

Overview

Review of ggplot

Quick review of material covered in the class so far

Questions to prepare for the exam

Announcements

Midterm exam is on Thursday

- Bring a pen and a pencil
- One page (double-sided) with code and equations only!
 - You will turn in this page of notes with your exam (put your name on it)
 - Recommend including equations for SEs, etc.

Office hours this week

No TA office hours this week since there is no homework

Review of the grammar of graphics and ggplot

The grammar of graphics

Leland Wilkinson noticed similarities between many graphs and tried to generate a 'grammar' that could be used to express a graph

• i.e., a list elements that can be combined together to create a graph

Statistics and Computing
Leland Wilkinson

The Grammar of Graphics
Second Edition

Hadley Wickham implemented these ideas in R in the ggplot2 package

Graphs are composed of...

A Frame: Coordinate system on which data is placed

• ggplot() +

Glyphs: basic graphic unit representing cases or statistics

- Data is mapped onto these aesthetics such as: shape, color, size, etc. and/or aesthetics can be set to a fixed value
 - geom_point(aes(x = gdpPercap, y = lifeExp, color = continent))
 geom_point(aes(x = gdpPercap, y = lifeExp), color = "red")

Scales and guides: shows how to interpret axes and other properties of the glyphs

scale x continuous(trans = "log10")

scale color brewer(type = "qua", palette = 2)

Plots can also contain...

Facets: allows for multiple side-by-side graphs based on a categorical variable

facet_wrap(~country)

Layers: allows for more than one types of data to be mapped onto the same figure

geom_vline(xintercept = 1969, col = "red")

Theme: contains finer points of display (e.g., font size, background color, etc.)

theme_wsj()

Questions?

ggplot2 cheat sheet

Data visualization with ggplot2:: CHEAT SHEET

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components: a data set, a coordinate system, and geoms-visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

ggplot (data = <DATA>) + <GEOM FUNCTION> (mapping = aes) <MAPPINGS> stat = <STAT>, position = <POSITION>) + <COORDINATE FUNCTION> + <FACET FUNCTION> + <SCALE FUNCTION> + <THEME FUNCTION>

ggplot(data = mpg, aes(x = cty, y = hwy)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

last_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Aes Common aesthetic values.

color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash", 6 = "twodash")

lineend - string ("round", "butt", or "square") linejoin - string ("round", "mitre", or "bevel")

Studio

size - integer (line width in mm) 0 1 2 3 4 5 6 7 8 9 00 11 12 □○△+×◇▽宮*◆●苅田 shape - integer/shape name or 13 14 15 16 17 18 19 20 21 22 23 24 25 a single character ("a") ⊠⊠□○△○○○□◆△▽

d + geom_bar()

Geoms Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

> a + geom_blank() and a + expand_limits() Ensure limits include values across all plots.

b + geom curve(aes(yend = lat + 1. xend = long + 1), curvature = 1) - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom_path(lineend = "butt", linejoin = "round", linemitre = 1) x, y, alpha, color, group, linetype, size

a + geom_polygon(aes(alpha = 50)) - x, y, alpha, color, fill, group, subgroup, linetype, size

b + geom_rect(aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1)) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

a + geom_ribbon(aes(ymin = unemploy - 900, ymax = unemploy + 900)) - x, ymax, ymin, alpha, color, fill, group, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom_abline(aes(intercept = 0, slope = 1)) b + geom_hline(aes(yintercept = lat)) b + geom_vline(aes(xintercept = long))

b + geom_segment(aes(vend = lat + 1, xend = long + 1)) b + geom_spoke(aes(angle = 1:1155, radius = 1))

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom_area(stat = "bin")

x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian") x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

c + geom_freqpoly()

x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

d <- ggplot(mpg, aes(fl))

TWO VARIABLES

both continuous e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color. family, fontface, hjust, lineheight, size, vjust

x, y, alpha, color, fill, shape, size, stroke

e + geom_quantile() x, y, alpha, color, group, linetype, size, weight

e + geom smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

one discrete, one continuous f <- ggplot(mpg, aes(class, hwy))

f + geom col()

x, y, alpha, color, fill, group, linetype, size

x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = "center") x, y, alpha, color, fill, group

f + geom_violin(scale = "area") x, y, alpha, color, fill, group, linetype, size, weight

both discrete

g <- ggplot(diamonds, aes(cut, color))

g + geom_count()

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

l + geom_contour(aes(z = z))

continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price))

ggplot.

h + geom_hex() x, y, alpha, color, fill, size

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom area()

x, y, alpha, color, fill, linetype, size

/ i + geom line() x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv")

x, y, alpha, color, group, linetype, size

visualizing error

df <- data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2) j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

ymin, alpha, color, fill, group, linetype, size

j + geom_linerange() x, ymin, ymax, alpha, color, group, linetype, size

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map data("state") k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat) map_id, alpha, color, fill, linetype, size

THREE VARIABLES

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); I <- ggplot(seals, aes(long, lat))

x, y, z, alpha, color, group, linetype, size, weight

l + geom_raster(aes(fill = z), hjust = 0.5, viust = 0.5, interpolate = FALSE) x, y, alpha, fill

l + geom_tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

What we have covered so far...

What we have covered so far...

Parameters and statistics commonly used symbols

	Population parameter (Plato)	Sample statistic (shadow)
Mean	μ	x
Standard deviation	σ	S
Proportion	π	ĝ
Correlation	ρ	r
Regression slope	β	b

Base R

Basics of R

- $> my_vec <- c(5, 28, 19)$
- > inds_less_than_10 <- my_vec < 10

How to plot data in base R

- > drinks_table <- table(profiles\$drinks)
- > barplot(drinks_table)
- > pie(drinks_table)
- > hist(profiles\$height)


```
For loops

my_results <- NULL

for (i in 1:100) {

    my_results[i] <- i^2
}
```

What we have covered so far...

