

CS215 DISCRETE MATH

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room413, CoE South Tower

Email: wangqi@sustech.edu.cn

NP-complete Problems

- Class NP vs Class P
 - P: decision problems solvable in polynomial time
 - NP: decision problems with certificates verifiable in polynomial time (polynomial time verification)

NP-complete Problems

- Class NP vs Class P
 - P: decision problems solvable in polynomial time
 - NP: decision problems with certificates verifiable in polynomial time (polynomial time verification)
- Some examples in Class NP, but will focus on intuition More reading:
 - CLRS / M. Sipser: Introduction to Theory of Computation

NP-complete Problems

- Class NP vs Class P
 - P: decision problems solvable in polynomial time
 - NP: decision problems with certificates verifiable in polynomial time (polynomial time verification)
- Some examples in Class NP, but will focus on intuition More reading:
 CLRS / M. Sipser: Introduction to Theory of Computation
- Approximation Algorithm Natural idea: settle for non-optimal solutions for these "hard" problems, if we can find such close-to-the-optimal solutions reasonably fast.

Satisfiability Problem

- \blacksquare Satisfiability (SAT) one of the most important NP problems
- Definition A Boolean formula is a logical formula consisting of
 - Boolean variables (0 = false, 1 = true),
 - logical operations
 - $\diamond \neg x$: Negation
 - $\diamond x \lor y$: Disjunction
 - $\diamond x \land y$: Conjunction

With the truth table defined by:

X	y	$\neg \chi$	$x \vee y$	$x \wedge y$
0	0	1	0	0
0	1		1	0
1	0	0	1	0
1	1		1	1

Satisfiable

Definition For a fixed k, Boolean formulas in the following form are called k-conjunctive normal form (k-CNF):

$$f_1 \wedge f_2 \wedge \cdots \wedge f_n$$

where each f_i is of the form $f_i = y_{i,1} \lor y_{i,2} \lor \cdots \lor y_{i,k}$, and each $y_{i,j}$ is a variable or the negation of a variable.

Satisfiable

■ **Definition** For a fixed k, Boolean formulas in the following form are called k-conjunctive normal form (k-CNF):

$$f_1 \wedge f_2 \wedge \cdots \wedge f_n$$

where each f_i is of the form $f_i = y_{i,1} \lor y_{i,2} \lor \cdots \lor y_{i,k}$, and each $y_{i,j}$ is a variable or the negation of a variable.

2SAT

Instance: A 2-CNF formula f

Problem: To decide whether f is satisfiable

Example a 2-CNF formula

$$(\neg x \lor y) \land (\neg y \lor z) \land (x \lor \neg z) \land (z \lor y)$$

Satisfiable

Definition For a fixed k, Boolean formulas in the following form are called k-conjunctive normal form (k-CNF):

$$f_1 \wedge f_2 \wedge \cdots \wedge f_n$$

where each f_i is of the form $f_i = y_{i,1} \lor y_{i,2} \lor \cdots \lor y_{i,k}$, and each $y_{i,j}$ is a variable or the negation of a variable.

2SAT

Instance: A 2-CNF formula f

Problem: To decide whether f is satisfiable

Example a 2-CNF formula

$$(\neg x \lor y) \land (\neg y \lor z) \land (x \lor \neg z) \land (z \lor y)$$

Theorem 2SAT ∈ Class P

■ Let L_1 and L_2 be two decision problems

- Let L_1 and L_2 be two decision problems
- A polynomial-time reduction from L_1 to L_2 is a transformation f with the following two properties:
 - (1) f transforms an input x for L_1 into an input f(x) for L_2 s.t.
 - a yes-input of L_1 maps to a yes-input of L_2 , and a no-input of L_1 maps to a no-input of L_2
 - (2) f is computable in *polynomial time* in size(x)

- Let L_1 and L_2 be two decision problems
- A polynomial-time reduction from L_1 to L_2 is a transformation f with the following two properties:
 - (1) f transforms an input x for L_1 into an input f(x) for L_2 s.t.
 - a yes-input of L_1 maps to a yes-input of L_2 , and a no-input of L_1 maps to a no-input of L_2
 - (2) f is computable in *polynomial time* in size(x)

If such an f exists, we say that L_1 is polynomial-time reducible to L_2 , and write $L_1 \leq_P L_2$.

■ Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

• If A_2 is polynomial-time algorithm, so is A_1

- Intuitively, $L_1 \leq_P L_2$ means that L_1 is no harder than L_2
- Given an algorithm A_2 for the decision problem L_2 , we can develop an algorithm A_1 to solve L_1 :

• If A_2 is polynomial-time algorithm, so is A_1

Theorem If $L_1 \leq_P L_2$ and $L_2 \in P$, then $L_1 \in P$

Lemma If $L_1 \leq_P L_2$ and $L_2 \leq_P L_3$, then $L_1 \leq_P L_3$.

- The Class NPC consists of all decision problems L s.t.
 - $(1) L \in NP$
 - (2) for every $L' \in NP$, $L' \leq_P L$

- The Class NPC consists of all decision problems L s.t.
 - (1) $L \in NP$
 - (2) for every $L' \in NP$, $L' \leq_P L$

From the definition of NPC, it seems impossible to prove that one decision problem $L \in NPC$.

- By definition, it requires to show every $L' \in NP$, $L' \leq_P L$.
- But there are infinitely many problems in NP, so how can we argue there exists a reduction from every L' to L?

- The Class NPC consists of all decision problems L s.t.
 - $(1) L \in NP$
 - (2) for every $L' \in NP$, $L' \leq_P L$

From the definition of NPC, it seems impossible to prove that one decision problem $L \in NPC$.

- By definition, it requires to show every $L' \in NP$, $L' \leq_P L$.
- But there are infinitely many problems in NP, so how can we argue there exists a reduction from every L' to L?

However, due to the transitivity property of \leq_P , we can do the following to prove a decision problem $L \in NPC$:

- prove $L \in NP$ (usually easy)
- for some $L' \in NPC$, prove $L' \leq_P L$

- The Class *NPC* consists of all decision problems *L* s.t.
 - (1) $L \in NP$
 - (2) for every $L' \in NP$, $L' \leq_P L$

From the definition of NPC, it seems impossible to prove that one decision problem $L \in NPC$.

- By definition, it requires to show every $L' \in NP$, $L' \leq_P L$.
- But there are infinitely many problems in NP, so how can we argue there exists a reduction from every L' to L?

However, due to the transitivity property of \leq_P , we can do the following to prove a decision problem $L \in NPC$:

- prove $L \in NP$ (usually easy)
- for some $L' \in NPC$, prove $L' \leq_P L$

Proof. Let L'' be any problem in NP. Since $L' \in NPC$, by definition we have $L'' \leq_P L'$. Since $L' \leq_P L$, then by transitivity, we have $L'' \leq_P L$.

$\overline{\mathsf{SAT}} \in NPC$ (Cook's Theorem)

Theorem (Cook's Theorem) $SAT \in NPC$.

$SAT \in NPC$ (Cook's Theorem)

Theorem (Cook's Theorem) $SAT \in NPC$.

We will not prove this theorem, but will assume that 3SAT $\in NPC$ as well. With this we will start to prove problems in Class NPC.

$\overline{\mathsf{SAT}} \in \mathit{NPC}$ (Cook's Theorem)

Theorem (Cook's Theorem) $SAT \in NPC$.

We will not prove this theorem, but will assume that 3SAT $\in NPC$ as well. With this we will start to prove problems in Class NPC.

We will prove: $3SAT \leq_P DCLIQUE$ $DCLIQUE \leq_P DVC$

■ **Definition** A *clique* in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices s.t. each pair $u, v \in V'$ is connected by an edge $(u, v) \in E$. In other words, a clique is a complete subgraph of G.

■ **Definition** A *clique* in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices s.t. each pair $u, v \in V'$ is connected by an edge $(u, v) \in E$. In other words, a clique is a complete subgraph of G.

Example

- a vertex is a clique of size 1
- an edge is a clique of size 2

■ **Definition** A *clique* in an undirected graph G = (V, E) is a subset $V' \subseteq V$ of vertices s.t. each pair $u, v \in V'$ is connected by an edge $(u, v) \in E$. In other words, a clique is a complete subgraph of G.

Example

- a vertex is a clique of size 1
- an edge is a clique of size 2

- The Problem CLIQUE Find a *clique* of maximum size in a graph G.
- The Problem DCLIQUE Given an undirected graph G and an integer k, determine whether G has a clique of size k.

- The Problem CLIQUE Find a *clique* of maximum size in a graph G.
- The Problem DCLIQUE Given an undirected graph G and an integer k, determine whether G has a clique of size k.
- **Theorem** DCLIQUE $\in NPC$.

- The Problem CLIQUE Find a *clique* of maximum size in a graph G.
- The Problem DCLIQUE Given an undirected graph G and an integer k, determine whether G has a clique of size k.
- **Theorem** DCLIQUE $\in NPC$.

Proof. We need to show the following two:

- DCLIQUE ∈ NP
- There is some $L \in NPC$ s.t. $L \leq_P DCLIQUE$

DCLIQUE ∈ *NP*

• Claim DCLIQUE $\in NP$. Proof. (easy)

$DCLIQUE \in NP$

- Claim DCLIQUE $\in NP$.
 - **Proof**. (easy)
 - A *cerificate* will be a set of vertices $V' \subseteq V$ with |V'| = k that is a possible *clique*.

DCLIQUE ∈ *NP*

- Claim DCLIQUE $\in NP$.
 - **Proof**. (easy)
 - A *cerificate* will be a set of vertices $V' \subseteq V$ with |V'| = k that is a possible *clique*.
 - To check that V' is a *clique*, all needed is to check that all edges (u, v) with $u \neq v$ and $u, v \in V'$, are in E.

$\mathsf{DCLIQUE} \in \mathit{NP}$

- Claim DCLIQUE $\in NP$.
 - **Proof**. (easy)
 - A *cerificate* will be a set of vertices $V' \subseteq V$ with |V'| = k that is a possible *clique*.
 - To check that V' is a *clique*, all needed is to check that all edges (u, v) with $u \neq v$ and $u, v \in V'$, are in E.
 - This can be done in time $O(|V|^2)$, i.e., in polynomial time.

$\mathsf{DCLIQUE} \in \mathit{NP}$

- Claim DCLIQUE $\in NP$.
 - **Proof**. (easy)
 - A *cerificate* will be a set of vertices $V' \subseteq V$ with |V'| = k that is a possible *clique*.
 - To check that V' is a *clique*, all needed is to check that all edges (u, v) with $u \neq v$ and $u, v \in V'$, are in E.
 - This can be done in time $O(|V|^2)$, i.e., in polynomial time.
- Claim 3SAT \leq_P DCLIQUE.

$\mathsf{DCLIQUE} \in \mathit{NP}$

- Claim DCLIQUE $\in NP$.
 - **Proof**. (easy)
 - A *cerificate* will be a set of vertices $V' \subseteq V$ with |V'| = k that is a possible *clique*.
 - To check that V' is a *clique*, all needed is to check that all edges (u, v) with $u \neq v$ and $u, v \in V'$, are in E.
 - This can be done in time $O(|V|^2)$, i.e., in polynomial time.
- Claim 3SAT \leq_P DCLIQUE.

We will define a polynomial transformation f from 3SAT to DCLIQUE $f: \phi \mapsto (G, k)$ that builds a graph G and integer k s.t. ϕ is a Yes-input to 3SAT if and only if (G, k) is a Yes-input to DCLIQUE.

$3SAT \leq_P DCLIQUE$.

• Claim 3SAT \leq_P DCLIQUE. **Proof**.

$3SAT \leq_P DCLIQUE$.

• Claim 3SAT \leq_P DCLIQUE. **Proof**.

Idea: for the *k* clauses input to 3SAT, draw literals as vertices, and all edges between vertices such that:

- across clauses only (NO edges inside a clause)
- not between x and $\neg x$

$$\phi = C_1 \wedge C_2 \wedge C_3 C_1 = (x_1 \vee \neg x_2 \vee \neg x_3), \ C_2 = (\neg x_1 \vee x_2 \vee x_3), \ C_3 = (x_1 \vee x_2 \vee x_3)$$

$3SAT \leq_P DCLIQUE$.

• Claim 3SAT \leq_P DCLIQUE. **Proof**.

Idea: for the k clauses input to 3SAT, draw literals as vertices, and all edges between vertices such that:

- across clauses only (NO edges inside a clause)
- not between x and $\neg x$

The reduction takes polynomial time

A *satisfiable* assignment \Rightarrow a *clique* of size k

A *clique* of size $k \Rightarrow a$ *satisfiable* assignment

$$\phi = C_1 \wedge C_2 \wedge C_3$$

 $C_1 = (x_1 \vee \neg x_2 \vee \neg x_3), C_2 = (\neg x_1 \vee x_2 \vee x_3), C_3 = (x_1 \vee x_2 \vee x_3)$

Vertex Cover

■ **Definition** A *vertex cover* of *G* is a set of vertices such that every edge in *G* is incident at at least one of these vertices.

Vertex Cover

■ **Definition** A *vertex cover* of *G* is a set of vertices such that every edge in *G* is incident at at least one of these vertices.

The Vertex Cover Problem (VC) Given a graph G, find a vertex cover of G of minimum size.

- The Vertex Cover Problem (VC) Given a graph G, find a vertex cover of G of minimum size.
- The Problem DVC Given a graph G and an integer k, determine whether G has a vertex cover of with k vertices.

- The Vertex Cover Problem (VC) Given a graph G, find a vertex cover of G of minimum size.
- The Problem DVC Given a graph G and an integer k, determine whether G has a vertex cover of with k vertices.
- **Theorem** DVC $\in NPC$.

- The Vertex Cover Problem (VC) Given a graph G, find a vertex cover of G of minimum size.
- The Problem DVC Given a graph G and an integer k, determine whether G has a vertex cover of with k vertices.
- **Theorem** DVC $\in NPC$.

Proof. We need to show the following two:

- $-DVC \in NP$
- There is some $L \in NPC$ s.t. $L \leq_P DVC$

■ Theorem DVC $\in NP$. Proof. (easy)

- Theorem DVC $\in NP$.
 - **Proof**. (easy)
 - A cerificate will be a set C of k vertices.

- Theorem DVC $\in NP$.
 - Proof. (easy)
 - A cerificate will be a set C of k vertices.
 - The brute force method to check whether C is a vertex cover takes time $O(ke) = O((n+e)^2)$, in polynomial time.

- Theorem DVC $\in NP$.
 - **Proof**. (easy)
 - A cerificate will be a set C of k vertices.
 - The brute force method to check whether C is a vertex cover takes time $O(ke) = O((n+e)^2)$, in polynomial time.
- Claim DCLIQUE \leq_P DVC.

We will define a polynomial transformation f from DCLIQUE to DVC.

- Theorem DVC $\in NP$.
 - **Proof**. (easy)
 - A cerificate will be a set C of k vertices.
 - The brute force method to check whether C is a vertex cover takes time $O(ke) = O((n+e)^2)$, in polynomial time.
- Claim DCLIQUE \leq_P DVC.

We will define a polynomial transformation f from DCLIQUE to DVC.

Definition The *complement* of a graph G = (V, E) is defined by $\overline{G} = (V, \overline{E})$ where

$$\overline{E} = \{(u, v) | u, v \in V, u \neq v, (u, v) \notin E\}.$$

$DCLIQUE \leq_P DVC$

■ Theorem DCLIQUE \leq_P DVC. Proof.

$DCLIQUE \leq_P DVC$

■ Theorem DCLIQUE \leq_P DVC. Proof.

Idea: start with the graph G = (V, E) input of the DCLIQUE problem.

– Construct the *complement graph* $\overline{G} = (V, \overline{E})$ by only considering the missing edges from E.

