스케일 발생 영향인자 분석 및 불량률 예측

• 압연공정이란?

▶ 금속 소성 가공 방법의 하나로 롤(roll)을 이용하여 두께를 줄이고 일정하게 만드는 과정

온도에 따른 분류

열간 압연

- 금속의 재결정 온도 이상에서 작업이 수 행
- 재결정 이상에서 수 행해서 가공경화가 일어나지 않는다.

냉간 압연

- 금속의 재결정 온도 이하에서 작업이 수 행
- 가공경화에 의해 강도가 높아짐
- 열간압연에 비해서 두께를 많이 줄이지 못함

형상에 따른 분류

• 스케일(Scale)이란?

- ▶ 물에 각종 광물질이나 가스 외에 다양한 이온(Ca++, Mg++, HCO3, SO4 등)이 존재
 - -> 이들 이온의 화학적 결합물인 염류(CaCO3, MgCO3 등)가 온도상승 등으로 인한 용해도 감소로 침전
 - -> 전열면의 표면이나 배관등에 부착
 - -> 스케일(Scale) 생성
- ▶ 스케일(Scale) 생성과정

$$Ca^{++} + 2(HCO_3^-) \rightarrow CaCO_3$$
 (스케일) $+ CO_2 + H_2O$

- ▶ 압연과정에서 강판의 표면에 스케일층 형성
 - -> 스케일(Scale) 불량 발생

• 분석 배경

- ✓ OO 공장의 고객사에서 최근 들어 'Scale 불량 발생 증가 ' 라는 이슈가 발생
- ✓ 원인 분석 결과 **압연공정**에서 Scale 불량이 급증
- ✓ 따라서 데이터 수집 후 다양한 분석 통해 불량 발생의 근본 원인 규명
- ✓ 결과를 해석하여 개선 기회를 도출

• 발생 현황

발생 원인	압입흠	Scratch	두께부족	Scale	계
발생률(%)	1.3	0.5	0.4	5.0	7.2%

• 잠재적인 인자 선정

DIATE NO	DI A N	l 15	비즈청	DI . N	Last end
PLATE_NO	Plate No	ID	범주형	Plate No	Nominal
ROLLING_DATE	작업시각	제외	연속형	작업시각	Datetime
SCALE	Scale불량	목표변수	범주형	Scale불량	Binary
SPEC	제품 규격	설명변수	범주형	제품 규격	Nominal
STEEL_KIND	강종	설명변수	범주형	강종	Nominal
PT_THICK	Plate 뚜께	설명변수	연속형	Plate 뚜께	Interval
PT_WIDTH	Plate 폭	설명변수	연속형	Plate 폭	Interval
PT_LENGTH	Plate 길이	설명변수	연속형	Plate 길이	Interval
PT_WEIGHT	Plate 중량	설명변수	연속형	Plate 중량	Interval
FUR_NO	가열로 호기	설명변수	범주형	가열로 호기	Nominal
FUR_NO_ROW	가열로 작업순번	설명변수	연속형	가열로	Interval
FUR_HZ_TEMP	가열로 가열대 온도	설명변수	연속형	가열로 가열대 온도	Interval
FUR_HZ_TIME	가열로 가열대 시간	설명변수	연속형	가열로 가열대 시간	Interval
FUR_SZ_TEMP	가열로 균열대 온도	설명변수	연속형	가열로 균열대 온도	Interval
FUR_SZ_TIME	가열로 균열대 시간	설명변수	연속형	가열로 균열대 시간	Interval
FUR_TIME	가열로 시간	설명변수	연속형	가열로 시간	Interval
FUR_EXTEMP	추출온도	설명변수	연속형	압연온도	Interval
ROLLING_TEMP_T5	압연온도	설명변수	연속형	가열대 온도	Interval
HSB	HSB적용(1-적용,0-미적용)	설명변수	범주형	HSB적용(1-적용,0-미적용)	Binary
ROLLING_DESCALING	압연 중 Descaling 횟수	설명변수	연속형	압연 중 Descaling 횟수	Interval
WORK_GR	작업조	설명변수	범주형	작업조	Nominal

• 데이터 현황

▶ 목표변수 : 스케일 불량 유무(SCALE)

▶ 설명변수: 제품 규격(SPEC), 강종(STEEL_KIND), Plate 두께(PT_THICK), Plate 폭(PT_WIDTH) 등 20개

▶ 목표 변수는 범주형, 설명변수는 범주형 6개, 연속형 14개

				-				+	+							·	
PLATE_NO	·	SCALE		STEEL_KIND					FUR_NO_ROW							ROLLING_TEMP_T5 HSB	ROLLING_DESCALING WORK_GR
PB562774		양품	AB/EH32-TM	T1	32.25	3707	15109	14180 1호기	1	1144	116	1133	59	282	1133	934 적용	8 2조
PB562775		양품	AB/EH32-TM	T1	32.25	3707	15109	14180 1호기	2	1144	122	1135	53	283	1135	937 적용	8 2조
PB562776	2008-08-01:00:00:59	양품	NV-E36-TM	T8	33.27	3619	19181	18130 2호기	1	1129	116	1121	55	282	1121	889 적용	8 3조
PB562777	2008-08-01:00:01:24	양품	NV-E36-TM	T8	33.27	3619	19181	18130 2호기	2	1152	125	1127	68	316	1127	885 적용	8 3조
PB562778	2008-08-01:00:01:44	양품	BV-EH36-TM	T8	38.33	3098	13334	12430 3호기	1	1140	134	1128	48	314	1128	873 적용	8 1조
PB562779	2008-08-01:00:02:06	양품	BV-EH36-TM	T8	38.33	3098	13334	12430 3호기	2	1143	127	1128	57	314	1128	874 적용	8 4조
PB562780	2008-08-01:00:02:28	양품	BV-EH36-TM	T8	38.33	3099	16719	15590 1호기	1	1138	126	1130	50	289	1130	878 적용	8 2조
PB562781	2008-08-01:00:02:21	양품	BV-EH36-TM	Т8	38.33	3099	16719	15590 1호기	2	1139	126	1131	52	294	1131	870 적용	8 4조
PB562782	2008-08-01:00:02:51	양품	BV-EH36-TM	T8	38.33	3099	16719	15590 2호기	1	1127	126	1122	52	293	1122	873 적용	8 1조
PB562783	2008-08-01:00:03:15	양품	COMMON	T8	38.43	3129	16187	15280 2호기	2	1135	119	1124	73	298	1124	881 적용	8 4조
PB562784	2008-08-01:00:03:24	양품	COMMON	T8	38.43	3129	16187	15280 3호기	1	1127	134	1123	58	297	1123	869 적용	8 2조
PB562785	2008-08-01:00:04:15	불량	COMMON	T8	38.43	3129	16187	30560 3호기	2	1131	120	1125	68	299	1125	1057 적용	8 2조
PB562786	2008-08-01:00:04:20	양품	COMMON	T8	38.43	3129	16187	15280 1호기	1	1132	125	1127	62	290	1127	820 적용	8 3조
PB562787	2008-08-01:00:05:47	양품	COMMON	TO	30.23	1940	34797	16020 1호기	2	1119	130	1120	65	324	1120	926 적 용	8 4조
PB562788	2008-08-01:00:05:25	양품	GL-E32-TM	T1	34.28	2207	30543	18140 2호기	1	1119	126	1119	72	311	1119	931 적용	8 3조
PB562789	2008-08-01:00:05:16	불량	GL-E32-TM	T1	50.46	2185	21767	37680 3호기	1	1127	127	1123	71	312	1123	929 적용	5 2조
PB562790	2008-08-01:01:10:14	양품	GL-E32-TM	T1	50.46	2200	21756	37920 2호기	2	1134	127	1124	92	329	1124	929 적용	6 2조
PB562791	2008-08-01:01:10:14	양품	GL-E32-TM	T1	50.46	2200	21756	37920 3호기	2	1124	117	1124	87	315	1124	929 적용	6 3조
PB562792	2008-08-01:01:10:44	양품	GL-E32-TM	T1	50.46	2200	21756	37920 1호기	1	1129	122	1125	78	313	1125	925 적용	6 2조
PB562793	2008-08-01:01:11:01	양품	GL-E32-TM	T1	50.46	2200	21756	37920 2호기	2	1124	54	1127	78	312	1127	928 적용	6 2조
PB562794	2008-08-01:01:11:08	양품	BV-EH36-TM	T8	50.46	2000	24500	38820 1호기	2	1110	123	1116	81	334	1116	860 적용	6 1조
PB562795	2008-08-01:01:12:45	양품	GL-E36-TM	T8	44.39	2040	27501	39100 2호기	1	1114	64	1120	82	335	1120	836 적용	6 4조
PB562796	2008-08-01:01:12:49	양품	GL-E36-TM	T8	44.39	2040	27501	39100 3호기	1	1113	124	1120	82	334	1120	832 적용	6 1조
PB562797	2008-08-01:01:13:47	양품	GL-E36-TM	T8	48.44	2095	24490	39020 3호기	2	1118	71	1124	86	336	1124	832 적용	6 3조
PB562798	2008-08-01:01:13:05	양품	GL-E36-TM	T8	48.44	2095	24490	39020 1호기	1	1117	69	1120	88	347	1120	832 적용	6 3조
PB562799	2008-08-01:01:14:20	양품	GL-E36-TM	T8	48.44	2000	25588	38920 1호기	2	1108	62	1117	97	351	1117	841 적용	6 3조
PB562800	2008-08-01:01:14:53	양품	COMMON	T1	45.4	2150	18453	14140 2호기	1	1123	62	1123	101	332	1123	933 적용	6 1조
PB562801	2008-08-01:01:14:25	양품	COMMON	T1	45.4	2150	18453	14140 2호기	2	1132	70	1126	95	344	1126	933 적용	6 1조
PB562802	2008-08-01:01:15:39	양품	COMMON	T1	45.4	2150	18453	14140 3호기	1	1129	43	1125	109	335	1125	937 적용	6 4조
PB562803	2008-08-01:01:15:14	양품	COMMON	T1	45.4	2090	18419	13720 3호기	2	1134	70	1127	94	335	1127	930 적용	6 1조
PB562804	2008-08-01:01:15:59	양품	COMMON	T1	45.4	2090	18419	13720 1호기	1	1124	78	1124	94	335	1124	936 적용	6 1조
PB562805	2008-08-01:01:15:34	양품	COMMON	T1	45.4	2090	18419	13720 1호기	2	1126	74	1125	92	334	1125	933 적용	6 1조
PB562806	2008-08-01:02:20:52	양품	COMMON	T8	44.9	3125	14008	15430 2호기	1	1111	61	1123	108	336	1123	838 적용	6 3조

• 탐색적 분석 계획

- ▶ 목표변수(범주형) 설명변수(범주형) -> 히스토그램, 크로스탭, 카이제곱 검정
- ▶ 목표변수(범주형) 설명변수(연속형) -> 히스토그램
- ▶ 설명변수(연속형) 설명변수(연속형) -> 산점도, 상관분석

• 데이터 현황

▶ 목표변수 : 스케일 불량 유무(SCALE)

▶ 설명변수: 제품 규격(SPEC), 강종(STEEL_KIND), Plate 두께(PT_THICK), Plate 폭(PT_WIDTH) 등 20개

▶ 목표 변수는 범주형, 설명변수는 범주형 6개, 연속형 14개

				-				+	+							·	
PLATE_NO	·	SCALE		STEEL_KIND					FUR_NO_ROW							ROLLING_TEMP_T5 HSB	ROLLING_DESCALING WORK_GR
PB562774		양품	AB/EH32-TM	T1	32.25	3707	15109	14180 1호기	1	1144	116	1133	59	282	1133	934 적용	8 2조
PB562775		양품	AB/EH32-TM	T1	32.25	3707	15109	14180 1호기	2	1144	122	1135	53	283	1135	937 적용	8 2조
PB562776	2008-08-01:00:00:59	양품	NV-E36-TM	T8	33.27	3619	19181	18130 2호기	1	1129	116	1121	55	282	1121	889 적용	8 3조
PB562777	2008-08-01:00:01:24	양품	NV-E36-TM	T8	33.27	3619	19181	18130 2호기	2	1152	125	1127	68	316	1127	885 적용	8 3조
PB562778	2008-08-01:00:01:44	양품	BV-EH36-TM	T8	38.33	3098	13334	12430 3호기	1	1140	134	1128	48	314	1128	873 적용	8 1조
PB562779	2008-08-01:00:02:06	양품	BV-EH36-TM	T8	38.33	3098	13334	12430 3호기	2	1143	127	1128	57	314	1128	874 적용	8 4조
PB562780	2008-08-01:00:02:28	양품	BV-EH36-TM	T8	38.33	3099	16719	15590 1호기	1	1138	126	1130	50	289	1130	878 적용	8 2조
PB562781	2008-08-01:00:02:21	양품	BV-EH36-TM	Т8	38.33	3099	16719	15590 1호기	2	1139	126	1131	52	294	1131	870 적용	8 4조
PB562782	2008-08-01:00:02:51	양품	BV-EH36-TM	T8	38.33	3099	16719	15590 2호기	1	1127	126	1122	52	293	1122	873 적용	8 1조
PB562783	2008-08-01:00:03:15	양품	COMMON	T8	38.43	3129	16187	15280 2호기	2	1135	119	1124	73	298	1124	881 적용	8 4조
PB562784	2008-08-01:00:03:24	양품	COMMON	T8	38.43	3129	16187	15280 3호기	1	1127	134	1123	58	297	1123	869 적용	8 2조
PB562785	2008-08-01:00:04:15	불량	COMMON	T8	38.43	3129	16187	30560 3호기	2	1131	120	1125	68	299	1125	1057 적용	8 2조
PB562786	2008-08-01:00:04:20	양품	COMMON	T8	38.43	3129	16187	15280 1호기	1	1132	125	1127	62	290	1127	820 적용	8 3조
PB562787	2008-08-01:00:05:47	양품	COMMON	TO	30.23	1940	34797	16020 1호기	2	1119	130	1120	65	324	1120	926 적 용	8 4조
PB562788	2008-08-01:00:05:25	양품	GL-E32-TM	T1	34.28	2207	30543	18140 2호기	1	1119	126	1119	72	311	1119	931 적용	8 3조
PB562789	2008-08-01:00:05:16	불량	GL-E32-TM	T1	50.46	2185	21767	37680 3호기	1	1127	127	1123	71	312	1123	929 적용	5 2조
PB562790	2008-08-01:01:10:14	양품	GL-E32-TM	T1	50.46	2200	21756	37920 2호기	2	1134	127	1124	92	329	1124	929 적용	6 2조
PB562791	2008-08-01:01:10:14	양품	GL-E32-TM	T1	50.46	2200	21756	37920 3호기	2	1124	117	1124	87	315	1124	929 적용	6 3조
PB562792	2008-08-01:01:10:44	양품	GL-E32-TM	T1	50.46	2200	21756	37920 1호기	1	1129	122	1125	78	313	1125	925 적용	6 2조
PB562793	2008-08-01:01:11:01	양품	GL-E32-TM	T1	50.46	2200	21756	37920 2호기	2	1124	54	1127	78	312	1127	928 적용	6 2조
PB562794	2008-08-01:01:11:08	양품	BV-EH36-TM	T8	50.46	2000	24500	38820 1호기	2	1110	123	1116	81	334	1116	860 적용	6 1조
PB562795	2008-08-01:01:12:45	양품	GL-E36-TM	T8	44.39	2040	27501	39100 2호기	1	1114	64	1120	82	335	1120	836 적용	6 4조
PB562796	2008-08-01:01:12:49	양품	GL-E36-TM	T8	44.39	2040	27501	39100 3호기	1	1113	124	1120	82	334	1120	832 적용	6 1조
PB562797	2008-08-01:01:13:47	양품	GL-E36-TM	T8	48.44	2095	24490	39020 3호기	2	1118	71	1124	86	336	1124	832 적용	6 3조
PB562798	2008-08-01:01:13:05	양품	GL-E36-TM	T8	48.44	2095	24490	39020 1호기	1	1117	69	1120	88	347	1120	832 적용	6 3조
PB562799	2008-08-01:01:14:20	양품	GL-E36-TM	T8	48.44	2000	25588	38920 1호기	2	1108	62	1117	97	351	1117	841 적용	6 3조
PB562800	2008-08-01:01:14:53	양품	COMMON	T1	45.4	2150	18453	14140 2호기	1	1123	62	1123	101	332	1123	933 적용	6 1조
PB562801	2008-08-01:01:14:25	양품	COMMON	T1	45.4	2150	18453	14140 2호기	2	1132	70	1126	95	344	1126	933 적용	6 1조
PB562802	2008-08-01:01:15:39	양품	COMMON	T1	45.4	2150	18453	14140 3호기	1	1129	43	1125	109	335	1125	937 적용	6 4조
PB562803	2008-08-01:01:15:14	양품	COMMON	T1	45.4	2090	18419	13720 3호기	2	1134	70	1127	94	335	1127	930 적용	6 1조
PB562804	2008-08-01:01:15:59	양품	COMMON	T1	45.4	2090	18419	13720 1호기	1	1124	78	1124	94	335	1124	936 적용	6 1조
PB562805	2008-08-01:01:15:34	양품	COMMON	T1	45.4	2090	18419	13720 1호기	2	1126	74	1125	92	334	1125	933 적용	6 1조
PB562806	2008-08-01:02:20:52	양품	COMMON	T8	44.9	3125	14008	15430 2호기	1	1111	61	1123	108	336	1123	838 적용	6 3조

• 탐색적 분석 계획

- ▶ 목표변수(범주형) 설명변수(범주형) -> 히스토그램, 크로스탭, 카이제곱 검정
- ▶ 목표변수(범주형) 설명변수(연속형) -> 히스토그램
- ▶ 설명변수(연속형) 설명변수(연속형) -> 산점도, 상관분석

분석 계획

• 모델링 분석 계획

- ▶ 로지스틱 회귀, 의사결정나무, 랜덤포레스트, 그래디언트 부스팅 기법을 사용하여 목표변수를 예측하는 모델 생성
- ▶ 생성된 모델들의 train/test accuracy, F1 score, AUC 분석
 - -> 모델들이 잘 생성되었는지 평가하고 서로 비교
- ▶ 생성된 모델들의 설명변수 중요도 확인
 - -> 설명변수들이 목표변수에 미치는 영향력 확인

• 중요인자 도출

- ▶ 탐색적 분석과 모델링 분석을 통해 설명변수들의 중요도 측정
- ▶ 가장 영향력이 높은 설명변수들을 선택

• 결론 및 대안 제시

- ▶ 중요변수들을 가설과 비교
- > 중요변수들을 토대로 SCALE 불량을 막을 수 있는 방법을 고안

데이터 정제

- 필요없는 변수 제거
 - ▶ PLATE_NO는 스케일 불량 유무(SCALE) 와 관련이 없으므로 데이터에서 제외
 - ➤ 작업시각(ROLLING_DATE)은 스케일 불량 유무(SCALE)와 관련이 없으므로 데이터에서 제외

```
# 'PLATE_NO'와 'ROLLING_DATE'는 목표변수와 관련없는 변수이므로 제거
df_raw.drop("PLATE_NO", axis = 1, inplace = True)
df_raw.drop("ROLLING_DATE", axis = 1, inplace = True)
df_raw
```

