Cs 248

Transformations and Coordinate Systems

With some slides stolen from Kurt Akeley 2007

Overview

- Transformations
 - **Affine**
 - **Projection**
 - Viewport
- Coordinate Systems
- Hidden Surface Removal
- Rasterization
 - Barycentric coordinates
 - Sampling & antialiasing
- Interpolation
- Assignment 1 Q& A

Homogeneous 3D Coordinates

Represent point $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ as $\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$

Treat
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 as equivalent to $\begin{pmatrix} wx \\ wy \\ wz \end{pmatrix}$, $w \neq 0$

Affine 3D transformation

Includes Translation, Rotation, Scale, and Shear
Patrice Scale

Rotation, Scale, Shear
$$v' = M \ v \qquad \text{Translation}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \\ 0 & 0 & 0 \end{bmatrix} t_x$$

Affine Transforms

Translation:

$$T(t_x, t_y, t_z) = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Scaling (about the origin):

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotations

$$R_{x}(q) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q) & -\sin(q) & 0 \\ 0 & \sin(q) & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{y}(q) = \begin{bmatrix} \cos(q) & 0 & \sin(q) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(q) & 0 & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_z(q) = \begin{bmatrix} \cos(q) & -\sin(q) & 0 & 0\\ \sin(q) & \cos(q) & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Right-hand rule for rotations by positive θ

$$\mathbf{v}' = R(\theta, \mathbf{a}) \cdot \mathbf{v}, \quad \text{where } R(\theta, \mathbf{a}) = \begin{pmatrix} & & 0 \\ & \mathbf{R} & & 0 \\ & & & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Let
$$\mathbf{b} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

Then
$$\mathbf{R} = \mathbf{b} \cdot \mathbf{b}^T + \cos \theta \cdot (\mathbf{I} - \mathbf{b} \cdot \mathbf{b}^T) + \sin \theta \cdot \begin{pmatrix} 0 & -b_z & b_y \\ b_z & 0 & -b_x \\ -b_y & b_x & 0 \end{pmatrix}$$

How do I do this in OpenGL?

OpenGL matrix assignment commands

```
glLoadIdentity();
```

Remember to do this!

$$\mathbf{C}' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{C'} = \begin{pmatrix} a_1 & a_5 & a_9 & a_{13} \\ a_2 & a_6 & a_{10} & a_{14} \\ a_3 & a_7 & a_{11} & a_{15} \\ a_4 & a_8 & a_{12} & a_{16} \end{pmatrix}$$

$$\mathbf{C'} = \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16} \end{pmatrix}$$

OpenGL matrix composition commands

```
glMultMatrixf(float m[16]);
glMultMatrixd(double m[16]);
```

$$\mathbf{C}' = \mathbf{C} \cdot \begin{pmatrix} a_1 & a_5 & a_9 & a_{13} \\ a_2 & a_6 & a_{10} & a_{14} \\ a_3 & a_7 & a_{11} & a_{15} \\ a_4 & a_8 & a_{12} & a_{16} \end{pmatrix}$$

$$\mathbf{C}' = \mathbf{C} \cdot \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_5 & a_6 & a_7 & a_8 \\ a_9 & a_{10} & a_{11} & a_{12} \\ a_{13} & a_{14} & a_{15} & a_{16} \end{pmatrix}$$

OpenGL transformations commands

```
\mathbf{C}' = \mathbf{C} \cdot \begin{bmatrix} & & 0 \\ & \mathbf{R} & & 0 \\ & & 0 \end{bmatrix}
glRotatef(float \theta, float x,
                   float y, float z);
glRotated(double \theta, double x,
                   double y, double z);
                                                                               \mathbf{C}' = \mathbf{C} \cdot \begin{pmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix}
glTranslatef(float x, float y,
                         float z);
glTranslated(double x, double y,
                         double z);
                                                                              \mathbf{C}' = \mathbf{C} \cdot \begin{pmatrix} x & 0 & 0 & 0 \\ 0 & y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
glScalef(float x, float y, float z);
glScaled(double x, double y, double z);
```

Why post-multiplication?

