Reinforcement Learning

Monte Carlo Methods

Stefano Albrecht, Pavlos Andreadis 28 January 2020

Lecture Outline

- Monte Carlo policy evaluation
- Monte Carlo control with...
 - Exploring starts
 - Soft policies
 - Off-policy learning

Recap: Generalised Policy Iteration

DP methods iterate through policy evaluation and improvement until convergence to optimal value function v_* and policy π_*

- Policy evaluation via repeated application of Bellman operator
- Requires complete knowledge of MDP model: p(s', r|s, a)

Can we compute optimal policy without knowledge of complete model?

Monte Carlo Policy Evaluation

Monte Carlo (MC) methods learn value function based on experience

• Experience: entire episodes $E^i = \langle S_0^i, A_0^i, R_1^i, S_1^i, A_1^i, R_2^i, ..., S_{T_i}^i \rangle$

Two ways to obtain episodes:

- Real experience: generate episodes directly from "real world"
- Simulated experience: use simulation model \hat{p} to sample episodes
 - $-\hat{p}(s,a)$ returns a pair (s',r) with probability p(s',r|s,a)

MC does not require complete model p(s', r|s, a)

Monte Carlo Policy Evaluation

Monte Carlo (MC) methods learn value function based on experience

• Estimate value function by averaging sample returns:

$$V_{\pi}(s) \doteq \mathbb{E}_{\pi} \left[\sum_{k=0}^{T-1} \gamma^{k} R_{k+1} | S_{t} = s \right] \approx \frac{1}{|\mathcal{E}(s)|} \sum_{t_{i} \in \mathcal{E}(s)} \sum_{k=t_{i}}^{T_{i}-1} \gamma^{k-t} R_{k+1}^{i}$$

where for each past episode $E^i = \langle S_0^i, A_0^i, R_1^i, S_1^i, A_1^i, R_2^i, ..., S_{T_i}^i \rangle$:

- First-visit MC: $\mathcal{E}(s)$ contains first time t_i for which $S_{t_i}^i = s$ in E^i
- Every-visit MC: $\mathcal{E}(s)$ contains all times t_i for which $S_{t_i}^i = s$ in E^i
- Both methods converge to $v_{\pi}(s)$ as $|\mathcal{E}(s)| \to \infty$

4

First-Visit Monte Carlo Policy Evaluation

Initialize:

 $\pi \leftarrow \text{policy to be evaluated}$ $V \leftarrow \text{an arbitrary state-value function}$ $Returns(s) \leftarrow \text{an empty list, for all } s \in \mathcal{S}$

Repeat forever:

Generate an episode using π For each state s appearing in the episode:

 $G \leftarrow$ return following the first occurrence of sAppend G to Returns(s)

 $V(s) \leftarrow \text{average}(Returns(s))$

Example: Blackjack

Initial state:

Dealer

Hidden card

First, player samples cards from deck (hit) until stop (stick)

Then, dealer samples cards from deck (hit) until sum > 16 (stick)

Player loses (-1 reward) if bust (card sum > 21)
Player wins (+1 reward) if Dealer bust or Player sum > Dealer sum

Example: Blackjack

Player policy π :

stick if player sum is 20 or 21, else hit

Estimate of v_{π} using MC ...

States (3-tuple):

- Player sum (12-21)
- Dealer card (ace-10)
- Usable ace?

Example: Blackjack

Player policy π :

stick if player sum is 20 or 21, else hit

Usable

ace

ace

States (3-tuple):

- Player sum (12-21)
- No Dealer card (ace–10) usable
- Usable ace?

After 10,000 episodes

After 500,000 episodes

States in Blackjack

Couldn't we just define states as $S_t = \{Player cards, Dealer card\}$?

- Tricky: states would have variable length (player cards)
- If we fix maximum number of player cards to 4, then there are $10^5 = 100,000$ possible states! (ignoring face cards and ordering)

States in Blackjack

Couldn't we just define states as $S_t = \{Player cards, Dealer card\}$?

- Tricky: states would have variable length (player cards)
- If we fix maximum number of player cards to 4, then there are $10^5 = 100,000$ possible states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

- Fixed length: $S_t = (Player sum, Dealer card, Usable ace?)$
- Player sum limited to range 12–21 because decision below 12 is trivial (always hit)
- Number of states: $10 * 10 * 2 = 200 \rightarrow \text{much smaller problem!}$
- Still has all relevant information

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

- Yes, in principle, because we know complete MDP
- But computing p(s', r|s, a) can be complicated!
 E.g. what is probability of +1 reward as function of Dealer's showing card?
- On other hand, easy to code a simulation model:
 - Use Dealer rule to sample cards until stick/bust, then compute reward
 - Reward outcome is distributed by p(s', r|s, a)
- MC can evaluate policy without knowledge of probabilities p(s', r|s, a)

Monte Carlo Estimation of Action Values

MC methods can learn v_{π} without knowledge of model p(s', r|s, a)

 \Rightarrow But improving policy π from v_{π} requires model (why?)

