EE 240C Analog-Digital Interface Integrated Circuits

Topics and Motivation

Johan Vanderhaegen jpv@berkeley.edu

(Based on slides by Bernhard Boser)

Mixed Signal System

Example: Gyroscope Front-End

Ezekwe, Chinwuba D., Wolfram Geiger, and Torsten Ohms. "27.3 A 3-axis open-loop gyroscope with demodulation phase error correction." Solid-State Circuits Conference-(ISSCC), 2015 IEEE International. IEEE, 2015.

Example: Hard Disk Drive

AGC Specifications		LPF Specifications	
Input Signal Range	$45 \text{ mVppd} < V_{IN} < 500 \text{ mVppd}$	LPF Bandwidth	$20 \text{ MHz} \le f_c \le 120 \text{ MHz}$
Output Target	1.400 Vppd	Cutoff Variation	< ± 2.5 %
PGA Gain Settings	-3 dB, 3 dB, 9 dB	Group Delay Variation (0.30f _c to f _c)	< 5 %
VGA Gain Range w/Extended Range	$-24 dB \le A_V \le 0 dB$ $-30 dB \le A_V \le 6 dB$	Group Delay Variation (fc to 1.75fc)	< 8 %
AFE THD	< 1.0 %	Group Delay Adjustment	± 30 %
AFE SNR	> 35 dB	Boost	0 dB to 15 dB at f_c
AFE Output Offset	< 5.0 mV	CT Acquisition Time	< 10 bytes
-		Power Dissipation	< 250 mW

Exampe: Cellular LTE Front-End

Sundström, Lars, et al. "A receiver for LTE Rel-11 and beyond supporting non-contiguous carrier aggregation." Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International. IEEE, 2013.

Why Digital Processing?

- Digital circuitry:
 - Cost/function decreases by 29% each year
 → 30X in 10 years
- Analog circuitry:
 - Cost/function is constant
 - Dropping supply voltages threaten feasibility

Digital Television IC: 1um (1995) vs 0.35um (2002)

- Digital: 10x smaller
- Analog: approximately same size

[M. Pelgrom, *Analog-to-Digital Conversion*, 2nd Ed., Springer, 2013]

Why Analog Processing?

- The "real" or "physical" world is analog
- Examples:
 - Digital Audio
 - RF receiver
 - Wireline communications

Course Topics

- Analog-Digital Interfaces
 - A/D Converters & D/A Converters
 - Sampling, Quantization
 - Performance Metrics & Limits
 - Architecture Tradeoffs
- Filters
 - Types of filters
 - Synthesis
 - Implementations:
 - Biquads versus Ladders
 - Continuous Time versus Switched Capacitor

Architectures of Published ADCs (ISSCC and VLSI)

- Evolution due to ADC improvements, technology shift, and focus on low power
- Source data: B. Murmann, "ADC Performance Survey 1997-2019," [Online].
 Available: http://web.stanford.edu/~murmann/adcsurvey.html
- TI arch. combined with core arch. (e.g. SAR and TI SAR); other arch, (10-15%) not incl.

IC Design Start per Technology Node

Source: International Business Strategies, Inc. 2015

R. Subramanian- Semicon West 2016

© 2016 Mentor Graphics Corp. **www.mentor.com**

Complexity in IC Design

- Model hierarchy
 - Behavioral
 - Structural(wo/ and w/ non-idealities)
 - Circuits
 - Silicon

- MATLAB, Simulink, CppSim, System-Verilog, Verilog-A(MS)
- MATLAB, Simulink, CppSim, System-Verilog, Verilog-A(MS)
- SPICE, Spectre

- Development practices
 - Version control
 - Unit tests

EE 240C Analog-Digital Interface Integrated Circuits

Organization

Johan Vanderhaegen jpv@berkeley.edu

Instructor

Johan Vanderhaegen

- IC Design Lead,
 Google / Verily Life Sciences,
 2015 Present
- IC Designer (ADC, sensor, and sensor signal path topics)
 Robert Bosch Research and Technology Center, 2005 - 2015
- Graduate Student, UC Berkeley

- jpv@berkeley.edu
- <u>Lectures</u>: Wed 9am-12pm 299 Cory
- Office Hours:
 Wed 8am 9am 299 Cory
 Mon 3:30pm 4:30pm
 https://meet.google.co
 m/ffa-uvqk-ayy

Course Website

- bcourses (slides)
- http://inst.eecs.berkeley.edu/~ee240c

References

- Books (not required)
 - Converters
 - M. Pelgrom, *Analog-to-Digital Conversion*, Springer, 3rd Ed., 2017
 - F. Maloberti, *Data Converters*, Springer, 2007
 - M. Gustavsson, J. Wikner, N. Tan, *CMOS Data Converters for Communications*, Kluwer, 2002
 - R. v. d. Plassche, *CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters*, 2nd Ed., Kluwer, 2003
 - Oversampling Converters
 - S. Pavan, R. Schreier, G. Temes, *Understanding Delta-Sigma Data Converters*, 2nd Ed., Wiley-IEEE Press, 2017
 - S. Norsworthy, R. Schreier, G. Temes, *Delta-Sigma Data Converters*, Wiley-IEEE Press, 1996

References

- Books
 - Filters
 - K. Su, *Analog Filters*, 2nd Ed., Kluwer, 2002
 - R. Schaumann, H. Xiao, M. Van Valkenburg, *Design of Analog Filters*, 2nd Ed., Oxford University Press, 2009
 - A. Zverev, *Handbook of Filter Synthesis*, Wiley-Interscience, 1963

- Journals and Conferences, http://ieeexplore.ieee.org
 - IEEE Journal of Solid–State Circuits (JSSC)
 - IEEE International Solid-State Circuits Conference (ISSCC)

- ...

Prerequisites

- Transistor-level circuit design course
 - Device physics and models
 - Transistor level analog circuits, elementary gain stages
 - Frequency response, feedback, noise
 - E.g. EE 140 or 240A, 240 B
 - Gray, Hurst, Lewis, Meyer, *Analysis and Design of Analog Integrated Circuits*, 5th Ed, Wiley, 2011
 - Razavi, *Design of Analog CMOS Integrated Circuits*, 2nd Ed. McGraw-Hill.
- Familiarity with Spectre, Matlab, Simulink, Verilog-A
- Basic signals and systems
 - Laplace and z-transforms
 - Noise power spectral density

Assignments

- Homework: (20%)
 - Lowest HW score is dropped in final grade calculation
- Project: (30%)
 - Design of a high performance interface
 - Class project
 - Project report in the format of an IEEE journal paper
- Midterm & Final Exam (50%)
 - Midterm: Oct 16th (in class)
 - Final: Thu Dec 19th

Acknowledgements

- Bernhard Boser, UC Berkeley
- Paul Gray, UC, Berkeley
- Boris Murmann, Stanford University
- Eric Swanson, Crystal Semiconductor
- Haideh Khorramabadi
- Aaron Buchwald, Mobius Semiconductor
- Countless books and articles

EE 240C Analog-Digital Interface Integrated Circuits

Digital-to-Analog Converter

Digital-to-Analog Converter

Realization?

Current DAC ("M-DAC")

Circuit Realization

Other DAC implementations:

- Resistor string DAC
- Charge redistribution DAC

How Many Current Sources?

Thermometer DAC Operation

EE 240C Analog-Digital Interface Integrated Circuits

Digital-to-Analog Converter

Current DAC ("M-DAC")

Unit Element

2^B-1 switches

Binary Weighted

B switches

Binary Weighted DAC

- No encoder needed
- B switches
- How many current sources?

Implementation of Weighted Sources

Transistor-level design:

Weighted DAC Operation

DAC Comparison

Thermometer

- 2^B-1 switches
- Encoder

Binary Weighted

- B switches
- No encoder

Which one is "better"?

Monotonicity

Non-Monotonic Weighted DAC

Questions

- What is causing imperfections such as non-monotonicity?
- What metrics can we use to quantify the errors?

- Let's look at these questions in detail.
- This will take several lectures!

EE 240C Analog-Digital Interface Integrated Circuits

Sampling and Quantization

Mixed Signal System

Quantized Signals

Analog World 2, 7, 0, 15, 27... Digital World

- Real world signals
 - Continuous time, continuous amplitude
- Digital abstraction
 - Discrete time, discrete amplitude
- Two problems how to discretize / "undescretize"
 - in time (sampling / reconstruction)
 - in amplitude (quantization / ...)
- Often performed in conjunction
 - A/D conversion: discretize in time and amplitude
 - D/A conversion: "undiscretize" in time and amplitude
 - Other valid combinations, especially discrete time & continuous amplitude
 - Examples?

