

1.DIRECCIONAMIENTO IP versión 4.

- Host (una por cada tarjetas de red) identificado por una IP.
- Formato de 32 bits.
- 2 elevado a 32 direcciones disponibles en versión 4.
- Agrupados en 8 bits(1 Byte) en notación decimal.

[0-255].[0-255].[0-255]

- Agrupadas inicialmente en clases.
 - Grupo-Red-Host.
 - Máscara definida para cada clase
 - A partir de IP sacar la red.
 - Operación AND con máscara.

1.DIRECCIONAMIENTO IP versión 4.

- Máscara de red:
- Formato de 32 bits.
 - Parte de red a unos.(Indica la red)
 - Parte de host a ceros.(Indica el número de host, 2^(número ceros).
 - Tres representaciones:
 - Binaria: 11111....0000000.
 - Decimal: 255.255.192.0
 - Prefijo abreviado: Número de unos /20.

VALORES EN SUBNET MASK				
Bit	Value	Mask		
1	128	10000000		
2	192	11000000		
3	224	11100000		
4	240	11110000		
5	248	11111000		
6	252	11111100		
7	254	11111110		

255

- A partir de máscara equipo sabe si destino en su red o no(en caso de no estar enviar a puerta enlace).
 - Operación AND IP equipo conoce la dirección de red.
 - Operación AND IP destino conoce dirección red
- Red identificada por: Dirección IP de la red + Máscara de la red.
 - Cada red 2 direcciones especiales.
 - Direcciones de red. PARTE DE HOST DE LA IP TODA A 0(La parte de host se determina por la máscara de red).
 - Dirección de broadcast. PARTE DE HOST DE LA IP A TODA A 1(La parte de host se determina por la máscara de red)

1.DIRECCIONAMIENTO IP versión 4.

- Cálculo de la dirección de red y broadcast a partir de IP y máscara.
 - Pasar la IP a binario.
 - Realizar la AND con la máscara.
 - Obtener dirección IP de la red.
 - A partir de la dirección de red en binario y la máscara, poner a uno los ceros de la PARTE DE HOST de la red.
 - Centrarse en la parte de la máscara que no es 255 o 0 ¿Razón?
 - 11111111 → 255 ¿255 and XXX?
 - 0000000 → 0 ¿0 and XXX?

11000000.00100011.10000000.01011111

Broadcast Address

- 1.DIRECCIONAMIENTO IP versión 4.
 - Ejemplo I.
 - IP 216.239.38.117.
 - Es una IP red de clase C.
 - La clase C, por defecto es /24, en este caso es sencillo, ya que la máscara en decimal es 255.255.255.0, al hacer AND con la IP se obtiene la dirección de red: 216.239.38.0.

216.239.038.117

255.255.255.000 Amarillo parte de red, rojo parte de host. 216.239.038.000 Dirección de red.

- Para calcular la dirección de broadcast se colocan los 0 a uno en la parte de HOST, el último octeto pasa de 0000.0000 a 1111.1111 (255).
 - Broadcast 216.239.038.255.
- Al tener 32-24= 8 ceros en la máscara, se dispone de 2º IP en esa red, se pueden usar 2º menos 2 (dirección de red y broadcast)es decir 254 (de la 1 a la 254).

1.DIRECCIONAMIENTO IP versión 4.

- Ejemplo II.
 - IP 216.239.38.117, pero ahora con máscara /26.
 - En principio una C pero al tomar ceros de la parte de host se subdivide la original en redes más pequeñas.
 - En decimal, la máscara es 255.255.255.192 (fijarse en la tabla de transparencias anteriores).
 - Tomar el octeto de la máscara que no es todo ceros o todo unos, y pasar a binario tanto la parte de la IP como de la máscara.

216.239.038.0111.0101 (117)

255.255.21100.0000 Amarillo parte de red, rojo parte de host. 216.239.038.0100.0000 (64) Dirección de red.

- Broadcast: 216.239.038.0111.1111(127)
- Se tiene 6 bits de host(a 0), esta red tiene 2⁶ posibles IP(64) de las que no se pueden usar 2 (la 0 y la 127), es decir 62, la red empieza en la 216.239.38.64 y termina en la 216.239.38.127 (la resta da 64 IP's).

- Direcciones reservadas.
 - Uso especial/específico no utilizables.
 - Ejemplos:
 - 0.0.0.0. Equipo al arrancar.
 - 127.xx.xx.xx. Localhost. Interfaz local.
 - Redes privadas.

