Numerical optimization: theory and applications

Ammar Mian

Associate professor, LISTIC, Université Savoie Mont Blanc

Outline

The Missing Piece: Understanding the Saddle Point Structure

What we covered previously: KKT conditions tell us what the solution looks like

What we missed: How to optimize the Lagrangian to find this solution

Key Question

Given
$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i} \lambda_{i} c_{i}(\mathbf{x})$$
, how do we optimize over $(\mathbf{x}, \boldsymbol{\lambda})$?

The fundamental insight: The KKT conditions emerge from a *saddle point* structure where:

- We minimize over primal variables x
- We maximize over dual variables $\lambda \ge 0$

This opposite optimization behavior is *not* arbitrary—it emerges naturally from the mathematical structure of constrained optimization.

Why the Minus Sign Creates the Right Incentives

Consider our Lagrangian: $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i} \lambda_{i} c_{i}(\mathbf{x})$

What happens if we minimize over both variables?

For inequality constraint $c_i(\mathbf{x}) \geq 0$:

- When $c_i(\mathbf{x}) > 0$ (constraint satisfied with slack)
- Term $-\lambda_i c_i(\mathbf{x})$ becomes more negative as λ_i increases
- Minimizing over λ_i would drive $\mathcal{L} \to +\infty$

The Resolution

We must **maximize** over $\lambda_i \geq 0$. When $c_i(\mathbf{x}) > 0$, maximization drives $\lambda_i \to 0$, consistent with complementarity: $\lambda_i c_i(\mathbf{x}) = 0$.

The minus sign in the Lagrangian creates the correct incentive structure for the dual variables to encode constraint shadow prices.

The Saddle Point Property

Theorem (Saddle Point Characterization)

 (x^\star, λ^\star) solves the constrained optimization problem if and only if it is a saddle point of the Lagrangian:

$$\mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}) \leq \mathcal{L}(\mathbf{x}^{\star}, \boldsymbol{\lambda}^{\star}) \leq \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^{\star})$$

for all feasible **x** and all $\lambda > 0$.

Interpretation:

- Left inequality: $\mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda})$ is maximized over $\boldsymbol{\lambda}$ at $\boldsymbol{\lambda}^*$
- Right inequality: $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}^*)$ is minimized over \mathbf{x} at \mathbf{x}^*

Economic Insight

Dual variables λ^* represent shadow prices—the marginal value of relaxing constraints. Maximization over λ finds the economically meaningful constraint valuations.

Illustrative Example: The Saddle Point in Action

Problem: $\min f(x) = -(x-3)^2$ subject to $x \ge 1$ Lagrangian: $\mathcal{L}(x,\lambda) = -(x-3)^2 - \lambda(x-1)$

The conflict: Objective wants $x \to -\infty$, constraint forces $x^* = 1$

Saddle point analysis:

$$\frac{\partial \mathcal{L}}{\partial x} = -2(x-3) - \lambda = 0 \quad \text{(Stationarity)} \tag{1}$$

At
$$x^* = 1$$
: $-2(1-3) - \lambda = 0 \Rightarrow \lambda^* = 4$ (2)

Verification of saddle property:

- Fix $\lambda = 4$: $\mathcal{L}(x, 4) = -(x 3)^2 4(x 1)$ has unique minimum at x = 1
- Fix x = 1: $\mathcal{L}(1, \lambda) = -4$ (constant, satisfying max condition)

Shadow price: $\lambda^* = 4$ means relaxing $x \ge 1$ to $x \ge 1 - \epsilon$ improves objective by $\approx 4\epsilon$.

