7 Linear Transformation

Let A be a $m \times n$ matrix and \vec{x} a vector in \mathbb{R}^n . The product $A\vec{x}$ can be viewed as the "action" of the matrix A on the vector \vec{x} : we can think of it as transforming the vector \vec{x} into another vector $\vec{b} = A\vec{x}$.

Example 7.1. Consider the product:

$$\begin{bmatrix} -1 & -3 \\ -1 & 0 \\ 3 & -1 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 \\ 1 \\ -5 \\ 1 \end{bmatrix}$$

It shows that the matrix $\begin{bmatrix} -1 & -3 \\ -1 & 0 \\ 3 & -1 \\ 3 & 2 \end{bmatrix}$ transform the vector $\vec{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ in \mathbb{R}^2 into the vector $\vec{b} = \begin{bmatrix} -5 \\ 1 \\ -5 \\ 1 \end{bmatrix}$ in

 \mathbb{R}^4 .

Note: Recall that if A is $m \times n$ matrix, the we can only multiply A on the right by a vector in \mathbb{R}^n . The resulting vector will always be in \mathbb{R}^m .

Definition 7.2. A function $f: D \to C$ is a rule that assigns for each element $d \in D$ a unique element $c \in C$ so that c = f(d). We refer to D as the domain of f, and C as the codomain of f. The set $\{f(d): d \in D\}$ of values taken by the function is called image of range of f.

We will be interested in functions that have \mathbb{R}^n as a domain and \mathbb{R}^m as a codomain.

Definition 7.3. A transformation (or function, or mapping) T from \mathbb{R}^n to \mathbb{R}^m , denoted by $T: \mathbb{R}^n \to \mathbb{R}^m$, takes, as input, a vector \vec{x} in \mathbb{R}^n and outputs vector $T(\vec{x})$ in \mathbb{R}^m . We say that:

- \mathbb{R}^n is the domain of T,
- \mathbb{R}^m is the codomain of T,
- for $\vec{x} \in \mathbb{R}^n$, $T(\vec{x})$ is the image of \vec{x} ,
- the set of all images $T(\vec{x})$ is called the ranges or image of T.

Matrix Transformation

We are more interested on transformation associated with matrix multiplication.

Definition 7.4. A matrix transformation is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ that operates by multiplication by a $m \times n$ matrix A, that is if $\vec{x} \in \mathbb{R}^n$, then $T(\vec{x}) = A\vec{x}$. This transformation takes a vector $\vec{x} \in \mathbb{R}^n$ to the vector $A\vec{x} \in \mathbb{R}^m$. For simplicity, we sometimes denote such a matrix transformation by $\vec{x} \to A\vec{x}$.

Notes:

- The domain of the transformation T, associated with the matrix A, is \mathbb{R}^n when A has n columns, and the codomain of T is \mathbb{R}^m when A has n rows.
- Since the image $T(\vec{x})$ is of the form $A\vec{x}$, the range of T the set of all linear combinations if the columns of A.

Example 7.5. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the transformation defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$. Let

$$\vec{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \vec{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \text{ and } \vec{c} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}.$$
 This transformation can be described in general by

$$T(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ x_2 \\ 2x_1 + 3x_2 \end{bmatrix}.$$

The types of questions that we may ask for the transformation T include:

- (1) Find the image $T(\vec{u})$ of \vec{u} under the transformation T.
- (2) Find a vector \vec{x} in \mathbb{R}^2 such that $T(\vec{x}) = \vec{b}$.
- (3) Is there more that one vector whose image under T is \vec{b} ?
- (4) Determine if the vector \vec{c} is the range of the transformation T.

These questions correspond to some questions addressed in the previous sections about matrix equation and their corresponding linear systems.

- (1) To find the image of \vec{u} under T, we just need to compute the product $A\vec{u}$.
- (2) To find a vector $\vec{x} \in \mathbb{R}^2$ such that $T(\vec{x}) = \vec{b}$, one needs to solve the matrix equation $A\vec{x} = \vec{b}$ and give a solution. If we call \vec{v}_1, \vec{v}_2 the columns of A, this matrix equation is equivalent to linear system with augmented matrix $\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{b} \end{bmatrix}$.
- (3) To determine if there are more that one vector whose image under T is the given \vec{b} , one needs to know if the solution of the matrix equation $A\vec{x} = \vec{b}$ is unique or infinitely many.
- (4) To determine if the vector \vec{c} is in the range of the transformation T, it is the same as to check if there exists $\vec{x} \in \mathbb{R}^2$ such that $T(\vec{x}) = \vec{c}$, so one need to check if the matrix equation $A\vec{x} = \vec{c}$ has a solution or not.

Linear Transformation

Definition 7.6. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if, for all $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$ (scalar):

- (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}),$
- (b) $T(c\vec{u}) = cT(\vec{u})$.

DAY 12: September 17th

(Linear Transformation continued)

Note:

Let A be a $m \times n$ matrix and let $T : \mathbb{R}^n \to \mathbb{R}^m$ be the transformation defined by $T(\vec{x}) = A\vec{x}$. Since for every $\vec{u}, \vec{v} \in \mathbb{R}^n$ and $c \in \mathbb{R}$ we have $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$ and $A(c\vec{u}) = cA\vec{u}$, the transformation T is linear. In particular, every matrix transformation is a linear transformation.

