Ax = b make use of a factorization of A (QR decomposition, SVD decomposition), using orthogonal matrices defined next.

Given an $m \times n$ matrix $A = (a_{kl})$, the $n \times m$ matrix $A^{\top} = (a_{ij}^{\top})$ whose *i*th row is the *i*th column of A, which means that $a_{ij}^{\top} = a_{ji}$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$, is called the transpose of A. An $n \times n$ matrix Q such that

$$QQ^{\top} = Q^{\top}Q = I_n$$

is called an *orthogonal matrix*. Equivalently, the inverse Q^{-1} of an orthogonal matrix Q is equal to its transpose Q^{\top} . Orthogonal matrices play an important role. Geometrically, they correspond to linear transformation that preserve length. A major result of linear algebra states that every $m \times n$ matrix A can be written as

$$A = V \Sigma U^{\top}$$
,

where V is an $m \times m$ orthogonal matrix, U is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ matrix whose only nonzero entries are nonnegative diagonal entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$, where $p = \min(m, n)$, called the *singular values* of A. The factorization $A = V \Sigma U^{\top}$ is called a *singular decomposition* of A, or SVD.

The SVD can be used to "solve" a linear system Ax = b where A is an $m \times n$ matrix, even when this system has no solution. This may happen when there are more equations that variables (m > n), in which case the system is overdetermined.

Of course, there is no miracle, an unsolvable system has no solution. But we can look for a good approximate solution, namely a vector x that minimizes some measure of the error Ax - b. Legendre and Gauss used $||Ax - b||_2^2$, which is the squared Euclidean norm of the error. This quantity is differentiable, and it turns out that there is a unique vector x^+ of minimum Euclidean norm that minimizes $||Ax - b||_2^2$. Furthermore, x^+ is given by the expression $x^+ = A^+b$, where A^+ is the pseudo-inverse of A, and A^+ can be computed from an SVD $A = V\Sigma U^{\top}$ of A. Indeed, $A^+ = U\Sigma^+V^{\top}$, where Σ^+ is the matrix obtained from Σ by replacing every positive singular value σ_i by its inverse σ_i^{-1} , leaving all zero entries intact, and transposing.

Instead of searching for the vector of least Euclidean norm minimizing $\|Ax - b\|_2^2$, we can add the penalty term $K \|x\|_2^2$ (for some positive K > 0) to $\|Ax - b\|_2^2$ and minimize the quantity $\|Ax - b\|_2^2 + K \|x\|_2^2$. This approach is called *ridge regression*. It turns out that there is a unique minimizer x^+ given by $x^+ = (A^\top A + KI_n)^{-1}A^\top b$, as shown in the second volume.

Another approach is to replace the penalty term $K \|x\|_2^2$ by $K \|x\|_1$, where $\|x\|_1 = |x_1| + \cdots + |x_n|$ (the ℓ^1 -norm of x). The remarkable fact is that the minimizers x of $\|Ax - b\|_2^2 + K \|x\|_1$ tend to be *sparse*, which means that many components of x are equal to zero. This approach known as *lasso* is popular in machine learning and will be discussed in the second volume.