Scaling Hidden Markov Language Models

Anonymous

2020

Hidden Markov Models in NLP

- ► Historically significant latent variable models
 - Applied to tagging, alignment, and language modeling in the 90s
- ► Are thought to be very poor language models
 - We show they are not!

Lessons from Large Neural Language Models

Large models perform better but are ...

- Slow to train
 - Parallelize computation and use GPUs
- Prone to overfitting
 - Regularize

Apply this to scaling HMMs

HMMs

For times $t \in [T]$, model states $z_t \in \mathcal{Z}$ and tokens $x_t \in \mathcal{X}$

We wish optimize

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$$

3 Tricks for Training Large HMMs

- ► Block-sparse emission constraints

 ↑ Speed
- Compact neural parameterization
 - **1** Generalization
- State dropout
 - **↑** Speed **↑** Generalization

Block-Sparse Emission Constraints

- Partition words and states jointly
- Words can only be emit by states in same group

Block-sparse Emissions: Effect on Inference

After observing each x_t , only the states in the corresponding group have nonzero probability of occurring

Neural Parameterization

Generate transition and emission distributions using a neural network

- lacksquare State embeddings $oldsymbol{\mathsf{E}}_z \in \mathbb{R}^{|\mathcal{Z}| imes h}$
- lackbox Token embeddings $oldsymbol{\mathsf{E}}_{\scriptscriptstyle \mathcal{X}} \in \mathbb{R}^{|\mathcal{X}| imes h}$

State Dropout

At each batch, sample dropout mask $\mathbf{b} \in \{0,1\}^{|\mathcal{Z}|}$

Experiments

- Language modeling on Penn Treebank and Wikitext-2
- Baselines
 - Knesey-Ney 5-gram model
 - Feedforward 5-gram model
 - 2-layer LSTM
- ► Model
 - ▶ 2¹⁵ (32k) state very large HMM (VL-HMM)
 - M = 128 groups (256 states each), obtained via Brown Clustering
 - Dropout rate of 0.5 during training

Results on PTB and WT2

Results on PTB and WT2

Results on PTB

Model	# Params	Val PPL	Test PPL	
KN 5-gram	2M	-	141.2	
256 FF 5-gram	2.9M	159.9	152.0	
AWD-LSTM	24M	60.0	57.3	
2x256 dim LSTM	3.6M	93.6	88.8	
HMM ($ \mathcal{Z} $ =900)	10M	284.6	_	
VL-HMM ($ \mathcal{Z} = 2^{15}$)	7.7M	125.0	115.8	

Results on WikiText2

Model	# Param	Val PPL	Test PPL
KN 5-gram	5.7M	248.7	234.3
AWD-LSTM	33M	68.6	65.8
256 FF 5-gram	8.8M	210.9	195.0
2×256 LSTM	9.6M	124.5	117.5
VL-HMM $(\mathcal{Z} =2^{15})$	13.7M	169.0	158.2

State Size Ablation

Perplexity on PTB by state size $|\mathcal{Z}|$ ($\lambda=0.5$ and M=128)

Other Ablations

Model	Param	Train	Val	Time
VL-HMM (2 ¹⁴)	7.2M	115	134	40
- neural param	423M	119	169	14
- state dropout	7.2M	88	157	100

Conclusion

- ▶ HMMs can be scaled up to competitive language models
- ▶ Introduced 3 tricks for tackling speed and overfitting
- HMMs are cool!

EOS

Citations