Odd Dimensional Orbifolds

Liz Stanhope and Sean Richardson

July 22, 2018

1

Defintion 1.1. A chart (\tilde{U}, G_U, π_U) on some orbifold is *orientable* if the group G_U consists of orientation-preserving transformations of the open set $\tilde{U} \subset \mathbb{R}^n$. An orbifold \mathcal{O} is *locally orientable* if every chart on \mathcal{O} is orientable. Conversely, an orbifold \mathcal{O} is *locally non-orientable* if there exists a single chart on \mathcal{O} that is not orientable.

Lemma 1.2. Let \mathcal{O} be a locally orientable orbifold. If $\dim(\mathcal{O})$ is odd, then there exists no primary singular stratum N such that $\dim(N)$ is even. Similarly, if $\dim(\mathcal{O})$ is even, then there exists no primary singular stratum N such that $\dim(N)$ is odd.

Theorem 1.3. Consider a locally orientable orbifold \mathcal{A} and a locally non-orientable orbifold \mathcal{B} . If $\dim(\mathcal{A}) = \dim(\mathcal{B})$ is odd, then there exists no \mathcal{A} and \mathcal{B} that are isospectral.