Rotate
$$\theta$$
 degrees about axis $\mathbf{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}$ through point $\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}$

Matrix Stacks

- OpenGL implements stacks to save Modelview and Projection matrices Useful for hierarchical drawing
- glPushMatrix()
- glPopMatrix()
- Stacks are initialized with single identity matrix

It is an error to pop this matrix

Duality

Transform the coordinate system

Transform the object


```
glMultMatrixf(mat1);
glMultMatrixf(mat2);
glMultMatrixf(mat3);
DrawObject();
```


Rotation about a specified point

Transform the coordinate system

Transform the object


```
glTranslated(2, 3, 0);
glRotated(45, 0, 0, 1);
glTranslated(-2, -3, 0);
DrawObject();
```


Transform the object

Transformations are applied *opposite* the specified order Each transformation operates in the fixed coordinate system

X 2 - 2 -

Transform the coordinate system

Transformations are applied in the order specified Each transformation operates relative to the

Coordinate Systems

Coordinate System Pipeline

OpenGL Coordinate System Pipeline

Coordinates Systems

Eye Coordinates

World

Coordinates Images courtesy http://www.songho.ca/opengl/gl transform.html

Model & Eye coordinates

Model coordinates

Defined by modeler

Specific to each program

Eye Coordinates

Camera is at the origin

Camera looks down –Z axis

Projection

- Eye coordinates clip coordinates
- Projection transforms the entire viewing volume to the unit cube ([-1,1] x [-1,1] x [-1,1])
 - That is after projection, everything inside the unit cube is visible and should be rasterized
- This makes clipping calculations trivial
- Standard OpenGL projection matrices flip the z axis. This changes the coordinate system from a right-handed system to a

Orthographic Project

Orthographic Projection

Basically scales and translates view

glMatrixMode (GL_PROJECTION);
glLoadIdentity();
not coordinates

not coordinates

$$\begin{pmatrix} x_c \\ y_c \\ z_c \\ w_c \end{pmatrix} = \mathbf{P} \cdot \begin{pmatrix} x_e \\ y_e \\ z_e \\ w_e \end{pmatrix}$$

$$\mathbf{P}' = \mathbf{P} \cdot \begin{pmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Perspective Projection

