2章 微分の応用

BASIC

72
$$y=f(x)$$
 とする.
(1) $f'(x)=3x^2-2x$
よって
 $f(2)=2^3-2^2=8-4=4$
 $f'(2)=3\cdot 2^2-2\cdot 2=12-4=8$
したがって, $x=2$ における接線の方程式は
 $y-f(2)=f'(2)(x-2)$
 $y-4=8(x-2)$
 $y=8x-12$

(2)
$$f'(x) = 1 \cdot e^x + x \cdot e^x = e^x (1+x)$$
 よって
$$f(1) = 1 \cdot e^1 = e$$

$$f'(1) = e^1 (1+1) = 2e$$
 したがって, $x = 1$ における接線の方程式は
$$y - f(1) = f'(1)(x-1)$$

$$y - e = 2e(x-1)$$

$$y = 2ex - e$$

$$f(x)=3x^{\frac{2}{3}}$$

$$f'(x)=3\cdot\frac{2}{3}x^{-\frac{1}{3}}=2x^{-\frac{1}{3}}$$
 よって
$$f(8)=3\cdot8^{\frac{2}{3}}=3\cdot(2^3)^{\frac{2}{3}}=3\cdot4=12$$

$$f'(8)=2\cdot8^{-\frac{1}{3}}=2\cdot(2^3)^{-\frac{1}{3}}=2\cdot2^{-1}=1$$
 したがって, $x=8$ における接線の方程式は $y-f(8)=f'(8)(x-8)$
$$y-12=1(x-8)$$

(4)
$$f'(x) = \frac{(x^2+1)'}{x^2+1} = \frac{2x}{x^2+1}$$
 よって
$$f(1) = \log(1^2+1) = \log 2$$

$$f'(1) = \frac{2\cdot 1}{1^2+1} = 1$$
 したがって, $x=1$ における接線の方程式は
$$y-f(1) = f'(1)(x-1)$$

$$y-\log 2 = 1(x-1)$$

$$y=x-1+\log 2$$
 73 $y=f(x)$ とする.
(1) $f'(x)=3x^2-2$ よって $f(1)=1^3-2\cdot 1=1-2=-1$ $f'(1)=3\cdot 1^2-2=1$ したがって, $x=1$ における法線の方程式は $y-f(1)=-\frac{1}{f'(1)}(x-1)$ $y-(-1)=-\frac{1}{1}(x-1)$ $y=-x+1-1$ $y=-x$

$$f'(x)=\frac{1}{2}(x+1)^{-\frac{1}{2}}(x+1)'=\frac{1}{2\sqrt{x+1}}$$
 よって
$$f(3)=\sqrt{3+1}=\sqrt{4}=2$$

$$f'(3)=\frac{1}{2\sqrt{3+1}}=\frac{1}{2\cdot 2}=\frac{1}{4}$$
 したがって, $x=1$ における法線の方程式は $y-f(3)=-\frac{1}{f'(3)}(x-3)$
$$y-2=-\frac{1}{\frac{1}{4}}(x-3)$$

$$y=-4(x-3)+2$$

$$y=-4x+14$$

(3)
$$f'(x) = \frac{1}{\cos^2 2x} \cdot (2x)' = \frac{2}{\cos^2 2x}$$
 よって
$$f\left(\frac{\pi}{2}\right) = \tan \pi = 0$$

$$f'\left(\frac{\pi}{2}\right) = \frac{2}{\cos^2 \pi} = \frac{2}{(-1)^2} = 2$$
 したがって, $x = \frac{\pi}{2}$ における法線の方程式は
$$y - f\left(\frac{\pi}{2}\right) = -\frac{1}{f'\left(\frac{\pi}{2}\right)} \left(x - \frac{\pi}{2}\right)$$

$$y - 0 = -\frac{1}{2} \left(x - \frac{\pi}{2}\right)$$

$$y = -\frac{1}{2} x + \frac{\pi}{4}$$

74 y=f(x) とする. (1) $f'(x)=3x^2+12$ $3x^2\geq 0$ なので, $3x^2+12>0$ よって,すべての実数 x について,f'(x)>0 であるから,f(x) は区間 I で単調に増加する.

(2)
$$f'(x)=1-e^x$$
 区間 $(0, \infty)$ の x について $e^x>1$ であるから

すなわち , f'(x) < 0 であるから , f(x) は区間 I で単調に減少する .

75 (1)
$$y'=2x-6$$
 $=2(x-3)$ $y'=0$ とすると , $x=3$ $x=3$ のときの y の値は $y=3^2-6\cdot 3+9$ $=9-18+9=0$ y の増減表は次のようになる .

x		3	
y'	_	0	+
y	\	0	1

よって x>3 のとき 増加 x<3 のとき 減少

(2)
$$y' = 4x^3 - 4x$$

 $= 4x(x^2 - 1) = 4x(x + 1)(x - 1)$
 $y' = 0$ とすると, $x = 0$, -1 , 1
 $x = 0$ のときの y の値は
 $y = 1$
 $x = -1$ のときの y の値は
 $y = (-1)^4 - 2 \cdot (-1)^2 + 1$
 $= 1 - 2 + 1 = 0$
 $x = 1$ のときの y の値は
 $y = 1^4 - 2 \cdot 1^2 + 1$
 $= 1 - 2 + 1 = 0$

y の増減表は次のようになる.

	\boldsymbol{x}		-1		0		1	
	y'	_	0	+	0	_	0	+
Ī	y	_	0	1	1	_	0	1

よって

-1 < x < 0, 1 < x のとき 増加 x < -1, 0 < x < 1 のとき 減少

(3)
$$y' = 2xe^x + x^2e^x$$

 $= e^xx(2+x)$
 $y' = 0$ とすると, $x = -2$, 0
 $x = -2$ のときの y の値は
 $y = (-2)^2e^{-2}$
 $= \frac{4}{e^2}$
 $x = 0$ のときの y の値は
 $y = 0$

y の増	減表	は次のよ	うにな	る.		
	x		-2		0	
	y'	+	0	_	0	

よって $x<-2, \quad 0< x$ のとき 増加 -2< x<0 のとき 減少

76
$$(f(x)+x^3)'=0$$
 より, $f(x)+x^3$ は,定数関数なので, C を定数として

$$f(x) + x^3 = C$$

とおくことができる.これより

$$f(x)=-x^3+C$$
 ここで, $f(-1)=1$ であるから
$$-(-1)^3+C=1$$
,すなわち, $C=1-1=0$ よって, $f(x)=-x^3$

77 (1)
$$y' = 3x^2 - 12x + 9$$
 $= 3(x^2 - 4x + 3)$ $= 3(x - 1)(x - 3)$ $y' = 0$ とすると , $x = 1$, 3 $x = 1$ のときの y の値は $y = 1^3 - 6 \cdot 1^2 + 9 \cdot 1 - 3$ $= 1 - 6 + 9 - 3 = 1$ $x = 3$ のときの y の値は

$$y = 3^3 - 6 \cdot 3^2 + 9 \cdot 3 - 3$$
$$= 27 - 54 + 27 - 3 = -3$$

y の増減表は次のようになる.

