Checklist: Jak na limity

Typ: Dosadím a vyjde to. Trik: Dosadit limitní bod.

Používá se při tom často následujících faktů: (používáme L pro limitu, která konverguje, tj. existuje a je konečná):

- $-\infty + \infty = \infty, \, \infty \pm L = \infty,$
- $-\infty \cdot L = \infty \text{ pro } L > 0, \ \infty \cdot L = -\infty \text{ pro } L < 0, \ \infty \cdot \infty = \infty,$
- $\begin{array}{l} \infty^L = \infty \text{ pro } L > 0, \ L^\infty = \infty \text{ pro } L > 1, \ L^\infty = 0 \text{ pro } L \in (-1,1), \ L^\infty \text{ neexistuje pro } L < -1, \\ \frac{L}{\infty} = 0, \ \frac{L}{0^+} = \infty, \ \frac{L}{0^-} = -\infty, \\ 0^L = 0 \text{ pro } L > 0, \ 1^L = 1, \ L^0 = 1 \text{ pro } L > 0 \end{array}$

- $-e^{\infty} = \infty$, $\ln(\infty) = \infty$, $\ln(0^+) = -\infty$.

Záporné exponenty jsou zrádné a nejlépe se řeší pomocí $A^{-b} = \frac{1}{A^b}$.

Příklad:
$$\lim_{n \to \infty} (e^{-n}) = \lim_{n \to \infty} (\frac{1}{e^n}) = \frac{1}{\infty} = 0, \lim_{x \to 0} (\frac{\sin(x) \ln(2e^x - 1)}{x^3 + 1}) = \frac{0}{1} = 0.$$

Příklad: $\lim_{n\to\infty} \left(e^{-n}\right) = \lim_{n\to\infty} \left(\frac{1}{e^n}\right) = \frac{1}{\infty} = 0$, $\lim_{x\to 0} \left(\frac{\sin(x)\ln(2e^x-1)}{x^3+1}\right) = \frac{0}{1} = 0$. Pozor: $\frac{1}{0}$ není hned vidět, jak ostatně plyne z $\frac{1}{0^\pm} = \pm \infty$. Pokud máme $\frac{1}{0}$, musíme se podívat na jednostranné limity. Pokud obě vyjdou shodně, je to ta limita. Pokud vyjdou různě, limita neexistuje.

- Neurčité výrazy: Hodí se vědět, kdy dosazení zklame: $-0 \cdot \infty \colon \operatorname{např}. \lim_{n \to \infty} \left(\frac{1}{n} \cdot n\right) = 1, \lim_{n \to \infty} \left(\frac{1}{n^2} \cdot n\right) = 0, \lim_{n \to \infty} \left(\frac{1}{n} \cdot n^2\right) = \infty,$ $-\frac{\infty}{\infty} \colon \operatorname{např}. \lim_{n \to \infty} \left(\frac{n}{n}\right) = 1, \lim_{n \to \infty} \left(\frac{n}{n^2}\right) = 0, \lim_{n \to \infty} \left(\frac{n^2}{n}\right) = \infty,$ $-\frac{0}{0} \colon \operatorname{např}. \lim_{x \to 0} \left(\frac{\sin(x)}{\sin(x)}\right) = 1, \lim_{x \to 0} \left(\frac{\sin(2x)}{\sin(x)}\right) = 2, \lim_{x \to 0^+} \left(\frac{\sin(x)}{\sin(x^2)}\right) = \infty,$ $-\infty \infty \colon \operatorname{např}. \lim_{n \to \infty} \left(n^2 n\right) = \infty, \lim_{n \to \infty} \left((n + 13) n\right) = 13, \lim_{n \to \infty} (n n^2) = -\infty,$ $-\infty^0, 1^\infty, 0^0 \colon \operatorname{např}. \lim_{n \to \infty} \left[\left(1 + \frac{c}{n}\right)^n\right] = e^c \text{ pro libovoln\'e } c.$ Trilly pro tyte výragy přidou píře

Triky pro tyto výrazy přijdou níže.

Typ: Geometrická posloupnost. **Trik:** Pamatuji $a^n \to 0$ pro |a| < 1, $\{a^n\}$ diverguje pro |a| > 1,

konkrétně
$$a^n \to \infty$$
 pro $a > 1$.
Příklad: $\lim_{n \to \infty} \left(\frac{3^{n+1}}{2^{2n}}\right) = \lim_{n \to \infty} \left(\frac{3 \cdot 3^n}{(2^2)^n}\right) = 3 \lim_{n \to \infty} \left(\frac{3^n}{4^n}\right) = 3 \lim_{n \to \infty} \left(\left(\frac{3}{4}\right)^n\right) = 0$.

