

SEQUENCE LISTING

<110> Houghton, Raymond L.
 Dillon, Davin C.
 Molesh, David A.
 Xu, Jiangchun
 Zehentner, Barbara
 Persing, David H.

<120> METHODS, COMPOSITIONS AND KITS FOR THE DETECTION
 AND MONITORING OF BREAST CANCER

<130> 210121.513C1

<140> US
 <141> 2001-12-27

<160> 77

<170> FastSEQ for Windows Version 3.0

<210> 1
 <211> 1851
 <212> DNA
 <213> Homo sapien

<400> 1

tcatcaccat	tgccagcagc	ggcacccgtt	gtcagggttt	ctgggaatcc	cacatgagta	60
cttccgtt	cttcatttctt	cttcaatagc	cataaatctt	ctagctctgg	ctggctgttt	120
tcacttcctt	taagcctttg	tgactcttcc	tctgatgtca	gctttaagtc	ttgttctgga	180
ttgctgttt	cagaagagat	ttttaacatc	tgttttctt	tgttagtcaga	aagtaactgg	240
caaattacat	gatgatgact	agaaacagca	tactctctgg	ccgtctttcc	agatcttgag	300
aagatacatc	aacattttgc	tcaagtagag	ggctgactat	acttgctgtat	ccacaacata	360
cagcaagtat	gagagcagg	cttccatatc	tatccagcgc	atttaaattc	gctttttct	420
tgattaaaaa	tttcaccact	tgctgtttt	gctcatgtat	accaagttagc	agtggtgtga	480
ggccatgctt	gtttttgtat	tcgatatcag	caccgtataa	gagcagtgtct	ttggccattta	540
atttatcttc	attttagaca	gcatacgatgt	gagtggtatt	tccataactca	tctggaaatat	600
ttgatcagt	gccatgttcc	agcaacatta	acgcacattc	atcttcctgg	cattgtacgg	660
ccttgcag	agctgtcctc	ttttgttgt	caaggacatt	aagttgacat	cgtctgtcca	720
gcacgagttt	tactacttct	gaattccat	tggcagaggc	cagatgtaga	gcagtccctct	780
tttgcgtgtc	ccttgcgtt	acatccgtgt	ccctgagcat	gacgatgaga	tcctttctgg	840
ggactttacc	ccaccaggca	gctctgtgga	gcttgcgtt	atcttcctcca	tggacgttgt	900
acctgggatc	catgaaggcg	ctgtcatcg	agtctcccc	agcaccacg	ttgctcttgc	960
cgctccctgt	cagcagggg	agcagtggca	gcaccacttg	cacctttgc	tcccaagcgt	1020
cttcacagag	gagtcgttgt	ggtctccaga	agtgcacacg	ttgctcttgc	cgctccct	1080
gtccatccag	ggaggaagaa	atgcaggaaa	tgaaagatgc	atgcacatgt	gtataactcct	1140
cagccatcaa	acttctggac	agcaggtcac	ttccagcaag	gtggagaaag	ctgtccaccc	1200
acagaggatg	agatccagaa	accacaatat	ccattcacaa	acaaacactt	ttcagccaga	1260
cacaggtact	gaaatcatgt	catctgcggc	aacatggtgg	aacctaccca	atcacacatc	1320
aagagatgaa	gacactgcag	tatatctgca	caacgtaata	ctcttcatcc	ataacaaaat	1380
aatataattt	tcctctggag	ccatatggat	gaactatgaa	ggaagaactc	cccgaagaag	1440

ccagtgcgac	agaagccaca	ctgaagctct	gtccctcagcc	atcagcgcca	cggacaggar	1500
tgttttctt	ccccagtgtat	gcagcctcaa	gttatcccga	agctgccca	gcacacggtg	1560
gctcctgaga	aacaccccaag	ctcttcccggt	ctaacadagg	caagtcaata	aatgtgataa	1620
tcacataaac	agaattaaaa	gcaaagtac	ataagcatct	caacagacac	agaaaaggca	1680
tttgacaaaa	tccagcatcc	ttgttatttat	tgttgcatgtt	ctcagagaa	atgcttctaa	1740
cttttccccca	tttagtatta	tgttggctgt	gggcttgtca	taggtggttt	ttattacttt	1800
aaggtagtgc	ccttctatgc	ctgttttgc	gagggtttta	attctcgtc	c	1851

<210> 2
<211> 329
<212> PRT
<213> Homo sapien

<400> 2
 Met Asp Ile Val Val Ser Gly Ser His Pro Leu Trp Val Asp Ser Phe
 1 5 10 15
 Leu His Leu Ala Gly Ser Asp Leu Leu Ser Arg Ser Leu Met Ala Glu
 20 25 30
 Glu Tyr Thr Ile Val His Ala Ser Phe Ile Ser Cys Ile Ser Ser Ser
 35 40 45
 Leu Asp Gly Gln Gly Glu Arg Gln Glu Gln Arg Gly His Phe Trp Arg
 50 55 60
 Pro Gln Arg Leu Leu Cys Glu Asp Ala Trp Glu Gln Glu Val Gln Val
 65 70 75 80
 Val Leu Pro Leu Leu Pro Leu Leu Gln Gly Ser Gly Lys Ser Asn Val
 85 90 95
 Val Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr
 100 105 110
 His Val His Gly Glu Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp
 115 120 125
 Gly Lys Val Pro Arg Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp
 130 135 140
 Val Asn Lys Arg Asp Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser
 145 150 155 160
 Ala Asn Gly Asn Ser Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys
 165 170 175
 Gln Leu Asn Val Leu Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala
 180 185 190
 Val Gln Cys Gln Glu Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly
 195 200 205
 Thr Asp Pro Asn Ile Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr
 210 215 220
 Ala Val Tyr Asn Glu Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr
 225 230 235 240
 Gly Ala Asp Ile Glu Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu
 245 250 255
 Leu Gly Ile His Glu Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys
 260 265 270
 Lys Lys Ala Asn Leu Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu
 275 280 285
 Ile Leu Ala Val Cys Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu
 290 295 300
 Glu Gln Asn Val Asp Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu
 305 310 315 320

Ser Met Leu Phe Leu Val Ile Ile Met
325

<210> 3
<211> 1852
<212> DNA
<213> Homo sapiens

<400> 3
ggcacgagaa taaaaccct cagcaaaaaca ggcatagaag ggacataacct taaagtaata 60
aaaaccacct atgacaagcc cacagccaac ataataactaa atggggaaaa gttagaagca 120
ttcctctga gaactgcaac aataaaataca aggatgctgg attttgtcaa atgcctttc 180
tgtgtctgtt gagatgccta tgtactttg cttttatcc tgtttatgtt attatcacat 240
ttattgactt gcctgttta gaccggaaga gctgggtgt ttctcaggag ccaccgtgtg 300
ctgcggcagc ttccggataa cttgaggctg catcaactggg gaagaaacac aytccctgtcc 360
gtggcgctga tggctgagga cagagctca gtgtggctc tctgcactg gcttcctcgg 420
ggagttcttc cttcatagtt catccatatg gtcacagagg aaaattatata tattttgtta 480
tggatgaaga gtattacgtt gtgcagatat actgcagtgt ctcatctct tgatgtgtga 540
ttgggttaggt tccaccatgt tgccgcagat gacatgattt cagtagctgt gtctggctga 600
aaagtgtttg tttgtgaatg gatattgtgg tttctggatc tcacccctctg tgggtggaca 660
gcttcctcca ctttgcttga agtgcacatgc tgcacatgtt gttatggct gaggagtata 720
ccatcggtca tgcacatccc atttcctgc tttcttcctc cctggatggc cagggggagc 780
ggcaagagca acgtggccac ttctggagac cacaacgact cctctgtgaa gacgccttggg 840
agcaagaggt gcaagtggc ctggccactgc ttccctgtc gcagggggag cggcaagagc 900
aacgtggcgtc cttggggaga ctacgatgac agcgcctca tggatcccag gtaccacgtc 960
catggagaag atctggacaa gtcacacaga gtcgcctgtt gggtaaaagt cccccagaaag 1020
gatctcatcg tcacatgcgtt ggacacggat gtacacaaga gggacaagca aaagaggact 1080
gctctacatc tggcctctgc caatggaaat tcacatgtt taaaactctgt gctggacaga 1140
cgatgtcaac ttaatgtct tgacaacaaa aagaggacac ctctgacaaa ggcgtacaa 1200
tgccaggaag atgaatgtgc gttaatgttg ctggacatgc gcaactgtatcc aatatttcca 1260
gatgagttatg gaaataccac tctacactat gctgtctaca atgaagatata attaatggcc 1320
aaagcactgc tcttatacgg tgctgatatc gaatcaaaaa acaagcatgg cctcacacca 1380
ctgctacttg gtatacatgc gcaaaaaacag caagtggta aattttaat caagaaaaaa 1440
gcgaatttaa atgcgcttgg tagatatggc agaactgttc tcacatgtc tttatgtt 1500
ggatcagcaa gtatagtcgtt ccctctactt gagcaaaatg ttgatgtatc ttctcaagat 1560
ctgaaaagac ggccagagag tatgctgttt ctgtcatca tcacatgtt tgccagttac 1620
tttctgacta caaagaaaaa cagatgttaa aatctttc tgaaaacagc aatccagaac 1680
aagacttaaa gctgacatca gagaaagagt cacaaggct taaaggaagt gaaaacagcc 1740
agccagagct agaagattt tggctattga agaagaatga agaacacggg agtactcatg 1800
tggattccc agaaaacctg actaacggc cccgtgttcaatggat ga 1852

<210> 4
<211> 292
<212> PRT
<213> Homo sapiens

<400> 4
Met His Leu Ser Phe Pro Ala Phe Leu Pro Pro Trp Met Asp Arg Gly
5 10 15

Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp His Asn Asp Ser Ser
20 25 30

Val Lys Thr Leu Gly Ser Lys Arg Cys Lys Trp Cys Cys His Cys Phe

35	40	45
Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val Val Ala Trp Gly Asp		
50	55	60
Tyr Asp Asp Ser Ala Phe Met Asp Pro Arg Tyr His Val His Gly Glu		
65	70	75
Asp Leu Asp Lys Leu His Arg Ala Ala Trp Trp Gly Lys Val Pro Arg		
85	90	95
Lys Asp Leu Ile Val Met Leu Arg Asp Thr Asp Val Asn Lys Arg Asp		
100	105	110
Lys Gln Lys Arg Thr Ala Leu His Leu Ala Ser Ala Asn Gly Asn Ser		
115	120	125
Glu Val Val Lys Leu Val Leu Asp Arg Arg Cys Gln Leu Asn Val Leu		
130	135	140
Asp Asn Lys Lys Arg Thr Ala Leu Thr Lys Ala Val Gln Cys Gln Glu		
145	150	155
Asp Glu Cys Ala Leu Met Leu Leu Glu His Gly Thr Asp Pro Asn Ile		
165	170	175
Pro Asp Glu Tyr Gly Asn Thr Thr Leu His Tyr Ala Val Tyr Asn Glu		
180	185	190
Asp Lys Leu Met Ala Lys Ala Leu Leu Leu Tyr Gly Ala Asp Ile Glu		
195	200	205
Ser Lys Asn Lys His Gly Leu Thr Pro Leu Leu Leu Gly Ile His Glu		
210	215	220
Gln Lys Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu		
225	230	240
Asn Ala Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys		
245	250	255
Cys Gly Ser Ala Ser Ile Val Ser Pro Leu Leu Glu Gln Asn Val Asp		
260	265	270
Val Ser Ser Gln Asp Leu Glu Arg Arg Pro Glu Ser Met Leu Phe Leu		
275	280	285
Val Ile Ile Met		
290		
<210> 5		
<211> 1155		
<212> DNA		
<213> Homo sapien		

<400> 5

atgggtggttg	agggttgcattc	catgccggct	gcctcttctg	tgaagaagcc	atttggtctc	60
aggagcaaga	tgggcaagtg	gtgctgccgt	tgttccccct	gctgcaggga	gagcggcaag	120
acaacgtgg	gcacttctgg	agaccacgac	gactctgcta	tgaagacact	caggagcaag	180
atgggcaagt	ggtgcccca	ctgcttcccc	tgctgcaggg	ggagtggcaa	gagcaacgtg	240
ggcgcttctg	gagaccacga	cgactctgtct	atgaagacac	tcaggaacaa	gatgggcaag	300
tgtgctgcc	actgctccc	ctgctgcagg	gggagcggca	agagcaaggt	gggcgcttgg	360
ggagactacg	atgacagtgc	cttcatggag	cccaggtaacc	acgtccgtgg	agaagatctg	420
gacaagctcc	acagagctgc	ctgggtgggt	aaagtcccc	gaaaggatct	catcgtcatg	480
ctcaggggaca	ctgacgtgaa	caagaaggac	aagcaaaaaga	ggactgtct	acatctggcc	540
tctgccaatg	ggaattcaga	agttagaaaa	ctcctgctgg	acagacgtg	tcaacttaat	600
gtccttgaca	acaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtgcgttaa	tgttgcgtga	acatggact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgttat	ctataatgaa	gataaaattaa	tggccaaagc	actgctctta	780
tatggtgcgt	atatcaatc	aaaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgcctctcata	cttgcgttat	gttgcgttgc	agcaagatata	960
gtcagccttc	tacttgagca	aaatattgtat	gtatctctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgttcc	tagtcatcat	catgttaattt	gccagttact	ttctgactac	1080
aaagaaaaac	agatgtctaa	aatctcttct	gaaaacagca	atccagaaca	agacttaaag	1140
ctgacatcag	aggaagagtc	acaaagggttc	aaaggcagt	aaaatagcca	gccagagaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaag	1260
aagcatgaaa	gtaataatgt	gggattacta	gaaaacctga	ctaattgtgt	cactgctggc	1320
aatggtgata	atggattaat	tcctcaaaagg	aagagcagaa	cacctgaaaa	tcagcaattt	1380
cctgacaacg	aaagtgaaga	gtatcacaga	atttgcgtat	tagttctga	ctacaaaagaa	1440
aaacagatgc	caaaaactc	ttctgaaaac	agcaaccag	aacaagactt	aaagctgaca	1500