\boldsymbol{x}		1		3	
y'	+	0	_	0	+
y	1	1	`	-3	1

よって

極大値
$$1$$
 $(x=1)$ 極小値 -3 $(x=3)$

(2)
$$y'=4x^3-4$$

$$=4(x^3-1)$$

$$=4(x-1)(x^2+x+1)$$
 $y'=0$ とすると, $x=1$
$$x^2+x+1=0$$
 は実数解をもたない.

$$x = 1$$
 のときの y の値は

$$y = 1^4 - 4 \cdot 1$$

$$= 1 - 4 = -3$$

y の増減表は次のようになる.

\boldsymbol{x}		1	
y'	_	0	+
\boldsymbol{y}		-3	1

よって

極大値 なし

極小値 -3 (x=1)

(3)
$$y' = 4x^3 - 12x^2$$

 $= 6x^2(x-3)$
 $y' = 0$ とすると, $x = 0$, 3
 $x = 0$ のときの y の値は
 $y = 0$
 $x = 3$ のときの y の値は
 $y = 3^4 - 4 \cdot 3^3$
 $= 81 - 108 = -27$

y の増減表は次のようになる.

x		0		3	• • •
y'	_	0	_	0	+
y	\	0	\	-27	1

よって

極大値 なし

極小値 -27 (x=3)

78
$$y' = 3x^2 - 12$$

 $= 3(x^2 - 4)$
 $= 3(x + 2)(x - 2)$
 $y' = 0$ とすると, $x = -2$, 2
 $x = -2$ のときの y の値は
 $y = (-2)^3 - 12 \cdot (-2) - a$
 $= -8 + 24 - a = -a + 16$
 $x = 2$ のときの y の値は
 $y = 2^3 - 12 \cdot 2 - a$
 $= 8 - 24 - a$
 $= -a - 16$

y の増減表は次のようになる.

\boldsymbol{x}		-2		2	
y'	+	0	_	0	+
y	1	-a + 16	\	-a - 16	1

極大値は ,
$$-a+16$$
 , 極小値は , $-a-16$ であるから , 題意より
$$\begin{cases} -a+16>0 & \cdots \\ -a-16>0 & \cdots \end{cases}$$

① より,
$$a<16$$
,② より, $a<-16$ であるから $a<-16$

79 (1)
$$y' = 3x^2 - 6x$$

 $= 3x(x-2)$
 $y' = 0$ とすると , $x = 0$, 2
 $x = -1$ のときの y の値は
 $y = (-1)^3 - 3 \cdot (-1)^2 + 4$
 $= -1 - 3 + 4 = 0$
 $x = 0$ のときの y の値は

$$y=4$$

$$x=2\,$$
のときの y の値は
$$y=2^3-3\cdot 2^2+4$$

$$=8-12+4=0$$

 $x=3$ のときの y の値は
 $y=3^3-3\cdot3^2+4$
 $=27-27+4=4$

y の増減表は次のようになる.

x	-1		0		2		3	
y'		+	0	_	0	+		
y	0	1	4	\	0	1	4	

よって

最大値 4 (x=0, 3) 最小値 0 (x=-1, 2)

(2)
$$y' = 4x^3 - 12x + 8$$

 $= 4(x^3 - 3x + 2)$
 $= 4(x + 2)(x^2 - 2x + 1) = 4(x + 2)(x - 1)^2$
 $y' = 0$ とすると, $x = -2$, 1
 $x = -3$ のときの y の値は
 $y = (-3)^4 - 6 \cdot (-3)^2 + 8 \cdot (-3)$
 $= 81 - 54 - 24 = 3$
 $x = -2$ のときの y の値は
 $y = (-2)^4 - 6 \cdot (-2)^2 + 8 \cdot (-2)$
 $= 16 - 24 - 16 = -24$
 $x = 1$ のときの y の値は
 $y = 1^4 - 6 \cdot 1^2 + 8 \cdot 1$
 $= 1 - 6 + 8 = 3$
 $x = 2$ のときの y の値は
 $y = 2^4 - 6 \cdot 2^2 + 8 \cdot 2$
 $= 16 - 24 + 16 = 8$

y のi	y の増減表は次のようになる .								
	$\begin{vmatrix} x & -3 & \cdots & -2 & \cdots & 1 & \cdots & 2 \end{vmatrix}$								
	y'					+			
	y 3 \ -24 / 3 / 8								

よって

最大値 $8 \quad (x=2)$ 最小値 $-24 \quad (x=-2)$

(3)
$$y'=\cos x-\sin x$$

$$y'=0$$
 とすると
$$\cos x=\sin x$$
 より, $0\leq x\leq \pi$ において, $x=\frac{\pi}{4}$ $x=0$ のときの y の値は
$$y=\sin 0+\cos 0=1$$

$$x=rac{\pi}{4}$$
 のときの y の値は

$$y = \sin\frac{\pi}{4} + \cos\frac{\pi}{4}$$

$$=rac{\sqrt{2}}{2}+rac{\sqrt{2}}{2}=\sqrt{2}$$
 $x=\pi$ のときの y の値は

 $y = \sin \pi + \cos \pi = -1$

y の増減表は次のようになる.

x	0		$\frac{\pi}{4}$		π
y'		+	0	_	
y	1	1	$\sqrt{2}$	\	-1

よって

最大値
$$\sqrt{2}$$
 $\left(x = \frac{\pi}{4}\right)$

$$(4) y' = 4 \cdot \frac{1}{x} - 2x$$

$$= \frac{4 - 2x^2}{x}$$

$$= \frac{-2(x^2 - 2)}{x}$$

$$= \frac{-2(x + \sqrt{2})(x - \sqrt{2})}{x}$$

y'=0 とすると , $1 \le x \le e$ において , $x=\sqrt{2}$

x = 1 のときの y の値は

$$y = 4\log 1 - 1^2$$

$$=0-1=-1$$

$$x=\sqrt{2}$$
 のときの y の値は

$$y = 4\log\sqrt{2} - (\sqrt{2})^2$$

$$=2\log(\sqrt{2})^2-2$$

$$=2\log 2-2$$

x = e のときの y の値は

$$y = 4\log e - e^2$$

$$=4-e^2$$

y の増減表は次のようになる.

x	1		$\sqrt{2}$		e
y'		+	0	_	
y	-1	1	$2\log 2 - 2$	`	$4-e^2$

ここで,-1と $4-e^2$ の大小関係について,e=2.7より,

$$e^2 > 5$$

これより ,
$$-e^2 < -5$$

$$4 - e^2 < 4 - 5$$

すなわち , $4 - e^2 < -1$

よって

最大値
$$2\log 2 - 2$$
 $(x = \sqrt{2})$

最小値
$$4-e^2$$
 $(x=e)$

図のように点を定める.

