

DogeFuzz: A Simple Yet Efficient Grey-box Fuzzer for Ethereum Smart Contracts

Ismael Medeiros, Fausto Carvalho, Alexandre Ferreira, Rodrigo Bonifácio, Fabiano Cavalcanti Fernandes

Motivação

Cryptonews • Blockchain News

Ethereum Suffers Most Hacks Among Blockchains in 2024

O que é a Hyperledger Besu e por que o BC a escolheu para o Drex

Estatísticas Ethereum - 1º Semestre 2024

- ➤ Valor Total Bloqueado (TVL) em Ethereum: \$49B (56% do mercado).
- ► TVL em SC implementados em Solidity: \$126B.
- ► Ataques na Rede Ethereum: 222 ataques \$315B.
- Exploração de vulnerabilidades em código de SC: 105 ataques.

Potencializadores de ataques

- ▶ Imutabilidade dos Smart Contracts.
- Possibilidade de ganhos econômicos imediatos e enormes.
- ► Fragilidade de projeto da linguagem Solidity.
- ► Natureza pública e anônima em blockchains.

Resultantes de **práticas inadequadas** de programação ou do **desconhecimento** da tecnologia blockchain.

Tipos de vulnerabilidades mais comuns:

- ► Reentrancy.
- ► Mishandled Exception.
- ► Integer Overflow and Underflow.
- ► Insecure Randomness (Number & Timestamp).

Técnicas de detecção:

- ► Análise Estática.
- ► Análise Dinâmica.
- ► Execução simbólica.
- ► Aprendizado de Máquina.
- ▶ Verificação formal.

Blockchain pode ser visto como um **sistema transacional**, uma máquina de estados.

Estado da arte em Smart Contracts fuzzing:

- Geração de sementes de transações e argumentos mais promissores.
- ► Exploração do contexto de estado e código fonte.
- ► Instrumentação de Ethereum Virtual Machine (EVM) leves.
- ► Ferramentas: ILF (ML), sFuzz (GA), Smartian (PA).

Contribuições do DogeFuzz

- 1. Uma infraestrutura extensível de código aberto para experimentar estratégias de fuzzing para smart contracts.
- Experimentos que demonstram que as estratégias mais simples de fuzzing podem superar fuzzers de última geração.

Estratégias de fuzzing implementadas

- ► DogeFuzz-B: um blackbox fuzzer.
- ▶ DogeFuzz-G: um greybox fuzzer guiado a cobertura de código.
- ▶ DogeFuzz-DG: um directed greybox fuzzer guiado por métricas de distância a OPCODEs perigosos.

Descrição da estratégia guiada a cobertura

- Construir Control Flow Graph (CFG) do bytecode do contrato.
- Coletar dados de execução e de ambiente por meio instrumentação da EVM.
- 3. DogeFuzz-G: mapeia blocos executados em blocos da CFG.

Estratégias DogeFuzz

Descrição da estratégia guiada a distância

- Construir Control Flow Graph (CFG) do bytecode do contrato.
- Coletar dados de execução e de ambiente por meio instrumentação da EVM.
- 3. DogeFuzz-DG: calcular distância para atingir OPCODEs perigosos usando o CFG.

Benchmarks

Id	Source	N. of Contracts	Used for
BENCH72	Smartbugs	82 labeled vulnerable	RQ1
Bench500	Etherscan	500 real and popular	RQ2

RQ1: Comparação do DogeFuzz com outros fuzzers

▶ 5 execuções de 1h cada por contrato por ferramenta.

RQ2: Avaliação do DogeFuzz em contratos reais

▶ 5 execuções de 15m cada por contrato por ferramenta.

Baselines

- ► ILF (ML)
- ► sFuzz (GA)
- ➤ Smartian (DFA)
- ▶ DogeFuzz

Resultados RQ1

RQ1: Matriz de avaliação de desempenho

	TP	FP	FN	Precision	Recall	F_1 score
BlockDependency						
ILF	5	0	8	1	0.38	0.56
sFuzz	10	0	3	1	0.77	0.87
Smartian	11	0	2	1	0.85	0.92
Dogefuzz-G	9	1	4	0.90	0.69	0.78
Dogefuzz-DG	9	1	4	0.90	0.69	0.78
Dogefuzz-B	8	0	5	1	0.62	0.76
		Mishan	dledExce	ption		
ILF	11	0	39	1	0.22	0.36
sFuzz	29	6	21	0.83	0.58	0.68
Smartian	48	0	2	1	0.96	0.98
Dogefuzz-G	39	9	11	0.81	0.78	0.80
Dogefuzz-DG	35	7	15	0.83	0.70	0.76
Dogefuzz-B	31	4	19	0.89	0.62	0.73
Reentrancy						
ILF	18	2	1	0.90	0.94	0.92
sFuzz	5	20	14	0.20	0.26	0.26
Smartian	19	0	0	1	1	1
Dogefuzz-G	16	4	3	0.80	0.84	0.82
Dogefuzz-DG	14	4	5	0.78	0.74	0.76
Dogefuzz-B	7	4	12	0.64	0.37	0.47

	ILF	0.96	0.51	0.61
A	sFuzz	0.67	0.53	0.59
Average	Smartian	1	0.93	0.92
	Dogefuzz-G	0.83	0.77	0.80
	Dogefuzz-DG	0.83	0.71	0.76
	Dogefuzz-B	0.84	0.53	0.65

- ► DogeFuzz-G e DG: 48%
- ➤ DogeFuzz-B: 40%
- ➤ Smart Contracs 6x maiores que RQ1.

- Estratégias de fuzzing orientadas por métricas (cobertura e instruções críticas) demonstram boa efetividade em relação a estratégias mais complexas.
- DogeFuzz como framework moderno para experimentações de fuzzing de smart contracts.

Trabalhos futuros

- ► Modelo de sementes baseados em sequências de transações.
- ► Incorporação de um *solver* de condições/restrições.
- ► Implementação de estratégias multi-objetivos.

Dúvidas?

Obrigado!

Contato: faustocarva@gmail.com

DogeFuzz: A Simple Yet Efficient Grey-box Fuzzer for Ethereum Smart Contracts

Ismael Medeiros, Fausto Carvalho, Alexandre Ferreira, Rodrigo Bonifácio, Fabiano Cavalcanti Fernandes

Motivation

Web3 Hacks

Cryptonews . Blockchain News

Ethereum Suffers Most Hacks Among Blockchains in 2024

O que é a Hyperledger Besu e por que o BC a escolheu para o Drex

Ethereum Statistics

Ethereum Statistics - 1st Semester 2024

- ► Total Value Locked (TVL) in Ethereum: \$49B (56% of the market).
- ► TVL in SC implemented in Solidity: **\$126B**.
- ► Attacks on the Ethereum Network: 222 attacks \$315B.
- Exploitation of vulnerabilities in SC code: 105 attacks.

Attack Enablers

- ▶ Immutability of Smart Contracts.
- ▶ Possibility of immediate and enormous economic gains.
- ▶ Design weaknesses of the Solidity language.
- ▶ Public and anonymous nature in blockchains.

Vulnerabilities in Smart Contracts

Resulting from **inadequate programming practices** or **lack of knowledge** about blockchain technology.

Most common types of vulnerabilities:

- ► Reentrancy.
- ► Mishandled Exception.
- ► Integer Overflow and Underflow.
- ► Insecure Randomness (Number & Timestamp).

Vulnerability Detection

Detection techniques:

- ► Static Analysis.
- ▶ Dynamic Analysis (fuzzing)
- ► Symbolic Execution.
- ► Machine Learning.
- ► Formal Verification.

Blockchain can be seen as a transactional system, a state machine.

State of the art in Smart Contracts fuzzing:

- ► Generation of more promising transaction seeds and arguments.
- ► Exploration of state context and source code.
- ► Lightweight instrumentation of the Ethereum Virtual Machine (EVM).
- ► Tools: ILF (ML), sFuzz (GA), Smartian (PA).

DogeFuzz

DogeFuzz Contributions

- 1. An extensible open-source infrastructure for experimenting with fuzzing strategies for smart contracts.
- 2. Experiments demonstrating that simpler fuzzing strategies can outperform state-of-the-art fuzzers.

Proposed Solution

DogeFuzz Architecture

Implemented Fuzzing Strategies

- ► DogeFuzz-B: a blackbox fuzzer.
- ▶ DogeFuzz-G: a greybox fuzzer guided by code coverage.
- DogeFuzz-DG: a directed greybox fuzzer guided by distance metrics to dangerous OPCODEs.

UnB

DogeFuzz Strategies

Description of Coverage-Guided Strategy

- 1. Build Control Flow Graph (CFG) of the contract's bytecode.
- Collect execution and environment data through EVM instrumentation.
- 3. DogeFuzz-G: maps executed blocks to CFG blocks.

DogeFuzz Strategies

UnB

Description of Distance-Guided Strategy

- 1. Build Control Flow Graph (CFG) of the contract's bytecode.
- 2. Collect execution and environment data through EVM instrumentation.
- 3. DogeFuzz-DG: calculate distance to reach dangerous OPCODEs using the CFG.

Benchmarks

Id	Source	N. of Contracts	Used for
BENCH72	Smartbugs	82 labeled vulnerable	RQ1
Bench500	Etherscan	500 real and popular	RQ2

RQ1: Comparison of DogeFuzz with other fuzzers

▶ 5 runs of 1 hour each per contract per tool.

RQ2: Evaluation of DogeFuzz on real contracts

▶ 5 runs of 15 minutes each per contract per tool.

Baselines

- ► ILF (ML)
- ► sFuzz (GA)
- ➤ Smartian (DFA)
- ▶ DogeFuzz

Results RQ1

RQ1: Performance Evaluation Matrix

	TP	FP	FN	Precision	Recall	F_1 score	
	BlockDependency						
ILF	5	0	8	1	0.38	0.56	
sFuzz	10	0	3	1	0.77	0.87	
Smartian	11	0	2	1	0.85	0.92	
Dogefuzz-G	9	1	4	0.90	0.69	0.78	
Dogefuzz-DG	9	1	4	0.90	0.69	0.78	
Dogefuzz-B	8	0	5	1	0.62	0.76	
		Mishan	dledExce	ption			
ILF	11	0	39	1	0.22	0.36	
sFuzz	29	6	21	0.83	0.58	0.68	
Smartian	48	0	2	1	0.96	0.98	
Dogefuzz-G	39	9	11	0.81	0.78	0.80	
Dogefuzz-DG	35	7	15	0.83	0.70	0.76	
Dogefuzz-B	31	4	19	0.89	0.62	0.73	
Reentrancy							
ILF	18	2	1	0.90	0.94	0.92	
sFuzz	5	20	14	0.20	0.26	0.26	
Smartian	19	0	0	1	1	1	
Dogefuzz-G	16	4	3	0.80	0.84	0.82	
Dogefuzz-DG	14	4	5	0.78	0.74	0.76	
Dogefuzz-B	7	4	12	0.64	0.37	0.47	

	ILF	0.96	0.51	0.61
A	sFuzz	0.67	0.53	0.59
Average	Smartian	1	0.93	0.92
	Dogefuzz-G	0.83	0.77	0.80
	Dogefuzz-DG	0.83	0.71	0.76
	Dogefuzz-B	0.84	0.53	0.65

Conclusions

- ► Fuzzing strategies guided by metrics (coverage and critical instructions) show good effectiveness and have similar rates.
- DogeFuzz as a modern framework for smart contract fuzzing experiments.

Future Work

- 1. Seed models based on transaction sequences.
- 2. Incorporation of a constraint solver.
- 3. Implementation of multi-objective strategies.

Questions?

Thanks!

E-Mail: faustocarva@gmail.com