Higher Order Derivatives

Higher order derivatives refer to the derivatives of a function that are obtained by repeatedly differentiating the original function.

- The first derivative of a function, f'(x), represents the rate of change or slope of the function at a point.
- The **second derivative**, f''(x), is the derivative of the first derivative and measures the curvature or concavity of the function.
- The third derivative, f'''(x), is the derivative of the second derivative, and so on.

Example 1 Find the first four derivatives for each of the following.

(a)
$$R(t) = 3t^2 + 8t^{\frac{1}{2}} + e^t$$

(b)
$$y = \cos x$$

(c)
$$f(y)=\sin(3y)+\mathbf{e}^{-2y}+\ln(7y)$$

Example: Given $y(x) = 3x^3 + 12x + 4$. Find the value of third derivative at x = 1

Example: Given $y = x/(x^2 + 1)$. Find the value of the second derivative at x = 1

Example 4: Given $f(x) = e^x \cdot \sin(x)$. Find the value of f''(x) at x = 0.

Example 5: Given y = $3e^{2x} + 2e^{3x}$, prove that $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0$