Example 1: Writing a data to a Memory location

Suppose, the data is: 25_H and Memory location is: 5000_H.

We need to follow the following steps to write the data:

- a. Loading the data into accumulator register (Ac or A).
- b. Writing the data into the memory location.
- a. Loading the data into accumulator register (Ac or A).

Here we use MVI Register DATA – This instruction loads the DATA value into Register. MVI A 25_H

DATE: 12/3/21

b. Writing the data into the memory location

Here we use <u>STA 16-bit Memory location</u> - This instruction writes the content of accumulator into the specified memory location. STA 5000_H

So the Program Table Looks like:

Memory Address	Label	Mnemonic	Opcode	Operand	Hex Code	Comments
<mark>2000</mark>		MVI A 25 _H	MVI	A 25 _H	<mark>3E</mark>	A<- 25
<mark>2001</mark>					<mark>25</mark>	
<mark>2002</mark>		STA 50 <u>00</u> н	STA	5000 _H	<mark>32</mark>	5000<- CONTENT OF A
<mark>2003</mark>					<mark>00</mark>	
<mark>2004</mark>					<mark>50</mark>	
<mark>2005</mark>		HLT	HLT		<mark>76</mark>	EOP

Example 2: Reading a data from a Memory location

Suppose, the Memory location is : 4000_H and it is loaded with some unknown data. We need to follow the following step to read the data:

a. Read the data using instruction LDA 16 bit Memory location. This instruction reads the content of the specified memory location and loads it to accumulator. LDA 4000_H. [use "User Data Grid" Section to give any arbitrary data into 4000_H memory location.]

So the Program Table Looks like:

Memory Address	Label	Mnemonic	Opcode	Operand	Hex Code	Comments
2000		LDA 4000 _H	LDA	4000 _H	3A	A<- CONTENT OF 4000
2001					00	
2002					40	
2003		HLT			76	EOP

Example 3: Moving a data from source to destination.

Here source and destination can be different types like:

Source can be any Register – A, B,C D,E H,L

Destination can be any Register - A, B,C D,E H,L

The instruction that can be used here: MOV Destination Reg., Source Reg.

Here MOV is opcode.

Destination Reg., Source Reg. are the two operands.

So following instructions can be formed:

MOV B A

MOV C A

MOV D A

MOVEA

MOV H A

MOVLA

MOV M A

Here Source is fixed (Accumulator) but destination is variable. You can also take any other forms.

Suppose the source is accumulator which is to be loaded with data 88_H. Next, the content of this register needs to move into another register B.

We need to follow the following steps to move the data:

- a. Loading the data into accumulator register (Ac or A).
- b. Moving the data into register B.
- a. Loading the data into accumulator register (Ac or A).

Here we use MVI A DATA – This instruction \underline{loads} the DATA value into Accumulator (A). MVI A $88_{\rm H}$

b. Moving the data into register B: Here we use MOV B A

So the Program Table Looks like:

Memory	Label	Mnemonic	Opcode	Operand	Hex Code	Comments
Address						
2000		MVI A 88 _H	MVI	A 88 _H	3E	A<-88
2001					88	
2002		MOV B A	MOV	ВА	47	B<-A
2003		HLT			76	EOP

Example 4: DATA CAN BE MOVED FROM MEMORY TO SINGLE REGISTER USING REGISTER PAIR (M=H-L).

Suppose, the Memory location is: 4000_H and it is loaded with some unknown data. Now using M= H-L register pair we move the content of memory 4000 to register A

We need to follow the following step:

The instruction that can be used here is: **MOV Destination Reg., Source Reg. Pair Here MOV is opcode.**

Destination Reg., Source Reg. pair are the two operands.

Here source register pair is always fixed. That is H-L pair which has another name: M So following instructions can be formed:

MOV A M

MOV B M

MOV C M

MOV D M

MOVEM

MOV H M -----MOV L M

Here Source is fixed (M) but destination is variable. You can also take any other forms.

We need to follow the following steps to move the data:

- a. Loading the Address value into register pair (M).
- b. Moving the data into register A.
- a. Loading Address value into register pair (M).

Here we use, LXI H 16 bit Address – This instruction <u>loads</u> the 16 bit Address value into H-L pair. LXI H 4000_H

b. Moving the data into register A: Here we use MOV A M – Moving the content of memory location of 4000 to accumulator.

So the Program Table Looks like:

Memory	Label	Mnemonic	Opcode	Operand	Hex	Comments
Address					Code	
2000		LXI H 4000 _H	LXI	Н 4000 _н	21	H-L<-4000
2001					00	
2002					40	
2003		MOV A M	MOV	A M	7E	A<-M OR
						A<- CONTENT OF
						MEMORY M/4000
2004		HLT			76	EOP

Example 5: DATA CAN BE MOVED FROM SINGLE REGISTER TO MEMORY USING REGISTER PAIR (M=H-L).

Suppose, the data is: 25_H is moved to register A. Then moved to Memory location is: 5000_H . We need to follow the following steps to write the data:

- a. Loading the Address value into register pair (M).
- b. Loading the data into accumulator register (Ac or A).
- c. Moving the data into the memory location.
- a. Loading the Address value into register pair (M)

Here we use, LXI H 16 bit Address $\,$ – This instruction \underline{loads} the 16 bit Address value into H-L pair. LXI H 5000_H

b. Loading the data into accumulator register (Ac or A).

Here we use <u>MVI Register DATA</u> – This instruction <u>loads</u> the DATA value into Register. MVI A 25_H

c. Here we use MOV M A - This instruction writes the content of accumulator into the specified memory location.

So the Program Table Looks like:

Memory	Label	Mnemonic	Opcode	Operand	Hex	Comments
Address					Code	
2000		LXI H 5000 _H	LXI	5000н	21	H-L<-5000
2001					00	
2002					50	
2003		MVI A 25 _H	MVI	A 25 _H	3E	A<-25
2004					25	
2005		MOV M A	MOV	МА	77	M<-A OR
						M<- CONTENT OF
						ACCUMULATOR
2006		HLT			76	EOP

Memory Address	Label	Mnemonic	Opcode	Operand	Hex Code	Comments
2000		LXI H 5000 _H	LXI	5000 _H	21	H-L<-5000
2001					00	
2002					50	
2003		MVI M 25 _H	MVI	A 25 _H	3E	M'S CONTENT<- 25
2004					25	
2005		HLT			76	EOP

<u>PROBLEM:</u> Suppose register B and C have the data 81_H and 82_H respectively. Now transfer content of B and C register into memory locations: 2000_H and 2001_H respectively.

A.

Memory	Label	Mnemonic	Opcode	Operand	Hex	Comments	MACHINE	Т
Address					Code		CYCLE	STATE
3000		MOV A B	MOV	АВ	<mark>78</mark>	A<-B	OF =	4
							MR+DECODING	
3001		STA 2000	STA	20 00 _H	<mark>32</mark>	2000<- A	OF =	4
							MR+DECODING	
3002					00		MR	3
3003					20		MR	3
							MW	3
3004		MOV A C	MOV	A C	<mark>79</mark>	A<-C	<mark>OF</mark> =	4
							MR+DECODING	
3005		STA 2001	STA	2001	<mark>32</mark>	2001<-A	<mark>OF</mark> =	4
							MR+DECODING	
3006					<mark>01</mark>		MR	3
3007					<mark>20</mark>		MR	3
							MW	3
3008		HLT			<mark>76</mark>	EOP	OF =	4
							MR+DECODING	-

TOTAL T STATE: 38T, M CYCLES: 11, BYTES: 9

EXECUTION TIME: 38 x 0.392 micro second

SUMMARIZED TABLE OF DATA MOVING OPERATIONS:

- 1. DATA CAN BE MOVED FROM ANY SINGLE REGISTER (A, **B,C,D,E,H,L**) TO MEMORY WRITING TO MEMORY LOCATION.
- 2. DATA CAN BE MOVED FROM MEMORY TO ANY SINGLE REGISTER (A, **B,C,D,E,H,L**) READING FROM MEMORY LOCATION
- 3. DATA CAN BE MOVED FROM ANY SINGLE REGISTER TO OTHER SINGLE REGISTER.
- 4. DATA CAN BE MOVED FROM MEMORY TO SINGLE REGISTER (A, B,C,D,E) USING REGISTER PAIR (M=H-L)
- 5. DATA CAN BE MOVED FROM SINGLE REGISTER (A, B,C,D,E) TO MEMORY USING REGISTER PAIR (M=H-L)

H = = 40

L = = 00

H-L==M=4000 ---16 BIT ADDRESS

SCENARIO1: READ 4000, 4001 MEMORY LOCATIONS AND PUT DATA INTO REGISTER B AND C RESPECTIVELY.

1ST APPROACH:

LDA 4000 (3)

MOV B A (1)

LDA 4001(3)

MOV C A(1)

TOTAL MEMORY LOCATIONS REQUIRED: 8

2ND APPROACH:

LXI H 4000 (3)

MOV B M (1)

INX H (1) H-L= H-L+01

MOV C M (1)

TOTAL MEMORY LOCATIONS REQUIRED: 6

SCENARIO2: READ 4001, 4000 MEMORY LOCATIONS AND PUT DATA INTO REGISTER H AND L RESPECTIVELY.

1ST APPROACH:

LDA 4000 (3)

MOV L A (1)

LDA 4001(3)

MOV H A(1)

TOTAL MEMORY LOCATIONS REQUIRED: 8

2ND APPROACH:

LHLD 4000 (3)

TOTAL MEMORY LOCATIONS REQUIRED: 3

LXI H 4000 HL<- 4000

MVI H 40 H<- 40 MVI L 00 L<-00