

HEXFET® Power MOSFET

Application

- Motion Control Applications
- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- Hard Switched and High Frequency Circuits

G S

V _{DSS}	150V
R _{DS(on) typ.}	11.7mΩ
max	14.7mΩ
I _D	86A

Benefits

- Low Rdson Reduces Losses
- Low Gate Charge Improves the Switching Performance
- Improved Diode Recovery Improves Switching & EMI Performance
- 30V Gate Voltage Rating Improves Robustness
- Fully Characterized Avalanche SOA

G	D	S
Gate	Drain	Source

Bass nort number	Dookogo Typo	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	
IRFS4321-7PPbF	D ² Pak-7Pin	Tube	50	IRFS4321-7PPbF
		Tape and Reel Left	800	IRFS4321TRL7PP

	Parameter	Max.	Units
_D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	86	
_D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	61	Α
DM	Pulsed Drain Current ①	343	
P _D @T _C = 25°C	Maximum Power Dissipation	350	W
	Linear Derating Factor	2.3	W/°C
/ _{GS}	Gate-to-Source Voltage	± 30	V
- -AS (Thermally limited)	Single Pulse Avalanche Energy ②	120	mJ
Γ _J Γ _{STG}	Operating Junction and Storage Temperature Range	-55 to + 175	°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ④		0.43*	°C/W
$R_{\scriptscriptstyle{ hetaJA}}$	Junction-to-Ambient		40	

^{*} R_{BJC} (end of life) for D2Pak and TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wear out of the die attach medium.

Notes ① through ④ are on page 2

Static @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		150		mV/°C	Reference to 25°C, I_D = 1mA ①
R _{DS(on)}	Static Drain-to-Source On-Resistance		11.7	14.7	mΩ	V_{GS} = 10V, I_{D} = 34A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
	Drain to Course Leakage Current			20	μA	V _{DS} =150 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			1.0	mA	$V_{DS} = 150 V, V_{GS} = 0 V, T_{J} = 125 ^{\circ} C$
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -20V
$R_{G(int)}$	Internal Gate Resistance		8.0		Ω	

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	<u> </u>		•			
gfs	Forward Transconductance	130			S	$V_{DS} = 25V, I_{D} = 50A$
Q_g	Total Gate Charge		71	110		I _D = 50A
Q_{gs}	Gate-to-Source Charge		24		nC	V _{DS} = 75V
Q_{gd}	Gate-to-Drain ("Miller") Charge		21			V _{GS} = 10V3
$t_{d(on)}$	Turn-On Delay Time		18			$V_{DD} = 98V$
t _r	Rise Time		60			$I_D = 50A$
$t_{d(off)}$	Turn-Off Delay Time		25		ns	R_G = 2.5 Ω
t _f	Fall Time		35			V _{GS} = 10V3
C _{iss}	Input Capacitance		4460			V _{GS} = 0V
C _{oss}	Output Capacitance		390		pF	V _{DS} = 50V
C _{rss}	Reverse Transfer Capacitance		82			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			86		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			343		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 50A, V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		89	130	ns	I _F = 50A,
Q _{rr}	Reverse Recovery Charge		300	450	nC	V _{DD} = 128V
I _{RRM}	Reverse Recovery Current		6.5		Α	di/dt = 100A/µs ③

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ③ Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ \, \mbox{$ \ \ \, $ \ \, $}$ $\mbox{$ \ \ \, $ \ \ \, $}$ R0 is measured at T_J approximately 90°C

www.irf.com © 2013 International Rectifier June 14, 2013

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage 80 70 I_D, Drain Current (A) 60 50 40 30 20 10 0 50 75 125 150 175 25 100 T_{C} , Case Temperature (°C)

Fig 9. Maximum Drain Current vs. Case Temperature 5.0 4.0 Energy (µJ) 3.0 2.0 1.0 0.0 20 0 60 80 100 120 140 $V_{DS_{\star}}$ Drain-to-Source Voltage (V)

Fig 11. Typical Coss Stored Energy

20 40 60 80 100 120 140 160 180 T_J , Junction Temperature (°C)

Fig 12. Maximum Avalanche Energy Vs. Drain Current

Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 14. Typical Avalanche Current vs. Pulse width

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{imax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a 23b
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. l_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 14, 15).

 t_{av} = Average time in avalanche. D = Duty cycle in avalanche = tav ·f $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 (1.3·BV· I_{av}) = $\Delta T/Z_{thJC}$ I_{av} = $2\Delta T/[1.3·BV·Z_{th}]$ $E_{AS}(AR)$ = $P_{D}(ave)$ · I_{av}

Fig 15. Maximum Avalanche Energy vs. Temperature

Fig 16. Threshold Voltage vs. Temperature

Fig 18. Typical Recovery Current vs. dif/dt

Fig 19. Typical Stored Charge vs. dif/dt

Fig 20. Typical Stored Charge vs. dif/dt

Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 22a. Unclamped Inductive Test Circuit

Fig 22b. Unclamped Inductive Waveforms

Fig 23a. Switching Time Test Circuit

Fig 24a. Gate Charge Test Circuit

Fig 23b. Switching Time Waveforms

Fig 24b. Gate Charge Waveform

D²Pak-7Pin Package Outline (Dimensions are shown in millimeters (inches))

S							
X	DIMENSIONS						
S M B O	MILLIMETERS		INC	INCHES			
L	MIN.	MAX.	MIN.	MAX.	O T E S		
Α	4.06	4.83	.160	.190			
A1	-	0,254	_	.010			
ь	0.51	0.99	.020	.036			
b1	0.51	0.89	.020	.032	5		
С	0,38	0.74	.015	.029			
c1	0.38	0.58	.015	.023	5		
c2	1.14	1.65	.045	.065			
D	8.38	9.65	.330	.380	3		
D1	6.86	-	.270		4		
Ε	9.65	10.67	.380	.420	3,4		
E1	6.22	_	.245		4		
e	1,27	BSC	.050	BSC			
Н	14.61	15.88	.575	.625			
L	1.78	2.79	.070	,110			
L1	-	1.68	-	.066	4		
L2	-	1.78	_	.070			
L3	0.25	BSC	.010	BSC			
L4	4.78	5.28	.188	.208			

NOTES:

- 1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1,

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8, OUTLINE CONFORMS TO JEDEC OUTLINE TO-263CB.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak-7Pin Part Marking Information

EXAMPLE: THIS IS AN IRF2804S-7P WITH LOT CODE 8024 ASSEMBLED ON WW02,2000 IN THE ASSEMBLY LINE "L"

Note: "P" in assembly line position indicates "Lead Free"

D2Pak-7Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1, TAPE AND REEL,
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING 800 DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS.
 HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTI

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRFXXXXSTRL-7P
 2.2 CUST. PART NUMBER (TEXT CODE): IRFXXXXSTRL-7P
 - 2.3 I.R. PART NUMBER: IRFXXXXSTRL-7P

 - 2.4 QUANTITY: 2.5 VENDOR CODE; IR
 - LOT CODE:
 - DATE CODE:

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

© 2013 International Rectifier

Qualification Information[†]

	Industrial				
Qualification Level	(per JEDEC JESD47F) ††				
Moisture Sensitivity Level	D ² Pak-7Pin MSL1				
RoHS Compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/

www.irf.com © 2013 International Rectifier June 14, 2013

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.