Lecture 5 Competitive Equilibrium in the Growth Model

Macroeconomics EC417

Jane Olmstead-Rumsey

London School of Economics, Fall 2022

Competitive Eqm in the Growth Model

- There are two issues we are interested in regarding resource allocation problems
 - 1. efficient allocations
 - 2. decentralized equilibrium allocations
- So far did (1). Now consider (2).
- Focus on particular decentralized equilibrium concept: competitive equilibrium
 - benchmark notion of decentralized eqm, but not only one

Competitive Eqm (CE) in the Growth Model

- Static economies: one way to formulate CE
- Dynamic economies: three ways to formulate CE
 - 1. "Arrow-Debreu CE" (ADCE)
 - 2. "Sequence of Markets CE" (SOMCE)
 - 3. "Recursive CE" (RCE)
- Outcomes same for all three. Just different representations.
- Begin with ADCE
 - extension of static CE
 - but defining commodities as pairs of goods × time

Preliminaries: Ownership of Capital

- Detail to consider in economy with capital: who owns capital?
 - households who then rent it to firms?
 - firms who own capital are in turn owned by households?
 - reality: see some of each
- Turns out this is of no substantive importance in this setting
 - lecture: assume capital owned by HH and rented to firms
 - exercise: other extreme
- Also assume single "stand-in" firm
 - exercise: show that this is harmless
- We also go back to discrete-time formulation

Characterizing Competitive Equilibria

- First Welfare Theorem applies (perfect info., perfect comp., complete markets), so could simply use fact that CE allocation = planner's allocation
- But will later consider environments with various distortions (financial frictions, incomplete insurance, ...) in which this fails
- ⇒ want to know how to solve for CE even when First Welfare Theorem fails. Consider such method now.
- General idea:
 - max problem for hh's and firms ⇒ necessary conditions
 - + market clearing

Arrow-Debreu CE

ADCE

- Definition: An ADCE for the growth model are sequences $\{c_t^h, h_t^h, k_t^h, k_t^f, h_t^f, p_t, w_t, R_t\}_{t=0}^{\infty}$ s.t.
 - 1. (HH max) Taking $\{p_t, w_t, R_t\}$ as given, $\{c_t^h, h_t^h, k_t^h\}$ solves

$$\max_{\{c_{t}^{h}, h_{t}^{h}, k_{t}^{h}\}} \sum_{t=0}^{\infty} \beta^{t} u(c_{t}) \quad \text{s.t.}$$

$$\sum_{t=0}^{\infty} p_{t}(c_{t}^{h} + k_{t+1}^{h} - (1 - \delta)k_{t}^{h}) \leq \sum_{t=0}^{\infty} (R_{t}k_{t}^{h} + w_{t}h_{t}^{h})$$

$$\sum_{t=0}^{\infty} p_t(c_t^h + k_{t+1}^h - (1 - \delta)k_t^h) \le \sum_{t=0}^{\infty} (R_t k_t^h + w_t h_t^h)$$

$$c_t^h \ge 0, \quad 0 \le h_t^h \le 1, \quad k_{t+1}^h \ge 0, \quad k_0^h = \bar{k}_0$$

2. (Firm max) Taking $\{p_t, w_t, R_t\}$ as given, $\{k_t^f, h_t^f\}$ solves

$$\max_{\{k_t^f, h_t^f\}} \sum_{t=0}^{\infty} (p_t F(k_t^f, h_t^f) - w_t h_t^f - R_t k_t^f) \quad k_t^f \ge 0, \quad h_t^f \ge 0.$$

3. (Market clearing) For each t:

$$k_t^h = k_t^f$$
, $h_t^h = h_t^f$, $c_t^h + k_{t+1}^h - (1 - \delta)k_t^h = F(k_t^f, h_t^f)$

- Single budget constraint for HH
- Prices take care of discounting implicitly
- \bullet Everything happens at t=0

