维护分公司钳工专业

石油化工转动设备通用部件维护检修 作业指导书

武汉检安石化工程有限公司 二 **OO** 九年十月

目 录

- 1、总则
- 2、滚动轴承
- 3、联轴器
- 4、机械密封

1 总则

- 1、1 主题内容与适用范围
- 1、1、1主题内容

本规程规定了化工设备常用滚动轴承、联轴器、机械密封的拆卸、检修、安装及质量标准、维护与故障处理。

1、1、2 适用范围

本规程只适用于石油化工厂一般机泵使用的滚动轴承、联轴器、机械密封的检修及质量标准。不包括大机组和其他有特殊要求的设备。

1、2编写修订依据

API682

JB4127-99 机械密封技术条件

化工机械手册

机械设计手册

轴承的使用于修理

随机技术资料

2滚动轴承

- 2、1 拆卸注意事项
- 2、1、1 拆卸滚动轴承应使用专用工具,禁止直接敲打。
- 2、1、2必须敲打时,应用硬度较低的有色金属棒或垫,且敲击力不得加在轴承的滚动体和保持架上。
 - 2、1、3 拆卸中避免损伤轴、壳孔、轴承及其它零件。
 - 2、1、4 当采用破坏性拆卸时,要对轴采取保护性措施。
 - 2、2 清洗
 - 2、2、1新轴承的清洗
- 2、2、1、1 用防锈油封存的轴承可用材油或煤油清洗;用高粘度油和防锈油脂进行防锈的轴承,先用轻质矿物油清洗(为使清洗更容易,油可适当进行加热),冷却后再用材油或煤油清洗;
 - 2、2、1、2两面带防尘盖或密封圈的轴承保管较好的不需要清洗。
- 2、2、2对于拆下的经检查还可用的轴承,清洗最好采用金属清洗剂,也可用材油或煤油。
 - 2、2、3清洗与轴承相配合的有关零件,如轴、轴承座、端盖、衬套等。
 - 2、2、4经过清洗的轴承应添加润滑油或脂,妥善保管,以备用。
 - 2、3 检查与质量标准
 - 2、3、1轴承的检查与判废标准。
 - 2、3、1、1轴承的检查
- a、外观检查保持架、滚动体、内外座圈滑道有无斑蚀、锈蚀、裂纹以及过热烧伤等损伤;
- b、游隙检查用量具检查,轴承的 径向间隙应符合 GB/T4604—1993《滚动轴承径向间隙》;
 - c必要时应在轴承实验台上进行测频检验。
 - 2、3、1、2轴承的判废标准如下
 - a、有保持架损伤,滚动体、内外圈滚道有斑蚀、锈蚀、裂纹、过热灼伤等损伤报废。
 - B超过GB/T4604-1993《滚动轴承径向间隙》标准规定判废。
 - C 测频检查, 黄区后半段及全部红区判废。

2、3、2 轴的检查

检查轴的各配合表面的精度,主要检查与轴承配合的轴颈的尺寸和形位公差和表面 粗糙度、轴肩与中心线的垂直度及轴肩根部圆角等应符合图样要求;表1列出常用设备轴承 及轴的配合。表2列出推力轴承与轴的配合。

- 2、3、3 轴承座孔的检查
- 2、3、3、1整体式轴承座孔:检测座孔的磨损量及圆柱度和轴挡肩的垂直度,应严格保证与座孔母线垂直,若不垂直,则负荷将集中在轴承某一部分滚动体上,使其受力不均。
- 2、3、3、2 对开式轴承座: 首先检查分离平面的贴合情况, 当用塞尺检查时, 0. 05mm 以上的塞尺不应从分开面间通过。然后再检查座孔精度应符合要求。表 3 列出常用设备轴承与外壳的配合。表 4 列出推力轴承与外壳的配合。
 - 2、4 安装与调整
 - 2、4、1 安装前的调整
 - 2、4、1、1确认待安装的轴承、规格、型号等符合要求。
 - 2、4、1、2清洗检查轴承座油孔(油道)及所有润滑路,保证通畅。
 - 2、4、1、3轴承端盖、密封圈、衬套等相关零件准备齐全。
 - 2、4、2 安装时注意事项

轴承的安装方法,应根据轴承的结构、尺寸及其与轴承部件的配合性质而定,安装时应注意:

2、4、2、1 安装轴承时应垂直、均匀的用力向轴承内座圈侧面施力,切勿直接敲打轴 承和外座圈,不得敲打保持架、密封板、滚动体。

丰 1	半田	ᄁᄱ	加亚	$\vdash th$	人 대 社
衣I	吊川	収金	拙/	一扫粗	的配合

轴旋转	内圆	工作规	适用机	轴承公称内	径/mm		配	备注
状况	负荷	范	件举例	向心球轴	短圆柱滚	双列球面	合	
	类型			承和向心	子轴承和	滚子轴承		
				推力球轴	圆锥滚子			
				承	轴承			
轴旋转	循环负	轻负荷	离 心	18~100	≤40	_	j6	
	荷或摆	和变动	机、通	100~140	18~100	_	k6	
	动负荷	负荷P	风机、					
		\leq	水泵、					
		0. 07C	齿轮箱					
		轻 负	高速机	18~100	≤40	_	j6	若用 B 级
		荷、对	械	100~200	18~100	_	k5	轴承应另
		旋转精		_	18~100	_	m5	选
		度有严						
		格要求						
		的轴承						
		P ≤						
		0. 07C						
		正常负		18~100	≤40	≤40	k5	圆锥滚子
		荷 P≈		100~140	40~100	40~65	m5	轴承用
		0.1C和		140~200	100~140	65~100	m6	k6 、 m6
		重负荷		200~280	140~200	100~140	n6	代替 k5、
		P >			200~400	140~280	p6	m5

0. 15C		280~500	r6
		> 500	r7

						 		
轴旋转	内圆负	工作规	适用机	轴承公称	内径/mm		配	备注
状况	荷类型	范	件举例	向心球	短圆柱滚	双列球面	合	
				轴承和	子轴承和	滚子轴承		
				向心球	圆锥滚子			
				推力轴	轴承			
				承				
轴旋转	循环负	很重负	大功率		50~140	50~100	n6	
	荷或摆	荷和冲	电 动		1400 ~	1000 ~	р6	
	动负荷	击负荷	机、牵		200	140		
			引 电			1400 ~	r6	
			机、破			200		
			碎机曲			2000 ~	r7	
			轴			500		
轴不旋	局部负	轻、正	运输	所有内径	的轴承		g6	需要精
转	荷	常或重	带、传					密配合
		负荷,	送带					时使用
		内圈可						g5 和 h5
		在轴上						
		移动						
		很重的	外圈旋				h6	
		负荷或	转的振					
		冲击负	动器					
		荷,内						
		圈在轴						
		上不需						
		要移动						
承受纯轴	向负荷			所有内径	轴承		J6	

注: P 为当量动负荷; C 为额定动负荷。

表 2 推动轴承与轴的配合

负荷性质	轴承类型	轴承公称内径/mm	配合
纯轴向负荷	单向推力球轴承	各种内径轴承	J6
	双向推力球轴承		k6
径向和轴向联合负	球面滚动轴承	≤250	J6
荷,在紧圈上承受局		>250	Js6
部负荷			
在紧圈上承受循环负	推力球面滚动轴承	≤200	k6
荷或摆动负荷		200~400	m6

表 3 常用轴承与外壳的配合

外圈旋转情	外圈负荷类	工作规范	适用机件举	配合	备注
况	型		例		

外圈旋转	循环负荷	轻负荷 P≤	输送带滚子	M7	外圈轴向固
		0.07C 负荷			定
		正常负荷 P≈	空压机的曲	N7	外圈轴向固
		0.1C,重负	轴轴承		定
		荷或用于薄	用滚子轴承	P7	外圈轴向固
		壁外壳的重	的轮毂和桥		定
		负荷 P > 0.15	式吊车的轨		
		С	道滚轮		
外圈不转动	局部负荷或	轻负荷 P≤	中型电动车、	J7	外圈可在轴
或摆动	摆动负荷	0. 15 C荷 P	水泵、曲轴主		向游动
		≈0. 1C	轴承		
		正常负荷 P≈	电动机、水	K7	外圈一般不
		0. 1C	泵、曲轴主轴		能在轴向游
			承		动
		各种负荷	一般机械用	Н7	外圈在轴向
			轴承		容易游动
			* *	/ 共 ·丰	

外圈旋转情	外圈负荷类	工作规范	适用机件举	配合	备注
况	型		例		
外圈不转动	局部负荷或	轴在高温情	用球面滚子	G7	外圈在轴向
或摆动	摆动负荷	况下工作	轴承的干燥		较易游动
			筒,大型电机		
		重负荷或冲	牵引电机主	M7	外圈轴向固
		击负荷	轴轴承		定
		需要精密和	小型电机	Н6	外圈在轴向
		平稳运转的			较易游动
		情况	磨床主轴用	J6	外圈可用轴
			球轴承、小型		向移动,较高
			电动机		负荷下选用
					N6 配合。
			机床主轴用	K6	外圈一般不
			滚子轴承		能在轴向游
					动。较高负荷
					下 可 选 择
					M6、N6配合。

注: P 为当量动负荷; C 为额定动负荷。

表 4 推力球轴承与外壳的配合

负荷性质	轴承类型	配合	备注
	推力球轴承	Н8	普通情况外壳孔与活
			圈的间隙为 0.001D
纯轴向负荷			(D 为轴承外径)
	推力球面滚子轴承径	_	外壳孔与活圈的间隙

