Name: Brigid Shields GSI: Theodore Zhu DISC #: 106

Math 55, Handout 3.

RULES OF INFERENCE.

- 1.1. An **argument form** is a sequence of statements that end with a conclusion.
- 1.2. An argument form is **valid** if the conclusion follows from the truth of the preceding statements of the argument.
- 1.3. A **fallacy** is a form of incorrect reasoning. They resemble rules of inference but are based on contingencies not tautologies.
- 1.4. Common fallacies are the fallacy of affirming the conclusion, which is the compound proposition $((p \to q) \land q) \to p$, and the fallacy of denying the hypothesis, which is the proposition $((p \to q) \land \neg p) \to \neg q$.
- Q1. Draw the truth table for the tautology behind the Rule of Resolution. The tautology is $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$.

p	q	r	$\neg p$	$p \lor q$	$\neg p \lor r$	$q \vee r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$
T	Т	F	F	Т	F	Т	T
Т	F	F	F	Т	F	Т	T
Т	F	Т	F	Т	Т	Т	Т
Т	Т	Т	F	Т	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т
F	Т	F	Т	Т	Т	Т	Т
F	F	F	Т	F	Т	F	T

Q2. Give a non-mathematical example of **universal modus tollens**. Universal modus tollens is the rule of inference characterized by the proposition $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$. If q is "I will go to class" and p is "it is not snowing" then this proposition becomes "If I will not go to class and, if I go to class then it is not snowing, then it is snowing". Or simply, "I am not going to class, I will go to class if it is not snowing, therefore it is snowing".

INTRODUCTION TO PROOFS.

- 2.1. A **theorem** is a statement that can be shown to be true. A **lemma**, **proposition**, **result**, **corollary** are other kinds of theorems. A proposition or result is a less important theorem. A lemma is a less important theorem that is helpful in the proof of other results. A corollary is a theorem that can be established directly from a theorem that has been proved.
- 2.2. A **conjecture** is a statement that is proposed to be a true statement, usually on some kind of basis like partial evidence.
- 2.3. Common proof methods are a direct proof and indirect proofs. An example of an indirect proof is proof by contraposition. You can also use a proof by contradiction. There are also **vacuous** and **trivial** proofs.
- Q3. A theorem states that conditions A, B, C, D are equivalent. What is the minimal number of implications you need to prove the theorem? We need to prove that each of A, B, C and D imply the other three. So, we need to know that A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow A, B \rightarrow C, B \rightarrow D, C \rightarrow A, C \rightarrow B, C \rightarrow D, and that D \rightarrow A, D \rightarrow B and D \rightarrow C. Starting with the four main implications (A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A), using hypothetical syllogism, we know A \rightarrow C, A \rightarrow D, B \rightarrow D, D \rightarrow B, D \rightarrow C, C \rightarrow A, C \rightarrow B, and B \rightarrow A. So the minimum number we need is four implications.
- Q4. Prove directly that a product of two rational numbers is rational. As this is a direct proof, we start with the assumption that both r and s are rational numbers. This means that $r=\frac{a}{b}$ with $b\neq 0$ and $s=\frac{c}{d}$ with $d\neq 0$. Then, we multiply r and s together and get $rs=\frac{ac}{bd}$. Since, $b\neq 0$ and $d\neq 0$, $bd\neq 0$. And rs equals an integer over an integer, making it a rational number.
- Q5. Given the true fact that $\sqrt{2}$ is irrational, what method of proof will you use to show that $\sqrt{2} + 1$ is irrational? Give your proof. Proof by Contradiction:

Supposing that r is an irrational number and s is a rational number, we want to prove that r+s is irrational (using the universal generalization). Since r is irrational it cannot be written as $\frac{a}{b}$ while s can be written as $\frac{c}{d}$ where c and d are two positive integers and $d \neq 0$. Suppose the sum of r and s is rational, this means $r+s=\frac{p}{q}$ for some positive integers p and q where $q \neq 0$. This means that $r+\frac{c}{d}=\frac{p}{q}$.

where $q \neq 0$. This means that $r + \frac{c}{d} = \frac{p}{q}$. This can be rewritten as $r = \frac{p}{q} - \frac{c}{d}$. Then $r = \frac{pd - cq}{qd}$, and since $q \neq 0$ and $d \neq 0$, $qd \neq 0$ and this fraction represents a postive integer over a postive integer – a rational number.

However, this contradicts our original assumption that r is irrational thus our assumption that r+s is rational is false so r+s must be irrational. And, if we use universal instantiation, we can say $r=\sqrt{2}$ and s=1.