Numeri indice

Un numero indice ha il compito di misurare la variazione della misura (ad es. Nel tempo o nello spazio).

Si applica ad una variabile numerica positive

Nel vostro Corso, solo in ottica serie storiche

Numeri indice

Numeri indice elementari

- Un NI è un numero puro
- NI> 1 indica aumento
- NI=1 indica fenomeno invariato
- NI<1 indica diminuzione

$$_0i_t=\frac{y_t}{y_0}$$

- il subindice a destra (t) indica il tempo corrente
- il subindice a sinistra (0) indica il tempo base

Numeri indice elementare

Mobile

Al denominatore ho sempre il valore relative all'anno precedente

Con base il tempo $b: bi_1, bi_2, \ldots, bi_{t-1}, \ldots, bi_t, \ldots$

$$\frac{b^{i_t}}{b^{i_{t-1}}} = \frac{y_t/y_b}{y_{t-1}/y_b} = \frac{y_t}{y_b} \frac{y_b}{y_{t-1}} = \frac{y_t}{y_{t-1}}$$

ESEMPIO

tempo (t)	1	2	3	4	5
NI base fissa	1.3	1.2	1.4	0.9	1.7
NI base mobile	-	1.2/1.3	1.4/1.2	0.9/1.4	1.7/0.9

Sostanzialmente per trovare $_{b}I_{c}$ se ho $_{a}I_{b}$ e $_{a}I_{c}$, faccio $\frac{a^{I}c}{a^{I}b}$

Passaggio da base fissa a mobile

Passaggio da base mobile a fissa

Idee di base:

$${}_{b}I_{c} = \frac{1}{c^{I}b}$$

$${}_{b}I_{d} = {}_{b}I_{c} \cdot {}_{c}I_{d}$$

Vogliamo riportare i NI a base mobile a NI a base fissa al tempo base t (tempo intermedio della serie)

- Al tempo t il NI è 1 (tempo base)
- Per tempi > t si moltiplicano i NI a base mobile concatenandoli in avanti
- Per tempi < t si moltiplicano i NI a base mobile concatenandoli all'indietro e si calcola il reciproco del risultato

tempo (t)	1	2	3	4	5	6	7
NI b. mobile	0 <i>i</i> 1	1 <i>i</i> 2	2 <i>i</i> 3	3 <i>İ</i> 4	4 <i>İ</i> 5	5 <i>İ</i> 6	6 <i>İ</i> 7
NI b. fissa base tempo 3	3 <i>i</i> 1	3 <i>i</i> 2	1	3 <i>İ</i> 4	3 <i>İ</i> 5	3 <i>i</i> 6	6 <i>İ</i> 7

NI per tempi < 3: si concatena indietro

Tempo 2:
$$_3i_2 = \frac{1}{_2i_3} = \frac{1}{\frac{y_3}{y_2}} = \frac{y_2}{y_3}$$

Tempo 1:
$$_{3}i_{1} = \frac{1}{_{1}i_{2} _{2}i_{3}} = \frac{1}{_{y_{1}} _{y_{1}} _{y_{2}}} = \frac{1}{_{1}i_{3}} = \frac{1}{_{1}i_{3}} = \frac{y_{1}}{_{y_{1}}}$$

Volendo, si può calcolare anche $_3i_0 = \frac{1}{_0i_1} \frac{1}{_1i_2} \frac{1}{_2i_3} = \frac{1}{_0i_3}$

Per i tempi >3: si concatena in avanti

Tempo 4: abbiamo già il NI 3i4

Tempo 5:
$$_3i_5 = _3i_4 _4i_5 = \frac{y_4}{y_3} \frac{y_5}{y_4} = \frac{y_5}{y_3}$$

Tempo 6:
$$_3i_6 = _3i_5 _5i_6 = \frac{y_5}{y_3} \frac{y_6}{y_5} = \frac{y_6}{y_3}$$

Tempo 7:
$$_3i_7 = _3i_6 _6i_7 = \frac{y_6}{y_3} \frac{y_7}{y_6} = \frac{y_7}{y_3}$$

tempo (t)	1	2	3	4	5
NI base mobile (dati)	1.3	1.2	1.4	0.9	1.7
NI base mobile (simboli)	0 <i>i</i> 1	1 <i>i</i> 2	2 <i>i</i> 3	3 <i>İ</i> 4	4 <i>İ</i> 5

Riportiamo i NI da b. mobile a base fissa al tempo 4.

