BASES OF SOLUTIONS FOR LINEAR CONGRUENCES

Florentin Smarandache University of New Mexico 200 College Road Gallup, NM 87301, USA E-mail: smarand@unm.edu

In this article we establish some properties regarding the solutions of a linear congruence, bases of solutions of a linear congruence, and the finding of other solutions starting from these bases.

This article is a continuation of my article "On linear congruences".

§1. Introductory Notions

Definition 1. (linear congruence)

We call linear congruence with n unknowns a congruence of the following form:

$$a_1 x_1 + \dots + a_n x_n \equiv b(\operatorname{mod} m) \tag{1}$$

where $a_1,...,a_n, m \in \mathbb{Z}, n \ge 1$, and $x_i, i = \overline{1,n}$, are the unknowns.

The following theorems are known:

Theorem 1. The linear congruence (1) has solutions if and only if $(a_1,...,a_n,m,b) \mid b$.

Theorem 2. If the linear congruence (1) has solutions, then: $|d| \cdot |m|^{n-1}$ is its number of distinct solutions. (See the article "On the linear congruences".)

Definition 2. Two solutions $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_n)$ of the linear congruence (1) are distinct (different) if $\exists i \in \overline{1, n}$ such that $x_i \not\equiv y_i \pmod{m}$.

§2. Definitions and proprieties of congruences

We'll present some arithmetic properties, which will be used later.

Lemma 1. If $a_1,...,a_n \in \mathbb{Z}$, $m \in \mathbb{Z}$, then:

$$\frac{(a_1, \dots, a_n, m) \cdot m^{n-1}}{\left(a_1, m\right) \cdot \dots \cdot \left(a_n, m\right)} \in \mathbb{Z}$$

The proof is done using complete induction for $n \in \mathbb{N}^*$.

When n = 1 it is evident.

Considering that it is true for values smaller or equal to n, let's proof that it is true for n+1.

Let's note $x = (a_1, ..., a_n)$. Then:

 $(a_1,...,a_n,a_{n+1},m)\cdot m^n = [(x,a_{n+1},m)\cdot m^{2-1}]\cdot m^{n-1}$, which, in accordance to the induction hypothesis, is divisible by:

$$\left[\left(x,m \right) \cdot \left(a_{n+1},m \right) \right] \cdot m^{n-1} = \left[\left(a_1,\ldots,a_n,m \right) \cdot \left(a_{n+1},m \right) \right] \cdot m^{n-1} = \left[\left(a_1,\ldots,a_n,m \right) \cdot m^{n-1} \right] \cdot \left(a_{n+1},m \right),$$
 which is divisible, also in accordance with the induction hypothesis, by
$$\left[\left(a_1,m \right) \cdot \ldots \cdot \left(a_n,m \right) \right] \cdot \left(a_{n+1},m \right) = \left(a_1,m \right) \cdot \ldots \cdot \left(a_n,m \right) \cdot \left(a_{n+1},m \right).$$

Theorem 3. If X^0 constitutes a (particular) solution of the linear congruence

(1), and
$$p = \prod_{i=1}^{n} (a_i, m)$$
, then:

$$X_i \equiv x_i^0 + \frac{m}{(a_i, m)} t_i, \ 0 \le t_i < (a_i, m), \ t_i \in \mathbb{N}$$
 (*)

(*i* taking values from 1 to n) constitute p distinct solutions of (1).

Proof:

Because the module of the congruence (m) is sub-understood, we omitted it, and we will continue to omit it.

 $\sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i x_i^0 + \sum_{i=1}^{n} \frac{a_i m}{(a_i, m)} t_i \equiv b + 0$, therefore there are solutions. Let's show they are also distinct

that they are also distinct.

$$x_i^0 + \frac{m}{(a_i, m)} \alpha \neq x_i^0 + \frac{m}{(a_i, m)} \beta$$
, for $\alpha, \beta \in \mathbb{N}, \alpha \neq \beta$, and $0 \le \alpha, \beta < (a_i, m)$,

because the set:

$$\left\{\frac{m}{(a_i,m)}t_i \mid 0 \le t_i < (a_i,m), \ t_i \in \mathbb{N}\right\} \subseteq \left\{0,1,...,n-1\right\}, \text{ which constitutes a complete}$$

system of residues modulo m, and $\frac{m}{(a_i,m)}\alpha \neq \frac{m}{(a_i,m)}\beta$, for α and β previously defined.

Therefore the theorem is proved.

One considers the Z-module A generated by the vectors V_i , where

$$V_i^* = \left(\underbrace{0,...,0}_{i-1 \text{ times}}, \frac{m}{(a_i,m)}, \underbrace{0,...,0}_{n-i \text{ times}}\right), i = \overline{1,n}, \text{ from } \mathbb{Z}^n$$
. The module A has the rank $n, (n \ge 1)$.

We could note it $A = \{v_1, ..., v_n\}$.

We'll introduce a few new terms.

Definition 3. Two solutions (vectors solution) X and Y of congruence (1) are called independent if $X - Y \notin A$. Otherwise, they are called dependent solutions.

Remark 1. In other words, if X is a solution of the congruence (1), then the solution Y of the same congruence is independent of X, if it was not obtained from X by applying the formula (*) for certain values of the parameters $t_1, ..., t_n$.

Definition 4. The solutions $X^1,...,X^n$ are called **independent (all together)** if they are independent two by two.

Otherwise, they are called **dependent solutions** (all together).

Definition 5. The solutions $X^1,...,X^n$ of the congruence (1) constitute a base for this congruence, if $X^1,...,X^n$ are independent amongst them, and with their help one obtains all (distinct) solutions of the congruence with the procedure (*) using the parameters $t_1,...,t_n$.

Some proprieties of the linear congruences solutions:

- 1) If the solution X^1 is independent with the solution X^2 then X^2 is independent with X^1 (the commutative property of the relation "independent").
- 2) X^1 is not independent with X^1 .
- 3) If X^1 is independent with X^2 , X^2 is independent with X^3 , it does not imply that X^1 is independent with X^3 (the relation is not transitive).
- 4) If X is independent with Y, then X is independent with Y. Indeed, if Y is dependent with Y, then $X Y = \underbrace{(X Y)}_{\notin A} + \underbrace{(Y Y_1)}_{\in A} = Z$.

If $Z \in A$, it results that $(X - Y) = Z - (Y - Y_1) \in A$ because A is a Z-module. Absurdity.

Theorem 4. Let's note $P_1 = (a_1, ..., a_n, m) \cdot |m|^{n-1}$ and $P_2 = (a_1, m) \cdot ... \cdot (a_n, m)$ then the linear congruence (1) has the base formed of: $\frac{P_1}{P_2}$ solutions.

Proof:

 $P_1 > 0$ and $P_2 > 0$, from Lemma 1 we have $\frac{P_1}{P_2} \in \mathbb{N}^*$, therefore the theorem has

sense (we consider LCD as a positive number).

 P_1 represents the number of distinct solutions (in total) of congruence (1), in accordance to theorem 2.

 P_2 represents the number of distinct solutions obtained for congruence (1) by applying the procedure (*) (allocating to parameters $t_1,...,t_n$ all possible values) to a single particular solution.

Therefore we must apply the procedure (*) $\frac{P_1}{P_2}$ times to obtain all solutions of the congruence, that is, it is necessary of exact $\frac{P_1}{P_2}$ independent particular solutions of the congruence. That is, the base has $\frac{P_1}{P_2}$ solutions.

Remark 2. Any base of solutions (for the same linear congruence) has the same number of vectors.

§3. Method of solving the linear congruences

In this paragraph we will utilize the results obtained in the precedent paragraphs. Let's consider the linear congruence (1) with $(a_1,...,a_n,m) = d \mid b, m \neq 0$.

- we determine the number of distinct solutions of the congruence: $P_1 = |d| \cdot |m|^{n-1}$;
- we determine the number of solutions from the base: $S = \frac{P_1}{\prod_{i=1}^{n} (a_i, m)}$;
- we construct the Z-module $A = \{V_1, ..., V_n\}$, where $V_i^t = \left(\underbrace{0, ..., 0}_{i-1 \text{ times}}, \frac{m}{(a_i, m)}, \underbrace{0, ..., 0}_{n-i \text{ times}}\right), i = \overline{1, n};$
- we search to find s independent (particular) solutions of the congruence;
- we apply the procedure (*) as follows:

if X^{j} , $j = \overline{1, s}$, are the s independent solutions from the base, it results that

$$X^{j(t_1,\ldots,t_n)} = \left(x_i^j + \frac{m}{(a_i,m)}t_i\right), \quad i = \overline{1,n}, \qquad (*)$$

are all P_1 solutions of the linear congruence (1),

$$j = \overline{1, s}, \quad t_1 \times ... \times t_n \in \{0, 1, 2, ..., d_1 - 1\} \times ... \times \{0, 1, 2, ..., d_n - 1\},$$
 where $d_i = |(a_i, m)|, \quad i = \overline{1, n}$.

Remark 3. The correctness of this method results from the anterior paragraphs.

Application. Let's consider the linear non-homogeneous congruence $2x - 6y \equiv 2 \pmod{12}$. It has $(2,6,12) \cdot 12^{2-1} = 24$ distinct solutions. Its base will have $24 : [(2,12) \cdot (6,12)] = 2$ solutions.

$$V_1^t = (6,0), \ V_2^t = (0,2) \text{ and } A = \{V_1, V_2\} = \{(6t_1, 2t_2)^t \mid t_1, t_2 \in \mathbb{Z}\}.$$

The solutions $x \equiv 7 \pmod{12}$ and $y \equiv 4 \pmod{12}$, $x \equiv 1$ and $y \equiv 0$ are dependent because:

$$\begin{pmatrix} 7 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} = 1 \begin{pmatrix} 6 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 2 \end{pmatrix} \in A.$$

But $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$ is independent with $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ because $\begin{pmatrix} 4 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \notin A$.

Therefore, the 24 solutions of the congruence can be obtained from:

$$\begin{cases} x \equiv 1 + 6t_1, & 0 \le t_1 < 2, & t_1 \in \mathbb{N} \\ y \equiv 0 + 2t_2, & 0 \le t_2 < 6, & t_2 \in \mathbb{N} \end{cases}$$

and

$$\begin{cases} x \equiv 4 + 6t_1, & 0 \le t_1 < 2, & t_1 \in \mathbb{N} \\ y \equiv 1 + 2t_2, & 0 \le t_2 < 6, & t_2 \in \mathbb{N} \end{cases}$$

by the parameterization $(t_1, t_2) \in \{0, 1\} \times \{0, 1, 2, 3, 4, 5\}$.

$$\begin{cases} x \equiv 1 + 6t_1 \\ y \equiv 0 + 2t_2 \end{cases} \Rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 6 \end{pmatrix}, \begin{pmatrix} 1 \\ 8 \end{pmatrix}, \begin{pmatrix} 1 \\ 10 \end{pmatrix}, \begin{pmatrix} 7 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ 2 \end{pmatrix}, \begin{pmatrix} 7 \\ 4 \end{pmatrix}, \begin{pmatrix} 7 \\ 6 \end{pmatrix}, \begin{pmatrix} 7 \\ 8 \end{pmatrix}, \begin{pmatrix} 7 \\ 10 \end{pmatrix}.$$

$$\begin{cases} x \equiv 4 + 6t_1 \\ y \equiv 1 + 2t_2 \end{cases} \Rightarrow \begin{pmatrix} 4 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \end{pmatrix}, \begin{pmatrix} 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 4 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 11 \end{pmatrix}, \begin{pmatrix} 10 \\ 1 \end{pmatrix}, \begin{pmatrix} 10 \\ 3 \end{pmatrix}, \begin{pmatrix} 10 \\ 5 \end{pmatrix}, \begin{pmatrix} 10 \\ 7 \end{pmatrix}, \begin{pmatrix} 10 \\ 9 \end{pmatrix}, \begin{pmatrix} 10 \\ 11 \end{pmatrix};$$

which constitute all 24 distinct solutions of the given congruence; $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ means $x \equiv 1 \pmod{12}$ and $y \equiv 0 \pmod{12}$; etc.

REFERENCES

- [1] C. P. Popovici "Teoria numerelor", Editura didactică și pedagogică, Bucuresti, 1973.
- [2] F. Gh. Smarandache "Rezolvarea ecuațiilor și a sistemelor de ecuații liniare în numere întregi", Lucrare de licență, Universitatea din Craiova, 1979.

[Published in "Bulet. Univ. Braşov", series C, vol. XXII, pp. 25-31, 1980; and in "Bulet. Şt. şi Tehn. al Instit. Polit. "Traian Vuia", Timişoara", fascicolul 2, tomul 26 (40), pp. 13-6; MR: 83c: 10024]