<210> 6

<211> 2000

<212> DNA

<213> Homo sapien

<400> 6

atgggtggttg	agggttgcattc	catgccggct	gcctcttctg	tgaagaagcc	atttggtctc	60
aggagcaaga	tgggcaagtg	gtgctgccgt	tgttccccct	gctgcaggga	gagcggcaag	120
acaacgtgg	gcacttctgg	agaccacgac	gactctgcta	tgaagacact	caggagcaag	180
atgggcaagt	ggtgcccca	ctgcttcccc	tgctgcaggg	ggagtggcaa	gagcaacgtg	240
ggcgcttctg	gagaccacga	cgactctgtct	atgaagacac	tcaggaacaa	gatgggcaag	300
tgtgctgcc	actgctccc	ctgctgcagg	gggagcggca	agagcaaggt	gggcgcttgg	360
ggagactacg	atgacagtgc	cttcatggag	cccaggtaacc	acgtccgtgg	agaagatctg	420
gacaagctcc	acagagctgc	ctgggtgggt	aaagtcccc	gaaaggatct	catcgtcatg	480
ctcaggggaca	ctgacgtgaa	caagaaggac	aagcaaaaaga	ggactgtct	acatctggcc	540
tctgccaatg	ggaattcaga	agttagaaaa	ctcctgctgg	acagacgtg	tcaacttaat	600
gtccttgaca	acaaaaagag	gacagctctg	ataaaggccg	tacaatgcca	ggaagatgaa	660
tgtgcgttaa	tgttgcgtga	acatggact	gatccaaata	ttccagatga	gtatggaaat	720
accactctgc	actacgttat	ctataatgaa	gataaaattaa	tggccaaagc	actgctctta	780
tatggtgcgt	atatcaatc	aaaaaaacaag	catggcctca	caccactgtt	acttggtgta	840
catgagcaaa	aacagcaagt	cgtgaaattt	ttaatcaaga	aaaaagcgaa	tttaaatgca	900
ctggatagat	atggaaggac	tgcctctcata	cttgcgttat	gttgcgttgc	agcaagatata	960
gtcagccttc	tacttgagca	aaatattgtat	gtatctctc	aagatctatc	tggacagacg	1020
gccagagagt	atgctgttcc	tagtcatcat	catgttaattt	gccagttact	ttctgactac	1080
aaagaaaaac	agatgtctaa	aatctcttct	gaaaacagca	atccagaaca	agacttaaag	1140
ctgacatcag	aggaagagtc	acaaagggttc	aaaggcagt	aaaatagcca	gccagagaaa	1200
atgtctcaag	aaccagaaat	aaataaggat	ggtgatagag	aggttgaaga	agaaatgaag	1260
aagcatgaaa	gtaataatgt	gggattacta	gaaaacctga	ctaattgtgt	cactgctggc	1320
aatggtgata	atggattaat	tcctcaaaagg	aagagcagaa	cacctgaaaa	tcagcaattt	1380
cctgacaacg	aaagtgaaga	gtatcacaga	atttgcgtat	tagttctga	ctacaaaagaa	1440
aaacagatgc	caaaaactc	ttctgaaaac	agcaaccag	aacaagactt	aaagctgaca	1500

tca	gaggaag	agt	caca	aag	gctt	gagg	gc	agt	aaaatg	gcc	agcc	aga	ctagaa	at	1560
tttatgg	cta	tcg	aaga	aat	ga	aga	gac	g	aa	gt	cg	gatt	cc	ca	1620
ctgact	taat	gt	cc	act	tg	ca	at	gt	gg	at	tc	c	cc	ag	1680
agaacac	ctg	aa	agcc	cag	ca	tt	cct	g	aa	ag	at	ca	tg	ac	1740
caaaat	gata	ctc	aga	ag	ca	ttt	gt	g	aa	ca	at	tt	ac	cg	1800
attctgat	tc	at	ga	aa	aa	ttt	gt	g	aa	at	tc	tg	at	tg	1860
cttagttg	ta	ag	aa	aa	aa	ag	acat	tt	aa	at	tc	tg	ca	gg	1920
gccatgct	aa	gact	gg	ag	ct	ac	aca	ca	aa	at	c	g	ct	aa	1980
aaaaaaaaaaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	aaaa	2000

<210> 7
<211> 2040
<212> DNA
<213> Homo sapien

<400> 7

at	gg	tgg	tt	g	at	tt	g	tt	tc	t	g	aa	g	cc	at	tt	gg	tt	tc	60
agg	ag	ca	aa	ga	tt	gg	cc	aa	gt	gt	cc	cc	ct	gt	cc	tt	gg	cc	aa	120
ag	ca	ac	gt	tg	gt	ct	cc	ct	gt	ct	cc	ct	gt	cc	tt	gg	cc	aa	180	
at	gg	gg	ca	at	gt	cc	cc	cc	ct	gt	cc	cc	cc	gt	cc	cc	gg	gg	gg	240
gg	cg	ct	ct	tg	gg	ac	cc	ac	ct	gt	cc	cc	cc	gg	gt	gg	gg	gg	gg	300
gg	ac	cc	ac	ca	gg	ac	cc	ac	cc	gt	cc	cc	cc	gg	gg	gg	gg	gg	gg	360
gg	ag	ac	ac	tg	gg	420														
g	ac	ac	tg	cc	tt	cc	at	cc	480											
g	ac	ac	tg	cc	tt	cc	aa	gg	540											
ct	c	agg	g	ac	tg	cc	aa	gg	600											
t	c	t	cc	aa	t	cc	aa	gg	660											
t	c	ct	tt	g	ac	ac	cc	720												
acc	act	ac	t	t	g	ct	cc	780												
tat	gg	tg	ct	tg	cc	at	cc	840												
cat	gag	ca	aa	900																
ct	gg	at	ag	gg	ac	tg	cc	960												
gt	ca	ct	tc	t	cc	1020														
gtc	ag	cc	tt	t	cc	1080														
gg	ca	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	gg	1140
aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	1200
ct	g	ac	at	ca	gg	1260														
aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	1320
aa	at	gg	tt	gt	tt	cc	1380													
c	ct	g	ac	aa	1440															
c	ct	g	ac	aa	1500															
t	ca	g	gg	aa	1560															
ca	aa	aa	cc	1620																
gaa	at	ta	aa	1680																
act	gt	gg	cc	aa	1740															
c	g	ca	ac	ta	g	aa	ta	cc	1800											
a	ag	ca	at	tt	1860															
g	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	1920
g	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	1980
g	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	aa	2040

<210> 8
<211> 384
<212> PRT

<213> Homo sapien

<400> 8

Met	Val	Val	Glu	Val	Asp	Ser	Met	Pro	Ala	Ala	Ser	Ser	Val	Lys	Lys
1							5						10		15
Pro	Phe	Gly	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp	Cys	Cys	Arg	Cys	Phe
							20						25		30
Pro	Cys	Cys	Arg	Glu	Ser	Gly	Lys	Ser	Asn	Val	Gly	Thr	Ser	Gly	Asp
							35						40		45
His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp
							50						55		60
Cys	Arg	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser	Gly	Lys	Ser	Asn	Val
							65						70		75
Gly	Ala	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Asn
							85						90		95
Lys	Met	Gly	Lys	Trp	Cys	Cys	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser
							100						105		110
Gly	Lys	Ser	Lys	Val	Gly	Ala	Trp	Gly	Asp	Tyr	Asp	Asp	Ser	Ala	Phe
							115						120		125
Met	Glu	Pro	Arg	Tyr	His	Val	Arg	Gly	Glu	Asp	Leu	Asp	Lys	Leu	His
							130						135		140
Arg	Ala	Ala	Trp	Trp	Gly	Lys	Val	Pro	Arg	Lys	Asp	Leu	Ile	Val	Met
							145						150		155
Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys	Lys	Asp	Lys	Gln	Lys	Arg	Thr	Ala
							165						170		175
Leu	His	Leu	Ala	Ser	Ala	Asn	Gly	Asn	Ser	Glu	Val	Val	Lys	Leu	Leu
							180						185		190
Leu	Asp	Arg	Arg	Cys	Gln	Leu	Asn	Val	Leu	Asp	Asn	Lys	Lys	Arg	Thr
							195						200		205
Ala	Leu	Ile	Lys	Ala	Val	Gln	Cys	Gln	Glu	Asp	Glu	Cys	Ala	Leu	Met
							210						215		220
Leu	Leu	Glu	His	Gly	Thr	Asp	Pro	Asn	Ile	Pro	Asp	Glu	Tyr	Gly	Asn
							225						230		235
Thr	Thr	Leu	His	Tyr	Ala	Ile	Tyr	Asn	Glu	Asp	Lys	Leu	Met	Ala	Lys
							245						250		255
Ala	Leu	Leu	Leu	Tyr	Gly	Ala	Asp	Ile	Glu	Ser	Lys	Asn	Lys	His	Gly
							260						265		270
Leu	Thr	Pro	Leu	Leu	Leu	Gly	Val	His	Glu	Gln	Lys	Gln	Gln	Val	Val
							275						280		285
Lys	Phe	Leu	Ile	Lys	Lys	Ala	Asn	Leu	Asn	Ala	Leu	Asp	Arg	Tyr	
							290						295		300
Gly	Arg	Thr	Ala	Leu	Ile	Leu	Ala	Val	Cys	Cys	Gly	Ser	Ala	Ser	Ile
							305						310		315
Val	Ser	Leu	Leu	Leu	Glu	Gln	Asn	Ile	Asp	Val	Ser	Ser	Gln	Asp	Leu
							325						330		335
Ser	Gly	Gln	Thr	Ala	Arg	Glu	Tyr	Ala	Val	Ser	Ser	His	His	His	Val
							340						345		350
Ile	Cys	Gln	Leu	Leu	Ser	Asp	Tyr	Lys	Glu	Lys	Gln	Met	Leu	Lys	Ile
							355						360		365
Ser	Ser	Glu	Asn	Ser	Asn	Pro	Glu	Asn	Val	Ser	Arg	Thr	Arg	Asn	Lys
							370						375		380

<210> 9

<211> 656

<212> PRT

<213> Homo sapien

<400> 9

Met	Val	Val	Glu	Val	Asp	Ser	Met	Pro	Ala	Ala	Ser	Ser	Val	Lys	Lys
1				5					10					15	
Pro	Phe	Gly	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp	Cys	Cys	Arg	Cys	Phe
							20		25				30		
Pro	Cys	Cys	Arg	Glu	Ser	Gly	Lys	Ser	Asn	Val	Gly	Thr	Ser	Gly	Asp
							35		40			45			
His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Ser	Lys	Met	Gly	Lys	Trp
							50		55			60			
Cys	Arg	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser	Gly	Lys	Ser	Asn	Val
							65		70			75		80	
Gly	Ala	Ser	Gly	Asp	His	Asp	Asp	Ser	Ala	Met	Lys	Thr	Leu	Arg	Asn
							85				90		95		
Lys	Met	Gly	Lys	Trp	Cys	Cys	His	Cys	Phe	Pro	Cys	Cys	Arg	Gly	Ser
							100		105			110			
Gly	Lys	Ser	Lys	Val	Gly	Ala	Trp	Gly	Asp	Tyr	Asp	Asp	Ser	Ala	Phe
							115		120			125			
Met	Glu	Pro	Arg	Tyr	His	Val	Arg	Gly	Glu	Asp	Leu	Asp	Lys	Leu	His
							130		135			140			
Arg	Ala	Ala	Trp	Trp	Gly	Lys	Val	Pro	Arg	Lys	Asp	Leu	Ile	Val	Met
							145		150			155		160	
Leu	Arg	Asp	Thr	Asp	Val	Asn	Lys	Lys	Asp	Lys	Gln	Lys	Arg	Thr	Ala
							165				170		175		
Leu	His	Leu	Ala	Ser	Ala	Asn	Gly	Asn	Ser	Glu	Val	Val	Lys	Leu	Leu
							180				185		190		
Leu	Asp	Arg	Arg	Cys	Gln	Leu	Asn	Val	Leu	Asp	Asn	Lys	Lys	Arg	Thr
							195		200			205			
Ala	Leu	Ile	Lys	Ala	Val	Gln	Cys	Gln	Glu	Asp	Glu	Cys	Ala	Leu	Met
							210		215			220			
Leu	Leu	Glu	His	Gly	Thr	Asp	Pro	Asn	Ile	Pro	Asp	Glu	Tyr	Gly	Asn
							225		230			235		240	
Thr	Thr	Leu	His	Tyr	Ala	Ile	Tyr	Asn	Glu	Asp	Lys	Leu	Met	Ala	Lys
							245				250		255		
Ala	Leu	Leu	Leu	Tyr	Gly	Ala	Asp	Ile	Glu	Ser	Lys	Asn	Lys	His	Gly
							260				265		270		
Leu	Thr	Pro	Leu	Leu	Gly	Val	His	Glu	Gln	Lys	Gln	Gln	Val	Val	
							275		280			285			
Lys	Phe	Leu	Ile	Lys	Lys	Ala	Asn	Leu	Asn	Ala	Leu	Asp	Arg	Tyr	
							290		295			300			
Gly	Arg	Thr	Ala	Leu	Ile	Leu	Ala	Val	Cys	Cys	Gly	Ser	Ala	Ser	Ile
							305		310			315		320	
Val	Ser	Leu	Leu	Leu	Glu	Gln	Asn	Ile	Asp	Val	Ser	Ser	Gln	Asp	Leu
							325				330		335		
Ser	Gly	Gln	Thr	Ala	Arg	Glu	Tyr	Ala	Val	Ser	Ser	His	His	His	Val
							340				345		350		
Ile	Cys	Gln	Leu	Leu	Ser	Asp	Tyr	Lys	Glu	Lys	Gln	Met	Leu	Lys	Ile
							355				360		365		
Ser	Ser	Glu	Asn	Ser	Asn	Pro	Glu	Gln	Asp	Leu	Lys	Leu	Thr	Ser	Glu
							370				375		380		
Glu	Glu	Ser	Gln	Arg	Phe	Lys	Gly	Ser	Glu	Asn	Ser	Gln	Pro	Glu	Lys
							385		390			395		400	

