AINICHO THE TO THE

인공지능과 빅데이터를 위한 필수 교양서

01

인공지능과 함께하는 우리 사회

<u>단원 목차</u>

- **4.1** 가상 세계, 메타버스
- 4.2 인공지능과 삶의 변화
- 4.3 인터넷 콘텐츠 서비스
- 4.4 제4차 산업혁명 시대

단원 학습목표

- 가상 세계인 메타버스의 개념을 이해하고 활용에 대해 알아본다.
- 가상현실과 증강현실, 혼합현실과 확장현실을 이해한다.
- 인공지능의 이해를 바탕으로 음성 인식과 합성, 자율주행과 전기차를 알아본다.
- 인터넷과 월드와이드웹을 이해하고 OTT, UCC와 SNS를 알아본다.
- 제4차 산업혁명이란 무엇인지 알아보고 주요 기술인 사물인터넷(IOT)와 빅데이 터를 알아본다.

01

인공지능과 함께하는 우리 사회

<u>단원 목차</u>

- **4.1** 가상 세계, 메타버스
- 4.2 인공지능과 삶의 변화
- 4.3 인터넷 콘텐츠 서비스
- 4.4 제4차 산업혁명시대

메타버스란?

1992년, 닐 스티븐슨(Neal Stephenson)의 공상과학 소설 '스노 크래시(Snow Crash)'에서 메타버스와 아바타의 개념과 용어가 처음 사용

- 메타버스와 아바타(avatar)
 - 가상 세계인 메타버스
 - 자신의 가상 신체인 아바타
- '디지털 속의 또 다른 나'를 뜻하는 '아바타'
 - 2009년 제임스 캐머런의 영화
 - 2023년에 2편 상영 예정
- 메타버스(metaverse)
 - 초월, 가상을 뜻하는 'Meta'와 우주, 현실 세계를 뜻하는 'Universe'의 합성어
 - 현실을 초월한 가상 세계를 의미
 - 가상현실과 증강현실 기술이 합쳐져 더욱 발전된 기술이 집약된 가상 세계
 - 가상과 현실이 상호작용
 - 가상 세계 속에서 사회·경제·문화 활동이 이뤄지고 새로운 가치가 창출되는 세상

인공지능과 빅데이터를 위한 필수 교양시

'증강과 시뮬레이션', '내적인 것과 외적인 것'이라는 두 축을 기준으로 4가지 유형 분류

- 기술 연구 단체인 ASF의 메타버스 분류
 - Acceleration Studies Foundation
 - 증강현실(Augmented Reality)
 - 현실 공간에 2D 또는 3D로 표현한 가상의 정보를 표시 해 상호작용하는 환경
 - ・ 일상기록 (Lifelogging)
 - 블로그처럼 어떠한 형태로든 자신의 인생을 기록하는 것
 - 거울 세계(Mirror Worlds)
 - 구글 어스(Google Earth)처럼 디지털 정보를 기반으로 실제 세계를 사실적으로 반영한 세계
 - 가상 세계(Virtual Worlds)
 - 현실 세계의 경제적, 사회적인 활동과 유사한 활동을 할수 있도록 디지털 데이터로 구축한 세계

그림 1.1 ▶ 메타버스 개념

메타버스 활용

• 회사

- 입사식, 발표회
- 대학
 - 입학식, 수업
- 가수
 - 신곡발표회, 콘서트
- 정치인
 - 정치홍보

표 1.1 메타버스의 4가지 유형(출처: 대한민국 정책 브리핑)

구분	증강현실 (Augmented Reality)	<mark>일상기록</mark> (Lifelogging)	거울세계 (Mirror World)	가상세계 (Virtual World)
정의	현실공간에 가상의 물체 (2D, 3D)를 겹쳐 상호작용 하는 환경	사물과 사람에 대한 경험· 정보를 저장, 가공, 공유, 생산, 거래하는 기술	실제 세계를 그대로 반영하 되, 정보적으로 확장된 가상세계	디지털 데이터로 구축한 가상세계
특징	위치 기반 기술과 N/W를 활용해 스마트 환경 구축	센서 · 카메라 · SW 기술 을 활용해서 사물과 사람의 정보 기록 · 가공 · 재생산 · 공유	3차원 가상지도, 위치 식별, 모델링, 라이프로깅 (일상기록) 기술 활용	이용자의 자아가 투영된 아바타 간의 상호작용
활용 분야	AR 글래스, 차량용 HUD, AR 원격협업	웨어러블 디바이스, 지능형 CCTV	지도 기반 서비스	온라인 멀티플레이어 게임, 소셜 가상세계
사례	포켓몬고	애플워치	구글어스, 에어비엔비	리니지, 제페토, 로블록스

※ 미국 미래가속화연구재단(ASF)에서 2007년 발표한 메타버스 로드맵에서 대안적 개념 제시

메타버스 시대

게임, 컨퍼런스, 교육, 엔터테인먼트, 음악, 콘텐츠, 산업 현장 등에서 넓게 활용

- 교육 분야
 - 아바타를 활용한 가상공간에서 실시간 수업이 확산
 - 3차원 실감형 콘텐츠의 역동성과 현실감
 - 수업의 몰입도를 높여 비대면 원격교육의 한계를 극복
- 페이스북의 저커버그와 엔비디아의 젠슨 황, 소프트뱅크 회장인 손정의
 - 메타버스의 시대가 도래할 것으로 전망
 - 메타버스로 표현되는 현실 세계와 가상 세계의 융합이 빠른 속도록 진행 예상

그림 1.5 ▶ 메타버스에서 선거운동 및 회의 진행

가상현실(VR: Virtual Reality)

현실세계가 아닌 가상세계를 체험할 수 있는 기술

- 인공적으로 어떤 특정한 환경이나 상황에 처한 것처럼 느끼도록 하는 모든 기술
 - 가상현실 속에 있는 사물이나 환경과 상호작 용이 가능하도록 하는 모든 기술
- 오감 체험으로 발전
 - 기본적으로 시각과 청각, 미각, 후각, 촉각까 지 범위가 확대
 - 컴퓨터 그래픽 기술과 입출력 장치 기술이 필수적
 - 영상출력 장치로는 머리에 쓰는 표시 장치 (HMD: Head Mounted Display)가 대표적

그림 1.6 ▶ 가상현실 영상 표시장치 HMD

증강현실

현실세계를 그대로 경험하면서 부가적으로 가상의 디지털 정보를 덧붙여 현실세계를 강화하는 기술

- 증강현실(AR: Augmented Reality)
 - 현실세계의 영상에 가상의 물체나 필요 정보를 합성
 - 현실세계에 존재하는 사물처럼 표시하는 컴퓨터 그래픽 기술
 - 혼합현실(MR: Mixed Reality)
 - 증강현실은 현실 세계에 부가정보를 갖는 가상 세계를 겹쳐 보이므로 혼합현실(MR: Mixed Reality) 이라고도 부름
 - 또는 증강현실(AR)의 단점을 보완해 더욱 진화된 가상 세계를 구현하는 기술

그림 1.7 ▶ 증강현실 내비게이션

증강현실 사례

증강현실은 영상을 표시하는 HMD와 같은 특별한 장치 없이 스마트폰만으로 체험할 수 있어 가상현실보다 쉽게 대중화

• 포켓몬고(PokemonGo), 2016년 출시

- 모바일 애플리케이션 게임
- GPS 위치 기반과 증강현실 기술

• 실제적인 관찰과 이해를 돕는 증강현실 기술

- 책 속의 그림이나 사진을 3차원의 가상 객체로 팝업
- 카드나 종이, 카펫 등의 그림 이미지를 팝업

• 활용 분야

- 게임과 패션, 가구 제조, 내비게이션, 의료, 교육
- 최근 제조업, 의료 분야

그림 1.8 ▶ 증강현실 체험

혼합현실(MR: Mixed Reality)

• 혼합현실(MR: Mixed Reality)

- 가상현실(VR)과 증강현실(AR)의 단점을 보완해 더욱 진화된 가상 세계를 구현하는 기술
- 현장 작업자 또는 사용자 친화적으로 상호작용할 수 있는 효과적인 방법으로 활용

가상현실과 증강현실, 혼합현실 기술을 모두 지칭하는 용어

• 가상현실, 증강현실, 혼합현실 기술 기반

- 가상과 현실을 융합해 현실의 경험을 확장하고 몰입감을 제공
- HMD와 같은 기기를 활용
 - 3차원 공간에서의 상호작용·경험을 가능
 - 비대면 서비스에서의 현실적인 몰입도를 향상시킬 수 있는 기술
 - 제조, 헬스케어 그리고 교육과 소매 등에 이르기까지 다양한 산업에 적용

• 메타버스

- XR이 기술적 요소
 - VR, AR, MR 핵심 요소 기술
- 데이터, 네트워크, 클라우드, 인공지능 등 다양한 분야의 기술들이 접목
 - 실제 가상 세계를 만들어 소통하는 세계

