EM78P468N/L

8-Bit Microcontroller

Product Specification

Doc. Version 1.5

ELAN MICROELECTRONICS CORP.

February 2007

Trademark Acknowledgments:

IBM is a registered trademark and PS/2 is a trademark of IBM.

Windows is a trademark of Microsoft Corporation.

ELAN and ELAN logo are trademarks of ELAN Microelectronics Corporation.

Copyright © 2004~2007 by ELAN Microelectronics Corporation All Rights Reserved Printed in Taiwan, ROC

The contents of in this specification are subject to change without notice. ELAN Microelectronics assumes no responsibility concerning the accuracy, adequacy, or completeness of this specification. ELAN Microelectronics makes no commitment to update, or to keep current the information and material contained in this specification. Such information and material may change to conform to each confirmed order.

In no event shall ELAN Microelectronics be made responsible to any claims attributed to errors, omissions, or other inaccuracies in the information or material contained in this specification. ELAN Microelectronics shall not be liable for direct, indirect, special incidental, or consequential damages arising out of the use of such information or material.

The software (if any) described in this specification is furnished under a license or nondisclosure agreement, and may be used or copied only in accordance with the terms of such agreement.

ELAN Microelectronics products are not intended for use in life support appliances, devices, or systems. Use of ELAN Microelectronics product in such applications is not supported and is prohibited.

NO PART OF THIS SPECIFICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS WITHOUT THE EXPRESS WRITTEN PERMISSION OF ELAN MICROELECTRONICS.

ELAN MICROELECTRONICS CORPORATION

Headquarters:

No. 12, Innovation Road 1 Hsinchu Science Park Hsinchu, TAIWAN 30077 Tel: +886 3 563-9977

Fax: +886 3 563-9966

http://www.emc.com.tw

Hong Kong:

Elan (HK) Microelectronics Corporation, Ltd.

Flat A, 19F., World Tech Centre 95 How Ming Street, Kwun Tong Kowloon, HONG KONG

Tel: +852 2723-3376 Fax: +852 2723-7780 elanhk@emc.com.hk

Shenzhen:

Elan Microelectronics Shenzhen, Ltd.

SSMEC Bldg., 3F, Gaoxin S. Ave. Shenzhen Hi-Tech Industrial Park Shenzhen, Guandong, CHINA

Tel: +86 755 2601-0565 Fax: +86 755 2601-0500

USA:

Elan Information Technology Group (U.S.A.)

1821 Saratoga Ave., Suite 250 Saratoga, CA 95070

U.S.A.

Tel: +1 408 366-8225 Fax: +1 408 366-8220

Shanghai:

Elan Microelectronics Shanghai, Ltd.

23/Bldg. #115 Lane 572, Bibo Road Zhangjiang Hi-Tech Park

Shanghai, CHINA Tel: +86 21 5080-3866 Fax: +86 21 5080-4600

Contents

1	Gen	eral De	escription ·····	1
2				
3	Pin .	Assign	ment	. 2
4	Bloc	k Diac	ıram	3
5			ption	
_			Description	
6				
	6.1	•	ional Registers	
		6.1.1	R0/IAR (Indirect Addressing Register)	
		6.1.2	R1/TCC (Timer Clock Counter)	
		6.1.3	R2/PC (Program Counter)	
		6.1.4	R3/SR (Status Register)	
		6.1.5	R4/RSR (RAM Select Register)	
		6.1.6	R5/Port 5 (Port 5 I/O Data and Page of Register Select	
		6.1.7	R6/Port 6 (Port 6 I/O Data Register)	
		6.1.8	R7/Port 7 (Port 7 I/O Data Register)	
		6.1.9	R8/Port 8 (Port 8 I/O Data Register)	
			R9/LCDCR (LCD Control Register)	
			RA/LCD_ADDR (LCD Address)	
			RB/LCD_DB (LCD Data Buffer)	
			RC/CNTER (Counter Enable Register)	
			RD/SBPCR (System, Booster and PLL Control Register)	
			RE/IRCR (IR and Port 5 Setting Control Register)	
		6.1.16	RF/ISR (Interrupt Status Register)	14
		6.1.17	Address: 10h~3Fh; R10~R3F (General Purpose Register)	14
	6.2	Specia	l Purpose Registers	15
		6.2.1	A (Accumulator)	. 15
		6.2.2	IOC50/P5CR (Port 5 I/O and Ports 7, 8 for LCD Segment Control Register)	15
		6.2.3	IOC60/P6CR (Port 6 I/O Control Register)	16
		6.2.4	IOC70/P7CR (Port 7 I/O Control Register)	16
		6.2.5	IOC80/P8CR (Port 8 I/O Control Register)	16
		6.2.6	IOC90/RAM_ADDR (128 Bytes RAM Address)	16
		6.2.7	IOCA0/RAM_DB (128 Bytes RAM Data Buffer)	16
		6.2.8	IOCB0/CNT1PR (Counter 1 Preset Register)	.17
		6.2.9	IOCC0/CNT2PR (Counter 2 Preset Register)	17
		6.2.10	IOCD0/HPWTPR (High-Pulse Width Timer Preset Register)	17
		6.2.11	IOCE0/LPWTPR (Low-Pulse Width Timer Preset Register)	18
		6.2.12	IOCF0/IMR (Interrupt Mask Register)	.18
		6.2.13	IOC61/WUCR (Wake-up and Sink Current of P5.7/IROUT Control Register) .	18

	6.2.14	IOC71/TCCCR (TCC Control Register)	19
	6.2.15	IOC81/WDTCR (WDT Control Register)	20
	6.2.16	IOC91/CNT12CR (Counters 1, 2 Control Register)	20
	6.2.17	IOCA1/HLPWTCR (High/Low Pulse Width Timer Control Register)	21
	6.2.18	IOCB1/P6PH (Port 6 Pull-high Control Register)	22
	6.2.19	IOCC1/P6OD (Port 6 Open Drain Control Register)	22
	6.2.20	IOCD1/P8PH (Port 8 Pull High Control Register)	22
	6.2.21	IOCE1/P6PL (Port 6 Pull Low Control Register)	22
6.3	TCC a	nd WDT Prescaler	23
6.4	I/O Po	rts	25
6.6	Oscilla	ator	30
	6.6.1	Oscillator Modes	30
	6.6.2	Phase Lock Loop (PLL Mode)	30
	6.6.3	Crystal Oscillator/Ceramic Resonators (Crystal)	31
	6.6.4	RC Oscillator Mode with Internal Capacitor	32
6.7	Power	-on Considerations	32
	6.7.1	External Power-on Reset Circuit	33
	6.7.2	Residue-Voltage Protection	33
6.8	Interru	pt	34
6.9	LCD D)river	35
	6.9.1	R9/LCDCR (LCD Control Register)	35
	6.9.2	RA/LCD_ADDR (LCD Address)	36
	6.9.3	RB/LCD_DB (LCD Data Buffer)	36
	6.9.4	RD/SBPCR (System, Booster and PLL Control Registers)	37
6.10	Infrare	ed Remote Control Application/PWM Waveform Generate	41
6.11	Code	Options	45
6.12	Instru	ction Set	46
6.13	Timin	g Diagram	49
		Maximum Ratings·······	
		Characteristic	
8.1		ectrical Characteristics	
8.2		ectrical Characteristics	
8.3		e Characteristic	
App	licatio	n Circuit	- 66

7 8

9

APPENDIX

Α	Package Type	67
В	Package Information	68
С	EM78P468L Program Pin List	71
D	ICE 468XA	72
Ε	Quality Assurance and Reliability	75
	E.1 Address Trap Detect	75

Specification Revision History

Doc. Version	Revision Description	Date				
1.0	Initial version	2004/04/10				
1.1	1. Added DC curve vs. Temperature. 2. Removed the LVD function					
1.2	1.2 1. Added LQFP Package					
1.3	 Combined EM78P468N with EM78P468L Specification. Deleted the wake-up function from Idle mode by TCC time out. Added power-on voltage detector in the Features section. 	2006/05/05				
1.4	 Modified the General Description, Features and Pin Assignment. Added Green Product Information. Modified the Functional Block Diagram. Added Appendix D Quality Assurance and Reliability. 	2007/01/11				
1.5	Deleted all the packages for the EM78P468L	2007/02/15				

1 General Description

The EM78P468N/L is an 8-bit microprocessor designed and developed with low-power and high-speed CMOS technology. Integrated onto a single chip are on chip Watchdog Timer (WDT), Data RAM, ROM, programmable real time clock counter, internal/external interrupt, power down mode, LCD driver, infrared transmitter function, and tri-state I/O. The series has an on-chip 4K×13-bit Electrical One Time Programmable Read Only Memory (OTP-ROM). The EM78P468L provides multi-protection bits to prevent intrusion of user's OTP memory code. Seven Code option bits are available to meet user's requirements. Special 13 bits customer ID options are provided as well.

With its enhanced OTP-ROM feature, the EM78P468N/L provides a convenient way of developing and verifying user's programs. Moreover, this OTP device offers the advantages of easy and effective program updates, using development and programming tools. User can avail of the ELAN Writer to easily program his development code.

2 Features

- CPU Configuration
 - 4K×13 bits on-chip OTP-ROM
 - 144 bytes general purpose register
 - 128 bytes on-chip data RAM
 - · 272 bytes SRAM
 - · 8 level stacks for subroutine nesting
 - Power-on voltage detector provided (2.0±0.1V) for FM78P468N
 - Power-on voltage detector provided (1.7±0.1V) for EM78P468L
- I/O Port Configuration
 - Typically, 12 bi-directional tri-state I/O ports.
 - 16 bi-directional tri-state I/O ports shared with LCD segment output pin.
 - Up to 28 bi-directional tri-state I/O ports
- Operating Voltage and Temperature Range:

EM78P468N

- Commercial: 2.3V ~ 5.5 V. (at 0°C~+70°C)
- Industrial: 2.5V ~ 5.5 V. (at -40°C ~+85°C)

EM78P468L

- Commercial: 2.1 V ~ 5.5 V. (at 0°C ~+70°C)
- Industrial: 2.3V ~ 5.5 V. (at -40°C ~+85°C)
- Operating Mode:
 - Normal mode: The CPU is operated on main oscillator frequency (Fm)
 - Green mode: The CPU is operated on sub-oscillator frequency (Fs) and main oscillator (Fm) is stopped
 - · Idle mode: CPU idle, LCD display remains working
 - Sleep mode: The whole chip stops working
 - Input port wake-up function (Port 6, Port 8).
 Works on Idle and Sleep mode.
 - ◆ Operation speed: DC ~ 10MHz clock input
 - Dual clock operation
- Oscillation Mode
 - High frequency oscillator can select among Crystal, RC, or PLL (phase lock loop)
 - Low frequency oscillator can select between Crystal or RC mode

- Peripheral Configuration
 - 8-bit real time clock/counter (TCC)
 - One infrared transmitter / PWM generator function
 - Four sets of 8 bits auto reload down-count timer can be used as interrupt sources
 - Counter 1: independent down-count timer
 - Counter 2, High Pulse Width Timer (HPWT), and Low Pulse Width Timer (LPWT) shared with IR
 - Programmable free running on chip watchdog timer (WDT). This function can operate on Normal, Green and Idle mode.
- Eight Interrupt Sources: Three External and Five Internal
 - Internal interrupt source: TCC; Counters 1, 2;
 High/Low pulse width timer.
 - External interrupt source: INT0, INT1 and Pin change wake-up (Port 6 and Port 8)
- LCD Circuit
 - Common driver pins: 4
 - · Segment driver pins: 32
 - LCD Bias: 1/3, 1/2 bias
 - LCD Duty: 1/4, 1/3, 1/2 duty
- Package Type:
 - Dice form: 59 pins
 - QFP-64 pin: EM78P468NQxS/xJ

(Body 14mm × 20mm)

LQFP-64 pin: EM78P468NAQxS/xJ

(Body 7mm \times 7mm)

LQFP-44 pin: EM78P468NBQxS/xJ

(Body 10mm × 10mm)

QFP-44 pin: EM78P468NCQxS/xJ

(Body 10mm × 10mm)

Note: Green products do not contain hazardous substances

3 Pin Assignment

4 Block Diagram

Fig. 4-1 System Block Diagram

5 Pin Description

Table 1 (a) Pin Description for Package of QFP64 and LQFP64

Symbol	Pin No.	Туре	Function			
			1-bit General purpose input/output pin/external interrupt.			
P5.4/INT0	32	I/O	INT0 interrupt source can be set to falling or rising edge by IOC71 register Bit 7 (INT_EDGE). Wakes up from sleep mode and idle mode when the pin status changes.			
P5.5/INT1	33	I/O	1-bit General purpose input/output pin/external interrupt. Interrupt source is a falling edge signal. Wakes up from sleep mode and idle mode when the pin status changes.			
P5.6/TCC	34	I/O	1-bit General purpose input/output pin/external counter input. This pin works in normal/green/idle mode.			
P5.7/IROUT	37	I/O	1-bit General purpose input/output pin/IR/PWM mode output pin. This pin is capable of sinking 20mA/5V.			
8-bit General purpose input/output P6.0~P6.7 38~45 I/O Pull-high, pull-low and open drain f			8-bit General purpose input/output pins. Pull-high, pull-low and open drain function supported. All pins can wake up from sleep and idle modes when the pin status changes			
COM3~0	17~20	0	LCD common output pin.			
SEG0~SEG15	16~1	0	LCD segment output pin.			
SEG16/P7.0 64 ~ ~ O/ SEG23/P7.7 57		O/(I/O)	LCD segment output pin. Can be shared with general purpose I/O pin			
SEG24/P8.0	56		LCD segment output pin. Can be shared with general I/O pin.			
~ SEG30/P8.6 SEG31/P8.7	~ 50 46	O/(I/O)	For general purpose I/O use, can wake up from sleep mode and idle mode when the pin status changes. For general purpose I/O use, supports pull-high function.			
VB	21	0	Connect capacitors for LCD bias voltage.			
VA	22	0	Connect capacitors for LCD bias voltage.			
VLCD2	23	0	One of LCD bias voltage.			
VLCD3	24	0	One of LCD bias voltage.			
/RESET	25	I	General-purpose Input only Low active. If it remains at logic low, the device will be reset.			
R-OSCI	27	I	In Crystal mode: crystal input In RC mode: resistor pull high. In PLL mode: connect 0.01µF capacitance to GND Connect 0.01µF capacitor to GND and code option select PLL mode when high oscillator is not use			
osco	28	0	In Crystal mode: crystal input In RC mode: instruction clock output			
Xin	30	I	In Crystal mode: Input pin for sub-oscillator. Connect to a 32.768kHz crystal.			
Xout	31	0	In Crystal mode: Connect to a 32.768kHz crystal. In RC mode: instruction clock output			
NC	35~36 47~49	-	No connection			
VDD	29	I	Power supply			
GND	26	I	System ground pin			

Table 2 (b) Pin Description for Package of QFP44 and LQFP44

Symbol	Pin No.	Туре	Function		
P5.4/INT0	21	I/O	1-bit General purpose input/output pin/external interrupt. The INT0 interrupt source can be set to falling or rising edge by IOC71 register Bit 7 (INT_EDGE). Wakes up from sleep mode and idle mode when the pin status changes.		
P5.5/INT1	22	I/O	1-bit General purpose input/output pin/external interrupt. The Interrupt source is a falling edge signal. Wakes up from sleep mode and idle mode when the pin status changes.		
P5.6/TCC	23	I/O	1-bit General purpose input/output pin/external counter input. This pin works in normal/green/idle mode.		
P5.7/IROUT	24	I/O	1-bit General purpose input/output pin/IR/PWM mode output pin This pin is capable of sinking 20mA/5V.		
P6.0~P6.7 25~32 I/O 8-bit General p Pull-high, pull- All pins can wa		I/O	8-bit General purpose input/output pins Pull-high, pull-low and open drain function supported. All pins can wake up from sleep and idle modes when the pin status changes.		
COM3~0	6~9	0	LCD common output pin.		
SEG11~SEG14	5~2	0	LCD segment output pin.		
SEG16/P7.0 SEG17/P7.1 ~ SEG23/P7.7	1 44 ~ 38	O/(I/O)	LCD segment output pin. Can be shared with general purpose I/O pin		
SEG24/P8.0 ~ SEG31/P8.4	37 ~ 33	O/(I/O)	LCD segment output pin. Can be shared with general I/O pin For general purpose I/O use, can wake up from sleep mode and idle mode when the pin status changes.		
VB	10	0	For general purposes I/O use, supports pull-high function. Connect capacitors for LCD bias voltage.		
VA	11	0			
VLCD2	12	0	Connect capacitors for LCD bias voltage.		
VLCD3		0	One of LCD bias voltage.		
/RESET	13	ı	One of LCD bias voltage. General-purpose Input only Low active. If it remains at logic low, the device will be reset.		
R-OSCI	16	I	In Crystal mode: crystal input In RC mode: resistor pull high. In PLL mode: connect 0.01µF capacitance to GND Connect 0.01µF capacitor to GND and code option select PLL mode when high oscillator is not use		
osco	17	0	In Crystal mode: crystal input In RC mode: instruction clock output		
Xin	19	I	In Crystal mode: Input pin for sub-oscillator. Connect to a 32.768kHz crystal.		
Xout	20	0	In Crystal mode: Connect to a 32.768kHz crystal. In RC mode: instruction clock output		
VDD	18	ı	Power supply		
GND	15	I	System ground pin		

6 Function Description

6.1 Operational Registers

6.1.1 RO/IAR (Indirect Addressing Register)

(Address: 00h)

R0 is not a physically implemented register. Its major function is to perform as an indirect address pointer. Any instruction using R0 as a register, actually accesses the data pointed by the RAM Select Register (R4).

6.1.2 R1/TCC (Timer Clock Counter)

(Address: 01h)

The Timer Clock Counter is incremented by an external signal edge applied to TCC, or by the instruction cycle clock. It is written and read by the program as any other register.

6.1.3 R2/PC (Program Counter)

(Address: 02h)

- The structure of R2 is depicted in Fig. 6-1, *Program Counter Organization*.
- The configuration structure generates 4K×13 bits on-chip ROM addresses to the relative programming instruction codes.
- The contents of R2 are all set to "0"s when a Reset condition occurs.
- "JMP" instruction allows direct loading of the lower 10 program counter bits. Thus,"JMP" allows the PC to jump to any location within a page.
- "CALL" instruction loads the lower 10 bits of the PC, and then PC+1 is pushed onto the stack. Thus, the subroutine entry address can be located anywhere within a page.
- "RET" ("RETL k", "RETI") instruction loads the program counter with the contents at the top of the stack.
- "ADD R2, A" allows a relative address to be added to the current PC, and the ninth and above bits of the PC will increase progressively.
- "MOV R2, A" allows loading of an address from the "A" register to the lower 8 bits of the PC, and the ninth and tenth bits (A8 ~ A9) of the PC will remain unchanged.
- The most significant bits (A10~A11) will be loaded with the content of PS0~PS1 in the Status register (R3) upon execution of a "JMP" or "CALL" instruction.

Fig 6-1 Program Counter Organization

Fig. 6-2 Data Memory Configuration

6.1.4 R3/SR (Status Register)

(Address: 03h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	PS1	PS0	Т	Р	Z	DC	С

Bit 7: Not used

Bits 6 ~ 5 (PS1 ~ 0): Page select bits

PS1	PS0	ROM Page (Address)
0	0	Page 0 (000H ~ 3FFH)
0	1	Page 1 (400H ~ 7FFH)
1	0	Page 2 (800H ~ BFFH)
1	1	Page 3 (C00H ~ FFFH)

PS0~PS1 are used to select a ROM page. User can use the PAGE instruction (e.g. PAGE 1) or set PS1~PS0 bits to change the ROM page. When executing a "JMP", "CALL", or other instructions which causes the program counter to be changed (e.g. MOV R2, A), PS0~PS1 are loaded into the 11th and 12th bits of the program counter where it selects one of the available program memory pages. Note that RET (RETL, RETI) instruction does not change the PS0~PS1 bits. That is, the return will always be to the page from where the subroutine was called, regardless of the current setting of PS0~PS1 bits.

Bit 4 (T): Time-out bit. Set to 1 by the "SLEP" and "WDTC" commands or during power up and reset to 0 by WDT timeout.

Event	Т	Р	Remark
WDT wake up from sleep mode	0	0	
WDT time out (not sleep mode)	0	1	
/RESET wake up from sleep	1	0	
Power up	1	1	
Low pulse on /RESET	1	1	×: don't care

Bit 3 (P): Power down bit. Set to 1 during power on or by a "WDTC" command and reset to 0 by a "SLEP" command.

Bit 2 (Z): Zero flag

Bit 1 (DC): Auxiliary carry flag

Bit 0 (C): Carry flag

6.1.5 R4/RSR (RAM Select Register)

(Address: 04h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RBS1	RBS0	RSR5	RSR4	RSR3	RSR2	RSR1	RSR0

Bits 7 ~ 6 (RBS1 ~ RBS0): determine which bank is activated among the four banks. See the data memory configuration in Fig. 6-2. Use the BANK instruction (e.g. BABK 1) to change banks.

Bits 5 ~ 0 (RSR5 ~ RSR0): used to select up to 64 registers (Address: 00~3F) in indirect addressing mode. If no indirect addressing is used, the RSR can be used as an 8-bit general purpose read/writer register.

6.1.6 R5/Port 5 (Port 5 I/O Data and Page of Register Select

(Address: 05h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R57	R56	R55	R54	-	-	-	IOCPAGE

Bits 7~4: 4-bits I/O registers of Port 5

User can use the IOC50 register to define each bit either as input or output.

Bits 3~1: Not used

Bit 0 (IOCPAGE): change IOC5 ~ IOCF to another page

IOCPAGE = "0": Page 0 (select register of IOC 50 to IOC F0)

IOCPAGE = "1": Page 1 (select register of IOC 61 to IOC E1)

6.1.7 R6/Port 6 (Port 6 I/O Data Register)

(Address: 06h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R67	R66	R65	R64	R63	R62	R61	R60

Bits 7~0: 8-bit I/O registers of Port 6

User can use the IOC60 register to define each bit either as input or output.

6.1.8 R7/Port 7 (Port 7 I/O Data Register)

(Address: 07h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R77	R76	R75	R74	R73	R72	R71	R70

Bits 7~0: 8-bit I/O registers of Port 7

User can use the IOC70 register to define each bit either as input or output.

6.1.9 R8/Port 8 (Port 8 I/O Data Register)

(Address: 08h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
R87	R86	R85	R84	R83	R82	R81	R80

Bits 7~0: 8-bit I/O registers of Port 8

User can use IOC80 register to define each bit either as input or output.

6.1.10 R9/LCDCR (LCD Control Register)

(Address: 09h)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BS	DS1	DS0	LCDEN		LCDTYPE	LCDF1	LCDF0

Bit 7 (BS): LCD bias select bit,

BS = "0": 1/2 bias **BS = "1":** 1/3 bias

Bit 6 ~ 5 (DS1 ~ DS0): LCD duty select

DS1	DS0	LCD Duty
0	0	1/2 duty
0	1	1/3 duty
1	×	1/4 duty

Bit 4 (LCDEN): LCD enable bit

LCDEN = "0": LCD circuit disabled. All common/segment outputs are set to ground (GND) level.

LCDEN = "1": LCD circuit enabled.

Bit 3: Not used

Bit 2 (LCDTYPE): LCD drive waveform type select bit

LCDTYPE = "0": A type waveform **LCDTYPE = "1"**: B type waveform

Bits 1 ~ 0 (LCDF1 ~ LCDF0): LCD frame frequency control bits

LCDF1	LCDF0	LCD Frame	requency (e.g. Fs=32.768kHz)			
LCDFI	LCDFU	1/2 Duty	1/3 Duty	1/4 Duty		
0	0	Fs/(256×2)=64.0	Fs/(172×3)=63.5	Fs/(128×4)=64.0		
0	1	Fs/(280×2)=58.5	Fs/(188×3)=58.0	Fs/(140×4)=58.5		
1	0	Fs/(304×2)=53.9	Fs/(204×3)=53.5	Fs/(152×4)=53.9		
1	1	Fs/(232×2)=70.6	Fs/(156×3)=70.0	Fs/(116×4)=70.6		

Note: Fs: sub-oscillator frequency

6.1.11 RA/LCD_ADDR (LCD Address)

(Address: 0Ah)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	LCD_A4	LCD_A3	LCD_A2	LCD_A1	LCD_A0

Bits 7~5: Not used, fixed to "0"

Bits 4~0 (LCDA4 ~ LCDA0): LCD RAM addresses

RA		RB (LCD Data B	uffer)		
(LCD Address)	Bits 7 ~4	Bit 3 (LCD_D3)	Bit 2 (LCD_D2)	Bit 1 (LCD_D1)	Bit 0 (LCD_D0)	Segment
00H	_	-	-	-	_	SEG0
01H	-	-	-	-	-	SEG1
02H	-	-	-	-	-	SEG2
I						I
1DH	-	-	-	-	-	SEG29
1EH	-	-	-	-	-	SEG30
1FH	-	-	-	-	-	SEG31
Common	×	COM3	COM2	COM1	COM0	

6.1.12 RB/LCD_DB (LCD Data Buffer)

(Address: 0Bh)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	LCD_D3	LCD_D2	LCD_D1	LCD_D0

Bits 7~4: Not used

Bits 3~0 (LCD_D3 ~ LCD_D0): LCD RAM data transfer register

6.1.13 RC/CNTER (Counter Enable Register)

(Address: 0Ch)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	-	-	_	LPWTEN	HPWTEN	CNT2EN	CNT1EN

Bits 7, 5: Not used, must be fixed to "0"

Bits 6, 4: Not used

Bit 3 (LPWTEN): low pulse width timer enable bit

LPWTEN = "0": Disable LPWT. Stop counting operation.

