Error astimation, convergence of finite element approximations

Questions:

- · || u-uh|| -> 0 when h -> 0? where "h" is the mesh size
- · At what rate?
- · What is the error?

Plan: Make use of "best approximation" property of Finite element solutions:

114-46||= < inf |14-56||= 566|

- Devise error estimates for $u_{\rm I} \in V_{\rm h}$, where $u_{\rm I}$ is the unique element in $V_{\rm h}$ that interpolates the exact solution u.
- · || m-mp || & || m-mz || & c || m-mz ||

-> error estimation problem is delegated to interpolation theory.

Error estimates from interpolation theory

B = U Ωp , Ωp d-simplex of order "b"

Let $u \in H^{m}(B)$, $u^{e} \in H^{let}(\Omega_{h}^{e})$ e=1,...,ELet u_{I}^{e} be the polynomial of degree $\langle k, l_{e} \rangle$ i.e., $u_{I}^{e} \in P_{k}(\Omega_{h}^{e})$, which interpolates u^{e} . Extend $u_{I}^{e}(x)=0$ over $B-\Omega_{h}^{e}$

Let $u_{I} = \sum_{e=1}^{E} u_{I}^{e} \equiv global interpolant (\neq u_{h})$ Assume $u_{I} \in H^{m}(B)$ (V_h satisfies C*-conformity) $\left| \left| \left| \left| u - u_{I} \right| \right|_{m} \leqslant \sum_{e=1}^{E} C \left(\overline{f_{e}}^{m} \left(h^{e} \right)^{m} \left(h^{e} \right)^{k+1-m} \left| u^{e} \right|_{k+1} \right) \right|$