

Claims:

1 1. A method to manage packet fragmentation for address translation, comprising:
2 receiving a plurality of packet fragments for a packet having a first address;
3 translating said first address into a second address without reassembling said
4 packet fragments into said packet; and
5 sending said packet fragments using said second address.

1

1 2. The method of claim 1, wherein said translating comprises:
2 identifying a packet fragment having a packet header, with said packet header
3 having a packet identifier, translation information and a packet length;
4 determining whether all packet fragments for said packet have been received;
5 retrieving translation information from said packet header; and
6 translating said first address into said second address using said translation
7 information.

1
1 3. The method of claim 2, wherein said translation information comprises a port
2 number.

1

1 4. The method of claim 2, wherein each packet fragment includes a packet fragment
2 header having said packet identifier, a more bit and an offset value, and said determining
3 comprises:

4 storing each packet fragment having said packet identifier and said more bit set to
5 a predetermined value; and
6 determining whether all packet fragments for said packet have been received
7 using said offset values.

1

1 5. The method of claim 4, wherein each offset value represents a position for said
2 packet fragment in said packet, and said determining whether all packet fragments for
3 said packet have been received using said offset values comprises:
4 collecting said offset values;
5 retrieving said packet length; and
6 determining whether all positions for said packet are filled by said collected offset
7 values using said packet length.

1

1 6. The method of claim 2, wherein each packet fragment includes a packet fragment
2 header having said packet identifier, a more bit and an offset value, and said determining
3 comprises:
4 storing each packet fragment having said packet identifier and said offset value is
5 a value other than zero; and
6 determining whether all packet fragments for said packet have been received
7 using said offset values.

1

1 7. The method of claim 6, wherein each offset value represents a position for said
2 packet fragment in said packet, and said determining whether all packet fragments for
3 said packet have been received using said offset values comprises:

4 collecting said offset values;

5 retrieving said packet length; and

6 determining whether all positions are filled by said collected offset values using
7 said packet length.

1

1 8. The method of claim 5, wherein each offset value represents a position in bytes
2 divided by eight for said packet fragment in said packet.

1

1 9. The method of claim 7, wherein each offset value represents a position in bytes
2 divided by eight for said packet fragment in said packet.

1

1 10. The method of claim 1, further comprising:

2 detecting an occurrence of a terminating condition prior to receiving all of said
3 packet fragments for said packet; and

4 releasing said packet fragments in accordance with said detection.

1

1 11. A packet fragmentation manager to manage packet fragmentation for address
2 translation, comprising:

3 a collection module for collecting and storing a plurality of packet fragments for a
4 packet having a first address;

5 a verification module for verifying all packet fragments for said packet have been
6 received; and

7 a translation module for retrieving translation information from one of said packet
8 fragments and translating said first address into a second address using said translation
9 information.

1

1 12. The packet fragmentation manager of claim 11, further comprising a
2 communication module for sending said packet fragments to said second address.

1

1 13. A system to manage packet fragmentation for an address translation device,
2 comprising:

3 a source node to send packet fragments for a packet having a first address; and
4 an intermediate node to receive said packet fragments and translate said first
5 address to a second address without reassembling said packet fragments into said packet.

1

1 14. The system of claim 13, further comprising a destination node having said second
2 address to receive said packet fragments and reassemble said packet fragments into said
3 packet.

1

1 15. A system to manage packet fragmentation for an address translation device,
2 comprising:
3 a computer platform adapted to manage packet fragmentation;

4 said platform being further adapted to receive a plurality of packet fragments for a
5 packet having a first address, translate the first address into a second address without
6 reassembling said packet fragments into said packet, and send said packet fragments
7 using said second address.

1

1 16. The system of claim 15, wherein said platform is further adapted to perform said
2 translation by identifying a packet fragment having a packet header, with said packet
3 header having a packet identifier, translation information and a packet length,
4 determining whether all packet fragments for said packet have been received, retrieving
5 translation information from said packet header, and translating said first address into
6 said second address using said translation information.

1

1 17. The system of claim 15, wherein said platform is further adapted to use offset
2 values from each packet fragment to determine whether all packet fragments for said
3 packet have been received by collecting said offset values, retrieving a packet length for
4 said packet, and determining whether all positions for said packet are filled by said
5 collected offset values using said packet length.

1

1 18. An article comprising:
2 a storage medium;
3 said storage medium including stored instructions that, when executed by a
4 processor, result in receiving a plurality of packet fragments for a packet having a first
5 address, translating said first address into a second address without reassembling said

6 packet fragments into said packet, and sending said packet fragments using said second
7 address.

1

1 19. The article of claim 18, wherein the stored instructions, when executed by a
2 processor, further result in said translating by identifying a packet fragment having a
3 packet header, with said packet header having a packet identifier, translation information
4 and a packet length, determining whether all packet fragments for said packet have been
5 received, retrieving translation information from said packet header, and translating said
6 first address into said second address using said translation information.

1

1 20. The article of claim 19, wherein the stored instructions, when executed by a
2 processor, further result in using offset values from each packet fragment to determine
3 whether all packet fragments for said packet have been received by collecting said offset
4 values, retrieving a packet length for said packet, and determining whether all positions
5 for said packet are filled by said collected offset values using said packet length.

1

1 21. The article of claim 18, wherein the stored instructions, when executed by a
2 processor, further result in detecting an occurrence of a terminating condition prior to
3 receiving all of said packet fragments for said packet, and releasing said packet fragments
4 in accordance with said detection.

5