

TFG del Grado en Ingeniería Informática

Creación de demos técnica y documentación asociada, para la detección/clasificación de materiales, utilizando un sensor radar a 60GHz

Presentado por Martín Encabo Contreras en Universidad de Burgos — 21 de mayo de 2021

Tutor: nombre tutor

D. nombre tutor, profesor del departamento de nombre departamento, área de nombre área.

Expone:

Que el alumno D. Martín Encabo Contreras, con DNI 72897369L, ha realizado el Trabajo final de Grado en Ingeniería Informática titulado título de TFG.

Y que dicho trabajo ha sido realizado por el alumno bajo la dirección del que suscribe, en virtud de lo cual se autoriza su presentación y defensa.

En Burgos, 21 de mayo de 2021

 V° . B° . del Tutor: V° . B° . del co-tutor:

D. nombre tutor D. nombre co-tutor

Resumen

En este primer apartado se hace una **breve** presentación del tema que se aborda en el proyecto.

Descriptores

Palabras separadas por comas que identifiquen el contenido del proyecto Ej: servidor web, buscador de vuelos, android ...

Abstract

A **brief** presentation of the topic addressed in the project.

Keywords

keywords separated by commas.

Índice general

Índice general	iii
Índice de figuras	iv
Índice de tablas	\mathbf{v}
Introducción	1
Objetivos del proyecto	3
Conceptos teóricos 3.1. Radar Acconeer	5 5
Técnicas y herramientas	9
4.1. Técnicas y metodologías	9
4.2. Lenguajes y bibliotecas	10
4.3. Herramientas de desarrollo	10
4.4. Herramientas de documentación	11
Aspectos relevantes del desarrollo del proyecto	13
Trabajos relacionados	15
Conclusiones y Líneas de trabajo futuras	17

Índice de figuras

3.1.	Radar A111	6
3.2.	Diagrama de bloques del sensor A111	7

Índice de tablas	
------------------	--

3.1.	Servicios de	el radar A111	 	 	7
· · - ·			 	 	•

Introducción

La tecnología de radar existe desde la década de 1930 de la mano de Watson-Watt. El término radar proviene del acrónimo inglés RAdio Detection And Ranging.

El uso típico de los radares de radiofrecuencia se basa en medir distancias, altitudes, direcciones y velocidades de objetos. Un uso muy reconocido es el mapa de navegación de los barcos.

Durante los últimos años han surgido nuevas áreas de aplicación que plantean diferentes desafíos. Una aplicación es monitorizar los signos vitales, reconocimiento de gestos, entre otros.

Los radares últimamente se han vuelto más baratos, en gran parte debido a su adopción en la industria automotriz, lo que convierte a estos dispositivos en una opción atractiva en una amplia gama de aplicaciones de bajo costo.

Este trabajo se centra en documentar y demostrar el uso de un radar de 60GHz fabricado por Acconeer. Usando un procedimiento de extracción de características y aprendizaje automático. Para ello se realizará un registro de tres tipos de materiales (cartón, plástico y cristal) y se creará un modelo de IA para conseguir un correcto funcionamiento del radar.

Objetivos del proyecto

Este apartado explica de forma precisa y concisa cuales son los objetivos que se persiguen con la realización del proyecto. Se puede distinguir entre los objetivos marcados por los requisitos del software a construir y los objetivos de carácter técnico que plantea a la hora de llevar a la práctica el proyecto.

Conceptos teóricos

Para construir un modelo capaz de capturar con precisión las características distintivas de las superficies objetivo, primero se debe comprender el origen y la estructura de la señal recibida. En este apartado se introducen algunos conceptos fundamentales del sistema de radar.

3.1. Radar Acconeer

El radar utilizado en el proyecto está fabricado por Acconeer llamado A111. Es un radar de 60GHz basado en impulsos tecnología de radar coherente (PCR¹) totalmente integrado en un pequeño chip de 29 mm2. Esto permitirá una fácil integración en cualquier dispositivo portátil impulsado por batería.

¹Pulsed Coherent Radar

Figura 3.1: Radar A111

Aplicaciones:

- Mediciones de distancia de alta precisión con mm de precisión y alta tasa de actualización.
- Detección de movimiento.
- Detección de velocidad.
- Detección de material.
- Seguimiento de objetos de alta precisión como el control de gestos.
- Seguimiento de alta precisión de objetos 3D.
- Control de los signos vitales, como la respiración y la frecuencia del pulso.

Figura 3.2: Diagrama de bloques del sensor A111

La figura 3.2 muestra un diagrama de bloques del sensor A111. La señal se transmite desde la antena Tx y es recibida por la antena Rx, ambas integradas en la capa superior del sustrato del paquete A111. Además de la radio mmWave, el sensor consta de administración de energía y control digital, cuantificación de señales, memoria y un circuito de temporización.

