```
In [ ]:
```

In [165]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [166]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\13_placement.csv")
a
```

Out[166]:

cgpa	placement_exam_marks	placed
7.19	26.0	1
7.46	38.0	1
7.54	40.0	1
6.42	8.0	1
7.23	17.0	0
8.87	44.0	1
9.12	65.0	1
4.89	34.0	0
8.62	46.0	1
4.90	10.0	1
	7.19 7.46 7.54 6.42 7.23 8.87 9.12 4.89 8.62	7.46 38.0 7.54 40.0 6.42 8.0 7.23 17.0 8.87 44.0 9.12 65.0 4.89 34.0 8.62 46.0

1000 rows × 3 columns

In [167]:

```
a=a.head(10)
a
```

Out[167]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
5	7.30	23.0	1
6	6.69	11.0	0
7	7.12	39.0	1
8	6.45	38.0	0
9	7.75	94.0	1

In [168]:

```
# to find
a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
```

#	Column	Non-Null Count	Dtype
0	cgpa	10 non-null	float64
1	placement_exam_marks	10 non-null	float64
2	placed	10 non-null	int64

dtypes: float64(2), int64(1)
memory usage: 368.0 bytes

In [169]:

```
# to display summary of statastic
a.describe()
```

Out[169]:

	cgpa	placement_exam_marks	placed
count	10.000000	10.000000	10.000000
mean	7.115000	33.400000	0.700000
std	0.454832	24.423122	0.483046
min	6.420000	8.000000	0.000000
25%	6.797500	18.500000	0.250000
50%	7.210000	32.000000	1.000000
75%	7.420000	38.750000	1.000000
max	7.750000	94.000000	1.000000

In [170]:

```
# to display colum heading
a.columns
```

Out[170]:

Index(['cgpa', 'placement_exam_marks', 'placed'], dtype='object')

In [171]:

sns.pairplot(a)

Out[171]:

<seaborn.axisgrid.PairGrid at 0x198ce7e0550>

In [172]:

```
sns.displot(a["placement_exam_marks"])
```

Out[172]:

<seaborn.axisgrid.FacetGrid at 0x198cf088ee0>

In [173]:

```
b=a[['cgpa', 'placement_exam_marks', 'placed']]
b
```

Out[173]:

	cgpa	placement_exam_marks	placed
0	7.19	26.0	1
1	7.46	38.0	1
2	7.54	40.0	1
3	6.42	8.0	1
4	7.23	17.0	0
5	7.30	23.0	1
6	6.69	11.0	0
7	7.12	39.0	1
8	6.45	38.0	0
9	7.75	94.0	1

In [174]:

```
sns.heatmap(b.corr())
```

Out[174]:

<AxesSubplot:>

In [176]:

```
x=a[['cgpa', 'placement_exam_marks', 'placed']]
y=a['placement_exam_marks']
```

In [177]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [178]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[178]:

LinearRegression()

In [179]:

```
lr.intercept_
```

Out[179]:

-1.4210854715202004e-14

```
In [180]:
```

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[180]:

-	Co-efficient
сдра	1.102898e-15
placement_exam_marks	1.000000e+00
placed	1.516385e-15

In [181]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[181]:

<matplotlib.collections.PathCollection at 0x198cf307520>

In [182]:

```
lr.score(x_test,y_test)
```

Out[182]:

1.0

In [183]:

```
lr.score(x_train,y_train)
```

Out[183]:

1.0

In [184]:

```
from sklearn.linear_model import Ridge,Lasso
```

```
In [185]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[185]:
Ridge(alpha=10)
In [186]:
rr.score(x_test,y_test)
Out[186]:
0.9996497286992322
In [187]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[187]:
Lasso(alpha=10)
In [188]:
la.score(x_test,y_test)
Out[188]:
0.9967305435047605
In [189]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[189]:
ElasticNet()
In [190]:
en.coef_
Out[190]:
                                          ])
array([0.
                 , 0.99853786, 0.
In [191]:
en.intercept_
Out[191]:
0.05117493472585011
```

```
In [192]:
prediction=en.predict(x_test)
prediction
Out[192]:
array([37.99561358, 39.9926893, 11.03509138])
In [193]:
en.score(x_test,y_test)
Out[193]:
0.9999975144364713
EVALUATION METRICS
In [194]:
from sklearn import metrics
In [195]:
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, prediction))
Mean Absolute Error: 0.015596170583116612
In [196]:
print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
Mean Squared Error 0.000434697443798353
In [197]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,prediction)))
Root Mean Squared Error 0.020849399123196645
In [ ]:
```