(1) $\mathrm{OM} = |x-r|$ であるから, $\mathrm{BM} = l$ とおくと, $\triangle \mathrm{OBM}$ に おいて三平方の定理より

$$|l^2 + |x - r|^2 = r^2$$

すなわち ,
$$l^2=r^2-(x-r)^2\cdots$$
①

また,
$$\triangle ABC = 3\sqrt{3}$$
 であるから, $\frac{1}{2} \cdot 2l \cdot x = 3\sqrt{3}$

これより

$$lx = 3\sqrt{3}$$

$$l = \frac{3\sqrt{3}}{r}$$

$$l^2 = \frac{\overset{\circ}{27}}{r^2}$$

これを ① に代入して

$$\frac{27}{x^2} = r^2 - (x - r)^2$$
$$= \{r + (x - r)\}\{r - (x - r)\}$$

$$= x(2r - x)$$

$$=2rx-x^2$$

よって

$$2rx = x^2 + \frac{27}{x^2}$$

$$r = \frac{x}{2} + \frac{27}{2x^3} \quad (x > 0)$$

(2)
$$r' = \frac{1}{2} + \frac{27}{2} \cdot (-3x^{-4})$$

$$=\frac{1}{2}-\frac{3^4}{2x^4}$$

これより ,
$$x^3 = 3^3$$
 , すなわち , $x = 3$

$$x=3$$
 のときの r の値は

$$x=3$$
 のときの r の値は
$$r=\frac{3}{2}+\frac{27}{2\cdot 3^3}$$

$$=\frac{3}{2}+\frac{1}{2}=2$$

 $=\frac{3}{2}+\frac{1}{2}=2$ r の増減表は次のようになる

ISMOS JEGO.								
\boldsymbol{x}	0		3					
r'		_	0	+				
r		_	2	1				

よって,x=3のとき,rは最小となる.

81 (1)
$$y = x^3 - 2 - 3(x^2 - 2)$$

= $x^3 - 3x^2 + 4$

$$y' = 3x^2 - 6x$$
$$= 3x(x - 2)$$

$$y'=0$$
 とすると, $x=0,\ 2$

x=0 のときの y の値は

$$y = 4$$

x=2 のときの y の値は

$$y = 2^3 - 3 \cdot 2^2 + 4$$

$$=8-12+4=0$$

y の増減表は次のようになる.

x	0		2	
y'	0	_	0	+
y	4	\	0	1

よって , $x \ge 0$ のとき , x = 2 で , 最小値 0 をとるから

$$y = x^3 - 3x^2 + 4 \ge 0$$

これより ,
$$x^3-2-3(x^2-2) \ge 0$$
 であるから

$$x^3 - 2 \ge 3(x^2 - 2)$$
 $(x \ge 0)$

(2)
$$y = \log(1+x) - \left(x - \frac{1}{2}x^2\right)$$
$$= \log(1+x) - x + \frac{1}{2}x^2$$

とおく.
$$y' = \frac{1}{1+x} - 1 + x$$
$$= \frac{1 - (1-x)(1+x)}{1+x}$$
$$= \frac{x^2}{1+x}$$
$$y' = 0$$
 とすると, $x = 0$

x=0 のときの y の値は

$$y = \log(1+0) - 0 + 0 = 0$$

y の増減表は次のようになる.

x	0	
y'	0	+
y	0	1

よって, $x \geq 0$ のとき,x = 0 で最小値 0 をとるから $y = \log(1+x) - x + \frac{1}{2}x^2 \geq 0$

これより,
$$\log(1+x)-\left(x-\frac{1}{2}x^2\right)\geq 0$$
 であるから $\log(1+x)\geq x-\frac{1}{2}x^2$ $(x\geq 0)$

82(1) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 1} \frac{(x^3 - 2x^2 - 3x + 4)'}{(-x^3 + x^2 + 2x - 2)'}$$

= $\lim_{x \to 1} \frac{3x^2 - 4x - 3}{-3x^2 + 2x + 2}$
= $\frac{3 \cdot 1^2 - 4 \cdot 1 - 3}{-3 \cdot 1^2 + 2 \cdot 1 + 2}$
= $\frac{-4}{1} = -4$

〔別解〕

与式 =
$$\lim_{x \to 1} \frac{(x-1)(x^2 - x - 4)}{(x-1)(-x^2 + 2)}$$

$$= \lim_{x \to 1} \frac{x^2 - x - 4}{-x^2 + 2}$$

$$= \frac{1^2 - 1 - 4}{-1^2 + 2}$$

$$= \frac{-4}{1} = -4$$

(2) の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(\tan^{-1} x)'}{x'}$$
= $\lim_{x \to 0} \frac{\frac{1}{1+x^2}}{1}$
= $\frac{1}{1+0} = 1$

(3) の不定形である.

与式 =
$$\lim_{x \to 0} \frac{\{\log(1+x^2)\}'}{x'}$$

$$= \lim_{x \to 0} \frac{\frac{1}{1+x^2} \cdot 2x}{1}$$

$$= \lim_{x \to 0} \frac{2x}{1+x^2}$$

$$= \frac{0}{1+0} = \mathbf{0}$$

(4) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(e^{2x} - 1)'}{(3x)'}$$
$$= \lim_{x \to 0} \frac{2e^{2x}}{3}$$
$$= \frac{2 \cdot 1}{3} = \frac{2}{3}$$

(5) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(x \cos x)'}{(x - \sin 2x)'}$$
= $\lim_{x \to 0} \frac{\cos x + x(-\sin x)}{1 - \cos 2x \cdot 2}$
= $\lim_{x \to 0} \frac{\cos x - x \sin x}{1 - 2\cos 2x}$
= $\frac{1 - 0}{1 - 2 \cdot 1} = -1$

83(1) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 1} \frac{(x^3 + x^2 - 5x + 3)'}{(-x^3 + x^2 + x - 1)'}$$
= $\lim_{x \to 1} \frac{3x^2 + 2x - 5}{-3x^2 + 2x + 1}$ (まだ $\frac{0}{0}$)
= $\lim_{x \to 1} \frac{(3x^2 + 2x - 5)'}{(-3x^2 + 2x + 1)'}$
= $\lim_{x \to 1} \frac{6x + 2}{-6x + 2}$
= $\frac{6 + 2}{-6 + 2} = \frac{8}{-4} = -2$

〔別解〕

与式 =
$$\lim_{x \to 1} \frac{(x-1)(x^2 + 2x - 3)}{(x-1)(-x^2 + 1)}$$
= $\lim_{x \to 1} \frac{x^2 + 2x - 3}{-x^2 + 1}$
= $\lim_{x \to 1} \frac{(x-1)(x+3)}{-(x-1)(x+1)}$
= $\lim_{x \to 1} \frac{x+3}{-(x+1)}$
= $\frac{1+3}{-(1+1)}$
= $\frac{4}{-2} = -2$

$$(2)$$
 の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'}$$

$$= \lim_{x \to 0} \frac{\sin x}{2x} \qquad \left(\sharp \mathcal{E} \quad \frac{0}{0} \right)$$

$$= \lim_{x \to 0} \frac{(\sin x)'}{(2x)'}$$

$$= \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}$$

〔別解〕

与式 =
$$\lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'}$$
= $\lim_{x \to 0} \frac{\sin x}{2x}$
= $\lim_{x \to 0} \frac{1}{2} \cdot \frac{\sin x}{x}$
= $\frac{1}{2} \cdot 1 = \frac{1}{2}$

〔別解〕

与式 =
$$\lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x^2(1 + \cos x)}$$

= $\lim_{x \to 0} \frac{1 - \cos^2 x}{x^2(1 + \cos x)}$
= $\lim_{x \to 0} \frac{\sin^2 x}{x^2(1 + \cos x)}$
= $\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \cdot \frac{1}{1 + \cos x}$
= $1^2 \cdot \frac{1}{1 + 1} = \frac{1}{2}$

 $\frac{0}{0}$ の不定形である . (3)

与式 =
$$\lim_{x \to \frac{\pi}{2}} \frac{\{(2x - \pi)^2\}'}{(\sin x - 1)'}$$

= $\lim_{x \to \frac{\pi}{2}} \frac{2(2x - \pi) \cdot 2}{\cos x}$ (まだ $\frac{0}{0}$)

= $\lim_{x \to \frac{\pi}{2}} \frac{\{4(2x - \pi)\}'}{(\cos x)'}$

= $\lim_{x \to \frac{\pi}{2}} \frac{8}{-\sin x}$

= $\frac{8}{-1} = -8$

(4) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(e^{2x} - 2x - 1)'}{(x^2)'}$$

= $\lim_{x \to 0} \frac{2e^{2x} - 2}{2x}$ (まだ $\frac{0}{0}$)

= $\lim_{x \to 0} \frac{(2e^{2x} - 2)'}{(2x)'}$

= $\lim_{x \to 0} \frac{4e^{2x}}{2}$

= $\frac{4 \cdot 1}{2} = \mathbf{2}$

84 (1) $\frac{\infty}{-\infty}$ の不定形である .

与式 =
$$\lim_{x \to \infty} \frac{(2x^3 - 3x + 1)'}{(-x^3 - 2x^2 + 4)'}$$

= $\lim_{x \to \infty} \frac{6x^2 - 3}{-3x^2 - 4x}$ (まだ $\frac{\infty}{-\infty}$)

= $\lim_{x \to \infty} \frac{(6x^2 - 3)'}{(-3x^2 - 4x)'}$

= $\lim_{x \to \infty} \frac{12x}{-6x - 4}$ (まだ $\frac{\infty}{-\infty}$)

= $\lim_{x \to \infty} \frac{(12x)'}{(-6x - 4)'}$

= $\lim_{x \to \infty} \frac{12}{-6} = -2$

〔別解〕

与式 =
$$\lim_{x \to \infty} \frac{2 - \frac{3}{x^2} + \frac{1}{x^3}}{-1 - \frac{2}{x} + \frac{4}{x^3}}$$

$$= \frac{2 - 0 + 0}{-1 - 0 + 0} = -2$$

(2)
$$-x=t$$
 とおけば, $x\to -\infty$ のとき, $t\to \infty$ であるから 与式 $=\lim_{t\to \infty} \frac{\log|-t|}{-t}$

$$rac{\infty}{-\infty}$$
 の不定形である.
与式 $=\lim_{t o\infty}rac{\log|t|}{-t}$

$$t \to \infty - t$$

$$= \lim_{t \to \infty} \frac{(\log |t|)'}{(-t)'}$$

$$= \lim_{t \to \infty} \frac{\frac{1}{t}}{-1}$$

$$= \lim_{t \to \infty} \left(-\frac{1}{t}\right) = \mathbf{0}$$

85 (1)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{e^x} \quad \left(\frac{\infty}{\infty}\right)$$
$$= \lim_{x \to \infty} \frac{x'}{(e^x)'}$$
$$= \lim_{x \to \infty} \frac{1}{e^x} = \mathbf{0}$$

$$-x = t$$
 とおくと

$$\lim_{x \to -\infty} f(x) = \lim_{t \to \infty} (-t)e^{-(-t)}$$
$$= \lim_{t \to \infty} (-te^t) = -\infty$$

(2)
$$f'(x) = e^{-x} - xe^{-x}$$

$$= e^{-x}(1-x)$$

$$y'=0$$
 とすると , $x=1$

$$x=1$$
 のときの y の値は

$$y = 1 \cdot e^{-1} = \frac{1}{e}$$

y の増減表は次のようになる

COR TEAS.							
x		1					
y'	+	0	_				
u	1	1	\				

よって

極大値
$$\dfrac{1}{e}$$
 $(x=1)$ 極小値 なし

CHECK

86
$$y=f(x)$$
 とする.
(1) $f'(x)=-3x^2+9$ よって
$$f(2)=-2^3+9\cdot 2+2=-8+18+2=12$$
 $f'(2)=-3\cdot 2^2+9=-12+9=-3$ したがって, $x=2$ における接線の方程式は $y-f(2)=f'(2)(x-2)$ $y-12=-3(x-2)$ $y=-3x+18$

