CS/ECE/ISYE524: Introduction to Optimization – Linear Optimization Models

Jeff Linderoth

Department of Industrial and Systems Engineering University of Wisconsin-Madison

February 11, 2024

Piecewise linear functions

- Some problems do not appear to be LPs but can be converted to LPs using a suitable transformation.
- An important case: *convex piecewise linear functions*.

Consider the following **nonlinear** optimization:

Where f(x) is the function:

Piecewise Linear Functions

The trick is to convert the problem into **epigraph** form: add an extra decision variable t and turn the cost into a constraint!

This feasible set is **polyhedral**. It is the set of (x,t) satisfying:

$$\{t \ge -2x + 3, \quad t \ge -\frac{1}{2}x + \frac{3}{2}, \quad t \ge 3x - 9\}$$

Equivalent linear program:

$$\begin{array}{ll} \underset{x,t}{\text{minimize}} & t \\ \text{subject to:} & t \geq -2x+3, \quad t \geq -\frac{1}{2}x+\frac{3}{2} \\ & t \geq 3x-9, \qquad x \geq 0 \end{array}$$

Piecewise linear functions

Epigraph trick only works if it's a convex polyhedron.

This epigraph is **not** a **convex polyhedron** so it cannot be the feasible set of a linear program.

Minimax problems

• The maximum of several linear functions is *always* convex. So we can minimize it using the epigraph trick. Example:

$$f(x) = \max_{i=1,\dots,k} \left\{ a_i^\mathsf{T} x + b_i \right\}$$

 $\min_{x} \max_{i=1,\dots,k} \left\{ a_i^\mathsf{T} x + b_i \right\}$

 $\min_{x,t}$

s.t. $t \ge a_i^{\mathsf{T}} x + b_i$ $i = 1, 2, \dots, k$.

Maximin problems

• The minimum of several linear functions is *always* concave. So we can maximize it using the epigraph trick. Example:

$$f(x) = \min_{i=1,\dots,k} \left\{ a_i^\mathsf{T} x + b_i \right\}$$

$$\max_{x} \min_{i=1,\dots,k} \left\{ a_i^\mathsf{T} x + b_i \right\}$$

 $\max_{x,t}$

s.t.
$$t \leq a_i^\mathsf{T} x + b_i \quad \forall i$$

Minimax and Maximin problems

• A minimax problem:

$$\min_{x} \max_{i=1,\dots,k} \left\{ a_i^\mathsf{T} x + b_i \right\} \qquad \Longrightarrow \qquad \min_{x,t} \quad t \\ \mathsf{s.t.} \quad t \ge a_i^\mathsf{T} x + b_i \quad \forall i$$

• A maximin problem:

$$\max_{x} \min_{i=1,\dots,k} \left\{ a_i^\mathsf{T} x + b_i \right\} \qquad \Longrightarrow \qquad \max_{x,t} \quad t$$
 s.t. $t \le a_i^\mathsf{T} x + b_i \quad \forall i$

Note: Sometimes called *minmax*, *min-max*, min/max. Of course, minmax \neq maxmin!

Absolute values

• Absolute values are piecewise linear! For $x \in \mathbb{R}$:

 $\begin{aligned} \min_{x,t} & t \\ \text{s.t.} & Ax \leq b \\ & t \geq x \\ & t \geq -x \end{aligned}$

So are sums of absolute values:

$$\min_{x,y} |x| + |y| =$$

$$\begin{aligned} & \min_{x,y,t,r} & t+r \\ & \text{s.t.} & t \geq x, & t \geq -x \\ & r \geq y, & r \geq -y \end{aligned}$$

• But not differences! $\min_{x,y} |x| - 2|y|$ is not an LP.

What is the largest sphere you can fit inside a polyhedron?

If y is the center, then draw perpendicular lines to each face of the polyhedron.

We want to maximize the smallest d_i . In other words,

$$\max_{y} \min_{i=1,\dots,5} d_i(y)$$

(the y shown here is obviously not optimal!)

What is the largest sphere you can fit inside a polyhedron?

If *y* is the center, then draw perpendicular lines to each face of the polyhedron.

We want to maximize the smallest d_i . In other words,

$$\max_{y} \min_{i=1,\dots,5} \frac{d_i(y)}{d_i(y)}$$

The optimal y is the Chebyshev center

Finding the Chebyshev center amounts to solving an LP!