	SCALE	SPEC	STEEL_KIND	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO	FUR_NO_ROW	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	FUR_TIME	FUR_EXTEMP	ROLLING_TEMP_T5	HSB RC	OLLING_DESCALING	WORK_GR
0	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	1	1144	116	1133	59	282	1133	934	적용	8	2조
1	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	2	1144	122	1135	53	283	1135	937	적용	8	2조
2	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	1	1129	116	1121	55	282	1121	889	적용	8	3조
3	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	2	1152	125	1127	68	316	1127	885	적용	8	3조
4	양품	BV-EH36- TM	Т8	38.33	3098	13334	12430	3호기	1	1140	134	1128	48	314	1128	873	적용	8	1조
715	불량	NK-KA	C0	20.14	3580	38639	21870	3호기	1	1172	72	1164	62	245	1164	1005	적용	8	2조
716	양품	NV-A32	C0	15.08	3212	48233	18340	2호기	1	1150	61	1169	61	238	1169	947	적용	10	1조
717	양품	NV-A32	C0	16.60	3441	43688	19590	2호기	2	1169	65	1163	77	247	1163	948	적용	10	4조
718	양품	LR-A	C0	15.59	3363	48740	80240	3호기	2	1179	86	1163	45	243	1163	940	적용	10	2조
719	양품	GL-A32	C0	16.09	3400	54209	69840	3호기	1	1186	82	1169	45	239	1169	957	적용	10	2조

▶ 'PLATE_NO', 'ROLLING_DATE' 가 제외 -> 19개 변수 존재 (목표변수 : 1개, 설명변수 : 18개)

• 결측치 확인

▶ 결측치가 보이지 않음

결측치 확인 df_raw.isnull().sum()

SCALE	0
SPEC	0
STEEL_KIND	0
PT_THK	0
PT_WDTH	0
PT_LTH	0
PT_WGT	0
FUR_NO	0
FUR_NO_ROW	0
FUR_HZ_TEMP	0
FUR_HZ_TIME	0
FUR_SZ_TEMP	0
FUR_SZ_TIME	0
FUR_TIME	0
FUR_EXTEMP	0
ROLLING_TEMP_T5	0
HSB	0
ROLLING_DESCALING	0
WORK_GR	0
dtype: int64	

• 이상치 확인

- ▶ 연속형 변수들의 Boxplot 생성 결과 몇몇 변수들의 boxplot 크기 때문에 다른 변수들의 boxplot 결과가 보이지 않음
- ▶ 크기가 큰 boxplot을 생성하는 'PT_LTH', 'PT_WGT', 'PT_WDTH'은 이상치가 보이지 않음
 - -> 'PT_LTH', 'PT_WGT', 'PT_WDTH' 제외 후 나머지 변수들의 boxplot 생성

▶ 확인 결과 압연온도(ROLLING_TEMP_T5)에서 이상치가 발견

데이터 정제

- 이상치 제거
- ▶ 압연온도(ROLLING_TEMP_T5)가 100 이하인 값들을 제거
- ▶ Boxplot을 그려본 결과 이상치가 제거됨

• 그래프를 통한 분석

▶ 목표변수가 범주형 데이터 -> 목표변수와 설명변수의 히스토그램 생성 후 분석

➤ Plate 두께(PT_THK)가 얇아질수록 Scale 불량률 증가

▶ Plate 중량(PT_WGT)이 늘어날수록 SCALE 불량률 증가

Plate 폭(PT_WDTH)이 얇아질수록 SCALE
 불량률 증가

가열로 호기(FUR_NO) 중 3호기에서 SCALE 불량률이 높음

▶ Plate 길이(PT_LTH)가 30000~45000정도일 때 SCALE 불량률 증가

가열로 작업 순번(FUR_NO_ROW)은 SCALE 불량률에 영향을 미치지 않음

• 그래프를 통한 분석

▶ 가열로 가열대 온도(FUR_HZ_TEMP)가1160~1180 사이일 때 SCALE 불량률 증가

▶ 가열로 가열대 시간(FUR_HZ_TIME)과 SCALE 불량률은 상관성을 보이지 않음

▶ 가열로 균열대 온도(FUR_SZ_TEMP)가 높 을수록 SCALE 불량률 증가

가열로 균열대 시간(FUR_SZ_TIME)이 낮 을수록 SCALE 불량률 증가

가열로 시간(FUR_TIME)이 275~325일 때 SCALE 불량률이 증가

➢ 추출온도(FUR_EXTEMP)가 증가할수록 SCALE 불량률 증가

▶ 압연온도(ROLLING_TEMP_T5)가 높을수록 SCALE 불량률 증가

- ▶ HSB를 미적용하면 SCALE불량이 100% 발생
- ▶ 따라서 SCALE을 줄이기 위해선 HSB를 필수 적용

▶ 압연 중 Descaling 횟수(ROLLING_DESCALING)
가 8일때 SCALE 불량률이 가장 높음

작업조(WORK_GR) 중 1조의 겨우 SCALE 불량률이 가장 높음

 강송(STEEL_KIND)이 C0일 때 물량률이 가 장 높음

➤ 각 제품규격(SPEC)마다 SCALE 불량률이 다름

1) 교차표

▶ 목표변수(범주형)과 설명변수(범주형)간의 관계 분석

	1. STEEL_KIND와 SCALE의
STEEL_KIND SCALE 불량 양품	CO C1 C3 TO T1 T3 T5 T7 T8 212 1 1 2 2 0 2 6 5 289 0 6 13 16 2 39 29 89
STEEL_KIND SCALE 불량 양품	C0 C1 C3 T0 T1 T3 T5 ₩ 0.423154 1.0 0.142857 0.1333333 0.1111111 0.0 0.04878 0.576846 0.0 0.857143 0.866667 0.888889 1.0 0.95122
STEEL_KIND SCALE 물량 양품	T7 T8 0.171429 0.053191 0.828571 0.946809

- ✓ C1은 SCALE불량일 확률이 100%, 그러나 1개만 존재.
- ✓ 따라서 C1의 불량률은 신용할 수 없음
- ✓ 따라서 C1을 제외하고 불량률이 가장 높은 것은 CO

2. FUR NO와 SCALE의 관계

관계

FUR_NO 1호기 2호기 3호기 SCALE 불량 73 70 88 양품 166 166 151 FUR_NO 1호기 2호기 3호기 SCALE 불량 0.305439 0.29661 0.368201 양품 0.694561 0.70339 0.631799

✓ 3호기에서 SCALE 불량이 가장 많이 발생하는 것을 알 수 있다.

