

Welcome to DSCI 101

Introduction to Data Science

Week 13 Recap

- Decision trees
 - for classification
 - for regression
- Advantages of tree models
 - interpretability
 - non-linear relationship with interactions
- Ensemble models
 - Random Forest

Week 14 Preview

- Unsupervised learning data driven discovery
 - No data label
 - Not focus on prediction
- Dimensionality reduction visualize high dimensional data
 - Principal Component Analysis
- Clustering finding subgroups in data
 - K-means

Why Dimensionality Reduction?

• Dimensionality = the columns of your tabular data

- reduce overfitting
- less noisy data
- more interpretable

- less data storage
- speed up training
- more efficient

- visualize big data
- overall data pattern
- detect outliers

PCA overview

- How to visualize the entire dataset on one scatter plot
 - tabular data with n rows and p columns
 - n observations / samples / data points
 - p variables / features / dimensions
- Human eyes are not good at "seeing" > 3 variables at once
 - a scatter plot only shows two variables
 - could just plot the "most important" two variables, but can we do better?
- Principal Component Analysis (PCA)
 - the "best" low-dimensional representation of data

PCA illustration

What are Principal Components?

• Some intuition:

- Each PC is a linear combination (weighted average) of all the variables
- Each PC is like a "created" variable, combines a little bit of every variable
- PCs are ordered in decreasing importance: 1st PC > 2nd PC >...
- PCs are no longer interpretable: they are not "real" variables

PCA as data visualization tool:

- Plot 1st and 2nd PCs on a scatter plot
- The "best" scatter plot that captures the "most info" of data
- Great for discover patterns in data

Altmetric: 264 Citations: 607

More detail >>

Letter

Genes mirror geography within Europe

John Novembre ™, Toby Johnson, Katarzyna Bryc, Zoltán Kutalik, Adam R. Boyko, Adam Auton, Amit Indap, Karen S. King, Sven Bergmann, Matthew R. Nelson, Matthew Stephens & Carlos D. Bustamante

Nature 456, 98-101 (06 November 2008) doi:10.1038/nature07331

Download Citation

Received: 30 May 2008 Accepted: 12 August 2008

Published: 31 August 2008

Addendum: 13 November 2008

- Data matrix:
 - 1,387 rows (people from Europe)
 - 197,145 columns (gene measurement)
- PCA plot:
 - reduces to 2 dimensions!
 - reveal insightful data pattern

PCA in application

- Only applies to numerical variables!
 - watch out for categorical variables coded as numbers
- Can have at most p PCs for p-dimensional data!
 - mostly we just look at 1st, 2nd and maybe the 3nd PCs
- Standardize columns if variables are not comparable in scale
 - otherwise variables in large scale will dominate

Use PCA to discover data pattern

- A famous dataset of iris plants
- 4 dimensional: petal length/width, sepal length/width
- PCA scatter plot can completely separate the 3 species of iris, while any scatter plot of two variables can not

Clustering

- Finding subgroups (clusters) in a dataset.
- The observations (rows) within each cluster are similar.
- How do we define two or more observations to be similar or different?
 - use some distance metric
 - often domain-specific

Applications Kingdom of Monerans В Kingdom of Fungi Kingdom of Plants Kingdom of Animals **MARKET SEGMENTATION** broad-leaved tree Anomaly Value Time

K-means

- Step 1: randomly assign cluster membership
- Step 2: iteratively update cluster centroids and membership
 - 2a: find cluster centroids
 - 2b: reassign cluster membership to the closest centroid
 - repeat until converge

Practical issues in clustering

- Should the features be standardized?
 - for each column, subtract its mean and divide by its standard deviation
 - standardized features should have mean 0 and SD 1
- How many clusters to choose???
 - can we take a peak of the entire data?
- Robustness: how to account for noise in observations?
- Can we cluster features instead of observations?
 - or cluster both!

