PY2010 Intermediate Logic UNIVERSITY OF ST. ANDREWS Take Home Assessment

ID: 200007413

December 7, 2021

I hereby declare that the attached piece of written work is my own work and that I have not reproduced, without acknowledgement, the work of another.

1. (a) $\vdash_{TK\rho\sigma\tau} (\Box p \dashv \Box q) \lor (\Box q \dashv \Box p)$

(b)
$$\vdash_{TK\rho} \Diamond(p \supset q) \equiv (\Box p \supset \Diamond q)$$

(c)
$$\Box \forall x (\neg Fx \lor Gx) \vdash_{TCK} \forall x (\Diamond \neg Fx \lor \Box Gx)$$

2. (a)
$$(p \land q) \lor r, \neg r \vdash_{NC} p$$

1 (1) $(p \land q) \lor r$ Ass(premise)
2 (2) $\neg r$ Ass(premise)
3 (3) $(p \land q)$ Ass $(\lor E)$
3 (4) p 3, $\land E$
5 (5) r Ass $(\lor E)$
2,5 (6) \bot 2,5, $\neg E$
7 (7) $\neg p$ Ass $(\neg I)$
2,5 (8) $\neg \neg p$ 6,7, $\neg I$
2,5 (9) p 8, DN
1,2 (10) p 1,3,4,5,9, $\lor E$

(b) $\exists x (Fx \lor Gx) \vdash_{NC} \exists x Fx \lor \exists x Gx$

```
1
                      \exists x (Fx \vee Gx)
                                             Ass(premise)
             (1)
       2
              (2)
                      Fx \vee Gx
                                              Ass(\exists E)
       3
             (3)
                      Fx
                                             Ass(\vee E)
       3
                      \exists Fx
                                             3, ∃I
             (4)
       3
             (5)
                      \exists Fx \lor \exists Gx
                                             4, \forall I
       6
             (6)
                      Gx
                                             Ass(\vee E)
             (7)
                      \exists Gx
                                             6, ∃I
       6
             (8)
                      \exists Fx \lor \exists Gx
                                             7, \vee I
       6
       2
                      \exists Fx \lor \exists Gx
              (9)
                                             2,3,5,6,8, \lor E
            (10) \exists Fx \lor \exists Gx
                                             1,2,9, ∃E
(c) \rightarrow p \land \rightarrow q \vdash_{NI} \rightarrow (p \lor q)
                (1)
                       \rightarrow p \land \rightarrow q Ass(premise)
       1
                                             1, \wedge E
                (2)
                         \rightarrow p
       1
                (3)
                                             1, \wedge E
                       \rightarrow q
       4
                                             Ass(\rightarrow I)
                (4) p \vee q
       5
                      p
                (5)
                                             Ass(\vee E)
       1,5
                (6)
                                          2,5, \rightarrow E
                                         Ass(\lor E) 3,7, \rightarrow E
       7
                (7) q
       1,7
                (8) ⊥
                                     4,5,6,7,8 \lor E
       1,4
                (9)
               (10) \rightarrow (p \lor q) 4,9 \rightarrow I
```

3. (a) $p \vee \neg p \vdash \neg (q \wedge \neg q)$ - check in both K_3 and LP

i.
$$p \lor \neg p \vdash_{K_3} \neg (q \land \neg q)$$

$$p \lor \neg p, + \checkmark$$

$$\neg (q \land \neg q), - \checkmark$$

$$\mid$$

$$\neg q \lor \neg \neg q, - \checkmark$$

$$\mid$$

$$\neg q, -$$

$$\neg \neg q, - \checkmark$$

$$\mid$$

$$q, -$$

$$p, + \neg p, +$$

Counter Model:

$$v(p) = 1, v(q) = n$$
$$D \in \{1\}$$

As v(p) = 1, then the semantics for \neg mean that $v(\neg p) = 0$.

Then, the semantics of \vee mean that $v(p \vee \neg p) = 1$ because the maximum of v(p) = 1 and $v(\neg p) = 0$ is 1. Therefore, as $1 \in D$, we have a case where the premises are true. Next, with v(q) = n, then the semantics for \neg mean that $v(\neg q) = n$.

Then, the semantics for \wedge means $v(q \wedge \neg q)$ is the minimum of v(q) and $v(\neg q)$ which are both n and so $v(q \wedge \neg q) = n$.

Then, the semantics for \neg mean that $v(\neg(q \land \neg q)) = n$ as $v(q \land \neg q) = n$.

