Fiche d'entraînement : probabilités et arbres

Exercice 1:

Une première urne contient 2 jetons : un rouge numéroté 1 et un bleu numéroté 2.

Une deuxième urne contient 3 jetons : un vert numéroté 1, un bleu numéroté 2 et un jaune numéroté 1.

Une troisième urne contient 2 jetons : un bleu numéroté 1 et un rouge numéroté 2.

On tire un jeton dans chaque urne.

- 1) Représenter la situation à l'aide d'un arbre.
- 2) Déterminer les probabilités des évènements suivants :
 - a) A: « les 3 jetons sont de couleurs différentes »
 - **b)** *B* : « les 3 jetons portent le même numéro »
 - **c)** *C* : « le premier jeton est rouge »
 - d) D: « la somme des 3 nombres portés sur les jetons est paire »
 - e) E: «il y a au moins un jeton bleu parmi les jetons tirés »

Exercice 2:

Lucy, bébé qui a 8 mois, dispose de 4 cubes avec, sur chacun, une des lettres de son prénom. Comme elle ne sait pas encore lire, elle place les lettres au hasard.

- 1) Représenter la situation à l'aide d'un arbre.
- 2) Déterminer les probabilités des évènements suivants :
 - a) A: «Lucy a écrit correctement son prénom»
 - **b)** *B* : « le "mot" formé commence par une voyelle »
 - c) C: « les consonnes et les voyelles sont alternées »
 - **d)** D: « les deux consonnes sont côte à côte »
 - e) E: «le "mot" formé se termine par Y»

Exercice 3:

Un jardinier plant des bulbes de tulipes.

Il sait qu'il a 3 bulbes de tulipes rouges et 2 bulbes de tulipes bleues mais il ne sait pas les distinguer. Il les plante donc au hasard.

- 1) Représenter la situation à l'aide d'un arbre.
- 2) Déterminer les probabilités des évènements suivants :
 - a) A: « la première tulipe est bleue »
 - **b)** B: « les couleurs sont alternées »
 - c) C : « la dernière tulipe est rouge »
 - **d)** D: « les 2 tulipes bleues sont côte à côte »
 - e) E : « la troisième tulipe est rouge »

Exercice 1:

1)

2) **a)**
$$\times P(A) = \frac{4}{12} = \frac{1}{3}$$

b) $\times P(B) = \frac{3}{12} = \frac{1}{4}$
c) $\times P(C) = \frac{6}{12} = \frac{1}{2}$
d) $\times P(D) = \frac{6}{12} = \frac{1}{2}$
e) $\times P(E) = \frac{10}{12} = \frac{5}{6}$

b)
$$\times P(B) = \frac{3}{12} = \frac{1}{4}$$

c)
$$\times P(C) = \frac{6}{12} = \frac{1}{2}$$

d)
$$\times P(D) = \frac{6}{12} = \frac{1}{2}$$

e)
$$\times P(E) = \frac{10}{12} = \frac{5}{6}$$

1)

2) **a**)
$$\times P(A) = \frac{1}{24}$$

b) $\times P(B) = \frac{12}{24} = \frac{1}{2}$
c) $\times P(C) = \frac{8}{24} = \frac{1}{3}$
d) $\times P(D) = \frac{12}{24} = \frac{1}{2}$
e) $\times P(E) = \frac{6}{24} = \frac{1}{4}$

b)
$$\times P(B) = \frac{12}{24} = \frac{1}{2}$$

c)
$$\times P(C) = \frac{8}{24} = \frac{1}{3}$$

d)
$$\times P(D) = \frac{12}{24} = \frac{1}{2}$$

e)
$$\times P(E) = \frac{6}{24} = \frac{1}{4}$$

1)

2) a)
$$\times P(A) = \frac{4}{10} = \frac{2}{5}$$

b)
$$\times P(B) = \frac{1}{10}$$

c)
$$\times P(C) = \frac{6}{10} = \frac{3}{5}$$

d) $\times P(D) = \frac{4}{10} = \frac{2}{5}$
e) $\times P(E) = \frac{6}{10} = \frac{3}{5}$

d)
$$\times P(D) = \frac{4}{10} = \frac{2}{5}$$

e)
$$\times P(E) = \frac{6}{10} = \frac{3}{5}$$