Optimal Uniform and L^p Rates for Random Fourier Features*

Bharath K. Sriperumbudur^{†,1}

Zoltán Szabó^{†,2}

¹Department of Statistics, Pennsylvania State University

²Gatsby Unit, University College London

Brief Summary

• Kernel methods [1]:

- **Pro**: flexible modelling toolkit.
- Contra: computationally intensive, poor scalability.

Randomized algorithms:

- Low-D feature representation \rightarrow **fast** linear methods.
- Random Fourier features (RFF) [2]:
- simple, popular, practically efficient, **but** theoretically not well-understood.
- Contribution: detailed theoretical analysis,
- L^{∞} -optimal performance guarantees (RFF dimension, growing set size),
- L^r $(1 \le r < \infty)$ -guarantees,
- RFF approximation for kernel derivatives + analysis.

RFF Idea (Kernel Approximation)

• $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$: continuous, bounded, translation-invariant kernel. Bochner's theorem \Rightarrow

$$k(\mathbf{x}, \mathbf{y}) = \int_{\mathbb{R}^d} e^{i\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})} d\Lambda(\boldsymbol{\omega}) = \int_{\mathbb{R}^d} \cos\left(\boldsymbol{\omega}^T(\mathbf{x} - \mathbf{y})\right) d\Lambda(\boldsymbol{\omega}),$$
$$\hat{k}(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \sum_{i=1}^m \cos\left(\boldsymbol{\omega}_j^T(\mathbf{x} - \mathbf{y})\right).$$

Here: $(\boldsymbol{\omega}_j)_{j=1}^m \overset{i.i.d.}{\sim} \Lambda$, $\hat{k}(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle_{\mathbb{R}^{2m}}$ with

$$\phi(\mathbf{x}) = \frac{1}{\sqrt{m}} \left[\cos(\boldsymbol{\omega}_1^T \mathbf{x}); \dots; \cos(\boldsymbol{\omega}_m^T \mathbf{x}); \sin(\boldsymbol{\omega}_1^T \mathbf{x}); \dots; \sin(\boldsymbol{\omega}_m^T \mathbf{x}) \right].$$

Existing RFF Guarantees

• [2]: \hat{k} is consistent (compact convergence),

$$\|k-\hat{k}\|_{L^{\infty}(\mathbb{S}\times\mathbb{S})} := \sup_{(x,y)\in\mathbb{S}\times\mathbb{S}} |k(x,y)-\hat{k}(x,y)| = \mathfrak{O}_p\left(|\mathbb{S}|\sqrt{m^{-1}\log m}\right).$$

• [3]: 3 RFF variants, better constants.

Theorem-1: k approximation, $L^{\infty}(S \times S)$

Let $\sigma^2 := \int \|\boldsymbol{\omega}\|^2 d\Lambda(\boldsymbol{\omega}) < \infty$. Then for $\forall \tau > 0$, $S \subset \mathbb{R}^d$ compact,

$$\Lambda^m \left(\|k - \hat{k}\|_{L^{\infty}(\mathbb{S} \times \mathbb{S})} \ge \frac{h(d, |\mathbb{S}|, \sigma) + \sqrt{2\tau}}{\sqrt{m}} \right) \le e^{-\tau},$$

where $h(d, |\mathcal{S}|, \sigma) := 32\sqrt{2d\log(2|\mathcal{S}|+1)} + 32\sqrt{2d\log(\sigma+1)} + 16\sqrt{\frac{2d}{\log(2|\mathcal{S}|+1)}}$.

Remark-1:

- A.s. convergence on compact sets: $\hat{k} \xrightarrow{m \to \infty} k$ at rate $\sqrt{\frac{\log |\mathcal{S}|}{m}}$ (B-C. lemma).
- Growing diameter (S_m) :
- $\frac{\log |\mathcal{S}_m|}{m} \xrightarrow{m \to \infty} 0 \text{ is enough (i.e., } |\mathcal{S}_m| = e^{o(m)}) \leftrightarrow \text{old result: } |\mathcal{S}_m| = o\left(\sqrt{m/\log(m)}\right).$
- Specifically: *asymptotic* optimality [4, Theorem 2].

Theorem-2: k approximation, $L^r(S \times S)$, $1 \le r < \infty$

For any $\tau > 0$, compact $S \subset \mathbb{R}^d$

$$\Lambda^{m} \left(\|k - \hat{k}\|_{L^{r}(\mathbb{S} \times \mathbb{S})} \ge \left(\frac{\pi^{d/2} |\mathcal{S}|^{d}}{2^{d} \Gamma(\frac{d}{2} + 1)} \right)^{2/r} \frac{h(d, |\mathcal{S}|, \sigma) + \sqrt{2\tau}}{\sqrt{m}} \right) \le e^{-\tau}.$$

Remark-2:

- Consequence of Theorem-1.
- $L^r(S \times S)$ -consistency: $||k \hat{k}||_{L^r(S \times S)} = \mathcal{O}_{a.s.} \left(\underbrace{m^{-1/2}|S|^{2d/r}\sqrt{\log|S|}}_{=:(*)_1; \text{ if } \xrightarrow{m \to \infty}} \right)$, i.e.
- Growing diameter: $(*)_1 \to 0 \Rightarrow |\mathcal{S}_m| = \tilde{o}(m^{\frac{r}{4d}})$; L^{∞} -case: $|\mathcal{S}_m| = e^{m^{\delta < 1}}$.

Theorem-3: k approximation, $L^r(S \times S)$, $1 < r < \infty$

Applying a direct reasoning: for any $\tau > 0$, compact $S \subset \mathbb{R}^d$

$$\Lambda^{m} \left(\|k - \hat{k}\|_{L^{r}(\mathbb{S} \times \mathbb{S})} \ge \left(\frac{\pi^{d/2} |\mathbb{S}|^{d}}{2^{d} \Gamma(\frac{d}{2} + 1)} \right)^{2/r} \left(\frac{C_{r}}{m^{1 - \max\{\frac{1}{2}, \frac{1}{r}\}}} + \frac{\sqrt{2\tau}}{\sqrt{m}} \right) \right) \le e^{-\tau}.$$

Remark-3:

- $C_r = \mathcal{O}(\sqrt{r})$, universal constant.
- $C_r = \mathcal{O}(\sqrt{r})$, universal constant $L^r(\mathbb{S} \times \mathbb{S})$ -consistency: if $2 \le r$, then $||k \hat{k}||_{L^r(\mathbb{S} \times \mathbb{S})} = \mathcal{O}_{a.s.}(\underbrace{m^{-1/2}|\mathbb{S}|^{2d/r}})$, if $\underbrace{m \to \infty}_{0}$

the $\sqrt{\log(S)}$ term disappeared $(\tilde{o} \rightarrow o, \text{ see Remark-2})$.

Kernel Derivative Approximation

$$\partial^{\mathbf{p},\mathbf{q}} k(\mathbf{x},\mathbf{y}) = \int_{\mathbb{R}^d} \boldsymbol{\omega}^{\mathbf{p}} (-\boldsymbol{\omega})^{\mathbf{q}} h_{|\mathbf{p}+\mathbf{q}|} \left(\boldsymbol{\omega}^T (\mathbf{x} - \mathbf{y}) \right) d\Lambda(\boldsymbol{\omega}), \ h_n = \cos^{(n)}, n \in \mathbb{N}$$

$$\widehat{\partial^{\mathbf{p},\mathbf{q}} k} (\mathbf{x},\mathbf{y}) = \frac{1}{m} \sum_{j=1}^m \boldsymbol{\omega}_j^{\mathbf{p}} (-\boldsymbol{\omega}_j)^{\mathbf{q}} h_{|\mathbf{p}+\mathbf{q}|} \left(\boldsymbol{\omega}_j^T (\mathbf{x} - \mathbf{y}) \right) = \langle \phi^{\mathbf{p}} (\mathbf{x}), \phi^{\mathbf{q}} (\mathbf{y}) \rangle_{\mathbb{R}^{2m}}.$$

Th.-4: $\partial^{\mathbf{p},\mathbf{q}}k(\mathbf{x},\mathbf{y})$ appr., $supp(\Lambda)$: bounded, $L^{\infty}(S \times S)$

