Cadenas de Markov

"Cuando, conociendo el pasado y el presente, el comportamiento probabilístico del futuro inmediato sólo depende del estado presente"

Propiedad Markoviana

Sea {X_n: n ≥ 0} un proceso estocástico discreto (es decir, cada X_n es una variable aleatoria discreta).
 Diremos que tiene la propiedad de markoviana si se cumple:

$$P\{X_{n+1}=j \mid X_0=i_0, X_1=i_1 \dots X_n=i_n\} =$$

$$P\{X_{n+1}=j / X_n=i_n \} = p_{i,j}(n)$$

Probabilidades de Transición

 $p_{i,j}(n) = la \text{ probabilidad de que el proceso,}$ estando en el estado i en el tiempo n, pase al estado j en el instante siguiente

Cuando $p_{i,j}(n) = p_{i,j}$ (esto es, no depende de n) se dice que las probabilidades de transición son estacionarias. Lo supondremos de ahora en adelante.

Matriz de Transición

Las probabilidades de transición definen la matriz $P = [p_{ij}]$ que satisface

1) $p_{ij} \ge 0$ para todo i, j

2) $\sum_{j} p_{ij} = 1$ para todo i

Matriz de Transición: ejemplo

			Tiempo n+1		
		Estado 0	Estado 1	Estado 2	Estado 3
	Estado 0	0,20	0,65	0,15	0
Tiempo n	Etado 1	0	0,60	0	0,40
	Estado 2	0,15	0,15	0,30	0,40
	Estado 3	0	0	0	1

Caminata Aleatoria: ejemplo de una Cadena de Markov

$$\begin{split} P\{S_{n+1} = j \ / S_0 = 0, \, S_1 = i, ..., \, S_{n-1} = i_{n-1}, \, S_n = i\} = \\ P\{S_n + X_{n+1} = j \ / S_0 = 0, \, S_1 = i, ..., \, S_{n-1} = i_{n-1}, \, S_n = i\} = \\ P\{X_{n+1} = j - i \ / S_0 = 0, \, S_1 = i, ..., \, S_{n-1} = i_{n-1}, \, S_n = i\} = \\ P\{X_{n+1} = j - i\} = p_{j-i} \\ = p_{i,j} \\ = P\{S_{n+1} = j \ / \, S_n = i\} \end{split}$$

Ejemplo 2: caminata aleatoria con barreras absorbentes

En el tiempo 0 tengo \$ 2 y en los tiempos 1,2,3,... participo en un juego en el que apuesto \$1. Gano el juego (y gano \$1) con probabilidad p y lo pierdo (perdiendo lo apostado) con probabilidad 1-p. Mi meta es aumentar mi capital hasta \$4 y tan pronto lo logre me salgo del juego. También salgo cuando me arruine (capital \$0).

Ejemplo 2 (cont)

- X_n: mi capital inmediatamente después del juego n
- Estados del proceso = $\{0,1,2,3,4\}$
- Matriz de transición:

Eejmplo 3: un modelo para el desplazamiento poblacional

Para efectos de una investigación, en un determinado país, una familia puede clasificarse como habitante de zona urbana, rural o suburbana. Se ha estimado que durante un año cualquiera, el 15% de todas las familias urbanas se cambian a zona suburbana y el 5% a zona rural. El 6% de las familias suburbanas pasan a zona urbana y el 4% a zona rural. El 4% de las familias rurales pasan a zona urbana y el 6% a zona suburbana.

Cadenas de Markov: ejemplo 3

Tendremos la siguiente matriz de transición

Urb. Surb. Rur.
$$P = \begin{pmatrix} 0.80 & 0.15 & 0.05 \\ 0.06 & 0.90 & 0.04 \\ 0.04 & 0.06 & 0.90 \end{pmatrix}$$

Cadenas de Markov

Distribución de una Cadena de Markov

Sea $\{X_n : n \ge 0\}$ una Cadena de Markov, con distribución inicial $a_j = P\{X_0 = j\}$ para $j = 1, 2, \ldots$ Entonces, para cualquier k_0 y para cualesquiera i_0, \ldots, i_k pertenecientes al conjunto de estados del proceso se cumple:

$$P\{X_0=i_0\,,\,X_1=i_1,...,X_k=i_k\}=a_{i_0}\,p_{i_0i_1}\,p_{i_1i_2}\,...\,\,p_{i_{k-1}i_k}$$
 donde

$$p_{ij} = P\{X_{m+1} = j / X_m = i\}$$

Probabilidades de transición en n etapas

Pregunta: si en el tiempo t el proceso de Markov se encuentra en el estado i, ¿cuál es la probabilidad de que **n pasos después** se encuentre en el estado j?

