Combinatorics

Thomas Fleming

October 25, 2021

Contents

1 Psuedo-Random Graphs

Fri 22 Oct 2021 10:23

1

Lecture 25: Psuedo-Random Graphs

1 Psuedo-Random Graphs

Definition 1.1 (Psuedo-Random Graph). A **psuedo-random graph** is a *d*-regular graph of order n with $\sigma_2(G) \leq \lambda$ and $\lambda = o(d)$. We denoted this (n, d, λ)

Let G be a $(n, n^{\frac{2}{3}}, 2n^{\frac{1}{2}})$. Then, we derive some nice conditions on the hamiltonicity of G.

Proposition 1.1 (Expander Mixing Lemma). Let G be a d-regular graph of order n, then for every $X,Y\subseteq V\left(G\right)$, we find

$$\left| e\left(X,Y\right) - \frac{d}{n}\left| X\right|\left| Y\right| \right| \leq \sigma_{2}\left(G\right)\sqrt{\left| X\right|\left| Y\right|}.$$

Proof. Note here e(X, Y) double counts edges in the intersection $X \cap Y$. Hence, e(X, X) = 2e(X). Then, note $\frac{d}{n} = \frac{dn}{n^2} = \frac{e(G)}{n^2}$, the density of G.

Now, let $X \subseteq M$ and define a vector $j_X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ with $x_i = \begin{cases} 1, & i \in X \\ 0, & i \notin X \end{cases}$

Then, note that $\langle j_X, j_X \rangle = |X|$ and $\langle j_X, j_Y \rangle = |X \cap Y|$.

Then, letting $X\subseteq [n]$ to be a subsets of all numbers less than or equal to n, then we see letting A be a (0,1) matrix which is $n\times n$, we have $\langle Aj_X,j_Y\rangle=e(Y,X)=e(X,Y)$. Lastly, $\langle J_nj_X,j_Y\rangle=|X|\,|Y|$ Defining $B=A-\frac{s}{n^2}J_n$, we see $\frac{s}{n^2}=\frac{d}{n}$, hence $B=A-\frac{d}{n}J_n$. Then, note $\langle Bj_X,j_Y\rangle=e(X,Y)-\frac{d}{n}\,|X|\,|Y|$. Hence, we have reduced the left hand side to $\langle Bj_X,j_Y\rangle$. Then, note that $|\lambda_i|\leq \sigma_2(G)\leq \lambda$ for $2\leq i\leq n$. Then, as $\lambda_1(G)=\lambda_1\left(\frac{d}{n}J\right)=d$, we see $\lambda_1(B)=0$ and $\lambda_j(B)=\lambda_j(A)$ for all $2\leq j\leq n$. Clearly

Lecture 26

Sun 24 Oct 2021 18:50

Proposition 1.2. Let A be the adjacency matrix \mathbf{q}