# Water in Subsurface Environment

Groundwater Engineering | CE60205

Lecture:02

# **Learning Objective(s)**

To estimate the physical properties of water, air, and porous media

#### **Properties of Water**

- Density
  - The mass density of fresh water  $\rho_w$  varies within a narrow range
  - Weight density  $\rho_w g$  equals the mass density times the gravitational acceleration at the earth's surface, g
- Water density does vary slightly with temperature, pressure, and chemistry if the concentration of solute molecules is high enough.
- The density of pure water at atmospheric pressure varies between 0.998 and 1.000 g/cm<sup>3</sup> in the range of temperatures typical for groundwater (o°C to 20°C)
- As the temperature of a liquid rises, it usually becomes less dense as molecules move with greater velocity and molecular attraction forces are overcome to a greater extent.
- Water is an unusual liquid because the maximum density does not occur at the freezing temperature, but instead slightly above freezing at 4°C.

| Property          | Symbol    | <b>Dimensions</b> †  | Value                                                                          |
|-------------------|-----------|----------------------|--------------------------------------------------------------------------------|
| Mass density      | $ ho_w$   | [M/L <sup>3</sup> ]  | I.00 g/cm <sup>3</sup><br>I000 kg/m <sup>3</sup><br>I.94 slugs/ft <sup>3</sup> |
| Weight density    | $ ho_w g$ | [F/L <sup>3</sup> ]  | 9810 N/m³<br>62.4 lb/ft³                                                       |
| Compressibility   | β         | [L <sup>2</sup> /F]  | $4.5 \times 10^{-10} \text{ m}^2/\text{N}$                                     |
| Dynamic viscosity | $\mu$     | [FT/L <sup>2</sup> ] | $1.4 \times 10^{-3} \text{ N}\cdot\text{sec/m}^2$                              |

 $<sup>^{\</sup>dagger}L$  = length, M = mass, T = time, F = ML/T<sup>2</sup> = force.

- Compressibility
  - Water is often considered incompressible, but it does have a finite, low compressibility.
  - As water pressure P rises an amount dP at a constant temperature, the density of water increases  $d\rho_w$  from its original density  $\rho_w$ , and a given volume of water  $V_w$  will decrease in volume by  $dV_w$  in accordance with  $BdP = \frac{d\rho_w}{d\rho_w}$

$$\begin{aligned}
\rho_w &= \overline{\rho_w} \\
&= -\frac{dV_w}{V_w}
\end{aligned}$$

- where  $\beta$  is the isothermal compressibility of water.

| Property          | Symbol    | Dimensions <sup>†</sup> | Value                                                                          |
|-------------------|-----------|-------------------------|--------------------------------------------------------------------------------|
| Mass density      | $ ho_w$   | [M/L <sup>3</sup> ]     | 1.00 g/cm <sup>3</sup><br>1000 kg/m <sup>3</sup><br>1.94 slugs/ft <sup>3</sup> |
| Weight density    | $ ho_w g$ | [F/L <sup>3</sup> ]     | 9810 N/m³<br>62.4 lb/ft³                                                       |
| Compressibility   | $\beta$   | [L <sup>2</sup> /F]     | $4.5 \times 10^{-10} \text{ m}^2/\text{N}$                                     |
| Dynamic viscosity | μ         | [FT/L <sup>2</sup> ]    | $1.4 \times 10^{-3} \text{ N}\cdot\text{sec/m}^2$                              |

 $<sup>^{\</sup>dagger}$ L = length, M = mass, T = time, F = ML/T<sup>2</sup> = force.

- Viscosity
  - Viscosity is friction within a fluid that results from the strength of molecule-to-molecule attractions.
  - The resisting force F

$$F = A\mu \frac{dv}{dz}$$



- This resistance to internal shear causes water to resist flow through geologic materials.
- In order to flow through pores or fractures, a packet of water must change shape and shear as it flows.
- pore size is analogous to dz
- water encounters greater viscous resistance flowing through materials with smaller pores
- The viscosity of a liquid generally decreases with increasing temperature
- The dynamic viscosity of water ranges from  $\mu$ = 1.79×10<sup>-3</sup> N sec/m² at 0°C to  $\mu$ =1.01×10<sup>-3</sup> N sec/m² at 20°C.
- Kinematic viscosity  $\nu = \frac{\mu}{\mu}$

- Surface Tension and Capillarity
  - polar water molecules are attracted to each other -> a mass of water has internal cohesion that tends to hold it together
  - water drops tend to form spheres as they fall through the air
  - In pore spaces containing both air and water, the water will generally wet the mineral surfaces, leaving the central parts of the pores for the air
  - A layer of water molecules on the order of 0.1 to 0.5  $\mu$ m (10<sup>-6</sup> m) thick is so strongly attracted to mineral surfaces that it is essentially immobile
  - the forces of attraction are not strong enough to prevent movement of water molecules and water outside that distance is free to move
  - Surface attraction forces are stronger for clay minerals -> due to the charged nature of clay mineral surfaces.





- The attraction of water to mineral surfaces causes water to pull and spread itself across the surfaces -> the pressure within the water is less than the air pressure within the pores
- As amount of water present decreases -> the pull of the mineral surface attraction forces increases -> the pressure within the water decreases -> the air—water interface develops a more contorted shape conforming to the mineral grains
- This attraction of water to mineral surfaces in partly saturated materials is called capillarity
- Capillarity allows water to wet pore spaces above the water table
- Capillary forces tend to be greater in finer-grained granular materials, due to a greater amount of mineral surface area.

Table 2.4.1 Capillary Rise in Samples of Unconsolidated Materials (after Lohman<sup>34</sup>)

| Material         | Grain size (mm) | Capillary rise (cm) |  |
|------------------|-----------------|---------------------|--|
| Fine gravel      | 5–2             | 2.5                 |  |
| Very coarse sand | 21              | 6.5                 |  |
| Coarse sand      | 1-0.5           | 13.5                |  |
| Medium sand      | 0.5-0.2         | 24.6                |  |
| Fine sand        | 0.20.1          | 42.8                |  |
| Silt             | 0.1-0.05        | 105.5               |  |
| Silt             | lt 0.05-0.02    |                     |  |

*Note:* Capillary rise measured after 72 days; all samples have virtually the same porosity of 41 percent.

<sup>a</sup>Still rising after 72 days.

#### **Properties of Air**

- Air occupies some amount of the subsurface pore spaces
- The pressure in the atmosphere at the earth's surface varies with the weather and with elevation
- At sea level, atmospheric pressure averages about 1.013 ×10<sup>5</sup> N/m<sup>2</sup>
- Groundwater pressures are often measured as gage pressure -> the amount of pressure in excess of atmospheric pressure
- The density of the atmosphere also varies with weather and altitude.
- $\bullet$  At the earth's surface, the atmospheric density averages about 1.2 kg/m $^3$

### **Properties of Porous Media**

• Soil Texture



Grade-I



Grade-II



Grade-III

**Indian Standard Sand** 

Soil classification



• Triangle of Soil Textures

- Clay: 50%

- **Sand:** 30%

- **Silt:** 20%



USDA soil textural triangle.







A sub-volume of a porous medium that has the "same" geometric configuration as the medium at a macroscopic scale.

 $\bullet l \ll D \ll L$ 



$$\mathbf{r} = \mathbf{x} + \boldsymbol{\xi}$$



$$\int_{\mathrm{d}V_{s}} f \, \mathrm{d}v = \int_{\mathrm{d}V} f \gamma_{\alpha} \, \mathrm{d}v$$

$$dA_{\alpha}(\mathbf{x}, t) = \int_{\mathbf{d}A} \gamma_{\alpha}(\mathbf{x}, \xi, t) da$$

Volume fraction



$$\sum_{\alpha} \varepsilon_{\alpha} = 1 \qquad \text{and} \qquad$$

and 
$$0 \le \varepsilon_x \le 1$$

Areal fraction

$$\bar{\varepsilon}_{\alpha}(\mathbf{x}, t) = \frac{\mathrm{d}A_{\alpha}}{\mathrm{d}A} = \frac{1}{\mathrm{d}A} \int_{\mathrm{d}A} \gamma_{\alpha}(\mathbf{r}, t) \mathrm{d}a$$

$$\Sigma \bar{\varepsilon}_{\alpha} = 1$$
 and  $0 \leq \bar{\varepsilon}_{\alpha} \leq 1$ 

• In general  $\varepsilon_{\alpha}$  and  $\bar{\varepsilon}_{\alpha}$  need not be equal



• Volume average operator  $\langle \ \rangle_{\alpha}$ 

$$\langle f \rangle_{\alpha}(\mathbf{x}, t) = \frac{1}{\mathrm{d}V} \int_{\mathrm{d}V} f(\mathbf{r}, t) \gamma_{\alpha}(\mathbf{r}, t) \mathrm{d}v$$

$$\langle \rho \rangle_{\alpha} = \frac{1}{\mathrm{d}V} \int_{\mathrm{d}V} \rho \gamma_{\alpha} \mathrm{d}v$$

• Intrinsic volume average operator (

$$\langle f \rangle_{\alpha}^{\alpha}(\mathbf{x}, t) = \frac{1}{\mathrm{d}V_{\alpha}(\mathbf{x}, t)} \int_{\mathrm{d}V} f(\mathbf{r}, t) \gamma_{\alpha}(\mathbf{r}, t) \mathrm{d}v$$

$$\langle \rho \rangle_{\alpha}^{\alpha} = \frac{1}{\mathrm{d} V_{\alpha}} \int_{\mathrm{d} V} \rho \gamma_{a} \mathrm{d}v = \frac{1}{\varepsilon_{\alpha}} \langle \rho \rangle_{\alpha}$$



$$\langle f \rangle_{\alpha} = \varepsilon_{\alpha} \langle f \rangle_{\alpha}^{\alpha}$$

• Only when the mass density of the  $\alpha$ -phase, is microscopically constant will the intrinsic volume average mass density function be equal to the microscopic mass density, or

$$\langle \rho \rangle_{\alpha}^{\alpha} = \rho_{\alpha}$$

• Mass average operator  $^{-\alpha}$ 

$$\int \rho(\mathbf{r}, t) f(\mathbf{r}, t) \gamma_{\alpha}(\mathbf{r}, t) dv$$

$$\int \rho(\mathbf{r}, t) \gamma_{\alpha}(\mathbf{r}, t) dv$$

$$\int \rho(\mathbf{r}, t) \gamma_{\alpha}(\mathbf{r}, t) dv$$



• Simplified form

$$\bar{f}^{\alpha}(\mathbf{x}, t) = \frac{1}{\langle \rho \rangle_{\alpha}(\mathbf{x}, t) dV} \int_{dV} \rho(\mathbf{r}, t) f(\mathbf{r}, t) \gamma_{\alpha}(\mathbf{r}, t) dv$$

- The porosity of a rock or soil is simply the fraction of the material volume that is pore space.
- In quantitative terms the porosity  $\eta$  is defined as

$$n = \frac{V_{\nu}}{V_{t}}$$

where  $V_{\nu}$  is the volume of voids in a total volume of material V

- The porosity is a dimensionless parameter in the range  $0 < \eta < 1$ .
- Geotechnical engineers often use a related dimensionless parameter called the void ratio *e*, which is defined as

$$e = \frac{V_{\nu}}{V_{s}}$$

where  $V_s$  is the volume of mineral solids in a given volume of material.

$$n = \frac{e}{1+e}, \quad e = \frac{n}{1-n}$$

- Home Lab
- Foldable Aquifer Project -http://aquifer.geology.buffalo.edu/
- Paper aquifer model
  - Porosity and Grain Packing



# **Learning Strategy**

Chapter 2: Physical Properties

Section 2.1, 2.2, 2.3, 2.4



# Thank you