FIRST SEMESTER 2020-2021

Course Handout

Date: 26-07-2021

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : **SS G515**

Course Title : Data Warehousing
Instructor-in-Charge : Narasimha Bolloju

Description: Introduction, evolution of data warehousing; decision support systems; goals, benefit, and challenges of data warehousing; architecture; data warehouse information flows; software and hardware requirements; approaches to data warehouse design; creating and maintaining a data warehouse; Online Analytical Processing (OLAP) and multi-dimensional data, multidimensional modeling; view materialization; data marts; data warehouse metadata; data mining.

Scope and Objective of the Course:

Decision makers require access to all the organization's data, wherever it is located, in appropriate structure and detail that helps in their decision making. This course will involve an in-depth study of various concepts and techniques needed to design, develop, and maintain a data warehouse. The course also offers OLAP techniques and business intelligence tools for accessing data warehouses and data marts by the decision makers. This course has the following learning objectives:

- to understand concepts of data warehousing, role of data warehouses in provisioning strategic information to decision makers at various organizational levels,
- to gather and analyze requirements for building data warehouses by selecting a suitable data warehouse architecture and developing necessary dimensional models, and
- to apply suitable techniques for online analytical processing using business intelligence and tools.

Textbooks:

- T1. Ponniah Paulraj, "Data Warehousing Fundamentals for IT Professionals", WSE, 2ed., 2010.
- T2. Kimball Ralph & M Ross, "The Data Warehouse Toolkit", WSE, 3rd ed., 2013.

Reference books

- R1. Anahory S, & Dennis M, "Data Warehousing in the Real World", Addison-Wesley, 2000.
- R2. Kimball R, Reeves L, Ross M, & Thornthwaite, W, "The Data Warehouse Lifecycle Toolkit", John Wiley, 1998.
- R3. Adamson C, & Venerable M, "Data Warehouse Design Solutions", John Wiley, 1998.
- R4. Inmon, WH, "Building the Data Warehouse", John Wiley, 2002.

Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Chapters in the textbook
1-12	 To explain the need for data warehouses in organizations To design a simple data warehouse using the dimensional modeling technique To develop reports and dashboards on a populated data warehouse 	 Introduction to data warehousing Components of data warehouses Processes for building data warehouses Introduction to dimensional modeling Introduction to reports and dashboards for business intelligence (BI) 	T1: 1, 2 T2: 1, 2
13-18	 To differentiate popular data warehouse architectures To specify business requirements for data warehouse To explain data warehouse development processes To apply dimensional modeling technique for data warehouse design 	 Popular architectures for data warehouses and data marts Gathering and defining business requirements Kimball's DW/BI lifecycle Principles of dimensional modeling (star schemas and data cubes) 	T1: 4,6,7,10 T2: 2,18
19-24	 To explain the role of metadata in data warehousing To elaborate necessary processes and tasks associated with ETL To explain mechanisms for ensuring data quality in data warehouses 	 Metadata – need, common types and providing metadata Extract-transform-load (ETL) – concepts, operational source systems, requirements, processes and tasks, data integration Data quality challenges and techniques/tools for ensuring data quality 	T1: 9, 12,13 T2: 19, 20
25-30	 To explain online analytical processing To apply dimensional analysis techniques To elaborate differences among OLAP models To differentiate among information delivery mechanisms 	 Online analytical processing (OLAP) – need, major functions and feature Dimensional analysis OLAP models (MOLAP, ROLAP, HOLAP) Types of information delivery mechanisms and supporting tools 	T1: 14, 15 T2: 17
31-40	 To explain advanced dimensional modeling and ETL techniques To elaborate data warehouse performance enhancement methods To explain the trends in data warehousing and BI 	 Advanced dimensional modeling Real time data warehouses Advanced ETL techniques Data warehousing trends and BI including Web-enabled data warehouses Data warehouse physical design and performance enhancement techniques 	T1: 3, 11, 16, 18, 20 T2: 1, 17, 19, 20

	Practical	Experiment Title
ı		

No.		
1	Identifying strategic information needs for data warehousing	
2	Designing and preparing analytical reports with a sample data mart	
3	Developing enterprise bus matrix with relevant dimension tables for a data warehouse	
4	Dimensional modeling with different dimension table types	
5	Dimensional modeling with different fact table types	
6	Designing and validating business intelligence reports	
7	Selecting appropriate visualizations for the designed business intelligence reports	
8	Connecting various elements of reports to corresponding elements in dimensional models	
9	Populating data warehouse fact tables with data and validating the generating reports	
10	Planning and verification of data staging for a given data warehouse	
11	Developing dashboards for access via desktop and mobile devices	
12	Practicing with advanced dimensional modeling techniques	

Note: During lab sessions (#5 to #11 above), the students are required to present assigned data warehousing case studies (from Textbook T2) and to present & demonstrate their team project work.

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component
Mid-semester test	90 Minutes	30	As per the timetable	Open Book
Project work	NA	15	ТВА	Open Book
Lab activities		10	TBA	Open Book
Presentations		5	TBA	Open Book
Comprehensive Examination	120 Minutes	40	23/12 FN	Open Book

Note: Minimum 40% of the evaluation to be completed by midsem grading.

Consultation Hour: Tuesdays 10 AM to noon (or by appointment)

Notices: All the notices and announcements concerning this course will be posted on **the course page on Google Classroom.**

Make-up Policy: For tests and comprehensive exam components, make-up policy is according to the institute regulations. For the other component (fourth in the table above), there will be no make-up.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE