Atividade banco de dados

Questão 1

Entidades representam objetos do mundo real, geralmente são modeladas como tabelas.

Atributos são propriedades ou características dessas entidades, onde cada atributo descreve uma pequena informação, geralmente são modelados como colunas.

Cardinalidade define o número de instâncias de uma **entidade A** que pode se relacionar com um número de instâncias de uma **entidade B**. É fundamental para entender como as entidades se relacionam umas com as outras.

- 1:1 cada instância de A está relacionada a no máximo uma instância de B, e vice-versa
- 1:N uma instância de A pode estar relacionada a várias instâncias de B, mas um instância de B só pode estar relacionada a no máximo uma instância de A.
- N:N uma instância de A pode estar relacionada a várias instâncias de B, e uma instância de B pode estar relacionada a várias instâncias de A.

Exemplo

Entidade Aluno em um sistema escolar, possui os atributos como: matrícula, nome, data de nascimento, entre outros. E entidade curso que possui atributos como: código do curso, nome do curso, departamento,

A cardinalidade entre essas entidades é de 1:N, onde um aluno pode se matricular em vários cursos, mas cada curso específico está relacionado a apenas um aluno.

Questão 2

Entidade Pessoa possui os atributos: id (PK), nome e e-mail.

```
Entidade Post possui os atributos: id (PK), conteúdo, data publicação e id_pessoa (FK).

Entidade Reação possui os atributos: id (PK), tipo, id_post (FK) e id_pessoa (FK).

Entidade Amigos possui os atributos: id_pessoa1 (FK), id_pessoa2 (FK) e data amizade.
```

Questão 3

- (V) Em um banco de dados relacional, uma tabela pode existir sem nenhuma chave primária.
- (V) A cardinalidade de um relacionamento define o número mínimo e máximo de entidades que podem participar desse relacionamento.
- (F) Uma chave estrangeira é usada para referenciar a chave primária de outra tabela e não pode conter valores nulos.
- (V) Uma chave primária é implicitamente NOT NULL.
- (V) Uma restrição de integridade referencial diz que uma chave estrangeira sempre deve referenciar uma chave primária

Questão 4

```
CREATE TABLE Autor (
    ID INT PRIMARY KEY,
    Nome VARCHAR(255),
    DataDeNascimento DATE
);

CREATE TABLE Livro (
    ID INT PRIMARY KEY,
    Titulo VARCHAR(255),
    AnoDePublicacao INT,
    AutorID INT,
    FOREIGN KEY (AutorID) REFERENCES Autor(ID)
);
```

```
CREATE TABLE Emprestimos (
    IDDoEmprestimo INT PRIMARY KEY,
    IDDoLivro INT,
    DataDeEmprestimo DATE,
    DataDeDevolucao DATE,
    FOREIGN KEY (IDDoLivro) REFERENCES Livro(ID)
);
INSERT INTO Autor (ID, Nome, DataDeNascimento) VALUES
(1, 'J.K. Rowling', '1965-07-31'),
(2, 'George Orwell', '1903-06-25');
INSERT INTO Livro (ID, Titulo, AnoDePublicacao, AutorID) VALU
(1, 'Harry Potter e a Pedra Filosofal', 1997, 1),
(2, '1984', 1949, 2);
INSERT INTO Emprestimos (IDDoEmprestimo, IDDoLivro, DataDeEmp
(1, 1, '2024-04-01', '2024-04-15'),
(2, 2, '2024-04-02', '2024-04-16');
```

Questão 5

O conceito de especialização total e exclusiva em um banco de dados relacional está relacionado à herança na modelagem de dados, onde uma entidade pai (supertipo) pode ser especializada em entidades filhas (subtipos) com características específicas, além de herdar atributos comuns da entidade pai. A especialização é dita **total** quando cada instância da entidade pai deve ser uma instância de pelo menos um dos subtipos. É **exclusiva** quando uma instância do supertipo só pode ser uma instância de um subtipo e não mais de um simultaneamente.

```
Tabela de Usuário tem os atributos: id (PK) e nome.

Tabela de Professor tem os atributos: id (PK e FK de usuário) e disciplina
```

Tabela de Aluno tem os atributos: id (PK e FK de usuário) e ano escolar