그림 1.11 ▶ XR과 메타버스로의 확장

01

인공지능과 함께하는 우리 사회

4.1 가상 세계, 메타버스

4.2 인공지능과 삶의 변화

4.3 인터넷 콘텐츠 서비스

4.4 제4차 산업혁명 시대

인공지능과 삶의 변화

인공지능은 본격적으로 '인간처럼 생각하는 컴퓨터'로 연구된 지 70~80여 년이 넘는 컴퓨터과학 연구의 한 분야

- 앨런 튜링(Alan Turing), 컴퓨터의 개념을 구상
 - 인공지능의 시초
 - 기존의 계산기를 '지능을 가진 기계'
- 지식기반 전문가 시스템과 머신러닝 등으로 연구
 - 70년대와 80년대 말 두 번의 암흑기
- 2010년 딥러닝 연구가 시작되면서 부흥기를
 - 인공지능은 2010년 이후 제4차 산업혁명 시대
 - 병렬 프로세스와 GPU에 의한 고성능컴퓨터의 발전
 - 대량의 데이터가 생성되고 활용 가능
 - 엄청난 진전이 이루어지고 있는 상황

알파고와 이세돌

대한민국 서울에서 열린 '구글 딥마인드 챌린지 매치' 바둑 대회

- 2016년 3월, 이세돌 프로 기사와 알파고의 바둑 대회
 - 세계적으로 '인공지능'이라는 용어가 확산
 - 일부에서는 미래에 고도로 발달된 인공지능이 우리 인류를 위협할 수 있다는 우려
- 알파고(AlphaGo)
 - 구글의 딥마인드가 개발한 컴퓨터 프로그램
 - 최고의 인공지능 바둑 프로그램으로 개발
 - 딥러닝(deep learning) 활용
 - 바둑 전문가로부터의 지도학습(supervised learning)
 - 자체 경기를 통한 강화학습(reinforcement learning)
 - 하드웨어
 - 미국의 구글 데이터 센터
 - CPU(Central Processing Unit) 1202개와 GPU(Graphics Processing Unit) 176개를 병렬로 연결

인공지능의 이해

인공지능은 1956년 미국 다트머스 대학의 학술대회에서 처음 언급

• 인공지능(AI: Artificial Intelligence)

- 인간의 뇌와 같이 높은 지능과 생각하는 방식을 가진 컴퓨터 시스템
- 컴퓨터공학의 연구 분야로 2010년 이후 컴퓨터 처리 속도의 급속한 발전으로 비약적인 성장

• 인공지능을 활용한 기술

- 음성을 인식해 여러 업무를 처리하는 음성인식
- 다양한 언어의 번역 등에 활용되는 자연어처리
- 자동차 스스로 목적지를 찾아가는 자율주행
- 사진이나 동영상을 인식하는 화상인식
- 물체나 얼굴을 인식하는 시각인식

그림 1.14 ▶ 인공지능의 여러 분야

인공지능 활용

인공지능(AI: Artificial Intelligence)은 사람 지능 수준의 지적 능력을 컴퓨터 하드웨어와 소프트웨어로 구현하는 기술

- 인공지능은 제4차 산업혁명을 촉발하는 핵심동력
 - 제4차 산업혁명 주요 산업과 서비스 분야와 연계되는 기술 파급력이 높은 핵심 기술
 - 사물인식, 생체인식, 음성인식, 자연어처리, 자동번역, 로봇
 - 자율주행, 헬스케어, 핀테크, 가상현실, 사물인터넷, 드론 등

딥러닝이 사용된 다양한 분야

인공지능의 딥러닝 기술로 스마트폰을 비롯한 일상생활 속의 많은 사물들이 스마트해지고 있는 추세

- 스마트폰, 자동차, 스피커, 냉장고, TV 등 모든 주변 기기들에 인공지능이 활용
 - 인간과 대화하는 지능형 에이전트와 실시간 채팅이 가능한 챗봇(chatbot)을 위한 음성인식과 자연어 처리, 자동번역 등의 분야
 - 애플의 시리, 삼성의 빅스비, IBM의 왓슨, 구글 나우, 마이크로소프트의 코 타나, 아마존의 대시 등
 - 인식 분야
 - 얼굴을 비롯한 생체인식, 사물인식, 자동자 번호판 인식 등
 - 의료 분야
 - X-ray 사진 판독과 각종 진단 등
 - 자율주행 분야
 - 드론, 자동차
 - 예측 분야
 - 주식이나 펀드, 환율, 일기예보 등
 - 예술
 - 음악의 작곡과 그림을 그리는 회화, 소설을 쓰는 분야 등

