

Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales

Programación Concurrente

Trabajo Práctico nº 3:

Modelado de un sistema de un procesador con dos núcleos

Grupo:	: "No Java, no party"
Fecha:	: 24/06/2019
Profes	ores :
	Dr. Ing. Micolini, Orlando
	Ing. Ventre, Luis
	Ing. Ludemann, Mauricio
Integra	antes :
	Agustinoy, Jeremías
	Ferrero, Alejandro
	Viccini, Patricio

Introducción

El trabajo consisitio en extender un modelo de un procesador mononucleo a un procesador de dos núcleos. Se busco que el modelo resultante tenga las mismas propiedades que el original. La logica del modelo que obtuvimos lo representamos de la misma forma que el del cual partimos, mediante una **red de petri temporal.**

Luego se busco generar un programa en java que gestione la simulacion de la red. Tambien segun la consigna se debia

Red de Petri

La Red de Petri original que modela el sistema de un procesador con un núcleo es:

La cual posee las siguientes propiedades:

Petri Net Classification

Types of Petri net

State Machine	false
Marked Graph	false
Free Choice Net	false
Extended FCN	false
Simple Net	false
Extended SN	false
Mathematical propert	ies
Mathematical propert	ies

Bounded	false
Safe	false
Deadlock	false

Petri Net Invariant Analysis

T-Invariants

Arrival_rate	Power_down_threshold	Power_up_delay	Service_rate	T1	T2	T5	T6
1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	0

The net is covered by positive T-Invariants, therefore it might be bounded and live.

P-Invariants

Active	CPU_buffer	CPU_ON	Idle	P0	P1	P6	Power_up	Stand_by
1	0	0	1	0	0	0	0	0
0	0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	1	1

The net is not covered by positive P-Invariants, therefore we do not know if it is bounded.

P-Invariant equations

$$M(Active) + M(Idle) = 1$$

 $M(P0) + M(P1) = 1$
 $M(CPU_ON) + M(Power_up) + M(Stand_by) = 1$

		F	orwards in	cidence matrix	I *			
	Arrival_rate	Power_down _threshold	Power_up delay	Service_rate	T1	T2	T5	Т6
Active	0	0	0	0	0	1	0	0
CPU_buffer	0	0	0	0	1	0	0	0
CPU_ON	0	0	1	0	0	1	1	0
dle	0	0	0	1	0	0	0	0
90	0	0	0	0	1	0	0	0
21	1	0	0	0	0	0	0	0
26	0	0	0	0	1	0	0	1
Power_up	0	0	0	0	0	0	0	1
Stand_by	0	1	0	0	0	0	0	0
		Bac	kwards in	cidence matrix	<i>I</i> -			
	Arrival_rate F	Power_down P _threshold	ower_up_ delay	Service_rate	T1	T2	T5	Т6
tive	0	0	0	1	0	0	0	0
U_buffer	0	0	0	0	0	1	0	0
U_ON	0	1	0	0	0	1	1	0
e	0	0	0	0	0	1	0	0
	1	0	0	0	0	0	0	0
	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	1	1
wer_up	0	0	1	0	0	0	0	0
and_by	0	0	0	0	0	0	0	1
		Co	ombined in	cidence matrix	ı			
	Arrival_rate	Power_down P	ower_up_	Comico mato	T1	T2	TE	TC
	Arrival_rate	_threshold	delay	Service_rate	11	T2	T5	Т6
tive	0	0	0	-1	0	1	0	0
U_buffer	0	0	0	0	1	-1	0	0
U_ON	0	-1	1	0	0	0	0	0
The second second	0	0	0	1	0	-1	0	0
le			0	0	1	0	0	0
le)	-1	0		U				
le) L	1	0	0	0	-1	0	0	0
le) L					-1 1	0 0	0 -1	0
le) L 5 ower_up	1	0	0	0				

Inhibition matrix H

	Arrival_rate	Power_down _threshold	Power_up_ delay	Service_rate	т1	T2	T5	Т6
Active	0	1	0	0	0	0	0	0
CPU_buffer	0	1	0	0	0	0	0	0
CPU_ON	0	0	0	0	0	0	0	0
Idle	0	0	0	0	0	0	0	0
P0	0	0	0	0	0	0	0	0
P1	0	0	0	0	0	0	0	0
P6	0	0	0	0	0	0	0	0
Power_up	0	0	0	0	0	0	0	0
Stand_by	0	0	0	0	0	0	0	0

La Red de Petri resultante que modela el sistema de un procesador con dos núcleos es:

La cual posee las siguiente propiedades:

Resultados de la clasificación de la RdP

Types of Petri net	
State Machine	false
Marked Graph	false
Free Choice Net	false
Extended FCN	false
Simple Net	false
Extended SN	false
Mathematical propert	ies
Bounded	false
Safa	falco

P - invariantes

P-Invariants

false

Active_N1	CPU_buffer_N1	CPU_ON_N1	Idle_N1	P0	P1	P2_N1	Power_up_N1	Stand_by_N1	CPU_ON_N2	P2_N2	Stand_by_N2	Power_up_N2	Active_N2	Idle_N2	CPU_buffer_N2
1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0

Ecuaciones de los P - invariantes

Deadlock

Matriz de Incidencia I+

Forwards incidence matrix I+ Power_down_ Power_up_del Power_down_ Power_up_del Service_rate_ Service_rate_ Arrival_rate TA_N1 TB_N1 TD_N1 TC_N1 TD_N2 TC_N2 TB_N2 TA_N2 threshold_N1 ay_N1 threshold_N2 ay_N2 Active_N1 CPU_buffer_N CPU_ON_N1 Idle_N1 P1 P2_N1 Power_up_N1 Stand_by_N1 CPU_ON_N2 P2_N2 Stand_by_N2 Power_up_N2 Active_N2 Idle_N2 CPU_buffer_N

Matriz de Incidencia I-

	Arrival_rate	Power_down_th reshold_N1	Power_up_delay _N1	Service_rate_N 1	TA_N1	TB_N1	TD_N1	TC_N1	Power_down_th reshold_N2	Power_up_delay _N2	TD_N2	TC_N2	Service_rate_N 1	TB_N2	TA_N2
Active_N1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
CPU_buffer_N1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CPU_ON_N1	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0
dle_N1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
P0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1
P2_N1	0	0	1	0	0	0	1	1	0	o	0	0	0	0	0
Power_up_N1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Stand_by_N1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
CPU_ON_N2	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0
P2_N2	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0
Stand_by_N2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
Power_up_N2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
Active_N2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
dle_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
CPU_buffer_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Matriz de Incidencia Combinada I

		Barrier Harry 11	Barrier and A. L.	Constant and the					Barrier Harris of	Barrers and Aller			Carrier and Al		
	Arrival_rate	reshold_N1	Power_up_delay _N1	Service_rate_N 1	TA_N1	TB_N1	TD_N1	TC_N1	reshold_N2	Power_up_delay _N2	TD_N2	TC_N2	Service_rate_N 1	TB_N2	TA_N
Active_N1	0	0	0	-1	0	1	0	0	0	0	0	0	0	0	0
CPU_buffer_N1	0	0	0	0	1	-1	0	0	0	0	0	0	0	0	0
CPU_ON_N1	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	0
ldle_N1	0	0	0	1	0	-1	0	0	0	0	0	0	0	0	0
P0	-1	0	0	0	1	0	0	0	0	0	0	0	0	0	1
P1	1	0	0	0	-1	0	0	0	0	0	0	0	0	0	-1
P2_N1	0	0	-1	0	1	0	-1	0	0	0	0	0	0	0	0
Power_up_N1	0	0	-1	0	0	0	0	1	0	0	0	0	0	0	0
Stand_by_N1	0	1	0	0	0	0	0	-1	0	0	0	0	0	0	0
CPU_ON_N2	0	0	0	0	0	0	0	0	-1	1	0	0	0	0	0
P2_N2	0	0	0	0	0	0	0	0	0	-1	-1	0	0	0	1
Stand_by_N2	0	0	0	0	0	0	0	0	1	0	0	-1	0	0	0
Power_up_N2	0	0	0	0	0	0	0	0	0	-1	0	1	0	0	0
Active_N2	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	0
dle_N2	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	0
CPU_buffer_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

Matriz de Inhibición H

							Inhibition	matrix H							
	Arrival_rate	Power_down_th reshold_N1	Power_up_delay _N1	Service_rate_N 1	TA_N1	TB_N1	TD_N1	TC_N1	Power_down_th reshold_N2	Power_up_delay _N2	TD_N2	TC_N2	Service_rate_N 1	TB_N2	TA_N
Active_N1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
PU_buffer_N1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
CPU_ON_N1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
dle_N1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2_N1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power_up_N1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stand_by_N1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CPU_ON_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P2_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stand_by_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power_up_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Active_N2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
dle_N2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CPU_buffer_N2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0

Marcado inicial

	Marking															
	Active_N1	CPU_buffer_N1	CPU_ON_N1	Idle_N1	PO	P1	P2_N1	Power_up_N1	Stand_by_N1	CPU_ON_N2	P2_N2	Stand_by_ N2	Power_up_N2	Active_N2	Idle_N2	CPU_buffer_N2
Initial	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0
Current	0	0	0	1	1	0	0	0	1	0	0	1	0	0	1	0