Class	Private Address Range	
Α	10.0.0.0 to 10.255.255.255	
В	172.16.0.0 to 172.31.255.255	
С	192.168.0.0 to 192.168.255	

Bits de red	Bits de host	Significado	Ejemplo
tod	los 0	Mi propio host	0.0.0.0
todos 0	host	Host indicado dentro de mi red	0.0.0.10
red	todos 0	Red indicada	192.168.1.0
todos 1 red todos 1		Difusión a mi red	255.255.255.25
		Difusión a la red indicada	192.168.1.255
127	cualquier valor válido de host	Loopback (mi propio host)	127.0.0.1

Direcciones	Uso Actual	Referencia
0.0.0.0/8	"Esta" Red	[RFC1700, pag. 4]
10.0.0.0/8	Redes para uso privado	[RFC1918]
14.0.0.0/8	Redes de datos públicas	[RFC1700, pag. 181]
24.0.0.0/8	Redes de televisión por cable	
39.0.0.0/8	Reservado pero asignable en el futuro	[RFC1797]
127.0.0.0/8	Bucle local (Loopback)	[RFC1700, pag. 5]
128.0.0.0/16	Reservado pero asignable en el futuro	
169.254.0.0/16	Enlace local	
172.16.0.0/12	Redes para uso privado	[RFC1918]
191.255.0.0/16	Reservado pero asignable en el futuro	
192.0.0.0/24	Reservado pero asignable en el futuro	
192.0.2.0/24	Test-Net	
192.88.99.0/24	6to4 Relay Anycast	[RFC3068]
192.168.0.0/16	Redes para uso privado	[RFC1918]
198.18.0.0/15	Test de rendimiento de dispositivos de red	[RFC2544]
223.255.255.0/24	Reservado pero asignable en el futuro	
224.0.0.0/4	Multicast ^I	[RFC3171]
240.0.0.0/4	Reservado para uso futuro	[RFC1700, pag. 4]

- 1.1 Encaminamiento.
- Razón de agrupar ip en clases con máscaras→ Reenvió de los paquetes.
 - Decisiones tomadas por "router" o encaminador.
 - Varios enlaces conectados a redes.
 - Al llegar un paquete decisión de a quién enviar.
 - Información del paquete (ip origen, ip destino, interfaz origen, interfaz destino
 - TABLA DE RUTAS.
 - A partir del paquete y tabla de rutas "decide" al siguiente nodo.

- 1.1 Encaminamiento.
- Tabla de rutas/encaminamiento.
 - Depende del router y el protocolo de encaminamiento.
 - Campos en común:
 - Red destino. (IP red/máscara)
 - Línea de salida. Por donde sale. Puede ser la IP de la interfaz o la interfaz de red. (eth0,eth1,serial0...)
 - Siguiente. Dirección IP a quién entregar el paquete para llegar a su destino.
 - Métrica. Varios caminos para llegar destino. ¿Por dónde ir?. Mide la calidad de la ruta. Puede ser velocidad, saltos, latencia...

Mask	Network Address	Next-Hop Address	Interface Number
/26	140.6.12.64	180.14.2.5	m2
/24	130.4.8.0	190.17.6.2	m1
/16	110.70.0.0		m0
/16	180.14.0.0		m2
/16	190.17.0.0		m1
Default	Default	110.70.4.6	m0

- 1.1 Encaminamiento.
- Ejemplo. Tabla rutas Router 4. Hacer el del Router1.


```
Router#
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet1/0, changed
state to up
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS
inter area
       * - candidate default, U - per-user static route, o - ODR
        P - periodic downloaded static route
Gateway of last resort is not set
     192.168.4.0/24 [1/0] via 192.168.7.2
     192.168.5.0/24 [1/0] via 192.168.8.2
     192.168.6.0/24 [1/0] via 192.168.9.2
     192.168.7.0/24 is directly connected, FastEthernet0/0
     192.168.8.0/24 is directly connected, FastEthernet1/0
     192.168.9.0/24 is directly connected, Ethernet2/0
Router#
```


- 1.DIRECCIONAMIENTO IP versión 4.
- 1.1 Encaminamiento. Protocolos.
- Más de un camino para llegar al destino. Decidir por dónde.
- Establecer las tablas de rutas de forma manual. Redes relativamente pequeñas y poco cambiantes.
- Establecer las tablas de forma dinámica para redes que cambian frecuentemente y grandes→ Protocolos y algoritmos encaminamiento dinámico.
 - Clasificado en redes internas (conoce la topología).
 - RIP (Routing Information Protocol). Métrica: Número de saltos (máximo 15), no usa ni comunica máscara de red (v1), en v2 sí. Transfiere las tablas de cada router entre sus vecinos.
 - IGRP. EIGRP. Más avanzado que RIP. Diferentes parámetros para la métrica. EIGRP utiliza las máscaras de red.
 - OSPF. Camino más corto. Estándar en Internet. Avanzado.
 - IS-IS. Moderno y avanzado. ISO. Combinación diferentes tipos de redes.

