

Manolis (Emmanouil Vasilomanolakis)

network security: threat detection

27 February 2024

DTU Compute

Course plan

- Lecture 1: Intro (Manolis, Carsten) 30.01
- Lecture 2: Crypto essentials (Carsten) 06.02
- Lecture 3: Authentication (Manolis), lab bootcamp (TAs) 13.02
- Lecture 4: TLS (Manolis) 20.02
- Lecture 5: **Threat detection (Manolis)** 27.02
- Lecture 6: Hacking Lab day (**TAs**) blue team 05.03
- Lecture 7: **IoT security (Manolis)** 12.03
- Lecture 8: WIFI security (Manolis) 19.03
- Lecture 9: Private communication (Carsten) 02.04
- Lecture 10: When everything fails (Manolis) 09.04
- Lecture 11: Hacking Lab day (TAs) red team 16.04
- Lecture 12: Guest lecture (OT security, Ludwig) 23.04
- Lecture 13: Exam preps (Carsten, Manolis) 30.04

Outline

- Introduction
- Firewalls
- Intrusion detection
- Cyber-deception
- Lab exercises

Threat detection lecture overview

- Block traffic going in:
 - -firewalls
- Detecting malicious traffic/entities that bypassed the firewall:
 - –Intrusion detection systems (IDS)
- Blocking malicious traffic/entities that bypassed the firewall:
 - –Intrusion prevention systems (IPS)
- Detecting malicious traffic/entities that bypassed everything:
 - –Cyber-deception
 - –Most common practical tool: honeypots

Firewalls

Firewalls

• What is a **firewall**? (before we invented computers and computer networks)

Dictionary

Search for a word

firewall

/ˈfʌɪəwɔːl/ ◆)

noun

1. a wall or partition designed to inhibit or prevent the spread of fire.

Firewalls in a Computer Network

- What is a firewall in a computer network?
 - A networking software/device that protects a network by monitoring the packets that are coming in and out of the network and filtering unwanted traffic
 - Firewalls can be stand-alone computers, integrated in routers, end devices, etc
 - Firewalls implement a security policy
 - They enforce a set of predetermined rules that specify what traffic is allowed

Default Behaviour

Default allow

- Allow traffic unless otherwise specified
- More user friendly: users do not like restrictions

Default deny

- Deny traffic unless otherwise specified
- More secure, it is easier to imagine all the possible things that are acceptable than the opposite

The 2 steps for configuring a firewall

- Step 1: Determine a particular security policy
 - The ideal policy never allows a single unauthorised packet but is invisible to legitimate users
- Step 2: Express this security policy in terms of firewall rules
 - Firewall rules are typically examined from top to bottom:
 - If rule matches, the specified action is performed
 - Otherwise, next rule is evaluated
 - If no rule matches, the default action is performed (e.g. default deny)

Example of a Packet Filtering Firewall

- External users can access the web server but they should not be able to log in using SSH
- Alice is the administrator of the server and needs SSH access from home

Source IP	Source Port	Destination IP	Destination Port	Action
*	*	120.10.20.1	80	Accept
221.200.10.65	*	120.10.20.1	22	Accept
*	*	*	*	Deny

10

Quiz:

- Can Charlie reach the SSH server of 120.10.20.1?
- Can Alice reach the SSH server of 120.10.20.1?
- Can Charlie reach the web server of 120.10.20.1?

120.10.20.0/24

IPTABLES

 Program to edit/configure IP packet filter rules of the Linux kernel firewall

- Written in C
- 1998, by Netfilter

11

Stateless vs Stateful Filtering

- Stateless packet filtering
 - Every packet is evaluated individually
 - If header information match rules, then specified policy applies
 - Fast and efficient, no memory requirements
 - All examples so far are examples of stateless filtering
- Stateful packet filtering
 - Examine packets in relation to previous packets
 - Firewall must keep memory state information from one packet to another
 - Higher overhead

27 February 2024 DTU Compute Network security course

Stateful Filtering Examples

DoS attacks

- One failed HTTP request from the same IP is OK (SYN, SYN/ACK, No ACK)
- 1000 HTTP requests per second from the same IP is a DoS attack (SYN Flooding)
- Stateful firewalls can enforce rate limit policies (no more X packets per second)
- DDOS?

