Università degli Studi di Roma "La Sapienza" Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corsi di laurea in Ingegneria Informatica e Automatica

Esame scritto di Fisica

Roma, 11.09.2018

Risolvete, prima analiticamente poi numericamente, gli esercizi seguenti.

- 1. A un blocco di massa m viene fornita una velocità iniziale v_0 variabile e viene fatto strisciare lungo un tavolo orizzontale con il quale ha un coefficiente di attrito dinamico μ . Si misura che dopo un tempo t_1 =2 s, il blocco percorre la lunghezza L=1,5 m prima di cadere dal bordo. Determinare l'intervallo di valori di μ per i quali tale moto è permesso. Nel caso di massimo valore permesso di μ , dato il lavoro della forza di attrito £=-2 J, trovare la massa m. (considerare le dimensioni del blocco trascurabili rispetto al tavolo).
- 2. In un recipiente cilindrico di sezione $A=800 \text{ cm}^2$, poggiato su un tavolo orizzontale e riempito di acqua, è tenuto ancorato sul fondo un corpo di massa m=0.6 kg e densità $\rho_c=230\text{kg/m}^3$, totalmente immerso nell'acqua. Si chiede di quale valore Δh scenderà il livello del pelo libero dell'acqua nel recipiente se si lascia libero il corpo di venire a galleggiare in superficie.
- 3. Una sbarra di lunghezza L e massa M è libera di ruotare con velocità angolare ω , senza attrito in un piano, attorno a un asse ortogonale passante per un suo estremo. Una palla di massa m, può essere posizionata da ferma a una distanza r < L dall'asse in modo da essere colpita dalla sbarra in un urto elastico. Trovare la distanza r_0 di posizionamento tale che dopo l'urto la sbarra si fermi. Qual è il valore massimo del rapporto tra le masse M/m affinché il moto descritto sia realizzabile? In quest'ultimo caso, trovare la velocità v^* della pallina subito dopo l'urto.
- 4. E' dato un filo indefinito rettilineo percorso da corrente I_f =3 A. Una spira quadrata di lato a e resistenza R=5 m Ω è disposta complanare al filo con due suoi lati, paralleli al filo. La spira viene fatta allontanare sullo stesso piano, in direzione ortogonale al filo, con velocità v=30 m/s. Trovare la corrente I_s che scorre nella spira nell'istante t^* in cui il lato più vicino al filo si trova a distanza $r(t^*)$ =3a

Rispondete, con essenzialità e correttezza, alle seguenti domande

- 1. Per un gas perfetto, ricavare la relazione tra C_p e C_v e la variazione di entropia tra due stati A e B
- 2. Ricavare partendo dalla legge di Ampère, la legge di Ampère-Maxwell, in forma differenziale e in forma integrale. Dimostrare l'uguaglianza tra la corrente di conduzione e la corrente di spostamento nel caso di un condensatore piano che si sta caricando