Álgebra II - 14/05/2020

Práctico 6.

Decidir si es subespacio de R^n:

(d) W =
$$\{(x_1, ..., x_n) \in \mathbb{R}^n : x_1 \le x_2\}.$$

W \subseteq **R**[^]n es un subespacio si y sólo si: W $\neq \emptyset$ y: para todo w_1, w_2 \in W, para todo t \in **R** \square w_1 + t w_2 \in W.

$$w_1 = (0, 0, ..., 0) \in W, w_2 = (0, 1, 0, ..., 0) \in W$$
, pero

$$w + 1 + (-1) w + 2 = (0, -1, 0, ..., 0) \notin W$$
, pues $0 > -1$

Por lo tanto W no es un subespacio.

$$(Otro ejemplo: w_1 = (1, 2, 0, ..., 0).$$

Si W fuese subespacio, entonces t w $1 \in W$, para todo escalar $t \in R$.

Tomando
$$t = -1$$
, $t \le 1 = (-1)(1, 2, ..., 0) = (-1, -2, 0, ..., 0) \notin W!!!!!!$

(a) W =
$$\{(x_1, ..., x_n) \in \mathbf{R}^n : x_1 = x_n\}$$

 $(0, 0, ..., 0) \in W$. Por lo tanto, $W \neq \emptyset$. (También hubiera servido que $(1, 1, ..., 1) \in W$.)

Sean w_1, w_2 \in W, y sea c \in R: w_1= (x_1, ..., x_n), w_2 = (y_1, ..., y_n).

$$x_1 = x_n, y_1 = y_n \quad \Box \quad x_1 + cy_1 = x_n + cy_n$$

Luego:

$$w + c \cdot w = (x + cy + 1, ..., x + cy + n) \in W.$$

Por lo tanto, como esto se cumple **para todos** w_1 , $w_2 \in W$, y **para todo** $c \in R$, entonces W **sí** es un subespacio.

Observación: Si W es un subespacio \Rightarrow $(0, 0, ..., 0) \in W$.

Por lo tanto si en algún caso, el (0, 0, ..., 0) no está en el subconjunto W, aunque sea no vacío, W no será un subespacio.

Por ejemplo, en (1)(b), $(0, 0, ..., 0) \notin W$, pues $0 + 0 + ... + 0 = 0 \neq 1$.

Esto ya permite concluir que W no es un subespacio.

(1) (h): Se puede usar que tanto C como F son subespacios y además la intersección de (una cantidad arbitraria) de subespacios también es subespacio [Resultado del teórico].

Por lo tanto $C \cap F$ es subespacio.

De otra forma: C es el conjunto de soluciones del sistema homogéneo:

$$x_1 + ... + x_n = 0$$

F es el conjunto de soluciones del sistema homogéneo:

$$x_n = 0$$

C ∩ F es el conjunto de soluciones del sistema homogéneo:

$$x_1 + ... + x_n = 0$$

 $x_1 = 0$

Como el conjunto de soluciones de cualquier sistema homogéneo es un subespacio, entonces $C \cap F$ es un subespacio.

(1) (g) ¿Qué pasa con C U F?

Atención: La unión de subespacios no siempre es un subespacio.

Sugerencia: pensar qué pasa en los ejemplos con la suma de un vector que está en C más un vector que está en F (quitando la intersección).

(5) Sean V un espacio vectorial, $v \in V$ no nulo, c, $d \in R$ tal que c v = dv. Probar que c = d.

$$cv = dv \Leftrightarrow (c - d) v = 0.$$

Supongamos por el contrario que $c \neq d$, o sea que $c - d \neq 0$.

Como en **R** todo elemento no nulo (en este caso c - d) tiene un inverso multiplicativo, sea e = $(c-d)^{-1}$.

De modo que

$$e(c-d) = 1.$$

Entonces, por los axiomas de espacio vectorial:

$$e 0 = e ((c - d) v) = (e(c-d)) v = 1 v = v$$

Por otro lado, e **0 = 0.** [Ejercicio: probar esta propiedad.]

Luego 0 = v, contra la hipótesis.

Esto viene de suponer que $c \neq d$. Luego c = d.