Port Scanning

- A probe on few ports is OK (might be legitimate or an honest mistake)
- A probe on 1000 ports is port scanning by somebody that is potentially dangerous!
- Stateful firewalls can keep track and block unacceptable behaviour
- nmap has a paranoid mode (waits 5 minutes between probes!)

Port Knocking

- Use TCP SYN on a series of ports as "password"
 - Accept packets after a series of 3 failed TCP SYN attempts on ports 1000, 2000, 3000

13

Port knocking demo video

https://www.youtube.com/watch?v=IBR3oLqGBj4

Packet Filtering vs Application Layer Firewalls

- Packet Filtering Firewalls enforce rules upon analysing the headers of the packets
- Application Layer Firewalls inspect both the headers and the content

27 February 2024 DTU Compute Network security course

Security Zones

- Remember: Firewalls are also useful to prevent the spread of a fire!
- DMZ (Demilitarised Zone)
 - Buffer zone between the wild Internet and the internal network
 - Public servers (e.g. organisation's web-server) are placed in the DMZ

27 February 2024 DTU Compute Network security course

Outline

- Introduction
- Firewalls
- Intrusion detection
- Cyber-deception
- Lab exercises

Intrusion detection

27 February 2024 DTU Compute Network security course

Intrusion Detection Systems (IDS)

Firewalls:

- Filter network traffic based on a security policy
- Sit **between** private networks and the Internet

Intrusion Detection Systems:

- **Monitor** activity in a private environment
- **Spectate**; they do not interfere with network traffic
- **Notify** administrators upon detection of an intrusion

IDSs are like a smoke detector:

if a "fire" spreads past the firewall, the smoke detector will kick in and alert you

Intrusion Prevention System (IPS)

If we can detect malicious activity, why not act on it?

Intrusion Prevention Systems take action when detecting a threat

- IPS is an **extension** of IDS
- Distinction is blurry (many IDSs are IPSs to some extent)

Intrusion Detection System (IDS)

 Definition: a system (software or hardware) that monitors a host or a network for signs of intrusions, manifested by malicious behavior or security policy violations.

21

Classifications of IDSs

- Based on the placement (location) of the IDS:
 - Host-based
 - Network-based
 - Other: wireless, SDN (software-defined network), etc.
- Based on the detection method:
 - Signature-based
 - Anomaly-based
 - Hybrid

27 February 2024 DTU Compute Network security course

Host-based IDSs [1/2]

- OS/Application-level monitoring
 - Log all relevant system events
 - Monitoring of system calls
 - Audit information may include
 - File R/W operations (e.g., file modifications: /etc/passwd)
 - Authentication mechanisms (e.g., login attempts: brute force attacks)

23

Host-based IDSs [2/2]

- Advantages
 - Very detailed/in-depth monitoring/analysis
 - Ideally, majority of attacks can be identified
 - No need for additional hardware

- Disadvantages
 - Complete isolation ("see the forest for the trees")
 - OS/Application specific
 - Expensive to maintain

27 February 2024 DTU Compute Network security course

Example: Lynis

- Lynis is something like a host-based (static) IDS/scanner
 - Actually, more of a system hardening and auditing tool
 - But very similar to the logic of traditional host-based IDSs

```
[+] Users, Groups and Authentication
                                                             [ OK ]
- Search administrator accounts...
- Checking UIDs...
                                                             [ OK ]
- Checking chkgrp tool...
                                                             [ FOUND ]
- Consistency check /etc/group file...
                                                             [ OK ]
- Test group files (grpck)...
                                                             [ OK ]
- Checking login shells...
                                                             WARNING
                                                             [ OK ]
- Checking non unique group ID's...
- Checking non unique group names...
                                                             [ OK ]
- Checking LDAP authentication support
                                                             [ NOT ENABLED ]
- Check /etc/sudoers file
                                                             [ NOT FOUND ]
Press [ENTER] to continue, or [CTRL]+C to stop ]
(+) Shells
- Checking console TTYs...
                                                             [ WARNING ]
- Checking shells from /etc/shells...
  Result: found 6 shells (valid shells: 6).
Press [ENTER] to continue, or [CTRL]+C to stop ]
+] File systems
- [FreeBSD] Querying UFS mount points (fstab)...
                                                             [ OK ]
- Query swap partitions (fstab)...
                                                             [ OK ]
                                                             [ OK ]
 - Testing swap partitions...
- Checking for old files in /tmp...
                                                             [ WARNING ]
- Checking /tmp sticky bit...
                                                             [ OK ]
```


Classifications of IDSs

- Based on the placement (location) of the IDS:
 - Host-based
 - Network-based
 - Other: wireless, SDN (software-defined network), etc.
- Based on the detection method:
 - Signature-based
 - Anomaly-based
 - Hybrid

Network-based IDSs

- Network-level monitoring
 - Placement in strategic points (usually behind a firewall)
 - Monitor all traffic (promiscuous interface)
- Advantages
 - "Big picture" can be observed
 - Independent of the operating system
- Disadvantages
 - Analysis might not be as in-depth as the host-based IDSs
 - Scalability: what happens when the monitored network is very large?

Classifications of IDSs

- Based on the placement (location) of the IDS:
 - Host-based
 - Network-based
 - Other: wireless, SDN (software-defined network), etc.
- Based on the detection method:
 - Signature-based
 - Anomaly-based
 - Hybrid

Signature-based (or misuse detection) IDSs [1/5]

- Similar to an antivirus program
- Search for known patterns of malicious activity

```
alert tcp any any <> any [443,465,563,636,695,898,989,990,992,993,994,995,2083,2087,2096,2484,8443,8883,9091] (content:"|18 03 00|"; depth: 3; content:"|01|"; distance: 2; within: 1; content:!"|00|"; within: 1; msg: "SSLv3 Malicious Heartbleed Request V2"; sid: 1;)

alert tcp any any <> any [443,465,563,636,695,898,989,990,992,993,994,995,2083,2087,2096,2484,8443,8883,9091] (content:"|18 03 01|"; depth: 3; content:"|01|"; distance: 2; within: 1; content:!"|00|"; within: 1; msg: "TLSv1 Malicious Heartbleed Request V2"; sid: 2;)

alert tcp any any <> any [443,465,563,636,695,898,989,990,992,993,994,995,2083,2087,2096,2484,8443,8883,9091] (content:"|18 03 02|"; depth: 3; content:"|01|"; distance: 2; within: 1; content:!"|00|"; within: 1; msg: "TLSv1.1 Malicious Heartbleed Request V2"; sid: 3;)
```


Signature-based IDSs [2/5]

- Advantages:
 - Easy deployment
 - Low overhead (low alarm rates, low maintenance)
 - Accuracy
 - Mature systems
 - The majority of real-world deployed IDSs are in this class
 - Many different systems exist

27 February 2024 DTU Compute Network security course

Signature-based IDSs [3/5]

- Disadvantages:
 - Who generates the signatures?
 - Detection techniques are sometimes simplistic
 - Cannot detect unknown attacks (e.g., 0-day exploits)
 - Packet analysis a major bottleneck

WannaCry Snort coverage

Lots of news out there this evening about a new Ransomware with autopropogation ability. Please see our Talos blog post here: http://blog.talosintelligence.com/2017/05/wannacry.html

We have Snort coverage available in the form of rules: 42329-42332, 42340, 41978

This coverage is available in our Snort Subscriber Rule Set.

In order to subscribe now to Talos's newest rule detection functionality, you can subscribe for as low as \$29 US dollars a year for personal users, be sure and see our business pricing as well at https://snort.org/products#rule_subscriptions.

27 February 2024 DTU Compute Network security course

Signature-based IDSs [4/5]: Snort

Snort IDS

- Open source
- Network-based
- Signature-based
- Packet sniffer
- Packet logger

Network security course

27 February 2024 DTU Compute

Signature-based IDSs [5/5]: Snort rule example

```
alert tcp $EXTERNAL NET $HTTP PORTS -> $HOME NET any
Rule Header
             msg: "BROWSER-IE Microsoft Internet Explorer
Message
             CacheSize exploit attempt";
             flow: to client, established;
Flow
             file data;
Detection
                   content: "recordset"; offset:14; depth:9;
                   content:".CacheSize"; distance:0; within:100;
                   pcre:"/CacheSize\s*=\s*/";
                   byte test: 10, >, 0x3ffffffe, 0, relative, string;
             policy max-detect-ips drop, service http;
Metadata
             reference: cve, 2016-8077;
References
             classtype: attempted-user;
Classification
             sid:65535;rev:1;
Signature ID
```

