# 0.1 Unità di misura-grandezze fondamentali

- 1. Lunghezza (m): Misura l'estensione di un oggetto in una direzione specifica.
- 2. Massa (kg): Misura la quantità di materia in un corpo.
- 3. Tempo (s): Misura la durata di un evento o intervallo tra due istanti.
- 4. **Densità**  $(\frac{kg}{m^3})$ : Misura la quantità di massa contenuta in un certo volume.
- 5. Corrente elettrica (A): Misura la quantità di carica elettrica che fluisce attraverso un circuito in un certo tempo.

Il sistema che ha definito le precedenti unità di misura come fondamentali è il Sistema Internazionale (SI) (MKSA).

## 0.2 Velocità

$$Velocità = \frac{spazio percorso}{tempo impiegato}$$

L'unità di misura della velocità è il  $\frac{m}{s}$  ed è detta unità di misura derivata in quanto è ottenuta da unità di misura fondamentali.

La fisica è fatta di misurazioni, ma le misurazioni comportano errori e quindi è necessario definire la precisione di una misurazione.

## 0.3 Notazione scientifica

Fondamentale per esprimere numeri molto grandi o molto piccoli.

# 0.4 Multipli e sottomultipli

- $10^15 = \text{Peta} (P)$
- $10^12 = \text{Tera} (T)$
- $10^9 = \text{Giga (G)}$
- $10^6 = \text{Mega (M)}$
- $10^3 = \text{Kilo (K)}$
- $10^{-3} = \text{Milli (m)}$
- $10^{-6} = \text{Micro}(\mu)$
- $10^{-9} = \text{Nano (n)}$
- $10^{-12} = Pico (p)$
- $10^{-15} = \text{Femto (f)}$
- $10^{-18} = \text{Atto (a)}$

## 0.5 Grandezze fisiche

| Grandezza              | Simbolo     | Unità di misura                                                                         | Dimensioni                          | Unità SI                                                               |
|------------------------|-------------|-----------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------|
| Velocità               | $\bar{v}$   | $\frac{m}{s}$                                                                           | $L \cdot T^{-1}$                    | $m \cdot s^{-1}$                                                       |
| Accelerazione          | $\bar{a}$   | $\frac{m}{s^2}$                                                                         | $L \cdot T^{-2}$                    | $m \cdot s^{-2}$                                                       |
| Accelerazione angolare | $\alpha$    | $egin{array}{c} rac{m}{s} \ rac{m}{s^2} \ rac{rad}{s^2} \ rac{kg}{m^3} \end{array}$ | $T^{-2}$                            | $m \cdot s^{-1}$ $m \cdot s^{-2}$ $rad \cdot s^{-2}$ $kg \cdot m^{-3}$ |
| Densità                | $\rho$      | $rac{ar{k}g}{m^3}$                                                                     | $M \cdot L^{-3}$                    | $kg \cdot m^{-3}$                                                      |
| Lunghezza              | L           | $\stackrel{\cdot \cdot \cdot \cdot}{m}$                                                 | L                                   | m                                                                      |
| Massa                  | m           | kg                                                                                      | M                                   | kg                                                                     |
| Tempo                  | t           | s                                                                                       | T                                   | s                                                                      |
| Energia                | E, U, K     | J                                                                                       | $\frac{M \cdot L^2}{T^2} \\ T^{-1}$ | $kg \cdot m^2 \cdot s^{-2}$ $s^{-1}$ $kg \cdot m \cdot s^{-2}$ $m^3$   |
| Frequenza              | f           | Hz                                                                                      |                                     | $s^{-1}$                                                               |
| Forza                  | $ar{ar{F}}$ | N                                                                                       | $M \cdot L \cdot T^{-2}$            | $kg \cdot m \cdot s^{-2}$                                              |
| Volume                 | V           | $m^3$                                                                                   | $L^3$                               | $m^3$                                                                  |

# 0.6 Angolo



Gli angoli non hanno dimensioni, si misurano in radianti.

$$\theta = \frac{L}{R} \implies \frac{\mathfrak{m}}{\mathfrak{m}} \implies \text{Radianti}$$

## 0.7 Densità di massa

La densità è il rapporto tra la massa e il volume.

$$\rho = \frac{m}{V}$$

Per definizione la densità dell'acqua è  $1\frac{g}{cm^3}=1000\frac{kg}{m^3}.$ 

### 0.7.1 Esercizio

Quale è la massa in chilogrammi di due litri di elio, dove  $1.00l = 1.00 \cdot 10^3 cm^3$  e la densità dell'elio è  $0.1785 \frac{kg}{m^3}$ ?

$$\rho = \frac{m}{V} \implies m = \rho \cdot V \implies m = 0.1785 \frac{kg}{m^3} \cdot 2 \cdot 10^3 cm^3 \implies 10^{-6} m^3 = 3.57 \cdot 10^{-4} kg$$

2

## 1 Moto

Il moto è il movimento dei corpi.

