Analysis Methods for Non-Proportional Hazards

Satrajit Roychoudhury, Pfizer Inc. Duke-Margolis Workshop Feb 5th, 2018 Washington DC

Acknowledgement

Industry

- Keaven Anderson (Merck & Co.)
- Tianle Hu (Eli Lilly)
- Larry Leon (Roche)
- Pralay Mukhopadhyay (Astrazeneca)
- Honglu Liu (Eli Lilly)

FDA

Sirisha Musthi (CDER, FDA)

Disclaimer

- Satrajit Roychoudhury is an employee of Pfizer Inc.
- The views and opinions expressed herein are my own and cannot and should not necessarily be construed to represent those of Pfizer Inc. or its affiliates.

Non-Proportional Hazards (NPH): What Does It Mean?

- Most popular methods in randomized clinical trial:
 - Kaplan-Meier (KM): describe probability of survival over time
 - log-rank test (LRT): detect difference in treatment effect
 - Cox regression (CR): summarize the treatment effect
- Log-rank p-value, hazard ratio, and naive median are the standard metrics of reporting
- Are they good summary measures when the treatment effect is not constant over time? : NPH problem
 - For example, recent immunotherapy development showed evidence of a delayed effect
- How to cope with NPH problem at design and analysis stages?

Log-rank Test and Cox Regression : Fits to All?

- LRT: introduced by Nathan Mantel in 1966
- CR: introduced by Sir David R Cox in 1972
- LRT and CR are closely related
- LRT is fully nonparametric
 - most powerful for proportional hazards (PH)
 - can cause substantial power loss if PH assumption does not hold
- Key assumption for CR: constant effect over time
 - treatment effect summarized by hazard ratio (HR)
 - problematic if PH assumption violates

Different Types of NPH

Uncertainty related to the type of NPH when trial starts

Analysis and Design Trial with NPH: Key Challenges

- NPH has been discussed extensively in literature
 - alternative methods for hypothesis testing and estimation
- However, application in real life is still rare
- Main challenge: NPH type cannot be pre-identified
 - treatment effect profile is unknown at design stage
- Key questions for today's forum: in presence of NPH
 - how to plan primary analysis appropriately?
 - How to design a trial?
 - how to efficiently communicate the results with nonstatisticians?

Choice of Primary Analysis in Confirmatory Trials

- Regarding primary analysis ICH E9 states
 - For each clinical trial contributing to a marketing application, all important details of its design and conduct and the principal features of its proposed statistical analysis should be clearly specified in a protocol written before the trial begins. The extent to which the procedures in the protocol are followed and the primary analysis is planned a priori will contribute to the degree of confidence in the final results and conclusions of the trial.
- Specifying primary analysis when NPH is expected: need robust statistical method to handle
 - possibility of different types of NPH
 - possibility of different specifications (e.g. lag time for treatment effect)

Choice of Primary Analysis

Weighted Log-rank Test

- Fleming and Harrington proposed a class of weighted log-rank test (FH) based on the G^{ρ,γ} family
- Assign weight to events $W_n(t) = (S_n(t))^p (1 S_n(t))^p$
- Values of ρ and γ implies
 - $\rho > 0$, $\gamma = 0$: early difference
 - $\rho = 0$, $\gamma > 0$: late difference
 - $\rho > 0$, $\gamma > 0$: mid difference
 - $\rho = 0$, $\gamma = 0$: log-rank test

Combination Test

- Major difficulty for FH LRT:
 - specification of ρ and γ parameter: mis-specification may imply a loss of power
- Possible alternative : Combination test
 - handles simultaneously a range of NPH types
 - choose the appropriate weight in "adaptive" fashion
- Similar concepts are explored by
 - Yang and Prentice 2010: Adaptively Weighted log-rank Test
 - Garès et. al. 2017: maximal statistics over FH(0,γ)
 - Karrison 2016: Versatile tests

Combination of FH Log-rank Test (Max-Combo)

- We have considered two combinations
 - combination of G^{0,0} and G^{0,1}: Combo 1
 - combination of G^{0,0}, G^{0,1}, G^{1,1}, G^{1,0}: Combo 2
- Max-Combo test: largest of the absolute value of the test statistics
- "Adaptive" procedure involving selection of best test statistics: requires multiplicity correction
 - Bonferroni-Holmes adjustment (conservative)
 - adjustment using the joint asymptotic distribution of the FH log-rank test statistics (recommended)
- Can be pre-specified easily at protocol stage: satisfies
 ICH E9 condition

Kaplan-Meier Based Tests

Kaplan-Meier Based Tests

- Weighted Kaplan-Meier test: (Pepe and Fleming, 1989, 1991)
 - weighted difference of area under KM curves up to a specified cut-off
 - weights are based on KM estimate of censoring
 - need to specify the cut-off: can be affected by censoring
- Restricted mean survival time (RMST) (Uno et al 2014)
 - area under the KM plot prior to specific time-point: can be easily interpreted as "life expectance"
 - treatment effect: difference or ratio of RMST
 - need to specify the cut-off: can be affected by censoring

Other Methods

- Piecewise log-rank test (Xu. et al 2016)
 - piecewise weighted log-rank test within specified time intervals
 - optimal when weights for earlier events are zero
 - power/type-I error greatly affected if intervals are incorrectly specified
- Other combination tests:
 - Breslow et. al. 1984: combination of log-rank test and test of acceleration
 - Logan 2008: combination of log-rank test and milestone survival, it suffers similar problem as other KM based tests
- In the next talk the simulation study results will be presented

