21BDS0340 - Abhinav Dinesh Srivatsa

Data Mining Lab

Digital Assignment 1

In []: import pandas as pd import numpy as np

Question 1

In []: data = pd.read_csv("./missing data.csv")
 data

Out[]:		Suburb	Address	Rooms	Туре	Price	Method	SellerG	Date
	0	Abbotsford	85 Turner St	2	h	1480000	S	Biggin	03- 12- 2016
	1	Abbotsford	25 Bloomburg St	2	h	1035000	S	Biggin	04- 02- 2016
	2	Abbotsford	5 Charles St	3	h	1465000	SP	Biggin	04- 03- 2017
	3	Abbotsford	40 Federation La	3	h	850000	PI	Biggin	04- 03- 2017
	4	Abbotsford	55a Park St	4	h	1600000	VB	Nelson	04- 06- 2016
	•••				•••				
	13575	Wheelers Hill	12 Strada Cr	4	h	1245000	S	Barry	26- 08- 2017
	13576	Williamstown	77 Merrett Dr	3	h	1031000	SP	Williams	26- 08- 2017
	13577	Williamstown	83 Power St	3	h	1170000	S	Raine	26- 08- 2017
	13578	Williamstown	96 Verdon St	4	h	2500000	PI	Sweeney	26- 08- 2017
	13579	Yarraville	6 Agnes St	4	h	1285000	SP	Village	26- 08- 2017

13580 rows × 21 columns

21BDS0340 - Abhinay Dinesh Srivatsa

Data Mining Lab

Digital Assignment 1

```
In [ ]: # part a
        data.isna().sum()
Out[]: Suburb
                             0
        Address
                             0
        Rooms
                             0
                             0
        Type
        Price
                             0
        Method
                             0
                             0
        SellerG
                             0
        Date
        Distance
                             0
                             0
        Postcode
        Bedroom2
                             0
        Bathroom
                             0
        Car
                            62
        Landsize
                             0
        BuildingArea
                          6450
        YearBuilt
                          5375
         CouncilArea
                          1369
        Lattitude
                             0
                             0
        Longtitude
        Regionname
                             0
                             0
        Propertycount
        dtype: int64
In []: # part b
        data["Car"].fillna(data["Car"].mode()[0])
Out[]: 0
                  1.0
         1
                  0.0
         2
                  0.0
         3
                  1.0
         4
                  2.0
                 . . .
        13575
                  2.0
                 2.0
        13576
        13577
                  4.0
         13578
                  5.0
                  1.0
        13579
        Name: Car, Length: 13580, dtype: float64
In []: # part c
        data["BuildingArea"].interpolate("linear")
        # first Nan cannot be replaced
```

```
Out[]: 0
                    NaN
         1
                   79.0
         2
                  150.0
         3
                  146.0
         4
                  142.0
                  . . .
         13575
                  146.0
         13576
                  133.0
         13577
                  145.0
         13578
                  157.0
         13579
                  112.0
         Name: BuildingArea, Length: 13580, dtype: float64
In [ ]: data["BuildingArea"].interpolate("quadratic")
        # first Nan cannot be replaced
Out[]:
                         NaN
         1
                   79.000000
         2
                  150.000000
         3
                  148.715056
         4
                  142.000000
         13575
                  159.855594
         13576
                  133.000000
         13577
                  148.024068
         13578
                  157.000000
         13579
                  112.000000
         Name: BuildingArea, Length: 13580, dtype: float64
In [ ]: # part d
        data["YearBuilt"].ffill()
Out[]: 0
                     NaN
         1
                  1900.0
         2
                  1900.0
         3
                  1900.0
         4
                  2014.0
                   . . .
         13575
                  1981.0
         13576
                  1995.0
         13577
                  1997.0
                  1920.0
         13578
         13579
                  1920.0
         Name: YearBuilt, Length: 13580, dtype: float64
In [ ]: # part e
        data.dropna(subset=["CouncilArea"])
```

Out[]:

	Suburb	Address	Rooms	Туре	Price	Method	SellerG	Dε
() Abbotsford	85 Turner St	2	h	1480000	S	Biggin	0 1 20
,	1 Abbotsford	25 Bloomburg St	2	h	1035000	S	Biggin	0 C 20
2	2 Abbotsford	5 Charles St	3	h	1465000	SP	Biggin	0 0 20
3	3 Abbotsford	40 Federation La	3	h	850000	PI	Biggin	0 0 20
4	1 Abbotsford	55a Park St	4	h	1600000	VB	Nelson	0 0 20
12208	3 Williamstown	87 Pasco St	3	h	1285000	S	Jas	2 C 2C
12209	9 Windsor	201/152 Peel St	2	u	560000	PI	hockingstuart	2 C 2C
12210) Wollert	60 Saltlake Bvd	3	h	525300	S	Stockdale	2 C 2C
1221	1 Yarraville	2 Adeney St	2	h	750000	SP	hockingstuart	2 C 2C
12212	2 Yarraville	54 Pentland Pde	6	h	2450000	VB	Village	2 C 2C

12211 rows × 21 columns

Question 2

```
dataframe = pd.DataFrame(te_ary, columns=te.columns_)
dataframe
```

```
Out[]:
                                         Ice
                                              Kidney
                                                      Milk Nutmeg Onion Unicorn Yogu
            Apple Corn
                           Dill
                                Eggs
                                              Beans
                                      cream
                                                                       True
         0
             False False
                                True
                                       False
                                                True
                                                      True
                                                                True
                                                                               False
                                                                                        Tr
         1
             False False
                          True
                                 True
                                       False
                                                True False
                                                                True
                                                                       True
                                                                               False
                                                                                        Tr
         2
             True False False
                                True
                                       False
                                                      True
                                                               False
                                                                      False
                                                                               False
                                                                                       Fal
                                                True
         3
             False
                    True False
                                False
                                       False
                                                True
                                                      True
                                                               False
                                                                      False
                                                                                True
                                                                                        Tr
         4
             False
                    True False
                                True
                                        True
                                                True False
                                                               False
                                                                       True
                                                                               False
                                                                                       Fal
In [ ]: # part a
         min_support_threshold = 2 / len(data)
         frequent_itemsets = apriori(dataframe, min_support=min_support_threshold,
         frequent_itemsets['support_count'] = frequent_itemsets['support'] * len(d
        frequent_itemsets[frequent_itemsets['support_count'] == 4]
Out[]:
                               itemsets support_count
            support
         1
                 8.0
                                                    4.0
                                  (Eggs)
         8
                 8.0
                     (Eggs, Kidney Beans)
                                                    4.0
```

frequent_itemsets[frequent_itemsets['support_count'] == 2]

Out[]:		support	itemsets	support_count
	0	0.4	(Corn)	2.0
	4	0.4	(Nutmeg)	2.0
	7	0.4	(Kidney Beans, Corn)	2.0
	9	0.4	(Milk, Eggs)	2.0
	10	0.4	(Eggs, Nutmeg)	2.0
	12	0.4	(Eggs, Yogurt)	2.0
	14	0.4	(Kidney Beans, Nutmeg)	2.0
	17	0.4	(Milk, Yogurt)	2.0
	18	0.4	(Nutmeg, Onion)	2.0
	19	0.4	(Yogurt, Nutmeg)	2.0
	20	0.4	(Yogurt, Onion)	2.0
	21	0.4	(Milk, Eggs, Kidney Beans)	2.0
	22	0.4	(Eggs, Kidney Beans, Nutmeg)	2.0
	24	0.4	(Eggs, Kidney Beans, Yogurt)	2.0
	25	0.4	(Eggs, Nutmeg, Onion)	2.0
	26	0.4	(Eggs, Yogurt, Nutmeg)	2.0
	27	0.4	(Eggs, Yogurt, Onion)	2.0
	28	0.4	(Milk, Kidney Beans, Yogurt)	2.0
	29	0.4	(Kidney Beans, Nutmeg, Onion)	2.0
	30	0.4	(Kidney Beans, Yogurt, Nutmeg)	2.0
	31	0.4	(Kidney Beans, Yogurt, Onion)	2.0
	32	0.4	(Yogurt, Nutmeg, Onion)	2.0
	33	0.4	(Eggs, Kidney Beans, Nutmeg, Onion)	2.0
	34	0.4	(Eggs, Kidney Beans, Yogurt, Nutmeg)	2.0
	35	0.4	(Eggs, Kidney Beans, Yogurt, Onion)	2.0
	36	0.4	(Eggs, Yogurt, Nutmeg, Onion)	2.0
	37	0.4	(Kidney Beans, Yogurt, Nutmeg, Onion)	2.0
	38	0.4	(Kidney Beans, Yogurt, Onion, Eggs, Nutmeg)	2.0

