Übungen zu Analysis 1, 7. Übung 4. 12. 2018

- 71. Zeigen Sie, dass man im Abel'schen Konverenzkriterium monoton und beschränkt nicht durch konverent ersetzen darf.
- 72. Untersuchen Sie die Reihe

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n} + \frac{1}{3n}$$

auf Konvergenz.

73. Zeigen Sie: Konvergiert die Reihe

$$\sum_{n=0}^{\infty} a_n z_0^n$$

für ein $z_0 \in \mathbb{C}$, so konvergiet

$$\sum_{n=0}^{\infty} a_n z^n$$

absolut für jedes $z \in \mathbb{C}$ mit $|z| < |z_0|$.

74. Für welche $\alpha > 0$ konvergiert

$$\sum_{n=0}^{\infty} \frac{1}{n^{\alpha}} \left(e - \left(1 + \frac{1}{n} \right)^n \right) ?$$

Hinw.: $(1 + \frac{1}{n})^n < e < (1 + \frac{1}{n})^{n+1}$.

75. 3.47

Man ersetze im Hinweis z_n^k durch $z_n^{(k)}$, d.h. k bezeichnet nicht die k-te Potenz sondern einen zweiten Index.

- 76. 5.2
- 77. 5.8
- 78. 5.11
- 79. 5.24
- 80. Zeigen Sie: Ist K eine kompakte Teilmenge eines metrishen Raumes (X, d) und $(O_i)_{i \in I}$ offene Teilmengen von X mit $X \subseteq \bigcup_{i \in I} O_i$, so gibt es ein $\epsilon > 0$ mit: $\forall x \in K$ gibt es $i \in I$ mit $U(x, \epsilon) \subseteq O_i$.

Hinw.: Nehmen Sie indirekt an es gibt (x_n) in K mit $U(x_n, \frac{1}{n}) \nsubseteq O_i$.