Outline
Overview
1-D & 2-D Scans
Anova Fit
User Customized Section
Conclusion

Prototype QTL Strategy: Phenotype bp in Cross hyper

Brian S. Yandell, W. Whipple Neely, Nengjun Yi

April 23, 2008

Overview Initialization

1-D & 2-D Scans

Anova Fit

User Customized Section

Conclusion

Automated Strategy

- Estimate positions and effects of main QTL.
- Find chromosomes with epistasis.
- Estimate epistatic pair positions and effects.
- Confirm genetic architecture with ANOVA.

Running Sweave

```
> library(qtlbim)
> qb.sweave(hyper, pheno.col = 1,
+ n.iter = 3000, n.draws = 8,
+ scan.type = "2logBF", hpd.level = 0.5,
+ threshold = c(upper = 2),
+ SweaveFile = "",
+ SweaveExtra = "/tmp/Rinst1061764704/qtlbim/external/hyper.slide.extra.Rnw",
+ PDFDir = "bpPDF",
+ remove.ab = TRUE)
```

Cross Object

```
> summary(cross)
```

Backeross

No. individuals: 250

No. phenotypes: 2

Percent phenotyped: 100 100

No. chromosomes: 19

Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total markers: 170

No. markers: 22 8 6 20 14 11 7 6 5 5 14 5 5 5 11 6 12 4 4

Percent genotyped: 47.9

Genotypes (%): BB:50.1 BA:49.9

Create MCMC runs

```
> cross <- qb.genoprob(cross,step=2)
> cross.qb <- qb.mcmc(cross, pheno.col = pheno.col,
+ genoupdate=TRUE, n.iter = 3000, verbose=FALSE)</pre>
```

1-D 2logBF Scan

```
> hpd.level
Γ17 0.5
> scan.type
[1] "2logBF"
> cross.hpd <- qb.hpdone(cross.qb, hpd.level, scan.type)
> sum.one <- summary(cross.hpd)
> sum.one
  chr n.qtl pos lo.50. hi.50. 2logBF
  1 0.826 67.8 64.5 74.3 6.181 103.568 99.143
  4 3.035 29.5 23.0 31.7 9.970 104.552 98.073
    6 0.873 66.7 56.8 66.7 5.488 99.710 102.866
15 15 0.395 17.5 17.5
                         19.5 5.448 101.993 100.703
> chrs <- as.vector(sum.one[, "chr"])
> pos <- sum.one[, "pos"]
> plot(cross.hpd)
```

1-D Scan: 2logBF Profile

2-D: find epistatic pairs

```
> two <- qb.scantwo(cross.qb, chr = chrs, type = scan.type)
> sum.two <- summary(two, sort = "upper", threshold = threshold.
     refine = TRUE)
> sum.two
upper: 2logBF of bp for epistasis
lower: 2logBF of bp for full
Thresholds: upper=2
       n.qtl 1.pos1 1.pos2 lower u.pos1 u.pos2 upper
c6 :c15 1.004
              59.0 17.5 11.89 59.0 17.5 11.90
c4 :c6 1.185
               29.5
                    59.0 13.77 74.3
                                        61.2 7.49
c4 :c15 1.452
               29.5
                    17.5 13.61
                                 74.3
                                        47.6 6.84
c15:c15 0.261
              17.5
                    33.5 7.54
                                17.5
                                        31.5 6.52
c1 :c4 1.817
              67.8
                    29.5 14.41
                                72.1
                                        29.5 6.10
                    17.5 11.20
c1 :c15 1.255
               67.8
                                 72.1
                                        17.5 5.23
c1 :c6 1.103
               67.8
                    59.0 11.37
                                 67.8
                                        59.0 5.21
c1 :c1 0.366
               43.7
                    77.6 7.46
                                 39.4
                                        77.6 5.20
c4 : c4 0.417
               29.5
                    74.3 11.00
                                 28.4
                                        49.5 4.76
c6 :c6 0.111
               61.2
                     65.6 7.52
                                 40.4
                                        56.8 3.94
```

Initial Genetic Architecture

```
> cross.arch <- qb.arch(sum.two, chrs, pos)
> cross arch
main QTL loci:
    Γ.17
            Γ.27
                    Γ.31
                             Γ.47
                                     Γ.51
                                             [.6]
                                                      Γ.71
                                                              [.8]
                                                                      [.9]
chr "1"
                    "15"
                             "15"
            "1"
                                     "15"
                                             "4"
                                                      "4"
                                                              "4"
                                                                      "6"
pos "39.35" "71.48" "17.50" "31.52" "47.64" "29.13" "49.45" "74.30" "40.40"
    Γ.107
chr "6"
pos "60.54"
Epistatic pairs by qtl, chr, pos:
        qtla qtlb chra chrb posa posb
               10
                    15
                           6 17.50 60.54
pair 1
pair 2
               10
                     4
                           6 74.30 60.54
pair 3
                          4 47.64 74.30
                    15
pair 4
                         15 17.50 31.52
pair 5
                           4 71.48 29.13
pair 6
           2
                3
                         15 71.48 17.50
pair 7
           2
               10
                          6 71.48 60.54
pair 8
                2
                          1 39.35 71.48
pair 9
                           4 29.13 49.45
pair 10
               10
                           6 40.40 60.54
Epistatic chromosomes by connected sets:
1.15.4.6
```

