Topic 5: Coalitional Games

Outcomes & Objectives

- ► Be proficient in solving coalitional games
 - Model player's rationality in forming coalitions via defining a value of a given coalition.
 - Identify some useful subclasses of games which produces some special coalitions.
 - Develop a solution concept called Shapley value to distribute a coalition's value in a fair manner.
 - Develop a solution concept called core that identifies a stable coalition structure in the game.

Lloyd Shapley

Shapley was the greatest game theorist of all time.

Applications of Coalitional Games

- ▶ **Political Coalitions:** Parties form coalitions if the elections did not result in one party with a majority votes. Coalitional governments resolve such concerns. However, the question is which coalitions form stable governments.
- ► Cost Sharing for Network Design: Users benefit from being connected to a server. So they have to build up a broadcast tree. However, it costs to maintain the server/network and the question is how to share the costs.
- ▶ Queue Management: Multiple users want to route traffic through a switch, which has a flow dependent delay (cost). The queueing delay cost has to be shared among the users.

Coalitional Game: An Overview

Coalitions and Transferable Utilities

Definition

Given a set of players $\mathcal{N}=\{1,\cdots,N\}$, a *coalition* is a subset of \mathcal{N} . Furthermore, a *grand coalition* is the set of all players \mathcal{N} .

Definition

A *characteristic function game* Γ is a pair (\mathcal{N},v) , where \mathcal{N} is the set of players, and $v:2^{\mathcal{N}}\to\mathbb{R}$ is a *characterisic function*, which assigns each coalition $\mathcal{C}\subseteq\mathcal{N}$, some real value $v(\mathcal{C})$.

Definition

A characteristic function game $\Gamma=(\mathcal{N},v)$ is a *transferable utility game*, if the value of any coalition $v(\mathcal{C})$ can be distributed amongst the members in \mathcal{C} in any way that the members of \mathcal{C} choose.

Standard Assumptions:

- ▶ The value of a empty coalition is 0.
- $ightharpoonup v(\mathcal{C}) \geq 0$, for any $\mathcal{C} \subseteq \mathcal{N}$.

Example

A fictional country X has a 101-member parliament, where each representative belongs to one of the three parties:

► Liberal (*L*): 40 representatives

► Moderate (M): 31 representatives

► Conservative (C): 30 representatives

The parliament needs to decide how to allocate \$1bn of discretionary spending, and each party has its own preferred way of using this money. The decision is made by a simple **majority vote**, and we assume that all representatives vote along the party lines.

Parties can form **coalitions**; a coalition has value \$1bn if it can win the budget vote no matter what the other parties do, and value 0 otherwise.

This situation can be modeled as a three-player characteristic function game, where the set of players is $\mathcal{N}=L,M,C$ and the characteristic function is given by

$$v(\mathcal{C}) = \begin{cases} 0, & \text{if } |\mathcal{C}| \leq 1, \\ 10^9, & \text{otherwise.} \end{cases}$$

Coalition Structure

Definition

Given a characteristic function game $\Gamma=(\mathcal{N},v)$, a *coalition structure* \mathcal{C} is a partition of \mathcal{N} . In other words, \mathcal{C} is a collection of non-empty subsets $\{\mathcal{C}_1,...,\mathcal{C}_K\}$ such that

- $lackbox{igspace} \bigcup_{k\in\{1,\ldots,K\}} \mathcal{C}_k = \mathcal{N}, ext{ and }$
- $\qquad \qquad \quad \bullet \quad \mathcal{C}_i \cap \mathcal{C}_j = \emptyset \text{, for any } i,j \in \{1,...,K\} \text{ such that } i \neq j.$

Definition

A vector $u=\{u_1,\cdots,u_N\}\in\mathbb{R}^N$ is the *utility profile* for a coalition structure $\mathcal{C}=\{\mathcal{C}_1,\cdots,\mathcal{C}_K\}$ over \mathcal{N} if

- ▶ Non-Negativity: $u_i \ge 0$ for all $i \in \mathcal{N}$, and
- ▶ Feasibility: $\sum_{i \in \mathcal{C}_k} u_i \leq v(\mathcal{C}_k)$ for any $k \in \{1, \dots, K\}$.

Outcome, Efficiency and Social Welfare

Definition

The *outcome* of a game Γ is a pair (\mathcal{C}, u) .

Definition

An outcome (\mathcal{C},u) is *efficient*, if all the utilities are distributed amongst the coalition members, i.e.

$$\sum_{i \in \mathcal{C}_k} u_i = v(\mathcal{C}_k), \text{ for all } k = 1, \cdots, K.$$

Definition

The social welfare of a coalition structure C is

$$v(\mathcal{C}) = \sum_{k=1}^{K} v(\mathcal{C}_k)$$

Individual Rationality and Imputation

Definition

A player i is said to be **individually rational** in an outcome (C, u), if

$$u_i \geq v(\{i\}),$$

where $v(\{i\})$ is the value of the coalition $\{i\}$, which only contains the i^{th} player.

Definition

A outcome (\mathcal{C},u) is said to be an imputation, if it is efficient, and if every player is individually rational within itself.

- Each player weakly prefers being in the coalition structure, than being on his/her own.
- ► Group deviations ⇒ Stability of Coalitions (covered later)

Monotone Games

Definition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is said to be *monotone* if it satisfies $v(\mathcal{C}) \leq v(\mathcal{D})$, for every pair of coalitions $\mathcal{C}, \mathcal{D} \subseteq \mathcal{N}$, such that $\mathcal{C} \subseteq \mathcal{D}$.

- ► Most games are monotone!
- ► However, non-monotonicity may arise because
 - some players intensely dislike each other, or
 - communication costs increase nonlinearly with coalition size.

Example: Three commuters can share a taxi. Individual journey costs: $P_1:6,\ P_2:12,\ P_3:42.$ Then, the following characteristic function results in a monotone game:

$$v_1(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \\ 12 & \text{if } \mathcal{C} = \{1, 2\} \\ 42 & \text{if } \mathcal{C} = \{1, 3\} \\ 42 & \text{if } \mathcal{C} = \{2, 3\} \\ 42 & \text{if } \mathcal{C} = \{1, 2, 3\}. \end{cases}$$

Superadditive Games

Definition

A characteristic function game $\Gamma = \{\mathcal{N}, v\}$ is said to be *superadditive* if it satisfies $v(\mathcal{C} \cup \mathcal{D}) \geq v(\mathcal{C}) + v(\mathcal{D})$, for every pair of disjoint coalitions $\mathcal{C}, \mathcal{D} \subseteq \mathcal{N}$.

Proposition

If a superadditive game $\Gamma=\{\mathcal{N},v\}$ has a non-negative characteristic function v, then Γ is monotone.

Proof: For any pair of coalitions $C \subseteq D$, we have

$$v(C) \le v(D) - v(D - C) \le v(D).$$

- lacktriangledown Monotonicity \Longrightarrow superadditivity. (Example: $v(\mathcal{C}) = \log |\mathcal{C}|$.)
- \blacktriangleright Always profitable for two groups to join forces \Rightarrow Grand Coalition.
- ► Anti-trust or anti-monopoly laws ⇒ Non-superadditive games.

Superadditive Games: Example

Consider the same taxi example:

- ▶ Three commuters can share a taxi. Individual journey costs: $P_1:6,\,P_2:12,\,P_3:42.$
- ▶ Then, $v_1(C)$ is not superadditive.
- ▶ However, the following characteristic function results in a superadditive game:

$$v_2(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \end{cases}$$

$$18 & \text{if } \mathcal{C} = \{1, 2\}$$

$$48 & \text{if } \mathcal{C} = \{1, 3\}$$

$$55 & \text{if } \mathcal{C} = \{2, 3\}$$

$$80 & \text{if } \mathcal{C} = \{1, 2, 3\}.$$

Convex Games

Definition

A characteristic function game $\Gamma=\{\mathcal{N},v\}$ is said to be *convex* if the characteristic function v is supermodular, i.e., it satisfies $v(\mathcal{C}\cup\mathcal{D})+v(\mathcal{C}\cap\mathcal{D})\geq v(\mathcal{C})+v(\mathcal{D})$ for every pair of coalitions $\mathcal{C},\mathcal{D}\subseteq\mathcal{N}$.

Proposition

A characteristic function game $\Gamma=\{\mathcal{N},v\}$ is convex, if and only if, for every pair of coalitions \mathcal{C},\mathcal{D} such that $\mathcal{C}\subset\mathcal{D}$, and for every player $i\in\mathcal{N}-\mathcal{D}$, we have

$$v(\mathcal{C} \cup \{i\}) - v(\mathcal{C}) \le v(\mathcal{D} \cup \{i\}) - v(\mathcal{D})$$

- ▶ Players become more useful if they join bigger coalitions.
- ► Convexity ⇒ Superadditivity.
- ► However, the converse may not be true!

3-player majority game: Consider a game $\Gamma=(\mathcal{N},v)$, where $\mathcal{N}=\{1,2,3\}$, and $v(\mathcal{C})=1$ if $|\mathcal{C}|\geq 2$, and $v(\mathcal{C})=0$ otherwise. This game is superadditive. On the other hand, for $\mathcal{C}=\{1,2\}$ and $\mathcal{D}=\{2,3\}$, we have $v(\mathcal{C})=v(\mathcal{D})=1$, $v(\mathcal{C}\cup\mathcal{D})=1$, $v(\mathcal{C}\cap\mathcal{D})=0$.

Simple Games

Definition

A characteristic function game $\Gamma=\{\mathcal{N},v\}$ is said to be **simple** if it is monotone and its characteristic function only takes values 0 and 1, i.e. $v(\mathcal{C})\in\{0,1\}$, for any $\mathcal{C}\subseteq\mathcal{N}$.

- $ightharpoonup v(\mathcal{C}) = 1 \Rightarrow \text{Winning Coalition}.$
- $ightharpoonup v(\mathcal{C}) = 0 \Rightarrow \text{Loosing Coalition}.$

Claim

A simple game $\Gamma=\{\mathcal{N},v\}$ is superadditive, only if the complement of every winning coalition looses.

Solution Concepts

Outcomes can be evaluated based on two sets of criteria:

- ► Fair Distribution: How well each agent's payoff reflects his/her contribution?
 - Shapley Value
 - ▶ Banzhaf Index
- $\,\blacktriangleright\,$ Coalition Stability: What are the incentives for the agents to stay in the

coalition structure?

- Stable Set
- Core
- Nucleolus
- ▶ Bargaining Set

Fair Distribution: Shapley's Axioms

Let u_i^Γ denote the allocation (utility) to the i^{th} player in a game $\Gamma=\{\mathcal{N},v\}$. Then, we desire the following four properties:

▶ Efficiency: Distribute the value of grand coalition to all agents, i.e.

$$\sum_{i\in\mathcal{N}}u_i^\Gamma=v(\mathcal{N}).$$

Dummy Player: If a player i does not contribute to any coalition in Γ , then

$$u_i^{\Gamma} = 0.$$

Symmetry: If two players i and j contribute equally to each coalition in Γ , then

$$u_i^{\Gamma} = u_i^{\Gamma}$$
.

▶ Additivity: If the same set of players are involved in two coalitional games $\Gamma_1 = (\mathcal{N}, v_1)$ and $\Gamma_2 = (\mathcal{N}, v_2)$, if we define $\Gamma = \Gamma_1 + \Gamma_1 = (\mathcal{N}, v_1 + v_2)$, then for every player i, we have

$$u_i^{\Gamma} = u_i^{\Gamma_1} + u_i^{\Gamma_2}.$$

Finding a Fair Distribution...

Assume we have a superadditive game, which results in a grand coalition!

- ▶ Agent's allocation is proportional to his/her contribution in $v(\mathcal{N})$.
- ▶ Idea: As each agent joins to form the grand coalition, compute how much the value of the coalition increases, i.e., allocate $u_i = v(\mathcal{N}) v(\mathcal{N} \{i\})$ to player i.

This contribution is evaluated when the player is the last inclusion in \mathcal{N} .

But, what about players who joined the coalition before the last player?

Let $\Pi_{\mathcal{N}}$ denote the set of all permutations of \mathcal{N} , i.e., one-to-one mappings from \mathcal{N} to itself. Given a permutation $\pi \in \Pi_{\mathcal{N}}$, we denote by $S_{\pi}(i)$ the set of all predecessors of i in π , i.e., we set

$$S_{\pi}(i) = \{ j \in \mathcal{N} \mid \pi(j) < \pi(i) \}.$$

Example: If $\mathcal{N} = \{1, 2, 3\}$, we have

$$\Pi_{\mathcal{N}} = \left\{ \{1,2,3\}, \{1,3,2\}, \{2,1,3\}, \{2,3,1\}, \{3,1,2\}, \{3,2,1\} \right\}.$$

Then, if $\pi = \{2, 1, 3\}$, we have

$$S_{\pi}(2) = \emptyset$$
 $S_{\pi}(1) = \{2\}$ $S_{\pi}(3) = \{1, 2\}$

Sid Nadendla (CS 5001: Game Theory for Computing)

Shapley Value

Definition

The marginal contribution of an agent i with respect to a permutation π in a game $\Gamma=(\mathcal{N},v)$ is given by

$$\Delta_{\pi}^{\Gamma}(i) = v [S_{\pi}(i) \cup \{i\}] - v [S_{\pi}(i)].$$

Definition

Given a characteristic function game $\Gamma=(\mathcal{N},v)$ with $|\mathcal{N}|=N$, the **Shapley value** of an agent $i\in\mathcal{N}$ is given by

$$u_i(\Gamma) = \frac{1}{N!} \sum_{\pi \in \Pi \cup \Gamma} \Delta_{\pi}^{\Gamma}(i).$$

Theorem

Shapley's axioms *uniquely* characterize Shapley value. In other words, Shapley value is the only fair distribution scheme that satisfies all the Shapley's axioms.

Shapley Value: Example

Consider the same ridesharing example, as stated earlier.

- ► Three commuters can share a taxi.
- ▶ Individual journey costs: $P_1:6$, $P_2:12$, $P_3:42$.
- ► The characteristic function is

$$v_1(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \end{cases}$$
$$v_1(\mathcal{C}) = \begin{cases} 12 & \text{if } \mathcal{C} = \{1, 2\} \\ 42 & \text{if } \mathcal{C} = \{1, 3\} \\ 42 & \text{if } \mathcal{C} = \{2, 3\} \\ 42 & \text{if } \mathcal{C} = \{1, 2, 3\}. \end{cases}$$

Permutation set $\Pi_{\mathcal{N}} = \{\pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6\}$, where

$$\begin{split} \pi_1 &= \{1,2,3\}, \quad \pi_2 = \{1,3,2\}, \quad \pi_3 = \{2,1,3\}, \\ \pi_4 &= \{2,3,1\}, \quad \pi_5 = \{3,1,2\}, \quad \pi_6 = \{3,2,1\}. \end{split}$$

Shapley Value: Example (cont...)

Given

$$\begin{split} \pi_1 &= \{1,2,3\}, \quad \pi_2 = \{1,3,2\}, \\ \pi_3 &= \{2,1,3\}, \quad \pi_4 = \{2,3,1\}, \\ \pi_5 &= \{3,1,2\}, \quad \pi_6 = \{3,2,1\}, \end{split} \quad \text{and} \quad$$

$$\pi_1 = \{1, 2, 3\}, \quad \pi_2 = \{1, 3, 2\},$$

$$\pi_3 = \{2, 1, 3\}, \quad \pi_4 = \{2, 3, 1\},$$

$$\pi_5 = \{3, 1, 2\}, \quad \pi_6 = \{3, 2, 1\},$$
and
$$v_1(\mathcal{C}) = \begin{cases} 6 & \text{if } \mathcal{C} = \{1\} \\ 12 & \text{if } \mathcal{C} = \{2\} \\ 42 & \text{if } \mathcal{C} = \{3\} \\ 12 & \text{if } \mathcal{C} = \{1, 2\} \\ 42 & \text{if } \mathcal{C} = \{1, 3\} \\ 42 & \text{if } \mathcal{C} = \{2, 3\} \\ 42 & \text{if } \mathcal{C} = \{1, 2, 3\}. \end{cases}$$

Marginal contributions:

$$\bullet$$
 π_1 : $\Delta_1^{\Gamma}(1) = 6$, $\Delta_1^{\Gamma}(2) = 6$, $\Delta_1^{\Gamma}(3) = 30$

•
$$\pi_2$$
: $\Delta_2^{\Gamma}(1) = 6$, $\Delta_2^{\Gamma}(2) = 0$, $\Delta_2^{\Gamma}(3) = 36$

•
$$\pi_3$$
: $\Delta_3^{\Gamma}(1) = 0$, $\Delta_3^{\Gamma}(2) = 12$, $\Delta_3^{\Gamma}(3) = 30$

$$\qquad \qquad \boldsymbol{\pi}_4 \colon \ \Delta_4^{\Gamma}(1) = 0, \ \Delta_4^{\Gamma}(2) = 12, \ \Delta_4^{\Gamma}(3) = 30$$

•
$$\pi_5$$
: $\Delta_5^{\Gamma}(1) = 0$, $\Delta_5^{\Gamma}(2) = 0$, $\Delta_5^{\Gamma}(3) = 42$

$$\bullet$$
 π_6 : $\Delta_6^{\Gamma}(1) = 0$, $\Delta_6^{\Gamma}(2) = 0$, $\Delta_6^{\Gamma}(3) = 42$

Shapley value:

$$u_1(\Gamma) = \frac{1}{6} \sum_{i=1}^{6} \Delta_i^{\Gamma}(1) = 2$$

$$u_2(\Gamma) = \frac{1}{6} \sum_{i=1}^{6} \Delta_i^{\Gamma}(2) = 5$$

Stability of Coalitions: Core

- ▶ Consider a characteristic function game $\Gamma = \{\mathcal{N}, v\}$ with an outcome (\mathcal{C}, u) .
- ▶ Let $u(\mathcal{C})$ denote the total payoff of a coalition \mathcal{C} under u.
- ▶ Given a coalition C, if u(C) < v(C), some agents can abandon C and form their own coalition.