(2)
$$f'(x) = \frac{x \cos x - \sin x}{x^2}$$
 よって
$$f(\pi) = \frac{\sin \pi}{\pi} = 0$$

$$f'(\pi) = \frac{\pi \cos \pi - \sin \pi}{\pi^2} = \frac{-\pi}{\pi^2} = -\frac{1}{\pi}$$
 したがって, $x = 1$ における接線の方程式は
$$y - f(\pi) = f'(\pi)(x - \pi)$$

$$y - 0 = -\frac{1}{\pi}(x - \pi)$$

$$y = -\frac{1}{\pi}x + 1$$

87
$$y=f(x)$$
 とする.
(1) $f'(x)=-3x^2+2$ よって
$$f(1)=-1^3+2\cdot 1=-1+2=1$$
 $f'(1)=-3\cdot 1^2+2=-3+2=-1$ したがって, $x=1$ における法線の方程式は $y-f(1)=-\frac{1}{f'(1)}(x-1)$ $y-1=-\frac{1}{-1}(x-1)$ $y=x-1+1$ $y=x$

(2)
$$f'(x) = \log x + x \cdot \frac{1}{x} = \log x + 1$$
よって
$$f(e) = e \log e = e$$

$$f'(e) = \log e + 1 = 1 + 1 = 2$$
したがって, $x = 1$ における法線の方程式は
$$y - f(e) = -\frac{1}{f'(e)}(x - e)$$

$$y - e = -\frac{1}{2}(x - e)$$

$$y = -\frac{1}{2}(x - e) + e$$

$$y = -\frac{1}{2}x + \frac{3}{2}e$$

88
$$(f(x)+x^4)'=0 \ \text{より} \ , f(x)+x^4 \ \text{t} \ , 定数関数なので \ , C を定数として
$$f(x)+x^4=C$$
 とおくことができる.これより
$$f(x)=-x^4+C$$
 ここで $, f(-2)=-12$ であるから
$$-(-2)^4+C=-12 \ , \ \text{すなわち} \ , $C=-12+16=4$$$
 よって $, f(x)=-x^4+4$$$

89 (1)
$$y' = 3x^2 - 3$$

 $= 3(x^2 - 1)$
 $= 3(x + 1)(x - 1)$
 $y' = 0$ とすると, $x = -1$, 1
 $x = -1$ のときの y の値は
 $y = (-1)^3 - 3 \cdot (-1) + 1$
 $= -1 + 3 + 1 = 3$
 $x = 1$ のときの y の値は
 $y = 1^3 - 3 \cdot 1 + 1$
 $= 1 - 3 + 1 = -1$

y の増減表は次のようになる.

x		-1		1	
y'	+	0	_	0	+
y	1	3	\	-1	1

よって

極大値
$$3 \quad (x = -1)$$
 極小値 $-1 \quad (x = 1)$

(2)
$$y' = 2\sin x \cos x$$

 $y' = 0$ とすると, $\sin x = 0$, $\cos x = 0$
 $\sin x = 0$ より, $x = \pi$
 $\cos x = 0$ より, $x = \frac{\pi}{2}$, $\frac{3}{2}\pi$
 $x = \frac{\pi}{2}$ のときの y の値は
 $y = \sin^2 \frac{\pi}{2} = 1^2 = 1$
 $x = \pi$ のときの y の値は
 $y = \sin^2 \pi = 0$
 $x = \frac{3}{2}\pi$ のときの y の値は
 $y = \sin^2 \pi = 0$

y の増減表は次のようになる

9	9 55 11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13								
\boldsymbol{x}	0		$\frac{\pi}{2}$		π		$\frac{3\pi}{2}$		2π
y'		+	0	_	0	+	0	_	
y		1	1	`	0	1	1	`	

よって

極大値
$$1$$
 $\left(x=rac{\pi}{2},\;rac{3}{2}\pi
ight)$ 極小値 0 $\left(x=\pi
ight)$

90
$$y' = -3x^2 + 6x$$

= $-3x(x-2)$
 $y' = 0$ とすると, $x = 0, 2$
 $x = 0$ のときの y の値は

$$y = -a$$

 $x = 2$ のときの y の値は
 $y = -2^3 + 3 \cdot 2^2 - a$
 $= -8 + 12 - a$
 $= -a + 4$

y の増減表は次のようになる.

x		0		2	
y'	_	0	+	0	_
y	\	-a	1	-a+4	_

極大値は,
$$-a+4$$
,極小値は, $-a$ であるから,題意より

$$\begin{cases} -a+4 < 0 & \cdots \\ -a < 0 & \cdots \\ 2 \end{cases}$$

① より ,
$$a>4$$
 , ② より , $a>0$ であるから

a > 4

91
$$y' = 4x^3 - 12x^2 + 8x$$

 $= 4x(x^2 - 3x + 2)$
 $= 4x(x - 1)(x - 2)$
 $y' = 0$ とすると, $x = 0$, 1, 2
 $x = -1$ のときの y の値は
 $y = (-1)^4 - 4 \cdot (-1)^3 + 4 \cdot (-1)^2$
 $= 1 + 4 + 4 = 9$

$$x=0$$
 のときの y の値は

$$y = 0$$

$$x=1$$
 のときの y の値は
$$y=1^4-4\cdot 1^3+4\cdot 1^2$$

$$=1-4+4=1$$

x=2 のときの y の値は

$$y = 2^4 - 4 \cdot 2^3 + 4 \cdot 2^2$$

$$=16-32+16=0$$

x=3 のときの y の値は

$$y = 3^4 - 4 \cdot 3^3 + 4 \cdot 3^2$$

$$= 81 - 108 + 36 = 9$$

y の増減表は次のようになる.

x	-1		0		1		2		3
y'		_	0	+	0	_	0	+	
y	9	\	0	1	1	1	0	1	9

よって

最大値 9 (x=-1, 3)

最小値
$$0 \quad (x=1, 2)$$

92(1) 底面の円の半径を r とすると , $r^2+x^2=3^2$ より , $r=\sqrt{9-x^2}$

$$V = \frac{1}{3}\pi r^2 \times (x+3)$$

$$= \frac{1}{3}\pi (\sqrt{9-x^2})^2 \times (x+3)$$

$$= \frac{1}{3}\pi (9-x^2)(x+3)$$

高さが3以上であるから, $x+3 \ge 3$ より, $x \ge 0$

また,
$$9 - x^2 > 0$$
 より, $-3 < x < 3$

したがって , 定義域は , $0 \le x < 3$

(2)
$$V' = \frac{1}{3}\pi\{-2x(x+3) + (9-x^2) \cdot 1\}$$
$$= \frac{1}{3}\pi(-2x^2 - 6x + 9 - x^2)$$
$$= \frac{1}{3}\pi(-3x^2 - 6x + 9)$$
$$= -\pi(x^2 + 2x - 3)$$
$$= -\pi(x+3)(x-1)$$

 $0 \leq x < 3$ において , V' = 0 となるのは , x = 1 のときである .

