Image Processing and Pattern Recognition (mid)

Prepared by -Alfaz Emon

Link here -IP_BOOK

Chapter 1: Introduction

- 1.1 Introduction of Digital Image Processing and Pattern Recognition
 - Digital Image Processing (DIP) refers to the use of digital computers to process images by applying mathematical algorithms. It focuses on enhancing image quality, extracting features, and interpreting images.
 - [Page 1–2]
 - **Pattern Recognition** is a higher-level image analysis process where machines are trained to recognize specific patterns or features (e.g., faces, tumors, characters). It is closely related to machine learning and AI.
 - [Page 2]

1.2 Application Areas

Various real-world domains use DIP:

- **Medical Imaging** for X-rays, CT, MRI, and PET scans (Page 9–10)
- **Remote Sensing** satellite imaging for vegetation, pollution, water bodies (Page 14–15)
- Astronomy Gamma-ray and X-ray based deep space imaging (Page 8–9)
- Microscopy fluorescence imaging of biological tissues (Page 11)
- Industrial Inspection quality control in assembly lines, PCB inspection (Page 15)
- Surveillance & Military night vision and infrared imaging (Page 12–13)
- 1.3 Fundamental Steps of Digital Image Processing
- [Page 25–28]
 - 1. **Image Acquisition** capturing raw images using sensors.

- 2. **Image Preprocessing** removing noise, improving contrast.
- 3. **Segmentation** splitting the image into meaningful parts (like separating background from object).
- 4. **Representation and Description** mathematical and structural representation of regions.
- 5. **Recognition** labeling and identifying objects (uses pattern recognition).
- 6. Knowledge Base prior information used for interpreting images accurately.

1.4 Components of a DIP System

[Page 28]

- Image sensors (CCD/CMOS cameras): capture images.
- Digitizer: converts analog signals to digital.
- **Processor**: performs filtering, enhancement.
- Storage: keeps raw, processed images (RAM, SSD).
- **Display**: screens/monitors for visual output.
- Hardcopy Devices: printers, plotters for outputting images physically.

1.5 Image and Video

- Video is essentially a **sequence of still images (frames)** captured over time.
- Processing techniques extend from image processing to video for object tracking, motion analysis, etc.
 - [Related: Video Compression Chapter 8, Page 525]

1.6 Image and Human Eye

[Pages 36–43]

- Human eyes sense light via cones (color) and rods (intensity).
- We see brightness **logarithmically**—important when designing display systems or contrast adjustments.
- Concepts like Weber ratio help understand visual sensitivity (Page 41).

1.7 Color TV Scheme

[Chapter 6, Pages 401–414]

- Color images are handled using RGB color models (used in monitors, TVs).
- Other models:
 - CMY/CMYK for printing,
 - HSI model mimics human color perception.

Absolutely! Here's a **fully expanded and easy-to-understand explanation** of **Chapter 2: Analog and Digital Image** from *Digital Image Processing* by **Gonzalez and Woods (3rd Edition)**. This version includes **book references**, **examples**, **real-world relevance**, and explanations of **why each concept matters**.

Chapter 2: Analog and Digital Image

From Book Pages: 35-99

- 2.1 Analog vs. Digital Images
- Page 35

Analog Image:

- A real-world image or scene (like a photograph or what your eyes see).
- It has continuous brightness and color information.
- Example: A picture on a photo film, or a scene from nature.

Digital Image:

- The digital version of an analog image.
- Formed by dividing the image into small square cells called pixels.
- Each pixel stores an **intensity value** (brightness or color).
- This format is easy to **store**, **process**, **enhance**, **and transmit** using computers.

Why is this important?

• You can't process analog images directly with a computer.

• **Digital conversion** is required for editing, filtering, compressing, or analyzing images.

2.2 Image Acquisition and Devices

Pages 46–50

What is Image Acquisition?

The process of capturing an image from the real world and converting it into a form that a computer can use (digital image).

Types of Acquisition Devices:

1. Single Sensor:

- Uses one detector.
- o Example: Flatbed scanners, where the sensor moves line by line.

