Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	7.5

[5152]-534

S.E. (E & TC/Electronics) (First Semester) EXAMINATION, 2017 DATA STRUCTURES AND ALGORITHMS (2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- Neat diagrams must be drawn wherever necessary. **N.B.** :- (i)
 - (ii) Figures to the right indicate full marks.
 - Assume suitable data, if necessary.
- Sort the following data using merge sort and selection sort. [6] 1. (a)45 222 142 317 187
 - What will be the output of the following code? Justify your (*b*) [6]

 CHANAS PARIS PROPERTY OF THE PROPERTY OF answer.

```
for(i=0;i<4;i++)
   for(j=0;j<4;j
      a[i][j]=20 * (i+j);
      printf("%d",a[i][j]);
      printf("\n");
   printf('%d%d",i,j);
```

		Or	
2.	(a)	Write the following functions in 'C':	[6]
		(i) STRCOPY() To copy a string to another string us array.	ing
		(ii) STRLENGTH() To find length of string using arra	ay.
		Note: Do not use standard library functions.	
	(b)	Explain Algorithm Binary search with example.	[6]
3.	(a)	Convert the given infix expression to postfix expression us	ing
		stack.	[5]
	1	(a\$b)*c-d/d	
		Note: \$ = Exponent operator	
	(<i>b</i>)	Define Queue and explain any one application of Queue.	[4]
	(c)	Differentiate Singly Linked List and Doubly Linked List.	[4]
		Or	
4.	(a)	Write a 'C' function to delete a number from singly linl	ced
		list.	[5]
	<i>(b)</i>	Explain Stack operations PUSH and POP with example.	[4]
	(c)	Compare array and linked list.	[4]
5.	(a)	Construct the binary search tree from the following elemen	ts:
		12, 8, 25, 14, 9, 6, 18.	
		Also show preorder, inorder and postorder traversal for	the
		same.	[6]

	(<i>b</i>)	Define Binary Tree. Name and explain with suitable example
		the following terms:
		(i) Root node
		(ii) Left sub-tree and Right sub-tree
		(iii) Depth of tree. [6]
		Or School Or
6.	(a)	Define the following terms with example with respect to Binary
		Tree:
		(i) Strictly Binary Tree
	/X	(ii) Completely Binary Tree
		(iii) Binary Search Tree [6]
	(<i>b</i>)	Explain the different cases to delete an element from binary
		search tree. [6]
7.	(a)	Explain with suitable example, BFS and DFS traversal of a
		graph. [6]
	(<i>b</i>)	What is MST? Explain with suitable example Kruskal's
		Algorithm to find out MST. [7]
		Or O
8.	(a)	Explain with suitable example the techniques to represent a
		Graph.
		Note: Consider Graph of minimum 6 vertices. [6]
[5152]]-534	3 P.T.O.

Find shortest path from node A to all nodes in the graph shown in Fig. 1 using Dijkstra's algorithm. [7]