TTK4150 Nonlinear Control Systems Department of Engineering Cybernetics Norwegian University of Science and Technology Fall 2016 - Assignment 3

Due date: Tuesday 11 October at 16.00.

1. Consider again the Duckmaze system from Assignment 1 and 2.

(a) Use the transformed system from Assignment 2 (Exercise 1b) and the Lyapunov function candidate

$$V = \frac{1}{2} \left(\tilde{x}_1^2 + m \tilde{x}_2^2 \right)$$

to derive a controller (find \tilde{u}) such that

$$\dot{V} = -(d+k_2)\tilde{x}_2^2$$

where k_2 is the controller gain.

(Hint: The resulting closed-loop system should be linear)

- (b) Is the closed-loop system locally/globally asymptotically/exponentially stable at the origin? Investigate all four possibilities and motivate your answers.
- (c) What happens to the system dynamics as k_2 increases? Explain this physically.
- (d) By using the controller in part (a), is it possible to place the poles of the system arbitrarily?
- 2. For a real matrix Λ we denote $\Lambda \geq 0$ when we mean that the matrix Λ is positive semidefinite and $\Lambda \leq 0$ when it is negative semidefinite. For a real symmetric positive definite matrix P we denote λ_{\min} and λ_{\max} as its smallest and largest eigenvalue, respectively. Show that the following inequalities

$$\lambda_{\min} I < P < \lambda_{\max} I$$

hold for

$$P = \left[\begin{array}{cc} p_{11} & p_{12} \\ p_{12} & p_{22} \end{array} \right]$$

Furthermore show that

$$\lambda_{\min} \|x\|_2^2 \le x^T P x \le \lambda_{\max} \|x\|_2^2$$

for all x.

3. In checking radial unboundedness of a positive definite function V(x), it may appear that it is sufficient to examine V(x) as $||x|| \to \infty$ along the principal axes. This is not true, as shown in by the function

$$V(x) = \frac{(x_1 + x_2)^2}{1 + (x_1 + x_2)^2} + (x_1 - x_2)^2$$

1

- (a) Show that $V(x) \to \infty$ as $||x|| \to \infty$ along the lines $x_1 = 0$ or $x_2 = 0$.
- (b) Show that V(x) is not radially unbounded.

4. Consider the system

$$\dot{x}_1 = x_2, \qquad \dot{x}_2 = -h_1(x_1) - x_2 - h_2(x_3), \qquad \dot{x}_3 = x_2 - x_3$$

where h_1 and h_2 are locally Lipschitz functions that satisfy $h_i(0) = 0$ and $yh_i(y) > 0$ for all $y \neq 0$. (Hint: $\frac{d}{dz} \int_0^z \psi(u) du = \psi(z)$).

- (a) Show that the system has a unique equilibrium point at the origin
- (b) Show that $V(x) = \int_0^{x_1} h_1(y) dy + x_2^2/2 + \int_0^{x_3} h_2(y) dy$ is positive definite for all $x \in \mathbb{R}^3$
- (c) Show that the origin is asymptotically stable.
- (d) Under what conditions on h_1 and h_2 , can you show that the origin is globally asymptotically stable?

5. Consider

$$\dot{x}_1 = -(x_1 + 2x_2)(x_1 + 2)
\dot{x}_2 = -8x_2(2 + 2x_1 + x_2)$$

- (a) Using the indirect method (Theorem 4.7 of Khalil), show that the origin is asymptotically stable.
- (b) Using the direct method (Theorem 4.1 of Khalil), show that the origin is asymptotically stable.

(Hint: use $\mathcal{D} = \{x \in R^2 | x_1 + 2x_2 + 1 \ge 0 \text{ and } 2x_1 + x_2 + 1 \ge 0\}$ and the Lyapunov function candidate $V = x_1^2 + x_2^2$)

- (c) Let $\Omega_c \triangleq \{x \in R^2 | V(x) \leq c\}$. Draw \mathcal{D} , $\Omega_{\frac{1}{9}}$ and $\Omega_{6.25}$ together on the plane (you may use pplane and select 'Plot level curves' from the 'Solutions' menu). Explain why the trajectory converges to the origin when $x(0) = (0, \frac{1}{3})$? Explain also why the trajectory does not converge to the origin when $x(0) = (-\frac{4}{3}, 2)$ eventhough x(0) belongs to D.
- 6. Let α be a class \mathcal{K} function on [0, a). Show that

$$\alpha(r_1 + r_2) < \alpha(2r_1) + \alpha(2r_2), \quad \forall \ r_1, r_2 \in [0, a/2)$$

7. Suppose that for each initial condition x(0) the solution of $\dot{x} = f(x)$ satisfies

$$||x(t)|| \le \beta(||x(0)||, t)$$

for $t \geq 0$ where β is of class \mathcal{KL} .

Show that the origin of the system is globally asymptotically stable, i.e.

- (a) Show stability for x = 0 using the definition of stability and the definition of class- \mathcal{KL} functions.
- (b) Show that every trajectory of the system converges to the origin.

