

Lab02 Counter

賴奕翔

Purpose

- Be familiar with Verilog syntax
 - Avoid multiple-driven
 - Separate sequential and combinational block
- Be familiar with circuit specification
 - Output data should be strictly RESET !!!
- Sequential circuit
- Counter

Sequential Circuit

 Different from combinational circuit, sequential circuit will synthesize registers which can store previous data.

```
always @(posedge clk or negedge rst n) begin
    if(!rst n)
        a \leq 0;
    else
        a \le a + 1;
                                                       ← Sequential circuit
assign a = a + 1;
      @(*) begin
   = a + 1:
                           ← Combinational circuit
```

Waveform Difference

Combinational Circuit

```
always@(*)begin
   if(in_valid) out_data = in_data;
   else out_data = 0;
end

assign out_data = (in_valid) ? in_data : 0;
```


Waveform Difference

Sequential Circuit

```
always@(posedge clk or negedge rst_n)begin
    if(!rst_n)
        out_data <= 0;
    else begin
        if(in_valid) out_data <= in_data;
        else out_data <= 0;
    end
end</pre>
```


Counter

- At the beginning, the pattern will send rst_n, you should reset out_num to 0
 - Reset when rst_n is low
- When the "in_valid" is high, the pattern will provide a number: in_num for counting
 - "in_valid" will be high for one cycle
 - The range of in_num is 1~31
- After receiving in_num, you should increment out_num from 0 to in_num over the following cycles
 - Once counting is finished, you should hold out_num (out_num = in_num) until the next pattern
- The next counting pattern will arrive in 2~6 cycles

Reference Block Diagram

Specification

Counter.sv

Input Signal	Bit Width	Definition	
clk	1	Clock	
rst_n	1	Asynchronous active-low reset	
in_valid	1	High when input signal is ready	
in_num	5	The number of cycles to count	

Output Signal	Bit Width	Definition	
out_num	5	Count from 0 to in_num after input, then hold out_num until next pattern arrives	

Output and Waveform

Separate sequential and combinational block

```
always_ff @(posedge clk, negedge rst_n) begin
   if(!rst_n) Q <= 0;
   else Q <= Q_next;
end
assign Q_next = A + B;</pre>
```

Good design

```
always_ff @(posedge clk, negedge rst_n) begin
  if(!rst_n) Q <= 0;
  else Q <= A + B;
end</pre>
```

Bad design

Directory

- 00_TESTBED
 - TESTBED.sv
 - PATTERN.sv
- 01_RTL
 - 01_run
 - 09_clean_up
 - Counter.sv
- 02_SYN
 - 01_run_dc
 - 09_clean_up
- 03_GATE
 - 01_run
 - 09_clean_up

Command

- tar -xvf ~dcsTA01/Lab02.tar
- cd Lab02/01_RTL/

RTL Simulation

- cd Lab02/01_RTL/
- ./01_run (電路模擬)
- ./09_clean_up (清除波型檔)
- nWave & (看波型)
 - 範例波型

Synthesis

- cd ../02_SYN/
- ./01_run_dc (電路合成)
- ./09_clean_up (清除合成結果)
 - 合成結果: (不能有Error、要有Area report、Timing report slack met、不能有 Latch)

```
Number of ports:
Number of nets:
Number of cells:
Number of combinational cells:
Number of sequential cells:
Number of macros/black boxes:
Number of buf/inv:
Number of references:
Combinational area:
                                     31.298400
Buf/Inv area:
                                      3.628800
Noncombinational area:
                                     45.359998
Macro/Black Box area:
                                      0.000000
Net Interconnect area:
                                      0.000000
Total cell area:
                                     76.658397
 otal area:
                                     76.658397
```

Synthesis

- 合成的timing report中的slack必須≧0 (MET)
- 如果出現timing violation → Demo Fail!(slack < 0)

Point	Incr	Path
clock clk (rise edge) clock network delay (ideal) input external delay in_valid (in) U41/Y (INV_XOP5B_A9TR) U42/Y (NAND2_XOP5A_A9TR) U56/Y (NAND2_XOP5A_A9TR) U61/Y (NOR2_XOP5A_A9TR) U63/Y (OAI21_XOP5M_A9TR) U64/Y (OAI31_XOP5M_A9TR) out_num_reg_2_/D (DFFRPQ_X1M_A9TR) data arrival time	0.00 0.00 5.00 0.06 0.10 0.09 0.10 0.05 0.07	0.00 0.00 5.00 r 5.00 r 5.06 f 5.16 r 5.24 f 5.35 r 5.40 f 5.47 r
clock clk (rise edge) clock network delay (ideal) out_num_reg_2_/CK (DFFRPQ_X1M_A9TR) library setup time data required time data arrival time data arrival time	10.00 0.00 0.00 -0.04	10.00 10.00 10.00 r 9.96 9.96
slack (MET)		4.49

Synthesis

- 記得檢查是否合成出Latch和error
 - 可以在syn.log用ctrl+F尋找關鍵字Latch、error
- 如果出現Latch \ error → Demo Fail

Gate-Level Simulation

- cd ../03_GATE/
- ./01_run (電路模擬)
- ./09_clean_up (清除波型檔)
- nWave & (看波型)
 - 範例波形

Grading Policy

- Pass the RTL & Synthesis & Gate-level simulation: 100%
 - − 合成結果: (不能有Error \ Timing report slack met \ 不能有Latch)
- Demo2 打7折

Upload

- 請將Lab02/01_RTL裡的Counter.sv依以下命名規則重新命名後上傳至 E3
- 命名規則:Counter_dcsxxx.sv,xxx為工作站帳號號碼
- 命名錯誤扣5分!!!
- Deadline:
 - Demo 1: 3/6 17:25
 - Demo 2: 3/6 23:59