Homework 6: Linear Independence, Basis

- 1. $\S4.4$, #13(b), 14(b), 27(a)(b).
- 2. Determine whether $\{1, \ln(2x), \ln(x^2)\}$ is linearly independent in $F(0, \infty)$. Justify your answer.
- 3. Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly dependent set of vectors in a vector space V, and let \mathbf{u} be any vector in V. Using only the definition of linearly dependence given in class, prove that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{u}\}$ is linearly dependent.
- 4. Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be a set of vectors in a vector space V such that every vector \mathbf{u} in V can be written in exactly one way as a linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$. Prove that \mathcal{B} is a basis for V.

Note that in this problem you are being asked to prove the converse of Theorem 1.6. You must prove two things: \mathcal{B} spans V, and \mathcal{B} is linearly independent.