Prikaz sustava bond grafovima

1. Karakteristike bond grafova

- strukturni prikaz sustava
- vidljivi tokovi snage (energije)

2. Elementi bond grafova

- element bond grafa sadrži polustrelicu koja pokazuje prema tipu elementa

- iznad strelice je veličina koja označava napor (engl. effort) (napon, sila, tlak, zakretni moment)
- ispod strelice je veličina koja označava tok (engl. flow), (el. struja, brzina, protok, kutna brzina)
- odnos napora i toka određen je tipom elementa
- tip elementa određuje ponašanje susatava
- veze među elementima određuju međudjelovanja
- umnožak veličine iznad i ispod strelice bond grafa daje snagu

Pasivni elementi s jednim ulazom

R tip

opis sustava: e = Rf za nelinearne sustave e = R(f) Iznos konstante R ili njen opis stavlja se s dvotočkom iza elementa Primjer el. sustava.

Opsi bond grafa jednadžbom: u_u=R₁ i

C tip

Opis sustava: $e = \frac{1}{C} \cdot q$

Za nelinearne sustave: e = C(q)

Primjer sustava:

Opis bond grafa jednadžbom $F = k \cdot x$

I tip

$$e = \dot{p}$$

Opis sustava: p=lf

Opis bond grafa jednadžbom:

$$p = m \cdot V = \int_{0}^{t} Fdt$$

ili
$$F = m\dot{V} = m\ddot{x}$$

Tetraedar stanja

Aktivni izvori

Izvor napora

(Effort source)

$$S_e \xrightarrow{e(t)}$$

Opis sustava:

- e(t) nezavisna funkcija vremena
- tok je funkcija ostatka mreže

Izvori toka

(Flow source)

$$S_f$$
 $f(t)$

Opis sustava:

- f(t) nezavisna funkcija vremena
- napor je funkcija ostatka mreže

Spojevi s više ulaza i izlaza

1-spoj

(1-junction)

Opis sustava:

- tok je isti na svakom bondu (uz svaki napor je isti tok)
- suma napora na bondu je 0
 (za gornji slučaj e₂-e₁-e₃=0)

Primjer:

Djelovanje sila na bezmaseni objekt:

$$\begin{array}{c|c} F_1 & F_2 \\ \hline & 1 \\ \hline & V \end{array}$$

Opis sustava:

$$F_1$$
- F_2 - F_3 =0 (smjer vektora brzine i sile f_1 isti)

0-spoj

(0-junction)

Opis sustava:

- napor je isti
- suma toka na bondu je 0
 (za gornji slučaj f₁-f₂-f₃=0)

Primjer:

Spojna točka na električnoj shemi:

- napon točke (e)
- struja svake grane (tok)
- suma struja je nula

4

Transformacijski elementi

Transformator

Opis sustava:

$$f_2 = \frac{b}{a}f_1$$
$$e_2 = \frac{a}{b}e_1$$

b/a - omjer transformacije

Karakteristike

- izlazni napor jednak je umnošku ulaznog napora s recipročnom v r i j e d n o š ć u o m j e r a transformacije
- izlazni tok jednak je umnošku ulaznog toka i omjera transformacije
- ulazna snaga jednaka je izlaznoj e₁f₁ = e₂f₂

Žirator

$$\begin{array}{cccc} e_1 & e_2 \\ \hline GY & \\ f_1 & r & f_2 \end{array}$$

Opis sustava:

$$e_2 = rf_1$$

 $e_1 = rf_2$

r - modul žiratora

Karakteristike:

- izlazni napor ovisi o ulaznom toku
- izlazni tok ovisi o ulaznom naporu

Primjer:

Žiro efekt kod djelovanja sila na rotirajući zvrk (žiroskop).

Primjer:

Električni transformator

Aktivni izvor

- puna strelica označava signal a ne bond
- e=f(e₀)
- nema povratnog djelovanja na napon e₀ (koji postoji negdje u sustavu)
- ako se radi o izvoru napora (S_e) izlazni tok je određen ostatkom mreže (pa se ne navodi ispod bonda - polustrelice).
- Primjer: idealno pojačalo napona (izlazni napon i struja nemaju utjecaja na ulazni napon).
- Postoje i upravljivi izvori toka!!

3. Kauzalnost

- crtica kauzalnosti:
 - određuje uzrok i posljedicu na bond grafovima
 - odreluje da li napor na bondu uzrokuje tok ili tok uzrokuje napor
 - kod C i I elemenata određuje da li bond predstavlja integralno ili derivativno ponašanje
 - omogućuje pisanje jednadžbi iz bond grafa
 - Primier:
 - otpornik povezan na naponski izvor: napon izvora određuje struju, promjena otpora znači promjena struje, dok napon ostaje isti
 - otpornik povezan na strujni izvor: jakost struje određuje napon na otporniku - promjena otpora znači promjena napona (a ne i struje).

