Data transformation with dplyr

Practice with penguins

HARON OTIM

Table of contents

Task 1: Create a subset of the data using filter()				2
Task 2: Add new columns with mutate()				6
Task 3: Summarize data with group_by() and summarize() & count()				9
Task 7: Data communication				11
Task 8: Stage, Commit & Push to GitHub				11
<pre>library(palmerpenguins) library(dplyr)</pre>				

All exercises in this assignment use the penguins data as a starting point.

- 1. Run all code chunks above.
- 2. Run the code chunk that contains glimpse(penguins).
- 3. How many variables are in the data set? #Haron: There are 8 variables in the data set evident in the number of columns.
- 4. How many observations are in the data set? #Haron: There are 344 observations in the data set evident by 344 number of rows.
- 5. What data types are contained in the variables? (Reminder: https://ds4owd-001.github.io/website/slides/lec-02-visualisation.html#/types-of-variables) #Haron: species (categorical variable) island (categorical variable) bill_length_mm (continuous variable) bill_depth_mm (continuous variable) flipper_length_mm (discrete variable) body_mass_g (discrete variable) sex (categorical variables) year (continuous variable)

glimpse(penguins)

Rows: 344 Columns: 8

Task 1: Create a subset of the data using filter()

Use filter() to create a subset from penguins that only contains observations for Adelie penguins.

```
penguins |>
  filter(species == "Adelie")
```

```
# A tibble: 152 x 8
```

	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g		
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>		
1	Adelie	Torgersen	39.1	18.7	181	3750		
2	Adelie	Torgersen	39.5	17.4	186	3800		
3	Adelie	Torgersen	40.3	18	195	3250		
4	Adelie	Torgersen	NA	NA	NA	NA		
5	Adelie	Torgersen	36.7	19.3	193	3450		
6	Adelie	Torgersen	39.3	20.6	190	3650		
7	Adelie	Torgersen	38.9	17.8	181	3625		
8	Adelie	Torgersen	39.2	19.6	195	4675		
9	Adelie	Torgersen	34.1	18.1	193	3475		
10	Adelie	Torgersen	42	20.2	190	4250		
# :	# i 142 more rows							

[#] i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that only contains observations where body mass is less than or equal to 2900 g.

```
penguins |>
  filter(body_mass_g <= 2900)</pre>
```

```
# A tibble: 7 x 8
 species
            island
                       bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
  <fct>
            <fct>
                                 <dbl>
                                                <dbl>
                                                                   <int>
                                                                                <int>
1 Adelie
            Biscoe
                                  34.5
                                                 18.1
                                                                     187
                                                                                 2900
2 Adelie
            Biscoe
                                  36.5
                                                 16.6
                                                                     181
                                                                                 2850
3 Adelie
                                  36.4
                                                 17.1
            Biscoe
                                                                     184
                                                                                 2850
4 Adelie
            Dream
                                  33.1
                                                 16.1
                                                                     178
                                                                                 2900
5 Adelie
            Torgersen
                                  38.6
                                                 17
                                                                     188
                                                                                 2900
6 Chinstrap Dream
                                  43.2
                                                 16.6
                                                                                 2900
                                                                     187
7 Chinstrap Dream
                                  46.9
                                                 16.6
                                                                     192
                                                                                 2700
# i 2 more variables: sex <fct>, year <int>
```

Use filter() to create a subset from penguins that only contains observations for Adelie penguins with a bill length greater than 40 mm.

```
penguins |>
  filter(species == "Adelie" & bill_length_mm > 40)
```

```
# A tibble: 51 x 8
   species island
                     bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
   <fct>
           <fct>
                               <dbl>
                                              <dbl>
                                                                 <int>
                                                                             <int>
 1 Adelie
                                40.3
                                                                   195
                                                                              3250
           Torgersen
                                               18
2 Adelie
           Torgersen
                                42
                                               20.2
                                                                   190
                                                                              4250
3 Adelie
           Torgersen
                                41.1
                                               17.6
                                                                   182
                                                                              3200
4 Adelie
                                42.5
                                               20.7
                                                                   197
                                                                              4500
           Torgersen
5 Adelie
           Torgersen
                                46
                                               21.5
                                                                   194
                                                                              4200
6 Adelie
           Biscoe
                                40.6
                                               18.6
                                                                   183
                                                                              3550
7 Adelie
           Biscoe
                                40.5
                                               17.9
                                                                   187
                                                                              3200
                                40.5
8 Adelie
           Biscoe
                                               18.9
                                                                   180
                                                                              3950
9 Adelie Dream
                                40.9
                                               18.9
                                                                   184
                                                                              3900
10 Adelie
                                42.2
                                               18.5
                                                                   180
                                                                              3550
           Dream
# i 41 more rows
```

Use filter() to create a subset from penguins that excludes observations for chinstraps.

```
penguins |>
  filter(species != "Chinstrap")
```

i 2 more variables: sex <fct>, year <int>

A tibble: 276 x 8 species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g <fct> <fct> <dbl><dbl> <int> <int> 39.1 18.7 1 Adelie Torgersen 181 3750 2 Adelie Torgersen 39.5 17.4 186 3800 3 Adelie Torgersen 40.3 195 3250 18 4 Adelie Torgersen NANANANA5 Adelie Torgersen 36.7 19.3 193 3450 6 Adelie Torgersen 39.3 20.6 190 3650 7 Adelie Torgersen 38.9 17.8 181 3625 39.2 8 Adelie Torgersen 19.6 195 4675 9 Adelie Torgersen 34.1 18.1 193 3475 10 Adelie Torgersen 42 20.2 190 4250 # i 266 more rows

i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that only contains gentoo penguins with a bill depth greater than or equal to 15.5 millimeters.

```
penguins |>
   filter(species == "gentoo", bill_depth_mm >= 15.5)

# A tibble: 0 x 8
# i 8 variables: species <fct>, island <fct>, bill_length_mm <dbl>,
# bill_depth_mm <dbl>, flipper_length_mm <int>, body_mass_g <int>, sex <fct>,
# year <int>
```

Use filter() to create a subset from penguins that contains observations for male penguins recorded at Dream and Biscoe Islands.

```
penguins |>
  filter(sex == "male", island %in% c("Dream", "Biscoe"))
```

A tibble: 145 x 8

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g <fct> <fct> <dbl> <dbl> <int> <int> 1 Adelie Biscoe 37.7 18.7 3600 180 2 Adelie Biscoe 38.2 18.1 185 3950 3 Adelie Biscoe 38.8 17.2 180 3800 4 Adelie Biscoe 40.6 18.6 183 3550

5 Adelie	Biscoe	40.5	18.9	180	3950
6 Adelie	Dream	37.2	18.1	178	3900
7 Adelie	Dream	40.9	18.9	184	3900
8 Adelie	Dream	39.2	21.1	196	4150
9 Adelie	Dream	38.8	20	190	3950
10 Adelie	Dream	39.8	19.1	184	4650
# i 135 mo	re rows				

i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that contains observations for female Adelie penguins with bill lengths less than 35 mm.

```
penguins |>
  filter(sex == "female" & species == "Adelie" & bill_length_mm < 35)</pre>
```

#	A tibble: 7 x 8							
	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g		
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>		
1	Adelie	Torgersen	34.4	18.4	184	3325		
2	Adelie	Biscoe	34.5	18.1	187	2900		
3	Adelie	Torgersen	33.5	19	190	3600		
4	Adelie	Torgersen	34.6	17.2	189	3200		
5	Adelie	Dream	34	17.1	185	3400		
6	Adelie	Dream	33.1	16.1	178	2900		
7	Adelie	Dream	32.1	15.5	188	3050		
#	i 2 more	e variable:	s: sex <fct>, ye</fct>	ear <int></int>				

Use filter() to create a subset from penguins containing observations for female chinstrap

```
penguins on Dream and Torgersen Islands.
```

```
penguins |>
  filter(sex == "female", species == "Chinstrap", island %in% c("Dream", "Torgersen"))
# A tibble: 34 x 8
```

	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>
1	${\tt Chinstrap}$	Dream	46.5	17.9	192	3500
2	${\tt Chinstrap}$	Dream	45.4	18.7	188	3525
3	${\tt Chinstrap}$	${\tt Dream}$	45.2	17.8	198	3950
4	${\tt Chinstrap}$	Dream	46.1	18.2	178	3250

5 Chinstrap Dream	46	18.9	195	4150
6 Chinstrap Dream	46.6	17.8	193	3800
7 Chinstrap Dream	47	17.3	185	3700
8 Chinstrap Dream	45.9	17.1	190	3575
9 Chinstrap Dream	58	17.8	181	3700
10 Chinstrap Dream	46.4	18.6	190	3450
# i 24 more rows				

[#] i 2 more variables: sex <fct>, year <int>

Use filter() to create a subset from penguins that contains penguins that are either gentoos OR have a body mass greater than 4500 g.

```
penguins |>
  filter(species == "Gentoo" | body_mass_g > 4500)
```

# /	tibble:	: 133 x 8					
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	
1	Adelie	Torgersen	39.2	19.6	195	4675	
2	Adelie	Dream	39.8	19.1	184	4650	
3	Adelie	Dream	39.6	18.8	190	4600	
4	Adelie	Torgersen	42.9	17.6	196	4700	
5	Adelie	Biscoe	41	20	203	4725	
6	Adelie	Biscoe	43.2	19	197	4775	
7	Adelie	Biscoe	45.6	20.3	191	4600	
8	Gentoo	Biscoe	46.1	13.2	211	4500	
9	Gentoo	Biscoe	50	16.3	230	5700	
10	Gentoo	Biscoe	48.7	14.1	210	4450	
# j	# i 123 more rows						

[#] i 2 more variables: sex <fct>, year <int>

Task 2: Add new columns with mutate()

Add a column to penguins that contains a new column flipper_m, which is the flipper_length_mm (flipper length in millimeters) converted to units of meters.

```
penguins |>
  mutate(flipper_m = flipper_length_mm / 1000)
```

			# A tibble: 344 x 9							
	species	island	${\tt bill_length_mm}$	${\tt bill_depth_mm}$	${\tt flipper_length_mm}$	body_mass_g				
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>				
1	Adelie	Torgersen	39.1	18.7	181	3750				
2	Adelie	Torgersen	39.5	17.4	186	3800				
3	Adelie	Torgersen	40.3	18	195	3250				
4	Adelie	Torgersen	NA	NA	NA	NA				
5	Adelie	Torgersen	36.7	19.3	193	3450				
6	Adelie	Torgersen	39.3	20.6	190	3650				
7	Adelie	Torgersen	38.9	17.8	181	3625				
8	Adelie	Torgersen	39.2	19.6	195	4675				
9	Adelie	Torgersen	34.1	18.1	193	3475				
10	Adelie	Torgersen	42	20.2	190	4250				
# i	# i 334 more rows									

[#] i 3 more variables: sex <fct>, year <int>, flipper_m <dbl>

Add a new column to penguins that contains a new column body_mass_kg, which is the body_mass_g (body mass in grams) converted to units of kilograms.

```
penguins |>
  mutate(body_mass_kg = body_mass_g / 1000)
```

# /	A tibble	: 344 x 9					
	species	island	bill_length_mm	${\tt bill_depth_mm}$	flipper_length_mm	body_mass_g	
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>	
1	Adelie	Torgersen	39.1	18.7	181	3750	
2	Adelie	Torgersen	39.5	17.4	186	3800	
3	Adelie	Torgersen	40.3	18	195	3250	
4	Adelie	Torgersen	NA	NA	NA	NA	
5	Adelie	Torgersen	36.7	19.3	193	3450	
6	Adelie	Torgersen	39.3	20.6	190	3650	
7	Adelie	Torgersen	38.9	17.8	181	3625	
8	Adelie	Torgersen	39.2	19.6	195	4675	
9	Adelie	Torgersen	34.1	18.1	193	3475	
10	Adelie	Torgersen	42	20.2	190	4250	
# :	# i 334 more rows						

[#] i 3 more variables: sex <fct>, year <int>, body_mass_kg <dbl>

Add a new column to penguins that contains a new column bill_ratio, which is the ratio of bill length to bill depth.

```
penguins |>
  mutate(bill_ratio = bill_length_mm / bill_depth_mm)
```

A tibble: 344×9

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g		
	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<int></int>		
1	Adelie	Torgersen	39.1	18.7	181	3750		
2	Adelie	Torgersen	39.5	17.4	186	3800		
3	Adelie	Torgersen	40.3	18	195	3250		
4	Adelie	Torgersen	NA	NA	NA	NA		
5	Adelie	Torgersen	36.7	19.3	193	3450		
6	Adelie	Torgersen	39.3	20.6	190	3650		
7	Adelie	Torgersen	38.9	17.8	181	3625		
8	Adelie	Torgersen	39.2	19.6	195	4675		
9	Adelie	Torgersen	34.1	18.1	193	3475		
10	Adelie	Torgersen	42	20.2	190	4250		
# :	# i 334 more rows							

i 3 more variables: sex <fct>, year <int>, bill_ratio <dbl>

Add a new column called id to penguins with a sequence of values from 1 to the length of the data frame. Use relocate() to move the column to the first position in the data frame.

```
penguins |>
  mutate(id = 1:n()) |>
  relocate(id)
```

A tibble: 344 x 9

	id	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm
	<int></int>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>
1	1	Adelie	Torgersen	39.1	18.7	181
2	2	Adelie	Torgersen	39.5	17.4	186
3	3	Adelie	Torgersen	40.3	18	195
4	4	Adelie	Torgersen	NA	NA	NA
5	5	Adelie	Torgersen	36.7	19.3	193
6	6	Adelie	Torgersen	39.3	20.6	190
7	7	Adelie	Torgersen	38.9	17.8	181
8	8	Adelie	Torgersen	39.2	19.6	195
9	9	Adelie	Torgersen	34.1	18.1	193
10	10	Adelie	Torgersen	42	20.2	190

[#] i 334 more rows

[#] i 3 more variables: body_mass_g <int>, sex <fct>, year <int>

Task 3: Summarize data with group_by() and summarize() & count()

Starting with penguins, group the data by species, then create a summary table containing the maximum and minimum length of flippers (call the columns flip_max and flip_min). How will you handle NA values?

```
penguins |>
    group_by(species) |>
      summarize(flip_max = max(flipper_length_mm, na.rm = TRUE),
                 flip min = min(flipper length mm, na.rm = TRUE))
# A tibble: 3 x 3
            flip_max flip_min
  species
 <fct>
               <int>
                         <int>
1 Adelie
                 210
                           172
2 Chinstrap
                 212
                           178
3 Gentoo
                 231
                           203
```

Starting with penguins, group the data by species and year, then create a summary table containing the mean bill depth (call this bill_depth_mean), the mean bill length (call this bill_length_mean), and the count for each group. How will you handle NA values?

```
penguins |>
    group_by(species,year) |>
      summarize(bill depth mean = mean(bill depth mm, na.rm = TRUE),
                 bill_length_mean = mean(bill_length_mm, na.rm = TRUE))
# A tibble: 9 x 4
            species [3]
# Groups:
  species
             year bill_depth_mean bill_length_mean
  <fct>
                             <dbl>
            <int>
                                               <dbl>
1 Adelie
             2007
                              18.8
                                                38.8
2 Adelie
             2008
                              18.2
                                                38.6
3 Adelie
             2009
                              18.1
                                                39.0
4 Chinstrap 2007
                              18.5
                                                48.7
5 Chinstrap 2008
                              18.4
                                                48.7
6 Chinstrap
             2009
                              18.3
                                                49.1
                              14.7
                                                47.0
7 Gentoo
             2007
8 Gentoo
             2008
                              14.9
                                                46.9
```

15.3

9 Gentoo

2009

48.5

Use the count() function to count the number of observations for each species in penguins.

```
penguins |>
    filter(!is.na(bill_depth_mm), !is.na(bill_length_mm)) |>
      group_by(species,year) |>
            summarize(bill_depth_mean = mean(bill_depth_mm),
               bill_length_mean = mean(bill_length_mm),
               count = n()
# A tibble: 9 x 5
# Groups:
            species [3]
  species
             year bill_depth_mean bill_length_mean count
  <fct>
            <int>
                             <dbl>
                                               <dbl> <int>
1 Adelie
             2007
                              18.8
                                                38.8
                                                        49
2 Adelie
             2008
                              18.2
                                                38.6
                                                        50
3 Adelie
             2009
                                                39.0
                              18.1
                                                        52
4 Chinstrap 2007
                              18.5
                                                48.7
                                                        26
5 Chinstrap 2008
                              18.4
                                                48.7
                                                        18
6 Chinstrap 2009
                              18.3
                                                49.1
                                                        24
7 Gentoo
             2007
                              14.7
                                                47.0
                                                        34
8 Gentoo
             2008
                              14.9
                                                46.9
                                                        46
9 Gentoo
             2009
                              15.3
                                                48.5
                                                         43
```

Use the count() function to count the number of observations for each species and island in penguins.

```
count(species,island)
# A tibble: 5 x 3
 species
            island
                           n
 <fct>
            <fct>
                       <int>
1 Adelie
            Biscoe
                          44
2 Adelie
            Dream
                          56
3 Adelie
            Torgersen
                          52
4 Chinstrap Dream
                          68
5 Gentoo
            Biscoe
                         124
```

penguins |>

Use filter() to create a subset from penguins that contains observations for female penguins recorded at Torgersen and Biscoe Islands. Then use add the pipe |> and count() to verify that you written the correct code.

Task 7: Data communication

In the YAML header (between the three dashes at the top of the document)

- 1. Add your name as the author of this document
- 2. Render the document and fix any errors

Task 8: Stage, Commit & Push to GitHub

- 1. Open the Git pane in RStudio. It's in the top right corner in a separate tab.
- 2. **Stage** your changes by checking appropriate box next to all files (if you select one file with your mouse, you can then highlight them all with Ctrl + A on your keyboard and check all boxes).
- 3. Write a meaningful commit message (e.g. "Completed part a of homework assignment 03.) in the **Commit message** box.
- 4. Click **Commit**. Note that every commit needs to have a commit message associated with it.