```
# Menu
In [1]:
         # 1. Load data and manipulate data
                 #1.1 Melt date Column
                 #1.2 Change date to to_datetime and set index
         #2. Calculate weighted YTM
                 #2.1 Calculate daily average YTM weighted by market cap.
                 #2.2 Plot YTM
                 #2.3 Group by YTM by different rating.
         #3. Load and manipulate Macro data
                 #3.1 Change date to to datetime and set index
                 #3.2 Merge all macro data and Average YTM into one big dataframe.
         #4. Run regression
                 #4.1 Perform linear regression of YTM and each factor.
                 #4.2 Summary statistics (level of significance )
                 #4.3 Plot resule
                 #4.4 Conclusion for results.
         #5. Perform PCA and split into train sample and test sample
                 #5.1 Find cross correlation of macro factors.
                 #5.2 Define insample data (prior to 2019). Out of sample data (2020)
                 #5.3 Standardize all factors (x-mean)/sd
                 #5.4 Perform linear regression of YTM to all factors.
                 #5.5 Perform PCA
                 #5.6 Use result to predict both train and target data
                 #5.7 Plot the result
                 #5.8 Compute RMSE and R^2
                 #5.9 Run correlation between actual targets and predicted targets
                 #5.10 Conclusion
```

1. Load data and manipulate data

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import itertools
import statsmodels.api as sm
from sklearn import linear_model
from sklearn.decomposition import PCA
from IPython.display import display, HTML

price_bond=pd.read_csv("price.csv", index_col = False)
usgdp=pd.read_csv("us_gdp.csv", index_col = False)
china_ir=pd.read_csv("China_ir.csv", index_col = False)
china_gdp=pd.read_csv("China_ir.csv", index_col = False)
ytm_bond=pd.read_csv("China_gdp.csv", index_col = False)
df_ir_gold_fx=pd.read_csv("IR_GOLD_FX.csv", index_col = False)
```

1.1 Melt date columns

In [9]:

Out[3]:		Issuer Name	Ticker	Cpn	Maturity	Series	BBG Composite	Maturity Type	Curr	Maturity (Years from Today)	Amount Issued	ISIN	date	price
	0	China Construction Bank Corp	ССВ	2.45	6/24/30	NaN	BBB+	CALLABLE	USD	9.965777	2000000000	XS2140531950	5/17/13	NaN
	1	Tencent Holdings Ltd	TENCNT	2.39	6/3/30	REGS	A+	CALLABLE	USD	9.908282	2250000000	US88032XAU81	5/17/13	NaN
	2	China Evergrande Group	EVERRE	8.75	6/28/25	NaN	В	CALLABLE	USD	4.977413	4680476000	XS1627599654	5/17/13	NaN
	3	Fortune Star BVI Ltd	FOSUNI	5.25	3/23/22	NaN	NR	CALLABLE	USD	1.711157	1400000000	XS1581103428	5/17/13	NaN
	4	CNPC Global Capital Ltd	CNPCCH	1.35	6/23/25	NaN	A+	CALLABLE	USD	4.963723	900000000	XS2179917906	5/17/13	NaN

1.2 Change date to to_datetime and set index

ytm_bond_melt['Maturity'] = pd.to_datetime(ytm_bond_melt['Maturity'])

```
df_ytm=ytm_bond_melt.set_index(['date'])
                 2.1 Calculate daily average YTM weighted by market cap.
                    df_ytm.insert(11,'ytm*amount_issued',df_ytm['YTM']*df_ytm['Amount Issued'],False)
In [11]:
                    df_ytm_notna=df_ytm[df_ytm['YTM'].notna()]
In [12]:
                    df_ytm_notna["Amount Issued"].resample("D").sum()
                    df_ytm_notna["ytm*amount_issued"].resample("D").sum()
                    average_ytm=df_ytm_notna["ytm*amount_issued"].resample("D").sum()/df_ytm_notna["Amount_Issued"].resample("D").sum()
                    df_average_ytm= pd.DataFrame (average_ytm,columns=['average_ytm'])
                 By Year
                    average ytm=average ytm[average ytm.notna()]
In [13]:
                    average ytm.resample('A').mean()
Out[13]: date
                   2013-12-31
                                               3.918084
                                               3.908764
                   2014-12-31
                   2015-12-31
                                               3.433289
                   2016-12-31
                                               3.411479
                   2017-12-31
                                               3.432866
                   2018-12-31
                                               4.403926
                   2019-12-31
                                               4.055304
                   2020-12-31
                                               3.640566
                  Freq: A-DEC, dtype: float64
                 2.2 Plotting daily YTM
In [14]:
                    average_ytm.plot()
                    plt.show()
                   4.5
                   4.0
                   3.5
                   3.0
                                                   2016
                                                               2027
                                                                          2018
                                                                  date
                 2.3 Group bonds by its credit rating
                    df_ytm_notna.groupby(['BBG Composite']).mean()
In [15]:
                                                                                                                                                                                       YTM
Out[15]:
                                                        Cpn Maturity (Years from Today) Amount Issued ytm*amount_issued
                   BBG Composite
                                              2.331450
                                                                                                1.268071
                                                                                                                   9.943317e+08
                                                                                                                                                      2.927581e+09
                                                                                                                                                                               2.938142
                                                                                                                                                     4.490539e+09
                                               3.523856
                                                                                               4.953242
                                                                                                                   1.416602e+09
                                                                                                                                                                                3.162012
                                                                                                                                                     4.429988e+09
                                              3.939469
                                                                                                3.157292
                                                                                                                  1.229645e+09
                                                                                                                                                                                3.617594
                                               8.740786
                                                                                               2.555625
                                                                                                                   1.997995e+09
                                                                                                                                                      2.238203e+10 11.203310
                                                                                                                  4.638772e+09
                                       BB
                                              4.593258
                                                                                                       NaN
                                                                                                                                                       1.518265e+10
                                                                                                                                                                                3.312127
                                     BB+
                                             4.596899
                                                                                                1.990418
                                                                                                                  1.242300e+09
                                                                                                                                                      5.518684e+09
                                                                                                                                                                                4.814812
                                     BBB
                                              4.732306
                                                                                               4.807780
                                                                                                                   2.119979e+09
                                                                                                                                                      8.113059e+09
                                                                                                                                                                               3.814009
                                                                                                                   1.255642e+09
                                   BBB+
                                               4.717803
                                                                                                3.501088
                                                                                                                                                      5.032559e+09
                                                                                                                                                                                3.898274
                                    BBB- 5.167806
                                                                                               5.989043
                                                                                                                   1.130106e+09
                                                                                                                                                     4.940838e+09 4.367691
                                                                                                                  1.392700e+09
                                       NR 4.144603
                                                                                               3.338582
                                                                                                                                                     6.480583e+09 4.290655
                    rating_ytm=df_ytm_notna.groupby(['BBG Composite','date']).sum()['ytm*amount_issued']/df_ytm_notna.groupby(['BBG Composite','date']/df_ytm_notna.groupby(['BBG Composite','date']/df_ytm_notna.
In [16]:
                    rating_ytm.loc[(('A','A+'),),]
In [17]:
{\tt Out[17]:} BBG Composite date
                                                  2016-12-21
                                                                              2.362000
                                                  2016-12-22
                                                                             2.336000
                                                  2016-12-23
                                                                              2.365000
                                                  2016-12-26
                                                                              2.367000
                                                  2016-12-27
                                                                              2.406000
                                                  2020-06-25
                                                                              1.769444
                   A+
                                                  2020-06-26
                                                                              1.754333
                                                  2020-06-29
                                                                              1.745412
```

2020-06-30

2020-07-01

Length: 2778, dtype: float64

1.753102

1.756554

```
In [18]: | rating_ytm['B']
Out[18]: date
                        7.146000
         2017-06-14
         2017-06-15
                        7.160000
         2017-06-16
                        7.174000
         2017-06-19
                        7.180000
         2017-06-20
                        7.190000
                         . . .
         2020-06-25
                       12.694518
         2020-06-26
                       12.808846
         2020-06-29
                       12.914994
         2020-06-30
                       13.159123
         2020-07-01
                       13.225449
         Length: 795, dtype: float64
        YTM Plots
In [19]: rating_ytm['A'].plot(label='A')
          plt.legend()
          plt.show()
          rating_ytm['A+'].plot(label='A+')
          plt.legend()
          plt.show()
          rating_ytm['A-'].plot(label='A-')
          plt.legend()
```

```
plt.show()
rating_ytm['B'].plot(label='B')
plt.legend()
plt.show()
rating_ytm['BB'].plot(label='BB')
plt.legend()
plt.show()
rating_ytm['BB+'].plot(label='BB+')
plt.legend()
plt.show()
rating_ytm['BBB'].plot(label='BBB')
plt.legend()
plt.show()
rating_ytm['BBB+'].plot(label='BBB+')
plt.legend()
plt.show()
rating_ytm['BBB-'].plot(label='BBB-')
plt.legend()
plt.show()
rating_ytm['NR'].plot(label='NR')
plt.legend()
plt.show()
4.0
                                           - A
```


date

/

/

3.1 Change date to to_datetime and set index

```
df_ir_gold_fx['date'] = pd.to_datetime(df_ir_gold_fx['date'])
In [20]:
          df_ir_gold_fx=df_ir_gold_fx.set_index(['date'])
In [21]:
In [22]:
          df_ir_gold_fx=df_ir_gold_fx.fillna(method='ffill')
In [23]:
          df_average_ytm= pd.DataFrame (average_ytm,columns=['average_ytm'])
          usgdp['date'] = pd.to_datetime(usgdp['date'])
In [24]:
          us_gdp=usgdp.set_index(['date'])
          china_ir['date'] = pd.to_datetime(china_ir['date'])
In [25]:
          china_ir=china_ir.set_index(['date'])
          china_gdp['date'] = pd.to_datetime(china_gdp['date'])
In [26]:
          china_gdp=china_gdp.set_index(['date'])
          us_gdp_china_ir=pd.merge(us_gdp,china_ir,how='outer', left_index=True, right_index=True)
In [28]:
          us_gdp_china_ir_gdp=pd.merge(us_gdp_china_ir,china_gdp,how='outer', left_index=True, right_index=True)
In [29]:
         us_gdp_china_ir_gdp=us_gdp_china_ir_gdp.fillna(method='ffill')
```

3.2 Merge all macro data and Average YTM into one big dataframe.

```
In [30]: macro=pd.merge(df_ir_gold_fx,us_gdp_china_ir_gdp, how='outer', left_index=True, right_index=True).fillna(method='ffill')

In [31]: df_ytm_ir_gold_fx=pd.merge(df_average_ytm,macro, how='inner', left_index=True, right_index=True)
```

Convet China GDP to USD and Caculate daily return

<pre>In [34]: df_ytm_macro=df_ytm_ir_gold_fx.dropna() df_ytm_macro</pre>	
--	--

Out[34]:		average_ytm	Benchmark interest rate	Treasure bond yields	Gold(USD/Ounce)	gold_return	USD/CNY	fx_return	US_gdp_nominal(billion)	US_gdp_growth	China_ir	China
	date											
	2013- 05-20	3.230000	0.25	-0.31	1354.75	-0.010281	6.1998	0.000016	16383.0	0.0	3.35	
	2013- 05-21	3.184000	0.25	-0.34	1360.75	0.004419	6.1911	-0.001404	16383.0	0.0	3.35	
	2013- 05-22	3.285000	0.25	-0.24	1408.50	0.034489	6.1904	-0.000113	16383.0	0.0	3.35	
	2013- 05-23	3.289000	0.25	-0.24	1380.50	-0.020080	6.1947	0.000694	16383.0	0.0	3.35	
	2013- 05-24	3.284000	0.25	-0.26	1390.25	0.007038	6.1867	-0.001292	16383.0	0.0	3.35	
	•••	•••		•••		•••					•••	
	2020- 06-25	3.061947	0.25	-0.65	1756.55	-0.005394	7.0555	0.000000	18977.4	0.0	2.20	
	2020- 06- 26	3.056591	0.25	-0.68	1747.60	-0.005108	7.0555	0.000000	18977.4	0.0	2.20	
	2020- 06- 29	3.055808	0.25	-0.70	1771.60	0.013640	7.0808	0.003579	18977.4	0.0	2.20	
	2020- 06- 30	3.077582	0.25	-0.68	1768.10	-0.001978	7.0795	-0.000184	18977.4	0.0	2.20	
	2020- 07-01	3.084522	0.25	-0.68	1771.05	0.001667	7.0710	-0.001201	18977.4	0.0	2.20	

1850 rows × 13 columns

- 4.1 Perform linear regression of YTM and each factor.
- 4.2 Summary statistics (level of significance)

4.3 Plot results

In [35]:

```
ir_ols.summary()
                                OLS Regression Results
Out[35]:
               Dep. Variable:
                                  average_ytm
                                                     R-squared:
                                                                     0.216
                                         OLS
                                                 Adj. R-squared:
                                                                     0.216
                     Model:
                                Least Squares
                    Method:
                                                     F-statistic:
                                                                     509.7
                       Date:
                              Thu, 04 Feb 2021
                                               Prob (F-statistic): 7.19e-100
                                      21:11:25
                                                 Log-Likelihood:
                                                                    -1025.0
                       Time:
           No. Observations:
                                                            AIC:
                                                                     2054.
                                         1850
                Df Residuals:
                                         1848
                                                            BIC:
                                                                     2065.
                   Df Model:
            Covariance Type:
                                    nonrobust
                                     coef std err
                                                          t P>|t| [0.025 0.975]
                            const 3.5134
                                             0.015 230.304 0.000
                                                    22.576 0.000
           Benchmark interest rate 0.2737
                                             0.012
                                                                     0.250
                                                                            0.298
                 Omnibus: 106.880
                                       Durbin-Watson:
                                                          0.009
           Prob(Omnibus):
                              0.000 Jarque-Bera (JB):
                                                         76.887
                              0.395
                                             Prob(JB): 2.01e-17
                    Skew:
                                             Cond. No.
                  Kurtosis:
                              2.390
                                                           2.85
```

ir_ols=sm.OLS(df_ytm_macro['average_ytm'],sm.add_constant(df_ytm_macro['Benchmark interest rate'])).fit()

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [36]: df_ytm_macro[['average_ytm','Benchmark interest rate']].plot()
```


Linear regression for YTM and US interest rate is significant.

```
gold_ols=sm.OLS(df_ytm_macro['average_ytm'],sm.add_constant(df_ytm_macro['Gold(USD/Ounce)'])).fit()
In [37]:
           gold_ols.summary()
                               OLS Regression Results
Out[37]:
              Dep. Variable:
                                 average_ytm
                                                    R-squared:
                                                                  0.000
                     Model:
                                        OLS
                                                Adj. R-squared:
                                                                 -0.000
                    Method:
                                Least Squares
                                                    F-statistic:
                                                                0.2800
                      Date: Thu, 04 Feb 2021
                                              Prob (F-statistic):
                                                                  0.597
                      Time:
                                     21:11:25
                                                Log-Likelihood:
                                                                -1250.2
           No. Observations:
                                        1850
                                                          AIC:
                                                                  2504.
               Df Residuals:
                                        1848
                                                          BIC:
                                                                  2515.
                  Df Model:
           Covariance Type:
                                   nonrobust
                                                                [0.025 0.975]
                                  coef
                                                         P>|t|
                      const
                                3.8348
                                           0.109
                                                  35.171 0.000
                                                                  3.621
                                                                         4.049
           Gold(USD/Ounce) -4.427e-05 8.37e-05 -0.529 0.597
                                                                 -0.000
                                                                         0.000
                Omnibus: 133.098
                                      Durbin-Watson:
                                                         0.006
           Prob(Omnibus):
                             0.000
                                    Jarque-Bera (JB):
                    Skew:
                                            Prob(JB): 5.46e-36
                             0.726
                 Kurtosis:
                             3.014
                                            Cond. No. 1.28e+04
         Notes:
          [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
          [2] The condition number is large, 1.28e+04. This might indicate that there are
          strong multicollinearity or other numerical problems.
           fx_ols=sm.OLS(df_ytm_macro['average_ytm'],sm.add_constant(df_ytm_macro['USD/CNY'])).fit()
In [38]:
```

```
fx_ols.summary()
                                OLS Regression Results
Out[38]:
               Dep. Variable:
                                  average_ytm
                                                     R-squared:
                                                                    0.004
                      Model:
                                          OLS
                                                 Adj. R-squared:
                                                                    0.003
                    Method:
                                 Least Squares
                                                      F-statistic:
                                                                    6.982
                       Date: Thu, 04 Feb 2021 Prob (F-statistic): 0.00830
                       Time:
                                      21:11:25
                                                 Log-Likelihood:
                                                                  -1246.8
           No. Observations:
                                         1850
                                                            AIC:
                                                                    2498.
                                         1848
                                                            BIC:
                Df Residuals:
                                                                    2509.
                   Df Model:
                                            1
            Covariance Type:
                                    nonrobust
                                           t P>|t| [0.025 0.975]
              const 3.2051
                               0.217 14.777 0.000
                                                      2.780
                                                              3.630
           USD/CNY 0.0875
                                      2.642 0.008
                               0.033
                                                      0.023
                                                              0.152
                 Omnibus: 113.048
                                       Durbin-Watson:
                                                          0.007
           Prob(Omnibus):
                              0.000
                                    Jarque-Bera (JB):
                                                        133.415
                    Skew:
                                             Prob(JB): 1.07e-29
                              0.655
```

Cond. No.

132.

2.881

Kurtosis:

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Linear regression for YTM and foreign exchange rate is significant

```
us_gdp_ols=sm.OLS(df_ytm_macro['average_ytm'],sm.add_constant(df_ytm_macro['US_gdp_nominal(billion)'])).fit()
In [40]:
            us_gdp_ols.summary()
                               OLS Regression Results
Out[40]:
              Dep. Variable:
                                                                   0.036
                                                    R-squared:
                                 average_ytm
                     Model:
                                         OLS
                                                Adj. R-squared:
                                                                   0.036
                    Method:
                                Least Squares
                                                     F-statistic:
                                                                   69.89
                      Date: Thu, 04 Feb 2021
                                              Prob (F-statistic): 1.22e-16
                                                Log-Likelihood:
                      Time:
                                     21:11:25
                                                                  -1216.0
           No. Observations:
                                                           AIC:
                                                                   2436.
                                        1850
               Df Residuals:
                                        1848
                                                           BIC:
                                                                   2447.
                  Df Model:
            Covariance Type:
                                    nonrobust
                                             std err
                                                         t P>|t|
                                                                    [0.025 0.975]
                                      coef
                             const 1.8818
                                                     8.289 0.000
                                                                             2.327
           US_gdp_nominal(billion)
                                                    8.360 0.000 8.12e-05
                                   0.0001 1.27e-05
                                                                             0.000
                 Omnibus: 98.023
                                      Durbin-Watson:
                                                         0.007
           Prob(Omnibus):
                             0.000
                                   Jarque-Bera (JB):
                                                       100.714
                    Skew:
                             0.535
                                           Prob(JB):
                                                      1.35e-22
                 Kurtosis:
                             2.596
                                           Cond. No. 3.74e+05
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.74e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Linear regression for YTM and US GDP is significant

```
In [41]:
            china_ir_ols=sm.OLS(df_ytm_macro['average_ytm'],sm.add_constant(df_ytm_macro['China_ir'])).fit()
            china ir ols.summary()
                               OLS Regression Results
Out[41]:
              Dep. Variable:
                                                                   0.015
                                 average_ytm
                                                    R-squared:
                     Model:
                                         OLS
                                                Adj. R-squared:
                                                                   0.014
                                                     F-statistic:
                    Method:
                                Least Squares
                                                                   27.54
                      Date:
                             Thu, 04 Feb 2021 Prob (F-statistic): 1.71e-07
                      Time:
                                      21:11:25
                                                Log-Likelihood:
                                                                 -1236.6
           No. Observations:
                                        1850
                                                           AIC:
                                                                   2477.
               Df Residuals:
                                        1848
                                                           BIC:
                                                                   2488.
                  Df Model:
                                           1
            Covariance Type:
                                    nonrobust
```

```
P>|t|
           coef std err
                                         [0.025 0.975]
  const 3.5434
                   0.046 77.133
                                          3.453
                                                  3.633
                                 0.000
China_ir 0.0820
                   0.016
                                 0.000
                                          0.051
                                                   0.113
     Omnibus: 175.985
                            Durbin-Watson:
                                                0.007
Prob(Omnibus):
                   0.000
                          Jarque-Bera (JB):
                                              227.057
                                  Prob(JB): 4.96e-50
         Skew:
                  0.848
      Kurtosis:
                   3.257
                                  Cond. No.
                                                  13.7
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Linear regression for YTM and China's interest rate is significant

```
In [43]:
            china_gdp_ols=sm.OLS(df_ytm_macro['average_ytm'],sm.add_constant(df_ytm_macro['China_gdp(USD_billion)'])).fit()
            china gdp ols.summary()
                               OLS Regression Results
Out[43]:
              Dep. Variable:
                                                     R-squared:
                                                                   0.038
                                 average_ytm
                     Model:
                                         OLS
                                                 Adj. R-squared:
                                                                   0.038
                    Method:
                                Least Squares
                                                     F-statistic:
                                                                   73.39
                             Thu, 04 Feb 2021
                                              Prob (F-statistic): 2.21e-17
                       Date:
                      Time:
                                      21:11:25
                                                 Log-Likelihood:
                                                                  -1214.3
           No. Observations:
                                        1850
                                                           AIC:
                                                                   2433.
                                                           BIC:
               Df Residuals:
                                        1848
                                                                   2444.
                   Df Model:
            Covariance Type:
                                    nonrobust
                                                                   [0.025
                                     coef
                                             std err
                                                                           0.975]
                            const 3.2037
                                              0.068
                                                     47.218
                                                            0.000
                                                                     3.071
                                                                             3.337
           China_gdp(USD_billion)
                                   0.0002 2.48e-05
                                                      8.567 0.000
                                                                     0.000
                                                                            0.000
                 Omnibus: 91.906
                                     Durbin-Watson:
                                                        0.007
           Prob(Omnibus): 0.000 Jarque-Bera (JB):
                 Kurtosis: 2.577
                                          Cond. No. 1.71e+04
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.71e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Linear regression for YTM and China's GDP is significant

4.4 Conclusion: The Chinese Offshore USD Bonds YTM are positively correlatated with macroeconomic factors such as US and China's interest rate, US and China's GDP and USD/CNY exchange rate. The regressions are statistically significant according to t-stats, p-value and R-square. However, there are no significant correlation between these bonds YTM and gold price and growth of the macroeconomic factors.

/

5.1 Find cross correlation of macro factors.

Out[44]:

Out[45]:

df_ytm_macro[['Benchmark interest rate','USD/CNY','US_gdp_nominal(billion)','China_ir','China_gdp(USD_billion)']].corr().style.ba

	Benchmark interest rate	USD/CNY	US_gdp_nominal(billion)	China_ir	China_gdp(USD_billion)
Benchmark interest rate	1.000000	0.602782	0.809376	-0.442251	0.793949
USD/CNY	0.602782	1.000000	0.841694	-0.746211	0.680304
US_gdp_nominal(billion)	0.809376	0.841694	1.000000	-0.705358	0.856223
China_ir	-0.442251	-0.746211	-0.705358	1.000000	-0.598405
China gdp(USD billion)	0.793949	0.680304	0.856223	-0.598405	1.000000

5.2 Define insample data (prior to 2019). Out of sample data (2020)

df_train=df_ytm_macro[df_ytm_macro.index<'2019'][['average_ytm','Benchmark interest rate','USD/CNY','US_gdp_nominal(billion)','Ch df_test=df_ytm_macro[df_ytm_macro.index>'2019'][['average_ytm','Benchmark interest rate','USD/CNY','US_gdp_nominal(billion)','Chi df_train

	average_ytm	Benchmark interest rate	USD/CNY	US_gdp_nominal(billion)	China_ir	China_gdp(USD_billion)
date						
2013-05-20	3.230000	0.25	6.1998	16383.0	3.35	1860.422917
2013-05-21	3.184000	0.25	6.1911	16383.0	3.35	1863.037263
2013-05-22	3.285000	0.25	6.1904	16383.0	3.35	1863.247932
2013-05-23	3.289000	0.25	6.1947	16383.0	3.35	1861.954574
2013-05-24	3.284000	0.25	6.1867	16383.0	3.35	1864.362261
•••	•••		•••		•••	
2018-12-25	5.066437	2.50	6.8919	18783.5	2.55	3121.037740
2018-12-26	5.058272	2.50	6.8845	18783.5	2.55	3124.392476
2018-12-27	5.023874	2.50	6.8894	18783.5	2.55	3122.170291
2018-12-28	5.002768	2.50	6.8632	18783.5	2.55	3134.089055
2018-12-31	5.000827	2.50	6.8632	18783.5	2.55	3411.066266

1460 rows × 6 columns

5.3 Standardize all factors (x-mean)/sd

df_z_train=(df_train-df_train.mean())/df_train.std() df_z_test=(df_test-df_train.mean())/df_train.std() In [47]: df_z_ytm_macro=(df_ytm_macro-df_ytm_macro.mean())/df_ytm_macro.std()

In [48]:	df_z_	_ytmmacro										
Out[48]:		average_ytm	Benchmark interest rate	Treasure bond yields	Gold(USD/Ounce)	gold_return	USD/CNY	fx_return	US_gdp_nominal(billion)	US_gdp_growth	China_ir (Ch
	date											
	2013- 05-20	-1.150686	-0.884249	-2.285680	0.441786	-1.151312	-1.034197	-0.029525	-1.724545	-0.091864	0.701649	
	2013- 05-21	-1.247373	-0.884249	-2.379079	0.487153	0.472866	-1.060263	-0.792692	-1.724545	-0.091864	0.701649	
	2013- 05-22	-1.035083	-0.884249	-2.067750	0.848201	3.795258	-1.062360	-0.098945	-1.724545	-0.091864	0.701649	
	2013- 05-23	-1.026675	-0.884249	-2.067750	0.636487	-2.233936	-1.049477	0.334896	-1.724545	-0.091864	0.701649	
	2013- 05-24	-1.037185	-0.884249	-2.130016	0.710209	0.762206	-1.073446	-0.732517	-1.724545	-0.091864	0.701649	
	•••											
	2020- 06-25	-1.503914	-0.884249	-3.344201	3.479882	-0.611334	1.529559	-0.038192	1.307748	-0.091864	-0.933085	
	2020- 06- 26	-1.515171	-0.884249	-3.437599	3.412209	-0.579788	1.529559	-0.038192	1.307748	-0.091864	-0.933085	
	2020- 06- 29	-1.516819	-0.884249	-3.499865	3.593679	1.491629	1.605360	1.885023	1.307748	-0.091864	-0.933085	
	2020- 06- 30	-1.471052	-0.884249	-3.437599	3.567214	-0.233887	1.601465	-0.136846	1.307748	-0.091864	-0.933085	
	2020- 07-01	-1.456464	-0.884249	-3.437599	3.589520	0.168802	1.575998	-0.683682	1.307748	-0.091864	-0.933085	

1850 rows × 13 columns

5.4 Perform linear regression of YTM to all factors.

```
In [50]: train_y=df_z_train['average_ytm']
    train_x=df_z_train[['Benchmark interest rate','USD/CNY','US_gdp_nominal(billion)','China_ir','China_gdp(USD_billion)']]
    test_y=df_z_test['average_ytm']
    test_x=df_z_test[['Benchmark interest rate','USD/CNY','US_gdp_nominal(billion)','China_ir','China_gdp(USD_billion)']]
    model=sm.OLS(train_y,(train_x)).fit()
    print(model.summary())
OLS Regression Results
```

______ Dep. Variable: average_ytm R-squared (uncentered): 0.623 OLS Adj. R-squared (uncentered): Model: Method: Least Squares F-statistic: 484.2 Thu, 04 Feb 2021 Prob (F-statistic): 21:13:07 Log-Likelihood: Date: 1.93e-306 Time: -1355.9 1460 AIC: 2722. No. Observations: Df Residuals: 1455 BIC: 2748. Df Model: 5

Covariance Type:	nonrobust					
=======================================	coef	std err	t	P> t	[0.025	0.975]
Benchmark interest rate	1.6073	0.043	37.537	0.000	1.523	1.691
USD/CNY	-0.0946	0.028	-3.378	0.001	-0.150	-0.040
<pre>US_gdp_nominal(billion)</pre>	-0.9115	0.062	-14.729	0.000	-1.033	-0.790
China_ir	0.0553	0.034	1.647	0.100	-0.011	0.121
China_gdp(USD_billion)	-0.2587	0.034	_7 . 528	0.000	-0.326	-0.191
Omnibus:	45.123	Durbin-	 Watson:		0.021	
Prob(Omnibus):	0.000	Jarque-	Bera (JB):		37.381	
Skew:	-0.317	Prob(JB):		7.63e-09	
Kurtosis:	2.540	Cond. N	0.		9.29	
=======================================	========		=========		======	

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

5.5 Perform PCA

OLS Regression Results

______ Dep. Variable: average_ytm R-squared (uncentered): 0.457 OLS Adj. R-squared (uncentered): Model: 0.456 Method: Least Squares F-statistic: 409.1 4 Feb 2021 Prob (F-statistic): 21:13:13 Log-Likelihood: Date: Thu, 04 Feb 2021 1.01e-192 Time: -1625.1 1460 AIC: 3256. No. Observations: Df Residuals: 1457 BIC: 3272. Df Model: 3 Covariance Type: nonrobust

========		========	========		=======	=======
	coef	std err	t	P> t	[0.025	0.975]
x1	0.0784	0.010	8.019	0.000	0.059	0.098
x2	0.6999	0.024	28.751	0.000	0.652	0.748
x3	-0.6889	0.038	-18.338	0.000	-0.763	-0.615
Omnibus:		33427.	759 Durbir	 n-Watson:		0.011
Prob(Omnik	ous):	0.	000 Jarque	e-Bera (JB):		114.075
Skew:		-0.	021 Prob(3	JB):		1.69e-25
Kurtosis:		1.	631 Cond.	No.		3.84

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

5.6 Use result to predict both train and target data