El sensor se puede ejecutar en uno de estos servicios básicos:

Servicio	Tipo de dato	Ejemplo de uso
Envelope	Amplitud	Distancia absoluta y presencia estática
IQ	Amplitud y fase	Detección de obstáculos, respiración y distancia relativa
Sparse	Amplitud instantánea	Velocidad, detección de presencia y detección de gestos

Tabla 3.1: Servicios del radar A111

Técnicas y herramientas

4.1. Técnicas y metodologías

Metodología SCRUM

Se trata de una metodología de trabajo ágil que tiene como finalidad dividir en periodos de tiempo el flujo de trabajo. Estos periodos son conocidos como *sprints*, al finalizar cada *sprint* se realizan revisiones y reuniones donde se deciden las tareas de los próximos *sprints*.

Cliente de control de versiones

- Herramientas consideradas: GitHub Desktop y Gitkraken
- Herramienta elegida: GitHub

GitHub basado en Git junto con la extensión ZenHub se han utilizado para la gestión ágil del proyecto.

Hosting del repositorio

- Herramientas consideradas: GitLab y GitHub.
- Herramienta elegida: GitHub

GitHub ofrece una gran cantidad de facilidades para mantener el proyecto en la nube y debido a que no cobra por sus servicios lo convierte en la mejor opción posible.

4.2. Lenguajes y bibliotecas

Python

Python es un lenguaje de programación que destaca por su código limpio y legible esto hace que sea uno de los lenguajes de iniciación de muchos programadores. Además se trata de un lenguaje de multiparadigma y multiplataforma muy utilizado en la técnica del BigData.

TensorFlow

TensorFlow es una biblioteca de software de código abierto para computación numérica. Desarrollada por Google capaz de construir y entrenar redes neuronales.

NumPy

NumPy es una biblioteca utilizada en la programacion con Python para crear vectores y matrices grandes multidimensionales.

Pandas

Pandas es una biblioteca especializada en el manejo y análisis de estructuras de datos.

acconeer.exptool

acconeer.exptool es la biblioteca facilitada por la empresa Acconeer. Con ella haremos funcionar el radar de 60GHz.

4.3. Herramientas de desarrollo

Jupyter Notebook

Jupyter Notebook es el entorno de trabajo utilizado en el proyecto que permite desarrollar código en Python de manera dinámica. Nos ofrece integrar en un mismo archivo bloques de código, texto, gráficas o imágenes. Utilizado ampliamente en análisis numéricos y estadísticos.

4.4. Herramientas de documentación

$\mathbf{E}\mathbf{T}\mathbf{E}\mathbf{X}$

LATEX es un sistema de elaboración de documentos basado en comandos. El proyecto está desarrollado mediante una plantilla creada en LATEX.

MiKTeX

MiKTeX es una distribución de LaTeXencargada de gestionar los componentes y paquetes. Tiene la capacidad de actualizarse así mismo descargando nuevas versiones de componentes.

Texmaker

Texmaker es el editor de documentos LaTeXutilizado para funcionar necesita MiKTeX.

Aspectos relevantes del desarrollo del proyecto

Este apartado pretende recoger los aspectos más interesantes del desarrollo del proyecto, comentados por los autores del mismo. Debe incluir desde la exposición del ciclo de vida utilizado, hasta los detalles de mayor relevancia de las fases de análisis, diseño e implementación. Se busca que no sea una mera operación de copiar y pegar diagramas y extractos del código fuente, sino que realmente se justifiquen los caminos de solución que se han tomado, especialmente aquellos que no sean triviales. Puede ser el lugar más adecuado para documentar los aspectos más interesantes del diseño y de la implementación, con un mayor hincapié en aspectos tales como el tipo de arquitectura elegido, los índices de las tablas de la base de datos, normalización y desnormalización, distribución en ficheros3, reglas de negocio dentro de las bases de datos (EDVHV GH GDWRV DFWLYDV), aspectos de desarrollo relacionados con el WWW... Este apartado, debe convertirse en el resumen de la experiencia práctica del proyecto, y por sí mismo justifica que la memoria se convierta en un documento útil, fuente de referencia para los autores, los tutores y futuros alumnos.

Trabajos relacionados

Este apartado sería parecido a un estado del arte de una tesis o tesina. En un trabajo final grado no parece obligada su presencia, aunque se puede dejar a juicio del tutor el incluir un pequeño resumen comentado de los trabajos y proyectos ya realizados en el campo del proyecto en curso.

Conclusiones y Líneas de trabajo futuras

Todo proyecto debe incluir las conclusiones que se derivan de su desarrollo. Éstas pueden ser de diferente índole, dependiendo de la tipología del proyecto, pero normalmente van a estar presentes un conjunto de conclusiones relacionadas con los resultados del proyecto y un conjunto de conclusiones técnicas. Además, resulta muy útil realizar un informe crítico indicando cómo se puede mejorar el proyecto, o cómo se puede continuar trabajando en la línea del proyecto realizado.