GPU와 TPU

특히 딥러닝에서는 심층신경망에서 빅데이터를 처리하기 위해 대량의 행렬과 벡터를 사용하므로 GPU 사용이 매우 효과적

- GPU(Graphics Processing Unit): 그래픽 연산 처리를 하는 전용 프로세서
 - 1999년 엔비디아(Nvidia)가 지포스 256(GeForce 256)을 발표하면서 처음 사용
 - GPGPU(General Purpose Graphic Processing Unit)
 - 일반 CPU 프로세서를 돕는 보조프로세서(coprocessor)로서의 GPU
 - 그래픽 처리장치는 고속의 병렬처리로 대량의 행렬과 벡터를 다루는 데 뛰어난 성능을 발휘
 - 12개 GPU가 2,000개의 CPU와 비슷한 계산 능력
- TPU 텐서 처리장치(Tensor Processing Unit)
 - 구글, 2016년에 GPU보다 뛰어난 연산 처리장치로 개발
 - 텐서: 벡터·행렬을 의미
 - 데이터 분석 및 딥러닝용 칩으로서 벡터·행렬연산의 병렬처리에 특화
 - 텐서플로(TensorFlow)
 - TPU를 위한 인공지능 라이브러리 소프트웨어로는 구글에서 오픈소스로 공개

인공지능과 빅데이터를 위한 필수 교양/

- STT(Speech-to-Text)
 - 음성인식(speech recognition)은 사람이 말하는 자연어를 분석
 - 그 내용을 해석해 문자, 명령어 및 다양한 형 태의 정보로 변환해 주는 기술
- 인공 지능 개인비서 응용프로그램
 - 음성인식이 활용된 대표적 응용프로그램
 - 사람에게 말하듯 명령하면
 - 인공지능 기술로 상황에 맞는 맥락을 알 아듣고 정확하게 그 임무를 수행
- 자연어처리
 - 언어간 통. 번역 서비스
 - 음성인식 서비스

인공지능과 빅데이터를 위한 필수 교양서

- 크롬 브라우저에서 구글 문서를 하나 작성
 - 메뉴 '도구' 아래에 보면 '음성 입력' 항목
 - 마이크 아이콘을 누르면 음성을 받아 입력
 - 신경써서 발음
 - 마침표(.), 느낌표(!) 등의 문장부호, 특수문자, 줄 바꾸기 기능은 지원되지 않음

그림 1.18 ▶ 구글 문서에서 한글 음성 입력 받아쓰기 활용

음성합성 기술

국내의 오디오북 서비스 업체는 성우가 읽어 주던 오디오북을 인공지능이 만든 음성으로 읽어주는 서 비스를 제공

- TTS(text to speech) 기술
 - 인공지능 기술을 활용해 텍스트를 음성으로 변환
 - 지하철이나 아파트 공공시설 내에 안내방송을 컴퓨터가 직접 가능

넓은 의미로 챗봇은 인간과의 대화에 자연스러운 방식으로 참여하는 데 사용되는 응용 소프트웨어

• 인공지능 기반의 의사소통 소프트웨어

- 사람과의 문자 대화를 통해 질문에 알맞은 답 이나 각종 연관 정보를 제공
- 텍스트, 그래픽, 음성을 이용해 사용자와 대화 방식으로 상호작용

• 챗봇의 작동 방식

- 먼저 앱·웹에서 문자 또는 전화 통화를 통해 문 의를 하면
 - 메시지 내용을 수신하고 사용자의 요청 내용과 관련 정보를 분석· 파악
- 다음 단계로는 자연어처리 기술로 적절한 의도를 식별해 응답을 결정하고.
- 마지막으로 챗봇은 문자나 음성으로 문장을 만 들어 사용자에게 응답 내용을 전달

텍스트기반 챗봇의 기술요소

인공지능과 빅데이터 처리기술의 발전으로 기술 활용이 더욱 용이 해짐

표 1.2 텍스트기반 챗봇의 기술요소

핵심 기술	세부 내용		
패턴인식	기계에 의하여 도형, 문자, 음성 등을 식별시키는 것		
자연어처리	정보검색, 질의응답, 시스템 자동번역, 통역 등이 포함		
텍스트 마이닝	비정형 텍스트 데이터에서 새롭고 유용한 정보를 찾아내는 과정 또는 기술		
상황인식 컴퓨팅	가상공간에서 현실의 상황을 정보화하여 사용자 중심의 지능화된 서비스 제공		

