Problem 2

I.

Answer the following questions on the circuit, with external terminals A and A', shown in Fig. 1. Here, the three resistors in the circuit have the same resistance R. C is a capacitance and L is an inductance. Voltages are represented with respect to the terminal A'.

At first, the switch S is closed. The two voltage sources in the circuit generate the same AC voltage with the amplitude E_0 , the angular frequency ω , and the phase angle $\phi = 0$. \dot{V}_p and \dot{V}_q are the complex voltage amplitudes (phasors) at the nodes p and q, respectively.

- (1) Write the simultaneous equations that \dot{V}_p and \dot{V}_q satisfy.
- (2) Assuming R=1 Ω , L=1 H, C=1 F, $E_0=1$ V, and $\omega=1$ rad/s, find $\dot{V}_{\rm p}$ and $\dot{V}_{\rm q}$.
- (3) Under the conditions used in Question (2), an equivalent circuit of Fig. 1 can be represented by an AC voltage source with the complex voltage amplitude \dot{E}_1 and an impedance \dot{Z} , as shown in Fig. 2. Find \dot{E}_1 and \dot{Z} .

Now the two voltage sources in Fig. 1 generate the same DC voltage of 1 V. Assume the circuit parameters of L=1 H and R=1 Ω . The switch S has been open for a sufficiently long time and then the switch is closed. V_p and V_q are the voltages at the nodes p and q, respectively.

- (4) Write the simultaneous differential equations that V_p and V_q satisfy after closing the switch.
- (5) After closing the switch, voltages in the circuit exhibit transient variations. Find the range of C for making a damped oscillation occur in the voltage at the node p.

II.

Answer the following questions on the circuit shown in Fig. 3. The n-type MOS transistors M_1 and M_2 have the same characteristics, and the small-signal equivalent circuit of each transistor is shown in Fig. 4. Here, g_m , r_o , and v are the transconductance, the drain resistance, and the input voltage of the MOS transistor, respectively. R_D and R_S are the resistances in the circuit. V_{DD} is a positive constant voltage. Note that v_1 , v_2 , v_3 , and v_4 represent small-signal components of the voltages V_1 , V_2 , V_3 , and V_4 , respectively.

- (1) The small-signal components $v_{\rm in}$ and $v_{\rm out}$ represent the difference of two input signals $v_1 v_2$ and the difference of two output signals $v_3 v_4$, respectively. Find the voltage amplification factor $A = v_{\rm out}/v_{\rm in}$.
- (2) The small-signal components v'_{in} and v'_{out} represent the sum of two input signals $v_1 + v_2$ and the sum of two output signals $v_3 + v_4$, respectively. Find the voltage amplification factor $A' = v'_{out}/v'_{in}$.
- (3) Describe in a few lines the function of the circuit in Fig. 3, based on the results of Questions (1) and (2). Assume $r_0 \to \infty$ and $R_S \gg g_{\rm m}^{-1}$.

Legend