01. 생명 과학이란

[관련 단원]중1. 과학이란? / 생명과학 I. 생명 현상의 특성

春쌤의 오늘 수업을 듣고 나면 답학 수 있어야 해.

- 1. 생명 과학이란?
- 2. 생명 현상의 특성 중 한 예를 제시했을 때 다음 중 어떤 것과 관련 있는지 말할 수 있어야 해.

①세포 ②물질대사 ③자극에 대한 반응과 항상성 ④발생과 생장 ⑤생식과 유전 ⑥적응과 진화

3. 생명 과학의 탐구 과정, 연역적/ 귀납적 탐구 방법을 구분할 수 있어야 해.

() STEP 1. 개념 잡기

- 1. 생명 현상의 특성
- (1) 모든 생물은 세포로 이루어져 있다.
- ① 세포: 생물체의 구조적·기능적 기본 단위
- ② 단세포 생물: 아메바, 짚신벌레 등 하나의 세포가 하나의 개체임.
- (동물: 기관계) ③ 다세포 생물: 세포 → 조직 → 기관 → 개체 (시물: 조직계) 예 대장균은 하나의 세포로 된 생물이다.

(2) 물질대사를 한다.

- ① 물질대사: 생물체 내에서 생명 현상을 유지하기 위해 일어나는 모든 화학 반응
 - 예 식물은 벷에너지를 흡수하여 양분을 합성한다.
 - 예 효모가 포도당을 분해하여 에너지를 생성한다.
- ② 물질대사의 종류
 - ▷ 동화 작용: 저분자 물질→고분자 물질(합성), 흡열 반응 예 광합성, 단백질 합성
 - ▷ 이화 작용: 고분자 물질→저분자 물질(분해), 발열 반응 예 세포 호흡, 소화

빛에너지 광합성 세포 호흡 CO₂ + H₂O

〈동화 작용〉 〈이화 작용〉

<광합성과 세포 호흡>

(3) 자극에 대해 반응하고, 항상성을 유지한다.

- ① 자극에 대한 반응: 생물체 내외의 환경 변화인 자극을 감지하고, 적절하게 반응한다.
 - 예 지렁이에게 빛을 비추면 어두운 곳으로 이동한다.
 - 예 파리지옥은 잎에 곤충이 닿으면 잎을 접어 곤충을 잡는다.
- ③ 항상성: 생물이 자극에 대하여 몸 안의 상태(체내 환경)를 일정하게 유지하려는 성질
 - 에 사람은 더울 때 땀을 흘린다. (체은 조정)
 - 예 식사 후 인슐린의 분비량이 증가한다. (형당량 조정)
 - 에 물을 많이 마시면 오줌의 양이 증가한다.(**삼투압 조정**)

(4) 발생과 생장을 한다.

① 발생: 다세포 생물에서 수정란이 세포 분열과 기관의 분화 과정을 통해 하나의 개체가 되어 가는 과정

- 예 개구리의 수정란이 올챙이를 거쳐 개구리가 된다.
- ② 생장: 발생한 개체가 세포 분열을 통해 세포 수를 늘려감으로써 자라나는 과정 예 어린 개구리가 성체 개구리가 된다.
 - 예 죽순이 대나무로 자란다.
- 함정 주의! 무생물인 종유석이나 고드름이 커지는 것은 세포 분열에 의한 생장이 아니다.

(5) 생식과 유전을 한다.

- ① 생식: 생물이 종족 유지를 위해 자신과 같은 종의 자손을 만드는 것 예 효모는 축아법으로 번식한다.
- ▷ 무성 생식: 암수 생식세포의 결합 없이 몸의 일부가 분리되어 새로운 개체가 됨. 유전자 구성 이 동일한 자손이 생김 예 분열법, 출아법, 포자 생식, 영양 생식
- 유성 생식: 암수 생식 세포의 수정을 통해 유전자 구성이 다양한 자손이 생김. 예 대부분의 동물과 식물은 생식 세포의 수정을 통해 개체를 형성
- ② 유전: 자손이 어버이의 형질을 이어받는 것
 - 예 어머니가 색맹이면 아들도 색맹이다.

(6) 환경에 적응하고 진화한다.

- ① 적응: 생물이 서식 환경에 알맞은 몸의 형태, 기능, 생활 습성을 갖게 되는 것
 - 예 선인장은 잎이 가시로 변해 수분의 증박을 막는다.
 - 예 사막에 사는 낙타의 속눈썹은 빽빽하게 나 있다.
- ② 진화: 생물이 세대를 거치면서 유전자 구성이 변화하며 새로운 종으로 분화되는 것
 - 예 항생제를 투여해도 죽지 않는 신종 슈퍼박테리아가 출현했다.
 - 예 갈라파고스 군도의 각 섬에는 부리 모양이 각기 다른 핀치새들이 산다.(각 섬마다 먹이의 종 류가 다르므로)

2. 생명 과학의 탐구

- (1) 귀납적 탐구 방법
- ① 자연 현상을 관찰하여 얻은 자료를 종합하고 분석한 후 일반적인 원리를 도출해내는 방법
- ② 실험을 통해 검증하기 어려운 주제를 탐구하는 방법으로 가설 설정 단계가 없음
- ③ 탐구 방법: 관찰을 통하여 얻을 수 있는 지식이 곧 사실이며, 이러한 사실적 지식들을 종합하고 분석하는 과정에서 규칙성을 발견하여 일반적인 원리나 법칙을 이끌어낸다.

