Mathematics of Isogeny-based Cryptography

Luca De Feo

IBM Research, Zürich

September 16, 2019 Isogeny-based Cryptography Workshop Birmingham

Slides online at https://defeo.lu/docet

Projective space

Definition (Projective space)

Let \bar{k} an algebraically closed field, the projective space $\mathbb{P}^n(\bar{k})$ is the set of non-null (n+1)-tuples $(x_0,\ldots,x_n)\in \bar{k}^n$ modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by $(x_0 : \cdots : x_n)$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

• $\mathcal{O} = (0:1:0)$ is the point at infinity;

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

$$E: y^2 = x^3 - 2x + 1$$

•
$$E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$$

$$E: y^2 = x^3 - 2x + 1$$

- $E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$
- $\#E(\mathbb{Q}(\sqrt{5})) = 8$,

$$E: y^2 = x^3 - 2x + 1$$

- $E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$
- $\#E(\mathbb{Q}(\sqrt{5})) = 8$,
- ..
- $\#E(\mathbb{R}) = \infty$.

$$E: y^2 = x^3 - 2x + 1$$

- $E(\mathbb{Q}) = \{(1,0), (0,1), (0,-1), \mathcal{O}\},\$
- $\#E(\mathbb{Q}(\sqrt{5})) = 8$,
- ..
- $\#E(\mathbb{R}) = \infty$.
- $\#E(\mathbb{C}) = \infty$.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The group law

Bezout's theorem

Every line cuts *E* in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The law is algebraic (it has formulas);

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- O is the group identity;
- Opposite points have the same *x*-value.

What are elliptic curves?

For mathematicians

- The smooth projective curves of genus 1 (with a distinguished point);
- The simplest abelian varieties (dimension 1);
- Finitely generated abelian groups of mysterious free rank (aka BSD conjecture);
- What you use to make examples.

What are elliptic curves?

For mathematicians

- The smooth projective curves of genus 1 (with a distinguished point);
- The simplest abelian varieties (dimension 1);
- Finitely generated abelian groups of mysterious free rank (aka BSD conjecture);
- What you use to make examples.

For cryptographers

- Finite abelian groups (often cyclic);
- Easy to compute the order;
- "2-dimensional" generalizations of μ_k (the roots of unity of k)...
- ...with bilinear maps (aka pairings)!

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \overline{k}$.

They are group isomorphisms.

j-Invariant

Let $E: y^2 = x^3 + ax + b$, its j-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Group structure

Torsion structure

Let E be defined over an algebraically closed field \bar{k} of characteristic p.

$$E[m] \simeq \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$$

if
$$p \nmid m$$
,

$$E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} \ \{\mathcal{O}\} \end{cases}$$

ordinary case, supersingular case.

Finite fields (Hasse's theorem)

Let E be defined over a finite field \mathbb{F}_q , then

$$|\#E(\mathbb{F}_q)-q-1|\leq 2\sqrt{q}.$$

In particular, there exist integers n_1 and $n_2 | \gcd(n_1, q - 1)$ such that

$$E(\mathbb{F}_q)\simeq \mathbb{Z}/n_1\mathbb{Z} imes \mathbb{Z}/n_2\mathbb{Z}.$$

Maps: what's scalar multiplication?

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map E o E ,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$[n]: P \mapsto \underbrace{P + P + \dots + P}_{n \text{ times}}$$

- ullet A map E o E ,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map E o E ,
- a group morphism,
- with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E \!\!\!\!/ E'$,
- a group morphism,
- ullet with finite kernel (the torsion group $E[n] \simeq (\mathbb{Z}/n\mathbb{Z})^2$),
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E\!\!\!\!/ E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree n^2 .

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E\!\!\!\!/ E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree h ? #H.

$$\phi \ : \ P \mapsto \phi(P)$$

- ullet A map $E o E \!\!\!\!/ E'$,
- a group morphism,
- surjective (in the algebraic closure),
- given by rational maps of degree h ? #H.

(Separable) isogenies ⇔ finite subgroups:

$$0 \to H \to E \xrightarrow{\phi} E' \to 0$$

Isogenies: an example over \mathbb{F}_{11}

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

Isogenies: an example over \mathbb{F}_{11}

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Maps: isogenies

Theorem

Let $\phi: E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- ϕ is a surjective group morphism,
- ϕ is a group morphism with finite kernel,
- ϕ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{ll} [m] \; : \; E
ightarrow E, \ P \mapsto [m]P. \end{array}$$

Isogeny lexicon

Degree

- ullet pprox degree of the rational fractions defining the isogeny;
- Rough measure of the information needed to encode it.

