Vademecum pour le futur taupin

13 octobre 2021

Ce document traite quelques points sur lesquels les nouveaux étudiants de sup ont régulièrement des lacunes en début d'année. Vous y trouverez plusieurs rappels de cours et de nombreux exercices d'applications. Tous portent sur le programme du secondaire, mais sont écrits du point de vue, avec le langage et le niveau de difficulté que vous trouverez en classes préparatoires. Vous pourrez utiliser ce vademecum comme support de révisions durant l'été, avant l'entrée en sup. Il pourra aussi accompagner le nouveau taupin en début d'année.

Ce texte ne se veut pas exhaustif, il ne comporte pas de preuve, et peu de définitions. Pour tout cela, il conviendra de consulter le cours de terminale.

Si vous travaillez dessus, votre attention doit porter sur trois points en particulier :

- votre rédaction doit être détaillée, et suivre au plus près les modèles proposés;
- les calculs (et leurs vérifications) doivent être faits à la main, sans calculatrice;
- les résultats de calculs doivent toujours être simplifiés au maximum (le plus souvent, on les développe ou on les factorise le plus possible).

À la fin de ce document se trouvent certaines indications, ou réponses numériques. Cette partie est à utiliser avec parcimonie, pour vous débloquer après un temps de recherche (chercher activement un exercice pendant une quinzaine de minutes est tout à fait normal, vous ne devez pas utiliser d'indication avant au moins ce temps de recherche), ou pour vérifier les résultats aux questions calculatoires.

Pour les élèves motivés désirant un matériau plus étoffé, nous conseillons le document « Entre la terminale et les CPGE scientifiques » édité par nos collègues du lycée Louis-le-Grand, auquel nous avons emprunté quelques exercices (nous les en remercions).

1 Calculs complexes et matriciels.

Cette partie est destinée aux étudiants n'ayant pas suivi l'enseignement optionnel « Mathéma-

tiques Expertes ». Les notions présentées cidessous seront introduites en classe, mais une première approche avant l'entrée en sup est vivement recommandée. Nous conseillons très fortement la reprise du programme de mathématiques expertes à partir d'un manuel de terminale, avant l'entrée en sup.

Nous procéderons ici à quelques points de cours minimaux, afin de donner quelques outils de calcul qui permettront de faciliter l'entrée en sup.

1.1 Calculs complexes sous forme algébrique.

En construction.

1.2 Calculs matriciels.

Une matrice est un tableau de nombres. Nous allons définir des opérations sur ces objets.

Définition 1.2.1.

Une matrice de dimension $n \times p$ est un tableau rectangulaire possédant n lignes et p colonnes, dans laquelle sont inscrits des nombres, appelés coefficients.

La notation $A = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ signifie que A est une matrice de dimension $n \times p$, dont le coefficient situé sur la i^{e} ligne et la j^{e} colonne est noté $a_{i,j}$.

Exemple 1.2.2.

Exemple 1.2.2.
$$A = \begin{pmatrix} 1 & -3 \\ 4 & 0 \\ 5 & -1 \end{pmatrix}$$
 est une matrice de dimension 3×2 .
On a alors $a_{1,2} = -3$, $a_{2,1} = 5$.

Définition 1.2.3.

Soit $A = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ et B $(B_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ deux matrices de même dimension $n \times p$, soit $\lambda, \mu \in \mathbb{R}$.

On définit alors la matrice $\lambda A + \mu B = (\lambda a_{i,j} + \beta a_{i,j})$ $\mu b_{i,j})_{1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p}$.

Cela signifie que l'addition de deux matrices et la multiplication d'une matrice par un nombre se font *coefficient par coefficient*.

Attention, on ne peut réaliser ces opérations que pour des matrices de même dimension.

Exemple 1.2.4.

Avec

$$A = \begin{pmatrix} 1 & -3 \\ 4 & 0 \\ 5 & -1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ -1 & 7 \\ 4 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}.$$

On a

$$A+B = \begin{pmatrix} 3 & -2\\ 3 & 7\\ 9 & 1 \end{pmatrix},$$

et

$$3A - 2B = \begin{pmatrix} -1 & -7 \\ 14 & -14 \\ 7 & -7 \end{pmatrix}.$$

On peut aussi écrire

$$3C = \begin{pmatrix} 3 & 6 \\ -3 & 0 \end{pmatrix}.$$

Toutefois, le calcul A + C n'a aucun sens.

Exercice 1.2.5.

Pour chacune des valeurs suivantes de A, B, λ, μ , déterminer si le calcul de $\lambda A + \mu B$ est possible et réaliser ce calcul lorsque cela l'est.

1.
$$A = \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$, $\lambda = 1$, $\mu = -2$.

2.
$$A = \begin{pmatrix} -3 & -2 & 1 \\ 4 & 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \end{pmatrix}$, $\lambda = 1, \mu = -1$.

3. Même A et B, mais, $\lambda = 0$, $\mu = -1$.

4.
$$A = \begin{pmatrix} -4 & -1 \\ 2 & -3 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & -1 & 4 \\ 3 & 2 & 3 \end{pmatrix}$, $\lambda = 1$, $\mu = -1$.

5.
$$A = \begin{pmatrix} 1 & 0 \\ 2 & -5 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 \\ 3 & 4 \\ 1 & -3 \end{pmatrix}, \lambda = 3, \mu = -2$$

Définition 1.2.6 (produit, voir figure 1).

Soit $A=(a_{i,j})_{1\leqslant i\leqslant n, 1\leqslant j\leqslant p}$ et $B=(B_{i,j})_{1\leqslant i\leqslant p, 1\leqslant j\leqslant q}$ deux matrices, A étant de dimension $n\times p$ et B de dimension $p\times q$.

On définit alors le produit AB comme la matrice de dimension $n \times q$:

$$AB = \left(\sum_{k=1}^{p} a_{i,k} b_{k,j}\right)_{1 \le i \le n, 1 \le j \le q}$$

Le produit matriciel est nettement plus compliqué que les opérations présentées précédemment. On remarquera que pour effectuer le produit AB, A et B ne sont pas nécessairement de même dimensions, toutefois A doit avoir autant de colonnes que B n'a de lignes.

On posera systématiquement les calculs comme cela est présenté dans l'exemple suivant (voir figure 2).

Exemple 1.2.7.

Avec

$$A = \begin{pmatrix} 1 & -2 & 3 \\ 3 & 1 & -1 \end{pmatrix} \text{ et } B = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 1 & 0 \\ 2 & 3 & -1 \end{pmatrix},$$

on peut effectuer le produit AB, parce que A a autant de colonnes que B n'a de lignes : 3. On ne peut toutefois pas effectuer le produit BA. On calcule alors (voir figure 2) :

$$AB = \begin{pmatrix} 2 & 6 & -2 \\ 7 & -3 & 4 \end{pmatrix}.$$

On a mis en couleur le calcul du coefficient de la première ligne et de la deuxième colonne :

$$6 = 1 \times (-1) + (-2) \times 1 + 3 \times 3$$

Exercice 1.2.8.

À chaque fois, déterminer si le produit AB est possible, et le calculer le cas échéant. Même question pour BA.

1.
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 3 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & -1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$.

FIGURE 1 – Représentation d'un produit matriciel.

Figure 2 – Exemple de calcul d'un produit

2. Même
$$A$$
, et $B = \begin{pmatrix} 1 & 3 \\ -3 & 1 \end{pmatrix}$.

3.
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

4.
$$A = \begin{pmatrix} -1 & 3 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 3 & 1 \\ -1 & 3 \\ 0 & 1 \end{pmatrix}$.

5.
$$A = \begin{pmatrix} 2 & 3 & -4 & 2 \\ 3 & 2 & 1 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 5 & 2 \\ 3 & 4 \\ 2 & 3 \end{pmatrix}$.

6.
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & -1 & 3 \\ 0 & 5 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}$.

7. Même
$$A$$
, et $B = \begin{pmatrix} 3 & -4 & 5 \end{pmatrix}$.

8. Même
$$A$$
, et $B = \begin{pmatrix} 3 & 1 \\ 0 & 5 \end{pmatrix}$.

9.
$$A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 2 & 3 \\ -4 & 2 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

10. Même
$$B$$
, et $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$.

Généraliser le dernier calcul.

Exercice 1.2.9.

Pour chacune de ces matrices A, déterminer si le calcul de A^2 est possible, et le calculer le cas échéant, ainsi que A^3 .

1.
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$$
 4. $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$
2. $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & -1 & 2 \end{pmatrix}$ 5. $A = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
3. $A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 3 & 1 \\ -1 & 0 & 2 \end{pmatrix}$ 6. $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Exercice 1.2.10.

Au vu des deux derniers exercices, quelles propriétés fondamentales de la multiplication des nombres ne sont plus vraies pour la multiplication des matrices ?

