

Centro Universitario de Ciencias Exactas e Ingenierías

Departamento de Ciencias Computacionales

Seminario de Solución de Problemas de Sistemas Basados en Conocimiento

Tarea 2

"Unificación"

Profesor: Sección: Fecha:

Valdes Lopez Julio Esteban D05 29/08/2022

Alumno: Código: Carrera:

Sandoval Padilla Fernando Cesar 215685409 Ingeniería informática

Unificación

Índice

Tabla de Imágenes	2
Introducción	2
Investigación	2
Unificación:	2
Algoritmo de unificación:	3
Proceso de unificación en prolog:	3
Operador de unificación (=)	3
Operador de unificación (\=)	3
Características	3
Casos de unificación	4
Pasos para unificar (Algoritmo)	4
Bibliografía	5

Tabla de Imágenes

N/A

Introducción

El presente documento se encargará de proporcionar la descripción de lo que es la unificación y el algoritmo de unificación, así como información relacionada con prolog.

Investigación

Unificación:

La unificación es un proceso algorítmico para resolución de ecuaciones con expresiones simbólicas.

- El corazón del modelo de computación de programas lógicos es el algoritmo de unificación.
- La unificación es una operación sintáctica.
- La unificación es un proceso que consiste en encontrar una asignación de variables que haga idénticas a las fórmulas que se desea unificar.

Seminario de Solución de Problemas de Sistemas Basados en Conocimiento

Algoritmo de unificación:

Un algoritmo de unificación debe calcular un conjunto de sustituciones completo y mínimo para un problema dado; esto es, un conjunto que cubra todas las soluciones y que no contenga miembros redundantes.

- Los algoritmos de unificación fueron descubiertos por Jacques Herbrand, pero la primera investigación formal puede ser atribuida a John Alan Robinson.
- El razonamiento automático es todavía el área donde la unificación es aplicada mayormente.

Proceso de unificación en prolog:

Dados 2 términos cualesquiera, T1 y T2, para que se unifiquen en PROLOG uno de ellos debe ser una variable no instanciada y al final acabara tomando el valor del otro.

Ejemplo:

T1-> variable no instanciada

y al final

T1=T2

Operador de unificación (=)

Este operador comprueba si las dos expresiones son unificables.

Ejemplo:

expresión1 = expresión2

- A = 3+2 ⇒ Si 'A' no está instanciada unifica, pero si lo está, no se puede y falla.
- A es 3+2 ⇒ En este caso, si 'A' no está instanciada, evalúa '3+2' y unifica como 'A es 5'.

Operador de unificación (\=)

Este operador comprueba si las dos expresiones son no unificables.

Ejemplo:

- A \= 1 ⇒ Si 'A' no está instanciada y por tanto pueden unificar, \ A fallará.
- Pero si 'A' está instanciada a cualquier valor que no sea '1', el operador indica entonces que no se pueden unificar y seguirá evaluando.

Características

 Una variable siempre unifica con un término, quedando está ligada a dicho término.

Unificación

- Dos variables siempre unifican entre sí, además, cuando una de ellas se liga a un término todas las que unifican, se ligan a dicho término.
- Para que dos términos unifiquen, deben tener el mismo functor y la misma aridad. Después se comprueba que los argumentos unifican uno a uno manteniendo las ligaduras que se produzcan en cada uno.
- Si dos términos no unifican, ninguna variable queda ligada.

Casos de unificación

- Constantes. (Dos variables se unifican cuando tienen el mismo valor de constante)
- Estructura. (Cuando dos términos tienen la misma estructura)
 - ¿pepe(A,rojo)==pepe(Z,rojo)? pepe=pepe, A=Z porque no están instanciados a nada y rojo = rojo → Si unifican.
- Variable blanca o anónima (_). (variable especial que unifica con casi todo)

Pasos para unificar (Algoritmo)

- 1. Si R = S, entonces R y S son unificables.
- 2. Si no, localizar el símbolo más a la izquierda de R que se diferencia de su homólogo en S
- 1. Si es el primero (predicado), entonces R y S no son unificables.
- 2. Si es uno de los argumentos, entonces sean t1, t2 los términos en los que difieren.
- 1. Si ninguno de los dos (t1, t2) es una variable, entonces las cláusulas no son unificables.
- 2. Si t1 es una variable X, entonces haremos la sustitución: $s = \{X/t2\}$
- 3. Volver al paso 1.

Seminario de Solución de Problemas de Sistemas Basados en Conocimiento

Bibliografía

- Apuntes de Inteligencia Artificial. (s. f.). dcc.uchile. Recuperado 30 de agosto de 2022, de https://users.dcc.uchile.cl/%7Eabassi/Cursos/41a/unificacion.html
- colaboradores de Wikipedia. (2021, 9 octubre). Unificación (ciencias de la computación). Wikipedia, la enciclopedia libre. Recuperado 30 de agosto de 2022, de https://es.wikipedia.org/wiki/Unificaci%C3%B3n (ciencias de la computaci%C3%B3 n)#:%7E:text=Un%20algoritmo%20de%20unificaci%C3%B3n%20debe,que%20no%2
 Ocontenga%20miembros%20redundantes.
- Estevez, J. (2010, 19 junio). Prolog Proceso de unificacion. programacion en prolog.
 Recuperado 30 de agosto de 2022, de
 https://programacionprolog.wordpress.com/2010/06/19/prolog-proceso-de-unificacion/
- Morales, E. (s. f.). Prolog. ccc.inaoep.mx. Recuperado 30 de agosto de 2022, de https://ccc.inaoep.mx/~emorales/Cursos/Prolog/curso.pdf