1. Introduction

1.1. Cubic equations over \mathbb{C}

- For a polynomial equation, a solution by radicals is a formula for solutions using only addition, subtraction, multiplication, division and radicals $\sqrt[m]{\cdot}$ for $m \in \mathbb{N}$.
- For general cubic equation $x^3 + a_2x^2 + a_1x + a_0 = 0$:
 - Tschirnhaus transformation is substitution $t = x + \frac{a_2}{3}$, giving

$$t^3 + pt + q = 0$$
, $p = \frac{-a_2^2 + 3a_1}{3}$, $q = \frac{2a_2^3 - 9a_1a_2 + 27a_0}{27}$

This is a **reduced** cubic equation.

- When t = u + v, $t^3 (3uv)t (u^3 + v^3) = 0$ which is in the reduced cubic form with p = -3uv, $q = -(u^3 + v^3)$.
- We have

$$(y-u^3)(y-v^3) = y^2 - (u^3 + v^3)y + u^3v^3 = y^2 + qy - \frac{p^3}{27} = 0$$

so
$$u^3, v^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$$
.
• So a solution to $t^3 + pt + q = 0$ is

$$t = u + v = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}$$

The other solutions are $\omega u + \omega^2 v$ and $\omega^2 u + \omega v$ where $\omega = e^{2\pi i/3}$ is the 3rd root of unity. This is because u and v each have three solutions indepedently to $u^3, v^3 = -\frac{q}{2} \pm \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}$, but also $uv = -\frac{p}{3}$.

- Remark: the above method doesn't work for fields of characteristic 2 or 3 since the formulas involve division by 2 or 3 (which is dividing by zero in these respective fields).
- For general cubic equation $x^3 + a_3x^3 + a_2x^2 + a_1x + a_0 = 0$:
 - Substitution $t = x + \frac{a_3}{4}$ gives **reduced** quartic equation

$$t^4 + pt^2 + qt + r = 0$$

• We then manipulate the polynomial so that it is the sum or difference of two squares and use $a^2 + b^2 = (a + ib)(a - ib)$ or $a^2 - b^2 = (a + b)(a - b)$:

$$(t^2 + w)^2 + (p - 2w)t^2 + qt + (r - w^2) = 0$$

• $(p-2w)t^2+qt+(r-w^2)=0$ is a square iff its discriminant is zero:

$$q^2 - 4(p - 2w)(r - w^2) = 0 \iff w^3 - \frac{1}{2}pw^2 - rw + \frac{1}{8}(4pr - q^2) = 0$$

This **cubic resolvent** is solvable by radicals. Taking any of the solutions and substituting for w gives a sum or difference of two squares in t. The quadratic factors can then be solved.

1

1.2. Galois theory for quadratic equations

2. Fields and polynomials

2.1. Basic properties of fields

- **Definition**: ring R is **field** if every element of $R \{0\}$ has multiplicative inverse and $1 \neq 0 \in R$.
- Lemma: every field is integral domain.
- **Definition**: field homomorphism is a ring homomorphism $\varphi: K \to L$ between fields:
 - $\varphi(a+b) = \varphi(a) + \varphi(b)$
 - $\varphi(ab) = \varphi(a)\varphi(b)$
 - $\varphi(1) = 1$

These imply $\varphi(0) = 0$, $\varphi(-a) = -\varphi(a)$, $\varphi(a^{-1}) = \varphi(a)^{-1}$.

- Lemma: let $\varphi: K \to L$ homomorphism.
 - $\operatorname{im}(\varphi) = \{ \varphi(a) : a \in K \}$ is a field.
 - $\ker(\varphi) = \{a \in K : \varphi(a) = 0\} = \{0\}$, i.e. φ is injective.
- **Definition**: subfield K of field L is subring of L where K is a field. L is a field extension of K.
- The above lemma shows the image of $\varphi: K \to L$ is a subfield of L.
- Lemma: intersections of subfields are subfields.
- Prime subfield of L: intersection of all subfields of field L.
- **Definition**: **characteristic** char(K) of field K is

$$\mathrm{char}(K)\coloneqq \min(\{0\}\cup\{n\in\mathbb{N}:\chi(n)=0\})$$

where $\chi : \mathbb{Z} \to K$, $\chi(m) = 1 + \dots + 1$ (*m* times).