LPWTEN = "1": Enable LPWT. Start counting operation.

Bit 2 (HPWTEN): high pulse width timer enable bit

HPWTEN = "0": Disable HPWT. Stop counting operation. **HPWTEN = "1":** Enable HPWT. Start counting operation.

Bit 1 (CNT2EN): Counter 2 enable bit

CNT2EN = "0": Disable Counter 2. Stop counting operation.CNT2EN = "1": Enable Counter 2. Start counting operation.

Bit 0 (CNT1EN): Counter 1 enable bit

CNT1EN = "0": Disable Counter 1. Stop counting operation.CNT1EN = "1": Enable Counter 1. Start counting operation.

6.1.14 RD/SBPCR (System, Booster and PLL Control Register)

(Address: 0Dh)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	CLK2	CLK1	CLK0	IDLE	BF1	BF0	CPUS

Bit 7: Not used

Bits 6 ~ 4 (CLK2 ~ CLK0): main clock selection bits for PLL mode (code option select)

CLK2	CLK1	CLK0	Main clock	Example Fs=32.768K
0	0	0	Fs×130	4.26 MHz
0	0	1	Fs×65	2.13 MHz
0	1	0	Fs×65/2	1.065 MHz
0	1	1	Fs×65/4	532 kHz
1	×	×	Fs×244	8 MHz

Bit 3 (IDLE): Idle mode enable bit. This bit will determine the intended mode of the SLEP instruction.

Idle = "0"+SLEP instruction → Sleep mode

Idle = "1"+SLEP instruction → Idle mode

Example: Idle mode: Idle bit = "1" +SLEP instruction + NOP instruction

Sleep mode: Idle bit = "0" +SLEP instruction + NOP instruction

Bits 2, 1 (BF1, 0): LCD booster frequency select bit to adjust VLCD 2, 3 driving.

BF1	BF0	Booster Frequency
0	0	Fs
0	1	Fs/4
1	0	Fs/8
1	1	Fs/16

Bit 0 (CPUS): CPU oscillator source select, When CPUS=0, the CPU oscillator select sub-oscillator and the main oscillator is stopped.

CPUS = "0": sub-oscillator (Fs)

CPUS = "1": main oscillator (Fm)

^{*} NOP instruction must be added after SLEP instruction.

Fig. 6-3 CPU Operation Mode

6.1.15 RE/IRCR (IR and Port 5 Setting Control Register)

(Address: 0Eh)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IRE	HF	LGP	ı	IROUTE	TCCE	EINT1	EINT0

Bit 7 (IRE): Infrared Remote Enable bit

IRE = "0": Disable the IR/PWM function. The state of P5.7/IROUT pin is determined by Bit 7 of IOC 50 if it is for IROUT.

IRE = "1": Enable IR or PWM function.

Bit 6 (HF): High carry frequency

HF = "0": For PWM application, disable the H/W modulator function. The IROUT waveform is generated according to high-pulse and low-pulse time as determined by the respective high pulse and low pulse width timers. Counter 2 is an independent auto reload timer.

HF = "1": For IR application mode, enable the H/W modulator function, the low time sections of the generated pulse is modulated with the Fcarrier frequency. The Fcarrier frequency is provided by Counter 2.

Bit 5 (LGP): IROUT for of low pulse width timer

LGP = "0": The high-pulse width timer register and low-pulse width timer is valid.

LGP = "1": The high-pulse width timer register is ignored. So the IROUT waveform is dependent on the low-pulse width timer register only.

Bit 4: Not used

Bit 3 (IROUTE): Define the function of P5.7/IROUT pin.

IROUTE = "0": for bi-directional general I/O pin.

IROUTE = "1": for IR or PWM output pin, the control bit of P5.7 (Bit 7 of IOC50) must be set to "0"

Bit 2 (TCCE): Define the function of P5.6/TCC pin.

TCCE = "0": for bi-directional general I/O pin.

TCCE = "1": for external input pin of TCC, the control bit of P5.6 (Bit 6 of IOC50) must be set to "1"

Bit 1 (EINT1): Define the function of P5.5/INT1 pin.

EINT1 = "0" : for bi-directional general I/O pin.

EINT1 = "1": for external interrupt pin of INT1, the control bit of P5.5 (Bit 5 of IOC50) must be set to "1"

Bit 0 (EINT0): Define the function of P5.4/INT0 pin.

EINT0 = "0": for bi-directional general I/O pin.

EINT0 = "1": for external interrupt pin of INT0, the control bit of P5.4 (Bit 4 of IOC50) must be set to "1"

6.1.16 RF/ISR (Interrupt Status Register)

(Address: 0Fh)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ICIF	LPWTF	HPWTF	CNT2F	CNT1F	INT1F	INT0F	TCIF

These bits are set to "1" when interrupt occurs respectively.

Bit 7 (ICIF): Port 6, Port 8, input status changed interrupt flag. Set when Port 6, Port 8 input changes.

Bit 6 (LPWTF): interrupt flag of the internal low-pulse width timer underflow.

Bit 5 (HPWTF): interrupt flag of the internal high-pulse width timer underflow.

Bit 4 (CNT2F): interrupt flag of the internal Counter 2 underflow.

Bit 3 (CNT1F): interrupt flag of the internal Counter 1 underflow.

Bit 2 (INT1F): external INT1 pin interrupt flag.

Bit 1 (INT0F): external INT0 pin interrupt flag.

Bit 0 (TCIF): TCC timer overflow interrupt flag. Set when TCC timer overflows.

6.1.17 Address: 10h~3Fh; R10~R3F (General Purpose Register)

R10~R31F and R20~R3F (Banks 0~3) are general purpose registers.

6.2 Special Purpose Registers

6.2.1 A (Accumulator)

Internal data transfer operation, or instruction operand holding usually involves the temporary storage function of the Accumulator, which is not an addressable register.

■ Registers of IOC Page 0 (IOC50 ~ IOCF0, Bit 0 of R5 = "0")

6.2.2 IOC50/P5CR (Port 5 I/O and Ports 7, 8 for LCD Segment Control Register)

(Address: 05h, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC57	IOC56	IOC55	IOC54	P8HS	P8LS	P7HS	P7LS

Bits 7~4 (IOC57~54): Port 5 I/O direction control register

IOC5x = "0": set the relative P5.x I/O pins as output

IOC5x = "1": set the relative P5.x I/O pin into high impedance (input pin)

Bit 3 (P8HS): Switch to high nibble I/O of Port 8 or to LCD segment output while sharing pins with SEGxx/P8.x pins.

P8HS = "0": select high nibble of Port 8 as normal P8.4~P8.7

P8HS = "1": select LCD segment output as SEG 28~SEG 31 output

Bit 2 (P8LS): Switch to low nibble I/O of Port 8 or to LCD segment output while sharing pins with SEGxx/P8.x pins

P8LS = "0": select low nibble of Port 8 as normal P8.0~P8.3

P8LS = "1": select LCD Segment output as SEG 24~SEG 27 output

Bit 1 (P7HS): Switch to high nibble I/O of Port 7 or to LCD segment output while sharing

pins with SEGxx/P7.x pins

P7HS = "0": select high nibble of Port 7 as normal P7.4~P7.7

P7HS = "1": select LCD Segment output as SEG 20~SEG 23 output

Bit 0 (P7LS): Switch to low nibble I/O of Port 7 or to LCD segment output while sharing pins with SEGxx/P7.x pins

P7LS = "0": select low nibble of Port 7 as normal P7.0~P7.3

P7LS = "1": select LCD segment output as SEG 16~SEG 19 output

6.2.3 IOC60/P6CR (Port 6 I/O Control Register)

(Address: 06h, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC67	IOC66	IOC65	IOC64	IOC63	IOC62	IOC61	IOC60

Bit 7 (IOC67) ~ Bit 0(IOC60): Port 6 I/O direction control register

IOC6x ="0": set the relative Port 6.x I/O pins as output

IOC6x ="1": set the relative Port 6.x I/O pin into high impedance (input pin)

6.2.4 IOC70/P7CR (Port 7 I/O Control Register)

(Address: 07h, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC77	IOC76	IOC75	IOC74	IOC73	IOC72	IOC71	IOC70

Bit 7 (IOC77) ~ Bit 0 (IOC70): Port 7 I/O direction control register

IOC7x = "0": set the relative Port 7.x I/O pins as output

IOC7x = "1": set the relative Port 7.x I/O pin into high impedance (input pin)

6.2.5 IOC80/P8CR (Port 8 I/O Control Register)

(Address: 08h, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IOC87	IOC86	IOC85	IOC84	IOC83	IOC82	IOC81	IOC80

Bit 7 (IOC 87) ~ Bit 0 (IOC 80): Port 8 I/O direction control register

IOC8x = "0": set the relative Port 8.x I/O pins as output

IOC8x = "1": set the relative Port 8.x I/O pin into high impedance (input pin)

6.2.6 IOC90/RAM_ADDR (128 Bytes RAM Address)

(Address: 09h, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	RAM_A6	RAM_A5	RAM_A4	RAM_A3	RAM_A2	RAM_A1	RAM_A0

Bit 7: Not used, fixed at "0"

Bits 6~0: 128 bytes RAM address

6.2.7 IOCA0/RAM_DB (128 Bytes RAM Data Buffer)

(Address: 0Ah, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RAM_D7	RAM_D6	RAM_D5	RAM_D4	RAM_D3	RAM_D2	RAM_D1	RAM_D0

Bits 7~0: 128 bytes RAM data transfer register

6.2.8 IOCB0/CNT1PR (Counter 1 Preset Register)

(Address: 0Bh, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Bit 7 ~ Bit 0: These are Counter 1 buffers which user can read and write. Counter 1 is an 8-bit down-count timer with 8-bit prescaler used to preset the counter and read the preset value. The prescaler is set by the IOC91 register. After an interrupt, it will auto reload the preset value.

6.2.9 IOCCO/CNT2PR (Counter 2 Preset Register)

(Address: 0Ch, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Bit 7 ~ Bit 0: These are Counter 2 buffers which user can read and write. Counter 2 is an 8-bit down-count timer with 8-bit prescaler used to preset the counter and read the preset value. The prescaler is set by IOC91 register. After an interrupt, it will reload the preset value.

When IR output is enabled, this control register can obtain carrier frequency output. If the Counter 2 clock source is equal to F_T , then

Carrier frequency (Fcarrier) =
$$\frac{F_T}{2 * (preset _value + 1) * prescaler}$$

6.2.10 IOCD0/HPWTPR (High-Pulse Width Timer Preset Register)

(Address: 0Dh, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Bit 7 ~ Bit 0: These are high-pulse width timer buffers which user can read and write. High-pulse width timer preset register is an eight-bit down-counter with 8-bit prescaler used as IOCD0 to preset the counter and read the preset value. The prescaler is set by the IOCA1 register. After an interrupt, it will reload the preset value.

For PWM or IR application, this control register is set as high pulse width.

If the high-pulse width timer clock source is F_T , then

High pulse time =
$$\frac{\text{prescaler * (preset _value + 1)}}{F_T}$$

6.2.11 IOCE0/LPWTPR (Low-Pulse Width Timer Preset Register)

(Address: 0Eh, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

Bit 7 ~ Bit 0: All are low-pulse width timer buffer that user can read and write. Low-pulse width timer preset is an eight-bit down-counter with 8-bit prescaler that is used as IOCE0 to preset the counter and read preset value. The prescaler is set by IOCA1 register. After an interrupt, it will reload the preset value.

For PWM or IR application, this control register is set as low pulse width.

If the low-pulse width timer clock source is F_T , then

Low pulse time =
$$\frac{prescaler * (preset _value + 1)}{F_{T}}$$

6.2.12 IOCF0/IMR (Interrupt Mask Register)

(Address: 0Fh, Bit 0 of R5 = "0")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ICIE	LPWTE	HPWTE	CNT2E	CNT1E	INT1E	INT0E	TCIE

Bit 7 ~ Bit 0: interrupt enable bit. Enable the respective interrupt source.

0: disable interrupt

1: enable interrupt

IOCF0 register is readable and writable.

