计算机网络

袁华: <u>hyuan@scut.edu.cn</u>

华南理工大学计算机科学与工程学院

广东省计算机网络重点实验室

本门课程学习目的

- □掌握计算机网络的基本概念
- □掌握计算机网络的基本理论
- □掌握计算机网络的网络基本技术
 - 掌握网络设备的基本操作(路由器/交换机)
 - 掌握Socket编程原理
 - 掌握报文抓取和分析工具的使用

教材和参考资料

- □ Andrew S. T, David J. Wetherall, << 计算机</p>
 - 网络>>(第五版)(1980-1988-1996-20

2010

- □ 参考资料
 - 鲁士文编著,《计算机网络——习题与解析》
 - 谢希仁等著, <<计算机网络>> 电子工业出版社
 - Vito Amato (美),《思科网络技术学院教程》 版社

教学方法和成绩评定

- □ 以教材为主线授课:
- □ 根据网络发展最新动态和课本需要,补充一些相关 知识:
- □ 补充实验所需知识(路由器/交换机的基本操作)
- □ 考试
 - 考试内容: 以教材为主, 兼顾补充内容;
 - 平时成绩:实验+作业+到课
 - 最后成绩:实验(**15%**) +在线测试(**35%**)+ 期末 考试(50%)

所用网站

- □ 好大学在线:
 - http://www.cnmooc.org/home/login.moo c
- □ 课件资料网站:
 - www.scut.edu.cn/e-online

口为什么要学《计算机网络》?

中国计算机网络的迅猛发展

□ 截至到2016年12月底,中国出口带宽总量为6,640,291M

		国际出口带宽数(Mbps)
	中国电信	3,886,527 1,700,446 959,108
	中国联通	1,700,446
	中国移动	959,108
Į	中国教育和科研计算机网	40,960
	中国科技网	53,248 2
	中国国际经济贸易互联网	2
	合计	6,640,291
_		

出口带宽的年增长情况

来源:CNIC中国互联网络发展状况统计调查

2016.12

中国网民规模和年增长率

□ 截至2016年12月,中国网民人数已达7.31

亿,仍居世界第一。

コ大学

手机网民规模(6.95亿)

我国各省、直辖市的网民规模

省份	网民数 (万人)	2016. 12 互联网普及率	2015. 12 互联网普及率	网民规模增速	普及率排名
北京	1690	77.8%	76.5%	2.6%	1
上海	1791	74.1%	73.1%	1.0%	2
广东	8024	74.0%	72.4%	3.3%	3
福建	2678	69.7%	69.6%	1.1%	4
浙江	3632	65.6%	65.3%	1.0%	5
天津	999	64.6%	63.0%	4.5%	6
辽宁	2741	62.6%	62.2%	0.4%	7
江苏	4513	56.6%	55.5%	2.2%	8
山西	2035	55.5%	54.2%	3.0%	9
新疆	1296	54.9%	54.9%	2.7%	10

IPv4地址资源

□ 截至2016年12月,中国IPv4地址数仍维持 在3.38亿。

IPv6地址资源

□ 截至2016年6月,中国IPv6 /32地址块数 已达21188个。

来源:CNNIC 中国互联网络发展状况统计调查

中国教育科研网(CERNET)

CERNET 2

预期的收获

- □ 掌握计算机网络运作的基本原理
- □ 了解计算机网络相关的研究热点
- □ 掌握最基本的网络设备的功能和使用
- □ 掌握报文抓取和分析,分析简单故障
- □可以编写简单的网络通信程序
- □ 是其它课程的基础,也是考研的一个组成部分 (16+9=25分)

推荐学习方法 (博学慎思 明辨笃行)

- □ 上课听讲、思考、课堂练习
 - 课前预习,打印课件
 - 讨论(qq群、课堂讨论、邮件、电话等)
- □下课
 - 作业(复习,完成在线测试(35%))
 - 查找感兴趣的资料
 - 动手实践(课堂实验(15%)、自己实验)
- □ 积累学习、主动学习的能力

一位同学做的笔记


```
网络之间使用冗余链路, 区成拓扑环路.
  网络选择具有最低标识符的网络成为生成树的根
    构造从根制每个网络的最短路径初
 物理层: 中继船.
              槽经信号
       健线 器
 数据链路: 网格
         路由器
  网络屋
         传输回关
  应用压:
   divide the broadcast - domain
VIAN 是由一些局域同同段构成的与物理位置无关的逻辑生
  这些网段具有某些女同的需求
  每一个VLAN的控制有一下明确的林识别指明发送这个晚
  的工作をある場下でサインLAN
VLAN R是局域网络用户提供的一种服务,而并不是一种新型局
```


一位同学做的笔记

一位同学做的思维导图

一位同学做的思维导图 (续)

一位同学做的思维导图

加分原则

- □ 挑错: 从教材、课件、作业和参考答案、模 拟试卷找错误,被老师认可的错误获得0.5 分/每题
- □ 出题:每章结束后,出本章相关的客观题,被老师认可后,可获得0.5分/每题
- □ 课堂演示:每次1~2分

2013计科班考试情况

成绩段	人数
<60	2
60~69	9
70~79	22
80~89	39
>90	6

考试最低分: 41

考试最高分:95

2人缺考,1人缓考

最高加分:5

最终最低分:26

最终最高分:99

最终不及格: 2

联系方式

- □ 主讲老师: 袁华
 - 13302276526
- □ 助教: 陈泽豪 9957779
 - Tel: 15521456617
- □ qq群
 - 群号: 184455508
 - 名称:《计算机网络》学习
- □ 微信公众号: 计算机网络学习

微信公众号二维码

第一章 引言(1)

袁华: <u>hyuan@scut.edu.cn</u>

计算机科学与工程学院

广东省计算机网络重点实验室

本章主要内容

- □ 理解计算机网络的定义
- □ 了解计算机网络的硬件
- □ 了解计算机网络软件
- □ 计算机网络的基本概念(补)
- □ 了解计算机网络的发展历史
- □ 掌握两种参考模型及其比较
- □ 了解网络实例
- □ 了解计算机网络的相关标准

什么是计算机网络? P1

- □ **自主**计算机的**互联**集合
 - 单台计算机的独立自主性。
- □ 互联网络(Internet): 计算 机网络的互相联接。
- □ WWW: World Wide Web, 是信息资源的网络,<mark>资源、资</mark> **源标识和传输协议**三部分支撑 www的运作。

广义网络

互联集合

还听过哪些令人迷惑的术语呢?

- □ 分布式系统?
- □ 中间件?
- □ 集群? (同种,物理本地)
- □ 网格? (异构)
- □ 云?

计算机网络发展的历史

- □ 国外网络的发展史(1.5.1 P42)
 - http://www.nethistory.info/
- □ 国内网络的发展史
 - http://www.cnnic.net.cn
- □ 网络的未来

国外网络的发展史

- □ 奇特的起源----ARPA及ARPANET的诞生(1955 ~ 1970s初期) P43
 - 1969年,第一个实验网络ARPANET正式诞生
- □ ARPANET向Internet的转变(1970s初期 ~ 1982)
- 1981年,美国国家科学基金(NSF)成立计算机科学网络 Open (CSnet),并在 Vinton Cerf的建议下,两网互连, 互联网正式诞生。
 - □ Internet和WWW (1982 ~ 1991)
 - □ WWW走向公众化
 - 1993年4月, Mosaic 浏览器诞生
 - Tim Berners Lee

			_
	Internet Timeline		
	Pre- 1900	Long distance communications via messenger, rider, smoke signals, carrier pigeon, optical telegraph, electrical telegraph	↑ =
	1890s	Bell invents the telephone; telephone service expands rapidly.	
	1901	Marconi's first transatlantic wireless transmission	
	1920s	AM Radio	
	1939	FM Radio	
	1940s	WWII spurs radio and microwave development.	
	1947	Shockley, Barden and Brittain invent the solid-state (semiconductor) transistor.	
	1948	Claude Shannon publishes "A Mathematical Theory of Communication".	
	1950s	Invention of Integrated Circuits.	
	1957	ARPA is created by DoD.	
	1960s	Mainframe Computing	
	1962	Paul Baran at RAND works on "packet switching" networks.	
	1967	Larry Roberts publishes first paper on ARPANET.	
	1969	ARPANET established at UCLA, UCSB, U-Utah, and Stanford.	
	1970s	Widespread use of digital integrated circuits; advent of digital personal computers.	+

		36	
	Internet Ti	imeline	
	1970	ALOHANET is developed by University of Hawaii.	↑
	1972	Ray Tomlinson creates email program to send messages.	
	1973	Bob Kahn and Vint Cerf begin work on what later becomes TCP/IP.The ARPANET goes international with connections to University College in London, England and the Royal Radar Establishment in Norway.	
	1974	BBN opens Telnet, the first commercial version of the ARPANET.	
	1980s	Widespread use of personal computers and Unix-based mini-computers.	
	1981	The term Internet is assigned to a connected set of networks.	
	1982	ISO releases OSI Model and protocols; the protocols die but the model is very influential.	
	1983	Transmission Control Protocol/Internet Protocol (TCP/IP) becomes the universal language of the Internet. ARPANET is split into ARPANET and MILNET.	
	1984	Cisco Systems founded; gateway and router development begins. Domain Name Service introduced. The number of Internet hosts exceeds 1000.	
	1986	NSFNET is created (with a backbone speed of 56 KBps).	
	1987	The number of Internet hosts exceeds 10,000.	
-11			4 . 1

Computer Emergency Response Team (CERT) is formed by DARPA

1988

		_		
Internet Ti	meline			
1989	The number of Internet hosts exceeds 100,000.			
1990	ARPANET becomes the Internet.			
1991	The World Wide Web (WWW) is born. Tim Berners-Lee develops code for WWW.			
1992	Internet Society (ISOC) is chartered. Number of Internet hosts breaks 1,000,000.			
1993	Mosaic, the first graphics-based Web browser, becomes available.			
1994	Netscape Navigator introduced.			
1996	The number of Internet hosts exceeds 10 million. The Internet covers the globe.			
1997	The American Registry for Internet Numbers (ARIN) is established. Internet 2 comes online.			
Late 1990's til present	Internet users doubling every 6 months (exponential growth.)			
1998	Cisco hits 70% of sales via internet, Networking Academies launched.			
1999	Internet 2 backbone network deploys IPv6. Major corporations race toward the video, voice and data convergence.			
2001	The number of Internet host exceeds 110 million.	\downarrow		

V-----

1969, ARPANET P45

博大的互联网络

互联网络的结构

国内互联网的发展简史

- 1987年9月20日,中国人使用Internet的起点
 - "Across the Great Wall we can reach every corner in the world" (越过长城,走向世界)。
- 1994年4月20日,中国克服重重障碍,实现了与Internet的全功能连接
- 中国科学院院网(CASNet, 1992),即后来的中国科技网(CSTNet, п **1995**)
- 中国教育与科研计算机网(CERNet,1995)
- 中国公用计算机互联网(CHINANet,1996)
- 中国金桥信息网(CHINAGBN,1996)
- RFC1922(1996年)、RFC3743(2004年),。。。。。。。
- 中国公众多媒体通信网(169)全面启动,视聆通、天府热线、上海热线
- 1997,中国四大网络互联互通
- 1997年,国务院授权中科院创立和管理中国互联网络信息中心CNNIC。

网络的未来(从无到有,从有到。。。)

- □传输速度加快
- □更丰富的内容和更具可看性的网页
- □电子商务的发展
- □全天在线服务
- □越来越多的人成为soho一族
- □终身学习称为生活的一部分

0 0 0 0 0 0

- □ IPv4向IPv6的过渡
- □ 蓝牙技术
- □ 移动节点
- □多(超)媒体信息
- □家庭网络
- □中国Internet2

协作 = 便捷,规模,灵活

- •即时信息
- •企业协同
- •网迅平台

网络的基本概念(一)

□ **拓扑**:信道的分布方式。常见的拓扑结构:总线型、 星型、环型、树型和网状

Physical Topologies

Bus Topology

Ring Topology

Star Topology

Extended Star Topology

Hierarchical Topology

Mesh Topology

网络的基本概念(二)

□ 协议: 一系列规则和约定的规范性描述,它控制网络中的设备之间如何进行信息交换。P31

■ 如: TCP/IP

□ 数字带宽: 指在单位时间内流经的信息总量。

Pipe Analogy for Bandwidth

Bandwidth is like pipewidth.

Network devices are like pumps, valves, fittings, and taps.

Packets are like water.