Met Ser Gln Glu Pro Glu Ile Asn Lys Asp Gly Asp Arg Glu Val Glu
 405 410 415
 Glu Glu Met Lys Lys His Glu Ser Asn Asn Val Gly Leu Leu Glu Asn
 420 425 430
 Leu Thr Asn Gly Val Thr Ala Gly Asn Gly Asp Asn Gly Leu Ile Pro
 435 440 445
 Gln Arg Lys Ser Arg Thr Pro Glu Asn Gln Gln Phe Pro Asp Asn Glu
 450 455 460
 Ser Glu Glu Tyr His Arg Ile Cys Glu Leu Val Ser Asp Tyr Lys Glu
 465 470 475 480
 Lys Gln Met Pro Lys Tyr Ser Ser Glu Asn Ser Asn Pro Glu Gln Asp
 485 490 495
 Leu Lys Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Glu Gly Ser Glu
 500 505 510
 Asn Gly Gln Pro Glu Leu Glu Asn Phe Met Ala Ile Glu Glu Met Lys
 515 520 525
 Lys His Gly Ser Thr His Val Gly Phe Pro Glu Asn Leu Thr Asn Gly
 530 535 540
 Ala Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser
 545 550 555 560
 Arg Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr
 565 570 575
 His Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln
 580 585 590
 Asn Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln
 595 600 605
 Ile Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys
 610 615 620
 Lys Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile
 625 630 635 640
 Ala Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu
 645 650 655

<210> 10
 <211> 671
 <212> PRT
 <213> Homo sapien

<400> 10

Met Val Val Glu Val Asp Ser Met Pro Ala Ala Ser Ser Val Lys Lys
 1 5 10 15
 Pro Phe Gly Leu Arg Ser Lys Met Gly Lys Trp Cys Cys Arg Cys Phe
 20 25 30
 Pro Cys Cys Arg Glu Ser Gly Lys Ser Asn Val Gly Thr Ser Gly Asp
 35 40 45
 His Asp Asp Ser Ala Met Lys Thr Leu Arg Ser Lys Met Gly Lys Trp
 50 55 60
 Cys Arg His Cys Phe Pro Cys Cys Arg Gly Ser Gly Lys Ser Asn Val
 65 70 75 80
 Gly Ala Ser Gly Asp His Asp Asp Ser Ala Met Lys Thr Leu Arg Asn
 85 90 95
 Lys Met Gly Lys Trp Cys Cys His Cys Phe Pro Cys Cys Arg Gly Ser
 100 105 110
 Gly Lys Ser Lys Val Gly Ala Trp Gly Asp Tyr Asp Asp Ser Ala Phe

115	120	125
Met Glu Pro Arg Tyr His Val Arg Gly	Glu Asp Leu Asp Lys	Leu His
130	135	140
Arg Ala Ala Trp Trp Gly	Lys Val Pro Arg Lys	Asp Leu Ile Val Met
145	150	155
Leu Arg Asp Thr Asp Val Asn Lys	Lys Asp Lys Gln	Lys Arg Thr Ala
165	170	175
Leu His Leu Ala Ser Ala Asn Gly	Asn Ser Glu Val Val	Lys Leu Leu
180	185	190
Leu Asp Arg Arg Cys Gln	Leu Asn Val Leu Asp Asn	Lys Lys Arg Thr
195	200	205
Ala Leu Ile Lys Ala Val Gln	Cys Gln Glu Asp	Glu Cys Ala Leu Met
210	215	220
Leu Leu Glu His Gly	Thr Asp Pro Asn Ile	Pro Asp Glu Tyr Gly Asn
225	230	235
Thr Thr Leu His Tyr Ala Ile Tyr	Asn Glu Asp Lys	Leu Met Ala Lys
245	250	255
Ala Leu Leu Leu Tyr Gly	Ala Asp Ile Glu Ser Lys Asn	Lys His Gly
260	265	270
Leu Thr Pro Leu Leu Leu Gly	Val His Glu Gln Lys	Gln Gln Val Val
275	280	285
Lys Phe Leu Ile Lys Lys	Ala Asn Leu Asn Ala	Leu Asp Arg Tyr
290	295	300
Gly Arg Thr Ala Leu Ile	Leu Ala Val Cys Cys	Gly Ser Ala Ser Ile
305	310	315
Val Ser Leu Leu Leu Glu Gln	Asn Ile Asp Val Ser Ser	Gln Asp Leu
325	330	335
Ser Gly Gln Thr Ala Arg	Glu Tyr Ala Val Ser Ser	His His Val
340	345	350
Ile Cys Gln Leu Leu Ser Asp	Tyr Lys Glu Lys Gln	Met Leu Lys Ile
355	360	365
Ser Ser Glu Asn Ser Asn	Pro Glu Gln Asp	Leu Lys Leu Thr Ser Glu
370	375	380
Glu Glu Ser Gln Arg	Phe Lys Gly Ser Glu Asn	Ser Gln Pro Glu Lys
385	390	395
Met Ser Gln Glu Pro Glu	Ile Asn Lys Asp	Gly Asp Arg Glu Val Glu
405	410	415
Glu Glu Met Lys Lys	His Glu Ser Asn Asn	Val Gly Leu Leu Glu Asn
420	425	430
Leu Thr Asn Gly Val	Thr Ala Gly Asn Gly	Asp Asn Gly Leu Ile Pro
435	440	445
Gln Arg Lys Ser Arg Thr	Pro Glu Asn Gln Gln	Phe Pro Asp Asn Glu
450	455	460
Ser Glu Glu Tyr His Arg	Ile Cys Glu Leu Val	Ser Asp Tyr Lys Glu
465	470	475
Lys Gln Met Pro Lys Tyr	Ser Ser Glu Asn Ser	Asn Pro Glu Gln Asp
485	490	495
Leu Lys Leu Thr Ser	Glu Glu Ser Gln Arg	Leu Glu Gly Ser Glu
500	505	510
Asn Gly Gln Pro Glu	Lys Arg Ser Gln Glu	Pro Glu Ile Asn Lys Asp
515	520	525
Gly Asp Arg Glu Leu Glu	Asn Phe Met Ala Ile	Glu Glu Met Lys Lys
530	535	540
His Gly Ser Thr His Val	Gly Phe Pro Glu Asn	Leu Thr Asn Gly Ala

545	550	555	560
Thr Ala Gly Asn Gly Asp Asp Gly Leu Ile Pro Pro Arg Lys Ser Arg			
565	570	575	
Thr Pro Glu Ser Gln Gln Phe Pro Asp Thr Glu Asn Glu Glu Tyr His			
580	585	590	
Ser Asp Glu Gln Asn Asp Thr Gln Lys Gln Phe Cys Glu Glu Gln Asn			
595	600	605	
Thr Gly Ile Leu His Asp Glu Ile Leu Ile His Glu Glu Lys Gln Ile			
610	615	620	
Glu Val Val Glu Lys Met Asn Ser Glu Leu Ser Leu Ser Cys Lys Lys			
625	630	635	640
Glu Lys Asp Ile Leu His Glu Asn Ser Thr Leu Arg Glu Glu Ile Ala			
645	650	655	
Met Leu Arg Leu Glu Leu Asp Thr Met Lys His Gln Ser Gln Leu			
660	665	670	

<210> 11

<211> 800

<212> DNA

<213> Homo sapien

<400> 11

atkagcttcc	gtttctgaca	acactagaga	tccctccct	ccctcagggt	atggccctcc	60
acttcatttt	tggtacataa	catctttata	ggacagggt	aaaatccaa	tactaacagg	120
agaatgctta	ggactctaac	aggttttga	aatgtgttg	gtaagggcca	ctcaatccaa	180
tttttcttgg	tcctcettgt	ggtctaggag	gacaggcaag	ggtgcagatt	ttcaagaatg	240
catcagtaag	ggccactaaa	tccgaccttc	ctcggttcc	cttgtggct	gggagggaaaa	300
ctagtgtttc	tgttgcgtg	tcagttagca	caactattcc	gatcagcagg	gtccaggggac	360
cactgcaggt	tcttggcag	ggggagaaac	aaaacaaacc	aaaaccatgg	gcrgtttgt	420
ctttcagatg	ggaaacactc	aggcatcaac	aggctcacct	ttgaaatgca	tcctaagcca	480
atgggacaaa	tttgaccac	aaaccctgga	aaaagaggtg	gctcattttt	tttgcactat	540
ggcttggccc	caacatctc	tctctgatgg	ggaaaaatgg	ccacctgagg	gaagtacaga	600
ttacaatact	atcctgcagc	ttgaccttt	ctgtaagagg	gaaggcaaat	ggagtgaaat	660
accttatgtc	caagcttct	tttcattgaa	ggagaataca	ctatgaaag	cttggaaattt	720
acatcccaca	ggaggacctc	tcagcttacc	cccatatcct	agcctcccta	tagctccct	780
tcctatttagt	gataaggcctc					800

<210> 12

<211> 102

<212> PRT

<213> Homo sapien

<220>

<221> VARIANT

<222> (1)...(102)

<223> Xaa = Any Amino Acid

<400> 12

Met	Gly	Xaa	Phe	Val	Phe	Gln	Met	Gly	Asn	Thr	Gln	Ala	Ser	Thr	Gly
1				5				10					15		
Ser	Pro	Leu	Lys	Cys	Ile	Leu	Ser	Gln	Trp	Asp	Lys	Phe	Asp	Pro	Gln
					20				25				30		
Thr	Leu	Glu	Lys	Glu	Val	Ala	His	Phe	Phe	Cys	Thr	Met	Ala	Trp	Pro
					35				40				45		

Gln His Ser Leu Ser Asp Gly Glu Lys Trp Pro Pro Glu Gly Ser Thr
 50 55 60
 Asp Tyr Asn Thr Ile Leu Gln Leu Asp Leu Phe Cys Lys Arg Glu Gly
 65 70 75 80
 Lys Trp Ser Glu Ile Pro Tyr Val Gln Ala Phe Phe Ser Leu Lys Glu
 85 90 95
 Asn Thr Leu Cys Lys Ala
 100

<210> 13

<211> 1206

<212> DNA

<213> Homo sapien

<400> 13

ggcacgagga	agttttgtgt	actgaaaaag	aaactgtcag	aagcaaaaga	aataaaatca	60
cagttagaga	accaaaaagt	taaatggaa	caagagctct	gcagtgttag	gtttctcaca	120
ctcatgaaaa	tgaaaattat	ctcttacatg	aaaattgcatt	gttgaaaaag	gaaattgccat	180
tgctaaaact	ggaaatagcc	acactgaaac	accaatacca	ggaaaaggaa	aataaaatact	240
ttgaggacat	taagattta	aaagaaaaaa	atgctgaact	tcagatgacc	ctaaaactga	300
aagaggaatc	attaaactaaa	aggcatctc	aatatagtgg	gcagcttaaa	gttctgatag	360
ctgagaacac	aatgctact	tctaaattga	aggaaaaaca	agacaaagaa	atactagagg	420
cagaaattga	atcacaccat	cctagactgg	cttctgtgt	acaagaccat	gatcaaattg	480
tgacatcaag	aaaaagtcaa	gaacctgctt	tccacattgc	aggagatgct	tgtttgc当地	540
gaaaaatgaa	tgttgatgtg	agtagtacga	tatataacaa	tgagggtctc	catcaaccac	600
tttctgaagc	tcaaaggaaa	tccaaaagcc	taaaaattaa	tctcaattat	gccggagatg	660
ctctaagaga	aaatacattg	gttccagaac	atgcacaaag	agaccaacgt	gaaacacagt	720
gtcaaatgaa	ggaagctgaa	cacatgtatc	aaaacgaaca	agataatgtg	aacaaacaca	780
ctgaacagca	ggagtctcta	gatcagaaat	tatttcaact	acaaagcaaa	aatatgtggc	840
ttcaacagca	attagttcat	gcacataaga	aagctgacaa	caaaagcaag	ataacaattg	900
atattcattt	tcttgagagg	aaaatgcaac	atcatctcct	aaaagagaaaa	aatgaggaga	960
tattnaatta	caataaccat	ttaaaaaacc	gtatatatca	atatgaaaaa	gagaaagcag	1020
aaacagaagt	tatataatag	tataacactg	ccaaggagcg	gattatctca	tcttcattct	1080
gtaattccag	tgtttgtcac	gtgggtgttg	aataaatgaa	taaagaatga	gaaaaccaga	1140
agctctgata	cataatcata	atgataatta	tttcaatgca	caactacggg	tggtgctgct	1200
cgtgcc						1206

<210> 14

<211> 317

<212> PRT

<213> Homo sapien

<400> 14

Met	Gly	Thr	Arg	Ala	Leu	Gln	Cys	Glu	Val	Ser	His	Thr	His	Glu	Asn
1				5				10				15			
Glu	Asn	Tyr	Leu	Leu	His	Glu	Asn	Cys	Met	Leu	Lys	Lys	Glu	Ile	Ala
				20					25			30			
Met	Leu	Lys	Leu	Glu	Ile	Ala	Thr	Leu	Lys	His	Gln	Tyr	Gln	Glu	Lys
				35				40			45				
Glu	Asn	Lys	Tyr	Phe	Glu	Asp	Ile	Lys	Ile	Leu	Lys	Glu	Lys	Asn	Ala
				50				55			60				
Glu	Leu	Gln	Met	Thr	Leu	Lys	Leu	Lys	Glu	Glu	Ser	Leu	Thr	Lys	Arg
				65				70			75			80	
Ala	Ser	Gln	Tyr	Ser	Gly	Gln	Leu	Lys	Val	Leu	Ile	Ala	Glu	Asn	Thr

85	90	95
Met Leu Thr Ser Lys Leu Lys Glu Lys Gln Asp Lys Glu Ile Leu Glu		
100	105	110
Ala Glu Ile Glu Ser His His Pro Arg Leu Ala Ser Ala Val Gln Asp		
115	120	125
His Asp Gln Ile Val Thr Ser Arg Lys Ser Gln Glu Pro Ala Phe His		
130	135	140
Ile Ala Gly Asp Ala Cys Leu Gln Arg Lys Met Asn Val Asp Val Ser		
145	150	155
Ser Thr Ile Tyr Asn Asn Glu Val Leu His Gln Pro Leu Ser Glu Ala		
165	170	175
Gln Arg Lys Ser Lys Ser Leu Lys Ile Asn Leu Asn Tyr Ala Gly Asp		
180	185	190
Ala Leu Arg Glu Asn Thr Leu Val Ser Glu His Ala Gln Arg Asp Gln		
195	200	205
Arg Glu Thr Gln Cys Gln Met Lys Glu Ala Glu His Met Tyr Gln Asn		
210	215	220
Glu Gln Asp Asn Val Asn Lys His Thr Glu Gln Gln Glu Ser Leu Asp		
225	230	235
Gln Lys Leu Phe Gln Leu Gln Ser Lys Asn Met Trp Leu Gln Gln Gln		
245	250	255
Leu Val His Ala His Lys Lys Ala Asp Asn Lys Ser Lys Ile Thr Ile		
260	265	270
Asp Ile His Phe Leu Glu Arg Lys Met Gln His His Leu Leu Lys Glu		
275	280	285
Lys Asn Glu Glu Ile Phe Asn Tyr Asn Asn His Leu Lys Asn Arg Ile		
290	295	300
Tyr Gln Tyr Glu Lys Glu Ala Glu Thr Glu Val Ile		
305	310	315

<210> 15

<211> 1665

<212> DNA

<213> Homo sapien

<400> 15

gcaaacttgc aagcagagcc tcccgagaag ccatctgcct tcgagcctgc cattgaaatg	60
caaaaagtctg ttccaaataa agccttgaa ttgaagaatg aacaaacatt gagaggagat	120
cagatgttcc ctccagaatc aaaacaaaag aaggttgaag aaaattcttg ggattctgag	180
agtcctccgtg agactgttcc acagaaggat gtgtgtgtac ccaaggctac acatcaaaaa	240
gaaatggata aaataagtgg aaaatttagaa gattcaacta gcctatcaaa aatcttggat	300
acagttcatt ctgtgaaag agcaaggaa cttcaaaaag atcactgtga acaacgtaca	360
ggaaaaatgg aacaaatgaa aaagaagttt tgtgtactga aaaagaaaact gtcagaagca	420
aaagaaaataa aatcacagtt agagaaccaa aaagttaaat gggacaaga gctctgcagt	480
gtgaggttcc tcacactcat gaaaatgaaa attatcttt acatgaaaat tgcatgttga	540
aaaaggaaat tgccatgcta aaactggaaa tagccacact gaaacaccaa taccagggaa	600
aggaaaataa atacttgag gacattaaga ttttaaaaaga aaagaatgct gaacttcaga	660
tgaccctaaa actgaaagag gaatcattaa ctaaaaggc atctcaatat agtggcagc	720
ttaaaagtct gatagctgag aacacaatgc tcacttctaa attgaaggaa aaacaagaca	780
aagaaaatact agaggcagaa atgaaatcac accatcctag actggcttct gctgtacaag	840
accatgatca aatttgtgaca tcaagaaaaa gtcaagaacc tgctttccac attgcaggag	900
atgcttgttt gcaaagaaaa atgaaatgttg atgtgagtag tacgatataat aacaatgagg	960
tgctccatca accacttct gaagctcaaa ggaaatccaa aagcctaaaa attaatctca	1020
attatgccgg agatgctcta agagaaaata cattggttc agaacatgca caaagagacc	1080

aacgtgaaac acagtgtcaa atgaaggaag ctgaacacat gtatcaaaaac gaacaagata 1140
 atgtgaacaa acacactgaa caggcaggat ctctagatca gaaatttattt caactacaaa 1200
 gcaaaaatat gtggcttcaa cagaattag ttcatgcaca taagaaagct gacaacaaaa 1260
 gcaagataac aatttatattt cattttcttg agagaaaaat gcaacatcat ctcctaaaag 1320
 agaaaaatga ggagatattt aattacaata accatttaaa aaaccgtata tatcaatatg 1380
 aaaaagagaa agcagaaaaa gaaaactcat gagagacaag cagtaagaaaa cttctttgg 1440
 agaaaacaaca gaccagatct ttactcacaa ctcatgctag gaggccagtc ctagcattac 1500
 cttatgttaaa aatatttacc aatagtctgt gtcaacagaa tacttatttt agaagaaaa 1560
 ttcatgattt cttcctgaag cctggcgac agagcgagac tctgtctcaa aaaaaaaaaa 1620
 aaaaaaaaaaagaa agaaagaaaat gcctgtgctt acttcgcttc ccagg 1665

<210> 16
 <211> 179
 <212> PRT
 <213> Homo sapien

<400> 16

Ala	Asn	Phe	Gln	Ala	Glu	Pro	Pro	Glu	Lys	Pro	Ser	Ala	Phe	Glu	Pro
1				5				10				15			
Ala	Ile	Glu	Met	Gln	Lys	Ser	Val	Pro	Asn	Lys	Ala	Leu	Glu	Leu	Lys
					20				25				30		
Asn	Glu	Gln	Thr	Leu	Arg	Ala	Asp	Gln	Met	Phe	Pro	Ser	Glu	Ser	Lys
				35				40				45			
Gln	Lys	Lys	Val	Glu	Glu	Asn	Ser	Trp	Asp	Ser	Glu	Ser	Leu	Arg	Glu
				50				55			60				
Thr	Val	Ser	Gln	Lys	Asp	Val	Cys	Val	Pro	Lys	Ala	Thr	His	Gln	Lys
				65				70			75			80	
Glu	Met	Asp	Lys	Ile	Ser	Gly	Lys	Leu	Glu	Asp	Ser	Thr	Ser	Leu	Ser
				85				90			95				
Lys	Ile	Leu	Asp	Thr	Val	His	Ser	Cys	Glu	Arg	Ala	Arg	Glu	Leu	Gln
				100				105			110				
Lys	Asp	His	Cys	Glu	Gln	Arg	Thr	Gly	Lys	Met	Glu	Gln	Met	Lys	Lys
				115				120			125				
Lys	Phe	Cys	Val	Leu	Lys	Lys	Leu	Ser	Glu	Ala	Lys	Glu	Ile	Lys	
				130				135			140				
Ser	Gln	Leu	Glu	Asn	Gln	Lys	Val	Lys	Trp	Glu	Gln	Glu	Leu	Cys	Ser
				145				150			155			160	
Val	Arg	Phe	Leu	Thr	Leu	Met	Lys	Met	Lys	Ile	Ile	Ser	Tyr	Met	Lys
					165				170			175			
Ile	Ala	Cys													

<210> 17
 <211> 1681
 <212> DNA
 <213> Homo sapien

<400> 17

gatacagtca	ttcttgtaaa	agagcaaggg	aacttcaaaa	agatcactgt	gaacaacgta	60
caggaaaaat	ggaacaaatg	aaaaagaagt	tttgttact	aaaaaagaaa	ctgtcagaag	120
caaaaagaaat	aaaatcacag	tttagagaacc	aaaaagttaa	atggaaacaa	gagctctgca	180
gtgtgagatt	gactttaaac	caagaagaag	agaagagaag	aatatgccat	atattaaatg	240
aaaaaaatag	ggaagaatta	ggaagaatcg	aagagcagca	taggaaagag	ttagaagtga	300
aacaacaact	tgaacaggct	ctcagaatac	aagatataaga	attgaagagt	gtagaaagta	360

atttgaatca	ggtttctcac	actcatgaaa	atgaaaaatta	tctcttacat	aaaaatttgc	420
tgttgaaaaaa	gaaaatttgc	atgctaaaac	tggaaaatagc	cacactgaaa	caccaatacc	480
aggaaaagga	aaataaatac	tttgaggaca	ttaagatttt	aaaagaaaaag	aatgtgtac	540
ttcagatgac	cctaaaactg	aaagaggaat	cattaactaa	aagggcacatct	caatataatgt	600
ggcagcttaa	agttctgtata	gctgagaaca	caatgtcac	ttctaaattt	aaggaaaaaac	660
aagacaaaaga	aatacttagag	gcagaaattt	aatccacacca	tccttagactg	gcttctgtcg	720
tacaagagcca	tgatcaaattt	gtgacatcaa	gaaaaagtca	agaacatgtct	ttccacatgt	780
caggagatgc	ttgtttgca	agaaaaatga	atgttgatgt	gagtagtacg	atataataaca	840
atgaggtgct	ccatcaacca	ctttctgtaa	ctcaaaggaa	atccaaaagc	ctaaaaattha	900
atctcaatta	tgccggagat	gctctaagag	aaaatacattt	ggtttcagaa	catgcacaaa	960
gagaccaacg	tgaaacacag	tgtcaaatga	aggaagctga	acacatgttat	aaaaacgaaac	1020
aagataatgt	gaacaaacac	actgaacacgc	aggagtctct	agatcagaaa	ttatttcaac	1080
tacaaagcaa	aaatatgtgg	cttcaacacgc	aatttagttca	tgcacataag	aaagctgaca	1140
acaaaaagcaa	gataacaattt	gatattcattt	ttcttgagag	gaaaatgcaa	catcatctcc	1200
taaaagagaaa	aatgaggag	atatttaattt	acaataacca	tttaaaaaac	cgtatataatc	1260
aatatgaaaaa	agagaaaagca	gaaacagaaa	actcatgaga	gacaacgcgt	aagaaaacttc	1320
ttttggagaa	acaacacagacc	agatctttac	tcacaactca	tgcttaggagg	ccagtcctag	1380
cattacctta	tgttgaaaaaa	tcttaccaat	agtctgtgtc	aacagaatac	ttattttaga	1440
agaaaaaattt	atgatttctt	cctgaagcct	acagacataa	aataacagtg	tgaagaattha	1500
cttgttcacg	aattgcataa	aagctgccc	ggatttccat	ctaccctgg	tgatgccgga	1560
gacatcattt	aatccaaacca	gaatctcgct	ctgtcactca	ggctggagtg	cagtggggcgc	1620
aatctcggt	cactgcaact	ctgcctcccc	ggttcagcgc	attctctggc	acagcctccc	1680
g						1681

<210> 18
<211> 432
<212> PRT
<213> *Homo sapien*

```

<400> 18
Asp Thr Val His Ser Cys Glu Arg Ala Arg Glu Leu Gln Lys Asp His
1 5 10 15
Cys Glu Gln Arg Thr Gly Lys Met Glu Gln Met Lys Lys Lys Phe Cys
20 25 30
Val Leu Lys Lys Leu Ser Glu Ala Lys Glu Ile Lys Ser Gln Leu
35 40 45
Glu Asn Gln Lys Val Lys Trp Glu Gln Glu Leu Cys Ser Val Arg Leu
50 55 60
Thr Leu Asn Gln Glu Glu Lys Arg Arg Asn Ala Asp Ile Leu Asn
65 70 75 80
Glu Lys Ile Arg Glu Glu Leu Gly Arg Ile Glu Glu Gln His Arg Lys
85 90 95
Glu Leu Glu Val Lys Gln Gln Leu Glu Gln Ala Leu Arg Ile Gln Asp
100 105 110
Ile Glu Leu Lys Ser Val Glu Ser Asn Leu Asn Gln Val Ser His Thr
115 120 125
His Glu Asn Glu Asn Tyr Leu Leu His Glu Asn Cys Met Leu Lys Lys
130 135 140
Glu Ile Ala Met Leu Lys Leu Glu Ile Ala Thr Leu Lys His Gln Tyr
145 150 155 160
Gln Glu Lys Glu Asn Lys Tyr Phe Glu Asp Ile Lys Ile Leu Lys Glu
165 170 175
Lys Asn Ala Glu Leu Gln Met Thr Leu Lys Leu Lys Glu Glu Ser Leu
180 185 190

```

Thr Lys Arg Ala Ser Gln Tyr Ser Gly Gln Leu Lys Val Leu Ile Ala
 195 200 205
 Glu Asn Thr Met Leu Thr Ser Lys Leu Lys Glu Lys Gln Asp Lys Glu
 210 215 220
 Ile Leu Glu Ala Glu Ile Glu Ser His His Pro Arg Leu Ala Ser Ala
 225 230 235 240
 Val Gln Asp His Asp Gln Ile Val Thr Ser Arg Lys Ser Gln Glu Pro
 245 250 255
 Ala Phe His Ile Ala Gly Asp Ala Cys Leu Gln Arg Lys Met Asn Val
 260 265 270
 Asp Val Ser Ser Thr Ile Tyr Asn Asn Glu Val Leu His Gln Pro Leu
 275 280 285
 Ser Glu Ala Gln Arg Lys Ser Lys Ser Leu Lys Ile Asn Leu Asn Tyr
 290 295 300
 Ala Gly Asp Ala Leu Arg Glu Asn Thr Leu Val Ser Glu His Ala Gln
 305 310 315 320
 Arg Asp Gln Arg Glu Thr Gln Cys Gln Met Lys Glu Ala Glu His Met
 325 330 335
 Tyr Gln Asn Glu Gln Asp Asn Val Asn Lys His Thr Glu Gln Gln Glu
 340 345 350
 Ser Leu Asp Gln Lys Leu Phe Gln Leu Gln Ser Lys Asn Met Trp Leu
 355 360 365
 Gln Gln Gln Leu Val His Ala His Lys Lys Ala Asp Asn Lys Ser Lys
 370 375 380
 Ile Thr Ile Asp Ile His Phe Leu Glu Arg Lys Met Gln His His Leu
 385 390 395 400
 Leu Lys Glu Lys Asn Glu Glu Ile Phe Asn Tyr Asn Asn His Leu Lys
 405 410 415
 Asn Arg Ile Tyr Gln Tyr Glu Lys Glu Lys Ala Glu Thr Glu Asn Ser
 420 425 430

