RL: Basics

The Markov Process

Marius Lindauer

Winter Term 2021

Reminder: Markov Assumption

- Information state: sufficient statistic of history
- ightharpoonup State s_t is Markov if and only if:

$$p(s_{t+1} \mid s_t, a_t) = p(s_{t+1} \mid h_t, a_t)$$

 \blacktriangleright with history $h_t = (a_1, s_1, r_1, \ldots, a_t, s_t, r_t)$

Lindauer

Markov Process or Markov Chain

- Memoryless random process (/walk)
 - → Sequence of random states with Markov property
- ▶ Definition of Markov Process M = (S, P)
 - ightharpoonup S is a (finite) set of states ($s \in S$)
 - lacksquare P is dynamics/transition model that specifies $p(s_{t+1}=s'\mid s_t=s)$
- Note: no rewards, no actions
- ▶ If finite number (N) of states, can express P as a matrix

$$P_{i,j} = P(s_i \mid s_j)$$

Mars Rover

s_1	s_2	s_3	S_4	S ₅	s ₆	S ₇

lacktriangle States: Location of rover (s_1,\ldots,s_7)

Mars Rover as Markov Process

$$P = \begin{pmatrix} 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.2 & 0.4 & 0 & 0 & 0 & 0 \\ 0 & 0.4 & 0.2 & 0.4 & 0 & 0 & 0 \\ 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \\ 0 & 0 & 0.4 & 0.2 & 0.4 & 0 & 0 \end{pmatrix}$$

Lindauer

Mars Rover as Markov Process (cont'd)

Exemplary episodes:

- $ightharpoonup s_4, s_5, s_6, s_7, s_7, s_7, \ldots$
- $ightharpoonup s_4, s_4, s_5, s_4, s_5, s_6, \dots$
- $ightharpoonup s_4, s_3, s_2, s_1, \dots$

- ▶ Google's page rank with originally based on a random walk
 - ► Follow links on homepages
 - ▶ Rank websites based on probability to discover this page

- Google's page rank with originally based on a random walk
 - ► Follow links on homepages
 - ▶ Rank websites based on probability to discover this page
- ▶ Modeling of navigation behavior on websites

- Google's page rank with originally based on a random walk
 - Follow links on homepages
 - ▶ Rank websites based on probability to discover this page
- Modeling of navigation behavior on websites
- Early versions of text completion based on Markov processes

- Google's page rank with originally based on a random walk
 - ► Follow links on homepages
 - ▶ Rank websites based on probability to discover this page
- Modeling of navigation behavior on websites
- Early versions of text completion based on Markov processes
- ▶ Used in forecasting of trends, e.g., prices and wind power