	Utech
Name:	
Roll No.:	
Invigilator's Signature :	
CS/B.Tech (EE(O)/EIE (O))/SEM-6/EC-611/2010	

CS/B.Tech (EE(O)/EIE (O))/SEM-6/EC-611/2010 2010 DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

 $1. \quad \hbox{Choose the correct alternatives for any $\it ten$ of the following:}$

 $10 \times 1 = 10$

i) The fundamental period of the signal

 $x(n) = 3 \cos (\pi n/4 + \pi/3) - \sin (\pi n/8) + \cos (\pi n/20)$ is

a) 8

b) 16

c) 4

d) 20.

ii) The energy & power of unit step sequence are

a) ∞, 2

b) 0, 2

c) ∞ , 1/2

d) 0, 1.

66406 [Turn over

CS/B.Tech (EE(O)/EIE (O))/SEM-6/EC-611/2010

- iii) The system y(n) = x(n) + nx (n + 1) is
 - a) Non-causal & time variant
 - b) Causal & time variant
 - c) Causal & time invariant
 - d) Non-causal & time invariant.
- iv) Consider a system of transfer function $X(z) = 1/(1-\alpha z^{-1})$. The ROC of the system is
 - a) |z| > |1/a|
- b) |z| > |a|
- c) |z| < |1/a|
- d) |z| < |a|.
- v) The Fourier transform of the sequence $x^*(-n)$ is
 - a) X^* ($-\omega$)

b) $X^*(\omega)$

c) $X(-\omega)$

- d) $X(\omega)$.
- vi) The Z transform of the sequence 2u(n) is
 - a) $1/1-2z^{-1}$
- b) $4/2-2z^{-1}$
- c) $2/1-2z^{-1}$
- d) $1/1-4z^{-1}$.
- vii) We may use convolution to find the output for the
 - a) Linear time variant system
 - b) Causal system
 - c) Linear time invariant system
 - d) Non-causal system.
- viii) For a rectangular window of M samples, width of the main lobe is
 - a) $2\pi/m$

b) $6\pi/m$

c) $4\pi/m$

d) π/m .

a) 1 + i

0 b)

c) 1 - j d) 2.

- unit impulse sequence a)
- b) unit ramp sequence
- unit step sequence c)
- none of these. d)

If $x_1(n)$ and $x_2(n)$ are finite length sequences of sizes L xi) and M respectively, their linear convolution has the length

- L + M 2a)
- b) L + M 1

L + Mc)

d) $\max\{L, M\}$.

If $x^*(n)$ is the complex conjugate of x(n) then

- a) $|x(n)|^2 \neq |x^*(n)|^2$ b) $|x(n)| = x(n) \cdot x^*(n)$
- c) $|x(n)|^2 = x(n) \cdot x^*(n)$ d) none of these.

xiii) The energy of constant amplitude complex valued exponential function $x(n) = A \exp(jn\omega)$ where A and ω are constants, is given by

 A^2 a)

c) $\frac{A^2}{2}$

d) $\frac{A^2}{G}$.

CS/B.Tech (EE(O)/EIE (O))/SEM-6/EC-611/2010

- a) FIR system
- b) IIR system
- c) Digital system
- d) Analog system.
- xv) The even & odd parts of a unit step sequence are
 - a) $[1/2+1/2\delta(n)], [1/2\delta(n)]$
 - b) $[1/2 + \delta(n)], [1/2\delta(n)]$
 - c) $[1/2+1/2\delta(n)], [1/2sgn(n)]$
 - d) $[1+\delta(n)], [1/2\delta(n)].$

GROUP – B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Consider the transfer function of an analog filter as $H(s) = (s+3)/(s^2+4s+13)$. Now design the digital filter using impulse invariance method. Consider the sampling interval T=0.1s.
- 3. Write short note on any one of the following topics :
 - a) Design of FIR filter using windowing technique.
 - b) Effect of finite register length on digital system.
- 4. Compute the circular convolution of the two sequences

$$X1(n) = \{ 2, 1, 2, 1 \} & X2(n) = \{ 1, 2, 3, 4 \}$$

66406

5. Obtain the cascade form structure for the system characterized by

$$y(n) = 3/4y(n-1) - 1/8y(n-2) + x(n) + 1/3x(n-1).$$

6. Design a low-pass digital filter with a 3 dB bandwidth of 0.2π . Use Bilinear transformation applied to the analog filter $H_a(s) = \Omega_c/(S + \Omega_c)$.

GROUP – C (Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Find the circular convolution of two sequences $x_1(n) = \{1,\ 1,\ 2,\ 2\} \text{ and } x_2(n) = \{1,\ 2,\ 3,\ 4\}\,.$
 - b) State and prove the initial value theorem regarding Z-transform.
 - c) Determine the DFT of the sequence

$$x_1(n) = \frac{1}{4} \text{ for } 0 \le n \le 2$$

= 0 for otherwise.

7 + 3 + 5

- 8. a) Discuss about design method of low-pass filter.
 - b) What is rectangular window?
 - c) How is a rectangular window used to design FIR filter?
 - d) Determine the IDFT of $X(k) = \{3, (2 + j), 1, (2 j)\}.$

4 + 2 + 4 + 5

CS/B.Tech (EE(O)/EIE (O))/SEM-6/EC-611/2010

$$X(z) = \frac{1}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}.$$

b) Find the inverse z-transform of

$$X(z) = \frac{1}{(z - 0 \cdot 25)(z - 0 \cdot 5)}, \text{ ROC} : |z| > 0 \cdot 5.$$

c) Check whether the following digital system is BIBO stable or not :

$$y(n) = ax^2(n).$$

6 + 5 + 4

- 10. a) Discuss in brief on the effect of Finite Register Length in Digital Signal Processing.
 - b) Using Linear Convolution find $y(n) = X(n)^*h(n)$ for the sequence X(n) = (1, 2, -1, -2, 0, 1, 3, -1) and H(n) = (1, 2). Compare the result by solving the problem using (i) Overlap Save Method (ii) Overlap Add method.
 - c) For the difference equations in which x(n) is input and y(n) is output $y(n) = 3y^2(n-1) nx(n) + 4x(n-1) 2x(n-1)$

Determine whether the system is

- i) linear
- ii) time invariant
- iii) causal.

In each case justify the answer.

4 + 7 + 4

66406

- 11. Write short notes on any three of the following:
 - a) Circular convolution
 - b) Utility of FFT over DFT
 - c) BIBO stability in Z domain
 - d) Architrure of digital Signal processor
 - e) Mapping of S-plane into Z-plane.

66406 7 [Turn over