T3A - Intensidade da lut us distância e atenuação de Margarida Cruz Campelo - PLG, Grupo 1A (12) entre a potercia luinosa le una lorte e o quedado da Determinar o coekaat de absorção de filhos

It storpietar gioras de trabilidade de lei en getudos

sisso tem pempre que per feits

Equações: De = d l + = tempo e De= lhuro para a ausso

dt Te = de , Te = intensidade luviros e ds = ingelo so P= # 3 K. 1 (=) V(d) = K'd-2
R2 = 5 $\Omega = A$ P(n) = Poe-an a = coekierte de assort do majo Montagen experimental: Chopper: 1 = 133Hz Sensor (Potodiodo)

Florie

Florie

Torrection proprieta in a management of the proprieta in a mana CHI CH2 Gerdar de sin I Productados

Execuso experimental: Assegura a implementato do esquing experimental o Não Fapour as a) Estudo pou considerações experimentais 1. Escoper una frequêrcia entre 100 e 200 Hz calhan ? 2. Reclitar un seale verrimento en distância e determina qual as distância de gama experimental a escalher para 6) 3. Registar e comentar o smal ostido no osciloscópio no detetor, 1º en De e depois en Ac para una distorca « voan. 6) Estudo da relego entre a potência luninose de una fonte pentual e a distoira a esta. 1. Variar 1 até un valor méximo escalhido e ir registado a tons V e a dilerenza de fese estre os sinais obtidos en tungo de r 2. Auclia a verificação da lei V(d) = Kd-2 c) Célulo do coeficale de absorgo da acribico 1. Colorer o suporte de filtros en frente do detetor 2. Registar V en tungo do parametro mais adequado (detro ou a) 3. Através de un gratio ln(V) en tungo de dhisoson, caballar o coeficiente de assorso do acrilico Hilitado Arabise de Resitados

1º pate: Ventras a 1= parte: Ventices experimental de lei de ducolardo de distric Pretude-se vertice esta relego: V(d)= K'd-2 Devido a SV necessirio verifica-se que o exposit de dé-21
ilemos aplicar logio en ansos os lados da equajo, ficado-se
com: log (V) = -2 log (d) + log (K') Variou-se à distaire d'a partir desde corre de 25 cm été 137 au o registor-se o valor de tense V. A Os dedos obtidos foram os seguintes

d±0,05cm	log(d-9,50)	mV	log(mV)	∂ ±0,1 (dif fases)	aiuste	Resíduos	
25.00	1.190331698		3.06445799	15.8		-1.853984188	
26.00	1.217483944		2.97863695	16.3	2.9920255		
27.00	1.243038049		2.93247376	16.7		-1.699774866	Residuos 2
28.00	1.267171728		2.88986172	17.2	2.8963358		
29.00	1.290034611		2.84757266	17.6	2.852306	-1.562271359	-0.001933765
30.00	1.311753861	640	2.80617997	17.8	2.8104786	-1.498724732	-0.001716419
31.00	1.33243846	584		18.0	2.7706438	-1.438205308	-0.001689308
32.00	1.352182518	536		18.5	2.7326203		-0.001294179
33.00	1.371067862		2.69548168	18.9	2.6962505	-1.32518261	9.40877E-05
34.00	1.389166084		2.65896484	19.0	2.6613965	-1.27223046	-0.000776777
35.00	1.40654018		2.63548375	19.1		-1.221396974	0.004399796
36.00	1.423245874		2.60205999	19.6	2.595765	-1.172519113	0.003743138
37.00	1.439332694		2.56702637	19.7	2.5647847	-1.125451965	0.0016(31)341
38.00	1.45484486	344		19.8	2.534911	-1.080066151	0/001816596
39.00	1.469822016		2.50514998	19.9	2.5060677	-1.Q36245681	-1.17331E-05
40.00	1.484299839	304	2.48287358	20.2	2.478186		0.002884363
41.00	1.498310554		2.45024911	20.2	2.4512039	-0.951691332	-5.20792E-05
42.00	1.511883361		2.42160393	20.2	2.4250651	1	-0.001359339
43.00	1.525044807		2.40140054	20.4	2.3997185	-0.874673705	0.001307228
44.00	1.537819095	236	2.372912	20.7	/	0.837298431	-0.000717181
45.00	1.550228353		2.35793485	20.9	2.3517\95	-0.800991169	0.003912023
47.00	1.574031268	204		20.8	2,3053794	-0.731348113	0.00262352
49.00	1.596597096		2.26481782	21.2	2619216	-0.665324551	0.001210064
51.00	1.618048097	166		21.3	2.2206109	^	0,000136082
53.00	1.638489257		2.18752072	21.4	2.1812449	- 11	0.003649362
55.00	1.658011397	142		21.5	2.1436487	-0.485637328	4) \
57.00	1.67669361		2.11394335	21.9	2.1076701	-0.430976526	0.003633111
59.00	1.694605199		2.07918125	21.7	2.0731756	-0.378570431	0.003487127
61.00	1.711807229		2.04532298	21.8	2.0400476	-0.328240378	0.003101093
63.00	1.728353782	102		21.8		0-0.279828134	0.000571565
65.00	1.744292983		1.98227123	22.0		0.233192892	0.002833898
67.00	1.759667845		1.94841297	22.0		-0.188208807	
69.00	1.774516966		1.92012333	22.0		-0.144762944	
71.00	1.788875116	78.0	1.8920946	22.4	1.9192799		
	1.802773725		1.85973857			-0.062088737	
73.00 75.00	1.8162413	- 11	83250891	22.3	1.8389263		
		68 D	1.80888587	$\bigcap \qquad \binom{2}{2} \binom{3}{4}$	1.8137704		-0.003013333
77.00	1.829303773		•	22.4			
79.00	1.841984805	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.78390358	22.7	1.789349		
81.00	1.854306042 1.866287339	10	1.76192784	22.6	1.7656205		-0.001612937
83.00	1.877946851	•	1.74036269	1	1.7425466		-0.000833902
85.00	X		1.71600334	22.8	1.7200923		
87.00	1.889301703		1.69548168	23.0	1.6982251		
89.00	1.900367129		1.67209786	22.9	1.6769151		
91.00	1.911157609		1,65127801	22.9	1.6561346		
93.00	1.921686475	42.6	1.6294096	23.2	1.6358578		-0.003070616
95.00	1.931966115		1.61278386	23.4	1.6160611		-0.001427408
97.00	1.942008053		1.59988307	23.3	1.5967221		
99.00	1.951823035	38.0	1.5797836	23.1	1.5778202		
101.00			1.56110138	23.3	1.5593361		
104.00	1.975431809		1.53655844	23.3	1.532354		
107.00	1.989004616		1.50242712	23.4	1.5062152		
110.00	2.002166062		1.48144263	23.5	1.4808686		
113.00	2.01494035		1.45024911	23.7	1.4562676		
116.00	2.027349608		1.42975228	23.8	1.4323696		
119.00	2.039414119		1.41161971	23.8	1.4091355		
122.00	2.051152522		1.38381537	23.9	1.3865295		
125.00	2.062581984		1.37106786	24.1	1.3645184		
128.00	2.07371835		1.34242268	24.0	1.3430717	0.730646608	
131.00	2.084576278		1.32221929	24.0	1.3221613	0.762414955	
134.00	2.095169351		1.30535137	24.3	1.301761		
137.00	2.105510185	19.4	1.28780173	24.4	1.2818464	0.823663809	

