

5XICO Electronic-Systems Engineering

Twan Basten, Martijn Hendriks

Electrical Engineering

modules

M6e - SysML allocations

5XICO Electronic-Systems Engineering

Martijn Hendriks

Slides in part based on a slide set of Kees Goossens and Dip Goswami

parametric diagram

in this lecture

SysML allocations

a simplified² MBSE method

- 1. SysML package diagram
- stakeholders
 SysML UC diagrams, UC descriptions measures of effectiveness (moes)
- 3. SysML requirement diagrams
- 4. create multiple alternatives
 - SysML BDDs system decomposition
 - SysML IBDs interconnections
 - SysML Activity diagrams UC refinements
 - SysML Allocations activities to blocks
- 5. SysML PAR diagrams covering all moes
 - POOSL models makespan
 - analytical model profit
 - verification
- 6. SysML Allocation reqs to blocks/activities

SysML – diagram overview

diagrams are **views** on the model (i.e., on a subset of model elements)

ES ELECTRONIC SYSTEMS

SysML – allocations

a system usually has multiple descriptions

- structural / logical structural
 - defining the decomposition in its parts / usages / components
 - bdd, ibd, par
- functional / behavioural
 - defining the decomposition in its sub-functions / sub-behaviours
 - uc, act

SysML – allocations

allocations define how different descriptions are related

- how are requirements realized by the design
- how is behavior (i.e., use cases and refinements with activities) implemented
- how is a logical architecture implemented by a physical architecture
- •

there is no special diagram (because of cross-cutting nature)

- visualize them in (separate) diagrams; bdd / req
- record them in a table/matrix

In Papyrus, you can organize the different kinds of allocations also in packages

SysML – allocation matrix

Activity Block	Power train	Engine	Power-train controls	Accelerator pedel	Gear shifter
Control power	х				
Provide power		X			
Provide power-train ctrl			x		
Control gear select					Х
Control accelerator pos				X	

ES ELECTRONIC SYSTEMS TU/e

SysML – allocations

we look at three kinds of allocations (all relationships between model elements)

- requirement allocation
 - deriveReqt relationship
 - refine relationship
 - satisfy relationship
 - verify relationship
- functional allocation
 - allocation relationship
- structural allocation
 - allocation relationship

SysML – requirement allocation

 deriveReqt : requirement to requirement; states that the src requirement is derived from the dst requirement

 refine: between a model element and a requirement (can be both ways); reduces ambiguity, clarifies

SysML – requirement allocation

- satisfy: model element (block, activity) to requirement; asserts that the requirement is satisfied by the model element
- verify: constraint block to requirement;
 proves that the requirement is satisfied by
 the analysis specified in the constraint block

SysML – functional allocation

decouples form from function: Y-chart pattern

- application: behavior: use cases, activities
- platform: structure: logical and physical: blocks
- mapping of application to platform: relation between form and function

advantages:

- facilitates re-use
- relative independent development of behavior and structure
- provides an efficient way of generating multiple designs for trade off studies

ES ELECTRONIC SYSTEMS TU/E

Y-chart

source: Kienhuis et al. ASAP 1997

xCPS – new system

variation points

- hardware
 - slow, normal or fast gantry arm(s)
 - slow, normal or fast index table
 - slow, normal or fast belts
- software
 - piece logistics

variation impacts

- batch makespan
- bill-of-material
- engineering cost
- time-to-market
- risk ...<u>and all this impacts the profit</u>

SysML – functional allocation – definition vs usage

SysML – functional allocation – definition vs usage

allocation of definition: activity to block

- when the allocation is intended to apply to
 all usages
- can result in over-allocation, i.e., more actions allocated to a part than necessary

allocation of usage: action to part

- when the allocation is not intended to be re-used
- possible redundancy or inconsistency because parts/actions can be used in multiple places

SysML – functional allocation – definition vs usage

- start with allocation of usage;
- examine each of the uses, then consider allocation of definition
- allocation of definition requires blocks/activities to be specialized or decomposed to the point where the allocation of definition is unique, and over-allocation is avoided

ES ELECTRONIC SYSTEMS TU/e

SysML – structural allocation

multiple logical architectures to model the what

- physical parts
- electrical / power supply architecture
- network architecture
- software architecture
- etc.

in the end each logical component will be implemented by a physical part: the how

ES ELECTRONIC SYSTEMS TU/E

SysML allocations – recommended reading

- 13.4, 13.5.1, 13.10 13.12
- 14.1, 14.2, 14.3, 14.4.1, 14.4.2, 14.4.4, 14.4.6, 14.5, 14.6.1, 14.6.2

SysML – diagram overview

diagrams are **views** on the model (i.e., on a subset of model elements)

ES ELECTRONIC SYSTEMS TU

M6e - SysML allocations 22 ES ELECTRO

modules

ES ELECTRONIC SYSTEMS TU

to remember

allocations define how different descriptions (structural/logical/functional) are related

- requirement allocation
- functional allocation
- structural allocation

there is no special allocation diagram; REQ or BDD can be used used, or matrix/table notation

functional allocation is used to realize the Y-chart modeling pattern

note

- today: deadline for feedback on your current Papyrus model
- next week: midterm exam
- after that: last module on POOSL => install POOSL and TRACE4CPS

ES ELECTRONIC SYSTEMS TU/E