Course Code:22103>: <Subject Code: BMS>: <Subject Name: Basic Mathematics>: <Matrices>:

<UO-1.3.3>: <Assessments>: <Formative>

<Mrs. Anantmati S. Patil>

Assessment Type: Formative Assessments: Embedded questions in video

Set 1: Question No 1	Set 1: Question No 2	Set 1: Question No 3	
State the formula of A^{-1}	Find inverse of A = $\begin{bmatrix} -1 & 1 & 1 \\ -2 & 2 & 2 \\ 3 & 2 & 1 \end{bmatrix}$	The solution X of the matrix equation $A \times X = B$ is given by	
Recall/ Remembering	Understanding	Application	
a) $A^{-1} = Adj A$	a) $A^{-1} = \begin{bmatrix} -2 & -1 & 0 \\ -8 & -4 & 0 \\ -10 & -5 & 0 \end{bmatrix}$	a) $X = A^{-1} \times B$	
b) $A^{-1} = \frac{-1}{\det A} \times Adj A$	b) $A^{-1} = \begin{bmatrix} -2 & -8 & -10 \\ -1 & -4 & -5 \\ 0 & -5 & 0 \end{bmatrix}$	b) $X = B \times A^{-1}$	
$c) A^{-1} = \left[c_{ij}\right]^t$	c) $A^{-1} = \begin{bmatrix} -2 & 1 & 0 \\ 8 & -4 & 0 \\ -10 & 5 & 0 \end{bmatrix}$	c) $X = A \times B$	
d) $A^{-1} = \frac{1}{ A } \times Adj A$	d) Inverse does not exist.	$d) X = B \times A$	
Ans: <d></d>	Ans: <d></d>	Ans: <a>	

Set 2: Question No 1	Set 2: Question No 2	Set 2: Question No 3
The inverse of the matrix A is given by	The cofactors are given by the formula	For solving simultaneous equations the matrix equation is AX=B. Here matrix B is
Recall/ Remembering	Understanding	Recall/ Remembering
a) $A^{-1} = Adj A$	a) $c_{ij} = (-1)^{i+j} \times M_{ij}$ Where M_{ij} is a minor	a)row matrix of constants
b) $A^{-1} = \frac{1}{ A } \times Adj A$	b) $c_{ij} = (-1)^{i+j} \times M_{ji}$ Where M_{ji} is a minor	b)square matrix of coefficients
c) $A^{-1} = \frac{-1}{ A } \times Adj A$	c) $c_{ij} = M_{ij}$ Where M_{ij} is a minor	c)column matrix of variables
d) $A^{-1} = A \times Adj A$	d) none of above	d)column matrix of constants
Ans: 	Ans: <a>	Ans: <d></d>

Assessment Type: Summative: End of CO: in LMS

Summative: Q 1	Summative: Q 2	Summative: Q 3	Summative: Q 4	Summative: Q 5
If $A = \begin{bmatrix} 2 & -1 \\ 4 & 3 \end{bmatrix}$, find A^{-1} .	Using matrix method, solve the simultaneous equations x+y+z=6; x-y+2z=5; 2x+y-z=1	Find the inverse of the matrix: $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$	If $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ then find Adj A	Using matrix method, solve the simultaneous equations 2x+y-z=3; x-2y+3z=1; 3x+y+2z=1
Recall/ Remembering	Application	Application	Understanding	Application
$a) \frac{1}{10} \times \begin{bmatrix} 3 & -1 \\ 4 & 2 \end{bmatrix}$	a)x= 1, y=2, z=-3	a) $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$	a) $\begin{bmatrix} 0 & 1 & -2 \\ 4 & -4 & 4 \\ -8 & 5 & -6 \end{bmatrix}$	a) x= 1, y=2, z=1
b) $\frac{1}{10} \times \begin{bmatrix} -3 & -1\\ 4 & -2 \end{bmatrix}$	b) x= -1, y=2, z=-3	b) $\frac{1}{5} \times \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$	b) $ \frac{-1}{4} \times \begin{bmatrix} 0 & 1 & -2 \\ 4 & -4 & 4 \\ -8 & 5 & -6 \end{bmatrix} $	b) x= 23/14, y=-3/2, z=-17/14
c) $\frac{1}{10} \times \begin{bmatrix} 3 & 1 \\ -4 & 2 \end{bmatrix}$	c) x= 1, y=-2, z=-3	c) $\frac{1}{11} \times$ $\begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$	c) $\frac{-1}{4}$ × $\begin{bmatrix} 0 & -1 & -2 \\ -4 & -4 & -4 \\ -8 & -5 & -6 \end{bmatrix}$	c) x= 23/14, y= 3/2, z=-17/14
d) $\begin{bmatrix} 3 & 1 \\ -4 & 2 \end{bmatrix}$	d) x= 1, y=2, z=3	d) $\begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 4 \\ -2 & -3 & -3 \end{bmatrix}$	d) Does not exist	d) No Solution
Ans: <c></c>	Ans: <d></d>	Ans: <a>	Ans: <a>	Ans:

Assessment Type: Practice Worksheets: End of CO: in LMS/ downloadable PDF

A. If $A = \begin{bmatrix} -1 & 1 & 1 \\ 2 & 4 & 2 \\ 3 & 2 & 1 \end{bmatrix}$ then find Adj A	B. Calculate the adjoint of matrix of A if A = $\begin{bmatrix} 1 & 2 & 6 \\ 7 & 2 & 5 \\ 8 & 2 & 10 \end{bmatrix}$
A. Answer Space	B. Answer Space

C.	Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 & 2 \\ 4 & 1 & 1 \\ 2 & -1 & 3 \end{bmatrix}$	D.	Find the inverse of the matrix $A = \begin{bmatrix} 1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0 \end{bmatrix}$ by using adjoint method.
C.	Answer Space	D.	Answer Space

F. Using matrix method, solve the simultaneous equations.

x + y + z = 6; x - y + 2z = 5; 2x + y - z = 1

E. Solve the equations using matrix method x + 3y + 2z = 6, 3x - 2y + 5z = 5, 2x - 3y + 6z = 7

E. Answer Space	F. Answer Space
G. Solve by matrix method the set of equations. x+y+z=2; y+z=1; z+x=3	H. Using matrix method, solve the simultaneous equations.x + y = 3; y + z = 5; z + x = 4

G. Answer Space	H. Answer Space