

MBA em Gestão da Informação e Business Intelligence

Arquitetura de *Data Warehouse*Aula 03 - Ferramentas de ETLM

Extração, Transformação, Carga e Metadados: ETLM

70% do esforço em *data warehousing* é gasto com a definição de fontes, mapeamentos, regras, *scheduling*, e manutenção dos processos de ETLM

Transformando Dados em Informação

4 Tipos de atividades

- Monitoração: dos dados que vem das fontes
- Integração: Limpeza de dados, Carga, ...
- Gerência: Metadado, Projeto, ...
- Processamento: Query processing, indexing, ...

Monitoração

- Tipos de Fontes: tabelas, arquivos, IMS, VSAM, IDMS, WWW, IBGE, REUTERS, ...
- Incremental vs. Refresh (tudo)

customer	<u>id</u>	name	address	city
	53	joe	10 main	sfo
	81	fred	12 main	sfo
	111	sally	80 willow	la

Técnicas de Monitoração

- Snapshots periódicos
- Database triggers
- Log shipping (envio de log)
- Data shipping (replication service)
- Transaction shipping
- Polling (queries nas fontes)
- Recortes de telas
-

Questões na Monitoração

- Frequência
 - o periódica: diária, semanal, ...
 - triggered: quando ocorre uma grande mudança, muitas mudanças, ...
- Transformação de Dados
 - converte dados (formato uniforme)
 - remove & add campos(ex., add date => history)
- Uso de Padrões (ex., ODBC)
- Gateways

Questões na Integração

- Limpeza de Dados
- Carga de Dados
- Dados Derivados

Limpeza de Dados

- Migração (ex., yen → dollar)
- Scrubbing: uso de conhecimento em domínio específico (ex., números de CPFs)
- Fusão (ex., lista de correio, casar dados clientes)

Auditing: descobrir regras & relacionamentos (ex. data mining)

Carga de Dados

- Incremental vs. Refresh
- Off-line vs. on-line
- Frequência de carga
 - A noite, 1x p/sem/mês, continuamente
- Carga Paralela/Particionada

Dados Derivados

- Dados Derivados no DW
 - o Índices
 - Agregados
 - Views materializadas
- Quando atualizar dados derivados?
- Incremental vs. Refresh...

Carga de DW

- Para aumentar a performance, DWs frequentemente armazenam resumos calculados e visões predefinidas
- Informação adicional de fontes externas também podem ser incluídas no DW

Views Materializadas

Define nova tabela no DW usando SQL

joinTb	prodld	name	price	storeld	date	amt
	p1	bolt	10	c1	1	12
	p2	nut	5	c1	1	11
	p1	bolt	10	c3	1	50
	p2	nut	5	c2	1	8
	p1	bolt	10	c1	2	44
	p1	bolt	10	c2	2	4

Carga de DW

- Leitura de dados de fontes variadas
- Qualidade de dados é crítica
- Precisamos de cargas eficientes, flexíveis
- Cargas noturnas (limites)

Realidades sobre Qualidade de Dados

- DW vem de múltiplas fontes "sujas"
 - Legacy systems não documentados
 - Sistemas de produção sem verificações de integridade
 - Fontes externas com procedimentos de qualidade questionáveis
- Decisões e recomendações com segurança precisam de dados com qualidade

Cargas Eficientes, Flexíveis

- Processamento de único passo
 - Ler, ajustar e reformatar a entrada
 - Detectar dados sujos, incluindo violações de integridade referencial
 - Agregar, armazenar e indexar dados
 - Nesse caso sempre uma carga total
- Cargas multi-função
 - Insert, append, update, modify, replace
 - Carga total e incremental
- Cargas on-line e off-line

Processamento de Carga

Existem ferramentas para agregar dados

Processamento de Carga

Armazenamento de Dados no DW

- DW > 100 GB estão tornando-se comuns
- "52% dos DWs passarão de 20GB para terabytes nos próximos anos" (META Group 97)
- Nível de detalhe requerido pelo negócio determina volumes de dados armazenados

Cargas Noturnas

- As "janelas" da operação já não dão para carregar os dados de DW
- Volumes de dados operacionais crescem
- Medidas em gigabytes por hora...
- Limite ? 70-100 Gb / noite

Administração

- São necessárias novas formas de gerência de BD para os grandes volumes de dados dos DWs de hoje
- "Resiliência" de BD é chave para gerência
- Grande número de usuários => precisa de baixo custo de administração
- Grandes BDs tendem a ter mais falhas de hardware...
 (Segmentar? Por mês, Por Produto,...)