■ Registers of IOC Page 1 (IOC61 ~ IOCE1, Bit 0 of R5 = "1")

6.2.13 IOC61/WUCR (Wake-up and Sink Current of P5.7/IROUT Control Register)

(Address: 06h, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IROCS				/WUE8H	/WUE8L	/WUE6H	/WUE6L

Bit 7: IROCS: IROUT/Port 5.7 output sink current set

IROCS	P5.7/IROUT	Sink Current
IROCS	VDD=5V	VDD=3V
0	10 mA	6 mA
1	20 mA	12 mA

Bits 6, 5, 4: Not used

Bit 3 (/WUE8H): 0/1→ enable/disable P8.4~P8.7 pin change wake-up function

Bit 2 (/WUE8L): 0/1 → enable/disable P8.0~P8.3 pin change wake-up function

Bit 1 (/WUE6H): 0/1 → enable/disable P6.4~P6.7 pin change wake-up function

Bit 0 (/WUE6L): $0/1 \rightarrow$ enable/disable P6.0~P6.3 pin change wake-up function

* Port 6 and Port 8 must not be set as input floating when wake-up function is enabled. "Enable" is the initial state of wake-up function.

6.2.14 IOC71/TCCCR (TCC Control Register)

(Address: 07h, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INT_EDGE	INT	TS	TE	PSRE	TCCP2	TCCP1	TCCP0

Bit 7 (INT EDGE):

INT_EDGE = "0": Interrupt on the rising edge of P5.4/INT0 pin

INT_EDGE = "1": Interrupt on the falling edge of P5.4/INT0 pin

Bit 6 (INT): INT enable flag, this bit is read only

INT = "0": interrupt masked by DISI or hardware interrupt

INT = "1": interrupt enabled by ENI/RETI instructions

Bit 5 (TS): TCC signal source

TS = "0": internal instruction cycle clock

TS = "1": transition on TCC pin, TCC period > internal instruction clock period

Bit 4 (TE): TCC signal edge

TE = "0": incremented by TCC pin rising edge

TE = "1": incremented by TCC pin falling edge

Bits 3~0 (PSRE, TCCP2 ~ TCCP0): TCC prescaler bits.

PSRE	TCCP2	TCCP1	TCCP0	TCC Rate
0	×	×	×	1:1
1	0	0	0	1:2
1	0	0	1	1:4
1	0	1	0	1:8
1	0	1	1	1:16
1	1	0	0	1:32
1	1	0	1	1:64
1	1	1	0	1:128
1	1	1	1	1:256

6.2.15 IOC81/WDTCR (WDT Control Register)

(Address: 08h, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	1	1	-	WDTE	WDTP2	WDTP1	WDTP0

Bits 7 ~ 4: Not used

Bit 3 (WDTE): Watchdog timer enable. This control bit is used to enable the Watchdog timer,

WDTE = "0": Disable WDT function

WDTE = "1": enable WDT function

Bits 2 ~ 0 (WDTP2 ~ WDTP0): Watchdog Timer prescaler bits. The WDT clock source is sub-oscillation frequency.

WDTP2	WDTP1	WDTP0	WDT Rate
0	0	0	1:1
0	0	1	1:2
0	0 1 0		1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

6.2.16 IOC91/CNT12CR (Counters 1, 2 Control Register)

(Address: 09h, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CNT2S	CNT2P2	CNT2P1	CNT2P0	CNT1S	CNT1P2	CNT1P1	CNT1P0

Bit 7(CNT2S): Counter 2 clock source select 0/1 → Fs/ Fm*

(*Fs: sub-oscillator clock, Fm: main-oscillator clock)

Bits 6~4 (CNT2P2 ~ CNT2P 0): Counter 2 prescaler select bits

CNT2P2	CNT2P1	CNT1P0	Counter 2 Scale
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit 3 (CNT1S): Counter 1 clock source select 0/1 → Fs/ Fm*

Bits 2~0 (CNT1P2 ~ CNT1P20): Counter 1 prescaler select bits

CNT1P2	CNT1P1	CNT1P0	Counter 1 Scale
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.2.17 IOCA1/HLPWTCR (High/Low Pulse Width Timer Control Register)

(Address: 0Ah, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LPWTS	LPWTP2	LPWTP1	LPWTP0	HPWTS	HPWTP2	HPWTP1	HPWTP0

Bit 7 (LPWTS): low-pulse width timer clock source select $0/1 \rightarrow Fs/Fm^*$

(*Fs: sub-oscillator clock, Fm: main-oscillator clock)

Bits 6~4 (LPWTP2~ LPWTP0): low-pulse width timer prescaler select bits

LPWTP2	LPWTP1	LPWTP0	Low-pulse Width Timer Scale
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

Bit 3 (HPWTS): high-pulse width timer clock source select $0/1 \rightarrow Fs/Fm^*$

Bits 2~0 (HPWTP2~ HPWTP0): high-pulse width timer prescaler select bits

HPWTP2	HPWTP1	HPWTP0	High-pulse Width Timer Scale
0	0	0	1:2
0	0	1	1:4
0	1	0	1:8
0	1	1	1:16
1	0	0	1:32
1	0	1	1:64
1	1	0	1:128
1	1	1	1:256

6.2.18 IOCB1/P6PH (Port 6 Pull-high Control Register)

(Address: 0Bh, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60

Bit 7 ~ Bit 0 (PH67 ~ PH60): The enable bits of Port 6 pull high function.

PH6x = "0": disable pin of P6.x internal pull-high resistor function

PH6x = "1": enable pin of P6.x internal pull-high resistor function

6.2.19 IOCC1/P6OD (Port 6 Open Drain Control Register)

(Address: 0Ch, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OP67	OP66	OP65	OP64	OP63	OP62	OP61	OP60

Bit 7 ~ Bit 0: The enable bits of Port 6 open drain function.

OD6x = "0": disable pin of P6.x open drain function

OD6x = "1": enable pin of P6.x open drain function

6.2.20 IOCD1/P8PH (Port 8 Pull High Control Register)

(Address: 0Dh, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PH87	PH86	PH85	PH84	PH83	PH82	PH81	PH80

Bit 7 ~ Bit 0: The enable bits of PORT 8 pull-high function.

PH8x = "0": disable pin of P8.x internal pull-high resistor function

PH8x = "1": enable pin of P8.x pull-high resistor function

6.2.21 IOCE1/P6PL (Port 6 Pull Low Control Register)

(Address: 0Eh, Bit 0 of R5 = "1")

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PL6	7 PL66	PL65	PL64	PL63	PL62	PL61	PL60

Bit 7 ~ Bit 0: The enable bits of Port 6 pull low function.

PL6x = "0": disable pin of P6.x internal pull-low resistor function

PL6x = "1": enable pin of P6.x internal pull-low resistor function

6.3 TCC and WDT Prescaler

Two 8-bit counters are available as prescalers for the TCC (Time Clock Counter) and WDT (Watchdog Timer). The TCCP2~TCCP0 bits of the IOC71 register are used to determine the ratio of the TCC prescaler. Likewise, the WDTP2~WDTP0 bits of the IOC81 register are used to determine the WDT prescaler. The TCC prescaler (TCCP2~TCCP0) is cleared by the instructions each time they are written into TCC, while the WDT prescaler is cleared by the "WDTC" and "SLEP" instructions. Fig.7 depicts the circuit diagram of TCC and WDT.

R1 (TCC) is an 8-bit timer/counter. The clock source of TCC can be selected by internal instruction clock or external signal input (edge selectable from the TCC control register). If the TCC signal source is from the internal instruction clock, the TCC will be incremented by 1 at every instruction cycle (without prescaler). If the TCC signal source is from an external clock input, the TCC will be incremented by 1 at every falling edge or rising edge of the TCC pin.

The Watchdog Timer is a free running on sub-oscillator. The WDT will keep on running even after the oscillator driver has been turned off. During Normal mode, Green mode, or Idle mode operation, a WDT time-out (if enabled) will cause the device to reset. The WDT can be enabled or disabled at any time during the Normal mode and Green mode by software programming. Refer to WDTE bit of IOC81 register. The WDT time-out period is equal to (prescaler \times 256 / (Fs/2)).

Fig. 6-4(a) Block Diagram of TCC

Fig. 6-4(b) Block Diagram of WDT

WDT Setting Flowchart

TCC Setting Flowchart

6.4 I/O Ports

The I/O registers, (Port 5, Port 6, Port 7 and Port 8), are bi-directional tri-state I/O ports. Port 6 and Port 8 are pulled-high internally by software; Port 6 is also pulled-low internally by software. Furthermore, Port 6 has its open-drain output also through software. Port 6 and Port 8 features an input status changed interrupt (or wake-up) function and is pulled-high by software. Each I/O pin can be defined as "input" or "output" pin by the I/O control register (IOC50 ~ IOC80). The I/O registers and I/O control registers are both readable and writable. The I/O interface circuits are shown in Fig. 6-5.

Note: Open-drain, pull-high, and pull down are not shown in the figure.

Fig. 6-5 The Circuit of I/O Port and I/O Control Register for Port 5 ~ 8

6.5 Reset and Wake-up

A reset can be activated by

- POR (Power-on Reset)
- WDT timeout. (if enabled)
- /RESET pin goes to low.

Note: The reset circuit is always enabled. It will reset the CPU at 1.9V. Once a reset occurs, the following functions are performed

- The oscillator is running, or will be started.
- The program counter (R2/PC) is set to all "0".
- All I/O port pins are configured as input mode (high-impedance state).
- The TCC/Watchdog timer and prescaler are cleared.
- When power is on, the Bits 5 and 6 of R3 and the upper two bits of R4 are cleared.
- Bits of the IOC71 register are set to all "1" except for Bit 6 (INT flag).
- For other registers, see Table 2.

Table 2 Summary of Registers Initialized Values

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	IOC57	IOC56	IOC55	IOC54	P8HS	P8LS	P7HS	P7LS
	10050	Power-on	1	1	1	1	0	0	0	0
0x05	IOC50	/RESET & WDT	1	1	1	1	0	0	0	0
	(P5CR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC67	IOC66	IOC65	IOC64	IOC63	IOC62	IOC61	IOC60
	10000	Power-on	1	1	1	1	1	1	1	1
0x06	IOC60	/RESET & WDT	1	1	1	1	1	1	1	1
	(P6CR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC77	IOC76	IOC75	IOC74	IOC73	IOC72	IOC71	IOC70
	10070	Power-on	1	1	1	1	1	1	1	1
0x07	IOC70 (P7CR)	/RESET & WDT	1	1	1	1	1	1	1	1
	(P/CR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	IOC87	IOC86	IOC85	IOC84	IOC83	IOC82	IOC81	IOC80
	10000	Power-on	1	1	1	1	1	1	1	1
0x08	IOC80	/RESET & WDT	1	1	1	1	1	1	1	1
	(P8CR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Х	RAM A6	RAM A5	RAM_A4	RAM A3	RAM A2	RAM_A1	RAM_A0
		Power-on	0	0	0	0	0	0	0	0
0x09	IOC90	/RESET & WDT	0	0	0	0	0	0	0	0
(RAM_ADDR)	Wake-up from Pin Change	Р	Р	P	P	P	P	Р	P	
		Bit Name	RAM_D7	RAM_D6	RAM_D5	RAM_D4	RAM_D3	RAM_D2	RAM_D1	RAM_D0
	0x0A IOCA0 (RAM_DB)	Power-on	U	U	U	U	U	U	U	U
0x0A		/RESET & WDT	P	P	P	P	P	P	P	P
		Wake-Up from Pin Change	P	P	P	P	P	P	P	P
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Power-on	0	0	0	0	0	0	0	0
0x0B	IOCB0	/RESET & WDT	0	0	0	0	0	0	0	0
	(CNT1PR)	Wake-up from Pin Change	P	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	10000	Power-on	0	0	0	0	0	0	0	0
0x0C	IOCC0	/RESET & WDT	0	0	0	0	0	0	0	0
	(CNT2PR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	10000	Power-on	0	0	0	0	0	0	0	0
0x0D	IOCD0	/RESET & WDT	0	0	0	0	0	0	0	0
	(HPWTPR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	10050	Power-on	0	0	0	0	0	0	0	0
0x0E	IOCE0	/RESET & WDT	0	0	0	0	0	0	0	0
	(LPWTPR)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	ICIE	LPWTE	HPWTE	CNT2E	CNT1E	INT1E	INT0E	TCIE
	10050	Power-on	0	0	0	0	0	0	0	0
0x0F	IOCF0	/RESET & WDT	0	0	0	0	0	0	0	0
0x0F (IMR)	(IMR)	Wake-up from Pin Change	P	P	P	P	P	P	P	P
		IDOOO	Х	Х	Х	/WUE8H	WUF8I	WI IE6H	WUE6L	
		Bit Name	IRUUS							
	106	Bit Name Power-on	IROCS 0							
0x06	IOC61 (WUCR)	Bit Name Power-on /RESET & WDT	0	U	Ü	U	0	0	0 0	0