Analysis

<u>R</u>

Probability and confidence intervals

Probability functions; e.g., rnorm, pnorm, dnorm, qnorm

Confidence intervals:

$$Cl_{95} = stat \pm 2 \cdot SE$$

Sampling and bootstrap distributions

Sampling distribution

Sampling distribution!

Bootstrap distribution

Sample with replacement from our original sample to mimic a sampling distribution

$$Cl_{05} = stat \pm 2 \cdot SE^*$$

Hypothesis tests

Just need to follow 5 steps!

Null distribution

Randomization/permutation tests

Create a null distribution through computational simulations/shuffling

• rbinom(), sample(), etc.

 H_0 : $\pi = 0.5$

 H_A : $\pi > 0.5$

$$H_0: \mu_T - \mu_C = 0$$

 $H_A: \mu_T - \mu_C > 0$

$$H_0: \mu_i = \mu_j ... = ... \mu_k$$

 $H_A: \mu_i \neq \mu_i$ for some i, j

Data	1 Sample	2 Samples	> 2 Samples
Categorical data	H_0 : $\pi = p_0$ H_A : $\pi \neq p_0$ Flip "coins" rbinom()	H_0 : $\pi_1 = \pi_2$ H_A : $\pi_1 \neq \pi_2$ Flip "coins" rbinom()	H_0 : $\pi_1 = p_1$, $\pi_2 = p_2$,, $\pi_k = p_k$ H_A : At least one p_i is different than specified Flip coins rmultinom()
Quantitative data	H ₀ : $\mu = v_0$ H _A : $\mu \neq v_0$ resample sample(, replace = TRUE)	H_0 : $\mu_1 = \mu_2$ H_A : $\mu_1 \neq \mu_2$ Shuffle data sample()	H_0 : $\mu_1 = \mu_2 = = \mu_k$ H_A : At least one μ_i is different Shuffle data sample()

Parametric tests

Use mathematical density functions for the null distribution

$$H_0$$
: $\mu_T - \mu_C = 0$
 H_A : $\mu_T - \mu_C > 0$

$$t = \frac{\bar{x}_t - \bar{x}_c}{\sqrt{\frac{s_t^2}{n_t} + \frac{s_c^2}{n_c}}}$$

Data	1 Sample	2 Samples	> 2 Samples
Categorical data	H_0 : $\pi = p_0$ H_A : $\pi \neq p_0$	$H_0: \pi_1 = \pi_2$ $H_A: \pi_1 \neq \pi_2$	H_0 : $\pi_1 = p_1$, $\pi_2 = p_2$,, $\pi_k = p_k$ H_A : At least one p_i is different than specified
	<u>z-test</u>	z-test or a chi-square	<u>chi-square test</u>
	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\hat{p_1} - \hat{p_2}}{\sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}}}$	$\chi^2 = \sum_{i=1}^k \frac{(Observed_i - Expected_i)^2}{Expected_i}$
			df = k - 1
Quantitative data	H_0 : $\mu = v_0$ H_A : $\mu \neq v_0$	H_0 : $\mu_1 = \mu_2$ H_A : $\mu_1 \neq \mu_2$	H_0 : $\mu_1 = \mu_2 = = \mu_k$ H_A : At least one μ_i is different
	One sample t-test	Two sample t-test	Analysis of Variance
	$t = \frac{\bar{x} - v_0}{s / \sqrt{n}}$	$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$F = \frac{\frac{1}{K-1} \sum_{i=1}^{K} n_i (\bar{x}_i - \bar{x}_{tot})^2}{\frac{1}{N-K} \sum_{i=1}^{K} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2}$
	df = n - 1	df = min n ₁ - 1, n ₂ - 1	$df_1 = k, df_2 = n - k$

Data	1 Sample	2 Samples
Categorical Data	$SE = \sqrt{\frac{\pi(1-\pi)}{n}}$	$SE = \sqrt{\frac{\pi_1(1-\pi_1)}{n_1} + \frac{\pi_2(1-\pi_2)}{n_2}}$
	$\hat{p} \pm z^* \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	$\hat{p}_1 - \hat{p}_2 \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$
Quantitative Data	$SE = \frac{s}{\sqrt{n}}$ $\overline{x} \pm t^* \frac{s}{\sqrt{n}}$	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ $(\overline{x_1} - \overline{x_2}) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Theories of hypothesis testing

Fisher (1890-1962)

Neyman (1894-1981)

Pearson (1895-1980)

I MADEA TYPE I ERROR, I SHOULDN'T HAVE REJECTED YOU

p-value a strength of evidence

Use p-value to make a decision

Relationship between null and bootstrap distributions

Data manipulation with dplyr

dplyr is a package that has a set of verbs for transformations data

- All these function take a data frame and other arguments and return a data frame
- 1. filter()
- 2. select()
- 3. mutate()
- 4. arrange()
- 5. summarize()
- 6. group_by()

```
age

2
hing
r

3
2
2
2
2
1111SHODD hing
```

```
film_results <- movies |>
   filter(title type == "Feature Film") |>
   select(critics_score, audience_score, genre) |>
   mutate(audience prefers =
         audience score - critics score) |>
   group_by(genre) |>
    summarize(mean_audience_prefers =
          mean(audience_prefers)) |>
     arrange(desc(mean audience prefers))
head(film results)
```

Grammar of graphics with ggplot

A Frame: Coordinate system on which data is placed

Glyphs: basic graphic unit representing cases or statistics

Scales and guides: shows how to interpret axes and other properties of the glyphs

Facets: allows for multiple side-by-side graphs based on a categorical variable

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display (e.g., font size, background color, etc.)

Questions

