NAME: Anna Helana Maliakal

STUDENT NUMBER:17324430

Please indicate your answers by entering the option ((i), (ii), (iii) or (iv)) where asked. You should append the completed document as a pdf with your type written worked solutions and upload to Blackboard by Friday 22nd of February 2019.

Q 2.31 (see Matlab code)

Part (a):

- (i) 4
- (ii) 13
- (iii) 26
- (iv) 18

Your Answer (i)-(iv): (ii) 13

Part (b):

- (i) 0
- (ii) 12
- (iii) 7
- (iv) 4

Your Answer (i)-(iv): (i) 0

```
function det - Determinant(A)
[m, n] = size(A);
%check if square matrix if(m ~= n)
if (m--2)
     b = A(1,1) * A(2,2);
c = A(1,2) * A(2,1);
elseif (m==3)
     b = [A(2,2) A(2,3);
              A(3,2) A(3,3)];
      c = [A(2,1) A(2,3);
A(3,1) A(3,3)];
      k = [A(2,1) A(2,2);
A(3,1) A(3,2)];
      d1 = A(1,1) * Determinant(b);
      d2 = A(1,2) * Determinant(c);
d3 = A(1,3) * Determinant(k);
      D = d1 - d2 + d3;
      b = [A(2,2) \ A(2,3) \ A(2,4);
              A(3,2) A(3,3) A(3,4);
      A(4,2) A(4,3) A(4,4)];
c = [A(2,1) A(2,3) A(2,4);
             A(3,1) A(3,3) A(3,4);
A(4,1) A(4,3) A(4,4)];
        k = [A(2,1) \ A(2,2) \ A(2,4)]; 
  k = [A(2,1) \ A(2,2) \ A(2,4)]; 
  A(3,1) \ A(3,2) \ A(3,4); 
  A(4,1) \ A(4,2) \ A(4,4)]; 
  w = [A(2,1) \ A(2,2) \ A(2,3); 
              A(3,1) A(3,2) A(3,3);
              A(4,1) A(4,2) A(4,3)];
      d1 = A(1,1) * Determinant(b);
      d2 = A(1,2) * Determinant(c);
d3 = A(1,3) * Determinant(k);
d4 = A(1,4) * Determinant(w);
```

Q 3.2

Part (a):

- (i) 0.1241
- (ii) 0.8125
- (iii) 0.074995
- (iv) 0.003462

Your Answer (i)-(iv): (ii) 0.8125

Iteration 1:
$$a = 0$$
 b=1 $X_{NS1} = ((0+1)/2) = 0.5$

$$f(a) \cdot f(X_{NS1}) = 1.426$$

$$f(a) \cdot f(X_{NS1}) > 0$$
, therefore, $a = 0.5$

Iteration 2:
$$a = 0.5 b=1 X_{NS1} = ((0.5+1)/2) = 0.75$$

$$f(a) \cdot f(X_{NS1}) = 0.1388$$

$$f(a) . f(X_{NS1}) > 0$$
, therefore, $a = 0.75$

Iteration 3:
$$a = 0.75 b=1 X_{NS1} = ((0.75+1)/2) = 0.875$$

$$f(a) \cdot f(X_{NS1}) = -0.0080$$

$$f(a) \cdot f(X_{NS1}) < 0$$
, therefore, $b = 0.875$

Iteration 4:
$$a = 0.75 b = 0.875 X_{NS1} = ((0.75 + 0.875)/2) = 0.8125$$

$$f(a) \cdot f(X_{NS1}) = -0.0146$$

Answer = 0.8125

Part (b):

- (i) 0.72481
- (ii) 0.85261
- (iii) 0.62849
- (iv) 0.17238

$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$

Your Answer (i)-(iv): (ii) 0.85261

Iteration 1 =
$$X_i = 1 X_{i-1} = 0$$

$$X_{i+1} = 1 - \frac{f(1)(0-1)}{f(0) - f(1)}$$

= 0.8833

$$f(0.8833) = 0.0564$$

Iteration 2 = $X_i = 0.8833 X_{i-1} = 1$

$$\mathsf{X}_{\mathsf{i}+1} = 0.8833 - \frac{f(0.8833)(1 - 0.8833)}{f(1) - f(0.8833)}$$

= 0.85613

$$f(0.85613) = -0.001807$$

Iteration 3 =
$$X_i = 0.85613 X_{i-1} = 0.8833$$

$$X_{i+1} = 0.85613 - \frac{f(0.85613)(0.8833 - 0.85613)}{f(0.8833) - f(0.85613)}$$

= 0.85261

Part (c):

- (i) 0.65782
- (ii) 0.59371
- (iii) 0.45802
- (iv) 0.85261

$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Your Answer (i)-(iv): (iv) 0.85261

$$f'(x) = 2e^{-x} + 1$$

Iteration 1:
$$X_i = 1$$

$$X_i = 1$$
 $X_{i+1} = 1 - \frac{f(1)}{f'(1)}$

Iteration 2:
$$X_i = 0.8477662305$$

$$X_{i+1} = 0.8477662305 - \frac{f(0.8477662305)}{f'(0.8477662305)}$$

$$X_{i+1} = 0.8526001078$$

Iteration 3:
$$X_i = 0.8526001078$$

$$X_{i+1} = 0.8526001078 - \frac{f(0.8526001078)}{f'(0.8526001078)}$$

$$X_{i+1} = 0.852605502$$

Q 4.24

(i) Inverse(a	Inverse(a)=				
-0.7143 0.2571 -0.2286	0.0 0.1000 -0.2000	1.4286 0.2857 0.8571			
Inverse(b)=					
1.6667 0.0 -0.3333 1.5000	2.8889 0.3333 -0.4444 2.0000	-2.2222 -0.3333 0.1111 -1.5000	1.0000 0.0 0.0 0.5000		
(ii)					
Inverse(a)=					
0.7243 1.2571 -0.2386	0.0 0.1000 -0.2010	1.3286 0.2757 0.9571			
Inverse(b)=					
1.6677 0.3433 -0.3433 1.2400	2.9889 -0.3433 -0.2879 2.0120	3.2222 0.3333 0.2111 -1.5783	1.01700 0.00371 0.0 0.5600		
(iii)					
Inverse(a)=					
0.7143 1.2671 -0.2486	0.003 0.1100 -0.2110	2.3276 0.3759 0.9771			
Inverse(b)=					
1.6877 0.3533 -0.3443 1.2420	3.9789 -0.4433 -0.2999 3.0130	3.2002 0.3333 0.3121 -1.5733	2.01800 0.02371 0.0382 0.5610		

```
(iv)
```

Inverse(a)=

0.8343	1.01	1.3336
2.2572	0.1003	0.3857
-0.2486	-0.2110	0.9671

Inverse(b)=

1.6777	4.9889	3.2232	1.11700
0.3443	-0.3443	0.3233	0.07371
-0.3443	-0.2979	0.3211	0.07800
1.2480	2.1220	-1.5883	0.5621

Your Answer (i)-(iv): (i) (See Matlab code)

```
function inv = Inverse(inv)
[m, n] = size(A);
if (m~=n)
    disp('Matrix must be a square matrix');
    return;
end
identity = zeros(m);
for i = 1:m
    identity(i,i) = 1;
end
for i = 1:m
    if A(i,i) ~= 1
        tmp = A(i,i);
        for j = 1:m
            A(i,j) = A(i,j)/tmp;
            identity(i,j) = identity(i,j)/tmp;
    end
        if i \sim=k \&\& A(k,i) \sim=0
            tmp = A(k,i);
            for j = 1:m
                A(k,j) = A(k,j) - (tmp*A(i,j));
                identity(k,j) = identity(k,j) - (tmp*identity(i,j));
            end
        end
    end
```