x} \overline{x} > 0 \\ \emptyset & \text{si } \underline{x} = \overline{x} = 0 \end{cases}$$

$$\cos([\underline{x}, \overline{x}]) = [\underline{a}, \overline{a}], \text{ où } \underline{a} = \begin{cases} -1 & \text{si } \exists k \in \mathbb{Z} | (2k\pi + \pi) \in [\underline{x}, \overline{x}] \\ \min(\cos(\underline{a}), \cos(\overline{a})) & \text{sinon} \end{cases}$$

$$\overline{a} = \begin{cases} 1 & \text{si } \exists k \in \mathbb{Z} | (2k\pi) \in [\underline{x}, \overline{x}] \\ \max(\cos(\underline{a}), \cos(\overline{a})) & \text{sinon} \end{cases}$$

$$19/26$$

Mountain car sur une itération

Pendule sur une itération

Contrôle garanti

- ullet Objectif : Montrer que le système vérifie une spécification S
- Itérer les algorithmes précédents pour estimer les ensembles atteignables au bout de k itérations et simuler le système en boucle fermée

Contrôle garanti

Mountain Car

$$x(0) \in [-0.48, -0.4795], \dot{x}(0) \in [0.01, 0.0101]$$

$$x(0) \in [-0.48, -0.475], \dot{x}(0) \in [0.01, 0.0101]$$

Contrôle garanti

Pendule

Intervalle très petit

Principe de l'algorithme précis

Considérons le système
$$x(k+1) = x(k) + u(k)$$

- ullet Motivation : $x(k) \in [-1,0]
 ightarrow u(k) = +1$ et $x(k) \in]0,1]
 ightarrow u(k) = -1$
- Algorithme naïf d'atteignabilité : x(k+1)[-2,2], or on sait que x(k+1)[-1,1]
- Idée : Séparer les intervalles en fonction des actions qui sont renvoyées par l'atteignabilité du réseau de neurones

 ϵ : tolérance sur les actions et dépendant du problème

Pour
$$x(k) \in [\underline{x}, \overline{x}] = [x]$$
, si $\rho([\Phi]([x])) > \epsilon$, alors on divise $[x] \to \{[x_1], [x_2]\}$

Critère IoU (Jaccard Index)

- Problème : Explosion du nombre de divisions
- Régularisation continue : permet de réduire les divisions
- Recoller des intervalles : IoU (Intersection over Union) et threshold

Avec d'appliquer le critère

Critère loU (threshold = 0.15)

Approche inspirée des méthodes Computer Vision en dimension n

Stabilité du pendule

Itérations 1 à 80 - $\theta(0) \in \left[\pi, \pi + 10^{-4}\right], \dot{\theta}(0) \in \left[1, 1 + 10^{-4}\right] \ (\epsilon = 0.2)$

Stabilité du pendule

Itérations 70 à 80 -
$$\theta(0)\in\left[\pi,\pi+10^{-4}\right],\dot{\theta}(0)\in\left[1,1+10^{-4}\right]$$
 $(\epsilon=0.2)$

Stabilité du double intégrateur

Itérations 1 à 30 - $x_1(0) \in [0.18, 0.19]$, $x_2(0) \in [-0.15, -0.14]$ ($\epsilon = 0.001$)

Stabilité du double intégrateur

Itérations 20 à 30 - $x_1(0) \in [0.18, 0.19]$, $x_2(0) \in [-0.15, -0.14]$ $(\epsilon = 0.001)$

Stabilité par analyse de Lyapunov

Système :
$$x(k+1) = Ax(k) + Bu(k) = Ax(k) + B\Phi(x(k))$$

Pour que le système soit stable (converge vers l'état nul lorsque $t \to \infty$), il suffit qu'il existe $P \in \mathbb{R}^{n \times n}$ telle que la fonction V définie par :

$$V: X \to \mathbb{R}$$
$$x \mapsto x^T P x$$

où X est l'ensemble des états atteignables est positif et décroissant.

Stabilité par analyse de Lyapunov

Système :
$$x(k+1) = Ax(k) + Bu(k) = Ax(k) + B\Phi(x(k))$$

Soit $[x] \subset X$, $[\gamma] = [\Phi]([x])$. Stabilité locale de la région [x]?

$$V(x(k+1)) - V(x(k)) = x^{T} (A^{T} P A - P) x + \Phi(x)^{T} B^{T} P A x$$
$$+ x^{T} A^{T} P B \Phi(x) + \Phi(x)^{T} B^{T} P B \Phi(x)$$

On peut majorer les termes $\Phi(x)$ par les bornes de $[\gamma]$ en prenant en compte le signe des termes des matrices ci-dessus

Stabilité par analyse de Lyapunov

Système :
$$x(k+1) = Ax(k) + Bu(k) = Ax(k) + B\Phi(x(k))$$

En posant $Y^T = \begin{bmatrix} x^T & 1 \end{bmatrix}$, la condition devient :

$$\forall x \in [x], Y \begin{bmatrix} A^T P A - P & A^T P B f(\xi, [\gamma]) \\ f(\xi, [\gamma])^T B^T P A & \sum_{i=1}^n \sum_{j=1}^n g(\mu_{i,j}, [\gamma]) \end{bmatrix} Y^T < 0$$

où ξ, μ sont respectivement les matrices x^TA^PB et B^TPB , et f, g sont des fonctions donnant les bornes appropriées de $[\gamma]$

Conclusion

- Entraînement de contrôleurs garantis sur divers problème :
 DDPG et MPC Explicit
- Régularisation continue pour améliorer l'entraînement
- Proposition d'un algorithme permettant d'analyser le système en boucle fermé
- Preuves de stabilité et d'atteignabilité des contrôleurs
- Toolbox de garantie de systèmes contrôlés par réseaux de neurones représentés sur TensorFlow (guaranteed-nn-control)

Références

Timothy P. Lillicrap and al.

Continuous control with deep reinforcement learning, 2015.

Weiming Xiang and al.

Reachable set estimation for neural network control systems: A simulation-guided approach, 2020.

P.J. Meyer, A. Devonport, and M. Arcak.

Interval Reachability Analysis : Bounding Trajectories of Uncertain Systems with Boxes for Control and Verification.

2021.

Greg Brockman and al.

Openai gym, 2016.

Thierry Lecomte, Thierry Servat, and Guilhem Pouzancre.

Formal methods in safety-critical railway systems. 08 2007.

Anthony Corso and Mykel J. Kochenderfer.

Interpretable safety validation for autonomous vehicles.

CoRR, abs/2004.06805, 2020.

Qianli Shen and al.

Deep reinforcement learning with smooth policy.

CoRR, abs/2003.09534, 2020.

Alberto Bemporad.

Hybrid toolbox for matlab - user's guide.

2003.

Adnane Saoud.

Stability analysis using lmis for systems with neural network controllers.