b) Produits scalaires sur $C^0([a;b],\mathbb{R})$

Ex. 22.3 (Cor.) Soient $a, b \in \mathbb{R}$ (avec a < b) et h une fonction continue et strictement positive sur [a; b].

Montrer que l'application qui à deux fonctions f et g continues sur [a;b] associe

$$(f|g) = \int_{a}^{b} f(t)g(t)h(t)dt$$

est un produit scalaire.

Définition 22.5

Soient $a, b \in \mathbb{R}$.

On appelle **produit scalaire canonique** sur le \mathbb{R} -espace vectoriel $\mathcal{C}^0([a;b],\mathbb{R})$ l'application qui à tout couple $(u,v)\in (\mathcal{C}^0([a;b],\mathbb{R}))^2$ associe

$$(u|v) = \int_{a}^{b} u(t)v(t)dt$$

<u>Ex. 22.4</u> (Cor.) Dans $\mathbb{R}_3[X]$ on donne les polynômes $P_0 = 1, P_1 = X, P_2 = 3X^2 - 1$ et $P_3 = 5X^3 - 3X$.

- 1) Calculer pour $i, j \in [0; 3], (P_i | P_j) = \int_{-1}^{1} P_i(t) P_j(t) dt$.
- 2) En déduire les coordonnées de $Q = X^3 + X^2 X + 2$ dans la base $\mathcal{B} = (P_0; P_1; P_2; P_3)$. Remarque : ces polynômes sont appelés **polynômes de Legendre**.

III. Norme associée à un produit scalaire

III.1. Définition

Définition 22.6 (Norme sur un espace préhilbertien réel)

On appelle norme associée à un produit scalaire $(\cdot|\cdot)$ sur un \mathbb{R} -espace préhilbertien E l'application définie par

$$N: \begin{cases} E \to \mathbb{R}_+ \\ u \mapsto N(u) = \sqrt{(u|u)} \end{cases}$$

Notation

La norme d'un vecteur u est notée ||u||.

Ex. 22.5 (Cor.) Soient u et v deux vecteurs d'un espace préhilbertien réel.

- 1) Écrire $||u \pm v||^2$ en fonction de ||u||, ||v|| et (u|v).
- 2) En déduire trois expressions de (u|v) ne faisant intervenir que $||u \pm v||$, ||u|| et ||v||.

Remarques

- La positivité du produit scalaire garantit l'existence de la norme.
- La définition du produit scalaire implique que $||u|| = 0 \Leftrightarrow u = 0$.

III.2. Inégalité de Cauchy-Schwarz

Théorème 22.7 (Inégalité de Cauchy-Schwarz)

Quels que soient les vecteurs u et v d'un \mathbb{R} -espace préhilbertien, on a

$$|(u|v)| \leqslant ||u|| \, ||v||$$

De plus, il n'y a égalité que si les vecteurs u et v sont colinéaires.

Démonstration

Considérons la fonction $f: \lambda \in \mathbb{R} \mapsto ||u + \lambda v||^2$.

 $f(\lambda) = ||u||^2 + 2\lambda (u|v) + \lambda^2 ||v||^2 \ge 0$ quel que soit la valeur de λ (puisque le carré d'une norme est toujours positif).

Le discriminant de ce polynôme du second degré en λ est donc négatif.

$$\Delta = 4 (u|v)^2 - 4 ||u||^2 ||v||^2 \leqslant 0.$$

D'où l'on tire l'inégalité annoncée.

De plus, si $f(\lambda) = 0$, alors $\Delta = 0$ (l'équation possède une solution) et, ou bien ||v|| = 0 et u et v sont colinéaires, ou bien $||v|| \neq 0$ et $f(\lambda_0) = 0$ pour $\lambda_0 = \frac{-(u|v)}{||v||^2}$.

On a donc $u + \lambda_0 v = 0$ donc u et v sont encore colinéaires.

Ex. 22.6 (Cor.) Écrire la définition de la norme et l'inégalité de Cauchy-Schwarz pour les produits scalaires canoniques de \mathbb{R}^n et de $\mathcal{C}^0([a;b],\mathbb{R})$.