Тема: Полнота множества вещественных чисел и её следствия

 2^0 . Последовательность стягивающихся отрезков (аксиома непрерывности Кантора). 3^0 . Теорема Больцано-Вейерштрасса о существовании сходящийся подпоследовательности в ограниченной последовательности. 4^0 . Частичные пределы ограниченных последовательностей. Верхний и нижний пределы. Верхний предел неограниченной сверху последовательности. Критерий существования предела последовательности в терминах верхнего и нижнего пределов. 5^0 . Необходимость условия Коши для сходящейся числовой последовательности. Теорема о сходимости фундаментальной последовательности. Критерий Коши. 6^0 . Расходимость частичных сумм гармонического ряда. 7^0 . Критерий сходимости последовательности частичных сумм ряда из обратных степеней.

 2^0 . Среди всевозможных последовательностей вложенных отрезков выделяются *стягивающиеся*.

Определение. Последовательность вложенных отрезков $[a_n, b_n]$ называется стягивающейся, если последовательность $L_n = b_n - a_n$ их длин стремится к нулю:

$$\lim_{n\to\infty} (b_n - a_n) = 0.$$

Теорема (аксиома непрерывности Кантора). Любая последовательность стягивающихся отрезков числовой прямой имеет единственную общую точку.

 \mathcal{A} оказательство. По предыдущей теореме найдется отрезок [a, b] такой, что

$$[a, b] \subset [a_n, b_n], \quad n = 1, 2, \dots$$

При этом $a_n\leqslant a$ и $b\leqslant b_n$ для всех n=1,2,.... Следовательно,

$$0 \leqslant b-a \leqslant b_n-a_n, \quad n=1,2,\ldots.$$

Переходя здесь к пределу при $n \to \infty$, получаем b = a. Это и есть точка, общая для всех стягивающихся отрезков.

Докажем, что общих точек, отличающихся от точки b=a, у отрезков $[a_n,\,b_n]$, n=1,2,...,

нет. Предположим противное, пусть $c \in [a_n, \, b_n]$ для всех n=1,2,... и при этом $c \neq a=b$.

Если c < a = b, то справедливо $a_n \leqslant c < b$. Следовательно, отрезок [c,b] вложен в отрезок $[a_n,b_n]$ и поэтому имеют место неравенства

$$0 < b - c \leqslant b_n - a_n, \quad n = 1, 2, \ldots$$

Переходя здесь к пределу при $n \to \infty$ получа- ем противоречие условию, что отрезки стя-гиваются.

Аналогично, если c>a=b, то справедливо $a< c\leqslant b_n$. Следовательно, отрезок [a,c] вложен в отрезок $[a_n,b_n]$ и поэтому имеют место неравенства

$$0 < c - a \leqslant b_n - a_n, \quad n = 1, 2, \ldots$$

Переходя здесь к пределу при $n \to \infty$ снова приходим к противоречию условию, что отрезки стягиваются.

Таким образом, любая последовательность стягивающихся отрезков сжимается в некоторую точку на числовой прямой.

Множество \mathbb{Q} рациональных чисел, в отличие от числовой прямой \mathbb{R} , свойством непрерывности Кантора не обладает. Пусть, например, a_n обозначает нижнее десятичное приближение числа $\sqrt{2}$, а b_n — верхнее его

десятичное приближение. Тогда $[a_n, b_n]$ — последовательность стягивающихся отрезков. При этом не существует рационального числа $q \in \mathbb{Q}$, принадлежащего пересечению

$$\bigcap_{n=1}^{\infty} [a_n, b_n].$$

Отрезки $[a_n, b_n]$ стягиваются в точку $\sqrt{2}$ из \mathbb{R} , которая рациональным числом не является.

 3^0 . Как уже доказано, всякая сходящаяся последовательность ограничена.

Обратное неверно: $x_n = (-1)^n$ — это ограниченная последовательность, которая не сходится.

