Ad-hoc and Mesh Networks

MAP-I

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto

- ◆ What is an ad-hoc network?
- What are differences between layer 2 and layer 3 ad-hoc networks?
- ♦ What are the differences between an IEEE mesh network and an IETF MANET network?
- What are the differences between a mobile network and a mobile terminal?

- ◆ MANET Ad-hoc Networks
 - » AODV, OLSR

- Mesh networks
 - » 802.11s

Basics on ad-hoc networks

- ♦ What is an ad-hoc network?
- ◆ What are the differences between and ad-hoc wireless network and a wired network?
- ♦ What are the characteristics of the most important ad-hoc routing protocols?

Ad-Hoc Network (Layer 3)

- Auto-configurable network
- Working over wireless links
- Nodes are mobile → dynamic network topology
- Isolated network, or interconnected to Internet
- Nodes forward traffic

• Routing protocol required

IETF MANET - Mobile Ad-hoc Networking

Route calculation in wired networks

Distance vector

- » Messages exchanged periodically with neighbours
- » Message indicates reachable nodes and their distance
- » Algorithm takes long time to converge
- » Eg. RIP

Link state

- » Router informs periodically the other routers about its links state
- » Every router gets information from all other routers
- » Lots of traffic
- » Eg. OSPF

Route calculation in Ad-Hoc Netoworks-Characteristics

Ad-hoc network

- » Dynamic topology
 - Depends on node mobility
- » Interference
 - Radio communications
- » Asymmetric links
 - Received powers and attenuation unequal in the two directions

Routing in Ad-hoc Networks

- Conventional routing protocols
 - Built for wired networks → whose topology varies slowly
 - Assume symmetric links
- In Ad-hoc networks
 - » Dynamic topology → information required to be refreshed more frequently
 - energy consumption
 - radio resources used for signaling information
 - » Wireless node may have scarce resources (bandwidth, energy) ...
- New routing strategies / protocols for ad-hoc networks
 - 2 type : reactive e pro-active

To think about

◆ How can we avoid a large signaling overhead (number of routing messages) in ad-hoc networks

AODV – A needs to send packet to B

AODV – A sends RouteRequest

AODV – B replies with RouteReply

To Think About

- Write the forwarding table of Node C
 - » Before receiving RREQ
 - » After receiving RREQ e before receiving RREP
 - » After Receiving RREP
- Represent an entry of the Forwarding Table as the tupple
 destination, gateway, interface>

AODV - Characteristics

- » Decision to request a route
- » Broadcast of Route-request
- » Intermediate nodes get routes to node A
- » Route-reply sent in unicast by same path
- » Intermediate nodes get also route to node B
- » Routes have *Time-to-live*, in every node
- » Needs symmetric graph

Pro-active routing protocols

- Routes built using continuous control traffic
- Routes are maintained
- Advantages, disadvantages
 - » Constant control traffic
 - » Routes always available
- ◆ Example OLSR (RFC 3626)
 - » OLSR Optimized Link-State Routing protocol

OLSR – *Main functions*

- Detection of links to neighbour nodes
- Optimized forwarding / flooding (MultiPoint Relaying)

OLSR header:	Packet Length		Packet Sequence Number
Message:	Message Type	Vtime	Message Size
	Originator Address		
	Time To Live	Hop Count	Message Sequence Number
	MESSAGE		
Message:	Message Type	Vtime	Message Size
	Originator Address		
	Time To Live	Hop Count	Message Sequence Number
	MESSAGE		

OLSR – Detecting links to neighbour nodes

- Using *HELLO* messages
- ◆ All nodes transmit periodically *HELLO* messages
- HELLO messages group neighbour by their state

OLSR – MultiPoint Relaying (MPR)

- MultiPoint Relaying (MPR)
 - » Special nodes in the network
 - » Used to limit number of nodes generating route signalling traffic

Each node selects its MPRs, which must

- » Be at 1 hop distance
- » Have symmetric links
- The set of MPRs selected by a node must
 - » Be minimum
 - » Enable communication with every 2-hop-away nodes
- Node is MPR if it has been selected by other node

OLSR – Link State

- In OSPF, in wired networks,
 - Every node floods the networkwith information about its links state
- OLSR does the same, using 2 optimizations
 - » Only the MPR nodes generate/forward link state messages
 - → Small number of nodes generating routing messages
 - » Only nodes associated to MPR are declared in link state message
 - → Small message length

OLSR – Link state, example

- Messages which declare the links state
 - » "Topology Control Messages"

The IEEE 802.11 mesh networks

◆ How will the 802.11s Mesh Network work?

