When the **learning** distribution differs from the **target** (true) distribution

Learning from **positive examples** only **Semi-supervised** learning

Antoine Cornuéjols

AgroParisTech – INRAE MIA Paris-Saclay EKINOCS research group

When
$$P_X(train) \neq P_X(test)$$

$$P_X(train) \neq P_X(test)$$

• In which scenarios?

$P_X(train) \neq P_X(test)$

In which scenarios?

- 1. Classes are severely unbalanced
- 2. Learning from **positive** examples **only**
- 3. Semi-supervised learning
- 4. Active learning

Outline

- 1. Classes severely imbalanced
- 2. Learning from positive examples only
- 3. Semi-supervised learning
- 4. Active learning

Illustrations

- Rare pathologies
- Anomaly detection
- Fraud
- Rare species
 - E.g. Pl@ntNet: 46,000 species, but only ~1000 well represented

- If enough data
 - undersample the over-represented classes

- If **enough** data
 - undersample the over-represented classes
- If not enough data

- If enough data
 - undersample the over-represented classes
- If not enough data
 - oversample the under-represented classes
 - Create **noisy** clones of the data points
 - Create new data points generated by well chosen transformations
 - E.g. respecting invariances (E.g. translations, rotations, change of luminosity, ...)

- If enough data
 - undersample the over-represented classes
- If not enough data
 - oversample the under-represented classes
 - Create noisy clones of the data points
 - Create new data points generated by well chosen transformations
 - E.g. respecting invariances (E.g. translations, rotations, change of luminosity, ...)
- Modify the loss function
 - Penalize more the errors on the under-represented class

$$\ell_{\hat{M},m} P_{\hat{M},m} + \ell_{\hat{m},M} P_{\hat{m},M} \quad \text{with} \quad \ell_{\hat{M},m} >> \ell_{\hat{m},M}$$

Outline

1. Classes severely unbalanced

2. Learning from positive examples only

3. Semi-supervised learning

4. Active learning

Scenarios for learning from positive examples only

• 555

Scenarios for learning from positive examples only

- Collaborative science
 - Biodiversity
 - E.g. Pl@ntNet
 - The users take pictures of plants: positive examples
 - That does not say: "these other plants were not present"
- Medicine
 - Reports of subjects with some disease does not say how many and which ones do not have the disease
- Adds on web pages
 - Pages that have **not been visited** are not necessarily uninteresting

Scenarios for learning from positive examples only

- In general
 - Detecting absence can be more difficult than detecting presence

Possibly **lots** of **false negative**

The fully observable case

- We look for a hypothesis where L is the number of possible classes (labels)
- $R(h) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p(\mathbf{x}, \mathbf{y})} \ \ell(h(\mathbf{x}), \mathbf{y})$ We want to **minimize the risk**
- with loss function (e.g. binary cross-entropy)

$$\ell_{\text{BCE}}(h(\mathbf{x}_n), \mathbf{y}_n) = -\frac{1}{L} \sum_{i=1}^{L} P(\mathbf{y}_n^i = 1 | \mathbf{x}_n) \log(h(\mathbf{x}_n^i)) + P(\mathbf{y}_n^i = 0 | \mathbf{x}_n) \log(1 - h(\mathbf{x}_n^i))$$

 $\ell:[0,1]^L\times\mathcal{Y}\to\mathbb{R}$

 $h: \mathcal{X} \to [0,1]^L$ A **vector** of predictions

Given a dataset $S = \{(\mathbf{x}_n, \mathbf{y}_n)\}_{1 \le n \le N}$ we want to find a hypothesis that minimizes the empirical risk

$$\hat{h}_{\text{fully}} = \underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), \mathbf{y}_n)$$

The partially observable case

• We look for a hypothesis

$$h_{\text{partial}}: \mathcal{X} \to [0, 1]^L$$

During training, we observe where
 and only one

$$\mathbf{z}_n \in \mathcal{Z} = \{0,1,\oslash\}^L$$
 $\mathbf{z}_n^i = \oslash \longleftarrow ext{indicates that the } i^{ ext{th}}$ $\mathbf{z}_n^i = 1$

• Given a dataset $\mathcal{S}=\{(\mathbf{x}_n,\mathbf{z}_n)\}_{1\leq n\leq N}$ we want to find a hypothesis that minimizes the empirical risk

$$\hat{h}_{\text{partial}} = \underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \frac{1}{N} \sum_{n=1}^{N} \ell(h(\mathbf{x}_n), \mathbf{z}_n)$$

Approach "assume unobserved are negative"

 Assume that all unobserved labels are negative

$$P(\mathbf{y}_n^i = 1 | \mathbf{x}_n) = 0 \quad \text{if } \mathbf{z}_n^i = \emptyset$$