## 1.1 Moto Rettilineo

Il moto più semplice è il moto rettilineo, ovvero il moto lungo una retta. Inizialmente studiamo il moto di un corpo puntiforme. Quando si parla di moto dobbiamo definire un'origine degli spazi e orientare la retta, in modo da determinare il verso positivo e negativo.

Effettuando delle misurazioni si ottiene un diagramma orario e successivamente si può ottenere il grafico spazio-tempo.



Figure 1: Grafico spazio-tempo

## 1.1.1 Velocità media

$$\bar{v}_m = \frac{\Delta x}{\Delta t} = \frac{x_F - x_I}{t_F - t_I}$$

### 1.1.2 Velocità istantanea

La velocità istantanea è una variazione piccolissima variazione di spazio in un piccolissimo intervallo di tempo.

$$\mathbf{v} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

#### 1.1.3 Due punti in moto sullo stesso asse

Due punti materiali si trovano nell'istante iniziale t = 0 sullo stesso asse x, rispettivamente nella posizione  $x_1$  con velocità  $v_1$  e nella posizione  $x_2 > x_1$  con velocità  $v_2$ . Il moto dei punti è uniforme. Discutere quali sono le situazioni in cui i punti ad un certo istante si urtano e determinare dove e quando si urtano.

Moto rettilineo uniforme  $\iff$  velocità costante.

$$v = \frac{dx}{dt} \implies dx = v \cdot dt \implies \int_0^{t_0} dx = \int_0^{t_0} v(t) \cdot dt$$
$$x(t_0) - x(0) = \int_0^{t_0} v(t) \cdot dt \implies x(t_0) - x(0) = \int_0^{t_0} v \cdot dt \implies x(t_0) - x(0) = v_0(t_0 - 0) \implies x(t_0) = v_0 \cdot t_0$$
$$x_1(t) = v_1 \cdot t \quad x_2(t) = v_2 \cdot t + x_2(0)$$



Figure 2: Esempi di grafici di due punti in moto sullo stesso asse

### 1.2 Accelerazione nel moto rettilineo

Si definisce accelerazione e si indica con  $\bar{a}$  il rapporto tra la velocità in un certo istante e l'intervallo di tempo in cui si è verificata la variazione di velocità.

$$a_m = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

$$a_i = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} \implies v = \frac{dx}{dt} \implies a = \frac{d^2x}{dt^2}$$

Anche quando la velocità diminuisce si ha un'accelerazione, ma negativa.

Se conosco l'accelerazione posso calcolare la velocità.

$$\frac{dv}{dt} = a \implies \int_{v_0}^{v_1} dv = \int_0^{t_1} a \cdot dt \implies v_1 - v_0 = \int_{t_0}^{t_1} a(t) \cdot dt$$
$$v(t) = v(t_0) + \int_{t_0}^{t} a(t) \cdot dt$$

## 1.3 Moto rettilineo uniformemente accelerato

Moto rettilineo uniformemente accelerato  $\iff$  accelerazione costante.

$$dv = adt \implies \int_{v_0}^v dv = \int_0^t adt \implies v - v_0 = a \int_0^t dt = a \cdot t \implies v = v_0 + a \cdot t$$

$$v = \frac{dx}{dt} \implies dx = v \cdot dt \implies dx = [v_0 + a(t - t_0)]dt \implies \int_{x_0}^x dx = \int_{t_0}^t v_0 dt + \int_{t_0}^t a(t - t_0) dt$$

$$x - x_0 = v_0(t - t_0) + \frac{1}{2}a(t - t_0)^2$$

### 1.3.1 Esercizio

Un'automobile è in grado di passare dalla quiete alla velocità di  $100 \frac{km}{h}$  in t secondi, muovendosi con moto uniformemente accelerato. Esprimere il valore dell'accelerazione e calcolarlo per t = t1 = 5s e per t = t2 = 8s. Quanto vale lo spazio percorso nei due casi? E la velocità media?

