PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-203661

(43)Date of publication of application: 19.07.2002

(51)Int.CI.

H05B 3/02 H01L 21/68

(21)Application number: 2000-400416

(71)Applicant : IBIDEN CO LTD

(22)Date of filing:

28.12.2000

(72)Inventor: SHU ENRE!

(54) MOUNTING STRUCTURE OF POWER SUPPLY TERMINAL FOR CERAMIC HEATER USED FOR SEMICONDUCTOR INDUSTRY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a mounting structure of a power supply terminal to the base board which is suitable for keeping a stable operation of the ceramic heater for long time. SOLUTION: For the mounting structure of power supply terminal for ceramic heater, the ceramic heater is electrically connected to a heating element 2 by screwing and fixing a power supply bolt 5 to a land part 2a of a power supply end part of the heating element 2 formed on a base board.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-203661

(P2002-203661A)

(43)公開日 平成14年7月19日(2002.7.19)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

H 0 5 B 3/02 H01L 21/68 H 0 5 B 3/02

B 3K092

H01L 21/68

R 5F031

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号

特願2000-400416(P2000-400416)

(71)出願人 000000158

イビデン株式会社

(22)出願日

平成12年12月28日(2000.12.28)

岐阜県大垣市神田町2丁目1番地

(72)発明者 周 延伶

岐阜県揖斐郡揖斐川町北方1-1 イビデ

ン株式会社内

(74)代理人 100080687

弁理士 小川 順三 (外1名)

Fターム(参考) 3K092 PP20 QA05 QC42 QC59 RF03

RF11 RF19 RF22 VV25 VV26

5F031 CA02 HA06 HA07 HA37 JA08

JA17 JA46 MA21 MA26 PA30

(54) 【発明の名称】 半導体産業用セラミックヒータの給電端子接続構造

(57)【要約】

(修正有)

【課題】セラミックヒータの安定した作業を長期に亘っ て維持するために好適な、基板への給電端子接続の取付 け構造を提案する。

【解決手段】基板に形成された発熱体2の給電接続端の ランド部2aに、給電ボルト5を螺着して発熱体2と電 気的に接続してなるセラミックヒータの給電端子接続構 造。

10

【特許請求の範囲】

【請求項1】セラミック基板の表面または内部に発熱体を設けてなるセラミックヒータの給電端子接続構造であって、前記基板に形成された発熱体の給電接続端のランド部に、給電ボルトを螺着して該発熱体と電気的に接続してなるセラミックヒータの給電端子接続構造。

【請求項2】前記給電ボルトは、基板中に埋設されたヘリサートに螺着すると同時に、このボルトの頭部に設けた端子ピンに外部端子をかしめて接続してなるものである請求項1に記載の給電端子接続構造。

【請求項3】給電端子の接続に当たり、発熱体のランド 部押さえ用鍔をもつカップつきボルトを用いることを特 徴とする請求項1または2に記載の給電端子接続構造。

【請求項4】給電端子の接続に当たり、頭部に蓋を持つ 蓋つきボルトと発熱体ランドとの間にスプリングを介揮 したことを特徴とする請求項1または2に記載の給電端 子接続構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主に半導体産業に 20 おいて使用される、半導体製品の乾燥、あるいはスパッタリング等に際して用いられるセラミックヒータの、給電端子接続構造に関するものである。本発明はまた、このセラミックヒータが静電チャックやウエハブローバとしての機能を具える半導体製造・検査装置のセラミック基板に対してもそのまま適用されるものである。

[0002]

【従来の技術】半導体製品の電子回路は、シリコンウエハー上にエッチングレジストとして感光性樹脂を塗布したのち、エッチングすることにより形成されている。この場合、シリコンウエハーの表面に塗布された感光性樹脂は、スピンコーターなどにより塗布されているため、塗布後に乾燥する必要がある。その乾燥処理は、感光性樹脂を塗布したシリコンウエハーを、ヒータの上に保持して加熱することにより行われる。従来、このようなヒータとしては、主として金属基板(アルミニウム板)が用いられているが、近年ではセラミック基板の内部もしくは裏面に発熱体を配線したものも用いられている。

【0003】例えば、特公平8-8247号公報などでは、発熱体を形成した窒化物セラミック基板を使用し、その発熱体近傍の温度を測定しながら、セラミック板の温度を制御するセラミックヒータを提案している。しかしながら、このようなセラミックヒータを用い、シリコンウェハを加熱乾燥しようとする場合、このヒータをいかに長時間に亘って安定した状態で使用するかが重要である。

