PRELIMS

QUESTIONS & SOLUTIONS OF AIPMT-2010 (SCREENING) TEST PAPER

Duration: 3 Hours Max. Marks: 800

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

IMPORTANT INSTRUCTIONS

- 1. The Test Booklet consists of one paper containing **200** objective type questions (four options with single correct answer) from Physics, Chemistry and Biology (Botany & Zoology).
- 2. There are three parts in the question paper (Physics, Chemistry and Biology (Botany & Zoology)). The distribution of marks subjectwise in each part is as under for each correct response.
- 3. Scoring and Negative Marking: Each question carries 4 marks. For each incorrect response one mark will be deducted from the total score. No deduction from the total score will, however, be made if no response is indicated for a question in the Answer Sheet. The candidates are advised not to attempt such question in the Answer Sheet, if they are not sure of the correct response. More than one answer indicated against a question will be deemed as incorrect response and will be negatively marked.

Part A — PHYSICS (200 marks) - 50 Questions

Part B — CHEMISTRY (200 marks) - 50 Questions

Part C — BIOLOGY (400 marks) - 100 Questions

PART- A (PHYSICS)

1. A block of mass m is in contact with the cart C as shown in the figure.

The coefficient of static friction between the block and the cart is μ . The acceleration α of the cart that will prevent the block from falling satisfies

(1)
$$\alpha > \frac{mg}{\mu}$$

(2)
$$\alpha > \frac{g}{\mu m}$$
 (3) $\alpha \ge \frac{g}{\mu}$

(3)
$$\alpha \geq \frac{g}{\mu}$$

(4)
$$\alpha < \frac{g}{\mu}$$

Ans.

Sol.

Pseudo force or fictitious force, $F_{fic} = m\alpha$

Force of friction, $f = \mu N = \mu m \alpha$,

The block of mass m will not fall as long as

 $f \ge mg$

 $\mu m\alpha \ge mg$

$$\alpha \ge \frac{g}{\mu}$$

2. The mass of a ${}_{3}^{7}$ Li nucleus is 0.042 u less than the sum of the masses of all its nucleons. The binding energy

per nucleon of ⁷₃Li nucleus is nearly

Ans. (2)

Sol. For ⁷₃Li nucleus,

Mass defect, $\Delta M = 0.042 \text{ u}$

$$\therefore$$
 1 u = 931.5 MeV/c²

$$\triangle M = 0.042 \times 931.5 \text{ MeV/c}^2$$

= 39.1 MeV/c²

Binding energy, $E_b = \Delta Mc^2$

$$= \left(39.1 \frac{\text{MeV}}{\text{c}^2}\right) \text{c}^2$$

= 39.1 MeV

Binding energy per nucleon,
$$E_{bn} = \frac{E_b}{A} = \frac{39.1 \,\text{MeV}}{7}$$

3. A circular disk of moment of inertia I, is rotating in a horizontal plane, about its symmetry axis, with a constant angular speed ω_r . Another disk of moment of inertia I_h is dropped coaxially onto the rotating disk. Initially the second disk has zero angular speed. Eventually both the disks rotate with a constant angular speed $\omega_{\scriptscriptstyle f}$. The energy lost by the initially rotating disc to friction is

(1)
$$\frac{1}{2} \frac{I_b^2}{(I_t + I_b)} \omega_i^2$$

$$(1) \frac{1}{2} \frac{I_b^2}{(I_t + I_b)} \omega_i^2 \qquad (2) \frac{1}{2} \frac{I_t^2}{(I_t + I_b)} \omega_i^2 \qquad (3) \frac{I_b - I_t}{(I_t + I_b)} \omega_i^2 \qquad (4) \frac{1}{2} \frac{I_b I_t}{(I_t + I_b)} \omega_i^2$$

(3)
$$\frac{I_b - I_t}{(I_t + I_b)} \omega_i^2$$

(4)
$$\frac{1}{2} \frac{I_b I_t}{(I_t + I_b)} \omega_i^2$$

Ans.

Sol. As no external torque is applied to the system, the angular momentum of the system remains conserved.

$$\therefore$$
 $L_i = L_f$

According to given problem,

$$I_t \omega_i = (I_t + I_b)\omega_f$$

$$\omega_{\mathsf{f}} = \frac{I_{\mathsf{t}} \, \omega_{\mathsf{i}}}{(I_{\mathsf{t}} + I_{\mathsf{b}})}$$

Initial energy,
$$E_i = \frac{1}{2}I_t\omega_i^2$$

Final energy,
$$E_f = \frac{1}{2}(I_t + I_b)\omega_f^2$$

Substituting the value of ω_i from equation (i) in equation (iii) we get

Final energy,
$$E_{\rm f} = \frac{1}{2} (I_{\rm t} + I_{\rm b}) \left(\frac{I_{\rm t} \omega_{\rm i}}{I_{\rm t} + I_{\rm b}} \right)^2$$

$$= \frac{1}{2} \frac{I_t^2 \omega_i^2}{(I_t + I_b)}$$
(iv)

Loss of energy, $\Delta E = E_i - E_f$

$$= \frac{1}{2} I_t \omega_i^2 - \frac{1}{2} \frac{I_t^2 \omega_i^2}{(I_t + I_b)}$$
 (Using (ii) and (iv))

$$= \frac{\omega_{i}^{2}}{2} \left(I_{t} - \frac{I_{t}^{2}}{\left(I_{t} + I_{b} \right)} \right) = \frac{\omega_{i}^{2}}{2} \left(\frac{I_{t}^{2} + I_{b}I_{t} - I_{t}^{2}}{\left(I_{t} + I_{b} \right)} \right)$$

$$= \frac{1}{2} \frac{I_b I_t}{\left(I_t + I_b\right)} \omega_i^2$$

- **4.** Which one of the following statement is false?
 - (1) Pure Si doped with trivalent impurities gives a p-type semiconductor.
 - (2) Majority carriers in a n-type semiconductor are holes.
 - (3) Minority carriers in a p-type semiconductor are electrons.
 - (4) The resistance of intrinisic semiconductor decreases with increase of temperature.

Ans. (2)

- **Sol.** In a n-type semiconductors, electrons are majority carriers and holes are minority carriers.
- 5. The displacement of a particle along the x axis is given by $x = asin^2\omega t$. The motion of the particle corresponds to
 - (1) simple harmonic motion of frequency ω/π
- (2) simple harmonic motion of frequency $3\omega/2\pi$
- (3) non simple harmonic motion
- (4) simple harmonic motion of frequency $\omega/2\pi$

Ans. (1)

Sol. $x = asin^2 \omega t$

$$= a \left(\frac{1 - \cos 2\omega t}{2} \right) \qquad (\because \cos 2\theta = 1 - 2\sin^2\theta)$$

$$= \frac{a}{2} - \frac{a\cos 2\omega t}{2}$$

$$\therefore \qquad \text{Velocity, } u = \frac{dx}{dt} = \frac{2\omega a \sin 2\omega t}{2}$$
$$= \omega a \sin 2\omega t$$

Acceleration,
$$a = \frac{du}{dt} = 2\omega^2 a \cos 2\omega t$$

For the given displacement
$$x = \frac{a}{2} - \frac{a \cos 2\omega t}{2}$$

 $a \propto -x$ is satisfied.

Hence, the motion of the particle is simple harmonic motion.

Note: The given motion is a simple harmonic motion with a time period $T = \frac{2\pi}{2\omega} = \frac{\pi}{\omega}$

- **6.** The radii of circular orbits of two satellites A and B of the earth, are 4R and R, respectively. If the speed of satellite A is 3V, then the speed of satellite B will be
 - (1) $\frac{3V}{4}$
- (2) 6V
- (3) 12 V
- (4) $\frac{3V}{2}$

Ans. (2)

Sol. Orbit speed of the satellite around the earth is

$$u = \sqrt{\frac{GM}{r}}$$

where,

G = Universal gravitational constant

M = Mass of earth

r = Radius of the orbit of the satellite

For satellite A

$$r_{A} = 4R, u_{A} = 3V$$

$$r_{A} = 4R, u_{A} = 3V$$
 $u_{A} = \sqrt{\frac{GM}{r_{A}}}$ (i)

For satellite B

$$r_{_{B}} = R, u_{_{B}} = ? u_{_{B}} = \sqrt{\frac{GM}{r_{_{B}}}}(ii)$$

Dividing equation (ii) by equation (i), we get

$$\therefore \qquad \frac{u_B}{u_A} = \sqrt{\frac{r_A}{r_B}} \qquad u_B = u_A \sqrt{\frac{r_A}{r_B}}$$

Substituting the given values, we get

$$u_{\rm B} = 3V \sqrt{\frac{4R}{R}} \qquad \qquad u_{\rm B} = 6 V$$

7. A beam of cathode rays is subjected to crossed electric (E) and magnetic fields (B). The fields are adjusted such that the beam is not deflected. The specific charge of the cathode rays is given by

(1)
$$\frac{B^2}{2VE^2}$$

(2)
$$\frac{2VB^2}{E^2}$$

(3)
$$\frac{2VE^2}{B^2}$$

(4)
$$\frac{E^2}{2VB^2}$$

(Where V is the potential difference between cathode and anode)

Sol. When a beam of cathode rays (or electrons) are subjected to crossed electric (E) and magnetic (B) fields, the beam is not deflected, if

Force on electron due to magnetic field = Force on electron due to electric field

$$u = \frac{E}{B}$$
(i)

If V is the potential difference between the anode and the cathode, then

$$\therefore \frac{1}{2}mu^2 = eV \frac{e}{m} = \frac{u^2}{2V} \dots (ii)$$

Substituting the value of u from equation (i) in equation (ii), we get

$$\frac{e}{m} = \frac{E^2}{2VB^2}$$

Specific charge of the cathode rays $\frac{e}{m} = \frac{E^2}{2VR^2}$

- **8.** A ball is dropped from a high platform at t = 0 starting from rest. After 6 seconds another ball is thrown downwards from the same platform with a speed v. The two balls meet at t = 18 s. What is the value of v? (Take $q = 10 \text{ m/s}^2$)
 - (1) 75 m/s
- (2) 55 m/s
- (3) 40 m/s
- (4) 60 m/s

Ans. (1)

Sol. Let the two balls meet after t s at distance x from the platform.

For the first ball

$$u = 0$$
, $t = 18$ s, $g = 10$ m/s²

Using h = ut +
$$\frac{1}{2}$$
 gt²

$$\therefore \qquad x = \frac{1}{2} gt^2 \qquad \dots (i)$$

$$u \times 12 + \frac{1}{2} \times 10 \times (12)^2$$

For the second ball

$$u = u, t = 12 s, g = 10 m/s^2$$

Using h = ut +
$$\frac{1}{2}$$
 × 10 × 10²(ii)

From equations (i) and (ii), we get

$$\frac{1}{2} \times 10 \times 18^2 = 12u + \frac{1}{2} \times 10 \times (12)^2$$

or
$$12u = \frac{1}{2} \times 10 \times [(18)^2 - (12)^2]$$

$$= \frac{1}{2} \times 10 \times [(18 + 12) \ (18 - 12)]$$

$$12u = \frac{1}{2} \times 10 \times 30 \times 6$$

or
$$u = \frac{1 \times 10 \times 30 \times 6}{2 \times 12} = 75 \text{ m/s}$$

- 9. A ray of light travelling in a transparent medium of refractive index μ , falls on a surface separating the medium from air at an angle of incidence of 45°. For which of the following value of μ the ray can undergo total internal reflection?
 - (1) $\mu = 1.33$
- (2) $\mu = 1.40$
- (3) $\mu = 1.50$
- (4) $\mu = 1.25$

Ans. (3)

Sol. For total internal reflection,

sini > sinC

where.

i = angle of incidence

C = critical angle

But,
$$\sin C = \frac{1}{\mu}$$

$$\therefore \qquad \text{sini} > \frac{1}{\mu} \qquad \text{or} \qquad \mu > \frac{1}{\text{sini}}$$

$$\mu > \frac{1}{\sin 45^{\circ}}$$
 (i = 45° (Given))

$$\mu > \sqrt{2}$$

Hence, option (c) is correct

- 10. The period of oscillation of a mass m suspended from a spring of negligible mass is T. If along with it another mass M is also suspended the period of oscillation will now be
 - (1) T

- (2) $\frac{T}{\sqrt{2}}$
- (3) 2T
- (4) $\sqrt{2}T$

Ans. (4)

Sol. A mass M is suspended from a massless spring of spring constant k as shown in figure (a). Then,

Time period of oscillation is $T = 2\pi \sqrt{\frac{M}{k}}$

When a another mass M is also suspended with it as shown in figure (b). Then,

Time period of oscillation is T' = $2\pi \sqrt{\frac{M+M}{k}} = 2\pi \sqrt{\frac{2M}{k}}$

$$= \sqrt{2} \left(2\pi \sqrt{\frac{M}{k}} \right) = \sqrt{2} T$$
 (Using (i))

- 11. A cylindrical metallic rod in thermal contact with two reservoirs of heat at its two ends conducts an amount of heat Q in time t. The metallic rod is melted and the material is formed into a rod of half the radius of the original rod. What is the amount of heat conducted by the new rod, when placed in thermal contact with the two reservoirs in time t?
 - (1) $\frac{Q}{4}$
- (2) $\frac{Q}{16}$
- (3) 2Q
- $(4) \frac{Q}{2}$

Ans. (2)

Sol. The amount of heat flows in time t through a cylindrical metallic rod of length L and uniform area of cross-section A (= π R²) with its ends maintained at temperatures T₁ and T₂ (T₁ > T₂) is given by

$$Q = \frac{KA(T_1 - T_2)}{I} t \qquad(i)$$

where K is the thermal conductivity of the material of the rod.

Area of cross-section of new rod A' = $\pi \left(\frac{R}{2}\right)^2 = \frac{\pi R^2}{4} = \frac{A}{4}$ (ii)

As the volume of the rod remains unchanged

where L' is the length the new rod

or
$$L' = L \frac{A}{A'}$$
(iii)

Now, the amount of heat flows in same time t in the new rod with its ends maintained at the same temperatures T_1 and T_2 is given by

$$Q' = \frac{KA'(T_1 - T_2)t}{L'}$$
(iv)

Substituting the values of A' and L' from equations (ii) and (iii) in the above equation, we get

$$Q' = \frac{K(A/4)(T_1 - T_2)t}{4L} = \frac{1}{16} \frac{KA(T_1 - T_2)t}{L}$$

$$= \frac{1}{16} Q \quad (Using (i))$$

12. A ball moving with velocity 2 m/s collides head on with another stationary ball of double the mass. If the coefficient of restitution is 0.5, then their velocities (in m/s) after collision will be

...(i)

∴.

