

- a. Possiamo individuare $[x_6, x_2, x_3]$ (come sempre, perché abbiamo i coefficienti della matrice identità). Non è ottima perché i costi ridotti non sono tutti strettamente positivi.
- b. L'operazione di pivot va realizzato scegliendo in colonna la variabile che entra e in riga quella che esce. Per quella che entra consideriamo quella che ha indice più basso tra quelle che hanno costo negativo, quindi x_1 . Per quella che esce consideriamo il rapporto minimo $\frac{b_i}{x_1}$, quindi $\arg\min\{\frac{223}{223},\frac{235}{234},\frac{200}{200}\}$. Abbiamo come si vede due valori ad 1. Assumiamo di scegliere come base $[x_6,x_7,x_3]$ e come variabile x_6 , scelta per regola di Bland. L'elemento considerato non rispetta le caratteristiche date e descritte.
- c. Indipendentemente dalle regole anticiclo, possiamo effettuare il pivot sull'elemento $[x_1, x_6]$ oppure $[x_1, x_3]$.
- d. Considerando questo ordine delle variabili, il cambio base sarà dato dal far entrare x_1 e far uscire x_6 , quindi $[x_1, x_2, x_3]$.

Per il valore della funzione obiettivo (considerando la variabile che esce), avremo $z_{new}=-(-z)+(-34)\frac{223}{223}=3+34=37$

e. Possiamo affermare con certezza, dato che tutte le colonne sotto i costi ridotti sono positivi, che il problema non è illimitato.