# **DEVOIR LIBRE 1**

### **Exercice 1**

- 1. Soit *n* un entier naturel.
  - (a) Étudier la parité des nombres suivants: (i)  $n^2 + 3n + 4$  (ii)  $(2021)^n + 4$  (iii)  $2n^3 + 17n$
  - (b) Chercher tous les entiers naturels n tel que:  $\frac{2n+7}{n+2} \in \mathbb{N}$ .
  - (c) Montrer que:  $\frac{2^n}{5^m} \in \mathbb{D}$  pour tout m et n de  $\mathbb{N}$ .
  - (d) Montrer que :  $A = 7^{n+1} + 8 \times 7^n$  est divisible par 15.
- 2. Soient a = 3060, b = 1224 et c = 71.
  - (a) Montrer que *c* est un nombre premier.
  - (b) Décomposer les nombres *a* et *b* en produit de facteurs premiers.

  - (c) Déterminer PGCD(a, b) et PPCM(a, b). (d) Simplifier (i)  $A = \frac{a}{b}$  (ii)  $B = \frac{7}{a} + \frac{11}{b}$  (iii)  $C = \sqrt{ab}$

#### Exercice 2

1. Factoriser les expressions suivantes:

(a) 
$$A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$$

(b) 
$$B = x^3 - 8$$

(c) 
$$C = x^2 - 2x\sqrt{3} + 3 + (x^2 - 3)$$

2. Développer et réduire:  $(x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$ .

### **Exercice 3**

ABC est un triangle.

Soient *I*, *J* et *K* des points du plan tels que:

$$\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}, \quad \overrightarrow{CJ} = \frac{3}{4}\overrightarrow{CA} \quad \text{et} \quad \overrightarrow{BK} = \frac{2}{3}\overrightarrow{CK}.$$

- 1. Montrer que  $\overrightarrow{CK} = 3\overrightarrow{CB}$ .
- 2. Construire les points *I*, *J* et *K*.
- 3. (a) Montrer que  $\overrightarrow{IJ} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$ .
  - (b) Exprimer le vecteur IK en fonction de AB et AC.
  - (c) En déduire que les points *I*, *J* et *K* sont alignés.
- 4. Soit *F* un point tel que  $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}$ .
  - (a) Construire le point F.
  - (b) Montrer que  $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ .
  - (c) Montrer que F est le milieu du segment [BC].

## **CORRECTION DU DEVOIR LIBRE 1**

### Exercice 1

- 1. Soit n un entier naturel.
  - i. Étudier la parité de  $n^2 + 3n + 4$

On a  $n^2 + 3n + 4 = (n^2 + n) + 2(n + 2)$ .

Puisque  $n^2$  et n sont de même parité, alors leur somme  $n^2 + n$  est pair.

Et on a 2(n+2) est pair.

Donc  $(n^2 + n) + 2(n + 2)$  est pair.

D'où  $n^2 + 3n + 4$  est pair.

ii. Étudier la parité de  $(2021)^n + 4$ 

On a 2021 est impair, alors  $(2021)^n$  l'est aussi.

Et puisque 4 est pair, alors  $(2021)^n + 4$  est impair.

iii. Étudier la parité de  $2n^3 + 17n$ 

On a  $2n^3 + 17n = 2(n^3 + 8n) + n$ 

Et on a  $2(n^3 + 8n)$  est pair.

Donc, si n est pair, alors  $2(n^3 + 8n) + n$  l'est aussi.

Et si n est impair, alors  $2(n^3 + 8n) + n$  l'est aussi.

D'où  $2n^3 + 17n$  a le même parité que n.

(b) Chercher tous les entiers naturels n tel que:  $\frac{2n+7}{n+2} \in \mathbb{N}$ .

Soit *n* un entier naturel tel  $\frac{2n+7}{n+2} \in \mathbb{N}$ .

Alors n + 2 divise 2n + 7.

D'autre part, on a 2n + 7 = 2(n + 2) + 3.

