Problem 1 1

1.1 \mathbf{a}

Let $\theta = 0.5$, then we need to show that f(1/2x + 1/2y) is not always \leq 1/2f(x) + 1/2f(y) for $x = (x_1, x_2), y = (y_1, y_2)$. f(1/2x + 1/2y) = f(1/2(x + 1/2y)) $(y) = 1/2(x_1 + y_1)(x_2 + y_2)$ and $1/2f(x) + 1/2f(y) = 1/2x_1x_2 + 1/2y_1y_2$. For x = (0.5, 1) and y = (1, 0.5), we get f(1/2x + 1/2y) = 1/2 * 1.5 * 1.5 =1.1125 and 1/2f(x) + 1/2f(y) = 1/2 * 1 * 0.5 + 1/2 * 1 * 0.5 = 0.5. Since 1.1125 > 0.5, this does not hold, meaning it is not convex.

1.2 b

For this to be concave, we need to prove the opposite, that f(1/2x + 1/2y)is not always >= 1/2f(x) + 1/2f(y). For $\theta = 0.1, f(0.1x + 0.9y) = (0.1x_1 + 0.9y)$ $(0.9y_1)(0.1x_2 + 0.9y_2)$ and $(0.1f(x) + 0.9f(y)) = (0.1x_1x_2 + 0.9y_1y_2)$. For $x = 0.9y_1$ (1,1), y = (10,10), f(0.1x + 0.9y) = 82.81 and 0.1f(x) + 0.9f(y) = 90.1. Since 82.81 < 90.1, this does not hold, meaning it is not concave.

2 Problem 2

In order to show that this element is concave, we just need to show that the overall set is concave, as partial minimization shows that the minimum element of a concave set is concave.

For two vectors $x, y \in R^m$, let f(z) be the weighted least squares problem, then $f(x) = \sum_{i=1}^n w_i (a_i^T x - b_i)^2$ and $f(y) = \sum_{i=1}^n w_i (a_i^T y - b_i)^2$. For $\lambda = 1/2$, we need to show that f(1/2x + 1/2y) >= 1/2f(x) + 1/2f(y) always. $f(1/2x + 1/2y) = \sum_{i=1}^n w_i (a_i^T (1/2x + 1/2y) - b_i)^2 = \sum_{i=1}^n w_i (1/2a_i^T x + 1/2a_i^T y - b_i)^2 = \sum_{i=1}^n 1/4w_i (a_i^T x + a_i^T y - b_i)^2$. $1/2f(x) + 1/2f(y) = \sum_{i=1}^n 1/2w_i (a_i^T x - b_i)^2 + \sum_{i=1}^n 1/2w_i (a_i^T x - b_i)^2 = \sum_{i=1}^n 1/2w_i (a_i^T x - b_i)^2 + (a_i^T y - b_i)^2$. Comparing these are $\sum_{i=1}^n 1/4$ of $\sum_{i=1}^n 1/4$ of $\sum_{i=1}^n 1/2$ and $\sum_{i=1}^n 1/2$ of $\sum_{i=1}^n 1/2w_i (a_i^T x - b_i)^2 + (a_i^T y - b_i)^2$.

Comparing these, we get $\sum_{i=1}^{n} 1/4w_i(a_i^Tx + a_i^Ty - b_i)^2 > = \sum_{i=1}^{n} 1/2w_i((a_i^Tx - b_i)^2 + (a_i^Ty - b_i)^2)$, or $\sum_{i=1}^{n} (a_i^Tx + a_i^Ty - b_i)^2 > = \sum_{i=1}^{n} 2((a_i^Tx - b_i)^2 + (a_i^Ty - b_i)^2)$. We know this is true, because as we try to minimize the vector in the least squares problem, this will be as close as possible to 0 for $(a_i^T x - b_i)^2$ and $(a_i^T y - b_i)^2$. Therefore, we can say that this is approximately equal to $\sum_{i=1}^{n} (a_i^T x)^2 > = 0$, meaning this is concave.

3 Problem 3

3.1

For λ between 0 and 1, we need to show that $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)y$ $\lambda f(y)$ for two vectors x and y in \mathbb{R}^n . If we let $\lambda = 1/2$, then we need to show that $f(1/2x + 1/2y) \le 1/2f(x) + 1/2f(y)$.

If we let $x = (x_1, x_2...x_n)$ and $y = (y_1, y_2...y_n)$, then $f(1/2x + 1/2y) = max(x_a, y_b) - min(x_i - y_j)$ where x_a, y_b are the maximum values and x_i, y_j are the minimum values in x and y respectively.

 $1/2f(x) + 1/2f(y) = 1/2x_a + 1/2y_b - 1/2x_i - 1/2y_j = 1/2(x_a + y_b - x_i - y_j)$. This means the function is convex if and only if $max(x_a, y_b) - min(x_i - y_j) <= 1/2x_a + 1/2y_b - 1/2x_i - 1/2y_j$. Let us say $x_a = 1, x_i = 0, y_b = 0, y_j = 0$, then this yields 1 <= 1/2, which is false. Therefore, this function is not convex.

3.2 b

 $f(x) = (1/n\sum_{i=1}^{n}x_{i}^{2} - (1/n\sum_{i=1}^{n}x_{i})^{2})^{1/2}$. This can be rewritten as $f(x) = (1/n(x-1/nx^{T}1)^{T}(x-1/n1^{T}x1))^{1/2} = (1/n||(I-1/n11^{T})||^{2})^{1/2} = 1/\sqrt{n}||(I-P)x||$. We know that vector norms are convex, so this function is also convex as it is a scaled-by-n function of a norm.

3.3 c

If we take the space the function covers, the entirety of \mathbb{R}^n is under this function, since every vector in the space is a possible mapping. Therefore, this function is convex.

4 Problem 4

We know that $g(x) = \sum_{i=1}^{n} x_{[i]}$ is convex, so we know that $f(x) = \sum_{i=1}^{r} \alpha_i x_{[i]}$ is also convex since it is a nonnegative multiple. Since all the $\alpha_1...\alpha_r >= 0$ and f(x) is convex, $\alpha f(x)$ is also convex for all the alpha values.