Rainfall prediction in the Mondego river basin using CV and DL

Faculdade de Engenharia da Universidade do Porto Master in Data Science and Engineering

Computer Vision João Pedro Pêgo, Kareem Kousa, Pedro Gouveia

Objectives | Methodology

Objective

Using weather forecasts/reanalysis datasets, estimate the rainfall depth in a river basin.

Methodology

Target: daily rainfall for the Mondego river basin (Thiessen method).

Daily forecasts (tp, tcc, t2m)

CNN

rainfall in the basin

Workplan

1. Compute daily rainfall in the Mondego river basin (target)	ipynb
1.1. Create Thiessen construction for Portuguese basins	[1]
1.2. Identify which Thiessen polygons intersect Mondego river basin	[1]
1.3. Download data from SNIRH for period 1950 – 2021	[1]
1.4. Load data to dataframes.	[2]
1.5. Verify missing values	
1.6. Eliminate weather stations with too many missing values	
1.7. Reconstruct Thiessen polygons with validated weather stations	[2]
1.8. Compute the spatial average of the rainfall in the Mondego RB	[2]
2. Create ECMWF meteorological dataset (tp, tcc, t2m)	ipynb
2.1. Define coordinates (lat/long) for download	[3]
2.2. Download data from ECMWF for period defined in 1.7	[4]
2.3. Convert lat/long to Carthesian coordinates (EPSG:3763)	[3]
2.4. Generate images (rainfall, temperature, total cloud coverage)	[5]

3. Develop CNN for spatial averaged rainfall prediction (VC TAAC Q2)	ipynb
3.1. Dataset preprocessing	[6]
3.2. Data loader	[7]
3.3. CNN model	[7]
3.4. Training routine	[7]
3.5. Evaluation routine	[7]
3.6. Hyper parameter tunning	[7]
3.7. Testing different image sizes	[7]
3.8. Results evaluation	[7]

Notebooks	Machine
[1] 20221025_VC_SNIRH_Download	Local
[2] 20221101_VC_SNIRH_Preprocessing	Local
[3] 20221025_VC_ECMWF_Grid_Basin	Local
[4] 20221030_VC-ECMWF_Download	Local
[5] 20221101_VC-ECMWF_ExportImages	Local
[6] 20221110_VC_CNN_dataset	Colab
[7] 20221114_VC_CNN	Colab

Dataset available here: https://filesender.fccn.pt/?s=download&token=a0d86e5b-f854-4133-93a5-1cc924e5f4a1

1. Daily rainfall in the Mondego river basin

- # Data sources
- # basins boundaries

https://sniambgeoviewer.apambiente.pt/GeoDocs/shpzips/AtAgua Bacias bacias snirh PC.zip

weather stations network
https://sniambgeoviewer.apambiente.pt/GeoD
ocs/shpzips/AtAgua Meteo METEO NET PC.zip

Notebooks: [1] 20221025_VC_SNIRH_Download

Results:

83 weather stations whose Thiessen polygon intercepts the Mondego river basin

1. Daily rainfall in the Mondego river basin

The spatial average of days with MV was computed eliminating the stations with MV and recomputing the Thiessen polygons.

Data sources

Daily rainfall
www.snirh.pt

Notebooks:
[2] 20221101_VC_SNIRH_Preprocessing

Results:

Period with most complete records: 1985 - 1995 64 weather stations with records >95% of the time 48 weather stations with complete dataset. Rainfall spatial average over the river basin (target)

2. ECMWF meteorological dataset (tp, tcc, t2m)

hourly values of total precipitation,
total cloud coverage, 2m temperature
https://cds.climate.copernicus.eu/cdsapp#!
/dataset/reanalysis-era5-land?tab=overview

Notebooks:

- [3] 20221025 VC ECMWF Grid Basin
- [4] 20221030_VC-ECMWF_Download
- [5] 20221101 VC-ECMWF ExportImages
- [6] 20221110_VC_CNN_dataset

Results:

ECMWF data on tp, tcc and t2m (features) 1 raster per hour (0h-1h, 1h-2h, ...) Range of lat/long covering the basin

[#] Data sources

3. CNN dataset

- Composite images (tp, tcc, t2m)
- 3652 instances

- Highly imbalanced
- Penalize frequent values

- Log transformation did not produce significant improvements
- MinMax normalization

3. CNN architecture

Notebooks: [7] 20221114_VC_CNN

3. CNN results

- Best model:
 - Optimizer : Rprop
 - Adam, SGD, NAdam, RMSProp
 - Parameters:
 - batch size 64
 - epochs 300
 - lr 0.001
 - Loss (weighted MSE): 0.007
 - Small values weight: 100
 - Pearson R: 74.7%

Note: Different runs with same parameters produce similar but different results

Notebooks: [7] 20221114_VC_CNN

Highlights

- Original research
- Dataset created from scratch
- Custom dataloader and loss function (weighted MSE)
- Dataset imbalance compensation (log transform and penalties)
- Successfully trained and tested a CNN for regression problem
- Hyperparameter tunning and different optimizers tested
- Too little sleep!

Future work

- Different CNN architectures
- Effect of image overlap with river basin limits
- Images with time information (e.g., composite tp images [d-3:d+3], hourly images)
- Data augmentation for least represented values of the target
- Other type of features (e.g., cumulative values, humidity, atmospheric pressure, etc.)
- Other datasets (e.g. ERA5-Land hourly data, PERSIANN)
- Write an article!

Rainfall prediction in the Mondego river basin using CV and DL

Faculdade de Engenharia da Universidade do Porto Master in Data Science and Engineering

Computer Vision João Pedro Pêgo, Kareem Kousa, Pedro Gouveia