

### **Practical SAT Solving**

Lecture 8

Carsten Sinz, Tomáš Balyo | June 11, 2019

#### INSTITUTE FOR THEORETICAL COMPUTER SCIENCE





#### **Lecture Outline**



- VSIDS heuristic
- Clause forgetting
- Parallel SAT Solving

### **CDCL Algorithm**



```
input : Formula F in CNF
   output: SAT / UNSAT
 1 dl \leftarrow 0
                                         // initialize decision level
 2 V \leftarrow \emptyset
                       // initialize trail (variable assignment)
 3 while not all variables assigned do
       if unit_propagation(F, V) == CONFLICT then
           (c, bl) \leftarrow analyze conflict
           if bl < 0 then
               return UNSAT
           else
 8
               add clause(c)
               backtrack to bl
10
               dl \leftarrow bl
11
12
       else
           (x, b) \leftarrow \text{pick branching literal}
13
14
           V \leftarrow V \cup \{(x,b)\}
15
16 return SAT
```

### Variable Selection in CDCL



- Previous heuristics (MOMS, Bohm's, etc.): global, "static"
  - E.g. MOMS:  $S(x) = (f^*(x) + f^*(\overline{x})) \times 2^k + (f^*(x) \times f^*(\overline{x}))$
  - $f^*(x)$  is the number of occurrences of x in the smallest not yet satisfied clauses, k is a parameter
  - static: S(x) often computed only at root node of search
  - global: based on whole CNF



### Variable Selection in CDCL



- Previous heuristics (MOMS, Bohm's, etc.): global, "static"
  - E.g. MOMS:  $S(x) = (f^*(x) + f^*(\overline{x})) \times 2^k + (f^*(x) \times f^*(\overline{x}))$
  - $f^*(x)$  is the number of occurrences of x in the smallest not yet satisfied clauses, k is a parameter
  - static: S(x) often computed only at root node of search
  - global: based on whole CNF
- Idea for CDCL: Make heuristics more "focused"
  - try to find small unsatisfiable subsets
  - prefer variables that occurred in a recent conflict

### **VSIDS Heuristic**



- VSIDS: Variable State Independent Decaying Sum
  - General approach: Compute score for each variable, select variable with highest score
  - Initial variable score is number of literal occurrences
  - New conflict clause c: Score is incremented for all variables in c
  - Periodically, divide all scores by a constant



### **VSIDS Heuristic**



- VSIDS: Variable State Independent Decaying Sum
  - General approach: Compute score for each variable, select variable with highest score
  - Initial variable score is number of literal occurrences
  - New conflict clause c: Score is incremented for all variables in c
  - Periodically, divide all scores by a constant
- First presented in SAT solver Chaff, 2001 [1]



### **VSIDS Heuristic**



- VSIDS: Variable State Independent Decaying Sum
  - General approach: Compute score for each variable, select variable with highest score
  - Initial variable score is number of literal occurrences
  - New conflict clause c: Score is incremented for all variables in c
  - Periodically, divide all scores by a constant
- First presented in SAT solver Chaff, 2001 [1]
- VSIDS (or a variant of it) implemented in most current CDCL solvers

# **VSIDS Example**



#### Initial F:

 $\begin{cases}
 x_1, x_4 \\
 x_1, \overline{x_3}, \overline{x_8} \\
 x_1, x_8, x_{12} \\
 x_2, x_{11} \\
 \overline{x_7}, \overline{x_3}, x_9 \\
 \overline{x_7}, x_8, \overline{x_9} \\
 x_7, x_8, \overline{x_{10}} \\
 \end{cases}$ 

#### Scores:

4 : *x*<sub>8</sub>

 $3: x_1, x_7$ 

 $2: x_3$ 

 $1: x_2, x_4, x_9, x_{10}, x_{11}, x_{12}$ 

# **VSIDS Example**



Initial F:

 $\{x_1, x_4\}$  $\{x_1, \overline{x_3}, \overline{x_8}\}$  $\{x_1, x_8, x_{12}\}$ 

 $\{x_2, x_{11}\}$ 

 $\{\overline{x_7},\overline{x_3},x_9\}$ 

 $\{\overline{x_7}, x_8, \overline{x_9}\}$ 

 $\{x_7, x_8, \overline{x_{10}}\}$ 

F with new learned clause added:

 $\{x_1, x_4\}$ 

 $\{x_1, \overline{x_3}, \overline{x_8}\}$  $\{x_1, x_8, x_{12}\}$ 

 $\{x_2, x_{11}\}$ 

 $\{\overline{x_7},\overline{x_3},x_9\}$ 

 $\{\overline{x_7}, x_8, \overline{x_9}\}$ 

 $\{x_7, x_8, \overline{x_{10}}\}$ 

 $\{x_7, x_{10}, \overline{x_{12}}\}$  (new learned clause)

#### Scores:

 $4: x_8$ 

 $3: x_1, x_7$ 

 $2: X_3$ 

1:  $X_2, X_4, X_9, X_{10}, X_{11}, X_{12}$ 

Scores:

 $4: x_8, x_7$ 

3 : X<sub>1</sub>

 $2: X_3, X_{10}, X_{12}$ 

 $1: X_2, X_4, X_9, X_{11}$ 

# Implementation of VSIDS



Possible: Keep list of variables sorted by score



## Implementation of VSIDS



- Possible: Keep list of variables sorted by score
- Many implementations: Use priority queues
  - Operations:

insert\_with\_priority, pull\_highest\_priority\_element



# Implementation of VSIDS



- Possible: Keep list of variables sorted by score
- Many implementations: Use priority queues
  - Operations: insert\_with\_priority, pull\_highest\_priority\_element
- Often implemented as binary heaps
  - Insert:  $\mathcal{O}(\log n)$
  - Delete: O(log n)
  - Peek: O(1)



#### Variants of VSIDS



- Question: Why periodically divide scores?
- Answer: Give priority to recently learned clauses
- Chaff: half scores every 256 conflicts ("decay"); sort priority queue after each decay only
- Variants of VSIDS:
  - Berkmin's strategy (Berkmin, 2002) bump all literals in implication graph, divide scores by 4
  - VMTF: variable move to front (Siege, 2004)
  - CMTF: clause move to front (HaifaSAT, 2008)
  - eVSIDS exponential VSIDS



# **Comparison of Heuristics**







#### **Learned Clause Removal**



- Problem: Too many learned clauses!
  - ...and not all of them are helpful (e.g. subsumed clauses)
  - BCP gets slower, memory consumption
- Solution: Forget clauses after some time
  - also called Clause Database Reduction
  - size heuristics: discard long clauses
  - least recently used (LRU) heuristics: discard clauses not involved in recent conflict clause generation
  - "Glucose level": number of distinct decision levels in learned clauses (called LBD in original paper [2])



# Partitioning – Böhm and Speckenmeyer



- 1994 First parallel implementation of DPLL
- completely distributed (no master and slave roles)
- A list of partial assignment is generated
- Each processors receives the entire formula and a few partial assignments
- Each Processors consists of
  - Worker (solve or split the formula, use the partial assignments)
  - Balancer (estimate workload, communicate, stopping)
- If a worker has nothing to do (all its partial assignments lead to UNSAT) a balancing process is launched.



### PSATO - Zhang et al. 1994



- Centralized master-slave architecture
- Communication only between master and slaves
- Master assigns partial assignments based on the Guiding Path
  - Each node in the search tree is open or closed (closed means one branch is explored)
  - Master splits the open nodes and assigns job to slaves
- All processors can get stuck on unpromising branches



# **Guiding Path Example**





guiding path

\*\*\*: explored branch

+ : current node

?: remaining subtree



### Satz - Jurkowiak et al. 2001



- The solver Satz improves PSATO the by adding work stealing for workload balancing
  - An idle slave request work from the master
  - The master splits the work of the most loaded slave
  - The idle slave and most loaded slave get the parts



# 2001 - Clause learning invented







## **Clause Sharing Parallel Solvers**



- 2001, Blochinger et al.: PaSAT the first parallel DPLL with "intelligent backtracking" and clause sharing
  - Similar to PSATO and SATZ: master slave, guiding path, randomized work stealing
- 2004, Feldman et al. the first shared memory parallel solver
  - Multi-core processors started to be popular
  - uses same techniques as the previous solvers (guiding path etc.)
  - bad performance explained by high number of cache misses (DPLL/CDCL is otherwise highly optimized for cache)
- ... and many many more similar solvers



### **Cube and Conquer**



#### Basic Idea

Generate a large amount of partial assignments (millions) and then assign each to one of the slaves.

- it is unlikely that any of the slaves will run out tasks
- The partial assignments are usually generated using a look-ahead solver (breadth-first search up to a limited depth)
- Examples of such solvers
  - march (Heule) + iLingeling (Biere) introduced the idea in 2011
  - Treengeling (Biere) still state of the art for combinatorial problems
  - This kind of solver was used in the 200TB proof



### **Pure Portfolios**



#### Basic Idea

Each processor works on the entire problem (no partial assignment restrictions). Each processors uses a (slightly) different solver (different heuristics, random seeds, etc.) All processors stop when one solver solves the problem.

- PPfolio winner of Parallel Track in the 2011 SAT Competition
  - It is just a bash script that combines the best solvers from the 2010 Competition
  - The author: "it's probably the laziest and most stupid solver ever written, which does not even parse the CNF and knows nothing about the clauses"
  - This kind of solvers is not allowed since then in SAT Competitions



### **Portfolios with Clause Learning**



- Same as pure portfolio but clauses are shared
- Usually the same solver with different parameters is used for each processor
- 2009, Hamadi et al.<sup>1</sup>: ManySAT the first solver using this idea (based on MiniSat)

<sup>1</sup>Microsoft® Research



# **Portfolios with Clause Learning**



- Same as pure portfolio but clauses are shared
- Usually the same solver with different parameters is used for each processor
- 2009, Hamadi et al.<sup>1</sup>: ManySAT the first solver using this idea (based on MiniSat)



This is most successful approach since then

<sup>1</sup>Microsoft® Research



### What Makes a Good Portfolio Solver



Two Pillars of Portfolios:

#### Diversification

- The search space of the solvers should not overlap too much
- Use different configuration values of heuristic parameters
- Partial assignment recommendations (no restrictions!)

