Universidad de El Salvador. 25.06.2018 Álgebra I: Estructuras algebraicas y la teoría de grupos Soluciones del examen parcial 3

Problema 1 (1 punto). Enumere todos los grupos abelianos de orden 666 salvo isomorfismo.

Solución. Tenemos $666 = 2 \cdot 3^2 \cdot 37$, entonces hay dos grupos abelianos de orden 666,

$$\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/37\mathbb{Z}$$
 y $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/37\mathbb{Z}$.

Problema 2 (1 punto). Sea G un grupo y N su subgrupo normal. Sea $K \subset G/N$ un subgrupo del grupo cociente. Demuestre que K = H/N donde H es un subgrupo de G que contiene a N. Sugerencia: considere el homomorfismo canónico $p: G \to G/N$ y $p^{-1}(K) \subset G$.

Solución. Sea $H := p^{-1}(K)$. Esto es un subgrupo de G. Efectivamente, $p(1_G) = 1_{G/N} \in K$, así que $1_G \in p^{-1}(K)$. Luego, si para $g_1, g_2 \in G$ se tiene $p(g_1) = x_1 \in K$ y $p(g_2) = x_2 \in K$, entonces $p(g_1g_2) = x_1x_2 \in K$. Esto significa que $g_1, g_2 \in p^{-1}(K)$ implica $g_1g_2 \in p^{-1}(K)$. De la misma manera, si $p(g) = x \in K$, entonces $p(g^{-1}) = x^{-1} \in K$, lo que quiere decir que $g \in p^{-1}(K)$ implica $g^{-1} \in p^{-1}(K)$. (Hasta el momento hemos usado solo el hecho de que p sea un homomorfismo de grupos, así que demostramos un resultado general: la preimagen de un subgrupo respecto a cualquier homomorfismo es un subgrupo.)

Ahora, puesto que p es sobreyectivo, tenemos $K = p(p^{-1}(K)) = p(H) = H/N$.

Problema 3 (2 puntos). Sea p un número primo. Supongamos que el grupo $\mathbb{Z}/p\mathbb{Z}$ actúa sobre un conjunto X.

- 1) Demuestre que todo elemento de *X* es un punto fijo o pertenece a una órbita de orden *p*.
- 2) Supongamos que X es finito y $p \mid |X|$. Demuestre que el número de puntos fijos es también divisible por p.

Solución. Recordamos que cuando un grupo G actúa sobre un conjunto X, para un punto $x \in X$ hay una biyección natural entre la órbita O_x y las clases laterales G/G_x donde G_x es el estabilizador de x. En particular, cuando G es finito, tenemos $|O_x| = |G|/|G_x|$. En este caso $G = \mathbb{Z}/p\mathbb{Z}$ es de orden primo, así que $|O_x| = p$ o 1, y en el último caso x es un punto fijo. Esto establece la parte 1).

Para la parte 2), consideremos la ecuación de clase $|X| = |X^G| + \sum_{1 \le i \le n} |G:G_{x_i}|$ donde X^G denota los puntos fijos y O_{x_i} son las órbitas que contienen más de un elemento. Acabamos de ver que $|G:G_{x_i}| = p$ cuando $G = \mathbb{Z}/p\mathbb{Z}$, y luego $|X| \equiv |X^G| \pmod{p}$.

Problema 4 (2 puntos). Sea G un grupo finito y sea p un número primo tal que $p \mid |G|$. En este problema vamos a probar que en G hay un elemento de orden p. Para esto consideremos el conjunto

$$X:=\{(g_0,g_1,\dots,g_{p-1})\mid g_i\in G,\ g_0g_1\cdots g_{p-1}=1\}.$$

- 1) Demuestre que $|X| = |G|^{p-1}$.
- 2) Para $[n]_p \in \mathbb{Z}/p\mathbb{Z}$ sea $[n]_p \cdot (g_0,g_1,\ldots,g_{p-1}) := (g_{[0+n]},g_{[1+n]},\ldots,g_{[p-1+n]})$. Demuestre que esto define una acción de $\mathbb{Z}/p\mathbb{Z}$ sobre X y sus puntos fijos son (g,g,\ldots,g) donde $g^p=1$.
- 3) Usando el problema anterior, demuestre que el número de elementos $g \in G$ tales que $g^p = 1$ es divisible por p. Demuestre que existe $g \neq 1$ tal que $g^p = 1$.

Solución. En la parte 1) basta notar que $g_0g_1\cdots g_{p-1}=1$ es equivalente a tener $g_{p-1}=(g_0g_1\cdots g_{p-2})^{-1}$. Entonces, los elementos g_0,g_1,\ldots,g_{p-2} pueden ser escogidos de manera arbitraria, y hay $|G|^{p-1}$ posibilidades de hacerlo, y luego g_{p-1} está definido de modo único.

En la parte 2) la acción es por las permutaciones cíclicas de $(g_0, g_1, \dots, g_{p-1}) \in G^p$, falta solo ver que esta acción se restringe correctamente al conjunto X. Sería suficiente considerar la acción de $[1]_p \in \mathbb{Z}/p\mathbb{Z}$. En efecto,

$$g_0 g_1 g_2 \cdots g_{p-1} = 1 \iff g_1 g_2 \cdots g_{p-1} = g_0^{-1} \iff g_1 g_2 \cdots g_{p-1} g_0 = 1.$$

Si $(g_0, g_1, g_2, \dots, g_{p-1}) = (g_1, g_2, \dots, g_{p-1}, g_0)$, entonces $g_0 = g_1 = g_2 = \dots = g_{p-1}$, lo que demuestra que los puntos fijos de la acción corresponden a elementos $g \in G$ tales que $g^p = 1$.

En la parte 3), tenemos $p \mid |X| = |G|^{p-1}$, dado que $p \mid |G|$ por nuestra hipótesis. Entonces, el problema anterior implica que el número de elementos $g \in G$ tales que $g^p = 1$ es divisible por p. Uno de estos elementos es g = 1, así que hay por lo menos p - 1 otros elementos con esta propiedad. Son elementos de orden p.

Problema 5 (2 puntos).

- 1) Consideremos el grupo alternante A_4 y sus subgrupos $V := \{ id, (1\ 2)\ (3\ 4), (1\ 3)\ (2\ 4), (1\ 4)\ (2\ 3) \}$ y $H := \langle (1\ 2\ 3) \rangle$. Demuestre que A_4 es el producto semidirecto de V y H.
- 2) Demuestre que para $n \ge 5$ el grupo alternante A_n no puede ser isomorfo a un producto semidirecto $N \rtimes_{\phi} H$ donde $N \vee H$ no son triviales.

Solución. En la primera parte, el subgrupo V es normal y $V \cap H = \{id\}$. Además, se tiene $A_4 = NH$. En efecto,

$$H = \{id, (123), (132)\},\$$

y en A_4 hay otros 3-ciclos, pero estos se obtienen como productos de un elemento de N y un elemento de H:

$$(124) = (14)(23) \circ (132),$$

 $(134) = (14)(23) \circ (123),$
 $(142) = (13)(24) \circ (123),$
 $(143) = (12)(34) \circ (132),$
 $(234) = (12)(34) \circ (132),$
 $(243) = (12)(34) \circ (123).$

Podemos concluir que $A_4 = V \times H$.

En la segunda parte, basta notar que A_n para $n \ge 5$ no tiene subgrupos normales propios, mientras que en un producto semidirecto $N \rtimes_{\phi} H$ el subgrupo $N \times \{1_H\}$ es normal. Entonces, $A_n \cong N \rtimes_{\phi} H$ implica que N o H es trivial.

Problema 6 (2 puntos). Se dice que dos sucesiones exactas cortas (extensiones de grupos)

$$1 \to H \xrightarrow{i} G \xrightarrow{p} K \to 1 \quad \text{y} \quad 1 \to H \xrightarrow{i'} G' \xrightarrow{p'} K \to 1$$

son **equivalentes** si existe un homomorfismo $f: G \to G'$ tal que el diagrama

es conmutativo (hemos probado en clase que en este caso f es un isomorfismo).

Sea *p* un número primo. Consideremos una sucesión de homomorfismos

$$0 \to \mathbb{Z}/p\mathbb{Z} \xrightarrow{[1]_p \mapsto [p]_{p^2}} \mathbb{Z}/p^2\mathbb{Z} \xrightarrow{[1]_{p^2} \mapsto [n]_p} \mathbb{Z}/p\mathbb{Z} \to 0$$

- 1) Demuestre que para todo n = 1, 2, ..., p 1 es una sucesión exacta corta.
- 2) Demuestre que estas sucesiones no son equivalentes para diferentes n = 1, 2, ..., p 1.

Solución. El homomorfismo

$$\mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p^2\mathbb{Z},$$

 $[1]_p \mapsto [p]_{p^2},$
 $[a]_p \mapsto [ap]_{p^2},$

es inyectivo: $ap \equiv bp \pmod{p^2}$ implica $a \equiv b \pmod{p}$. El homomorfismo

$$\mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z},$$

 $[1]_{p^2} \mapsto [n]_p,$
 $[a]_{v^2} \mapsto [an]_p$

es sobreyectivo: si $n=1,2,\ldots,p-1$, entonces $[an]_p=[a]_p\cdot [n]_p$ para $a=0,1,2,\ldots,p-1$ son todos los restos módulo p: se tiene $[n]_p\in (\mathbb{Z}/p\mathbb{Z})^{\times}$, así que la multiplicación por $[n]_p$ es un automorfismo del grupo $\mathbb{Z}/p\mathbb{Z}$. Finalmente,

$$\begin{split} \ker([a]_{p^2} \mapsto [an]_p) &= \{[a]_{p^2} \mid an \equiv 0 \pmod p\} = \{[a]_{p^2} \mid a \equiv 0 \pmod p\} \\ &= \{[ap]_{p^2} \mid [a]_p \in \mathbb{Z}/p\mathbb{Z}\} = \operatorname{im}([a]_p \mapsto [ap]_{p^2}). \end{split}$$

Todo esto significa que se tiene una sucesión exacta corta. Ahora supongamos que hay una equivalencia de tales sucesiones exactas cortas

La conmutatividad del primer cuadrado significa que $f([p]_{p^2}) = [p]_{p^2}$, mientras que la conmutatividad del segundo cuadrado nos dice que $f([1]_{v^2}) = [a]_{v^2}$ donde $n_1 \equiv an_2 \pmod{p}$. Luego,

$$[p]_{p^2} = f([p]_{p^2}) = p \cdot f([1]_{p^2}) = p \cdot [a]_{p^2} = [ap]_{p^2}.$$

Entonces, $ap \equiv p \pmod{p^2}$, lo que implica $a \equiv 1 \pmod{p}$. Junto con la congruencia $n_1 \equiv an_2 \pmod{p}$ esto nos da $n_1 \equiv n_2 \pmod{p}$.