Contents

1	Fiel	d Extensions	1
	1.1	Fields	1
	1.2	Polynomial Rings over Fields	2
	1.3	Constructing Field Extensions with Polynomials	4
	1.4	Algebraic Extensions	7

Chapter 1

Field Extensions

1.1 Fields

A field is a tuple $(F, +, \cdot)$ such that (F, +) and (F^{\times}, \cdot) are abelian groups and multiplication distributes over addition, where $F^{\times} \doteq F - \{0\}$.

Equivalently, a field is a commutative ring with unity (i.e. has a multiplicative identity) where every nonzero elt has a multiplicative inverse (i.e. is a unit). Since units can't be zero divisors, fields have no zero divisors.

Fields \subset Euclidean Domains \subset PIDs \subset UFDs \subset Integral Domains.

Proposition 1. Any nonzero field homomorphism is injective.

Proof. Let φ be a field homomorphism with domain F. Now $\ker \varphi$ is an ideal of F, but the only ideals of a field are 0 and itself. Since φ is nonzero, $\ker \varphi = 0$, so φ is injective.

Definition 1. The **characteristic** ch(F) of a field F is the smallest positive integer p such that $p \cdot 1_F = 0$. If no such p exists, we say ch(F) = 0.

Proposition 2. The characteristic of a field is either 0 or prime.

Proof. If n is composite and $n \cdot 1 = 0$, then we can decompose this into its prime factorization and get that its smallest prime factor is the characteristic.

Fields don't have interesting ideals (it's either 0 or the entire field), so instead we study subfields and field extensions.

Definition 2. The **prime subfield** of a field F is the subfield generated by $1 \in F$.

Proposition 3. The prime subfield of a field F is isomorphic to \mathbb{Q} if ch(F) = 0 and isomorphic to \mathbb{F}_p if ch(F) = p.

Definition 3. A field K is a **(field) extension** of F if F is a subfield of K. Denote this by $K \subseteq F$.

Definition 4. If K is an extension of F, then the **degree** [K:F] of K over F is the dimension of K as an F-vector space. An extension is **finite** if its degree is finite, and its **infinite** otherwise.

Example 1. $[\mathbb{C} : \mathbb{R}] = 2$ because $\{1, i\}$ is a basis for \mathbb{C} over \mathbb{R} .

Field of fractions (DF sec 7.5). Since \mathbb{Q} is the field of fractions of \mathbb{Z} , any field containing \mathbb{Z} must also contain \mathbb{Q} .

1.2 Polynomial Rings over Fields

Many field extensions arise from trying to solve polynomial equations, so we gotta review that.

Theorem 1. Let F be a field, then F[x] is a Euclidean Domain.

This means that any polynomial ring over a field has a division algorithm, i.e. for all f(x) and nonzero g(x), there exist unique g(x), r(x) such that

$$f(x) = q(x)g(x) + r(x),$$

where $\deg r(x) < \deg g(x)$. Here, we take the degree of the zero polynomial to be 0. It should also be clear that degree is the norm of F[x].

Corollary 1. F[x] is also a principal ideal domain (PID) and a unique factorization domain (UFD).

If $E \setminus F$ and $f(x), 0 \neq g(x) \in F[x]$, then the result of the division algorithm in F[x] is the same in E[x] by the uniqueness bit. paragraph at end of sec 9.2.

Often, even if R is not a field (but is a UFD), then we can say something about factorization in R by looking at its field of fractions (the smallest field containing R, see sec 7.5, think \mathbb{Z} to \mathbb{Q}).

Lemma 1 (Gauss' Lemma). Let R be a UFD with field of fractions F. Let $p(x) \in R[x]$ have coefficients with gcd 1, then p(x) is irreducible in R[x] if and only if it's irreducible in F[x].

Note that this works for all monic polynomials.

Proposition 4. Let $p(x) \in F[x]$, where F is a field. Then p(x) has a root $a \in F$ if and only if (x - a) divides p(x).

Proof. Do this.

