Main Title

Author Affiliation

April 11, 2024

Main Title

Author Affiliation

 $April\ 11,\ 2024$

Outline

Introduction

Section 1

Section 2

Section 3

Content

Figures

Some \LaTeX Examples

Tables

Mathematics

R Code

Introduction

- Your introduction goes here!
- Use itemize to organize your main points.
 - up to 3 text levels with itemize
 - Indents increase level by level, font size decreases
 - Should you require more levels, use description instead of itemize.
 - Note: Please try not to write too much copy onto your slides.

Section Header 1 Version - white background

Section Header 2

Version - backgroundcolour skin

Section Header 3

Version - backgroundcolour green

Title and Content - Black

- Especially for pictures like x-ray
- Enter explanation text e.g. what can be seen in the picture

Title, subtitle and content

Enter subtitle here

Enter text, charts, pictures, ... here

Figures

- You can upload a figure (JPEG, PNG or PDF) using the files menu.
- To include it in your document, use the includegraphics command (see the comment below in the source code).

Figure 1: Caption goes here.

Blocks

Block

Some examples of commonly used commands and features are included, to help you get started.

Example Block

Some examples of commonly used commands and features are included, to help you get started.

Alert Block

Some examples of commonly used commands and features are included, to help you get started.

Tables

Tables

Item	Quantity
Widgets	42
Gadgets	13

Table 1: An example table.

Readable Mathematics

Let $X_1, X_2, ..., X_n$ be a sequence of independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

denote their mean. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

R Code

```
fixmodel_bin(data, arm, alpha = 0.025,
ncc = TRUE, check = TRUE, ...)
```