

FCC Test Report

GSM mobile phone Model No.:X3

Test Standard: FCC CFR Title 47 Part 2 24
Test Report Number: EST0910-202R3-F
FCC ID: XUMPREX3

EST COMPLIANCE LABORATORY LIMITED

6/F, 207 Building, Nanyou No. 2 Industrial Park, Dengliang Road Nanshan District, Shenzhen 518053, China Tel:+86-755-26648640 Fax:+86-755-26648637

Contents

c	ONTEN	TS	r age
		NERAL INFORMATION	
1			
		CLIENT INFORMATION	
		GENERAL DESCRIPTION OF E.U.T.	
		Test Location	
		TEST FACILITY	
2	EQl	JIPMENTS USED DURING TEST	5
3	TES	ST RESULTS	
	3.1	Peak Power Output	
	3.1.	1 Test Setup	
	3.1.2	2 Test Procedure	<i>.</i>
	3.1.	-	
	3.1.	4 Test Result of Peak Power Output	<i>.</i>
		OCCUPIED BANDWIDTH	
	3.2.	· · · · · · · · · · · · · · · · · · ·	
	3.2.2		
	3.2.		
		BAND EDGE	
	3.3.	•	
	3.3.2 3.3.3		
	3.3.4		
		Spurious Emission	
	3.4.		
	3.4.2	•	
	3.4.		
	3.4.		
	3.5	Spurious Emission	24
	3.5.	1 TestSetup	24
	3.5.	2 Limit	24
	3.5.	3 TestProcedure	24
	<i>3.5.</i> -	4 TestData	24
4	PHC	DTOGRAPHS	27
		RADIATED SPURIOUS EMISSION TEST SETUP	
		EUT CONSTRUCTIONAL DETAILS	

1 General Information

1.1 Client Information

Applicant: LTT Card Services, INC

Address of Applicant: PO Box 194625 San Juan, Puerto Rico 00919-4625 United State

Manufacturer: General Electric Communication Limited

Address of Manufacturer: Unit 1017, Tian An Cyber Times Tower A, Futian District, Shenzhen, China

1.2 General Description of E.U.T.

Product Name:	GSM mobile phone			
TX Frequency	1850MHz ~ 1910MHz(PCS 1900)			
Rx Frequency	1930MHz ~ 1990MHz(PCS 1900)		
Product Name	GSM mobile phone			
Model:	X3	X3		
Trade Name	Premier			
Antenna Type	Internal			
Hardware Version	V1.1			
Peak Power Output(EIRP)	1.04W			
Software Version	F1_DHDZ-ENX_900-LATIMCP_NWLS2-HW_V1.0- SW_VOO1			
	Rated Voltage	3.7V DC		
Battery	Current	300mA		
	Capacitance	850mAh		
	Electrical Rating [Input]	100~240V AC		
Charger adaptor:	Electrical Rating [Output	5V DC 550mA		
	Model	TN0500550D-08		

Date of Test:	Oct. 23~27, 2009
Prepared by :	Tamel fe
	(Engineer) Mass Ou (Project Manager) Alex don
Reviewer:	Mass Ou
	(Project Manager)
Approved & Authorized Signer:	Alexalen

1.3 Test Location

All tests were sub-contracted. at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

1.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

NVLAP – Lab Code: 200611-0

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is recognized under the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

ACA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

VCCI

The 3m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197 and C-2383 respectively.

Date of Registration: September 29, 2008. Valid until September 28, 2011

SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 556682, Aug. 04, 2005

Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

2 Equipments Used during Test

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (dd-mm-yy)	Cal.Due date (dd-mm-yy)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	16-06-2008	15-06-2010	
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	12-12-2008	11-12-2010	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A	
4	Coaxial cable	SGS	N/A	SEL0028	18-06-2009	17-06-2010	
5	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0014	12-08-2009	11-08-2010	
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	18-06-2009	17-06-2010	
7	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0005	12-08-2009	11-08-2010	
8	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	12-08-2009	11-08-2010	
9	Pre-amplifier (1-18GHz)	Rohde & Schwarz	AFS42-00101 800-25-S-42	SEL0081	18-06-2009	17-06-2010	
10	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33- 18002650-30- 8P-44	SEL0080	18-06-2009	17-06-2010	
11	Band filter	Amindeon	82346	SEL0094	18-06-2009	17-06-2010	
12	Spectrum Analyzer	Agilent	E4408B	SEL0097	15-06-2009	14-06-2010	

3 Test Results

3.1 Peak Power Output

3.1.1 Test Setup

Conducted Power Measurement

3.1.2 Test Procedure

RF Out Power (Radiated Power / EIRP)

The EUT is tested with maximum rated TX power via the Base Station simulator, and the output power was measured at the antenna terminals of the EUT.

3.1.3 Limit

Frequency	Limit		
PCS Band 1900	<2W or +33dBm		

3.1.4 Test Result of Peak Power Output (EIRP)

PCS 1900 Voice							
Frequency	Output Power	Path Loss	Result	Result			
(MHz)	(dBm)	(dB)	(dBm)	(W)			
1850.2	29.51	0.6	30.11	1.03			
1880	29.57	0.6 30.17		1.04			
1909.8	29.44	0.6	30.04	1.01			
	PCS 1900 GPRS						
1850.2	29.44	0.6	30.04	1.01			
1880	29.48	0.6	30.08	1.02			
1909.8	29.38	0.6	29.98	1.00			

3.2 Occupied Bandwidth

3.2.1 Test Setup

3.2.2 Test Procedure

The EUT is tested with maximum rated TX power via the Base Station simulator, and the occupied bandwidth was measured at the antenna terminals of the EUT.

The Resolution BW of the analyzer is set to 1 % of the emission bandwidth. The EUT's occupied bandwidth is measured as the width of the signal between two points, one below the carrier center frequency and one above the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

The plots below show the resultant display from the Spectrum Analyser.

3.2.3 Test Data

According to Part 2.1049, 24.238(b).

PCS1900 VOICE - Circuit Switched (PCS Mode CH 512)

3.3 Band edge

3.3.1 Test Setup

3.3.2 Limits

Cellular Band Transmitter limits for narrowband spurious emission

Lower Block Edge Test Frequencies	Upper Block Edge Test Frequencies		
Block A	Block B		
Channel: 128	Channel : 251		
Frequency: 824.2 MHz	Frequency : 848.8 MHz		

PCS Band Transmitter limits for narrowband spurious emission

Lower Block Edge Test Channels/Frequencies	Upper Block Edge Test Channels/Frequencies
Block A	Block C
Channel : 512	Channel : 810
Frequency : 1850.2 MHz	Frequency : 1909.8 MHz

3.3.3 Test Procedure

In accordance with Part 24.238, at least 1% of the emission bandwidth was used for the resolution and video bandwidths up to 1MHz away from the Block Edge. At greater than 1MHz, the resolution and video bandwidth were increased to 1MHz.

The reference power and path losses of all channels used for testing in each frequency block were measured.

3.3.4 Test Data

According to Part 2.1049, 24.238.
PCS 1900 Voice Lower Channel 512 (1850.2MHz)

PCS 1900 Voice Upper Channel 810(1910.0MHz)

PCS 1900 GPRS Lower Channel 512 (1850.2MHz)

3.4 Spurious Emission

3.4.1 Test Setup

Conducted Spurious

Radiated Spurious

3.4.2 Limits

43 + 10Log(P) down on the carrier where P is the power in Watts.

3.4.3 Test Procedure

In accordance with Part 2.1051, the spurious emissions from the antenna terminal were measured. The transmitter output power was attenuated using a combination of filters and attenuators and the frequency spectrum investigated from 30MHz to 20GHz. The EUT was set to transmit on full power. The EUT was tested on Low, middle and High channels for both power levels. The resolution and video bandwidth was set to 3MHz in accordance with Part 24.238. The spectrum analyzer detector was set to Max Hold.

In addition, measurements were made up to the 10th harmonic of the fundamental.

The EUT is placed on a turn table which is 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to TIA/EIA 603-C on radiated measurement.

3.4.4 Test Data

1. Conducted spurious PCS 1900 Voice Mid-Channel 661

TO 1000 TO 1000 TIME THE INTERIOR TO 1						
Frequency	Frequency Reading Level Path Loss		Emission Level	Limit		
(MHz)	(dBm)	(dB)	(dBm)	(dBm)		
2350	-53.160	0.67	-52.490	-13		
3760	-47.870	1.1	-46.770	-13		
5640	-46.020	1.23	-44.790	-13		
7520	-52.160	1.59	-50.570	-13		
9400	-52.910	1.89	-51.020	-13		
11280	-55.130	2.07	-53.060	-13		
13160	-59.380	2.26	-57.120	-13		
15040	-57.150	2.64	-54.510	-13		
16920	-52.950	3.5	-49.450	-13		
18800	-57.080	3.7	-53.380	-13		

PCS 1900 GPRS Mid-Channel 661

Frequency	Reading Level	Path Loss	Emission Level	Limit
(MHz)	(dBm)	(dB)	(dBm)	(dBm)
2350	-51.920	0.67	-51.250	-13
3760	-47.140	1.1	-46.040	-13
5640	-45.830	1.23	-44.600	-13
7520	-52.060	1.59	-50.470	-13
9400	-53.100	1.89	-51.210	-13
11280	-55.000	2.07	-52.930	-13
13160	-58.660	2.26	-56.400	-13
15040	-57.480	2.64	-54.840	-13
16920	-53.420	3.5	-49.920	-13
18800	-56.910	3.7	-53.210	-13

2. Radiated Emission

Channel 661 (PCS1900 Voice)

Onamic con (1 001300 VOIC	, , , , , , , , , , , , , , , , , , , ,						
Frequency	Reading Level	Signal Generator Level	Cable Loss	Antenna Gain	EIRP Value	Limit		
(GHz)	(dBm)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)		
Horizontal	Horizontal							
3760	-52.730	-53.260	2.530	12.600	-43.190	-13		
5640	-54.570	-50.074	3.050	13.100	-40.024	-13		
7520	-56.820	-45.820	3.650	11.500	-37.970	-13		
9400	-62.100	-46.412	3.850	12.000	-38.262	-13		
11280	-59.670	-44.532	4.580	12.000	-37.112	-13		
Vertical								
3760	-55.140	-55.952	2.530	12.600	-45.882	-13		
5640	-57.290	-53.220	3.050	13.100	-43.170	-13		
7520	-61.030	-50.334	3.650	11.500	-42.484	-13		
9400	-62.750	-46.708	3.850	12.000	-38.558	-13		
11280	-63.010	-48.397	4.580	12.000	-40.977	-13		

Note:

- 1. Receiver setting (Peak Detector) : RBW:3MHz; VBW:3MHz
- 2. EIRP Value = Signal Generator Level + Antenna Gain Cable Loss
- 3. Spurious emissions past 6 GHz are not shown, due to the magnitude of spurious emissions attenuated more than 20 dB below the limit.

Channel 661 (PCS1900 GPRS)

Frequency	Reading Level	Signal Generator Level	Cable Loss	Antenna Gain	EIRP Value	Limit
(GHz)	(dBm)	(dBm)	(dB)	(dBi)	(dBm)	(dBm)
Horizontal						
3760	-52.920	-53.450	2.530	12.600	-43.380	-13
5640	-55.520	-51.024	3.050	13.100	-40.974	-13
7520	-58.420	-47.420	3.650	11.500	-39.570	-13
9400	-62.690	-46.663	3.850	12.000	-38.513	-13
11280	-61.830	-46.657	4.580	12.000	-39.237	-13
Vertical						
3760	-55.150	-55.962	2.530	12.600	-45.892	-13
5640	-55.060	-50.990	3.050	13.100	-40.940	-13
7520	-60.930	-50.234	3.650	11.500	-42.384	-13
9400	-63.670	-47.668	3.850	12.000	-39.518	-13
11280	-63.000	-48.271	4.580	12.000	-40.851	-13

Note:

- 1. Receiver setting (Peak Detector): RBW:3MHz; VBW:3MHz
- 2. EIRP Value = Signal Generator Level + Antenna Gain Cable Loss
- 3. Spurious emissions past 6 GHz are not shown, due to the magnitude of spurious emissions attenuated more than 20 dB below the limit.

3.5 Spurious Emission

3.5.1 Test Setup

3.5.2 Limit

Limit	<±2.5ppm
-------	----------

3.5.3 Test Procedure

The frequency stability of transmitter is measured by:

- (a) Temperature: The temperature is varied from -30°C to 50°C in 10°C increament using a standard temperature & Humidity chamber.
- (b) Primary Supply Voltage: The primary supply voltage is varied 85% to 115% of the nominal value for non hand-carried equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating endpoint which shall be specified by the manufacturer.

The EUT was connected via the base station simulator. Universal Radio Communication Tester, (CMU200), was used to measure The Frequency Error. The maximum result of measurements was recorded.

3.5.4 Test Data

According to Part 2.1055, 24.235

PCS 1900 Voice/ Channel 661

Frequency Stability Under Temperature Variations

Temperature	Test Frequency	Deviation	Limit
Interval(°ℂ)	(GHz)	(Hz)	(KHz)
-30	1.88	-78	±4.7
-20	1.88	-49	±4.7
-10	1.88	61	±4.7
0	1.88	52	±4.7
10	1.88	51	±4.7
20	1.88	36	±4.7
30	1.88	-39	±4.7
40	1.88	46	±4.7
50	1.88	58	±4.7

Voltage Variations

DC Voltage	Test Frequency	Deviation	Limit
(V)	(GHz)	(Hz)	(KHz)
4.2	1.88	-35	±4.7
3.7	1.88	-36	±4.7
3.2	1.88	-40	±4.7

PCS 1900 GPRS / Channel 661

Frequency Stability Under Temperature Variations

Temperature	Test Frequency	Deviation	Limit
Interval(°ℂ)	(GHz)	(Hz)	(KHz)
-30	1.88	-116	±4.7
-20	1.88	-39	±4.7
-10	1.88	-43	±4.7
0	1.88	-71	±4.7
10	1.88	-73	±4.7
20	1.88	-63	±4.7
30	1.88	-39	±4.7
40	1.88	-34	±4.7
50	1.88	-46	±4.7

Voltage Variations

DC Voltage	Test Frequency	Deviation	Limit
(V)	(GHz)	(Hz)	(KHz)
4.2	1.88	-71	±4.7
3.7	1.88	-63	±4.7
3.2	1.88	60	±4.7

4 Photographs

4.1 Radiated Spurious Emission Test Setup

4.2 EUT Constructional Details

