von Julian Dörner

▽ gitlab.com/juliandoerner/funkana_cheatsheet
Seite 1 von 4

0 Räume

DEF: Metrik

 $d: X \times X \to [0, \infty), x, y \in X$

(M1) $d(x,y) = 0 \Leftrightarrow x = y$ (M2) d(x, y) = d(y, x)

(M3) $d(x,z) \le d(x,y) + d(y,z)$

Genügt d nur (M2), (M3) und ist d(x,x) = 0, dann heißt d Halbmetrik.

DEF: Metrischer Raum

 $X \neq \emptyset$, d Metrik, dann heißt (X, d) metrischer Raum

DEF: Vollständigkeit

Ein **MR** (X, d) heißt vollständig, wenn jede CF konvergiert.

DEF: Norm

 $\|\cdot\|: X \to \mathbb{R}, X \quad \mathbb{K}\text{-VR}, x, y \in X, \lambda \in$

 $(N1) ||x|| = 0 \implies x = 0$

 $(N2) \|\lambda x\| = |\lambda| \|x\|$

(N3) $||x + y|| \le ||x|| + ||y||$

Genügt $\|\cdot\|$ nur (N2), (N3), dann heißt $\|\cdot\|$ Halbnorm auf X.

DEF: Normierter Raum

 \overline{X} K-VR, $\|\cdot\|$ Norm, dann heißt $(X, \|\cdot\|)$ ||) normierter Raum.

DEF: Banachraum

 $\overline{\text{Ein vollständiger NR }}(X, \|\cdot\|)$ heißt **Lemma:** Banachraum

Satz: Voll. NR u. Reihen

Sei $(X, \|\cdot\|)$ NR. Es sind äq.

(i) $(X, \parallel \cdot \parallel)$ voll. (ii) Für $\sum_{n=1}^{\infty} \|x_n\| < \infty$ ex. $x \in X$ mit $\lim_{N \to \infty} ||x - \sum_{n=1}^{N} x_n|| = 0$

Satz: CF-TF Konvergenz

Sei $(x_n)_n$ CF in (X,d) MR. Gibt es eine TF $(x_{n_i})_j$, die gegen $x \in X$ konvergiert, so konvergiert $(x_n)_n$ gegen x.

Satz: TF Konvergenz

Sei $(x_n)_n$ eine Folge in (X, d) MR. Dann sind äq.

(i) $(x_n)_n$ konvergiert gegen x

(ii) Jede TF $(x_{n_i})_i$ hat eine gegen xkonvergente TF

1 Topologie

DEF: Offen und Abgeschlossen $\overline{M} \subset X$ offen $\Leftrightarrow \forall x_0 \in M \exists r > 0 : \text{ u. } lin(A) \text{ dicht in } X$ $B(x_0,r)\subset M$ $M \subset X$ abgeschlossen $\Leftrightarrow X \setminus M$ of-

Satz: Offenheit mit Folgen

 $\overline{\text{Sei }U}\subset X$. Es sind äq.

(i) U offen

(ii) $\forall x \in U$ und jede gegen x konv. Folge $(x_n)_{n\in\mathbb{N}}$, ex $N\in\mathbb{N}$ mit 1.1 Teilraumtopologie $x_n \in U, \forall n > N$

Lemma:

- (1) Die Vereinigung beliebig vieler offener Mengen ist offen.
- (2) Der Schnitt endlich vieler offener Mengen ist offen.

DEF: innerer Punkt, Randpunkt, Abschluss $M \subset X$

- (1) $x_0 \in M$ innerer Pkt. von M $\Leftrightarrow \exists r > 0 : B(x_0, r) \subset M$
- (2) int(M) Menge aller inneren Pkt.
- (3) $x_0 \in X$ Randpunkt von M $\Leftrightarrow \forall r > 0 : B(x_0, r) \cap M \neq \emptyset$ und $B(x_0,r)\cap (X\setminus M)\neq \emptyset$.
- (4) Rand ∂M Menge aller Randpkt.
- (5) Abschluss $\overline{M} = \{x \in X | \forall r > 1\}$ $0: B(x,r) \cap M \neq \emptyset$
- $int(X \setminus M) = X \setminus \overline{M}$
- $\overline{X \setminus M} = X \setminus int(M)$
- M offen $\Leftrightarrow int(M) = M$
- M abg. $\Leftrightarrow \overline{M} = M$
- $\partial M = \overline{M} \cap \overline{X \setminus M}$
- $\overline{M} = int(M) \dot{\cup} \partial M$
- $X = int(M) \dot{\cup} \partial M \dot{\cup} int(X \setminus M)$

 $\overline{M} \subset X, x_0 \in X$ $x_0 \in \overline{M} \Leftrightarrow \exists (x_n)_n \subset M : x_n \to x_0$

Korrolar:

 $M \subset X \text{ abg.} \Leftrightarrow \forall (x_n)_n \subset M$ $(x_n \to x_0 \implies x_0 \in M)$

Satz: voll. Teilraum

 $\overline{(X,d)}$ metr., voll., $\emptyset \neq M \subset X$ $(M, d_{\mid M})$ voll. $\Leftrightarrow M$ abg. in X.

DEF: Dicht, seperabel

(X,d) metr., $D,M\subset X$

- (1) D dicht in $M \Leftrightarrow M \subset \overline{D}$
- (2) (X,d) seperabel $\Leftrightarrow \exists A \subset X$ abz. und dicht in X.

Korrolar:

 \overline{D} dicht in $M \Leftrightarrow \forall x \in M \exists (x_n)_n \subset D$: $x_n \to x$

Lemma:

 $(X, \|\cdot\|)$ ist **seperabel** $\Leftrightarrow \exists A \subset X$ abz.

Satz: Separabilität von BR

 $\overline{\text{Sei}(X,\|\cdot\|)}$ ein BR. Dann sind äg.

(i) X separabel

- (ii) $B_X = \{x \in X : ||x|| < 1\}$ sepera- **DEF:** Äquivalente Normen
- (iii) $S_X = \{x \in X : ||x|| = 1\}$ sepera- $0 \forall x \in X : c||x|| \le |||x||| \le C||x||$

(X,d) MR, $M \subset X, d_M = d_{|M \times M|}$

DEF: relativ offen

 $\overline{A} \subset M$ heißt relativ offen, falls A offen in (M, d_M)

Lemma:

 $A \subset M$ ist offen in M, gdw. es $A' \subset X$ offen gibt, mit $A = A' \cap X$

Korrolar:

Sei $A \subset M$. Für den Abschluss \overline{A}^M in M gilt $\overline{A}^M = \overline{A} \cap M$

Satz: Seperabler Teilraum

 $\overline{\text{Sei }X}$ seperabel $\Longrightarrow M$ seperabel.

1.2 Stetigkeit

 $X, Y \text{ metr. R... } f: X \to Y$

DEF: Stetigkeit

- (1) f heißt **stetig**, falls $\forall O \subset Y \text{ offen } \Longrightarrow f^{-1}(O) \text{ of-}$
- (2) f heißt stetig in $x_0 \in X$, falls $\forall V \subset Y$ Umgebung v. $f(x_0)$ ex. $U \subset X$ Umgebung v. x_0 mit $f(U) \subset V$

BEM: f stetig in $x_0 \in X$

 $\Leftrightarrow \forall \varepsilon > 0 \exists \delta >$ $0\forall x \in$ $X : d(x,x_0) < \delta$ $d(f(x), f(x_0)) < \varepsilon$ $\Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : B(x_0, \delta) \subset$

 $f^{-1}(B(f(x_0)),\varepsilon)$ $\Leftrightarrow x_n \to x_0 \implies f(x_n) \to f(x_0)$

DEF: glm. Stetigkeit

 \overline{f} heißt glm. Stetig, falls $\forall \varepsilon > 0 \exists \delta > 0$ $0 \forall x, y \in X : d(x,y) < \delta \implies$ $d(f(x), f(y)) < \varepsilon$

BEM: f glm stetig, (x_n) CF \Longrightarrow $(f(x_n))$ CF

DEF: Lipschitz-Stetig

f heißt Lipschitz-Stetig, falls $\exists L >$ $0\forall \delta > 0\forall x, y \in X : d(\bar{f}(x), f(y)) \leq$ $L \cdot d(x,y)$

Satz: glm. Fortsetzung

 $D \subset X$, X, Y vollständig, f glm. Ste-

Dann existiert eine eindeutige, qlm. Stetige Fortsetzung $\tilde{f}: \overline{D} \to Y$

1.3 Äquivalente Normen

 $(\|\cdot\|, X), (\|\cdot\|, X)$ normierte Räume

 $\|\cdot\|$, $\|\cdot\|$ sind äquivalent, falls $\exists c, C >$

Satz: äq. Normen und GWe

- $\Leftrightarrow \|\cdot\|, \|\cdot\|$ äquivalent
- $\Leftrightarrow \|\cdot\|, |||\cdot|||$ haben die gleichenkonv. Folgen
- $\Leftrightarrow \|\cdot\|, \|\cdot\|$ haben die gleichen Null folgen

BEM:

- (i) $(X, d_1), (X, d_2)$ metr. Räume mit selben CF
- Sind $\|\cdot\|$, $\|\cdot\|$ äquivalent, dann haben die Räume die gleichen offenen (abgl.) Mengen
- (iii) Sind $\|\cdot\|$, $\|\cdot\|$ äquivalent, dann gilt $(X, \|\cdot\|)$ voll. $\Leftrightarrow (X, \|\cdot\|)$
- (iv) In end. dim. Räumen sind alle Normen äg.

1.4 Kompaktheit

DEF: Komapkt, folgenkom., rel. kom., totalbeschränkt (X,d) metr. R., $K \subset X$

- (i) K kompakt, falls jede offenen Überdeckung von K eine endliche Teilüberdeckung besitzt
- (ii) K folgenkompakt, falls jede Folge in K eine konvergente TF besitzt
- (iii) K relativ kompakt, falls Kkompakt
- (iv) K totalbeschränkt, falls $\forall \varepsilon >$ $0\exists x_1,...,x_m \in X : K \subset$ $\bigcup_{i=1}^m B(x_i,\varepsilon)$

Satz: Kompaktheit in MR

 \overline{K} kompakt

- $\Leftrightarrow \hat{K} \ folgenkompakt$
- $\Leftrightarrow K totalbeschränkt und vollstän$ diq

BEM:

- (i) K rel. kompakt u. abaeschlossen $\implies K \ kompakt$
- (ii) K komapkt \Longrightarrow K totalbeschränkt
- (iii) K totalbeschränkt, dann können die x_i in K gewählt werden (iv) K totalbeschränkt \implies K be-
- schränkt (v) K voll. $\Longrightarrow K$ abgeschlossen in
- (vi) K kompakt \Longrightarrow K abgeschlossen u. beschränkt
- (vii) K totalbeschränkt $\implies K$ sepe-
- (viii) K komapkt $A \subset K \implies A$ rel. kompakt

Satz: Kompaktheit im endlichen

 $(X, \|\cdot\|)$ normierter Raum. Dann ist äquivalent

- (i) $dim X < \infty$
- (ii) $B_X = \{x \in X : ||x|| \le 1\} =$ $\overline{B}(0,1)$ ist kompakt
- (iii) Jede abaeschlossene u. beschränkte Teilmenge ist kompakt

Satz: Kompakter MR

 $\overline{\text{Sei}(X,d)}$ kompt. MR und $A \subset X$ abg. $\implies A \text{ kompakt}$

Lemma:

 $\overline{\text{Sei}(X,d)}$ MR, $B \subset X$ rel. komp, $A \subset B \implies A \text{ rel. komp.}$

Satz: Rieszsches Lemma

 $(X, \|\cdot\|)$ normierter Raum, $Y \neq X$ abg. UR, $\delta > 0$

Dann $\exists x_{\delta} \in X, ||x_{\delta}|| = 1 : ||x_{\delta} - y|| \ge$ $1 - \delta, \ \forall y \in Y$

Lemma:

 $(X, \|\cdot\|)$ normierter Raum, Y end. dim.

Dann ist Y abg. in X

Satz: Stetige Funktion auf Kompaktum

X, Y metr. R., X kompakt, $f: X \to Y$

Dann ist f glm stetig und f(X) kom-

<u>DEF</u>: Gleichgradig Stetig

 $\overline{(K,d)}$ metr. Raum, K kompakt, $M \subset$ C(K)

M heißt gleichgradig Stetig, falls $\forall \varepsilon >$ $0\exists \delta > 0 \forall f \in M \forall s, t \in K : (d(s,t) < d(s,t))$ $\varepsilon \implies |f(s) - f(t)| < \varepsilon$

Satz: Arzela-Ascoli

 $\overline{(K,d)}$ metr. Raum, K kompakt, $M \subset$

M beschränkt u gleichgradig Stetig ⇒ M rel. Komapkt

2 Operatoren 2.1 Stetige lineare Operatoren

X, Y norm. R., $T: X \to Y$ linear Satz: Stetigkeit von lin. Abb.

- Es sind äquivalent (i) T stetig
- (ii) T stetig in 0
- (iii) (T beschränkt $\Leftrightarrow \exists C \geq 0 \forall x \in$ $X: ||Tx|| \le C||x||$
- (iv) T ist lipschitz
- (v) T ist glm. stetig

DEF: Raum besch., lin. Operato- $T \in L(X,Y) \Leftrightarrow T$ lin. und besch.

DEF: Operatornorm

 $||T|| = \sup\{\frac{||Tx||}{||x||} | x \in X \setminus \{0\}\}$

von Julian Dörner

▽ gitlab.com/juliandoerner/funkana_cheatsheet
Seite 2 von 4

- $= \inf\{c \ge 0 | \|Tx\| \le c \|x\| \forall x \in X\}$
- $= \sup_{x \in X, ||x|| = 1} ||Tx||$
- $= \sup_{x \in X, ||x|| < 1} ||Tx||$

DEF: Dualraum

 $X' = L(X, \mathbb{K})$ Dualraum zu X

Satz: L(X,Y) vollständig?

Y voll. $\Longrightarrow L(X,Y)$ voll. bzgl. Op.norm

Satz: lineare Fortsetzung

Y voll., $D \subset X$ dichter UR, $T \in$ L(D,Y).

Dann ex. eind. Fortsetzung $T \in$ L(X,Y), mit ||T|| = ||T||

DEF: Kern, Bild, Einbettung,...

- (i) $N(T) = \{x \in X : Tx = 0\}$ Kern
- (ii) $R(T) = \{y = Tx : x \in X\}$ Bild
- (iii) injektiver Op. heißt Einbettung $X \leftrightarrow Y$
- (iv) bijektiver Op. mit stetiger Inver $ser T^{-1}$ heißt Isomorphismus $X \simeq Y$
- (v) Op. mit ||Tx|| = ||x|| heißt isometrisch
- (vi) Op. mit $||T|| \leq 1$ (!!!) heißt kontraktiv

BEM:

- N(T) abgeschlossen, $(T \in$ L(X,Y)
- T isometrisch $\implies T$ kontraktiv u. iniektiv
- T kontraktiv $\implies T$ stetig
- \bullet T isometrisch \Longrightarrow $R(T) \rightarrow X \ isometrisch$
- R(T) abgeschlossen in Y

2.2 Summen NR

X NR

DEF: Projektion

 $P \in L(X), P^2 = P$ heißt **Projektion**

Lemma:

 $\overline{P \in L(X)}$ Projektion, $X_1 = N(P) =$ $R(1-P), X_2 = R(P) = N(1-P).$ Dann ist (1-P) auch Projektion und $X = X_1 \oplus X_2$ sowie $||P|| \ge 1, P \ne 0$

Lemma:

 $\overline{X = X_1 \oplus X_2}$. Dann $\exists P \in L(X)$ eind. Proj. mit $R(P) = X_1, N(P) = X_2$

BEM: X voll. \Longrightarrow $(X_1 \oplus X_2 \simeq$ $X_1 \times X_2$

2.3 Quotientenräume X NR

DEF: Quotientenraum

Y UR von X.

 $X/Y = {\hat{x} = x + Y | x \in X}$ Quotientenraum

DEF: Quotientenabbildung

 $\overline{Q}: X \to X/Y, Qx = \hat{x}$ Quotientenabbildung, linear u. surjektiv, N(Q) = Y

DEF: Quotientennorm

 $\|\hat{x}\| = \inf\{\|x - y\| \mid y \in Y\} (= d(x, Y))$

Satz: X/Y NR?

Y abg. UR von X.

Dann ist X/Y mit der Quo.norm ein NR. Ist X voll., dann auch X/Y

2.4 Kompakte Operatoren

 $X, Y \text{ NR}, B_X = \{x \in X | ||x|| \le 1\},\$ $T: X \to Y$ linear

DEF: kompakter Operator

T kompakt, falls $T(B_X)$ relativ kompakt in Y

BEM:

- (i) $T \ kompakt \implies T \in L(X,Y)$
- (ii) Y voll. Dann gilt T kompakt
 - $\Leftrightarrow T(B_X) \ totalbeschränkt$
 - \Leftrightarrow für $(x_n)_n$ beschränkt enthält $(Tx_n)_n$ konv. TF

Satz: kompakte Operatoren $\overline{X, Y, Z}$ voll.

- (i) K(X,Y) abg. UR von L(X,Y)und voll.
- (ii) $T \in L(X,Y), S \in L(Y,Z)$, ist T o. S kompakt $\Longrightarrow ST \in$ K(X,Z)
- (iii) $T \in L(X,Y), dim R(T) <$ $\infty \implies T \in K(X,Y)$
- (iv) $dim X < \infty \implies T \in K(X,Y)$

Korrolar:

 $X, Y \text{ voll.}, T \in L(X, Y)$. Es gilt $\exists (T_n)_n \subset L(X,Y), dim R(T_n) < 0$ $\infty, ||T_n - T|| \to 0 \implies T \in K(X, Y)$

3 Hauptsätze

3.1 Bairescher Kategoriensatz (X,d) metr. R.

DEF: Durchmesser

 $A \subset X$, diam $A := \sup\{d(x,y), x, y \in A\}$

Lemma:

Satz: Satz von Baire

 $\overline{(X,d)}$ voll., $(O_n)_n \in X^{\mathbb{N}}$ offen und dicht in $X \Longrightarrow \bigcap_{n=1}^{\infty} O_n$ offen und dicht in X

DEF: Kategorien

- $\operatorname{int}\overline{M} = \emptyset$
- (ii) $M \subset X$ 1. Kategorie, falls $\begin{array}{c} \exists (M_n)_n \in X^{\mathbb{N}} \ \ nirgends \ \ dicht, \\ M = \cup_{n=1}^{\infty} M_n \\ \text{(iii)} \ \ M \ \subset \ X \ \ \textbf{Z.} \ \ \textbf{Kategorie}, \ \text{falls} \end{array}$
- nicht von 1. Kategorie

Satz: Bairescher Kategoriensatz (X,d) voll., $M \subset X$ 1. Kategorie \Longrightarrow $M^C = X \setminus M \ dicht \ in \ X$

Korrolar:

Ein voll. metr. R. ist von 2. Kategorie: $X = \bigcup_{n=1}^{\infty} A_n, A_n \ abg. \implies \exists N \in \mathbb{N}:$ $int A_N \neq \emptyset$

3.2 Prinzip der glm. Beschränktheit X, Y norm. R.

DEF: pkt., glm. Beschränktheit $J \subset L(X,Y)$

- (i) J pkt. Beschränkt, falls $\forall x \in$ $X: \sup\{||Tx||: T \in J\} < \infty$
- (ii) J glm. Beschränkt, falls $\sup\{\|T\|:\ T\in J\}<\infty$

Satz: Prinzip der glm. Beschränktheit

X voll., $J \subset L(X,Y)$ pkt. Beschränkt ⇒ J qlm. Beschränkt

Satz: Banach-Steinhaus

 $X \text{ voll., } (T_n) \subset L(X,Y), \text{ falls } \forall x \in$ $X: Tx := \lim_{n \to \infty} T_n x \text{ ex. } \Longrightarrow T \in$ L(X,Y). u. $||T|| \leq \lim_{n \to \infty} \inf ||T_n|| \leq$

Korrolar:

 $X, Y \text{ voll., } (T_n) \subset L(X, Y)$. Es sind äq.

- (i) $\exists T \in L(X,Y) : \forall x \in XTx =$ $\lim_{n\to\infty} T_n x$
- (ii) $\sup_{n\in\mathbb{N}} ||T_n|| < \infty$ u. $\exists D \subset X$ dicht m. $\forall x \in D : (T_n x) \ CF$

DEF: starke Konvergenz

 $(T_n) \subset L(X,Y), T \in L(X,Y). (T_n)$ konvergiert stark gegen T, falls $\forall x \in$ $X: Tx = \lim_{n \to \infty} T_n x$

BEM: Konvergenz Operatornorm 4 Satz von Hahn-Banach \implies starke Konvergenz

3.3 Satz von der offenen Abbildung X, Y metr. R.

DEF: offene Abbildung

 $f: X \to Y$ offen, falls $\forall O \in X$ offen $\implies f(O) \ offen$

Lemma:

X, Y norm. R., $T: X \to Y$ lin. Dann sind äq.

- (i) T offen
- (ii) $\exists \varepsilon > 0 : B(0, \varepsilon) \subset T(B(0, 1))$

Satz: Satz von der offenen Abbil- mit $L_{|U} = l$, $L(x) \leq p(x) \forall x \in X$

(i) $M \subset X$ nirgends dicht, falls X, Y voll. $T \in L(X, Y)$ surj. $\Longrightarrow T$ offen

Korrolar:

- (i) T bij. $\Longrightarrow T$ Isomoph. u. T^{-1}
- (ii) T inj. dann ist $T: R(T) \to X \in$ L(R(T), X) gdw. R(T) abq.

Korrolar:

 $(X, \|\cdot\|), (X, \|\cdot\|)$ voll. $\exists M > 0 \forall x \in$ $X: ||x|| \le M|||x||| \implies ||\cdot||, |||\cdot||| \, \mathbf{\ddot{a}q.}$

Korrolar:

 $\overline{X,Y}$ BR, $T \in L(X,Y)$. T ist inj. u. R(T) abq. gdw. $\exists c > 0$: linear, $l: U \to \mathbb{C}$ linear m. Re $l(x) \leq 1$ $||Tx|| > c||x|| \forall x \in X$

3.4 Satz vom abg. Graphen X, Y norm. R.

<u>DEF</u>: Abgeschlossenen lin. Abbildung

 $D \subset X$ UR, $T: D \to Y$ lin. T heißt agb., falls für $(x_n)_n \in$ $D^{\mathbb{N}}, x_n \to x \in X \text{ u. } Tx_n \to y \in Y \implies$ $x \in D, Tx = y$

DEF: Graph

 $\overline{D \subset X}$ UR, $T: D \to Y$ lin. $gr(T) = \{(x, Tx), x \in D \subset X \times Y\}$

BEM:

- (i) gr(T) ist UR von $X \times Y$
- (ii) $T \ abg. \Leftrightarrow gr(T) \ abg. \text{ in } X \times Y$ bzgl. **Produktnorm** $||| \cdot ||| =$ $||\cdot||_{X} + ||\cdot||_{Y}$

 $\overline{X, Y \ voll}$, $D \subset X \ UR, T : D \to Y \ abq$.

- (i) $(D, |||\cdot|||_G)$ voll, Graphennorm $|||\cdot|||_G = ||\cdot||_X + ||T\cdot||_Y$
- (ii) $T \in L((D, ||| \cdot |||_G), Y)$ Satz: Satz vom abg. Graphen $\overline{X,Y}$ voll., $T: X \to Y$ lin., abq.

 $\implies T \in L(X,Y)$

4.1 Fortsetzung von Funktionalen **DEF**: sublinear

- $\overline{X} \mathbb{K}\text{-VR}, p: X \to \mathbb{R} \text{ sublinear}, \text{ falls}$ (1) $p(\lambda x) = \lambda p(x), \ \forall x \in X \forall \lambda \geq 0$ (positiv homogen)
- (2) $p(x+y) \le p(x) + p(y), \forall x, y \in X$ (subadditiv)

Satz: Hahn-Banach reelle V.

 $\overline{X} \mathbb{R}\text{-VR}, U \subset X UR, p : X \to \mathbb{R} sub$ linear, $l:U\to\mathbb{R}$ linear m. $l(x)\leq$ $p(x), \forall x \in U \implies \exists L : X \to \mathbb{R} \ linear$

Lemma: $X \mathbb{C}\text{-VR}$

- (i) $l: X \to \mathbb{R}, \mathbb{R}$ -linear $\tilde{l}(x) :=$ $l(x) - il(ix) \implies \tilde{l} \mathbb{C}$ -linear, $Re \ \tilde{l} = l$
- (ii) $l: X \to \mathbb{C}, \mathbb{C}$ -linear l:= $Re \ \tilde{l} \implies l \ \mathbb{R}$ -linear
- (iii) $p: X \to \mathbb{R}$ Halbnorm, l: $X \to \mathbb{C}, \mathbb{C}$ -linear, dann |l(x)| < $p(x) \Leftrightarrow |Re\ l(x)| \leq p(x), \ \forall x \in$
- (iv) X norm. kompl. R., $l: X \rightarrow$ \mathbb{C}, \mathbb{C} -linear und stetig \Longrightarrow $||\dot{l}|| = ||Re \ l||$

Satz: Hahn-Banach komplexe V. $\overline{X} \ \mathbb{C}$ -VR, $U \subset X \ UR$, $p: X \to \mathbb{R} \ sub$ -

 $p(x), \forall x \in U \implies \exists L : X \to \mathbb{C} \ linear$ mit $L_{|U} = l$, $Re L(x) \le p(x) \forall x \in X$

Satz: Hahn-Banach Fortsetzungsversion

X norm. R., $U \subset X$ UR. $\forall \varphi \in$ $L(U,\mathbb{K}): \exists \phi \in L(X,\mathbb{K}) \text{ m. } \phi|_{U} =$ $\phi, ||\phi|| = ||\varphi||$

BEM:

- (i) Fortsetzungen sind im alg. nicht eindeutig
- (ii) Fortsetzungen ex. im alg. nur für Funktionale

Korrolar:

X norm. R., $x \in X$

- (i) $x \neq 0, \exists x' \in X' : ||x'|| =$ 1, x'(x) = ||x|| außerdem $\forall x_1, x_2 \in X, x_1 \neq x_2 \exists x' \in$ $X: x'(x_1) \neq x'(x_2)$
- (ii) $||x|| = \sup_{x' \in B_{x'}} |x'(x)|$
- (iii) $U \subset X$ abg. $\widehat{\mathrm{UR}}, x \notin U \implies$ $\exists x' \in X' : x'_{|U} = 0, x'(x) \neq 0$
- (iv) $U \subset X$ UR, dann: U dicht in $X \Leftrightarrow \forall x' \in X' : (x'_{|U} = 0 \implies$ x' = 0

4.2 Dualräume DR von Quotientenräumen

DEF: Anihilator

X norm. R., $U \subset X, V \subset X'$ (i) $U^{\perp} = \{x' \in X' : x'(x) = 0, \forall x \in X'$

U} Annihilator von U in X'(ii) $V_{\perp} = \{x \in X : x'(x) = 0, \forall x' \in X \}$ V Annihilator von V in X

BEM: U^{\perp} , V_{\perp} sind jeweils **abg.** UR

X norm. R., $U \subset X$ abg. UR. Es ex. ein kanonischer isometrischer Isomorphismus so, dass $(X/U)' \simeq U^{\perp}$

von Julian Dörner

○ gitlab.com/juliandoerner/funkana_cheatsheet
Seite 3 von 4

 $U' \simeq X'/U^{\perp}$

Satz: seperabler DR

 $\overline{\text{Ein norm.}}$ R. mit seperablem DR ist seperabel

DR von Folgenräumen

 $1 \le p < \infty, \frac{1}{p} + \frac{1}{q} = 1.$

Die Abb. $\hat{J}: \hat{l}^p \rightarrow (l^q)', Jy(x) =$ $\sum_{j=1}^{\infty} x_j y_j$ ist ein isometrischer Iso-

Die selbe Abb. liefert isometrischen Isomorphismus $J: l^1 \to (c_0)'$

 $(l^p)' \simeq l^q$ $(c_0)' \simeq l^1$

 $(l^{\infty})' \not\simeq l^1$

DR von Lebesqueräumen

 $1 \le p < \infty, \frac{1}{p} + \frac{1}{q} = 1, (S, \mathcal{A}, \mu)$ σ -end. \overline{X} \mathbb{K} -VR und bzgl. Hilbertnorm voll. Maßraum

Die Abb. J: $L^q(\mu)$ $(L^p(\mu))', (Jg)(f) = \int_S fg \ d\mu$ ist ein isometrischer Isomorphismus $(L^p(\mu))' \simeq L^q(\mu)$

4.3 Hahn Banach geometrische V. **DEF:** Minkowski-Funktional

 \overline{X} $\overline{\mathbb{K}}$ -VR, $A \subset X, p_A : X \to [0,\infty], x \mapsto \inf\{\lambda > 0 : x \in \lambda A\}$, **Min**kowski Funtkional

Lemma:

 \overline{X} norm. R. $A \subset X$ konvex m. $(0 \in$ $\operatorname{int} A \Leftrightarrow \exists \delta > 0 : \overline{B}(0, \delta) \subset A$, dann

- (i) $\exists \delta > 0 : p_A(x) \leq \frac{1}{\delta} ||x|| \forall x \in X$
- (ii) p_a sublinear
- (iii) A offen $\implies (p_A)^{-1}([0,1]) = A$

Lemma:

 $0 \forall x \in V$

Satz: Hahn-Banach Trennungs- DEF: lin., orth. Projektion version I

X norm. R., $U_1, U_2 \subset X$ konvex, U_1 offen, $U_1 \cap U_2 = \emptyset \implies \exists x' \in$ $X': Re(x'(u_1)) < Re(x'(u_2)) \forall u_1 \in$ $U_1, u_2 \in U_2$

Satz: Hahn-Banach Trennungsversion II

X norm. R., $U \subset X$ abg. konvex, $x_0 \notin U \implies \exists x' \in X' : Re(x'(x_0)) <$ $\inf_{u \in U} Re(x'(u))$

5 Hilbertraum

5.1 Prähilbertraum u. Hilbertraum **DEF:** Skalarprodukt

 $X \mathbb{K}\text{-VR}, (\cdot, \cdot) : X \times X \to \mathbb{K}$ Skalarprodukt, falls

- (i) $(\lambda x + y, z) = \lambda(x, z) +$ $(y,z), \ \forall \lambda \in \mathbb{K} \ \forall x,y,z \in X$
- (ii) $(x,y) = (y,x), \ \forall x,y \in X$
- (iii) $(x,x) \geq 0, (x,x) = 0 \Leftrightarrow x =$ $0, \forall x \in X$

DEF: Prähilbertraum

 $X \mathbb{K}\text{-VR}, (\cdot, \cdot) : X \times X \to \mathbb{K} \text{ Skalarpro-}$ dukt, $(X, (\cdot, \cdot))$ Prähilbertraum

DEF: Hilbertnorm

 $\overline{X} \mathbb{K}\text{-VR}, (\cdot, \cdot) : X \times X \to \mathbb{K} \text{ Skalar-}$ produkt, $||\cdot|| = \sqrt{(\cdot,\cdot)}$ Hilbertnorm

Satz: CSU

 $\overline{X} \mathbb{K}\text{-VR}, (\cdot, \cdot) : X \times X \to \mathbb{K}$ Skalarprodukt $\implies |(x,y)| \le (x,x)(y,y) \forall x,y \in$ $|(x,y)| = (x,x)(y,y) \Leftrightarrow x,y \text{ lin. unab.}$

DEF: Hilbertraum

Satz: Parallelogramungungleichung/Polarisation

X norm. R. $(X Pr\"{a}hilbertraum)$ $\Leftrightarrow ||x + y||^2 + ||x - y||^2 =$ $2||x||^2 + 2||y||^2, \ \forall x, y \in X$

Satz: Vervollständigung Prähilbertraum

Sei X die Vervollständigung des Prähil $bertraums X \implies \hat{X} \text{ ist } Hilbertraum$

5.2 Orthogonalität **DEF**: orthogonal

 \overline{X} Prähilbertraum, $x, y \in X$ orthogonal, falls (x, y) = 0 $A, B \subset X$ orthogonal, falls $x \perp$

$y, \forall x \in A, y \in B$ DEF: orth. Komplement

 \overline{X} norm. R., $V \subset X$ konvex, offen u. X Prähilbertraum, $A \subset X$, $A^{\perp} = \{x \in X \mid A = X \}$ $0 \notin V \implies \exists x' \in X' : Re \ x'(x) < X : x \perp a, \forall a \in A \}$ orth. Komple-

Eine lin. Projektion P heißt orthogo**nal**, falls $N(P) \perp R(P)$

- $(i) x \perp y \implies ||x||^2 + ||y||^2 =$ $||x + y||^2$
- (ii) A^{\perp} abq. UR von X
- (iii) $x \perp x \Leftrightarrow x = 0$
- (iv) $A \subset (A^{\perp})^{\perp}$
- (v) $A \subset B \implies B^{\perp} \subset A^{\perp}$

(vi) $A^{\perp} = (\overline{\ln A})^{\perp}$

Lemma:

X Prähilbertraum, $U \subset X$ dichter UR, $x \in X : (\forall u \in U : (x, u) = 0 \implies x = 0)$

Satz: Projektionssatz

 \overline{H} Hilbertraum, $\emptyset \neq K$ abg., konvex, $x_0 \in H, \text{ dann } \exists ! x \in K : ||x - x_0|| =$ $\inf_{y \in K} ||y - x_0||$

Lemma:

 $\overline{H \; Hilber} traum, \; \emptyset \neq K \subset H \; abg., \; kon$ $vex, x_0 \in H, x \in K$. Dann ist äq.

- (i) $||x x_0|| = \inf_{y \in K} ||y x_0||$
- (ii) $Re(x_0 x, y x) \le 0, \ \forall y \in K$

Satz: Orthogonalprojektion

 \overline{H} Hilbertraum, $\{0\} \neq U \subset H$ abq. UR, dann ex. eindeutige, lineare Projektion P_U m. $||P_U|| = 1, R(P_U) =$ $U, N(P_U) = U^{\perp},$

 $||x - P_U x|| = \inf_{y \in U} ||x - y||, \forall x \in$ $H, H = U \oplus U^{\perp}$

P_U orthogonale Projektion

BEM: $(U^{\perp})^{\perp} = U, H/U = U^{\perp}$

Korrolar:

 \overline{H} Hilbertraum, $U \subset H$ UR, dann $\overline{U} = (U^{\perp})^{\perp}$

Satz: Darstellungssatz v. Fréchet-Riesz

H Hilbertraum. $\phi: H \to H', y \mapsto (\cdot, y)$ ist bijektiv, isometrisch u. konjugiert linear, d.h. $\forall x' \in H' \exists ! y \in H : x'(x) =$ $(x, y), \forall x \in H, ||x'|| = ||y||$

BEM: H^* der VR der konjugiert- $\overline{linearen}$ Funktionale $H \to \mathbb{K}$, dann ist $\phi^*: H \to H^*, x \mapsto (x, \cdot)$ isometrischer Isomorphismus

 H^* ist *Hilbertraum* mit Skalarprodukt $(\varphi, \psi)_{H^*} := ((\phi^*)^{-1}\varphi, (\phi^*)^{-1}\psi)_H$

Satz: Lax-Milgram

 $\overline{H\ Hilbertraum},\ B:H\times H\to\mathbb{K}\ ses$ quilinear u. stetiq, dann $\exists T \in L(H)$: $B(x,y) = (Tx,y) \forall x,y \in H$

5.3 Orthonormalbasen

H Hilbertraum

DEF: Orthonormalsystem

 $\overline{S} \subset H$ Orthonormalsystem, falls $||e|| = 1, (e, f) = 0, \forall e, f \in S, e \neq f$

Satz: Besselsche Ungl. I

 $\{e_n: n \in N\} \subset H \ ONS, x \in H \implies$ $\sum_{i=1}^{\infty} |(x, e_n)|^2 \le ||x||^2$

Lemma:

 $\overline{\{e_n:n\in N\}}\subset H\ ONS,\,x,y\in H\implies$ $\sum_{i=1}^{\infty} |(x, e_n)(e_n, y)| < \infty$

Lemma:

 $S:(x,e)\neq 0$ } höchstens abzählbar

Satz: Besselsche Ungl. II $S \subset H ONS, x \in H$

 $\sum_{e \in S} |(x, e)|^2 \le ||x||^2$

DEF: unbedingte Konvergenz

 \overline{X} norm. R., I Indexmenge, $(x_i)_{i\in I}\subset$ $\sum_{i \in I} x_i$ konvergiert unbedingt ge-

gen x, falls

- (i) $I_0 := \{i \in I, x_i \neq 0\} \text{ h\"ochst. abz.}$
- (ii) für Umordnung $i_1, i_2, ...$ von I_0 : $x = \sum_{n=1}^{\infty} x_{i_n}$

Satz: Orthogonalprojektion

 $\overline{S \subset H}$ ONS

- (i) $\forall x \in X : \sum_{e \in S} (x, e)e \text{ konver-}$ $giert \ unbedi\overline{ngt}$
- (ii) $P: H \to H, x \mapsto \sum_{e \in S} (x, e)e$ ist die Orthogonalprojektion auf

Korrolar:

- $\overline{S \subset H \ ONS}$, dann sind äq.
 - (i) $x \in H, x \perp S \implies \hat{x} = 0$
- (ii) $\overline{linS} = H$
- $(\text{iii}) \ \forall x \in H : x = \sum_{e \in S} (x, e) e$
- (iv) $\forall x, y \in H : (x, y) =$ $\sum_{e \in S} (x, e)(e, y)$
- (v) $\forall x \in H : ||x||^2 = \sum_{e \in S} |(x, e)|^2$

DEF: Orthonormalbasis

Ist eine der Bedingung aus dem Korrolar erfüllt, so heißt S vollständiges \mathbf{ONS} oder $\mathbf{Orthonormalbasis}$ von H(Schauderbasis)

Satz: Hilbertraum ONB

- (i) Jeder Hilbertraum besitzt eine ONB
- (ii) $\{e_i, i \in I\} = S \subset H \ ONB$ u. $l^2(I,\mathbb{K}):=\{(\lambda_i)_{i\in I}\in\mathbb{K}^I: \mathbf{DEF}: \mathbf{Norm} - \mathbf{SR.} \ \mathbf{1.} \ \mathbf{Ordnung} \}$ $\sum_{i \in I} |\lambda_i|^2 < \infty$ m. Norm $||(\lambda_i)_{i\in I}||_{l^2(I,\mathbb{K})} := \sqrt{\sum_{i\in I} |\lambda_i|^2},$ dann induziert $e_i \mapsto (\delta_{ij})_{j \in I}$ einen isometrischen Isomorphis $mus \ H \to l^2(I, \mathbb{K})$

BEM: In unendlichdim. Hilberträumen ist äg.

- H seperabel
- \Leftrightarrow eine (alle) *ONB* ist abz.
- $\Leftrightarrow H \simeq l^2(\mathbb{N}, \mathbb{K})$

6 Sobolevräume

 $\Omega \subset \mathbb{R}^n$ offen $L^1_{loc}(\Omega) = \{f : \Omega \to \mathbb{K} \text{ mb: } f\mathbb{1}_K \in \mathbb{N} \}$ $L^1(\Omega), K \subset \Omega \text{ kpt.}$

 $\operatorname{supp} \varphi = \{x \in \Omega : \varphi(x) \neq 0\}$ $\operatorname{supp} \varphi \subset \Omega \text{ kpt.} \}$

DEF: schwache Ableitung

 $\overline{\Omega} \subset \mathbb{R}^n$ Gebiet, $f \in L^1_{loc}(\Omega), j \in$ $\{1,..,n\}$

Existiert $g \in L^1_{loc}(\Omega) : \int_{\Omega} f \cdot \partial_j \varphi dx =$ $-\int_{\Omega} g \cdot \varphi dx$, $\forall \varphi \in C_c^{\infty}(\Omega)$, dann heißt f schwach nach x_i ableitbar, und $\partial_i f = q$ ist die schwache Ableitung in Richtung x_i .

DEF: Faltung

 $\overline{\text{Für }}f,g:\mathbb{R}^n\to\mathbb{K} \text{ ist } (f*$ $g(x) = \int_{\mathbb{D}^n} f(y)g(x-y)dy = \int_{\mathbb{D}^n} f(x-y)dy$ y)q(y)dy die Faltung von f und q.

Lemma:

 $f \in L^1_{loc}(\mathbb{R}^n), \ \varphi \in C^\infty_c(\mathbb{R}^n), \alpha \in \mathbb{N}_0^n$ (i) $f * \varphi \in C^{\infty}(\mathbb{R}^n), \ \partial^{\alpha}(f * \varphi) = f * \partial^{\alpha}\varphi$

(ii) $p \in [1, \infty), f \in L^p(\mathbb{R}^n)$ $\operatorname{supp} \varphi \subset B(0,1)$ $\int_{\mathbb{D}^n} \varphi(x) dx = 1$ $\varphi_k(x) := k^n \varphi(kx), k \in \mathbb{N}$ Dann ist $f * \varphi_k \in L^p(\mathbb{R}^n)$ und $||f * \varphi_k - f|| \to 0$

Korrolar:

Ist $g \in L^1_{loc}(\Omega)$ mit $\int_{\Omega} g\varphi dx = 0, \forall \varphi \in$ $C_c^{\infty}(\Omega)$, dann ist q=0 f.ü.

DEF: Sobolevraum

 $\Omega \subset \mathbb{R}^n$ Gebiet, $p \in [1, \infty]$

- (i) $W^{1,p}(\Omega) = \{f \in L^p(\Omega) :$ $\partial_i f$ ex. u. $\partial_i f \in L^p(\Omega), \forall i \in$ $\{1\ldots,n\}\}$) heißt der Sobolevraum 1. Ordnung
- (ii) $W^{m,p}(\Omega) = \{f \in L^p(\Omega) :$ $\partial^{\alpha} f$ ex. u. $\partial^{\alpha} f \in L^{p}(\Omega), \forall \alpha \in$ $\mathbb{N}_0^n, |\alpha| < m$ } heißt der Sobolevraum m. Ordnung

(i) $p \in [1, \infty)$: $(||f||_{p}^{p} +$ $||f||_{W^{1,p}}$ $\sum_{j=1}^{n} \|\partial_j f\|_p^p)^{\frac{1}{p}}$

(ii) $p = \infty$: $||f||_{W^{1,p}}$ $\max\{\|f\|_{\infty}, \|\partial_1 f\|_{\infty}, \dots, \|\partial_n f\|_{\infty}\}$

Satz: Vollständige Sobolevräume $\overline{\text{Für } m} \in \mathbb{N}, p \in [1,\infty] \text{ ist}$ $(W^{m,p}(\Omega), \|\cdot\|_{W^{m,p}})$ ein BR.

Weiter ist $W^{m,2}(\Omega) = H^m(\Omega)$ HR mit SP $(f,g)_{H^m(\Omega)}$ $\sum_{|\alpha| \leq m} (\partial^{\alpha} f, \partial^{\alpha} g)_{L^{2}(\Omega)}$

Lemma:

von Julian Dörner

○ gitlab.com/juliandoerner/funkana_cheatsheet
Seite 4 von 4

Sei $\Omega \subset \mathbb{R}^n$ Gebiet, $f \in L^1_{loc}(\Omega)$ mit $\partial_j f \in L^1_{loc}(\Omega), j = 1, \ldots, n, g \in$ $C^{\infty}(\Omega)$. Dann ex. $\partial_i(fq), j=1,\ldots,n$ in Ω und $\partial_j(fg) = (\partial_j f)g + f(\partial_j g), j =$ $1,\ldots,n$

BEM: Für $p \in [1, \infty], f \in$ $W^{1,p}(\Omega), g \in W^{1,p'}(\Omega) \text{ gilt } fg \in$ $W^{1,1}(\Omega)$ und $\partial_i(fg) = (\partial_i f)g +$ $f(\partial_i g), j = 1, \dots, n$

BEM: Für $f \in L^1_{loc}(\mathbb{R}^n)$, $\alpha \in \mathbb{N}_0^n$ $\overline{\text{ex. }\partial^{\alpha}f}$ in \mathbb{R}^n , dann gilt $\forall \varphi \in C_c^{\infty}$: $\partial^{\alpha}(f * \varphi) = \partial^{\alpha}f * \varphi$

Satz: Dicht im SR

Für $p \in [1, \infty), m \in \mathbb{N}$ ist $C_c^{\infty}(\mathbb{R}^n)$ dicht in $W^{m,p}(\mathbb{R}^n)$

 $\overline{\operatorname{Zu} f} \in H^m(\Omega) \text{ mit } m > k + \frac{n}{2} \text{ ex.}$ $q \in C^k(\Omega)$ mit f = q f.ü.

Satz: von Rellich

Die Einbettung $H_0^1(\Omega) \hookrightarrow L^2(\Omega)$ ist kompakt.

7 Reflexivität und schwache Konver-

7.1 Adjungierter Operator DEF: Adj. Op.

Seien X, Y Br., $T \in L(X,Y)$, dann ist der adj. Op. $T': Y' \to X'$ def. durch $T'y' = y' \circ T, \ \forall y' \in Y'$

DEF: Dualitätsklammer

Sei X ein norm. R. und X' sein Dualraum. Dann ist $x'(x) = \langle x, x' \rangle, \ \forall x \in$ $X, x' \in X'$ die Dualitätsklammer.

BEM: Für den adj. Op. gilt < x, T'y' >=< Tx, y' > $\forall x \in$ $X, \forall y' \in Y'$

BEM:

- (i) Die Abb. L(X,Y) $L(X',Y'),T \mapsto T' \text{ ist lin.},$ isom., aber im alg. nicht surj.
- (ii) $T \in L(X,Y), S \in L(Y,Z)$ (ST)' = T'S'

Satz: Zsmh. Kern und Bild Adj.

 $X, Y \text{ Br. } T \in L(X, Y). \text{ Dann gilt}$

- (i) $R(T)^{\perp} = N(T')$
- (ii) $\overline{R(T)} = N(T')$

Korrolar:

X, Y Br. $T \in L(X, Y)$ mit abg. Bild. Die Gleichung Tx = y ist lösbar gdw. T'y'=0

7.2 Bidualraum

DEF: Bidualraum

X NR., X'' := (X')' heißt **Bidual-**

BEM: Für $x \in X$ ist $\delta_x : X' \to X'$ $\mathbb{K}, x' \mapsto \langle x, x' \rangle \text{ lin. u. stetig}$

Satz: kanon. Einbettung

 $\overline{\text{Die kanon.}}$ Einbettung $J_X: X \to$ $X'', x \mapsto \delta_x$ ist lin. u. isom. aber im alg. nicht surj.

BEM:

- (i) Durch J_X wird X mit UR von X'' identif.
- (ii) X voll. $\Longrightarrow J_X(X)$ voll.
- (iii) X norm. R., so ist $(J_X(X), J_X)$ Vervollstän.
- (iv) Jeder norm. R. ist isom. isomorph zu dichten UR eines BR.

Lemma:

 $X, Y BR, T \in L(X, Y)$. Dann ist T'' := $(T')': X'' \to Y''$ lin. u. stetig mit $||T''|| = ||T|| \text{ und } T'' \circ J_X = J_Y \circ T$

Satz: Satz von Schauder

 $\overline{X,Y}$ BR., $T \in L(X,Y)$. Dann gilt T komp. $\Leftrightarrow T'$ komp.

7.3 Reflexivität

DEF: Reflexivität

 $\overline{\text{Ein BR}} X$ heißt reflexiv, falls die kanon. Einbettung J_X surj. ist.

BEM:

- (i) Dann ist $X \cong X''$
- (ii) X nicht voll. \implies X nicht refle-
- (iii) $p \in (1, \infty) : l^p, L^p$ reflexiv
- (iv) c_0, l^1, l^∞ nicht reflexiv
- (v) X end. dim. $\Longrightarrow X$ reflexiv

Lemma:

- (i) Abg. UR von ref. R. sind ref.
- (ii) $X \operatorname{ref} \Leftrightarrow X' \operatorname{ref}$.

Korrolar:

X ref. ist seperabel $\Leftrightarrow X'$ seperabel

BEM: Hilberträume sind seperabel

DEF: schwache Konvergenz

X BR. $(x_n)_n \in X$ heißt schw. konv. gegen $x \in X$, falls $\langle x_n, x' \rangle \rightarrow \langle x, x' \rangle$ $\forall x' \in X'$

Not: $x_n \rightharpoonup x, x_n \stackrel{\circ}{\rightarrow} x, x_n \stackrel{\omega}{\rightarrow} x$ **DEF:** schwach* Konvergenz

X BR. $(x'_n)_n \in X'$ heißt schw.* konv. gegen $x' \in X'$, falls $\langle x, x'_n \rangle \rightarrow \langle$ $x, x' > \forall x \in X$

Not: $x'_n \stackrel{*}{\rightharpoonup} x', x'_n \stackrel{\sigma^*}{\rightarrow} x', x'_n \stackrel{\omega^*}{\rightarrow} x'$

BEM:

- 1. Konv. in Norm \implies schw. Konv. $T^* = \Phi_{H_1}^{-1} T' \Phi_{H_2}$
- 2. schw./* GWe sind eindeutig
- 3. schw. Konv. in $X \implies \text{schw.}^*$ Konv. in X'' $\langle x, x' \rangle_{X \times X'} =$ $\langle x', J_X(x) \rangle_{X' \times X''}$
- 4. Ist X ref., dann sind schw, Konv auf X' und schw.* Konv. auf Xdas Gleiche.
- 5. X' ist schw.*-folgenvollständig. D.h. ist $\forall x \in X : (\langle x, x'_n \rangle)_n$ CF in \mathbb{K} , dann ex. $x' \in X'$ mit $x'_n \stackrel{*}{\rightharpoonup} x'$

Satz: schw. Konv. auf dichter Menge

 $X \text{ BR}, x_n, x \in X, x'_n, x' \in X'$ $\begin{array}{l} D \subset X : \overline{linD} = X \\ D' \subset X' : \overline{linD'} = X' \end{array}$ Dann gilt

- (a) $x_n \rightharpoonup x \Leftrightarrow \sup_n ||x_n|| < \infty$ und $\langle x_n, x' \rangle \rightarrow \langle x, x' \rangle \forall x' \in D'$
- (b) $x_n' \stackrel{*}{\rightharpoonup} x' \Leftrightarrow \sup_n ||x_n'|| < \infty$ und $\langle x, x'_n \rangle \rightarrow \langle x, x' \rangle \forall x \in D$ In a) gilt $||x|| \le \liminf ||x_n||$

In b) gilt $||x'|| \le \liminf ||x'_n||$

Satz: Banach-Alaoglu Ver. I

Sei X seperabler BR. Für $(x'_n)_n$ beschr. ex. $x' \in X'$ und $(x'_{n_i})_j$ mit $x_{n_i} \stackrel{*}{\rightharpoonup} x'$ und $||x'|| \leq$ $\liminf \|x'_n\|$

BEM:

- $\overline{1}$ im alg. falsch für X nichtseperabel
- 2. Satz gilt nicht für schw. Konv.

Satz: Banach-Alaoglu Ver. II

 $\overline{\text{Sei }X}$ reflexiver BR.

Für $(x_n)_n$ beschr. ex. $x \in X$ und $(x_{n_i})_i$ $\min x_{n_i} \rightharpoonup x \text{ und } ||x|| \le \liminf ||x_n||$

Satz: Mazur

X BR, $V \subset X$ abg.und konvex. Ist (x_n) schw. konv. in V mit $x_n \rightarrow x \implies x \in$ V Mazur

Satz: Banach-Alaoglu + Mazur

$X \text{ ref.} \implies \overline{B_X} \text{ schw.-folgenkompakt}$

8 Operatoren auf Hilberträumen **BEM:** *H* HR. Fréchet-Riesz:

 $\Phi_H: H \to H', y \mapsto (\cdot, y)$ ist kanon., konj. lin., isome. Isomorphismus

<u>DEF</u>: adj. Operator

 $\overline{H_1, H_2}$ HR, $T \in L(H_1, H_2)$. Der adj. Op T^* : $H_2 \rightarrow H_1$ ist def durch $(Tx,y) = (x,T^*y) \ \forall x \in H_1, y \in H_2$

BEM: Es gilt:

DEF: unitär, normal, selbstadj. $T \in L(H_1, H_2)$

- (i) T heißt unitär, falls T inv. mit $TT^* = Id_{H_2}$ und $T^*T = Id_{H_1}$
- (ii) $H_1 = H_2$: T ist normal, falls $TT^* = T^*T$
- (iii) $H_1 = H_2$: T ist selbstadj., falls $T = T^*$

BEM:

- 1. T $unit\ddot{a}r \Leftrightarrow T \text{ surj. } u.$ $(Tx, Ty) = (x, y) \ \forall x, y \in H_1$
- 2. T normal \Leftrightarrow (Tx, Ty) $(T^*x, T^*y) \ \forall x, y \in H_1$
- 3. T selbstadj. \Leftrightarrow (Tx,y) = $(x,Ty) \ \forall x,y \in H_1$

Satz: Hellinger-Toeplitz

 \overline{H} \overline{HR} .. $T: H \to H$ lin.

Falls $(Tx, y) = (y, Tx) \ \forall x, y \in H$, dann ist T stetig und selbstadj

Satz: selbstadj. in komplexem HR \overline{H} HR über $\mathbb{K} = \mathbb{C}$ und $T \in L(H)$.

Dann ist äg.

- (i) T ist selbstadj.
- (ii) $(Tx, x) \in \mathbb{R} \ \forall x \in H$

Satz: OPnorm selbstadj OP

H HR, $T \in L(H)$ selbstadj. Dann ist $||T|| = \sup_{||x|| < 1} |(Tx, x)|$