Lecture 2: Regression analysis with time-series data

Prof. dr. Wolter Hassink Utrecht University School of Economics w.h.j.hassink@uu.nl

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

© Utrecht University School of Economics 2023

Contents:

- The nature of time series
- Interpretation of dynamic regression model
- Trends
- Seasonality
- Spurious regression
- Properties of OLS-estimators consistent estimator
- Contemporaneous exogeneity
- Weak dependency
- Implications of a unit root model
- Autocorrelation

Material:

Wooldridge:

Chapter 10: 10.1, 10.2, 10.3, 10.5

Chapter 11: 11.1, 11.2

Chapter 12: 12.1, 12.2, 12.3, 12.4

Motivation: economic intertemporal transmission mechanisms

- Central question: how long does it take before a change of a key economic variable has an influence on economic processes?
- For instance the interest increase by the ECB has influence on the economy. There are several intertemporal transmission mechanisms through increased lending, etc.
- Any further examples on transmission mechanisms in your master programme?
- Other example: effect of interest on inflation.
- Thus: A change of inflation in period t has an effect on unemployment in t + 1 (or t + 2), etc.
- What if a researcher ignores the intertemporal transmission mechanism? She specifies the following regression equation:

$$inflation_t = \beta_0 + \beta_1 interest_t + u_t$$

- RESULT 1: It leads to correlation of the error term over time: autocorrelation.
- RESULT 2: autocorrelation will lead to biased and inconsistent parameter estimates
- RESULT 3: t-statistics and F-statistics are wrong!
- What if a researcher correctly describes the intertemporal transmission mechanism? She specifies the following equation:

$$inflation_t = \beta_0 + \beta_1 interest_{t-1} + \beta_2 interest_{t-2} + u_t$$

• RESULT: there is hardly any autocorrelation.

The nature of time series

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

[©] Utrecht University School of Economics 2023

The nature of time series

Aim: to introduce the specific features of a times-series data set as well as the time-series operators of Stata.

- Differences between cross-sectional data and time-series data:
 - Logical (temporal) ranking of the observations. Timeseries data do not stem from a random sample.
- A sequence of random variables indexed by time is referred to as a stochastic process or a time-series process $(y_1,...,y_t,...,y_n)$. The subscript refers to the particular time period.
- When a time-series data set is collected, only one possible outcome (realization) of the stochastic process may be obtained.
- Time series commands in Stata:

Begin the do-file with the following command:

- tsset year (year is in this data set the variable that denotes the time period; in other data sets a different variable name may be used)
- Stata time-series operators for:

```
X_{t-1}, X_{t-2}, X_{t+1}, X_{t+2}, X_{t} - X_{t-1}, X_{t-1} - X_{t-2}
Operator Meaning
L. lag (x t-1)
L1. lag (x t-1)
      2-period lag (x t-2)
L2.
. . .
        lead (x t+1)
F.
        lead (x t+1)
F1.
F2.
         2-period lead (x t+2)
. . .
D.
         difference (x t - x t-1)
        difference (x t - x_t-1)
D1.
         1-period lagged difference
L.D.
          (x t-1 - x t-2)
```

Definition: error term is i.i.d.: identically and independently distributed

Consider the linear regression equation

$$inflation_t = \beta_0 + \beta_1 interest_{t-1} + \beta_2 interest_{t-2} + u_t$$

We usually assume the error term u_t is i.i.d.: identically and independently distributed:

$E(u_t) = 0$	the expected value of the error term is zero
$Var(u_t) = \sigma^2$	a constant variance of the error term
$Cov(u_t, u_{t-1}) = 0$	no association between error terms across
	time

In case of autocorrelation (see below), the assumption that u_t is i.i.d. is violated (t-statistics and F-statistics are wrong).

Interpretation of dynamic regression model

Interpretation of dynamic regression model

Aim: to calculate the long-run effect of a model with both lagged dependent and lagged independent variables.

- y_t : outcome of y (e.g. inflation) in period t: contemporaneous variable
- y_{t-1} : lag of 1 period: outcome of y in period t-1: lagged variable
- y_{t+1} : lead of 1 period: outcome of y in period t+1: lead variable
- Dynamic model:

$$inf_t = \beta_0 + \beta_1 inf_{t-1} + \delta_1 unemp_t + \delta_2 unemp_{t-1} + u_t$$
 $t=1949,...,2003$

• It should be read as follows:

$$\begin{split} &\inf_{2003} = \beta_0 + \beta_1 \inf_{2002} + \delta_1 unemp_{2003} + \delta_2 unemp_{2002} + u_{2003} \\ &\inf_{2002} = \beta_0 + \beta_1 \inf_{2001} + \delta_1 unemp_{2002} + \delta_2 unemp_{2001} + u_{2002} \\ & \cdots \\ &\inf_{1949} = \beta_0 + \beta_1 \inf_{1948} + \delta_1 unemp_{1949} + \delta_2 unemp_{1948} + u_{1949} \end{split}$$

- The right-hand side variables do not contain any lead variables as a result of causality (in other words, the current dependent variable cannot be explained by the future independent variables), but they may incorporate future expectations regardless.
- This model is referred to as finite distributed lag.
- The contemporaneous effect (or short-run effect) is the parameter that registers the effect of $unemp_t$ on inf_t
 - \circ It refers to the same period t. Short-run effect: δ_1
- Long-run effect:
 - Includes the change in the dependent variable in all periods as result of changes in the independent variables

- Long-run effect of *unemp* on *inf*: $\frac{(\delta_1 + \delta_2)}{(1 \beta_1)}$
 - o First, start with long-run values (equilibrium values)
 - o $E(unemp_t) = E(unemp_{t-1}) = E(unemp_{t-2}) = ... = unemp *$ $<math>E(inf_t) = E(inf_{t-1}) = E(inf_{t-2}) = ... = inf *$
 - o In the long run: equilibrium relationship:

$$inf^* = \beta_0 + \beta_1 inf^* + \delta_1 unemp^* + \delta_2 unemp^*$$

$$inf * -\beta_1 inf * = \beta_0 + (\delta_1 + \delta_2) unemp *$$

$$(1-\beta_1)inf^* = \beta_0 + (\delta_1 + \delta_2)unemp^*$$

$$inf^* = \frac{\beta_0}{(1-\beta_1)} + \frac{(\delta_1 + \delta_2)}{(1-\beta_1)} unemp^*$$

- The long-run effect of $unemp^*$ on inf^* is $\frac{(\delta_1 + \delta_2)}{(1 \beta_1)}$
- Lags of dependent and independent variables were introduced because:
 - o They have a clear economic interpretation
 - It help us to mitigate the statistical problems of autocorrelation (see last part of this lecture)

A static regression model

Example 1: Data set: PHILLIPS.DTA

. tsset year

time variable: year, 1948 to 2003

delta: 1 unit

reg	ınt	unem
0		

•	i reg iiii uiic	/111						
	Source	SS	df	MS		Number of obs	=	56
-	+					F(1, 54)	=	3.58
	Model	31.599858	1	31.599858		Prob > F	=	0.0639
	Residual	476.815691	54	8.8299202		R-squared	=	0.0622
-	+					Adj R-squared	=	0.0448
	Total	508.415549	55	9.24391907		Root MSE	=	2.9715
	inf	Coef.	Std. E	Err. t	P> t	[95% Conf.	In	terval]
-	+	<u></u>		<u></u> -				
	unem	.5023782	.26556	1.89	0.064	0300424	1	034799
	_cons	1.053566	1.5479	0.68	0.499	-2.049901	4	.157033

- The effect of unemployment on inflation in the above model is 0.50.
- The model does not distinguish between long-run effects and short-run effects.