Ans. (1)

Sol. Here, $m_1 = m$, $m_2 = 2m$

$$u_1 = 2 \text{ m/s}, u_2 = 0$$

coefficient of restitution, e = 0.5

Let v_1 and v_2 be their respective velocities after collision.

Applying the law of conservation of linear momentum, we get

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

 $m \times 2 + 2m \times 0 = m \times v_1 + 2m \times v_2$
or $2m = mv_1 + 2mv_2$

or $2 = (v_1 + 2v_2)$ By definition of coefficient of restitution,

$$e = \frac{v_2 - v_1}{u_1 - u_2}$$

or
$$e(u_1 - u_2) = v_2 - v_1$$

 $0.5(2 - 0) = v_2 - v_1$...(ii)
 $1 = v_2 - v_1$

Solving equations (i) and (ii), we get

$$v_1 = 0 \text{ m/s}, v_2 = 1 \text{ m/s}$$

13. A transverse wave is represented by $y = A\sin(\omega t - kx)$. For what value of the wavelength is the wave velocity equal to the maximum particle velocity?

(1)
$$\pi A/2$$

$$(2) \pi A$$

(3)
$$2\pi A$$

Ans. (3)

The given wave euqation is Sol.

$$y = Asin(\omega t - kx)$$

Wave velocity,
$$v = \frac{\omega}{k}$$

Particle velocity, $v_p = \frac{dy}{dt} = A\omega\cos(\omega t - kx)$

Maximum particle velocity, $(v_p)_{max} = A\omega$

...(ii)

According to the given question

$$V = (V_p)_{max}$$

$$\frac{\omega}{k} = A\omega$$

$$\frac{1}{k} = A$$

$$\frac{\lambda}{2\pi} = A$$

$$\frac{1}{k} = A$$
 or $\frac{\lambda}{2\pi} = A$ $\left(\because k = \frac{2\pi}{\lambda}\right)$

$$\lambda = 2\pi A$$

A particle has initial velocity $(3\hat{i} + 4\hat{j})$ and has acceleration $(0.4\hat{i} + 0.3\hat{j})$. Its speed after 10 s is 14.

(1) 7 units

(2)
$$7\sqrt{2}$$
 units

Ans. (2)

Sol. Here,

Initial velocity, $\vec{u} = 3\hat{i} + 4\hat{j}$

Acceleration, $\vec{a} = 0.4\hat{i} + 0.3\hat{j}$

Time, t = 10s

Let \vec{v} be velocity of a particle after 10s.

Using, $\vec{v} = \vec{u} + + \vec{a}t$

$$\vec{v} = (3\hat{i} + 4\hat{j}) + (0.4\hat{i} + 0.3\hat{j})(10)$$

$$= 3\hat{i} + 4\hat{j} + 4\hat{i} + 3\hat{j} = 7\hat{i} + 7\hat{j}$$

Speed of the particle after $10s = |\vec{v}| = \sqrt{(7)^2 + (7)^2}$

=
$$7\sqrt{2}$$
 units

An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of 2 m/s. The mass per unit length of water in the pipe is 100 kg/m. What is the power of the engine?

(1) 400 W

(2) 200 W

(3) 100 W

(4) 800 W

Ans. (4)

Sol. Here,

Mass per unit length of water, $\mu = 100 \text{ kg/m}$

Velocity of water, v = 2m/s

Power of engine, $P = \mu v^3$

 $= (100 \text{ kg/m})(2\text{m/s})^3$

= 800W

16. A thin ring of radius R meter has charge q coulomb uniformly spread on it. The ring rotates about its axis with a constant frequency of f revolutions/s. The value of magnetic induction in Wb/m² at the centre of the ring is Ans. (4)

(1) $\frac{\mu_0 qf}{2\pi R}$

(2) $\frac{\mu_0 q}{2\pi f P}$

(3) $\frac{\mu_0 q}{2fR}$

(4) $\frac{\mu_0 qf}{2R}$

Sol. Current produced due to circular motion of charge q is

$$I = af$$

Magnetic field induction at the centre of the ring of radius R is

 $B = \frac{\mu_0 2\pi I}{4\pi R} = \frac{\mu_0 I}{2R} = \frac{\mu_0 qf}{2R}$

(Using (i))

17. Which one of the following bonds produces a solid that reflects light in the visible region and whose electrical conductivity decreases with temperature and has high melting point?

(1) metallic bonding

(2) van der Wall's bonding

(3) ionic bonding

(4) covalent bonding

Ans. (1)

18. A particle moves a distance x in time t according to equation $x = (t + 5)^{-1}$. The acceleration of particle is proportional to

(1) (velocity)3/2

(2) (velocity)²

(3) (velocity)-2

(4) (velocity)^{2/3}

Ans. (1)

Sol. Distance, $x = (t + 5)^{-1}$

...(i)

Velocity, $v = \frac{dx}{dt} = \frac{d}{dt}(t+5)^{-1}$

 $= - (t + 5)^{-2}$

...(ii)

Acceleration, $a = \frac{dv}{dt} = \frac{d}{dt}[-(t+5)^{-2}]$

 $= 2(t + 5)^{-3}$

...(iii)

From equation (ii), we get

 $v^{3/2} = -(t + 5)^{-3}$

...(iv)

Substituting this in equation (iii) we get

Acceleration, $a = -2v^{3/2}$

or

a ∞ (velocity)^{3/2}

From equation (i), we get

$$x^3 = (t + 5)^{-3}$$

Substituting this in equation (iii), we get

Acceleration, $a = 2x^3$

or $a \propto (distance)^3$

Hence option (a) is correct

19. A conducting circular loop is placed in a uniform magnetic field, B = 0.025 T with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of 1 mm s⁻¹. The induced emf when the radius is 2 cm, is

(3)
$$\frac{\pi}{2} \mu V$$

Ans. (2)

Sol. Here,

Magnetic field B = 0.025 T

Radius of the loop, $r = 2cm = 2 \times 10^{-2} \text{ m}$

Constant rate at which radius of the loop shrinks

$$\frac{dr}{dt} = 1 \times 10^{-3} \text{ ms}^{-1}$$

Magnetic flux linked with the loop is

$$\phi = BA\cos\theta = B(\pi r^2)\cos0^\circ = B\pi r^2$$

The magnitude of the induced emf is

$$\begin{aligned} |\epsilon| &= \frac{d\phi}{dt} = \frac{d}{dt} (B\pi r^2) = B\pi 2r \frac{dr}{dt} \\ &= 0.025 \times \pi \times 2 \times 2 \times 10^{-2} \times 1 \times 10^{-3} \\ &= \pi \times 10^{-6} V = \pi \,\mu V \end{aligned}$$

20. The activity of a radioactive sample is measured as N_0 counts per minute at t = 0 and N_0 /e counts per minute at t = 5 minutes. The time (in minutes) at which the activity reduces to half its value is

(1)
$$\log_{e} \frac{2}{5}$$

$$(2) \frac{5}{\log_e 2}$$

Ans. (4)

Sol. According to activity law

$$R = R_0 e^{-\lambda t}$$

...(i)

where,

 R_0 = initial activity at t = 0

R = activity at time t

 λ = decay constant

According to given problem,

 $R_0 = N_0$ counts per minute

$$R = \frac{N_0}{e}$$
 counts per minute

t = 5 minutes

Substituting these values in equation (i), we get

$$\frac{N_0}{e} = N_0 e^{-5\lambda}$$

$$e^{-1} = e^{-5\lambda}$$

$$5\lambda = 1$$
 or $\lambda = \frac{1}{5}$ per minute

At
$$t = T_{1/2}$$
, theactivity R reduces to $\frac{R_0}{2}$.

where $T_{1/2}$ = half life of a radioactive sample From equation (i), we get

$$\frac{R_0}{2} = R_0 e^{-\lambda T_{1/2}}$$

$$e^{\lambda T_{1/2}} = 2$$

Taking natural logarithms of both sides of above equation, we get

$$\lambda T_{1/2} = \log_e 2$$

or
$$T_{1/2} = \frac{\log_e 2}{\lambda} = \frac{\log_e 2}{\left(\frac{1}{5}\right)} = 5\log_e 2 \text{ minutes}$$

- 21. Two particles which are initially at rest, move towards each other under the action of their internal attraction. If their speeds are v and 2v at any instant, then the speed of centre of mass of the system will be
 - (1) 2v
- (2) zero
- (3) 1.5 v
- (4) v

Ans. (2)

- As no external force is acting on the system, the centre of mass must be at rest i.e. $v_{CM} = 0$. Sol.
- 22. A particle of mass M is situated at the center of a spherical shell of same mass and radius a. The gravitational potential at a point situated at $\frac{a}{2}$ distance from the centre, will be

$$(1) - \frac{3GM}{a}$$

(2)
$$-\frac{2GM}{a}$$
 (3) $-\frac{GM}{a}$ (4) $-\frac{4GM}{a}$

(3)
$$-\frac{GM}{a}$$

$$(4) - \frac{4GM}{3}$$

Ans. (1)

Mass of the spherical shell = M

Radius of the spherical shell = a

Point P is at a distance $\frac{a}{2}$ from the centre of the shell as shown in figure

Gravitational potential at point P due to particle at O is

$$V_1 = -\frac{GM}{(a/2)}$$

Gravitational potential at point P due to spherical shell is

$$V_2 = -\frac{GM}{a}$$

Hence, total gravitational potential at the point P is

$$V = V_1 + V_2$$

$$= -\frac{GM}{(a/2)} + \left(-\frac{GM}{a}\right) = -\frac{2GM}{a} - \frac{GM}{a} = -\frac{3GM}{a}$$

- 23. The device that act as a complete electronic circuit is
 - (1) junction diode
- (2) integrated circuit
- (3) junction transistor
- (4) zener diode

Ans. (2)

- Sol. The device that can act as a complete circuit is integrated circuit (1C).
- 24. A potentiometer circuit is set up as shown. The potential gradient, across the potentiometer wire, is k volt/cm and the ammeter, present in the circuit reads 1.0 A when two way key is switched off. The balance points, when the key between the terminals (i) 1 and 2 (ii) 1 and 3, is plugged in, are found to be at length I, cm and I₂ cm respectively. The magnitudes, of the resistors R and X, in ohms, are then, equal, respectively, to

- (1) $k(I_2 I_1)$ and kI_2 (2) kI_1 and $k(I_2 I_1)$ (3) $k(I_2 I_1)$ and kI_1 (4) kI_1 and kI_2

Ans. (2)

Sol.

When the two way key is switched off, then

The current flowing in the resistors R and X is I = 1A ...(i)

When the key between the terminals 1 and 2 is plugged in, then

Potential difference across $R = IR = k\ell_*$...(ii)

where k is the potneital gradient across the potentiometer wire When the key between the terminals 1 and 3 is plugged in, then

Potential difference across $(R + X) = I(R + X) = k\ell_2$...(iii)

From equation (ii), we get

$$R = \frac{k\ell_1}{I} = \frac{k\ell_1}{1} = k\ell_1\Omega$$

From equation (iii), we get

R + X =
$$\frac{k\ell_2}{I} = \frac{k\ell_2}{1} = k\ell_1$$
 (Using (i))

$$\begin{split} \mathbf{X} &= \mathbf{k} \ell_2 - \mathbf{R} \\ &= \mathbf{k} \ell_2 - \mathbf{k} \ell_1 \\ &= \mathbf{k} (\ell_2 - \ell_1) \ \Omega \end{split} \tag{Using (ii))}$$

- 25. A tuning fork of frequency 512 Hz makes 4 beats per second with the vibrating string of a piano. The beat frequency decreases to 2 beats per sec when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was
 - (1) 510 Hz
- (2) 514 Hz
- (3) 516 Hz
- (4) 508 Hz

Ans. (4)

Sol. Let the frequencies of tuning fork and piano string be v_1 and v_2 respectively.

$$\upsilon_2 = \upsilon_1 \pm 4 = 512 \text{ Hz} \pm 4$$

= 516 Hz or 508 Hz

Increase in the tension of a piano string increases its frequecy.

If $v_2 = 516$ Hz, further increase in v_2 , resulted in an increase in the beat frequency. But this is not given in the question.

If v_2 = 508 Hz, further increase in v_2 resulted in decrease in the beat frequency. This is given in the question. when the beat frequency decreases to 2 beats per second.

Therefore, the frequency of the piano string before increasing the tension was 508 Hz.

Six vectors, \vec{a} through \vec{f} have the magnitudes and directions indicated in the figure. Which of the following 26. statements is true?

(1)
$$\vec{b} + \vec{c} = \vec{f}$$

(2)
$$\vec{d} + \vec{c} = \vec{f}$$

$$(3) \vec{d} + \vec{e} = \vec{f}$$

(4)
$$\vec{b} + \vec{e} = \vec{f}$$

Ans. (3)

From figure, $\vec{d} + \vec{e} = \vec{f}$

27. A galvanometer has a coil of resistance 100 ohm and gives a full scale deflection for 30mA current. If it is to work as a voltmeter of 30 volt range, the resistance required to be added will be

- (1) 900 Ω
- (2) 1800Ω
- $(3)500\Omega$
- (4) 1000Ω

Ans. (1)

Sol. Here.

Resistance of galvanometer, $G = 100\Omega$

Current for full scale deflection, $I_q = 30 \text{mA}$

$$= 30 \times 10^{-3} \text{ A}$$

Range of voltmeter, V = 30V

To convert the galvanometer into an voltmeter of a given range, a resistance R is connected in series with it as shown in the figure.

28. A gramophone record is revolving with an angular velocity ω. A coin is placed at a distance r from the centre of the record. The static coefficient of friction is μ . The coin will revolve with the record if

(1)
$$r = \mu g \omega^2$$

(2)
$$r = \frac{\omega^2}{\mu g}$$

(2)
$$r = \frac{\omega^2}{\mu g}$$
 (3) $r \le \frac{\mu g}{\omega^2}$

$$(4) r \ge \frac{\mu g}{\omega^2}$$

Ans. (3)

Sol. The coin will revolve with the record, if Force of friction $\square \ge$ Centrifugal force $\mu mg \ge mr\omega^2$

or $r \ge \frac{\mu g}{\omega^2}$

- 29. Which of the following statement is false for the properties of electromagnetic waves?
 - (1) Both electric and magnetic field vectors attain the maxima and minima at the same place and same time.
 - (2) The energy in electromagnetic wave is divided equally between electric and magnetic vectors.
 - (3) Both electric and magnetic field vectors are parallel to each other perpendicular to the direction of propagation of wave.
 - (4) These waves do not require any material medium for propagation.

