LE/ESSE 2640: Adjustment calculus

Dr. Baoxin Hu

Dept of Earth and Space Science and Engineering

York University

2020

Lecture 9:Non- linear Parametric Adjustment

- Functional models
 - The math function: L = F(X)
 - Observation equations: $l + v = F(\widehat{x})$
 - Residual equations: $\mathbf{v} = \hat{\mathbf{l}} \mathbf{l} = F(\hat{\mathbf{x}}) \mathbf{l}$

Stochastic models

- $-L\sim N(\bar{l},\Sigma_{LL})$
- L : Observation vector (Variable)
- $-\bar{l}$: the expectation of l
- $-\Sigma_{LL}$: variance and covariance of L
- $-Q = \frac{1}{\sigma_0^2} \Sigma_{LL}$: the cofactor matrix
- $-P = \sigma_0^2 \Sigma_{LL}^{-1}$: the weight matrix

- Least squares solutions
 - Find such \hat{x} that the cost function: $\phi = v^T P v$ min

Linearization at the initial values

•
$$\hat{\boldsymbol{l}} = F(\widehat{\boldsymbol{x}}^0) + \frac{\partial F}{\partial \widehat{\boldsymbol{x}}}|_{\widehat{\boldsymbol{x}} = \widehat{\boldsymbol{x}}^0} \delta \widehat{\boldsymbol{x}}$$

- Recall the linear case: $\hat{l} = A\hat{x} + C$, $\hat{x} = N^{-1}A^TP(l-C)$
- $A = \frac{\partial F}{\partial \widehat{x}}|_{\widehat{x} = \widehat{x}^0} \quad C = F(\widehat{x}^0)$
- $\delta \hat{\mathbf{x}} = N^{-1}A^T P[\mathbf{l} F(\hat{\mathbf{x}}^0)]$

$$\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + \delta \widehat{\mathbf{x}}$$

•
$$\mathbf{v} = F(\widehat{\mathbf{x}}^0) + \frac{\partial F}{\partial \widehat{\mathbf{x}}}|_{\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0} \delta \widehat{\mathbf{x}} - \mathbf{l}$$

•
$$\mathbf{v} = J\delta\widehat{\mathbf{x}} - [\mathbf{l} - F(\widehat{\mathbf{x}}^0)]$$

•
$$\mathbf{v} = A\delta\widehat{\mathbf{x}} - [\mathbf{l} - F(\widehat{\mathbf{x}}^0)]$$

$$\widehat{\sigma}_0^2 = \frac{v^T P v}{n - m}$$

• Quantities: l (observations), \hat{x} (parameters), ν (residuals), \hat{l} (adjusted observations)

	l	$\widehat{\boldsymbol{x}}$	ν	Î
l	Σ_{ll}			
$\widehat{\boldsymbol{\chi}}$				
ν				
Î				

- Derivation of variance-covariance matrices
 - Express the quantities as functions of measurement vector
 - Derivation of variance-covariance matrices based on error propagation

- Express the quantities as functions of measurement vector
- \bullet l = l
- $\delta \widehat{\mathbf{x}} = N^{-1} A^T P[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- $\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + \delta \widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + N^{-1}A^T P[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- $\mathbf{v} = A\delta\widehat{\mathbf{x}} [\mathbf{l} F(\widehat{\mathbf{x}}^0)] = (AN^{-1}A^TP I)[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- $\hat{l} = l + \nu = l + (AN^{-1}A^TP I)[l F(\hat{x}^0)]$
- $\hat{\boldsymbol{l}} = \boldsymbol{l} + \boldsymbol{\nu} = AN^{-1}A^TP\boldsymbol{l} (AN^{-1}A^TP 1)F(\widehat{\boldsymbol{x}}^0)$

