

600V 3-Phase Bridge Driver

PRODUCT SUMMARY

V_{OFFSET} 600 V max.
 I_O+/- 250 mA / 350 mA
 V_{OUT} 10 V - 20 V

• t_{on/off} (typ.) 400 ns / 380 ns

• Deadtime (typ.) 290 ns

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for all channels
- Low/high side output out of phase with inputs
- 3.3 V, 5 V, and 15 V logic compatible
- Lower di/dt gate drive for better noise immunity
- Cross-conduction prevention logic
- · Matched propagation delay for both channels
- Externally programmable delay for automatic fault clear
- SOIC-28L package

GENERAL DESCRIPTION

The SLM2136 is a high voltage, high speed power MOSFET and IGBT drivers with three independent high- and low-side referenced output channels for 3phase applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic inputs are compatible with standard CMOS or LSTTL output, down to 3.3 V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

TYPICAL APPLICATION CIRCUIT

PIN CONFIGURATION

Package	Pin Configuration (Top View)
SOIC-28L	1 V _{CC} V _{B1} 28 2 HIN1 HO1 27 3 HIN2 V _{S1} 26 4 HIN3 25 5 LIN1 V _{B2} 24 6 LIN2 HO2 23 7 LIN3 V _{S2} 22 8 FAULT 21 9 ITRIP V _{B3} 20 EN HO3 19 11 RCIN V _{S3} 18 12 V _{SS} 17 COM LO1 16 LO3 LO2 15

PIN DESCRIPTION

No.	Pin	Description	
1	Vcc	Low-side and logic fixed supply.	
2, 3, 4	HIN1, 2, 3	ogic input for high-side gate driver output (HO), out of phase.	
5, 6, 7	LIN1, 2, 3	Logic input for low-side gate driver output (LO), out of phase.	
8	FAULT	Indicates over-current (ITRIP) or low-side undervoltage lockout has occurred. Negative logic, open-drain output.	
9	ITRIP	Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time TFLTCLR, then automatically becomes inactive (open-drain high impedance).	
10	EN	Logic input to enable I/O functionality. I/O logic functions when ENABLE is high. No effect on FAULT and not latched.	
11	RCIN	External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C. When RCIN>8 V, the FAULT pin goes back into open-drain high-impedance.	
12	Vss	Logic ground.	
13	COM	Low-side gate drivers return.	
14, 15, 16	LO1, 2, 3	Low-side gate driver outputs.	
18, 22, 26	V _{S1, 2, 3}	High-side floating supply return.	
19, 23, 27	HO1, 2, 3	High-side gate driver outputs.	
20, 24, 28	V _{B1, 2, 3}	High-side floating supply.	

ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM2136CF-DG	SOIC-28L, Pb-Free	1000/Reel

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition		Min.	Max.	Units
V_{B}	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset vo	ltage	V _{B1,2,3} - 25	V _{B1,2,3} + 0.3	
Vно	High-side floating output voltag	je	V _{S1,2,3} - 0.3	V _{B1,2,3} + 0.3	
Vcc	Low-side and logic fixed supply vo	ltage	-0.3	25	
Vss	Logic ground		Vcc - 25	V _{CC} + 0.3	
Vin	Logic input voltage (LIN, HIN, ITRIF	P, EN)	Vss - 0.3	Lower of (Vss + 15) or (Vcc + 0.3)	V
V _{LO1,2,3}	Low-side output voltage		-0.3	V _{CC} + 0.3	
V _{RCIN}	RCIN input voltage		V _{SS} - 0.3	V _{CC} + 0.3	
V_{FLT}	FAULT onput voltage		V _{SS} - 0.3	V _{CC} + 0.3	
dVs/dt	Allowable offset supply voltage trai	nsient		50	V/ns
P _D	Package power dissipation @ T _A ≤ +25°C	SOIC-28L	-	1.6	W
Rth_JA	Thermal resistance, junction to ambient SOIC-28L			75	°C/W
TJ	Junction temperature			150	
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)			300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
$V_{B1,2,3}$	High-side floating supply voltage	V _{S1,2,3} + 10	V _{S1,2,3} + 20	
V _{S1,2,3}	High-side floating supply offset voltage	Note 1	600	
V _{HO1,2,3}	High-side floating output voltage	Vs _{1,2,3}	V _{B1,2,3}	
V _{LO1,2,3}	Low-side output voltage	0	Vcc	
Vcc	Low-side and logic fixed supply voltage	10	20	
Vss	Logic ground	-5	5	V
V _{FL} T	FAULT output voltage	Vss	Vcc	
V _{RCIN}	RCIN input voltage	Vss	Vcc	
VITRIP	ITRIP input voltage	Vss	V _{SS} + 5V	
Vin	Logic input voltage LIN1, 2, 3, HIN1, 2, 3 Vss Vss + 5V			
TA	Ambient temperature	- 40	125	°C

Note:

- Logic operational for V_S of (COM 5 V) to (COM + 600V). Logic state held for V_S of (COM-5V) to (COM V_{BS}). All input pins and the ITRIP and EN pins are internally clamped with a 5.2V zener diode.
- The input/output logic timing diagram is shown in Fig. 1.
- For proper operation the device should be used within the recommended conditions.
- The V_S offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{S1,2,3} = V_{SS} = COM, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _S = 0 V	300	425	550	
t _{off}	Turn-off propagation delay	Vs = 600 V	250	400	550	
t _r	Turn-on rise time			125	190	
t _f	Turn-off fall time			50	75	
t _{EN}	Enable low to output shutdown propagation delay	V _{IN} , V _{EN} = 0 V or 5 V	300	450	600	ns
t _{ITRIP}	ITRIP to output shutdown propagation delay	V _{ITRIP} = 5 V	500	750	1000	
tы	ITRIP blanking time	V _{IN} = 0 V or 5 V V _{ITRIP} = 5 V	100	150		
t _{FLT}	ITRIP to FAULT propagation delay	V _{IN} = 0 V or 5 V V _{ITRIP} = 5 V	400	600	800	
t _{FILIN}	Input filter time (HIN, LIN)	V _{IN} = 0 V & 5 V	100	200		
tfltclr	FAULT clear time RCIN: R = 2 M Ω , C = 1nF	V _{IN} = 0 V or 5 V V _{ITRIP} = 0 V	1.3	1.65	2	ms
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	V _{IN} = 0 V & 5 V	220	290	360	
MT	Matching delay, HS & LS turn-on/off			40	75	
MDT	Matching delay, max (ton, toff) – min (ton, toff), (ton, toff are applicable to all 3 channels)	External dead time > 400 ns		25	70	ns
PM	Output pulse width matching (pwin - pwout) (Fig. 2)			40	75	

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to V_{SS} and are applicable to all 6 channels ($\overline{LIN1}$, $\overline{2}$, $\overline{3}$ and $\overline{HIN1}$, $\overline{2}$, $\overline{3}$). The V_O and I_O parameters are referenced to COM and $V_{S1,2,3}$ and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ViH	Logic "0" input voltage (LIN1,2,3 and HIN1,2,3)	V = 10 V/to 20V	2.0			
V _{IL}	Logic "1" input voltage (LIN1,2,3 and HIN1,2,3)				1.0	
V _{EN, TH+}	Enable positive going threshold				1.7	V
V _{EN} , TH-	Enable negative going threshold		1.0			
VIT, TH+	ITRIP positive going threshold		0.4	0.5	0.6	

