# EECS 203: Discrete Mathematics Fall 2023 Homework 10

# Due Tuesday, November 28, 10:00 pm

No late homework accepted past midnight.

Number of Problems: 8 + 2 Total Points: 100 + 30

- Match your pages! Your submission time is when you upload the file, so the time you take to match pages doesn't count against you.
- Submit this assignment (and any regrade requests later) on Gradescope.
- Justify your answers and show your work (unless a question says otherwise).
- By submitting this homework, you agree that you are in compliance with the Engineering Honor Code and the Course Policies for 203, and that you are submitting your own work.
- Check the syllabus for full details.

# **Individual Portion**

Reminder: Make sure to leave your answers in combination, permutation, or factorial form and **not** simplified.

# 1. The Boxer and the Baller [12 points]

How many ways are there to distribute seven balls into five boxes, where each box must have at least one ball in it, if

- (a) both the balls and boxes are unlabeled?
- (b) the balls are labeled, but the boxes are unlabeled?
- (c) both the balls and boxes are labeled?

| Solution: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

# 2. Sweepstakes Sweep [12 points]

Suppose that 100 people enter a contest and that different winners are selected at random for first, second, and third prizes. What is the probability that Kumar, Janice, and Pedro each win a prize if each has entered the contest?

| Solution:                                                                        |           |
|----------------------------------------------------------------------------------|-----------|
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
| 3. Mississippi Bananas [8 points]                                                |           |
| How many different strings can be made by rearranging the letters in the word BA | NANANANAS |
| Solution:                                                                        |           |
|                                                                                  |           |
|                                                                                  |           |

| 4. Probabili-Tee [16 points]                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tom has 30 T-shirts where 10 are blue, 5 are red, and 15 are green. Frank has 20 T-shirts where 13 are blue, 2 are red, and 5 are green. Both Tom and Frank own 1 green EECS 203 T-shirt, but only Tom owns 1 red and 1 blue EECS 203 T-shirt. Assume Frank and Tom pick and wear T-shirts uniformly at random. |
| (a) What is the probability that Tom and Frank are both wearing their green EECS 203 T-shirts, given that they're both wearing green T-shirts?                                                                                                                                                                  |
| (b) What is the probability that Tom and Frank are both wearing a green T-shirt, given that they're both wearing the same type of T-shirt (both EECS 203 T-shirts or both not EECS 203 T-shirts)?                                                                                                               |
| Solution:                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                 |

| 5. Independence Day [10 points]                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Let $E$ be the event that a randomly generated bit string of length three contains an odd number of 1s, and let $F$ be the event that the string starts with 1. Given that all bitstrings are equally likely to occur, are $E$ and $F$ independent? |
| Solution:                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                     |

| 6. $7 + 5 = [12 \text{ points}]$                                                                |
|-------------------------------------------------------------------------------------------------|
| Suppose we roll five fair <b>seven-sided</b> dice (there are seven faces, labeled 1 through 7). |
| (a) What is the probability that exactly four come up even?                                     |
| (b) What is the probability that exactly two come up even?                                      |
| Solution:                                                                                       |
| Solution.                                                                                       |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |
|                                                                                                 |

| 7. Driver's License [20 points]                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suppose we're trying to come up with a new license plate system that must contain exactly 6 characters, each of which can be any of the following: an uppercase letter, lowercase letter, digit, or underscore character. How many possible license plate names are there given the following specifications? |
| (a) License plates cannot have a number character.                                                                                                                                                                                                                                                            |
| (b) License plates must have exactly one underscore character, which cannot be at the beginning or end of the license plate.                                                                                                                                                                                  |
| (c) License plates must have at least one number.                                                                                                                                                                                                                                                             |
| (d) License plates must have at least one number or at least one underscore character.                                                                                                                                                                                                                        |
| Justify your answer for each part.                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                               |
| Solution:                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                               |

| 8. Pip Pip Hooray! [10 points]                                                                                                                                                                                                                                                                               |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                                                                                                                                                                                              |               |
| One pip (small dot on the face of a die) is randomly removed from a standard eigenful (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). <b>Each pip</b> has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip. | d probability |
| (where its 8 faces respectively have $\{1, 2, \dots, 8\}$ pips). <b>Each pip</b> has an equal of being removed. This means, for example, the face with 8 pips has a greater                                                                                                                                  | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). <b>Each pip</b> has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.                                                                                       | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). <b>Each pip</b> has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.  What is the probability of rolling an even number on this die?                       | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). Each pip has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.  What is the probability of rolling an even number on this die?                              | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). Each pip has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.  What is the probability of rolling an even number on this die?                              | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). <b>Each pip</b> has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.  What is the probability of rolling an even number on this die?                       | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). <b>Each pip</b> has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.  What is the probability of rolling an even number on this die?                       | d probability |
| (where its 8 faces respectively have $\{1, 2,, 8\}$ pips). Each pip has an equal of being removed. This means, for example, the face with 8 pips has a greater of losing a pip compared to the face with 1 pip.  What is the probability of rolling an even number on this die?                              | d probability |

