- 1(a) $M = K \cdot \frac{1}{P}$, where K is a real number
 - (b) A finction of the firm fix = mx+b, where in and b are real numbers
 - (c) No, because of the $x^{-1} = \frac{1}{x}$ term
 - (d) When b=0 (proportional = line through origin)
 - (e) linear: y=ax+b,b+0 proportional: y=ax

 valio output not constant valio output is constant
 input input input
 - (f) $\frac{x}{\sqrt{3}}$ $\frac{3}{\sqrt{5}}$ $\frac{5}{\sqrt{5}}$ $\frac{5}{\sqrt{5}}$ $\frac{5}{\sqrt{5}}$ $\frac{5}{\sqrt{5}}$ $\frac{5}{\sqrt{5}}$ $\frac{1}{\sqrt{5}}$ $\frac{7}{\sqrt{5}}$ $\frac{9}{\sqrt{5}}$ $\frac{11}{\sqrt{5}}$ $\frac{13}{\sqrt{5}}$ $\frac{13}{\sqrt{5}}$ $\frac{11}{\sqrt{5}}$ $\frac{11}{$
- 2(a) r<0 (graphs on page 52)

X4 increases fastu

(c) y = x $\sqrt{\frac{3}{x}} = x^{1/3}$

Ux in creaks fresh

rage 2]

x decreases faster

3. 1986... 25,309 _ t=0 (population in thousands)
1996... 28,847... t=10

slope = 28,847 -25,309

= 353,8

P(t) -25,309 = 353.8(t-0)

so P(+)= 25,309 + 353,8+

mediction for 2006: P(20) = 32,385 (higher than actual pypulation)

lf. Switch axes

slope = $\frac{100-0}{212-32} = \frac{100}{180} = \frac{5}{9}$

 $C - O = \frac{5}{9}(F - 32)$ $C = \frac{5}{9}(F - 32)$

point-slope equations

5.
$$BMI = \frac{M}{h^2} \frac{[kg]}{[m^2]} \frac{2,20426[lb]}{(\frac{400}{2,54})^2 [in^2]}$$

= 0,0014221 $\frac{[lb]}{[m^2]}$

So if we want to have the same value in BMI numbers, then we need to multiply BMI by 1/0.014221 = 703.18

page 3

Thus:
$$BMI = \frac{m}{k^2}$$
 [kg]

6.
$$BMI_A = \frac{1}{N^2}$$

 $BMI_B = \frac{M}{(1.05h)^2} = \frac{1}{1.05^2} \cdot \frac{M}{N^2} = 0.907 BMI_A$

$$BMI_{C} = \frac{0.95m}{b^{2}} = 0.95 \cdot BMI_{A}$$

SO B has lever BMI

7. (a)
$$T(B) = a \cdot \sqrt[3]{B}$$
 so $T(2B) = a \cdot \sqrt[3]{2B} = \sqrt[3]{2} \cdot a \sqrt[3]{B} \approx 1.26 T(B)$

So of the budy mass cloubles, the blood circulation time increases by a factor of 1.26 (ie, by 26%)

(b)
$$T(B) = a.^{3}\sqrt{B} \rightarrow 152 = a.^{3}\sqrt{5400}$$

 $50 a = \frac{152}{3\sqrt{5400}} \approx 8.66$
 $50 T(B) = 8.66.^{3}\sqrt{B}$

(c)
$$T(0.1) = 8.66 \cdot \sqrt[3]{0.1} \approx 4.02 \text{ smaller}$$

 $T(38,000) = 8.66 \cdot \sqrt[3]{38,000} \approx 291.15 \text{ smaller}$
Compared to example 1.1.13

8. (a) Surface onea is proportional to volume varied to fue power of 213 (S & V213)

When a baby grows to twice her size them
the volume of her body (hence the mass)
increases eight-field. The strength of a borne
is proportional to the cross-sectional area,
and thus quadruples as the baby grows to twice
her size. To companyate for the increase in
mass, the borne thickness increases by more
than a factor of 2 (precisely by a factor of
2,83)

(c) Radiocarban dating can be used to date objects that one mot older than about 57,000 years

(d) C(t) = C(0) ext C(0) = initial amount of 40 K half hips: 0.5 C(0) = C(0) ex. 1.248.109

1,248,100 K= 200,5

 $V = \frac{440.5}{1.248.409} \approx -0.555406.40^{-9}$

50 CIt)=Clo) e-0,555406.10-9, t

0.9645 C/6) = C/6) e 0.555406.109 t

 $t = \frac{lm(0.9645)}{-0.555406.10^{-9}} \approx 6.5079.10^{7}$

≈ 65,079,000 years

9. ms(t)= m24+18t = 1.8t+3.18

lnT(t)= ln24-0.8t ~ -0.8t+3.18

(negative + might, or might not make sence, depanding m context)

10. min = -1 amplitude = 5 max = 9 period = 2 average = 4 phase = 0

y=sin (4(++#)) ... sine graph
compressed by a factor of 4
then shifted My units to the left

mir = -1 max=1 average = 0

period = 2# = 1/2

shift # 15 the left (or: phase = - 17) amplitude = 1

(b) $y = \cos(\frac{1}{2}) + 5...$

Stretch by a factor of 2 then up 5 units

min = 4 max = 6

period = 21/1/2 = 4TT

average = 5

shift (phate) = 0

amplified = 1

humanbelly ... sine graph, compressed his a (c) $y = -2\sin(3t) + 4$ factor of 3, expanded ruth cally bg a factor of 2, reflected across

X-axis, mured up 4 units

thin = 2, max = 6, among = 4, amplifule = 2 phase =0, period = 21 [3

period is 12 $\frac{2\pi}{\alpha} = 12 - 0 = \frac{2\pi}{12} = \frac{\pi}{6}$

use cosine: cos(at) - cos(#t)

(average is $\frac{2+46}{2}=3.3$)