带宽的单位

Units of Bandwidth

Unit of Bandwidth	Abbrev.	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10 ³ bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10 ⁶ bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 ⁹ bps

数字带宽的单位 P65

Exp.	Explicit	Prefix	Exp.	Explicit	Prefix	E
10 ⁻³	0.001	milli	10 ³	1,000	Kilo	
10 ⁻⁶	0.000001	micro	10 ⁶	1,000,000	Mega	
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga	
10 ⁻¹²	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera	Ē
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta	
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa	
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta	
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta	

吞吐量(Throughput)

- □指实际的、可测到的带宽。
 - 1) 网络设备
 - 2) 传输的数据类型
 - 3)网络拓扑
 - 4)用户数量
 - 5)用户计算机
 - 6)服务器
 - •••••

传输时间计算公式:
$$T = \frac{S}{BW}$$
 $T = \frac{S}{P}$

例:如果ISDN的带宽为 128kbps,OC-48的带宽为 2.488 Gbps,如果用ISDN传输一张装满数据的1.44M软盘,用OC-48传输装满10G的硬盘数据,问哪一种传输所用的时间更少?

解:按照理想的传输状况来计算,即根据: $T = \frac{S}{BW}$

有:
$$T_{fd} = \frac{1.44M}{128kbps} = \frac{1.44 \times 10^3 \times 8}{128} = 90s$$
$$T_{hd} = \frac{10G \times 8}{2.488Gbps} = 32.152s$$

答: 传输10G的硬盘数据所化的时间更少。

网络的基本概念 (三)

- □ 点到点: 信源机和信宿机之间的通信由一段 一段的直接相连的机器间的通信组成,机器 间的直接连接叫做点到点连接。
- □ 端到端: 信源机和信宿机之间直接通信,好象拥有一条直接的线路。

网络硬件(1.2节)P13

- □ 个域网 PAN
- □ 局域网 LAN
- □ 城域网 MAN
- □ 广域网 WAN
- □ 互联网 Internet

网络分类 (1/2)

- □ 按传输技术分
 - 广播式网络 P13
 - 点到点网络
- □ 按传输距离分 P14
 - 局域网
 - 城域网
 - 广域网
 - 互联网

网络分类 (2/2)

- □ 按传输介质分
 - ■有线网
 - 无线网
- □ 按拓扑结构分
 - ■总线
 - 环型
 - 网状
 - 星型

按照传输距离/规模的分类

	Interprocessor distance	Processors located in same	Example
	1 m	Square meter	Personal area network
	10 m	Room	
	100 m	Building	Local area network
L	1 km	Campus	
	10 km	City	Metropolitan area network
	100 km	Country	Wide and a make and
	1000 km	Continent	≻ Wide area network
	10,000 km	Planet	The Internet

局域网(Local Area Network)

- □ 覆盖范围小P15
- □ 传输技术,广播方式为主
 - 总线型:如IEEE802.3(以太网)CSMA/CD
 - 环型: 如IEEE802.5 (IBM令牌环) 拓扑结构
- □ 拓扑结构

城域网(Metropolitan Area Network)

- □ 大型的LAN , IEEE802.6, P18
- □ 基于CableTV的城域网

广域网(WAN, 1/2)

□ 主机(host)、LAN和通信子网的关系P18

广域网(WAN, 2/2)

- □ 从发送方到接受方的分组流
- □ ISP网络服务提供商

子网(Subnet)P19

- □ 存储转发或分组(packet)交换
 - 消息被分隔成小的报文(packet)后,传送
 - 到达的报文首先被存储 (stored), 然后,路由 器决定应该从哪里转发报文;
 - 从选定的输出线路转发这报文。
 - 不同的分组走不同的路线,也可能走相同的路 线。

网络互连P21

- □ 网关(Gateways)
 - 连接异构网络
 - 提供必要的转换(软件或硬件)
- □ 互联网络(internetwork, inf
 - 网络的集合
 - 主要的形式:被WAN连接起来
- □ 子网、网络、互联网
 - 子网完成基础转发
 - 子网和主机组成网络
 - 当异构的网络连在一起形成1

小结

- □计算机网络的定义
- □ 计算机网络的历史
- □ 计算机网络相关的概念
 - 拓扑、带宽、吞吐量、协议、点到点、端到端
- □ 网络分类
 - PAN, LAN, MAN, WAN, Internet

有问题吗?

