Last name	
First name	
Group	

Grade	
-------	--

Algorithmics Undergraduate $\mathbf{1}^{st}$ year (S2) Midterm #2 (C2) 22 February 2017 - 9:30 Answer Sheets

1	
2	
3	
4	

Answers 1 (Be daring... - 4 points)

1. G	raphical representation of the tree:
2. In	order node list:
_	
-	
3. O	ccurrence representation of the tree:
-	
-	

Answers 2 (Maximum Gap -5 points)

${\bf Specifications:}$

The function maxGapMatrix(M) returns the maximum gap of lines of the not empty matrice M.

Answers 3 (Synergistic Dungeon – 4 points)

Specifications:

The function dungeon(M) returns the minimum initial number of health points the princess must have to rescue the knight in the dungeon represented by the not empty matrice M.

Answers 4 (Tests - 8 points)

1. Specifications: The function equal (B1, B2) tests whether the trees B1 and B2 are identical.

2. Specifications: The function isSubTree(S, B) tests whether the tree S is a subtree of the tree B.

