[FinalExam]-[MATH6149016; MATH6149049]-[MachineLearning]

Thursday, July 14, 2022.

Student Name: Devin Augustin

Student ID: 2440094352

Video Link: https://drive.google.com/file/d/1HnJIYN6fTt7NZcHNcGTS_Ek5F2dlUHkU/view?

usp=sharing

Dataset Link

Dataset Description

a record of the crimes that have occurred in Chicago

- Domestic: Indicates whether the incident was domestic-related as defined by the Illinois
 Domestic Violence Act.
- Beat: Indicates the beat where the incident occurred. A beat is the smallest police geographic area – each beat has a dedicated police beat car. Three to five beats make up a police sector, and three sectors make up a police district. The Chicago Police Department has 22 police districts.
- District: Indicates the police district where the incident occurred
- Ward: The ward(City Council District) where the incident occurred
- Community Are: Indicates the community area where the incident occurred. Chicago has 77 community areas.
- FBI Code: Indicates the crime classification as outlined in the FBI's National Incident-Based Reporting System (NIBRS).
- Date: A given month (1: January, 12: December); a given hour (1 to 23)

NOTES:

- You are required to build 'the BEST and suitable' supervised machine learning model for the given dataset. The model may be used for the effective deployment of police officers in a city across several districts regarding the degree to which each area is prone to crime at a particular hour, day, and month.
- Build multiple potentially suitable machine learning models (at least 2 different machine learning models).

• You have to evaluate the models using at least 2 performance metrics before choose what you assume to be the `"best"` model for the given dataset.

HINT:

- 1. You need to generate the target feature by **performing feature engineering on Date and**Primary Type **features** to group crimes together
- 2. Level of Crime Rate:

• 0-14: Low Crime Rate

• 15-33: Medium Crime Rate

• 34 and above : High Crime Rate

You may need to check the data proportion in each class (imbalance/not)

▼ 1. Load the neccessary Libraries and Data (2 pts.)

Import the necessary libraries and the dataset

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read_csv('C:/Users/DEVIN/Desktop/UAS Sem 4/UAS_MATH6149049_MachineLearning/evenID.csv

→ 2. Data Exploration (15 pts.)

Let's look at the data.

df

		Unnamed:	ID	Case Number	Date	Block	IUCR	Primary Type
	0	861410	11476552	JB475560	10/14/2018 06:51:00 PM	039XX W OGDEN AVE	0820	THEFT
	1	783641	10828749	JA130110	01/25/2017 11:00:00 PM	011XX S OAKLEY BLVD	031A	ROBBERY
	2	650716	11031423	JA363907	07/26/2017 12:30:00 AM	018XX N CLARK ST	0910	MOTOR VEHICLE THEFT
	3	496462	10430338	HZ168230	02/26/2016 03:00:00 AM	002XX W JACKSON BLVD	0860	THEFT
	4	946330	11361027	JB324433	06/26/2018 12:30:00 PM	0000X E MONROE ST	0890	THEFT
	•••							
	1031739	438936	10525983	HZ267425	05/16/2016 08:50:00 PM	015XX E 53RD ST	0890	THEFT
	1031740	324649	10708413	HZ465384	10/07/2016 06:00:00 PM	066XX W FULLERTON AVE	0870	THEFT
	1031741	382880	10612722	HZ365526	07/26/2016 03:45:00 PM	0000X W MADISON ST	0820	THEFT
	1031742	48856	10286160	HY473701	10/22/2015 08:00:00	082XX S VERNON	0820	THEFT
Let's	take look a	at the data	type.					
	1031743	944217	11363904	JB328172	04:44:00	SUPERIOR	3710	WITH PUBLIC
df.in	fo()							
	1			e 1.				

