二元关系

关系的运算性质

Lijie Wang

复合运算性质

*\:_\\\

关系的运算性质

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

关系的运算性质

Lijie Wang

复合运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, $R \setminus S$ 和 T 分别是从 A 到 B,B 到 C 和 C 到 D 的二元关系, I_A 和 I_B 分别是 A 和 B 上的恒等关系,则

关系的运算性质

Lijie Wang

复合运算性质

逆运算性原

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, $R \setminus S$ 和 T 分别是从 A 到 B,B 到 C 和 C 到 D 的二元关系, I_A 和 I_B 分别是 A 和 B 上的恒等关系,则

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, $R \setminus S$ 和 T 分别是从 A 到 B,B 到 C 和 C 到 D 的二元关系, I_A 和 I_B 分别是 A 和 B 上的恒等关系,则

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, $R \setminus S$ 和 T 分别是从 A 到 B ,B 到 C 和 C 到 D 的二元关系, I_A 和 I_B 分别是 A 和 B 上的恒等关系,则

☞ 二元关系相等的证明方法

目标: 证明两个关系 R₁ 和 R₂ 相等

关系的运算性员

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, $R \setminus S$ 和 T 分别是从 A 到 B ,B 到 C 和 C 到 D 的二元关系, I_A 和 I_B 分别是 A 和 B 上的恒等关系,则

☞ 二元关系相等的证明方法

目标: 证明两个关系 R₁ 和 R₂ 相等

也即: 证明两个集合 R1 和 R2 相等

关系的运算性质

Lijie Wang

复合运算性质

>**>=-****** FEE

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, $R \setminus S$ 和 T 分别是从 A 到 $B \setminus B$ 到 C 和 C 到 D 的二元关系, I_A 和 I_B 分别是 A 和 B 上的恒等关系,则

☞ 二元关系相等的证明方法

目标: 证明两个关系 R₁ 和 R₂ 相等

也即: 证明两个集合 R_1 和 R_2 相等

从而: 1) $\forall < x, y > \in R_1, \cdots, < x, y > \in R_2. \therefore R_1 \subseteq R_2;$

2) $\forall \langle x, y \rangle \in R_2, \cdots, \langle x, y \rangle \in R_1. \therefore R_2 \subseteq R_1.$

关系的运算性质

Lijie Wang

Proof.

复合运算性质

逆运算性周

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Proof.

任取
$$< a, d > \in (R \circ S) \circ T$$
,

 $\langle a, d \rangle \in R \circ (S \circ T).$

从而 $(R \circ S) \circ T \subseteq R \circ (S \circ T)$.

同理可证: $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

由以上可知 , $(R \circ S) \circ T = R \circ (S \circ T)$.

Lijie Wang

复合运算性质

Proof.

任取 $\langle a, d \rangle \in (R \circ S) \circ T$, 则由复合运算定义知,存在 $c \in C$,使得 $< a, c > \in R \circ S \exists < c, d > \in T.$

 $< a, d > \in R \circ (S \circ T).$

从而 $(R \circ S) \circ T \subseteq R \circ (S \circ T)$.

同理可证: $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

由以上可知 , $(R \circ S) \circ T = R \circ (S \circ T)$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Proof.

任取 $< a, d > \in (R \circ S) \circ T$, 则由复合运算定义知 , 存在 $c \in C$, 使得 $< a, c > \in R \circ S$ 且 $< c, d > \in T$.

又因为 $< a, c > \in R \circ S$, 所以存在 $b \in B$, 使得 $< a, b > \in R$ 且 $< b, c > \in S$.

 $< a, d> \in R \circ (S \circ T).$

从而 $(R \circ S) \circ T \subseteq R \circ (S \circ T)$.

同理可证: $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

由以上可知, $(R \circ S) \circ T = R \circ (S \circ T)$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Proof.

任取 $< a, d > \in (R \circ S) \circ T$, 则由复合运算定义知 , 存在 $c \in C$, 使得 $< a, c > \in R \circ S$ 目 $< c, d > \in T$.

又因为 $< a, c > \in R \circ S$, 所以存在 $b \in B$, 使得 $< a, b > \in R$ 且 $< b, c > \in S$. 因为 $< b, c > \in S$, $< c, d > \in T$, 由复合运算定义知,有 $< b, d > \in S \circ T$; $< a, d > \in R \circ (S \circ T)$.

从而 $(R \circ S) \circ T \subseteq R \circ (S \circ T)$.

同理可证: $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

由以上可知, $(R \circ S) \circ T = R \circ (S \circ T)$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Proof.

任取 $< a, d > \in (R \circ S) \circ T$, 则由复合运算定义知 , 存在 $c \in C$, 使得 $< a, c > \in R \circ S$ 目 $< c, d > \in T$.