1) 교차표

▶ 목표변수(범주형)과 설명변수(범주형)간의 관계 분석

	3. HSB와 SCALE의 관계
HSB 미적용 적용 SCALE 불량 33 198 양품 0 483	✓ HSB가 미적용되었을 때 불량일 확률 = 1✓ SCALE불량을 일으키지 않기 위해서는 HSB를 필수 적용할 필요 있음
HSB 미적용 적용 SCALE 불량 1.0 0.290749 양품 0.0 0.709251	
	4. WORK GR와 SCALF의 관계

4. WORK_GR와 SCALE의 관

WORK_GR SCALE	1조	2조	3조	4.	조	
불량 양품	67 121	45 119	54 115	65 128		
WORK_GR SCALE		1조	i	2조	3조	. 4조
불량 양품	0.350 0.640	6383 3617	0.27 0.72			0.336788 0.663212

- ✓ 1조에서 SCALE불량률이 가장 많이 나옴
- ✓ 2조에서는 SCALE불량률이 가장 적게 나옴

검정을 통한 분석2) 산점도 행렬

- ▶ 연속형 설명 변수들간의 산점도
- ➤ Plate 길이(PT_LTH)와 Plate 두께 (PT_THK)가 서로 음의 상관관계를 보이 는 등 몇몇 설명변수들간에 상관관계가 존재
- ➤ FUR_SZ_TEMP(가열로 균열대 온도)와
 FUR_EXTEMP(압연온도)가 완벽히 비례
 → 둘 중 하나만 사용해도 될 것 같음

3) 상관관계 표

	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO_ROW	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	FUR_TIME	FUR_EXTEMP	ROLLING_TEMP_T5	ROLLING_DESCALING
PT_THK	1.000	-0.314	-0.862	-0.394	-0.004	-0.520	0.160	-0.692	0.118	0.406	-0.692	-0.503	-0.836
PT_WDTH	-0.314	1.000	0.121	0.030	0.003	0.181	-0.122	0.229	0.019	-0.393	0.229	-0.113	0.343
PT_LTH	-0.862	0.121	1.000	0.449	-0.020	0.468	-0.075	0.641	-0.072	-0.245	0.641	0.434	0.807
PT_WGT	-0.394	0.030	0.449	1.000	-0.022	0.150	0.012	0.356	-0.192	-0.054	0.356	0.420	0.234
FUR_NO_ROW	-0.004	0.003	-0.020	-0.022	1.000	0.005	-0.015	0.008	0.049	0.018	0.008	-0.007	0.018
FUR_HZ_TEMP	-0.520	0.181	0.468	0.150	0.005	1.000	-0.112	0.770	-0.225	-0.342	0.770	0.356	0.465
FUR_HZ_TIME	0.160	-0.122	-0.075	0.012	-0.015	-0.112	1.000	-0.201	0.178	0.475	-0.201	0.006	-0.135
FUR_SZ_TEMP	-0.692	0.229	0.641	0.356	0.008	0.770	-0.201	1.000	-0.456	-0.471	1.000	0.662	0.644
FUR_SZ_TIME	0.118	0.019	-0.072	-0.192	0.049	-0.225	0.178	-0.456	1.000	0.449	-0.456	-0.379	-0.107
FUR_TIME	0.406	-0.393	-0.245	-0.054	0.018	-0.342	0.475	-0.471	0.449	1.000	-0.471	-0.210	-0.360
FUR_EXTEMP	-0.692	0.229	0.641	0.356	0.008	0.770	-0.201	1.000	-0.456	-0.471	1.000	0.662	0.644
ROLLING_TEMP_T5	-0.503	-0.113	0.434	0.420	-0.007	0.356	0.006	0.662	-0.379	-0.210	0.662	1.000	0.370
ROLLING_DESCALING	-0.836	0.343	0.807	0.234	0.018	0.465	-0.135	0.644	-0.107	-0.360	0.644	0.370	1.000

- ▶ 연속형 설명 변수들간의 상관관계 분석
- ➤ Plate 길이(PT_LTH)와 Plate 두께(PT_THK)의 상관관계가 -0.862로 음의 상관관계를 보이는 등 산점도 행렬에서 살펴본 변수 들간의 선형관계를 수치로 확인
- ➤ FUR_SZ_TEMP(가열로 균열대 온도)와 FUR_EXTEMP(압연온도)가 완벽히 비례
 - -> 둘 중 하나를 제거하기로 결정

- 검정을 통한 분석
 - ※ 설명변수 FUR_EXTEMP 제거
 - ➤ FUR SZ TEMP(가열로 균열대 온도)와 FUR EXTEMP(압연온도)가 겹치므로 FUR EXTEMP를 제거

	SCALE	SPEC	STEEL_KIND	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO	FUR_NO_ROW	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	FUR_TIME	ROLLING_TEMP_T5	HSB	ROLLING_DESCALING	WORK_GR
0	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	1	1144	116	1133	59	282	934	적용	8	2조
1	양품	AB/EH32- TM	T1	32.25	3707	15109	14180	1호기	2	1144	122	1135	53	283	937	적용	8	2조
2	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	1	1129	116	1121	55	282	889	적용	8	3조
3	양품	NV-E36- TM	Т8	33.27	3619	19181	18130	2호기	2	1152	125	1127	68	316	885	적용	8	3조
4	양품	BV-EH36- TM	Т8	38.33	3098	13334	12430	3호기	1	1140	134	1128	48	314	873	적용	8	1조

➤ FUR_EXTEMP 제거 후 설명변수(범주형): 6개, 목표변수(연속형): 11개

4) 카이제곱 독립성 검정

- ▶ 카이 제곱 독립 검정은 보통 두 범주형(명목형) 변수 사이에 유의미한 관계가 있는지 아닌지를 검정
- ▶ 범주형 변수인 SPEC과 STEEL_KIND의 경우 값이 너무 다양하므로 카이제곱 검정을 통해 목표변수 SCALE과 상관성이 없는 범주값 들을 제거
- ▶ 카이제곱 검정의 귀무 가설(H0), 대립 가설(H1)

귀무 가설(H0)	두 변수들 간에는 관계가 없다.
대립 가설(H1)	두 변수들 간에는 관계가 있다.

- 검정을 통한 분석
 - 4) 카이제곱 독립성 검정
 - a. SPEC과 SCALE의 카이제곱 검정
 - ➤ SPEC의 더미 변수들 생성

	SCALE	SPEC_A131- DH36TM	SPEC_A283- C	SPEC_A516- 60	SPEC_A709- 36	SPEC_AB/A	SPEC_AB/AH32	SPEC_AB/B	SPEC_AB/EH32- TM	SPEC_AB/EH36- TM	
0	1	0	0	0	0	0	0	0	1	0	
1	1	0	0	0	0	0	0	0	1	0	
2	1	0	0	0	0	0	0	0	0	0	
3	1	0	0	0	0	0	0	0	0	0	
4	1	0	0	0	0	0	0	0	0	0	
715	0	0	0	0	0	0	0	0	0	0	
716	1	0	0	0	0	0	0	0	0	0	
717	1	0	0	0	0	0	0	0	0	0	
718	1	0	0	0	0	0	0	0	0	0	
719	1	0	0	0	0	0	0	0	0	0	

- ▶ 카이제곱 검정 결과 p-value가 0.05 이상인 범주값 컬럼들을 제거
- ▶ P-value가 0.05이하인 범주값들 ->
- ▶ 카이제곱 검정 후 데이터 현황 (오른쪽 아래 표)

['SPEC_A283-C',	
'SPEC_AB/EH36-TM'	,
'SPEC_BV-EH36-TM'	,
'SPEC_COMMON',	
'SPEC_GL-A36-TM',	
'SPEC_JS-SM490A',	
'SPEC_JS-SM490YB'	,
'SPEC_JS-SS400',	
'SPEC_KR-A',	
'SPEC_KS-SM490A',	
'SPEC_PILAC-BT33'	

 SPEC_AB/EH36- TM	SPEC_BV- EH36-TM	SPEC_COMMON	SPEC_GL- A36-TM	SPEC_JS- SM490A	SPEC_JS- SM490YB	SPEC_JS- SS400	SPEC_KR- A	SPEC_KS- SM490A	SPEC_PILAC- BT33
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	1	0	0	0	0	0	0	0	0
 	***		***	***		***		***	***
0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0

- 검정을 통한 분석
 - 4) 카이제곱 독립성 검정
 - a. STEEL_KIND와 SCALE의 카이제곱 검정
 - ➤ STEEL_KIND의 더미 변수들 생성

	SCALE	STEEL_KIND_C0	STEEL_KIND_C1	STEEL_KIND_C3	STEEL_KIND_T0	STEEL_KIND_T1	STEEL_KIND_T3	STEEL_KIND_T5	STEEL_KIND_T7	STEEL_KIND_T8
0	1	0	0	0	0	1	0	0	0	0
1	1	0	0	0	0	1	0	0	0	0
2	1	0	0	0	0	0	0	0	0	1
3	1	0	0	0	0	0	0	0	0	1
4	1	0	0	0	0	0	0	0	0	1
715	0	1	0	0	0	0	0	0	0	0
716	1	1	0	0	0	0	0	0	0	0
717	1	1	0	0	0	0	0	0	0	0
718	1	1	0	0	0	0	0	0	0	0
719	1	1	0	0	0	0	0	0	0	0

- ▶ 카이제곱 검정 결과 p-value가 0.05 이상인 범주값 컬럼들을 제거
- ▶ P-value가 0.05이하인 범주값들

['STEEL_KIND_CO', 'STEEL_KIND_T5', 'STEEL_KIND_T8']

▶ 카이제곱 검정 후 데이터 현황(오른쪽 아래 표)

 SPEC_GL- A36-TM	SPEC_JS- SM490A	SPEC_JS- SM490YB	SPEC_JS- SS400	SPEC_KR-A	SPEC_KS- SM490A	SPEC_PILAC- BT33	STEEL_KIND_C0	STEEL_KIND_T5	STEEL_KIND_T8
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	0
 0	0	0	0	0	0	0	0	0	1
 0	0	0	0	0	0	0	0	0	1
 0	0	0	0	0	0	0	0	0	1
 					***		***	***	
 0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	0
 0	0	0	0	0	0	0	1	0	0
 0	0	0	0	0	0	0	1	0	0
 0	0	0	0	0	0	0	1	0	0

탐색적 분석

- 검정을 통한 분석
 - 4) 카이제곱 독립성 검정
 - c. 카이제곱 검정 후 데이터 현황

▶ 원래 설명변수들에서 SPEC, STEEL_KIND가 빠지고 SPEC, STEEL_KIND 내에 있는 범주 값들 중 일부가 one-hot 벡터 형태로 추가된 것을 알 수 있다.

• 검정 후 중요인자 선정

▶ 가열로 작업순번, 가열로 가열대 시간을 제외한 나머지 설명변수들은 목표변수와 상관성이 존재하므로 잠재인자가 이들 중 있다고 판단

1. 로지스틱 회귀 분석

1) Train/test set 설정

➤ Train/test set을 7:3 비율로 생성

```
# 데이터들을 train/test data로 분리
df_train, df_test = train_test_split(df_raw, test_size = 0.3, random_state = 1234)
print('train data size : {}'.format(df_train.shape))
print('test data size : {}'.format(df_test.shape))
```

train data size : (499, 30) test data size : (215, 30)

2) 선형회귀 모델 생성

- ▶ 모델의 설명력 : 0.5534
- ▶ p-value가 0.05 이하인 변수
- -> WORK_GR(C(WORK_GR)[T.2조], C(WORK_GR)[T.3조]), PT_THK, FUR HZ TEMP, FUR SZ TEMP, ROLLING TEMP T5, ROLLING DESCALING
- ▶ WORK GR은 유의하다고 판단할 수 있음
- > Train/test accuracy와 Confusion Matrix

```
Train Accuracy: 0.881764
Test Accuracy: 0.823256
Confusion Matrix:
[[125 19]
  19 5211
```

Current function value: 0.280145

Iterations: 35

Function evaluations: 50

Gradient evaluations: 39

Logit Regression Results

	Dep. Variable:		SCALE	No. Observation	ns:	499
	Model:		Logit	Df Residuals:		473
	Method:		MLE	Df Model:		25
	Date:	Tue, 09	9 Mar 2021	Pseudo R-squ.:		0.5534
	Time:		22:17:50	Log-Likelihood	:	-139.79
-	converged:		False	LL-Null:		-313.05
- 1	Covariance Type:		nonrobust	LLR p-value:		2.478e-58
:						
		coef	std err	Z	P> z	[0.025

covarrance type:	1101	III ODUSC LL	v b_value:		2.4106	JU
	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.4685	26.010	-0.018	0.986	-51.447	50.510
C(FUR_NO)[T.2호기]		0.392	-0.648	0.517	-1.022	0.51
C(FUR_NO)[T.3호기]			1.135	0.256		1.23
C(HSB)[T.적용]	-14.3019		-0.784	0.433	-50.069	21.48
C(WORK_GR)[T.2조]	-1.5667	0.462	-3.388	0.001	-2.473	-0.660
C(WORK_GR)[T.3조]	-1.7638	0.509	-3.466	0.001	-2.761	-0.768
C(WORK_GR)[T.4조]	-0.6136	0.420	-1.460	0.144	-1.437	0.210
PT_THK	-0.0622	0.024	-2.619	0.009	-0.109	-0.016
PT_WDTH	-0.0006	0.000	-1.337	0.181	-0.001	0.000
PT_LTH	-4.673e-05	2.93e-05	-1.596	0.110	-0.000	1.06e-05
PT_WGT	1.092e-07	7.88e-06	0.014	0.989	-1.53e-05	1.56e-05
FUR_NO_ROW_	-0.0930	0.314	-0.296	0.767	-0.709	0.523
FUR_HZ_TEMP	0.0492	0.018	2.808	0.005	0.015	0.084
FUR_HZ_TIME	0.0048	0.005	0.991	0.322	-0.005	0.014
FUR_SZ_TEMP	-0.0634	0.031	-2.033	0.042	-0.125	-0.002
FUR_TIME	-0.0037	0.005	-0.819	0.413	-0.013	0.005
ROLLING_TEMP_T5	0.0431	0.006	6.666	0.000	0.030	0.056
ROLLING_DESCALING	-0.5861	0.193	-3.044	0.002	-0.963	-0.209
SPEC_A283_C	0.5202	1.444	0.360	0.719	-2.310	3.350
SPEC_ABEH36_TM	0.5609	2.810	0.200	0.842	-4.947	6.068
SPEC_JS_SM490A	1.4951	1.208	1.237	0.216	-0.873	3.864
SPEC_JS_SM490YB	-0.3050	0.536	-0.569	0.569	-1.356	0.746
SPEC_JS_SS400	0.8460	1.297	0.652	0.514	-1.697	3.389
SPEC_KR_A	-0.6016	0.668	-0.900	0.368	-1.912	0.708
SPEC_KS_SM490A	0.4961	2.288	0.217	0.828	-3.988	4.980
SPEC_PILAC_BT33	-2.1747	1.365	-1.593	0.111	-4.850	0.500

1. 로지스틱 회귀 분석

3) 데이터 표준화(Scaling)

- ▶ 연속형 설명변수들을 표준화
- ▶ 표준화한 목표변수(SCALE)에서 값이 0 이상이면 1, 아닌 경우 0으로 설정

SCALE	PT_THK	PT_WDTH	PT_LTH	PT_WGT	FUR_NO_ROW	FUR_HZ_TEMP	FUR_HZ_TIME	FUR_SZ_TEMP	FUR_SZ_TIME	
0	0.165524	1.738825	-1.399249	-1.102663	-0.994413	-0.550140	0.726729	-0.958762	-0.544799	
0	0.165524	1.738825	-1.399249	-1.102663	1.005618	-0.550140	0.885652	-0.844450	-0.709067	
0	0.219261	1.568260	-1.103953	-0.943272	-0.994413	-1.270258	0.726729	-1.644633	-0.654311	
0	0.219261	1.568260	-1.103953	-0.943272	1.005618	-0.166077	0.965114	-1.301698	-0.298397	
0	0.485835	0.558436	-1.527970	-1.173279	-0.994413	-0.742171	1.203499	-1.244542	-0.845957	

4) 설명변수 중요도 확인

➤ FUR_HZ_TIME,

ROLLING_TEMP_T5,

ROLLING_DESCALIING,

PT_WIDTH,

HSB(적용)

순으로 영향력이 강함

2. 의사결정나무

1) Train/test set 설정

- ▶ 설명변수와 목표변수를 나눔
- ➤ Train/test set을 7:3 비율로 생성

```
# GNOISING train/test datas #BN df_train_x, df_test_x, df_train_y, df_test_y = train_test_split(df_raw_x, df_raw_y, test_size = 0.3, random_state = 1234)

print('train data X size : {}'.format(df_train_x.shape))

print('test data X size : {}'.format(df_test_x.shape))

print('test data X size : {}'.format(df_test_y.shape))

train data X size : (499, 35)

train data X size : (499, 1)

test data X size : (215, 35)

test data Y size : (215, 1)
```

2) 모델 생성

- ➤ Grid search 방법을 이용한 결과 max_depth = 5, min_samples_leaf = 6, min_samples_split = 10일 때 가장 좋은 성능을 보임
- ➤ Train/test accuracy와 Confusion matrix

```
Train Accuracy: 0.981964
Test Accuracy: 0.986047
Confusion matrix:
[[144 0]
[ 3 68]]
```


모델링 분석

종합 실습

2. 의사결정나무

3) 설명변수 중요도 확인

➤ ROLLING_TEMP_T5, HSB_미적용, FUR_SZ_TEMP, ROLLING DECSCALING 순으로 영향력이 강함

3. 랜덤 포레스트

1) Train/test set 설정

- ▶ 설명변수와 목표변수를 나눔
- ➤ Train/test set을 7:3 비율로 생성

```
# CHOIS == train/test data == 1234 | ftrain_x, df_test_x, df_train_x, df_test_x, df_train_x, df_test_x, df_train_x, df_test_x, df_train_x, df_test_x, df_train_x, df_test_x, df_train_x, df_test_aize = 0.3, random_state = 1234 | print('train data X size : {}'.format(df_train_x, shape)) | print('train data X size : {}'.format(df_test_x, shape)) | print('test data X size : {}'.format(df_test_x, shape)) | print('test data X size : (499, 35) | train data X size : (499, 1) | test data X size : (215, 35) | test data X size : (215, 1)
```

2) 모델 생성

- ➤ Grid search 방법을 이용한 결과 n_estimators = 100, max_depth = 7, min_samples_leaf = 2일 때 가장 좋은 성능을 보임
- ➤ Train/test accuracy와 Confusion matrix

```
Train Accuracy: 0.969940
Test Accuracy: 0.944186
Confusion matrix:
[[144 0]
[ 12 59]]
```

3) 설명변수 중요도 확인

➤ ROLLING_TEMP_T5, PT_WIDTH, FUR_SZ_TEMP, PT_THK, HSB(미적용) 순으로 영향력이 강함

4. 그래디언트 부스팅

1) Train/test set 설정

- ▶ 설명변수와 목표변수를 나눔
- ➤ Train/test set을 7:3 비율로 생성

2) 모델 생성

- ➤ Grid search 방법을 이용한 결과 n_estimators = 100, learning_rate = 0.8, max_depth = 4, min_samples_leaf = 10일 때 가장 좋은 성능을 보임
- ➤ Train/test accuracy와 Confusion matrix

```
Train Accuracy: 1.000000

Test Accuracy: 0.995349

Confusion matrix:
[[143 1]
[ 0 71]]
```

3) 설명변수 중요도 확인

➤ ROLLING_TEMP_T5, HSB(적용), FUR_SZ_TEMP,
ROLLING DESCALING, HSB(미적용) 순으로 영향력이 강함

5. 생성 모델들의 성능 비교

- ➤ 모든 모델들의 train accuracy가 0.8 이상
- ➤ 모든 모델들의 test accuracy가 0.8 이상
- ▶ 모든 모델들의 F1 score가 0.7 이상
- ➤ 모든 모델들의 AUC가 0.8 이상
- ▶ 로지스틱 회귀의 경우 모든 평가지표가 최하
- ▶ 그래디언트 부스팅의 경우 모든 평가지표가1등
- ▶ 모든 모델들의 평가지표가 나쁘지 않으므로모델을 통해 분석한 설명변수 중요도를 신뢰할 수 있음

	TrainAccuracy	TestAccuracy	F1Score	AUC
Logistic Regression	0.882	0.823	0.732	0.800
Decision Tree	0.982	0.986	0.978	0.979
RandomForest	0.970	0.944	0.908	0.915
GradientBoosting	1.000	0.995	0.993	0.997

결론 및 대안제시

• 중요인자 선정

1) 선정 방식

- ▶ 탐색적 분석 -> 상관성이 있음(1), 상관성이 없음(0)
- ▶ 모델링 기법 -> 생성 모델의 설명변수 중요도 확인, 가장 영향을 미치는 5개 변수들을 높은 순부터 5, 4, 3, 2, 1 로 점수 부여

2) 선정 결과

변수 설명	변수 역할	변수 형태	분석			모델링 기법		총점	선정	
한구 결정	한구 국물	27 84	제외 사유	그래프	로지스틱회귀	의사결정트리	랜덤 포레스트	그래디언트 부스팅	8.9	2.9
Plate No	ID	범주형	목표변수와 연관X		> <	\nearrow			><	> <
작업시각	제외	연속형	목표변수와 연관X			\sim			imes	><
Scale불량	목표변수	범주형		><	\rightarrow	\nearrow			\times	$>\!\!<$
제품 규격	설명변수	범주형		1	0	0	0	0	1	X
강종	설명변수	범주형		1	0	0	0	0	1	X
Plate 뚜께	설명변수	연속형		1	0	0	2	0	3	X
Plate 폭	설명변수	연속형		1	2	0	4	1	8	0
Plate 길이	설명변수	연속형		1	0	0	0	0	1	X
Plate 중량	설명변수	연속형		1	0	0	0	0	1	X
가열로 호기	설명변수	범주형		1	0	0	0	0	1	X
가열로	설명변수	연속형		0	0	0	0	0	0	X
가열로 가열대 온도	설명변수	연속형		1	0	0	0	0	1	X
가열로 가열대 시간	설명변수	연속형		0	5	0	0	0	5	0
가열로 균열대 온도	설명변수	연속형		1	0	3	3	3	10	0
가열로 균열대 시간	설명변수	연속형		1	0	1	0	0	2	X
가열로 시간	설명변수	연속형		1	0	0	0	0	1	X
추출온도	제외	연속형	FUR_SZ_TEMP과 완벽히 겹침	><		\nearrow	W		\times	> <
압연온도	설명변수	연속형		1	4	5	5	5	20	0
HSB적용(1-적용,0-미적용)	설명변수	범주형		1	1	4	1	4	11	0
압연 중 Descaling 횟수	설명변수	연속형		1	3	2	0	2	8	0
작업조	설명변수	범주형		1	0	0	0	0	1	X

▶ 압연온도, HSB, 가열로 균열대 온도, Plate 폭, 압연 중 Descaling 횟수, 가열로 가열대 시간 6개를 중요변수로 선정

• 결론

- ▶ 분석 결과 압연온도, HSB, 가열로 균열대 온도, Plate 폭, 압연 중 Descaling 횟수, 가열로 가열대 시간이 스케일(Scale) 불량 에 가장 큰 영향을 미침을 확인
- ➤ 중요변수들이 목표변수(SCALE)에 미치는 영향력
 - -> 압연온도 > HSB > 가열로 균열대 온도 > Plate 폭 > 압연 중 Descaling 횟수 > 가열로 가열대 시간
- ▶ 탐색적 분석을 통한 중요변수들과 설명변수의 상관관계

스케일(Scale)	압연온도	HSB	가열로 균열대 온도	Plate 폭	압연 중 Descaling 횟 수	가열로 가열대 시간
없음	저	적용	저	두꺼움	나머지	많음
↓	↓	↓	↑	↓	‡	소
발생	고	미적용	고	얇음	8	적음

• 대안 제시

- 분석 결과 압연온도가 목표변수에 가장 영향을 미치므로 압연온도를 낮춰 스케일 불량을 줄인다.
- ▶ HSB를 미적용했을 경우 모두 Scale 불량이 나왔으므로 압연 공정에 HSB 적용을 필수로 한다.
- ▶ Plate 폭을 얇게 할 때는 스케일 불량 발생률이 높으므로 주의한다.
- ▶ 압연 중 Descaling 횟수는 가능하면 적은 횟수로 한다.
- 가열로 가열대 시간은 충분히 오래 한다.

느낀 점 및 소감

- 압연 공정과 스케일(Scale) 발생 원리에 대해 알게 됨
- 스케일 발생을 일으키는 중요인자들을 알 수 있었음
- 로지스틱 회귀, 의사결정나무, 랜덤 포레스트, 그래디언트 부스팅 기법을 통해 목표변수를 예측하고 실제값과 비교해볼수 있었음
- 중요인자들을 통해 대응방안을 수립 및 제안할 수 있었음