Deep Generative Models: Continous Latent Variables

```
Philip Schulz and Wilker Aziz

https:
//github.com/philschulz/VITutorial
```

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Recap: Generative Models

Joint distribution over observed data x and latent variables Z.

$$p(x, z | \alpha) = \overbrace{p(x | z, \alpha)}^{\text{likelihood}} \underbrace{p(z | \alpha)}_{\text{prior}}$$

The likelihood and prior are often standard distributions (Gaussian, Bernoulli) with simple dependence on conditioning information.

Recap: Variational Inference

Objective

$$\max_{q(z)} \mathbb{E}\left[\log p(x,z)\right] + \mathbb{H}\left(q(z)\right)$$

- ▶ The ELBO is a lower bound on log p(x)
- ▶ Mean field assumption: $q(z) = \prod_{i=1}^{N} q(z_i)$

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Feature-rich Generative Models

Let us assume that z has internal structure (features). How can we exploit that?

First Idea

Make $p(x|z, \alpha)$ a log-linear model.

- Only discrete data
- ▶ Trainable with EM if we can efficiently enumerate \mathcal{X} and \mathcal{Z} .

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top} f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, z)\right)}$$

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top}f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top}f(x, z)\right)}$$

Weight Gradient

$$\frac{d}{dw}\log p(x|z,w) = f(x,z) - \mathbb{E}\left[f(X,z)|z,w\right]$$

Log-linear Model

Let us treat z as observed.

$$p(x|z, \alpha = w) = \frac{\exp\left(w^{\top} f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, z)\right)}$$

Weight Gradient

$$\frac{d}{dw}\log p(x|z,w) = f(x,z) - \mathbb{E}\left[f(X,z)|z,w\right]$$

Updates need to be performed iteratively.

Now let us treat z as latent.

Now let us treat z as latent.

Model

$$p(x, z|w) = \underbrace{\frac{\exp\left(w^{\top} f(x, z)\right)}{\sum_{x \in \mathcal{X}} \exp\left(w^{\top} f(x, z)\right)}}_{p(x|z, w)} \times \underbrace{p(z)}_{arbitrary}$$

$$p(z|x,w) = \frac{p(x,z|w)}{p(x|w)}$$

$$p(z|x,w) = \frac{p(x,z|w)}{p(x|w)} = \frac{p(x,z|w)}{\sum_{z} p(x,z|w)} =$$

$$p(z|x, w) = \frac{p(x, z|w)}{p(x|w)} = \frac{p(x, z|w)}{\sum_{z} p(x, z|w)} = \frac{\exp(w^{\top} f(x, z))}{\sum_{x \in \mathcal{X}} \exp(w^{\top} f(x, z))} \times p(z)}$$

$$\frac{\exp(w^{\top} f(x, z))}{\sum_{z} \frac{\exp(w^{\top} f(x, z))}{\sum_{x \in \mathcal{X}} \exp(w^{\top} f(x, z))} \times p(z)}$$

$$\frac{d}{dw}\mathbb{E}_{p(z|x,w)}\left[\log p(x,z|w)\right] =$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} [\log p(x,z|w)] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} [\log p(x,z|w)] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w) =$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} [\log p(x,z|w)] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \left(\frac{d}{dw} \log p(x|z,w) + \frac{d}{dw} p(z) \right)$$

$$\frac{d}{dw} \mathbb{E}_{p(z|x,w)} \left[\log p(x,z|w) \right] =$$

$$\frac{d}{dw} \sum_{z} p(z|x,w) \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \frac{d}{dw} \log p(x,z|w) =$$

$$\sum_{z} p(z|x,w) \left(\frac{\frac{d}{dw} \log p(x|z,w)}{\frac{d}{dw} p(z)} + \frac{\frac{d}{dw} p(z)}{\frac{d}{dw} p(z)} \right)$$

$$\frac{d}{dw} \mathbb{E}_{\rho(z|x,w)} \left[\log \rho(x,z|w) \right] = \\ \mathbb{E}_{\rho(z|x,w)} \left[f(x,Z)|x,w \right] - \mathbb{E}_{\rho(z|x,w)} \left[\mathbb{E} \left[(f(X,Z)|Z,w) \right] \right]$$

Weight Gradient (treat p(z|x, w) as fixed)

$$\frac{d}{dw} \mathbb{E}_{\rho(z|x,w)} \left[\log \rho(x,z|w) \right] = \\ \mathbb{E}_{\rho(z|x,w)} \left[f(x,Z)|x,w \right] - \mathbb{E}_{\rho(z|x,w)} \left[\mathbb{E} \left[(f(X,Z)|Z,w) \right] \right]$$

Procedurally

$$E_{-count}(f(x,z)) - \{ E_{-count}(f(x,z)) \times \mathbb{E}[f(X,z)|z,w] \}$$

EM

E-step
$$p(z|x, w) = \frac{p(x,z|w)}{\sum_{z} p(x,z|w)}$$
 in $\mathcal{O}(|\mathcal{X}| \times |\mathcal{Z}|)$
M-step Iteratively optimise w to match $\mathsf{E}_\mathsf{count}(x,z)$ with $\mathsf{E}_\mathsf{count}(x,z) \times \mathbb{E}[X|z,w]$

Restrictions

- ▶ Only log-linear models
- Scales badly

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Wake-sleep Algorithm

- Generalise latent variables to Neural Networks
- Train generative neural model
- Use variational inference! (kind of)

2 Neural Networks:

A generation network to model the data (the one we want to optimise) – parameters: θ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) parameters: λ

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) – parameters: λ
- Original setting: binary hidden units

- A generation network to model the data (the one we want to optimise) parameters: θ
- An inference (recognition) network (to model the latent variable) – parameters: λ
- Original setting: binary hidden units
- ▶ Training is performed in a "hard EM" fashion

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z,\theta)$

Wake-sleep Training

Wake Phase

- Use inference network to sample hidden unit setting z from $q(z|x,\lambda)$
- ▶ Update generation parameters θ to maximize liklelihood of data given latent state $p(x|z,\theta)$

Sleep Phase

- Produce dream sample \tilde{x} from random hidden unit z
- Update inference parameters λ to maximize probability of latent state $q(z|\tilde{x},\lambda)$

Wake Phase Objective

Assumes latent state z to be fixed random draws from $q(z|x,\lambda)$.

$$\max_{\theta} \log p(x|z,\theta)$$

This is simply supervised learning with imputed latent data!

Wake Phase Sampling

Wake Phase Sampling

Wake Phase Update

Sleep Phase Objective

Assumes fake data \tilde{x} and latent variables z to be fixed random draw from $p(x, z|\theta)$.

$$\max_{\lambda} \ \mathbb{E}_{q(z|\tilde{x},\lambda)} \left[\log p(\tilde{x},z|\theta) \right] + \mathbb{H} \left(q(z|\tilde{x},\lambda) \right)$$

Sleep Phase Sampling

Sleep Phase Sampling

Sleep Phase Update

Wake-sleep Algorithm

Advantages

- Simple layer-wise updates
- Amortised inference: all latent variables are inferred from the same weights λ

Wake-sleep Algorithm

Advantages

- ► Simple layer-wise updates
- Amortised inference: all latent variables are inferred from the same weights λ

Drawbacks

- Inference and generative networks are trained on different objectives
- ▶ Inference weights λ are updated on fake data \tilde{x}
- Generative weights are bad initially, giving wrong signal to the updates of λ

Generative Models

First Attempt: Log-linear Models

Second Attempt: Wake-Sleep

This is how we do: Variational Autoencoders

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

 $p(x) = \int p(x|z,\theta)p(z)dz$ is hard to compute.

Goal

Define model $p(x, z|\theta) = p(x|z, \theta)p(z)$ where the likelihood $p(x|z, \theta)$ is given by a neural network. (We fix p(z) for simplicity.)

Problem

$$p(x) = \int \underbrace{p(x|z,\theta)}_{\substack{\text{highly} \\ \text{non-linear}}} p(z) dz \text{ is hard to compute.}$$

$$\log p(x) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{Eq}(z|x,\lambda)}$$

$$\log p(x) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}$$

$$\log p(x) \ge \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}$$

$$\log p(x) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{assume analytical}}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right] - \underbrace{\text{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)}_{\text{assume analytical}}$$

$$\text{(true for exponential families)}$$

$$\log p(x) \geq \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x,z|\theta)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{=\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) + \log p(z)\right] + \mathbb{H}\left(q(z|x,\lambda)\right)}_{\text{approximate by sampling}} - \underbrace{\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta)\right]}_{\text{assume analytical (true for exponential families)}}$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}^{constant}$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right]$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right]$$

$$\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{d}{d\theta} \log p(x|z_i,\theta)$$

$$\frac{d}{d\theta} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \overbrace{\mathsf{KL} \left(q(z|x,\lambda) \mid \mid p(z) \right)}^{constant}$$

$$= \mathbb{E}_{q(z|x,\lambda)} \left[\frac{d}{d\theta} \log p(x|z,\theta) \right]$$

$$\overset{\mathsf{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{d}{d\theta} \log p(x|z_i,\theta)$$

Note: $q(z|x,\lambda)$ does not depend on θ .

$$\frac{d}{d\lambda}\left[\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda)\mid\mid p(z)\right)\right]$$

$$\frac{d}{d\lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right]$$

$$= \frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{d}{d\lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

$$\frac{d}{d\lambda} \left[\mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right) \right]$$

$$= \frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] - \underbrace{\frac{d}{d\lambda} \mathsf{KL} \left(q(z|x,\lambda) \mid\mid p(z) \right)}_{\text{analytical computation}}$$

The first term again requires approximation by sampling

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

MC estimator non-differentiable

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

MC estimator non-differentiable

• Sampling z neglects $\frac{d}{d\lambda}q(z|x,\lambda)$

$$\frac{d}{d\lambda} \mathbb{E}_{q(z|x,\lambda)} \left[\log p(x|z,\theta) \right] \\ = \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

MC estimator non-differentiable

- Sampling z neglects $\frac{d}{d\lambda}q(z|x,\lambda)$
- ▶ Differentiating $q(z|x, \lambda)$ breaks the expectation

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- $h(z, \lambda)$ needs to be invertible
- $h(z, \lambda)$ needs to be differentiable

Reparametrisation trick

Find a transformation $h: z \mapsto \epsilon$ such that ϵ does not depend on λ .

- $h(z, \lambda)$ needs to be invertible
- $h(z, \lambda)$ needs to be differentiable
- $h(z,\lambda)=\epsilon$
- $h^{-1}(\epsilon,\lambda)=z$

Affine property

$$Ax + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } x \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Affine property

$$Ax + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } x \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Special case

$$Ax + b \sim \mathcal{N}\left(b, AA^{T}\right) \text{ for } x \sim \mathcal{N}\left(0, \mathsf{I}\right)$$

Affine property

$$Ax + b \sim \mathcal{N}\left(\mu + b, A\Sigma A^{T}\right) \text{ for } x \sim \mathcal{N}\left(\mu, \Sigma\right)$$

Special case

$$Ax + b \sim \mathcal{N}\left(b, AA^{T}\right) \text{ for } x \sim \mathcal{N}\left(0, \mathsf{I}\right)$$

Gaussian transformation

$$h(z,\lambda) = \frac{z - \mu(x,\lambda)}{\sigma(x,\lambda)} = \epsilon \sim \mathcal{N}(0, 1)$$

 $h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon \quad \epsilon \sim \mathcal{N}(0, 1)$

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \frac{d}{d\lambda} \int q(z|x,\lambda) \log p(x|z,\theta) dz$$

$$= \frac{d}{d\lambda} \int q(\epsilon) \log \left(p(x|h^{-1}(\epsilon,\lambda),\theta) \right) d\epsilon$$

$$= \int q(\epsilon) \frac{d}{d\lambda} \left[\log p(x|h^{-1}(\epsilon,\lambda),\theta) \right] d\epsilon$$

Inference Network Gradient

$$= \int q(\epsilon) \frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) d\epsilon$$

Inference Network Gradient

$$= \int q(\epsilon) \frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) d\epsilon$$

$$= \mathbb{E}_{q(\epsilon)} \left[\frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) \right]$$

Inference Network Gradient

$$= \int q(\epsilon) \frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) d\epsilon$$

$$= \mathbb{E}_{q(\epsilon)} \left[\frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda) \right]$$

$$\stackrel{\text{MC}}{\approx} \frac{1}{S} \sum_{i=1}^{S} \frac{d}{dz} \log p(x| \overbrace{h^{-1}(\epsilon, \lambda)}^{=z}, \theta) \times \frac{d}{d\lambda} h^{-1}(\epsilon, \lambda)$$

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

This gives us 2 gradient paths.

Derivatives of Gaussian transformation

Recall:

$$h^{-1}(\epsilon,\lambda) = \mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon$$
.

