Lecture 4 — Manifolds and Curved Spacetime

Michael Brodskiy

Professor: J. Blazek

September 18, 2024

• We now move from Minkowski to General Space:

$$\eta_{\mu\nu} \to g_{\mu\nu}$$

- Differentiable Manifolds
 - Manifold: A space (in *n*-dimensions) that looks locally like \mathbb{R}^n and can be constructed by smoothly stitching together these regions
 - Rotations in \mathbb{R}^n Lie Groups are manifolds with a group structure
 - To be more precise, we have a set M with a set of (all possible) charts of open subsets to \mathbb{R}^n
 - * Chart \leftrightarrow coordinate system
 - These charts must be smooth, continuous, invertible, and differentiable
 - Now we will define (co)tangent spaces on these manifolds, with metrics that map (dual) vectors to \mathbb{R}
- The Equivalence Principle
 - In special relativity, we had the principle that the laws of physics were the same in all inertial frames
 - Einstein's "happiest though": If someone falls from a roof, nothing falls in their frame
 - Equivalence of inertial frames should be generalized to include gravity
 - Weak Equivalence Principle (WEP)
 - * Inertial mass = gravitational mass

$$F=m_i a \text{ (inertial)}$$

$$F=-m_g \nabla \Phi \text{ (gravitational "charge")}$$

$$m_i=m_g \text{ (WEP: E\"{o}tu\"{o}s experiments, late 19th century)}$$

- * All freely falling bodies behave the same/are indistinguishable $(a = -\nabla \Phi)$
- * Define inertial trajectory as unaccelerated (subject only to gravity)
- * In small enough regions of space-time, freely falling particles behave the same in a gravitational field or a uniformly accelerated field (physicist in a box, accelerating reference frame)
- Strong Equivalence Principle (SEP)
 - * All laws of physics, including gravitation, look like SR
 - · Einstein Equivalence Principle (EEP) plus the impact of gravitational binding energy
 - · Rules out "fifth force"
- Tidal Forces
 - Causes tides on Earth
 - Locally inertial frames
- Gravitational Redshift

$$\Delta v = \frac{az}{c}$$

- Relativistic Doppler Shift:

$$\lambda_{obs} = \lambda_o \left(\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}} \right)^{\frac{1}{2}}$$

* Using Taylor expansion, we may simply write this as:

$$\lambda_{obs} = 1 + \frac{v}{c}$$

* Bringing this together, we get:

$$\frac{\Delta \lambda}{\lambda_0} \approx \frac{\Delta v}{c} = \frac{az}{c^2}$$

- EEP says that this must be the same as a gravitational field:

$$\frac{\Delta\lambda}{\lambda_o} = \frac{a_g z}{c^2} = \frac{\Delta\Phi}{c^2}$$

- This is the time from start to end of wavelength, and can be used to compare clocks
- If we have a case where $\Delta t_o = \lambda_o c^{-1}$ and $\Delta t_1 = \lambda_1 c^{-1}$, and $\lambda_1 > \lambda_o$ then $\Delta t_1 > \Delta t_o$, which indicates gravitational time dilation

- Classic Tests of General Relativity
 - 1. Precession of the perihelion of Mercury $19^{\rm th}$ century: 43" per century discrepancy successful "post-diction" of GR (about 10% of total effect)
 - 2. Bending of star light by sun (gravitational lensing) GR predicts a factor of 2 larger deflection (1919 Eddington Expedition to observe the solar eclipse)
 - 3. Gravitational Redshift 1954: Popper measurement of a white dwarf, 1959: Pound-rebka at Jefferson lab (Harvard), 22.5m
- Vectors and Tensors on Manifolds (Curved Spacetime)
 - We already saw $V=V^{\mu}\hat{e}_{\mu}$ at point P on T_{p}
 - What is the basis?
 - * We want to define tangent vectors before we have a vector space on M
 - * Instead, consider a function f and a curve λ . The directional derivative is:

$$\frac{d}{d\lambda}x^{\mu}\frac{\partial}{\partial x^{\mu}}f = \frac{d}{d\lambda}x^{\mu}\partial_{\mu}f \quad \text{(gradient } \cdot \text{tangent } \vec{v}\text{)}$$