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1031744 entries, 0 to 1031743

Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	1031744 non-null	int64
1	ID	1031744 non-null	int64
2	Case Number	1031744 non-null	object
3	Date	1031744 non-null	object
4	Block	1031744 non-null	object
5	IUCR	1031744 non-null	object
6	Primary Type	1031744 non-null	object

```
Description
                          1031744 non-null object
 7
 8
    Location Description
                          1028467 non-null
                                            object
 9
    Arrest
                          1031744 non-null bool
 10
    Domestic
                          1031744 non-null bool
                          1031744 non-null int64
 11
    Beat
                          1031743 non-null float64
 12 District
 13 Ward
                          1031735 non-null float64
 14 Community Area
                          1031742 non-null float64
 15 FBI Code
                          1031744 non-null object
 16 X Coordinate
                          1019109 non-null float64
 17 Y Coordinate
                          1019109 non-null float64
                          1031744 non-null int64
 18 Year
 19 Updated On
                          1031744 non-null object
 20 Latitude
                          1019109 non-null float64
 21 Longitude
                          1019109 non-null float64
 22 Location
                          1019109 non-null object
dtypes: bool(2), float64(7), int64(4), object(10)
memory usage: 167.3+ MB
```

Let's see all the different type of crimes

Text(0.5, 0, 'Number of Crimes')

Since we have over 150 different location in the dataset, we are only going to check the top 15 locations.

```
plt.figure(figsize = (15, 10))
sns.countplot(y= 'Location Description', data = df, order = df['Location Description'].value_
plt.title('Place of Crimes')
plt.ylabel('Location Description')
plt.xlabel('Number of Crimes')
```

plt.show()

Text(0.5, 0, 'Number of Crimes')

Convert dates to pandas datetime format

```
import datetime
df['Date']=pd.to datetime(df['Date'])
df.index= pd.DatetimeIndex(df.Date)
df.index = pd.to_datetime(df.index)
df.Date
     Date
     2018-10-14 18:51:00
                           2018-10-14 18:51:00
     2017-01-25 23:00:00
                           2017-01-25 23:00:00
     2017-07-26 00:30:00
                           2017-07-26 00:30:00
     2016-02-26 03:00:00
                           2016-02-26 03:00:00
     2018-06-26 12:30:00
                           2018-06-26 12:30:00
     2016-05-16 20:50:00
                           2016-05-16 20:50:00
     2016-10-07 18:00:00
                           2016-10-07 18:00:00
     2016-07-26 15:45:00
                           2016-07-26 15:45:00
     2015-10-22 08:00:00
                           2015-10-22 08:00:00
     2018-06-29 16:44:00
                           2018-06-29 16:44:00
     Name: Date, Length: 1031744, dtype: datetime64[ns]
plt.figure(figsize = (10,5))
df.groupby([df.index.month]).size().plot.bar()
plt.title('Crime Per Month')
plt.xlabel('Month')
plt.ylabel('Number of Crimes ')
```



```
plt.figure(figsize = (10,5))
df.groupby([df.index.day]).size().plot.bar()
plt.title('Crime Per Day')
plt.xlabel('Day')
plt.ylabel('Number of Crimes')
plt.show()
```



```
plt.figure(figsize = (10,5))
df.groupby([df.index.hour]).size().plot.bar()
plt.title('Crime Per Hour')
plt.xlabel('Hour')
plt.ylabel('Number of Crimes')
plt.show()
```


Let's look at the correlation between each variables.

plt.figure(figsize=(14, 10))

sns.heatmap(df.corr(), cmap="Blues")

plt.title('Correlation Matrix')

Text(0.5, 1.0, 'Correlation Matrix')

Let's check if there is any nul	l values.
Domestic -	
df.isna().sum()	
a	
Unnamed: 0	0
ID	0
Case Number	0
Date	0
Block	0
IUCR	0
Primary Type	0
Description	0
Location Description	3277
Arrest	0
Domestic	0
Beat	0
District	1
Ward	9
Community Area	2
FBI Code	0
X Coordinate	12635
Y Coordinate	12635
Year	0
Updated On	0
Latitude	12635
Longitude	12635
Location	12635
dtype: int64	

→ 3. Data Preparation (30 pts.)