The resulting loss is

$$\ell_{\text{AN}}(h(\mathbf{x}_n), \mathbf{y}_n) = -\frac{1}{L} \sum_{i=1}^{L} \mathbb{1}_{[\mathbf{z}_n^i = 1]} \log(h(\mathbf{x}_n^i)) + \mathbb{1}_{[\mathbf{z}_n^i \neq 1]} \log(1 - h(\mathbf{x}_n^i))$$

$$\mathbb{1}_{[\mathbf{z}_n^i = 1]} = 1 \quad \text{if } \mathbf{z}_n^i = 1 \quad \text{and } 0, \text{ otherwise}$$

We expect false negatives

Approach "assume unobserved are negative" + smoothing

 Assume that all unobserved labels are negative

$$P(\mathbf{y}_n^i = 1 | \mathbf{x}_n) = 0 \quad \text{if } \mathbf{z}_n^i = \emptyset$$

 And give more weight to the observed examples. The resulting loss is

Intuitively
$$R(\hat{h}_{\text{fully}}) \leq R(\hat{h}_{\text{partial}})$$

• But by how much?

In the case of "assume unobserved = negative"

Intuitively $R(\hat{h}_{\text{fully}}) \leq R(\hat{h}_{\text{partial}})$

But by how much?

 In the case of "assume unobserved = negative"

With 20 times fewer labeled examples, the performance is not that bad *on this dataset* compared to the fully observable case

Lessons

- 1. Fomalize the assumptions about your problem
 - The labelling process
 - The type of target (and hypothesis) function
- 2. Design a loss function appropriate for the problem
 - Able to explore efficiently the hypothesis space
 and to find a good minimum of the empirical risk
- 3. Design a good evaluation scheme

Learning from positive examples only: lots of approaches

Approaches

- Assume that the missing labels are negative
- Ignore the missing labels
- Perform label matrix reconstruction
- Learn label correlations
- Learn generative probabilistic models
- Train label cleaning networks
- Related to learning with label noise
 - Here, some unobserved labels are incorrectly treated as being absent
- Related to learning from a set of positive examples and a set of unlabeled ones (PU learning)

Outline

- 1. Classes severely unbalanced
- 2. Learning from positive examples only
- 3. Semi-supervised learning
- 4. Active learning

The idea

...

• Unsupervised learning ${f P}_{\mathcal X}$

• Supervised learning $\mathbf{P}_{\mathcal{Y}|\mathcal{X}}$

• Unsupervised learning ${
m P}_{\mathcal{X}}$

• Supervised learning $\mathbf{P}_{\mathcal{Y}|\mathcal{X}}$

When can unsupervised learning help supervised learning?

The underlying main idea:

The decision function (hypothesis *h*) **should not cut** through **high density** regions

Simplest approach

- 1. Compute a **clustering** of the all data (labeled and unlabeled)
- 2. For each cluster, **assign its class** to the majority vote of the labeled examples that belong to it

Simplest approach

- 1. Compute a **clustering** of the all data (labeled and unlabeled)
- 2. For each cluster, **assign its class** to the majority vote of the labeled examples that belong to it

Self-training approach

- 1. Given $S_L = \{(\mathbf{x}_i, y_i)\}_{1 \leq i \leq l}$ and $S_U = \{(\mathbf{x}_j)\}_{1 \leq j \leq u}$
- 2. Train on S_L to obtain h_1
- 3. Apply h_1 to S_U
- 4. Remove a set of unlabeled data from S_U and add them to S_L (the one where $h(\mathbf{x})$ is the more confident) with the label $h(\mathbf{x})$
- 5. Go to 2 and repeat until convergence

 Idea: endow unlabeled data with pseudo-labels (the likeliest class at time t)

$$y_i = \begin{cases} 1 & \text{if } i = \operatorname{argmax}_{i \in \{1, \dots, C\}} h_i^t(\mathbf{x}) \\ 0 & \text{otherwise} \end{cases}$$
 Output of the ith output neuron

Train with the empirical risk:

$$R_{\text{emp}}(h) = \frac{1}{m_l} \sum_{i=1}^{m_l} \sum_{j=1}^{C} \ell(h_j(\mathbf{x}_i), \mathbf{y}_j^i) + \alpha(t) \frac{1}{m_u} \sum_{i=1}^{m_u} \sum_{j=1}^{C} \ell(h_j(\mathbf{x}_i), \mathbf{y}_j^i)$$
pseudo-label

Crucial to set $\alpha(t)$ with great care

[Dong-Hyun Lee (2013) "Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks", ICML-2013]

Transductive SVM approach

Entropy regularization approach

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{ArgMin}} \left[\underbrace{\frac{1}{l} \sum_{i=1}^{l} \ell(h(\mathbf{x}_i), y_i)}_{\text{Empirical risk on labeled data}} + \lambda \underbrace{\sum_{j=1}^{u} -h(\mathbf{x}_j) \log h(\mathbf{x}_j)}_{\text{Entropy of the predictions}} \right]$$

- You have to make assumptions about what you think is reasonable as a bias
 - E.g. that classes are separated by low density regions

 Then, you show that if the assumption is met by Nature, then you find a correct hypothesis

A remark on semi-supervised learning

Could be regarded as transductive learning where
 one wants to label unlabeled training instances

Transductive learning

• I know in advance where I will be queried

Transductive learning

 "When solving a problem of interest, do not solve a more general problem as an intermediate step.

