МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ И ПРОГРАММНОЙ ИНЖЕНЕРИИ (КАФЕДРА 43)

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ	:	_		
ПРЕПОДАВАТЕЛЬ:				
Старший преподаватель /		/	/	Е. В. Павлов
Старший преподаватель / (должность, учёная степень, звание)	(подпись)	(дата защиты)	· —	(инициалы, фамилия)
ОТЧЕТ О	ЛАБОРАТОР	НОЙ РАБОТЕ	Nº2	
«ОПРЕДЕЛЕНИ: П	Е СТРУКТУР І РЕДМЕТНОЙ		З ДА	ННЫХ
		ВАРЯ ДАННЫ	X»	
ПО КУРСУ: «ПРОЕН	СТИРОВАНИЕ	ПРОГРАММН	ΙЫΧ	СИСТЕМ»
РАБОТУ ВЫПОЛНИЛ (-А) СТУ,	ДЕНТ (-КА):	Z1431	/	М.Д. Быстров
		(номер группы)		(инициалы, фамилия)
		(10 11110)	CONTROLLO	/ 07.01.2024 (дата отчета)
		(подпись (лудент	ај (дата отчета)

ВВЕДЕНИЕ

Актуальность. Для анализа и моделирования бизнес-процессов, как правило, используют модели подобные DFD, в свою очередь для представления данных и отношений между ними применяют модели данных. Одна из наиболее широко используемых моделей данных — диаграмма «сущность-связь» (Entity-Relationship Diagram, ERD), которую также применяют в качестве инструмента для анализа требований. Основное назначение ERD заключается в анализе компонентов данных системы и их связей для определения логической или физической (реализации) структуры базы данных. Все элементы данных, которые представлены на ERD, подробно описывает словарь данных (Data Dictionary), предназначенный для сбора, организации (систематизации) и документирования конкретных фактов о системе.

Цель лабораторной работы:

Изучить способы описания информации об используемых в системе сущностях данных и получить навыки концептуального и логического проектирования при построении базы данных.

Для достижения поставленной в лабораторной работе цели подлежат решению следующие задачи:

Первая часть задания.

В соответствии с индивидуальным вариантом задания необходимо составить логическую модель данных на основе диаграммы «сущность-связь» (ERD) с учётом следующих требований:

- 1) Логическая модель должна содержать не менее 6-8 сущностей, в качестве которых необходимо выбрать наиболее релевантные объекты предметной области (информацию об этих объектах мы должны хранить в первую очередь с точки зрения задач системы);
- 2) Определить полный набор атрибутов для каждой сущности (с точки зрения предметной области и задач, для выполнения которых предназначена система);
- 3) В явном виде указать первичные (РК) и внешние ключи (FK);
- 4) Корректно выполнить реструктуризацию отношений «многие ко многим» (на два отношения «один ко многим») связующие таблицы также могут содержать дополнительные атрибуты, если в этом есть необходимость с точки зрения задач системы;
- 5) Представленная на модели информация, должна находиться в 3NF.

Вторая часть задания.

Определить элементы (атрибуты) выделенных сущностей в словаре данных, который отражает минимальные критерии для проверки элементов данных с точки зрения их отображения, хранения и выполняемых над ними операций. Таким образом, словарь данных должен удовлетворять следующим требованиям:

- 1) Для всех элементов сущностей указана точная или предполагаемая длина элементов в символах (не в байтах) и тип данных, который соответствует заданной длине. Если длина элемента неизвестна, то ограничение длины задано соответствующим типом данных;
- 2) Использован тип данных наименьшего размера, который гарантирует хранение всех возможных значений;
- 3) Указан список разрешенных значений (или значений по умолчанию). В случае неочевидного использования атрибутов в системе, каждый такой атрибут сопровожден соответствующим пояснением;
- 4) Принятые в словаре типы данных раскрыты в ПРИЛОЖЕНИИ к отчету.

Третья часть задания.

Необходимо согласовать выполненную работу с преподавателем и дополнить модель и словарь данных в соответствии с пожеланиями преподавателя. Для новых сущностей (пожелания преподавателя) должны быть корректно показаны связи с другими элементами модели.

Предметная область, в рамках которой выполнена реализация задач:

10 Сервис для хостинга и просмотра видео

1 Логическая модель данных

Рисунок 1 — Фрагмент логической модели данных в виде ER-диаграммы

2 Словарь данных

Принятые в словаре данных обозначения представлены в ПРИЛОЖЕНИИ А. Таблица 1 — Фрагмента словаря данных для рассматриваемой системы

Структура или элемент данных	Тип данных	Длина	Значение
Пользователь (user)			
Идентификатор(id)	INT	10	(РК) Первичный ключ— автоинкрементный номер записи, генерируемый системой, начиная с 1
Имя (name)	VARCHAR	255	Имя пользователя, отображаемое в интерфейсе. Обязательный для заполнения атрибут
Логин(login)	VARCHAR	40	Может содержать только символы латинского алфавита, подчеркивание и цифры. Обязательный для заполнения атрибут
E-mail(email)	VARCHAR	120	Должен соответствовать стандарту RFC 5322
Пароль (password_hash)	VARCHAR	128	Хеш пароля (SHA-512) -длина всегда 128 символов, допустимые символы – цифры и латинские буквы в нижнем регистре

Канал (channel)			
Идентификатор(id)	INT	10	(РК) Первичный ключ — автоинкрементный номер записи, генерируемый системой, начиная с 1
Наименование (name)	VARCHAR	255	Наименование канала. Обязательный для заполнения атрибут
Описание (description)	VARCHAR	4096	Описание канала. Значение по умолчанию – NULL.
Логотип (logo_filename)	VARCHAR	255	Имя файла с логотипом канала. Значение по умолчанию – NULL.
Пользователь (user_id)	INT	10	(FK) Внешний ключ – содержит идентификатор пользователя-владельца канала. Обязательный для заполнения атрибут

Роль (role)			
Идентификатор(id)	INT	10	(РК) Первичный ключ— автоинкрементный номер записи, генерируемый системой, начиная с 1
Имя (name)	VARCHAR	255	Наименование роли. Обязательный для заполнения атрибут
Родитель (parent_id)	INT	10	(FK) Внешний ключ – содержит идентификатор родительской роли. По умолчанию - NULL

Роли пользователей (users_roles)					
Пользователь (user_id)	INT	10	(РК)(FK) Первичный ключ, внешний ключ – идентификатор пользователя		
Роль (role_id)	INT	10	(РК)(FK) Первичный ключ, внешний ключ – идентификатор роли		

Видеозапись (video)			
Идентификатор(id) INT	10	(PK) Первичный ключ — автоинкрементный номер	
идентификатор(іц)	111 1	10	записи, генерируемый системой, начиная с 1

Имя файла	VARCHAR	255	Имя файла видеозаписи. Обязательный для
(filename)	VARCHAR	255	заполнения атрибут
Наименование	VARCHAR	255	Наименование видеозаписи. Обязательный для
(name)	VARCHAR	255	заполнения атрибут
Описание	VARCHAR	4096	Описание видеозаписи. По умолчанию - NULL
(description)	VARCHAR	4090	Описание видеозаписи. по умолчанию - NOLL
			(FK) Внешний ключ – идентификатор канала, на
Канал (channel_id)	INT	10	который загружено видео. Обязательный для
			заполнения атрибут

Подписка (subscription)					
Пользователь	INT	Т 10	(PK)(FK) Первичный ключ, внешний ключ —		
(user_id)	IIVI		идентификатор пользователя		
Канал (channel_id)	INT	10	(PK)(FK) Первичный ключ, внешний ключ –		
канал (channel_iu) — IN I	10	идентификатор канала			

Оценка видео (video_rate)					
Пользователь	INT	INT 10	(РК)(FK) Первичный ключ, внешний ключ —		
(user_id)	IIN I		идентификатор пользователя		
Видео (video_id) INT	INT	10	(PK)(FK) Первичный ключ, внешний ключ —		
видео (video_id)	111 1	10	идентификатор видео		
Ополиса	ВІТ	1	Тип оценки – 0 – дизлайк, 1 – лайк. Обязательный		
Оценка ВІТ	DII	1 1	для заполнения атрибут		

Плейлист (playlist)			
Идентификатор (id)	INT	10	(РК) Первичный ключ— автоинкрементный номер записи, генерируемый системой, начиная с 1
Название(пате)	VARCHAR	255	Название плейлиста. Обязательный для заполнения атрибут
Пользователь (user_id)	INT	10	(FK) Внешний ключ – идентификатор пользователя, создавшего плейлист. Обязательный для заполнения атрибут

Видео в плейлистах (playlists_videos)					
Видео (video_id)	INT	10	(РК)(FK) Первичный ключ, внешний ключ — идентификатор видео		
Плейлист (playlist_id)	INT	10	(РК)(FK) Первичный ключ, внешний ключ – идентификатор плейлиста		

Комментарий (comment)					
Идентификатор (id)	INT	10	(РК) Первичный ключ— автоинкрементный номер записи, генерируемый системой, начиная с 1		
Текст(text)	TEXT	-	Текст комментария. Обязательный для заполнения атрибут		
Пользователь (user_id)	INT	10	(FK) Внешний ключ – идентификатор пользователя. Обязательный для заполнения атрибут		
Видео (video_id)	INT	10	(FK) Внешний ключ — идентификатор видео. Обязательный для заполнения атрибут		

ЗАКЛЮЧЕНИЕ

В результате выполнения данной лабораторной работы были изучены два основных метода моделирования данных:

- ER-диаграмма (графическое представление данных);
- Словарь данных (табличное представление данных).

В соответствии заданием составлен фрагмент логической модели для системы «Сервис для хостинга и просмотра видео». Модель построена на основе ER-диаграммы и включает в себя следующий набор сущностей:

- 1) Пользователь;
- 2) Роль;
- 3) Роли пользователей;
- 4) Канал;
- 5) Видеозапись;
- 6) Подписка;
- 7) Оценка видео;
- 8) Плейлист;
- 9) Видео в плейлистах;
- 10) Комментарий.

Представленная на ER-диаграмме информация, находится в 3NF.

Составлен словарь данных, который включает в себя минимальные критерии для проверки элементов данных, такие как тип данных, длина и возможные или заданные значения.

Представленные в работе методы моделирования данных не являются взаимоисключающими, поскольку выполняют разные задачи. Тем не менее, словарь данных может быть дополнен соответствующими ER-диаграммами (как и наоборот).

Таким образом, можно заключить, что выполненная работа соответствует поставленной задаче и отвечает всем сформулированным в задании требованиям.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Павлов Е. В. Проектирование программных систем: методические указания к выполнению лабораторных работ / Е. В. Павлов. Санкт-Петербург, 2023
- 2. Вигерс, Карл. Разработка требований к программному обеспечению = Software Requirements: пер. с англ.; 3-е издание, дополненное / Карл Виггерс, Джой Битти СПб.: Издательство «BHV», 2020. 736 с.: ил.
- 3. What is Entity Relationship Diagram (ERD)? [Электронный ресурс]. Visual Paradigm, 2023. URL: https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/ (дата обращения: 13.10.2023)
- 4. SQL Data Types for MySQL, SQL Server, and MS Access [Электронный ресурс]. W3Schools, 1999-2023. URL: https://www.w3schools.com/sql/sql_datatypes.asp (дата обращения: 13.10.2023)
- 5. MySQL 8.0 Reference Manual: Chapter 11 Data Types [Электронный ресурс]. Oracle Corporation, 2023. URL: https://dev.mysql.com/doc/refman/8.0/en/data-types.html (дата обращения: 13.10.2023)

приложение а

Принятые в работе типы данных

_				
1	TINYINT	Целочисленный тип размером 1 байт Со знаком от -128 до 127, без знака от 0 до 255		
2	SMALLINT	Целочисленный тип размером 2 байта Со знаком от -32 768 до 32 767, без знака от 0 до 65 535		
3	MEDIUMINT	Целочисленный тип размером 3 байта Со знаком от -8 388 608 до 8 388 607, без знака от 0 до 16 777 215		
4	INT	Целочисленный тип размером 4 байта Со знаком от -2 147 483 648 до 2 147 483 647, без знака от 0 до 4 294 967 295		
5	BIGINT	Целочисленный тип размером 8 байт Со знаком от -2^{63} до 2^{63} -1, без знака от 0 до 2^{64} -1		
6	DECIMAL	Тип с фиксированной точкой DECIMAL (size, d), где size — общее количество цифр (максимум 65), d — количество цифр после точки (максимальное значение для d — 30). Значения по умолчанию — 10 (для size) и 0 (для d).		
		Тип с плавающей точкой размером 4 байта		
7	FLOAT	В текущих версиях данный тип выражается как FLOAT (n), где n определяет, будет ли значение сохранено как FLOAT или преобразовано в DOUBLE. При n от 0 до 23 значение хранится в виде 4-байтового столбца с одинарной точностью, при n от 24 до 53 в виде 8-байтового столбца с двойной точностью (тип DOUBLE). По умолчанию значение n равно 53 (двойная точность).		
		Диапазон значений для одинарной точности: от -3.40E+38 до -1.18E-38, 0 и от 1.18E-38 до 3.40E+38 Диапазон значений для двойной точности: от -1.79E+308 до -2.23E-308, 0 и от 2.23E-308 до 1.79E+308		
8	DOUBLE	Тип с плавающей точкой размером 8 байт (двойная точностью)		
9	BIT	Целочисленный тип данных, который может принимать значения 0, 1 или NULL (используется для хранение битовых значений)		
		BIT (n), где n — количество битов (от 1 до 64)		
4.0	DAME	Хранение даты в формате YYYY-MM-DD		
10	DATE	Поддерживает диапазон от 1000-01-01 до 9999-12-31		
11	DATETIME	Хранение даты и времени в формате YYYY-MM-DD hh:mm:ss Поддерживает диапазон от 1000-01-01 00:00:00 до 9999-12-31 23:59:59		
12	TIME	Хранение значения времени в формате hh:mm:ss Поддерживает диапазон от -838:59:59 до 838:59:59 Используется не только для представления времени дня (которое должно быть меньше 24 часов), но и для прошедшего времени или временного интервала между двумя событиями		
13	YEAR	Хранение значения года в формате YYYY Тип YEAR занимает 1 байт, поэтому поддерживает диапазон от 1901 до 2155 и 0000 (MySQL 8.0 не поддерживает задание года в двузначном формате)		
14	CHAR	Строка фиксированной длины (может содержать буквы, цифры и специальные символы). CHAR (size), где size — длина строки в символах (от 0 до 255, по умолчанию 1)		

	T			
15	VARCHAR	Строка переменной длины (может содержать буквы, цифры и специальные символы). VARCHAR (size), где size — максимальная длина строки в символах (от 0 до 65535)		
16	TINYTEXT	Хранение строки максимальной длины в 255 символов		
17	TEXT	Хранение строки максимальной длины в 65 535 символов		
18	MEDIUMTEXT	Хранение строки максимальной длины в 16 777 215 символов		
19	LONGTEXT	Хранение строки максимальной длины в 4 294 967 295 символов		
20	BINARY	Аналог CHAR, но данные хранятся в виде бинарной строки (бинарная строка состоит только из символов 0 и 1) ВINARY (size), где size — длина строки в байтах (от 0 до 255, по умолчанию 1)		
21	VARBINARY	Аналог VARCHAR, но данные хранятся в виде бинарной строки VARBINARY (size), где size — максимальная длина строки в байтах (от 0 до 65535)		
22	TINYBLOB	Хранение BLOB размером до 255 байт включительно		
23	BLOB	Хранение BLOB размером до 65 535 байт включительно		
24	MEDIUMBLOB	Хранение BLOB размером до 16 777 215 байт включительно		
25	LONGBLOB	Хранение BLOB размером до 4 294 967 295 байт включительно		
26	ENUM	Специальный строковый тип, который принимает только одно значение из фиксированного списка значений. В списке ENUM, который определяется во время создания таблицы в базе данных, можно задать до 65 535 значений. Все недопустимые значения (которых нет в списке) при добавлении заменяются на пустые строки.		