PROJECT - 2

INSTAGRAM USER ANALYTICS

PROJECT DESCRIPTION:

This project aims to analyze user behavior and engagement within a simulated Instagram environment. By leveraging SQL queries on a sample dataset, we will delve into key aspects of user activity, such as:

• User Demographics:

- To Identify user registration trends
- To Analyze user activity patterns

Engagement:

- To Determine the average of posts per user.
- To Analyze user interaction patterns (e.g., likes, comments, follows).
- To Identify users with high engagement (e.g., users with the most likes, most comments).
- To Identify potential bot accounts (e.g., users who have liked every photo

Content Analysis:

- To Analyze popular hashtags and their usage trends.
- •To Identify the most popular content types (e.g., photos, videos).

Approach:

1. Data Exploration:

- To Thoroughly examine the provided dataset (users, photos, likes, comments, etc.) to understand itsstructure, data types, and relationships between different entities.
- To Identify potential data quality issues (e.g., missing values, inconsistencies).

2. Data Cleaning (if necessary):

- To Address any data quality issues, such as missing values or inconsistencies.
- This may involve data transformation, imputation, or data cleansing techniques.

3. Data Analysis:

- •To Develop and execute SQL queries to answer the defined research questions.
- •To Utilize SQL functions and clauses (e.g., JOIN, GROUP BY, ORDER BY, COUNT, AVG) to extract meaningful insights.

4. Data Visualization:

• Visualize the findings using appropriate charts and graphs (e.g., histograms, bar charts, line graphs) to effectively communicate the insights to stakeholders.

5. Interpretation and Insights:

- Analyze the results, identify key trends and patterns, and draw conclusions.
- Formulate actionable insights for improving user experience, optimizing ad campaigns, and enhancing platform features.

PROJECT APPROACH:

This project aimed to analyze user behavior and engagement within a simulated Instagram environment. To achieve this, I followed a structured approach:

1. Data Exploration and Understanding:

- **Data Inspection**: I began by thoroughly examining the provided dataset, including the tables (users, photos, likes, comments, etc.) and their respective columns. I analyzed data types, checked for missing values, and identified potential inconsistencies or outliers.
- **Data Dictionary**: I created a data dictionary to document the meaning and data type of each column in each table, which was crucial for understand relationships between different entities.

2. Data Analysis:

• User Registration Trends:

I executed SQL queries to determine the day of the week and hour of the day with the highest number of user registrations.

• User Engagement:

- Calculated the average number of posts per user
- •Identified users with high engagement (e.g., users with the most likes)

• Content Analysis:

Determined the most frequently used hashtags

3. Data Interpretation and Insights:

- Analyzed the results of each query to identify key trends and patterns in user behavior.
- Drew conclusions regarding peak registration times, user engagement levels, popular content, and potential bot activity.
- Formulated actionable insights based on the findings, such as Scheduling ad campaigns during peak registration times.

4. Documentation:

- Documented the entire process including the data exploration, analysis steps, SQL queries, and the resulting insights.
- Presented the findings in a clear and concise manner potentially using visualizations to enhance understanding.

TECH - STACK USED:

I used MySQL Workbench for my Instagram user analytics project because it provides a powerful and user-friendly environment

MySQL Workbench provides a comprehensive and user-friendly environment for working with relational databases, making it a suitable tool for analyzing data from a simulated Instagram environment. Its features like the SQL editor, data modeling capabilities, and query execution tools significantly enhance the efficiency and effectiveness of data analysis tasks.

why it's a suitable tool for this type of analysis?:

- •SQL Query Editor: MySQL Workbench includes a robust SQL editor with features like syntax highlighting ,auto-completion,and query formatting,making it easier to write,edit,and execute SQL queries.
- **Data Modeling:** You can visually design and modify database schemas using the Workbench's visual tools. This is helpful for understanding the relationships between tables and identifying potential data inconsistencies.
- **Data Import and Export:** You can easily import data into MySQL Workbench from various sources (CSV, Excel, etc.) and export query results in different formats.
- **Query Execution and Results:** Workbench allows you to execute SQL queries efficiently and view the results in a clear and organized manner.
- **Debugging and Troubleshooting:** The tool provides helpful error messages and debugging features to assist in identifying and resolving issues with your SQL queries.

