

Vector Visualization

Line Integral Convolution

Scientific Visualization Professor Eric Shaffer

Line Integral Convolution (LIC) Principle

So Far

mostly discrete visualizations (glyphs, streamlines, stream ribbons)

Goal

a dense, pixel-filling, continuous, vector field visualization

Line integral convolution

- highly coherent images along streamlines
- highly contrasting images across streamlines by blurring noise along the streamlines of v

Line Integral Convolution (LIC) Principle

So Far

mostly discrete visualizations (glyphs, streamlines, stream ribbons)

Goal

a dense, pixel-filling, continuous, vector field visualization

Principle

$$T(p) = \frac{\int_{-L}^{L} N(S(p,s))k(s)ds}{\int_{-L}^{L} k(s)ds}$$

gray value at pixel pN = noise texture

- trace a streamline from p upstream and downstream (as usual)
- blend all streamlines, pixel-wise
 - multiplied by a random-grayscale value at p
 - with opacity decreasing (exponentially) on distance-along-streamline from *p*
- identical to blurring noise along the streamlines of v

Understanding Line Integral Convolution (LIC)

LIC: Line Integral Convolution

$$T(p) = \frac{\int_{-L}^{L} N(S(p,s))k(s)ds}{\int_{-L}^{L} k(s)ds}$$
$$k(s) = e^{-s^2}$$

N:noise texture

S(p,s): streamline of seed point P

k(s): weighting or blurring function

L: width of blurring function

Texture-based Methods

Line integral convolution

- highly coherent images along streamlines
- highly contrasting images across streamlines
- Fast implementation possible using texture-mapping capabilities of modern graphics processing units (GPUs)

Example: LIC with a Colormap

Vector magnitude:

Vector direction: Graininess

