TA: Ernest Woei

January 20, 2011

Last name:_____

First name:

1 (5 points): Use Ratio or Root test to determine whether the series below converge or diverge. Justify your answer.

$$\sum_{n=4}^{\infty} \left(\frac{n-3}{2n} \right)^n$$

Let $a_n = \left(\frac{n-3}{2n}\right)^n$. $a_n > 0$, since n-3 > 0 and 2n > 0 for $n \ge 4$. We use the Root test to determine if the series converge or diverge.

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{n-3}{2n}\right)^n} = \lim_{n\to\infty} \frac{n-3}{2n} = \frac{1}{2} < 1,$$

thus by the conclusion Root test we have $\sum_{n=4}^{\infty} \left(\frac{n-3}{2n}\right)^n$ convergent.

2 (5 points): Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.

$$\sum_{n=1}^{\infty} (-1)^{n+1} (0.1)^n$$

Recall the Absolute Convergence Test: If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. Since $\sum_{n=1}^{\infty} |(-1)^{n+1}(0.1)^n| = 1$

 $\sum_{n=1}^{\infty} (0.1)^n$ is a geometric series with a=0.1 and r=0.1 (since the index starts at n=1), then the series is absolutely convergent and thus convergent.