MATH 7310 Homework 8

James Harbour

April 4, 2022

Problem 1

Let \mathcal{H} be a Hilbert space.

(a): Prove that, for any $x, y \in \mathcal{H}$,

$$\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2)$$

Proof.

$$||x \pm y||^2 = ||x||^2 + ||y||^2 \pm 2\operatorname{Re}(\langle x, y \rangle)$$
$$||x \pm iy||^2 = ||x||^2 + ||y||^2 \pm 2\operatorname{Re}(\langle x, iy \rangle) = ||x||^2 + ||y||^2 \pm 2\operatorname{Im}(\langle x, y \rangle).$$

We compute that

$$\frac{1}{4}(\|x+y\|^2 - \|x-y\|^2) = \text{Re}(\langle x, y \rangle)$$
$$\frac{1}{4}(\|x+iy\|^2 - \|x-iy\|^2) = \text{Im}(\langle x, y \rangle)$$

whence the identity follows by noting $\langle x, y \rangle = \text{Re}\{\langle x, y \rangle\} + i \operatorname{Im}(\langle x, y \rangle)$.

(b): If \mathcal{H}' is another Hilbert space, prove that a linear map from \mathcal{H} to \mathcal{H}' is unitary if and only if it is isometric and surjective.

Proof.

 \Longrightarrow : Suppose that $T: \mathcal{H} \to \mathcal{H}'$ is unitary. Then T is surjective by definition. Moreover, for $x \in \mathcal{H}$, $\|x\| = \langle x, x \rangle = \langle Tx, Tx \rangle = \|Tx\|$, whence T is an isometry by linearity.

 $\underline{\longleftarrow}$: Suppose that $T: \mathcal{H} \to \mathcal{H}'$ is isometric and surjective. Then

$$\langle Tx, Ty \rangle = \frac{1}{4} (\|T(x) + T(y)\|^2 - \|T(x) - T(y)\|^2 + i\|T(x) + T(iy)\|^2 - i\|T(x) - T(iy)\|^2)$$

$$= \frac{1}{4} (\|T(x+y)\|^2 - \|T(x-y)\|^2 + i\|T(x+iy)\|^2 - i\|T(x-iy)\|^2)$$

$$= \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2) = \langle x, y \rangle,$$

so T is an isometry. Now suppose that T(x) = 0. Then $0 = \langle Tx, Tx \rangle = \langle x, x \rangle$ whence x = 0, so T is also injective and thus unitary.

Problem 2

For $n \in \mathbb{Z}$, define $e_n : [0,1] \to \mathbb{C}$ by $e_n(t) = e^{2\pi i n t}$.

(a): Show that $\{e_n\}_{n\in\mathbb{Z}}$ is an orthonormal set in $L^2([0,1])$.

Proof. Observe that, for $n, m \in \mathbb{Z}$ with $n \neq m$

$$\langle e_n, e_m \rangle = \int_0^1 e^{2\pi i n t} \overline{e^{2\pi i m t}} \, dt = \int_0^1 e^{2\pi i (n-m)t} \, dt = \left[\frac{1}{2\pi i (n-m)} e^{2\pi i (n-m)t} \right]_{t=0}^{t=1} = \frac{1}{2\pi i (n-m)} (e^{2\pi i (n-m)-1}) = 0.$$

On the other hand, for $\in \mathbb{Z}$,

$$\langle e_n, e_n \rangle = \int_0^1 e^{2\pi i n t} \overline{e^{2\pi i n t}} dt = \int_0^1 1 dt = 1$$

so $\{e_n\}_{n\in\mathbb{Z}}$ is an orthonormal set in $L^2([0,1])$.

(b): Show that $\{f \in C([0,1]) : f(1) = f(0)\} = \{g \circ e_1 : g \in C(S^1)\}, \text{ where } S^1 = \{z \in \mathbb{C} : |z| = 1\}.$

Proof. Noting that e_1 is just the composition of the canonical projection map $[0,1] \to [0,1]/(0 \sim 1)$ with the homeomorphism $[0,1]/(0 \sim 1) \cong S^1$ given by the same formula (where well-definedness follows from the quotiented set), the claim follows from the universal property of the quotient topology.

