Chapman & Hall/CRC Computer & Information Science Series

Computer-Aided Graphing and Simulation Tools for AutoCAD Users

P. A. Simionescu

Chapman & Hall/CRC Computer & Information Science Series

This book allows readers to expand the versatility of AutoCAD® design and documentation software. It provides ready-to-use procedures and computer programs for solving problems in a variety of application areas, including computer-aided design, data visualization, evolutionary computation, numerical methods, single and multicriteria optimization, linkage and robot kinematics, cam mechanisms, and involute gears.

Students, engineers, and scientists alike will benefit from the text's illustrative examples, first-rate figures, and many original problem-solving approaches, as well as the included software tools for producing high-quality graphs and simulations. Those who use AutoCAD LT, or have access to only a DXF viewer, can also make substantial use of this book and the accompanying programs and simulations.

Features

- Provides access to unique software tools for data visualization, CAD format conversion, and computer-generated animations and simulations
- Describes new multidimensional visualization techniques and evolutionary algorithms
- Discusses new approaches to cam mechanism design and analysis
- Introduces a series of procedures for the kinematic simulation of a wide variety of planar linkage mechanisms
- Contains illustrative examples, first-rate figures, and many original problem-solving approaches

Read the Reviews:

"This is a unique book in that it covers a variety of engineering problems, ranging from graph plotting and optimization to mechanical component analysis. The figures are great and the procedures are described with clearly explained computer codes."

- Professor Kalyanmoy Deb, Michigan State University

"Simionescu's book collects the long experience of the author in teaching kinematics of mechanisms and machines by using software environments commonly available to students and professionals. It shows how graphic tools can be employed in solving real problems in mechanical engineering."

Professor Raffaele Di Gregorio, University of Ferrara, Italy

6000 Broken Sound Parkway, NW Suite 100, Boca Raten, FL 13487 711 Third Avenue New York, NY 10017 2 Park Square, Milton Park Abrogdon, Oxon OX14 4RN, UK

P. A. Simionescu

Computer-Aided Graphing and Simulation Tools for AutoCAD Users, Chapman & Hall/CRC, 2014

Book website: http://faculty.tamucc.edu/psimionescu/cagstau.html

Preface

Over the course of almost two decades I developed a number of Pascal and AutoLISP for AutoCAD programs and Working Model 2D simulations that I used in my publications and presentations. Occasionally, people aware of these computer applications asked for evaluation copies, which I gladly provided them with. Such requests encouraged me to spend more time improving and documenting them, and ultimately determined me to make these application and the algorithms behind them available to a wider audience. It is how the idea of writing this book was born.

The intended readership for this book is students, scholars, scientists and engineers interested in information visualization, motion simulation of mechanical systems, numerical analysis, optimization and evolutionary computation that have access to **AutoCAD** and **Working Model 2D** software. Those who use **AutoCAD LT** software, or have access to only a **DXF** viewer, can still make substantial use of this book and of the accompanying programs and simulations.

The first two chapters describe in detail plotting programs **D_2D** and **D_3D** which have features not yet available in popular software like **MATLAB**, **Excel** or **MathCAD**. Such features are showing extrema and zeros of 2D graphs, automatic numbering of data points, controlling the plot appearance from within input data file, plotting inequalities of two variables, trimming the portions of function surface that exceed the plot box, projecting the gradient on the bottom plane in 3D plots, logarithmically spacing level curves, **DXF** export etc.

Chapter 3 introduces a collection of Pascal programs and subroutines for generating dynamic 2D graphs with scan lines and scan points, for manipulating ASCII files and for viewing R12 DXF and PLT AutoCAD export files. It also describes two AutoLISP applications for plotting curves and surfaces and for generating 3D models consisting of various geometric primitives and predefined blocks, using vertex coordinates and model description read from file.

Chapter 4 discusses several algorithms for finding the zeros and minima of function of one or more variables, and for multicriteria optimization. Also presented is a new evolutionary algorithm that explores the boundary between feasible and unfeasible spaces in optimization problems - it is known that in many practical problems the minimum is bounded. Numerical examples done with each of these algorithms are accompanied by plots and animations generated using the **D 2D** and **D 3D** programs.

Chapters 5 and 6 introduce a series of subroutines, accompanied by examples and by the underlying theory, for the kinematic simulation of a wide variety of planar linkage mechanisms.

Chapter 7 deals with the synthesis of the profile of rotating disc cams operating in conjunction with various type followers (pointed, with roller, flat, translating or oscillating). Iterative methods for analyzing the respective cam-follower mechanisms are also presented. In addition, a procedure for synthesizing the follower motion using **AutoCAD** splines is described.

