

AS358/358A

General Description

The AS358/358A consist of two independent, high gain and internally frequency compensated operational amplifiers, they are specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages. Typical applications include transducer amplifiers, DC gain blocks and most conventional operational amplifier circuits.

The AS358/358A series are compatible with industry standard 358. AS358A has more stringent input offset voltage than AS358.

The AS358 is available in DIP-8, SOIC-8, TSSOP-8 and MSOP-8 packages, AS358A is available in DIP-8 and SOIC-8 packages.

Features

- Internally Frequency Compensated for Unity Gain
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Low Supply Current: 0.5mA (Typical)
- Wide Power Supply Voltage: Single Supply: 3V to 36V Dual Supplies: ±1.5V to ±18V
- Input Common Mode Voltage Range Includes

 Ground
- Large Output Voltage Swing: 0V to V_{CC}-1.5V

Applications

- Battery Charger
- Cordless Telephone
- Switching Power Supply

Figure 1. Package Types of AS358/358A

AS358/358A

Pin Configuration

M/P/G/MM Package (SOIC-8/DIP-8/TSSOP-8/MSOP-8)

Figure 2. Pin Configuration of AS358/358A (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AS358/358A (Each Amplifier)

AS358/358A

Package	Temperature	Part Number		Marking ID		Packing Type	
1 ackage	Range	Tin Lead	Lead Free	Tin Lead	Lead Free	1 acking Type	
SOIC-8	-40 to 85°C	AS358M	AS358M-E1	AS358M	AS358M-E1	Tube	
		AS358MTR	AS358MTR-E1	AS358M	AS358M-E1	Tape & Reel	
			AS358AM-E1		AS358AM-E1	Tube	
			AS358AMTR-E1		AS358AM-E1	Tape & Reel	
DIP-8	-40 to 85°C	AS358P	AS358P-E1	AS358P	AS358P-E1	Tube	
			AS358AP-E1		AS358AP-E1	Tube	
TSSOP-8	-40 to 85°C		AS358G-E1		EG3A	Tube	
			AS358GTR-E1		EG3A	Tape & Reel	
MSOP-8	-40 to 85°C		AS358MM-E1		AS358MM-E1	Tube	
			AS358MMTR-E1		AS358MM-E1	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Advanced Analog Circuits Data Sheet

LOW POWER DUAL OPERATIONAL AMPLIFIERS

AS358/358A

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Power Supply Voltage	V _{CC}	40		V
Differential Input Voltage	V_{ID}	40		V
Input Voltage	V _{IC}	-0.3 to 40		V
	P_{D}	DIP-8	830	
		SOIC-8	550	
Power Dissipation (T _A =25°C)		TSSOP-8	500	mW
		MSOP-8	470	
Operating Junction Temperature	T_{J}	150		°C
Storage Temperature Range	T_{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10 Seconds)	T_{LEAD}	260		°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	3	36	V
Ambient Operating Temperature Range	T _A	-40	85	°C

AS358/358A

Electrical Characteristics

Limits in standard typeface are for T_A =25°C, **bold** typeface applies over -40°C to 85°C (Note 2), V_{CC} =5V, GND=0V, unless otherwise specified.