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
/ talail 000	rtamo		INT EDGE		TS	TE	PSRE	TCCP2	TCCP1	TCCP0
		Bit Name Power-on	1	INT 0	1	1	1 1	1	1	1
0x07	IOC71	/RESET & WDT	1	0	1	1	1	1	1	1
	(TCCCR)	Wake-up from	Р	Р	Р	Р	Р	Р	Р	Р
		Pin Change	•		Г	Г		·		-
		Bit Name	X	X	X	X	WDTE	WDTP2	WDTP1	WDTP0
0.00	IOC81	Power-on	U	U	U	U	0	1	1	1
0x08	(WDTCR)	/RESET &WDT	U	U	U	U	0	1	1	1
		Wake-up from Pin Change	U	U	U	U	Р	Р	Р	Р
		Bit Name	CNT2S	CNT2P2	CNT2P1	CNT2P0	CNT1S	CNT1P2	CNT1P1	CNT1P0
	10001	Power-on	0	0	0	0	0	0	0	0
0x09	IOC91 (CNT12CR)	/RESET & WDT	0	0	0	0	0	0	0	0
	(CIVI IZCIV)	Wake-up from	Р	Р	Р	Р	Р	Р	Р	Р
		Pin Change	-		-			-	-	-
		Bit Name	LPWTS	LPWTP2				HPWTP2	HPWTP1	HPWTP0
0x0A	IOCA1	Power-on /RESET & WDT	0	0	0	0	0	0	0	0
UXUA	(HLPWTCR)	Wake-up from			_		_	_	_	
		Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PH67	PH66	PH65	PH64	PH63	PH62	PH61	PH60
	IOCB1	Power-on	0	0	0	0	0	0	0	0
0x0B	(P6PH)	/RESET & WDT	0	0	0	0	0	0	0	0
	(1 01 11)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	OP67	OP66	OP65	OP64	OP63	OP62	OP61	OP60
	0x0C IOCC1 (P6OD)	Power-on	0	0	0	0	0	0	0	0
0x0C		/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PH87	PH86	PH85	PH84	PH83	PH82	PH81	PH80
		Power-on	0	0	0	0	0	0	0	0
0x0D	IOCD1 (P8PH)	/RESET & WDT	0	0	0	0	0	0	0	0
	(FOFFI)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	PL67	PL66	PL65	PL64	PL63	PL62	PL61	PL60
	10054	Power-on	0	0	0	0	0	0	0	0
0x0E	IOCE1 (P6PL)	/RESET & WDT	0	0	0	0	0	0	0	0
	(FOFL)	Wake-up from	Р	Р	Р	Р	Р	Р	Р	Р
		Pin Change	-	-	-		-	-	-	
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x00	R0	Power-on	U P	U P	U P	U P	U P	U P	U P	U P
UXUU	(IAR)	/RESET & WDT Wake-up from								
		Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	R1	Power-on	0	0	0	0	0	0	0	0
0x01	(TCC)	/RESET & WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Do	Power-on	0	0	0	0	0	0	0	0
0x02	R2 (PC)	/RESET & WDT	0	0	0	0	0	0	0	0
	(FC)	Wake-up from	lur	np to addr	ass OvOO	18 or conti	nue to eve	ocuta navt	inetructio	n
		Pin Change								
		Bit Name	X	PS1	PS0	T	Р	Z	DC	С
0x03	R3	Power-on	U	0	0	1	1	U P	U P	U P
UXUS	(SR)	/RESET & WDT Wake-up from		0	0	t	t			
		Pin Change	U	Р	Р	t	t	Р	Р	Р
		Bit Name	Bank 1	Bank 0	_	_	_	_	-	_
	R4	Power-on	0	0	U	U	U	U	U	U
0x04	(RSR)	/RESET & WDT	0	0	Р	Р	Р	Р	Р	Р
		Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
	1		l .		1	1		1	1	

Address	Name	Reset Type	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Bit Name	R57	R56	R55	R54	Χ	Χ	Χ	IOCPAGE
	D.5	Power-on	1	1	1	1	Ü	Ü	Ü	0
0x05	R5 (Port 5)	/RESET & WDT	1	1	1	1	U	U	U	0
		Wake-up from Pin Change	Р	Р	Р	Р	U	U	U	Р
		Bit Name	R67	R66	R65	R64	R63	R62	R61	R60
	R6	Power-on	1	1	1	1	1	1	1	1
0x06	(Port 6)	/RESET & WDT	1	1	1	1	1	1	1	1
	(1 011 0)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	R77	R76	R75	R74	R73	R62	R71	R70
	R7	Power-on	1	1	1	1	1	1	1	1
0x7	(Port 7)	/RESET & WDT	1	1	1	1	1	1	1	1
	(* 2,	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	R87	R86	R85	R84	R83	R82	R81	R80
	R8	Power-on	1	1	1	1	1	1	1	1
0x8	(Port 8)	/RESET & WDT	1	1	1	1	1	1	1	1
	(* 3.1.2)	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	BS	DS1	DS0	LCDEN	Χ	LCDTYPE	LCDF1	LCDF0
	R9	Power-on	1	1	0	0	U	0	0	0
0x9	(LCDCR)	/RESET & WDT	1	1	0	0	U	0	0	0
	(EGDON)	Wake-up from Pin Change	Р	Р	Р	Р	U	Р	Р	Р
		Bit Name	Χ	X	X	LCD_A4	LCD_A3		LCD_A1	LCD_A0
	RA	Power-on	0	0	0	0	0	0	0	0
0xA	0xA (LCD_ADDR)	/RESET & WDT	0	0	0	0	0	0	0	0
	,	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р
		Bit Name	X	X	X	X	LCD_D 3	LCD_D 2		LCD_D 0
0.5	RB	Power-on	U	U	U	U	U	U	U	U
0xB	(LCD_DB)	/RESET & WDT	U	U	U	U	Р	Р	Р	Р
		Wake-up from Pin Change	U	U	U	U	P	P	Р	Р
		Bit Name	X	X	X	X	LPWTEN	HPWTEN	CNT2EN	CNT1EN
00	RC	Power-on	0	1	0	0	0	0	0	0
0xC	(CNTER)	/RESET & WDT	0	1	0	0	0	0	0	0
		Wake-up from Pin Change	P	Р	0	Р	P	P	Р	Р
		Bit Name	X	CLK2	CLK1	CLK0	IDLE	BF1	BF0	CPUS
0xD	RD	Power-on	U	0	0	0	1	0	0	*1
UXD	(SBPCR)	/RESET & WDT Wake-up from		0	0	0	l l	0	0	
		Pin Change	U	P	Р	P	Р	Р	P	Р
		Bit Name	IRE	HF	LGP	X	IROUTE	TCCE	EINT1	EINT0
0vE	RE	Power-on	0	0	0	U	0	0	0	0
0xE	(IRCR)	/RESET & WDT	0	0	0	U	0	0	0	0
		Wake-up from Pin Change	Р	Р	Р	U	Р	Р	Р	P
		Bit Name	ICIF	LPWTF	HPWTF	CNT2F	CNT1F	INT1F	INT0F	TCIF
0	RF	Power-on	0	0	0	0	0	0	0	0
0xF	(ISR)	/RESET & WDT	0	0	0	0	0	0	0	0
		Wake-up from Pin Change	N	Р	Р	Р	Р	Р	Р	Р
		Bit Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x10	D40 505	Power-on	U	U	U	U	U	U	U	U
~ 0v2E	R10~R3F	/RESET & WDT	Р	Р	Р	Р	Р	Р	Р	Р
UX3F	0x3F	Wake-up from Pin Change	Р	Р	Р	Р	Р	Р	Р	Р

Note: This bit is equal to the Code Option HLFS bit data

Legend: "x" = not used "P" = previous value before reset "t" = check R3 register explanation "-" = Not defined "u" = unknown or don't care

The controller can be awakened from sleep mode and idle mode. The wake-up signals are listed as follows:

Wake-up Signal	Sleep Mode	Idle Mode	Green Mode	Normal Mode
TCC time out IOCF0 Bit 0=1	×	×	Interrupt	Interrupt
INT0 pin IOCF0 Bit 1=1	Wake-up + interrupt + next instruction	Wake-up + interrupt + next instruction	Interrupt	Interrupt
INT1 pin IOCF0 Bit 2=1	Wake-up + interrupt + next instruction	Wake-up + interrupt + next instruction	Interrupt	Interrupt
Counter 1 IOCF0 Bit 3=1	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
Counter 2 IOCF0 Bit 4=1	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
High-pulse timer IOCF0 Bit 5=1	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
Low-pulse timer IOCF0 Bit 6=1	×	Wake-up + interrupt + next instruction	Interrupt	Interrupt
Port 6, Port 8 (input status change wake-up) Bit 7 of IOCF0 = "0"	Wake-up + next instruction	Wake-up + next instruction	×	×
Port 6, Port 8 (input status change wake-up) Bit 7 of IOCF0 = "1"	Wake-up + interrupt + next instruction	Wake-up + interrupt + next instruction	×	×
WDT time out	×	RESET	RESET	RESET

6.6 Oscillator

6.6.1 Oscillator Modes

The EM78P468N/EM78P468L can operate in three different oscillator modes i.e., a.) Main oscillator (R-OSCI, OSCO), such as RC oscillator with external resistor and Internal capacitor mode (ERIC); b.) Crystal oscillator mode; and c.) PLL operation mode (R-OSCI connected to $0.01\mu F$ capacitor to Ground). User can select which mode by programming FMMD1 and FMMD0 in the Code Options Register. The sub-oscillator can be operated in Crystal mode and ERIC mode. Table 3 below shows how these three modes are defined.

Table 3 Oscillator Modes as defined by FSMD, FMMD1, FMMD0.

FSMD	FMMD1	FMMD0	Main Clock	Sub-clock
0	0	0	RC type (ERIC)	RC type (ERIC)
0	0	1	Crystal type	RC type (ERIC)
0	1	×	PLL type	RC type (ERIC)
1	0	0	RC type (ERIC)	Crystal type
1	0	1	Crystal type	Crystal type
1	1	×	PLL type	Crystal type

Table 4 Summary of maximum operating speeds

Conditions	VDD	Fxt Max. (MHz)
	2.3	4
Two clocks	3.0	8
	5.0	10

6.6.2 Phase Lock Loop (PLL Mode)

When operate on PLL mode, the High frequency determined by sub-oscillator. We can choose RD register to change high oscillator frequency. The relation between high frequency (Fm) and sub-oscillator is shown as below table:

Fig. 6-6 PLL Mode Circuit

CLK2	CLK1	CLK0	Main clock Example Fs=32.768K			
0	0	0	Fs×130 4.26 MHz			
0	0	1	Fs×65	2.13 MHz		
0	1	0	Fs×65/2	1.065 MHz		
0	1	1	Fs×65/4	532 kHz		
1	×	×	Fs×244	8 MHz		

Bits 6~4 (CLK2~0) of RD: main clock selection bits for PLL mode (code option select)

6.6.3 Crystal Oscillator/Ceramic Resonators (Crystal)

This LSI can be driven by an external clock signal through the R-OSCI pin as shown in Fig.6-7 below. In most applications, the R-OSCI pin and the OSCO pin can be connected with a crystal or ceramic resonator to generate oscillation. Fig. 6-8 depicts such circuit. Table 5 provides the recommended values of C1 and C2. Since each resonator has its own attribute, user should refer to its specification for appropriate values of C1 and C2. RS, a serial resistor, may be necessary for AT strip cut crystal or low frequency mode.

Fig. 6-7 External Clock Input Circuit

Fig. 6-8 Circuit for Crystal/Resonator

Table 5 Capacitor Selection Guide for Crystal Oscillator or Ceramic Resonators

Oscillator Source	Oscillator Type	Frequency	C1 (pF)	C2 (pF)
		455 kHz	100~150	100~150
	Ceramic Resonators	2.0 MHz	20~40	20~40
		4.0MHz	10~30	10~30
Main oscillator		455kHz	20~40	20~150
	Crystal Oscillator	1.0MHz	15~30	15~30
	Crystal Oscillator	2.0MHz	15	15
		4.0MHz	15	15
Sub-oscillator	Crystal Oscillator	32.768kHz	25	25

6.6.4 RC Oscillator Mode with Internal Capacitor

If both precision and cost are taken into consideration, this LSI also offers a special oscillation mode, which has an on-chip internal capacitor and an external resistor connected to VDD. The internal capacitor functions as temperature compensator. In order to obtain more accurate frequency, a precise resistor is recommended.

Fig. 6-9 Circuit for Internal C Oscillator Mode

Table 6 RC Oscillator Frequencies

Pin	Rext	Average Fosc 5V, 25°C	Average Fosc 3V, 25°C	
	51k	2.2221 MHz	2.1972 MHz	
R-OSCI	100k	1.1345 MHz	1.1203 MHz	
	300k	381.36kHz	374.77kHz	
Xin	2.2M	32.768kHz	32.768kHz	

Note: Measured from QFP packages with frequency drift of about ±30%.

Values are provided for design reference only.