 \ast f could have been anything, so we define the tangent vector:

$$\frac{d}{d\lambda} = \frac{dx^{\mu}}{d\lambda} \partial_{\mu}$$

- * $\{\hat{e}_{\mu} = \partial_{\mu}\}\$ is the coordinate basis ("points" in the direction of x^{μ})
- * Not orthonormal, but always well defined
- * In this basis, things transform according to:

$$\partial_{\mu} \prime = \frac{\partial}{\partial x^{\mu} \prime} = \frac{\partial}{\partial x^{\mu}} \frac{\partial x^{\mu}}{\partial x^{\mu} \prime} = \frac{\partial x^{\mu}}{\partial x^{\mu} \prime} \partial_{\mu}$$

* Similarly, $V=V^{\mu}\partial_{\mu}$ is preserved, so:

$$V^{\mu} \prime \partial_{\mu} \prime = V^{\mu} \partial_{\mu} \Rightarrow V^{\mu} \prime = \frac{\partial x^{\mu} \prime}{\partial x^{\mu}} V^{\mu}$$

- General Coordinate Transform
 - In flat space: $x^{\mu} = \Lambda^{\mu\mu}_{\mu}$

$$\frac{dx^{\mu}\prime}{dx^{\mu}} = \Lambda^{\mu}_{\mu}\prime$$

3

- We recover the transform of vectors
- Vector Fields:
 - * X: One vector at each point on the manifold

* X,Y: Both define a field that can be used to take directional derivatives of functions on μ

$$[X, Y](f) = X(Y(f)) - Y(X(f))$$
 commutator

- Dual Vectors
 - * Recall we defined the gradient: df

$$df\left(\frac{d}{d\lambda}\right) = \frac{df}{d\lambda}$$
 map a vector to \mathbb{R}

- * Basis for dual vectors dx^{μ}
- * Gradient of the coordinate function:

$$dx^{\mu}(\partial_{\nu}) = \frac{dx^{\mu}}{dx^{\nu}} = \delta^{\mu}_{\nu}$$

$$V = V^{\mu}\partial_{\mu}$$

$$\omega = \omega_{\nu}dx^{\nu}$$

$$\omega_{\mu \nu} = \frac{\partial x^{\mu}}{\partial x^{\mu}}\omega_{\mu}$$

- We can now write the transformation of an arbitrary (k, l) tensor on a manifold:

$$T^{\mu_1 \prime \dots \mu_k \prime}_{\nu_1 \prime \dots \nu_l \prime} = \frac{\partial x^{\mu_1 \prime}}{\partial x^{\mu_1}} \cdots \frac{\partial x^{\mu_k \prime}}{\partial x^{\mu_k}} \frac{\partial x^{\nu_1}}{\partial x^{\nu_1 \prime}} \cdots \frac{\partial x^{\nu_k}}{\partial x^{\nu_k \prime}} T^{\mu_1 \dots \mu_k}_{\nu_1 \dots \nu_l}$$

- * Warning: in curved space $\partial_{\mu}W_{\nu}$ is not a tensor; unlike in flat space, the derivative of the transform can be non-zero (Λ is the same everywhere)
- The Metric
 - $-\eta_{\mu\nu}$ in Minkowski space
 - $-g_{\mu\nu}$ in general curved spacetime

$$g_{\mu\nu}g^{\nu\sigma} = \delta^{\sigma}_{\mu}$$
 (defines inverse)

- Metric really describes basically everything about a spacetime

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

* (0,2)-tensor components, metric components, with ds^2 being called the "line element" or "metric"