Ans. (3)

- **Sol.** In an electromagnetic wave both electric and magnetic vectors are perpendicular to each other as well as perpendicular to the direction of propagation of wave.
- **30.** The energy of a hydrogen atom in the ground state is −13.6 eV. The energy of a He⁺ ion in the first excited state will be

(1) - 13.6 eV

(2) - 27.2 eV

(3) – 54.4 eV

(4) - 6.8 eV

Ans. (1)

Sol. Energy of an hydrogen like atom like He⁺ in an nth orbit is given by

$$E_n = -\frac{13.6Z^2}{n^2}$$
 eV

For hydrogen atom, Z = 1

$$\therefore$$
 E_n = $-\frac{13.6}{n^2}$ eV

For ground state, n = 1

$$\therefore$$
 E₁ = $-\frac{13.6}{1^2}$ eV = -13.6 eV

For He $^+$ ion, Z = 2

$$E_n = -\frac{4(13.6)}{(2)^2} \text{ eV} = -13.6 \text{ eV}$$

For first excited state, n = 2

$$\therefore \qquad E_2 = -\frac{4(13.6)}{(2)^2} \text{ eV} = -13.6 \text{ eV}$$

Hence, the energy in He⁺ ion in first excited state is same that of energy of the hydrogen atom in ground state i.e., – 13.6 eV

31. The dimension of $\frac{1}{2}\epsilon_0 E^2$, where ϵ_0 is permittivity of free space and E is electric field, is

(1) ML²T⁻²

(2) $ML^{-1}T^{-2}$

(3) ML^2T^{-1}

(4) MLT⁻¹

Ans. (2)

Sol. Energy density of an electric field E is

$$u_E = \frac{1}{2} \varepsilon_0 E^2$$

where $\epsilon_{\mbox{\tiny n}}$ permittivity of free space

$$\frac{Energy}{Volume} = \frac{ML^2T^{-2}}{L^3}$$

$$= ML^{-1}T^{-2}$$

Hence, the dimension of $\frac{1}{2} \varepsilon_0 E^2$ is ML⁻¹T⁻²

32. In producing chlorine by electrolysis 100 kW power at 125 V is being consumed. How much chlorine per minute is liberated (E.C.E. of chlorine is 0.367 × 10⁻⁶ kg/C)

(1)
$$1.76 \times 10^{-3}$$
 kg

$$(2) 9.67 \times 10^{-3} \text{ kg}$$

(3)
$$17.61 \times 10^{-3}$$
 kg (4) 3.67×10^{-3} kg

Ans. (3)

Current, $I = \frac{P}{V} = \frac{100 \times 10^3 \text{ W}}{125 \text{ V}} = 800 \text{ A}$ Sol.

> According to the Faraday's first law of electrolysis Mass of chlorine liberated, m = zlt $m = (0.367 \times 10^{-6} \text{ kg/C}) (800 \text{ A}) (60 \text{ s})$

$$= \left(0.367 \times 10^{-6} \, \frac{\text{kg}}{\text{C}}\right) \left(800 \, \frac{\text{C}}{\text{s}}\right) \, (60 \, \text{s})$$

$$= 17.6 \times 10^{-3} \text{kg}$$

33. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed 2 m/s. When the stone reaches the floor, the distance of the man above the floor will be

Ans.

Sol. Since the man is in gravity free space, force on man + stone system is zero Therefore centre of mass of the system remains at rest. Let the man goes x m above when the stone reaches the floor, then

$$M_{man} \times x = M_{stone} \times 10$$

$$x = \frac{0.5}{50} \times 10$$

$$x = 0.1 \text{ m}$$

Therefore final height of man above

$$floor = 10 + x$$

$$= 10 + 0.1 = 10.1 \text{ m}$$

- An alpha nucleus of energy $\frac{1}{2}$ mu² bombards a heavy nuclear target of charge Ze. Then the distance of 34. closest approach for the alpha nucleus will be proportional to
 - $(1) \frac{1}{70}$
- $(2) u^2$
- (3) $\frac{1}{m}$
- $(4) \frac{1}{14}$

Ans. (3)

Sol. At the distance of closest approach d, Kinetic energy = Potential energy

$$\frac{1}{2}mv^2 = \frac{1}{4\pi\epsilon_0} \frac{(2e)(Ze)}{r_0}$$

where.

Ze = charge of target nucleus

2e = charge of alpha nucleus

 $\frac{1}{2}$ mv² = kinetic energy of alpha nucleus of mass m moving with velocity v

- $d = \frac{2Ze^2}{4\pi\epsilon_0 \left(\frac{1}{2}m\upsilon^2\right)} \qquad \therefore \qquad d \propto \frac{1}{m}$
- A lens having focal length f and aperture of diameter d forms an image of intensity I. Aperture of diameter $\frac{d}{dt}$ 35. in central region of lens is covered by a block paper. Focal length of lens and intensity of image now will be respectively
 - (1) f and $\frac{1}{4}$
- (2) $\frac{3f}{4}$ and $\frac{I}{2}$ (3) f and $\frac{3I}{4}$
- (4) $\frac{f}{2}$ and $\frac{I}{2}$

Sol. Focal length of the lens remains same. Intensity of image formed by lens is proportional to area exposed to incident light from object.

i.e., intensity □∞ area

i.e.,
$$\frac{I_2}{I_1} = \frac{A_2}{A_1}$$

Initial area,

$$A_1 = \left(\frac{d}{2}\right)^2 = \frac{\pi d^2}{4}$$

After blocking, exposed area,

$$A_2 = \frac{\pi d^2}{4} - \frac{\pi (d/2)^2}{4}$$
$$= \frac{\pi d^2}{4} - \frac{\pi d^2}{16} = \frac{3\pi d^2}{16}$$

$$\therefore \frac{I_2}{I_1} = \frac{A_2}{A_1} = \frac{\frac{3\pi d^2}{16}}{\frac{\pi d^2}{16}} = \frac{3}{4}$$

or
$$I_2 = \frac{3}{4}I_1 = \frac{3}{4}I$$
 (: $I_2 = I$)

Hence focal length of a lens = f_1 intensity of the image = $\frac{3I}{4}$

- 36. If ΔU and ΔW represent the increase in internal energy and work done by the system respectively in a thermodynamical process, which of the following is true?
 - (1) $\Delta U = -\Delta W$, in a adiabatic process
- (2) $\Delta U = \Delta W$, in a isothermal process
- (3) $\Delta U = \Delta W$, in a adiabatic process
- (4) $\Delta U = -\Delta W$, in a isothermal process

Ans. (1)

Sol. According to first law of thermodynamics $\Delta Q = \Delta U + \Delta W$(i) where.

 ΔQ = Heat supplied to the system

 Δu = Increase in internal energy of the system

 $\Delta W = Work$ done by the system

For an adiabatic process

 $\Delta Q = 0$

From equation (i), we get

 $\Delta u = -\Delta W$

For an isothermal process

 $\Delta u = 0$

Hence, option (a) is true,

- 37. The total radiant energy per unit area, normal to the direction of incidence, received at a distance R from the centre of a star of radius r, whose outer surface radiates as a black body at a temperature TK is given by (where σ is Stefan's constant)
 - $(1) \frac{\sigma r^2 T^4}{R^2}$
- (2) $\frac{\sigma r^2 T^4}{4\pi r^2}$ (3) $\frac{\sigma r^4 T^4}{r^4}$
- (4) $\frac{4\pi\sigma r^2T^4}{R^2}$

Ans. (1)

Sol. According to the stefan Boltzmann law, the power radiated by the star whose outer surface radiates as a black body at temperature T K is given by

$$P = 4\pi r^2 \sigma T^4$$

where,

r = radius of the star

s = Stefan's constant

The radiant power per unit area received at a distance R from the centre of a star is

$$S = \frac{P}{4\pi R^2} = \frac{4\pi r^2 \sigma T^4}{4\pi R^2} = \frac{\sigma r^2 T^4}{R^2}$$

38. In the given circuit the reading of voltmeter V₁ and V₂ are 300 volts each. The reading of the voltmeter V₃ and ammeter A are respectively

(1) 150 V, 2.2 A

(2) 220 V, 2.2 A

(3) 220 V, 2.0 A

(4) 100 V, 2.0 A

Ans. (2)

As $V_L = V_C = 300$ V, therefore the givne series LCR circuit is in resonance.

Current,
$$I = \frac{V}{Z} = \frac{220 \text{ V}}{100 \Omega} = 2.2 \text{ A}$$

Hence, the reading of the voltmeter V_3 is 220 V and the reading of ammeter A is 2.2 A.

- 39. A 220 volt input is supplied to a transformer. The output circuit draws a current of 2.0 ampere at 440 volts. If the efficiency of the transformer is 80% the current drawn by the primary windings of the transformer is
 - (1) 3.6 ampere
- (2) 2.8 ampere
- (3) 2.5 ampere
- (4) 5.0 ampere

(4) Ans.

Sol. Here,

Input voltage, $V_p = 220 \text{ V}$ Output voltage, $V_s = 440 \text{ V}$ Input current, $I_p = ?$

Output voltage, I = 2 A

Efficiency of the transformer, $\eta = 80 \%$

Efficiency of the transformer, $\eta = \frac{1}{1}$ Input power

$$\eta = \frac{V_s I_s}{V_p I_p}$$

or
$$I_p = \frac{V_s I_s}{\eta V_p} = \frac{(440 \text{ V})(2\text{A})}{\left(\frac{80}{100}\right)(220 \text{ V})} = \frac{(440 \text{ V})(2\text{A})(100)}{(80)(220 \text{ V})} = 5\text{A}$$

- A source S_1 is producing 10^{15} photons per second of wavelength 5000Å. Another sorce S_2 is producing 1.02 40. × 10¹⁵ photons per second of wavelength 5100 Å. Then (power of S_2)/(power of S_1) is equal to
 - (1) 1.00
- (2) 1.02
- (3)1.04
- (4)0.98

Ans. (1)

Sol. For a source S₁,

Wavelength, $\lambda_1 = 5000 \text{ Å}$

Number of photons emitted per second, N₁₋₁₀¹⁵

Energy of each photon, $E_1 = \frac{hc}{\lambda_1}$

Power of source S_1 , $P_1 = E_1 N_1 = \frac{N_1 hc}{\lambda_1}$

For a source S_2 , Wavelength, $\lambda_2 = 5100 \text{ Å}$

Number of photons emitted per second, $N_2 = 1.02 \times 10^{15}$

Energy of each photon,
$$E_2 = \frac{hc}{\lambda_2}$$

Power of source
$$S_2$$
, $P_2 = N_2 E_2 = \frac{N_2 hc}{\lambda_2}$

$$Power of S_2 = \frac{P_2}{P_1} = \frac{\frac{N_2hc}{\lambda_2}}{\frac{N_2hc}{\lambda_2}} = \frac{N_2\lambda_1}{N_2\lambda_2}$$

$$\frac{(1.02 \times 10^{15} \text{ photons/s}) \times (5000 \text{Å})}{(10^{15} \text{photons/s}) \times (5100 \text{Å})} = \frac{51}{51} = 1$$

41. A common emitter amplifier has a voltage gain of 50, an input impedance of 100Ω and an output impedance of 200 Ω . The power gain of the amplifier is

(1)500

- (2)1000
- (3)1250
- (4) 50

Ans. (3)

Sol. Here,

Voltage gain = 50

Input resistance, $R_i = 100\Omega$

Output resistance, $R_0 = 200\Omega$

Resistance gain =
$$\frac{R_0}{R_i} = \frac{200\Omega}{100\Omega} = 2$$

Power gain =
$$\frac{\text{(Voltage gain)}^2}{\text{Resistance gain}} = \frac{50 \times 50}{2} = 1250$$

42. A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 sec in earth's horizontal magnetic field of 24 microtesla. When a horizontal field of 18 microtesla is produced opposite to the earth's field by placing a current carrying wire, the new time period of magnet will be

(1) 1 s

- (2) 2 s
- (3) 3 s
- (4) 4 s

Ans. (4)

The time period T of oscillation of a magnet is given by Sol.

$$T = 2\pi \sqrt{\frac{I}{MB}}$$

where,

I = Moment of inertia of magnet about the axis of rotation

M = Magnetic moment of the magnet

B = Uniform magnetic field As the I, B remains the same

$$\therefore \qquad T \propto \frac{1}{\sqrt{B}} \quad \text{or } \frac{T_2}{T_1} = \sqrt{\frac{B_1}{B_2}}$$

According to given problem,

$$B_1 = 24 \mu T$$

$$B_2 = 24 \mu T - 18 \mu T = 6 \mu T$$

$$T_1 = 2s$$

$$T_2 = (2s) \sqrt{\frac{(24\mu T)}{(6\mu T)}} = 4s$$

43. Two positive ions, each carrying a charge q, are separated by a distance d. If F is the force of repulsion between the ions, the number of electrons missing from each ion will be (e being the charge on an electron)

(1)
$$\frac{4\pi\epsilon_0 F d^2}{e^2}$$

(2)
$$\sqrt{\frac{4\pi\epsilon_0 F e^2}{d^2}}$$
 (3) $\sqrt{\frac{4\pi\epsilon_0 F d^2}{e^2}}$ (4) $\frac{4\pi\epsilon_0 F d^2}{q^2}$

$$(3) \sqrt{\frac{4\pi\epsilon_0 F d^2}{e^2}}$$

$$(4) \frac{4\pi\epsilon_0 F d^2}{a^2}$$

Sol. According to Coulomb's law, the force of repulsion between the two positive ions each of charge q, separated by a distance d is given by

$$F = \frac{1}{4\pi\epsilon_0} \frac{(q)(q)}{d^2}$$

$$F = \frac{q^2}{4\pi\epsilon_0 d^2}$$

$$q^2 = 4\pi\epsilon_0 F d^2$$

$$q = \sqrt{4\pi\epsilon_0 F d^2}$$

Since, q = ne

where.

n = number of electrons missing from each ion

e = magnitude of charge on electron

$$\therefore$$
 $n = \frac{q}{e}$

$$n = \frac{\sqrt{4\pi\epsilon_0 F d^2}}{e}$$

(using (i))

$$= \sqrt{\frac{4\pi\epsilon_0 F d^2}{e^2}}$$

44. The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface, having work function 5.01 eV, when ultraviolet light of 200 nm falls on it, must be

$$(2) - 1.2 V$$

$$(3) - 2.4 \text{ V}$$

Ans. (4)

Sol.