При этом сходится ее подпоследовательность $x_{2n}=1,\, n=1,2,\ldots$, а также подпоследовательность $x_{2n+1}=-1.$

Теорема (Больцано—Вейерштрасса). Любая ограниченная последовательность вещественных чисел содержит в себе сходящуюся подпоследовательность.

 \mathcal{A} оказательство. Пусть $\{x_n\}$ — ограничена и не сходится. Тогда существуют конечные числа a и b такие, что

$$a < b$$
 N $a \leqslant x_n \leqslant b$, $n = 1, 2, ...$

Точка $c_0 = \frac{a+b}{2}$ — это середина отрезка [a,b]. При этом хотя бы один из отрезков $[a,c_0]$ или $[c_0,b]$ содержит *бесконечное* число элементов $\{x_n\}$ исходной последовательности.

Если это отрезок $[a, c_0]$, то переобозначим его через $[a_1, b_1]$. Если же отрезок $[a, c_0]$ содержит лишь конечное число элементов $\{x_n\}$, то полагаем $[a_1, b_1] = [c_0, b]$.

Далее, точка $c_1=\frac{a_1+b_1}{2}$ — это середина отрезка $[a_1,b_1]$. Полагаем $[a_2,b_2]=[a_1,c_1]$, если $[a_1,c_1]$ содержит бесконечное количество элементов x_n . В противном случае полагаем $[a_2,b_2]=[c_1,b_1]$.

Проводя дальнейшие построения по индукции, получим в результате последовательность $[a_k, b_k]$ вложенных отрезков:

$$[a_{k+1}, b_{k+1}] \subset [a_k, b_k], k = 1, 2, \dots$$

Длина отрезка с номером k при этом вычисляется по формуле

$$b_k - a_k = \frac{b - a}{2^k}.$$

Переходя к пределу при $k o \infty$, получаем

$$\lim_{k o \infty} \left(b_k - a_k \right) = 0.$$

Таким образом, отрезки $\{[a_k, b_k]\}$ — *стяги-вающиеся*.

По предыдущей теореме, существует единственная точка c, принадлежащая одновременно всем отрезкам $\begin{bmatrix} a_k, b_k \end{bmatrix}$. При этом имеют место равенства

$$c=\lim_{k o\infty}a_{m n}=\lim_{k o\infty}b_{m n}.$$

Искомую сходящуюся подпоследовательность $\{x_{n_k}\}_{k=1}^\infty$ построим по индукции, пользуясь

соотношениями

$$\{x_n\} \cap [a_k, b_k] \neq \emptyset, \quad k = 1, 2, \dots$$

В отрезке $[a_1, b_1]$ по условию содержится бесконечное количество элементов x_n . Выберем среди них элемент с наименьшим номером n_1 , тогда имеем вложение

$$x_{n_1} \in [a_1, b_1].$$

Далее, отрезок $[a_2, b_2]$ по условию также содержит бесконечное количество элементов x_n . Среди них обязательно найдется элемент с номером $n_2 > n_1$. При этом

$$x_{n_2} \in [a_2, b_2], \quad n_2 > n_1.$$

Пусть элементы x_{n_1}, \ldots, x_{n_k} с номерами

$$n_1 < n_2 < \dots < n_k$$

найдены, причем

$$x_{n_k} \in [a_k, b_k], \quad n_k > n_{k-1}.$$

В отрезке $[a_{k+1}, b_{k+1}]$ по условию содержит-ся бесконечное количество элементов x_n . Среди них обязательно найдется элемент с номером $n_{k+1}>n_k$. При этом

$$x_{n_{k+1}} \in [a_{k+1}, b_{k+1}], \quad n_{k+1} > n_k.$$

По построению имеем неравенства

$$a_{m{k}} \leqslant x_{m{n}_{m{k}}} \leqslant b_{m{k}}, \quad k=1,2,\ldots.$$

Переходя здесь к пределу при $k \to \infty$ и пользуясь теоремой о зажатой последовательности, получаем

$$\lim_{k\to\infty}x_{n_k}=c.$$

Таким образом, подпоследовательность $\{x_{n_k}\}$ сходящаяся.

