15. Convex Hulls 1/22

15. Convex Hulls CPSC 535

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

15. Convex Hulls 2/22

Convex Hulls

convex hull problem

input: set of $n \ge 3$ points Q

output: CH(Q), the subset of Q that is the set of vertices on the convex hull of Q

convex hull \equiv boundary of convex polygon enclosing all of Q (sketch)

Applications

- object intersection in raytracing, video games, GUIs
- drawing implicit regions in GIS
- finding farthest points (they're always CH vertices)
- component of other algorithms

15. Convex Hulls 3/22

Approaches to Convex Hulls

Like the sorting problem, many algorithm patterns work for convex hulls, and there is a rich literature of competitive algorithms.

- Greedy pattern: line-sweep, update hull as we go
- Divide-and-conquer: divide Q in half, compute convex hulls for each half, merge two convex hulls into one
- Iterative improvement: start with a superset of CH(Q); refine by repeatedly eliminating a constant fraction of the points until only CH(Q) remains

15. Convex Hulls 4 / 22

Baseline Algorithm

Observe

- ▶ any two input points define a line ℓ (sketch)
- when those points are both in CH(Q), remaining n-2 points are all on the same side of ℓ (a geometric property)
- ▶ \implies for each pair of input points p, q, see whether all other points are on the same side of ℓ
- if so include p, q in CH(Q) (sketch)

15. Convex Hulls 5 / 22

Baseline Pseudocode

```
1: function NAIVE-CONVEX-HULL(Q)
 2:
        H = \emptyset
 3:
        for distinct points p, q \in Q do
            form line \ell intersecting p and q
 4.
            k = \# points above \ell
 5:
 6:
           if k = (n-2) or k = 0 then
               H = H \cup \{p, q\}
 7:
            end if
 8.
        end for
 g.
        return H
10:
11: end function
12:
Analysis: \Theta(n^2) iterations, counting #points is \Theta(n)
\Longrightarrow \Theta(n^3) time
```

15. Convex Hulls 6/22

Graham Scan Idea

- greedy pattern, reduction-to-sorting
- Geometric property: when touring a CH in counter-clockwise order, we only make left turns (sketch)
- right turn = exiting a concavity, middle point not in hull (sketch)
- → sweep counter-clockwise, keep points that participate in left turns, drop points in the middle of right turns (sketch)
- alternative kind of line sweep: rotating the line (not left-to-right)

15. Convex Hulls 7/22

Graham Scan Greedy Heuristic

- $p_1, \ldots, p_m = Q$ sorted into counter-clockwise order, eliminating ties
- stack S of points; contains hull of points visited already
- base case: push first 3 points onto S
 - for any three points p, q, r forming a non-degenerate triangle, $CH(\{p, q, r\}) = \{p, q, r\}$
- inductive case:
 - examine next input point p_i, top of stack t, next-lowest stack point r
 - if $\angle rtp_i$ is not a left turn $\implies t$ not on hull
- Note: need stack data structure w/ accessor to top two elements

15. Convex Hulls 8 / 22

Graham Scan Pseudocode

```
1: function GRAHAM-SCAN(Q)
                                                     \triangleright guaranteed |Q| \ge 3
       p_0 = lowest point in Q (break ties by choosing leftmost point)
       p_1 \dots p_m = \text{sort } Q - \{p_0\} into counter-clockwise order, by polar
    angle with p_0; break ties by keeping only the point farthest from p_0
       S = \text{new stack}
4.
5: S.PUSH(p0)
6: S.PUSH(p1)
7: S.PUSH(p2)
8:
       for i from 3 through m do
           while \angle p_i, S. TOP, S. BELOWTOP is non-left turn do
9.
10:
              S.POP()
           end while
11:
           S.PUSH(p_i)
12:
       end for
13:
14:
       return set of point still in S
15: end function
```

4 D > 4 B > 4 B > 4 B > 9 Q P

15. Convex Hulls 9 / 22

Graham Scan Analysis

- find $p_0: \Theta(n)$
- ▶ sort: $\Theta(n \log n)$
- eliminate tied points: $\Theta(n)$
- each stack operation is $\Theta(1)$
- ▶ for loop repeats m < n times</p>
- turn angle test, stack operations are $\Theta(1)$
- $ightharpoonup \Rightarrow \Theta(n \log n)$ time
- dominating term is sort (reduction to sorting)
- organizing data structure is arrayed stack
- ▶ ⇒ good constant factors

15. Convex Hulls 10 / 22

Jarvis March

Alternative greedy heuristic: moving around the hull counter-clockwise, each step from one vertex to the next is *the input point whose angle is shallowest.* (sketch)

 \Rightarrow we can start from a CH point, then incrementally find one more CH point until we're done.

Called "gift wrapping" b/c this resembles carefully wrapping up an irregular object in paper or foil. (sketch)

(Jarvis march is sometimes called the gift-wrapping algorithm.)

15. Convex Hulls 11/22

Jarvis March Pseudocode

Jarvis march (Q)

- 1. $H = \emptyset$
- 2. Let ℓ = lowest point in Q (min. y-coord.)
- 3. Let h =highest point in Q
- 4. (right chain) Starting from ℓ and until we reach h:
 - 4.1 Linear search Q for the next point p_i , minimizing the angle between p_i and the previous point
 - 4.2 Include p_i in H and continue the loop at p_i .
- 5. (left chain) Repeat the previous process but starting from h and ending at ℓ .
- 6. Return H

15. Convex Hulls 12 / 22

Jarvis March Analysis

Preprocessing to find $h, \ell : \Theta(n)$

Each iteration of the left/right-chain loops identifies one hull point \implies in total they iterate h times, where $h \equiv$ number of points on the hull.

linear search inside the loops takes $\Theta(n)$ time.

 $\therefore \Theta(nh)$ total time.

15. Convex Hulls 13/22

Comparison of Convex Hull Algorithms

Algorithm	Time	Main Idea	
Graham Scan	$\Theta(n \log n)$	sort, skip right turns	
Jarvis March	$\Theta(nh)$	gift-wrapping	

What is the relationship between n and h?

15. Convex Hulls 14/22

n vs h

Recall

- ▶ $n \equiv \#$ input points = |Q|
- ▶ $h \equiv \#$ output points = # vertices of convex hull = |CH(Q)|

For fixed n,

- minimum h = 3 when all input points are enclosed in a triangle (sketch)
- maximum h = n when all input points happen to be convex hull vertices (sketch)

$$3 \le h \le n$$

15. Convex Hulls 15/22

Summary of Convex Hull Algorithms

FYI

- ► Chan's algorithm is an optimal output-sensitive algorithm
- (not covered in book or class)
- combines both algorithms, divides input points using Graham's heuristic, merges hulls using Jarvis' heuristic
- ▶ $\Theta(n \log h)$ time

Algorithm	Time	$h \in O(1)$	$h \in \Theta(n)$
Graham Scan	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$
Jarvis March	$\Theta(nh)$	$\Theta(n)$	$\Theta(n^2)$
Chan's algorithm	$\Theta(n \log h)$	$\Theta(n)$	$\Theta(n \log n)$