Incident wavelength, $\lambda = 200 \text{ nm}$

Work function, $\phi_0 = 5.01 \text{ eV}$

According to Einstein's photoelectric equation

$$eV_s = hv - \phi_0$$

$$eV_s = \frac{hc}{\lambda} - \phi_0$$

where $V_{\mbox{\tiny s}}$ is the stopping potential

$$eV_s = \frac{(1240 \text{ eV nm})}{(200 \text{ nm})} - 5.01 \text{ eV}$$

$$= 6.2 \text{ eV} - 5.01 \text{ eV} = 1.2 \text{ eV}$$

Stopping potential, $V_s = 1.2 \text{ V}$

The potential difference that must be applied to stop photoelectrons = $-V_s = -1.2 \text{ V}$

45. A square surface of side L meter in the plane of the paper is placed in a uniform electric field E (volt/m) acting along the same plane at an angle θ with the horizontal side of the square as shown in figure. The electric flux linked to the surface in units of volt × meter is

(3)
$$EL^2 sin\theta$$

Ans. (4)

Sol. Flux passing through area A

$$\phi = E. A \cos \theta$$

$$\phi = \vec{E} \cdot \vec{A} = 0$$

lines are parallel to the surfaces

46. A series combination of n₁ capacitors, each of value C₁ is charged by a source of potential difference 4V. When another parallel combination of n₂ capacitors, each of value C₂, is charged by a source of potential difference V, it has the same (total) energy stored in it, as the first combination has. The value of C₂, in terms of C₁, is then

(1)
$$\frac{2C_1}{n_1n_2}$$

- (2) $16\frac{n_2}{n_1}C_1$ (3) $2\frac{n_2}{n_1}C_1$ (4) $\frac{16C_1}{n_1n_2}$

Ans.

Sol. A series combination of n₁ capacitors each of capacitance C₁ are connected to 4V source as shown in the figure.

Total capacitance of the series combination of the capacitors is

$$\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_1} + \frac{1}{C_1} + \dots$$
 upto n_1 terms = $\frac{n_1}{C_1}$

or
$$C_s = \frac{C_1}{n_1}$$

Total energy stored in a series combination of the capacitors is

$$u_s = \frac{1}{2}C_s(4V)^2$$

$$= \frac{1}{2} \left(\frac{C_1}{n_1} \right) (4V)^2$$
 (using (i))...(ii)

A parallel combination of n_2 capacitors each of capacitance C_2 are connected to V source as shown in the figure.

Total capacitance of the parallel combination of capacitors is

$$C_p = C_2 + C_2 + \dots + \text{upto } n_2 \text{ terms} = n_2 C_2$$

 $C_p = n_2 C_2 \qquad \dots \text{(iii)}$

Total energy stored in a parallel combination of capacitors is

$$u_p = \frac{1}{2}C_pV^2$$

= $\frac{1}{2}(n_2C_2)(V)^2$ (Using (iii))....(iv)

According to the given problem,

$$U_{s} = U_{s}$$

 ${\bf U_s} = {\bf U_p}$ Substituting the values of ${\bf u_s}$ and ${\bf u_p}$ from equations (ii) and (iv), we get

$$\frac{1}{2}\frac{C_1}{n_1}(4V)^2 = \frac{1}{2}(n_2C_2)(V)^2$$

or
$$\frac{C_1 16}{n_1} = n_2 C_2$$
 or $C_2 = \frac{16C_1}{n_1 n_2}$

$$C_2 = \frac{160}{0.00}$$

- 47. Electromagnets are made of soft iron because soft iron has
 - (1) low retentivity and high coercive force
- (2) high retentivity and high coercive force
- (3) low retentivity and low coercive force
- (4) high retentivity and low coercive force

Ans.

- Electromagnetics are made of soft iron because soft iron has low retentivity and low coercive force or low Sol. coercivity. Soft iron is a soft magnetic material.
- 48. A square current carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is \vec{F} , the net force on the remaining three arms of the loop is

$$(1) \ 3\vec{F}$$

(2)
$$-\vec{F}$$

$$(3) - 3\vec{F}$$

Ans. (2)

Sol. When loop is placed in the magnetic field then magnetic moment of coil

$$\tau = NiBA \sin \theta$$

$$\tau_{max} = NiBA$$

Force \vec{F}_1 and \vec{F}_2 , which are acting on coil, are equal in magnitude but opposite in direction

Force \vec{F}_3 and \vec{F}_4 are equal in magnitude but opposite in direction, create magnetic moment. In this way force F acting on one side of loop and force -F acting on remaining side of loop.

- 49. Consider the following two statements.
 - (A) Kirchhoff's junction law follows from the conservation of charge
 - (B) Kirchhoff's loop law follows from the conservation of energy

Which of the following is correct?

(1) Both (A) and (B) are wrong

(2) (A) is correct and (B) is wrong

(3) (A) is wrong and (B) is correct

(4) Both (A) and (B) are correct

Ans. (4)

- **Sol.** (d): Kirchoff's junction law or Kirchhoff's first law is based on the conservation of charge. Kirchhoff's loop law or Kirchhoff's second law is based on the conservation of energy. Hence both statements (A) and (B) are correct
- **50.** To get an output Y = 1 from the circuit shown below the input must be

	Α	В	С
(1)	0	1	0
(2)	0	0	1
(3)	1	0	1
(4)	1	0	0
Δns	(3)		

AII5. (3)

Sol. A+B

The Boolean expression of the given circuit is

$$Y = (A + B) \cdot C$$

The table truth of the given input signals as shown in the table

Α	В	С	A + B	Y = (A + B) .C
0	1	0	1	0
0	0	1	0	0
1	0	1	1	1
1	0	0	1	0

From the table truth we conclude that output Y = 1, for the inputs A = 1, B = 0, C = 1 for the inputs A = 1, B = 0, C = 1

Hence option (c) is correct

PART- B (CHEMISTRY)

51. For the reaction.

$$N_2O_5(g) \longrightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$$

the value of rate of disappearance of N_2O_5 is given as 6.25×10^{-3} mol L⁻¹ s⁻¹. The rate of formation of NO_2 and O_2 is given respectively as:

- (1) 6.25×10^{-3} mol L⁻¹s⁻¹ and 6.25×10^{-3} mol L⁻¹s⁻¹
- (2) 1.25×10^{-2} mol L⁻¹s⁻¹ and 3.125×10^{-3} mol L⁻¹s⁻¹
- (3) 6.25×10^{-3} mol L⁻¹s⁻¹ and 3.125×10^{-3} mol L⁻¹s⁻¹
- (4) 1.25×10^{-2} mol L⁻¹s⁻¹ and 6.25×10^{-3} mol L⁻¹s⁻¹

Ans. (2)

Sol. Rate of disappearance of reactant = rate of appearance of product

or
$$-\frac{1}{\text{stoichiometric coefficient of reactant}} \frac{\text{d [reactant]}}{\text{dt}}$$

$$= + \frac{1}{\text{stoichiometric coefficient of product]}} \frac{\text{d [product]}}{\text{dt}}$$

For the reaction,

$$N_{2}O_{5}(g) \longrightarrow 2NO_{2}(g) + \frac{1}{2}O_{2}(g)$$

$$\frac{-d[N_{2}O_{5}]}{dt} = +\frac{1}{2}\frac{d[NO_{2}]}{dt}$$

$$= +\frac{2d[O_{2}]}{dt}$$

$$d[NO_{2}] \qquad 2d[N_{2}O_{5}]$$

$$\frac{d[NO_2]}{dt} = -\frac{2d[N_2O_5]}{dt}$$

$$= 2 \times 6.25 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$$

$$= 12.5 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$$

$$= 1.25 \times 10^{-2} \text{ mol } L^{-1} \text{ s}^{-1}$$

$$= \frac{d[O_2]}{dt} = -\frac{d[N_2O_5]}{dt} \times \frac{1}{2}$$

$$= \frac{6.25 \times 10^{-3} \text{ mol} L^{-1} \text{s}^{-1}}{2} = 3.125 \times 10^{-3} \text{ mol } L^{-1} \text{s}^{-1}$$

- **52.** Liquid hydrocarbons can be converted to a mixture of gaseous hydrocarbons by:
 - (1) Oxidation

- (2) Cracking
- (3) Distillation under reduced pressure
- (4) Hydrolysis

Ans. (2)

Sol. Lower hydrocarbons exist in gaseous state while higher ones are in liquid state or solid state.

On cracking or pyrolysis, the hydrocarbon with higher molecular mass gives a mixture of hydrocarbons having lower molecular mass. Hence, we can say that by cracking a liquid hydrocarbon can be converted into a mixture of gaseous hydrocarbons.

- 53. In which of the following pairs of molecules/ions, the central atoms have sp² hybridization?
 - (1) NO_2^- and NH_3
- (2) BF₃ and NO₂-
- (3) NH₂-and H₂O
- (4) BF, and NH,-

Ans. (2)

- **Sol.** For sp² hybridisation, there must be 3σ -bonds or 2σ -bonds along with a long pair of electrons.
 - (i) $NO_2^- \Rightarrow 2\sigma + 1 \ell p = 3$, i.e., sp^2 hybridisation
- (ii) NH₃ \Rightarrow 3 σ + 1 ℓ p = 4, i.e., sp³ hybridisation
- (iii) BF₃ \Rightarrow 3 σ + 0 ℓ p = 3, i.e., sp² hybridisation
- (iv) $NH_2^- \Rightarrow 2\sigma + 2\ell p = 4$, i.e., sp^3 hybridisation
- (v) $H_2O \Rightarrow 2\sigma + 2 \ell p = 4$, i.e., sp³ hybridisation

Thus, among the given pairs, only BF₃ and NO₂⁻ have sp² hybridisation.

- **54.** Which one of the following does not exhibit the phenomenon of mutarotation?
 - (1) (+) Sucrose
- (2) (+) Lactose
- (3) (+) Maltose
- (4) (-) Fructose

Ans. (1)

- **Sol.** Reducing sugars that exist in hemiacetal and hemiketal forms, undergo mutarotation in aqueous solution. Among the given carbohydrates, only sucrose is a non-reducing sugar as in it the hemiacetal and hemiketal groups of glucose and fructose are linked together through O-atom and thus, not free. Due to the absence of free hemiacetal or hemiketal group, sucrose does not exhibit mutarotation.
- **55.** Which one of the following species does not exist under normal conditions?
 - (1) Be₂+
- (2) Be₂
- $(3) B_{2}$
- (4) Li₂

Ans. (2)

- **Sol.** Molecules with zero bond order, do not exist.
 - (a) Be₂⁺ $(4 + 4 1 = 7) = \sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^3$

BO =
$$\frac{4-3}{2}$$
 = 0.5

(b) Be₂ $(4 + 4 = 8) = \sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$

$$BO = \frac{4-4}{2} = 0$$

(c) $B_2 (5 + 5 = 10) = \sigma 1s^2$, $\sigma 1s^2$, $\sigma 2s^2$, $\sigma 2s^2$, $\pi 2p_x^1 \approx \pi 2p_y^1$

$$BO = \frac{6-4}{2} = 1$$

(d) $\text{Li}_2(3+3=6) = \sigma 1 s^2, \ \sigma 1 s^2, \ \sigma 2 s^2$

$$BO = \frac{4-2}{2} = 1$$

Thus, Be, does not exist under normal conditions.

- **56.** Which of the following complex ions is not expected to absorb visible light?
 - (1) [Ni(CN)₄]²⁻
- (2) $[Cr(NH_3)_{\epsilon}]^{3+}$
- $(3) [Fe(H_2O)_e]^{2+}$
- $(4) [Ni(H_2O)_6]^{2+}$

Ans. (1)

- **Sol.** For the absorption of visible light, presence of unapried d-electrons is the necessity.
 - (1) $[Ni(CN)_4]^{2-}$, Ni is present as Ni²⁺.

$$Ni^{2+} = [Ar] 3d^8 4s^0$$

(Pairing occurs because CN⁻ is a strong field ligand).

Since, in [Ni(CN)₄]²⁻, no unpaired electron is present in d-orbitals, it does not absorb visible lights.

(2) In $[Cr(NH_3)_{\epsilon}]^{3+}$, Cr is present as Cr^{3+} .

$$Cr^{3+} = [Ar] 3d^3 4s^0$$

(Three unpaired electrons)

(3) In [Fe(H₂O)₂]²⁺, Fe is present as Fe³⁺.

$$Fe^{2+} = [Ar] 3d^6 4s^0$$

(Four unpaired electrons)

(4) In [Ni(H₂O)_c]²⁺, Ni is present as Ni²⁺.

$$Ni^{2+} = [Ar] 3d^3 4s^0$$

(Two unpaired electrons)

57. Given are cyclohexanol (I), acetic acid (II), 2, 4, 6-trinitrophenol (III) and phenol (IV). In these the order of decreasing acidic character will be:

(1)
$$III > II > IV > I$$
 (2) $II > III > I > IV$

(3)
$$II > III > IV > I$$
 (4) $III > IV > II > I$

Ans. (1)

- Sol. Higher the tendency to give a proton, higher is the acidic character, and tendency to lose a proton depends upon the stability of intermediate, i.e., carbanion formed.
 - 2, 4, 6-trinitrophenol after the loss of a proton gives 2,4,6-trinitrophenoxide ion which is stabilised by resonance, -I effect and -M effect, thus is most acidic among the given compounds.

Phenol after losing a proton form phenoxide ion which is also stabilised by resonance, -M and -I effects but is less stabilised as compared to 2, 4, 6-trinitrophenoxide ions. Thus, it is less acidic as compared to 2,4,6-

trinitrophenol. (CH $_3$ COOH) after losing a proton gives acetate (CH $_3$ C \bigcirc) ion which is stabilised by only

resonance. However, it is more resonance stabilised as compared to a phenoxide ion, thus more acidic as compared to phenol. 2,4,6-trinitrophenol, however, is more acidic than acetic acid due to the presence of three electron withdrawing -NO_a groups. Cyclohexanol gives an anion that is least stable among the given, thus, it is least acidic.

Hence, the correct order of acidic strength is 2, 4, 6-trinitrophenol > acetic acid > phenol > cyclohexanol.