(c): The Stone-Weierstrass theorem says that if (X, d) is a compact metric space and $A \subseteq C(X)$ is a linear subspace so that:

- $1 \in A$,
- $f \in A$ implies $\overline{f} \in A$,
- $f, g \in A$ implies that $fg \in A$,
- If $x \in X$, then there are $f, g \in A$ with $f(x) \neq g(x)$,

then A is dense in C(X) for the uniform norm $||f||_u = \sup_{x \in X} |f(x)|$. Use the Stone-Weierstrass theorem to show that $\overline{\operatorname{Span}}^{||\cdot||_u} \{e_n : n \in \mathbb{Z}\} = \{f \in C([0,1]) : f(1) = f(0)\}.$

Proof. For $n \in \mathbb{Z}$, define $p_n : S^1 \to \mathbb{C}$ by $p_n(x) = x^n$ and set $A = \operatorname{Span}\{p_n : n \in \mathbb{Z}\} \subseteq C(S^1)$. Note that $\overline{p_n} = p_{-n}, p_n p_m = p_{nm}, 1 = p_0$, whence by linearity the first three properties above hold for A.

To see that the last property holds for A, take arbitrary $x \in S^1$. If $x^n \neq 1$ for all $n \in \mathbb{Z} \setminus \{0\}$, then $p_1(x) = x \neq x^2 = p_2(x)$. Suppose that $x^n = 1$ for some $n \in \mathbb{Z} \setminus \{0\}$. Then $x^{-n} = 1$, so we may assume without loss of generality that $n \in \mathbb{N}$. If x = 1, then $p_1(x) = 1 \neq 0 = 0(x)$ and $p_1, 0 \in A$. Otherwise, let $m \geq 2$ be the smallest such $m \in \mathbb{N}$ such that $x^m = 1$. Then $p_m(x) = x^m \neq x^{m-1} = p_{m-1}(x)$, as desired.

Thus, by the Stone-Weierstrass theorem, $\overline{A}^{\|\cdot\|_u} = C(S^1)$. Now take $f \in \{f \in C([0,1]) : f(1) = f(0)\}$. Then by part (b) there exists a $g \in C(S^1)$ such that $f = g \circ e_1$. Now take a sequence $(a_n)_{n=1}^{\infty}$ in A such that $a_n \to g$ with respect to $\|\cdot\|_u$.

Then $a_n \circ e_1 \to g \circ e_1$ with respect to $\|\cdot\|_u$. Lastly, noting that $a_n \circ e_n \in \text{Span}\{e_n : n \in \mathbb{Z}\}$, it follows that $f \in \overline{\text{Span}}^{\|\cdot\|_u}\{e_n : n \in \mathbb{Z}\}$.

(d): Show that Span $\{e_n : n \in \mathbb{Z}\}$ is dense in $L^2([0,1])$ and use this to show that $\{e_n\}_{n \in \mathbb{Z}}$ is an orthonormal basis for $L^2([0,1])$.

Proof. Observe that, for any measurable $f:[0,1]\to\mathbb{C}$, by Hölder's inequality applied twice we have

$$||f||_2 \le ||f||_1 \le ||f||_{\infty} ||1||_1 = ||f||_{\infty} m([0,1]) = ||f||_{\infty} \le ||f||_u.$$

Now suppose that $f \in C([0,1])$ such that f(0) = f(1). Then there exists $f_n \in \text{Span}\{e_n : n \in \mathbb{Z}\}$ such that $||f_n - f||_u \to 0$. Then $||f_n - f||_u \to 0$, so $\overline{\text{Span}}^{||\cdot||_2}\{e_n : n \in \mathbb{Z}\} = \{f \in C([0,1]) : f(1) = f(0)\}$ which equals C([0,1]) modulo almost-everywhere equality. Moreover, the closure of C([0,1]) in the L^2 -norm contains equivalence classes of the indicator functions of intervals via the hill approximation, so it it in fact is all of L^2 . Thus by transitivity of topological density, $\text{Span}\{e_n : n \in \mathbb{Z}\}$ is dense in $L^2([0,1])$.

