TA5 – Ej1:Hallar árbol óptimo por programación dinámica

Analizar primero las siguientes preguntas:

- ¿es una subestructura óptima? Demostrar!
- ¿Podemos identificar problemas solapados?
 - ¿cuáles son?
 - ¿cuántos son?
 - ¿cuántas veces se requiere el resultado de cada uno?
- ¿es factible usar "memoización" para recordar y reusar los resultados de cada sub-problema?
 ¿cómo lo haríamos?
- ¿Usarías un enfoque "top-down" o uno "bottomup? – ilustra!
 - ¿Cuáles serían las "etapas" y la función que relaciona los sub-problemas para avanzar de etapa?

TA5 – Ej2: hallar el árbol óptimo usando PD

- Dados los siguientes datos, y aplicado un enfoque de programación dinámica, hallar el árbol óptimo. Identifica:
 - Enfoque (top-down o bottom-up)
 - Criterio de optimalidad y subestructura óptima
 - Sub-problemas superpuestos
 - Estrategia de memoización

	0	1	2	3
K		AND	ELSE	IF
a		3	1	2
b	5	3	2	1

TA5 – Ej3: hallar el árbol óptimo usando PD

 revisar el seudocódigo del algoritmo a la luz del enfoque de PD (conectar el seudo con las características de PD vistas)

Analizar el orden del tiempo de ejecución

Analizar los requerimientos de espacio de memoria