Intégration -- TD1-- Fonction mesurables, mesures et tribus

Exercice 1

a)

On a $(f_1-f_2)(x)=0$, soit

$$H = \{x \in E \mid f_1(x) - f_2(x) = 0\} \ = h^{-1}(\{0\}) ext{ avec } h = f_1 - f_2$$

$$f:(E,A) o (\mathbb{R},\mathscr{B}(\mathbb{R})$$

 $\forall X \in \mathscr{B}, f^{-1}(x) \in A \iff$ f est mesurable (définition)

or h est mesurable (combinaison linéaire de deux fonctions)

$$\{0\} = [0, 0]$$

= $(] - \infty, 0[\cup]0, +\infty[)^C$

donc $\{0\}$ est le complémentaire d'une tribu borélienne, donc appartient à la tribu.

donc $\{0\}\in \mathscr{B}$ ce qui par définition veut dire que $H=h^{-1}(\{0\})\in A$

b)

$$H_1 = h^{-1}(]-\infty,0[)$$
 et $H_2 = h^{-1}(]0,+\infty[)$

 $]-\infty,0[$ et $]0,+\infty[$ sont des éléments de tribus de Borel (intervalles de $\mathbb R$)

c)

Trivial à déduire des deux autres questions : on passe.

Exercice 2

• Soit $B\in A_2$, $\mu_f(B)=\mu(f^{-1}(B))$ $\underbrace{\qquad}_{f\ mesurable}$ $\mu(B'\in A_1)\in\overline{\mathbb{R}}_+$ donc μ_f est bien définie et à valeurs positives.

•
$$\mu_f(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$$

 μ_f est bien définie, et vérifie $\mu_f(\emptyset)=0$ et la σ -additivité, **c'est donc bien une mesure** !

Exercice 3

p est une mesure dite "de probabilité", soit $p(\mathbb{R})=1$

1)

Soit
$$t_1 < t_2$$
, $F(t_1) = p(]-\infty,t_1]) \leqslant p(]-\infty,t_2]) = F(t_2)$ car $p \nearrow$

Soit $t\in\mathbb{R}$ et une suite $(t_n)_{n\in\mathbb{N}}$ telle que $t_n\longrightarrow t^+$

$$egin{aligned} lim \ F(t_n) &= lim \ p(]-\infty,t_n]) \ &= p(lim \]-\infty,t_n]) \ &= p(]-\infty,t]) \ &= F(t) \end{aligned}$$

donc F est continue à droite.

2)

$$\lim_{t o -\infty} F(t) = \lim_{t o -\infty} p(]-\infty,t]) = p(\emptyset) = 0 \ \lim_{t o +\infty} F(t) = \lim_{t o +\infty} p(]-\infty,t]) = p(\mathbb{R}) = 1$$

Exercice 4

1)

$$\lambda \ \sigma ext{-finie} \iff \exists (E_n) \in (\mathscr{B}(\mathbb{R}))^{n \in \mathbb{N}} \ ext{tel quel} egin{cases} igcup_{n \in \mathbb{N}} E_n = \mathbb{R} \ orall n \in \mathbb{N}, \ \lambda(E_n) < +\infty \end{cases}$$

On peut prendre $(E_n)=([n,n+1]\cup [-n-1,-n])_{n\in \mathbb{N}}$, car

•
$$\bigcup_{n\in\mathbb{N}} En = \mathbb{R}$$

$$ullet$$
 $orall n\in \mathbb{N}, \; \lambda(E_n)=2$

Ainsi, λ est σ -finie.

2)

Soit $K \subset \mathbb{R}$ compact, ce qui veut dire que pour toute suite (u_n) d'éléments de K, on peut extraire une sous-suite convergente vers un élément de K.

Il existe
$$n_0\in\mathbb{R}$$
 tel que $K\subset [-n_0,n_0]$, or $\lambda([-n_0,n_0])=2n_0<+\infty$

3)

On peut trouver un contre-exemple :

$$\bigcup_{n\in\mathbb{N}}]n,n+rac{1}{n^2}[$$