Perspective Projection

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(1,r,b,t,n,f);
```

n and f are distances, not coordinates. Both must be positive.

$$\begin{pmatrix} x_c \\ y_c \\ z_c \\ w_c \end{pmatrix} = \mathbf{P} \cdot \begin{pmatrix} x_e \\ y_e \\ z_e \\ w_e \end{pmatrix}$$

$$\begin{pmatrix} x_c \\ y_c \\ z_c \\ w_c \end{pmatrix} = \mathbf{P} \cdot \begin{pmatrix} x_e \\ y_e \\ z_e \\ w_e \end{pmatrix} \qquad \mathbf{P}' = \mathbf{P} \cdot \begin{pmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & -\frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

Clip testing

 v_c is within the unit cube centered at the origin if: y_c

$$-1 \le \frac{x_c}{w_c} \le 1$$

$$-1 \le \frac{y_c}{w_c} \le 1$$

$$-1 \le \frac{z_c}{w_c} \le 1$$

Homogenization

Divide by W_c :

$$\begin{pmatrix} x_d \\ y_d \\ z_d \\ 1 \end{pmatrix} = \begin{pmatrix} x_c/w_c \\ y_c/w_c \\ z_c/w_c \\ w_c/w_c \end{pmatrix}$$

Discard w_d :

$$\mathbf{v}_d = \begin{pmatrix} x_d \\ y_d \\ z_d \end{pmatrix}$$

The Frustum

$$w_{c} = -z_{e}$$

$$z_{c} = -z_{e} \cdot \frac{f+n}{f-n} - w_{e} \cdot \frac{2fn}{f-n}$$

$$= c \cdot z_{e} + d$$

$$z_{d} = \frac{z_{c}}{w_{c}}$$

$$= \frac{c \cdot z_{e} + d}{-z_{e}}$$

$$= c + \frac{d}{-z_{e}^{2}}$$

$$(l \ b \ -n)$$

As z_e gets larger, the same change in z_e results in a smaller changer in z_d

Viewport transformation

Transform the [-1,1] range device coordinates to window coordinates:

$$\begin{pmatrix} x_w \\ y_w \\ z_w \end{pmatrix} = \begin{pmatrix} \frac{w}{2} & 0 & 0 \\ 0 & \frac{h}{2} & 0 \\ 0 & 0 & \frac{f-n}{2} \end{pmatrix} \begin{pmatrix} x_d \\ y_d \\ z_d \end{pmatrix} + \begin{pmatrix} l + \frac{w}{2} \\ b + \frac{h}{2} \\ \frac{f+n}{2} \end{pmatrix}$$

glViewport(0, 0, 10, 6);
glDepthRange(0.0, 1.0);

Window coordinates

Window coordinates are:

Continuous, not discrete

Not homogeneous

Can be used directly for rasterization

3-D, not 2-D

- Projection did not reduce 3-D to 2-D
- 3-D homogeneous was reduced to 3-D nonhomogeneous

Hidden surface removal

Hidden Surface Removal

Goal: to hide parts of objects that are not visible because they are covered ("occluded") by other objects

Painter's Algorithm

- Default behavior is to draw each primitive in the order it is specified, overwriting previous pixel
- To hide occluded geometry, we need to sort primitives and render back to front
- Not always possible. Incompatible with pipeline model

Z-buffering

- Remember we kept the depth values of each vertex in screen coordinates
- Z-buffer algorithm:
 - use a separate buffer to store depth values at each pixel
 - Before filling in a pixel, check to see if the current fragment depth < stored value in z-buffer

Z-buffer

Scene

Depth Buffer

Rasterization

Rasterization

- Rasterization is the process of sampling primitives in window coordinates at each pixel
- Many ways to do this
- Have to worry about aliasing
 - What is aliasing? How does it appear in graphics?
 - What is the Nyquist frequency. What is the optimal sampling frequency?

Point-sampled fragment selection

Generate fragment if pixel center is inside triangle Implements point-sampled aliased rasterization

Kurt Akeley, Fall 2007

Tiled fragment selection

Generate fragment if unit square intersects triangle Implements multisample and tiled rasterizations

Tiled fragment selection

Multisample rasterization

4x4 samples per pixel

Antialiased fragment selection

Generate fragment if filter function intersects triangle Implements pre-filtered antialiasing

Rasterization process

- Iterate over the intersection of the bounding rectangle and the frame buffer (for clipping)
- For each pixel (center), compute barycentric coordinates

If they are between 0 and 1, compute interpolated values (depth, color, ...) and store with generated fragment

$$p = \alpha a + \beta b + \gamma c$$
 such that $\alpha + \beta + \gamma = 1$

$$p = a + β (b-a) + γ (c-a)$$
 since $α = 1-β-γ$

- How to compute β and γ?
- $f_{ab}(x, y) = (y_a y_b)x + (x_b x_a)y + x_ay_b x_by_a$
- represents how far (x,y) is to the lin
- $f_{ab}(x, y) = 0$ if (x,y) is on the
- $f_{ab}(x,y) / f_{ab}(x_c,y_c) = \gamma$ (ratio to map this distance to [0,1])

$$g = \frac{(y_a - y_b)x + (x_b - x_a)y + x_ay_b - x_by_a}{(y_a - y_b)x_c + (x_b - x_a)y_c + x_ay_b - x_by_a}$$

$$b = \frac{(y_c - y_a)x + (x_a - x_c)y + x_cy_a - x_ay_c}{(y_c - y_a)x_b + (x_a - x_c)y_b + x_cy_a - x_ay_c}$$

$$a = 1 - b - g$$

Interpolating Values

- Vertices come with many attributes (i.e. colors, normal depth) which need to be interpolated to each fragment
- Simplest method is to use barycentric interpolation
- $\mathbf{v}_{p} = \alpha \mathbf{v}_{a} + \beta \mathbf{v}_{b} + \gamma \mathbf{v}_{c}$

HW 1 Q& A

Appendix:

Let's See Some Code!

GLUT

Cross Platform Windowing Library for OpenGL

Sets up window and associated buffers for you

Gives simple input handling functions

GLUT functions

- void glutInit(int argc, char** argv)
 Takes arguments of main
- glutInitDisplayMode(unsigned int mode) [optional]
 Tells GLUT which buffers to allocate
 Ex. glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
- int glutCreateWindow(char* title)
 - Puts window on screen
- void glutDisplayFunc(void (*func) (void))
 - Takes callback to function where rendering happens
- void glutMainLoop()
 - Start rendering!

