Primeira Lei da Termodinâmica

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de Julho de 2022

Trabalho na termodinâmica

Sumário

- Trabalho na termodinâmica
- A primeira Lei da Termodinâmica
- Aplicações da Primeira Lei da Termodinâmica
- **Apêndice**

Comportamento das moléculas em uma câmara fechada

As moléculas de um gás colidem várias vezes com as paredes do recipiente, e a cada colisão as moléculas exercem uma força \vec{F} nas paredes e também no pistão.

Recipiente contendo gás ideal.

Moléculas colidindo com as paredes do recipiente.

Trabalho realizado por um gás

A força que o gás exerce no pistão realiza um trabalho τ sobre ele, deslocando-o para cima por uma distância ΔS , segundo a relação

$$\tau = \mathbf{F} \cdot \Delta \mathbf{S}$$
.

Mas F = pA, sendo A a área do pistão, portanto

$$au = p A \Delta S,$$
 $au = p \Delta V.$

Aumento ΔV do volume do câmara devido ao trabalho τ realizado pelo gás.

Diagrama pressão versus volume

Se a pressão e o volume podem variar durante uma transformação termodinâmica, podemos representar essa transformação que ocorre do estado i para o estado f em um diagrama pressão versus volume.

Na mecânica determinamos o trabalho realizado por uma força sabendo a área abaixo da curva. Podemos proceder da mesma maneira para calcular o trabalho associado a um gás num gráfico pressão x volume.

Trabalho realizado de i até f.

Corollary

O trabalho τ de um gás no diagrama pressão versus volume é a área da figura abaixo da curva (positivo ou negativo dependendo do sentido da transformação).

Exemplo de sistema e vizinhança.

Prof. Flaviano W. Fernandes IFPR-Irati

Trabalho na termodinâmica

Convenção de sinais de calor e trabalho na termodinâmica

Convenção de sinais do calor

Se o sistema recebe calor da vizinhança então Q é positivo.

Se o sistema cede calor para a vizinhança então Q é negativo.

Convenção de sinais do trabalho

Se o trabalho está sendo realizado sobre o sistema então τ é negativo.

Se o sistema realiza trabalho sobre a vizinhança então τ é positivo.

Prof. Flaviano W. Fernandes

Quando um sistema vai de um estado i para o estado f e troca energia com a vizinhança, a sua energia interna aumenta ou diminui e a sua variação é dado por

$$\Delta U = U_f - U_i = Q.$$

Se ele ao mesmo tempo realizar trabalho τ , ou trabalho for feito sobre ele, a quantidade de energia interna que ele recebe ou cede é dado por

$$\Delta U = Q - \tau.$$

Exemplo de aplicação da primeira Lei da Termodinâmica.

Transformação adiabática

Na transformação adiabática o sistema não troca calor com a vizinhança, portanto Q = 0. A variacão da energia interna do gás é dado por

$$\Delta U = Q - \tau,$$

$$\Delta U = -\tau.$$

$$\Delta U = -\tau$$
.

Exemplo de transformação adiabática.

Transformação isotérmica

Na transformação isotérmica, a temperatura do sistema não muda e a energia de um gás depende somente da temperatura T, ou seja,

$$U(T) = \frac{3}{2}Nk_BT$$

portanto $\Delta U = 0$. Pela Primeira Lei da Termodinâmica temos

$$Q - \tau = \Delta U,$$

 $Q - \tau = 0,$
 $Q = \tau.$

Exemplo de transformação isotérmica.

Transformação isovolumétrica

Na transformação isovolumétrica (ou isocórica), o volume do sistema não muda, portanto

$$\Delta V = 0$$
.

Mas o trabalho associado a um gás é igual a $p\Delta V$, portanto $\tau=0$. Pela Primeira Lei da Termodinâmica temos

$$\Delta U = Q - \frac{0}{7},$$

$$\Delta U = Q$$
.

Exemplo de transformação isocórica.

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	heta
lota	1	ι
Capa	Κ	κ
Lambda	Λ	λ
Mi	Μ	μ

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Prof. Flaviano W. Fernandes

Referências e observações¹

Trabalho na termodinâmica

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.2, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.