High-Dimensional Measures and Geometry

Lecture Notes from Jan 26, 2010

taken by Nick Maxwell

Denote by $G_k(\mathbb{R}^n)$ the Grassmanian, which is the collection of k-dimensional subspaces of \mathbb{R}^n . Define a distance on $G_k(\mathbb{R}^n)$ by the operator norm of the difference between corresponding orthogonal projections. That is, $P_1:\mathbb{R}^n\to V_1,\ P_2:\mathbb{R}^n\to V_2$, with V_1,V_2 k-dimensional, then $d(V_1,V_2)=||P1-P2||$. This distance is invariant under the orthogonal group. So, $||P_1-P_2||=||OP_1O^*-OP_2O^*||=||O(P_1-P_2)O^*||,\ O\in\mathcal{O}(n)$, the set of unitary operators on \mathbb{R}^n .

Also, $\mathcal{O}(n)$ acts transitively on projections, for all rank-k $P_1, P_2, \exists O \in \mathcal{O}(n)$ s.t. $P_2 = OP_1O^* \Rightarrow \exists !$ Borel probability measure on $G_k(\mathbb{R}^n)$, invaraint under $\mathcal{O}(n)$, we denote this measure by $\mu_{n,k}$.

This measure can be obtained from the left-invariant haar measure ν_n on $\mathcal{O}(n)$ by the map

$$\Psi: \mathcal{O} \to OP_{V_1}O^*$$

 P_{V_1} an orthogonal projection onto some fixed k-dimensional substapce. In terms of subspaces, we have

$$\mu_{n,k}(V) = \nu_n(\{U \in \mathcal{O}(n) : U(V_1) \in V\}), V \in G_k(\mathbb{R}^n)$$

Why is this identity true? This is because the image measure is invariant under the action of $\mathcal{O}(n)$, by the commutative diagram below.

$$\mathcal{O}(n) \xrightarrow{O \mapsto O'O} \stackrel{[1]}{\longrightarrow} \mathcal{O}(n) \\
\downarrow \Psi \qquad \qquad \downarrow \Psi \\
G_k(\mathbb{R}^n) \xrightarrow{V \mapsto O'V} \stackrel{[1]}{\longrightarrow} G_k(\mathbb{R}^n)$$
(1)

[1] This is left mupltiplication by O', some fixed $O' \in \mathcal{O}(n)$

The "effective map" between $G_k(\mathbb{R}^n)$ is because $O'OP_{V_1}O^*(O')^*$ and this projection has range $O'(O(V_1)) = (O'O)(V_1)$

0.0.1 Lemma. Let $x \in \mathbb{R}^n, x \neq 0$, let $\mu_{n,k}$ be the $\mathcal{O}(n)$ -invariant measure on $G_k(\mathbb{R}^n)$, and for each $V \in G_k(\mathbb{R}^n)$, let P_V denote orthogonal projection onto V. Then, for $0 < \epsilon < 1$,

$$\mu_{n,k}(\{V \in G_k(\mathbb{R}^n); \sqrt{\frac{n}{k}}||P_V(x)|| \ge \frac{1}{1-\epsilon}||x||\}) \le \exp(-\epsilon^2 k/4) + \exp(-\epsilon^2 n/4)$$

and

$$\mu_{n,k}(\{V \in G_k(\mathbb{R}^n); \sqrt{\frac{n}{k}}||P_V(x)|| \le (1-\epsilon)||x||\}) \le \exp(-\epsilon^2 k/4) + \exp(-\epsilon^2 n/4)$$

Proof. Without loss of generality, choose ||x||=1, choose any k-dimensional subspace, V_1 , and if $U\in\mathcal{O}(n)$, let $V=U(V_1)$, P_V the orthogonal projection onto V_1 , and use the fact that the measure ν_n on $\mathcal{O}(n)$ induces the Grassmanian measure $\nu_{n,k}$.

This implies,

$$\mu_{n,k}(\{V \in G_k(\mathbb{R}^n); \sqrt{\frac{n}{k}}||P_V(x)|| \ge \frac{1}{1-\epsilon}\}) = \nu_n(\{U \in \mathcal{O}(n); \sqrt{\frac{n}{k}}||P_{U(V_1)}(x)|| \ge \frac{1}{1-\epsilon}\})$$

and

$$\mu_{n,k}(\{V \in G_k(\mathbb{R}^n); \sqrt{\frac{n}{k}}||P_V(x)|| \le (1-\epsilon)\}) = \nu_n(\{U \in \mathcal{O}(n); \sqrt{\frac{n}{k}}||P_{U(V_1)}(x)|| \le \frac{1}{1-\epsilon}\})$$

The projected length of x is

$$||P_{U(V_1)}(x)|| = ||U^*P_{U(V_1)}UU^*x|| = ||P_{V_1}U^*x||$$

and the image measure induced by ν_n under $\Phi_x:\mathcal{O}(n)\to S^{n-1}U\mapsto U^*x$ is the surface measure on sphere, μ_n .

Thus,

$$\nu_n(\{U \in \mathcal{O}(n); \sqrt{\frac{n}{k}} || P_{U(V_1)}(x) || \ge \frac{1}{1 - \epsilon} \}) = \mu_n(\{y \in S^{n-1}; \sqrt{\frac{n}{k}} || P_V(y) || \ge \frac{1}{1 - \epsilon} \})$$

and

$$\nu_n(\{U \in \mathcal{O}(n); \sqrt{\frac{n}{k}} || P_{U(V_1)}(x) || \le (1 - \epsilon)\}) = \mu_n(\{y \in S^{n-1}; \sqrt{\frac{n}{k}} || P_V(y) || \le (1 - \epsilon)\})$$

now applyying the corollary in section 2.3 (Gaussian v.s. surface measure), finishes the proof.

Summary: Now reduction for vectors ib S_{n-1} under fixed program is "mostly" by factor $\sqrt{\frac{k}{n}}(1\pm\epsilon)$, same is true for fixed vector under projections onto "many subspaces", in $G_k(\mathbb{R}^n)$. Question: what about more than one vector?

0.0.2 Theorem. (Johnson-Lindenstrauss, Part II)

Let $a_1,...,a_N$ be points in \mathbb{R}^n , given $\epsilon > 0$, choose $k \in \mathbb{N}$ s.t.

$$N(N+1)(\exp(-k\epsilon^2/4) + \exp(-n\epsilon^2/4)) \le \frac{1}{3}$$

and let $G_k(\mathbb{R}^n)$ be the set of k-dimensional subspaces, then

$$\mu_{n,k}(\{V \in G_k(\mathbb{R}^n); (1-\epsilon)||a_i-a_j|| \le \sqrt{\frac{k}{n}}||P_V(a_i-a_j)|| \le \frac{1}{1-\epsilon}||a_i-a_j|| \ \forall \ 1 \le i \le j \le N\}) \ge \frac{2}{3}$$

proof:

Let $c_{ij}=a_i-a_j, i>j$, we count $\binom{N}{2=N(N-1)/2}$ such differences, and $||P_Vc_{ij}||=||P_Va_i-P_Va_j||$ the set of subspaces V for which $\sqrt{\frac{k}{n}}||P_Vc_{ij}||\geq \frac{1}{1-\epsilon}||c_{ij}||$ or $\sqrt{\frac{k}{n}}||P_Vc_{ij}||\leq (1-\epsilon)||c_{ij}||$ has by assumption and union bound over choices $i,j\in\{1,2,...,N\}, i\neq j$ measure at most $\frac{1}{3}$. Thus by taking the complement, gives the desired estimate of thge measure.

Question:

What about infinitely many vector, i.e. $\operatorname{span}\{a_1,...,a_T\}$, for some $T \in \mathbb{N}$? "restriced isometry property"

Need to choose set of points $Q \subset \{x \in \text{span}\{a_1,...,a_T\}; ||x|| = 1\}$ "sufficiently dense", apply Johnson-Lindenstrauss to Q, combine this with triangle inequality to get estimate for all points.