Algorithmes d'apprentissage et bornes sur le risque pour l'approche de régression à la prédiction de structures

Sébastien Giguère, François Laviolette, Mario Marchand, and Khadidja Sylla

Université Laval, Québec (QC)

septembre 2013

Plan

- 1 De la prédiction de sorties structurées à la régression
- 2 Une première borne et son algorithme d'apprentissage
- 3 Une deuxième borne et son algorithme d'apprentissage
- 4 Résultats empiriques
- 5 Conclusion

Plan

- 1 De la prédiction de sorties structurées à la régression
- 2 Une première borne et son algorithme d'apprentissage
- 3 Une deuxième borne et son algorithme d'apprentissage
- 4 Résultats empiriques
- 5 Conclusion

- Pour chaque exemple (x, y): l'entrée x et la sortie y sont des objets structurés.
- Caractéristiques d'entrée : $\forall x \in \mathcal{X} : x \mapsto X(x) \in \mathcal{H}_{\mathcal{X}}$ (RKHS)
- Produit scalaire : $\langle X(x)|X(x')\rangle = K_{\mathcal{X}}(x,x')$ (noyau d'entrée)
- Caractéristiques de sortie : $\forall y \in \mathcal{Y} : y \mapsto Y(y) \in \mathcal{H}_{\mathcal{Y}}$ (RKHS)
- Produit scalaire : $\langle Y(y)|Y(y')\rangle = K_{\mathcal{Y}}(y,y')$ (noyau de sortie)
- Norme Euclidienne (au carré) $||Y(y)||^2 \stackrel{\text{def}}{=} \langle Y(y)|Y(y)\rangle = K_{\mathcal{Y}}(y,y)$

- Pour chaque exemple (x, y): l'entrée x et la sortie y sont des objets structurés.
- Caractéristiques d'entrée : $\forall x \in \mathcal{X} : x \mapsto X(x) \in \mathcal{H}_{\mathcal{X}}$ (RKHS)
- Produit scalaire : $\langle X(x)|X(x')\rangle = K_{\mathcal{X}}(x,x')$ (noyau d'entrée)
- Caractéristiques de sortie : $\forall y \in \mathcal{Y} : y \mapsto Y(y) \in \mathcal{H}_{\mathcal{Y}}$ (RKHS)
- Produit scalaire : $\langle Y(y)|Y(y')\rangle = K_{\mathcal{Y}}(y,y')$ (noyau de sortie)
- Norme Euclidienne (au carré) $||Y(y)||^2 \stackrel{\text{def}}{=} \langle Y(y)|Y(y)\rangle = K_{\mathcal{Y}}(y,y)$

- Pour chaque exemple (x, y): l'entrée x et la sortie y sont des objets structurés.
- Caractéristiques d'entrée : $\forall x \in \mathcal{X} : x \mapsto X(x) \in \mathcal{H}_{\mathcal{X}}$ (RKHS)
- Produit scalaire : $\langle X(x)|X(x')\rangle = K_{\mathcal{X}}(x,x')$ (noyau d'entrée)
- Caractéristiques de sortie : $\forall y \in \mathcal{Y} : y \mapsto Y(y) \in \mathcal{H}_{\mathcal{Y}}$ (RKHS)
- Produit scalaire : $\langle Y(y)|Y(y')\rangle = K_{\mathcal{Y}}(y,y')$ (noyau de sortie)
- Norme Euclidienne (au carré) $||Y(y)||^2 \stackrel{\text{def}}{=} \langle Y(y)|Y(y)\rangle = K_{\mathcal{Y}}(y,y)$.

- Pour chaque exemple (x, y): l'entrée x et la sortie y sont des objets structurés.
- Caractéristiques d'entrée : $\forall x \in \mathcal{X} : x \mapsto X(x) \in \mathcal{H}_{\mathcal{X}}$ (RKHS)
- Produit scalaire : $\langle X(x)|X(x')\rangle = K_{\mathcal{X}}(x,x')$ (noyau d'entrée)
- Caractéristiques de sortie : $\forall y \in \mathcal{Y} : y \mapsto Y(y) \in \mathcal{H}_{\mathcal{Y}}$ (RKHS)
- Produit scalaire : $\langle Y(y)|Y(y')\rangle = K_{\mathcal{Y}}(y,y')$ (noyau de sortie)
- Norme Euclidienne (au carré) $||Y(y)||^2 \stackrel{\text{def}}{=} \langle Y(y)|Y(y)\rangle = K_{\mathcal{Y}}(y,y)$.

- Pour chaque exemple (x, y): l'entrée x et la sortie y sont des objets structurés.
- Caractéristiques d'entrée : $\forall x \in \mathcal{X} : x \mapsto X(x) \in \mathcal{H}_{\mathcal{X}}$ (RKHS)
- Produit scalaire : $\langle X(x)|X(x')\rangle = K_{\mathcal{X}}(x,x')$ (noyau d'entrée)
- Caractéristiques de sortie : $\forall y \in \mathcal{Y} : y \mapsto Y(y) \in \mathcal{H}_{\mathcal{Y}}$ (RKHS)
- Produit scalaire : $\langle Y(y)|Y(y')\rangle = K_{\mathcal{Y}}(y,y')$ (noyau de sortie)
- Norme Euclidienne (au carré) $||Y(y)||^2 \stackrel{\text{def}}{=} \langle Y(y)|Y(y)\rangle = K_{\mathcal{V}}(y,y)$.

- Le prédicteur W est un opérateur linéaire : $\mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$.
- $\mathbf{W}X(x)$ = vecteur de caractéristiques de sortie **prédit** pour l'entrée x
- La sortie prédite $y_w(x)$ pour l'entrée x est donnée pa

$$y_{\mathbf{w}}(x) \stackrel{\text{def}}{=} \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \|Y(y) - \mathbf{W}X(x)\|^2.$$

$$\mathbf{W}X(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} K_{\mathcal{X}}(x_j, x)$$

- Trouver $y_{\mathbf{w}}(x)$ est un **problème de pré-image** souvent \mathcal{NP} -difficile
- Utilisons une fonction de perte de régression qui ne dépend pas $y_{\mathbf{w}}(x)$