8. Consider the system

$$\dot{x}_1 = -\phi(t) x_1 + a\phi(t) x_2
\dot{x}_2 = b\phi(t) x_1 - ab\phi(t) x_2 - c\psi(t) x_2^3$$

2

where a, b and c are positive constants and $\phi(t)$ and $\psi(t)$ are nonnegative, continuous, bounded functions that satisfy

$$\phi(t) \ge \phi_0 > 0$$
, $\psi(t) \ge \psi_0 > 0$, $\forall t \ge 0$

Show that the origin is globally uniformly asymptotically stable. (Hint: $V = 0.5 (bx_1^2 + ax_2^2)$)

9. An RCL circuit with time-varying elements is represented by

$$\dot{x}_1 = \frac{1}{L(t)}x_2, \qquad \dot{x}_2 = -\frac{1}{C(t)}x_1 - \frac{R(t)}{L(t)}x_2$$

Suppose that L(t), C(t), and R(t) are continuously differentiable and satisfy the inequalities $k_1 \leq L(t) \leq k_2$, $k_3 \leq C(t) \leq k_4$, and $k_5 \leq R(t) \leq k_6$ for all $t \geq 0$, where k_1 , k_3 , and k_5 are positive. Consider a Lyapunov function candidate

$$V(t,x) = \left[R(t) + \frac{2L(t)}{R(t)C(t)}\right]x_1^2 + 2x_1x_2 + \frac{2}{R(t)}x_2^2$$

(Hint: use the completion of squares)

- (a) Show that V(t,x) is positive definite and decrescent
- (b) Find conditions on $\dot{L}(t)$, $\dot{C}(t)$, and $\dot{R}(t)$ that will ensure exponential stability of the origin.
- 10. Consider the system

$$\dot{x}_1 = h(t)x_2 - g(t)x_1^3, \qquad \dot{x}_2 = -h(t)x_1 - g(t)x_2^3$$

where h(t) and g(t) are bounded, continuously differentiable functions and $g(t) \ge k > 0$, for all $t \ge 0$. (Hint: use $V = 0.5(x_1^2 + x_2^2)$)

- (a) Is the equilibrium point x = 0 uniformly asymptotically stable?
- (b) Is it exponentially stable?
- (c) Is it globally uniformly asymptotically stable?
- (d) Is it globally exponentially stable?
- 11. Consider the system $\dot{x} = f(x)$ with f(0) = 0, where it is assumed that f(x) is continuously differentiable and its Jacobian $A(x) \stackrel{\triangle}{=} [\partial f/\partial x]$. The generalized Krasovskii's theorem then states that a sufficient condition for the origin to be asymptotically stable is that the matrix $F(x) = A^{\top}P + PA$ is negative semi definite in some neighbourhood D of the origin and $P = P^{\top} > 0$. In addition, if $D \in \mathbb{R}^n$ and $V(x) \stackrel{\triangle}{=} f^{\top}(x)Pf(x)$ is radially unbounded, then the system is globally asymptotically stable.

Apply Krasovskii's theorem to analyze the stability behaviour of the following system

$$\dot{x}_1 = -6x_1$$

$$\dot{x}_2 = 2x_1 - 6x_2 - 2x_2^3.$$

3

12. Let

$$V_{1}(x_{1}, x_{2}, t) = x_{1}^{2} + (1 + e^{t}) x_{2}^{2}$$

$$V_{2}(x_{1}, x_{2}, t) = \frac{x_{1}^{2} + x_{2}^{2}}{1 + t}$$

$$V_{3}(x_{1}, x_{2}, t) = (1 + \cos^{4} t) (x_{1}^{2} + x_{2}^{2})$$

For each of the functions $V_i(x_1, x_2, t)$, $i \in \{1, 2, 3\}$ investigate the properties of positive definite and decrescent.

13. Consider the system

$$\dot{x}_1 = x_2
\dot{x}_2 = -x_1 - c(t) x_2$$

where the function c(t) is continuous differentiable and satisfies

$$k_1 \le c(t) \le k_2$$
 and $|\dot{c}(t)| \le k_3 \ \forall t \ge 0$

and k_i are constants and $k_1 > 0$. Use the Lyapunov function candidate

$$V(x) = \frac{1}{2} \left(x_1^2 + x_2^2 \right)$$

to show that the origin is uniformly stable and that $x_2 \to 0$ as $t \to \infty$.

14. **Optional exercise:** Consider the system $\dot{x} = f(x)$ with f(0) = 0. Assume that f(x) is continuously differentiable and its Jacobian $[\partial f/\partial x]$ satisfies

$$P\left[\frac{\partial f}{\partial x}(x)\right] + \left[\frac{\partial f}{\partial x}(x)\right]^T P \le -I, \quad \forall \ x \in \mathbb{R}^n, \quad \text{where } P = P^T > 0$$

(a) Using the representation $f(x) = \int_0^1 \frac{\partial f}{\partial x}(\sigma x) x \ d\sigma$, show that

$$x^T P f(x) + f^T(x) P x \le -x^T x, \quad \forall \ x \in \mathbb{R}^n$$

(b) Show that $V(x) = f^{T}(x)Pf(x)$ is positive definete for all $x \in \mathbb{R}^{n}$ and radially unbounded.

4

(c) Show that the origin is globally asymptotically stable.