# Groupwork

#### 1. Grade Groupwork 9

Using the solutions and Grading Guidelines, grade your Groupwork 9:

- Mark up your past groupwork and submit it with this one.
- Write whether your submission achieved each rubric item. If it didn't achieve one, say why not.
- Use the table below to calculate scores.
- For extra credit, write positive comment(s) about your work.
- You don't have to redo problems correctly, but it is recommended!
- What if my group changed?
  - If your current group submitted the same groupwork last time, grade it together.
  - If not, grade your version, which means submitting this groupwork assignment separately. You may discuss grading together.

|           | (i) | (ii) | (iii) | (iv) | (v) | (vi) | (vii) | (viii) | (ix) | (x) | (xi) | Total: |
|-----------|-----|------|-------|------|-----|------|-------|--------|------|-----|------|--------|
| Problem 2 |     |      |       |      |     |      |       |        |      |     |      | /15    |
| Problem 3 |     |      |       |      |     |      |       |        |      |     |      | /15    |
| Total:    |     |      |       |      |     |      |       |        |      |     |      | /30    |

# Previous Groupwork 9(1): Square the Cycle [15 points]

Prove that every n-node graph  $(n \ge 3)$  in which all nodes have degree at least  $\lceil \sqrt{n} \rceil$  has a 3-cycle subgraph or a 4-cycle subgraph.

**Hint:** One useful concept is the neighborhood of a vertex; the neighborhood of  $v \in V$  is the set  $N(v) = \{u \in V : u \text{ is adjacent to } v\}$ . We can also define the neighborhood of a set  $A \subseteq V$ :

$$N(A) = \{u \in V : u \text{ is adjacent to some } v \in A\}.$$

We recommend using a proof by contradiction, although this can also be done with a clever direct proof. Suppose a graph satisfying the above condition does not have a 3-cycle or 4-cycle. Fix a vertex  $v \in V$ . What can we say about the size of N(v)? What about N(N(v))?

| a 1       |  |
|-----------|--|
| Solution: |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

# Previous Groupwork 9(2): The Office Allocation [15 points]

Consider a new office building with n floors and k offices per floor in which you must assign 2nk people to work, each sharing an office with exactly one other person. Find a closed form solution for the number of ways there are to assign offices if from floor to floor the offices are distinguishable, but any two offices on a given floor are not.

| Solution: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

# 2. Lily's Lily Pads [15 points]

Lily the Frog is on a lily pad and wants to get to her home! She can jump from lily pad to lily pad to help reach this goal. The lily pads are arranged in a grid. Lily starts on the **bottom-left** lily pad, and her home is at the **top-right** lily pad. Lily can only move one lily pad **upward** or one lily pad **rightward** at a time.

Each lily pad has coordinates of the form  $(x, y) \in \mathbb{N} \times \mathbb{N}$ , where x represents how far right-ward a point is from the left of the grid, and y represents how far upward a point is from the

bottom of the grid. Lily starts at location (0,0), and her home is at location  $(x_H, y_H) \in \mathbb{N} \times \mathbb{N}$ .



In the above example,  $(x_H, y_H) = (3, 2)$ . In the general case, though,  $(x_H, y_H)$  could be any ordered pair of natural numbers.

- (a) How many different paths can Lily take to get home?
- (b) Lily's frog friend, Francine, is also on the grid at coordinates  $(x_F, y_F) \in \mathbb{N} \times \mathbb{N}$  such that  $0 \le x_F \le x_H$  and  $0 \le y_F \le y_H$ . What is the probability that Lily meets Francine on her path home? You may assume that any two paths home are equally likely for Lily to take.

| Solution: |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |



# 3. Random Connections [15 points]

We say that a random graph is an undirected graph where, for each pair of vertices, there is an independent  $\frac{1}{3}$  chance that they are adjacent. It's a bit like Lily's pond, except that the vertices aren't in a grid, and you can move in any direction.

We want to learn about the connectedness of random graphs.

Let G be a finite random graph. Let's split the vertices into two nonempty sets,  $A, B \subseteq V$ .

- (a) Let  $a \in A$ . What is the probability that no element of B is adjacent to a?
- (b) What is the probability that there is some  $a \in A$  and  $b \in B$  such that a is adjacent to b?
- (c) Let's imagine doing this with larger and larger graphs. Define f(a, b) be your answer to the previous problem when |A| = a and |B| = b. What is

$$\lim_{a+b\to\infty} f(a,b)?$$

| Solution: |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

(d) This isn't quite a proof, but your answer to (c) might lead you to some ideas. What