Task 4

Task 4: Use 5-fold cross-validation to select the best λ . Compare the prediction performance between the "optimal" model and "full" model.

5-fold CV

We write an R function cv.logit.lasso to conduct 5-fold cross-validation to select the best λ .

```
cv.logit.lasso <- function(x, y, nfolds = 5, lambda) {</pre>
  auc <- data.frame(matrix(ncol = 3, nrow = 0))</pre>
  folds <- createFolds(y, k = nfolds)</pre>
  for (i in 1:nfolds) {
    valid_index <- folds[[i]]</pre>
    x_training <- x[-valid_index, ]</pre>
    y_training <- y[-valid_index]</pre>
    training_dat <- data.frame(cbind(y_training, x_training))</pre>
    x_valid <- cbind(rep(1, length(valid_index)), x[valid_index, ])</pre>
    y_valid <- y[valid_index]</pre>
    res <- LogisticLASSO(dat = training_dat, start = rep(0, ncol(training_dat)), lambda = lambda)
    for (k in 1:nrow(res)) {
      betavec <- res[k, 2:ncol(res)]</pre>
      u_valid <- x_valid %*% betavec
      phat_valid <- sigmoid(u_valid)[, 1]</pre>
      roc <- roc(response = y_valid, predictor = phat_valid)</pre>
      auc <- rbind(auc, c(lambda[k], i, roc$auc[1]))</pre>
    }
  }
  colnames(auc) <- c("lambda", "fold", "auc")</pre>
  cv_res <- auc %>%
    group_by(lambda) %>%
    summarize(auc mean = mean(auc)) %>%
    mutate(auc_ranking = min_rank(desc(auc_mean)))
  bestlambda <- min(cv_res$lambda[cv_res$auc_ranking == 1])</pre>
  return(cv res)
```

Compare the results of cross-validation using glmnet and using our algorithm.

