<u>Определение</u>. Функция f(x) называется **непрерывной в точке** x_0 , если

- 1) f(x) определена в окрестности точки x_0 , включая саму точку;
- 2) $f(x) \rightarrow f(x_0)$ при $x \rightarrow x_0$.

Равносильное определение непрерывности на языке бесконечно малых.

Обозначим $\Delta f(x_0) = f(x) - f(x_0)$, $\Delta x = x - x_0$ (приращение функции и приращение аргумента).

<u>Определение</u>. Функция f(x) называется **непрерывной в точке** x_0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Теоремы о функциях, непрерывных в точке

1) Если f(x) и g(x) непрерывны в точке x_0 , то функции f(x)+g(x) , $f(x)\cdot g(x)$ тоже непрерывны в точке x_0 , а если $g(x_0)\neq 0$, то f(x)/g(x) тоже непрерывны в точке x_0 .

Эти утверждения следуют из основных теорем о пределах.

2) Пусть функция g(x) определена на (a,b), а множество ее значений принадлежит области определения функции f(x). Тогда можно определить новую функцию h(x) формулой

$$h(x) = f(g(x))$$

В этом случае говорят, что h(x) — результат **суперпозиции** функций f и g.

Теорема 1. Суперпозиция непрерывных функций также является непрерывной

<u>Доказательство</u>. Обозначим $\Delta g(x_0)=g(x)-g(x_0) \implies g(x)=g(x_0)+\Delta g(x_0)$. Тогда

$$\Delta h(x_0) = f(g(x)) - f(g(x_0)) = f(g(x_0) + \Delta g(x_0)) - f(g(x_0))$$
(1)

В силу непрерывности g(x) имеем $\Delta g(x_0) \to 0$ при $\Delta x = x - x_0 \to 0$, а в силу непрерывности f имеем $f\big(g(x_0) + \Delta g(x_0)\big) \to f(g(x_0))$. Из формулы (1) получаем

$$\Delta h(x_0) o f(g(x_0)) - f(g(x_0)) = 0$$
 при $\Delta x o 0$, что и требовалось.

Примем без доказательства, что **основные элементарные** функции непрерывны. Тогда из теоремы следует непрерывность **всех элементарных** функций.

Дополним понятие непрерывности.

<u>Определение</u>. Функция f(x) называется **непрерывной в точке** x_0 **слева (справа)** если

$$f(x_0 - 0) = f(x_0)$$
 $(f(x_0 + 0) = f(x_0))$

<u>Пример</u>. f(x) = x/|x| , $x \neq 0$ и f(0) = 1. Пусть $x_0 = 0$. Очевидно, здесь $f(x_0 - 0) = -1$, $f(x_0 + 0) = 1$. Значит, f(x) непрерывна в 0 справа, но не является непрерывной слева.

Необходимое и достаточное условие непрерывности

Теорема 2. Функция f(x) непрерывна в точке x_0 тогда и только тогда, когда односторонние пределы в точке x_0 равны друг другу и равны значению функции в этой точке.

$$f(x_0 - 0) = f(x_0 + 0) = f(x_0)$$
 (1) (доказать самостоятельно)

Непрерывность на интервале и на отрезке

<u>Определение</u>. Функция f(x) называется **непрерывной на** (a,b) , если она непрерывна при всех $x \in (a,b)$.

<u>Определение</u>. Функция f(x) называется **непрерывной на** [a,b], если выполнены два условия:

- 1) она непрерывна на (a, b);
- 2) на левом конце отрезка она непрерывна справа, а на правом непрерывна слева.

Теоремы о функциях, непрерывных на отрезке

Теорема 3. Непрерывная на отрезке [a,b] функция f(x) имеет на [a,b] наибольшее и наименьшее значения.

Это означает, что найдутся такие $\alpha, \beta \epsilon[a,b]$, что $\forall x \epsilon[a,b]$ выполняется неравенство $f(\alpha) \leq f(x) \leq f(\beta)$.

<u>Доказательство</u>. Пусть E- множество всех значений функции f(x). Доказательство разделим на два этапа.