	向负荷由另一轴承承		为 0. 001D (D 为轴
	受时		承外径)
		4	卖表
负荷性质	轴承类型	配合	备注
轴向和径向联合负荷	推力球面滚子轴承活	Н7	正常情况
	圈承受局部负荷或摆	J7	用于大的轴向负荷
	动负荷		
	推力球面滚子轴承活	K7	正常情况
	圈承受循环负荷	M7	用于大的径向负荷

- 2、4、2、2 当热装时,将其加热到 $80\sim120^{\circ}$ C(不得超过 120° C),然后迅速装到 轴上靠紧轴肩或轴肩垫上,热装时不得用明火直接加热。
- 2、4、2、3 对内孔为圆柱形孔的 轴承,安装时要注意轴承与轴及座孔的配合;对圆锥孔轴承要注意轴承压进锥形配合面的 深度,随时测量游隙;而对圆锥滚子轴承、角接触轴承及推力轴承安装时,注意检查调整轴向间隙。
- 2、4、3 轴承内外圈轴向紧固,可调试轴承的轴向游隙应按图样要求进行调整。表 5 所列各种可调式轴承的轴向游隙,供安装调试时参考。
- 2、4、4 安装配对的止推轴承付时,应使两只相同型号的轴承背对背或面对面组装,轴承压盖对外座圈的压紧力要保证轴承的轴向游隙。
 - 2、5 维护与故障处理
 - 2、5、1维护
- 2、5、1、1 保证滚动轴承良好润滑,严格执行 SHS01002—2004《石油化工设备润滑管理制度》;
 - 2、5、1、2 有条件时,可应用仪器对转动轴承进行状态监测 故障与原因分析见表 6

表 5 可调式轴承的轴向游隙

轴承内径	轴承系列	轴承游隙/mm			
/mm		角接触球轴承	单列圆锥滚子	双列圆锥滚子	双列推力轴
			轴承	轴承	承
	轻型	0. 02~0. 06	0. 03~0. 10	0. 03~0. 08	0. 03~0. 08
€30	轻宽和中宽型	_	0. 04~0. 11		_
	中型和重型	0. 03~0. 09	0. 04~0. 11	0. 05~0. 11	0. 05~0. 11
30~60	轻型	0. 03~0. 09	0. 04~0. 11	0. 04~0. 10	0. 01~0. 10
	轻宽和中宽型	_	0. 02~0. 06		
	中型和重型	0. 04~0. 10	0. 05~0. 13	0. 06~0. 12	0. 06~0. 12
50~ 80	轻型	0. 04~0. 10	0. 05~0. 13	0. 05~0. 12	0. 05~0. 12
	轻宽和中宽型	_	0. 06~0. 15		
	中型和重型	0. 05~0. 12	0. 06~0. 15	0. 07~0. 14	0. 07~0. 14
80~ 120	轻型	0. 05~0. 12	0. 06~0. 15	0. 06~0. 15	0. 06~0. 15
	轻宽和中宽型		0. 07~0. 18		
	中型和重型	0. 06~0. 15	0. 07~0. 18	0. 10∼0. 18	0. 10~0. 18

注: 当对运转精度要求较高时,取较小值,工作温度高时取较大值。

表 6 故障与原因分析

故障特征	原因分析	防止措施

轴承变成蓝或黑色	使用中,因温度过高而被烧损 过 采用加热法安装轴承时, 加温过高而使轴承退火,降低 了硬度	注意安装质量 用加热法安装轴承时,应按规 定控制加热温度
轴承温升过高	安装或运转过程中,有杂质或 污物侵入 使用不适当的润滑剂或润滑 脂(油)不够 密封装置、垫圈、衬套等之间 发生摩擦或配合松旷而引起 摩擦 安装不正确,如内外圈偏斜, 安装座孔不 同心,滚到变形 及间隙调整不当 选型错误,选择不适当的轴承 代用时,会因过负荷或转速过 高发热	注意安装质量 加强维护保养 待用轴承应根据有关资料选用
运转时有异响	滚动体或滚道剥落重皮,表面不平 轴承零件安装不当,轴承附件 有松动和摩擦 缺乏润滑剂 轴承内有铁屑或污物	拆卸检查或更换 注意安装质量 按规定定时加润滑剂 拆卸、清洗或更换
滚动体严重磨损	轴承承受了不当的轴向载荷 滚动体安装歪斜 润滑脂太稠 滚动体不滚动,产生滑动摩 擦,以致磨伤 轴承温升过高导致滚动体损 伤 机械振动或轴承安装不当,使 滚动体挤碎 轴承制造精度不高,热处理不 当,硬度低,滚动体被磨成多 棱形	按要求保证安装质量 按规定使用润滑剂或定期跟 更换润滑剂 注意使用中的维护