A dynamic regression model

Example 2: Regression of inflation(*t*) on inflation(*t*-1), unemployment(*t*) and unemployment(*t*-1)

. reg inf l.inf	'unem l.un	iem				
Source	SS	df	MS		Number of obs	= 55
+-					. , .	= 17.26
Model	246.994365	3	82.331455		Prob > F	
Residual	243.322736	51 4	.77103403		R-squared	= 0.5037
+-					Adj R-squared	= 0.4746
Total	490.317101	54 9	07994631		Root MSE	
inf	Coof	C+4 F~		D>1+1	[95% Conf.	Tn+ommal1
•					-	Incervari
•						
inf						
L1.	.7878368	.119972	3 6.57	0.000	.5469823	1.028691
unem						
i	6746869	.359146	7 -1.88	0.066	-1.395704	.0463301
L1. i		.30846		0.103	1075366	1.131014
_cons	1.668624	1.23399	5 1.35	0.182	8087242	4.145972

- Note that the estimated parameter on inflation(*t*-1) is statistically significant and that its value is 0.79. Furthermore, the estimated parameter on unemployment(*t*) and unemployment(*t*-1) are statistically significant at the 10-percent level (*p*-value of 0.103 is considered to be significant at 10-percent level).
- The short-run effect is: -0.675
- The long-run effect is: (-0.675 + 0.512)/(1 0.788) = -0.768
- However, the estimated effect is statistically insignificant according to the delta method (for delta method, see example 4 of lecture 1: the delta method is a transformation of the estimated parameters, so that the std.error of the transformation can be calculated):

```
. nlcom (_b[ unem] + _b[l.unem])/(1-_b[l.inf])

__nl_1: (_b[ unem] + _b[l.unem])/(1-_b[l.inf])

__inf | Coef. Std. Err. t P>|t| [95% Conf. Interval]

__nl_1 | -.7680326 1.379379 -0.56 0.580 -3.537252 2.001187
```

Trends

Trends

Aim: to introduce the use of a trend in a time-series model.

- Many economic time series have a common tendency to grow over time.
- In order to draw causal inference, we must recognize that some time series contain a time trend.
- What kind of model adequately captures trending behaviour?
- Linear trend (see Figure below for *stockprice*) is the effect of the variable *t* in an equation with a level variable as the dependent variable.

$$stockprice_t = \alpha_0 + \alpha_1 t + e_t$$
 $t=1,...,n$ with $Ee_t = 0, Var(e_t) = \sigma^2$

• Exponential trend (see Figure below for log(*stockprice*)). Is the effect of the variable *t* in an equation with a logarithmic variable is the level variable.

$$\log(stockprice_t) = \alpha_0 + \alpha_1 t + e_t \qquad t=1,...,n \text{ with}$$
$$Ee_t = 0, Var(e_t) = \sigma^2$$

Example: Linear trend

. sum stockpri Variable	Obs	Mean	Std. Dev.	Min	Мах
stockprice	510	5859.759	945.7895	4219.45	7661.5

. reg stockprice time

Source	•	df	MS		Number of obs		510
Model Residual	•	1 508 3	259001715 386432.758		F(1, 508) Prob > F R-squared Adj R-squared	= =	670.24 0.0000 0.5688
Total	-		394517.792		Root MSE		621.64
stockprice	 Coef. +		rr. t		-	In	terval]
time _cons	3.45742 4624.423	.133548	31 25.89	0.000	3.195045 4516.197		.719794 4732.65

• Conclusion: increase of stockprice is 3.45 per day

. predict residu_ASML, resid
. graph twoway line residu_ASML time

Exponential trend

For the natural logarithm of the stockprice:

. reg in_become	, , , , , , , , , , , , , , , , , , ,					
Source	SS	_	_		Number of obs	
Model Residual	8.24221675 5.55681806	1 508	8.24221675 .010938618		F(1, 508) Prob > F R-squared	= 0.0000 = 0.5973
Total	13.7990348				Adj R-squared Root MSE	
					[95% Conf.	_
time	.0006168	.0000	225 27.45	0.000	.0005726 8.423943	.0006609

• **Conclusion:** increase of stockprice of ASML is 0.0617 percent per day

. predict residu_ln_stockprice, resid
. graph twoway line residu_ln_stockprice time

Seasonality

Seasonality

Aim: to introduce seasonality

- If a time series has daily, monthly or quarterly observations, it may exhibit seasonality (e.g. the number of transactions in housing market, unemployment, sickness absenteeism, the stockprice) varies specific patterns repeat over the year
- Many econometric techniques are available to account for seasonality. E.g. by adding seasonal dummy variables:

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t2} + ... + \beta_{k}x_{tk} + \delta_{2}febr_{t} + \delta_{3}march_{t} + ... + \delta_{12}dec_{t} + u_{t}$$

• Apply an *F*-test of joint significance to test for seasonality:

$$H_0: \delta_2 = 0, \delta_3 = 0, ..., \delta_{12} = 0$$

 $H_1: H_0$ not true

Example: Seasonality for the stockprice?

. tab month, gen(dmonth)

month	ļ.	Freq.	Percent	Cum.
1	1	45	8.82	8.82
2	Ì	40	7.84	16.67
3	1	43	8.43	25.10
4	1	44	8.63	33.73
5	1	43	8.43	42.16
6	1	43	8.43	50.59
7	1	46	9.02	59.61
8	1	42	8.24	67.84
9	1	44	8.63	76.47
10	1	45	8.82	85.29
11	1	41	8.04	93.33
12	!	34	6.67	100.00
Total	-+ 	510	100.00	

. reg stockprice dmonth*

note: dmonth2 omitted because of collinearity

Source Model					Number of obs F(11, 498) Prob > F	= 2.39 = 0.0069
Residual	432492583	498 8684	59.002		R-squared	
Total	455309556	509 8945	17.792		Adj R-squared Root MSE	= 0.0291 = 931.91
stockprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dmonth1	-50.09094	202.5107	-0.25	0.805	-447.9715	347.7896
dmonth2	0	(omitted)				
dmonth3	339.3381	204.7149	1.66	0.098	-62.87323	741.5495
dmonth4	51.49089	203.5907	0.25	0.800	-348.5117	451.4935
dmonth5	100.1954	204.7149	0.49	0.625	-302.016	502.4067
dmonth6	372.8324	204.7149	1.82	0.069	-29.37901	775.0437
dmonth7	164.3509	201.4721	0.82	0.415	-231.4892	560.191
dmonth8	-36.32133	205.8861	-0.18	0.860	-440.8337	368.191
dmonth9	74.79882	203.5907	0.37	0.713	-325.2038	474.8014
dmonth10	1.359701	202.5107	0.01	0.995	-396.5209	399.2403
dmonth11	527.865	207.1072	2.55	0.011	120.9534	934.7767
dmonth12	621.5738	217.3807	2.86	0.004	194.4773	1048.67
_cons	5688.963	147.3481	38.61	0.000	5399.462	5978.464

Conclusion: The F-statistic is statistically significant (p-value close to zero), so the null hypothesis that there is no seasonal effect is rejected (i.e. there is a seasonal effect).

