宇宙物理セミナー

並河 俊弥 2009 年 12 月 10 日

内容:

- イントロ
- 弱重力レンズ
 - 1. コスミックシェア
 - 2. CMB レンジング
- 弱重カレンズを用いた宇宙論パラメータの決定精度
 - 1. S/N
 - 2. フィッシャー解析

モデルパラメータ、計算方法

I. 宇宙論パラメータ (flat, WMAP 5yr, Komatsu et al 2009)

$\Omega_b h^2$	$\Omega_m h^2$	Ω_{Λ}	W	$A_s \times 10^9$	n_s	au	$m_{_{\scriptscriptstyle V}}^{\scriptscriptstyle tot}$
0.022	0.13	0.72	-1.004	2.4	0.96	0.086	0.1[eV]

II. 全天に対する観測領域の割合

ACTPOL $f_{sky}^{ACTPOL} = 0.1$

Planck $f_{sky}^{Planck} = 0.65$

 $f_{sky}^{HSC} = 0.05$

III. 銀河分布

(Amara & Refregier, 2007)

$$z_m = 1.0$$
 $N_g = 30 \,\text{arcmin}^{-2}$
 $n_s(z) \propto z^2 \exp(-(z/z_0)^{1.5})$

IV. intrinsic ellipticity $\langle \gamma_{int}^2 \rangle^{1/2} = 0.22$

V. 密度揺らぎの非線形パワースペクトル

Smith et al (2003) のフィッティング公式をもとに計算

VI. 大気揺らぎの考慮

ACTPOL と Planck 両方のデータが使える領域では、ell = 700 までは Planck、それ以上では ACTPOL のパワースペクトルを用いる。

VI. レンジングポテンシャルの再構築

- ACTPOL と Planck 両方のデータが使える領域
 - (1) ACTPOL、Planck それぞれでレンジングポテンシャルを再構築
 - (2) 各 ell において S/N の高い方を採用

Planck と ACTPOL の NI^dd は一桁以上離れているので、全ての ell で ACTPOL のほうが S/N は高い。

→ すべての ell でACTPOL を採用

(2) Fisher 解析
$$\frac{C_{l}}{F_{ij}} = \frac{2l+1}{2} f_{sky} \mathbf{Tr} \left(C_{l}^{-1} \frac{\partial C_{l}}{\partial p_{i}} C_{l}^{-1} \frac{\partial C_{l}}{\partial p_{j}} \right)^{\sigma(p_{i}) = \sqrt{(F^{-1})_{ii}}} : 1 \text{ sigma marginalised error}$$

$$F^{tot} = \sum_{l=2}^{l_{\text{max}}} \left(F_{(f_{sky} = f_{sky}^{HSC})}^{HSC \times CMB} + F_{(f_{sky} = f_{sky}^{CMB} - f_{sky}^{HSC})}^{CMB} \right) + \sum_{l_{\text{max}}+1}^{3000} F_{(f_{sky} = f_{sky}^{CMB})}^{prior}$$

$$TT, TE, EE, dd, T_{EW}d, \gamma\gamma, d\gamma, T_{EW}\gamma$$

$$TT, TE, EE, dd, T_{EW}d$$

CMB = Planck, ACT+Planck

S/N

S/N の値

i d	deflection angle
1	shear

	dd	$\mathbf{d}_{\mathbf{Y}}$	ISW*d
Planck	42	18	4
ACTPOL + Planck	223	71	6

S/N (l_max) のプロット

Fisher 解析

1σエラーの推定値

 $l_{\text{max}} = 3000$

 $Planck \times HSC$

 $\begin{array}{c} \textbf{ACTPOL + Planck} \\ \times \text{HSC} \end{array}$

$\ln(\Omega_b h^2)$	$ln(\Omega_m h^2)$	\mathbf{L}_{Λ}	$ \mathcal{W} $	$\ln A_s$	$\iota\iota_{s}$		m_{ν}
0.002	0.01	0.03	0.1	0.01	0.003	0.004	0.07[eV]
0.001	0.007	0.01	0.05	0.008	0.002	0.003	0.04[eV]

Planck: 点線

ACTPOL + Planck: 実線

tot

青

$$TT,TE,EE +$$

$$dd$$
, $ISW \times d$ 赤 $\gamma \gamma$, $ISW \times \gamma$ 緑 dd , $\gamma \gamma$, $d\gamma$, $ISW \times \gamma$, $ISW \times d$