OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 1 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 1

(a) _____

$$A = \{1, 3, 5, 6\}, \qquad B = \{3, 4, 5, 6\}$$

(2 marks)

(b)

Partial marks for correct parsing of expression, demonstrating ability to compute logical expression, using satisfiability/tautology/contradiction definitions.

$$\underbrace{\underbrace{(((x \lor z))}_{1} \land \underbrace{(x \lor y)}_{2})}_{3} \rightarrow \underbrace{(\neg x \land \neg z)}_{4}$$

					3		
			1	2	1 2	4	
x	y	z	$(x \lor z)$	$(x \vee y)$	$((x \lor z) \land ((x \lor y)))$	$(\neg x \land \neg z)$	E
0	0	0	0	0	0	1	0
0	0	1	1	0	0	0	1
0	1	0	0	1	0	1	0
0	1	1	1	1	1	0	0
1	0	0	1	1	1	0	0
1	0	1	1	1	1	0	0
1	1	0	1	1	1	0	0
1	1	1	1	1	1	0	0

Since there is one row in which the output is True, the expression is satisfiable. It is *not* a tautology (does not have all True outputs) and is not a contradiction (has at least one True output). It is also a contingency. (5 + 2 marks)

(c) _____

(i) Student should produce a graph similar to the following:

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 2 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

(2 marks)

- (iii) Handshaking Lemma: sum of degrees = $2 + 3 + 3 + 4 + 4 = 16 \Rightarrow |E| = 8.$ (1 marks)
- (iv) Changes to make to graph which would make it a complete graph:
 - Student should add in edges (0,1) and (1,2) in the plot (e.g. see below) or write down edges using appropriate vertex labels.
 - Alternatively, student could remove node 1 to make it a complete graph. (2 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 3 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

(d)

Marks awarded for proving identity by using meembereship tables or using set operation properties.

Using membership tables ...

$$\underbrace{(A \setminus B) \cap (B \setminus C)}_{3} = \underbrace{A \setminus B}_{4}$$

A	B	C	$\overbrace{A \setminus B}^{1}$	$\overbrace{B\setminus C}^2$	$\underbrace{\overbrace{(A \setminus B)}^{3} \cap \underbrace{(B \setminus C)}^{2}}^{2}$	$\overbrace{A \cap B \cap \overline{C}}^{4}$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	0	0	0
1	0	0	1	0	0	0
1	0	1	1	0	0	0
1	1	0	0	1	1	1
1	1	1	0	0	0	0
			ı		<u> </u>	↑

equal output \Rightarrow expression true

(4 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Coı	urse: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 4 of 6
Sub	oject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy
Que	stion 2	
(a)		
(i)	Construct a logical expression to represent the ou	$\text{ttput } Y. \tag{4 marks}$
	$Y = (\neg A \lor B) \land (A \lor \neg$	$\neg B) = \neg (A \oplus B)$
(ii)	Is there an input case for which both outputs, X	and Y , are True? (justify)(3 marks)
` /	Yes, Set $A = True$ and $B = True$.	,
(iii)	Is there an input case for which both outputs, X	and Y , are False? (justify) (3 marks)
	Yes, $X = A \wedge B$ (only True when both A and A when A and B the same). Hence X and Y can	, , , , , , , , , , , , , , , , , , , ,
(b)		
(i)	False, $x = 5 \Rightarrow 9 < 9$, which is false.	(1 marks)
, ,		,
(ii)	True, $x = 4, x = 5$.	(1 marks)
(iii)	False, e.g. $x = 5, y = 5$.	(2 marks)
(iv)	True, for all $x, y = 1$ is sufficient for the states	ment to be true. (2 marks)
(c)		
(i)	x=38	
		(4 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 5 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 3

(a)

Venn/Mapping diagram for part (1) of the question

Answer for part (2), graph of the function in the plane.

(i) Student should show a Venn diagram similar to the above. (1 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 6 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

- (ii) Student should produce a graph similar to the one shown above, indicating all (x, f(x)) values. (1 marks)
- (iii) Is f injective? No. Explain: at most one arrow to each element of target set is not satisfied, (3, 2) and (5, 2). (2 marks)
- (iv) Is f surjective? Yes. Explain: at least one arrow to each elements of the target set is satisfied. (2 marks)

(b) _____

- (i) $R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,5), (5,2), (3,6), (6,3), (1,4), (4,1)\}$
- (ii) Represent R using a digraph.

- (iii) R is reflexive, symmetric and transitive
- (iv) R is an equivalence relation (since is is ref., symm. and trans.) resulting equivalence classes partition $A = A_0 \cup A_1 \cup A_2$, where $A_0 = \{1, 4\}, A_1 = \{3, 6\}, A_2 = \{2, 5\}.$

(8 marks)

(c)

Partial marks for identifying graph. 4×2 marks

(i) C_5 Cycle graph has girth is 5.

(2 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 7 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

(ii) Petersen Graph

Petersen Graph has girth of 5

(2 marks)

(iii) $K_{3,3}$

Complete bipartite graph, so girth is 4.

(2 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

CCTEINE MODEL AND WEIGH	
rse: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 8 of 6
ject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy
stion 4	
tion finds the difference of the two sets A and	B — will return the results. (4 marks)
Number of subsets = $ \mathcal{P}(A) = 2^8 = 256$. Ne	ed to select y/n for each of 8 elements.
Number of subsets = $\binom{8}{4}$ = 70	
$\binom{8}{5} = 56$. All subsets of cardinality 5 contains	at least one odd number.
Number of subsets $= \binom{4}{1} = 4$. i.e. four every from $\{1, 3, 5, 7\}$.	n elements plus one odd element chosen
Number of subsets $= 0$. There are no such s	ubsets $(5 \times 2 = 10 \text{ marks})$
$\{0, 14, 28, 42, \ldots\}, B = \{0, 2, 4, 6, 7, 8, 10, 12, 1\}$	$4,\ldots$
$B \subset A$ false, e.g. $2 \in B$ but $2 \notin A$. True, False	$\not\in A.$
	rise: BSc (H) in AC, in CF, in the IoT ject: Discrete Mathematics stion 4 tion finds the difference of the two sets A and Number of subsets $= \mathcal{P}(A) = 2^8 = 256$. No Number of subsets $= \binom{8}{4} = 70$ $\binom{8}{5} = 56. \text{ All subsets of cardinality 5 contain Number of subsets } = \binom{4}{1} = 4. \text{ i.e. four ever from } \{1, 3, 5, 7\}.$ Number of subsets $= 0$. There are no such selfont $A \subseteq A$ is true, $A \subseteq B$ is false, for example, $A \subseteq B$ but $A \subseteq B$ is false, e.g. $A \subseteq B$ but $A \subseteq B$ but $A \subseteq B$ is false, e.g. $A \subseteq B$ but $A \subseteq B$ but $A \subseteq B$ is false, e.g. $A \subseteq B$ but $A \subseteq B$ but $A \subseteq B$ is false, e.g. $A \subseteq B$ but $A \subseteq B$ but $A \subseteq B$ is false, e.g. $A \subseteq B$ but $A \subseteq $

 $(6 \times 1 = 6 \text{ marks})$

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 9 of 6
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

\sim .	
Question	-
Maganon	•

	•	
	1	
١.	•	

- (i) $\binom{5}{1} = 5$ squares. Top left corner, remaining 3 dots to be determined. (2 marks)
- (ii) $2 \times \binom{6}{1}\binom{5}{1}$: $\binom{6}{1}$ for the vertical line (formed from the top dot down to the bottom dot), then out of the 6 remaining $\binom{5}{1}$ for the horizontal line. This is repeated for the horizontal line at the top, hence 60 in total. (3 marks)
- (iii) $2 \times \binom{6}{1}\binom{6}{1}\binom{5}{1} : \binom{6}{1}\binom{6}{1}\binom{5}{1}$ for top vertex and bottom two non-overlapping bottom vertices. Likewise $\binom{6}{1}\binom{5}{1}\binom{6}{1}$ for two top non-overlapping vertices and one bottom vertex. Giving 360 triangles in total. (3 marks)

(2+3+3=8 marks)

(b)

- (i) $\binom{17}{9} = 24310$. The paths all have length 17 (9 steps up and 8 steps right), we just select which 9 of those 17 should be up. (2 marks)
- (ii) $\binom{9}{3}\binom{8}{3} = 84 \times 56 = 4704$. First travel to (3,6), and then continue on to (8,9). (3 marks)
- (iii) $\binom{17}{9} \binom{9}{3} \binom{8}{3} = 24310 4704 = 19606$ Remove all the paths found in preceding question. (2 marks)

(2+3+2=7 marks)

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 10 of 6		
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy		
(c)			
Function calculateWhat(n) computes the factorial using a recursive function call. Student			
should recognise the terminal conditions and show understanding of recursive nature e.g.			
function calls itself.	(4 marks)		
Function calculateWhat(5) return 120 i.e. $5! = 120$	(1 marks)		
	$(4{+}1{=}5~\mathrm{marks})$		