This gives us 2 gradient paths.

$$\frac{dh^{-1}(\epsilon,\lambda)}{d\mu(x,\lambda)} = \frac{d}{d\mu(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = 1$$
$$\frac{dh^{-1}(\epsilon,\lambda)}{d\sigma(x,\lambda)} = \frac{d}{d\sigma(x,\lambda)} [\mu(x,\lambda) + \sigma(x,\lambda) \odot \epsilon] = \epsilon$$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Gaussian KL

ELBO

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \mathsf{KL}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

Analytical computation of $- KL(q(z|x, \lambda) || p(z))$:

$$\frac{1}{2} \sum_{i=1}^{N} \left(1 + \log \left(\sigma_i^2 \right) - \mu_i^2 - \sigma_i^2 \right)$$

generation model

generation model

Example

- Data: binary mnist
- Likelihood: product of Bernoullis
 - Let $\phi = \sigma(NN(z))$
- ▶ Prior over z: $\mathcal{N}(0,1)$
- $q(z|x,\lambda) = \mathcal{N}\left(\mu(x,\lambda), \sigma(x,\lambda)^2\right)$
- $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$

Example

- Data: binary mnist
- ▶ Likelihood: product of Bernoullis
 - Let $\phi = \sigma(NN(z))$
- ▶ Prior over z: $\mathcal{N}(0,1)$
- $q(z|x,\lambda) = \mathcal{N}\left(\mu(x,\lambda), \sigma(x,\lambda)^2\right)$
- $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$

Mean Field assumption

Variational approximation factorises over latent dimensions.

▶ approximate posterior $q(z|x,\lambda) = \mathcal{N}(\mu(x,\lambda), \sigma(x,\lambda)^2)$

▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$

- where
 - $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$ e.g. $\mu(x,\lambda) = W^{(u)}x + b^{(u)}$

- ▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$
- where

$$\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$$
e.g. $\mu(x,\lambda) = W^{(u)}x + b^{(u)}$

$$\begin{aligned} & \sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda)) \\ & \text{e.g. } \sigma(x,\lambda) = \\ & \log\left(1 + \exp\left(W^{(v)}x + b^{(v)}\right)\right) \end{aligned}$$

▶ approximate posterior $q(z|x, \lambda) = \mathcal{N}(\mu(x, \lambda), \sigma(x, \lambda)^2)$

- where
 - $\mu(x,\lambda) = \mathsf{NN}_{\mu}(x;\lambda)$ e.g. $\mu(x,\lambda) = W^{(u)}x + b^{(u)}$
 - $\sigma(x,\lambda) = \exp(\mathsf{NN}_{\sigma}(x;\lambda))$ e.g. $\sigma(x,\lambda) = \log(1 + \exp(W^{(v)}x + b^{(v)}))$
 - $\lambda = (W^{(u)}, W^{(v)}, b^{(u)}, b^{(v)})$

Aside

If your likelihood model is able to express dependencies between the output variables (e.g. an RNN), the model may simply ignore the latent code. In that case one often scales the KL term. The scale factor is increased gradually.

$$\mathbb{E}_{q(z|x,\lambda)}\left[\log p(x|z,\theta)\right] - \beta \operatorname{\mathsf{KL}}\left(q(z|x,\lambda) \mid\mid p(z)\right)$$

where $\beta \rightarrow 1$.

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs

Variational Autoencoder

Advantages

- Backprop training
- Easy to implement
- Posterior inference possible
- One objective for both NNs

Drawbacks

- Discrete latent variables are difficult
- Optimisation may be difficult with several latent variables

Summary

- ▶ When $|\mathcal{X}|$ and $|\mathcal{Z}|$ are not too large, we can do EM with features
- Otherwise use VI with simple approximation
- Wake-Sleep: train inference and generation networks with separate objectives
- ▶ VAE: train both networks with same objective
- Reparametrisation
 - ▶ Transform parameter-free variable ϵ into latent value z
 - Update parameters with stochastic gradient estimates

Literature I

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. Painless unsupervised learning with features. In *NAACL*, pages 582–590, 2010. URL http://www.aclweb.org/anthology/N10-1083.

G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for unsupervised neural networks. *Science*, 268:1158–1161, 1995. URL http://www.gatsby.ucl.ac.uk/~dayan/papers/hdfn95.pdf.

Literature II

```
Diederik P. Kingma and Max Welling.
Auto-Encoding Variational Bayes. 2013. URL http://arxiv.org/abs/1312.6114.
```

Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M. Blei. Automatic differentiation variational inference. *Journal of Machine Learning Research*, 18(14):1–45, 2017. URL

http://jmlr.org/papers/v18/16-107.html.

Literature III

Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *ICML*, pages 1278–1286, 2014. URL http://jmlr.org/proceedings/papers/v32/rezende14.pdf.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-conjugate inference. In Tony Jebara and Eric P. Xing, editors, *ICML*, pages 1971–1979, 2014. URL

Literature IV

http://jmlr.org/proceedings/papers/v32/titsias14.pdf.