Seasonality and time trend for the stockprice?

. reg stockprice dmonth* time note: dmonth2 omitted because of collinearity

Source	ss 318007857 137301699 455309556	12 2650 497 2762	60.964 		Number of obs F(12, 497) Prob > F R-squared Adj R-squared Root MSE	= 95.93 = 0.0000 = 0.6984
stockprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
dmonth1	91.70753	114.2999	0.80	0.423	-132.8631	316.2782
dmonth2	0	(omitted)				
dmonth3	199.7107	115.5398	1.73	0.085	-27.29596	426.7173
dmonth4	-197.7151	115.0796	-1.72	0.086	-423.8175	28.38725
dmonth5	-258.5893	115.9813	-2.23	0.026	-486.4634	-30.71509
dmonth6	-147.9337	116.5547	-1.27	0.205	-376.9345	81.067
dmonth7	-468.8164	115.2709	-4.07	0.000	-695.2948	-242.3379
dmonth8	-798.5986	118.4397	-6.74	0.000	-1031.303	-565.8943
dmonth9	-813.6997	117.9999	-6.90	0.000	-1045.54	-581.8595
dmonth10	-1000.258	118.2563	-8.46	0.000	-1232.602	-767.9138
dmonth11	-635.7264	122.1135	-5.21	0.000	-875.6488	-395.804
dmonth12	-369.5838	126.2982	-2.93	0.004	-617.7281	-121.4396
time	4.188337	.1281297	32.69	0.000	3.936594	4.440079
_cons	4731.928 	88.11189	53.70 	0.000	4558.81 	4905.046

. testparm dmonth*

```
(1) dmonth1 = 0
```

$$(11)$$
 dmonth12 = 0

$$F(11, 497) = 19.42$$

 $Prob > F = 0.0000$

⁽¹⁾ dmonth1 = 0 (2) dmonth3 = 0 (3) dmonth4 = 0 (4) dmonth5 = 0 (5) dmonth6 = 0 (6) dmonth7 = 0 (7) dmonth8 = 0 (8) dmonth9 = 0

⁽⁹⁾ dmonth10 = 0

⁽¹⁰⁾ dmonth11 = 0

Conclusions:

- Both trend (because time is individually significant) and seasonal effects (since *p*-value of joint test of parameters on dmonth* is zero) are present.
- The estimated parameter on *dmonth12* indicates that the stockprice is 370 lower in December relative to February, ceteris paribus on the time trend.
- The parameter on the time trend indicates that the stockprice increased by 4.2 each day, ceteris paribus on month.
- The residuals may be interpreted as the stockprice, after having controlled for month of the year and the time trend (see graph below).
- predict uhat, residgraph twoway line uhat time

Spurious regression

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

[©] Utrecht University School of Economics 2023

Spurious regression

Aim: to show that it is important to include a trend in a regression equation.

• In a regression equation:

$$y_t = \beta_0 + \beta_1 x_t + \beta_2 t + e_t$$
 $t=1,2,...$ with $Ee_t = 0, Var(e_t) = \sigma^2$

- One should use a time trend in order to take account of unobserved, trending variables that affect both x_t and y_t .
- The non-inclusion of a trend variable *t*, it may lead to **spurious** regression.
- There may appear to be an effect of x on y if the trend, t, is not included in the regression equation.

Example: the AEXindex

. reg stockprice time

Source	SS	df	MS	_	Number of obs F(1, 508)		510 670.24
Model Residual 	259001715 196307841	1 508 	25900171 386432.75	5 8 -	Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.5688 0.5680 621.64
stockprice	Coef.				•	Int	cerval]
time _cons	3.45742 4624.423	.13354 55.087	481 25.	0.000	3.195045 4516.197		.719794 1732.65

. reg stockprice AEXindex

Source	ss	df	MS		Number of obs =	
					F(1, 508)	
Model	361048404	1 3	61048404		Prob > F	= 0.0000
Residual	94261152.5	508 18	35553.45		R-squared	= 0.7930
					Adj R-squared	= 0.7926
Total	455309556	509 894	4517.792		Root MSE	= 430.76
stockprice	Coef.	Std. Err	. t	P> t	[95% Conf.	Intervall
AEXindex		1520230	44 11	0 000	6.445202	7.046084
_cons	-2743.479	195.9661	-14.00	0.000	-3128.483	-2336.476
. reg stockpri	ice AEXindex t	ime				
Source	1 88	df	MS		Number of obs	= 510
Dource	, 55 				F(2, 507)	
Wadal	362312913	2 10	01156456			
Residual	02006643 E	E07 10	040E 330		Prob > F	
Residual					R-squared	
	+				Adj R-squared	
Total	455309556	509 894	4517.792		Root MSE	= 428.28
stockprice	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
	+ <u></u>					
AEXindex	6.189308	.2607943	23.73	0.000	5.676938	
time	.4143712					.7244302
cons	-2181.998	289.2974	-7.54	0.000	-2750.367	-1613.629
-						
. reg stockpri	ice AEXindex t	ime dmontl	n*			
	ice AEXindex t					
. reg stockpri						
note: dmonth3	omitted becau	se of col	linearity		Number of obs	= 510
	omitted becau				Number of obs	
note: dmonth3	omitted becau SS 	df	MS		F(13, 496)	= 238.65
note: dmonth3 Source Model	omitted becau SS 392550949	df 	MS 196226.9		F(13, 496)	= 238.65
note: dmonth3	omitted becau SS 392550949 62758606.9	df 13 30: 496 12:	MS 196226.9 5529.449		F(13, 496) Prob > F R-squared	= 238.65 = 0.0000 = 0.8622
note: dmonth3 Source Model Residual	omitted becau SS + 392550949 62758606.9	df 13 30: 496 12:	MS 196226.9 5529.449		F(13, 496) Prob > F R-squared Adj R-squared	= 238.65 = 0.0000 = 0.8622 = 0.8586
note: dmonth3 Source Model Residual	omitted becau SS 392550949 62758606.9	df 13 30: 496 12:	MS 196226.9 5529.449		F(13, 496) Prob > F R-squared	= 238.65 = 0.0000 = 0.8622 = 0.8586
note: dmonth3 Source Model Residual	omitted becau SS + 392550949 62758606.9	df 13 30: 496 12:	MS 196226.9 5529.449		F(13, 496) Prob > F R-squared Adj R-squared	= 238.65 = 0.0000 = 0.8622 = 0.8586
note: dmonth3 Source Model Residual Total	omitted becau SS 392550949 62758606.9 	df 	MS 196226.9 6529.449 4517.792		F(13, 496) Prob > F R-squared Adj R-squared Root MSE	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
note: dmonth3 Source Model Residual	omitted becau SS 	df 	MS 196226.9 6529.449 4517.792	P> t	F(13, 496) Prob > F R-squared Adj R-squared	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
Note: dmonth3 Source Model Residual Total stockprice	omitted becau	df 13 30: 496 12: 509 894	MS 196226.9 6529.449 4517.792		F(13, 496) Prob > F R-squared Adj R-squared Root MSE	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71 Interval]
Model Residual Total stockprice	omitted because SS 392550949 62758606.9 455309556 Coef. Coef. 7.818362	df 13 30: 496 12: 509 894 Std. Err	MS 196226.9 6529.449 4517.792	0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf.	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
Note: dmonth3 Source Model Residual Total stockprice	omitted because SS 392550949 62758606.9 455309556 Coef. 7.818362	df 13 30: 496 12: 509 894	MS 196226.9 6529.449 4517.792		F(13, 496) Prob > F R-squared Adj R-squared Root MSE	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71 Interval]
Model Residual Total stockprice	omitted because SS 392550949 62758606.9 455309556 Coef. 7.818362 5077373	df 13 30: 496 12: 509 894 Std. Err	MS 196226.9 6529.449 4517.792	0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf.	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
note: dmonth3 Source Model Residual Total stockprice AEXindex time	SS 392550949 62758606.9 455309556 Coef. 7.818362 5077373 230.4776	13 30: 496 120 509 894 Std. Err .3221127	MS 196226.9 6529.449 4517.792 t	0.000 0.017	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
note: dmonth3 Source Model Residual Total stockprice AEXindex time dmonth1	SS 392550949 62758606.9 455309556 Coef. 7.818362 5077373 230.4776 -37.91592	df 13 30: 496 120 509 894 Std. Err .3221127 .2120192 77.3481	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98	0.000 0.017 0.003	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
note: dmonth3 Source Model Residual Total stockprice AEXindex time dmonth1 dmonth2	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592	df 13 30: 496 12: 509 894 Std. Err .3221127 .2120192 77.3481 78.47657	MS 196226.9 6529.449 4517.792 t t 24.27 -2.39 2.98	0.000 0.017 0.003	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
note: dmonth3 Source Model Residual Total stockprice AEXindex time dmonth1 dmonth2 dmonth3 dmonth4	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194	df	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48	0.000 0.017 0.003 0.629	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth4 dmonth5	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394	se of cold df 	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22	0.000 0.017 0.003 0.629 0.000 0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71 Interval] 8.451236 0911707 382.448 116.2716 -286.2286 -250.5812
stockprice AEXindex time dmonth1 dmonth2 dmonth3 dmonth6	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459	se of cold df 	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41	0.000 0.017 0.003 0.629 0.000 0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth3 dmonth4 dmonth5 dmonth6 dmonth7	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth5 dmonth6 dmonth7 dmonth8	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218 -319.9934	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025 83.08023	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65 -3.85	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000 0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016 -483.226	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth3 dmonth4 dmonth5 dmonth6 dmonth7 dmonth8 dmonth9	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218 -319.9934 60.49232	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025 83.08023 89.53297	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65 -3.85 0.68	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000 0.000 0.500	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016 -483.226 -115.4183	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth3 dmonth4 dmonth5 dmonth6 dmonth7 dmonth8 dmonth9 dmonth10	SS 392550949 62758606.9 455309556 Coef 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218 -319.9934 60.49232 43.81716	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025 83.08023 89.53297 93.26672	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65 -3.85 0.68 0.47	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000 0.000 0.500 0.639	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016 -483.226 -115.4183 -139.4294	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth5 dmonth6 dmonth7 dmonth8 dmonth9 dmonth10 dmonth10 dmonth10	SS 392550949 62758606.9 455309556 Coef 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218 -319.9934 60.49232 43.81716 102.5033	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025 83.08023 89.53297 93.26672 89.28221	MS 196226.9 6529.449 4517.792 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65 -3.85 0.68 0.47 1.15	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000 0.500 0.639 0.251	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016 -483.226 -115.4183 -139.4294 -72.91465	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218 -319.9934 60.49232 43.81716 102.5033 552.3123	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025 83.08023 89.53297 93.26672 89.28221 95.44704	MS 196226.9 6529.449 4517.792 t 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65 -3.85 0.68 0.47 1.15 5.79	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000 0.500 0.639 0.251 0.000	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016 -483.226 -115.4183 -139.4294 -72.91465 364.7819	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71
stockprice AEXindex time dmonth1 dmonth2 dmonth5 dmonth6 dmonth7 dmonth8 dmonth9 dmonth10 dmonth10 dmonth10	SS 392550949 62758606.9 455309556 Coef. 7.8183625077373 230.4776 -37.91592 0 -436.194 -401.6394 -186.5459 -359.3218 -319.9934 60.49232 43.81716 102.5033 552.3123	df 13 30: 496 120 509 894 Std. Err: .3221127 .2120192 77.3481 78.47657 (omitted) 76.32767 76.88386 77.40419 77.20025 83.08023 89.53297 93.26672 89.28221	MS 196226.9 6529.449 4517.792 24.27 -2.39 2.98 -0.48 -5.71 -5.22 -2.41 -4.65 -3.85 0.68 0.47 1.15	0.000 0.017 0.003 0.629 0.000 0.000 0.016 0.000 0.500 0.639 0.251	F(13, 496) Prob > F R-squared Adj R-squared Root MSE [95% Conf. 7.1854899243039 78.50732 -192.1034 -586.1594 -552.6975 -338.6264 -511.0016 -483.226 -115.4183 -139.4294 -72.91465	= 238.65 = 0.0000 = 0.8622 = 0.8586 = 355.71

Properties of OLS-estimators – consistent estimator

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

Chapter 11: Under which assumptions does OLS give consistent parameter estimates?

Aim: to introduce the assumptions for consistency

Theorem 11.1 Estimates are consistent if the following assumptions hold true:

- Linear model
- No perfect multicollinearity
- Contemporaneous exogeneity of the explanatory variables
 - Contemporaneous exogeneity will be explained below.

In addition: two other assumptions are required for consistency:

- 1) Stationarity of all variables of the regression equation
 - Stationarity will be explained in week 3.
- 2) Weak dependency of all variables of the regression equation.
 - Weak dependence will be explained below.

Contemporaneous exogeneity

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

[©] Utrecht University School of Economics 2023

Strict exogeneity

Aim: to introduce the concept of strict exogeneity

Below is a static multivariate regression equation (with k explanatory variables):

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + ... + \beta_k x_{tk} + u_t$$

- the error term *u* in period *t* is independent of the explanatory variables for *all* time periods.
- The error term *u* in period *t* is independent of all right-hand side variables in the past:
 - u_t is independent of $x_{11}, x_{12}, ..., x_{1k}$ for t = 1
 - o u_t is independent of $x_{21}, x_{22}, ..., x_{2k}$ for t = 2
 - 0 ...
 - o u_t is independent of $x_{t-1,1}, x_{t-1,2}, ..., x_{t-1,k}$ for t = t-1
 - (I added a comma in the subscript to distinguish the variable number from the time period)
- u_t is independent of all right-hand side variables in the current period:
 - o independent of $x_{t1}, x_{t2}, ..., x_{tk}$ for t = t
- The error term *u* in period *t* is independent of all right-hand side variables in the future:
 - \circ u_t is independent of $x_{t+1,1}, x_{t+1,2}, ..., x_{t+1,k}$ for t = t+1
 - o u_t is independent of $x_{t+2,1}, x_{t+2,2}, ..., x_{t+2,k}$ for t = t+2
 - 0 ...
 - o u_t is independent of $x_{n1}, x_{n2}, ..., x_{nk}$ for t = n

X (capital) denotes the set of *all* explanatory variables for *all* time periods.

