YD2037Y 系列通讯规约

1. 引言

YD2037Y 通讯规约详细描述了本机串行口通讯的读、写命令格式及内部信息数据的定义,以便第三方开发使用。

1.1. PLC ModBus 兼容性

ModBus 通讯规约允许 YD2037Y 与施耐德、西门子、AB、GE、Modicon 等多个国际著名品牌的可编程顺序控制器 (PLC)、RTU、SCADA 系统、DCS 或第三方具有 ModBus 兼容的监控系统之间进行信息和数据的有效传递。有了 YD2037Y 智能表,就只要简单的增加一套基于 PC(或工控机)的中央通讯主控显示软件(如:组态王、Intouch、FIX、synall等)就可建立一套监控系统。

1.2. 广泛的通讯集成

YD2037Y 智能表提供与 Modicon 系统相兼容的 ModBus 通讯规约,这个通讯规约被广泛作为系统集成的标准。兼容 RS-485/232C 接口的可编程逻辑控制器 ModBus 通讯规约允许信息和数据在 YD2037Y 智能表与 Modicon 可编程逻辑控制器 (PLC),RTU、SCADA 系统、DCS 系统和另外兼容 ModBus 通讯规约的系统之间进行有效传递。

2. ModBus 基本规则

- 2.1. 所有 RS485 通讯回路都应遵照主/从方式。依照这种方式,数据可以在一个主站(如: PC)和 32 个子站(如: YD2037Y)之间传递。
- 2.2. 主站将初始化和控制在 RS485 通讯回路上传递的所有信息。
- 2.3. 任何一次通讯都不能从子站开始。
- 2.4. 在 RS485 回路上的所有通讯都以"信息帧"方式传递。
- 2.5. 如果主站或子站接收到含有未知命令的信息帧,则不予以响应。

"信息帧"就是一个由数据帧(每一个字节为一个数据帧)构成的字符串(最多 255 个字节),是由信息头和发送的编码数据构成标准的异步串行数据,该通讯方式也与 RTU 通讯规约相兼容。

3. 数据帧格式:

通讯传输为异步方式,并以字节(数据帧)为单位。在主站和子站之间传递的每一个数据 帧都是11位的串行数据流。

数据帧格式:

起始位	1 位
数据位	8位(低位在前、高位在后)
奇偶校验位	1位:有奇偶校验位;无:无奇偶校验位
停止位	1位:有奇偶校验位;2位:无奇偶校验位

有校验位的时序图:

4. YD2037Y 通讯规约

当通讯命令发送至仪器时,符合相应的地址码的设备接收通讯命令,并除去地址码,读取信息,如果没有出错,则执行相应的任务;然后把执行结果返送给发送者。返送的信息中包括地址码、执行动作的功能码、执行动作后的数据以及错误校验码(CRC)。如果出错就不发送任何信息。

4.1. 信息帧格式

START	ADD	CS	DATA	CRC	END
初始结构	地址码	功能码	数据区	错误校验	结束结构
延时(相当于					延时(相当于
4个字节的时	1字节	1字节	N 字节	2字节	4个字节的时
间)	8位	8位	N×8 位	16 位	间)

4.1.1. 地址码(ADD)

地址码为每次通讯传送的信息帧中的第一个数据帧(8位),从0到255。这个字节表明由用户设定地址码的子机将接收由主机发送来的信息。并且每个子机都有唯一的地址码,并且响应回送均以各自的地址码开始。主机发送的地址码表明将发送到的子机地址,而子机发送的地址码表明回送的子机地址。

4.1.2. 功能码(CS)

功能码是每次通讯传送的信息帧中的第二个数据帧。ModBus 通讯规约定义功能码为 1~127 (01H~7FH)。YD2037Y 利用其中的一部分功能码。作为主机请求发送,通过功能码告诉子机执行什么动作。作为子机响应,子机发送的功能码与主机发送来的功能码一样,并表明子机已响应主机进行操作。如果子机发送的功能码的最高位是 1 (功能码>127),则表明子机没有响应或出错。

下表列出的功能码都具体的含义及操作。

MODBUS 部分功能码

功能码	定义	操作
03H	读寄存器	读取一个或多个寄存器的数据
06H	写单个寄存器	把一个 16 位二进制数写入单个寄存器

1、03, 读寄存器

YD2037Y 智能表采用 ModBus 通讯规约,利用通讯命令,可以进行读取点(保持寄存器或返回值输入寄存器)。功能码 03H 映射的数据区的保持和输入寄存器值都是 16 位(2 字节)。这样从 YD2037Y 读取的寄存器值都是 2 字节。一次最多可读取寄存器数是 125。由于一些可编程控制器不用功能码 03,所以功能码 03被用作读取点和返回值。

子机响应的命令格式是子机地址、功能码、数据区及 CRC 码。数据区的数据都是每 2个字节为一组的双字节数,且<u>高字节在前</u>。

2、06, 写单个寄存器:

主机利用这条命令把单点数据保存到 YD2037Y 智能电力监测仪的存储器。子机也用这个功能码向主机返送信息。

3、10,写多个点连续寄存器:

主机利用这条命令把多点数据保存到 YD2037Y 系列数字式多功能电力监测仪的存储器。 Modbus 通讯规约中的寄存器指的是 16 位(即 2 字节),并且高位在前。这样 YD2037Y 智能电力监测仪的点都是二字节。用一条命令保存的最大点数取决于子机。因为 Modbus 通讯规约允许最多保存 60 个寄存器,这样 YD2037Y 系列智能电力监测仪允许一次最多可保存 60 个寄存器。YD2037Y 智能电力监测仪的命令格式是子机地址、功能码、数据区及 CRC 码。

4.1.3. 数据区(DATA):

数据区随功能码不同而不同。由主机发送的读命令(03H)信息帧的数据区与子机应答信息帧的数据区是不同的,由主机发送的写命令(06H、10H)信息帧的数据区与子机应答信息帧的数据区是完全相同。数据区包含需要子机执行什么动作或由子机采集的需要回送的信息。

这些信息可以是数值、参考地址等等。例如,功能码告诉子机读取寄存器的数值,则数据区 必须包含要读取寄存器的起始地址及读取长度(寄存器个数)。

1、与功能码03对应的数据区格式:

◆ 主机发送

数据顺序	1	2
数据含义	起始地址	读寄存器个数
字节数	2	2

◆ 子机应答

数据顺序	1	2
数据含义	回送字节数	N个寄存器的数据
字节数	1	2×N

2、与功能码06对应的数据区格式:

数据顺序	1	2
数据含义	起始地址	写入寄存器的数据
字节数	2	2

3、与功能码10对应的数据区格式:

数据顺序	1	2		N
数据含义	起始地址	写入数据1	•••	写入数据 N
字节数	2	2	•••	2

4.1.4. 错误校验码(CRC):

主机或子机可用校验码进行判别接收信息是否出错。有时,由于电子噪声或其他一些干扰,信息在传输过程中会发生细微的变化,错误校验码保证了主机或子机对在传送过程中出错的信息不起作用。这样增加了系统的安全和效率。错误校验码采用 CRC-16 校验方法。

二字节的错误校验码, 低字节在前, 高字节在后。

注意: 信息帧的格式都是相同的: 地址码、功能码、数据区和错误校

4.2. 错误校验

冗余循环码(CRC)包含2个字节,即16位二进制。CRC码由发送端计算,放置于发送信息的尾部。接收端的设备再重新计算接收到信息的CRC码,比较计算得到的CRC码是否与接收到的相符,如果二者不相符,则表明出错。

CRC 码的计算方法是,先预置 16 位寄存器全为。再逐渐把每 8 位数据信息进行处理。 在进行 CRC 码计算时只用 8 位数据位,起始位及停止位,如有奇偶校验位的话也包括奇偶校验位,都不参与 CRC 码计算。

在计算 CRC 码时,8 位数据与寄存器的数据相<u>异或</u>,得到的结果<u>向低位移一位</u>,用 0 填补最高位。再检查最低位,如果最低位为 1,把寄存器的内容与预置数相异或,如果最低位为 0,不进行异或运算。

这个过程一直<u>重复8次</u>。第8次移位后,下一个8位再与现在寄存器的内容相异或,这个过程与上以上一样重复8次。当所有的数据信息处理完后,最后寄存器的内容即为CRC 码值。

4.3. CRC-16 码的计算步骤

- 1、置 16 位寄存器为十六进制 FFFF(即全为 1)。称此寄存器为 CRC 寄存器。
- 2、把一个8位数据与16位CRC寄存器的低位相异或,把结果放于CRC寄存器。
- 3、把寄存器的内容右移一位(朝低位),用0填补最高位,检查最低位(移出位)。
- 4、 如果最低位为 0: 复第 3 步(再次移位)。 如果最低位为 1: CRC 寄存器与多项式 A001(1010 0000 0000 0001)进行异或。
- 5、重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理。
- 6、重复步骤2到步骤5,进行下一个8位的处理。
- 7、最后得到的 CRC 寄存器即为 CRC 码, 低字节在前, 高字节在后。

4.4. 信息帧格式举例

4.4.1. 功能码 03

子机地址为01,起始地址0032的3个寄存器。

此例中寄存器数据地址为:

地 址	数据(16 进制)
-----	-----------

0032	EA60
0034	C350
0036	DB6C

主机发送	字节数		举 例(16 进制)
子机地址	1	01	送至子机 01
功能码	1	03	读取寄存器
起始地址	2	00	起始地址为 0032
		32	
读取个数	2	00	读取3个寄存器(共6字节)
		03	
CRC 码	2	A4	由主机计算得到的 CRC 码
		04	

子机响应	字节数		举 例(16 进制)
子机地址	1	01	送至子机 01
功能码	1	03	读取寄存器
读取字节数	1	06	3个寄存器(共6字节)
寄存器数据1	2	EA	地址为 0032 内的内容
		60	
寄存器数据 2	2	C3	地址为 0034 内的内容
		50	
寄存器数据3	2	DB	地址为 0036 内的内容
		6C	
CRC 码	2	D1	由子机计算得到的 CRC 码
		3F	

4.4.2. 功能码 06

子机地址为01,保存起始地址0002的2个值。在此例中,数据保存结束后,子机中地

址为0002内的内容为0002。

主机发送	字节数	举 例(16 进制)	
子机地址	1	01	发送至子机 01
功能码	1	06	单个数据(2字节)保存
起始地址	2	00	起始地址为 0002
		02	
保存数据	2	00	保存的数据为 0002
		02	
CRC 码	2	А9	由主机计算得到的 CRC 码
		СВ	

子机响应	字节数		举 例(16 进制)		
子机地址	1	01 来自子机 01			
功能码	1	06	单点保存		
起始地址	2	00	起始地址为 0002		
		02			
保存数据	2	00	保存的数据为 0002		
		02			
CRC 码	2	A9	由子机计算得到的 CRC 码		
		СВ			

4.4.3. 功能码 10

YD2037Y 系列智能电力监测仪内保存的信息为:

地址	数据(16 进制)
0000	0064

主机发送	字节数		举 例(16 进制)
子机地址	1	01	发送至子机 01

功能码	1	10	多点保存
起始地址	2	00	起始地址为 0000
		00	
保存数据数	2	00	保存2点(共4字节)
		02	
字节数	1	04	
保存数据 1	2	00	数据地址为 0002
		64	
保存数据 2	2	00	数据地址为 0000
		00	
CRC 码	2	B2	由主机计算得到的 CRC 码
		70	

子机响应	字节数		举 例(16 进制)
子机地址	1	01	来自子机 01
功能码	1	10	多点保存
起始地址	2	00	起始地址为 0000
		00	
保存数据数	2	00	保存2点(共4字节)
		02	
CRC 码	2	41	由子机计算得到的 CRC 码
		C8	

表 1. 基本测量数据区,支持 03 功能码。

序号	地址	字数	项目	说明	数据格式	
1	0000	1	Ua	相电压 Ua	0.1V	
2	0001	1	Uca	线电压 Uca	0.1V	
3	0002	1	Ia	A 相电流	1mA	
4	0000	4	DT	开入状态检测(bit0-DI1;		
4	0003	1	DI	bit1-DI2; bit2-DI3; bit3-DI4)		
5	0004	1	Pa	A 相有功功率	1W	
6	0005	1	PFa	A 相功率因数	0.0001	
7	0006	1	Qa	A 相无功功率	1var	
8	0007	1	Sa	A 相视在功率	1VA	
9	8000	1	Ub	相电压 Ub	0.1V	
10	0009	1	Uab	线电压 Uab	0.1V	
11	000A	1	Ib	B 相电流	1mA	
12	000B	1	DO	开出状态检测(bit0-D01;		
12	0008	l	טע	bit1-D02)		
13	000C	1	Pb	B 相有功功率	1W	
14	000D	1	PFb	B 相功率因数	0.0001	
15	000E	1	Qb	B 相无功功率	1var	
16	000F	1	Sb	B 相视在功率	1VA	
17	0010	1	Uc	相电压 Uc	0.1V	
18	0011	1	Ubc	线电压 Ubc	0.1V	
19	0012	1	Ic	C 相电流	1mA	
20	0013	1				
21	0014	1	Рс	C 相有功功率	1W	
22	0015	1	PFc	C 相功率因数	0.0001	
23	0016	1	Qc	C 相无功功率	1var	
24	0017	1	Sc	C 相视在功率	1VA	
25	0018	1	Ue0	三相平均线电压	0.1V	
26	0019	1	Ue	三相平均相电压	0.1V	
27	001A	1	Iav	三相平均相电流	1mA	
28	001B	1	F	频率	Rx×0.00106813	
29	001C	1	Psum	三相有功功率	1W	
30	001D	1	Pfav	三相总功率因数	0.0001	
31	001E	1	Qsum	三相无功功率	1var	
32	001F	1	Ssum	三相视在功率	1VA	
33	0020	1			-	
34	0021	1	+Wh(L)	正向有功电能累加值低位字	4\\/h	
35	0022	1	+Wh(H)	正向有功电能累加值高位字	1Wh	
36	0023	1	-Wh(L)	负向有功电能累加值低位字	410/15	
37	0024	1	-Wh(H)	负向有功电能累加值高位字	1Wh	

38	0025	1	+Varh(L)	正向无功电能累加值低位字	1 vorb
39	0026	1	+Varh(H)	正向无功电能累加值高位字	1varh
40	0027	1	- Varh(L)	负向无功电能累加值低位字	1 vorb
41	0028	1	- Varh(H)	负向无功电能累加值低高字	1varh

表 2. Programmable parameters 可编程参数 (eeprom), 支持 03、06、10 功能码。

	rammable parameters 叮编桯参数(eeprom),支持 03、06	
地址	描述	初始值
0300	通讯地址: 1~247	1
0301	测量系统接线方式: 0~5	
	0: 4NBL	
	1: 1BL	
	2: 3NBL	0
	3: 3BL	
	4: 2BL	
	5: 4BL	
0302	清零复位使能	0
0303	校验位:	
	0: 无	0
	1: 奇	Ŭ
	2: 偶	
0304	波特率:	
	0: 1200	
	1: 2400	3
	2: 4800	
	3: 9600	
	4: 19200	
0306	数据刷新速率	3
0307	电压变比 PT: 1~10000	1
0309	电流变比 CT: 1~10000	1
030A	越限电流阀值(程序版本 Ver2100 起)	5000
	注: 当测量出的电流信号达到阀值时屏显电流数值闪烁	
030E	清电能	
0313	输入功率反向 1/0 (0 为正向)	0
0337	DO1 配置字:	
	遥控: 0=遥控复归;255=遥控启动	
	自控: 1=U1;2=U12······ (详见表 3)	
0338	DO1 启动值:	
0339	DO1 复归值:	
	启动值=复归值:-	

	启动值>复归值:>启动值启动,<复归值复归	
	启动值<复归值:<启动值启动,>复归值复归	
033a	DO1 启动延时(s):	
033b	DO1 复归延时(s):	
033c	DO1 脉冲宽度(s):0:非脉冲方式; 1~60000: 脉冲方式	
033d	DO2 配置字:	
	遥控: 0=遥控复归;255=遥控启动	
	自控: 1=U1;2=U12······ (详见表 3)	
033e	DO2 启动值:	
033f	DO2 复归值:	
	启动值=复归值:-	
	启动值>复归值:>启动值启动,<复归值复归	
	启动值<复归值:<启动值启动,>复归值复归	
0340	DO2 启动延时(s):	
0341	DO2 复归延时(s):	
0342	DO2 脉冲宽度(s):0:非脉冲方式; 1~60000: 脉冲方式	
0356	启动电流	5mA
0357	启动电压	5V

附录二:数据变换

NO	项目		公式	取值范围	符号			说明	
1	电压	V	$U = Rx \times PT \times 0.1$	0~65535	无	Ua	Ub	Uc	Ue0
1	电压	V	U - KX \ P1 \ U. 1	0,~05555		Uca	Uab	Ubc	Ue
2	电流	A	$I = Rx \times CT \times 0.001$	0~65535	无	Ia	Ib	Ic	Ie
3	频率	Hz	$F = Rx \times 0.00106813$	0~65535	无		F		
4	功率因数	PF	DE -D _{**} ∨ 0, 0001	-10000~	有	PFa	PFb	PFc	PFs
4	切竿凶剱	ГΓ	$PF = Rx \times 0.0001$	10000	1月	+:滞后负载 /-:超前负载			
5	有功功率	W	$P = Rx \times PT \times CT$	-32768∼	有	Pa	Ph	Pc	Р
b	1	VV	r - KX/FI/CI	32768	用	Га	ΓÜ	FC	Г
6	无功功率	Q	$Q = Rx \times PT \times CT$	-32768∼	 有	Qa	Qb	Qc	Q
0	儿奶奶平	W	Q -NXXIIXCI	32768	^H	v a	ØΩ	₩.C	ષ
7	视在功率	S	$S = Rx \times PT \times CT$	0~65535	无	Sa	Sb	Sc	S
8	电能	Wh	$Wh = Rx \times PT \times CT$	$0\sim 10^{9}$	无	+Wh	-Wh	+Varh	-Varh

表 3. 自控参数设置表:

单个参数			三相参数	单位		
1: U1	过	33: U1	X	65: U1,U2,U3		V/10
2: U12	限	34: U12	外	66: U12,U23,U31	三参数任一	V/10
3: I1	报	35: I1	报	67: I1,I2,I3	过限报警	mA
4:	警	36:	警	68:	或	

5: P1	或	37: P1	或	69: P1,P2,P3	三参数任一	W
6: PF1	欠	38: PF1	X	70: PF1,PF2,PF3	欠限报警	0.001
7: Q1	限	39: Q1	内	71: Q1,Q2,Q3		var
8: S1	报	40: S1	报	72: S1,S2,S3		VA
9: U2	警	41: U2	警	73: U1,U2,U3		V/10
10: U23		42: U23		74: U12,U23,U31	三参数同时	V/10
11: I2		43: I2		75: I1,I2,I3	过限报警	mA
12:		44:		76: F	或	
13: P2		45: P2		77: P1,P2,P3	三参数同时	W
14: PF2		46: PF2		78: PF1,PF2,PF3	欠限报警	0.001
15: Q2		47: Q2		79: Q1,Q2,Q3		var
16: S2		48: S2		80: S1,S2,S3		VA
17: U3		49: U3		81: U1,U2,U3		V/10
18: U31		50: U31		82: U12,U23,U31	三参数任一	V/10
19: I3		51: I3		83: I1,I2,I3	区外报警	mA
20:		52:		84: F	或	
21: P3		53: P3		85: P1,P2,P3	三参数任一	W
22: PF3		54: PF3		86: PF1,PF2,PF3	区内报警	0.001
23: Q3		55: Q3		87: Q1,Q2,Q3		var
24: S3		56: S3		88: S1,S2,S3		VA
25: U		57: U		89: U1,U2,U3		V/10
26: UL		58: UL		90: U12,U23,U31	三参数同时	V/10
27: I		59: I		91: I1,I2,I3	区外报警	mA
28: F		60: F		92: F	或	
29: P		61: P		93: P1,P2,P3	三参数同时	W
30: PF		62: PF		94: PF1,PF2,PF3	区内报警	0.001
31: Q		63: Q		95: Q1,Q2,Q3		var
32: S		64: S		96: S1,S2,S3		VA

越限告警:启动值<复归值 表示:小于启动值闭合,大于复归值断开,之间保持状态。(欠限报警)

启动值>复归值 表示: 大于启动值闭合, 小于复归值断开, 之间保持状态。

(过限报警)

区间告警:启动值<复归值表示:小于启动值断开,大于复归值断开,之间闭合状态。(区间内报警)

启动值>复归值 表示: 大于启动值闭合, 小于复归值闭合, 之间断开状态。

(区间外报警)