Лабораторная работа №11 Задача о СУММЕ ПОДМНОЖЕСТВ

Дано конечное множество натуральных чисел $S \subset N$ и число $t \in N$.

Определить, существует ли такое подмножество S'⊆S, сумма элементов которого равна t.

Например, $S=\{7, 8, 13, 15, 24, 89\}$, t=44, тогда $S'=\{7, 13, 24\}$. Tеорема. Задача о сумме подмножеств NP-полна (СП $\in NPC$). Доказательство

- 1. Задача СП \in NP, так как проверяется за полиномиальное время (в качестве сертификата можно рассматривать подмножество чисел, сумма которых равна t). Действительно, для того чтобы проверить, равна ли t сумма чисел подмножества S, необходимо выполнить действий O(/S'/).
- 2. Построим алгоритм сведения *NP*-полной задачи ВП к задаче СП, т. е. алгоритм преобразования произвольной пары $(G, k) \in B\Pi$ в пару $(S, t) \in C\Pi$.

Пусть граф G представлен матрицей инцидентности (вершины и ребра в графе пронумерованы с нуля).

Например, дан граф G, и требуется построить в нем вершинное покрытие размера k=4.

	l_3	l_2	l_1	l_0
x_0	0	0	0	1
x_0 x_1	0	1	0	1
x_2	1	0	1	0
x_3	0	0	1	0
x_2 x_3 x_4 x_5	0	1	0	0
x_5	1	0	0	0

 (x_0) l_0 (x_1) (x_2) l_1 (x_3) (x_4) (x_5)

Требуется построить множество S и число t.

Достроим матрицу инцидентности следующим образом: добавим слева матрицы инцидентности столбец из единиц и каждой вершине графа поставим в соответствие число системе счисления с основанием k+1, где k-1размер искомого вершинного покрытия. Переведем образовавшиеся числа в десятичную систему счисления И запишем справа. Таким образом, ДЛЯ

		l_3	l_2	l_1	l_0	<i>10CC</i>
x_0	1	0	0	0	1	626
x_1	1	0	1	0	1	651
x_2	1	1	0	1	0	755
x_3	1	0	0	1	0	630
x_4	1	0	1	0	0	650
x_5	1	1	0	0	0	750
y_0	0	0	0	0	1	1
y_1	0	0	0	1	0	5
<i>y</i> ₂	0	0	1	0	0	25
<i>y</i> ₃	0	1	0	0	0	125
	4	2	2	2	2	2812

приведенного графа получили множество $S=\{625, 651, 755, 630, 650, 750, 1,$ 5, 25, 125 \}.

Укажем число t, для этого в старший разряд запишем число (запись числа k в системе счисления с основанием (k+1)), а в остальные разряды – цифру 2. Найдем значение этого числа в десятичной системе счисления и запишем справа (для примера получено t=2812).

Теперь нужно показать, что в G существует вершинное покрытие размера k тогда и только тогда, когда в S существует подмножество S с суммой t.

1) Пусть дано вершинное покрытие $V' \subseteq V$ размера k, включим во множество S' числа, соответствующие этим вершинам. Тогда сумма в системе счисления с основанием (k+1) будет иметь следующий вид: в старшем разряде — цифра k, а в остальных — 1 или 2, в зависимости от того, оба конца ребра вошли в вершинное покрытие или только один. Добавим y_i , соответствующие тем ребрам, у которых вошел только один конец, и прибавим соответствующие y_i числа в S', в результате получим число t.

Так, в приведенном графе есть вершинное покрытие, состоящее из четырех вершин $\{x_1, x_2, x_4, x_5\}$.

В S существует подмножество $S'=\{651, 755, 650, 750, 1, 5\}$ c суммой равной t=2812.

		l_0	l_1	l_2	l_3	<i>10CC</i>
x_0	1	0	0	0	1	626
x_1	1	0	1	0	1	<i>651</i>
x_2	1	1	0	1	0	755
x_3	1	0	0	1	0	630
x_4	1	0	1	0	0	<i>650</i>
x_5	1	1	0	0	0	<i>750</i>
y ₀	0	0	0	0	1	1
y_1	0	0	0	1	0	5
y_2	0	0	1	0	0	25
<i>y</i> ₃	0	1	0	0	0	125
	4	2	2	2	2	2812

Обратное утверждение доказывается Имеется аналогично. подмножество S' с суммой элементов равной t,

следовательно, в младших разрядах записи числа t в системе счисления с основанием (k+1)стоят двойки. Так как у, в соответствующий разряд дают максимум по одной единице, то вторая единица входит из «вершинных» строк. Вершины, соответствующие этим строкам, образуют вершинное покрытие.

Так, например, во множестве $S=\{625, 651,$ 755, 630, 650, 750, 1, 5, 25, 125} имеется

в графе G вершинное покрытие размера k=4.

подмножество $S'=\{1, 5, 25, 125, 626, 630, 650, 750\}$ с суммой t=2812. Вершины, соответствующие выбранным числам $-x_0, x_3, x_4, x_5$, они образуют 3. Построенный алгоритм сведения полиномиален, так как все построенные числа имеют двоичное представление полиномиальной длины и строятся за полиномиальное время.

Таким образом, в силу леммы 3 задача СП NP-полна (СП $\in NPC$).

Задание:

1) Построить индивидуальную задачу $(S, t) \in \mathbb{C}\Pi$, соответствующую задаче $(G, k=2) \in \mathbb{B}\Pi$:

