An element e E G in called an identity element if 0*2 || 2 || 2 *0 Yath.

(2) Monoid: A monoid is a semigroup (G, *) with an i dentity element.

be 6, is said to be an inverse of a if a*b=e=b*a. Let a & G, where (F) *) 3 monoid (G, *) where every g monoid. In element

(3) Grow: A group in a eliment has an inverse. associative & monoid closure

group

identity inverse

Semigroups: (N, +), (N, ·), (Z, +), (Z, ·), (B, +) $(\varnothing, \cdot), (\aleph, +), (\aleph, \cdot), (\varepsilon, +), (\varepsilon, \cdot)$

Monoid: (M,), (Z, +), (Z, 0), (Q,+), (Q,), (K,+), (C,+)

Groups: $(\mathbb{Z}, +)$, $(\mathbb{G}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$, $(\mathbb{G}, +)$, $(\mathbb{C}, +)$. (R*,). Here Q* = Q-{0}, C*= C-{0}, R*R-{0}

1K>0 = (0,00) in a group under southiphication.

There is no finite subset of M which is closed under +

The only finite subset of I shich in closed under + in {0}

The only finite subset of M which in closed under. anutiphication in {1}.

are {0}, {1}, {1, -1}, {-1,0,1}, {0,1}. The only finite subsets of Z closed under multiplication

and $e_1 * e_2 = e_2 = e_2 * e_1 \ (: e_1)' :$ Proof: Let e, and e, be two identity element. Then, Theorem: In a monoid (G1, X), identity element is unique. $\ell_1 * \ell_2 = \ell_1 = \ell_2 * \ell_1$ (: ℓ_2 in an identity element)

if $n < -1$, asite $n = -m$ where $m > 1$. Thus, $a^n = a^{-1} * \cdots * a^{-1} (m-times)$	Notation: • The inverse of a in denoted by a!		are such that $a \times b = e = b \times a$ and $a \times c = e = c \times a$	15008: a E G has an inverse. Suppose that	inverse, then the inverse is unique. Hence, in a group	
$a^{n} = a^{-1} * \cdots * a^{-1} (m-time)$	d by a!	(b*a)*c=8*c=c	and QXC =e=cxa.	Suppose that b, c 6 G	Hence, in a group.	

For n71, $\mathbb{Z}_n = \{0,1,\dots,n-1\}$ in a group under addition Z, in a monoid under sombplication medulo n.

()(n) = the elements of Zn having inverse under modulo nication modulo ni

U(n) has $\varphi(n)$ number of elements. $= \langle R | 1 \leq k \leq n, gcd(k, n) = 1 \rangle$

 $9n (14) = \{1,3\}, 1=1, 3=3$ $()(5) = \{1,2,3,4\}, 1=1, 2=3, 3=2, 4=4.$

to be infinite. $\{x \in |Z_n| = n, |U(n)| = \varphi(n), \text{ order of }(Z, +) \text{ in finite.}$ It is infinite, then the order of is in defined to be infinite. O(a) or (a). If no such n exist, then O(a) in defined order of G in defined to be the number of elements in G. Let a 6 Gr. The smallest positive integer in satisfying The order of G is denoted by 1G1. Definition: Let Gibe a group. It Go in finite, then the a = e is called the order of a, and in denoted by

• $9n \mathbb{Z}_6$, o(0) = 1, o(1) = 6, o(2) = 3, o(3) = 2, o(4) = 3, o(5) = 6. • In $U(6) = \{1, 5\}, O(1) = 1 \text{ and } O(5) = 2.$ $\underline{\xi}x$: In any group, order of the identity element is 1.

• In (Z, +), if $n \neq 0$, then o(n) in finite. $9n \ \cup (12) = \{1, 5, 7, 11\}, \ o(1) = 1, \ o(5) = 2, \ o(7) = 2,$ 0(11)=2. #

by $\langle \alpha \rangle$ the set $\langle \alpha \rangle = \sqrt{|\alpha^R|} \times \langle Z \rangle$

Let G be a group. For a EG, we denote

Fact that $O(\alpha) = n$. Hince, e, a, \dots, a^{n-1} are all distinct. elements. Suppose that a'= a' for some i'< 1 and We first prove that e, a, at, ..., and are all distinct Thursem: If O(a)=n in a group on, then If O(a) in infinite, then $a^1 \neq a^3$ whenever $a^2 \neq j$. Since 0< j-i<n, so this is a contradiction to the me have $\langle a \rangle = \langle a^k | R \in \mathbb{Z} \rangle$ Then, $a': a' = a^{1-i} = 2a^{1-i} = e$ $0 \le i, 1 < n-1$. $\langle \alpha \rangle = \langle e, \alpha, \alpha, \ldots, \alpha^{n-1} \rangle$

: It O(G) = 00, then a' + a' whenever i + j. For the 2nd part, let O(a) = 00 but a = a for some Hence, $\langle \alpha \rangle = \{ \alpha^k \mid k \in \mathbb{Z} \} = \{ e, \alpha, \alpha, \cdots, \alpha^{-1} \}$ Now, let at E <a>. By division algorithm, we have Then, we have $\alpha^{3-i} = e$ $a = a^{n\cdot t+r} = (a^n)^1 \cdot a^r = e \cdot a^r = a^r$ R=n:9+x, where 0<x<n-1. $\Rightarrow O(\alpha) < j-i$, which is a contradiction as $O(\alpha)=\infty$ ·P>2