Transiciones habilitadas

						1	Enabled t	ransitions							
	Arrival_rate	Power_down_th reshold_N1	Power_up_delay _N1	Service_rate_N 1	TA_N1	TB_N1	TD_N1	TC_N1	Power_down_th reshold_N2	Power_up_delay _N2	TD_N2	TC_N2	Service_rate_N 1	TB_N2	TA_N2
Enabled	yes	no	no	no	no	no	no	no	no	no	no	no	no	no	no

Siphons and Traps

Minimal siphons

Minimal traps

Grafo de cobertura

Software

Los problemas de concurrencia se manejaron en el código mediante una clase **Monitor** y una clase **Políticas** que controlan el disparo de las transiciones de la red.

Las transiciones temporizadas se manejaron mediante la clase **TransicionConTiempo**, la misma lleva el tiempo de sensibilizado y dice si se está dentro de la ventana de tiempo del disparo, también si está antes o después.

La sensibilización de las transiciones se manejó mediante la **ecuación de estado generalizada** (se adjunta link del paper), esto para poder tener en cuenta los brazos inhibidores y las transiciones temporizadas.

Encontramos que la cantidad óptima de hilos corriendo es 5, además de main, ya que la red sólo permite que se disparen un máximo de 5 transiciones concurrentemente.

Entonces, para realizar los disparos de la red se realizaron 5 objetos que heredan de **Thread** y su funcion es tratar de disparar transiciones de zonas especificas de la red donde encontramos trazas que volvían a su estado anterior luego de cierta cantidad de disparos. Estos objetos ademas representan partes del procesador, tenemos:

Obj_Creador:

Es el que crea las tareas que llegan al procesador y las coloca en los buffers.

Dispara las transiciones Arrival_rate, TA_N1, TA_N2

Obj_CPU:

Es el que enciende y apaga el nucleo 1 del procesador.

Dispara las transiciones *TC_N1*, *TD_N1*, *Powe_up_delay_N1*, *Power_down_threshold_N1* **Obj_CPU2**:

Es el que enciende y apaga el nucleo 2 del procesador.

Dispara las transiciones *TC_N2*, *TD_N2*, *Powe_up_delay_N2*, *Power_down_threshold_N2* **Obj_Nucleo1:**

Es el que realiza las tareas del nucleo 1.

Dispara las transiciones TB_N1, Service_rate_N1

Obj_Nucleo2:

Es el que realiza las tareas del nucleo 2.

Dispara las transiciones TB_N2, Service_rate_N2

Resolucion del conflicto en la entrada a los Buffers

Este conflicto consiste en que el generador de tareas quiere poner una tarea en alguno de los buffers disparando las transiciones TA_N1 o TA_N2, en principio puede disparar cualquiera pero solo puede disparar una, desensibilizando la otra en el proceso. La solución fue implementar una **política dinámica** dentro de la clase Políticas que decida cual disparar en función de la cantidad de tokens en cada buffer, buscando que el valor en

ambos buffers sea el mismo.

Análisis de casos - Conclusiones

Se realizaron las siguientes ejecuciones con 1000 tareas completadas (para cada caso):

- a) Ambos núcleos con el mismo tiempo de "service rate".
- b) Un núcleo con el doble de tiempo de "service" rate" que el otro.
- c) Un núcleo con el triple de tiempo de "service_rate" que el otro.

Se considera 50 mseg de Arrival_rate (tiempo entre arribos) y se obtuvieron los siguientes resultados:

a) Ambos núcleos con el mismo tiempo de "service_rate" (50 mseg cada uno).

Duracion total del programa: 0 min y 59 seg.

Duracion total en miliseg: 58574 Tareas completadas en N1: 0 Tareas completadas en N2: 1000

b) Un núcleo con el doble de tiempo de "service_rate" que el otro(50 mseg en núcleo 1 y 100 mseg en núcleo 2).

Duración total del programa: 0 min y 57 seg.

Duración total en miliseg: 56430 Tareas completadas en N1: 474 Tareas completadas en N2: 526

c) Un núcleo con el triple de tiempo de "service_rate" que el otro (50 mseg en núcleo 1 y 150 mseg en núcleo 2).

Duración total del programa: 0 min y 58 seg.

Duración total en miliseg: 58529 Tareas completadas en N1: 637 Tareas completadas en N2: 363

Enlaces - bibliografía

Link del paper de la Ecuación de estado generalizada:

https://www.researchgate.net/publication/328253053 Ecuacion de estado generalizada para redes de Petri no autonomas y con distintos tipos de arcos