Devoir maison 11.

À rendre le lundi 24 avril 2023

Exercice

Soit ϕ l'application définie sur $\mathbb{R}[X]$ par :

$$\forall P \in \mathbb{R}[X], \ \phi(P) = P(X) - P(X - 1).$$

- 1°) a) Vérifier que ϕ est un endomorphisme de $\mathbb{R}[X]$.
 - b) Calculer, pour tout $n \in \mathbb{N}^*$, le degré de $\phi(X^n)$. En déduire, pour tout $P \in \mathbb{R}[X]$, le degré de $\phi(P)$ en fonction de celui de P.
- **2°)** Soit $n \in \mathbb{N}$. Pour tout $P \in \mathbb{R}_{n+1}[X]$, on pose : $\phi_n(P) = \phi(P) = P(X) P(X-1)$.
 - a) Justifier que $\phi_n \in \mathcal{L}(\mathbb{R}_{n+1}[X], \mathbb{R}_n[X])$.
 - **b)** Montrer que ϕ_n est surjective.
 - c) En déduire $Ker(\phi_n)$.
 - **d)** Montrer que ϕ est surjective, et que $\operatorname{Ker}(\phi) = \mathbb{R}_0[X]$.
- 3°) Soit $n \in \mathbb{N}$.

Montrer qu'il existe un unique polynôme B_n tel que : $\phi(B_n) = X^n$ et $B_n(0) = 0$. Quel est le degré de B_n ?

- **4**°) Soit $n \in \mathbb{N}$. Montrer: $\forall k \in \mathbb{N}^*$, $B_n(k) = 1^n + 2^n + \dots + k^n$.
- **5°)** Soit $n \in \mathbb{N}$.
 - a) Montrer: $B'_{n+1}(X) (n+1)B_n(X) \in \operatorname{Ker} \phi$.
 - b) Soit C_{n+1} l'unique primitive de B_n qui s'annule en 0, c'est-à-dire l'unique polynôme C_{n+1} tel que $C'_{n+1} = B_n$ et $C_{n+1}(0) = 0$. Montrer qu'il existe un réel λ_n tel que $B_{n+1}(X) = (n+1)C_{n+1}(X) + \lambda_n X$.
- 6°) a) Déterminer B_0 .
 - b) Montrer que pour tout $n \in \mathbb{N}$, le coefficient dominant de B_n est $\frac{1}{n+1}$.
 - c) En déduire, pour $n \in \mathbb{N}$ fixé, un équivalent de $1^n + 2^n + \cdots + k^n$ lorsque k tend vers $+\infty$.