Heart Murmur Detection using Machine Learning Machine Learning | MSc Artificial Intelligence

Tatiana Boura, Andreas Sideras

NCSR Demokritos & University of Piraeus

February 2023

Outline

- Peature Extraction
 - Important Features
- Heart Murmur Classification

Table of Contents

Introduction

- Peature Extraction
 - Important Features

Heart Murmur Classification

- Heart murmurs are sounds made by turbulent blood flow through the heart.
 The sounds can be heard with a stethoscope.
- Lately, digital stethoscopes are used, that can record heart audio signals.
- We will use ML in order to detect heart murmur using The CirCor DigiScope Dataset

Table of Contents

- Feature ExtractionImportant Features
- 3 Heart Murmur Classification

Feature Extraction Procedure

Figure: Waveform of Heart Audio Signal

Feature Extraction Procedure

- Time domain Features
 - Amplitude Envelope
 - Total Energy
 - Root-Mean Square Energy
 - Zero-Crossing Rate
 - Skewness
 - Kurtosis
- Cepstral domain Features
 - MFCCs

- Frequency and Spectral domain Features
 - Peak Frequency
 - Onset Detection
 - Band Energy Ratio
 - Autocorrelation
 - Spectral Centroid
 - Spectral Bandwidth

Zero-Crossing Rate (ZCR)

Figure: ZCR of absent and present murmur

Kurtosis

Figure: Kurtosis of signals at PV

Onset Detection

Figure: Onset detection of signals with murmur

Onset Detection

Figure: Onset detection of signals without murmur

Table of Contents

- Feature ExtractionImportant Features
- Heart Murmur Classification

Feature and Model Selection

- We performed data augmentation on the positive samples.
- We selected features based on three feature selection methods:
 Lasso Logistic Regression, ANOVA and Recursive Feature Elimination.
- We divided our dataset into training, validation and test sets.
- We considered different hypotheses spaces.
- We trained our models in such a way to avoid underfitting and overfitting.

Evaluation

Our final model is a SVM with $C=0.1\ \mbox{and}\ \mbox{a sigmoid kernel}.$

Precision	0.648
Recall	0.8
F1 score	0.716
Accuracy	0.846

Evaluation

Evaluation

Figure: ROC and PR curves

Thank you for your attention, a short demo follows.