

SENSORES Y ACTUADORES

Prácticas de sensores resistivos

La modalidad será la siguiente:

Cada practica se desarrollará en forma grupal, debiendo subir el desarrollo de la misma al repositorio establecido por grupo. Los ejercicios serán implementados de forma que a cada integrante le corresponda 1 o más tareas (issues); por lo que deberán crear el proyecto correspondiente, con la documentación asociada si hiciera falta, y asignar los issues por integrante. De esta forma quedara documentada la colaboración de cada alumno.

Ejercicio 1

- a) Explique que es régimen estático y transitorio de un sensor.
- b) Enumere las características estáticas de un sensor.
- c) Detalle brevemente que significa cada una de estas características estáticas.
- d) De ejemplo de las características de 1 sensor real, por ejemplo (temperatura, presión, humedad, aceleración, posición, color, distancia).
- e) Ejemplifique gráficamente la diferencia entre precisión y exactitud
- f) Cuál es la relación entre error y exactitud de un instrumento.
 La inexactitud esta contenida (prevista) nunca va a ser mayor en términos absolutos que el error dado por la hoja de datos.
- g) Que se puede decir de la incertidumbre de los sensores y las mediciones que realizamos. Es real lo que medimos?
- h) Como se interpreta una curva dead band?
- i) Cual es la importancia de la sensibilidad y resolución de un sensor.
- j) Explique diferencia entre histéresis y zona muerta.
- k) Porque es conviene que un sensor tenga una respuesta lineal.

SENSORES Y ACTUADORES

Ejercicio 2

Un sensor de temperatura, que tiene un rango de medida de 20-250 °C, entrega una lectura de 55 °C. Especificar el error en la lectura si la exactitud se expresa de las siguientes formas, indicando el rango de medición en cada caso.

- a) +- 0,5% del valor máximo de lectura E(vmax)= +- (0,5 * 250)/100 = +- 1,25 °C
- b) +- 0,75% del alcance (FS) E(alcance)=+-(0,75 * 230)/100 = +- 1,72 °C
- c) +- 0,8% de la lectura E(lectura)= +- (0,8 * 55) / 100 = +- 0,44 °C

Ejercicio 3 (ejemplo)

Determinar el **alcance**, **exactitud** y **precisión** de cada uno de los modelos de sensores de presión que se muestran en el catálogo.

	Model	PSE570	PSE573	PSE574	PSE575	PSE576	PSE577	
Fluid	Applicable fluid	Gas or liquid that will not corrode the materials of parts in contact with fluid						
Pressure	Rated pressure range	0 to 1 MPa	-100 to 100 kPa	0 to 500 kPa	0 to 2 MPa	0 to 5 MPa	0 to 10 MPa	
Accuracy	Analog output accuracy (Ambient temperature of 25°C)	±1.0% F.S.			±2.5% F.S.			
	Repeatability (Ambient temperature of 25°C)	±0.2% F.S.			±0.5% F.S.			
	Alcance:	1 – 0	100 – (-100)	500 – 0	2 – 0	5 – 0	10 – 0	
		= 1 [MPa]	= 200 [kPa]	= 500 [kPa]	= 2 [MPa]	= 5 [MPa]	= 10 [MPa]	
Exactitud:		1% de 1 [MPa]	1% de 200 [kPa]	1% de 500 [kPa]	2.5% de 2 [MPa]	2.5% de 5 [MPa]	2.5% de 10 [MPa	
		$\frac{1\cdot 1}{100}=0.01$	$\frac{1\cdot 200}{100}=2$	$\frac{1\cdot500}{100}=5$	$\frac{2.5 \cdot 2}{100} = 0.05$	$\frac{2.5 \cdot 5}{100} = 0.125$	$\frac{2.5 \cdot 10}{100} = 0.25$	
		± 0.01 [MPa]	± 2 [kPa]	± 5 [kPa]	± 0.05 [MPa]	± 0.125 [MPa]	± 0.25 [MPa]	
	Precisión:	0.2% de 1 [MPa]	0.2% de 200 [kPa]	0.2% de 500 [kPa]	0.5% de 2 [MPa]	0.5% de 5 [MPa]	0.5% de 10 [MPa	
		$\frac{0.2 \cdot 1}{100} = 0.002$	$\frac{0.2 \cdot 200}{100} = 0.4$	$\frac{0.2 \cdot 500}{100} = 1$	$\frac{0.5 \cdot 2}{100} = 0.01$	$\frac{0.5 \cdot 5}{100} = 0.025$	$\frac{0.5 \cdot 10}{100} = 0.05$	
		± 0.002 [MPa]	± 0.4 [kPa]	± 1 [kPa]	± 0.01 [MPa]	± 0.025 [MPa]	± 0.05 [MPa]	

Ejercicio 4 (ejemplo)

Durante el diseño de un equipo de control de temperatura se ensayan cuatro sensores A, B, C y D. Cada uno de estos sensores fue probado tomando cinco lecturas mientras se mantenía una temperatura constante de 18 [°C], dando como resultado los datos consignados en la tabla. ¿Cuál sensor ofrece la mayor **exactitud** y cuál ofrece la mayor **precisión**?

Sensor	Lectura 1 [°C]	Lectura 2 [°C]	Lectura 3 [°C]	Lectura 4 [°C]	Lectura 5 [°C]
Α	18.10	18.05	18.00	18.10	18.15
В	18.00	18.05	18.00	18.05	18.00
С	17.95	17.90	17.85	17.98	17.80
D	17.90	17.92	17.91	17.90	17.91

- Exactitud: Grado de aproximación al valor verdadero.
- Precisión: Grado de dispersión entre las lecturas.

Promedio

18.08 18.02 17.90 17.91

$$\bar{X} = \underbrace{\sum_{i=1}^{n} x_i}_{n}$$

Desviación estándar

0.057 0.027 0.073

0.008

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

El sensor más exacto es el B.

El sensor más preciso es el D.