Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Системы обработки информации и управления (ИУ5)

Отчет Лабораторная работа №5

«Линейные модели, SVM и деревья решений»

По курсу: «Технологии машинного обучения»

Выполнил: студент группы		Корыткина А.Н.
<u>ИУ5-64Б</u>	(Подпись, дата)	(Ф.И.О.)
Проверил:		Гапанюк Ю.Е.
	(Подпись, дата)	(Ф.И.О.)

Лабораторная работа №5

Линейные модели, SVM и деревья решений

Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений.

Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите следующие модели:
 - одну из линейных моделей;
 - SVM:
 - дерево решений.
- 5. Оцените качество моделей с помощью двух подходящих для задачи метрик. Сравните качество полученных моделей.

Дополнительные задания

- Проведите эксперименты с важностью признаков в дереве решений.
- Визуализируйте дерево решений.

Ход выполнения лабораторной работы

```
In [1]:
import pandas as pd
import seaborn as sns
import numpy as np
from typing import Tuple, Dict
import matplotlib.pyplot as plt
from operator import itemgetter
from sklearn.model selection import train test split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import f1 score, r2 score, mean squared error, mean absolute error, accuracy s
core, precision score
from sklearn.svm import LinearSVR, SVR
from sklearn.tree import DecisionTreeRegressor, plot tree
%matplotlib inline
sns.set(style="ticks")
In [2]:
```

```
data = pd.read_csv('pulsar_stars.csv')
```

```
In [3]:
data.head()
Out[3]:
```

	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile	Mean of the DM- SNR curve	Standard deviation of the DM-SNR curve	Excess kurtosis of the DM-SNR curve	Skewness of the DM-SNR curve	target_class
0	140.562500	55.683782	-0.234571	-0.699648	3.199833	19.110426	7.975532	74.242225	0

1	102.507812 Mean of the	5 Standa 70	0. ≜6531 §	Skewness of	1.677258 Mean of	14.860146 Standard	10.576487 Excess	127.393580 Skewness of	0
2	1i03:egra626 profile	deviation of the integrated	kurtosis of the integrated	1.051 the integrated	3th 2121/7 SNR curve	deviation 44669	kurtosis 35822	the 301/7-89/1/18	target_clas6
3	136.750000	57. 17/8449	-0.0684 45	-0.636238	3.642977	20.959280	6.896499	53.593661	0

In [4]:

```
data.isnull().sum()
```

Out[4]:

```
Mean of the integrated profile 0
Standard deviation of the integrated profile 0
Excess kurtosis of the integrated profile 0
Skewness of the integrated profile 0
Mean of the DM-SNR curve 0
Standard deviation of the DM-SNR curve 0
Excess kurtosis of the DM-SNR curve 0
Skewness of the DM-SNR curve 0
target_class 0
dtype: int64
```

Таким образом, пропуски данных отсутствуют.

Разделим выборку на обучающую и тестовую:

In [5]:

```
# Разделим данные на целевой столбец и признаки
X = data.drop("target_class", axis=1)
Y = data["target_class"]
```

In [6]:

```
# С использованием метода train_test_split разделим выборку на обучающую и тестовую X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=1) X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
```

Out[6]:

```
((13423, 8), (4475, 8), (13423,), (4475,))
```

Линейная модель

In [7]:

```
#Построим корреляционную матрицу
fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data.corr(method='pearson'), ax=ax, annot=True, fmt='.2f')
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x11463670>

Mean of the integrated profile -	1.00	0.55	-0.87	-0.74	-0.30	-0.31	0.23	0.14	-0.67	- 1.00
Standard deviation of the integrated profile -	0.55	1.00	-0.52	-0.54	0.01	-0.05	0.03	0.03	-0.36	- 0.75
Excess kurtosis of the integrated profile -	-0.87	-0.52	1.00	0.95	0.41	0.43	-0.34	-0.21	0.79	- 0.50
Skewness of the integrated profile -	-0.74	-0.54	0.95	1.00	0.41	0.42	-0.33	-0.20	0.71	- 0.25
Mean of the DM-SNR curve -	-0.30	0.01	0.41	0.41	1.00	0.80	-0.62	-0.35	0.40	- 0.00
Standard deviation of the DM-SNR curve -	-0.31	-0.05	0.43	0.42	0.80	1.00	-0.81	-0.58	0.49	0.25
Excess kurtosis of the DM-SNR curve -	0.23	0.03	-0.34	-0.33	-0.62	-0.81	1.00	0.92	-0.39	0.25

In [8]:

```
fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x=' Excess kurtosis of the integrated profile', y=' Skewness of the
integrated profile', data=data)
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x12898370>

In [9]:

```
x_array = data[' Excess kurtosis of the integrated profile'].values
y_array = data[' Skewness of the integrated profile'].values
```

In [10]:

In [11]:

```
b0, b1 = analytic_regr_coef(x_array, y_array)
b0, b1
```

Out[11]:

```
(-0.8493834635342365, 5.482102483932346)
```

In [12]:

```
# Вычисление значений у на основе х для регрессии

def y_regr(x_array: np.ndarray, b0: float, b1: float) -> np.ndarray:

res = [b1*x+b0 for x in x_array]

return res
```

In [13]:

```
y_array_regr = y_regr(x_array, b0, b1)
```

In [14]:

```
# Простейшая реализация градиентного спуска
def gradient_descent(x_array : np.ndarray,
                     y array : np.ndarray,
                     b0 0 : float,
                     b1 0 : float,
                     epochs : int,
                     learning_rate : float = 0.001
                    ) -> Tuple[float, float]:
    # Значения для коэффициентов по умолчанию
    b0, b1 = b0 0, b1 0
    k = float(len(x array))
    for i in range(epochs):
        # Вычисление новых предсказанных значений
        # используется векторизованное умножение и сложение для вектора и константы
       y pred = b1 * x array + b0
        # Расчет градиентов
        # np.multiply - поэлементное умножение векторов
        dL_db1 = (-2/k) * np.sum(np.multiply(x_array, (y_array - y_pred)))
       dL db0 = (-2/k) * np.sum(y_array - y_pred)
        # Изменение значений коэффициентов:
       b1 = b1 - learning_rate * dL_db1
       b0 = b0 - learning_rate * dL_db0
    # Результирующие значения
    y pred = b1 * x array + b0
    return b0, b1, y_pred
```

In [15]:

```
def show_gradient_descent(epochs, b0_0, b1_0):
    grad_b0, grad_b1, grad_y_pred = gradient_descent(x_array, y_array, b0_0, b1_0, epochs)
    print('b0 = {} - (теоретический), {} - (градиентный спуск)'.format(b0, grad_b0))
    print('b1 = {} - (теоретический), {} - (градиентный спуск)'.format(b1, grad_b1))
    print('MSE = {}'.format(mean_squared_error(y_array_regr, grad_y_pred)))
    plt.plot(x_array, y_array, 'g.')
    plt.plot(x_array, y_array_regr, 'b', linewidth=2.0)
    plt.plot(x_array, grad_y_pred, 'r', linewidth=2.0)
    plt.show()
```

In [16]:

```
# Примеры использования градиентного спуска show_gradient_descent(10, 0, 0)
```

```
b0 = -0.8493834635342365 - (теоретический), 0.03448999261498756 - (градиентный спуск) b1 = 5.482102483932346 - (теоретический), 0.13918310376478424 - (градиентный спуск) MSE = 35.104804413419025
```



```
10 -10 -2 0 2 4 6 8
```

In [17]:

```
show_gradient_descent(1000, 0, 0)
```

```
b0 = -0.8493834635342365 - (теоретический), -0.1046956764421704 - (градиентный спуск) b1 = 5.482102483932346 - (теоретический), 4.8016950489981 - (градиентный спуск) MSE = 0.700140861729278
```


In [18]:

```
show_gradient_descent(10000, 0, 0)
```

```
b0 = -0.8493834635342365 - (теоретический), -0.8493787037369952 - (градиентный спуск) b1 = 5.482102483932346 - (теоретический), 5.482099192076996 - (градиентный спуск) MSE = 2.2423416471452288e-11
```


In [19]:

```
show_gradient_descent(10, -2, 5)
```

```
b0 = -0.8493834635342365 - (теоретический), -1.972729515823501 - (градиентный спуск) b1 = 5.482102483932346 - (теоретический), 5.023704112532512 - (градиентный спуск) MSE = 2.039915190146421
```



```
20 - 10 - 0 - 10 - 2 4 4 6 8
```

In [20]:

```
# Обучим линейную регрессию и сравним коэффициенты с рассчитанными ранее reg1 = LinearRegression().fit(x_array.reshape(-1, 1), y_array.reshape(-1, 1)) (b1, reg1.coef_), (b0, reg1.intercept_)
```

