CS & IT ENGINEERING

Data Structure & Programming Tree Lec- 07

By-Pankaj Sharma Sir

TOPICS TO BE COVERED

Tree 07

n(h): Min no of nodes in such given tree of h height.

$$D(p) = 5D(p-1)$$

 $D(p) = 1 + D(p-1) +$

$$n(h) = 2n(h-1)$$
 $n(1) = 2n(6) = 2^{1}$
 $n(2) = 2n(1) = 2^{2}$
 $n(3) = 2n(1) = 2^{2}$
 $n(5) = 32$

Every node of diff of height of LT and height of RT is at most 2 Min no of nodes in such a binary tree of h= 4.

 $\omega(y) = 1 + \omega(y-1) + \omega(y-3)$

$$\begin{array}{c}
R_{-3} \\
R_{-1}
\end{array}$$

$$\begin{array}{c}
R_{-3} \\
R_{-1}
\end{array}$$

$$\begin{array}{c}
R_{-1} \\
R_{+1}
\end{array}$$

Heap

CBT

Heap Max-heap A CBT in which every mode satisfies property: The value of rode is greater than its chiptren.

Min-heas VA CBT in which every node satisfies the Broperty: The value/key of hode is smaller than its children. x<< c1,5

1) Construction of head by inserting Reys one after another in a given order.

Construct Max-heap by inserting Reys 10, 20, 30,40,50,60,70 in some Order.

Insert 10 Insert 20 10 Is it a
max. heap? 20 Insert swap Swal 20

=> constant time

Const. heap by inserting keys 70,60,50,40,30,20,10 in given order.

- 1 Build-Heap
- 2 Heapify Algo
- (3) Given an array rep. CBT, convert it into max-heaf.

Tree representation Ptx L.L. Left data Right 00 5000

CBT => Alorgy representation

index of node 100 \Rightarrow 1

Prog Imp

21+1

Given an array rep. of a CBT 20,8,15,6,5,2

Is it a max-heap?

Given an array rep. of a CBT as 10,20,30,40,50,60,70?

Is it a max-heap?

A NO

Given an array rep. of a CBT as 10,20,30,40,50,60,70?

Convert it to a max-heap.

2 (20) 30) 3 Every leaf node

2 (20) 30) 3 man - heap property

4 (40) 50 60 70

5 6 7

index of internal nodes = 1, 2, 3I to $\lfloor \frac{n}{2} \rfloor$

4,5,6,7

Left Right

A[Lorgest] < A[Left] Largest

Largest = Left

A[Lorgest] < A[Right]

Lorgest = Right

