Creating a basic document in \LaTeX

Anghie

May 2024

Contents

1	Objectives	2
2	Mathematics	2
	2.1 Euler's Formula	2
	2.1.1 The most beautiful formula	2
	2.2 Limit	2
3	Drawing in LATEX	3
	3.1 Lines	3
	3.2 Parabolas	3
	3.3 Controling lines	3
	3.4 Rectangles	3
	3.5 Circles	3
4	The Fundamentals of Mathematics	4
	4.1 P1 - USP São Carlos	4
	4.1.1 Question - 1.a	4
	4.1.2 Question - 1.b	4

1 Objectives

As I'm learning LaTex, I'll fill this file up with various curious, fun and important things, also commenting the code responsable for this file

2 Mathematics

2.1 Euler's Formula

This is an attempt to creating a simple paragraph and importing a graphical representation as you can see in figure 1, in page 2

Figure 1: Euler's Formula

2.1.1 The most beautiful formula

In maths, we do have something called the most beautiful formula, and that is Euler's identity minus one:

$$e^{i\pi} - 1 = 0 \tag{1}$$

The actual Euler's Identity is $e^{i\theta} = \cos\theta + i\sin\theta$, and when $\theta = \pi$, we have that:

$$e^{i\pi} = \cos\pi + i\sin\pi \to e^{i\pi} = 1 + 0 \to e^{i\pi} = 1 \tag{2}$$

Ergo the Euler's Identity

2.2 Limit

Given f a function where $f: \mathbb{R} \to \mathbb{R}$ and $\exists a \in \mathbb{R} \to f(a) = L$, the $\lim_{x \to a} f(x)$ is given as:

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in \mathbb{R} \to 0 < |x - a| < \delta \to |f(x) - L| < \epsilon \tag{3}$$

3 Drawing in LaTeX

3.1 Lines

3.2 Parabolas

3.3 Controling lines

3.4 Rectangles

3.5 Circles

4 The Fundamentals of Mathematics

4.1 P1 - USP São Carlos

The following subsections will be each question with it's correct answers

4.1.1 Question - 1.a

For any affirmations A and B the following is an tautology

$$(A \to B) \iff (\neg B \to \neg A) \tag{4}$$

Truth Table:

4.1.2 Question - 1.b

For any affirmations A, B and for any absurd C the following are tautologies

$$(\neg A \to C) \to A \text{ and } [(A \land \neg B) \to C] \to (A \to B)$$
 (6)

First truth table:

Second truth table: