Distributed Algorithms 2022/2023 (practical exercise)

Leader election

- **1 –** Find the expected value for the random variable $X \sim Geo(p)$.
- **2** Find the variance of the random variable $X \sim Geo(p)$.
- **3 –** Let $p \in [0,1]$ and $n \geq k \geq 1$, $n,k \in \mathbb{N}$. For what value of the argument a function f takes the maximum value?
- a. $f(p) = np(1-p)^{n-1}$
- b. $f(n) = np(1-p)^{n-1}$
- C. $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- **4** Prove that $(1+x)^r \ge 1 + rx$ for $x \ge -1, r \ge 1$.
- **5 -** Prove that $(1+x)^r \le 1 + rx$ for $x \ge -1, r \in (0,1)$.
- **6** Prove that $1 + x < e^x$ for $x \in \mathbb{R}$.
- **7** Prove that $\frac{x}{e^x} < \frac{1.5}{r^2}$ for x > 0.
- **8** Let $f_i(n)=n\frac{1}{2^i}\left(1-\frac{1}{2^i}\right)^{n-1}$. Prove that functions $f_i(2^{i-1})$, $f_{i+1}(2^{i-1})$ are decreasing and function $f_{i-1}(2^i)$ is increasing for $i\geq 2$.
- **9** Present the definition of the Lambert W functions family and draw its real branches.
- **10** Use Lambert W function to analytically <u>determine</u> real solutions to the equation

$$3^x = x^3$$

What is Lambert's W function called in Mathematica?

11 — Have a look at this paper and show that for $x \ge e$

$$\ln x - \ln \ln x < W_0(x) \le \ln x - \frac{1}{2} \ln \ln x$$
.

12 — Completion of the lecture proof. Check that if $K \ge 1, f > 1, u \ge 2$ and

$$3e(K+1)u^{\frac{-1}{2(K+1)}} \ge 1 - \frac{1}{f}$$
 then $K \ge \frac{\ln u}{2W_0(\frac{3e}{2}\frac{f}{f-1}\ln u)} - 1$.

Data stream analysis: approximate counting

13 — For continuous and independent random variables X_1, X_2, \ldots, X_n with the same distribution given by the density function f(x) and the cumulative distribution function F(x) show that k-th order statistic $X_{k:n}$ has a distribution described by the density function

$$f_k(x) = \frac{F^{k-1}(x) \left[1 - F(x)\right]^{n-k} f(x)}{B(k, n-k+1)} ,$$

where $B(\alpha, \beta)$ denotes beta function. Hint: see this notes.

14 — For n independent random variables U_1, U_2, \ldots, U_n with the uniform distribution: $U_i \sim \mathcal{U}(0,1)$, show that k-th order statistic has distribution Beta(k,n-k+1) and an expected value equal to k/(n+1).

<u>Hint.</u> In this and in the next exercise use different representations of the beta function: given by the definition and by factorial for arguments that are natural numbers.

15 — Let $U_{k:n}$ denote kth order statistic for n independent uniformly distributed random variables with distribution $\mathcal{U}(0,1)$. Show that for the estimator $\hat{n}_k = \frac{k-1}{U_{k:n}}$ and $k \geq 2$ we have $\mathbb{E}\left(\hat{n}_k\right) = n$ and that for for $k \geq 3$ we have

$$\operatorname{Var}(\hat{n}_k) = \frac{n(n-k+1)}{k-2} .$$

16 — (Markov's inequality) Let X denote the random variable that takes only non-negative values. Then for all a>0

$$\mathbb{P}\left(X \ge a\right) \le \frac{\mathbb{E}\left(X\right)}{a} .$$

17 — (Chebyshev's inequality) Let X denote a random variable with a finite expected value and a finite, non-zero variance. Show that for any a>0 the following inequality holds:

$$\mathbb{P}\left(\left|X - \mathbb{E}\left(X\right)\right| < a\right) > 1 - \frac{\mathbb{V}\mathrm{ar}\left(X\right)}{a^{2}}.$$

Hint: use Markov's inequality.

18 — (Chernoff inequality for sum of Bernoulli trials) Let X_1,\ldots,X_n be independent Bernoulli trials such that $\mathbb{P}(X_i=1)=p_i$. Let $X=\sum_{i=1}^n X_i$ and $\mu=\mathbb{E}(X)$. Show that

a) for any $\delta > 0$

$$\mathbb{P}(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu},$$

b) for any $0 < \rho \le 1$

$$\mathbb{P}\left(X \le (1-\rho)\mu\right) \le \left(\frac{e^{-\rho}}{(1-\rho)^{(1-\rho)}}\right)^{\mu}.$$

Hint: see chapter 4.2. in this book.

19 — Using the notations and the inequalities obtained in the previous task, show that for any $0<\delta<1$

$$\mathbb{P}\left(|X - \mu| \ge \delta\mu\right) \le 2e^{-\mu\delta^2/3} .$$

20 — Let S_n be the number of heads in n flips of a symmetrical coin. Show that

a) using Chebyshev's inequality we have

$$\mathbb{P}\left(\left|S_n - \frac{n}{2}\right| \ge \frac{n}{4}\right) \le \frac{4}{n} ,$$

b) using Chernoff's inequality from the previous task we have

$$\mathbb{P}\left(\left|S_n - \frac{n}{2}\right| \ge \frac{n}{4}\right) \le 2e^{-n/24}.$$

21 — Consider the following algorithm, from which the idea of the HyperLogLog algorithm is derived.

Probabilistic Counter

1: Initialization: $C \leftarrow 1$

Upon event:

2: **if** random() <= 2^{-C} **then**

 \triangleright random returns a random number in a range [0,1)

3: $C \leftarrow C + 1$

4: end if

In other words, when an event occurs, we toss a coin C times, and if each time we get heads, we increment the C counter by one. Otherwise, we do nothing. Let C_n be the value stored in the counter C after observing n events. Show that $\mathbb{E}\left(2^{C_n}\right)=n+2$ and $\mathbb{V}\!\!\!\text{ar}\left(2^{C_n}\right)=\frac{1}{2}n(n+1)$. Based on C_n , define an unbiased estimator of n and calculate its variance.

Good luck, J.L.