- 1.1 Encaminamiento. Protocolos.
- Clasificado en redes externas (no conoce topo interna).
 - BGP. Borde de pasarela. Entre sistemas autónomos. Sustituye a EGP.

- 1.2 Subnetting (VLSM).
- Clasificado en clases A, B, C, D, E poco flexible, por ejemplo una red A con 2^24 equipos...
- Necesidad dividir redes en subredes →SUBnetting.
 - VLSM: Máscaras de subred de tamaño variable.
 - Los routers han de poder trabajar con este tipo de máscaras.
 - Para crear subredes (divisiones de la red) poner ceros de la parte de host a uno en la máscara, creando 2[^](número de bits pasados a 1) redes.
 - Por supuesto al dividir quedan menos ceros que definen la parte de host.

- 1.DIRECCIONAMIENTO IP versión 4.
- 1.2 Subnetting (VLSM).
 - Si se pasa 1 bit de la máscara a 1 se divide en 2 redes, y cada red nueva tiene la mitad de ip's disponibles que la original (se tiene un cero menos en la parte de host).
 - Si se pasan 2 bits de la máscara a 1 se divide en 4 redes, cada una con ¼ de ip's de la original.
 - LAS NUEVAS REDES SE PUEDEN VOLVER A DIVIDIR DE FORMA INDEPENDIENTE modificando la máscara.
 - Por ejemplo, una 24 se divide en 2 subredes, la primera de la 0 a la 127 /25, y la segunda de 128 a 255 25. A su vez se pude dividir la primera en dos redes nuevas, la que va de la 0 a 63 26 y la que va de la 64 a la 127 /26.

- 1.2 Subnetting (VLSM).
 - Ejemplo red 192.168.1.123/24 y se desea dividir en 4 subredes:
 - 2^x=4, se necesitan x bits a 1.
 - Las redes son:
 - 00 00.0000 a 00 11.1111 (0-63)
 - 01 00.0000 a 01 11.1111(64-127)
 - 10 00.0000 a 10 11.1111(128-191)
 - 11 00.0000 a 11 11.1111(192.255)
 - Cada red a su vez dirección de red y dirección de broadcast(Primera y última)

Subnet Prefix / CIDR	Subnet mask	Usable IP address/hosts	Usable IP addresses + Network and Broadcast address
/26	255.255.255.192	62	64
/27	255.255.255.224	30	32
/28	255.255.255.240	14	16
/29	255.255.255.248	6	8
/30	255.255.255.252	2	4

- 1.2 Subnetting (VLSM).
 - Ejercicio.
 - Nuestra empresa utiliza la red 200.5.1.0/24, dispone de 4 departamentos y desea tener cada uno de los departamentos en una subred distinta.
 - Indicar la máscara de las nuevas redes.
 - Indicar la dirección de red y broadcast.
 - Indicar cuantos equipos es posible disponer en cada una de las redes.
 - Se ha decidido dividir la primera subred en dos nuevas subredes.
 - Indicar las nuevas máscaras de red.
 - Indicar cuantos equipos tienen cada red.
 - Indicar la dirección de red y broadcast de las nuevas redes.

- 1.3 Supernetting (CIDR).
 - Problema escasez IP.
 - SOLUCIÓN 1.
 - Agrupar varias C en una B. ¿Cuántas C para crear una B?
 - ¿Cuántas entradas de rutas para direccionar todas esas C? ¿Existe algún problema?
 - SOLUCIÓN 2.
 - Jugar con las máscara de red y redes contiguas potencias de dos.
 - Unir 2,4,8,16... redes de un mismo tipo CONTIGUO y potencia de
 - dos.
 - ¿Soluciona los problemas de la solución 1?

- 1.3 Supernetting (CIDR).
 - Ejemplo con redes tipo C 192.0.0.0 a 223.255.255.255.
 - Unir dos redes:
 - Se necesita un bit para contar dos redes.
 - Se pasa un bit de red a host.
 - De /24 a /23.
 - 192.168.0.0/23, con broadcast 192.168.1.255 y con 2º ips posibles.
 - ¿Se puede agrupar 3 redes tipo C? ¿Qué problema tiene?
 - ¿Y 4? ¿6? ;8?

- 1.3 Supernetting (CIDR).
- Ejercicio.
 - La fábrica de Ford ha creado una nueva línea de producción y tiene 2000 robots que han de estar en la misma red para ganar velocidad.
 - Se dispone de las redes privadas 192.168.0.0 hasta la 192.168.20.0.
 - Indicar las posibles superredes que contienen las ip mínimas para tener los 2000 robots en la misma.

2.PROTOCOLO IPv6.

- 2011 se acabó la concesión de bloques de direcciones IP.
- Quedan direcciones en manos de empresas privadas.
- Solución→ Pasar de 32 a 128 bits los bits.
 - Cerca de 6,7 × 1017 (670 mil billones) de direcciones por cada milímetro cuadrado de la superficie de la Tierra.
- Adaptación de IPv4 a IPv6 lenta.

IPv4 and IPv6 Comparison

IP version	IPv4	IPv6	
Deployed	1981	1999	
Address Size	32-bit number	128-bit number	
Address Format	Dotted Decimal Notation: 192.0.2.76	Hexadecimal Notation: 2001:0DB8:0234:AB00: 0123:4567:8901:ABCD	
Number of Addresses	2 ³² = 4,294,967,296	2 ¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456	
Examples of Prefix Notation	192.0.2.0/24 10/8 (a "/8" block = 1/256 th of total IPv4 address space = 2 ²⁶ = 16.777.216 addresses)	2001:0DB8:0234::/48 2600:0000::/12	

2.PROTOCOLO IPv6.

- 2.1 Mejoras de IPv6.
- Ampliación a 128 bits.
- Mecanismo de opciones mejorado(cabeceras más sencillas) ¿Qué supone esto en los routers?

- 2.PROTOCOLO IPv6.
- 2.1 Mejoras de IPv6.
- Extensión de tamaño de paquetes (64 KB IPv4 a 4GBytes).
- Autoconfiguración usando ICMPv6 (SLAAC).
- Multidifusión. (No difusión global).
- Flexibilidad en direccionamiento(no existen las clases).
- Mejora rendimiento de paquetes.(Header más sencillo, no fragmentación de paquetes(trocear), no CRC)→ Velocidad de procesamiento mejora.
- Mecanismo asignación de recursos a tráfico de alta prioriodad.
- Seguridad y confidencialidad. (IPSec, ip seguro, forma parte del núcleo de IPv6)

- 2.PROTOCOLO IPv6.
- 2.2 Direccionamiento IPv6.
- 8 grupos de 4 bytes hexadecimales SEPARADOS POR DOS PUNTOS.
- Compactar con ceros no significativos AGRUPADOS, <u>solo una vez</u>.

2.PROTOCOLO IPv6.

- 2.2 Direccionamiento IPv6.
- Dos partes de 64 bits.
 - Primeros 64 bits→ PREFIJO DE RED, compuesto de:
 - FP (3 bits). Direcciones globales 2xxx, 3xxx.
 - TLA ID (13 bits). Subredes organismos importantes.
 - RES.(8 bits) (Reservado, para aumento NLA o TLA.
 - NLA ID (24 bits). Otra subred a nivel de ISP.
 - SLA ID(16 bits). Nueva subdivisión.

	3 bits	13 bits	8 bits	24 bits	16 bits	64 bits
	001	TLA ID	RES	NLA ID	SLA ID	ID Interfaz
`[Proveedor (48b) Sitio(16b)				ID Interfaz	
	CIDR				MAC	

- 2.PROTOCOLO IPv6.
- 2.2 Direccionamiento IPv6.
- Últimos 64 bits → Parte de host (A partir de la MAC, problema seguridad).
 - Formato EUI-64. Autoconfiguración.
 - Primeros 24 bits parte fabricante MAC.
 - Últimos 24 bits parte de interfaz MAC.
 - Intermedio FF:FE.
 - MODIFICAR SEGUNDO BIT MENOS SIGNIFICATIVO DE CERO A 1 DEL SEGUNDO NIBBLE(grupo de 4 bits)
 - Facilita manejo identificaciones sin valor físico como túneles.

2.PROTOCOLO IPv6.

- 2.2 Direccionamiento IPv6.
- Ejercicio:

 A partir de la MAC:
 9A:22:D1:CA:9F-93 calcular
 la parte de host de la dirección IP.

Therefore: ::1 – globally assigned EUI-64, but locally assigned MEUI-64

2.PROTOCOLO IPv6.

- 2.2 Direccionamiento IPv6. Tipos de direcciones.
- Unicast. Identifican una interfaz de red única.
 - Enlace local. En un enlace simple. NO DEBEN SER ENRUTADAS NUNCA. Uso para autoconfiguración, descubrir vecinos. Redes temporales. Sin prefijo global.
 - Sitio local. Contiene información de subred dentro de la dirección.
 No se enrutan enrutadas DENTRO DEL SITIO. Sin prefijo global.
 - Globales. Accesibles desde el exterior. Con prefijo global. Son enrutas.

2.PROTOCOLO IPv6.