Must estimate action values:

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

- Improve policy without model: $\pi'(s) = \arg \max_a q_{\pi}(s, a)$
- Use same MC methods to learn q_{π} , but visits are to (s, a) pairs
- Converges to q_{π} if every (s, a) pair visited infinitely many times in limit

E.g. exploring starts: every (s, a) pair has non-zero probability of being starting pair of episode

Monte Carlo Control

- MC policy evaluation: Estimate q_{π} using MC method
- Policy improvement: Improve π by making greedy wrt q_{π}

Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy improvement theorem:

$$q_{\pi_k}(s, \pi_{k+1}(s)) = q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a))$$

$$= \max_a q_{\pi_k}(s, a)$$

$$\geq q_{\pi_k}(s, \pi_k(s))$$

$$= v_{\pi_k}(s)$$

Assumes exploring starts and infinite MC iterations (why?)

- In practice, update only to a given performance threshold
- Or alternate between evaluation and improvement per episode

Monte Carlo Control with Exploring Starts

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):
     Q(s, a) \leftarrow \text{arbitrary}
     \pi(s) \leftarrow \text{arbitrary}
     Returns(s, a) \leftarrow \text{empty list}
Repeat forever:
     Choose S_0 \in \mathcal{S} and A_0 \in \mathcal{A}(S_0) s.t. all pairs have probability > 0
     Generate an episode starting from S_0, A_0, following \pi
     For each pair s, a appearing in the episode:
          G \leftarrow return following the first occurrence of s. a
          Append G to Returns(s, a)
          Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
     For each s in the episode:
          \pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a)
```

Blackjack Example with MC-ES

Monte Carlo Control With Soft Policies

Convergence to q_{π} requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that $\pi(a|s) > 0$ for all s, a

- e.g. ϵ -soft policy: $\pi(a|s) \ge \epsilon/|\mathcal{A}|$ for $\epsilon > 0$
- **Policy improvement:** make policy ϵ -greedy wrt q_{π}

$$\pi'(a|s) \doteq \left\{ egin{array}{ll} \epsilon/|\mathcal{A}| + (1-\epsilon) & ext{if } a = rg \max_{a'} q_{\pi}(s,a') \\ \epsilon/|\mathcal{A}| & ext{else} \end{array}
ight.$$

Monte Carlo Control With Soft Policies

 $\epsilon\text{-greedy}$ policy meets conditions for policy improvement theorem:

$$q_{\pi}(s, \pi'(s)) = \sum_{a} \pi'(a|s) q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \max_{a} q_{\pi}(s, a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s, a) + (1 - \epsilon) \sum_{a} \frac{\pi(a|s) - \epsilon/|\mathcal{A}|}{1 - \epsilon} q_{\pi}(s, a)$$

$$= \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s, a) - \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s, a) + \sum_{a} \pi(a|s) q_{\pi}(s, a)$$

$$= v_{\pi}(s)$$

- Thus, π' better or equal to π , but both are still ϵ -soft
- $q_{\pi}(s, \pi'(s)) = v_{\pi}(s)$ only when π' and π both optimal ϵ -soft policies

Monte Carlo Control With Soft Policies

```
Initialize, for all s \in \mathcal{S}, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

