Pengamatan Okultasi di Observatorium Bosscha¹

Agus Triono P. J.

Sekilas Okultasi

- Obyek Ø sudut kecil ditutupi obyek Ø sudut besar
- Obyek penutup: obyek Tata Surya e.g. Bulan, Planet, Benda Kecil
- *Fast photometry* → kurva cahaya

PROS	CONS
Resolusi sampai milidetikbusur (mas)	Fixed time event
Tangguh terhadap polusi cahaya	Informasi 1D: projected separation
	Pengamatan simultan dianjurkan untuk mendapat true separation.
Pemberdayaan teleskop kecil (∅ ≥ 7cm)	
→ Resolusi tidak berhubungan langsung dengan diameter teleskop	
Penggunaan waktu teleskop (<i>telescope time</i>) yang efektif	

[1] https://www.planetary.org/space-images/20140209_occultation-eris-20101106-arrow

Aktivitas Pengamatan Okultasi di Observatorium Bosscha

- 1. Persiapan sistem pengamatan
 - Memastikan timing dan time stamping yang akurat
 - GPS, NTP → karakterisasi akurasi
 - Acquisition delay, drop frames
- 2. Pengamatan rutin
 - Latihan, membangun basis data
 - Tujuan saintifik:
 - a) Binarity/multiplicity
 - b) Asteroid morphology
 - c) Angular diameter

TIME IN MILLISECONDS

Chariklo ring system [2]

- [2] Braga-Ribas, F.+. *A ring system detected around the Centaur (10199) Chariklo*. Nature, **508**, 72-75 (2014)
- [3] Nather, R. E. & Evans, D. S. *Discovery and Measurement of Double Stars by Lunar Occultations*. Ap&SS, **11**, 28-37 (1971)

Model kurva cahaya dan Bayesian Inference

$$I(t) = \int_{-\infty}^{\infty} d\phi \int_{A/2}^{A/2} d\alpha \int_{\lambda_1}^{\lambda_2} d\lambda \int_{\Delta \tau}^{0} d\tau \cdot F(w) S(\phi) O(\alpha) \Lambda(\lambda) T(\tau) + \beta$$

- $S(\phi)$: profil kecerlangan bintang
- $O(\alpha)$: total integrasi luas area teleskop
- $\Lambda(\lambda)$: respon panjang gelombang (detektor + teleskop + filter)
- $T(\tau)$: respon waktu detektor}
- β : background level

•
$$F(w) = A \times \frac{1}{2} \left[\left(C(w) + \frac{1}{2} \right)^2 + \left(S(w) + \frac{1}{2} \right)^2 \right]$$
 dengan

•
$$w = \sqrt{\frac{2}{\lambda d_{\mathrm{moon}}}} x$$
. Karena $x = d_{\mathrm{moon}} \tan \phi$, maka $w = \tan \phi \sqrt{\frac{2d_{\mathrm{moon}}}{\lambda}}$

$$C(w) = \int_0^w \cos\left(\frac{\pi}{2}t^2\right) dt$$

•
$$S(w) = \int_0^w \sin(\frac{\pi}{2}t^2)dt$$

Langkah-langkah:

- Data sintetik dengan kumpulan parameter yang ditentukan, θ_{true}
- Bayesian Inference untuk mendapatkan distribusi probabilitas dari θ_{true}
- Aplikasi ke data sebenarnya

Selanjutnya...

- Λ(λ)
 - Kurva transmisi instrumen/filter
- S(φ)
 - Diameter sudut bintang
 - LD coefficient
- Model binary/multiple
- Aplikasi ke data *real*
- Efek sintilasi → Legendre polynomial
- Diameter teleskop (komponen $O(\alpha)$)
 - Signifikan untuk teleskop diameter besar (> 1 m)

Profil kecerlangan bintang searah pergerakan piringan Bulan[4]