Lecture7: Diode models and circuits (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

A simple math

- An input voltage, $V_{in}(t) = \sin \omega t$
- A system

Another system

Which is nonlinear?

Diode

Its symbol

Ideally, a perfect rectifier

Example 3.4

A diode-resistor combination

- Consider two cases, $V_A > 0$ and $V_A < 0$.
- ← Draw the IV curve.

Example 3.6

An OR gate

Rectifier

Same circuit shown in Example 3.4.

Input vs. output

Input

- 50 Hz
- Pure sine
- No dc

Output

- 0, 50, 100, ... Hz
- dc voltage: $\frac{1}{\pi}$ V

t 0 -0.5 -1 0 0.02 0.04 0.06 0.08 0.1

GIST Lecture on March 23, 2015 (Internal use only)

Concept!

- How to detect the electromagnetic radiation
 - Nonlinearity is required.

Incident THz wave (High freq)

Rectifier, revisited

Same circuit shown in Example 3.4.

pn junction as a diode

Exponential model

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

Read your textbook.

- Today, we have covered up to Sec.3.2.
 - Up to p. 59.
 - Sec. 3.3, "Additional examples," will be skipped.
- On Wednesday, we will finish the short chapter, Ch. 4.
 - Read your textbook in advance.
 - Especially, Sec. 3.4.