Leader Election in Rings (Classical Distributed Algorithms)

Dr. Rajiv Misra
Associate Professor

Dept. of Computer Science & Engg. Indian Institute of Technology Patna rajivm@iitp.ac.in

Preface

Content of this Lecture:

 In this lecture, we will discuss the leader election problem in message-passing systems for a ring topology, in which a group of processors must choose one among them to be a leader.

 We will present the different algorithms for leader election problem by taking the cases like anonymous/ non-anonymous rings, uniform/ non-uniform rings and synchronous/ asynchronous rings etc.

Leader Election (LE) Problem: Introduction

- The leader election problem has several variants.
- LE problem is for each processor to decide that either it is the leader or non-leader, subject to the constraint that exactly one processor decides to be the leader.
- LE problem represents a general class of symmetrybreaking problems.
- For example, when a deadlock is created, because of processors waiting in a cycle for each other, the deadlock can be broken by electing one of the processor as a leader and removing it from the cycle.

Leader Election: Definition

- Each processor has a set of elected (won) and notelected (lost) states.
- Once an elected state is entered, processor is always in an elected state (and similarly for not-elected): i.e., irreversible decision

- In every admissible execution:
 - every processor eventually enters either an elected or a not-elected state
 - exactly one processor (the leader) enters an elected state

Uses of Leader Election

- A leader can be used to coordinate activities of the system:
 - find a spanning tree using the leader as the root
 - reconstruct a *lost token* in a token-ring network

 In this lecture, we will study the leader election in rings.

Definition: (1)Ring Networks

 In an oriented ring, processors have a consistent notion of left and right

For example, if messages are always forwarded on channel
 1, they will cycle clockwise around the ring

Definition: (2) Anonymous Rings

 How to model situation when processors do not have unique identifiers?

First attempt: require each processor to have the same state machine

Definition: (3) Uniform (Anonymous) Algorithms

- A uniform algorithm does not use the ring size (same algorithm for each size ring)
 - Formally, every processor in every size ring is modeled with the same state machine
- A non-uniform algorithm uses the ring size (different algorithm for each size ring)
 - Formally, for each value of n, every processor in a ring of size n is modeled with the same state machine A_n .
- Note the lack of unique ids.

Impossibility: Leader Election in Anonymous Rings

Theorem: There is no leader election algorithm for anonymous rings, even if algorithm knows the ring size (non-uniform) and synchronous model

Proof Sketch:

- Every processor begins in same state with same outgoing messages (since anonymous)
- Every processor receives same messages, does same state transition, and sends same messages in round 1
- Ditto for rounds 2, 3, ...
- Eventually some processor is supposed to enter an elected state. But then they all would.

Leader Election in Anonymous Rings

 Proof sketch shows that either safety (never elect more than one leader) or liveness (eventually elect at least one leader) is violated.

- Since the theorem was proved for non-uniform and synchronous rings, the same result holds for weaker (less well-behaved) models:
 - uniform
 - asynchronous

Rings with Identifiers

Assume each processor has a unique id.

- Don't confuse indices and ids:
 - indices are 0 to n 1; used only for analysis, not available to the processors
 - ids are arbitrary nonnegative integers; are available to the processors through local variable id.

Specifying a Ring

 Start with the smallest id and list ids in clockwise order.

Example: 3, 37, 19, 4, 25

Uniform (Non-anonymous) Algorithms

 Uniform algorithm: there is one state machine for every id, no matter what size ring

 Non-uniform algorithm: there is one state machine for every id and every different ring size

 These definitions are tailored for leader election in a ring.

O(n²) Messages LE Algorithm: LeLann-Chang-Roberts (LCR) algorithm

- send value of own id to the left
- when receive an id *j* (from the right):
 - if *j > id* then
 - forward j to the left (this processor has lost)
 - if *j = id* then
 - elect self (this processor has won)
 - if *j < id* then
 - do nothing

Correctness: Elects processor with largest id.

message containing largest id passes through every processor

Time: *O(n)*

Message complexity: Depends how the ids are arranged.