Therefore, we have a scenario where the premises are all satisfied, but the conclusion has value n and $n \notin D$ meaning it is not satisfied. Therefore, $p \lor \neg p \not\vdash_{K_3} \neg (q \land \neg q)$

(b)
$$\vdash_{L_3} (p \land \neg p) \rightarrow (q \lor \neg q)$$

 $(p \land \neg p) \rightarrow (q \lor \neg q), \neg \checkmark$
 $p \land \neg p, + \checkmark \qquad \neg (q \lor \neg q), + \checkmark$
 $q \lor \neg q, \neg \qquad \neg (p \land \neg p), \neg$
 $\mid \qquad \qquad \mid \qquad \qquad \mid$
 $p, + \qquad \neg q \land \neg \neg q, + \checkmark$
 $\neg p, + \qquad \qquad \mid \qquad \qquad \mid$
 $\neg q, + \qquad \qquad \mid$
 $q, + \qquad \qquad \mid$

(c)
$$\vdash_{RM3} \neg p \rightarrow (p \rightarrow q)$$

 $\neg p \rightarrow (p \rightarrow q), \neg \checkmark$
 $\neg p, + \neg (p \rightarrow q), + \checkmark$
 $p \rightarrow q, \neg \checkmark \neg \neg p, \neg \checkmark$
 \downarrow
 $p, + \neg q, + p, \neg q, + p, \neg q, + \neg$

Counter Model:

$$v(q) = 0, v(p) = b$$
$$D \in \{1, b\}$$

As there are no premises, they are automatically satisfied.

Then, because v(p) = b, the semantics for \neg mean that $v(\neg p) = b$.

ID: 200007413

Then, with v(p) = b, and v(q) = 0, the semantics for \rightarrow mean that $v(p \rightarrow q) = 0$.

Then, the semantics of \rightarrow again mean that $v(\neg p \rightarrow (p \rightarrow q)) = 0$ because $v(\neg p) = b$ and $v(p \rightarrow q) = 0$.

Therefore, as $0 \notin D$, we have a scenario where all the premises are satisfied, but the conclusion is not, and so $\not\vdash_{RM3} \neg p \rightarrow (p \rightarrow q)$. QED.

4. n/a

5. (a) $\neg p \models_{L_{\varkappa}} p \rightarrow q$

SHOW: for an arbitrary v, when $v(\neg p) = 1$, $v(p \rightarrow q) = 1$

PROOF: Assume for some arbitrary v, $v(\neg p) = 1$.

Then, by the semantics of \neg , v(p) = 0.

Since the values in L_{\varkappa} are linearly ordered, we know that either (i) v(p) > v(q), or (ii) $v(p) \le v(q)$.

However, as v(p) = 0, it cannot be that (i) v(p) > v(q), as there are no values smaller than 0 and so v(p) cannot be strictly greater than v(q). Therefore $v(p) \le v(q)$.

The semantics of \rightarrow mean that when $v(p) \le v(q)$, $v(p \rightarrow q) = 1$. QED.

(b) $\models_G \neg (q \lor \neg q) \to p$

SHOW: for any arbitrary v, $v(\neg(q \lor \neg q) \to p) = 1$

PROOF: Since the semantic values in G are linearly ordered, We know that for any v. $0 \le v(q) \le 1$.

The semantics for \neg give us two options, either: (i) v(q) = 0 giving $v(\neg q) = 1$; or (ii) v(q) > 0 giving $v(\neg q) = 0$.

- i. With v(q) = 0 and $v(\neg q) = 1$, we know by the semantics of \vee that $v(q \vee \neg q) = 1$ From this, the semantics of \neg mean that $v(\neg (q \vee \neg q)) = 0$ because 0 > 1 and so $v(q \vee \neg q) > 0$.
- ii. With v(q) > 0 and $v(\neg q) = 0$, we know that $v(\neg q) \le v(q)$ because there are no potential values of v(q) smaller than 0. So, by the semantics of \lor , $v(q \lor \neg q) > 0$. From this, the semantics of \neg mean that $v(\neg(q \lor \neg q)) = 0$.

Therefore, from both potential values for v(p) with (i) and (ii), we get $v(\neg(q \lor \neg q)) = 0$. We also know that 0 <= v(p) <= 1. No matter what the value of v(p) is, $v(\neg(q \lor \neg q)) = 0$ and so $v(\neg(q \lor \neg q)) <= v(p)$ as there are no values smaller than 0 on the linear scale. Therefore, by the semantics of \rightarrow , $v(\neg(q \lor \neg q) \to p) = 1$ for all v. QED.