$$x=0$$
 のときの V の値は

$$V = \frac{1}{3}\pi(9 - 0^2)(0 + 3)$$
$$= \frac{1}{3}\pi \cdot 27 = 9\pi$$

x=1 のときの V の値は

$$V = \frac{1}{3}\pi(9 - 1^2)(1 + 3)$$
$$= \frac{1}{3}\pi \cdot 32 = \frac{32}{3}\pi$$

V の増減表は次のようになる .

x	0		1		3
V'		+	0	_	
V	9π	1	$\frac{32\pi}{2}$	\	

よって ,V は x=1 のとき最大となる . $\left($ 最大値は , $\frac{32}{3}\pi\right)$

93
$$y = e^{2x} - (2x+1)$$

$$=e^{2x}-2x-1$$

とおく.

$$y' = e^{2x} \cdot 2 - 2$$

$$=2(e^{2x}-1)$$

y'=0 とすると , $e^{2x}=1$ より , x=0

$$x=0$$
 のときの y の値は

$$y = e^0 - 2 \cdot 0 - 1$$

$$= 1 - 1 = 0$$

y の増減表は次のようになる.

x	0	
y'	0	+
y	0	1

よって , $x \ge 0$ のとき , x = 0 で , 最小値 0 をとるから

$$y = e^{2x} - 2x - 1 \ge 0$$

これより ,
$$e^{2x} - (2x+1) \ge 0$$
 であるから

$$e^{2x} \ge 2x + 1 \quad (x \ge 0)$$

94(1) の不定形である.

与武 =
$$\lim_{x \to 1} \frac{(-x^3 + 2x^2 - x)'}{(2x^3 + x^2 + 2x - 5)'}$$
= $\lim_{x \to 1} \frac{-3x^2 + 4x - 1}{6x^2 + 2x + 2}$
= $\frac{-3 + 4 - 1}{6 + 2 + 2} = \frac{0}{10} = \mathbf{0}$

〔別解〕

与式 =
$$\lim_{x \to 1} \frac{-x(x-1)^2}{(x-1)(2x^2 + 3x + 5)}$$

$$= \lim_{x \to 1} \frac{-x(x-1)}{2x^2 + 3x + 5}$$

$$= \frac{-1(1-1)}{2 \cdot 1^2 + 3 \cdot 1 + 5}$$

$$= \frac{0}{10} = \mathbf{0}$$

 $rac{0}{0}$ の不定形である . (2)

与式 =
$$\lim_{x \to 0} \frac{(2\cos x - 2 + x^2)'}{(x^4)'}$$

= $\lim_{x \to 0} \frac{-2\sin x + 2x}{4x^3}$ (まだ $\frac{0}{0}$)

= $\lim_{x \to 0} \frac{(-\sin x + x)'}{(2x^3)'}$

= $\lim_{x \to 0} \frac{-\cos x + 1}{6x^2}$ (まだ $\frac{0}{0}$)

= $\lim_{x \to 0} \frac{(-\cos x + 1)'}{(6x^2)'}$

= $\lim_{x \to 0} \frac{\sin x}{12x}$

= $\lim_{x \to 0} \frac{1}{12} \cdot \frac{\sin x}{x}$

= $\frac{1}{12} \cdot 1 = \frac{1}{12}$

(3) 与式
$$= \lim_{x \to +0} \sqrt{x} \log x$$

$$= \lim_{x \to +0} \frac{\log x}{\frac{1}{\sqrt{x}}}$$

$$= \lim_{x \to +0} \frac{\log x}{x^{-\frac{1}{2}}} \quad \left(\frac{-\infty}{\infty}\right)$$

$$= \lim_{x \to +0} \frac{(\log x)'}{(x^{-\frac{1}{2}})'}$$

$$= \lim_{x \to +0} \frac{\frac{1}{x}}{-\frac{1}{2}x^{-\frac{3}{2}}}$$

$$= -\lim_{x \to +0} \frac{2}{x^{-\frac{1}{2}}}$$

$$= -\lim_{x \to +0} 2\sqrt{x} = \mathbf{0}$$

95 (1)
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{e^{\frac{x^2}{2}}} \quad \left(\frac{\infty}{\infty}\right)$$
$$= \lim_{x \to \infty} \frac{x'}{(e^{\frac{x^2}{2}})'}$$
$$= \lim_{x \to \infty} \frac{1}{e^{\frac{x^2}{2}} \cdot x} = \mathbf{0}$$

$$\begin{aligned} -x &= t \, \textbf{ とおくと} \\ &\lim_{x \to -\infty} f(x) = \lim_{t \to \infty} (-t) e^{-\frac{(-t)^2}{2}} \\ &= \lim_{t \to \infty} \left(-t e^{-\frac{t^2}{2}} \right) \\ &= -\lim_{t \to \infty} \frac{t}{e^{\frac{t^2}{2}}} = \mathbf{0} \end{aligned}$$

\boldsymbol{x}		-1		1	• • •
y'	_	0	+	0	_
y	`	$-\frac{1}{\sqrt{e}}$	1	$\frac{1}{\sqrt{e}}$	/

よって
極大値
$$\dfrac{1}{\sqrt{e}}$$
 $(x=1)$
極小値 $-\dfrac{1}{\sqrt{e}}$ $(x=-1)$

STEP UP

96 (1) y'=2x であるから,点 P における接線の方程式は $y - (t^2 + 1) = 2t(x - t)$ 整理すると, $y = 2tx - t^2 + 1$

点 Q の
$$x$$
 座標は, $y=2tx-t^2+1$ において, $y=0$ として $0=2tx-t^2+1$ $2tx=t^2-1$ $x=\frac{t^2-1}{2t}$ これより ${
m QR}=t-\frac{t^2-1}{2t}$ $=\frac{2t^2-(t^2-1)}{2t}=\frac{t^2+1}{2t}$ また, ${
m PR}=t^2+1$ であるから

$$S = \frac{1}{2} \cdot \mathrm{QR} \cdot \mathrm{PR}$$

$$= \frac{1}{2} \cdot \frac{t^2 + 1}{2t} \cdot (t^2 + 1)$$

$$= \frac{(t^2 + 1)^2}{4t} \quad (t > 0)$$
(2)
$$S' = \frac{1}{4} \cdot \frac{\{(t^2 + 1)^2\}' \cdot t - (t^2 + 1)^2 \cdot (t)'}{t^2}$$

$$= \frac{1}{4} \cdot \frac{2(t^2 + 1) \cdot 2t \cdot t - (t^2 + 1)^2 \cdot 1}{t^2}$$

