

Data Structures and Algorithms (10)

Hyderabad Campus

Queue

"Queue" is the fancy name for waiting in line

Problem – Queue in Hospital

Patients waiting for help in Emergency Room

Give priority to

- ✓ Severely wounded
- √ Bleading
- **√** ...
- √ the ones with crash !!!

Problem - Queue in Operating System

Processes waiting for services

Give priority to

- √ I/O bound
- ✓ Interrups
- ✓ Eg. small jobs(1page print) may be given priority over large jobs (100pages) ...

Priority Queue

- ✓ Priority Queue is a data structure allowing at least the following two operations:
 - > insert same like enqueue in nonpriority queues
 - deleteMin (/deleteMax) is the priority queue equivalent of queue's dequeu operation (i.e. find and remove the element with minimum (/maximum) priority)
- ✓ Efficient implementation of priority queue ADTs
- ✓ Uses and implementation of priority queues

Priority Queues

Queue:

- First in, first out
- First to be removed: First to enter

Priority Queue:

- First in, highest (/lowest) priority element out
- First to be removed: element with highest (/lowest) priority
- Operations: Insert(), Remove-top()

Applications

- Process scheduling
 - Give CPU resources to most urgent task
- Communications
 - Send most urgent message first
- Event-driven simulation
 - Pick next event (by time) to be simulated

Priority Queue implementations

✓ Number of different priority categories is known

P2

✓ One queue for each priority

Algorithm

- ✓ enqueue
 - put in to proper queue
- √ dequeue
 - get from P1 first
 - then get from P2
 - then get from P3
 - **–** ...
 - then get from P123

- P1 a1 a4
 - b3 b1 b27 b3 b3
- P3 c6 c4 c9

i

P123 α 7 α 12 α 41

Priority Queue implementations

- ✓ Number of different priority categories is unknown
- ✓ One queue for each priority

Algorithm enqueue

- put in to proper queue
- dequeue
 - get from P1 first
 - then get from P2
 - then get from P3
 - **—** ...
 - then get from P123

Types of priority queues

- Ascending priority queue
 - Removal of minimum-priority element
 - Remove-top(): Removes element with min priority
- Descending priority queue
 - Removal of maximum-priority element
 - Remove-top(): Removes element with max priority

Generalizing queues and stacks

- ✓ Priority queues generalize normal queues and stacks
- ✓ Priority set by time of insertion
- √ Stack: Descending priority queue
- ✓ Queue (normal): Ascending priority queue

Priority Queue implementation(2)

Sorted linked-list, with head pointer

- > Insert()
 - Search for appropriate place to insert
 - -O(n)
- ➤ Remove()
 - Remove first in list
 - O(1)

Priority Queue implementation(3)

Unsorted linked-list, with head pointer

- ➤ Insert()
 - Insert at the end of linked list
 - O(1)
- ➤ Remove()
 - Search for the element (e) with min or max priority
 - Remove element (e)
 - -O(n)

Priority Queue implementation(3)

Heap: Almost-full binary tree with heap property

- > Almost full:
 - Balanced (all leaves at max height h or at h-1)
 - All leaves to the left
- Heap property: Parent >= children (descending)
 - True for all nodes in the tree
 - Note this is very different from binary search tree (BST)

Heap Examples

Heap or not?

Heap

Heap Examples

Heap or not?

Not Heap (does not maintain heap property) (17 > 15)

Heap Examples

Heap or not?

Not Heap (balanced, but leaf with priority 1 is not in place)

Representing heap in an array

Representing an almost-complete binary tree

- √ For parent in index i (i >= 0)
 - Left child in: i*2 + 1
 - Right child in: i*2 + 2
- √ From child to parent:
 - Parent of child c in: (c-1)/2

Example

In the array:

24 16 13 14 3 11 12 4 2 1

Heap property

- Heap property: parent priority >= child
 - For all nodes
- Any sub-tree has the heap property
 - Thus, root contains max-priority item
- Every path from root to leaf is descending
 - This does not mean a sorted array
 - In the array:

24 16 13 14 3 11 12 4 2 1

Maintaining heap property (heapness)

➤ Remove-top():

- √ Get root
- √ Somehow fix heap to maintain heapness

➤Insert()

- ✓ Put item somewhere in heap
- √ Somehow fix the heap to maintain heapness

Remove-top(array-heap h)

```
if h.length = 0 // num of items is 0
return NIL

t ← h[0]
h[0]← h[h.length-1] // last leaf
h.length ← h.length - 1
heapify_down(h, 0) // see next
return t
```

Heapify_down()

Takes an almost-correct heap, fixes it

Input: root to almost-correct heap, r

Assumes: Left subtree of r is heap

Right subtree of r is heap

but r maybe < left or right roots

- ✓ <u>Key operation</u>: interchange r with largest child.
- ✓ Repeat until in right place, or leaf.

In the array:

24 16 13 14 3 11 12 4 2 1

In the array:

16 1 13 14 3 11 12 4 2

In the array:

16 14 13 1 3 11 12 4 2

In the array:

16 14 13 **4** 3 11 12 **1** 2

Heapify_down(heap-array h, index i)

```
1. 1 \leftarrow LEFT(i) // 2*i+1
2. r \leftarrow RIGHT(i) // 2*i+2
3. if l < h.length // left child exists
     if h[l] > h[r]
4.
           largest ← 1
5.
     else largest ← r
6.
  if h[largest] > h[i] // child > parent
      swap(h[largest],h[i])
8.
      Heapify down(h,largest) // recursive
9.
```

Remove-top() Complexity

```
✓ Removal of root – O(1)✓ Heapify_down() – O(height of tree)O(log n)
```

➤ Remove-top() - O(log n)

Insert(heap-array h, item t)

- ✓ Insertion works in a similar manner
- ✓ We put the new element at the end of array.
- ✓ Exchange with ancestors to maintain heapness
 - > If necessary.
 - > Repeatedly.

```
h[h.length] ← t
h.length ← h.length + 1
Heapify up(h, h.length) // see next
```

Insert() example:

In the array:

24 16 13 14 3 11 12 4 2 1

Insert() example:

In the array:

24 16 13 14 3 11 12 4 2 1 15

Insert() example:

In the array:

24 16 13 14 15 11 12 4 2 1 3

Heapify_up(heap-array h, index i)

Insert() Complexity

✓ Insert()

```
✓ Insertion at end – O(1)
✓ Heapify_up() – O(height of tree)
O(log n)
```

 $O(\log n)$

Priority queue as heap as binary tree in array

- √ Complexity is O(log n)
 - Both insert() and remove-top()
- ✓ Must pre-allocate memory for all items
- ✓ Can be used as efficient sorting algorithm
- √ Heapsort()

Heapsort(array a)

```
1. h ← new array of size a.length
2. for i←1 to a.length
3. insert(h, a[i]) // heap insert
4. i ← 1
5. while not empty(h)
6. a[i] ← remove-top(h) // heap op.
7. i ← i+1
```

Complexity: O(n log n)

Building a heap

- Use MaxHeapify to convert an array A into a maxheap.
- How?
- Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)

- 1. heap- $size[A] \leftarrow length[A]$
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3. do MaxHeapify(A, i)

BuildMaxHeap – Example

Input Array:

Data Structure Binary Heap

- Array viewed as a nearly complete binary tree.
 - Physically linear array.
 - Logically binary tree, filled on all levels (except lowest.)
- Map from array elements to tree nodes and vice versa
 - Root A[1]
 - Left[i] A[2i]
 - Right[i] A[2i+1]
 - Parent[i] A[$\lfloor i/2 \rfloor$]
- length[A] number of elements in array A.
- heap-size[A] number of elements in heap stored in A.
 - heap-size[A] ≤ length[A]

Heap Property (Max and Min)

- Max-Heap
 - For every node excluding the root,
 value is at most that of its parent: A[parent[i]] ≥ A[i]
- Largest element is stored at the root.
- In any subtree, no values are larger than the value stored at subtree root.
- Min-Heap
 - For every node excluding the root,
 value is at least that of its parent: A[parent[i]] ≤ A[i]
- Smallest element is stored at the root.
- In any subtree, no values are smaller than the value stored at subtree root

Heaps – Example

6

8

10

5

Max-heap as an array.