		->-\
故障特征	原因分析	防止措施
滚到出现坑疤	金属剥落,锈蚀	按轴承的工作性能正确选用
	缺少润滑剂	轴承
	使用材料不当	按规定定时加润滑剂
	轴承受冲击载荷	严禁电气设备漏电,机器要有
	电流通过轴承,产生局部高	接地装置
	温,金属熔化	
轴承内外圆裂纹	轴颈或轴承座孔配合面接触	按要求保证安装质量

	不良,滚道受力部位出现空隙,轴承受力而不均匀,产生疲劳裂纹 拆装不当,安装时受到敲打 轴承间隙磨大造成冲击振动 轴承制造质量不良,内部有裂	按规程正确拆装 及时更换磨损的轴承 严格检查轴承的制造质量
轴承金属剥落	纹 轴承受冲击力和交变载荷及 滚动体表面接触应力反复变 化 内外圈安装歪斜,轴向配合台 阶面不垂直,轴弯曲,轴孔不 同心 轴承间隙调整过紧 轴承配合面之间落入铁屑或 硬质脏物 轴颈或轴承座孔呈椭圆形,导 致滚道局部负担过重 所选代用或换用轴承型号不 符合规定	按要求保证安装质量 正确使用轴承 注意不要将铁屑和其他污物 落入轴承内 正确使用轴承 注意使用维护
滚动体被压碎,多出现于推力球轴承	安装间隙过小,挤压力过大 使用时受到剧烈冲击 润滑剂中混入坚硬的铁屑等 污物 滚动体原来有裂纹或轴承使 用时间过长	合理调整间隙 注意润滑剂的洁净 按规定时间更换或检修轴承

		失 农
故障特征	原因分析	防止措施
安装后手转不动	轴承清洗不干净,滚动体与滚	注意清洗质量
	道间有沙粒或铁屑	注意安装质量
	保持架变形,滚动体与轴承圈	刮研轴颈 (或壳孔径), 使其
	接触	配合过盈适当减小
	轴承和轴(或壳孔)的配合过	轴承原始游隙太小, 无法修
	紧(过盈量过大,轴承游隙减	理,必须更新
	少) 或轴承原始游隙太小	
轴承滚到产生刮痕	轴承上下圈不平行	按要求保证安装质量
	回转速度过大	按使用要求正确使用轴承
	滚动体在滚道上划转	加强润滑管理
	润滑剂不干净	

3 联轴器

- 3、1凸缘联轴器
- 3、1、1 拆卸与检查
- 3、1、1、1 拆卸螺栓螺母应做好标记,配套存放,若有损坏,新配件必须称 重匹配或全部更新。

- 3、1、1、2两半联轴器拆卸应使用专用工具。
- 3、1、1、3 检查半联轴器端面及铰制孔内表面应光滑无损,轴承 不应有严重划痕。
 - 3、1、2装配和机组找正
 - 3、1、2、1清洗轴端和联轴器部件。
- 3、1、2、2 半联轴器与轴配合采用 H7/K6, 装配时应采用热装或压装, 不得敲击。
 - 3、1、2、3 检查两半联轴器的端跳, 径跳及结构尺寸符合图纸要求。
- 3、1、2、4螺栓按标记回装,铰制孔用螺栓与孔配合采用 H7/n6,普通螺栓连接应保证两半联轴器断面紧密接触。
- 3、2、1、5 联轴器两端的对中偏差为: 径向圆跳动偏差应小于 0. 03mm,端面圆跳动偏差应小于 0. 05mm/m。
 - 3、2 弹性块联轴器
 - 3、2、1 拆卸与检查
 - 3、2、1、1 两半联轴器拆卸时应使用专用工具。
 - 3、2、1、2 检查两半联轴器有无裂纹破损,检查爪形块磨损情况。
 - 3、2、1、3 检查弹性件是否老化损坏。
 - 3、2、2 装配和机组找正
 - 3、2、2、1 清洗轴端和联轴器部件。
- 3、2、2、2两半联轴器若有裂纹破损或磨损严重等缺陷应更换,更换联轴器 应检查其结构尺寸是否符合图样要求,并做静平衡校验。
- 3、2、2、3 弹性件若老化变形磨损严重应更换新件,并检查结构尺寸符合图纸要求。
- 3、2、2、4 半联轴器与轴配合采用 H7/k6,两半联轴器断面间隙为 $2\sim6$ mm,装配时采用热装或压表。
 - 3、2、2、5 联轴器两端对中见表 7。

表 7 弹性块联轴器两轴对中

直径/mm	端面圆跳动/(mm/m)	径向圆跳动/mm
130~200	<1	<0. 1
200~400	<1	0. 1~0. 3
400~700	<1	<0. 3

