UFFS - Ciência da Computação - Matemática Discreta
 Lista 2 - Lógica dos Predicados - Quantificadores - Regras de Inferência
 Data: 30/08/2023 - Profa. Rosane R. Binotto

1ª Questão	Considere $P(x)$	a sentença " $x \le 4$ ". Q	uais são os valores verdade	das
proposi	ções abaixo?			
1) P(0)	2) P(4)	3) P(6)	

- 2^a Questão Considere a sentença Q(x,y): x é a capital de y. Quais são os valores verdade das proposições abaixo?
 - 1) Q(Buenos Aires, Argentina).
 - 2) Q(Medelin, Colômbia).
 - 3) Q(Brasil, Brasília).
- $3^{\mathbf{a}}$ Questão Constate o valor de x depois que a proposição "if P(x) then x := 1" for executada, em que P(x) é a proposição x > 1, se o valor de x, quando essa proposição for alcançada, for

a)
$$x = 0$$
. b) $x = 1$. c) $x = 2$.

 $4^{\mathbf{a}}$ Questão Considere P(x) a sentença "x passa mais do que cinco horas em aula todos os dias", em que o domínio de x são todos os estudantes. Expresse cada uma dessas quantificações em português.

1)
$$\exists x, P(x)$$
 2) $\forall x, P(x)$ 3) $\exists x, \sim P(x)$ 4) $\forall x, \sim P(x)$

 $5^{\mathbf{a}}$ Questão Transcreva as proposições solicitadas para o português, em que C(x): "x é comediante" e F(x): "x é divertido" e o domínio são todas as pessoas.

1)
$$\forall x, (C(x) \rightarrow F(x))$$
2) $\forall x, (C(x) \land F(x))$
3) $\exists x, (C(x) \rightarrow F(x))$
4) $\exists x, (C(x) \land F(x))$
Greniste runa person corrediante, ento ela è divertida

6ª Questão Considere P(x): "x fala inglês" e Q(x): "x sabe a linguagem computacional C++". Expresse cada uma dessas sentenças em termos de P(x), Q(x), quantificadores e conectivos lógicos. O domínio para quantificadores são

todos os estudante	es de sua universidade.		
1) Há um estudar	nte em sua universidade que fa	ala inglês e sabe C++. In (P(n) AQ(n))
		la inglês, mas não sabe C++. ∃n (P(x))	
		inglês ou sabe C++. \$\frac{1}{2} \left(\rho_{(\delta)} \sqrt{Q(\delta)} \right)	
4) Nenhum estud	ante em sua universidade fala	inglês ou sabe C++. $\#_{\mathcal{H}}$ ($\mathbb{P}(\mathcal{H})$ \vee $\mathbb{Q}(\mathcal{H})$) \equiv	
Ougstão Consider	D(a) !!	mínio for o conjunto números	(x)
inteires quais são	x + 1 < 2x. Se o doi	icões abaixo?	101
1) P(0)	os valores verdade das propos 2) $P(-1)$	algoes abaixo: $P(1)$, qr
4) $\exists x, P(x)$	5) $\forall x, P(x)$	$6) \exists x, \sim P(x)$	
1) 30,1 (0)	0) vx,1 (x)	0) 24, ~1 (4)	
^a Questão Determir	ne o valor verdade de cada uma	das proposições, se o domínio	
for o conjunto do:			
1) $\forall x, (x^2+2 \geq$		2) $\forall x, (x^2 \neq x)$	
3) $\exists x, (x^2 = -1)$		4) $\exists x, (x^2 = 2)$	
5) $\exists ! \ x, \ (x > 1)$		6) $\exists ! \ x, \ (x+3=2x)$	
	que o domínio da função propos		
Desenvolva estas	$\begin{array}{c} \text{proposições usando disjunções,} \\ \text{o)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	conjunções e negações.	
		3) $\exists x, \sim P(x)$ 6) $\sim \forall x, P(x)$	
4) $\forall x, \sim P(x)$	$5) \sim \exists x, P(x)$	$D = P(1) \wedge P(2) \wedge P(3) \wedge P(4)$	
10 ^a Questão Transcr	reva, de dois modos distintos, as	proposições dadas na sequên-	
cia em expressões	s lógicas usando predicados, qua	antificadores e conectivos lógi-	
cos. Primeiro o d	omínio são os estudantes em sua	a sala, e, segundo, considere-o	
como todas as pe			
	ia sala fala inglês.		
	sala são amigáveis.		
3) Há uma pesso	a em sua sala que não nasceu e	m Chapeco.	
4) Todos os estuc	dantes em sua sala sabem resolv	ver equações quadraticas.	
11ª Questão Transci	reva cada uma das proposições	em expressões lógicas usando	
	tificadores e conectivos lógicos.	Dominis: todas as pessoas	
1) Ninguém é pe	rfeito. Yx, NPON	Pax, a perfeito.	
		F(x), x amigo.	

