Laboratorio IoT

Prof. Paolo Napoletano a.a. 2020/2021

Smart Monitoring

Team

Gabriele Ferrario 817518

Materials

Description of the ingredients employed

Components:

- 1x NodeMCU 1.0 (ESP8266)
- 1x 16x2 characters LCD display
 + PCF8574 I2C converter
- 1x DHT11 temperature and humidity sensor
- 1x Photoresistor
- 1x SW-520D roll ball tilt sensor
- o 2x LED
- 2x 10kΩ resistor
- 2x 200Ω resistor

Technologies:

- Flask
- Telegram
- MySQL
- InfluxDB

Other:

- Machine Learning
- Low power consumption

Recap

Description of the previous system

Assignment 1:

- Home monitoring system
- Detection of alert events
- Web Server on NodeMCU
- Constaint logging on InfluxDB
- InfluxDB Dashboard

Assignment 2:

- Virtualization of several NodeMCU
- MQTT
- Weather Monitoring
- Web Server with Flask
- MySQL for monitoring NodeMCUs
- Dynamic thresholds

Method

Description system: choices, parameters, use cases

Method - Telegram

Description system: choices, parameters, use cases

General:

<u>/registerMe</u> - registers the user to the monitoring system

<u>/removeMe</u> - removes user registration from the monitoring system

<u>/setup</u> sleepTime executionTime - updates the sleep time and the execution time of the ESP8266

Home Monitoring:

<u>/home</u> - activates home monitoring <u>/stopHome</u> - deactivates home monitoring <u>/setAlert</u> sensor lowerBound upperBound - sets the thresholds for the indicated sensor

Weather Station:

<u>/weather</u> - activates weather monitoring <u>/stopWeather</u> - deactivates the weather monitoring

<u>/forecasting</u> city - weather forecasting for the indicated city

Possible value for setAlert:

- light lowerBound upperBound
- 2) temperature lowerBound upperBound
- 3) wifi lowerBound

Method - Telegram

Description system: choices, parameters, use cases

General:

<u>/registerMe</u> - registers the user to the monitoring system

<u>/removeMe</u> - removes user registration from the monitoring system

<u>/setup</u> sleepTime executionTime - updates the sleep time and the execution time of the ESP8266

Home Monitoring:

<u>/home</u> - activates home monitoring <u>/stopHome</u> - deactivates home monitoring <u>/setAlert</u> sensor lowerBound upperBound - sets the thresholds for the indicated sensor

Weather Station:

<u>/weather</u> - activates weather monitoring <u>/stopWeather</u> - deactivates the weather monitoring

<u>/forecasting</u> city - weather forecasting for the indicated city

Possible value for setAlert:

- light lowerBound upperBound
- temperature lowerBound upperBound
- 3) wifi lowerBound

Method – Deep Sleep

Description system: choices, parameters, use cases

Temporaized Deep Sleep that varies according to measured values

Method – Deep Sleep

Description system: choices, parameters, use cases

Temporaized Deep Sleep that varies according to measured values

/setup 30e6 10e6 _{14:51} //

Estimated 📳 time: 5 days and 2 hours 14:51

$$capacity = 5200 \; mAh$$
 $awake \; consumption = 170 \; mA$ $sleep \; consumption = 24 \; \mu A$

$$lifetime = \frac{capacity}{average\ consumption}$$

$$average\ consumption = \frac{(sleep\ consumption\ \cdot\ sleep\ time\ +\ awake\ consumption\cdot awake\ time)}{(wake\ time\ +\ sleep\ time)}$$

Method – Home Monitoring

Description system: choices, parameters, use cases

Web App

Method – Home Monitoring

Description system: choices, parameters, use cases

Web App

Telegram Bot


```
/setAlert wifi 40 _{16:59} // Error: wrong alerts for wifi sensor _{16:59}
```

Description system: choices, parameters, use cases

Description system: choices, parameters, use cases

Machine Learning:

- Weather prediction (sun, cloudy, rain)
- Unbalanced Dataset

Oversampling (SMOTE)

- SVM (temperature, humdity, wind, pressure)
- Hyperparameter optimization (Grid Search)
- Accuracy ≈ 0.82
- Conversion to Optimized C code (MicroML)

https://github.com/eloquentarduino/micromlgen

Description system: choices, parameters, use cases

Web App

Telegram Bot

Weather Monitoring:

Temperature: 30.26 °C

Humidity: 41%

Pressure: 1015

Wind Speed: 1.34 m/s

Weather: 🔆

15:59

Description system: choices, parameters, use cases

Weather Monitoring

Telegram Bot

Weather Monitoring:

Temperature: 30.26 °C

Humidity: 41%

Pressure: 1015

Wind Speed: 1.34 m/s

Weather: 🔆

15:59

Web App

2021-06-23 06:00:00

2021-06-23 12:00:00

			9		
Date	Temperature (°C)	Humidity (%)	Pressure	Wind Speed (m/s)	Weather
2021-06-21 18:00:00	13.53	86	1014	4.56	.FHF
2021-06-22 00:00:00	11.32	95	1017	4.8	.ege
2021-06-22 06:00:00	10.16	88	1018	5.06	
2021-06-22 12:00:00	14.04	63	1020	4.49	wit .
2021-06-22 18:00:00	16.04	55	1021	3.68	
2021-06-23 00:00:00	11.33	79	1024	2.79	W.

Weather Forecasting

87

55

1024

1024

2.21

8.57

15.51

Final remarks

Results, Discussion, conclusion

The system allows to:

- monitor the house and notify the users in real time
- set different alarms
- monitor the weather in real time via a Weather Station
- weather forecasting

Observation:

 simultaneous running of home monitoring and weather station can cause RAM problems

Future works:

- insert new sensor for house monitoring and replace Openweather with sensors
- predict more weather conditions
- weather forecasting via Machine Learning