As $\{e_n : n \in \mathbb{Z}\}$ is orthonormal and the L^2 -norm-closure of its span is in fact all of $L^2([0,1])$, it follows that $\{e_n\}_{n\in\mathbb{Z}}$ is an orthonormal basis for $L^2([0,1])$.

Problem 3

(a): Let (X, Σ, μ) , (Y, \mathcal{F}, ν) be σ -finite measure spaces such that $L^2(\mu)$ and $L^2(\nu)$ are separable. If $\{f_m\}$ and $\{g_n\}$ are orthonormal bases for $L^2(\mu)$ and $L^2(\nu)$ and $h_{mn}(x,y) = f_m(x)g_n(y)$, then $\{h_{mn}\}$ is an orthonormal basis for $L^2(\mu \otimes \nu)$.

(b): For $k \in \mathbb{N}$, and $n = (n_1, \dots, n_k) \in \mathbb{Z}^k$, define $e_n \in L^2([0, 1]^k)$ by

$$e_n(x) = \prod_{j=1}^k e^{2\pi i n_j x}.$$

Show that $\{e_n\}_{n\in\mathbb{Z}^k}$ is an orthonormal basis of $L^2([0,1]^k)$.

Problem 4

(a): Let (X, Σ, μ) be a σ -finite measure space, \mathcal{F} a sub- σ -algebra of Σ , and $\nu = \mu|_{\mathcal{F}}$. If $f \in L^1(\mu)$, prove that there exists $g \in L^1(\nu)$ (thus g is \mathcal{F} -measurable) such that $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{F}$; also prove that if g' is another such function then g = g' ν -a.e.

Proof. Define a new measure λ by $\lambda(E) = \int_E f \, d\mu$ for all $E \in \Sigma$. If $E \in \mathcal{F}$ with $\mu|_{\mathcal{F}}(E) = \nu(E) = 0$, then $\lambda(E) = \int_E f \, d\mu = 0$, so $\lambda|_{\mathcal{F}} \ll \nu$. Let $g = \frac{d\lambda|_{\mathcal{F}}}{d\nu} \in L^1(\nu)$, so $d\lambda|_{\mathcal{F}} = g \, d\nu$. Then, for all $E \in \mathcal{F}$,

$$\int_{E} g \, d\nu = \lambda(E) = \int_{E} f \, d\mu \,.$$

Now suppose that g' is another such function.

(b): Show that $\int gh \, d\nu = \int fh \, d\mu$ for all $h \in L^1(\nu)$.

Proof. We have the following relation

$$f d\mu = d\lambda_f = g d\nu \,,$$

so by homework 5 problem 1 part (a),

$$\int f h \, d\mu = \int h \, d\lambda_f = \int g h \, d\nu \, .$$

Problem 5

Let (X, Σ, μ) be a probability space. For a sub- σ -algebra $\mathcal{F} \subseteq \Sigma$, and $f \in L^1(X, \Sigma, \mu)$, let $\mathbb{E}_{\mathcal{F}}(f)$ be the conditional expectation of f onto \mathcal{F} .

(a): Show that $\mathbb{E}_{\mathcal{F}}(fg) = \mathbb{E}_{\mathcal{F}}(f)g$ for all $g \in L^{\infty}(X, \mathcal{F}, \mu)$.

Proof. Noting that, for $E \in \mathcal{F}$, as $\mu(X) < +\infty$ and $g \in L^{\infty}(X, \mathcal{F}, \mu|_{\mathcal{F}})$, we have that $g \cdot \mathbb{1}_E \in L^1(X, \mathcal{F}, \mu|_{\mathcal{F}})$ whence by problem 4 part (b)

$$\int_{E} \mathbb{E}_{\mathcal{F}}(f) g \, d\mu|_{\mathcal{F}} = \int \mathbb{E}_{\mathcal{F}}(f)(g \mathbb{1}_{E}) \, d\mu|_{\mathcal{F}} = \int f g \mathbb{1}_{E} \, d\mu = \int_{E} f g \, d\mu.$$

Thus, by the uniqueness of conditional expectation in problem 4, $\mathbb{E}_{\mathcal{F}}(fg) = \mathbb{E}_{\mathcal{F}}(f)g$.

