

FUNDAMENTALS OF ACCELERATED DATA SCIENCE WITH RAPIDS

COURSE GOALS

Learn the core tools to use RAPIDS for everyday data science

Understand RAPIDS' scalability from workstation and cluster to cloud and HPC

Build the foundations for you to learn RAPIDS capabilities now and in the future

TRADITIONAL MODEL

RAPIDS MODEL

RAPIDS PLATFORM

Specialized package examples

cuSpatial cuSignal CLX
Geospatial Analytics Signal Processing Cyber Analytics

DATA SCIENCE TOOLSETS

	CPU	GPU/ RAPIDS
Data handling	pandas	cuDF
Machine learning	scikit- learn	cuML
Graph analytics	NetworkX	cuGraph

	CPU	GPU/ RAPIDS
Viz	Bokeh/ Datashade r	cuXfilter
Geospati al	GeoPandas / SciPy.spati al	cuSpatial
Signals	SciPy.signa l	cuSignal
Cyber	cyberpand as	CLX 7 PIVIDIA DEEP LEARN NSTITU

REQUIREMENTS

Appropriate OS: Ubuntu 16.04/18.04, CentOS/RHEL 7, Windows with WSL (preview)

NVIDIA Pascal™ GPU architecture or newer

CUDA 10.1.2/10.2/11.0, drivers, etc. (see rapids.ai)

Open source/flexible mindset

- Using v0.15 in this class
- New versions released regularly
- ▶ v1.0 TBD

RAPIDS

Source code on GitHub
https://github.com/rapids

Containers on NGC & Docker

Hub

https://ngc.nvidia.co

Conda packages https://anaconda.org/rapidsai

On-premises

rapids.ai

In the cloud

EXERCISE DATA

Fused and simulated from several sources

- Population data
 - Simulated from UK Census data on England and Wales, both from details (age, sex, given name, county) and aggregate statistics (geographic coordinates, employment)
- Road network data
 - Nodes (endpoints/junctions) and edges of the entire road network of Great Britain
- Epidemic data
 - Detailed hospital/clinic data from the UK National Health Service
 - Spread modeled on academic research on Ebolavirus risk factors

SECTION 1 01 - 04

RAPIDS PLATFORM

CUDF DATAFRAMES

Pandas model: observations/records (rows) of features (columns)

Each feature/column has a single datatype

Simple, flexible interface to complex, performant datastructure

Special emphasis on columnar structure

RAPIDS PLATFORM

APACHE ARROW

Columnar layout leverages GPU strengths

Emphasis on zero-copy and shallow-copy operations minimizes a key bottleneck

Consistency with CPU version simplifies development and conversion

APACHE ARROW

One format for interoperability and efficiency

INTEROPERABILITY

DLPack and __cuda_array_interface

TRY NOTEBOOKS 01 - 04 NOW

docs.rapids.ai/api

SECTION 1 05

INTEROPERATING WITH CUPY

CuPy:cuDF :: numpy:pandas

Not as fast as an optimized CUDA kernel, but very efficient for coding

Important to keep track of data type requirements (e.g. contiguity)

COORDINATE SYSTEMS

We will be using data that was provided in both ellipsoidal and grid coordinate formats

Grid coordinates make distance calculations more convenient within a specific area

Fusing geospatial datasets like this requires complex coordinate conversions—a perfect job for GPU acceleration!

TRY NOTEBOOK 05 NOW

docs.rapids.ai/api

SECTION 1 06

RAPIDS PLATFORM

CUGRAPH

Follows NetworkX convention for graph object
Key differences to take advantage of GPU power
Exercises

- Now: steps to build a graph with from_cudf_edgelist
- Later: traversing the graph with single-source shortest path

Not shown today: analyzing a graph for centralities, communities, link prediction...

BUILDING A GRAPH

With from_cudf_edgelist

Undirected (Graph) vs directed (DiGraph)

Single vs Multi graphs

One source column, one destination column, one edge weight column

TRY NOTEBOOK 06 NOW

docs.rapids.ai/api

SECTION 1 07 - 08

RAPIDS PLATFORM

DISTRIBUTED DATAFRAMES

Scaling seamlessly

WORKING WITH PARTITIONS

No intrinsic row ordering, so no .iloc row selection, and index is essential

Key methods operate on whole dataframe partitions

Remember distinction between multi-GPU and multi-node/multi-GPU algorithms

Rebalance across workers when necessary

TASK SCHEDULER

Enabling efficient compute

Simple operations

Complex DAG task chains

WORKING WITH THE SCHEDULER

Let Dask help you overcome your storage I/O barriers

Limit .compute (stay in Dask) until necessary

For exploratory and experimental data science, don't be afraid to .persist

Remember that everything in a graph will be rerun without .persist/.compute— including random number generation

TRY NOTEBOOKS 07 - 08 NOW

docs.rapids.ai/api

COURSE GOALS

Learn the core tools to use RAPIDS for everyday data science

Understand RAPIDS' scalability from workstation and cluster to cloud and HPC

Build the foundations for you to learn RAPIDS capabilities now and in the future

DATA SCIENCE TOOLSETS

	CPU	GPU/ RAPIDS
Data handling	pandas	cuDF
Machine learning	scikit- learn	cuML
Graph analytics	NetworkX	cuGraph

	CPU	GPU/ RAPIDS
Viz	Bokeh/ Datashade r	cuXfilter
Geospati al	GeoPandas / SciPy.spati al	cuSpatial
Signals	SciPy.signa l	cuSignal
Cyber	cyberpand as	CLX 7 NVIGIA POTE

REQUIREMENTS

Appropriate OS: Ubuntu 16.04/18.04, CentOS/RHEL 7, Windows with WSL (preview)

NVIDIA Pascal™ GPU architecture or newer

CUDA 10.1.2/10.2/11.0, drivers, etc. (see rapids.ai)

Open source/flexible mindset

- Using v0.15 in this class
- New versions released regularly
- ▶ v1.0 TBD

EXERCISE DATA

Fused and simulated from several sources

- Population data
 - Simulated from UK Census data on England and Wales, both from details (age, sex, given name, county) and aggregate statistics (geographic coordinates, employment)
- Road network data
 - Nodes (endpoints/junctions) and edges of the entire road network of Great Britain
- Epidemic data
 - Detailed hospital/clinic data from the UK National Health Service
 - Spread modeled on academic research on Ebolavirus risk factors

CUDF DATAFRAMES

Pandas model: observations/records (rows) of features (columns)

Each feature/column has a single datatype

Simple, flexible interface to complex, performant datastructure

Special emphasis on columnar structure

APACHE ARROW

Columnar layout leverages GPU strengths

Emphasis on zero-copy and shallow-copy operations minimizes a key bottleneck

Consistency with CPU version simplifies development and conversion

INTEROPERATING WITH CUPY

CuPy:cuDF :: numpy:pandas

Not as fast as an optimized CUDA kernel, but very efficient for coding Important to keep track of data type requirements (e.g. contiguity)

COORDINATE SYSTEMS

We will be using data that was provided in both ellipsoidal and grid coordinate formats

Grid coordinates make distance calculations more convenient within a specific area

Fusing geospatial datasets like this requires complex coordinate conversions—a perfect job for GPU acceleration!

SECTION 1 06

CUGRAPH

Follows NetworkX convention for graph object Key differences to take advantage of GPU power Exercises

- Now: steps to build a graph with from_cudf_edgelist
- Later: traversing the graph with single-source shortest path

Not shown today: analyzing a graph for centralities, communities, link prediction...

BUILDING A GRAPH

With from_cudf_edgelist

Undirected (Graph) vs directed (DiGraph)

Single vs Multi graphs

One source column, one destination column, one edge weight column

WORKING WITH PARTITIONS

No intrinsic row ordering, so no .iloc row selection, and index is essential

Key methods operate on whole dataframe partitions

Remember distinction between multi-GPU and multi-node/multi-GPU algorithms

Rebalance across workers when necessary

Dask parallelizes PyData natively.

Dask.distributed is a centrally managed, distributed, dynamic task scheduler. The central dask-scheduler process coordinates the actions of several dask-worker processes spread across multiple machines and the concurrent requests of several clients.

The scheduler is asynchronous and event driven, simultaneously responding to requests for computation from multiple clients and tracking the progress of multiple workers. The event-driven and asynchronous nature makes it flexible to concurrently handle a variety of workloads coming from multiple users at the same time while also handling a fluid worker population with failures and additions. Workers communicate amongst each other for bulk data transfer over TCP.

Internally the scheduler tracks all work as a constantly changing directed acyclic graph of tasks. A task is a Python function operating on Python objects, which can be the results of other tasks. This graph of tasks grows as users submit more computations, fills out as workers complete tasks, and shrinks as users leave or become disinterested in previous results.

WORKING WITH THE SCHEDULER

Let Dask help you overcome your storage I/O barriers

Limit .compute (stay in Dask) until necessary

For exploratory and experimental data science, don't be afraid to .persist

Remember that everything in a graph will be rerun without .persist/.compute—including random number generation

