Natural Language Processing

Assignment 5 Type of Question: MCQ

Number of Questions: 9 Total Marks: (8×1)+(1×2)=10

Question 1.

Which of the following are true? [1 mark]

- A) Given a CFG and its corresponding CNF, they both produce the same language.
- B) For a given grammar, there can be more than one CNF.
- C) It requires '2n+1' productions or steps in CNF to generate a string w of length 'n'.
- D) None of the above

Answer: A, B

Solution: Let n be the length of a string. We start with the (non-terminal) symbol S which has length n=1. Using (n-1) rules of form NT \rightarrow NT NT (where NT represents a non-terminal) we can construct a string containing 'n' non-terminal symbols. Then on each NT symbol of said string of length 'n' we apply a rule of form NT \rightarrow T. i.e. we apply n rules. In total we will have applied (n-1) + n = 2n-1 rules.

(11 ±) · 11 = 211 ± 14103.

Question 2:

Consider the CFG given below:

 $S \rightarrow aSb|D$

 $D \rightarrow Dc | \epsilon$

How many non-terminals should be added to convert the CFG into CNF? [1 mark]

- A) 3
- B) 2
- C) 4
- D) 5

Answer: D

Solution: The final CNF is:

```
S' \rightarrow AE|AB|DC|c

S \rightarrow AE|AB|DC|c

E \rightarrow SBD \rightarrow DC|c

A \rightarrow aB \rightarrow bC \rightarrow c
```

For question 3 to 6 consider the following PCFG fragment:

$S \rightarrow NN VP$	0.50	$S \rightarrow VP NN$	0.50
$NP \rightarrow NN PB$	0.40	$PB \rightarrow PPNN$	0.30
$VP \rightarrow VB NN$	0.30	$VP \rightarrow VB NP$	0.20
$VP \rightarrow NN VB$	0.25	$VP \rightarrow NN PB$	0.15
$PP \rightarrow with$	0.10	$PP \rightarrow without$	0.10
<i>VB</i> → play	0.30	VB → enjoy	0.20
VB → watch	0.25	NN → children	0.15
NN → cricket	0.15	NN → friends	0.20
<i>NN</i> → football	0.10	NN → music	0.12

For a sentence S = w1w2w3w4, assume that the cells in the table are indexed as follows:

	1	2	3	4	
w_1	11	12	13	14	1
	w_2	22	23	24	2
		w_3	33	34	3
			w_4	44	4

Question 3:

Using CKY algorithm, find the probability score for the most probable tree for the sentence S_1 = "children play cricket with friends". [1 mark]

- A) 5.06×10^{-4}
- B) 2.73×10^{-3}
- C) 1.62×10^{-6}
- D) None of the above

Answer: c

Solution: Calculate the probability using the Bottom-Up method as explained in the lecture. 2

Question 4:

Using CKY algorithm, find the number of parse trees for the sentence S_2 = **children enjoy music** and the probability score for the most probable tree. [2 marks]

- A) $1.4.95 \times 10^{-3}$
- B) $2, 0.36 \times 10^{-3}$
- C) 3, 0.99×10^{-3}
- D) 2, 0.54×10^{-3}

Answer: D Solution:

There are two parse trees.

S → NN₁₁ VP₂₃ = 0.5 × 0.15 × (0.3 × 0.2 × 0.12) = 0.54 × 10^{-3} S → VP₁₂ NN₃₃ = 0.5 × (0.25 × 0.15 × 0.2) × 0.12 = 0.45 × 10^{-3}

We get the above probabilities with CKY algorithm.

Question 5:

Consider the expression below:

P("children watch football enjoy music", $N_{34|G} = P_j P$ ("children watch football enjoy music" $|N_{34}|G$)

What does the L.H.S. represent? [1 mark]

- A) Probability of the sentence "children watch football enjoy music", given a grammar G.
- B) Probability of the sentence "children watch football enjoy music", given a grammar G and some rule which derives the segment "football enjoy".
- C) Probability of the sentence "children watch football enjoy music", given a grammar G and that there is some consistent spanning of the segment "football enjoy", i.e. from word 3 to 4.
- D) None of the above

Answer: C

Solution: Refer to Inside-Outside Probabilities.

Question 6:

Suppose after parsing the sentence S_2 = children enjoy music with CKY algorithm, the non-terminals that appear in position 12 and 23 are NT_1 and NT_2 respectively. Compute the outside probabilities for $\alpha_{NT_1}(12)$ and $\alpha_{NT_2}(23)$. (1 mark)

- A) 0, 0.075
- B) 0.25, 0
- C) 0.30, 0.06
- D) None of the above

Answer: D **Solution:**

$$\alpha_{VP}(12) = 0.5 \times 1 \times 0.12 = 0.060$$

 $\alpha_{VP}(23) = 0.5 \times 1 \times 0.15 = 0.075$

Question 7:

Which of the following grammars are valid CNF? [1 mark]

1.
$$A \rightarrow B$$
 2. $A \rightarrow BCD$ 3. $A \rightarrow BC$

$$B \rightarrow CD B \rightarrow b B \rightarrow \epsilon$$

$$C \ \rightarrow \ c \ C \ \rightarrow \ c \ C \ \rightarrow \ c$$

$$D \ \rightarrow \ d \ D \ \rightarrow \ d$$

- A) 1.
- B) 2.
- C) 3.
- D) None of the above

Answer: d

Solution: Valid CNF form is as follows:

$$A \rightarrow BC$$

 $A \rightarrow a$

Question 8:

Consider the CFG given below:

S -> ASA | aB

A -> B | S

B -> b | ε

How many non-terminals need to be added to convert the above grammar into CNF? (1 mark)

- A) 1
- B) 4
- C) 2
- D) 3

Answer: D

Solution: The final CNF is:

S' -> AX | YB | a | AS | SA

 $S -\!\!\!> AX \mid YB \mid a \mid AS \mid SA$

 $A \rightarrow b \mid AX \mid YB \mid a \mid AS \mid SA$

 $B \rightarrow b$

 $X \rightarrow SA$

 $Y \rightarrow a$

Question 9:

Which of the following are true with respect to a Top-Down and Bottom-Up Parser? [1 mark]

- A) A Top-Down Parser never explores options that will not lead to a full parse.
- B) A Bottom-Up Parser never explores options that will not lead to a full parse.
- C) A Top-Down Parser never explores options that do not connect to the actual sentence.
- D) A Bottom-Up Parser never explores options that do not connect to the actual sentence.

Answer: A, D

Solution: Follow the lecture slides.