

Making a WiFi Gadget using ESP8266

Rui (Ray) Wang

College of Computer and Information Sciences

UMass Amherst

Preparation

- Sit down and find a project partner at your table.
- Visit: graphics.cs.umass.edu/wearable/0416
 download and unzip Arduino softwre, then follow
 INSTRUCTIONS.txt to install board profile. This will
 take a while! (Skip this step if you've already done it)
- Download and unzip workshop.zip from the above link. I will refer to this as the workshop folder (contains slides, sample code, driver).
- For Mac or Windows, install driver.
- If you don't have Internet connection, we have flash drives at each table.

Introduction

- Goal: learn the basics of making a WiFi gadget
 - Interact with it using a mobile phone or computer
 - Examples:
 - wearable LED badge
 - wireless sensors
 - interactive art exhibit
 - home automation, Internet of Things (IoT).
 - Combine programming with electronics to make something fun, physical, and useful.

Introduction

Hardware:

- ESP8266: extremely low cost (\$3), tiny, Arduinocompatible, 9 digital pins + 1 analog pin
- Other options: Raspberry Pi, Arduino+WiFi shield,
 Arduino Yun...

Software:

Arduino + ESP8266 core library

ESP8266

- 32-bit microcontroller
- 96KB main memory
- 512KB ~ 4MB flash (program) memory
- 802.11 b/g/n WiFi

- Tons of WiFi-enabled projects built using it. Google ESP8266 and you will find out.
- Community forum: <u>esp8266.com</u>

SquareWear WiFi

- ESP8266-based, with built-in components
 - Color LED, Button, Buzzer, Light sensor
 - microUSB port andUSB-serial programmer
 - Large pin holes suitable for soldering, sewing, snaps
- Electronics are fragile, please handle with care: avoid shorting and handle gently!
- Website: <u>sqrwear.com</u>

SquareWear WiFi

Pins are also marked at the back of the board

SquareWear WiFi Demo

- Plug in microUSB cable and switch it on.
- Buzzer: start-up tune
- Color LED: blink, color wheel
- Light Sensor
- Webserver:
 - Device creates a WiFi Access Point (AP): check the back of the board for the AP name
 - Password is the same as the AP name (upper case!)
 - Use your phone / laptop to connect to it, then open a browser and type http://192.168.4.1/

Programming SquareWear WiFi

Step 1: Driver

- If using Mac or Windows (check the 'drivers' folder in workshop material).
- Linux does not need driver, but you need to run Arduino as 'sudo' or root.

ESP8266 supports Over-The-Air (OTA) programming (for advanced users).

Programming SquareWear WiFi

Step 2: Bootloading Mode

- Switch off SquareWear WiFi.
- Press and hold the push-button while switching it back on, then release the button.
- The demo should stop running, meaning the device is in programming mode.
- NOTE: you need to enter bootloading mode every time you upload a new program to the board.

Programming SquareWear WiFi

- Launch Arduino, put board in bootloading mode
- Tools -> Board -> Generic ESP8266 Module
- Tools -> Upload Speed -> 230400 (recommended)
- Tools -> Port -> /dev/cu.wchusbserialxxx
 or COM?
 or /dev/ttyUSB?
- File -> Open, select the blinkLED program, in Workshop folder -> blinkLED sub-folder.
- Click on **Upload**. This will take a while.

Entering Arduino-Land

Setup() and Loop()

```
// include
                                  void main()
// global variables
                                     setup();
void setup()
{
                                     while(1) {
   // initialization
                                        loop();
}
void loop()
   // main loop
                           This is what happens internally
}
```

Useful Links

- Arduino: arduino.cc
 - Arduino programming language
- ESP8266 core: github.com/esp8266/Arduino
 - ESP8266 specific language extensions
- ESP8266 community forum: esp8266.com

Color 101

- Explain the blinkLED program
- Color is presented as R, G, B, each an intensity value between [0,255].

```
Red: (255,0,0)

Dark Red: (64,0,0)

Green: (0,255,0)

Blue: (0,0,255)

White: (255,255,255)

Yellow: (255,255,0)

?: (128,0,128)
```

Color 101

- Neopixel (WS2812): chainable color LED
 - 1 digital pin to individually set the color of many LEDs.
- SquareWear has 1 neopixel on-board, wired to pin 15.
- You can also plug a color LED matrix at the back of the board (LED badge).

