Practical 6

Aim: Write a VHDL Code to Implement 4- bit up-down counter using JK flip flop

Code:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity U D Count 4b is
  Port ( M: in STD LOGIC;
      Mb: inout STD LOGIC;
      clk: in STD LOGIC;
      rst: in STD LOGIC;
      cout: out STD LOGIC VECTOR (0 to 3));
end U D Count 4b;
architecture Behavioral of U D Count 4b is
component JK FF is
Port (clk: in STD LOGIC;
      rst: in STD LOGIC;
      J: in STD LOGIC;
      K: in STD LOGIC;
      Q: out STD LOGIC;
      Qb: out STD LOGIC);
end component JK FF;
component and gate is
Port (a: in STD LOGIC;
     b: in STD LOGIC;
     y: out STD LOGIC);
end component and gate;
component or gate is
Port (a: in STD LOGIC;
     b: in STD LOGIC;
     y: out STD LOGIC);
end component or gate;
signal cout1:std logic vector(0 to 3);
signal q1:std logic vector(0 to 3):="0000";
signal d:std logic vector(0 to 2);
signal u:std_logic_vector(0 to 2);
signal c1:std logic vector(0 to 2);
--signal Mb:std logic;
begin
Mb \le not M;
z1:for i in 0 to 3 generate
```

```
f1: if (i=0)generate
x1:JK_FF port map(clk,rst,'1','1',cout1(i),q1(i));
end generate f1;

f2: if (i>0) generate
x2:and_gate port map(cout1(i-1),Mb,d(i-1));
x3:and_gate port map(q1(i-1),M,u(i-1));
x4:or_gate port map(d(i-1),u(i-1),c1(i-1));
x1:JK_FF port map(c1(i-1),rst,'1','1',cout1(i),q1(i));
end generate f2;
end generate z1;
cout<=cout1;
end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

```
library IEEE;
                                         signal cout1:std_logic_vector(0 to
                                                                                   wait for 5ns;
use IEEE.STD_LOGIC_1164.ALL;
                                         3);
                                                                                   clk1<='1';
                                                                                   wait for 5ns;
entity Tb_U_D_Count_4b is
                                                                                   end process;
-- Port ();
                                         begin
end Tb_U_D_Count_4b;
                                         X1:U_D_Count_4b port
                                                                                   process
                                         map(m1,mb1,clk1,rst1,cout1);
                                                                                   begin
architecture Behavioral of
                                         process
Tb_U_D_Count_4b is
                                         begin
                                                                                   m1<='1';--upcount
component U_D_Count_4b is
                                         rst1<='0';
                                                                                   wait for 500ns;
  Port ( M : in STD_LOGIC;
                                         wait for 5ns;
                                                                                   m1<='0';--downcount
     Mb: inout STD_LOGIC;
                                         rst1<='1';
                                                                                   wait;
     clk: in STD_LOGIC;
                                         wait;
                                                                                   end process;
     rst: in STD_LOGIC;
                                         end process;
     cout : out
                                                                                   end Behavioral;
STD_LOGIC_VECTOR (0 to 3));
                                         process
end component U_D_Count_4b;
                                          begin
signal m1,mb1,clk1,rst1:std_logic;
                                         clk1<='0';
```

SIMULATION WAVEFORM:

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %	
LUT	9	17600	0.05	
FF	15	35200	0.04	
10	8	100	8.00	

Name	Slack *	^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
4 Path 1		00	3	4	4	M	Mb	5.351	3.752	1.599	00	input port clock
Path 2		00	2	2	2	z1[1].f2.x1/Q_reg/C	cout[1]	4.116	3.316	0.800	00	
3 Path		00	2	2	2	z1[2].f2.x1/Q_reg/C	cout[2]	4.116	3.316	0.800	00	
3 Path 4		00	2	2	1	z1[3].f2.x1/Q_reg/C	cout[3]	4.116	3.316	0.800	00	
4 Path 5		00	2	2	2	z1[0].f1.x1/Q_reg/C	cout[0]	4.076	3.276	0.800	00	
4 Path 6		00	2	3	9	rst	z1[0].f1.x1/Q_reg/CLR	2.717	1.106	1.611	00	input port clock
Path 7		00	2	3	9	rst	z1[0].f1.x1/Qb_reg/PRE	2.717	1.106	1.611	00	input port clock
3 Path 8		∞	2	3	9	rst	z1[1].f2.x1/Q_reg/CLR	2.717	1.106	1.611	00	input port clock
3 Path 9		00	2	3	9	rst	z1[1].f2.x1/Qb_reg/PRE	2.717	1.106	1.611	00	input port clock
Path 10		00	2	3	9	rst	z1[2].f2.x1/Q_reg/CLR	2.717	1.106	1.611	00	input port clock

Code:

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
entity Sin Pout 4b is
  Port (clk: in STD LOGIC;
      rst: in STD LOGIC;
      I: in STD LOGIC;
      Q: out STD LOGIC VECTOR (0 to 3));
end Sin Pout 4b;
architecture Behavioral of Sin Pout 4b is
component D_FF is
  Port (clk: in STD LOGIC;
      rst: in STD LOGIC;
      D: in STD LOGIC;
      Q: out STD LOGIC;
      Qb: out STD LOGIC);
end component D FF;
signal u1:std logic vector(0 to 3);
signal u2:std logic vector(0 to 3);
begin
z1: for k in 0 to 3 generate
  f1:if(k=0) generate
  x1:D_FF port map(clk,rst,I,u1(k),u2(k));
 end generate f1;
  f2:if(k>0) generate
 x2:D FF port map(clk,rst,u1(k-1),u1(k),u2(k));
end generate f2;
end generate z1;
Q \le u1;
end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

library IEEE; wait for 5ns; use IEEE.STD_LOGIC_1164.ALL; begin end process; entity Tb_Sin_Pout_4b is -- Port (); X1:Sin_Pout_4b port process end Tb_Sin_Pout_4b; map(clk1,rst1,k,Q1); begin process architecture Behavioral of begin k<='1'; Tb_Sin_Pout_4b is wait for 10ns; rst1<='0'; component Sin_Pout_4b is wait for 5ns; k<='0'; Port (clk : in STD_LOGIC; rst1<='1'; wait for 10ns; rst: in STD_LOGIC; k<='1'; wait; I : in STD_LOGIC; end process; wait for 10ns; Q:inout k<='0'; STD_LOGIC_VECTOR (0 to 3)); process wait; end component Sin_Pout_4b; begin end process; signal k,clk1,rst1:std_logic; clk1<='0'; signal Q1:std_logic_vector(0 to end Behavioral; wait for 5ns; 3):="0000"; clk1<='1';

SIMULATION WAVEFORM:

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %
LUT	5	17600	0.03
FF	8	35200	0.02
10	7	100	7.00

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
4 Path 1	00	2	2	2	z1[0].f1.x1/x1/Q_reg/C	Q[0]	4.076	3.276	0.800	00	
4 Path 2	00	2	2	2	z1[1].f2.x2/x1/Q_reg/C	Q[1]	4.076	3.276	0.800	00	
Path 3	00	2	2	2	z1[2].f2.x2/x1/Q_reg/C	Q[2]	4.076	3.276	0.800	00	
4 Path 4	00	2	2	1	z1[3].f2.x2/x1/Q_reg/C	Q[3]	4.076	3.276	0.800	00	
4 Path 5	00	2	3	5	rst	z1[0].f1.x1/x1/Q_reg/CLR	2.706	1.106	1.600	00	input port clock
4 Path 6	00	2	3	5	rst	z1[1].f2.x2/x1/Q_reg/CLR	2.706	1.106	1.600	00	input port clock
4 Path 7	00	2	3	5	rst	z1[2].f2.x2/x1/Q_reg/CLR	2.706	1.106	1.600	00	input port clock
Path 8	00	2	3	5	rst	z1[3].f2.x2/x1/Q_reg/CLR	2.706	1.106	1.600	00	input port clock
3 Path 9	00	2	3	1	1	z1[0].f1.x1/x1/q1_reg/D	1.906	1.106	0.800	00	input port clock
Path 10	00	2	3	5	rst	z1[1].f2.x2/x1/q1_reg/D	1.906	1.106	0.800	00	input port clock

Maximum Combinational Delay: 4.076nSec

<u>Aim:</u> Write a VHDL Code to implement 4-bit ripple adder using generate statement

Code:

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity rpl adder 4b is
  Port (a: in STD_LOGIC_VECTOR (3 downto 0);
      b: in STD LOGIC VECTOR (3 downto 0);
      c: in STD LOGIC;
      s: out STD LOGIC VECTOR (3 downto 0);
      co: out STD LOGIC);
end rpl adder_4b;
architecture Behavioral of rpl adder 4b is
component fulladder is
  Port (a: in STD LOGIC;
      b: in STD LOGIC;
      c: in STD LOGIC;
      s: out STD LOGIC;
      cout : out STD LOGIC);
end component fulladder;
signal c1:std_logic_vector(0 to 2);
begin
z1: for i in 0 to 3 generate
f1:if(i=0) generate
 x1:fulladder port map(a(i),b(i),c,s(i),c1(0));
 end generate f1;
f2:if(i=3) generate
   x2:fulladder port map(a(i),b(i),c1(i-1),s(i),co);
   end generate f2;
f3:if(0<i and i<3) generate
  x3:fulladder port map(a(i),b(i),c1(i-1),s(i),c1(i));
  end generate f3;
end generate z1;
end Behavioral;
```

RTL DIAGRAM:

Test bench Code:

library IEEE; c: in STD_LOGIC; begin use IEEE.STD_LOGIC_1164.ALL; s: out STD_LOGIC_VECTOR X1:rpl_adder_4b port (3 downto 0); map(a1,b1,c1,s1,c01); entity Tb_rpl_adder_4b is co: out STD_LOGIC); process -- Port (); end component rpl_adder_4b; begin end Tb_rpl_adder_4b; c1<='0'; signal a1: STD_LOGIC_VECTOR (3 a1<="0000"; architecture Behavioral of downto 0); b1<="0000"; Tb_rpl_adder_4b is signal b1 : STD_LOGIC_VECTOR (3 wait for 10ns; component rpl_adder_4b is downto 0); Port (a : in STD_LOGIC_VECTOR a1<="1111"; signal c1 : STD_LOGIC; (3 downto 0); signal s1: STD_LOGIC_VECTOR (3 b1<="0000"; b: in STD_LOGIC_VECTOR (3 downto 0); wait for 10ns; downto 0); signal c01 : STD_LOGIC;

a1<="1111"; a1<="0000"; b1<="1111"; b1<="0000"; b1<="1111"; wait for 10ns; wait for 10ns; wait for 10ns; a1<="1111"; a1<="1111"; a1<="1111"; b1<="1010"; b1<="1010"; b1<="0000"; wait for 10ns; wait for 10ns; wait for 10ns; end process; c1<='1'; a1<="1111"; end Behavioral;

SIMULATION WAVEFORM:

SYNTHESIS SUMMARY:

Resource	Utilization	Available	Utilization %	
LUT	4	17600	0.02	
10	14	100	14.00	

Name	Slack ^1	Levels	Routes	High Fanout	From	To	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
4 Path 1	00	4	5	3	a[1]	со	5.942	3.876	2.066	00	input port clock
Path 2	00	4	5	3	a[1]	s[2]	5.942	3.876	2.066	00	input port clock
┡ath 3	00	4	5	3	a[1]	s[3]	5.936	3.870	2.066	00	input port clock
🦒 Path 4	00	3	4	3	b[0]	s[1]	5.379	3.780	1.599	00	input port clock
Path 5	00	3	4	3	b[0]	s[0]	5.351	3.752	1.599	00	input port clock