- 3、3 弹性圈柱销联轴器
- 3、3、1 拆卸与检查
- 3、3、1、1 拆卸柱销检查其磨损情况。
- 3、3、1、2 检查弹性圈的老化变形磨损情况。
- 3、3、1、3 两半联轴器拆卸时应使用专用工具,检查轴孔、弹性圈、柱销孔的磨损情况。
 - 3、3、2 装配和机组找正
- 3、3、2、1 柱销若有磨损应更换,新件应检查其结构尺寸是否符合图样要求。
- 3、3、2、2 弹性圈若老化损坏应全部更换。弹性圈与柱销间应是过盈配合,过盈量为 0. 2 \sim 0. 4mm,弹性圈与柱销孔间的直径间隙为 1 \sim 2mm,装于同一柱销上的弹性圈其外径之差不得大于 0. 5mm。
 - 3、3、2、3两半联轴器如果柱销孔磨损严重原则上应更换,新件应检查其轴

孔、销轴孔、柱销孔、端跳、径跳等结构尺寸符合图样要求。两半联轴器与轴配 合采用 H7/k6.装配时采用热装或压装,对于大型联轴器在不影响强度的情况下, 其销柱孔可采取配对镗孔的方法进行修复。

3、3、2、4 联轴器两端对中见表 8.

表 8 弹性圈柱销联轴器两轴对中

直径/mm	端面圆跳动/(mm/m)	径向圆跳动/mm
100~300	<0. 5	<0. 15
300~500	<0. 5	<0. 20

- 3、4蛇形(盘绕)弹簧联轴器
- 3、4、1 拆卸与检查
- 3、4、1、1 拆卸外壳检查其有无裂纹和密封件情况。
- 3、4、1、2取下蛇簧检查其有无裂纹和磨损情况。
- 3、4、1、3 两半联轴器拆卸应使用专用工具: 检查其有无裂纹和齿牙磨损情 况。
 - 3、4、2装配与机组找正
 - 3、4、2、1 外壳若有裂纹应更换, 更换密封件。
 - 3、4、2、2弹簧若有断裂或永久变形应更换,新件结构尺寸符合图样要求。
- 3、4、2、3两半联轴器齿牙若有断齿或磨损减薄量至原齿厚 1/4, 应更换, 新件结构尺寸符合图纸要求。
- 3、4、2、4 清洗轴端和联轴器组件,半联轴器与轴配合采用 H7/k6.装配采用 热装或压装。
 - 3、4、2、5 弹簧嵌入齿间后加注润滑脂。
- 3、4、2、6 联轴器两轴对中偏差为: 径向圆跳动偏差小于 0. 2mm, 端面圆 跳动偏差应小于 1mm/m, 联轴器端面间隙 4~10mm。
 - 3、5 齿形联轴器
 - 3、5、1 拆卸与检查
 - 3、5、1、1 拆卸中间接筒,连接螺栓螺母应做好标记配套存放。
 - 3、5、1、2取下内齿圈检查内外齿,齿面磨损腐蚀和点蚀情况。
- 3、5、1、3必要时拆卸联轴器轮毂(外齿套),无键连接的轮毂拆卸时轴头 应加设挡板,防止轮毂弹出伤人,拆卸轮毂的油压缓缓升高,最高油压不能超过 规定的允许值。键联接的轮毂拆卸时应使用专用工具。
 - 3、5、2 装配与机组找正
- 3、5、2、1 轮毂(外齿套)与轴装配。无键轮毂装配时应检查轴孔与轴的 接触情况,接触面积应不 小于80%,不够时应修整轴孔,轮毂装配应采用热装 法,轮毂投入轴端的距离必须达到规定值,有键轮毂与轴配合采用 H7/s6,装配 采用热装或压装。
 - 3、5、2、2 轮毂(外齿套)装到轴上后,检查轮毂径向跳动见表9 그는 표미 마상 소나 만만 소시 흐마스가 그는 다리 다마 그나

衣9	囚至联制益牝靫侄門圆跳列			
000	2000~5000	1000~2000	500 ~100	

转速/(r/min)	≥5000	2000~5000	1000~2000	500~1000	≤500
径向圆跳动	0. 01	0. 015	0. 02	0. 03	0. 05

- 3、5、2、3装上内齿圈,内齿与外齿配合不能有卡涩现象,回装中间套筒前, 对内存润滑脂的联轴器要加好润滑脂,螺栓、螺母、垫圈应按标记配套回装。
- 3、5、2、4 强制连续润滑的联轴器应疏通排油孔, 内存润滑剂的联轴器应 按规定数量注入润滑剂。

3、5、2、5 联轴器两轴对中见表 10.

