1. Kervaire-Milnor II: s-parallelizability of Homotopy Spheres.

We continue our exposition of Kervaire and Milnor, "Groups of Homotopy Spheres: I" Annals of Mathematics, 1962.

1.1.

Notation 1.1. Let M be a manifold with tangent bundle TM, and let ε^r denote the rank r trivial bundle over M.

Definition 1.2. The bundle $TM \oplus \varepsilon^1$ is the stable tangent bundle of M

Definition 1.3. A manifold M is s-parallelizable if the stable tangent bundle $TM \oplus \varepsilon^1$ is a trivial bundle.

Exercise 1.4. Show directly (using differential topology) that \mathbb{S}^n is s-parallelizable.

Here is the main claim.

Theorem 1.5. Every homotopy sphere is s-parallelizable.

Remark 1.6. In fact, Theorem 1.5 is true for homology spheres as well. See Kervaire "Smooth Homology Spheres and their Fundamental Groups" and MathOverflow: Are homology spheres stably parallelisable?

Before we give a proof of Theorem 1.5, we first give a discussion on the significance of s-parallelizability.

Lemma 1.7 (J.H.C. Whitehead). Let M be an n-dimensional submanifold of \mathbb{S}^{n+k} , n < k. Then M is s-parallelizable iff its normal bundle is trivial.

Lemma 1.8. A connected manifold M with non-vacuous boundary is s-parallelizable iff it is parallelizable.

The second lemma shows that the lack of boundary (e.g. as in \mathbb{S}^n) is the only thing that can go wrong for an s-parallelizable manifold to be parallelizable.

We need the following lemma to prove the above two results.

Lemma 1.9. Let ξ be a k-dimensional vector bundle over an n-dimensional complex, k > n. If $\xi \oplus \varepsilon^r$ is trivial, then ξ itself is trivial.

Proof. Suppose we assume the result for when ϵ is a trivial line bundle. Then to prove the general claim for r > 1, we can apply the result for trivial line bundle r times. Thus, we can assume wlog that r = 1.

We can also assume that ξ is oriented. Let γ^k be the bundle of oriented k-planes in (k+1)-space. γ^k is a line bundle over \mathbb{S}^k by looking at the normal vectors of the k-planes. The vector bundle isomorphism $\xi \oplus \varepsilon^1 \cong \varepsilon^{k+1}$ gives rise to the bundle map $f: \xi \to \gamma^k$. Since the base space of ξ has dimension n, and since the base space of γ^k is the sphere \mathbb{S}^k with k > n, the map f is null-homotopic. Thus, ξ is trivial.

Exercise 1.10. * In the above proof, justify why ξ can be assumed to be oriented.

Exercise 1.11. * Work out the details for the assertion made above that γ^k is a line bundle over \mathbb{S}^k .

Proof of Lemma 1.7. (\Leftarrow .) Let ν be the normal bundle of M in \mathbb{S}^{n+k} . The bundle $TM \oplus \nu$ is trivial. So in particular, $(TM \oplus \epsilon^1) \oplus \nu$ is trivial, and by Lemma 1.9, $TM \oplus \epsilon^1$ is trivial, as required.

Exercise 1.12. * Show that $TM \oplus \nu$ is trivial (by explicitly constructing a vector bundle isomorphism). In particular, where are we using s-parallelisability and the hypothesis about \mathbb{S}^{n+k} ?

Exercise 1.13. * Prove the forward direction.

Proof of Lemma 1.8. The converse is immediate. The forward direction follows by a similar proof as Lemma 1.7. \Box

Exercise 1.14. * Prove that any map from M^n into \mathbb{S}^n is null-homotopic. Deduce the forward direction of the above proof as a consequence.

We now provide a proof of the main claim.

Proof of 1.5. \Box

1.2. Which homotopy spheres bound parallelizable manifolds?

REFERENCES

- [1] Kervaire, "Smooth Homology Spheres and their Fundamental Groups"
- $[2] \ https://mathoverflow.net/questions/242412/are-homology-spheres-stably-parallelisable$