Adding 'Month', 'Day', and 'Hour' Columns into the Dataset

```
df['Month']=(df['Date'].dt.month)
df['Day']=(df['Date'].dt.day)
df['Hour']=(df['Date'].dt.hour)
df.head()
```

	Unnamed: 0	ID	Case Number	Date	Block	IUCR	Primary Type	Descriptic
Date								
2018-10- 14 18:51:00	861410	11476552	JB475560	2018- 10-14 18:51:00	039XX W OGDEN AVE	0820	THEFT	\$500 AN UNDE
2017-01- 25 23:00:00	783641	10828749	JA130110	2017- 01-25 23:00:00	011XX S OAKLEY BLVD	031A	ROBBERY	ARMEI HANDGU
2017-07- 26 00:30:00	650716	11031423	JA363907	2017- 07-26 00:30:00	018XX N CLARK ST	0910	MOTOR VEHICLE THEFT	AUTOMOBIL
2016-02- 26 03:00:00	496462	10430338	HZ168230	2016- 02-26 03:00:00	002XX W JACKSON BLVD	0860	THEFT	RETA THEF
2018-06-				2018-	0000X E			FRO

Let's make a brand new table consisting of "Primary Type", "District", "Date", "Month", "Day", and "Hour".

df_crimes = df[["Primary Type","District", "Date", "Month", "Day", "Hour"]].copy()
df_crimes

	Primary Type	District	Date	Month	Day	Hour
Date						
2018-10-14 18:51:00	THEFT	10.0	2018-10-14 18:51:00	10	14	18
2017-01-25 23:00:00	ROBBERY	12.0	2017-01-25 23:00:00	1	25	23
2017-07-26 00:30:00	MOTOR VEHICLE THEFT	18.0	2017-07-26 00:30:00	7	26	0
2016-02-26 03:00:00	THEFT	1.0	2016-02-26 03:00:00	2	26	3
2018-06-26 12:30:00	THEFT	1.0	2018-06-26 12:30:00	6	26	12
2016-05-16 20:50:00	THEFT	2.0	2016-05-16 20:50:00	5	16	20
2016-10-07 18:00:00	THEFT	25.0	2016-10-07 18:00:00	10	7	18

Let's simpilify the table above

```
crimes = pd.pivot_table(df_crimes[["District", "Month", "Day", "Hour", "Date"]], index=df_cri
crimes.reset_index(inplace=True)
crimes.rename(columns={"Date":"CrimeCounts"}, inplace=True)
crimes.head(10)
```

	District	Month	Day	Hour	CrimeCounts
0	1.0	1	1	0	24
1	1.0	1	1	1	12
2	1.0	1	1	2	11
3	1.0	1	1	3	9
4	1.0	1	1	4	5
5	1.0	1	1	5	4
6	1.0	1	1	6	2
7	1.0	1	1	7	1
8	1.0	1	1	8	8
9	1.0	1	1	9	9

Let's set the Crime Rate Level of Crime Rate:

- **0-14**: Low Crime Rate = 0
- 15-33: Medium Crime Rate = 1
- 34 and above: High Crime Rate = 2

```
crimes.loc[crimes['CrimeCounts'] <= 14, 'CrimeCounts'] = 0
crimes.loc[(crimes['CrimeCounts'] >= 15) & (crimes['CrimeCounts'] <=33), 'CrimeCounts'] = 1
crimes.loc[crimes['CrimeCounts'] > 33, 'CrimeCounts'] = 2
```

crimes

	District	Month	Day	Hour	CrimeCounts
0	1.0	1	1	0	1
1	1.0	1	1	1	0
2	1.0	1	1	2	0
3	1.0	1	1	3	0
4	1.0	1	1	4	0
185310	31.0	9	1	14	0
185311	31.0	9	4	10	0

crimes.groupby(by=["CrimeCounts"]).count()