- Le prédicteur W est un opérateur linéaire : $\mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$.
- $\mathbf{W}X(x)$ = vecteur de caractéristiques de sortie **prédit** pour l'entrée x.
- La sortie prédite $y_{\mathbf{w}}(x)$ pour l'entrée x est donnée par

$$y_{\mathbf{w}}(x) \stackrel{\text{def}}{=} \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

ullet $y_{\sf w}(x)$ nécessite uniquement $K_{\mathcal X}$ et $K_{\mathcal Y}$ (à la place de X et Y) lorsque

$$\mathbf{W}X(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} K_{\mathcal{X}}(x_j, x)$$

- Trouver $y_{\mathbf{w}}(x)$ est un **problème de pré-image** souvent \mathcal{NP} -difficile
- Utilisons une fonction de perte de régression qui ne dépend pas $y_{\mathbf{w}}(x)$

- Le prédicteur W est un opérateur linéaire : $\mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$.
- $\mathbf{W}X(x)$ = vecteur de caractéristiques de sortie **prédit** pour l'entrée x.
- La sortie prédite $y_{\mathbf{w}}(x)$ pour l'entrée x est donnée par

$$y_{\mathbf{w}}(x) \stackrel{\text{def}}{=} \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \|Y(y) - \mathbf{W}X(x)\|^2.$$

$$\mathbf{W}X(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} K_{\mathcal{X}}(x_j, x)$$

- Trouver $y_{\mathbf{w}}(x)$ est un **problème de pré-image** souvent \mathcal{NP} -difficile.
- Utilisons une fonction de perte de régression qui ne dépend pas $y_{\mathbf{w}}(x)$

- Le prédicteur W est un opérateur linéaire : $\mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$.
- $\mathbf{W}X(x) = \text{vecteur de caractéristiques de sortie prédit pour l'entrée } x$.
- La sortie prédite $y_{\mathbf{w}}(x)$ pour l'entrée x est donnée par

$$y_{\mathbf{w}}(x) \stackrel{\text{def}}{=} \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

$$\mathbf{W}X(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} K_{\mathcal{X}}(x_j, x).$$

- Trouver $y_{\mathbf{w}}(x)$ est un **problème de pré-image** souvent \mathcal{NP} -difficile.
- Utilisons une fonction de perte de régression qui ne dépend pas $y_{\mathbf{w}}(x)$.

- Le prédicteur W est un opérateur linéaire : $\mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$.
- $\mathbf{W}X(x) = \text{vecteur de caractéristiques de sortie prédit pour l'entrée } x$.
- La sortie prédite $y_{\mathbf{w}}(x)$ pour l'entrée x est donnée par

$$y_{\mathbf{w}}(x) \stackrel{\text{def}}{=} \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

$$\mathbf{W}X(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} K_{\mathcal{X}}(x_j, x).$$

- Trouver $y_{\mathbf{w}}(x)$ est un **problème de pré-image** souvent \mathcal{NP} -difficile.
- Utilisons une fonction de perte de régression qui ne dépend pas $y_{\mathbf{w}}(x)$.

- Le prédicteur W est un opérateur linéaire : $\mathcal{H}_{\mathcal{X}} \to \mathcal{H}_{\mathcal{Y}}$.
- $\mathbf{W}X(x)$ = vecteur de caractéristiques de sortie **prédit** pour l'entrée x.
- La sortie prédite $y_{\mathbf{w}}(x)$ pour l'entrée x est donnée par

$$y_{\mathbf{w}}(x) \stackrel{\text{def}}{=} \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

$$\mathbf{W}X(x) = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} K_{\mathcal{X}}(x_j, x).$$

- Trouver $y_{\mathbf{w}}(x)$ est un **problème de pré-image** souvent \mathcal{NP} -difficile.
- Utilisons une fonction de perte de régression qui ne dépend pas $y_{\mathbf{w}}(x)$.

Fonction de perte du noyau de sortie et perte quadratique

 $\mathcal{K}_{\mathcal{Y}}$ induit une fonction de perte du noyau de sortie $\mathcal{L}_{\mathcal{K}_{\mathcal{Y}}}$ définie par

$$L_{\mathcal{K}_{\mathcal{Y}}}(y, y') \stackrel{\text{def}}{=} \frac{1}{2} \|Y(y) - Y(y')\|^2$$

$$= \frac{1}{2} \left[K_{\mathcal{Y}}(y, y) + K_{\mathcal{Y}}(y', y') \right] - K_{\mathcal{Y}}(y, y').$$

Lemme

Pour tout prédicteur **W**, pour tout $(x, y) \in \mathcal{X} \times \mathcal{Y}$, nous avons

$$L_{K_{\mathcal{Y}}}(y_{\mathsf{w}}(x), y) \leq 2 \|Y(y) - \mathsf{W}X(x)\|^{2}$$

Notez que $||Y(y) - \mathbf{W}X(x)||^2$ ne dépend pas de $y_{\mathbf{w}}(x)$.

Fonction de perte du noyau de sortie et perte quadratique

 $\mathcal{K}_{\mathcal{Y}}$ induit une fonction de perte du noyau de sortie $\mathcal{L}_{\mathcal{K}_{\mathcal{Y}}}$ définie par

$$L_{\mathcal{K}_{\mathcal{Y}}}(y,y') \stackrel{\text{def}}{=} \frac{1}{2} \|Y(y) - Y(y')\|^2$$
$$= \frac{1}{2} \left[\mathcal{K}_{\mathcal{Y}}(y,y) + \mathcal{K}_{\mathcal{Y}}(y',y') \right] - \mathcal{K}_{\mathcal{Y}}(y,y').$$

Lemme

Pour tout prédicteur **W**, pour tout $(x,y) \in \mathcal{X} \times \mathcal{Y}$, nous avons

$$L_{K_{\mathcal{V}}}(y_{\mathbf{w}}(x), y) \leq 2 \|Y(y) - \mathbf{W}X(x)\|^2.$$

Notez que $||Y(y) - \mathbf{W}X(x)||^2$ ne dépend pas de $y_{\mathbf{w}}(x)$.

Démonstration.

De l'inégalité triangulaire, nous avons

$$||Y(y) - Y(y_{\mathbf{w}}(x))|| \le ||Y(y) - \mathbf{W}X(x)|| + ||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)||$$

Nous avons aussi
$$||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)|| \le ||Y(y) - \mathbf{W}X(x)||$$
.