Corollary 2. Any $p(x) \in F[x]$ has at most deg p roots in F (including with multiplicity).

Proof. Use induction on the proposition above.

Corollary 3. If $p(x) \in F[x]$ has degree 2 or 3, then it's reducible if and only if it has a root in F.

The above corollary should be relatively obvious, but note that it doesn't hold in 4 dimensions or higher because a reducible polynomial could reduce into two other polynomials that have dimension 2+.

Example 2. We claim that $p(x) = x^3 + x + 1$ is irreducible in $\mathbb{F}_2[x]$. Using Corollary 3, we check that p(0) and p(1) are nonzero, so p has no roots in \mathbb{F}_2 .

Proposition 5. Let R be a UFD and let $p(x) = \sum_i a_i x^i \in R[x]$. If c and d are relatively prime with d nonzero and p(c/d) = 0, then $c \mid a_0$ and $d \mid a_n$.

This is very useful in limiting the candidates for the roots of a particular polynomial.

Example 3. We claim that $p(x) = x^3 - x - 1$ is irreducible in $\mathbb{Z}[x]$. By Gauss' Lemma and Corollary 3, it suffices to show that p has no rational roots. By the above proposition, the only possibilities of rational roots are ± 1 . But p(1) and p(-1) are both nonzero, so p is irreducible.

Theorem 2 (Eisenstein's Criterion). Let R be a UFD with field of fractions F and let $f(x) = \sum_i a_i x^i \in R[x]$ with $n \geq 1$ (i.e. non-constant) and $a_n \neq 0$. If there is some irreducible $p \in R$ such that

- 1. p does not divide a_n ,
- 2. p divides a_i for all i < n, and
- 3. p^2 does not divide a_0 ,

then f(x) is irreducible in F[x].

This is usually used when $R=\mathbb{Z}$ (so the field of fractions is \mathbb{Q}) and p is prime.

Example 4. $x^{12} - 10x^4 + 4x - 6$ is irreducible in $\mathbb{Q}[x]$ by Eisenstein's criterion for p = 2.

Theorem 3. The multiplicative group of any finite field is cyclic.

Proof. Let F be a finite field, then (F^{\times}, \cdot) is a finite abelian group. By the fundamental theorem of finitely generated abelian groups, there exist positive integers $m_1 \mid m_2 \mid \cdots \mid m_k$ such that

$$F^{\times} \cong \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}.$$

In particular, every element of F^{\times} has order dividing m_k , i.e. $\alpha^{m_k} = 1$ for all $\alpha \in F^{\times}$. Thus every element of F^{\times} is a root of $x^{m_k} - 1$. Since this polynomial can have at most m_k roots, $|F^{\times}| \leq m_k$; however, if F^{\times} is isomorphic to $\mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}$, then $|F^{\times}| = m_1 \cdots m_k$. But this is only true if k = 1, so $F^{\times} \cong \mathbb{Z}_{m_1}$, so it is cyclic.

1.3 Constructing Field Extensions with Polynomials

The main idea of all this is to take an irreducible polynomial p(x) over a field F, take its (maximal) ideal (p(x)), and use that to create the field F[x]/(p(x)).

As it turns out, this field will contain a root of p, so we can use this technique to construct field extensions that contain the roots of certain polynomials.

Definition 5. Suppose $K \setminus F$, and let $a_1, \ldots, a_n \in K$. Then the extension $F(a_1, \ldots, a_n)$ is the smallest subfield of K containing F and all the a_i .

Let R be a subring of K, then $R[a_1, \ldots, a_n]$ is the smallest subring of K containing R containing R and all the a_i .

If we have a set A, we might denote the extension that it generates over F by F(A).

We say K is a **simple extension** of F if $K = F(\alpha)$ for some $\alpha \in K$.

Definition 6. Let $K \subseteq F$. We say $\alpha \in K$ is **algebraic** over F if it's the root of *some* polynomial over F. Otherwise it's **transcendental** over F.

K is an **algebraic extension** of F if every element of K is algebraic over F.