Typ: Limity v nekonečnu s polynomy a (obecnými) exponenciálami. **Trik:** Vytknu nejvyšší mocninu. A tak zjistím, že polynom se chová v nekonečnu jako jeho vedoucí (největší) mocnina, což se hodí např. u zlomku.

Příklad:
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x + 2} \right) = \lim_{x \to \infty} \left(\frac{x^2 \left(1 - \frac{1}{x^2} \right)}{x \left(1 + \frac{2}{x} \right)} \right) = \lim_{x \to \infty} \left(x \frac{1 - \frac{1}{x^2}}{1 + \frac{2}{x}} \right) = \infty \frac{1 - 0}{1 + 0} = \infty \cdot 1 = \infty.$$

Občas lze přímo pokrátit: $\lim_{x \to -1} \left(\frac{x^2 + 3x + 2}{x + 1} \right) = \lim_{x \to -1} \left(\frac{(x + 1)(x + 2)}{x + 1} \right) = \lim_{x \to -1} (x + 2) = 1.$

Příklad:
$$\lim_{n \to \infty} \left(\frac{(-3)^n + 2^{2n+1}}{e^n - 2^n} \right) = \lim_{n \to \infty} \left(\frac{(-3)^n + 2 \cdot 4^n}{e^n - 2^n} \right) = \lim_{n \to \infty} \left(\frac{4^n \left(\left(\frac{-3}{4} \right)^n + 2 \right)}{e^n \left(1 - \left(\frac{2}{4} \right)^n \right)} \right)$$

$$= \lim_{n \to \infty} \left(\left(\frac{4}{e} \right)^n \frac{\left(-\frac{3}{4} \right)^n + 2}{1 - \left(\frac{2}{e} \right)^n} \right) = \infty \frac{0 + 2}{1 - 0} = \infty.$$

Zde jsme použili znalosti geometrické posloupnosti a faktu, že $\left|\frac{2}{e}\right| < 1$, $\left|-\frac{3}{4}\right| < 1$ a $\frac{4}{e} > 1$.

Vytýkání se také často používá u odmocnin, jako v $\sqrt{x^2+x}=\sqrt{x^2\left(1+\frac{1}{x}\right)}=\sqrt{x^2}\sqrt{1+\frac{1}{x}}$ Pokud je

x>0, lze dále upravovat $\sqrt{x^2}\sqrt{1+\frac{1}{x}}=|x|\sqrt{1+\frac{1}{x}}=x\sqrt{1+\frac{1}{x}}.$

Příklad (všimněte si, že $x \to \infty$ znamená x > 0):

$$\lim_{x \to \infty} \left(\frac{x - 1}{\sqrt[3]{x^3 + x + 1} + x} \right) = \lim_{x \to \infty} \left(\frac{x(1 - \frac{1}{x})}{\sqrt[3]{x^3} \sqrt[3]{1 + \frac{1}{x^2} + \frac{1}{x^3} + x}} \right) = \lim_{x \to \infty} \left(\frac{x(1 - \frac{1}{x})}{x\left(\sqrt[3]{1 + \frac{1}{x^2} + \frac{1}{x^3} + 1}\right)} \right)$$

$$= \lim_{x \to \infty} \left(\frac{1 - \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^2} + \frac{1}{x^3}} + 1} \right) = \frac{1 - 0}{\sqrt[3]{1 + 0 + 0} + 1} = \frac{1}{2}.$$

Typ: Výraz schovaný v pěkné funkci. Trik: Pustit limitu dovnitř.

Příklad: $\lim \left(\sin \sqrt{\frac{e^x - \ln(x)}{1 + x^2}}\right) = \sin \sqrt{\lim \left(\frac{e^x - \ln(x)}{1 + x^2}\right)}$, tu limitu uvnitř udělám jednodušeji než limitu celé původní funkce.

Typ: Limita s výrazem, který bych rád zjednodušil (pravděpodobně je tam vícekrát). **Trik:** Substituce. Pozn: Je třeba zcela změnit limitu, tj. při substituci y = g(x) musí všechna x z limity zmizet (včetně dole pod lim); toto nahrazení se dělá pomocí substituční rovnice y = g(x).

Příklad:

$$\lim_{x \to 1^{+}} \left(x \frac{\left(1 + \frac{1}{x}\right) \ln(1 + \frac{1}{x})}{\cos(\pi + \frac{\pi}{x})} \right) = \begin{vmatrix} y = 1 + \frac{1}{x} \implies x = \frac{1}{y-1} \\ x \to 1^{+} \implies y \to 2^{-} \end{vmatrix} = \lim_{y \to 2^{-}} \left(\frac{1}{y-1} \frac{y \ln(y)}{\cos(\pi y)} \right) = \frac{1}{1} \frac{2 \ln(2)}{1} = 2 \ln(2).$$

Častý trik: $\lim_{x \to \infty} (f(x))$, nechci mínus nekonečno, použiji y = -x, tj. x = -y, dostanu $\lim_{x \to \infty} (f(-y))$.

Typ: Limita, kterou si pamatuji. Trik: Prohledám paměť, občas upravím.

Za zapamatování stojí například:
$$\lim_{n\to\infty} \left[\left(1 + \frac{c}{n}\right)^n \right] = e^c, \lim_{x\to 0} \left(\frac{\sin(x)}{x}\right) = 1, \lim_{x\to 0^+} \left(x\ln(x)\right) = 0,$$
$$\lim_{x\to\infty} \left(\frac{\ln(x)}{x}\right) = 0, \lim_{x\to\infty} \left(\frac{x}{e^x}\right) = 0, \text{ popř. } \lim_{x\to 0} \left(\frac{e^x-1}{x}\right) = 1, \lim_{x\to 0} \left(\frac{\ln(x+1)}{x}\right) = 1, \lim_{x\to 0} \left(\frac{\cos(x)-1}{x}\right) = 0.$$

$$\lim_{x \to \infty} \left(\frac{\ln(x)}{x} \right) = 0, \ \lim_{x \to \infty} \left(\frac{x}{e^x} \right) = 0, \ \text{popř.} \ \lim_{x \to 0} \left(\frac{e^x - 1}{x} \right) = 1, \ \lim_{x \to 0} \left(\frac{\ln(x + 1)}{x} \right) = 1, \ \lim_{x \to 0} \left(\frac{\cos(x) - 1}{x} \right) = 0$$

Funguje to jen tak, jak je psáno, takže např. u $\lim_{x\to 0} \left(\frac{\sin(2x)}{x}\right)$ musím použít substituci y=2x, dostanu

$$\lim_{y \to 0} \left(2 \frac{\sin(y)}{y} \right) = 2.$$

Příklad: $\lim_{x\to 0} \left(\frac{\tan(x^2)}{x}\right) = \lim_{x\to 0} \left(\frac{x}{\cos(x)} \frac{\sin(x^2)}{x^2}\right)$, část $\lim_{x\to 0} \left(\frac{x}{\cos(x)}\right)$ dělám přímo, na část $\lim_{x\to 0} \left(\frac{\sin(x^2)}{x^2}\right)$ použiji $y=x^2$ a výsledky vynásobím.

Typ: $\sqrt{A} - \sqrt{B}$ a vadí mi to. **Trik:** Násobím a dělím výrazem $\sqrt{A} + \sqrt{B}$, použiji $(\sqrt{A} - \sqrt{B})(\sqrt{A} + \sqrt{B}) = A - B.$

Podobný trik se použije pro $\sqrt[3]{A} - \sqrt[3]{B}$, násobím a dělím výrazem $(\sqrt[3]{A})^2 + \sqrt[3]{A}\sqrt[3]{B} + (\sqrt[3]{B})^2$.

Příklad:

$$\lim_{x \to 0} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \right) = \lim_{x \to 0} \left(\frac{(1+x) - (1-x)}{x \left(\sqrt{1+x} + \sqrt{1-x}\right)} \right) = \lim_{x \to 0} \left(\frac{2x}{x \left(\sqrt{1+x} + \sqrt{1-x}\right)} \right) = \lim_{x \to 0} \left(\frac{2}{\sqrt{1+x} + \sqrt{1-x}} \right) = 1.$$

Typ: $\frac{\infty}{\infty}$, $\frac{0}{0}$. **Trik:** L'Hôpital.

Pamatuji si $\lim_{x \to A} \left(\frac{f}{g} \right) = \lim_{x \to A} \left(\frac{f'}{g'} \right)$, ale pouze pro typy $\frac{0}{0}$, $\frac{\infty}{\infty}$ (obecněji $\frac{*}{\infty}$), a jen tehdy, jestli pravá

Příklad: $\lim_{x\to\infty} \left(\frac{x^2}{e^{3x}}\right) = \lim_{x\to\infty} \left(\frac{2x}{3e^{3x}}\right) = \lim_{x\to\infty} \left(\frac{2}{9e^{3x}}\right) = \frac{2}{\infty} = 0.$

Dá se také někdy pokrátit (a bývá to kratší), viz Typ: polynomy, u typu $\sqrt{A} - \sqrt{B}$ bývá uvedený trik výrazně kratší než l'Hôpital.

Typ: $0 \cdot \infty$. **Trik:** L'Hôpital, nejprve musíme udělat ze součinu podíl.

Příklad:

Možnost
$$0 \cdot \infty = \frac{1}{\frac{1}{0}} \cdot \infty = \frac{\infty}{\infty}$$
: $\lim_{x \to 0^+} \left(x \ln(x) \right) = \lim_{x \to 0^+} \left(\frac{\ln(x)}{x^{-1}} \right) = \lim_{x \to 0^+} \left(\frac{\frac{1}{x}}{-x^{-2}} \right) = \lim_{x \to 0^+} (-x) = 0.$

Možnost $0 \cdot \infty = 0 \cdot \frac{1}{\underline{1}} = \frac{0}{0}$: $\lim_{x \to \infty} \left[x \sin\left(\frac{1}{x}\right) \right] = \lim_{x \to \infty} \left(\frac{\sin\left(\frac{1}{x}\right)}{\underline{1}}\right)$; tohle je $\frac{0}{0}$, ale l'H vede na derivaci

složené funkce, snažší je substituce $y=\frac{1}{x}$, dostanu $\lim_{y\to 0^+}\left(\frac{\sin(y)}{y}\right)=1$ (buď zapamatováním nebo l'Hôpitalem).

Typ: $\infty - \infty$. **Trik:** Doufám, že je to $typ \sqrt{A} - \sqrt{B}$ (viz příslušný trik) nebo že lze udělat nějak přirozeně společný jmenovatel. Obecně zabere $A-B=A(1-\frac{B}{A})$, kde $\frac{B}{A}$ je pak $typ \stackrel{\infty}{\infty}$ a l'Hôpital to

Příklad: $\lim_{x \to \infty} \left(\sqrt{x} - \ln(x) \right) = \lim_{x \to \infty} \left(\sqrt{x} \left(1 - \frac{\ln(x)}{\sqrt{x}} \right) \right) = \infty \left(1 - 0 \right) = \infty.$

V nouzi největší použiji triku $A - B = \frac{1}{\frac{1}{A}} - \frac{1}{\frac{1}{B}} = \frac{\frac{1}{B} - \frac{1}{A}}{\frac{1}{AB}}$, což je $typ \stackrel{0}{0}$ a l'Hôpital to snad udolá.

Typ: Obecné mocniny. **Trik:** $A^B = e^{B \ln(A)}$. Použiji kdykoliv si nejsem jist s mocninou. Pak použiji trik z Typu limita uvnitř pěkné funkce, abych "vytáhl" e ven.

Příklad:

 $\lim_{x\to 0^+}(x^x) \text{ je neurčitý typ } 0^0. \ \lim_{x\to 0^+}(x^x) = \lim_{x\to 0^+}\left(e^{x\ln(x)}\right) = e^{\lim_{x\to 0^+}\left(x\ln(x)\right)} = e^0 = 1, \text{ pro } \lim_{x\to 0^+}\left(x\ln(x)\right) = \exp(x\ln(x))$ použte $typ\ 0\cdot\infty$: převod na podíl a l'Hôpitala.

Typ: Limita s oscilačním členem typu $(-1)^n$, $\sin(\infty)$, $\cos(\infty)$. **Trik:** Věta o sevření, někdy pomůže

Příklad: $\lim_{n\to\infty} \left(\frac{n+(-1)^n}{n}\right)$, sevřeme $\frac{n-1}{n} \leq \frac{n+(-1)^n}{n}$. Protože $\frac{n\pm 1}{n} \to 1$ (viz polynomy), nutně $\lim_{n\to\infty} \left(\frac{n+(-1)^n}{n}\right) = 1$.

 $\lim_{x \to \infty} \left(\frac{\sin(x)}{\sqrt{x}} \right) = \lim_{x \to \infty} \left(\frac{1}{\sqrt{x}} \sin(x) \right). \text{ Protože } \frac{1}{\sqrt{x}} \to 0 \text{ a } \sin(x) \text{ je omezený, dostaneme } \lim_{x \to \infty} \left(\frac{\sin(x)}{\sqrt{x}} \right) = 0.$

Poznámka k všemocnosti l'Hôpitala: Cha!

$$\lim_{x \to \infty} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right) = l'H = \lim_{x \to \infty} \left(\frac{e^x + e^{-x}}{e^x - e^{-x}} \right) = l'H = \lim_{x \to \infty} \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right)$$