表 10 齿形联轴器两轴对中

直径/mm	端面圆跳动/(mm/m)	径向圆跳动/mm
150~300	<0. 5	<0. 05
300~500	<0. 5	<0. 10

3、5、3 常见故障与处理

齿型联轴器常见故障与处理见表 11。

- 3、6 叠片弹性联轴器
- 3、6、1 拆卸与检查

表 11 齿型轴轴器常见故障与处理

序号	故障现象	故障原因	处理方法	
1	齿面磨损	对中偏差过大, 齿	重新对中	
		面相对位移大	选用合适材质,齿	
		材料不符合要求,	面硬度处理后	
		齿面硬度低	HRC 在 50~60 左	
		润滑不充分,干	右	
		磨,油质不清洁	检查油系统,更换	
		齿型设计不合	或过滤润滑油	
		理加工精度不高,	选用性能好的鼓	
		联轴器轮毂安装	型齿, 按要求安	
		过盈过大,引起内	装,检查内外齿径	
		外齿径向间隙过	向间隙	
		小等	更换润滑油	
		油质差,油中含		
		有机酸或硫化物		

- 3、6、1、1 拆卸螺栓、垫圈、螺母应做好标记,配套存放,若有损坏应全部更换。
 - 3、6、1、2 检查叠片有无裂纹和变形情况。
 - 3、6、1、3 检查中心环组件有无损坏。
 - 3、6、1、4轮毂拆卸时应使用专用工具,检查轮毂磨损情况。
 - 3、6、2 装配与机组找正
 - 3、6、2、1清洗所有部件,检查两轴端及两轮毂孔应光滑无毛刺。
 - 3、6、2、2轮毂与轴配合采用 H7/k6,装配时采用热装或压装。
- 3、6、2、3 叠片应无裂纹和永久性变形,若需更换应成套更换,叠片应按原位回装到中心环组件上。
 - 3、6、2、4螺栓组应按标记原位回装。
- $3 \times 6 \times 2 \times 5$ 联轴器两轴的对中: 径向圆跳动偏差小于 0.10mm,端面圆跳动应小于 0.5mm/m。
 - 3、7调整两轴对中的注意事项
- 3、7、1 机器进入正常运行时,若由于机器温度变化等因素引起两半联轴器产生相对位移,则在确定两轴的对中数值时应根据设计要求予以考虑。
- 3、7、2 联轴器对中时,电动机下边的垫片每组不得超过四块,调整垫片应选用不锈钢和铜片,表面不能有毛刺。
 - 3、7、3对中所用表架必须有足够的刚度。

- 3、7、4 用双表调整时,两轴应同步转动,并应克服轴向串动的影响。
- 3、7、5 径、轴向百分表读数(见图1)应符合下列关系式:

 $a_1+a_3=a_2+a_4$ $a_1+b_3=b_2+b_4$

图 1 径、轴向百分表读数

a1、a2、a3、a4—径向表读数; b1、b2、b3、b4—轴向表读数

- 3、7、6 调整联轴器对中时,不允许用调整螺栓松紧的办法。
- 4 机械密封
- 4、1 检验与质量标准
- 4、1、1 动环与静环
- 4、1、1、1 密封端面要光洁明亮,无崩边、点坑、沟槽、划痕、裂纹等缺陷。
- 4、1、1、2 密封端面平面度允差: 对于液相介质为 0. 0006~0. 0009mm; 对于气相介质为 0. 0001~0. 0004mm (光波干涉法校验)。
 - 4、1、1、3 密封端面粗糙度:对于金属材料应不大于 Ra0.4。
 - 4、1、1、4与辅助密封圈接触部位的粗糙度应不大于 Ral. 6。
 - 4、1、1、5 动、静环的尺寸、形位公差应符合设计图样的规定。
 - 4、1、2 辅助密封元件
 - 4、1、2、1 橡胶 O 形圈
 - a、橡胶材质应符合设计的图样的规定。
 - b、O 形圈光滑平整,不得存在凹凸不平、气泡、杂质等缺陷及老化迹