Assumption TS.2 (strict exogeneity)

For each t, the expected value of u_t , given the explanatory variables for *all* time periods, is equal to zero: $E(u_t \mid X) = 0$.

Contemporaneous exogeneity

Aim: to introduce the concept of weak exogeneity

Alternative: Assumption TS.2' Contemporaneous exogeneity For each t, the error term u_t is independent of all right-hand side variables in the present: independent of $x_{t1}, x_{t2}, ..., x_{tk}$ for t = t.

More formally: For each t, the expected value of u_t , given the explanatory variables in period t, is equal to zero: $E(u_t \mid x_{t1},...x_{tk}) = 0$.

- Note that we apply here the lower case *x* (only for period *t* of the dataset; not for the entire dataset *X*).
- This assumption implies that the error term in period *t* is uncorrelated with all regressors in period *t*:
- $Cov(u_t, x_{tj}) = 0 \ (j=1,...,k)$
- Remember that this assumption was applied for consistency of OLS (see week 1; Chapter 5).

Violation of the strict exogeneity assumption for a lagged dependent variable

Aim: to show that strict exogeneity is often an incorrect assumption.

Example:

Model with lagged dependent endogenous variable, assuming contemporaneous exogeneity ($E(u_t \mid y_{t-1}, z_t) = 0$)

$$y_{t} = \alpha_{0} + \alpha_{1} y_{t-1} + \delta_{0} z_{t} + u_{t}$$
(1)

- The lagged dependent variable y_{t-1} is **NOT** strictly exogenous. We apply a proof by contradiction, which consists of three steps.
 - 1. The model (1) implies that u_t and y_t are dependent.
 - 2. We start with a proposition, which means that we suppose there is strict exogeneity. Strict exogeneity not only implies that $E(u_t \mid y_{t-1}, z_t) = 0$, but also that u_t is uncorrelated with the explanatory variables in period t+1. $E(u_t \mid y_t, z_{t+1}) = 0$. Thus it implies that u_t and y_t are independent.
 - 3. But according to model (1), u_t and y_t are dependent. Thus the proposition of strict exogeneity is false. There is a contradiction. This means that the model cannot be strictly exogenous for y_{t-1} , since $E(u_t | y_t, z_{t+1}) \neq 0$.
- In other words, applying OLS on model (1) yields biased estimates because assumption TS.2 (strict exogeneity) does not hold.

Violation of the strict exogeneity assumption for a feedback mechanism

Aim: to show that strict exogeneity is often an incorrect assumption.

Example: (see e.g. exercise 10.2 of Wooldridge). Models with a **feedback mechanism**

- General structure of feedback mechanism:
 - \circ y_t depends on x_t
 - \circ x_t depends on y_{t-1}

Consider the following model:

$$gGDP_t = \alpha_0 + \delta_0 r_t + u_t \tag{1}$$

*gGDP*_t: GDP-growth rate.

 r_t : interest rate; r_t is contemporaneously exogenous

• Decision of Jerome Powell on FED-interest rate (feedback mechanism):

$$r_t = \gamma_0 + \gamma_1 (gGDP_{t-1} - 3) + v_t \qquad \gamma_1 > 0$$
 (2)

- 1. Equation (1) implies that u_t and $gGDP_t$ are dependent
- 2. Proposition of strict exogeneity: Equation (1): u_t is independent of r_{t+1}
- 3. Equation (2) implies that r_{t+1} depends on $gGDP_t$,
- 4. Thus strict exogeneity implies that u_t is independent of $gGDP_t$
- 5. This leads to a contradiction. Thus the proposition of strict exogeneity is false. Thus, r_t cannot be strictly exogenous in equation (1).

- How do we deal with time series models, for which not all explanatory variables (RHS-variables) are strictly exogenous? If strict exogeneity is violated, we rely on assumption TS.2' (contemporaneous exogeneity).
- Consequently, OLS yields consistent estimates.
- Definition of consistency: see previous lecture (chapter 5 of Wooldridge).
- Note that consistency is a property of large samples.

Weak dependency

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

© Utrecht University School of Economics 2023

Weak dependency

Aim: definition and application of weak dependence

The definition of **weakly-dependent time series:** A stationary time series $\{x_t : t = 1, 2, ..., \}$ is weakly dependent if x_t and x_{t+h} are "almost independent" as $h \to \infty$. Thus $Corr(x_t, x_{t+h}) \to 0$ as $h \to \infty$.

Due to the property of weak dependency, it is not necessary to make the assumption of a random sample in order to prove consistency.

Intermezzo: Correlation and covariance

Aim: to summarize properties of correlation, covariance and variance

Remember:

$$\rho_{XY} = Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

$$-1 \le \rho_{X,Y} \le 1$$
(B.29)

Properties that are often applied:

$$Cov(X,Y) = E(X - \mu_{X})(Y - \mu_{Y})$$

$$Cov(X,X) = Var(X)$$

$$Cov(X,a) = 0$$

$$Cov(aX + c, bY + d) = abCov(X,Y)$$

$$Cov(aX + bY, cW + dZ) =$$

$$= acCov(X, W) + adCov(X, Z)$$

$$+ bcCov(Y, W) + bdCov(Y, Z)$$

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2abCov(X,Y)$$

Intertemporal correlations applied to time series

Correlation between x_t and x_{t+1} :

$$Corr(x_{t}, x_{t+1}) = \frac{Cov(x_{t}, x_{t+1})}{\sqrt{Var(x_{t})}\sqrt{Var(x_{t+1})}}$$

Correlation between x_t and x_{t+2} :

$$Corr(x_{t}, x_{t+2}) = \frac{Cov(x_{t}, x_{t+2})}{\sqrt{Var(x_{t})}\sqrt{Var(x_{t+2})}}$$

.

Correlation between x_t and x_{t+h} :

$$Corr(x_{t}, x_{t+h}) = \frac{Cov(x_{t}, x_{t+h})}{\sqrt{Var(x_{t})}\sqrt{Var(x_{t+h})}}$$

The definition of weakly-dependent time series:

A stationary time series $\{x_t : t = 1, 2, ..., \}$ is weakly dependent if x_t and x_{t+h} are "almost independent" as $h \to \infty$. Thus $Corr(x_t, x_{t+h}) \to 0$ as $h \to \infty$.

Examples of weakly dependent time series

The following two models are weakly dependent:

1) First-order autoregressive process (AR(1)-process) $y_t = \delta + \rho_1 y_{t-1} + e_t \qquad |\rho_1| < 1$

We assume that the error term e_t : i.i.d. (identically and independently distributed), with expected value zero and constant variance: $Ee_t = 0$; $Var(e_t) = \sigma_e^2$. e_t is independent of y_{t-1} .

