川口康平・澤田真行『因果推論の計量経済学』

(日本評論社, 2024 年刊)

正誤情報一覧

2024.10.09 ver.1.1

本書にて、下記の通り補足説明と訂正がございます。ここにお詫びして訂正いたします。また、ご指摘をいただいた皆さまには深く御礼申し上げます。

第1版版第1刷(2024年9月20日発行)時点の訂正

¥0400

		Elean
ページ等	誤	正
19ページ、	SUTVA (stable unit treatment value)	SUTVA (stable unit treatment value assumption)
上から5行目		
および 303 ペ		
ージ (索引)		
72ページ、	このとき、中間点の定理より	このとき、 <mark>平均値</mark> の定理より
下から5行目		
91 ページ、	【下から9行目】この場合、統制群には…	【下から9行目】この場合、 <mark>処置群</mark> には…
下から9行	【下から8行目】すると、統制群の患者から…	【下から8行目】すると、 <mark>処置群</mark> の患者から…
目、8行目、4	【下から4行目】観測できるなら、統制群の中で…	【下から4行目】観測できるなら、 <mark>処置群</mark> の中で…
行目		
105 ページ、	$\frac{1}{2} \sum_{x} (y_{x}^{*}(1,0) - y_{x}^{*}(0,0))$	$\frac{1}{2}\sum_{x} (Y_{x}^{*}(1,1) - Y_{x}^{*}(0,1))$
下から2行目	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,0) - Y_i^*(0,0))$	$\frac{1}{n_{at}} \sum_{G_i = at} (Y_i^*(1,1) - Y_i^*(0,1))$
106 ページ、	$\frac{1}{n_{nt}} \sum_{G_i = nt} (Y_i^*(1,1) - Y_i^*(0,1))$	$\frac{1}{n_{nt}} \sum_{G_i = nt} (Y_i^*(1,0) - Y_i^*(0,0))$
上から2行目	$n_{nt} \sum_{G_i=nt}^{C_i} (r_i(x_i, x_i))$	$n_{nt} \sum_{G_i=nt}^{C_i} (r_i(x_i, y_i))^{-1} $
152 ページ、	$Y_i = \beta_{(0,+)} + \beta_{(1,+)} S_i + \beta_{(2,+)} S_i + \cdots$	$Y_i = \beta_{(0,+)} + \beta_{(1,+)}S_i + \beta_{(2,+)}S_i^2 + \cdots$
上から3行目	$I_i - \rho_{(0,+)} + \rho_{(1,+)} S_i + \rho_{(2,+)} S_i + \cdots$	$I_i = \rho_{(0,+)} + \rho_{(1,+)} S_i + \rho_{(2,+)} S_i + \cdots$
159 ページ、		【青字の「正の」をトル】
上から 2 段落	次に、図 6.4 (b) はサポートの端点の近傍における	次に、図 6.4 (b) はサポートの端点の近傍における
目	推定を図示している。このとき、カーネル推定(グ	推定を図示している。このとき、カーネル推定(グ
	レーの点線) は真の関数に対して、 正の バイアスが	レーの点線)は真の関数に対して、バイアスが生じ
	生じる片側s≥0の観測のみを用いることになって	る片側s≥0の観測のみを用いることになってい
	いる。図 6.4 (a) の場合と異なり、正のバイアスを	る。図 6.4 (a) の場合と異なり、バイアスを打ち消

	打ち消す相手である $s < 0$ 側の観測が存在しない。	す相手であるs < 0側の観測が存在しない。その結
	その結果、 <mark>正の</mark> バイアスが打ち消されずに残って	果、バイアスが打ち消されずに残ってしまう。この
	しまう。この図 6.4 (b) のように打ち消す相手とな	図 6.4 (b) のように打ち消す相手となる観測がな
	る観測がない場合には、関数の傾きを捉えられて	い場合には、関数の傾きを捉えられていないこと
	いないことに起因するバイアスが生じており、こ	に起因するバイアスが生じており、このバイアス
	のバイアスはhに応じて線形増加する。	はhに応じて線形増加する。
179 ページ、	【上から 12 行目】	【上から 12 行目】
上から 12 行目	$= \lim_{\epsilon \downarrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = co\} \mid S = \epsilon]$	$= \lim_{\epsilon \downarrow 0} \mathbb{E}[1\{Y^*(1,\epsilon) \le y\}1\{T_{\epsilon} = at\} \mid S = \epsilon]$
189 ページ、	$\hat{\sigma}_{NN}$	$\hat{\sigma}_{NN}$
下から 14 行目	$CI^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$	$I^{1-\alpha} = \left[\hat{\tau} - cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}, \hat{\tau} + cv_{1-\alpha} \times \frac{\hat{\sigma}_{NN}}{\sqrt{N_h}}\right]$