27 February 2024 DTU Compute Network security course

Other network/signature-based IDSs

- Zeek (formally known as Bro)
 - Extremely powerful
 - Signatures but also statistics/analytics/anomaly
 - Uses its own scripting language (you can play with it @: http://try.zeek.org/#/?example=hello)
 - Rather complicated to learn/deploy

Suricata

- Signature-based
- Closer to Snort than Zeek
- High performance
- Can make use of Snort rules
- (relatively) easy to use

34

Classifications of IDSs

- Based on the placement (location) of the IDS:
 - Host-based
 - Network-based
 - Other: wireless, SDN (software-defined network), etc.
- Based on the detection method:
 - Signature-based
 - Anomaly-based
 - Hybrid

27 February 2024 DTU Compute Network security course

Anomaly-based IDSs [1/2]

- –Analyze network/system
- –Generate a normality model
 - Obvious usage of ML
- -Examine network for anomalies
 - Patterns that do not conform to the expected behavior
 - Examples:
 - Credit card fraud
 - Heavy unexpected network traffic

Anomaly-based IDSs [2/2]

- Advantages:
 - Can detect unknown attacks (basically anything that is considered an anomaly)
- Disadvantages:
 - An anomaly is not always an attack
 - Requires the IDS to learn the "normal" state of the network
 - Sometimes more interesting for research than actual deployment
 - Might introduce large numbers of false positives!

Classifications of IDSs

- Based on the placement (location) of the IDS:
 - Host-based
 - Network-based
 - Other: wireless, SDN (software-defined network), etc.
- Based on the detection method:
 - Signature-based
 - Anomaly-based
 - Hybrid

27 February 2024 DTU Compute Network security course

Hybrid IDSs

- Combine both signature-based and anomaly-based detection algorithms
- Advantages:
 - Combination of advantages from both systems
- Disadvantages/challenges:
 - If not completely automated: can introduce overhead for the administrators
 - How to combine the detectors?
 - Which anomaly-detection algorithms should be used?
 - How to train them?

Outline

- Introduction
- Firewalls
- Intrusion detection
- Cyber-deception
- Lab exercises

Deception: from nature to the military

- Nature:
 - Camouflage
 - Parasitic signalling
 - Mimicry
 - Defense/predators
- Military:
 - Camouflage
 - Sabotage
 - Etc.

Mimicry phenomena share two core characteristics

"resemblance to a model & received deception"

[Enrique Font, Mimicry, Camouflage & Perceptual Exploitation: the Evolution of Deception in Nature, 2018]

41

What is cyber-deception?

- Umbrella term that:
 - Describes some sort of deception
 - –Includes technologies such as:
 - Honeypots
 - Honeytokens (aka honeywords)
 - Decoys
 - Breadcrumbing
 - Moving target defense
 - Etc.

Deception Taxonomies (Bell and Whaley 1991 & Qassrawi and Hongli 2010)

Masking

- hiding things in the background
- e.g., concealing the monitoring of users by the honeypot by modifying the operating system to hide its traces

Repackaging

- hiding something as something else
- e.g., embedding of attack-thwarting software within innocent utilities of a computer's operating system

Dazzling

- hiding something by having it overshadowed by something else
- e.g., sending many error messages to an attacker when they try to do something malicious

Mimicking

- imitating aspects of something else
- e.g., construction of a fake file directory for a honeypot that looks like the file system of a busy user, with the goal
 of helping convince the attacker it is not a honeypot

Inventing

- creating new, often "fake", objects to interest the deceive
- e.g., a piece of software left in a honeypot for attackers to download that reports their personal data to authorities when run

Decoying

- using diversions unrelated to the object of interest
- e.g., planting passwords of honeypot websites to encourage attackers to log in there

Honeypots and cyber deception

- First known case of a honeypot in 1986(!)
 - -Clifford Stoll
 - –9 seconds of unpaid computer time at the Lawrence Berkeley National Laboratory
 - Created a honeypot by putting together terminals, and inserting fake accounts and documents
 - –(successfully found the hacker, who happened to be a KGB spy)

Motivation

- Traditional cyber-defense mechanisms are okay but...
 - Attackers are expecting all these mechanisms.
 - What about more aggressive/active techniques?
 - How can we learn about novel attack trends?
 - How can we observe attackers' behavior?