$DCLIQUE \leq_P DVC$

■ Theorem DCLIQUE \leq_P DVC. Proof.

Idea: start with the graph G = (V, E) input of the DCLIQUE problem.

- Construct the *complement graph* $\overline{G} = (V, \overline{E})$ by only considering the missing edges from E.

The reduction takes polynomial time

A *clique* of size k in $G \Rightarrow$ a *vertex cover* of size |V| - k in \overline{G} A *vertex cover* of size k in $\overline{G} \Rightarrow$ a *clique* of size |V| - k in G

Approximation Algorithm Example: VC

DVC was proven NPC. Now we want to solve the optimization version of the vertex cover problem. We want to find a minimum size vertex cover of a given graph.

Approximation Algorithm Example: VC

DVC was proven NPC. Now we want to solve the optimization version of the vertex cover problem. We want to find a minimum size vertex cover of a given graph.

We call such a vertex cover an optimal vertex cover C^* .

Approximation Algorithm Example: VC

DVC was proven NPC. Now we want to solve the optimization version of the vertex cover problem. We want to find a minimum size vertex cover of a given graph.

We call such a vertex cover an optimal vertex cover C^* .

It is very unlikely to give an exact polynomial time algorithm (Why?)

An Approximation Algorithm for VC

Approx-Vertex-Cover(G=(V, E))

```
C = empty-set;
E'= E;
while E' is not empty do do
let (u, v) be any edge in E' (*);
add u and v to C;
remove from E' all edges incident to u or v;
end
return C;
```


An Approximation Algorithm for VC

Approx-Vertex-Cover(G=(V, E))

Idea: Take edges (u, v) one by one, put BOTH vertices into C, and remove all edges incident to u or v. We carry on until all edges have been removed. Obviously, C is a VC.

An Approximation Algorithm for VC

Approx-Vertex-Cover(G=(V, E))

Idea: Take edges (u, v) one by one, put BOTH vertices into C, and remove all edges incident to u or v. We carry on until all edges have been removed. Obviously, C is a VC.

But, how good is C?

Approximate Vertex Cover

 Claim Approx-Vertex-Cover is a 2-approximation algorithm, i.e.,

$$\frac{|C|}{|C^*|} \le 2.$$

Approximate Vertex Cover

 Claim Approx-Vertex-Cover is a 2-approximation algorithm, i.e.,

$$\frac{|C|}{|C^*|} \le 2.$$

Proof.

Observation: The set of edges picked by this algorithm is a maximal mathching M: no two edges touch each other.

Approximate Vertex Cover

Claim Approx-Vertex-Cover is a 2-approximation algorithm, i.e.,

$$\frac{|C|}{|C^*|} \le 2.$$

Proof.

Observation: The set of edges picked by this algorithm is a maximal mathching M: no two edges touch each other.

The optimal vertex cover C^* must cover every edge in M, so $|C^*| \ge |M|$. But notice that the algorithm returns a vertex set of size 2|M|. Therefore, we have

$$|C| = 2|M| \le 2|C^*|.$$

- A *field* is a set \mathbb{F} equipped with two operations, *addition* (+) and *multiplication* (\cdot) , and two special elements 0, 1, s.t.:
 - $-(\mathbb{F},+)$ is an *abelian group* with identity element 0
 - $-(\mathbb{F}^*,\cdot)$ is an *abelian group* with identity element 1
 - For all $a \in \mathbb{F}$, $0 \cdot a = a \cdot 0 = 0$
 - Distributivity: for all $a, b, c \in \mathbb{F}$, $a \cdot (b + c) = a \cdot b + a \cdot c$

- A *field* is a set \mathbb{F} equipped with two operations, *addition* (+) and *multiplication* (\cdot) , and two special elements 0, 1, s.t.:
 - $-(\mathbb{F},+)$ is an *abelian group* with identity element 0
 - $-\left(\mathbb{F}^{*},\cdot\right)$ is an *abelian group* with identity element 1
 - For all $a \in \mathbb{F}$, $0 \cdot a = a \cdot 0 = 0$
 - Distributivity: for all $a, b, c \in \mathbb{F}$, $a \cdot (b + c) = a \cdot b + a \cdot c$
- If \mathbb{F} is finite, \mathbb{F} is called a *finite field*.

- A *field* is a set \mathbb{F} equipped with two operations, *addition* (+) and *multiplication* (\cdot) , and two special elements 0, 1, s.t.:
 - $-(\mathbb{F},+)$ is an *abelian group* with identity element 0
 - $-(\mathbb{F}^*,\cdot)$ is an *abelian group* with identity element 1
 - For all $a \in \mathbb{F}$, $0 \cdot a = a \cdot 0 = 0$
 - Distributivity: for all $a, b, c \in \mathbb{F}$, $a \cdot (b + c) = a \cdot b + a \cdot c$
- If \mathbb{F} is finite, \mathbb{F} is called a *finite field*.
- $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$ with the operations addition, multiplication of integers modulo p, is called a prime field

- A *field* is a set \mathbb{F} equipped with two operations, *addition* (+) and *multiplication* (\cdot) , and two special elements 0, 1, s.t.:
 - $-(\mathbb{F},+)$ is an abelian group with identity element 0
 - $-(\mathbb{F}^*,\cdot)$ is an *abelian group* with identity element 1
 - For all $a \in \mathbb{F}$, $0 \cdot a = a \cdot 0 = 0$
 - Distributivity: for all $a, b, c \in \mathbb{F}$, $a \cdot (b + c) = a \cdot b + a \cdot c$
- If \mathbb{F} is finite, \mathbb{F} is called a *finite field*.
- $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0, 1, \dots, p-1\}$ with the operations addition, multiplication of integers modulo p, is called a prime field
 - The properties can be verified

Every $a \in \mathbb{F}_p^*$ has a *multiplicative inverse*: since $a \in \mathbb{F}_p^*$ and p is a prime, we have gcd(a, p) = 1, and by extended Euclidean algorithm, there exist x, y s.t. ax + py = 1, and then $x = a^{-1}$ mod p.

Prime Field and Characteristic

Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r

Prime Field and Characteristic

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.

Prime Field and Characteristic

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.
- This p is called the *characteristic* of the field \mathbb{F} .

Prime Field and Characteristic

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p=0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.
- This p is called the *characteristic* of the field \mathbb{F} .
- The subset $\{0, S_1, S_2, \dots, S_{p-1}\} \subseteq \mathbb{F}$ is *isomorphic* to \mathbb{F} (prime field)

Prime Field and Characteristic

- Consider a *finite field* \mathbb{F} , define $S_r = 1 + 1 + \cdots + 1$ as sum of r 1's for a positive integer r
 - Let p be the smallest positive number with $S_p = 0$. If such a p exists, it must be prime
 - If $p = a \cdot b$ with 0 < a, b < p, then by *distributivity*, $0 = S_p = S_a \cdot S_b$. Then one of S_a , S_b must be 0, contradicting the minimality of p.
- This p is called the *characteristic* of the field \mathbb{F} .
- The subset $\{0, S_1, S_2, \dots, S_{p-1}\} \subseteq \mathbb{F}$ is *isomorphic* to \mathbb{F} (prime field)
- Any finite field \mathbb{F} is a *finite dimensional vector space* over \mathbb{F}_p , with $n = \dim_{\mathbb{F}_p}(\mathbb{F})$, $|\mathbb{F}| = p^n$, i.e., the cardinality of \mathbb{F} must be a prime power.

Finite Fields

Uniqueness of finite fields:

For any prime power q, there is essentially only one finite field of order q. Any two finite fields of order q are the same except that the labelling used to represent the field elements may be different

Finite Fields

Uniqueness of finite fields:

For any prime power q, there is essentially only one finite field of order q. Any two finite fields of order q are the same except that the labelling used to represent the field elements may be different

- Binary field characteristic-2 finite fields \mathbb{F}_{2^m}
 - Elements are polynomials over \mathbb{F}_2 of degree $\leq m-1$

$$-\mathbb{F}_{2^m} := \{a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_2x^2 + a_1x + a_0 : a_i \in \mathbb{F}_2\}$$

Finite Fields

Uniqueness of finite fields:

For any prime power q, there is essentially only one finite field of order q. Any two finite fields of order q are the same except that the labelling used to represent the field elements may be different

- Binary field characteristic-2 finite fields \mathbb{F}_{2^m}
 - Elements are polynomials over \mathbb{F}_2 of degree $\leq m-1$

$$-\mathbb{F}_{2^m} := \{a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \dots + a_2x^2 + a_1x + a_0 : a_i \in \mathbb{F}_2\}$$

- An *irreducible polynomial* f(x) of degree m is chosen: f(x) cannot be factered as a product of binary polynomials each of degree less than m
 - Addition: usual
 - Multiplication: modulo f(x)

An irreducible polynomial f(x) of degree m

$$-f(x) = x^4 + 1 \text{ over } \mathbb{F}_2$$

 $-f(x) = x^4 + x^2 + 1 \text{ over } \mathbb{F}_2$
 $-f(x) = x^4 + x + 1 \text{ over } \mathbb{F}_2$

An irreducible polynomial f(x) of degree m

$$-f(x) = x^4 + 1 \text{ over } \mathbb{F}_2 = (x+1)^4$$

 $-f(x) = x^4 + x^2 + 1 \text{ over } \mathbb{F}_2 = (x^2 + x + 1)^2$
 $-f(x) = x^4 + x + 1 \text{ over } \mathbb{F}_2$

An irreducible polynomial f(x) of degree m

$$-f(x) = x^4 + 1 \text{ over } \mathbb{F}_2 = (x+1)^4$$

 $-f(x) = x^4 + x^2 + 1 \text{ over } \mathbb{F}_2 = (x^2 + x + 1)^2$ \times
 $-f(x) = x^4 + x + 1 \text{ over } \mathbb{F}_2$

An irreducible polynomial f(x) of degree m

$$-f(x) = x^4 + 1 \text{ over } \mathbb{F}_2 = (x+1)^4$$

 $-f(x) = x^4 + x^2 + 1 \text{ over } \mathbb{F}_2 = (x^2 + x + 1)^2$ \checkmark
 $-f(x) = x^4 + x + 1 \text{ over } \mathbb{F}_2$

 \blacksquare The elements of \mathbb{F}_{2^4} are the 16 polynomials of degree ≤ 3

An irreducible polynomial f(x) of degree m

$$-f(x) = x^4 + 1 \text{ over } \mathbb{F}_2 = (x+1)^4$$

 $-f(x) = x^4 + x^2 + 1 \text{ over } \mathbb{F}_2 = (x^2 + x + 1)^2$ \times
 $-f(x) = x^4 + x + 1 \text{ over } \mathbb{F}_2$