Risoluzione:

$$v = at \implies a = \frac{v_f}{t}$$

$$v_f = 100 \frac{km}{h} = 27.78 \frac{m}{s}$$

$$a = \frac{27.78 \frac{m}{s}}{5s} = 5.56 \frac{m}{s^2}$$

$$a_2 = \frac{27.78 \frac{m}{s}}{8s} = 3.47 \frac{m}{s^2}$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$\implies x_1 = 0 + 0 + \frac{1}{2} \cdot 5.56 \frac{m}{s^2} \cdot 5^2 s^2 = 69.5m$$

$$\implies x_2 = 0 + 0 + \frac{1}{2} \cdot 3.47 \frac{m}{s^2} \cdot 8^2 s^2 = 111m$$

$$\bar{v}_{m_1} = \frac{69.5m}{5s} = 13.9 \frac{m}{s}$$

$$\bar{v}_{m_2} = \frac{111m}{8s} = 13.9 \frac{m}{s}$$

### 1.3.2 Esercizio accelerazione negativa

Un punto materiale parte dall'origine con velocità iniziale  $v_0$  positiva ed è sottoposto ad un'accelerazione negativa – a costante. Calcolare la massima distanza dall'origine raggiunta dal punto lungo il semiasse positivo, l'istante  $t_1$  in cui si ferma, l'istante  $t_2$  in cui ripassa per l'origine e la velocità che ha per  $t = t_2$ .

$$v = v_0 + at \implies v_0 + at, \ a < 0, \ v_0 > 0$$

$$v_0 + at = 0 \implies t_1 = \frac{-v_0}{a}$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2 \implies x_1 = v_0 \cdot t_1 + \frac{1}{2} a t_1^2 = \frac{-v_0^2}{a} + \frac{1}{2} a \cdot \frac{v_0^2}{a^2} = \frac{-v_0^2}{2a}$$

Ora calcoliamo quando il punto ripassa per l'origine  $v_0 + \frac{1}{2}at^2 = 0$   $\begin{cases} t = 0 \\ t_2 = \frac{2v_0}{-a} \end{cases}$ 

Velocità in  $t_2$   $v_2 = v_0 + at_2 = v_0 - 2v_0 = -v_0$ 

# 2 Valori Medi

## 2.1 Valore medio di una funzione

$$\langle f(t) \rangle = \frac{\int_0^T f(t)dt}{T}$$

Nel caso della funzione sin, la media su un periodo è nulla:

$$<\sin(t)> = \frac{1}{2\pi} \int_0^{2\pi} \sin(\theta) d\theta = \frac{1}{2\pi} \left[ -\cos(\theta) \right]_0^{2\pi} = 0$$

Lo stesso si ottiene per il coseno, ed è evidente, basta osservare il grafico; in un semiperiodo la funzione è positiva, nell'altro è negativa e la loro somma è nulla.

E' diversa la situazione per la funzione  $\sin^2 e \cos^2$ , funzioni che hanno come periodo  $\pi$ , che essendo sempre positive non possono aver valore medio nullo. Osserviamo che:

$$\int_0^{\pi} (\sin^2(\theta) + \cos^2(\theta)) d\theta = \int_0^{\pi} 1 d\theta = \pi$$

pertanto

$$\int_0^{\pi} \int_0^2 (\theta) d\theta = \int_0^{\pi} \cos^2(\theta) d\theta = \frac{\pi}{2}$$

## 2.1.1 Esercizio 1.4 (compito)

# 3 Moto verticale di un corpo

Un corpo in caduta libera è un corpo che cade sotto l'azione della forza di gravità.

$$g = 9.81 \frac{m}{s^2}$$
 
$$\begin{cases} v = v_0 - g \cdot t \\ x = x_0 + v_0 t - \frac{1}{2} g t^2 \end{cases}$$



Figure 3: Esercizio 1.6

$$0 = h + v_0 \bar{t} - \frac{1}{2}g\bar{t}^2 \implies \bar{t} = \sqrt{\frac{2h}{g}}$$

### 3.0.1 Esercizio 1.6

Un punto materiale viene lasciato cadere all'istante t = 0 con velocità iniziale nulla. Un secondo punto materiale viene lanciato verso il basso all'istante  $t = t_0 > 0$ , con velocità iniziale  $v_0$ : riuscirà a raggiungere il primo punto?



Figure 4: Esercizio 1.6

$$\begin{split} x_1(t) &= \frac{1}{2}gt^2 \ \text{perch\'e abbiamo considerato il punto di partenza h come l'origine} \\ x_2(t) &= v_0(t-t_0) + \frac{1}{2}g(t-t_0)^2 \ \text{perch\'e il secondo corpo viene lasciato cadere in un secondo istante } t_0 \\ si incontrano a \ \bar{t} &= x_1(\bar{t}) = x_2(\bar{t}) \implies \frac{1}{2}g\bar{t}^2 = v_0(\bar{t}-t_0) + \frac{1}{2}g(\bar{t}-t_0)^2 \\ \bar{t} &= \frac{t_0}{2}\left(1 + \frac{v_0}{v_0 - gt_0}\right) \end{split}$$

# 4 Moto Armonico

Un corpo si muove di moto armonico se la sua posizione è descritta da una funzione del tipo:

$$x(t) = A \cdot \sin(2\pi t)$$