L'Hôpital neumí odstranit exponenciály: $\lim_{x\to\infty}\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right)=\text{l'H}=\lim_{x\to\infty}\left(\frac{e^x+e^{-x}}{e^x-e^{-x}}\right)=\text{l'H}=\lim_{x\to\infty}\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right).$ Zde je nejlepší vykrátit: $\lim_{x\to\infty}\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right)=\lim_{x\to\infty}\left(\frac{1-e^{-2x}}{1+e^{-2x}}\right)=1.$ L'Hôpital neumí odstranit odmocniny:

$$\lim_{x \to 1^{-}} \left(\frac{\sqrt{1 - x^2}}{\sqrt{1 - x^3}} \right) = l'H = \lim_{x \to 1^{-}} \left(\frac{\frac{-2x}{2\sqrt{1 - x^2}}}{\frac{-3x^2}{2\sqrt{1 - x^3}}} \right) = \lim_{x \to 1^{-}} \left(\frac{2}{3x} \right) \lim_{x \to 1^{-}} \left(\frac{\sqrt{1 - x^3}}{\sqrt{1 - x^2}} \right) = \frac{2}{3} \lim_{x \to 1^{-}} \left(\frac{\sqrt{1 - x^3}}{\sqrt{1 - x^2}} \right)$$

$$= l'H = \frac{2}{3} \lim_{x \to 1^{-}} \left(\frac{\frac{-3x^2}{2\sqrt{1 - x^2}}}{\frac{-2x}{2\sqrt{1 - x^2}}} \right) = \frac{2}{3} \lim_{x \to 1^{-}} \left(\frac{3x}{2} \right) \lim_{x \to 1^{-}} \left(\frac{\sqrt{1 - x^2}}{\sqrt{1 - x^3}} \right) = \lim_{x \to 1^{-}} \left(\frac{\sqrt{1 - x^2}}{\sqrt{1 - x^3}} \right).$$

Zase je nejlepší vykrátit:
$$\lim_{x \to 1^{-}} \left(\frac{\sqrt{1 - x^2}}{\sqrt{1 - x^3}} \right) = \lim_{x \to 1^{-}} \left(\sqrt{\frac{1 - x^2}{1 - x^3}} \right)$$
$$= \sqrt{\lim_{x \to 1^{-}} \left(\frac{1 - x^2}{1 - x^3} \right)} = \sqrt{\lim_{x \to 1^{-}} \left(\frac{(1 - x)(1 + x)}{(1 - x)(1 + x + x^2)} \right)} = \sqrt{\lim_{x \to 1^{-}} \left(\frac{1 + x}{1 + x + x^2} \right)} = \sqrt{\frac{2}{3}}.$$

Bonus: Občas se hodí vědět, jak se skládají neexistující limity. Použijeme N pro limitu, která neexistuje, např. $\lim_{n\to\infty} ((-1)^n)$, $\lim_{n\to\infty} (\cos(n))$, $\lim_{x\to 0} (\frac{1}{x})$ nebo $\lim_{x\to 0} (\sin(\frac{1}{x}))$.

Pravidla:

$$L\cdot N=N$$
 pro $L\neq 0,\, L+N=N,\, N/L=N,\, N^{\alpha}=N$ pro $\alpha>0.$

Neurčité výrazy s N již nejsou tak užitečné jako u nekonečen (příklady jsou většinou založeny na $\lim_{x\to 0} \left(\frac{1}{x}\right)$ nebo $\lim_{x\to 0} \left(\frac{1}{x^3}\right)$, obojí jsou N):

$$-0 \cdot N: \text{ např. } \lim_{x \to 0} \left(x^2 \frac{1}{x}\right) = 0, \ \lim_{x \to 0} \left(x \frac{1}{x}\right) = 1, \ \lim_{x \to 0} \left(\sqrt[3]{x} \frac{1}{x}\right) = \infty \text{ (je to } \frac{1}{0^+}), \ \lim_{x \to 0} \left(x^2 \frac{1}{x^3}\right) \text{ je } N.$$

—
$$\frac{N}{N}$$
: např. $\lim_{x\to 0} \left(\frac{1/x}{1/x}\right) = 1$, $\lim_{x\to 0} \left(\frac{1/x}{1/x^3}\right) = 0$, $\lim_{x\to 0} \left(\frac{1/x^3}{1/x}\right) = \infty$, $\lim_{n\to\infty} \left(\frac{\sin(n)}{\cos(n)}\right)$ je N .

$$-N^{\alpha}: \text{ např. } \lim_{x \to 0} \left[\left(\frac{1}{x}\right)^{3} \right] \text{ je } N, \text{ ale } \lim_{x \to 0} \left[\left(\frac{1}{x}\right)^{2} \right] = \infty.$$