1

3

1

2

What is claimed is:

1	1. An architecture for confirming the identity of a message sender on a		
2	remote services system, comprising:		
3	a communications module operable to transmit a message;		
4	a cryptographic module in said communication module for providing		
5	encryption of a data stream in said message;		
6	a mid-level manager operating in conjunction with said communications		
7	module for controlling the flow of messages in said remote services		
8	system and for verifying the identity of a sender by comparing first and		
9	second data identities in said data stream.		

- The architecture according to claim 2, said first data identify comprising data in a network software layer, said second data identity comprising data in an application software layer.
- 3. The architecture according to claim 2, said cryptographic module
 employing secure socket layer encryption.
 - The architecture according to claim 2, said mid-level manager controlling data flow between a customer proxy and an applications server.
- The architecture according to claim 4, wherein said mid-level manager
 is a customer mid-level manager.
- 1 6. The architecture according to claim 4, wherein said mid-level manager
 2 is an aggregation mid-level manager.
- 7. The architecture according to claim 2, wherein transmission of said
 2 message is conditioned on HTTP.

1	 The architecture according to claim 2, wherein transmission of said
2	message is conditioned on email protocol.
1	9. A method of confirming the identity of a message sender on a remote
2	services system, comprising:
3	obtaining a first identity related to a message, said first identity being obtained
4	from a first software layer in said remote services system;
5	obtaining a second identity related to the sender of a messages, said second
6	identity being obtained from a second software layer in said remote
7	services system; and
8	comparing said first identity with said second identity to verify the identity of
9	the sender of said message.
1	10. The method according to claim 9, said first software layer being the
2	network software layer, said second software layer being the application software
3	layer.
1	11. The method according to claim 10, further comprising encrypting said
2	message and said identities in an encryption module in said remote services system.
1	12. The method according to claim 11, said encryption of said data and
2	said identities being performed in accordance with secure socket layer protocol.
1	13. The method according to claim 12, said message being transmitted in
2	said system using HTTP protocol.
1	14. The method according to claim 12, said message being transmitted in

said system using email protocol.

1	15.	A method of confirming the identity of a message sender on a remote		
2	services system, comprising:			
3	transn	nitting a message using a communications module of said remote		
4		services system;		
5	encry	oting a data stream in said message using an encryption module in said		
6		communications module; and		
7	controlling the flow of said message in said remote services system using a			
8		mid-level manager, said mid-level manager verifying the identity of a		
9		sender by comparing first and second data identities in said data		
0		stream.		
1	16.	The method according to claim 15, said first identity comprising		
2	encrypted data in a network software layer of said remote services system, said			
3	second identity comprising encrypted data in an application software layer of said			
4	remote services system.			
1	17.	The method according to claim 15, said encryption module using		
2	secure socket layer protocol to encrypt said data stream.			
1	18.	The method according to claim 17, said mid-level manager controlling		
2	data flow between a customer proxy and an applications server.			
1	19.	The method according to claim 15, wherein said mid-level manager is		
2	a customer mid-level manager.			
1	20.	The method according to claim 15, wherein said mid-level manager is		
2	an aggregation mid-level manager.			