6.7 Power-on Considerations

Any microcontroller (as with this LSI) is not warranted to start operating properly before the power supply stabilizes in a steady state. This LSI has an on-chip Power-on Reset (POR) with detection level range as shown on the table below. The circuitry eliminates the extra external reset circuit but will work well only if the VDD rises quickly enough (50 ms or less). However, under critical applications, extra devices are still required to assist in solving power-on problems.

Power-on voltage detector provided

IC	Voltage Range		
EM78P468N	1.9V to 2.1V		
EM78P468L	1.6V to 1.8V		

6.7.1 External Power-on Reset Circuit

This circuit implements an external RC to produce a reset pulse (see Fig. 6-10). The pulse width (time constant) should be kept long enough to allow VDD to reach minimum operation voltage. This circuit is used when the power supply rise time is slow. Because the current leakage from the /RESET pin is $\pm 5\mu$ A, it is recommended that R should not be greater than 40K. In this way, the voltage at Pin /RESET is held below 0.2V. The diode (D) acts as a short circuit at power-down. The capacitor, C, is discharged rapidly and fully. Rin, the current-limited resistor, prevents high current discharge or ESD (electrostatic discharge) from flowing into Pin /RESET.

Fig. 6-10 External Power-on Reset Circuit

6.7.2 Residue-Voltage Protection

When battery is replaced, device power (VDD) is disconnected but residue-voltage remains. The residue-voltage may trips below minimum VDD, but above zero. This condition may cause poor power on reset. Fig. 6-11 and Fig. 6-12 show how to build a residue-voltage protection circuit

Fig. 6-11 Residue Voltage Protection Circuit 1

Fig. 6-12 Residue Voltage Protection Circuit 2

6.8 Interrupt

This LSI has eight interrupt sources as listed below:

- TCC overflow interrupt.
- External interrupt P5.4/INT0 pin
- External interrupt P5.5/INT1 pin
- Counter 1 underflow interrupt
- Counter 2 underflow interrupt
- High-pulse width timer underflow interrupt
- Low-pulse width timer underflow interrupt
- Port 6, Port 8 input status change wake-up

This IC has internal interrupts which are falling edge triggered or as follows:

- TCC timer overflow interrupt
- Four 8-bits down counter/timer underflow interrupt

If these interrupt sources change signal from high to low, the RF register will generate a "1" flag to the corresponding register if the IOCF0 register is enabled.

RF is the interrupt status register. It records the interrupt request in flag bit. IOCF0 is the interrupt mask register. Global interrupt is enabled by ENI instruction and disabled by DISI instruction. When one of the interrupts (when enabled) is generated, it will cause the next instruction to be fetch from address 0003H~0018H according to interrupt source.

With this LSI, each individual interrupt source has its own interrupt vector as depicted in Table 3. Before the interrupt subroutine is executed, the contents of the ACC and the R3 register are initially saved by the hardware. After the interrupt service routine is completed, the ACC and R3 are restored. The existing interrupt service routine does not allow other interrupt service routine to be executed. Hence, if other interrupts occur while an existing interrupt service routine is being executed, the hardware will save the later interrupts. Only after the existing interrupt service routine is completed that the next interrupt service routine is executed.

Fig. 6-13 Interrupt Back-up Diagram

Table 3 Interrupt Vector

Interrupt Vector	Interrupt Status				
0003H	TCC overflow interrupt.				
0006H External interrupt P5.4/INT0 pin					
0009H	External interrupt P5.5/INT1 pin				
000CH	Counter 1 underflow interrupt				
000FH	Counter 2 underflow interrupt				
0012H	High-pulse width timer underflow interrupt				
0015H	Low-pulse width timer underflow interrupt				
0018H	Port 6, Port 8 input status change wake up				

6.9 LCD Driver

This LSI can drive an LCD of up to 32 segments and 4 commons that can drive a total of 4×32 dots. The LCD block is made up of an LCD driver, display RAM, segment output pins, common output pins, and LCD operating power supply pins. This circuit works on normal mode, green mode and idle mode. The LCD duty; bias; the number of segment; the number of common and frame frequency are determined by the LCD controller register.

The basic structure contains a timing control that uses a subsystem clock to generate the proper timing for different duty and display accesses. The R9 register is a command register for the LCD driver which includes LCD enable/disable, bias (1/2 and 1/3), duty (1/2, 1/3, 1/4), and LCD frame frequency control. The register RA is an LCD contrast and LCD RAM address control register. The register RB is an LCD RAM data buffer. LCD booster circuit can change the operation frequency to improve VLCD2 and VLCD3 drive capability. The control register is described as follows.

6.9.1 R9/LCDCR (LCD Control Register)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BS	DS1	DS0	LCDEN	-	LCDTYPE	LCDF1	LCDF0

Bit 7 (BS): LCD bias select bit, 0/1=> (1/2 bias) / (1/3 bias)

Bits 6 ~ 5 (DS1 ~ DS0): LCD duty select

DS1	DS0	LCD Duty
0	0	1/2 duty
0	1	1/3 duty
1	×	1/4 duty

Bit 4 (LCDEN): LCD enable bit

"0": disable the LCD circuit

"1": enable the LCD circuit

When the LCD function is disabled, all common/segment output is set to ground (GND) level

Bit 3: Not used

Bit 2 (LCDTYPE): LCD drive waveform type select bit

LCDTYPE = "0": "A" type waveform **LCDTYPE = "1":** "B" type waveform

Bits 1 ~ 0 (LCDF1 ~ LCDF0): LCD frame frequency control bits

LCDF1	LCDF0	LCD Frame Frequency (e.g. Fs=32.768kHz)						
		1/2 Duty	1/3 Duty	1/4 Duty				
0	0	Fs/(256×2)=64.0	Fs/(172×3)=63.5	Fs/(128×4)=64.0				
0	1	Fs/(280×2)=58.5	Fs/(188×3)=58.0	Fs/(140×4)=58.5				
1	0	Fs/(304×2)=53.9	Fs/(204×3)=53.5	Fs/(152×4)=53.9				
1	1	Fs/(232×2)=70.6	Fs/(156×3)=70.0	Fs/(116×4)=70.6				

Note: Fs: sub-oscillator frequency

6.9.2 RA/LCD_ADDR (LCD Address)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	LCD_A4	LCD_A3	LCD_A2	LCD_A1	LCD_A0

Bits 7 ~ 5: Not used, fixed to "0"

Bits 4 ~ 0 (LCDA4 ~ LCDA0): LCD RAM address

RA						
(LCD Address)	Bits 7 ~4	Bit 3 (LCD_D3)	Bit 2 (LCD_D2)	Bit 1 (LCD_D1)	Bit 0 (LCD_D0)	Segment
00H	_	-	-	_	_	SEG0
01H	-	-	-	-	-	SEG1
02H	-	-	-	-	-	SEG2
I						1
1DH	_	-	-	_	-	SEG29
1EH	_			_	_	SEG30
1FH	-	-	-	_	_	SEG31
Common	Х	COM3	COM2	COM1	COM0	

6.9.3 RB/LCD_DB (LCD Data Buffer)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
_	-	-	-	LCD_D 3	LCD_D 2	LCD_D 1	LCD_D 0

Bits 7 ~ 4: Not used

Bit 3 ~ 0 (LCD_D3 ~ LCD_D0): LCD RAM data transfer registers

6.9.4 RD/SBPCR (System, Booster and PLL Control Registers)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	CLK2	CLK1	CLK0	IDLE	BF1	BF0	CPUS

Bit 2 ~ 1 (BF1 ~ 0): LCD booster frequency select bits

BF1	BF0	Booster Frequency
0	0	Fs
0	1	Fs/4
1	0	Fs/8
1	1	Fs/16

The initial setting flowchart for LCD function

Fig.6-14 The Initial Setting Flowchart for LCD Function

Boosting circuits connection for LCD voltage

VLCD2(VDD/2)
VA
VLCD3(VDD/2)
VB
GND

External circuit for 1/2 Bias

Fig. 6-15 Charge Bump Circuit Connection (Cext=0.1μf)

Fig. 6-16 LCD Waveform for 1/2 Bias, 1/2 Duty

Fig. 6-17 LCD Waveform for 1/2 Bias, 1/3 Duty

Fig. 6-18 LCD Waveform for 1/3 Bias, 1/3 Duty

Fig. 6-19 LCD Waveform for 1/3 Bias, 1/4 Duty

6.10 Infrared Remote Control Application/PWM Waveform Generate

This LSI can output infrared carrier in user-friendly or in PWM standard waveform. The IR and PWM waveform generated functions include an 8-bit down count timer/counter, high-pulse width timer, low-pulse width timer, and IR control register. The IR system block diagram is shown in Fig. 6-20. The IROUT pin waveform is determined by IR control register (RE), IOC90 (Counters 1 and 2 control register), IOCA0 (high-pulse width timer, low-pulse width timer control register), IOCC0 (Counter 2 preset), IOCD0 (high-pulse width timer preset register), and IOCE0 (low-pulse width timer preset register). Details on Fcarrier, high-pulse time, and low pulse time are explained as follows:

If Counter 2 clock source is F_T (this clock source can be set by IOC91), then

$$F_{carrier} = \frac{F_T}{2 \times (1 + decimal \quad of \quad Counter \quad 2 \quad preset \quad value \quad (IOCC \ 0)) \times prescaler}$$

If the high-pulse width timer clock source is FT (this clock source can be set by IOCA1), then

$$T_{\textit{high pulse time}} = \frac{prescaler \ \times (1 + decimal \ of \ high \ pulse \ width \ timer \ value \ (IOCD \ 0))}{F_{\textit{T}}}$$

If the low-pulse width timer clock source is FT (this clock source can be set by IOCA1);

Fm: main oscillator frequency Fs: sub-oscillator frequency

Fig. 6-20 IR/PWM System Block Diagram

The IROUT output waveform is further explained in the following figures:

- **Fig. 6-21** LGP=0, HF=1, the IROUT waveform can modulate Fcarrier waveform when in low-pulse width time.
- **Fig. 6-22** LGP=0, HF=0, the IROUT waveform cannot modulate Fcarrier waveform when in low-pulse width time. So IROUT waveform is determined by high-pulse time and low-pulse time. This mode can produce standard PWM waveform.
- **Fig. 6-23** LGP=0, HF=1, the IROUT waveform can modulate Fcarrier waveform when in low-pulse width time. When IRE goes from high to low, the output waveform of IROUT will keep on transmitting until high-pulse width timer interrupt occurs.
- Fig. 6-24 LGP=0, HF=0, the IROUT waveform can not modulate Fcarrier waveform when in low-pulse width time. So IROUT waveform is determined by high-pulse time and low-pulse time. This mode can produce standard PWM waveform. When IRE goes from high to low, the output waveform of IROUT will keep on transmitting till high-pulse width timer interrupt occurs.
- Fig.6-25 LGP=1, when this bit is set to high level, the high-pulse width timer is ignored. So IROUT waveform output from low-pulse width timer is established.

Fig. 6-21 LGP=0, IROUT Pin Output Waveform

Fig. 6-22 LGP=0, IROUT Pin Output Waveform

Fig. 6-23 LGP=0, IROUT Pin Output Waveform

Fig. 6-24 LGP=0, IROUT Pin Output Waveform

Fig. 6-25 LGP=1, IROUT Pin Output Waveform

IR/PWM Function Enable Flowchart

Fig. 27 IR/PWM Function Enable Flowchart

6.11 Code Options

The EM78P468N/L has one Code Option word that is not a part of the normal program memory. The option bits cannot be accessed during normal program execution.

Code Option Register and Customer ID Register arrangement distribution:

Word 1 of code options is for customer ID code application.

Word 1	
Bit 12~Bit 0	

Word 0 of Code Options is for IC function setting. The following are the settings for OTP IC programming:

	Word 0									
Bits12~10	Bits12~10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								Bit 0	
1	CYES	HLFS	ENWDTB	FSMD	FMMD1	FMMD0	HLP	PR2	PR1	PR0

Bits 12 ~ 10: Not used.

These bits are set to "1" all the time.

Bit 9 (CYES): Cycle select for JMP and CALL instructions

CYES = "0": only one instruction cycle (JMP or CALL) can be executed

CYES = "1": two instructions cycles (JMP and CALL) can be executed

Bit 8 (HLFS): main or sub-oscillator select

HLFS = "0": CPU is set to select sub-oscillator when reset occurs.

HLFS = "1": CPU is set to select main-oscillator when reset occurs.

Bit 7 (ENWDTB): Watchdog timer enable/disable bit.

ENWDTB = "0": Enable watchdog timer.

ENWDTB = "1": Disable watchdog timer.

Bit 6 (FSMD): sub-oscillator type selection.

Bits 5, 4 (FMMD1, 0): Main Oscillator Type Selection

FSMD	FMMD1	FMMD0	Main Oscillator Type	Sub Oscillator Type
0	0	0	RC type	RC type
0	0	1	Crystal type	RC type
0	1	×	PLL type	RC type
1	0	0	RC type	Crystal type
1	0	1	Crystal type	Crystal type
1	1	×	PLL type	Crystal type

Bit 3 (HLP): Power consumption selection. If the system usually runs in green mode, it must be set to low power consumption to help support the energy saving issue. It is recommended that low power consumption mode is selected.

HLP = "0": Low power consumption mode

HLP = "1": High power consumption mode

Bits 2~0 (PR2~PR0): Protect Bit

PR2~PR0 are protection bits. Each protect status is as follows:

PR2	PR1	PR0	Protect
0	0	0	Enable
1	1	1	Disable

6.12 Instruction Set

Each instruction in the instruction set is a 13-bit word divided into an OP code and one or more operands. Normally, all instructions are executed within one single instruction cycle (one instruction consists of 2 oscillator periods), unless the program counter is changed by instruction "MOV R2,A", "ADD R2,A", or by instructions of arithmetic or logic operation on R2 (e.g. "SUB R2,A", "BS(C) R2,6", "CLR R2", ····). In this case, the execution takes two instruction cycles.

If for some reasons, the specification of the instruction cycle is not suitable for certain applications, try modifying the instruction as follows:

Execute within two instruction cycles the "JMP", "CALL", "RET", "RETL", & "RETI" instructions, or the conditional skip instructions ("JBS", "JBC", "JZ", "JZA", "DJZ", "DJZA") which were tested to be true. Also execute within two instruction cycles the instructions that are written to the program counter.

Additionally, the instruction set offers the following features:

- (1) Every bit of any register can be set, cleared, or tested directly.
- (2) The I/O register can be regarded as general register. That is, the same instruction can operate on I/O register.

Convention:

- **R** = Register designator that specifies which one of the registers (including operation and general purpose registers) is to be utilized by the instruction.
- **b** = Bit field designator that selects the value for the bit located in the register R and which affects the operation.

 $\mathbf{k} = 8$ or 10-bit constant or literal value

	Binary Ir	nstructio	on	Hex	Mnemor	nic		Operation	Status Affected
0	0000	0000	0000	0000	NOP			No Operation	None
0	0000	0000	0001	0001	DAA			Decimal Adjust A	С
0	0000	0000	0010	0002	CONTW			$A \rightarrow CONT$	None
0	0000	0000	0011	0003	SLEP			0 → WDT, Stop oscillator	T, P
0	0000	0000	0100	0004	WDTC			$0 \rightarrow WDT$	T, P
0	0000	0000	rrrr	000r	IOW	R		$A \rightarrow IOCR$	None ¹
0	0000	0001	0000	0010	ENI			Enable Interrupt	None
0	0000	0001	0001	0011	DISI			Disable Interrupt	None
0	0000	0001	0010	0012	RET			[Top of Stack] \rightarrow PC	None
0	0000	0001	0011	0013	RETI			[Top of Stack] → PC, Enable Interrupt	None
0	0000	0001	rrrr	001r	IOR	R		$IOCR \rightarrow A$	None ¹
0	0000	01rr	rrrr	00rr	MOV	R,	Α	$A \rightarrow R$	None
0	0000	1000	0000	0800	CLRA			$0 \rightarrow A$	Z
0	0000	11rr	rrrr	00rr	CLR	R		$0 \rightarrow R$	Z
0	0001	00rr	rrrr	01rr	SUB	Α,	R	$R-A \rightarrow A$	Z,C,DC
0	0001	01rr	rrrr	01rr	SUB	R,	Α	$R-A \rightarrow R$	Z,C,DC
0	0001	10rr	rrrr	01rr	DECA	R		$R-1 \rightarrow A$	Z
0	0001	11rr	rrrr	01rr	DEC	R		$R-1 \rightarrow R$	Z
0	0010	00rr	rrrr	02rr	OR	Α,	R	$A \lor R \to A$	Z
0	0010	01rr	rrrr	02rr	OR	R,	Α	$A \lor R \to R$	Z
0	0010	10rr	rrrr	02rr	AND	Α,	R	$A \& R \rightarrow A$	Z
0	0010	11rr	rrrr	02rr	AND	R,	Α	$A \& R \rightarrow R$	Z
0	0011	00rr	rrrr	03rr	XOR	Α,	R	$A \oplus R \rightarrow A$	Z
0	0011	01rr	rrrr	03rr	XOR	R,	Α	$A \oplus R \to R$	Z
0	0011	10rr	rrrr	03rr	ADD	Α,	R	$A + R \rightarrow A$	Z,C,DC
0	0011	11rr	rrrr	03rr	ADD	R,	Α	$A + R \rightarrow R$	Z,C,DC
0	0100	00rr	rrrr	04rr	MOV	Α,	R	$R \rightarrow A$	Z
0	0100	01rr	rrrr	04rr	MOV	R,	R	$R \rightarrow R$	Z
0	0100	10rr	rrrr	04rr	COMA	R		$/R \rightarrow A$	Z
0	0100	11rr	rrrr	04rr	COM	R		$/R \rightarrow R$	Z
0	0101	00rr	rrrr	05rr	INCA	R		$R+1 \rightarrow A$	Ζ
0	0101	01rr	rrrr	05rr	INC	R		$R+1 \rightarrow R$	Z
0	0101	10rr	rrrr	05rr	DJZA	R		R-1 → A, skip if zero	None
0	0101	11rr	rrrr	05rr	DJZ	R		R-1 → R, skip if zero	None

	Binary In	structio	on	Hex	Mnemon	ic		Operation	Status Affected
0	0110	00rr	rrrr	06rr	RRCA	R		$ \begin{array}{c} R(n) \to A(n\text{-}1), \\ R(0) \to C, C \to A(7) \end{array} $	С
0	0110	01rr	rrrr	06rr	RRC	R		$ \begin{array}{c} R(n) \to R(n\text{-}1), \\ R(0) \to C, C \to R(7) \end{array} $	С
0	0110	10rr	rrrr	06rr	RLCA	R		$ \begin{array}{c} R(n) \to A(n+1), \\ R(7) \to C, C \to A(0) \end{array} $	С
0	0110	11rr	rrrr	06rr	RLC	R		$ \begin{array}{c} R(n) \to R(n+1), \\ R(7) \to (C), C \to (R(0) \\ \end{array} $	С
0	0111	00rr	rrrr	07rr	SWAPA	R		$R(0-3) \rightarrow (A(4-7), R(4-7) \rightarrow (A(0-3))$	None
0	0111	01rr	rrrr	07rr	SWAP	R		$R(0-3) \to (R(4-7))$	None
0	0111	10rr	rrrr	07rr	JZA	R		R+1 → A, skip if zero	None
0	0111	11rr	rrrr	07rr	JZ	R		$R+1 \rightarrow R$, skip if zero	None
0	100b	bbrr	rrrr	0xxx	BC	R,	b	0→ (R(b)	None
0	101b	bbrr	rrrr	0xxx	BS	R,	b	1→ (R(b)	None
0	110b	bbrr	rrrr	0xxx	JBC	R,	b	if R(b)=0, skip	None
0	111b	bbrr	rrrr	0xxx	JBS	R,	b	if R(b)=1, skip	None
1	00kk	kkkk	kkkk	1kkk	CALL	k		$PC+1 \rightarrow [SP],$ $(Page, k) \rightarrow (PC)$	None
1	01kk	kkkk	kkkk	1kkk	JMP	k		$(Page, k) \rightarrow (PC)$	None
1	1000	kkkk	kkkk	18kk	MOV	Α,	k	$k \rightarrow A$	None
1	1001	kkkk	kkkk	19kk	OR	Α,	k	$A \lor k \rightarrow A$	Z
1	1010	kkkk	kkkk	1Akk	AND	Α,	k	$A \& k \rightarrow A$	Z
1	1011	kkkk	kkkk	1Bkk	XOR	Α,	k	$A \oplus k \to A$	Z
1	1100	kkkk	kkkk	1Ckk	RETL	k		$k \rightarrow A$, [Top of Stack] \rightarrow PC	None
1	1101	kkkk	kkkk	1Dkk	SUB	Α,	k	$k-A \rightarrow A$	Z,C,DC
1	1111	kkkk	kkkk	1Fkk	ADD	Α,	k	$k+A \rightarrow A$	Z,C,DC
1	1110	1000	kkkk	1E8k	PAGE	k		K->R5(6:4)	None
1	1110	1001	kkkk	1E9k	BANK	k		K->R4(7:6)	None

Note: ¹ This instruction is applicable to IOC50~IOF0, IOC61~IOCE1.

6.13 Timing Diagram

Absolute Maximum Ratings

ltomo	Cumbal	Condition	Rat	ing	Unit	
Items	Symbol	Condition	Min.	Max.	Onit	
Supply voltage	VDD	-	GND-0.3	+7.0	V	
Input voltage	Vı	Port 5 ~ Port 8	GND-0.3	VDD+0.3	V	
Output voltage	Vo	Port 5 ~ Port 8	GND-0.3	VDD+0.3	V	
Operation temperature	T _{OPR}	-	-40	85	°C	
Storage temperature	T _{STG}	-	-65	150	°C	
Power consumption	P _D	-	-	500	mW	
Operating Frequency	_	_	32.768K	10M	Hz	

8 Electrical Characteristic

8.1 DC Electrical Characteristics

Ta= -40 $^{\circ}$ C ~85 $^{\circ}$ C, VDD= 5.0V, GND= 0V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
FXT	Crystal: VDD to 5V	Two cycles with two clocks	32.768	8M	10M	kHz
Fs	Sub-oscillator	Two cycles with two clocks	_	32.768	_	kHz
ERIC	External R, Internal C for Sub-oscillator	R: 300 K Ω , internal capacitance	270	384	500	kHz
LINO	External R, Internal C for Sub-oscillator	R: $2.2M\Omega$, internal capacitance	22.9	32.768	42.6	kHz
IIL	Input Leakage Current for Input pins	VIN = VDD, GND	-1	0	1	μΑ
VIH1	Input High Threshold Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	2.4	-	I	V
VIL1	Input High Threshold Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	-	-	0.8	V
VIHT1	Input High Threshold Voltage (Schmitt Trigger)	/RESET	2.4	-	_	V
VILT1	Input Low Threshold Voltage (Schmitt Trigger)	/RESET	-	-	0.8	V
VIHT2	Input High Threshold Voltage (Schmitt Trigger)	TCC, INT0, INT1	2.4	-	_	V
VILT2	Input Low Threshold Voltage (Schmitt Trigger)	TCC, INT0, INT1	-	-	0.8	٧
IOH1	Output High Voltage (Ports 5~8)	VOH = 2.4V, IROCS="0"	-10	-	Ī	mA
IOL1	Output Low Voltage (Ports 5~8)	VOL = 0.4V, IROCS="0"	_	-	10	mA
IOH1	Output high voltage (P5.7/IROUT pin)	VOH = 2.4V, IROCS="1"	-20	-	1	mA
IOL2	Output Low Voltage (P5.7/IR OUT pin)	VOL = 0.4V, IROCS="1"	-	-	20	mA
IPH	Pull-high current	Pull-high active, input pin at GND	-55	-75	-95	μΑ
IPL	Pull-low current	Pull-low active, input pin at VDD	55	75	95	μΑ
ISB	Sleep mode current	All input and I/O pins at VDD, Output pin floating, WDT disabled	_	0.5	1.5	μΑ
ICC1	Idle mode current	/RESET= 'High', CPU OFF, Sub-oscillator clock (32.768kHz) ON, output pin floating, LCD enabled, no load	_	14	18	μΑ
ICC2	Green mode current	/RESET= 'High', CPU ON, Sub-oscillator clock (32.768kHz), Output pin floating, WDT enabled, LCD enabled	-	22	30	μΑ
ICC3	Normal mode	/RESET= 'High', Fosc=4MHz (Crystal type, CLKS="0"), Output pin floating	_	2.2	3	mA
ICC4	Normal mode	/RESET= 'High', Fosc=10MHz (Crystal type, CLKS="0"), Output pin floating	_	3.1	4	mA

