Analyse avancée II Mathématiques 1^{ère} année Enseignant : Fabio Nobile

Série 14 du mercredi 14 avril 2021

Exercice 1.

Définissons la fonction

$$F := \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}. \tag{1}$$

- 1) Montrer que l'application F admet une fonction inverse locale autour du point (0,1), et que cette fonction inverse est de classe C^1 .
- 2) F est-elle globalement inversible?

Indication. Vous pouvez utiliser le théorème sur l'existence d'un inverse local.

Exercice 2.

Soient $U, V, W \subset \mathbb{R}^n$ ouverts; soient $\phi \in C^1(U, V)$ et $\psi \in C^1(V, W)$ deux difféomorphismes. Montrer que $\psi \circ \phi$ est un difféomorphisme.

Exercice 3.

Soient $f \in C^2(\mathbb{R}, \mathbb{R})$ et $x_0 \in \mathbb{R}$. Supposons $f'(x_0) \neq 0$. Il existe alors deux ouverts $U \ni x_0$ et $V \ni f(x_0)$, et $g: V \to U$ une fonction inverse locale de f en x_0 . Montrer que $g \in C^2(V, U)$.

Exercice 4.

Définition 1 (Difféomorphisme et orientation). Soient $U, V \subset \mathbb{R}^n$ ouverts et $\psi : U \to V$ un difféomorphisme.

- Si $\det(D \psi)$ est strictement positif partout, on dit que ψ « préserve l'orientation ».
- Si $\det(\operatorname{D}\psi)$ est strictement négatif partout, on dit que ψ « renverse l'orientation ».
- 1) Montrer que si U est connexe par arcs, alors soit ψ préserve l'orientation, soit ψ renverse l'orientation.
- 2) Donner des exemples d'ouverts U et V qui ne sont pas connexes par arcs et d'un difféomorphisme $\psi:U\to V$ qui ne préserve ni ne renverse l'orientation.