2. Sensor Strip (Line Scanner):

- One row of sensors.
- o Common in fax machines, industrial inspection, and satellite imaging.

3. Sensor Array (2D Array):

- A grid of sensors that capture the whole image at once.
- Used in digital cameras, smartphones, etc.

Main Components of Acquisition:

- Lens: Focuses the scene onto the sensor.
- Sensor: Detects light and converts it into electrical signals.
- ADC (Analog-to-Digital Converter): Converts electric signals to numbers for storage and processing.

2.3 Spatial and Amplitude Quantization

Pages 52–59

This step converts the real-world image (analog) into a grid of numbers (digital image).

🗱 Spatial Sampling:

- Divides the image into a grid.
- Each cell of the grid becomes a **pixel**.
- Determines image resolution (more pixels = more detail).
- ✓ High sampling: More pixels, more details, larger file.
- X Low sampling: Blurry, blocky image, smaller file.

H Amplitude Quantization:

- Each pixel's brightness is rounded to the nearest number from a set.
- This defines gray levels (0 = black, 255 = white in 8-bit images).
- Finer quantization: Better brightness accuracy.
- X Coarse quantization: Loss of detail, image may look "posterized."

2.4 Pixels

- Pages 52–55
 - **Pixel** = Picture Element.
 - The smallest square block of a digital image.
 - Each pixel has a value:
 - o **Grayscale** \rightarrow one value (0–255)
 - o Color → three values (Red, Green, Blue)
- Image = matrix (2D array) of pixels

Example:

Grayscale Image (3×3 pixels):

100 120 90

110 130 100

95 105 115

2.5 Resolution

Pages 59–65

Resolution tells you how detailed an image is. It has two types:

1. Spatial Resolution:

- Number of pixels per unit area (e.g., DPI = dots per inch).
- High DPI = High clarity (used in printing, scanning, etc.)

Example:

- 300 DPI → clear print
- 72 DPI → screen resolution

2. Intensity Resolution:

- Number of brightness (gray) levels.
- Related to bit depth:
 - o 8-bit → 256 levels
 - 16-bit → 65,536 levels
- ★ Higher resolution = better quality, but larger file size.

2.6 Aspect Ratio

(Not given in one section, but discussed across quantization/sampling areas)

- Aspect ratio = width / height
- Used in TV, display, images: e.g., 4:3, 16:9
- Maintaining correct aspect ratio avoids image distortion (stretching/squishing)

2.7 Gray Levels

Page 55

- Gray levels represent brightness in an image.
- Range depends on **bit depth**:
 - 1-bit = 2 levels (black & white)
 - o 8-bit = 256 gray levels
 - o 16-bit = 65,536 levels (medical images)
- ★ More gray levels = smoother shading in the image.

2.8 Relationship Between Color and Gray Levels

- Chapter 6, Pages 401–414
 - Color image = 3 channels: Red, Green, Blue (RGB).
 - **Grayscale image** = 1 channel (intensity only).

Converting Color to Gray:

Using formula:

Gray = $0.2989 \times R + 0.5870 \times G + 0.1140 \times B$ (More weight given to green because human eyes are more sensitive to it.)

Converting Gray to Color:

- Not directly possible.
- **Pseudo-coloring** is used → assign false colors to gray levels for visual effect.

ii Quick Table Summary

Term	Meaning/Importance
Analog Image	Smooth, continuous tone (film, real world)
Digital Image	Made of pixels, can be processed by a computer
Pixel	Smallest square element, holds intensity or color info
Sampling	Converts image into a grid of pixels

Term Meaning/Importance

Quantization Rounds brightness to fixed gray levels

Gray Levels Brightness range per pixel, e.g., 0 to 255 in 8-bit

Spatial Resolution How many pixels (detail of image)

Intensity Resolution How many gray levels (bit depth)

Aspect Ratio Width: Height ratio of image

RGB to Gray Weighted average of Red, Green, Blue

Chapter 3: Image Enhancement

Book Reference: Pages 104–193

✓ What is Image Enhancement?

Image enhancement refers to **techniques that improve the visual quality** of an image or make certain features more visible.

It doesn't add new information – it just makes the existing data clearer or more useful.

Goal: Make images better for human viewing or for further processing.

3.1 Types of Image Enhancement Operations

Image enhancement can be performed in two main domains:

⊗ A. Spatial Domain (Pages 108–169)

Operates directly on image pixels.

1. Point Processing

Operates on one pixel at a time using mathematical functions.

a. Image Negative (Page 108)

Formula: s = L - 1 - r

Where r is input pixel, s is output pixel, and L is number of gray levels (e.g., 256).

- **Example**: If r = 100, then s = 255 100 = 155.
- ★ Used for: Enhancing white/black features in medical images.
- b. Logarithmic Transform (Page 109)

Formula: $s = c \times log(1 + r)$

- **Brightens** dark regions.
- Compresses high-intensity values.
- ★ Used for: Details in satellite images or X-rays.
- c. Gamma (Power-law) Transform (Page 110)

Formula: $s = c \times r^{\gamma}$

- Adjusts brightness using gamma value.
- Example:
 - $\gamma < 1 \rightarrow$ brightens image
 - γ > 1 → darkens image
- ★ Used in: TV displays, image correction.
- d. Piecewise Linear Transform (Page 115)

Manually adjust contrast in specific ranges.

- ★ Used in: Enhancing dark objects on bright backgrounds.
- 2. Histogram Processing

Works on entire image brightness distribution.

• a. Histogram Equalization (Page 122)
Spreads out the intensity values for better contrast.
★ Used for: Enhancing underexposed or low-contrast images.
Example: A dark photo becomes more evenly distributed in brightness.
 ◆ b. Histogram Specification (☐ Page 128)
Adjusts an image to match a desired histogram (pattern).
★ Used when : You want to match lighting or tone between two images.
c. Local Histogram Processing (Page 139)
Enhance small regions independently.
★ Used in: Medical or fingerprint images where local contrast matters.
✓ 3. Spatial Filtering
Uses a kernel/mask (small matrix) to modify each pixel based on its neighbors.
Pages 144–169
⊕ B. Frequency Domain Processing
Chapter 4 (Previewed in this chapter)
Uses Fourier Transform to process image frequencies (patterns in brightness).
• 3.2 Types of Spatial Filtering
• A Smoothing Filters (reduce noise blur)

• a. Mean Filter (Page 152)

Averages surrounding pixels.
★ Used for: Removing grain/noise from old or low-light photos.
Example: A 3×3 mean filter replaces each pixel with the average of its 9 neighbors.
• b. Median Filter (Page 156)
Uses the median of neighbors instead of the mean.
★ Used for: Removing salt & pepper noise (black and white dots).
B. Sharpening Filters (enhance edges and details)
• a. Laplacian Filter (Page 160)
Uses the second derivative of the image to find areas of fast intensity change.
★ Used for: Highlighting edges (object outlines).
Formula example:
CopyEdit
[0 -1 0]
[-1 4 -1]
[0 -1 0]
• b. Gradient Filters (Page 165)
Detects edges using first derivative.
✓ Includes Sobel , Prewitt , Roberts operators.
★ Used in: Edge detection, object tracking.
3.3 Frequency Domain Enhancement (Advanced Topic)

Ch. 4: Pages 199–285

Uses Fourier Transform to filter out high or low frequencies.

Types of Filters:

✓ Low-Pass Filters:

- Blur the image.
- Remove noise or smooth texture.

High-Pass Filters:

- Sharpen the image.
- Enhance edges and fine details.

✓ Band-Pass:

• Focus on specific detail levels.

Real-Life Examples of Enhancement

Negative Transform Medical X-rays

Log Transform Satellite and astronomy images

Gamma Correction TV screens, display calibration

Histogram Equalization Enhancing old photos, low-light scenes

Mean Filter Blurring face, removing noise

Median Filter Removing random black/white noise

Laplacian Filter Highlighting building edges in aerial photos

Sobel/Gradient Filter Object boundary detection

......[Ref-Gpt]