

Progress in Nitrogen Novel Combustion Chemistry

Mark E. Fuller, Ph.D.

Physico-Chemical Fundamentals of Combustion

6. Januar 2021

NO_x interactions in hydrocarbon combustion

And when RH is replaced with QOOH or OOQOOH?

Latest revisions

- The HNO₂ potential energy surface (PES) reactions calculated by Chen *et al.*¹
- Rates for the H₂NO₂ and CH₄NO₂ PES from Fuller and Goldsmith²
- Hydrogen abstraction by NO₂ from alkanes and alkenes refit to the exothermic direction³
- Decomposition rates for alkyl nitrites⁴, and isopropyl nitrate⁵

¹Chen, X. u. a. Reaction Chemistry & Engineering 2019, 4, 323–333.

²Fuller, M. E.; Goldsmith, C. F. <u>Proceedings of the Combustion Institute</u> **2019**, *37*, 695–702.

³Fuller, M. E.; Goldsmith, C. F. <u>Proceedings of the Combustion Institute</u> 2019, *37*, 695–702, Fuller, M. E. u. a. <u>Combustion and Flame</u> 2021, In preparation.

⁴Randazzo, J. B. u. a. Proceedings of the Combustion Institute 2019, 37, 703–710.

⁵Fuller, M. E.; Goldsmith, C. F. The Journal of Physical Chemistry A 2019, 123, 5866–5876.

Reaction Classes and Examples

Develop mechanism by systematic inclusion of reaction classes

- Hydrogen abstractions by NO_xto form HONO, HNO₂, HNO
- Unimolecular conformer formation and dissociation
 - \rightarrow RNO₂ \rightleftharpoons R + NO₂
 - → RONO = RO + NO
 - → RONO₂ = RO + NO₂
- Isomerizations
 - → RONO = RNO₂
- Concerted HONO elimination
 - → RONO = alkene + HONO
- NO_x cycling reactions
 - $\rightarrow RO_2 + NO \rightleftharpoons RO + NO_2$
 - \rightarrow RO + NO \rightleftharpoons R + NO₂

The old (slow) way forward

1. Calculate sensitivities

2. Tweak/add some rates*

3. Run simulations

4. Feel sad and start over

Progress on NO_V-Cycling

Generalized potential energy surface for alkoxy radical (RO) + NO₂ system. Energies in kcal/mol. Well-skipping occurs at virtually all combustion-relevant temperatures and pressures.

Reaction	Α	n	Ea
$CH_3O_2 + NO \rightleftharpoons CH_3O + NO_2$	4.62E+15	-0.38	97.8
$C_2H_5O_2 + NO \rightleftharpoons C_2H_5O + NO_2$	2.11E+14	-0.12	-470.6
$NC_3H_7O_2 + NO \rightleftharpoons NC_3H_7O + NO_2$	1.07E+14	-0.25	-1302.0

Units: centimeters, kelvin, calories, moles

Mark E. Fuller, Ph.D. – fuller@pcfc.rwth-aachen.de

Physico-Chemical Fundamentals of Combustion RWTH Aachen University Schinkelstr. 8 52062 Aachen

www.pcfc.rwth-aachen.de