- Example: $\operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = 0$, $\operatorname{char}(\mathbb{F}_p) = p$ for p prime.
- Lemma: for any field K, char(K) is either 0 or a prime.
- Theorem:
 - $\operatorname{char}(K) = 0$ iff \mathbb{Q} is the prime subfield of K.
 - $\operatorname{char}(K) = p > 0$ iff \mathbb{F}_p is the prime subfield of K.
- Note $p \mid {p \choose i}$ so $(a+b)^p = a^p + b^p$.

2.2. Polynomials over fields

- **Degree** of $f(x) = a_0 + a_1 x + \dots + a_n x_n$, $a_n \neq 0$ is $\deg(f(x)) = n$.
- $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$ and $\deg(f(x) + g(x)) = \max\{\deg(f(x)), \deg(g(x))\}$ with equality if $\deg(f(x)) \neq \deg(g(x))$.
- Degree of zero polynomial is $deg(0) = -\infty$.
- Only invertible elements in K[x] are non-zero constants $f(x) = a_0 \neq 0$.
- Similarities between \mathbb{Z} and K[x] for field K:
 - K[x] is integral domain.
 - There is a division algorithm for K[x]: for $f(x), g(x) \in K[x]$, $\exists ! q(x), r(x) \in K[x]$ with $\deg(r(x)) < \deg(g(x))$ such that

$$f(x) = q(x)g(x) + r(x)$$

• Every $f(x), g(x) \in K[x]$ have greatest common divisor gcd(f(x), g(x)) unique up to multiplication by non-zero constants. By Euclidean algorithm for polynomials,

$$\exists a(x), b(x) \in K[x] : a(x)f(x) + b(x)g(x) = \gcd(f(x), g(x))$$

• Can construct field from K[x]: field of fractions of K[x] is

$$K(x) = \operatorname{Frac}(K[x]) = \left\{ \frac{f(x)}{g(x)} : f(x), g(x) \in K[x], g(x) \neq 0 \right\}$$

(We can construct the field of fractions for any integral domain).

- K[x] is PID and UFD.
- **Definition**: $f(x) \in K[x]$ irreducible in K[x] if
 - $\deg(f(x)) \ge 1$ and
 - $f(x) = g(x)h(x) \Longrightarrow g(x)$ or h(x) is constant

2.3. Tests for irreducibility

- If f(x) has linear factor in K[x], it has root in K[x].
- Rational root test: if $f(x) = a_0 + \cdots + a_n x^n \in \mathbb{Z}[x]$ has rational root $\frac{b}{c} \in \mathbb{Q}$ with gcd(b,c) = 1 then $b \mid a_0$ and $c \mid a_n$. This doesn't show f is irreducible for $deg(f(x)) \geq 4$.
- Gauss's lemma: let $f(x) \in \mathbb{Z}[x]$, f(x) = g(x)h(x), g(x), $h(x) \in \mathbb{Q}[x]$. Then $\exists r \in \mathbb{Q} : rg(x), r^{-1}h(x) \in \mathbb{Z}[x]$.
- **Example**: let $f(x) = x^4 3x^3 + 1 \in \mathbb{Q}[x]$. Using the rational root test, $f(\pm 1) \neq 0$ so no linear factors in $\mathbb{Q}[x]$. Checking quadratic factors, let

$$f(x) = (ax^2 + bx + c)(rx^2 + sx + t), \quad a, b, c, r, s, t \in \mathbb{Z}$$
 by Gauss's lemma

So $1 = ar \Rightarrow a = r = \pm 1$. $1 = ct \Rightarrow c = t = \pm 1$. -3 = b + s and 0 = c(b + s): contradiction. So f(x) irreducible in $\mathbb{Q}[x]$.