$$= \frac{1}{4} \cdot \frac{4t^2(t^2 + 1) - (t^2 + 1)^2}{t^2}$$

$$= \frac{(t^2 + 1)\{4t^2 - (t^2 + 1)\}}{4t^2}$$

$$= \frac{(t^2 + 1)(3t^2 - 1)}{4t^2}$$

$$t > 0 \text{ において, } S' = 0 \text{ となるのは, } 3t^2 - 1 = 0 \text{ より, } t = \frac{1}{\sqrt{3}}$$

$$t = \frac{1}{\sqrt{3}} \text{ のときの } S \text{ の値は}$$

$$\int \left(\frac{1}{\sqrt{3}} \right)^2 + 1 \right)^2$$

$$S = \frac{\left\{ \left(\frac{1}{\sqrt{3}} \right)^2 + 1 \right\}^2}{4 \cdot \frac{1}{\sqrt{3}}}$$

$$= \frac{\left(\frac{1}{3} + 1 \right)^2}{\frac{4}{\sqrt{3}}} = \frac{\left(\frac{4}{3} \right)^2}{\frac{4}{\sqrt{3}}}$$

$$= \frac{\frac{16}{9}}{\frac{4}{\sqrt{3}}} = \frac{\frac{16}{9} \times 9\sqrt{3}}{\frac{4}{\sqrt{3}} \times 9\sqrt{3}}$$

$$= \frac{16\sqrt{3}}{36} = \frac{4\sqrt{3}}{9}$$

S の増減表は次のようになる .

t	0		$\frac{1}{\sqrt{3}}$	• • •
S'		_	0	+
S		\	$\frac{4\sqrt{3}}{9}$	1

よって , S は $t=\frac{1}{\sqrt{3}}$ のとき , 最小となる .

このとき,S の最小値は $\dfrac{4\sqrt{3}}{9}$ $\left(t=\dfrac{1}{\sqrt{3}}
ight)$

97 (1)
$$y=e^x-(1+x)$$

 $=e^x-x-1$
とおく.
 $y'=e^x-1$
 $y'=0$ とすると, $e^x=1$ より, $x=0$
 $x=0$ のときの y の値は
 $y=e^0+0-1$
 $=1-1=0$

y の増減表は次のようになる .

x		0	
y'	_	0	+
y	_	0	1

よって,
$$x=0$$
 で,最小値 0 をとるから, $x \neq 0$ のとき, $y=e^x-x-1>0$ これより, $e^x-(1+x)>0$ であるから $e^x>1+x$ $(x \neq 0)$

$$(2) \quad y = e^x - \left(1 + x + \frac{x^2}{2}\right) \\ = e^x - \frac{x^2}{2} - x - 1 \\ とおく. \\ y' = e^x - x - 1 \\ = z \tau, (1) & y, x \neq 0 \text{ or } b \neq e^x - x - 1 > 0 \text{ trad}$$
 から, y の増減表は次のようになる。
$$x y = 0 \text{ or } x \geq 0 \text{ or } b \neq e^x - x - 1 > 0 \text{ trad}$$
 から, y の増減表は次のようになる。
$$x y = 0 \text{ or } x \geq 0 \text{ or } b \neq e^x - x - 1 > 0 \text{ trad}$$
 はいて
$$y = e^x - \frac{x^2}{2} - x - 1 > 0 \text{ trad}$$

$$z + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \text{ or } b \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \Rightarrow e^x > 1 + x + \frac{x^2}{2} \quad (x > 0) \Rightarrow e^$$

$$=\frac{3}{2}\cdot\left(-\frac{\sqrt{3}}{2}\right)=-\frac{3\sqrt{3}}{4}$$
 $x=2\pi$ のときの y の値は $y=(1+\cos 2\pi)\sin 2\pi=0$ $f(x)$ の増減表は次のようになる.

よって
極大値
$$\dfrac{3\sqrt{3}}{4}$$
 $\left(x=\dfrac{\pi}{3}\right)$
極小値 $-\dfrac{3\sqrt{3}}{4}$ $\left(x=\dfrac{5}{3}\pi\right)$

99(1) 円の半径を R , 二等辺三角形の頂角を A とし , 各頂点を図のように定める .

$$S = \frac{1}{2} \mathrm{AB} \cdot \mathrm{AC} \sin \theta \ (0 < \theta < \pi) \cdots \oplus$$
 正弦定理より, $\frac{\mathrm{AC}}{\sin B} = 2R$ ここで, $\angle \mathrm{B} = \frac{\pi - \theta}{2} = \frac{\pi}{2} - \frac{\theta}{2}$ であるから $\mathrm{AC} = 2R \cdot \sin B$
$$= 2 \cdot 1 \cdot \sin \left(\frac{\pi}{2} - \frac{\theta}{2} \right)$$

$$= 2 \cos \frac{\theta}{2}$$
 また, $\mathrm{AB} = \mathrm{AC}$ であるから,これと ① より $S = \frac{1}{2} \left(2 \cos \frac{\theta}{2} \right)^2 \sin \theta$
$$= 2 \sin \theta \cos^2 \frac{\theta}{2}$$

$$= 2 \sin \theta \cdot \frac{1 + \cos \theta}{2}$$

 $=\sin\theta(1+\cos\theta)$ $(0<\theta<\pi)$

〔AC の求め方の別解〕

頂角 A の二等分線と円周との交点を D とすると , 線分 AD は円の直径となる . (証明略)

$$\triangle ACD$$
 において, $\angle ACD=90^\circ$ であるから $\cos\frac{\theta}{2}=\frac{AC}{AD}=\frac{AC}{2}$ これより, $AC=2\cos\frac{\theta}{2}$

(2)
$$S' = (\sin \theta)'(1 + \cos \theta) + \sin \theta (1 + \cos \theta)'$$
$$= \cos \theta (1 + \cos \theta) + \sin \theta (-\sin \theta)$$
$$= \cos \theta + \cos^2 \theta - \sin^2 \theta$$
$$= \cos \theta + \cos^2 \theta - (1 - \cos^2 \theta)$$
$$= 2\cos^2 \theta + \cos \theta - 1$$
$$= (2\cos \theta - 1)(\cos \theta + 1)$$
$$0 < \theta < \pi$$
はおいて、 $S' = 0$ となるのは、 $2\cos \theta - 1 = 0$ より、 $\cos \theta = \frac{1}{2}$ 、すなわち、 $\theta = \frac{\pi}{3}$

S の増減表は次のようになる.