Si $\mathcal{K}_{\mathcal{Y}}$ est tel que la **perte de prédiction** $L(y,y') \leq L_{\mathcal{K}_{Y}}(y,y')$, alors

$$L(y_{\mathsf{w}}(x), y) \leq L_{\mathcal{K}_{\mathcal{Y}}}(y_{\mathsf{w}}(x), y) \leq 2 \|Y(y) - \mathbf{W}X(x)\|^{2}$$

Alors

$$\underset{(x,y)\sim D}{\mathbf{E}} \|Y(y) - \mathbf{W}X(x)\|^2 \text{ petit} \implies \underset{(x,y)\sim D}{\mathbf{E}} L(y_{\mathbf{w}}(x), y) \text{ petit}.$$

Démonstration.

De l'inégalité triangulaire, nous avons

$$||Y(y) - Y(y_{\mathbf{w}}(x))|| \le ||Y(y) - \mathbf{W}X(x)|| + ||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)||$$

Nous avons aussi
$$||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)|| \le ||Y(y) - \mathbf{W}X(x)||$$
.

Si $K_{\mathcal{Y}}$ est tel que la **perte de prédiction** $L(y, y') \leq L_{K_{Y}}(y, y')$, alors

$$L(y_{\mathbf{w}}(x), y) \leq L_{K_{\mathcal{Y}}}(y_{\mathbf{w}}(x), y) \leq 2 \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

Alors

$$\underset{(x,y)\sim D}{\mathsf{E}} \|Y(y) - \mathsf{W}X(x)\|^2 \text{ petit} \implies \underset{(x,y)\sim D}{\mathsf{E}} L(y_{\mathsf{w}}(x),y) \text{ petit}.$$

Démonstration.

De l'inégalité triangulaire, nous avons

$$||Y(y) - Y(y_{\mathbf{w}}(x))|| \le ||Y(y) - \mathbf{W}X(x)|| + ||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)||$$

Nous avons aussi
$$||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)|| \le ||Y(y) - \mathbf{W}X(x)||$$
.

Si $K_{\mathcal{Y}}$ est tel que la **perte de prédiction** $L(y, y') \leq L_{K_{Y}}(y, y')$, alors

$$L(y_{\mathbf{w}}(x), y) \leq L_{K_{\mathcal{Y}}}(y_{\mathbf{w}}(x), y) \leq 2 \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

Alors

$$\underset{(x,y)\sim D}{\mathsf{E}} \|Y(y) - \mathsf{W}X(x)\|^2 \text{ petit} \implies \underset{(x,y)\sim D}{\mathsf{E}} L(y_{\mathsf{w}}(x), y) \text{ petit}.$$

Démonstration.

De l'inégalité triangulaire, nous avons

$$||Y(y) - Y(y_{\mathbf{w}}(x))|| \le ||Y(y) - \mathbf{W}X(x)|| + ||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)||$$

Nous avons aussi
$$||Y(y_{\mathbf{w}}(x)) - \mathbf{W}X(x)|| \le ||Y(y) - \mathbf{W}X(x)||$$
.

Si $K_{\mathcal{Y}}$ est tel que la **perte de prédiction** $L(y, y') \leq L_{K_{Y}}(y, y')$, alors

$$L(y_{\mathbf{w}}(x), y) \leq L_{K_{\mathcal{Y}}}(y_{\mathbf{w}}(x), y) \leq 2 \|Y(y) - \mathbf{W}X(x)\|^{2}.$$

Alors

$$\underset{(x,y)\sim D}{\mathsf{E}} \|Y(y) - \mathsf{W}X(x)\|^2 \text{ petit} \implies \underset{(x,y)\sim D}{\mathsf{E}} L(y_{\mathsf{w}}(x),y) \text{ petit}.$$

Minimiser
$$\underset{(x,y)\sim D}{\mathbf{E}} \|Y(y) - \mathbf{W}X(x)\|^2$$
 à la place de $\underset{(x,y)\sim D}{\mathbf{E}} L(y_{\mathbf{w}}(x),y)$.

AVANTAGE

• Pas nécessaire de calculer $y_{\mathbf{w}}(x)$ pour chaque x de l'échantillon d'apprentissage et pour chaque mise à jour de \mathbf{W} : un algorithme d'apprentissage beaucoup plus rapide.

DÉSAVANTAGES

- Inconsistance : il existe *D* tel que le minimiseur du risque quadratique possède un risque de prédiction plus élevé que le minimiseur du risque de prédiction (résultat connu en classification binaire).
- Pour certains risques de prédiction L, il peut s'avérer difficile de trouver $K_{\mathcal{Y}}$ tel que $L(y,y') \leq L_{K_{\mathcal{Y}}}(y,y')$ (avec un majorant précis)

Minimiser
$$\underset{(x,y)\sim D}{\mathbf{E}} \|Y(y) - \mathbf{W}X(x)\|^2$$
 à la place de $\underset{(x,y)\sim D}{\mathbf{E}} L(y_{\mathbf{w}}(x),y)$.

AVANTAGE:

• Pas nécessaire de calculer $y_{\mathbf{w}}(x)$ pour chaque x de l'échantillon d'apprentissage et pour chaque mise à jour de \mathbf{W} : un algorithme d'apprentissage beaucoup plus rapide.

DÉSAVANTAGES

- Inconsistance : il existe *D* tel que le minimiseur du risque quadratique possède un risque de prédiction plus élevé que le minimiseur du risque de prédiction (résultat connu en classification binaire).
- Pour certains risques de prédiction L, il peut s'avérer difficile de trouver $K_{\mathcal{Y}}$ tel que $L(y, y') \leq L_{K_{\mathcal{Y}}}(y, y')$ (avec un majorant précis)

Minimiser
$$\underset{(x,y)\sim D}{\mathbf{E}} \|Y(y) - \mathbf{W}X(x)\|^2$$
 à la place de $\underset{(x,y)\sim D}{\mathbf{E}} L(y_{\mathbf{w}}(x),y)$.

AVANTAGE:

• Pas nécessaire de calculer $y_{\mathbf{w}}(x)$ pour chaque x de l'échantillon d'apprentissage et pour chaque mise à jour de \mathbf{W} : un algorithme d'apprentissage beaucoup plus rapide.

DÉSAVANTAGES :

- Inconsistance : il existe *D* tel que le minimiseur du risque quadratique possède un risque de prédiction plus élevé que le minimiseur du risque de prédiction (résultat connu en classification binaire).
- Pour certains risques de prédiction L, il peut s'avérer difficile de trouver $K_{\mathcal{Y}}$ tel que $L(y,y') \leq L_{K_{\mathcal{Y}}}(y,y')$ (avec un majorant précis)

Minimiser
$$\underset{(x,y)\sim D}{\mathbf{E}} \|Y(y) - \mathbf{W}X(x)\|^2$$
 à la place de $\underset{(x,y)\sim D}{\mathbf{E}} L(y_{\mathbf{w}}(x),y)$.