Introduction [1/2]

-Definition: "A security resource whose value lies in being probed, attacked or compromised"

- Doesn't have to be a (real) system
- We actually want the resource to get compromised!
- Certainly not a standalone security mechanism
 - A honeypot cannot take the place of an IDS or firewall

Introduction [2/2]

But why honeypots?

- (Almost) no false-positives
- Understand how attackers work
- Research/industry purposes:
- » Malware collection and analysis
- » Botnet mitigation
- Reducing the available attack surface/early warning system
- Because they are FUN!
- Identifying attack trends (see next slide)

Honeypots can highlight trends

Port	Protocol/Service	Number of Attacks
135	RPC	24,667
139	NetBIOS	20,249
23	Telnet	11,058
80	HTTP	10,735
445	SMB	9,294

"Lastly, we identified that a number of the attacks that were targeting Telnet were conducted by insecure infected embedded devices, e.g., IP web-cams."

A honeypot-driven cyber incident monitor: lessons learned and steps ahead,

Vasilomanolakis et al., SIN 2015

Honeypot Classifications

Interaction-level classification

- Low-interaction
- Medium-interaction
- High-interaction

Purpose

- Generic
- Malware collectors
- Protocol-specific
- Technology-specific

Placement

- Production
- Research

Network security course

Interaction-level classification

 Low interaction: simulate network operations (usually at the TCP/IP stack)

Interaction-level classification

 Medium interaction: simulate network operations with more "sophisticated" ways

```
db2:~# w
 06:42:55 up 6 days, 8:04, 1 user, load average: 0.00, 0.00, 0.00
USER
         TTY
                 FROM
                                  LOGIN@
                                                  JCPU
                 95.141.37.19
                                  06:42
root
        pts/0
                                           0.00s 0.00s 0.00s w
db2:~# unam e-a
bash: unam: command not found
db2:~# uname -a
Linux db2 2.6.26-2-686 #1 SMP Wed Nov 4 20:45:37 UTC 2009 i686 GNU/Linux
db2:~#
```

- Questionable class:
 - sometimes synonym to low interaction
 - -sometimes not (e.g. container-based emulation)

Interaction-level classification

- High interaction: real systems or VMs
 - Full functionality/interaction
 - Very expensive to maintain

Purpose-based classification [1/2]

Generic honeypots

- All-around, general purpose style honeypots
- Not easy to develop such (realistic-looking) honeypots
- Example: honeyd

Malware collectors

- Main purpose is the collection of malware binary files
- Honeypot provides enough interaction to receive the binary
- Very useful for botnet monitoring
- Example: Dionaea

Purpose-based classification [2/2]

Protocol specific honeypot

- Emulation of a specific protocol of interest
- Easier to develop
- Higher interaction level can be provided
- Example: Kippo SSH honeypot

Technology-specific honeypot

- Emulation of a specific technology
- A "technology" is usually realized as a collection of protocols
- Example: IoTPot Internet of Things honeypot

Placement Classification Architectures [1/2]

27 February 55

Placement Classification Architectures [2/2]

Many honeypots...

- A Survey on Honeypot Software and Data Analysis
 - -Nawrocki et al., 2016
 - Lists approximately 50 low and high interaction honeypots
- However:
 - Many projects abandoned
 - -This creates vulnerabilities (we will return to this later)
- We will discuss some of the most used/interesting honeypots next!

An all-around malware collector

DIONAEA HONEYPOT

27 February 2024 DTU Compute Network security course

Dionaea

- Low Interaction honeypot for collecting malware
- Uses Libemu a "library written in C offering basic x86 emulation and shellcode detection using GetPC heuristics"
- Basic protocol simulated: SMB (port 445)

Dionaea muscipula

- Others: HTTP, HTTPS, FTP, TFTP, MSSQL and SIP (VOIP)
- Also supports IPv6

Dionaea

- Great honeypot for capturing automatically spreading malware
- Malware files: stored locally or/and sent to 3rd party entities

(CWSandbox, Norman Sandbox, Anubis, VirusTotal)

27 February 2024 DTU Compute Network security course

Dionaea

- Disadvantage: getting old
- Most versions can be easily detected via Nmap:

27 February 2024 DTU Compute Network security course

The ultimate SSH honeypot

KIPPO/COWRIE HONEYPOT

27 February 2024 DTU Compute Network security course

Kippo (and its successor "Cowrie")

- Low interaction SSH/Telnet honeypot
- Features:
 - Presenting a fake (but "functional") system to the attacker (resembling a Debian installation)
 - Attacker can download his tools through wget, and they are saved for later inspection
 - Session logs are stored in an UML- compatible format for easy replay with original timings
- Easy to deploy
- Harder to attract attackers!

HosTaGe - Overview

- Lightweight, low-interaction honeypot for (rooted) mobile devices
- 15,000++ lines of code (JAVA)
- Open source
- Available in Play Store
- Emulates several protocols
 - HTTPS, FTP, MySQL, SIP, SSH,...
- Additionally
 - Support for many major ICS/IoT protocols
 - Detection of multi-stage attacks
 - Signature generation

HosTaGe – Protocol Emulation

- AMQP
- COAP
- FTP
- HTTP/HTTPS
- MySQL
- MQTT
- Modbus
- S7comm
 - Propriety protocol utilized in PLCs of the Siemens S7-300/400 family
- SNMP
- SIP
- SMB
- · SSH
- SMTP
- Telnet

ICS/SCADA

CONPOT HONEYPOT

27 February 2024 DTU Compute Network security course

Conpot

- Low interaction Industrial Control System (ICS) honeypot
- Released in May 2013
- Multiple protocols:
 - HTTP, MODBUS, SNMP, BACnet, IPMI, S7comm
- Many configurations offered:
 - Siemens SIMATIC S7-200 PLC, Guardian AST tankmonitoring system, Kamstrup 382, etc.
- Usage of XML templates to define hardware devices 2018-08-09 19:13:15,403 IPMI server started on: ('0.0.0.0', 6230) 19:

Honeytokens

- A honeypot is not always a (fully functional) system
- Honeytokens (aka honeywords) are such an example
- Honeytokens can be:
 - A URL
 - A username/password
 - An email account
 - A file/folder

• . . .

69

70

71

72

27 February 2024 DTU Compute Network security course

27 February 2024 DTU Compute Network security course

Canarytoken triggered

Canarytoken Management Details:

Manage this Canarytoken <u>here</u>
More info on this token <u>here</u>

76

Powered by: Thinkst Canary

More crazy ideas on honeypots

- Honeypots can emulate ANYTHING
- and they can be used in out-of-the-box scenarios

Don't Steal my Drone: Catching Attackers with an **Unmanned Aerial Vehicle Honeypot,**

Vasilomanolakis et al., IEEE/IFIP NOMS 2018

Other deception methods

- Decoy systems:
 - –Fake windows/Linux boxes (inventing),
 - -login always fail (dazzling)
 - –All attempts are logged
 - touch,
 - scan,
 - probe,
 - login attempt
- Tarpit: delay connection

Breadcrumbs?

- Endpoint **lures**, **breadcrumbs**, and **baits**: fake artifacts including registry entries, credentials, shared drives
- AD specific: Deception Decoys and Breadcrumbs Obfuscate AD infrastructure and expose attempts to attack it, using fake domain controllers, AD forests, and baits

FOLLOW YOUR BREADCRUMBS

detecting fake systems

HONEYPOT DETECTION

27 February 2024 DTU Compute Network security course

Attacks on honeypots

- Detection of honeypots
 - -Honeypots are fake systems and hence can always be detected; it's only a question of effort
- Evasion
- Availability attacks
 - –DDoS attack
- Hack a honeypot
 - –Pivot attacks

27 February 2024 DTU Compute Network security course

Honeypot detection

- Low/medium interaction honeypots can be identified by:
 - Artifacts as a result of their fixed implementation
 - Signatures (e.g., via Nmap)
 - By executing non-expected commands into them
 - Manually by carefully examining the compromised system
- High interaction honeypots are normally invisible:
 - Real systems
 - The attacker might attempt to detect the virtual environment
 - The attacker might attempt to detect the monitoring tools

