EE2023/TEE2023 TUTORIAL 1 (PROBLEMS)

- Q.1 Find the magnitudes and phases of the following complex numbers.
 - (a) $z = \frac{1 j1}{1 + j2}$
- (b) $z = (-1 + j1) \times (1 + j2)$

ANSWER: (a) Magnitude = $\sqrt{0.4}$, Phase = -1.8925 rads; (b) Magnitude = $\sqrt{10}$, Phase = 3.4633 rads

- Q.2 Represent each of the following complex numbers in polar form and plot the point on the complex plane.
 - (a) 1 + j1
- (b) -2 + i2

(c) -3 -j4

ANSWER: (a) $\sqrt{2}e^{j\pi/4}$; (b) $\sqrt{8}e^{j3\pi/4}$; (c) $5e^{-j2.2143}$

Q.3 Let z = x + jy where x and y are real numbers. Provide a formula for computing the N distinct values of $\sqrt[N]{z}$. Hence, or otherwise, determine $\sqrt[6]{64}$ and $\sqrt[4]{j81}$.

ANSWER: (a) $2 \exp\left(j\left(\frac{k\pi}{3}\right)\right)$ for $k = 0, 1, \dots, 5$; (b) $3 \exp\left(j\left(\frac{\pi}{8} + \frac{k\pi}{2}\right)\right)$ for $k = 0, 1, \dots, 3$

Q.4 Consider the signal $x(t) = 2\sin(\pi t)(p(t)-1)$ where p(t) is shown in Fig.Q.2.

- (a) Express p(t) in terms of the rect(\bullet) function.
- **(b)** Sketch and label x(t) and state whether or not x(t) is periodic.
- (c) Find an expression for $x^2(t)$. Hence, compute the average power of x(t).
- (d) Based on the results in (b) and (c), how would you classify x(t)?

ANSWER: (a)
$$p(t) = 2 - 2 \operatorname{rect}\left(\frac{t - 0.75}{3.5}\right)$$
; (b) Not periodic; (c) $x^2(t) = 2(1 - \cos(2\pi t))$
(d) Aperiodic power signal

Q.5 In digital communications, half-cosine or raised-cosine pulses are sometimes used to pulse shape a binary waveform so as to reduce intersymbol interference. The general expressions for these pulses are

Half-cosine pulse : $x(t) = A\cos(\pi t/T)\operatorname{rect}(t/T)$

Raised-cosine pulse : $\tilde{x}(t) = 0.5\tilde{A}(1 + \cos(2\pi t/\tilde{T}))\operatorname{rect}(t/\tilde{T})$

where A, \tilde{A} , T and \tilde{T} are positive constants. Sketch and label each pulse. Under what condition(s) will both pulses have the same energy?

Answer: $A^2T = \frac{3}{4}\tilde{A}^2\tilde{T}$

Q.6 Determine whether or not each of the following signals is periodic. If the signal is periodic, determine its fundamental frequency.

(a)
$$x(t) = \cos(3.2t) + \sin(1.6t) + \exp(j2.8t)$$

(b)
$$x(t) = \cos(4t) + \sin(\pi t)$$

ANSWER: (a) Periodic [0.4 rad/s); (b) Non-periodic

- **Q.7** Sketches of two signals, x(t) and y(t), are shown in Fig.Q.5.
 - (a) Sketch and label the following signals: x(t+4); x(-t); x(3t); x(t/3)
 - **(b)** Express y(t) in terms of x(t).

ANSWER: (b) y(t) = x(-3(t+4))

Q.8 Sketch the following signal:

$$x(t) = 2\delta(t+4) + \delta(t+3) + 3\delta(t+2) + 4\delta(t) + 3\delta(t-2) + \delta(t-3) + 2\delta(t-4)$$

Q.9 Consider the function X(f) below. Write X(f) in terms of appropriate rect(.) and cos(.) functions.

ANSWER: $X(f) = 2 \operatorname{rect}\left(\frac{f}{4}\right) - \cos\left(\frac{\pi f}{2}\right) \operatorname{rect}\left(\frac{f}{2}\right)$

Supplementary Problems

These problems will not be discussed in class.

Express the signals shown in the figures below in terms of unit step functions.

ANSWER: (a)
$$x(t) = u(2-t) \cdot \int_{-\infty}^{t} 0.5u(\tau) d\tau$$
; (b) $x(t) = u(t+1) + 2u(t) - u(t-1) - u(t-2) - u(t-3)$

- Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period and average power.
 - $x(t) = \cos\left(2t + 0.25\pi\right)$
- (b) $x(t) = \cos^2(t)$

 $x(t) = \cos(2\pi t)u(t)$ (c)

(d) $x(t) = \exp(i\pi t)$

ANSWER: (a) periodic, period = π , power = $\frac{1}{2}$; (b) periodic, period = π , power = $\frac{3}{8}$; (c) non-periodic; (d) periodic, period = 2, power = 1

- Evaluate the following integrals:
 - (a) $\int_{-\infty}^{t} \cos(\tau) u(\tau) d\tau$

(b) $\int_{-\tau}^{\tau} \cos(\tau) \delta(\tau) d\tau$

(c) $\int_{-\infty}^{\infty} \cos(t)u(t-1)dt$

(d) $\int_0^{2\pi} t \sin\left(\frac{t}{2}\right) \delta(\pi - t) dt$

ANSWER: (a) $\sin(t)u(t)$; (b) u(t); (c) 0; (d) π

Any signal x(t) can be expressed as a sum of two component signals, one of which is even and one of which is odd. That is

$$x(t) = x_e(t) + x_o(t)$$

where $x_e(t) = 0.5[x(t) + x(-t)]$ is the even component and $x_o(t) = 0.5[x(t) - x(-t)]$ the odd component.

Determine the even and odd components of:

- (a) x(t) = u(t) (b) $x(t) = \sin\left(\omega_c t + \frac{\pi}{4}\right)$.

ANSWER: (a) $\begin{cases} x_{e}(t) = \begin{cases} 1; & t = 0 \\ 0.5; & t \neq 0 \end{cases} \\ x_{o}(t) = \begin{cases} 0; & t = 0 \\ 0.5 \cos(t); & t \neq 0 \end{cases} \end{cases}$ (b) $\begin{cases} x_{e}(t) = \frac{1}{\sqrt{2}} \sin(\omega_{c}t) \\ x_{e}(t) = \frac{1}{\sqrt{2}} \cos(\omega_{c}t) \end{cases}$

Below is a list of solved problems selected from Chapter 1 of Hwei Hsu (PhD), 'The Schaum's series on Signals & Systems', 2nd Edition.

The 1st Edition can be found in the following link: http://www.kousik.net/wp-content/uploads/2010/10/Schaums-Outline-Series-Signals Systems.pdf

Selected solved-problems: 1.1, 1.9, 1.10, 1.14, 1.16(a)-to-(f), 1.17, 1.18, 1.20(a)-&-(b), 1.21, 1.22, 1.27, 1.30, 1.31

These solved problems should be treated as supplementary module material catered for students who find the need for more examples or practice-problems.