(2) 연역적 탐구 방법

- ① 자연 현상을 관찰하면서 인식한 문제를 해결하기 위해 잠정적인 답인 <u>가설</u>을 세우고 가설의 옳고 그름을 검증하는 탐구 방법
- ② 탐구 방법
- ▷ 가설을 검증하기 위해 대조군과 실험군을 비교하는 대조 실험을 수행한다.
- ▷ 실험을 수행하여 얻은 결과를 분석하여 결론을 도출하고, 결론이 가설과 일치하지 않으면 다시 새로운 가설을 설정하여 탐구 과정을 진행한다.

대조 실험과 변인

- 1. 대조 실험: 실험 결과의 타당성과 신뢰성을 높이기 위해 실험군 외에 대조군을 설정하여 실험하는 것
 - ▷ 대조군: 실험군과 비교하기 위해 검증하려는 요인을 변화시키지 않은 집단
 - ▷ 실험군: 검증하려는 요인을 변화시키는 집단
- 2. 변인: 실험 결과에 영향을 미치거나 실험에서 영향을 받을 수 있는 요인
 - ▷ 독립 변인: 실험 결과에 영향을 줄 수 있는 요인
 - ① 조작 변인: 실험에서 의도적으로 변화시키는 요인
 - ② 통제 변인: 실험하는 동안 일정하게 유지시키는 요인
 - ▷ **종속 변인**: 조작 변인의 영향을 받아 변하는 변인, 결과에 해당
- 3. 변인 통제: 대조 실험에서 조작 변인을 제외한 다른 변인을 일정하게 유지하는 것

○ STEP 2. 개념 확인

- 1. 다음 각 설명과 가장 관련이 깊은 생명 현상의 특성을 <보기>에서 골라 기호를 쓰시오.
 - ----- 〈보기〉 -
 - (가) 세포로 구성
 - (나) 물질대사
 - (다) 자극에 대한 반응과 항상성
 - (라) 발생과 생장
 - (마) 생식과 유전
 - (바) 적응과 진화

(1)	어두운 곳에서는 동공이 커진다.	
(2)	땀을 많이 흘리면 오줌량이 감소한다.	
(3)	대장균은 포도당을 이용하여 ATP를 만든다.	
(4)	식물을 넣은 유리 상자에 빛을 비추면 상자 내의 산소 농도가 높아진다.	
(5)	아메바는 세포 분열에 의해 증식한다.	
(6)	북극여우는 사막여우에 비해 몸집이 크고 귀가 작다.	
(7)	새끼 사슴은 어미를 닮는다.	
(8)	효모는 출아법으로 번식한다.	
(9)	파리지옥은 잎에 곤충이 닿으면 잎을 접어 곤충을 잡는다.	
(10)	파리지옥은 안쪽의 분비샘에서 소화액을 분비하여 곤충을 소화시킨다.	

2. 그림은 빛의 세기에 따른 식물의 광합성 속도를 알아보기 위한 실험 장치이다.

이 실험에서 통제 변인, 조작 변인, 종속 변인은 각각 무엇인가?

(1)	조작 변인	
(2)	종속 변인	
(3)	통제 변인	

间 STEP 3. 실전 도전

▷기출문제 살펴보기

2014학년도 4월 고3 학평 1번

다음은 사막에 사는 낙타에 대한 설명이다.

낙타는 ③콧구멍을 자유롭게 열고 닫을 수 있으며 속눈썹이 길어 모래먼지가 많은 환경에서 살기에 적합하다. 또한 며칠 동안 음식물을 섭취하지 못하더라도 등에 있는 혹 속의 ©지방을 <u>분해하여 물과 에너지를 얻는다.</u>

⊙과 ⓒ에 나타난 생명 현상의 특성으로 가장 적절한 것은?

	<u> </u>	
1	물질대사	생식과 유전
2	적응과 진화	물질대사
3	적응과 진화	생식과 유전
4	생식과 유전	발생과 생장
(5)	발생과 생장	물 질대사

▷기출문제 살펴보기

2013학년도 3월 고3 학평 4번

다음은 바닷가 갯바위 생태계의 종 다양성에 대한 탐구이다.