58. If pH of a saturated solution of Ba(OH)₂ is 12, the value of its K_{sn} is:

$$(1) 4.00 \times 10^{-6} M^3$$

$$(2) 4.00 \times 10^{-7} \text{ M}^{3}$$

(2)
$$4.00 \times 10^{-7} \,\mathrm{M}^3$$
 (3) $5.00 \times 10^{-6} \,\mathrm{M}^3$

Ans. (4)

Given, pH of Ba(OH)₂ = 12 Sol.

$$H^{+} = [1 \times 10^{-12}]$$

and
$$[OH^-] = \frac{1 \times 10^{-14}}{1 \times 10^{-12}}$$
 [:: $[H^+][OH^-] = 1 \times 10^{-14}]$
= 1 × 10² mol/L

$$Ba(OH)_2 \longrightarrow Ba^{2+} + 2OH^{-}$$

$$K_{co} = [Ba^{2+}][OH^{-}]^{2}$$

= [s]
$$[2s]^2 = \left\lceil \frac{1 \times 10^{-2}}{2} \right\rceil (1 \times 10^{-2})^2 = 0.5 \times 10^{-6} = 5.0 \times 10^{-7} \text{ M}^3$$

- **59.** The reaction of toluene with Cl₂ in presence of FeCl₃ gives 'X' and reaction in presence of light gives 'Y'. Thus, 'X' and 'Y' are:
 - (1) X = Benzal chloride, Y = o-chlorotoluene
 - (2) X = m-chlorotoluene, Y = p-chlorotoluene
 - (3) X = o-and p-chlorotoluene, Y = Trichloromethyl benzene
 - (4) X = Benzyl chloride, Y = m-chlorotoluene

Ans. (3)

Sol. In the presence of halogen carrier, electrophilic substitution occurs while in the presence of sunlight, substitution occurs at the dide chain.

$$CH_3$$
 CI_2
 CI_2
 O -chlorotoluene
 CH_3
 CI
 CI_2
 O -chlorotoluene

(: −CH₃ is an o/p directing group.)

60. Which one of the following compounds has the most acidic nature?

$$(1) \bigcirc CH_2OH \qquad (2) \bigcirc OH \qquad (3) \bigcirc OH \qquad (4) \bigcirc CH \bigcirc CH$$

Ans. (2)

Sol. Presence of electron withdrawing substituent increases the acidity while electron relasing substituent, when present, decreases the acidity.

Phenyl is an electron withdrawing substituent while $-CH_3$ is an electron releasing substituent. Moreover, phenoxide ion is more resonance stabilised as compared to benzyloxide ion, thus releases proton more easily. That's why is a strong acid among the given.

61. In a set of reactions, ethyl benzene yielded a product D.

$$\begin{array}{c}
CH_2CH_3 \\
\hline
KMnO_4 \\
KOH
\end{array}$$

$$B \xrightarrow{Br_2} C \xrightarrow{C_2H_5OH} D$$

'D' would be:

COOH
$$COOC_2H_5$$

$$OCH_2CH_3$$

$$(4)$$

$$Br$$

Ans. (4)

Sol. Alkaline KMnO₄ converts complete carbon chain that is directly attached to benzene nucleus, to –COOH group. Br₂ in the presence of halogen carrier causes bromination and ehtyl alcohol in acidic medium results in esterification.

$$\begin{array}{c|c}
CH_2CH_3 & COOH & COOC_2H_5 \\
\hline
CH_2CH_3 & COOC_2H_5 \\
\hline
COOC_2H_5 \\
\hline$$

- What is [H⁺] in mol/L of a solution that is 0.20 M in CH₃COONa and 0.10 M in CH₃COOH? (K_a for CH₃COOH = 1.8 × 10⁻⁵)
 - $(1) 3.5 \times 10^{-4}$
- $(2) 1.1 \times 10^{-5}$
- (3) 1.8 × 10⁻⁴
- $(4) 9.0 \times 10^{-6}$

Ans. (4)

Sol. CH₃COOH (weak acid) and CH₃COONa (conjugated salt) form acidic buffer and for acidic buffer,

pH = pK_a + log
$$\frac{[salt]}{[acid]}$$
 and [H⁺] = - antilog pH
pH = - log K_a + log $\frac{[salt]}{[acid]}$ [: pK_a = - log K_a]
= - log (1.8 × 10⁻⁵) + log $\frac{(0.20)}{(0.10)}$ = 4.74 + log 2 = 4.74 + 0.3010 = 5.041

- 63. For an endothermic reaction, energy of activation is E_a and enthalpy of reaction is ΔH (both of these in kJ/mol). Minimum value of E_a will be:
 - (1) less than ∆H
- (2) equal to ΔH
- (3) more than ΔH
- (4) equal to zero

Ans. (3)

Sol. In endothermic reactions, energy of reactants is less than that of the products. Potential energy diagram for endothermic reactions is,

Progress of the reaction

where, $E_a =$ activation energy of forward reaction

 E'_{a} = activation energy of backward reaction

 ΔH = enthalpy of the reaction

From the above diagram,

$$E'_{a} = E'_{a} + \Delta H$$

$$E_{a} > \Delta H$$

Thus,

64. The correct order of increasing reactivity of C – X bond towards nucleophile in the following compounds is:

- (1) | < | < | < | < | |
- (2) |I| < |I| < |I| < |I|
- (3) IV < III < I < II

Ans. (1)

Sol. Alkyl halides are more reactive twoward nucleophilic substitution. Reactivity depends upon the stability of carbocation intermedicate formed.

Among the given halides, aryl halide (C_EH₅X) is least reactive towards nucleophile as in it the C – X bond acquire some double bond character due to resonance. Presence of electron withdrawing groups like – NO₂ at ortho and para positions facilitate the nucleophilic displancent of -X of aryl halide. Among alkyl halides, 3° halides are more reactive as compared to 2° halides due to the formation of more stable carbocation. Hence, the order of reactivity of C – X bond towards nucleophile is as

$$\begin{array}{c|c}
X \\
\hline
(I) \\
\hline
NO_2 \\
(IV)
\end{array}$$

$$\begin{array}{c|c}
X \\
CH_3)_3 C - X \\
(IV)
\end{array}$$

$$\begin{array}{c|c}
(CH_3)_3 C - X \\
(IV)
\end{array}$$

- **65.** For the reduction of silver ions with copper metal, the standard cell potential was found to be + 0.46 V at 25°C. The value of standard Gibbs energy ΔG° will be (F = 96500 C mol⁻¹)
 - (1) 89.0 kJ
- (2) 89.0 J
- (3) 44.5 kJ
- (4) 98.0 kJ

Ans. (1)

Sol. We know that,

standard Gibbs energy, $\Delta G^{\circ} = - nEF^{\circ}_{cell}$

For the cell reaction,

$$2Ag^+ + Cu \longrightarrow Cu^{2+} + 2Ag$$

$$\Delta G^{\circ} = -2 \times 96500 \times 0.46$$

$$= -88780 J$$

$$= -88.7 \text{ kJ} \approx -89.0 \text{ kJ}$$

66. In which of the following equilibrium K₂ and K₃ are not equal?

(1)
$$2NO(g) \implies N_2(g) + O_2(g)$$

$$(2) SO2(g) + NO2(g) \Longrightarrow SO3(g) + NO(g)$$

(3)
$$H_2(g) + I_2(g) \implies 2HI(g)$$

$$(4) 2C(s) + O_2(g) \implies 2CO_2(g)$$

Ans. (4)

- **Sol.** $K_p = K_c(RT)^{\Delta n}$.
- **67.** Which of the following ions will exhibit colour in aqueous solutions?

(1) La³⁺ (
$$Z = 57$$
)

(2)
$$Ti^{3+}$$
 (Z = 22)

(3)
$$Lu^{3+}$$
 (Z = 71)

(4)
$$Sc^{3+}$$
 (Z = 21)

Ans. (2)

Sol. Ti^{3+} (Z = 22)

lons which have unpaired electrons exhibit colour in solution. Ti³⁺ has an outer electronic configuration of 4s⁰ 3d¹, i.e., 1 unpaired electron. Thus its solution will be coloured.

$$Sc^{3+} \rightarrow d^0$$

In case of La³⁺, $4f^0$ configuration is present and in Lu³⁺, $4f^{14}$ is present. So, there is no possibility of f-f transition, hence these ions do not appear coloured.

68. Aniline in a set of the following reactions yielded a coloured product 'Y'.

$$\begin{array}{c}
NO_2 \\
\hline
NaNO_2/HCI \\
\hline
(273-278K)
\end{array}$$
 $X \xrightarrow{N, N-dimethylaniline} Y$

The structure of 'Y' would be:

$$(1) \bigcirc \longrightarrow N=N \longrightarrow N \bigcirc \longrightarrow N \bigcirc CH$$

Ans. (1)

Sol. NaNO₂/ HCl causes diazotisation of – NH₂ group and the diazonium chloride gives a coupling product with active aryl nucleus.

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{NaNO}_2/\text{HCI} \\
\hline
 & (273-278\text{K})
\end{array}$$

$$\begin{array}{c}
 & \text{N=NCI} \\
\hline
 & \text{Y} \\
 & \text{Y} \\
 & \text{Y}
\end{array}$$

Acetamide is treated with the following reagents separately. Which one of these would yield methyl amine?

(1) NaOH-Br₂
(2) Sodalime
(3) Hot conc. H₂SO₄
(4) PCI₅

Ans. (1)

Sol. The reagent which can convert –CONH₂ group into –NH₂ group is used for this reaction. Among the given reagents only NaOH/Br₂ converts –CONH₃ group to –NH₂ group, thus it is used for converting acetamide to methyl amine. This reaction is called Hoffmann bromamide reaction.

$$CH_3CONH_2 + NaOH + Br_2 \longrightarrow CH_2NH_2 + NaBr + Na_2CO_3 + H_2O$$

methyl amine

- **70.** An aqueous solution is 1.00 molal in KI. Which change will cause the vapour pressure of the solution to increase?
 - (1) Addition of NaCl

(2) Addition of Na₂SO₄

(3) Addition of 1.00 molal KI

(4) Addition of water

Ans. (4

Sol. Vapour pressure depends upon the surface area of the solution. Larger the surface area, higher is the vapour pressure.

Addition of solute decreases the vapour pressure as some dites of the surface are occupied by solute particles, resulting in decreased surface area. However, addition of solvent, ie, dilution, increases the surface area of the liquid surface, thus results in increased vapour pressure.

Hence, addition of water to the aqueous solution of (1 molal) KI, results in increased vapour pressure.

71. A solution of sucrose (molar mass = 342 g mol^{-1}) has been prepared by dissolving 68.5 g of sucrose in 1000 g of water. The freezing point of the solution obtained will be: (K_f for water = 1.86 K kg mol $^{-1}$)

$$(1) - 0.372$$
°C

$$(2) - 0.520$$
 °C

$$(3) + 0.372$$
°C

(4) - 0.570°C

Ans. (3)

Sol. Depression in freezing point,

$$\Delta T_f = k_f \times m$$

where, m = molality =
$$\frac{W_B \times 1000}{M_B.W_A} = \frac{68.5 \times 1000}{342 \times 1000} = \frac{68.5}{342}$$

$$\Delta T_f = 1.86 \times \frac{68.5}{342} = 0.372$$
°C

$$\Delta T_f = T^o - T_s = 0 - 0.372^{\circ}C = 0.372^{\circ}C$$

- 72. Which of the following alkaline earth metal sulphates has hydration enthalpy higher than the lattice enthalpy?
 - (1) CaSO₄
- (2) BeSO₄
- (3) BaSO₄
- (4) SrSO₄

Ans. (2)

Sol. Hydration energy varies inversely with size and in sulphates of alkaline earth metals lattice energy remains almost constant. The order of size of alkaline earth metals is

$$Be^{2+} < Ca^{2+} < Sr^{2+} < Ba^{2+}$$

Thus, the order of hydration energy is

$$Be^{2+} > Ca^{2+} > Sr^{2+} > Ba^{2+}$$

Hence, BeSO, has the hydration enthalpy higher than the lattice enthalpy.

- 73. Which of the following ions has electronic configuration [Ar]3d⁶?
 - (1) Ni³⁺
- (2) Mn³⁺
- $(3) Fe^{3+}$
- (4) Co3+

Ans. (4)

Sol. Write the electronic configurations of given ions and find the correct answer.

$$NH^{3+}$$
 (28) = [Ar] $3d^7$

$$Mn^{3+}$$
 (25) = [Ar] $3d^4$

$$Fe^{3+}$$
 (26) = [Ar] $3d^5$

$$Co^{3+}$$
 (27) = [Ar] $3d^6$

- 74. An increase in equivalent conductance of a strong electrolyte with dilution is mainly due to:
 - (1) increase in ionic mobility of ions.
 - (2) 100% ionisation of electrolyte at normal dilution.
 - (3) increase in both i.e. number of ions and ionic mobility of ions.
 - (4) increase in number of ions.

Ans. (1)

Sol.
$$\lambda_{eq} = \kappa \times V = \frac{\kappa \times 1000}{\text{normality}}$$

On dilution, the number of current carrying particles per cm³ decreases but the volume of solution increases. Consequently, the ionic mobility increases, which in turn increases the equivalent conductance of strong electrolyte.

- **75.** Crystal filed stabilization energy for high spin d⁴ octahedral complex is :
 - $(1) 1.8 \Delta_0$
- (2) $-1.6 \Delta_0 + P$
- $(3) -1.2 \Delta_0$
- (4) $-0.6 \Delta_0$

Ans. (4)

Sol. In case of high spin complex, Δ_0 is small. Thus, the energy required to pair up the fourth electron with the electrons of lower energy d-orbitals would be higher than that required to place the electrons in the higher d-orbital. Thus, pairing does not occur.

For high spin d4 octahedral complex,

.. Crystal field stabilisation energy

=
$$(-3 \times 0.4 + 1 \times 0.6) \Delta_0$$

= (- 1.2 + 0.6)
$$\Delta_0$$

$$= -0.6 \Delta_{0}$$

76. Oxidation states of P in $H_4P_2O_5$, $H_4P_2O_6$, $H_4P_2O_7$ are respectively:

$$(1) +3, +5, +4$$

$$(3) +5, +4, +3$$

Ans. (4)

Sol. Oxidation state of H is + 1 and that of O is -2.

Let the oxidation state of P in the given compounds is x.

In
$$H_4P_2O_5$$
, (+1) × 4 + 2 × x + (-2) × 5 = 0

$$4 + 2x - 10 = 0$$

$$2x = 6$$

$$\therefore$$
 $x = +3$

In
$$H_4P_2O_6$$
, (+1) × 4 + 2 × x + (-2) × 6 = 0
4 + 2x - 12 = 0

- 77. Which of the following statements about primary amines is 'False'?
 - (1) Alkyl amines are stronger bases than aryl amines
 - (2) Alkyl amines react with nitrous acid to produce alcohols
 - (3) Aryl amines react with nitrous acid to produce phenols
 - (4) Alkyl amines are stronger bases than ammonia

Ans. (3)

- **Sol.** (i) Presence of electron withdrawing substituent decreases the basicity while the presence of electron releasing substituent like, CH₃, C₂H₅ etc increases the acidity.
 - (ii) HNO_2 converts NH_2 group of alphatic amine into OH while that of aromatic amines into $\mathsf{N} = \mathsf{NCL}$ Since, phenyl group is a electron withdrawing group, it decreases the basicity. Alkyl group, on the other hand, being electron releasing, increases the basicity. Thus, alkyl amines are more basic as compared to aryl amines as well as ammonia.

$$R - NH_2 \xrightarrow{HNO_2} R - OH$$

Thus, HNO₂ (nitrous acid) converts alkyl amines to alcohols.

