课程名称/英文名 称	机器学习Machine Learning	课程代码	CS282							
课程类型	本研一体	学分/学时	4/64							
主要面向专业	计算机	授课语言(双语/中文/全英文 授课)	双语							
先修课程	概率论与数理统计 小组1 概率论与数理统计I 小组2	建议先修说明	数学分析、线性代	数、概率统计						
开课单位	信息科学与技术学院	课程负责人	王浩							
课程简介	"机器学习"是计算机方向研究生核心课程,在很多领域诸如金融、医药、商业等都有重要的应用。本课程通过讲授基本理论、学习算法、和诸多应用,使学生获得机器学习理论、计算、应用三方面构建知识体系。了解机器学习的概况,初步掌握机器学习的理论基础、算法的分析、模型的原理,为学习后续课程打下基础。									
课程教学目标	知识认知能力:能掌握机器学习相关的基本知识,包括机器学习的学习理论、VC维度、泛化理论、过拟合、正则化;掌握线性分类模型和回归模型、树类的分类模型、支撑向量机、深度学习、聚类分析等基本的学习模型;了解梯度下降法和随机梯度下降法的基本原理和性能分析。									
	综合素质能力:能理解工程职业道德和规范,具备科学精神和工程师的基本素养,具备科技国的家国情怀和使命担当;能进行团队协作,具备合作精神和人际沟通能力。 课堂讲授与讨论:机器学习课程知识点基本以课堂讲授为主,在讲解基本知识点的基础上									
课程教学方法	关注课程重点难点内容的讲授, 学生从数学概念及工程概念出发 演示实验与案例教学:通过机器 课程基本理论和方法的同时,理 迪学生创新思维。	分析和解决机器学习领域的	的相关问题。 程实际案例的词	井解,使学生在掌护						
	教学实践环节:通过对机器学习案例的实现和测试,以及对当前机器学习研究前沿的了解,使学生在学习课程基本知识的同时,理解本方向的研究动向,提高学生的动手能力,激发学生的研究兴趣。									
课程教学内容与安 排	教学周 章节名称	主要教学内容(主要知识点)	学时安排	教学方法 (仅列名称)						
	第一周基础简介	1、讲解基础数学、统计等知识点。 等知识点。 2、机器学习的定义 3、机器学习经典案例分析 4、机器学习类型	4	课堂讲授、案例 教学、讨论						

第二周	期望风险极小 化	1、假设函数集合 2、数据的联合分布 3、期望风险极小化概念 4、经验风险极小化概念	4	课堂讲授、案例 教学、讨论
第三周	机器学习的可 行性	 NFL定理 验证和学习 学习的可行性(有限 个假设函数) 噪音和误差 	4	课堂讲授、案例 教学、讨论
第四周	线性模型:回 归	 3、极大似然估计 4、均方差和均绝对值误差 	4	课堂讲授、案例 教学、讨论
第五周	梯度下降法	1、梯度下降法 2、数学规划的基本技巧 分析方法 3、梯度下降法的性能分 析	4	课堂讲授、案例 教学、讨论
第六周	线性模型:分类	1、感知器和感知器算法 2、逻辑回归模型的基本 原理 3、softmax回归、多类 分类问题	4	课堂讲授、案例 教学、讨论
第七周	二阶算法	1、牛顿法的基本原理 2、拟牛顿法的基本原理 3、L-BFGS的基本原理	4	课堂讲授、案例 教学、讨论
第八周	泛化理论:增长函数	 增长函数的定义 断点的定义 数据集的粉碎 增长函数的上界 	4	课堂讲授、案例 教学、讨论
第九周	泛化理 论:VC维度	1、VC维度的定义 2、VC维度的计算举例 3、VC不等式的证明	4	课堂讲授、案例 教学、讨论
第十周	方差-偏差分解	1、结构风险极小化原理 2、采样复杂度 3、方差-偏差分解的证 明 4、学习曲线	4	课堂讲授、案例 教学、讨论
第十一周	过拟合	1、过拟合发生的原理 2、过拟合的解决方法 3、如何检测到过拟合 4、交互验证	4	课堂讲授、案例 教学、讨论

	本理程言度重测量	艺术诚信, 严禁抄袭		左坐习 利	u sts		当什 应收空学术	古徳 収	
参考书目	教材名称	教材作者	教材译者	ISBN	郪	对出版社	出版日期	教材	版次
	Learning from data	Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin				9780471154938	USA: AMLBook		
推荐教材	《机器学习》	周志华				9787302423287	清华大学出版 社		
	教材名称	教材作者			教材 译者	ISBN	教材出版社	出版日期	教材版次
考核方式和成绩评 定方法	作业:50% 场首:50%								
			4、密度 5、层次						
	第十六周	2、距离i 聚类分析 3、原型§		计算 聚类	4		教学、讨论、教 学实践		
			5、bagg 1、性能	ing与随机 度量	几森林		课党	井授、	室例
	第十五周	树	1、划分 2、剪枝 3、多变 4、boos	处理 量决策树		4		井授、 . 讨论 践	
	第十四周	支撑向量机	1、间隔与支撑向量 2、对偶问题 4 3、核函数 4 4、软间隔与正则化			课堂讲授、案例 教学、讨论、教 学实践			
	第十三周	随机梯度下 法	同版本		教学、 学实:	果堂讲授、案例 效学、讨论、教 学实践			
	第十二周	深度学习	念、神经 2、神经 算法 3、激励	网络的基 经元和多原 网络的反 函数和Re	层网络 向传播 Lu	番 4	教学、	井授、 . 讨论	
			5、正则	化。L1正	则				

学术诚信教育

本课程高度重视学术诚信,严禁抄袭、作弊等行为。"在学习、科研、实习实践等活动中,学生应恪守学术道德,坚守学术诚信,保护知识产权,坚持勇于创新、求真务实的科学精神,努力培养自己严谨求实、诚实自律、真诚协作的科学态度,成为良好学术风气的维护者、严谨治学的力行者、优良学术道德的传承者。"(具体请参见《上海科技大学学生学术诚信规范与管理办法(试行)》文件要求,如果教师有更具体的要求,请详细列出。)

其他说明 (可选)

Course Name	Machine Learning				Course Code	CS282		
	_							
Course Level				Credit	Contact Hour	4/64		
Major				Teach	ing Language			
Prerequisite	Probability and St			Prerequis	ite suggestion			
School/Institute	School of Informat Technology	ion Science a	nd		Instructor	王浩		
2.Course Introduction								
3.Learning Goal								
4.Recommended Reading	Book Title	Author	Translato	or ISBN	Pubulisher	Pubulished Date	Edition	
4.Textbook	Book Title	Author	Translato	or ISBN	Pubulisher	Pubulished Date	Edition	
5.Grading Policy								
6.Instructional Pedagogy								
7.Course Structure								
8.Academic Integrity		This course highly values academic integrity. Behaviors such as plagiarism and cheating are strictly prohibited. Please list more if you have more specific requirements.						
9.Other Information (Optional)								