Неформальная постановка задачи

Дано N независимых работ, для каждой работы задано время выполнения. Требуется построить расписание выполнения работ без прерываний на М процессорах. На расписании должно достигаться минимальное значение разбалансированности расписания (т.е. значения разности Tmax-Tmin, где Tmax - максимальное, по всем работам, время завершения работы в расписании; Tmin - аналогично, наименьшее время) (критерий К1).

Формальная постановка задачи

Дано:

- Множество работ $P = \{p_1, p_2, ..., p_N\}$, где $p_i = \{N_i, W_i\}$, где N_i номер работы, W_i продолжительность работы.
- Множество процессоров $M = \{m_i\}.$

Определим расписание HP как пару $\{HP_B, HP_L\}$, где $HP_B: P \to M$ (каждой работе сопоставляется процессор, на котором она будет выполняться), а $HP_L = \{p_{i_j}\}$ – упорядоченное множество, задающее порядок выполнения работ.

Введем обозначение множества $HP_L(k)$ как $[p_{i_0},p_{i_1},...,p_k]$, то есть как множество работ, стоящих раньше p_k в упорядоченном множестве HP_L , включая саму p_k .

Определим множество
$$T$$
 как $\{\sum_{p_i \in HP_L(k): HP_B(p_i) = HP_B(p_k)} W_i | p_k \in P \}$

Требуется:

• Построить расписание HP.

Минимизируемый критерий:

• max(T) - min(T).

Ограничения:

- $HP_B(p_k) = m_i, HP_B(p_k) = m_j; => i = j.$
- Пусть $T_b(p_k)$ это время начала выполнения работы $p_k,\,T_e(p_k)$ время завершения работы $p_k,\,$ тогда

$$\begin{split} T_b(p_k) &= \{ \sum_{p_i \in HP_L(k-1): HP_B(p_i) = HP_B(p_k)} W_i | p_k \in P \}, \text{ а} \\ T_e(p_k) &= \{ \sum_{p_i \in HP_L(k): HP_B(p_i) = HP_B(p_k)} W_i | p_k \in P \}, \text{ то есть} \\ T_e(p_k) - T_b(p_k) &= W_k \end{split}$$