 \blacksquare The elements of \mathbb{F}_{2^4} are the 16 polynomials of degree ≤ 3

- Addition: $(z^3 + z^2 + 1) + (z^2 + z + 1) = z^3 + z$
- Subtraction: $(z^3 + z^2 + 1) (z^2 + z + 1) = z^3 + z$
- Multiplication: $(z^3 + z^2 + 1) \cdot (z^2 + z + 1) = z^5 + z + 1 = z^2 + 1$
- *Inversion*: $(z^3 + z^2 + 1)^{-1} = z^2$ since $(z^3 + z^2 + 1) \cdot z^2 = z^5 + z^4 + z^2 = 1 \mod z^4 + z + 1$ 24 - 5

The elements of \mathbb{F}_{2^4} can be also represented in the following: Let α be a root of the irreducible polynomial $f(x) = x^4 + x + 1$, i.e., $\alpha^4 + \alpha + 1 = 0$.

The elements of \mathbb{F}_{2^4} can be also represented in the following: Let α be a root of the irreducible polynomial $f(x) = x^4 + x + 1$, i.e., $\alpha^4 + \alpha + 1 = 0$.

The α is a *generator* of the multiplicative group $(\mathbb{F}_{2^4}^*, \cdot)$.

$$\begin{array}{lll} \alpha^{0} = 1 & \alpha^{1} = \alpha & \alpha^{2} \\ \alpha^{3} & \alpha^{4} = \alpha + 1 & \alpha^{5} = \alpha^{2} + \alpha \\ \alpha^{6} = \alpha^{3} + \alpha^{2} & \alpha^{7} = \alpha^{3} + \alpha + 1 & \alpha^{8} = \alpha^{2} + 1 \\ \alpha^{9} = \alpha^{3} + \alpha & \alpha^{10} = \alpha^{2} + \alpha + 1 & \alpha^{11} = \alpha^{3} + \alpha^{2} + \alpha \\ \alpha^{12} = \alpha^{3} + \alpha^{2} + \alpha + 1 & \alpha^{13} = \alpha^{3} + \alpha^{2} + 1 & \alpha^{14} = \alpha^{3} + 1 \\ \alpha^{15} = 1 & \alpha^{15} = 1 & \alpha^{15} = \alpha^{15} & \alpha^{15} &$$

The elements of \mathbb{F}_{2^4} can be also represented in the following: Let α be a root of the irreducible polynomial $f(x) = x^4 + x + 1$, i.e., $\alpha^4 + \alpha + 1 = 0$.

The α is a *generator* of the multiplicative group $(\mathbb{F}_{2^4}^*, \cdot)$.

 $<\alpha^3,\alpha^2,\alpha,1>$ is a *basis* for \mathbb{F}_{2^4} over \mathbb{F}_2 .

The elements of \mathbb{F}_{2^4} can be also represented in the following: Let α be a root of the irreducible polynomial $f(x) = x^4 + x + 1$, i.e., $\alpha^4 + \alpha + 1 = 0$.

The α is a *generator* of the multiplicative group $(\mathbb{F}_{2^4}^*, \cdot)$.

$$\alpha^{0} = 1$$

$$\alpha^{3}$$

$$\alpha^{4} = \alpha + 1$$

$$\alpha^{5} = \alpha^{2} + \alpha$$

$$\alpha^{6} = \alpha^{3} + \alpha^{2}$$

$$\alpha^{7} = \alpha^{3} + \alpha + 1$$

$$\alpha^{9} = \alpha^{3} + \alpha$$

$$\alpha^{10} = \alpha^{2} + \alpha + 1$$

$$\alpha^{11} = \alpha^{3} + \alpha^{2} + \alpha$$

$$\alpha^{12} = \alpha^{3} + \alpha^{2} + \alpha + 1$$

$$\alpha^{13} = \alpha^{3} + \alpha^{2} + 1$$

$$\alpha^{14} = \alpha^{3} + 1$$

$$\alpha^{15} = 1$$

 $<\alpha^3,\alpha^2,\alpha,1>$ is a *basis* for \mathbb{F}_{2^4} over \mathbb{F}_2 .

The finite field \mathbb{F}_{2^4} can be viewed as a *vector space* over \mathbb{F}_2 .

The finite field \mathbb{F}_{q^n} can be viewed as a *vector space* over \mathbb{F}_q .

• For a fixed q, the finite field \mathbb{F}_q is unique.

• For a fixed q, the finite field \mathbb{F}_q is unique. But, there are different irreducible polynomials of degree 4 over \mathbb{F}_2 .

$$f_1(z) = z^4 + z + 1$$

 $f_2(z) = z^4 + z^3 + 1$
 $f_3(z) = z^4 + z^3 + z^2 + z + 1$

• For a fixed q, the finite field \mathbb{F}_q is unique. But, there are different irreducible polynomials of degree 4 over \mathbb{F}_2 .

$$f_1(z) = z^4 + z + 1$$
 K_1
 $f_2(z) = z^4 + z^3 + 1$ K_2
 $f_3(z) = z^4 + z^3 + z^2 + z + 1$ K_3

Superficially, these three fields appear to be different:

In
$$K_1$$
, $z^3 \cdot z = z + 1$;
In K_2 , $z^3 \cdot z = z^3 + 1$;
In K_3 , $z^3 \cdot z = z^3 + z^2 + z + 1$.

• For a fixed q, the finite field \mathbb{F}_q is unique. But, there are different irreducible polynomials of degree 4 over \mathbb{F}_2 .

$$f_1(z) = z^4 + z + 1$$
 K_1
 $f_2(z) = z^4 + z^3 + 1$ K_2
 $f_3(z) = z^4 + z^3 + z^2 + z + 1$ K_3

Superficially, these three fields appear to be different:

In
$$K_1$$
, $z^3 \cdot z = z + 1$;
In K_2 , $z^3 \cdot z = z^3 + 1$;
In K_3 , $z^3 \cdot z = z^3 + z^2 + z + 1$.

However, all three fields of a given order q are *isomorphic*: the difference is only in the labelling of the elements.

• For a fixed q, the finite field \mathbb{F}_q is unique. But, there are different irreducible polynomials of degree 4 over \mathbb{F}_2 .

$$f_1(z) = z^4 + z + 1$$
 K_1
 $f_2(z) = z^4 + z^3 + 1$ K_2
 $f_3(z) = z^4 + z^3 + z^2 + z + 1$ K_3

Superficially, these three fields appear to be different:

In
$$K_1$$
, $z^3 \cdot z = z + 1$;
In K_2 , $z^3 \cdot z = z^3 + 1$;
In K_3 , $z^3 \cdot z = z^3 + z^2 + z + 1$.

However, all three fields of a given order q are *isomorphic*: the difference is only in the labelling of the elements.

If $\psi: z \mapsto c$ is an *ismorphism* between K_1 and K_2 , then $f_1(c) \equiv 0 \pmod{f_2}$ for some $c \in K_2$. The choices for c are $z^2 + z$, $z^2 + z + 1$, $z^3 + z^2$, and $z^3 + z^2 + 1$.

Let p be a prime and $m \geq 2$. Let $\mathbb{F}_p[z]$ denote the set of all polynomials in the variable z with coefficients from \mathbb{F}_p . Let f(z) be an irreducible polynomial of degree m in $\mathbb{F}_p[z]$.

Let p be a prime and $m \geq 2$. Let $\mathbb{F}_p[z]$ denote the set of all polynomials in the variable z with coefficients from \mathbb{F}_p . Let f(z) be an irreducible polynomial of degree m in $\mathbb{F}_p[z]$.

The elements of \mathbb{F}_{p^m} are the polynomials in $\mathbb{F}_p[z]$ of degree $\leq m-1$:

$$\mathbb{F}_{p^m} = \{a_{m-1}z^{m-1} + a_{m-2}z^{m-2} + \dots + a_2z^2 + a_1z + a_0 : a_i \in \mathbb{F}_p\}.$$

Let p be a prime and $m \geq 2$. Let $\mathbb{F}_p[z]$ denote the set of all polynomials in the variable z with coefficients from \mathbb{F}_p . Let f(z) be an irreducible polynomial of degree m in $\mathbb{F}_p[z]$.

The elements of \mathbb{F}_{p^m} are the polynomials in $\mathbb{F}_p[z]$ of degree $\leq m-1$: $\mathbb{F}_{p^m} = \{a_{m-1}z^{m-1} + a_{m-2}z^{m-2} + \cdots + a_2z^2 + a_1z + a_0 : a_i \in \mathbb{F}_p\}.$

- *Addition*: usual addition of polynomials, with coefficients arithmetic performed in \mathbb{F}_p .
- Multiplication: performed modulo the polynomial f(z).

Let p be a prime and $m \geq 2$. Let $\mathbb{F}_p[z]$ denote the set of all polynomials in the variable z with coefficients from \mathbb{F}_p . Let f(z) be an irreducible polynomial of degree m in $\mathbb{F}_p[z]$.

The elements of \mathbb{F}_{p^m} are the polynomials in $\mathbb{F}_p[z]$ of degree $\leq m-1$: $\mathbb{F}_{p^m} = \{a_{m-1}z^{m-1} + a_{m-2}z^{m-2} + \cdots + a_2z^2 + a_1z + a_0 : a_i \in \mathbb{F}_p\}.$

- *Addition*: usual addition of polynomials, with coefficients arithmetic performed in \mathbb{F}_p .
- Multiplication: performed modulo the polynomial f(z).
- A finite field \mathbb{F}_{p^m} has precisely one subfield of order p^{ℓ} for each positive divisor ℓ of m.

The elements of this subfield are the elements $a \in \mathbb{F}_{p^m}$ satisfying $a^{p^\ell} = a$; Conversely, every subfield of \mathbb{F}_{p^m} has order p^ℓ for some positive divisor ℓ of m.

Applications of Finite Fields

Applications of Finite Fields

coding theory, cryptography, combinatorics, data storage systems, simulation, communications, signal design, ...