Proposition 7.7. Let T be a linear transformation. Then for all vectors \vec{u} and \vec{v} in the domain of T and for all scalars c and d in \mathbb{R} , we have

- (a) $T(\vec{0}) = \vec{0}$, and
- (b) $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v}).$

Proof.

(a) Since $0\vec{u} = \vec{0}$ and since T is a linear transformation, we have

$$T(\vec{0}) = T(0\vec{u}) = 0T(\vec{u}) = \vec{0}.$$

(b) Since T is a linear transformation and $c\vec{u}$ and $c\vec{v}$ are vectors in the domain of T, we have

$$T(c\vec{u} + d\vec{v}) = T(c\vec{u}) + T(c\vec{v}) = cT(\vec{u}) + cT(\vec{v}).$$

Note: A repeated application of property (2) in Proposition 7.7 gives a generalization:

$$T(c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n) = T(c_1\vec{v}_1) + T(c_2\vec{v}_2) + \dots + T(c_n\vec{v}_n = c_1T(\vec{v}_1) + c_2T(\vec{v}_2) + \dots + c_nT(\vec{v}_n)$$

Example 7.8.

(a) The identity transformation: The square matrix (same number of rows as columns) with 1's on the diagonal and 0's elsewhere is called an identity matrix. For n = 3, the identity matrix is given by

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(\vec{x}) = A\vec{x}$ for every $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$. Then

we have

$$T(\vec{x}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

That is $T(\vec{x}) = \vec{x}$ for every $\vec{x} \in \mathbb{R}^3$.

(b) A **shear transformation** in the x-direction is a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with $T(\vec{x}) = A\vec{x}$, where $A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ for some $k \in \mathbb{R}$.

Suppose
$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$$
. Let $\vec{u}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $\vec{u}_4 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Then

$$T(\vec{u}_1) = A\vec{u}_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, T(\vec{u}_2) = A\vec{u}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, T(\vec{u}_3) = A\vec{u}_3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, T(\vec{u}_4) = A\vec{u}_4 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}.$$

Geometrically, this map translates horizontal segments of the unit square proportionally in their x-value.

(c) Define the map $T: \mathbb{R}^n \to \mathbb{R}^n$ by $T(\vec{x}) = r\vec{x}$ for some real number r. If $0 \le r \le 1$ the map is called **contraction**. If r > 1, it is called **dilation**. Show that T is a linear transformation.

Solution: Let \vec{u}, \vec{v} be in \mathbb{R}^n and c, d be scalars. It suffices to show that $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$. For that, we have

$$T(c\vec{u} + d\vec{v}) = r(c\vec{u} + d\vec{v})$$
 by the definition of T

$$= rc\vec{u} + rc\vec{v}$$

$$= c(r\vec{u}) + c(r\vec{v})$$

$$= cT(\vec{u}) + dT(\vec{v}).$$

It follows that T is a linear transformation.

8 The Matrix of a Linear Transformation

Given a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, we show in this section that it is actually a matrix transformation $\vec{x} \mapsto A\vec{x}$.

Definition 8.1. Let $\vec{e_i}$ denote the standard basis vector having 1 in the *i*th row, and zero elsewhere.

$$ec{e_i} = \left[egin{array}{c} 0 \\ dots \\ 0 \\ 1 \\ 0 \\ dots \\ 0 \end{array}
ight] \longleftarrow ith \ \ \mathrm{row}$$

In particular $\vec{e_i}$ is the *i*th column of the $n \times n$ identity matrix.

Example 8.2. Consider the 3×3 identity matrix.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\uparrow \uparrow \uparrow \uparrow$$

$$\vec{e_1} \quad \vec{e_2} \quad \vec{e_3}$$

Theorem 8.3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then, there exists a unique matrix A such that for every \vec{x} in \mathbb{R}^n we have

$$T(\vec{x}) = A\vec{x}$$
.

In fact, A is the $m \times n$ matrix whose ith column is the vector $T(\vec{e_i})$. In particular

$$A = \left[T(\vec{e}_1) \quad T(\vec{e}_2) \quad \cdots \quad T(\vec{e}_n) \right]$$

The matrix A is called the **standard matrix** for T.

Proof. Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 be in \mathbb{R}^n . Then

$$\vec{x} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \dots + x_n \vec{e}_n.$$

Hence $T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + \dots + x_n\vec{e}_n)$. Since T is a linear transformation, we have

$$T(\vec{x}) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2) + \dots + x_n T(\vec{e}_n)$$

$$= \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) & \dots & T(\vec{e}_n) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= A\vec{x}.$$

36

Example 8.4. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} -1\\3 \end{bmatrix} \text{ and } T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\-1 \end{bmatrix}$$

- Compute $T(\vec{u})$ where $\vec{u} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$.
- Give the matrix A such that $T(\vec{x}) = A\vec{x}$ for every \vec{x} in \mathbb{R}^2 (the matrix A is the standard matrix of T).

