Adversarially Robust Submodular Maximization under Knapsack Constraints

Dmitrii Avdiukhin¹, Slobodan Mitrović ², Grigory Yaroslavtsev¹, Samson Zhou¹

¹Indiana University, ²MIT

SUBMODULAR FUNCTIONS

- ➤ Ground Set V (items, sets, vertices)
- \triangleright Set function $f: 2^V \to \mathbb{R}$ with diminishing returns property

 $\forall A \subseteq B \subseteq V, e \notin B, f(A \cup \{e\}) - f(A) \ge f(B \cup \{e\}) - f(B)$

 \triangleright Oracle access to f: Given a subset $S \subseteq V$, returns f(S)

APPLICATIONS

- $\succ E = \{e_1, e_2, ..., e_n\}, V \subseteq 2^E$
- $> S = \{s_{i_1}, s_{i_2}, ..., s_{i_k}\} \in V, f(S) = |\cup_{s_i \in S} s_i|$
- $> S^* = \arg \max_{|S| < k} f(S)$, f is a submodular function
- > Coverage, viral marketing, document summarization,...

CONSTRAINED SUBMODULAR OPTIMIZATION

- \triangleright Cardinality constraint: $S^* = \arg \max_{|S| \le k} f(S)$
- \succ Knapsack constraint: Each element e has cost c(e), $S^* = \arg \max_{c(S) \le K} f(S)$
- \succ Multiple knapsacks: Costs $c_1(e), c_2(e), ..., c_d(e)$ and constraints $b_1, b_2, ..., c_d(e)$ $b_d, S^* = \arg \max_{c_1(S) \le b_1, \dots c_d(S) \le b_d} f(S)$
- \triangleright Adversarially robust submodular optimization: Given set E that is removed from V after summary is produced, (knapsack) $S^* = \arg \max_{c(S) \le K, S \cap E = \emptyset} f(S)$

- > Movie recommendation: Want multiple genres of movies (multiple knapsacks), and removal of movies that have already been watched (robust)
- > In big data models, do not want to compute the output from scratch
- > Streaming model: items arrive sequentially, minimize space
- > Distributed model: items across machines, minimize communication

BACKGROUND

- > Constrained submodular maximization is NP-hard
- ightharpoonup Marginal gain: $f(e|A) := f(A \cup \{e\}) f(A)$
- > Greedy algorithm for cardinality constraint: repeatedly take the item with the largest marginal gain \rightarrow (1 – 1/e) - approximation [NWF78]
- Thresholding for cardinality constraint in the streaming model: take any items whose marginal gain exceeds $\frac{f(\text{opt})}{2k} \to \frac{1}{2}$ - approximation [BMKK14]
 - \triangleright Can make geometrically increasing guesses for f(opt)
 - \triangleright Uses $O\left(\frac{1}{\epsilon}k\log n\right)$ space
- ightharpoonup Marginal density: $\rho(e|A) \coloneqq \frac{f(A \cup \{e\}) f(A)}{g(a)}$
- > Thresholding for knapsack constraint in the streaming model: take any items whose marginal density exceeds $\frac{2f(\text{opt})}{2k}$ OR the best single item $\rightarrow \frac{1}{2}$ approximation [HKY17]
- > Constant factor approximation for adversarially robust submodular maximization with cardinality constraint [BMSC17]
- > Partitions and buckets approach:

- ➤ Intuition: Items in high partitions are more valuable
- ➤ Bad approximation if they are deleted, so we need more buckets
- > Items in low partitions are not as valuable
- > Still have good approximation if many buckets are full
- > If many items are deleted from high partitions, but buckets in low partitions are not full, must still have captured "good" items

RESULTS

- \triangleright Streaming algorithm for single knapsack, robust to the removal of m items
 - \triangleright Constant factor approximation, outputs $\tilde{O}(K+m)$ elements in robust summary, and uses space $\tilde{O}(K^2 + mK)$
- \triangleright Streaming algorithm for single knapsack, robust to the removal of size M
 - \triangleright Constant factor approximation, outputs $\tilde{O}(K+M)$ elements in robust summary, and uses space $\tilde{O}(K + M)$
- \triangleright Streaming algorithm for d knapsacks, robust to the removal of m items
 - $\triangleright \Omega\left(\frac{1}{d}\right)$ approximation, outputs $\tilde{O}(K+m)$ elements in robust summary, and uses space $\tilde{O}(K^2 + mK)$
- \triangleright Distributed algorithm for multiple knapsack, robust to the removal of m items
 - $> \Omega\left(\frac{1}{d}\right)$ approximation, two rounds of communication, $\tilde{O}\left(m + \frac{1}{d}\right)$

 $(K)\sqrt{n}$) storage per machine

KNAPSACK ROBUSTNESS

➤ Initial idea: replace marginal gain with marginal density

- > Problem: big items can't fit
- ➤ Hotfix: double the size of each bucket
- Problem: number of buckets is based on the threshold, not size

Remains good approximation

Bad approximation!

- ➤ Main idea: *Dynamic* bucketing scheme
- Each time element is added, allocate space proportional to its size

- ➤ Cap total number of items → Constant factor approximation
- \triangleright Normalization for multiple knapsacks: rescale each row i in cost matrix by b_1/b_i so that all knapsack constraints are $K := b_1$.
- Rescale all entries in cost matrix and constraint vector by minimum entry so that all costs are at least 1.
- > "Marginal density": marginal gain divided by the *largest* cost (across all knapsacks)

EXPERIMENTS

from Facebook (4K vertices, 81K edges) and Twitter (88K vertices, 1.8M edges) collected by the Stanford Network Analysis Project (SNAP), MovieLens (27K movies, 200K

Social network graphs

Baselines: Offline Greedy, "Robustified" versions of streaming algorithms

ratings)

	ml-20, 1 knapsack	fb, 1 knapsack	twitter, 1 knapsack	ml-20, 2 knapsacks	fb, 2 knapsacks	twitter, 2 knapsacks
AlgMult	641	378	401	1350	2745	4208
MarginalRatio	641	377	402	1350	2745	4209
Multidimensional	87	18	435	72	22	4221
Greedy	647	393	493	-	-	-

REFERENCES

[AYZ19] Dmitrii Avdiukhin, Slobodan Mitrović, Grigory Yaroslavtsev, Samson Zhou. Adversarially Robust Submodular Maximization under Knapsack Constraints. KDD 2019

[BMKK14] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Streaming submodular maximization: Massive data summarization on the fly. KDD 2014. [HKY17] Chien-Chung Huang, Naonori Kakimura, and Yuichi Yoshida. Streaming algorithms for

maximizing monotone submodular functions under a knapsack constraint. APPROX 2017 [BMSC17] Ilija Bogunovic, Slobodan Mitrović, Jonathan Scarlett, and Volkan Cevher. Robust submodular maximization: A non-uniform partitioning approach. ICML 2017

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for maximizing submodular set functions - I.Math. Program. 14(1):265–294, 1978