Topic 1: SETS AND SUBSETS

1.1 Which of these sets are equal: $\{x, y, z\}, \{z, y, z, x\}, \{y, x, y, z\}, \{y, z, x, y\}$?

order and repetition doesn't matter! Therefore, all 4 sets are equal.

- **1.28** Let $A = \{1, 2, ..., 8, 9\}$, $B = \{2, 4, 6, 8\}$, $C = \{1, 3, 5, 7, 9\}$, $D = \{3, 4, 5\}$, $E = \{3, 5\}$. Which of the these sets can equal a set X under each of the following conditions?
 - (a) X and B are disjoint.
- (c) $X \subseteq A$ but $X \not\subset C$.
- (b) $X \subseteq D$ but $X \not\subset B$.
- (d) $X \subseteq C$ but $X \not\subset A$.

(a) $\times \mathbb{N} = \emptyset$

c√ E √

- (C) $X \not\leftarrow C \Rightarrow X$ isn't a subset of C
- $\Rightarrow X \cap C \neq X$

A V B V

can be
$$C \subseteq X$$

or $X \sqcap C = \emptyset$ or $X \sqcap C \neq \emptyset$

etc.

1.6 Show that we can have: (a) $A \cap B = A \cap C$ without B = C; (b) $A \cup B = A \cup C$ without B = C.

Illustrate ...

$$A = \{1, 2\}$$
 $A \cap B = \{1, 2\}$
 $B = \{1, 2, 3\}$
 $A \cap C = \{1, 2\}$
 $C = \{1, 2, 4\}$
 $A \cap C = \{1, 2\}$
 $A \cap C = \{1, 2\}$

Example: Prove AN(BUC) = (ANB)U(ANC).
namely Distributive Law (4b).

Topie 3: VENN DIAGRAMS

1.13 Determine the validity of the following argument:

 S_1 : All my friends are musicians.

 S_2 : John is my friend.

 S_3 : None of my neighbors are musicians.

S : John is not my neighbor.

1.35 Use the Venn diagram in Fig. 1-5(b) to write each set as the (disjoint) union of fundamental products:

(a) $A \cap (B \cup C)$; (b) $A^{\mathbb{C}} \cap (B \cup C)$; (c) $A \cup (B \setminus C)$.

Fig. 1-5