IV WOJEWÓDZKI KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO

	ETAPT - SZKOLNY	
	14 listopada 2019 r. Godz. 10:00	
Kod pracy ucznia		Suma punktów
		Czas pracy: 90 minut

ETADI CZIZOLNIX

Liczba punktów możliwych do uzyskania: 40 punktów

Instrukcja dla ucznia

- 1. W wyznaczonym miejscu arkusza z zadaniami konkursowymi wpisz swój kod.
- 2. Sprawdź, czy na kolejno ponumerowanych 14 stronach jest wydrukowanych 15 zadań.
- 3. Ewentualny brak stron lub inne usterki zgłoś Komisji Konkursowej.
- 4. Czytaj uważnie wszystkie zadania i wykonuj je zgodnie z poleceniami.
- 5. Rozwiązania zadań zapisuj długopisem lub piórem z czarnym lub niebieskim tuszem/atramentem.
- 6. Nie używaj korektora i nie używaj kalkulatora.
- 7. Rozwiązania zadań zamkniętych, tj. 1–7, zaznacz w arkuszu z zadaniami konkursowymi. W każdym zadaniu poprawna jest zawsze tylko jedna odpowiedź. Wybierz tę odpowiedź i odpowiadającą jej literę zaznacz kółkiem, np.:
- 8. Jeśli się pomylisz, błędne zaznaczenie przekreśl krzyżykiem, np.: i zaznacz kółkiem inną wybraną odpowiedź, np.:
- 9. W zadaniach 8-11 typu *Prawda-Falsz* wybierz po jednej odpowiedzi P lub F i otocz kółkiem odpowiednią literę w tabeli.
- 10. Rozwiązania zadań otwartych, tj. 12–15, zapisz czytelnie i starannie w wyznaczonych miejscach w arkuszu z zadaniami konkursowymi. Ewentualne pomyłki przekreślaj.
- 11. Przy rozwiązywaniu zadań możesz korzystać z przyborów kreślarskich i brudnopisu. Brudnopis nie podlega sprawdzeniu. W zadaniach 1–11 miejsce na rozwiązanie zadania jest brudnopisem, który nie podlega sprawdzeniu.

Powodzenia!

Etap I – Szkolny Strona 1 z 14

Zadanie 1. (0-1)

Na tablicy za pomocą znaków rzymskich napisane są dwie liczby: CMLXVII oraz DIX. Ile jest równa suma tych liczb? Wybierz odpowiedź spośród podanych.

- A. MDCLXXVI
- **B.** MXXVI
- C. MCDLVI
- **D.** MCDLXXVI

Zadanie 2. (0-1)

Paulina i Magda mają razem 42 lata. Paulina jest 6 razy starsza od Magdy. O ile lat Magda jest młodsza od Pauliny? Wybierz odpowiedź spośród podanych.

- **A.** O 21 lat.
- **B.** O 24 lata.
- **C.** O 30 lat.
- **D.** O 35 lat.

Etap I – Szkolny Strona 2 z 14

Zadanie 3. (0-1)

Jaką, tę samą, cyfrę można wpisać w miejsce \square , aby liczba $3\square 93\square 2$ była podzielna przez 12? Wybierz odpowiedź spośród podanych.

 $\mathbf{A.}\ 0$

B. 5

C. 7

D. 8

Zadanie 4. (0-1)

Która z liczb $a=-2\frac{8}{15}$, $b=-2\frac{4}{7}$, $c=-2\frac{8}{11}$, $d=-2\frac{5}{7}$ jest największa? Wybierz odpowiedź spośród podanych.

- **A.** Liczba α.
- **B.** Liczba *b*.
- C. Liczba c.
- **D.** Liczba d.

Etap I – Szkolny Strona 3 z 14

Zadanie 5. (0-1)

Która z poniższych cyfr jest cyfrą w rzędzie jedności liczby $3^3 + 4^4 + 5^5 + 6^6$? Wybierz odpowiedź spośród podanych.

C. 6

D. 8

Zadanie 6. (0-1)

Który z poniższych wzorów otrzymamy po przekształceniu wzoru $T = \frac{5c}{a-b}$ tak, aby wyznaczyć a? Wybierz odpowiedź spośród podanych.

A.
$$a = \frac{5c}{T+b}$$

B.
$$a = \frac{5c + b}{T}$$

C.
$$a = \frac{T}{5c + Tb}$$

B.
$$a = \frac{5c + b}{T}$$
 C. $a = \frac{T}{5c + Tb}$ **D.** $a = \frac{5c + Tb}{T}$

Zadanie 7. (0-1)

W trójkącie równoramiennym jeden z boków ma długość 16 cm, a drugi ma długość 7 cm. Ile jest równy obwód tego trójkąta? Wybierz odpowiedź spośród podanych.