```
In [53]: train_predict=pca_model.predict(pca.fit_transform(train_x))
test_predict=pca_model.predict(pca.fit_transform(test_x))
```

5.7 Plot the result

```
In [54]: plt.scatter(train_predict, train_y, alpha=0.2, color='b', label='train')
plt.legend()
```

```
In [55]: plt.scatter(test_predict, test_y, alpha=0.2, color='r', label='test')
   plt.legend()
```

Out[55]: <matplotlib.legend.Legend at 0x7f87ff4a7520>

5.8 Compute RMSE and R^2

Out[57]: 1.189837490971203

5.9 Run correlation between actual targets and predicted targets

```
sm.OLS(test_y,test_predict).fit().summary()
In [58]:
                                    OLS Regression Results
Out[58]:
              Dep. Variable:
                                                   R-squared (uncentered):
                                                                              0.002
                                 average_ytm
                     Model:
                                         OLS Adj. R-squared (uncentered):
                                                                             -0.000
                    Method:
                                Least Squares
                                                                F-statistic:
                                                                            0.8394
                       Date: Thu, 04 Feb 2021
                                                         Prob (F-statistic):
                                                                              0.360
                                                                            -579.82
                      Time:
                                     21:13:20
                                                           Log-Likelihood:
           No. Observations:
                                         390
                                                                      AIC:
                                                                              1162.
                Df Residuals:
                                         389
                                                                      BIC:
                                                                              1166.
                  Df Model:
                                            1
            Covariance Type:
                                    nonrobust
           x1 0.0872 0.095 0.916 0.360 -0.100 0.274
                 Omnibus: 14.875
                                     Durbin-Watson:
                                                         0.013
           Prob(Omnibus):
                            0.001 Jarque-Bera (JB):
                                                        14.048
                             0.413
                                           Prob(JB): 0.000890
                    Skew:
                 Kurtosis:
                            2.574
                                           Cond. No.
                                                           1.00
```

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [59]: sm.OLS(test_y,test_predict).fit().summary()
Out[59]: OLS Regression Results
```

Dep. Variable: average_ytm **R-squared (uncentered):** 0.002

Model: OLS Adj. R-squared (uncentered): -0.000 Method: Least Squares F-statistic: 0.8394 Prob (F-statistic): Date: Thu, 04 Feb 2021 0.360 Log-Likelihood: Time: 21:13:21 -579.82 No. Observations: 390 AIC: 1162. **Df Residuals:** 389 BIC: 1166. Df Model: **Covariance Type:** nonrobust coef std err t P>|t| [0.025 0.975] **x1** 0.0872 0.095 0.916 0.360 -0.100 0.274 **Omnibus:** 14.875 **Durbin-Watson:** 0.013 Jarque-Bera (JB): **Prob(Omnibus):** 0.001 14.048 Skew: 0.413 **Prob(JB):** 0.000890

Cond. No.

Notes:

[1] R² is computed without centering (uncentered) since the model does not contain a constant.

1.00

[2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

5.10 Conclusion:

Kurtosis:

2.574

The factors in the models have high correlations with each other, so PCA is used to reduce multicolinearity. The PCA Model give an estimation of YTM above with high p value (0.36) and low R^2 (0).

Author: Nan Li