Construct QTL Object

```
use R/qtl tools to check model fit
first simulate missing markers
then construct QTL object
> cross.sub <- subset(cross, chr = unique(cross.arch$qtl$chr))
> n.draws
[1] 8
> cross.sub <- sim.geno(cross.sub, n.draws = n.draws, step = 2,
+ error = 0.01)
> qtl <- makeqtl(cross.sub, as.character(cross.arch$qtl$chr), cross.arch$qtl$pos)
> cross.sub <- clean(cross.sub)</pre>
```

Stepwise Reduction

```
> cross.step <- step.fitqtl(cross.sub, qtl, pheno.col, cross.arch)
                      LOD
  drop
  Chr1@39.3:Chr1@71.3 -0.04690 1.0000
  Chr4029 5 Chr4050 0 03090 0 7180
  Chr4@29.5:Chr4@50 0.03410 0.7030
  Chr4@29.5:Chr4@50 0.04260 0.6700
  Chr4029 5: Chr4050 0 04320 0 6670
  Chr4@29.5:Chr4@50 0.05010 0.6430
  Chr15@31.5
                     -0.12600 1.0000
  Chr4@29.5:Chr4@50 0.07130 0.5780
  Chr6@40.4:Chr6@60
                    0.00674 0.8640
10 Chr4@29.5:Chr4@50
                    0.05790 0.6150
11 Chr4@29.5:Chr4@50
                    0.07510 0.5660
12 Chr15@47.5
                      0.12300 0.4610
13 Chr4@50
                      0.14900 0.4170
14 Chr6@40.4
                      0.09380 0.5180
15 Chr4074 3
                      0.84400 0.0521
> summary(cross.step$fit)
      df
                          MS
                                  T.OD
                                         %var Pvalue(Chi2)
                                                              Pvalue(F)
       5 4844.318 968.86365 17.39575 27.41715 7.771561e-16 1.554312e-15
Model
Error 244 12824 618 52 55991
Total 249 17668.936
```

Stepwise Reduction

```
df Type III SS
                               LOD
                                       %var F value Pvalue(F)
Chr1@39.3
                  290.212
                             1.215
                                      1.642
                                              5.522 0.019581 *
Chr1@71.3
                  656.678
                             2.711
                                      3.717
                                             12.494
                                                     0.000488 ***
Chr15@17.5
                 323.724
                             1.353
                                      1.832
                                              6.159
                                                     0.013748 *
Chr4@29.5
                2747.049
                            10.536
                                     15.547
                                             52.265
                                                     6.21e-12 ***
Chr6@60
           1
                 473.140
                             1.967
                                      2.678
                                              9.002
                                                     0.002977 **
```

Reduced Genetic architecture

2-D Plots

2-D plots by cliques (if any epistasis)

```
> for(i in names(cross.arch$chr.by.set))
+ plot(two,chr = cross.arch$chr.by.set[[i]], smooth = 3,
+ col = "gray", contour = 3)
```

2-D Plots: clique 1

2logBF of epistasis / 2logBF of full

Slice Each Epistatic Pair

show detail plots for epistatic pairs (if any)

```
> if(!is.null(cross.arch$pair.by.chr)) {
+ for(i in seq(nrow(cross.arch$pair.by.chr$chr))) {
+ chri <- cross.arch$pair.by.chr$chr[i,]
+ posi <- cross.arch$pair.by.chr$pos[i,]
+ if(chri[i] != chri[2])
+ plot(qb.slicetwo(cross.qb, chri, posi, scan.type))
+ }
+ }
+}</pre>
```

Epistatic Pair 15 and 6

Epistatic Pair 4 and 6

Epistatic Pair 15 and 4

Epistatic Pair 1 and 4

Epistatic Pair 1 and 15

Epistatic Pair 1 and 6

Compare with Literature

```
Sugiyama et al. (2002) found: two main QTLs on 1 4 two epistatic pairs with 6.15, 7.15 compare to present model: 
> arch3 \leftarrow qb.arch(cross.step, main = c(1, 4), epistasis = data.frame(q1 = c(6, + 7), q2 = rep(15, 2))) > arch3
```

Sugiyama Model

```
> cross.step2 <- step.fitqtl(cross.sub, qt1, pheno.col, arch3)
```

```
> summary(cross.step2$fit)
```

Sugiyama vs. Automata

formal comparison with automated model

> anova(cross.step, cross.step2)

final tasks: externally rename file .tex to bp.tex and run pdflatex twice on it remove objects created by R/qtlbim if desired