INSIGHTS:

Key Findings:

• User Registration Patterns:

- Analysis reveals the user registrations peak
- This suggests that scheduling ad campaigns during these periods could maximize reach and engagement.

• User Engagement:

- 1)The average number of posts per user was found
- 2)Users with a higher number of followers generally had lower average engagement per post, potentially indicating that as user bases grow, individual post engagement may decrease

• Content Trends:

- 1)The most popular hashtags included the most popular hashtags
- 2) Analysis of photo content could reveal trends in popular subjects, styles, or filters

Potential Bot Activity:

Users who had liked every single photo on the platform were identified as potential bot. This finding highlights the importance of implementing measures to detect and mitigate bot activity

Inferences:

- The observed registration patterns suggest that targeting users with ads during peak registration times could be highly effective.
- The relationship between follower count and engagement per post suggests that strategies for increasing engagement may need to evolve as user bases grow.
- The analysis of popular hashtags can inform content creation strategies for users and businesses looking to increase their visibility and engagement on the platform.
- The identification of potential bot accounts highlights the need for robust content moderation and anti-bot measures to maintain a healthy and authentic user experience.

RESULT:

Through the analysis of user registration trends, post activity, and engagement metrics, several key insights were derived.

Key Achievements:

• Identified peak user registration times:

This knowledge can be valuable for businesses and marketers in scheduling targeted ad campaigns to reach a wider audience during periods of high user activity.

• Analyzed user engagement patterns:

Insights into user behavior, such as average posts per user and engagement levels, provide valuable information for understanding user activity and preferences.

• Identified Potential bot Activity:

The analysis helped identify potential bot accounts, highlighting the importance of robust content moderation and anti-both measures to maintain a healthy and authentic platform environment.

• Gained practical SQL skills:

This project provided an opportunity to practice and enhance SQL query writing skills, including data retrieval, joins, aggregations, and subqueries.

Benefits and Impact:

- The insights gained from this project can be used to improve platform features, optimize user experience, and inform strategic decisions related to user acquisition andengagement.
- The analytical skills developed during this project are transferable to other areas such as data analysis, business intelligence, and data-driven decision-making. Overall, this project provided a valuable learning experience in data analysis, SQL query development, and the interpretation of data-driven insights. The findings and skills gained from this project can be applied to various real-world scenarios.

Achievements:

• Developed SQL proficiency:

This project significantly enhanced my SQL skills. I gained practical experience in writing complex queries involving joins, aggregations (COUNT, AVG), subqueries, and window functions. I also learned how to optimize queries for better performance.

• Data analysis and interpretation:

I developed a strong understanding of data analysis methodologies. I learned how to explore data, identify patterns and trends, and draw meaningful conclusions from the insights.

• Problem-solving and critical thinking:

The project challenged me to think critically, identify problems, and develop effective solutions to address analytical challenges.

Benefits and Impact:

• Valuable insights into user behavior:

The analysis provided valuable insights into user registration patterns, engagement levels, and content trends on the simulated Instagram platform. These insights can be applied to real-world scenarios for optimizing marketing campaigns and improving user experience.

Enhanced analytical skills:

The skills developed through this project, such as data exploration, SQL query development, and data interpretation, are highly transferable and can be applied to various analytical tasks in different domains.

Improved understanding of database systems:

Working with the database and executing SQL queries provided a deeper understanding of relational databases and their applications.

Impact of the Analysis:

The analysis highlighted the importance of understanding user behavior and engagement patterns for platform optimization.

The findings can be used to:

1) Improve user experience:

By identifying peak registration times and user activity patterns, the platform can be optimized to provide a more seamless and engaging experience for users.

2) Inform marketing strategies:

The insights into user behavior can inform targeted advertising campaigns, leading to increased reach and engagement.

3) Enhance content moderation:

The identification of potential bot accounts can help in developing and implementing effective measures to maintain a healthy and authentic platform environment.

The skills and insights gained from this project will be invaluable in future endeavors that involve data analysis and interpretation.

SQL QUERIES & OUTPUTS

- A) Marketing Analysis:
- 1. Loyal User Reward: Identify the five oldest users on Instagram from the provided database.

