Assignment: Audio Fingerprinting Task **Course**: MultiMedia Security(17685207)

Submitted to: Prof. Alberto Blanco Justicia

Team: Youssef Ezz, Kuldeep Parade Patil, Rahul Kumar, Hamza Abbas

Project Documentation

Modules and Dependencies

- numpy==1.24.0
- peewee==3.17.5
- scipy==1.13.1
- sqlite3
- os
- scipy.io
- scipy.ndimage
- hashlib
- time
- warnings
- argparse
- builddb
- IPython.display
- sounddevice
- matplotlib.pyplot
- Pandas
- sklearn.metrics

Installation

To install the required modules, run:

- \$ pip install -r requirements.txt --user
- —Recommended to create and run in a python virtual environment:
- \$ python -m venv "path/to/desired/folder"
- \$ cd "path/to/desired/folder"

//copy the files here

\$ Scripts\activate

// now you're in the virtual environment. Install requirements.txt

Design of Utilities

Programming Language **Python**

 Reason: Python is an excellent choice for this project due to its extensive libraries for scientific computing, data manipulation, and audio processing, making it easier to implement and manage complex functionalities.

Parameters

- the number of points in each segment of the signal:
 - Samplesperseg(1024): Length of each segment
- the number of points to overlap between segments:
 - Samplesoverlap (1024 // 8): same as default number of overlapping samples (samplesperseg // 8)
- Window Size used to get constellation points:
 - window_size(50): the region centered around a time-frequency point such that it has a higher energy content than all its neighbors in that window or region
- offset of the target zone:
 - Targetzone_offset(0.1): offset in seconds to the right of an anchor point where the target zone begins
- width of the target zone:
 - Targetzone offset(10): width of target zone in seconds
- height of the target zone:
 - Targetzone offset (1000): height of target zone in frequency

Database Schemas

- Song Table:
 - o id: Integer, Primary Key
 - o title: Text
- Fingerprints Table:
 - o id: Integer, Primary Key
 - song_id: Integer, Foreign Key (References Song Table)
 - fingerprint: Textanchortime: float//offset

Other Design Choices

Details:

0

User Manual

System Requirements

- Operating System: Windows, macOS, or Linux
- Python Version: 3.8 or higher
- Required Disk Space: Minimum 500MB

Running the Application

1. Install dependencies using the provided requirements.txt.

- 2. Run the database build script builddb.py t(takes about 1.8 minute):
 - \$ python builddb.py -i 'library' -o 'fingerprint database.db'

3. Run the identify sample script and optionally plot the scatter plot and histogram based on parameter plot = True in identify.pv:

Database connection closed.

python identify.py -i "Test Samples\clean samples//17 Climb samples//17 Climb 1.wav" -d "fingerprint database.db"


```
PS C:\Users\pc\Desktop\subjects\2nd term\2023-2024 MULTIMEDIA SECURITY (17685207) PRESENCIAL\Audio task> python identify.py -i "Test
ples\clean_samples//17_Climb_samples//17_Climb_1.wav" -d "fingerprint_database.db
Input audio sample to identify: Test Samples\clean_samples//17_Climb_samples//17_Climb_1.wav
Database file: fingerprint_database.db
         time taken to identify sample is : 2.578894 minutes.
Identified Track: 17. Climb.wav
```

Detection Metrics

- Accuracy of classification (TP + TN) / (TP + TN + FP + FN): see details in file test_db.ipynb
 - o Details: classification is done for each category of the four
 - Clean sample

Filtered samples

Noisy samples

Noisy Filtered samples

• Time:

 Details: total of 2 hours is the time taken for classification of all categories of samples (30 minutes each) see details in file test_db.ipynb

Features

- Identify songs using audio fingerprints.
- Store and manage song metadata.
- Generate and visualize song spectrograms.
- Classify different samples in different categories and calculate accuracy of classification

Troubleshooting

- Common issues and solutions:
 - o Issue: Missing module error.
 - Solution: Ensure all dependencies are installed by running pip install -r requirements.txt --user.