Applicazioni Industriale Al

Gruppo 1

Andrea Ciccarello - Gian Marco Simonazzi - Jacopo Arcari

Obiettivo iniziale

Obiettivo

Creare uno strumento che:

- Cerca degli articoli scientifici relativi ad un argomento richiesto
- Scrive una breve analisi degli articoli nell'ottica dell'argomento richiesto

Il sistema deve fare uso di:

- Vector DB per RAG (in questo caso Qdrant)
- Agenti basati su LLM

Architettura del sistema

Architettura generale

Struttura degli agenti (LangGraph)

- Researcher: Costruisce la query per Qdrant
- **Retriever**: Tool di interrogazione di Qdrant
- Evaluator: Se la ricerca non ha successo, riscrive la query
- Writer: Prende i paper scelti e genera il testo richiesto

DeepSeek-V3

Motivi per cui è stato utilizzato DeepSeek-V3:

- Supporto ai tools
- Modello pensato per avere un basso costo per Token
- Compatibile con le API di OpenAI
- Ideale per attività complesse, come l'analisi dei paper scientifici

Limiti della finestra di contesto

DeepSeek supporta una finestra di contesto fino a 64k token.

Il writer dovrà inserire in questa finestra:

- La query dell'utente
- Il testo dei paper (top 5)
- Il testo da generare

Il numero di paper processabili in una singola chiamata API è limitato, rendendo necessario eliminare informazioni non essenziali, come la bibliografia.

Se necessario si diminuisce anche il numero di paper.

Preparazione dati

Sorgente dei dati e dataset scelto

Base di partenza: <u>arXiv Dataset (Kaggle)</u>
Contiene i metadati di tutti i paper di arXiv
(titolo, autori, data di pubblicazione, categoria, abstract, ...)

- Filtro per paper di
 - Categoria: Artificial Intelligence
 - Data di pubblicazione: 2012-2024
- Circa 400k paper

Embedding e Metadati

Elementi utilizzati per l'embedding:

- Titolo
- Autori
- Abstract

Modello di embedding: all-mpnet-base-v2

Metadati associati:

- Titolo
- Autori
- Data di pubblicazione
- Id arXiv
- Categorie arXiv

Per 400k paper, il calcolo richiede ~40 min (1 GPU)

All-Mpnet-base-V2

Miglior modello di piccole dimensioni a livello di performance.

Caratteristiche:

- Dimensione embedding: 768
- Max Sequence Length: 384 token

Implementazione

Implementazione - Qdrant Tool

Input: query, k

- 1. **Query a Qdrant** -> Top k vettori nella collezione
- 2. Query ad arXiv -> Link al paper e al pdf
- 3. **Download dei paper** ed estrazione del testo
- 4. **Pulizia del testo** (rimozione Bibliografia, 25/40%)
- 5. Costruzione documento LangChain con testo e metadati
- 6. Troncamento a 50k token (per context window)

Implementazione - Writer

- Costruzione bibliografia dai metadati (procedura)
- Generazione analisi dal prompt fornito:
 - Paper estratti
 - Query utente
 - Panoramica sull'argomento, integrando il materiale nei paper
 - Breve riassunto per paper nel contesto dell'argomento richiesto
 - Istruzione accessorie (no bibliografia,ecc...)

Possibili miglioramenti?

- Espandere il database su più categorie (al momento solo AI)
- Supportare fonti differenti per i dati oltre ad Arxiv
- Usare un LLM con una finestra di contesto maggiore
- Usare un modello differente per l'embedding
- Chiavi API personalizzate
- Chunking dei PDF

DEMO

Per poter provare l'agente

Per poter provare l'agente

- Link sotto VPN

Link Github:

- AndreaCicca/arXiv-vettorizzazione
- giammisimo/arxiv-summary-agent
- AndreaCicca/web-ui-applicazioni-in dustriali/