ACT-11302: Cálculo Actuarial III

ITAM

Examen Parcial (Parte II)

Prof: Juan Carlos Martínez, Ovando

Entrega: 24 de noviembre de 2015

Preguntas

(Total: 100 puntos)

1. Sea $U(t, U_0)$ un proceso de capital Poisson compuesto con tasa de intensidad $\lambda > 0$ y distribución secundaria $X \sim \text{Ga}(\alpha = 3, \beta = 0.5)$. Calcula el coeficiente de ajuste, c, dado por la solución de la ecuación

$$1 + (1 + \theta)c\mathbb{E}(X) = M_X(c),$$

donde $\mathbb{E}(X) = \int x \text{Ga}(x|\alpha,\beta) dx$. Calcula la cota de probabilidad de ruina para los valores, $U_0 = 5$ y $U_0 = 10$ y los coeficientes de riesgo, $\theta = 0,1$ y $\theta = 0,2$.

(20 puntos)

- 2. Calcula la función de distribución distorsionada y prima de riesgo correspondiente con base en la transformación proporcional con el coeficiente de aversión al riesgo $\theta > 0$, para las siguientes distribuciones de pérdia:
 - $X \sim \operatorname{Exp}(\lambda)$, con $\lambda > 0$.
 - $X \sim \text{Pa}(\alpha, \gamma)$, con $\alpha, \gamma > 0$.

(20 puntos)

3. Defina la función de distorsión, g(x), dada por

$$g(x) = \Phi\left(\Phi^{-1}(x) + \rho\right),\,$$

donde $\Phi(\cdot)$ es la función de distribución normal estándar, y $\rho>0$ es el factor de aversión al riesgo.

$$U(t, U_0) = U_0 + ct - \sum_{i=1}^{N(t)} X_i.$$

¹Recuerda que el modelo implícito de ruina está dado por

Examen Parcial 2

- Demuestra que g(x) es una función de distorsión propia.
- Calcula la distribución de distorsión y pria de riesgo correspondiente para las siguientes distribuciones de pérdida:
 - $X \sim N(\mu, \sigma^2)$.
 - $X \sim \text{LN}(\mu, \sigma^2)$.

(20 puntos)

- 4. Considera tres niveles de aversión al riesgo, $\rho = 1,2$, $\rho = 1,5$ ó $\rho = 1,8$. Calcula la prima de riesgo ajustda para las siguientes tres distribuciones:
 - $X \sim U(0,2b)$.
 - $X \sim \text{Exp}(1/b)$.
 - $X \sim \text{Pa}(2,b)$.

NOTA: Las tres distribuciones tienen la misma prima de riesgo pura.

(20 puntos)

- 5. Suponga que $\sum_{i=1}^{N(t)} X_i$ define un proceso Poisson compuesto con tasa de intensidad $\lambda > 0$ y distribución secundaria $Ga(\alpha, \beta)$.
 - Determine la prima de riesgo ajustada por un factor de aversión a riesgo 1 20 %.
 - Determina la prima de riesgo distorsionada por la transformación de Esscher, con un factor de aversión al riesgo $\theta > 0$.

(20 puntos)