Definition

A utility profile u is stable through a coalition $\mathcal C$ if

$$\sum_{i \in \mathcal{C}} u_i \ge v(\mathcal{C}).$$

Definition

Core is defined as the set of all stable utility profiles, which is denoted as

$$\mathbb{C} = \left\{ u \in \mathbb{R}_+^N \; \left| \; \sum_{i \in \mathcal{C}} u_i \geq v(\mathcal{C}), \; ext{for all } \mathcal{C} \subset \mathcal{N} \;
ight\}.$$

Core: An Example

Consider a characteristic function game $\Gamma = \{\mathcal{N}, v\}$, where $\mathcal{N} = \{1, 2, 3\}$ and

- ▶ Then, the utility profiles are those such that $u_1 + u_2 + u_3 = 8$ such that $u_1 \ge 1$, $u_2 \ge 0$ and $u_3 \ge 1$.
- ▶ This is a hyperplane with vertices (7,0,1), (1,0,7), and (1,6,1).

Is core always non-empty?

Core in Convex and Simple Games

Theorem

Any convex game $\Gamma = (\mathcal{N}, v)$ has a non-empty core.

Definition

In a characteristic function game $\Gamma = (\mathcal{N}, v)$, a player i is called a **veto player**, if $v(\mathcal{C}) = 0$ for all $\mathcal{C} \subseteq \mathcal{N} - \{i\}$.

Theorem

A simple game $\Gamma=(\mathcal{N},v)$ has a non-empty core, if and only if there is a veto player in \mathcal{N} . Moreover, a utility profile u is in the core of Γ if and only if $u_i=0$ for every player i, who is not a veto player in Γ .

Core and Superadditive Covers

Definition

 $\Gamma^*=(\mathcal{N},v^*)$ is called a *superadditive cover* of $\Gamma=(\mathcal{N},v)$ if, for every coalition $\mathcal{C}\subseteq\mathcal{N}$,

$$v^*(\mathcal{C}) = \max_{\mathcal{P}_{\mathcal{C}}} \sum_{\mathcal{C}_i \in \mathcal{P}_{\mathcal{C}}} v(\mathcal{C}_i),$$

where $\mathcal{P}_{\mathcal{C}}$ denotes a partition of the coalition \mathcal{C} .

Consider $\Gamma = (\mathcal{N},v) \colon \mathcal{N} = \{1,2,3\}$ and

Its superadditive cover $\Gamma^* = (\mathcal{N}, v^*)$ is

$$v(\mathcal{C}) = \begin{cases} 5 & \text{if } \mathcal{C} = \{1\} \\ 0 & \text{if } \mathcal{C} = \{2\} \\ 0 & \text{if } \mathcal{C} = \{3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2\} \\ 1 & \text{if } \mathcal{C} = \{1, 3\} \\ 1 & \text{if } \mathcal{C} = \{2, 3\} \\ 1 & \text{if } \mathcal{C} = \{1, 2, 3\}. \end{cases}$$

 $v^*(\mathcal{C}) = \begin{cases} 5 & \text{if } \mathcal{C} = \{1\} \\ 0 & \text{if } \mathcal{C} = \{2\} \\ 0 & \text{if } \mathcal{C} = \{3\} \\ 5 & \text{if } \mathcal{C} = \{1, 2\} \\ 5 & \text{if } \mathcal{C} = \{1, 3\} \\ 1 & \text{if } \mathcal{C} = \{2, 3\} \\ 6 & \text{if } \mathcal{C} = \{1, 2, 3\}. \end{cases}$

Theorem

A characteristic function game $\Gamma=(\mathcal{N},v)$ has a non-empty core if and only if its superadditive cover $\Gamma^*=(\mathcal{N},v^*)$ has a non-empty core.

Summary

- ► Characteristic function game: How to model players' rationality in coalitional games?
- ▶ Subclasses: Are there any special games that result in some specific coalitions?
- ► Shapley value: How to distribute a coalition's value in a fair manner amongst its members?
- ► Core: What is a stable coalition?