ISYE 4111 ADVANCED SUPPLY CHAIN LOGISTICS

Elective

Credit: 3-0-3

Prepared Prof. Anton Kleywegt, Spring 2008

Prerequisite(s): ISyE 3103, ISyE 3133, ISyE3232

Catalog Description:

Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

Text:

Ghiani, G., Laporte, G., and Musmanno, R., *Introduction to Logistics Systems Planning and Control*, Wiley, 2004.

Objective

Objectives of the course are

- 1. to develop a deeper understanding of logistics problems, including design and operational problems;
- 2. to develop skill in the use of the tools acquired in other courses such as statistics, optimization, and probability models to address logistics problems;
- 3. to become familiar with some of the complicated nature of practical logistics problems, and to learn how these problems can be attacked with industrial engineering tools.

Topical Outline

- 1. Less-than-truckload transportation
 - a. Traveling salesman
 - b. Node routing
 - c. Arc routing
 - d. Inventory routing
- 2. Terminal design and operations
- 3. Truckload transportation
- 4. Network flow applications
- 5. Logistics network design
- 6. Four of the following topics, depending on students' preferences:
 - a. Water transportation
 - b. Rail transportation
 - c. Air Transportation
 - d. Forecasting
 - e. Military logistics
 - f. Security in logistics
 - g. Humanitarian logistics

- h. Disaster management logistics
- i. International logistics
- j. Regulation and other legal issues
- k. Closed-loop supply chains
- 1. Outsourcing
- m. Procurement and auctions
- n. Pricing and revenue management

Course Outcomes and their relationships to ISyE Program Outcomes

At the end of this course, students will be able to:

- Give clear, precise descriptions of logistics problems.
- Formulate logistics problems in a framework familiar to industrial engineers, for example, using mathematical programming and probability.
- Use the tools taught in other courses to analyze and solve logistics problems.
- Be familiar with logistics issues encountered in practice and with approaches used to deal with complex practical problems.

Course outcome \ Program Outcomes	a. apply math	b. data	c. IE method	d. team	e. problem solving	f. prof/ and ethical responsibilities	g. communication	h. global, eco, envi and soc context	i. continue to improve	j. current issues	k. participate in an organization
Clear, precise descriptions			Н				Н	M		M	M
Formulate logistics problems	Н	M	Н		Н		M	L		L	L
Solve logistics problems	Н	Н	Н		Н						
Practical logistics issues		M	M	L	M	L	M	M		M	M

- H, M and L denote high, moderate and low relationships.
- Team projects are sometimes conducted

Evaluation of the important course outcomes

Three or more important outcomes will be evaluated from direct questions on the Final exam:

1. Students are able to give clear, precise descriptions of logistics problems.

- 2. Students are able to formulate logistics problems using mathematical programming and probability.
- 3. Students are able to use the tools taught in other courses to analyze and solve logistics problems.
- 4. Students are able to describe logistics issues encountered in practice and explain approaches used to deal with complex practical problems.