

Chapter 10 – Sociotechnical Systems

Lecture 1

Topics covered

- ♦ Complex systems
- ♦ Systems engineering
- ♦ Systems procurement
- ♦ System development
- ♦ System operation

Systems

- ♦ Software engineering is not an isolated activity but is part of a broader systems engineering process.
- ♦ Software systems are therefore not isolated systems but are essential components of broader systems that have a human, social or organizational purpose.

♦ Example

- Wilderness weather system is part of broader weather recording and forecasting systems
- These include hardware and software, forecasting processes, system users, the organizations that depend on weather forecasts, etc.

Layers in the STS stack

 Hardware devices, some of which may be computers. Most devices will include an embedded system of some kind.

♦ Operating system

 Provides a set of common facilities for higher levels in the system.

♦ Communications and data management

 Middleware that provides access to remote systems and databases.

♦ Application systems

Specific functionality to meet some organization requirements.

Layers in the STS stack

♦ Business processes

 A set of processes involving people and computer systems that support the activities of the business.

♦ Organizations

 Higher level strategic business activities that affect the operation of the system.

♦ Society

 Laws, regulation and culture that affect the operation of the system.

Holistic system design

- There are interactions and dependencies between the layers in a system and changes at one level ripple through the other levels
 - Example: Change in regulations (society) leads to changes in business processes and application software.
- ♦ For dependability, a systems perspective is essential
 - Contain software failures within the enclosing layers of the STS stack.
 - Understand how faults and failures in adjacent layers may affect the software in a system.

Complex systems

- A system is a purposeful collection of inter-related components working together to achieve some common objective.
- A system may include software, mechanical, electrical and electronic hardware and be operated by people.
- ♦ System components <u>are dependent</u> on other system components.
- ♦ The properties and behaviour of system components are inextricably intermingled.

This leads to complexity.

System categories

♦ Technical computer-based systems

- Systems that include hardware and software but where the operators and operational processes are not normally considered to be part of the system. The system is not selfaware.
- Example: A word processor used to write a book.

♦ Socio-technical systems

- Systems that include technical systems but also operational processes and people who use and interact with the technical system. Socio-technical systems are governed by organisational policies and rules.
- Example: A publishing system to produce a book.

Organizational affects

♦ Process changes

 Systems may require changes to business processes so training may be required. Significant changes may be resisted by users.

♦ Job changes

 Systems may de-skill users or cause changes to the way they work. The status of individuals in an organization may be affected by the introduction of a new system.

♦ Organizational changes

 Systems may change the political power structure in an organization. If an organization depends on a system then those that control the system have more power.

Socio-technical system characteristics

♦ Emergent properties

 Properties of the system of a whole that depend on the system components and their relationships.

♦ Non-deterministic

They do not always produce the same output when presented with the same input because the systems's behaviour is partially dependent on human operators.

♦ Complex relationships with organisational objectives

The extent to which the system supports organisational objectives does not just depend on the system itself.

Emergent properties

- Properties of the system <u>as a whole</u> rather than properties that can be derived from the properties of components of a system
- Emergent properties are a consequence of the relationships between system components
- They can therefore only be <u>assessed</u> and measured once the components have been <u>integrated into a</u> <u>system</u>

Property	Description
Volume	The volume of a system (the total space occupied) varies depending on how the component assemblies are arranged and connected.
Reliability	System reliability depends on component reliability but unexpected interactions can cause new types of failures and therefore affect the reliability of the system.
Security	The security of the system (its ability to resist attack) is a complex property that cannot be easily measured. Attacks may be devised that were not anticipated by the system designers and so may defeat built-in safeguards.
Repairability	This property reflects how easy it is to fix a problem with the system once it has been discovered. It depends on being able to diagnose the problem, access the components that are faulty, and modify or replace these components.
Usability	This property reflects how easy it is to use the system. It depends on the technical system components, its operators, and its operating environment.

Types of emergent property

♦ Functional properties

■ These appear when all the parts of a system work together to achieve some objective. For example, a bicycle has the functional property of being a transportation device once it has been assembled from its components.

♦ Non-functional emergent properties

Examples are reliability, performance, safety, and security. These relate to the behaviour of the system in its operational environment. They are often critical for computer-based systems as failure to achieve some minimal defined level in these properties may make the system unusable.

Reliability as an emergent property

- Because of component inter-dependencies, faults can be propagated through the system.
- System failures often occur because of unforeseen inter-relationships between components.
- It is practically impossible to anticipate all possible component relationships.
- ♦ Software reliability measures may give a false picture of the overall system reliability.

Influences on reliability

♦ Hardware reliability

What is the probability of a hardware component failing and how long does it take to repair that component?

♦ Software reliability

 How likely is it that a software component will produce an incorrect output. Software failure is usually distinct from hardware failure in that software does not wear out.

♦ Operator reliability

- How likely is it that the operator of a system will make an error?
- ♦ Failures are not independent and they propagate from one level to another.

Failure propagation

Non-determinism

- ♦ A deterministic system is one where a given sequence of inputs will always produce the same sequence of outputs.
- ♦ Software systems are deterministic; systems that include humans are non-deterministic
 - A socio-technical system will not always produce the same sequence of outputs from the same input sequence
 - Human elements
 - People do not always behave in the same way
 - System changes
 - System behaviour is unpredictable because of frequent changes to hardware, software and data.

Success criteria

- ♦ Complex systems are developed to address 'wicked problems' – problems where there cannot be a complete specification.
- ♦ Different stakeholders see the problem in different ways and each has a partial understanding of the issues affecting the system.
- Consequently, different stakeholders have their own views about whether or not a system is 'successful'
 - Success is a judgment and cannot be objectively measured.
 - Success is judged using the effectiveness of the system when deployed rather than judged against the original reasons for procuement.

Conflicting views of success

- ♦ MHC-PMS designed to support multiple, conflicting goals
 - Improve quality of care.
 - Provide better information and care costs and so increase revenue.

→ Fundamental conflict

- To satisfy reporting goal, doctors and nurses had to provide additional information over and above that required for clinical purposes.
- They had less time to interact with patients, so quality of care reduced. System was not a success.
- ♦ However, managers had better reports
 - System was a success from a managerial perspective.

Systems engineering

- Procuring, specifying, designing, implementing, validating, deploying and maintaining socio-technical systems.
- Concerned with the services provided by the system, constraints on its construction and operation and the ways in which it is used to fulfil its purpose or purposes.

Stages of systems engineering

Systems engineering stages

♦ Procurement (acquisition)

The purpose of the system is established, high-level system requirements are defined, decisions are made on how functionality is distributed and the system components are purchased.

♦ Development

 The system is developed – requirements are defined in detail, the system is implemented and tested and operational processes are defined.

♦ Operation

 The system is deployed and put into use. Changes are made as new requirements emerge. Eventually, the system is decommissioned.

Security and dependability considerations

- ♦ Design options limited by procurement decisions
 - Purchased components may make some safeguards impossible to implement.
- Human errors made during development may introduce faults into the system.
- Inadequate testing may mean faults are not discovered before deployment.
- Configuration errors during deployment may introduce vulnerabilities.
- ♦ Assumptions made during procurement may be forgotten when system changes are made.

Professional disciplines involved in systems engineering

Inter-disciplinary working

♦ Communication difficulties

 Different disciplines use the same terminology to mean different things. This can lead to misunderstandings about what will be implemented.

♦ Differing assumptions

 Each discipline makes assumptions about what can and can't be done by other disciplines.

♦ Professional boundaries

 Each discipline tries to protect their professional boundaries and expertise and this affects their judgments on the system.

Key points

- Socio-technical systems include computer hardware, software and people and are designed to meet some business goal.
- Human and organizational factors, such as the organizational structure, have a significant effect on the operation of socio-technical systems.
- Emergent properties are properties that are characteristic of the system as a whole and not its component parts.
- The fundamental stages of systems engineering are procurement, development and operation.