2.2 Direccionamiento IPv6. Tipos de direcciones.

- Anycast. A un grupo de interfaces, se entrega a UNO de los miembros, normalmente el más cercano.
- Multicast. A un grupo de interfaces, se entrega A TODOS.
 - Primer octeto a FF.
 - Segundo octeto alcance(scope). 0x1(nodo local), 0x2 (enlace loca), 0x5 (sitio local), 0x8 (organización local), 0xE (global).

Los 112 bits restantes identificador de grupo

Function	Multicast Group	IPv4 Equivalent
All Hosts	FF02::1	Subnet Broadcast Address
All Routers	FF02::2	224.0.0.2
OSPFv3	FF02::5	224.0.0.5
Routers		
OSPFv3 DR	FF02::6	224.0.0.6
RIPng	FF02::9	224.0.0.9
EIGRP Routers	FF02::A	224.0.0.10
PIM Routers	FF02::D	224.0.0.13

Table 2-2 IPv6 Multicast Addresses

2.PROTOCOLO IPv6.

2.2 Direccionamiento IPv6. Tipos de direcciones.

2.PROTOCOLO IPv6.

2.2 Direccionamiento IPv6. Tipos de direcciones.

Según prefijos.

- Sin dirección ::/128. Todo a ceros. Uso al arrancar.
- Bucle local ::1/128. Equivalente a 127.0.0.1.
- Enlace local FE80::/10. Para un enlace físico. Similar APIPA IPv4 (169.254.0.0/16).
- Sitio local FEC0::/10. Válida dentro de la organización. (Obsoleto).
- Direcciones locales FC00::/7. No enrutables globalmente, similar IP privadas IPv4.
- Direcciones globales 2xxx:: o 3xxx. Enrutables globalmente.
- Multidifusión FF00::/8.

2.PROTOCOLO IPv6.

- 2.2 Direccionamiento IPv6. Enlace local e índices de zona.
 - Toda interfaz dirección enlace local, pero solo enrutar local.
 - Necesario identificador especial
 — %, depende del sistema operativo (Windows 1, Unix interzaz)
- Pilas dual IPv4/IPv6.
 - Convivencia y adaptación.
 - Pila dual.
 - Dos técnicas:
 - Mapeada ::ffff:IPv4/96.
 - Compatible (obsoleta): ::IPv4

IPv4-Mapped IPv6 address

2.PROTOCOLO IPv6.

- 2.2 Direccionamiento IPv6. Implantación gradual de IPv6.
 - Convivencia de IPv6 e IPv4.
 - Pila dual. Ambos protocolos en cada nodo de la red. Mayor costo.
 Ampliamente extendido y es fácil de desplegar.
 - Tunelización: Se encapsula el protocolo IPv6 dentro de paquetes IPv4.
 Ligera penalización de rendimiento al duplicar las cabeceras de cada paquete.
 - Traducción: Equipos IPv4 que pasa por redes IPv6. Complejo.

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.1 Controladores "drivers" de la tarjeta de interfaz de red.
 - Programa intermediario entre el dispositivo físico y el SO.
 - Específico para un dispositivo o conjunto de dispositivos concreto.
 - Orígenes:
 - Desarrollados por el creador del SO. Dispositivos más comunes. Tecnologías como PnP.
 - Proporcionada por el fabricante del dispositivo. Se supone más optimizado y con mayor funcionalidad.
 - Proporcionado por el fabricante del chip que integra el dispositivo. Muchos dispositivo mismo chip. Ejemplo chips Broadcom BCM43236(Modo monitor).

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.1.1 Consideraciones sobre los "drivers".
 - Posible diferentes versiones para mismo dispositivo: SO, fabricante dispositivo, fabricante chip.
 - ¿Elección?
 - SO: Seguridad buen funcionamiento, poca funcionalidad.
 - Fabricante dispositivo: Velocidad(depende fabricante). Más utilidades.
 - Fabricante chip. Actualización.
 - En servidores se recomienda controladores de fabricante ya que utilizan tarjetas especializadas y de alto rendimiento.

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.2 Instalación de la tarjeta de interfaz de red.
 - Se pueden encontrar: En procesador (SOC), en chipset, en placa, utilizando ranuras de expansión (PCI,PCI-Express,USB...).
- 3.3 Configuración de las tarjetas de red de cable.
 - Instalación y configurar:
 - Protocolos.
 - Clientes.
 - Servicios.
 - Instalar SOLO los necesarios. Consumo de recursos(memoria, procesador...) así como posibles problemas de seguridad.

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - En Windows.

Panel de control→Centro de redes y recursos compartidos→Cambiar

configuración del adaptador.

- Seleccionar interfaz.
 - Información de la configuración.
 - Configurar.
 - Instalar servicios, clientes y protocolos.
 - Parámetros de funcionamiento.

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - En Windows (Configuración de TCP/IPv4-IPv6).
 - IPv4.
 - Mínimo dirección de red (IP) y la máscara.
 - Opcional (para tener Internet). Puerta de enlace y servidores Dns.
 - DNS. Traduce los nombres, por ejemplo www.google.com a su ip.

- 3.3 Configuración de las tarjetas de red de cable.
 - En Windows (Configuración de TCP/IPv4-IPv6).
 - IPv4.
 - Posible configurar de forma automática DHCP.
 - Servidor proporciona entre otros: IP, máscara, servidores Dns y puerta enlace.
 - Posible establecer configuración alternativa (movilidad).
 - IPv6.
 - Se procede de forma similar.
 - Dispone de autoconfiguración además de servidor DNS.
 - Actualmente Windows implementa las dos capas.

	se asigne automáticamente si la red es compatible con esta consultar con el administrador de red cuál es la
Obtener una dirección IPv6 autom	náticamente
 Usar la siguiente dirección IPv6: 	
Dirección IPv6:	fc00::5
Longitud del prefijo de subred:	64
<u>P</u> uerta de enlace predeterminada:	
Obtener la dirección del servidor D	DNS automáticamente
 Usar las siguientes direcciones de 	servidor DNS:
Servidor DNS preferido:	
Servidor DNS alternativo:	
Validar configuración al salir	Opciones avanzadas

- 3.3 Configuración de las tarjetas de red de cable.
 - En Windows (Configuración de TCP/IPv4-IPv6).
 - IPv4.
 - Posible configurar de forma automática DHCP.
 - Servidor proporciona entre otros: IP, máscara, servidores Dns y puerta enlace.
 - Posible establecer configuración alternativa (movilidad).
 - IPv6.
 - Se procede de forma similar.
 - Dispone de autoconfiguración además de servidor DNS.
 - Actualmente Windows implementa las dos capas.

	se asigne automáticamente si la red es compatible con esta consultar con el administrador de red cuál es la
Obtener una dirección IPv6 autom	náticamente
 Usar la siguiente dirección IPv6: 	
Dirección IPv6:	fc00::5
Longitud del prefijo de subred:	64
<u>P</u> uerta de enlace predeterminada:	
Obtener la dirección del servidor D	DNS automáticamente
 Usar las siguientes direcciones de 	servidor DNS:
Servidor DNS preferido:	
Servidor DNS alternativo:	
Validar configuración al salir	Opciones avanzadas

- 3.3 Configuración de las tarjetas de red de cable.
 - Comando IPCONFIG.
 - Verificar la configuración.
 - Sin argumentos: Interfaces activas, IP y gateway.
 - /all: Todos los parámetros: MAC, servidores DNS...
 - Entorno netsh.
 - Intérprete de comandos orientado gestión de la red.
 - Consultar ordenes disponibles ?
 - Basado en contextos:Configuraciones del intérprete asociadas a una funcionalidad.
 - Entrar en contexto (nombre o salir de el (..).
 - Estructura similar a árbol de directorios.

```
G:\(\text{Windows\tystem\text{2\text{Lemosor}} \) (2 \text{Windows\tystem\text{2\text{Lemosor}} \) (3 \text{Windows\tystem\text{2\text{
```

```
CALVindowAsystem32(cmdexe - netsh

CALVinexaYtest2netsh

CALVinexa
```


- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - Entorno netsh.
 - Intérprete de comandos orientado gestión de la red.
 - Consultar ordenes disponibles ?
 - Basado en contextos:Configuraciones del intérprete asociadas a una funcionalidad.
 - Entrar en contexto (nombre o salir de el (..)).
 - Estructura similar a árbol de directorios.
 - Órdenes para consultar y modificar la configuración de red, ejemplos:
 - · Mostrar configuración de red: netsh int ip show config
 - Configurar a partir de fichero:netsh dump > C:\Configred.txt
 - Reiniciar interfaz ip: netsh int ip reset c:\resetlog.txt

- 3.3 Configuración de las tarjetas de red de cable.
 - NetBIOS.
 - Permite a las aplicaciones 'hablar' con la red. Dar independencia del hardware, evitar programar en función direcciones de red.
 - Dirección a partir nombre del equipo.
 - Nivel superior a IP.
 - Capa 5. Funciona sobre (IPC/IPX,NetBEUI,TCP/IP)
 - Dirección APIPA (169.254.0.0/16) en caso de no poder obtener dirección de servidor IP, pero al menos tener comunicación con la red interna.set c:\resetlog.txt

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con gestor de red.
 - Programa "network manager".
 - Varias/añadir configuraciones para una interfaz(sólo una activa).
 - Activar o desactivar la interfaz.
 - Editar→ Cambiar parámetros conexión.
 - Parámetros similares a la configuración de Windows.
 - Ajustes IPv4.
 - Ajustes IPv6.