♦ Note

» This set of slides reflects the view of a 802.11s draft standard.

◆ To read

» GUIDO R. HIERTZ et al, "IEEE 802.11S: THE WLAN MESH STANDARD", IEEE Wireless Communications, February, 2010

IEEE 802.11s - Main Characteristics

- Network topology and discovery
- Inter-working
- Path Selection and Forwarding
- MAC Enhancements

Elements of a WLAN Mesh Network

- MP Mesh Point
 - establishes links with neighbor MPs
- MAP Mesh AP
 - -MP + AP
- MPP Mesh Portal
- STA 802.11 station
 - standard 802.11 STA

L2 Mesh Network - Emulates 802 LAN Segment

Support for connecting an 802.11s mesh to an 802.1D bridged LAN

- Broadcast LAN (transparent forwarding)
- Learning bridge
- Support for bridge-to-bridge communications: Mesh Portal participates in STP

To think about

- ◆ Suppose A sends a frame to B (MAC layer). What MAC addresses are required for the frame transmitted between the two Ethernet switches?
- And what MAC addresses are required for the frame transmitted between the two MAPs? Why are the 2 cases different?

Mesh Data Frames

- Data frames
 - » based on 802.11 frames 4 MAC address format
 - » extended with: 802.11e QoS header, and new Mesh Control header field

- Mesh Control field
 - » TTL eliminates possibility of infinite loops (recall these are mesh networks!)
 - » More addresses are required for particular situations

Topology Formation

- Mesh Point discovers candidate neighbors
 - » based on beacons that contain mesh information
 - WLAN Mesh capabilities
 - Mesh ID
- Membership in a WLAN Mesh Network
 - » determined by (secure) association with neighbors

Mesh Association

- 1. MP X discovers Mesh mesh-A with profile (link state, ...)
- 2. MP X associates / authenticates with neighbors in the mesh, since it can support the Profile
- 3. MP X begins participating in link state path selection and data forwarding protocol

MeshID: mesh-A

Path Selection: distance vector, link state

One active protocol in one mesh but alternative protocols in different meshes

Interworking - Packet Forwarding

Hybrid Wireless Mesh Protocol (HWMP)

Combines

- » on-demand route discovery
 - based on AODV
- » proactive routing to a mesh portal
 - distance vector routing tree built and maintained rooted at the Portal

HWMP Example 1: No Root, Destination Inside the Mesh

- Communication: MP4 → MP9
- MP4
 - checks its forwarding table for an entry to MP9
 - If no entry exists, MP4 sends a broadcast RREQ to discover the best path to MP9
- MP9 replies with unicast RREP
- Data communication begins

← - - > On-demand path

HWMP Example 3: No Root Destination Outside

No Root, Destination Outside the Mesh

- Communication: MP4 \rightarrow X
- MP4
 - » first checks its forwarding table for an entry to X
 - » If no entry exists, MP4 sends a broadcast RREQ to discover the best path to X
 - » When no RREP received, MP4 assumes X is outside the mesh and sends messages destined to X to Mesh Portals
- Mesh Portal that knows X may respond with a unicast RREP

← - - > On-demand path

To Think About

• How many addresses are required in this frame?