Input Offset Voltage V_{IO} $V_{O}=1.4V, R_{S}=0\Omega,$ AS358 $U_{O}=1.4V, R_{S}=0\Omega$	5 7	
$V_0=1.4V, R_S=0\Omega$		
	•	mV
Input Offset Voltage V _{IO} V _{CC} =5V to 30V AS358A 2	3	
ASSJOA	5	
Average Temperature Coefficient of Input Offset Voltage $\Delta V_{IO}/\Delta T$ T_A =-40 to 85°C 7		μV/°C
Input Bias Current I_{BIAS} I_{IN} + or I_{IN} -, V_{CM} =0V 20 2	200	nA
Input Blas Cultert	200	
Input Offset Current I_{IO} I_{IN} - I_{IN} - V_{CM} 5	30	nA
input offset current	100	
	V _{CC} -1.5	V
Supply Current I_{CC} T_A =-40 to 85°C, R_L = ∞ , V_{CC} =30V 0.7	2	mA
T _A =-40 to 85° C, R _L = ∞ , V _{CC} = 5 V 0.5	1.2	
Large Signal Voltage Gain G_V $V_{CC}=15V$, $V_O=1V$ to $11V$, $R_L \ge 2k\Omega$		dB
Raige Signal Voltage Gain SV VCC=13 V, VO=1 V to 11 V, KL 2 2Ks2		
Common Mode Rejection CMRR DC, V _{CM} =0V to (V _{CC} -1.5)V		dB
Ratio 60		
Power Supply Rejection PSRR V _{CC} =5V to 30V		dB
Ratio 60		
Channel Separation CS f=1kHz to 20kHz -120		dB
Source I _{SOURCE} V _{IN} +=1V, V _{IN} -=0V, V _{CC} =15V, V _O =2V		mA
20 20		
Output Current V_{IN} +=0V, V_{IN} -=1V, V_{CC} =15V, V_{O} =2V 10 15		mA
Sink I _{SINK}		ША
V_{IN} +=0V, V_{IN} -=1V, V_{CC} =15V, V_{O} =0.2V 12 50		μΑ
Output Short Circuit Current to Ground I_{SC} $V_{CC}=15V$ 40	60	mA
$V_{CC}=30V$, $R_{L}=2k\Omega$		
V _{OH}		v
Output Voltage Swing $V_{CC}=30V, R_L=10k\Omega$ 27 28		
Output voltage Swing V _{CC} -30 V, K _L -10K2 27		
V_{OL} $V_{CC}=5V$, $R_L=10k\Omega$	20	mV
	30	

Note 2: Limits over the full temperature are guaranteed by design, but not tested in production.

AS358/358A

Electrical Characteristics (Continued)

Note 3: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25°C). The upper end of the common-mode voltage range is V_{CC} -1.5V (at 25°C), but either or both inputs can go to +36V without damages, independent of the magnitude of the V_{CC} .

Typical Performance Characteristics

Figure 4. Input Voltage Range

Figure 5. Input Current

Figure 6. Supply Current

Figure 7. Voltage Gain

AS358/358A

Typical Performance Characteristics (Continued)

Figure 8. Open Loop Frequency Response

Figure 9. Voltage Follower Pulse Response

Figure 10. Voltage Follower Pulse Response (Small Signal)

Figure 11. Large Signal Frequency Response

AS358/358A

Typical Performance Characteristics (Continued)

Figure 12. Output Characteristics: Current Sourcing

Figure 13. Output Characteristics: Current Sinking

Figure 14. Current Limiting

AS358/358A

Typical Application

Figure 15. Battery Charger

Figure 16. Power Amplifier

Figure 17. DC Summing Amplifier

AS358/358A

Typical Application (Continued)

R3 2V R1 2V R2 2K R2 1/2 AS358/A 1 11 12 12 1 1 1 12

Figure 18. AC Coupled Non-Inverting Amplifier

Figure 19. Fixed Current Sources

Figure 21. DC Coupled Low-Pass Active Filter

AS358/358A

Mechanical Dimensions

DIP-8 Unit: mm(inch)

AS358/358A

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)

AS358/358A

Mechanical Dimensions (Continued)

TSSOP-8 Unit: mm(inch)

AS358/358A

Mechanical Dimensions

MSOP-8 Unit: mm(inch)

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Limited 800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office
Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office
Room E, 5F, Noble Center, No.1006, 3rd Fuzhong Road, Futian District, Shenzhen 518026, China
Tel: +86-755-8826 7951, Fax: +86-755-8826 7865

BCD Semiconductor Manufacturing Limited

- IC Design Group

Refresaga (Malog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office

BCD Semiconductor Corporation 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A