Simplifying

- An ADCE are sequences $\{c_t, h_t, k_t, p_t, w_t, R_t\}_{t=0}^{\infty}$ s.t.
 - 1. (HH max) Taking $\{p_t, w_t, R_t\}$ as given, $\{c_t, h_t, k_t\}$ solves

$$\max_{\{c_t, h_t, k_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1 - \delta)k_t) \le \sum_{t=0}^{\infty} (R_t k_t + w_t h_t)$$

$$c_t \ge 0, \quad 0 \le h_t \le 1, \quad k_{t+1} \ge 0, \quad k_0 = \bar{k}_0$$

2. (Firm max) Taking $\{p_t, w_t, R_t\}$ as given, $\{k_t, h_t\}$ solves

$$\max_{\{k_t,h_t\}} \sum_{t=0}^{\infty} (p_t F(k_t,h_t) - w_t h_t - R_t k_t) \quad k_t \ge 0, \quad h_t \ge 0.$$

3. (Market clearing) For each t:

$$c_t + k_{t+1} - (1 - \delta)k_t = F(k_t, h_t)$$

(k and h markets clear implicitly)

q

• Necessary conditions for consumer problem $(h_t = 1 \text{ wlog})$

$$c_t$$
: $\beta^t u'(c_t) = \lambda p_t$, $\lambda = \text{multiplier on b.c.}$ (1)

$$k_{t+1}: \quad \lambda p_t + \lambda [-p_{t+1}(1-\delta) - R_{t+1}] = 0$$
 (2)

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1-\delta)k_t) \le \sum_{t=0}^{\infty} (R_t k_t + w_t)$$
 (3)

TVC:
$$\lim_{T \to \infty} \beta^T u'(c_T) k_{T+1} = 0$$
 (4)

initial:
$$k_0 = \bar{k}_0$$
 (5)

• Necessary conditions for consumer problem $(h_t = 1 \text{ wlog})$

$$c_t$$
: $\beta^t u'(c_t) = \lambda p_t$, $\lambda = \text{multiplier on b.c.}$ (1)

$$k_{t+1}: \quad \lambda p_t + \lambda [-p_{t+1}(1-\delta) - R_{t+1}] = 0$$
 (2)

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1-\delta)k_t) \le \sum_{t=0}^{\infty} (R_t k_t + w_t)$$
 (3)

TVC:
$$\lim_{T \to \infty} \beta^T u'(c_T) k_{T+1} = 0$$
 (4)

initial:
$$k_0 = \bar{k}_0$$
 (5)

• Necessary conditions for firm problem

$$p_t F_k(k_t, h_t) = R_t \tag{6}$$

$$p_t F_h(k_t, h_t) = w_t \tag{7}$$

• Necessary conditions for consumer problem $(h_t = 1 \text{ wlog})$

$$c_t$$
: $\beta^t u'(c_t) = \lambda p_t$, $\lambda = \text{multiplier on b.c.}$

$$k_{t+1}: \quad \lambda p_t + \lambda [-p_{t+1}(1-\delta) - R_{t+1}] = 0$$

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1 - \delta)k_t) \le \sum_{t=0}^{\infty} (R_t k_t + w_t)$$
 (3)

TVC:
$$\lim_{T\to\infty} \beta^T u'(c_T) k_{T+1} = 0$$

initial:
$$k_0 = \bar{k}_0$$

• Necessary conditions for firm problem

$$p_t F_k(k_t, h_t) = R_t$$

$$p_t F_h(k_t, h_t) = w_t$$

earing
$$C_t + k_{t+1} - (1 - \delta)k_t = F(k_t, h_t)$$

(1)

(2)

(4)

(5)

Characterizing ADCE: TVC?

• As before, can think of TVC (4) as coming from finite horizon problem

$$\max_{\{c_t, h_t, k_t\}} \sum_{t=0}^{T} \beta^t u(c_t) \quad \text{s.t.}$$

$$\sum_{t=0}^{T} p_t(c_t + k_{t+1} - (1 - \delta)k_t) \le \sum_{t=0}^{T} (R_t k_t + w_t h_t), \quad k_{t+1} \ge 0$$

• Denote multipliers by λ, μ_t , necessary conditions at t = T are

$$\beta^{T} u'(c_{T}) = \lambda p_{T}$$

$$\lambda p_{T} = \mu_{T} \qquad \Rightarrow \quad \beta^{T} u'(c_{T}) k_{T+1} = 0$$

$$\mu_{T} k_{T+1} = 0$$

• Use (1) at t and t+1

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{p_t}{p_{t+1}} \tag{9}$$

• Use (1) at t and t+1

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{p_t}{p_{t+1}} \tag{9}$$

• From (2)

$$\frac{p_t}{p_{t+1}} = \frac{R_{t+1}}{p_{t+1}} + 1 - \delta$$

$$\Rightarrow \frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{R_{t+1}}{p_{t+1}} + 1 - \delta$$

• Use (1) at t and t+1

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{p_t}{p_{t+1}}$$

• From (2)

$$\frac{p_t}{p_{t+1}} = \frac{R_{t+1}}{p_{t+1}} + 1 - \delta$$

$$\Rightarrow \frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{R_{t+1}}{p_{t+1}} + 1 - \delta$$

• From (6)

$$\frac{R_t}{\rho_t} = F_k(k_t, 1) = f'(k_t)$$

$$\Rightarrow \frac{u'(c_t)}{\beta u'(c_{t+1})} = f'(k_{t+1}) + 1 - \delta$$

(10)

(9)

• Recall

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = f'(k_{t+1}) + 1 - \delta \tag{10}$$

- (10) + TVC (4) + initial condition (5) + market clearing (8) = same set of equations as for SP problem
- Hence: ADCE allocation is the same for the SP problem

• Recall

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = f'(k_{t+1}) + 1 - \delta \tag{10}$$

- (10) + TVC (4) + initial condition (5) + market clearing (8) = same set of equations as for SP problem
- Hence: ADCE allocation is the same for the SP problem
- How get prices?
 - can always normalize one price to unity: wlog set $p_0 = 1$
 - get R_0 , w_0 from (6) and (7) at t = 0
 - get p_1 from (9) given c_0 , c_1 , p_0
 - get R_1 , w_1 from (6) and (7) at t = 1 given p_1
 - ...

Aside: Walras' Law

- Q: Why didn't we use budget constraint (3)?
- A: because it is implied by the other equations, in particular firm's problem + market clearing $(8) \Rightarrow (3)$
- Firm's problem and market clearing are

$$\sum_{t=0}^{\infty} (p_t F(k_t, h_t) - w_t h_t - R_t k_t) = 0$$

$$c_t + k_{t+1} - (1 - \delta) k_t = F(k_t, h_t)$$
(12)

Substituting (12) into (11) gives (3):

$$\sum_{t=0}^{\infty} [p_t(c_t + k_{t+1} - (1 - \delta)k_t) - w_t h_t - R_t k_t] = 0$$

- This is "Walras' Law" http://en.wikipedia.org/wiki/Walras'_law
 - very general: all budget constraints \Rightarrow resource constraint
 - useful check when writing models: if Walras' Law doesn't hold, you did something wrong (e.g. forgot term in mkt clearing)

Steady State (SS) ADCE

- Definition: A SS ADCE is a value of k^* and an ADCE for the economy with $\bar{k}_0 = k^*$ s.t. $k_t = k^*$ (and $c_t = c^*$) for all t.
- Clearly from (10)

$$\frac{1}{\beta} = f'(k^*) + 1 - \delta$$

- $\Rightarrow k^*$ same as in SP problem
- Question: what do you think prices look like in a SS ADCE?
 - $p_t = \text{constant}$?
 - $R_t = \text{constant}$?
 - $w_t = \text{constant}$?

Steady State ADCE

- Let's work it out
- Have

$$\frac{u'(c^*)}{\beta u'(c^*)} = \frac{p_t}{p_{t+1}} \quad \Rightarrow \quad \frac{p_{t+1}}{p_t} = \beta$$

• normalizing $p_0 = 1$

$$p_t = \beta^t$$

Also

$$\frac{R_t}{p_t} = F_k(k^*, 1), \quad \frac{w_t}{p_t} = F_h(k^*, 1)$$

- Summary:
 - R_t/p_t , w_t/p_t constant
 - R_t , w_t , p_t decreasing at rate β
- So prices are not constant in SS ADCE
 - prices implicitly reflect discounting of future values
 - price of future output is lower
 - return to future work is lower

Alternative Pricing Convention

- Denote factor prices relative to output price in each period
- Write budget constraint as

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1-\delta)k_t) \leq \sum_{t=0}^{\infty} p_t(\tilde{R}_t k_t + \tilde{w}_t h_t)$$

- This formulation is useful for thinking about real rates of return and interest rates in ADCE
 - no explicit credit market in ADCE
 - but can infer implicit real interest rate on one-period ahead borrowing and lending

Alternative Pricing Convention

- Denote real interest rate by r_t
- Definition: $1 + r_{t+1} = \text{amount of consumption you can get tomorrow by giving up one unit of consumption today}$
 - giving up one unit today saves p_t
 - with this you buy p_t/p_{t+1} tomorrow

$$\Rightarrow 1 + r_{t+1} = \frac{p_t}{p_{t+1}}$$

- In steady state, $1 + r_t = 1/\beta$
- Real rate of return on capital: from HH max. w.r.t. k_{t+1}

$$p_t = p_{t+1} \tilde{R}_{t+1} + p_{t+1} (1 - \delta)$$

- buy 1 unit of k today, get $p_{t+1}\tilde{R}_{t+1} + p_{t+1}(1-\delta)$ tomorrow
- must equal cost of doing so p_t

$$1 + r_{t+1} = \tilde{R}_{t+1} + 1 - \delta \quad \Rightarrow \quad \tilde{R}_t = r_t + \delta$$

• Terminology: rental rate \tilde{R}_t = "user cost of capital" $r_t + \delta$

Sequence of Markets CE

Sequence of Markets CE

- Arrow-Debreu CE
 - period 0: markets for everything
- Sequence of Markets CE: particular markets at particular points in time

Period 0	Period 1	Period 2	•••
market for period 0 capital,			
period 0 labor,			
period 0 output,			
1 period ahead borrowing/lending	•••		

Sequence of Markets CE

- Arrow-Debreu CE
 - period 0: markets for everything
- Sequence of Markets CE: particular markets at particular points in time

Period 0	Period 1	Period 2	•••
market for period 0 capital,		•••	
period 0 labor,			
period 0 output,		•••	
1 period ahead borrowing/lending	•••	•••	

- Individ. formulates plan at t = 0, but executes it in real time
 - in contrast, in ADCE everything happens in period 0
- SOMCE features explicit borrowing & lending
 - riskless one-period bond that pays real interest rate r_t

Sequence of Market CE

- Definition: A SOMCE = sequences $\{c_t, h_t, k_t, a_t, w_t, R_t, r_t\}_{t=0}^{\infty}$ s.t.
 - 1. (HH max) Taking $\{w_t, R_t, r_t\}$ as given, $\{c_t, h_t, k_t, a_t\}$ solves

$$\max_{\{c_t, h_t, k_t, a_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} \le R_t k_t + w_t h_t + (1 + r_t) a_t$$

$$c_t \ge 0, \quad 0 \le h_t \le 1, \quad k_{t+1} \ge 0, \quad k_0 = \bar{k}_0, \quad a_0 = 0$$

$$\lim_{T \to \infty} \left(\prod_{t=0}^{T} \frac{1}{1 + r_t} \right) a_{T+1} \ge 0 \tag{*}$$

Sequence of Market CE

- Definition: A SOMCE = sequences $\{c_t, h_t, k_t, a_t, w_t, R_t, r_t\}_{t=0}^{\infty}$ s.t.
 - 1. (HH max) Taking $\{w_t, R_t, r_t\}$ as given, $\{c_t, h_t, k_t, a_t\}$ solves

$$\max_{\{c_t, h_t, k_t, a_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} \le R_t k_t + w_t h_t + (1 + r_t) a_t$$

$$c_t \ge 0, \quad 0 \le h_t \le 1, \quad k_{t+1} \ge 0, \quad k_0 = \bar{k}_0, \quad a_0 = 0$$

$$\lim_{T \to \infty} \left(\prod_{t=0}^{T} \frac{1}{1 + r_t} \right) a_{T+1} \ge 0 \tag{*}$$

2. (Firm max) Taking $\{w_t, R_t, r_t\}$ as given, $\{k_t, h_t\}$ solves $\max_{k_t, h_t} F(k_t, h_t) - w_t h_t - R_t k_t \quad k_t \ge 0, \quad h_t \ge 0 \quad \forall t.$

Sequence of Market CE

- Definition: A SOMCE = sequences $\{c_t, h_t, k_t, a_t, w_t, R_t, r_t\}_{t=0}^{\infty}$ s.t.
 - 1. (HH max) Taking $\{w_t, R_t, r_t\}$ as given, $\{c_t, h_t, k_t, a_t\}$ solves

$$\max_{\{c_t, h_t, k_t, a_t\}} \sum_{t=0}^{30} \beta^t u(c_t) \quad \text{s.t.}$$

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} \le R_t k_t + w_t h_t + (1 + r_t) a_t$$

$$c_t \ge 0, \quad 0 \le h_t \le 1, \quad k_{t+1} \ge 0, \quad k_0 = \bar{k}_0, \quad a_0 = 0$$

$$\lim_{T \to \infty} \left(\prod_{t=0}^{T} \frac{1}{1 + r_t} \right) a_{T+1} \ge 0 \tag{*}$$

2. (Firm max) Taking $\{w_t, R_t, r_t\}$ as given, $\{k_t, h_t\}$ solves $\max_{t} F(k_t, h_t) - w_t h_t - R_t k_t \quad k_t \ge 0, \quad h_t \ge 0 \quad \forall t.$

3. (Market clearing) For each t:

$$c_t + k_{t+1} - (1 - \delta)k_t = F(k_t, h_t)$$

 $a_{t+1} = 0$

- $a_t = \text{HH bond holdings}$
 - $a_t > 0$: HH saves, $a_t < 0$: HH borrows
 - period-t price of bond that pays off at t + 1: $q_t = 1/(1 + r_t)$
 - some people like to write

$$c_t + k_{t+1} - (1 - \delta)k_t + q_t b_{t+1} \le R_t k_t + w_t h_t + b_t$$

• this is equivalent with $b_t = (1 + r_t)a_t$ and $q_t = 1/(1 + r_t)$

- $a_t = \text{HH bond holdings}$
 - $a_t > 0$: HH saves, $a_t < 0$: HH borrows
 - period-t price of bond that pays off at t + 1: $q_t = 1/(1 + r_t)$
 - some people like to write

$$c_t + k_{t+1} - (1 - \delta)k_t + q_t b_{t+1} \le R_t k_t + w_t h_t + b_t$$

- this is equivalent with $b_t = (1 + r_t)a_t$ and $q_t = 1/(1 + r_t)$
- Interpretation of bond market clearing condition (**)
 - bonds are in zero net supply
 - more generally, in economy with individuals i = 1, ..., N

$$\sum_{i=1}^{N} a_{i,t+1} = 0$$

- for every dollar borrowed, someone else saves a dollar
- here only one type, so $a_{t+1} = 0$.
- Q: since $a_t = 0$, why not eliminate? A: need to know eq. r_t 22

• Could have written firm's problem as

$$\max_{\{k_t, h_t\}} \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (F(k_t, h_t) - w_t h_t - R_t k_t) \quad k_t \ge 0, \quad h_t \ge 0$$

but this is a sequence of static problems so can split them up

• Could have written firm's problem as

$$\max_{\{k_t, h_t\}} \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (F(k_t, h_t) - w_t h_t - R_t k_t) \quad k_t \ge 0, \quad h_t \ge 0$$

but this is a sequence of static problems so can split them up

- (*) is a so-called "no-Ponzi condition"
 - with period budget constraints only, individuals could choose time paths with $a_t \to -\infty$
 - no-Ponzi condition (*) rules out such time paths: a_t cannot become too negative
 - implies that sequence of budget constraints can be written as present-value (or time-zero) budget constraint
 - return to this momentarily

Sequence $BC + no-Ponzi \Rightarrow PVBC$

 \bullet Result: If $\{c_t,i_t,h_t\}$ satisfy the sequence budget constraint

$$c_t + i_t + a_{t+1} = R_t k_t + w_t h_t + (1 + r_t) a_t$$

and if the no-Ponzi condition (*) holds with equality, then $\{c_t,i_t,h_t\}$ satisfy the present value budget constraint

$$\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (c_t + i_t) = \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (R_t k_t + w_t h_t)$$

• Proof: next slide

Proof

• Write period t budget constraint as

$$\frac{1}{1+r_t}a_{t+1} = \frac{1}{1+r_t}(R_tk_t + w_th_t - c_t - i_t) + a_t$$

Proof

• Write period t budget constraint as

$$\frac{1}{1+r_t}a_{t+1} = \frac{1}{1+r_t}(R_tk_t + w_th_t - c_t - i_t) + a_t$$

• At t = 0, t = 1, ...

$$\frac{1}{1+r_0}a_1 = \frac{1}{1+r_0} \left(R_0 k_0 + w_0 h_0 - c_0 - i_0 \right) + a_0$$

$$\frac{1}{1+r_0} \frac{1}{1+r_1} a_2 = \frac{1}{1+r_0} \frac{1}{1+r_1} \left(R_1 k_1 + w_1 h_1 - c_1 - i_1 \right)$$

$$+ \frac{1}{1+r_0} \left(R_0 k_0 + w_0 h_0 - c_0 - i_0 \right) + a_0$$

Proof

• Write period t budget constraint as

$$\frac{1}{1+r_t}a_{t+1} = \frac{1}{1+r_t}(R_tk_t + w_th_t - c_t - i_t) + a_t$$

• At t = 0, t = 1, ...

$$\frac{1}{1+r_0}a_1 = \frac{1}{1+r_0}\left(R_0k_0 + w_0h_0 - c_0 - i_0\right) + a_0$$

$$\frac{1}{1+r_0}\frac{1}{1+r_1}a_2 = \frac{1}{1+r_0}\frac{1}{1+r_1}\left(R_1k_1 + w_1h_1 - c_1 - i_1\right)$$

$$+ \frac{1}{1+r_0}\left(R_0k_0 + w_0h_0 - c_0 - i_0\right) + a_0$$

• By induction/repeated substitution

$$\left(\prod_{t=0}^{T} \frac{1}{1+r_t}\right) a_{T+1} = \sum_{t=0}^{T} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (R_t k_t + w_t h_t - i_t - c_t)$$

• Result follows from taking $T \to \infty$ and imposing (*)

Why no-Ponzi Condition?

• Expression also provides some intuition for no-Ponzi condition

$$\left(\prod_{t=0}^{T} \frac{1}{1+r_t}\right) a_{T+1} = \sum_{t=0}^{T} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (R_t k_t + w_t h_t - i_t - c_t)$$

- Suppose for the moment this were a finite horizon economy
 - would impose: die without debt, i.e.

$$a_{T+1} \ge 0$$

• in fact, HH's would always choose $a_{T+1} = 0$

Why no-Ponzi Condition?

• Expression also provides some intuition for no-Ponzi condition

$$\left(\prod_{t=0}^{T} \frac{1}{1+r_t}\right) a_{T+1} = \sum_{t=0}^{T} \left(\prod_{s=0}^{t} \frac{1}{1+r_s}\right) (R_t k_t + w_t h_t - i_t - c_t)$$

- Suppose for the moment this were a finite horizon economy
 - would impose: die without debt, i.e.

$$a_{T+1} \ge 0$$

- in fact, HH's would always choose $a_{T+1} = 0$
- Right analogue for infinite horizon economy

$$\lim_{T \to \infty} \left(\prod_{t=0}^{r} \frac{1}{1 + r_t} \right) a_{T+1} \ge 0$$

and HH's choose $\{a_t\}$ so that this holds with equality

• no-Ponzi condition not needed for physical capital because natural constraint $k_t \geq 0$.

• Necessary conditions for consumer problem $(h_t = 1 \text{ wlog})$

$$c_t$$
: $\beta^t u'(c_t) = \lambda_t = \text{multiplier on period } t \text{ b.c.}$

$$k_{t+1}: \quad \lambda_t = \lambda_{t+1}(R_{t+1} + 1 - \delta)$$
 (14)

$$a_{t+1}: \quad \lambda_t = \lambda_{t+1}(1 + r_{t+1})$$

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} = R_t k_t + w_t h_t + (1 + r_t)a_t$$
(15)

$$c_t + k_{t+1} - (1 - \delta)k_t + a_{t+1} = R_t k_t + w_t h_t + (1 + r_t)a_t$$

no-Ponzi:
$$\lim_{T \to \infty} \left(\prod_{t=0}^{T} \frac{1}{1+r_t} \right) a_{T+1} \ge 0$$
 (17)
TVC on k : $\lim_{T \to \infty} \beta^T u'(c_T) k_{T+1} = 0$ (18)

TVC on
$$a$$
: $\lim_{T\to\infty} \beta^T u'(c_T) a_{T+1} = 0$

initial:
$$k_0 = \bar{k}_0$$
, $a_0 = 0$ (20)

(19)

(13)

• Necessary conditions for firm problem

$$F_k(k_t, h_t) = R_t, \quad F_h(k_t, h_t) = w_t$$
 (21)

• Necessary conditions for firm problem

$$F_k(k_t, h_t) = R_t, \quad F_h(k_t, h_t) = w_t$$
 (21)

• Market clearing

$$c_t + k_{t+1} - (1 - \delta)k_t = F(k_t, h_t), \quad a_{t+1} = 0$$
 (22)

• (13), (15) and (17)

$$\beta^{T} u'(c_{T}) = \lambda_{T} = \prod_{t=0}^{T} \frac{1}{1 + r_{t}}$$
$$\Rightarrow \lim_{T \to \infty} \beta^{T} u'(c_{T}) a_{T+1} \ge 0$$

- No-Ponzi condition looks very similar to TVC on $\{a_t\}$
- But no-Ponzi and TVC are different conditions
- Kamihigashi (2008) "A no-Ponzi-game condition is a constraint that prevents overaccumulation of debt, while a typical transversality condition is an optimality condition that rules out overaccumulation of wealth. They place opposite restrictions, and should not be confused."

• (14) and (15)

$$1 + r_{t+1} = R_{t+1} + 1 - \delta$$

- i.e. rate of return on bonds = rate of return on capital
 - arbitrage condition
 - \bullet if this holds, HH is indifferent between a and k

• (14) and (15)

$$1 + r_{t+1} = R_{t+1} + 1 - \delta$$

i.e. rate of return on bonds = rate of return on capital

- arbitrage condition
- if this holds, HH is indifferent between a and k
- (13), (14) and $(21) \Rightarrow$

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = f'(k_{t+1}) + 1 - \delta \tag{23}$$

- (23) + TVC (18) + initial condition (20) + market clearing (22) = same set of equations as for SP problem
- Hence: SOMCE allocation is same as social planner's allocation
 - this is actually somewhat surprising, see next slide

Why is SOMCE allocation =SP's alloc.?

- Relative to ADCE, we closed down many markets
- Q: Why do we still get SP solution even though we closed down many markets?
- A: We only closed down markets that didn't matter
- In fact, ADCE and SOMCE are equivalent

Equivalence of SOMCE and ADCE

• Recall HH's problem in ADCE (first part of lecture):

$$\max_{\{c_t, h_t, k_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1 - \delta)k_t) \le \sum_{t=0}^{\infty} p_t(R_t k_t + w_t h_t)$$

Equivalence of SOMCE and ADCE

• Recall HH's problem in ADCE (first part of lecture):

$$\max_{\{c_t, h_t, k_t\}} \sum_{t=0}^{\infty} \beta^t u(c_t) \quad \text{s.t.}$$

$$\sum_{t=0}^{\infty} p_t(c_t + k_{t+1} - (1 - \delta)k_t) \le \sum_{t=0}^{\infty} p_t(R_t k_t + w_t h_t)$$

• Have shown earlier: HH's problem in SOMCE is same with present-value budget constraint

$$\sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (c_t + k_{t+1} - (1-\delta)k_t) = \sum_{t=0}^{\infty} \left(\prod_{s=0}^{t} \frac{1}{1+r_s} \right) (R_t k_t + w_t h_t)$$

- \bullet Clearly these are equivalent
 - ADCE is SOMCE with $p_t = \prod_{s=0}^t \frac{1}{1+r_s}$
 - SOMCE is ADCE with $1 + r_{t+1} = p_t/p_{t+1}$
- Firm's problems are also equivalent.

Why is SOMCE allocation =SP's alloc.?

- riskless one-period bond is surprisingly powerful
- one period ahead borrowing and lending ⇒ arbitrary period ahead borrowing and lending

Why is SOMCE allocation =SP's alloc.?

- riskless one-period bond is surprisingly powerful
- one period ahead borrowing and lending ⇒ arbitrary period ahead borrowing and lending
- When is SOMCE allocation with one-period bonds ≠ SP's allocation? That is, when do the welfare theorems fail?
 - risk (idiosyncratic or aggregate)
 - welfare theorems may hold if sufficiently rich insurance markets
 - "financial frictions." Examples:
 - interest rate = $r_t(a_t)$ with $r'_t \neq 0$.
 - in more general environments: borrowing constraint $-a_t \le 0$ or collateral constraints (need to back debt with collateral)

$$-a_{t+1} \leq \theta k_{t+1}$$

• ...

Infinitely-Elastic Long-Run Capital Supply

Infinitely-elastic steady state capital supply

• Recall condition for k^* (as usual $\rho = 1/\beta - 1$)

$$\frac{1}{\beta} = f'(k^*) + 1 - \delta \quad \Leftrightarrow \quad f'(k^*) = \rho + \delta$$

- Can think of this in terms of demand and supply of capital
- Will draw demand-supply diagram with k on x-axis and r on y-axis

Infinitely-elastic steady state capital supply

• Recall condition for k^* (as usual $\rho = 1/\beta - 1$)

$$\frac{1}{\beta} = f'(k^*) + 1 - \delta \quad \Leftrightarrow \quad f'(k^*) = \rho + \delta$$

- Can think of this in terms of demand and supply of capital
- Will draw demand-supply diagram with k on x-axis and r on y-axis
- Demand: from firm's problem, capital demand $k^d(R)$ satisfies

$$f'(k) = R$$

This is a nice, well-behaved downward-sloping demand curve

• Supply: capital supply $k^s(R)$ satisfies

$$R = \rho + \delta$$

This is an infinitely-elastic supply curve! Intuition in 3 slides.

• This infinite elasticity = important property of growth model

Infinitely-elastic steady state capital supply

Capital Demand: Derivation

• Recall representative firm's optimality condition

$$F_k(k_t, h_t) = R_t$$

• Defining f(k) := F(k, 1) and using $h_t = 1$

$$f'(k_t) = R_t$$

• And in particular in steady state:

$$f'(k^*) = R$$

 \bullet This defines a downward-sloping capital demand curve $k^d(R)$

Capital Supply: Derivation

• Euler equation for capital

$$u'(c_t) = \beta(R_{t+1} + 1 - \delta)u'(c_{t+1})$$

• In steady state

$$1 = \beta(R + 1 - \delta)$$

• Therefore the steady state rental rate must equal

$$R = \frac{1}{\beta} - 1 + \delta = \rho + \delta \tag{*}$$

- This is an infinitely-elastic supply curve! Intuition:
 - if $\beta(R+1-\delta) > 1$, households would accumulate $k = \infty$

$$\beta(R_{t+1}+1-\delta)>1 \quad \Rightarrow \quad c_{t+1}>c_t$$

• if $\beta(R+1-\delta) < 1$, households would accumulate 0

$$\beta(R_{t+1} + 1 - \delta) < 1 \quad \Rightarrow \quad c_{t+1} < c_t$$

• any equilibrium with $0 < k^* < \infty$ has to feature (*)

Supply and demand in terms of interest rate r

- Sometimes people also write this in terms of the steady-state interest rate r rather than rental rate R
 - recall that alternative "decentralization" = firms own and accumulate capital (and firms in turn owned by households)
- Demand: capital demand $k^d(r)$ satisfies

$$f'(k) = r + \delta$$

This is a nice, well-behaved downward-sloping demand curve

• Supply: capital supply $k^s(r)$ satisfies

$$r = \rho$$

This is an infinitely-elastic supply curve! Intuition:

- if $r > \rho$, households would accumulate $k = \infty$
- if $r < \rho$, households would accumulate 0
- any equilibrium with $0 < k^* < \infty$ has to feature $r = \rho$

Supply and demand in terms of interest rate r