- largest id travels all around the ring (n messages)
- 2nd largest id travels until reaching largest
- 3rd largest id travels until reaching largest or second largest etc.

- Worst way to arrange the ids is in decreasing order:
 - 2nd largest causes n 1 messages
 - 3rd largest causes n 2 messages etc.

Total number of messages is:

$$n + (n-1) + (n-2) + ... + 1 = \Theta(n^2)$$

 Clearly, the algorithm never sends more than $O(n^2)$ messages in any admissible execution. Moreover, there is an admissible execution in which the algorithm sends $\Theta(n^2)$ messages; Consider the ring where the identifiers of the processor are 0,....., n-1 and they are ordered as in Figure 3.2. In this configuration, the message of processor with identifier *i* is send exactly *i+1* times,

Thus the total number of messages, Fig. 3.2 Ring with $\Theta(n^2)$ messages. including the n termination messages, is

$$n + \sum_{i=0}^{n-1} (i+1) = \mathcal{O}(n^2)$$

Clockwise Unidirectional Ring

Can We Use Fewer Messages?

- The $O(n^2)$ algorithm is simple and works in both synchronous and asynchronous model.
- But can we solve the problem with fewer messages?

Idea:

 Try to have messages containing smaller ids travel smaller distance in the ring

O(nlogn) Messages LE Algorithm: The Hirschberg and Sinclair (HS) algorithm

- To describe the algorithm, we first define the k-neighbourhood of a processor p_i in the ring to be the set of processors that are at distance at most k from p_i in the ring (either to the left or to the right). Note that the k-neighbourhood of a processor includes exactly 2k+1 processors.
- The algorithm operates in phases; it is convenient to start numbering the phases with 0. In the *kth* phase a processor tries to become a *winner* for that phase; to be a winner, it must have the largest id in its 2^k-neighborhood. Only processors that are winners in the *kth* phase continue to compete in the *(k+1)*-st phase, Thus fewer processors proceed to higher phases, until at the end, only one processor is a winner and it is elected as the leader of the whole ring.

The HS Algorithm: Sending Messages

Phase 0

- In more detail, in phase 0, each processor attempts to become a phase 0 winner and sends a <probe> message containing its identifier to its 1-neighborhood, that is, to each of its two neighbors.
- If the identifier of the neighbor receiving the probe is greater than the identifier in the probe, it swallows the probe; otherwise, it sends back a <reply> message.
- If a processor receives a reply from both its neighbors, then the processor becomes a phase 0 winner and continues to phase 1.

The HS Algorithm: Sending Messages

Phase k

- In general, in phase k, a processor p_i that is a phase k-1 winner sends probe> messages with its identifier to its 2^k -neighborhood (one in each direction). Each such message traverses 2^k processors one by one, A probe is swallowed by a processor if it contains an identifier that is smaller than its own identifier.
- If the probe arrives at the last processor on the neighbourhood without being swallowed, then that last processor sends back a <reply> message to p_i. If p_i receives replies from both directions, it becomes a phase k winner, and it continues to phase k+1. A processor that receives its own <probe> message terminates the algorithm as the leader and sends a termination message around the ring.

Algorithm 5 Asynchronous leader election: code for processor p_i , $0 \le i \le n$. Initially, asleep = true1: upon receiving no message: 2: if asleep then asleep := false 3: send (probe, id, 0, 1) to left and right 4: 5: upon receiving (probe, j,k,d) from left (resp., right): if j = id then terminate as the leader 6: if j > id and $d < 2^k$ then 7: // forward the message 8: send (probe, j, k, d + 1) to right (resp., left) // increment hop counter if j > id and $d > 2^k$ then 9: // reply to the message send $\langle \text{reply}, j, k \rangle$ to left (resp., right) 10: // if j < id, message is swallowed 11: upon receiving (reply, j,k) from left (resp., right): if $j \neq id$ then send (reply, j,k) to right (resp., left) // forward the reply 12:

```
11: upon receiving \langle \text{reply}, j, k \rangle from left (resp., right):

12: if j \neq id then send \langle \text{reply}, j, k \rangle to right (resp., left) // forward the reply

13: else // reply is for own probe

14: if already received \langle \text{reply}, j, k \rangle from right (resp., left) then

15: send \langle \text{probe}, id, k + 1, 1 \rangle // phase k winner
```

