Solutions to the 10/04 Worksheet

1) (a) C is the curve $x^3 + y^3 = 16$ with $(x, y) \in \mathbb{R}^2$.

FIGURE 1. Sketch of the curve C (using Mathematica)

- (b) C is not bounded because there is no restriction on x or y and when, say, x approaches $+\infty$, $y = y(x) = \sqrt[3]{16 - x^3}$ approaches $-\infty$.
 - (c) C is closed because the boundary of C coincides with C, thus it is included into C.
 - 2) $f(x,y) = e^{xy}$.
- (a) f is continuous, being the composition $f = g \circ h$ of the continuous functions $h : \mathbb{R}^2 \to \mathbb{R}$, h(x,y)=xy, and $g:\mathbb{R}\to\mathbb{R}$, $g(u)=e^u$. The Extreme Value Theorem says nothing about the existence of global min or max on C because the set C is not bounded.
- (b) We have to find the points of local extremum for the function $f(x,y) = e^{xy}$ subject to the

constraint g(x,y)=16, where $g(x,y)=x^3+y^3$. The Lagrange multipliers method says that such a point (x,y) must satisfy $\begin{cases} (\nabla f)(x,y)=\lambda(\nabla g)(x,y)\\ x^3+y^3=16. \end{cases}$ for some $\lambda\neq 0$, or equivalently

$$\begin{cases} ye^{xy} = 3\lambda x^2 \\ xe^{xy} = 3\lambda y^2 \\ x^3 + y^3 = 16. \end{cases}$$

When $x \neq 0$ we divide the first two equations and get $y^3 = x^3$ hence y = x. Taking into account the third equation we find x = y = 2. The case x = 0 cannot occur because on one hand it would give $y^3 = 16$ and on the other hand y = 0, which contradict each other.

The point (2,2) is the only local max value for f on C and when (x,y) moves towards the end (at infinity) of C the product xy tends to $-\infty$ so e^{xy} tends to 0. Therefore the max value of f on C is $f(2,2) = e^4$ and there is no min value of f on C.

- 3) (a) S is the surface given by $z^2 = x^2 + y^2$.
- (b) We wish to minimize the function $f(x,y,z) := (x-4)^2 + (y-2)^2 + z^2$ that represents the square of the distance between the points (x, y, z) and (4, 2, 0), subject to constraint g(x, y, z) :=

 $x^2 + y^2 - z^2 = 0$. Plainly $\nabla f = \langle 2(x-4), 2(y-2), 2z \rangle$, $\nabla g = \langle 2x, 2y, -2z \rangle$, and by Lagrange multipliers method we have to solve the system of equations

$$\begin{cases} (\nabla f)(x,y,z) = \lambda(\nabla g)(x,y,z) \\ x^2 + y^2 = z^2 \end{cases} \iff \begin{cases} 2(x-4) = 2\lambda x \\ 2(y-2) = \lambda y \\ 2z = -2\lambda z \\ x^2 + y^2 = z^2. \end{cases}$$

If z=0 then the last equality gives x=y=0, contradicting the first and the second equation. So $z\neq 0$ and the third equation gives $\lambda=-1$ and then x-4=-x so $x=2,\ y-2=-y$ so y=1, and $z^2=2^2+1^2$, so $z=\pm\sqrt{5}$.

FIGURE 2. Sketch of the surface S (using Mathematica)

Thus the points on S closest to (4,2,0) are $(2,1,-\sqrt{5})$ and $(2,1,\sqrt{5})$ and the shortest distance is $\sqrt{f(2,1,\pm\sqrt{5})} = \sqrt{(-1)^2+(-1)^2+5} = \sqrt{10}$.

4) An inspection of the level sets map reveals that the graph of the surface z = f(x, y) bottoms at (-1,1) and (-1,-1), and peaks at (1,0), hence (-1,1) and (-1,-1) are candidates for local minima while (1,0) is a candidate for local max.

Furthermore, near (-1,0) the function $x \mapsto f(x,0)$ is seen to have a local min at x=-1 and $y \mapsto f(-1,y)$ a local max at y=0, suggesting that (-1,0) is a saddle point. Near (1,1) the function $x \mapsto f(x,1)$ has a local max at y=1 and the function $y \mapsto f(1,y)$ has a local min at y=1, suggesting that (1,1) is a saddle point. Near (1,-1) the function $x \mapsto f(x,-1)$ has a local max at x=1 and the function $y \mapsto f(1,y)$ has a local min at y=-1, suggesting that (1,-1) is a saddle point.

Now we check these guesses using the explicit formula $f(x,y) = 3x - x^3 - 2y^2 + y^4$. The critical points of f are obtained by solving the system

$$\begin{cases} f_x = 3 - 3x^2 = 0 \\ f_y = -4y + 4y^3 = 0 \end{cases}$$

whose solutions are given exactly by $x \in \{-1, 1\}$ and $y \in \{-1, 0, 1\}$, or

$$(x,y) \in \{(-1,-1),(-1,0),(-1,1),(1,-1),(1,0),(1,1)\}.$$

Next we compute the second order partial derivatives $f_{xx} = -6x$, $f_{yy} = -4y + 4y^3$, $f_{xy} = f_{yx} = 0$, and the Hessian

$$D(x,y) = \begin{vmatrix} -6x & 0\\ 0 & -4 + 12y^2 \end{vmatrix} = 24x(1 - 3y^2).$$

Since D(-1,1) > 0, $f_{xx}(-1,1) > 0$, D(-1,-1) > 0, $f_{xx}(-1,-1) > 0$, D(1,0) > 0, $f_{xx}(1,0) < 0$, and D(-1,0) < 0, D(1,1) < 0, D(1,-1) < 0, the information gathered from the contour map turns out to be correct.

5) We have to maximize the function V(x,y,z)=xyz under the constraint $g(x,y,z):=x^2+y^2+z^2=L^2$ and x,y,z>0. Using Lagrange multipliers we have to solve the system

$$\begin{cases} (\nabla V)(x,y,z) = \lambda(\nabla g)(x,y,z) \\ x^2 + y^2 + z^2 = L^2 \end{cases} \iff \begin{cases} yz = 2\lambda x \\ xz = 2\lambda y \\ xy = 2\lambda z \\ x^2 + y^2 + z^2 = L^2 \end{cases}$$

Dividing the first two equations we find $y^2=x^2$ so y=x (because x,y>0). Similarly from the second and the third equation we find z=y, so x=y=z and the fourth equation now yields $x=y=z=\sqrt{\frac{L^2}{3}}=\frac{L}{\sqrt{3}}$. It follows that $V_{\max}=V\left(\frac{L}{\sqrt{3}},\frac{L}{\sqrt{3}},\frac{L}{\sqrt{3}}\right)=\frac{L^3}{3\sqrt{3}}$.