 4^0 . Таким образом, числовая последовательность может расходиться, но содержать в себе сходящиеся подпоследовательности. В этой связи вводится понятие частичных пределов.

Определение. Предел любой подпоследовательности заданной числовой последовательности называется частичным пределом этой последовательности. По теореме Больцано-Вейерштрасса любая ограниченная последовательность *имеет хо-тя бы один частичный предел*.

Определение. Наибольший частичный предел последовательности $\{x_n\}$ называется её верхним пределом.

Обозначение верхнего предела: $\lim_{n o \infty} x_n$.

Определение. Наименьший частичный предел последовательности $\{x_n\}$ называется её нижним пределом.

Обозначение нижнего предела: $\lim\limits_{n o \infty} x_n$.

Любая ограниченная последовательность имеет как верхний, так и нижний пределы. Заметим, что любая числовая последовательность имеет хотя бы один частичный предел, конечный или бесконечный. Если $\{x_n\}$ неограничена сверху, то $\overline{\lim}_{n\to\infty} x_n = +\infty$.

Если же $\{x_n\}$ — неограниченная снизу числовая последовательность, то $\lim_{n \to \infty} x_n = -\infty$.

Если последовательность $\{x_n\}$ имеет предел (конечный или бесконечный), то

$$\lim_{n o \infty} x_n = \overline{\lim_{n o \infty}} x_n = \lim_{n o \infty} x_n.$$

Верно и обратное: если

$$\lim_{k o\infty}x_n=\lim_{n o\infty}x_n=x_0,$$

то $\{x_n\}$ сходится к x_0 :

$$\lim_{n\to\infty}x_n=x_0.$$

 5^0 . Сформулируем необходимое условие, которому удовлетворяют все сходящиеся числовые последовательности.

Лемма. Если последовательность x_n сходится, то ее элементы удовлетворяют следующему условию Коши:

$$orall \, arepsilon > 0 \; \exists \, N = N(arepsilon): \; orall \, n, m \geqslant N$$
 $\Rightarrow |x_n - x_m| < arepsilon. ext{ (Cau)}$

 \mathcal{A} оказательство. Пусть $x_0 = \lim_{n \to \infty} x_n$. Тогда по определению предела для $\forall \, \varepsilon > 0$ существует номер $N = N(\varepsilon)$ такой, что

$$|\forall\,n\geqslant N \qquad |x_n-x_0|<rac{arepsilon}{2}.$$

Следовательно, для всех номеров n>N(arepsilon) и m>N(arepsilon) справедливы неравенства

$$|x_{n}-x_{m}| \leq |x_{n}-x_{0}|+|x_{0}-x_{m}|< \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Это и есть искомое условие.

Определение. Последовательность $\{x_n\}$ вещественных чисел сходится в себе, если

$$egin{array}{lll} orall \,arepsilon > 0 &\exists\, N = N(arepsilon) : orall\, n \geqslant N, \,orall\, m \geqslant N &\Rightarrow \ &\Rightarrow &|x_n - x_m| < arepsilon. \end{array}$$
 (Cau)

Любая последовательность $\{x_n\}$ с условием (Cau) называется также фундаментальной.

Теорема. Если последовательность $\{x_n\}$ вещественных чисел удовлетворяет условию Коши (Cau), то она сходится к конечному пределу.

 \mathcal{L} оказательство. Убедимся, что если последовательность $\{x_n\}$ вещественных чисел удовлетворяет условию Коши (Cau), то она ограничена.

