Colle 2 • INDICATIONS Raisonnements, ensembles

Exercice 2.1

Une fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ est dite polynomiale de degré $n \in \mathbb{N}$ lorsque : $\exists a_0, \dots, a_n \in \mathbb{R}: \forall x \in \mathbb{R}, \quad f(x) = a_0 + a_1 x + \dots + a_n x^n.$

Déterminer l'ensemble des fonctions polynomiales de degré 4 paires.

indication

Raisonner par analyse-synthèse. En se donnant f une fonction polynomiale de degré 3, déterminer des conditions sur les coefficients $a_0, ..., a_4$ pour avoir

$$\forall x \in \mathbb{R}, f(x) - f(-x) = 0.$$

On pourra en particulier évaluer cette relation en certains points.

résultat

Les fonctions répondant au problème sont dans l'ensemble $\left\{x\longmapsto a_4x^4+a_2x+a_0\;;\;a_0,a_2,a_4\in\mathbb{R}\right\}$.

Exercice 2.2

1. Déterminer les solutions r_1, r_2 de l'équation

$$x^2 - \frac{1}{6}x - \frac{35}{6} = 0.$$

2. Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle que :

$$\forall n \in \mathbb{N}, \quad u_{n+2} = \frac{1}{6}u_{n+1} + \frac{35}{6}u_n.$$

Montrer que :

$$\exists \lambda, \mu \in \mathbb{R} : \forall n \in \mathbb{N}, \quad u_n = \lambda r_1^n + \mu r_2^n.$$

indication

- 1. Méthode classique.
- **2.** Raisonner par analyse-synthèse. Évaluer en n=0 et n=1 pour déterminer λ et μ puis, dans la synthèse, raisonner par récurrence à deux prédécesseurs.

résultat

1

1.
$$r_1 = \frac{5}{2}$$
 et $r_2 = -\frac{7}{3}$.

Exercice 2.3

Soient $p, q \in [1, +\infty[$ tels que $p \leqslant q$.

Soit $r \in [p, q]$.

Montrer que :

$$\exists \theta \in [0,1]: \quad \frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}.$$

indication -

Raisonner par analyse-synthèse, en n'oubliant pas de vérifier que la solution trouvée est bien dans [0,1].

Exercice 2.4

Déterminer les solutions sur $\mathbb R$ de l'équation

$$\sqrt{21-4x}=x.$$

- indication –

Élever au carré, résoudre l'équation polynomiale de degré 2 déterminée et déterminer la solution du problème par des considérations de signe.

résultat -

$$x = 3$$
.

Exercice 2.5

Soit $a \in \mathbb{R}$. On pose, pour $x \in \mathbb{R}$, f(x) := ax. On suppose que :

$$\forall x \in \mathbb{R}, \quad f(f(x)) + f(x) = 2x.$$

- 1. Déterminer les valeurs possibles de a.
- **2.** Montrer que, pour tout $x \in \mathbb{R}$, il existe un unique couple $(x_1, x_2) \in \mathbb{R}^2$ tels que :

$$f(x_1) = x_1$$
, $f(x_2) = -2x_2$ et $x = x_1 + x_2$.

— indication —

- **1.** Évaluer la relation supposée sur f en x = 1 et résoudre l'équation de degré 2.
- 2. Raisonner par analyse-synthèse.

——— résultat —

2

1.
$$a = 1$$
 ou $a = -2$.

2.
$$x_1 = \frac{2x + f(x)}{3}$$
 et $x_2 = \frac{x - f(x)}{3}$.

Exercice 2.6

Soit E un ensemble.

Soient A, B, C trois parties de E.

Montrer que :

$$\begin{cases}
A \cup B = A \cup C \\
A \cap B = A \cap C
\end{cases}
\iff
B = C.$$

indication

On pourra commencer par montrer que :

$$A \cup B \subset A \cup C
A \cap B \subset A \cap C$$
 $\iff B \subset C.$

Exercice 2.7

Soit E un ensemble.

Soient A, B, C trois parties de E.

Montrer que :

$$\left. \begin{array}{l}
B \cup C \subset A \cap C \\
A \subset B \cap C
\end{array} \right\} \quad \Longleftrightarrow \quad A = B = C.$$

Exercice 2.8

Pour $n \in \mathbb{N}$, on pose $u_n := \frac{\sqrt{n+1}}{2^{2n}} {2n \choose n}$.

Montrer que la suite $(u_n^2)_n$ est monotone.

indication -

En notant $v_n \coloneqq u_n^2$, calculer le quotient $\frac{v_{n+1}}{v_n}$ (en justifiant son existence) et le comparer à 1: $\frac{v_{n+1}}{v_n} = \frac{4n^3+12n^2+9n+2}{4n^3+12n^2+12n+4}.$

$$\frac{v_{n+1}}{v_n} = \frac{4n^3 + 12n^2 + 9n + 2}{4n^3 + 12n^2 + 12n + 4}$$

— résultat -

La suite $(u_n^2)_n$ est décroissante.

Exercice 2.9

Montrer que :

$$\forall n \in \mathbb{N}^*, \quad \frac{4^n}{2n} \leqslant \binom{2n}{n} \leqslant \frac{4^n}{2}.$$

3

Raisonner par récurrence, en écrivant que $\binom{2(n+1)}{n+1} = \frac{2(2n+1)}{n+1} \binom{2n}{n}$.

Exercice 2.10

Soit
$$n \in \mathbb{N}^*$$
. Déterminer $u_n \in \mathbb{R}$ tel que :
$$\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\cdots\left(\frac{1}{2}-(n-1)\right)}{n!} = u_n\binom{2n}{n}.$$

— indication -

Développer le numérateur, faire apparaître les quantités (2n)!, n! et factoriser par une puissance de 2.

— résultat -

$$\frac{\frac{1}{2}(\frac{1}{2}-1)\cdots(\frac{1}{2}-(n-1))}{n!}=\frac{(-1)^{n-1}}{2^{2n+2}(n-\frac{1}{2})}\binom{n}{2n}.$$

4