Reporting Treatment Effect

- When NPH is present: HR depends on time
 - HR or average HR as a single number is less useful
 - what statistics to be reported to quantify treatment effect?
 - how to appropriately pre-specify to meet ICH E9?
- A sequential approach (Royston and Parmer 2010)
 - <u>First step:</u> perform Max-combo test to conclude about the "Null" hypothesis (no treatment effect)
 - <u>Second step:</u> regardless of results in step 1, gather evidence of NPH, possible options
 - Grambsch–Therneau test for PH
 - other graphic diagnostics for confirming PH
 - <u>Third step</u>: choose treatment effect summary based on step 2- *treatment effect estimate beyond test statistics*

Choice of Treatment Effect Summary

- If PH assumption is reasonable
 - HR from Cox regression (CR) and corresponding 95% confidence interval (CI)
 - <u>secondary analysis</u>: average HR from weighted CR and 95% confidence interval (weight chosen by Max-combo)
- If there is evidence of NPH, the possible metrics
 - ordinary/average HR with 95% CI (Max-combo estimate)
 - difference in RMST at t*: gain in life expectancy at clinically relevant time point t* (pre-specified)
 - difference in milestone survival at t*: gain in chance of survival at clinically relevant time point t* (pre-specified)
 - secondary analysis: piecewise HR with 95% CI
- In session III, case studies will elaborate this approach

Conclusion

- NPH team looked into different possible methodologies
- Max-combo looks a promising approach
 - allows possibility for different NPH type
 - provides robustness under model mis-specification
- In presence of NPH a single measure is less useful
 - a sequential approach can be useful
- Team has included all the procedures in a R package "nphsim": freely available from github
- In next talks, the team members will present simulation results and case studies

References

- 1. Breslow, N et. al. (1984). A two sample censored data rank test for acceleration. Biometrics, 40: 1042–1069
- 2. Cox DR (1972). Regression-Models and Life-Tables. *Journal of the Royal Statistical Society*. B (Methodological), 34 (2): 187–220
- 3. Fleming TR, Harrington DP (1991) Counting Processes and Survival Analysis. John Wiley & Sons: New York
- 4. Garès V et. al. (2017). On the Fleming–Harrington test for late effects in prevention randomized controlled trials. Journal of Statistical Theory and Practice, 11(3): 418-435
- 5. ICH E9
 http://www.ich.org/fileadmin/Public Web Site/ICH Products/Guidelines/Efficacy/E9/Step4/E9 Guideline.pdf
- 6. Karrison TG (2016). Versatile tests for comparing survival curves based on weighted log-rank statistics. Stata Journal, 16(3): 678-690

References

- 7. Lin DY, Wei LJ (1989). The robust inference for the Cox proportional hazards model. Journal of the American Statistical Association, 84:1074–1078
- 8. Logan, BR *et. al.* (2008), Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation. Biometrics, 64: 733–740
- 9. Mantel N (1966). Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports, 50 (3): 163–70
- 10. Pepe MS, Fleming TR (1989). Weighted kaplan-meier statistics: A class of distance tests for censored survival data. Biometrics, 45(2):497–507
- 11. Pepe MS, Fleming TR (1991). Weighted kaplan-meier statistics: Large sample and optimality considerations. Journal of the Royal Statistical Society Series B (Methodological), 52:341–352

References

- 11. Royston P and Parmar MK (2010). Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine, 21(15): 2175-2197
- 12. Uno H et. al. (2014). Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis. J. Clinical. Oncol., 32(22): 2380-2385
- 13. Xu Z et. al. (2017). Designing therapeutic cancer vaccine trials with delayed treatment effect. Statistics in medicine, 36(4):592-605
- 14. Yang S, Prentice R (2010). Improved Logrank-Type Tests for Survival Data Using Adaptive Weights. *Biometrics*, 66(1): 30-38

Back-up

Max-Combo Test

Let,
$$Z_1 = G^{0,0}$$
, $Z_2 = G^{0,1}$, $Z_3 = G^{1,1}$, and $Z_4 = G^{1,0}$

Max-Combo Test : $\mathbf{Z}_{max} = \max(|Z_1|, |Z_2|, |Z_3|, |Z_4|)$

Under H_0 , $(Z_1, Z_2, Z_3, Z_4) \sim N_4(0, \Sigma)$ (Karrison et. al 2016)

$$\Sigma = (\sigma_{ij})_{4\times4}; \ \sigma_{ij} = \text{cov}(\mathbf{G}^{a,b}, \mathbf{G}^{c,d}) = V(\mathbf{G}^{a+c/2,b+d/2}): \ a,b,c,d = 0 \ \text{or} \ 1$$

The p-value for \mathbf{Z}_{max} can be derived by integrating under the multi-variate normal density

Average Hazard Ratio

- Average hazard ratio (AHR) represents the "average effect" of treatment over the course of the trial
- Associated estimator of Max-Combo test: AHR using weighted cox regression (WCR)
- Choosing weight (ρ,γ) that provides maximal test statistics
 - variance: robust estimate proposed by Lin and Wei 1989
 - point estimate and 95% confidence interval
 - multiplicity adjusted confidence internal using null distribution of Max-Combo
- However, the WCR under non-proportional hazards lack intuitive simplicity