O que Materializar?

 Gravar no DW resumos e agregados úteis p/ queries mais comuns

Fatores p/ Materialização

- Tipo/frequência de queries
- Tempo de resposta de Queries
- Custo de armazenamento
- Custo de atualização

Extração e Transformação

Qual é a **funcionalidade**necessária para uma ferramenta
de Extração e Transformação de
dados operacionais para carga
de DW?

Extração e Transformação

A extração de dados do ambiente operacional para o ambiente DW requer uma mudança de **tecnologia!**

 Gravação por meio de um SGBD de DW (com SQL estendida p/ DW)

Extração e Transformação

À medida que os dados vão sendo extraídos e transformados, vão sendo carregados no DW (e gerando metadados)

Exemplo de Passos de ETLM

- Extração primária (leitura dos arquivos operacionais)
- Identificação dos registros alterados
- Generalização de chaves das dimensões
- Transformação em registros para carga
- Migração dos dados do ambiente operacional para o ambiente de DW

Exemplo de Passos de ETLM

- Construção dos agregados
- Generalização de chaves para os agregados (Tabelas resumos etc.)
- Carga
- Processamento de exceções
- Garantia de qualidade
- Documentação e publicação

ETLM: Desenvolvimento Manual

Características

- Codificação Manual
- Performance Depende da Linguagem Usada e do Ambiente
- Linguagens 3GL / 4GL (Cobol, C, Natural, VB, Easytrieve, PL/SQL,
- Transact/SQL, Shell Scripts)

Vantagens

- Pouco Investimento Inicial
- Aproveitamento de Equipes
 Treinadas e Metodologias
 Consolidadas (se existentes), bem
 como de Recursos de Mercado
- Menor Dependência de Fornecedores

Desvantagens

- Qualidade Depende dos Programadores (Difícil Padronização)
- Difícil Manutenção/Entendimento
- Não Integração a Execução / Transporte / Scheduling
- Inexistência de Templates ERP / CRM
- Não Captura de Metadados

ETLM: Ferramentas de 1a. / 2a. Geração

Características

- Geradores de Código ou Frameworks de Código (ETI Extract, Oracle Warehouse Builder, CA/Platinum Decision Base, Natquery)
- Desempenho Depende da Linguagem Gerada e do Ambiente
- Principais Linguagens Geradas (Cobol, C, Natural, PL/SQL, Extensões de SQL)

Vantagens

- Aproveitamento de equipes existentes e recursos de mercado relativos às linguagens
- Dependência de Fornecedores é Atenuada pelo Código Fonte Gerado
- Maior Facilidade de Desenvolvimento e Manutenção
- Captura de Metadados

Desvantagens

- Investimento Inicial
- Menor produtividade que 3a. Geração
- Não Integração a Compilação / Transporte / Scheduling
- Necessidade de Código Manual Adicional
- Inexistência de Templates ERP / CRM

ETLM: Ferramentas de 3a. Geração

Características

- Tem como Base um "Engine" que gera apenas Código Interno (também chamado de "codeless")
- Escalabilidade e Performance
- Dependem da Tecnologia do Engine e do Ambiente
- Principais Produtos no Mercado (Acta - ActaWorks, Ascential -DataStage, Cognos -DecisionStream, DataJunction -Integration Studio, IBM -Warehouse Manager, Informatica -PowerMart/PowerCenter, Microsoft - DTS, Sagent -Solution Data Load Server)

Vantagens

- Integração a Pré-compilação / Transporte / Scheduling
- Recursos Avançados (Debuggger,
- Scheduling, Metadados)
- Maior Inteligência / Extensibilidade
- Maior Produtividade
- Templates ERP / CRM Disponíveis
- Captura de Metadados
- Otimização do Desenvolvimento e
- Manutenção

Desvantagens

- Investimento Inicial
- Maior Dependência de Fornecedores

Requisitos Desejáveis em ETL para Ferramentas de 3a. Geração

- Interface Gráfica de Fácil Uso
- Engine Escalável e com Boa Performance
- Biblioteca de Funções (Quantidade e Funcionalidade)
- Suporte a Joins Heterogeneos
- Tabelas de Lookup em Memória
- Geradores de Números Seqüenciais
- Chamada e Inclusão de Stored procedures e Código Externo Especial nas Bibliotecas de Funções
- Suporte a Agregação Incremental

