

PALM INTRANET

Day: Monday Date: 8/23/2004

Time: 07:21:43

Inventor Name Search Result

Your Search was:

Last Name = CARNAHAN

First Name = DAVID

Application#	Doton##	Status	Data Filad	Title	Inventor Name 20
					\
60562391	Not Issued	020	04/15/2004		CARNAHAN, DAVID L.
				ENHANCED LOCAL ELECTRIC AND MAGNETIC	
				FIELDS	
60561700	Not	020	04/13/2004	. –	CARNAHAN,
	Issued			MICROWAVE ELECTROPORATION OF	DAVID L.
				GOLD NANOPARTICLES	
				INTO CELLS	
60397426	Not	159	07/19/2002	APPARATUS AND METHOD FOR NANOSCALE PATTERN	CARNAHAN, DAVID L.
	Issued			GENERATION	DAVID E.
60287671	Not	159	04/30/2001	CANISTER-BASED AEROSOL	CARNAHAN,
	Issued			ADHESIVE	DAVID W.
<u>10623678</u>	Not Issued	071	07/21/2003	APPARATUS AND METHOD FOR NANOSCALE PATTERN	CARNAHAN, DAVID L.
	155000			GENERATION CENTRAL TEXT	DAVID C.
10413598	Not	092	04/14/2003	METHOD OF PRODUCING A	CARNAHAN,
	Issued			BRANCHED CARBON NANOTUBE FOR USE WITH	DAVID L.
				AN ATOMIC FORCE	
				MICROSCOPE	
10278149	Not	094	10/22/2002	PEELABLE LABEL	CARNAHAN,
1010000	Issued	061	04/05/0000	AEDOCOL ADUECTAE AND	DAVID P.
<u>10132620</u>	Not Issued	061	04/25/2002	AEROSOL ADHESIVE AND CANISTER-BASED AEROSOL	CARNAHAN, DAVID W.
	155404			ADHESIVE SYSTEM	
10057262	Not	061	01/25/2002	NANOSCALE GRASPING	CARNAHAN,
	Issued			DEVICE, METHOD FOR FABRICATING THE SAME,	DAVID L.
				AND METHOD FOR	
				OPERATING THE SAME	

09477527	Not Issued	161	01/04/2000	PEELABLE LABEL	CARNAHAN , DAVID P.
09477327	6709726	150	01/04/2000	PEELABLE LABEL	CARNAHAN , DAVID P.
09056178	Not Issued	161	04/06/1998	SPRAY ADHESIVE	CARNAHAN , DAVID M.
08955385	Not Issued	161	10/21/1997	PEELABLE LABEL	CARNAHAN , DAVID P.
08639360	Not Issued	161	04/26/1996	LEAD-FREE, LEAD- SUBSTITUTE MATERIAL AND ARTICLE OF MANUFACTURE	CARNAHAN , DAVID L.
08243468	5444112	150		SPRAYABLE NONIONIC NEOPRENE LATEX ADHESIVE AND METHOD OF PREPARATION	CARNAHAN , DAVID W.
07656431	Not Issued	161	02/19/1991	FRAGRANCE SAMPLER WITH DUAL FRAGRANCE DELIVERY MEANS	CARNAHAN , DAVID W.
07527137	5018974	250	05/22/1990	COLORING BOOK OR THE LIKE WITH INK-REACTIVE, FRAGRANCE-RELEASING AREAS	CARNAHAN , DAVID W.
07263506	4908252	150	10/26/1988	PLEASANT-FEELING FRAGRANCE SAMPLER CONTAINING MICROCAPSULES	CARNAHAN , DAVID W.
07026377	4825948	150	03/16/1987	REMOTELY VARIABLE MULTIPLE BORE RAM SYSTEM AND METHOD	CARNAHAN , DAVID A.
05738060	4133342	150	11/02/1976	METHOD OF AND APPARATUS FOR THE REPLACEMENT OF SEALS IN A WELL RAM TYPE BLOW OUT PREVENTER	CARNAHAN , DAVID A.

Inventor Search Completed: No Records to Display.