2) The first-order moving average process (MA(1)-process)

$$y_{t} = e_{t} + \alpha_{1}e_{t-1}$$

The error term e_t is i.i.d. (identically and independently distributed), with expected value zero and constant variance: $Ee_t = 0$ and $Var(e_t) = \sigma_e^2$

Random walk is not weakly dependent

Aim: to show that a random walk is not a weakly-dependent time series

Consider the random walk model:

$$y_t = y_{t-1} + e_t$$

- The error term e_t is **i.i.d.** (identically and independently distributed), with expected value zero and constant variance: $Ee_t = 0$; $Var(e_t) = \sigma_e^2$. e_t is independent of y_{t-1} .
- It can be shown:

$$Corr(y_t, y_{t-h}) = \sqrt{\frac{t-h}{t}}$$
 which does not converge towards zero; since for given h , as $t \to \infty$ then $\sqrt{\frac{t-h}{t}} \to 1$

• Consequently, a random walk is not weakly dependent (thus $Corr(y_t, y_{t-h})$ should converge to zero in the case of weak dependence).

Example of correlation

Autocorrelations can be calculated for the stockprice

. corrgram stockprice, lags (20) (note: time series has 102 gaps)

						-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
1	0.7917	0.9900	321.51	0.0000		
2	0.5888	0.0444	499.69	0.0000	I	I
3	0.5882	0.0229	677.91	0.0000	I	I
4	0.5898	-0.1324	857.41	0.0000		-1
5	0.5897		1037.2	0.0000		
6	0.7763		1349.5	0.0000		
7	0.9636		1831.5	0.0000		
8	0.7651		2136	0.0000		
9	0.5698		2305.2	0.0000		
10	0.5692		2474.4	0.0000		
11	0.5708		2644.9	0.0000		
12	0.5694		2814.9	0.0000		
13	0.7510		3111.2	0.0000		
14	0.9333		3569.8	0.0000		
15	0.7404		3859	0.0000	I	
16	0.5507		4019.3	0.0000		
17	0.5517		4180.5	0.0000		
18	0.5543		4343.5	0.0000		
19	0.5537		4506.5	0.0000	1	
20	0.7303	•	4790.8	0.0000		

For residual of stockprice after correcting for trend and month: . corrgram uhat, lags (20) (note: time series has 102 gaps)

LAG	AC	PAC	Q		-1 0 1 [Autocorrelation]	
1	0.7638	0.9730	299.32	0.0000		
2	0.5446	0.0493	451.78	0.0000	1	I
3	0.5494	-0.0802	607.26	0.0000		I
4	0.5566	-0.0863	767.14	0.0000		I
5	0.5496		923.35	0.0000	I	
6	0.6964		1174.6	0.0000		
7	0.8420		1542.7	0.0000		
8	0.6530		1764.5	0.0000		
9	0.4733		1881.2	0.0000	I	
10	0.4779		2000.5	0.0000	I	
11	0.4832		2122.7	0.0000	I	
12	0.4762		2241.6	0.0000	I	
13	0.6136		2439.4	0.0000		
14	0.7511		2736.4	0.0000		
15	0.5866		2917.9	0.0000	I	
16	0.4367		3018.7	0.0000	I	
17	0.4477		3124.9	0.0000	I	
18	0.4491		3231.9	0.0000	1	
19	0.4453		3337.4	0.0000	1	
20	0.5887	•	3522.1	0.0000		

Implications of a unit root model

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

[©] Utrecht University School of Economics 2023

Transformations of highly-persistent time series

Aim: to show that we need to take the first difference of a random walk to get a weakly dependent time series.

- Weakly dependent processes (stationary processes) are said to be integrated of order zero or I(0).
- Practically, this means that nothing needs to be done to such series before using them to regression analysis.
- Unit root processes, such as the random walk process, are said to be integrated of order one, or I(1).
- If $\{y_t\}$ is integrated of order one:

$$y_{t} = y_{t-1} + e_{t}$$

then $\Delta y_{t} = y_{t} - y_{t-1} = e_{t}$

• Thus $\{\Delta y_t\}$ is integrated of order zero: I(0), because e_t is i.i.d. (identically and independently distributed), with expected value zero and constant variance: $Ee_t = 0$; $Var(e_t) = \sigma_e^2$

Level: stockprice

graph twoway line stockprice time

First difference: $\Delta stockprice$ graph twoway line d.stockprice time

. corrgram d.stockprice, lags (20)
(note: time series has 102 gaps)

					-1 0 1	-1 0 1
LAG	AC	PAC	Q	Prob>Q	[Autocorrelation]	[Partial Autocor]
1	-0.0389	-0.0465	. 62151	0.4305	l	I
2	-0.0124	-0.0250	. 68454	0.7102	1	1
3	0.0229	0.1324	. 90022	0.8254	1	I -
4	-0.0302		1.2763	0.8654	1	
5	0.0428		2.0342	0.8444	1	
6	-0.0555		3.3119	0.7688	1	
7	-0.0958		7.134	0.4151	1	
8	0.0116		7.1902	0.5163	1	
9	0.0147		7.2806	0.6079	1	
10	-0.0120		7.3412	0.6929	1	
11	0.0073		7.3636	0.7689	1	
12	-0.0258		7.6438	0.8123	1	
13	0.0183		7.7845	0.8573	1	
14	-0.0262		8.0747	0.8854	1	
15	-0.0641		9.8177	0.8310	1	
16	-0.0010		9.8181	0.8760	1	
17	0.0290		10.176	0.8961	1	
18	-0.0043		10.184	0.9257	1	
19	-0.0082		10.213	0.9475	1	
20	0.0456	•	11.107	0.9434	1	

Autocorrelation

These lecture notes are for your own use. It is not allowed to distribute the notes further by posting them on the Internet without explicit and prior permission of the author.

[©] Utrecht University School of Economics 2023

Autocorrelation

Aim: to introduce autocorrelation and to consider the consequences of autocorrelation in a model with strictly exogenous variables.

• Suppose that the following condition is violated:

Assumption TS.5 (no autocorrelation)

Conditional on X, the error terms in two different time periods, u_t and u_s , $t \neq s$, are uncorrelated: $Corr(u_t, u_s \mid X) = 0$

- We first apply it to a model with strictly exogenous variables. Hence,
 - o There are no lagged dependent variables
 - o There is no feedback mechanism
- The following model has an AR(1) error structure:

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t2} + \dots + \beta_{k}x_{tk} + u_{t}$$

$$u_{t} = \rho u_{t-1} + e_{t} \quad |\rho| < 1$$

- Conditions TS.1 (linearity), TS.2 (strict exogeneity), and TS.3 (no perfect multicollinearity) are met. Theorem 11.1 still holds. Therefore, OLS-estimators $\hat{\beta}_i$ are consistent.
- Standard formulas of $Var(\hat{\beta}_j)$ are not valid without adjustment, F-tests and t-tests are not valid.
- Standard formulas of $Var(\hat{\beta}_j)$ underestimate the 'true' variance if there is a positive autocorrelation $0 < \rho < 1$
- In the case, the *t*-values are overestimated. Which means that one erroneously concludes too often that variables are statistically significant.