Max-heap as a binary tree.

3

Last row filled from left to right.

Height

- Height of a node in a tree: the number of edges on the longest simple downward path from the node to a leaf.
- Height of a tree: the height of the root.
- Height of a heap: [Ig n]
 - Basic operations on a heap run in O(lg n) time

Heaps in Sorting

- Use max-heaps for sorting.
- The array representation of max-heap is not sorted.
- Steps in sorting
 - Convert the given array of size n to a max-heap (BuildMaxHeap)
 - Swap the first and last elements of the array.
 - Now, the largest element is in the last position where it belongs.
 - That leaves n − 1 elements to be placed in their appropriate locations.
 - However, the array of first n-1 elements is no longer a max-heap.
 - Float the element at the root down one of its subtrees so that the array remains a max-heap (MaxHeapify)
 - Repeat step 2 until the array is sorted.

Heap Characteristics

- Height = $\lfloor \lg n \rfloor$
- No. of leaves = $\lceil n/2 \rceil$
- No. of nodes of height $h \leq \lceil n/2^{h+1} \rceil$

Prove that there are at most $\lceil n/2^{h+1} \rceil$ nodes of height h in an n element heap.

Proof By induction on h.

Basis: Show that it's true for h = 0 (i.e., that # of leaves $\leq \lceil n/2^{h+1} \rceil = \lceil n/2 \rceil$). In fact, we'll show that the # of leaves $= \lceil n/2 \rceil$.

The tree leaves (nodes at height 0) are at depths H and H-1. They consist of

- all nodes at depth H, and
- the nodes at depth H-1 that are not parents of depth-H nodes.

Let x be the number of nodes at depth H—that is, the number of nodes in the bottom (possibly incomplete) level.

Note that n - x is odd, because the n - x nodes above the bottom level form a complete binary tree, and a complete binary tree has an odd number of nodes (1 less than a power of 2). Thus if n is odd, x is even, and if n is even, x is odd.

To prove the base case, we must consider separately the case in which n is even (x is odd) and the case in which n is odd (x is even).

achieve

Note that at any depth d < H there are 2^d nodes, because all such tree levels are complete.

If x is even, there are x/2 nodes at depth H − 1 that are parents of depth H nodes, hence 2^{H-1}−x/2 nodes at depth H−1 that are not parents of depth-H nodes. Thus,

total # of height-0 nodes =
$$x + 2^{H-1} - x/2$$

= $2^{H-1} + x/2$
= $(2^H + x)/2$
= $\lceil (2^H + x - 1)/2 \rceil$ (because x is even)
= $\lceil n/2 \rceil$.

 $(n = 2^H + x - 1)$ because the complete tree down to depth H - 1 has $2^H - 1$ nodes and depth H has x nodes.)

• If x is odd, by an argument similar to the even case, we see that # of height-0 nodes = $x + 2^{H-1} - (x+1)/2$

$$= 2^{H-1} + (x-1)/2$$

$$= (2^H + x - 1)/2$$

$$= n/2$$

$$= \lceil n/2 \rceil$$
 (because $x \text{ odd} \Rightarrow n \text{ even}$).

achieve

Inductive step: Show that if it's true for height h-1, it's true for h.

Let n_h be the number of nodes at height h in the n-node tree T.

Consider the tree T' formed by removing the leaves of T. It has $n' = n - n_0$ nodes.

We know from the base case that $n_0 = \lceil n/2 \rceil$, so $n' = n - n_0 = n - \lceil n/2 \rceil = \lfloor n/2 \rfloor$.

Note that the nodes at height h in T would be at height h-1 if the leaves of the tree were removed—that is, they are at height h-1 in T'. Letting n'_{h-1} denote the number of nodes at height h-1 in T', we have

$$n_h = n'_{h-1} .$$

By induction, we can bound n'_{h-1} :

$$n_h = n'_{h-1} \le \lceil n'/2^h \rceil = \lceil \lfloor n/2 \rfloor / 2^h \rceil \le \lceil (n/2)/2^h \rceil = \lceil n/2^{h+1} \rceil \ .$$

Maintaining the heap property

 Suppose two subtrees are max-heaps, but the root violates the max-heap property.

