Operatines ignifest to the Help

https://powcoder.com

Lecture 4b

Add WeChat powcoder

Previously

Scheduling

- O Scheduling policies & Aperforment Project Exam Help
- O Multi-level queue scheduling
 https://powcoder.com
- O Feedback scheduling
- O Real-time scheduling Add WeChat powcoder
- O Java thread scheduling

Today

Evaluating Scheduling Algorithms

O Deterministic Evaluatiansignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- O Probabilistic Evaluation
- O Stochastic Evaluation
- O Simulation
- O Implementation & Testing
- O Coursework 1 introduction

Recap: Scheduling

Questions:

- O What happens if the Ansigntinean to Parotie out for the Iproge?
- O What is the purpose of multi-level queue scheduling?

 https://powcoder.com
 O What is the effect of using feedback in multi-level queue scheduling?
- O In what kind of system wounded even that pawa page dic processes?
- O Under which conditions can a set of periodic processes be scheduled to not miss their deadlines?
- O Can a Java thread be preempted by the OS?

How to select a CPU scheduling algorithm?

Performance Evaluation

- O Factors to consider: Assignment Project Example thods:
 - O Type of system

- O Deterministic
- O Expected process charachttps://powcoder.com/bilistic
- O Expected workload

 Add WeChat powcoder

 Add WeChat powcoder
- O Scheduling criteria/goals! metrics

O Testing the implementation (ultimately)

Deterministic Evaluation

Given a predefined work load

O First-come first-served (FCFS) Assignment Project Exam Help

O Shortest Job First (SJF)

	P_3	P_{4}	P_{1}	P_{5}	P_2	
() 3	3 1	0 2	0 3	32	61

Process	Burst time
P1	10
P2	29
P3	3
P4	7
P5	12

Average waiting time: 13ms

Deterministic Evaluation

Given a predefined work load

O Round Robin (RR): 10ms time quantum.
Assignment Project Exam Help

	P ₁	P_2	P_3	Mutps	://powco	oder.com	P_5	P_2
0	1	0	20 2	23 3	WaChat	o 50 powcod	0 52	61

Average waiting time: 23ms

Process	Burst time
P1	10
P2	29
P3	3
P4	7
P5	12

Probabilistic Evaluation

Analytical models

O Mathematical representations of the Project Sextems Help

Probabilistic Evaluation

Probabilistic Evaluation

Analytical models

Pros

- Assignment Project Exam Help
- O Large body of existing work
- O Can be applied to new problems https://powcoder.com
- O Relatively fast and accurated WeChat powcoder
- Cons
 - O Probabilities are only approximations of real behaviour
 - O Systems can be too complex to model everything
 - O Must use other techniques to validate results

Queueing Models

Computer system:

A network of servers, each with a queue of waiting processes

Assignment Project Exam Help

O Knowing arrival rates and service rates

O Computes throughput, average wait time, etc

Add WeChat powcoder

O Arrival of processes & CPU and I/O bursts can be determined probabilistically

O Typically, these are exponentially distributed and described by their mean value

Exponential Distribution

 $\theta.25$

O Mean: $1/\lambda$

 $f(x) = \lambda * e^{-\lambda * x}$ (for $x \ge 0$)

O Probability of arrival interval for one process: $P(l < x < u) = e^{-\lambda * l} - e^{-\lambda * u}$

Weibull Distribution

O Rate: λ

O Shape: $k(\beta)$

k = 1 (exponential)

k < 1

k > 1

- O E.g. decreasing/increasing failure rates
- O Other distributions: Uniform, Gaussian, Rayleigh, Fisher, etc.

Little's Law

Assuming a system in steady state, processes that are leaving the queue must equal processes arriving at the queue

Assignment Project Exam Help

where

- O L: average queue length https://powcoder.com
- O W: average waiting time in alleweChat powcoder
- $O \lambda$: average arrival rate into queue
- O Valid for any scheduling algorithm and arrival distribution
- O Given two parameters we can determine the third:
 - O For example, if 7 processes arrive per second on average, and there are 14 processes in queue on average, then the average wait time per process = 2 seconds.

Little's Law – Conservation of Flow

Stochastic Evaluation

Simulation

- O Programmed model of computer system
- O Gather statistics indicating all prith professions Help
- O Data to drive simulation gathered via
 - O Random generation informed by probability distributions (mathematical/empirical)
 - O Data recorded from real system where tape of sequences of events)
- O Pros & Cons
 - O More accurate
 - O Bugs in the simulation
 - Imprecise modelling, deliberate omissions (due to complexity)
 - O Results of a simulation must be validated

Simulation

Implementation and Testing

The real thing

- O Even the best simulations have limit project resum Help
- O We could also implement our own scheduler and
 - O Test it with hand-crafted https://powcoder.com
 - O Test it in real systems Add WeChat powcoder
- O Parameterisation of scheduler important for compatibility & fine-tuning
- O High cost, high risk

Summary

Evaluation of scheduling algorithms

- O Deterministic evaluationsignment Project Exam Help
- O Probabilistic evaluation
 - O Queueing models
 - O Little's Law
- O Stochastic evaluation
 - O Simulation models

https://powcoder.com

Add WeChat powcoder

Read

- O Silberschatz et al., Operating System Concepts
 - O Chapter 5.8

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Basics

- O Demonstrate that you restand the feet technique works
- O Write simple classes to simulate scheduling algorithms
- O Create, run and save experimental data from simulations
- O Write a report to present your de We Chat powcoder
 - O Create hypotheses about expected behaviour and discuss your evidence / results
 - O Basic statistics (mean, variance, etc.)
 - O Visualise data (tables, charts, etc.)

O Which scheduling algorithm is most suitable for different kinds of workloads?

```
public abstract class AbstractScheduler {
  // Initializes with given parameters
public void initialize(Properties parameters) {
                         https://powcoder.com
  // Adds a process to the read hat powcoder
  public abstract void ready(Process process);
  // Returns the next process to be run
  // and removes it from the ready queue
  public abstract Process schedule();
```

- O Find the assignment description and detailed guidelines on Study Direct (Module Assessment)
 Assignment Project Exam Help
 Read the guidelines carefully!

https://powcoder.com

- O E-submission via Study Direct Add WeChat powcoder
- O Deadline 22 March 2018, 4PM

Next Lecture

- O Introduction O Deadlocks
- O Operating System Architectures Assignment Project Exam Help
- O Processes O File Systems
- o Threads Programming https://powcederscombutput
- O Process Scheduling Evaluation WeCharpsecurity and Virtualisation
- Process Synchronisation