Ol Intern	EC2.101 - Dig	Deemed to be Universital Systems and	rsity) Microcontro		37×37 259 111× 1369
100 Max. Time: 1.5		Semester Exam	<u>ination</u>	Max. Marks	: 40
Numbe	CALCUI ers in square brackets Numbers in {} brackets	cets are for administr	show the marks rative use. Pleas	for that question. e ignore.	3/2937
Carren and Davideceiving the point i. Abdul is ii. Bishnoi iii. Carren is iv. David is lying.	id. The police question of the police in a set pattern: Ilying only when either is lying only when either is lying only when About telling the truth only	er Bishoi is telling the her Abdul is lying, o lul is lying. when either Abdul	ot of investigati e truth, or Carre r David is telling and Bishnoi ar	suspects: Abdul, Bish ion, finds out that they in is lying. g the truth. e both lying, or Carre e. Who is telling the true.	rare
(Hint: the "or" is	n the above statements	s is inclusive).	·	[10 marks]{CC	
Q2. Say we crea	te a 2-bit binary multi	plier as shown:	S	[10 marks]{ee	6.
0 0	• 1	B ₁	<i>B</i> ₀	A. 40	35×35
0 1	0		V	B, Bo	175
10	0	B_1 B_0		A,Bo AOB	
, 0	O				1225
0 1		In I	-	()	36 x36
101=0 -0 1		на	(3 (1	216
10=0		C_1 C_2 C_1	C_0		(08x
00 = 0 However, when $A=10$ or 11 and breadboard, one	of the internal wires i at ground or VDD lev	nvestigate and find spermanently getting	out that because g connected to e	se of a problem with either ground or VDD, roblematic and what v	the i.e., alue
				[10 marks]{C0	31 ×31
can make a fast full adders. Let u circuit to the car an n-bit binary a	circuit with the carry us quantify the circuit ry lookahead circuit.	lookahead logic, or complexity increase Calculate the numbe o level AND-OR im	we can make a s in going from t r of transistors i plementation fo	wer/area of the circuit. slow circuit with cases he simple full adder-b n each implementation r carry look ahead cir- co-input ExOR). [10 marks]{CO	aded ased ased ased ased ased as for cuit, 33 × 33
	ecimal number of the f		ect square. What	t is the value of the dig	99 gits (089
a and b? Frovide	detailed mathematic	ar reasoning.		[10 marks]{CC)-2}
, 0 20	1000a+ 100a	+ 106+ 6		000	
	1100a	+ 11 k	1, 6, 9,	16, 25, 36, 49, 5	\$ 66, 81, 100,
	(1000	110,	(21, 1		

00 ×

(0

International Institute of Information Technology, Hyderabad (Deemed to be University)

EC2.101 - Digital Systems and Microcontrollers

End Semester Examination

Max. Time: 3 Hr

Max. Marks: 70

CALCULATORS ARE NOT ALLOWED

Numbers in square brackets [x] after a statement show the marks for that question.

Numbers in {} brackets are for administrative use. Please ignore.

21. Let's say we are working in the ternary system (radix = 3). However, we need to create circuits using Boolean logic for the operations. A simple operation is to add two numbers. Given two 1-digit ternary numbers, design a circuit that produces their sum. [Hint: you will require 2 wires to represent 1-digit of ternary].

[12 marks]{CO-1}

Q2. We are given a serial stream of bits. Within this bit stream, we want to see if there is a 4-bit prime number. Design a circuit that outputs '1' if there is a 4-bit prime number in a given bit stream. The output should be active for one clock cycle upon detection of the prime number. If the next combination of 4 bits is also prime, the output should remain '1'. For example, bit stream 10111 will produce output '1' for two cycles, because 0111 and 1011 are both prime.

[12 marks]{CO-3}

Q3. Most of the arithmetic happens in a computer using 2's complement notation. Suppose we are given two 4-bit numbers in signed 2's complement representation (A and B). Design a circuit to compare them and output (A>B), (A<B), and (A=B).

[12 marks]{CO-2}

Q4. Perform the following conversions:

- 1) $(978)_{10} = (?)_{16}$
- 2) $(73)_8 + (5BC)_{16} = (57)_8 + (?)_{16}$
- 3) $(1011)_8 = (?)_{10}$
- 4) $(110)_2 \times (11011)_2 = (?)_{16}$
- 5) $(3.78)_{10} = (?)_2$

 $[2x5 = 10 \text{ marks}]\{CO-1\}$

Q5. What is the behaviour of the following circuit if clock pulses are applied from a reset state (when all FFs are at zero) [4]? Draw the complete state diagram for the 16 distinct states (including starting in any other state) [4]. In general, if there are k flip-flops in this chain and any arbitrary starting state is chosen, how many clock cycles does it take to make sure we return to the original state [4]?

 $[4+4+4 = 12 \text{ marks}]\{CO-3\}$

Q6. We are required to find the sum of a set of N numbers located in a block of memory starting from location "0x200". The number N itself is stored in location "0x220" (assume N<0x20). Write an assembly level program that computes this sum using our simple 8-bit microcontroller. (Concise instruction set is provided below). Assume your own code starts at memory location "0x000". Provide reasoning for your code.

[12 marks]{CO-4}

Instruction	Opcode	Clk	Control Signals	Select Signals
adi xx	01	3	Epc, LMR, Ipc	-
		4	RD, LOR	•
		5	EAR, LAR, End	SALU - ADD
sbì xx	02	3	E _{PC} , L _{MR} , I _{PC}	
		4	RD, LOR	•
		5	EAR, LAR, End	SALU - SUB
xri xx	03	3	E _{PC} , L _{MR} , I _{PC}	-
		4	RD, LOR	-
		5	EAR, LAR, End	S _{ALU} ← XOR
ani xx	04	3	Epc, LMR, Ipc	
		4	RD, LOR	
		5	E _{AR} , L _{AR} , End	$S_{ALU} \leftarrow AND$
movs <r></r>	70-7F	3	E _{RG} , L _{AR} , End	$S_{RG} \leftarrow \langle R \rangle$, $S_{ALU} \leftarrow PASSO$
movd <r></r>	80-8F	3	EAR, LRG, End	$S_{RG} \leftarrow \langle R \rangle$
movi <r> xx</r>	90-9F	3	Epc, LMR, Ipc	-
		4	RD, LRG, End	$S_{RG} \leftarrow \langle R \rangle$
stor <r></r>	AO-AF	3	EAR, LMR	-
		4	ERG, WR, End	$S_{RG} \leftarrow \langle R \rangle$
load <r></r>	BO-BF	3	E _{AR} , L _{MR}	-
		4	RD, L _{RG} , End	$S_{RG} \leftarrow \langle R \rangle$
jumpd <fl> xx</fl>	E0-E7	3	E _{PC} , L _{MR} , I _{PC} , E _{FL} , End if <fl>'</fl>	S _{FL} ← <fl></fl>
		4	RD, Lpc, End	-
jmpr <fl></fl>	E8-EF	3	E _{FL} , End if <fl>'</fl>	S _{FL} ← <fl></fl>
		4	EAR, LPC, End	