Testing for serial correlation: Durbin-Watson statistic

Aim: to introduce the DW-test for autocorrelation.

• Example:

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + ... + \beta_k x_{tk} + u_t$$

Where all x_{t1} are strictly exogenous. The error term follows an AR(1) process:

$$u_t = \rho u_{t-1} + e_t \quad |\rho| < 1$$

- The error term e_t is i.i.d. (identically and independently distributed), with expected value zero and constant variance: $Ee_t = 0$; $Var(e_t) = \sigma_e^2$
- $H_0: \rho = 0$ (no autocorrelation) $H_1: \rho \neq 0$ (autocorrelation)

Durbin-Watson statistic:

$$DW = \frac{\sum_{t=2}^{n} (\hat{u}_{t} - \hat{u}_{t-1})^{2}}{\sum_{t=1}^{n} \hat{u}_{t}^{2}} \quad \text{where } DW \approx 2(1 - \hat{\rho})$$

• Thus:

o if
$$\rho = 0$$
 then $DW = 2$ (no autocorrelation)

o if
$$\rho \approx 1$$
 then $DW \approx 0$ (random walk)

• However, the DW-statistic is only valid if all regressors are strictly exogenous. Also the may not be lagged dependent variables in the RHS. For this reason, we prefer to apply the Breusch-Godfrey test (see following slide)

Breusch-Godfrey test for autocorrelation

Aim: to introduce the BG-test for autocorrelation.

$$u_t = \rho u_{t-1} + e_t$$

- Alternative test:
 - Estimate the regression equation using OLS. E.g. the model:

$$y_{t} = \beta_{0} + \beta_{1}x_{t1} + \beta_{2}x_{t2} + \dots + \beta_{k}x_{tk} + u_{t}$$

- \circ Calculate the residuals \hat{u}_{t}
- Run the regression of the residual on its lag and the explanatory variables
 - \hat{u}_t on \hat{u}_{t-1} and $x_{t1}, x_{t2}, ..., x_{tk}$
- Obtain the *t*-statistic on \hat{u}_{t-1} to test

$$H_0: \rho = 0$$
 (no first-order autocorrelation)

$$H_1: \rho \neq 0$$
 (autocorrelation)

- There is indication of first-order autocorrelation if the *t*-statistic on \hat{u}_{t-1} is statistically significant.
- If there is second-order autocorrelation:

$$u_{t} = \alpha + \rho_{1}u_{t-1} + \rho_{2}u_{t-2} + e_{t}$$

the procedure should be the same:

- Run the regression of the residual on both lags of the residual and the explanatory variables
 - \hat{u}_t on $\hat{u}_{t-1}, \hat{u}_{t-2}$ and $x_{t1}, x_{t2}, ..., x_{tk}$
- Obtain the *F*-statistic to test for joint significance of \hat{u}_{t-1} and \hat{u}_{t-2} .
- o $H_0: \rho_1 = 0, \rho_2 = 0$ (no autocorrelation) $H_1: H_0$ is not true (autocorrelation)

Alternative procedure: Prais Winsten (FGLS)

- If the tests show evidence of autocorrelation, we should NOT use OLS to estimate the regression equation.
- Instead FGLS should be used.
- Mechanics of FGLS: consider the following model, $y_t = \beta_0 + \beta_1 x_1 + u_t$ (1) where the error term follows an AR(1) process:

$$u_{t} = \rho u_{t-1} + e_{t}$$

• The model is also valid in period *t*-1:

$$y_{t-1} = \beta_0 + \beta_1 x_{t-1} + u_{t-1}$$
 (2)

• and ρ times equation (2) is

$$\rho y_{t-1} = \rho \beta_0 + \rho \beta_1 x_{t-1} + \rho u_{t-1} \tag{3}$$

- Equation (1) (3):
- $y_t \rho y_{t-1} = (1 \rho)\beta_0 + \beta_1(x_t \rho x_{t-1}) + e_t$ (4) where $e_t = u_t - \rho u_{t-1}$ is uncorrelated over time (i.i.d.)
- The econometrician Prais has developed a GLS-procedure, using equation (4) to estimate the parameters, including ρ . It is referred to as the Prais-Winsten method or Cochrane-Orcutt method.
- This is referred to as Feasible GLS (FGLS)
- Stata command: prais (instead of reg).

Newey-West standard errors

- Remember from the discussion of heteroskedasticity that it is possible to compute heteroskedasticity robust standard errors
- It is also possible to compute heteroskedasticity and autocorrelation robust standard errors of the estimated regression parameters (or HAC standard errors)
- Newey-West cannot always be used to solve autocorrelation. It only works if the population regression is specified correctly.

. tabulate broker

Name of the broker who recommends	Freq.	Percent	Cum.
ABN Amro	•	1.12	1.12
Barclays	1	1.12	2.25
Citigroup	5	5.62	7.87
Credit Suisse	2	2.25	10.11
Deutsche Bank	14	15.73	25.84
Exane BNP Paribas	1	1.12	26.97
Goldman Sachs	11	12.36	39.33
HSBC	1	1.12	40.45
ING	8	8.99	49.44
J.P. Morgan	11	12.36	61.80
Jefferies	1	1.12	62.92
Kepler Cheuvreux	6	6.74	69.66
Morgan Stanley	4	4.49	74.16
Rabo	4	4.49	78.65
SNS Securities	5	5.62	84.27
Société Générale] 3	3.37	87.64
UBS	11	12.36	100.00
Total	l 89	100.00	

. codebook recommendation

 ${\tt recommendation}$

Brokers' recommendation

type: numeric (byte)
label: recommendationl

range: [1,3] units: 1 unique values: 3 missing .: 3/510

. sum dsell dhold dbuy

Max	Min	Std. Dev.	Mean	Obs	Variable
1	0	.1164633	.0137255	510	dsell
1	0	.2033655	.0431373	510	dhold
1	0	.3225061	.1176471	510	dbuy

. reg d.stockprice time dmonth* dsell dhold dbuy note: dmonth12 omitted because of collinearity

Source	SS	df	MS		Number of obs	
					F(15, 391)	
Model	119835.812				Prob > F	
Residual	5593565.6	391 143	05.7944		R-squared	
+-					Adj R-squared	
Total	5713401.42	406 140	72.4173		Root MSE	= 119.61
D.stockprice	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
time	0187091	.0331407	-0.56	0.573	0838654	.0464471
dmonth1	-17.22418	31.98292	-0.54	0.591	-80.10419	45.65582
dmonth2	8.366207	32.44164	0.26	0.797	-55.41566	72.14808
dmonth3	-6.36872	31.94242	-0.20	0.842	-69.16911	56.43167
dmonth4	-15.74009	31.39928	-0.50	0.616	-77.47264	45.99246
dmonth5	9.979872	31.10391	0.32	0.748	-51.17196	71.1317
dmonth6	-7.017911	31.33446	-0.22	0.823	-68.62302	54.5872
dmonth7	-3.690556	30.53269	-0.12	0.904	-63.71935	56.33824
dmonth8	-23.17961	31.11074	-0.75	0.457	-84.34487	37.98565
dmonth9	4.067236	30.76091	0.13	0.895	-56.41024	64.54472
dmonth10	12.10253	30.34083	0.40	0.690	-47.54905	71.7541
dmonth11	20.53099	31.38569	0.65	0.513	-41.17484	82.23682
dmonth12	0	(omitted)				
dsell	-61.79124	46.78273	-1.32	0.187	-153.7684	30.18593
dhold	8.054849	28.76947	0.28	0.780	-48.50737	64.61706
dbuy	26.74404	19.41086	1.38	0.169	-11.41869	64.90676
cons	8.034494	27.81831	0.29	0.773	-46.65769	