To compute the distance between y and the hyperplane $a^{\mathsf{T}} x = b$, notice that if the distance is r, then $y + \frac{r}{\|a\|} a$ belongs to the hyperplane:

$$a^{\mathsf{T}}\left(y + \frac{r}{\|a\|}a\right) = b$$

Simplifying, we obtain: $a^{\mathsf{T}}y + ||a||r = b$

"The distance between y and each hyperplane is at least r" is equivalent to saying that $a_i^T y + ||a_i|| r \le b_i$ for each i.

Finding the Chebyshev center amounts to solving an LP!

The transformation to an LP is given by:

Example: find the Chebyshev center of the polyhedron defined by the following inequalities:

$$2x - y + 2z \le 2$$
, $-x + 2y + 4z \le 16$, $x + 2y - 2z \le 8$, $x \ge 0$, $y \ge 0$, $z \ge 0$

Chebyshev.ipynb

Wash and Go With

- Project Scheduling: PERT (Project Evaluation and Review Technique)
- Often used synonomously with CPM: Critical Path Method

PERT

- I: Set of projects
- $P \subset I \times I$: Precedence relationships. $((i, j) \in P \Rightarrow i \text{ immediately follows } j)$
- a_i : Duration of activity $i \in I$

Modeling PERT

Variables

• t_i : Time activity starts

Constraints

• *i* cannot begin before *j* finishes:

$$t_i \ge t_i + a_i \qquad \forall (i,j) \in P$$

Objective

Minimize the latest job completion time (makespan).

$$\min \max\{t_1 + a_1, t_2 + a_2 \dots, t_{|I|} + a_{|I|}\}.$$

Mini-Max

Minimax will haunt you

$$T^* = \min z$$

$$z \geq t_i + a_i \ \forall i \in I$$

$$t_j \geq t_i + a_i \ \forall (i, j) \in P$$

$$t_i \geq 0 \ \forall i \in I$$

Example: building a house

Several tasks must be completed in order to build a house.

- Each task takes a known amount of time to complete.
- A task may depend on other tasks, and can only be started once those tasks are complete.
- Tasks may be worked on simultaneously as long as they don't depend on one another.
- How fast can the house be built?

Job No.	Description	Immediate predecessors	Normal time (days)
a	Start		0
Ь	Excavate and pour footers	a	4
c	Pour concrete foundation	Ь	2
d	Erect wooden frame including rough roof	c	4
•	Lay brickwork	d	6
f	Install basement drains and plumbing	c	1
g	Pour basement floor	f	2
h	Install rough plumbing	f	3
i	Install rough wiring	d	2
i	Install heating and ventilating	d,g	4
k	Fasten plaster board and plaster (including drying)	i,j,h	10
ı	Lay finish flooring	k	3
m	Install kitchen fixtures	1	1
n	Install finish plumbing	1	2
0	Finish carpentry	1	3
Р	Finish roofing and flashing	•	2
9	Fasten gutters and downspouts	P	1
r	Lay storm drains for rain water	c	1
	Sand and varnish flooring	o,t	2
,	Point	m,n	3
U	Finish electrical work	1	1
v	Finish grading	q,r	2
w	Pour walks and complete landscaping	v	5

Example: building a house

The data can be visualized using a directed graph.

 Arrows indicate task dependencies.

What are the decision variables?

- t_i : start time of i^{th} task.
- precedence constraints are expressed in terms of t_i's.
- minimize t_r .

A small sample:

Let t_l , t_o , t_m , t_n , t_t , t_s be start times of the associated tasks.

Now use the graph to write the dependency constraints:

Tasks o, m, and n can't start until task l is finished, and task l takes
 3 days to finish. So the constraints are:

$$t_l + 3 \le t_o$$
, $t_l + 3 \le t_m$, $t_l + 3 \le t_n$

• Task t can't start until tasks m and n are finished. Therefore:

$$t_m + 1 \le t_t, \quad t_n + 2 \le t_t,$$

• Task s can't start until tasks o and t are finished. Therefore:

$$t_0 + 3 \le t_s, \quad t_t + 3 \le t_s$$

Example: building a house

Full implementation in Julia:

House.ipynb

- Follow-up: which tasks in the project are critical to finishing on time?
- Which tasks can withstand delays?
- related to notion of duality we will see later.

Next...

- more examples of sequential problems
- transportation/shipment problems
- assignment problems
- shortest path problems
- network flows