EEL7052-Sistemas Lineares

Avaliação de Recuperação - Semestre 2016/1 - 18/07/2016 Departamento de Engenharia Elétrica e Eletrônica - UFSC Profs.Bartolomeu F. Uchôa Filho e Márcio Holsbach Costa

1) Para o circuito a seguir, com V'z(0)=2V; Vz(0)=-3V e respectiva equação diferencial

$$\frac{d^{2}v_{z}(t)}{dt^{2}} + 3\frac{dv_{z}(t)}{dt} + v_{z}(t) = \frac{dv_{x}(t)}{dt} + v_{x}(t)$$

- a) Determine a tensão $V_z(t)$ para $V_x(t) = e^{-t}u(t)$, identificando a resposta ao estado nulo e a resposta à entrada nula.
- b) Determine a função transferência entre $V_x(t)$ e $V_z(t)$.
- c) Determine a resposta ao impulso referente a $V_x(t)$ e $V_z(t)$.
- 2) Determine a representação de Fourier de uma onda senoidal de amplitude unitária e período de 1 segundo processada por um retificador de onda completa ideal.
- 3) Considere o sistema discreto causal implementado conforme o circuito abaixo, em que b_0 , b_1 , b_2 , a_1 e a_2 são parâmetros com valores reais. Responda o que se pede abaixo em função desses parâmetros.

- a. Escreva a equação de diferenças deste sistema.
- b. Obtenha a sua função de sistema (função de transferência), H(z);
- c. Determine as faixas de valores dos parâmetros para que o sistema seja BIBO estável.
- d. De agora em diante, considere que $b_0 = 0$, $b_1 = 1$, $b_2 = -1$, $a_1 = 3/4$ e $a_2 = 1/8$. Especifique a função de transferência, H(z), e determine e esboce no plano complexo os seus polos (×) e zeros (o). Verifique também a sua estabilidade (justifique).
- e. Obtenha a resposta ao impulso do sistema.

- f. Obtenha as funções módulo (dB) e fase (radianos) da resposta em frequência do sistema.
- g. Identifique se o sistema é um filtro passa-baixas, passa-altas, passa-faixa ou rejeita-faixa (justifique).
- 4) Considere o sistema LIT contínuo no tempo com função de transferência dada abaixo.

$$H(s) = \frac{10^5 s(s - 10)}{(s - 1)(s^2 + 100s + 10^4)}$$

- a. Obtenha o diagrama de Bode (amplitude apenas). Apresente todos os pontos de quebra que caracterizam a curva.
- b. Para o sinal $x(t) = \cos(10^4 t)$ na entrada do sistema, indique o sinal de saída, y(t), aproximado: a) $y(t) = 10\cos(10^4 t \pi/2)$, b) $y(t) = 10\cos(10^4 t + \pi/2)$, c) $y(t) = 100\cos(10^4 t \pi/2)$, d) $y(t) = 100\cos(10^4 t + \pi/2)$, e) $y(t) = 10\cos(10t + \pi/2)$. Selecione uma alternativa e justifique sua resposta.

Transformadas

Transformada de Laplace	$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$	$x(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} X(s)e^{st} ds$
Série de Fourier em tempo contínuo	$x(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t)$ $+ \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t)$	$a_0 = \frac{1}{T_o} \int_{T_o} x(t)dt$ $a_n = \frac{2}{T_o} \int_{T_o} x(t) \cos(n\omega_o t)dt$ $b_n = \frac{2}{T_o} \int_{T_o} x(t) \sin(n\omega_o t)dt$
	$x(t) = \sum_{n = -\infty}^{\infty} D_n e^{jn\omega_o t}$	$D_n = \frac{1}{T_o} \int_{T_o} x(t) e^{-jn\omega_o t} dt$
Transformada de Fourier em tempo contínuo	$x_{T_o}(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_o t}$	$D_{n} = \frac{1}{T_{o}} \int_{-T_{o}/2}^{T_{o}/2} x_{T_{o}}(t) e^{-jn\omega_{o}t} dt$
Série de Fourier em tempo discreto (Ω_o = $2\pi/N_o$)	$x[n] = \sum_{r=0}^{N-1} D_r e^{jr\Omega_o n}$	$D_{r} = \frac{1}{N_{o}} \sum_{n=0}^{N_{o}-1} x[n] e^{-jr\Omega_{o}n}$
Transformada de Fourier em tempo discreto	$x_{N_o}[n] = \sum_{r=\langle N_o \rangle} D_r e^{jr\Omega_o n}$	$D_r = \frac{1}{N_o} \sum_{n = -\infty}^{\infty} x[n] e^{-jr\Omega_o n}$
Transformada z	$X[z] = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$	$x[n] = \frac{1}{2\pi j} \oint X[z] z^{n-1} dz$

