

Реализация алгоритма поиска минимального остовного дерева с использованием библиотеки SuiteSparse

Автор: Суханова Анжела Кирилловна, 271 группа (18.Б11-мм) Научный руководитель: доцент кафедры информатики СПбГУ, к.ф.-м.н. Григорьев С.В.

> Санкт-Петербургский государственный университет Кафедра системного программирования

> > 6 июня 2020г.

Введение

- Анализ графструктурированных данных находит применение в биоинформатике, анализе социальных сетей, молекулярном синтезе, планировании маршрутов
- Высокопроизводительные реализации графовых алгоритмов сложно представлять на новом параллельном оборудовании
- GraphBLAS открытый стандарт, определяющий структурные блоки графовых алгоритмов на языке линейной алгебры
- SuiteSparse: GraphBLAS первая полная реализация стандарта GraphBLAS
- Алгоритм поиска минимального остовного дерева (MST)
 применяется в различных практических и теоретических областях

Постановка задачи

Целью данной работы является реализация алгоритма поиска минимального остовного дерева на SuiteSparse: GraphBLAS **Задачи**:

- Собрать и изучить SuiteSparse
- Реализовать алгоритм поиска минимального остовного дерева на SuiteSparse
- Провести экспериментальное исследование реализации

Алгоритм Борувки

- Изначально каждая вершина графа тривиальное дерево, а ребра не принадлежат никакому дереву
- Для каждого дерева находится минимальное инцидентное ему ребро, все такие рёбра добавляются к деревьям
- Второй шаг повторяется, пока в графе не останется только одно дерево

Схема взята из https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Архитектура решения

Экспериментальное исследование на плотных графах

№ теста	Число рёбер	Число вершин	Диапазон весов	SuiteSparse (сек)	GBTL (сек)	LAGraph (сек)
1	8	4	1	0.0008	0.0002	0.0008
2	499500	1000	[1, 5000]	0.1303	19.6429	0.0771
3	12497500	5000	[1, 5000]	1.4475	2270.5567	1.3501
4	40495500	9000	[1, 1000]	1.7971	13090.2499	3.8008
5	40495500	9000	[1, 10 ⁴]	3.5753		5.2451
6	49995000	10 ⁴	[1, 10 ⁵]	5.7335		8.0566

Экспериментальное исследование на разрежённых графах

№ теста	Число рёбер	Число вершин	Диапазон весов	SuiteSparse (сек)	GBTL (сек)	LAGraph (сек)
1	16	10	1	0.0013	0.0008	0.0009
2	196	100	1	0.0057	0.0395	0.0011
3	19996	10 ⁴	[1, 1000]	1.0661	131.8307	0.0224
4	19996	10 ⁴	[1, 10 ⁴]	1.0650	132.1019	0.0232
5	99900	10 ⁴	[1, 10 ⁴]	1.0856	160.2648	0.0226
6	9999900	10 ⁶	[1, 10 ⁶]	160.1692		2.2857

Результаты

- Осуществлены сборка и изучение библиотеки высокопроизводительной обработки графов SuiteSparse
- Реализован алгоритм поиска MST на SuiteSparse: GraphBLAS
- Проведено исследование производительности реализации, в том числе сравнение с представлениями алгоритмов поиска MST на других библиотеках, основанных на GraphBLAS