Modelos Matemáticos: Ecuaciones en Diferencias de Orden Superior

Daniel Alconchel Vázquez 18 de abril de 2021

Índice

1.	La ecuación lineal en diferencias de orden superior	3
	1.1. Caso 1: k raíces distintas	4
	1.2. Caso 2: raíces múltiples	4
	1.3. Caso 3: raíces complejas	4
2.	Comportamiento Asintótico de las Soluciones	4
3.	Soluciones de la Ecuación Lineal en Diferencias Completa	5
4.	La Renta Nacional	6
	4.1 Modelo de Samuelson	7

1. La ecuación lineal en diferencias de orden superior

Definición 1.1. Una ecuación en diferencias de orden superior es una ecuación en diferencias de la forma

$$x_{n+k} + a_{k-1}x_{n+k-1} + \dots + a_0x_n = b(n), \quad n \ge 0$$

con $a_0 \neq 0$ y k > 1.

Observación. Si en $1.1 \ b(n) = 0$, se dice que es homogénea. En caso contrario, es completa.

Definición 1.2. Se define el espacio de soluciones de las ecuaciones en diferencias, S, como el espacio vectorial

$$S = \{\{x_n\}_{n \in \mathbb{N}} : x_n \in \mathbb{K}\}$$

que es de dimensión infinita, ya que podemos dar infinitas sucesiones lineales independientes.

Teorema 1.3. Sea \sum el conjunto de soluciones de la ecuación lineal en diferencias homogénea

$$x_{n+k} + a_{k-1}x_{n+k-1} + \dots + a_0x_n = 0, \quad n \ge 0$$

entonces, \sum es un subespacio vectorial de S de dimensión k

Definición 1.4. Dada la ecuación en diferencias lineal homogénea de orden k

$$x_{n+k} + a_{k-1}x_{n+k-1} + \dots + a_0x_n = 0, \quad n \ge 0$$

- \blacksquare Se llama sistema fundamental de soluciones a toda base de \sum
- Llamaremos polinomio característico a

$$p(\lambda) = \lambda^{k} + a_{k-1}\lambda^{k-1} + \dots + a_{1}\lambda + a_{0}$$

y a sus raíces las llamaremos raíces características

Observación. $\lambda = 0$ no puede ser solución del polinomio.

Teorema 1.5. La sucesión $X_{\lambda} = \{\lambda^n\}_{n\geq 0}$ es solución de la ecuación en diferencias lineal homogénea de orden k si, y sólo si, $p(\lambda) = 0$, esto es, λ es raíz característica.

1.1. Caso 1: k raíces distintas

Teorema 1.6. Sea $\lambda_1, ..., \lambda_k$ las raíces características, verificando que $\lambda_i \neq \lambda_j, i \neq j$. Entonces $\{X_{\lambda_1}, ..., X_{\lambda_k}\}$ es un sistema fundamental de soluciones.

Corolario 1.7. En la hipótesis anterior, toda solución $X\{X_n\}_{n\geq 0}$ se escribe de la forma

$$x_n = c_1 \lambda_1^n + ... + c_k \lambda_k^n, \quad c_1, ..., c_k \in \mathbb{K}$$

Veamos un ejemplo. Tomemos la sucesión de Fibonacci dada por $f_{n+2} = f_{n+1} + f_n$, $f_0 = f_1 = 1$.

El polinomio característico es $p(\lambda) = \lambda^2 - \lambda - 1 \implies \lambda_1 = \frac{1+\sqrt{5}}{2}, \lambda_2 = \frac{1-\sqrt{5}}{2}$

Luego, la solución general es $f_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$ y sustituyendo los

valores para f_0 y f_1 obtenemos que la solución específica es $f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n + \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$

1.2. Caso 2: raíces múltiples

En el caso de que exista una raíz múltiple, es decir, con multiplicidad mayor que uno, seguimos los pasos del caso 1 1.7, pero multiplicamos la raíz en cuestión por un polinomio de grado la multiplicidad de la raíz menos uno, es decir, si, por ejemplo, tenemos una raíz de multiplicidad 3, λ , pues sería $(c_1n^2+c_2n+c_3)\lambda^n$.

1.3. Caso 3: raíces complejas

Supongamos que obtenemos raíces complejas $\lambda_1=a+bi, \lambda_2=a-bi$ como solución del polinomio. Llamemos r al módulo de λ_i y θ al argumento de λ_i , por tanto

$$R = \{r^n cos(n\theta)\}, I = \{r^n sen(n\theta)\}\$$

son soluciones reales y linealmente independientes. Por tanto, un sistema fundamental de soluciones (SF) será

$$\{r^n cos(n\theta), r^n sen(n\theta)\}$$

2. Comportamiento Asintótico de las Soluciones

Teorema 2.1. Sean $\lambda_1, \lambda_2, ..., \lambda_s$ de las raíces de $p(\lambda)$. Son equivalentes:

1. Todas las soluciones de la ecuación lineal en diferencias homogénea verifican

$$\lim_{n\to\infty}x_n=0$$

2. Las raíces verifican

$$max_{i=1,...,s}|\lambda_i| < 1$$

Observación. En el caso de k=2, las raíces λ_1,λ_2 del polinomio $p(\lambda)=\lambda^2+a_1\lambda+a_0$ verifican $|\lambda_i|<1$ para i=1,2, si, y sólo sí

$$\begin{cases} p(1) = 1 + a_1 + a_0 > 0 \\ p(-1) = 1 - a_1 + a_0 > 0 \\ p(0) = a_0 < 1 \end{cases}$$

3. Soluciones de la Ecuación Lineal en Diferencias Completa

Recordemos que una ecuación lineal en diferencias completas es aquella que

$$x_{n+k} + a_{k-1}x_{n+k-1} + \dots + a_0x_n = b(n), \quad b(n) \neq 0$$

La idea reside en buscar las soluciones de la ecuación lineal en diferencias homogénea asociada y añadirle la solución particular de la completa. Para ello:

- Si b(n) = cte busco soluciones constantes.
- Si b(n) es un polinomio de grado k busco soluciones de grado k.
- Si $b(n) = a^n$ busco soluciones de la forma ka.

Veamos un ejemplo. Sea la ecuación en diferencias

$$x_{n+2} - 7x_{n+1} + 10x_n = 8$$

Comenzamos buscando las soluciones de la ecuación homogénea, como habíamos visto anteriormente:

$$\lambda^2 - 7\lambda + 10 = 0 \implies \lambda_1 = 2, \lambda_2 = 5 \implies x_n = c_1 2^n + c_2 5^n$$

Buscamos ahora la solución particular de la completa, siguiendo el esquema que acabamos de detallar:

Como es
$$b(n) = cte \implies k - 7k + 10k = 8 \implies k = 2$$

Luego, la solución general de la completa será:

$$x_n = c_1 2^n + c_2 5^n + 2$$

Ahora, puede ocurrir que nos encontremos con un fenómeno llamado resonancia. Para ver como tratarlo, pongamos el siguiente ejemplo:

Sea la ecuación en diferencias

$$x_{n+2} - 7x_{n+1} + 10x_n = 7 \cdot 2^n$$

Ya sabemos la solución de la homogénea por el ejemplo anterior, veamos la solución particular de la completa

Como tenemos $b(n) = 7 \cdot 2^n \implies x_n = k \cdot 2^n$, luego:

$$k2^{n+2} - 7k2^{n+1} + 10k2^n = 72^n \implies 2^n(4k - 14k + 10k) = 72^n \implies 0 = 7!!$$

Para evitar esto, se multiplica el tipo de solución buscada por n. Si vuelve a fallar, se multiplica por n^2 , después n^3 , y así sucesivamente, hasta dar con una solución válida.

Tomemos ahora $x_n = kn \cdot 2^n$, entonces tenemos:

$$k(n+2)2^{n+2} - 7k(n+1)2^{n+1} + 10kn2^n = 72^n \implies resolviendo obtenemos k = \frac{-7}{6}$$

Luego, la solución particular de la completa será $x_n = \frac{-7}{6}n2^n$, luego:

$$x_n = c_1 2^n + c_2 5^n - \frac{7}{6} n 2^n$$

4. La Renta Nacional

Definición 4.1. En un país con economía de mercado, la renta nacional Y_n en un período determinado n (que suele medirse en años) puede describirse como

$$Y_n = C_n + I_n + G_n$$

donde

- $lackbox{\blacksquare} C_n$ es el gasto de los consumidores para la compra de bienes de consumo
- \blacksquare I_n es la inversión privada inducida por la compra de bienes
- G_n es el gasto público

4.1. Modelo de Samuelson

Ahora haremos algunas suposiciones que son ampliamente aceptadas por la mayoría de economistas.

■ El consumo C_n es proporcional a la renta nacional en el año anterior Y_n , es decir

$$C_n = bY_{n-1}$$

donde b > 0 se le conoce como tendencia marginal del consumo.

■ La inversión privada inducida I_n es proporcional al incremento del consumo $C_n - C_{n-1}$, esto es

$$I_n = k \left[C_n - C_{n-1} \right]$$

donde k > 0 se le denomina coeficiente acelerador.

lacksquare Finalmente, el gato público G_n se supone constantemente a lo largo de los años

$$G_n = G$$

Sustituyendo obtenemos la ecuación en diferencias de segundo orden completa

$$Y_{n+2} - b(1+k)Y_{n+1} + bkY_n = G, \quad n \ge 0$$

El estado de equilibrio se obtiene haciendo $Y_n = Y_* \implies Y_* = \frac{G}{1-b}$, luego la solución de la ecuación será $Y_n = Y_* + y_n$, donde $\{y_n\}$ es la solución de la homogénea.

■ La renta nacional Y_n converge al estado de equilibrio Y_* si, y sólo si, se verifican las siguientes condiciones:

$$p(-1) = 1 + b(1+k) + bk > 0$$

$$p(1) = 1 - b(1+k) + bk = 1 - b > 0$$

$$p(0) = bk < 1$$

■ La renta nacional Y_n fluctúa alrededor del estado de equilibrio Y_* si, y sólo si, las raíces del polinomio característico son ambas complejas.