Appln. No.: National Stage of PCT/JP2003/007615

Attorney Docket No.: Q84708

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS: -

1. (original): A method for producing a fluorocopolymer

which comprises a polymerization reaction of a fluorine-containing ethylenic monomer with at least one fluorovinyl ether derivative represented by the following general formula (I):

$$CF_2 = CF - O - [CF_2CF(CF_3)O]_n - (CF_2)_m - A$$
 (I)

(wherein n represents an integer of 0 to 3, m represents an integer of 1 to 5, and A represents –SO₂X or –COOY; X represents a halogen atom or –NR¹R²; R¹ and R² are the same or different and each represents a hydrogen atom, an alkali metal, an alkyl group or a sulfonyl-containing group and Y represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms) to give a fluorocopolymer,

said fluorine-containing ethylenic monomer being a perhaloethylenic monomer represented by the following general formula (II):

$$CF_2 = CF - R_f^1$$
 (II)

(wherein R_f^1 represents a fluorine atom, a chlorine atom, R_f^2 or OR_f^2 ; R_f^2 represents a straight or branched perfluoroalkyl group having 1 to 9 carbon atoms, which may have an ether oxygen atom(s)) and/or a hydrogen-containing fluoroethylenic monomer represented by the following general formula (III):

Appln. No.: National Stage of PCT/JP2003/007615

Attorney Docket No.: Q84708

(wherein X^1 represents a hydrogen atom or a fluorine atom and X^2 represents a hydrogen atom, a fluorine atom, a chlorine atom, R_f^3 or OR_f^3 ; R_f^3 represents a straight or branched perfluoroalkyl group having 1 to 9 carbon atoms, which may have an ether oxygen atom(s)) and

said polymerization reaction being carried out in a saturated perfluorohydrocarbon while additional feeding of said fluorine-containing ethylenic monomer and said fluorovinyl ether derivative being carried out.

2. (original): The method for producing a fluorocopolymer according to Claim 1, wherein the polymerization reaction brings a mass of the fluorocopolymer relative to a volume of a polymerization solution to arrive at 30 g/L or a higher level.

3. (currently amended): The method for producing a fluorocopolymer according to Claim 1 or 2,

wherein the saturated perfluorohydrocarbon has 20 or less than 20 carbon atoms and has a cyclic structure or linear structure each optionally with a branched structure.

4. (original): The method for producing a fluorocopolymer according to Claim 1, wherein the saturated perfluorohydrocarbon is a perfluorohexane or a perfluorocyclobutane.

3

Appln. No.: National Stage of PCT/JP2003/007615

Attorney Docket No.: Q84708

Ì

5. (currently amended): The method for producing a fluorocopolymer according to Claim 1, 2, 3 or 4,

wherein the fluorine-containing ethylenic monomer is CF_2 = CF_2 , n is 0 (zero), m is 2 and A is $-SO_2F$.

- 6. (currently amended): A fluorocopolymer produced by the method for producing a fluorocopolymer according to Claim 1, 2, 3, 4 or 5.
 - 7. (original): The fluorocopolymer according to Claim 6 which satisfies the following relations (a) and (b):

$$0 \le \Delta H \le 6.375 - 0.475C \ (5 \le C \le 13)$$
 (a)

$$0 \le \Delta H \le 0.2 (13 < C \le 18)$$
 (b)

where ΔH is a heat of fusion (in J/g) as appearing at 315 to 325°C upon measurement with a differential scanning calorimeter and C is a fluorovinyl ether derivative unit content (in mole percent) in the fluorocopolymer.

8. (currently amended): A molded article formed from the fluorocopolymer according to Claim 6 or 7.

Appln. No.: National Stage of PCT/JP2003/007615

Attorney Docket No.: Q84708

9. (original): The molded article according to Claim 8, which forms a membrane.

10. (currently amended): A solid polyelectrolyte fuel cell comprising the molded article according to Claim 8 or 9.