Fizyka

Literatura

- S. Przestalski: Elementy fizyki, biofizyki i agrofizyki, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław 2001
- H. Kleszczyńska, M. Kilian, J. Kuczera (red): Laboratorium fizyki, biofizyki i agrofizyki, Wyd. UP, Wrocław, 2008
- R. Resnik, D. Halliday "Fizyka" tom I i II, PWN, Warszawa 1999
- R. Resnick, D. Halliday, J. Walker: Podstawy Fizyki, Tom I-V, PWN, Warszawa, 2019

Zaliczenie

Wykład

Kolokwium / potencjalne wejściówki

Ćwiczenia

Sprawozdania z ćwiczeń

Daty

 TBD

Tematy

Ćwiczenia 1 (14.10.23r.)

Wektory

- Dodawanie wektorów
- Odejmowanie wektorów
- Mnożenie wektorów
- Mnożenie wektorów przez skalary

Wykład 1 (14.10.23r.)

Zjawisko fizyczne

Wielkości fizyczne

- podstawowe i pochodne
- skalarne i wektorowe

Układ SI

Nazwa	Symbol	Mierzona wielość
metr	m	długość
kilogram	kg	masa
sekunda	\mathbf{s}	czas
amper	A	prąd elektryczny
kelwin	K	temperatura
mol	mol	liczność materii
kandela	cd	światłość

Mechanika

- Kinematyka (jak coś się porusza)
- Dynamika (dlaczego coś się porusza)

Ruch postępowy

- Prostolinijny
- Krzywolinijny

Wektor położenia (godzący)

Ruch krzywoliniowy

$$|\Delta \overrightarrow{r}| < S$$

Ruch prostolinijny

$$|\Delta \overrightarrow{r}| = S$$

Prędkość liniowa

$$\overrightarrow{V}_{\pm r} = \left| \frac{\Delta \overrightarrow{r'}}{\Delta t} \right| \le \frac{S}{\Delta t} \left[\frac{m}{s} \right]$$

Prędkość chwilowa

$$\Delta t \to 0$$

$$\overrightarrow{V}_{chwil} = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{r}}{\Delta t} = \frac{d \overrightarrow{r}}{dt}$$

Granica

Sieczna

Przyspieszenie

$$\frac{\Delta \overrightarrow{v}}{\Delta t} \left[\frac{\frac{m}{s}}{s} = \frac{m}{s^2} \right]$$

Chwilowe

$$\overrightarrow{a}_{chwil} = \lim_{\Delta t \to 0} \frac{\Delta \overrightarrow{v}}{\Delta t} = \frac{d \overrightarrow{v}}{dt}$$

Holograf prędkości

Styczne