<210> 19
 <211> 3681
 <212> DNA
 <213> Homo sapiens

<400> 19
 tccgagctga ttacagacac caaggaagat gctgtaaaga gtcagcagcc acagccctgg 60
 ctagctggcc ctgtggcat ttatttagtaa agttttaatg acaaaggctt tgagtcaaca 120
 caccctgggg taatttaacct ggtcatcccc accctggaga gccatcctgc ccatgggtga 180
 tcaaagaagg aacatctgca ggaacacctg atgaggctgc acccttggcg gaaagaacac 240
 ctgacacacgc taaaaagctt gttggaaaaaa cacctgtatga ggctgcaccc ttgggtggaaa 300
 gaacacactga cacggctgaa agcttggtgg aaaaaacacc tgatgaggct gcataccttgg 360
 tggagggaac atctgacaaa attcaatgtt tggagaaagc gacatctgga aagttcgaac 420
 agtcagcaga agaaaacacct aggaaattt cgagtcctgc aaaagaaaaca tctgagaaat 480
 ttacgtggcc agcaaaaagga agaccttagga agatcgcacatgg gggaaaaaaa gaagacacac 540
 ctagggaaat tatgagtccc gcaaaaagaaa catctgagaa atttagtgg gcagcaaaag 600
 gaagacctag gaagatcgca tgggagaaaa aagaaacacc tgtaaagact ggatgcgtgg 660
 caagagtaac atctaataaa actaaagttt tggaaaaagg aagatctaag atgattgcata 720
 gtcctacaaa agaatcatct acaaaaagcaa gtgcacatga tcagagggttc ccatcagaat 780
 ccaaaacaaga ggaagatgaa gaatattctt gtgattctcg gagtccttt gagagttctg 840
 caaagattca agtgtgtata cctgagtcata tataatcaaaa agtaatggag ataaatagag 900
 aagtagaaga gcctcctaag aagccatctg ccttcaagcc tgccattgaa atgcaaaact 960
 ctgttccaaa taaagccctt gaattgaaga atgaacaaac attgagagca gatccgatgt 1020

tcccaccaga atccaaacaa aaggactatg aagaaaattc ttgggattct gagagtctct 1080
 gtgagactgt ttcacagaag gatgtgtt tacccaaggc tacacatcaa aaagaaaatag 1140
 ataaaataaa tggaaaatta gaagagtctc ctaataaaga tggtctctg aaggctacct 1200
 gcggaatgaa agtttctatt ccaactaaag ccttagaatt gaaggacatg caaacttca 1260
 aagcagagcc tccggggaa ccatctgcct tcgagcctgc cactgaaatg caaaagtctg 1320
 tcccaaataa agccttggaa ttgaaaaatg aacaaacatt gagagcagat gagatactcc 1380
 catcagaatc caaacaaaag gactatgaag aaagtcttg ggattctgag agtctcttg 1440
 agactgtttc acagaaggat gtgtttaac ccaaggctrc rcatcaaaaa gaaatagata 1500
 aaataaatgg aaaattagaa gggtctcctg ttaaagatgg tcttctgaag gctaactgcg 1560
 gaatgaaagt ttctattcca actaaagcct tagaattgtat ggacatgca actttcaag 1620
 cagagcctcc cgagaagcctc tctgccttcg agcctgcatt tgaaatgca aagtctgttc 1680
 caaataaagc cttggaaattg aagaatgaac aaacattgag agcagatgag atactccat 1740
 cagaatccaa acaaaaggac tatgaagaaa gttcttggaa ttctgagatg ctctgtgaga 1800
 ctgttccaca gaaggatgtg tggttaccca aggctrcrca tcaaaaagaa atagataaaa 1860
 taaatggaaa attagaagag tctcctgata atgatggtt tctgaaggct ccctgcagaa 1920
 tgaaagtttc tattccaaact aaaggcttag aattgtatgca catgcaact ttcaaagcag 1980
 agcctcccgaa gaagccatct gccttcgagc ctgcccattt aatgcaaaag tctgttccaa 2040
 ataaagcctt ggaattgaag aatgaacaaa cattgagagc agatcagatg ttcccttcag 2100
 aatcaaaaaca aaagaasgtt gaagaaaattt cttgggattc tgagagtctc cgtgagactg 2160
 tttcacagaa ggtatgtgtgt tttccaaagg ctacacatca aaaagaaaatg gataaaaataa 2220
 gtggaaaattt agaagattca actagcctat caaaatctt ggatcagatg cattcttg 2280
 aaagagcaag ggaacttcaa aaagatcact gtgaacaacg tacagggaaa atgaaacaaa 2340
 tgaaaaagaa gtttgtgtt ctgaaaaaaa aactgtcaga agcaaaaagaa ataaaatcac 2400
 agtttagagaa ccaaaaagtt aaatggaaac aagagctctg cagtgtgagg tttctcacac 2460
 tcatgaaaat gaaaatttac tcttacatga aaattgcattt ttggaaaagg aaattgcatt 2520
 gctaaaactg gaaatagccaa cactgaaaca ccaataccag gaaaaggaaa ataaataactt 2580
 tgagacatt aagattttaa aagaaaagaa tgctgaactt cagatgaccc taaaactgaa 2640
 agagaatca ttaactaaaa gggcatctca atatagtggg cagcttaaag ttctgatagc 2700
 tgagaacaca atgctactt ctaaatttggaa ggaaaaacaa gacaaagaaa tactagaggc 2760
 agaaaatttgc ttacaccatc cttagactggc ttctgctgtt caagaccatg atcaaattgt 2820
 gacatcaaga aaaagtcaag aacctgcttt ccacatttca ggagatgctt gtttgcggaa 2880
 aaaaatgaat gtttatgtt gtagtacatg atataacaat gaggtgtcc atcaaccact 2940
 ttctgaaatg caaaggaaat cccaaagcct aaaaattaat ctcaattatg cmggagatgc 3000
 tctaagagaa aatacattgg tttcagaaca tgcacaaaaga gaccaacgtg aaacacagtg 3060
 tcaaataatgaa gaagctgaac acatgtatca aaacgaacaa gataatgtga acaaacacac 3120
 tgaacacgac gagtctctag atcagaaaattt attcacta caaagcaaaa atatgtggct 3180
 tcaacacgaa ttatgttcatg cacataagaa agctgacaaac aaaagcaaga taacaatttga 3240
 tattcatttt cttgagagga aaatgcaaca tcatctccta aaagagaaaa atgaggagat 3300
 atttaaatttac aataaccatt taaaaaaacccg tatatatcaa tatgaaaaag agaaagcaga 3360
 aacagaaaaac tcatgagaga caagcagttaa gaaacttctt ttggagaaaac aacagaccag 3420
 atctttactc acaactcatg cttaggaggcc agtccttagca tcacctttagt ttgaaaatct 3480
 taccatagt ctgtgtcaac agaataactt ttttagaaga aaaattcatg atttcttctt 3540
 gaaggctaca gacataaaaat aacagtgtt gagaattactt gttcacgaat tgcataaaagc 3600
 tgcacaggat tcccatctac cctgatgatg cagcagacat cattcaatcc aaccagaatc 3660
 tcgctctgtc actcaggctg g 3681

<210> 20
<211> 1424
<212> DNA
<213> Homo sapiens

<400> 20
tccgagctga ttacagacac caaggaagat gctgtaaaga gtcagcagcc acagccctgg 60
ctagctggcc ctgtggccat ttatttagaa agttttaaatg acaaaaagctt tgagtcaaca 120

caccctgggg taattaacct ggtcatcccc accctggaga gccatcctgc ccatgggtga 180
tcaaagaagg aacatctgca ggaacacctg atgaggctgc acccttggcg gaaagaacac 240
ctgacacagc taaaagcttg gtggaaaaaa cacctgatga ggctgcaccc ttgggtggaaa 300
gaacacactga cacggctgaa agcttggtgg aaaaaacacc tgatgaggct gcatcctgg 360
tggagggAAC atctgacaaa attcaatgtt tggagaaAGC gacatctgaa aagttcgAAC 420
agtcagcaga agaaaacactt aggaaattt cgagtctgc aaaagaaaca tctgagaaat 480
ttacgtggcc agcaaaAGGA agaccttagga agatcgcattt ggagaaaaaa gaagacacac 540
ctagggaaat tatgagtccc gcaaaAGAAA catctgagaa atttacgtgg gcagcaaaAG 600
gaagacctag gaagatcgca tggagaaaaa aagaaacacc tgtaaagact ggatgcgtgg 660
caagagtaac atctaataaa actaaagttt tggaaaaagg aagatctaag atgattgcat 720
gtcctacaaa agaatcatct acaaaAGCAA gtgccaatga tcagaggttc ccatcagaat 780
ccaaacaaaga ggaagatgaa gaatattttt gtgattctcg gagtctctt gagagttctg 840
caaagattca agtgtgtata cctgagtcta tatataaaaa agtaatggag ataaatagag 900
aagtagaaga gcctcctaag aagccatctg cttcaagcc tgccattgaa atgaaaaact 960
ctgttccaaa taaagcctt gaattgaaga atgaacaaac attgagagca gatccgatgt 1020
tcccaccaga atccaaacaa aaggactatg aaaaaaATTt ttgggattct gagagtcct 1080
gtgagactgt ttcacagaag gatgtgttt tacccaaggc tacacatcaa aaagaaatag 1140
ataaaaataaa tggaaaatta gaaggtaaga accgtttttt atttaaaaat cagttgaccg 1200
aatatttctc taaactgatg aggagggata tcctctagta gctgaagaaa attacctcct 1260
aaatgcAAAC catggaaaaaa aagagaagtg caatggtcgt aagttgtatg tctcatcagg 1320
tggcaac agactatatt gagagtgcgt aaaaaggagct gaatttattag tttgaattca 1380
agatattgca agacctgaga gaaaaaaaaaaa aaaaaaaaaaaa aaaa 1424

<210> 21
<211> 674
<212> DNA
<213> Homo sapiens

<400> 21
attccgagct gattacagac accaaggaag atgctgtaaa gagtcagcag ccacagccct 60
ggctagctgg ccctgtgggc atttattagt aaagtttaa tgacaaaagc tttgagtcaa 120
cacacccgtg gtaattAAC ctggtcattcc ccacccttgg gaggccatctt gccccatgggt 180
gatcaaagaa ggaacatctg caggaacacc tgatgaggct gcacccttgg cgaaaaAGAAC 240
acctgacaca gctgaaagct tggggaaaaa aacacctgtt gaggctgcac cttgggtgg 300
aagaacacct gacacggctg aaagcttggt ggaaaaaaca cctgatgagg ctgcattcctt 360
ggtgaggaga acatctgaca aaattcaatg tttggagaaa ggcacatctg gaaagttcga 420
acagttagca gaagaaacac cttagggaaat tacgagtctt gcaaaAGAAA catctgagaa 480
atttacgtgg ccagcaaaAGGA gaagaccttag gaagatcgca tggagaaaaaa aagatgactc 540
agttaggca aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 600
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 660
aaaaaaaaaaa aaaa 674

<210> 22
<211> 1729
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> (11)
<223> n=A,T,C or G
<221> unsure
<222> (1128)
<223> n=A,T,C or G

<400> 22

gaaagttcga ncagtca gca gaagaaac ac ctagggaa at tacgagtcc t gcaaaaagaaaa 60
 catctgagaa atttacgtgg ccagcaaa ag gaagacctag gaagatcgca tgggagaaaa 120
 aagaagacac accttagggaa attatgagtc cgc caaaa a aacatctgaa aaatttacgt 180
 gggcagcaaa aggaagactt aggaagatcg catgggagaa aaaagaaaca cctgtaaaga 240
 ctggatgcgt ggcaagagta acatctaata aaactaaagt tttggaaaaa ggaagatcta 300
 agatgattgc atgtcctaca aaagaatcat ctacaaaagc aagtgc caat gatcagaggt 360
 tcccatcaga atccaaacaa gaggaagatg aagaatattc ttgtgattct cggagtctct 420
 ttgagagttc tgcaaagattt caagtgtgt tacctgagtc tatatatcaa aaagtaatgg 480
 agataaaatag agaagtagaa ggcctccta agaagccatc tgccttcaag cctgccattt 540
 aaatgc aaaa ctctgttcca aataaaagcct ttgaattgaa gaatgaacaa acattgagag 600
 cagatccgat gttcccacca gaatccaaac aaaaggacta tgaagaaaaat tcttgggatt 660
 ctgagagtct ctgtgagact gtttccacaga aggatgtgtg tttacccaa gctacacatc 720
 aaaaagaaaat agataaaata aatgaaaaat tagaagagtc tcctaataaa gatggtcttc 780
 tgaaggctac ctgcgaaatg aaagttcttca ttccaaactaa agccttagaa ttgaaggaca 840
 tgcaaacttt caaagcagag cctccgggaa agccatctgc cttcgagct gccactgaaa 900
 tgcaaaggc t gttccaaat aaagccttgg aattgaaaaa tgaacaaaca ttgagagcag 960
 atgagatact cccatcaga tccaaacaaa aggactatga agaaaattct tgggataactg 1020
 agagtctctg tgagacttt tcacagaagg atgtgtgtt acccaaggct ggcacatcaa 1080
 aagaaataga taaaataat gaaaaattag aagggtctcc tggtaanat ggtcttctga 1140
 aggctaactg cgaaatgaaa gtttcttattt caactaaagc cttttagattt atggacatgc 1200
 aaaccttcaa agcagagcct cccgagaagc catctgcctt cgagcctgccc attgaaatgc 1260
 aaaagtctgt tccaaataaa gccttggat tgaagaatga acaaacattt agagcagatg 1320
 agataactccc atcagaatcc aaacaaaagg actatgaaga aagttcttg gattctgaga 1380
 gtctctgtga gactgtttca cagaaggatg tttttttacc caaggctcgcatcaaaaag 1440
 aaatagataa aataaaatgga aaattttagaa gtaagaaccc tttttttttt aaaaatcatt 1500
 tgaccaaataa tttctctaaa ttgttggatg aggatatactt ctatgtctg aagaaaaatta 1560
 ctcctaaat gcaaaccatg gaaaaaaaaga gaagtgc caat ggtcataagc tatgtgtctc 1620
 atcaggcatt ggcaacagac tatattgtga gtgttggatg ggagctgaat tactagttt 1680
 aattcaagat attccaaagac gtgaggaaaa tgagaaaaaaa aaaaaaaaaa 1729

