# **CLUSTERING**



## Hierarchical Clustering



#### K-means Clustering - Example

 Given a cluster K<sub>i</sub>={t<sub>i1</sub>,t<sub>i2</sub>,...,t<sub>im</sub>}, let the *cluster mean* be m<sub>i</sub> = (1/m)(t<sub>i1</sub> + ... + t<sub>im</sub>)

Given: {2,4,10,12,3,20,30,11,25}, k=2

- Randomly pick some initial means: m<sub>1</sub>=3, m<sub>2</sub>=4
- K<sub>1</sub>={2,3}, K<sub>2</sub>={4,10,12,20,30,11,25}, m<sub>1</sub>=2.5, m<sub>2</sub>=16
- K<sub>1</sub>={2,3,4}, K<sub>2</sub>={10,12,20,30,11,25}, m<sub>1</sub>=3, m<sub>2</sub>=18
- K<sub>1</sub>={2,3,4,10}, K<sub>2</sub>={12,20,30,11,25}, m<sub>1</sub>=4.75, m<sub>2</sub>=19.6
- K<sub>1</sub>={2,3,4,10,11,12}, K<sub>2</sub>={20,30,25}, m<sub>1</sub>=7, m<sub>2</sub>=25

Stop as the clusters with these means are the same.

### K-means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple
  - Select K points as the initial centroids.
  - 2: repeat
  - Form K clusters by assigning all points to the closest centroid.
  - Recompute the centroid of each cluster.
  - 5: until The centroids don't change

## Data: { 2,3,4,10,11,12,20,25,30}

mI=4

$$m2=12$$

$$kI = \{2,3,4\}$$
  
mI=3

$$k2=\{10,11,12,20,25,30\}$$
 $m2=18$ 

$$kI = \{2,3,4,10\}$$
  
mI=4.75~5

$$k2=\{11,12,20,25,30\}$$
  
 $m2=19.6$ 

## **K-Means Algorithms**

Step 1: Take Mean Value of Each Cluster (Random value for First Time)

Step 2: Find nearest number of mean and put it in the cluster

Step 3: Repeat Step 1 and 2 until we get same mean.

| Point Location |   | Distance to Point |               |
|----------------|---|-------------------|---------------|
| X              | Y | Red cluster       | Green Cluster |
| 9              | 1 |                   |               |
| 8              | 4 |                   |               |
| 7              | 2 |                   |               |
| 2              | 3 |                   |               |
| 1              | 5 |                   |               |
| 3              | 5 |                   |               |
| 7              | 5 |                   |               |

$$d_{1,2} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