Sound 101

What does a sound wave look like?

- Audible frequency is 20 Hz to 20K Hz
 - What's the frequency of A4 the pitch standard?
- Explain the makeSound demo (warning!)

Digital Pin 101

- Most pins have multiple functions
- Set to input, and read a value (e.g. button)
 pinMode(int pin, INPUT);
 int digitalRead(int pin);

Set to output, and write a value (e.g. relay)
 pinMode(int pin, OUTPUT);
 void digitalWrite(int pin, int value);

There are several spare pins on SquareWear WiFi

Analog Sensor 101

 An analog pin that can read sensor values in continuous scale: from 0 to VCC (3.3~3.6V)
 int analogRead(A0);

- Light Sensor (responds to ambient light)
 - Can use pin 16 to enable or disable it (allows sharing the analog pin with multiple sensors).
- Explain the lightSensor demo

Serial Monitor

- Print and check data using Serial Monitor
- Very useful for debugging
- Set baud rate: Serial.begin(115200);
- Print data:

```
Serial.println("hello");
Serial.println(value);
Serial.println(WiFi.localIP());
```

WiFi 101

AP (Access Point) mode

- Create a WiFi network with custom SSID & password
- In this mode, ESP's default IP is 192.168.4.1
- Other devices, such as your phone, can connect to this WiFi network, and access ESP directly.

– No Internet connection!

WiFi 101

Client mode

- Connects to an existing WiFi router and gets an IP assigned by your router.
- Has Internet connection
- Can upload data to cloud server
- Can access it remotely

192.168.1.xx

HTML 101

HelloWorld.htm

```
<html>
Hello World!
<html>
```

- The browser parses the HTML and renders the result to the screen.
- Most browsers are very forgiving about the syntax and will do their best at interpreting the HTML.

JavaScript 101

Write100.htm

```
<html>
  <script>
  for(i=0;i<100;i++)
    document.write('Hello World!<br>');
  </script>
  <html>
```

Using Javascript you can generate dynamic webpage content.

HTTP GET -- Homepage

HTTP GET – Custom Page

http://192.168.4.1/hello


```
<html>
<title>Hello Page</title>
...
</html>
```

Get Server Status / Variables

http://192.168.4.1/status

{"button":1, "light":450}

Trigger Action on HTTP GET

http://192.168.4.1/led

HTTP/200 OK

HTTP GET with Parameters

http://192.168.4.1/led?r=0&g=0&b=255

HTTP/200 OK

basicServer Demo

simpleServer demo (AP mode)

- The SSID is assigned based on the last 6 digits of the chip's MAC address.
- Upload the demo
- Use your phone (or computer) to connect to your custom WiFi (e.g. SW_xxxxxxx)
- Open a browser and try the following
 - 192.168.4.1/
 - 192.168.4.1/js
 - 192.168.4.1/led

basicAjax Demo

- You want the webpage to behave like an application: should look pretty and responsive!
- The HTML does the 'rendering' of the page, and dynamic content is retrieved asynchronously from the server through AJAX calls.
- This way, the server doesn't need to send the same HTML content over and over again, but instead only needs to send the relevant status variables.
- Explain the basicAjax demo

SWDemo

 Lastly, we turn back to the initial demo that came with the board: SWDemo

SquareWear WiFi Pins

Internally assigned pins:

Color LED: digital 2 (Neopixel)

Button: digital 0 (bootloading button)

Buzzer: digital 15

Light sensor: digital 16 (enable)

analog 0 (read value)

Available pins for general purpose use:

- 4, 5, 12,13, 14 (GP names)
- Analog 0

Power Options

- SquareWear WiFi can be powered via
 - USB cable
 - USB mobile charger
- Interval voltage (VCC) is 3.3 ~ 3.5V.
- Digital HIGH -> 3.3V
 Digital LOW -> 0V