	Last Name	First Name	
Search Another: Inv	carnahan	david	arch

To go back use Back button on your browser toolbar.

Back to FALM | ASSIGNMENT | OASIS | Home page

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 10 of 15 returned.

1. Document ID: US 6764874 B1

L4: Entry 1 of 15

File: USPT

Jul 20, 2004

US-PAT-NO: 6764874

DOCUMENT-IDENTIFIER: US 6764874 B1

TITLE: Method for chemical vapor deposition of single walled carbon nanotubes

Full Title Chation Front Review Classification Date Reference Claims KWC Draw D.

2. Document ID: US 6755530 B1

L4: Entry 2 of 15

File: USPT

Jun 29, 2004

US-PAT-NO: 6755530

DOCUMENT-IDENTIFIER: US 6755530 B1

TITLE: Retinal light processing using carbon nanotubes

Full Title Chation Front Review Classification Date Reference Classific RMC Draws Dr

3. Document ID: US 6743408 B2

L4: Entry 3 of 15

File: USPT

Jun 1, 2004

US-PAT-NO: 6743408

DOCUMENT-IDENTIFIER: US 6743408 B2

TITLE: Direct growth of nanotubes, and their use in nanotweezers

4. Document ID: US 6706402 B2

L4: Entry 4 of 15

File: USPT

Mar 16, 2004

US-PAT-NO: 6706402

DOCUMENT-IDENTIFIER: US 6706402 B2

TITLE: Nanotube films and articles

US-PAT-NO: 6699642

DOCUMENT-IDENTIFIER: US 6699642 B2

TITLE: Method of manufacturing triode carbon nanotube field emitter array

Full Title Citation Front: Review Classification Date Reference Claims NWC Craw U-

US-PAT-NO: 6689674

DOCUMENT-IDENTIFIER: US 6689674 B2

TITLE: Method for selective chemical vapor deposition of nanotubes

US-PAT-NO: 6643165

DOCUMENT-IDENTIFIER: US 6643165 B2

TITLE: Electromechanical memory having cell selection circuitry constructed with

nanotube technology

Full Title Cration Front Review Classification Date Reference Claims KMC Disw D.

8. Document ID: US 6630772 B1
L4: Entry 8 of 15 File: USPT Oct 7, 2003

US-PAT-NO: 6630772

DOCUMENT-IDENTIFIER: US 6630772 B1

TITLE: Device comprising carbon nanotube field emitter structure and process for

forming device

Full Title Ottation Front Review Classification Date References Claims KWC Draw Do

<u> </u>	T	TIC	((1(A)E D1
	IIACIIMAI	38 III I I I I N	DO ID/IUS RI
l: 7	. 1706411161	H. H.J., U.S.	6616495 B1

L4: Entry 9 of 15

File: USPT

Sep 9, 2003

US-PAT-NO: 6616495

DOCUMENT-IDENTIFIER: US 6616495 B1

TITLE: Filming method of carbon nanotube and the field emission source using the

film

	T-000-1-00-1-00-1-00-1-00-1-00-1-00-1-0	973780390000 5007777700 507300000000000000000000
Euli itte Estation short Review C	lassification Date Reference	STELLIS BECOME UPO
10. Document ID: US 659	97090 B1	
L4: Entry 10 of 15	File: USPT	Jul 22, 2003

US-PAT-NO: 6597090

DOCUMENT-IDENTIFIER: US 6597090 B1

** See image for <u>Certificate</u> of <u>Correction</u> **

TITLE: Method for manufacturing carbon nanotubes as functional elements of MEMS devices

Full Title Chation Front Review Classification D.	ste Reference Claims KWC Draw D
Clear Generate Collection Print	Fwd Rets Bkwd Rets Generate OACS
Terms	Documents
mask near6 nanotube	15

Display Format: TI Change Format Previous Page Next Page Go to Doc#

Hit List

Clear	Ge	Print enerate OACS	Bkwd Refs

Search Results - Record(s) 1 through 2 of 2 returned.