Let $\mathbf{p}, \mathbf{q} \in \mathbb{N}^d$, $T_{\mathbf{p}, \mathbf{q}} := \sup_{\boldsymbol{\omega} \in supp(\Lambda)} |\boldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}|$, $C_{\mathbf{p}, \mathbf{q}} := \mathbb{E}_{\boldsymbol{\omega} \sim \Lambda} ||\boldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}| ||\boldsymbol{\omega}||_2^2|$. Assume: $C_{2\mathbf{p},2\mathbf{q}} < \infty$; $supp(\Lambda)$ is bounded if $[\mathbf{p};\mathbf{q}] \neq \mathbf{0}$. Then for $\forall \tau > \bar{0}$, compact $S \subset \mathbb{R}^d$

$$\Lambda^{m} \left(\| \partial^{\mathbf{p}, \mathbf{q}} k - \widehat{\partial^{\mathbf{p}, \mathbf{q}} k}(\mathbf{x}, \mathbf{y}) \|_{L^{\infty}(\mathbb{S} \times \mathbb{S})} \ge \frac{H(d, \mathbf{p}, \mathbf{q}, |\mathbb{S}|) + T_{\mathbf{p}, \mathbf{q}} \sqrt{2\tau}}{\sqrt{m}} \right) \le e^{-\tau},$$

where

$$\frac{H(d, \mathbf{p}, \mathbf{q}, |\mathcal{S}|)}{32\sqrt{2dT_{2\mathbf{p},2\mathbf{q}}}} = \left[\sqrt{U(\mathbf{p}, \mathbf{q}, |\mathcal{S}|)} + \frac{1}{2\sqrt{U(\mathbf{p}, \mathbf{q}, |\mathcal{S}|)}} + \sqrt{\log(\sqrt{C_{2\mathbf{p},2\mathbf{q}}} + 1)}\right],$$

$$U(\mathbf{p}, \mathbf{q}, |\mathcal{S}|) = \log\left(\frac{2|\mathcal{S}|}{\sqrt{T_{2\mathbf{p},2\mathbf{q}}}} + 1\right).$$

Remark-4:

- Theorem-4 $\xrightarrow{\text{spec. } \mathbf{p}=\mathbf{q}=0}$ Theorem-1, $T_{\mathbf{p},\mathbf{q}}=T_{2\mathbf{p},2\mathbf{q}}=1$. Else: $supp(\Lambda)$: bounded $\Rightarrow T_{\mathbf{p},\mathbf{q}} < \infty$ and $T_{2\mathbf{p},2\mathbf{q}} < \infty$.
- Growth of $|S_m|$: A la Remarks 1-2
- $\|\partial^{\mathbf{p},\mathbf{q}}k \widehat{\partial^{\mathbf{p},\mathbf{q}}k}(\mathbf{x},\mathbf{y})\|_{L^{\infty}(\mathbb{S}_m \times \mathbb{S}_m)} \xrightarrow{a.s.} 0 \text{ if } |\mathbb{S}_m| = e^{o(m)}.$
- $\|\partial^{\mathbf{p},\mathbf{q}}k \widehat{\partial^{\mathbf{p},\mathbf{q}}k}(\mathbf{x},\mathbf{y})\|_{L^r(\mathcal{S}_m \times \mathcal{S}_m)} \xrightarrow{a.s.} 0 \text{ if } m^{-1/2}|\mathcal{S}_m|^{2d/r}\sqrt{\log|\mathcal{S}_m|} \xrightarrow{m \to \infty} 0 \text{ (} 1 \le r < \infty\text{)}.$

Theorem-5: $\partial^{\mathbf{p},\mathbf{q}}k(\mathbf{x},\mathbf{y})$ approximation, $supp(\Lambda)$: unbounded, $L^{\infty}(S \times S)$

