Super-Cosmology

15/10/2021

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Inflating spacetime

Simplest incarnation: a slowly rolling scalar field in FRW spacetime, $ds^2=dt^2-a(t)^2dx^2$

$$\ddot{\Phi} + 3H\dot{\Phi} + V'(\Phi) = 0$$

$$H \equiv \frac{\dot{a}}{a} = \left(\frac{\rho_{\Phi}}{3M_P^2}\right)^{1/2} \qquad \text{with} \qquad P_{\Phi} = \frac{1}{2}\dot{\Phi}^2 + V(\Phi)$$

$$P_{\Phi} = \frac{1}{2}\dot{\Phi}^2 - V(\Phi)$$

When inflation ends, reheating begins

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

The horizon problem

Credit: Héctor Ramírez

 $\Delta \, T/\, T \sim 10^{-5}$ in the CMB

Without inflation

1. No-Scale

3. Heavy gravitinos

4. Preheating

The primordial fluctuations

Quantum fluctuations in Φ , g, are strechted by expansion

Y. Akrami et al. [Planck], Astron. Astrophys. 641 (2020) A10

$$\mathcal{P}_{\mathcal{R}} = \frac{H_*^4}{4\pi^2 \dot{\Phi}_*^2} \left(\frac{k}{aH}\right)^{n_s - 1}$$

$$\mathcal{P}_{\mathcal{T}} = \frac{2H_*^2}{\pi^2} \left(\frac{k}{aH}\right)^{n_T}$$

1. No-Scale

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

The primordial fluctuations

Quantum fluctuations in Φ , g, are strechted by expansion

2. Flipped cosmology

3. Heavy gravitino

4. Preheating

\mathbb{R}^2 inflation

Non-minimal GR (singularity-free cosmology)

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left(-R + \frac{R^2}{6m^2} \right)$$

Scalar is hidden! ($\tilde{g}
ightarrow \Omega(\phi) g$)

$$S = \frac{1}{2} \int d^4 x \sqrt{-\tilde{g}} \left[-\tilde{R} + (\partial_{\mu} \phi)^2 - \frac{3}{2} m^2 \left(1 - e^{\sqrt{2/3}\phi} \right)^2 \right]$$

- $\mathcal{P}_{\mathcal{R}}$ requires $m \simeq 10^{-5}$. What is ϕ then?
- Inflaton traverses trans-Planckian distances: radiative corrections

A cry for supersymmetry?

2. Flipped cosmology

3. Heavy gravitino

4. Preheating

The only good (super)symmetries are local

- igspace Supersymmetry $o \phi$ can be light:
- + ----- = (
- - Couplings determined by just 3 functions!
 - The real Kähler potential $K(\Phi, ar{\Phi})$
 - The gauge kinetic function $f_{ab}(\Phi)$
 - The holomorphic superpotential $\mathit{W}(\Phi)$
 - 2 Problems for inflation

$$V = e^{K} \left[\left(K^{-1} \right)_{i}^{j} (K^{i} W + W^{i}) (K_{j} \bar{W} + \bar{W}_{j}) - 3|W|^{2} \right]$$
too steep
$$-\mathcal{O}(m_{2}^{2} \log M)$$

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

No-Scale Inflation

$$K = -3 \ln \left[T + \bar{T} - \frac{1}{3} \sum_{i} |\phi_{i}|^{2} \right] + \sum_{a} \frac{|\varphi_{a}|^{2}}{(T + \bar{T})^{n_{a}}}$$

string orbifold compactification

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

No-Scale Inflation

$$K = -3 \ln \left[T + \bar{T} - \frac{1}{3} \sum_{i} |\phi_{i}|^{2} \right] + \sum_{a} \frac{|\varphi_{a}|^{2}}{(T + \bar{T})^{n_{a}}}$$

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

No-Scale Inflation

$$K = -3 \ln \left[T + \bar{T} - \frac{1}{3} \sum_{i} |\phi_{i}|^{2} \right] + \sum_{a} \frac{|\varphi_{a}|^{2}}{(T + \bar{T})^{n_{a}}}$$

$$W = \sqrt{3}m\phi(T - 1/2)$$

$$Re T = \frac{1}{2} e^{\sqrt{2/3}x}$$

Pure $SU(N,1)/SU(N) \times U(1)$

need for moduli stabilization

- S. Cecotti, PLB 190 (1987), 86
- J. Ellis, D. Nanopoulos, K. Olive, PRL 111 (2013) 111301