[0004]

【発明が解決しようとする課題】上記従来技術の下でヒ の合成樹脂系バインダ、あるいはハンダペースト中のハータの寿命を向上させるためには、その1つに、給電端 ンダの劣化、軟化、融解にあることを突き止め、こうし子接続部の寿命を向上させることが重要である。という 50 たバインダ等を使うことなく該端子の固定ができるよう

のは、多くの場合、この給電端子と発熱体の給電接続端に形成されたランド部との剥離、離脱に起因して寿命を短くするからである。寿命を短くするというこの問題の発生原因は、この給電端子を基板中に埋設したり、表面に接着固定する際に、該端子の埋設や接着に当たって使用する導電ペースト中に混合して用いる合成樹脂系バインダやハンダペーストが原因であることがわかった。例えば、埋設形の例で説明すると、前記給電端子を合成樹脂系バインダを含む導電ペーストと共にスルーホール中に埋設固定した場合、ヒータを長期に亘って継続的に使用したり、何らかのトラブルによって一時的に高温にな

ったような場合に、埋設固定した前記給電端子が樹脂の

劣化、軟化、融解により緩み、時として剥離や脱落を招

いて、接続(取付け)不良を招くのである。

【0005】一方、図1に示すように、セラミック基板1の下面に発熱体2を形成するような例では、この発熱体2上に給電端子のピン6を接続する場合に、ハンダペーストの層16を介して接続することが必要とされる。ところが、給電端子5を接着固定するために、このハンダペーストを用いると、このハンダペースト中に、例えばポリイミド樹脂系、エボキシ樹脂系、フェノール樹脂系あるいはシリコン樹脂系のバインダが含まれると、これらの合成樹脂系バインダは、熱可塑性樹脂の場合、温度の上昇と共に力学的強度が低下し、やがては軟化(融解)して液状となるし、また熱硬化性樹脂の場合も温度の上昇と共に力学的強度が低下し、やがては熱分解する

【0006】即ち、ポリイミド樹脂でさえ転位点(Tm)は500℃未満であり、一方、これらの樹脂の連続可使温度はほとんどが120~260℃であるから、そこでもし、これらの樹脂がセラミックヒータ(ヒータ加熱温度200~400℃)の給電端子接続手段として使われると、基板からの抜熱を考慮したとしてもなお樹脂の劣化が早く、バインダーやハンダ合金自体の早期劣化、軟化が起こり、いわゆる給電端子が発熱体やハンダペースト層16から離脱し、給電端子の取付け寿命の低下につながるという問題があった。

【0007】そとで、本発明の目的は、セラミックヒータの安定した作業を長期に亘って維持するために好適 40 な、基板への給電端子接続の取付け構造を提案するところにある。

[8000]

ようになる。

【課題を解決するための手段】上掲の目的を実現するために鋭意研究した結果、発明者らは、基板に配線された発熱体の給電接続端に形成されたランド部と給電端子とが緩んだり、脱落したりしてヒータの寿命が短くなる原因が、この給電端子を固定接続している導電ペースト中の合成樹脂系バインダ、あるいはハンダペースト中のハンダの劣化、軟化、融解にあることを突き止め、こうしたバインダ等を使うことなく該端子の固定ができるよう

2

が全くなくなる。

に工夫された、下記の要旨構成に係る本発明を開発する に到った。

【0009】すなわち、本発明は、セラミック基板の表面または内部に発熱体を設けてなるセラミックヒータの 給電端子接続構造であって、前記基板に形成された発熱 体の給電接続端のランド部に、給電ボルトを螺着して該 発熱体と電気的に接続してなるセラミックヒータの給電 端子接続構造を基本とする。

【0010】本発明において、前記給電ボルトは、基板中に埋設されたヘリサートに螺着すると同時に、このボ 10ルトの頭部に設けた端子ピンに外部端子をかしめて接続すること、また、給電端子の接続に当たり、発熱体のランド部押さえ用鍔をもつカップつきボルトを用いること、そして給電端子の接続に当たり、頭部に蓋を持つ蓋つきボルトと発熱体ランドとの間にスプリングを介挿した構成にすることが好ましい。

[0011]

【発明の実施の形態】本発明の特徴とするところは、発熱体が基板中に埋設される場合、基板の表面に形成される場合のいずれであれ、発熱体の給電接続部、すなわち、図2に示す例の発熱体パターンの発熱体端部に形成されたランド部2の給電端子を、従来のように、合成樹脂系バインダを含む導電ペーストやハンダペーストを使わないで、物理的に電気的接続を果すようにした点の構成にある。即ち、発熱体2の給電接続端に形成されたランド部2の給電ボルトを螺着することにより、電気的な接続を図るようにしたものである。

【0012】図3(a)は、基板1中の発熱体2のランド部2aの中心部相当の位置に、スルーホール3を開孔し、このスルーホール中に内周面が螺設された円筒状の30ヘリサート4を嵌着固定(ねじ止めでもよい)し、このヘリサート4中に頭部に端子ピン5aを突設してなる給電ボルト5を螺着した例である。なお、端子ピン5aと外部端子6との接続はかしめ接合するが、必要に応じてハンダを併用してもよい。

【0013】図3(b)は、給電ボルト5の例として、頭部に冠状鍔5bを有するカップつきボルトを用い、前記鍔5bにて発熱体ランド2aを押圧して、より確実に電気的な接続を長期に亘って維持するようにした構造である。

【0014】図3cは、給電ボルト5の更に他の例であり、頭部に蓋5cを有する蓋つきボルトを用い、その蓋5cと発熱体ランド2aとの間にスプリング7を介挿させて発熱体2とのより安定した電気的接続を果すようにした例である。

【0015】また、図4は、基板1の内部に発熱体2を埋設したセラミックヒータに対し、本発明に係る給電端子接続構造を適用したときの例を示す。基板1中に埋設された発熱体2、とくにそのランド部2a相当の位置に関孔したスルーホール3中にヘリサート4を廃業し、と

のヘリサート4中に給電ボルト5をねじ込んで螺着し、そしてこの給電ボルト5の頂部に突設した端子ピン5 a に外部端子であるソケット6をかしめて接合した構造である。この例では、給電ボルトとランドとの接続に当たっては、従来のようにスルーホール3中に導電ベーストやハンダベーストを充填して、端子ピン5 a をこの導電ベースト中に埋設する必要がないので、合成樹脂製バインダ等は全く必要とせず、樹脂やハンダの劣化、あるいは融解による端子ピン5 a の脱落というようなトラブル

【0016】要するに、本発明において給電端子接続構 造の部分に、導電ペーストやハンダペースト、とくに合 成樹脂製バインダの使用を止めた理由は、ヒータの連続 使用や、トラブル時の過電流によって起る一時的な過熱 状態などによって、前記バインダ等が早期に劣化した り、軟化、融解することから、端子ピン5 a の弛みや脱 落が起こり易く、給電端子の接続が早期に失われるとい う弊害を避けるためである。例えば、エポキシ樹脂やポ リイミドの連続可使温度は120~260℃、ポリエチレンの 場合で120℃、フッ素樹脂 (CTFE) の場合で180~200℃ 程度である。これに対し、発熱体2の通電加熱温度は10 0~800℃であり、基板1の抜熱を考慮しても導電ペース トやハンダペーストと端子ピン5aとを結合しているバ インダ等も相当の高温に曝されて劣化や軟化が激しいも のになる。そこで、本発明では、ヒータの昇温の影響が 少ない物理的な方法、即ちヘリサートを介して給電ボル トを螺着し、さらに発熱体との接続にコイルバネやカッ プボルトにて両者の堅固な接続を果すようにしたのであ る。

【0017】次に、本発明に係る構造を採用したセラミックヒータについて説明する。図4に明らかなように、このセラミックヒータでは、セラミック基板1に貫通孔8が複数個設けられ、その貫通孔8にリフターピン9が挿入され、とのリフターピン9上にシリコンウエハ10が載置されるようになっている。また、リフターピン9を上下させることにより、シリコンウエハ10を図示しない搬送機に渡したり、搬送機からシリコンウエハ10を受け取ったりすることができるようになっている。また、このリフターピン9により、シリコンウエハ10をセラミック基板1から所定の距離だけ離間させた状態で保持し、加熱を行うことができる。

【0018】そして、前記セラミック基板1の内部には発熱体2が埋設され、この発熱体2は、スルーホール3に嵌着されたヘリサート4を介して螺着された給電ボルト5の端子ピン5aに接続されている。また、その端子ピン5aには、外部接続端子であるソケット6が取付けられ、このソケット6は、電源を有する制御部11に接続されている。またセラミック基板1には、その底面側から有底孔12が設けられ、この有底孔12の底には、熱質対13が固定されている。また、この熱質対13

開孔したスルーホール3中にヘリサート4を嵌着し、と 50 熱電対13が固定されている。また、との熱電対13

は、記憶部14に接続され、この熱電対13の温度を一 定時間毎に測定し、そのデータを記憶することができる ようになっている。そして、この記憶部14は、制御部 11に接続されるとともに演算部15に接続され、記憶 部14に記憶されたデータに基づき、演算部15で制御 する電圧値等の計算を行い、とれに基づき、制御部11 から各発熱体2に対して所定の電圧を印加し、加熱面の 温度を均一化することができるようになっている。

【0019】次に、このセラミックヒータの動作につい て説明する。まず、制御部11を作動させることにより セラミックヒータに電力を投入すると、セラミック基板 1 自体の温度が上がり始めるが、外周部の方の表面温度 がやや低温になる。熱電対13で測温したデータは、記 憶部14に一旦は格納され、次に、この温度データは演 算部15に送られ、この演算部15において、各測定点 における温度の差△Tを演算し、さらに、加熱面1aの 温度の均一化のために必要なデータ△♥を演算する。例 えば、隣り合う発熱体2における温度差△Tがあり、一 方の発熱体2の方が低ければ、 ΔTを0にするような電 カデータ△Wを演算し、これを制御部11に送信して、 これに基づいた電力をその発熱体2に投入して昇温させ るのである。

【0020】電力の計算アルゴリズムについては、セラ ミック基板1の比熱と加熱域の重量から昇温に必要な電 力を演算する方法が最も簡便であり、これに発熱体パタ ーンに起因する補正係数を加味してもよい。また、予 め、特定の発熱体パターンについて昇温試験を行い、測 温位置、投入電力、温度の関数を予め求めておき、との 関数から投入電力を演算してもよい。そして、演算部1

5で演算された電力に対応する印加電圧と時間とを制御*30 7. スプリング

*部11に送信し、この制御部11でその値に基づいて各 発熱体2に電力を投入することになる。

[0021]

【発明の効果】以上説明したように本発明の半導体製造 ・検査装置に用いられるセラミックヒータの給電端子接 続構造によれば、シリコンウエハ等の半導体関連製品を 長期に安定して製造するのに有効に寄与するものであ る。また、本発明によれば、合成樹脂含有導電ベースト やハンダペーストを使用せずに給電端子の接合固定を行 うので、端子の脱落を起こすようなことがなく、装置寿 命を著しく向上させることができる。

【図面の簡単な説明】

【図1】従来のセラミックヒータの給電端子接続部分の 一例を示すセラミックヒータの断面図である。

【図2】セラミック基板への発熱体配線パターンを例示 する平面図である。

【図3】基板の発熱体ランド部への給電端子接続構造を 例示する断面図である。

【図4】本発明の給電接続端子を適用したホットプレー トの部分断面図である。

【符号の説明】

- 1. セラミック基板
- 2. 発熱体
- 2a. ランド部
- 3. スルーホール
- 4. ヘリサート
- 5. 給電ボルト
- 5 a. 端子ピン
- 6. ソケット(外部端子)

【図1】

[図4]

【図2】

[図3]

【手続補正書】

【提出日】平成13年6月4日(2001.6.4)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】 半導体産業用セラミックヒータの給

電端子接続構造

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】請求項1

【補正方法】変更

【補正内容】

【請求項1】 セラミック基板の表面または内部に発熱体を設けてなるセラミックヒータの給電端子接続構造であって、前記基板に形成された発熱体の給電接続端子のランド部に、給電ボルトを螺着して該発熱体と電気的に接続してなる<u>半導体産業用</u>セラミックヒータの給電端子接続構造。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0001

【補正方法】変更

【補正内容】

[0001]

【発明の属する技術分野】本発明は、主に半導体産業において使用される、半導体製品の乾燥、あるいはスパッタリング等に際して用いられる<u>半導体産業用</u>セラミックヒータの、給電端子接続構造に関するものである。本発明はまた、このセラミックヒータが静電チャックやウエハプローバとしての機能を具える半導体製造・検査装置のセラミック基板に対してもそのまま適用されるものである。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0009

【補正方法】変更

【補正内容】

【0009】 すなわち、本発明は、セラミック基板の 表面または内部に発熱体を設けてなるセラミックヒータ の給電端子接続構造であって、前記基板に形成された発 熱体の給電接続端のランド部に、給電ボルトを螺着して 該発熱体と電気的に接続してなる<u>半導体産業用</u>セラミッ クヒータの給電端子接続構造を基本とする。