1. Document ID: US 6755530 B1

L5: Entry 1 of 2

File: USPT

Jun 29, 2004

US-PAT-NO: 6755530

DOCUMENT-IDENTIFIER: US 6755530 B1

TITLE: Retinal light processing using carbon nanotubes

US-PAT-NO: 6616495

DOCUMENT-IDENTIFIER: US 6616495 B1

TITLE: Filming method of carbon nanotube and the field emission source using the

film

Full	tle Citation Front Review Classification	Date Reference		Claims KMC Draw D
Clear	Generate Collection Print	Fwd Refs	Bkwd Refs	Generate OACS
	Terms	Do	cuments	
	L4 near4 pattern			2

Display Format: Ti Change Format Previous Page Next Page Go to Doc#

First Hit Fwd Refs End of Result Set

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L5: Entry 2 of 2 File: USPT

Sep 9, 2003

DOCUMENT-IDENTIFIER: US 6616495 B1

TITLE: Filming method of carbon nanotube and the field emission source using the film

Detailed Description Text (14):

In the manufacture for the carbon <u>nanotube film having a predetermined pattern, after the mask</u> 33 is disposed on the substrate 31, the mask 33 and the substrate 31 are installed at the inside bottom of the beaker. In this case, as shown by a broken line, the top portions of the substrate 31 corresponding to the throughholes 34 of the mask 33 are not covered with the mask 33 and the exposed portion 32 having the rectangular shape is formed on the substrate 31.

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

Generate Collection Print

L5: Entry 1 of 2 File: USPT Jun 29, 2004

DOCUMENT-IDENTIFIER: US 6755530 B1

TITLE: Retinal light processing using carbon nanotubes

Brief Summary Text (12):

An array of CNTs can be grown by providing a substrate coated with an optional first thickness (preferably at least 1-10 nm) of a metal underlayer (e.g., Al or Ir or a mixture thereof) and with a second thickness (preferably at least 0.1-5 nm) of one or more active catalysts (e.g., Fe, Co, Ni and/or Mo, or a mixture thereof). A selected heated hydrocarbon gas (e.g., CH.sub.4, C.sub.2 H.sub.4, and/or C.sub.2 H.sub.2) or intermediate species (C.sub.m H.sub.n) is passed over the coated substrate to successively strip the H atoms and deposit the carbon particles on the catalyst. Optionally, the underlayer includes a first sub-underlayer and a second sub-underlayer with different materials. For an SWCNT array, the preferred gas is CH.sub.4 and the preferred temperature range is 800-1100.degree. C. (preferably, T.apprxeq.900.degree. C.) For an MWCNT array, the preferred gas is C.sub.2 H.sub.4 or C.sub.2 H.sub.2, the preferred temperature range is 650-900.degree. C. (preferably, T.apprxeq.750.degree. C.), and the Al or Ir underlayer is present. For a CNF array, a plasma discharge can be used to grow CNFs at T=400-900.degree. C. (preferably, T.apprxeq.400-700.degree. C.). A selected pattern for the metal sublayers on the substrate, or of catalyst on the substrate coated with the metal sublayer, is formed, using an apertured mask, and the carbon nanotubes are grown in the selected pattern. Size of the pattern can be as small as 20 nm, if electron beam lithography or ion beam sputtering is used to define the pattern.

First Hit Fwd Refs

Previous Doc Next Doc Go to Doc#

Generate Collection Print

L10: Entry 1 of 2

File: USPT

Feb 11, 2003

DOCUMENT-IDENTIFIER: US 6518194 B2

TITLE: Intermediate transfer layers for nanoscale pattern transfer and

nanostructure formation

Brief Summary Text (18):

It is a further object of the present invention to provide a method for transferring a nanoscale pattern to a substrate via dry etching when there is insufficient etch selectivity between the mask and the surface to be patterned.

