Klausur vom 22.2.2008 zur Vorlesung Diskrete Strukturen, Prof. Dr. Gerhard Hiß, WS 2007/08

Name:	
Matrikelnummer:	•

Punkte:	Note:

Für die folgenden Aufgaben gibt es bei richtiger Antwort 1 Punkt und sonst 0 Punkte.				
1				
	Für beliebige Mengen A, B und C gilt $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.	○ Ja / ○ Nein		
	Wenn für Mengen A , B und C gilt, dass $A \cap B \subseteq C$ ist, dann gilt sowohl $A \subseteq C$	○ Ja / ○ Nein		
	als auch $B \subseteq C$.			
	Wieviele Elemente hat die Potenzmenge der Menge $\{1, 2, \{3, 4\}\}$?			
2				
	Wieviele surjektive Abbildungen gibt es von der Menge $\{i \in \mathbb{N} \mid 1 \le i \le 8\}$ in die Menge $\{0,1\}$?			
	Seien $f: A \to B$ und $g: B \to C$ Abbildungen. Wenn $g \circ f$ bijektiv ist, dann ist f surjektiv.	◯ Ja / ◯ Nein		
	$f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}, (x,y) \mapsto (x^2, x - y)$ ist eine injektive Abbildung.	○ Ja / ○ Nein		
3				
	Wieviele reflexive Relationen gibt es auf einer dreielementigen Menge?			
	Welche der folgenden Eigenschaften charakterisieren Relationen R auf ei-			
	ner Menge M , die $\ddot{A}quivalenz relationen$ sind? (Geben Sie die Buchstaben			
	an.) (A) relativ, (B) symmetrisch, (C) antisymmetrisch, (D) transitiv, (E)			
	destruktiv, (F) reflexiv, (G) ist Halbordnung.			
4	Wieviele Äquivalenzrelationen gibt es auf der Menge {1,2,3}?			
4	Winds District District and a Line On the sales decreased and single District decreased			
	Wieviele Bitfolgen der Länge 8 gibt es, bei denen irgendwo ein Bit mindestens zweimal hintereinander vorkommt?			
	Gegeben ist ein Vorrat von Kugeln in 10 Farben, von jeder Farbe gibt es 12			
	Stück. Aus diesem Vorrat werden 3 Kugeln ausgewählt. Wieviele Farbkom-			
	binationen ohne Berücksichtigung der Reihenfolge gibt es für die 3 Kugeln?			
	Auf wieviele Arten lassen sich die Buchstaben des Wortes PIZZA umsor-			
	tieren?			
5	Sei σ die folgende Permutation aus der symmetrische $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{pmatrix}$	en Gruppe S_{12} :		
	$\left[\begin{pmatrix} 1 & 2 & 3 & 4 & 3 & 0 & 7 & 8 & 9 & 10 & 11 & 12 \\ 9 & 10 & 7 & 5 & 11 & 1 & 8 & 12 & 6 & 2 & 3 & 4 \end{pmatrix} \right]$			
	/			
	Was ist das Signum von σ?			
	Geben Sie σ in Zykelschreibweise an.			
	Worauf wird 8 durch $\sigma \circ \sigma \circ \sigma$ abgebildet?			

6	Was ist $3! \cdot {27 \choose 13} / {27 \choose 14}$? (Bitte als ganze Zahl ausrechnen.)	
	Was ist $\binom{4}{0} + 2 \cdot \binom{4}{1} + 4 \cdot \binom{4}{2} + 8 \cdot \binom{4}{3} + 16 \cdot \binom{4}{4}$? (Bitte als ganze Zahl ausrechnen.)	
	Gilt $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ für alle $n, k \in \mathbb{N}$ mit $1 \le k < n$?	◯ Ja / ◯ Nein

Wieviele Zusammenhangskomponenten hat der auf $V' = \{1, 3, 4, 6, 9, 10\}$	
induzierte Teilgraph?	
Bestimmen Sie $a \in \mathbb{Z}$, $0 \le a \le 16$, so dass in $\mathbb{Z}/17\mathbb{Z}$ gilt $\overline{5} \cdot \overline{5} = \overline{a}$.	
Bestimmen Sie den Wert $\phi(51)$ der Eulerschen ϕ -Funktion.	
Seien $a = 156$ und $b = 299$. Geben Sie (x, y) an, so dass $xa + yb = ggT(a, b)$	

Die folgenden Aufgaben sind schriftlich auf einem separaten Blatt zu bearbeiten. (Namen auf dem Blatt nicht vergessen!) Für vollständige Lösungen gibt es jeweils 4 Punkte.

- 9 Sei G eine Gruppe mit Untergruppen U_1 und U_2 . Beweisen Sie, dass $U_1 \cup U_2$ genau dann eine Untergruppe von G ist, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.
- 10 Beweisen Sie durch vollständige Induktion, dass für alle $n \in \mathbb{N}$ gilt:

Wie lang ist der kürzeste Weg vom Knoten 5 zum Knoten 2?

Was ist die Summe der Grade aller Knoten?

8

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}.$$