MATHEMATICS University of Gothenburg

Examination in commutative algebra MMA 330, 2016-10-24

No books, written notes or any other aids are allowed.

Telephone: 031-772 35 80

- 1. Let A be an integral domain and p be an element which is prime in A. Let $S \subseteq A$ be a multiplicative subset such that p does not divide any element in S. Show that p/1 is prime in $S^{-1}A$.
- 4p
- 2. Let *S* be a multiplicative subset in a commutative ring *A* and *M* be a finitely generated *A*-module. Show that $S^{-1}M = 0$ if and only if some $s \in S$ annihilates *M*, that is if sM = 0.
- 4p
- 3. Let K be a finite field extension of \mathbb{Q} and O_K be the integral closure of \mathbb{Z} in K.
- 5p

- a) Show that no integer $n \ge 2$ is invertible in O_K .
- b) Let *p* be a prime. Show that there exists a prime ideal *P* in O_K with $P \cap \mathbb{Z} = (p)$.
- 4. Let I, J be ideals in a commutative ring A and P be a prime ideal in A. Suppose that $I \cap J \subseteq P$. Show that $I \subseteq P$ or $J \subseteq P$.
- 4p
- 5. Let *t* be a non-unit in a Noetherian integral domain *A*. Show that $\bigcap_{n=1}^{\infty} (t^n) = \{0\}.$
- 4p
- 6. Let *A* be a Noetherian local integral domain with principal maximal ideal and $K=\operatorname{Frac}(A)$ be its field of fractions. Show that there exists a discrete valuation $v: K^* \to \mathbb{Z}$ with $A = \{f \in K^* : v(f) \ge 0\} \cup \{0\}$.

4p

You may use any theorem in Reid's book to solve the first 4 exercises, but all claims should be motivated.

MATHEMATICS University of Gothenburg Examination in commutative algebra MMA 330, 2017-01-03 No books, written notes or any other aids are allowed.

Telephone: 0703-08 83 04

 1 Prove or give a counterexample: a) the intersection of two prime ideals is prime; b) the ideal P + Q generated by 2 prime ideals P and Q is again prime. 	2p 2p
2. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be a short exact sequence of <i>A</i> -modules over a commutative ring <i>A</i> . Suppose that <i>L</i> and <i>N</i> are finitely generated <i>A</i> -modules. Show that <i>M</i> is also finitely generated.	4p
3a). Show that the ring $\mathbb{Z}[\sqrt{-3}]$ is not integrally closed in its field	3p
of fractions. 3b) Determine its integral closure.	2p
4a) Is there a discrete valuation v of $\mathbf{Q}(i)$ with $v(2)=1$? 4b) Is there a discrete valuation v of $\mathbf{Q}(i)$ with $v(3)=1$?	2p 3p
5. Prove that any ideal $I \neq A$ of a commutative ring is contained in a maximal ideal.	3p
6. Formulate and prove Hilbert's basis theorem.	4p

All claims that are made should be motivated.

MATHEMATICS University of Gothenburg

Examination in commutative algebra MMA 330, 2018-10-29

No books, written notes or any other aids are allowed.

Telephone: 031-772 35 80

1 Find a monic polynomial in $\mathbb{Z}[X]$ which vanishes at $\sqrt{2} + i$.

3p

- 2 Let *A* be a ring and *S* be the set of all $s \in A \setminus \{0\}$, which are not zero divisors.
- a) Show that *S* is a multiplicative set.

2p

b) Show that $\frac{a}{s} = \frac{b}{t}$ in $S^{-1}A$ if and only if at = bs in A.

1p

c) Show that every $\frac{a}{s} \neq \frac{0}{1}$ in $S^{-1}A$ is either a unit or a zero divisor.

2p

- 3. Let k be a field and $I \subset k[X_1,...,X_n,...]$ be the ideal generated by the monomials X_mX_n $m.n \in \mathbb{N}$. Let $A = k[X_1,...,X_n,...]/I$ and $x_n = X_n + I$.
- a) Prove that $(x_1,...,x_n,...)$ is the only prime ideal in A.

3p

- (Suggestion: Determine the intersection of all prime ideals.)
- b) Determine if *A* is Artinian or not.

1p

c) Determine if *A* is Noetherian or not.

1p

4a) Let *I* be an ideal in a Noetherian ring *A*. Prove that there exists $x \in 1+I$ such that xm=0 for every $m \in \bigcap_{n=1}^{\infty} I^n$. (Hint: This is not hard if you just apply a suitable result in Reids's book.)

3p

4b) Show that $\bigcap_{n=1}^{\infty} I^n = \{0\}$ for any ideal $I \neq A$ in a local Noetherian ring A.

1p

5) Let *I* be a non-principal ideal of $\mathbb{Z}[X]$. Prove that $I \cap \mathbb{Z} \neq \{0\}$.

4p

6) Let *A* be a Noetherian integral domain and $t \in A$ a non-unit. Show that $\bigcap_{i=1}^{\infty} (t^n) = 0.$

4p

All rings are commutative with a unit element 1. You may use the results in Reid's book for the first four exercises. But all claims should be motivated.

MATHEMATICS University of Gothenburg

Examination in commutative algebra MMA 330, 2019-01-07 No books, written notes or any other aids are allowed.

Telephone: 772 5325

All rings are supposed to be commutative with 1.

 1) Let <i>I</i> and <i>J</i> be two ideals in a ring. a) Give an example of a ring and two ideals where <i>IJ</i> ≠ <i>I</i>∩<i>J</i>. b) Show that <i>IJ</i> = <i>I</i>∩<i>J</i> if <i>I</i> and <i>J</i> are coprime (i.e. if <i>I</i>+<i>J</i>=<i>A</i>). 	1p 3p
2) Let <i>A</i> be a ring and <i>S</i> be a multiplicative set in <i>A</i> . Let $\phi:A \to S^{-1}A$ be the map which sends $a \in A$ to $\frac{a}{1} \in S^{-1}A$. Show that ϕ is injective if and only if <i>S</i> does not contain zero or a zero divisor in <i>A</i> .	4p
3) Let <i>A</i> be a ring and <i>M</i> be a Noetherian <i>A</i> -module. Let $I=Ann(M)$ be the ideal of <i>A</i> given by $I=\{a\in A: am=0, \forall m\in M\}$. Prove that A/I is a Noetherian ring.	4p
4) Let A be a ring with $\mathbb{C}[X] \subseteq A \subseteq \mathbb{C}(X)$ and $E \subseteq \mathbb{C}$ be the set of all $\alpha \in \mathbb{C}$ such that some $f \in A$ has a pole at α (i.e. $ f(X) \to \infty$ when $X \to \alpha$). a) Let $\alpha \in \mathbb{C}$. Show that $1/(X-\alpha) \in A$ if and only if $\alpha \in E$. b) Show that A as ring is generated by $\mathbb{C}[X]$ and all $1/(X-\alpha)$ with $\alpha \in E$. (Hint: The problem is similar to an exercise in Reid's book on subrings of \mathbb{Q} .)	5p
5) Let $A \subset B$ be two rings and let $b \in B$. Show that b is integral over A if and only if $A[b]$ is finitely generated as A -module.	4p
6) Formulate and prove Hilbert's basis theorem.	4p

All claims must be motivated.