Rédaction et raisonnement déductif.

Un raisonnement ou une démonstration mathématique est avant tout un texte... comme tous les autres. Il doit être articulé logiquement. On y trouve cependant souvent des parties «techniques», écrites (on pourrait aussi dire «codées») en langage mathématiques, comme des équations par exemple.

Il convient de respecter quelques conventions.

- Deux «phrases mathématiques» doivent être coordonnées. Le plus souvent, on utilisera le mot «donc», qui signifie une déduction. En écrivant «A donc B», on dit que B est vrai, car A l'est.
- Toutes les variables mathématiques doivent être introduites, le plus souvent par le mot «soit».

Exemple 2.0.1.

Montrer que si un nombre entier est pair, alors son carré est pair.

On rédige comme suit.

Soit n un nombre entier pair. Il existe un entier k tel que

$$n=2k$$
.

Ainsi,

$$n^2 = 4k^2 = 2 \times 2k^2$$

est bien un nombre pair, car $2k^2$ est un entier.

On aurait aussi pu rédiger comme suit.

Soit $n \in \mathbb{Z}$ un entier pair. Il existe $k \in \mathbb{Z}$ tel que

$$n=2k$$
.

Ainsi,

$$n^2 = 4k^2 = 2 \times 2k^2$$

est bien un nombre pair, car $2k^2 \in \mathbb{Z}$.

Exercice 2.0.2.

Montrer que si un nombre entier est impair, alors son carré est impair.

Exercice 2.0.3.

En utilisant une identité remarquable, montrer que si deux nombres complexes ont même carré, alors ils sont égaux ou opposés.

Remarque 2.0.4.

Dans un travail mathématique, le symbole \Leftrightarrow a un sens bien précis. Il convient pour l'instant de l'utiliser uniquement dans un contextes précis : placé entre deux équations ou inéquations, il signifie que ces dernières ont exactement les mêmes solutions. On passe d'une équation/inéquation à une autre équation/inéquation par des manipulations respectant l'ordre, c'est-à-dire en appliquant de part et d'autre une fonction strictement monotone (voir la partie 6 pour des rappels à ce sujet).

À la moindre hésitation, on préférera dresser des tableaux de signes/variations des fonctions mises en jeu.

3 Récurrence (ou pas).

Bon nombre des problèmes qui vous seront posés consisterons à démontrer que, étant donné une suite de propriétés $(\mathscr{P}(n))_{n\in\mathbb{N}}$, alors $\mathscr{P}(n)$ est vraie pour tout $n\in\mathbb{N}$.

Une des méthodes permettant d'établir un tel résultat est la récurrence (simple), que vous avez étudiée en terminale, mais c'est loin d'être la seule. Nous en étudierons d'ailleurs plusieurs autres pendant l'année de MPSI.

Lorsque l'on essaie de résoudre ce genre de question et que l'on cherche (au brouillon), il est important de ne pas se lancer directement dans la rédaction d'une récurrence. En effet, bon nombre de ces questions ne résolverons pas ainsi!

Dès lors, il est important de prendre quelques bonnes habitudes de recherche, et de respecter les étapes suivantes.

- On commence par essayer de démontrer $\mathcal{P}(n)$, ou du moins de manipuler les objets en jeu.
- Si l'on arrive à démontrer $\mathscr{P}(n)$ directement, il n'y a aucune récurrence à mettre en jeu.
- Si l'on observe que $\mathscr{P}(n)$ s'obtient naturellement à partir de $\mathscr{P}(n-1)$, on peut se lancer dans la rédaction d'un raisonnement par récurrence.

Exemple 3.0.1.

On définit pour tout entier $n \ge 1$:

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.$$

Montrer que pour tout $n \ge 1$:

$$H_{2n} - H_n \geqslant \frac{1}{2}.$$

Soit un entier $n \ge 1$. On a

$$H_{2n} - H_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$

Chacun des termes de cette somme est supérieur ou égal à $\frac{1}{2n}$, et cette somme contient exactement n termes, donc

$$H_{2n} - H_n \geqslant n \times \frac{1}{2n},$$

donc

$$H_{2n} - H_n \geqslant \frac{1}{2}.$$

On a donc bien démontré le résultat obtenu.

Rappel 3.0.2 (Récurrence simple).

Étant donné une suite de propriétés $(\mathscr{P}(n))_{n\in\mathbb{N}}$ et un entier naturel n_0 , si

- $\mathscr{P}(n_0)$ est vraie;
- pour chaque $n \ge n_0$, si P(n) est vraie, alors P(n+1) est vraie;

alors, par l'axiome de récurrence, P(n) est vraie pour tout entier $n \ge n_0$.

Remarque 3.0.3.

Lorsque l'on rédige une récurrence simple, il est important de suivre scrupuleusement les étapes prescrites dans le rappel 3.0.2, comme cela est fait dans l'exemple suivant. Mémorisez bien cette rédaction!

Il est d'ailleurs souvent inutile, voire néfaste, de donner un nom (comme H_n , $\mathcal{P}(n)$) à la propriété que l'on est en train de démontrer par récurrence. Mieux vaut souvent écrire explicitement ce que recouvrent ces propriétés.

Exemple 3.0.4.

On reprend l'exemple 3.0.1.

Montrer que pour tout entier $n \ge 0$:

$$H_{2^n} \geqslant \frac{n}{2}.$$

On démontre ce résultat par récurrence simple sur n.

Pour n = 0, on a $H_{2^0} = H_1 = 1 \geqslant \frac{0}{2}$, cette propriété est donc vraie au rang n = 0.

Soit $n \in \mathbb{N}$, supposons que $H_{2^n} \geqslant \frac{n}{2}$. Alors, en écrivant

$$H_{2n+1} = H_{2 \times 2^n} = H_{2 \times 2^n} - H_{2^n} + H_{2^n}$$

on a par l'exercice précédent et par l'hypothèse de récurrence,

$$H_{2^{n+1}} \geqslant \frac{1}{2} + \frac{n}{2} = \frac{n+1}{2}.$$

On a donc bien la propriété au rang n+1.

Ainsi, par récurrence simple, pour tout $n \in \mathbb{N}$, $H_{2^n} \geqslant \frac{n}{2}$.

Le lecteur intéressé pourra alors traiter l'exercice 3.0.5, en guise de conclusion à ces deux exemples.

Exercice 3.0.5.

On reprend l'exemple 3.0.1.

Montrer que $H_n \xrightarrow[n \to +\infty]{} +\infty$.

Dans chacun des exercices suivant, on s'attachera à utiliser le moins possible les raisonnements par récurrence, et le cas échéant à rédiger scrupuleusement ces derniers, en suivant le modèle proposé.

Exercice 3.0.6.

Montrer que pour tout $n \geqslant 1$:

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Exercice 3.0.7.

Montrer que pour tout $n \ge 1$:

$$1 \times 2^{0} + 2 \times 2^{1} + \dots + n \times 2^{n-1} = (n-1)2^{n} + 1.$$

Exercice 3.0.8.

Montrer que pour tout $n \ge 1$:

$$1 + \frac{1}{2^2} + \dots + \frac{1}{n^2} \leqslant 2 - \frac{1}{n}.$$

Exercice 3.0.9.

Comme dans l'exemple 3.0.1, on définit pour tout entier $n \ge 1$:

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}.$$

On définit ensuite

$$u_n = H_{2n} - H_n$$

= $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$.

Montrer que pour tout $n \in \mathbb{N} : u_{n+1} \geqslant u_n$.

Lorsque la question posée est ouverte, il est souvent utile de calculer les premiers termes pour se donner une idée de l'objet que l'on manipule, ne serait-ce que pour éviter des erreurs grossières.

Exercice 3.0.10.

On définit la suite (u_n) par $u_0 \in \mathbb{R}$ et pour chaque entier $n \in \mathbb{N}$:

$$u_{n+1} = u_n^2.$$

Déterminer une expression de u_n en fonction de n, pour chaque $n \in \mathbb{N}$.

Exercice 3.0.11.

On définit la suite (u_n) par $u_0 = 2$ et pour chaque $n \in \mathbb{N}$:

$$u_{n+1} = 2u_n - 1$$
.

Déterminer une expression de u_n en fonction de n, pour chaque $n \in \mathbb{N}$.

Même question dans le cas où $u_0 = 1$.

4 Autour de la trigonométrie.

Ce chapitre est destiné aux élèves ayant suivi l'enseignement optionnel de « mathématiques expertes ». Les nombres complexes seront étudiés en début d'année, et repris intégralement.

4.1 Cosinus et sinus.

À chaque fois que vous travaillerez avec des objets trigonométriques, votre premier réflexe devra être de tracer à main levée et au brouillon un cercle trigonométrique, puis de positionner rapidement les objets manipulés dessus. Vous retrouverez alors immédiatement bon nombre des propriétés et valeurs détaillées ici.