AVANTAGE:

• Pas nécessaire de calculer $y_{\mathbf{w}}(x)$ pour chaque x de l'échantillon d'apprentissage et pour chaque mise à jour de \mathbf{W} : un algorithme d'apprentissage beaucoup plus rapide.

DÉSAVANTAGES :

- Inconsistance : il existe *D* tel que le minimiseur du risque quadratique possède un risque de prédiction plus élevé que le minimiseur du risque de prédiction (résultat connu en classification binaire).
- Pour certains risques de prédiction L, il peut s'avérer difficile de trouver $K_{\mathcal{Y}}$ tel que $L(y,y') \leq L_{K_{\mathcal{Y}}}(y,y')$ (avec un majorant précis)

Minimiser
$$\underset{(x,y)\sim D}{\mathbf{E}} \|Y(y) - \mathbf{W}X(x)\|^2$$
 à la place de $\underset{(x,y)\sim D}{\mathbf{E}} L(y_{\mathbf{w}}(x),y)$.

AVANTAGE:

• Pas nécessaire de calculer $y_{\mathbf{w}}(x)$ pour chaque x de l'échantillon d'apprentissage et pour chaque mise à jour de \mathbf{W} : un algorithme d'apprentissage beaucoup plus rapide.

DÉSAVANTAGES :

- Inconsistance : il existe *D* tel que le minimiseur du risque quadratique possède un risque de prédiction plus élevé que le minimiseur du risque de prédiction (résultat connu en classification binaire).
- Pour certains risques de prédiction L, il peut s'avérer difficile de trouver $K_{\mathcal{Y}}$ tel que $L(y, y') \leq L_{K_{\mathcal{Y}}}(y, y')$ (avec un majorant précis).

Plan

- 1 De la prédiction de sorties structurées à la régression
- 2 Une première borne et son algorithme d'apprentissage
- 3 Une deuxième borne et son algorithme d'apprentissage
- 4 Résultats empiriques
- 5 Conclusion

Une première borne sur le risque

Si $L_{K_{\mathcal{Y}}}$ majore L, on a $L(y_{\mathbf{w}}(x), y) \leq 2\|Y(y) - \mathbf{W}X(x)\|^2$. Donc $\forall a \geq 1$,

$$L(y_{\mathbf{w}}(x), y) \leq \frac{ae}{e-1} \left(1 - e^{-\frac{1}{a}L(y_{\mathbf{w}}(x), y)} \right) \leq \frac{ae}{e-1} \left(1 - e^{-\frac{2}{a}\|Y(y) - \mathbf{w}X(x)\|^2} \right)$$

En majorant l'espérance sur (x, y) du terme de droite, on obtient

Theorem

Soit $K_{\mathcal{X}}(x,x) = 1 \ \forall x \in \mathcal{X}$. Soit $\mathcal{H}_{\mathcal{X}}$ de dimension finie. Avec probabilité $\geq 1 - \delta$ sur tous les échantillons $S \sim D^m$, nous avons simultanément pour tout \mathbf{W} ,

$$\mathop{\mathbf{E}}_{(\mathsf{x}, \mathsf{y}) \sim D} L(y_{\mathsf{w}}(\mathsf{x}), \mathsf{y}) \, \leq \, \frac{5e}{e - 1} \left[1 - e^{-\frac{1}{m} \left(2 \sum_{i = 1}^{m} \| Y(y_i) - \mathsf{w} X(\mathsf{x}_i) \|^2 + \frac{9}{8} \| \mathsf{w} \|^2 + \ln \frac{1}{\delta} \right)} \right]$$

Une première borne sur le risque

Si $L_{K_{\mathcal{Y}}}$ majore L, on a $L(y_{\mathbf{w}}(x), y) \leq 2\|Y(y) - \mathbf{W}X(x)\|^2$. Donc $\forall a \geq 1$,

$$L(y_{\mathbf{w}}(x), y) \leq \frac{ae}{e-1} \left(1 - e^{-\frac{1}{a}L(y_{\mathbf{w}}(x), y)} \right) \leq \frac{ae}{e-1} \left(1 - e^{-\frac{2}{a}\|Y(y) - \mathbf{W}X(x)\|^2} \right)$$

En majorant l'espérance sur (x, y) du terme de droite, on obtient

Theorem

Soit $K_{\mathcal{X}}(x,x) = 1 \ \forall x \in \mathcal{X}$. Soit $\mathcal{H}_{\mathcal{X}}$ de dimension finie. Avec probabilité $\geq 1 - \delta$ sur tous les échantillons $S \sim D^m$, nous avons simultanément pour tout \mathbf{W} ,

$$\mathop{\mathbf{E}}_{(\mathsf{x}, \mathsf{y}) \sim D} L(y_{\mathsf{w}}(\mathsf{x}), \mathsf{y}) \, \leq \, \frac{5e}{e-1} \left[1 - e^{-\frac{1}{m} \left(2 \sum_{i=1}^{m} \| Y(y_i) - \mathsf{w} X(\mathsf{x}_i) \|^2 + \frac{9}{8} \| \mathsf{w} \|^2 + \ln \frac{1}{\delta} \right)} \right]$$

Une première borne sur le risque

Si $L_{K_{\mathcal{Y}}}$ majore L, on a $L(y_{\mathbf{w}}(x), y) \leq 2\|Y(y) - \mathbf{W}X(x)\|^2$. Donc $\forall a \geq 1$,

$$L(y_{\mathbf{w}}(x), y) \leq \frac{ae}{e-1} \left(1 - e^{-\frac{1}{a}L(y_{\mathbf{w}}(x), y)} \right) \leq \frac{ae}{e-1} \left(1 - e^{-\frac{2}{a}\|Y(y) - \mathbf{W}X(x)\|^2} \right)$$