Primier:

- A B djeluje naporom e na element A
 A odgovara tokom f na napor e
- polustrelica bond grafa nema povezanosti s crticom kauzalnosti
- polustrelica određuje pretpostavljeni tok energije (predznake veličina na bondu)
- crtica kauzalnosti određuje ulazno izlazne ovisnosti na bondu
- crtica uz element pravilima za taj element računa se tok
- crtica od elementa pravilima za taj element računa se napor

Pravila za postavljanje crtica kauzalnosti

Element	Konfiguracija crtica kauzalnosti	Opis
Izvor napora	S _e	Crtica uvijek od izvora
Izvor toka	$S_f \vdash_{\overline{f}}$	Crtica uvijek kod izvora
Transformator	TF TF	Jedna crtica uz element a jedna od elementa
Žirator	GY GY	Obje crtice kod elementa ili obje od elementa

Element		Konfiguracija crtica kauzalnosti	Opis
0-spoj		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Jedna crtica uz spoj a sve ostale od spoja (napor isti na svim bondovima - određuje ga jedan element)
1-spoj		$ \begin{array}{c c} e_2 & f \\ e_1 & e_3 \\ f & f \end{array} $	Jedna crtica od spoja a sve ostale uz spoj (tok isti na svim bondovima - određuje ga jedan element)
Integral	I - element	$\frac{e = \dot{p}}{f} I $	$f = \frac{1}{l} \int_{0}^{t} e dt$
	C- element	$\frac{e}{f = \dot{q}} C$	$e = \frac{1}{c} \int_{0}^{t} f dt$
Derivacija	I - element	$\frac{e = \dot{p}}{f}$	e = I·f
	C- element	$\frac{e}{f = \dot{q}} C$	f = Cė
R element		e f 	Crtica kauzalnosti bilo uz element ili od elementa (ovisno o konfiguraciji ostalih elemenata vezanih uz R)

4. Pravila za opis sustava bond grafovima

1. Pridruživanje elementima sustava elemenata bond grafova

	Element Bond grafa	
Vanjski signali i pobude		izvori toka izvori napora
Jednadžbe ravnoteže	struja, protoci, brzine, brzina vrtnje	0-spoj
	napon, tlak, sila, zakretni moment	1-spoj
induktiviteti, elementi s inercijom		I-element
kapaciteti, opruge, rezervoari		C-elementi
električni otpori, hidraulički otpori, mehanička prigušenja		R-element
pojačala signala i elementi bez povratnog djelovanja		aktivni izvori
transformatori i elementi s ponašanjem transformatora (ulazni napon djeluje na izlazni napon, a izlazna struja određuje ulaznu struju)		TF-element
žiroskopi		GY-element

- 2. Pridruživanje orjentacije bondovima određivanje toka energije (isti smjer napora i toka strelica prema elementu)
- 3. Numeriranje bondova (svaki bond mora imati jedinstveni broj) i pridruživanje oznaka (upis nelinearnih jednadžbi ako postoje)
- 4. Pridruživanje crtica kauzalnosti:
 - a) Pridruživanje kauzalnosti izvorima i proširenje na spojeve TF i GY elemente vezane uz izvore (uvažavajući ograničenja koja za njih vrijede)
 - b) Pridruženje crtica kauzalnosti C i I elementima tako da se dobije integralno ponašanje i proširenje na spojeve, TF i GY elemente vezane uz njih
 - c) Pridruženje kauzalnosti R elementima (ako nema drugih ograničenja proizvoljno) i proširenje na spojeve, TF i GY elemente vezane uz njih
- 5. Pojednostavljenje strukture ako je moguće

5. Određivanje jednadžbi iz Bond grafova

- Red sustava = broju I i C elemenata
- $-\dot{q}$, \dot{p} derivacije varijabli stanja (q integral toka, p integral napora)
- izvori ulazne varijable
- izražavanje derivacija varijabli stanja pomoću ulaznih varijabli i varijabli stanja.
- izlazne jednadžbe algebarske jednadžbe varijabli stanja (odabiru se veličine koje se traže kao izlazne varijable)

Primjer 1.

Zadana je električna shema prema slici. Potrebno je odrediti:

- 1. bond graf koji opisuje sustav
- 2. označiti bond graf
- 3. postaviti crtice kauzalnosti
- 4. opisati sustav u prostoru stanja iz bond grafa.

Bond graf je prikazan slikom

Oznake karakterističnih vrijednosti:

 $S_{e} \xrightarrow{f_{2}} f_{2} \qquad e_{5} \qquad q_{5}$ $S_{e} \xrightarrow{E_{1}(t)} 1 \qquad 0$ $R:R_{1} \qquad R:R_{2}$

(Napomena: napori (naponi) i tokovi (struje) uz bond obilje \check{z} en brojem dobivaju isti broj. Tok na bondu 3 je f_3 a napor na istom bondu je e_3 .)

Opis bond grafa jednadžbama:

1. Zakonitosti za I i C elemente:

(zbog crtice kauzalnosti kod I elementa određuje se f_2 pomoću I_2 i p_2 , zbog crtice od C elementa određuje se e_5 kao funkcija Q_5 i C_5)

$$f_2 = \frac{p_2}{l_2}$$
, $e_5 = \frac{q_5}{C_5}$

- 2. Jednadžba 1-spoja
 - tokovi na svim bondovima oko 1-spoja su isti
 - tokovi su određeni I elementom (crtice kauzalnosti)
 - 1-spoj određuje napor \dot{p}_2 (crtice kauzalnosti)

$$\dot{p}_2 = E_1(t) - e_3 - e_4$$

gdje je \dot{p}_2 - napon na induktivitetu (u_L).

napori na 0-spoju su isti, a prema crticama kauzalnosti određuje ih C element.
 Prema tome napor e₄ jednak je naporu e₅

$$\dot{p}_2 = E_1(t) - R_3 f_2 - e_5$$

$$\dot{p}_2 = E_1(t) - R_3 \frac{p_2}{l_2} - \frac{q_5}{C_5}$$

- 3. Jednadžba 0-spoja
 - napori na svim bondovima su isti
 - napore određuje C element
 - 0-spoj određuje tok \dot{q}_5 (crtica kauzalnosti kod spoja)

$$\dot{q}_5 = f_4 - f_6$$

gdje je \dot{q}_5 struja kroz kondenzator C_1 (i_c).

- tok na bondu 4 određen je 1-spojem (crtica kauzalnosti) i jednak je f₂

$$\dot{q}_5 = f_2 - \frac{e_6}{R_6} = f_2 - \frac{e_5}{R_6}$$

$$\dot{q}_5 = \frac{p_2}{I_2} - \frac{q_5}{R_6 C_5}$$

4. Pisanje u obliku varijabli stanja: derivacije varijabli stanja su napori na I elementima i tokovi na C elementima.

$$\dot{p}_{2} = -\frac{R_{3}}{I_{2}}p_{2} - \frac{1}{C_{3}}q_{5} + E_{1}(t)$$

$$\dot{q}_{5} = \frac{1}{I_{2}}p_{2} - \frac{1}{R_{6}C_{5}}q_{5}$$

$$\begin{bmatrix} \dot{p}_{2} \\ \dot{q}_{5} \end{bmatrix} = \begin{bmatrix} -\frac{R_{3}}{I_{2}} & -\frac{1}{C_{5}} \\ \frac{1}{I_{2}} & -\frac{1}{R_{6}C_{5}} \end{bmatrix} \begin{bmatrix} p_{2} \\ q_{5} \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} E_{1}(t)$$

Zamjena oznaka elemenata bond grafa oznakama elemenata iz električne sheme:

$$\begin{bmatrix} \dot{p}_2 \\ \dot{q}_5 \end{bmatrix} = \begin{bmatrix} -\frac{R_1}{L} & -\frac{1}{C_1} \\ \frac{1}{L} & -\frac{1}{R_2 C_1} \end{bmatrix} \begin{bmatrix} p_2 \\ q_5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} E_1(t)$$

iz jednadžbi stanja može se dobiti jednadžbe:

- sume napona u pettlji i
- sume struja u točki grananja.

$$\dot{p}_{2} = u_{L} = L \frac{di}{dt} = E_{1}(t) - \frac{R_{1}}{L} \cdot \int u_{L} dt - \frac{1}{C_{1}} \int i_{c} dt =$$

$$= E_{1}(t) - R_{1} \cdot i - u_{c}$$

$$\dot{q}_{5} = i_{c} = \frac{1}{L} \int u_{L} dt - \frac{1}{R_{2}} \frac{1}{C_{1}} \int i_{c} dt$$

$$= i - i_{R2}$$

Literatura:

- Rosenberg, R. C., Karnopp, D. C.: Introduction to physical systems dynamics, McGraww-Hill, Inc., New York, 1983.
- Karnopp, D. C., Margolis, D. L., Rosenberg, R. C.: System dynamics: A unified aproach, second edition, John Wiley & sons, Inc., New York, 1990.