

Introduction to Music Computing

From Overtones to Tuning Systems & Harmonies

Spectrograms & Overtones

Natural Tones

- A natural tone does not correspond to a single frequency but has **overtones** on top of a fundamental frequency f_o.
- We can look at the spectrum of a sound using the Fourier transform and show this over time in a spectrogram.

Overtones

Overtones are integer multiples of f

- equally spaced in frequency space
- typically with decaying amplitude

Overtones do not sound equally spaced

- pitch is logarithmic in frequency
- equal intervals correspond to equal factors in frequency space

Pitch as Log-Frequency

- pitch ≡ log-frequency
- pitch difference / step / interval → frequency ratio
- negative steps/intervals → inverse frequency ratio
- n equally spaced steps/intervals $\longrightarrow n^{th}$ root

$$p = \log(f) \ p - p' = \log(f/f') \ i = \log(r) \ -i = \log(1/r) \ i/n = \log(\sqrt[n]{r})$$

Overtones

Overtone	Partial	Frequency	Frequency Ratio	Interval
none/fundamental	1 st	f_0	1	prime
1 st	2 nd	$f_{_{1}}=2f_{_{0}}$	2	octave
2 nd	3 rd	$f_2 = 3f_0$	3	fifth (+ octave)
3 rd	4 th	$f_3 = 4f_0$	2.2	2 octaves
4 th	5 th	$f_4 = 5f_0$	5	major third (+ 2 octaves)
5 th	6 th	$f_5 = 6f_0$	2.3	fifth (+ 2 octaves)
6 th	7 th	$f_6 = 7f_0$	7	minor seventh (+ 2 octaves)

Interval	Ratio
prime	1
octave	2
fifth	3/2 = 1.5
major third	5/4 = 1.25
minor seventh	7/4 = 1.75

Stacked Overtones (Octaves, Fifths & Thirds)

Overtones (Fifths, Thirds) (Fifths)

Consonance & Pitch Similarity

Consonance & Pitch Similarity

In music, we often want tones that "sound good together".

- What does it mean to "sound good"? What does "together" mean?
- Example: octave equivalence versus similar fundamental
 - Why do tones that are an octave apart sound similar even though their fundamentals differ by a factor of 2?
 - Why does a minor second sound dissonant even though the two tones have relatively close fundamental frequencies?

Octave Equivalence

- same pitch class
- different timbre

Spectral Similarity

- intervals from the overtone series result in great spectral overlap
- they are experienced as "consonant" and "close" to each other

Two kinds of similarity

Which pair is more similar?

 $\rightarrow \text{harmony / consonance}$

Can be *transformed* to each other (over time) → **voice leading**

Tuning Systems

Tuning Systems

When building an instrument, we need:

- tones that sound good together, but also
- tones that cover the octave in small steps
- → potentially contradicting objectives!

- Octaves always work!
- Which other overtones or intervals should we use?

Tuning Systems

С	C#	D	D#	E	F	F#	G	G#	A	A#	В	С
	16/15 (-1,-1) 6/243 (-5)	9/8 9/8 (2,0) 9/8 (2) 	6/5 (1,-1) 32/27 (-3) 	5/4 5/4 (0,1) 32/25 (0,-2) 81/64 (4)	4/3 (-1,0) 4/3 (-1)	45/32 (2,1) 1024/729 (-6) 729/512 (6)	3/2 3/2 (1,0) 3/2 (1) 1	25/16 (0,-1) 25/16 (0,2) 128/81 (-4)	5/3 (-1,1) 27/16 (3)	7/4 16/9 (-2,0) 16/9 (-2)	15/8 (1,1) 	2
		Interva		terval JI	Pv							

	Δ	Interval name	Interval	JI ratio	Pyt. ratio
	0	(Perfect) unison	C4 – C4	1:1	1:1
	1	Minor second	C4 – D♭4	15:16	3 ⁵ :2 ⁸
Fig 5.3 [FMP15]	2	Major second	C4 – D4	8:9	2 ³ :3 ²
	3	Minor third	C4 – E♭4	5:6	33:25
	4	Major third	C4 – E4	4:5	2 ⁶ :3 ⁴
Durham University	5	(Perfect) fourth	C4 – F4	3:4	3:22