En majorant l'espérance sur (x, y) du terme de droite, on obtient

Theorem

Soit $K_{\mathcal{X}}(x,x) = 1 \ \forall x \in \mathcal{X}$. Soit $\mathcal{H}_{\mathcal{X}}$ et $\mathcal{H}_{\mathcal{Y}}$ de dimension finie. Avec probabilité $\geq 1 - \delta$ sur tous les échantillons $S \sim D^m$, nous avons simultanément pour tout \mathbf{W} ,

$$\mathop{\mathbf{E}}_{(x,y) \sim D} L(y_{\mathbf{w}}(x),y) \, \leq \, \frac{5e}{e-1} \left[1 - e^{-\frac{1}{m} \left(2 \sum_{i=1}^m \| Y(y_i) - \mathbf{W} X(x_i) \|^2 + \frac{9}{8} \| \mathbf{W} \|^2 + \ln \frac{1}{\delta} \right)} \right] \, .$$

Le minimiseur de cette borne

Le prédicteur minimisant cette borne est celui minimisant la fonctionnelle proposée par Cortes, Mohri, et Weston (2007) :

$$C\sum_{i=1}^{m}\|Y(y_i)-\mathbf{W}X(x_i)\|^2+\|\mathbf{W}\|^2,$$

pour C>0. Le minimiseur \mathbf{W}^* est unique (si $C<\infty$) et donné par

$$\mathbf{W}^* = \sum_{i=1}^m \sum_{j=1}^m Y(y_i) \left(\mathbf{K}_{\mathcal{X}} + \frac{1}{C} \mathbf{I} \right)_{i,j}^{-1} X^{\mathsf{T}}(x_j),$$

où $X^{\mathsf{T}}(x)$ denote la transpose de X(x), $\mathbf{K}_{\mathcal{X}}$ denote la matrice du noyau d'entrée et \mathbf{I} denote la matrice identité $m \times m$.

Note : \mathbf{W}^* est une combinaison linéaire d'operateurs $Y(y_i)X^\intercal(x_j)$

Le minimiseur de cette borne

Le prédicteur minimisant cette borne est celui minimisant la fonctionnelle proposée par Cortes, Mohri, et Weston (2007) :

$$C\sum_{i=1}^{m}\|Y(y_i)-\mathbf{W}X(x_i)\|^2+\|\mathbf{W}\|^2,$$

pour C>0. Le minimiseur \mathbf{W}^* est unique (si $C<\infty$) et donné par

$$\mathbf{W}^* = \sum_{i=1}^m \sum_{j=1}^m Y(y_i) \left(\mathbf{K}_{\mathcal{X}} + \frac{1}{C} \mathbf{I} \right)_{i,j}^{-1} X^{\mathsf{T}}(x_j),$$

où $X^{\mathsf{T}}(x)$ denote la transpose de X(x), $\mathbf{K}_{\mathcal{X}}$ denote la matrice du noyau d'entrée et \mathbf{I} denote la matrice identité $m \times m$.

Note : \mathbf{W}^* est une combinaison linéaire d'operateurs $Y(y_i)X^{\mathsf{T}}(x_j)$

Plan

- 1 De la prédiction de sorties structurées à la régression
- 2 Une première borne et son algorithme d'apprentissage
- 3 Une deuxième borne et son algorithme d'apprentissage
- 4 Résultats empiriques
- 5 Conclusion

Combinaisons linéaires d'opérateurs à deux exemples

Considérons une combinaison linéaire arbitraire des opérateurs $Y(y_i)X^{T}(x_j)$:

$$\mathbf{W} = \sum_{i=1}^m \sum_{j=1}^m Y(y_i) A_{i,j} X^{\mathsf{T}}(x_j),$$

La perte quadratique $||Y(y) - \mathbf{W}X(x)||^2$ est maintenant donnée par

$$\left|Y(y) - \sum_{i=1}^{m} \sum_{j=1}^{m} A_{i,j} K_{\mathcal{X}}(x_j, x) Y(y_i)\right|^2 \stackrel{\text{def}}{=} R(\mathbf{A}, x, y).$$

Soit

$$R(\mathbf{A}) \stackrel{\text{def}}{=} \underset{(x,y) \sim D}{\mathbf{E}} R(\mathbf{A}, x, y) \quad ; \quad R(\mathbf{A}, S) = \frac{1}{m} \sum_{i=1}^{m} R(\mathbf{A}, x_i, y_i)$$

Combinaisons linéaires d'opérateurs à deux exemples

Considérons une combinaison linéaire arbitraire des opérateurs $Y(y_i)X^{\mathsf{T}}(x_j)$:

$$\mathbf{W} = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} X^{\mathsf{T}}(x_j),$$

La perte quadratique $||Y(y) - \mathbf{W}X(x)||^2$ est maintenant donnée par

$$\left\|Y(y) - \sum_{i=1}^{m} \sum_{j=1}^{m} A_{i,j} K_{\mathcal{X}}(x_j, x) Y(y_i)\right\|^2 \stackrel{\text{def}}{=} R(\mathbf{A}, x, y).$$

Soit

$$R(\mathbf{A}) \stackrel{\text{def}}{=} \underset{(x,y)\sim D}{\mathbf{E}} R(\mathbf{A}, x, y) \quad ; \quad R(\mathbf{A}, S) = \frac{1}{m} \sum_{i=1}^{m} R(\mathbf{A}, x_i, y_i)$$

Combinaisons linéaires d'opérateurs à deux exemples

Considérons une combinaison linéaire arbitraire des opérateurs $Y(y_i)X^{T}(x_j)$:

$$\mathbf{W} = \sum_{i=1}^{m} \sum_{j=1}^{m} Y(y_i) A_{i,j} X^{T}(x_j),$$

La perte quadratique $||Y(y) - \mathbf{W}X(x)||^2$ est maintenant donnée par

$$\left\|Y(y) - \sum_{i=1}^{m} \sum_{j=1}^{m} A_{i,j} K_{\mathcal{X}}(x_j, x) Y(y_i)\right\|^2 \stackrel{\text{def}}{=} R(\mathbf{A}, x, y).$$

Soit

$$R(\mathbf{A}) \stackrel{\text{def}}{=} \underset{(x,y)\sim D}{\mathbf{E}} R(\mathbf{A}, x, y) \quad ; \quad R(\mathbf{A}, S) = \frac{1}{m} \sum_{i=1}^{m} R(\mathbf{A}, x_i, y_i)$$

Une borne PAC-Bayes avec compression d'échantillon

Theorem

Avec probabilité $\geq 1-\delta$ sur tous les échantillons $S\sim D^m$, on a simultanément pour tout ${\bf A}$

$$R(\mathbf{A}) \leq R(\mathbf{A}, S) + \sqrt{\frac{2By(1+\kappa B\chi)^2}{2(m-4)}} \left[20 + \ln\left(\frac{8\sqrt{m}}{\delta}\right)\right].$$

avec $|K_{\mathcal{Y}}(y, y')| \leq B_{\mathcal{Y}}$ et $|K_{\mathcal{X}}(x, x')| \leq B_{\mathcal{X}}$ et

$$A_{i,j} = \kappa(q_{i,j}^+ - q_{i,j}^-)$$
 avec $\sum_{i=1}^m \sum_{j=1}^m (q_{i,j}^+ + q_{i,j}^-) = 1$.