- Derivation of variance-covariance matrices based on error propagation
- $\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + \delta \widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + N^{-1}A^T P[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- Derive $\Sigma_{\widehat{x}\widehat{x}}$, given Σ_{ll}
- $\Sigma_{\widehat{x}\widehat{x}} = (N^{-1}A^T P)\Sigma_{ll}(N^{-1}A^T P)^T$ $= N^{-1}A^T P\sigma_0^2 P^{-1}PAN^{-1}$ $= \sigma_0^2 N^{-1}A^T PAN^{-1} = \sigma_0^2 N^{-1}$

•
$$\mathbf{v} = A\delta\widehat{\mathbf{x}} - [\mathbf{l} - F(\widehat{\mathbf{x}}^{0})] = (AN^{-1}A^{T}P - I)[\mathbf{l} - F(\widehat{\mathbf{x}}^{0})]$$

• $\Sigma_{\mathbf{v}\mathbf{v}} = (AN^{-1}A^{T}P - I)\Sigma_{\mathbf{l}\mathbf{l}}(AN^{-1}A^{T}P - I)^{T}$
 $= (AN^{-1}A^{T}P - I)\sigma_{0}^{2}P^{-1}(AN^{-1}A^{T}P - I)^{T}$
 $= \sigma_{0}^{2}(AN^{-1}A^{T} - P^{-1})(PAN^{-1}A^{T} - I)$
 $= \sigma_{0}^{2}(AN^{-1}A^{T}PAN^{-1}A^{T} - P^{-1}PAN^{-1}A^{T} - AN^{-1}A^{T} + P^{-1})$
 $= \sigma_{0}^{2}(AN^{-1}A^{T} - AN^{-1}A^{T} - AN^{-1}A^{T} + P^{-1})$
 $\Sigma_{\mathbf{v}\mathbf{v}} = \sigma_{0}^{2}P^{-1} - \sigma_{0}^{2}AN^{-1}A^{T}$
 $\Sigma_{\mathbf{v}\mathbf{v}} = \Sigma_{\mathbf{l}\mathbf{l}} - \sigma_{0}^{2}AN^{-1}A^{T}$

•
$$\hat{\boldsymbol{l}} = AN^{-1}A^TP\boldsymbol{l} - (AN^{-1}A^TP - I)F(\widehat{\boldsymbol{x}}^0)$$

•
$$\Sigma_{\hat{l}\hat{l}} = (AN^{-1}A^TP)\Sigma_{ll}(AN^{-1}A^TP)^T$$

= $(AN^{-1}A^TP)\sigma_0^2P^{-1}(AN^{-1}A^TP)^T$
= $\sigma_0^2AN^{-1}A^TPAN^{-1}A^T$
= $\sigma_0^2AN^{-1}A^T$

•
$$\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + \delta \widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + N^{-1}A^T P[\mathbf{l} - F(\widehat{\mathbf{x}}^0)]$$

- Derive $\Sigma_{l\widehat{x}}$, $\Sigma_{\widehat{x}l}$ given Σ_{ll}
- $\Sigma_{\widehat{x}l} = (N^{-1}A^TP)\Sigma_{ll} = N^{-1}A^TP\sigma_0^2P^{-1}$

- $\mathbf{v} = (AN^{-1}A^TP \mathbf{I})[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- Derive $\Sigma_{l\nu}$, $\Sigma_{\nu l}$ given Σ_{ll}

•
$$\Sigma_{\nu l} = (AN^{-1}A^{T}P - I)\Sigma_{ll}$$

= $(AN^{-1}A^{T}P - I)\sigma_{0}^{2}P^{-1}$
= $\sigma_{0}^{2}AN^{-1}A^{T} - \sigma_{0}^{2}P^{-1}$
= $\sigma_{0}^{2}AN^{-1}A^{T} - \Sigma_{ll}$

$$\Sigma_{l\nu} = \Sigma_{\nu l}^{T} = \sigma_0^2 A N^{-1} A^T - \Sigma_{ll}$$

- $\hat{\boldsymbol{l}} = AN^{-1}A^TP\boldsymbol{l} (AN^{-1}A^TP I)F(\widehat{\boldsymbol{x}}^0)$
- Derive $\Sigma_{l\hat{l}}$, $\Sigma_{\hat{l}l}$ given Σ_{ll}

