

2

1

4 5

7 8 9

10 11 12

13 14 15

22 23 24

Admissible Heuristics • A heuristic h is admissible (optimistic) if: $0 \le h(n) \le h^*(n)$ where $h^*(n)$ is the true cost to a nearest goal • Example: • Coming up with admissible heuristics is most of what's involved in using A^* in practice.

Video of Demo Pacman (Tiny Maze) - UCS / A*

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

• Inadmissible heuristics are often useful too

37 38 39

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18

7	2	4			1	2
5		6		3	4	5
8	3	1		6	7	8

Start State Goal State

	when the optimal path has					
			12 steps			
TILES	13	39	227			
MANHATTAN	12	25	73			

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
- Would we save on nodes expanded?
- What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

40 41