NMB - Oefenzitting 7: FFT en DFT

Hendrik Speleers

Overzicht

Overzicht Fourier-analyse

FFT voor complexe rijen

FFT voor reële rijen

Symmetrische DFT

Meerdimensionale FFT

Toepassingen

Nota's			
Nota's			

Overzicht Fourier-analyse

	Eindig interval	Oneindig interval
C o n t	Fourierreeks $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{-2\pi i k t/(b-a)}$	Continue Fouriertransform. $x(t) = \int_{-\infty}^{\infty} X(f)e^{-2\pi i f t} df$
D i s c	Discrete Fouriertransform. $x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{-2\pi i k n/N}$	(Z-transformatie)
	N. 1	(Z-transformatie

DFT en FFT voor complexe rijen

DFT/IDFT paar

$$x_n = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{-2\pi i k n/N}, \quad X_k = \sum_{n=0}^{N-1} x_n e^{2\pi i k n/N}$$

- ► X_k : spectrum van discrete signaal \Rightarrow amplitudespectrum en fasespectrum
- ▶ $X_0 = DC$ -component, $X_{N/2} = Nyquist$ frequentie

FFT voor complexe rijen

- ▶ Snelle berekening DFT door recursief splitsingsalgoritme
- ► Complexiteit :
 - ► Nlog₂(N)/2 complexe *
 - \triangleright $Nlog_2(N)$ complexe +

Nota's			

Nota's

FFT voor reële rijen en Symmetrische DFT

FFT voor reële rijen

- ► DFT van 2 reële rijen van lengte *N* berekenen uit DFT van 1 complexe rij
- ► DFT van 1 reële rij van even lengte *N* uit DFT van 1 complexe rij van lengte *N*/2

Symmetrische DFT

- ► Reële, even-symmetrische rij
 - \Rightarrow DFT ook reëel en even-symmetrisch
- ► Reële, oneven-symmetrische rij
 ⇒ DFT puur imaginair en oneven-symmetrisch
- ► Discrete cosinus- en sinustransformatie : DCT/IDCT en DST/IDST

Meerdimensionale FFT en Toepassingen

Meerdimensionale FFT

- ▶ 2D DFT/IDFT berekenen met herhaalde 1D DFT/IDFT
- ► Complexiteit : MNlog₂(MN)

Toepassingen

- ▶ Beeldcompressie
- ▶ JPEG
- ► Snel algoritme voor veeltermvermenigvuldiging
- ► Rekenen met zeer hoge nauwkeurigheid : DFT-gebaseerd vermenigvuldigingsalgoritme

-		
Nota's		

Nota's