

Digital Logic

Lecture 2

2nd Stage
Computer Science Department
Faculty of Science
Soran University

Topics covered

- ♦ Fractional conversion among bases
- ♦ Binary arithmetic operations

Common Number Systems

System	Base	Symbols
Decimal	10	0, 1, 9
Binary	2	0, 1
Octal	8	0, 1, 7
Hexa- decimal	16	0, 1, 9, A, B, F

Fractional Conversion Among Bases

Decimal to Binary

Decimal to Binary

$$(25.625)_{10} = (?)_{2}$$

$$(25)_{10} = ()_{2}$$

2	25	1
2	12	0
2	6	0
2	3	1
2	1	1
	0	

$$(0.625)_{10} = ()_{2}$$

0.625 * 2	1.25
0.25 * 2	0.50
0.50 * 2	1.00
0.00 * 2	0.00

$$(25.625)_{10} = (11001.101)_{2}$$

Binary to Decimal

Octal

Hexadecimal

Binary to Decimal

$$(10101.11)_{2} = ()_{10}$$

$$(10101)_{2} = > 1 \times 2^{0} = 1 \quad (0.11)_{2} = > 1 \times 2^{-1} = 0.5$$

$$0 \times 2^{1} = 0 \quad 1 \times 2^{-2} = 0.25$$

$$1 \times 2^{2} = 4 \quad (0.75)_{10}$$

$$0 \times 2^{3} = 0$$

$$1 \times 2^{4} = 16$$

$$(21)_{10}$$

$$(10101.11)_2 = (21.75)_{10}$$

Decimal to Octal

Binary

Hexadecimal

Decimal to Octal

$$(25.625)_{10} = (?)_{8}$$

$$(25)_{10} = ()_{8}$$

8	25	1	
8	3	3	
	0		

$$(0.625)_{10} = ()_{8}$$

0.625 * 8	5.000
0.000 * 8	0.000

$$(25.625)_{10} = (31.50)_{8}$$

Octal to Decimal

Binary

Hexadecimal

Octal to Decimal

$$(4507.44)_8 = ()_{10}$$

$$(4507)_{8} =>$$

$$7 \times 8^{0} = 7$$

$$0 \times 8^{1} = 0$$

$$5 \times 8^{2} = 320$$

$$4 \times 8^{3} = 2048$$

$$(2375)_{10}$$

$$(0.44)_8 =>$$

$$4 \times 8^{-1} = 0.5$$

$$4 \times 8^{-2} = 0.0625$$

$$(0.5625)_{10}$$

$$(4507.44)_8 = (2375.5625)_{10}$$

Decimal to Hexadecimal

Decimal to Hexadecimal

$$(25.625)_{10} = (?)_{16}$$

$$(25.625)_{10} = (19.A)_{16}$$

Hexadecimal to Decimal

Hexadecimal to Decimal

$$(57.4)_{16} = ()_{10}$$

$$(57)_{16} =>$$

$$7 \times 16^{0} = 7$$

$$5 \times 16^{1} = 80$$

$$(87)_{10}$$

$$(0.4)_{16} =>$$

$$4 \times 16^{-1} = 0.25$$

$$(0.25)_{10}$$

$$(57.4)_{16} = (87.25)_{10}$$

Octal to Binary

Octal to Binary

$$(37.45)_8 = (?)_2$$

$$(37.45)_8 = (011111.100101)_2$$

Binary to Octal

Binary to Octal

$$(10110.11)_2 = (?)_8$$

$$(10110.11)_2 = (26.6)_8$$

Hexadecimal to Binary

Hexadecimal to Binary

$$(CAFE.3D)_{16} = (?)_2$$

 $(CAFE.3D)_{16} = (11001010111111110.00111101)_{2}$

Binary to Hexadecimal

Binary to Hexadecimal

$$(10001001.11)_2 = ()_{16}$$

$$(10001001.11)_2 = (89.C)_{16}$$

Octal to Hexadecimal

Octal to Hexadecimal

$$(10.76)_8 = (?)_{16}$$

$$(10.76)_8 = (08.F8)_{16}$$

Hexadecimal to Octal

Hexadecimal to Octal

$$1F.0C_{16} = (?)_8$$

$$(1F.0C)_{16} = (37.03)_8$$

Classwork-1

Convert the following numbers

A) $(D.1E)_{16} = (?)_2$

(show your work)

B) $(10.06)_{8} = (?)_{16}$

(show your work)

C) $(1101.0101)_{2} = (?)_{10}$

(show your work)

Binary Addition

• Two 1-bit values

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	_10
Carry		

Binary Addition

• Two 1-bit values

Binary Addition

• Two *n*-bit values

Binary Subtraction

Two 1-bit values

Binary Subtraction

Two n-bit values

• Binary, two 1-bit values

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

• Binary, two 1-bit values

• Binary, two *n*-bit values

1110
x 1011
1110
1110-
0000
1110
10011010

	1000
X	0110
	0000
1	000-
10	00
000	0
011	0000

• Binary, two *n*-bit values

```
10110001
    x 01101101
       10110001
      0000000
     10110001--
   10110001---
  0000000----
 10110001----
10110001----
0000000----
100101101011101
```

Exercises - 1

Perform the following operations in binary:

A)
$$(178)_{10} + (82)_{10} = ?$$
 (show your work)

B)
$$(138)_{10} - (59)_{10} = ?$$
 (show your work)

C)
$$(48)_{10} * (35)_{10} = ?$$
 (show your work)

Deadline: October 1, 2022 @ 11:59 PM

Homework 2

- 1) What are octal and hexadecimal number systems are used for?
- 2) Convert the following numbers, and show your work:

A)
$$(D7.2E)_{16} = (?)_{8}$$

B)
$$(F16.13)_{16} = (?)_2$$

C)
$$(101000.001)_{2} = (?)_{10}$$

D)
$$(38.04)_{10} = (?)_2$$

3) Perform the following operations in binary, and show your work:

A)
$$(61)_8 + (61)_{10}$$

B)
$$(14)_{10} - (7)_{10}$$

$$(73)_8 * (AD)_{16}$$

Deadline: October 7, 2022 @ 11:59 PM