Uniform Sampling and Quantization

Analog Signal

Discrete time, discrete amplitude representation

Most common way of performing A/D conversion

- Sample signal uniformly in time
- Quantize signal uniformly in amplitude

Questions

- How fast do we need to sample?
- How fine do we need to quantize?

Questions

- 1. How fast do we need to sample an audio signal?
- 2. What is the criterion?
- 3. How about an RF signal modulated at a 1GHz carrier frequency with 1MHz bandwidth?
- 4. How do we prevent "other RF channels" from corrupting the signal?
- 5. How do we determine the "number of bits" of an A/D converter?
- 6. How do errors in the quantizer thresholds affect signal quality?
- 7. Is there a formal procedure for answering these and similar questions?
- 8. Your question?

EE 240CAnalog-Digital Interface Integrated Circuits

Sampling

Sampling Case (1)

$$f_S = \frac{1}{T_S} = 1000 \text{ kHz}$$

$$f_{sig} = 101 \text{ kHz}$$

$$v_{sig}(t) = \cos(2\pi \cdot f_{in} \cdot t)$$

$$t \to n \cdot T_S = \frac{n}{f_S}$$

$$v_{sig}(n) = \cos\left(2\pi \cdot \frac{f_{in}}{f_s} \cdot n\right)$$
$$= \cos\left(2\pi \cdot \frac{101}{1000} \cdot n\right)$$

Sampling Case (2)

$$f_s = \frac{1}{T_s} = 1000 \text{ kHz}$$

$$f_{sig} = 899 \text{ kHz}$$

$$v_{sig}(n) = \cos\left(2\pi \cdot \frac{899}{1000} \cdot n\right) = \cos\left(2\pi \cdot \left[\frac{899}{1000} - 1\right] \cdot n\right) = \cos\left(2\pi \cdot \frac{101}{1000} \cdot n\right)$$

Sampled signal indistinguishable from Case 1 (101*kHz*)

Sampling Case (3)

$$f_S = \frac{1}{T_S} = 1000 \text{ kHz}$$

$$f_{sig} = 1101 \text{ kHz}$$

$$v_{sig}(n) = \cos\left(2\pi \cdot \frac{1101}{1000} \cdot n\right) = \cos\left(2\pi \cdot \left[\frac{1101}{1000} - 1\right] \cdot n\right) = \cos\left(2\pi \cdot \frac{101}{1000} \cdot n\right)$$

Sinusoids with frequencies 101, 899, 1101 kHz etc sampled at 1000 kHz are indistinguishable

Spectrum

• The frequencies f_{sig} and $N \cdot f_s \pm f_{sig}$ (N integer), are indistinguishable in the discrete time domain

Sampling Theorem

In order to prevent aliasing, we need

$$B_{sig} < \frac{f_s}{2}$$

- B_{sig} is the signal bandwidth
 - For "baseband signals", B_{sig} equals the "highest" signal frequency f_{sig,max}
- The sampling rate f_s=2-B_{siq} is called the Nyquist rate
- Two options:
 - Sample fast enough to cover all spectral components, including "parasitic" ones outside band of interest
 - Limit B_{siq} through filtering

Brick Wall Anti-Alias Filter

Most ideal contraptions cannot be realized in practice. Brick-Wall filters are no exception ...

Practical Anti-Alias Filter

- Need to sample faster than Nyquist rate to get good attenuation
 - "Oversampling"

How much Oversampling?

- Tradeoff sampling rate versus filter order
- In high speed converters, $f_s/f_{sig,max}>10$ is usually impossible or too costly \rightarrow need fairly high order filters
- Question: how much alias rejection is required? Give an example!