Solution:

• We have

$$\vec{u} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Hence

$$T(\vec{u}) = T\left(4\begin{bmatrix} 1\\0 \end{bmatrix} + 3\begin{bmatrix} 0\\1 \end{bmatrix}\right) = 4T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) + 3T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)$$
$$= 4\begin{bmatrix} -1\\3 \end{bmatrix} + 3\begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} -1\\9 \end{bmatrix}$$

• The standard matrix A of T is given by

$$A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) \end{bmatrix} = \begin{bmatrix} T(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) & T(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) \end{bmatrix}$$
$$= \begin{bmatrix} -1 & 1 \\ 3 & -1 \end{bmatrix}$$

Check that

$$A\vec{u} = \left[\begin{array}{c} -1 \\ 9 \end{array} \right].$$

Properties of Linear Transformation

Definition 8.5. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called **onto** if every \vec{b} in \mathbb{R}^m is the image of at least one vector \vec{u} in \mathbb{R}^n . That is, T is onto if for all \vec{b} in \mathbb{R}^m , there exists \vec{u} in \mathbb{R}^n such that $T(\vec{u}) = \vec{b}$.

Facts:

- T is onto when the range of T is all of the codomain \mathbb{R}^m .
- T is not onto when there is some \vec{b} in \mathbb{R}^m for which the equation $T(\vec{x}) = \vec{b}$ has no solution.

Definition 8.6. A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if every \vec{b} in \mathbb{R}^m is the image of at most one vector \vec{u} in \mathbb{R}^n . That is T is said to be one-to-one if for every \vec{u} , \vec{v} in \mathbb{R}^n , $T(\vec{u}) = T(\vec{v})$ implies $\vec{u} = \vec{v}$.

Facts

A transformation T is one-to-one if for every \vec{b} in \mathbb{R}^m the equation $T(\vec{x}) = \vec{b}$ never has multiple solutions (unique or none).

Example 8.7. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation whose standard matrix is given by

$$A = \left[\begin{array}{rrrr} -1 & 2 & 5 & 1 \\ 0 & -2 & 3 & 2 \\ 0 & 0 & 0 & -4 \end{array} \right].$$

- Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? (the same as: is T onto?)
- \bullet Is T a one-to-one transformation?

augmented matrix

Solution:

• To check if T is onto, we need to verify if for every $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ in \mathbb{R}^3 , the equation $T(\vec{x}) = \vec{b}$ has a solution. This equation is the same as $A\vec{x} = \vec{b}$. The later equation is equivalent to the linear system with

 $\begin{bmatrix} -1 & 2 & 5 & 1 & b_1 \\ 0 & -2 & 3 & 2 & b_2 \\ 0 & 0 & 0 & -4 & b_3 \end{bmatrix}.$

The matrix is already in row echelon form and we see that the system is always consistent for every $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. It follows that for every $\vec{b} \in \mathbb{R}^3$, there exists $\vec{x} \in \mathbb{R}^4$ such that $T(\vec{x}) = A\vec{x} = \vec{b}$, so T is onto.

• To check if T is one-to-one, we need to verify if for every \vec{b} in \mathbb{R}^3 , there exist at most one vector \vec{x} in \mathbb{R}^4 such that $T(\vec{x}) = \vec{b}$, that is $A\vec{x} = \vec{b}$. This again equivalent to the linear system with augmented matrix

$$\begin{bmatrix} -1 & 2 & 5 & 1 & b_1 \\ 0 & -2 & 3 & 2 & b_2 \\ 0 & 0 & 0 & -4 & b_3 \end{bmatrix}$$

This shows that the system is consistent. Since there are more variables than equations, we have a free variable $(x_4 \text{ is free})$, then the system has infinitely many solutions, so T is not one-to-one.

Theorem 8.8. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\vec{x}) = \vec{0}$ has only the trivial solution.

Proof. Suppose that the equation $T(\vec{x}) = \vec{0}$ has only the trivial solution. Let \vec{b} be in \mathbb{R}^m and \vec{u}, \vec{v} in \mathbb{R}^n such that $T(\vec{u}) = T(\vec{v}) = \vec{b}$. Then $T(\vec{u}) - T(\vec{v}) = \vec{0}$. Since T is linear, we have $T(\vec{u} - \vec{v}) = \vec{0}$. As $\vec{0}$ is the only solution of $T(\vec{x}) = \vec{0}$, we have $\vec{u} - \vec{v} = \vec{0}$, so $\vec{u} = \vec{v}$. It follows that T is one-to-one.

Suppose T is one-to-one. Then every equation including $T(\vec{x}) = \vec{0}$ has at most one solution. Since $T(\vec{0}) = \vec{0}$ is always true, $T(\vec{x}) = \vec{0}$ has only the trivial solution.

Facts:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

- T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A spans \mathbb{R}^m .
- \bullet T is one-to-one if and only if the columns of A are linearly independent.

Note:

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ with standard matrix A. As consequences the above facts, we have the following:

- If there is a pivot in every row of the row echelon form of A, then T is onto.
- If there is a pivot in every column of the row echelon form of A, then T is one-to-one.