Automi a stati finiti non deterministici

Arturo Carpi

Dipartimento di Matematica e Informatica Università di Perugia

Corso di Linguaggi Formali e Compilatori - a.a. 2021/22

Grafo di un automa

- Un automa è rappresentato da un grafo;
- per ogni stato q e ogni lettera a, esiste esattamente un arco uscente da q con etichetta a;
- $oldsymbol{\mathfrak{S}}$ le parole accettate da $\mathcal A$ sono le etichette dei cammini dallo stato iniziale a uno stato finale.

Se si eliminasse la 2 . . .

pro libertà nella progettazione contro difficile verificare se una parola è accettata

Automa a stati finiti non deterministico

Soluzione

- Progetto con modello non-deterministico;
- conversione automatica al modello deterministico.

Il modello non deterministico

- a ogni passo il dispositivo esegue una fra le transizioni possibili (purchè esista);
- l'input è accettato se almeno una delle possibili computazioni ha successo (termina in uno stato finale)
- l'input è rifiutato se tutte le possibili computazioni falliscono (terminano in uno stato non finale o terminano prima che il nastro sia esaurito)

Definizione

Un automa a stati finiti non deterministico è una quintupla $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$, dove Q,Σ,q_0,F sono come nella definizione dell'automa deterministico e

$$\delta: Q \times \Sigma \to \wp(Q)$$

è la funzione di transizione.

Una parola $w=a_1a_2\cdots a_n,\ (a_1,a_2,\ldots,a_n\in\Sigma,\ n\geq 0)$, è accettata da $\mathcal A$ se esistono stati $q_1,q_2,\ldots,q_n\in Q$ tali che

$$q_i \in \delta(q_{i-1}, a_i)$$
, $1 \leq i \leq n$, $q_n \in F$.

L'insieme delle parole accettate da \mathcal{A} si dice linguaggio accettato (o riconosciuto) da \mathcal{A} e si denota con $L(\mathcal{A})$.

Grafo dell'automa non deterministico

A ogni automa non deterministico $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ associamo un grafo diretto con frecce etichettate:

- i vertici sono gli stati;
- **.** le frecce sono le triple (q, a, p) con $q \in Q$, $a \in \Sigma$, $p \in \delta(q, a)$;
- lo stato iniziale è denotato da una freccia entrante;
- gli stati finali sono identificati dal bordo doppio.

Ci si convince facilmente che

- $oldsymbol{oldsymbol{\omega}}$ una parola w può essere etichetta di molti cammini uscenti dallo stato iniziale, o anche nessuno;
- la parola w è accettata se e solo se c'è un cammino dallo stato iniziale a uno stato finale con etichetta w;
- questo non esclude però che vi possano essere altri cammini con etichetta w che partono dallo stato iniziale e terminano in uno stato non finale.

δ	a	b	С	F
q_0	$\{q_0,q_1\}$	$\{q_0\}$	$\{q_0\}$	
q_1	Ø	$\{q_2\}$	Ø	
q_2	$\{q_3\}$	Ø	Ø	
q_3	Ø	Ø	$\set{q_4}$	
q_4	$\{q_4\}$	$\set{q_4}$	$\set{q_4}$	×

Input: a b a c

Determinizzazione

Teorema Sia \mathcal{A} un automa a stati finiti non deterministico. Esiste effettivamente un automa a stati finiti deterministico \mathcal{A}' tale che

$$L(\mathcal{A}) = L(\mathcal{A}')$$
.

Dimostrazione

Idea: Gli stati dell'automa deterministico registreranno l'insieme gli stati raggiungibili dalle computazioni dell'automa non deterministico sul medesimo input;

Accetto se fra questi ce n'è uno finale

La costruzione

Sia $\mathcal{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ l'automa non deterministico.

Definisco l'automa deterministico $\mathcal{A}' = \langle Q', \Sigma, \delta', s_0, F' \rangle$ come segue:

- lacksquare l'insieme degli stati è l'insieme $Q'=\wp(Q)$ costituito dai sottoinsiemi di Q,
- **...** Io stato iniziale è $s_0 = \{q_0\}$,
- lacksquare gli stati finali sono tutti i sottoinsiemi di Q che contengono almeno un elemento di F, cioè

$$F' = \{ s \in \wp(Q) \mid s \cap F \neq \emptyset \},\,$$

 $oldsymbol{artheta}$ la funzione di transizione $\delta'\colon Q' imes \Sigma o Q'$ è definita da

$$\delta'(s,a) = igcup_{q \in s} \delta(q,a) \,, \quad s \in \wp(Q), \,\, a \in \Sigma.$$

La dimostrazione

Per ogni $w \in \Sigma^*$ risulta

$$\widehat{\delta}'(s_0,w)= \ \{q\in Q\mid ext{nel grafo di } \mathcal{A} ext{ c'è un cammino da } q_0 ext{ a } q ext{ con etichetta } w\}$$

•

(dimostrazione per induzione sulla lunghezza di w).

Pertanto sono equivalenti:

- \bigcirc w è accettata da \mathcal{A} ;
- $\widehat{\delta}'(s_0, w)$ contiene uno stato di F;
- $oldsymbol{\widehat{\delta}}'(s_0,w)\in F';$
- lacksquare w è accettata da \mathcal{A}' .

Quindi L(A) = L(A').

Stati inaccessibili

Osservazione

Se Card Q = n, allora Card $Q' = 2^n$.

Ma non tutti gli stati sono necessari!

Definizione

Sia $\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F\rangle$ un automa a stati finiti deterministico. Uno stato $q\in Q$ si dice accessibile se $q=\widehat{\delta}(q_0,w)$ per qualche $w\in \Sigma^*$.

Osservazione

Eliminando gli stati inaccessibili e restringendo di conseguenza la funzione di transizione, si ottiene un automa equivalente.

Algoritmo di determinizzazione

- **1** inserisco nella lista degli stati $s_0 = \{q_0\}$;
- $oldsymbol{arOmega}$ per ogni stato r della lista e ogni lettera $a\in \Sigma$
- **s** calcolo $s = \delta'(r, a)$;
- $oldsymbol{9}$ se s non è nella lista degli stati allora
- \mathfrak{s} appendo \mathfrak{s} alla lista degli stati;
- se s contiene uno stato finale di \mathcal{A} aggiungo s alla lista degli stati finali;

i	s_i	$\delta'(i, a)$	$\delta'(i,b)$	$\delta'(i,c)$	$i \in F$
0	q_0	1	0	0	
1	q_0,q_1	1	2	0	
2	q_0,q_2	3	0	0	
3	q_0, q_1, q_3	1	2	4	
4	q_0, q_4	5	4	4	×
5	q_0,q_1,q_4	5	6	4	×
6	q_0,q_2,q_4	7	4	4	×
7	q_0, q_1, q_3, q_4	5	6	4	×

i	s_i	$\delta'(i, a)$	$\delta'(i,b)$	$\delta'(i,c)$	$\mid i \in F$
0	q_0	1	0	0	
1	q_0,q_1	1	2	0	
2	q_0,q_2	3	0	0	
3	q_0, q_1, q_3	1	2	4	
4	q_0, q_4	5	4	4	×
5	q_0,q_1,q_4	5	6	4	×
6	q_0, q_2, q_4	7	4	4	×
7	q_0, q_1, q_3, q_4	5	6	4	×

Un caso difficile

Le parole sull'alfabeto $\{a, b\}$ la cui 5-ultima lettera è a.

Un automa deterministico equivalente richiede almeno 2^5 stati.