Nmap scanning

- Nmap can, by default, detect many honeypots:
 - Dionaea
 - Honeyd
 - ...

```
Starting Nmap 6.40 (http://nmap.org) at 2016-11-07 12:18 CET
Nmap scan report for test1.tk.informatik.tu-darmstadt.de (130.83.163.16)
Host is up (0.00027s latency).
Not shown: 988 closed ports
PORT
        STATE SERVICE
                           VERSION
21/tcp
                           Dionaea honeypot ftpd
        open ftp
        open ssh
                           (protocol 2.0)
22/tcp
42/tcp
        open nameserver?
30/tcp
        open http?
135/tcp open msrpc?
443/tcp open ssl/https?
445/tcp open microsoft-ds Dionaea honeypot smbd
1433/tcp open ms-sql-s
                           Dionaea honeypot MS-SQL server
1723/tcp open pptp?
                           MySQL 5.0.54
3306/tcp open mysql
5060/tcp open sip
                           (SIP end point; Status: 200 OK)
                           (SIP end point; Status: 200 OK)
5061/tcp open ssl/sip?
5 services unrecognized despite returning data. If you know the service/version,
please submit the following fingerprints at http://www.insecure.org/cgi-bin/ser
vicefp-submit.cgi :
```


Shodan automatic scanning

- Shodan recently introduced a "honeypot or not" service
 - Crawls the Internet
 - Performs various checks on the detected systems
 - Binary result: "yes or no"

Manual Shodan checks: Conpot artifact example

Bitter Harvest: Systematically Fingerprinting Low- and Medium-interaction Honeypots at Internet Scale (University of Cambridge, 2018)

- Transport layer fingerprinting probes
- · Managed to detect ~7600 instances of

honeypots!

	Updated	Language	Library
SSH			_
Kippo	May 15	Python	TwistedConch
Cowrie	May 18	Python	TwistedConch
Telnet			
TPwd	Feb 16	C	custom
MTPot	Mar 17	Python	telnetsrv
TIoT	May 17	Python	custom
Cowrie	May 18	Python	TwistedConch
HTTP/Web		-	
Dionaea	Sep 16	Python	custom
Glastopf	Oct 16	Python	BaseHTTPServer
Conpot	Mar 18	Python	BaseHTTPServer

Table 4: Top 10 ASNs used to host Honeypots (latest scans)

CO	ASN	Organisation	Telnet	SSH	HTTP	Total
US	16509	Amazon.com	140	520	506	1166
JP	2500	WIDE Project	_	_	490	490
US	14061	Digital Ocean	162	189	139	490
FR	16276	OVH SAS	117	202	122	441
TW	4662	GCNet	15	2	254	271
TW	18182	Sony Network	2	_	256	258
US	15169	Google LLC	45	139	46	230
TW	9924	Taiwan Fixed	1	74	146	221
US	14618	Amazon.com	12	70	110	192
RO	43443	DDNET Sol.	30	_	155	185

Gotta catch 'em all: a Multistage Framework for honeypot fingerprinting

· Managed to detect ~20,000 instances of

honeypots!

87

Honeyscanner

- Open-source vulnerability analysis tool for honeypots
- Supports Cowrie, Kippo, Dionaea
- Performs:
 - Passive attacks
 - Active attacks
 - E.g., a DoS attack
 - Fuzzing
 - Software library exploitation
 - Tar bomb attacks

Honeypots

- Core takeaway message:
 - Honeypots are useful and fun
 - (but still they need to be handled with care)
 - Not a stand-alone security mechanism
 - Avoid deprecated honeypots and default configurations
- Outside your firewall
 - See what kind of attacks are hitting your network
- Inside your firewall
 - Find old/infected internal devices
 - Insiders

Overview

- Introduction
- Firewalls
- Intrusion detection
- Cyber-deception
- Lab exercises

27 February 2024 DTU Compute Network security course

Lab exercises

- Play, edit, and understand IPTABLES and firewall rules
- Install, setup, and play with a honeypot
 - –Cowrie SSH honeypot

27 February 2024 DTU Compute Network security course