Tempo 5: $4i_5 = 1.7$ (ce l'abbiamo già)

Tempo 4: $_4i_4 = 1$ (il tempo 4 è il tempo base)

Tempo 3: $_4i_3 = \frac{1}{0.9} = 1.11$

Tempo 2: $_4i_2 = \frac{1}{1.4 \times 0.9} = 0.79$

Tempo 1: $_4i_1 = \frac{1}{1.2 \times 1.4 \times 0.9} = 0.66$

Volendo, si può calcolare anche il NI al tempo 0 in base 4 $i_0 = \frac{1}{1.3 \times 1.2 \times 1.4 \times 0.9} = 0.51$

Fissa a Fissa?

Mobile a mobile?

Il NI elementare di valore può essere scomposto nel prodotto tra NI di prezzo e NI di quantità (proprietà di scomposizione delle cause di variazione):

$${}_{0}i_{t}^{V} = \frac{v_{t}}{v_{0}} = \frac{q_{t} \times p_{t}}{q_{0} \times p_{0}} = \frac{q_{t}}{q_{0}} \times \frac{p_{t}}{p_{0}} = {}_{0}i_{t}^{q} \times {}_{0}i_{t}^{p}$$

• Quindi se so che l'NI di valore è stato dal 2022 al 2023 pari a 120 e quello di Prezzo è stato 125, quello di quantita sarà 96 (120/125*100)

Il NI elementare del prezzo di 1 lt di benzina all'anno 2008 in base 2007 era 1.08; all'anno 2009 in base 2007 era 1.10.

Quanto è variato in % il prezzo del carburante dal tempo 2008 al 2009?

Il NI elementare del prezzo di 1 lt di benzina all'anno 2008 in base 2007 era 1.08; all'anno 2009 in base 2007 era 1.10.

Quanto è variato in % il prezzo del carburante dal tempo 2008 al 2009?

I dati del problema: $_{2007}i_{2008}^p = 1.08$ $_{2007}i_{2009}^p = 1.10$

Cosa serve per rispondere: $_{2008}i_{2009}^{p}$

Soluzione

$$\frac{2007}{i_{2008}^p} = \frac{1.10}{1.08} = 1.02 \Longrightarrow \text{ aumento del } 2\%$$

Abbiamo la seguente serie dei NI elementari a base mobile:

tempo (t)	1	2	3	4	5
NI base mobile	1.3	1.2	1.4	0.9	1.7

Quanto è variato in % il fenomeno dal tempo 1 al tempo 4?

Abbiamo la seguente serie dei NI elementari a base mobile:

tempo (t)	1	2	3	4	5
NI base mobile	1.3	1.2	1.4	0.9	1.7

Quanto è variato in % il fenomeno dal tempo 1 al tempo 4?

I dati del problema: $_0i_1, _1i_2, _2i_3, _3i_4, _4i_5$

Cosa serve per rispondere. Il NI $_1i_4 = \frac{y_4}{y_1}$.

Soluzione

$$_1i_4 = _1i_2 _2i_3 _3i_4 = 1.2 \times 1.4 \times 0.9 = 1.512$$

Aumento del 51.2%.

Il NI elementare della spesa in benzina nel 2022 rispetto al 2021 è pari a 1.09. Nel 2022 il prezzo di un litro di benzina è aumentato del 5% rispetto al 2021.

Quanto è variata la quantità di benzina acquistata fra il 2021 e il 2022?

Il NI elementare della spesa in benzina nel 2022 rispetto al 2021 è pari a 1.09. Nel 2022 il prezzo di un litro di benzina è aumentato del 5% rispetto al 2021.

Quanto è variata la quantità di benzina acquistata fra il 2021 e il 2022?

I dati del problema. NI di valore:
$${}_{2021}i^{V}_{2022} = 1.09$$

NI di prezzo: ${}_{2021}i^{p}_{2022} = 1.05$

Cosa serve per rispondere. NI di quantità: $_{2021}i_{2022}^q$

Soluzione.

$$_{2021}i_{2022}^{q} = 1.09/1.05 = 1.04$$

La quantità acquistata è aumentata del 4%.

Al tempo t ho fatto il pieno di benzina e ho speso 60 Euro. Dal tempo 0 al tempo t il prezzo di un lt di benzina è aumentato del 2%. Quanto avrei speso se avessi fatto il pieno al tempo 0 ?

Al tempo t ho fatto il pieno di benzina e ho speso 60 Euro. Dal tempo 0 al tempo t il prezzo di un lt di benzina è aumentato del 2%. Quanto avrei speso se avessi fatto il pieno al tempo 0 ?

I dati del problema

La spesa al tempo t: $v_t = 60 \, Euro$ (valore monetario) che è il prodotto prezzo unitario per quantità: $v_t = q_t \, p_t$.

II NI del prezzo della benzina al tempo t in base 0: $_0i_t^p = 1.02$

Cosa chiede il problema.

Il valore della spesa (per la stessa quantità di benzina) ai prezzi del tempo

0. Dobbiamo pensare che tale spesa è il prodotto $(q_t p_0)$: il valore al tempo 0 della stessa quantità di benzina del tempo t.