Полагаем arepsilon=1 в условии (Cau) и возьмем $m=N_1=N(1).$ Тогда для всех $n\geqslant N_1$ имеем

$$|x_n - x_{N_1}| < 1 \quad \Leftrightarrow \quad x_{N_1} - 1 < x_n < x_{N_1} + 1.$$

Обозначим

$$a=\min \{x_1,\, x_2\,,...,\, x_{N_1},\, x_{N_1}-1\},$$

$$b = \max\{x_1, x_2, ..., x_{N_1}, x_{N_1} + 1\}.$$

Тогда справедливо

$$a \leqslant x_{N_1} - 1 < x_n < x_{N_1} + 1 \leqslant b.$$

Следовательно,

$$a\leqslant x_{m n}\leqslant b$$
 ДЛЯ $orall\, n=1,2,....$

Таким образом, $\{x_n\}$ ограничена. По теореме Больцано-Вейерштрасса существует её сходящаяся подпоследовательность $\{x_{n_k}\}$.

Пусть $x_0 = \lim_{k \to \infty} x_{n_k}$. Убедимся, что исходная последовательность $\{x_n\}$ сходится к этому

же пределу:

$$\lim_{n\to\infty}x_n=x_0.$$

Взяв произвольное arepsilon>0, найдем затем такой номер $N_{arepsilon}=N(arepsilon)$, что

$$orall n\geqslant N_{\mathcal{E}}\,, orall \, m\geqslant N_{\mathcal{E}} \quad \Rightarrow \quad |x_{m n}-x_{m m}|<rac{arepsilon}{2}. \quad \ (1)$$

Существование номера N_{ε} с указанным свойством следует из фундаментальности последовательности $\{x_n\}$.

Далее из равенства $x_0 = \lim_{k \to \infty} x_{n_k}$ и определения предела следует существование такого номера $M_{\varepsilon} = M(\varepsilon)$, что

$$\forall k \geqslant M_{\varepsilon} \quad \Rightarrow \quad \left| x_{n_k} - x_0 \right| < \frac{\varepsilon}{2}.$$
 (2)

Пусть $P = \max{\{N_{\mathcal{E}}, M_{\mathcal{E}}\}}$. Тогда

$$P\geqslant M_{arepsilon}$$
 и $n_{I\!\!P}\geqslant P\geqslant N_{arepsilon}.$

Взяв теперь любой номер $n\geqslant N_{\mathcal{E}}$, воспользуемся затем неравенством треугольника, а также оценками (1) и (2). Тогда получим

$$|x_{n}-x_{0}| \leq |x_{n}-x_{n_{P}}| + |x_{n_{P}}-x_{0}| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Это означает, что последовательность $\{x_n\}$ сходится к x_0 : $\lim_{n \to \infty} x_n = x_0$.

Следствие (критерий Коши). Для того чтобы последовательность $\{x_n\}$ вещественных чисел сходилась, необходимо и достаточно, чтобы она удовлетворяла условию Коши. Отметим, что на множестве \mathbb{Q} рациональных чисел критерий Коши не выполняется. Например, последовательность нижних десятичных приближений числа $\sqrt{2}$ сходится к $\sqrt{2}$ и, следовательно, предела в \mathbb{Q} не имеет, хотя и удовлетворяет условию Коши.

Теорема о сходимости фундаментальной последовательности вещественных чисел допускает следующую эквивалентную формулировку. Mножество \mathbb{R} вещественных чисел является полным относительно введенной на нем сходимости.

Множество \mathbb{Q} , в отличие от \mathbb{R} указанным свойством полноты не обладает.

 6^0 . В качестве примера использования критерия Коши исследуем на сходимость следу-

ющую числовую последовательность

$$H_n = 1 + \frac{1}{2} + ... + \frac{1}{n}, \quad n = 1, 2,$$

Лемма. Последовательность H_n при $n \to \infty$ неограниченно возрастает , то есть

$$\lim_{n\to\infty}H_n=+\infty.$$

Доказательство. Для любого номера $n\geqslant 1$ справедлива оценка

$$H_{2n} - H_n = rac{1}{n+1} + rac{1}{n+2} + ... + rac{1}{2n} \geqslant n \cdot rac{1}{2n} = rac{1}{2}.$$

Таким образом, для положительного числа $arepsilon=rac{1}{2}$ и любого номера N существуют два таких номера n=N и m=2N, что

$$|H_{m n}-H_{m m}|\geqslant rac{1}{2}.$$

Это означает, что последовательность $\{H_n\}$ не фундаментальна, то есть не удовлетворяет условию (Cau).

Согласно критерию Коши у последовательности $\{H_n\}$ не может существовать конечного предела. Но $\{H_n\}$ монотонно возрастает:

$$H_{n+1} - H_n = \frac{1}{n+1} > 0 \quad \Rightarrow \quad H_{n+1} > H_n.$$

Следовательно, по теореме Вейерштрасса, у неё есть предел.

Этот предел не может быть конечным и, следовательно, он бесконечен, т.е. имеет ме-

сто равенство

$$\lim_{n\to\infty} H_n = \lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) = +\infty.$$

Величину $\{H_n\}$ называют частичной суммой гармонического ряда.

Полученное выше предельное равенство означает, что *гармонический ряд расходится*.

 7^{0} . Исследуем на сходимость следующую числовую последовательность частичных сумм ряда из обратных степеней:

$$H_{oldsymbol{n}}(lpha) = \sum_{m=1}^n rac{1}{m^{1+lpha}}, \quad n=1,2,\ldots.$$

Здесь α — числовой параметр. Докажем, что при $\alpha \leqslant 0$ последовательность $\{H_n(\alpha)\}$ расходится, имея пределом при $n \to +\infty$ точку $+\infty$. Если же $\alpha > 0$, то $\{H_n(\alpha)\}$ сходится к конечному пределу.

 \mathcal{A} оказательство. При $\alpha=0$ последовательность $\{H_n(0)\}$ — это последовательность частич- ных сумм гармонического ряда:

$$H_n(0) = 1 + \frac{1}{2} + ... + \frac{1}{n}, \quad n = 1, 2,$$

В этом случае, как уже установлено, $H_n(0)$ расходится к бесконечности при $n \to +\infty$.

При $\alpha < 0$ справедливы неравенства

$$rac{1}{m^{1+lpha}}\geqslantrac{1}{m},\hspace{0.5cm}m=1,2,\ldots.$$

Следовательно, $H_n(\alpha)\geqslant H_n(0)$ при $n=1,2,\ldots$. Переходя здесь к пределу при $n\to +\infty$, получаем в результате

$$\lim_{n\to\infty} H_n(\alpha)\geqslant \lim_{n\to\infty} H_n(0)=+\infty.$$

Пусть теперь $\alpha > 0$. Тогда монотонно возрастающая последовательность $\{H_n(\alpha)\}$ по теореме Вейрштрасса имеет предел (конечный или бесконечный).

Докажем, что этот предел не может быть бесконечным. Для этого укажем явно ограниченную подпоследовательность

$$H_{n_k}(\alpha), \quad k=1,2,\ldots,$$

которая также монотонно возрастает и имеет предел, который в силу ограниченности $H_{n_k}(\alpha)$ конечен.

Для $k=1,2,\ldots$ полагаем $n_{\pmb k}=2^{\pmb k}-1$ и далее

$$H_{n_k}(\alpha) = \sum_{m=1}^{n_k} \frac{1}{m^{1+\alpha}} = \sum_{j=1}^k \left(\sum_{m=2j-1}^{2^j-1} \frac{1}{m^{1+\alpha}} \right).$$

При этом внутренняя сумма допускает следующую оценку сверху:

$$\sum_{m=2^{j-1}}^{2^{j}-1} \frac{1}{m^{1+\alpha}} \leqslant \frac{1}{(2^{j}-1)^{1+\alpha}} + \dots + \frac{1}{(2^{j}-1)^{1+\alpha}}.$$

