ĐẠI SỐ VÀ GIẢI TÍCH

BÔ GIÁO DUC VÀ ĐÀO TAO

TRẦN VĂN HẠO (Tổng Chủ biên) - VŨ TUẤN (Chủ biên) ĐÀO NGỌC NAM - LÊ VĂN TIẾN - VŨ VIẾT YÊN

ĐẠI SỐ VÀ GIẢI TÍCH (Tái bản lần thứ bảy)

NHÀ XUẤT BẢN GIÁO DỤC VIỆT NAM

Phần hoạt động của học sinh.

Tuỳ đối tượng cụ thể mà giáo viên sử dụng.

■ Kết thúc chứng minh hoặc lời giải.

Bản quyền thuộc Nhà xuất bản Giáo dục Việt Nam – Bộ Giáo dục và Đào tạo.

Mã số: CH101T4

THÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

Tiếp tục phần *giá trị lượng giác* và *các công thức lượng giác* được học trong chương cuối của Đại số 10, chương này cung cấp kiến thức về *hàm số lượng giác* và cách giải *phương trình lượng giác* . Ở đây chỉ yêu cầu giải thành thạo các phương trình cơ bản và những phương trình bậc nhất và bậc hai đối với một hàm số lượng giác.

Khác với những hàm số đã được học trước đây, các hàm số $y = \sin x$, $y = \cos x$, $y = \tan x$ và $y = \cot x$ là những hàm số tuần hoàn. Các hàm số này gặp nhiều trong các môn khoa học ứng dụng (Vật lí, Hoá học, ...)

5/

HÀM SỐ LƯỢNG GIÁC

I – ĐỊNH NGHĨA

Trước hết, ta nhắc lại bảng các giá trị lượng giác của các cung đặc biệt.

Cung Giá trị lượng giác	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	
$\cot x$		$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

a) Sử dụng máy tính bỏ túi, hãy tính $\sin x, \cos x$ với x là các số sau :

$$\frac{\pi}{6}$$
; $\frac{\pi}{4}$; 1,5; 2; 3,1; 4,25; 5.

b) Trên đường tròn lượng giác, với điểm gốc A, hãy xác định các điểm M mà số đo của cung $\stackrel{\frown}{AM}$ bằng x (rad) tương ứng đã cho ở trên và xác định $\sin x$, $\cos x$ (lấy $\pi \approx 3,14$).

1. Hàm số sin và hàm số côsin

a) Hàm số sin

 $\mathring{\text{O}}$ lớp 10 ta đã biết, có thể đặt tương ứng mỗi số thực x với một điểm M duy nhất trên đường tròn lượng giác mà số đo của cung $\stackrel{\longleftarrow}{AM}$ bằng x (rad) (h.1a). Điểm M có tung độ hoàn toàn xác định, đó chính là giá trị $\sin x$.

Biểu diễn giá trị của x trên trục hoành và giá trị của $\sin x$ trên trục tung, ta được Hình 1b.

Hình 1

Quy tắc đặt tương ứng mỗi số thực x với số thực $\sin x$

$$\sin: \quad \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = \sin x$$

được gọi là hàm số sin, kí hiệu là $y = \sin x$.

Tập xác định của hàm số \sin là $\mathbb R$.

b) Hàm số côsin

Hình 2

Quy tắc đặt tương ứng mỗi số thực x với số thực $\cos x$

$$\cos: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = \cos x$$

được gọi là hàm số côsin, kí hiệu là $y = \cos x$ (h.2).

Tập xác định của hàm số côsin là \mathbb{R} .

2. Hàm số tang và hàm số côtang

a) Hàm số tang

Hàm số tang là hàm số được xác định bởi công thức

$$y = \frac{\sin x}{\cos x} \qquad (\cos x \neq 0),$$
 kí hiệu là $y = \tan x$.

Vì $\cos x \neq 0$ khi và chỉ khi $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$ nên tập xác định của hàm $s\delta y = \tan x \, la$

$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \, k \in \mathbb{Z} \right\}.$$

b) Hàm số côtang

Hàm số côtang là hàm số được xác định bởi công thức

$$y = \frac{\cos x}{\sin x} \quad (\sin x \neq 0),$$
 kí hiệu là $y = \cot x$.

Vì $\sin x \neq 0$ khi và chỉ khi $x \neq k\pi$ $(k \in \mathbb{Z})$ nên tập xác định của hàm số $y = \cot x \, la$

$$D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}.$$

lãy so sánh các giá trị $\sin x$ và $\sin(-x)$, $\cos x$ và $\cos(-x)$.

NHẬN XÉT

Hàm số $y = \sin x$ là hàm số lẻ, hàm số $y = \cos x$ là hàm số chẵn, từ đó suy ra các hàm số $y = \tan x$ và $y = \cot x$ đều là những hàm số lẻ.

II – TÍNH TUẦN HOÀN CỦA HÀM SỐ LƯỢNG GIÁC

Tìm những số T sao cho f(x+T)=f(x) với mọi x thuộc tập xác định của các hàm số sau :

$$a) f(x) = \sin x ;$$

b)
$$f(x) = \tan x$$
.

Người ta chứng minh được rằng $T=2\pi$ là số dương nhỏ nhất thoả mãn đẳng thức

$$\sin(x+T) = \sin x, \ \forall x \in \mathbb{R} \ (\text{xem } B \text{ài } doc \ th \hat{e}m).$$

Hàm số $y = \sin x$ thoả mãn đẳng thức trên được gọi là *hàm số tuần hoàn* với *chu kì* 2π .

Tương tự, hàm số $y = \cos x$ là hàm số tuần hoàn với chu kì 2π .

Các hàm số $y = \tan x$ và $y = \cot x$ cũng là những hàm số tuần hoàn, với chu kì π .

III – SƯ BIẾN THIÊN VÀ ĐỒ THI CỦA HÀM SỐ LƯƠNG GIÁC

1. Hàm số $y = \sin x$

Từ đinh nghĩa ta thấy hàm số $y = \sin x$:

- Xác đinh với mọi $x \in \mathbb{R}$ và $-1 \le \sin x \le 1$;
- Là hàm số lẻ;
- Là hàm số tuần hoàn với chu kì 2π .

Sau đây, ta sẽ khảo sát sự biến thiên của hàm số $y = \sin x$.

a) Sự biến thiên và đồ thị hàm số $y = \sin x$ trên đoạn $[0; \pi]$

Xét các số thực
$$x_1, x_2$$
, trong đó $0 \le x_1 < x_2 \le \frac{\pi}{2}$. Đặt $x_3 = \pi - x_2, x_4 = \pi - x_1$.

Biểu diễn chúng trên đường tròn lượng giác và xét $\sin x_i$ tương ứng (i = 1, 2, 3, 4) (h.3a).

Trên Hình 3 ta thấy, với x_1, x_2 tuỳ ý thuộc đoạn $\left[0; \frac{\pi}{2}\right]$ và $x_1 < x_2$ thì $\sin x_1 < \sin x_2$.

Khi đó x_3 , x_4 thuộc đoạn $\left\lceil \frac{\pi}{2} \right\rceil$ và $x_3 < x_4$ nhưng $\sin x_3 > \sin x_4$.

Vậy hàm số $y = \sin x \, d\hat{o}ng \, biến \, trên \left[0; \frac{\pi}{2}\right]$ và nghịch biến trên $\left[\frac{\pi}{2}; \pi\right]$.

Bảng biến thiên:

Đồ thị của hàm số $y = \sin x$ trên đoạn $[0; \pi]$ đi qua các điểm $(0; 0), (x_1; \sin x_1), (x_2; \sin x_2), (\frac{\pi}{2}; 1), (x_3; \sin x_3), (x_4; \sin x_4), (\pi; 0)$ (h.3b).

CHÚ Ý

Vì $y = \sin x$ là hàm số lẻ nên lấy đối xứng đồ thị hàm số trên đoạn $[0; \pi]$ qua gốc toạ độ O, ta được đồ thị hàm số trên đoạn $[-\pi; 0]$.

Đồ thị hàm số $y = \sin x$ trên đoạn $[-\pi ; \pi]$ được biểu diễn trên Hình 4.

Hình 4

b) Đồ thi hàm số $y = \sin x$ trên \mathbb{R}

Hàm số $y = \sin x$ là hàm số tuần hoàn chu kì 2π nên với mọi $x \in \mathbb{R}$ ta có

$$\sin(x + k2\pi) = \sin x, \ k \in \mathbb{Z}$$
.

Do đó, muốn có đồ thị hàm số $y=\sin x$ trên toàn bộ tập xác định \mathbb{R} , ta tịnh tiến liên tiếp đồ thị hàm số trên đoạn $[-\pi\ ;\,\pi]$ theo các vecto $\vec{v}=(2\pi\ ;0)$ và $-\vec{v}=(-2\pi\ ;0)$, nghĩa là tịnh tiến song song với trục hoành từng đoạn có độ dài 2π .

Hình 5 dưới đây là đồ thị hàm số $y = \sin x$ trên \mathbb{R} .

Hình 5

c) Tập giá trị của hàm số $y = \sin x$

Từ đồ thị ta thấy tập hợp mọi giá trị của hàm số $y = \sin x$ là đoạn [-1; 1]. Ta nói *tập giá trị* của hàm số này là [-1; 1].

2. Hàm số $y = \cos x$

Từ định nghĩa ta thấy hàm số $y = \cos x$:

- Xác định với mọi $x \in \mathbb{R}$ và $-1 \le \cos x \le 1$;
- Là hàm số chẩn;
- Là hàm số tuần hoàn với chu kì 2π .

Với mọi $x \in \mathbb{R}$ ta có đẳng thức

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x.$$

Từ đó, bằng cách tịnh tiến đồ thị hàm số $y = \sin x$ theo vecto $\vec{u} = \left(-\frac{\pi}{2}; 0\right)$

(sang trái một đoạn có độ dài bằng $\frac{\pi}{2}$, song song với trục hoành), ta được đồ thị của hàm số $y = \cos x$ (h.6).

Hình 6

Từ đồ thị của hàm số $y = \cos x$ trên Hình 6, ta suy ra : Hàm số $y = \cos x$ đồng biến trên đoạn $[-\pi; 0]$ và nghịch biến trên đoạn $[0; \pi]$.

Bảng biến thiên:

x	$-\pi$	0	π
$y = \cos x$	-1 -	>1	-1

Tập giá trị của hàm số $y = \cos x$ là [-1; 1].

Đồ thị của các hàm số $y = \cos x$, $y = \sin x$ được gọi chung là các đường hình sin.

3. Hàm số $y = \tan x$

Từ định nghĩa ta thấy hàm số $y = \tan x$:

- Có tập xác định là $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$;
- Là hàm số lẻ;
- Là hàm số tuần hoàn với chu kì π .

Vì vậy, để xét sự biến thiên và vẽ đồ thị của hàm số $y = \tan x$, ta chỉ cần xét sự biến thiên và vẽ đồ thị của hàm số này trên nửa khoảng $\left[0\;;\;\frac{\pi}{2}\right]$, sau đó lấy đối xứng qua gốc toạ độ O, ta được đồ thị hàm số trên khoảng $\left(-\frac{\pi}{2}\;;\;\frac{\pi}{2}\right)$.

Cuối cùng, do tính tuần hoàn với chu kì π nên đồ thị hàm số $y = \tan x$ trên D thu được từ đồ thị hàm số trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ bằng cách tịnh tiến song song với trục hoành từng đoạn có độ dài bằng π .

a) Sự biến thiên và đồ thị hàm số $y = \tan x$ trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$

Từ biểu diễn hình học của tan x (h.7a), với $x_1, x_2 \in \left[0; \frac{\pi}{2}\right], \stackrel{\frown}{AM_1} = x_1,$

$$\overrightarrow{AM}_2 = x_2$$
, $\overline{AT}_1 = \tan x_1$, $\overline{AT}_2 = \tan x_2$, ta thấy:
 $x_1 < x_2 \Rightarrow \tan x_1 < \tan x_2$.

Điều đó chứng tỏ rằng, hàm số $y = \tan x \, d \hat{o} ng \, biến$ trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$.

Hình 7

Bảng biến thiên:

х	$0 \qquad \qquad \frac{\pi}{4}$	$\frac{\pi}{2}$
$y = \tan x$	0	+∞

Để vẽ đồ thị hàm số $y = \tan x$ trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$ ta làm như sau :

Tính giá trị của hàm số $y = \tan x$ tại một số điểm đặc biệt như x = 0, $x = \frac{\pi}{6}$, $x = \frac{\pi}{4}$, $x = \frac{\pi}{3}$, ... rồi xác định các điểm (0 ; tan 0), $\left(\frac{\pi}{6}$; tan $\frac{\pi}{6}\right)$, $\left(\frac{\pi}{4}$; tan $\frac{\pi}{4}\right)$, $\left(\frac{\pi}{3}$; tan $\frac{\pi}{3}\right)$, Ta có bảng sau :

	X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	
у	$= \tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Đồ thị hàm số $y = \tan x$ trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$ đi qua các điểm tìm được.

Nhận xét rằng khi x càng gần $\frac{\pi}{2}$ thì đồ thị hàm số $y = \tan x$ càng gần đường thẳng $x = \frac{\pi}{2}$ (h.7b).

b) Đồ thị hàm số $y = \tan x$ trên D

Vì $y = \tan x$ là hàm số lẻ nên đồ thị hàm số có tâm đối xứng là gốc toạ độ O. Lấy đối xứng qua tâm O đồ thị hàm số $y = \tan x$ trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$, ta được đồ thị hàm số trên nửa khoảng $\left[-\frac{\pi}{2}; 0\right]$.

Từ đó, ta được đồ thị hàm số $y = \tan x$ trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$. Ta thấy trên khoảng này, hàm số $y = \tan x$ đồng biến (h.8).

Hình 8

Vì hàm số $y = \tan x$ tuần hoàn với chu kì π nên tịnh tiến đồ thị hàm số trên khoảng $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ song song với trục hoành từng đoạn có độ dài π , ta được đồ thị hàm số $y = \tan x$ trên D (h.9).

Hình 9

• Tập giá trị của hàm số $y = \tan x$ là khoảng $(-\infty; +\infty)$.

4. Hàm số $y = \cot x$

Từ định nghĩa ta thấy hàm số $y = \cot x$:

- Có tập xác định là $D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$;
- Là hàm số lẻ;
- Là hàm số tuần hoàn với chu kì π .

Sau đây, ta xét sự biến thiên và đồ thị của hàm số $y = \cot x$ trên khoảng $(0; \pi)$, rồi từ đó suy ra đồ thị của hàm số trên D.

a) Sự biến thiên và đồ thị hàm số $y = \cot x$ trên khoảng $(0; \pi)$

Với hai số x_1 và x_2 sao cho $0 < x_1 < x_2 < \pi$, ta có $0 < x_2 - x_1 < \pi$. Do đó

$$\cot x_1 - \cot x_2 = \frac{\cos x_1}{\sin x_1} - \frac{\cos x_2}{\sin x_2}$$

$$= \frac{\sin x_2 \cos x_1 - \cos x_2 \sin x_1}{\sin x_1 \sin x_2}$$

$$= \frac{\sin(x_2 - x_1)}{\sin x_1 \sin x_2} > 0$$

hay $\cot x_1 > \cot x_2$.

Vậy hàm số $y = \cot x \, nghịch \, biến \, trên \, khoảng \, (0; \pi).$

Bảng biến thiên:

Hình 10 biểu diễn đồ thị hàm số $y = \cot x$ trên khoảng (0; π).

Hình 10

b) Đồ thị của hàm số $y = \cot x$ trên D

Đồ thị hàm số $y = \cot x$ trên D được biểu diễn trên Hình 11.

Hình 11

• Tập giá trị của hàm số $y = \cot x$ là khoảng $(-\infty; +\infty)$.

BÀI ĐỌC THÊM

HÀM SỐ TUẦN HOÀN

I – ĐỊNH NGHĨA VÀ VÍ DỤ

1. Định nghĩa

Hàm số y = f(x) có tập xác định D được gọi là hàm số *tuần hoàn*, nếu tồn tại một số $T \neq 0$ sao cho với mọi $x \in D$ ta có :

a)
$$x - T \in D$$
 và $x + T \in D$;

b)
$$f(x + T) = f(x)$$
.

Số T dương nhỏ nhất thoả mãn các tính chất trên được gọi là **chu kì** của hàm số tuần hoàn đó.

2. Ví dụ

Ví dụ 1. Hàm số hằng f(x) = c (c là hằng số) là một hàm số tuần hoàn. Với mọi số dương T ta đều có f(x+T) = f(x) = c. Tuy nhiên không có số dương T nhỏ nhất thoả mãn định nghĩa nên hàm số tuần hoàn này không có chu kì.

Ví dụ 2. Hàm phần nguyên y = [x] đã được nêu trong Đại số 10.

Ta xét hàm $y = \{x\}$ xác định bởi : $\{x\} = x - [x]$. Nó được gọi là hàm phần lẻ của x.

Chẳng hạn, $\{4,3\} = 4,3-4=0,3$;

$$\{-4,3\} = -4,3 - (-5) = 0,7.$$

Ta chứng tổ hàm $y = \{x\}$ là hàm tuần hoàn với chu kì là 1.

Thật vậy,
$$\{x+1\} = x+1-[x+1] = x+1-[x]-1=x-[x] = \{x\}.$$

Đồ thị của hàm số $y = \{x\}$ được biểu diễn trên Hình 12. Nhìn vào đồ thị ta thấy hàm số có chu kì bằng 1.

Hình 12

3. Đồ thị của hàm số tuần hoàn

Giả sử y = f(x) là một hàm số xác định trên D và tuần hoàn với chu kì T.

Xét hai đoạn $X_1 = [a; a+T]$ và $X_2 = [a+T; a+2T]$ với $a \in D$.

Gọi (C_1) và (C_2) lần lượt là phần của đồ thị ứng với $x \in X_1$ và $x \in X_2$, ta tìm mối liên hệ giữa (C_1) và (C_2) (h.13).

Hình 13

Lấy x_0 bất kì thuộc X_1 thì $x_0 + T \in X_2$.

Xét hai điểm M_1 và M_2 lần lượt thuộc (C_1) và (C_2) , trong đó

$$M_1(x_1\ ;\ y_1)\ \text{v\'ai}\ \begin{cases} x_1=x_0\\ y_1=f(x_0)\ ; \end{cases}$$

$$M_2 \ (x_2 \ ; \ y_2) \ \text{v\'oi} \ \begin{cases} x_2 = x_0 + T \\ y_2 = f(x_0 + T) = f(x_0). \end{cases}$$

Ta có $\overline{M_1M_2}=(x_2-x_1\;;\;y_2-y_1)=(T\;;\;0)=\vec{v}\;\;(\vec{v}\;\text{không đổi}).$

Suy ra M_2 là ảnh của M_1 trong phép tịnh tiến theo vecto \vec{v} . Vậy " (C_2) là ảnh của (C_1) trong phép tịnh tiến theo vecto \vec{v} ".

Từ đó, muốn vẽ đồ thị của hàm số tuần hoàn chu kì T, ta chỉ cần vẽ đồ thị của hàm số này trên đoạn [a ; a + T], sau đó thực hiện lần lượt các phép tịnh tiến theo các vecto $\vec{v}, \ 2\vec{v}, \dots$, và các vecto $-\vec{v}, \ -2\vec{v}, \dots$ ta được toàn bộ đồ thị của hàm số.

II – TÍNH TUẦN HOÀN CỦA HÀM SỐ LƯƠNG GIÁC

1. Tính tuần hoàn và chu kì của các hàm số $y = \sin x$ và $y = \cos x$

ĐINH LÍ 1

Các hàm số $y = \sin x$ và $y = \cos x$ là những hàm số tuần hoàn với chu kì 2π .

Chứng minh. Ta chứng minh cho hàm số $y = \sin x$ (trường hợp hàm số $y = \cos x$ được chứng minh tương tự).

Hàm số $y = \sin x$ có tập xác định là \mathbb{R} và với mọi số thực x ta có

$$x - 2\pi \in \mathbb{R}, x + 2\pi \in \mathbb{R}, \tag{1}$$

$$\sin\left(x+2\pi\right) = \sin x. \tag{2}$$

Vậy $y = \sin x$ là hàm số tuần hoàn. Ta chứng minh 2π là số dương nhỏ nhất thoả mãn các tính chất (1) và (2).

Giả sử có số T sao cho $0 < T < 2\pi$ và $\sin(x + T) = \sin x$, $\forall x \in \mathbb{R}$.

Chọn $x = \frac{\pi}{2}$, ta được

$$\sin\left(\frac{\pi}{2} + T\right) = \sin\frac{\pi}{2} = 1 \iff \cos T = 1.$$

Điều này trái giả thiết $0 < T < 2\pi$.

Vậy 2π là số dương nhỏ nhất thoả mãn tính chất (2), nghĩa là 2π là chu kì của hàm số $y = \sin x$.

2. Tính tuần hoàn và chu kì của các hàm số $y = \tan x$ và $y = \cot x$

ĐỊNH LÍ 2

Các hàm số $y = \tan x$ và $y = \cot x$ là những hàm số tuần hoàn với chu kì π .

Chứng minh. Ta chứng minh cho hàm số $y = \tan x$, (trường hợp hàm số $y = \cot x$ được chứng minh tương tự).

Hàm số
$$y = \tan x$$
 có tập xác định $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

Với mọi $x \in D$ ta có $x - \pi \in D$ và $x + \pi \in D$, $\tan(x + \pi) = \tan x$.

Vậy $y = \tan x$ là hàm số tuần hoàn. Ta chứng minh π là chu kì của hàm số này.

Giả sử có số T sao cho $0 < T < \pi$ và $\tan(x + T) = \tan x$, $\forall x \in D$.

Chọn x = 0 thì $x \in D$ và tan(0 + T) = tan 0 = 0.

Nhưng tan $\alpha=0$ khi và chỉ khi $\alpha=k\pi,\ k\in\mathbb{Z}$, do đó phải có $T=k\pi,\ k\in\mathbb{Z}$. Điều này mâu thuẫn với giả thiết $0< T<\pi.$

Vậy chu kì của hàm số $y = \tan x$ là π .

Bài tâp

- 1. Hãy xác định các giá trị của x trên đoạn $\left[-\pi; \frac{3\pi}{2}\right]$ để hàm số $y = \tan x$:
 - a) Nhân giá tri bằng 0;

b) Nhận giá trị bằng 1;

c) Nhân giá tri dương;

- d) Nhận giá trị âm.
- 2. Tìm tập xác định của các hàm số:

$$a) y = \frac{1 + \cos x}{\sin x};$$

b)
$$y = \sqrt{\frac{1 + \cos x}{1 - \cos x}};$$

c)
$$y = \tan\left(x - \frac{\pi}{3}\right)$$
;

d)
$$y = \cot\left(x + \frac{\pi}{6}\right)$$
.

17

- 3. Dựa vào đồ thị của hàm số $y = \sin x$, hãy vẽ đồ thị của hàm số $y = |\sin x|$.
- **4.** Chứng minh rằng $\sin 2(x + k\pi) = \sin 2x$ với mọi số nguyên k. Từ đó vẽ đồ thị hàm số $y = \sin 2x$.

- 5. Dựa vào đồ thị hàm số $y = \cos x$, tìm các giá trị của x để $\cos x = \frac{1}{2}$.
- **6.** Dựa vào đồ thị hàm số $y = \sin x$, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.
- 7. Dựa vào đồ thị hàm số $y = \cos x$, tìm các khoảng giá trị của x để hàm số đó nhận giá trị âm.
- 8. Tìm giá trị lớn nhất của các hàm số:

a)
$$y = 2\sqrt{\cos x} + 1$$
;

b)
$$y = 3 - 2\sin x$$
.

PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN

Tìm một giá trị của x sao cho $2\sin x - 1 = 0$.

Trong thực tế, ta gặp những bài toán dẫn đến việc tìm tất cả các giá trị của x nghiệm đúng những phương trình nào đó, như

$$3\sin 2x + 2 = 0$$

hoặc $2\cos x + \tan 2x - 1 = 0$,

mà ta gọi là các phương trình lượng giác.

Giải phương trình lượng giác là tìm tất cả các giá trị của ẩn số thoả mãn phương trình đã cho. Các giá trị này là số đo của các cung (góc) tính bằng radian hoặc bằng độ.

Việc giải các phương trình lượng giác thường đưa về việc giải các phương trình sau, gọi là các *phương trình lượng giác cơ bản*:

$$\sin x = a$$
, $\cos x = a$, $\tan x = a$, $\cot x = a$,

trong đó a là một hằng số.

1. Phương trình $\sin x = a$

2

Có giá trị nào của x thoả mãn phương trình $\sin x = -2$ không ?

Xét phương trình $\sin x = a$.

(1)

Trường hợp |a| > 1

Phương trình (1) vô nghiệm, vì $|\sin x| \le 1$ với mọi x.

Trường hợp $|a| \le 1$

Vẽ đường tròn lượng giác tâm O, trục hoành là trục côsin, trục tung là trục sin. Trên trục sin lấy điểm K sao cho $\overline{OK} = a$. Từ K kẻ đường vuông góc với trục sin, cắt đường tròn lượng giác tại M và M' đối xứng với nhau qua trục sin (nếu |a| = 1 thì M trùng với M') (h.14).

Hình 14

Từ đó ta thấy số đo của các cung lượng giác $\stackrel{\checkmark}{AM}$ và $\stackrel{\checkmark}{AM}$ là tất cả các nghiệm của phương trình (1).

Gọi α là số đo bằng radian của một cung lượng giác $\stackrel{\frown}{AM}$, ta có

$$sd\widehat{AM} = \alpha + k2\pi, k \in \mathbb{Z} ;$$

$$\operatorname{sd} \widehat{AM}' = \pi - \alpha + k2\pi, k \in \mathbb{Z}.$$

Vây phương trình $\sin x = a$ có các nghiệm là

$$x = \alpha + k2\pi, \qquad k \in \mathbb{Z};$$

 $x = \pi - \alpha + k2\pi, \quad k \in \mathbb{Z}.$

Nếu số thực α thoả mãn điều kiện $\begin{cases} -\frac{\pi}{2} \leq \alpha \leq \frac{\pi}{2} \\ \sin \alpha = a \end{cases}$ thì ta viết $\alpha = \arcsin a$

(đọc là ac-sin-a, nghĩa là cung có sin bằng a). Khi đó, các nghiệm của phương trình $\sin x = a$ được viết là

$$x = \arcsin a + k2\pi, k \in \mathbb{Z}$$

$$va x = \pi - \arcsin a + k2\pi, k \in \mathbb{Z}.$$

CHÚ Ý

a) Phương trình $\sin x = \sin \alpha$, với α là một số cho trước, có các nghiệm là

$$x = \alpha + k2\pi,$$
 $k \in \mathbb{Z}$

và $x = \pi - \alpha + k2\pi, \quad k \in \mathbb{Z}$.

Tổng quát,

$$\sin f(x) = \sin g(x) \Leftrightarrow \begin{bmatrix} f(x) = g(x) + k2\pi, & k \in \mathbb{Z} \\ f(x) = \pi - g(x) + k2\pi, & k \in \mathbb{Z}. \end{bmatrix}$$

b) Phương trình $\sin x = \sin \beta^{\circ}$ có các nghiệm là

$$x = \beta^{\circ} + k360^{\circ}, \qquad k \in \mathbb{Z}$$

và $x = 180^{\circ} - \beta^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$

- c) Trong một công thức về nghiệm của phương trình lượng giác không được dùng đồng thời hai đơn vị độ và radian.
- d) Các trường hợp đặc biệt:
 - a = 1: Phương trình $\sin x = 1$ có các nghiệm là

$$x = \frac{\pi}{2} + k2\pi, \, k \in \mathbb{Z}.$$

• a = -1: Phương trình $\sin x = -1$ có các nghiệm là

$$x = -\frac{\pi}{2} + k2\pi, k \in \mathbb{Z}.$$

• a = 0: Phương trình $\sin x = 0$ có các nghiệm là $x = k\pi, k \in \mathbb{Z}$.

Ví dụ 1. Giải các phương trình sau:

a)
$$\sin x = \frac{1}{2}$$
;

b)
$$\sin x = \frac{1}{5}$$
.

Giải

a) Vì
$$\frac{1}{2} = \sin \frac{\pi}{6}$$
 nên $\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi}{6}$.

Vậy phương trình có các nghiệm là

$$x = \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}$$
 và $x = \pi - \frac{\pi}{6} + k2\pi = \frac{5\pi}{6} + k2\pi, k \in \mathbb{Z}.$

b) Ta có $\sin x = \frac{1}{5}$ khi $x = \arcsin \frac{1}{5}$. Vậy phương trình $\sin x = \frac{1}{5}$ có các nghiệm là

$$x = \arcsin \frac{1}{5} + k2\pi$$
, $k \in \mathbb{Z}$ và $x = \pi - \arcsin \frac{1}{5} + k2\pi$, $k \in \mathbb{Z}$.

Giải các phương trình sau :

a)
$$\sin x = \frac{1}{3}$$
;

b)
$$\sin(x+45^{\circ}) = -\frac{\sqrt{2}}{2}$$
.

2. Phương trình $\cos x = a$

Trường hợp |a| > 1

Phương trình cos x = a vô nghiệm vì $|\cos x| \le 1$ với mọi x.

Trường hợp $|a| \le 1$

Tương tự trường hợp phương trình $\sin x = a$, ta lấy điểm H trên trực côsin sao cho $\overline{OH} = a$. Từ H kẻ đường vuông góc với trực côsin, cắt đường tròn lượng giác tại M và M' đối xứng với nhau qua trực côsin (nếu |a| = 1 thì $M \equiv M'$) (h.15).

Hình 15

Từ đó ta thấy số đo của các cung lượng giác $\stackrel{\frown}{AM}$ và $\stackrel{\frown}{AM}$ ' là tất cả các nghiệm của phương trình $\cos x = a$.

Gọi α là số đo bằng radian của một cung lượng giác $\stackrel{\frown}{AM}$, ta có :

$$\operatorname{sd} \widehat{AM} = \alpha + k2\pi, k \in \mathbb{Z} ;$$

$$\operatorname{sd} \widehat{AM}' = -\alpha + k2\pi, k \in \mathbb{Z}.$$

Vậy phương trình $\cos x = a$ có các nghiệm là

$$x = \pm \alpha + k2\pi, \, k \in \mathbb{Z}.$$

CHÚ Ý

a) Phương trình $\cos x = \cos \alpha$, với α là một số cho trước, có các nghiệm là

$$x = \pm \alpha + k2\pi, k \in \mathbb{Z}.$$

Tổng quát, $\cos f(x) = \cos g(x) \Leftrightarrow f(x) = \pm g(x) + k2\pi, k \in \mathbb{Z}$.

b) Phương trình $\cos x = \cos \beta^{\circ}$ có các nghiệm là

$$x = \pm \beta^{\circ} + k360^{\circ}, k \in \mathbb{Z}.$$

c) Nếu số thực α thoả mãn các điều kiện

$$\begin{cases} 0 \le \alpha \le \pi \\ \cos \alpha = a \end{cases}$$

thì ta viết $\alpha = \arccos a$ (đọc là ac-côsin-a, có nghĩa là cung có côsin bằng a). Khi đó, các nghiệm của phương trình $\cos x = a$ còn được viết là

$$x = \pm \arccos a + k2\pi, k \in \mathbb{Z}.$$

- d) Các trường hợp đặc biệt:
 - a = 1: Phương trình $\cos x = 1$ có các nghiệm là

$$x = k2\pi, k \in \mathbb{Z}.$$

• a = -1: Phương trình $\cos x = -1$ có các nghiệm là

$$x=\pi+k2\pi,\,k\in\,\mathbb{Z}.$$

• a = 0: Phương trình $\cos x = 0$ có các nghiệm là

$$x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

Ví du 2. Giải các phương trình sau:

a)
$$\cos x = \cos \frac{\pi}{6}$$
;

b)
$$\cos 3x = -\frac{\sqrt{2}}{2}$$
;

c)
$$\cos x = \frac{1}{3}$$
;

d)
$$\cos(x + 60^{\circ}) = \frac{\sqrt{2}}{2}$$
.

Giải

a)
$$\cos x = \cos \frac{\pi}{6} \Leftrightarrow x = \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z}.$$

b) Vì
$$-\frac{\sqrt{2}}{2} = \cos\frac{3\pi}{4}$$
 nên
$$\cos 3x = -\frac{\sqrt{2}}{2} \Leftrightarrow \cos 3x = \cos\frac{3\pi}{4} \Leftrightarrow 3x = \pm\frac{3\pi}{4} + k2\pi$$

$$\Leftrightarrow x = \pm\frac{\pi}{4} + k\frac{2\pi}{3}, k \in \mathbb{Z} ;$$

c)
$$\cos x = \frac{1}{3} \Leftrightarrow x = \pm \arccos \frac{1}{3} + k2\pi, k \in \mathbb{Z}$$
;

d) Vì
$$\frac{\sqrt{2}}{2} = \cos 45^{\circ}$$
 nên

$$\cos(x+60^{\circ}) = \frac{\sqrt{2}}{2} \Leftrightarrow \cos(x+60^{\circ}) = \cos 45^{\circ} \Leftrightarrow x+60^{\circ} = \pm 45^{\circ} + k360^{\circ}$$
$$\Leftrightarrow \begin{bmatrix} x = -15^{\circ} + k360^{\circ} \\ x = -105^{\circ} + k360^{\circ} \end{bmatrix} (k \in \mathbb{Z}). \quad \blacksquare$$

。) **4** 【 Giải các phương trình sau :

a)
$$\cos x = -\frac{1}{2}$$

b)
$$\cos x = \frac{2}{3}$$

a)
$$\cos x = -\frac{1}{2}$$
; b) $\cos x = \frac{2}{3}$; c) $\cos(x+30^{\circ}) = \frac{\sqrt{3}}{2}$.

3. Phương trình $\tan x = a$

Điều kiện của phương trình là $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$.

Căn cứ vào đồ thị hàm số $y = \tan x$, ta thấy với mỗi số a, đồ thị hàm số $y = \tan x$ cắt đường thẳng y = a tại các điểm có hoành độ sai khác nhau một bội của π (h.16).

Hình 16

Hoành độ của mỗi giao điểm là một nghiệm của phương trình tan x = a.

Gọi x_1 là hoành độ giao điểm $(\tan x_1 = a)$ thoả mãn điều kiện $-\frac{\pi}{2} < x_1 < \frac{\pi}{2}$.

Kí hiệu x_1 = arctan a (đọc là ac-tang-a, nghĩa là cung có tang bằng a). Khi đó, nghiêm của phương trình $\tan x = a$ là

$$x = \arctan a + k\pi, k \in \mathbb{Z}.$$

CHÚ Ý

a) Phương trình tan $x = \tan \alpha$, với α là một số cho trước, có các nghiệm là

$$x = \alpha + k\pi, k \in \mathbb{Z}.$$

Tổng quát, $\tan f(x) = \tan g(x) \Rightarrow f(x) = g(x) + k\pi, k \in \mathbb{Z}$.

b) Phương trình $\tan x = \tan \beta^{\circ}$ có các nghiệm là $x = \beta^{\circ} + k180^{\circ}, k \in \mathbb{Z}.$

Ví du 3. Giải các phương trình sau:

a)
$$\tan x = \tan \frac{\pi}{5}$$
; b) $\tan 2x = -\frac{1}{3}$; c) $\tan (3x + 15^{\circ}) = \sqrt{3}$.

Giải

a)
$$\tan x = \tan \frac{\pi}{5} \iff x = \frac{\pi}{5} + k\pi, k \in \mathbb{Z}.$$

b)
$$\tan 2x = -\frac{1}{3} \Leftrightarrow 2x = \arctan\left(-\frac{1}{3}\right) + k\pi$$

$$\Leftrightarrow x = \frac{1}{2}\arctan\left(-\frac{1}{3}\right) + k\frac{\pi}{2}, \ k \in \mathbb{Z}.$$

c) Vì
$$\sqrt{3} = \tan 60^{\circ} \text{ nên } \tan(3x + 15^{\circ}) = \sqrt{3} \iff \tan(3x + 15^{\circ}) = \tan 60^{\circ}$$

 $\iff 3x + 15^{\circ} = 60^{\circ} + k180^{\circ} \iff 3x = 45^{\circ} + k180^{\circ}$
 $\iff x = 15^{\circ} + k60^{\circ}, k \in \mathbb{Z}.$

Giải các phương trình sau :

- a) $\tan x = 1$; b) $\tan x = -1$;
- c) $\tan x = 0$.

4. Phương trình $\cot x = a$

Điều kiện của phương trình là $x \neq k\pi$, $k \in \mathbb{Z}$.

Căn cứ vào đồ thị hàm số $y = \cot x$, ta thấy với mỗi số a, đường thẳng y = a cắt đồ thị hàm số $y = \cot x$ tại các điểm có hoành độ sai khác nhau một bôi của π (h.17).

Hình 17

Hoành độ của mỗi giao điểm là một nghiệm của phương trình $\cot x = a$.

Gọi x_1 là hoành độ giao điểm ($\cot x_1 = a$) thoả mãn điều kiện $0 < x_1 < \pi$.

Kí hiệu $x_1 = \operatorname{arccot} a$ (đọc là ac-côtang-a, nghĩa là cung có côtang bằng a).

Khi đó, các nghiệm của phương trình $\cot x = a$ là

$$x = \operatorname{arccot} a + k\pi, k \in \mathbb{Z}.$$

CHÚ Ý

a) Phương trình cot $x = \cot \alpha$, với α là một số cho trước, có các nghiệm là

$$x = \alpha + k\pi, k \in \mathbb{Z}$$

Tổng quát, $\cot f(x) = \cot g(x) \Rightarrow f(x) = g(x) + k\pi, k \in \mathbb{Z}.$

b) Phương trình $\cot x = \cot \beta^{\circ}$ có các nghiệm là

$$x = \beta^{\circ} + k180^{\circ}, k \in \mathbb{Z}.$$

Ví du 4. Giải các phương trình sau:

a)
$$\cot 4x = \cot \frac{2\pi}{7}$$
;

b) $\cot 3x = -2$;

c)
$$\cot(2x - 10^{\circ}) = \frac{1}{\sqrt{3}}$$
.

Giải

a)
$$\cot 4x = \cot \frac{2\pi}{7} \Leftrightarrow 4x = \frac{2\pi}{7} + k\pi \Leftrightarrow x = \frac{\pi}{14} + k\frac{\pi}{4}, \ k \in \mathbb{Z}.$$

b) $\cot 3x = -2 \Leftrightarrow 3x = \operatorname{arccot}(-2) + k\pi$ $\Leftrightarrow x = \frac{1}{3} \operatorname{arccot}(-2) + k\frac{\pi}{3}, k \in \mathbb{Z}.$

c) Vì
$$\frac{1}{\sqrt{3}} = \cot 60^{\circ}$$
 nên

$$\cot(2x - 10^{\circ}) = \frac{1}{\sqrt{3}} \iff \cot(2x - 10^{\circ}) = \cot 60^{\circ}$$

$$\Leftrightarrow 2x - 10^{\circ} = 60^{\circ} + k180^{\circ}$$

$$\Leftrightarrow x = 35^{\circ} + k90^{\circ}, k \in \mathbb{Z}. \quad \blacksquare$$

Giải các phương trình sau :

a)
$$\cot x = 1$$
;

b)
$$\cot x = -1$$
;

c)
$$\cot x = 0$$
.

GHI NHỚ

Mỗi phương trình

 $\sin x = a \ (|a| \le 1) \ ; \cos x = a \ (|a| \le 1) \ ; \tan x = a \ ; \cot x = a$ có vô số nghiệm.

Giải các phương trình trên là tìm tất cả các nghiệm của chúng.

BÀI ĐOC THÊM

GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN BẰNG MÁY TÍNH BỔ TÚI

Có thể sử dung máy tính bỏ túi (MTBT) để giải các phương trình lương giác cơ bản. Tuy nhiên, đối với phương trình $\sin x = a$ máy chỉ cho kết quả là $\arcsin a$ với đơn vi là radian hoặc đã được đổi ra đô. Lúc đó, theo công thức nghiêm ta viết các nghiệm là

$$x = \arcsin a + k2\pi, k \in \mathbb{Z}$$

và

$$x = \pi - \arcsin a + k2\pi, k \in \mathbb{Z}.$$

Tương tư, đối với phương trình $\cos x = a$ máy chỉ cho kết quả là $\arccos a$, đối với phương trình $\tan x = a$ máy chỉ cho kết quả là arctan a.

Ví dụ. Dùng MTBT CASIO fx - 500 MS, giải các phương trình sau :

a)
$$\sin x = 0.5$$
; b) $\cos x = -\frac{1}{3}$;

c)
$$\tan x = \sqrt{3}$$
.

Giải

a) Nếu muốn có đáp số bằng độ thì bấm ba lần phím 🔲 rồi bấm phím 💶 để màn hình hiện ra chữ D. Sau đó bấm liên tiếp

Dòng thứ nhất trên màn hình hiện ra $\sin^{-1} 0.5$ (có nghĩa là $\arcsin 0.5$) và kết quả ở dòng thứ hai là $30^{\circ}0^{\circ}0$ (arcsin 0,5 đã được đổi ra độ).

Vậy phương trình $\sin x = 0.5$ có các nghiệm là

$$x = 30^{\circ} + k360^{\circ}, \ k \in \mathbb{Z}$$

và

$$x = 180^{\circ} - 30^{\circ} + k360^{\circ} = 150^{\circ} + k360^{\circ}, \ k \in \mathbb{Z}$$
.

b) Bấm liên tiếp

Dòng thứ nhất trên màn hình là $\cos^{-1} - (1 \perp 3)$ (có nghĩa là $\arccos\left(-\frac{1}{3}\right)$) và kết quả

ở dòng thứ hai là $109^{\circ}28'16.3''$ ($\arccos\left(-\frac{1}{3}\right)$ đã được đổi ra độ).

Vậy phương trình $\cos x = -\frac{1}{3}$ có các nghiệm là $x \approx \pm 109^{\circ}28'16'' + k360^{\circ}$, $k \in \mathbb{Z}$.

c) Bấm liên tiếp tan 3 = 0***

dòng thứ nhất trên màn hình là $\tan^{-1}\sqrt{3}$ (có nghĩa là $\arctan\sqrt{3}$) và kết quả ở dòng thứ hai là $60^{\circ}0^{\circ}0$ ($\arctan\sqrt{3}$ đã được đổi ra độ).

Vậy phương trình $\tan x = \sqrt{3}$ có các nghiệm là $x = 60^{\circ} + k180^{\circ}$, $k \in \mathbb{Z}$.

CHÚ Ý

a) Để giải phương trình $\sin x = 0.5$ với kết quả là radian, ta bấm ba lần phím rồi bấm phím 2, màn hình hiện ra chữ R.

Sau đó, bấm liên tiếp sin 0 - 5 =

ta được kết quả gần đúng là 0,5236 (arcsin $0,5 \approx 0,5236$).

Vậy phương trình $\sin x = 0.5$ có các nghiệm là

$$x \approx 0.5236 + k2\pi, \ k \in \mathbb{Z}$$

và

$$x \approx \pi - 0.5236 + k2\pi, \ k \in \mathbb{Z}.$$

b) Để giải phương trình $\cot x = a$ bằng MTBT, ta đưa về giải phương trình $\tan x = \frac{1}{a}$.

Bài tập

- 1. Giải các phương trình sau:
 - a) $\sin(x+2) = \frac{1}{3}$;

b) $\sin 3x = 1$;

c)
$$\sin\left(\frac{2x}{3} - \frac{\pi}{3}\right) = 0;$$

d)
$$\sin(2x + 20^{\circ}) = -\frac{\sqrt{3}}{2}$$
.

- 2. Với những giá trị nào của x thì giá trị của các hàm số $y = \sin 3x$ và $y = \sin x$ bằng nhau?
- 3. Giải các phương trình sau:
 - a) $\cos(x-1) = \frac{2}{3}$;

b) $\cos 3x = \cos 12^{\circ}$;

 $c)\cos\left(\frac{3x}{2} - \frac{\pi}{4}\right) = -\frac{1}{2};$

d) $\cos^2 2x = \frac{1}{4}$.

- **4.** Giải phương trình $\frac{2\cos 2x}{1-\sin 2x} = 0.$
- Giải các phương trình sau:

a)
$$\tan(x - 15^{\circ}) = \frac{\sqrt{3}}{3}$$
;

b)
$$\cot(3x - 1) = -\sqrt{3}$$
;

c)
$$\cos 2x \tan x = 0$$
;

d)
$$\sin 3x \cot x = 0$$
.

- Với những giá trị nào của x thì giá trị của các hàm số $y = \tan\left(\frac{\pi}{4} x\right)$ và $y = \tan 2x$ bằng nhau?
- 7. Giải các phương trình sau:

a)
$$\sin 3x - \cos 5x = 0$$
;

b) $\tan 3x \tan x = 1$.

MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP

1. Định nghĩa

Phương trình bậc nhất đối với một hàm số lượng giác là

$$at + b = 0, (1)$$

phương trình có dạng $at + b = 0, \tag{1}$ trong đó a, b là các hằng số $(a \neq 0)$ và t là một trong các hàm

Ví du 1

- a) $2\sin x 3 = 0$ là phương trình bậc nhất đối với $\sin x$.
- b) $\sqrt{3} \tan x + 1 = 0$ là phương trình bậc nhất đối với $\tan x$.

2. Cách giải

Chuyển vế rồi chia hai vế của phương trình (1) cho a, ta đưa phương trình (1) về phương trình lượng giác cơ bản.

Ví dụ 2. Giải các phương trình sau:

a)
$$3\cos x + 5 = 0$$
;

b)
$$\sqrt{3} \cot x - 3 = 0$$
.

Giải

a) Từ $3\cos x + 5 = 0$, chuyển vế ta có

$$3\cos x = -5. \tag{2}$$

Chia hai vế của phương trình (2) cho 3, ta được $\cos x = -\frac{5}{3}$.

Vì $-\frac{5}{3}$ < -1 nên phương trình đã cho vô nghiệm.

b) Từ $\sqrt{3} \cot x - 3 = 0$, chuyển vế ta có

$$\sqrt{3}\cot x = 3. \tag{3}$$

Chia hai vế của phương trình (3) cho $\sqrt{3}$, ta được $\cot x = \sqrt{3}$.

Vì
$$\sqrt{3} = \cot \frac{\pi}{6} \text{ nên } \cot x = \sqrt{3} \iff \cot x = \cot \frac{\pi}{6} \iff x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}.$$

Phương trình đưa về phương trình bậc nhất đối với một hàm số lượng giác

Ví dụ 3. Giải các phương trình sau:

a)
$$5\cos x - 2\sin 2x = 0$$
; (4)

b)
$$8\sin x \cos x \cos 2x = -1. \tag{5}$$

Giải

a) Ta có $5\cos x - 2\sin 2x = 0 \Leftrightarrow 5\cos x - 4\sin x \cos x = 0 \Leftrightarrow \cos x(5 - 4\sin x) = 0$

$$\Leftrightarrow \begin{bmatrix} \cos x = 0 \\ 5 - 4\sin x = 0. \end{bmatrix}$$

•
$$\cos x = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

• 5 – $4\sin x = 0 \Leftrightarrow 4\sin x = 5 \Leftrightarrow \sin x = \frac{5}{4}$, vì $\frac{5}{4} > 1$ nên phương trình này vô nghiêm.

Vậy phương trình (4) có các nghiệm là $x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

b) Ta có

 $8\sin x \cos x \cos 2x = -1 \Leftrightarrow 4\sin 2x \cos 2x = -1 \Leftrightarrow 2\sin 4x = -1$

$$\Leftrightarrow \sin 4x = -\frac{1}{2} \Leftrightarrow \begin{bmatrix} 4x = -\frac{\pi}{6} + k2\pi \\ 4x = \frac{7\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{24} + k\frac{\pi}{2} \\ x = \frac{7\pi}{24} + k\frac{\pi}{2} \end{bmatrix} \quad (k \in \mathbb{Z}). \quad \blacksquare$$

II – PHƯƠNG TRÌNH BẬC HAI ĐỐI VỚI MỘT HÀM SỐ LƯỢNG GIÁC

1. Định nghĩa

Phương trình bậc hai đối với một hàm số lượng giác là phương

$$at^2 + bt + c = 0.$$

trình có dạng $at^2 + bt + c = 0,$ trong đó a, b, c là các hằng số $(a \neq 0)$ và t là một trong các hàm số lượng giác.

Ví du 4

- a) $2\sin^2 x + 3\sin x 2 = 0$ là phương trình bậc hai đối với $\sin x$.
- b) $3\cot^2 x 5\cot x 7 = 0$ là phương trình bậc hai đối với $\cot x$.

2 Giải các phương trình sau :

a)
$$3\cos^2 x - 5\cos x + 2 = 0$$
;

b)
$$3\tan^2 x - 2\sqrt{3}\tan x + 3 = 0$$
.

2. Cách giải

Đặt biểu thức lượng giác làm ẩn phu và đặt điều kiên cho ẩn phu (nếu có) rồi giải phương trình theo ẩn phụ này. Cuối cùng, ta đưa về việc giải các phương trình lương giác cơ bản.

Ví dụ 5. Giải phương trình

$$2\sin^2\frac{x}{2} + \sqrt{2}\sin\frac{x}{2} - 2 = 0.$$

Giải. Đặt $\sin \frac{x}{2} = t$ với điều kiện

$$-1 \le t \le 1 \tag{*},$$

ta được phương trình bậc hai theo t

$$2t^2 + \sqrt{2}t - 2 = 0. ag{1}$$

Phương trình (1) có hai nghiệm $t_1 = -\sqrt{2}$ và $t_2 = \frac{\sqrt{2}}{2}$ nhưng chỉ có

 $t_2 = \frac{\sqrt{2}}{2}$ thoả mãn điều kiện (*). Vậy ta có

$$\sin \frac{x}{2} = \frac{\sqrt{2}}{2} \Leftrightarrow \sin \frac{x}{2} = \sin \frac{\pi}{4}$$

$$\Leftrightarrow \begin{bmatrix} \frac{x}{2} = \frac{\pi}{4} + k2\pi \\ \frac{x}{2} = \frac{3\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{2} + k4\pi \\ x = \frac{3\pi}{2} + k4\pi \end{bmatrix} (k \in \mathbb{Z}). \blacksquare$$

3. Phương trình đưa về dạng phương trình bậc hai đối với một hàm số lương giác

Hãy nhắc lại :

- a) Các hằng đẳng thức lượng giác cơ bản ;
- b) Công thức cộng;
- c) Công thức nhân đôi;
- d) Công thức biến đổi tích thành tổng và tổng thành tích.

Có nhiều phương trình lượng giác mà khi giải có thể đưa về phương trình bậc hai đối với một hàm số lượng giác. Sau đây là một số ví dụ.

Ví dụ 6. Giải phương trình

$$6\cos^2 x + 5\sin x - 2 = 0. (2)$$

Giải. Biến đổi $\cos^2 x = 1 - \sin^2 x$, ta đưa phương trình (2) về dạng

$$-6\sin^2 x + 5\sin x + 4 = 0.$$

Đặt $\sin x = t$ với điều kiện $-1 \le t \le 1$, ta được phương trình bậc hai theo t

$$-6t^2 + 5t + 4 = 0. (3)$$

Phương trình (3) có hai nghiệm $t_1 = \frac{4}{3}$ và $t_2 = -\frac{1}{2}$ nhưng chỉ có $t_2 = -\frac{1}{2}$ thoả mãn điều kiện. Vậy ta có

$$\sin x = -\frac{1}{2} \Leftrightarrow \sin x = \sin\left(-\frac{\pi}{6}\right)$$

$$\Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{6} + k2\pi \\ x = \frac{7\pi}{6} + k2\pi \end{bmatrix} \quad (k \in \mathbb{Z}). \quad \blacksquare$$

Ví du 7. Giải phương trình

$$\sqrt{3}\tan x - 6\cot x + 2\sqrt{3} - 3 = 0. \tag{4}$$

Giải. Điều kiện của phương trình (4) là $\cos x \neq 0$ và $\sin x \neq 0$.

Vì $\cot x = \frac{1}{\tan x}$ nên phương trình (4) có thể viết dưới dạng

$$\sqrt{3}\tan x - \frac{6}{\tan x} + 2\sqrt{3} - 3 = 0,$$

hay

$$\sqrt{3}\tan^2 x + (2\sqrt{3} - 3)\tan x - 6 = 0.$$

Đặt tan x = t, ta được phương trình bậc hai theo t

$$\sqrt{3}t^2 + (2\sqrt{3} - 3)t - 6 = 0. ag{5}$$

Phương trình (5) có hai nghiệm : $t_1 = \sqrt{3}$, $t_2 = -2$.

Với
$$t_1 = \sqrt{3}$$
 ta có $\tan x = \sqrt{3} \Leftrightarrow \tan x = \tan \frac{\pi}{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi, k \in \mathbb{Z}.$

Với $t_2 = -2$ ta có $\tan x = -2 \Leftrightarrow x = \arctan(-2) + k\pi, k \in \mathbb{Z}$.

Các giá trị này đều thoả mãn điều kiện nêu trên nên chúng là các nghiệm của phương trình (4). ■

Giải phương trình $3\cos^2 6x + 8\sin 3x \cos 3x - 4 = 0$.

Ví du 8. Giải phương trình

$$2\sin^2 x - 5\sin x \cos x - \cos^2 x = -2. \tag{6}$$

Giải. Trước hết, ta thấy nếu $\cos x = 0$ thì phương trình (6) có vế trái bằng 2, còn vế phải bằng -2, nên $\cos x = 0$ không thoả mãn phương trình (6). Vậy $\cos x \neq 0$.

Vì $\cos x \neq 0$ nên chia hai vế của phương trình (6) cho $\cos^2 x$, ta được

$$2\tan^2 x - 5\tan x - 1 = -\frac{2}{\cos^2 x} \Leftrightarrow 2\tan^2 x - 5\tan x - 1 = -2(1 + \tan^2 x).$$

Ta đưa được phương trình (6) về phương trình bậc hai theo tan x

$$4\tan^2 x - 5\tan x + 1 = 0$$

$$\Leftrightarrow \begin{bmatrix} \tan x = 1 \\ \tan x = \frac{1}{4}. \end{bmatrix}$$

•
$$\tan x = 1 \Leftrightarrow x = \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

•
$$\tan x = \frac{1}{4} \iff x = \arctan \frac{1}{4} + k\pi, k \in \mathbb{Z}.$$

Vậy phương trình (6) có các nghiệm là

$$x = \frac{\pi}{4} + k\pi$$

và
$$x = \arctan \frac{1}{4} + k\pi \ (k \in \mathbb{Z}).$$

III – PHƯƠNG TRÌNH BẬC NHẤT ĐỐI VỚI sin x VÀ cos x

Công thức biến đổi biểu thức $a\sin x + b\cos x$

Dưa vào các công thức công đã học :

$$\sin(a+b) = \sin a \cos b + \sin b \cos a ;$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b ;$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a;$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a;$$

$$\cos(a - b) = \cos a \cos b + \sin a \sin b$$

và kết quả $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$, hãy chứng minh rằng :

a)
$$\sin x + \cos x = \sqrt{2} \cos \left(x - \frac{\pi}{4} \right)$$
; b) $\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$.

b)
$$\sin x - \cos x = \sqrt{2} \sin \left(x - \frac{\pi}{4} \right)$$
.

Trong trường hợp tổng quát, với $a^2 + b^2 \neq 0$, ta có

$$a\sin x + b\cos x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right).$$

Vì
$$\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2+b^2}}\right)^2 = 1$$
 nên có một góc α sao cho

$$\frac{a}{\sqrt{a^2 + b^2}} = \cos \alpha, \frac{b}{\sqrt{a^2 + b^2}} = \sin \alpha.$$

Khi đó $a\sin x + b\cos x = \sqrt{a^2 + b^2} (\sin x \cos \alpha + \cos x \sin \alpha)$ $= \sqrt{a^2 + b^2} \sin(x + \alpha).$

Vây ta có công thức sau

$$a\sin x + b\cos x = \sqrt{a^2 + b^2} \sin(x + \alpha), \qquad (1)$$
với $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ và $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$.

Phương trình dang $a \sin x + b \cos x = c$

$$a\sin x + b\cos x = c, (2)$$

với $a, b, c \in \mathbb{R}$; a, b không đồng thời bằng $0 (a^2 + b^2 \neq 0)$.

Nếu a = 0, $b \neq 0$ hoặc $a \neq 0$, b = 0, phương trình (2) có thể đưa ngay về phương trình lượng giác cơ bản. Nếu $a \neq 0$, $b \neq 0$, ta áp dụng công thức (1).

Ví dụ 9. Giải phương trình

$$\sin x + \sqrt{3}\cos x = 1.$$

Giải. Theo công thức (1) ta có

$$\sin x + \sqrt{3}\cos x = \sqrt{1 + (\sqrt{3})^2} \sin(x + \alpha) = 2\sin(x + \alpha),$$

trong đó
$$\cos \alpha = \frac{1}{2}$$
, $\sin \alpha = \frac{\sqrt{3}}{2}$. Từ đó lấy $\alpha = \frac{\pi}{3}$ thì ta có

$$\sin x + \sqrt{3}\cos x = 2\sin\left(x + \frac{\pi}{3}\right).$$

Khi đó

$$\sin x + \sqrt{3}\cos x = 1 \Leftrightarrow 2\sin\left(x + \frac{\pi}{3}\right) = 1 \Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = \frac{1}{2}$$

$$\Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = \sin\frac{\pi}{6}$$

$$\Leftrightarrow \begin{bmatrix} x + \frac{\pi}{3} = \frac{\pi}{6} + k2\pi \\ x + \frac{\pi}{3} = \pi - \frac{\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{6} + k2\pi \\ x = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}). \blacksquare$$

Bài tập

1. Giải phương trình

$$\sin^2 x - \sin x = 0.$$

2. Giải các phương trình sau:

a)
$$2\cos^2 x - 3\cos x + 1 = 0$$
;

b)
$$2\sin 2x + \sqrt{2}\sin 4x = 0$$
.

3. Giải các phương trình sau:

a)
$$\sin^2 \frac{x}{2} - 2\cos \frac{x}{2} + 2 = 0$$
;

b)
$$8\cos^2 x + 2\sin x - 7 = 0$$
;

c)
$$2\tan^2 x + 3\tan x + 1 = 0$$
;

d)
$$\tan x - 2\cot x + 1 = 0$$
.

Giải các phương trình sau:

a)
$$2\sin^2 x + \sin x \cos x - 3\cos^2 x = 0$$
;

b)
$$3\sin^2 x - 4\sin x \cos x + 5\cos^2 x = 2$$
;

c)
$$\sin^2 x + \sin 2x - 2\cos^2 x = \frac{1}{2}$$
;

d)
$$2\cos^2 x - 3\sqrt{3}\sin 2x - 4\sin^2 x = -4$$
.

Giải các phương trình sau:

a)
$$\cos x - \sqrt{3} \sin x = \sqrt{2}$$
;

b)
$$3\sin 3x - 4\cos 3x = 5$$
;

c)
$$2\sin x + 2\cos x - \sqrt{2} = 0$$
;

d)
$$5\cos 2x + 12\sin 2x - 13 = 0$$
.

Giải các phương trình sau:

a)
$$\tan(2x+1)\tan(3x-1) = 1$$
;

a)
$$\tan(2x+1)\tan(3x-1) = 1$$
; b) $\tan x + \tan\left(x + \frac{\pi}{4}\right) = 1$.

BÀI ĐỌC THÊM

BẤT PHƯƠNG TRÌNH LƯỢNG GIÁC

Ta chỉ xét các bất phương trình lượng giác cơ bản. Đó là những bất phương trình dang $\sin x > a$ (hoặc $\sin x \ge a$, $\sin x < a$, $\sin x \le a$), trong đó a là một số thực tuỳ ý. Ta cũng xét những bất phương trình tương tư đối với các hàm số $\cos x$, $\tan x$, $\cot x$.

I – BẤT PHƯƠNG TRÌNH $\sin x > a$

Nếu $a \ge 1$ thì bất phương trình $\sin x > a$ vô nghiêm, vì $\sin x \le 1$ với mọi x.

Nếu a < -1 thì moi số thực x đều là nghiêm của bất phương trình $\sin x > a$, vì $\sin x \ge -1$ với mọi x.

Ta xét trường hợp $-1 \le a < 1$ thông qua ví dụ sau.

Ví dụ 1. Giải bất phương trình

$$\sin x > \frac{\sqrt{2}}{2}.$$
 (1)

 ${\it Giải.}$ Vẽ đường tròn lượng giác tâm O. Trên trục sin lấy điểm K sao cho

$$\overline{OK} = \frac{\sqrt{2}}{2}$$
 (h.18).

Kể từ K đường thẳng vuông góc với trục sin, cắt đường tròn tại hai điểm M và M'.

Rõ ràng, nếu cung $\stackrel{\frown}{AD}$ có số đo thoả mãn bất phương trình (1) thì D phải nằm trên cung $\stackrel{\frown}{MBM}$ ' và ngược lại.

Hình 18

Ta có sđ
$$\stackrel{\textstyle \frown}{AM}=\frac{\pi}{4}+k2\pi,\,k\in\,\mathbb{Z}$$
 và

$$\widehat{\text{sd}} \ \widehat{AM'} = \frac{3\pi}{4} + k2\pi, \, k \in \mathbb{Z}.$$

Vậy nghiệm của bất phương trình $\sin x > \frac{\sqrt{2}}{2}$ là

$$\frac{\pi}{4} + k2\pi < x < \frac{3\pi}{4} + k2\pi, k \in \mathbb{Z}.$$

Chú ý. Điểm cuối của cung có số đo là nghiệm của bất phương trình $\sin x \le \frac{\sqrt{2}}{2}$

phải nằm trên cung M'B'M và ngược lại (h.18). Khi đó, nghiệm của bất phương trình là

$$\frac{3\pi}{4} + k2\pi \le x \le \left(\frac{\pi}{4} + 2\pi\right) + k2\pi$$

hay
$$\frac{3\pi}{4} + k2\pi \le x \le \frac{9\pi}{4} + k2\pi, (k \in \mathbb{Z}).$$

II – BẤT PHƯƠNG TRÌNH $\cos x \le a$

Nếu a < -1 thì bất phương trình $\cos x \le a$ vô nghiệm.

Nếu $a \ge 1$ thì mọi số thực x đều là nghiệm của bất phương trình $\cos x \le a$.

Ta xét trường hợp $-1 \le a < 1$ thông qua ví dụ sau đây.

Ví dụ 2. Giải bất phương trình

$$\cos x \le -\frac{\sqrt{2}}{2}.$$

Giải. Trên trục côsin lấy điểm H có hoành độ là $-\frac{\sqrt{2}}{2}$. Kẻ từ H đường thẳng vuông góc với trục côsin, cắt đường tròn lượng giác tại hai điểm M và M' (h.19).

Rõ ràng, nếu cung $\stackrel{\frown}{AE}$ có số đo thoả mãn bất phương trình (2) thì E phải nằm trên cung $\stackrel{\frown}{MA'M'}$ và ngược lại. Vậy nghiệm của bất phương trình đã cho là

$$\frac{3\pi}{4} + k2\pi \le x \le \frac{5\pi}{4} + k2\pi, k \in \mathbb{Z}. \quad \blacksquare$$

(2)

Hình 19

Chú ý. Bất phương trình $\cos x > -\frac{\sqrt{2}}{2}$ có nghiệm là

$$\frac{5\pi}{4} + k2\pi < x < \left(\frac{3\pi}{4} + 2\pi\right) + k2\pi$$

hay

$$\frac{5\pi}{4} + k2\pi < x < \frac{11\pi}{4} + k2\pi, \, k \in \mathbb{Z}.$$

III – BẤT PHƯƠNG TRÌNH $\tan x \ge a$

Với mọi số thực a, bất phương trình $\tan x \ge a$ luôn có nghiệm.

Ta xét ví dụ sau đây.

Ví du 3. Giải bất phương trình

$$\tan x \ge 1. \tag{3}$$

Giải. Lấy trên trục tang điểm I sao cho AI = 1. Nối OI cắt đường tròn lượng giác tại M và M'

(h.20). Nếu cung $\stackrel{\frown}{AE}$ có số đo thoả mãn bất phương trình (3) thì điểm E phải nằm trên một trong hai cung $\stackrel{\frown}{MB}$ và $\stackrel{\frown}{M'B'}$ và ngược lại.

Vậy nghiệm của bất phương trình (3) là

$$\frac{\pi}{4} + k\pi \le x < \frac{\pi}{2} + k\pi \ (k \in \mathbb{Z}). \ \blacksquare$$

Hình 20

Chú ý. Nghiệm của bất phương trình $\tan x < 1$ là

$$-\frac{\pi}{2} + k\pi < x < \frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$$

IV – BẤT PHƯƠNG TRÌNH $\cot x \le a$

Với mọi số thực a, bất phương trình $\cot x \le a$ đều có nghiệm.

Ta xét ví dụ sau đây.

Ví dụ 4. Giải bất phương trình

$$\cot x \le \frac{1}{\sqrt{3}}.\tag{4}$$

Giải. Lấy điểm J trên trục côtang sao cho $\overline{BJ} = \frac{1}{\sqrt{3}}$. Nối JO cắt đường tròn lượng giác tại hai điểm M và M' (h.21).

Hình 21

Nếu cung \widehat{AF} có số đo thoả mãn bất phương trình (4) thì điểm F phải nằm trên một trong hai cung \widehat{MA}' và $\widehat{M'A}$ và ngược lại.

Vậy nghiệm của bất phương trình (4) là

$$\frac{\pi}{3} + k\pi \le x < \pi + k\pi, k \in \mathbb{Z}. \quad \blacksquare$$

Chú ý. Nghiệm của bất phương trình $\cot x > \frac{1}{\sqrt{3}}$ là

$$k\pi < x < \frac{\pi}{3} + k\pi, k \in \mathbb{Z}.$$

Ôn tập chương l

- 1. a) Hàm số $y = \cos 3x$ có phải là hàm số chẵn không? Tại sao?
 - b) Hàm số $y = \tan\left(x + \frac{\pi}{5}\right)$ có phải là hàm số lẻ không ? Tại sao ?
- 2. Căn cứ vào đồ thị hàm số $y = \sin x$, tìm những giá trị của x trên đoạn $\left[-\frac{3\pi}{2}; 2\pi\right]$ để hàm số đó :
 - a) Nhận giá trị bằng −1;
- b) Nhận giá trị âm.

3.	Tìm	giá	trị	lớn	nhất	của	các	hàm	số	sau	:
----	-----	-----	-----	-----	------	-----	-----	-----	----	-----	---

a)
$$y = \sqrt{2(1 + \cos x)} + 1$$
;

b)
$$y = 3\sin\left(x - \frac{\pi}{6}\right) - 2$$
.

4. Giải các phương trình sau:

a)
$$\sin(x+1) = \frac{2}{3}$$
;

b)
$$\sin^2 2x = \frac{1}{2}$$
;

c)
$$\cot^2 \frac{x}{2} = \frac{1}{3}$$
;

d)
$$\tan\left(\frac{\pi}{12} + 12x\right) = -\sqrt{3}$$
.

Giải các phương trình sau: 5.

a)
$$2\cos^2 x - 3\cos x + 1 = 0$$
;

b)
$$25\sin^2 x + 15\sin 2x + 9\cos^2 x = 25$$
;

c)
$$2\sin x + \cos x = 1$$
;

d)
$$\sin x + 1.5 \cot x = 0$$
.

Bài tập trắc nghiệm

Chọn phương án đúng:

Phương trình $\cos x = \sin x$ có số nghiệm thuộc đoạn $[-\pi; \pi]$ là:

Phương trình $\frac{\cos 4x}{\cos 2x} = \tan 2x$ có số nghiệm thuộc khoảng $\left(0; \frac{\pi}{2}\right)$ là : 7.

Nghiệm dương nhỏ nhất của phương trình $\sin x + \sin 2x = \cos x + 2\cos^2 x$ là :

$$(A) \frac{\pi}{6}$$

(A)
$$\frac{\pi}{6}$$
; (B) $\frac{2\pi}{3}$; (C) $\frac{\pi}{4}$;

(C)
$$\frac{\pi}{4}$$

(D)
$$\frac{\pi}{3}$$
.

Nghiệm âm lớn nhất của phương trình $2 \tan^2 x + 5 \tan x + 3 = 0$ là:

$$(A) - \frac{\pi}{3}$$

(B)
$$-\frac{\pi}{4}$$

$$(C) -\frac{\pi}{6}$$

(A)
$$-\frac{\pi}{3}$$
; (B) $-\frac{\pi}{4}$; (C) $-\frac{\pi}{6}$; (D) $-\frac{5\pi}{6}$.

10. Phương trình $2 \tan x - 2 \cot x - 3 = 0$ có số nghiệm thuộc khoảng $\left(-\frac{\pi}{2}; \pi\right)$ là :

(B)
$$2$$
;

(D)
$$4$$
.

Tổ HƠP-XÁC SUẤT

Chương Tổ HỢP-XÁC SUẤT

Chương này cung cấp những kiến thức cơ bản nhất về Đại số tổ hợp và Lí thuyết xác suất.

Phần thứ nhất bao gồm *quy tắc cộng* và *quy tắc nhân*, các khái niệm, các công thức về *hoán vị, chỉnh hợp* và *tổ hợp*. Các bài toán này thường gặp trong Toán ứng dụng. Ngoài ra, công thức *khai triển nhị thức Niu-tơn* và các áp dụng của nó cũng được trình bày.

Phần tiếp theo cung cấp những khái niệm mở đầu và các công thức đơn giản nhất của *Lí thuyết xác suất,* một lĩnh vực quan trọng của Toán học, có nhiều ứng dụng thực tế.

QUY TẮC ĐẾM

Trong Đại số tổ hợp, có nhiều tập hợp hữu hạn mà ta không dễ dàng xác định được số phần tử của chúng. Để đếm số phần tử của các tập hợp hữu hạn đó, cũng như để xây dựng các công thức trong Đại số tổ hợp, người ta thường sử dụng quy tắc cộng và quy tắc nhân.

Số phần tử của tập hợp hữu hạn A được kí hiệu là n(A). Người ta cũng dùng kí hiệu |A| để chỉ số phần tử của tập A. Chẳng hạn :

- a) Nếu $A = \{a, b, c\}$ thì số phần tử của tập hợp A là 3, ta viết n(A) = 3 hay |A| = 3.
- b) Nếu $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\},$ $B = \{2, 4, 6, 8\} \text{ (tập hợp các số chẵn của } A),}$

thì $A \setminus B = \{1, 3, 5, 7, 9\}.$

- Số phần tử của tập hợp A là n(A) = 9.
- Số phần tử của tập hợp B là n(B) = 4.
- Số phần tử của tập hợp $A \setminus B$ là $n(A \setminus B) = 5$.

I – QUY TẮC CỘNG

Ví dụ 1. Trong một hộp chứa sáu quả cầu trắng được đánh số từ 1 đến 6 và ba quả cầu đen được đánh số 7, 8, 9 (h.22). Có bao nhiều cách chọn một trong các quả cầu ấy?

Hình 22

Giải. Vì các quả cầu trắng hoặc đen đều được đánh số phân biệt nên mỗi lần lấy ra một quả cầu bất kì là một lần chọn. Nếu chọn quả trắng thì có 6 cách chọn, còn nếu chon quả đen thì có 3 cách.

Do đó, số cách chọn một trong các quả cầu là 6 + 3 = 9 (cách).

QUY TẮC

Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m+n cách thực hiện.

Trong Ví dụ 1, kí hiệu A là tập hợp các quả cầu trắng, B là tập hợp các quả cầu đen. Nêu mối quan hệ giữa số cách chọn một quả cầu và số các phần tử của hai tập A,B.

Quy tắc cộng được phát biểu ở trên thực chất là quy tắc đếm số phần tử của hợp hai tập hợp hữu hạn không giao nhau, được phát biểu như sau :

Nếu A và B là các tập hợp hữu hạn không giao nhau, thì
$$n(A \cup B) = n(A) + n(B).$$

CHÚ Ý

Quy tắc cộng có thể mở rộng cho nhiều hành động.

Ví du 2. Có bao nhiều hình vuông trong Hình 23?

Giải. Rỗ ràng, chỉ có thể có các hình vuông cạnh 1 cm và 2 cm. Kí hiệu A là tập hợp các hình vuông có cạnh 1 cm và B là tập hợp các hình vuông có canh 2 cm.

Hình 23

Vì $A \cap B = \emptyset$, $A \cup B$ là tập hợp các hình vuông trong Hình 23 và n(A) = 10, n(B) = 4 nên $n(A \cup B) = n(A) + n(B) = 10 + 4 = 14$.

Vậy có tất cả 14 hình vuông. ■

II – OUY TẮC NHÂN

Ví dụ 3. Bạn Hoàng có hai áo màu khác nhau và ba quần kiểu khác nhau. Hỏi Hoàng có bao nhiều cách chọn một bộ quần áo ?

Giải. Hai áo được ghi chữ a và b, ba quần được đánh số 1, 2, 3.

Để chọn một bộ quần áo, ta phải thực hiện liên tiếp hai hành đông:

 $Hành \ d\hat{\rho}ng \ 1$ – chọn áo. Có hai cách chọn (chọn a hoặc b). $Hình \ 24$

Hành động 2 – chọn quần. Ứng với mỗi cách chọn áo có ba cách chọn quần (chọn 1, hoặc 2, hoặc 3).

Kết quả ta có các bộ quần áo như sau : a1, a2, a3, b1, b2, b3 (h.24).

Vậy số cách chọn một bộ quần áo là 2 . 3 = 6 (cách). ■

Tổng quát, ta có quy tắc nhân sau đây.

QUY TẮC

Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.

Từ thành phố A đến thành phố B có ba con đường, từ B đến C có bốn con đường (h.25). Hỏi có bao nhiều cách đi từ A đến C, qua B?

Hình 25

CHÚ Ý

Quy tắc nhân có thể mở rộng cho nhiều hành động liên tiếp.

Ví dụ 4. Có bao nhiều số điện thoại gồm:

- a) Sáu chữ số bất kì?
- b) Sáu chữ số lẻ?

Giải

a) Vì mỗi số điện thoại là một dãy gồm sáu chữ số nên để lập một số điện thoại, ta cần thực hiện sáu hành động lựa chọn liên tiếp các chữ số đó từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Có 10 cách chọn chữ số đầu tiên.

Tương tự, có 10 cách chọn chữ số thứ hai;

...

Có 10 cách chọn chữ số thứ sáu.

Vậy theo quy tắc nhân, số các số điện thoại gồm sáu chữ số là

$$\underbrace{10.10. \dots .10}_{6 \text{ thừa số}} = 10^6 = 1 000 000 \text{ (số)}.$$

b) Tương tư, số các số điện thoại gồm sáu chữ số lẻ là 5⁶ = 15 625 (số). ■

Bài tập

- 1. Từ các chữ số 1, 2, 3, 4 có thể lập được bao nhiều số tự nhiên gồm:
 - a) Môt chữ số?
- b) Hai chữ số?
- c) Hai chữ số khác nhau?
- 2. Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiều số tự nhiên bé hơn 100?
- 3. Các thành phố A, B, C, D được nối với nhau bởi các con đường như Hình 26. Hỏi:
 - a) Có bao nhiều cách đi từ A đến D mà qua B và C chỉ một lần?
 - b) Có bao nhiều cách đi từ A đến D rồi quay lại A?

Hình 26

4. Có ba kiểu mặt đồng hồ đeo tay (vuông, tròn, elip) và bốn kiểu dây (kim loại, da, vải và nhựa). Hỏi có bao nhiêu cách chọn một chiếc đồng hồ gồm một mặt và một dây?

HOÁN VỊ – CHỈNH HỢP – TỔ HỢP

I – HOÁN VỊ

1. Định nghĩa

Ví dụ 1. Trong một trận bóng đá, sau hai hiệp phụ hai đội vẫn hoà nên phải thực hiện đá luân lưu 11 m. Một đội đã chọn được năm cầu thủ để thực hiện đá năm quả 11 m. Hãy nêu ba cách sắp xếp đá phạt.

Giải. Để xác định, ta giả thiết tên của năm cầu thủ được chọn là A, B, C, D, E. Để tổ chức đá luân lưu, huấn luyện viên cần phân công người đá thứ nhất, thứ hai, ... và kết quả phân công là một danh sách có thứ tự gồm tên của năm cầu thủ. Chẳng hạn, nếu viết DEACB nghĩa là D đá quả thứ nhất, E đá quả thứ hai, ... và B đá quả cuối cùng.

Có thể nêu ba cách tổ chức đá luân lưu như sau:

Cách 1 : ABCDE.

Cách 2: ACBDE.

Cách 3 : CABED. ■

Mỗi kết quả của việc sắp thứ tự tên của năm cầu thủ đã chọn được gọi là một *hoán vị* tên của năm cầu thủ.

ĐINH NGHĨA

Cho tập hợp A gồm n phần tử $(n \ge 1)$.

Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vi của n phần tử đó.

lacksquare **1** Hãy liệt kê tất cả các số gồm ba chữ số khác nhau từ các chữ số 1, 2, 3.

NHẬN XÉT

Hai hoán vị của n phần tử chỉ khác nhau ở thứ tự sắp xếp.

Chẳng hạn, hai hoán vị abc và acb của ba phần tử a, b, c là khác nhau.

2. Số các hoán vị

Ví dụ 2. Có bao nhiều cách sắp xếp bốn bạn An, Bình, Chi, Dung ngồi vào một bàn học gồm bốn chỗ?

Giải. Để đơn giản, ta viết *A*, *B*, *C*, *D* thay cho tên của bốn bạn và viết *ACBD* để mô tả cách xếp chỗ như Hình 27.

Hình 27

a) Cách thứ nhất : Liệt kê.

Các cách sắp xếp chỗ ngồi được liệt kê như sau:

ABCD, ABDC, ACBD, ACDB, ADBC, ADCB,

BACD, BADC, BCAD, BCDA, BDAC, BDCA,

CABD, CADB, CBAD, CBDA, CDAB, CDBA,

DACB, DABC, DBAC, DBCA, DCAB, DCBA.

Như vậy có 24 cách, mỗi cách cho ta một hoán vị tên của bốn bạn và ngược lại.

- b) Cách thứ hai : Dùng quy tắc nhân.
- Có bốn cách chon một trong bốn ban để xếp vào chỗ thứ nhất.
- Sau khi đã chọn một bạn, còn ba bạn nữa. Có ba cách chọn một bạn xếp vào chỗ thứ hai.
- Sau khi đã chọn hai bạn rồi còn hai bạn nữa. Có hai cách chọn một bạn ngồi vào chỗ thứ ba.
- Bạn còn lại được xếp vào chỗ thứ tư.

Theo quy tắc nhân, ta có số cách xếp chỗ ngồi là

$$4.3.2.1 = 24$$
 (cách).

Kí hiệu P_n là số các hoán vị của n phần tử. Ta có định lí sau đây.

ĐỊNH LÍ

$$P_n = n(n-1) \dots 2.1$$
.

Chứng minh. Để lập được mọi hoán vị của n phần tử, ta tiến hành như sau : Chon một phần tử cho vi trí thứ nhất. Có n cách.

Sau khi chọn một phần tử cho vị trí thứ nhất, có n-1 cách chọn một phần tử cho vị trí thứ hai.

...

Sau khi đã chọn n-2 phần tử cho n-2 vị trí đầu tiên, có hai cách chọn một trong hai phần tử còn lại để xếp vào vị trí thứ n-1.

Phần tử còn lại sau cùng được xếp vào vị trí thứ n.

Như vậy, theo quy tắc nhân, có n.(n-1) ... 2.1 kết quả sắp xếp thứ tự n phần tử đã cho.

Vậy

$$P_n = n (n - 1) \dots 2.1.$$

CHÚ Ý

Kí hiệu n(n-1) ... 2.1 là n! (đọc là n giai thừa), ta có

$$P_n = n!$$

₹ Trong giờ học môn Giáo dục quốc phòng, một tiểu đội học sinh gồm mười người được xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp ?

II – CHỈNH HỢP

1. Định nghĩa

Ví dụ 3. Một nhóm học tập có năm bạn *A*, *B*, *C*, *D*, *E*. Hãy kể ra vài cách phân công ba bạn làm trực nhật : một bạn quét nhà, một bạn lau bảng và một bạn sắp bàn ghế.

Giải. Ta có bảng phân công sau đây.

Quét nhà	Lau bảng	Sắp bàn ghế
A	C	D
A	D	C
C	В	E

Mỗi cách phân công nêu trong bảng trên cho ta một *chỉnh hợp* chập 3 của 5. ■ Môt cách tổng quát, ta có đinh nghĩa sau đây.

ĐỊNH NGHĨA

Cho tập hợp A gồm n phần tử $(n \ge 1)$.

Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một $chỉnh\ hợp\ chập\ k\ của\ n\ phần\ tử$ đã cho.

√ Trên mặt phẳng, cho bốn điểm phân biệt *A*, *B*, *C, D*. Liệt kê tất cả các vectơ khác vectơ – không mà điểm đầu và điểm cuối của chúng thuộc tập điểm đã cho.

2. Số các chỉnh hợp

Trở lại Ví dụ 3, ngoài cách tính số cách phân công trực nhật bằng phương pháp liệt kê, ta còn có một cách khác là sử dụng quy tắc nhân. Để tạo nên mọi cách phân công, ta tiến hành như sau :

- Chọn một bạn từ năm bạn để giao việc quét nhà. Có 5 cách.
- Khi đã chọn một bạn quét nhà rồi, chọn tiếp một bạn từ bốn bạn còn lại để giao việc lau bảng. Có 4 cách.
- Khi đã có các bạn quét nhà và lau bảng rồi, chọn một bạn từ ba bạn còn lại để giao việc sắp bàn ghế. Có 3 cách.

Theo quy tắc nhân, số cách phân công trực nhật là

$$5.4.3 = 60$$
 (cách).

Nói cách khác, ta có 60 chỉnh hợp chập 3 của 5 bạn. ■

Kí hiệu A_n^k là số các chỉnh hợp chập k của n phần tử $(1 \le k \le n)$. Ta có định lí sau đây.

ĐINH LÍ

$$A_n^k = n(n-1) \dots (n-k+1).$$

Chứng minh. Để tạo nên mọi chỉnh hợp chập k của n phần tử, ta tiến hành như sau :

Chọn một trong n phần tử đã cho xếp vào vị trí thứ nhất. Có n cách.

Khi đã có phần tử thứ nhất, chọn tiếp một trong n-1 phần tử còn lại xếp vào vị trí thứ hai. Có n-1 cách.

• • •

Sau khi đã chọn k-1 phần tử rồi, chọn một trong n-(k-1) phần tử còn lại xếp vào vị trí thứ k. Có n-k+1 cách.

Từ đó theo quy tắc nhân, ta được

$$A_n^k = n(n-1)...(n-k+1)$$
.

 $\emph{V\'i}$ dụ 4. Có bao nhiều số tự nhiên gồm năm chữ số khác nhau được lập từ các chữ số 1, 2, ..., 9?

Giải. Mỗi số tự nhiên có năm chữ số khác nhau được lập bằng cách lấy năm chữ số khác nhau từ chín chữ số đã cho và xếp chúng theo một thứ tự

nhất định. Mỗi số như vậy được coi là một chỉnh hợp chập 5 của 9. Vậy số các số đó là

$$A_9^5 = 9.8.7.6.5 = 15120.$$

CHÚ Ý

a) Với quy ước 0! = 1, ta có

$$A_n^k = \frac{n!}{(n-k)!}, \quad 1 \le k \le n.$$

b) Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy

$$P_n = A_n^n.$$

III – TỔ HỢP

1. Định nghĩa

Ví $d\mu$ 5. Trên mặt phẳng, cho bốn điểm phân biệt A, B, C, D sao cho không có ba điểm nào thẳng hàng. Hỏi có thể tạo nên bao nhiều tam giác mà các đỉnh thuộc tập bốn điểm đã cho?

Giải. Mỗi tam giác ứng với một tập con gồm ba điểm từ tập đã cho. Vậy ta có bốn tam giác ABC, ABD, ACD, BCD. ■

Một cách tổng quát, ta có định nghĩa sau đây.

ĐỊNH NGHĨA

Giả sử tập A có n phần tử ($n \ge 1$). Mỗi tập con gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho.

CHÚ Ý

Số k trong định nghĩa cần thoả mãn điều kiện $1 \le k \le n$. Tuy vậy, tập hợp không có phần tử nào là tập rỗng nên ta quy ước gọi tổ hợp chập 0 của n phần tử là tập rỗng.

Cho tập $A = \{1, 2, 3, 4, 5\}$. Hãy liệt kê các tổ hợp chập 3, chập 4 của 5 phần tử của A.

2. Số các tổ hợp

Kí hiệu C_n^k là số các tổ hợp chập k của n phần tử $(0 \le k \le n)$.

Ta có định lí sau đây.

ĐỊNH LÍ

$$C_n^k = \frac{n!}{k!(n-k)!}.$$

Chứng minh. Với k = 0, công thức hiển nhiên đúng.

Với $k \ge 1$, ta thấy một chỉnh hợp chập k của n phần tử được thành lập như sau :

- Chọn một tập con k phần tử của tập hợp gồm n phần tử. Có \mathbf{C}_n^k cách chọn.
- Sắp thứ tự k phần tử chọn được. Có k! cách.

Vậy theo quy tắc nhân, ta có số các chỉnh hợp chập k của n phần tử là

$$A_n^k = C_n^k . k!$$

Từ đó
$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$
.

Ví dụ 6. Một tổ có 10 người gồm 6 nam và 4 nữ. Cần lập một đoàn đại biểu gồm 5 người. Hỏi :

- a) Có tất cả bao nhiêu cách lập?
- b) Có bao nhiều cách lập đoàn đại biểu, trong đó có ba nam, hai nữ?

Giải

a) Mỗi đoàn được lập là một tổ hợp chập 5 của 10 (người). Vì vậy, số đoàn đai biểu có thể có là

$$C_{10}^5 = \frac{10!}{5!5!} = 252.$$

b) Chọn 3 người từ 6 nam. Có C_6^3 cách chọn.

Chọn 2 người từ 4 nữ. Có C_4^2 cách chọn.

Theo quy tắc nhân, có tất cả $C_6^3.C_4^2=20.6=120$ cách lập đoàn đại biểu gồm ba nam và hai nữ. \blacksquare

Có 16 đội bóng đá tham gia thi đấu. Hỏi cần phải tổ chức bao nhiêu trận đấu sao cho hai đội bất kì đều gặp nhau đúng một lần ?

3. Tính chất của các số \mathbf{C}_n^k

Từ định lí về công thức tính số các tổ hợp chập k của n phần tử, ta có các tính chất sau đây.

a) Tính chất 1

$$\boxed{\mathbf{C}_n^k = \mathbf{C}_n^{n-k}} \qquad (0 \le k \le n).$$

Chẳng hạn, $C_7^3 = C_7^4 = 35$.

b) Tính chất 2 (công thức Pa-xcan)

$$\boxed{\mathbf{C}_{n-1}^{k-1} + \mathbf{C}_{n-1}^{k} = \mathbf{C}_{n}^{k}} \quad (1 \le k < n).$$

Chẳng hạn, $C_7^3 + C_7^4 = C_8^4 = 70$.

Ví dụ 7. Chứng minh rằng, với $2 \le k \le n - 2$, ta có

$$C_n^k = C_{n-2}^{k-2} + 2C_{n-2}^{k-1} + C_{n-2}^k.$$

Giải. Theo Tính chất 2, ta có

$$C_{n-2}^{k-2} + C_{n-2}^{k-1} = C_{n-1}^{k-1}, (1)$$

$$C_{n-2}^{k-1} + C_{n-2}^{k} = C_{n-1}^{k}. (2)$$

Cộng các vế tương ứng của (1) và (2) và theo Tính chất 2, ta có

$$C_{n-2}^{k-2} + 2C_{n-2}^{k-1} + C_{n-2}^{k} = C_{n-1}^{k-1} + C_{n-1}^{k} = C_{n}^{k}$$
.

BÀI ĐỌC THÊM

Có thể sử dụng máy tính bỏ túi để tính số các hoán vị n! và số các tổ hợp C_n^k .

1. Tính số các hoán vị bằng máy tính bỏ túi

Dùng máy tính bỏ túi $CASIO\ fx - 500MS\ dể\ tính\ n!$, ta ấn các phím theo trình tự sau :

Ấn số n, ấn phím $\stackrel{\text{SHIP}}{}$, ấn phím $\stackrel{\text{SHIP}}{}$, ấn phím $\stackrel{\text{SHIP}}{}$. Khi đó, kết quả sẽ hiển thị ở dòng thứ hai.

Ví du 1. Tính 10!.

Ta bấm liên tiếp các phím sau:

Dòng thứ hai hiện ra 3,628,800.

 $V_{ay} 10! = 3628800.$

2. Tính số các tổ hợp bằng máy tính bỏ túi

Dùng máy tính bỏ túi CASIO fx - 500 MS để tính C_n^k , ta ấn các phím theo trình tự sau :

Ấn số n, ấn phím ncr, ấn số k, ấn phím n. Kết quả hiển thị ở dòng thứ hai.

 $\emph{Vi dụ 2.}$ Tính C_{12}^{5} .

Ta ấn liên tiếp các phím sau:

Dòng thứ hai hiện ra 792.

Vậy
$$C_{12}^5 = 792$$
.

Bài tập

- 1. Từ các chữ số 1, 2, 3, 4, 5, 6, lập các số tự nhiên gồm sáu chữ số khác nhau. Hỏi:
 - a) Có tất cả bao nhiêu số?
 - b) Có bao nhiều số chắn, bao nhiều số lẻ?
 - c) Có bao nhiêu số bé hơn 432 000 ?
- 2. Có bao nhiêu cách sắp xếp chỗ ngồi cho mười người khách vào mười ghế kê thành một dãy ?
- 3. Giả sử có bảy bông hoa màu khác nhau và ba lọ khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?

- **4.** Có bao nhiều cách mắc nối tiếp 4 bóng đèn được chọn từ 6 bóng đèn khác nhau?
- 5. Có bao nhiều cách cắm 3 bông hoa vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông) nếu:
 - a) Các bông hoa khác nhau?
 - b) Các bông hoa như nhau?
- **6.** Trong mặt phẳng, cho sáu điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiều tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
- 7. Trong mặt phẳng có bao nhiều hình chữ nhật được tạo thành từ bốn đường thẳng song song với nhau và năm đường thẳng vuông góc với bốn đường thẳng song song đó?

NHỊ THỨC NIU-TƠN

I – CÔNG THỨC NHỊ THỨC NIU-TƠN

Ta có:

$$(a+b)^{2} = a^{2} + 2ab + b^{2} = C_{2}^{0}a^{2} + C_{2}^{1}a^{1}b^{1} + C_{2}^{2}b^{2},$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = C_{3}^{0}a^{3} + C_{3}^{1}a^{2}b^{1} + C_{3}^{2}a^{1}b^{2} + C_{3}^{3}b^{3}.$$

Khai triển biểu thức $(a+b)^4$ thành tổng các đơn thức.

Tổng quát, ta thừa nhận công thức khai triển biểu thức $(a+b)^n$ thành tổng các đơn thức như sau :

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^k a^{n-k} b^k + \dots + C_n^{n-1} a b^{n-1} + C_n^n b^n.$$
(1)

Công thức (1) được gọi là công thức nhị thức Niu-tơn.

HÊ QUẢ

Với
$$a = b = 1$$
, ta có $2^n = C_n^0 + C_n^1 + ... + C_n^n$.
Với $a = 1$; $b = -1$, ta có
$$0 = C_n^0 - C_n^1 + ... + (-1)^k C_n^k + ... + (-1)^n C_n^n$$
.

CHÚ Ý

Trong biểu thức ở vế phải của công thức (1):

- a) Số các hạng tử là n + 1.
- b) Các hạng tử có số mũ của a giảm dần từ n đến 0, số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n.
- c) Các hệ số của mỗi hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

Ví dụ 1. Khai triển biểu thức $(x + y)^6$.

Giải. Theo công thức nhị thức Niu-tơn ta có

$$(x+y)^6 = C_6^0 x^6 + C_6^1 x^5 y + C_6^2 x^4 y^2 + C_6^3 x^3 y^3 + C_6^4 x^2 y^4 + C_6^5 x y^5 + C_6^6 y^6$$

= $x^6 + 6x^5 y + 15x^4 y^2 + 20x^3 y^3 + 15x^2 y^4 + 6xy^5 + y^6$.

Ví dụ 2. Khai triển biểu thức $(2x-3)^4$.

Giải. Theo công thức nhị thức Niu-tơn ta có

$$(2x-3)^4 = C_4^0 (2x)^4 + C_4^1 (2x)^3 (-3) + C_4^2 (2x)^2 (-3)^2 + C_4^3 2x (-3)^3 + C_4^4 (-3)^4$$
$$= 16x^4 - 96x^3 + 216x^2 - 216x + 81. \blacksquare$$

 $Vi d\mu 3$. Chứng tỏ rằng với $n \ge 4$, ta có

$$C_n^0 + C_n^2 + C_n^4 + \dots = C_n^1 + C_n^3 + \dots = 2^{n-1}$$

Giải. Kí hiệu $A = C_n^0 + C_n^2 + ...$

$$B = C_n^1 + C_n^3 + ...$$

Theo Hệ quả ta có $2^n = A + B$, 0 = A - B.

Từ đó suy ra $A = B = 2^{n-1}$. ■

II – TAM GIÁC PA-XCAN

Trong công thức nhị thức Niu-tơn ở mục I, cho n = 0, 1, ... và xếp các hệ số thành dòng, ta nhận được tam giác sau đây, gọi là tam giác Pa-xcan.

NHẬN XÉT

Từ công thức $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$ suy ra cách tính các số ở mỗi dòng dựa vào các số ở dòng trước nó. Chẳng hạn

$$C_5^2 = C_4^1 + C_4^2 = 4 + 6 = 10.$$

Dùng tam giác Pa-xcan, chứng tỏ rằng :

a)
$$1 + 2 + 3 + 4 = C_5^2$$
;

b)
$$1 + 2 + ... + 7 = C_8^2$$
.

Bài tập

Viết khai triển theo công thức nhi thức Niu-ton:

a)
$$(a + 2b)^5$$

a)
$$(a + 2b)^5$$
; b) $(a - \sqrt{2})^6$;

c)
$$\left(x-\frac{1}{x}\right)^{13}$$
.

- 2. Tìm hệ số của x^3 trong khai triển của biểu thức : $\left(x + \frac{2}{x^2}\right)^6$.
- 3. Biết hệ số của x^2 trong khai triển của $(1-3x)^n$ là 90. Tìm n.
- **4.** Tìm số hạng không chứa x trong khai triển của $\left(x^3 + \frac{1}{x}\right)^8$.
- 5. Từ khai triển biểu thức $(3x 4)^{17}$ thành đa thức, hãy tính tổng các hệ số của đa thức nhận được.
- **6.** Chứng minh rằng:
 - a) $11^{10} 1$ chia hết cho 100;
 - b) $101^{100} 1$ chia hết cho 10 000;
 - c) $\sqrt{10} \left[(1+\sqrt{10})^{100} (1-\sqrt{10})^{100} \right]$ là một số nguyên.

BAN CÓ BIẾT ?

PA-XCAN (PASCAL)

Pa-xcan là nhà toán học, vật lí học và triết học người Pháp. Pa-xcan lúc nhỏ là một cậu bé thần đồng. Cha cậu nhận thấy điều này. Không muốn sớm làm mệt óc con, ông cấm cậu bé Pa-xcan học toán. Song điều này càng kích thích tính tò mò của cậu. Năm 12 tuổi, một hôm cậu hỏi cha "Hình học là gì ?". Cha cậu giải thích sơ qua cho cậu hiểu. Pa-xcan rất lấy làm thích thú. Cậu liền bước theo con đường đúng là thiên hướng của mình. Không cần sách vở, một mình cậu tự chứng minh được rằng tổng các góc trong một tam giác bằng hai góc vuông. Ở tuổi 16, Pa-xcan viết công trình đầu tiên của mình về các thiết diện cônic.

Blaise Pascal (1623 – 1662)

Pa-xcan viết hàng loạt công trình về các chuỗi số và các hệ số nhị thức. Pa-xcan đã đưa ra bảng các hệ số của sự khai triển của $\left(a+b\right)^n$ dưới dạng một tam giác, ngày nay gọi là "Tam giác Pa-xcan". Pa-xcan đã tìm ra các hệ số nhị thức bằng phương pháp quy nạp toán học, đó là một trong những phát minh quan trọng của ông. Điều mới mẻ ở đây là Pa-xcan phát hiện ra rằng các hệ số nhị thức chính là

số các tổ hợp chập k của n phần tử và Pa-xcan đã dùng chúng để giải những bài toán của lí thuyết xác suất.

Một cống hiến lớn nữa của Pa-xcan là việc khởi thảo phép tính các đại lượng vô cùng bé.

Về mặt kĩ thuật, ngay từ năm 1642, lúc mới 19 tuổi, Pa-xcan đã sáng chế ra một máy tính để thực hiện các phép tính số học. Nguyên tắc của máy này đã là xuất phát điểm cho việc chế tạo máy tính điện tử về sau này.

Để ghi nhớ công lao của người đầu tiên đã sáng chế ra máy tính, các nhà tin học đã đặt tên cho một ngôn ngữ máy tính rất phổ biến là ngôn ngữ Pa-xcan.

Về vật lí, Pa-xcan đã nghiên cứu áp suất của khí quyển và các vấn đề thuỷ tĩnh học.

Tên của Pa-xcan đã được đặt cho một miệng núi lửa trên Mặt Trăng.

PHÉP THỬ VÀ BIẾN CỐ

I – PHÉP THỬ, KHÔNG GIAN MẪU

1. Phép thử

Một trong những khái niệm cơ bản của lí thuyết xác suất là phép thử. Một thí nghiệm, một phép đo hay một sự quan sát hiện tượng nào đó, ... được hiểu là *phép thử*.

Chẳng hạn, gieo một đồng tiền kim loại (gọi tắt là đồng tiền), rút một quân bài từ cỗ bài tú lơ khơ (cỗ bài 52 lá) hay bắn một viên đạn vào bia, ... là những ví dụ về phép thử.

Khi gieo một đồng tiền, ta không thể đoán trước được mặt ghi số (mặt ngửa, viết tắt là N) hay mặt kia (mặt sấp, viết tắt là S) sẽ xuất hiện (quay lên trên). Đó là ví dụ về *phép thử ngẫu nhiên*.

Một cách tổng quát:

Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử đó.

Để đơn giản, từ nay phép thử ngẫu nhiên được gọi tắt là phép thử. Trong Toán học phổ thông, ta chỉ xét các phép thử có một số hữu hạn kết quả.

2. Không gian mẫu

Hãy liệt kê các kết quả có thể của phép thử gieo một con súc sắc.

Tập hợp các kết quả có thể xảy ra của một phép thử được gọi là **không gian mẫu** của phép thử và kí hiệu là Ω (đọc là ô-mê-ga).

Ví $d\mu$ 1. Gieo một đồng tiền (h.28). Đó là phép thử với không gian mẫu $\Omega = \{S, N\}$. Ở đây, S kí hiệu cho kết quả "Mặt sấp xuất hiện" và N kí hiệu cho kết quả "Mặt ngửa xuất hiện".

Vi $d\mu$ 2. Nếu phép thử là gieo một đồng tiền hai lần thì không gian mẫu gồm bốn phần tử: $\Omega = \{SS, SN, NS, NN\}$,

Hai mặt đồng tiền Hình 28

trong đó, chẳng hạn, SN là kết quả "Lần đầu đồng tiền xuất hiện mặt sấp, lần thứ hai đồng tiền xuất hiện mặt ngửa", ...

Ví dụ 3. Nếu phép thử là *gieo một con súc sắc hai lần*, thì không gian mẫu gồm 36 phần tử: $\Omega = \{(i, j) \mid i, j = 1, 2, 3, 4, 5, 6\}$, ở đó (i, j) là kết quả "Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm" (h. 29).

Hình 29

II – BIẾN CỐ

Ví dụ 4. Gieo một đồng tiền hai lần. Đây là phép thử với không gian mẫu $\Omega = \{SS, SN, NS, NN\}.$

Ta thấy sự kiện A: "Kết quả của hai lần gieo là như nhau" có thể xảy ra khi phép thử được tiến hành. Nó xảy ra khi và chỉ khi một trong hai kết quả SS, NN xuất hiện. Như vậy, sự kiện A tương ứng với một và chỉ một tập con $\{SS, NN\}$ của không gian mẫu. Chính vì lẽ đó, ta đồng nhất chúng với nhau và viết $A = \{SS, NN\}$. Ta gọi A là một biến có.

Tương tự, biến cố B: "Có ít nhất một lần xuất hiện mặt ngửa" được viết là

$$B = \{SN, NS, NN\}.$$

Ngược lại, tập con $C = \{SS, SN\}$ là biến cố có thể phát biểu dưới dạng mệnh đề: "Mặt sấp xuất hiện trong lần gieo đầu tiên".

Các biến cố A, B và C ở trên đều gắn liền với phép thử gieo một đồng tiền hai lần nên ta nói chúng liên quan đến phép thử đã cho.

– Một cách tổng quát, mỗi biến cố *liên quan* đến một phép thử được mô tả bởi một tập con của không gian mẫu (h.30). Từ đó ta có đinh nghĩa sau đây.

Biến cố là một tập con của không gian mẫu.

Như vậy, một biến cố liên quan đến phép thử là một tập hợp bao gồm các kết quả nào đó của phép thử.

– Cần chú ý rằng biến cố đôi khi được cho dưới dạng một mệnh đề xác định tập hợp như đã thấy trong Ví dụ 4, hoặc trong phép thử *gieo con súc sắc*, biến cố A: "Con súc sắc xuất hiện mặt chẵn chấm" được cho dưới dạng mệnh đề xác định tập con $A = \{2, 4, 6\}$ của không gian mẫu $\Omega = \{1, 2, ..., 6\}$.

Người ta thường kí hiệu các biến cố bằng các chữ in hoa A, B, C, ...

- Từ nay về sau, khi nói *cho các biến cố* A, B, ... mà không nói gì thêm thì ta hiểu chúng cùng liên quan đến một phép thử.

Tập \emptyset được gọi là biến cố không thể (gọi tắt là biến cố không). Còn tập Ω được gọi là biến cố chắc chắn.

Chẳng hạn, khi gieo một con súc sắc, biến cố: "Con súc sắc xuất hiện mặt 7 chấm" là biến cố không, còn biến cố: "Con súc sắc xuất hiện mặt có số chấm không vượt quá 6" là biến cố chắc chắn.

- Ta nói rằng biển cổ A xảy ra trong một phép thử nào đó khi và chỉ khi kết quả của phép thử đó là một phần tử của A (hay thuận lợi cho A).

Như vậy, biến cố không thể (tức là \emptyset) không bao giờ xảy ra, trong khi đó, biến cố chắc chắn Ω luôn luôn xảy ra.

Trong Ví dụ 4, nếu xuất hiện kết quả SS thì A xảy ra còn B không xảy ra. Trong khi đó, nếu xuất hiện kết quả SN thì B xảy ra còn A không xảy ra.

III – PHÉP TOÁN TRÊN CÁC BIẾN CỐ

- Giả sử A là biến cố liên quan đến một phép thử.

Tập $\Omega \setminus A$ được gọi là **biến cố đối** của biến cố A, kí hiệu là \overline{A} (h.31).

Do $\omega \in \overline{A} \iff \omega \notin A$, nên \overline{A} xảy ra khi và chỉ khi A không xảy ra.

Chẳng hạn, nếu phép thử là $gieo\ một\ con\ súc\ sắc\ thì$ biến cố B: "Xuất hiện mặt chẳn chấm" là biến cố đối của biến cố A: "Xuất hiện mặt lẻ chấm", nghĩa là $B=\overline{A}$.

- Giả sử A và B là hai biến cố liên quan đến một phép thử. Ta có định nghĩa sau :

Tập $A \cup B$ được gọi là h o p của các biến cố A và B.

Tập $A \cap B$ được gọi là **giao** của các biến cố A và B.

Nếu $A \cap B = \emptyset$ thì ta nói A và B xung khắc.

Theo định nghĩa, $A \cup B$ xảy ra khi và chỉ khi A xảy ra hoặc B xảy ra ; $A \cap B$ xảy ra khi và chỉ khi A và B đồng thời xảy ra. Biến cố $A \cap B$ còn được viết là A.B.

A và B xung khắc khi và chỉ khi chúng không khi nào cùng xảy ra (h. 32).

Ta có bảng sau:

Kí hiệu	Ngôn ngữ biến cố				
$A \subset \Omega$	A là biến cố				
$A = \emptyset$	A là biến cố không				
$A = \Omega$	A là biến cố chắc chắn				
$C = A \cup B$	C là biến cố : " A hoặc B "				
$C = A \cap B$	C là biến cố : "A và B"				
$A \cap B = \emptyset$	A và B xung khắc				
$B = \overline{A}$	A và B đối nhau.				

Hình 32

Ví dụ 5. Xét phép thử gieo một đồng tiền hai lần với các biến cố:

A: "Kết quả của hai lần gieo là như nhau";

B: "Có ít nhất một lần xuất hiện mặt sấp";

C: "Lần thứ hai mới xuất hiện mặt sấp";

D: "Lần đầu xuất hiện mặt sấp".

Ta có:

$$A = \{SS, NN\}; B = \{SN, NS, SS\}; C = \{NS\}; D = \{SS, SN\}.$$

Từ đó,

$$C \cup D = \{SS, SN, NS\} = B$$
;

 $A \cap D = \{SS\}$ là biến cố "Cả hai lần đều xuất hiện mặt sấp".

Bài tâp

- 1. Gieo một đồng tiền ba lần.
 - a) Mô tả không gian mẫu.
 - b) Xác định các biến cố:

A: "Lần đầu xuất hiện mặt sấp";

B: "Mặt sấp xảy ra đúng một lần";

C: "Mặt ngửa xảy ra ít nhất một lần".

- 2. Gieo một con súc sắc hai lần.
 - a) Mô tả không gian mẫu.
 - b) Phát biểu các biến cố sau dưới dạng mệnh đề:

$$A = \{(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)\};$$

$$B = \{(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)\};$$

$$C = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}.$$

- 3. Một hộp chứa bốn cái thẻ được đánh số 1, 2, 3, 4. Lấy ngẫu nhiên hai thẻ.
 - a) Mô tả không gian mẫu.
 - b) Xác định các biến cố sau:

A: "Tổng các số trên hai thẻ là số chẩn";

B: "Tích các số trên hai thẻ là số chẵn".

- **4.** Hai xạ thủ cùng bắn vào bia. Kí hiệu A_k là biến cố : "Người thứ k bắn trúng", k=1,2.
 - a) Hãy biểu diễn các biến cố sau qua các biến cố A_1, A_2 :

A: "Không ai bắn trúng";

B: "Cả hai đều bắn trúng";

C: "Có đúng một người bắn trúng";

D: "Có ít nhất một người bắn trúng".

- b) Chứng tỏ rằng $A = \overline{D}$; B và C xung khắc.
- 5. Từ một hộp chứa 10 cái thẻ, trong đó các thẻ đánh số 1, 2, 3, 4, 5 màu đỏ, thẻ đánh số 6 màu xanh và các thẻ đánh số 7, 8, 9, 10 màu trắng. Lấy ngẫu nhiên một thẻ.
 - a) Mô tả không gian mẫu.
 - b) Kí hiệu A, B, C là các biến cố sau:

A: "Lấy được thẻ màu đỏ";

B: "Lấy được thẻ màu trắng";

C: "Lấy được thẻ ghi số chẵn".

Hãy biểu diễn các biến cố A, B, C bởi các tập hợp con tương ứng của không gian mẫu.

- 6. Gieo một đồng tiền liên tiếp cho đến khi lần đầu tiên xuất hiện mặt sấp hoặc cả bốn lần ngửa thì dừng lại.
 - a) Mô tả không gian mẫu.
 - b) Xác định các biến cố:

A: "Số lần gieo không vượt quá ba";

B: "Số lần gieo là bốn".

- 7. Từ một hộp chứa năm quả cầu được đánh số 1, 2, 3, 4, 5, lấy ngẫu nhiên liên tiếp hai lần mỗi lần một quả và xếp theo thứ tự từ trái sang phải.
 - a) Mô tả không gian mẫu.
 - b) Xác định các biến cố sau:

A: "Chữ số sau lớn hơn chữ số trước";

B: "Chữ số trước gấp đôi chữ số sau";

C: "Hai chữ số bằng nhau".

SÁC SUẤT CỦA BIẾN CỐ

I – ĐINH NGHĨA CỔ ĐIỂN CỦA XÁC SUẤT

1. Định nghĩa

Một đặc trưng định tính quan trọng của biến cố liên quan đến một phép thử là nó có thể xảy ra hoặc không xảy ra khi phép thử đó được tiến hành. Một câu hỏi được đặt ra là nó có xảy ra không ? Khả năng xảy ra của nó là bao nhiêu ? Như vậy, nảy sinh một vấn đề là cần phải gắn cho biến cố đó một con số hợp lí để đánh giá khả năng xảy ra của nó. Ta gọi số đó là *xác suất của biến cố*.

Ví dụ 1. Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất. Các kết quả có thể là (h.33)

Hình 33

Không gian mẫu của phép thử này có sáu phần tử, được mô tả như sau

$$\Omega = \{1, 2, 3, 4, 5, 6\}.$$

Do con súc sắc là cân đối, đồng chất và được gieo ngẫu nhiên nên khả năng xuất hiện từng mặt của con súc sắc là như nhau. Ta nói chúng đồng

khả năng xuất hiện. Vậy khả năng xuất hiện của mỗi mặt là $\frac{1}{6}$.

Do đó, nếu A là biến cố : "Con súc sắc xuất hiện mặt lẻ" ($A = \{1, 3, 5\}$) thì khả năng xảy ra của A là

$$\frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6} = \frac{1}{2}$$

số này được gọi là xác suất của biến cố A.

Từ một hộp chứa bốn quả cầu ghi chữ a, hai quả cầu ghi chữ b và hai quả cầu ghi chữ c (h.34), lấy ngẫu nhiên một quả. Kí hiệu :

A: "Lấy được quả ghi chữ a";

B: "Lấy được quả ghi chữ b";

C : "Lấy được quả ghi chữ c".

Có nhận xét gì về khả năng xảy ra của các biến cố A,B và C ? Hãy so sánh chúng với nhau.

Hình 34

Một cách tổng quát, ta có định nghĩa sau đây.

ĐINH NGHĨA

Giả sử A là biến cố liên quan đến một phép thử chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện. Ta gọi tỉ số $\frac{n(A)}{n(\Omega)}$ là xác suất của biến cố A, kí hiệu là P(A).

$$P(A) = \frac{n(A)}{n(\Omega)}.$$

CHÚ Ý

n(A) là số phần tử của A hay cũng là số các kết quả thuận lợi cho biến cố A, còn $n(\Omega)$ là số các kết quả có thể xảy ra của phép thử.

2. Ví dụ

- $Vi\ du\ 2$. Gieo ngẫu nhiên một đồng tiền cân đối và đồng chất hai lần. Tính xác suất của các biến cố sau :
- a) A: "Mặt sấp xuất hiện hai lần";
- b) B: "Mặt sấp xuất hiện đúng một lần";
- c) C: "Mặt sấp xuất hiện ít nhất một lần".

 $\emph{Giải}$ (h.35). Không gian mẫu $\Omega = \{SS, SN, NS, NN\}$ gồm bốn kết quả. Vì đồng tiền cân đối, đồng chất và việc gieo là ngẫu nhiên nên các kết quả đồng khả năng xuất hiên. Ta có

a) $A = \{SS\}, n(A) = 1, n(\Omega) = 4$, theo định nghĩa ta có

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{1}{4}.$$

Hình 35

Ω

b) $B = \{SN, NS\}, n(B) = 2 \text{ nên}$

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{2}{4} = \frac{1}{2}.$$

c) $C = \{SS, SN, NS\}, n(C) = 3 \text{ nên}$

$$P(C) = \frac{n(C)}{n(\Omega)} = \frac{3}{4}. \blacksquare$$

Ví dụ 3. Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất. Tính xác suất của các biến cố sau :

A: "Mặt chấn xuất hiện";

B: "Xuất hiện mặt có số chấm chia hết cho 3";

C: "Xuất hiện mặt có số chấm không bé hơn 3".

Hình 36

Giải. Không gian mẫu có dạng : $\Omega = \{1, 2, 3, 4, 5, 6\}$, gồm sáu kết quả đồng khả năng xuất hiện (h.36). Rõ ràng

$$A = \{2, 4, 6\},$$
 $n(A) = 3,$
 $B = \{3, 6\},$ $n(B) = 2,$
 $C = \{3, 4, 5, 6\},$ $n(C) = 4.$

Từ đó, theo định nghĩa ta có

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{6} = \frac{1}{2},$$

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{2}{6} = \frac{1}{3},$$

$$P(C) = \frac{n(C)}{n(\Omega)} = \frac{4}{6} = \frac{2}{3}$$
.

Ví dụ 4. Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần. Tính xác suất của các biến cố sau :

A: "Số chấm trong hai lần gieo bằng nhau";

B: "Tổng số chấm bằng 8".

Giải. Như đã biết (xem Ví dụ 3, §4), $\Omega = \{(i, j) \mid 1 \le i, j \le 6\}$, gồm 36 kết quả đồng khả năng xuất hiện. Ta có bảng (xem thêm Hình 29):

i	1	2	3	4	5	6
1	11	12	13	14	15	16
2	21	22	$\sqrt{23}$	24	25/	$\langle 26 \rangle$
3	31	32	33	34/	35/	$\sqrt{36}$
4	41	42	43	44	$\sqrt{45}$	46
5	51	52/	53/	54	55	$\sqrt{56}$
6	61	62	63	64	65	66

 $A = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}, n(A) = 6, n(\Omega) = 36.$ Từ đó, theo định nghĩa ta có

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6}.$$

Tương tự, $B = \{(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)\}, n(B) = 5, n(\Omega) = 36 nên$

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{5}{36} \cdot \blacksquare$$

II – TÍNH CHẤT CỦA XÁC SUẤT

1. Định lí

Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, ta có định lí sau đây.

ĐINH LÍ

- a) $P(\emptyset) = 0, P(\Omega) = 1.$
- b) 0 ≤ P(A) ≤ 1, với mọi biến cố A.
 c) Nếu A và B xung khắc, thì

$$P(A \cup B) = P(A) + P(B)$$
 (công thức công xác suất).

HÊ QUẢ

Với mọi biến cố A, ta có

$$P(\overline{A}) = 1 - P(A).$$

Chứng minh. Vì $A \cup \overline{A} = \Omega$ và $A \cap \overline{A} = \emptyset$ nên theo công thức cộng xác suất ta có

$$1 = P(\Omega) = P(A) + P(\overline{A}).$$

Từ đó ta có điều phải chứng minh. ■

2. Ví du

Ví du 5. Từ một hộp chứa ba quả cầu trắng, hai quả cầu đen (h.37), lấy ngẫu nhiên đồng thời hai quả. Hãy tính xác suất sao cho hai quả đó:

a) Khác màu; b) Cùng màu.

Hình 37

Giải. Mỗi lần lấy đồng thời hai quả cầu cho ta một tổ hợp chập hai của năm phần tử. Do đó, không gian mẫu gồm các tổ hợp chập hai của năm phần tử và $n(\Omega) = C_5^2 = 10$.

Vì việc lấy quả cầu là ngẫu nhiên nên các kết quả đó đồng khả năng.

Kí hiệu A: "Hai quả khác màu", B: "Hai quả cùng màu".

Vì chỉ có hai màu đen hoặc trắng nên ta thấy ngay $B = \overline{A}$.

a) Theo quy tắc nhân, $n(A) = 3 \cdot 2 = 6$.

Do đó

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6}{10} = \frac{3}{5}.$$

b) Vì $B = \overline{A}$ nên theo hệ quả ta có

$$P(B) = P(\overline{A}) = 1 - P(A) = \frac{2}{5}$$
.

Ví dụ 6. Một hộp chứa 20 quả cầu đánh số từ 1 đến 20. Lấy ngẫu nhiên một quả. Tính xác suất của các biến cố sau :

- a) A: "Nhận được quả cầu ghi số chẵn";
- b) B: "Nhận được quả cầu ghi số chia hết cho 3;
- c) $A \cap B$;
- d) C: "Nhận được quả cầu ghi số không chia hết cho 6".

Giải. Không gian mẫu được mô tả là $\Omega = \{1, 2, ..., 20\}$ gồm 20 kết quả đồng khả năng, $n(\Omega) = 20$.

a) $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20\}, n(A) = 10 \text{ nên}$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{10}{20} = \frac{1}{2}.$$

b) $B = \{3, 6, 9, 12, 15, 18\}, n(B) = 6.$

Từ đó

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{6}{20} = \frac{3}{10}.$$

c) Vì $A \cap B = \{6, 12, 18\}, n(A \cap B) = 3 \text{ nên}$

$$P(A \cap B) = \frac{n(A \cap B)}{n(\Omega)} = \frac{3}{20}.$$

d) Vì $A \cap B = \{6, 12, 18\}$, nên $A \cap B$ là biến cố: "Nhận được quả cầu ghi số chia hết cho 6". Do đó, C là biến cố đối của biến cố $A \cap B$, ta có $C = \overline{A \cap B}$ và

$$P(C) = 1 - P(A \cap B) = 1 - \frac{3}{20} = \frac{17}{20}$$
.

III — CÁC BIẾN CỐ ĐỘC LẬP, CÔNG THỰC NHÂN XÁC SUẤT

Ví du 7. Ban thứ nhất có một đồng tiền, ban thứ hai có con súc sắc (đều cân đối, đồng chất). Xét phép thử "Ban thứ nhất gieo đồng tiền, sau đó ban thứ hai gieo con súc sắc" (h.38a).

- a) Mô tả không gian mẫu của phép thử này.
- b) Tính xác suất của các biến cố sau:

A: "Đồng tiền xuất hiện mặt sấp";

B: "Con súc sắc xuất hiện mặt 6 chấm";

C: "Con súc sắc xuất hiện mặt lẻ".

c) Chứng tỏ P(A.B) = P(A).P(B); P(A.C) = P(A).P(C).

Giải

a) Không gian mẫu của phép thử có dang

 $\Omega = \{S1, S2, S3, S4, S5, S6, N1, N2, N3, N4, N5, N6\}.$

Theo giả thiết, Ω gồm 12 kết quả đồng khả năng xuất hiện (h.38b).

Hình 38

b) Ta thấy
$$A = \{S1, S2, S3, S4, S5, S6\}, n(A) = 6;$$

 $B = \{S6, N6\}, n(B) = 2;$
 $C = \{N1, N3, N5, S1, S3, S5\}, n(C) = 6.$

Từ đó
$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6}{12} = \frac{1}{2};$$

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{2}{12} = \frac{1}{6};$$

$$P(C) = \frac{n(C)}{n(\Omega)} = \frac{6}{12} = \frac{1}{2}.$$

S1

S2

S3

S4

S5

S6 N1N2

N3

N4

N5

N6

3

3

5

S

b)

c) Rõ ràng
$$A.B = \{S6\}$$
 và $P(A.B) = \frac{n(A.B)}{n(\Omega)} = \frac{1}{12}$.

Ta có

$$P(A.B) = \frac{1}{12} = \frac{1}{2} \cdot \frac{1}{6} = P(A)P(B).$$

Tuong tự, $A.C = \{S1, S3, S5\}$;

$$P(A.C) = \frac{n(A.C)}{n(\Omega)} = \frac{3}{12} = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A)P(C).$$

Trong Ví dụ 7, ta nhận thấy xác suất xuất hiện mỗi mặt của con súc sắc là $\frac{1}{6}$,

không phụ thuộc vào việc đồng tiền xuất hiện mặt "sấp" hoặc "ngửa".

Nếu sự xảy ra của một biến cố không ảnh hưởng đến xác suất xảy ra của một biến cố khác thì ta nói hai biến cố đó độc lập. Như vậy, trong Ví dụ 7, các biến cố A và B độc lập và cũng vậy, A và C độc lập.

Tổng quát, đối với hai biến cố bất kì ta có mối quan hệ sau:

A và B là hai biến cố độc lập khi và chỉ khi P(A.B) = P(A).P(B).

BÀI ĐỌC THÊM

Quy tắc cộng còn được mở rộng đối với các tập hợp hữu hạn, có giao khác rỗng. Có thể chứng minh được rằng, với hai tập hợp hữu hạn *A* và *B* bất kì, ta có

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
 (quy tắc bao hàm và loại trừ).

Ví dụ 1. Một tổ mười người sẽ được chơi hai môn thể thao là cầu lông và bóng bàn. Có năm bạn đăng kí chơi cầu lông, bốn bạn đăng kí chơi bóng bàn, trong đó có hai bạn đăng kí chơi cả hai môn. Hỏi có bao nhiêu bạn đăng kí chơi thể thao? Bao nhiêu bạn không đăng kí chơi thể thao?

Giải. Kí hiệu X là tập hợp các học sinh trong tổ; A là tập hợp các học sinh đăng kí chơi cầu lông, B là tập hợp các học sinh đăng kí chơi bóng bàn (h.39), thế thì n(X) = 10, n(A) = 5, n(B) = 4, $n(A \cap B) = 2$. Như vậy:

 $A \cup B$ là tập hợp các bạn đăng kí chơi thể thao. Vì $n(A \cap B) = 2$ nên số bạn đăng kí chơi thể thao là

$$n(A \cup B) = n(A) + n(B) - n(A \cap B) = 5 + 4 - 2 = 7 \text{ (ban)}.$$

Từ đó, số ban không đăng kí chơi môn thể thao nào là

$$n(X) - n(A \cup B) = 10 - 7 = 3$$
 (bạn).

Nhờ quy tắc cộng mở rộng, ta có công thức cộng xác suất mở rộng sau đây.

Với hai biến cố A và B bất kì cùng liên quan đến một phép thử, ta có

$$P(A \cup B) = P(A) + P(B) - P(A.B).$$

Ví dụ 2. Gieo ngẫu nhiên một con súc sắc cân đối đồng chất hai lần. Tính xác suất của các biến cố sau :

A: "Lần thứ nhất xuất hiện mặt 6 chấm";

B: "Lần thứ hai xuất hiện mặt 6 chấm";

C: "Ít nhất một lần xuất hiện mặt 6 chấm";

D: "Không lần nào xuất hiện mặt 6 chấm".

Giải. Ta có $\Omega = \{(i, j) \mid 1 \le i, j \le 6\}$, trong đó i là số chấm xuất hiện trong lần gieo thứ nhất, j là số chấm xuất hiện trong lần gieo thứ hai, $n(\Omega) = 36$. Như vây

$$A = \{(6, j) \mid 1 \le j \le 6\}, n(A) = 6;$$

$$B = \{(i, 6) \mid 1 \le i \le 6\}, n(B) = 6;$$

$$C = A \cup B, D = \overline{C}, A \cap B = \{(6, 6)\}, n(A \cap B) = 1.$$

Từ đó, theo định nghĩa ta có

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6}, \ P(B) = \frac{n(B)}{n(\Omega)} = \frac{6}{36} = \frac{1}{6},$$

$$P(A.B) = \frac{n(A \cap B)}{n(\Omega)} = \frac{1}{36}.$$

Theo nhân xét ta có

$$P(C) = P(A \cup B) = P(A) + P(B) - P(A \cdot B) = \frac{1}{6} + \frac{1}{6} - \frac{1}{36} = \frac{11}{36}.$$

Theo hê quả ta có

$$P(D) = P(\overline{C}) = 1 - P(C) = 1 - \frac{11}{36} = \frac{25}{36}$$
.

Bài tập

- 1. Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất hai lần.
 - a) Hãy mô tả không gian mẫu.
 - b) Xác đinh các biến cố sau:
 - A: "Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10";
 - B: "Mặt 5 chấm xuất hiện ít nhất một lần".
 - c) Tính P(A), P(B).
- 2. Có bốn tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên ba tấm.
 - a) Hãy mô tả không gian mẫu.
 - b) Xác định các biến cố sau:
 - A: "Tổng các số trên ba tấm bìa bằng 8";
 - B: "Các số trên ba tấm bìa là ba số tư nhiên liên tiếp".
 - c) Tính P(A), P(B).
- 3. Một người chọn ngẫu nhiên hai chiếc giày từ bốn đôi giày cỡ khác nhau. Tính xác suất để hai chiếc chọn được tạo thành một đôi.
- **4.** Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt b chấm. Xét phương trình $x^2 + bx + 2 = 0$. Tính xác suất sao cho:
 - a) Phương trình có nghiệm;
 - b) Phương trình vô nghiệm;
 - c) Phương trình có nghiệm nguyên.
- 5. Từ cỗ bài tú lơ khơ 52 con, rút ngẫu nhiên cùng một lúc bốn con. Tính xác suất sao cho:
 - a) Cả bốn con đều là át;
 - b) Được ít nhất một con át;
 - c) Được hai con át và hai con K.
- **6.** Hai bạn nam và hai bạn nữ được xếp ngồi ngẫu nhiên vào bốn ghế xếp thành hai dãy đối diện nhau. Tính xác suất sao cho:
 - a) Nam, nữ ngồi đối diện nhau;
 - b) Nữ ngồi đối diện nhau.

7. Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa 6 quả trắng, 4 quả đen. Hộp thứ hai chứa 4 quả trắng, 6 quả đen. Từ mỗi hộp lấy ngẫu nhiên một quả. Kí hiệu:

A là biến cố: "Quả lấy từ hộp thứ nhất trắng";

B là biến cố: "Quả lấy từ hộp thứ hai trắng".

- a) Xét xem A và B có độc lập không.
- b) Tính xác suất sao cho hai quả cầu lấy ra cùng màu.
- c) Tính xác suất sao cho hai quả cầu lấy ra khác màu.

BÀI ĐỌC THÊM

ĐỊNH NGHĨA THỐNG KÊ CỦA XÁC SUẤT

Một đồng tiền cân đối và đồng chất được gieo n lần. Kí hiệu n_S là số lần xuất hiện mặt sấp S trong n lần gieo đó.

Ta gọi tỉ số $f_n(S) = \frac{n_S}{n}$ là *tần suất* xuất hiện mặt sấp trong n lần gieo.

Bằng thực nghiệm ta thấy, tần suất thay đổi khi ta thực hiện loạt n lần gieo khác cũng như khi tăng số lần gieo.

Tuy nhiên với n khá lớn, t = n suất này có tính ổn định, nghĩa là nó dao động xung quanh số $\frac{1}{2}$ và khi n tăng, tần suất ngày càng gần số $\frac{1}{2}$.

Ta có thể hình dung điều đó qua bảng các kết quả gieo đồng tiền của các nhà toán học Buýp-phông (Buffont) và Piếc-sơn (Pearson) sau đây.

Người gieo	Người gieo Số lần gieo Số		Tần suất	
Buýp-phông	4040	2048	0,5069	
Piếc-sơn	12000	6019	0,5016	
Piếc-sơn	24000	12012	0,5005	

Số $\frac{1}{2}$ mà tần suất $f_n(S)$ dao động quanh nó được gọi là xác suất của biến cố S theo quan điểm thống kê.

Môt cách tổng quát:

Kí hiệu n_A là số lần xuất hiện biến cố A trong một dãy n phép thử

Trong trường hợp phép thử chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện thì số P(A) trong định nghĩa này trùng với số P(A) trong định nghĩa cổ điển của xác suất. Do đó, định nghĩa thống kê của xác suất là một sự mở rộng thực sự của định nghĩa cổ điển của xác suất.

Nhà toán học Thuy Sĩ J.Béc-nu-li (Jacob Bernoulli) là người đầu tiên phát hiện ra tính ổn định thống kê của dãy tần suất $\frac{n_A}{n}$.

Poát-xông (Poisson) là người đầu tiên gọi quy luật ổn định của tần suất là *luật số lớn*.

Ôn tập chương II

- Phát biểu quy tắc cộng, cho ví dụ áp dụng. 1.
- 2. Phát biểu quy tắc nhân, cho ví dụ áp dụng.
- 3. Phân biệt sư khác nhau giữa một chỉnh hợp chập k của n phần tử và một tổ hợp chập k của n phần tử.
- Có bao nhiều số chẵn có bốn chữ số được tạo thành từ các chữ số 0, 1, 2, 3, 4. 4, 5, 6 sao cho:
 - a) Các chữ số có thể giống nhau?
 - b) Các chữ số khác nhau?
- Xếp ngẫu nhiên ba ban nam và ba ban nữ ngồi vào sáu ghế kê theo hàng 5. ngang. Tìm xác suất sao cho:
 - a) Nam, nữ ngồi xen kẽ nhau;
 - b) Ba ban nam ngồi canh nhau.
- Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả. Tính xác suất sao cho:
 - a) Bốn quả lấy ra cùng màu;
 - b) Có ít nhất một quả màu trắng.

- **8.** Cho một lục giác đều *ABCDEF*. Viết các chữ cái *A*, *B*, *C*, *D*, *E*, *F* vào sáu cái thẻ. Lấy ngẫu nhiên hai thẻ. Tìm xác suất sao cho đoạn thẳng mà các đầu mút là các điểm được ghi trên hai thẻ đó là :
 - a) Cạnh của lục giác;

Chọn phương án đúng:

(A) 104:

- b) Đường chéo của lục giác;
- c) Đường chéo nối hai đỉnh đối diện của lục giác.
- 9. Gieo đồng thời hai con súc sắc. Tính xác suất sao cho:
 - a) Hai con súc sắc đều xuất hiện mặt chẵn;
 - b) Tích các số chấm trên hai con súc sắc là số lẻ.

Bài tập trắc nghiệm

10.	Lấy hai con	bài từ cỗ	bài tú lo	khơ 52 con.	Số cách lấy	' là

11. Năm người được xếp vào ngồi quanh một bàn tròn với năm ghế. Số cách xếp là :

(B) 1326: (C) 450: (D) 2652.

- (A) 50; (B) 100; (C) 120; (D) 24.
- 12. Gieo một con súc sắc hai lần. Xác suất để ít nhất một lần xuất hiện mặt sáu chấm là:
 - (A) $\frac{12}{36}$; (B) $\frac{11}{36}$; (C) $\frac{6}{36}$; (D) $\frac{8}{36}$.
- 13. Từ một hộp chứa ba quả cầu trắng và hai quả cầu đen lấy ngẫu nhiên hai quả. Xác suất để lấy được cả hai quả trắng là:
 - (A) $\frac{9}{30}$; (B) $\frac{12}{30}$; (C) $\frac{10}{30}$; (D) $\frac{6}{30}$.
- 14. Gieo ba con súc sắc. Xác suất để số chấm xuất hiện trên ba con như nhau là:
 - (A) $\frac{12}{216}$; (B) $\frac{1}{216}$; (C) $\frac{6}{216}$; (D) $\frac{3}{216}$.

- 15. Gieo một đồng tiền cân đối và đồng chất bốn lần. Xác suất để cả bốn lần xuất hiện mặt sấp là:

- (A) $\frac{4}{16}$; (B) $\frac{2}{16}$; (C) $\frac{1}{16}$; (D) $\frac{6}{16}$.

BAN CÓ BIẾT ?

BÉC-NU-LI

Béc-nu-li (Jacob Bernoulli) sinh ngày 27 tháng 2 năm 1654 ở Ba-xlơ (Basle) Thuy Sĩ. Ông là người nghiên cứu Toán đầu tiên trong dòng họ Béc-nu-li có nhiều nhà toán hoc. Cha ông, Ni-co-la Béc-nu-li (1623 – 1708) muốn ông trở thành mục sư. Mặc dù phải học Thần học, ông vẫn say mê nghiên cứu Toán học. Một số công trình quan trọng nhất của ông được công bố trong cuốn sách Nghệ thuật phỏng đoán năm 1713, bao gồm các lĩnh vực của đại số tổ hợp : hoán vị, tổ hợp, các số Béc-nu-li và lí thuyết xác

Bernoulli (1654 - 1705)

suất. Đặc biệt, luật số lớn đối với dãy phép thử Béc-nu-li được công bố trong cuốn sách đó. Cuốn sách của ông được coi là sư mở đầu của lí thuyết xác suất. Béc-nu-li bắt đầu giảng Triết học tư nhiên, Cơ học ở trường Đại học Tổng hợp Ba-xlơ năm 1682 và trở thành Giáo sư toán năm 1687. Ông tiếp tục làm việc ở đó cho đến khi mất (ngày 10 tháng 8 năm 1705).

DÃY SỐ . CẤP SỐ CỘNG Chương VÀ CẤP SỐ NHÂN

Phần đầu của chương giới thiệu *Phương pháp quy nạp toán học,* một phương pháp chứng minh nhiều khẳng định toán học, liên quan đến tập số tự nhiên. Đây là một phương pháp chứng minh quan trọng và hữu hiệu trong Toán học.

Phần tiếp theo là các khái niệm cơ bản về *dãy số* (hữu hạn và vô hạn), sẽ được gặp nhiều trong các chương của Giải tích.

Cấp số cộng và cấp số nhân là hai dãy số đặc biệt và có nhiều ứng dụng, được trình bày hệ thống và chi tiết ở cuối chương.

PHƯƠNG PHÁP QUY NẠP TOÁN HỌC

I – PHƯƠNG PHÁP QUY NAP TOÁN HOC

Xét hai mệnh đề chứa biến P(n) : "3 n < n+100" và Q(n) : "2 n > n" với $n \in \mathbb{N}^*$.

- a) Với n = 1, 2, 3, 4, 5 thì P(n), Q(n) đúng hay sai ?
- b) Với mọi $n \in \mathbb{N}^*$ thì P(n), Q(n) đúng hay sai ?

Để chứng minh những mệnh đề liên quan đến số tự nhiên $n \in \mathbb{N}^*$ là đúng với mọi n mà không thể thử trực tiếp được thì có thể làm như sau :

 $Bu\acute{o}c\ 1$. Kiểm tra rằng mệnh đề đúng với n=1.

Bước 2. Giả thiết mệnh đề đúng với một số tự nhiên bất kì $n = k \ge 1$ (gọi là giả thiết quy nạp), chứng minh rằng nó cũng đúng với n = k + 1.

Đó là *phương pháp quy nạp toán học*, hay còn gọi tắt là *phương pháp quy nạp*.

Một cách đơn giản, ta có thể hình dung như sau : Mệnh đề đã đúng khi n=1 nên theo kết quả ở bước 2, nó cũng đúng với n=1+1=2. Vì nó đúng với n=2 nên lại theo kết quả ở bước 2, nó đúng với n=2+1=3, ... Bằng cách ấy, ta có thể khẳng định rằng mệnh đề đúng với mọi số tự nhiên $n \in \mathbb{N}^*$.

II – VÍ DỤ ÁP DỤNG

 $Vi d\mu 1$. Chứng minh rằng với $n \in \mathbb{N}^*$ thì

$$1 + 3 + 5 + \dots + (2n - 1) = n^{2}.$$
 (1)

Giải

Bước 1. Khi n = 1, vế trái chỉ có một số hạng bằng 1, vế phải bằng 1^2 . Vậy hệ thức (1) đúng.

Bước 2. Đặt vế trái bằng S_n .

Giả sử đẳng thức đúng với $n = k \ge 1$, nghĩa là

$$S_k = 1 + 3 + 5 + \dots + (2k - 1) = k^2$$
 (giả thiết quy nạp).

Ta phải chứng minh rằng (1) cũng đúng với n = k + 1, tức là

$$S_{k+1} = 1 + 3 + 5 + \dots + (2k-1) + [2(k+1) - 1] = (k+1)^2$$
.

Thật vậy, từ giả thiết quy nạp ta có

$$S_{k+1} = S_k + [2(k+1) - 1] = k^2 + 2k + 1 = (k+1)^2.$$

Vậy hệ thức (1) đúng với mọi $n \in \mathbb{N}^*$. ■

Chứng minh rằng với $n \in \operatorname{\mathbb{N}}^*$ thì

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

Ví dụ 2. Chứng minh rằng với $n \in \mathbb{N}^*$ thì $n^3 - n$ chia hết cho 3.

Giải. Đặt
$$A_n = n^3 - n$$
.

Bước 1. Với n = 1, ta có $A_1 = 0$: 3.

Βước 2. Giả sử với n = k ≥ 1 ta có

$$A_k = (k^3 - k) \div 3$$
 (giả thiết quy nạp).

Ta phải chứng minh A_{k+1} : 3.

Thật vậy, ta có

$$A_{k+1} = (k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1$$
$$= (k^3 - k) + 3(k^2 + k)$$
$$= A_k + 3(k^2 + k).$$

Theo giả thiết quy nạp A_k : 3, hơn nữa, $3(k^2 + k)$: 3 nên A_{k+1} : 3.

Vậy $A_n = n^3 - n$ chia hết cho 3 với mọi $n \in \mathbb{N}^*$. ■

CHÚ Ý

Nếu phải chứng minh mệnh đề là đúng với mọi số tự nhiên $n \ge p$ (p là một số tự nhiên) thì :

- Ở bước 1, ta phải kiểm tra mệnh đề đúng với n = p;
- Ở bước 2, ta giả thiết mệnh đề đúng với số tự nhiên bất kì $n = k \ge p$ và phải chứng minh rằng nó cũng đúng với n = k + 1.

Cho hai số 3^n và 8n với $n \in \mathbb{N}^*$.

- a) So sánh 3^n với 8n khi n = 1, 2, 3, 4, 5.
- b) Dự đoán kết quả tổng quát và chứng minh bằng phương pháp quy nạp.

Bài tập

1. Chứng minh rằng với $n \in \mathbb{N}^*$, ta có các đẳng thức :

a)
$$2 + 5 + 8 + ... + 3n - 1 = \frac{n(3n+1)}{2}$$
;

b)
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n - 1}{2^n}$$
;

c)
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
.

2. Chứng minh rằng với $n \in \mathbb{N}^*$, ta có :

a)
$$n^3 + 3n^2 + 5n$$
 chia hết cho 3;

b)
$$4^{n} + 15n - 1$$
 chia hết cho 9;

c)
$$n^3 + 11n$$
 chia hết cho 6.

3. Chứng minh rằng với mọi số tự nhiên $n \ge 2$, ta có các bất đẳng thức :

a)
$$3^n > 3n + 1$$
;

b)
$$2^{n+1} > 2n + 3$$
.

4. Cho tổng
$$S_n = \frac{1}{1.2} + \frac{1}{2.3} + ... + \frac{1}{n(n+1)}$$
 với $n \in \mathbb{N}^*$.

- a) Tính S_1, S_2, S_3 .
- b) Dự đoán công thức tính tổng S_n và chứng minh bằng quy nạp.
- 5. Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là $\frac{n(n-3)}{2}$.

BẠN CÓ BIẾT ? SUY LUẬN QUY NẠP

Người ta thường phân biệt hai hình thức suy luận, đó là suy diễn và quy nạp.

Suy diễn hay còn gọi là **phép suy diễn** là đi từ cái chung đến cái riêng, từ tổng quát đến cụ thể.

Chẳng hạn, từ định lí "Mọi số tự nhiên có chữ số tận cùng là 0 hoặc 5 đều chia hết cho 5", ta suy ra 135 và 170 chia hết cho 5. Trong suy diễn, nếu mệnh đề tổng quát là đúng thì kết luận có được bao giờ cũng đúng.

Còn *quy nạp* hay còn gọi là *phép quy nạp* lại đi từ cái riêng đến cái chung, từ cụ thể đến tổng quát.

Ví dụ: So sánh các số $A(n) = 10^{n-1}$ với B(n) = 2004 + n, trong đó $n \in \mathbb{N}^*$. Bằng phép thử với n = 1, 2, 3, 4 ta có : A(1) < B(1); A(2) < B(2); A(3) < B(3); A(4) < B(4). Từ đây, ta kết luận

"
$$10^{n-1} < 2004 + n \text{ với mọi } n \le 4$$
" (1)

Rõ ràng kết luận này đúng.

Tuy nhiên, cũng từ kết quả của phép thử trên, nếu vội kết luận :

"
$$10^{n-1} < 2004 + n \text{ với mọi } n \in \mathbb{N}^*$$
" (2)

thì lại sai lầm vì với n=5 ta có :

$$10^4 > 2004 + 5$$
 (tương tự, với $n = 6, 7, 8, ...$).

Đến đây, nếu kết luận tiếp:

"
$$10^{n-1} > 2004 + n \text{ với mọi } n \ge 5$$
", (3)

sau đó với phép thử, cho dù có nhận được kết quả đúng với n bằng bao nhiêu chăng nữa thì vẫn không thể coi là đã chứng minh được mệnh đề (3).

Mệnh đề (3) sẽ được chứng minh nếu dùng *phương pháp quy nạp* toán học.

Các mệnh đề (2), (3) có được là kết quả của phép **quy nạp không hoàn toàn**, trong đó mệnh đề (2) là sai còn mệnh đề (3) là đúng.

Do phép thử chỉ có tính dự đoán, nên kết quả của phép **quy nạp không hoàn toàn** chỉ là giả thuyết, và việc phải làm tiếp theo là chứng minh hay bác bỏ.

Dưới đây, ta xét thêm vài ví du lịch sử.

Phéc-ma (P. Fermat) nhà toán học Pháp (1601 – 1665) khi xét các số dạng $2^{2^n} + 1$ thấy rằng với n = 0, 1, 2, 3, 4 thì $2^{2^0} + 1 = 3$; $2^{2^1} + 1 = 5$; $2^{2^2} + 1 = 17$; $2^{2^3} + 1 = 257$; $2^{2^4} + 1 = 65$ 537 đều là những số nguyên tố. Từ đó, ông dự đoán rằng "Mọi số có dạng $2^{2^n} + 1$ với $n \in \mathbb{N}$ đều là những số nguyên tố".

Tuy nhiên, 100 năm sau, nhà toán học Thuỵ Sĩ Ơ-le (Euler, 1707 - 1783) lại phát hiện ra rằng $2^{2^5}+1$ không phải là số nguyên tố vì :

$$2^{2^5} + 1 = 4294967297 \div 641.$$

Cũng chính Phéc-ma là tác giả của giả thuyết nổi tiếng mà người đời sau gọi là định lí cuối cùng của Phéc-ma : "Phương trình $x^n + y^n = z^n$ không có nghiệm nguyên dương với mọi số tự nhiên n > 2". Năm 1993, tức là hơn 350 năm sau, giả thuyết này mới được chứng minh hoàn toàn.

Nhà toán học Đức Lai-bơ-nit (Leibniz 1646 – 1716) đã chứng minh được rằng $\forall n \in \mathbb{N}^*$ thì $n^3-n \stackrel{.}{.} 3$; $n^5-n \stackrel{.}{.} 5$, $n^7-n \stackrel{.}{.} 7$, từ đó ông dự đoán với mọi n nguyên dương và với mọi số lẻ p thì $n^p-n \stackrel{.}{.} p$. Tuy nhiên, chỉ ít lâu sau chính ông lại phát hiện ra $2^9-2=510$ không chia hết cho 9.

Lịch sử toán học đã để lại nhiều sự kiện thú vị xung quanh các giả thuyết có được bằng suy luận quy nạp không hoàn toàn (hoặc bằng phép tương tự). Có những giả thuyết đã bị bác bỏ, có nhiều giả thuyết đã được chứng minh, có những giả thuyết mà vài trăm năm sau vẫn không được chứng minh hay bác bỏ. Tuy nhiên, việc tìm cách chứng minh hay bác bỏ nhiều giả thuyết đã có tác dụng thúc đẩy sự phát triển của toán học.

Fermat (1601 – 1665)

I - ĐỊNH NGHĨA

1. Định nghĩa dãy số

Mỗi hàm số u xác định trên tập các số nguyên dương $\operatorname{\mathbb{N}}^*$ được gọi là một $d\tilde{a}y$ số vô hạn (gọi tắt là dãy số). Kí hiệu : $u:\operatorname{\mathbb{N}}^*\to\operatorname{\mathbb{R}}$

$$u: \mathbb{N}^* \to \mathbb{R}$$
 $n \mapsto u(n).$

Người ta thường viết dãy số dưới dạng khai triển

$$u_1, u_2, u_3, ..., u_n, ...,$$

trong đó $u_n = u(n)$ hoặc viết tắt là (u_n) , và gọi u_1 là số hạng đầu, u_n là số hạng thứ n và là số hạng tổng quát của dãy số.

Ví du 1

- a) Dãy các số tự nhiên lẻ 1, 3, 5, 7, ... có số hạng đầu $u_1 = 1$, số hạng tổng quát $u_n = 2n - 1$.
- b) Dãy các số chính phương 1, 4, 9, 16, ... có số hạng đầu $u_1 = 1$, số hạng tổng quát $u_n = n^2$.

2. Định nghĩa dãy số hữu hạn

Mỗi hàm số u xác định trên tập $M = \{1, 2, 3, ..., m\}$ với $m \in \mathbb{N}^*$ được gọi là một dãy số hữu han.

Dạng khai triển của nó là u_1 , u_2 , u_3 , ..., u_m , trong đó u_1 là số hạng đầu, u_m là số hạng cuối.

Ví du 2

a) -5, -2, 1, 4, 7, 10, 13 là dãy số hữu hạn có $u_1 = -5$, $u_7 = 13$.

b)
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$ là dãy số hữu hạn có $u_1 = \frac{1}{2}$, $u_5 = \frac{1}{32}$.

II – CÁCH CHO MỘT DÃY SỐ

2
Hãy nêu các phương pháp cho một hàm số và ví dụ minh hoạ.

1. Dãy số cho bằng công thức của số hạng tổng quát

Ví dụ 3

a) Cho dãy số
$$(u_n)$$
 với $u_n = (-1)^n \cdot \frac{3^n}{n}$. (1)

Từ công thức (1), ta có thể xác định được bất kì một số hạng nào của dãy số. Chẳng hạn, $u_5 = (-1)^5 \cdot \frac{3^5}{5} = -\frac{243}{5}$.

Nếu viết dãy số này dưới dạng khai triển, ta được

$$-3, \frac{9}{2}, -9, \frac{81}{4}, \dots, (-1)^n \cdot \frac{3^n}{n}, \dots$$

b) Dãy số (u_n) với $u_n = \frac{n}{\sqrt{n+1}}$ có dạng khai triển là

$$\frac{1}{2}, \frac{2}{\sqrt{2}+1}, \frac{3}{\sqrt{3}+1}, \dots, \frac{n}{\sqrt{n}+1}, \dots$$

Như vậy, dãy số (u_n) hoàn toàn xác định nếu biết công thức số hạng tổng quát u_n của nó.

3

🐧 Viết năm số hạng đầu và số hạng tổng quát của các dãy số sau :

- a) Dãy nghịch đảo của các số tự nhiên lẻ;
- b) Dãy các số tự nhiên chia cho 3 dư 1.

Cũng giống như hàm số, không phải mọi dãy số đều có công thức số hạng tổng quát u_n . Dưới đây, ta nêu thêm các cách khác để cho một dãy số.

2. Dãy số cho bằng phương pháp mô tả

Vi du 4. Số π là số thập phân vô hạn không tuần hoàn

$$\pi = 3.141 592 653 589 \dots$$

Nếu lập dãy số (u_n) với u_n là giá trị gần đúng thiếu của số π với sai số tuyệt đối 10^{-n} thì

$$u_1 = 3.1$$
; $u_2 = 3.14$; $u_3 = 3.141$; $u_4 = 3.1415$; ...

Đó là dãy số được cho bằng *phương pháp mô tả*, trong đó chỉ ra cách viết các số hạng liên tiếp của dãy.

3. Dãy số cho bằng phương pháp truy hồi

 $Vi d\mu 5$. Dãy Phi-bô-na-xi^(*) là dãy số (u_n) được xác định như sau :

$$\begin{cases} u_1 = u_2 = 1 \\ u_n = u_{n-1} + u_{n-2} & \text{v\'ei } n \ge 3, \end{cases}$$

nghĩa là, kể từ số hạng thứ ba trở đi, mỗi số hạng đều bằng tổng của hai số hạng đứng ngay trước nó.

Cách cho dãy số như trên được gọi là cho bằng phương pháp truy hồi.

Nói cách khác, cho một dãy số bằng phương pháp truy hồi, tức là:

- a) Cho số hang đầu (hay vài số hang đầu).
- b) Cho *hệ thức truy hồi*, tức là hệ thức biểu thị số hạng thứ *n* qua số hạng (hay vài số hạng) đứng trước nó.

^(*) Phi-bô-na-xi (Fibonacci, 1170 – 1250) – Thương gia, nhà toán học I-ta-li-a.

III – BIỂU DIỄN HÌNH HỌC CỦA DÃY SỐ

Vì dãy số là một hàm số trên \mathbb{N}^* nên ta có thể biểu diễn dãy số bằng đồ thị. Khi đó trong mặt phẳng toạ độ, dãy số được biểu diễn bằng các điểm có toạ độ $(n; u_n)$.

 $Vi d\mu 6$. Dãy số (u_n) với $u_n = \frac{n+1}{n}$ có biểu diễn hình học như trên Hình 40 :

Hình 40

$$u_1 = 2$$
, $u_2 = \frac{3}{2}$, $u_3 = \frac{4}{3}$, $u_4 = \frac{5}{4}$, ...

Tuy nhiên, người ta thường biểu diễn các số hạng của một dãy số trên trục số. Chẳng hạn, dãy số $\left(\frac{n+1}{n}\right)$ có biểu diễn hình học như trên Hình 41.

Hình 41

IV – DÃY SỐ TĂNG, DÃY SỐ GIẢM VÀ DÃY SỐ BỊ CHẶN

Cho các dãy số (u_n) và (v_n) với $u_n = 1 + \frac{1}{n}$; $v_n = 5n - 1$.

- a) Tính u_{n+1}, v_{n+1} .
- b) Chứng minh $u_{n+1} < u_n$ và $v_{n+1} > v_n$, với mọi $n \in \mathbb{N}^*$.

1. Dãy số tăng, dãy số giảm

ĐINH NGHĨA 1

Dãy số (u_n) được gọi là dãy số tăng nếu ta có $u_{n+1} > u_n$ với

mọi $n \in \mathbb{N}^*$.

Dãy số (u_n) được gọi là **dãy** số **giảm** nếu ta có $u_{n+1} < u_n$ với

 $V i d\mu 7$. Dãy số (u_n) với $u_n = 2n - 1$ là dãy số tăng.

Thật vậy, với mọi $n \in \mathbb{N}^*$ xét hiệu $u_{n+1} - u_n$. Ta có

$$u_{n+1} - u_n = 2(n+1) - 1 - (2n-1) = 2.$$

Do $u_{n+1} - u_n > 0$ nên $u_{n+1} > u_n$.

Ví dụ 8. Dãy số (u_n) với $u_n = \frac{n}{2^n}$ là dãy số giảm.

Thật vậy, với mọi $n \in \mathbb{N}^*$, vì $u_n > 0$ nên có thể xét tỉ số $\frac{u_{n+1}}{u_n}$. Ta có

$$\frac{u_{n+1}}{u_n} = \frac{n+1}{3^{n+1}} : \frac{n}{3^n} = \frac{n+1}{3n}.$$

Dễ thấy $\frac{n+1}{3n} < 1$ nên $\frac{u_{n+1}}{u_n} < 1$ suy ra $u_{n+1} < u_n$.

CHÚ Ý

Không phải mọi dãy số đều tăng hoặc giảm. Chẳng hạn, dãy số (u_n) với $u_n = (-3)^n$, tức là dãy

$$-3, 9, -27, 81, \dots$$

không tăng và cũng không giảm.

Dãy số bị chặn

6 Chứng minh các bất đẳng thức $\frac{n}{n^2+1} \le \frac{1}{2}$ và $\frac{n^2+1}{2n} \ge 1$, $\forall n \in \mathbb{N}^*$.

ĐỊNH NGHĨA 2

Dãy số (u_n) được gọi là bi chặn trên nếu tồn tại một số M

$$u_n \leq M, \ \forall n \in \mathbb{N}^*.$$

sao cho $u_n \leq M, \ \forall n \in \mathbb{N}^*.$ Dãy số (u_n) được gọi là **bị chặn dưới** nếu tồn tại một số m sao cho $u_n \geq m, \ \forall n \in \mathbb{N}^*.$ Dãy số (u_n) được gọi là **bị chặn** nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho $m \leq u_n \leq M, \ \forall n \in \mathbb{N}^*.$

$$u_n \ge m, \forall n \in \mathbb{N}^*.$$

$$m \le u_n \le M, \ \forall n \in \ \mathbb{N}^*.$$

Ví dụ 9

- a) Dãy số Phi-bô-na-xi bị chặn dưới vì $u_n \ge 1$ với mọi $n \in \mathbb{N}^*$.
- b) Dãy số (u_n) với $u_n = \frac{n}{n^2 + 1}$ bị chặn vì $0 < \frac{n}{n^2 + 1} \le \frac{1}{2}$.

BAN CÓ BIẾT ?

HOA, LÁ VÀ DÃY SỐ PHI-BÔ-NA-XI

Dãy số Phi-bô-na-xi thường gặp trong thiên nhiên. Những chiếc lá trên cành cây mọc cách nhau các khoảng ứng với các số trong dãy số Phi-bô-na-xi (còn gọi là các số Phi-bô-na-xi)

3, 5, 8, 13, 21, 34, 55, 89, ... (F)

Số cánh hoa trong hầu hết các bông hoa là các số trong dãy (F). Hoa loa kèn có 3 cánh, hoa mao lương vàng có 5 cánh, hoa phi yến có 8 cánh, hoa cúc vạn thọ 13 cánh, hoa cúc tây 21 cánh, còn hoa cúc thường có 34 hoặc 55, hoặc 89 cánh.

Fibonacci (1170 – 1250)

Trong hoa hướng dương cũng xuất hiện các số Phi-bô-na-xi. Những nụ nhỏ kết thành hạt ở đầu bông hoa và xếp thành hai lớp đường xoắn ốc. Một lớp cuộn theo chiều kim đồng hồ, lớp đường xoắn kia cuộn theo chiều ngược lại. Số các đường xoắn ốc theo chiều kim đồng hồ thường là 34 hoặc 55, còn số đường xoắn theo chiều ngược lai thường là 55 hoặc 89, ...

Ngoài những điều thú vị trên, một số vấn đề của kiến trúc, hội hoạ, âm nhạc, ... cũng liên quan đến các số Phi-bô-na-xi.

Hoa hướng dương

Bài tập

- 1. Viết năm số hạng đầu của các dãy số có số hạng tổng quát u_n cho bởi công thức :
 - a) $u_n = \frac{n}{2^n 1}$;

b) $u_n = \frac{2^n - 1}{2^n + 1}$;

c) $u_n = \left(1 + \frac{1}{n}\right)^n$;

- d) $u_n = \frac{n}{\sqrt{n^2 + 1}}$.
- 2. Cho dãy số (u_n) , biết :

$$u_1 = -1$$
, $u_{n+1} = u_n + 3 \text{ v\'oi } n \ge 1$.

- a) Viết năm số hạng đầu của dãy số.
- b) Chứng minh bằng phương pháp quy nạp : $u_n = 3n 4$.
- 3. Dãy số (u_n) cho bởi :

$$u_1 = 3 \; ; \; u_{n+1} = \sqrt{1 + u_n^2} \; , \; n \ge 1.$$

- a) Viết năm số hạng đầu của dãy số.
- b) Dự đoán công thức số hạng tổng quát u_n và chứng minh công thức đó bằng phương pháp quy nạp.
- 4. Xét tính tăng, giảm của các dãy số (u_n) , biết :

a)
$$u_n = \frac{1}{n} - 2$$
;

b)
$$u_n = \frac{n-1}{n+1}$$
;

c)
$$u_n = (-1)^n (2^n + 1)$$
;

d)
$$u_n = \frac{2n+1}{5n+2}$$
.

5. Trong các dãy số (u_n) sau, dãy số nào bị chặn dưới, bị chặn trên và bị chặn ?

a)
$$u_n = 2n^2 - 1$$
;

b)
$$u_n = \frac{1}{n(n+2)}$$
;

c)
$$u_n = \frac{1}{2n^2 - 1}$$
;

d)
$$u_n = \sin n + \cos n$$
.

S CÁP SỐ CỘNG

I - ĐINH NGHĨA

. Biết bốn số hạng đầu của một dãy số là -1,3,7,11.

Từ đó hãy chỉ ra một quy luật rồi viết tiếp năm số hang của dãy theo quy luật đó.

ĐINH NGHĨA

Clpha p số c
ho ng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.

Số d được gọi là công sai của cấp số cộng.

Nếu (u_n) là cấp số cộng với công sai d, ta có công thức truy hồi

$$u_{n+1} = u_n + d \text{ v\'oi } n \in \mathbb{N}^*.$$
 (1)

Đặc biệt khi d=0 thì cấp số cộng là một $d\tilde{a}y$ số không đổi (tất cả các số hạng đều bằng nhau).

Ví dụ 1. Chứng minh dãy số hữu hạn sau là một cấp số cộng:

$$1, -3, -7, -11, -15.$$

Giải. Vì
$$-3 = 1 + (-4)$$
; $-11 = -7 + (-4)$; $-7 = -3 + (-4)$; $-15 = -11 + (-4)$

nên theo định nghĩa, dãy số 1, -3, -7, -11, -15 là một cấp số cộng với công sai d=-4.

2

Cho (u_n) là một cấp số cộng có sáu số hạng với $u_1 = -\frac{1}{3}, \ d = 3$. Viết dạng khai triển của nó.

II – SỐ HẠNG TỔNG QUÁT

Mai và Hùng chơi trò xếp các que diêm thành hình tháp trên mặt sân. Cách xếp được thể hiện trên Hình 42.

Hỏi : Nếu tháp có 100 tầng thì cần bao nhiêu que diêm để xếp tầng đế của tháp ?

ĐINH LÍ 1

Nếu cấp số cộng (u_n) có số hạng đầu u_1 và công sai d thì số hạng tổng quát u_n được xác định bởi công thức :

$$u_n = u_1 + (n-1)d$$
 với $n \ge 2$. (2)

Chứng minh. Ta sẽ chứng minh công thức (2) bằng quy nạp.

Khi n = 2 thì $u_2 = u_1 + d$, vậy công thức (2) đúng.

Giả sử công thức (2) đúng với $n = k \ge 2$, tức là $u_k = u_1 + (k-1)d$.

Ta phải chứng minh rằng (2) cũng đúng với n = k + 1, tức là $u_{k+1} = u_1 + kd$. Thật vậy, theo định nghĩa cấp số cộng và giả thiết quy nạp ta có

$$u_{k+1} = u_k + d = [u_1 + (k-1)d] + d = u_1 + kd.$$

Vậy $u_n = u_1 + (n-1)d$ với $n \ge 2$.

Ví dụ 2. Cho cấp số cộng (u_n) , biết $u_1 = -5$, d = 3.

- a) Tîm u_{15} .
- b) Số 100 là số hạng thứ bao nhiều?

c) Biểu diễn các số hạng u_1 , u_2 , u_3 , u_4 , u_5 trên trục số. Nhận xét vị trí của mỗi điểm u_2 , u_3 , u_4 so với hai điểm liền kề.

Giải. Cấp số cộng có $u_1 = -5$, d = 3.

- a) Theo công thức (2) ta có $u_{15} = -5 + (15 1) \cdot 3 = 37$.
- b) Theo công thức (2) ta có $u_n = -5 + (n 1)$. 3. Vì $u_n = 100$ nên -5 + (n 1). 3 = 100, từ đó n = 36.
- c) Năm số hạng của cấp số cộng là -5, -2, 1, 4, 7 được biểu diễn bởi các điểm u_1 , u_2 , u_3 , u_4 , u_5 tương ứng trên Hình 43.

Điểm u_3 là trung điểm của đoạn u_2u_4 , hay $u_3 = \frac{u_2 + u_4}{2}$.

Ta cũng có kết quả tương tự đối với u_2 và u_4 .

Đây là một tính chất đặc trưng của cấp số cộng mà ta sẽ xét dưới đây.

III – TÍNH CHẤT CÁC SỐ HẠNG CỦA CẤP SỐ CỘNG

ĐỊNH LÍ 2

Trong một cấp số cộng, mỗi số hạng (trừ số hạng đầu và cuối) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là

$$u_k = \frac{u_{k-1} + u_{k+1}}{2} \text{ v\'oi } k \ge 2.$$
 (3)

Chứng minh. Giả sử (u_n) là cấp số cộng với công sai d. Sử dụng công thức (1) với $k \ge 2$, ta có $u_{k-1} = u_k - d$; $u_{k+1} = u_k + d$.

Suy ra
$$u_{k-1} + u_{k+1} = 2u_k$$
 hay $u_k = \frac{u_{k-1} + u_{k+1}}{2}$.

IV – TỔNG n SỐ HẠNG ĐẦU CỦA MỘT CẤP SỐ CỘNG

Cấp số cộng gồm tám số hạng -1, 3, 7, 11, 15, 19, 23, 27 được viết vào bảng sau :

-1	3	7	11	15	19	23	27

- a) Hãy chép lại bảng trên và viết các số hạng của cấp số đó vào dòng thứ hai theo thứ tự ngược lại. Nêu nhận xét về tổng của các số hạng ở mỗi cột.
- b) Tính tổng các số hạng của cấp số cộng.

Ta công nhận định lí sau đây.

ĐINH LÍ 3

Cho cấp số cộng (u_n) . Đặt $S_n = u_1 + u_2 + u_3 + ... + u_n$. Khi đó

$$S_n = \frac{n(u_1 + u_n)}{2} \,. \tag{4}$$

CHÚ Ý

Vì $u_n = u_1 + (n-1)d$ nên công thức (4) có thể viết

$$S_n = nu_1 + \frac{n(n-1)}{2}d. (4')$$

 $Vi d\mu 3$. Cho dãy số (u_n) với $u_n = 3n - 1$.

- a) Chứng minh dãy (u_n) là cấp số cộng. Tìm u_1 và d.
- b) Tính tổng của 50 số hạng đầu.
- c) Biết $S_n = 260$, tìm n.

Giải

a) Vì $u_n = 3n - 1$ nên $u_1 = 2$.

Với $n \ge 1$, xét hiệu $u_{n+1} - u_n = 3(n+1) - 1 - (3n-1) = 3$, suy ra

 $u_{n+1} = u_n + 3$. Vậy (u_n) là cấp số cộng với công sai d = 3.

b) Vì $u_1 = 2$, d = 3, n = 50 nên theo công thức (4') ta có

$$S_{50} = 50.2 + \frac{50.49}{2}.3 = 3775.$$

c) Vì $u_1 = 2$, d = 3, $S_n = 260$ nên theo công thức (4') ta có

$$S_n = n.2 + \frac{n(n-1)}{2}.3 = 260 \text{ hay } 3n^2 + n - 520 = 0.$$

Giải phương trình bậc hai trên với $n \in \mathbb{N}^*$, ta tìm được n = 13.

Bài tập

1. Trong các dãy số (u_n) sau đây, dãy số nào là cấp số cộng ? Tính số hạng đầu và công sai của nó.

a)
$$u_n = 5 - 2n$$
;

b)
$$u_n = \frac{n}{2} - 1$$
;

c)
$$u_n = 3^n$$
;

d)
$$u_n = \frac{7 - 3n}{2}$$
.

2. Tìm số hạng đầu và công sai của các cấp số cộng sau, biết:

a)
$$\begin{cases} u_1 - u_3 + u_5 = 10 \\ u_1 + u_6 = 17 \end{cases}$$

b)
$$\begin{cases} u_7 - u_3 = 8 \\ u_2 \cdot u_7 = 75. \end{cases}$$

3. Trong các bài toán về cấp số cộng, ta thường gặp năm đại lượng u_1 , d, n, u_n , S_n .

a) Hãy viết các hệ thức liên hệ giữa các đại lượng đó. Cần phải biết ít nhất mấy đại lượng để có thể tìm được các đại lượng còn lại ?

b) Lập bảng theo mẫu sau và điền số thích hợp vào ô trống:

u_1	d	u_n	n	S_n
-2		55	20	
	- 4		15	120
3	$\frac{4}{27}$	7		
		17	12	72
2	-5			-205

- **4.** Mặt sàn tầng một của một ngôi nhà cao hơn mặt sân 0,5 m. Cầu thang đi từ tầng một lên tầng hai gồm 21 bậc, mỗi bậc cao 18 cm.
 - a) Viết công thức để tìm độ cao của một bậc tuỳ ý so với mặt sân.
 - b) Tính độ cao của sàn tầng hai so với mặt sân.
- 5. Từ 0 giờ đến 12 giờ trưa, đồng hồ đánh bao nhiều tiếng, nếu nó chỉ đánh chuông báo giờ và số tiếng chuông bằng số giờ ?

CẤP SỐ NHÂN

I - ĐINH NGHĨA

Tục truyền rằng nhà Vua Ấn Độ cho phép người phát minh ra bàn cờ Vua được lựa chọn một phần thưởng tuỳ theo sở thích. Người đó chỉ xin nhà vua thưởng cho số thóc bằng số thóc được đặt lên 64 ô của bàn cờ như sau: Đặt lên ô thứ nhất của bàn cờ một hạt thóc, tiếp đến ô thứ hai hai hạt, ... cứ như vậy, số hạt thóc ở ô sau gấp đôi số hạt thóc ở ô liền trước cho đến ô cuối cùng.

Hãy cho biết số hạt thóc ở các ô từ thứ nhất đến thứ sáu của bàn cờ.

ĐINH NGHĨA

Clpha p số nhân là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi q.

Số q được gọi là công bội của cấp số nhân.

Nếu (u_n) là cấp số nhân với công bội q, ta có công thức truy hồi :

$$u_{n+1} = u_n. q \text{ v\'oi } n \in \mathbb{N}^*.$$
 (1)

Đặc biệt:

• Khi q = 0, cấp số nhân có dạng $u_1, 0, 0, ..., 0, ...$

• Khi q = 1, cấp số nhân có dạng $u_1, u_1, u_1, ..., u_1, ...$

• Khi $u_1 = 0$ thì với mọi q, cấp số nhân có dạng 0, 0, 0, ..., 0, ...

Ví dụ 1. Chứng minh dãy số hữu hạn sau là một cấp số nhân:

$$-4, 1, -\frac{1}{4}, \frac{1}{16}, -\frac{1}{64}.$$

Giải. Vì $1 = (-4) \cdot \left(-\frac{1}{4}\right)$; $-\frac{1}{4} = 1 \cdot \left(-\frac{1}{4}\right)$;

$$\frac{1}{16} = \left(-\frac{1}{4}\right) \cdot \left(-\frac{1}{4}\right); \quad -\frac{1}{64} = \frac{1}{16} \cdot \left(-\frac{1}{4}\right)$$

nên dãy số

$$-4, 1, -\frac{1}{4}, \frac{1}{16}, -\frac{1}{64}$$

là một cấp số nhân với công bội $q = -\frac{1}{4}$.

II – SỐ HẠNG TỔNG QUÁT

2Hãy đọc hoạt động **1** và cho biết ô thứ 11 có bao nhiêu hạt thóc ?

Bằng phương pháp quy nạp, ta có thể chứng minh được định lí sau đây.

ĐỊNH LÍ 1

Nếu cấp số nhân có số hạng đầu u_1 và công bội q thì số hạng tổng quát u_n được xác định bởi công thức

$$u_n = u_1 . q^{n-1} \text{ v\'en } n \ge 2.$$
 (2)

 $Vi d\mu 2$. Cho cấp số nhân (u_n) với $u_1 = 3$, $q = -\frac{1}{2}$.

a) Tính u_7 .

b) Hỏi $\frac{3}{256}$ là số hạng thứ mấy ?

Giải

a) Áp dụng công thức (2), ta có

$$u_7 = u_1 \cdot q^6 = 3 \cdot \left(-\frac{1}{2}\right)^6 = \frac{3}{64}.$$

b) Theo công thức (2), ta có

$$u_n = 3 \cdot \left(-\frac{1}{2}\right)^{n-1} = \frac{3}{256} \Leftrightarrow \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{256} = \left(-\frac{1}{2}\right)^8.$$

Suy ra n - 1 = 8 hay n = 9.

Vậy số $\frac{3}{256}$ là số hạng thứ chín. ■

Ví dụ 3. Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại phân đôi một lần.

- a) Hỏi một tế bào sau mười lần phân chia sẽ thành bao nhiều tế bào ?
- b) Nếu có 10^5 tế bào thì sau hai giờ sẽ phân chia thành bao nhiều tế bào ? Giải
- a) Vì ban đầu có một tế bào và mỗi lần một tế bào phân chia thành hai tế bào nên ta có cấp số nhân với $u_1 = 1$, q = 2 và u_{11} là số tế bào nhận được sau mười lần phân chia. Vậy sau 10 lần phân chia, số tế bào nhận được là

$$u_{11} = 1 \cdot 2^{11-1} = 2^{10} = 1024.$$

b) Vì ban đầu có 10^5 tế bào và mỗi lần một tế bào phân chia thành hai tế bào nên ta có cấp số nhân với $u_1 = 10^5$, q = 2. Vì cứ 20 phút lại phân đôi một lần nên sau hai giờ sẽ có 6 lần phân chia tế bào và u_7 là số tế bào nhận được sau hai giờ. Vậy số tế bào nhận được sau hai giờ phân chia là

$$u_7 = 10^5.2^{7-1} = 10^5.2^6 = 6400000.$$

III – TÍNH CHẤT CÁC SỐ HẠNG CỦA CẤP SỐ NHÂN

Cho cấp số nhân (u_n) với $u_1 = -2$ và $q = -\frac{1}{2}$.

- a) Viết năm số hạng đầu của nó.
- b) So sánh u_2^2 với tích u_1 . u_3 và u_3^2 với tích u_2 . u_4 .

Nêu nhận xét tổng quát từ kết quả trên.

ĐINH LÍ 2

Trong một cấp số nhân, bình phương của mỗi số hang (trừ số hạng đầu và cuối) đều là tích của hai số hạng đứng kề với nó, nghĩa là

$$u_k^2 = u_{k-1}.u_{k+1} \text{ v\'oi } k \ge 2$$

$$(\text{hay } |u_k| = \sqrt{u_{k-1}.u_{k+1}} \text{)}.$$

Chứng minh. Sử dung công thức (2) với $k \ge 2$, ta có

$$u_{k-1} = u_1. q^{k-2};$$

 $u_{k+1} = u_1. q^k.$

Suy ra u_{k-1} . $u_{k+1} = u_1^2 q^{2k-2} = (u_1 q^{k-1})^2 = u_k^2$.

IV – TỔNG n SỐ HẠNG ĐẦU CỦA MỘT CẤP SỐ NHÂN

· Tính tổng số các hạt thóc ở 11 ô đầu của bàn cờ nêu ở hoạt động 🎢 1.

Cấp số nhân (u_n) có công bội q có thể viết dưới dạng

$$u_1, u_1q, u_1q^2, ..., u_1q^{n-1}, ...$$

Khi đó

$$S_n = u_1 + u_2 + \dots + u_n = u_1 + u_1 q + u_1 q^2 + \dots + u_1 q^{n-1}.$$
 (4)

Nhân hai vế của (4) với q, ta được

$$q.S_n = u_1 q + u_1 q^2 + u_1 q^3 + \dots + u_1 q^n.$$
 (5)

Trừ từng vế tương ứng của các đẳng thức (4) và (5), ta được

$$(1-q) S_n = u_1 (1-q^n).$$

Ta có định lí sau đây.

ĐINH LÍ 3

Cho cấp số nhân (u_n) với công bội $q \neq 1$. Đặt

$$S_n = u_1 + u_2 + \dots + u_n.$$

Khi đó

$$S_n = \frac{u_1(1 - q^n)}{1 - q} \,. \tag{6}$$

CHÚ Ý

Nếu q=1 thì cấp số nhân là $u_1, u_1, u_1, ..., u_1, ...$ Khi đó $S_n=n.u_1$.

 $Vi \ du \ 4$. Cho cấp số nhân (u_n) , biết $u_1 = 2$, $u_3 = 18$. Tính tổng của mười số hang đầu tiên.

Giải. Theo giả thiết, $u_1 = 2$, $u_3 = 18$. Ta có

$$u_3 = u_1.q^2 \Rightarrow 2.q^2 = 18 \Rightarrow q = \pm 3.$$

Vậy có hai trường hợp:

•
$$q = 3$$
, ta có $S_{10} = \frac{2(1 - 3^{10})}{1 - 3} = 59048$;

•
$$q = -3$$
, ta có $S_{10} = \frac{2[1 - (-3)^{10}]}{1 - (-3)} = -29524$.

BAN CÓ BIẾT ?

NHÀ VUA ẤN ĐỘ KHÔNG ĐỦ THÓC ĐỂ THƯỞNG CHO NGƯỜI ĐÃ PHÁT MINH RA BÀN CỜ VUA!

Hãy đọc lại 7^{1} ở §4, chúng ta sẽ thấy số hạt thóc để làm phần thưởng chính là tổng 64 số hạng đầu của cấp số nhân với $u_1 = 1$ và q = 2. Vậy

$$S_{64} = 1 + 2 + 4 + \dots + 2^{63} = \frac{1(1 - 2^{64})}{1 - 2} = 2^{64} - 1.$$

Cứ cho rằng $1000\,$ hạt thóc nặng $20\,$ gam (cho dù ít hơn thực tế), thì khối lượng thóc là

$$\frac{20(2^{64}-1)}{1000}$$
 gam ≈ 369 tỉ tấn.

Nếu đem rải đều số thóc này lên bề mặt của Trái Đất thì sẽ được một lớp thóc dày 9 mm! Thử hỏi, nhà vua làm sao có được một lượng thóc khổng lồ như vậy?

Bài tập

- 1. Chứng minh các dãy số $\left(\frac{3}{5} \cdot 2^n\right)$, $\left(\frac{5}{2^n}\right)$, $\left(\left(-\frac{1}{2}\right)^n\right)$ là các cấp số nhân.
- **2.** Cho cấp số nhân (u_n) với công bội q.
 - a) Biết $u_1 = 2$, $u_6 = 486$. Tìm q.
 - b) Biết $q = \frac{2}{3}$, $u_4 = \frac{8}{21}$. Tìm u_1 .
 - c) Biết $u_1 = 3$, q = -2. Hỏi số 192 là số hạng thứ mấy ?
- 3. Tìm các số hạng của cấp số nhân (u_n) có năm số hạng, biết :

a)
$$u_3 = 3$$
 và $u_5 = 27$;

b)
$$u_4 - u_2 = 25$$
 và $u_3 - u_1 = 50$.

- **4.** Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là 31 và tổng của năm số hạng sau là 62.
- 5. Tỉ lệ tăng dân số của tỉnh X là 1,4%. Biết rằng số dân của tỉnh hiện nay là 1,8 triệu người. Hỏi với mức tăng như vậy thì sau 5 năm, 10 năm số dân của tỉnh đó là bao nhiêu?
- 6. Cho hình vuông C₁ có cạnh bằng 4. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C₂ (h.44). Từ hình vuông C₂ lại làm tiếp như trên để được hình vuông C₃, Tiếp tục quá trình trên, ta nhận được dãy các hình vuông C₁, C₂, C₃, ..., C_n,

Hình 44

Gọi a_n là độ dài cạnh của hình vuông C_n . Chứng minh dãy số (a_n) là một cấp số nhân.

BÀI ĐỌC THÊM

DÃY SỐ TRONG HÌNH BÔNG TUYẾT VÔN KỐC (HÌNH HỌC FRACTAL)

Thuật ngữ "Fractal" được Bơ-noa Man-đen-bơ-rô (Benoit Mandelbrot) sử dụng vào năm 1975. Nó có gốc La-tinh "Fractus", nghĩa là một bề mặt không đều giống như một khối đá nứt gẫy. Theo B. Man-đen-bơ-rô thì : "Hình học Fractal có hai vai trò, nó diễn tả hình học của sự hỗn độn và nó cũng có thể diễn tả về hình học của núi, mây và các dải ngân hà".

Các Fractal có hình thù mà ta có thể nhìn thấy trong tự nhiên, đó là cây, lá, khối đá, những bông tuyết Song, rút ra được một công thức hình học của chúng như thế nào ? Làm thế nào để định hình được hình dạng của những bọt kem trong li cà-phê ? Hình học Fractal, lí thuyết về sự hỗn độn và những phép toán phức tạp liệu có thể trả lời được các câu hỏi này hay không ? Khoa học đang khám phá ra một trật tự không thể ngờ đằng sau những hiện tượng kì lạ có vẻ hết sức lộn xộn của vạn vật.

H.von Koch (1879 – 1924)

Có thể nói Fractal là cấu trúc hình học được chi tiết hoá bằng cách mở rộng ở mọi tỉ lệ. Mỗi phần nhỏ của Fractal là sự mô phỏng của toàn bộ Fractal. Mỗi Fractal được tạo ra bởi quá trình lặp đi, lặp lại, trong đó sự kết thúc của quá trình trước lại là sự bắt đầu của quá trình tiếp theo. Để minh hoạ, ta hãy xét bông tuyết vôn Kốc do nhà toán học Thuy Điển vôn Kốc (von Koch) đưa ra vào năm 1904 (h.45).

Hình 45

Bông tuyết đầu tiên K_1 là một tam giác đều có cạnh bằng 1. Tiếp đó, chia mỗi cạnh của tam giác thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài, ta được bông tuyết K_2 . Cứ tiếp tục như vậy theo nguyên tắc : Từ bông tuyết K_n để có bông tuyết K_{n+1} , ta chia mỗi cạnh của K_n thành ba đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó, sao cho chúng tạo với mỗi đoạn bỏ đi một tam giác đều về phía ngoài.

Quá trình trên lặp đi, lặp lại cho ta một dãy các bông tuyết $K_1,\ K_2,K_3,...,K_n,...$

Kí hiệu C_n , a_n , p_n và S_n lần lượt là số cạnh, độ dài cạnh, chu vi và diện tích của bông tuyết K_n , ta có các dãy số (C_n) , (a_n) , (p_n) , (S_n) .

1. Dãy số (C_n) được cho bởi công thức truy hồi

$$\begin{cases} C_1 = 3 \\ C_{n+1} = 4.C_n \text{ v\'oi } n \ge 1. \end{cases}$$

Dãy số (C_n) là một cấp số nhân với $C_1 = 3$, q = 4 và $C_n = 3$. 4^{n-1} .

- 2. Dãy số (a_n) là một cấp số nhân với $a_1=1, q=\frac{1}{3}$ và $a_n=\frac{1}{3^{n-1}}$.
- 3. Dãy số (p_n) có $p_n=C_n.a_n=3\left(\frac{4}{3}\right)^{n-1}$ nên (p_n) là một cấp số nhân với $p_1=3, q=\frac{4}{3}$.

$$\text{Vì } p_n > 0 \text{ và } \frac{p_{n+1}}{p_n} = \frac{3. \left(\frac{4}{3}\right)^n}{3. \left(\frac{4}{3}\right)^{n-1}} = \frac{4}{3} > 1 \text{ nên } p_{n+1} > p_n. \text{ Vậy } (p_n) \text{ là dãy số tăng và }$$

 p_n có thể lớn bao nhiều tuỳ ý (điều này sẽ thấy rõ hơn ở chương sau).

4. Dãy số (S_n) có

$$S_{n+1} = S_n + C_n \cdot a_{n+1}^2 \cdot \frac{\sqrt{3}}{4} = S_n + 3.4^{n-1} \cdot \frac{1}{3^{2n}} \cdot \frac{\sqrt{3}}{4}$$

hay
$$S_{n+1} = S_n + \frac{3\sqrt{3}}{16} \cdot \left(\frac{4}{9}\right)^n$$
.

Từ đây có thể suy ra

$$S_n = \frac{\sqrt{3}}{16} + \frac{3\sqrt{3}}{16} \left[1 + \frac{4}{9} + \left(\frac{4}{9} \right)^2 + \dots + \left(\frac{4}{9} \right)^{n-1} \right] = \frac{\sqrt{3}}{16} + \frac{3\sqrt{3}}{16} \cdot \frac{\left\lfloor 1 - \left(\frac{4}{9} \right)^n \right\rfloor}{1 - \frac{4}{9}} < \frac{2\sqrt{3}}{5}.$$

Dãy số (S_n) bị chặn trên.

Điều thú vị của dãy vôn Kốc là ở chỗ chu vi p_n có thể lớn tuỳ ý với n đủ lớn, trong khi diện tích S_n lại bị chặn (!)

Các nhà toán học đã cố gắng mô tả hình dạng của các Fractal từ hơn một trăm năm qua. Với khả năng của các máy tính hiện đại, Fractal đã trở thành một đề tài được quan tâm đặc biệt, bởi chúng có thể được diễn tả bằng kĩ thuật số và được khám phá qua mọi vẻ đẹp hấp dẫn của chúng. Fractal đang được sử dụng như một phương tiện hỗ trợ cho Toán học và nó cũng thể hiện được những nét đẹp văn hoá trong và ngoài hành tinh thông qua nền công nghiệp điện ảnh.

Ôn tập chương III

- 1. Khi nào thì cấp số công là dãy số tăng, dãy số giảm?
- Cho cấp số nhân có $u_1 < 0$ và công bội q. Hỏi các số hạng khác sẽ mang 2. dấu gì trong các trường hợp sau:
 - a) q > 0?

- b) q < 0?
- Cho hai cấp số cộng có cùng số các số hạng. Tổng các số hạng tương ứng 3. của chúng có lập thành cấp số công không ? Vì sao ? Cho một ví du minh hoa.
- Cho hai cấp số nhân có cùng số các số hạng. Tích các số hạng tương ứng của 4. chúng có lập thành cấp số nhân không ? Vì sao ? Cho một ví du minh hoa.
- Chứng minh rằng với mọi $n \in \mathbb{N}^*$, ta có: 5.

 - a) $13^n 1$ chia hết cho 6; b) $3n^3 + 15n$ chia hết cho 9.
- Cho dãy số (u_n) , biết $u_1 = 2$, $u_{n+1} = 2u_n 1$ (với $n \ge 1$).
 - a) Viết năm số hang đầu của dãy.
 - b) Chứng minh $u_n = 2^{n-1} + 1$ bằng phương pháp quy nap.
- Xét tính tăng, giảm và bị chặn của các dãy số (u_n) , biết : 7.
 - a) $u_n = n + \frac{1}{n}$;

b) $u_n = (-1)^{n-1} \sin \frac{1}{n}$;

- c) $u_n = \sqrt{n+1} \sqrt{n}$.
- Tìm số hạng đầu u_1 và công sai d của các cấp số cộng (u_n) , biết : 8.
 - a) $\begin{cases} 5u_1 + 10u_5 = 0 \\ S_4 = 14 \end{cases}$

- b) $\begin{cases} u_7 + u_{15} = 60 \\ u_4^2 + u_{12}^2 = 1170. \end{cases}$
- Tìm số hạng đầu u_1 và công bội q của các cấp số nhân (u_n) , biết : 9.
 - a) $\begin{cases} u_6 = 192 \\ u_7 = 384 \end{cases}$:

- b) $\begin{cases} u_4 u_2 = 72 \\ u_5 u_3 = 144 \end{cases}$
- c) $\begin{cases} u_2 + u_5 u_4 = 10 \\ u_2 + u_6 u_5 = 20. \end{cases}$

- 10. Tứ giác ABCD có số đo (độ) của các góc lập thành một cấp số cộng theo thứ tự A, B, C, D. Biết rằng góc C gấp năm lần góc A. Tính các góc của tứ giác.
- **11.** Biết rằng ba số x, y, z lập thành một cấp số nhân và ba số x, 2y, 3z lập thành một cấp số cộng. Tìm công bội của cấp số nhân.
- **12.** Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích mặt đế tháp là 12 288 m². Tính diện tích mặt trên cùng.
- **13.** Chứng minh rằng nếu các số a^2 , b^2 , c^2 lập thành một cấp số cộng $(abc \neq 0)$ thì các số $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ cũng lập thành một cấp số cộng.

Bài tập trắc nghiệm

14.	4. Cho dãy số (u_n) , biết $u_n = 3^n$. Hãy chọn phương án đúng :						
	a) Số hạng u_{n+1} bằng :						
	(A) $3^n + 1$;	(B) $3^n + 3$;	(C) $3^n.3$;	(D) $3(n+1)$.			
	b) Số hạng u_{2n} bằng :						
	(A) 2.3^n ;	(B) 9^n ;	(C) $3^n + 3$;	(D) 6 <i>n</i> .			
	c) Số hạng u_{n-1} bằng :						
	(A) $3^n - 1$;	(B) $\frac{1}{3} \cdot 3^n$;	(C) $3^n - 3$;	(D) $3n - 1$.			
		3					

d) Số hạng u_{2n-1} bằng :

(A)
$$3^2 \cdot 3^n - 1$$
; (B) $3^n \cdot 3^{n-1}$; (C) $3^{2n} - 1$; (D) $3^{2(n-1)}$.

15. Hãy cho biết dãy số (u_n) nào dưới đây là dãy số tăng, nếu biết công thức số hạng tổng quát u_n của nó là :

(A)
$$(-1)^{n+1} \cdot \sin \frac{\pi}{n}$$
; (B) $(-1)^{2n} (5^n + 1)$;
(C) $\frac{1}{\sqrt{n+1} + n}$; (D) $\frac{n}{n^2 + 1}$.

16. Cho cấp số cộng -2, x, 6, y. Hãy chọn kết quả đúng trong các kết quả sau :

(A)
$$x = -6$$
, $y = -2$;

(B)
$$x = 1, y = 7$$
;

(C)
$$x = 2$$
, $y = 8$;

(D)
$$x = 2$$
, $y = 10$.

17. Cho cấp số nhân -4, x, -9. Hãy chọn kết quả đúng trong các kết quả sau :

(A)
$$x = 36$$
;

(B)
$$x = -6.5$$
;

(C)
$$x = 6$$
;

(D)
$$x = -36$$
.

18. Cho cấp số cộng (u_n) . Hãy chọn hệ thức đúng trong các hệ thức sau :

(A)
$$\frac{u_{10} + u_{20}}{2} = u_5 + u_{10}$$
;

(B)
$$u_{90} + u_{210} = 2u_{150}$$
;

(C)
$$u_{10} . u_{30} = u_{20}$$
;

(D)
$$\frac{u_{10}.u_{30}}{2} = u_{20}.$$

19. Trong các dãy số cho bởi các công thức truy hồi sau, hãy chọn dãy số là cấp số nhân:

(A)
$$\begin{cases} u_1 = 2 \\ u_{n+1} = u_n^2 \end{cases}$$
;

(B)
$$\begin{cases} u_1 = -1 \\ u_{n+1} = 3u_n \end{cases}$$
;

(C)
$$\begin{cases} u_1 = -3 \\ u_{n+1} = u_n + 1 \end{cases}$$
;

(D) 7, 77, 777, ...,
$$\underbrace{777...7}_{n \text{ chữ số 7}}$$
.

Chương này cung cấp những kiến thức mở đầu về *Giải tích.* Nội dung của chương xoay quanh hai khái niệm cơ bản là *giới hạn và liên tục.*

Chính những khái niệm và các phép toán về giới hạn và liên tục là cơ sở cho việc nghiên cứu các nội dung khác của *Giải tích (Đạo hàm, Tích phân, ...)*. Đặc biệt, chúng sẽ cho phép giải quyết nhiều bài toán của khoa học và thực tiễn, mà ta không thể giải quyết được nếu chỉ dùng các kiến thức của Đại số. Đó chính là những bài toán liên quan tới sự vô hạn.

NGHỊCH LÍ CỦA ZÊ-NÔNG (ZÉNON)

A-sin (Achille) – một lực sĩ trong thần thoại Hy Lạp, người được mệnh danh là "có đôi chân chạy nhanh như gió" đuổi theo một con rùa trên một đường thẳng. Nếu lúc xuất phát, rùa ở điểm A_1 cách A-sin một khoảng bằng a khác 0, thì mặc dù chạy nhanh hơn, A-sin cũng không bao giờ có thể đuổi kịp rùa.

Thật vậy, để đuổi kịp rùa, trước hết A-sin cần đi đến điểm xuất phát A_1 của rùa. Nhưng trong khoảng thời gian đó, rùa đã đi đến một điểm A_2 khác. Để đuổi tiếp A-sin lại phải đến được điểm A_2 này. Khi A-sin đi đến điểm A_2 thì rùa lại tiến lên điểm A_3 , ... Cứ như thế, A-sin không bao giờ đuổi kịp rùa.

Câu chuyện trên là nghịch lí nổi tiếng của Zê-nông (Zénon d'Élée 496 – 429 trước CN) – một triết gia Hy Lạp ở thành phố Edée, phía nam nước Ý bây giờ. Nghịch lí của ông góp phần thúc đẩy sự xuất hiện khái niệm giới hạn. Nhờ khái niệm giới hạn, con người có thể nghiên cứu các vấn đề liên quan tới sự vô hạn trong Giải tích.

GIỚI HẠN CỦA DÃY SỐ

I – GIỚI HẠN HỮU HẠN CỦA DÃY SỐ

Định nghĩa

Cho dãy số (u_n) với $u_n = \frac{1}{n}$.

Biểu diễn (u_n) dưới dạng khai triển : $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, ..., \frac{1}{100}, ...$

Biểu diễn (u_n) trên trục số (h.46) :

- a) Nhận xét xem khoảng cách từ u_n tới 0 thay đổi thế nào khi n trở nên rất lớn.
- b) Bắt đầu từ số hạng u_n nào của dãy số thì khoảng cách từ u_n đến 0 nhỏ hơn $0{,}01$? 0,001?

(Ta cũng chứng minh được rằng $\left|u_n\right|=rac{1}{n}$ có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là $\left|u_n\right|$ có thể nhỏ bao nhiều cũng được miễn là chọn n đủ lớn. Khi đó, ta nói dãy số (u_n) với $u_n = \frac{1}{n}$ có giới hạn là 0 khi n dần tới dương vô cực).

ĐỊNH NGHĨA 1

Ta nói dãy số (u_n) **có giới hạn là 0** khi n dần tới dương vô cực, nếu $|u_n|$ có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi. Kí hiệu : $\lim_{n \to +\infty} u_n = 0$ hay $u_n \to 0$ khi $n \to +\infty$.

Như vậy, (u_n) có giới hạn là 0 khi $n \to +\infty$ nếu u_n có thể gần 0 bao nhiều cũng được, miễn là n đủ lớn.

$$Vi d\mu 1$$
. Cho dãy số (u_n) với $u_n = \frac{(-1)^n}{n^2}$.

Biểu diễn (u_n) trên trục số (h.47):

Hình 47

Người ta chứng minh được rằng $\lim_{n\to +\infty} u_n = 0$, nghĩa là $|u_n|$ có thể *nhỏ hơn* môt số dương bất kì, kể từ một số hang nào đó trở đi.

Chẳng hạn:

$$\left| u_n \right| = \left| \frac{(-1)^n}{n^2} \right| = \frac{1}{n^2} < 0.01 \text{ hay } \left| u_n \right| = \frac{1}{n^2} < \frac{1}{100}$$

với mọi n thoả mãn $n^2 > 100$ hay n > 10.

Nói cách khác, $|u_n| < 0.01$ kể từ số hạng thứ 11 trở đi.

Tương tư,

$$\left|u_n\right| = \frac{1}{n^2} < 0,000 \ 01 \ \text{hay} \ \left|u_n\right| = \frac{1}{n^2} < \frac{1}{100000}$$

với mọi *n* thoả mãn $n^2 > 100\ 000\ \text{hay } n > \sqrt{100\ 000} \approx 316,2$.

Vậy $|u_n| < 0.000 01$ kể từ số hạng thứ 317 trở đi.

ĐINH NGHĨA 2

Ta nói dãy số (v_n) có giới hạn là số a (hay v_n dần tới a) khi $n \to +\infty$, nếu $\lim_{n \to +\infty} (v_n - a) = 0$. Kí hiệu : $\lim_{n \to +\infty} v_n = a$ hay $v_n \to a$ khi $n \to +\infty$.

Kí hiệu:
$$\lim_{n \to +\infty} v_n = a$$
 hay $v_n \to a$ khi $n \to +\infty$.

$$Vi \ d\mu \ 2$$
. Cho dãy số (v_n) với $v_n = \frac{2n+1}{n}$. Chứng minh rằng $\lim_{n \to +\infty} v_n = 2$.

Giải. Ta có
$$\lim_{n\to +\infty} (v_n-2) = \lim_{n\to +\infty} \left(\frac{2n+1}{n}-2\right) = \lim_{n\to +\infty} \frac{1}{n} = 0.$$

Vậy
$$\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \frac{2n+1}{n} = 2$$
.

Một vài giới han đặc biệt 2.

Từ đinh nghĩa suy ra các kết quả sau:

- a) $\lim_{n \to +\infty} \frac{1}{n} = 0$; $\lim_{n \to +\infty} \frac{1}{n^k} = 0$ với k nguyên dương;
- b) $\lim_{n \to +\infty} q^n = 0 \text{ n\'eu } |q| < 1;$
- c) Nếu $u_n = c$ (c là hằng số) thì $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} c = c$.

CHÚ Ý

Từ nay về sau thay cho $\lim_{n\to +\infty} u_n = a$, ta viết tắt là $\lim u_n = a$.

II – ĐINH LÍ VỀ GIỚI HAN HỮU HAN

Việc tìm giới hạn bằng định nghĩa khá phức tạp nên người ta thường áp dụng các công thức giới han đặc biệt nêu trên và định lí sau đây mà ta thừa nhân.

ĐINH LÍ 1

a) Nếu
$$\lim u_n = a$$
 và $\lim v_n = b$ thì

•
$$\lim (u_n + v_n) = a + b$$

•
$$\lim (u_n - v_n) = a - b$$

•
$$\lim(u_n.v_n) = a.b$$

a) Nếu
$$\lim u_n = a$$
 và $\lim v_n = b$ thì

• $\lim (u_n + v_n) = a + b$

• $\lim (u_n - v_n) = a - b$

• $\lim (u_n v_n) = a - b$

• $\lim \frac{u_n}{v_n} = \frac{a}{b}$ (nếu $b \neq 0$).

b) Nếu $u_n \geq 0$ với mọi n và $\lim u_n = a$ thì

$$a \ge 0$$
 và $\lim \sqrt{u_n} = \sqrt{a}$.

Ví dụ 3. Tìm
$$\lim_{n \to \infty} \frac{3n^2 - n}{1 + n^2}$$
.

Giải. Chia tử số và mẫu số cho
$$n^2$$
, ta được
$$\frac{3n^2 - n}{1 + n^2} = \frac{3 - \frac{1}{n}}{\frac{1}{n} \cdot \frac{1}{n} + 1}.$$

Vì
$$\lim \left(3 - \frac{1}{n}\right) = \lim 3 - \lim \frac{1}{n} = 3 - 0 = 3$$

và
$$\lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{1}{n} + 1 \right) = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 1 = 0.0 + 1 = 1$$

nên
$$\lim \frac{3n^2 - n}{1 + n^2} = \lim \frac{3 - \frac{1}{n}}{\frac{1}{n} \cdot \frac{1}{n} + 1} = \frac{\lim \left(3 - \frac{1}{n}\right)}{\lim \left(\frac{1}{n} \cdot \frac{1}{n} + 1\right)} = \frac{3}{1} = 3.$$

Ví dụ 4. Tìm
$$\lim \frac{\sqrt{1+4n^2}}{1-2n}$$
.

Giải. Ta có
$$\lim \frac{\sqrt{1+4n^2}}{1-2n} = \lim \frac{\sqrt{n^2 \left(\frac{1}{n^2} + 4\right)}}{1-2n}$$

$$= \lim \frac{n\sqrt{\frac{1}{n^2} + 4}}{n\left(\frac{1}{n} - 2\right)} = \lim \frac{\sqrt{\frac{1}{n^2} + 4}}{\frac{1}{n} - 2} = \frac{2}{-2} = -1. \quad \blacksquare$$

III – TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN

• Cấp số nhân vô hạn (u_n) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.

Chẳng hạn, hai dãy số sau là những cấp số nhân lùi vô hạn :

- Dãy số
$$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ..., \frac{1}{2^n}, ...$$
 với công bội $q = \frac{1}{2}$;

- Dãy số 1,
$$-\frac{1}{3}$$
, $\frac{1}{9}$, $-\frac{1}{27}$, $\frac{1}{81}$, ..., $\left(-\frac{1}{3}\right)^{n-1}$, ... với công bội $q = -\frac{1}{3}$.

• Cho cấp số nhân lùi vô hạn (u_n) có công bội q. Khi đó,

$$S_n = u_1 + u_2 + u_3 + \dots + u_n = \frac{u_1(1 - q^n)}{1 - q} = \frac{u_1}{1 - q} - \left(\frac{u_1}{1 - q}\right) \cdot q^n.$$

Vì |q| < 1 nên $\lim q^n = 0$. Từ đó ta có

$$\lim S_n = \lim \left[\frac{u_1}{1-q} - \left(\frac{u_1}{1-q} \right) q^n \right] = \frac{u_1}{1-q}.$$

Giới hạn này được gọi là *tổng của cấp số nhân lùi vô hạn* (u_n) và được kí hiệu là $S = u_1 + u_2 + u_3 + ... + u_n + ...$

Như vậy

$$S = \frac{u_1}{1 - q} \quad (|q| < 1).$$

Ví dụ 5

a) Tính tổng của cấp số nhân lùi vô hạn (u_n) , với $u_n = \frac{1}{3^n}$.

b) Tính tổng
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \left(-\frac{1}{2}\right)^{n-1} + \dots$$

Giải

a) Vì
$$u_n = \frac{1}{3^n}$$
 nên $u_1 = \frac{1}{3}$, $q = \frac{1}{3}$. Do đó

$$S = \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^n} + \dots = \frac{u_1}{1 - q} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}.$$

b) Các số hạng của tổng lập thành cấp số nhân lùi vô hạn với $u_1=1,$ $q=-\frac{1}{2}.$

Vậy
$$S = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \left(-\frac{1}{2}\right)^{n-1} + \dots$$
$$= \frac{u_1}{1 - q} = \frac{1}{1 - \left(-\frac{1}{2}\right)} = \frac{2}{3}. \quad \blacksquare$$

IV – GIỚI HẠN VÔ CỰC

1. Định nghĩa

Có nhiều tờ giấy giống nhau, mỗi tờ có bề dày là 0,1mm. Ta xếp chồng liên tiếp tờ này lên tờ khác (h.48). Giả sử có thể thực hiện việc xếp giấy như vậy một cách vô hạn.

Gọi u_1 là bề dày của một tờ giấy, u_2 là bề dày của một xếp giấy gồm hai tờ, u_3 là bề dày của một xếp giấy gồm ba tờ, ..., u_n là bề dày của một chồng giấy gồm n tờ. Tiếp tục như vậy, ta có được dãy số vô hạn (u_n) .

Bảng sau đây cho biết bề dày (tính theo mm) của một số chồng giấy.

Hình 48

u_1	•••	<i>u</i> ₁₀₀₀	 <i>u</i> _{1000 000}		<i>u</i> _{1000 000 000}		u_n	
0,1		100	 100 000	:	100 000 000	:	$\frac{n}{10}$	

- a) Quan sát bảng trên và nhận xét về giá trị của u_n khi n tăng lên vô hạn.
- b) Với n như thế nào thì ta đạt được những chồng giấy có bề dày lớn hơn khoảng cách từ Trái Đất tới Mặt Trăng? (Cho biết khoảng cách này ở một thời điểm xác định là $384\,000$ km hay 384.10^9 mm).

(Ta cũng chứng minh được rằng $u_n=\frac{n}{10}$ có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi. Khi đó, dãy số (u_n) nói trên được gọi là $d {\mathring{a}} n \ tới \ dương vô cực, khi <math>n \to +\infty$).

ĐỊNH NGHĨA

• Ta nói dãy số (u_n) có giới hạn +∞ khi n → +∞, nếu u_n có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Kí hiệu: lim u_n = +∞ hay u_n → +∞ khi n → +∞.
• Dãy số (u_n) được gọi là có giới hạn -∞ khi n → +∞ nếu lim(-u_n) = +∞.

Kí hiệu: $\lim u_n = -\infty$ hay $u_n \to -\infty$ khi $n \to +\infty$.

NHẬN XÉT

$$\lim u_n = +\infty \iff \lim (-u_n) = -\infty$$
.

 $Vi d\mu 6$. Cho dãy số (u_n) với $u_n = n^2$.

Hình 49 cho một biểu diễn các số hạng của (u_n) trên trục số.

Hình 49

Biểu diễn hình học này cho thấy, khi n tăng lên vô hạn thì u_n trở nên rất lớn. Hơn nữa, người ta chứng minh được rằng $\lim u_n = +\infty$, nghĩa là u_n có thể lớn hơn một số dương bất kì, kể từ một số hang nào đó trở đi.

Chẳng hạn, $u_n > 10\,000$, hay $n^2 > 10\,000$ khi n > 100.

Vậy $u_n > 10\,000$ kể từ số hạng thứ 101 trở đi.

Tương tự, $u_n > 10^{20}$ hay $n^2 > 10^{20}$ khi $n > 10^{10}$.

Vậy $u_n > 10^{20}$ kể từ số hạng thứ $10^{10} + 1$.

2. Môt vài giới han đặc biệt

Ta thừa nhận các kết quả sau:

- a) $\lim n^k = +\infty$ với k nguyên dương;
- b) $\lim q^n = +\infty$ nếu q > 1.

3. Định lí

Ta thừa nhân đinh lí dưới đây.

ĐINH LÍ 2

- a) Nếu $\lim u_n = a$ và $\lim v_n = \pm \infty$ thì $\lim \frac{u_n}{v_n} = 0$. b) Nếu $\lim u_n = a > 0$, $\lim v_n = 0$ và $v_n > 0$ với mọi n thì $\lim \frac{u_n}{v_n} = +\infty$. c) Nếu $\lim u_n = +\infty$ và $\lim v_n = a > 0$ thì $\lim u_n v_n = +\infty$.

 $Vi d\mu 7$. Tim $\lim_{n \to 2^n} \frac{2n+5}{n}$.

Giải. Chia tử và mẫu cho n, ta được $\frac{2n+5}{n \cdot 3^n} = \frac{2+\frac{5}{n}}{3^n}$.

Vì $\lim \left(2 + \frac{5}{n}\right) = 2$ và $\lim 3^n = +\infty$ nên

$$\lim \frac{2n+5}{n \cdot 3^n} = \lim \frac{2+\frac{5}{n}}{3^n} = 0. \quad \blacksquare$$

 $Vi d\mu 8$. Tìm $\lim (n^2 - 2n - 1)$.

Giải. Ta có
$$n^2 - 2n - 1 = n^2 \left(1 - \frac{2}{n} - \frac{1}{n^2} \right)$$
.

Vì $\lim n^2 = +\infty$ và $\lim \left(1 - \frac{2}{n} - \frac{1}{n^2}\right) = 1 > 0$ nên

$$\lim n^2 \left(1 - \frac{2}{n} - \frac{1}{n^2} \right) = +\infty.$$

Vậy $\lim (n^2 - 2n - 1) = +\infty$. ■

Sau khi đã học về giới hạn của dãy số, ta có thể giải thích như thế nào về nghịch lí "A-sin không đuổi kịp rùa" ?

Để đơn giản, ở đây ta chỉ xét một trường hợp cụ thể (trường hợp tổng quát được giải quyết tương tự).

Giả sử tốc độ chạy của A-sin là 100 km/h, còn tốc độ chạy của rùa là 1 km/h. Lúc xuất phát, rùa ở điểm A_1 cách A-sin 100 km (h.50).

Hình 50

Ta tính thời gian A-sin đuổi rùa, bằng cách tính tổng thời gian A-sin chạy hết các quãng đường $OA_1,\ A_1A_2,\ A_2A_3,\ ...,\ A_{n-1}A_n,\ ...$ Nếu tổng này vô hạn thì A-sin không thể đuổi kịp được rùa, còn nếu nó hữu hạn thì đó chính là thời gian mà A-sin đuổi kịp rùa.

Để chạy hết quãng đường $OA_1=100({\rm km})$, A-sin phải mất thời gian $t_1=\frac{100}{100}=1({\rm h})$. Với thời gian t_1 này, rùa đã chạy được quãng đường $A_1A_2=1({\rm km})$.

Để chạy hết quãng đường $A_1A_2=1$ (km), A-sin phải mất thời gian $t_2=\frac{1}{100}$ (h). Với thời gian t_2 rùa đã chạy thêm được quãng đường $A_2A_3=\frac{1}{100}$ (km).

Tiếp tục như vậy, để chạy hết quãng đường $A_{n-1}A_n=\frac{1}{100^{n-2}}$ (km), A-sin phải mất thời gian $t_n=\frac{1}{100^{n-1}}$ (h).

Vậy tổng thời gian A-sin chạy hết các quãng đường $OA_1, A_1A_2, A_2A_3, ..., A_{n-1}A_n, ...$ là

$$T = 1 + \frac{1}{100} + \frac{1}{100^2} + \frac{1}{100^3} + \dots + \frac{1}{100^n} + \dots$$
 (h)

Đó là tổng của một cấp số nhân lùi vô hạn với $u_1 = 1$, công bội $q = \frac{1}{100}$, nên ta có

$$T = \frac{1}{1 - \frac{1}{100}} = \frac{100}{99} = 1\frac{1}{99}$$
 (h).

Như vậy, A-sin đuổi kịp rùa sau $1\frac{1}{qq}$ giờ.

Kết quả trên (đạt được nhờ áp dụng khái niệm giới hạn) cho phép giải thích nghịch lí của Zê-nông.

Bài tập

1. Có 1 kg chất phóng xạ độc hại. Biết rằng, cứ sau một khoảng thời gian T = 24 000 năm thì một nửa số chất phóng xạ này bị phân rã thành chất khác không độc hại đối với sức khoẻ của con người (T được gọi là chu kì bán rã).

Gọi u_n là khối lượng chất phóng xạ còn lại sau chu kì thứ n.

- a) Tìm số hạng tổng quát u_n của dãy số (u_n) .
- b) Chứng minh rằng (u_n) có giới hạn là 0.
- c) Từ kết quả câu b), chứng tỏ rằng sau một số năm nào đó khối lượng chất phóng xạ đã cho ban đầu không còn độc hại đối với con người, cho biết chất phóng xạ này sẽ không độc hại nữa nếu khối lượng chất phóng xạ còn lại bé hơn 10^{-6} g.
- **2.** Biết dãy số (u_n) thoả mãn $|u_n-1|<\frac{1}{n^3}$ với mọi n. Chứng minh rằng $\lim u_n=1$.
- 3. Tìm các giới hạn sau:

a)
$$\lim \frac{6n-1}{3n+2}$$
;
b) $\lim \frac{3n^2+n-5}{2n^2+1}$;

c)
$$\lim \frac{3^n + 5 \cdot 4^n}{4^n + 2^n}$$
; d) $\lim \frac{\sqrt{9n^2 - n + 1}}{4n - 2}$.

4. Để trang hoàng cho căn hộ của mình, chú chuột Mickey quyết định tô màu một miếng bìa hình vuông cạnh bằng 1. Nó tô màu xám các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3, ..., n, ..., trong đó cạnh của hình vuông kế tiếp bằng một nửa canh hình vuông trước đó (h.51).

Hình 51

Giả sử quy trình tô màu của Mickey có thể tiến ra vô hạn.

- a) Gọi u_n là diện tích của hình vuông màu xám thứ n. Tính u_1 , u_2 , u_3 và u_n .
- b) Tính $\lim S_n$ với $S_n = u_1 + u_2 + u_3 + ... + u_n$.
- 5. Tính tổng $S = -1 + \frac{1}{10} \frac{1}{10^2} + \dots + \frac{(-1)^n}{10^{n-1}} + \dots$
- **6.** Cho số thập phân vô hạn tuần hoàn $a = 1,020\ 202...$ (chu kì là 02). Hãy viết a dưới dạng một phân số.
- 7. Tính các giới hạn sau:

a)
$$\lim (n^3 + 2n^2 - n + 1)$$
;

b)
$$\lim (-n^2 + 5n - 2)$$
;

c)
$$\lim \left(\sqrt{n^2 - n} - n\right)$$
;

d)
$$\lim(\sqrt{n^2 - n} + n)$$
.

8. Cho hai dãy số (u_n) và (v_n) . Biết $\lim u_n = 3$, $\lim v_n = +\infty$.

Tính các giới hạn:

a)
$$\lim \frac{3u_n - 1}{u_n + 1}$$
;

b)
$$\lim \frac{v_n + 2}{v_n^2 - 1}$$
.

I – GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI MỘT ĐIỂM

1. Định nghĩa

1. Cho biến x những giá trị khác 1 lập thành dãy số $(x_n), x_n \to 1$ như trong bảng sau :

х	$x_1 = 2$	$x_2 = \frac{3}{2}$	$x_3 = \frac{4}{3}$	$x_4 = \frac{5}{4}$	 $x_n = \frac{n+1}{n}$		→ 1
f(x)	$f(x_1)$	$f(x_2)$	$f(x_3)$	$f(x_4)$	 $f(x_n)$	•••	→ ?

Khi đó, các giá trị tương ứng của hàm số

$$f(x_1), f(x_2), ..., f(x_n), ...$$

cũng lập thành một dãy số mà ta kí hiệu là $(f(x_n))$.

- a) Chứng minh rằng $f(x_n) = 2x_n = \frac{2n+2}{n}$.
- b) Tìm giới hạn của dãy số $(f(x_n))$.
- 2. Chứng minh rằng với dãy số bất kì (x_n) , $x_n \neq 1$ và $x_n \to 1$, ta luôn có $f(x_n) \to 2$.

(Với tính chất thể hiện trong câu 2, ta nói hàm số $f(x) = \frac{2x^2 - 2x}{x - 1}$ có giới hạn là 2 khi x dần tới 1).

Dưới đây, thay cho các khoảng (a;b), $(-\infty;b)$, $(a;+\infty)$ hoặc $(-\infty;+\infty)$, ta viết chung là khoảng K.

ĐINH NGHĨA 1

Tho khoảng K chứa điểm x_0 và hàm số y = f(x) xác định trên

K hoặc trên $K \setminus \{x_0\}$.

Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới x_0 nếu với dãy số (x_n) bất kì, $x_n \in K \setminus \{x_0\}$ và $x_n \to x_0$, ta có $f(x_n) \to L$.

Kí hiệu: $\lim_{x \to x_0} f(x) = L$ hay $f(x) \to L$ khi $x \to x_0$.

Kí hiệu:
$$\lim_{x \to x_0} f(x) = L \text{ hay } f(x) \to L \text{ khi } x \to x_0.$$

Ví dụ 1. Cho hàm số $f(x) = \frac{x^2 - 4}{x + 2}$. Chứng minh rằng $\lim_{x \to -2} f(x) = -4$.

Giải. Hàm số đã cho xác đinh trên $\mathbb{R} \setminus \{-2\}$.

Giả sử (x_n) là một dãy số bất kì, thoả mãn $x_n \neq -2$ và $x_n \to -2$ khi $n \to +\infty$. Ta có

$$\lim f(x_n) = \lim \frac{x_n^2 - 4}{x_n + 2} = \lim \frac{(x_n + 2)(x_n - 2)}{(x_n + 2)} = \lim (x_n - 2) = -4.$$

Do đó
$$\lim_{x \to -2} f(x) = -4$$
.

(Lưu ý rằng, mặc dù f(x) không xác định tại x=-2, nhưng hàm số lại có giới hạn là -4 khi $x \rightarrow -2$).

NHẬN XÉT

$$\lim_{x \to x_0} x = x_0 ; \lim_{x \to x_0} c = c, \text{ với } c \text{ là hằng số.}$$

2. Định lí về giới han hữu han

Ta thừa nhân đinh lí sau đây.

ĐỊNH LÍ 1

a) Giả sử
$$\lim_{x \to x_0} f(x) = L$$
 và $\lim_{x \to x_0} g(x) = M$. Khi đó

•
$$\lim_{x \to x_0} \left[f(x) + g(x) \right] = L + M;$$

•
$$\lim_{x \to x_0} \left[f(x) - g(x) \right] = L - M;$$

•
$$\lim_{x \to x_0} [f(x).g(x)] = L.M ;$$

•
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{L}{M}$$
 (nếu $M \neq 0$).

b) Nếu
$$f(x) \ge 0$$
 và $\lim_{x \to x_0} f(x) = L$, thì

$$L \ge 0$$
 và $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{L}$.

(Dấu của f(x) được xét trên khoảng đang tìm giới hạn, với $x \neq x_0$).

Ví dụ 2. Cho hàm số
$$f(x) = \frac{x^2 + 1}{2\sqrt{x}}$$
. Tìm $\lim_{x \to 3} f(x)$.

Giải. Theo Định lí 1 ta có

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^2 + 1}{2\sqrt{x}} = \frac{\lim_{x \to 3} (x^2 + 1)}{\lim_{x \to 3} 2\sqrt{x}}$$

$$= \frac{\lim_{x \to 3} x^2 + \lim_{x \to 3} 1}{\lim_{x \to 3} 2 \cdot \lim_{x \to 3} \sqrt{x}} = \frac{\lim_{x \to 3} x \cdot \lim_{x \to 3} x + \lim_{x \to 3} 1}{\lim_{x \to 3} 2 \cdot \sqrt{\lim_{x \to 3} x}} = \frac{3 \cdot 3 + 1}{2\sqrt{3}} = \frac{5}{\sqrt{3}}.$$

Ví dụ 3. Tính $\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1}$.

Giải. Vì $(x-1) \rightarrow 0$ khi $x \rightarrow 1$, nên ta chưa thể áp dụng Định lí 1 nêu trên.

Nhưng với
$$x \ne 1$$
 ta có $\frac{x^2 + x - 2}{x - 1} = \frac{(x - 1)(x + 2)}{x - 1} = x + 2$.

Do đó,

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x - 1} = \lim_{x \to 1} (x + 2) = 3. \blacksquare$$

3. Giới han một bên

Trong Định nghĩa 1 về giới hạn hữu hạn của hàm số khi $x \to x_0$, ta xét dãy số (x_n) bất kì, $x_n \in (a; b) \setminus \{x_0\}$ và $x_n \to x_0$. Giá trị x_n có thể lớn hơn hay nhỏ hơn x_0 .

Nếu ta chỉ xét các dãy (x_n) mà x_n luôn lớn hơn x_0 (hay luôn nhỏ hơn x_0), thì ta có đinh nghĩa giới han một bên như dưới đây.

ĐINH NGHĨA 2

• Cho hàm số y = f(x) xác định trên khoảng $(x_0; b)$.

Cho ham so y = f(x) xac dịnh trên khoảng (x₀; b).
Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi x → x₀ nếu với dãy số (x_n) bất kì, x₀ < x_n < b và x_n → x₀, ta cố f(x_n) → L.
Kí hiệu: lim f(x) = L.
Cho hàm số y = f(x) xác định trên khoảng (a; x₀).
Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi x → x₀ nếu với dãy số (x_n) bất kì, a < x_n < x₀ và x_n → x₀, ta cố f(x_n) → L.
Kí hiệu: lim f(x) = L.
Kí hiệu: lim f(x) = L.

Kí hiệu:
$$\lim_{x \to x_0^+} f(x) = L$$
.

Kí hiệu:
$$\lim_{x \to x_0^-} f(x) = L$$
.

Ta thừa nhân đinh lí sau đây.

ĐINH LÍ 2

$$\lim_{x \to x_0} f(x) = L \text{ khi và chỉ khi } \lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = L.$$

Ví dụ 4. Cho hàm số
$$f(x) = \begin{cases} 5x + 2 & \text{nếu } x \ge 1 \\ x^2 - 3 & \text{nếu } x < 1. \end{cases}$$
 (1)

Tìm $\lim_{x\to 1^{-}} f(x)$, $\lim_{x\to 1^{+}} f(x)$ và $\lim_{x\to 1} f(x)$ (nếu có).

Giải. Ta có,
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} - 3) = 1^{2} - 3 = -2$$
;

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (5x + 2) = 5.1 + 2 = 7.$$

Như vậy, khi x dần tới 1 hàm số y = f(x) có giới hạn bên trái là -2 và giới hạn bên phải là 7. Tuy nhiên, $\lim_{x \to 1} f(x)$ không tồn tại vì $\lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$.

Trong biểu thức (1) xác định hàm số y = f(x) ở Ví dụ 4, cần thay số 2 bằng số nào để hàm số có giới hạn là -2 khi $x \to 1$?

II – GIỚI HẠN HỮU HẠN CỦA HÀM SỐ TẠI VÔ CỰC

Cho hàm số $f(x) = \frac{1}{x-2}$ có đồ thị như ở Hình 52

Hình 52

Quan sát đồ thị và cho biết :

- Khi biến x dần tới dương vô cực, thì f(x) dần tới giá trị nào.
- Khi biến x dần tới âm vô cực, thì f(x) dần tới giá trị nào.

ĐỊNH NGHĨA 3

a) Cho hàm số y = f(x) xác định trên khoảng $(a; +\infty)$.

Ta nói hàm số y = f(x) xác định tiên khoảng $(u, +\infty)$.

Ta nói hàm số y = f(x) có giới hạn là số L khi $x \to +\infty$ nếu với dãy số (x_n) bất kì, $x_n > a$ và $x_n \to +\infty$, ta có $f(x_n) \to L$.

Kí hiệu: $\lim_{x \to +\infty} f(x) = L$ hay $f(x) \to L$ khi $x \to +\infty$.

b) Cho hàm số y = f(x) xác định trên khoảng $(-\infty; a)$.

Ta nói hàm số y = f(x) có giới hạn là số L khi $x \to -\infty$ nếu với dãy số (x_n) bất kì, $x_n < a$ và $x_n \to -\infty$, ta có $f(x_n) \to L$.

Kí hiệu: $\lim_{x \to -\infty} f(x) = L$ hay $f(x) \to L$ khi $x \to -\infty$.

$$Vi du 5$$
. Cho hàm số $f(x) = \frac{2x+3}{x-1}$. Tìm $\lim_{x \to -\infty} f(x)$ và $\lim_{x \to +\infty} f(x)$.

Giải. Hàm số đã cho xác định trên $(-\infty; 1)$ và trên $(1; +\infty)$.

• Giả sử (x_n) là một dãy số bất kì, thoả mãn $x_n < 1$ và $x_n \to -\infty$.

Ta có
$$\lim f(x_n) = \lim \frac{2x_n + 3}{x_n - 1} = \lim \frac{2 + \frac{3}{x_n}}{1 - \frac{1}{x_n}} = 2.$$

Vậy
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2x+3}{x-1} = 2.$$

• Giả sử (x_n) là một dãy số bất kì, thoả mãn $x_n > 1$ và $x_n \to +\infty$.

Ta có
$$\lim f(x_n) = \lim \frac{2x_n + 3}{x_n - 1} = \lim \frac{2 + \frac{3}{x_n}}{1 - \frac{1}{x_n}} = 2.$$

Vậy
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x+3}{x-1} = 2.$$

CHÚ Ý

a) Với c, k là các hằng số và k nguyên dương, ta luôn có :

$$\lim_{x \to +\infty} c = c \; ; \; \lim_{x \to -\infty} c = c \; ; \; \lim_{x \to +\infty} \frac{c}{x^k} = 0 \; ; \; \lim_{x \to -\infty} \frac{c}{x^k} = 0.$$

b) Đinh lí 1 về giới hạn hữu hạn của hàm số khi $x \to x_0$ vẫn còn đúng khi $x \to +\infty$ hoặc $x \to -\infty$.

Ví dụ 6. Tìm
$$\lim_{x \to +\infty} \frac{3x^2 - 2x}{x^2 + 1}$$
.

Giải. Chia cả tử và mẫu cho x^2 , ta có

$$\lim_{x \to +\infty} \frac{3x^2 - 2x}{x^2 + 1} = \lim_{x \to +\infty} \frac{3 - \frac{2}{x}}{1 + \frac{1}{x^2}} = \frac{\lim_{x \to +\infty} \left(3 - \frac{2}{x}\right)}{\lim_{x \to +\infty} \left(1 + \frac{1}{x^2}\right)} = \frac{\lim_{x \to +\infty} 3 - \lim_{x \to +\infty} \frac{2}{x}}{\lim_{x \to +\infty} 1 + \lim_{x \to +\infty} \frac{1}{x^2}}$$
$$= \frac{3 - 0}{1 + 0} = 3. \quad \blacksquare$$

III – GIỚI HAN VÔ CỰC CỦA HÀM SỐ

1. Giới han vô cực

Các định nghĩa về giới hạn $+\infty$ (hoặc $-\infty$) của hàm số được phát biểu tương tự các định nghĩa 1, 2 hay 3 ở trên.

Chẳng hạn, giới hạn $-\infty$ của hàm số y = f(x) khi x dần tới dương vô cực được đinh nghĩa như dưới đây.

ĐINH NGHĨA 4

Cho hàm số y = f(x) xác định trên khoảng $(a; +\infty)$.

Ta nói hàm số y = f(x) có giới hạn là $-\infty$ khi $x \to +\infty$ nếu với dãy số (x_n) bất kì, $x_n > a$ và $x_n \to +\infty$, ta có $f(x_n) \to -\infty$. Kí hiệu: $\lim_{x \to +\infty} f(x) = -\infty$ hay $f(x) \to -\infty$ khi $x \to +\infty$.

Kí hiệu:
$$\lim_{x \to +\infty} f(x) = -\infty$$
 hay $f(x) \to -\infty$ khi $x \to +\infty$.

NHẬN XÉT

$$\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \lim_{x \to +\infty} (-f(x)) = -\infty.$$

2. Một vài giới hạn đặc biệt

- a) $\lim_{x \to +\infty} x^k = +\infty$ với k nguyên dương.
- b) $\lim_{x \to -\infty} x^k = -\infty$ nếu k là số lẻ.
- c) $\lim_{x \to -\infty} x^k = +\infty$ nếu k là số chẩn.

3. Một vài quy tắc về giới hạn vô cực

Định lí về giới hạn của tích và thương hai hàm số chỉ áp dụng được khi tất cả các hàm số được xét có giới han hữu han.

Sau đây là một vài quy tắc tính giới hạn của tích và thương hai hàm số khi một trong hai hàm số đó có giới hạn vô cực.

a) Quy tắc tìm giới hạn của tích f(x).g(x)

Nếu
$$\lim_{x \to x_0} f(x) = L \neq 0$$
 và $\lim_{x \to x_0} g(x) = +\infty$ (hoặc $-\infty$) thì $\lim_{x \to x_0} f(x)g(x)$

được tính theo quy tắc cho trong bảng sau:

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} f(x)g(x)$
L > 0	+∞	+∞
L>0	-∞	$-\infty$
L < 0	+∞	-∞
LVO	-∞	+∞

b) Quy tắc tìm giới hạn của thương $\frac{f(x)}{g(x)}$

$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	Dấu của g(x)	$\lim_{x \to x_0} \frac{f(x)}{g(x)}$
L	±∞	Tuỳ ý	0
L > 0		+	+∞
L>0	0	_	-∞
L < 0		+	-∞
$L \setminus 0$		_	+∞

(Dấu của g(x) xét trên một khoảng K nào đó đang tính giới hạn, với $x \neq x_0$).

CHÚ Ý

Các quy tắc trên vẫn đúng cho các trường hợp $x \to x_0^+, x \to x_0^-, x \to +\infty$ và $x \to -\infty$.

Ví dụ 7. Tìm $\lim_{x \to -\infty} (x^3 - 2x)$.

Giải. Ta có
$$(x^3 - 2x) = x^3 \left(1 - \frac{2}{x^2}\right)$$
.

$$\operatorname{Vi}_{x \to -\infty} \lim_{x \to -\infty} x^3 = -\infty \operatorname{và}_{x \to -\infty} \left(1 - \frac{2}{x^2} \right) = 1 > 0 \text{ nên } \lim_{x \to -\infty} x^3 \left(1 - \frac{2}{x^2} \right) = -\infty.$$

$$V_{ay}^{2} \lim_{x \to -\infty} (x^3 - 2x) = \lim_{x \to -\infty} x^3 \left(1 - \frac{2}{x^2} \right) = -\infty. \blacksquare$$

Ví dụ 8. Tính các giới hạn sau :

a)
$$\lim_{x \to 1^{-}} \frac{2x-3}{x-1}$$
;

b)
$$\lim_{x \to 1^+} \frac{2x - 3}{x - 1}$$
.

Giải

a) Ta có
$$\lim_{x\to 1^{-}} (x-1) = 0$$
, $x-1 < 0$ với mọi $x < 1$ và

$$\lim_{x \to 1^{-}} (2x - 3) = 2.1 - 3 = -1 < 0.$$

Do đó,
$$\lim_{x \to 1^{-}} \frac{2x - 3}{x - 1} = +\infty$$
.

b) Ta có $\lim_{x \to 1^{+}} (x - 1) = 0$, x - 1 > 0 với mọi x > 1 và

$$\lim_{x \to 1^+} (2x - 3) = 2.1 - 3 = -1 < 0.$$

Do đó,
$$\lim_{x \to 1^+} \frac{2x - 3}{x - 1} = -\infty$$
.

Bài tâp

- Dùng đinh nghĩa, tìm các giới han sau: 1.
 - a) $\lim_{x \to 4} \frac{x+1}{3x-2}$;

b) $\lim_{x \to +\infty} \frac{2 - 5x^2}{x^2 + 3}$.

2. Cho hàm số

$$f(x) = \begin{cases} \sqrt{x} + 1 \text{ n\'eu } x \ge 0\\ 2x & \text{n\'eu } x < 0 \end{cases}$$

và các dãy số (u_n) với $u_n = \frac{1}{n}$, (v_n) với $v_n = -\frac{1}{n}$.

Tính $\lim u_n$, $\lim v_n$, $\lim f(u_n)$ và $\lim f(v_n)$.

Từ đó có kết luân gì về giới han của hàm số đã cho khi $x \to 0$?

3. Tính các giới hạn sau:

a)
$$\lim_{x \to -3} \frac{x^2 - 1}{x + 1}$$

b)
$$\lim_{x \to -2} \frac{4 - x^2}{x + 2}$$

a)
$$\lim_{x \to -3} \frac{x^2 - 1}{x + 1}$$
; b) $\lim_{x \to -2} \frac{4 - x^2}{x + 2}$; c) $\lim_{x \to 6} \frac{\sqrt{x + 3} - 3}{x - 6}$;

d)
$$\lim_{x \to +\infty} \frac{2x - 6}{4 - x}$$

e)
$$\lim_{x \to +\infty} \frac{17}{x^2 + 1}$$
;

d)
$$\lim_{x \to +\infty} \frac{2x-6}{4-x}$$
; e) $\lim_{x \to +\infty} \frac{17}{x^2+1}$; f) $\lim_{x \to +\infty} \frac{-2x^2+x-1}{3+x}$.

4. Tìm các giới hạn sau:

a)
$$\lim_{x \to 2} \frac{3x - 5}{(x - 2)^2}$$

b)
$$\lim_{x \to 1^{-}} \frac{2x - 7}{x - 1}$$
;

a)
$$\lim_{x \to 2} \frac{3x - 5}{(x - 2)^2}$$
; b) $\lim_{x \to 1^-} \frac{2x - 7}{x - 1}$; c) $\lim_{x \to 1^+} \frac{2x - 7}{x - 1}$.

Cho hàm số $f(x) = \frac{x+2}{x^2-9}$ có đồ thị như trên Hình 53.

Hình 53

- a) Quan sát đồ thị và nêu nhận xét về giá trị hàm số đã cho khi $x \to -\infty$, $x \to 3^- \text{ và } x \to -3^+.$
- b) Kiểm tra các nhận xét trên bằng cách tính các giới hạn sau:
- f(x) với f(x) được xét trên khoảng $(-\infty; -3)$,
- $\lim_{x \to \infty} f(x)$ với f(x) được xét trên khoảng (-3; 3), $x \rightarrow 3^{-}$
- $\lim_{x \to -3^{+}} f(x) \text{ với } f(x) \text{ được xét trên khoảng } (-3;3).$
- 6. Tính:

a)
$$\lim_{x \to +\infty} (x^4 - x^2 + x - 1)$$
;

b)
$$\lim_{x \to -\infty} (-2x^3 + 3x^2 - 5)$$
;

c)
$$\lim_{x \to -\infty} \sqrt{x^2 - 2x + 5}$$

c)
$$\lim_{x \to -\infty} \sqrt{x^2 - 2x + 5}$$
; d) $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1} + x}{5 - 2x}$.

Một thấu kính hội tụ có tiêu cự là f. Gọi d và d' lần lượt là khoảng cách từ một vật thất AB và từ ảnh A'B' của nó tới quang tâm O của thấu kính

(h.54). Công thức thấu kính là
$$\frac{1}{d} + \frac{1}{d'} = \frac{1}{f}$$
.

Hình 54

- a) Tìm biểu thức xác định hàm số $d' = \varphi(d)$.
- b) Tìm $\lim_{d\to f^+} \varphi(d)$, $\lim_{d\to f^-} \varphi(d)$ và $\lim_{d\to +\infty} \varphi(d)$. Giải thích ý nghĩa của các kết quả tìm được.

BAN CÓ BIẾT ?

Nhà bác học Anh Niu-tơn (Newton, 1642 – 1727) là người đầu tiên đề xuất thuật ngữ "giới hạn", dịch từ chữ La-tinh "Limes" có nghĩa là "bờ", "mép" hay "biên giới". Tuy nhiên, chính Giu-rin (Jurin, 1684 – 1750), sau đó Rô-bin (Robins, 1697 – 1751), Cô-si (Cauchy, 1789 – 1857) ... mới đưa ra các định nghĩa về khái niệm này.

Nhà toán học Đức Vai-ơ-xtrát (Weierstrass) đã trình bày một định nghĩa hiện đại về khái niệm giới hạn, gần giống với định nghĩa sau đây mà ngày nay vẫn thường được dùng trong toán học.

"Số b được gọi là giới hạn của hàm số y=f(x) khi $x\to a$, nếu với mỗi $\varepsilon>0$, tồn tại $\delta>0$ sao cho với $x\neq a$ và $|x-a|<\delta$ thì bất đẳng thức $|f(x)-b|<\varepsilon$ được thực hiện." (Từ điển toán học NXB KH&KT 1993).

Kí hiệu "lim" mà ta dùng ngày nay là do nhà toán học Thuỵ Sĩ Luy-lơ (L'Huiller, 1750 – 1840) đưa ra vào năm 1786.

Như vậy, khái niệm Giới hạn chỉ mới ra đời ở thế kỉ XVII. Tuy nhiên, tư tưởng "giới hạn" đã xuất hiện rất sớm ở nhiều nhà bác học thời cổ đại.

Weierstrass (1815 – 1897)

HÀM SỐ LIÊN TỤC

Cầu Đượr-so-vưi ở Xanh Pê-téc-bua (Nga) đang mở ra cho tàu qua lại.

I – HÀM SỐ LIÊN TỤC TẠI MỘT ĐIỂM

Cho hai hàm số $f(x) = x^2$ và $g(x) = \begin{cases} -x^2 + 2 \text{ nếu } x \le -1 \\ 2 \text{ nếu} - 1 < x < 1 \text{ có đồ thị như Hình 55.} \\ -x^2 + 2 \text{ nếu } x \ge 1 \end{cases}$

Đồ thị hàm số y = g(x)

Hình 55

a) Tính giá trị của mỗi hàm số tại x=1 và so sánh với giới hạn (nếu có) của hàm số đó khi $x\to 1$;

b) Nêu nhận xét về đồ thị của mỗi hàm số tại điểm có hoành độ x = 1. (Hàm số y = f(x) được gọi là *liên tục* tại x = 1 và hàm số y = g(x) không liên tục tại điểm này).

ĐINH NGHĨA 1

Cho hàm số y=f(x) xác định trên khoảng K và $x_0\in K$. Hàm số y=f(x) được gọi là *liên tục* tại x_0 nếu $\lim_{x\to x_0}f(x)=f(x_0)$.

Hàm số y = f(x) không liên tục tại x_0 được gọi là **gián đoạn** tại điểm đó.

Ví dụ 1. Xét tính liên tục của hàm số $f(x) = \frac{x}{x-2}$ tại $x_0 = 3$.

Giải. Hàm số y = f(x) xác định trên $\mathbb{R} \setminus \{2\}$, do đó xác định trên khoảng $(2; +\infty)$ chứa $x_0 = 3$.

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x}{x - 2} = 3 = f(3).$$

Vậy hàm số y = f(x) liên tục tại $x_0 = 3$. ■

II – HÀM SỐ LIÊN TỤC TRÊN MỘT KHOẢNG

ĐINH NGHĨA 2

Hàm số y = f(x) được gọi là *liên tục trên một khoảng* nếu nó

liên tục tại mọi điểm của khoảng đó.

Hàm số y = f(x) được gọi là *liên tục trên đoạn* [a;b] nếu nó liên tục trên khoảng (a;b) và $\lim_{x \to a^+} f(x) = f(a), \lim_{x \to b^-} f(x) = f(b).$

$$\lim_{x \to a^{+}} f(x) = f(a), \quad \lim_{x \to b^{-}} f(x) = f(b).$$

Khái niệm hàm số liên tục trên nửa khoảng, như $(a; b], [a; +\infty), ...$ được định nghĩa một cách tương tự.

NHẬN XÉT

Đồ thi của hàm số liên tục trên một khoảng là một "đường liền" trên khoảng đó (h.56).

Hình 56

Hình 57 cho ví dụ về đồ thị của một hàm số không liên tuc trên khoảng (a; b).

III – MÔT SỐ ĐINH LÍ CƠ BẢN

Ta thừa nhận các định lí sau đây.

ĐINH LÍ 1

- a) Hàm số đa thức liên tục trên toàn bô tập số thực \mathbb{R} .
- b) Hàm số phân thức hữu tỉ (thương của hai đa thức) và các hàm số lượng giác liên tục trên từng khoảng của tập xác đinh của chúng.

ĐỊNH LÍ 2

Giả sử y = f(x) và y = g(x) là hai hàm số liên tục tại điểm x_0 . Khi đó:

- a) Các hàm số y = f(x) + g(x), y = f(x) g(x) và y = f(x).g(x) liên tục tại x_0 ;
 b) Hàm số $y = \frac{f(x)}{g(x)}$ liên tục tại x_0 nếu $g(x_0) \neq 0$.

$$Vi du 2. \text{ Cho hàm số } h(x) = \begin{cases} \frac{2x^2 - 2x}{x - 1} & \text{nếu } x \neq 1 \\ 5 & \text{nếu } x = 1. \end{cases}$$

Xét tính liên tục của hàm số trên tập xác định của nó.

Giải. Tập xác định của hàm số là $\mathbb R$.

• Nếu
$$x \ne 1$$
, thì $h(x) = \frac{2x^2 - 2x}{x - 1}$.

Đây là hàm phân thức hữu tỉ có tập xác định là $(-\infty; 1) \cup (1; +\infty)$.

Vây nó liên tục trên mỗi khoảng $(-\infty; 1)$ và $(1; +\infty)$.

• Nếu x = 1, ta có h(1) = 5 và

$$\lim_{x \to 1} h(x) = \lim_{x \to 1} \frac{2x^2 - 2x}{x - 1} = \lim_{x \to 1} \frac{2x(x - 1)}{x - 1} = \lim_{x \to 1} 2x = 2.$$

Vì $\lim_{x\to 1} h(x) \neq h(1)$, nên hàm số đã cho không liên tục tại x=1.

Kết luận: Hàm số đã cho liên tục trên các khoảng $(-\infty; 1)$, $(1; +\infty)$ và gián đoạn tại x = 1.

Trong biểu thức xác định h(x) cho ở Ví dụ 2, cần thay số 5 bởi số nào để được một hàm số mới liên tục trên tập số thực $\mathbb R$?

Giả sử hàm số y = f(x) liên tục trên đoạn $[a \; ; \; b]$ với f(a) và f(b) trái dấu nhau. Hỏi đồ thị của hàm số có cắt trục hoành tại điểm thuộc khoảng $(a \; ; \; b)$ không ?

- Bạn Hưng trả lời rằng : "Đồ thị của hàm số y = f(x) phải cắt trục hoành Ox tại một điểm duy nhất nằm trong khoảng (a;b)".
- Bạn Lan khẳng định : "Đồ thị của hàm số y = f(x) phải cắt trục hoành Ox **ít nhất tại một điểm** nằm trong khoảng (a;b)".
- Bạn Tuấn thì cho rằng : "Đồ thị của hàm số y=f(x) có thể **không cắt** trục hoành trong khoảng $(a\ ;\ b)$, chẳng hạn như đường parabol ở hình (h.58).

Câu trả lời của bạn nào đúng, vì sao?

Hình 58

ĐINH LÍ 3

Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a)f(b) < 0, thì tồn tại ít nhất một điểm $c \in (a; b)$ sao cho f(c) = 0.

Minh hoạ bằng đồ thị (h.59).

3

Định lí 3 thường được áp dụng để chứng minh sự tồn tại nghiệm của phương trình trên một khoảng.

Có thể phát biểu Định lí 3 dưới một dạng khác như sau :

Nếu hàm số y = f(x) liên tục trên đoạn [a; b] và f(a)f(b) < 0, thì phương trình f(x) = 0 có ít nhất một nghiệm nằm trong khoảng (a; b).

Ví dụ 3. Chứng minh rằng phương trình $x^3 + 2x - 5 = 0$ có ít nhất một nghiệm. *Giải.* Xét hàm số $f(x) = x^3 + 2x - 5$.

Ta có f(0) = -5 và f(2) = 7. Do đó, f(0)f(2) < 0.

y = f(x) là hàm số đa thức nên liên tục trên \mathbb{R} . Do đó, nó liên tục trên đoạn [0;2]. Từ đó suy ra phương trình f(x) = 0 có ít nhất một nghiệm $x_0 \in (0;2)$.

CHÚ Ý

Nếu nhận xét thêm rằng f(1)f(2) = -14 < 0 thì ta có thể kết luận phương trình có ít nhất một nghiệm trong khoảng $(1; 2) \subset (0; 2)$.

Hãy tìm hai số a và b thoả mãn 1 < a < b < 2, sao cho phương trình trong Ví dụ 3 ở trên có ít nhất một nghiệm thuộc khoảng (a;b).

BÀI ĐỌC THÊM

TÍNH GẦN ĐÚNG NGHIỆM CỦA PHƯƠNG TRÌNH. PHƯƠNG PHÁP CHIA ĐÔI

• Trong Ví dụ 3 ở phần III, $\S 3$, ta đã chứng minh được rằng phương trình $x^3+2x-5=0$ có nghiệm x_0 thuộc khoảng (0 ; 2). Giả sử rằng đó là nghiệm duy nhất của phương trình trên khoảng này.

Bằng cách áp dụng liên tiếp Định lí 3, ta có thể tìm được các giá trị gần đúng của nghiệm x_0 . Ta làm như sau :

– Bước 1 : Lấy số $1=\frac{0+2}{2}$. Ta có, f(1)=-2. So sánh dấu của f(1) và dấu của giá trị hàm số tại hai đầu mút là f(0) và f(2), ta thấy : f(1).f(2)=-2.7<0. Do đó, phương trình f(x)=0 có nghiệm thuộc $(1\ ;\ 2)$. Như vậy, $x_0\in(1\ ;\ 2)$.

- Bước 2 : Lấy số
$$1.5 = \frac{1+2}{2}$$
 . Ta có, $f(1.5) = 1.375$ và $f(1).f(1.5) = -2.1.375 < 0$.

Do đó, f(x) = 0 có nghiệm thuộc (1 ; 1,5). Như vậy, $x_0 \in (1 ; 1,5)$.

- Bước 3 : Lấy số
$$1.25 = \frac{1+1.5}{2}$$
. Ta có, $f(1.25) = -0.546$ 875 và $f(1.25).f(1.5) < 0$.

Do đó, f(x) = 0 có nghiệm thuộc (1,25; 1,5). Như vậy, $x_0 \in (1,25; 1,5)$.

Bảng sau đây trình bày kết quả tính lần lượt của các bước 4, 5, 6, 7.

а	b	$\frac{a+b}{2}$	f(a)	f(b)	$f\left(\frac{a+b}{2}\right)$	Nghiệm x ₀
1,25	1,5	1,375	- 0,546 875	1,375	0,349609375	$1,25 < x_0 < 1,375$
1,25	1,375	1,3125	- 0,546 875	0,349609375	- 0,114013671875	$1,3125 < x_0 < 1,375$
1,3125	1,375	1,34375	-0,114013671875	0,349609375	0,113861083984375	1,3125 < x ₀ < 1,34375
1,3125	1,34375	1,328125	-0,114013671875	0,113861083984375	-0,001049041748046875	1,328125 < x ₀ < 1,34375

Nếu dừng ở bước 4, ta có $1,25 < x_0 < 1,375$. Như vậy, có thể có được các giá trị gần đúng của nghiệm x_0 . Chẳng hạn $\frac{1,25+1,375}{2}$ là một giá trị gần đúng của x_0 với sai số tuyệt đối $\Delta < \left| 1,375-1,25 \right| = 0,125$.

Khi dừng ở bước 7, ta có $1{,}328125 < x_0 < 1{,}343$ 75. Có thể lấy $x_0 \approx 1{,}335$ 937 5 với sai số tuyệt đối $\Delta < \lfloor 1{,}343$ 75 $- 1{,}328$ $125 \rfloor = 0{,}015$ 625.

Nếu tiếp tục quy trình trên, ta tìm được những giá trị gần đúng của x_0 với sai số càng ngày càng bé.

Chú ý. Trong quá trình tính toán, nếu có số
$$\frac{a+b}{2}$$
 nào đó mà $f\left(\frac{a+b}{2}\right)=0$, thì kết luận nghiệm $x_0=\frac{a+b}{2}$.

ullet Việc tìm giá trị gần đúng của nghiệm như trên sẽ dễ dàng hơn nếu sử dụng máy tính bỏ túi. Đặc biệt, máy tính bỏ túi có chức năng lập trình hay máy vi tính có thể cho phép tính một cách tự động và nhanh chóng giá trị gần đúng của nghiệm với sai số Δ rất bé.

Bài tập

1. Dùng định nghĩa xét tính liên tục của hàm số $f(x) = x^3 + 2x - 1$ tại $x_0 = 3$.

2. a) Xét tính liên tục của hàm số y = g(x) tại $x_0 = 2$, biết

$$g(x) = \begin{cases} \frac{x^3 - 8}{x - 2} & \text{n\'eu } x \neq 2\\ 5 & \text{n\'eu } x = 2. \end{cases}$$

- b) Trong biểu thức xác định g(x) ở trên, cần thay số 5 bởi số nào để hàm số liên tục tại $x_0 = 2$.
- 3. Cho hàm số $f(x) = \begin{cases} 3x + 2 & \text{nếu } x < -1 \\ x^2 1 & \text{nếu } x \ge -1. \end{cases}$
 - a) Vẽ đồ thị của hàm số y = f(x). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó.
 - b) Khẳng định nhận xét trên bằng một chứng minh.
- 4. Cho các hàm số $f(x) = \frac{x+1}{x^2 + x 6}$ và $g(x) = \tan x + \sin x$.

Với mỗi hàm số, hãy xác định các khoảng trên đó hàm số liên tục.

5. Ý kiến sau đúng hay sai?

"Nếu hàm số y = f(x) liên tục tại điểm x_0 còn hàm số y = g(x) không liên tục tại x_0 , thì y = f(x) + g(x) là một hàm số không liên tục tại x_0 ."

- 6. Chứng minh rằng phương trình:
 - a) $2x^3 6x + 1 = 0$ có ít nhất hai nghiêm;
 - b) $\cos x = x$ có nghiệm.

Ôn tập chương IV

- 1. Hãy lập bảng liệt kê các giới hạn đặc biệt của dãy số và các giới hạn đặc biệt của hàm số.
- **2.** Cho hai dãy số (u_n) và (v_n) . Biết $|u_n-2| \le v_n$ với mọi n và $\lim v_n=0$. Có kết luận gì về giới hạn của dãy số (u_n) ?
- **3.** Tên của một học sinh được mã hoá bởi số 1530. Biết rằng mỗi chữ số trong số này là giá trị của một trong các biểu thức *A*, *H*, *N*, *O* với :

$$A = \lim \frac{3n-1}{n+2} ; \qquad H = \lim \left(\sqrt{n^2 + 2n} - n \right);$$

$$N = \lim \frac{\sqrt{n} - 2}{3n + 7} \; ; \qquad O = \lim \frac{3^n - 5.4^n}{1 - 4^n} \, .$$

Hãy cho biết tên của học sinh này, bằng cách thay các chữ số trên bởi các chữ kí hiệu biểu thức tương ứng.

- 4. a) Có nhận xét gì về công bội của các cấp số nhân lùi vô hạn?
 - b) Cho ví dụ về một cấp số nhân lùi vô hạn có công bội là số âm và một cấp số nhân lùi vô han có công bôi là số dương và tính tổng của mỗi cấp số nhân đó.
- 5. Tìm các giới hạn sau:

a)
$$\lim_{x \to 2} \frac{x+3}{x^2+x+4}$$
;

b)
$$\lim_{x \to -3} \frac{x^2 + 5x + 6}{x^2 + 3x}$$
;

c)
$$\lim_{x \to 4^{-}} \frac{2x - 5}{x - 4}$$
;

d)
$$\lim_{x \to +\infty} (-x^3 + x^2 - 2x + 1)$$
;

e)
$$\lim_{x \to -\infty} \frac{x+3}{3x-1}$$
;

f)
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 - 2x + 4} - x}{3x - 1}$$
.

- **6.** Cho hai hàm số $f(x) = \frac{1 x^2}{x^2}$ và $g(x) = \frac{x^3 + x^2 + 1}{x^2}$.
 - a) Tính $\lim_{x\to 0} f(x)$; $\lim_{x\to 0} g(x)$; $\lim_{x\to +\infty} f(x)$ và $\lim_{x\to +\infty} g(x)$.
 - b) Hai đường cong sau đây (h. 60) là đồ thị của hai hàm số đã cho. Từ kết quả câu a), hãy xác định xem đường cong nào là đồ thị của mỗi hàm số đó.

7. Xét tính liên tuc trên \mathbb{R} của hàm số

$$g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{n\'eu } x > 2\\ 5 - x & \text{n\'eu } x \le 2. \end{cases}$$

8. Chứng minh rằng phương trình $x^5 - 3x^4 + 5x - 2 = 0$ có ít nhất ba nghiệm nằm trong khoảng (-2; 5).

Bài tập trắc nghiệm

- 9. Mệnh đề nào sau đây là mệnh đề đúng?
 - (A) Một dãy số có giới hạn thì luôn luôn tăng hoặc luôn luôn giảm.
 - (B) Nếu (u_n) là dãy số tăng thì $\lim u_n = +\infty$.
 - (C) Nếu $\lim u_n = +\infty$ và $\lim v_n = +\infty$ thì $\lim (u_n v_n) = 0$.
 - (D) Nếu $u_n = a^n \text{ và } -1 < a < 0 \text{ thì } \lim u_n = 0.$
- **10.** Cho dãy số (u_n) với $u_n = \frac{1+2+3+...+n}{n^2+1}$.

Mệnh đề nào sau đây là mệnh đề đúng?

(A)
$$\lim u_n = 0$$
; (B) $\lim u_n = \frac{1}{2}$; (C) $\lim u_n = 1$;

- (D) Dãy (u_n) không có giới hạn khi $n \to +\infty$.
- **11.** Cho dãy số (u_n) với $u_n = \sqrt{2} + (\sqrt{2})^2 + ... + (\sqrt{2})^n$.

Chon mênh đề đúng trong các mênh đề sau:

(A)
$$\lim u_n = \sqrt{2} + (\sqrt{2})^2 + \dots + (\sqrt{2})^n + \dots = \frac{\sqrt{2}}{1 - \sqrt{2}}$$
;

- (B) $\lim u_n = -\infty$;
- (C) $\lim u_n = +\infty$;
- (D) Dãy số (u_n) không có giới hạn khi $n \to +\infty$.

Chon phương án đúng:

12.
$$\lim_{x \to 1^{-}} \frac{-3x - 1}{x - 1}$$
 bằng :

- (A) -1; (B) $-\infty$; (C) -3; (D) $+\infty$.

13. Cho hàm số
$$f(x) = \frac{1 - x^2}{x}$$
.

 $\lim_{x \to -\infty} f(x) \text{ bằng :}$

- (A) $+\infty$; (B) 1; (C) $-\infty$; (D) -1.

14. Cho hàm số

$$f(x) = \begin{cases} \frac{3-x}{\sqrt{x+1}-2} & \text{n\'eu } x \neq 3\\ m & \text{n\'eu } x = 3. \end{cases}$$

Hàm số đã cho liên tục tại x = 3 khi m bằng :

- (A) 4;

- (B) -1; (C) 1; (D) -4.

15. Cho phương trình

$$-4x^3 + 4x - 1 = 0. (1)$$

Mênh đề sai là:

- (A) Hàm số $f(x) = -4x^3 + 4x 1$ liên tục trên \mathbb{R} ;
- (B) Phương trình (1) không có nghiệm trên khoảng $(-\infty; 1)$;
- (C) Phương trình (1) có nghiệm trên khoảng (-2; 0);
- (D) Phương trình (1) có ít nhất hai nghiệm trên khoảng $\left(-3; \frac{1}{2}\right)$.

Trước đây, Đạo hàm và Tích phân được học trọn vẹn trong Giải tích 12. Ngày nay, phần *Lí thuyết đạo hàm* được học trong chương trình Đại số và Giải tích 11 để phục vụ kịp thời cho việc học các bộ môn khoa học khác như Vật lí, Hoá học, ...

Ở đây, học sinh được học đầy đủ và hệ thống về đạo hàm cấp một từ các bài toán đưa đến sự xuất hiện khái niệm đạo hàm, định nghĩa, quy tắc tính và các công thức đạo hàm cơ bản và quan trọng nhất.

Đạo hàm cấp hai được đưa ra nhằm giúp cho việc hiểu bản chất và cách tính toán một khái niệm quan trọng của Vật lí là *gia tốc.*

Định nghĩa *Vi phân* được đưa ra nhằm chuẩn bị cho việc học *Tích phân* ở Giải tích 12. Vì không có thời gian học ở lớp 11, phần *Ứng dụng đạo hàm* chuyển sang chương đầu tiên của Giải tích 12.

ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM

I – ĐẠO HÀM TẠI MỘT ĐIỂM

1. Các bài toán dẫn đến khái niệm đạo hàm

Một đoàn tàu chuyển động thẳng khởi hành từ một nhà ga. Quãng đường s (mét) đi được của đoàn tàu là một hàm số của thời gian t (phút). Ở những phút đầu tiên, hàm số đó là $s=t^2$.

Hãy tính vận tốc trung bình của chuyển động trong khoảng $[t\ ;\ t_0]$ với $t_0=3$ và t=2 ; t=2,5 ; t=2,9 ; t=2,99.

Nêu nhận xét về những kết quả thu được khi t càng gần $t_0=3$.

a) Bài toán tìm vận tốc tức thời

Một chất điểm M chuyển động trên trục s'Os (h. 61).

Hình 61

Quãng đường s của chuyển động là một hàm số của thời gian t

$$s = s(t)$$
.

Hãy tìm một đại lượng đặc trưng cho mức độ nhanh chậm của chuyển động tại thời điểm t_0 .

Giải. Trong khoảng thời gian từ t_0 đến t, chất điểm đi được quãng đường là

$$s - s_0 = s(t) - s(t_0)$$
.

Nếu chất điểm chuyển đông đều thì tỉ số

$$\frac{s - s_0}{t - t_0} = \frac{s(t) - s(t_0)}{t - t_0}$$

là một hằng số với mọi t.

Đó chính là vân tốc của chuyển đông tai mọi thời điểm.

Nếu chất điểm chuyển đông không đều thì tỉ số trên là vân tốc trung bình của chuyển động trong khoảng thời gian $|t - t_0|$.

Khi t càng gần t_0 , tức là $\left|t-t_0\right|$ càng nhỏ thì vận tốc trung bình càng thể hiên được chính xác hơn mức đô nhanh châm của chuyển đông tại thời điểm t_0 .

Từ nhân xét trên, người ta đưa ra đinh nghĩa sau đây.

$$\lim_{t \to t_0} \frac{s(t) - s(t_0)}{t - t_0}$$

 $\lim_{t\to t_0}\frac{s(t)-s(t_0)}{t-t_0}$ được gọi là *vận tốc tức thời* của chuyển động tại thời điểm t_0 .

Đó là đai lương đặc trưng cho mức đô nhanh châm của chuyển đông tại thời điểm t_0 .

b) Bài toán tìm cường đô tức thời

Điên lượng Q truyền trong dây dẫn là một hàm số của thời gian t:

$$Q = Q(t)$$
.

Cường độ trung bình của dòng điện trong khoảng thời gian $\left|t-t_0\right|$ là

$$I_{tb} = \frac{Q(t) - Q(t_0)}{t - t_0}.$$

Nếu $\left|t-t_{0}\right|$ càng nhỏ thì tỉ số này càng biểu thị chính xác hơn cường độ dòng điện tại thời điểm t_0 . Người ta đưa ra định nghĩa sau đây.

Giới han hữu han (nếu có)

$$\lim_{t \to t_0} \frac{Q(t) - Q(t_0)}{t - t_0}$$

 $\lim_{t\to t_0}\frac{Q(t)-Q(t_0)}{t-t_0}$ được gọi là *cường độ tức thời* của dòng điện tại thời điểm t_0 .

NHẬN XÉT

Nhiều bài toán trong Vật lí, Hoá học, ... đưa đến việc tìm giới hạn dạng $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, trong đó y=f(x) là một hàm số đã cho. Giới hạn trên dẫn tới một khái niệm quan trọng trong Toán học, đó là khái niệm đạo hàm.

2. Định nghĩa đao hàm tai một điểm

ĐINH NGHĨA

Cho hàm số y = f(x) xác định trên khoảng (a; b) và $x_0 \in (a; b)$. Cho ham so y = f(x) and x = f(x). Nếu tồn tại giới hạn (hữu hạn) $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại điểm x_0 và kí hiệu là $f'(x_0)$ (hoặc $y'(x_0)$), tức là $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

CHÚ Ý

Đại lượng $\Delta x = x - x_0$ được gọi là số gia của đối số tại x_0 .

Đại lượng $\Delta y = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$ được gọi là số gia tương ứng của hàm số. Như vậy

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
.

Cách tính đạo hàm bằng định nghĩa

Cho hàm số $y = x^2$. Hãy tính $y'(x_0)$ bằng định nghĩa.

Để tính đạo hàm của hàm số y = f(x) tại điểm x_0 bằng định nghĩa, ta có quy tắc sau đây.

QUY TẮC

$$\Delta y = f(x_0 + \Delta x) - f(x_0).$$

 $Bu\acute{o}c\ 1.\ \text{Giả sử }\Delta x\ \text{là số gia của đối số tại }x_0,\ \text{tính}$ $\Delta y = f(x_0 + \Delta x) - f(x_0).$ $Bu\acute{o}c\ 2.\ \text{Lập tỉ số }\frac{\Delta y}{\Delta x}.$ $Bu\acute{o}c\ 3.\ \text{Tìm }\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}.$

 $Vi d\mu 1$. Tính đạo hàm của hàm số $f(x) = \frac{1}{x}$ tại điểm $x_0 = 2$.

Giải. Giả sử Δx là số gia của đối số tại $x_0 = 2$. Ta có

$$\Delta y = f(2 + \Delta x) - f(2) = \frac{1}{2 + \Delta x} - \frac{1}{2} = -\frac{\Delta x}{2(2 + \Delta x)}$$
;

$$\frac{\Delta y}{\Delta x} = -\frac{1}{2(2 + \Delta x)} \; ;$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{-1}{2(2 + \Delta x)} = -\frac{1}{4}.$$

Vậy
$$f'(2) = -\frac{1}{4}$$
. ■

4. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số

Ta thừa nhận định lí sau đây.

ĐỊNH LÍ 1

Nếu hàm số y = f(x) có đạo hàm tại x_0 thì nó liên tục tại điểm đó.

CHÚ Ý

a) Định lí trên tương đương với khẳng định:

Nếu hàm số y = f(x) gián đoạn tại x_0 thì nó không có đạo hàm tai điểm đó.

b) Mệnh đề đảo của Định lí 1 không đúng.

Một hàm số liên tục tại một điểm có thể không có đạo hàm tại điểm đó.

Chẳng hạn, hàm số

$$f(x) = \begin{cases} -x^2 & \text{n\'eu } x \ge 0\\ x & \text{n\'eu } x < 0 \end{cases}$$

liên tục tại x = 0 nhưng không có đạo hàm tại đó.

Ta nhận xét rằng đồ thị của hàm số này là một đường liền, nhưng bị "gãy" tại điểm O(0;0) (h. 62).

5. Ý nghĩa hình học của đạo hàm

a) Vẽ đồ thị của hàm số $f(x) = \frac{x^2}{2}$.

- b) Tính f'(1).
- c) Vẽ đường thẳng đi qua điểm $M(1; \frac{1}{2})$

và có hệ số góc bằng f '(1). Nêu nhận xét về vị trí tương đối của đường thẳng này và đồ thị hàm số đã cho.

a) Tiếp tuyến của đường cong phẳng

Trên mặt phẳng toạ độ Oxy cho đường cong (C). Giả sử (C) là đồ thị của hàm số y = f(x) và $M_0(x_0; f(x_0)) \in (C)$. Kí hiệu M(x; f(x)) là một điểm di chuyển trên (C). Đường thẳng M_0M là một cát tuyến của (C) (h.63).

Hình 62

Hình 63

Nhận xét rằng khi $x \to x_0$ thì M(x ; f(x)) di chuyển trên (C) tới điểm $M_0(x_0 ; f(x_0))$ và ngược lại. Giả sử cát tuyến M_0M có vị trí giới hạn, kí hiệu là M_0T thì M_0T được gọi là *tiếp tuyến* của (C) tại M_0 . Điểm M_0 được gọi là *tiếp điểm*.

Sau đây, ta không xét trường hợp tiếp tuyến song song hoặc trùng với Oy.

b) Ý nghĩa hình học của đạo hàm

Cho hàm số y = f(x) xác định trên khoảng (a ; b) và có đạo hàm tại $x_0 \in (a ; b)$. Gọi (C) là đồ thị của hàm số đó.

ĐỊNH LÍ 2

Đạo hàm của hàm số y = f(x) tại điểm x_0 là hệ số góc của tiếp tuyến M_0T của (C) tại điểm M_0 $(x_0; f(x_0))$.

Chứng minh. Giả sử $M(x_0 + \Delta x; f(x_0 + \Delta x))$ là điểm di chuyển trên (C). Ta có (h.64)

$$\overline{M_0H} = \Delta x, \overline{HM} = \Delta y.$$

Hệ số góc của cát tuyến M_0M là $\tan \varphi$, trong đó φ là góc tạo bởi trục Ox và vector $\overrightarrow{M_0M}$ như trên Hình 64a hoặc 64b. Ta có

$$\tan \varphi = \frac{\overline{HM}}{\overline{M_0 H}} = \frac{\Delta y}{\Delta x}.$$

Khi M dần tới M_0 ($M \to M_0$) thì $\Delta x \to 0$ và ngược lại.

Theo giả thiết, f(x) có đạo hàm tại x_0 nên tồn tại giới hạn

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{M \to M_0} \tan \varphi$$
.

Vậy khi $M \to M_0$ thì cát tuyến $M_0 M$ dần tới vị trí giới hạn là đường thẳng M_0T , có hệ số góc bằng $\lim_{M\to M_0} \tan \varphi = f'(x_0)$.

Đường thẳng M_0T là tiếp tuyến tại M_0 của (C).

Vậy $f'(x_0)$ là hệ số góc của tiếp tuyến tại M_0 của đồ thị (C). ■

c) Phương trình tiếp tuyến

/iết phương trình đường thẳng đi qua $M_0(x_0\,;\,y_0)$ và có hệ số góc k.

Từ ý nghĩa hình học của đạo hàm ta có định lí sau đây.

ĐINH LÍ 3

Phương trình tiếp tuyến của đồ thị (C) của hàm số y = f(x)tại điểm $M_0(x_0\,;f(x_0))$ là $y-y_0=f'(x_0)(x-x_0),$ trong đó $y_0=f(x_0).$

$$y - y_0 = f'(x_0)(x - x_0),$$

5 Cho hàm số $y = -x^2 + 3x - 2$. Tính y'(2) bằng định nghĩa.

Ví du 2. Cho parabol $y = -x^2 + 3x - 2$.

Viết phương trình tiếp tuyến của parabol tại điểm có hoành độ $x_0 = 2$.

Giải. Bằng định nghĩa ta tính được y'(2) = -1. Do đó, hệ số góc của tiếp tuyến là -1. Ngoài ra ta có y(2) = 0.

Vậy phương trình tiếp tuyến của parabol tại điểm $M_0(2;0)$ là

$$y - 0 = (-1)(x - 2)$$
 hay $y = -x + 2$.

6. Ý nghĩa vật lí của đạo hàm

a) Vận tốc tức thời

Xét chuyển động thẳng xác định bởi phương trình s = s(t), với s = s(t) là một hàm số có đạo hàm. Như đã thấy trong bài toán mở đầu, vận tốc tức thời của chuyển động tại thời điểm t_0 là đạo hàm của hàm số s = s(t) tại t_0 :

$$v(t_0) = s'(t_0).$$

b) Cường độ tức thời

Nếu điện lượng Q truyền trong dây dẫn là một hàm số của thời gian : Q = Q(t) (Q = Q(t) là một hàm số có đạo hàm) thì cường độ tức thời của dòng điện tại thời điểm t_0 là đạo hàm của hàm số Q = Q(t) tại t_0 :

$$I(t_0) = Q'(t_0).$$

II - ĐẠO HÀM TRÊN MỘT KHOẢNG

6 Bằng định nghĩa, hãy tính đạo hàm của các hàm số : 1

a)
$$f(x) = x^2$$
 tại điểm x bất kì;

b)
$$g(x) = \frac{1}{x}$$
 tại điểm bất kì $x \neq 0$.

ĐỊNH NGHĨA

Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.

Khi đó, ta gọi hàm số $f':(a;b) \to \mathbb{R}$

$$x \mapsto f'(x)$$

là đạo hàm của hàm số y = f(x) trên khoảng (a; b), kí hiệu là y' hay f'(x).

Ví dụ 3. Hàm số $y = x^2$ có đạo hàm y' = 2x trên khoảng $(-\infty; +\infty)$.

Hàm số $y = \frac{1}{x}$ có đạo hàm $y' = -\frac{1}{x^2}$ trên các khoảng $(-\infty; 0)$ và $(0; +\infty)$.

BÀI ĐỌC THÊM

ĐẠO HÀM MỘT BÊN

Cho hàm số y = f(x) xác định trên khoảng (a;b) và $x_0 \in (a;b)$. Có thể không tồn tại giới hạn (hữu hạn)

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

nhưng tồn tại các giới hạn một bên

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}, \quad \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}.$$

Khi đó, ta nói hàm số có đạo hàm một bên

ĐỊNH NGHĨA 1

Nếu tồn tai giới han (hữu han) bên phải

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0},$$

ta sẽ gọi giới hạn đó là **đạo hàm bên phải** của hàm số y=f(x) tại $x=x_0$ và kí hiệu là $f'(x_0^+)$. Tương tự, giới hạn (hữu hạn) bên trái (nếu tồn tại)

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

 $\lim_{x\to x_0^-}\frac{x\cdot x_0'}{x-x_0}$ được gọi là *đạo hàm bên trái* của hàm số y=f(x) tại $x=x_0$ và kí hiệu là $f'(x_0^-)$.

Các đao hàm bên phải và bên trái được gọi chung là *đao hàm một bên*.

Từ các tính chất của giới hạn một bên suy ra ngay định lí sau đây.

ĐINH LÍ

Hàm số y=f(x) có đạo hàm tại x_0 khi và chỉ khi $f'(x_0^+)$, $f'(x_0^-)$ tồn tại và bằng nhau. Khi đó, ta có

$$f'(x_0^+) = f'(x_0^-) = f'(x_0).$$

Ví du 1. Chứng minh rằng hàm số

$$f(x) = \begin{cases} x^2 & \text{n\'eu } x \ge 0 \\ -x & \text{n\'eu } x < 0 \end{cases}$$

có các đạo hàm một bên, nhưng không có đạo hàm tại $x_0 = 0$.

Giải. Ta có :

$$f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2}{x} = 0$$
;

$$f'(0^-) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{-x}{x} = -1.$$

Vậy tại $x_0 = 0$, hàm số này có đạo hàm bên phải bằng 0, đạo hàm bên trái bằng -1. Vì các đạo hàm bên phải và bên trái khác nhau nên hàm số không có đạo hàm tại $x_0 = 0$. ■

Ví du 2. Xét sư tồn tại đạo hàm và các đạo hàm một bên của hàm số

$$f(x) = \begin{cases} -\sqrt[5]{x^4} & \text{n\'eu } x \ge 0\\ 2x & \text{n\'eu } x < 0 \end{cases}$$

tại điểm x = 0.

Giải. Vì

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{-\sqrt[5]{x^{4}} - 0}{x - 0} = -\lim_{x \to 0^{+}} \frac{1}{\sqrt[5]{x}} = -\infty$$

nên hàm số không có đao hàm bên phải tai x = 0.

Vì

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{2x}{x} = 2$$

nên hàm số có đao hàm bên trái tai x = 0 và $f'(0^{-}) = 2$.

Từ định lí suy ra rằng hàm số đã cho không có đạo hàm tại x = 0.

ĐINH NGHĨA 2

Hàm số y = f(x) được gọi là có **đạo hàm trên đoạn** [a; b] nếu thoả mãn các điều kiện sau : Có đạo hàm tại mọi $x \in (a;b)$; Có đạo hàm bên phải tại x = a ;

Có đạo hàm bên trái tai x = b.

Bài tập

1. Tìm số gia của hàm số $f(x) = x^3$, biết rằng :

a)
$$x_0 = 1$$
; $\Delta x = 1$;

b)
$$x_0 = 1$$
; $\Delta x = -0.1$.

2. Tính Δy và $\frac{\Delta y}{\Delta x}$ của các hàm số sau theo x và Δx :

a)
$$y = 2x - 5$$
;

b)
$$y = x^2 - 1$$
;

c)
$$y = 2x^3$$
;

d)
$$y = \frac{1}{x}$$
.

3. Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

a)
$$y = x^2 + x$$
 tại $x_0 = 1$;

b)
$$y = \frac{1}{x}$$
 tại $x_0 = 2$;

c)
$$y = \frac{x+1}{x-1}$$
 tại $x_0 = 0$.

4. Chứng minh rằng hàm số

$$f(x) = \begin{cases} (x-1)^2 & \text{n\'eu } x \ge 0 \\ -x^2 & \text{n\'eu } x < 0 \end{cases}$$

không có đạo hàm tại điểm x = 0 nhưng có đạo hàm tại điểm x = 2.

5. Viết phương trình tiếp tuyến của đường cong $y = x^3$:

- a) Tại điểm (-1; -1);
- b) Tại điểm có hoành độ bằng 2;
- c) Biết hệ số góc của tiếp tuyến bằng 3.

6. Viết phương trình tiếp tuyến của đường hypebol $y = \frac{1}{x}$:

a) Tại điểm
$$\left(\frac{1}{2};2\right)$$
;

b) Tại điểm có hoành độ bằng -1;

c) Biết rằng hệ số góc của tiếp tuyến bằng $-\frac{1}{4}$.

- 7. Một vật rơi tự do theo phương trình $s = \frac{1}{2}gt^2$, trong đó $g \approx 9.8$ m/s² là gia tốc trọng trường.
 - a) Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5 s) đến $t + \Delta t$, trong các trường hợp $\Delta t = 0.1$ s; $\Delta t = 0.05$ s; $\Delta t = 0.001$ s.
 - b) Tìm vận tốc tức thời của chuyển động tại thời điểm t = 5 s.

QUY TẮC TÍNH ĐẠO HÀM

I – ĐAO HÀM CỦA MỘT SỐ HÀM SỐ THƯỜNG GẮP

Dùng định nghĩa tính đạo hàm của hàm số $y = x^3$ tại điểm x tuỳ ý.

Dự đoán đạo hàm của hàm số $y = x^{100}$ tại điểm x.

Việc tính đạo hàm của hàm số bằng định nghĩa nói chung phức tạp. Đối với một số hàm số thường gặp, ta có những công thức cho phép tính một cách nhanh chóng đạo hàm của chúng tại một điểm.

ĐINH LÍ 1

Hàm số
$$y=x^n$$
 $(n\in\mathbb{N},n>1)$ có đạo hàm tại mọi $x\in\mathbb{R}$ và
$$(x^n)'=nx^{n-1}.$$

Chứng minh. Giả sử Δx là số gia của x, ta có :

$$\Delta y = (x + \Delta x)^{n} - x^{n}$$

$$= (x + \Delta x - x) [(x + \Delta x)^{n-1} + (x + \Delta x)^{n-2} x + \dots + (x + \Delta x)x^{n-2} + x^{n-1}]$$

$$= \Delta x [(x + \Delta x)^{n-1} + (x + \Delta x)^{n-2} x + \dots + (x + \Delta x)x^{n-2} + x^{n-1}];$$

$$\frac{\Delta y}{\Delta x} = (x + \Delta x)^{n-1} + (x + \Delta x)^{n-2} x + \dots + (x + \Delta x) x^{n-2} + x^{n-1};$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \underbrace{x^{n-1} + x^{n-1} + \dots + x^{n-1}}_{n \text{ so hang}} = nx^{n-1}.$$

Vậy
$$(x^n)' = nx^{n-1}$$
. ■

NHÂN XÉT

- a) Đạo hàm của hàm hằng bằng 0: (c)' = 0.
- b) Đạo hàm của hàm số y = x bằng 1: (x)' = 1.

ĐINH LÍ 2

Hàm số $y = \sqrt{x}$ có đạo hàm tại mọi x dương và $(\sqrt{x})' = \frac{1}{x}.$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}.$$

Chứng minh. Giả sử Δx là số gia của x dương sao cho $x + \Delta x > 0$. Ta có

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x} \; ;$$

$$\frac{\Delta y}{\Delta x} = \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} = \frac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{\Delta x(\sqrt{x + \Delta x} + \sqrt{x})}$$
$$= \frac{x + \Delta x - x}{\Delta x(\sqrt{x + \Delta x} + \sqrt{x})} = \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}};$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.$$

Vậy đạo hàm của hàm số $y = \sqrt{x}$ là $y' = \frac{1}{2\sqrt{x}}$.

Có thể trả lời ngay được không, nếu yêu cầu tính đạo hàm của hàm số $\,f(x)=\sqrt{x}\,$ tại x = -3; x = 4?

II – ĐẠO HÀM CỦA TỔNG, HIỆU, TÍCH, THƯƠNG

1. Định lí

ĐINH LÍ 3

Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Ta có :

$$(u+v)' = u'+v'$$
 (1)

$$(u - v)' = u' - v' \tag{2}$$

$$(uv)' = u'v + uv' \tag{3}$$

x thuộc khoảng xác định. Ta có:

$$(u + v)' = u' + v'$$
(1)

$$(u - v)' = u' - v'$$
(2)

$$(uv)' = u'v + uv'$$
(3)

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} (v = v(x) \neq 0).$$
(4)

Chứng minh. Ta chứng minh các công thức (1) và (2).

Xét hàm y = u + v. Giả sử Δx là số gia của x. Ta có số gia tương ứng của u là Δu , của v là Δv và của y = u + v là

$$\Delta y = [(u + \Delta u) + (v + \Delta v)] - (u + v) = \Delta u + \Delta v.$$

Từ đó $\frac{\Delta y}{\Delta x} = \frac{\Delta u + \Delta v}{\Delta x}$;

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = u' + v'.$$

 $V \hat{a} y (u + v)' = u' + v'.$

Chứng minh tương tư, ta có (u - v)' = u' - v'.

Bằng quy nạp toán học, ta chứng minh được

$$(u_1 \pm u_2 \pm ... \pm u_n)' = u'_1 \pm u'_2 \pm ... \pm u'_n.$$

Các công thức khác được chứng minh tương tự.

Áp dụng các công thức trong Định lí 3, hãy tính đạo hàm của các hàm số

$$v = 5x^3 - 2x^5 : v = -x^3\sqrt{x}$$

Ví dụ 1. Tìm đạo hàm của hàm số $y = x^2 - x^4 + \sqrt{x}$.

Giải.
$$(x^2 - x^4 + \sqrt{x})' = 2x - 4x^3 + \frac{1}{2\sqrt{x}}$$
.

Ví dụ 2. Tìm đạo hàm của hàm số $y = x^3(\sqrt{x} - x^5)$.

Giải. Ta có

$$[x^{3}(\sqrt{x} - x^{5})]' = (x^{3})'(\sqrt{x} - x^{5}) + x^{3}(\sqrt{x} - x^{5})'$$

$$= 3x^{2}(\sqrt{x} - x^{5}) + x^{3}\left(\frac{1}{2\sqrt{x}} - 5x^{4}\right)$$

$$= 3x^{2}\sqrt{x} + x^{3}\left(\frac{1}{2\sqrt{x}} - 8x^{4}\right). \quad \blacksquare$$

2. Hệ quả

HỆ QUẢ 1

Nếu k là một hằng số thì (ku)' = ku'.

HỆ QUẢ 2

$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2} \qquad (v = v(x) \neq 0).$$

5 Hãy chứng minh các hệ quả trên và lấy ví dụ minh hoạ.

Ví dụ 3. Tìm đạo hàm của hàm số $y = \frac{1-2x}{x+3}$.

Giải. Ta có

$$\left(\frac{1-2x}{x+3}\right)' = \frac{(1-2x)'(x+3) - (1-2x)(x+3)'}{(x+3)^2}$$
$$= \frac{-2(x+3) - (1-2x)}{(x+3)^2} = \frac{-7}{(x+3)^2}.$$

III – ĐẠO HÀM CỦA HÀM HỢP

1. Hàm hợp

Hình 65

Giả sử u = g(x) là hàm số của x, xác định trên khoảng (a; b) và lấy giá trị trên khoảng (c; d); y = f(u) là hàm số của u, xác định trên (c; d) và lấy giá trị trên \mathbb{R} . Khi đó, ta lập một hàm số xác định trên (a; b) và lấy giá trị trên \mathbb{R} theo quy tắc sau (h.65):

$$x \mapsto f(g(x)).$$

Ta gọi hàm y = f(g(x)) là hàm hợp của hàm y = f(u) với u = g(x).

Ví dụ 4. Hàm số $y = (1 - x^3)^{10}$ là hàm hợp của hàm số $y = u^{10}$ với $u = 1 - x^3$.

 $Vi \ d\mu \ 5$. Hàm số $y = \sin(\omega t + \gamma)$ là hàm hợp của hàm số $y = \sin u$ với $u = \omega t + \gamma$; ω , γ là những hằng số.

Hàm số $y = \sqrt{x^2 + x + 1}$ là hàm hợp của các hàm số nào ?

2. Đạo hàm của hàm hợp

Ta thừa nhận định lí sau đây.

ĐỊNH LÍ 4

Nếu hàm số u = g(x) có đạo hàm tại x là u'_x và hàm số y = f(u) có đạo hàm tại u là y'_u thì hàm hợp y = f(g(x)) có đạo hàm tại x là

$$y'_{x} = y'_{u}.u'_{x}.$$

Ví dụ 6. Tìm đạo hàm của hàm số $y = (1 - 2x)^3$.

Giải. Đặt
$$u = 1 - 2x$$
 thì $y = u^3$, $y'_u = 3u^2$, $u'_x = -2$.

Theo công thức tính đạo hàm của hàm hợp, ta có

$$y'_x = y'_u . u'_x = 3u^2 . (-2) = -6u^2.$$

$$V_{x}^{2} y'_{x} = -6(1-2x)^{2}$$
.

Ví dụ 7. Tìm đạo hàm của hàm số $y = \frac{5}{3x-4}$.

Giải. Đặt
$$u = 3x - 4$$
 thì $y = \frac{5}{u}$.

Theo công thức tính đạo hàm của hàm hợp, ta có

$$y'_x = y'_u.u'_x = -\frac{5}{u^2}.3 = \frac{-15}{(3x-4)^2}.$$

Bảng tóm tắt

$$(u + v - w)' = u' + v' - w'$$

$$(ku)' = ku' \quad (k \text{ là hằng số})$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$\left(\frac{1}{v}\right)' = \frac{-v'}{v^2}$$

$$y'_x = y'_u \cdot u'_x$$

Bài tâp

1. Bằng định nghĩa, tìm đạo hàm của các hàm số sau :

a)
$$y = 7 + x - x^2$$
tại $x_0 = 1$;

b)
$$y = x^3 - 2x + 1$$
tai $x_0 = 2$.

Tìm đao hàm của các hàm số sau: 2.

a)
$$y = x^5 - 4x^3 + 2x - 3$$
;

b)
$$y = \frac{1}{4} - \frac{1}{3}x + x^2 - 0.5x^4$$
;

c)
$$y = \frac{x^4}{2} - \frac{2x^3}{3} + \frac{4x^2}{5} - 1$$
;

d)
$$y = 3x^5(8 - 3x^2)$$
.

Tìm đao hàm của các hàm số sau: 3.

a)
$$y = (x^7 - 5x^2)^3$$
;

b)
$$y = (x^2 + 1)(5 - 3x^2)$$
;

c)
$$y = \frac{2x}{x^2 - 1}$$
 ;

d)
$$y = \frac{3-5x}{x^2-x+1}$$
;

e)
$$y = \left(m + \frac{n}{x^2}\right)^3$$
 (m, n là các hằng số).

Tìm đạo hàm của các hàm số sau: 4.

a)
$$y = x^2 - x\sqrt{x} + 1$$
;

b)
$$y = \sqrt{2 - 5x - x^2}$$
;

c)
$$y = \frac{x^3}{\sqrt{a^2 - x^2}}$$
 (a là hằng số); d) $y = \frac{1 + x}{\sqrt{1 - x}}$.

d)
$$y = \frac{1+x}{\sqrt{1-x}}$$
.

Cho $y = x^3 - 3x^2 + 2$. Tîm x để:

a)
$$y' > 0$$
;

b)
$$y' < 3$$
.

ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC

Tính $\frac{\sin 0.01}{0.01}$, $\frac{\sin 0.001}{0.001}$ bằng máy tính bỏ túi.

Ta thừa nhân đinh lí sau đây.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Ví dụ 1. Tính $\lim_{x\to 0} \frac{\tan x}{x}$.

Giải. Ta có

$$\lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{x} \cdot \frac{1}{\cos x} \right) = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1. \quad \blacksquare$$

Vi du 2. Tính $\lim_{x\to 0} \frac{\sin 2x}{x}$.

Giải.
$$\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} 2\left(\frac{\sin 2x}{2x}\right) = 2\lim_{x \to 0} \frac{\sin 2x}{2x} = 2.1 = 2.$$

2. Đạo hàm của hàm số $y = \sin x$

ĐỊNH LÍ 2

Hàm số $y = \sin x$ có đạo hàm tại mọi $x \in \mathbb{R}$ và $(\sin x)' = \cos x$.

Chứng minh. Giả sử Δx là số gia của x. Ta có :

$$\Delta y = \sin(x + \Delta x) - \sin x = 2\sin\frac{\Delta x}{2}.\cos\left(x + \frac{\Delta x}{2}\right);$$

$$\frac{\Delta y}{\Delta x} = 2\cos\left(x + \frac{\Delta x}{2}\right) \frac{\sin\frac{\Delta x}{2}}{\Delta x} = \cos\left(x + \frac{\Delta x}{2}\right) \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}};$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \cos\left(x + \frac{\Delta x}{2}\right) \cdot \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}.$$

Vì
$$\lim_{\Delta x \to 0} \cos\left(x + \frac{\Delta x}{2}\right) = \cos x$$
 (do tính liên tục của hàm số $y = \cos x$)

và
$$\lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} = 1$$
 nên $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 1$. $\cos x = \cos x$.

$$V$$
ây $y' = (\sin x)' = \cos x$.

CHÚ Ý

Nếu $y = \sin u \text{ và } u = u(x) \text{ thì}$

$$(\sin u)' = u' \cdot \cos u.$$

Ví dụ 3. Tìm đạo hàm của hàm số $y = \sin\left(3x + \frac{\pi}{5}\right)$.

Giải. Đặt $u = 3x + \frac{\pi}{5}$ thì u' = 3 và $y = \sin u$.

Ta có
$$y' = u'\cos u = 3\cos\left(3x + \frac{\pi}{5}\right)$$
.

3. Đạo hàm của hàm số $y = \cos x$

2

Tìm đạo hàm của hàm số $y = \sin\left(\frac{\pi}{2} - x\right)$.

ĐINH LÍ 3

Hàm số $y = \cos x$ có đạo hàm tại mọi $x \in \mathbb{R}$ và $(\cos x)' = -\sin x$.

Từ nhận xét $\cos x = \sin\left(\frac{\pi}{2} - x\right)$ suy ra ngay điều phải chứng minh.

CHÚ Ý.

Nếu $y = \cos u$ và u = u(x) thì

$$(\cos u)' = -u'.\sin u.$$

Ví dụ 4. Tìm đạo hàm của hàm số $y = \cos(x^3 - 1)$.

Giải. Đặt $u = x^3 - 1$ thì $u' = 3x^2$ và $y = \cos u$.

Ta có

$$y' = -u'\sin u = -3x^2\sin(x^3 - 1)$$
.

4. Đạo hàm của hàm số $y = \tan x$

3

Tìm đạo hàm của hàm số $f(x) = \frac{\sin x}{\cos x} \left(x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right)$.

ĐỊNH LÍ 4

Hàm số $y = \tan x$ có đạo hàm tại mọi $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$ và

$$(\tan x)' = \frac{1}{\cos^2 x}.$$

Áp dụng quy tắc tính đạo hàm của một thương đối với hàm số $\tan x = \frac{\sin x}{\cos x}$, suy ra điều phải chứng minh.

CHÚ Ý

Nếu $y = \tan u$ và u = u(x) thì ta có

$$(\tan u)' = \frac{u'}{\cos^2 u}.$$

Ví dụ 5. Tìm đạo hàm của hàm số $y = \tan(3x^2 + 5)$.

Giải. Đặt $u = 3x^2 + 5$ thì u' = 6x và $y = \tan u$.

Ta có

$$y' = \frac{u'}{\cos^2 u} = \frac{6x}{\cos^2(3x^2 + 5)}$$
.

5. Đạo hàm của hàm số $y = \cot x$

4 Tim (

Tìm đạo hàm của hàm số

$$y = \tan\left(\frac{\pi}{2} - x\right)$$
 với $x \neq k\pi, k \in \mathbb{Z}$.

ĐINH LÍ 5

Hàm số $y = \cot x$ có đạo hàm tại mọi $x \neq k\pi$, $k \in \mathbb{Z}$ và

$$(\cot x)' = -\frac{1}{\sin^2 x}.$$

CHÚ Ý

Nếu $y = \cot u$ và u = u(x), ta có

$$(\cot u)' = -\frac{u'}{\sin^2 u}.$$

Ví dụ 6. Tìm đạo hàm của hàm số

$$y = \cot^3(3x - 1).$$

Giải. Đặt $u = \cot(3x - 1)$ thì $y = u^3$.

Theo công thức đạo hàm của hàm hợp, ta có

$$y'_{x} = y'_{u}.u'_{x} = 3u^{2}.u'_{x}$$

$$= 3\cot^{2}(3x-1)[\cot(3x-1)]'$$

$$= 3\cot^{2}(3x-1).\frac{-(3x-1)'}{\sin^{2}(3x-1)}$$

$$= 3\cot^{2}(3x-1).\frac{-3}{\sin^{2}(3x-1)}$$

$$= -\frac{9\cos^{2}(3x-1)}{\sin^{4}(3x-1)}.$$

BẢNG ĐẠO HÀM

$$(x^n)' = nx^{n-1}$$

$$(u^n)' = nu^{n-1}.u'$$

$$(\frac{1}{x})' = -\frac{1}{x^2}$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \frac{1}{\cos^2 x}$$

$$(\cot x)' = -\frac{1}{\sin^2 x}$$

$$(u^n)' = nu^{n-1}.u'$$

$$(\frac{1}{u})' = -\frac{u'}{u^2}$$

$$(\sin u)' = \frac{u'}{2\sqrt{u}}$$

$$(\cos u)' = -u'.\sin u$$

$$(\tan u)' = \frac{u'}{\cos^2 u}$$

$$(\cot u)' = -\frac{u'}{\sin^2 u}$$

Bài tập

1. Tìm đao hàm của các hàm số sau:

a)
$$y = \frac{x-1}{5x-2}$$
;

c)
$$y = \frac{x^2 + 2x + 3}{3 - 4x}$$
;

b)
$$y = \frac{2x+3}{7-3x}$$
;

d)
$$y = \frac{x^2 + 7x + 3}{x^2 - 3x}$$
.

2. Giải các bất phương trình sau:

a)
$$y' < 0$$
 với $y = \frac{x^2 + x + 2}{x - 1}$;

b)
$$y' \ge 0$$
 với $y = \frac{x^2 + 3}{x + 1}$;

c)
$$y' > 0$$
 với $y = \frac{2x - 1}{x^2 + x + 4}$.

3. Tìm đao hàm của các hàm số sau:

a)
$$y = 5\sin x - 3\cos x;$$

b)
$$y = \frac{\sin x + \cos x}{\sin x - \cos x}$$
;

c)
$$y = x \cot x$$
;

d)
$$y = \frac{\sin x}{x} + \frac{x}{\sin x}$$
;

e)
$$y = \sqrt{1 + 2 \tan x}$$
;

f)
$$y = \sin \sqrt{1 + x^2}$$
.

4. Tìm đao hàm của các hàm số sau:

a)
$$y = (9 - 2x)(2x^3 - 9x^2 + 1)$$
;

b)
$$y = \left(6\sqrt{x} - \frac{1}{x^2}\right)(7x - 3)$$
;

c)
$$y = (x-2)\sqrt{x^2+1}$$
;

d)
$$y = \tan^2 x - \cot x^2$$
:

e)
$$y = \cos \frac{x}{1+x}$$
.

- 5. Tính $\frac{f'(1)}{\varphi'(1)}$, biết rằng $f(x) = x^2$ và $\varphi(x) = 4x + \sin \frac{\pi x}{2}$.
- **6.** Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc x:

a)
$$y = \sin^6 x + \cos^6 x + 3\sin^2 x \cdot \cos^2 x$$
;

b)
$$y = \cos^2\left(\frac{\pi}{3} - x\right) + \cos^2\left(\frac{\pi}{3} + x\right) + \cos^2\left(\frac{2\pi}{3} - x\right) + \cos^2\left(\frac{2\pi}{3} + x\right) - 2\sin^2 x.$$

7. Giải phương trình f'(x) = 0, biết rằng :

a)
$$f(x) = 3\cos x + 4\sin x + 5x$$
;

b)
$$f(x) = 1 - \sin(\pi + x) + 2\cos\left(\frac{2\pi + x}{2}\right)$$
.

8. Giải bất phương trình f'(x) > g'(x), biết rằng :

a)
$$f(x) = x^3 + x - \sqrt{2}$$
, $g(x) = 3x^2 + x + \sqrt{2}$;

b)
$$f(x) = 2x^3 - x^2 + \sqrt{3}$$
, $g(x) = x^3 + \frac{x^2}{2} - \sqrt{3}$.

VI PHÂN

1. Định nghĩa

Cho hàm số $f(x) = \sqrt{x}$, $x_0 = 4$ và $\Delta x = 0.01$. Tính $f'(x_0) \Delta x$.

Cho hàm số y = f(x) xác định trên khoảng (a; b) và có đạo hàm tại $x \in (a; b)$. Giả sử Δx là số gia của x.

> Ta gọi tích $f'(x)\Delta x$ là **vi phân** của hàm số y = f(x) tại x ứng với số gia Δx , kí hiệu là df(x) hoặc dy, tức là $dy = df(x) = f'(x)\Delta x.$

$$dy = df(x) = f'(x)\Delta x.$$

CHÚ Ý

Áp dụng định nghĩa trên vào hàm số y = x, ta có

$$dx = d(x) = (x)'\Delta x = 1.\Delta x = \Delta x.$$

Do đó, với hàm số y = f(x) ta có

$$dy = df(x) = f'(x)dx$$
.

Ví dụ 1. Tìm vi phân của các hàm số sau :

a)
$$y = x^3 - 5x + 1$$
;

b)
$$y = \sin^3 x$$
.

Giải

a)
$$y = x^3 - 5x + 1$$
, $y' = 3x^2 - 5$.

Vậy dy =
$$d(x^3 - 5x + 1) = y'dx = (3x^2 - 5)dx$$
.

b)
$$y = \sin^3 x$$
, $y' = 3\sin^2 x \cos x$.

Vậy
$$dy = d(\sin^3 x) = y' dx = 3\sin^2 x \cos x dx$$
.

2. Ứng dụng vi phân vào phép tính gần đúng

Theo định nghĩa của đạo hàm, ta có

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$

Do đó với $|\Delta x|$ đủ nhỏ thì

$$\frac{\Delta y}{\Delta x} \approx f'(x_0)$$
 hay $\Delta y \approx f'(x_0) \Delta x$.

Từ đó, ta có $f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \Delta x$

hay
$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x$$
.

Đó là công thức tính gần đúng đơn giản nhất.

Ví dụ 2. Tính giá trị gần đúng của $\sqrt{3,99}$.

Giải. Đặt
$$f(x) = \sqrt{x}$$
, ta có $f'(x) = \frac{1}{2\sqrt{x}}$.

Theo công thức tính gần đúng, với $x_0 = 4$, $\Delta x = -0.01$ ta có

$$f(3,99) = f(4-0,01) \approx f(4) + f'(4)(-0,01),$$

tức là
$$\sqrt{3,99} = \sqrt{4 - 0.01} \approx \sqrt{4} + \frac{1}{2\sqrt{4}}.(-0.01) = 1.9975.$$

Bài tập

- 1. Tìm vi phân của các hàm số sau:
 - a) $y = \frac{\sqrt{x}}{a+b}$ (a, b là các hằng số) ;

b)
$$y = (x^2 + 4x + 1)(x^2 - \sqrt{x})$$
.

- 2. Tìm dy, biết:
 - a) $y = \tan^2 x$;

b)
$$y = \frac{\cos x}{1 - x^2}$$
.

S ĐẠO HÀM CẤP HAI

I - ĐỊNH NGHĨA

Ţ ∜Tính y' và đạo hàm của y', biết :

a)
$$y = x^3 - 5x^2 + 4x$$
;

b)
$$y = \sin 3x$$
.

Giả sử hàm số y = f(x) có đạo hàm tại mỗi điểm $x \in (a; b)$. Khi đó, hệ thức y' = f'(x) xác định một hàm số mới trên khoảng (a; b). Nếu hàm số y' = f'(x) lại có đạo hàm tại x thì ta gọi đạo hàm của y' là đạo hàm cấp hai của hàm số y = f(x) tại x và kí hiệu là y'' hoặc f''(x).

CHÚ Ý

- Đạo hàm cấp 3 của hàm số y = f(x) được định nghĩa tương tự và kí hiệu là y''' hoặc f'''(x) hoặc $f^{(3)}(x)$.
- Cho hàm số y = f(x) có đạo hàm cấp n-1, kí hiệu là $f^{(n-1)}(x)$ $(n \in \mathbb{N}, n \ge 4)$. Nếu $f^{(n-1)}(x)$ có đạo hàm thì đạo hàm của nó được gọi là đạo hàm cấp n của f(x), kí hiệu là $y^{(n)}$ hoặc $f^{(n)}(x)$.

$$f^{(n)}(x) = (f^{(n-1)}(x))'.$$

Ví dụ. Với
$$y = x^5$$
 thì $y' = 5x^4$, $y'' = 20x^3$, $y''' = 60x^2$, $y^{(4)} = 120x$, $y^{(5)} = 120$ và $y^{(n)} = 0$ với $n > 5$.

II – Ý NGHĨA CƠ HỌC CỦA ĐẠO HÀM CẤP HAI

Một vật rơi tự do theo phương thẳng đứng có phương trình $s=\frac{1}{2}gt^2$ (trong đó $g\approx 9.8~{\rm m/s}^2$). Hãy tính vận tốc tức thời v(t) tại các thời điểm $t_0=4~{\rm s}$; $t_1=4,1~{\rm s}$.

Tính tỉ số $\frac{\Delta v}{\Delta t}$ trong khoảng $\Delta t = t_1 - t_0$.

Xét chuyển động xác định bởi phương trình s = f(t), trong đó s = f(t) là một hàm số có đạo hàm đến cấp hai. Vận tốc tức thời tại t của chuyển động là v(t) = f'(t).

Lấy số gia Δt tại t thì v(t) có số gia tương ứng là Δv .

Tỉ số $\frac{\Delta v}{\Delta t}$ được gọi là gia tốc trung bình của chuyển động trong khoảng thời gian Δt . Nếu tồn tại

$$v'(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \gamma(t),$$

ta gọi $v'(t) = \gamma(t)$ là **gia tốc tức thời** của chuyển động tại thời điểm t.

Vì v(t) = f'(t) nên

$$\gamma(t) = f''(t).$$

1. Ý nghĩa cơ học

Đạo hàm cấp hai f''(t) là gia tốc tức thời của chuyển động s = f(t) tại thời điểm t.

Tính gia tốc tức thời của sự rơi tự do $s = \frac{1}{2}gt^2$.

2. Ví dụ

Xét chuyển động có phương trình

$$s(t) = A\sin(\omega t + \varphi)$$
 $(A, \omega, \varphi \text{ là những hằng số}).$

Tìm gia tốc tức thời tại thời điểm t của chuyển động.

Giải. Gọi v(t) là vận tốc tức thời của chuyển động tại thời điểm t, ta có

$$v(t) = s'(t) = [A\sin(\omega t + \varphi)]' = A\omega\cos(\omega t + \varphi).$$

Vậy gia tốc tức thời của chuyển động tại thời điểm t là

$$\gamma(t) = s''(t) = v'(t) = -A\omega^2 \sin(\omega t + \varphi). \blacksquare$$

Bài tập

- **1.** a) Cho $f(x) = (x + 10)^6$. Tính f''(2).
 - b) Cho $f(x) = \sin 3x$. Tính $f''\left(-\frac{\pi}{2}\right)$, f''(0), $f''\left(\frac{\pi}{18}\right)$.
- 2. Tìm đao hàm cấp hai của các hàm số sau:

a)
$$y = \frac{1}{1 - x}$$
;

b)
$$y = \frac{1}{\sqrt{1-x}}$$
;

c)
$$y = \tan x$$
;

d)
$$y = \cos^2 x$$
.

BAN CÓ BIẾT

LAI-BO-NÍT (LEIBNIZ)

Đồng thời và độc lập với Niu-tơn, nhà bác học người Đức Lai-bơ-nít là người phát minh ra phép tính vi phân

và tích phân. Nhiều kí hiệu như $\frac{\mathrm{d}y}{\mathrm{d}x},\int f(x)\mathrm{d}x$, ... và

thuật ngữ như "vi phân", "tích phân" ... do Lai-bơ-nít đưa ra vẫn còn được sử dụng đến ngày nay.

Công thức tính đạo hàm cấp n của tích hai hàm u.v (u và v có đạo hàm đến cấp n) sau đây là của Lai-bơ-nít

Leibniz (1646 – 1716)

$$(uv)^{(n)} = u^{(n)}v + C_n^1 u^{(n-1)}v' + C_n^2 u^{(n-2)}v'' + \dots + C_n^p u^{(n-p)}v^{(p)} + \dots + C_n^{n-1}u'v^{(n-1)} + uv^{(n)}.$$
 (*)

Có thể chứng minh công thức trên bằng phương pháp quy nạp.

Lai-bơ-nít sinh ngày 1-7-1646 tại Lai-xích (Leipzig). Cha ông là Giáo sư luân lí đã mất khi ông mới 6 tuổi nhưng ông đã kịp thừa hưởng ở người cha lòng ham mê môn Lịch sử. Ngoài những buổi học ở trường, Lai-bơ-nít tự trang bị kiến thức nhờ thường xuyên đọc sách trong thư viện của cha. Ông học tiếng La-tinh lúc 8 tuổi, đến 10 tuổi, ông đã làm thơ bằng tiếng La-tinh. Sau đó, ông học tiếng Hy Lạp và rất giỏi thứ tiếng này nhờ sự cố gắng rất lớn. Năm 15 tuổi, Lai-bơ-nít là sinh viên luật của Trường Đại học Tổng hợp Lai-xích. Trong hai năm đầu, ngoài việc theo học Luật, ông đọc rất nhiều sách về Triết học, năm 17 tuổi (1663), nhờ bản luận văn xuất sắc về một trong những học thuyết lớn về Triết học, Lai-bơ-nít được nhân Bằng Cử nhân.

Mùa hè 1663, Lai-bơ-nít chuyển sang học các giáo trình toán của Erhard Weigel ở Trường Đại học Tổng hợp léna.

Năm 20 tuổi (1666), ông trở lại học Luật ở Lai-xích và chuẩn bị thi lấy Bằng Tiến sĩ. Vì ghen tị, người ta từ chối cấp Bằng Tiến sĩ cho Lai-bơ-nít. Họ nêu lí do là ông còn quá trẻ. Song thật ra vì ông hiểu biết về luật nhiều hơn tất cả các giáo sư ở Lai-xích cộng lại.

Chán ngấy thái độ hẹp hòi bao trùm Trường Đại học Lai-xích, ông rời thành phố quê hương đến Nuy-răm-be (Nuremberg). Ở đây, ông được phong học vị Tiến sĩ vào ngày 4-11-1666 nhờ công trình về phương pháp giảng dạy mới về luật. Hơn nữa, người ta còn mời ông giữ chức vụ Giáo sư luật, nhưng ông từ chối. Lai-bơ-nít đã soạn công trình về giảng dạy Luật và đề xuất kế hoạch cải tiến của mình trên đường đi từ Lai-xích đến Nuy-răm-be. Một trong những đặc trưng của cuộc đời Lai-bơ-nít là ông có thể làm việc trong bất kì điều kiện nào, ở bất kì đâu, và trong mọi thời điểm. Ông đọc, viết, nghiền ngẫm không ngừng. Ông đã viết phần lớn các công trình toán học của mình (không kể những công trình đặc sắc về rất nhiều lĩnh vực khác nhau) trong các chuyến xe ngựa trên những con đường nhỏ ở châu Âu hồi thế kỉ XVII khi ông phải đi đây, đi đó theo yêu cầu của khách hàng. Hoạt động không mệt mỏi này của ông đã để lại cho chúng ta một khối lượng giấy viết đủ loại, đủ cỡ và phải lớn như một đống cỏ khô, chưa kịp phân loại, và mới chỉ được công bố một phần. Ngày nay, phần lớn số giấy này còn đang được đóng gói trong một góc của thư viên Hoàng gia ở Ha-nô-vơ (Hanover).

Thật khó tin được rằng chỉ một cái đầu lại có thể sản sinh ra được toàn bộ tư tưởng (đã hoặc chưa in ra) mà Lai-bơ-nít đã để lại trên những trang giấy kia. Điều làm các nhà giải phẫu ngạc nhiên là sau khi đo và quan sát hộp sọ của Lai-bơ-nít người ta nhận thấy rằng nó nhỏ hơn nhiều so với hộp sọ của một người bình thường (Không hiểu lời đồn ấy có thật hay không!).

Ông là nhà bác học lớn trong rất nhiều lĩnh vực (Luật, Tôn giáo, Chính trị, Lịch sử, Văn học, Logic, Triết học, Toán học, Siêu hình). Chỉ cần có một trong những cống hiến trên đây của ông cũng đủ lưu danh hậu thế. Người ta bảo Lai-bơ-nít là một ví dụ chứng tỏ câu phương ngôn "Biết nhiều nghề, chẳng giỏi nghề nào" không đúng.

Ông là người sáng lập Viện Hàn lâm Khoa học Đức mà ông là vị Chủ tịch đầu tiên. Ông mất vào ngày 14-11-1716 ở Ha-nô-vơ trong cô đơn.

Ôn tập chương V

1. Tìm đạo hàm của các hàm số sau:

a)
$$y = \frac{x^3}{3} - \frac{x^2}{2} + x - 5$$
;

b)
$$y = \frac{2}{x} - \frac{4}{x^2} + \frac{5}{x^3} - \frac{6}{7x^4}$$
;

c)
$$y = \frac{3x^2 - 6x + 7}{4x}$$
;

d)
$$y = \left(\frac{2}{x} + 3x\right) \left(\sqrt{x} - 1\right);$$

e)
$$y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}}$$
;

f)
$$y = \frac{-x^2 + 7x + 5}{x^2 - 3x}$$
.

2. Tìm đao hàm của các hàm số sau:

a)
$$y = 2\sqrt{x}\sin x - \frac{\cos x}{x}$$
;

b)
$$y = \frac{3\cos x}{2x+1}$$
;

c)
$$y = \frac{t^2 + 2\cos t}{\sin t}$$
;

d)
$$y = \frac{2\cos\varphi - \sin\varphi}{3\sin\varphi + \cos\varphi}$$
;

e)
$$y = \frac{\tan x}{\sin x + 2}$$
;

f)
$$y = \frac{\cot x}{2\sqrt{x} - 1}$$
.

3. Cho hàm số $f(x) = \sqrt{1+x}$. Tính f(3) + (x-3)f'(3).

4. Cho hai hàm số $f(x) = \tan x$ và $g(x) = \frac{1}{1-x}$. Tính $\frac{f'(0)}{g'(0)}$.

5. Giải phương trình f'(x) = 0, biết rằng

$$f(x) = 3x + \frac{60}{x} - \frac{64}{x^3} + 5.$$

6. Cho $f_1(x) = \frac{\cos x}{x}$, $f_2(x) = x \sin x$. Tính $\frac{f_1'(1)}{f_2'(1)}$.

7. Viết phương trình tiếp tuyến:

a) Của hypebol $y = \frac{x+1}{x-1}$ tại điểm A(2;3);

b) Của đường cong $y=x^3+4x^2-1$ tại điểm có hoành độ $x_0=-1$;

c) Của parabol $y = x^2 - 4x + 4$ tại điểm có tung độ $y_0 = 1$.

- Cho chuyển động thẳng xác định bởi phương trình $S = t^3 3t^2 9t$, trong 8. đó t được tính bằng giây và S được tính bằng mét.
 - a) Tính vận tốc của chuyển động khi t = 2 s.
 - b) Tính gia tốc của chuyển động khi t = 3 s.
 - c) Tính gia tốc tai thời điểm vân tốc triệt tiêu.
 - d) Tính vận tốc tại thời điểm gia tốc triệt tiêu.
- 9. Cho hai hàm số

$$y = \frac{1}{x\sqrt{2}} \text{ và } y = \frac{x^2}{\sqrt{2}}.$$

Viết phương trình tiếp tuyến với đồ thị của mỗi hàm số đã cho tại giao điểm của chúng. Tính góc giữa hai tiếp tuyến kể trên.

Bài tập trắc nghiệm

Chon phương án đúng:

10. Với
$$g(x) = \frac{x^2 - 2x + 5}{x - 1}$$
; $g'(2)$ bằng:

$$(B) -3$$
;

$$(C) -5$$
;

(D)
$$0$$
.

11. Nếu
$$f(x) = \sin^3 x + x^2$$
 thì $f''\left(-\frac{\pi}{2}\right)$ bằng :

$$(C) -2$$
;

(D) 5.

12. Giả sử
$$h(x) = 5(x+1)^3 + 4(x+1)$$
.

Tập nghiệm của phương trình h''(x) = 0 là :

(A)
$$[-1; 2];$$
 (B) $(-\infty; 0];$ (C) $\{-1\};$

(B)
$$(-\infty:01:$$

$$(C) \{-1\}$$

(D)
$$\emptyset$$
.

13. Cho
$$f(x) = \frac{x^3}{3} + \frac{x^2}{2} + x$$
.

Tập nghiệm của bất phương trình $f'(x) \le 0$ là :

$$(A) \varnothing$$
;

(B)
$$(0; +\infty)$$

$$(C) [-2; 2]$$

(B)
$$(0; +\infty);$$
 (C) $[-2; 2];$ (D) $(-\infty; +\infty).$

Ôn tập cuối năm

I – CÂU HỔI

- 1. Nêu định nghĩa các hàm số lượng giác. Chỉ rõ tập xác định và tập giá trị của từng hàm số đó.
- 2. Cho biết chu kì của mỗi hàm số $y = \sin x$, $y = \cos x$, $y = \tan x$, $y = \cot x$.
- 3. Nêu cách giải các phương trình lượng giác cơ bản, cách giải phương trình dang $a\sin x + b\cos x = c$.
- **4.** Viết công thức tính số hoán vị của tập gồm n phần tử (n > 1). Nêu ví dụ.
- **5.** Viết công thức tính số chỉnh hợp chập *k* của *n* phần tử, công thức tính số tổ hợp chập *k* của *n* phần tử. Cho ví dụ.
- 6. Viết công thức nhị thức Niu-tơn.
- 7. Phát biểu định nghĩa xác suất (cổ điển) của biến cố.
- **8.** Nêu rõ các bước chứng minh bằng phương pháp quy nạp toán học và cho ví dụ.
- **9.** Phát biểu định nghĩa cấp số cộng và công thức tính tổng *n* số hạng đầu tiên của một cấp số cộng.
- 10. Phát biểu định nghĩa cấp số nhân và công thức tính tổng n số hạng đầu tiên của một cấp số nhân.
- **11.** Dãy số (u_n) thoả mãn điều kiện gì thì được gọi là có giới hạn 0 khi n dần tới dương vô cực ?
- 12. Viết công thức tính tổng của một cấp số nhân lùi vô hạn.
- 13. Định nghĩa hàm số có giới hạn $+\infty$ khi $x \to -\infty$.
- 14. Nêu các giới hạn đặc biệt của dãy số và của hàm số.
- 15. Nêu định nghĩa hàm số liên tục tại một điểm, trên một khoảng. Nêu nhận xét về đồ thị của một hàm số liên tục trên một khoảng.
- **16.** Phát biểu định nghĩa đạo hàm của hàm số y = f(x) tại $x = x_0$.
- 17. Viết tất cả các quy tắc tính đạo hàm đã học.
- **18.** Giả sử y = f(x) là hàm số có đạo hàm tại x_0 . Hãy viết phương trình tiếp tuyến của đồ thị hàm số đó tại điểm $M_0(x_0; f(x_0))$.

II – BÀI TÂP

- 1. Cho hàm số $y = \cos 2x$.
 - a) Chứng minh rằng $\cos 2(x + k\pi) = \cos 2x$ với mọi số nguyên k. Từ đó vẽ đồ thị (C) của hàm số $y = \cos 2x$.

- b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ $x = \frac{\pi}{3}$.
- c) Tìm tập xác định của hàm số $z = \sqrt{\frac{1 \cos 2x}{1 + \cos^2 2x}}$.
- 2. Cho hàm số $y = \frac{5}{6 + 7\sin 2x}$.
 - a) Tính $A = \frac{5}{6 + 7\sin 2a}$, biết rằng $\tan a = 0.2$.
 - b) Tính đạo hàm của hàm số đã cho.
 - c) Xác định các khoảng trên đó y' không dương.
- 3. Giải các phương trình:
 - a) $2\sin\frac{x}{2}\cos^2 x 2\sin\frac{x}{2}\sin^2 x = \cos^2 x \sin^2 x$;
 - b) $3\cos x + 4\sin x = 5$;
 - c) $\sin x + \cos x = 1 + \cos x \sin x$;
 - d) $\sqrt{1 \cos x} = \sin x \ (x \in [\pi; 3\pi]);$
 - e) $\left(\cos\frac{x}{4} 3\sin x\right)\sin x + \left(1 + \sin\frac{x}{4} 3\cos x\right)\cos x = 0.$
- **4.** Trong một bệnh viện có 40 bác sĩ ngoại khoa. Hỏi có bao nhiều cách phân công ca mổ, nếu mỗi ca gồm :
 - a) Một bác sĩ mổ và một bác sĩ phụ?
 - b) Một bác sĩ mổ và bốn bác sĩ phụ?
- 5. Tìm số hạng không chứa a trong khai triển của nhị thức

$$\left(\frac{1}{a^3} + a^2\right)^{10}.$$

6. Chọn ngẫu nhiên ba học sinh từ một tổ gồm có sáu nam và bốn nữ.

Tính xác suất sao cho:

- a) Cả ba học sinh đều là nam;
- b) Có ít nhất một nam.
- 7. Một tiểu đội có 10 người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh A và anh B. Tính xác suất sao cho:
 - a) A và B đứng liền nhau;
 - b) Trong hai người đó có một người đứng ở vị trí số 1 và người kia đứng ở vị trí cuối cùng.

- **8.** Tìm cấp số cộng tăng, biết rằng tổng ba số hạng đầu của nó bằng 27 và tổng các bình phương của chúng bằng 275.
- 9. Cho biết trong một cấp số nhân, hiệu của số hạng thứ ba và số hạng thứ hai bằng 12 và nếu thêm 10 vào số hạng thứ nhất, thêm 8 vào số hạng thứ hai còn giữ nguyên số hạng thứ ba thì ba số mới lập thành một cấp số cộng. Hãy tính tổng của năm số hạng đầu của cấp số nhân đã cho.
- 10. Tính các giới hạn sau:

a)
$$\lim \frac{(n+1)(3-2n)^2}{n^3+1}$$
;

b)
$$\lim \left(\frac{1}{n^2 + 1} + \frac{2}{n^2 + 1} + \frac{3}{n^2 + 1} + \dots + \frac{n - 1}{n^2 + 1} \right)$$
;

c)
$$\lim \frac{\sqrt{4n^2+1}+n}{2n+1}$$
;

- d) $\lim \sqrt{n}(\sqrt{n-1}-\sqrt{n})$.
- **11.** Cho hai dãy số (u_n) , (v_n) với $u_n = \frac{n}{n^2 + 1}$ và $v_n = \frac{n\cos\frac{\pi}{n}}{n^2 + 1}$.
 - a) Tính $\lim u_n$.
 - b) Chứng minh rằng $\lim v_n = 0$.
- 12. Chứng minh rằng hàm số $y = \cos x$ không có giới hạn khi $x \to +\infty$.
- 13. Tính các giới hạn sau:

a)
$$\lim_{x \to -2} \frac{6 - 3x}{\sqrt{2x^2 + 1}}$$
;

b)
$$\lim_{x \to 2} \frac{x - \sqrt{3}x - 2}{x^2 - 4}$$
;

c)
$$\lim_{x \to 2^+} \frac{x^2 - 3x + 1}{x - 2}$$
;

d)
$$\lim_{x \to 1^{-}} \left(x + x^2 + ... + x^n - \frac{n}{1 - x} \right)$$
;

e)
$$\lim_{x \to +\infty} \frac{2x - 1}{x + 3}$$
;

f)
$$\lim_{x \to -\infty} \frac{x + \sqrt{4x^2 - 1}}{2 - 3x}$$
;

g)
$$\lim_{x \to -\infty} (-2x^3 + x^2 - 3x + 1).$$

14. Chứng minh rằng phương trình sau có ít nhất một nghiệm:

$$\sin x = x - 1.$$

15. Phương trình sau có nghiệm hay không trong khoảng (-1; 3):

$$x^4 - 3x^3 + x - 1 = 0$$
?

16. Giải các phương trình:

a)
$$f'(x) = g(x)$$
 với $f(x) = \sin^3 2x$ và $g(x) = 4\cos 2x - 5\sin 4x$;

b)
$$f'(x) = 0$$
 với $f(x) = 20\cos 3x + 12\cos 5x - 15\cos 4x$.

17. Tính đạo hàm của các hàm số sau:

a)
$$y = \frac{1}{\cos^2 3x}$$
;

b)
$$y = \frac{\cos\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$$
;

c)
$$y = (2 - x^2) \cos x + 2x \sin x$$
;

d)
$$y = \frac{\sin x - x \cos x}{\cos x + x \sin x}$$

18. Tính đạo hàm cấp hai của các hàm số sau:

a)
$$y = \frac{1}{x+1}$$
;

b)
$$y = \frac{1}{x(1-x)}$$
;

c)
$$y = \sin ax (a \text{ là hằng số});$$

$$d) y = \sin^2 x.$$

19. Cho hàm số

$$f(x) = x^{3} + bx^{2} + cx + d.$$
 (C)

Hãy xác định các số b, c, d, biết rằng đồ thị (C) của hàm số y = f(x) đi qua các điểm (-1; -3), (1; -1) và $f'\left(\frac{1}{3}\right) = 0$.

20. Cho các hàm số

$$f(x) = x^{3} + bx^{2} + cx + d,$$
 (C)
$$g(x) = x^{2} - 3x + 1.$$

Với các số b, c, d tìm được ở bài 19, hãy:

- a) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = -1;
- b) Giải phương trình $f'(\sin x) = 0$;

c) Tîm
$$\lim_{x\to 0} \frac{f''(\sin 5x) + 1}{g'(\sin 3x) + 3}$$
.

ĐÁP SỐ - HƯỚNG DẪN

CHƯƠNG I

§1.

1. a) $\tan x = 0$ tai $x \in \{-\pi, 0, \pi\}$;

b)
$$\tan x = 1 \text{ tại } x \in \left\{ -\frac{3\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4} \right\} ;$$

c) $\tan x > 0$ khi

$$x\in\left(-\pi\,;-\frac{\pi}{2}\right)\cup\left(0;\frac{\pi}{2}\right)\cup\left(\pi\,;\frac{3\pi}{2}\right)\,;$$

d) $\tan x < 0$ khi

$$x \in \left(-\frac{\pi}{2}; 0\right) \cup \left(\frac{\pi}{2}; \pi\right).$$

2. a) $D = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$;

b)
$$D = \mathbb{R} \setminus \{k2\pi, k \in \mathbb{Z}\}$$
;

c)
$$D = \mathbb{R} \setminus \left\{ \frac{5\pi}{6} + k\pi, k \in \mathbb{Z} \right\}$$
;

d)
$$D = \mathbb{R} \setminus \left\{ -\frac{\pi}{6} + k\pi, \ k \in \mathbb{Z} \right\}.$$

- 3. Lấy đối xứng qua trục Ox các phần đồ thị hàm số $y = \sin x$ trên các đoạn $[\pi + k2\pi]$; $2\pi + k2\pi]$, giữ nguyên các phần đồ thị còn lại $(k \in \mathbb{Z})$.
- 4. y = sin 2x là hàm số tuần hoàn với chu kì π và là hàm số lẻ. Từ đó suy ra đồ thị của hàm số này.
- 5. Cắt đồ thị hàm số $y = \cos x$ bởi đường thẳng $y = \frac{1}{2}$, xác định hoành độ giao điểm.
- **6.** $x \in (k2\pi; \pi + k2\pi), k \in \mathbb{Z}$.

7.
$$x \in \left(\frac{\pi}{2} + k2\pi; \frac{3\pi}{2} + k2\pi\right), k \in \mathbb{Z}$$
.

8. a) $0 \le \cos x \le 1$, $y \le 3$, $y_{\text{max}} = 3$

$$\Leftrightarrow x = k2\pi, k \in \mathbb{Z}$$
.

b) $3 - 2\sin x \le 5$, $y_{\text{max}} = 5$

$$\Leftrightarrow x = -\frac{\pi}{2} + k2\pi, \ k \in \ \mathbb{Z} \ .$$

§2.

1. a) $x = \arcsin \frac{1}{3} - 2 + k2\pi$,

$$x = \pi - \arcsin \frac{1}{3} - 2 + k2\pi, k \in \mathbb{Z}$$
;

b)
$$x = \frac{\pi}{6} + k \frac{2\pi}{3}, k \in \mathbb{Z}$$
;

c)
$$x = \frac{\pi}{2} + k \frac{3\pi}{2}$$
, $k \in \mathbb{Z}$;

d)
$$x = -40^{\circ} + k180^{\circ}$$
,

$$x = 110^{\circ} + k180^{\circ}, k \in \mathbb{Z}$$
.

2.
$$x = k\pi, x = \frac{\pi}{4} + k\frac{\pi}{2}, k \in \mathbb{Z}$$
.

3. a) $x = 1 \pm \arccos \frac{2}{3} + k2\pi, k \in \mathbb{Z}$;

b)
$$x = \pm 4^{\circ} + k.120^{\circ}, k \in \mathbb{Z}$$
;

c)
$$x = \frac{11\pi}{18} + k \frac{4\pi}{3}, x = -\frac{5\pi}{18} + k \frac{4\pi}{3}, k \in \mathbb{Z}$$
;

d)
$$x = \pm \frac{\pi}{6} + k\pi$$
, $x = \pm \frac{\pi}{3} + k\pi$, $k \in \mathbb{Z}$.

4.
$$x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$
.

5. a)
$$x = 45^{\circ} + k180^{\circ}, k \in \mathbb{Z}$$
;

b)
$$x = \frac{1}{3} + \frac{5\pi}{18} + k\frac{\pi}{3}, k \in \mathbb{Z}$$
;

c)
$$x = \frac{\pi}{4} + k \frac{\pi}{2}, x = k\pi, k \in \mathbb{Z}$$
.

d)
$$x = k \frac{\pi}{3}, x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}.$$

6.
$$x = \frac{\pi}{12} + k \frac{\pi}{3}, k \in \mathbb{Z}$$
.

7. a)
$$x = \frac{\pi}{16} + k \frac{\pi}{4}, x = -\frac{\pi}{4} + k\pi, k \in \mathbb{Z}$$
.

b)
$$x = \frac{\pi}{8} + k \frac{\pi}{4}, k \in \mathbb{Z}$$
.

§3.

1.
$$x = k\pi, x = \frac{\pi}{2} + k2\pi, k \in \mathbb{Z}$$
.

2. a)
$$x = k2\pi, x = \pm \frac{\pi}{3} + k2\pi, k \in \mathbb{Z}$$
;

b)
$$x = k \frac{\pi}{2}$$
, $x = \pm \frac{3\pi}{8} + k\pi$, $k \in \mathbb{Z}$.

3. a)
$$x = k4\pi$$
, $k \in \mathbb{Z}$; b) $x = \frac{\pi}{6} + k2\pi$,

$$x = \frac{5\pi}{6} + k2\pi, x = \arcsin\left(-\frac{1}{4}\right) + k2\pi,$$

$$x = \pi - \arcsin\left(-\frac{1}{4}\right) + k2\pi, k \in \mathbb{Z} ;$$

c)
$$-\frac{\pi}{4} + k\pi$$
, $x = \arctan\left(-\frac{1}{2}\right) + k\pi$, $k \in \mathbb{Z}$;

$$d) x = \frac{\pi}{4} + k\pi$$

$$x = \arctan(-2) + k\pi, k \in \mathbb{Z}$$
.

4. a)
$$x = \frac{\pi}{4} + k\pi$$
,

$$x = \arctan\left(-\frac{3}{2}\right) + k\pi, k \in \mathbb{Z}$$
;

b)
$$x = \frac{\pi}{4} + k\pi, x = \arctan 3 + k\pi, k \in \mathbb{Z}$$
;

c)
$$x = \frac{\pi}{4} + k\pi$$
, $x = \arctan(-5) + k\pi$, $k \in \mathbb{Z}$;

d)
$$x = \frac{\pi}{2} + k\pi, x = \frac{\pi}{6} + k\pi, k \in \mathbb{Z}$$
.

5. a)
$$x = -\frac{\pi}{12} + k2\pi, x = -\frac{7\pi}{12} + k2\pi, k \in \mathbb{Z}$$
;

b)
$$x = \frac{\alpha}{3} + \frac{\pi}{6} + k \frac{2\pi}{3}, k \in \mathbb{Z}$$

(với
$$\cos \alpha = \frac{3}{5}$$
; $\sin \alpha = \frac{4}{5}$).

c)
$$x = \frac{7\pi}{12} + k2\pi, x = -\frac{\pi}{12} + k2\pi, k \in \mathbb{Z}$$
;

d)
$$x = \frac{\pi}{4} - \frac{\alpha}{2} + k\pi$$
, $k \in \mathbb{Z}$;

(với
$$\sin \alpha = \frac{5}{13}$$
; $\cos \alpha = \frac{12}{13}$).

6. a)
$$x = \frac{\pi}{10} + k \frac{\pi}{5}, k \in \mathbb{Z}$$
.

b)
$$x = k\pi$$
, $x = \arctan 3 + k\pi$, $k \in \mathbb{Z}$.

Ôn tập chương I

1. a) có; b) không.

2. a)
$$x \in \left\{-\frac{\pi}{2}, \frac{3\pi}{2}\right\}$$
; b) $x \in (-\pi; 0) \cup (\pi, 2\pi)$.

3. a)
$$1 + \cos x \le 2 \implies y \le 3$$
, $y_{\text{max}} = 3$

$$\Leftrightarrow x = k2\pi, \ k \in \mathbb{Z}$$
;

b)
$$y \le 1$$
, $y_{max} = 1$

$$\Leftrightarrow x = \frac{2\pi}{3} + k2\pi, \ k \in \mathbb{Z}$$
.

4. a)
$$x = -1 + \arcsin \frac{2}{3} + k2\pi$$
, $k \in \mathbb{Z}$;

$$x = \pi - 1 - \arcsin \frac{2}{3} + k2\pi, \ k \in \mathbb{Z}.$$

b)
$$x = \pm \frac{\pi}{8} + k\pi$$
, $x = \pm \frac{3\pi}{8} + k\pi$, $k \in \mathbb{Z}$;

c)
$$x = \pm \frac{2\pi}{3} + k2\pi, k \in \mathbb{Z}$$
;

d)
$$x = \frac{-5\pi}{144} + k \frac{\pi}{12}, k \in \mathbb{Z}$$

5. a)
$$x = k2\pi$$
, $x = \pm \frac{\pi}{3} + k2\pi$, $k \in \mathbb{Z}$;

b)
$$x = \frac{\pi}{2} + k\pi$$
, $x = \arctan \frac{8}{15} + k\pi$, $k \in \mathbb{Z}$;

c)
$$x = k2\pi$$
, $k \in \mathbb{Z}$; $x = \pi - 2\alpha + k2\pi$, $k \in \mathbb{Z}$

(với
$$\cos \alpha = \frac{2}{\sqrt{5}}$$
; $\sin \alpha = \frac{1}{\sqrt{5}}$).

d) Điều kiện
$$\sin x \neq 0$$
, $x = \pm \frac{2\pi}{3} + k2\pi$.

CHƯƠNG II

§1.

1. a) 4; b)
$$4^2 = 16$$
; c) 4. $3 = 12$;

§2.

1. a)
$$6!$$
; b) $3 \times 5!$; c) 414 .

§3.

2. 12. **3.**
$$n = 5$$
 4. 28. **5.** -1 .

6. a), b)
$$G\phi i$$
 ý. Khai triển $11^{10} = (10 + 1)^{10}$, $101^{100} = (100 + 1)^{100}$.

§4.

1. a)
$$\Omega = \{SSS, SSN, NSS, SNS, NNS, NSN, SNN, NNN\}$$
.

b)
$$A = \{SSS, SSN, SNS, SNN\}$$
;
 $B = \{SNN, NSN, NNS\}$;
 $C = \{SSN, NSS, SNS, NNS, NSN, SNN, NNN\}$.

2. a)
$$\Omega = \{(i, j) ; 1 \le i, j \le 6\}.$$

3. a)
$$\Omega = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$$

b)
$$A = \{\{1, 3\}, \{2, 4\}\};$$

 $B = \{\{1, 2\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$

4. a)
$$A = \overline{A}_1 \cap \overline{A}_2$$
; $B = A_1 \cap A_2$;

$$C = (A_1 \cap \overline{A}_2) \cup (\overline{A}_1 \cap A_2) \ ; D = A_1 \cup A_2.$$

b) HD. \overline{D} là biến cố "Cả hai người đều bắn trươt"

5. a)
$$\Omega = \{1, 2, ..., 10\}$$
;

b)
$$A = \{1, 2, 3, 4, 5\}$$
; $B = \{7, 8, 9, 10\}$; $C = \{2, 4, 6, 8, 10\}$.

6. a)
$$\Omega = \{S, NS, NNS, NNNS, NNNN\}$$
;

b)
$$A = \{S, NS, NNS\}$$
; $B = \{NNNS, NNNN\}$

7. a) Ω gồm các chỉnh hợp chập 2 của 5 chữ số 1, 2, 3, 4, 5;

b)
$$A = \{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)\}$$
; $B = \{(2, 1), (4, 2)\}$; $C = \emptyset$.

§5.

1. c)
$$P(A) = \frac{6}{36}$$
, $P(B) = \frac{11}{36}$.

2. b)
$$A = \{1, 3, 4\}$$
; $B = \{\{1, 2, 3\}, \{2, 3, 4\}\}$;

c)
$$P(A) = \frac{1}{4}$$
, $P(B) = \frac{1}{2}$.

3.
$$\frac{1}{7}$$
. 4. a) $\frac{2}{3}$, b) $\frac{1}{3}$, c) $\frac{1}{6}$.

5. a)
$$\approx 0,000\ 003\ 7$$
; b) $\approx 0,28123$; c) $\approx 0,000\ 133$.

6. a)
$$\frac{2}{3}$$
, b) $\frac{1}{3}$.

7. a) Độc lập; b)
$$\frac{12}{25}$$
; c) $\frac{13}{25}$.

Ôn tập chương II

4. a) 1176; b) 420. **5.** a) =
$$0.1$$
; b) 0.2 .

6. a)
$$\frac{8}{105}$$
, b) $\frac{209}{210}$. **7.** ≈ 0.4213 .

8. a)
$$\frac{2}{5}$$
; b) $\frac{3}{5}$; c) $\frac{1}{5}$. **9.** a) $\frac{1}{4}$; b) $\frac{1}{4}$.

CHUONG III

§1.

4. a)
$$S_1 = \frac{1}{2}$$
, $S_2 = \frac{2}{3}$, $S_3 = \frac{3}{4}$.

§2.

3. b)
$$u_n = \sqrt{n+8} \text{ v\'oi } n \in \mathbb{N}^*$$

- 4. a) Dãy số giảm;
- b) Dãy số tăng;
- c) Dãy số không tăng cũng không giảm;
- d) Dãy số giảm.
- 5. a) Dãy số bị chặn dưới vì $u_n \ge 1$;

b) Dãy số bị chặn vì
$$0 < u_n \le \frac{1}{3}$$
;

c)
$$0 < u_n \le 1$$
; d)

c)
$$0 < u_n \le 1$$
; d) $-\sqrt{2} < u_n < \sqrt{2}$.

§3.

1. a)
$$u_1 = 3$$
, $d = -2$; b) $u_1 = -\frac{1}{2}$, $d = \frac{1}{2}$;

c) Dãy số không phải là cấp số cộng;

d)
$$u_1 = 2$$
, $d = -\frac{3}{2}$.

2. a)
$$u_1 = 16$$
, $d = -3$;

b)
$$u_1 = 3$$
, $d = 2$; $u_1 = -17$, $d = 2$.

3. Đáp số được để trong ngoặc đơn của bảng.

u_1	d	u_n	n	S_n
-2	(3)	55	20	(530)
(36)	-4	(-20)	15	120
3	4/27	7	(28)	(140)
(-5)	(2)	17	12	72
2	-5	(-43)	(10)	-205

4. a) $h_n = 0.5 + 0.18n$; b) $h_{21} = 4.28$ (m).

5. 78.

§4.

2. a)
$$q = 3$$
; b) $u_1 = \frac{9}{7}$; c) $n = 7$.

3. a) •
$$q = 3 : \frac{1}{3}, 1, 3, 9, 27;$$

• $q = -3 : \frac{1}{3}, -1, 3, -9, 27;$
b) $-\frac{200}{3}, -\frac{100}{3}, -\frac{50}{3}, -\frac{25}{3}, -\frac{25}{6}.$

- **4.** 1, 2, 4, 8, 16, 32.
- Sau 5 năm : ≈ 1,9 triệu người ; Sau 10 năm : ≈ 2,1 triêu người.
- **6.** Biểu diễn $a_{n+1} = a_n \cdot \frac{\sqrt{10}}{4}$ với $n \ge 1$.

Do đó dãy số (a_n) là cấp số nhân với công bội $q = \frac{\sqrt{10}}{4}$.

Ôn tập chương III

- 1. Cấp số cộng là dãy số tăng nếu d > 0 và giảm nếu d < 0.
- 2. a) u_n < 0 với mọi n;b) Các số hang đan dấu.
- 5. Dùng phương pháp quy nạp toán học.
- **6.** a) 2, 3, 5, 9, 17.
- 7. a) Dãy số tăng, bị chặn dưới.
 - b) Dãy số bị chặn, không tăng cũng không giảm
 - c) Dãy số giảm và bị chặn vì

$$0 < u_n \le \frac{1}{\sqrt{2} + 1}.$$

8. a)
$$u_1 = 8$$
, $d = -3$;

b)
$$u_1 = 0$$
, $d = 3$; $u_1 = -12$, $d = \frac{21}{5}$.

9. a)
$$u_1 = 6$$
, $q = 2$; b) $u_1 = 12$, $q = 2$; c) $u_1 = 1$, $q = 2$.

10.
$$A = 22^{\circ}30', B = 67^{\circ}30', C = 112^{\circ}30',$$

$$D = 157^{\circ}30'$$
. **11.** $q_1 = 1$ hoặc $q_2 = \frac{1}{3}$. **12.** 6 m².

CHUONG IV

§1.

1. a)
$$u_n = \frac{1}{2^n} (kg)$$
;
c) $Ch\acute{u} \acute{y} : 10^{-6} g = 10^{-6}.10^{-3} kg = \frac{1}{10^9} kg$.

3. a) 2; b)
$$\frac{3}{2}$$
; c) 5; d) $\frac{3}{4}$.

4. a)
$$u_n = \frac{1}{4^n}$$
; b) $\frac{1}{3}$. **5.** $S = -\frac{10}{11}$.

6.
$$\frac{101}{99}$$
 7. a) $+\infty$; b) $-\infty$; c) $-\frac{1}{2}$; d) $+\infty$.

8. a) 2; b) 0.

§2.

1. a)
$$\frac{1}{2}$$
; b) -5.

2. Hàm số y = f(x) không có giới hạn khi $x \to 0$.

3. a)
$$-4$$
; b) 4.; c) $\frac{1}{6}$. d) -2 . e) 0; f) $-\infty$.

4. a) $+\infty$; b) $+\infty$; c) $-\infty$.

5. b)
$$\lim_{x \to -\infty} f(x) = 0$$
, $\lim_{x \to 3^{-}} f(x) = -\infty$, $\lim_{x \to -3^{+}} f(x) = +\infty$.

6. a) $+\infty$; b) $+\infty$; c) $+\infty$; d) -1.

7. a)
$$d' = \varphi(d) = \frac{df}{d - f}$$
;
b) $\lim_{d \to f^+} \varphi(d) = +\infty$, $\lim_{d \to f^-} \varphi(d) = -\infty$, $\lim_{d \to +\infty} \varphi(d) = f$.

§3.

1. y = f(x) liên tục tại $x_0 = 3$.

2. a) y = g(x) không liên tục tại $x_0 = 2$; b) 12.

3. a) y = f(x) liên tục trên $(-\infty; -1)$ và $(-1; +\infty)$.

4. a) y = f(x) liên tục trên $(-\infty; -3)$, (-3; 2) và trên $(2; +\infty)$; b) y = g(x) liên tục trên các khoảng $\left(\frac{-\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right)$ với $k \in \mathbb{Z}$.

5. Ý kiến đúng.

6. b) *HD*. Xét hàm số $f(x) = \cos x - x$ trên \mathbb{R} và hai số 0, 1.

Ôn tập chương IV

2. $\lim u_n = 2$.

3. HOAN.

5. a)
$$\frac{1}{2}$$
; b) $\frac{1}{3}$; c) $-\infty$; d) $-\infty$; e) $\frac{1}{3}$; f) $-\frac{2}{3}$.

6. a)
$$\lim_{x \to 0} f(x) = +\infty$$
; $\lim_{x \to 0} g(x) = +\infty$; $\lim_{x \to +\infty} f(x) = -1$; $\lim_{x \to +\infty} g(x) = +\infty$;

b) Hình 60a) là đồ thị của y = g(x), Hình 60b) là đồ thị của y = f(x).

7. y = g(x) liên tục trên \mathbb{R} .

8. HD. Xét dấu f(0), f(1), f(2) và f(3).

CHUONG V

§1.

1. a)
$$f(2) - f(1) = 7$$
;
b) $f(0, 9) - f(1) = -0.271$.

2. a)
$$\Delta y = 2\Delta x$$
, $\frac{\Delta y}{\Delta x} = 2$;

b)
$$\Delta y = \Delta x (2x + \Delta x)$$
; $\frac{\Delta y}{\Delta x} = 2x + \Delta x$;

c)
$$\Delta y = 2\Delta x [3x^2 + 3x\Delta x + (\Delta x)^2]$$
;

$$\frac{\Delta y}{\Delta x} = 6x^2 + 6x \Delta x + 2(\Delta x)^2$$
;

d)
$$\Delta y = -\frac{\Delta x}{x(x + \Delta x)}; \frac{\Delta y}{\Delta x} = -\frac{1}{x(x + \Delta x)}.$$

3. a) 3; b)
$$-\frac{1}{4}$$
; c) -2.

4. HD. Chứng minh f gián đoạn tại x = 0. Từ đó suy ra f không có đạo hàm tại điểm đó.

5. a)
$$y = 3x + 2$$
; b) $y = 12x - 16$;
c) $y = 3x + 2$ và $y = 3x - 2$.

6. a)
$$y = -4(x - 1)$$
; b) $y = -(x + 2)$;
c) $y = -\frac{x}{4} + 1$ và $y = -\frac{x}{4} - 1$.

§2.

1. a)
$$-1$$
; b) 10.

2. a)
$$5x^4 - 12x^2 + 2$$
; b) $-2x^3 + 2x - \frac{1}{3}$;

c)
$$2x^3 - 2x^2 + \frac{8}{5}x$$
; d) $-63x^6 + 120x^4$.

3. a)
$$3x^5(x^5-5)^2(7x^5-10)$$
;

b)
$$-4x(3x^2-1)$$
; c) $\frac{-2(x^2+1)}{(x^2-1)^2}$;

d)
$$\frac{5x^2 - 6x - 2}{(x^2 - x + 1)^2}$$
; e) $-\frac{6n}{x^3} \left(m + \frac{n}{x^2} \right)^2$.

4. a)
$$2x - \frac{3}{2}\sqrt{x}$$
; b) $\frac{-2x-5}{2\sqrt{2-5x-x^2}}$;

c)
$$\frac{x^2(3a^2-2x^2)}{\sqrt{(a^2-x^2)^3}}$$
; d) $\frac{3-x}{2\sqrt{(1-x)^3}}$.

5. a)
$$x < 0$$
 hoặc $x > 2$; b) $1 - \sqrt{2} < x < 1 + \sqrt{2}$.

83

1. a)
$$\frac{3}{(5x-2)^2}$$
; b) $\frac{23}{(7-3x)^2}$;
c) $\frac{-2(2x^2-3x-9)}{(3-4x)^2}$; d) $\frac{-10x^2-6x+9}{x^2(x-3)^2}$.

2. a)
$$(-1; 1) \cup (1; 3); b) (-\infty; -3] \cup [1; +\infty);$$

c) $\left(\frac{1-\sqrt{19}}{2}; \frac{1+\sqrt{19}}{2}\right).$

3. a)
$$5\cos x + 3\sin x$$
; b) $-\frac{2}{(\sin x - \cos x)^2}$;

c)
$$\cot x - \frac{x}{\sin^2 x}$$
;

d)
$$(x \cos x - \sin x) \left(\frac{1}{x^2} - \frac{1}{\sin^2 x} \right)$$
;

e)
$$\frac{1}{\cos^2 x \sqrt{1 + 2\tan x}}$$
; f) $\frac{x \cos \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$.

4. a)
$$-2(2x^3 - 9x^2 + 1) + (6x^2 - 18x)(9 - 2x)$$
;

b)
$$\left(\frac{3}{\sqrt{x}} + \frac{2}{x^3}\right) (7x - 3) + 7\left(6\sqrt{x} - \frac{1}{x^2}\right)$$
;

c)
$$\sqrt{x^2+1} + \frac{x(x-2)}{\sqrt{x^2+1}}$$
;

d)
$$\frac{2\tan x}{\cos^2 x} + \frac{2x}{\sin^2 x^2}$$
; e) $-\frac{1}{(1+x)^2} \sin \frac{x}{1+x}$.

5.
$$\frac{1}{2}$$
.

7. a)
$$x = \varphi + \frac{\pi}{2} + k2\pi$$
, $(k \in \mathbb{Z})$ với $\cos \varphi = \frac{3}{5}$;

b)
$$\begin{cases} x = \pi + k4\pi \\ x = -\frac{\pi}{3} + k\frac{4\pi}{3} & (k \in \mathbb{Z}). \end{cases}$$

8. a)
$$(-\infty; 0) \cup (2; +\infty)$$
; b) $(-\infty; 0) \cup (1; +\infty)$.

1. a)
$$\frac{1}{2(a+b)\sqrt{x}} dx$$
;

b)
$$\left[(2x+4)(x^2-\sqrt{x})+(x^2+4x+1)\times \left(2x-\frac{1}{2\sqrt{x}}\right) \right] dx;$$

2. a)
$$\frac{2\tan x}{\cos^2 x} dx$$
; b) $\frac{(x^2 - 1)\sin x + 2x\cos x}{(1 - x^2)^2} dx$.

§5.

b)
$$f''\left(-\frac{\pi}{2}\right) = -9$$
; $f''(0) = 0$;
 $f''\left(\frac{\pi}{18}\right) = -\frac{9}{2}$;

2. a)
$$y'' = \frac{2}{(1-x)^3}$$
; b) $y'' = \frac{3}{4\sqrt{(1-x)^5}}$;

c)
$$y'' = \frac{2\sin x}{\cos^3 x}$$
; d) $y'' = -2\cos 2x$.

Ôn tập chương V

1. a)
$$y' = x^2 - x + 1$$
;

b)
$$y' = -\frac{2}{x^2} + \frac{8}{x^3} - \frac{15}{x^4} + \frac{24}{7x^5}$$
;

c)
$$y' = \frac{3x^2 - 7}{4x^2}$$
;

d)
$$y' = \frac{9x^2\sqrt{x} - 6x^2 - 2\sqrt{x} + 4}{2x^2}$$
;

e)
$$y' = \frac{1}{\sqrt{x}(1-\sqrt{x})^2}$$
;

f)
$$y' = \frac{-4x^2 - 10x + 15}{(x^2 - 3x)^2}$$
.

2. a)
$$y' = \frac{(\sqrt{x} + 1)x\sin x + (2x^2\sqrt{x} + 1)\cos x}{x^2}$$
;

b)
$$y' = \frac{-3(2x+1)\sin x - 6\cos x}{(2x+1)^2}$$
;

c)
$$y' = \frac{2t \sin t - t^2 \cos t - 2}{\sin^2 t}$$
;

d)
$$y' = \frac{-7}{(3\sin \varphi + \cos \varphi)^2}$$
;

e)
$$y' = \frac{2 + \sin^3 x}{\cos^2 x (\sin x + 2)^2}$$
;

f)
$$y' = \frac{\frac{1 - 2\sqrt{x}}{\sin^2 x} - \frac{\cot x}{\sqrt{x}}}{(2\sqrt{x} - 1)^2}$$
.

3.
$$2 + \frac{x-3}{4}$$
.

5.
$$\{\pm 2; \pm 4\}$$
.

7. a)
$$y = -2x + 7$$
:

b)
$$y = -5x - 3$$
:

c)
$$y = -2x + 3 = 0$$
, $y = 2x - 5$.

8. a)
$$-9$$
m/s; b) 12 m/s²;

c)
$$12m/s^2$$
; d) $-12m/s$.

9. a)
$$y = -\frac{1}{\sqrt{2}}x + \sqrt{2}$$
, $y = \sqrt{2}x - \frac{\sqrt{2}}{2}$;

b) 90°.

Ôn tập cuối năm

1. b)
$$y = -\sqrt{3}x + \frac{\pi\sqrt{3}}{3} - \frac{1}{2}$$
; c) \mathbb{R} .

2. a)
$$\frac{65}{113}$$
;

b)
$$y' = \frac{-70\cos 2x}{(6+7\sin 2x)^2}$$
;

c)
$$\left[-\frac{\pi}{4} + k\pi; \frac{\pi}{4} + k\pi \right], k \in \mathbb{Z}.$$

3. a)
$$\left\{ \frac{\pi}{4} + \frac{\pi}{2}n ; (-1)^k \frac{\pi}{3} + k2\pi, n, k \in \mathbb{Z} \right\};$$

b)
$$\left\{ \frac{\pi}{2} - \alpha + k2\pi, \ k \in \mathbb{Z} \right\}$$
 với $\cos \alpha = \frac{4}{5}$; $\sin \alpha = \frac{3}{5}$.

c)
$$\left\{ \frac{\pi}{2} + k2\pi ; l2\pi, k, l \in \mathbb{Z} \right\} ; d) \left\{ 2\pi, \frac{5\pi}{2} \right\} ;$$

e) Vô nghiệm.

4. a)
$$A_{40}^2 = 1560$$
; b) $40C_{39}^4$.

5. 210. **6.** a)
$$\frac{C_6^3}{C_{10}^3}$$
; b) $1 - \frac{C_4^3}{C_{10}^3}$.

7. a)
$$\frac{2.9!}{10!}$$
; b) $\frac{2.8!}{10!}$.

8.
$$u_1 = 5$$
, $d = 4$.

9. 186.

10. a) 4; b)
$$\frac{1}{2}$$
; c) $\frac{3}{2}$; d) $-\frac{1}{2}$.

11. a) 0.

13. a) 4; b)
$$\frac{1}{16}$$
; c) $-\infty$; d) $-\infty$;
e) 2; f) $\frac{1}{3}$; g) $+\infty$.

15. *HD*. Xét hàm số $f(x) = x^4 - 3x^3 + x - 1$ và hai số -1; 0.

16. a)
$$\left\{ \frac{\pi}{4} + k \frac{\pi}{2}; \frac{1}{2} \arcsin \frac{1}{3} + n\pi; \right.$$

 $\left. \frac{\pi}{2} - \frac{1}{2} \arcsin \frac{1}{3} + m\pi, k, n, m \in \mathbb{Z} \right\};$
b) $\left\{ k \frac{\pi}{4}; \pm \frac{\pi}{2} + l2\pi, k, l \in \mathbb{Z} \right\}.$

17. a)
$$\frac{6\sin 3x}{\cos^3 3x}$$
;

b)
$$\frac{-x(\sqrt{x^2+1}\sin\sqrt{x^2+1}+\cos\sqrt{x^2+1})}{\sqrt{(x^2+1)^3}};$$

c)
$$x^2 \sin x$$
; d) $\frac{x^2}{(\cos x + x \sin x)^2}$.

18. a)
$$y'' = \frac{2}{(1+x)^3}$$
; b) $y'' = \frac{2}{x^3} + \frac{2}{(1-x)^3}$;

c)
$$y'' = -a^2 \sin ax$$
; d) $y'' = 2\cos 2x$.

19.
$$b = -\frac{1}{2}$$
, $c = 0$, $d = -\frac{3}{2}$.

20. a)
$$y = 4x + 1$$
;
b) $\begin{cases} x = k\pi \\ x = \arcsin\frac{1}{3} + n2\pi & (m, n, k \in \mathbb{Z}) ; \\ x = \pi - \arcsin\frac{1}{3} + m2\pi \end{cases}$

BẢNG TRA CỨU THUẬT NGỮ

THUẬT NGỮ	TRANG
Bất phương trình lượng giác	37
Biến cố	61
Biến cố chắc chắn	61
Biến cố đối	62
Biến số không	61
Biến cố xung khắc	62
Biến cố độc lập	72
Cấp số cộng	93
Cấp số nhân	98
Chỉnh hợp	49
Công bội	98
Công sai	93
Công thức cộng xác suất	69
Công thức nhân xác suất	72
Công thức nhị thức Niu-tơn	55
Cường độ tức thời của dòng điện	153
Dãy số	85
Dãy số bị chặn	90
Dãy số có giới hạn hữu hạn	113
Dãy số có giới hạn 0	112
Dãy số có giới hạn vô cực	117
Dãy số giảm	89
Dãy số hữu hạn	85
Dãy số không đổi	93
Dãy số Phi-bô-na-xi	91
Dãy số tăng	89
Đao hàm	145
Đạo hàm bên phải	154
Đao hàm bên trái	154
Đạo hàm cấp hai	171
Đạo hàm cấp <i>n</i>	171
Đạo hàm của hàm hợp	161
Đao hàm một bên	154
Đao hàm tại một điểm	146
Đạo hàm trên một đoạn	155
Đạo hàm trên một khoảng	153
Đường hình sin	10
Gia tốc tức thời của chuyển động	172
Giao của hai biến cố	62
Giả thiết quy nạp	80
Giới hạn bên phải của hàm số	126
Giới han bên trái của hàm số	126
Giới hạn hữu han của dãy số	112

THUẬT NGỮ	TRANG
Giới hạn hữu hạn của hàm số tại một điểm	123
Giới hạn hữu hạn của hàm số tại vô cực	127
Giới hạn $\lim_{x\to 0} \frac{\sin x}{x}$	163
Giới han một bên	126
Giới hạn vô cực (của dãy số)	117
Giới hạn vô cực của hàm số	129
Hàm số gián đoạn	136
Hàm số hợp	161
Hàm số liên tục tại một điểm	135
Hàm số liên tục trên một đoạn	136
Hàm số liên tục trên một khoảng	136
Hàm số lượng giác	4
Hàm số tuần hoàn	14
Hệ thức truy hồi	87
Hình học Fractal	104
Hoán vi	46
Hợp của hai biến cố	62
Kết quả thuận lợi cho biến cố	61
Không gian mẫu	60
Phép thử	59
Phép thử ngẫu nhiên	59
Phương pháp quy nạp toán học	80
Phương pháp truy hồi	87
Phương trình bậc hai đối với một hàm số lượng giác	31
Phương trình bậc nhất đối với một hàm số lượng giác	29
Phương trình bậc nhất đối với sin x và cos x	35
Phương trình lượng giác cơ bản	18
Phương trình tiếp tuyến	152
Quy tắc cộng (trong tổ hợp)	43
Quy tắc nhân (trong tổ hợp)	44
Số hạng tổng quát của dãy số	85
Tam giác Pa-xcan	57
Tần suất	75
Tiếp điểm	151
Tiếp tuyến	151
Tổng của cấp số nhân lùi vô hạn	116
Tổ hợp	51
Vận tốc tức thời của chuyển động	147
Vi phân	170
Xác suất của biến cố	65
Ý nghĩa hình học của đạo hàm	150
Ý nghĩa vật lí của đạo hàm	153
i ugma vár u cha dáo nam	133

MÚC LÝC

	Trang
Chương I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC	
§1. Hàm số lượng giác	4
§2. Phương trình lượng giác cơ bản	18
§3. Một số phương trình lượng giác thường gặp	29
Ôn tập chương l	40
Chương II. TỔ HỢP - XÁC SUẤT	
§1. Quy tắc đếm	43
§2. Hoán vị - Chỉnh hợp - Tổ hợp	46
§3. Nhị thức Niu-tơn	55
§4. Phép thủ và biến cố	59
§5. Xác suất của biến cố	65
Ôn tập chương II	76
Chương III. DÃY SỐ - CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN	
§1. Phương pháp quy nạp toán học	80
§2. Dãy số	85
§3. Cấp số cộng	93
§4. Cấp số nhân	98
Ôn tập chương III	107
Chương IV. GIỚI HẠN	
§1. Giới hạn của dãy số	112
§2. Giới hạn của hàm số	123
§3. Hàm số liên tục	135
Ôn tập chương IV	141
Chương V. ĐẠO HÀM	
§1. Định nghĩa và ý nghĩa của đạo hàm	146
§2. Quy tắc tính đạo hàm	157
§3. Đạo hàm của hàm số lượng giác	163
§4. Vi phân	170
§5. Đạo hàm cấp hai	172
Ôn tập chương V	176
Ôn tập cuối năm	178

Chịu trách nhiệm xuất bản: Chủ tịch Hội đồng Thành viên kiệm Tổng Giám đốc NGÔ TRẦN ÁI

Phó Tổng Giám đốc kiệm Tổng biên tập VŨ VĂN HÙNG

Biên tập lần đầu: PHAM BẢO KHUẾ - NGUYỄN XUÂN BÌNH

Biên tập tái bản : NGUYỄN NGỌC TÚ

Biên tập kĩ thuật và trình bày : $\mathbf{TR}\mathbf{\hat{A}N}$ $\mathbf{TH}\mathbf{U}\mathbf{\acute{Y}}$ $\mathbf{H}\mathbf{\dot{A}NH}$ – $\mathbf{TR}\mathbf{\hat{A}N}$ $\mathbf{TH}\mathbf{ANH}$ $\mathbf{H}\mathbf{\dot{A}NG}$

Trình bày bìa: BÙI QUANG TUẤN Sửa bản in: NGUYỄN NGOC TÚ

Chế bản: CÔNG TY CP DỊCH VỤ XUẤT BẢN GIÁO DỤC HÀ NỘI

ĐẠI SỐ VÀ GIẢI TÍCH 11

Mã số : CH101T4

Số đăng kí KHXB : 01 - 2014/CXB/472 - 1062/GD.

In....., khổ 17 x 24 cm.

In tại Công ti cổ phần in

In xong và nộp lưu chiểu tháng ... năm 2014.

SÁCH GIÁO KHOA LỚP 11

1. TOÁN HOC

• ĐAI SỐ VÀ GIẢI TÍCH 11

HÌNH HỌC 11

2. VÂT LÍ 11

3. HOÁ HỌC 11

4. SINH HOC 11

5. NGỮ VĂN 11 (tập một, tập hai)

6. LịCH SỬ 11

7. ĐIA LÍ 11

8. TIN HOC 11

9. CÔNG NGHÊ 11

10. GIÁO DUC CÔNG DÂN 11

11. GIÁO DỤC QUỐC PHÒNG - AN NINH 11

12. NGOAI NGỮ

TIÉNG ANH 11

TIẾNG PHÁP 11.

TIÉNG NGA 11

TIÉNG TRUNG QUỐC 11

SÁCH GIÁO KHOA LỚP 11 - NÂNG CAO

Ban Khoa học Tự nhiên : • TOÁN HỌC (ĐẠI SỐ VÀ GIẢI TÍCH 11, HÌNH HỌC 11)

• VẬT LÍ 11 • HOÁ HỌC 11 • SINH HỌC 11

Ban Khoa học Xã hội và Nhân văn : \bullet NGỮ VĂN 11 (tập một, tập hai)

• LICH SỬ 11 • ĐIA LÍ 11

• NGOAI NGỮ (TIẾNG ANH 11, TIẾNG PHÁP 11,

TIẾNG NGA 11, TIẾNG TRUNG QUỐC 11)

mã vach

Giá: