INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Computer Science and Engineering

Switching Circuits and Logic Design (CS21002, Spring)

Class Test – II (part-1)

Name:		Roll number:	
Date: Wed, Feb 10, 2021	Marks: 23	Time: 8:10-9am (FN)	

Answer ALL the questions using xournal or similar software to edit the PDF

- Q1: Consider the set of integers $A_m = \{1, 2, 3, \dots, m\}$, with \leq as the usual partial ordering on this set. We may define an order on elements of $A_m \times A_n$ as $\langle a, b \rangle \preceq \langle c, d \rangle \Leftrightarrow a \leq c$ and $b \leq d$.
 - (a) Prove that this defines a partial ordering on $A_m \times A_n$.

(b) Draw the Hasse diagrams for $A_2 \times A_3$.

(c) What are glb $(\langle a,b\rangle\,,\langle c,d\rangle)$ and lub $(\langle a,b\rangle\,,\langle c,d\rangle)$ for any $a,c\in A_m$ and $b,d\in A_n$?

Q2: Let $\langle L, \cdot, + \rangle$ and $\langle M, \odot, \oplus \rangle$ be two lattices. Consider the Cartesian product $L \times M$ of L and M.

Define operations Δ and ∇ in $L \times M$, as $\langle x,y \rangle \Delta \langle a,b \rangle = \langle x \cdot a,y \odot b \rangle$ and $\langle x,y \rangle \nabla \langle a,b \rangle = \langle x+a,y \oplus b \rangle$.

Prove that $\langle L \times M, \Delta, \nabla \rangle$ is a lattice.