题号	_	=	三.1	三.2	三.3	三.4	总成绩
得分							

阅卷教师签字:

一、选择题(每题4分,共24分)

- 1. 设P(AB) = 0,则必有()。
- A. 事件A, B互不相容

- B. 事件A, B互为对立事件
- C. P(AB) = P(A)P(B)
- D. P(A B) = P(A)
- 2. 设F(x)是某随机变量的分布函数,则以下函数一定是分布函数的是()。

- A. F(-x) B. F(0.3x) C. $F(x^{-1})$ D. $F(x^2)$
- 3. 设随机变量X,Y不相关,则一定有()。
- A. X, Y的协方差等于0
- B. *X*, *Y*相互独立
- C. D(X Y) = D(X) D(Y) D. D(XY) = D(X)D(Y)
- 4. 设 X_1, \dots, X_n 是简单随机样本,来自总体 $X \sim N(\mu, \sigma^2)$, 其中 μ, σ 是未知参数,则 以下是统计量的是()。

A.
$$X_1 + X_2 + \dots + X_n - n^2 E(\overline{X})$$
 B. $X_1 + X_2 + \dots + X_n - n\mu$

B.
$$X_1 + X_2 + \dots + X_n - n\mu$$

C.
$$\frac{X_1 + X_2 + \dots + X_n}{n\sqrt{S^2}}$$

D.
$$\frac{X_1 + X_2 + \dots + X_n}{n\sigma}$$

- 5. 设总体X服从参数为 λ 的泊松分布,简单样本 X_1, X_2, \cdots, X_n 来自该总体, \overline{X}, S^2 分 别是样本均值和样本方差,则以下不能作为未知参数 λ 的矩估计量的是(
 - A. \overline{X}

B.
$$S^2$$

C. S

D.
$$\frac{-1 + \sqrt{1 + \frac{4}{n} \sum_{i=1}^{n} X_i^2}}{2}$$

മ 銰

紪

6. 设简单样本 X_1, \dots, X_n 来自标准正态分布, \overline{X}, S^2 分别是样本均值和样本方差, 则
以下选项正确的是()。
A. $\overline{X} \sim N(0,1)$ B. \overline{X}^2 服从卡方分布
C. S^2 服从卡方分布 D. $\frac{n\overline{X}^2}{S^2}$ 服从 F 分布
S
二、填空题(每题4分,共24分)
1. 若 X 服从区间[0, 5]上的均匀分布,则 $E(e^{-X}) =$ 。
2. 设 X,Y 相互独立, X 的分布律为 $P\{X=1\}=0.2,P\{X=2\}=0.8,Y\sim U(0,5),$ 则 $P\{X+Y\leqslant 3\}=$ 。
3. 若 $X \sim t(n)$, 且 $P\{X^2 > 4\} = 0.3$, 则 $P\{X > -2\} = $ 。
4. 若随机变量 X 服从参数为 3 的指数分布,即它具有概率密度函数 $f(x)=3e^{-3x}$ $(x\geqslant 0)$,定义 $P\{X>z_{\alpha}\}=\alpha$,求 $z_{0.5}=$ 。
5. 设 $(X,Y) \sim N(2,1,4,9,-0.5)$,则 X 与 Y 的协方差等于。
6. 设 $Y \sim B(n, 0.5)$,要使得 $P\{Y \le 40\} \le 0.98$,则 n 的最小值约为。 (标准正态分布表: $\Phi(2) = 0.98$, $\Phi(-2) = 0.02$)
三、计算题
1. $(13分)$ 设 (X,Y) 具有概率密度函数 $f(x,y) = \begin{cases} axy, & 0 < y \le x < 1; \\ 0, & 其中a是常 $
(0) — 其他. 数. (1) 求常数 a 的值; (2) 计算概率 $P\{Y > X^2\}$; (3) 当 $0 < y < 1$ 时,求条件概率密度函
数 $f_{X Y}(x y)$.

试卷共3页,本页为第2页

2. (12分) 设随机变量X,Y的分布律分别为

且 $P\{X \neq Y\} = 1$. (1) 求X, Y的联合分布律; (2) 协方差cov(X, XY)

- 3. (15分) 设总体X具有概率密度函数 $f(x;\alpha) = \begin{cases} \frac{\alpha}{1-\alpha} x^{\frac{\alpha}{1-\alpha}-1}, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$ 中 $0 < \alpha < 1$ 是未知参数, X_1, X_2, \cdots, X_n 是来自该总体的一个简单样本. (1) 求 α 的矩估计量 $\hat{\alpha}_1$; (2) 求 α 的最大似然估计量 $\hat{\alpha}_2$; (3) 令 $\hat{\alpha}_3 = \max\{X_1, X_2, \cdots, X_n\}$, 求 $E(\hat{\alpha}_3)$.
- 4. (12分) 在针织品漂白工艺过程中,需要考察温度对针织品断裂强度的影响。假设在80摄氏度时,针织品的断裂强度服从正态分布 $N(\mu,\sigma^2)$, 现获得来自该总体的一个简单样本 X_1,X_2,\cdots,X_n ,其样本值为: 1.3, 1.2, 1.5, 1.1
- (1) 求 μ 的置信水平为0.9的置信区间; (2) 如果 $\sigma = 0.5$ 时,认为该批次针织品的断裂强度是稳定的,在显著性水平为0.05时,通过该样本值判断针织品的断裂强度是否稳定.

(上分位数表 $t_{0.05}(4) = 2.13, t_{0.05}(5) = 2.01, \chi_{0.05}^2(4) = 9.5, \chi_{0.95}^2(4) = 0.7, \chi_{0.025}^2(4) = 11.1, \chi_{0.975}^2(4) = 0.5$)。