FOUR YEAR UNDERGRADUATE PROGRAMME IN COMPUTER SCIENCE

CSDC1-301: Discrete Structures

Introduction to Sets, Finite and Infinite Sets, Unaccountably Infinite Sets. Introduction to Functions and relations, Properties of Binary relations, Closure, Partial Ordering Relations.	6 L
[1]: [1.1 to 1.4, 3.1, 3.3, 3.4, 3.7(excluding lattices)], [2]: [2.3]	
Pigeonhole Principle, Permutation and Combinations, Mathematical Induction, Principle of Inclusion and Exclusion.	f 4 L
[1]: [1.5, 1.6, 2.1 to 2.4] [2]: [5.2(Introduction only)]	
Asymptotic Notations, Summation formulas and properties, Bounding Summations, Approximation by Integrals.	8 L
[2]: [3.1(excluding Greedy & Halting problem),3.2]	
[3]: [Appendix A]	
Recurrence Relations, Generating Functions, Linear Recurrence Relations with constant coefficients and their solution.	6 L
[1]: [8.1, 8.2,8.4, 9.1 to 9.6]	
Substitution Method, Recurrence Trees, Master Theorem.	6 L
[3]: [4.3 to 4.5]	
Basic Terminology of Graphs, Models and Types, Multigraphs, Weighted Graphs, Graph Representation. Graph Isomorphism Graph Connectivity, Euler and Hamiltonian Paths and Circuits	6 L
[2]: [8.1 to 8.5]	

FOUR YEAR UNDERGRADUATE PROGRAMME IN COMPUTER SCIENCE

Planar Graphs, Graph Coloring, Basic Terminology of Trees, Properties of Trees, Spanning Trees.

6 L

[2]: [8.7 to 8.8, 9.1, 9.4]

Logical Connectives, Well Formed Formulas, Tautologies, Equivalence, Inference Theory.

6 L

[1]: [1.8 to 1.14]

Recommended Reading Material

Text Books

- 1. C. L. Liu and D.P. Mohapatra, *Elements of Discrete Mathematics*, Third Edition, Tata McGraw Hill, 2008.
- 2. K. Rosen, *Discrete Mathematics and Its Applications*, Sixth Edition, Tata McGraw Hill, 2007.
- 3. T.H. Cormen, C.E. Leiserson, R.L. Rivest, *Introduction to Algorithms*, Third Edition, Prentice Hall of India, 2010.

Reference Books

4. J.P. Trembley, R. Manohar, *Discrete Mathematical Structures with Application to Computer Science*, First Edition, Tata McGraw Hill, 2001.

Online Reading/Supporting Material

5. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-fall-2005/