Algebra I (Doble Grado Matemáticas-Informática)

Relación 4. Anillos de polinomios.

Curso 2019-2020

Ejercicio 1 *Encontrar un polinomio* $f(x) \in \mathbb{Q}[x]$ *de grado 3 tal que:* f(0) = 6, f(1) = 12 y $f(x) \equiv (3x + 3)$ $mod(x^2 + x + 1)$.

Ejercicio 2 *Encontrar los polinomios irreducibles de grados 2 y 3 en* $\mathbb{Z}_2[x]$, $\mathbb{Z}_3[x]$ *y* $\mathbb{Z}_5[x]$.

Ejercicio 3 *Estudiar si los siguientes polinomios son reducibles ó irreducibles en* $\mathbb{Z}[x]$ *y en* $\mathbb{Q}[x]$:

a)
$$2x^5 - 6x^3 + 9x^2 - 15$$

b)
$$x^4 + 15x^3 + 7$$

c)
$$x^5 + x^4 + x^2 + x + 2$$

$$ch) 2x^4 + 3x^3 + 3x^2 + 3x + 1$$

d)
$$x^4 - 22x^2 + 1$$

$$e) x^3 + 17x + 36$$

$$f(x^5 - x^2 + 1)$$

g)
$$x^4 + 10x^3 + 5x^2 - 2x - 3$$

$$h) x^4 + 6x^3 + 4x^2 - 15x + 1$$

i)
$$x^4 - x^2 - 2x - 1$$

$$j) x^5 + 5x^4 + 7x^3 + x^2 - 3x - 11$$

$$k) x^5 - 10x^4 + 36x^3 - 53x^2 + 26x + 1$$

$$l) x^4 + 6x^3 + 4x^2 - 15x + 1$$

$$ll) \, x^4 + 3x^3 + 5x^2 + 1$$

$$m) x^6 + 3x^5 - x^4 + 3x^3 + 3x^2 + 3x - 1$$

$$n) x^4 + 4x^3 - x^2 + 4x + 1$$

$$\tilde{n}$$
) $x^5 - 6x^4 + 3x^3 + 2x - 1$

$$o) 2x^4 + 2x^3 + 6x^2 + 4$$

$$p) 3x^5 - x^4 - 4x^3 - 2x^2 + 2x + 1$$

$$q) x^4 - x^3 + 9x^2 - 4x - 1$$

$$r) x^7 + 5x^6 + x^2 + 6x + 5$$

$$s) 3x^5 + 42x^3 - 147x^2 + 21$$

$$t) x^5 + 3x^4 + 10x^2 - 2$$

$$u) x^4 + 3x^2 - 2x + 5$$

$$v) 3x^6 + x^5 + 3x^2 + 4x + 1$$

$$w) 2x^4 + x^3 + 5x + 3$$

$$x) 2x^5 - 2x^2 - 4x - 2$$

$$v) 3x^4 + 3x^3 + 9x^2 + 6$$

$$z) x^6 - 2x^5 - x^4 - 2x^3 - 2x^2 - 2x - 1$$

$$\alpha$$
) $6x^4 + 9x^3 - 3x^2 + 1$

$$\beta$$
) $2x^4 + 8x^3 + 10x^2 + 2$

$$\gamma$$
) $x^4 + 4x^3 + 6x^2 + 2x + 1$

 δ) $x^6 - x^5 + 3x^4 + x + 2$ sabiendo que reducido módulo 7, es producto de un polinomio de grado 1 por un irreducible de grado 5.

Ejercicio 4 Dado un anillo conmutativo y un elemento $a \in R$ demuestra que la aplicación $\Phi : R[x] \to R[x]$ dada por $\Phi(f(x)) = f(x+a)$ es un isomorfismo de anillos. Aplica este resultado y el criterio de Eisenstein para ver que el polinomio $f(x) = x^4 + 1$ es irreducible en $\mathbb{Z}[x]$ estudiando el polinomio f(x+1).

Ejercicio 5 Sea I el ideal de $\mathbb{Z}_3[x]$ generado por $x^2 + 2x + 2$. Demostrar que el anillo cociente $\mathbb{Z}_3[x]/I$ es un cuerpo y hallar el inverso de (ax + b) + I.

Ejercicio 6 *Hallar el m.c.d. y el m.c.m. en* $\mathbb{Z}_5[x]$ *de los polinomios* $x^7 + 2x^6 + 3x^5 + 3x^4 + 3x^3 + 3x^2 + 2x + 1$ $y 3x^6 + 4x^4 + 4x^3 + 4x^2 + 3x + 1$.

Ejercicio 7 Calcular, si es posible, el inverso de la clase de x en el anillo cociente $\mathbb{Q}[x]/(x^4+x+1)$.

Ejercicio 8 Demostrar que $\frac{\mathbb{Z}_2[x]}{(x^4+x+1)}$ es un cuerpo y calcular el inverso de la clase de x^2+1 .

Ejercicio 9 *Considerar el polinomio* $f(x) = x^3 + 2x + 1 \in \mathbb{Z}_3[x]$:

- Probar que f(x) es irreducible.
- Calcular el inverso de la clase $[x^2 + x + 2]$ en el anillo cociente $\mathbb{Z}_3[x]/f(x)\mathbb{Z}_3[x]$.
- ¿Es el polinomio $x^3 + 9x^2 x + 244$ irreducible sobre $\mathbb{Z}[x]$?.

Ejercicio 10 *Probar que el anillo cociente* $\frac{\mathbb{Q}[x]}{(x^3-2x-3)}$ *es un cuerpo y calcular el inverso de la clase de x* + 1.

Ejercicio 11 Calcular las unidades de los anillos cociente $\mathbb{Z}_5[x]/(x^2+x+1)$, $\mathbb{Z}_5[x]/(x^2+1)$ $y \mathbb{Z}_3[x]/(x^2+2)$.

Ejercicio 12 Hallar la intersección, la suma y el producto de los ideales de $\mathbb{Q}[x]$ generados por los polinomios $x^2 + x - 2$ y $x^2 - 1$.

Ejercicio 13 *Factoriza los siguientes polinomios como producto de irreducibles en* $\mathbb{Z}[x]$.

- 1. $x^6 x^5 10x^2 + 15x 5$.
- 2. $3x^4 5x^3 101$.
- 3. $2x^4 + 4x 1$.

Ejercicio 14 *Factoriza en irreducibles de* $\mathbb{Q}[x]$ *los siguientes polinomios.*

- 1. $2x^4 + 3x^3 + 3x^2 + 3x + 1$.
- 2. $x^4 + 3x^3 + 5x^2 + 1$.
- 3. $x^5 4x + 1$.