

Triangles Ex 4.6 Q21 Answer:

Given: In ΔABC and ΔBDE are equilateral triangles. D is the midpoint of BC.

To find: $\frac{Ar(\triangle ABC)}{Ar(\triangle BDE)}$

In $\triangle ABC$ and $\triangle BDE$

 $\Delta ABC \sim \Delta BDE \big(AAA crietria \ of \ similarity, \ all \ angles \ of \ equilateral \ triangle \ are \ equal \big)$

Since D is the midpoint of BC, BD : DC = 1.

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

Let DC = x, and BD = xTherefore BC = BD + DC = 2xHence

$$\frac{Ar(\Delta ABC)}{Ar(\Delta BDE)} = \frac{BC^2}{BD^2}$$

$$= \frac{(BD+DC)^2}{(BD)^2}$$

$$= \frac{(1x+1x)^2}{(1x)^2}$$

$$= \frac{(2x)^2}{(1x)^2}$$

$$\frac{Ar(\Delta ABC)}{Ar(\Delta BDE)} = \frac{4}{1}$$

Triangles Ex 4.6 Q22

Answer:

We have an equilateral triangle $\triangle ABC$ in which AD is altitude. An equilateral triangle $\triangle ADE$ is drawn using AD as base. We have to prove that, $\frac{ar(\triangle ADE)}{ar(\triangle ABC)} = \frac{3}{4}$

Since the two triangles are equilateral, the two triangles will be similar also.

$\triangle ADE \sim \triangle ABC$

We know that according to the theorem, the ratio of areas of two similar triangles is equal to the ratio of the squares of any two corresponding sides.

$$\frac{ar(\Delta ADE)}{ar(\Delta ABC)} = \left(\frac{AD}{AB}\right)^2 \dots (1)$$

Now $\triangle ABC$ is an equilateral triangle. So,

$$\angle B = 60^{\circ}$$

Therefore,

$$\sin \angle B = \frac{AD}{AB}$$

So,
$$\frac{AD}{AB} = \frac{\sqrt{3}}{2}$$

We will now use this in equation (1). So,

$$\frac{ar(\Delta ADE)}{ar(\Delta ABC)} = \left(\frac{AD}{AB}\right)^{2}$$
$$= \left(\frac{\sqrt{3}}{2}\right)^{2}$$
$$= \left(\frac{3}{4}\right)$$

Hence, proved.

****** END ******