2) Todos os seus amigos são perfeitos.	√x,	(tox) -	> Pox)
3) Todos são seus amigos e são perfeito			

- 12ª Questão Encontre um contra-exemplo, se possível, para estas proposições quantificadas universalmente, em que o domínio para as variáveis são todos os números inteiros.
 - 1) $\forall x, (x^2 \ge x)$ $2) \ \forall x, \left(x > 0 \ \lor \ x < 0\right)$
- 13ª Questão Suponha que o domínio de Q(x, y, z) sejam as três variáveis $x, y \in \mathbb{R}$ z, em que x=0,1 ou 2, y=0 ou 1 e z=0 ou 1. Desenvolva as proposições abaixo usando disjunções e conjunções.

2) $\exists x, \ Q(x,1,1) = \mathbb{Q}(0,1,1) \vee \mathbb{Q}(3,1,1)$ 1) $\forall y, \ Q(0,y,0) \equiv \mathbb{Q}(0,0,0) \wedge \mathbb{Q}(0,3,0)$ 3) $\exists z, \sim Q(0,0,z) \equiv NQ(0,0,0) \vee NQ(0,0,1) \Rightarrow x, \sim Q(x,0,1)$

- 14ª Questão Transcreva as proposições abaixo para o português, em que o domínio para cada variável consista nos números reais.
 - 1) $\forall x \exists y, (x < y)$
 - 2) $\forall x \ \forall y, \ \left(\left((x \ge 0) \land (y \ge 0) \right) \to (xy \ge 0) \right)$
 - 3) $\forall x \ \forall y \ \forall z, \ (xy=z)$
- 15ª Questão Considere a sentença Q(x,y): "x enviou um email para y", em que o domínio para x e y são todos os estudantes de sua sala. Expresse cada uma das quantificações abaixo em português:

1) $\exists x \exists y, Q(x, y)$

2) $\exists x \forall y, Q(x,y)$

3) $\forall x \exists y, Q(x, y)$

4) $\forall x \forall y, Q(x, y)$

- 16ª Questão Considere L(x,y): "x ama y", em que o domínio para x e y são todas as pessoas do mundo. Use quantificadores para expressar cada proposição abaixo.

 - 1) Todas as pessoas amam alguém. $\forall x \exists y \ b(x,y)$ 2) Há alguém que é amado por todos. $\exists y \forall x \ b(x,y)$ 3) Ninguém ama a todos. $\forall x \exists y \ b(x,y)$ 4) Todos amam a si próprios. $\forall x \ b(x,y)$

 - 5) Há alguém que não ama ninguém além de si próprio. 🕹 x 🗸 (L(x,y) 🖒 x=y)

200 Questão

1){[avob)>c] 1(c>d)1a3 >d

1 (avnb) -> c - hipótese

2. e -> d - hipótese

3. (avnb) - d. -. pilogismo hipotético en 1. e2.

4 a . . . hipstese

5. av nb ... adição em 4.

6. d --- modus ponens en 3. e 5.

2) [(a → b) A (NC VA) AC] → b

1. a -> b ----- hipótese c

2. Neva --- hipôtese

3. Ne Va = c -> a -- regra do condicional

4. ~ > b --- silogismo hipotético em 1. e.

5. c - -- hipótese

6. b - - - - modus ponens

5 erros lógicos foram cometidos? 1) Se n é um número real, tal que n>1, então $n^2>1$. Suponha que $n^2>1$. então n>1. \nearrow 2) Se n é um número real com n>3, então $n^2>9$. Suponha que $n^2\leq 9$. então $n \leq 3$. 3) Se n é um número real com n>2, então $n^2>4$. Suponha que $n\leq 2$. então 1)「カラタノターラウ・ Moders ponens Augumento inválido modes tollers 2) (カータ) ハルタ コルル I Argumento mão válido 3) [D -> m) 1 Nb] -> Nm

modus tellens. Argumento polido