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

No-Scale Inflation

$$K = -3 \ln \left[T + \bar{T} - \frac{1}{3} \sum_{i} |\phi_{i}|^{2} \right] + \sum_{a} \frac{|\varphi_{a}|^{2}}{(T + \bar{T})^{n_{a}}}$$

$$W = \sqrt{3}m\varphi(T - 1/2)$$
 Re
$$T = \frac{1}{2}e^{\sqrt{2/3}x} + \frac{i}{\sqrt{6}}y$$

J. Ellis, MG, D. Nanopoulos and K. Olive, JCAP 08 (2014), 044; JCAP 01 (2015), 010

1. No-Scale

2. Flipped cosmology

3. Heavy gravitino

4. Preheating

String-inspired GUT embeddings: flipped SU(5) \times U(1)

'Regular' SU(5)	Flipped SU(5)×U(1)		
$egin{array}{ll} \Psi_i = 10_i & \ni \left\{u^c, Q, e^c ight\}_i \ \Phi_i = ar{5}_i & \ni \left\{d^c, L ight\}_i \ u^c_i = 1_i \ onumber \Sigma = 24 \ h = 5 \ ar{h} = ar{5} \end{array}$	$egin{array}{lll} F_i = ({f 10},1)_i & & \ni & \left\{ d^c, Q, u^c ight\}_i , \ ar{f}_i = (ar{f 5},-3)_i & & \ni & \left\{ u^c, L ight\}_i , \ \ell^c_i = ({f 1},5)_i & & \ni & \left\{ e^c ight\}_i , \ H = ({f 10},1) , \ ar{H} = (ar{f 10},-1) , \ h = ({f 5},-2) , \ ar{h} = (ar{f 5},2) \end{array}$		
$SU(5) \xrightarrow{\Sigma} SU(3)_C \times SU(2)_L \times U(1)_Y$ $\xrightarrow{h} SU(3)_C \times U(1)_{EM}$ $Y = T_{24} = \frac{1}{\sqrt{60}} \operatorname{diag}(2, 2, 2, -3, -3)$	$SU(5) \times U(1)_X \xrightarrow{H} SU(3)_C \times SU(2)_L \times U(1)_Y$ $\xrightarrow{h} SU(3)_C \times U(1)_{EM}$ $Y = \frac{1}{\sqrt{15}} T_{24} + \frac{1}{5} Q_X$		

S. Barr, PLB 112 (1982) 219; J. Derendinger, J. Kim, D. Nanopoulos, PLB 139 (1984) 170 I. Antoniadis, J. Ellis, J. Hagelin, D. Nanopoulos, PLB 208 (1988) 209

1. No-Scale

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Flipped phenomenology

Superpotential

$$W = \lambda_1^{ij} F_i F_j h + \lambda_2^{ij} F_i \bar{f}_j \bar{h} + \lambda_3^{ij} \bar{f}_i \ell_j^c h + \lambda_4 H H h + \lambda_5 \bar{H} \bar{H} \bar{h}$$
$$+ \lambda_6^{ia} F_i \bar{H} \phi_a + \lambda_7^a h \bar{h} \phi_a + \lambda_8^{abc} \phi_a \phi_b \phi_c + \mu^{ab} \phi_a \phi_b$$

(Partial) Yukawa unification / μ -term

$$\begin{split} W_{\text{GHT}} &= y_u h_u Q \bar{u} + y_\nu h_u L \nu^c - y_d h_d Q \bar{d} - y_e h_d L \bar{e} + \mu h_u h_d \\ & \qquad \qquad \uparrow \\ & \lambda_2 @ M_{\text{GUT}} \\ \end{split}$$

 \mathbb{Z}_2 in H: doublet-triplet Higgs splitting

$$HHh \xrightarrow{\mathcal{S} \cup \mathcal{T}} \langle \nu_H^c \rangle d_H^c h_3$$
; not for $h_{u,d}$