- Fix the offending node by exchanging the value at the node with the larger of the values at its children.
 - May lead to the subtree at the child not being a heap.
- Recursively fix the children until all of them satisfy the max-heap property.

lead

MaxHeapify – Example

Procedure MaxHeapify

MaxHeapify(A, i)

- 1. $I \leftarrow left(i)$
- 2. $r \leftarrow \text{right}(i)$
- 3. if $l \le heap\text{-size}[A]$ and A[I] > A[I]
- 4. then $largest \leftarrow l$
- 5. **else** *largest* \leftarrow *i*
- 6. if $r \le heap\text{-size}[A]$ and A[r] > A[largest]
- 7. **then** $largest \leftarrow r$
- 8. **if** largest≠ i
- 9. **then** exchange $A[i] \leftrightarrow A[largest]$
- 10. *MaxHeapify(A, largest)*

Assumption: Left(*i*) and Right(*i*) are max-heaps.

Running Time for MaxHeapify

MaxHeapify(A, i)

- 1. *l* ← left(*i*)
- 2. $r \leftarrow \text{right}(i)$
- 3. if $l \le heap\text{-size}[A]$ and A[I] > A[I]
- 4. then $largest \leftarrow l$
- 5. else *largest* \leftarrow *i*
- 6. if $r \le heap\text{-size}[A]$ and A[r] > A[largest]
- 7. then *largest ← r*
- 8. if largest≠ i
- 9. then exchange $A[i] \leftrightarrow A[largest]$
- 10. *MaxHeapify(A, largest)*

Time to fix node i and its children = $\Theta(1)$

PLUS

Time to fix the subtree rooted at one of *i*'s children = T(size of subree at largest)

Building a heap

- Use MaxHeapify to convert an array A into a max-heap.
- How?
- Call MaxHeapify on each element in a bottom-up manner.

BuildMaxHeap(A)

- 1. heap- $size[A] \leftarrow length[A]$
- 2. for $i \leftarrow \lfloor length[A]/2 \rfloor$ downto 1
- 3. **do** MaxHeapify(A, i)

BuildMaxHeap – Example

Input Array:

BuildMaxHeap – Example

Correctness of BuildMaxHeap

- Loop Invariant: At the start of each iteration of the for loop, each node i+1, i+2, ..., n is the root of a max-heap.
- Initialization:
 - Before first iteration $i = \lfloor n/2 \rfloor$
 - Nodes [n/2]+1, [n/2]+2, ..., n are leaves and hence roots of maxheaps.
- Maintenance:
 - By LI, subtrees at children of node i are max heaps.
 - Hence, MaxHeapify(i) renders node i a max heap root (while preserving the max heap root property of higher-numbered nodes).
 - Decrementing i reestablishes the loop invariant for the next iteration.

Running Time of BuildMaxHeap

- Loose upper bound:
 - Cost of a MaxHeapify call × No. of calls to MaxHeapify
 - $O(\lg n) \times O(n) = O(n \lg n)$
- Tighter bound:
 - Cost of a call to MaxHeapify at a node depends on the height, h, of the node – O(h).
 - Height of most nodes smaller than n.
 - Height of nodes h ranges from 0 to [lg n].
 - No. of nodes of height h is $\lceil n/2^{h+1} \rceil$

Running Time of BuildMaxHeap

$$\sum_{h=0}^{\lfloor \lg n \rfloor} (NumberOfNodesAtHeight(h))O(h)$$

$$= \sum_{h=0}^{\lfloor \lg n \rfloor} \left[\frac{n}{-1} \right] O(h)$$

$$= O\left(n\sum_{h=0}^{\lfloor \lg n\rfloor} \frac{h}{2^h}\right)$$

$$= O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$
$$= O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$
$$= O(n)$$

Can build a heap from an unordered array in linear time Tighter Bound for *T*(*BuildMaxHeap*)

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}$$

$$\leq \sum_{h=0}^{\infty} \frac{h}{2^h}$$

$$= \frac{1/2}{(1-1/2)^2}$$

$$= 2$$

Thank You!!