HWMP Example 2: Root, Destination Inside the Mesh

- Communication: MP 4 \rightarrow MP 9
- MPs learn Root MP1 through Root Announcement messages
- MP 4 checks its forwarding table for an entry to MP9
- If no entry exists, MP4 forwards message on the proactive path to Root MP1
- ◆ When MP1 receives the message, it forwards on the proactive path to MP9
- ◆ MP9, receiving the message, may issue a RREQ back to MP 4 to establish a path that is more efficient than the path via Root MP1

← - → Proactive path← - → On-demand path

HWMP Example 4: Root, Destination Outside the Mesh

- Communication: MP4 \rightarrow X
- MPs learn Root MP1 through Root Announcement messages
- If MP4 has no entry for X in its forwarding table, MP 4 may forward the message on the proactive path toward the Root MP1
- ♦ When MP1 receives the message, if it does not have an active forwarding entry to X it may assume the destination is outside the mesh
- Mesh Portal MP1 forwards messages to other LAN segments

← - - Proactive path

Radio Aware OLSR (RA-OLSR)

- OLSR may be used in alternative to AODV
- RA-OLSR proactively maintains link-state for routing

Routing metrics in Wireless Networks - ETX (Expected Transmission Count)

- Successful transmission probabilities for forward / reverse link
 - » Sf: probability data packet successfully arrives to recipient
 - » Sr: probability ACK packet is successfully received
- ETX=1/(Sf*Sr)
- E.g.: Sf=0.6, Sr=0.5, ETX=3,3
- Routing protocol
 - » finds path that minimizes sum of ETXs

Routing metrics in Wireless Networks -ETT (Expected Transmission Time)

- Improves ETX by considering also link bandwidth
- Packet size = S, Link bandwidth = B
- ETT = ETX *S/B (sec)

Routing Metric in IEEE 802.11s – Airtime Link Cost

802.11s default routing metric: Airtime link Cost

» Amount of time required to transmit a frame

$$c_{a=\left[o_{ca}+o_{p}+\frac{B_{t}}{r}\right]\frac{1}{1-s_{vt}}}$$

- r = transmission bitrate
- » e_{pt} = frame error ratio

Parameter	Value (802.11a)	Value (802.11b)	Description
O _{ca}	75μs	335µs	Channel access overhead
O_p	110µs	364µs	Protocol overhead
B_t	8224	8224	Number of bits in test frame

Problem in Mesh Networks – Nominal Capacity at MAC Layer

Assume all nodes send same traffic G towards GW

- » Capacity of WMN is smaller than capacity of wireless LAN
 - due to multi-hop forwarding
- » Capacity can be bounded by the bottleneck collision domain

Multi-channel, Multi-radio

- WMN depends on MAC protocols
- Distributed MAC protocols
 - » Single channel, single radio
 - One radio interface per node, one static channel
 - » Muti-channel, single radio
 - One radio interface per node
 - Fast channel switching
 - » Multi-radio
 - Multiple radio interfaces in use
 - Usually working in different channels

Multi-channel multi-radio WMN

- » Complex network planning Channel assignment, Routing
- » Research on topology control required!

Multi-gateway WMNs

- Multiple gateways to the Internet
- Important to
 - » Keep routes to the Internet short (few hops)
 - » Increase access capacity
- Problems
 - » Gateway detection

MAC Enhancements for Mesh

- Intra-mesh Congestion Control
- Common Channel Framework (Optional)

Need for Congestion Control

- Mesh characteristics
 - » Heterogeneous link capacities along the path of a flow
 - » Traffic aggregation: Multi-hop flows sharing intermediate links
- Issues with the 802.11 MAC for mesh
 - » Nodes blindly transmit as many packets as possible, regardless of how many reach the destination
 - » Results in throughput degradation and performance inefficiency

Intra-Mesh Congestion Control Mechanisms

- Local congestion monitoring (informative)
 - » Each node actively monitors local channel utilization
 - » If congestion detected, notifies previous-hop neighbors and/or the neighborhood
- Congestion control signaling
 - » Congestion Control Request (unicast)
 - » Congestion Control Response (unicast)
 - » Neighborhood Congestion Announcement (broadcast)

Common Channel

- Common channel
 - » Unified Channel on which MPs jointly operate
 - » Using RTX, the transmitter suggests a destination channel
 - » Receiver accepts/declines the suggested channel using CTX
 - » The transmitter and receiver switch to the destination channel
 - » Data is transmitted
 - » Then they switch back

Control Frames

• Request to Switch (RTX) Frame

 2	2	6	6	2	4
Frame Control	Duration/ ID	RA	TA	Destination Channel Info.	FCS

• Clear to Switch (CTX) Frame

2	2	6	2	4
Frame Control	Duration/ ID	RA	Destination Channel Info.	FCS