From Theory to Algorithm: Projected Gradient Method

The saddle point structure naturally suggests an **alternating optimization** scheme:

Projected Gradient Algorithm

Initialize: $x^0, \lambda^0 \ge 0$

For $k = 0, 1, 2, \ldots$ until convergence:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^k, \boldsymbol{\lambda}^k)$$

(Primal descent)

 $\pmb{\lambda}^{k+1} = \max(0, \pmb{\lambda}^k + \beta_k \nabla_{\pmb{\lambda}} \mathcal{L}(\mathbf{x}^{k+1}, \pmb{\lambda}^k))$

(Dual ascent)

Key components:

- **Primal step**: Gradient descent on \mathcal{L} with respect to \mathbf{x}
- **Dual step**: Projected gradient ascent on \mathcal{L} with respect to λ
- **Projection**: $max(0, \cdot)$ ensures dual feasibility $\lambda \ge 0$

Understanding the Gradient Components

For our general Lagrangian $\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) - \sum_{i} \lambda_{i} c_{i}(\mathbf{x})$:

Primal gradient:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = \nabla f(\mathbf{x}) - \sum_{i} \lambda_{i} \nabla c_{i}(\mathbf{x})$$

Dual gradient:

$$\frac{\partial \mathcal{L}}{\partial \lambda_i} = -c_i(\mathbf{x})$$

Algorithm Updates

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \left(\nabla f(\mathbf{x}^k) - \sum_i \lambda_i^k \nabla c_i(\mathbf{x}^k) \right)$$

$$\lambda_i^{k+1} = \max(0, \lambda_i^k + \beta_k c_i(\mathbf{x}^{k+1})) \quad \forall i$$
(4)

Intuition: Dual variables increase when constraints are violated $(c_i < 0)$ and decrease when constraints have slack $(c_i > 0)$ naturally driving toward complementarity

Algorithm Implementation for Our Exercise

Recall our problem:

minimize
$$f(x,y) = (x-2)^2 + (y-2)^2$$
 (5)
subject to: $g(x,y) = x + y - 2 = 0$ (6)
 $h_1(x,y) = -x \le 0, \quad h_2(x,y) = -y \le 0$ (7)

Lagrangian:

$$\mathcal{L}(x, y, \lambda, \mu_1, \mu_2) = (x - 2)^2 + (y - 2)^2 - \lambda(x + y - 2) - \mu_1(-x) - \mu_2(-y)$$

Gradients:
$$\frac{\partial \mathcal{L}}{\partial x} = 2(x-2) - \lambda + \mu_1$$
 (8)
$$\frac{\partial \mathcal{L}}{\partial y} = 2(y-2) - \lambda + \mu_2$$
 (9)
$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(x+y-2)$$
 (10)

$$\frac{\partial \mathcal{L}}{\partial \mu_1} = x, \quad \frac{\partial \mathcal{L}}{\partial \mu_2} = y$$

(11)

Projected Gradient Steps for Our Exercise

Algorithm updates:

$$x^{k+1} = x^k - \alpha(2(x^k - 2) - \lambda^k + \mu_1^k)$$
(12)

$$y^{k+1} = y^k - \alpha(2(y^k - 2) - \lambda^k + \mu_2^k)$$
(13)

$$\lambda^{k+1} = \lambda^k + \beta(x^{k+1} + y^{k+1} - 2) \tag{14}$$

$$\mu_1^{k+1} = \max(0, \mu_1^k - \beta x^{k+1}) \tag{15}$$

$$\mu_2^{k+1} = \max(0, \mu_2^k - \beta y^{k+1}) \tag{16}$$

Expected convergence: $(x^*, y^*) = (1, 1)$ with $\lambda^* = 2$, $\mu_1^* = \mu_2^* = 0$

Key Insight

The inequality constraints $x \ge 0$, $y \ge 0$ are **inactive** at the solution because the optimal point (1,1) lies in the interior of the feasible region. Therefore $\mu_1^* = \mu_2^* = 0$ by complementarity.

Corrected Implementation and Key Takeaways

Implementation insight: The projected gradient method will automatically handle the constraint activity determination through the projection steps.

Algorithm behavior:

- Algorithm starts with some initial guess
- Primal variables evolve toward (1, 1) due to objective function pull
- Dual variables for inactive constraints get projected to zero
- Equality constraint multiplier adjusts to maintain stationarity

Main Learning Objectives

- 1. Saddle point structure emerges from constraint-objective conflicts
- 2. Opposite optimization directions (min over \mathbf{x} , max over $\boldsymbol{\lambda}$) are mathematically necessary
- 3. Projected gradient algorithm implements this structure computationally
- 4. Shadow prices have economic meaning as constraint relaxation values