The HS Algorithm

- The pseudocode appears in **Algorithm 5**. Phase *k* for a processor corresponds to the period between its sending of a **<probe>** message in line 4 or 15 with third parameter *k* and its sending of a **<probe>** message in line 4 or 15 with third parameter *k+1*. The details of sending the termination message around the ring have been left out in the code, and only the leader terminates.
- The correctness of the algorithm follows in the same manner as in the simple algorithm, because they have the same swallowing rules.
- It is clear that the probes of the processor with the maximal identifier are never swallowed; therefore, this processor will terminate the algorithm as a leader. On the other hand, it is also clear that no other probe> can traverse the whole ring without being swallowed.
 Therefore, the processor with the maximal identifier is the only leader elected by the algorithm.

O(n log n) Leader Election Algorithm

- Each processor tries to probe successively larger neighborhoods in both directions
 - size of neighborhood doubles in each phase
- If probe reaches a node with a larger id, the probe stops
- If probe reaches end of its neighborhood, then a reply is sent back to initiator
- If initiator gets back replies from both directions, then go to next phase
- If processor receives a probe with its own id, it elects itself

O(n log n) Leader Election Algorithm

Correctness:

• Similar to $O(n^2)$ algorithm.

Message Complexity:

- Each message belongs to a particular phase and is initiated by a particular processor
- Probe distance in phase k is 2^k
- Number of messages initiated by a processor in phase k is at most $4*2^k$ (probes and replies in both directions)

- How many processors initiate probes in phase k?
- For k = 0, every processor does
- For k > 0, every processor that is a "winner" in phase k
 1 does
 - "winner" means has largest id in its 2^{k-1} neighborhood

• Maximum number of phase k - 1 winners occurs when they are packed as densely as possible:

• Total number of phase k - 1 winners is at most $n/(2^{k-1} + 1)$

- How many phases are there?
- At each phase the number of (phase) winners is cut approx. in half
 - from $n/(2^{k-1}+1)$ to $n/(2^k+1)$
- So after approx. log₂ n phases, only one winner is left.
 - more precisely, max phase is $\lceil \log(n-1) \rceil + 1$

 Total number of messages is sum, over all phases, of number of winners at that phase times number of messages originated by that winner:

Can We Do Better?

- The $O(n \log n)$ algorithm is more complicated than the $O(n^2)$ algorithm but uses fewer messages in worst case.
- Works in both synchronous and asynchronous case.
- Can we reduce the number of messages even more?
- Not in the asynchronous model...

Lower bound for LE algorithm

But, can we do better than O(n log n)?

- Theorem: Any leader election algorithm for asynchronous rings whose size is not known a priori has $\Omega(n \log n)$ message complexity (holds also for unidirectional rings).
- Both LCR and HS are comparison-based algorithms, i.e. they use the identifiers only for comparisons (<; >;=).
- In synchronous networks, O(n) message complexity can be achieved if general arithmetic operations are permitted (non-comparison based) and if time complexity is unbounded.

Overview of LE in Rings with Ids

- There exist algorithms when nodes have unique ids.
- We have evaluated them according to their message complexity.
- Asynchronous ring:
 - $\Theta(n \log n)$ messages
- Synchronous ring:
 - $\Theta(n)$ messages under certain conditions
 - otherwise $\Theta(n \log n)$ messages
- All bounds are asymptotically tight.

Conclusion

 This lecture provided an in-depth study of the leader election problem in message-passing systems for a ring topology.

 We have presented the different algorithms for leader election problem by taking the cases like anonymous/non-anonymous rings, uniform/nonuniform rings and synchronous/ asynchronous rings