Review

- 01. Propositional Logic
- 02. Predicate Logic
- 03. Mathematical Proofs
- 04. Sets
- 05. Functions
- 06. Complexity of Algorithms
- 07. Number Theory
 Groups, Rings and Fields

- 08. Cryptography
- 09. Mathematical Induction
- 10. Recursion
- 11. Counting
- 12. Relation
- 13. Graphs
- 14. Tree

Review

- 01. Propositional Logic
- 02. Predicate Logic
- 03. Mathematical Proofs
- 04. Sets
- 05. Functions
- 06. Complexity of Algorithms
- 07. Number TheoryGroups, Rings and Fields

Discrete Probability

- 08. Cryptography
- 09. Mathematical Induction
- 10. Recursion
- 11. Counting
- 12. Relation
- 13. Graphs
- 14. Tree

Logical connectives

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

Logical connectives

$$\neg p, p \lor q, p \land q, p \oplus q, p \rightarrow q, p \leftrightarrow q$$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

Predicate logic

contains variables

Logical connectives

$$\neg p$$
, $p \lor q$, $p \land q$, $p \oplus q$, $p \rightarrow q$, $p \leftrightarrow q$

Logical equivalence

De Morgan's laws, communtative laws, distributive laws, ...

- Predicate logiccontains variables
- Quantified statements
 universal, existential, equivalence

Methods of Proving Theorems

- Basic methods to prove theorems:
 - ♦ direct proof
 - $-p \rightarrow q$ is proved by showing that if p is true then q follows
 - proof by contrapositive
 - show the contrapositive $\neg q \rightarrow \neg p$
 - proof by contradiction
 - show that $(p \land \neg q)$ contradicts the assumptions
 - proof by cases
 - give proofs for all possible cases
 - proof of equivalence
 - $-p \leftrightarrow q$ is replaced with $(p \rightarrow q) \land (q \rightarrow p)$

Set, Function

function?

Set, Function

function?

```
one-to-one (injective) function?
```


Set, Function

function?

```
one-to-one (injective) function?
onto (surjective) function?
```


Set, Function

function?

```
one-to-one (injective) function?
onto (surjective) function?
bijective function (one-to-one correspondence)?
```


Set, Function

function?

```
one-to-one (injective) function?
onto (surjective) function?
bijective function (one-to-one correspondence)?
```

counting the number of such functions?

Big-O Notation

Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(n) = O(g(n)) (reads: f(n) is O of g(n)), if there exist some positive constants C and k such that $|f(n)| \le C|g(n)|$, whenever n > k.

Divisibility

Divisibility

Congruence relation

Divisibility

Congruence relation

Primes

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Back substitution

Divisibility

Congruence relation

Primes

GCD and Euclidean Algorithm

Modular Inverse

When does an inverse of a modulo m exist?

How to find inverses?

Chinese Remainder Theorem

Back substitution
$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$
 $x \equiv 2 \pmod{5}$

Cryptography

Fermat's Little Theorem

Cryptography

Fermat's Little Theorem

Euler's Theorem

Primitive roots, multiplicative order

Cryptography

Fermat's Little Theorem

Euler's Theorem

Primitive roots, multiplicative order

RSA cryptosystem

DLP, Diffie-Hellman protocol

■ A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

- A *typical* proof by mathematical induction, showing that a statement P(n) is true for all integers $n \ge b$ consists of three steps:
 - 1. We show that P(b) is true. Base Step
 - 2. We then, $\forall n > b$, show either

$$(*)$$
 $P(n-1) o P(n)$ or $(**)$ $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1) o P(n)$

We need to make the inductive hypothesis of either P(n-1) or $P(b) \wedge P(b+1) \wedge \cdots \wedge P(n-1)$. We then use (*) or (**) to derive P(n).

3. We conclude on the basis of the principle of $36^{\frac{m-3}{5}}$ hematical induction that P(n) is true for all $n \ge b$.

Recurrence

Iterating a recurrence

Recurrence

Iterating a recurrence

bottom up or top down

Recurrence

Iterating a recurrence

bottom up or top down

prove by induction, complexity, ...

■ The sum rule and product rule

The sum rule and product rule

The Inclusion-Exclusion Principle

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with *n* distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n,k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

Pascal's Triangle, Identity

The sum rule and product rule

The Inclusion-Exclusion Principle

The Pigeonhole Principle

Theorem If N is a positive integer and k is an integer with $1 \le k \le n$, then there are

$$P(n, k) = n(n-1)(n-2)\cdots(n-k+1)$$

k-element permutations with n distinct elements.

$$P(n,3) = 3! \cdot C(n,3)$$

Pascal's Triangle, Identity

The Binomial Theorem, Trinomial

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

Solving linear (non)homogeneous recurrence relation

Definition An r-combination with repetition allowed, or a multiset of size r, chosen from a set of n elements, is an unordered selection of elements with repetition allowed.

Example Find # multisets of size 17 from the set $\{1, 2, 3\}$.

This is equivalent to finding the # nonnegative solutions to $x_1 + x_2 + x_3 = 17$.

- Solving linear (non)homogeneous recurrence relation
- Combinatorial proof

Properties of relations

Properties of relations

Representing relations

Properties of relations

Representing relations

Closures on relations

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Partial ordering

Properties of relations

Representing relations

Closures on relations

Equivalence relation

Definition A relation R on a set A is called an *equivalence* relation if it is reflexive, symmetric, and transitive.

Partial ordering

Definition A relation R on a set A is called a *partial* ordering if it is reflexive, antisymmetric, and transitive.

Graphs & Trees

Basic concepts

Graphs & Trees

Basic concepts

connected graph, simple graph, isomophism, chromatic number, planar graph, Euler circuit, Hamilton circuit, shortest path, bipartite graph, complete graph, special graphs $(K_n, K_{m,n}, C_n, W_n, Q_n)$, m-ary tree, tree traversal, spanning tree ...

Good Luck!

