

	TECNOLOGIA EM ANÁ	LISE DE SISTEMAS	
AVALIAÇÃO OFICIAL	DISCIPLINA: Matemátic	a Discreta	ATON
DATA: 06/12/2021	TURMA: ADSVA1		
□ N1 □N2 ⊠ N3	PROFESSOR: Reinaldo Madaraz	0	
ALUNO:		RA:	
INSTRUMENTO DE AVALIAÇÃO: prova escrita à tinta CONDIÇÕES: Individual sem consulta TEMPO MÁXIMO DE DURAÇÃO: 2h		Ciência do Aluno (vista de prova)	

Deverão ser escritos todos os passos da resolução nos espaços reservados. A clareza e a simplicidade da resolução fazem parte da prova. Questões respondidas fora do espaço reservado não serão corrigidas. As questões teste deverão ser respondidas no gabarito. Valor de cada questão teste: 1,0 ponto. *Duração da prova: 2 h.*

Questão	1	2	3	4	5	6	7	8
Resposta								

- **1.** Seja *A*={{1}, {2}, {3}}. Assinale a alternativa **incorreta**:
- (a) $\{1\} \in A$
- (b) $\emptyset \subseteq A$
- (c) $\{\{1\}, \{2\}\}\subseteq A$
- (d) $1 \in A$
- (e) $\{\{1\}, \{4\}\} \not\subset A$
- **2.** Sejam $A=\{1,3,5\}$ e $B=\{1,2\}$. Assinale a alternativa **incorreta**:
- (a) $\{(1,1)\}\subset A\times B$
- (b) {(1,2)} é uma relação de AXB
- (c) {(2,5)} é uma relação de BXA
- (d) $\{(3,1)\} \not\subset B \times A$
- (e) Se ρ é uma relação em AXB, então podemos ter $\rho = \{(1,1),(2,3)\}$
- 3. Seja ρ uma relação no conjunto S (SXS). Uma relação é antissimétrica quando (assinale a alternativa correta):
- (a) $(\forall x)(\forall y)(x \in S \land y \in S \land (x, y) \in \rho \land (y, x) \in \rho \rightarrow x = y)$
- (b) $(\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land z \in S \land (x, y) \in \rho \land (y, z) \in \rho \rightarrow (x, z) \in \rho)$
- (c) $(\forall x)(\forall y)(x \in S \land y \in S \land (x, y) \in \rho \rightarrow (y, x) \in \rho)$
- (d) $(\forall x)(x \in S \rightarrow (x, x) \in \rho)$
- (e) Nenhuma das anteriores.
- 4. O que vem a ser uma relação biunívoca ou injetiva (assinale a alternativa correta)?
- (a) É a mesma coisa que uma relação Vários-Para-Um;
- (b) É a mesma coisa que uma relação Um-Para-Vários:
- (c) É a mesma coisa que uma relação Vários-Para-Vários;
- (d) É a mesma coisa que uma relação Um-Para-Um;
- (e) É a mesma coisa que uma relação reflexiva.
- 5. Quando podemos somar duas matrizes?
- (a) Somente quando elas forem quadradas de mesma ordem.
- (b) Somente quando elas forem matrizes quadradas.
- (c) Quando as matrizes tiverem a mesma ordem.
- (d) Quando o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz.
- (e) Quando o número de linhas da primeira matriz dor igual ao número de colunas da segunda matriz.

 6. Qual das seguintes alternativas contém uma <i>propriedade falsa</i>? Admita A e B matrizes e α número real. (a) α(A+B) = αA+αB (b) (A^T)^T = A (c) A = B↔B = A (d) AB = BA (e) (AB)^T = B^TA^T
7. Sejam os conjuntos numéricos A = $\{2, 4, 8, 12, 14\}$; B = $\{5, 10, 15, 20, 25\}$ e C = $\{1, 2, 3, 18, 20\}$ e Ø o conjunto vazio. É correto afirmar que: (a) B∩C = Ø (b) A - C = $\{-6, 1, 2, 4, 5\}$ (c) A∩C = $\{1, 2, 3, 4, 8, 12, 14, 20\}$ (d) (A - C) \cap (B - C) = Ø (e) A∪C = $\{3, 6, 11, 20, 34\}$
8. Quando podemos efetuar um produto de matrizes?
 (a) Somente quando elas forem quadradas. (b) Somente quando o número de colunas da primeira matriz for igual ao número de linhas da segunda matriz. (c) Somente quando elas forem quadradas de mesma ordem. (d) Somente quando o número de linhas da primeira matriz for igual ao número de colunas da segunda matriz. (e) Somente quando o número de colunas da primeira matriz for igual ao número de colunas da segunda matriz.
9. Descreva cada um dos conjuntos a seguir, listando seus elementos: (a) $\{x \mid x \in Ne \ x^2 < 25\}$ [0,5 ponto]
b) $\{x \mid x \in \mathbb{Z}e \ x/ < 4\}$ [0,5 ponto]
10. Considere a seguinte matriz quadrada de ordem 3: $\begin{bmatrix} 2 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$
Calcule sua matriz inversa, resolvendo o sistema linear. [1,0 ponto]

Formulário:

$$n(P(S))=2^{n(S)}$$

$$(A \cup B)' = A' \cap B'$$

$$AxB = \{(x,y\} | x \epsilon A \ e \ y \epsilon B\}$$

$$x \rho y \leftrightarrow (x,y) \epsilon \rho$$

$$(A \cap B)' = A' \cup B'$$

$$AA^{-1} = A^{-1}A = I$$