Vit, HYS	ITRIP input hysteresis			0.1		
VRCIN, TH+	RCIN positive going threshold			8		
VRCIN, HYS	RCIN input hysteresis			1		
Vон	High level output voltage, V _{BIAS} - V _O	L 00 A		0.5	1.0	
VoL	Low level output voltage, Vo	lo = 20 mA		0.3	0.6	V
V _{CCUV+} V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage positive going threshold		8.0	8.9	9.8	
Vccuv- V _{BSUV-}	V _{CC} and V _{BS} supply undervoltage negative going threshold		7.4	8.2	9.0	
Vccuvh V _{BSUVH}	V _{CC} and V _{BS} supply undervoltage lockout hysteresis		0.3	0.7		
VIN_CLAMP	Input clamp voltage (HIN, LIN, ITRIP and EN)	I _{IN} = 100 μA	/ 2	5.8		
I _{LK}	Offset supply leakage current	V _{B1,2,3} = V _{S1,2,3} = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} = 0 V or 5 V		60	75	μΑ
Iqcc	Quiescent V _{CC} supply current	VIN - 0 V OI 5 V		1.6	2.3	mA
l _{IN+}	Logic "1" input bias current	HIN1, 2, 3 = 0 V, LIN1, 2, 3 = 0 V		150	200	
I _{IN} -	Logic "0" input bias current	HIN1, 2, 3 = 5 V, LIN1, 2, 3 = 5 V		200	300	
I _{ITRIP} +	"High" ITRIP input bias current	V _{ITRIP} = 5 V		30	100	
I _{ITRIP} -	"Low" ITRIP input bias current	V _{ITRIP} = 0 V		0	1	μΑ
I _{EN+}	"High" ENABLE input bias current	V _{ENABLE} = 5 V		35	100	
I _{EN} -	"Low" ENABLE input bias current	V _{ENABLE} = 0 V		0	1	
IRCIN	RCIN input bias current	V _{RCIN} = 0 V or 15 V		0	1	
l _{O+}	Output high short circuit pulsed current	V_{O} = 0 V, V_{IN} = V_{IH} PW \leqslant 10 μ s	120	200		να Λ
lo-	Output low short circuit pulsed current	V_0 = 15 V, V_{IN} = V_{IL} PW \leq 10 μs	250	350		mA
Ron_RCIN	RCIN low on resistance			50	100	Ω
R _{on_FAULT}	FAULT low on resistance			50	100	

VCC	VBS	ITRIP	ENABLE	FAULT	LO1,2,3	HO1,2,3
< UVCC	X	X	X	0 (note 1)	0	0
15 V	< UVBS	0 V	5 V	High imp	LIN1,2,3	0
15 V	15 V	0 V	5 V	High imp	LIN1,2,3	HIN1,2,3
15 V	15 V	> V _{ITRIP}	5 V	0 (note 2)	0	0
15 V	15 V	0 V	0 V	High imp	0	0

Note:

- A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously. UVCC is not latched, when $V_{CC} > UV_{CC}$, FAULT returns to high impedance. When ITRIP < V_{ITRIP} , FAULT returns to high-impedance after RCIN pin becomes greater than 8 V (@ V_{CC} = 15 V).
- 1. 2. 3.

Fig. 1. Input/Output Timing Diagram

Fig. 2. Switching Time Waveforms

Fig. 3. Output Enable Timing Waveform

Fig. 4. Internal Deadtime Timing Waveforms

Fig. 5. ITRIP/RCIN Timing Waveforms

Fig. 6. Input Filter Function

Figure 6A. Turn-on Propagation Delay vs.
Temperature

Figure 6B. Turn-on Propagation Delay vs. Supply Voltage

Figure 6C. Turn-on Propagation Delay vs. Input Voltage

Figure 7A. Turn-off Propagation Delay vs. Temperature

Figure 7B. Turn-off Propagation Delay vs. Supply Voltage

Figure 7C. Turn-off Propagation Delay vs. Input Voltage

Figure 8A. Turn-on Rise Time vs. Temperature

Figure 8B. Turn-on Rise Time vs. Supply Voltage

Figure 9A. Turn-off Fall Time vs. Temperature

Figure 9B. Turn-off Fall Time vs. Supply Voltage

Figure 10B. EN to Output Shutdown Time vs. Supply Voltage

Figure 10C. EN to Output Shutdown Time vs. EN Voltage

Figure 11A. ITRIP to Output Shutdown Time vs.
Temperature

Figure 11B. ITRIP to Output Shutdown Time vs. Supply Voltage

Figure 12A. ITRIP to FAULT Indication Time vs. Temperature

Fig13A. FAULT Clear Time vs. Temperature

Figure 13B. FAULT Clear Time vs. Supply Voltage

Figure 14A. Dead Time vs. Temperature

Figure 14B. Dead Time Time vs. Supply Voltage

Figure 15A. Logic "0" Input Threshold vs. Temperature

Figure 15B. Logic "0" Input Threshold vs. Supply Voltage

Figure 16A. Logic "1" Input Threshold vs. Temperature

Figure 16B. Logic "1" Input Threshold vs. Supply Voltage

Figure 17A. ITRIP Positive Going Threshold vs.
Temperature

Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage

Figure 18A. High Level Output vs. Temperature

Figure 18B. High Level Output vs. Supply Voltage

Figure 19A. Low Level Output vs. Temperature

Figure 19B. Low Level Output vs. Supply Voltage

Figure 20. V_{cc} or V_{Bs} Undervoltage (+) vs. Temperature

Figure 21. V_{CC} or V_{BS} Undervoltage (-) vs. Temperature

Figure 22. Offset Supply Leakage Current vs. Temperature

Figure 23. Offset Supply Leakage Current vs. V_B Boost Voltage

Figure 24. V_{B2} Supply Current vs. Temperature

Figure 25. V_{B8} Supply Current vs. V_{B8} Floating Supply Voltage

Figure 26. Vcc Supply Current vs. Temperature

Rev1.1, December 2019

Figure 27. V_{cc} Supply Current vs. V_{cc} Supply Voltage

Figure 28. Logic "1" Input Current vs. Temperature

Figure 29. Logic "1" Input Current vs. Supply Voltage Figure 30A. Logic "0" Input Current vs. Temperature

Figure 30B. Logic "0" Input Current vs. Supply

Figure 31A. "High" ITRIP Current vs. Temperature

Figure 31B. "High" ITRIP Current vs. Supply Voltage

Figure 32A. "Low" ITRIP Current vs. Temperature

Figure 32B. "Low" ITRIP Current vs. Supply Voltage

Figure 33A. "High" IEN Current vs. Temperature

Figure 34A. "Low" IEN Current vs. Temperature

Figure 34B. "Low" IEN Current vs. Supply Voltage

Figure 35A. RCIN Input Bias Current vs. Temperature

Figure 34B. "Low" IEN Current vs. Supply Voltage

Figure 35B. RCIN Input Bias Current vs. Supply Voltage

Figure 36A. Output Source Current vs. Temperature

Figure 36B. Output Source Current vs. Supply Voltage

Figure 37A. Output Sink Current vs. Temperature

Figure 37B. Output Sink Current vs. Supply Voltage

Figure 38A. RCIN Low On-resistance vs. Temperature

Figure 38B. RCIN Low On-resistance vs. Supply Voltage

Figure 39A. FAULT Low On-resistance vs. Temperature

Figure 39B. FAULT Low On-resistance vs. Supply Voltage

Figure 40. Maximum V₈ Negative Offset vs. V₈₈ Supply Voltage

SOP28 PACKAGE OUTLINE DIMENSIONS

C	Dimensions In	n Nillimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	2. 350	2. 650	0. 093	0. 104
A1	0. 100	0. 300	0. 004	0. 012
A2	2. 290	2. 500	0. 09	0. 098
b	0. 330	0. 510	0. 013	0. 020
С	0. 204	0. 330	0. 008	0. 013
D	17. 700	18. 100	0. 697	0. 713
Е	7. 400	7.700	0. 291	0. 303
E1	10. 210	10. 610	0. 402	0. 418
е	1. 270	(BSC)	0. 050	(BSC)
L	0. 400	1. 270	0. 016	0. 050
θ	0°	8°	0°	8°

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	e or Item Subjects (major changes since previous revision)			
Rev 1.0 datasheet, 2019-8-27				
Whole document	New company logo released			
Page 1	Remove "Figure1" and "June 2019"			
Page 6	Revise V _{RCIN,HYS} parameter			
Rev 1.0 datasheet, 2019	-11-27			
Page 1	Remove a typo			
Page 2	Change order information			