Et puisque n+2 divise 2(n+2), alors n+2 est un diviseur de 2n+7-2(n+2)=3.

Les diviseurs de 3 sont 1 et 3, alors n+2=1 ou n+2=3.

Donc  $n = 1 - 2 = -1 \notin \mathbb{N}$  ou  $n = 3 - 2 = 1 \in \mathbb{N}$ .

D'où, l'unique entier naturel n vérifiant  $\frac{2n+7}{n+2} \in \mathbb{N}$  est n=1.

(c) Montrer que:  $\frac{2^n}{5^m} \in \mathbb{D}$  pour tout m et n de  $\mathbb{N}$ .

On a  $\frac{2^n}{5^m} = \frac{2^n \times 2^m}{5^m \times 2^m} = \frac{2^{n+m}}{(5 \times 2)^m} = \frac{2^{n+m}}{10^m}$ .

Puisque  $\frac{2^{n+m}}{10^m} \in \mathbb{D}$ , alors  $\frac{2^n}{5^m} \in \mathbb{D}$ .

(d) Montrer que :  $A = 7^{n+1} + 8 \times 7^n$  est divisible par 15.

On a  $A = 7^{n+1} + 8 \times 7^n = 7^n \times 7 + 8 \times 7^n = 7^n \times (7+8) = 7^n \times 15$ .

D'où *A* est divisible par 15.

- 2. Soient a = 3060, b = 1224 et c = 71.
  - (a) Montrer que *c* est un nombre premier.

On a  $2^2 = 4 < 71$ , et 2 ne divise pas 71.

 $3^2 = 9 < 71$ , et 3 ne divise pas 71.

 $5^2 = 25 < 71$ , et 5 ne divise pas 71.

 $7^2 = 49 < 71$ , et 7 ne divise pas 71.

 $11^2 = 121 > 71$ , alors c = 71 est un nombre premier.

(b) Décomposer les nombres *a* et *b* en produit de facteurs premiers.

On a 
$$a = 3060$$
 2 et  $b = 1224$  2  
1530 2 612 2  
765 3 306 2  
255 3 153 3  
85 5 51 3  
17 17 17 17

D'où  $a = 2^2 \times 3^2 \times 5 \times 17$  et  $b = 2^3 \times 3^2 \times 17$ .

(c) Déterminer PGCD(a, b) et PPCM(a, b).

On a  $PGCD(a, b) = 2^2 \times 3^2 \times 17 = 612$  et  $PPCM(a, b) = 2^3 \times 3^2 \times 5 \times 17 = 6120$ .

i. Simplifier  $A = \frac{a}{a}$ (d)

On a  $a = 2^2 \times 3^2 \times 5 \times 17 = 5 \times PGCD(a, b)$  et  $b = 2^3 \times 3^2 \times 17 = 2 \times PGCD(a, b)$ .

Alors 
$$A = \frac{a}{b} = \frac{5 \times PGCD(a, b)}{2 \times PGCD(a, b)} = \frac{5}{2}$$
.  
ii. Simplifier  $B = \frac{7}{a} + \frac{11}{b}$ .  
On a  $PPCM(a, b) = 2^3 \times 3^2 \times 5 \times 17 = a \times 2 = b \times 5$ .

On a 
$$PPCM(a, b) = 2^3 \times 3^2 \times 5 \times 17 = a \times 2 = b \times 5$$
.  
Alors  $B = \frac{7}{a} + \frac{11}{b} = \frac{7 \times 2}{a \times 2} + \frac{11 \times 5}{b \times 5} = \frac{14}{PPCM(a, b)} + \frac{55}{PPCM(a, b)} = \frac{69}{6120}$ .

iii. Simplifier  $C = \sqrt{ab}$ .

On a  $a = 5 \times PGCD(a, b)$  et  $b = 2 \times PGCD(a, b)$ .

Donc  $ab = (5 \times PGCD(a, b)) \times (2 \times PGCD(a, b)) = 10 \times (PGCD(a, b))^2$ .

