Università degli Studi di Firenze

Facoltà d' Ingegneria Dipartimento di Elettronica e Telecomunicazioni

USB: Universal Serial Bus

Universal Serial Bus (USB)

PC ↔ periferiche

mouse, tastiera, (video), scanner, stampante, telecamere, lettori di CD, hard-disk esterno, microfoni, altoparlanti..

1996 versione 1.0

12 Mbit/s

2000 versione 2.0

480 Mbit/s

Fino a 127 dispositivi contemporaneamente (con 16 endpoints ciascuno) Lunghezza massima: 5m

Universal Serial Bus (USB)

protocollo master-slave rigidamente gerarchico:

un unico host (il PC) gestisce tutti i trasferimenti da e per le periferiche

Universal Serial Bus (USB)

II cavo USB

Unico canale per TX e RX per evitare cross-talk

2 linee di segnale (differenziale)

1 alimentazione a 5 V (500 mA)

1 massa

se un hub è presente, esso assorbe i 500 mA usando 100 mA per se stesso e distribuendo 100 mA su ognuna delle sue quattro porte

Differential Signal pair

5

"A" Connector

"B" Connector

host

USB device

"A" Receptacles

"A" Plugs

"B" Receptacles

"B" Plugs

Trasmissione

Single Ended 0 (SE0)
Used to signal End Of Packet (EOP)
Used as a USB Reset (Extended SE0 > 10ms)

sync pattern

Trasmissione

NRZI Encoding with sync pattern

NRZI = Non Return to Zero Invert

Cambia ogni volta che trova uno zero

Bit stuffing

Uno "0" è automaticamente inserito prima della codifica NRZI dopo sei consecutivi 1

Struttura del protocollo di comunicazione

Token ("gettone"): indirizzo

SIE: Serial Interface Engine

Frame

- La comunicazione è divisa in frame di durata fissa 1ms
- Ogni frame inizia con un pacchetto dati detto SOF (Start Of Frame)

II SOF è

- generato dall'host
- è inviato ogni 1ms anche se non ci sono transizioni

- Durante un frame l'host può accedere a più di un device
- I dispositivi low-speed (ad esempio il mouse) è interrogato (poll) al massimo ogni 10 frame

Frame

Pacchetti

8 bits	11 bits		5 bits		
PID	FRAME #		CRC5		Start of Frame
8 bits	7 bits	4 bits	5 bits		
PID	ADDR	ENDP	CRC5		Token
8 bits	0 - 1023	bytes		16 bits	
PID	DATA			CRC16	Data
8 bits					
PID					Handshake
	PID FRAME# CRC ADDR ENDP		- Re - Cy - Ad	cket ID, identifies packet type ference #, time stamp clic redundancy checks, protect dress of a device dpoint of a device	cts non-PID fields

tipo di PID	nome	
Token	SOF, IN, OUT, SETUP	
Data	DATA0, DATA1	
Handshake	ACK, NACK, STALL	

Tipi di trasferimenti

Bulk

Si utilizza per informazioni per cui è più importante l'affidabilità che la tempestività (stampante, scanner..)

La corretta ricezione di ogni pacchetto deve essere confermata

Non è garantita una percentuale del frame

Trasferimenti Bulk IN

Н

good

Н

I pacchetti possono avere dimensione 8, 16, 32, 64 bytes

Н

D

Н

D

not ready

good

Trasferimenti Bulk IN

host sees error; no response

good—note same data and data toggle

device has a problem

Trasferimenti Bulk OUT

good—note the data toggle

Tipi di trasferimenti

Isocroni

Si utilizza per informazioni per cui è più importante la tempestività che l'affidabilità (video, audio,..)

La corretta ricezione di ogni pacchetto non è confermata

Il 90% del frame è garantito per trasferimenti isocroni e interrupt

Trasferimenti Isocroni

Note: Always DATA0 PID, no ACK

La dimensione massima di un pacchetto dati isocrono è di 1023 byte. Un pacchetto ogni frame è garantito

$$1023 \times 8 \times 1000 = 8.18$$
Mbit/s

Tipi di trasferimenti

Control

Si utilizza per i comandi di controllo del bus

La corretta ricezione di ogni pacchetto deve essere confermata

Il 10% del frame è garantito per i pacchetti control

I pacchetti hanno una dimensione massima di 64 bytes

Tipi di trasferimenti

Interrupt

Si utilizza per informazioni solo in ingresso per cui è importante sia l'affidabilità sia la tempestività (tastiera,joystick..)

La corretta ricezione di ogni pacchetto deve essere confermata

Il 90% del frame è garantito per trasferimenti isocroni e interrupt

Per il device i pacchetti interrupt sono indistinguibili dai pacchetti bulk

Endpoint

Un indirizzo può avere più di un endpoint (nel token deve essere specificato indirizzo e endpoint)

4 bit + 1 bit di direzione seleziona tra gli endpoint di un indirizzo (al massimo: 16 IN, 16 OUT)

Un endpoint è una FIFO indirizzabile:

il dispositivo mette o prende dati dalla FIFO in base alle sue esigenze, l'USB mette o prende dati indipendentemente

Tutti gli endpoint sono unidirezionali, ad eccezione dei CONTROL endpoint che sono bidirezionali

Hot Plug and Play

Il processo di enumerazione

- l'host inoltra un segnale di reset alla periferica della durata di 10 ms, dopo il quale l'host utilizza l'indirizzo di default (indirizzo 0) per comunicare con il dispositivo;
- 2. l'host inoltra il comando Get_Descriptor, al quale il dispositivo risponde fornendo informazioni su di sé (Device Descriptor)
- I'host determina e comunica un indirizzo al dispositivo attraverso il comando Set_Address;
- 4. l'host inoltra i comandi per leggere i descriptor della configurazione, interface, endpoint
- 5. L'host carica il driver dal proprio hard-disk
- 6. I'host setta una delle configurazioni alternative

La Re-Enumerazione

Struttura di un dispositivo USB

Device

Configuration

Interface

Endpoint