Example 5. \mathbb{C} is algebraic over \mathbb{R} , but \mathbb{R} is not algebraic over \mathbb{Q} .

Example 6. Every element α of a field F is algebraic over F since $(x - \alpha)$ is a polynomial over F.

Let $K \setminus F$ with $\alpha \in K$ algebraic over F, and consider the "evaluation at α " map $\phi_{\alpha} : F[x] \to K$ given by $F \stackrel{\mathrm{id}}{\mapsto} F$, $x \mapsto \alpha$, and ϕ_a a ring homomorphism.

Definition 7. The minimal polynomial $m_{\alpha,F}(x)$ of α over F is the unique irreducible monic generator of $\ker \phi_a \subset F[x]$, i.e. it generates all the polynomials over F that have α as a root.

The **degree** of α over F is the degree of $m_{\alpha,F}(x)$.

Minimal polynomials are handy because they allow us to construct field extensions that contain one of their roots. If we take F[x] and mod out everything generated by $m_{\alpha}(x)$, then what we get is a field where everything "related to" α becomes 0. Replace this with actual good intuition. Use the theorem about the form of elements of $F(\alpha_1, \ldots)$ to show this.

Theorem 4. If $K \subset F$ and $\alpha \in K$ is algebraic over F with minimal polynomial $m_{\alpha}(x)$, then

1. $F(\alpha) = F[\alpha]$.

2.
$$F(\alpha) \cong F[x]/m_{\alpha}(x)$$
,

3.
$$[F(\alpha):F]=\deg m_{\alpha}(x)$$
, and

3.
$$[F(\alpha):F] = \deg m_{\alpha}(x)$$
, and
4. $\{1,\alpha,\ldots,\alpha^{n-1}\}$ is a basis for $F(\alpha)$ over F , where $n = \deg m_{\alpha}(x)$.

Example 7. If $\alpha \in \mathbb{C}$ has minimal polynomial $x^3 + x + 3$ over \mathbb{Q} , then $\mathbb{Q}(\alpha)$ has basis $\{1, \alpha, \alpha^2\}$ over \mathbb{Q} .

We can use this theorem to construct any field of order p^n , where p is a prime. If we take a monic irreducible polynomial f(x) of degree n over the finite field \mathbb{F}_p , then the extension $\mathbb{F}_p[x]/(f(x))$ as a vector space over \mathbb{F}_p has degree n, so there are p^n elements of the extension.

GO OVER SECTION 13.1 FOR ALL THE PROOFS.

The roots of an irreducible polynomial p(x) are algebraically indistinguishable in the sense that they generate the same extensions. If α, β are roots of p(x) over F, then

$$F(\alpha) \cong F[x]/(p(x)) \cong F(\beta).$$

We can extend this idea slightly by considering field extensions generated by isomorphically related polynomials. In this case, the field extensions are themselves isomorphic.

Note 1. If we have a map $\phi: F \to E$ and I write something like $\phi(f(x))$, this means we're applying ϕ to each coefficient of f(x) and returning a new polynomial over E.

Theorem 5. Suppose $\phi: F \to E$ is a field isomorphism. Let α be the root of minimal polynomial f(x) over F, and let β be a root of $\phi(f(x))$. Then we can extend ϕ to an isomorphism $\hat{\phi}: F(\alpha) \to E(\beta)$ such that $\hat{\phi}(\alpha) = \beta$.

This theorem can be represented with the following diagram.

$$\hat{\phi}: \qquad F(\alpha) \xrightarrow{\cong} E(\beta) \\
\downarrow \qquad \qquad \downarrow \\
\phi: \qquad F \xrightarrow{\cong} E$$

1.4 Algebraic Extensions

Definition 8. $K \subseteq F$ is finitely generated if $K = F(\alpha_1, \dots, \alpha_N)$.

Note 2. A field extension might be finitely generated without being a finite extension. Consider $\mathbb{Q}(\pi)$, which is clearly finitely generated. Since π is transcendental over \mathbb{Q} , $\mathbb{Q}(\pi)$ is an infinite extension over \mathbb{Q} .