<210> 23

<211> 1337

<212> DNA

<213> Homo sapiens

<400> 23

aaaaagaaaat agataaaata aatgaaaaat tagaagggtc tcctgttaaa gatggtcttc 60
 tgaaggctaa ctgcgaaatg aaagttcttca ttccaaactaa agccttagaa ttgttggaca 120
 tgcaaacttt caaagcagag cctccggaga agccatctgc cttcgagctt gccattgaaa 180
 tgcaaaggc t gttccaaat aaagccttgg aatttgaagaa tgaacaaaca ttgagagcag 240
 atgagatact cccatcaga tccaaacaaa aggactatga agaaaattct tgggattctg 300
 agagtctctg tgagactgtt tcacagaagg atgtgtgtt acccaaggct ggcacatcaa 360
 aagaaataga taaaataat gaaaaattag aagagtctcc tggtaatgtat ggtttctga 420
 aggctccctg cagaatgaaa gtttcttattt caactaaagc cttttagattt atggacatgc 480
 aaaccttcaa agcagagcct cccgagaagc catctgcctt cgagcctgccc attgaaatgc 540
 aaaagtctgt tccaaataaa gccttggat tgaagaatga acaaacattt agagcagatc 600
 agatgttccc ttcagaatca aaacaaaaga aggttgaaga aaatttcttg gattctgaga 660
 gtctccgtga gactgtttca cagaaggatg tttttttacc caaggctaca catcaaaaag 720
 aaatggataa aataagtgga aaattttagaa attcaacttag cctatcaaaa atcttggata 780
 cagttcattt ttgttggatg gcaaggaaac ttcaaaaaga tcactgttga caacgtacag 840
 gaaaaatgga acaaatgaaa aagaagttt gtgttggatg aaagaaaactt gtcagaagcaa 900
 aagaaataaa atcacagat gagaacccaa aagttaatg ggaacaagag ctctgcgt 960

tgagattgac tttaaaccaa gaagaagaga agagaagaaa tgccgatata ttaaatgaaa 1020
 aaatttaggaa agaatttagga agaatcgaag agcagcatag gaaagagtta gaagtgaaac 1080
 aacaacttga acaggcttc agaatacaag atatagaatt gaagagtta gaaagtaatt 1140
 tgaatcaggt ttctcacact catggaaaatg aaaatttatct cttacatgaa aattgcattgt 1200
 tgaaaaagga aattgccatg ctaaaaactgg aaatagccac actgaaacac caataccagg 1260
 aaaaggaaaa taaaatactt gaggacatta agattttaaa agaaaagaat gctgaacctc 1320
 agatgaccac tcgtgcc 1337

<210> 24
 <211> 2307
 <212> DNA
 <213> Homo sapiens

<400> 24

attgagagca	gatgagatac	tcccatacaga	atccaaacaa	aaggactatg	aagaaagttc	60
ttgggattct	gagagtctct	gtgagactgt	ttcacagaag	gatgtgttt	tacccaaggc	120
tacacatcaa	aaagaaatacg	ataaaaataaa	tggaaaatta	gaagggtctc	ctgttaaaga	180
tggcttctg	aaggctaact	gcggaatgaa	agtttctatt	ccaactaaag	ccttagaatt	240
gatggacatg	caaactttca	aagcagagcc	tcccggagaag	ccatctgcct	tcgagcctgc	300
cattgaaatg	caaaaagtctg	ttccaaataaa	agccttgaa	ttgaagaatg	aacaaacatt	360
gagagcagat	gagatactcc	catcagaatc	caaacaacaa	gactatgaa	aaagttcttg	420
ggattctgag	agtctctgtg	agactgttc	acagaaggat	gtgtgtttac	ccaaggctac	480
acatcaaaaa	gaaatagata	aaataaaatgg	aaaatttagaa	gagtctcctg	ataatgatgg	540
ttttctgaag	tctccctgca	gaatgaaaatg	ttcttattcca	actaaagct	tagaatttgat	600
ggacatgcaa	actttcaaaag	cagagcctcc	cgagaagcca	tctgccttcg	agcctgccc	660
tgaardtgc	aagtctgttc	caaataaaagc	cttggaaattg	aagaatgaa	aaacatttag	720
agcagatcag	atgttccctt	cagaatcaaa	acaaaagaac	gttgaagaaa	attcttggga	780
ttctgagatg	ctccgtgaga	ctgtttcaca	gaaggatgt	tgtgttaccca	aggctacaca	840
tcaaaaaagaa	atggataaaaa	taagtggaaa	attagaagat	tcaactagcc	tatcaaaaaat	900
cttggatata	gttcatttctt	gtggaaagagc	aagggaactt	caaaaagatc	actgtgaaca	960
acgtacagga	aaaatggAAC	aaatgaaaaaa	gaagtttgt	gtactgaaaa	agaaactgtc	1020
agaagcaaaa	gaaataaaat	cacagtttaga	gaaccaaaaa	gttaaatggg	aacaagagct	1080
ctgcagtgt	aggtttctca	cactcatgaa	aatgaaaatt	atctcttaca	tgaaaattgc	1140
atgttgaaaa	aggaaattgc	catgctaaaa	ctggaaatag	ccacactgaa	acaccaatac	1200
cagggaaaagg	aaaataaaata	ctttgaggac	attaagattt	taaaagaaaa	gaatgctgaa	1260
cttcagatga	ccctaaaact	gaaagaggaa	tcattaaacta	aaagggcattc	tcaatatagt	1320
gggcagctt	aagttctgtat	agctgagaac	acaatgcctca	cttctaaattt	gaaggaaaaaa	1380
caagacaaag	aaatactaga	ggcagaaaatt	gaatcacacc	atcctagact	ggcttctgct	1440
gtacaagacc	atgatcaaat	tgtgacatca	agaaaaagtc	aagaacctgc	tttccacatt	1500
gcaggagatg	cttggggca	aagaaaaatg	aatgttgatg	ttagttagtac	gatataatac	1560
aatgaggtgc	tccatcaacc	actttctgaa	gctcaagga	aatccaaaag	cctaaaaattt	1620
aatctcaatt	atgcaggaga	tgctctaaga	gaaaatacat	tggttcaga	acatgcacaa	1680
agagaccaac	gtgaaacaca	gtgtcaaatt	aaggaagctg	aacacatgta	tcaaaacgaa	1740
caagataatg	tgaacaaaca	cactgaacag	caggagtctc	tagatcagaa	attatttcaa	1800
ctacaaagca	aaaatatgtg	gcttcaacag	caatttagttc	atgcacataa	gaaagctgac	1860
aacaaaagca	agataacaat	tgtatattcat	tttcttgaga	ggaaaatgca	acatcatctc	1920
ctaaaagaga	aaaatgagga	gatatttaat	tacaataacc	attaaaaaaa	ccgtatataat	1980
caatatgaaa	aagagaagc	agaaacagaa	aactcatgag	agacaaggcag	taagaaactt	2040
cttttggaga	aacaacagac	cagatcttta	ctcacaactc	atgtctaggag	gccagtccta	2100
gcatcacctt	atgttgaaaa	tcttaccaat	agtctgtgtc	aacagaatac	tatattttaga	2160
agaaaaattc	atgatttctt	cctgaaggct	acagacataa	aataacagt	tgaagaatta	2220
cttggccacg	aattgcataa	agctgcacag	gattcccattc	taccctgtat	atgcagcaga	2280
catcattcaa	tccaaaccaga	atctcg				2307

<210> 25
<211> 650
<212> PRT
<213> *Homo sapiens*

<220>
<221> unsure
<222> (310)
<223> Xaa = Any Amino Acid
<221> unsure
<222> (429)
<223> Xaa = Any Amino Acid
<221> unsure
<222> (522)
<223> Xaa = Any Amino Acid

<400> 25

Met Ser Pro Ala Lys Glu Thr Ser Glu Lys Phe Thr Trp Ala Ala Lys
5 10 15

Thr Gly Cys Val Ala Arg Val Thr Ser Asn Lys Thr Lys Val Leu Glu
35 40 45

Lys Gly Arg Ser Lys Met Ile Ala Cys Pro Thr Lys Glu Ser Ser Thr
50 55 60

Glu Asp Glu Glu Tyr Ser Cys Asp Ser Arg Ser Leu Phe Glu Ser Ser
 85 90 95

Ala Lys Ile Gln Val Cys Ile Pro Glu Ser Ile Tyr Gln Lys Val Met
100 105 110

Glu Ile Asn Arg Glu Val Glu Glu Pro Pro Lys Lys Pro Ser Ala Phe
115 120 125

Lys Pro Ala Ile Glu Met Gln Asn Ser Val Pro Asn Lys Ala Phe Glu
 130 135 140

Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp Pro Met Phe Pro Pro Glu
145 150 155 160

Ser Lys Gln Lys Asp Tyr Glu Glu Asn Ser Trp Asp Ser Glu Ser Leu
165 170 175

Cys Glu Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Thr His
 180 185 190

Gln Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Glu Ser Pro Asn

195	200	205
Lys Asp Gly Leu Leu Lys Ala Thr Cys Gly Met Lys Val Ser Ile Pro		
210	215	220
Thr Lys Ala Leu Glu Leu Lys Asp Met Gln Thr Phe Lys Ala Glu Pro		
225	230	235
240		
Pro Gly Lys Pro Ser Ala Phe Glu Pro Ala Thr Glu Met Gln Lys Ser		
245	250	255
Val Pro Asn Lys Ala Leu Glu Leu Lys Asn Glu Gln Thr Leu Arg Ala		
260	265	270
Asp Glu Ile Leu Pro Ser Glu Ser Lys Gln Lys Asp Tyr Glu Glu Ser		
275	280	285
Ser Trp Asp Ser Glu Ser Leu Cys Glu Thr Val Ser Gln Lys Asp Val		
290	295	300
Cys Leu Pro Lys Ala Xaa His Gln Lys Glu Ile Asp Lys Ile Asn Gly		
305	310	315
320		
Lys Leu Glu Gly Ser Pro Val Lys Asp Gly Leu Leu Lys Ala Asn Cys		
325	330	335
Gly Met Lys Val Ser Ile Pro Thr Lys Ala Leu Glu Leu Met Asp Met		
340	345	350
Gln Thr Phe Lys Ala Glu Pro Pro Glu Lys Pro Ser Ala Phe Glu Pro		
355	360	365
Ala Ile Glu Met Gln Lys Ser Val Pro Asn Lys Ala Leu Glu Leu Lys		
370	375	380
Asn Glu Gln Thr Leu Arg Ala Asp Glu Ile Leu Pro Ser Glu Ser Lys		
385	390	395
400		
Gln Lys Asp Tyr Glu Glu Ser Ser Trp Asp Ser Glu Ser Leu Cys Glu		
405	410	415
Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Xaa His Gln Lys		
420	425	430
Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Ser Pro Asp Asn Asp		
435	440	445
Gly Phe Leu Lys Ala Pro Cys Arg Met Lys Val Ser Ile Pro Thr Lys		
450	455	460
Ala Leu Glu Leu Met Asp Met Gln Thr Phe Lys Ala Glu Pro Pro Glu		
465	470	475
480		
Lys Pro Ser Ala Phe Glu Pro Ala Ile Glu Met Gln Lys Ser Val Pro		

485	490	495
-----	-----	-----

Asn Lys Ala Leu Glu Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp Gln	500	505
		510

Met Phe Pro Ser Glu Ser Lys Gln Lys Xaa Val Glu Glu Asn Ser Trp	515	520
		525

Asp Ser Glu Ser Leu Arg Glu Thr Val Ser Gln Lys Asp Val Cys Val	530	535
		540

Pro Lys Ala Thr His Gln Lys Glu Met Asp Lys Ile Ser Gly Lys Leu	545	550
		555
		560

Glu Asp Ser Thr Ser Leu Ser Lys Ile Leu Asp Thr Val His Ser Cys	565	570
		575

Glu Arg Ala Arg Glu Leu Gln Lys Asp His Cys Glu Gln Arg Thr Gly	580	585
		590

Lys Met Glu Gln Met Lys Lys Phe Cys Val Leu Lys Lys Lys Leu	595	600
		605

Ser Glu Ala Lys Glu Ile Lys Ser Gln Leu Glu Asn Gln Lys Val Lys	610	615
		620

Trp Glu Gln Glu Leu Cys Ser Val Arg Phe Leu Thr Leu Met Lys Met	625	630
		635
		640

Lys Ile Ile Ser Tyr Met Lys Ile Ala Cys	645	650

<210> 26

<211> 228

<212> PRT

<213> Homo sapiens

<400> 26

Met Ser Pro Ala Lys Glu Thr Ser Glu Lys Phe Thr Trp Ala Ala Lys	5	10
		15

Gly Arg Pro Arg Lys Ile Ala Trp Glu Lys Lys Glu Thr Pro Val Lys	20	25
		30

Thr Gly Cys Val Ala Arg Val Thr Ser Asn Lys Thr Lys Val Leu Glu	35	40
		45

Lys Gly Arg Ser Lys Met Ile Ala Cys Pro Thr Lys Glu Ser Ser Thr	50	55
		60

Lys Ala Ser Ala Asn Asp Gln Arg Phe Pro Ser Glu Ser Lys Gln Glu	65	70
		75
		80

Glu Asp Glu Glu Tyr Ser Cys Asp Ser Arg Ser Leu Phe Glu Ser Ser
 85 90 95

Ala Lys Ile Gln Val Cys Ile Pro Glu Ser Ile Tyr Gln Lys Val Met
 100 105 110

Glu Ile Asn Arg Glu Val Glu Glu Pro Pro Lys Lys Pro Ser Ala Phe
 115 120 125

Lys Pro Ala Ile Glu Met Gln Asn Ser Val Pro Asn Lys Ala Phe Glu
 130 135 140

Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp Pro Met Phe Pro Pro Glu
 145 150 155 160

Ser Lys Gln Lys Asp Tyr Glu Glu Asn Ser Trp Asp Ser Glu Ser Leu
 165 170 175

Cys Glu Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Thr His
 180 185 190

Gln Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Gly Lys Asn Arg
 195 200 205

Phe Leu Phe Lys Asn Gln Leu Thr Glu Tyr Phe Ser Lys Leu Met Arg
 210 215 220

Arg Asp Ile Leu
 225

<210> 27
 <211> 154
 <212> PRT
 <213> Homo sapiens

<220>
 <221> unsure
 <222> (148)
 <223> Xaa = Any Amino Acid

<400> 27
 Met Arg Leu His Pro Trp Arg Lys Glu His Leu Thr Gln Leu Lys Ala
 5 10 15

Trp Trp Lys Lys His Leu Met Arg Leu His Pro Trp Trp Lys Glu His
 20 25 30

Leu Thr Arg Leu Lys Ala Trp Trp Lys Lys His Leu Met Arg Leu His
 35 40 45

Pro Trp Trp Arg Glu His Leu Thr Lys Phe Asn Val Trp Arg Lys Arg
 50 55 60

His Leu Glu Ser Ser Asn Ser Gln Gln Lys Lys His Leu Gly Lys Leu
 65 70 75 80

Arg Val Leu Gln Lys Lys His Leu Arg Asn Leu Arg Gly Gln Gln Lys
 85 90 95

Glu Asp Leu Gly Arg Ser His Gly Arg Lys Lys Met Thr Gln Leu Arg
 100 105 110

Gln Lys
 115 120 125

Lys
 130 135 140

Lys Lys Lys Xaa Lys Lys Lys Lys Lys
 145 150

<210> 28
 <211> 466
 <212> PRT
 <213> Homo sapiens

<220>
 <221> unsure
 <222> (329)
 <223> Xaa = Any Amino Acid

<400> 28
 Met Ser Pro Ala Lys Glu Thr Ser Glu Lys Phe Thr Trp Ala Ala Lys
 5 10 15

Gly Arg Pro Arg Lys Ile Ala Trp Glu Lys Lys Glu Thr Pro Val Lys
 20 25 30

Thr Gly Cys Val Ala Arg Val Thr Ser Asn Lys Thr Lys Val Leu Glu
 35 40 45

Lys Gly Arg Ser Lys Met Ile Ala Cys Pro Thr Lys Glu Ser Ser Thr
 50 55 60

Lys Ala Ser Ala Asn Asp Gln Arg Phe Pro Ser Glu Ser Lys Gln Glu
 65 70 75 80

Glu Asp Glu Glu Tyr Ser Cys Asp Ser Arg Ser Leu Phe Glu Ser Ser
 85 90 95

Ala Lys Ile Gln Val Cys Ile Pro Glu Ser Ile Tyr Gln Lys Val Met
 100 105 110

Glu Ile Asn Arg Glu Val Glu Glu Pro Pro Lys Lys Pro Ser Ala Phe
 115 120 125

Lys Pro Ala Ile Glu Met Gln Asn Ser Val Pro Asn Lys Ala Phe Glu
 130 135 140

Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp Pro Met Phe Pro Pro Glu
 145 150 155 160

Ser Lys Gln Lys Asp Tyr Glu Glu Asn Ser Trp Asp Ser Glu Ser Leu
 165 170 175

Cys Glu Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Thr His
 180 185 190

Gln Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Glu Ser Pro Asn
 195 200 205

Lys Asp Gly Leu Leu Lys Ala Thr Cys Gly Met Lys Val Ser Ile Pro
 210 215 220

Thr Lys Ala Leu Glu Leu Lys Asp Met Gln Thr Phe Lys Ala Glu Pro
 225 230 235 240

Pro Gly Lys Pro Ser Ala Phe Glu Pro Ala Thr Glu Met Gln Lys Ser
 245 250 255

Val Pro Asn Lys Ala Leu Glu Leu Lys Asn Glu Gln Thr Leu Arg Ala
 260 265 270

Asp Glu Ile Leu Pro Ser Glu Ser Lys Gln Lys Asp Tyr Glu Glu Asn
 275 280 285

Ser Trp Asp Thr Glu Ser Leu Cys Glu Thr Val Ser Gln Lys Asp Val
 290 295 300

Cys Leu Pro Lys Ala Ala His Gln Lys Glu Ile Asp Lys Ile Asn Gly
 305 310 315 320

Lys Leu Glu Gly Ser Pro Gly Lys Xaa Gly Leu Leu Lys Ala Asn Cys
 325 330 335

Gly Met Lys Val Ser Ile Pro Thr Lys Ala Leu Glu Leu Met Asp Met
 340 345 350

Gln Thr Phe Lys Ala Glu Pro Pro Glu Lys Pro Ser Ala Phe Glu Pro
 355 360 365

Ala Ile Glu Met Gln Lys Ser Val Pro Asn Lys Ala Leu Glu Leu Lys
 370 375 380

Asn Glu Gln Thr Leu Arg Ala Asp Glu Ile Leu Pro Ser Glu Ser Lys
 385 390 395 400

Gln Lys Asp Tyr Glu Glu Ser Ser Trp Asp Ser Glu Ser Leu Cys Glu
 405 410 415

Thr Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Ala His Gln Lys
 420 425 430

Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Gly Lys Asn Arg Phe Leu
 435 440 445

Phe Lys Asn His Leu Thr Lys Tyr Phe Ser Lys Leu Met Arg Lys Asp
 450 455 460

Ile Leu
 465

<210> 29
 <211> 445
 <212> PRT
 <213> Homo sapiens

<400> 29
 Lys Glu Ile Asp Lys Ile Asn Gly Lys Leu Glu Gly Ser Pro Val Lys
 5 10 15

Asp Gly Leu Leu Lys Ala Asn Cys Gly Met Lys Val Ser Ile Pro Thr
 20 25 30

Lys Ala Leu Glu Leu Met Asp Met Gln Thr Phe Lys Ala Glu Pro Pro
 35 40 45

Glu Lys Pro Ser Ala Phe Glu Pro Ala Ile Glu Met Gln Lys Ser Val
 50 55 60

Pro Asn Lys Ala Leu Glu Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp
 65 70 75 80

Glu Ile Leu Pro Ser Glu Ser Lys Gln Lys Asp Tyr Glu Glu Ser Ser
 85 90 95

Trp Asp Ser Glu Ser Leu Cys Glu Thr Val Ser Gln Lys Asp Val Cys
 100 105 110

Leu Pro Lys Ala Ala His Gln Lys Glu Ile Asp Lys Ile Asn Gly Lys
 115 120 125

Leu Glu Glu Ser Pro Asp Asn Asp Gly Phe Leu Lys Ala Pro Cys Arg
 130 135 140

Met Lys Val Ser Ile Pro Thr Lys Ala Leu Glu Leu Met Asp Met Gln
 145 150 155 160

Thr Phe Lys Ala Glu Pro Pro Glu Lys Pro Ser Ala Phe Glu Pro Ala
 165 170 175

Ile Glu Met Gln Lys Ser Val Pro Asn Lys Ala Leu Glu Leu Lys Asn
 180 185 190

Glu Gln Thr Leu Arg Ala Asp Gln Met Phe Pro Ser Glu Ser Lys Gln
 195 200 205

Lys Lys Val Glu Glu Asn Ser Trp Asp Ser Glu Ser Leu Arg Glu Thr
 210 215 220

Val Ser Gln Lys Asp Val Cys Val Pro Lys Ala Thr His Gln Lys Glu
 225 230 235 240

Met Asp Lys Ile Ser Gly Lys Leu Glu Asp Ser Thr Ser Leu Ser Lys
 245 250 255

Ile Leu Asp Thr Val His Ser Cys Glu Arg Ala Arg Glu Leu Gln Lys
 260 265 270

Asp His Cys Glu Gln Arg Thr Gly Lys Met Glu Gln Met Lys Lys Lys
 275 280 285

Phe Cys Val Leu Lys Lys Leu Ser Glu Ala Lys Glu Ile Lys Ser
 290 295 300

Gln Leu Glu Asn Gln Lys Val Lys Trp Glu Gln Glu Leu Cys Ser Val
 305 310 315 320

Arg Leu Thr Leu Asn Gln Glu Glu Lys Arg Arg Asn Ala Asp Ile
 325 330 335

Leu Asn Glu Lys Ile Arg Glu Glu Leu Gly Arg Ile Glu Glu Gln His
 340 345 350

Arg Lys Glu Leu Glu Val Lys Gln Gln Leu Glu Gln Ala Leu Arg Ile
 355 360 365

Gln Asp Ile Glu Leu Lys Ser Val Glu Ser Asn Leu Asn Gln Val Ser
 370 375 380

His Thr His Glu Asn Glu Asn Tyr Leu Leu His Glu Asn Cys Met Leu
 385 390 395 400

Lys Lys Glu Ile Ala Met Leu Lys Leu Glu Ile Ala Thr Leu Lys His
 405 410 415

Gln Tyr Gln Glu Lys Glu Asn Lys Tyr Phe Glu Asp Ile Lys Ile Leu
 420 425 430

Lys Glu Lys Asn Ala Glu Leu Gln Met Thr Pro Arg Ala
 435 440 445

<210> 30

<211> 578

<212> DNA

<213> Human

```

<400> 30
cttgccttct cttaggcttt gaagcatttt tgtctgtgct ccctgatctt caggtcacca      60
ccatgaagtt ctttagcagtc ctggtaactct tgggagtttc catcttctg gtctctgccc     120
agaatccgac aacagctgct ccagctgaca cgtatccagc tactggtcct gctgatgatg     180
aagccccctga tgctgaaacc actgctgctg caaccactgc gaccactgct gctccttacca   240
ctgcaaccac cgctgcttct accactgctc gtaaagagat tccagttta cccaaatggg     300
ttggggatct cccgaatggt agagtgtgtc cctgagatgg aatcaagcttgc agtcttctgc 360
aattggtcac aactattcat gcttcctgtc atttcatcca actacttacc ttgcctacga   420
tatccccctt atctctaatac agtttatttt ctttcaaata aaaaataact atgagcaaca   480
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 540
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 578

```

<210> 31
<211> 90
<212> PRT
<213> Homo sapien

```

<400> 31
Met Lys Phe Leu Ala Val Leu Val Leu Leu Gly Val Ser Ile Phe Leu
      5           10          15
    1
Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro
      20          25          30
Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu Thr Thr Ala
      35          40          45
Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr Ala Thr Thr Ala
      50          55          60
Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val Leu Pro Lys Trp Val
      65          70          75          80
Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
      85          90

```

<210> 32
<211> 3101
<212> DNA
<213> *Homo sapien*

```

<400> 32
tgggggcc tcagcctccc aagtagctgg gactacaggt gcctgccacc acgcccagct 60
aatttttgt atattttta gtagagacgg ggtttcaccc tggtctcaat ctcttgacct 120
cgtgatcgc caggccttggc ctccccaaagt gtattctt tttattattta ttattatttt 180
ttagatggag tctgtctctg tcgcccaggc tggagtgcag tggtgcgatc tctgctca 240
gcaagctccg cctcttgggt tcatgccatt ctccctgcctc agcctcccga gtagctggga 300
ctacaggccc ctgccaccac acccggtaa tttttgtat ttttagtaga gacagggttt 360
caccatgtta gccagggtgg tctctatctt ctgacctcgt gatccgcctg cctcagtctc 420
tcaaagtgtt gggattacag gctgtggcca ccgcgcaccag ccaactattt ctgtttattt 480
ttaaatatat tttaaagaaa caatttagatt tgttttcttt ctcatcttt tacttctact 540
cttcatgtat gtataatttat atttgtgttt tctattacct ttctccctt tactgtattt 600
gactataata atttgtgtca ctaatttctg ttcaactaata ttatcagctt agataataact 660
ttaattttta acttatatat tgagtattaa attgtatcgt ttattttgtt attatctatc 720
ttcccgcttgg ctgaatataa cttcttaaagc ttataacttc ttgttcttt catgttattt 780
ttttcttttt tttaatgtat tgaatttctt ctgacactca ttcttagtaac tttttctcg 840
gtgtgcaacg taagttataa ttgtttctc agatttgaga tctgcataa gtttgaggct 900
ttattttttt tttttatttg ctttatggca agtcgacaa cctgcatgga tttggcatca 960
atqtagtcac ccatatctaa gagcagcaact tgcttcttag catgatgagt tttttctgg 1020