Chapter 8 reviews the theory of planar involute gears and presents a number of **Working Model 2D** simulations and an **AutoLISP** application to illustrate this theory. The **AutoLISP** program is particularly useful because it allows the generation, directly inside **AutoCAD**, of involute gear profiles, internal or external, with any number of teeth.

Chapter 9 is a collection of problems and applications from areas like dynamical systems, vibrations, kinematics, robotics, multidimention visualization, etc., solved using the software tools presented in the earlier chapters, or using **Working Model 2D**.

Source codes and executables of the programs and simulations discussed in the book and the referred animation files are available upon request from the author.

While every effort has been made to provide error free analytical derivations and software implementations of these derivations, in no event shall the author or publisher be liable for any claim, damages or other liability in connection with the use of the material in this book and of the accompanying computer programs and simulations.

As with any text, the clarity of the writing can be improved and the collection of examples expanded. The **AutoLISP** and Pascal programs provided with this book can also sustain improvements, or can be translated into other programming languages. I would therefore appreciate any comments, suggestions and reports of errors. In particular I would welcome any serious offer of collaboration on future editions. So my respected reader, before posting critical reviews about this book, please read once again this last paragraph.

Thank you,

P.A. Simionescu

April, 2014

pa.simionescu@gmail.com

Contents

Chapter 1. Graphical Representation of Univariate Functions and of (x,y) Datasets:	
The D_2D Program	1
1.1 Analytical functions plot	5
1.2 Showing extrema and zeros of graphs	7
1.3 Stem and area plots: Length of and area under a curve	10
1.4 Windowing and panning	13
1.5 Numbering data points	13
1.6 Plotting functions with singularities	15
1.7 Controlling plot features from within the input data file	19
1.8 Plotting scattered data	23
1.9 Plotting ordered data and histograms	25
1.10 Plotting inequalities	28
1.11 Parametric plots	30
1.12 Animations	40
1.13 References and further readings	47
Chapter 2. Graphical Representation of Functions of Two Variables:	
The D_3D Program	48
2.1 How D_3D works?	51
2.2 D_3D input data structure	54
2.3 Mesh plots and the visibility problem	58
2.4 Node and stem plots	61
2.5 Equally spaced level curve plots	63
2.6 Defect-free level-curve plots	64
2.7 Logarithmically spaced level curves	66
2.8 File export and DXF layer organization	69
2.9 Axes reversal and plot rotation	71
2.10 Gradient plots	72
2.11 Truncated 3D surface representations	74
2.12 Constrained functions and inequality plots	81
2.13 Color-rendered plots	86
2.14 Plotting multiple surfaces on the same graph	90
2.15 Implementation details of the D_3D program	94
2.16 References and further readings	96
Chapter 3. Programs and Subroutines for Data Visualization and Data Format Conversion	97
3.1 The LibPlots subroutines for generating 2D plots	98
3.1.1 Basic 2D plotting using LibPlots	98
3.1.2 Multiple plots with markers	101
3.1.3 Plotting large data sets and data read from files	103
3.1.4 Dynamic plots with scan lines and scan points	105
3.3 The Util~TXT program for manipulation of ASCII files	107
3.3.1 Linear interpolation	107
3.3.2 Cubic-spline interpolation	109
3.3.3 B-spline interpolation	110
3.3.4 Numerical differentiation	111
3.3.5 Angle-value rectification	112
3.3.6 Data decimation	113

