L6: Muxes and other Components

18-240: Structure and Design of Digital Systems

Bill Nace & Saugata Ghose

Spring 2019

© 2004 - 2019 All Rights Reserved. All work contained herein is copyrighted and used by permission of the authors. Contact ece240-staff@lists.andrew.cmu.edu for permission or for more information.

Carnegie Mellon University

18-240: Where are we ...?

Carnegie Mellon

- 1 Handout: Lecture Notes
- Midterm 1 -- the countdown begins

Week	Date	Lecture	Reading	Lab	HW
3	1/29	L4 Automated Logic Minimization		Lab 1	HW 2
	1/31	L5 Synthesizable SystemVerilog	LDVUS 2 - 2.3 HH 4.2-4.3		
	2/1	R2 Recitation			
4	2/5	L6 Combinational Components	HH 2.8, 4.5	Lab 2	HW 3
	2/7	L7 Numbers and Arithmetic	HH 1.4, 5.1-5.3		
	2.8	R3 Recitation			
5	2/12	L8 Comb. Logic Wrap-up	LDVUS 2.7 HH 1.7, 2.5-2.6	Lab 3	HW 4
	2/14	L9 Flip-flops and FSMs	HH 3.4		
	2/15	R4 Recitation			
	2/19	Midterm 1		No	HW 5
	2/21	L10 FSM Design	LDVUS 3 - 3.3 HH 3.4, 4.4	Lab	
	2/22	R5 Recitation			

Today: Structured Logic Realization

Carnegie Mellon

- What you know so far...
 - Kmaps and 2-level SOP for smallish (random) logic functions
 - QM can be used too or a computer tool based on QM
- What you don't know...
 - Other ways to approach large designs
 - Partitioning a design into smaller, more manageable chunks
 - Using pre-designed components
 - → as parts of larger designs
 - → as configurable devices

Today

- Multiplexers (and factoring big Boolean expressions)
- Decoders (and more factoring...)
- Other useful combinational components: Comparators,
 Demultiplexers

Multiplexers

Multiplexers (aka Mux)

Carnegie Mellon.

- Consider 1-bit 2:1 Multiplexer
 - Truth table is given
 - Can you write Boolean equation for output?

S	I ₁	l ₀	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

	
	1
Mission:	
1411221011	
	

Multiplexers: Drawing Conventions

Carnegie Mellon

Specifications

- Size: how many different inputs (2ⁿ) can be selected?
- Bit-Width: how many bits wide is each input?

In general

- 2ⁿ data inputs, n select lines (also called control inputs), 1 output
 - **♦** a 2ⁿ:1 or "2ⁿ by 1" mux
- Select lines form binary index used to choose (select) an input

Multiplexers: Example usage

Carnegie Mellon.

Multiplexers: Gate-level

- What's inside the Mux? gate-level implementation?
 - All Muxes have a very stylized, easy to recognize form

$$F = S' I_0 + S I_1$$

Gate Level Implementation of 2:1 Mux

Multiplexers: Ditto for Bigger Ones...

Carnegie Mellon.

$$F = S' I_0 + S I_1$$

$$F = S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0' I_2 + S_1S_0 I_3$$

Whoa! There's a minterm expansion in each of these expressions

The minterms of the select input(s) are generated

$$F = S_2'S_1'S_0'I_0 + S_2'S_1'S_0I_1 + S_2'S_1S_0'I_2 + S_2'S_1S_0I_3 + S_2S_1'S_0'I_4 + S_2S_1'S_0I_5 + S_2S_1S_0'I_6 + S_2S_1S_0I_7$$

Multiplexers: Use as Logic

- 2ⁿ:1 mux can implement n-variable function (easy)
 - Just a lookup table; put TT row k value on k-th mux input

Example:
$$F(A,B,C) = m0 + m2 + m6 + m7$$

 $= A'B'C' + A'BC' + ABC' + ABC$
 $= A'B'C'(1) + A'B'C(0) + A'BC'(1) + A'BC(0)$
 $+ AB'C'(0) + AB'C(0) + ABC'(1) + ABC(1)$

<u>A</u>	В	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Put Functions on the Inputs

Carnegie Mellon.