(b): If $f \in L^2(X, \Sigma, \mu)$, show that $\mathbb{E}_{\mathcal{F}}(f)$ is the orthogonal projection of f onto $L^2(X, \mathcal{F}, \mu)$ in the decomposition

$$L^{2}(X, \Sigma, \mu) = L^{2}(X, \mathcal{F}, \mu) + L^{2}(X, \mathcal{F}, \mu)^{\perp}.$$

Note: one difficulty you'll a priori face is that we do not yet know that $f \in L^2$ implies that $\mathbb{E}_{\mathcal{F}}(f) \in L^2$. However, one can note that you can characterize the orthogonal projection g of f onto $L^2(X, \mathcal{F}, \mu)$ by $\langle f, h \rangle = \langle g, h \rangle$ for all $h \in L^2(X, \mathcal{F}, \mu)$ (you should prove this if you use it), and this can be used to show that this projection is the conditional expectation.

Problem 6

Show that if ν is a signed measure, then E is ν -null if and only if $|\nu|(E)=0$. Also, prove that if μ and ν are signed measures, then $\nu \perp \mu$ if and only if $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

Proof.

 \Longrightarrow : Suppose that E is ν -null. Let (P,N) be a Hahn decomposition for ν and consider positive measures ν^+ , ν^- such that $\nu = \nu^+ - \nu^-$. By uniqueness of these positive measures, $\nu^+(E) = \nu(E \cap P)$ and $\nu^-(E) = -\nu(E \cap N)$. Nullity of E for ν then implies that $\nu^+(E) = \nu(E \cap P) = 0$ and $\nu^-(E) = -\nu(E \cap N) = 0$. Thus $|\nu|(E) = \nu^+(E) + \nu^-(E) = 0$.

 $\underline{\Leftarrow}$: Suppose that $|\nu|(E)=0$. Let $F\subseteq E$ such that $F\in \Sigma$. As $|\nu|$ is a positive measure on Σ , $|\nu|(F)=0$, whence $\nu^+(F)=0=\nu^-(F)$. It follows that $\nu(F)=\nu^+(F)-\nu^-(F)=0$, so E is ν -null.

 \Longrightarrow : Suppose that $\nu \perp \mu$. So there exist $E, F \in \Sigma$ such that E is μ -null and F is ν -null, $E \cap F = \emptyset$, and $E \cup F = X$. Then by the previously proven equivalence, $|\nu|(F) = 0$ whence $\nu^+(F) = 0 = \nu^-(F)$. As ν^+ , ν^- are positive measures, this implies that F is ν^+ -null and ν^- -null, so the initial decomposition of X giving singularity of ν and μ also gives $\nu^+ \perp \mu$ and $\nu^- \perp \mu$.

 $\underline{\longleftarrow}$: Suppose that $\nu^+ \perp \mu$ and $\nu^- \perp \mu$. Then there exist $E^+, F^+, E^-, F^- \in \Sigma$ such that $E^\pm \cap F^\pm = \emptyset$, $E^\pm \cup F^\pm = X$, E^\pm is μ -null, and F^\pm is ν^\pm -null. Consider the sets $A = E^+ \cup E^-$ and $B = F^+ \cap F^-$. Note that A is a union of μ -null sets and is thus μ -null, whilst $\nu^+(B) = 0 = \nu^-(B)$ implies that $|\nu|(B) = 0$, so B is ν -null. A and B are clearly disjoint and

$$X \setminus A = X \setminus (E^+ \cup E^-) = (X \setminus E^+) \cap (X \setminus E^-) = F^+ \cap F^- = B \implies A \cup B = X.$$