Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Формальные языки и автоматы Методичка для сдающих и пересдающих

Может, зайдет кому-нибудь

Оглавление

1	Немного теормина	3
2	НКА по регулярному выражению	4
3	ДКА по НКА	6

Предисловие

Однажды я сдавал формалки. Не самый приятный опыт в моей жизни. Когда я ждал результатов, я сказал, что если не сдам, напишу методичку по этому чудесному предмету.

Как несложно догадаться, я тогда не сдал.

По формалкам уже есть отличное руководство в виде решений задач от Тани (не знаю, кто это, но если бы ее не было, статистика сдаваемости была бы гораздо хуже, я уверен, Таня, спасибо, что ты есть), и казалось бы - зачем я это делаю?

Ну во-первых, я сказал, что напишу.

Во-вторых, это довольно знатный способ подготовки к пересдаче, который потенциально поможет каким-нибудь людям после меня.

В-третьих, наверное, есть смысл восполнить пробел в нормальном "печатном" пособии по формальным языкам. Ахо Ульмана я не читал (а он, может быть, и норм), но "Теорию Построения Комплияторов" читать совершенно невозможно.

В этой методичке я в меру своих возможностей постараюсь не только подробно расписать решения различных задач (это уже есть у Тани), но и более-менее человеческим языком расписать, как применяемые алгоритмы работают (потому что выучить алгоритм, если есть примерное понимание работы, гораздо проще)

За кривой русский язык извиняйте - я ЕГЭ сдал на 30 баллов.

Глава 1

Немного теормина

Недетерменированный конечный автомат - НКА

Глава 2

НКА по регулярному выражению

Алгоритм

Построение НКА по РВ делается по определенным правилам

Каждое РВ можно разбить на подвыражения, а для простейших подвыражений автомат строится довольно просто

На рисунке далее

- 1. Е-переход
- 2. Переход по символу a
- 3. Переход по a|b (a или b)
- 4. Переход по ab (сначала a, потом b)
- 5. Переход по a* (сколько угодно символов a, в т.ч. 0)

Справа от простейших НКА нарисованы общие НКА, когда переход совершается по некоторому PB, где r - PB, а M(r) - HKA, построенный по нему.

На рисунке изображено построение НКА для РВ b(a|ba)*|aab

Почему это работает

Правильность таких построений довольно очевидна, но если не верится, можно походить по полученным НКА по дугам и убедиться, что ничего кроме того, что описано в PB, по ним составить нельзя.

Глава 3

ДКА по НКА

Глядя на НКА, полученные по PB может показаться, что там слишком много лишних е-переходов, и они бесят. Также НКА это вам не ДКА: есть неопределенности которые бесят (хотя процесс детерминирования бесит больше). В любом случае существует алгоритм, позволяющий из большого, но красивого НКА получить маленький и очень некрасивый ДКА.

Алгоритм

Введем некоторые обозначения:

- 1. e-closure(R) (эпсилон-замыкание состояния R) множество состояний, в которые можно попасть из состояния R по символу e. Стоит отметить, что "скачков" может быть больше одного, то есть, если в состояние Q можно попасть из P по e, а из Q можно по e попасть в R, то $R \in e\text{-}closure(Q)$. На языке умных людей это называется транзитивностью, но я тут не сложными словами щеголять пришел.
- 2. move(R,a) (достижимые из R по a) множество состояний, в которые можно попасть из состояния R по символу a. (тут скачок должен быть только один)

В качестве примера рассмотрим уродца из предыдущей главы: НКА по РВ b(a|ba)*|aab

1. Для начала все состояния надо пронумеровать

На самом деле нумеровать их необязательно, главное дать им такие обозначения, чтобы вы сами могли отличить одно состояние от другого (ну и чтобы проверяющий экзаменатор не охерел, поэтому арабская вязь, наверное, не лучшее решение) - тут есть простор для фантазии, но на мой взгляд цифры вполне удобны (хотя между ними и приходится ставить запятые, если выписывать их в ряд).

