Planche nº 23. Fonctions convexes

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice no 1 (**):

Soit $\mathscr{E} = \left\{ (x,y) \in \mathbb{R}^2 / \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}$. Montrer que \mathscr{E} est un convexe de \mathbb{R}^2 (on utilisera la convexité de la fonction $x \mapsto x^2$).

Exercice nº 2 (**I): (Moyennes arithmétique, géométrique et harmonique)

- 1) Soient x et y deux réels tels que $0 < x \leqslant y$. On pose $\mathfrak{m} = \frac{x+y}{2}$ (moyenne arithmétique), $g = \sqrt{xy}$ (moyenne géométrique) et $\frac{1}{h} = \frac{1}{2} \left(\frac{1}{x} + \frac{1}{y} \right)$ (moyenne harmonique). Montrer que $x \leqslant h \leqslant g \leqslant \mathfrak{m} \leqslant y$.
- 2) Plus généralement, démontrer que pour tout $n \ge 2$ puis tous réels strictement positifs x_1, \ldots, x_n , on a

$$\sqrt[n]{x_1 \dots x_n} \leqslant \frac{x_1 + \dots + x_n}{n}$$

en utilisant la convexité d'une certaine fonction.

Exercice nº 3 (**** I) : (Inégalités de HÖLDER et de MINKOWSKI et « norme α ».)

- 1) Soit $(p,q) \in]0, +\infty[^2$ tel que $\frac{1}{p} + \frac{1}{q} = 1$.

 Montrer que pour $(x,y) \in [0,+\infty[^2,\,xy \leqslant \frac{x^p}{p} + \frac{y^q}{q}]$ (on utilisera la concavité d'une certaine fonction).
- 2) En déduire que $\forall ((a_1,...,a_n),(b_1,...,b_n)) \in (\mathbb{R}^n)^2$

$$\left|\sum_{k=1}^n \alpha_k b_k\right| \leqslant \left(\sum_{k=1}^n |\alpha_k|^p\right)^{1/p} \left(\sum_{k=1}^n |b_k|^q\right)^{1/q}$$

(inégalité de HÖLDER).

c) En déduire que $\forall ((a_1,...,a_n),(b_1,...,b_n)) \in (\mathbb{R}^n)^2, \left(\sum_{k=1}^n |a_k+b_k|^p\right)^{1/p} \leqslant \left(\sum_{k=1}^n |a_k|^p\right)^{1/p} + \left(\sum_{k=1}^n |b_k|^p\right)^{1/p}$ (inégalité de Minkowski).

Exercice no 4 (**I):

Démontrer que

- 1) Pour tout réel x, $e^x \ge 1 + x$ et même pour tout réel non nul x, $e^x > 1 + x$.
- 2) Pour tout réel x de $]-1,+\infty[$, $\ln(1+x) \le x$.
- 3) Pour tout x de $\left[0, \frac{\pi}{2}\right], \frac{2}{\pi} \leqslant \sin x \leqslant x$.

Mémoriser ces inégalités classiques.

Exercice no 5 (**T):

Pour $x \in \mathbb{R}$, on pose $f(x) = \frac{1}{9}\cos(3x) + \frac{1}{4}\cos(2x) + \cos(x)$. Déterminer les points d'inflexion de f.