Graph Theory

Jan Pantner (jan.pantner@gmail.com)

October 4, 2024

Contents

1	Independence, matching, covers	•
	1.1 Definitions	:

1 Independence, matching, covers

1.1 Definitions

Let G = (V, E) be a graph.

Definition 1.1.1. A set $S \subseteq V$ is an *independent set* if G[S] contains no edges. The *independence number* $\alpha(G)$ is the maximum possible cardinality of an independent set.

Definition 1.1.2. A set $T \subseteq V$ is a *vertex cover* if

$$\forall e \in E. \ T \cap e \neq \emptyset.$$

The **vertex cover number** $\beta(G)$ is the minimum possible cardinality of a vertex cover.

Definition 1.1.3. A set $M \subseteq E$ is a *matching* if

$$\forall e, f \in M. \ e \neq f \Rightarrow e \cap f = \emptyset.$$

The **matching number** $\alpha'(G)$ is the maximum possible cardinality of a matching.

Definition 1.1.4. A set $C \subseteq E$ is an edge cover if every vertex of G is covered by at least one edge from C. If $\delta(G) \geq 1$, we define the **edge cover number** $\beta'(G)$ as the minimum possible cardinality of an edge cover.

Lemma 1.1.5. Let G be a graph. The following holds:

- $\alpha(G) + \beta(G) = n(G)$.
- $\alpha'(G) \leq \beta(G)$.
- $\alpha(G) \leq \beta'(G)$.
- If $\delta(G) \ge 1$, then $\alpha'(G) \le \frac{n}{2} \le \beta(G)$.

Proof. TO DO

Theorem 1.1.6 (Gallai). If $\delta(G) \geq 1$, then $\alpha'(G) + \beta'(G) = n(G)$.

Proof. TO DO

Definition 1.1.7. Let M be a matching. A path is an M-alternating path if the edges along the path alternate between M and $\overline{M} = E \setminus M$.

Definition 1.1.8. An M-alternating path is called an M-augmenting path if both ends of the path are uncovered by M.

Proposition 1.1.9. Let G be a graph and M a matching. If there exists an M-augmenting path P, then M is not a maximum matching.

Proof. We can construct a bigger matching $M' = M \triangle E(P)$, where \triangle is the disjunctive union.

Theorem 1.1.10 (König). Let G be a bipartite graph. Then the following holds:

- (a) $\alpha'(G) = \beta(G)$.
- (a) If M is a matching with no M-augmenting path, then M is a maximum matching.

Remark 1.1.10.1. There also exist graphs with $\alpha'(G) = \beta(G)$ that are not bipartite.

Corollary 1.1.11. If G is a bipartite graph, then $\alpha(G) = \beta'(G)$

Proof. We have

$$\alpha(G) = n(G) - \beta(G) = n(G) - \alpha'(G) = \beta'(G),$$

where the latter two equalities are due to König's and Gallai's theorem respectively. \Box

Definition 1.1.12. Let G be a bipartite graph with partite classes A and B. **Hall's condition** (HC) holds for A, if

$$\forall S \subseteq A. |S| \le |N(S)|,$$

where N(S) is the neighbourhood of S.

Theorem 1.1.13 (Hall). Let $G = (A \cup B, E)$ be a bipartite graph. A matching that covers A exists if and only if Hall's condition holds for A.

Definition 1.1.14. A matching M is a **perfect matching** if it covers all vertices.

Corollary 1.1.15. Let G be a bipartite graph. There exists a perfect matching of G if and only if |A| = |B| and A satisfies Hall's condition.

Definition 1.1.16. Let $S \subseteq A$. The **deficiency** of S is defined as def(S) = |S| - |N(S)|.

Theorem 1.1.17. Let $G = (A \cup B, E)$ be a bipartite graph and M a matching. Then at most

$$|A| - \max_{S \subseteq A} (\operatorname{def}(S))$$

vertices of A are covered.

Proof. Left as an exercise.

Theorem 1.1.18. If G is a regular bipartite graph, then G has a perfect matching.

Index

```
M-alternating path, 3
M-augmenting path, 3
deficiency, 4
edge cover number, 3
Gallai's theorem, 3
Hall's condition, 4
Hall's theorem, 4
independence number, 3
independent set, 3
matching, 3
matching number, 3
perfect matching, 4
vertex cover, 3
vertex cover number, 3
```