Returns(s, a) \leftarrow \text{empty list}

\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
```

Repeat forever:

- (a) Generate an episode using π
- (b) For each pair s, a appearing in the episode:

 $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a)

 $Q(s, a) \leftarrow \text{average}(Returns(s, a))$

(c) For each s in the episode:

$$A^* \leftarrow \arg\max_a Q(s, a)$$

For all $a \in \mathcal{A}(s)$:

$$\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$$

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

- But policies restricted to be soft
 - ⇒ Optimal policy is usually deterministic!
- ullet Could slowly reduce ϵ , but not clear how fast

Other approach: off-policy learning

- ullet Learn q_π based on experience generated with *behaviour policy* $\mu
 eq \pi$
- Requires "coverage": if $\pi(a|s) > 0$ then $\mu(a|s) > 0$, for all s,a
 - e.g. use soft policy μ
- π can be deterministic

Discussion: On-Policy vs Off-Policy Methods

On-policy:

Learn q_{π} and improve π while following π

Off-policy:

Learn q_{π} and improve π while following μ

Importance Sampling Ratio

We have episodes generated from μ

 \Rightarrow Expected return at t is $\mathbb{E}_{\mu}[G_t|S_t=s]=v_{\mu}(s)$

Fix expectation with sampling importance ratio:

$$\rho_{t:T} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k | S_k) p(S_{k+1}, R_{k+1} | S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k | S_k) p(S_{k+1}, R_{k+1} | S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k | S_k)}{\mu(A_k | S_k)}$$

•
$$\mathbb{E}_{\mu}[\rho_{t:T} G_t | S_t = s] = V_{\pi}(s)$$

Importance Sampling Ratio

$$\mathbb{E}_{\mu}[\rho_{t:T} G_{t} | S_{t} = s] = \sum_{E:S_{t}=s} \left[\prod_{k=t}^{T-1} \mu(A_{k} | S_{k}) p(S_{k+1}, R_{k+1} | S_{k}, A_{k}) \right] \rho_{t:T} G_{t}$$

$$= \sum_{E:S_{t}=s} \left[\prod_{k=t}^{T-1} \mu(A_{k} | S_{k}) p(S_{k+1}, R_{k+1} | S_{k}, A_{k}) \right] \prod_{k=t}^{T-1} \frac{\pi(A_{k} | S_{k})}{\mu(A_{k} | S_{k})} G_{t}$$

$$= \sum_{E:S_{t}=s} \left[\prod_{k=t}^{T-1} \pi(A_{k} | S_{k}) p(S_{k+1}, R_{k+1} | S_{k}, A_{k}) \right] G_{t}$$

$$= V_{\pi}(s)$$

Evaluating Policies with Importance Sampling

Denote episodes $E^i = \langle S_0^i, A_0^i, R_1^i, S_1^i, A_1^i, R_2^i, ..., S_{T_i}^i \rangle$

Define $\mathcal{E}(s)/\mathcal{E}(s,a)$ as before for first-visit or every-visit MC

Estimate v_{π}/q_{π} as

$$v_{\pi}(s) \approx \eta^{-1} \sum_{t_i \in \mathcal{E}(s)} \rho_{t_i:T_i} G_{t_i}^i$$

$$q_{\pi}(s, a) \approx \eta^{-1} \sum_{t_i \in \mathcal{E}(s, a)} \rho_{t_i+1:T_i} G_{t_i}^i$$

- Ordinary importance sampling: $\eta = |\mathcal{E}(s, a)|$
- Weighted importance sampling: $\eta = \sum_{t_i \in \mathcal{E}(s)} \rho_{t_i:T_i}$ resp. $\eta = \sum_{t_i \in \mathcal{E}(s,a)} \rho_{t_i+1:T_i}$

Off-Policy Value Estimation in Blackjack Example

 π : stick if player sum is 20 or 21, else hit

 μ : uniformly random

s : player sum 13 dealer showing 2 usable ace

True value:

 $v_{\pi}(s) \approx -0.27726$

Infinite Variance in Ordinary Importance Sampling

Iterative Implementation of Weighted Importance Sampling

```
Input: an arbitrary target policy \pi
Initialize, for all s \in S, a \in A(s):
    Q(s,a) \in \mathbb{R} (arbitrarily)
    C(s,a) \leftarrow 0
Loop forever (for each episode):
     b \leftarrow any policy with coverage of \pi
     Generate an episode following b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0, while W \neq 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]
          W \leftarrow W \frac{\pi(A_t|S_t)}{h(A_t|S_t)}
```

Off-Policy Monte Carlo Control

```
Initialize, for all s \in S, a \in A(s):
                                    Q(s, a) \in \mathbb{R} (arbitrarily)
                                    C(s,a) \leftarrow 0
                                    \pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a) (with ties broken consistently)
                              Loop forever (for each episode):
                                    b \leftarrow \text{any soft policy}
                                    Generate an episode using b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
                                    G \leftarrow 0
                                    W \leftarrow 1
                                    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
                                          G \leftarrow \gamma G + R_{t+1}
                                          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
                                          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} \left[ G - Q(S_t, A_t) \right]
                                        \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a) (with ties broken consistently)
                          Why?
    Hint: \pi deterministic \begin{cases} \text{If } A_t \neq \pi(S_t) \text{ then exit inner Loop (proceed to next episode)} \\ W \leftarrow W \frac{1}{b(A_t|S_t)} \end{cases}
Hint: q_{\pi}(s, a) uses \rho_{t+1:T}
```

Reading

Required:

• RL book, chapter 5 (5.1–5.7)

Optional:

Sequential Monte Carlo Methods in Practice
 Arnaud Doucet, Nando de Freitas, Neil Gordon (editors)
 University library has copies