Foundation Algebra (CELEN036)

Problem Sheet 9

Topics: Complex numbers

Topic 1: Real and imaginary parts of complex numbers

1. Find the real part and the imaginary part of the following complex numbers:

(i)
$$z = 5 + 7i$$

(i)
$$z = 5 + 7i$$
 (ii) $z = -3 - 6i$ (iii) $z = 4$ (iv) $z = -\sqrt{5}i$

(iii)
$$z=4$$

(iv)
$$z = -\sqrt{5}i$$

2. Solve the following equations for x and y, where $x, y \in \mathbb{R}$:

(i)
$$x + iy = (3+i)(2-3i)$$
 (ii) $x + iy = 3$

(ii)
$$x + iy = 3$$

(iii)
$$x + iy = 2i$$

(iv)
$$2+3i = (x+iy)(1-i)$$

3. Find the real and imaginary parts of w defined by $w = \frac{1+z}{1-z}$, where z = x+iy for some $x, y \in \mathbb{R}$.

Topic 2: Expressing complex numbers in the form a + bi

4. If $z_1=4-i$ and $z_2=3+2i$, express the following in the form a+bi, where $a,b\in\mathbb{R}$:

(i)
$$z_1 + z_2$$

(i)
$$z_1+z_2$$
 (ii) z_1-z_2 (iii) $z_1\cdot z_2$ (iv) $\frac{z_1}{z_2}$

(iii)
$$z_1 \cdot z_2$$

(iv)
$$\frac{z_1}{z_2}$$

5. Express the following complex numbers in the form a + bi, where $a, b \in \mathbb{R}$:

(i)
$$(5+6i)+(7+3i)$$

(i)
$$(5+6i)+(7+3i)$$
 (ii) $(2-3i)-(5+2i)$ (iii) $(3+2i)(2-i)$

(iii)
$$(3+2i)(2-i)$$

(iv)
$$(1+i)^2$$

(v)
$$\left(\sqrt{2}-\sqrt{2}i\right)^5$$
 (vi) $\frac{2+i}{7-2i}$

$$(vi) \quad \frac{2+i}{7-2i}$$

$$\text{(vii)} \quad \frac{9-i}{1+3i}$$

(iv)
$$(1+i)^2$$
 (v) $(\sqrt{2}-\sqrt{2}i)^5$ (vi) $\frac{2+i}{7-2i}$ (vii) $\frac{9-i}{1+3i}$ (viii) $\frac{(1+2i)(1+3i)}{1+i}$ (ix) $(\overline{4-3i})(8+i)$

(ix)
$$(4-3i)(8+i)$$

$$(x) \quad \frac{\overline{(3+4i)}}{5-2i}$$

(xi)
$$\overline{\left(\frac{3+4i}{5-2i}\right)}$$

(x)
$$\frac{\overline{(3+4i)}}{5-2i}$$
 (xi) $\overline{\left(\frac{3+4i}{5-2i}\right)}$ (xii) $\frac{(1+3i)(1+2i)}{(1+i)(2-i)}$

6. Given z = 1 + 3i, express $z + \frac{2}{z}$ in the form a + bi, where $a, b \in \mathbb{R}$.

7. Evaluate $(1+i)^6 - (1-i)^3$

8. Find the two square roots of (-7 + 24i).

Topic 3: Solving equations

9. Solve the following equations for $z \in \mathbb{C}$:

(i)
$$\frac{iz-2}{z+3i} = 1+2i$$

(i)
$$\frac{iz-2}{z+3i} = 1+2i$$
 (ii) $\frac{1}{z} + \frac{1}{2+i} = \frac{1}{1+3i}$

10. Solve the following polynomial equations:

(i)
$$x^2 + 6x + 10 = 0$$

(ii)
$$4x^2 + 25 = 0$$

(iii)
$$x^3 - 5x^2 + 17x - 13 = 0$$
, given that $x = 2 + 3i$ is a root.

(iv)
$$x^3 + 6x^2 + 13x + 10 = 0$$
, given that $x = -2$ is a root.

