Policy Evaluation

Monte Carlo Evaluation: Bias and Variance for MC

Marius Lindauer

Leibniz Universität Hannover

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0$$
, $G(s)=0 \ \forall s \in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots$
- ullet For each state s visited in episode i
 - ightharpoonup for first time t that state s is visited in episode i
 - **★** Increment counter of total first visits: N(s) = N(s) + 1
 - ★ Increment total return $G(s) = G(s) + G_{i,t}$
 - \star Update estimate $V^{\pi}(s) = G(s)/N(s)$

Recap: Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Onsider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - ► E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$Bias_{\theta}(\hat{\theta}) = \mathbb{E}_{x|\theta}[\hat{\theta}] - \theta$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{\theta}) = \mathbb{E}_{x|\theta}[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2]$$

ullet Definition: mean squared error (MSE) of an estimator $\hat{ heta}$ is

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})$$

First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize
$$N(s)=0,\ G(s)=0\ \forall s\in S$$
 Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots$
- ullet For each state s visited in episode i
 - lacktriangleright for first time t that state s is visited in episode i
 - **★** Increment counter of total first visits: N(s) = N(s) + 1
 - ★ Increment total return $G(s) = G(s) + G_{i,t}$
 - ★ Update estimate $V^{\pi}(s) = G(s)/N(s)$

Properties:

- ullet V^{π} estimator is an unbiased estimator of true $\mathbb{E}_{\pi}[G_t \mid s_t = s]$
- By law of large numbers, as $N(s) \to \inf_{s} V^{\pi}(s) \to \mathbb{E}_{\pi}[G_t \mid s_t = s]$
- every-visit MC estimator:
 - ightharpoonup is biased estimator of V^{π} (observations are correlated \rightsquigarrow not i.i.d)
 - ▶ often better RMSE, because more data per state

Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - ► In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical

Monte Carlo (MC) Policy Evaluation Key Limitations

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - ▶ In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - lacktriangle Episode must end before data from episode can be used to update V

Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$ where the actions are sampled from π
 - $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \dots$ under policy π
 - $V^{\pi}(s) = \mathbb{E}[G_t, \mid s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- \bullet Updates V estimate using sample of return to approximate the expectation
- No bootstrapping
- Does not assume Markov process

