NOME	No	
TIONE	T.4	

24/01/2019

Duração: 2h30

- RESPONDA A UM MÁXIMO DE 10 ALÍNEAS TENDO EM CONTA QUE SE RESPONDER PARA 16 VALORES OU MAIS, TEM DE RESPONDER OBRIGATORIAMENTE A DUAS ALÍNEAS DE CADA PERGUNTA.
- EM CADA ALÍNEA, APENAS UMA DAS OPÇÕES ESTÁ CORRECTA.
- ASSINALE NESTA FOLHA A RESPOSTA CORRECTA COM UMA CRUZ.
- CADA RESPOSTA CORRECTA É COTADA COM 2,00 VALORES.
- CADA RESPOSTA ERRADA É COTADA COM -0,50 VALORES.
- RESPOSTAS EM BRANCO OU COM MAIS DO QUE UMA OPÇÃO ASSINALADA SÃO COTADAS COM 0 VALORES.
- Considere a aceleração da gravidade igual a $9.8~\text{m}\,\text{s}^{-2}$.

FOLHA DE RESPOSTAS

D	A 16]	Respost	a		¥7
Pergunta	Alínea	A	В	С	D	E	Versão
	a)			X			
1)	b)	X					1
	c)				X		
2)	a)					X	
	b)					X	1
	c)					X	
	a)	X					
3)	b)					X	1
	c)	X					
	a)		X				
4)	b)			X			1
	c)			X			

1. Os dois sistemas de forças e binários representados na figura são equivalentes. A distância \underline{a} é igual a 50 cm, as intensidades das forças \vec{F}_1 , \vec{F}_2 e \vec{F}_3 são iguais a 50 N, 200 N e 100 N, respectivamente, sendo que a força \vec{F}_3 faz um ângulo θ com a parte positiva do eixo dos XX, e as intensidades das forças \vec{F}_6 e \vec{F}_7 são iguais a 100 N e 300 N, respectivamente. (Nota: As direcções e sentidos das forças \vec{F}_1 , \vec{F}_2 , \vec{F}_3 , \vec{F}_6 e \vec{F}_7 são as representadas na figura, e as direcções das forças \vec{F}_4 e \vec{F}_5 e do binário traduzido pelo momento \vec{M} são as representadas na figura, tendo os seus sentidos sido arbitrados.)

[2] a) Se θ for igual a 30°, qual o momento resultante dos sistemas de forças em relação ao ponto B?

A)	+100 k (Nm)	B)	-50 k (Nm)	C)	-100 k (Nm)	D)	+50 k (Nm)
E)	E) Nenhuma das anteriores						

[2] b) Se θ for igual a 45°, qual das seguintes opções representa o momento \vec{M} ?

A)	+400 k (Nm)	B)	+550 k (Nm)	C)	+500 k (Nm)	D)	+650 k (Nm)
E)							

[2] c) Tomando o ponto A como origem do sistema de eixos, e considerando que θ é igual a 45°, qual das seguintes rectas no plano XY (com z = 0 cm) define o eixo central de momentos dos sistemas de forças e binários?

A)	y = 0,238 x + 40,58 (cm)	B)	y = 0,238 x + 4,92 (cm)
C)	y = 0.312 x + 6.46 (cm)	D)	y = 0.312 x + 53.23 (cm)
E)	Nenhuma das anteriores		

24/01/2019

Duração: 2h30

[6] 2. Considere o sistema em equilíbrio representado na figura, constituído por uma barra homogénea com peso $P_1 = 100 \text{ N}$ e comprimento L = 2 m, apoiada em A por uma parede com atrito e em B por uma corda faz um ângulo $\theta = 30^{\circ}$ com a horizontal. A uma distância x da parede encontra-se um corpo suspenso com peso P_2 igual a 110 N.

[2] a) Se a distância x for igual a 180 cm, qual a reacção normal exercida pela parede sobre a barra?

A)	134 N	B)	149 N	C)	141 N	D)	146 N	
E)	Nenhuma das anteriores							

[2] b) Se a distância x for igual a 182 cm e a tensão na corda for igual a 300 N, qual o coeficiente de atrito estático mínimo entre a parede e a barra?

A)	0,40	B)	0,45	C)	0,50	D)	0,55	
E)	Nenhuma	ores						

[2] c) Se o coeficiente de atrito estático entre barra e a parede for igual a 0,654, qual o valor mínimo de x para que possa existir equilíbrio estático?

A)	160 cm	B)	120 cm	C)	180 cm	D)	140 cm
E)	Nenhuma das anteriores						

24/01/2019

Duração: 2h30

[6] 3. Um material isotrópico e linearmente elástico, com módulo de elasticidade $E=180\,\mathrm{GPa}$ e razão de Poisson v=0,3, está submetido ao estado de tensão bidimensional representado na figura, com $|\sigma_x|=30\,\mathrm{MPa}$, $|\sigma_y|=20\,\mathrm{MPa}$ e $|\tau_{xy}|=|\tau_{yx}|=50\,\mathrm{MPa}$.

[2] a) Qual o módulo da tensão axial máxima de compressão?

A)	25,25 MPa	B)	75,25 MPa
C)	50,90 MPa	D)	60,90 MPa
E)	Nenhuma das anteriores		

[2] b) Qual das seguintes opções corresponde ao ângulo de rotação que é necessário aplicar ao elemento de área em torno do eixo dos ZZ, de modo a obter a orientação dos planos principais?

					- *			
A)	-37,98°	B)	+37,98°	C)	-43,57°	D)	+43,57°	
E)) Nenhuma das anteriores							

[2] c) Tendo por referência o estado de tensão fornecido, qual das seguintes opções representa o tensor de deformações?

A)	$\begin{bmatrix} 133 & 361 & 0 \\ 361 & 61 & 0 \\ 0 & 0 & -83 \end{bmatrix} \times 10^{-6}$	B) $\begin{bmatrix} -133 & 361 & 0 \\ 361 & -61 & 0 \\ 0 & 0 & 83 \end{bmatrix} \times 10^{-6}$	
C)	$\begin{bmatrix} -200 & -361 & 0 \\ -361 & 161 & 0 \\ 0 & 0 & 17 \end{bmatrix} \times 10^{-6}$	D) $\begin{bmatrix} 200 & -361 & 0 \\ -361 & -161 & 0 \\ 0 & 0 & -17 \end{bmatrix} \times 10^{-6}$	
E)	Nenhuma das anteriores		

24/01/2019

Duração: 2h30

24/01/2019 Duração: 2h30

NOME: ______ N°: _____

[6] **4.** Considere uma barra horizontal de massa desprezável, com comprimento L=1,2 m. A barra encontra-se suportada por dois apoios simples, em A e em B. Sobre a barra encontram-se aplicadas as cargas distribuídas representadas na figura, com $p_1(x) = 285 x \left[\text{N m}^{-1} \right]$ e $p_2(x) = 114 \left[\text{N m}^{-1} \right]$. Para ambas as distribuições de carga, a variável x é a distância ao ponto A.

[2] a) Qual a intensidade da reacção \vec{B}_{v} ?

A)	24,93 N	B)	27,87 N	C)	26,40 N	D)	29,33 N	
E)	Nenhuma das anteriores							

[2] b) Qual a intensidade da força de corte a uma distância de 0,3 metros do apoio A?

A)	29,17 N	B)	26,25 N	C)	27,71 N	D)	24,79 N	
E)	E) Nenhuma das anteriores							

[2] c) Qual a intensidade do momento flector a uma distância de 0,7 metros do apoio A, sabendo que a força de corte nesse ponto é igual a $16,47\hat{j}(N)$?

A)	12,66 Nm	B)	11,96 Nm	C)	13,36 Nm	D)	14,07 Nm	
E)	Nenhuma das anteriores							