象。

- c、O 形圈分型面应采用 45°,端面尺寸均匀,飞边径向长不大于 0.10m、厚不大于 0.15m。
 - d、橡胶硬度和允许永久变形量应符合 ZB J22 002-99 标准。
 - e、O形圈尺寸公差应符合 ZBJ22002 标准。
 - f、O形圈一般不重复使用。
- 4、1、2、2 对于橡胶波纹管辅助密封,表面应光滑平整,不得有气泡、杂质、 凸凹不平等缺陷及老化迹象。
 - 4、1、2、3 聚四氟乙烯(包括填充聚四氟乙烯密封圈)
- a、对于 O 形圈,表面粗糙度应不大于 Ra1.6,尺寸公差符合设计图样的规定。
- b、对于 V 形圈,唇口表面粗糙度不大于 Ra1.6,唇边厚不大于 0.10mm,内径尺寸公差为 H9,外径尺寸公差为 h9。
- c. 对于 U 形圈,尺寸公差和表面粗糙度均应符合设计图样的规定;对于内有弹簧的 U 形圈,其弹簧弹性完好。
- d. 对于楔形环,表面粗糙度不大于 Ral.6,内径要比轴或轴套的外径小 $0.15\sim0.30$ mm,外锥面半锥角要比其配合面的半锥角小 $1°30'\sim2°$,内锥面半锥角应符合设计图样的规定。
- e.对于波纹管组件,波纹管不能有内凹、裂纹等缺陷,必要时需做水压试验,当密封的工作压力高于 0.30MPa 时,试验压力为 0.50MPa (内压);当密封的工作压力低于 0.30MPa 时,试验压力为 0.30MPa(内压),试验时间为 5min,波纹管不得有破裂或渗漏现象。
- 4.1.2.4 对于氟朔料包橡胶 O 形圈 (朔料常用聚四氟乙烯或聚全氟乙丙烯树脂),包层不得有破裂、脱层或划伤等缺陷及微孔渗漏现象,尺寸精度、表面粗糙度均符合设计图样的规定。
 - 4、1、3 弹性元件
- a.弹簧的材质和各部位位尺寸,工作压力及两端面垂直度等公差值均应符合设计图样的规定。
 - b. 两端面需磨平的弹簧, 磨平部分不少于圆周长的 3/4。
- c.波圈弹簧的受力部位及对应的安装面应光滑平整,当其磨损量超过圆厚的 1/5 时应更换。
 - d.对有绕向要求的弹簧, 其绕向与旋转轴转向相同。
 - e.对于多弹簧机械密封,各弹簧自由高度偏差小于 0.30mm。
 - f.旧弹簧要测量其弹力。弹力减小%20的 要更换。
 - g.具有防腐涂层的弹簧, 其涂层应完好
 - 4、1、3、2 金属波纹管组件
 - a. 金属波纹管内外表面应无异物。
 - b 对于焊接金属波纹管,焊缝应光滑均匀,无明显焊瘤。
 - c 波纹管组件两端面平行度偏差不大于 0.50 mm.
- d 重复使用的波纹管组件,要测量其弹力,弹力减少10%的要进行调整或更换弹性元件。
- e 在水或油中进行气密试验,试验压力(内压)为 0.10-0.20MPa,不得有气泡产生。
 - 4.1.4 传动座与轴或轴套的配合要求应符合设计图样的规定。

- 4.1.5 其他零件的材质、尺寸、精度应符合设计图样的规定。
- 4.1.6 轴与轴套
- 4.1.6.1 轴与轴套的配合要求应符合设计图样的规定,配合处不得有毛刺(包括二者配合所需的键和键槽)。
 - 4.1.6.2 机械密封对轴的静态窜量要求一般小于 0.50 mm, 常用的见表 12.
- 4.1.6.3 轴或轴套在密封处的静态径向圆跳动偏差见表 13(当表中规定指标低于制造厂标准时,按制造厂标准执行。)

表 12 常见机械密封对轴的静态窜量 mm

设备类型	轴的轴向窜量
釜的搅拌轴	≤0.5
Sundyne LMV 高速部分流泵	0.38 ± 0.05
转数在 3000r/min 以内的普通离心泵及	≤0.1
类似旋转机械	

表 13 轴或轴套在密封处的静态径向圆跳动偏差

设备类型	轴承	径向圆跳动
釜的搅拌轴	20-80	≤0.4
	80-130	≤0.6
转数在 3000r/min 以内的普	10-50	≤0.04
通离心泵及类似旋转机械	50-120	≤0.06

4.1.6.4 安装动环辅助密封圈的轴或轴套端部倒角按图 2 的规定。

图2 安装动环辅助密封圈的轴或轴套端部倒角

- 4.1.6.5 高速旋转机械的转子组件必要时要进行整体动平衡校验。
- 4.1.6.6 安装机械密封处的轴或轴套表面不应有轴向划伤,表面粗糙度为1.6-0.4,磨损的轴或轴套,可用表面堆焊、喷涂、电镀等方法修复。
- 4.1.7 密封端盖
- 4.1.7.1 与静环辅助密封圈接触的表面应无毛刺、轴向划伤、腐蚀等迹象, 其表面粗糙度应不大于 3.2.
- 4..1.7.2 安装静环辅助密封圈的端盖或壳体内孔的端部按图 3 和表 14 的规定。

