Связность и разделяющие множества

Пусть $V_1,V_2\subseteq V(G)$. Множество $X\subseteq V(G)$ называется (V_1,V_2) -разделяющим, если в графе $G\backslash X$ нет путей из V_1 в V_2 .

Доказательство.

Понятно, что 1) и 2) одновременно выполняться не могут: разделяющее множество обязано содержать хотя бы по одной вершине из каждого из путей из V_1 в V_2 .

Таким образом, требуется доказать HE 1) \Rightarrow 2) — то есть, если любое (V_1, V_2) -разделяющее множество содержит $\geq k$ вершин, то найдутся k путей из V_1 в V_2 .

Индукция по |V|.

База для |V|=1 очевидна.

Индуктивный переход. Будем удалять ребра до тех пор, пока любое (V_1, V_2)-разделяющее множество содержит $\geq k$ вершин. Когда-то это закончится (если только $|V_1 \cap V_2| < k$ — но если $|V_1 \cap V_2| \geq k$, то имеется k одновершинных путей из V_1 в V_2).

Итак, при удалении ребра xy образуется (V_1, V_2) -разделяющее множество Z, |Z| < k.

Заметим, что множество $Z \cup x$ было разделяющим и до удаления ребра xy, а тогда $|Z|=k-1, \ |Z \cup x|=k.$ Аналогично для $Z \cup y$.

Два случая:

Случай 1: одно из множеств $Z \cup x$, $Z \cup y$ совпадает с V_1 , а второе с V_2 . В качестве k путей из V_1 в V_2 можно взять вершины Z и ребро xy.

Случай 2: одно из множеств $Z \cup x$, $Z \cup y$ отлично и от V_1 , и от V_2 . Обозначим это множество W, тогда |W|=k, $W \neq V_1$, $W \neq V_2$ и $W - (V_1, V_2)$ -разделяющее множество в нашем графе.

Заметим, что никакой путь из V_1 в W не проходит через вершины (непустого!) множества $V_2 \backslash W$ — иначе бы W не разделяло V_1 и V_2 .

Выкинем из нашего графа множество вершин $V_2 \backslash W$ — обозначим новый граф G_1 .

Заметим, что любое (V_1,W) -разделяющее множество в G_1 является (V_1,W) -разделяющим и в старом, поскольку то, что мы выкинули, никак не помогает добраться из V_1 в W. Следовательно, оно является и (V_1,V_2) -разделяющим, ибо любой путь из V_1 в V_2 заходит в W.

Поэтому в нем не менее k вершин.

Но $|V(G_1)| < |V(G)| \Rightarrow$ по предположению индукции имеется k непересекающихся путей из V_1 в W. Аналогично, имеется k непересекающихся путей из W в V_2 .

Заметим, что пути из V_1 в W и из W в V_2 не могут пересекаться, кроме как по общему концу в W — это бы означало, что W не разделяет V_1 и V_2 . Склеим два наших набора по k путей \Rightarrow получим k непересекающихся путей из V_1 в V_2 .

Теорема Менгера

Теорема 5 (Менгер, 1927)

Пусть вершины а и b связного графа G не соединены ребром. Тогда наименьшее число вершин (a, b)-разделяющего множества равно наибольшему числу непересекающихся по вершинам путей, соединяющих а и b.

В формулировке теоремы подразумевается, что разделяющее множество не содержит a и b, а пути не пересекаются по вершинам, не являющимся начальной или конечной.

Доказательство. Достаточно рассмотреть граф G-a-b и применить теорему Геринга к множествам V_1 , V_2 , где V_1- множество соседей a, V_2- множество соседей b (а k- наименьшая мощность (V_1,V_2) -разделяющего множества).