Title

D. Zack Garza

Friday 20th March, 2020

Contents

1	Friday February 21st 1.1 Singularities	1
1	Friday February 21st	
1.	1 Singularities	
R	ecall that there are three types of singularities:	
	RemovablePolesEssential	
	Theorem 1.1(3.2). An isolated singularity z_0 of f is a pole \iff $\lim_{z \to \infty} f(z) = \infty$.	

Theorem 1.2(3.3, Casorati-Weierstrass).

If f is holomorphic and has an essential singularity z_0 , then there exists a radius r such that $f(D_r(\{z_0\}) \setminus \{z_0\})$ is dense in \mathbb{C} .

Proof.

Proceed by contradiction. Suppose there exists a $w \in \mathbb{C}$ and a $\delta > 0$ such that

$$D_{\delta}(w) \bigcap f(D_r(\{z_0\}) \setminus \{z_0\}) = \emptyset.$$

If $z \in D_r(w) \setminus z_0$, then $|f(z) - w| > \delta$.