6	;	Tritone	C4 – F#4	32:45	2 ⁹ :3 ⁶ or 3 ⁶ :2 ¹⁰
7	,	(Perfect) fifth	C4 – G4	2:3	2:3
8		Minor sixth	C4 – A [♭] 4	5:8	34:27
9)	Major sixth	C4 – A4	3:5	2 ⁴ :3 ³
1	0	Minor seventh	C4 – B [♭] 4	5:9	3 ² :2 ⁴
1	1	Major seventh	C4 – B4	8:15	2 ⁷ :3 ⁵
1:	2	(Perfect) octave	C4 – C5	1:2	1:2

1

Just Intonation

In **just intonation** all intervals of a **scale** are tuned as (preferably small) **exact integer ratios** relative to the fundamental f_0 or **tonic**.

- tones are exact overtones-of-overtones (or "undertones") of the tonic
- scales are always relative to the tonic and not translational invariant
- diatonic scales (major/minor) need a maximum of two <u>fifth</u> and/or <u>third</u> steps
- more generally, each note can be specified by a triplet of integers

(octaves, fifths, thirds)
$$\rightarrow$$
 f₀ • 2° ctaves • 3 fifths • 5 thirds

specifying the number of steps of the respective intervals

Pythagorean Tuning

In **Pythagorean tuning** all intervals are tuned in **multiples of perfect fifths** relative to the fundamental f_0 or **tonic**.

- tones are exact fifths-of-fifths-... of the tonic
- scales are approximately translational invariant (when going in fifths steps)
- each note can be specified by a pair of integers

(octaves, fifths)
$$\rightarrow$$
 $f_{_0}$ • 2^{octaves} • 3^{fifths}

specifying the number of steps of octaves and fifths

this is where spelled pitch and key signatures come from!

Fifths	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Name	Bbb	Fb	Cb	Gb	Db	Ab	Eb	Bb	F	С	G	D	Α	Е	В	F#	C#	G#	D#	A#	E#	B#	F##

Pythagorean Tuning – Circle of Fifths

	Fifths	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
ity	Name	Bbb	Fb	Cb	Gb	Db	Ab	Eb	Bb	F	С	G	D	Α	Е	В	F#	C#	G#	D#	A#	E#	B#	F##

Comparison of Tuning Systems

Just Intonation

- cleanest intervals and harmonies
- least translational invariant
- tuned only for one specific key

Pythagorean

- ignore syntonic comma: 81/64 vs 5/4 = 81/80 = 1.0125 for major third
- approximately translational invariant for fifth-related keys

12-Tone Equal Temperament (12TET)

- octave divided into steps of equal size (factor $^{12}\sqrt{2}$ or interval 1/12 log(2))
- ignore **Pythagorean comma**: $3^{12}/2^{19} = 531441/524288 \approx 1.0136$ for octave

Harmony & Voice Leading

Harmony & Voice Leading

In music, we typically want some balance between

- known, stable, static, expected
- novel, unstable, dynamic, surprising

That balance may be

- different for different cultures/styles/genres
- different along different musical dimensions (e.g. rhythm vs harmony)
- changing throughout a piece

In Western music, **harmony** (tones sounding simultaneously) and **voice leading** (how tones move over time) contribute to maintaining this balance.

Harmony & Voice Leading

- Chords/harmonies must achieve a compromise between consonance/stability and diversity
- Voice leading can
 - "fix" dissonant harmonies by creating convincing melodic lines
 - create transient dissonances that quickly resolve
- Changes in tension make a piece interesting and pleasant
 - a consonance created by resolving a dissonance feels even more stable
- Mixing and interplay between the two kinds of similarity
 - harmony (vertical) & voice leading (horizontal)

References

- [FMP15] Meinard Müller (2015) Fundamentals of music processing: Audio, analysis, algorithms, applications. Springer
- Milne AJ, Laney R, Sharp DB (2015) A Spectral Pitch Class Model of the Probe Tone Data and Scalic Tonality. Music Perception 32:364–393. https://doi.org/10.1525/mp.2015.32.4.364
- Dean RT, Milne AJ, Bailes F (2019) Spectral Pitch Similarity is a Predictor of Perceived Change in Sound- as Well as Note-Based Music. Music & Science 2:2059204319847351. https://doi.org/10.1177/2059204319847351

