Universidad Nacional Autónoma de México Facultad de Ciencias

Álgebra Superior II

2^{do} Parcial Tarea 1 Kevin Ariel Merino Peña 317031326 12 de marzo de 2020

2. Sea X un conjunto y sea $\mathcal{A} = \mathcal{P}(X)$ su conjunto potencia. Definimos las operaciones + y \cdot en \mathcal{A} como

$$B + C = B \triangle C$$
 y $B \cdot C = B \cap C$

Demuestra que $(A, +, \cdot)$ es un anillo conmutativo (Puedes utilizar, sin demostrarlo que la diferencia simétrica \triangle es asociativa)

Definición 1. $(A, +, \cdot)$ es un anillo si cumple

Asociatividad para la suma

$$\forall a, b, c \in \mathcal{A}$$
 $a + (b+c) = (a+b) + c$

■ Conmutatividad para la suma

$$\forall a, b \in \mathcal{A}$$
 $a+b=b+a$

■ Existencia del neutro aditivo

$$\exists \hat{0} \in \mathcal{A} \quad \cdot \ni \cdot \quad \forall a \in \mathcal{A} \quad a + \hat{0} = a$$

■ Existencia de inversos aditivos

$$\forall a \in A \quad \exists \hat{a} \quad \cdot \ni \cdot \quad a + \hat{a} = \hat{0}$$

Asociatividad para el producto

$$\forall a, b, c \in \mathcal{A} \quad a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

• Existencia del neutro multiplicativo

$$\exists \hat{1} \in \mathcal{A} \quad \cdot \ni \cdot \quad \forall a \in \mathcal{A} \quad a \cdot \hat{1} = a = \hat{1} \cdot a$$

■ Distributividad por la izquierda

$$\forall a, b, c \in \mathcal{A} \quad a \cdot (b+c) = a \cdot b + a \cdot c$$

• Distributividad por la derecha

$$\forall x, y, z \in \mathcal{A} \quad (x+y) \cdot z = x \cdot z + y \cdot z$$

Sean $A, B, C \in \mathcal{A}$

$$A + (B + C)$$

P.d
$$A + (B + C) = (A + B) + C$$

Definición 2. En $(A, +, \cdot)$ un anillo, si · es asociativo entonces decimos que es anillo conmutativo

3. Demuestra que el conjunto de matrices de 3 x 3 con coeficientes en \mathbb{Z} (denotado M_{3x3})