# Breaking simple quantum position verification protocols with little entanglement

Andrea Olivo<sup>12</sup>, Ulysse Chabaud<sup>3</sup>, Frédéric Grosshans<sup>3</sup>, André Chailloux<sup>1</sup>

<sup>1</sup>Inria, Paris, France <sup>2</sup>LPGP, CNRS, Université Paris-Saclay, Orsay CEDEX <sup>3</sup>LIP6, CNRS, Sorbonne Université, Paris





universite





## Abstract

Instantaneous nonlocal quantum computation (INQC) evades apparent quantum and relativistic constraints and allows to attack generic quantum position verification (QPV) protocols (aiming at securely certifying the location of a distant prover) at an exponential entanglement cost. We consider adversaries sharing maximally entangled pairs of qudits and find

low-dimensional INQC attacks against the simple practical family of QPV protocols based on single photons polarized at an angle  $\theta$ . We find exact attacks against some rational angles, including some sitting outside of the Clifford hierarchy (e.g.  $\pi/6$ ), and show no  $\theta$  allows errors larger than  $\simeq 5 \cdot 10^{-3}$  against adversaries holding two ebits per protocol's qubit.

## $\mathbf{QPV}$ in general and $\mathbf{QPV}_{\theta}$

We could rely on geographical position as secure credential.



Unfortunately, for all PV protocols:

- Impossibility proof [3] in the classical setting:  $\mathcal{O}(n)$  attacks for n-bit protocol
- More luck in the quantum setting?
- -Secure QPV in the No-Preshared-Entanglement [2] and Random Oracle model [6].
- -No information-theoretic security for unbounded adversaries: there are universal approximate attacks through INQC,  $\sim \mathcal{O}(2^{8n})$  ebits [1].
- -Polynomial cost for (some) structured protocols

#### Circuit Picture





Any attack is specified by the unitaries V and U. By imposing specific requirements on the output states  $|\psi_b(x,s)\rangle$ , we obtain necessary and sufficient conditions for the existence of an attack in our model.

## References

- [1] Salman Beigi and Robert König. "Simplified instantaneous non-local quantum computation with applications to position-based cryptography". In: *New Journal of Physics* 13 (2011), p. 093036. DOI: 10.1088/1367-2630/13/9/093036. arXiv: 1101.1065.
- [2] Harry Buhrman et al. "Position-Based Quantum Cryptography: Impossibility and Constructions". In: SIAM Journal on Computing 43.1 (2014), pp. 150–178. DOI: 10.1137/130913687. arXiv: 1009.2490.
- [3] Nishanth Chandran et al. "Position Based Cryptography". In: *Advances in Cryptology CRYPTO 2009*. Ed. by Shai Halevi. Vol. 5677. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 391–407. ISBN: 978-3-642-03355-1. DOI: 10.1007/978-3-642-03356-8\_23. IACR: 2009/364.
- [4] Adrian Kent, William J. Munro, and Timothy P. Spiller. "Quantum tagging: Authenticating location via quantum information and relativistic signaling constraints". In: *Phys. Rev. A* 84 (1 July 2011), p. 012326. DOI: 10.1103/PhysRevA.84.012326. arXiv: 1008.2147.
- [5] Hoi-Kwan Lau and Hoi-Kwong Lo. "Insecurity of position-based quantum-cryptography protocols against entanglement attacks". In: *Phys. Rev. A* 83 (1 Jan. 2011), p. 012322. DOI: 10.1103/PhysRevA.83.012322. arXiv: 1009.2256.
- [6] Dominique Unruh. "Quantum Position Verification in the Random Oracle Model". In: *Advances in Cryptology CRYPTO 2014*. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8617. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Aug. 2014, pp. 1–18. ISBN: 978-3-662-44380-4. DOI: 10.1007/978-3-662-44381-1\_1. IACR: 2014/118.

ID of arXiv preprint: [quant-ph] 2007.15808

#### Spacetime diagram





For  $\theta = \pi/4$  attackers can perfectly win if  $|\Phi\rangle$  is a maximally entangled qubit pair [4].

#### Exact attacks

We generalize this "teleportation" attack by allowing maximally entangled qudits, and numerically discover many more angles, of the form  $\theta = \pi/k$  (and multiples), that can be perfectly broken with small d. Conjectured pattern: dimension d breaks at least  $\theta = \frac{n\pi}{2d}$ .

| А              | 2 | 3 | 1 | 5 | 6     | 7 | 8  | Q   | 10 | 11 | 19 |
|----------------|---|---|---|---|-------|---|----|-----|----|----|----|
|                |   |   |   |   |       |   |    |     |    |    |    |
| $oldsymbol{k}$ | 4 | 2 | 8 | 4 | 8, 12 | 4 | 16 | 4,6 | 20 | 4  | 24 |

Through a hypergraph-based representation of the hilbert space, we easily (re)prove a result of Lau and Lo [5] about dimensions d=2,3 being unable to break anything but the BB84-like  $\pi/4$  angle.



#### Approximate attacks

For  $d \leq 5$ , we numerically optimize for the attack strategy minimizing the error.



We also consider  $QPV_{(n)}$ , a variant of the protocol where multiple bases are used, in the form of n equally spaced angles in  $[0, \pi/2]$ .

