Bilgisayar Mühendisliğine Giriş

Yrd.Doç.Dr.Hacer KARACAN

BOOLE CEBRÍ

- Boole Cebrinin Esasları
- Lojik Kapılar ve Doğruluk Tabloları
- Lojik İfadelerin İndirgenmesi

Boole Cebri

- Önermeler ya da nesneler arasındaki ilişkileri betimleyen simgesel matematiksel bir mantık sistemidir.
- Boole Cebri fikri ilk olarak George Boole tarafından 19. yüzyılın ortalarında ortaya atılmıştır.
- Boole cebirinin en önemli uygulaması elektronik devre tasarım ve analizidir.
 - Bundan dolayı bilgisayarlar, telefon sistemleri ve elektronik kontrol sistemleri gibi sayısal cihazların tasarımında çok etkin bir şeklide kullanılmaktadır.

Boole Cebri

- Sayısal bilgisayarlar ve sayısal elektronik devreler ikili sayı sistemini (0'lar ve l'ler) kullanarak işlem yaparlar.
- Boole cebri {0,1} kümesini kullanarak işlemler ve kurallar tanımlar.
- En çok kullanılan üç işlem:
 - DEĞİL (NOT)
 - ∘ VEYA (V OR)
- DEĞİL işleminde değerler:
 - \circ I \rightarrow 0 0 \rightarrow I
- Mantıksal toplama OR işleminde değerler:
 - \circ |+|=| |+0=| 0+|=| 0+0=0
- Mantıksal çarpma AND işleminde değerler:

Boole Cebri Teoremleri

1. a-)
$$a + b = b + a$$

b-) $a \cdot b = b \cdot a$

Değişme Özelliği

2. a-)
$$a+b+c = (a+b)+c = a+(b+c)$$

b-) $a \cdot b \cdot c = (a \cdot b) \cdot c = a \cdot (b \cdot c)$

Birleşme Özelliği

3. a-)
$$a + b \cdot c = (a + b) \cdot (a + c)$$

b-) $a \cdot (b + c) = a \cdot b + a \cdot c$

Dağılma Özelliği

4. a-)
$$a + a = a$$

b-) $a \cdot a = a$

Değişkende Fazlalık Özelliği

5. a-)
$$a + a \cdot b = a$$

b-) $a \cdot (a + b) = a$

Yutma Özelliği

Boole Cebri Teoremleri

6. a-)
$$(a) = \overline{a}$$

b-) $\overline{(a)} = a$

7. a-)
$$(\overline{a+b+c+...}) = \overline{a} \cdot \overline{b} \cdot \overline{c} \cdot ...$$

b-) $(\overline{a \cdot b \cdot c \cdot ...}) = \overline{a} + \overline{b} + \overline{c} + ...$

De Morgan Kuralı

8. a-)
$$a + \overline{a} = 1$$

b-) $a \cdot \overline{a} = 0$

Sabit Özelliği

9. a-)
$$0+a=a$$

b-) $1 \cdot a = a$

Etkisizlik Özelliği

10. a-)
$$1 + a = 1$$

b-) $0 \cdot a = 0$

Yutan Sabit Özelliği

Lojik Kapılar ve Doğruluk Tabloları

VE kapısı (AND gate):

VEYA kapısı (OR gate):

Lojik Kapılar ve Doğruluk Tabloları

• DEĞİL kapısı (NOT gate):

VE DEĞİL kapısı (NAND gate):

Lojik Kapılar ve Doğruluk Tabloları

VEYA DEĞİL kapısı (NOR gate):

YADA kapısı (XOR gate):

Minimum ve Maksimum Terimler

• x ve y şeklindeki iki değişkenden VE işlemiyle birbirine bağlı xy, xy, xy ve xy şeklinde ,herbirine minimum terim (minterm) adı verilen ,dört farklı kombinasyon tanımlanabilir.

x	у	Minterm	m'ye indis	Maksterm	M'ye İndis
0	0	$\overline{x \cdot y}$	m_0	x + y	M_0
0	1	$\bar{x} \cdot y$	m_1	x + y	M_1
1	0	<i>x</i> · <i>y</i>	m_2	$\bar{x} + y$	M_2
1	1	$x \cdot y$	m_3	$\frac{1}{x} + \frac{1}{y}$	M_3

- Benzer şekilde, x_ve y şeklindeki iki değişkenden VEYA işlemiyle birbirine bağlı x + y, x + y, x + y ve x + y şeklinde ,herbirine maksimum terim (maksterm) adı verilen ,dört farklı kombinasyon tanımlanabilir.
- Her bir maksterm kendisine karşılık düşen mintermin tümleyeni olup bunun tersi de doğrudur.

Karnaugh diyagramları

- Dört veya beş değişkenliye kadar fonksiyonların indirgenmesini hızlandıran bir yöntem, Karnaugh diyagramı yöntemidir.
- Karnaugh diyagramı, Boole fonksiyonun doğruluk tablosunun, amaca yardımcı olacak biçimde, düzenlenmesidir.
- Üç ve Dört değişkenli fonksiyonlara ilişkin Karnaugh diyagramları:

x_3	x ₂ 00	01	11	10
0	0	2	6	4
1	1	3	7	5

x ₃ x ₄	1 ^X 2 00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

Karnaugh diyagramları

$x_3^{X_1}$	^x 200	01	11	10
0	0	2	6	4
1	1	3	7	5

- Üç değişkenli fonksiyonlara ilişkin diyagramlarda, sütunlar x_1x_2 bağımsız değişkenlerinin ikili değer permütasyonlarını (00, 01, 11, 10), satırlar ise x_3 bağımsız değişkeninin değerlerini (0,1) göstermektedir.
- i. satır ile j. sütunun kesiştiği kareye, sütun ve satırlar permütasyonlarının oluşturduğu tanım elemanına karşı düşen, fonksiyonun değeri yazılır.
 - örneğin 3. sütun ve 2. satırın kesiştiği yere $f(x_1x_2x_3) = f(1,1,1)$ için fonksiyonun aldığı değer yazılır.