Con estes didos elaborou-se o segunte grético de lag(V) en funços de lag(d)

matriz de ajuste ostida

-				
	m	-1.926	5.34	b
	u(m)	0.003	0.00	u(b)
	r^2	0.99989	0.01	u(y)

Elaboror-se un grita de residuos.

Linhing para ?! Resíduos de log(V) em função de log(d) ERRADO! 1.95 1.15 1.35 1.55 2.15 -0.5 -1 -1.5 -2

dos dedos serlo necessivo pocodos a escolhe o tra gene de dedos experimentais (\$\frac{12}{28}\) cm a \$95 \text{m}\$.

Les resulta de emalise errada

log(V) en trusta de log(d)

log(V) en função de log(d)

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 log(d)

E a sue matris de ajuste obtide:

m	-1.925	5.33	b
u(m)	0.004	0.01	u(b)
r^2	0.99985	0.01	u(y)

Sado o sa saped respekto gicheo de residuos

Agora, os residos apresentam um distribujo alectório como previsto a desajedo. Sabando que log(V) = -2 log(d) + log(K'), pade -se analisa a metit de ajuste e concluir que m=(-1,925 ± 0,004). Como o valor testico de mé -2, calculor-se o orro relativo E/ = [valor obtido - valor teório] x 100 = [-1925 - 2] x 100 = 3,75%. inct. = 0,004 × 100 = 0,2-1. on 24% 2º parte: Calando do coeficiente de absorges de filtros de acrilios Nesta parte de trabalho tixou-se una distânia d=10,350 ±0,0005)m e registor-se V en fungo da espessura do filtro total por nos permitir un moior número de consingões possíveis, como mangamentem de lesta loi medida com un nicrone to presteccionestada TO SECTION TO SENTENDED TO SERVICE SERVICES Os didos obtidos Roman os seguistes:

0 (V)	Espessura (III)	Lii (O)	mino(s)	Residuos
0.14	0.00432	-1.96611286	1	0.1681807
0.056	0.00899	-2.88240359	1;2	-0.06648182
0.032	0.01301	-3.44201938	1;2;3	-0.03934269
0.021	0.01757	-3.86323284	1;2;3;4	0.20501658
0.06	0.00834	-2.81341072	1;3	-0.09236225
0.029	0.0129	-3.54045945	1;3;4	-0.15383825
0.03	0.01325	-3.5065579	2;3;4	-0.06885107
0.0672	0.00819	-2.70008203	3;5	-0.00092741
0.0584	0.00873	-2.84043939	4;5	-0.06246694
0.0368	0.01275	-3.30225743	3;4;5	0.06246993
0.114	0.00467	-2.17155683	2	0.01382235
0.128	0.00402	-2.05572502	3	0.03478086

como pode ser observado, os residoos esta distribuidos alectriamente e nema pento foi considerado dividoso. Assim, ten- se gne: 2 = (146 pp ± 8) m-1 E: inc-1 = \(\frac{8 \times 100}{146} \) = 5,5%.

Discussor e condisor

Piscussor e condisor

Final, A voitices de lei do quedrado de distância foi ben suadida ostendo-se m = (-1,9025 = 0,005) com um erro relativo de 3,751 e una incerteza relativa de 0,2%, ambos considerados baixos Na segunda parte da experiênce, o valor ostido para o coefugie de absorges de acilios lo: a= (146 ±8) m-1 com una incertera relative associade de 5,5%, significando que provaelmente ocossesom erros na execuço do talalho, já sendo previsivel pole observes de grético de ln(V) in tingo de espessira en que constidos nos se encontraran dispostos de lineamente.