Soluzione

$$\frac{v_t}{_0 i_t^p} = \frac{p_t q_t}{\frac{p_t}{p_0}} = q_t p_0 = \frac{60}{1.02} = 58.8 \,\text{Euro}$$

Al tempo 0 ho fatto il pieno di benzina e ho speso 52 Euro. Dal tempo 0 al tempo t il prezzo di un lt di benzina è aumentato del 2.5%. Quanto mi costa al tempo t la stessa quantità di benzina che ho comprato al tempo 0?

Al tempo 0 ho fatto il pieno di benzina e ho speso 52 Euro. Dal tempo 0 al tempo t il prezzo di un lt di benzina è aumentato del 2.5%. Quanto mi costa al tempo t la stessa quantità di benzina che ho comprato al tempo 0?

I dati del problema

La spesa al tempo 0: $v_0 = 52 \, Euro$ (valore monetario) che è il prodotto prezzo unitario per quantità: $v_0 = q_0 \, p_0$.

Il NI del prezzo della benzina al tempo t in base 0: $_0i_t^p = 1.025$

Cosa chiede il problema.

Il prodotto $q_0 p_t$.

Soluzione

$$q_0 p_t = v_0 _0 i_t^p = q_0 p_0 \frac{p_t}{p_0} = 52 \times 1.025 = 53.3 \text{ Euro}$$

Numeri indice sintetici

Confronta dati riferiti a due tempi diversi, di un fenomeno complesso composto da tanti fenomeni elementari producendo una sintesi della loro variazione.

$$\sum_{k} q_{kt} p_{kt}$$

 q_{kt} : quantità del bene/servizio k al tempo t

 p_{kt} : prezzo unitario al tempo t

NI sintetico dei prezzi: variazione dei prezzi tra due tempi.

NI sintetico delle quantità: variazione delle quantità tra due tempi.

Prezzi unitari (in Euro)

Prodotto k	p_{k0}	p _{kt}	$_{0}i_{kt}^{p}$
Pane (Kg.)	1.85	1.90	1.027
Carne (hg.)	4.30	4.68	1.088
Caffè espresso al bar	0.70	0.80	1.143

Un NI sintetico dei prezzi misura quanto sono variati nel complesso i prezzi dei prodotti dal tempo 0 al tempo t.

Non posso fare una media aritmetica semplice dei NI elementari perché:

- 1) anche se sono numeri puri derivano da unità di misura differenti;
- 2) i prodotti (e quindi i NI elementari) non hanno la stessa importanza (la variazione del prezzo di un'oncia d'oro vale quanto la variazione del prezzo dell'energia elettrica?)

Occorre fare una media aritmetica ponderata dei NI elementari

$$_{0}I_{t}^{p} = \frac{\sum_{k} _{0}i_{kt}^{p} w_{k}}{\sum_{k} w_{k}}$$

 $_{0}I_{t}^{p} = \frac{\sum_{k} _{0}i_{kt}^{p} w_{k}}{\sum_{k} w_{k}}$ Il peso appropriato è la spesa destinate a quel prodotto, ma va deciso se a tempo 0 o a tempo t

Secondo Laspeyres, il peso w_k da applicare al NI elementare del prezzo unitario k-esimo è la spesa al tempo 0 destinata al prodotto k e $cio\grave{e}: w_k = p_{k0}q_{k0}$

NI sintetico di Laspeyres dei prezzi

$${}_{0}I_{t}^{p,L} = \frac{\sum_{k} {}_{0}i_{kt}^{p} p_{k0}q_{k0}}{\sum_{k} p_{k0}q_{k0}} = \frac{\sum_{k} \frac{p_{kt}}{p_{k0}} p_{k0}q_{k0}}{\sum_{k} p_{k0}q_{k0}}$$

$$_{0}I_{t}^{p} = \frac{\sum_{k} _{0}i_{kt}^{p} w_{k}}{\sum_{k} w_{k}}$$

 $_{0}I_{t}^{p} = \frac{\sum_{k} _{0}i_{kt}^{p} w_{k}}{\sum_{k} w_{k}}$ Il peso appropriato è la spesa destinate a quel prodotto, ma va deciso se a tempo 0 o a tempo t

Paasche sostiene che, per tenere conto della reazione del consumatore alla variazione dei prezzi, nei pesi occorre considerare le quantità acquistate al tempo $t(q_{kt})$. Al tempo t il consumatore ha reagito alla variazione dei prezzi riducendo le quantità acquistate se il prezzo unitario è aumentato, aumentando le quantità acquistate, se il prezzo è diminuito.