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con gestor de red.
 - Opciones de configuración:
 - Método: <u>Automático(DHCP)</u> | Solo direcciones automáticas (DHCP) sin DNS | <u>Manual</u> | Solo enlace local (APIPA, 169.254.0.0/16) | Compartida con otros equipos | Desactivado

*	Editano	do Conexió	n cableada 2	+ ×
Nombre de l	a conexión:	Conexión c	ableada 2	
General Ca	ableada Segui	idad 802.1	x Ajustes de IPv4	Ajustes de IPv6
Método:	Automático (DHCP)		•
Dirección				
Direccio	ón Máscara	de red P	uerta de enlace	Añadir Eliminar
Dominio	es DNS adicion os de búsqueda iente DHCP:		s:	
Requ	uiere dirección I	(Pv4 para c	ue esta conexión	se complete Rutas
			Cancelar	% Guardar

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI.
 - En servidores sin entorno gráfico.
 - Automatización de configuración.
 - Históricamente comando "ifconfig" para conocer la configuración, actualmente integrado en comando "ip" que integra muchas más opciones de configuración de red.
 - Cada interfaz recibe un nombre.
 - Históricamente ethx con x número.
 - En la imagen 2 interfaces.
 - Eno1.
 - Lo (localhost→127.0.0.1)

```
alumno@ciclo1-05:~S ifconfig
         Link encap: Ethernet direcciónHW c4:34:6b:75:77:c8
         Direc. inet:172.18.184.23 Difus.:172.18.184.255 Másc:255.255.255.0
         Dirección inet6: fe80::9de0:25c4:747c:e1ca/64 Alcance:Enlace
          ACTIVO DIFUSIÓN FUNCIONANDO MULTICAST MTU:1500 Métrica:1
         Paquetes RX:74385 errores:0 perdidos:0 overruns:0 frame:0
         Paquetes TX:57310 errores:0 perdidos:0 overruns:0 carrier:0
         colisiones:0 long.colaTX:1000
         Bytes RX:95864861 (95.8 MB) TX bytes:6369420 (6.3 MB)
         Interrupción:18
         Link encap:Bucle local
          Direc. inet:127.0.0.1 Másc:255.0.0.0
         Dirección inet6: ::1/128 Alcance:Anfitrión
         ACTIVO BUCLE FUNCIONANDO MTU:65536 Métrica:1
         Paquetes RX:1639 errores:0 perdidos:0 overruns:0 frame:0
         Paquetes TX:1639 errores:0 perdidos:0 overruns:0 carrier:0
         colisiones:0 long.colaTX:1
          Bytes RX:294101 (294.1 KB) TX bytes:294101 (294.1 KB)
```


3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.

3.3 Configuración de las tarjetas de red de cable.

- Configuración en GNU/Linux con CLI.
 - Con comando "ip" se administra todo lo relacionado con las conexiones de red.
 - Comprobar la configuración:
 - \$ip address show (opcional en nombre interfaz para solo detalle de esta)
 - \$ip address list (opcional nombre interfaz)
 - \$ip link show (estado de la interfaz y MAC).
 - Activar/Desactivar la interfaz:
 - \$sudo ip link set eth0 down (eth0 es nombre interfaz, se puede obtener de ip address)
 - \$sudo ip link set eth0 up
 - Configurar IP:
 - Configurar parámetros IPv4:
 - sudo ip addr add 192.168.1.177/24 broadcast 192.168.1.255 dev eth0
 - sudo ip addr add 192.168.1.177/255.255.255.0 broadcast 192.168.1.255 dev eth0
 - Configurar parámetros IPv6 (importante el scope:local link, global link...).
 - sudo ip addr add fc00::50/64 scope global dev eth0
 - Eliminar dirección de red:
 - sudo ip addr del 192.168.1.177/24 dev eth0

- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI.
 - Configurar puerta de enlace.
 - Ver tabla de rutas(salida por defecto->"default"):
 - Ip route show.
 - Ip route list.
 - Añadir puerta de enlace:
 - sudo ip route add default via 192.168.15.1
 - sudo ip route add default via fc00::100:1
 - Eliminar puerta de enlace:
 - \$sudo ip route del default via 192.168.15.1
 - \$sudo ip route del default via fc00::100:1

3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.

- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI.
 - Manejo de protocolo ARP.
 - Dado una ip obtener la MAC → Protocolo ARP
 - Dado una MAC obtener la IP → Protocolo RARP.
 - ip neighbor show (Ver tabla MAC).
 - sudo ip -s -s neig flush all (Borrar tabla).
 - sudo ip neigh add 192.168.18.50 lladdr 00:1a:30:38:a8:00 dev eth0 nud perm (Añadir entrada)
 - Comando DNS.
 - Nombre→IP.
 - Diferentes formas dependiendo distribución y versión.
 - Entorno gráfico(ya visto anteriormente)
 - Antiguamente resolvconf. Fichero "/etc/systemd/resolved.conf"

[Resolve]
#DNS=
#FallbackDNS=
#Domains=
#LLMNR=no
#MulticastDNS=no
#DNSSEC=no
#Cache=yes
#DNSStubListener=yes

nameserver 8.8.4.4

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI.
 - Comando DNS.(Configuración con resolvconf)
 - Instalar resolvconf: \$sudo apt install resolvconf.
 - Desactivar servicio systemd-resolved (problema entre ellos): \$sudo systemctl disable systemd-resolved.
 - Añadir al fichero /etc/resolv.conf los servidores DNS.
 - Problema reinicio del sistema y cambio configuración (entorno gráfico)
 - NetworkManager de Linux desde el terminal.
 - Desactivar el gestor de redes: sudo systemctl stop NetworkManager.service
 - Activar: sudo systemctl start NetworkManager.service
 - Reiniciar:sudo systemctl restart NetworkManager.service
 - Lanzar el entorno gráfico: nm-connection-editor
 - Visualizar la configuración: nmcli device show [nombre interfaz]
 - Desactivar/activar: nmcli networking off/on [nombre interfaz]

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
 - 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI.
 - NetworkManager de Linux desde el terminal.
 - Revisar el estado: nmcli -p con show "Conexión cableada 1"
 - Consular el estado de la conexión actual:nmcli networking connectivity.
 - Puede responder: none (sin conexión), portal (portal cautivo), limited(red pero no Internet), full (red e internet), unknown.
 - Estado de las conexiones: nmcli connection show
 - Activar/desactivar configuraciones: nmcli connection up|down "Conexión cableada 1"
 - Muchas más opciones, imposible profundizar en todas.
 - Más información:
 - Man cli
 - Man nmcli-examples

3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.

3.3 Configuración de las tarjetas de red de cable.

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI.
 - Netplan.
 - · Servidores sin entorno gráfico
 - Facilidad de configuración, configuración avanzada.
 - Sistema en /etc/netplan.
 - Antiguamente /etc/network/interfaces.
 - Actual fichero /etc/netplan/config.yaml (depende del sistema).
 - Configurar cada una de las interfaces, posible diferentes IP's para una interfaz, servidores de Dns y diferentes parámetros.
 - IMPORTANTE: EJEMPLOS DE USO https://netlan.io

- 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI. Netplan.
 - Formato yalm:
 - La estructura del documento se denota indentando con espacios en blanco; sin embargo no se permite el uso de caracteres de tabulación para indentar.
 - Los miembros de las listas se denotan encabezados por un guion () con un miembro por cada línea, o bien entre corchetes ([]) y separados por coma espacio (,).
 - Los vectores asociativos se representan usando los dos puntos seguidos por un espacio. en la forma "clave: valor", bien uno por línea o entre llaves ({ }) y separados por coma seguida de espacio (,).
 - Los valores sencillos (o escalares) por lo general aparecen sin entrecomillar, pero pueden incluirse entre comillas dobles ("), o comillas simples (').

- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
 - 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI. Netplan.
 - Configuración dinámica, estática y estática con 2 ip's:

```
network:
  version: 2
  renderer: networkd
  ethernets:
   enp3s0:
     dhcp4: true
network:
  version: 2
  renderer: networkd
  ethernets:
    enp3s0:
     addresses:
       - 192.168.18.2/24
       - 10.100.1.45/24
     gatewav4: 192.168.18.1
      nameservers:
           addresses: [192.168.18.1, 1.1.1.1]
```

```
network:
  version: 2
  renderer: networkd
  ethernets:
    enp3s0:
      addresses:
        - 10.10.10.2/24
      gateway4: 10.10.10.1
      nameservers:
          search: [mydomain, otherdomain]
          addresses: [10.10.10.1, 1.1.1.1]
```


- 3. INSTALACIÓN Y CONFIGURACIÓN DE ADAPTADORES DE RED.
 - 3.3 Configuración de las tarjetas de red de cable.
 - Configuración en GNU/Linux con CLI. Netplan.
 - Comandos netplan:
 - Testear fichero netplan: netplan --debug generate
 - Generar configuración: netplan generate
 - Aplicar configuración: netplan apply
 - Notas sobre configuración Linux.
 - Al cambiar la configuración necesario activar y desactivar.
 - Si se hace con ifconfig los cambios son automáticos.
 - Netplan devolver control a GUI: rendered:NetworkManager y reiniciar.
 - Linux solo comprueba que los parámetros son correctos en formato, pueden darse ip duplicadas o red incorrecta.