A practical approach to ontology-enabled control systems for astronomical instrumentation.

Introduction

- MAIA: Mercator Advanced Imager for Asteroseismology
- Three-channel astronomical imager

Introduction

- PLC for controlling the instrument
- OPC UA for remote operation

Problem

Interface to the rest of the control system: object-oriented

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

12

Problem

Interface to the rest of the control system: object-oriented

- Two changes:
 - Also model the detector
 - Change the sensor name
- The system has not changed, but the model has (twice!)
- Problem of expressivity:
 - OO model cannot express the meaning of the elements accurately (e.g. uses the name of the attributes)

READ(MAIA.cryoU.ccdTempsensor.value)

Problem

Semantic modeling

Prototype implementation

Conclusions

13

Ontologies

Ontologies

- Formal representation of knowledge
 - ... as a set of concepts within a domain
 - ... and the **relationships** between pairs of concepts

- Suppose we want to create an ontology about electronics:
 - Namespace
 - URI: http://www.icalepcs2013.org/ontologies/electronics
 - Prefix: elec
 - Concepts
 - **Classes:** Sensor, Pt I 00, Detector, Power, PowerSupply, ...
 - Instances: THREE_PHASE_POWER
 - **Relations:** senses, isSensedBy, powers, isPoweredBy, ...
 - Facts
 - Pt100 is a subclass of Sensor
 - THREE_PHASE_POWER is an instance of Power
 - senses is a relation with Sensor as its domain
 - Any Sensor senses at least one Thing

15

Ontologies

- Formal representation of knowledge
 - ... as a set of concepts within a domain
 - ... and the relationships between pairs of concepts

- Suppose we want to create an ontology about electronics:
 - Namespace
 - URI: http://www.icalepcs2013.org/ontologies/electronics
 - Prefix: elec
 - Concepts
 - **Classes:** Sensor, Pt I 00, Detector, Power, PowerSupply, ...
 - Instances: THREE_PHASE_POWER
 - **Relations:** senses, isSensedBy, powers, isPoweredBy, ...
 - Facts
 - Pt100 is a subclass of Sensor
 - THREE_PHASE_POWER is an instance of Power
 - senses is a relation with Sensor as its domain
 - Any Sensor senses at least one Thing

Problem

Semantic modeling

Prototype implementation

Conclusions

Prefix	URI
phy	http://www.icalepcs2013.org/ontologies/physics
astro	http://www.icalepcs2013.org/ontologies/astronomy
mech	http://www.icalepcs2013.org/ontologies/mechanics
elec	http://www.icalepcs2013.org/ontologies/electronics
sys	http://www.icalepcs2013.org/ontologies/systems
maia	http://www.icalepcs2013.org/ontologies/maia

Introduction Problem

modeling
Prototype

Semantic

Conclusions

17

implementation

MAIA revisited

Prefix	URI
phy	http://www.icalepcs2013.org/ontologies/physics
astro	http://www.icalepcs2013.org/ontologies/astronomy
mech	http://www.icalepcs2013.org/ontologies/mechanics
elec	http://www.icalepcs2013.org/ontologies/electronics
sys	http://www.icalepcs2013.org/ontologies/systems
maia	http://www.icalepcs2013.org/ontologies/maia

General "engineering" ontologies

- classes
- relations
- some instances

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

Prefix	URI
phy	http://www.icalepcs2013.org/ontologies/physics
astro	http://www.icalepcs2013.org/ontologies/astronomy
mech	http://www.icalepcs2013.org/ontologies/mechanics
elec	http://www.icalepcs2013.org/ontologies/electronics
sys	http://www.icalepcs2013.org/ontologies/systems
maia	http://www.icalepcs2013.org/ontologies/maia

General "engineering" ontologies

- classes
- relations
- some instances

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

Prefix	URI
phy	http://www.icalepcs2013.org/ontologies/physics
astro	http://www.icalepcs2013.org/ontologies/astronomy
mech	http://www.icalepcs2013.org/ontologies/mechanics
elec	http://www.icalepcs2013.org/ontologies/electronics
sys	http://www.icalepcs2013.org/ontologies/systems
maia	http://www.icalepcs2013.org/ontologies/maia

General "engineering" ontologies

- classes
- relations
- some instances

Problem

Semantic modeling

Prototype implementation

Conclusions

Problem

Semantic modeling

Prototype implementation

Conclusions

Problem

Semantic modeling

Prototype implementation

Conclusions

23

Implementations

Implementations

- Semantic Web standards
 - Designed to add <u>semantics</u> to the huge amount of <u>syntactic</u> information on the WWW

- Quick summary:
 - RDF (Resource Description Framework)
 - Defines basic data model: subject predicate object "triples"
 - E.g. elec:THREE_PHASE_POWER rdf:type elec:Power
 - RDF-S (RDF-Schema)
 - Extends RDF so basic ontologies can be built
 - E.g. elec:Pt100 rdfs:subClassOf elec:Sensor
 - OWL (Web Ontology Language)
 - Extends RDF-S to build more advanced ontologies
 - E.g. elec:senses owl:inverseOf elec:isSensedBy
 - SWRL (Semantic Web Rule Language)
 - Even more expressive power
 - Not a standard
 - Need to be careful ...

Problem

Semantic modeling

Prototype implementation

Conclusions

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs: subPropertyOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdf s: subPropertyOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdf s: subPropertyOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

• sys:hasPart

owl:inverseOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

rujs.subi roper

· . T · · · · · D

• sys:hasPart

rdf:**type**

owl: Transitive Property

• sys:hasPart

owl:inverseOf

sys:partOf

sys:hasPart

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl:TransitiveProperty

• sys:hasPart

owl:inverseOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

tyOf sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

• sys:hasPart

owl:inverseOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl:TransitiveProperty

• sys:hasPart

owl:inverseOf

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl:TransitiveProperty

• sys:hasPart

owl:inverseOf

sys:partOf

• phy:senses

owl:inverseOf

phy:isSensedBy

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

• sys:hasPart

owl:inverseOf

sys:partOf

• phy:senses

owl:inverseOf

phy:isSensedBy

• phy:hasTemperature

rdfs:range

phy:Temperature

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

• sys:hasPart

owl:inverseOf

sys:partOf

• phy:senses

owl:inverseOf

phy:isSensedBy

• phy:hasTemperature

rdfs:range

phy:Temperature

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl: Transitive Property

• sys:hasPart

owl:inverseOf

sys:partOf

• phy:senses

owl:inverseOf

phy:isSensedBy

• phy:hasTemperature

rdfs:range

phy:Temperature

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

• mech:encloses

rdfs:subPropertyOf

sys:hasPart

• sys:hasPart

rdf:type

owl:TransitiveProperty

• sys:hasPart

owl:inverseOf

sys:partOf

• phy:senses

owl:inverseOf

phy:isSensedBy

• phy:hasTemperature

rdfs:range

phy:Temperature

Problem

Semantic modeling

Prototype implementation

Conclusions

MAIA revisited

Problem

Semantic modeling

Prototype implementation

Conclusions

Introduction Problem Semantic modeling Prototype implementation Conclusions 56

Prototype implementation

- "Engineering ontologies"
- Provide the context
- "Heavy-weight" ontologies
- Most appropriate tool: ontology editor

http://protege.stanford.edu

Problem

Semantic modeling

Prototype implementation

Conclusions

Introduction Problem Semantic modeling Prototype implementation Conclusions 58

- Project specific ontologies
- Less heavy-weight (only instances)
- "Ontoscript" (internal DSL based on Coffeescript)
 - → http://github.com/WimPessemier/ontoscript
 - → http://github.com/WimPessemier/rdfconvert

Problem

Semantic modeling

Prototype implementation

Conclusions

Problem

Semantic modeling

Prototype implementation

Conclusions

Prototype implementation

- Database of RDF triples
- Off-the-shelf
- Comes with built-in reasoner and SPARQL endpoint
- E.g. Stardog (comes with Pellet reasoner)
 - → http://stardog.com

applications

Problem

Semantic modeling

Prototype implementation

Conclusions

Problem

Semantic modeling

Prototype implementation

Conclusions

Prototype implementation

Off-the-shelf template engine

• E.g. Mako

META-MODELS

→ http://www.makotemplates.org

META-MODELS

Introduction Problem

Semantic modeling

Prototype implementation

Conclusions

Prototype implementation

Queries are performed by the template system
 → knowledge is used when the artifacts are generated

```
<% results = sparql.simpleQuery("""</pre>
SELECT ?svrUri ?nsIdx ?id WHERE {
  ?det
          astro: observes
                                    astro: U
  ?det
          phy: hasTemperature
                                    ?temp
  ?temp
          opcua: hasExpandedNodeId ?nodeId
  ?nodeId opcua: hasServerUri
                                    ?svrUri
  ?nodeId opcua: hasNamespaceIndex ?nsIdx
                                    ?id } """) %>
  ?nodeId opcua: hasIdentifier
def getUTemperatures():
  addresses = []
  % for r in results:
  addresses.append(Address(
    NodeId(${r. nsIdx}, "${r. id}"), "${r. svrUri}"))
  % endfor
  return UAF_client. read(addresses)
```

* OPC UA Framework (UAF): http://github.com/uaf

Problem

Semantic modeling

Prototype implementation

Conclusions

- Queries can also be performed at run-time!
 - Semantic Web technology (http, slow)
 - OPC UA (binary, fast)

Feature	Sem. web	OPC UA
Complex graphs	✓	✓
URI-qualified nodes and references	✓	✓
Reading, writing, querying,	✓	✓
Communication paradigm	Sync	Sync + Async
Communication protocol	Slow (http)	Fast (binary)

Introduction Problem Semantic modeling Prototype implementation Conclusions

Conclusions

- Object-oriented models/interfaces are evil
 - They cannot express the rich context of multi-disciplinary distributed applications - such as control systems - accurately.
- Semantic models/interfaces are less evil
 - They can express this information much more accurately
 - Tools and languages (OWL, DSLs, OPC UA) are available!
- Prototype will be tested on MAIA soon!

→ Thanks for your attention!