В правой части всего $\mathbf{2}^{j} - \mathbf{2}^{j-1} = \mathbf{2}^{j-1}$ одинаковых слагаемых. Поэтому

$$\sum_{m=2^{j-1}}^{2^{j}-1} rac{1}{m^{1+lpha}} \leqslant rac{1}{(2^{j}-1)^{lpha}}.$$

Подставляя эту оценку в полученное выше представление элемента $H_{n_k}(\alpha)$ подпоследовательности, получаем следующую оценку:

$$H_{n_k}(\alpha) \leqslant \sum_{j=1}^k \frac{1}{(2^{j-1})^{\alpha}} = \sum_{j=1}^k \frac{1}{(2^{\alpha})^{j-1}} < \frac{1}{1-2^{-\alpha}}.$$

В последнем неравенстве использована формула для суммы геометрической прогрессии.

Таким образом, установлено, что подпоследовательность $H_{n_k}(\alpha)$, $k=1,2,\ldots$, ограничена и монотонно возрастает. Следовательно, она имеет конечный предел.

Тема: Множества на числовой оси

 1^0 . Точные верхняя и нижняя грани числового множества. Теорема существования 2^0 . Определение покрытия промежутка числовой оси. Примеры. Лемма Гейне-Бореля о покрытии. Компактность замкнутого числового отрезка 3^0 . Несчетность множества вещественных чисел. 4^0 . Открытые и замкнутые множества. Граничные и предельные точки.

 1^0 . Для различных подмножеств числовой прямой вводятся их числовые характеристи-ки.

Определение. Множество X вещественных чисел называют ограниченным сверху, если найдется такое вещественное число b, что любой элемент x из X не превосходит этого числа:

 $\exists b \in \mathbb{R} : \forall x \in X \Rightarrow x \leqslant b.$

Множество X вещественных чисел называют ограниченным снизу, если найдется такое вещественное число a, что любой элемент x из X не меньше этого числа:

$$\exists a \in \mathbb{R} : \forall x \in X \Rightarrow a \leqslant x.$$

Множество X вещественных чисел называют ограниченным, если оно ограничено как сверху так и снизу:

$$\exists \, c \in \mathbb{R} : \forall \, x \in X \ \Rightarrow |x| \leqslant c.$$

Определение. Вещественное число b называют верхней гранью множества X, если любой элемент x из X не превосходит этого числа:

$$\forall x \in X \Rightarrow x \leqslant b.$$

Аналогично определяется нижняя грань множества вещественных чисел.

Определение. Наименьшая из верхних граней множества $X \subset \mathbb{R}$ называется его точной верхней гранью и обозначается как $\sup X$.

Согласно этому определению,

$$M = \sup X \Leftrightarrow \left\{ egin{array}{ll} 1. & orall x \in X & \Rightarrow & x \leqslant M, \ 2. & orall M_0 < M & \exists \, x_0 \in X \colon \, x_0 > M_0. \end{array}
ight.$$

Если множество X имеет наибольший элемент, то он и будет точной верхней гранью этого множества.

Определение. Наибольшая из нижних граней множества $X \subset \mathbb{R}$ называется его точной нижней гранью и обозначается как $\inf X$.

Согласно этому определению,

$$m = \inf X \Leftrightarrow \left\{ egin{array}{ll} 1. & orall x \in X & \Rightarrow & x \geqslant m, \ 2. & orall m_0 > m & \exists \, x_0 \in X \colon \, x_0 < m_0. \end{array}
ight.$$

Если множество X имеет наименьший элемент, то этот элемент и есть точная нижняя грань этого множества.

Если множество X неограничено сверху, то полагается $\sup X = +\infty$.

Если же X неограничено снизу, то полагается $\inf X = -\infty$. Любое множество вещественных чисел может иметь лишь одну точную верхнюю грань, а также одну точную нижнюю грань. (Докажите это в качестве упражнения.)

