63 TOF-MRA scans

- Segmentations of:
 - 20 types of intracranial arteries (ICAs)
 - Aneurysms

 The median aneurysm volume to total volume ratio is of ~4e-5

Aneurysms (yellow) can vary largely in size and shapes

Current baseline USZ dataset

With nnUnet, we have a dice score on aneurysms of 0.76

Results with nnUnet for the ADAM dataset

- ADAM challenge dataset (113 scans)
- With nnUnet, we have a dice score of 0.4465, with a class imbalance ratio of 6.5e-6
- As this dataset contains examples of smaller UIAs, we can see the effect of aneurysm size more directly

Diameter	Dice Score [UIA Segmentation]	Support
d < 3mm	0.1767	8
3mm <= d < 4mm	0.5048	6
d >= 4mm	0.7480	6

Results with nnUnet for the ADAM dataset

Diameter	Dice Score [UIA Segmentation]	Support
d < 3mm	0.1767	8
3mm <= d < 4mm	0.5048	6
d >= 4mm	0.7480	6

Results from the ADAM Challenge itself

Doctors also have a hard time identifying UIAs with d<3mm

 "The sensitivity of all [human] readers (38% to 55%) was significantly lower for small aneurysms (ie, those <3 mm in maximum diameter) than for large aneurysms (68% to 89%)" https://pubmed.ncbi.nlm.nih.gov/12105357/

"Aneurysms with maximal length <5mm has a 42.96% FPR on TOF-MRA scans" https://pubmed.ncbi.nlm.nih.gov/32881975/

Aneurysms in relation to their size

Aneurysms in relation to their size

Most likely, I think we can aim to see the biggest improvement in segmentation performance for aneurysms in the range 3mm <= d <= 4mm, followed by d >=4 mm.

For d < 3mm or d < 2mm, we start to reach the limit of the TOF-MRA modality

Diameter	Dice Score [UIA Segmentation]	Support
d < 3mm	0.1767	8
3mm <= d < 4mm	0.5048	6
d >= 4mm	0.7480	6