• **Example**: let $f(x) = x^4 - 3x^2 + 1 \in \mathbb{Q}[x]$. The rational root test shows there are no linear factors. Checking quadratic factors, let

$$f(x) = (ax^2 + bx + c)(rx^2 + sx + t), \quad a, b, c, r, s, t \in \mathbb{Z}$$
 by Gauss's lemma

As before, $a = r = \pm 1$, $c = t = \pm 1$. $0 = b + s \Rightarrow b = -s$, $-3 = at + bs + cr = -b^2 \pm 2$. b = 1 works. So $f(x) = (x^2 - x - 1)(x^2 + x - 1)$.

- **Proposition**: let $f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$. If exists prime $p \nmid a_n$ such that $\overline{f}(x)$ is irreducible in $\mathbb{F}_p[x]$, then f(x) irreducible in $\mathbb{Q}[x]$.
- Example: let $f(x) = 8x^3 + 14x 9$. Reducing mod 7, $\overline{f}(x) = x^3 2 \in \mathbb{F}_7[x]$. No roots exist for this, so f(x) irreducible in $\mathbb{Q}[x]$. For polynomials, no p is suitable, e.g. $f(x) = x^4 + 1$.
- Gauss's lemma works with any UFD R instead of \mathbb{Z} and field of fractions $\operatorname{Frac}(R)$ instead of \mathbb{Q} : let F field, R = F[t], K = F(t), then $f(x) \in R[x]$ irreducible in K[x] iff f(x) has no proper factors in R[x].

- Eisenstein's criterion: let $f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$, prime $p \in \mathbb{Z}$ such that $p \mid a_0, \dots, p \mid a_{n-1}, p \nmid a_n, p^2 \nmid a_0$. Then f(x) irreducible in $\mathbb{Q}[x]$.
- Eisenstein's criterion generalises to UFD R instead of \mathbb{Z} , $\operatorname{Frac}(R)$ instead of \mathbb{Q} .
- Example: let $f(x) = x^3 3x + 1$. Consider $f(x 1) = x^3 3x^2 + 3$. Then by Eisenstein's criterion with p = 3, f(x 1) irreducible in $\mathbb{Q}[x]$ so f(x) is as well, since factoring f(x 1) is equivalent to factoring f(x).
- Example: p-th cyclotomic polynomial is

$$f(x) = \frac{x^p - 1}{x - 1} = 1 + \dots + x^{p-1}$$

Now

$$f(x+1) = \frac{(1+x)^p - 1}{1+x-1} = x^{p-1} + px^{p-2} + \dots + \binom{p}{p-2}x + p$$

so can apply Eisenstein with p.

3. Field extensions

3.1. Definitions and examples

- **Definition**: field extension L/K is field L containing subfield K. Can specify homomorphism $\iota: K \to L$ (which is injective)
- Example:
 - \mathbb{C}/\mathbb{R} , \mathbb{C}/\mathbb{Q} , \mathbb{R}/\mathbb{Q} .
 - $L = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is field extension of \mathbb{Q} . $\mathbb{Q}(\theta)$ is field extension of \mathbb{Q} where θ is root of $f(x) \in Q[x]$.
 - $L = \mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$ is smallest subfield of \mathbb{R} containing \mathbb{Q} and $\sqrt[3]{2}$.
 - L = K(t) is field extension of K.
- **Definition**: let L/K field extension, $S \subseteq L$. Then K with S adjoined, K(S), is minimal subfield of L containing K and S. If |S| = 1, L/K is a simple extension.
- Example: $\mathbb{Q}(\sqrt{2}, \sqrt{7}) = \{a + b\sqrt{2} + c\sqrt{7} + d\sqrt{14} : a, b, c, d, \in \mathbb{Q}\}$ is \mathbb{Q} with $S = \{\sqrt{2}, \sqrt{7}\}.$
- **Example**: \mathbb{R}/\mathbb{Q} is not simple extension.
- **Definition**: a **tower** if a chain of field extensions, e.g. $K \subset M \subset L$.

