Summary of references for role of RNA fragments in silencing (all organisms, not only plants)

Year	Citation	,	
1991	Fire et al., Development 113:503-14	0 6	disruption of expression of myolitament proteins C. elegans (nematode) by fragments of unc-zz and unc-54 in antisense and sense ortientation
1994	Cogoni et al., Antonie Van Leeuwenhoek 65:205-9		transformation of Neurospora (fungus) with fragments of carotenogenic albino 1 or albino 3 genes results in suppression
1996	Cogoni et al., EMBO J 15:3153-63	- u	fragments with approximately 132 bp of sequences homologous to the transcribed region of the native gene are sufficient to produce sense suppression in Neurospora (fungus)
1997	Mlezlaff et al., Cell 88:345-54	<i>v,</i>	sense suppression of chalcone synthase involves 43-base paired segments of the coding region and 3' UTR of the transgene transcript that are 80% complementary.
1997	Ratcliff et al., Science 276:1558-1560	,	virus cross-resistance and transgene-induced gene silencing in plants involve similar RNA-based mechanisms
1998	Fire et al., Nature 391:806-11		double-stranded RNA corresponding to fragments of exxons inhibits gene expression in C. elegans (nematode) more effectively than sense or antisense single-stranded RNA
1998	Kennerdell and Carthew, Cell 95:1017-26	Ü	double-stranded RNA corresponding to fragments of genes interferes with gene expression in Drosophila (fruit fly) embryos
1998	Montgomery and Fire, Trends Genet 14:255-8	Review	
1999	Cogoni and Macino, Curr Opin Microbiol 2:657-62	Review c	commonalities of homology-dependent gene silencing in fungi and plants
1999	Hamilton and Baulcombe, Science 286:950-952		antisense and sense small RNAs ca. 25 nucleotides are present in tomatoes with cosuppression or antisense suppression
2001	Elbashir et al., Genes Dev 15;188-200	.=	21- and 22-ni RNA fragments generated from double-stranded RNAs are the sequence-specific mediators of RNA interference in Drosophila (fruit fly)
2001	Thomas et al., Plant J 25:417-25	<i>o</i> , <i>o</i> ,	synthetic nucleotides with 23 - 30 base matches to gfp transgene were effective in VIGS; sequences as short as 33 nt silenced endogenous phytoene desaturase
2002	Han and Grierson Plant J 29:509-519	0) =	Small antisense RNAs, about 23 nucleotides, present in transgenic tomato plants exhibiting post-transcriptional silencing of the endogenous
2004	Bauloombe, Nature 431:356-63	Review	pongalacuronase cytoplasmic siRNA silencing (virus resistance), the silencing of endogenous messenger RNAs by miRNAs, and silencing via DNA methylation in plants all involve the cleavage of a doublestranded RNA (dsRNA) into short 21–26-nucleotide RNAs

	Comments	partial cDNA (Arg208-Thr424) from tomato, worked in N. benthamiana	partial cDNA (Arg208-Thr424) from tomato, worked in N. benthamiana	3'-flanking region and a part of the coding region	Sacl-Xbal fragment of AtPTX2-8, has 100-bp deletion of the coding region and lacks 230 bp from 3' noncoding region of cDNA		DNA fragment nucleotides 1446 to 2231 of cDNA		distinct region from 415 nt fragment	from within 415 nt fragment																	same construct as in Siminszky et al. 2005								direct introduction of synthetic oligonucleotides
	<u>Length</u> truncated transcript	651 bp	651 bp	0.5 kb			786	415 nt	37.7 nt	212 nt	400 bp	274 bp	538 bp	23 - 30 nt	23 - 30 nt	33, 51, 52 nt	33, 51, 368 nt	120 bp	480 bp	1103 bp	527 bp	756 bp	326 bp	0.9 kb	0.9 kb	966 bp	99 bp	298bp		250 bp	250 bp	0.75 Kb			18 b
dina seauences	Type	VIGS sense	VIGS antisense	antisense	antisense	sense	antisense	VIGS	VIGS	VIGS	antisense	antisense	antisense	VIGS - antisense	VIGS - sense	VIGS - antisense	VIGS - sense	inverted repeat	inverted repeat	sense	antisense	antisense	inverted repeat	inverted repeat	antisense	antisense	inverted repeat	inverted repeat	antisense	antisense	NIGS	antisense	antisense	andsense	otigonucleotides
Suppression of gene expression in plants by fragments of gene coding seguences	Gene polygalacturonase	phytoene desaturase		omega-3 fatty acid desaturase	Peptide Transport Gene AtPTR2-8		phospholipase D alpha	phytoene desaturase			chalcone synthase	cytosolic glutamine synthetase	sucrose synthase	gfp transgene		phytoene desaturase		delta-12-desaturase			SNF1-related protein kinase-1	Waxy gene	ribosomal protein L3	putrescine N-methyl transferase		mitochondrial mafate dehydrogenase	Nicotine N-demethytase		cytochrome P450 CYP86MF	germin-like protein		lycopene epsilon cyclase	chloroplast HSP100/ClpB		pollen specific NADPH oxidase
Suppression of gene expressio	<u>Citation</u> Smith et al., Mol Gen Genet 224:477-81	Kumagai et al., Proc Natl Acad Sci U S A 92:1679-83		Hamada et al., Transgenic Res. 5:115-21	Song et al., Plant Physiology 114:927-935		Fan et al., Plant Cell 9:2183-2196	Ruiz et al., Plant Cell 10:937-946			El Euch et al., Plant Mol Biol 38:467-79	Brugiere et al., Plant Cell 11:1995-2012	D'Aoust et al., Plant Cell 11:2407-2418	Thomas et al., Plant J 25:417-25				Stoutjedijk et al., 2002 Plant Physiol			Laurie et al., J Exp Bot 54:739-747	Liu et al., Transgenic Res 12:71-82	Popescu and Tumer, Plant J 39:29-44	Steppuhn et al., PLoS Biol 2:E217			Gavilano et al., J Agric Food Chem 54:9071-9078		Cao et al., Plant Cell Rep 24:715-23	Lou and Baldwin, Plant Physiol 140:126-36		Diretto et al., BMC Plant Biol 6:13	Yang et al., Plant Mol Biol 62385-95		Potocky et al., New Phytol
	<u>Year</u> 1990	1995		1996	1997		1997	1998			1998	1999	1999	2001				2002			2003	2003	2004	2004		2005	2006		2006	2006	`	2006	2006	3	2007