In []: # part b
rules = association_rules(frequent_itemsets, metric="support", min_thresh
rules[rules['confidence'] >= 0.5]

Out[]:		antecedents	consequents	antecedent support	consequent support	support	confidence	
	1	(Corn)	(Kidney Beans)	0.4	1.0	0.4	1.000000	1.0
	2	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.000000	1.0
	3	(Kidney Beans)	(Eggs)	1.0	0.8	0.8	0.800000	1.0
	4	(Milk)	(Eggs)	0.6	0.8	0.4	0.666667	8.0
	5	(Eggs)	(Milk)	0.8	0.6	0.4	0.500000	8.0
	•••							
	194	(Eggs, Nutmeg)	(Kidney Beans, Yogurt, Onion)	0.4	0.4	0.4	1.000000	2.5
	196	(Yogurt)	(Eggs, Kidney Beans, Nutmeg, Onion)	0.6	0.4	0.4	0.666667	1.6
	197	(Onion)	(Eggs, Kidney Beans, Yogurt, Nutmeg)	0.6	0.4	0.4	0.666667	1.6
	198	(Eggs)	(Kidney Beans, Yogurt, Nutmeg, Onion)	0.8	0.4	0.4	0.500000	1.2
	199	(Nutmeg)	(Eggs, Kidney Beans, Yogurt, Onion)	0.4	0.4	0.4	1.000000	2.5
	186 rd	ows × 10 colum	ins					

```
In [ ]: rules[rules['lift'] >= 1.0]
```

\cap			Г	- 1	-
U	U	т		- 1	-

	antecedents	consequents	antecedent support	consequent support	support	confidence	
0	(Kidney Beans)	(Corn)	1.0	0.4	0.4	0.400000	1.0
1	(Corn)	(Kidney Beans)	0.4	1.0	0.4	1.000000	1.0
2	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.000000	1.0
3	(Kidney Beans)	(Eggs)	1.0	0.8	0.8	0.800000	1.0
6	(Eggs)	(Nutmeg)	0.8	0.4	0.4	0.500000	1.2
•••	•••	•••					
195	(Kidney Beans)	(Eggs, Yogurt, Nutmeg, Onion)	1.0	0.4	0.4	0.400000	1.0
196	(Yogurt)	(Eggs, Kidney Beans, Nutmeg, Onion)	0.6	0.4	0.4	0.666667	1.6
197	(Onion)	(Eggs, Kidney Beans, Yogurt, Nutmeg)	0.6	0.4	0.4	0.666667	1.6
198	(Eggs)	(Kidney Beans, Yogurt, Nutmeg, Onion)	0.8	0.4	0.4	0.500000	1.2
199	(Nutmeg)	(Eggs, Kidney Beans, Yogurt, Onion)	0.4	0.4	0.4	1.000000	2.5

188 rows × 10 columns

Question 3

dataframe = pd.DataFrame(te_ary, columns=te.columns_)
dataframe

_			г	7	
()	111	+		- 1	п
\cup	u	L.		- 1	

_		Apple	Corn	Dill	Eggs	cream	Kidney Beans	Milk	Nutmeg	Onion	Unicorn	Yogı
(0	False	False	False	True	False	True	True	False	True	False	Tr
	1	False	False	True	True	False	True	False	True	True	False	Tr
	2	True	False	False	True	False	True	True	False	False	False	Fal
;	3	False	True	False	False	False	False	True	False	False	True	Tr
	4	False	True	False	True	True	True	False	False	True	False	Fal