θ	0		$\frac{\pi}{3}$		π
S'		+	0	_	
S		1	$\frac{3\sqrt{3}}{4}$	`	

よって , S は $\theta=\frac{\pi}{3}$ のとき , 最大となる . このとき , S の最大値は $\frac{3\sqrt{3}}{4}$

100(1) y'=2x であるから , 点 $(t,\ t^2)$ における接線の方程式は $y-t^2=2t(x-t)$

整理すると, $y=2tx-t^2$

(2) C(t) と m が交点をもつためには , C(t) が x=2 において y>0 となればよい .

$$y=2tx-t^2$$
 において, $x=2$ とすると
$$y=2t\cdot 2-t^2$$

$$=-t^2+4t$$
 これより, $-t^2+4t>0$ これを解くと
$$t(t-4)<0$$
 すなわち, $0< t<4$

 $0 = 2tx - t^2$

(3) C(t) と x 軸との交点は , $y=2tx-t^2$ において , y=0 と すれば

よって
$$S(t) = \frac{1}{2} \left(2 - \frac{t}{2}\right) (4t - t^2)$$
 これより

$$S'(t)=rac{1}{2}\left\{-rac{1}{2}(4t-t^2)+\left(2-rac{t}{2}
ight)(4-2t)
ight\}$$
 $=rac{1}{2}\left\{-rac{1}{2}t(4-t)+(4-t)(2-t)
ight\}$ $=rac{1}{4}(4-t)\{-t+2(2-t)\}$ $=rac{1}{4}(4-t)(4-3t)=rac{1}{4}(t-4)(3t-4)$ $0 < t < 4$ において, $S(t)=0$ となるのは, $t=rac{4}{3}$ のときの $S(t)$ の値は $S\left(rac{4}{3}
ight)=rac{1}{2}\left(2-rac{2}{3}
ight)\left(4\cdotrac{4}{3}-rac{16}{9}
ight)$ $=rac{1}{2}\cdotrac{4}{3}\cdotrac{32}{9}=rac{64}{27}$

S(t) の増減表は次のようになる.

t	0		$\frac{4}{3}$		4
S'(t)		+	0	_	
S(t)		1	$\frac{64}{27}$	`	

よって , S(t) は $t=\frac{4}{3}$ のとき , 最大となる . このとき , S(t) の最大値は $\displaystyle \frac{\mathbf{64}}{\mathbf{27}} \quad \left(t = \frac{4}{3}\right)$

$$f(1) - f(3) = (1 + a + b + c) - (27 + 9a + 3b + c)$$

$$= -26 - 8a - 2b$$

$$= -26 - 8 \cdot (-6) - 2 \cdot 9$$

$$= -26 + 48 - 18 = 48 - 44 = 4$$

[a, b の求め方の別解]

 $f'(x) = 3x^2 + 2ax + b$ で, x = 1, 3 で極値をとることから, $3x^2 + 2ax + b = 0$ は x = 1, 3 を解にもつ.

よって, $3x^2 + 2ax + b = 3(x-1)(x-3)$ と因数分解でき, これ は恒等式となる.

右辺 =
$$3(x^2 - 4x + 3) = 3x^2 - 12x + 9$$
 であるから $3x^2 + 2ax + b = 3x^2 - 12x + 9$

両辺の係数と比較して

$$\begin{cases} 2a = -12 \\ b = 9 \end{cases}$$
 したがって, $a = -6$, $b = 9$

(2) (1)より
$$f(x) = x^3 + 3x^2 - 9x$$

$$f'(x) = 3x^2 + 6x - 9$$

 $= 3(x^2 + 2x - 3)$
 $= 3(x + 3)(x - 1)$
 $f(x) = 0$ となるのは, $x = -3$,1
 $x = -3$ のときの $f(x)$ の値は
 $f(-3) = (-3)^3 + 3 \cdot (-3)^2 - 9 \cdot (-3)$
 $= -27 + 27 + 27 = 27$

f(x) の増減表は次のようになる.

\boldsymbol{x}		-3		1	
f'(x)	+	0	_	0	+
f(x)	1	27	`	-5	1

よってf(x) の極大値は, 27 (x=-3)

103
$$y = \log x$$
 より , $y' = \frac{1}{x}$

曲線上の接点の座標を $(t,\ \log t)$ とすると , 接線の方程式は $y - \log t = \frac{1}{t}(x - t)$

整理すると,
$$y=\frac{1}{t}x-1+\log t$$
 この接線が $(0,\ 0)$ を通るので, $0=-1+\log t$ これより, $\log t=1$ であるから, $t=e$ よって,接線の方程式は, $y=\frac{1}{e}x-1+\log e$

すなわち ,
$$y=rac{1}{e}x$$

104
$$y = -x^2 + 2x$$
 より , $y' = -2x + 2$

曲線上の接点の座標を $(t, -t^2+2t)$ とすると , 接線の方程式は

$$y - (-t^2 + 2t) = (-2t + 2)(x - t)$$

整理すると, $y = (-2t+2)x + t^2$

この接線が(0, c) を通るので $, c = t^2$

$$c>0$$
 より , $t=\pm\sqrt{c}$

 $t=\sqrt{c}$ のときの接線の傾きは , $-2t+2=-2\sqrt{c}+2$

 $t=-\sqrt{c}$ のときの接線の傾きは , $-2t+2=2\sqrt{c}+2$

2本の接線が垂直なので

$$(-2\sqrt{c}+2)(2\sqrt{c}+2)=-1$$

$$-4c+4=-1$$
 $4c=5$ よって, $c=\frac{5}{4}$

$$a>0$$
 とし, $e^{\log a}=x$ とおく. 対数の定義より, $\log x=\log a$ であるから, $x=a$ よって, $a=e^{\log a}$

$$\lim_{x \to \infty} y = \lim_{x \to \infty} e^{\log y}$$
$$= e^0 = \mathbf{1}$$

(2)
$$y = (1+e^x)^{\frac{1}{x}} とおくと \\ \log y = \log(1+e^x)^{\frac{1}{x}} = \frac{1}{x} \log(1+e^x)$$

$$\lim_{x \to \infty} \log y = \lim_{x \to \infty} \frac{1}{x} \log(1 + e^x)$$

$$= \lim_{x \to \infty} \frac{\log(1 + e^x)}{x}$$

$$= \lim_{x \to \infty} \frac{\{\log(1 + e^x)\}'}{(x)'}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{(1 + e^x)} \cdot (1 + e^x)'}{1}$$

$$= \lim_{x \to \infty} \frac{e^x}{1 + e^x}$$

$$= \lim_{x \to \infty} \frac{(e^x)'}{(1 + e^x)'}$$

$$= \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1$$

$$\sharp \mathfrak{I}$$

$$\sharp \mathfrak{I}$$

$$\lim_{x \to \infty} y = \lim_{x \to \infty} e^{\log y}$$

$$= e^1 = e$$