```
Simple Square
/* File: simple glut.cpp */
#include <GL/qlut.h>
void display() {
          //Set what color to clear to
          glClearColor (0.0, 0.0, 0.0, 0.0);
          //Clear the color buffer
          glClear (GL COLOR BUFFER BIT);
         //Set The color
          glColor3f (1.0, 1.0, 1.0);
          //Set the current Projection Matrix
          glMatrixMode(GL PROJECTION);
          glLoadIdentity();
          glortho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
          //Specify Geometry
          glBegin(GL POLYGON);
            glVertex3f (0.25, 0.25, 0.0);
            glVertex3f (0.75, 0.25, 0.0);
            glVertex3f (0.75, 0.75, 0.0);
            glVertex3f (0.25, 0.75, 0.0);
          glEnd();
          //Flush Graphics buffer
          glFlush();
int main(int argc, char** argv) {
         glutInit(&argc,argv);
          glutCreateWindow("Simple Glut");
          glutInitDisplayMode(GLUT DOUBLE | GLUT RGB | GLUT DEPTH);
          glutDisplayFunc(display);
          glutMainLoop();
```

```
/* File: modelview example.cpp */
void display() {
          //Set what color to clear to
          glClearColor (0.0, 0.0, 0.0, 0.0);
          //Clear the color buffer
          glClear (GL COLOR BUFFER BIT);
          //Set The color
          glColor3f (1.0, 1.0, 1.0);
          //Set the current Projection Matrix
          glMatrixMode(GL PROJECTION);
          glLoadIdentity();
                                                        Remember, glTranslate is a
          glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
                                                        multiplication, so don't forget
                                                        glLoadIdentity()
          //Tile Squares
          glMatrixMode(GL MODELVIEW);
          for (int i = 0; i < 3; i++) {
                     for (int j = 0; j < 3; j + +) {
                               glLoadIdentity();
                               glTranslatef(0.2f+ 0.3f*i,0.2f+ 0.3f*j,0);
                                DrawSquare();
          //Flush Graphics buffer
          glFlush();
int main(int argc, char** argv) {
          glutInit(&argc, argv);
          glutCreateWindow("Translation");
          glutDisplayFunc(display);
          glutMainLoop();
          return 0;
```

GLU convenience functions

- GLU is set of useful, timesaving OpenGL utilities
 Ex. #include <GL/glu.h>
- void gluOrtho2D(left, right, bottom, top)
 Specifies a rectangular clipping region
- void gluLookAt(eyex, eyey,eyez, atx,aty,atz,

upx,upy,upz)

Specifies a perspective frustem

Camera positioned at "eye"

Camera looking at "at"

Up vector is "up"

```
/* File: cube example.cpp */
#include <GL/qlut.h>
void display(void)
          glClearColor (0.0, 0.0, 0.0, 0.0);
          glClear (GL COLOR BUFFER BIT);
          glColor3f (1.0, 1.0, 1.0);
          glLoadIdentity ();
                                         /* clear the matrix */
          /* viewing transformation */
          gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
          glScalef (1.0, 2.0, 1.0); /* modeling transformation */
         glutWireCube (1.0);
         qlFlush ();
//Called whenever the GLUT window is reshaped
void reshape (int w, int h)
  glViewport (0, 0, (GLsizei) w, (GLsizei) h);
   glMatrixMode (GL PROJECTION);
  glLoadIdentity ();
   gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
   glMatrixMode (GL MODELVIEW);
int main(int argc, char** argv)
   qlutInit(&argc, argv);
   glutCreateWindow ("Cube Example");
  glutDisplayFunc(display);
  glutReshapeFunc(reshape);
  glutMainLoop();
  return 0:
```