Name:

Muhammad Awais

Roll no:

114

Report:

Customer Churn Prediction Project

1. Project Overview

The primary goal of this project is to develop a machine learning model that predicts customer churn. Churn refers to customers discontinuing their relationship with a business, which can lead to significant revenue loss. By identifying customers likely to churn, companies can take proactive steps to retain them and improve overall business performance.

2. Dataset Description

The dataset used for this project is the **Customer Churn Dataset**. It contains information about customer demographics, account details, and service usage.

Dataset Overview

• Total Records: 5,880

- Total Features: 21 (19 predictors + 1 target + 1 ID column)
- Target Variable: Churn (Yes/No)
- Feature Types:
 - o Categorical: gender, Partner, Dependents, Contract, etc.
 - Numerical: tenure, MonthlyCharges, TotalCharges.

Key Features

- Tenure: How long the customer has been with the company.
- Monthly Charges: The monthly bill amount.
- **Contract Type**: Month-to-month, one year, or two-year contracts.
- Internet Service: Type of internet service used.

3. Data Preprocessing

Steps Taken

- 1. **Dropped Irrelevant Columns**: Removed the customerID column as it is non-informative.
- 2. **Encoding Categorical Variables**: Converted categorical variables into numerical form using label encoding.
- 3. **Handled Missing Values**: Checked for missing values; none were found in this dataset.
- 4. **Feature Scaling**: Not applied as the dataset already contained scaled features like MonthlyCharges.

Preprocessed Dataset

After preprocessing, the dataset included 19 independent features and 1 target variable (Churn).

5. Model Development

Model Used

A **Logistic Regression** model was chosen for its simplicity and interpretability. The model was trained to classify customers as either likely to churn (1) or not churn (0).

Train-Test Split

- **Training Set**: 80% of the data (4,704 records)
- **Testing Set**: 20% of the data (1,176 records)

Evaluation Metrics

- Accuracy: The percentage of correctly classified predictions.
- Confusion Matrix: Evaluates false positives and negatives.
- **Classification Report**: Provides precision, recall, and F1-score.

6. Results and Evaluation

Model Performance

- Accuracy: 79%
- Confusion Matrix:

lua

Copy code

[[820, 102],

[144, 110]]

- o True Positives (Churn Predicted Correctly): 110
- o True Negatives (No Churn Predicted Correctly): 820

False Positives: 102

False Negatives: 144

Classification Report:

Metric Precision Recall F1-Score

Not Churn (0) 85% 89% 87%

Churn (1) 52% 43% 47%

Insights

- The model performs well in identifying customers who are unlikely to churn.
- Improvement is needed in predicting churn customers, possibly through better feature engineering or using more advanced algorithms.

7. Application Phase

An interactive web application was developed using **Flask**. The app allows users to input customer details and predict whether they are likely to churn.

App Features

- User-friendly interface to input customer details.
- Real-time churn prediction with probabilities for churn and retention.
- Suggestions for actions to reduce churn risk (future enhancement).

7. Conclusion

The project successfully developed a churn prediction model that achieves an accuracy of 79%. While the model works well for identifying non-churning customers, future work should focus on:

1.	Improving Churn Prediction : Explore advanced algorithms like Random Forest, Gradient Boosting, or Neural Networks.
2.	Feature Engineering : Investigate additional features that might influence churn, such as customer feedback or competitor offers.
3.	Deployment : Enhance the web application with interactive dashboards an automated retention strategies.