$$\begin{array}{c|c} Z & \theta & \to \chi_i \\ \hline P(Z) & P(\lambda | Z) \\ \hline \theta & \end{array}$$

PML:

11:

max
$$P(X) = P(x) - P(x)$$
 θ

max
$$\log P_{\theta}(X) = \sum_{i} \log P(2i)$$

$$log P(x) = log \int P(x;z) dz$$

ligating b

$$\geq \int \log \frac{P(x|z)P(z)}{q(z)} q(z) dz$$

$$= \frac{E \log \frac{P(x,z)}{q(z)}}{q(z)}$$

max
$$E \log \frac{P_0(x,z)}{q_{ij}(z)}$$
 (ELBO)

Another way of Saying the same thing: X= 1x,, -- , x) P(Z|X) 4 interested $\frac{P(Z|X) = \frac{P(X,Z)}{P(X)} = \frac{P(X|Z)P(Z)}{P(X)} = \frac{P(X|Z)P(Z)}{P(X)}$ $= \frac{p(x|Z) p(Z)}{\left(\int p(x,z) dz\right) 4 - difficult}$ Pestenby (q(z), p(z|x)) $= E \left[\log \frac{9(z|x)}{p(z|x)} \right] = E \left[\log \frac{9_0(z)}{p(z|x)} \right]$ KL (9 (2), P(212)

 $=\mathbb{E}\left[\log\frac{q_{\alpha}(z)P(x)}{P(x,z)}\right] = \mathbb{E}\log\frac{q_{\alpha}(z)}{P(x,z)} + \log P(x)$

Pag 3
$$\log P(X) = KL \left(\frac{q(z)}{q} \right), \frac{q(z|X)}{q} - \frac{E}{g} \log \frac{q(z)}{P(z|X)}$$

Log $P(X)$ $ELBO$:

$$EXPAND ELBO:$$

$$E Gog $P(X|X) = E_g \log \frac{P(X|Z)}{q(z)} + E_g \frac{P(z)}{q(z)}$

$$= E_g \log \frac{P(X|X)}{q(x)} - KL \left(\frac{q(z)}{q(x)} \right) \frac{P(z|X)}{q(x)}$$

$$= e_{Gog} P(X|Z) - KL \left(\frac{q(z)}{q(x)} \right) \frac{P(z|X)}{q(x)}$$

$$= e_{Gog} P(X|Z) - KL \left(\frac{q(z)}{q(x)} \right) \frac{P(z|X)}{q(x)}$$

$$= e_{Gog} P(X|Z) - KL \left(\frac{q(z)}{q(x)} \right) \frac{P(z|X)}{q(x)}$$

$$= e_{Gog} P(X|Z) - F(X|Z)$$

$$= e_{Gog} P(X|Z) - F(X|Z)$$$$

Page 4

Challenges:

We have to find best of and of that max

$$\max_{\phi,\theta} -D_{KL}\left(q\left(Z/\chi\right) \| p(z)\right) + \mathbb{E}_{q(z|x)}\left[\log p_{\theta}(x'|z)\right]$$

$$\max_{\phi,\theta} - \mathbb{E} \log \frac{q(2|2)}{P_{\phi}(2)} + \mathbb{E} \left[\log P_{\phi}(x^{(1)}|Z) \right]$$

Vo : easy!

Vo so much!

Let look closer:

$$\mathbb{E}_{q}[f(z)] = \int f(z) \, \P(z) \, dz$$

=
$$\int \nabla f(z) q(z) dz = \int f(z) \nabla q(z) dz$$

99% you connot

$$\frac{\sqrt{3}}{9} = \sqrt{3} \log 9$$

(We know how to

estimate but it has

bugge variance!)

~ 1 ∑ f(z;) Vlog 9 (z)

Page 6	Remember ELBO:
	$\mathcal{L} = \int \log \frac{P(x,z)}{q(z x)} q(z x) dz = \mathbb{E} \left[\log P(x,z) - q(z x) \right]$
	$\frac{\sim}{2} \sum_{k} ly_k p(x, 2k) - q(x^k x) \qquad (7)$
	St. x 2 2 9(21x)
*V	I How to generate this?
	Sample 2 ~ P(S)
	Z=g(E,x)
) p(E) = N(O,1) a deterministic function
함 원	acid ming (2 young)
	A. Let's look at example of 9
	$g(z) = \begin{bmatrix} 25 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$
	BRANGER Estimation of Eq. (1) is fine but can have high vanance
	Let's Compute anything that an be computed closed form!
	B. 739(8)24+08 . whatene and p(2)2?

Z= g(E) = M+AE

P(2/27

