Deterministic Finite-State Automata

Meenakshi D'Souza

IIIT-Bangalore

How a DFA works.

DFA for "Odd number of a's"

- How a DFA works.
- Each state represents a property of the input string read so far:
 - State e: Number of a's seen is even.
 - State o: Number of a's seen is odd.

Each state represents a property of the input string read so far:

Each state represents a property of the input string read so far:

- State ϵ : Not seen abb and no suffix in a or ab.
- State a: Not seen abb and has suffix a.
- State ab: Not seen abb and has suffix ab.
- State abb: Seen abb.

Accept strings over $\{0,1\}$ which have even parity in each length 4 block.

- Accept "0101 · 1010"
- Reject "0101 · 1011"

Accept strings over $\{a,/,*\}$ which **don't end inside** a C-style comment.

- Scan from left to right till first "/*" is encountered; from there to next "*/" is first comment; and so on.
- Accept "ab/*aaa*/abba" and "ab/*aa/*aa*/bb*/".
- Reject "ab/*aaa*" and "ab/*aa/*aa*/bb/*a".

Accept strings over $\{a,/,*\}$ which **don't end inside** a C-style comment.

- Scan from left to right till first "/*" is encountered; from there to next "*/" is first comment; and so on.
- Accept "ab/*aaa*/abba" and "ab/*aa/*aa*/bb*/".
- Reject "ab/*aaa*" and "ab/*aa/*aa*/bb/*a".

Definitions and notation

- An alphabet is a finite set of set of symbols or "letters". Eg. $A = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ . Eg. aaba is string over $\{a, b, c\}$.
- Empty string denoted by ϵ .
- Set of all strings over Σ denoted by Σ^* .
 - What is the "size" or "cardinality" of Σ^* ?

Definitions and notation

- An alphabet is a finite set of set of symbols or "letters". Eg. $A=\{a,b,c\}$ or $\Sigma=\{0,1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ . Eg. aaba is string over $\{a, b, c\}$.
- Empty string denoted by ϵ .
- Set of all strings over Σ denoted by Σ^* .
 - What is the "size" or "cardinality" of Σ^* ?
 - Infinite but Countable: Can enumerate in lexicographic order:

$$\epsilon$$
, a, b, c, aa, ab,...

Definitions and notation

- An alphabet is a finite set of set of symbols or "letters". Eg. $A = \{a, b, c\}$ or $\Sigma = \{0, 1\}$.
- A string or word over an alphabet Σ is a finite sequence of letters from Σ . Eg. aaba is string over $\{a, b, c\}$.
- Empty string denoted by ϵ .
- Set of all strings over Σ denoted by Σ^* .
 - What is the "size" or "cardinality" of Σ^* ?
 - Infinite but Countable: Can enumerate in lexicographic order:

$$\epsilon$$
, a, b, c, aa, ab,...

- Operation of *concatenation* on words: String u followed by string v: written $u \cdot v$ or simply uv.
 - Eg. $aabb \cdot aaa = aabbaaa$.

Definitions and notation: Languages

- A language over an alphabet Σ is a set of strings over Σ . Eg. for $\Sigma = \{a, b, c\}$:
 - $L = \{abc, aaba\}.$
 - $L_1 = \{\epsilon, b, aa, bb, aab, aba, baa, bbb, \ldots\}$.
 - $L_2 = \{\}.$
 - $L_3 = \{\epsilon\}.$
- How many languages are there over a given alphabet Σ ?

Definitions and notation: Languages

- A language over an alphabet Σ is a set of strings over Σ . Eg. for $\Sigma = \{a, b, c\}$:
 - $L = \{abc, aaba\}.$
 - $L_1 = \{\epsilon, b, aa, bb, aab, aba, baa, bbb, \ldots\}.$
 - $L_2 = \{\}.$
 - $L_3 = \{\epsilon\}.$
- How many languages are there over a given alphabet Σ ?
 - Uncountably infinite
 - Use a diagonalization argument:

	ϵ	а	Ь	aa	ab	ba	bb	aaa	aab	aba	abb	bbb	
L_0	0	1	0	0	0	1	1	0	0	0	0	0	
L_1	0	0	0	0	0	0	0	0	0	0	0	0	
L_2	1	1	0	1	0	1	1	0	0	1	0	1	
L_3	0	0	0	0	0	0	0	0	0	0	0	0	
L ₄	0	1	0	0	0	1	1	0	0	0	0	0	
L_5	1	1	0	1	0	1	1	0	0	1	0	1	
L_6	0	1	0	0	0	1	1	0	0	0	0	0	
L ₇	0	0	0	0	0	0	1	0	0	0	1	0	
	İ												

Definitions and notation: Languages

Concatenation of languages:

$$L_1 \cdot L_2 = \{u \cdot v \mid u \in L_1, \ v \in L_2\}.$$

• Eg. $\{abc, aaba\} \cdot \{\epsilon, a, bb\} = \{abc, aaba, abca, aabaa, abcbb, aababb\}.$

Definitions and notation: DFA

A Deterministic Finite-State Automaton ${\mathcal A}$ over an alphabet Σ is a structure of the form

$$(Q, s, \delta, F)$$

where

- Q is a finite set of "states"
- ullet $s \in Q$ is the "start" state
- $\delta: Q \times \Sigma \to Q$ is the "transition function."
- $F \subseteq Q$ is the set of "final" states.

Definitions and notation: DFA

A Deterministic Finite-State Automaton ${\mathcal A}$ over an alphabet Σ is a structure of the form

$$(Q, s, \delta, F)$$

where

- Q is a finite set of "states"
- $s \in Q$ is the "start" state
- $\delta: Q \times \Sigma \to Q$ is the "transition function."
- $F \subseteq Q$ is the set of "final" states.

Example of "Odd a's" DFA:

Here:
$$Q = \{e, o\}, s = e, F = \{o\},\$$

and δ is given by:

$$\delta(e, a) = o,$$

 $\delta(e, b) = e,$
 $\delta(o, a) = e,$
 $\delta(o, b) = o.$

Definitions and notation: Language accepted by a DFA

- $\widehat{\delta}$ tells us how the DFA ${\cal A}$ behaves on a given word u.
- Define $\widehat{\delta}: Q \times \Sigma^* \to Q$ as
 - $\widehat{\delta}(q,\epsilon) = q$
 - $\widehat{\delta}(q, w \cdot a) = \delta(\widehat{\delta}(q, w), a)$.
- Language accepted by A, denoted L(A), is defined as:

$$L(A) = \{ w \in \Sigma^* \mid \widehat{\delta}(s, w) \in F \}.$$

• Eg. For A = DFA for "Odd a's",

$$L(A) = \{a, ab, ba, aaa, abb, bab, bba, \ldots\}.$$

Regular Languages

- A language $L \subseteq \Sigma^*$ is called *regular* if there is a DFA $\mathcal A$ over Σ such that $L(\mathcal A) = L$.
- Examples of regular languages: "Odd a's", "strings that don't end inside a C-style comment", {}, any finite language.

• Are there non-regular languages?

Regular Languages

- A language $L \subseteq \Sigma^*$ is called *regular* if there is a DFA $\mathcal A$ over Σ such that $L(\mathcal A) = L$.
- Examples of regular languages: "Odd a's", "strings that don't end inside a C-style comment", {}, any finite language.

- Are there non-regular languages?
 - Yes, uncountably many, since the class of regular languages is countable while class of all languages is uncountable.