2. Flipped cosmology

3. Heavy gravitino

4. Preheating

Flipped No-Scale Inflation

Strongly segregated inflaton sector, $\lambda_8^{0ij} \lesssim \mu^{ij}$

$$V \,=\, \frac{3}{4} m^2 \left(1 - e^{-\sqrt{2/3}s}\right)^2 + \frac{81}{16} \zeta m e^{\sqrt{2/3}s}\,, \qquad \zeta \,\,=\,\, \sum_i \mu_{ii}^{-1} (\lambda_8^{00i})^2 + \text{h.c.}$$

2. Flipped cosmology

3. Heavy gravitino

4. Preheating

Flipped No-Scale Inflation

Random parameter scan $\mu^{ij}\sim (0.1-0.8)M_{\rm GUT}$, $\lambda_8^{0ij},\lambda_8^{ijk}\sim \pm (0.1-1)$

Inflation OK, but mixing during reheating

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

The GUT phase transition

 $SU(5) \times U(1)$ must be broken after inflation

$$V = \left(\frac{3g_5^2}{10} + \frac{g_X^2}{80}\right) \left(|\tilde{\nu}_H^c|^2 - |\tilde{\nu}_{\tilde{H}}^c|^2\right)^2 + \frac{1}{8}m^2e^{\sqrt{2/3}s}|\tilde{\nu}_{\tilde{H}}^c|^2 + \cdots \right)$$
GUT broken along flat-direction
$$\langle \tilde{\nu}_H^c \rangle = \langle \tilde{\nu}_{\tilde{U}}^c \rangle \equiv \Phi$$

2. Flipped cosmology

4. Preheating

The GUT phase transition

 $SU(5) \times U(1)$ must be broken after inflation

$$V = \left(\frac{3g_5^2}{10} + \frac{g_X^2}{80}\right) \left(|\tilde{\nu}_H^c|^2 - |\tilde{\nu}_{\bar{H}}^c|^2\right)^2 + \frac{1}{8}m^2e^{\sqrt{2/3}s}|\tilde{\nu}_{\bar{H}}^c|^2 + \cdots \right)$$

$$\text{GUT broken along flat-direction}$$

$$\langle \tilde{\nu}_H^c \rangle = \langle \tilde{\nu}_{\bar{\nu}}^c \rangle \equiv \Phi$$

Asymptotic freedom of SU(5) takes care of this!

$$g^2(\Lambda_c)(C_c - C_1 - C_2) \simeq 4$$

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Flipped reheating

Unbroken SU(5) \times U(1):

$$\Gamma(\phi_0 \to F_i \overline{H}) \simeq 10 \times \frac{|\lambda_6^{i0}|^2}{8\pi} \left(1 - \frac{\Phi^2}{m^2}\right) m$$

Broken SU(5) \times U(1):

$$\Gamma(\phi_0 \to \nu_i^c \Phi) \simeq \frac{|\lambda_6^{i0}|^2}{16\pi} m$$

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Planck TT, TE, EE + lowE + lensing + BK15 ($\blacksquare 1\sigma$, $\blacksquare 2\sigma$)

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Flipped gravitinos

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

λ_6 also controls neutrino masses...

$$m_{
u_i} \simeq rac{m \, |\lambda_2^{ii} \langle ar{h}_0
angle|^2}{|\lambda_6^{ii} \langle ilde{
u}_{ar{H}}^c
angle|^2} \simeq rac{m \, m_{u,c,t}^2}{|\lambda_6^{i0}|^2 M_{ ext{GUT}}^2}$$

Random parameter scan $10^{-4} < |\lambda_6^{10}| < 1$

	Normal Ordering		Inverted Ordering	
	Best fit	3σ range	Best fit	3σ range
$\Delta m_{21}^2 \left[10^{-5} \text{ eV}^2 \right]$	7.39	6.79 - 8.01	7.39	6.79 - 8.01
$\Delta m_{3\ell}^2 [10^{-3} \text{eV}^2]$	2.525	2.431 - 2.622	-2.512	-(2.413-2.606)

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

 λ_6 also controls neutrino masses...

J. Ellis, MG, N. Nagata, D. Nanopoulos, K. Olive, JCAP 01 (2020), 035; JHEP 05 (2020), 021

2. Flipped cosmology

4. Preheating

... the dark matter abundance ...

1. No-Scale

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

... the matter-antimatter asymmetry ...

Out of equilibrium decay of ν_i^c

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

... and proton decay

$$\begin{split} \frac{\Gamma(p \to \pi^0 \mu^+)_{\text{flipped}}}{\Gamma(p \to \pi^0 e^+)_{\text{flipped}}} \\ &= \frac{\left(\langle \pi^0 | (ud)_R u_L | p \rangle_{\mu}\right)^2 |(U_l)_{21}|^2}{\left(\langle \pi^0 | (ud)_R u_L | p \rangle_e\right)^2 |(U_l)_{11}|^2} \end{split}$$

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

No-Scale susy breaking

Untwisted gravity mediation

$$K \ = \ -3 \ln \left[T + \, \overline{T} - \frac{1}{3} \sum_i |\phi_i|^2 - \frac{1}{3} |z|^2 + \frac{|z|^4}{\Lambda^2} \right]$$

Twisted gravity mediation

$$K \; = \; -3 \ln \left[\, T + \, \overline{T} - \frac{1}{3} \, \sum_i |\phi_i|^2 \, \right] + |z|^2 - \frac{|z|^4}{\Lambda^2} \label{eq:K}$$

Featuring T-inflation

$$W \, = \, \sqrt{3} m \phi (\mathit{T} - 1/2) + \mu^2 (z + \mathit{b})$$

$$\langle z \rangle \propto \Lambda^2 \,, \quad m_{3/2} \, \simeq \, \frac{\mu^2}{\sqrt{3} M_P} \sim {\rm EeV}$$

- J. Ellis, MG, D. V. Nanopoulos, K. A. Olive, JCAP 10 (2015), 003
- E. Dudas, T. Gherghetta, Y. Mambrini, K. A. Olive, PRD 96 (2017), 115032

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

High scale susy breaking

$$M_{
m susy} = rac{F}{\Lambda_{
m mess}} \,, \quad \Lambda_{
m mess} \geq M_{
m susy} \,.$$

$$m_{3/2} = \frac{F}{\sqrt{3}M_P} \gtrsim 0.1 \,\mathrm{EeV}$$

E. Dudas, Y. Mambrini, K. Olive, PRL 119 (2017), 051801

K. Benakli, Y. Chen, E. Dudas, Y. Mambrini, PRD 95 (2017), 095002

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Out-of-equilibrium Dark Matter Production

MG and M. Amin, PRD 98 (2018), 103504

1. No-Scale

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

The phase space distribution for $\phi o \bar{\psi} \psi$

$$n_{\psi} = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} f_{\psi}(p,t)$$

1. No-Scale

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

A heavy gravitino

Leading-order universal Goldstino-matter interactions ($F = \sqrt{3} m_{3/2} M_P$):

$$\mathcal{L}_{2G} = \frac{i}{2F^2} \left(G \sigma^{\mu} \partial^{\nu} \bar{G} - \partial^{\nu} G \sigma^{\mu} \bar{G} \right) T_{\mu\nu}$$

$$(F^{\lambda a}_{\mu}F^{a}_{\nu\lambda})$$
 $\langle \sigma v \rangle_{\mathrm{NT}} = \frac{154m_{\phi}^{6}}{5(64)^{2}F^{4}}$

$$\langle \sigma v \rangle_{\rm T} = \frac{6400\pi^{11} T^6}{(945)^2 \zeta(3)^2 F}$$

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

A heavy gravitino

2. Flipped cosmology

4. Preheating

Freeze-in from preheating

Sensitivity to early times = sensitivity to non-perturbative dynamics

Scalar preheating

$$\mathcal{L} = \frac{1}{2}\sigma\phi^2\chi^2, \qquad \Gamma_{\chi} = \frac{y_{\chi}^2}{8\pi}m_{\chi}$$

MG, K. Kaneta, Y. Mambrini, K. Olive, S. Verner, arXiv: 2109.13280 [hep-ph]

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

2. Flipped cosmology

4. Preheating

Freeze-in from preheating

Sensitivity to early times = sensitivity to non-perturbative dynamics

Fermion preheating

$$\mathcal{L} \ = \ y \phi \bar{\psi} \psi$$

2. Flipped cosmology

4. Preheating

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Dark matter from fermion preheating

2. Flipped cosmology

3. Heavy gravitinos

4. Preheating

Dark matter from fermion preheating

¡Gracias!