图3 静环辅助密封圈的安装尺寸

- 4.1.7.3 防转销与端盖装配应牢固可靠。
- 4.2 修理与质量标准
- 4.2.1 对于符合下列条件的动、静环应通过研磨修复。
- 4.2.1.1 石墨、填充聚四氟乙烯、青铜材质的密封环, 其密封端面总的磨损量不大于 1 mm.
- 4.2.1.2 镶嵌或整体硬质合金密封环,其密封端面总的磨损量不大于 0.50 mm.
- 4.2.2 对于防转槽损坏的静环,可在对面或其他位置重新开槽。
- 4.2.3 修复后的动、静环应符合本标准中第 4.1.1 条的规定。
- 4.3 安装与质量标准
- 4.3.1 预装
- 4. 3.1.1 把符合本标准中第 4.1 条的机械密封零件清洗干净,密封面应用镜头纸擦拭;橡胶辅助密封不允许用能溶解该种橡胶的溶剂清洗。
- 4.3.1.2 依次组装好动、静环等零件。
- 4.3.1.3 用手压迫动环或静环组件(密封端面应垫镜头纸以防手直接接触), 组件的浮动应无卡涩感,对于带有卡环结构的,卡环锁定应可靠。
- 4.3.1.4 安装 O 形圈时应涂润滑油。
- 4.3.2 组装
- 4.3.2.1 将轴或轴套、密封腔体、密封端盖及过滤器、冲洗管、换热器等密封辅助系统清洗干净并妥善保护,必要时更换过滤元件。

- 4.3.2.2 轴或轴套上安装机械密封的表面、密封端盖内表面均要薄薄涂上一层润滑油。
- 4.3.2.3 机械密封压缩量要符合制造厂的规定,安装偏差±0.50 mm;对于端面修复或弹力减小的密封,必要时应进行调整,以保证规定的压缩量。
- 4.3.2.4 推进动、静环时,应用镜头纸保护密封端面,推力应平缓,不得施加冲击压力,当密封是用弹簧传递扭矩时,应沿弹簧绕向旋进。
- 4.3.2.5 动环固定环与轴垂直度偏差不大于 0.05 mm, 调整后要可靠固定。
- 4.3.2.6 静环组件的销槽必须对准防转销,安装后经测量确认到位。
- 4.4 检验与质量标准
- 4.4.1 可单独试压的机械密封,在往主机上装配前应进行打压试验;对于双端面密封,当密封工作压力在1.60MPa以内的,可在水中进行气密性试验,压力一般为0.30-0.50MPa,以不产生连续性气泡为合格;对于单端面机械密封,进行水压试验,试验压力一般为密封工作压力的1.25倍,以不漏为合格。
- 4.4.2 总装后盘车手感轻松,无卡涩现象,对于弹簧传递扭矩的密封,盘车方向应与泵的工作方向相同。
- 4.4.3 冲洗、冷却、过滤等辅助系统应装配无误。
- 4.4.4 充夜检查密封,以基本无泄露为合格。
- 4.4.5 设备应连续运转 3h, 机械密封运转平稳, 声音, 温度无异常; 机、泵的密封平均泄漏量应符合表 15 规定。釜用密封平均泄露量应符合表 16 规定(允许下不受表中数值的限制)。

表 16 釜用密封平均泄漏量

m1/h

, ,, , , , , , , , , , , , , , , ,				
釜用机械密封型式	平均泄露量			
双端面机械密封	≤10			
单端面机械密封	不产生连续气泡			

4.5 常见故障与处理(见表 17)

常见故障与处理

	10.00000000000000000000000000000000000				
序号	故障现象	故障原因	处理方法		
1	进料或静压时泄	密封端面损坏	修理或更换动静		
	露	密封圈损坏	环		
		动静环端面有异	更换损坏的密封		
		物	卷		
		动、静环"V"形圈	清理密封腔体,去		
		方向装反动、静环	除异物; 检查密封		
		密封面未完全贴	面是否研伤,若研		
		合	伤则更换		
			按正确方向重新		
			装配		
			重新安装		
2	进料或静压时有	弹簧力不均	更换弹簧		
	方向的泄露	密封端面与轴的	调整		
		垂直度不负荷要			
		求			

3	运转时经常性泄露	端起形摩环摩弹封密有其动套影安轴有面的 擦变擦簧液封方旋、间响装或划压封 起 脱压圈向向静结补密轴 医上力老性不坏垢偿封套过端 动 人 次弹 或晶 处合大面、 小 溶弹 或晶 处合引变 静 或 胀簧 轴,的面	减保封修环增更更清清 密
4	运转时周期性泄露	转子组件轴向窜 动量过大 联轴节找正不好 造成周期性振动 转子不平衡	调整,使轴向窜量 符合要求重新找 正 检查清洗叶轮 叶轮及转子进行 静动、平衡
5	运转时突发性泄露	弹簧断裂 防转销脱落 封液不足,密封件 损坏 因结晶导致密封 面损坏 端面比压过大,石 墨环损坏	更换 重新装配 检查封液系统,更 换密封件 调整工艺,更换密 封件 减小比压,更换石 墨环
6	停用一段时间再 开动时发生泄露	堂皇锈蚀 弹簧卡死 介质在摩擦副附 近凝固或结晶	更换 清洗或更换 检修