Valide même lorsque $\mathcal{H}_{\mathcal{X}}$ sont $\mathcal{H}_{\mathcal{Y}}$ sont des RKHS de dimension infini.

 $q_{i,j}^{\pm}$ est le poids assigné au predicteur $\pm Y(y_i)X^{\intercal}(x_j)$. Alors

$$R(\mathbf{A}, x, y) = \sum_{\mathbf{i} \in \mathcal{I}} \sum_{\mathbf{j} \in \mathcal{I}} \sum_{s \in \mathcal{W}} \sum_{t \in \mathcal{W}} q_{\mathbf{i}}^{s} q_{\mathbf{j}}^{t} \ell_{\mathbf{i}, \mathbf{j}}^{s, t}(x, y)$$

où $\mathcal{I}\stackrel{\mathrm{def}}{=}\{1,\ldots,m\}^2$ est l'ensemble des paires d'indices et $\mathcal{W}\stackrel{\mathrm{def}}{=}\{-1,+1\}$. Puisqu'il s'agit d'un risque de Gibbs, nous pouvons utiliser PAC-Bayes. Le prior \mathbf{p} est uniforme sur $\mathcal{I}\times\mathcal{W}$ et \mathbf{q} est quasi uniforme sur $\mathcal{I}\times\mathcal{W}$:

$$q_{i,j}^+ + q_{i,j}^- = \frac{1}{m^2} \implies \operatorname{KL}(\mathbf{q}, \mathbf{p}) \le \ln(2)$$

 $q_{i,j}^{\pm}$ est le poids assigné au predicteur $\pm Y(y_i)X^{\intercal}(x_j)$. Alors

$$R(\mathbf{A}, x, y) = \sum_{\mathbf{i} \in \mathcal{I}} \sum_{\mathbf{j} \in \mathcal{I}} \sum_{\mathbf{s} \in \mathcal{W}} \sum_{t \in \mathcal{W}} q_{\mathbf{i}}^{\mathbf{s}} q_{\mathbf{j}}^{t} \ell_{\mathbf{i}, \mathbf{j}}^{\mathbf{s}, t}(x, y),$$

où $\mathcal{I}\stackrel{\text{def}}{=}\{1,\ldots,m\}^2$ est l'ensemble des paires d'indices et $\mathcal{W}\stackrel{\text{def}}{=}\{-1,+1\}$. Puisqu'il s'agit d'un risque de Gibbs, nous pouvons utiliser PAC-Bayes. Le prior \mathbf{p} est uniforme sur $\mathcal{I}\times\mathcal{W}$ et \mathbf{q} est quasi uniforme sur $\mathcal{I}\times\mathcal{W}$:

$$q_{i,j}^+ + q_{i,j}^- = \frac{1}{m^2} \implies \operatorname{KL}(\mathbf{q}, \mathbf{p}) \le \ln(2)$$

 $q_{i,j}^{\pm}$ est le poids assigné au predicteur $\pm Y(y_i)X^{\intercal}(x_j)$. Alors

$$R(\mathbf{A}, x, y) = \sum_{\mathbf{i} \in \mathcal{I}} \sum_{\mathbf{j} \in \mathcal{I}} \sum_{s \in \mathcal{W}} \sum_{t \in \mathcal{W}} q_{\mathbf{i}}^{s} q_{\mathbf{j}}^{t} \ell_{\mathbf{i}, \mathbf{j}}^{s, t}(x, y),$$

où $\mathcal{I}\stackrel{\mathrm{def}}{=}\{1,\ldots,m\}^2$ est l'ensemble des paires d'indices et $\mathcal{W}\stackrel{\mathrm{def}}{=}\{-1,+1\}$. Puisqu'il s'agit d'un risque de Gibbs, nous pouvons utiliser PAC-Bayes. Le prior \mathbf{p} est uniforme sur $\mathcal{I}\times\mathcal{W}$ et \mathbf{q} est quasi uniforme sur $\mathcal{I}\times\mathcal{W}$:

$$q_{i,j}^+ + q_{i,j}^- = \frac{1}{m^2} \implies \operatorname{KL}(\mathbf{q}, \mathbf{p}) \le \ln(2)$$

 $q_{i,j}^{\pm}$ est le poids assigné au predicteur $\pm Y(y_i)X^{\intercal}(x_j)$. Alors

$$R(\mathbf{A}, x, y) = \sum_{\mathbf{i} \in \mathcal{I}} \sum_{\mathbf{j} \in \mathcal{I}} \sum_{s \in \mathcal{W}} \sum_{t \in \mathcal{W}} q_{\mathbf{i}}^{s} q_{\mathbf{j}}^{t} \ell_{\mathbf{i}, \mathbf{j}}^{s, t}(x, y),$$

où $\mathcal{I}\stackrel{\text{def}}{=}\{1,\ldots,m\}^2$ est l'ensemble des paires d'indices et $\mathcal{W}\stackrel{\text{def}}{=}\{-1,+1\}$. Puisqu'il s'agit d'un risque de Gibbs, nous pouvons utiliser PAC-Bayes.