Separable, inseparable, cyclic

An isogeny ϕ is separable iff $\deg \phi = \ker \phi$.

- Given $H \subset E$ finite, write $\phi: E \to E/H$ for the unique separable isogeny s.t. $\ker \phi = H$.
- ϕ inseparable $\Rightarrow p$ divides deg ϕ .
- ullet Cyclic isogeny \equiv separable isogeny with cyclic kernel.
 - $\,ullet\,$ Non-example: the multiplication map [m]:E o E.

Rationality

Given E defined over k, an isogeny ϕ is rational if $\ker \phi$ is Galois invariant.

 $\Rightarrow \phi$ is represented by rational fractions with coefficients in k.

The dual isogeny

Let $\phi:E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}:E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E,\quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

- \bullet $\hat{\phi}$ is defined over k if and only if ϕ is;
- ② $\widehat{\psi \circ \phi} = \hat{\phi} \circ \hat{\psi}$ for any isogeny $\psi : E' \to E''$;
- \bullet $\widehat{\psi+\phi}=\hat{\psi}+\hat{\phi}$ for any isogeny $\psi:E o E'$;
- $\hat{\hat{\phi}}=\phi.$

$$j = 1728$$

Isogeny graphs

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field \mathbb{F}_q are isogenous (over \mathbb{F}_q) iff $\#E(\mathbb{F}_q) = \#E'(\mathbb{F}_q)$.

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Isogeny volcanoes

- Curves are ordinary,
- Isogenies all have degree a prime \(\ell\).

What do isogeny graphs look like?

Torsion subgroups (ℓ prime) In an algebraically closed field:

$$E[\ell] = \langle P, Q
angle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

There are exactly $\ell+1$ cyclic subgroups $H\subset E$ of order ℓ :

$$\langle P+Q \rangle, \langle P+2Q \rangle, \ldots, \langle P \rangle, \langle Q \rangle$$

Jl

There are exactly $\ell+1$ distinct isogenies of degree ℓ .

(non-CM) 2-isogeny graph over $\ensuremath{\mathbb{C}}$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\pi(P) = aP + bQ$$

$$\pi(Q) = cP + dQ$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$aP + bQ$$

$$cP + dQ$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\left(egin{aligned} aP+bQ\ cP+dQ \end{aligned}
ight)$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$egin{aligned} \pi: E &\longrightarrow E \ (x,y) &\longmapsto (x^p,y^p) \end{aligned}$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\pi: \left(egin{array}{ccc} a & & b & \ & & & \ c & & d \end{array}
ight) mod \ell$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

$$\pi: \left(egin{array}{ccc} a & & b & \ & & \ c & & d \end{array}
ight) mod \ell$$

We identify $\pi | E[\ell]$ to a conjugacy class in $GL(\mathbb{Z}/\ell\mathbb{Z})$.

Galois invariant proper subgroups of $E[\ell]$ = eigenspaces of $\pi \in \mathrm{GL}(\mathbb{Z}/\ell\mathbb{Z})$ = rational isogenies of degree ℓ

Galois invariant proper subgroups of
$$E[\ell]$$

eigenspaces of
$$\pi \in \operatorname{GL}(\mathbb{Z}/\ell\mathbb{Z})$$

=

rational isogenies of degree ℓ

How many Galois invariant subgroups?

$$ullet$$
 $\pi | E[\ell] \sim \left(egin{smallmatrix} \lambda & 0 \ 0 & \lambda \end{smallmatrix}
ight)$

$$ullet$$
 $\pi|E[\ell]\sim\left(egin{smallmatrix}\lambda&0\0&\mu\end{smallmatrix}
ight)$ with $\lambda
eq\mu$

$$ullet$$
 $\pi|E[\ell]\sim \left(egin{smallmatrix}\lambda & * \ 0 & \lambda\end{smallmatrix}
ight)$