. test dsell dhold dbuy

- (1) dsell = 0
- (2) dhold = 0
- (3) dbuy = 0

$$F(3, 391) = 1.32$$

 $Prob > F = 0.2688$

Test for first-order autocorrelation

Model:

 $\Delta \log(stockprice_t) = \beta_0 + \beta_1 \Delta \log(AEXindex_t) + \beta_2 dsell_t + \beta_3 dhold_t + \beta_4 dbuy_t + \beta_5 t + u_t$

Autocorrelation: $u_t = \alpha_0 + \rho u_{t-1} + e_t$

. reg d.ln_stockprice d.ln_AEXindex dsell dhold dbuy time

Source	ss	df		MS		Number of obs F(5, 401)		
Model Residual						Prob > F R-squared	=	0.0000 0.4504
Total	.159899325	406	.000	393841		Adj R-squared Root MSE		
D. ln_stockpr~e	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
ln_AEXindex D1.	1.196417	.0666	714	17.94	0.000	1.065348	1	.327487
- ·		.0056 .0034 .0023 3.60e	992 529 -06	-1.48 -0.67 1.03 0.25 -0.37	0.139 0.502 0.303 0.804 0.710	0092329 0022012	7	0027587 0045252 .00705 .98e-06 0024057
<u>-</u>				_				

. estat dwatson

Number of gaps in sample: 102

Durbin-Watson d-statistic(6, 407) = $\boxed{1.946667}$

. reg uhat 1.uhat dsell dhold dbuy time

Source	SS	df	MS		Number of obs	
Model Residual	.001197494 .074552349		239499 250176		F(5, 298) Prob > F R-squared Adj R-squared	= 0.4443 = 0.0158
Total	.075749843	303 .000	249999		Root MSE	= .01582
uhat	Coef.	Std. Err.		• •	[95% Conf.	Interval]
uhat L1. dsell dhold	0006479	.0587917	-2.08 -0.64 -0.14	0.038 0.525 0.886	0095497	0065672 .0098577 .0082539
dbuy time _cons	.0018189 -1.72e-06 .0007622	.0029198 4.49e-06 .0018799	0.62 -0.38 0.41	0.534 0.702 0.685	0039271 0000106 0029374	.0075649 7.12e-06 .0044618

. estat bgodfrey

Number of gaps in sample: 102

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2	
1	4.527	1	0.0334	

HO: no serial correlation

• Conclusion: first-order autocorrelation

Test for second-order autocorrelation

Model:

$$\Delta \log(stockprice_t) = \beta_0 + \beta_1 \Delta \log(AEXindex_t) + \beta_2 dsell_t + \beta_3 dhold_t + \beta_4 dbuy_t + \beta_5 t + u_t$$

Autocorrelation: $u_{t} = \alpha_{0} + \rho_{1}u_{t-1} + \rho_{2}u_{t-2} + e_{t}$

. reg uhat 1.uhat 12.uhat \mbox{dhold} dbuy time

Source	ss		MS		Number of obs	
Model Residual	.001853641 .025270908	5 .000 196 .000	0370728 0128933		, ,	= 0.0157 = 0.0683
·	.027124549				-	= .01135
uhat					[95% Conf.	Interval]
uhat						
L1.	0809593	.045317	-1.79	0.076	1703307	.0084122
L2. 	0034182	.0463885	-0.07	0.941	0949028	.0880665
dhold	0066112	.004407	-1.50	0.135	0153024	.00208
dbuy	0068313	.0026362	-2.59	0.010	0120302	0016325
time		3.95e-06	-0.30	0.762	-8.99e-06	6.60e-06
_cons	.0015463	.001665	0.93	0.354	0017373	.0048298

. test 1.uhat 12.uhat

- (1) L.uhat = 0
- (2) L2.uhat = 0

$$F(2, 196) = 1.60$$

 $Prob > F = 0.2048$

• Conclusion: no second-order autocorrelation

Compare OLS and FGLS estimates

```
. reg d.ln stockprice d.ln AEXindex dsell dhold dbuy time
Source | SS df MS
                                  Number of obs =
                                 F(5, 401) = 65.71
                                 Prob > F = 0.0000

R-squared = 0.4504
   Model | .072011984 5 .014402397
  Residual | .087887341 401 .00021917
 -----
                                 Adj R-squared = 0.4435
   Total | .159899325 406 .000393841
                                 Root MSE = .0148
ln stockpr~e | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____
ln AEXindex |
     D1. | 1.196417 .0666714 17.94 0.000 1.065348 1.327487
    _____
. prais d.ln stockprice d.ln AEXindex dsell dhold dbuy time
Number of gaps in sample: 1\overline{02}
(note: computations for rho restarted at each gap)
Iteration 0: rho = 0.0000
Iteration 1: rho = -0.1086
Iteration 2: rho = -0.1130
Iteration 3: rho = -0.1132
Iteration 4: rho = -0.1132
Iteration 5: rho = -0.1132
Prais-Winsten AR(1) regression -- iterated estimates
   Source | SS df MS
                                  Number of obs =
                                 F(5, 401) = 67.20
-----
                                 Prob > F = 0.0000
R-squared = 0.4559
   Model | .07270838 5 .014541676
 Residual | .086769876 401 .000216384
                                 Adj R-squared = 0.4491
-----
    Total | .159478256 406 .000392804
                                 Root MSE = .01471
ln stockpr~e | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____
ln AEXindex |
    D1. | 1.18964 .065905 18.05 0.000 1.060077 1.319202
    rho | -.1131603
```

Durbin-Watson statistic (transformed) 1.754336 Conclusions:

Durbin-Watson statistic (original) 1.946667

• OLS and FGLS gives same parameters Correlation is -0.113

Thus to wind up: line of reasoning of this empirical application

Step 1- Start with model with both variables in levels. The parameters are estimated with OLS.

$$\begin{split} \Delta \log(stockprice_{t}) &= \beta_{0} + \beta_{1} \Delta \log(AEXindex_{t}) + \beta_{2}dsell_{t} + \beta_{3}dhold_{t} \\ &+ \beta_{4}dbuy_{t} + \beta_{5}t + u_{t} \\ u_{t} &= \alpha_{0} + \rho u_{t-1} + e_{t} \end{split}$$

Step 2 - DWatson: $\hat{\rho}$ of the lagged residual is small

Step 3 - Breusch Godfrey: test for autocorrelation: $\hat{\rho}$ is -0.113 and statistically significant

Step 4 - Prais Winsten (FGLS): $\hat{\rho}$ is small (-0.113)

Conclusion:

- autocorrelation does not lead to a major misspecification for this model!
- *t*-values and *F*-values can be interpreted in the usual way.