Complex Analysis: Homework 13

Martín Prado

November 15, 2024 Universidad de los Andes — Bogotá Colombia

Exercise 1.

Determine whether the following products converge:

(a)
$$\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{n} \right)$$
, (b) $\prod_{n=1}^{\infty} \left(1 + \frac{(-1)^n}{\sqrt{n}} \right)$.

Note: The first term in both products is 0, so we are going to skip and show that the tails from n=2 forward converge (or diverge) for both cases.

Solution Item (a)

We are going to prove that $\sum_{n=2}^{\infty} \log \left(1 + \frac{(-1)^n}{n}\right)$ converges. In fact, if M is even,

$$\sum_{n=2}^{M} \log \left(1 + \frac{(-1)^n}{n} \right) = \sum_{k=1}^{M/2} \log \left(\frac{2k+1}{2k} \right) + \log \left(\frac{2k}{2k+1} \right)$$
$$= \sum_{k=1}^{M/2} \log \left(\frac{2k+1}{2k} \cdot \frac{2k}{2k+1} \right)$$
$$= 0,$$

and if M = 2K + 1 is odd,

$$\sum_{n=2}^{M} \log \left(1 + \frac{(-1)^n}{n} \right) = \log \left(\frac{2K}{2K+1} \right) + \sum_{k=1}^{(M-1)/2} \log \left(\frac{2k+1}{2k} \right) + \log \left(\frac{2k}{2k+1} \right)$$
$$= \log \left(\frac{2K}{2K+1} \right).$$

Since log is continuous at 1 and $\frac{2K}{2K+1} \to 1$ when $K \to \infty$, we conclude that $\log\left(\frac{2K}{2K+1}\right)$ converges to 0. Since the entire log-series converges to 0, it must follow that

$$\prod_{n=2}^{\infty} \left(1 + \frac{(-1)^n}{n}\right) = \exp\left[\sum_{n=2}^{\infty} \log\left(1 + \frac{(-1)^n}{n}\right)\right] = 1.$$

Solution Item (b)

Now, we are going to prove that $\sum_{n=2}^{\infty} \log \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$ diverges. We are going to be restricted to the even case to show that this sum diverges. Note that

$$\log\left(1 + \frac{1}{\sqrt{2n}}\right) + \log\left(1 - \frac{1}{\sqrt{2n+1}}\right) = \log\left[\left(1 + \frac{1}{\sqrt{2n}}\right) \cdot \left(1 - \frac{1}{\sqrt{2n+1}}\right)\right]$$
$$= \log\left[1 + \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}}\right]$$

By the limit comparison test $\log(1+x) = x - O(x^2) \approx x$ for x near to 0. Then, we can compare the series of $a_n = \log\left[1 + \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}}\right]$ with the series of $b_n = \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}}$.

Remark: Note that for $n \ge 1$, $\sqrt{2n+1} - \sqrt{2n} - 1 < 0$. The limit comparison test only applies if $a_n, b_n > 0$, but for our case,

$$a_n = \log \left[1 + \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}} \right] < 0 \text{ and } b_n = \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}} < 0$$

and thus, the same argument can be applied to $-a_n, -b_n > 0$ to conclude that $-\sum_n a_n$ diverges because $-\sum_n b_n$ does.

Since $a_n = \log(1+b_n)$ and $b_n \to 0$ when $n \to \infty$, by uniqueness of limit and then L-hôspital rule,

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to 0} \frac{\log(1+x)}{x} = \lim_{x \to 0} \frac{1}{1+x} = 1.$$

Then, we can also compare b_n with $c_n = \frac{-1}{2n}$ because

$$\frac{b_n}{c_n} = \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}} \cdot (-2n)$$

$$= \underbrace{\sqrt{\frac{2n}{2n+1}}}_{\to 1} + \underbrace{\frac{2n}{\sqrt{2n+1}} - \sqrt{2n}}_{\to 0}$$

$$\to 1, \quad n \to \infty$$

Finally, since $\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \frac{-1}{2n}$ diverges to $-\infty$, it follows that $\sum_{n=1}^{\infty} b_n$ diverges, and thus, $\sum_{n=1}^{\infty} a_n$ diverges to $-\infty$ too. Therefore,

$$\sum_{n=2}^{2M} \log\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) = \sum_{n=1}^{M} \log\left[1 + \frac{\sqrt{2n+1} - \sqrt{2n} - 1}{\sqrt{2n} \cdot \sqrt{2n+1}}\right]$$
$$= \sum_{n=1}^{M} a_n \to -\infty, \quad M \to \infty.$$

That implies that $\prod_{n=2}^{\infty} \log \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$ has a subsequence that diverges to 0.

Exercise 2.

Prove the class theorem: Let (X,d) be a compact metric space and let $g_n: X \to \mathbb{C}$ be continuous functions such that $\sum_{n=1}^{\infty} |g_n|$ converges uniformly. Define $f_n: X \to \mathbb{C}$ by

$$f_n(x) = \prod_{j=1}^{n} (1 + g_j(x)).$$

We already know that for every $x \in X$, the product $\prod_{n=1}^{\infty} (1+g_j(x))$ is absolutely convergent. Then

$$f: X \to \mathbb{C}, \quad f(x) := \lim_{n \to \infty} f_n(x)$$

is well-defined.

Show that $f_n \to f$ uniformly and that there exists $N \in \mathbb{N}$ such that for all $x \in X$,

$$f(x) = 0 \iff g_n(x) = -1 \text{ for some } n \le N.$$

Exercise 3.

Let $U \subset \mathbb{C}$ be open and let $g_n : U \to \mathbb{C}$ be holomorphic functions such that $\sum_{n=1}^{\infty} |g_n|$ converges compactly in U. Define

$$f_n(x) = \prod_{j=1}^n (1 + g_j(x)).$$

- (a) Show that $(f_n)_{n\in\mathbb{N}}$ converges compactly to a holomorphic function $f:U\to\mathbb{C}$.
- (b) Let $z_0 \in U$. Show that $f(z_0) = 0$ if and only if there exists $j \in \mathbb{N}$ such that $g_j(z_0) = -1$, that there are finitely many such j, and that the order of the zero z_0 for f is equal to the sum of the multiplicities of z_0 as a zero of all the functions $1 + g_j$.

Exercise 4.

Let $U \subset \mathbb{C}$ be a region, let $f_n : U \to \mathbb{C}$ be holomorphic functions, and assume that $\prod_{j=1}^{\infty} f_n$ converges absolutely and compactly in U. Show that

$$\frac{f'}{f} = \sum_{j=1}^{\infty} \frac{f'_j}{f_j}$$

where the sum on the right side converges compactly in its domain.