```

tgttttcttt	attttactta	tattcctggt	agattcttat	atttccctt	caactctatt	1080
cagcattta	ggaattctta	ggactttctg	agaattttag	ctttctgtat	taaatgtttt	1140
taatgagttat	tgcattttct	caaaaagcac	aaatatcaat	agtgtacaca	ttaggaaaaac	1200
tatataatata	ttctgttgca	gatgacagca	tctcataaaca	aaatccatgt	tacttcattt	1260
aaaagacagc	tctcctccaa	tatactatga	ggtAACAAA	attttagtgc	tgtatTTTT	1320
ttaatattag	aaaactcatc	ttacatgtg	cacaAAATTc	tgaagtgtata	atacttcact	1380
gtttttctat	agaagtaact	taatattggc	aaaattactt	atttgaattt	aggtttggc	1440
tttcatcata	tacttcctca	ttaacatttc	cctcaatcca	taaatgcaat	ctcagtttga	1500
atcttcatt	taaccccagaa	gttaattttt	aaaaccttaa	taaaatttga	atgttagctag	1560
atattatttg	ttggttacat	attagtcata	aatttatatt	acttacaatg	atcagaaaaat	1620
atgatctgaa	tttctgtctgt	cataaaattca	ataaacgttatt	ttaggcctaa	acctttccat	1680
ttcaaatcct	tgggctctgggt	aattgaaaat	aatcattatc	ttttgtttc	tggccaaaaaa	1740
tgctgcccat	ttatttctat	ccctaattag	tcaaactttc	taataaatgt	atthaacgtt	1800
aatgatgttt	atttgcgtgt	tgtatactaa	aaccatttagt	ttctataattt	taaatgtcact	1860
ctaataatgag	tgaaaatgtg	tcagaggctg	gggaagaatg	tggatggaga	aaagggaaaggt	1920
gttgatcaaa	aagtacccaa	gtttcagttt	cacaggaggc	atgagattga	tctagtgc当地	1980
aaaatgatga	gtataataaa	taataatgca	ctgtatattt	tgaatttgct	aaaagtagat	2040
ttaaaaattga	tttacataat	attttacata	tttataaaagc	acatgcaata	tgttgttaca	2100
tgtatagaat	gtgcaacgtat	caagtcaagg	tatctgtgggt	atccaccact	ttgagcattt	2160
atcgattcta	tatgtcagga	acatttcaag	ttatctgttc	tagcaaggaa	atataaaata	2220
cattatagtt	aactatggcc	tatctacagt	gcaactaaac	actagatttt	atccctttcc	2280
aactgtgggt	ttgttattcat	ttaccaccct	ctttcattt	cctttctcac	ccacacactg	2340
tgccgggcct	caggcatata	ctattctact	gtctgtctct	gtaaggatta	tcatttttagc	2400
ttccacatata	gagagaatgc	atgcaaagtt	tttctttcca	tgtctggctt	atttcactta	2460
acaaaatgac	ctccgcttcc	atccatgtta	tttatattac	ccaatagtgt	tcataaaat	2520
atatacacac	atataatcca	cattgcattt	gtccaattat	tcattgacgg	aaactggta	2580
atgttatatac	gttgctattt	tgaatagtgc	tgcataaaac	acgcaagtgg	ggatataatt	2640
tgaagagttt	ttttgttgat	gttccatata	aattttaaga	ttgttttgc	tatgtttgt	2700
aaaatggcgt	tagtattttc	atagagattt	cattgaatct	gtagattgt	ttgggtaagt	2760
atggtttattt	tgatggattt	aatttttca	ttccatgaag	atgagatgtc	tttccatttt	2820
tttgcgtcct	ctacattttcc	tttcatcaa	gttttgggt	atttttgaag	tagatgtatt	2880
tcaccttata	gatcaagtgt	atccctaaa	tatTTTATT	ttgttagctat	tgttagatgaa	2940
atgccttct	cgatttcttt	ttcacttaat	tcattattag	tgtatggaaa	tgttatggat	3000
ttttattttgt	tggtttttaa	tcaaaaactg	tattaaactt	agagttttt	gtggagttt	3060
taagtttttc	tagatataag	atcatgacat	ctacaaaaaa	a		3101

<210> 33
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR primer

<400> 33

tgc~~cc~~cctccq qaaqct

16

<210> 34

<211> 23

<212> DNA

<213> Artificial Sequence

<220>		
<223> PCR primer		
<400> 34		
cgtttctgaa gggacatctg atc		23
<210> 35		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 35		
ttgcagccaa gttaggagtg aagagatgca		30
<210> 36		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 36		
aagcctcaga gtccttccag tatg		24
<210> 37		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 37		
ttcaaataata agtgaagaaa aaatttagtag atcaa		35
<210> 38		
<211> 37		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 38		
aatccattgt atcttagaac cgagggattt gttttaga		37
<210> 39		
<211> 22		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> PCR primer		
<400> 39		
aaagcagatg gtggttgagg tt		22
<210> 40		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 40		
cctgagacca aatggcttct tc		22
<210> 41		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 41		
attccatgcc ggctgcttct tctg		24
<210> 42		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 42		
tctggtttc tcattctta ttcatattt		30
<210> 43		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 43		
tgccaaggag cggattatct		20
<210> 44		
<211> 30		
<212> DNA		

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 44

caaccacgtg acaaacactg gaattacagg

30

<210> 45

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 45

actggaacgg tgaaggtgac a

21

<210> 46

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 46

cggccacatt gtgaactttg

20

<210> 47

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 47

cagtcggttg gagcgagcat ccc

23

<210> 48

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

<400> 48

tgcctatagat gaattgaagg aatg

24

<210> 49

<211> 29

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 49		
tgtcatatat taattgcata aacacctca		29
<210> 50		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 50		
tcttaaccaa acggatgaaa ctctgagcaa tg		32
<210> 51		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 51		
atcattgaaa attcaaataat aagtgaag		28
<210> 52		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR primer		
<400> 52		
gtagttgtgc attgaaataa ttatcattat		30
<210> 53		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 53		
caattttggt ggagaacccg		20

<210> 54		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 54		20
gctgtcggag gtatatggtg		
<210> 55		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 55		28
catttcagag agtaaacatgg actacaca		
<210> 56		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 56		21
tctgataaag gccgtacaat g		
<210> 57		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 57		22
tcacgacttg ctgttttgc tc		
<210> 58		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> PCR Primer		
<400> 58		

atcaaaaaac aagcatggcc tcacaccact	30
<210> 59	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 59	
gcaagtgcc a atgatcagag g	21
<210> 60	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 60	
ata tagactc aggtatacac act	23
<210> 61	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 61	
tcccatcaga atccaaacaa gaggaagatg	30
<210> 62	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	
<400> 62	
aatccattgt atcttagaac cgagggattt gttt	34
<210> 63	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> PCR Primer	

<400> 63 ccgcttctga caacactaga gatc	24
<210> 64 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 64 cctataaaga tgttatgtac caaaaatgaa gt	32
<210> 65 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 65 ccccctccctc agggtatggc cc	22
<210> 66 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 66 ccctttctca cccacacact gt	22
<210> 67 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 67 tgcatattctct catatgtggta agct	24
<210> 68 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	

<400> 68 ccgggcctca ggcataact attctactgt ctg	33
<210> 69 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 69 gacattccag ttttacccaa atgg	24
<210> 70 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 70 tgcagaagac tcaagctgat tcc	23
<210> 71 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 71 tctcaggcac acactctacc attcgga	28
<210> 72 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 72 aaatataagt gaagaaaaaa attagtagat	30
<210> 73 <211> 503 <212> DNA <213> Homo sapiens	
<400> 73	

gacagcggct tccttgcattcc ttgccaccccg cgactgaaca ccgacacgcag cagcctcacc	60
atgaagttgc tggatgttcct catgtggcg gcccctctcc agcaactgcta cgaggctct	120
ggctgccccct tattggagaa tgtgatttcc aagacaatca atccacaagt gtctaagact	180
gaatacacaag aacttcttca agagttcata gacgacaatg ccactacaaa tgccatagat	240
gaattgaagg aatgttttct taaccaaaccg gatgaaactc tgagcaatgt tgaggtttt	300
ctgcaattaa tatatgacag cagttttgt gatttatttt aacttctgc aagaccttg	360
gctcacagaa ctgcagggtt tggtgagaaa ccaactacgg attgctgaa accacacctt	420
ctcttctta tgtctttta ctacaaacta caagacaatt gttgaaacct gctatacatg	480
tttattttaa taaatttgatg gca	503

<210> 74

<211> 301

<212> DNA

<213> Homo sapiens

<400> 74

cactgctacg caggctctgg ctgccccctta ttggagaatg tgatttccaa gacaatcaat	60
ccacaagtgt ctaagactga atacaaagaa cttcttcaag agttcataga cgacaatgcc	120
actacaaatgt ccatagatga attgaaggaa tgttttctta accaaacggg tgaaaactctg	180
agcaatgttg aggtgtttat gcaattaata tatgacagca gtctttgtga tttatggc	240
ggccatcacc atcaccatca ctaaggtccc gagctcgaat tctgcagata tccatcacac	300
t	301

<210> 75

<211> 3282

<212> DNA

<213> Homo sapiens

<400> 75

gggacagggc tgaggatgag gagaaccctg gggacccaga agaccgtgcc ttgccccggaa	60
gtcctgcctg taggcctgaa ggacttgccc taacagagcc tcaacaacta cctgggtatt	120
cctacttcag ccccttggtg tgagcagctt ctcacatga actacagcct ccacttggcc	180
ttcgtgtgtc tgagtctt cactgagagg atgtgcattcc aggggagtca gttcaacgtc	240
gagggtcgca gaagtgacaa gctttccctg cctggcttg agaacatcac agcaggatata	300
aacaaaatttc tcaggccaa ttttgttggaa gaaccgtac agatagcgct gactctggac	360
attgcaagta tctcttagcat ttcaagagat aacatggact acacagccac catataccctc	420
cgacagcgct ggttggacca gcggctggtg tttgaaggca acaagagctt cactctggat	480
gcccgcctcg tggagttccct ctgggtgcca gataacttaca ttgtggagtc caagaagtcc	540
ttcctccatg aagtcaactgt gggaaacagg ctcatccgccc tcttctccaa tggcacggc	600
ctgtatgccc tcagaatcac gacaactgtt gcatgttaca tggatctgtc taaaatcccc	660
atggacacac agacatgca gttcagctg gaaagctggg gctatgtatgg aaatgtatgt	720
gagttcacct ggctgagagg gaacgactct gtgcgtggac tggAACACCTT gcccgttgct	780
cagtagacca tagagcggtt tttcacotta gtcacccatcg cgcacggaa gacagggaaat	840
tacacttagat tggcttaca gttttagat cggagggatg ttctgtatTTT cattttggaa	900
acctacgttc cttccactt cctgggtggg ttgtccctggg tttcattttt gatctcttc	960
gattcagtcc ctgcaagaac ctgcatttggaa gtgacgaccg tgatccat gaccacactg	1020
atgatcggtt cccgcacttc tcttccaaacc accaactgtt tcatcaaggc catcgatgt	1080
tacctgggaa tctgcttttag ctttggatgggg ggggccttgc tagaatatgc agttgctcac	1140
tacagttcct tacagcagat ggcagccaaa gatagggggaa caacaaagga agttagaaagaa	1200
gtcagtattt ctaatatcat caacagctcc atctccagct taaaacggaa gatcagctt	1260
gccagcattt aaatttccag cgacaacgtt gactacagt acttgacaat gaaaaccagg	1320
gacaagttca agtttgcattt ccgagaaaag atgggcagga ttgttgattt tttcacaatt	1380
caaaaacccca gtaatgttga tcactattcc aaactactgt ttcccttgat ttttatgtca	1440
gccaatgtat ttactggc atactacatg tatttttgag tcaatgttaa atttcttgca	1500

<210> 76

<211> 463

<212> DNA

<213> Homo sapiens

<400> 76

tagaatttcg	cggccgctta	attctagaag	tccaaatcac	tcattgtttg	tgaaaagctga	60
gctcacagca	aaacaaggcca	ccatgaagct	gtcggtgtgt	ctccctgctgg	tcacgctggc	120
cctctgtgc	taccaggcca	atgccgagtt	ctgcccagct	cttgggttctg	agctgttaga	180
cttcttcttc	attagtgaac	ctctgttcaa	gttaagtctt	gccaaatttg	atgcccctcc	240
ggaagctgtt	gcagccaaagt	taggagtgaa	gagatgcacg	gatcagatgt	cccttcagaa	300
acgaaggctc	attgcggaag	tcctggtcaa	aatattgttgc	aatgttagtgc	tgtgacatgt	360
aaaaacttcc	atcctgggtt	ccactgttctt	tcaatgacac	cctgtatcttc	actgcagaat	420
qtaaaqgtt	caacgtcttg	ctttaataaa	tcacttgctc	tac		463

<210> 77

<211> 90

<212> PRT

<213> Homo sapiens

<400> 77

Met Lys Leu Ser Val Cys Leu Leu Leu Val Thr Leu Ala Leu Cys Cys

Tyr Gln Ala Asn Ala Glu Phe Cys Pro Ala Leu Val Ser Glu Leu Leu
20 25 30
Asp Phe Phe Ile Ser Glu Pro Leu Phe Lys Leu Ser Leu Ala Lys
35 40 45
Phe Asp Ala Pro Pro Glu Ala Val Ala Lys Leu Gly Val Lys Arg
50 55 60
Cys Thr Asp Gln Met Ser Leu Gln Lys Arg Ser Leu Ile Ala Glu Val
65 70 75 80
Leu Val Lys Ile Leu Lys Lys Cys Ser Val
85 90