But
$$C_6H_5NH_2 \xrightarrow{HNO_2} C_6H_5N = NCI$$

benzene

diazonium chloride

Thus, HNO₂ does not convert aryl amines into phenol.

78. The correct order of increasing bond angles in the following species are :

$$(1) Cl_2O < ClO_2 < ClO_2^-$$

$$(2) CIO_{2} < CI_{2}O < CIO_{2}^{-1}$$

$$(3) Cl_2O < ClO_2^- < ClO_2$$

$$(4) CIO_{2}^{-} < CI_{2}O < CIO_{2}$$

Ans. (4)

Sol. As the number of lone pairs of electrons increases, bond angle decreases due to repulsion between 1p - 1p. Moreover, as the electronegativity of central atom decreases, bond angle decreases. Hence, the order of bond angle is

(CI is less electronegative as compared to O.)

- 79. Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is:
 - (1) CH, COOCH,
- (2) CH₃CONH₂
- (3) CH₂COOCOCH₃
- (4) CH₂COCI

Ans. (4)

- **Sol.** Lesser the electron density of acyl carbon atom, more will be the susceptiblity of nucleophile to attack it. The CI atom has strong -I effect because of the weak p-bond between the small sized C-atom and large sized CI atom. Thus in CH₃COCI, acyl carbon has least electron density and hence, more suceptible for nucleophilic attack.
- **80.** 25.3 g of sodium carbonate, Na_2CO_3 is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na^+ and carbonate ions, $CO_3^{2^-}$ are respectively (Molar mass of $Na_2CO_3 = 106$ g mol⁻¹)
 - (1) 0.955 M and 1.910 M

(2) 1.910 M and 0.955 M

(3) 1.90 M and 1.910 M

(4) 0.477 M and 0.477 M

Ans. (2)

Sol. Molarity = $\frac{\text{number of moles of solute}}{\text{volume of solution (inmL)}} \times 1000 = \frac{25.3 \times 1000}{106 \times 250} = 0.9547 \approx 0.955 \text{ M}$

Na₂CO₂ in aquesous solution remains dissociated as

$$Na_2CO_3 \longrightarrow 2Na^+ + CO_3^{2-}$$
 $x \qquad 2x \qquad x$

Since, the molarity of Na_2CO_3 is 0.955 M, the molarity of CO_3^{2-} is also 0.955 M and that of Na+ is 2 × 0.955 = 1.910 M

- 81. In a buffer solution containing equal concentration of B⁻ and HB, the K_b for B⁻ is 10⁻¹⁰. The pH of buffer solution is:
 - (1)10
- (2)7

- (3)6
- (4)4

Ans. (4)

Sol. (i) For basic buffer

$$pOH = pK_b + log \frac{[salt]}{[base]}$$

(ii) pH + pOH = 14

Given,
$$K_b = 1 \times 10^{-10}$$
, [salt] = [base]

$$pOH = -\log K_b + \log \frac{[salt]}{[base]}$$

- **82.** The existance of two different coloured complexes with the composition of [Co(NH₂)₄Cl₂]⁺ is due to :
 - (1) linkage isomerism

(2) geometrical isomerism

(3) coordination isomerism

(4) ionization isomerism

Ans. (4)

Sol. Complexes of [MA₄B₂] type exhibit geometrical isomerism.

The complex $[Co(NH_3)_4Cl_2]$ + is a $[MA_4B_2]$ type complex and thus, fulfills the conditions that are necessary to exhibit geometrical isomerism. Hence, it has two geometrical isomers of different colours as:

The structure of the geometrical isomers is are

cis - form

trans-form

For linkage isomerism, presence of ambidetance ligand is necessary. For coordination isomerism, both the cation and anion of the complex must be complex ions. For ionisation isomerism, an anion different to the ligands must be present outside the coordination sphere. All these condtions are not satisfied by this complex. Hence, it does not exhibit other given isomerisms.

- **83.** Property of the alkaline earth metals that increases with their atomic number:
 - (1) Solubility of their hydroxides in water

(2) Solubility of their sulphates in water

(3) Ionization energy

(4) Electronegativity

Ans. (1)

Sol. Electronegativity as well as ionisation energy both usually decrease on moving downward a group with increase in atomic number. The hydroxides and sulphates of alkaline earth metals are ionic solids and the solubility of ionic solids is governed by two factors, viz, lattice energy and hydration energy. For solubility, hydration energy > lattice energy.

Hydration energy varies inversely with size, ie, decreases with increase in size. However, lattice energy in case of sulphates, remains almost same with increase in the atomic number of alkaline earth metals, due to large size of sulphate ion. Hence, hydration energy only governs the solubility in this case. Thus, solubility of alkaline earth metal sulphates decreases on moving downward the group II A group.

On the other hand, in case of hydroxides, the lattice energies are different because of medium size of hydroxide ions, and decreases on moving from Be to Ba. This tends to increase the solubility and to overcome the counter-effect produced by the decrease in hydration energy. Hence, the solobility of alkaline earth metal hydroxides increases with increase in the atomic number of alkaline earth metals.

84. During the kinetic study of the reaction, $2A + B \rightarrow C + D$, following results were obtained:

Ru	[A]/mol L ⁻¹	[B]/mol L⁻¹	Initial rate of formation of
n			D/mol L ⁻¹ min ⁻¹
1	0.1	0.1	6.0 × 10 ⁻³
II	0.3	0.2	7.2 × 10 ⁻²
III	0.3	0.4	2.88 × 10 ⁻¹
IV	0.4	0.1	2.40×10^{-2}

Based on the above data which one of the following is correct?

(1) rate = $k [A]^2 [B]$

(2) rate = k [A] [B]

(3) rate = $k [A]^2 [B]^2$

(4) rate = $k [A] [B]^2$

Ans. (4)

Sol. Let order of reaction with respect to A is x and with respect to B is y. Thus,

rate =
$$k[A]^x [B]^y$$

For the given cases,

(I) rate =
$$k(0.1)^x(0.1)^y = 6.0 \times 10^{-3}$$

(III) rate =
$$k(0.3)^x (0.40)^y = 2.88 \times 10^{-1}$$

(II) rate = k
$$(0.3)^x (0.2)^y = 7.2 \times 10^{-2}$$

(IV) rate =
$$(0.4)^x (0.1)^y = 2.40 \times 10^{-2}$$

$$\left(\frac{0.1}{0.4}\right)^{x} \left(\frac{0.1}{0.1}\right)^{y} = \frac{6.0 \times 10^{-3}}{2.4 \times 10^{-2}}$$

$$\left(\frac{1}{4}\right)^{x} = \left(\frac{1}{4}\right)^{1}$$

$$x = 1$$

On dividing Eq. (II) by (III), we get

$$\left(\frac{0.3}{0.3}\right)^{x} \left(\frac{0.2}{0.4}\right)^{y} = \frac{7.2 \times 10^{-2}}{2.88 \times 10^{-1}}$$

or

$$\left(\frac{1}{2}\right)^y = \frac{1}{4}$$

$$\left(\frac{1}{2}\right)^y = \left(\frac{1}{2}\right)^2$$

$$y = 2$$

Thus, rate law is,

rate =
$$k[A]^1 [B]^2$$
 or = $k[A] [B]^2$

85. Which of the following pairs has the same size?

Ans. (3)

- Sol. In general, the atomic and ionic radii increases on moving down a group. But the elements of second series (eg, Zr, Nb, Mo etc.) have the almost same radii as the elements of third transition serries (eg, Hf, Ta, W etc). This is because of lanthanide contraction ie, imperfect sheilding of one 4f - electron by another.
- 86. The correct order of the decreasing ionic radii among the following is electronic species are:

(1)
$$Ca^{2+} > K^+ > S^{2-} > Cl^-$$

(2)
$$Cl^- > S^{2-} > Ca^{2+} > K^+$$

(3)
$$S^{2-} > Cl^- > K^+ > Ca^{2+}$$

(4)
$$K^+ > Ca^{2+} > Cl^- > S^{2-}$$

Ans. (3)

Ionic radii ∞ charge on anion ∞ $\frac{1}{\text{chargeon cation}}$ Sol.

> During the formation of a cation, the electrons are lost from the outer shell and the remaining electrons experience a great force of attraction by the nucleous, ie, attracted more towards the nucleous. In other words, nucleous hold the remaining electrons more tightly and this results in decreased radii.

> However, in case of anion formation, the addition of electron(s) takes place in the same outer shell, thus the hold of nucleous on the electrons of outer shell decreases and this results in increased ionic radii.

Thus, the correct order of ionic radii is

$$S^{2-} > CI^- > K^+ > Ca^{2+}$$

- 87. In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three?
 - (1) SF₄
- $(2) I_{2}^{-}$
- (3) SbCl₅²⁻
- (4) PCI₅

Ans. (3)

Molecules having the same number of hybrid orbitals, have same hybridisation and number of hybrid orbitals, Sol.

$$H = \frac{1}{2} [V + X - C + A]$$

where, V = no. of valence electrons of central atom

X = no. monovalent atoms

C = charge on cation

A = Charge on anion.

(1) In SF₄,
$$H = \frac{1}{2}[6 + 4 - 0 + 0) = 5$$

(2)
$$\ln \Gamma_3$$
, $H = \frac{1}{2} [7 + 2 + 1] = 5$

(3) In SbCl
$$\frac{2^{-}}{5}$$
, H = $\frac{1}{2}$ [5+5+2) = 6

(4) In PCI₅,
$$H = \frac{1}{2}[5 + 5 + 0 - 0] = 5$$

Since, only $SbCl_5^{2-}$ has different number of hybrid orbitals (ie, 6) from the other given species, its hybrisation is different from the others, ie, sp³d². (The hybridsation of other species is sp³d).

Standard entropies of X_2 , Y_2 and XY_3 are 60, 40 and 50 JK^{-1} mol $^{-1}$ respectively. For the reaction 88.

$$\frac{1}{2}X_2 + \frac{3}{2}Y_2 \Longrightarrow XY_3; \qquad \Delta H = -30 \text{ kJ},$$

to be at equilibrium, the temperature should be:

- (1) 750 K
- (2) 1000 K
- (3) 1250 K
- (4) 500 K

Ans. (1)

Sol. For the reaction,

$$\frac{1}{2}X_2 + \frac{3}{2}Y_2 \longleftrightarrow XY_3 : \Delta H = -30 \text{ kJ}$$

$$\Delta S^{\circ} = S^{\circ}(XY_{_{3}}) - \left[\frac{1}{2}S^{\circ}x_{_{2}} + \frac{3}{2}S^{\circ}y_{_{2}}\right] = 50 - \left[\frac{1}{2}\times60 + \frac{3}{2}\times40\right]$$

$$= 50 - [30 + 60] = 50 - 90 = -40 \text{ kJ}^{-1} \text{ mol}^{-1}$$

We know that,

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

At equilibrium,

$$\Delta G^{\circ} = 0$$

$$\Delta H = T\Delta S^{\circ}$$

$$T = \frac{\Delta H}{\Delta S^{\circ}} = \frac{-30 \times 10^{3} \text{ J}}{-40 \text{ JK}^{-1} \text{mol}^{-1}} = 750 \text{ K}$$

Which of the following represents the correct order of increasing electron gain enthalpy with negative sign for 89. the elements O, S, F and Cl?

- (1) CI < F < O < S
- (2) O < S < F < Cl (3) F < S < O < Cl (4) S < O < Cl < F

Ans.

Sol. Electron gain enthalpy, generally, increases in a period from left to right and decreases in a group on moving downwards. However, members of III period have samewhat higher electron gain enthalpy as compared to the coressponding members of second period, because of their small size.

O and S belong to VI A (16) group and CI and F belong to VII A (17) group. Thus, the electron gain enthalpy of Cl and F is higher as compared to O and S.

Between Cl and F. Cl has higher electron gain enthalpy as in F. the incoming electron experiences a greater force of repulsion because of small size of F atom. Similar is true in case of O and S ie, the electron gain enthalpy of S is higher as compared to O due to its small size. Thus, the correct order of electron gain enthalpy of given elements is

90. Which one of the following compounds is a peroxide?

Ans. (2)

In peroxides, the oxidation state of O is -1 and they give H₂O₂, with dilute acids, and have peroxide linkage. Sol.

$$+ 1 + (X \times 2) = 0$$

 $x = -\frac{1}{2}$ (thus, it is a superoxide, not a peroxide.)

In BaO₂,
$$+ 2 + (x \times 2) = 0$$

$$x = -1$$

Thus, it is a perioxide. Only it gives H2O2 when reacts with dilute acids and has peroxide linkage as

peroxide linkage

In MnO₂ and NO₂, Mn and N exhibit variable oxidation states, thus, the oxidation state of O in these is - 2. Hence, these are not peroxides. Thus, it is clear, that among the given molecules only BaO₂ is a peroxide.

91. Which one is most reactive towards electrophilic reagent?

(2)
$$CH_3$$
 CH_2OH (3) CH_3 CH_3 CH_3 CH_3 CH_3

Electron withdrawing substituent deactivates the benzene nucleous towards electrophilic substitution while Sol. electron releasing substituent activates the ring towards electrophilic substitution.

Among the given, - OH has the higher electron donating tendency and thus, activates the ring more towards electrophilic substitution. Hence, is more reactive towards electrophilic reagent.

- **92.** Which one of the following is employed as a Tranquilizer drug?
 - (1) Promethazine
- (2) Valium
- (3) Naproxen
- (4) Mifepristone.

Ans. (2)

- **Sol.** Tranquilizer are the chemicals that reduce anxiety and mental tension. Thus, they are sometimes called psychotherapteutic drugs. Equanil, valium and serotonin are some commonly used transquilizers.
- **93.** In the following the most stable conformation of *n*-butane is :

Ans. (1)

Sol. The conformation in which the heavier groups are present at maximum possible distances, so that the forces of repulsion get weak, is more stable.

Among the given conformation of n-butane, the conformation is most stable as in it the bulkier group (ie, CH₃ group) are present at maximum possible distance.

- 94. Which of the following reactions will not result in the formation of carbon-carbon bonds?
 - (1) Reimer-Tieman reaction

(2) Cannizaro reaction

(3) Wurtz reaction

(4) Friedel-Crafts acylation

Ans. (2)

Sol. (a) Reimer - Tiemann reaction,

OH OH CHO
$$+ CHCI_3 + NaOH \rightarrow + NaCI + H_2O$$

(Here, a new C - C bond is formed.)