Out[20]:

```
((5.482102483932346, array([[5.48210248]])), (-0.8493834635342365, array([-0.84938346])))
```

SVM

In [21]:

```
fig, ax = plt.subplots(figsize=(5,5))
sns.scatterplot(ax=ax, x=x_array, y=y_array)
```

Out[21]:

<matplotlib.axes._subplots.AxesSubplot at 0x14146d50>

In [22]:

```
def plot_regr(clf):
    title = clf.__repr__
    clf.fit(x_array.reshape(-1, 1), y_array)
    y_pred = clf.predict(x_array.reshape(-1, 1))
    fig, ax = plt.subplots(figsize=(5,5))
    ax.set_title(title)
    ax.plot(x_array, y_array, 'b.')
    ax.plot(x_array, y_pred, 'ro')
    plt.show()
```

In [23]:

```
plot_regr(LinearSVR(C=1.0, max_iter=10000))
```

<bound method BaseEstimator.__repr__ of LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, intercept_scaling=1.0, loss='epsilon_insensitive', max_iter=10000, random_state=None, tol=0.0001, verbose=0)>

. .

In [24]:

```
plot_regr(SVR(kernel='rbf', gamma=0.2, C=1.0))
```


Дерево решений

In [25]:

```
# Обучим дерево на всех признаках
tree = DecisionTreeRegressor(random_state=1)
tree.fit(X_train, Y_train)
```

Out[25]:

In [26]:

```
# Важность признаков
list(zip(X_train.columns.values, tree.feature_importances_))
```

Out[26]:

```
[(' Mean of the integrated profile', 0.02764437664705047),
(' Standard deviation of the integrated profile', 0.029344493324682287),
(' Excess kurtosis of the integrated profile', 0.7986346670595349),
(' Skewness of the integrated profile', 0.02697304742290089),
(' Mean of the DM-SNR curve', 0.020993135609091208),
(' Standard deviation of the DM-SNR curve', 0.05870193902245078),
(' Excess kurtosis of the DM-SNR curve', 0.022090683667882426)
```

```
(' Skewness of the DM-SNR curve', 0.015617657246407004)]
```

In [27]:

```
# Важность признаков в сумме дает единицу sum(tree.feature_importances_)
```

Out[27]:

1.0

In [28]:

```
def draw feature importances(tree model, X dataset, figsize=(10,5)):
    Вывод важности признаков в виде графика
    # Сортировка значений важности признаков по убыванию
   list_to_sort = list(zip(X_dataset.columns.values, tree_model.feature_importances_))
    sorted_list = sorted(list_to_sort, key=itemgetter(1), reverse = True)
    # Названия признаков
    labels = [x for x,_ in sorted_list]
    # Важности признаков
   data = [x for _,x in sorted_list]
    # Вывод графика
   fig, ax = plt.subplots(figsize=figsize)
   ind = np.arange(len(labels))
    plt.bar(ind, data)
    plt.xticks(ind, labels, rotation='vertical')
    # Вывод значений
    for a,b in zip(ind, data):
       plt.text(a-0.05, b+0.01, str(round(b,3)))
    plt.show()
    return labels, data
```

In [29]:

```
tree_fl, tree_fd = draw_feature_importances(tree, X_train)
```


In [30]:

```
# Список признаков, отсортированный на основе важности, и значения важности
tree_fl, tree_fd
Out[30]:
([' Excess kurtosis of the integrated profile',
  \mbox{'} Standard deviation of the DM-SNR curve \mbox{'} ,
```

' Mean of the integrated profile'

' Standard deviation of the integrated profile',

' Skewness of the integrated profile',

' Excess kurtosis of the DM-SNR curve',

 $^{\mbox{\scriptsize I}}$ Mean of the DM-SNR curve $^{\mbox{\scriptsize I}}$,

' Skewness of the DM-SNR curve'],

[0.7986346670595349,

0.05870193902245078,

0.029344493324682287,

0.02764437664705047,

0.02697304742290089,

0.022090683667882426,

0.020993135609091208,

0.015617657246407004])

In [31]:

X train.head()

Out[31]:

	Mean of the integrated profile	Standard deviation of the integrated profile	Excess kurtosis of the integrated profile	Skewness of the integrated profile	Mean of the DM- SNR curve	Standard deviation of the DM-SNR curve	Excess kurtosis of the DM-SNR curve	Skewness of the DM-SNR curve
5744	79.429688	48.745943	1.594305	3.010275	19.621237	52.699148	2.758187	6.734941
12724	26.421875	28.354786	6.414866	45.383641	59.007525	58.278946	1.452548	1.756035
1010	138.476562	58.650843	-0.251328	-0.632375	2.656355	20.022599	8.482193	76.954850
15844	94.117188	41.160247	0.608247	1.171382	2.255853	17.461752	10.027291	112.565713
4163	130.039062	51.597663	-0.033977	-0.202117	17.432274	47.884699	2.799555	7.008160

In [32]:

```
# Пересортируем признаки на основе важности
X train sorted = X train[tree fl]
X_train_sorted.head()
```

Out[32]:

	Excess kurtosis of the integrated profile	Standard deviation of the DM-SNR curve	Standard deviation of the integrated profile	Mean of the integrated profile	Skewness of the integrated profile	Excess kurtosis of the DM-SNR curve	Mean of the DM- SNR curve	Skewness of the DM-SNR curve
5744	1.594305	52.699148	48.745943	79.429688	3.010275	2.758187	19.621237	6.734941
12724	6.414866	58.278946	28.354786	26.421875	45.383641	1.452548	59.007525	1.756035
1010	-0.251328	20.022599	58.650843	138.476562	-0.632375	8.482193	2.656355	76.954850
15844	0.608247	17.461752	41.160247	94.117188	1.171382	10.027291	2.255853	112.565713
4163	-0.033977	47.884699	51.597663	130.039062	-0.202117	2.799555	17.432274	7.008160

In [33]:

```
Y_test_predict = tree.predict(X_test)
```

In [34]:

```
mean_absolute_error(Y_test, Y_test_predict)
```

Out[34]:

0.03217877094972067

```
In [35]:
```

```
# Обучим дерево и предскажем результаты на пяти лучших признаках tree_2 = DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:5]], Y_train)
Y_test_predict_2 = tree_2.predict(X_test[tree_fl[0:5]])
```

In [36]:

```
mean_absolute_error(Y_test, Y_test_predict_2)
```

Out[36]:

0.033072625698324025

In [37]:

```
# Исследуем, как изменяется ошибка при добавлении признаков в порядке значимости X_range = list(range(1, len(X_train.columns)+1))
X_range
```

Out[37]:

```
[1, 2, 3, 4, 5, 6, 7, 8]
```

In [38]:

```
mae_list = []

for i in X_range:

# Обучим дерево и предскажем результаты на заданном количестве признаков

tree_3 = DecisionTreeRegressor(random_state=1).fit(X_train[tree_fl[0:i]], Y_train)

Y_test_predict_3 = tree_3.predict(X_test[tree_fl[0:i]])

temp_mae = mean_absolute_error(Y_test, Y_test_predict_3)

mae_list.append(temp_mae)
```

In [39]:

```
plt.subplots(figsize=(10,5))
plt.plot(X_range, mae_list)
for a,b in zip(X_range, mae_list):
    plt.text(a, b, str(round(b,3)))
plt.show()
```


Оценка качества моделей

Дерево решений

In [40]:

```
print("r2_score:", r2_score(Y_test, tree.predict(X_test)))
print("mean_squared_error:", mean_squared_error(Y_test, tree.predict(X_test)))

r2_score: 0.608192211999387
mean_squared_error: 0.03217877094972067
```

Линейная регрессия

```
In [41]:
```

```
pred = reg1.predict(x_array.reshape(-1, 1))
print("r2_score:", r2_score(y_array, pred))
print("mean_squared_error", mean_squared_error(y_array, pred))
```

r2_score: 0.8944034470145041 mean squared error 4.017001458201285

Метод опорных векторов

```
In [42]:
```

```
svr = SVR(kernel='rbf')
svr.fit(X_train, Y_train)
print("r2_score:", r2_score(Y_test, svr.predict(X_test)))
print("mean_squared_error", mean_squared_error(Y_test, svr.predict(X_test)))
```

```
r2_score: 0.7018891842122201
mean_squared_error 0.02448353491854106
```

Можно сказать, что все три модели являются приемлемыми, т.к. коэффициент детерминации для всех трех моделей больше 50%.

Если учитывать показатели обеих метрик, наилучший результат показал метод опорных векторов.