Le prior ${\bf p}$ est uniforme sur ${\mathcal I} \times {\mathcal W}$ et ${\bf q}$ est quasi uniforme sur ${\mathcal I} \times {\mathcal W}$

$$q_{i,j}^+ + q_{i,j}^- = \frac{1}{m^2} \implies \operatorname{KL}(\mathbf{q}, \mathbf{p}) \le \ln(2)$$

 $q_{i,j}^{\pm}$ est le poids assigné au predicteur $\pm Y(y_i)X^{\intercal}(x_j)$. Alors

$$R(\mathbf{A}, x, y) = \sum_{\mathbf{i} \in \mathcal{I}} \sum_{\mathbf{j} \in \mathcal{I}} \sum_{s \in \mathcal{W}} \sum_{t \in \mathcal{W}} q_{\mathbf{i}}^{s} q_{\mathbf{j}}^{t} \ell_{\mathbf{i}, \mathbf{j}}^{s, t}(x, y),$$

où $\mathcal{I}\stackrel{\mathrm{def}}{=}\{1,\ldots,m\}^2$ est l'ensemble des paires d'indices et $\mathcal{W}\stackrel{\mathrm{def}}{=}\{-1,+1\}$. Puisqu'il s'agit d'un risque de Gibbs, nous pouvons utiliser PAC-Bayes. Le prior \mathbf{p} est uniforme sur $\mathcal{I}\times\mathcal{W}$ et \mathbf{q} est quasi uniforme sur $\mathcal{I}\times\mathcal{W}$:

$$q_{i,j}^+ + q_{i,j}^- = \frac{1}{m^2} \implies \operatorname{KL}(\mathbf{q}, \mathbf{p}) \leq \ln(2)$$
.

Le problème d'optimisation

Puisque $A_{i,j}=\kappa(q_{i,j}^+-q_{i,j}^-)$, et que ${f q}$ est quasi uniforme, on a $|A_{i,j}|\leq C\ \forall (i,j)\quad {
m pour\ un}\ C>0\,.$

Computationellement avantageux de replacer ces m^2 contraintes, par la seule contrainte

$$\sum_{(i,j)\in\mathcal{I}} A_{i,j}^2 \le R^2 \quad \text{pour un } R > 0.$$

Notez que $|A_{i,j}| \le R$ pour tout (i,j) lorsque cette contrainte ℓ_2 est satisfaite. Alors, pour R > 0, résolvons

$$\min_{\mathbf{A}} R(\mathbf{A}, S)$$
 s.t. $\sum_{i=1}^{m} \sum_{j=1}^{m} A_{i,j}^{2} \le R^{2}$

Le problème d'optimisation

Puisque $A_{i,j} = \kappa(q_{i,j}^+ - q_{i,j}^-)$, et que **q** est quasi uniforme, on a

$$|A_{i,j}| \le C \ \forall (i,j) \quad \text{pour un } C > 0.$$

Computationellement avantageux de replacer ces m^2 contraintes, par la seule contrainte

$$\sum_{(i,j)\in\mathcal{I}}A_{i,j}^2\leq R^2\quad\text{pour un }R>0\,.$$

Notez que $|A_{i,j}| \le R$ pour tout (i,j) lorsque cette contrainte ℓ_2 est satisfaite. Alors, pour R > 0, résolvons

$$\min_{\mathbf{A}} R(\mathbf{A}, S)$$
 s.t. $\sum_{i=1}^{m} \sum_{j=1}^{m} A_{i,j}^{2} \le R^{2}$

Le problème d'optimisation

Puisque $A_{i,j} = \kappa(q_{i,j}^+ - q_{i,j}^-)$, et que **q** est quasi uniforme, on a

$$|A_{i,j}| \le C \ \forall (i,j) \quad \text{pour un } C > 0.$$

Computationellement avantageux de replacer ces m^2 contraintes, par la seule contrainte

$$\sum_{(i,j)\in\mathcal{I}}A_{i,j}^2\leq R^2\quad\text{pour un }R>0\,.$$

Notez que $|A_{i,j}| \le R$ pour tout (i,j) lorsque cette contrainte ℓ_2 est satisfaite. Alors, pour R > 0, résolvons

$$\min_{\mathbf{A}} R(\mathbf{A}, S)$$
 s.t. $\sum_{i=1}^{m} \sum_{j=1}^{m} A_{i,j}^{2} \leq R^{2}$.

La solution (obtenue en temps $\in O(m^3)$)

Theorem

Soit l'ensemble \mathcal{A}^* des solutions. Soit v_1,\ldots,v_m et $\lambda_1,\ldots,\lambda_m$ les vecteurs propres et valeurs propres de $\mathbf{K}_{\mathcal{X}}$. Soit u_1,\ldots,u_m et δ_1,\ldots,δ_m les vecteurs propres et valeurs propres de $\mathbf{K}_{\mathcal{Y}}$. Soit $\mathcal{J}\stackrel{\text{def}}{=}\{(i,j)\in\mathcal{I}:\delta_i\lambda_j>0\}$. Alors $\sum_{i=1}^m\sum_{j=1}^m\gamma_{i,j}u_iv_j^{\mathsf{T}}\in\mathcal{A}^*$, où $\gamma_{i,j}$ est donné par

$$\begin{aligned} \operatorname{Si} \sum_{(i,j) \in \mathcal{J}} \frac{(u_i^{\mathsf{T}} v_j)^2}{\lambda_j^2} &\leq R^2 \text{ alors } \gamma_{i,j} = \begin{cases} 0 & \operatorname{si } \delta_i \lambda_j = 0 \\ \frac{u_i^{\mathsf{T}} v_j}{\lambda_j} & \operatorname{si } \delta_i \lambda_j > 0 \end{cases} \\ & \text{Autrement } \gamma_{i,j} = \frac{\delta_i \lambda_j (u_i^{\mathsf{T}} v_j)}{\delta_i \lambda_i^2 + m\beta} \,, \end{aligned}$$

où $\beta > 0$ est solution de $\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\delta_i^2 \lambda_j^2 (u_i^\mathsf{T} v_j)^2}{(\delta_i \lambda_j^2 + m \beta)^2} = R^2$.

Plan

- 1 De la prédiction de sorties structurées à la régression
- 2 Une première borne et son algorithme d'apprentissage
- 3 Une deuxième borne et son algorithme d'apprentissage
- 4 Résultats empiriques
- 5 Conclusion

- Le minimiseur de la 1ière borne : SORR (ridge regression)
- Le minimiseur de la 2e borne : SOSC (sample-compression)
- Tâche de reconnaissance de mots manuscrits : le protocole utilisé est celui de Taskar et al. (2004).
- Tâche de classification hiérarchique d'enzymes : le protocole utilisé est celui de Rousu et al. (2006).

- Le minimiseur de la 1ière borne : SORR (ridge regression)
- Le minimiseur de la 2e borne : SOSC (sample-compression)
- Tâche de reconnaissance de mots manuscrits : le protocole utilisé est celui de Taskar et al. (2004).
- Tâche de classification hiérarchique d'enzymes : le protocole utilisé est celui de Rousu et al. (2006).

