Grupos e Corpos

Prof. Lucas Calixto

Aula 7 - Os teoremas de Sylow

Ideia: reciproca do teorema de Lagrange para grupos satisfazendo certas condições

Teorema (Cauchy): Se p (primo) divide |G|, então G contem subgrupo de ordem p

Prova: Indução sobre n=|G|. Se $n=p\Rightarrow G$ é o subgrupo que queremos

Suponha que todo grupo de ordem k < ntal que $p \mid k$ admite subgrupo de ordem p

Equação de classe $\Rightarrow |G| = |Z(G)| + \sum_{i=1}^{l} [G:C(x_i)]$. Lembrem: para $x \in G$, temos que $C(x) = \{g \in G \mid gx = xg\} = \text{centralizador de } x$

- Se $\exists i$ tal que $p \mid |C(x_i)| \Rightarrow$ resultado segue por indução em $|C(x_i)|$
- Se $\nexists i$ tal que $p \mid |C(x_i)|$

$$|G| = |C(x_i)|[G:C(x_i)] \Rightarrow p \mid [G:C(x_i)] \ \forall i \Rightarrow p \mid |Z(G)|$$

$$\mathrm{TFGAF} \Rightarrow Z(G) \cong \mathbb{Z}_{p_1^{r_1}} \times \cdots \times \mathbb{Z}_{p_t^{r_t}} \Rightarrow \exists \ i \ \mathrm{tal} \ \mathrm{que} \ p \mid |\mathbb{Z}_{p_i^{r_i}}| \Rightarrow \mathbb{Z}_{p_i^{r_i}} = \mathbb{Z}_{p^{r_i}}$$

Logo, $\langle p^{r_i-1} \rangle \leq \mathbb{Z}_{p^{r_i}}$ dá um subgrupo de G cuja ordem é p

 ${\cal O}$ próximo resultado generaliza o Lema 2 da Aula 5 para grupos finitos gerais

Corolário: Um grupo finito G é um p-grupo $\Leftrightarrow |G| = p^n$

Prova: (⇐) Óbvia

 (\Rightarrow) Suponha qprimo, $q \neq p,$ eqdivide |G|

Teorema de Cauchy $\Rightarrow \exists~H \leq G,\, |H|=q \Rightarrow |h|=q, ~\forall~h \in H \Rightarrow G$ não é p-grupo

Exemplo: $|A_5| = 5!/2 = 60 = 2^2 \cdot 3 \cdot 5 \Rightarrow A_5$ admite subgrupos de ordem 2, 3 e 5

Primeiro Teorema de (1ºTS)

Teorema (1ºTS): Se p^r (primo) divide |G|, então G contem subgrupo de ordem p^r

Prova: Indução sobre n = |G|. Se $n = p \Rightarrow G$ é o subgrupo que queremos

Suponha que todo grupo de ordem k < ntal que $p^r \mid k$ admite subgrupo de ordem p^r

$$|G| = |Z(G)| + \sum_{i=1}^{l} [G:C(x_i)]$$

- $\exists i$ tal que $p \nmid [G:C(x_i)] \Rightarrow p^r \mid |C(x_i)|$ resultado segue por indução em $|C(x_i)|$
- $p\mid [G:C(x_i)]|\ \forall i\Rightarrow p\mid |Z(G)|.$ Teorema de Cauchy $\Rightarrow Z(G)$ tem elemento g de ordem p. Seja $N=\langle g\rangle\leq Z(G)$

$$N \subset Z(G) \Rightarrow N \lhd G \in |G/N| = p^{r-1}$$

Indução $\Rightarrow G/N$ possui subgrupo \bar{H} de ordem p^{r-1}

Teorema de correspondência $\Rightarrow \bar{H} = H/N$, onde $H \leq G$ e $N \subset H$

$$|H| = p^r \text{ (por que?)}$$

Considere $\mathcal{S}=\{K\leq G\}.$ Para $H\leq G,$ temos que Hage em \mathcal{S} via conjugação

$$H \times S \to S$$
, $h \cdot K = hKh^{-1}$ (nessa aula a ação será denotada por ·)

Defina $N(H) = \{g \in G \mid gHg^{-1} = H\} = \text{normalizador de } H \text{ em } G$

Exercício: Prove que N(H) é o maior subgrupo de G tal que $H \triangleleft N(H)$

Um p-subgrupo de G que é maximal no conjunto dos p-subgrupos de G é chamado um p-subgrupo de Sylow. Defina $\mathrm{Syl}_p(G) = \{P \leq G \mid P \text{ é } p\text{-subgrupo de Sylow}\} \subset \mathcal{S}$

Pelo Corolário do slide 3, $P \in \operatorname{Syl}_p \Leftrightarrow |P| = p^l$ para algum l

Lema 1: Seja
$$|G|=p^rm$$
 com $mdc(p,m)=1.$ Então $\mathrm{Syl}_p(G)=\{P\leq G\mid |P|=p^r\}$

Prova: (\supset) Suponha $|P|=p^r$ e tome $Q\in \mathrm{Syl}_p(G)$ tal que $P\subset Q$. Então, $|Q|=p^l$

$$p^l$$
divide $|G|=p^rm$ e $mdc(p,m)=1 \Rightarrow p^l \leq p^r \Rightarrow p^l=p^r \Rightarrow Q=P$

(C) Seja $P \in \operatorname{Syl}_p(G)$. Se $|P| = p^l < p^r \Rightarrow |G/P| = p^{r-l}m$. (1ºTS) + (teorema de correspondência) $\Rightarrow \exists \ Q \leq G$ tal que $|Q/P| = p^{r-l} > 1 \Rightarrow P \subsetneq Q$

$$p^{r-l} = |Q/P| = |Q|/|P| \Rightarrow |Q| = p^r \Rightarrow Q$$
 é p-subgrupo e $P \subsetneq Q$ (contradição)

Lema 2: Seja $P \in \operatorname{Syl}_p(G)$ e $x \in G$, |x| é potência de p. Se xPx^{-1} , então $x \in P$

Prova: $x \in N(P)$ e $\langle xP \rangle \leq N(P)/P$ é subgrupo cíclico cuja ordem é potência de p

$$\langle xP \rangle = H/P$$
, onde $H \leq N(H)$ e $P \subset H$

$$|\langle xP\rangle|=|H/P|=|H|/|P|\Rightarrow |H|$$
é potência de p

Se
$$P \in \operatorname{Syl}_p(G),$$
 Lema $1 \Rightarrow P = H \Rightarrow H/P = \{e\} \Rightarrow x \in P$

Lema 3: Se $H \times S \to S$ é como no slide anterior $\Rightarrow |O_K| = [H : N(K) \cap H], \ \forall K \in S$

Prova: orbita-estabilizador $\Rightarrow |O_K| = [H:H_K]$, onde H_K é o estabilizador de K

Como $H_K = \{h \in H \mid hKh^{-1} = K\} = H \cap N(K)$ o resultado segue

Suponha que G age em X. Tal ação é dita transitiva se $X = O_x, \forall x \in X$

Seja p primo que divide |G| e considere $\mathrm{Syl}_p(G).$ Note que

$$G\times {\rm Syl}_p(G)\to {\rm Syl}_p(G),\quad g\cdot P=gPg^{-1}$$

é bem definida, pois $P \cong gPg^{-1}$, $\forall g \in G$

 $\mathbf{2^Q}$ Teorema de Sylow ($\mathbf{2^QTS}$): Suponha que p divide |G|. Então, a ação $G \times \operatorname{Syl}_p(G) \to \operatorname{Syl}_p(G)$ por conjugação é transitiva. Equivalentemente, quaisquer dois p-subgrupos de Sylow de G são conjugados um do outro.

Prova: Suponha $|G| = p^r m \text{ com } mdc(p, m) = 1$

Seja
$$P \in \mathrm{Syl}_p(G)$$
. Afirmamos que $G \cdot P = \{P = P_1, P_2, \dots, P_k\} = \mathrm{Syl}_p(G)$

Lema
$$3 \Rightarrow k = |G \cdot P| = [G : N(P)]$$

Lagrange
$$\Rightarrow p^r m = |G| = |N(P)|[G:N(P)] = |N(P)|k$$

$$P \leq N(P) \Rightarrow p^r \text{ divide } |N(P)| \Rightarrow p \nmid k \text{ (pois } mdc(p, m) = 1)$$

Tome
$$Q\in \mathrm{Syl}_p(G)$$
 qualquer, e considere a ação $Q\times G\cdot P\to G\cdot P,\, q\cdot P_i=qP_iq^{-1}$

Lema
$$3 \Rightarrow |Q \cdot P_i| = [Q : N(P_i) \cap Q]$$

Lema 1 + Lagrange
$$\Rightarrow p^r = |Q| = [Q: N(P_i) \cap Q]|N(P_i) \cap Q| \Rightarrow |Q \cdot P_i| = p^{l_i}$$

$$G \cdot P = Q \cdot P_{i_1} \dot{\cup} \cdots \dot{\cup} Q \cdot P_{i_t} \Rightarrow k = |G \cdot P| = p^{l_{i_1}} + \cdots + p^{l_{i_t}}$$

$$p \nmid k \Rightarrow \exists l_{ij} = 0 \Rightarrow Q \cdot P_{i_j} = P_{i_j} \Rightarrow q P_{i_j} q^{-1} = P_{i_j}, \ \forall q \in Q$$

Lema
$$3\Rightarrow Q\subset P_{i_j}\Rightarrow Q=P_{i_j}$$
já que $|Q|=p^r=|P_{i_j}|\Rightarrow Q\in G\cdot P$

Como $Q \in \operatorname{Syl}_p(G)$ foi arbitrário, temos que $\operatorname{Syl}_p(G) = G \cdot P$

 $3^{\underline{o}}$ Teorema de Sylow ($3^{\underline{o}}$ TS) Suponha que p divide |G|. Então,

- \bullet |Syl_p(G)| divide |G|
- $|\operatorname{Syl}_p(G)| \equiv 1 \pmod{p}$

Prova: (1): Seja
$$P \in \operatorname{Syl}_n(G)$$
 e $G \cdot P = \{P = P_1, P_2, \dots, P_k\}$

orbita-estabilizador $\Rightarrow |G \cdot P| = [G : G_P]$ que divide |G|, por Lagrange

$$2^{\underline{o}}TS \Rightarrow |Syl_n(G)| = |G \cdot P| \Rightarrow$$
 afirmação 1

(2): da prova do 2ºTS, temos

$$\operatorname{Syl}_p(G) = G \cdot P = P \cdot P_1 \dot{\cup} \cdots \dot{\cup} P \cdot P_k \Rightarrow |\operatorname{Syl}_p(G)| = p^{l_1} + \cdots + p^{l_k},$$

onde $|P \cdot P_i| = p^{l_i}$

Lema 2
$$\Rightarrow$$
 $|P \cdot P_i| = 1 \Leftrightarrow i = 1 \Rightarrow |\text{Syl}_p(G)| \equiv 1 \pmod{p}$

Corolário: Se $|G|=p^rm$ com mdc(p,m)=1,então $|\mathrm{Syl}_p(G)|$ divide m

Prova: Exercício

Aplicações

Exemplo: Como $|A_5|=60=2^2\cdot 3\cdot 5,\, 1^{\rm o}TS\Rightarrow A_5$ tem subgrupos de ordem 2, 4, 3 e 5

Os p-subgrupos de Sylow de A_5 tem ordem 3,4 e 5

Afirmamos que $|Syl_5(A_5)| = 2$. De fato,

 $3^{0}\mathrm{TS} \Rightarrow |\mathrm{Syl}_{5}(A_{5})| \text{ divide } 12 \text{ e } |\mathrm{Syl}_{5}(A_{5})| \equiv 1 \text{ } (mod \text{ } 5) \Rightarrow |\mathrm{Syl}_{5}(A_{5})| = 1 \text{ ou } 6$

Se $\text{Syl}_5(A_5)=\{P_5\}\Rightarrow P_5\lhd G$ (pois $G\cdot P_5=\{P_5\}$ pelo $2^{\underline{o}}\text{TS}$), o que contradiz o fato de A_5 ser simples

 $Logo, |Syl_5(A_5)| = 6$

Teorema: Sejam p < q primos tais que |G| = pq. Então,

- $oldsymbol{0}$ G possui um único subgrupo Q cuja ordem é q
- $oldsymbol{Q}$ é normal em G (em particular, G não é simples)
- \bullet se $q \not\equiv 1 \pmod{p}$, então G é cíclico

Prova:
$$1^{\circ}TS \Rightarrow \exists P, Q \leq G \text{ tal que } |P| = p \text{ e } |Q| = q$$

$$3^{\rm o}{\rm TS}\Rightarrow |{\rm Syl_q(G)}|$$
divide p e $|{\rm Syl_q(G)}|=1+kq,$ para algum $k\in\mathbb{Z}$

$$q > p \Rightarrow k = 0 \Rightarrow \mathrm{Syl_q}(G) = \{H\}$$

$$2^{\underline{o}}\mathrm{TS} \Rightarrow G \cdot Q = \{Q\} \Rightarrow Q \lhd G$$

$$3^{\underline{o}}\mathrm{TS}\Rightarrow |\mathrm{Syl_p}(\mathbf{G})|$$
divide q e $|\mathrm{Syl_p}(\mathbf{G})|=1+kp,$ para algum $k\in\mathbb{Z}\Rightarrow 1+kp=1$ ou q

$$q \not\equiv 1 \pmod{p} \Rightarrow 1 + kp = 1 \Rightarrow k = 0 \Rightarrow \operatorname{Syl_p(G)} = \{P\}$$

$$2^{\underline{o}}TS \Rightarrow G \cdot P = \{P\} \Rightarrow P \triangleleft G$$

Exercício:

- (1) Se $H \triangleleft G$, $K \triangleleft G$ e $H \cap K = \{e\}$, então hk = kh, $\forall h \in H$, $k \in K$
- (2) Prove que P,Q no teorema satisfazem os critérios para que $G\cong P\times Q$

Logo,
$$G\cong P\times Q\cong \mathbb{Z}_p\times \mathbb{Z}_q\cong \mathbb{Z}_{pq}\Rightarrow G$$
é cíclico

Exemplo: Se |G|=15, então G é cíclico. De fato, $|G|=3\cdot 5$ e $5\not\equiv 1\pmod 3$

Exemplo: Suponha que $|G| = 99 = 3^2 \cdot 11$

$$3^{\circ}TS \Rightarrow |Syl_3(G)| = 1 + 3k$$
, e $|Syl_3(G)|$ divide $11 \Rightarrow |Syl_3(G)| = 1$

Analogamente, $|Syl_{11}(G)| = 1$

 $2^{\underline{o}}TS \Rightarrow P_3 \in P_{11}$ são normais em G

$$|P_3|=9=3^2\Rightarrow P_3$$
 é abeliano $\Rightarrow P_3\cong\mathbb{Z}_9$ ou $P_3\cong\mathbb{Z}_3\times\mathbb{Z}_3$. Também $P_{11}\cong\mathbb{Z}_{11}$

Exercício acima $\Rightarrow G \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{11}$ ou $G \cong \mathbb{Z}_9 \times \mathbb{Z}_{11}$

Checando simplicidade

Exemplo: Se $|G| = 20 = 2^2 \cdot 5$, então G não é simples

$$3^{\underline{o}}TS \Rightarrow |Syl_5(G)| \equiv 1 \pmod{5} \text{ e divide } 4 \Rightarrow |Syl_5(G)| = 1 \Rightarrow P_5 \lhd G$$

Exemplo: Se $|G| = p^r$, então G não é simples

Nesse caso Z(G) é não trivial $\Rightarrow G$ não é simples

Exemplo: Se $|G| = 56 = 2^3 \cdot 7$, então G não é simples

$$3^{\mathbf{o}}\mathrm{TS}\Rightarrow |\mathrm{Syl}_7(G)|=1$$
ou 8, e $|\mathrm{Syl}_2(G)|=1$ ou 7. Se $|\mathrm{Syl}_7(G)|=1\Rightarrow \mathrm{OK}$

Suponha
$$\operatorname{Syl}_7(G) = \{P_1, \dots, P_8\}$$

$$P_i\cong\mathbb{Z}_7$$
 para todo $i\Rightarrow P_i\cap P_j=\{e\}\Rightarrow$ os P_i 's nos dão $8\cdot 6=48$ elementos

Se
$$Q \in \text{Syl}_2(G) \Rightarrow Q \cap P_j = \{e\}$$
 para todo i

Isso já nós dá os
$$48+7+1=56$$
 elementos de $G\Rightarrow \mathrm{Syl}_2(G)=\{Q\}\Rightarrow Q\lhd G$

Lema: Se $H, K \leq G$, então $|HK| = \frac{|H||K|}{|H \cap K|}$

Prova: Sejam $H = \{h_i \mid i \in I\}, K = \{k_j \mid j \in J\} \in HK = \{h_i k_j \mid i \in I, j \in J\}$

Contando as repetições de $h_{i_1}k_{j_1}$ em HK:

$$h_{i_1}k_{j_1} = h_{i_2}k_{j_2} \Leftrightarrow a = h_{i_2}^{-1}h_{i_1} = k_{j_2}k_{j_1}^{-1} \in H \cap K$$

Logo, repetições de $h_{i_1}k_{j_1} \leq |H \cap K|$

Reciprocamente, cada $b \in H \cap K$ nos dá uma repetição de $h_{i_1}k_{i_1}$. De fato, se $h_{i_2} = h_{i_1}b^{-1}$ e $k_{j_2} = bk_{i_1}$, então $h_{i_1}k_{j_1} = h_{i_2}k_{j_2}$

Além disso, $h_{i_2} = h_{i_1}b^{-1}$ e $h_{i_2} = h_{i_1}a^{-1} \Leftrightarrow a = b \Rightarrow$ elementos diferentes de $H \cap K$ nos dão repetições diferentes de $h_{i_1}k_{j_1}$

Logo, $|H \cap K| \leq$ repetições de $h_{i_1} k_{j_1}$

Assim, cada $h_i k_j$ aparece exatamente $|H \cap K|$ vezes em HK

Portanto, $|HK| = |H||K|/|H \cap K|$

Exemplo: Se $|G| = 48 = 2^4 \cdot 3$, então G não é simples

$$3^{\underline{o}}TS \Rightarrow |Syl_2(G)| = 1$$
 ou 3. Se é 1, OK

Suponha $|\text{Syl}_2(G)| = 3$ e tome $H, K \in \text{Syl}_2(G)$ (ambos com ordem $2^4 = 16$)

Afirmamos que $H \cap K \triangleleft G$

$$H\cap K \leq H, K \Rightarrow |H\cap K| = 1, 2, 4, 8, 16$$
 (16 não pode pois $H \neq K)$

$$|H\cap K|\leq 4\Rightarrow |HK|=\frac{16\cdot 16}{|H\cap K|}=64\geq 48$$
 (contradição)

Assim, $|H \cap K| = 8 \Rightarrow H \cap K \lhd H$ e $H \cap K \lhd K$ (pois são subgrupos de índice 2)

$$H \neq K \Rightarrow H$$
 e K estão propriamente contidos no normalizador $N(H \cap K)$

Logo,
$$16 = |H| = |K|$$
 divide $|N(H \cap K)|$

$$|N(H \cap K)| > 16$$

 $|N(H \cap K)|$ divide 48

$$\Rightarrow |N(H \cap K)| = 48 \Rightarrow N(H \cap K) = G \Rightarrow H \cap K \triangleleft G$$

Exercícios:

 $1,\, 2,\, 3,\, 4,\, 5,\, 7,\, 8,\, 10,\, 11,\, 12,\, 13,\, 14,\, 18,\, 22,\, 23,\, 26$