Try to get the answer that you really need but not a more general one."

(Vapnik, 1995)

Semi supervised learning with transductive learning

Graph-Based labelling

Then **learn** a hypothesis on the new training set

Outline

- 1. Classes severely unbalanced
- 2. Learning from positive examples only
- 3. Semi-supervised learning
- 4. Active learning

- When the learner can actively ask for pieces of information
 - Labels of selected examples
 - Values of some selected descriptors
 - E.g. ask for a medical examination

- Examples
 - MasterMind
 - Scientific activity

- When the learner can actively ask for pieces of information
 - Labels of selected examples
 - Values of some selected descriptors
 - E.g. ask for a medical examination
- The hope
 - Need of less (costly) examples
 - Having a faster convergence rate

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R_{\text{R\'eel}}(h)}{R_{\text{Emp}}(h)} \leq R_{\text{Emp}}(h) + \frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{m} \right] > 1 - \delta$$

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R_{\text{R\'eel}}(h)}{2m} \leq R_{\text{Emp}}(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2m}} \right] > 1 - \delta$$
42 / 49

$$h_w(x) = \begin{cases} 1 & \text{if } x \ge w \\ 0 & \text{if } x < w \end{cases} \xrightarrow{\overline{\bullet} - \overline{\bullet} - \overline{\bullet} - \overline{\bullet} - \overline{\bullet} - \overline{\bullet} - \overline{\bullet} + \overline{\bullet} + \overline{\bullet} + \overline{\bullet} + \overline{\bullet} + \overline{\bullet} + \overline{\bullet} \\ w$$

How to find the **best** threshold from querying points?

- By **random** selection of points $m = \mathcal{O}(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$
- By **active** selection $m = \mathcal{O}(\log \frac{1}{\varepsilon})$

Much faster!

- Two main approaches
 - "Constructive" approach
 - The learner **constructs** queries
 - "Selective" (pool-based) approach
 - The learner **selects** points among the **unsupervised** ones

Why is the **constructive** approach sometimes **not** applicable?

How to **select** the examples? (some ideas)

- The more **informative** examples
 - 1. The ones where the **confidence** of the current hypothesis is the **lowest**
 - Measured by a probability

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathcal{S}_U}{\operatorname{ArgMax}} \operatorname{Uncertain}(\mathbf{x}) \qquad \operatorname{Uncertain}(\mathbf{x}) = \frac{1}{\operatorname{ArgMax}_{y \in \mathcal{Y}} p(h_t(\mathbf{x}) = y)}$$

$$\mathbf{x}^{\star} = \underset{\mathbf{x} \in \mathcal{S}_{U}}{\operatorname{ArgMax}} \left\{ -\sum_{i} p \big(h_{t}(\mathbf{x}) = y_{i} \big) \log p \big(h_{t}(\mathbf{x}) = y_{i} \big) \right\}$$
 Entropy criyeria

- Measured by distance to the decision function
- Learn an ensemble of hypotheses and select the examples where they disagree the most

Illustration

Figure 2: An illustrative example of pool-based active learning. (a) A toy data set of 400 instances, evenly sampled from two class Gaussians. The instances are represented as points in a 2D feature space. (b) A logistic regression model trained with 30 labeled instances randomly drawn from the problem domain. The line represents the decision boundary of the classifier (accuracy = 0.7). (c) A logistic regression model trained with 30 actively queried instances using uncertainty sampling (accuracy = 0.9).

What is the danger?

What is the danger?

No more theoretical guarantees

$$\forall h \in \mathcal{H}, \forall \delta \leq 1: \quad P^m \left[\frac{R_{\text{R\'eel}}(h)}{2 m} \leq R_{\text{Emp}}(h) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{1}{\delta}}{2 m}} \right] > 1 - \delta$$

Does not make sense anymore!!

- Why?

Active learning: lessons

- Active learning is not much used in practice
 - 1. **Costly** to identify informative examples
 - 2. **Risk** of ignoring important regions of *X*

- Interesting: learning under **budget constraints**
 - What measurements should I made under some budget constraints?