ALGORITMICA GRAFURILOR **Săptămâna 12**

C. Croitoru

croit or u@info.uaic.ro

FΙΙ

December 15, 2013

OUTLINE

• Reduceri polinomiale pentru probleme de decizie pe grafuri (ag 13-14 allinone.pdf pag. 281 → 320)

Problemele pentru seminarul 12

Prezentarea temei pentru acasă

Stabila maximă.

SM

Instanță : G = (V, E) graf și $k \in \mathbb{N}$.

Intrebare: Există S mulțime stabilă în G a. î. $|S| \ge k$?

Teoremă. (Karp 1972) $3SAT \propto SM$.

Exemplu: $U = \{u_1, u_2, u_3, u_4\};$

 $C = (u_1 \vee u_3 \vee u_4) \wedge (\overline{u}_1 \vee u_2 \vee u_4) \wedge (u_2 \vee \overline{u}_3 \vee u_4); \ k = 4 + 3 = 7.$

Colorarea vârfurilor.

COL

Instanță: G = (V, E) graf și $p \in \mathbf{N}^*$.

Intrebare: Există o p-colorare a vârfurilor lui G?

Lemă. Fie H graful:

- a) Dacă c este o 3-colorare a lui H astfel încît $c(v_1) = c(v_2) = c(v_3) = a \in \{1, 2, 3\}$ atunci $c(v_4) = a$.
- **b)** Fie $c: \{v_1, v_2, v_3\} \rightarrow \{1, 2, 3\}$ a.î. $c(\{v_1, v_2, v_3\}) \neq \{a\}$.

Atunci c poate fi extinsă la o 3-colorare a lui H cu $c(v_4) \neq a$.

Vom desemna (pentru simplitate) graful H astfel:

Colorarea vârfurilor.

Teoremä. $3SAT \propto COL$.

Exemplu: $U = \{u_1, u_2, u_3, u_4\}$,

 $C = (\overline{u}_1 \vee u_2 \vee u_3) \wedge (u_1 \vee u_3 \vee \overline{u}_4) \wedge (\overline{u}_2 \vee u_3 \vee u_4)$

Graful G va fi (p = 3):

Probleme hamiltoniene.

Definiție: Fie G = (V(G), E(G)) un (di)graf. Un circuit C al lui G se numește circuit hamiltonian dacă V(C) = V(G). Un drum deschis D al lui G se numește drum hamiltonian dacă V(D) = V(G). Un (di)graf care are un circuit hamiltonian se numește (di)graf hamiltonian. Un (di)graf care are un drum hamiltonian se numește (di)graf trasabil.

Teoremă. (Nash-Williams 1969) *Problemele următoare sînt polinomial echivalente:*

CH: Dat G graf. Este G hamiltonian? **TR:** Dat G graf. Este G trasabil?

DCH: Dat G digraf. Este G hamiltonian?

DTR: Dat G digraf. Este G trasabil?

BCH: Dat G graf bipartit. Este G hamiltonian?

Probleme hamiltoniene.

Teoremă. (Karp 1972) $SM \propto CH$.

Pentru orice muchie a grafului G (intrare în SM) asociem graful

Singurele posibilități de traversare de către un circuit hamiltonian al lui H a vîrfurilor din G'_e sînt (a) (b) și (c) indicate în figura următoare:

Probleme hamiltoniene.

Exemplu:

Problema comisului voiajor

Algoritmi de aproximare.

CV Dat $n \in \mathbf{Z}_+$ $(n \ge 3)$ și $d : E(K_n) \to \mathbf{R}_+$, să se determine H_0 circuit hamiltonian în graful complet K_n cu $d(H_0)$ minim printre toate circuitele hamiltoniene ale lui K_n .

Algoritmi A, care pentru datele unei probleme CV vor oferi în timp polinomial (în raport cu n) un circuit hamiltonian H_A , care va aproxima soluția optimă H_0 .

Măsuri ale eficienței unei astfel de "euristici" A pot fi considerate numerele:

$$R_{A}(n) = \sup_{\substack{d: E(K_n) \to \mathbf{R}_+ \\ d(H_0) \neq 0}} \frac{d(H_A)}{d(H_0)}$$
$$R_{A} = \sup_{n \to \infty} R_{A}(n).$$

Teoremă. Dacă există un algoritm aproximativ A cu timp de lucru polinomial pentru CV, astfel încît $R_A < \infty$, atunci CH se poate rezolva în timp polinomial.

 $\mathbf{P} \neq \mathbf{NP} \Rightarrow nu \text{ există algoritm aproximativ A polinomial cu } R_A < \infty.$

Problemele pentru seminarul 12