Resp:

$$\begin{split} P\{X_{n+t} = j \ / X_t = i \ \} &= P\{X_n = j \ / X_0 = i \ \} \text{ (estacionaria)} \\ &= p^{(n)}_{i,j} \text{ (notación)} \\ &= elemento \ (i,j) \ de \ la \ matriz \ P^n \end{split}$$

Ecuación de Chapman-Kolgomorov

Si el resultado anterior se combina con la identidad matricial $P^{n+m} = P^n P^m$, obtenemos:

$$p_{ij}^{\scriptscriptstyle (n+m)} = \sum\limits_{k} p_{ik}^{\scriptscriptstyle (n)} p_{kj}^{\scriptscriptstyle (m)}$$

Una transición desde i hasta j en n+m pasos puede lograrse moviendose desde i hasta un punto intermedio k en n pasos ($con\ prob\ p^{(n)}_{i,k}$) y después, dado que el proceso está en el estado k ($la\ propiedad\ de\ Markov\ permite\ que\ seamos\ indeferentes\ a\ la\ ruta\ recorrida$), moverse hasta el estado j en m pasos ($con\ prob\ p^{(m)}_{k,j}$). Luego, deben considerarse todas las opciones posibles para el punto intermedio.

Consecuencia de los resultados anteriores

Pregunta: ¿cuál es la probabilidad de que el sistema se encuentre en el estado j en el tiempo n?

Resp.

Sea $\underline{a}^t = (a_0, a_1,...,a_m)$ la distribución inicial de la Cadena de Markov (con m estados), entonces:

 $P{X_n=j}=$ elemento j del vector $\underline{a}^t P^n$

Aplicación de resultados anteriores

Consideremos el ejemplo 3, y supongamos que al inicio de la investigación, el 35% de la población vivía en áreas urbanas, el 45% en área suburbana, y el resto en área rural.

- a) Si inicialmente una familia vive en un área rural, ¿cuál es la probabilidad de que tres años después esta familia viva en un área urbana?
- b) ¿Cual es la probabilidad de que tres años despúes de iniciada la investigación una familia viva en el área urbana?

Aplicación de resultados anteriores

$$P^{3} = \begin{pmatrix} 0,5399 & 0,3353 & 0,1248 \\ 0,1352 & 0,7593 & 0,1055 \\ 0,0967 & 0,1622 & 0,7411 \end{pmatrix}$$

$$\bar{a}^{t} = (0.35 \quad 0.45 \quad 0.20)$$

- a) 0,0967
- b) 0,2691

Estado Alcanzable:

El estado j es alcanzable desde el estado i si existe n > 0 tal que $p^{(n)}_{i,j} > 0$; es decir **es posible** que el proceso llegue al estado j desde el estado i. Se denota $i \rightarrow j$.

Estados que se comunican:

Los estados i, j se comunican si $i \leftarrow \rightarrow j$.

Atención: la relación ←→ es una relación de equivalencia (reflexiva, simétrica y transitiva). Me permite dividir el conjunto de estados en clases de equivalencia

<u>Ejemplo 4</u>: consideremos una cadena de Markov con matriz de transición

$$P = \begin{pmatrix} 0.2 & 0.8 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.9 & 0.1 \\ 0.4 & 0.5 & 0.1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Los estados {a,b,c} se comunican y forman una clase de equivalencia. El estado {d} es otra clase de equivalencia.

Atención: cuando una cadena de Markov tiene sólo una clase de equivalencia, se dice que es irreducible

 $f^{(n)}_{jk}$ = probabilidad de que, partiendo del estado j , la cadena llegue al estado k *por primera vez* en el tiempo n

Probabilidad de llegar a k (en un tiempo finito), partiendo de j

$$f_{jk} = \sum_{n=1}^{\infty} f^{(n)}_{jk}$$

Estado Recurrente.

Se dice que el estado i es recurrente si $f_{ii} = 1$.

Esto significa lo siguiente: siempre que parta del estado i, podré regresar a el (en un tiempo finito)

Estado Transitorio (no recurrente)

Se dice que el estado i es transitorio si $f_{ii} < 1$.

(Esto significa lo siguiente: hay manera de abandonar el estado i, de tal modo que nunca regrese a el)

Estado Absorbente:

Se dice que el estado i es absorbente si $p_{ii} = 1$.

En el ejemplo 4, a,b y c son transitorios, d es recurrente y también absorbente

Estado Periódico

Un estado recurrente i es *periódico*, con periodo k > 1, si k es el menor número tal que todas las trayectoria que parte de i y regresan a i, tienen longitud múltiplo de k. Si no es periodico se le dice *aperiódico*

Cadena Ergódica

Si todos los estados de una Cadena de Markov son recurrentes, aperiódicos y se comunican entre si, se dice que la cadena es *Ergódica*.

Pregunta interesante

¿Existe una *probabilidad límite* de que el sistema se encuentre en el estado j, después de muchas transiciones, y que esta probabilidad sea *independiente del estado inicial*.?

Afirmación:

Si P es la matriz de transición de una Cadena de Markov que tiene los estados {1,2,...k} , entonces, para j=1,2,..,k

$$\lim_{n\to\infty}\,p_{i,j}^{(n)}=\pi_{j}$$

Escrito de otra forma

$$\lim_{n\to\infty} \mathbf{P}^{n} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ & \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots \\ & & \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix}$$

Para obtener los π_j se tiene presente las ecuaciones de estado estable

a)
$$\pi_i > 0$$

b)
$$\pi_j = \sum_{i=1}^k \pi_i p_{ij}$$
 esto es $\pi^t = \pi^t P$

c)
$$\sum_{i=1}^{k} \pi_{i} = 1$$

Ejemplo (desplazamiento poblacional: ejemplo 3)

Dado que la matriz del ejemplo 3 es ergódica, podemos hacer:

$$(\pi_1, \pi_2, \pi_3) = (\pi_1, \pi_2, \pi_3) \begin{pmatrix} 0.80 & 0.15 & 0.05 \\ 0.06 & 0.90 & 0.04 \\ 0.04 & 0.06 & 0.90 \end{pmatrix}$$

$$\pi_1 + \pi_2 + \pi_3 = I$$

Una opción es:

$$\pi_1 = 0.80\pi_1 + 0.06\pi_2 + 0.04\pi_3$$
 $\pi_2 = 0.15\pi_1 + 0.90\pi_2 + 0.06\pi_3$
 $1 = \pi_1 + \pi_2 + \pi_3$

Cuya solución es

$$(\pi_1, \, \pi_2, \, \pi_3) = (0.2077, \, 0.4918, \, 0.3005)$$

Es decir, si con el paso del tiempo se mantiene el comportamiento descrito por el modelo (lo cual es muy poco probable) después de muchos años, aproximadamente, el 21% de la población ocupará las zonas urbanas, el 49% las suburbanas y el 30% la rural.

Tiempo de primera pasada

Estamos interesados en tener información respecto al número de pasos (transiciones) que hace el proceso al ir de un estado i a un estado j <u>por primera vez</u>. Se define

 $T_{i,j}$ = tiempo de primera pasada al ir del estado i al estado j

Tiempo de primera pasada

Definimos el tiempo esperado de recurrencia

$$E(T_{i,j}) = \mu_{ij}$$

Se puede demostrar que se cumple:

$$\mu_{jj} = rac{m{I}}{\pi_{j}}$$

$$\mu_{ij} = \mathbf{1} + \sum_{n \neq j} p_{in} \mu_{nj}$$

Ejemplo

En el ejemplo anterior

$$1/\pi_1 = 1/0,2077 = 4,8146 = \mu_{11}$$

Es decir, el número promedio de años para que, partiendo de vivir en una zona urbana, una familia regrese a vivir en una zona urbana por primera vez es 4,8 años.

¿Cuál es el número promedio de años para que, partiendo de vivir en zona urbana, una familia llegue a vivir en zona suburbana, por primera vez?. Hacemos primero

$$\mu_{12} = \mathbf{1} + p_{11}\mu_{12} + p_{12}\mu_{22} + p_{13}\mu_{32}$$

$$\mu_{22} = \mathbf{1} + p_{21}\mu_{12} + p_{22}\mu_{22} + p_{23}\mu_{32}$$

$$\mu_{32} = \mathbf{1} + p_{31}\mu_{12} + p_{32}\mu_{22} + p_{33}\mu_{32}$$

Luego, ignoramos todas las filas y columnas que tengan μ_{22} y queda el sistema

$$\mu_{12} = \mathbf{I} + p_{11}\mu_{12} + p_{13}\mu_{32}$$

$$\mu_{32} = \mathbf{I} + p_{31}\mu_{12} + p_{33}\mu_{32}$$

sesustituye y agrupa

$$-1 = -0.20 \mu_{12} + 0.05 \mu_{32}$$
$$-1 = 0.04 \mu_{12} - 0.10 \mu_{32}$$

cuyo resultado es $\mu_{12} = 8,33$ y $\mu_{32} = 13,33$

Entonces, en promedio transcurren 8,33 años para que una familia que inicialmente vive en una zona urbana llegue a vivir en zona suburbana, por primera vez.