Limites

William Hergès ¹

15 novembre 2024

Table des matières

1	Classe d'une fonction	2
2	Comparaison d'ordre de grandeur	2

Classe d'une fonction

Une fonction est de classe \mathcal{C}^n (où $n\in\mathbb{N}^*$) si et seulement si sa dérivée n-ième est continue. Une fonction de classe \mathcal{C}^0 ne possède pas de dérivée continue.

Une fonction est de classe \mathcal{C}^{∞} si et seulement si elle est dérivable une infinité de fois et que cette dériviée est continue.

Théorème des accroissements finis

Théorème 1.1 Théorème Soit
$$f:[a,b] \to \mathbb{R}$$
 de classe $\mathcal{C}^1_{[a,b]}.$ Il existe $c \in]a,b[$ tel que :
$$f'(x) = \frac{f(b) - f(a)}{b-a}$$

Inégalité des accroissements finis

Théorème 1.2 Inégalité Soit $f:[a,b]\to\mathbb{R}$ de classe $\mathcal{C}^1_{[a,b]}.$ S'il existe $M\in\mathbb{R}_+$ tel que : $\forall x\in]a,b[,\quad |f'(x)|\leqslant M$ alors

$$\forall x \in]a, b[, |f'(x)| \leq M$$

$$|f(b) - f(a)| \leqslant M(b - a)$$

Comparaison d'ordre de grandeur

Définition 2

Un voisinage de x est un intervalle ouvert contenant x.

Définition 3

Une limite l en a de la fonction f défini dans voisinage de a est :

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{R}, \quad \forall x > N, \quad f(x) \in]l - \varepsilon, l + \varepsilon[$$

Définition 4

Soient x de $\mathbb R$ et f,g deux fonctions définies sur un voisinage I de x.

1. f est un petit o de g au voisinage de x (noté $f=o_x(g)$) s'il existe une fonction $\varepsilon:I\to\mathbb{R}$ tel que :

$$\forall x \in I, \quad f(x) = \varepsilon(x)g(x) \quad \wedge \quad \lim_{x_0 \to x} \varepsilon(x_0) = 0$$

2. f est équivalente à g au voisinage de x (noté $f\sim_x g$) s'il existe une fonction $\varepsilon:I\to\mathbb{R}$ tel que :

$$\forall x \in I, \quad f(x) = (1 + \varepsilon(x))g(x) \quad \wedge \quad \lim_{x_0 \to x} \varepsilon = 0$$

On note $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{+\infty, -\infty\}$.

Soient $x \in \overline{\mathbb{R}}$ et f,g deux fontions définis sur un voisinage I de x avec g ne s'annulant pas en x.

On dit que : $1. \ f = o_x(g) \text{ si } \lim_{x_0 \to x} \frac{f(x_0)}{g(x_0)} = 0$ $2. \ f \sim_x g \text{ si } \lim_{x_0 \to x} \frac{f(x_0)}{g(x_0)} = 1$

1.
$$f = o_x(g)$$
 si $\lim_{x_0 \to x} \frac{f(x_0)}{g(x_0)} = 0$

2.
$$f \sim_x g \text{ si } \lim_{x_0 \to x} \frac{f(x_0)}{g(x_0)} = 1$$

Définition 5

Un développement limité d'ordre n (noté DL_n) en a est une fonction telle que

$$f(a+h) = c_0 + c_1 h + c_2 h^2 + \dots + c_n h^n + o_{h\to 0}(h^n)$$

Théorème 5.1

Théorème de Taylor

Soient $n\in\mathbb{N}$ et $f:I\to\mathbb{R}$ de classe \mathcal{C}^n sur I. On a que f admet un unique DL_n de forme :

$$f(a+h) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} h^{k} + o_{h\to 0}(h^{n})$$

On a:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{x!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$n = \frac{x}{1!} - \frac{x^2}{x!} + \dots + (-1)^{n-1} \frac{x^n}{n!} + o(x^n)$$

$$(a+x)^{\alpha} = 1 + \alpha x + {\binom{\alpha}{2}} x + \dots + {\binom{\alpha}{n}} x + o(x^n)$$

$${\binom{\alpha}{k}} = \frac{\prod_{k=0}^{n} \alpha - k}{n}$$

$$\frac{1}{x-1} = 1 - x + x^2 + \dots + (-1)^n x^n + o(x^n)$$

Les fonctions hyperboliques sont comme les fonctions circulaires,

mais sans alternance du signe