Assume: (i) $\mathbf{z} \mapsto \nabla_{\mathbf{z}} [\partial^{\mathbf{p},\mathbf{q}} k(\mathbf{z})]$: continuous; (ii) $\mathcal{S} \subset \mathbb{R}^d$: compact, (iii) $E_{\mathbf{p},\mathbf{q}} := \mathbb{E}_{\boldsymbol{\omega} \sim \Lambda} |\boldsymbol{\omega}^{\mathbf{p}+\mathbf{q}}| \|\boldsymbol{\omega}\|_2 < \infty$, (iv) $\exists L > 0, \sigma > 0$ such that with $\mathcal{S}_{\Delta} := 0$

$$\mathbb{E}_{\boldsymbol{\omega} \sim \Lambda} |f(\mathbf{z}; \boldsymbol{\omega})|^M \stackrel{(*)_2}{\leq} \frac{M! \, \sigma^2 L^{M-2}}{2} \quad (\forall M \geq 2, \forall \mathbf{z} \in \mathcal{S}_{\Delta}),$$
$$f(\mathbf{z}; \boldsymbol{\omega}) = \partial^{\mathbf{p}, \mathbf{q}} k(\mathbf{z}) - \boldsymbol{\omega}^{\mathbf{p}} (-\boldsymbol{\omega})^{\mathbf{q}} h_{|\mathbf{p} + \mathbf{q}|} (\boldsymbol{\omega}^T \mathbf{z}).$$

Then with $F_d := d^{-\frac{d}{d+1}} + d^{\frac{1}{d+1}}$, $D_{\mathbf{p},\mathbf{q},\mathcal{S}} := \sup_{\mathbf{z} \in conv(\mathcal{S}_{\wedge})} \|\nabla_{\mathbf{z}} [\partial^{\mathbf{p},\mathbf{q}} k(\mathbf{z})]\|_2$

$$\Lambda^{m} \left(\| \partial^{\mathbf{p},\mathbf{q}} k - \widehat{\partial^{\mathbf{p},\mathbf{q}} k}(\mathbf{x}, \mathbf{y}) \|_{L^{\infty}(\mathbb{S} \times \mathbb{S})} \ge \epsilon \right) \le \\
\le 2^{d-1} e^{-\frac{m\epsilon^{2}}{8\sigma^{2}\left(1 + \frac{\epsilon L}{2\sigma^{2}}\right)}} + F_{d} 2^{\frac{4d-1}{d+1}} \left[\frac{|\mathcal{S}|(D_{\mathbf{p},\mathbf{q},\mathbb{S}} + E_{\mathbf{p},\mathbf{q}})}{\epsilon} \right]^{\frac{d}{d+1}} e^{-\frac{m\epsilon^{2}}{8(d+1)\sigma^{2}\left(1 + \frac{\epsilon L}{2\sigma^{2}}\right)}}.$$

Remark-5:

- F_d : monotonically decreasing in d, $F_1 = 2$.
- (*)₂ holds if $|f(\mathbf{z}; \boldsymbol{\omega})| \leq \frac{L}{2}$ and $\mathbb{E}_{\boldsymbol{\omega} \sim \Lambda}[|f(\mathbf{z}; \boldsymbol{\omega})|^2] \leq \sigma^2 \ (\forall \mathbf{z} \in \mathcal{S}_{\Delta}).$
- $\|\partial^{\mathbf{p},\mathbf{q}}k \widehat{\partial^{\mathbf{p},\mathbf{q}}k}(\mathbf{x},\mathbf{y})\|_{L^{\infty}(\mathbb{S}\times\mathbb{S})} = \mathcal{O}_{a.s.}\left(|\mathcal{S}|\sqrt{\frac{\log m}{m}}\right):$
- slightly worse than Theorem-4, but it handles unbounded functions.

Future Research Directions

(i) Kernel derivatives: tighter guarantees, (ii) prediction using kernel (derivative) estimates, (iii) analysis of smart RFF approximations [5].

References

- [1] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
- [2] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Neural Information Processing Systems (NIPS), pages 1177–1184, 2007.
- [3] Dougal J. Sutherland and Jeff Schneider. On the error of random Fourier features. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 862–871, 2015.
- [4] Sándor Csörgő and Vilmos Totik. On how long interval is the empirical characteristic function uniformly consistent? Acta Scientiarum Mathematicarum, 45:141–149, 1983.
- [5] Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood computing Hilbert space expansions in loglinear time. JMLR W&CP - International Conference on Machine Learning (ICML), 28:244–252, 2013.