# Colle 4

## Techniques algébriques, nombres complexes

- ► Après votre colle, il vous est demandé de reprendre les exercices traités et de les rédiger sur feuille. Ce travail est à déposer dans la boîte en B013 avant mercredi prochain.
- Vous trouverez le sujet et des indications sur la page ci-contre.



## Techniques algébriques

#### Exercice 4.1

Soit 
$$n \in \mathbb{N}^*$$
. Calculer la somme : 
$$\sum_{k=1}^n \frac{1}{(k+1)\sqrt{k} + k\sqrt{k+1}}.$$

#### Exercice 4.2

Soit  $n \in \mathbb{N}$ . Montrer que le nombre  $\left(1-\sqrt{2}\right)^{2n}+\left(1+\sqrt{2}\right)^{2n}$  est un entier naturel pair.

$$\left(1-\sqrt{2}\right)^{2n} + \left(1+\sqrt{2}\right)^{2n}$$

#### Exercice 4.3

**1.** Soient  $x, y \in \mathbb{R}$ . Calculer :

$$\left(x^2 + xy + \frac{y^2}{2}\right)\left(x^2 - xy + \frac{y^2}{2}\right).$$

**2.** Soit  $n \in \mathbb{N}^*$ . Calculer la somme :

$$\sum_{k=1}^{n} \frac{4k}{4k^4 + 1}.$$

### Exercice 4.4

Soient  $n, p, q \in \mathbb{N}$  vérifiant  $n \leq p + q$ .

Exprimer, à l'aide d'un seul coefficient binomial,

la somme 
$$\sum_{k=0}^{n} \binom{p}{k} \binom{q}{n-k}$$
.

### Exercice 4.5

Pour  $n \in \mathbb{N}^*$ , on pose  $H_n := \sum_{k=1}^n \frac{1}{k}$ .

Montrer que :

$$\forall n \in \mathbb{N}^*, \ \mathsf{H}_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k} \binom{n}{k}.$$

### Exercice 4.6

**1.** Soit  $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$ . On pose, pour  $n\in\mathbb{N}$ ,

$$b_n := \sum_{k=0}^n \binom{n}{k} a_k.$$

Montrer que :

$$\forall n \in \mathbb{N}, \quad a_n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} b_k.$$

**2.** Soit  $(d_n)_{n\in\mathbb{N}}$  telle que

$$\forall n \in \mathbb{N}, \quad n! = \sum_{k=0}^{n} {n \choose k} d_k.$$

Montrer que :

1

$$\forall n \in \mathbb{N}, \quad d_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}.$$

## **Nombres complexes**

## Exercice 4.7

Pour  $z \in \mathbb{C}^*$ , on définit  $f(z) \coloneqq \frac{\overline{z}}{z}$ .

**1.** Déterminer :

$$\left\{z\in\mathbb{C}\quad\middle|\quad f(z)\in\mathbb{R}\right\}\quad \mathrm{et}\quad \left\{z\in\mathbb{C}\quad\middle|\quad f(z)\in\mathrm{i}\mathbb{R}\right\}.$$

**2.** Soit  $z \in \mathbb{C}$ . Déterminer  $f(\overline{z})$ .

## Exercice 4.8

Soient  $a, b \in \mathbb{C}$ .

**1.** Montrer que :

$$|a| + |b| \le |a + b| + |a - b|.$$

2. Étudier le cas d'égalité.

#### Exercice 4.9

On définit l'application

$$\mathsf{d}: \begin{vmatrix} \mathbb{C} \times \mathbb{C} & \longrightarrow & \mathbb{R} \\ (z_1, z_2) & \longmapsto & \frac{|z_1 - z_2|}{1 + |z_1 - z_2|}. \\ \mathsf{Soient} \ z_1, z_2, z_3 \in \mathbb{C}. \ \mathsf{Montrer} \ \mathsf{que} : \end{vmatrix}$$

$$d(z_1, z_3) \leqslant d(z_1, z_2) + d(z_2, z_3).$$

#### Exercice 4.10

**1.** Montrer que :

$$\forall x, y \in \mathbb{R}_+, \quad \sqrt{xy} \leqslant \frac{x+y}{2}.$$

- **2.** Soient  $a, b \in \mathbb{C}$ .
  - (a) Montrer que :

$$|a-b|^2 \le (1+|a|^2)(1+|b|^2).$$

(b) Étudier le cas d'égalité.