Math 450b Homework 2

Trevor Klar

February 13, 2018

1. Determine if the following examples are continuous on their domain. Justify your answers.

(a)
$$f: \mathbb{R}^2 - \{0\} \to \mathbb{R}$$
 given by $f(x,y) = \frac{xy}{x^2 + y^2}$

(a) $f: \mathbb{R}^2 - \{0\} \to \mathbb{R}$ given by $f(x,y) = \frac{xy}{x^2 + y^2}$. **Answer:** Continuous. Since xy and $x^2 + y^2$ are products and sums of continuous functions, they are continuous. Thus, f is a quotient of continuous functions, and since $\vec{0}$ is not in the domain, the denominator never vanishes. Therefore, f is continuous.

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 given by $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

Answer: Not continuous. We already know that f is continuous everywhere except perhaps at **0**, so let's consider whether f is continuous at that point. Note that whenever $y=x\neq 0$, we have that $f(x,y)=\frac{x^2}{2x^2}=\frac{1}{2}$; however, whenever $y=-x\neq 0$, we have that $f(x,y)=\frac{-x^2}{2x^2}=\frac{-1}{2}$, thus f cannot be continuous. To see this, let $\epsilon=\frac{1}{4}$. Now, for all $\delta>0$, we have that $\left|\left|\left(\frac{\delta}{2},\frac{\delta}{2}\right)-\mathbf{0}\right|\right|<\delta$, but since

$$\left| f(\mathbf{0}) - f\left(\frac{\delta}{2}, \frac{\delta}{2}\right) \right| = \left| 0 - \frac{1}{2} \right| > \frac{1}{4} = \epsilon,$$

then there is no $\delta > 0$ which lets f satisfy the definition of continuity.

(c)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 given by $f(x, y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$

Continuous. This function is still formed by sums, products, and a quotient of Answer: continuous functions, so by the same argument as before, it is continuous everywhere except perhaps at 0. To see that it is continuous there as well, let $\epsilon > 0$ be given, and let $\delta = \epsilon$. For $(x,y) \in B(\mathbf{0},\delta)$ with $(x,y) \neq \mathbf{0}$, we have that $|x|,|y| < \epsilon$. So,

$$|f(x,y)| = \left| \frac{x^2 y}{x^2 + y^2} \right|$$

$$\leq \left| \frac{(x^2 + y^2)y}{x^2 + y^2} \right|$$

$$= |y|$$

$$< \epsilon$$

Thus, for any $\epsilon > 0$, $(x, y) \in B(\mathbf{0}, \delta)$ implies that $f(x, y) \in B(0, \epsilon)$, so f is continuous.

2. Prove that $f: \mathbb{R}^n \to \mathbb{R}$ given by $f(\mathbf{x}) = ||\mathbf{x}||$ is continuous.

PROOF Consider the functions $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$ such that $g(\mathbf{x}) = \sum_{i=1}^n x_i^2$ and $h(x) = \sqrt{x}$. Note that q is comprised of sums and products of continuous functions, and h as a well known function, so both are continuous on their domains. Now, the domain of h is the set of nonnegative reals, and the image of g is the same set, thus $h \circ g = f$ is continuous.

3. Suppose that $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ satisfies $||f(\mathbf{x}) - f(\mathbf{y})|| \le K ||\mathbf{x} - \mathbf{y}||^{\alpha}$, where K > 0 and $\alpha > 0$ are constants. Prove that f is continuous.

1

PROOF Let $\epsilon > 0$ be given, and choose δ such that $K\delta^{\alpha} = \epsilon$. Thus, for any \mathbf{x}, \mathbf{y} such that $||\mathbf{x} - \mathbf{y}|| < \delta$,

$$||f(\mathbf{x}) - f(\mathbf{y})|| \le K ||\mathbf{x} - \mathbf{y}||^{\alpha} < K\delta^{\alpha} = \epsilon,$$

so $||f(\mathbf{x}) - f(\mathbf{y})|| < \epsilon$ and we are done.

- 4. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies:
 - (i) for each fixed x_0 , the function $y \mapsto f(x_0, y)$ is continuous; and
 - (ii) for each fixed y_0 , the function $x \mapsto f(x, y_0)$ is continuous.

Give an example of such an f which is not continuous.

Answer:
$$f: \mathbb{R}^2 \to \mathbb{R}$$
 given by $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$

PROOF We have already shown that f is not continuous in problem 1(b). Now we will show that conditions (i) and (ii) hold. First, observe that f(x,y) = f(y,x), so it suffices to prove either (i) or (ii). Now we prove (i). If $x_0 = 0$, then $f(x_0,y) \equiv 0$ is constant, so f is continuous. Now for $x_0 \neq 0$, $f(x_0,y) = \frac{x_0y}{x_0^2+y^2}$, which consists of sums, products, and one quotient of continuous functions, and the denominator never vanishes. Thus, $f(x_0,y)$ is continuous.

5. Professor Doofus mistakenly writes the following on the blackboard.

Theorem. The following are equivalent.

- (1) $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at all $x \in \mathbb{R}^n$ (with the δ - ϵ definition)
- (2) For every open set $U \subset \mathbb{R}^n$, the image $f(U) \subset \mathbb{R}^m$ is open.

Give an example with m = n = 2 which shows that Doofus is wrong.

Example. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as

$$f(x,y) = (|x|, |y|).$$

Claim: f is continuous at all $\mathbf{x} \in \mathbb{R}^n$.

PROOF Let $\epsilon > 0$ be given. Let $\delta = \epsilon$ and let $\tilde{\mathbf{x}} \in \mathbb{R}^n$ be arbitrary. Now, for any $\mathbf{x} \in B(\tilde{\mathbf{x}}, \delta)$,

$$\epsilon > ||\mathbf{x} - \tilde{\mathbf{x}}||$$

$$= \sqrt{\sum_{i=1}^{n} (x_i - \tilde{x}_i)^2}$$

$$= \sqrt{\sum_{i=1}^{n} |x_i - \tilde{x}_i|^2}$$

$$\geq \sqrt{\sum_{i=1}^{n} ||x_i| - |\tilde{x}_i||^2}$$

$$= \sqrt{\sum_{i=1}^{n} (|x_i| - |\tilde{x}_i|)^2}$$

$$= ||f(\mathbf{x}) - f(\tilde{\mathbf{x}})||$$

Thus, if $\mathbf{x} \in B(\tilde{\mathbf{x}}, \delta)$, then $f(\mathbf{x}) \in B(f(\tilde{\mathbf{x}}), \epsilon)$, so f is continuous and (1) holds.

Claim: There exists an open set $U \subset \mathbb{R}^2$, such that the image $f(U) \subset \mathbb{R}^2$ is not open.

PROOF Consider the open set $U = B(\mathbf{0}, 1) \subset \mathbb{R}^2$.

Now, under f, every ordered pair maps either to itself, or to a corresponding ordered pair in the first quadrant (or on its boundary); so the image of U is $f(U) = U \cap I$, where I denotes the closure of the first quadrant.

The set f(U) is not open; since the origin $\mathbf{0} \in f(U)$, but every $B(\mathbf{0}, r)$ contains points in every quadrant, so no open ball $B(\mathbf{0}, r)$ is a subset of f(U).

Therefore, (2) fails. Thus, (1) \implies (2).

6. Suppose that $f: A \subset \mathbb{R}^n \to \mathbb{R}$ is continuous, with $\mathbf{a} \in A$ and $f(\mathbf{a}) > 0$. Prove that there exists a $\delta > 0$ such that $f(\mathbf{x}) > 0$ for all $\mathbf{x} \in B(\mathbf{a}, \delta) \cap A$.

PROOF Since f is continuous on A, for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $||\mathbf{x} - \mathbf{a}|| < \delta$ and $\mathbf{x} \in A$, then $||f(\mathbf{x}) - f(\mathbf{a})|| < \epsilon$. Let $\epsilon = f(\mathbf{a})$. If $||f(\mathbf{x}) - f(\mathbf{a})|| < f(\mathbf{a})$, then $f(\mathbf{x}) \in B(f(\mathbf{a}), f(\mathbf{a}))$, which is the interval $(0, 2f(\mathbf{a}))$. Thus, we are done.

7. Suppose that $A \subset \mathbb{R}^n$ is a set which is not closed. Prove that there exists a continuous function $f: A \to \mathbb{R}$ which is unbounded. (Hint: You might find it useful to first show that the set $\mathbb{R}^n - A$ must contain a point in the boundary of A.)

Lemma (7.1). If a set A contains all its boundary points, then it is closed.

PROOF A contains all of its boundary points, so A^{\complement} contains none of them. That is, for all $\mathbf{x} \in A^{\complement}$, \mathbf{x} is not a boundary point, so there exists some r > 0 such that $B(\mathbf{x}, r) \subset A^{\complement}$. This means that A^{\complement} is open, by the openness criterion. Furthermore, since A^{\complement} is open, A is closed.

By the way, we have also proved the following:

Corollary (7.2). If a set A contains none its boundary points, then it is open.

Okay, now we are ready to prove Exercise 7.

PROOF Suppose that $A \subset \mathbb{R}^n$ is not closed. By the contrapositive of Lemma (7.1), A does not contain all of its boundary points. Let \mathbf{p} be a boundary point of A which is not in A. Now, let $f: A \to \mathbb{R}$ be defined as

$$f(\mathbf{x}) = \frac{1}{||\mathbf{x} - \mathbf{p}||}.$$

To see that f is unbounded, observe that for any B>0, $B(\mathbf{p},\frac{1}{B})$ contains a point in A, so there exists some $\mathbf{a}\in B(\mathbf{p},\frac{1}{B})$ such that $||\mathbf{a}-\mathbf{p}||<\frac{1}{B}$, so $f(\mathbf{x})=\frac{1}{||\mathbf{a}-\mathbf{p}||}>B$.