

Corrigé de l'examen Phys102 « Lumière, image, couleurs » 9 janvier 2018

I- Prisme

- a) cours
- b) II y a réfraction si i \leq i_{lim} = arcsin(1/ $\sqrt{2}$) = 45°
- c) $i_1 = 30^{\circ}$
- d) $i_2 = 60^{\circ} > 45^{\circ}$: il y a réflexion totale
- e) Le rayon est totalement réfléchi en K et ressort horizontalement par la face AC ; incidence normale sur AC, angle de réfraction=0°

II- Couleurs

- 1- On superpose sur un écran blanc plusieurs faisceaux colorés.
- a. Quel type de synthèse réalise-t-on? additive
- b. Quelle est la couleur observée lorsqu'on superpose :

Vert + Rouge ⇒ JAUNE

Bleu + Rouge ⇒ MAGENTA

Vert + Magenta ⇒ BLANC

Vert + Bleu ⇒ CYAN

- 2- On interpose sur le trajet d'un faisceau de lumière blanche un ou plusieurs filtres colorés.
- a. Quel type de synthèse réalise-t-on? soustractive
- b. Dire quelle est la couleur observée lorsque les filtres interposés sont :

Jaune + Magenta ⇒ ROUGE

Jaune + Rouge ⇒ ROUGE

Jaune + Cyan ⇒ VERT

Cyan + Magenta + Jaune \Rightarrow NOIR

III- Utilisation de la relation de conjugaison d'un miroir sphérique

- a- Rmax = -7,54 cm; Rmin = -6,54 cm \rightarrow dR = (Rmax Rmin)/2 = 0,5 cm
- b- Rmoy = $(Rmax + Rmin)/2 = -7,04 \text{ cm} \Rightarrow R = -7,0 \pm 0,5 \text{ cm}$
- c- R < 0 donc miroir concave.

IV- Focométrie : Méthode de Badal

a) A_1B_1 , image de AB par L_1 , se forme à l'infini car AB est dans le plan focal objet de L_1 b) A_2B_2 , image de A_1B_1 par L_2 , se forme dans le plan focal image de L_2 car A_1B_1 est à l'infini On a donc O_2A_2 = f'_2 = 10 cm. L'image A_2B_2 de A_1B_1 par L_2 est réelle et située à 10 cm de L_2 . La distance entre L_1 et L_2 n'influe pas sur ce résultat

c)

d) A'B', image de A₁B₁ par L, se forme dans le plan focal image de L car A₁B1 est à l'infini

e) $D = 9.5 \pm 0.6$ cm

g) D sur schéma

h) On utilise la relation rappelée au début d'exercice pour la lentille L_2 de foyer objet et image respectivement F_2 et F'_2 , et pour le couple de point conjugués (A', A₂). Sur le schéma on voit alors que $\overline{F_2A'}=f'<0$ et $\overline{F'_2A_2}=D$. D'où $f'=-(f'_2)^2/D$

i) $\delta f' = (f'_2/D)^2 .\delta D$ par la méthode de la dérivée. D'où $f' = -10.5 \pm 0.6$ cm