10 - Noise Considerations

CEG 4330/6330 - Microprocessor-Based Embedded Systems
Max Gilson

Power Conditioning

- Noise on power signals is undesirable and can cause unpredictable behavior
- Some ways to mitigate:
 - Ferrite beads
 - Decoupling capacitors

Ferrite Beads

- Commonly found on power cables and USB cables
- Although not physically connected to the power wires, it still a part of the circuit

Decoupling Capacitors

- Circuits include many small capacitors connected to power
- Current spikes on each clock edge, decoupling capacitors act as a local storage
- This local storage is kept as close as physically possible to the microcontroller or microprocessor
- Prevents power from being influenced by high frequencies
 - Small capacitance values are better suited for high frequency noise decoupling

AVCC vs VCC

- Microcontrollers and microprocessors sometimes expose two separate power inputs, analog (AVCC) and digital (VCC)
 - An IC that allows for analog + digital processing is called "mixed mode IC"
- This allows you to provide a more noise resistant AVCC signal and a less noise resistant VCC signal
- Analog circuitry is far more sensitive to noise
 - o In Arduino:
 - ±0.005V changes analog signal (noise margin)
 - ±2.500V changes digital signal (noise margin)
 - Digital signals are high frequency and can have significant effects on analog circuitry

AVCC vs VCC

- Microcontrollers and microprocessors sometimes expose two separate power inputs, analog (AVCC) and digital (VCC)
 - An IC that allows for analog + digital processing is called "mixed mode IC"
- This allows you to provide a more noise resistant AVCC signal and a less noise resistant VCC signal
- Analog circuitry is far more sensitive to noise
 - o In Arduino:
 - ±0.005V changes analog signal (noise margin)
 - ±2.500V changes digital signal (noise margin)
 - Digital signals are high frequency and can have significant effects on analog circuitry

Unused Pins

- Unused pins must be handled differently if they are input, data, or output
- Unused Input Pins
 - Negate or deactivate the pin
 - Connect active high to ground
- Unused Data Pins
 - Leave unconnected
- Unused Output Pins
 - Leave unconnected
- Datasheet may have special requirements for some pins
 - Some pins may indicate "Leave pin floating"

Schmitt Trigger

- Some designs require a threshold range for triggering something
- Imagine a thermostat that activates a heater at exactly 70°F
 - If the temperature fluctuates between 69.999999... and 70.000000... rapidly, the thermostat will become erratic
- A Schmitt Trigger defines a threshold for activation, and a threshold for deactivation
 - In the previous example, use 70.00 as the activation threshold and 65.00 as the deactivation threshold

Schmitt Trigger (cont.)

- Schmitt Trigger uses one threshold for rising signal, and one threshold for falling signal
- Provides much higher noise margin

Schmitt Trigger (cont.)

- In noisy environments,
 falling edges may fluctuate
- Using a single threshold,
 the output is unsatisfactory
- Using a Schmitt Trigger, the output has a clean rising and falling edge

Schmitt Trigger Debouncing

- Using RC low pass filter, bounces can be smoothed out
 - Cutoff Frequency = 1 / (2πRC)
 - Adds some delay to the switch press
- After smoothing from the low pass filter, a Schmitt Trigger can be used for a clean rising/falling edge

Schmitt Trigger Debouncing with SR Latch

- When switching to NO:
 - S pin will bounce between 0 and 1
 - R will remain 1
 - Q will only change to 1 once
- When switching to NC:
 - R pin will bounce between 0 and 1
 - S will remain 1
 - Q will only change to 1 once

Q	S	R	Q	Q	Comments
۲	0	0	1	1	INVALID
	0	1	1	0	SET
	1	0	0	1	RESET
₹	1	1	NC	NC	No Change (remain present state)

Successive Input Noise Cancellation

- Assume we are detecting a rising edge to trigger an event
- If the signal is noisy, with multiple rising edges, multiple events will be triggered (undesirably)
- ATmega328p allows successive samples to detect a rising edge for input capture
 - Using noise cancellation, 4 equal samples must be measured to trigger the event
 - This adds some delay but may be necessary if the input signal is noisy
- For handshaking and strobing this might also be required

Disable Digital when using Analog

- The digital circuits on a microcontroller or microprocessor can introduce noise to the analog circuits
- The ATmega328p allows for putting the processor to sleep and performing an analog to digital conversion
 - Once the conversion is complete, the ADC interrupt awakens the processor so it can use the ADC value

Wi-Fi Communication

- Wi-Fi (Wireless Fidelity)
 - 2.4 Ghz, 100 Mbits/sec (typical)
 - 45 meter transmission distance (typical)
 - 5.0 Ghz, 1000 Mbits/sec (typical)
 - 6.0 Ghz, 2000 Mbits/sec (typical)
 - Speed depends on many factors:
 - Interference from other devices
 - Physical objects blocking waveform from transmitter to receiver
 - Signal strength at x distance

Wi-Fi Communication (cont.)

- Why not choose fastest (6G) wifi for all communication?
 - Higher frequencies
 means more data but
 less distance,
 especially with
 obstacles

Wi-Fi Positioning

- The strength of a Wi-Fi signal or the transmission delay can allow for triangulation of embedded systems
- This triangulation allows for tracking the position of a Wi-Fi enabled device in a known environment
 - Consider the application of analyzing foot traffic inside of a mall
- In recent breakthroughs, Wi-Fi can also measure a full body's arms, legs, body positions through walls

Bluetooth Communication

- Bluetooth
 - 2.4 Ghz, 1-3 Mbits/sec (typical)
 - Better suited for low transmission rate devices
 - Headphones
 - Keyboards
 - Mice
 - 10 meter transmission distance (typical)
 - BLE (Bluetooth Low Energy)
 - Lower power consumption
 - Lower transmission rate
 - Lower transmission distance

Bluetooth Mesh Networks and Multiple Devices

- For Wi-Fi devices, connecting to multiple networks is not a simple process
 - May not be possible depending on the Wi-Fi chip or operating system
- For Bluetooth, it is a common feature
 - Headphones, mice, keyboards, etc. can all be connected to the same device
- Bluetooth devices are either master (main) or slave (subnode)
 - Communication can flow freely between the devices but the main must initiate the connection

Other Wireless Communication Methods

- Zigbee
 - Competitor to Bluetooth
 - Less common
- IrDA
 - Infrared light data transmission
- SMS, 2G, 3G, 4G, 5G, LTE
 - Used in cellphone towers
 - Allows for you to send/receive mobile data
- RFID, NFC
 - Radio Frequency Identification and Near Field Communication
 - Allows for communication by tapping of credit card or badge
 - Only useful for short range
 - Very susceptible to man in the middle attacks (credit card skimmer)