Today

Unsupervised Learning

Reminders: PS1 is due tonight @11:59pm

Pre-lecture Material for Friday

Announcement: Lab 2: Anaconda Setup

PS2 will be posted on Friday

Midterm Room Scheduling Ongoing

Unsupervised Learning I

Today

- Unsupervised learning
 - K-Means clustering
 - Dimensionality reduction

Unsupervised Learning I

Clustering

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Goal of Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Clustering

Gene analysis

Types of voters

Social network analysis

Trending news

Unsupervised Learning I

K-means Algorithm

K-means algorithm

Input:

- *K* (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

K-means algorithm

```
Randomly initialize K cluster centroids \mu_1,\mu_2,\dots,\mu_K\in\mathbb{R}^n
Repeat { for i = 1 to m c^{(i)} := index (from 1 to K) of cluster centroid closest to x^{(i)} for k = 1 to K \mu_k := average (mean) of points assigned to cluster k }
```


 $c^{(i)}$ = index of cluster (1,2,..., $\!K\!$) to which example $x^{(i)}$ is currently assigned

 μ_k = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Optimization cost: "distortion"

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{\substack{c^{(1)}, \dots, c^{(m)}, \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \ldots, μ_K equal to these K examples.

Local Optima

Avoiding Local Optima with Random Initialization

```
For i = 1 to 100 {  \text{Randomly initialize K-means.}   \text{Run K-means. Get } c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K \text{-}   \text{Compute cost function (distortion)}   J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

How to choose K?

Elbow method:

Elbow method:

K-means for Non-Separated Clusters

How to choose K?

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

Unsupervised Learning I

Applications of Clustering

Application of Clustering: Vector Quantization

- Compress an image using clustering
- Each {R, G, B} pixel value is an input vector x⁽ⁱ⁾
 (255 x 255 x 255 possible values)
- Cluster into K clusters (using k-means)
- Replace each vector by its cluster's index $c^{(i)}$ (K possible values)
- For display, show the mean μ_{c^i}

Vector quantization: color values

Vector quantization: color values

Vector quantization: general case

Slide credit: Josef Sivic

Vector quantization: general case

Slide credit: Josef Sivic

K-Means for Image Compression

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation showing the initial images together with their K-means segmentations obtained using various values of K. This also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher compression at the expense of poorer image quality.

Unsupervised Learning I

Dimensionality Reduction

Data Compression

For each data point, we could reduce the memory requirement for storage and having learning algorithms run faster.

E.g.

Data Compression

Reduce data from 3D to 2D

Unsupervised Learning I

Principal Component Analysis

How to choose lower-dim subspace?

Minimize "error"

Choose subspace with minimal "information loss"

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)}$) onto which to project the data, so as to minimize the projection error.

Choose subspace with minimal "information loss"

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)}$) onto which to project the data, so as to minimize the projection error.

Reduce from n-dimension to K-dimension: Find K vectors $u^{(1)}, u^{(2)}, \dots, u^{(K)}$ onto which to project the data so as to minimize the projection error.

PCA is not Linear Regression

Linear Regression: predicting *y*

PCA: no predicted variable

PCA Algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^{m} x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$. If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

PCA Solution

 The solution turns out to be the first K eigenvectors of the data covariance matrix (see Bishop 12.1 for details)

 Closed-form, use Singular Value Decomposition (SVD) on covariance matrix

PCA Algorithm

Normalize features (ensure every feature has zero mean) and optionally scale feature

Compute "covariance matrix" Σ :

Sigma =
$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^T$$

Compute its "eigenvectors":

$$\texttt{[U,S,V]} = \texttt{svd}(\texttt{Sigma}) \; ; \quad U = \begin{bmatrix} & & & & & \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & & \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Keep first K eigenvectors and project to get new features z

```
Ureduce = U(:,1:K);
z = Ureduce'*x;
```

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m}\sum_{i=1}^m \|x^{(i)} - x_{approx}^{(i)}\|^2$ Total variation in the data: $\frac{1}{m}\sum_{i=1}^m \|x^{(i)}\|^2$

Typically, choose k to be smallest value so that

$$\frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01$$
 (1%)

"99% of variance is retained"

Good use of PCA

- Compression
 - Reduce memory/disk needed to store data
 - Speed up learning algorithm

- Visualization

Bad use of PCA: To prevent overfitting

Use $z^{(i)}$ instead of $x^{(i)}$ to reduce the number of features to k < n.

Thus, fewer features, less likely to overfit.

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

Summary

Unsupervised learning

- Discrete latent variables:
 - K-Means clustering
 - Dimensionality Reduction