Containers, Singularity & Pitágoras

Miguel Portela¹ & Emma Szhao² & Gustavo Iglésias²

¹Universidade do Minho ²Banco de Portugal

June 17, 2021

Outline

Disclaimer: this presentation represents only the experience and opinion of its authors.

- Context: sharing a dashboard
- Containers: particularly useful in data science
- Pitágoras
- Singularity
 - Definition file
 - Build a container
 - Using the container in Pitágoras' platform
- Take-away

Example: share a dashboard

Figure 1: Flexdashboard example

Containers

- Package code and all its dependencies
- Lightweight and standardized piece of software
 Summarized by a definition file or image, which can be executed across many platforms
- Ideal solution to share a tool targetting a specific problem at hand
- Docker and Singularity are among the most used container systems
- Singularity images are particularly suited for data processing
- Outperforms Docker in access to host filesystem, networking, GPU computation, and security integration while optimizing reproducibility

Containers

Figure 2: Container diagram

Pitágoras

Modern Data Architecture - Data Science Lab

Figure 3: Pitágoras environment. © Guilherme de Sousa.

Pitágoras

- How to get there

Figure 4: Pitágoras' icons.

- Sharing files with Pitágoras' infrastructure

Figure 5: Pitágoras' icons.

Using Pitágoras: GUI

Figure 6: Pitágoras' Graphical User Interface.

Using Singularity in Pitágoras

First steps in Pitágoras

Go to Applications and open the 'Terminal Emulator'

Figure 7: Pitágoras' terminal [@vipp].

- Move to folder /mnt/cephfs/colaborativo/SHARED-FOLDER
- Run the following two lines

```
export https_proxy=http://USER:
password@proxy.bportugal.pt:8080
export http_proxy=http://USER:
password@proxy.bportugal.pt:8080
```

Using Singularity

Singularity bit-by-bit

- Build a container

singularity build --fakeroot BPLIM_Dashboard.sif
BPLIM_Dashboard.def

Connect to the infrastructure: condor_submit -i

Figure 8: Pitágoras' condor terminal [@sipp].

- Launch the container: singularity shell bplim.sif
- Use Jupyter Lab inside the container: jupyter lab

Using Pitágoras: GUI & containers

Figure 9: Pitágoras' Graphical User Interface + container.

Imagem:

/mnt/cephfs/colaborativo/DEE-BPLIM-Filial/
Dashboard/initial_dataset/BPLIM_dashboard.sif

 Comando: sh/mnt/cephfs/colaborativo/ DEE-BPLIM-Filial/containers/BPLIM_dashboard.sh

Take-away & Acknowledgments

Take-away:

- Identify which tasks should be containarized
- Define the minimal setup you need for the container
- Practice

Thank you:

- BPLIM Team
- Departamento de Sistemas e Tecnologias de Informação
- Guilherme de Sousa

Links

- Pitágoras: pitagoras-wiki.bportugal.pt
- Singularity, definition files: https://sylabs.io/guides/ 3.7/user-guide/definition_files.html
- Sylabs: https://cloud.sylabs.io/home
- SingularityHub: https://singularityhub.github.io/
- Jupyter: https://jupyter.org/
- flexdashboard: https://pkgs.rstudio.com/flexdashboard/
- Examples used in the presentation:

https://github.com/reisportela/R_plus_RStudio/
tree/main/_containers