On the non-Degeneracy of Unsatisfiability Proof Graphs produced by SAT Solvers

Rohan Fossé - Laurent Simon

Formal Method - Univ. Bordeaux, LaBRI, France

Preliminaries

Definition

Let $\Phi(a, b, ...)$ be a boolean formula.

Is there an **interpretation** of (a, b, ..) that satisfies Φ ?

Notations

Literals

A literal (a, b, ...) is either a boolean variable x or the negation of a boolean variable $\neg x$

Clauses

A clause C is a disjunction of literals *i.e*:

 $C = a \lor b \lor .. \lor z$

Formula

A formula Φ is a conjunction of clauses *i.e*: $\Phi = C_1 \wedge C_2 \wedge ... \wedge C_m$

Example $\Phi = (a \lor \neg b) \land b \land (\neg a \lor \neg b)$

Resolution rule [Robinson '65]

Let C_1 and C_2 be two clauses, the resolution rule gives us:

$$(C_1 \vee \mathbf{x}) \wedge (C_2 \vee \neg \mathbf{x}) \vdash C_1 \vee C_2$$

Example

We apply the resolution rule on d:

Figure: Representation of the resolution

Resolution graph

Definition

The resolution graph is a directed acyclic graph (or **DAG**) such that:

- ► Leaves are initials clauses;
- Internal nodes are learnts clauses;
- ► The root is the empty clause.

Figure: Sequence of resolution with a graph representation

We call useful a clause necessary for the proof, and useless otherwise.

Example C_{14} is useless here.

Representation of a real proof

Figure: Force-Directed layout of the resolution Graph for the benchmark een-pico-prop-05. The color shows the **degree** of each node.

Information

Formula

clauses: 55585 # variables: 50076

Conflicts

conflicts: 59792 CPU time: 6s **Graph**

vertices: 51274 # edges: 960620

Aim of this work

Extend the work in [2] and focusing on the existence and importance of a very dense subgraph (the **K-core**) in all the proofs produced by SAT solvers.

Characterization of K-core

K-core

A *k*-core of a graph G is an undirected subgraph in which all vertices have degree at least *k*.

Coreness

The coreness of a vertex is *k* iff he belongs to a *k*-core but not to any *k*+1-core.

Figure: Graphical representation of the coreness

Experiments conditions

- ► 60 problems from the 2012-2017 SAT competitions;
- ► Run on the Cluster of Xeon E7-4870 processors from the Mesocentre Aquitain de Calcul Intensif;

Objectives and overview of the results

Objectives

- Identify during the analysis which clauses will be useful;
- Guess which variables will occur in the last learnt clauses, just before deriving the **empty** clause.

Overview of the results

- we correctly guess at least 90% of useful learnt clauses for half of the problems;
- Some results of our prediction for literals occurring over 60 problems

Below, We count the number of problems in which **one** of the Top-Y variables occurs in **one** of the last X learnt clauses.

	20	50	100	1000
5	27	37	45	53
10	42	47	50	54
20	49	51	51	55

Table: Top-Y variables (rows) w.r.t the last X learnt clauses (columns)

References

Fossé R., Simon L.

On the Non-degeneracy of Unsatisfiability Proof Graphs Produced by SAT Solvers

Principles and Practice of Constraint Programming, Springer International Publishing, 2018

Simon L.

Post Mortem Analysis of SAT Solver Proofs POS-14. Fifth Pragmatics of SAT workshop

https://www.labri.fr/ Thursday April 4, 2019 Twitter: @labriOfficial

