Generalized Linear models

Mark Andrews

November 14, 2018

Introduction

In generalized linear models, we model the outcome variable as a random variable whose parameters are transformed linear functions of some of more predictors variables.

```
library(dplyr)
library(magrittr)
library(readr)
library(pander)
library(tidyr)
library(ggplot2)
library(tibble)
```

Logistic regression

In a binary logistic regression, we model the outcome variable as Bernoulli random variable with a parameter p, and where the log odds of p is a linear function of predictor variables. In other words, for all i,

$$y_i \sim \text{dbern}(p_i),$$

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki}$$

We'll load up some data about the Titanic.

Now, we'll model how the probability of surviving by sex:

We can look at the results as follows:

```
summary(M)

##

## Call:
## glm(formula = survived ~ sex, family = binomial, data = Df)
```

Deviance Residuals:

```
##
                     Median
                                  3Q
                                          Max
                1Q
                                       1.8196
## -1.6124 -0.6511 -0.6511
                              0.7977
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
                0.9818
                           0.1040
                                    9.437
                                            <2e-16 ***
## (Intercept)
               -2.4254
                           0.1360 -17.832
                                            <2e-16 ***
## sexmale
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1741.0 on 1308 degrees of freedom
## Residual deviance: 1368.1 on 1307 degrees of freedom
## AIC: 1372.1
##
## Number of Fisher Scoring iterations: 4
```

Predictions

As usual, we will make some data to make predictions about:

```
hypothetical_data <- tibble(sex=c('male', 'female'))</pre>
```

and then make the predictions

```
predict(M, newdata=hypothetical_data)
```

```
## 1 2
## -1.443625 0.981813
```

These predictions are in log odds units, so we can convert to probabilities using the inverse logit function, which we can make ourselves:

```
ilogit <- function(x){1/(1+exp(-x))}

logodds <- predict(M, newdata=hypothetical_data) # these are log odds
names(logodds) <- c('male', 'memale')
ilogit(logodds)</pre>
```

```
## male memale
## 0.1909846 0.7274678
```

We can get the same result more easily with the following:

```
predictions <- predict(M, newdata=hypothetical_data, type='response')
names(predictions) <- c('Male', 'Female')
predictions</pre>
```

```
## Male Female
## 0.1909846 0.7274678
```

Or better yet, we attach the predicted probabilities to the data frame of hypothetical values:

```
hypothetical_data %<>%
mutate(prediction = predict(M, newdata = ., type = 'response'))
```

Model comparison

We will model Titanic survival using two different models, i.e. two models with different numbers of predictors:

We do model comparison by way of a log likelihood test:

```
ll_test <- anova(M_null, M, test='Chisq')
pander(ll_test, missing='')</pre>
```

Table 1: Analysis of Deviance Table

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
1305 1307	1257 1368	-2	-110.9	8.366e-25
1307	1300	-2	-110.9	6.300e-25

Having established that there is an interaction between sex and class, we'd like to understand this interaction. Definitely the best place to begin is with a plot. There are many options here, but one is to view how the predicted probability of surviving varies by class across the two sexes.

Binomial logistic regression

In binomial logistic regression, our data are counts of number of "successes" out of a total number of trials. To obtain appropriate data, we'll calculate the number of survivors and non-survivors per each class by sex combination.

Now, we do the logistic regression similarly, but not identically, to before:

The results are identical to the model ${\tt M_full}$ above.

Poisson regression

In Poisson regression, our outcome variables are counts, i.e. discrete frequencies, and so each $y_i \in 0, 1...$, and our probabilistic model of the data is as follows:

$$y_i \sim \text{dpois}(\lambda_i),$$

$$\log(\lambda_i) = \beta_0 + \sum_{k=1}^K \beta_k x_{ki}$$

To explore this type of model, we will use the affairs.csv data-set:

```
Df <- read_csv('../data/affairs.csv')</pre>
```

And we'll model the frequencies of extra-marital affairs as a function of all the predictors:

As before, we can do model comparisons.

Table 2: Analysis of Deviance Table

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
598	2887			
592	2360	6	527.4	1.071e-110

And we can do predictions (here using M_null for convenience):