Revision Question 4 — 03/05/14

- a) Prove that the Klein bottle is a surface: give an argument for why all the necessary conditions are satisfied. You may quote without proof any results from the course. [15 marks]
- b) Let (K^2, \mathcal{O}_{K^2}) be the Klein bottle.

Let

$$I^2 \xrightarrow{\pi} K^2$$

be the quotient map. Find a subset C of I^2 with the following two properties.

- i) We have that $(\pi(C), \mathcal{O}_{\pi(C)})$ is homeomorphic to (S^1, \mathcal{O}_{S^1}) , where $\mathcal{O}_{\pi(C)}$ is the subspace topology on $\pi(C)$ with respect to (K^2, \mathcal{O}_{K^2}) .
- ii) We have that $(K^2 \setminus \pi(C), \mathcal{O}_{K^2 \setminus \pi(C)})$ is connected, where $\mathcal{O}_{K^2 \setminus \pi(C)}$ is the subspace topology on $K^2 \setminus \pi(C)$ with respect to (K^2, \mathcal{O}_{K^2}) .

You do not need to prove anything. [3 marks]

- c) Apply surgery to (K^2, \mathcal{O}_{K^2}) with respect to your curve C of part b). Outline an argument to demonstrate that we obtain a surface which, depending on your choice of C, is homeomorphic to either the real projective plane or (S^2, \mathcal{O}_{S^2}) . You do not need to give a detailed proof. [8 marks]
- d) Equip (K^2, \mathcal{O}_{K^2}) with the structure of a Δ-complex. [3 marks]
- e) Use your Δ -complex structure of part d) to calculate the Euler characteristic of (K^2, \mathcal{O}_{K^2}) . You may not use any other method. [2 marks]
- f) Up to homeomorphism, how many surfaces have the same Euler characteristic as (K^2, \mathcal{O}_{K^2}) ? You may quote without proof any results from the course. [4 marks]