In []: min_support_threshold = 2 / len(dataset)
 frequent_itemsets = apriori(dataframe, min_support=min_support_threshold,
 frequent_itemsets['support_count'] = frequent_itemsets['support'] * len(dataset)

In []: rules = association_rules(frequent_itemsets, metric="support", min_thresh
rules

Out[]:

		antecedents	consequents	antecedent support	consequent support	support	confidence	
	0	(nan)	(Corn)	0.6	0.4	0.4	0.666667	1.6
	1	(Corn)	(nan)	0.4	0.6	0.4	1.000000	1.6
	2	(Eggs)	(Kidney Beans)	0.8	0.8	0.8	1.000000	1.2
	3	(Kidney Beans)	(Eggs)	0.8	0.8	0.8	1.000000	1.2
	4	(Milk)	(Eggs)	0.6	0.8	0.4	0.666667	8.0
	•••			•••			•••	
	107	(nan, Onion)	(Eggs, Kidney Beans)	0.4	0.8	0.4	1.000000	1.2
	108	(Kidney Beans)	(Eggs, nan, Onion)	0.8	0.4	0.4	0.500000	1.2
	109	(Eggs)	(nan, Kidney Beans, Onion)	0.8	0.4	0.4	0.500000	1.2
110	110	(nan)	(Eggs, Kidney Beans, Onion)	0.6	0.6	0.4	0.666667	,
	111	(Onion)	(Eggs, Kidney Beans, nan)	0.6	0.4	0.4	0.666667	1.6

112 rows × 10 columns

In []: rules[rules['confidence'] >= 0.5]

-				
()	+		- 1	п
υu	L	L		н

	antecedents	consequents	antecedent support	consequent support	support	confidence	
0	(nan)	(Corn)	0.6	0.4	0.4	0.666667	1.6
1	(Corn)	(nan)	0.4	0.6	0.4	1.000000	1.6
2	(Eggs)	(Kidney Beans)	0.8	0.8	0.8	1.000000	1.2
3	(Kidney Beans)	(Eggs)	0.8	0.8	0.8	1.000000	1.2
4	(Milk)	(Eggs)	0.6	0.8	0.4	0.666667	8.0
•••							
107	(nan, Onion)	(Eggs, Kidney Beans)	0.4	0.8	0.4	1.000000	1.2
108	(Kidney Beans)	(Eggs, nan, Onion)	0.8	0.4	0.4	0.500000	1.2
109	(Eggs)	(nan, Kidney Beans, Onion)	0.8	0.4	0.4	0.500000	1.2
110	(nan)	(Eggs, Kidney Beans, Onion)	0.6	0.6	0.4	0.666667	,
111	(Onion)	(Eggs, Kidney Beans, nan)	0.6	0.4	0.4	0.666667	1.6

112 rows × 10 columns

In []: rules[rules['lift'] >= 1.0]

Out[]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	
0	(nan)	(Corn)	0.6	0.4	0.4	0.666667	1.6
1	(Corn)	(nan)	0.4	0.6	0.4	1.000000	1.6
2	(Eggs)	(Kidney Beans)	0.8	0.8	0.8	1.000000	1.2
3	(Kidney Beans)	(Eggs)	0.8	0.8	0.8	1.000000	1.2
6	(Eggs)	(Onion)	0.8	0.6	0.6	0.750000	1.2
•••							
107	(nan, Onion)	(Eggs, Kidney Beans)	0.4	0.8	0.4	1.000000	1.2
108	(Kidney Beans)	(Eggs, nan, Onion)	0.8	0.4	0.4	0.500000	1.2
109	(Eggs)	(nan, Kidney Beans, Onion)	0.8	0.4	0.4	0.500000	1.2
110	(nan)	(Eggs, Kidney Beans, Onion)	0.6	0.6	0.4	0.666667	1
111	(Onion)	(Eggs, Kidney Beans, nan)	0.6	0.4	0.4	0.666667	1.6

94 rows × 10 columns