Теорема (существования супремума). Любое непустое множество вещественных чисел, ограниченное сверху, имеет точную верхнюю грань, являющуюся вещественным числом. Доказательство. Пусть множество $X \subset \mathbb{R}$ не пусто. Тогда существует хотя бы один элемент a из X. Если множество X ограничено сверху, то существует такое вещественное число b, что любой элемент x из X не превосходит b. В частности, $a \leqslant b$.

Таким образом, отрезок [a,b] содержит хотя бы один элемент из множества X. Если a=b,

то искомая точная верхняя грань задается равенством $\sup X = a = b$.

Пусть a < b. Тогда найдем отрезок $[a_1,b_1]$, обладающий следующими свойствами

$$[a_1,b_1]\subset [a,b], \qquad b_1-a_1=rac{b-a}{2},$$

$$\forall x \in X \Rightarrow x \leqslant b_1.$$

Построение отрезка $[a_1,b_1]$ проведем по следующей схеме.

1. Рассмотрим середину отрезка [a,b], то есть точку $c_0=rac{a+b}{2}$. Если любой элемент x из X не превосходит c_0 , то возьмем $a_1=a$, $b_1=c_0$.

Если же найдется элемент x из X, который строго больше c_0 , то возьмем $a_1=c_0$, $b_1=b$ и далее снова получим отрезок $[a_1,b_1].$

2. На втором шаге полагаем $c_1 = \frac{a_1 + b_1}{2}$. Далее по той же схеме, что и на первом шаге найдем следующий отрезок $[a_2,b_2]$, обладающий следующими свойствами:

$$[a_2,b_2]\subset [a_1,b_1], \quad b_2-a_2=rac{b_1-a_1}{2},$$

$$a_2 \leqslant b_2, \quad [a_2, b_2] \cap X \neq \emptyset, \quad \forall x \in X \Rightarrow x \leqslant b_2.$$

Продолжая построения по описанной выше схеме, найдем последовательность вложен-

ных отрезков $[a_n,b_n]$, обладающих следующими свойствами:

$$[a_n,b_n]\subset [a_{n-1},b_{n-1}], \quad b_n-a_n=rac{b_{n-1}-a_{n-1}}{2},$$

$$a_{m{n}}\leqslant b_{m{n}}, \quad [a_{m{n}},b_{m{n}}]\cap X
eq\emptyset, \quad orall \, x\in X\Rightarrow \, x\leqslant b_{m{n}}.$$

Длина отрезка $[a_n,b_n]$ меньше длины исходного отрезка [a,b] в 2^n раз:

$$b_n-a_n=rac{b-a}{2^n}, \quad n=1,2,\ldots.$$

Таким образом, последовательность отрезков $[a_n,b_n],\ n=1,2,\ldots$, является стягивающейся. Согласно аксиоме непрерывности Кантора, эти отрезки имеют одну общую точку

$$c=\lim_{n o\infty}a_n=\lim_{n o\infty}b_n.$$

При этом из оценки $x\leqslant b_n$, справедливой для всех x из X, следует, что $x\leqslant c$ также для

всех x из X. Таким образом, c — это верхняя грань множества X. Докажем, что это точная верхняя грань.

Пусть $c_0 < c$. Тогда существует такой номер n_0 , что $a_{n_0} > c_0$. Кроме того существует элемент x_{n_0} из X такой что $x_{n_0} > a_{n_0} > c_0$. Следовательно, c_0 не может верхней гранью множества X и при этом $c = \sup X$.

Аналогично доказывается существование у любого ограниченного снизу множества чисел точной нижней грани (инфимума).

В множестве \mathbb{Q} рациональных чисел точные верхняя и нижняя грани ограниченного множества могут не существовать. Например, ограниченное множество нижних десятичных приближений иррационального числа $\sqrt{2}$ не имеет в \mathbb{Q} точной верхней грани.