Les valeurs suivantes doivent être connues sur le bout des doigts.

Les formules d'addition sont à connaître.

Proposition 4.1.1.

Pour tout $a, b \in \mathbb{R}$,

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b),$$

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b).$$

On a de plus

$$\sin^2(a) + \cos^2(a) = 1.$$

α	$\cos(\alpha)$	$\sin(\alpha)$
0	1	0
$\pi/6$	$\sqrt{3}/2$	1/2
$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$
$\pi/3$	1/2	$\sqrt{3}/2$
$\pi/2$	0	1
π	-1	0

Table 1 – Valeurs remarquables des sinus et cosinus.

Exercice 4.1.2.

Soit $a, b \in \mathbb{R}$. En utilisant les formules précédentes, et les propriétés usuelles du sinus et du cosinus, montrer les formules suivantes.

$$\cos(a - b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\sin(a - b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

$$\cos(2a) = 2\cos^{2}(a) - 1$$

$$cos(2a) = 1 - 2sin2(a)$$

$$sin(2a) = 2cos(a)sin(a)$$

Exercice 4.1.3.

Soit $x \in \mathbb{R}$. En utilisant les formules précédentes, et les propriétés usuelles du sinus et du cosinus, montrer les formules suivantes puis les illustrer sur le cercle trigonométrique.

$$\cos\left(x + \frac{\pi}{2}\right) = -\sin(x)$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin(x)$$

$$\sin\left(x - \frac{\pi}{2}\right) = -\cos(x)$$

$$\cos(x + \pi) = -\cos(x)$$

$$\sin(x + \pi) = -\sin(x)$$

En s'aidant des symétries observables sur le cercle trigonométrique, traduites par les formules précédentes, vous devez savoir obtenir tous les angles remarquables du cercle trigonométrique.

Exercice 4.1.4.

Déterminer les valeurs suivantes.

1.
$$\cos\left(\frac{3\pi}{4}\right)$$
 3. $\cos\left(-\frac{2\pi}{3}\right)$ 2. $\sin\left(\frac{5\pi}{6}\right)$ 4. $\sin\left(\frac{21\pi}{4}\right)$

Exercice 4.1.5.

En utilisant les formules d'addition, déterminer la valeur de $\cos\left(\frac{\pi}{12}\right)$.

Exercice 4.1.6.

Calculer

$$1 + \cos\frac{\pi}{3} + \cos\frac{2\pi}{3} + \cos\frac{3\pi}{3} + \cos\frac{4\pi}{3} + \cos\frac{5\pi}{3}$$

sans utiliser les valeurs de ces cosinus.

Exercice 4.1.7.

Déterminer le cosinus et le sinus de chacun des réels suivants.

1.
$$a = \frac{213\pi}{4}$$
 3. $c = -\frac{1285\pi}{2}$ 2. $b = \frac{2132\pi}{3}$ 4. $d = \frac{687\pi}{6}$

Exercice 4.1.8.

Calculer $\sin \alpha$ sachant que $-\frac{\pi}{2} < \alpha < 0$ et que $\cos \alpha = \frac{\sqrt{2} + \sqrt{6}}{4}$.

Exercice 4.1.9.

Simplifier

$$\sin\left(x + \frac{\pi}{2}\right) + \cos(5\pi - x) + \sin^2(\pi + x) + \sin^2\left(x - \frac{\pi}{2}\right).$$

Exercice 4.1.10.

Simplifier
$$\cos x + \cos \left(x + \frac{2\pi}{3}\right) + \cos \left(x + \frac{4\pi}{3}\right)$$
.

Exercice 4.1.11.

Tracer la courbe de la fonction f définie sur \mathbb{R} par $f: x \mapsto \frac{\sin x + |\sin x|}{2}$.

Exercice 4.1.12.

Résoudre dans \mathbb{R} l'équation

$$2\cos^2 x - 5\cos x + 2 = 0.$$

Exercice 4.1.13.

Soit x un réel. Développer $\cos(4x)$ en l'exprimant comme un polynôme en $\cos(x)$.

Exercice 4.1.14.

Résoudre sur $[0,2\pi]$, puis sur \mathbb{R} , l'inéquation $\cos(x) \geqslant \sin(x)$.

Exercice 4.1.15.

Pour un entier $n \ge 1$, on pose

$$u_n = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}},$$

où l'on a écrit n symboles $\sqrt{\cdot}$.

Montrer que pour tout $n \ge 1$:

$$u_n = 2\cos\left(\frac{\pi}{2^{n+1}}\right).$$

4.2 Calculs sur les complexes.

Il convient de s'entraîner suffisamment pour pouvoir calculer efficacement sur des nombres complexes simples.

Exercice 4.2.1.

Mettre sous forme algébrique les nombres complexes suivants.

1.
$$(3+i)(4-5i)+7-2i$$

2.
$$\frac{-5+3i}{1+i} + \frac{3+i}{1-i}$$

3.
$$\frac{3+i}{1+i\sqrt{2}} + \frac{3-5i}{2-i}$$

4.
$$(1+i)^3 + (1-i)^3$$

Exercice 4.2.2.

Mettre sous forme trigonométrique les nombres complexes suivants.

1.
$$\sqrt{7} - i\sqrt{7}$$

2.
$$5 + 5i\sqrt{3}$$
.

3.
$$-\frac{\sqrt{3}}{4} + \frac{i}{4}$$

Exercice 4.2.3.

Déterminer les nombres complexes z vérifiant $z^2 = i$ sous forme algébrique, puis sous forme trigonométrique.

5 Factorisation.

5.1 Conjugaison de radicaux.

Proposition 5.1.1.

Si a > 0 et b > 0,

$$\sqrt{a} - \sqrt{b} = \frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{\sqrt{a} + \sqrt{b}} = \frac{a - b}{\sqrt{a} + \sqrt{b}}.$$

Exercice 5.1.2.

Rendre entiers les dénominateurs des fractions

1.
$$A = \frac{1}{\sqrt{3} + \sqrt{2}}$$

2.
$$B = \frac{2}{\sqrt{2+\sqrt{2}}+\sqrt{2}}$$
.

3.
$$C = \frac{6}{\sqrt{2} - \sqrt{3} + \sqrt{5}}$$
.

Exercice 5.1.3.

Simplifier les nombres suivants.

1.
$$A = \sqrt{(\sqrt{3} - 3)^2} + \sqrt{(\sqrt{3} + 3)^2}$$

2.
$$B = \sqrt{\frac{1}{(2-\sqrt{5})^2}} - \sqrt{\frac{1}{(2+\sqrt{5})^2}}$$

Exercice 5.1.4.

Soit a et b deux réels non nuls et de même signe.

Calculer la valeur de l'expression $\frac{a}{x} + \frac{x}{b} + 2\sqrt{\frac{a}{b}}$ pour $x = \sqrt{ab}$.

Exercice 5.1.5. Calculer
$$\frac{\sqrt{1+x^2}}{x+\sqrt{1+x^2}}$$
 pour $x=\frac{1}{2}\left(\sqrt{\frac{3}{4}}-\sqrt{\frac{4}{3}}\right)$.

Exercice 5.1.6.

Déterminer le tableau de signes de l'expression

$$\sqrt{x-1} - \sqrt{2x-3}$$

5.2 Expressions polynomiales.

Les identités remarquables sont à repérer à chaque fois qu'elles apparaissent, et fournissent des factorisations souvent précieuses.

Exercice 5.2.1.

Factoriser ou simplifier les expressions suivantes.

1.
$$x^2 - 8$$

2.
$$x^4 - 9$$

Exercice 5.2.2.

Développer le plus simplement possible l'expression suivante.

$$\[x^2 + (2 + \sqrt{2})x + 1 + \sqrt{2}\] \times \[x^2 + (2 - \sqrt{2})x + 1 - \sqrt{2}\]$$

Exercice 5.2.3.

Développer le plus simplement possible l'expression suivante.

$$(x^2-1)(x^2+x\sqrt{2}+1)(x^2+1)(x^2-x\sqrt{2}+1)$$

Exercice 5.2.4.

Montrer que si x est un nombre rationnel, alors

$$(x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3})$$

est aussi un nombre rationnel

Exercice 5.2.5 (Inégalité arithmético-géométrique).

- 1. Montrer que pour tout $x, y \in \mathbb{R}_+$, on a $\sqrt{xy} \leqslant \frac{1}{2}(x+y)$. Quand y a-t-il égalité ?
- 2. Montrer que si un rectangle a pour périmètre p, alors son aire est majorée par $\frac{p^2}{16}$. Quand y a-t-il égalité ?

Proposition 5.2.6.

Lorsqu'une fonction polynomiale de degré n:

$$P: x \mapsto a_0 + a_1 x + \dots + a_n x^n$$

a une racine $\alpha \in \mathbb{C}$, c'est-à-dire que $P(\alpha) = 0$, alors il existe une fonction polynomiale Q de degré n-1 telle quelque, pour tout nombre x,

$$P(x) = (x - \alpha)Q(x).$$

Il arrive souvent de devoir factoriser des fonctions polynomiales, on commencera systématiquement par rechercher des racines évidentes (souvent parmis 0, 1, -1, i, -i, 2, -2). L'utilisation du discriminant est longue et n'est disponible que pour les équations de degré 2, on l'évitera donc autant que possible.

Pour les trinômes du second degré, on utilise très souvent le développement suivant.

Proposition 5.2.7.

Pour tout nombres α, β, x ,

$$(x - \alpha)(x - \beta) = x^2 - (\alpha + \beta)x + \alpha\beta.$$

- 1. Si l'on connait $\alpha + \beta$ et $\alpha\beta$, on connait donc un trinôme du second degré dont α et β sont exactement les racines.
- 2. Si l'on connait une racine d'un trinôme du second degré, on obtient immédiatement l'autre racine sans calcul.

Exemple 5.2.8.

Factoriser l'expression polynomiale

$$P(x) = x^3 - 10x^2 + 23x - 14.$$

On remarque que 1 est racine évidente (P(1) = 1 - 10 + 23 - 14 = 0), il existe donc des nombres a_0, a_1, a_2 tels que, pour tout nombre x,

$$P(x) = (x - 1)(a_2x^2 + a_1x + a_0).$$

En considérant le terme de plus haut degré de P et le terme constant, on obtient immédiatement $a_2 = 1$ et $a_0 = 14$. En considérant le terme de degré 2 de P, on obtient (en développant par exemple) : $-a_2 + a_1 = -10$, donc $a_1 = -9$.

On vérifie en développant pour obtenir le terme de degré 1 de $P: -a_1 + a_0 = 23$, ce qui est exact. On a donc, pour tout nombre x,

$$P(x) = (x - 1)(x^2 - 9x + 14).$$

On remarque que 2 est racine évidente du trinôme $x^2 - 9x + 14$, que l'on factorise donc immédiatement en (x - 2)(x - 7).

Exercice 5.2.9.

Factoriser les expressions suivantes sans jamais écrire de discriminant.

1.
$$x^4 + 2x^3 - 13x^2 + 10x$$

2.
$$x^3 - 3x^2 + x - 3$$

3.
$$x^3 - 5x^2 - 22x - 16$$

4.
$$x^3 - x^2 - 7x + 7$$

5.
$$x^4 - 4$$

Exercice 5.2.10.

Résoudre sur \mathbb{R} les équations suivantes sans jamais écrire de discriminant.

1.
$$3x^2 - 7x = 0$$

$$2. 5x^2 + 11 = 0$$

3.
$$5x^2 - 7 = 0$$

4.
$$(x - \sqrt{2})^2 = 2$$

$$5. \ x^2 - 2x + 3 = 0$$

Exercice 5.2.11.

Résoudre dans \mathbb{R} , en discutant suivant le paramètre $m \in \mathbb{R}$, l'équation

$$5x^2 + 2x + m - 3 = 0.$$

Exercice 5.2.12.

Résoudre dans \mathbb{R} , en discutant suivant le paramètre $m \in \mathbb{R}$, l'équation

$$(m-3)x^2 - 2mx + m + 1 = 0.$$

Exercice 5.2.13.

Soit $a \in \mathbb{R}$. Combien existe-t-il de réels x vérifiant $x^3 - x = a^3 - a$?

5.3 Tableaux de signes.

Savoir dresser efficacement un tableau de signes est un savoir-faire important.

Remarque 5.3.1.

Dans un tableau de signes, on étudie le signe *strict*.

Le tableau de signes de base est celui d'une fonction strictement monotone (voir partie 6), avec un point d'annulation.

Proposition 5.3.2.

Soit I un intervalle de \mathbb{R} , soit $f: I \to \mathbb{R}$ et soit $\alpha \in I$ vérifiant $f(\alpha) = 0$.

1. Si f est strictement croissante, le tableau de variations de f sur I s'écrit comme suit.

x	α
f(x)	- 0 +

2. Si f est strictement décroissante, le tableau de variations de f sur I s'écrit comme suit.

x		α		
f(x)	+	0	-	

Un cas particulier à connaître sur le bout des doigts est celui des fonctions affines.

Corollaire 5.3.3.

Soit a, b deux réels, avec $a \neq 0$. Soit $f: x \mapsto ax + b$.

1. Si a > 0, la tableau de signes de f est

x	$-\infty$		$-\frac{b}{a}$		$-\infty$
f(x)		_	0	+	

2. Si a < 0, la tableau de signes de f est

x	$-\infty$		$-\frac{b}{a}$		$-\infty$
f(x)		+	0	-	

Enfin, on compose les tableaux de signes par la règle des signes.

La méthode universelle pour étudier le signe d'une expression est donc la suivante :

- 1. on détermine l'ensemble de définition de l'expression, s'il n'est pas donné ;
- 2. on commence par factoriser le plus possible l'expression;

3. on réalise une étude de fonction pour chaque facteur dont le tableau de signes n'est pas donné par les règles précédentes.

Il convient de suivre systématiquement ce programme

Exemple 5.3.4.

Dresser le tableau de signes de

$$f: x \mapsto -e^{x}(x-1) + e^{2x}(x-1) - e^{x+2} + e^{2}$$
.

La fonction f est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$, on a

$$f(x) = -e^{x}(x-1) + e^{x} \times e^{x}(x-1) - e^{2}(e^{x} - 1)$$
$$= e^{x}(x-1)(e^{x} - 1) - e^{2}(e^{x} - 1)$$

$$= (e^{x} - 1)((x - 1)e^{x} - e^{2}).$$

On définit sur \mathbb{R}

$$g: x \mapsto (x-1)e^x - e^2$$
.

La fonction g est dérivable sur \mathbb{R} et, si $x \in \mathbb{R}$, on a

$$g'(x) = 1 \times e^{x} + (x - 1)e^{x}$$
$$= xe^{x}.$$

Comme $xe^x \xrightarrow[x \to -\infty]{} 0$, et comme

$$g(x) = (x-1)e^{x-1}e - e^2$$
,

on a $g(x) \xrightarrow[x \to -\infty]{} -e^2$. On a aussi $g(x) \xrightarrow[x \to +\infty]{}$

On peut donc dresser le tableau de variations de g.

x	$-\infty$		0		$+\infty$
g'(x)		_	0	+	
g(x)	$-e^2$	-6	$e^2 - \epsilon$, -1	+∞

Ainsi, g est strictement négative sur \mathbb{R}_{-} .

De plus, g et strictement croissante sur \mathbb{R}_+ . Comme g(0) < 0 et $g(x) \xrightarrow[x \to +\infty]{} +\infty$, par le théorème de la bijection, g s'annule une fois exactement sur \mathbb{R}_+ , et on a la solution évidente g(2) = 0.

La fonction $x \mapsto e^x - 1$ est strictement croissante sur \mathbb{R} et s'annule en 0.

On peut donc dresser le tableau de signes de f.

x	$-\infty$	0		2		$+\infty$
g(x)	_		_	0	+	
$e^x - 1$	_	0	+		+	
f(x)	+	0	_	0	+	

Exercice 5.3.5.

Dresser le tableau de signes des expressions suivantes.

1.
$$x^3 - x^2 - 5x + 5$$

2.
$$x^4 - 6x^3 - 6x^2 - 6x - 7$$

3.
$$\ln(x)^2 - \ln(x) - 6$$

5.4 Logarithme et exponentielle.

Proposition 5.4.1. 1. Pour tout a et b dans \mathbb{R} , $e^{a+b} = e^a \times e^b$ et $e^{-a} = \frac{1}{e^a}$.

- 2. Pour tout a et b dans \mathbb{R} , $e^a = e^b \Leftrightarrow a = b$.
- 3. Pour tout a et b dans $]0; +\infty[$, $\ln(ab) = \ln(a) + \ln(b)$ et $\ln\left(\frac{1}{a}\right) = -\ln(a)$.
- 4. Pour tout a et b dans $]0; +\infty[$, $\ln(a) = \ln(b) \Leftrightarrow a = b$.

Remarque 5.4.2.

La fonction logarithme n'est définie que sur $\mathbb{R}_+^* =]0, +\infty[$. À chaque fois que l'on étudie une équation ou inéquation faisant intervenir le logarithme, il convient d'étudier en amont le domaine de validité de cette équation, en étudiant le signe de chaque argument de chaque logarithme.

Exercice 5.4.3.

Résoudre dans $\mathbb R$ l'équation

$$ln[(x-4)(3x-5)] = ln(10).$$

Exercice 5.4.4.

Résoudre dans \mathbb{R} l'équation

$$\ln(x-4) + \ln(3x-5) = \ln(10).$$

Exercice 5.4.5.

Résoudre dans \mathbb{R} l'équation

$$\ln(x+1) + \ln(x+5) = \ln(96).$$

Exercice 5.4.6.

Résoudre dans \mathbb{R}^2 le système

$$\begin{cases} x + y^2 &= 29\\ \ln x + 2 \ln y &= 2 \ln(10) \end{cases}.$$

Exercice 5.4.7.

Résoudre dans \mathbb{R} l'équation

$$e^{2x-1} - \sqrt{e^{2x+2}} - 2e^3 = 0.$$

Exercice 5.4.8.

Résoudre dans \mathbb{R} l'équation

$$e^{x} + 10e^{-2x} = 4 + 7e^{-x}$$
.

Exercice 5.4.9.

Résoudre dans \mathbb{R} l'inéquation

$$e^{2x} - e^{x+2} - e^{2-x} + 1 < 0$$
.

6 Autour de la monotonie.

6.1 Définition et utilisation naïve.

Définition 6.1.1 (Sens de variations).

Soit A une partie de \mathbb{R} et $f: A \to \mathbb{R}$.

1. La fonction f est croissante sur A si, pour tout x, y dans A:

si
$$x \leq y$$
, alors $f(x) \leq f(y)$.

2. La fonction f est strictement croissante sur A si, pour tout x, y dans A:

si
$$x < y$$
, alors $f(x) < f(y)$.

3. La fonction f est décroissante sur A si, pour tout x, y dans A:

si
$$x \leq y$$
, alors $f(x) \geq f(y)$.

4. La fonction f est strictement décroissante sur A si, pour tout x, y dans A:

si
$$x < y$$
, alors $f(x) > f(y)$.

Une fonction est monotone si elle est croissante ou décroissante.

Exemple 6.1.2. — La fonction racine carrée $(\sqrt{\cdot})$ est strictement croissante, donc croissante.

- La fonction partie entière ([·]) est croissante, mais pas strictement.
- La fonction carré $(x \mapsto x^2)$ n'est pas monotone : elle n'est ni croissante, ni décroissante. Elle est cependant croissante strictement sur \mathbb{R}_+ et décroissante strictement sur \mathbb{R}
- La fonction inverse $(x \mapsto \frac{1}{x})$ n'est pas monotone : elle n'est ni croissante, ni décroissante. Elle est cependant décroissante strictement sur \mathbb{R}_+^* ainsi que sur \mathbb{R}_-^* .

Exercice 6.1.3.

Déterminer les ensembles de définition puis les sens de variations des fonctions suivantes (ou dire si elles ne sont pas monotones).

1.
$$f: x \mapsto \frac{1}{1+x^3}$$

$$2. \ g: x \mapsto \sqrt{1+x^5}$$

3.
$$h: x \mapsto e^{-2x^3+5}$$

4.
$$\varphi : x \mapsto (\sqrt{x+2} + 1)^2$$

5.
$$\chi: x \mapsto \frac{e^x}{1+e^x}$$

6.
$$\psi: x \mapsto \ln|x|$$

Remarque 6.1.4.

En appliquant une fonction strictement monotone sur une inéquation, on obtient une inéquation équivalente (en renversant les inégalités si la fonction est strictement décroissante).

Proposition 6.1.5.

Si a,b sont deux réels, $x\mapsto ax+b$ est strictement croissante si a>0 et strictement décroissante si a<0.

Remarque 6.1.6.

C'est équivalent aux règles de manipulations d'inégalités : on peut multiplier une inégalité par un nombre strictement positif sans en changer de sens, etc.

Remarque 6.1.7.

Pour mettre au carré ou passer à l'inverse d'une inéquation, il convient donc au préalable de comparer les membres de l'inéquation à 0.

Exercice 6.1.8.

Résoudre les inéquations suivantes.

1.
$$\frac{2x-1}{4} < \frac{4-3x}{5} - \frac{3-x}{10}$$

$$2. \ \frac{x^2 - 4x + 3}{3 - 2x} \leqslant 1 - x$$

$$3. \ \frac{1}{x-1} + \frac{2}{x-2} \leqslant \frac{3}{x-3}$$

Exercice 6.1.9.

Résoudre la double inéquation

$$-1 < \frac{2 - 3x}{x + 3} < 1.$$

Exercice 6.1.10.

Résoudre suivant le paramètre $m \in \mathbb{R} \setminus \{1\}$ l'inéquation d'inconnue $x \,$:

$$\frac{x-m}{m-1} > 2 - x.$$

On a souvent besoin de comparer des radicaux (racines carrées). Cela se fait systématiquement en passant les objets au carré, après avoir comparé leurs signes.

Exemple 6.1.11.

Comparer $1 + \sqrt{2}$ et $\sqrt{3}$.

Ces deux nombres sont positifs. On a

$$(1 + \sqrt{2})^2 = 1 + 2\sqrt{2} + 2$$

= $3 + 2\sqrt{2}$
> $\sqrt{3}^2$

Par croissance stricte de la fonction carré sur \mathbb{R}_+ ,

$$1 + \sqrt{2} > \sqrt{3}$$
.

Remarque 6.1.12.

On retiendra les encadrements suivants :

$$2 < e < 3$$
 et $3 < \pi < 4$.

Exercice 6.1.13.

Comparer les paires de nombres suivants.

1.
$$3 + \sqrt{7}$$
 et $\sqrt{29}$

2.
$$\frac{5+\sqrt{2}}{1+\sqrt{3}}$$
 et $\sqrt{5}$

3.
$$\sqrt{2} + \sqrt{11}$$
 et $\sqrt{5} + \sqrt{7}$

4.
$$e^{-1}$$
 et $\frac{1}{\sqrt{3}}$

5.
$$\frac{\pi^2}{6}$$
 et $\frac{3}{2}$

6.2 Lien avec le signe de la dérivée.

Proposition 6.2.1.

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une fonction dérivable.

- 1. Si f' est positive, f est croissante.
- 2. Si f' est négative, f est décroissante.
- 3. Si f' est strictement positive, f est strictement croissante.
- 4. Si f' est strictement négative, f est strictement décroissante.

Remarque 6.2.2.

L'hypothèse primordiale est que I est un intervalle. Par exemple, la fonction inverse écrite ci-après est dérivable, de dérivée strictement négative mais n'est pas décroissante.

$$\begin{array}{ccc} \mathbb{R}^* & \to & \mathbb{R}^* \\ x & \mapsto & \frac{1}{x} \end{array}$$

Exercice 6.2.3.

Soit $\lambda \in \mathbb{R}_+^*$, déterminer le minimume sur \mathbb{R}_+^* de la fonction $f_{\lambda}: x \mapsto \lambda \frac{x^2}{2} - \ln(x)$.

6.3 Formules de dérivation.

On tachera de bien séparer les deux écritures suivantes.

- La dérivée d'une fonction f est notée f', c'est une fonction.
- On dérive une expression par rapport à une variable x en mettant devant le symbole $\frac{d}{dx}$. On obtient ainsi une expression.

Exemple 6.3.1.

On peut écrire $\frac{\mathrm{d}}{\mathrm{d}x}(x^2) = 2x$ mais pas $(x^2)'$.

Avec $f: x \mapsto x^2$, on peut considérer la fonction f'. On a bien, pour tout réel x, f'(x) = 2x.

Exercice 6.3.2.

Dériver les expressions suivantes (les autres variables que la variable de dérivation sont supposées être fixées).

- 1. $3a^2b + 5b$ par rapport à b.
- 2. $\sin^2(ab) + a\cos(b)$ par rapport à a.
- 3. $\exp(2xy) + \ln(x+y)$ par rapport à y.
- 4. $5t^2 \exp(t+x) 2tx$ par rapport à t.

Proposition 6.3.3 (Dérivées usuelles.).

Les dérivées des fonctions suivantes sont à savoir sur le bout des doigts.

- 1. Si $n \in \mathbb{N}$, $x \mapsto x^n$ est dérivable sur \mathbb{R} et $\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}.$
- 2. Si n est un entier inférieur ou égal à -2, $x \mapsto x^n$ est dérivable sur \mathbb{R}^* et $\frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}$.
- 3. La fonction exponentielle est dérivable sur \mathbb{R} est $\exp' = \exp$.
- 4. La fonction logarithme (népérien) est dérivable sur \mathbb{R}_+^* et $\frac{\mathrm{d}}{\mathrm{d}x}\ln(x) = \frac{1}{x}$.
- 5. La fonction valeur absolue est dérivable sur \mathbb{R}^* et

$$\frac{\mathrm{d}}{\mathrm{d}x}|x| = \begin{cases} 1 & \text{si} & x > 0\\ -1 & \text{si} & x < 0 \end{cases}.$$

- 6. La fonction sinus est dérivable sur \mathbb{R} et sin' = \cos .
- 7. La fonction cosinus est dérivable sur \mathbb{R} est $\cos' = -\sin$.

Proposition 6.3.4 (Règles de dérivation.).

Soit I une partie de \mathbb{R} , f et g deux fonctions dérivables sur I.

1. Soit λ et μ deux réels. La fonction $\lambda f + \mu g$ est dérivable et

$$(\lambda f + \mu g)' = \lambda f' + \mu g'.$$

2. La fonction fg est dérivable et

$$(fg)' = f'g + fg'.$$

3. Si g ne s'annule pas, $\frac{1}{g}$ est dérivable et

$$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}.$$

4. Si $n \in \mathbb{N}$, la fonction $x \mapsto f(x)^n$ est dérivable et, pour tout $x \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}x}(f(x)^n) = f'(x) \times nf(x)^{n-1}.$$

5. La fonction $x \mapsto \exp(f(x))$ est dérivable et, pour tout $x \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}x}(\exp(f(x))) = f'(x) \times \exp(f(x)).$$

6. La fonction $x \mapsto \sin(f(x))$ est dérivable et, pour tout $x \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}x}(\sin(f(x))) = f'(x) \times \cos(f(x)).$$

7. La fonction $x \mapsto \cos(f(x))$ est dérivable et, pour tout $x \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos(f(x))) = -f'(x) \times \sin(f(x)).$$

8. Si f est strictement positive, la fonction $x \mapsto$ $\sqrt{f(x)}$ est dérivable et, pour tout $x \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{f(x)} \right) = \frac{f'(x)}{2\sqrt{f(x)}}.$$

9. Si f est strictement positive, la fonction $x \mapsto$ ln(f(x)) est dérivable et, pour tout $x \in I$,

$$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(f(x))) = \frac{f'(x)}{f(x)}.$$

Exercice 6.3.5.

À partir des règles précédentes, retrouver la règle permettant de dériver le quotient $\frac{J}{a}$.

Exemple 6.3.6.

On veut dériver par rapport à la variable x l'expression

$$\frac{x^3 e^x}{1 + \ln^2(x)}.$$

On peut commencer par remarquer que cette expression est définie pour tout x pour lequel $\ln(x)$ est défini, donc sur $\mathbb{R}_{+}^{*} =]0, +\infty[$.

Si x>0, on commence par calculer les dérivées du numérateur et du dénominateur :

$$\frac{\mathrm{d}}{\mathrm{d}x} (x^3 e^x) = 3x^2 e^x + x^3 e^x = (3x^2 + x^3) e^x$$

et

$$\frac{\mathrm{d}}{\mathrm{d}x} \Big(1 + \ln^2(x) \Big) = 2\ln'(x)\ln(x) = 2\frac{\ln(x)}{x}.$$

On peut ensuite dériver cette expression comme le produit

$$x^3 e^x \times \frac{1}{1 + \ln^2(x)},$$

c'est-à-dire

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{x^3 \mathrm{e}^x}{1 + \ln^2(x)} \right) \\
= \frac{(3x^2 + x^3) \mathrm{e}^x}{1 + \ln^2(x)} - 2\frac{\ln(x)}{x} \frac{x^3 \mathrm{e}^x}{(1 + \ln^2(x))^2} \\
= \frac{x(3x^2 + x^3)(1 + \ln^2(x)) \mathrm{e}^x - 2\ln(x)x^3 \mathrm{e}^x}{x(1 + \ln^2(x))^2} \\
= \frac{\left((3 + x)(1 + \ln^2(x)) - 2\ln(x) \right) x^2 \mathrm{e}^x}{(1 + \ln^2(x))^2}.$$

Exercice 6.3.7.

Dresser le tableau des variations de $x \mapsto$ $\frac{1}{1 + \ln^2(x)}$

Exercice 6.3.8.

Dériver les expressions suivantes par rapport à la

1.
$$\frac{\sin^3(x)\ln(x)}{1+2e^x}$$

2.
$$\exp(3\sin(x) + \sqrt{x})$$

3.
$$\sqrt{1 + \frac{3+2x}{1+e^x}}$$

4.
$$\ln(\cos(e^x))$$

Proposition 6.3.9.

Les limites suivantes sont obtenues en les considérant comme taux d'accroissement de fonctions usuelles.

1.
$$\frac{\ln(1+x)}{x} \xrightarrow[x\to 0]{} 1.$$
2.
$$\frac{e^x - 1}{x} \xrightarrow[x\to 0]{} 1.$$

$$2. \xrightarrow{e^x - 1} \xrightarrow[x \to 0]{} 1.$$

$$3. \ \frac{\sin(x)}{x} \xrightarrow[x \to 0]{} 1.$$

Exercice 6.3.10.

Déterminer l'existence et la valeur de chacune des limites suivantes lorsque x tend vers 0.

1.
$$\frac{\ln(1+2x)}{3x}$$

1.
$$\frac{3x}{2}$$
2.
$$\frac{e^{2x}-1}{\sqrt{x}}$$

$$3. \ \frac{\sin^3(x+\sqrt{x})}{x\sqrt{x}}$$

6.4 Inégalités classiques.

Pour établire une inégalité, on pensera toujours à considérer la différence des deux membres et mener l'étude de cette fonction. Le plus souvent, cela passe par l'établissement d'un tableau de variations.

Exercice 6.4.1.

Montrer que pour tout x > -1,

$$\ln(1+x) \leqslant x.$$

Quand y a-t-il égalité ? Représenter graphiquement cette inéquation en faisant apparaître une tangente à la courbe de $x \mapsto \ln(1+x)$.

Exercice 6.4.2.

Montrer que pour tout réel x,

$$e^x \ge 1 + x$$
.

Quand y a-t-il égalité ? Représenter graphiquement cette inéquation en faisant apparaître une tangente à la courbe de $x \mapsto e^x$.

Exercice 6.4.3.

Déterminer le domaine de validité de l'inéquation suivante :

$$e^x \ge 1 + x + \frac{x^2}{2}$$
.

Exercice 6.4.4.

Généraliser les deux exercices précédents.

7 L'analyse, c'est l'encadrement.

7.1 Valeur absolue.

Définition 7.1.1.

Si x est un réel, on définit la valeur absolue de x par

$$|x| = \begin{cases} x & \text{si} & x \geqslant 0 \\ -x & \text{si} & x < 0 \end{cases}.$$

Proposition 7.1.2.

Pour tout réel x, on a $|x| = \sqrt{x^2}$.

Pour tout réel x et tout réel a, on a l'équivalence suivante :

$$|x| \leqslant a \Leftrightarrow -a \leqslant x \leqslant a.$$

Exercice 7.1.3.

Montrer les deux propriétés précédentes en partant de la définition de valeur absolue donnée ici.

Exemple 7.1.4.

On résout sur \mathbb{R} l'équation

$$|x| - |x - 1| = 5 - 2x.$$
 (E)

Si x < 0, alors x - 1 < 0 et donc |x| = -x et |x - 1| = -(x - 1) = 1 - x. L'équation (\mathscr{E}) s'écrit donc -1 = 5 - 2x, qui a pour solution x = 3, mais $3 \notin]-\infty, 0[$.

Si $0 \le x < 1$, alors x - 1 < 0, donc |x| = x et |x - 1| = 1 - x. L'équation (\mathscr{E}) s'écrit donc 2x - 1 = 5 - 2x, qui a pour solution x = 1, mais $1 \notin [0, 1]$.

Si $x \ge 1$, alors $x - 1 \ge 0$, donc |x| = x et |x - 1| = x - 1. L'équation (\mathscr{E}) s'écrit donc 1 = 5 - 2x, qui a pour solution x = 2, et $2 \ge 1$.

On vérifie que 2 est bien solution de (\mathscr{E}) .

L'équation (\mathscr{E}) a donc une seule solution : 2.

Exercice 7.1.5.

Simplifier l'expression |x + 1| - |x - 1| suivant différents intervalles.

Exercice 7.1.6.

Résoudre dans \mathbb{R} l'équation :

$$4x^2 + |5x| = 0.$$

Exercice 7.1.7.

Résoudre dans \mathbb{R} l'équation :

$$x^2 - 3x - 15 = |4x - 5|.$$

Exercice 7.1.8.

Résoudre dans \mathbb{R} l'inéquation :

$$\left|x - \frac{5}{4}\right| < \frac{9}{2}.$$

Exercice 7.1.9.

Résoudre dans \mathbb{R} l'inéquation :

$$|x-2| \geqslant 7$$
.

Exercice 7.1.10.

Tracer la courbe de la fonction f définie sur \mathbb{R} par

$$f: x \mapsto -1 + |x+1| - 2|x| + |x-1|$$
.

Exercice 7.1.11.

Tracer la courbe de la fonction f définie sur \mathbb{R} par

$$f: x \mapsto |x-1| - 2||x| - 2|.$$

7.2 Limites

On énonce ici les résultats pour les limites de suites. Ceux pour les fonctions sont semblables.

Proposition 7.2.1 (Arguments d'encadrement). Soit (u_n) , (v_n) et (w_n) trois suites réelles.

- 1. Si $u_n \xrightarrow[n \to +\infty]{n \to +\infty} +\infty$ et, pour tout entier n, $u_n \leqslant v_n$, alors $v_n \xrightarrow[n \to +\infty]{} +\infty$.
- 2. Si $v_n \xrightarrow[n \to +\infty]{} -\infty$ et, pour tout entier n, $u_n \leqslant v_n$, alors $u_n \xrightarrow[n \to +\infty]{} -\infty$.
- 3. S'il existe un réel ℓ tel que $u_n \xrightarrow[n \to +\infty]{} \ell$ et $w_n \xrightarrow[n \to +\infty]{} \ell$ et, pour tout $n \in \mathbb{N}, u_n \leqslant v_n \leqslant$ w_n , alors $w_n \xrightarrow[n \to +\infty]{} \ell$.

Proposition 7.2.2 (Limite monotone).

Soit (u_n) une suite réelle croissante.

- 1. Si (u_n) est majorée, alors (u_n) converge (vers un réel).
- 2. Si (u_n) n'est pas majorée, alors $u_n \xrightarrow[n \to +\infty]{}$ $+\infty$.

Proposition 7.2.3.

Soit $q \in \mathbb{R}$ et (u_n) une suite géométrique de raison q et de premier terme non nul.

1. Si
$$|q| < 1$$
, alors $u_n \xrightarrow[n \to +\infty]{} 0$.

- 2. Si $q \leq -1$, alors (u_n) diverge sans limite.
- 3. Si q > 1, alors, en fonction du signe de u_0 , $u_n \xrightarrow[n \to +\infty]{} +\infty$ ou $u_n \xrightarrow[n \to +\infty]{} -\infty$.
- 4. Si q=1, (u_n) est constante.

Proposition 7.2.4.

Pour étudier la limite d'un quotient de fonctions polynomiales, il suffit de factoriser le numérateur et le dénominateur par le terme de plus haut degré (on dit aussi : dominant).

Exercice 7.2.5.

Déterminer les limites des expressions suivantes lorsque x tend vers $+\infty$.

1.
$$\frac{x^3 - 5x^2 + 1}{-3x^3 + 2}$$

$$2. \ \frac{5x^4 + 3x + 1}{8x^7 + 3x^2 - 4}$$

$$3. \frac{5x^2 + 3 + \frac{1}{2x}}{8x^3 + 3x - \frac{2}{x^2}}$$

Proposition 7.2.6 (Limites usuelles).

On donne les limites suivantes.

$$1. \ \frac{\ln(x)}{x} \xrightarrow[x \to +\infty]{} 0$$

$$2. \ \frac{e^x}{x} \xrightarrow[x \to +\infty]{} +\infty$$

3.
$$x \ln(x) \xrightarrow[x \to 0]{} 0$$

Corollaire 7.2.7 (Croissances comparées).

Soit $m, n \in \mathbb{N}^*$, on a les limites suivantes.

1.
$$\frac{\ln^{m}(x)}{x^{n}} \xrightarrow[x \to +\infty]{} 0$$
2.
$$\frac{e^{mx}}{x^{n}} \xrightarrow[x \to +\infty]{} +\infty$$

2.
$$\frac{e^{mx}}{x^n} \xrightarrow[r \to +\infty]{} +\infty$$

3.
$$x^n \ln^m(x) \xrightarrow[x \to 0]{} 0$$

Exercice 7.2.8.

Démontrer le corollaire 7.2.7 à l'aide de la proposition 7.2.6.

Exercice 7.2.9.

Déterminer les limites des expressions suivantes lorsque x tend vers $+\infty$.

1.
$$\frac{5x^2 - 2 + \ln^3(x)}{3x^2 + \ln(x)}$$

$$2. \ \frac{e^{3x} + e^x - x}{5x^4 + x + 1}$$

3.
$$\frac{e^x + x + e^{-x}}{3x + 2e^{-x}}$$

4.
$$\frac{e^{2x} + 3x + \ln^4(x)}{(e^x)^2 - \ln(x)}$$

8 Fractions.

Il convient de s'entraîner régulièrement au calcul fractionnel (à la main). L'idée est toujours de multiplier le numérateur et le dénominateur d'une fraction par un même nombre pour obtenir une fraction simplifiée.

Exemple 8.0.1.

Avec a, b, c, d des réels non nuls tels que les fractions suivantes sont bien définies :

$$\frac{1}{\frac{1}{a} + \frac{1}{b}} = \frac{1}{\frac{1}{a} + \frac{1}{b}} \times \frac{ab}{ab} = \frac{ab}{b+a}$$

et

$$\frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{c} + \frac{1}{d}} = \frac{\frac{1}{a} + \frac{1}{b}}{\frac{1}{c} + \frac{1}{d}} \times \frac{abcd}{abcd} = \frac{bcd + acd}{abd + abc}$$

Exercice 8.0.2.

Écrire sous forme fractionnaire les nombres suivants.

1.
$$\frac{1}{2} - \frac{1}{3}$$
.

$$2. \ \frac{7}{5} - \frac{17}{12} + \frac{4}{15}.$$

3. À vous de multiplier ce type d'exercice.

Exercice 8.0.3.

Soit a, b et c trois réels non nuls. Simplifier

$$A = \frac{a+b}{ab}(a^2+b^2-c^2) + \frac{b+c}{bc}(b^2+c^2-a^2) + \frac{c+a}{ca}(c^2+a^2-b^2).$$

Exercice 8.0.4.

Résoudre l'équation

$$\frac{2x+3}{2x+1} - \frac{2x+5}{2x+7} = 1 - \frac{6x^2 + 9x - 9}{(2x+1)(2x+7)}.$$

Exercice 8.0.5.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{-3x^3 + 10x^2 - 11x + 4}{(5+x)(4-3x) + (3x-4)(x-4)}$$

Simplifier alors cette fraction.

Exercice 8.0.6.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{1}{x-1} - \frac{1}{x+1} + \frac{2x}{1-x^2}$$

Écrire alors cette somme en une seule fraction simplifiée.

Exercice 8.0.7.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{x^2 - 1}{(x+1)^2}$$

Simplifier alors cette fraction.

Exercice 8.0.8.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{x+1}{x^2-1} + \frac{x-1}{x^2+1}$$
$$\frac{x+1}{x^2+1} + \frac{x-1}{x^2-1}$$

Simplifier alors cette fraction.

Exercice 8.0.9.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{(2x+3)^2 - (x+2)^2}{2x^2 + 2x + 10(x+1)}$$

Simplifier alors cette fraction.

Exercice 8.0.10.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{\frac{1}{x}}{1 - \frac{1}{x}} - \frac{\frac{1}{x}}{1 + \frac{1}{x}}$$

Simplifier alors cette fraction.

Exercice 8.0.11.

Soit a et b des réels strictement positifs.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{x-a}{ax} + \frac{a-b}{ab} + \frac{b-x}{xb}$$

Simplifier alors cette fraction.

Exercice 8.0.12.

Soit a et b des réels strictement positifs.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{\left(\frac{1}{a} + \frac{1}{b} - \frac{x}{ab}\right)(x+a+b)}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{ab} - \frac{x^2}{a^2b^2}}$$

Simplifier alors cette fraction.

Exercice 8.0.13.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{2x+3}{2(2x-3)} + \frac{12x}{9-4x^2} + \frac{3-2x}{4x+6}$$

Calculer alors cette somme.

Exercice 8.0.14.

Pour quelles valeurs du réel x l'expression suivante est-elle définie ?

$$\frac{2x^2 + 2x}{x^2 + 2x + 1} + \frac{2x + 2}{x^2 - 1} + \frac{4x^3 + 4x}{1 - x^4}$$

Calculer alors cette somme.

9 Quelques derniers rappels

La formule de sommation géométrique, vue en première, est un des outils les plus utiles en CPGE. Il convient de la mémoriser parfaitement.

Théorème 9.0.1.

Soit $q \in \mathbb{R}$ et $n \in \mathbb{N}$. Si $q \neq 1$, alors

$$1 + q + \dots + q^{n} = \frac{q^{n+1} - 1}{q - 1}$$
$$= \frac{1 - q^{n+1}}{1 - q}.$$

Exercice 9.0.2.

Pour deux entiers naturels $p \leq n$, et un réel $q \neq 1$, déterminer une formule pour

$$q^p + q^{p+1} + \dots + q^n.$$

10 Indications

Indication (1.2.8).

Bien aligner les matrices, comme dans la figure 2.

Indication (1.2.9).

Présenter le calcul comme suit (en remplaçant A, A^2 et A^3 par les matrices correspondantes).

$$\begin{array}{cccc} & A & A \\ A & A^2 & A^3 \end{array}$$

Indication (1.2.10).

Considérer par exemple le calcul $n^{\circ} 3$ de l'exercice 1.2.8.

Indication (3.0.5).

Minorer H_n . On pourra utiliser le plus grand entier k vérifiant $2^k \leq n$, et l'exprimer avec la fonction « partie entière ».

Indication (3.0.6).

On peut effectuer une récurrence. Pour traiter ceci sans récurrence, on peut écrire la somme

$$S = 1+$$
 $2+\cdots+$ $(n-1)+n$
= $n+$ $(n-1)+\cdots+$ $2+1,$

et observer une simplification dans le calcul de 2S = S + S.

Indication (3.0.7).

On peut effectuer une récurrence. Pour traiter ceci sans récurrence, considérer la fonction g_n définie $\operatorname{sur} \mathbb{R} \setminus \{1\} \operatorname{par}$

$$g_n(q) = 1 + q + \dots + q^n = \frac{q^{n+1} - 1}{q - 1}.$$

Indication (3.0.8).

Procéder par récurrence.

Indication (3.0.9).

Simplifier l'expression de $u_{n+1}-u_n$: il ne doit rester que trois, voire deux termes, puis déterminer le signe de cette expression.

Indication (3.0.10).

Calculer u_1, \ldots, u_5 en fonction de u_0 .

Indication (3.0.11).

Calculer u_1, \ldots, u_7 , observer une proximité avec les valeurs de $2^1, \ldots, 2^7$.

Indication (4.1.5). Exprimer $\frac{\pi}{12}$ en fonction de $\frac{\pi}{4}$ et de $\frac{\pi}{3}$.

Indication (4.1.6).

Utiliser toutes les formules sur le cosinus, dont celles obtenues à l'exercice 4.1.3.

Indication (4.1.7).

Utiliser toutes les formules sur le cosinus, dont celles obtenues à l'exercice 4.1.3, pour revenir à un angle dans $\left[0, \frac{\pi}{2}\right]$. Effectuer (à la main) des divisions euclidiennes.

Indication (4.1.8).

Calculer $\sin^2(\alpha)$ et déterminer le signe de $\sin(\alpha)$. Observer une identité remarquable.

Indication (4.1.11).

Observer la continuité et la 2π -périodicité de f.

Indication (4.1.12).

Déterminer les solutions α et β de l'équation $2y^2$ – 5y + 2 = 0 puis résoudre les équations $\cos(x) = \alpha$ et $cos(x) = \beta$.

Indication (4.1.13).

Utiliser les formules de duplication de l'angle.

Indication (4.1.15).

Exprimer u_{n+1}^2 en fonction de u_n^2 et procéder par

Indication (5.2.4).

Remarquer des identités remarquables.

Indication (9.0.2).

Factoriser le premier terme et se ramener à la formule rappelée au dessus.

11 Réponses

Réponse (1.2.5). 1.
$$\lambda A + \mu B = \begin{pmatrix} -3 & -3 \\ 3 & -2 \end{pmatrix}$$

2.
$$\lambda A + \mu B = \begin{pmatrix} -5 & 1 & 1 \\ 3 & 0 & 0 \end{pmatrix}$$

3.
$$\lambda A + \mu B = \begin{pmatrix} -2 & 3 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$

4. Calcul impossible : A et B ne sont pas de même dimension

5.
$$\lambda A + \mu B = \begin{pmatrix} 1 & 4 \\ 0 & -23 \\ 1 & 6 \end{pmatrix}$$

Réponse (1.2.8). 1. Les deux calculs de AB et BA sont impossibles: les dimensions ne sont pas compatibles.

2. Le calcul de AB est impossible : les dimensions ne sont pas compatibles.

$$BA = \begin{pmatrix} 7 & 12 & 2 \\ -1 & -6 & 4 \end{pmatrix}.$$

3.
$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

4.
$$AB = \begin{pmatrix} -6 & 10 \\ 5 & 5 \end{pmatrix}, BA = \begin{pmatrix} -1 & 10 & 6 \\ 7 & 0 & -2 \\ 2 & 1 & 0 \end{pmatrix}$$

5. Le calcul de AB est impossible : les dimensions ne sont pas compatibles.

$$BA = \begin{pmatrix} 16 & 19 & -18 & 18 \\ 18 & 17 & -8 & 22 \\ 13 & 12 & -5 & 16 \end{pmatrix}$$

$$6. \ AB = \begin{pmatrix} -3\\16\\-2 \end{pmatrix}$$

Le calcul de BA est impossible : les dimensions ne sont pas compatibles.

7. Le calcul de AB est impossible : les dimensions ne sont pas compatibles.

$$BA = \begin{pmatrix} 1 & 32 & -5 \end{pmatrix}.$$

- 8. Les deux calculs de AB et BA sont impossibles : les dimensions ne sont pas compatibles.
- 9. AB = BA = A.
- 10. Idem

On considère la matrice $I_n = (\delta_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n}$ de dimension $n \times n$ n'ayant que des 1 sur sa diagonale et des 0 sinon :

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}.$$

Si $1 \leq i, j \leq n$, alors $\delta_{i,j}$ vaut 1 si i = j (sur la diagonale), et 0 sinon.

On montre que si $A = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n}$ est de dimension $n \times n$, alors $AI_n = I_n A = A$.

Réponse (1.2.9). 1.
$$A^2 = \begin{pmatrix} 1 & -3 \\ 9 & -2 \end{pmatrix}$$
, $A^3 = \begin{pmatrix} -7 & -4 \\ 12 & -11 \end{pmatrix}$.

2. Calcul impossible: les dimensions ne sont pas compatibles.

3.
$$A^2 = \begin{pmatrix} 5 & -6 & 9 \\ 11 & 7 & 9 \\ -5 & 1 & 2 \end{pmatrix}, \quad A^3 = \begin{pmatrix} -6 & -23 & 22 \\ 38 & 10 & 47 \\ -15 & 8 & -5 \end{pmatrix}.$$

4.
$$A^{2} = A^{3} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.
5. $A^{2} = \begin{pmatrix} 16 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $A^{3} = \begin{pmatrix} 64 & 0 & 0 \\ 0 & -8 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.
6. $A^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Réponse (1.2.10).

Le produit matriciel n'est pas commutatif : de manière générale, $AB \neq BA$. Dans de nombreuses situations, l'un des produits peut exister, mais pas l'autre.

Il n'y a pas de propriété de produit nul : on peut avoir AB = 0 avec $A \neq 0$ et $B \neq 0$, en notant 0 la matrice nulle (dont tous les coefficients sont nuls).

Réponse (3.0.6).
$$1 + 2 + \cdots + n = \frac{n(n+1)}{2}$$

Réponse (3.0.10).

$$u_n = u_0^{2^n}.$$

Réponse (3.0.11). $u_n = 2^n + 1$ puis $u_n = 1$.

Réponse
$$(4.1.5)$$
.
$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}.$$

Réponse (4.1.6).

Réponse (4.1.7). 1.
$$\cos(a) = -\frac{\sqrt{2}}{2}$$
, $\sin(a) = \frac{\sqrt{2}}{2}$.

2.
$$\cos(b) = -\frac{1}{2}$$
, $\sin(b) = \frac{\sqrt{3}}{2}$.

3.
$$\cos(c) = 0$$
, $\sin(c) = -1$.

4.
$$\cos(d) = 0$$
, $\sin(d) = 1$.

Réponse
$$(4.1.8)$$
.

$$\sin(\alpha) = \frac{\sqrt{2} - \sqrt{6}}{4}$$

Réponse (4.1.9).

J

- VADEMECUM POUR LE FUTUR TAUPIN

Réponse (4.1.10).

Réponse (4.1.11).

On a $f(x) = \sin(x)$ si $0 \le x \le \pi$, et f(x) = 0 si $\pi \le x \le 2\pi$. Tracer et prolonger par périodicité.

Réponse (4.1.12).

Ensemble des solutions :

$$\left\{ \left. -\frac{\pi}{3} + 2k\pi \mid k \in \mathbb{Z} \right. \right\} \cup \left\{ \left. \frac{\pi}{3} + 2k\pi \mid k \in \mathbb{Z} \right. \right\}.$$

Réponse (5.2.4).

$$(x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x+\sqrt{2}+\sqrt{3})$$

= $x^4 - 10x^2 + 1$.

Réponse (9.0.2).
$$a^p - a^{n+1}$$

$$\frac{q^p - q^{n+1}}{1 - q}$$