Ta= -40°C ~85 °C, VDD= 3.0V, GND= 0V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
FXT	Crystal: VDD to 5V	Two cycles with two clocks	32.768	8M	10M	kHz
Fs	Sub-oscillator	Two cycles with two clocks	_	32.768	_	kHz
ERIC	External R, Internal C for Sub-oscillator	R: 300KΩ, internal capacitance	270	384	500	kHz
LINIC	External R, Internal C for Sub-oscillator	R: $2.2M\Omega$, internal capacitance	22.9	32.768	42.6	kHz
IIL	Input Leakage Current for Input pins	VIN = VDD, GND	-1	0	1	μΑ
VIH1	Input High Threshold Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	1.8	ı	ı	V
VIL1	Input High Threshold Voltage (Schmitt Trigger)	Ports 5, 6, 7, 8	-	-	0.6	V
VIHT1	Input High Threshold Voltage (Schmitt Trigger)	/RESET	1.8	-	_	V
VILT1	Input Low Threshold Voltage (Schmitt Trigger)	/RESET	-	-	0.6	V
VIHT2	Input High Threshold Voltage (Schmitt Trigger)	TCC, INT0, INT1	1.8	-	ı	V
VILT2	Input Low Threshold Voltage (Schmitt Trigger)	TCC, INT0, INT1	-	-	0.6	V
IOH1	Output High Voltage (Ports 5~8)	VOH = 2.4V, IROCS="0"	-1.8	-	_	mA
IOL1	Output Low Voltage (Ports 5~8)	VOL = 0.4V, IROCS="0"	-	-	6	mΑ
IOH1	Output high voltage (P5.7/IROUT pin)	VOH = 2.4V, IROCS="1"	-3.5	-	_	mA
IOL2	Output Low Voltage (P5.7/IR OUT pin)	VOL = 0.4V, IROCS="1"	-	-	12	mA
IPH	Pull-high current	Pull-high active, input pin at GND	-16	-23	-30	μΑ
IPL	Pull-low current	Pull-low active, input pin at VDD	16	23	30	μΑ
ISB	Sleep mode current	All input and I/O pins at VDD, Output pin floating, WDT disabled	_	0.1	1	μΑ
ICC1	Idle mode current	/RESET= 'High', CPU OFF, Sub-oscillator clock (32.768kHz) ON, output pin floating, LCD enabled, no load	-	4	8	μА
ICC2	Green mode current	/RESET= 'High', CPU ON, Sub-oscillator clock (32.768kHz), Output pin floating, WDT enabled, LCD enabled	-	10	20	μА
ICC3	Normal mode	/RESET= 'High', Fosc=4MHz (Crystal type, CLKS="0"), Output pin floating	-	0.73	1.2	mA

8.2 AC Electrical Characteristics

Ta=- 40°C ~ 85 °C, VDD=5V±5%, GND=0V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Dclk	Input CLK duty cycle	_	45	50	55	%
Tins	Instruction cycle time	Crystal type	100	-	DC	ns
11115	(CLKS="0")	RC type	500	-	DC	ns
Ttcc	TCC input period	_	(Tins+20)/N*	-	ı	ns
Tdrh	Device reset hold time	Ta = 25°C	11.3	16.2	21.6	ms
Trst	/RESET pulse width	Ta = 25°C	2000	-	-	ns
Twdt	Watchdog timer period	Ta = 25°C	11.3	16.2	21.6	ms
Tset	Input pin setup time	-	-	0	-	ns
Thold	Input pin hold time	-	-	20	-	ns
Tdelay	Output pin delay time	Cload=20pF	-	50	-	ns

^{*} N= selected prescaler ratio

8.3 Device Characteristic

The graphs provided in the following pages were derived based on a limited number of samples and are shown here for reference only. The device characteristics illustrated herein are not guaranteed for its accuracy. In some graphs, the data may be out of the specified warranted operating range.

Fig. 8-1 Vih, Vil of /RESET Pin vs. VDD

Fig. 8-2 Vih, Vil of Port 5 and Port 6 vs. VDD

Fig. 8-3 Vih, Vil of Port 7 and Port 8 vs. VDD

Fig. 8-4 Port 5.7 Voh vs. Ioh, [VDD=3V, 5V, IROCS (Bit 7 of IOC61) =" 0 "]

Fig. 8-5 Port 5.7 Voh vs. Ioh, [VDD=3V, 5V, IROCS (Bit 7 of IOC61) =" 1"]

Fig. 8-6 Port 6, Port 7 and Port 8 Voh vs. Ioh [VDD=3V, 5V]

Fig. 8-7 Port 5.7 Vol vs. Iol, [VDD=3V, 5V, IROCS (Bit 7 of IOC61) =" 0 "]

Fig. 8-8 Port 5.7 Vol vs. Iol, [VDD=3V, 5V, IROCS (Bit 7 of IOC61) =" 1 "]

Fig. 8-9 Port 6, Port 7 and Port 8 Vol vs. Iol [VDD=3V, 5V]

Fig. 8-10 WDT Time-out Period vs. VDD, with prescaler set to 1:1

Fig. 8-11 Typical ERIC OSC Frequency vs. VDD (Temperature at 25°C)

Fig. 8-12 Typical ERIC OSC Frequency vs. Temperature (R-OSCI Pin)

Fig. 8-13 Typical ERIC OSC Frequency vs. Temperature (Xin Pin)

There are four conditions or modes for the Operating Current ICC1 to ICC4. These conditions are as follows:

ISB (Sleep Mode): Fm and Fs is stop, all function are off.

ICC1 (Idle Mode): Fm Stop and Fs=32kHz, two clocks, CPU off, LCD enable and WDT Enable.

ICC2 (Green Mode): Fm Stop and Fs=32kHz, two clocks, CPU running on Fs frequency, LCD enable and WDT Enable

ICC3 (Normal Mode): Fm=4M Hz and Fs=32kHz, two clocks, CPU running on Fm frequency, LCD enable and WDT Enable

Fig. 8-14 Typical Power Consumption on Normal Mode Operation (Fm=4MHz)

Fig. 8-15 Maximum Power Consumption on Normal Mode Operation (Fm=4MHz)

Fig. 8-16 Typical Power Consumption on Green Mode Operation

Fig. 8-17 Maximum Power Consumption on Green Mode Operation

Fig. 8-18 Typical Power Consumption on Idle Mode Operation

Fig. 8-19 Maximum Power Consumption on Idle Mode Operation

Fig. 8-20 Typical Power Consumption on Sleep Mode Operation

Fig. 8-21 Maximum Power Consumption on Sleep Mode Operation

Fig. 8-22 Operating Voltage under Temperature Range of 0°C to 70°C

Fig. 8-23 Operating Voltage under Temperature Range of -40°C to +85°C

9 Application Circuit

Fig. 9-1 IROUT Control External BJT Circuit to Drive Infrared Emitting Diodes

Fig. 9-2 IROUT Direct Drive Infrared Emitting Diodes

APPENDIX

A Package Type

Name	Package Type	Pin Count	Package Size
EM78P468LH	Dice	59	-
EM78P468NQ	QFP	64	14 mm × 20 mm
EM78P468NQS/NQJ	QFP	64	14 mm × 20 mm
EM78P468NAQ	LQFP	64	7 mm × 7 mm
EM78P468NAQS/NAQJ	LQFP	64	7 mm × 7 mm
EM78P468NBQ	LQFP	44	10 mm × 10 mm
EM78P468NBQS/NBQJ	LQFP	44	10 mm × 10 mm
EM78P468NCQ	QFP	44	10 mm × 10 mm
EM78P468NCQS/NCQJ	QFP	44	10 mm × 10 mm

Note: Green products do not contain hazardous substances.

These are compatible with the third edition of Sony SS-00259 standard.

The Pb content should be less than 100ppm, and should meet Sony specifications or requirements.

Part No.	EM78P468NxS/xJ
Electroplate type	Pure Tin
Ingredient (%)	Sn:100%
Melting point (°C)	232°C
Electrical resistivity (μΩ-cm)	11.4
Hardness (hv)	8~10
Elongation (%)	>50%

B Package Information

QFP - 64

LQFP - 64

LQFP - 44

QFP - 44

C EM78P468N/L Program Pin List

DWRT is used to program the EM78P468N/L IC's. The connector of DWTR are select by CON4 (EM78P451), and the software is selected by EM78P468N/L.

Program Pin Name	IC Pin Name	L/QFP-64 Pin Number	L/QFP-44 Pin Number
VPP	/RESET	25	14
ACLK	P54/INT0	32	21
DINCLK	P55/INT1	33	22
DATAIN	P56/TCC	34	23
/PGMB	P60	38	25
/OEB	P61	39	26
VDD	VDD	29	18
GND	GND	26	15

Wiring diagram is for ELAN DWTR

D ICE 468XA

D.1 ICE 468XA Oscillator Circuit (JP 5)

Mode 1:

Main oscillator: Crystal mode, Sub oscillator: Crystal mode

Mode 2:

Main oscillator: PLL mode, Sub oscillator: Crystal mode

Mode 3:

Main oscillator: RC mode, Sub oscillator: Crystal

Mode 4:

Main oscillator: Crystal mode, Sub oscillator: RC mode

Mode 5:

Main oscillator: PLL mode, Sub oscillator: RC mode

Mode 6:

Main oscillator: RC mode, Sub oscillator: RC mode

D.2 ICE 468XA Output Pin Assignment (JP 3)

JP 3	Ν	VLCD3	GND	osco	Xin	P5.4/INT0	P5.6/TCC	P6.0	P6.2	P6.4	P6.6	SEG31/P8.7	SEG29/P8.5	SEG27/P8.3	SEG25/P8.1	SEG23/P7.7	SEG21/P7.5	SEG19/P7.3	SEG17/P7.1	SEG15	SEG13	SEG11	SEG9	SEG7	SEG5	SEG3	SEG1	COM3	COM1	X	
	1	_			9					_			_								-			_							
	VB	VLCD2	RESET	R-OSCI	VDD	Xout	P5.5/INT1	P5.7/IROUT	P6.1	P6.3	P6.5	P6.7	SEG30/P8.6	SEG28/P8.4	SEG26/P8.2	SEG24/P8.0	SEG22/P7.6	SEG20/P7.4	SEG18/P7.2	SEG16/P7.0	SEG14	SEG12	SEG10	SEG8	SEG6	SEG4	SEG2	SEG0	COM2	СОМО	_

E Quality Assurance and Reliability

Test Category	Test Conditions	Remarks			
Solderability	Solder temperature=245±5°C, for 5 seconds up to the stopper using a rosin-type flux	-			
	Step 1: TCT, 65°C (15mins)~150°C (15mins), 10 cycles				
	Step 2: Bake at 125°C, TD (endurance)=24 hrs				
	Step 3: Soak at 30°C/60%, TD (endurance)=192 hrs				
Pre-condition	Step 4: IR flow 3 cycles (Pkg thickness \geq 2.5mm or Pkg volume \geq 350mm3225 \pm 5°C) (Pkg thickness \leq 2.5mm or Pkg volume \leq 350mm3240 \pm 5°C)	For SMD IC (such as SOP, QFP, SOJ, etc)			
Temperature cycle test	-65°C (15mins)~150°C (15mins), 200 cycles	_			
Pressure cooker test	TA =121°C, RH=100%, pressure=2 atm, TD (endurance)= 96 hrs	-			
High temperature / High humidity test	TA=85°C , RH=85% , TD (endurance) = 168 , 500 hrs	-			
High-temperature storage life	TA=150°C, TD (endurance) = 500, 1000 hrs	-			
High-temperature operating life	TA=125°C, VCC = Max. operating voltage, TD (endurance) = 168, 500, 1000 hrs	-			
Latch-up	TA=25°C, VCC = Max. operating voltage, 150mA/20V	_			
ESD (HBM)	TA=25°C, ≥ ± 3KV	IP_ND,OP_ND,IO_ND IP_NS,OP_NS,IO_NS IP_PD,OP_PD,IO_PD			
ESD (MM)	TA=25°C, ≥ ± 300V	IP_PD,OP_PD,IO_PL IP_PS,OP_PS,IO_PS VDD-VSS(+),VDD_VSS (-) Mode			

E.1 Address Trap Detect

An address trap detect is one of the MCU embedded fail-safe functions that detects MCU malfunction caused by noise or the like. Whenever the MCU attempts to fetch an instruction from a certain section of ROM, an internal recovery circuit is auto started. If a noise-caused address error is detected, the MCU will repeat execution of the program until the noise is eliminated. The MCU will then continue to execute the next program.

C	CONTENTSIII										
	6.1	Operational Registers									
	6.2	Special 6.6.1 6.6.2 6.6.3	Purpose Registers								
		6.6.4	RC Oscillator Mode with Internal Capacitor32								
	6.7	Power- 6.7.1 6.7.2	on Considerations 32 External Power-on Reset Circuit33 Residue-Voltage Protection33								
	6.8	Interrup	ot								
	6.9	LCD Di 6.9.1 6.9.2 6.9.3 6.9.4	R9/LCDCR (LCD Control Register)35 RA/LCD_ADDR (LCD Address)36 RB/LCD_DB (LCD Data Buffer)36 RD/SBPCR (System, Booster and PLL Control Registers)37								
	6.10	Infrared	Remote Control Application/PWM Waveform Generate								
	6.11	Code C	Options 45								
	6.12	Instruc	tion Set46								
7 8		olute Î	Diagram								
	8.1		ctrical Characteristics51								
	8.2		ctrical Characteristics53								
9 A B C D E	Pac Pac EM7	licatio kage T kage lı 78P468 468XA	Characteristic 54 n Circuit 66 type 67 n formation 68 N/L Program Pin List 71 1 constant 72 1 surance and Reliability 75								
	E.1	Addres	s Trap Detect75								