Requisitos Desejáveis em ETL para Ferramentas de 3a. Geração

- Criação e Schedulagem de Sessões de ETL
- Batches para Seqüencias / Dependências de Carga
- Monitoração de Performance em Tempo Real
- Recuperação de Erros
- Metricas de Performance de Carga e para Refinamento
- Suporte a Processamentos Pré e Pós Sessão
- Notificação Automática de Resultados via e-mail
- Disponibilidade de Plataformas
- Opções na Linha de Produtos com Escalabilidade do Investimento

Escolha de Ferramentas de 3a. Geração

Avaliar

- Volumes de Dados
- Periodicidade dos Processos
- Complexidade das Transformações
- Estratégia de Atualização
- Variedade de Fontes e Alvos
- Ambiente de H/W, S/W, Rede
- Necessidade de Integração a Pacotes
- ✓ Desde "Custo Zero" até Centenas de Milhares de US\$
- ✓ Desde um Revólver 22 até um Lança Mísseis

Extratores de Dados

Os fornecedores que oferecem "DW solutions", em geral, também oferecem ou tem parcerias para uso de produtos como:

- ETI: Unix gera C, Cobol, etc. extrai de DB2, Oracle, IMS, Cobol etc.
- Prism: Gera Cobol para os sistemas comuns (Oracle, Sybase,DB2 etc)
- Passport e outros mais.

Desempenho em ETLM

 O desempenho da saida é muito mais crítico que o desempenho da entrada no DW!

- Desempenho é um conceito relativo que deve ser analisado à luz de arquitetura, modelagem, volumes, recursos de hardware, software e rede, etc
- Codificação Manual/Geração de Código Não Significam Maior Desempenho que Ferramentas ETL com Engine
- Monitoração e refinamento constante são necessários para refletir as mudanças do ambiente do DW (fontes, regras de negócio e alvo)

Sobre o Tamanho dos DWs

- Os DWs estão crescendo demais
 - Terabytes! VLDB! Big Data!
- "O meu DW é maior do que o seu"
- Se é de graça, os usuários querem todas as informações
 - o 2 anos? 5 anos?
 - o Diária? Mensal?

Sobre o Tamanho dos DWs

- Falta de metodologia para extração de dados

 VLDW
- Exemplo
 - o Código "M" "Masculino"
 - Código 0315 "Vacinação"
- Na extração aumenta o DW

Sobre o Tamanho dos DWs

- Replicação em DMs
- Precisamos de pesquisas para abordar esse problema porque

baixo desempenho alto custo maior risco de não disponibilidade usuários menos felizes

Necessidade de ADM de DW!

Gerência de DW

- Gerência dos Metadados
- Gerência do Projeto de DW
- Gerência das Ferramentas

Resumo de Questões do Projeto

- Que dados são necessários?
- De onde vêm (orígem, fontes)?
- Como "limpá-los", sincronizá-los?
- Como representá-los em DW (schema)?
- O Que sumarizar?
- O Que materializar?
- O Que indexar?

Resumo: Data Warehousing

Data Warehousing não é apenas desenvolver um super BD disponibilizado para Análise de Negócios. É uma estratégia que inclue uma arquitetura, uma metodologia de desenvolvimento, um conjunto de ferramentas, um modelo de dados, um BD, um "padrinho" de negócios e um ciclo de vida.

Os 7 Pecados Capitais em Data Warehousing

- 1) Falta de planejamento
- 2) Descaso com a Arquitetura
- 3) Pouca importância à documentação
- 4) Descaso com metodologia e ferramentas
- 5) Desrespeito ao ciclo de vida do DW
- 6) Descaso com a resolução de conflitos
- 7) Falta de aprendizado com erros passados

Administração do DW Administrando o Crescimento

- Duas das principais causas de crescimento são:
 - Novos dados históricos adicionados de forma composta
 - Adição de dados sumarizados
- Assim, o seguinte paradoxo ocorre:
 - O custo do data warehouse CRESCE!
 - O desempenho do data warehouse DIMINUI!
- Para controlar custos e melhorar performance, o Administrador do Data Warehouse necessita:
 - Otimizar investimentos em hardware (principalmente em discos, memória e processadores)
 - Otimizar investimentos em software
 - Melhorar a performance das queries para atender às necessidades de produtividade dos usuários finais

Metadados

- São os dados que definem os dados
- Metadados: técnicos e semânticos
- Usuários podem examinar o repositório de metadados para
 - a seleção de subconjuntos apropriados de dados, em suas consultas; ou,
 - validações do significado de dados em seus relatórios

Metadados

- De Negócio
 - o termos & definições do negócio
 - posse do dado, cobranças etc.
- Operacional
 - o origem do dado (fonte)
 - status do dado (ex., ativo, arquivado, "purged")
 - o uso de estatísticas, relatórios de erro, audit trails etc.

