#### Lecture 5

Readings

Strong I.6 and I.7

#### Today

- · Eigenvalues + eigenvectors
- · Similar mutrices
- · Diagonalizability
- · Spectral Theorem
- · Positive definite + positive semidefinite matrices

## Eigenvalues and eigenvectors

def A non-zero vector  $\vec{x}$  is an eigenvector of a matrix A if  $A\vec{x} = \lambda \vec{x}$  for some number  $\lambda$ . A is called an eigenvalue of A.

notes  $A\vec{x} = A\vec{x} \implies A$  is square eigenvectors are not unique: if  $\vec{x}$  is an eigenvector,  $2\vec{x}$  is also an eigenvector

$$A(2\vec{x}) = 2A\vec{x} = 2\lambda\vec{x} = \lambda(2\vec{x})$$

### Computing eigenvalues

If  $A\vec{x} = \lambda \vec{x}$ ,  $A\vec{x} - \lambda \vec{x} = \vec{0}$  $(A - \lambda \vec{1})\vec{x} = \vec{0}$ 

Since  $\vec{x}$  is non-zero,  $(A-\lambda T)$  is not invertible and must be singulat.

Thus det (A-JI)=0

This is an n+h degree polynomial in the variable ).

ax  $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$  det(A) = ad-bc

 $A-\lambda I = \begin{bmatrix} a-\lambda & b \\ c & d-\lambda \end{bmatrix} \qquad det (A-\lambda I) = (a-\lambda)(d-\lambda)-bc$   $= \lambda^2 - (a+d)\lambda + (ad-bc)$ 

If we solve  $\lambda^2 - (a+d)\lambda + (ad-bc) = 0$ we will get two (possibly complex) roots  $\lambda_1$  and  $\lambda_2$ .

 $det(A-\lambda I) = (8-\lambda)(7-\lambda)-6$   $= \lambda^2 - 15\lambda + 50$   $= (\lambda - 10)(\lambda - 5)$ 

The two roots are  $\lambda_1 = 10$ ,  $\lambda_2 = 5$ 

exercise: solve for x, and X2

#### Similar matrices

def A matrix B is similar to matrix A if

we can write 
$$B = PAP^{-1}$$
  $(BP = PA)$ 

note Observe that B has the same eigenvalves as A it

How do we show this?

Band A me

similar.

Suppose  $\lambda$  is an eigenvalue of A with eigenvector  $\vec{x}$ .

Want to show (WTS) that there exists  $\vec{y}$  such that  $\vec{B}\vec{y} = \lambda \vec{y}$ 

with 
$$\rho \Lambda \rho^{-1} \dot{\gamma} = \lambda \dot{\gamma}$$

$$B\vec{y} = B(P\vec{x}) = PAP^{-1}P\vec{x} = PA\vec{x} = P(\lambda\vec{x}) = \lambda(P\vec{x}) = \lambda\vec{y}$$

eigenvectors of B one  $\vec{x}_1, \dots, \vec{x}_h$ eigenvectors of B one  $P\vec{x}_1, \dots, P\vec{x}_h$ 

## Diagonalizability

def A square matrix A e IR 15 diagonalizable if it is Similar to a diagonal matrix.

In other words, there exists an invertible mutrix X and diagonal matrix  $\Lambda$  such that

$$A = X \wedge X^{-1} \qquad (X^{-1}A X = \wedge)$$

nole

if 
$$X = \begin{bmatrix} 1 & 1 \\ \vec{x}_1 & \cdots & \vec{x}_n \end{bmatrix}$$
 and  $A = \begin{bmatrix} \lambda_1 & \lambda_2 & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \lambda_n \end{bmatrix}$ 

$$A = X$$

$$A$$

· The columns of X are eigenvectors of A where

The eigenvalues are the corresponding entries

on the diagonal of A

Note The eigenvectors are linearly independent if A is diagonalizable.

Note This is called the eigendecomposition or spectral decomposition.

Note If  $A = X\Lambda X^{-1}$ ,  $A^2 = (X\Lambda X^{-1})(X\Lambda X^{-1}) = X\Lambda^2 X^{-1}$ 

$$A^{100} = XA^{100}X^{-1}$$

$$\begin{bmatrix} \lambda_1^{100} \\ \vdots \\ \lambda_n^{100} \end{bmatrix}$$

Note If A is invertible,  $A^{-1} = (X\Lambda X^{-1})^{-1} = X\Lambda^{-1}X^{-1}$ 

How do we know if a matrix is diagonalizable?

- 1 Solve det (A-XI)=0 to get n eigenvalues
- 2. Then we need to show that there are n ineasly independent eigenvectors ... not so easy."

  We will come back to this.

Symmetric matrices

det S is a symmetric matrix if S=ST (5 must be square)

Theorem (Spectral)

If S is a real symmetric nxn matrix;

S hus n real eigenvalues

S hus n orthonormal eigenvectors

$$S = Q \wedge Q^{T} \qquad (SQ = Q \wedge Q)$$

note All symmetric matrices are diagonalizable (by orthogonal matrices)

note If 
$$S = Q \wedge Q^{T}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1 \\ \overline{q_1} & \overline{q_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & 1 & 1$$

$$= \lambda_1 \vec{q}_1 \vec{q}_1^{\mathsf{T}} + \lambda_2 \vec{q}_2 \vec{q}_2^{\mathsf{T}} + \dots + \lambda_n \vec{q}_n \vec{q}_n^{\mathsf{T}}$$

we can write s as a sum of rank-1 matrices

note the arrange the columns of Q and 
$$\Lambda$$
 so  $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N$ 

Proof outline

- (1)  $det(S-\lambda I)$  is an  $n^{th}$ -degree polynomial so it was n roots (Fundamental Theorem of Algebra)
- 2) If S is real + symmetric the roots hi,..., In one all real (need to verify)
- (3) If S is real + symmetric, eigenvectors corresponding to distinct eigenvalues are orthogonal (verify)
- 4) If an eigenvalue is repealed, it is still possible
  to produce orthogonal eigenvectors when S=ST (tricky-need be verify)

ex let  $S = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$  what one the eigenvalues?

(2) Find eigenvector for  $\lambda_1$ :  $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 3y \end{bmatrix} \qquad \begin{array}{c} x + 2y = 3x \\ 2x + y = 3y \end{array} \implies X = y \qquad \begin{array}{c} 1 \\ \sqrt{12} \\ 1 \end{array}$ 

$$3 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$
 (verify)



# Positive définite and positive semi definite matrices

Def! A symmetric matrix S is positive definite if its energy function  $f(\vec{x}) = \vec{x}^T S \vec{x} > 0$  for all  $\vec{x} \neq 0$  S is positive semidefinite if  $\vec{x}^T S \vec{x} \geq 0$  for all  $\vec{x} \neq 0$  ex can we think of an example of a positive definite matrix? S = T  $\vec{x}^T S \vec{x} = \vec{x}^T \vec{x} > 0$  if  $\vec{x} \neq 0$