6-ая неделя

9.10.2023

Билет 29 (Перестановка пределов для рядов). Пусть $f_n : E \to \mathbb{C}$, $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на E $u \ \forall k \in \mathbb{N} \ \exists \lim_{x \to x_0} f_k(x)$.

Тогда существуют оба и верно $\lim_{x\to x_0}\sum_{n=1}^\infty f_n(x)=\sum_{n=1}^\infty \lim_{x\to x_0} f_n(x)$

Билет 30. Следствия теоремы о перестановке пределов, связанные с непрерывностью (взято у Кости Баца, убрано доказательство)

Теорема (Непрерывность в точке для последовательностей). $\Box D \subseteq X$ – м.п., $\{f_n\}, f: D \to \mathbb{C}, f_n \rightrightarrows f$ на D.

 $Ecnu \{f_n\}$ непрерывны в точке x_0 , то u f непрерывна в x_0 .

Теорема (Непрерывность в точке для рядов). Пусть X – м.п., $D \subset X, x_0 \in D, f_k : D \to \mathbb{R}(u \wedge u \mathbb{C})$ и выполнены следующие условия:

- 1. ряд $\sum_{k=1}^{\infty}$ равномерно сходится на D к сумме S;
- 2. все функции f_k непрерывны в точке x_0 .

Тогда функция S непрерывна в точке x_0 .

Теорема (теорема Стокса-Зейделя). $D \subseteq X$, $f_n, f: D \to \mathbb{C}$ $f_n \rightrightarrows f$ на D при $n \to \infty$ и $f_n \in C(D) \Longrightarrow f \in C(D)$, то есть равномерный предел последовательности непрерывных функций **непрерывен**.

Теорема (Аналог теоремы Стокса-Зейделя для рядов). $\Box D \subseteq X$ – м.п., $x_0 \in D', \{f_n\}_{n=1}^{\infty}, f: D \to \mathbb{C}$ и $\sum_{n=1}^{\infty} f_n(x)$ сходится равномерно на D.

Eсли $\forall n$ $f_n(x)$ непрерывна в точке x_0 , то и $\sum_{n=1}^{\infty} f_n(x)$ непрерывно в x_0 .

Билет 32 (Предельный переход под знаком интеграла для последовательностей). *Если* $f_n \in C[a,b], f_n \Rightarrow f$ на $[a,b], mo \int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$.

Билет 32 (Предельный переход под знаком интеграла для рядов). Если $f_n \in C[a,b], \sum_{n=1}^{\infty} f_n$ сходится равномерно на [a,b], то $\int_a^b \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \int_a^b f_n(x),$ ряд в правой части сходится.

Билет 33 (Предельный переход под знаком производной для последовательностей). Пусть $f \in C^1([a,b] \to \mathbb{R})$, $\exists x^0 \in [a,b] : \{f_n(x^0)\}$ сходится при $n \to \infty$, $\{f'_n(x)\}$ равномерно сходится на [a,b].

Тогда $\lim_{n\to\infty} f_n(x)$ дифференцируема на [a,b] и $\forall x\in [a,b]$ $(\lim_{n\to\infty} f_n(x))'=\lim_{n\to\infty} f_n'(x)$.

Билет 33 (Предельный переход под знаком производной для рядов). Пусть $f \in C^1([a,b] \to \mathbb{R}), \exists x^0 \in [a,b]: \sum_{n=1}^{\infty} f_n(x^0)$ сходится, $\sum_{n=1}^{\infty} f'_n(x)$ равномерно сходится на [a,b]. Тогда $\sum_{n=1}^{\infty} f_n(x)$ дифференцируема на [a,b] и $\forall x \in [a,b]$ ($\sum_{n=1}^{\infty} f_n(x)$)' = $\sum_{n=1}^{\infty} f'_n(x)$.

Билет 34 (Теорема о круге сходимости степенного ряда). $a, \{c_n\}_{n=0}^{\infty} \in \mathbb{C}, \sum_{n=0}^{\infty} c_n (z-a)^n$ называется степенным рядом с коэффициентами $\{c_n\}$ и центром a.

 $B_r(a)$ называется кругом сходимости этого степенного ряда, если $\forall z \in B_r(a)$ ряд сходится и $\forall z \notin \overline{B}_r(a)$ ряд расходится. r называют радиусом сходимости.

 $Teopema\ Komu-A\,дamapa.\ r=rac{1}{\lim_{n o\infty}\sqrt[n]{|c_n|}}.\ Torda\ r$ - $paduyc\ cxodumocmu\ dля\ cmепенного\ ряда.$

Точнее:

- 1. $\forall компакта \ K : K \subseteq B_r(a)$ ряд сходится равномерно на K
- 2. $\forall z \notin \overline{B}_r(a)$ ряд расходится в точке z

 $\Pi pu \ r = \frac{1}{0}$ считаем $r = +\infty$, $npu \ r = \frac{1}{+\infty}$, r = 0 (то есть круг сходимости содержит только центр).

Билет 34 (Формулы для радиуса сходимости). *Кажеется*, одна из формул в целом и является предыдущей теоремой. Вот другая формула: $\lim_{n\to\infty}\frac{|c_n|}{|c_{n+1}|}$ (в случае существования).

Билет 19 (Параметризации поверхностей, гладкие поверхности уровня, гладкие обобщенные графики). $M \subseteq \mathbb{R}^{n+m}$, $a \in M$, M допускает параметризацию класса C^r размерности n в окрестности a, если \exists окрестность U_a , гомеоморфизм $\Phi \in C^r(\mathbb{R}^n \supseteq O \to U_a \cap M)$, Φ регулярное.

 $M \subseteq \mathbb{R}^{n+m}$, $a \in M$, M есть множество уровня класса C^r размерности n в окрестности a, если \exists окрестность $U_a, F \in C^r(U_a \to \mathbb{R}^m)$, F регулярно, $M \cap U_a = \{x \in U_a : F(x) = 0\}$.

 $M\subseteq\mathbb{R}^{n+m}$, $a\in M$, M есть обобщенный r-гладкий график размерности n в окрестности a, если \exists окрестность $U_a,f\in C^r(\mathbb{R}^n\supseteq O\to\mathbb{R}^m):U_a\cap M=\Gamma_f$ с точностью до перестановки координат.

Билет 19 (Теорема о способах задания k-мерной поверхности). Пусть $m, n \in \mathbb{N}, M \subseteq \mathbb{R}^{n+m}, a \in M$. Тогда следующие утверждения равносильны:

- 1. В окрестности а M n-мерный C^r -гладкий обобщенный график
- 2. В окрестности а M n-мерное C^r -гладкое множество уровня
- 3. В окрестности а M допускает n-мерную C^r -гладкую параметризацию