§4.1: DETERMINING DISTANCE TRAVELED FROM VELOCITY

Dr. Mike Janssen March 31, 2021

ANNOUNCEMENTS

PREVIEW ACTIVITY DISCUSSION

THE UPSHOT

The area under our (positive) velocity function v(t) from t = a to t = b gives the distance the object travels from t = a to t = b.

ACTIVITY 4.1.2

TAKEAWAY

When the velocity is not constant, we can estimate it over (small) intervals by assuming it is!

TAKEAWAY

When the velocity is not constant, we can estimate it over (small) intervals by assuming it is!

We estimate the area under a curve using rectangles.

TAKEAWAY

When the velocity is not constant, we can estimate it over (small) intervals by assuming it is!

We estimate the area under a curve using rectangles.

Alternative approach (at least in certain circumstances): find an antiderivative: if g and G are functions such that G' = g, we say G is an antiderivative of g.

ACTIVITY 4.1.3

NEGATIVE VELOCITY

The sign of the velocity describes the (1-dimensional) *direction*: forward and backward.

ACTIVITY 4.1.4