A. 56 cm

- **B.** 39 cm
- **C.** 30 cm
- **D.** 23 cm

Zadanie 8. (0-3)

Do dyspozycji mamy 15 banknotów o nominale 20 zł i 15 banknotów o nominale 50 zł. Nie mamy banknotów o innych nominalach oraz nie mamy żadnych monet. Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Kwotę 370 zł możemy wypłacić jedenastoma posiadanymi banknotami.		F
Kwotę 530 zł możemy wypłacić dwunastoma posiadanymi banknotami.		F
Kwotę 570 zł możemy wypłacić czternastoma posiadanymi banknotami.		F

Etap I – Szkolny Strona 5 z 14

Zadanie 9. (0-3)

Dane są liczby $a=0.875-2\frac{2}{15}:5\frac{1}{3}$ i $b=\left(-1\frac{1}{2}\right)^3+0.9$.

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Liczba a jest liczbą dodatnią.		F
Liczba b jest większa od -2,5.		F
Suma liczb a i b jest liczbą całkowitą.		F

Etap I – Szkolny Strona 6 z 14

Zadanie 10. (0-3)

Jeden bok prostokątnej działki jest 1,5 razy dłuższy od drugiego. Na planie krótszy bok tej działki jest równy 5 cm. W rzeczywistości pole tej działki jest równe 54 a. Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

W rzeczywistości działka ma pole powierzchni równe 54 000 m².		F
Plan jest wykonany w skali 1:1200.		F
W rzeczywistości dłuższy bok tej działki ma 90 m.		F

Etap I – Szkolny Strona 7 z 14

Zadanie 11. (0-3)

W trójkącie ABC, kąt ABC ma miarę 3 razy większą niż kąt CAB, a kąt BCA ma miarę o 72° mniejszą niż kąt ABC.

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub \mathbf{F} – jeśli jest fałszywe.

Kạt <i>ABC</i> ma miarę 144°.		F
Trójkąt ABC jest rozwartokątny.		F
Trójkąt ABC jest równoramienny.		F

Etap I – Szkolny Strona 8 z 14

Zadanie 12. (0-5)

Autobus nr 7 odjeżdża z pewnego przystanku co 21 minut, a autobus nr 13 odjeżdża z tego samego przystanku co 28 minut. Każdego dnia oba autobusy odjeżdżają jednocześnie z tego przystanku po raz trzeci o godzinie o godzinie 10:09, a po raz ostatni o godzinie 18:33. O której godzinie autobusy odjeżdżają jednocześnie z tego przystanku po raz pierwszy? Ile razy w ciągu dnia autobusy odjeżdżają jednocześnie z tego przystanku? Zapisz rozwiązanie i odpowiedzi.

Etap I – Szkolny Strona 9 z 14

Zadanie 13. (0-6)

Z dwóch miejscowości, z Bukowa i z Grzybowa, o godzinie 8:50, wyjechali jednocześnie naprzeciw siebie dwaj rowerzyści. Rowerzysta, który wyjechał z Bukowa jechał z prędkością 15 km/h, a rowerzysta, który wyjechał z Grzybowa jechał z prędkością o 4 km/h mniejszą. Rowerzyści minęli się, gdy byli w odległości 27,5 km od Grzybowa. O której godzinie rowerzyści minęli się? Jaka jest długość trasy z Bukowa do Grzybowa, którą jechali rowerzyści? Zapisz obliczenia i odpowiedź.

Etap I – Szkolny Strona 10 z 14

Zadanie 14. (0-4)

Różnica dwóch liczb naturalnych jest równa 185. Większa z tych liczb podzielona przez mniejszą daje iloraz 2 i resztę 37. Wyznacz te liczby.

Etap I – Szkolny Strona 11 z 14

Zadanie 15. (0-6)

W prostokącie *ABCD* o obwodzie 112 cm, bok *AB* jest o 28 cm dłuższy od boku *AD*. Z tego prostokąta wycięto dwa trójkąty *AKD* i *BLC* tak, jak na rysunku obok.

Wiedząc, że |AK| = |DK| = |BL| = |CL| oraz że wysokość h trójkąta AKD opuszczona na bok AD jest 2,4 razy krótsza od długości boku AB, oblicz pole sześciokąta ABLCDK.

Etap I – Szkolny Strona 12 z 14

Brudnopis (nie podlega sprawdzeniu).

Etap I – Szkolny Strona 13 z 14

Etap I – Szkolny Strona 14 z 14