Project 10

Topic

Diffie-Hellman

Objective

- To develop a deeper understanding public key cryptosystems, in general
- To develop a deeper understand of public key cryptosystems based on the discrete log problem
- To experiment with one of the earliest of the public key systems

Constraints and Other Details

- Work must run using Sage under Linux
- Due 4/11
- 10 points

Problem

Do for Diffie-Hellman what you did for El Gamal

Pre: size is an exponent, as in 2^{size}.

Post: program returns a large prime, *p* and a primitive root, *g* mod *p* param_gen(size)

Pre: p, g are returned by param_gen

Post: Returns computed A and and variable a, as defined in class and in McAndrew Alice(p,g)

Pre: *p*, *g* are returned by param_gen

Post: Returns computed *B* and variable *b* as defined in class and in McAndrew

Bob(p,g)

Pre: p is returned by param_gen, a by Alice, and B by Bob Post: Returns k_{alice} as defined in class and in McAndrew Alice_Key(p,a,B)

Pre: p is returned by param_gen, b by Bob, and A by Alice Post: Returns k_{Bob} as defined in class and in McAndrew Bob_Key(p,b,A)

Execution Sequence

- param_gen
- Alice
- Bob
- Alice_Key
- Bob_Key

 k_{alice} should be identical to k_{bob}

Submission

- Submit Project 10. sage over GitHub Classroom
- Accept Link: https://classroom.github.com/a/ergVvXRb