D'où  $C = \sqrt{ab} = \sqrt{10 \times (PGCD(a, b))^2} = PGCD(a, b) \times \sqrt{10} = 612\sqrt{10}$ .

### **Exercice 2**

1. (a) Factoriser 
$$A = (x - \sqrt{2})(3x - 1) + (x^2 - 2)(1 - x)$$
.

On a 
$$A=(x-\sqrt{2})(3x-1)+(x^2-2)(1-x)$$
  

$$=(x-\sqrt{2})(3x-1)+(x^2-(\sqrt{2})^2)(1-x)$$

$$=(x-\sqrt{2})(3x-1)+(x-\sqrt{2})(x+\sqrt{2})(1-x)$$

$$=(x-\sqrt{2})[(3x-1)+(x+\sqrt{2})(1-x)]$$

$$=(x-\sqrt{2})[3x-1+x-x^2+\sqrt{2}-x\sqrt{2}]$$

$$=(x-\sqrt{2})[-x^2+4x-x\sqrt{2}-1+\sqrt{2}]$$

$$=(x-\sqrt{2})[-x^2+(4-\sqrt{2})x-1+\sqrt{2}]$$

(b) Factoriser  $B = x^3 - 8$ .

On a 
$$B=x^3-8$$
  
 $=x^3-2^3$   
 $=(x-2)(x^2+x\times 2+2^2)$   
 $=(x-2)(x^2+2x+4)$ 

(c) Factoriser 
$$C = x^2 - 2x\sqrt{3} + 3 + (x^2 - 3)$$
.

On a 
$$C=x^2-2x\sqrt{3}+3+(x^2-3)$$
  
 $=x^2-x\sqrt{3}-x\sqrt{3}+(\sqrt{3})^2+(x^2-3)$   
 $=x(x-\sqrt{3})-\sqrt{3}(x-\sqrt{3})+(x-\sqrt{3})(x+\sqrt{3})$   
 $=(x-\sqrt{3})[x-\sqrt{3}+(x+\sqrt{3})]$   
 $=(x-\sqrt{3})[x-\sqrt{3}+x+\sqrt{3}]$   
 $=2x(x-\sqrt{3})$ 

2. Développer et réduire:  $(x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$ .

On a 
$$B = (x - \sqrt{3})(2 - x)(x + \sqrt{3}) - (x - 3)^3$$
  

$$= (x - \sqrt{3})(x + \sqrt{3})(2 - x) - (x - 3)^3$$

$$= (x^2 - (\sqrt{3})^2)(2 - x) - (x^3 - 3 \times x^2 \times 3 + 3 \times x \times 3^2 - 3^3)$$

$$= (x^2 - 3)(2 - x) - (x^3 - 9x^2 + 27x - 27)$$

$$= (2x^2 - x^3 - 6 + 3x) - (x^3 - 9x^2 + 27x - 27)$$

$$= 2x^2 - x^3 - 6 + 3x - x^3 + 9x^2 - 27x + 27$$

$$= -2x^3 + 11x^2 - 24x + 21$$

### **Exercice 3**

ABC est un triangle.

Soient I, J et K des points du plan tels que:

$$\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}, \quad \overrightarrow{CJ} = \frac{3}{4}\overrightarrow{CA} \quad \text{et} \quad \overrightarrow{BK} = \frac{2}{3}\overrightarrow{CK}.$$

1. Montrer que  $\overrightarrow{CK} = 3\overrightarrow{CB}$ .

On a 
$$\overrightarrow{BK} = \frac{2}{3}\overrightarrow{CK}$$
, alors  $\overrightarrow{BC} + \overrightarrow{CK} = \frac{2}{3}\overrightarrow{CK}$ , donc  $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{CK} - \overrightarrow{CK} = \frac{2}{3}\overrightarrow{CK} - \frac{1}{3}\overrightarrow{CK} = \frac{1}{3}\overrightarrow{CK}$ .  
D'où  $\overrightarrow{BC} = \frac{1}{3}\overrightarrow{CK}$ , et par suite  $\overrightarrow{CK} = 3\overrightarrow{CB}$ .

