Proof – Total Nodes of a Perfect Binary Tree

- Geometric Progression (finite)
 - $-a, ar, ar^2, ar^3, ar^4, ..., ar^{n-1}$
- Sum of Geometric Progression

$$-Sn = a + ar + ar^2 + ar^3 + ar^4 + \dots + ar^{n-1}$$

$$-Sn = a \left[\frac{(r^{n}-1)}{r-1}\right] \quad \text{if} \quad r>1 \text{ and } r!=1$$
 Trees

- Total no. of nodes = sum of internal + external nodes
- Internal nodes = $2^h 1$
- External nodes = 2^h
- Total nodes = $2^h 1 + 2^h$ = $2^h + 2^h - 1$; let say; $a = 2^h$ = a + a - 1= 2a + 1= $2 \cdot 2^{h+1} - 1$; replacing a with 2^h

 $= 2^{h+1} - 1$

1 of 1