2.2.7 DVI output of 2D and 2D polylings	115
3.3.7 DXF output of 2D and 3D polylines	
3.4 The Util~DXF program for visualization of R12 DXF files	115
3.4.1 Extracting polyline vertex coordinates 3.4.2 Raster curve digitization using Util~DXF and Util~TXT	115 117
3.4.3 Transferring level curves from D 3D to D 2D	117
3.5 The Util~PLT program for manipulating PLT files	121
3.5.1 Flattening and retouching plots created with D 2D	121
3.5.2 Alphanumeric character discretization example	124
3.6 G 3D.LSP program for generating 3D curves and surfaces inside AutoCAD	124
3.6.1 3D polyline plotting using G 3D.LSP	126
3.6.2 3D surface plotting using G 3D. LSP	129
3.7 M 3D.LSP program for automatic 3D model generation and animation inside AutoCAD	131
3.7.1 Animation of DXF files with multiple layers using M 3D.LSP	131
3.7.2 3D model generation with data read from file	131
3.7.3 Automatic insertion of AutoCAD blocks	133
3.8 References and further readings	138
• • • • • • • • • • • • • • • • • • •	
Chapter 4. Root Finding and Minimization or Maximization of Functions	139
4.1 Brent's Zero algorithm for root finding of nonlinear equations	139
4.2 Brent's method for minimizing functions of one variable	143
4.3 Nelder-Mead algorithm for multivariate function minimization	146
4.4 Handling constraints in optimization problems	151
4.5 An evolutionary algorithm for bounded-optimum search	158
4.6 Multicriteria optimization problems	160
4.6.1 Cantilever beam design example	161
4.6.2 Design space and performance space plots	162
4.6.3 Pareto front search	165
4.7 References and further readings	170
Chapter 5. Subroutines for Motion Simulation of Planar Mechanical Systems	171
5.1 Sample program using LibMec2D subroutines	171
5.2 Joints and actuators available for mechanical system simulation	173
5.2.1 Kinematic analysis of input rotational members	174
5.2.2 Subroutines Crank and gCrank	176
5.2.3 Kinematics analysis of input translational members	178
5.2.4 Subroutines Slider and gSlider	180
5.3 Position, velocity and acceleration of points and moving links	183
5.3.1 Subroutines Offset and OffsetV	186
5.3.2 Subroutines AngPVA, Ang3PVA and Ang4PVA	188
5.4 Position, velocity and acceleration in relative motion: subroutine VarDist	189
5.5 Coriolis acceleration example: subroutine PutVector	190
5.6 Model validation: subroutine ntAccel	193
5.7 Workspace limits and inquiry subroutines PutDist and PutAng	197
5.8 Adding complex shapes to simulations. Subroutines Base, Link, gShape and Shape	195
5.9 Simulations accompanied by plots with scan lines and scan points	202
5.10 References and further readings	206
Chapter 6. Kinematic Analysis of Planar Linkage Mechanisms using Assur Groups	207
6.1 Assur-group based kinematic analysis of linkage mechanisms	207
6.2 The intersection between two circles. Subroutine Int2Cir	211

6.3 Velocity and acceleration of the intersection points between two circles: Subroutine Int	213
6.4 Kinematics of the RTRTR double linear input actuator: Subroutines RTRTRc	213
6.5 Kinematics of the RTRTR double linear input actuator using a vector-equation approach:	
Subroutine RTRTR	220
6.6 Motion transmission characteristics of RTRTR based mechanisms	224
6.7 Kinematic analysis of the RTRR oscillating-slide actuator using equations of constraint:	
RTRRC	227
6.8 Kinematic analysis of the RTRR oscillating-slide actuator using a vector loop approach:	
RTRR	230
6.9 Kinematic analysis of the RRR dyad: Subroutines RRRc and RRR	232
6.10 Kinematic analysis of the RRT dyad using a vector loop approach	235
6.10.1 The RRT_ dyadic isomer: Subroutine RRT_	235
6.10.2 The RR_T dyadic isomer: Subroutine RR_T	240
6.11 Kinematic analysis of the RTR dyad using a vector loop approach: Subroutine RT_R	243
6.12 Kinematic analysis of the TRT dyad using a vector loop approach	249
6.12.1 The T_R_T dyadic isomer: Subroutine T_R_T	249
6.12.2 The _TRT_ dyadic isomer: Subroutine _TRT_	255
6.12.3 The T_RT_ dyadic isomer: Subroutine T_RT_	260
6.13 Kinematic analysis of the RTT dyad using a vector loop approach	264
6.13.1 The R_T_T dyadic isomer: Subroutine R_T_T	265
6.13.2 The R_TT_ dyadic isomer: Subroutine R_TT_	270
6.13.3 The RT_T_ dyadic isomer: Subroutine RT_T_	275
6.13.4 The RTT dyadic isomer: Subroutine RTT	280
6.14 References and further readings	285
Chapter 7. Design and Analysis of Disk Cam Mechanisms	286
7.1 Synthesis of follower motion	286
7.2 Synthesis and analysis of disc cams with translating follower, pointed or with roller	289
7.3 Synthesis and analysis of disc cams with oscillating follower, pointed or with roller	295
7.4 Synthesis and analysis of disc cams with flat-face translating follower	301
7.5 Synthesis and analysis of disc cams with flat-faced oscillating follower	309
7.6 Synthesis of disc cams with curvilinear-face translating follower	315
7.7 Synthesis of disc cams with curvilinear -face oscillating follower	317
7.8 References and further readings	325
Chapter 8. Spur Gear Simulation using Working Model 2D and AutoLISP	326
8.1 Involute gear theory	326
8.2 Involute profile mesh	329
8.3 Involute gear mesh	334
8.4 Working Model 2D simulations of involute profile generation	338
8.5 Involute profile generation using Gears.LSP	342
8.6 References and further readings	345
Chapter 9. More Practical Problems and Applications	346
9.1 Duffing oscillator	346
9.2 Free oscillation of a spring-mass-dashpot system	349
9.3 Frequency and damping ratio estimation of oscillatory systems	354
9.4 Nonlinear curve fit to data	360
9.5 Plotting implicit functions of two variables	362