Линейные отображения векторных пространств

Пусть V и W — векторные пространства размерности n и m, $\{\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n\}$ — базис V, а f — некоторая линейная функция из V в W. Очевидно, что значения f на всём V однозначно определяются значениями на базисе V. Действительно, если $\vec{v} = \sum_{i=1}^n x_i \vec{e}_i$, то $f(\vec{v}) = \sum_{i=1}^n x_i f(\vec{e}_i)$. Кроме того, сами значения $f(\vec{e}_i)$, $i = \overline{1,n}$, могут быть выбраны произвольным образом и тогда предыдущее равенство задаст некоторую линейную функцию. Поставим в соответствие функции f матрицу A, составленную из столбцов-координат векторов $f(\vec{e}_i)$, $i = \overline{1,n}$, в некотором фиксированном базисе W. Это соответствие является биекцией между множеством всех линейных функций из V в W и множеством матриц размера $m \times n$. Столбец Y координат вектора $f(\vec{v})$ называется n произведением матрицы A на столбец X координат вектора \vec{v} и записывается как AX = Y.

- 1. На множестве всех линейных функций из V в W естественным образом определены сумма $(f+g)(\vec{v}) = f(\vec{v}) + g(\vec{v})$ и умножение на скаляр $(x \cdot f)(\vec{v}) = x \cdot f(x\vec{v})$. Проверьте, что это множество является векторным пространством, и найдите его размерность.
- 2. Запишие матрицу поворота вектора на угол α на плоскости \mathbb{R}^2 .
- 3. Докажите, что образ пространства V при линейном отображении f является векторным подпространством W, а его размерность равна рангу соответствующей матрицы.

Умножение матриц

Пусть g — линейная функция из W в некоторое k-мерное векторное пространство U. Композиция $g \circ f$, очевидно, является линейной функцией из V в U. Если функции g соответствует матрица B, то матрица, соответствующая $g \circ f$, называется npouseedenuem матриц B и A и обозначается просто BA.

- 4. Сформулируйте правило умножения матриц в терминах их коэффициентов.
- 5. Запишите произведение матриц поворота в \mathbb{R}^2 в общем виде.
- 6. Докажите, что произведение матриц ассоциативно и дистрибутивно.
- 7. Приведите пример того, что умножение даже 2×2 матриц некоммутативно.
- 8. Докажите, что rank $BA \leq \min(\operatorname{rank} B, \operatorname{rank} A)$.

Обратная матрица

В дальнейшем, если не оговорено иное, будем считать, что рассматриваемые матрицы являются квадратными матрицами размера $n \times n$. Пространство всех таких матриц обозначается через M_n .

- 9. Докажите, что M_n является кольцом. Определите нулевой и единичный элементы этого кольца.
- 10. Докажите, что условие $\det A \neq 0$ равносильно каждому из следующих трёх условий:
 - 1) система уравнений AX = Y разрешима для любого столбца правых частей Y;
 - 2) система $AX = \mathbf{0}$ имеет только тривиальное решение $X = \mathbf{0}$; 3) система AX = Y имеет единственное решение при некотором столбце правых частей Y.

Как показывает предыдущая задача, если $\det A \neq 0$, то можно говорить о матрице обратного отображения, эта матрица называется обратной к матрице A и обозначается A^{-1} .

Преобразования, не изменяющие ранга матрицы, которые мы рассматривали ранее: прибавление к столбцу (строке) линейной комбинации остальных столбцов (строк), умножение строки (столбца) на ненулевое число, называются элементарными.

- 11. Запишите элементарные преобразования в виде умножения на матрицу.
- 12. Обоснуйте следующий способ нахождения обратной матрицы: запишем пару матриц (A, E) и будем применять к ним одновременно элементарные операции до тех пор, пока первая матрица не станет единичной, тогда вторая матрица будет равна A^{-1} .

Упражнения

Cледом квадратной матрицы A называется сумма её диагональных элементов, обозначение — $\operatorname{tr} A$. Симметричная относительно главной диагонали квадратная матрица A называется неотрицательно определённой, если для любого вектора X верно неравенство $X^{\mathrm{T}}AX \geqslant 0$. Если при этом равенство выполняется только для $X = \mathbf{0}$, то A называется положительно определённой.

- 13. Докажите равенство $(BA)^{-1} = A^{-1}B^{-1}$ для любых обратимых квадратных матриц.
- 14. Докажите равенство $\det BA = \det B \cdot \det A$ для любых $A, B \in M_n$.
- 15. Докажите равенство $\operatorname{tr} BA = \operatorname{tr} AB$ для любых $A, B \in M_n$.
- 16. Докажите равенство $A^{-1} = \frac{1}{\det A} (A_i^j)^{\mathrm{T}}$ для любой обратимой квадратной матрицы A.
- 17. Обозначим столбцы обратимой квадратной матрицы A как A^1, A^2, \ldots, A^n . Докажите¹, что для любого столбца B решение $X = (x_1, x_2, \ldots, x_n)^T$ уравнения AX = B имеет вид $x_i = \det(A^1, \ldots, A^{i-1}, B, A^{i+1}, \ldots, A^n), i = \overline{1, n}$.
- 18. Докажите, что определитель положительно определённой матрицы ненулевой.
- 19. Докажите, что матрица, состоящая только из единиц, неотрицательно определена.
- 20. Пусть для некоторого числа $t \ge 0$ все недиагональные элементы матрицы A равны t, а все диагональные элементы строго больше t. Докажите, что $\det A \ne 0$.

¹Такой способ решения системы уравнений называется **методом** или **правилом Крамера**.