Fire stations

1 second, 128 MB

There are N garages on a straight-line road. A position on this road is specified as the distance from one specific end of the road to that position. Garages are numbered from 1 to N. Garage i is at position X_i . More over garages are numbered based on their locations, i.e., $X_i < X_{i+1}$.

It is easy to have accidents at these garages, so the city plans to have fire station on this road. A fire station has effective working radius of \mathbf{R} , i.e., a fire station at position \mathbf{Y} can take care of fires from position \mathbf{Y} - \mathbf{R} to \mathbf{Y} + \mathbf{R} on the road.

How many fire stations do the city need so that they can effectively deal with all possible fires at these ${\bf N}$ garages.

Input

First line of the input contains two integers: \mathbf{N} and \mathbf{R} . (1<= \mathbf{N} <=100,000; 1<= \mathbf{R} <=1,000,000,000) The next \mathbf{N} lines specify garage positions. More specifically, on line 1+ \mathbf{i} , for 1<= \mathbf{i} <= \mathbf{N} , there is an integer \mathbf{X}_i , the position of garage \mathbf{i} . Note that $\mathbf{X}_i < \mathbf{X}_{i+1}$, for every 1<= \mathbf{i} < \mathbf{N} . (0<= \mathbf{X}_i <=1,000,000,000)

Output

Your program should output one integer, the minimum number of fire station needed.

Example

Example	
Input	Output
5 10	2
10	
20	
25	
10 20 25 70 90	
90	