(b) Cannizaro reaction,

2HCHO
$$\xrightarrow{\text{Conc.NaOH}}$$
CH₃OH+HCOONa

(No new C - C bond is formed in this reaction.)

(c) Wrutz reaction,

$$2RX + dry Na \xrightarrow{Ether} R - R$$

(one new C - C bond is formed.)

(d) Friedel - crafts acylation,

$$\begin{array}{c} & & \text{COCH}_3 \\ \hline \\ + \text{CH}_3 \text{COCI} & \xrightarrow{\text{Anhy AlCl}_3} \end{array}$$

(New C - C bond is formed.)

Thus, among the given reactions, only cannizaro reaction does not involve the formation of a new C - C bond.

95. Which of the following structures represents Neoprene polymer?

(1)
$$\frac{-(-CH_2-C=CH-CH_2-)_n}{CI}$$

$$(4) \begin{array}{c} -(CH-CH_2-)_{\overline{D}} \\ I \\ C_2H_2 \end{array}$$

Ans. (1)

Neoprene (synthetic rubber) is a polymer of chloroprene (ie, 2-chloro -1, 3 - butadiene). Sol.

$$nH_2C = C - C = CH_2 \xrightarrow{Polymerisation} \begin{bmatrix} -CH_2 - C = C - CH_2 - \begin{bmatrix} -CH_2 - C = C - CH_2 - \begin{bmatrix} -CH_2 - C = C - CH_2 - \end{bmatrix} \end{bmatrix}$$

2 - cholro - 1,3 - butadiene

neoprene

(chloroprene)

(synthetic rubber)

- 96. Which one is most reactive towards S_N1 reaction?
 - $(1) C_e H_E CH(C_e H_E) Br$
- (2) C₆H₅CH(CH₃)Br
- $(3) C_{E}H_{E}C(CH_{3})(C_{E}H_{E})Br$ $(4) C_{E}H_{E}CH_{2}Br$

Ans. (3)

Key Idea: S_N1 reaction involves the formation of carbocation intermediate. More the stability of carbocation, Sol. more is the reactivity of alkyl/aryl haldies towards S_N1 reaction.

The intermediate carbocations formed by given haldies are as:

(1)
$$C_6H_5CH(C_6H_5)Br \rightarrow (C_6H_5)_2CH+Br^{-1}$$

(2)
$$C_6H_5CH(CH_3)Br \rightarrow C_6H_5CH(CH_3)+Br^{-1}$$

(3)
$$C_6H_5C(CH_3)(C_6H_5)Br \rightarrow (C_6H_5)_2C(CH_3)+Br^{-1}$$

(4)
$$C_6H_5CH_2Br \rightarrow C_6H_5CH_2+Br^{-1}$$

The order of stability of these carbocations is as $(C_6H_5)_2$ C⁺ (CH₃) > $(C_6H_5)_2$ C⁺ H> $C_6H_5)_2$ C⁺ (CH₃) > C_8H_5 C⁺ (CH₃) C⁺ (CH₃) = C_8H_5 C⁺ (CH₃) C⁺ (CH₃) C⁺ (CH₃) C⁺ (CH₃) C⁺ (CH₃) C⁺ (C Thus, $C_{g}H_{g}C$ (CH₂) (CH₂) (C_gH_g) Br is most reactive towards S_N1 reaction.

- 97. AB crystallizes in a body centred cubic lattice with edge length 'a' equal to 387 pm. The distance between two oppositively charged ions in the lattice is:
 - (1) 335 pm
- (2) 250 pm
- (3) 200 pm
- (4) 300 pm

Ans.

Sol. For body centred cubic (bcc) lattice, distance between two oppositely charged ions,

$$d = \frac{\sqrt{3}a}{2} = \frac{\sqrt{3} \times 387}{2} \text{ pm}$$

= 335.15 pm

- The number of atoms in 0.1 mol of a triatomic gas is: $(N_A = 6.02 \times 10^{23} \text{ mol}^{-1})$ 98.
 - $(1) 6.026 \times 10^{22}$
- $(2) 1.806 \times 10^{23}$
- $(3) 3.600 \times 10^{23}$
- $(4) 1.800 \times 10^{22}$

Ans. (2)

Number of atoms = number of moles $\times N_A \times$ atomicity Sol.

$$= 0.1 \times 6.02 \times 10^{23} \times 3$$

 $= 1.806 \times 10^{23}$ atoms.

AIPMT (SCREENING)-2010 99. Which one of the following molecular hydrides acts as a Lewis acid? (1) NH₂ (2) H₂O $(3) B_2 H_2$ (4) CH₄ Ans. (3)Sol. Electron deficient molecules behave as Lewis acid. Among the given molecules, only dibroane is electron deficient, i.e. does not have complete octet. Thus, it acts as a Lewis acid. NH₂ and H₂O being electron rich molecules behave as Lewis base. 100. The tendency of BF₃, BCl₃ and BBr₃ to behave as Lewis acid decreases in the sequence : (1) $BCI_3 > BF_3 > BBr_3$ (2) $BBr_3 > BCI_3 > BF_3$ (3) $BBr_3 > BF_3 > BCI_3$ (4) $BF_3 > BCI_3 > BBr_3$ Ans. (2) As the size of halogen atom increases, the acidic strength of boron halides increases. Thus, BF₃ is the Sol. weakest Lewis acid. This is because of the $p\pi - p\pi$ back bonding between the fully-filled unutilised 3p orbitals of F and vacant 2p orbitals of boron which makes BF, less electron deficient. Such back donation is not possible in case of BCI₃ or BBr₃ due to larger energy difference between their orbitals. Thus, these are more electron deficient. Since on moving down the group the energy difference increases, the Lewis the acid character also increases. Thus, the tendency to behave as Lewis acid follows the order $BBr_3 > BCl_3 > BF_3$ PART- C (BIOLOGY) 101. Apomictic embryos in citrus arise form: (1) Maternal sporophytic tissue in ovule (2) Antipodal cells (3) Diploid egg (4) Synergids (1) Ans. 102. If due to some injury the chordae tendinae of the tricuspid valve of the human heart is partially non-functional, what will be the immediate effect (1) The pacemaker will stop working (2) The blood will tend to flow into the leftatrium (3) The flow of blood into the pulmonary artery will be reduced (4) The flow of blood into the aorta will be slowed down Ans. (3) 103. The nerve centres which control the body temperature and the urge for eating are contained in (1) Pons (2) Cerebellum (3) Thalamus (4) Hypothalamus Ans. (1) 104. The plasma membrane consists mainly of (1) Proteins embedded in a phospholipid bilayer (2) Proteins embedded in a polymer of glucose molecules (3) Proteins embedded in a carbohydrate bilayer (4) Phospholipids embedded in protein bilayer Ans. (1) 105. In unilocular ovary with a single ovule the placentation is

(1) Basal

(1)

Ans.

(2) Free Central

(3) Axile

(4) Marginal

AIPM1	Γ(SCREENING)-2010					
106.	The genetically-mod (1) Enhancing shelf (3) Drought-resistant Ans. (4)		(2) Enhanicing mine	been developed for (2) Enhanicing mineral content (4) Insect-resistance		
107.	Ringworm is human (1) Fungi Ans. (1)	s is caused by (2) Nematodes	(3) Viruses	(4) Bacteria		
108.	Which one of the fol (1) Somatostatin - D (3) Insulin - Diabetes Ans. (4)		natched (2) Corpusluteum - F (4) Glucagon - Beta			
109.	Widal test is used for (1) Pneumonia Ans. (3)	or the diagnosis of (2) Tuberculosis	(3) Typhoid	(4) Malaria		
110.	Which one of the fo (1) Seed bank Ans. (1)	llowing is an example of e (2) Sacred groves	x-situ conseryation (3) National park	(4) Wildlife sanctuary		
111.	Wheih one of the fol (1) ○ = Unaffected (3) ◆ = male affect Ans. (4)	male	oresentation used in hun (2) = unaffected f (4) = matin			
112.	The permissible use of the technique amniocentesis is for (1) Artificial insemination (2) Transjfer of embryo into the uterus of a surrogate mother (3) Detecting any genetic abnormality (4) Detecting sex of the unborn foetus Ans. (3)					
113.	Some hyperthermore (1) Cyanobacteria and years. (4)	nd diatoms	in highly acidic (pH2) ha (2) Protists and mos (4) Eubacteria and a			
114.	(1) Distal convoluted(2) Nearly 99 per cer(3) Ascending limb of	lowing statements in regard tubule is incapable of reant of the glomerular filtrate of loop of Henle is impermental took of loop of loo	bsorbing HCO ₂ — is reabsorbed by the releable to electrolytes	e human kidneys is correct nal tubules		

Ans. (2)

	(SCREENING)-2010			
115.	Which one of the following (1) Interfascicular cambination (3) Intercalary meristem Ans. (3)		(2) Phellogen (4) Intrafascicular cambi	um
116.	Single-celled eukaryote (1) Fungi Ans. (4)	s included in (2) Archaea	(3) Monera	(4) Protista
117.	•		•	
118.	Which one of the following (1) Salmonell typhimurical (3) Retrovirus (3)	ng is used as vector for cl ım	oning genes into higher of (2) Rhizopus nigricans (4) Baculovirus	organisms
119.	Which one of the following (1) Magnesium Ans. (1)	ing is not a micronutrient (2) Zinc	(3) Boron	(4) Molybdenum
120.	One example of animal (1) Asterias Ans. (3)	having a single opening t (2) Ascidia	o the ouside that serves l (3) Fasciola	both as mouth as well as anus is (4) Octopus
121.	Which one of the following (1) Plastoquinones (3) Plasmalemma Ans. (4)	ng structure between two	adjacent cells is an effect (2) Endoplasmic reticulut (4) Plasmodesmata	
122.	Which one of the following (1) Mucor Ans. (3)	ng does not follow the cer (2) Chlamydomonas	ntral dogma of molecular (3) HIV	biology (4) Pea
123.	Which one of the following (1) Earthworm Ans. (3)	ng is not used in organic (2) Oscillatoria	farming (3) Snail	(4) Glomus
124.	(a) A lion eating a deer a(b) Predator star fish pis(c) Predators ultimately	ats (a-d) given below and so and a sparrow feeding on a caster helps in maintaining lead to the extinction of p cals such as nicotine, stry ents are (2) (a) and (d)	grain are ecologically sim g species diverstiy of son pery species	nilar in being consumers ne invertebrates

Ans. (3)

Ans.

- 125. Toxic agents present in food which interfere with thyroxine synthesis lead of the development of (3) thyrotoxicosis (2) simple goitre (4) toxic goitre (2)
- 126. Which stages of cell division do the following figures A and B represent respectively

Fig. A

- (1) Telophase Metaphase
- (3) Prophase Anaphase

- (2) Late Anaphase Prophase
- (4) Metaphase Telophase

- Ans. (2)
- 127. A common biocontrol agent for the control of plant disease is
 - (1) Bacillus thruingiensis (2) Glomus
- (3) Trichoderma
- (4) Baculovirus

- Ans. (3)
- 128. Carrior ions like Na+facilitate the absorption of substances like
 - (1) glucose and fatty acids

- (2) fatty acids and glycerol
- (3) fructose and some amino acids
- (4) amino acids and glucose

- Ans. (3)
- 129. The first movements of the foetus and appearance of hair on its head are usually observed during which month of pregnancy
 - (1) Fifth month
- (2) Sixth month
- (3) Third month
- (4) Fourth month

- Ans. (1)
- 130. Which two of the following changes (a-d) usually tend to occur in the plain dwellers when they move to high altitudes (3,500 m or more)
 - (a) Increase in red blood cell size
 - (b) Increase in red blood cell production
 - (c) Increased breathing rate
 - (d) Increase in the thrombocyte count

Changes occurring are

- (1) (c) and (d)
- (2) (a) and (d)
- (3) (a) and (b)
- (4) (b) and (c)

- Ans. (4)
- 131. Which one of the following kinds of animals are triploblastic
 - (1) Sponges
- (2) Ctenophores
- (3) Corals
- (4) Flat worms

Ans. (4)

AIPMT (SCREENING)-2010 132. Stirred-tank bioreactors have been designed for (2) Ensuring anaerobic conditions in the culture vessel (1) Purification of the product (3) Availability of oxygen throughout the process (4) Addition of preservatives to the product Ans. 133. The kind of epithelium which forms the inner walls of blood vessels is (1) columnar epithelium (2) ciliated columnar epithelium (3) squamous epithelium (4) cuboidal epithelium (3) Ans. 134. Some of the characteristics of Bt cotton are (1) Medium yield, long fibre and resistance to beetle pests (2) High yield and production of toxic protein crystals which kill dipteran pests (3) High yield and resistance to bollworms (4) Long fibre and resistance to aphids Ans. (3) 135. Which one of the following statments about certain given animals is correct (1) Molluscs are acoelomates (2) Insects are pseudocoelomates (3) Flat worms (Platyhelminthes) are coelomates (4) Round worms (Aschelminthes) are pseudocoelomates Ans. (4) 136. Cu ion released from copper-releasing Intra Uterine Devices (IUDs) (1) increase phagocytosis of sperms (2) suppress sperm motility (3) prevent ovulation (4) make uterus unsuitable for implantation Ans. (2) 137. The second maturation division of the mammalian ovum occurs (1) Until after the ovum has been penetrated by a sperm (2) Until the nucleus of the sperm has fused with that of the ovum (3) In the Graafian follicle after the first maturation division (4) Shortly after ovulation before the ovum makes entry into the fallopian tube Ans. (1) 138. Infectious proteins are present in (1) Prions (2) Viroids (3) Satellite viruses (4) Geminal viruses Ans. (1) 139. Low Ca** in the body fluid may be the cause of (1) Anaemia (2) Angina pectoris (3) Gout (4) Tetany Ans. (4) 140. Which one of the following statements about morula in humans is correct (1) It has far less cytoplasm as well as less DNA than in an uncleaved zygote

(2) It has more or less equal quantity of cytoplasm and DNA as in uncleaved zygote

(4) It has almost equal quantiity of cytoplasm as an uncleaved zygote but much more DNA

(3) It has more cytoplasm and more DNA than an uncleaved zygote

Ans.

(4)

141.	Select the two correct statements out of the four (a-d) given below about lac operon. (a) Glucose or galactose may bind with the repressor and inactivate it (b) In the absence of lactose the repressor binds with the operator region (c) The Z- gene codes for permease (d) This was elucidated by Francois Jacob and jacque Monod							
	(1) (a) a Ans.	rrect statements and (c) (2)	(2) (b) and (d)	(3) (a) and (b)	(4) (b) and (c)			
142.	•	mitosis ER and y metaphase (4)	nucleolus begin to disapp (2) Late metaphase	ear at (3) Early Prophase	(4) Late prophase			
143.	(1) gluc	al plasma in hum cose and calcium se and potassium		(2) DNA and testosteron (4) fructose and calcium				
144.	Virus ei (1) Viric Ans.	nvelope is know on (4)	n as (2) Nucleoprotein	(3) Core	(4) Capsid			
145.		e DNA is useful determination (2)	tool in (2) Foretic engineering	(3) Genetic engineering	(4) Organ transplantation			
146.	An elen (1) Cop Ans.		oortant role in nitrogen fixa (2) Manganese	ation is (3) Zinc	(4) Molybdenum			
147.		ng of crops with lortification	high level of minerals, vita (2) Biomagnification	mins and proteins is calle (3) Micropropagation	ed (4) Somatic hybridisation			
148.	Keel is (1) Cas Ans.	characteristic o sia (3)	f the frowers of (2) Calotropis	(3) Bean	(4) Gulmohur			
149.	(1) Out (2) Allel (3) Fac	of one pair of fa les do not show tors occur in pai	ctors one is dominant, an any blending and both the	e characters recover as si				
150.		ifferent alleles, s		he gene I. It has three allo possible. How many phe (3) Two	eles - I ^A , I ^B and i. Since there are notyes can occur (4) Three			

	(SCREE	ENING)-2010					
151.		·	is not a salient feature	•	is its being		
	. ,	biguous	(2) Universal	(3) Specific		(4) Degenerate	
	Ans.	(1)					
152.		_	four statements (a-d)	regarding kidney t	transplant ar	nd select the two cor	rectones out
	of thes						
			nsplant is proper the r				r a long time
	` '		mmune response is re are responsible for re	•	-	UN	
	` '		rejection of a kidney tr			interferons	
		o correct statem		апорын аоронас	on opcomo	menerons	
		and (d)	(2) (a) and (c)	(3) (a) and (b	b)	(4) (b) and (c)	
	Ans.	(3)		(/ (/ ()	,		
		. ,					
153.	Sertoli	cells are found i	n				
	(1) adr	enal cortex and	secrete adrenaline				
	(2) Ser	miniferous tubule	es and provide nutritio	n to germ cells			
	` '		ete progesterone				
		aries and secrete	progesterone				
	Ans.	(2)					
154.		one of the follow	wing palindromic base	e sequences in Di	NA can be e	easily cut at about th	ne middle by
			i — 3' , 3' —	- CTACTA	– 5 '		
	(1) 3	GAIAIG	3,3	CIACIA	3		
	(2) 5' -	—— GAATTO	3' , 3' —	- CTTAAG	— 5'		
	(3) 5' -	—— CACGTA	3' , 5' —	- CTCAGT	— 3'		
	(4) 5' -		3' , 3' —	— ATGGTA ——	— 5 '		
	(4) 3	001100	3 , 3	AIGGIA	J		
	Ans.	(2)					
155.	The tw	n nases making	highest relative contri	ibution to the aree	nhouse das	es are	
100.		and N₂O	=	_	_	(4) CO ₂ and CH ₄	
	Ans.	(4)	(=) 0. 05 a	(5) 5 5 2 4.114	20	(1) 5 52 5115 5114	
		. ,					
156.	Select	the correct state	ement form the ones o	given below with re	esprect to di	hybrid cross.	
	(1) Ger	nes far apart on t	he same chromosom	es show very few	recombinati	ons	
	(2) Gei	nes loosely linke	ed on the same chrom	osome show simi	ilar recombir	nations as the tightly	linked ones
	(3) Tigl	htly linked genes	one the same chrom	osome show very	few recomb	inations	
			on the same chromo	somes show high	er recombin	ations	
	Ans.	(3)					
157	The see	orav rologaina -	notobolio progessis	high aubatrata is -	vidio od · · ·ˈt-	out on outomal alsa-4	ron googata-
157.	i ne en	iergy-reieasing n	netabolic process in w	าแบบ รนมรแสเษาร 0	MICHAEL WILLI	out an external elect	ron acceptor

is called.

Ans.

(1) Fermentation

(4)

(2) Aerobic respiration

(3) Photorespiration

(4) Glycolysis

AIPMT	(SCREI	ENING)-2010				
158.	Photot	ropic curvature	is the result of une	ven distr	ibution of	
	(1) Phy	ytochrome	(2) Cytokinins		(3) Auxin	(4) Gibberellin
	Ans.	(3)				
159.	(1) Me (2) Bio	thanobaeterium gas, commonly tivated sludge-s	ement from the foll is aerobic bacterit called gobar gas, ediment in settlem	um found is pure n	nethane	ment plant is a rich source of aearobic
			d by the activity of a	aerobic k	nactoria on animal	wasta
	Ans.	(3)	a by the activity of a	a c iobic i	dacteria on anima	wasie
		(-)				
160.	dB is a	standard abbre	eviation used for the		•	
	(1) A p	articular pollutaı	nt	(2) The	dominant Bacillus	s in a culture
	` ,	ertain pesticide		(4) The	density of bacteria	a in a medium
	Ans.	(1)				
161.	Male a	and female game	etophytes are indep	endent :	and free-living in	
	(1) Cas	_	(2) Pinus		(3) Sphagnum	(4) Mustard
	Ans.	(3)			.,,	
162.			for consumption b	y the he		
	` '	condary product	•		(2) Standing crop	
	(3) Gro	oss primary prod (4)	ductivity		(4) Net primary p	roductivity
	Alis.	(+)				
163.	The pr	incipal nitrogen	ous excretroy com	pound ir	humans is synthe	sised
	(1) In l	kidneys as well	eliminated by kidno	eys		
			minated by the san		=	
			minated mostly thro	_	neys	
	(4) In k Ans.	-	inated mostly throu	ıgh liver		
	Alis.	(3)				
164.	The ch	nief water condu	cting elements of >	kylem in	gymnosperms are	
	(1) Fib	res	(2) Transfusion	tissue	(3) Tracheids	(4) Vessels
	Ans.	(3)				
165.	Iniury 1	to adrenat corte	x is not likely to aff	ect the s	secretion of which	of the following
			ne and Dehydroepia			g
	` '	enaline	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	(3) Co					
	(4) Ald	osterone				
	Ans.	(2)				
400	Th - 4 ·	abalaal ta	ad fau tha a		lawar of Obline	a // libia ana sana ain ara-is\ is
166.		chnical term use delphous	ed for the androeci (2) Polyandrous		lower of China ros (3) Polyadelphou	e (Hibiscus rosa-sinensis) is s (4) Monadelphous
	(., J.a	- 5.p540	(=) . Siyanarous		(5). 51,440ipi10u	(·/

Ans.

(4)

- **167.** PGA as the first CO₂ fixation product was discovered in photosynthesis of
 - (1) Gymnosperm
- (2) Angiosperm
- (3) Alga
- (4) Bryophyta

Ans. (3)

- 168. The main arena of various types of activities of a cell is
 - (1) Mitochondria
- (2) Cytoplasm
- (3) Nucleus
- (4) Plasma membrane

Ans. (3)

- 169. Darwin's finches are a good example of
 - (1) Connecting link
- (2) Adaptive radiation
- (3) Convergent evolution (4) Industrial melanism

Ans. (2)

- 170. Which one of the following statements about all the four of Spongilla, Leech, Dolphin and Penguin is currect
 - (1) Leech is a fresh water form while all others are marine
 - (2) Spongilla has special collared cells called choano cytes, not found in the remaining three
 - (3) All are bilaterally symmetrical
 - (4) Penguin is homoiothermic while the remaining three are poikilothermic

Ans. (2)

171. The figure given below is a diagrammatic representation of response of organisms to abiotic factors. What do a, b and c represent respectively

(a)

(b)

(c)

- (1) regulator
- partial regulator
- Conformer

- (2) parital regulator
- regulator
- Conformer

- (3) regulator(4) conformer
- conformer regulator
- partial regulator partial regulator

- Ans. (3)
- 172. Algae have cell wall made up of
 - (1) Hemicellulose, pectins and proteins
- (2) pectins, celluose and proteins
- (3) Cellulose, hemicellulose and pectins
- (4) Cellulose, galactans and mannans

- Ans. (4)
- 173. An improved variety of transgenic basmati rice
 - (1) gives high yield and is rich in vitamin A
 - (2) is completely resistant to all insect pests and diseases of paddy
 - (3) gives high yield but has no characteristic aroma
 - (4) does not require chemical fertilizers and growth hormones

Ans. (1)

AIPMT	(SCREENI	NG)-2010						
174.	In vitro fer	ilisation is a tec	chnique t	that involves tra	ansfer of which c	one of the fo	ollowing into the fallopian tube	
	(1) Either	zygote or early	y embryc	upto 8 cell sta	age			
	(2) Embry	o of 32 cell sta	age					
	(3) Zygote	only						
	(4) Embry	o only, upto 8	cell stag	e				
	Ans. (1	1)						
175.	Listed bel	ow are four res	spiratory	capacities (a-d	d) and four iumbl	led respirat	tory volumes of a normal human	
	adult		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,		,	
	Respirato	rv		Respiratory				
	capacites	-		volumes				
	•	ıal volume		2500 mL				
	(b) Vital c			3500 mL				
		tory reserve vo	lume	1200 mL				
		atory capacity	idirio	4500 mL				
			na is the		ing of two capaci	ities and vo	olumes	
	(1) (c) 120			(d) 2500 mL	g			
	(2) (d) 350			(a) 1200 mL				
	(3) (a) 450			(b) 3500 mL				
	(4) (b) 250			(c) 4500 mL				
	Ans. (2							
	,	•						
176.	Membran	e - bound orga	nelles ar	e absent in				
	(1) Strepto	ococcus	(2) Chla	mydomonas	(3) Plasmoldi	um	(4) Saccharomyces	
	Ans. (1	1)						
177.	The scute	ellum observed	d in a gra	ain of wheat o	or maize is com	parable to	which part of the seed in other	
	monocoty		3				, , , , , , , , , , , , , , , , , , , ,	
	(1) Endos		(2) Aleu	rone layer	(3) Plumule		(4) Cotyledon	
	Ans. (4		()		(-,		() = = 3	
	·							
178.	•				ort is an example			
	(1) Thigm	-	(2) Thigi	motropism	(3) Thermotax	XIS	(4) Thigmotaxis	
	Ans. (2	2)						
179.	Restrictio	n endonucleas	ses are ei	nzymes which				
	(1) Recog	nize a specific	nueleoti	de sequence fo	or binding of DNA	A ligase		
		(1) Recognize a specific nucleotide sequence for binding of DNA ligase(2) Restrict the action of the enyme DNA polymerase						
	` '	ve nucleotides	•					
	` '	cuts at specific						
	Ans. (4	-	•					
180.	If for some	e reason our o	oblet cell	s are non-func	tional, this will ac	dverselv aff	ect	
		ion of sebum fr						
	` '	ation of sperms			- -			

(3) smooth movement of food down the intestine

(4) production of somatostatin

Ans. (4)

AIPM ⁻	T (SCREENING)-2010						
181.	Transfer of pollen gr	ains from the anther to the	is from the anther to the stigma of another flower of the same plant is called				
	(1) Geitonogamy	(2) Karyogamy	(3) Autogamy	(4) Xenogamy			
	Ans. (1)	(=)	(e) runegay	(1,71811092111)			
182.	One of the free-living	anaerobic nitrogen-fixer is					
	(1) Rhodospirillum	(2) Rhizobium	(3) Azotobacter	(4) Beijernickia			
	Ans. (3)						
183.	-	first characterised in					
	(1) Potato	(2) Tomato	(3) Cotton	(4) Tobacco			
	Ans. (4)						
184.		he ductules leading from					
	(1) Rete testis to vas		(2) Vas deferens to				
	(3) Epididymis to ure Ans. (1)	ethra	(4) Testicular lobule	s to rete testis			
	• •						
185.		lowing has its own DNA					
	(1) Dictyosome Ans. (4)	(2) Lysosome	(3) Peroxisome	(4) Mitochondria			
	(2) Chewing tobacco (3) Cocaine is given	n given to persons who have to lowers blood pressure and to patients after surgery as an given to criminals make t	heart rate it stimulates recovery	s a pain killer			
187.	state in blood plasm (3) They do not carry	9.5 per cent of ${\rm O_2}$ bout 80 per cent oxygen or a	nly and the rest 20 per	cent of it is transported in dissolved			
188.	(1) The sperm lysins(2) Acrosome serves(3) Acrosome seves	lowing statements about hus in the acrosome dissolve the as a sensory structure learno particular function conical pointed structure use	ne egg envelope facilitation ding the sperm toward	ating fertilisation			
189.	The signals for partu	rition originate from					
	(1) Placenta as well	as fully developed foetus	(2) Oxytocin release	ed from maternal pituitary			
	(3) Fully developed f	oetus only	(4) Placenta only				

Ans. (2)

190.		mmon nitrogen- spirillum (1)	fixer in paddy fields is (2) Oscillatoria	(3) Frankia	(4) Rhizobium
191.	(1) Sma (2) Larg (3) Sma	ge producing abu all, producing ne	are ge number of dry pollen gr nant nectar and pollen ectar and dry pollen red, producing large numb		
192.	Ovary is (1) Plur Ans.	s half-inferior in th m (4)	ne flowers of (2) Brinjal	(3) Cucumber	(4) Guava
193.	(1) Trai (2) Trai (3) Anir	nsgenic models f nsgenic Cow-Ro mals like bulls for	s been successfully used for studying new treatmen sie which produces high far farm work as they have stesting safety of polio vac	ts for certain cardiac dise at milk for making ghee uper power	
194.	Which (1) Nata		ing is one of the characte (2) Mortality	ristics of a biological com (3) Sex-ratio	munity (4) Stratification
195.		notype of a plant ybrid cross (4)	showing the dominant Ph (2) Pedigree analysis	neotype can be determine (3) Back cross	ed by (4) Test cross
196.	DNA or (1) Prob Ans.		agged with a radioactive n (2) Clone	nolecule is called (3) Plasmid	(4) Vector
197.	(1) Dru (2) AID (3) The	g addicts are lea S patinets are be causative HIV re	statements is correct with st suceptible to HIV infect sing fully cured cent per ce strovirus enters helper T-ly smitted through eating foc	ion ent with proper care and r mphocyte thus reducing	their numbers
198.	(1) Abs		sapwood in and parenchyma pests and pathogens	(2) Having dead and nor (4) Presence of rays and	· ·
199.	A renev (1) Petr Ans.		e natural resource is (2) Minerals	(3) Forest	(4) Coal
200.	-	rt of Fallopian tul ndibulum	oe closest to the ovary is (2) Cervix	(3) Ampulla	(4) Isthmus

Ans. (1)