- 문제 인식: 불가사리는 종 다양성에 어떤 영향을 미칠까?
- 가설: 불가사리가 없으면 종 다양성이 증가할 것이다.
- 탐구 설계: 불가사리를 그대로 둔 곳 A와 지속적으로 제거한 곳 B로 나누어 2년마다 서식 하는 종 수를 조사한다.
- 탐구 결과

(단위:종)

조사 시기 장소	처음	2년 후	4년 후	6년 후	8년 후
A	16	17	18	19	20
В	16	6	5	3	2

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. 조작 변인은 불가사리의 제거 여부이다.
- L. A는 대조군, B는 실험군이다.
- E. 탐구 결과는 가설을 지지한다.
- ① 7 ② □ ③ 7, ∟ ④ ∟, □ ⑤ 7, ∟, □

02. 세포(The Cell)

[관련 단원]중1. 세포의 구조와 식물체의 구성/ 생명과학Ⅰ. 생물의 구성 체제

春쌤의 오늘 수업을 듣고 나면 답할 수 있어야 해.

- 1. 생명체의 구조적/기능적 기본단위는?
- 2. 그럼, 세포 속에는 뭐가 있지? 세포 소기관의 이름과 기능을 말해봐.
- 3. **동(식)물의 구성 단계**를 말해봐.

() STEP 1. 개념 잡기

1. 세포: 생물체를 구성하는 구조적 . 기능적 기본 단위

핵	인 핵막 염색사 핵공	세포 생명 활동의 중심, 유전물질(DNA)이 있음 ②함정 주의! 모든 세포에 핵이 있거나 핵이 1개씩 들어있는 것은 아님. 예 적형구: 성숙하면 핵이 없어짐, 근육세포: 핵 이 여러 개인 다핵세포
미토콘드리아	외막내막	- 세포 호흡이 일어나는 장소 - 세포의 생명 활동에 필요한 에너지(ATP)생산 - 근육세포, 간세포, 심장세포 같이 에너지를 많이 필요로하는 세포에 많음.

	Oluk		
엽록체	외막	- 광합성이 일어나는 장소 - 동물세포에는 없고 식물세포에만 있음	
리보솜	거친면 소포체	- 단백질 합성의 장소 - 거친면 소포체의 표면이나 세포질에 존재	
소포체	리보솜 매끈면 소포체	- 물질의 이동 통로 - 거친면 소포체(리보솜이 붙어 있음): 단백질 수송 - 매끈면 소포체(리보솜이 붙어 있지 않음): 지질 합성	
골지체		- 납작한 주머니가 포개져 있는 모양 - 물질의 가공 및 분비	
리소좀	골지체	- 골지체에서 떨어져 나온 주머니 모양의 구조물 - 가수 분해 효소가 들어 있어 세포 내 소화를 담당	
중심체	이세 소관 중심립	- 2개의 중심립이 직각으로 배열되어 있는 구조 - 주로 동물 세포에서 관찰되며, 세포 분열 시 방추사 형성 에 관여	
세포막	세포를 둘러싸는 막으로 세포의 형태를 유지하고 물질 출입을 조절함.		
세포질	세포막으로 둘러싸인 세포 안 공간으로 여러 세포소기관이 있음.		
액포	식물 세포에 발달되어 있으며, 물, 양분, 노폐물 저장 장소 성숙한 식물 세포일수록 액포의 크기가 크다. 식물 세포의 수분량과 삼투압 조절		
세포벽	식물세포의 세포막 바깥쪽에 있으며, 식물 세포의 형태 유지		

세포 소기관

1. 원형질과 후형질

- 원형질: 생명 활동이 일어나는 살아 있는 부분
- 후형질: 원형질의 생명 활동 결과 만들어진 부분 🗐 액포, 세포벽
- 2. 동물 세포에는 없고 식물 세포에만 있는 세포소기관: 엽록체, 세포벽, 중심 액포
- 3. 물질대사와 관련된 세포소기관: 엽록체, 미토콘드리아

여르체	- 광합성(빛에너지→화학에너지(포도당))
엽록체	- 산소(O ₂) 발생
	- 세포 호흡
미토콘드리아	(화학에너지(포도당)→화학에너지(ATP))
	- 이산화탄소(CO ₂) 발생

2. 생명체의 구성 단계

- (1) 생물체의 공통 구성 단계
- ① 세포: 생물체를 이루는 기본 단위
- ② 조직: 모양과 기능이 비슷한 세포들의 모임
- ③ 기관: 여러 조직이 모여 특정한 형태를 이루고 고유한 기능을 수행하는 단계
- ④ 개체: 여러 기관이 모여 독립된 구조와 기능을 가지고 생활하는 생물체

(2) 식물의 구성 단계: 세포 → 조직 → <u>조직계</u> → 기관 → 개체

식물의 구성 단계

(3) 동물의 구성 단계: 세포 → 조직 → 기관 → 기관계 → 개체

동물의 구성 단계