EXAMINATION DATA SHEET FOR FURTHER STUDIES PHYSICS

Physical Constants

Name	Symbol	Value with unit
Acceleration due to Gravity	g	9,81 m.s ⁻²
Speed of light in a vacuum	С	$3,00 \times 10^8 \mathrm{m.s^{-1}}$
Universal gravitational constant	G	$6,67 \times 10^{-11} \text{ N.m}^2.\text{kg.}^{-2}$
Coulomb's constant	k	8,99 × 10 ⁹ N.m ² .C ⁻²
Magnitude of charge on an electron	е	1,602 × 10 ⁻¹⁹ C
Mass of an electron	m _e	9,109 × 10 ⁻³¹ kg
Mass of a proton	$m_{ ho}$	1,673 × 10 ⁻²⁷ kg
Mass of a neutron	m _n	$1,675 \times 10^{-27} \mathrm{kg}$
Unified atomic mass unit	и	1,660 × 10 ⁻²⁷ kg
Avogadro's constant	N _A	6,022 × 10 ²³ mol ⁻¹
Absolute zero temperature	T_{O}	−273,15 °C
1 light-year	ly	9,461 × 10 ¹⁵ m
Stefan-Boltzmann constant	σ	5,67 × 10 ⁻⁸ W.m ² K ⁻⁴

Formulae

Thermal Physics					
$\Delta L = \alpha L_0 \Delta T$	Q=mc⊿T		$Q = mL_f$		
$\Delta V = \beta V_0 \Delta T$			$Q = mL_v$		
Modern Physics					
$\lambda = \frac{\ln 2}{\frac{t_1}{2}}$		$t = -\frac{\ln\left(\frac{A}{A_0}\right)}{\lambda}$			
$\lambda_{\text{max}} T = 2.9 \times 10^{-3} \text{ m.K}$		$\frac{L_{star}}{L_{sun}} = \left(\frac{m_{star}}{m_{sun}}\right)^{a}$			

IEB Copyright © 2022 PLEASE TURN OVER

Mechanics						
$v = u + at \text{ or}$ $v_{f} = v_{i} + a\Delta t$		$s = \left(\frac{v+u}{2}\right)t \text{ or }$				
V f = V · W2L		$\Delta x = \left(\frac{v_f + v_i}{2}\right)t$				
$v^2 = u^2 + 2as or$		$s = ut + \frac{1}{2}at^2 \text{ or}$				
$V_f^2 = V_i^2 + 2a\Delta x$		$\Delta X = V_i \Delta t + \frac{1}{2} a \left(\Delta t^2 \right)$				
$f = \frac{1}{T}$	ω	$=\frac{\theta}{t}$	$T = \frac{2\pi}{\omega}$			
$s = \theta r$	$v = \omega r$		$a = \frac{v^2}{r}$			
$g = \frac{GM}{r^2}$	$a = \omega^2 r$		$F = m\omega^2 r$			
$ au = r F \perp$	$\tau = r \perp F$					
Charged Particles in Fields						
$E = \frac{F}{q}$	$E = \frac{V}{d}$		$F = qvB \sin \theta$			
Oscillations						
$a = -\omega^2 x$	$x = x_0 \sin \omega t$		$x = x_0 \cos \omega t$			
$v = v_0 \cos \omega t$	$v = v_0 \sin \omega t$		$v = \pm \omega \sqrt{(x_0^2 - x^2)}$			
$E_{\kappa} = \frac{1}{2}m\omega^2 (x_0^2 -$	$\omega^2(x_0^2-x^2)$		$E_{p} = \frac{1}{2}m\omega^{2}x^{2}$			