챗봇 서비스 발전 단계

1단계

- 서비스와 관련된 데이터를 축적하여 사용자 가 질문하면 미리 설계한 알고리즘의 시나리 오 기반으로 답변
 - 그 외의 질문은 답변이 어려운 단계

• 2단계

- 현재의 기술수준으로 인공지능 기술이 본격 적으로 도입 되어 자연어 처리 기술 • 단순한 형태의 소통이 가능하며 스스로 검색을 통해 질문에 답변하고 신고, 신청, 예약 수행 가능

• 3단계

- 감성비서로서 감성인지 기술 등이 더해져 사용자의 마음까지 읽는 서비스를 제공
 - 서비스 전달 방식 또한 텍스트, 음성에 국한 되지 않고 다양화될 것으로 예상

표 1.3 챗봇 서비스 발전 단계(한국정보화진흥원)

구분	1단계	2단계	3단계	
TE	챗 봇	지능형 비서	감성 비서	
제공 방식	텍스트, 음성	텍스트, 음성, 시각 자료	텍스트, 음성, 시각 자료, 행동 인지	
주요 기술	패턴 매칭, 키워드 및 연관어 추출	딥러닝, 머신러닝, 자연어 처리	감성인지기술,데이터정형화기술	
내용	학습 내용에 대한 질의응답	사용자 개인 맞춤형 서비스	감정 교류 통한 서비스	

전화예약 서비스 AI콜

인공지능이 걸려온 전화에서 사람처럼 응대하고 예약까지 받아주는 AI콜(call) 서비스가 확산

- 사람을 대신해 전화로 식당 등의 예약
 - 예약 AI는 음성인식과 자연어처리, 음성 합성이 결합된 기술
 - 고객 음성에서 문자를 추출해 의도를 이해하고
 - 고객이 원하는 정답형 정보를 찾아 문장으로 다듬어 음성으로 합성

그림 1,25 ▶ 대화형 AI 서비스

자율주행 자동차(self-driving car)

요즘 출시되는 자동차는 고속도로 등에서 제한적으로 자율주행(수준2, 운전보조자 단계)이 가능

- 자율주행 자동차(self-driving car)
 - 사람의 개입 없이 안전주행이 가능한 자동차
 - 소프트웨어, 인공지능, 통신, 센서기술의 융· 복합을 통해 스스로 주변환경을 인지
 - 위험요인을 판단해 주행경로를 제어
 - 다양한 기술 필요
 - 운전자 주행조작을 최소화하고 주변의 물체를 파악하는 센서 기술
 - 최적의 경로를 선정하는 인공지능 기술
 - 차량 운전 제어 기술
 - 지리정보 및 위치정보 활용 기술
 - 도로 시설물이나 타 차량과의 통신 기술 등
- 처음 예상과는 달리, 현재 기술은 녹록치 않은 듯
 - 일반도로의 자율주행 기술에 앞서 있는 테슬라의 오토파일럿(autopilt) 전기차의 여러 사고도 완전한 자율주행 실현을 어렵게 만들고 있음

자율주행 기술

비디오 카메라, 방향표시기, 인공지능 소프트웨어, 위성위치정보시스템(GPS) 그리고 여러 가지 센서 등을 기반으로 작동

- 운전에 필요한 최종 의사 결정 과정
 - 라이다(LiDAR: Light Detection And Ranging 또는 Laser Imaging, Detection and Ranging)의 레이저센서를 이용
 - 주변정보에 대한 3차원 정보와 함께 물체와의 거리를 인식
 - 차의 앞과 옆에 위치한 레이저 스캐너의 전파 탐지기를 통해 물체를 식별하고 거리를 계산
 - 펄스 레이저를 목표물에 방출하고 빛이 돌아 오기까지 걸리는 시간 및 강도를 측정
 - 거리, 방향, 속도, 온도, 물질 분포 및 농도 특성을 감지하는 기술
 - 각종 카메라와 센서로부터 수집된 데이터는 인공지능 소프트웨어가 종합· 분석하여 방향조작, 가· 감속, 정지 수행

자율주행 수준

미국자동차공학학회는 자율주행의 단계를 레벨 0에서 레벨 5까지 6단계로 나눔

- 수준 0~2
 - 주행책임이 운전자
 - 부분자동화 수준
 - 양산된 고사양의 자동차에 탑재
- 수준 3
 - 주행책임이 시스템
 - 자율 주행 시스템이 운전조작의 모든 측면을 제어
- 수준 5
 - 운전자 없이 주행 가능
 - 완전자동화가 가능한 수준

구분	ally 0	레벨 1	레벨 2	레벨 3	레벨 4	레벨 5
정의	자율주행 無	운전자 지원	부분 자율주행	조건부 자율주행	고도 자율주행	완전 자율주행
자율 수준	운전자	FEET-OFF	HANDS-OFF	EYES-OFF	MIND-OFF	승객
제어 주체	인간	인간/시스템	시스템	시스템	시스템	시스템
운행 책임	인간	인간	인간	인간/시스템	시스템	시스템
하드웨어 요구성능				• ECU 프로세서: 20TOPS 이상 • 램: 24GB 이상 • 저장공간: 256GB 이상 • 데이터링크: 100Mbps 이상	• ECU 프로세서: 200TOPS 이상 • 램: 48GB 이상 • 저장공간: 512GB 이상 • 데이터링크: 100Mbps 이상	• ECU 프로세서: 2000TOPS 이상 • 램: 128GB 이상 • 저장공간: 2TB 이상 • 데이터링크: 1Gbps 이상

그림 1.27 ▶ 자율주행의 6단계 수준

전기차 시대

전기차인 순수 전기 자동차(EV: Electric Vehicle)는 전기를 동력원으로 삼아 운행하는 자동차

- 화석연료와 엔진인 내연기관을 사용하지 않음
 - 고전압 배터리에서 전기에너지를 전기모터로 공급하여 구동력을 발생시키는 무공해 차량
 - 전기· 전자 기술, 모터· 배터리, 센서 그리고 인공지능 소프트웨어가 결합된 전자 제품

- 내연기관차와 달리 엔진이 없고 배터리와 모터만으로 차량 구동
- 엔진이 없으므로 대기오염 물질과 온실가스를 배출하지 않음
- 배터리 용량에 따라 주행가능 거리에 차이가 있음

내연기관이 화석연료와 배터리를 함께 사용하는 하이브리드와 플러그인 하이브리드 자동차

- 하이브리드와 플러그인 하이브리드 자동차
 - 순수 전기자동차가 내연기관차를 완전히 대체할 때까지 함께 사용

그림 1.32 > 하이브리드 차와 순수 전기차

미래의 자동차

미래의 자동차는 친환경 전기차와 수소차, 정보통신기술(ICT)과 인공지능에 기반한 자율주행차를 포 괄하는 개념

- 2030년 미래자동차 시장
 - 전기· 수소차, 자율주행차, 이동서비스 산업이 주도할 것으로 전망
 - 국내의 교통사고 사망자는 70% 이상 줄어들고 미세먼지도 10% 이상 감소 예측

그림 1.33 ▶ 미래의 자동차 기대효과

01

인공지능과 함께하는 우리 사회

4.1 가상 세계, 메타버스

4.2 인공지능과 삶의 변화

4.3 인터넷 콘텐츠 서비스

4.4 제4차 산업혁명 시대

인터넷과 WWW

인터넷은 지구 전역에서 서로 다른 기종의 컴퓨터들이 통일된 프로토콜을 사용해 자유롭게 통신을 주고 받을 수 있는 세계 최대의 통신망

- 인터넷 프로토콜을 통한 네트워크를 가리키는 고유명사
 - 인터넷에 연결된 호스트 컴퓨터의 수는 년 400% 이상 급증
- WWW
 - 팀 버너스 리가 개발, 1990년
 - 구조
 - 웹 서버가 실행되는 서버에 각종 정보와 이를 참조할 수 있는 프로그램을 저장
 - 서버의 정보를 요청하는 클라이언트에게 제공하는 방식
 - 웹 브라우저(web browser)
 - 정보를 검색하는 클라이언트

그림 1.34 ▶ 웹의 클라이언트 · 서버 구조

스마트폰 이전의 정보기술

인터넷과 웹을 기반으로 1999년에 미국과 독일, 한국 등 세계 여러 국가에서 정보기술 (IT: Information Technology) 붐(boom)이 불기 시작

- 1990년 말, 인터넷 기업의 시작
 - 구글(Google)과 아마존(Amazon), 이베이(Ebay)
 - 한국의 네이버(Naver)와 다음 (Daum), 중국의 텐센트(Tencent)

• 닷컴버블의 붕괴

- 인터넷 산업의 성장속도가 생각보다 빠르지 않았고
- 닷컴 회사의 실질적인 수익창출이 어려움
- 닷컴 회사의 절반이 파산하고 수많은 선의의 투자자들 의 피해가 발생

음 1.33 첫 것임 회사가 주도 성성된 나스틱의 목

스마트폰 이후의 스마트 혁명

2007년 6월 출시된 애플의 아이폰(iPhone)은 사용자의 눈높이와 시대의 요구를 반영한 정보기술 분야의 혁신

- 닷컴버블 이후
 - 2000년대에도 인터넷 정보검색 전문기업인 구글과 네이버 등은 크게 성장
- 2007년 이후
 - 스마트폰 혁명
 - 출시된 지 1년 만에 대중화
 - 2010년 이후, 새로운 IT 붐
 - 소셜네트 워크서비스(SNS)
 - 메신저 서비스 (messenger service)
 - 클라우드 컴퓨팅 (cloud computing)
 - 공유 경제 비즈니스 (sharing economy business)가 유행

그림 1.36 ▶ 세계 시가총액 상위 10대 기업(2018년과 2021년 비교)

스마트 혁명과 생활의 변화

스마트폰은 이미 없어서는 안 될 IT 기기의 중심

- 포노 사피엔스(Phono sapiens)
 - 2015년 , 영국의 주간지 <이코노미스트(The Economist)>
 - 스마트폰을 사용하는 인간을 지칭하는 말
 - 예전의 슈퍼컴퓨터 속도로 작업을 처리하고, 인터넷에 연결되며, 크기도 작은 스마트폰을 사용

사용자 규모가 5000만명에 도달하는 데까지 소요된 시간

그림 1.37 ▶ 스마트폰 등 주요 기술의 확산 속도

미디어의 디지털화와 OTT로의 발전

OTT는 PC, 스마트폰, 태블릿 PC, 콘솔 게임기 등 다양한 플랫폼을 지원하며 실시간 방송과 VOD를 포함한 차세대 방송 서비스

- 온라인 동영상 스트리밍 서비스 OTT(Over The Top)
 - 인터넷을 통해 개인용 PC와 스마트 폰뿐만 아니라 TV 등에서도 시청할 수 있는 드라마나 영화 등의 미디어 콘텐츠 서비스

그림 1.38 ▶ 미디어 서비스 발전 과정(https://www.toolboxtve.com/from-tv-to-ott)

추천서비스

사용자가 관심을 가질 만한 영화나 음악, 동영상, 책 등의 정보를 추천해 주는 서비스

- · OTT 분야의 추천서비스
 - 이용자의 취향, 성향에 의한 추천과 함께 시청 시간대, 시청 기기 등의 정보를 기반
 - 머신러닝과 딥러닝 등의 인공지능을 활용
 - 비슷한 시청 형태의 군집으로 나누어 추천서비스에 활용

그림 1.41 ▶ 추천서비스의 이해

넷플릭스

넷플릭스는 1997년 비디오 대여 사업을 시작으로 현재, 전 세계 온라인 미디어 스트리밍 서비스 1위 업체

- 인터넷(net)과 영화(flicks)의 합성어
 - 사용자의 75% 정도 추천서비스를 이용할 정도로 넷플릭스는 이용자가 원하는 콘텐츠를 추천
 - 2020년 하반기에 전 세계 유료 가입자 수가 2억 명을 넘음
- 글로벌 서비스 플랫폼의 장점과 우리의 과제
 - 국산 콘텐츠의 글로벌 흥행과 성공
 - 넷플릭스와 경쟁할 국산 동영상 스트리밍 서비스 플랫폼의 성장

그림 1.43 > 넷플릭스 홈페이지와 오징어 게임

UCC 사용자 제작 콘텐츠

UCC는 대부분 이미지·음악 등의 멀티미디어 요소가 결합된 동영상 위주이며, 텍스트 위주의 UCC는 블로그

- UCC(User Created Contents)
 - 인터넷 사업자나 콘텐츠 공급자와 같은 전문 조직이 아닌 일반 사용자들이 직접 만들어 인터넷 서버에 올리고 인터넷에 의해 유통되는 콘텐츠
- 다중 채널 네트워크(MCN) 산업이 가파른 성장세
 - 1인 크리에이터와 브로드 캐스팅 자키(BJ)를 체계적으로 관리·육성

국내에서도 글로벌 1위 UCC 플랫폼인 유튜브가 독점

2020년 유튜브 조회수 상위 아티스트

2020년 12월 21일 기준

그림 1.45 ▶ 2020년 유튜브 조회수 상위 아티스트

2018-2020 조회수 규모/성장

소셜네트워크서비스 SNS

2023년 기준 전 세계적으로 40억 명을 넘어설 것으로 예측

- 소셜네트워크서비스 SNS(Social Networking Service)
 - 인터넷 공간에서 불특정 타인과 인맥을 구축하는 서비스
 - 장점과 인기 이유
 - 유명인이나 불특정인과 인맥을 맺을 수 있으며, 자기의 생각을 빠르고 쉽게 공유할 수 있는 장점
 - 스마트폰과 같은 스마트기기의 대중화로 SNS 이용자는 폭발적으로 증가

글로벌 소셜미디어 사용자(2017~2025년)

01

인공지능과 함께하는 우리 사회

- **4.1** 가상 세계, 메타버스
- 4.2 인공지능과 삶의 변화
- 4.3 인터넷 콘텐츠 서비스
- 4.4 제4차 산업혁명 시대

4차 산업혁명 시대

스위스의 작고 아름다운 마을 다보스(Davos)에서 매년 1월 세계경제포럼(WEF: World Economic Forum)이 개최

- 의장인 클라우스 슈밥(Klaus Schwab)에 의해 처음 언급
 - 2016년 1월 20일에 열린 경제포럼
 - 2016년 4월 《클라우스 슈밥의 제4차 산업혁명》이 번역되어 출간
 - 특히 2016년 3월, 알파고와 이세돌의 바둑 대결 이후, 제4차 산업혁명이란 용어가 많이 언급

그림 1.49 > 2016 다보스 포럼

인공지능과 빅데이터를 위한 필수 교양서

'모든 것이 연결된, 지능적인 사회로의 진화'라고 제4차 산업혁명을 요약

- 클라우드 슈밥의 정의
 - '제3차 산업혁명의 컴퓨터혁명 혹은 디지털혁명을 기반으로
 - 21세기에 들어와 유비쿼터스 모바일 인터넷(ubiquitous and mobile internet)
 - 더 저렴해지고 작고 강해진 센서, 인공지능과 기계학습 (machine learning)
 - 제4차 산업혁명 시대

그림 1.50 > 4차 산업혁명

4차 산업혁명 요소 기술

제4차 산업혁명 시대의 핵심 인프라는 사물인터넷(IoT)이며, 핵심기술은 연결된 사물인 터넷에서 발생되는 빅데이터와 이를 처리하는 인공지능 기술

- 제4차 산업혁명 시대, 주요 기술 분야
 - loT
 - 빅데이터
 - 인공지능, 신경망, 딥러닝, 기계학습
 - 클라우드 컴퓨팅
 - 스마트 팩토리와 스마트 시티
 - 자율주행차와 드론
 - 3D 프린팅, 4D 프린팅
 - 블록체인과 비트코인

- 가상현실과 증강현실, 혼합현실
- 공유경제
- 로봇공학과 지능형 로봇
- 스마트홈과 지능형 빌딩
- 모바일 컴퓨팅과 웨어러블 컴퓨팅
- 헬스케어와 스마트의료
- 유무선 통신
- 소프트웨어 교육과 무크, 나노디그리

사물인터넷 IoT

각종 사물에 센서와 통신 기능을 내장하여 무선 통신을 통해 인터넷에 연결하는 기술을 의미

- 사물인터넷은 모든 사물을 인터넷에 연결
 - 사물인터넷을 통해 생산되는 대량의 데이터(빅데이터)를 활용
 - 여러 분야의 생산성과 효율성을 높일 수 있음
 - 사물이란 전원을 켤 수 있는 모든 기기
 - 냉장고, AI 스피커와 같은 가전제품 등
 - 모바일 장비, 웨어러블 디바이스 등 다양한 임베디드 시스템 등이 IoT의 대상

슈밥은 2025년까지는 1조 개의 센서가 인터넷에 연결될 것으로 예측

빅데이터

빅데이터 수집이 회사의 큰 자산

- 빅데이터(big data)
 - 대규모 데이터로 과거 아날로그 환경에서 생성되던 데이터와의 차이
 - 규모가 방대하고, 생성 주기도 짧고, 형태도 수치 데이터 뿐 아니라 문자와 영상 데이터를 포함
- 빅데이터 기술
 - 다양한 종류의 빅 데이터에 대한 생성과 저장, 수집
 - 수집한 빅데이터를 분석· 처리하여 가치를 추출
 - 결과를 표현하여 의사결정에 사용하도록 하는 기술
 - 빅데이터 활용 사례
 - '서울시 심야버스'가 대표적
 - 30억 건의 콜택시 요청 기록 등의 통화량 빅데이터를 분석, 심야버스 노선을 선정
- 구글, 아마존, 페이스북, 애플 등은 핵심 서비스를 무료로 제공
 - 방대한 양의 데이 터를 수집