•
$$\Sigma_{\hat{l}l} = (AN^{-1}A^TP)\Sigma_{ll}$$

= $(AN^{-1}A^TP)\sigma_0^2P^{-1}$
= $\sigma_0^2AN^{-1}A^T$

$$\Sigma_{l\hat{l}} = \Sigma_{\hat{l}l}^T = \sigma_0^2 A N^{-1} A^T$$

- $\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + \delta \widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + N^{-1}A^T P[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- $\mathbf{v} = (AN^{-1}A^TP I)[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- Derive $\Sigma_{\nu \widehat{x}}$, $\Sigma_{\widehat{x}\nu}$ given Σ_{ll}

•
$$\Sigma_{\widehat{x}\nu} = (N^{-1}A^TP)\Sigma_{ll}((AN^{-1}A^TP - I))^T$$

= $(N^{-1}A^TP)\sigma_0^2P^{-1}(PAN^{-1}A^T - I)$
= $\sigma_0^2N^{-1}A^TPAN^{-1}A^T - \sigma_0^2N^{-1}A^T$
= $\mathbf{0}$

•
$$\Sigma_{\nu \widehat{x}} = \mathbf{0}$$

- $\widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + \delta \widehat{\mathbf{x}} = \widehat{\mathbf{x}}^0 + N^{-1}A^T P[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- $\hat{\boldsymbol{l}} = AN^{-1}A^TP\boldsymbol{l} (AN^{-1}A^TP I)F(\hat{\boldsymbol{x}}^0)$
- Derive $\Sigma_{\hat{l}\hat{x}}$, $\Sigma_{\hat{x}\hat{l}}$ given Σ_{ll}
- $\Sigma_{\hat{x}\hat{l}} = (N^{-1}A^T P)\Sigma_{ll}(AN^{-1}A^T P)^T$ = $(N^{-1}A^T P)\sigma_0^2 P^{-1}PAN^{-1}A^T$ = $\sigma_0^2 N^{-1}A^T PAN^{-1}A^T$ = $\sigma_0^2 N^{-1}A^T$

- $\mathbf{v} = (AN^{-1}A^TP \mathbf{I})[\mathbf{l} F(\widehat{\mathbf{x}}^0)]$
- $\hat{\boldsymbol{l}} = AN^{-1}A^TP\boldsymbol{l} (AN^{-1}A^TP I)F(\hat{\boldsymbol{x}}^0)$
- Derive $\Sigma_{\nu \hat{l}}$, $\Sigma_{\hat{l}\nu}$ given Σ_{ll}
- $\Sigma_{\hat{l}v} = (AN^{-1}A^TP)\Sigma_{ll}((AN^{-1}A^TP I))^T$ = $(AN^{-1}A^TP)\sigma_0^2P^{-1}(PAN^{-1}A^T - I)$ = $\sigma_0^2AN^{-1}A^TPAN^{-1}A^T - \sigma_0^2AN^{-1}A^T$ = $\mathbf{0}$

$$\Sigma_{\nu \hat{l}} = 0$$

• Quantities: l (observations), \hat{x} (parameters), ν (residuals), \hat{l} (adjusted observations)

	l	$\widehat{\boldsymbol{x}}$	ν	Î
l	$\Sigma_{m{l}m{l}}$	$\sigma_0^2 A N^{-1}$	$\sigma_0^2 A N^{-1} A^T - \Sigma_{ll}$	$\sigma_0^2 A N^{-1} A^T$
$\widehat{\boldsymbol{x}}$	$\sigma_0^2 N^{-1} A^T$	$\sigma_0^2 N^{-1}$	0	$\sigma_0^2 N^{-1} A^T$
ν	$\sigma_0^2 A N^{-1} A^T - \Sigma_{ll}$	0	$\Sigma_{ll} - \sigma_0^2 A N^{-1} A^T$	0
Î	$\sigma_0^2 A N^{-1} A^T$	$\sigma_0^2 A N^{-1}$	0	$\sigma_0^2 A N^{-1} A^T$