

Models, Estimators, Maximum-Likelihood Estimator

Tuesday 22nd November, 2016

1 Introduction - Statistical Models

2 Parameters Estimation

3 Conclusion

Scientific Models

Scientific models are frequently used to

- Better understand a phenomenon
- Enable prediction
- Classify phenomena
- Simulate data
- Visualize data

Scientific Models

Examples

- seasons of the year
- classical mechanics
- supply and demand

Statistical Models

A specific type of statistical model

A collection of assumptions regarding the data

A shoemaker

- ▶ Wants to make shoes that will fit 95% of the population.
- ▶ Measures the shoe sizes of 100 random people
- Assumes: shoe-size $\sim \mathcal{N}(\mu, \sigma^2)$

Statistical Models

A shoemaker

Statistical Models

A shoemaker

Models Vs. Reality

- don't have to be true in an objective sense
- a simplification of reality

Models Vs. Reality

- shoemaker example
 - model sizes are distributed normally
 - they're not
 - shoe-size $\in [a, b]$
 - lacksquare samples from a normal distribution $\in (-\infty, \infty)$

A family of distributions, described by a finite number of parameters

Example: shoemaker

- shoe sizes are normally distributed
- lacktriangle a parametric model with two parameters μ,σ

shoe-size
$$\sim M$$

$$M=M\left(\mu,\sigma\right)$$

$$M\in\left\{N\left(\mu,\sigma^2\right)\right\}_{\substack{\mu\in\mathcal{R}\\\sigma>0}}$$

A family of distributions, described by a finite number of parameters

Example: rain on a cloudy day

- ightharpoonup given today is cloudy it will rain with probability p
- ightharpoonup a parametric model (Bernoulli) with one parameter p

$$\begin{aligned} & \operatorname{rain} \sim M \\ & M = M\left(p\right) \\ & M \in \left\{M\left(p\right)\right\}_{0 \leq p \leq 1} \end{aligned}$$

Israellëch challenge

for the sake of completeness

▶ Not all models are parametric

- Not all models are parametric
- Some model are distribution free

- A histogram
- Pros fewer assumptions
- Cons fewer assumptions

- ▶ Not all models are parametric
- Some model are distribution free

- A histogram
- Pros fewer assumptions
- Cons fewer assumptions

- Not all models are parametric
- Some models do not assume a fixed structure
 - In a nutshell
 - Start with a simple model
 - Increase complexity of the model with the size of the data

- Not all models are parametric
- Some models do not assume a fixed structure
 - In a nutshell
 - Start with a simple model
 - Increase complexity of the model with the size of the data
 - Shoemaker example
 - Given 100 samples model is a normal distribution
 - Given 300 samples one normal distribution for women and one for men

Israel<mark>tëch</mark> challenge

1 Introduction - Statistical Models

2 Parameters Estimation

3 Conclusion

Parameter Estimation

A parametric model

```
finding the correct model for the data = estimating correct parameter values
```

- Example rain on a cloudy day
 - $\mod -p = Pr\left(rain \mid cloudy\right)$
 - \blacksquare estimate p

Intuition

- ► N cloudy days
- $ightharpoonup N_{rain}$ cloudy days with rain
- $ightharpoonup N_{no-rain}$ cloudy days with [no] rain
- ▶ How would you estimate *p*

Likelihood function

How likely (probable) is the data, given the model?

likelihood

$$\mathcal{L}\left(\theta\right) = \prod_{r} Pr\left(x \mid \theta\right)$$

▶ log likelihood

$$l(\theta) = \log \mathcal{L}(\theta)$$

The "best" model for the data - makes the data "most likely"

$$\theta_{ml} = \underset{\theta}{\operatorname{arg\,max}} \ Pr\left(X \mid \theta\right)$$

The Maximum Likelihood Principle

The "best" model for the data - makes the data "most likely"

The "best" model for the data - makes the data "most likely"

▶ Why not the most likely parameter value given the data?

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ Pr\left(\theta \mid X\right)$$

The Maximum Likelihood Principle

The "best" model for the data - makes the data "most likely"

- ▶ Why not the most likely parameter value given the data?
- our model assigns probability to data given the parameters and not vice versa

The Maximum Likelihood Principle

The "best" model for the data - makes the data "most likely"

- ▶ Why not the most likely parameter value given the data?
- our model assigns probability to data given the parameters and not vice versa
- what's the probability, a random Fellow knows French?

is a parameter a random variable?

Maximum Likelihood Estimator

$$\theta_{mle} = \underset{\theta}{\operatorname{arg max}} \mathcal{L}(\theta)$$

$$= \underset{\theta}{\operatorname{arg max}} l(\theta)$$

Maximum Likelihood Estimator

$$\theta_{mle} = \underset{\theta}{\operatorname{arg max}} \mathcal{L}(\theta)$$

$$= \underset{\theta}{\operatorname{arg max}} l(\theta)$$

When is this easy?

$$\theta_{mle} = \underset{\theta}{\operatorname{arg max}} \mathcal{L}(\theta)$$

$$= \underset{\theta}{\operatorname{arg max}} l(\theta)$$

- When is this easy?
 - when solving $\nabla \mathcal{L}\left(\theta\right)=0$ is easy and the likelihood is $\boxed{concave}$
 - lacksquare we can compute the likelihood for all values of heta

Maximum Likelihood Estimator

$$\theta_{mle} = \underset{\theta}{\operatorname{arg max}} \mathcal{L}(\theta)$$

$$= \underset{\theta}{\operatorname{arg max}} l(\theta)$$

- When is this easy?
 - when solving $\nabla \mathcal{L}\left(\theta\right)=0$ is easy and the likelihood is $\boxed{concave}$
 - lacktriangle we can compute the likelihood for all values of heta
- When do you derive the estimator yourself?

Maximum Likelihood Estimators

Bernoulli

▶ IID binary random variables...

Maximum Likelihood Estimators

- ▶ IID binary random variables...
- coin tosses

Israellëch challenge

- ▶ IID binary random variables...
- coin tosses

$$X \sim B(p)$$

$$P_p(X=1)=p$$

Waxiiiiuiii Likeiiiiood Estiiiiatois

Israel<mark>lëch</mark> challenge

- ▶ IID binary random variables...
- coin tosses

$$X \sim B(p)$$

$$P_{p}(X = x) = p^{x} (1 - p)^{1-x}$$

- ▶ IID binary random variables...
- coin tosses

$$X \sim B(p)$$

$$P_p(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

Israellech challenge

$$\mathcal{L}(p) = P_p(X_1 = x_1, \dots, X_n = x_n)$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

Israellëch challenge

$$\mathcal{L}(p) = P_p(X_1 = x_1, \dots, X_n = x_n)$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n 1-x_i}$$

$$\mathcal{L}(p) = P_p(X_1 = x_1, \dots, X_n = x_n)$$

$$= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{\sum_{i=1}^n 1-x_i}$$

$$[S \triangleq \sum_{i=1}^n x_i] = p^S (1-p)^{n-S}$$

Israel<mark>tëch</mark> challenge

$$\mathcal{L}(p) = p^S (1-p)^{n-S}$$

$$l(p) = \log \mathcal{L}(p)$$
$$= S \log (p) + (n - S) \log (1 - p)$$

$$l(p) = S \log(p) + (n - S) \log(1 - p)$$

$$l'(p) = \frac{S}{p} - \frac{n - S}{1 - p}$$

$$\stackrel{!}{=} 0$$

$$\downarrow$$

$$p_{mle} = \frac{S}{n}$$

Normal distribution

$$\mu_{mle} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma_{mle}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_{mle})^2$$

A parameter may be a constant, but an estimator?

An estimator is a random variable, a function of the sample

An estimator is a random variable, a function of the sample

The shoemaker empire!

▶ each shoemaker independently samples 2 people and estimates shoe size mean and variance...

An estimator is a random variable, a function of the sample

The shoemaker empire!

- ▶ each shoemaker independently samples 2 people and estimates shoe size mean and variance...
- ▶ each shoemaker independently samples 2000 people in Eilat and estimates shoe size mean and variance...

An estimator is a random variable, a function of the sample

The shoemaker empire!

- ▶ each shoemaker independently samples 2 people and estimates shoe size mean and variance...
- ▶ each shoemaker independently samples 2000 people in Eilat and estimates shoe size mean and variance...
- ▶ each shoemaker independently samples 200 people and estimates shoe size mean and variance...

Estimators - Bias

We use θ_{mle} to estimate θ how are we doing?

Estimators - Bias

We use θ_{mle} to estimate θ how are we doing?

Bias - the mean deviation from the true value

$$bias\left(\hat{\theta}\right) = E\left[\hat{\theta}\right] - \theta$$

Israellëch challenge

Bernoulli

$$bias (p_{mle}) = E\left[\frac{S}{n}\right] - p$$

$$= E\left[\frac{\sum_{i=1}^{n} x_i}{n}\right] - p$$

$$= \frac{1}{n} \sum_{i=1}^{n} E[x_i] - p$$

$$= \frac{1}{n} n \cdot p - p$$

$$= 0$$

Bernoulli

$$bias(p_{mle}) = E\left[\frac{S}{n}\right] - p$$

$$= E\left[\frac{\sum_{i=1}^{n} x_i}{n}\right] - p$$

$$= \frac{1}{n} \sum_{i=1}^{n} E[x_i] - p$$

$$= \frac{1}{n} n \cdot p - p$$

$$= 0$$
 Unbiased

Estimators - Standard Error

We use θ_{mle} to estimate θ how are we doing?

We use θ_{mle} to estimate θ how are we doing?

Standard Error - standard deviation of the estimator

$$se\left(\hat{\theta}\right) = \sigma_{\hat{\theta}}$$

abbreviated se

- often unknown
- ightharpoonup frequently estimated \hat{se}

Israellëch challenge

Bernoulli

$$se (p_{mle}) = \sqrt{V [p_{mle}]}$$

$$= \sqrt{V \left[\frac{\sum_{i=1}^{n} x_i}{n}\right]}$$

$$= \frac{1}{n} \sqrt{\sum_{i=1}^{n} V [x_i]}$$

$$= \frac{1}{n} \sqrt{n \cdot \sigma_X^2}$$

Bernoulli

$$se(p_{mle}) = \sqrt{\frac{\sigma_X^2}{n}}$$
$$= \sqrt{\frac{p(1-p)}{n}}$$

$$\hat{se}\left(p_{mle}\right) = \sqrt{\frac{p_{mle}\left(1 - p_{mle}\right)}{n}}$$

- ▶ The MLE is consistent, $\theta_{mle} \to \theta$, as $n \to \infty$
- ▶ The MLE is asymptotically normal the distribution of the estimator is approximately $\mathcal{N}\left(\theta,\sigma_{\theta}^{2}\right)$

- ▶ I know the mean shoe size in Israel
- lacktriangleright I'll show you N people and let you measure their shoe size
- ▶ I'll ask you to estimate boundaries for the mean $\mu \in (a,b)$
- If you are right and $\mu \in (a,b)$, I'll pay you $\frac{50}{b-a}$ ILS
- ▶ If you are wrong you'll pay me 8 ILS

- ▶ How should you choose *a* and *b*?
- Is this game fair?

a $1-\alpha$ confidence interval for parameter θ , is an interval C=(a,b) where $a=a\left(x_1,\ldots,x_n\right)$ and $b=b\left(x_1,\ldots,x_n\right)$ such that $Pr\left(\theta\in C\right)>1-\alpha$...

a $1-\alpha$ confidence interval for parameter θ , is an interval C=(a,b) where $a=a\,(x_1,\ldots,x_n)$ and $b=b\,(x_1,\ldots,x_n)$

- a parameter is a constant
- once a sample is taken and C=(a,b) calculated either θ is in C or isn't
- where's the probability?

a $1-\alpha$ confidence interval for parameter θ , is an interval C=(a,b) where $a=a\,(x_1,\ldots,x_n)$ and $b=b\,(x_1,\ldots,x_n)$

a better question: what is the probability over?

a $1-\alpha$ confidence interval for parameter θ , is an interval C=(a,b) where $a=a\,(x_1,\ldots,x_n)$ and $b=b\,(x_1,\ldots,x_n)$

<u>a better question</u>: what is the probability over? it's over samples.

a $1-\alpha$ confidence interval for parameter θ , is an interval C=(a,b) where $a=a\,(x_1,\ldots,x_n)$ and $b=b\,(x_1,\ldots,x_n)$

possible statements:

- ightharpoonup if the experiment is repeated M times

 - $\theta \in C_i$, 1α of the times
- lacktriangle we are about to perform an experiment and calculate C
 - $Pr(\theta \in C) = 1 \alpha$

Confidence Interval - MLE

Let Z be a standard normal random variable, Φ the CDF of Z and $z_{\alpha/2}=\Phi(1-\alpha/2)$

Israellëch challenge

Let Z be a standard normal random variable, Φ the CDF of Z and $z_{\alpha/2}=\Phi(1-\alpha/2)$

Theorem If
$$C = (\hat{\theta} - z_{\alpha/2}\hat{se}, \hat{\theta} + z_{\alpha/2}\hat{se})$$
, then $Pr(\theta \in C) \to 1 - \alpha$ as $n \to \infty$

- a confidence interval can be computed for every confidence level
- in many cases $\alpha=0.05$ or the 95% confidence interval is used

- a confidence interval can be computed for every confidence level
- in many cases $\alpha=0.05$ or the 95% confidence interval is used
- for $\alpha = 0.05$, $z_{\alpha/2} \approx 2$
- \blacktriangleright which translates to $C=\left(\hat{\theta}-2\hat{se},\hat{\theta}+2\hat{se}\right)$ being an approximate 95% confidence interval

Example: Bernoulli:

$$\alpha = 0.05$$

$$\hat{p} = \frac{S}{n}$$

$$\hat{se} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$C = \left(\frac{S}{n} - \frac{2}{n}\sqrt{S\left(1 - \frac{S}{n}\right)}, \frac{S}{n} + \frac{2}{n}\sqrt{S\left(1 - \frac{S}{n}\right)}\right)$$

Israellëch challenge

1 Introduction - Statistical Models

2 Parameters Estimation

3 Conclusion

Conclusion

- Statistical models
 - parametric models
- Parameter estimation
 - Maximum likelihood
- Estimator properties
 - bias
 - standard error
 - confidence interval

Credits

figures

- confused Mr. Bean http://mafab.hu/
- ▶ Dr. Evil http://www.quickmeme.com/