•
$$\pi |E[\ell]$$
 has no eigenvalues in $\mathbb{Z}/\ell\mathbb{Z}$

$$ightarrow oldsymbol{\ell} + 1$$
 isogenies

$$\rightarrow$$
 two isogenies

$$ightarrow$$
 one isogeny

$$\rightarrow$$
 no isogeny

Algebras, orders

- A quadratic imaginary number field is an extension of $\mathbb Q$ of the form $Q[\sqrt{-D}]$ for some non-square D>0.
- A quaternion algebra is an algebra of the form $\mathbb{Q} + \alpha \mathbb{Q} + \beta \mathbb{Q} + \alpha \beta \mathbb{Q}$, where the generators satisfy the relations

$$lpha^2, eta^2 \in \mathbb{Q}, \quad lpha^2 < 0, \quad eta^2 < 0, \quad etalpha = -lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- \mathbb{Z} is the only order contained in \mathbb{Q} ,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}(i)$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}(\sqrt{5})$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

The endomorphism ring

The endomorphism ring $\mathrm{End}(E)$ of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

• \mathbb{Z} , only if p=0

E is ordinary.

 $\bullet\,$ An order ${\mathcal O}$ in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^a:

E is supersingular.

 a (ramified at p and ∞)

The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in $\operatorname{End}(E)$ for some $|t| \leq 2\sqrt{q}$, called the trace of π . The trace t is coprime to q if and only if E is ordinary.

Suppose E is ordinary, then $D_\pi=t^2-4q<0$ is the discriminant of $\mathbb{Z}[\pi]$.

- $K=\mathbb{Q}(\pi)=\mathbb{Q}(\sqrt{D_\pi})$ is the endomorphism algebra of E.
- Denote by \mathcal{O}_K its ring of integers, then

$$\mathbb{Z}
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

In the supersingular case, π may or may not be in \mathbb{Z} , depending on q.

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order $\mathcal{O} \subset K$ can be written as $\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K$ for an integer f, called the conductor of \mathcal{O} , denoted by $[\mathcal{O}_k : \mathcal{O}]$.
- If d_K is the discriminant of K, the discriminant of \mathcal{O} is f^2d_K .
- If \mathcal{O} , \mathcal{O}' are two orders with discriminants d, d', then $\mathcal{O} \subset \mathcal{O}'$ iff d' | d.

Let E, E' be curves with respective endomorphism rings $\mathcal{O}, \mathcal{O}' \subset K$. Let $\phi: E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{split} &\text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ &\text{if } [\mathcal{O}':\mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ &\text{if } [\mathcal{O}:\mathcal{O}'] = \ell, & \phi \text{ is descending.} \end{split}$$

Ordinary isogeny volcano of degree $\ell = 3$.

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

 $\left(\frac{D_K}{\ell}\right) = -1$

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	ℓ
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, D_K : discriminant of K.

$$\mathsf{Height} = \mathit{v}_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$$

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K : \mathcal{O} ight] ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{\boldsymbol{\ell}}$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

$$\mathsf{Height} = v_\ell([\mathcal{O}_K : \mathbb{Z}[\pi]]).$$

How large is the crater?

$$\begin{array}{|c|c|c|c|c|c|} \hline & & & \textbf{Horizontal} & \textbf{Ascending} & \textbf{Descending} \\ \hline \ell \nmid [\mathcal{O}_K : \mathcal{O}]] & \ell \nmid [\mathcal{O} : \mathbb{Z}[\pi]] & 1 + \left(\frac{D_K}{\ell}\right) \\ \ell \nmid [\mathcal{O}_K : \mathcal{O}]] & \ell \mid [\mathcal{O} : \mathbb{Z}[\pi]] & 1 + \left(\frac{D_K}{\ell}\right) & \ell - \left(\frac{D_K}{\ell}\right) \\ \ell \mid [\mathcal{O}_K : \mathcal{O}]] & \ell \mid [\mathcal{O} : \mathbb{Z}[\pi]] & 1 & \ell \\ \ell \mid [\mathcal{O}_K : \mathcal{O}]] & \ell \nmid [\mathcal{O} : \mathbb{Z}[\pi]] & 1 & \ell \\ \hline \end{array}$$

How large is the crater of a volcano?

Let
$$\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$$
. Define

- \bullet $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

The class group

The class group of \mathcal{O} is

$$Cl(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

The a-torsion

- Let $\mathfrak{a} \subset \mathcal{O}$ be an (integral invertible) ideal of \mathcal{O} ;
- Let $E[\mathfrak{a}]$ be the subgroup of E annihilated by \mathfrak{a} :

$$E[\mathfrak{a}] = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \};$$

ullet Let $\phi: E
ightarrow E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$.

Then $\operatorname{End}(E_{\mathfrak a})=\mathcal O$ (i.e., ϕ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by \mathcal{O} defined by $\mathfrak{a}*j(E)=j(E_{\mathfrak{a}})$ factors through $\mathrm{Cl}(\mathcal{O})$, is faithful and transitive.

Corollary

Let $\operatorname{End}(E)$ have discriminant D. Assume that $\left(\frac{D}{\ell}\right)=1$, then E is on a crater of size N of an ℓ -volcano, and $N|h(\operatorname{End}(E))$

Complex multiplication graphs

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

— degree 2

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
 - degree 3

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
 - degree 5

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
- degree 5

Isomorphic to a Cayley graph of $Cl(\mathcal{O}_K)$.

Supersingular endomorphisms

Recall, a curve E over a field \mathbb{F}_q of characteristic p is supersingular iff

$$\pi^2 - t\pi + q = 0$$

with $t = 0 \mod p$.

Case:
$$t=0$$
 \Rightarrow $D_{\pi}=-4q$

- ullet Only possibility for E/\mathbb{F}_p ,
- ullet E/\mathbb{F}_p has CM by an order of $\mathbb{Q}(\sqrt{-p})$, similar to the ordinary case.

Case:
$$t=\pm 2\sqrt{q}$$
 \Rightarrow $D_{\pi}=0$

- General case for E/\mathbb{F}_q , when q is an even power.
- $\pi = \pm \sqrt{q}$, hence no complex multiplication.

We will ignore marginal cases: $t = \pm \sqrt{q}, \pm \sqrt{2q}, \pm \sqrt{3q}$.

Supersingular complex multiplication

Let E/\mathbb{F}_p be a supersingular curve, then $\pi^2=-p$, and

$$\pi = \left(egin{array}{cc} \sqrt{-p} & 0 \ 0 & -\sqrt{-p} \end{array}
ight) \mod oldsymbol{\ell}$$

for any ℓ s.t. $\left(\frac{-p}{\ell}\right)=1$.

Theorem (Delfs, Galbraith 2016)

Let $\operatorname{End}_{\mathbb{F}_p}(E)$ denote the ring of \mathbb{F}_p -rational endomorphisms of E. Then

$$\mathbb{Z}[\pi] \subset \operatorname{End}_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p}).$$

Orders of $\mathbb{Q}(\sqrt{-p})$

- ullet If p=1 mod 4, then $\mathbb{Z}[\pi]$ is the maximal order.
- If $p=-1 \mod 4$, then $\mathbb{Z}[\frac{\pi+1}{2}]$ is the maximal order, and $[\mathbb{Z}[\frac{\pi+1}{2}]:\mathbb{Z}[\pi]]=2$.

Supersingular CM graphs

All other ℓ -graphs are cycles of horizontal isogenies iff $\left(\frac{-p}{\ell}\right)=1$.

The full endomorphism ring

Theorem (Deuring)

Let E be a supersingular elliptic curve, then

- E is isomorphic to a curve defined over \mathbb{F}_{p^2} ;
- Every isogeny of E is defined over \mathbb{F}_{p^2} ;
- Every endomorphism of E is defined over \mathbb{F}_{p^2} ;
- End(E) is isomorphic to a maximal order in a quaternion algebra ramified at p and ∞ .

In particular:

- If E is defined over \mathbb{F}_p , then $\operatorname{End}_{\mathbb{F}_p}(E)$ is strictly contained in $\operatorname{End}(E)$.
- Some endomorphisms do not commute!

An example

The curve of j-invariant 1728

$$E: y^2 = x^3 + x$$

is supersingular over \mathbb{F}_p iff $p=-1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E)=\mathbb{Z}\langle\iota,\pi
angle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

•
$$j = 1728$$

Quaternion algebra?! WTF?²

The quaternion algebra $B_{p,\infty}$ is:

- A 4-dimensional \mathbb{Q} -vector space with basis (1, i, j, k).
- A non-commutative division algebra $B_{p,\infty}=\mathbb{Q}\langle i,j\rangle$ with the relations:

$$i^2=a$$
, $j^2=-p$, $ij=-ji=k$,

for some a < 0 (depending on p).

- All elements of $B_{p,\infty}$ are quadratic algebraic numbers.
- $B_{p,\infty} \otimes \mathbb{Q}_{\ell} \simeq \mathcal{M}_{2 \times 2}(\mathbb{Q}_{\ell})$ for all $\ell \neq p$. I.e., endomorphisms restricted to $E[\ell^e]$ are just 2×2 matrices $\text{mod} \ell^e$.
- $B_{p,\infty}\otimes\mathbb{R}$ is isomorphic to Hamilton's quaternions.
- $B_{p,\infty} \otimes \mathbb{Q}_p$ is a division algebra.

¹All elements have inverses.

²What The Field?

Supersingular graphs

- Quaternion algebras have many maximal orders.
- For every maximal order type of $B_{p,\infty}$ there are 1 or 2 curves over \mathbb{F}_{p^2} having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_p$ of size $\approx p/12$.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell+1)$ -regular.

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.

k-regular: All vertices have degree k.

Connected: There is a path between any two vertices.

Distance: The length of the shortest path between two vertices.

Diameter: The longest distance between two vertices.

 $\lambda_1 \ge \cdots \ge \lambda_n$: The (ordered) eigenvalues of the adjacency matrix.

Expander graphs

Proposition

If G is a k-regular graph, its largest and smallest eigenvalues satisfy

$$k = \lambda_1 \ge \lambda_n \ge -k$$
.

Expander families

An infinite family of connected k-regular graphs on n vertices is an expander family if there exists an $\epsilon>0$ such that all non-trivial eigenvalues satisfy $|\lambda|\leq (1-\epsilon)k$ for n large enough.

- Expander graphs have short diameter $(O(\log n))$;
- Random walks mix rapidly (after O(log n) steps, the induced distribution on the vertices is close to uniform).

Expander graphs from isogenies

Theorem (Pizer)

Let ℓ be fixed. The family of graphs of supersingular curves over \mathbb{F}_{p^2} with ℓ -isogenies, as $p\to\infty$, is an expander family^a.

^aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, Venkatesan)

Let $\mathcal{O}\subset\mathbb{Q}(\sqrt{-D})$ be an order in a quadratic imaginary field. The graphs of all curves over \mathbb{F}_q with complex multiplication by \mathcal{O} , with isogenies of prime degree bounded^a by $(\log q)^{2+\delta}$, are expanders.

^aMay contain traces of GRH.

Executive summary

- Separable ℓ -isogeny = finite kernel = subgroup of $E[\ell]$,
 - eigenspace of π iff \mathbb{F}_q -rational,
 - distinct eigenvalues $\lambda \neq \mu$ define distinct directions on the crater.
- Isogeny graphs have j-invariants for vertices and "some" isogenies for edges.
- By varying the choices for the vertex and the isogeny set, we obtain graphs with different properties.
- ℓ -isogeny graphs of ordinary curves are volcanoes, (full) ℓ -isogeny graphs of supersingular curves are finite $(\ell+1)$ -regular.
- CM theory naturally leads to define graphs of horizontal isogenies (both in the ordinary and the supersingular case) that are isomorphic to Cayley graphs of class groups.
- \bullet CM graphs are expanders. Supersingular full $\ell\text{-isogeny}$ graphs are Ramanujan.

Weil pairing

Let
$$(N, p) = 1$$
, fix any basis $E[N] = \langle R, S \rangle$. For any points $P, Q \in E[N]$

$$P = aR + bS$$

 $Q = cR + dS$

the form $\det_N(P,Q) = \det\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) = ad - bc \in \mathbb{Z}/N\mathbb{Z}$ is bilinear, non-degenerate, and independent from the choice of basis.

Theorem

Let E/\mathbb{F}_q be a curve, there exists a Galois invariant bilinear map

$$e_N: E[N] \times E[N] \longrightarrow \mu_N \subset \overline{\mathbb{F}}_g$$

called the Weil pairing of order N , and a primitive N-th root of unity $\zeta\in \bar{\mathbb{F}}_q$ such that

$$e_N(P,Q)=\zeta^{\det_N(P,Q)}.$$

The degree k of the smallest extension such that $\zeta\in\mathbb{F}_{q^k}$ is called the embedding degree of the pairing.

Weil pairing and isogenies

Note

The Weil pairing is Galois invariant $\Leftrightarrow \det(\pi|E[N]) = q$.

Theorem

Let $\phi: E \to E'$ be an isogeny and $\hat{\phi}: E' \to E$ its dual. Let e_N be the Weil pairing of E and e'_N that of E'. Then, for

$$e_N(P,\hat{\phi}(Q))=e_N'(\phi(P),Q),$$

for any $P \in E[N]$ and $Q \in E'[N]$.

Corollary

$$e_N'(\phi(P),\phi(Q))=e_N(P,Q)^{\deg\phi}.$$