1. Our function cv.logit.lasso:

```
set.seed(1)
folds <- createFolds(y, k = 5)
lambda_max_i <- rep(NA, 5) # lambda_max for each training set in CV (4/5 of the whole training data)
for (i in 1:5) {
    valid_index <- folds[[i]]</pre>
```

```
x_training <- x[-valid_index, ]</pre>
   y_training <- y[-valid_index]</pre>
   lambda_max_i[i] <- max(abs(t(x_training) %*% (y_training - mean(y_training)))) / length(y_training)</pre>
lambda_max <- max(lambda_max_i) + 1e-10 # max of lambda_max's so that all beta_i's = 0 except intercept
lambdas <- exp(seq(log(lambda_max), log(lambda_max) - 6, length = 30))
set.seed(1)
res_cv = cv.logit.lasso(x, y, nfolds = 5, lambda = lambdas)
as.matrix(res_cv %>% arrange(-lambda))
              lambda auc_mean auc_ranking
##
## [1,] 0.411544526 0.5000000
## [2,] 0.334628402 0.9760054
                                         29
## [3,] 0.272087611 0.9796678
                                         28
## [4,] 0.221235460 0.9816903
                                         27
## [5,] 0.179887384 0.9828852
                                        26
## [6,] 0.146267108 0.9841071
                                        25
## [7,] 0.118930336 0.9853029
                                        24
## [8,] 0.096702703 0.9861031
                                        23
## [9,] 0.078629332 0.9872060
                                        20
## [10,] 0.063933805 0.9885875
                                         15
## [11,] 0.051984817 0.9893408
                                        12
## [12,] 0.042269050 0.9895397
                                        11
## [13,] 0.034369124 0.9898394
                                        10
## [14,] 0.027945664 0.9903360
                                         5
## [15,] 0.022722724 0.9903354
                                          6
## [16,] 0.018475933 0.9903346
## [17,] 0.015022850 0.9903347
                                          7
## [18,] 0.012215136 0.9904332
                                          4
## [19,] 0.009932173 0.9905325
                                          1
## [20,] 0.008075887 0.9905317
                                          3
## [21,] 0.006566534 0.9905324
                                          2
## [22,] 0.005339274 0.9902345
                                         9
## [23,] 0.004341384 0.9893390
                                        13
## [24,] 0.003529995 0.9887423
                                        14
## [25,] 0.002870252 0.9880447
                                         17
## [26,] 0.002333813 0.9881480
                                        16
## [27,] 0.001897632 0.9875518
                                        18
## [28,] 0.001542972 0.9875498
                                        19
## [29,] 0.001254596 0.9867502
                                         21
## [30,] 0.001020117 0.9863500
                                        22
# best lambda
best_lambda <- max(res_cv$lambda[res_cv$auc_ranking == 1])</pre>
best_lambda
## [1] 0.009932173
plot(log(res_cv$lambda),
    res cv$auc mean,
     pch = 16,
```

```
xlab = "log lambda",
ylab = "AUC",
col = "red")
abline(v = log(res_cv$lambda[which((res_cv$auc_ranking == 1))]), col = "gray", lty = 3)
```



```
# coefficients of the best model
res_coef <- LogisticLASSO(dat = Training, start = rep(0, ncol(Training)),</pre>
                          lambda = lambdas) %>% as.data.frame
res_coef[res_coef$lambda == best_lambda, -1]
      (Intercept) radius_mean texture_mean perimeter_mean area_mean
##
## 19
                                 0.3958698
      smoothness_mean compactness_mean concavity_mean concave.points_mean
##
## 19
                                                    0
      symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
##
## 19
                                         0 0.7660262
                                                              0
##
      area_se smoothness_se compactness_se concavity_se concave.points_se
## 19
                                         0
      symmetry_se fractal_dimension_se radius_worst texture_worst perimeter_worst
##
## 19
                0
                           -0.03644811
                                           2.587817
                                                        0.4394404
      area_worst smoothness_worst compactness_worst concavity_worst
##
## 19
               0
                        0.4980005
      concave.points_worst symmetry_worst fractal_dimension_worst
## 19
                  1.008792 0.3617036
```

2. glmnet from \mathbf{R} package caret

[1] 0.009932173

```
plot(fit.logit.lasso)
```



```
# coefficients of the best model
coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
```

```
## smoothness_mean
## compactness_mean
## concavity_mean
## concave.points_mean 0.44764990
## symmetry_mean .
## fractal_dimension_mean .
## radius se
                0.83791365
## texture_se
## perimeter_se
## area_se
## smoothness_se
## compactness_se
## concavity_se
## concave.points_se
## symmetry_se
## fractal_dimension_se -0.03686225
## radius_worst 2.57346076
## texture_worst 0.45902449
## perimeter_worst
## area_worst
## smoothness_worst 0.49454577

## compactness_worst .

## concavity_worst 0.12532306

## concave.points_worst 1.06926848

## symmetry_worst 0.36416342
## fractal_dimension_worst .
```

The results are slightly different (mean AUC values).

```
tibble(
  lambda = lambdas,
  ours_AUC = res_cv %>% arrange(-lambda) %>% .$auc_mean,
  cv.glmnet_AUC = fit.logit.lasso$cvm
) %>%
  knitr::kable()
```

lambda	ours_AUC	${\rm cv.glmnet_AUC}$
0.4115445	0.5000000	0.5000000
0.3346284	0.9760054	0.9725915
0.2720876	0.9796678	0.9787526
0.2212355	0.9816903	0.9817053
0.1798874	0.9828852	0.9834002
0.1462671	0.9841071	0.9847216
0.1189303	0.9853029	0.9850192
0.0967027	0.9861031	0.9858166
0.0786293	0.9872060	0.9873215
0.0639338	0.9885875	0.9887026
0.0519848	0.9893408	0.9892575
0.0422691	0.9895397	0.9894566
0.0343691	0.9898394	0.9896556
0.0279457	0.9903360	0.9902522
0.0227227	0.9903354	0.9901527

