

Theoretische Informatik Sommersemester 2021

Übung 9

A1. Geben Sie eine Turing-Maschine an, welche binäre Zeichenketten invertiert, d.h. aus dem String $a_1 \dots a_n$ den String $\overline{a_1} \dots \overline{a_n}$ berechnet (Es gilt $\overline{1} = 0$ und $\overline{0} = 1$).

Führen Sie die Berechnung für das Wort 11001 durch.

LÖSUNG

Die Turing-Maschine ist gegeben durch

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, \square\}, q_0, \square, \{q_2\})$$

mit folgenden Übergängen:

δ	0	1	
	$(q_0, 1, R)$ $(q_1, 0, L)$ \emptyset		

Für das Beispielwort 11001 gilt:

$$\begin{split} (\varepsilon, q_0, 11001) \vdash (0, q_0, 1001) \vdash (00, q_0, 001) \vdash (001, q_0, 01) \\ \vdash (0011, q_0, 1) \vdash (00110, q_1, \square) \vdash (0011, q_1, 0\square) \\ \vdash 001, q_1, 10\square) \vdash (00, q_1, 110\square) \vdash (0, q_1, 0110\square) \\ \vdash (\varepsilon, q_1, 00110) \vdash (\varepsilon, q_1, \square 00110) \vdash (\square, q_2, 00110) \end{split}$$

A2. Geben Sie eine Turing-Maschine an, welche an binäre Zeichenketten w eine Eins anhängt, wenn die Anzahl der auftretenden Einsen in w ungerade ist und ansonsten eine Null.

$L\ddot{O}SUNG$

Die Turing-Maschine ist gegeben durch

$$M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, \square\}, \delta, q_0, \square, \{q_3\})$$

mit folgenden Übergängen:

δ	0	1	
q_0 q_1 q_2 q_3	$(q_0, 0, R)$ $(q_1, 0, R)$ $(q_2, 0, L)$	$(q_1, 1, R)$ $(q_0, 1, R)$ $(q_2, 1, L)$ \emptyset	$(q_2, 0, L)$ $(q_2, 1, L)$ (q_3, \square, R) \emptyset

Dabei können die vier Zustände folgendermaßen interpretiert werden:

- q_0 es gibt eine gerade Anzahl an Einsen (und Lesekopf nach rechts bewegen)
- q_1 es gibt eine ungerade Anzahl an Einsen (und Lesekopf nach rechts bewegen)
- q_2 Zurückspulen zum linken Rand
- q_3 Endzustand

A3. Geben Sie eine Turing-Maschine an, welche bei Eingabe einer natürlichen Zahl in Binärdarstellung "G" ausgibt, falls die Zahl gerade ist und "U" sonst.

$L\ddot{O}SUNG$

Die Turing-Maschine ist gegeben durch

$$M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, \square, G, U\}, \delta, q_0, \square, \{q_3\})$$

mit folgenden Übergängen:

δ	0	1	
q_0	$(q_0, 0, R)$	$(q_0, 1, R)$	(q_1, \square, L)
q_1	(q_2, \square, L)	(q_3, \square, L)	Ø
q_2	(q_2, \square, L)	(q_2, \square, L)	(q_4, G, N)
q_3	(q_3,\square,L)	(q_3, \square, L)	(q_4, U, N)
q_4	Ø	\emptyset	Ø