1) Сначала докажем, что E ограниченное множество. Пусть не так. Тогда найдется последовательность $x_n \in [a,b]$, для которой

$$|f(x_n)| \to +\infty \tag{2}$$

По теореме Вейерштрасса из последовательности x_n можно извлечь сходящуюся подпоследовательность. Для простоты будем обозначать ее тоже через x_n , а ее предел через c. В силу непрерывности f(x) имеем $f(x_n) \to f(c)$, а это противоречит (2). Итак, ограниченность E доказана.

2) Обозначим $m=infE,\ M=supE.$ Докажем, например, что $m\epsilon E$. Иначе говоря, что существует такая точка $c\epsilon[a,b]$, что m=f(c). Из определения инфимума следует, что существует последовательность $x_n\epsilon[a,b]$, для которой $f(x_n)\to m$. Как и в пункте 1) выберем сходящуюся подпоследовательность $x_n\to \alpha$. В силу непрерывности f(x) получаем $m=f(\alpha)$. Значит, $m\epsilon E$.

Теорема 4. Если непрерывная на отрезке [a,b] функция f(x) принимает на концах отрезка значения противоположных знаков, то найдется такая точка $c\epsilon(a,b)$, что f(c)=0. Доказательство. Пусть, например, f(a)<0, f(b)>0. Обозначим c=(a+b)/2. Если f(c)=0, то теорема доказана. Пусть $f(c)\neq 0$, например, f(c)>0. Обозначим $a_2=a_1$, $b_2=c$, $c_1=(a_1+b_1)/2$.

Повторяя этот процесс, получим последовательность вложенных отрезков $[a_n,b_n]$ и чисел $c_n\epsilon[a_n,b_n]$, причем длина следующего отрезка в два раза меньше длины предыдущего. По лемме о вложенных отрезках существует точка $c\epsilon[a_n,b_n]$, $n=1,2,\dots$. Учитывая, что $b_n-a_n\to 0$ при $n\to +\infty$, получаем

$$\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}b_n=c.$$

По условию имеем $f(a_n) \le 0$, $f(b_n) \ge 0$. В силу непрерывности функции f(x) получаем $f(c) = \lim_{n \to +\infty} f(a_n) \le 0$ и $f(c) = \lim_{n \to +\infty} f(b_n) \ge 0$. Значит, f(c) = 0.

<u>Замечание</u>. Процесс, описанный в доказательстве этой теоремы, можно применить для решения уравнения вида f(x) = 0. Этот метод называется **методом половинного деления**. Этот метод легко реализуется на компьютере.

<u>Упражнение</u>. Примените описанный выше процесс для приближенного решения уравнения $e^{-x} + x = 0$ с точностью до 0,001.

Теорема 5. Непрерывная на отрезке [a,b] функция f(x) принимает любое промежуточное значение между любыми двумя своими значениями.

Доказательство. Рассмотрим любые два значения функции:

 $y_1 = f(x_1), \ y_2 = f(x_2).$ Пусть, например, $y_1 < y_2$, а y_0 – любое число между y_1, y_2 .

Требуется доказать, что y_0 принадлежит множеству значений функции f(x). Определим вспомогательную функцию $g(x) = f(x) - y_0$. Имеем,

$$g(x_1) = f(x_1) - y_0 = y_1 - y_0 < 0,$$

 $g(x_2) = f(x_2) - y_0 = y_2 - y_0 > 0.$

Тогда по **теореме 4** между x_1, x_2 найдется точка c, для которой g(c) = 0. Отсюда $f(c) = y_0$.

Изолированные точки разрыва

Если f(x) не является непрерывной в точке x_0 , то x_0 называется **точкой разрыва**.

Точка x_0 называется **изолированной** точкой разрыва, если f(x) в некоторой окрестности этой точки непрерывна всюду, кроме самой точки x_0 .

Рассмотрим виды таких точек разрыва.

1. Устранимый разрыв.

 $f(x_0 - 0) = f(x_0 + 0) = b$, но $f(x_0)$ не определена или не равна b. Положим по определению $f(x_0) = b$. После этого функция становится непрерывной.

