Problem 15.4-2

Re: Prob 15.3-2 (a):

Tree diagram from player 1's viewpoint w/ fair coin

Player 1:

strategy 1 = Head (pass), Tail (pass)

strategy 2 = Head (pass), Tail (bet)

strategy 3 = Head (bet), Tail (pass)

strategy 4 = Head (bet), Tail (bet)

When player 1 bets, player 2:

strategy 1 = pass

strategy 2 = call

	Player 2				Expected
	Strategy		One (pass)	Two (call)	Payoffs for
		p	y ₁	1 - y ₁	Player 2
Player 1	One	X ₁	(-2.5) + (-2.5) = -5	(-2.5) + (-2.5) = - 5	-5
	Two	X2	(-2.5) + (2.5) = 0	(-2.5) + (-5) = - 7.5	7.5 y ₁ – 7.5
	Three	X 3	(2.5) + (-2.5) = 0	(5) + (-2.5) = 2.5	$-2.5 y_1 + 2.5$
	Four	X4	(2.5) + (2.5) = 5	(5) + (-5) = 0	5 y ₁

From the perspective of player 2:

The expected payoffs for player 2 over the range of $0 \le y_1 \le 1$ for the four pure strategies available to player 1:

$$\overline{v} = v = \min \{ \max \{ -2.5 y_1 + 2.5, 5 y_1 \} \}$$
 over the range of $0 \le y_1 \le 1$

solve for the value of y_1 where these 2 lines intersect, set -2.5 y_1 + 2.5 = 5 y_1 y_1 = 1/3 y_2 = 2/3

Optimal mixed strategy for player 2 is $(y_1, y_2) = (0.3333, 0.6667)$

Value of the game: $v = 5 y_1 = 5 (1/3) = 5/3 = 1.6667$

The expected payoffs for player $1 = x_1(-5) + x_2(7.5 y_1 - 7.5) + x_3(-2.5 y_1 + 2.5) + x_4(5 y_1)$

$$X_1 = 0$$
 and $X_2 = 0$, $X_3(-2.5 y_1 + 2.5) + X_4(5 y_1) = 5/3$

$$2.5 x_3 = 5/3$$
 when $y_1 = 0$ and $5 x_4 = 5/3$ when $y_1 = 1$

Optimal mixed strategy for player 1 is $(x_1 = 0, x_2 = 0, x_3 = 2/3, x_4 = 1/3)$

Value of the game: $\underline{v} = v = 2/3 (-2.5 \times 1/3 + 2.5) + 1/3 (5 \times 1/3) = 5/3 = 1.6667$