Examen de Programmation Linéaire

ISIMA 1^{ère} année, juin 2015, durée 2h documents de cours autorisés, calculatrices interdites

Rendre chaque exercice sur une feuille séparée (ne pas oublier de mettre le nom!)

Exercice n° 1. (les questions 1.3 et 1.4 sont indépendentes)

Une entreprise sidérurgique souhaite produire 1 tonne (1000 kg) d'un alliage dont les teneurs en carbone (C), nickel (Ni), chrome (Cr) et molybdène (Mo) sont fixées par le client. Ce dernier a indiqué les teneurs minimales (% min) et maximales (% max) à respecter pour chaque composant. Pour réaliser l'alliage, l'entreprise dispose de 4 types de ferraille $(F_1 \dots F_4)$ dont les teneurs en C, Ni, Cr et Mo ainsi que les stocks et les coûts unitaires sont indiqués dans le tableau ci-dessous. Elle peut aussi utiliser des composants purs (Ni, Cr, Mo) dont le prix est plus élevé.

	F_1	F_2	F_3	F_4	Ni	Cr	Mo	% min	% max
Carbone	0.8	0.7	0.85	0.4	¥	-	+	0.65	0.75
Nickel	18	3.2	-	-	100	-	-	3	3.5
Chrome	12	1.1	-	-	-	100	-	1	1.2
Molybdène	-	0.1	2	-	- 2	-	100	1.1	1.3
stock (kg)	75	250	00	00	00	00	00		
coût (/kg)	16	10	8	9	48	60	53		

- 1.1. On note $x_i \geq 0$, la variable correspondant à la quantité de produit $i \in \{F_1 \dots F_4, Ni, Cr, Mo\}$ à utiliser pour composer l'alliage. Modéliser le problème minimisant le coût d'obtention de l'alliage, dans la quantité et les limites de spécifications imposées par le client.
- 1.2. Pourquoi le problème est-il réalisable?
- 1.3. Pour des raisons industrielles, on souhaite que F_2 n'entre pas à plus de 15 % du mélange et qu'il y ait au moins 5 % de F_3 . Exprimer les contraintes supplémentaires.
- 1.4. F_1 est livré par un fournisseur qui ne peut garantir les teneurs exactes. Il indique que les teneurs en chaque composant (C, Ni, Cr et Mo) peuvent varier en pratique de 1 % selon le lot.
 - (a) indiquer les teneurs correspondant au pire des cas et au meilleur des cas.
 - (b) en quoi raisonner sur la teneur moyenne est dangereux?

Exercice n° 2. Considérons le problème d'optimisation linéaire

$$P \begin{cases} \text{maximiser} & x_1 + x_2 \\ \text{s.t.} & -x_1 - x_2 \leq -1 \\ & -x_1 + x_2 \leq 3 \\ & -x_1 - 3x_2 \leq -3 \\ & x_1, x_2 \geq 0 \end{cases}$$

L'objectif de cet exercice est de résoudre ce problème P en utilisant la méthode du simplexe.

- 2.1. Définir, très précisément, le problème auxiliaire P_A devant être résolu durant la première phase de la méthode du simplexe.
- 2.2. Donner le dictionnaire (ou tableau) réalisable permettant de débuter la résolution de P_A par la méthode du simplexe.
- Trouver un dictionnaire (ou tableau) optimal pour P_A.
- 2.4. Que pouvez-vous déduire quant au problème original P?
- 2.5. Donner un dictionnaire (ou tableau) réalisable associé au problème original P.
- 2.6. Résoudre le problème original P en utilisant la méthode du simplexe.
- 2.7. Considérons la solution $x_1 = 0$ et $x_2 = 3$. Dans cette question, nous allons partir de cette solution et appliquer la méthode **révisée** du simplexe pour résoudre le problème original P.
 - (a) Écrire le problème original P sous forme matricielle.
 - (b) Quelle est la matrice de base B associée à cette solution $x_1 = 0$ et $x_2 = 3$?
 - (c) Donner l'ensemble H des variables hors-base?
 - (d) Calculer les coûts réduits associés aux variables de H.
 - (e) Donner une colonne entrant en base, s'il en existe une?
 - (f) Trouver une colonne sortant de la base, s'il en existe une?
 - (g) Que pouvez-vous conclure?

Exercice n° 3. (dualité) On considère le programme linéaire suivant :

$$\mathbf{P} \left\{ \begin{array}{ll} \text{calculer} & x,y,z,t \geq 0 \text{ telles que} \\ & 2x+3y-z+t=8 \\ & x-y+2z+2t=8 \\ & \max = & 5x+2y-4z+3t \end{array} \right.$$

- **3.1.** Écrire le dual \mathbf{D} de \mathbf{P} . On nommera u et v les deux variables de \mathbf{D} et on précisera bien le signe de ces variables, en expliquant.
- 3.2. Représenter graphiquement le domaine réalisable de D.
- 3.3. Indiquer, sans calcul mais en justifiant, où se trouve la solution optimale de D.
- 3.4. Rappeler le Théorème des Écarts Complémentaires. En déduire celle(s) des variables x, y, z et t qui doi(ven)t être nulle(s) pour que l'on ait une solution optimale de \mathbf{P} .
- 3.5. Conclure en calculant la solution optimale de P.