Teoria das Probabilidades

Espaço de Probabilidade

Axiomas e Propriedades

(revisão)

1/6

Espaço de Probabilidade

Definição

O **espaço de probabilidade** ou modelo probabilístico associado a um experimento é dado por (Ω, \mathcal{F}, P) com

- $\Omega = \operatorname{espaço amostral}$
 - conj. de todos os possíveis resultados do experimento
- ${\cal F} = \sigma -$ álgebra de subconjuntos de Ω
 - = coleção de eventos de Ω
- P = função (ou medida) de probabilidade definida em \mathcal{F} .

Em boa parte deste curso o espaço de probabilidades será **discreto**, isto é, Ω é constituído de elementos contáveis ou enumeráveis.

Neste caso, \mathcal{F} é o conjunto de todas as partes, ou seja, a coleção de todos os subconjuntos de Ω .

2/6

Função de Probabilidade

Definição

Considere um experimento com espaço amostral Ω e σ -álgebra \mathcal{F} . A função P definida em \mathcal{F} com valores no intervalo [0,1] $(P:\mathcal{F}\to[0,1])$ é chamada de (medida de) probabilidade se satisfaz os três axiomas abaixo.

```
Axioma 1 P(\Omega)=1

Axioma 2 Para todo A\in\mathcal{F},\,0\leq P(A)\leq 1 (ou apenas P(A)\geq 0)

Axioma 3 (\sigma-aditividade) Para qualquer sequência de eventos mutuamente exclusivos (ou disjuntos) A_1,A_2,\ldots\in\mathcal{F} (isto é, A_1,A_2,\ldots\in\mathcal{F} tais que A_i\cap A_j=\emptyset\ \forall i\neq j), temos que P\left(\bigcup_{i=1}^\infty A_i\right)=\sum_{i=1}^\infty P(A_i)
```

3/6

 Beti Kira (IME-USP)
 MAE 228
 05.março.2018

Propriedades da função Probabilidade

- (1) $P(\emptyset) = 0$
- (2) Se A_1, A_2, \ldots, A_n é uma sequência <u>finita</u> de eventos <u>mutuamente exclusivos</u> de \mathcal{F} então $P\left(\bigcup_{k=1}^n A_k\right) = \sum_{k=1}^n P\left(A_k\right)$
- (3) $P(A^c) = 1 P(A)$ para todo $A \in \mathcal{F}$
- (4) Para $A \in B \in \mathcal{F}$, tal que $B \subset A$, tem-se que $P(A) \geq P(B)$
- (5) Para todo A e $B \in \mathcal{F}$ tem-se que $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (Regra da adição de probabilidades)

Propriedades da função Probabilidade - continuação

(6) (Teorema de Poincaré ou Fórmula da inclusão-exclusão)

Para
$$A_1, A_2, \ldots, A_m \in \mathcal{F}$$
, $(m \geq 2)$

$$P\left(\bigcup_{i=1}^{m} A_{i}\right) = \sum_{i=1}^{m} P(A_{i}) - \sum_{i_{1} < i_{2}} P(A_{i_{1}} \cap A_{i_{2}}) + \sum_{i_{1} < i_{2} < i_{3}} P(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}) + \dots + (-1)^{r+1} \sum_{i_{1} < \dots < i_{r}} P(A_{i_{1}} \cap \dots \cap A_{i_{r}}) + \dots + (-1)^{m+1} P(A_{1} \cap \dots \cap A_{m})$$

Exemplo: Problema dos pareamentos/coincidências

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ · 臺 · 釣९♂

5/6

Beti Kira (IME-USP) MAE 228 05.março.2018

Propriedades da função Probabilidade - continuação

(7) (Sub $-\sigma$ -aditividade)

Para $A_1, A_2, \ldots \in \mathcal{F}$ (quaisquer),

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i)$$

Esse resultado vale para um número finito de eventos:

(7') (Sub-aditividade)

Para $A_1, A_2, \dots A_m \in \mathcal{F}$ (quaisquer), $m \leq 2$,

$$P\left(\bigcup_{i=1}^{m} A_i\right) \le \sum_{i=1}^{m} P(A_i)$$