Final Exam (Part 1) in Program Design and Data Structures (1DL201)

Teachers: Dave Clarke, Tjark Weber

Bergsbrunnagatan 15, room 1 2014-12-16 / 14:00-19:00

Instructions

Read and follow these instructions carefully to increase your chance of getting good marks.

- This is a closed book exam. You may use a standard English dictionary. Otherwise, no notes, calculators, mobile phones, or other electronic devices are allowed. Cheating will not be tolerated.
- Read and follow the instructions on the front sheet.
- In the table below, clearly mark **at most one** answer for each question. (If you think that a question is ambiguous or has no correct answer, mark the question number with a \star and explain on a separate sheet of paper what the problem is and what assumptions you have made to answer the question.)
- Tjark Weber will come to the exam hall around 15:30 to answer questions.

Good luck!

Your Answers

Question	Answer					Question	Answer				
1	A	В	С	D	Е	11	A	В	С	D	Е
2	Α	В	С	D	Е	12	A	В	С	D	Е
3	A	В	С	D	Е	13	A	В	С	D	Е
4	A	В	С	D	Е	14	A	В	С	D	Е
5	A	В	С	D	Е	15	A	В	С	D	Е
6	A	В	С	D	Е	16	A	В	С	D	Е
7	A	В	С	D	$\mid E \mid$	17	A	В	С	D	Е
8	A	В	С	D	$\mid E \mid$	18	A	В	С	D	Е
9	A	В	С	D	Е	19	A	В	С	D	Е
10	A	В	С	D	Е	20	A	В	С	D	Е

Master Theorem

Given a recurrence of the form

$$T(n) = aT(n/b) + f(n)$$

- Case 1: If $f(n) = O(n^c)$ where $c < \log_b a$ then $T(n) = \Theta(n^{\log_b a})$.
- Case 2: If $f(n) = \Theta(n^c \log^k n)$ where $c = \log_b a$ and $k \ge 0$ then $T(n) = \Theta(n^c \log^{k+1} n)$.
- Case 3: If $f(n) = \Omega(n^c)$ where $c > \log_b a$ and the regularity condition holds then $T(n) = \Theta(f(n))$.

The regularity condition is that $a \cdot f(n/b) \leq k \cdot f(n)$ for some constant k < 1 and all sufficiently large n.

Questions

Please choose a single answer for each question. Read the questions carefully, and watch out for negations (not, except, etc.).

- 1. Which of the following is a correct (well-typed) Haskell expression?
 - $(A) \ 1 \ ++ \ 2 \qquad (B) \ True \ + \ 1 \qquad (C) \ not \ 0 \qquad (D) \ length \ "foo" \qquad \&\& \ "bar" \\ Answer: \ (D) \ length \ "foo" \\$
- 2. What is the type of head [0<1, 0==1, 0>1]?
 - (A) The expression is not type-correct. (B) () (C) [Integer] (D) Integer (E) Bool Answer: (E) Bool
- 3. What is the value of head [0<1, 0==1, 0>1]?
 - (A) [0] (B) () (C) The expression throws an exception. (D) 0 (E) True Answer: (E) True
- 4. Which of the following is a correct Haskell expression that is equivalent to 3 > 2 || 3 < 1 `div` 0 ?
 - (A) if 3 > 2 then True else 3 < 1 'div' 0
 - (B) if 3 < 1 'div' 0 then 3 > 2 else False
 - (C) if 3 > 2 then 3 < 1 `div` 0
 - (D) if 3 > 2 || 3 < 1 `div` 0 then True
 - (E) if 3 > 2 then 3 < 1 'div' 0 else False

Answer: (A) if 3 > 2 then True else 3 < 1 'div' 0

5.	Which of the following expressions does not have the same value as the other four?								
	(A) ['a', (B) "a"++ (C) ["abo (D) ['a'. (E) 'a':'	"b"++"c" ;"] .'c']							
	Answer:	(C) ["abo	:"]						
6.	What is t	he value	of the following	expression?					
		y = let x = f x	x = y+1 in x+y						
	(A) 1		(B) 2	(C) 3	(D) 4	(E) 5			
	Answer:	(D) 4							
7.	Consider	the follow	ving function:						
	in	; ; = 10 `c	div`x) then x else y						
	What is t	he value	of f 0 ?						
	(A) The	expression	n throws an exce	eption. (B) 1	(C) 10 (D) Infin	ity (E) O			
	Answer:	(E) 0							
8.	Consider	the follow	ving function:						
	f (Tr f (f (Fa	rue, 1) rue, _) , 1) alse, _) alse, 1)	= 2 = 3 = 4						
	What is t	he value	of f (False, 0	?					
	(A) 1 Answer:		(B) 2	(C) 3	(D) 4	(E) 5			
9.		5,7] (I			o [1,37] ? 7] (D) [] (E) [1,	3,4,5,6,7]			

- 10. Recall the mergesort algorithm. To ensure that the output list is a sorted permutation of the input list, it is important that the splitting function ...
 - (A) returns two lists that together contain the same elements as the input list.
 - (B) returns two sorted lists.
 - (C) splits the input list into elements below the pivot, and elements above the pivot.
 - (D) returns two lists of equal length.
 - (E) runs in $\Theta(n)$.

Answer: (A)

- 11. Which of the following best describes the purpose of data descriptions in the 8 step design process?
 - (A) To informally describe the input and output of functions.
 - (B) To give examples of the data used in a program.
 - (C) To describe how the data in the program relates to the real world concepts it models and give constraints on the validity of the data.
 - (D) To give examples of valid and invalid data for the program.
 - (E) To provide a description of the relationship between data used in programs and the functions that operate on that data.

Answer: (C)

- 12. What of the following is **not** an accurate description of the goal of stepwise refinement?
 - (A) To help break a large problem into smaller problems.
 - (B) To solve a problem by introducing other functions to help solve the problem.
 - (C) To break a function into details which are refined in successive steps until the whole program is fully defined.
 - (D) To refine the steps of an algorithm into lines of code.
 - (E) To refine a highly abstract representation of some required program gradually through a sequence of intermediate representations to yield a final program in some chosen programming language.

Answer: (D)

13. Which of the following post-conditions is best for the given code?

- (A) The length of the result is greater than or equal to zero.
- (B) The input list traversed recursively to remove all negative numbers.
- (C) A list of integers with negative elements removed.
- (D) The input list with negative elements removed.
- (E) The input list with just positive elements remaining.

Answer: (D). Answer (C) is ruled out because it states the result type (and is imprecise), which is already specified and thus superfluous.

- 14. Which of the following is a variant for the function rempos from the previous question?
 - (A) the length of the input list
- (B) []
- (C) as
- (D) a:as
- (E) 1

Answer: (A) the length of the input list

- 15. Let $f(n) = 4n^3 + 99n^2 + 3$. Which of the following is **not** correct?
 - $(A) f(n) = O(n^2)$
- (B) $f(n) = \Theta(n^3)$
- (C) $f(n) = O(n^4)$

- (D) $f(n) = \Omega(n^2)$
- J(n) O(n)
- (E) $f(n) = \Omega(n^3)$

Answer: (A) $f(n) = O(n^2)$

16. What is the *most precise* closed form for the following recurrence?

$$T(n) = \begin{cases} 1 & \text{if } n = 1\\ T(n-1) + n^2 & \text{if } n > 1 \end{cases}$$

- (A) T(n) = O(n)
- (B) $T(n) = O(n^4)$
- (C) $T(n) = \Omega(n^2)$ (E) $T(n) = \Theta(n^3)$

(D) $T(n) = \Theta(n^2)$

Answer: (E). All but (A) and (D) are valid, but (E) is most precise.

17. Use the Master Theorem to find a closed form for the following recurrence:

$$T(n) = 2T(n/2) + n\log n$$

The closed form is:

- (A) $\Theta(n)$
- (B) $\Theta(n \log^2 n)$
- (C) $\Theta(n \log n)$
- (D) $\Theta(n^2)$
- (E) The Master Theorem does not apply.

Answer: (B) $T(n) = 2T(n/2) + n \log n$ implies $T(n) = \Theta(n \log^2 n)$ (Case 2)

18. Which answer is the recurrence representing the run-time cost of the following function?

(A)
$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2T(n) & \text{otherwise} \end{cases}$$

(B)
$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2T(n-1) + \Theta(1) & \text{if } n > 1 \end{cases}$$

(C)
$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ 2T(n/2) + \Theta(1) & \text{otherwise} \end{cases}$$

(D)
$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 1\\ T(n-1/2n) + \Theta(1) & \text{otherwise} \end{cases}$$

(E)
$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 0\\ 2T(n/2) & \text{otherwise} \end{cases}$$

Answer: (C)

19. What is the type of the following function?

- 20. Suppose you want to write a function increment_even :: [Integer] -> [Integer] that returns its input list with all odd numbers removed, and all even numbers incremented by 1. For instance, increment_even [1,2,5,7,8] == [3,9]. Which of the following function definitions can you not use?
 - (A) increment_even xs = [x+1 | x < -xs, even x]
 - (B) increment_even [] = []
 increment_even (x:xs) | even x = (x+1) : increment_even xs
 increment_even (_:xs) = increment_even xs
 - (C) increment_even = map (+1) . filter even
 - (D) increment_even xs = map ((+1) . filter even) xs
 - (E) increment_even xs = map (+1) (filter even xs)

Answer: (D) increment_even xs = map ((+1) . filter even) xs