3.2. Algebraic elements and minimal polynomials

• **Definition**: let L/K field extension, $\theta \in L$. Then θ is algebraic over K if

$$\exists 0 \neq f(x) \in K[x] : f(\theta) = 0$$

Otherwise, θ is transcendental over K.

- Example: for $n \ge 1$, $\theta = e^{2\pi i/n}$ is algebraic over \mathbb{Q} (root of $x^n 1$).
- Example: $t \in K(t)$ is transcendental over K.

- Lemma: the algebraic elements in K(t)/K are precisely K.
- Lemma: let L/K field extension, $\theta \in L$. Define $I_K(\theta) := \{f(x) \in K[x] : f(\theta) = 0\}$. Then $I_K(\theta)$ is ideal in K[x] and
 - If θ transcendental over K, $I_K(\theta) = \{0\}$
 - If θ algebraic over K, then exists unique monic irreducible polynomial $m(x) \in K[x]$ such that $I_K(\theta) = \langle m(x) \rangle$.
- **Definition**: for $\theta \in L$ algebraic over K, **minimal polynomial** of θ over K is the unique monic polynomial $m(x) \in K[x]$ such that $I_K(\theta) = \langle m(x) \rangle$. The **degree** of θ over K is $\deg(m(x))$.
- Remark: if $f(x) \in K[x]$ irreducible over K, monic and $f(\theta) = 0$ then f(x) = m(x).
- Example:
 - Any $\theta \in K$ has minimal polynomial $x \theta$ over K.
 - $i \in \mathbb{C}$ has minimal polynomial $x^2 + 1$ over \mathbb{R} .
 - $\sqrt{2}$ has minimal polynomial $x^2 2$ over \mathbb{Q} . $\sqrt[3]{2}$ has minimal polynomial $x^3 2$ over \mathbb{Q} .

3.3. Constructing field extensions

• Lemma: let K field, $f(x) \in K[x]$ non-zero. Then

$$f(x)$$
 irreducible over $K \iff K[x]/\langle f(x) \rangle$ is a field

- Theorem: let $m(x) \in K[x]$ irreducible, monic, $K_m \coloneqq K[x]/\langle m(x) \rangle$. Then
 - K_m/K is field extension.
 - Let $\theta = \pi(x)$ where $\pi : K[x] \to K_m$ is canonical projection, then θ has minimal polynomial m(x) and $K_m = K(\theta)$.
- **Definition**: let L_1/K , L_2/K field extensions, $\varphi: L_1 \to L_2$ field homomorphism. φ is K-homomorphism if $\forall a \in K, \varphi(a) = a$ (φ fixes elements of K).
 - If φ is isomorphism then it is **K-isomorphism**.
 - If $L_1 = L_2$ then φ is **K-automorphism**.
- Example:
 - Complex conjugation $\mathbb{C} \to \mathbb{C}$ is \mathbb{R} -automorphism.
 - Let K field, $\operatorname{char}(K) \neq 2$, $\sqrt{2} \notin K$, so $x^2 2$ is minimal polynomial of $\sqrt{2}$ over K, then $K\left(\sqrt{2}\right) \cong K[x]/\langle x^2 2\rangle$ is field extension of K and $a + b\sqrt{2} \to a b\sqrt{2}$ is K-automorphism.
- **Proposition**: let L/K field extension, $\tau \in L$ with $m(\tau) = 0$ and $K_L(\tau)$ be minimal subfield of L containing K and τ . Then exists unique K-isomorphism $\varphi : K_m \to K_L(\tau)$ such that $\varphi(\theta) = \tau$.
- **Proposition**: let θ transcendental over K, then exists unique K-isomorphism $\varphi: K(t) \to K(\theta)$ such that $\varphi(t) = \theta$:

$$\varphi\left(\frac{f(g)}{g(t)}\right) = \varphi\left(\frac{f(\theta)}{g(\theta)}\right)$$