Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 4 zur Homologischen Algebra I

- Motto -

Aufgabe 1. Äquivalenzrelationen I

Sei X eine Menge und $R \subseteq X \times X$ eine Relation auf X (also lediglich eine Teilmenge, nicht unbedingt eine Äquivalenzrelation). Sei (\sim_R) der Schnitt über alle Äquivalenzrelation S auf X, welche R umfassen.

- a) Zeige: Der Schnitt (\sim_R) ist wieder eine Äquivalenzrelation auf X und zwar die feinste, die R umfasst. (Was bedeutet das? Für jede weitere Äquivalenzrelation . . .)
- b) Zeige, dass diese auch explizit (prädikativ) wie folgt beschrieben werden kann:

$$x \sim_R y \iff \exists n \geq 0: \exists x_1, \dots, x_n \in X. \ xRx_1 \wedge x_1Rx_2 \wedge \dots \wedge x_{n-1}Rx_n \wedge x_nRy.$$

c) Sei $f: X \to Y$ eine Abbildung. Gelte f(x) = f(y) für alle $x, y \in X$ mit xRy. Zeige: Die Setzung $\bar{f}: X/\sim_R \to Y$, $[x] \mapsto f(x)$ ist wohldefiniert.

Hinweis: Spannender ist es, wenn man diese Teilaufgabe direkt mit a) und ohne Verwendung von b) löst.

Aufgabe 2. Äquivalenzrelationen II

Seien Z eine Menge und R_1 und R_2 Äquivalenzrelationen auf Z. Sei \sim folgende Relation auf Z/R_1 :

$$K \sim L \quad :\iff \quad \exists x \in K, y \in L : xR_2y.$$

Sei ferner R die feinste Äquivalenzrelation auf Z, welche $R_1 \cup R_2$ umfasst.

- a) Wieso ist \sim im Allgemeinen keine Äquivalenz
relation? (Bemühe dich nicht, ein konkretes Gegenbeispiel aufzustellen.)
- b) Sei \approx die feinste Äquivalenzrelation auf Z/R_1 , welche \sim umfasst. Gib eine kanonische Abbildung $Z/R \to (Z/R_1)/\approx$ an und zeige, dass sie eine wohldefinierte Bijektion ist.
- c) Sei Z sogar ein topologischer Raum. Zeige dann, dass die Bijektion aus Teilaufgabe b) sogar ein Homöomorphismus ist. Die diversen Faktormengen sollen dabei die Quotiententopologie tragen.

Aufgabe 3. Triangulationen von Prismen

Bestimme alle nichtdegenerierten Simplizes der simplizialen Mengen $D[1,2],\ D[1,n]$ und D[2,2].

Aufgabe 4. Homotopien simplizialer Abbildungen

Bezeichne allgemein $X \times Y$ das kartesische Produkt simplizialer Mengen X und Y; es gilt also $(X \times Y)_n = X_n \times Y_n$ für alle $n \ge 0$.

- a) Zeige, dass simpliziale Abbildungen $I \to X \times Y$ in kanonischer 1:1–Korrespondenz zu Paaren von simplizialen Abbildungen $I \to X, I \to Y$ stehen.
- b) Definiere zwei sinnvolle simpliziale Abbildungen $p_0, p_1 : X \to \Delta[1] \times X$ in Analogie zu den stetigen Abbildungen $x \mapsto (0, x)$ bzw. $x \mapsto (1, x)$, die zwischen einem topologischen Raum und seinem Produkt mit dem Einheitsintervall verlaufen.

Simpliziale Abbildungen $f,g:X\to Y$ heißen genau dann $einfach\ homotop$, wenn es eine simpliziale Abbildung $h:\Delta[1]\times X\to Y$ gibt sodass $f=h\circ p_0$ und $g=h\circ p_1$. Das definiert keine Äquivalenzrelation auf der Menge der simplizialen Abbildungen von X nach Y; die feinste solche Äquivalenzrelation, die einfach homotope Abbildungen identifiziert, heißt Homotopie.

c) Sei für $0 \le i \le n$ die Abbildung $\operatorname{pr}_i : \Delta[n] \to \Delta[n]$ diejenige, die "alles auf die *i*-te Ecke projiziert". Konkret gelte also $(\operatorname{pr}_i)_n(f) = u_k$ für alle $n, k \ge 0$ und $f : [k] \to [n]$. Dabei bezeichne u_k die konstante Abbildung $[k] \to [n]$ mit Wert i.

Zeige, dass die Abbildung pr_n zur Identitätsabbildung homotop ist.

d) Zeige: Sind f und g homotop, so auch $q \circ f \circ p$ und $q \circ g \circ p$.

$$X' \xrightarrow{p} X \xrightarrow{q} Y \xrightarrow{q} Y'$$

e) Schwierige und schwammige Bonusaufgabe zum Grübeln. Inwieweit impliziert schwache Homotopie von simplizialen Abbildungen die gewöhnliche topologie Homotopie der zugehörigen geometrischen Realisierungen? Wie sehen gegebenenfalls solche Homotopien aus?

- Es folgt noch eine weitere Aufgabe. -