- 2ⁿ⁻¹:1 mux can implement n-variable function (subtle)
 - Still a lookup table; but each mux input is now a function

Example:
$$F(A,B,C) = m0 + m2 + m6 + m7$$

= A' B' C' + A' B C' + A B C' + A B C
= A' B' (C') + A' B (C') + A B' (0) + A B (1)

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Why is this useful?

Big functions

- Input C from the previous slide could be a bigger function
- Suggests a method for implementing functions of many variables
- That is, factor the function so that
 - **♦** some of the variables are select inputs to a mux
 - **♦** the remaining functions are data inputs to the mux

Shannon Expansion

- So, how do we factor the eqn?
 - Suppose we have a function F(x₁,x₂, ..., x_n)
 - We define a new function if we set one of the xi=constant
 - Example: $F(x_1, x_2, ..., x_{i=1}, ..., x_n)$
 - Example: $F(x_1, x_2, ..., x_i=0, ..., x_n)$
- Easy to do by hand

$$F(a,b,c) = ab + ac' + b(a'c + c')$$

- Important to remember that result is a new function
 - Note that new function no longer depends on chosen variable

Carnegie Mellon_

Shannon Expansion

Turns out to be incredibly useful idea

- These new functions are called Shannon cofactors (or just cofactors) of the original function
- Shannon Cofactor with respect to x_i
 - → Write F(x₁, x₂, ..., x_i=1, ...x_n) as F_{xi}
 - → Write F(x₁, x₂, ..., x_i=0, ...x_n) as F_{xi}
 - ◆ Also can write as just F(x_i=1) F(x_i=0) (which is easier to type)

Shannon Expansion Theorem

- Given any Boolean function $F(x_1, x_2, ..., x_n)$ and any x_i in the variables F() depends on,

F() can be represented as

$$F(x_1, x_2, ..., x_n) =$$

What this looks like

• For F(a,b,c) = ab + ac' + b(a'c + c')

$$F(a=0) = F_{a'} = b$$

 $F(a=1) = F_a = b + c' + bc'$
 $= b + c'$

Putting it back F = a'F_{a'} + aF_a = a'(b)+a(b+c') = a'b+ab+ac' =b+ac' (min sop) =b(1+c')+ac' =b+bc'+ac' =b(a+a')+bc'+ac' =ab+a'b+bc'+ac' =ab+ac'+b(a'+c') =ab+ac'+b(a'c+c')

Another view

Cofactors of this 5-variable function

- Clearly, it's important to pick the variable to cofactor around. Why?
 (What if all prime implicants are independent of the chosen variable)
- If we chose A, then draw kmap with A as the first variable so F_A and $F_{A'}$ are the top and bottom Kmaps

Which variable to factor?

- The factoring variables affect complexity
 - A heuristic: pick a variable that shows up a lot in both true and complement form to zero out product terms in the expansion
- Example...

$$F = b + a'c'd + acd'$$

If you pick a to factor around:

F _a =	
F _{a'} =	

Same example...

$$F = b + a'c'd + acd'$$

If you pick **b** to factor around:

F _b =	
F _{b'} =	

Advanced Boolean Algebra

- You can do this for more than one variable at a time
 - Shannon Cofactor with respect to x_i and x_j
 - ♦ Write $F(x_1, x_2, ..., x_{i=1}, ..., x_{j=0}, ..., x_n)$ as $F_{x_i x_j}$
 - **♦** Ditto for any number of variables x_i, x_j, x_k, ...
 - Now, the expansion is around the 4 combinations of the 2 variables
 - **♦** Before we wrote:

$$F(x_1, x_2, ..., x_n) = x_i \cdot F_{xi} + x_i' \cdot F_{xi'}$$

♦ Now, we can write:

$$F(x,y,z,w) =$$

- ♦ Note that $F_{xy} = F(x=1, y=1, z, w)$ is a Boolean function of z and w
- We've removed 2 variables
 - → could remove even more

- Why is this cool?
 - We have taken a big function and factored it into smaller ones
 - The standard engineering approach of divide and conquer
- These examples are way too small
 - You only get some feel of how the Boolean functions split up
 - And, what you might do if confronted with:
 - + a **big** function, especially when good factorization exist
 - ♦ no CAD tools
- Left to another course (18-760)
 - Detail, insight, expansion about what we just did
 - **♦** A recursive approach that just keeps factoring the remaining functions until the resulting cofactor is something reasonable
 - ♦ Which variables do you expand around?

2:1 Mux: SystemVerilog

You've seen this before

```
module multiplexer
  (input logic sel, i0, i1,
    output logic f);

assign f = (sel) ? i1 : i0;
endmodule : multiplexer
```

```
module multiplexer
  (input logic sel, i0, i1,
   output logic f);

always_comb begin
   f = i0;
   if (sel)
      f = i1;
   end

endmodule : multiplexer
```

Also, multi-bit mux

```
module multiplexer
  (input logic sel,
   input logic [7:0] i0, i1,
   output logic [7:0] f);

assign f = (sel) ? i1 : i0;
endmodule : multiplexer
```

Still 2:1, just bigger sized items to choose from

2^{sel}:1 Mux: SystemVerilog

Choice can also be over more inputs

```
module multiplexer_4to1
  (input logic [1:0] sel,
  input logic [3:0] i,
  output logic f);

always_comb
  case (sel)
    2'b00 : f = i[0];
    2'b01 : f = i[1];
    2'b10 : f = i[2];
    default : f = i[3];
  endcase

endmodule : multiplexer_4to1
```


Gonna get tiring for many inputs

There must be a better way!

Standard Components

- Mux is an example of a standard component
 - Used to make bigger designs
- Historically, available as a "chip" or integrated circuit (IC)
 - Small Scale ICs = SSI = ~ 10 gates/chip
 - **→** AND, OR gates, etc
 - Medium Scale ICs = MSI = ~ 100 gates/chip
 - **♦** Comparators, Multiplexers, Decoders, Adders, ...
 - Large Scale ICs = LSI = ~ 1000-10,000 gates/chip
 - Very Large Scale ICs = VLSI = 100,000+ gates/chip
- Nowadays, components available in SystemVerilog libraries and FPGA elements
- Also useful to discuss functionality of designs

Comparators

- Mission: Compare two inputs
- Inputs: unsigned binary numbers
 - Signed versions also available

Multi-bit Comparator

- How do you compare numbers?
- Are these equal? 568743 568941
 - Start at the left and compare digits until you find a difference
- Iterative circuit
 - Repeated use of a basic module with signals cascading

What's in the box?

- The 1-bit comparison box needs to be able to cascade inputs
 - XNOR isn't good enough
 - $EQ_{out} = 1$ if $(EQ_{in} = 1)$ and (A = B)

Multi-bit Magnitude Comparator

How do you compare numbers?

Which is larger? 568743568941

 Start at the left and compare digits until you find a difference

AgtB	AEqB	AltB	Α	В	AgtB	AeqB	AltB	
1	0				1	0	0	
0	0	1	X	X	0	0	1	
0	1	0	0	0	0	1	0	
0	1	0	0	1	0	0	1	
0	1	0	1	0	1	0	0	
0	1	0	1	1	0	1	0	

- This design method where you solve a problem for one-bit at a time is very useful
- You can replicate the solution n-times for an n-bit circuit
 - No need to re-design / re-solve / re-debug just because you want a
 17-bit comparator
- We will see this bit-slice design approach in several other circuits, primarily arithmetic

Comparator: SystemVerilog

Again, SV operator does this for you

```
module comparator(
  input logic [7:0] A, B,
  output logic AeqB);

assign AeqB = (A == B);
endmodule : comparator
```

Carnegie Mellon.

Magnitude comparator uses comparison operators

```
assign AltB = (A < B);
assign AgtB = (A > B);
```

De-multiplexers and Decoders

Demultiplexer: Basic Idea

Opposite of a Mux

Carnegie Mellon

S1, S0 select one of 4 outputs to send G to

What happens to the other 3 outputs?

Example Use

 Telecommunications: When paired with a Mux, can drastically reduce # wires needed to connect m sources to m receivers

- Can route data to one of m circuit elements
 - Often, more efficient to send data to all m circuit elements, and have
 m-1 of them ignore the input

Demux Internals

 Each output just needs to check if the select lines apply to it or not

S ₁	S ₀	G	Out ₃	Out ₂	Out ₁	Out₀
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	0	0
1	1	1	1	0	0	0

Decoder

- Mission: Convert one code to another
- Default: Convert binary to "one's hot"
 - One's Hot: only a single output is 1 ("hot") all other are zero
- BCD-to-7Segment Decoder is another example that you will see in Lab 2

l ₂	I ₁	lo	D ₇	D ₆	D ₅	D ₄	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	0 1 0 1 0 1	1	0	0	0	0	0	0	0

Decoder Internals

- How do you build a decoder?
 - Isn't each output active only when the input bits match the code?

- This is a perfectly good, "component-based" way of thinking about building circuits
 - But, it's wrong
 - Too much abstraction, not enough optimization

Decoder Internals, another try

Carnegie Mellon.

Examine the Truth table

l ₂	I ₁	I ₀	D ₇	D ₆	D_5	D ₄	D_3	D_2	D_1	D_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	0 1 0 1 0 1 0	1	0	0	0	0	0	0	0

• What is D₀?

• D₁?

A b-bit decoder is 2^b AND gates, each with b inputs

Decoder Internal Gate Structure

Carnegie Mellon.

 Each output of the decoder is an AND gate connected to some combination of the inputs (and their complemented versions)

Decoder Enable

- Enable on a component lets you control when it should do its job
 - ... and when you want it to shut up

l ₂	I ₁	I ₀	En	D ₇	D ₆	D ₅	D ₄	D_3	D_2	D_1	D_0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0
X	X	X	0	0	0	0	0	0	0	0	0

Decoder output is always a zero when not enabled

Carnegie Mellon.

Enable lets you build big decoders out of little ones

Decoder vs. Demux

BTW, you've seen Decoder w/Enable before

I ₁	l ₀	En	D_3	D_2	D_1	D_0
0	0	1	0	0	0	1
0	1	1	0	0	1	0
1	0	1	0	1	0	0
1	1	1 1 1	1	0	0	0
X	X	0	0	0	0	0

2-bit Decoder w/Enable

S ₁	S ₀	G	Out ₃	Out ₂	Out ₁	Out₀
0	0	0	0	0	0	0
0	0	1	0	0	0	1
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	0	0
1	1	1	1	0	0	0

2-bit Demultiplexer

Component Summary

Carnegie Mellon

- Multiplexer (Mux)
 - Mission: Select an input to put on the output
- Demultiplexer (Demux)
 - Mission: Choose an output to get the input
 - Opposite of a Multiplexer (duh, Demux)

Comparator

- Mission: Decide if two multi-bit inputs are the same
- Magnitude comparator also does "less-than" and "greater-than"
- Bit-slice or "cascade" design technique

Decoders

- Mission: Convert binary to one-hot code
- Sometimes convert other codes
- Some have "enable" input so we can build big from little

- Lots of useful components
 - A standard library of combinational circuits
- Decoders and Multiplexers are essential components of higher level designs
 - Computer architecture is littered with them
- Later in the course, we will find ourselves using these components as building blocks for RTL designs