Moteurs Physiques pour l'Animation & la Simulation

M2 IMAGE

2021/2022

volume : 4x(2hCM+2hTD)

évaluation : projet

Plan (approximatif)

Etat de l'art : animation & modèles

physiques

Un peu de physique : mécanique du point / du solide

définitions et mise en équations

Un peu de math : sytèmes d'équations différentielles

méthodes numériques de résolution

Techniques d'animation : modèles descriptifs vs. modèles générateurs

Modèles physiques : par découpage

différences finies

éléments finis

par assemblage

masses/ressorts

sytèmes de particules

(petit) résumé Animation Traditionnelle

Animation par images-clefs (keyframing – cycles de marche)

Animation par images-clefs (keyframing – cycles de marche)

Animation par images-clefs (interpollation sur la forme)

Animation par images-clefs (interpollation sur la topologie)

Animation par images-clefs (interpollation sur la topologie)

Animation par images-clefs (interpollation sur les vitesses)

Animation procédurale : vite complexe et limitée

- Pratique pour plaquer des mouvements simples et périodiques

Animation par 'motion capture': solution pratique

ancêtre: "rotascoping"

Animation par interpollation (contrôle de trajectoire)

courbes splines paramétrées pour plus de réalisme 'physique'

scénario "manuel"

Animation par interpollation (contrôle de trajectoire)

courbes splines paramétrées pour plus de réalisme 'physique'

scénario "manuel"

Animation par interpollation (trajectoire cinétique)

Tir balistique → étude complète en TD

Animation par interpollation (contrôle des déformations)

Mesh-Based

Surfaces Implicites (Splines)

NURBS (Non Uniform Rational B-Splines)

metaballs

Soft-Bodies

Mesh-Free

FFD (Free Form Deformation)

ExtendedFFD

Simulation (contrôle cinétique avancé)

pseudo-particules

Simulation (contrôle cinétique avancé)

Simulation (contrôle cinétique avancé)

Limites de ce type d'animation :

manque de variété (séquences répétitives) manque de réalisme (mouvements 'artificiels', contrôle précis difficile) phénomènes naturels complexes inaccessibles

Champs d'application courant : animation de personnages

mélange procédural / motion-capture couplage avec techniques plus évoluées suffisant en "vue de loin"

Surcouches de plus haut niveau

habillage (Skinning, Mesh/FFD hiérarchiques) enrichissement procédural (Logique Floue) systèmes coopératifs/autonomes (Sytèmes Multi-Agents) Simulateurs Physiques (contrôle dynamique)

Le système MASSIVE (physique + agents + logique floue)

...à suivre (animation comportementale / vie artificielle)

pour aller plus loin: Simulation Dynamique (physics-based simulation)

Dynamique du point

Dynamique du solide

Dynamique des objets déformables

Dynamique des fractures

Dynamique des milieux granulaires

Dynamique des fluides

Dynamique des milieux gazeux

Dynamique chimique

Dynamique sub-atomique

Dynamique spatiale

Electromagnétisme

Physique de la Lumière

Physiques newtoniennes

Physiques statistiques

Physiques Quantiques

Dynamique du point

Dynamique du solide

Dynamique des objets déformables

Dynamique des fractures

Dynamique des milieux granulaires

Dynamique des fluides

Dynamique des milieux gazeux

Dynamique chimique

Dynamique sub-atomique

Dynamique spatiale

Electromagnétisme

Physique de la Lumière

masses/ressorts

Dynamique du point

Dynamique du solide

Dynamique des objets déformables

Dynamique des fractures

Dynamique des milieux granulaires

Dynamique des fluides

Dynamique des milieux gazeux

Dynamique chimique

Dynamique sub-atomique

Dynamique spatiale

Electromagnétisme

Physique de la Lumière

systèmes de particules

Dynamique du point

Dynamique du solide

Dynamique des objets déformables

Dynamique des fractures

Dynamique des milieux granulaires

Dynamique des fluides

Dynamique des milieux gazeux

Dynamique chimique

Dynamique sub-atomique

Dynamique spatiale

Electromagnétisme

Physique de la Lumière

Assemblage Particulaire

Dynamique du Point : à la base de (presque) tout

vue en détail dans les cours suivants

Dynamique du Solide : le plus simple à mettre en oeuvre

force résultante appliquée sur G A(t) $F_{0}(t)$ $M_{0}(t)$ $M_{0}(t)$

dyn. du point + rotations instantanées

usages : objets indéformables

atouts: simple, robuste

<u>limites : gestion des interactions</u>

rigidité "absolue"

---> réalisme très limité

tps. réel (CPU) — → jeux vidéo

Dynamique des Objets Déformables : soft-bodies / textiles

déformations à topologie fixe

vue en détail dans les cours suivants

dyn. du point + topologie d'interconnexion

usages: soft-bodies, textiles

atouts: simple, très riche

limites : "super-élasticité"

objets très rigides

-----> devient lourd et/ou complexe

Dynamique des Fractures : interfaces solide/déformable

déformations à topologie variable

Vue rapidement dans les cours suivants Illustration de la méthode des Eléments Finis

Dynamique Granulaire : *interfaces solide/liquides* déformations sans topologie

grains / sables / pâtes / fluides

Systèmes de Particules : grains ? Fluides ?

Systèmes de Particules : grains ? Fluides ?

Systèmes de Particules : faux 3D

Systèmes de Particules : vrai 3D

Dynamique Granulaire : *interfaces solide/particules* "Bullet Physics"

Dynamique des Fluides : pâtes / liquides / gaz

Dynamique des Milieux Gazeux : fumées, flames, explosions

Dynamiques Chimiques:

Simulation climatique:

courants océaniques

Simulation astrophysique:

pour aller encore plus loin : Simulation Comportementale (behavioral) et Vie Artificielle (a-life)

Flock, School, Swarm ...: boids / ant-colony

Simulation de foules :

Simulation de foules : système de particules détourné

Vie Artificielle:

Système de Particules : auto-organisation

Et ça continue ...:

Morphogénèse : croissance de végétaux

Biogénèse: modèles cellulaires

Modèles génétiques Nano-Technologies

"Artificial, non-artificial, natural:
On the Ethics of Artificial Life"
Michael Steinmann
University of Tübingen and University of Pennsylvania
Date: Wednesday, March 26
Time: 3: 15 P.M. Place: Pierce 216

ne: 3:15 P.M. Place: Pierce
Light refreshments will be served
College of Arts and Letters

Vue d'ensemble : *(tentative...)*

