Inference in FOPL

28/01/2025

Koustav Rudra

Inference Rules

- Universal Elimination
 - $\forall_x \text{Likes}(x, \text{flower})$
 - Substituting x by Akash {x/Akash}
 - Likes(Akash, flower)
- The substitution should be done by a constant term

Inference Rules

- Existential elimination (Skolemization)
 - $\exists_x \text{Likes}(x, \text{flower}) \rightarrow \text{Likes}(\text{Person}, \text{flower})$
 - as long as Person is not in the knowledge base
- This method of finding out a particular constant that satisfies the predicate there exists x that likes flower is known as Skolemization.
- Existential introduction
 - Likes(John, flower)
 - Can be written as
 - $\exists_x \text{Likes}(x, \text{flower})$

Example 1: Reasoning in FOL

• The law says that it is a crime for a Gaul to sell potion formulas to hostile nations.

• The <u>country Rome</u>, an enemy of <u>Gaul</u>, has <u>acquired some potion formulas</u>, and all of its <u>formulas</u> were sold to it by <u>Druid Traitorix</u>.

Traitorix is a Gaul

• Is Traitorix a criminal?

Example1: Reasoning in FOL

- The law says that it is a crime for a Gaul to sell potion formulas to hostile nations.
- Gaul(x): x is a Gaul
- Hostile(z): z is hostile nation
- Potion(y): y is a potion
- Criminal(x): x is criminal
- Sells(x,y,z): x sells y to z
- Owns(x,y): x owns y
- $\forall_x \forall_y \forall_z \text{ Gaul}(x) \land \text{Potion}(y) \land \text{Sells}(x,y,z) \land \text{hostile}(z) \rightarrow \text{Criminal}(x)$

Example1: Reasoning in FOL

- The <u>country Rome</u>, an enemy of <u>Gaul</u>, has <u>acquired some potion formulas</u>, and all of its <u>formulas</u> were sold to it by <u>Druid Traitorix</u>.
- Gaul(x): x is a Gaul
- Hostile(z): z is hostile nation
- Potion(y): y is a potion
- Criminal(x): x is criminal
- Sells(x,y,z): x sells y to z
- Owns(x,y): x owns y
- Hostile(Rome)
- \exists_y Potion(y) \land Owns(Rome,y)
- $\forall_{\gamma} \text{ Potion}(y) \land \text{Owns}(\text{Rome}, y) \rightarrow \text{Sells}(\text{Traitorix}, y, \text{Rome})$

Example1: Reasoning in FOL

- Traitorix is a Gaul
- Gaul(x): x is a Gaul
- Hostile(z): z is hostile nation
- Potion(y): y is a potion
- Criminal(x): x is criminal
- Sells(x,y,z): x sells y to z
- Owns(x,y): x owns y
- Gaul(Traitorix)
- ?- Criminal(Traitorx) [We have to deduce it]

Example 1: Reasoning in FOL

- $\forall_x \forall_y \forall_z \text{ Gaul}(x) \land \text{Potion}(y) \land \text{Sells}(x,y,z) \land \text{hostile}(z) \rightarrow \text{Criminal}(x)$
- Hostile(Rome)
- \exists_{γ} Potion(y) \land Owns(Rome,y)
- $\forall_{v} \text{ Potion}(y) \land \text{Owns}(\text{Rome}, y) \rightarrow \text{Sells}(\text{Traitorix}, y, \text{Rome})$
- Gaul(Traitorix)
- ?- Criminal(Traitorx)

Forward Chaining

Started from existing facts and rules in knowledge base and reach the goal

Backward Chaining

Started from the goal and use existing facts and rules in knowledge base to prove goal

Reasoning in FOL: Forward Chaining

Reasoning in FOL: Backward Chaining

- $\forall_x \forall_y \forall_z \text{ Gaul}(x) \land \text{Potion}(y) \land \text{Sells}(x,y,z) \land \text{hostile}(z) \rightarrow \text{Criminal}(x)$
- $\forall_{\nu}\forall_{z}$ Gaul(Traitorix) \land Potion(y) \land Sells(Traitorix,y,z) \land hostile(z) \rightarrow Criminal(Traitorix)

Example2: Reasoning in FOL

- If a perfect square is divisible by a prime, then it is also divisible by square of that prime.
- Every perfect square is divisible by some prime.
- 36 is a perfect square.
- Does there exist a prime such that square of that prime divides 36?

Example2: Representation in FOL

- If a perfect square is divisible by a prime, then it is also divisible by a square of that prime
 - $\forall_{x,y}(\text{perfect_sq}(x)\land \text{prime}(y)\land \text{divides}(x,y) \rightarrow \text{divides}(x,\text{square}(y)))$
- Every perfect square is divisible by some prime
 - $\forall_x \exists_y (\text{perfect_sq}(x) \land \text{prime}(y) \land \text{divides}(x,y))$
- 36 is a perfect square
 - perfect_sq(36)
- Does there exist a prime such that the square of that prime divides 36?
 - \exists_y (prime(y) \land divides (36, square(y)))

Reasoning in FOL: Forward Chaining

Thank You