又因为 $< a, c > \in R \circ S$, 所以存在 $b \in B$, 使得 $< a, b > \in R$ 且 $< b, c > \in S$.

因为 $< b, c > \in S, < c, d > \in T$, 由复合运算定义知,有 $< b, d > \in S \circ T$;

又由 $\langle a,b \rangle \in R$ 且 $\langle b,d \rangle \in S \circ T$ 有 , $\langle a,d \rangle \in R \circ (S \circ T)$.

从而 $(R \circ S) \circ T \subseteq R \circ (S \circ T)$.

同理可证: $R \circ (S \circ T) \subseteq (R \circ S) \circ T$.

由以上可知, $(R \circ S) \circ T = R \circ (S \circ T)$.

关系的运算性质

Lijie Wang

复合运算性质

逆运管性原

Proof.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Proof.

从而有 $I_A \circ R \subseteq R$ 。

Ж

而 $R \subseteq I_A \circ R_{\bullet}$

由以上可知 $I_A \circ R = R$.

同理可证 $R \circ I_B = R$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

任取 $< a, b > \in I_A \circ R$, 其中 $a \in A, b \in B$, $< a, b > \in R$, 从而有 $I_A \circ R \subseteq R$ 。

反过来, 任取 $< a, b > \in R$,

 $\langle a,b\rangle \in I_A \circ R$. 从

 $\overline{\mathbb{m}}R\subseteq I_A\circ R_{\bullet}$

由以上可知 $I_A \circ R = R$.

同理可证 $R \circ I_B = R$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

任取 $< a, b > \in I_A \circ R$, 其中 $a \in A, b \in B$, 由复合运算定义可知, 存在 $a \in A$, 使得 $< a, a > \in I_A$ 目 $< a, b > \in R$, 从而有 $I_A \circ R \subseteq R$.

反过来, 任取 $< a, b > \in R$,

 $< a, b> \in I_A \circ R$. 从

而 $R \subseteq I_A \circ R_{\bullet}$

由以上可知 $I_A \circ R = R$.

同理可证 $R \circ I_B = R$.

关系的运算性质

Lijie Wang

复合运算性质

逆运管性质

Proof.

任取 $< a, b > \in I_A \circ R$, 其中 $a \in A, b \in B$,由复合运算定义可知,存在 $a \in A$,使得 $< a, a > \in I_A$ 且 $< a, b > \in R$,从而有 $I_A \circ R \subset R$ 。

反过来,任取 < a, b > \in R ,由 I_A 的定义知,< a, a > \in I_A 。 R . 从而R \subset I_A 。 R 。

由以上可知 $I_A \circ R = R$.

同理可证 $R \circ I_B = R$.

关系的运算性质

Lijie Wang

复合运算性质

Theorem

设 A、B、C 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

关系的运算性团

Lijie Wang

复合运算性质

逆运管性质

Theorem

设 A、B、C 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

Lijie Wang

复合运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合, R 是从 A 到 B 的关系, S_1, S_2 是从 B 到 C 的关系,T 是从 C到 D 的关系,则

Lijie Wang

复合运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合 $A \cap B$ 是从 $A \cap B \cap B$ 的关系 $A \cap B \cap B$ 是从 $A \cap B \cap$ 到 D 的关系,则

- **3** $(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T)$;

关系的运算性质

Lijie Wang

复合运算性质

逆运复性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

- **3** $(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T)$;

关系的运算性质

Lijie Wang

复合运算性质

Theorem

设 $A \setminus B \setminus C$ 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

6
$$(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T)$$
;

证明②.

对任意
$$< a, c > \in R \circ (S_1 \cap S_2)$$
,

 $< a, c > \in (R \circ S_1) \cap (R \circ S_2).$

从而,
$$R \circ (S_1 \cap S_2) \subseteq (R \circ S_1) \cap (R \circ S_2)$$
。

关系的运算性质

Lijie Wang

复合运算性质

Theorem

设 A、B、C 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

- **3** $(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T)$;
- $(S_1 \cap S_2) \circ T \subseteq (S_1 \circ T) \cap (S_2 \circ T).$

证明②.

对任意 < a, c > \in R \circ $(S_1 \cap S_2)$,则由复合运算定义知,存在 b \in B ,使得 < a, b > \in R 且 < b, c > \in $S_1 \cap S_2$ 。

$$< a,c> \in (R\circ S_1)\cap (R\circ S_2).$$
 从而, $R\circ (S_1\cap S_2)\subset (R\circ S_1)\cap (R\circ S_2)$ 。

关系的运算性质

Lijie Wang

复合运算性质

Theorem

设 A、B、C 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

- **3** $(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T)$;
- $(S_1 \cap S_2) \circ T \subseteq (S_1 \circ T) \cap (S_2 \circ T).$

证明②.