$$\int e^{ax} dx = \frac{e^{ax}}{a}$$

$$\int xe^{ax} dx = \frac{e^{ax}}{a} \left(x - \frac{1}{a}\right)$$

$$\int sen(ax) dx = -\frac{1}{a} cos(ax)$$

$$\int cos(ax) dx = \frac{1}{a} sen(ax)$$

$$\int x \cdot sen(ax) dx = \frac{1}{a^2} \left[sen(ax) - ax cos(ax)\right]$$

$$\int x \cdot cos(ax) dx = \frac{1}{a^2} \left[cos(ax) + ax sen(ax)\right]$$

$$\int e^{ax} \cdot sen(bx) dx = \frac{e^{ax}}{a^2} \left[a cos(bx) - b cos(bx)\right]$$

$$\int e^{ax} \cdot cos(bx) dx = \frac{e^{ax}}{a^2} \left[a cos(bx) + b sen(bx)\right]$$

$$\int e^{ax} \cdot cos(bx) dx = \frac{e^{ax}}{a^2} \left[a cos(bx) + b sen(bx)\right]$$

FORMULÁRIO

Transformada z e propriedades

X(n)	X(z)
δ (n-m)	z ^{-m}
u(n)	z/(z-1)
n.u(n)	z/(z-1) ²
n ² .u(n)	z(z+1)/(z-1) ³
$\gamma^n u(n)$	z/z-γ
$\gamma^{n-1}u(n-1)$	1/z-γ
n.γ ⁿ u(n)	γ z/(z-γ) ²
$ \gamma ^n \cos(\beta n).u(n)$	$z(z- \gamma \cos(\beta))$.
	z^2 -(2 γ cos(β))z+ γ ²
$ \gamma ^n$ sen(β n).u(n)	$z y sen(\beta)$.
	$z^2-(2 \gamma \cos(\beta))z+ \gamma ^2$

Domínio do tempo	Domínio de z
x(n)	∞
	$X(z)=\sum x(n) z^{-n}$
	n=-∞
x(n-m)	z ^{-m} X(z)
∞	
$x_1(n) * x_2(n) = \sum x_1(m)x_2(n-m)$	$X_1(z).X_2(z)$
m=-∞	
Transf. z unilateral:	
x(n)	8
	$X(z)=\sum x(n) z^{-n}$
	n=0
x(n-1)	$z^{-1} X(z) + x(-1)$
x(n-2)	$z^{-2} X(z) + z^{-1}x(-1) + x(-2)$

Pares de transformadas de Fourier

x(t)	Χ(jω)
δ(t)	1
1	2πδ(ω)
u(t)	$\pi\delta(\omega)$ + 1/(j ω)
$cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$sen(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
ret(t/τ)	τ.sinc(ωτ/2)
(W/π) .sinc(Wt)	ret(ω/2W)
e ^{-at} u(t), a>0	1/(a+jω)
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	

Propriedades da transformada de Fourier

x(t)	Χ(jω)
y(t)	Υ(jω)
a.x(t)+b.y(t)	a.X(jω)+ b.Y(jω)
x(t-τ)	e ^{-jωτ} .Χ(jω)
e ^{jWt} .x(t)	X(j(ω-W))
x*(t)	X*(-jω)
x(at)	$\frac{1}{ a }X\left(\frac{\boldsymbol{\omega}}{a}\right)$
x(t)*y(t)	Χ(jω).Υ(jω)
x(t).y(t)	(1/2π).X(jω)*Y(jω)
$\frac{d}{dt}x(t)$	jω.X(jω)
$\int_{-\infty}^{t} x(\tau)d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$

Transformada de Laplace

f(t)	F(s)
δ(t)	1
u(t)	1/s
t.u(t)	1/s ²
e ^{-at} u(t)	1/s+a, RC: Re{s} ≥ -a
-e ^{-at} u(-t)	1/s+a, RC: Re{s} ≤ -a
sen(bt)u(t)	b/s ² +b ²
cos(bt)u(t)	s/s ² +b ²
$r.e^{-at}\cos(bt+\theta).u(t)$	0,5re ^{jθ}
	$\overline{s+a-jb}$
	$0.5re^{-j\theta}$
	$+\frac{1}{s+a+jb}$

Domínio do tempo	Domínio de s
f(t)	F(s)
df(t)	$sF(s) - f(0^-)$
dt	
d²f(t)	$s^2F(s) - sf(0^-) - df(0^-)$
dt ²	dt
e ^{-at} f(t)	F(s+a)
$f_1(t)*f_2(t)$	$F_1(s).F_2(s)$
f(t-a)u(t-a), a≥0	e ^{-as} F(s)
f(at)	1/a. F(s/a)
t.f(t)	<u>-dF(s)</u>
	ds