First Hit Fwd Refs
End of Result Set

Previous Doc N

Next Doc

Go to Doc#

Generate Collection

Print

L10: Entry 2 of 2

File: USPT

Oct 2, 2001

DOCUMENT-IDENTIFIER: US 6297592 B1

TITLE: Microwave vacuum tube device employing grid-modulated cold cathode source

having nanotube emitters

Detailed Description Text (14):

Selective formation of the nanotube emitters is performed by any suitable technique. One technique is to spray a pre-formed nanotube suspension through a grid structure onto the substrate, such that the resulting cathode will have emitters formed primarily under the grid apertures. Another technique is to deposit a catalyst metal for nanotube formation in a pattern corresponding to the grid apertures, e.g., by sputter—deposition through a shadow mask. Nanotubes are then formed on the patterned catalyst metal by a chemical vapor deposition process, as discussed above.

Previous Doc

Next Doc

Go to Doc#

Page 1 of 1 Record List Display

T	\blacksquare	•	4	_	•		4
L	ł	-	4			S	٠
I	•	Æ				€.	
┻.	4		•			v	•

Bkwd Refs Generate Collection Fwd Refs Clear Print **Generate OACS**

Search Results - Record(s) 1 through 2 of 2 returned.

1. Document ID: US 6518194 B2

L10: Entry 1 of 2 File: USPT Feb 11, 2003

US-PAT-NO: 6518194

DOCUMENT-IDENTIFIER: US 6518194 B2

TITLE: Intermediate transfer layers for nanoscale pattern transfer and

nanostructure formation

US-PAT-NO: 6297592

DOCUMENT-IDENTIFIER: US 6297592 B1

TITLE: Microwave vacuum tube device employing grid-modulated cold cathode source

having nanotube emitters

Full	itle: Citation: Front: Review: Classification	Date Reference		Claims KWC C	gravo, D
Clear	Generate Collection Print	Fwd Refs	Bkwd Refs	Generate OAC	
[Terms	Doc	cuments		
	L7 near10 mask			2	

Change Format Display Format: TI Previous Page Next Page Go to Doc#

First Hit Fwd Refs Previous Doc Next Doc Go to Doc# Generate Collection Print

L4: Entry 1 of 15 File: USPT Jul 20, 2004

DOCUMENT-IDENTIFIER: US 6764874 B1

TITLE: Method for chemical vapor deposition of single walled carbon nanotubes

CLAIMS:

- 13. A method of fabricating nanotube structures as claimed in claim 12 wherein the step of forming a plurality of electrodes in electrical connection with the at least one <u>nanotube includes the steps of: providing a mask</u> region positioned on the surface of the substrate; patterning and etching through the mask region to form at least one trench; depositing a conductive material layer on the surface of the substrate and within the at least one trench; and removing the mask region and subsequent layers deposited thereon.
- 14. A method of fabricating <u>nanotube structures as claimed in claim 13 wherein the mask</u> region includes at least one of a dielectric material or a photoresist materials.
- 16. A method of fabricating <u>nanotube structures as claimed in claim 14 wherein the mask</u> region includes a first photoresist layer and a second photoresist layer.
- 24. A method of fabricating nanotube structures as claimed in claim 23 wherein the step of forming a plurality of electrodes in electrical connection with the at least one <u>nanotube includes the steps of: providing a mask</u> region positioned on the surface of the substrate; patterning and etching through the mask region to form at least one trench; depositing a conductive material layer on the surface of the substrate and within the at least one trench; and removing the mask region and subsequent layers deposited thereon.
- 32. A method of fabricating nanotube structures as claimed in claim 31 wherein the step of forming a plurality of electrodes in electrical connection with the at least one <u>nanotube includes the steps of: providing a mask</u> region positioned on the surface of the substrate; patterning and etching through the mask region to form at least one trench; depositing a conductive material layer on the surface of the substrate and within the at least one trench; and removing the mask region and subsequent layers deposited thereon.
- 40. A method of fabricating nanotube structures as claimed in claim 38 wherein the step of forming a plurality of electrodes in electrical connection with the at least one <u>nanotube includes the steps of: providing a mask</u> region positioned on the surface of the substrate; patterning and etching through the mask region to form at least one trench; depositing a conductive material layer on the surface of the substrate and within the at least one trench; and removing the mask region and subsequent layers deposited thereon.