Paasche propose i pesi: $w_k = p_{k0}q_{kt}$

NI sintetico di Paasche dei prezzi

$${}_{0}I_{t}^{p,P} = \frac{\sum_{k} {}_{0}i_{kt}^{p} p_{k0}q_{kt}}{\sum_{k} p_{k0}q_{kt}} = \frac{\sum_{k} \frac{p_{kt}}{p_{k0}} p_{k0}q_{kt}}{\sum_{k} p_{k0}q_{kt}}$$

Prodotto k	p_{k0}	p _{kt}	$_{0}i_{kt}^{p}$	q_{k0}	q_{kt}
Pane (Kg.)	1.85	1.9	1.027	26	25
Carne (hg.)	4.3	4.68	1.088	25	18
Caffè espresso al bar	0.7	0.8	1.143	52	45

Laspeyres: aumento in media del 8.3%.

$$\frac{1.027 \times (1.85 \times 26) + 1.088 \times (4.3 \times 25) + 1.143 \times (0.7 \times 52)}{(1.85 \times 26) + (4.3 \times 25) + (0.7 \times 52)} = 1.083$$

Paasche: aumento in media del 8.1%.

$$\frac{1.027 \times (1.85 \times 25) + 1.088 \times (4.3 \times 18) + 1.143 \times (0.7 \times 45)}{(1.85 \times 25) + (4.3 \times 18) + (0.7 \times 45)} = 1.081$$

NI sintetico delle quantità

Quantità della produzione agricola

Prodotto	Tempo 0	Tempo t	NI elementari
	q 0	q_t	delle q.tà
Vino	1000 hl	1080 hl	1.08
Olio	450 Kg	630 Kg	1.40
Grano	850 ql	680 ql	0.80

NI sintetico delle quantità =
$$\frac{\sum_{k} {_0} i_{kt}^q w_k}{\sum_{k} w_k} = \frac{\sum_{k} \frac{q_{kt}}{q_{k0}} w_k}{\sum_{k} w_k}$$

NI sintetico delle quantità

Con la formula di Laspeyres si usano gli stessi pesi del corrispondente NI sintetico dei prezzi:

$$w_t = p_{k0}q_{k0}$$

$${}_{0}I_{t}^{q,L} = \frac{\sum_{k} {}_{0}i_{kt}^{q} p_{k0}q_{k0}}{\sum_{k} p_{k0}q_{k0}} = \frac{\sum_{k} \frac{q_{kt}}{q_{k0}} p_{k0}q_{k0}}{\sum_{k} p_{k0}q_{k0}}$$

Per il NI delle quantità di Paasche si usano i seguenti pesi (attenzione: sono diversi da quelli visti per il NI di Paasche dei prezzi!): $w_k = q_{k0}p_{kt}$

$${}_{0}I_{t}^{q,P} = \frac{\sum_{k} \frac{q_{kt}}{q_{k0}} q_{k0} P_{kt}}{\sum_{k} q_{k0} P_{kt}}$$

NI sintetico delle quantità

Prodotto	Tempo 0	Tempo t	NI elementari	Prezz	i unitari Euro
	q 0	q_t	delle q.tà	p_0	p_t
Vino	1000 hl	1080 hl	1.08	1.85	1.90
Olio	450 Kg	630 Kg	1.40	4.30	4.68
Grano	850 ql	680 ql	0.80	0.70	0.85

Laspeyres: aumento in media del 18.3%

$$\frac{1.08 \times (1000 \times 1.85) + 1.40 \times (450 \times 4.30) + 0.80 \times (850 \times 0.70)}{(1000 \times 1.85) + (450 \times 4.30) + (850 \times 0.70)} = 1.183$$

Paasche: aumento in media del 18%

$$\frac{1.08 \times (1000 \times 1.90) + 1.40 \times (450 \times 4.68) + 0.80 \times (850 \times 0.85)}{(1000 \times 1.90) + (450 \times 4.68) + (850 \times 0.85)} = 1.180$$

Inflazione

Istat: Tasso congiunturale e tendenziale di inflazione

 $_{0}I_{m,t}$ NIC in base 0, riferito al mese m dell'anno t

 $_{0}I_{m,t-1}$ NIC in base 0 riferito al mese *m* dell'anno *t*-1

 $_{0}I_{m-1,t}$ NIC in base 0 riferito al mese m-1 dell'anno t

tasso congiunturale di inflazione $\frac{{}_{0}I_{m,t}}{{}_{0}I_{m-1,t}}$ × 100–100 (mese corrente vs. mese precedente) ${}_{0}I_{m-1,t}$

tasso tendenziale di inflazione $\frac{{}_{0}I_{m,t}}{{}_{0}I_{m,t-1}}$ × 100–100 (stesso mese, anno precedente) $\frac{{}_{0}I_{m,t-1}}{{}_{0}I_{m,t-1}}$