Exam R,; Prof. An Carbonez;

At the end of the exam:

- (i) Write your name on this document and hand in.
- (ii) BE SURE THAT THE FIRST LINE OF YOUR R SCRIPT CONTAINS YOUR NAME (in case your script does not have your name: you'll lose 1 point)
- (iii) Upload the R script file (with extension .R) on Toledo > Assignment > upload R part.

Part 1: R part (10 points)

1. (4.5 points)

We want to write a function to compute an approximation to a sine function. The final goal is to write a function that computes the value of sin(x) at a given x using n terms of the series expansion of the sine function:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{k=1}^{n} (-1)^{(k-1)} \frac{x^{2k-1}}{(2k-1)!}$$

Follow the steps given below:

- a. (points : 0.5)Take $x = \pi/6$ where π is a given constant in R (use pi). This x value is the first value of a vector **series_sin**.
- b. (points: 0.5)Compute now the 2nd and 3rd value of this vector **series_sin** as given below. (Hint: the function *factorial* to compute n!).

(2nd value):
$$x - \frac{x^3}{3!}$$

(3rd value): $x - \frac{x^3}{3!} + \frac{x^5}{5!}$

c. (points: 3)Write a function **fun_sin** which is a function of 2 arguments n and x, where n is het number of terms taken in the series expansion. This function has default values n=5 and $x=\pi/2$.

The return values of this function are *n*, *x* and the *nth* value of series_sin.

d. (points: 0.5)Apply this function to $x = \pi/6$ and n = 3 and to $x = \pi/4$ and n = 6.

2. Use the Business data (Business.xlsx) (5.5 points)

🖋 subid	♣ business_status	♣ sex				ø neoextra
1	3	2	5	65	4.47	60.03
2	2	1	7	59	3.61	32.53
3	3	2	1	65	4.75	54.88
4	3	2	2	59	4.47	65.19
5	3	1	3	65	3.67	61.59
_	_	_				

subid	Subject identifier	
Business_status	Financial status	1: bankruptcy
		2: steady state
		3: rapid expansion
sex		1: Female, 2: male

Employees of a variety of companies were assessed on a range of personality measures.

Employees were assessed on depression (beckdep), self-regard (regard), self-control (selfcon), extraversion (neoextra), openness to experience (neoopen), agreeableness (neoagree), conscientiousness (neoconsc), and negative affect (negafect).

(make use of dplyr package for answering b and c).

- a. (points: 0.5) count the number of missing values in business_status. Do the same for sex.
- b. (points: 0.5)There are a few records with a business status of 4. This is not possible. Hence, replace these values with a NA. Give the new data table the name **sub**1.
- c. (points: 0.5)Create from **sub1** a data table **sub2** with only those observations with values for conscientiousness (**neoconsc**) strictly larger than 30.
- d. (points: 0.75)Use *ggplot2* and **sub2** to create a scatterplot of *openness to experience* (**neoopen** X axis) versus *conscientiousness* (**neoconsc** Y axis). Be sure to give the dots a different color depending on the values of *business status*.
- e. (points: 1.25)Make now use of the **pipe operator** to perform steps *b, c and d* in **one step**.
- f. (points: 1)Adapt the syntax of point d. to remove the missing values for Business_status. Therefore use the function *remove_missing* (from the package ggplot2). Give this new plot the name **plot1**.
- g. (points: 1)Use now **plot 1** and make use of the function *ggMarginal* (package ggExtra) to obtain the plot below:

