Infovis: Single views

Thomas Torsney-Weir

Overview

- Context
- Challenges
- Single view examples

Context

Infovis vs Scivis

- Abstract Data
- *n*-dimensional

- Very important:
 - visual metaphor
 - user interaction
 - exploration, analysis (visual analytics), presentation

- Spatial data
- 1, 2- or 3-dimensional, time-dependent
- Very important:
 - 3D rendering
 - fast rendering
 - analysis, exploration,
 presentation

Two important goals

An intuitive visual metaphor:

- How can abstract information be represented visually?
- How can high-dimensional data be depicted?
- 2D or 3D visualization?
- How can we position or place the data in space?
- Integration of Focus and Context?

A proper interaction scheme:

- Modification of visual parameters and metaphors
- Change of focus

Special challenges

Often large amounts of data. How to do visualization and:

- selection of data subsets
- aggregation of data
- extraction of meta data

Extended data structures, complex data inter-dependencies

- deep hierarchies, large graphs, multi-modal data
- different kinds of inter-dependencies, i.e., relationships
- pattern finding capabilities are very important

Dealing with large amounts of data

Subsampling/Subsetting techniques

- sampling
- querying

Segmentation techniques

• segmentation: separation into subsets

Aggregation techniques

- aggregation: sum, count, minimum, maximum, average...
- frequency-based techniques

Single views

Characteristics

Data: often tabular

Users: general public, inexperienced

Tasks: exploration, supplementary figures

Scatterplot

2-3 variables, one ellipse per data item

Scatterplot matrix

With details on demand

3D scatterplot matrix

Stacked bar chart

Stacked area chart

Star glyphs

https://www.reddit.com/r/Infographics/comments/lueveb/whiskey_flavor_profiles_86_scotch_whiskies_12/

Parallel coordinates

- layout: n parallel axes
- one axis per dataattribute
- axes scaled to min/max-interval

Inselberg, Alfred. "The Plane with Parallel Coordinates." The Visual Computer 1, no. 2 (August 1985): 69–91. https://doi.org/10.1007/BF01898350.

Challenge: Axis ordering

Challenge: overlapping lines

Color and brushing

<u>Glyphs</u>

- Iconic representation of multiple attributes
- Methods:
 - Rugby glyphs
 - Vector glyphs
 - Chernoff faces
 - Star glyphs

Sample glyph

10 dimensions

Sort Key	Typedness	Visual Channel	
Gain	Ordinal	Colour	
Event	Nominal	Pictogram	
Territory Start Position	Interval	Size	
Tortuosity	Ratio	Shape	
Number of Phases	Ratio	Enumerate	
Direction	Direction	Orientation	
Net Lateral Movement	Ratio	Length	
Time	Ratio	Location	
Phase Duration	Ratio	Length	
Team Identifier	Nominal	Colour	

Glyphs for visualizing rugby events

Number of Phases	1	2	3	4	Z	Most N i 2 Least 1
Direction	Backward				Forward	Left Forward Right
Net Lateral Movement	Least				Most	Most C
Time	Start				End	Second First Half Half Time
Phase Duration	Min				Max	Event Duration

Glyphs for rugby events

Chung, David HS, Philip A. Legg, Matthew L. Parry, Rhodri Bown, Iwan W. Griffiths, Robert S. Laramee, and Min Chen. "Glyph Sorting: Interactive Visualization for Multi-Dimensional Data:" Information Visualization, November 29, 2013. https://doi.org/10.1177/1473871613511959.

Vector glyphs

- Vector glyphs for visualization of fluid flow
- 7 variates visualized:
 - Position (x,y,z)
 - velocity(x,y,z)
 - magnitude

Peng, Zhenmin, Zhao Geng, Michael Nicholas, Robert S. Laramee, Nick Croft, Rami Malki, Ian Masters, and Chuck Hansen. "Visualization of Flow Past a Marine Turbine: The Information-Assisted Search for Sustainable Energy." Computing and Visualization in Science 16, no. 3 (June 1, 2013): 89–103. https://doi.org/10.1007/s00791-014-0229-4.

Range glyphs

- Theta-Range glyphs for visualization of fluid flow
- 8 variates visualized:
 - Position (x,y,z)
 - Velocity (x,y,z)
 - Magnitude,
 - Angle range

Chernoff faces

Orginally used for 8-variate fossil specimens

- Head shape/curvature + size
- Mouth length + curvature

Dimensional Space Graphically." Journal of the American Statistical Association 68, no. 342 (June 1, 1973): 361-68.

 Nose length + curvature • Eyes shape + size color x,y position Chernoff, Herman. "The Use of Faces to Represent Points in Khttps://doi.org/10.1080/01621459.1973.10482434.

Chernoff faces

- Do not use these
- Humans are designed around facial recognition
- Dimensions of face are not seperable

Conclusion

Summary

- Often using tabular data
- Information visualization is mapping abstract dimensions to spatial/visual
- Care needed to choose spatial mappings
- Single views form foundation of more elaborate visualizations