- Le minimiseur de la 1ière borne : SORR (ridge regression)
- Le minimiseur de la 2e borne : SOSC (sample-compression)
- Tâche de reconnaissance de mots manuscrits : le protocole utilisé est celui de Taskar et al. (2004).
- Tâche de classification hiérarchique d'enzymes : le protocole utilisé est celui de Rousu et al. (2006).

- Le minimiseur de la 1ière borne : SORR (ridge regression)
- Le minimiseur de la 2e borne : SOSC (sample-compression)
- Tâche de reconnaissance de mots manuscrits : le protocole utilisé est celui de Taskar et al. (2004).
- Tâche de classification hiérarchique d'enzymes : le protocole utilisé est celui de Rousu et al. (2006).

Reconnaissance de mots manuscrits

- Entrée : image du mot manuscrit.
- Sortie : séquence de caractères du mot.
- Noyau d'entrée : polynomial de degré d
- Noyaux de sortie : Dirac et Hamming.
- Le noyau de Dirac est le meilleur sur la perte 0/1.
- Le noyau de Hamming devrait être le meilleur pour la perte "letter".

	Dirac kernel		Hamming kernel	
	SORR	SOSC	SORR	SOSC
0/1 risk	$0.0539 ~\pm .0087$	$0.0525 \pm .0085$	0.0871 ±.0078	0.0871 ±.0078
Letter risk	$0.0294 \pm .0067$	$0.0285 \pm .0062$	0.0370 ±.0047	$0.0367 \pm .0049$

Classification hiérarchique d'enzymes

- Entrée : la séquence d'acides aminées de l'enzyme.
- Sortie : le chemin dans l'arbre de classification des enzymes.
- Noyau d'entrée = 4-gram (pour tous les algorithmes)
- Noyau de sortie = noyau hiérarchique (longueur du sous-chemin commun)
- H-risk : longueur de la partie du chemin en désaccord

	H – M^3 – ℓ_{Δ}	$H extstyle-M^3-\ell_{ ilde{H}}$	SORR	SOSC
0/1	0.957 [0.949, 0.965]	0.855 [0.840, 0.869]	0.640 [0.621, 0.659]	0.684 [0.666, 0.702]
H risk	1.2	2.50	1.71	1.84

Plan

- 1 De la prédiction de sorties structurées à la régression
- 2 Une première borne et son algorithme d'apprentissage
- 3 Une deuxième borne et son algorithme d'apprentissage
- 4 Résultats empiriques
- **5** Conclusion

- L majoré par $L_{\mathcal{K}_{\mathcal{V}}} \Rightarrow L(y_{\mathbf{w}}(x), y) \leq 2||Y(y) \mathbf{W}X(x)||^2$.
- Dans ce cas, l'approche par régression est justifiée : deux bornes sur le risque sont proposées.
- Le minimiseur de la 1ière borne, SORR, est l'estimateur des moindres carrés (régularisé) étudié par Cortes, Mohri, et Weston (2007).
- Le minimiseur de la 2e borne, SOSC, est nouveau
- L'approche par régression n'est présentement pas justifiée lorsque L n'est pas majoré par L_{Ky} .

- L majoré par $L_{\mathcal{K}_{\mathcal{V}}} \Rightarrow L(y_{\mathbf{w}}(x), y) \leq 2||Y(y) \mathbf{W}X(x)||^2$.
- Dans ce cas, l'approche par régression est justifiée : deux bornes sur le risque sont proposées.
- Le minimiseur de la 1ière borne, SORR, est l'estimateur des moindres carrés (régularisé) étudié par Cortes, Mohri, et Weston (2007).
- Le minimiseur de la 2e borne, SOSC, est nouveau
- L'approche par régression n'est présentement pas justifiée lorsque L n'est pas majoré par L_{Ky} .

- L majoré par $L_{\mathcal{K}_{\mathcal{Y}}} \Rightarrow L(y_{\mathbf{w}}(x), y) \leq 2||Y(y) \mathbf{W}X(x)||^2$.
- Dans ce cas, l'approche par régression est justifiée : deux bornes sur le risque sont proposées.
- Le minimiseur de la 1ière borne, SORR, est l'estimateur des moindres carrés (régularisé) étudié par Cortes, Mohri, et Weston (2007).
- Le minimiseur de la 2e borne, SOSC, est nouveau
- L'approche par régression n'est présentement pas justifiée lorsque L n'est pas majoré par L_{Ky} .

- L majoré par $L_{\mathcal{K}_{\mathcal{V}}} \Rightarrow L(y_{\mathbf{w}}(x), y) \leq 2 \|Y(y) \mathbf{W}X(x)\|^2$.
- Dans ce cas, l'approche par régression est justifiée : deux bornes sur le risque sont proposées.
- Le minimiseur de la 1ière borne, SORR, est l'estimateur des moindres carrés (régularisé) étudié par Cortes, Mohri, et Weston (2007).
- Le minimiseur de la 2e borne, SOSC, est nouveau.
- L'approche par régression n'est présentement pas justifiée lorsque L n'est pas majoré par L_{Ky} .

- L majoré par $L_{\mathcal{K}_{\mathcal{V}}} \Rightarrow L(y_{\mathbf{w}}(x), y) \leq 2 \|Y(y) \mathbf{W}X(x)\|^2$.
- Dans ce cas, l'approche par régression est justifiée : deux bornes sur le risque sont proposées.
- Le minimiseur de la 1ière borne, SORR, est l'estimateur des moindres carrés (régularisé) étudié par Cortes, Mohri, et Weston (2007).
- Le minimiseur de la 2e borne, SOSC, est nouveau.
- L'approche par régression n'est présentement pas justifiée lorsque L n'est pas majoré par $L_{K_{\mathcal{V}}}$.

Merci!

Related Work

Canponnetto and De Vito (2007) have established convergence rates of the RLS estimator to $\inf_{f \in \mathcal{H}} R(f)$ that depends on the complexity of the regression function and the effective dimension of \mathcal{H} .

In contrast, we provide bounds for any \mathbf{W} in terms of its empirical quadratic risk that does not assume anything about D.

The first PAC-Bayes bound is a uniform risk bound on the *prediction risk* of \mathbf{W} that depends on its empirical quadratic risk.

The PAC-Bayes sample compression bound is a uniform risk bound on the quadratic risk of ${\bf W}$ that depends on its empirical quadratic risk and a ℓ_∞ (or ℓ_1) constraint on matrix ${\bf A}$.