	District	Month	Day	Hour
CrimeCounts				
0	182254	182254	182254	182254
1	3039	3039	3039	3039
2	22	22	22	22

```
g = sns.countplot(crimes['CrimeCounts'])
g.set_xticklabels(['0','1','2'])
plt.show()
```

C:\Users\DEVIN\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
warnings.warn(

As we can see here, there is an imbalance in the CrimeCounts category. We will use Oversampling

First, we are going to seperate all the CrimeCounts values into 3.

```
CrimeCounts 0, CrimeCounts 1, CrimeCounts 2 = crimes['CrimeCounts'].value counts()
Crime 0 = crimes[crimes['CrimeCounts'] == 0]
Crime_1 = crimes[crimes['CrimeCounts'] == 1]
Crime 2 = crimes[crimes['CrimeCounts'] == 2]
# print the shape of the class
print('Crime 0:', Crime_0.shape)
print('Crime 1:', Crime_1.shape)
print('Crime 2:', Crime 2.shape)
     Crime 0: (182254, 5)
     Crime 1: (3039, 5)
     Crime 2: (22, 5)
Crime 1 over = Crime 1.sample(CrimeCounts 0, replace=True)
Crime 2 over = Crime 2.sample(CrimeCounts 0, replace=True)
test over = pd.concat([Crime 0,Crime 1 over,Crime 2 over], axis=0)
print("total CrimeCounts of 1 and 0:",test over['CrimeCounts'].value counts())# plot the coun
test over['CrimeCounts'].value counts().plot(kind='bar', title='count (target)')
     total CrimeCounts of 1 and 0: 0
                                        182254
          182254
     1
     2
          182254
     Name: CrimeCounts, dtype: int64
     <AxesSubplot:title={'center':'count (target)'}>
                            count (target)
      175000
```


Creating our test set. Our original one and after oversampling.

```
from sklearn.model selection import train test split
```

```
#original
x=crimes.iloc[:,0:-1]
y=crimes["CrimeCounts"]
y=pd.DataFrame(y,columns=["CrimeCounts"])
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.3, random_state = 42)
print("X_train shape: ",x_train.shape)
print("X test shape: ",x test.shape)
print("Y_train shape: ",y_train.shape)
print("Y_test shape: ",y_test.shape)
    X train shape: (129720, 4)
    X test shape: (55595, 4)
    Y train shape: (129720, 1)
    Y test shape: (55595, 1)
#After Over-Sampling
x_over=test_over.iloc[:,0:-1]
y over=test over["CrimeCounts"]
y over=pd.DataFrame(y over,columns=["CrimeCounts"])
x_over_train, x_over_test, y_over_train, y_over_test = train_test_split(x_over,y_over, test_s
print("X_train shape: ",x_over_train.shape)
print("X_test shape: ",x_over_test.shape)
print("Y_train shape: ",y_over_train.shape)
print("Y_test shape: ",y_over_test.shape)
    X train shape: (382733, 4)
    X test shape: (164029, 4)
    Y_train shape: (382733, 1)
    Y test shape: (164029, 1)
```

▼ 4. Build and Assess the machine learning models (35 pts.)

You have to evaluate the machine learning models using at least two performance metrics (for example: precision and recall).

```
from sklearn.metrics import accuracy_score,f1_score,classification_report
from sklearn.model_selection import cross_val_score
import warnings
warnings.filterwarnings("ignore")

def evaluate(model):
    #original
    model.fit(x_train,y_train)
```

```
y_pred=model.predict(x_test)
#oversampling
model.fit(x_over_train,y_over_train)
y over pred=model.predict(x over test)
#printing the model name and accuracy !!!!!
print("Original!")
print("Model name:--->>>",model)
print("accuracy score:--->>",accuracy score(y test,y pred))
print("\n")
print(classification_report(y_test,y_pred))
                                    ----->>>>")
print("<<<<-----
print("After Over-Sampling!")
print("Model name:--->>>",model)
print("accuracy score:--->>",accuracy_score(y_over_test,y_over_pred))
print("\n")
print(classification_report(y_over_test,y_over_pred))
print("<<<<----->>>>")
```