<u>Пример</u>. $f(x) = (x^2 - 1)/(x^3 - 1)$. Здесь f(x) не определена при x = 1. Дополним определение, положив f(1) = 2/3. После этого функция становится непрерывной. Докажите! 2. Конечный разрыв.

Пусть
$$b_1 = f(x_0 - 0)$$
, $b_2 = f(x_0 + 0)$, $b_1 \neq b_2$.

В этом случае x_0 называется **точкой конечного разрыва**, а b_2-b_1 называется **скачком** функции в точке x_0 .

Пример.

$$f(x) = \begin{cases} x^2 + 1, & x \ge 1 \\ x, & x < 1 \end{cases}$$

Здесь f(1-0)=1, f(1+0)=2. Односторонние пределы существуют, но не равны друг другу.

3. Бесконечный разрыв.

Точка x_0 называется **точкой бесконечного разрыва**, если в ней хотя бы один из односторонних пределов равен бесконечности.

Пример.
$$f(x) = \begin{cases} \frac{1}{x-1}, & x > 1 \\ x, & x \le 1 \end{cases}$$
. Здесь $f(1-0) = 1$, $f(1+0) = +\infty$.

4. Возможен случай, при котором хотя бы один из односторонних пределов в точке x_0 не существует (ни конечный ни бесконечный).

<u>Пример</u>. $f(x) = \sin(1/x)$. (объяснить, почему нет предела)

Дополнительные сведения о функциях

<u>Определение</u>. f(x) называется **возрастающей (убывающей)** на (a,b), если бо'льшим значениям аргумента соответствуют бо'льшие (меньшие) значения функции.

В краткой записи это означает: $x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \quad (f(x_1) > f(x_2)).$

Если неравенства $f(x_1) < f(x_2) \quad (f(x_1) > f(x_2))$ заменить на нестрогие, то слово возрастающая заменится на неубывающая, а убывающая — на невозрастающая.

<u>Определение</u>. f(x) называется **монотонной** на (a,b), если она возрастающая или убывающая на (a,b).

Примеры.

1. $\sin x$ — возрастающая на $(-\pi/2,\pi/2)$, убывающая на $(\pi/2,3\pi/2)$ и ни та ни другая на $(-\pi/2,3\pi/2)$.

2.
$$f(x) = \begin{cases} x, & 0 < x \le 1\\ 1, & 1 < x \le 2\\ x - 1 & 2 < x < 3 \end{cases}$$

эта функция неубывающая, но и не возрастающая.

3. Пусть h(x) = f(g(x)), где f, g — монотонные функции.

Возможны 4 варианта:

- а)обе возрастающие, б) обе убывающие, в)f возрастающая, g убывающая,
- r) f убывающая, g возрастающая

Какой будет функция h(x) в каждом из этих вариантов?

Обратная функция

Пусть функция f(x) определена на промежутке D, а E- множество ее значений. Зададим $y \in E$ и рассмотрим уравнение .

$$y = f(x) \tag{1}$$

Пусть для каждого $y \in E$ уравнение (1) однозначно разрешимо относительно x. Тем самым определена некоторая функция, у которой независимой переменной является y, а значением функции - x.

Обозначим эту функцию g(y).

<u>Определение</u>. Описанная выше функция g(y) называется **обратной** к функции f(x).

Очевидно, функция f(x) является обратной к g(y). Поэтому их называют взаимно обратными.

Примеры.

- 1. $y = 2x + 3 \iff x = (y 3)/2$
- 2. $y = x^2$, $0 \le x < +\infty \Leftrightarrow x = \sqrt{y}$
- 3. $y=x^2, \ -\infty < x < +\infty$, эта функция не имеет обратной, так как уравнение имеет два решения $x=\pm \sqrt{y}$ при y>0.
- 4. $y = \sin x$, $-\pi/2 \le x \le \pi/2$, обратная функция существует и обозначается $\sin y$.
- 5. $y = \sin x$, $0 \le x \le \pi$, эта функция не имеет обратной, так как уравнение имеет два решения $x = \arcsin y$ и $x = \pi \arcsin y$ при $0 \le y < 1$.

Теорема 6. Непрерывная функция f(x) имеет обратную функцию тогда и только тогда, когда f(x) монотонна.

Доказательство.

А) Дано: f(x) монотонна на [a;b], например, возрастающая, и E- множество ее. Докажем, что существует обратная функция. Для этого нужно доказать, что уравнение y=f(x) однозначно разрешимо относительно x для $\forall y \in E$. Пусть это не так, т.е. для некоторого y это уравнение имеет два решения $x_1 < x_2$. Тогда

 $f(x_1) = f(x_2)$, но это противоречит возрастанию функции.

Б) Дано: f(x) имеет обратную функцию. Докажем, что f(x) монотонна. Пусть это не так, т.е. найдутся такие точки $x_1 < x_0 < x_2$, что $f(x_1) < f(x_0) > f(x_2)$ или $f(x_1) > f(x_0) < f(x_2)$. Точка x_0 разделяет участки возрастания и убывания функции. Пусть, например, $f(x_1) < f(x_0)$, но $f(x_1) > f(x_2)$. Это означает,

что число $f(x_1)$ расположено между двумя значениями $f(x_2)$ и $f(x_0)$.

По теореме о промежуточных значениях непрерывной функции найдется такая точка $x_3 \in (x_0; x_2)$, что $f(x_3) = f(x_1)$, а это противоречит существованию обратной функции.

Пункт Б) и тем самым теорема доказаны.

Иллюстрация к теореме.

На рисунке изображен график функции f(x), непрерывной на отрезке [0;2], причем функция возрастает при $x \le 1$ и убывает при $x \ge 1$. Очевидно, любому значению $y \ge 0.3$ соответствуют два решения уравнения y = f(x), а это противоречит существованию обратной функции.

Вопросы для самоконтроля.

- 1) Докажите теорему 1.
- 2) Пусть E- множество значений непрерывной на [a,b] функции, $S=\sup E,\ M-$ набольшее значение функции на [a,b]. Какой из вариантов верен: $S< M,\ S=M,\ S>M$?
- 3) f(x) = p(x)/q(x), где p(x), q(x) многочлены. От чего зависит наличие или отсутствие точек

разрыва у функции f(x)?

- 4) f(x) = p(x)/q(x), где p(x), q(x) многочлены, $q(x_0) = 0$. Может ли f(x) иметь конечный предел в точке x_0 ?
- 5) $f(x) = \begin{cases} ax, & -\infty < x \le 2 \\ x^2, & 2 < x < +\infty \end{cases}$. При каком значении параметра a функция f будет непрерывной на всей оси?
- 6) $f(x) = \begin{cases} -x-1, & -\infty < x \le 0 \\ x+1, & 0 < x < +\infty \end{cases}$. Является ли f(x) непрерывной функцией? Тот же вопрос для $f^2(x)$?
- 7) Приведите пример функции, имеющей бесконечно много точек разрыва.
- 8) Функция f(x) непрерывна на $(-\infty, x_0]$ и на $[x_0, +\infty)$. Следует ли отсюда, что она непрерывна на $(-\infty, +\infty)$?
- 9) Пусть g(x) = f(x) + h(x), где f(x) описана в пункте 8), а $h(x) = \begin{cases} c, & x \leq x_0 \\ 0, & x > x_0 \end{cases}$. Кроме того,

величины $f(x_0-0)=1,3$, $f(x_0+0)=-1,4$. Найдите значение c , при котором функция g(x) непрерывна на всей оси.

- 10) Найдите точки разрыва функции $(x^3 + 2x^2 1)/(x^3 + x)$ и определите их тип.
- 11) Бильярдный шар катится по столу вдоль некоторой прямой. Пусть (x(t);y(t)) координаты

шара в момент t , а v(t) — его скорость. В какой-то момент шар столкнулся с другим шаром и изменил направление движения. Будут ли функции x(t), y(t), v(t) непрерывны?