

ELECTROSTATICS-02

CAPACITANCE

Capacitance Depends on

- Distance betweent plates
 Area of plates
 Medium b/w plates

Capacitance is Independent of

- 2. Potential difference

Unit Of Capacitance = Farad

$$A = \pi \left(\frac{L}{2}\right)^2 = \pi \frac{L^2}{4}$$

$$C = \frac{E_0 A_{eff}}{d} = \frac{\pi E_0 L^2}{4d}$$

ELECTRIC FIELD

POTENTIAL

$$V=Ed = \frac{Qd}{AE_0}$$

Force b/w plates of a parallel plate capacitor

$$F = Q \times E_{\text{Due to one plate}}$$

$$= Q \times \frac{Q}{2E_0} = Q \times \frac{Q}{2AE_0}$$

$$= \frac{Q^2}{2AE_0} = \frac{C^2V^2}{2AE_0} = \frac{E_0A}{d} \times \frac{CV^2}{2AE_0}$$

$$CV^2$$

ENERGY STORED

Work done by battery =
$$QV$$
 = QV =

plate seperation

2.
$$C = \frac{\mathcal{E}_0 A}{d}$$
 $C \propto \frac{1}{d}$

3.
$$V = \frac{Q}{C} = \frac{Qd}{E \cdot A}$$
 4. $E = \frac{Q}{AE_0} = \frac{V}{d}$

Battery connected

 $d \rightarrow 2d$

1. V=Constant

3. Q = CV, $Q = \frac{Q}{2}$

6. $U = \frac{CV^2}{2}$, $U = \frac{U}{2}$

2. $C = \frac{C}{2}$

4.
$$E = \frac{Q}{AE_0} = \frac{V}{d}$$

Battery Disconnected

 $d \rightarrow 2d$

1. Q=Constant

3. $V = \frac{Q}{C}$, V = 2V

6. $U = \frac{Q^2}{2C}$, U = 2U

2. $C = \frac{C}{2}$

4. $E = \frac{V}{d}$, $E' = \frac{E}{2}$ 4. $E = \frac{Q}{AE_0} = Constant$

5. $F = \frac{CV^2}{2d}$, $F = \frac{F}{4}$ 5. $F = \frac{Q^2}{2AE_0} = Constant$

5.
$$F = \frac{Q^2}{2AE_0} = \frac{CV^2}{2d}$$

6.
$$U = \frac{CV^2}{2} OR U = \frac{Q^2}{2C} = \frac{Q^2 d}{2E_0 A}$$

$$=\frac{\mathcal{E}_{\circ} A V^{2}}{2 d}$$

when plate seperation doubled

Work done by battery =
$$\frac{1}{2}QV = \frac{CV^2}{2}$$
 = $\frac{Q^2}{2C}$

$$=CV = \frac{C_0AV}{d}$$

$$C = \frac{\mathcal{E}_{o} A}{d}$$
 $C \propto \frac{1}{c}$

3.
$$V = \frac{Q}{C} = \frac{Qd}{E_0 A}$$

5.
$$F = \frac{Q}{2AE_0} = \frac{CV}{2d}$$

$$4 \quad U \quad CV^2 \cap U \quad Q^2 \quad Q^2$$

$$=\frac{\mathcal{E}_{o}AV^{2}}{2d}$$

CAPACITANCE

DIELECTRIC IN CAPACITOR

Battery removed

1. C= KC

2. Q=Q

Dielectric inserted in capacitor

Battery remains connected

1. C'= KC

2. Q=KQ

3. V'= V 4. E= E 5. U=KU

SPHERICAL CAPACITOR

Connecting two charged capacitors - Case 1

Heat loss

$$\frac{C_1V_1^2}{2} + \frac{C_2V_2^2}{2}$$

$$V_{1} = \frac{C_{11}^{V_{1}^{2}}}{2} + \frac{C_{2}V_{2}^{2}}{2}$$

$$U_{f} = \frac{1}{2}(C_{1} + C_{2})\left(\frac{C_{1}V_{1} + C_{2}V_{2}}{C_{1} + C_{2}}\right)^{2}$$
Energy loss =
$$\frac{C_{1}C_{2}}{2(C_{1} + C_{2})}(V_{1} - V_{2})^{2}$$

Connecting two charged capacitors - Case 2

Energy loss =
$$\frac{C_1C_2}{2(c_1+c_2)}(V_1+V_2)^2$$

Grouping of capacitors

1. Series combination

Voltage divider rule

$$V \propto \frac{1}{C}$$

$$V_{1} = \left(\frac{C_{2}}{C_{1} + C_{2}}\right) V \qquad V_{2} = \left(\frac{C_{1}}{C_{1} + C_{2}}\right) V$$

2. Parallel combination

Charge divider rule

WHEATSTONE'S BRIDGE

MULTIPLE DIELECTRICS

1. Series combination

2. Parallel combination

$$k_{eq} = \frac{k_1 A_1 + k_2 A_2 + \dots}{A_1 + A_2 + \dots}$$

$$k_1 A_2 A_2$$

$$k_2 A_2$$

$$k_2 A_2$$

$$= \frac{k_1 A_2 + k_2 A_2}{A_2 A_2} = \frac{k_1 + \dots}{A_2 A_2}$$