Escola Secundária de Francisco Franco Matemática A – 12.º ano

Funções reais de variável real

FUNÇÃO COMPOSTA

Dadas as funções $f: D_f \to A$ e $g: D_g \to B$, designa-se por Função composta de g com f a função

$$gof: D_{gof} \to B$$
 tal que, $\forall x \in D_{gof}$, $(gof)(x) = g(f(x))$,

$$com D_{gof} = \{ x \in D_f : f(x) \in D_g \}$$

gof é designado também por g composta com f, g após f ou g seguida de f.

Exercício resolvido 1

Considera as funções $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x) = 8 - 2x^2$ e h, definida pelo diagrama de setas ao lado.

1.1.1.
$$(g \circ h)(-1)$$
;

1.1.2.
$$(g \circ h)(2)$$
;

1.1.3.
$$(h \circ g)(0)$$
; 1.1.4.

1.3.
$$(h \circ g)(0)$$
; **1.1.4.** $(h \circ g)(-\sqrt{3})$;

1.1.5.
$$(g \circ g)(0)$$
; **1.1.6.** $(h \circ h)(-3)$.

1.2. Determina o domínio das funções $g \circ h$ e $h \circ g$.

Resolução

1.1.1.
$$(g \circ h)(-1) = g(h(-1)) = g(1) = 6$$

1.1.2.
$$(g \circ h)(2) = g(h(2)) = g(2) = 0$$

1.1.3.
$$(h \circ g)(0) = h(g(0)) = h(8) \rightarrow \text{não existe pois } 8 \notin D_h$$

1.1.4.
$$(h \circ g)(-\sqrt{3}) = h(g(-\sqrt{3})) = h(2) = 2$$

1.1.5.
$$(g \circ g)(0) = g(g(0)) = g(8) = -120$$

1.1.6.
$$(h \circ h)(-3) = h(h(-3)) = h(3) \to \text{não existe pois } 3 \notin D_h$$

1.2.
$$h(x) = |x|$$
, logo:

$$D_{g \circ h} = \{x \in D_h : h(x) \in D_g\} = \{x \in D_h : |x| \in D_g\} = \mathbb{R}$$

$$D_{h \circ g} = \left\{ x \in D_g : g(x) \in D_h \right\} = \left\{ x \in D_g : 8 - 2x^2 \in D_h \right\} = ?$$

$$\therefore 8 - 2x^2 = -3 \lor 8 - 2x^2 = -1 \lor 8 - 2x^2 = 2 \Leftrightarrow x^2 = \frac{11}{2} \lor x^2 = \frac{9}{2} \lor x^2 = 3$$

$$\Leftrightarrow x = \pm \sqrt{\frac{11}{2}} \lor x = \pm \sqrt{\frac{9}{2}} \lor x = \pm \sqrt{3} \Leftrightarrow x = \pm \frac{\sqrt{22}}{2} \lor x = \pm \frac{3\sqrt{2}}{2} \lor x = \pm \sqrt{3}$$

$$\therefore D_{h \circ g} = \overline{\left\{ -\frac{\sqrt{22}}{2}, -\frac{3\sqrt{2}}{2}, -\sqrt{3}, \sqrt{3}, \frac{3\sqrt{2}}{2}, \frac{\sqrt{22}}{2} \right\}}$$

Exercício resolvido 2

São dadas as funções f e g, de domínios, respetivamente, \mathbb{R} e $]-\infty,3[$, definidas por $f(x) = \operatorname{sen}(\pi x)$ e $g(x) = \log_2(3-x)$.

2.1. Calcula, se existirem,
$$(f \circ g)(-13)$$
 e $(g \circ f)(\frac{1}{2})$.

2.2. Determina
$$a \in [0,2]$$
 sabendo que $(g \circ f)(a) = \log_2 5 - 1$.

Exercício proposto 1

Seja f a função cujo gráfico está representado na figura.

Seja g a função de domínio \mathbb{R} definida por g(x) = -2x + 1.

Calcula, se existir:

1.1.
$$(f \circ g)(2)$$
;

1.2. os zeros de $f \circ g$;

1.3. *a* de modo que $(g \circ f)(a) = 3$. Adaptado do 2.º Teste intermédio de 2009

Exercício proposto 2

Seja h a função, de domínio \mathbb{R} , definida por h(x) = x + 1. Seja g a função, de domínio $\mathbb{R}\setminus\{0\}$, definida por $g(x)=\frac{1}{x}$. 2.1. Para um certo número real a, tem-

se $(g \circ h)(a) = \frac{1}{9}$. Determina a.

2.2. Caracteriza as funções $h \circ g$, $g \circ h$, $h \circ h \in g \circ g$.

Adaptado do 2.º Teste intermédio de 2011

Exercício proposto 3

Considera a função f, de domínio $\mathbb{R}\setminus\{2\}$, definida pela expressão $f(x) = \frac{6-x}{x-2}$.

3.1. Calcula, se existirem, $(f \circ f)(1)$ e $(f \circ f)(\frac{10}{3})$.

3.2. Caracteriza a função $f \circ f$.

3.3. Seja g a função, de domínio \mathbb{R} , definida por $g(x) = x^3$.

Resolução

2.1.
$$(f \circ g)(-13) = f(\log_2 16) = f(\log_2 2^4) = f(4 \times 1) = sen(4\pi) = \boxed{0}$$

$$(g \circ f)(\frac{1}{2}) = g(sen\frac{\pi}{2}) = g(1) = \log_2 2 = \boxed{1}$$

2.2.
$$(g \circ f)(a) = \log_2 5 - 1 \Leftrightarrow g(sen(a\pi)) = \log_2 5 - \log_2 2$$

$$\Leftrightarrow \log_2(3-sen(a\pi)) = \log_2(\frac{5}{2}) \Leftrightarrow 3-sen(a\pi) = \frac{5}{2} \Leftrightarrow \frac{1}{2} = sen(a\pi)$$

Exercício resolvido 3

Considera a função f, de domínio \mathbb{R} , definida

por $f(x) = e^{-3x}$ e a função g, de domínio $[2,+\infty]$ e definida pelo gráfico ao lado.

3.2. Mostra que o domínio da função $g \circ f$ é

3.3. Supondo que $g(x) = (x-3)^2$, caracteriza a função $g \circ f$.

Resolução

3.1.
$$(f \circ g)(x) = 1 \Leftrightarrow f(g(x)) = 1 \Leftrightarrow e^{-3g(x)} = 1 \Leftrightarrow -3g(x) = 0 \Leftrightarrow g(x) = 0 \Leftrightarrow x = 3$$

3.2.
$$D_{g \circ f} = \{x \in D_f : f(x) \in D_g\} = \{x \in D_f : e^{-3x} \ge 2\} = ?$$

$$e^{-3x} \ge 2 \Leftrightarrow -3x \ge \ln 2 \Leftrightarrow x \le -\frac{1}{3} \ln 2 \Leftrightarrow x \le -\ln 2^{\frac{1}{3}} \Leftrightarrow x \le -\ln \sqrt[3]{2}$$

$$\therefore D_{g \circ f} =] - \infty, -\ln \sqrt[3]{2}] \overline{\text{QED}}$$

3.3.
$$(g \circ f)(x) = g(f(x)) = g(e^{-3x}) = (e^{-3x} - 3)^2$$

∴ temos a seguinte caracterização:

$$g \circ f :]-\infty, -\ln \sqrt[3]{2}] \to \mathbb{R}$$
$$x \mapsto (e^{-3x} - 3)^2$$

Soluções: 1. -2; -1/2, 1/2 e 3/2; 1 e 2,5

2.1.8 2.2. $D=\mathbb{R}\setminus\{0\}$ e (hog)(x)=1/x+1; $D=\mathbb{R}\setminus\{-1\}$ e (goh)(x)=1/(x+1); $D=\mathbb{R}$ e (hoh)(x)=x+2;

 $D=\mathbb{R}\setminus\{0\}$ e (gog)(x)=x

3.1. -11/7; não ex. 3.2. D= $\mathbb{R}\setminus\{2,10/3\}$ e (fof)(x)=(7x-18)/(10-3x)

3.3. $D=\mathbb{R}\setminus\{2\}$ e (gof)(x)=[(6-x)/(x-2)]³; -1,63 e 1,53

 $4.2.\ \{1/e,e\};\ \{1\};\]e^{-2},e^2[;\ \{0\};\varnothing;\]\text{-}1;\text{-}0,6]\cup[0,6;1[$ 4.1. não ex.; -4; ln2; não ex.; 4.3. $[e^{-3},e^2]$;]-1,1[5.1. -1/2; não ex. 5.2. +2

3.3.1. Caracteriza a função $g \circ f$.

3.3.2. A equação $(f \circ g)(x) = x$ tem exatamente duas soluções. Determine, recorrendo à calculadora gráfica, essas soluções. Apresente as soluções arredondadas às centésimas. Na sua resposta, deve:

• reproduzir, num referencial, o gráfico da função ou os gráficos das funções que tiver necessidade de visualizar, devidamente identificado(s);

• assinalar os pontos relevantes para responder à questão colocada.

Adaptado do Teste intermédio de 2013

Exercício proposto 4

Seja f a função, de domínio [-3,3], cujo gráfico está representado na figura.

Tal como a figura sugere, todos os objetos inteiros têm imagens inteiras. Seja g a função, de domínio \mathbb{R}^+ , definida

por
$$g(x) = \ln x$$
.

4.1. Calcula, se existir:

4.1.1.
$$(g \circ f)(2)$$
 4.1.2. $(f \circ g)(e^{-3})$

4.1.3.
$$(g \circ f)(0)$$
 4.1.4. $(f \circ g)(0)$

4.2. Determina o conjunto solução de cada condição seguinte.

4.2.1.
$$(f \circ g)(x) = 0$$

4.2.2.
$$(f \circ g)(x) = 2$$

4.2.3.
$$(f \circ g)(x) > -3$$

4.2.4.
$$(g \circ f)(x) = \ln 2$$

4.2.5.
$$(g \circ f)(x) = 1$$

4.2.6.
$$(g \circ f)(x) \leq 0$$

4.3. Determina o domínio das funções $f \circ g \in g \circ f$.

Adaptado do exame nacional de Matemática A (época especial de 2016)

Exercício proposto 5

Considera as funções f e g, de domínios

 $\mathbb{R}\setminus\{0\},$ definidas por

$$f(x) = \cos(2x) \ e \ g(x) = \frac{\pi}{x}$$
.

5.1. Calcula, se existirem, $(f \circ g)(-3)$ e os zeros de $g \circ f$.

5.2. Determina $a \in [-3,3]$ tal que $(f \circ g)(a) = -1$.