对任意 < a, c > \in R \circ $(S_1 \cap S_2)$,则由复合运算定义知,存在 b \in B ,使得 < a, b > \in R 且 < b, c > \in $S_1 \cap S_2$ 。

根据交运算的定义, $\langle b, c \rangle \in S_1$, 且 $\langle b, c \rangle \in S_2$.

$$< a, c > \in (R \circ S_1) \cap (R \circ S_2).$$

从而,
$$R \circ (S_1 \cap S_2) \subseteq (R \circ S_1) \cap (R \circ S_2)$$
。

关系的运算性质

Lijie Wang

复合运算性质

Theorem

设 A、B、C 和 D 是任意四个集合,R 是从 A 到 B 的关系, S_1 , S_2 是从 B 到 C 的关系,T 是从 C 到 D 的关系,则

6
$$(S_1 \cup S_2) \circ T = (S_1 \circ T) \cup (S_2 \circ T)$$
;

$$(S_1 \cap S_2) \circ T \subseteq (S_1 \circ T) \cap (S_2 \circ T).$$

证明②.

对任意 < a, c > \in R \circ $(S_1 \cap S_2)$,则由复合运算定义知,存在 b \in B ,使得 < a, b > \in R 且 < b, c > \in $S_1 \cap S_2$ 。

根据交运算的定义, $< b, c > \in S_1$, 且 $< b, c > \in S_2$.

于是有 $< a, c > \in R \circ S_1$ 并且 $< a, c > \in R \circ S_2$,即有 $< a, c > \in (R \circ S_1) \cap (R \circ S_2)$. 从而, $R \circ (S_1 \cap S_2) \subset (R \circ S_1) \cap (R \circ S_2)$ 。

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A,B,C 是三个集合, R,S 分别是从 A 到 B , 从 B 到 C 的关系,则 $(R\circ S)^{-1}=S^{-1}\circ R^{-1}.$

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合,R,S 分别是从 A 到 B , 从 B 到 C 的关系,则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

$$(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}.$$

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}.$$

由以上可知 , $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取
$$< c, a > \in (R \circ S)^{-1}$$
,

$$< c, a > \in S^{-1} \circ R^{-1}$$
. 即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$$
.

由以上可知 ,
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取
$$< c, a > \in (R \circ S)^{-1}$$
, 则 $< a, c > \in R \circ S$,

$$< c, a > \in S^{-1} \circ R^{-1}$$
. 即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$$
.

由以上可知 , $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取 $< c, a > \in (R \circ S)^{-1}$,则 $< a, c > \in R \circ S$,由复合运算定义知,存在 $b \in B$,使得 $< a, b > \in R$ 且 $< b, c > \in S$.

$$< c, a > \in S^{-1} \circ R^{-1}$$
. 即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$$
.

由以上可知 , $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取 $< c, a > \in (R \circ S)^{-1}$,则 $< a, c > \in R \circ S$,由复合运算定义知,存在 $b \in B$,使得 $< a, b > \in R$ 且 $< b, c > \in S$. 根据逆运算的定义,有 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$.于是得 到 $< c, a > \in S^{-1} \circ R^{-1}$.即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

$$S^{-1}\circ R^{-1}\subseteq (R\circ S)^{-1}.$$
由以上可知, $(R\circ S)^{-1}=S^{-1}\circ R^{-1}.$

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取 $< c, a > \in (R \circ S)^{-1}$,则 $< a, c > \in R \circ S$,由复合运算定义知,存在 $b \in B$,使得 $< a, b > \in R$ 且 $< b, c > \in S$. 根据逆运算的定义,有 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$.于是得 到 $< c, a > \in S^{-1} \circ R^{-1}$.即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

反之, 任取
$$< c, a > \in S^{-1} \circ R^{-1}$$
,

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}.$$

由以上可知 ,
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取 $< c, a > \in (R \circ S)^{-1}$,则 $< a, c > \in R \circ S$,由复合运算定义知, 存在 $b \in B$,使得 $< a, b > \in R$ 且 $< b, c > \in S$. 根据逆运算的定义,有 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$.于是得 到 $< c, a > \in S^{-1} \circ R^{-1}$.即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

反之,任取 $< c, a > \in S^{-1} \circ R^{-1}$,由复合运算定义知,存在 $b \in B$,使得 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$.

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}.$$

由以上可知, $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取 $< c, a > \in (R \circ S)^{-1}$,则 $< a, c > \in R \circ S$,由复合运算定义知,存在 $b \in B$,使得 $< a, b > \in R$ 且 $< b, c > \in S$. 根据逆运算的定义,有 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$.于是得 到 $< c, a > \in S^{-1} \circ R^{-1}$.即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

反之,任取 $< c, a > \in S^{-1} \circ R^{-1}$,由复合运算定义知,存在 $b \in B$,使得 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$. 又根据逆运算的定义,有 $< a, b > \in R$ 且 $< b, c > \in S$.

$$S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$$
.

由以上可知, $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 A, B, C 是三个集合 , R, S 分别是从 A 到 B , 从 B 到 C 的关系 , 则 $(R \circ S)^{-1} = S^{-1} \circ R^{-1}.$

Proof.

任取 $< c, a > \in (R \circ S)^{-1}$,则 $< a, c > \in R \circ S$,由复合运算定义知,存在 $b \in B$,使得 $< a, b > \in R$ 且 $< b, c > \in S$. 根据逆运算的定义,有 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$.于是得到 $< c, a > \in S^{-1} \circ R^{-1}$.即 $(R \circ S)^{-1} \subseteq S^{-1} \circ R^{-1}$.

反之,任取 $< c, a > \in S^{-1} \circ R^{-1}$,由复合运算定义知,存在 $b \in B$,使得 $< b, a > \in R^{-1}$ 且 $< c, b > \in S^{-1}$. 又根据逆运算的定义,有 $< a, b > \in R$ 且 $< b, c > \in S$. 从而有 $< a, c > \in R \circ S$,即有 $< c, a > \in (R \circ S)^{-1}$,故有 $S^{-1} \circ R^{-1} \subseteq (R \circ S)^{-1}$.

由以上可知 ,
$$(R \circ S)^{-1} = S^{-1} \circ R^{-1}$$
.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 R, S 是从集合 A 到集合 B 的关系, 则有

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 R, S 是从集合 A 到集合 B 的关系, 则有

①
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1};$$
 (分配性)
 $(R \cap S)^{-1} = R^{-1} \cap S^{-1};$
 $(R - S)^{-1} = R^{-1} - S^{-1};$

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

Theorem

设 R, S 是从集合 A 到集合 B 的关系, 则有

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1}; (R \cap S)^{-1} = R^{-1} \cap S^{-1}; (R - S)^{-1} = R^{-1} - S^{-1};$$

(分配性)

(可换性)

Lijie Wang

逆运算性质

Theorem

设 R, S 是从集合 A 到集合 B 的关系, 则有

①
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1};$$
 (分配性)

2 $(\overline{R})^{-1} = \overline{R^{-1}}$;

(可换性)

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1};$$

 $(R - S)^{-1} = R^{-1} - S^{-1};$

$$(R^{-1})^{-1} = R;$$

Lijie Wang

逆运算性质

Theorem

设 R, S 是从集合 A 到集合 B 的关系, 则有

①
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1};$$
 (分配性)

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1};$$

$$(R-S)^{-1}=R^{-1}-S^{-1};$$

$$(\overline{R})^{-1} = \overline{R^{-1}}$$

②
$$(\overline{R})^{-1} = \overline{R^{-1}};$$
 (可換性)

$$(R^{-1})^{-1} = R;$$

$$\P$$
 $S \subseteq R \Leftrightarrow S^{-1} \subseteq R^{-1}$. (单调性)

Lijie Wang

Theorem

设 R, S 是从集合 A 到集合 B 的关系, 则有

①
$$(R \cup S)^{-1} = R^{-1} \cup S^{-1};$$
 (分配性)

②
$$(\overline{R})^{-1} = \overline{R^{-1}};$$

③ $(R^{-1})^{-1} = R;$

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1};$$

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1};$$

 $(R - S)^{-1} = R^{-1} - S^{-1};$

(单调性)

证明④.

必要性 任取 $\langle b, a \rangle \in S^{-1}$, 有 $\langle a, b \rangle \in S$. 因为 $S \subseteq R$, 所以 $\langle a, b \rangle \in R$, 从而 $< b.a > ∈ R^{-1}$. 即有 $S^{-1} ⊆ R^{-1}$:

Lijie Wang

设 R, S 是从集合 A 到集合 B 的关系, 则有

$$(\overline{R})^{-1} = \overline{R^{-1}};$$

*(*可换性)

$$(R \cap S)^{-1} = R^{-1} \cap S^{-1};$$

 $(R - S)^{-1} = R^{-1} - S^{-1};$

3
$$(R^{-1})^{-1} = R;$$

(单调性)

证明④.

任取 $< b, a > \in S^{-1}$, 有 $< a, b > \in S$. 因为 $S \subseteq R$, 所以 $< a, b > \in R$, 从而 必要性: $< b, a > \in R^{-1}$. 即有 $S^{-1} \subseteq R^{-1}$:

充分性: 任取 $\langle a, b \rangle \in S$, 有 $\langle b, a \rangle \in S^{-1}$. 因为 $S^{-1} \subseteq R^{-1}$, 所以 $\langle b, a \rangle \in R^{-1}$, 从而 < a, b > ∈ R. 即有 S ⊂ R.

关系的运算性质

Lijie Wang

复合运算性质

逆运算性质

THE END, THANKS!