▼ First Model : Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier(random state=42)
models=[rf] #create a list of models
for model in models:
   evaluate(model)
    Original!
    Model name:--->>> RandomForestClassifier(random state=42)
    accuracy score:--->> 0.9829481068441407
                 precision recall f1-score support
              0
                     0.99
                              1.00
                                        0.99
                                                54701
                              0.12
              1
                     0.39
                                        0.18
                                                  888
              2
                     0.80
                              0.67
                                       0.73
                                                   6
                                       0.98
                                                55595
        accuracy
                     0.73
                              0.59
                                        0.63
                                                55595
       macro avg
    weighted avg
                     0.98
                              0.98
                                       0.98
                                                55595
    <<<<----->>>>
    After Over-Sampling!
    Model name:--->>> RandomForestClassifier(random state=42)
    accuracy score:--->> 0.9954276377957556
```

	precision	recall	f1-score	support	
0	1.00	0.99	0.99	54610	
1	0.99	1.00	0.99	54789	
2	1.00	1.00	1.00	54630	
accuracy			1.00	164029	
macro avg	1.00	1.00	1.00	164029	
weighted avg	1.00	1.00	1.00	164029	
<<<<					>>>>

▼ Second Model : Decision Tree Classifier

from sklearn.tree import DecisionTreeClassifier
dtc=DecisionTreeClassifier()

models=[dtc] #create a list of models

for model in models:
 evaluate(model)

Original!

Model name:--->>> DecisionTreeClassifier()
accuracy score:-->> 0.9700872380609767

	precision	recall	f1-score	support
0	0.99	0.98	0.98	54701
1	0.15	0.19	0.17	888
2	0.67	0.67	0.67	6
accuracy			0.97	55595
macro avg	0.60	0.61	0.61	55595
weighted avg	0.97	0.97	0.97	55595

<<<<----->>>>

After Over-Sampling!

Model name:--->>> DecisionTreeClassifier()
accuracy score:--->> 0.9933243511818032

	precision	recall	f1-score	support
	0 1.00 1 0.98 2 1.00	0.98 1.00 1.00	0.99 0.99 1.00	54610 54789 54630
accurac macro av weighted av	g 0.99	0.99 0.99	0.99 0.99 0.99	164029 164029 164029

<<<<----->>>>

▼ 5. Choose your Final Model (3 pts.)

You finally have your final model. Write comments to justify your final model

For our final model, we will choose the first model which is using the Random Forest Classifier. We chose this model because the score from before and after Over-Sampling is higher/better than the second model.

rf=RandomForestClassifier(random_state=42)
models=[rf] #create a list of models
for model in models:
 evaluate(model)

Original!

Model name:--->>> RandomForestClassifier(random_state=42)
accuracy score:--->> 0.9829481068441407

	precision	recall	f1-score	support
0	0.99	1.00	0.99	54701
2	0.39 0.80	0.12 0.67	0.18 0.73	888 6
accuracy macro avg weighted avg	0.73 0.98	0.59 0.98	0.98 0.63 0.98	55595 55595 55595

<<<<----->>>>

After Over-Sampling!

Model name:--->>> RandomForestClassifier(random_state=42)
accuracy score:--->> 0.9954276377957556

support	f1-score	recall	precision	
54610	0.99	0.99	1.00	0
54789	0.99	1.00	0.99	1
54630	1.00	1.00	1.00	2
164029	1.00			accuracy
164029	1.00	1.00	1.00	macro avg
164029	1.00	1.00	1.00	weighted avg

<<<<----->>>>

×