11. Find all possible values of $z \in \mathbb{C}$ that satisfy the following equations:

(i)
$$z\overline{z} + 2i \cdot z = 12 + 6i$$

(ii)
$$z^2 + 2\overline{z} + 1 = 0$$

(iii)
$$z^2 = \overline{z}$$

Topic 4: Argand diagram

12. Plot the following complex numbers on the Argand diagram:

(i)
$$3 - 4i$$

(ii)
$$2 + 5i$$

(iii)
$$-4 + 2i$$

(iv)
$$1 - 6i$$

(vi)
$$-7$$

(vii)
$$-i$$

(viii)
$$-3 + 4i$$

13. For the given complex numbers z_1 and z_2 , plot $z_1 + z_2$ and $z_1 - z_2$ on the Argand diagram:

(i)
$$z_1 = 3 + 4i$$
.

(i)
$$z_1 = 3 + 4i$$
, $z_2 = 2 - 3i$ (ii) $z_1 = 4 - 3i$, $z_2 = 1 + 2i$

$$z_2 = 1 + 2i$$

(iii)
$$z_1 = 2 - i$$
, $z_2 = 3 + i$ (iv) $z_1 = -4 - 3i$, $z_2 = -4 + 3i$

$$z_2 = 3 + i$$

(iv)
$$z_1 = -4 - 3i$$
,

$$z_2 = -4 + 3i$$

Topic 5: Modulus and argument

14. Given $z_1 = 3 - 2i$, $z_2 = 1 + 4i$, and $z_3 = 4 + 5i$, find the following values:

(i)
$$|z_1 z_2|$$

(ii)
$$\left| \frac{z_1 z_3}{z_2} \right|$$

(ii)
$$\left| \frac{z_1 z_3}{z_2} \right|$$
 (iii) $\left| \frac{z_1 z_2 + z_3}{z_3} \right|$

15. Find the modulus and the principal value of the argument $(-\pi < \theta \le \pi)$ of the following complex numbers:

(i)
$$z_1 = 1 + i$$

(ii)
$$z_2 = 1 + \sqrt{3}i$$
 (iii) $z_3 = -1 + \sqrt{3}i$ (iv) $z_4 = 3i$

(iii)
$$z_3 = -1 + \sqrt{3}i$$

(iv)
$$z_4 = 3i$$

Topic 6: Polar form of complex numbers

16. Express the following complex numbers in polar form $r(\cos\theta + i\sin\theta)$ $(-\pi < \theta \le \pi)$:

- (i) $\sqrt{3} + i$ (ii) $1 \sqrt{3}i$ (iii) 4i
- (iv) -1

(v)
$$\sqrt{3} + \sqrt{3}i$$
 (vi) $\sqrt{3} - \sqrt{3}i$ (vii) $-1 + \sqrt{3}i$ (viii) $-\sqrt{3} - i$

(vi)
$$\sqrt{3} - \sqrt{3}$$

(vii)
$$-1 + \sqrt{3}i$$

(viii)
$$-\sqrt{3}-3$$

17. Find the polar form of the following complex numbers:

(i)
$$z_1 = 2 + 2i$$

(ii)
$$z_2 = 2 - 2i$$
 (iii) $z_3 = i$.

(iii)
$$z_3=i$$
.

Hence find the modulus r and principal argument $(\theta \in (-\pi, \pi])$ of the complex numbers:

(iv)
$$(2+2i)(2-2i)$$
 (v) $(2+2i)^2$

(v)
$$(2+2i)^2$$

(vi)
$$i(2+2i)$$
.

18. Find the Cartesian form $(a + b i, a, b \in \mathbb{R})$ of the following complex numbers in the polar form (you may use the calculator):

(i)
$$z = 2\sqrt{2} \left[\cos \left(\frac{7\pi}{12} \right) + i \sin \left(\frac{7\pi}{12} \right) \right]$$
 (ii) $z = 5 \left[\cos \left(\frac{-3\pi}{7} \right) + i \sin \left(\frac{-3\pi}{7} \right) \right]$

- 19. Given complex numbers $z_1 = 8 \left[\cos(2.24) + i \sin(2.24)\right]$ and $z_2 = 2 \left[\cos(-1.43) + i \sin(-1.43)\right]$, find the polar form of the following complex numbers:
 - (i) $z_1 z_2$
- (ii) $\frac{z_1}{z_2}$

Answers

- 1. (i) Re(z) = 5, Im(z) = 7 (ii) Re(z) = -3, Im(z) = -6
 - (iii) Re(z) = 4, Im(z) = 0 (iv) Re(z) = 0, $Im(z) = -\sqrt{5}$
- 2. (i) x = 9, y = -7 (ii) x = 3, y = 0 (iii) x = 0, y = 2 (iv) x = -0.5, y = 2.5
- 3. (i) $Re(w) = \frac{1 x^2 y^2}{x^2 + y^2 2x + 1}$ $Im(w) = \frac{2y}{x^2 + y^2 2x + 1}$
- 4. (i) 7+i (ii) 1-3i (iii) 14+5i (iv) $\frac{10}{13}-\frac{11}{13}i$
- 5. (i) 12 + 9i (ii) -3 5i (iii) 8 + i (iv) 2i
 - (v) $-16\sqrt{2} + 16\sqrt{2}i$ (vi) $\frac{12}{53} + \frac{11}{53}i$ (vii) $\frac{3}{5} \frac{14}{5}i$ (viii) 5i
 - (ix) 29 + 28i (x) $\frac{23}{29} \frac{14}{29}i$ (xi) $\frac{7}{29} \frac{26}{29}i$ (xii) -1 + 2i
- 6. $\frac{6}{5} + \frac{12}{5}i$
- 7. 2-6i
- 8. 3+4i, -3-4i
- 9. (i) $\frac{1}{2} \frac{7}{2}i$ (ii) -3 + i
- 10. (i) $-3 \pm i$ (ii) $\pm \frac{5}{2}i$ (iii) $2 \pm 3i$, 1 (iii) $-2 \pm i$, -2
- 11. (i) 3+3i or 3-i (ii) -1 or $1\pm 2i$ (iii) 0 or 1 or $-\frac{1}{2}\pm \frac{\sqrt{3}}{2}i$
- 14. (i) $\sqrt{221}$ (ii) $\sqrt{\frac{533}{17}}$ (iii) $15\sqrt{\frac{2}{41}}$

15. (i)
$$|z_1| = \sqrt{2}$$
, $\arg(z_1) = \frac{\pi}{4}$

(iii)
$$|z_3| = 2$$
, $\arg(z_3) = \frac{2\pi}{3}$ (iv) $|z_4| = 3$, $\arg(z_4) = \frac{\pi}{2}$

16. (i)
$$2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]$$

(iii)
$$4\left[\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right]$$

(v)
$$\sqrt{6} \left[\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right]$$

(vii)
$$2\left[\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right]$$

17. (i)
$$2\sqrt{2}\left[\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right]$$

(iii)
$$\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$$

(v)
$$r = 8, \quad \theta = \frac{\pi}{2}$$

18. (i)
$$-0.7321 + 2.7321i$$

19. (i)
$$16 \left[\cos(0.81) + i\sin(0.81)\right]$$

(ii)
$$|z_2| = 2$$
, $\arg(z_2) = \frac{\pi}{3}$

(iv)
$$|z_4| = 3$$
, $\arg(z_4) = \frac{\pi}{2}$

(ii)
$$2\left[\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right]$$

(iv)
$$\cos \pi + i \sin \pi$$

(v)
$$\sqrt{6} \left[\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right]$$
 (vi) $\sqrt{6} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right]$

(vii)
$$2\left[\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right]$$
 (viii) $2\left[\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right]$

(ii)
$$2\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right]$$

(iv)
$$r = 8$$
, $\theta = 0$

(vi)
$$r = 2\sqrt{2}$$
, $\theta = \frac{3\pi}{4}$

(ii)
$$1.1126 - 4.8746i$$

(ii)
$$4 \left[\cos(3.67) + i\sin(3.67)\right]$$