lambda	$ours_AUC$	${\rm cv.glmnet_AUC}$
0.0184759	0.9903346	0.9904508
0.0150229	0.9903347	0.9903518
0.0122151	0.9904332	0.9904501
0.0099322	0.9905325	0.9906491
0.0080759	0.9905317	0.9904501
0.0065665	0.9905324	0.9905479
0.0053393	0.9902345	0.9903485
0.0043414	0.9893390	0.9893569
0.0035300	0.9887423	0.9889618
0.0028703	0.9880447	0.9880654
0.0023338	0.9881480	0.9881674
0.0018976	0.9875518	0.9877693
0.0015430	0.9875498	0.9876669
0.0012546	0.9867502	0.9867649
0.0010201	0.9863500	0.9865655

The best λ 's are the same, and the coefficients are very similar.

```
# our best lambda
best_lambda
```

[1] 0.009932173

```
# cv.glmnet's best lambda
fit.logit.lasso$lambda.min
```

[1] 0.009932173

```
tibble(
  predictor = c("(Intercept)", names(Training)[-1]),
  ours_coef = res_coef[res_coef$lambda == best_lambda, -1] %>% as.vector %>% as.numeric,
  cv.glmnet_coef = coef(fit.logit.lasso, fit.logit.lasso$lambda.min) %>% as.vector
) %>%
  knitr::kable()
```

predictor	$ours_coef$	${\rm cv.glmnet_coef}$
(Intercept)	-0.6138280	-0.6048659
radius_mean	0.0000000	0.0000000
texture_mean	0.3958698	0.3811372
perimeter_mean	0.0000000	0.0000000
area_mean	0.0000000	0.0000000
$smoothness_mean$	0.0000000	0.0000000
$compactness_mean$	0.0000000	0.0000000
concavity_mean	0.0000000	0.0000000
concave.points_mean	0.4850029	0.4476499
symmetry_mean	0.0000000	0.0000000
$fractal_dimension_mean$	0.0000000	0.0000000
$radius_se$	0.7660262	0.8379136

predictor	$ours_coef$	$cv.glmnet_coef$
texture_se	0.0000000	0.0000000
perimeter_se	0.0000000	0.0000000
area_se	0.0000000	0.0000000
$smoothness_se$	0.0000000	0.0000000
$compactness_se$	0.0000000	0.0000000
concavity_se	0.0000000	0.0000000
concave.points_se	0.0000000	0.0000000
symmetry_se	0.0000000	0.0000000
fractal_dimension_se	-0.0364481	-0.0368622
radius_worst	2.5878169	2.5734608
texture_worst	0.4394404	0.4590245
perimeter_worst	0.0000000	0.0000000
area_worst	0.0000000	0.0000000
$smoothness_worst$	0.4980005	0.4945458
$compactness_worst$	0.0000000	0.0000000
concavity_worst	0.1437060	0.1253231
concave.points_worst	1.0087922	1.0692685
symmetry_worst	0.3617036	0.3641634
fractal_dimension_worst	0.0000000	0.0000000