Metadados

- Administrativo
 - o definição de fontes, tools, ...
 - o schemas, Hierarquias de Dimensão, ...
 - o regras para extração, limpeza, ...
 - o políticas de refresh, exclusão (*purging*)
 - o perfis de usuários, access control, ...

Metadados - Exemplo de usos

- Uso por ferramenta de consulta que automaticamente lê o catálogo de um BD (metadados), acessa os dados desejados e apresenta aos usuários informação sobre negócios
- Quando o usuário faz "drill down" em resumos de dados em um
 BD (usa metadados) para detalhar dados em uma certa analise
- As ferramentas (ETL) de extração / transformação automaticamente usa os metadados na tarefa de mapeamento dos dados "legacy" para a carga de DW
- Etc.

Metadados (resumo)

Contém (pelo menos):

- A estrutura do dados
- Os algoritmos usados para os resumos e derivação de dados
- O mapeamento do ambiente operacional para o DW

Metadados (resumo)

É usado como:

- Um diretório para ajudar o analista de OLAP a localizar o conteúdo do DW
- Um guia para o mapeamento de dados, do ambiente operacional para o ambiente warehouse
- Um guia para os algoritmos usados no processo de agregação e resumos de dados

Requisitos de Metadados para Ferramentas de 3a. Geração

- Geração e Atualização Automática de Metadados
- Visualização de Metadados via Web
- Metadados Técnicos, Operacionais e de Negócio
- Análise de Dependências
- Armazenamento dos Metadados em Repositório Contido em SGBDR Aberto
- Integração de Metadados Técnicos a Metadados Operacionais e a Metadados de Negócio

Ferramentas

Hummingbird-Genio ETI Sagent

Informatica **Sagern**

IBM (Informix) (Red Brick) Microsoft Oracle Sybase (Tandem) Teradata

Brio
Business Object
Cognos
MicroStrategy
INF Advantage

.....

Ferramentas de DW

- de Desenvolvimento
 - design & edit: schemas, views, scripts, rules, queries, reports
- de Planejamento & Análise
 - Cenários what-if (mudança de schema, períodos de refresh), capacity plan etc.
- de Gerência de DW
 - monitoração de performance, padrões de uso, relatórios de exceção etc
- de Gerência de Sistema & Network
 - mede tráfego (fontes => DW => clientes)
- de Gerência de Workflow
 - Scripts para "limpar" & analisar dados, executar tarefas etc.

Situação do Mercado

- Extração e integração feitas off-line
 - o em grandes e lentos processos em batch
- Tudo vai para o DW
 - Não é seletivo sobre o que deve ir ao DW
 - Benefício de Query vs custo de storage & update
- Query optimization (dbms) ainda de OLTP
 - => alto throughput em vez de rapidez
 - pois processa toda a query antes de mostrar alguma coisa...

Check-list de Arquitetura para o DW

Arquitetura Informacional "Multi-camada"

- Informação consistente para a corporação (DW), para cada departamento e para os usuários/unidades (DMs)
- Informação necessária, formato e nível de detalhe adequado para os diversos tipos de usuários
- Estrutura de dados adequada para cada tipo de usuário
- Performance de acesso otimizada para cada tipo de usuário

Arquitetura de ETL (ETLM) em Camadas

- Minimizando o impacto nos sistemas "legacy" performance otimizada
- Assegurando qualidade dos dados dentro do DW
- Coordenando a captura de metadados
- Minimizando o esforço de desenvolvimento
- Baixo impacto, manutenção simplificada fácil adaptação a mudanças

O Balanço Adequado dos Ingredientes

Ferramentas de Software

Extração/Transformação/Carga Qualidade/Limpeza de Dados Gerenciamento de Metadados Scheduling e Transporte Acesso OLAP / Data Mining Monitoração e Adm.

. . .

Consultoria e Serviços

Especialistas - Negócio Especialistas - Ferram. Especialistas - Plataform. Arquitetos/Modeladores Gerentes de Projeto Adm de dados/metadados

Infra-estrutura de Hardware e Rede Metodologia Best-practices Arquitetura Modelos Genéricos

. . .

Obrigado!

...e agora suas perguntas?

ricardo.avila@outlook.com.br

@theavila