QUERY:

```
1 • SELECT *

2 FROM ig_clone.users

3 ORDER BY created_at ASC

4 LIMIT 5;
```

OUTPUT:

2. Inactive User Engagement: Identify users who have never posted a single photo on Instagram.

QUERY:

```
SELECT u.*

FROM ig_clone.users u

LEFT JOIN ig_clone.photos p ON u.id

= p.user_id

WHERE p.id IS NULL;
```


3. Contest Winner Declaration: Determine the winner who has most likes on the single photo.

QUERY:

```
141

→ WITH most_liked_image AS (
             SELECT image_url, COUNT(*) AS like_count
142
143
            FROM likes
            JOIN photos ON likes.photo_id = photos.id
144
            GROUP BY image url
145
146
            ORDER BY like count DESC
147
             LIMIT 1
148
       - ),
     most liked user AS (
149
             SELECT p.user id, u.username, p.image url
150
            FROM photos p
151
             JOIN users u ON p.user id = u.id
152
153
             JOIN most_liked_image mlp ON p.image_url = mlp.image_url
154
       - )
  SELECT *
  FROM most liked user
  JOIN photos p ON most_liked_user.user_id = p.user_id AND most_liked_user.image_url = p.image_url
  JOIN photo_tags pt ON p.id = pt.photo_id
  JOIN tags t ON pt.tag_id = t.id;
```

```
SELECT *
106
107
         FROM most_liked_user;
         SELECT*
108 •
109
         FROM users
         WHERE username = 'zack kemmer93';
110
111 •
           SELECT
112
           p.image_url,
113
            c.comment_text,
            COUNT(f.follower_id) AS follows,
114
115
            u.username,
           p.created_dat,
116
            COUNT(1.photo_id) AS likes
117
         FROM
118
119
             users as u
         JOIN
120
121
             photos as p ON u.id = p.user_id
         LEFT JOIN
122
             comments c ON p.id = c.photo id
123
       LEFT JOIN
124
125
            follows f ON follower.id = f.follower_id
       LEFT JOIN
126
127
            likes 1 ON p.id = 1.photo_id
128
       WHERE
            u.username = 'zack_kemmer93'
129
       GROUP BY
130
131
            p.image_url, c.comment_text, p.created_dat, u.username;
```


4.**Hashtag Research:** Identify and suggest the top five most commonly used hashtags on the Platform.

QUERY:

```
114 •
        use ig_clone;
        SELECT t.tag name, COUNT(*) AS
115 •
116
        tag count
        FROM ig_clone.tags t
117
        JOIN ig_clone.photo_tags pt ON t.id = pt.tag_id
118
119
        GROUP BY t.tag_name
        ORDER BY tag count DESC
120
121
        LIMIT 5;
```

OUTPUT:

5.**Ad Campaign Launch:** Determine the day of the week when most users register on Instagram. Provide insights on when to schedule an ad campaign.

QUERY:

```
122 •
        use ig_clone;
123 •
       SELECT DAYNAME(created_at)
124
        AS day_of_week, COUNT(*) AS
125
        registration_count
126
        FROM ig_clone.users
        GROUP BY day of week
127
128
        ORDER BY registration_count DESC
129
        LIMIT 1;
```


B) Investor Metrics:

1.**User Engagement:** Calculate the average number of posts per user on Instagram. Also, provide the total number of photos on Instagram divided by the total number of users.

QUERY:

```
150 •
        SELECT
151
            (SELECT COUNT(*) FROM
152
        ig_clone.photos)/(SELECT
153
      COUNT(*) FROM ig clone.users) AS
154
        avg posts per user,
155
            (SELECT COUNT(*) FROM
156
        ig_clone.photos)/(SELECT
      COUNT(*) FROM ig_clone.users) AS
157
158
        avg_photos_per_user_alt
159
        FROM dual;
```

OUTPUT:

2.**Bots & Fake Accounts:** Identify users (potential bots) who have liked every single photo on the site, as this is not typically possible for a normal user.

QUERY:

```
160 • SELECT u.username
161    FROM ig_clone.users u
162    JOIN ig_clone.likes 1 ON u.id= 1.user_id
163    GROUP BY u.id
164    HAVING COUNT(DISTINCT 1.photo_id) = (SELECT COUNT(*) FROM ig_clone.photos);
```