Types of Sampling

- 1. Nyquist-rate sampling $(f_s > 2 \cdot f_{sig,max})$
 - Nyquist data converters
 - In practice always slightly oversampled
- 2. Oversampling $(f_s >> 2 \cdot f_{sig,max})$
 - Slowly varying signals (e.g. temperature)
 - Oversampled data converters
 - Anti-alias filtering is often trivial or not needed
 - Explain "trivial"
- 3. Undersampling, subsampling ($f_s < 2 \cdot f_{sig,max}$)
 - Exploit aliasing to mix RF/IF signals down to baseband
 - See e.g. Pekau & Haslett, JSSC 11/2005

Oversampling Anti-Aliasing Filter

• CD Audio Signals: B = 20 KHz and $f_s = 44.1 \text{ KHz}$

• Example: AD1870 Single-Supply 16-bit $\Sigma\Delta$ Stereo ADC ADC $f_s = 64 \times 44.1 \text{KHz} = 2.8 \text{ MHz}$

- First-order passive analog anti-alias filter with 22dB rejection at 3 MHz
- Digital filter with 90dB stopband rejection

Subsampling

- Aliasing is "non-destructive" if signal is band limited around some carrier frequency
- Downfolding of noise is a severe issue in practical subsampling mixers
 - Typically achieve noise figure no better than 20 dB (!)

EE 240C Analog-Digital Interface Integrated Circuits

Reconstruction

Reconstruction Problem

Analog signal x(t)

Discrete time representation x(n)

- Known: discrete time samples x(n)
- Objective: recover x(t)
- Sampling theorem: signal spectrum preserved provided that f_s > 2·B
- Should be possible to perfectly recover original analog signal x(t)

How?

Ideal Reconstruction

Analog signal x(t)Discrete time representation x(n)

Ideal interpolation

$$x(t) = \sum_{n = -\infty}^{\infty} x(n) \cdot g(t - nT_{s})$$
$$g(t) = \frac{\sin(\pi f_{s}t)}{\pi f_{s}t}$$

- Not practical
- Question:
 - What happens if each sampling point is replaced with an ideal Dirac impulse?
 - (not very practical, either)

Zero-Order Hold (ZOH) Reconstruction

Analog signal x(t)

Discrete time representation x(n)Zero order hold approximation

- The most practical way of reconstructing the continuous time signal is to simply "hold" the discrete time values
 - Either for full period T_s or a fraction thereof
 - Other schemes exist, e.g.
 first- or partial-order hold
 [Jha, TCAS II, 11/2008]
- What does this do to the signal spectrum?
- Analyze in two steps
 - First look at infinitely narrow reconstruction pulses

Dirac Pulses

- Analog signal x(t)
- Discrete time representation x(n)Dirac pulse signal x_d(t)

- x_d(t) is zero between pulses
 - Note that x(n) does not exist at these times

$$x_d(t) = x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

- Multiplication in time means convolution in frequency
 - Resulting spectrum

$$X_d(f) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} X\left(f - \frac{n}{T_s}\right)$$

Spectrum for "Dirac Interpolation"

Spectrum of Dirac signal includes replicas of $V_{in}(f)$ at integer multiples of the sampling frequency

Finite Hold Duration

- Analog signal x(t)
- Discrete time representation x(n)Zero order hold approximation

- General case 0 < T_p ≤ T_s
- The time domain signal on the left results from convolving the Dirac sequence with a rectangular unit pulse
- Spectrum: multiplication with Fourier transform of the pulse

$$H_p(s) = \frac{1 - e^{-sT_p}}{s} \qquad H_p(f) = T_p \frac{\sin(\pi f T_p)}{\pi f T_p} \cdot e^{-j\pi f T_p}$$

"sinc" filter

$$X_p(f) = \underbrace{\frac{T_p}{T_s} \frac{sin(\pi f T_p)}{\pi f T_p}}_{\text{amplitude envelope}} \cdot e^{-j\pi f T_p} \sum_{n=-\infty}^{\infty} X \left(f - \frac{n}{T_s} \right)$$

Spectra for $T_p = T_s$ and $T_p = 0.5 \cdot T_s$

Example

Reconstruction Filter

- Also called smoothing filter
- Same situation as with anti-alias filter
 - A brick wall filter with post-emphasis for sinc attenuation would be ideal ...
 - What is postemphasis?
 - Oversampling helps reduce filter order. How?

NRZ versus RZ DAC

1-Bit Example (non return to zero, NRZ):

Area:

1-∆

1-∆

Total: $2-2\Delta$

 $1-\Delta$ 1 $2-\Delta$

Areas are different for the two cases. RZ coding avoids this.