e) Segundo a sequência apresentada, qual o tamanho de janela utilizado de A para B e de B para A. Qual o módulo de numeração de tramas utilizado e qual o tamanho máximo de janela permitido (apresente

quando necessário as formulas usadas)?

	Tamanho Janela	Tamanho Janela	Módulo	Tamanho máximo
	A->B	B->A	de numeração	de janela
T8: REJ 7				
T8: SREJ 7				

Grupo III

A topologia da rede local da empresa myNET pode ser representada pelo esquema de interligações apresentado na Figura 1. Os equipamentos de interligação são três *routers* (R1, R2 e R3). A cada uma das redes estão interligados vários servidores (A,B,C). O endereçamento parcial de rede (realizado a partir do prefixo 132.10.0.0/16) e a identificação do nome lógico das interfaces *ethernet* dos equipamentos estão representados na figura. O prefixo 140.20.0.0/16 em uso para ligação à Internet não pode ser alterado para *subnetting*.

Para o cenário apresentado responda às seguintes alíneas, assumindo a existência de endereços reservados:

Figura 1 - Topologia da rede local da empresa myNET

1. Considerando a atribuição de endereços já realizada, **complete no diagrama** da Figura 1 o esquema de endereçamento para a rede local, identificando claramente todos os endereços em falta (subredes e sistemas). Além do formato CIDR, indique também as máscaras de rede usadas em formato decimal e binário.

CIDR	
Decimal	
Binário	

2. Indique, justificando, qual o número máximo de subredes e hosts IP endereçáveis na empresa, obtido com este esquema de endereçamento.

Número máximo de subredes	
Máximo de endereços IP de hosts por subrede	

3.	Apresente a tabela o	de encaminhamento	do	servidor	Α	e	do	router	R2	para	que	exista	conectividade	ΙP
	generalizada (interna	e externa) na empresa	a m	yNET.										

	Tabela de Encar	ninhamento de A			
Endereço de Rede Destino	Próximo Salto	Máscara de rede (decimal)	Local interface		
		ninhamento de R2	<u></u>		
Endereço de Rede Destino	Próximo Salto	Máscara de rede (decimal)	Local interface		

4. Considere a hipótese do uso de supernetting para reduzir a tabela de encaminhamento do router R2. Apresente as alterações necessárias para o efeito (alterando o endereçamento previamente atribuído, se necessário).

Tabela de Encaminhamento de R2						
Endereço de Rede Destino	Próximo Salto	Máscara de rede (decimal)	Local interface			

Grupo IV

Considere a rede da Figura 2 que inclui vários hosts interligados por um router R. Na figura é incluído o endereçamento nível 2 e nível 3 de cada interface ativa. Considere a nuvem azul como um sistema de interligação dos equipamentos envolvidos, sem endereçamento IP (e.g., um switch).

Figura 2

1. Assuma que o host A está a enviar datagramas para B. Complete a tabela abaixo com o endereçamento MAC e IP usado à saída de A e à saída de R.

	Host A	Router R	
IP origem		IP origem	
IP destino		IP destino	
MAC origem		MAC origem	
MAC destino		MAC destino	

2. Considere que no nodo A se executou o comando **traceroute 222.222.222 3200 -q 1**, em que a flag -q especifica que é enviado um único pacote de prova, neste caso de 3200 bytes. Assuma que o MTU da rede subjacente é 1500 bytes (Ethernet). Face a este cenário, responda às seguintes questões:

Considerando o funcionamento do comando **traceroute**, o tamanho do pacote original e o valor do campo **TTL** (Time to Live): (i) Identifique em que ponto(s) da rede ocorre fragmentação e porquê. (ii) Quais as ações que o router **R** realiza face à recepção de um datagrama com TTL=1?; e (iii) Qual o valor do TTL mínimo para se atingir o destino. e onde ocorre o reagrupamento do datagrama original.

(i)	
(ii)	
(iii)	

3. Identifique os campos *Identification, Fragment Offset* e *Flags* dos fragmentos associados ao pacote original.

	Fragmento: 1	Fragmento:	Fragmento:	
Identification	62			
Offset				
Flags				