Prediction performance comparison

Below is the prediction performance on the test data.

```
# test data
X_test <- cbind(rep(1, nrow(Test)), model.matrix(diagnosis ~ ., Test)[, -1])</pre>
y_test <- Test$diagnosis</pre>
# logistic model
res_logit <- NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, ncol(Training)))
## Warning in NewtonRaphson(dat = Training, func = logisticstuff, start = rep(0, :
## Complete separation occurs. Algorithm does not converge.
betavec_logit <- res_logit[nrow(res_logit), 3:ncol(res_logit)]</pre>
u <- X_test %*% betavec_logit
phat <- sigmoid(u)[, 1]</pre>
roc.logit <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model
betavec_logit.lasso <- res_coef[res_coef$lambda == best_lambda, -c(1, 2)]
col_nonzero <- names(betavec_logit.lasso)[betavec_logit.lasso != 0]</pre>
df_nonzero <- Training[c("diagnosis", col_nonzero)]</pre>
refit_logit <- NewtonRaphson(dat = df_nonzero, func = logisticstuff, start = rep(0, ncol(df_nonzero)))
betavec_lasso.refit <- refit_logit[nrow(refit_logit), 3:ncol(refit_logit)]</pre>
betavec_lasso.refit <- bind_rows(betavec_logit.lasso, betavec_lasso.refit)[2,] %>% select("(Intercept)"
betavec_lasso.refit[is.na(betavec_lasso.refit)] <- 0</pre>
betavec_lasso.refit <- as.numeric(betavec_lasso.refit)</pre>
u <- X_test %*% betavec_lasso.refit
phat <- sigmoid(u)[, 1]</pre>
```

```
roc.logitlasso <- roc(response = y_test, predictor = phat)</pre>
# logistic LASSO model (cv.qlmnet)
betavec_logit.lasso.glm_temp <- coef(fit.logit.lasso, fit.logit.lasso$lambda.min)
betavec_logit.lasso.glm <- betavec_logit.lasso.glm_temp %>% as.vector
names(betavec_logit.lasso.glm) <- betavec_logit.lasso.glm_temp@Dimnames[[1]]</pre>
col_nonzero <- names(betavec_logit.lasso.glm)[betavec_logit.lasso.glm != 0][-1]</pre>
df_nonzero <- Training[c("diagnosis", col_nonzero)]</pre>
refit_logit.glm <- NewtonRaphson(dat = df_nonzero, func = logisticstuff, start = rep(0, ncol(df_nonzero
betavec_lasso.refit.glm <- refit_logit.glm[nrow(refit_logit.glm), 3:ncol(refit_logit.glm)]</pre>
betavec_lasso.refit.glm <- bind_rows(betavec_logit.lasso, betavec_lasso.refit.glm)[2,] %>% select("(Int
betavec_lasso.refit.glm[is.na(betavec_lasso.refit.glm)] <- 0</pre>
betavec lasso.refit.glm <- as.numeric(betavec lasso.refit.glm)</pre>
u <- X_test %*% betavec_lasso.refit.glm</pre>
phat <- sigmoid(u)[, 1]</pre>
roc.logitlasso.glm <- roc(response = y_test, predictor = phat)</pre>
# draw rocs
auc <- c(roc.logit$auc[1], roc.logitlasso$auc[1], roc.logitlasso.glm$auc[1])</pre>
## [1] 0.9661130 0.9983389 0.9983389
plot(roc.logit, legacy.axes = TRUE)
plot(roc.logitlasso, col = 2, add = TRUE)
plot(roc.logitlasso.glm, col = 3, add = TRUE)
modelNames <- c("logistic", "logistic LASSO", "logistic LASSO (cv.glmnet)")</pre>
legend("bottomright", legend = paste0(modelNames, ": ", round(auc, 3)),
col = 1:3, lwd = 2)
```


Correlation Plot

corrplot::corrplot(cor(Training[names(betavec_logit.lasso)[betavec_logit.lasso != 0]]))

LASSO model coefficients

Re-fit the logistic regression with the predictors selected by LASSO.

refit_logit[nrow(refit_logit), 3:ncol(refit_logit)]

##	(Intercept)	texture_mean	concave.points_mean
##	-0.09092737	0.94392378	0.84754704
##	radius_se	<pre>fractal_dimension_se</pre>	radius_worst
##	3.77040802	-1.12476354	6.01510669
##	texture_worst	smoothness_worst	concavity_worst
##	1.23805580	1.67539455	1.19425400
##	<pre>concave.points_worst</pre>	symmetry_worst	
##	1.87249528	0.69899461	