2. Construire les points I, J et K.



3. (a) Montrer que  $\overrightarrow{IJ} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$ .

On a 
$$\overrightarrow{IJ} = \overrightarrow{IA} + \overrightarrow{AC} + \overrightarrow{CJ}$$
  

$$= -\overrightarrow{AI} + \overrightarrow{AC} + \overrightarrow{CJ}$$

$$= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + \frac{3}{4}\overrightarrow{CA}$$

$$= -\frac{1}{3}\overrightarrow{AB} + \frac{4}{4}\overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC}$$

$$= -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$$
D'où  $\overrightarrow{IJ} = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$ .

(b) Exprimer le vecteur  $\overrightarrow{IK}$  en fonction de  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$ .

On a 
$$\overrightarrow{IK} = \overrightarrow{IA} + \overrightarrow{AC} + \overrightarrow{CK}$$
  

$$= -\overrightarrow{AI} + \overrightarrow{AC} + \overrightarrow{CK}$$

$$= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + 3\overrightarrow{CB}$$

$$= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + 3(\overrightarrow{CA} + \overrightarrow{AB})$$

$$= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + 3(-\overrightarrow{AC} + \overrightarrow{AB})$$

$$= -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} - 3\overrightarrow{AC} + 3\overrightarrow{AB}$$

$$= -\frac{1}{3}\overrightarrow{AB} - 2\overrightarrow{AC} + \frac{9}{3}\overrightarrow{AB}$$

$$= \frac{8}{3}\overrightarrow{AB} - 2\overrightarrow{AC}$$
D'où  $\overrightarrow{IK} = \frac{8}{3}\overrightarrow{AB} - 2\overrightarrow{AC}$ .

(c) En déduire que les points 
$$I$$
,  $J$  et  $K$  sont alignés.  
On  $a - 8\overrightarrow{IJ} = -8\left(-\frac{1}{3}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}\right) = \frac{8}{3}\overrightarrow{AB} - 2\overrightarrow{AC} = \overrightarrow{IK}$ .

Alors, les vecteurs *IJ* et *IK* sont colinéaires.

D'où, les points *I*, *J* et *K* sont alignés.

- 4. Soit *F* un point tel que  $\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}$ .
  - (a) Construire le point F. Voir la figure.
    - (b) Montrer que  $\overrightarrow{AF} = \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{AC}$ .

On a 
$$\overrightarrow{AF} = \frac{3}{2}\overrightarrow{AI} + 2\overrightarrow{AJ}$$
  

$$= \frac{3}{2} \times \frac{1}{3}\overrightarrow{AB} + 2(\overrightarrow{AC} + \overrightarrow{CJ})$$

$$= \frac{1}{2}\overrightarrow{AB} + 2\left(\overrightarrow{AC} + \frac{3}{4}\overrightarrow{CA}\right)$$

$$= \frac{1}{2}\overrightarrow{AB} + 2\left(\frac{4}{4}\overrightarrow{AC} - \frac{3}{4}\overrightarrow{AC}\right)$$

$$= \frac{1}{2}\overrightarrow{AB} + 2 \times \frac{1}{4}\overrightarrow{AC}$$

$$= \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$
D'où  $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$ .

(c) Montrer que F est  $\overline{l}$ e milieu du segment [BC].

On a 
$$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AF}$$
  

$$= -\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

$$= -\frac{2}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

$$= -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$$

$$= -\frac{1}{2}(-\overrightarrow{AB} + \overrightarrow{AC})$$

$$= \frac{1}{2}(-\overrightarrow{AB} + \overrightarrow{AC})$$

$$= \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{AC})$$

$$= \frac{1}{2}\overrightarrow{BC}$$
D'où  $F$  est le milieu du segment  $[BC]$ .