### Clause Sharing

- Which clauses to share?
- How many?
- How often?
- How to implement efficiently?



### **Experiments – Random Satisf. 3-SAT**







## Advice for Satisfiable problems







### **Experiments – Random Unsat. 3-SAT**







### **Experiments – Random Unsat. 3-SAT**





Clause sharing is important for UNSAT



# A recent portfolio implementation





- HordeSAT a Massively Parallel SAT Solver
- A scalable SAT solver for up to 2048 processors



## **HordeSAT Design Principles**



- Modular Design
  - blackbox approach to SAT solvers
  - any solver implementing a simple interface can be used
- Decentralization
  - all nodes are equivalent, no central/master nodes
- Overlapping Search and Communication
  - search procedure (SAT solver) never waits for clause exchange
  - at the expense of losing some shared clauses
- Hierarchical Parallelization
  - running on clusters of multi-cpu nodes
  - shared memory inter-node clause sharing
  - message passing between nodes



### **Modular Design**



#### Portfolio Solver Interface

```
void addClause(vector<int> clause);
SatResult solve(); // SAT, UNSAT, UNKNOWN
void setSolverInterrupt();
void unsetSolverInterrupt();
void setPhase(int var, bool phase);
void diversify(int rank, int size);
void addLearnedClause(vector<int> clause);
void setLearnedClauseCallback(LCCallback* clb);
void increaseClauseProduction();
```

- Lingeling implementation with just glue code
- MiniSat implementation, small modification for learned clause stuff



### **Diversification**



### Setting Phases – "void setPhase(int var, bool phase)"

- Random each variable random phase on each node
- Sparse each variable random phase on exactly one node
- Sparse Random each variable random phase with prob.  $\frac{1}{\#solvers}$

### Native Diversification - "void diversify(int rank, int size)"

- Each solver implements in its own way
- Example: random seed, restart/decision heuristic
- For lingeling we used plingeling diversification
- Best is to use Sparse Random together with Native Diversification.



### **Clause Sharing**



#### Regular (every 1 second) collective all-to-all clause exchange

### **Exporting Clauses**

- Duplicate clauses filtered using Bloom filters
- Clause stored in a fixed buffer, when full clauses are discarded, when underfilled solvers are asked to produce more clauses
- Shorter clauses are preferred
- Concurrent Access clauses are discarded

### Importing Clauses

- Filtering duplicate clauses (Bloom filter)
  - Bloom filters are regularly cleared the same clauses can be imported after some time
  - Useful since solvers seem to "forget" important clauses



### **Overall Algorithm**

SolveFormula(F, rank, size)



#### The Same Code for Each Process

```
for i = 1 to numThreads do
    s[i] = new PortfolioSolver(Lingeling);
    s[i].addClauses(F);
    diversify(s[i], rank, size);
    new Thread(s[i].solve());

forever do
    sleep(1) // 1 second
    if (anySolverFinished) break;
    exchangeLearnedClauses(s, rank, size);
```

# Experiments - SAT 2011+2014





## Experiments - Speedups



Big Instance = solved after  $10 \cdot (\#threads)$  seconds by Lingeling

| Core    | Parallel | Both   | Speedup All |        |       | Speedup Big |        |        |
|---------|----------|--------|-------------|--------|-------|-------------|--------|--------|
| Solvers | Solved   | Solved | Avg.        | Tot.   | Med.  | Avg.        | Tot.   | Med.   |
| 1x4x4   | 385      | 363    | 303         | 25.01  | 3.08  | 524         | 26.83  | 4.92   |
| 2x4x4   | 421      | 392    | 310         | 30.38  | 4.35  | 609         | 33.71  | 9.55   |
| 4x4x4   | 447      | 405    | 323         | 41.30  | 5.78  | 766         | 49.68  | 16.92  |
| 8x4x4   | 466      | 420    | 317         | 50.48  | 7.81  | 801         | 60.38  | 32.55  |
| 16x4x4  | 480      | 425    | 330         | 65.27  | 9.42  | 1006        | 85.23  | 63.75  |
| 32x4x4  | 481      | 427    | 399         | 83.68  | 11.45 | 1763        | 167.13 | 162.22 |
| 64x4x4  | 476      | 421    | 377         | 104.01 | 13.78 | 2138        | 295.76 | 540.89 |
| 128x4x4 | 476      | 421    | 407         | 109.34 | 13.05 | 2607        | 352.16 | 867.00 |



# **Experiments – Speedups on Big Inst.**



Big Instance = solved after  $10 \cdot (\#threads)$  seconds by Lingeling





### References I



- M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering an efficient SAT solver, in: Proceedings of the 38th annual Design Automation Conference, ACM, 2001, pp. 530–535.
- G. Audemard, L. Simon, Predicting learnt clauses quality in modern sat solvers, in: Proceedings of the 21st International Jont Conference on Artifical Intelligence, IJCAI'09, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2009, pp. 399–404.

URL http://dl.acm.org/citation.cfm?id=1661445.1661509