Далее мы начинаем описывать новый автомат с новыми состояниями - тут уже традиционно используют заглавные латинские буквы. Каждое новое состояние описывается множеством старых состояний из первого автомата.

- 2. В качестве начального состояния нового ДКА берут A = e-closure(1), в нашем случае это $A = \{1, 2, 11\}$.
- 3. Далее формируются следующие правила переходов:

$$D(A, a) = move(A, a) + e\text{-}closure(move(A, a))$$

$$D(A, b) = move(A, b) + e\text{-}closure(move(A, b))$$

И т.д.

Пусть вышло так, что есть состояние Q, из которого по символу b мы переходим в состояние, описываемое множеством $\{1,2,3,4,6,8,12,23\}$. При этом, если у такого множества уже есть имя, например W, то это попросту значит, что D(Q,b)=W. Если такого множества раньше не встречалось, то оно добавляется в таблицу состояний нового ДКА.

Звучит сложно и скучно, поэтому лучше посмотреть на живой пример.

$$A = \{1, 2, 11\};$$

$$move(A, a) = move(1, a) + move(2, a) + move(11, a);$$

$$move(A, a) = \{\} + \{\} + \{12\} = \{12\};$$

e- $closure(move(A, a)) = {};$

$$D(A, a) = move(A, a) + e\text{-}closure(move(A, a)) = \{12\} + \{\} = \{12\};$$

Состояния $\{12\}$ у нас еще не было, поэтому добавим его в таблицу состояний и назовем его B.

Проделаем аналогичные выкладки для символа b.

$$move(A, b) = move(1, b) + move(2, b) + move(11, b);$$

$$move(A, b) = \{\} + \{3\} + \{\} = \{3\};$$

$$e\text{-}closure(move(A, b)) = \{4, 5, 7, 8, 15\};$$

$$D(A,b) = move(A,b) + e\text{-}closure(move(A,b)) = \{3\} + \{4,5,7,8,15\} = \{3,4,5,7,8,15\};$$
 Состояния $\{3,4,5,7,8,15\}$ у нас тоже еще не было, поэтому запишем его в таблицу

состояний ДКА.

Подобные вычисления надо проводить для каждого символа в алфавите, для каждого нового состояния в таблице до тех пор, пока все старые состояния не будут описаны. С виду может показать, что это очень много писанины, но на деле все эти преобразования делаются в уме и единственное, что нужно реально выписывать, это таблицу состояний.

Привожу финальную таблицу переходов для НКА из предыдущей главы.

	a	b
$A\{1,2,11\}$	B	C
$B\{12\}$	D	X
$*C{3,4,5,7,8,15}$	F	G
$D\{13\}$	X	E
$*E{14,15}$	X	X
$*F{4,5,6,7,8,15}$	F	G
$G{9}$	H	X
$*H{4,5,7,8,10,15}$	F	G

Внимательный читатель заметит, что некоторые состояния отмечены звездочками и спросит, что это. Отвечаю: звездочками помечены конечные состояния. И это следующее правило алгоритма построения:

4. Конечными состояниями нового ДКА помечаются такие состояния, которые содержат в себе конечное состояние старого НКА.

В данном случае конечным состоянием является 15, поэтому все состояния, имеющие в себе 15 становятся конечными.

На рисунке изображен полученный ДКА.

Почему это работает

Работа алгоритма строится на двух мыслях:

1. Если из одного состояния по e можно перейти в несколько других, то зачем нам эти другие состояния, если по сути состояние одно, просто разибитое на несколько частей? (незачем)

Грубо говоря, мы стягиваем за e-дуги много состояний в одно, как за веревки.

2. Если после стягиваний состояний, две дуги, раньше шедшие в два разных состояния, теперь идут в одно стянутое, то действительно ли между этими дугами есть разница? (нет)