1. (a)
$$A^{-1} = \begin{bmatrix} 1 & 0 & -1/a \\ 0 & 1/b & 0 \\ 0 & 0 & 1/a \end{bmatrix}$$

- (b) Yes, because matrix whose columns are these three vectors has determinant of 4, so the matrix is nonsingular, so the vectors are linearly independent.
- (c) One possible answer: $\left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}.$
- 2. (a) The characteristic polynomial is $\begin{vmatrix} 2-\lambda & -1 & 1\\ 0 & 1-\lambda & -1\\ 0 & 0 & 2-\lambda \end{vmatrix} = (2-\lambda)^2(1-\lambda)$, so the eigenvalues are 2 and 1.

E₂ is the nullspace of
$$\begin{bmatrix} 0 & -1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
, so a basis for E_2 is $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$.

E₁ is the nullspace of $\begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$, so a basis for E_2 is $\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$.

- (b) Yes, because 2 has an algebraic multiplicity of 2 but a geometric multiplicity of 1.
- 3. (a) If we expand along the first column, we get

$$\det A = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = 1 - 2(2) = \boxed{-3}$$

- (b) $\det(AB) = \det A \det B = (-3)(5) = \boxed{-15}$
- (c) 1/5
- (d) True, since $\det A \neq 0$.
- 4. (a) We have $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}$, $\vec{\mathbf{b}} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$, $A^T A = \begin{bmatrix} 21 & 27 \\ 27 & 35 \end{bmatrix}$, $A^T \vec{\mathbf{b}} = \begin{bmatrix} 8 \\ 10 \end{bmatrix}$. Solving the system of equations, we get $\vec{\mathbf{x}}^* = \begin{bmatrix} 5/3 \\ -1 \end{bmatrix}$.

(b)
$$A\vec{\mathbf{x}}^* - \vec{\mathbf{b}} = \begin{bmatrix} 2/3 \\ 1/3 \\ 5/3 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/3 \\ -1/3 \end{bmatrix}$$
, which has length $\sqrt{2/3} \approx .8165$.

5. A has eigenvalues 2 and -1 with corresponding eigenvectors $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, respectively.

We can write
$$\vec{\mathbf{x}} = -2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
, so

$$A^{24}\vec{\mathbf{x}} = -2A^{24} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + A^{24} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= -2(2)^{24} \begin{bmatrix} -1 \\ 1 \end{bmatrix} + (-1)^{24} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{25} \\ -2^{25} \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 2^{25} + 2 \\ -2^{25} + 1 \end{bmatrix} = \begin{bmatrix} 33554434 \\ -33554431 \end{bmatrix}$$

- 6. (a) For example, $\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$.
 - (b) A^T has 5 columns and rank (A^T) = rank(A) = 2, so the nullity of A^T is 3.
 - (c) No, because the matrix times the vector is not zero.
 - (d) For example, the 2×2 identity matrix, or any matrix with two rows and one of them is not a scalar multiple of the other.
 - (e) Since the geometric multiplicity of -7 is 4, the dimension of E_{-7} must be 4. So the nullity of A + 7I must be 4. But the only 4×4 matrix with nullity of 4 is the zero matrix, so $A + 7I = \mathcal{O}$, so

$$A = -7I = \left[\begin{array}{cccc} -7 & 0 & 0 & 0 \\ 0 & -7 & 0 & 0 \\ 0 & 0 & -7 & 0 \\ 0 & 0 & 0 & -7 \end{array} \right].$$

- 7. (a) One way to do this is to show that if A did have an inverse, then $(A^{-1})^4 A^4 = (A^{-1})^4 \mathcal{O}$, so the identity matrix would be equal to the zero matrix, which can't happen. Another way is to argue that $(\det A)^4 = \det(A^4) = 0$, so $\det A = 0$.
 - (b) Since A is singular, there is some nonzero $\vec{\mathbf{x}}$ such that $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$. In other words, $A\vec{\mathbf{x}} = 0\vec{\mathbf{x}}$. So 0 is an eigenvalue of A.
 - (c) Suppose that $A\vec{\mathbf{x}} = \lambda \vec{\mathbf{x}}$ for some nonzero $\vec{\mathbf{x}}$. Then $A^4\vec{\mathbf{x}} = \lambda^4\vec{\mathbf{x}}$. But A^4 is zero, so $\lambda^4\vec{\mathbf{x}} = \vec{\mathbf{0}}$. But $\vec{\mathbf{x}}$ is not zero, so $\lambda^4 = 0$. But this means that $\lambda = 0$. So 0 is the only possible eigenvalue.