LinkedIn - www.linkedin.com/in/gokuler137 **GitHub** - https://github.com/gokul92

EDUCATION

UCLA ANDERSON SCHOOL OF MANAGEMENT

Los Angeles, CA

Master of Financial Engineering (merit scholarship recipient)

September 2017 - December 2018

- Relevant Coursework Derivatives, Statistical Arbitrage, Stochastic Calculus, Monte-Carlo, Econometrics & Machine Learning
- Priced derivatives using Binomial, Monte-Carlo with variance reduction techniques & Finite Difference methods in C++
- Fixed Income Bond sensitivities, Curve bootstrapping, Term structure theory & models (simulation and calibration)
- Selected to Citadel SoCal Datathon Day long data science competition that involved building statistical models using public datasets to provide relevant, actionable insights on sources and reasons of water pollution/contamination across the USA
- Applied Finance Project High frequency market making signal generation in CME futures using Deep Learning (Python)
 - Project for RCM-X Alternatives, a market making/execution services firm based in Chicago
 - Feature engineering, tuning and training sequence based RNN (LSTM) and deep neural networks with limit order book data using Tensorflow to identify direction of price movements over seconds (5MM+ data points & 10+ GBs of data)
 - Achieved 16X improvement in running times by executing efficient, parallel data pipelines and leveraging GPU (CUDA) accelerated Tensorflow implementations on Amazon Web Services (AWS). Improved average predictive accuracy by 5%

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, India

M.S. (Research) in Aerospace Engineering (Research Topic - Computational Fluid Dynamics)

August 2014 – September 2017

- Recipient of scholarship from Ministry of Human Resources and Development (MHRD)
- **Publication** "DNS of High Temperature Effects on Compressible Isotropic Turbulence", G. Ramanathan and S. Ghosh 55th AIAA Aerospace Meetings, January 2017, Texas

ANNA UNIVERSITY

Chennai, India

B.E. in Mechanical Engineering

August 2009 - August 2013

Summer Research Fellowship awarded to study Quantum Mechanics with Prof. Justin David at Indian Institute of Science

SKILLS / CERTIFICATIONS

- Numerical analysis, signal (alpha) generation & Optimization using statistical, time series & Machine Learning methods
- Python & packages, LaTeX, Fortran, C++, Spark, SQL, domain parallel programming (MPI) & functional knowledge of R
- Regression & Classification methods, Random Forests, Support Vector Machines, Boosting, Bagging, Markov Models

EXPERIENCE

JP MORGAN CHASE, CORPORATE AND INVESTMENT BANKING (CIB)

New York City, USA

Quantitative Research Summer Associate – Rates (Market Risk)

June – September 2018

- VaR analysis on FX Forward Implied xccy curve for emerging markets using machine learning and statistical techniques
- Developed unique fractional differencing procedures to transform time series into forms suitable for VaR calculation
- Applied novel optimization algorithms, using Scipy, Pandas, Numpy & Statsmodels, to solve for differencing parameters
- Used Fourier mathematics to identify parameters that modify time series properties while minimizing information loss
- Conducted comparison of econometric and Support Vector Machine algorithms to identify regime shifts in time series

INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Chennai, India

Research Scholar – Fluid dynamics (using computational & numerical methods)

August 2014 – August 2017

- Implemented, with improvements to existing research, 3 unique ways of initializing a stochastic turbulent flow-field with application to the Navier-Stokes equations for a wide range of physical conditions
- Used Fast Fourier Transform (FFT) and Runge Kutta time stepping methods to develop a robust non-linear multidimensional PDE (Navier-Stokes) numerical solver from scratch in Fortran and enabled it to work over a wide range of physical conditions
- Designed and developed an innovative algorithm to compute parallel FFTs of three-dimensional functions
- Reduced running speed, by a factor of 60, of optimization and computation algorithms and implemented domain-level code parallelization using Message Passing Interface (MPI)
- Used two-point correlations & Fourier methods to compute dynamics of stochastic flows with applications to finance
- Computed statistical measures like skewness, kurtosis and used perturbation analysis to identify and explain occurrence of novel physical phenomena with applications in active flow control and atmospheric re-entry of aircrafts

MACHINE LEARNING PROJECTS (Implemented in Python)

- Implemented Support Vector Machine (SVM) & Decision Tree algorithms in Python to predict the direction of currency pairs' daily returns using factors such as Risk Reversal, CFTC positioning, REER etc.
- Developed a framework using Hidden Markov Model (HMM) to predict patterns in OHLC prices from historical equity data
- Implemented a novel methodology to discretize and categorize price data based on shapes that also accounts for transaction costs/slippage for application in classification-based Machine Learning trading algorithms