ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА" МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ОБЩИХ ПРОБЛЕМ УПРАВЛЕНИЯ

КУРСОВАЯ РАБОТА

"Исследование ценовых рядов на основании Математической Статистики и Теории Вероятностей"

Автор - Нарембеков Темирлан, студент 3-го курса кафедры Общих Проблем Управления, 312 группа

Научный руководитель - Заплетин Максим Петрович, доцент кафедры Общих Проблем Управления

Весна 2024

1 СБОР И ПОДГОТОВКА ДАННЫХ

1.1 Сбор данных

Выберем временной период для анализа: май 2009г - апрель 2024г. со 180 ежемесячными показателями USD/KZT. Таким образом, интервал времени $\Delta=1$ месяц является регулярным.

						R _t	*
Дата		Цена	Откр.	Макс.	Мин.	Объём	Изм. %
01.04.2024		446,435	447,405	448,555	445,950		+0.12%
01.03.2024		445,920	451,105	455,310	445,680		-1.03%
01.02.2024		450,580	449,755	455,590	445,860		+0.30%
01.01.2024		449,230	456,810	458,905	444,290		-0.92%
01.12.2023		453,400	459,360	462,510	452,150		-0.81%
01.11.2023		457,100	468,860	471,200	455,910		-2.39%
01.10.2023		468,290	477,910	481,060	467,990		-1.91%
01.09.2023		477,390	458,360	486,210	454,595		+4.27%
01.08.2023		457,840	444,600	467,110	441,975		+3.10%
01.07.2023		444,080	449,100	450,305	439,175		-1.39%
01.06.2023		450,330	447,755	455,265	443,600		+0.94%
01.05.2023		446,130	452,155	453,560	440,740		-1.21%
03.2010		147,040	147,350	147,460	146,850		-0.19%
02.2010		147,325	148,025	148,235	147,115		-0.48%
01.2010		148,030	148,490	148,850	147,850		-0.33%
12.2009		148,520	148,750	150,000	148,280		-0.11%
11.2009		148,685	150,695	150,935	148,635		-1.38%
10.2009		150,770	151,010	151,050	150,060		-0.11%
09.2009		150,940	150,820	150,990	150,670		+0.07%
08.2009		150,830	150,690	150,930	150,650		+0.05%
07.2009		150,755	150,395	150,945	150,245		+0.22%
06.2009		150,430	150,490	150,590	149,340		-0.06%
05.2009		150,515	150,665	150,955	149,775		-0.14%
симум: 527,125	Минимум: 145,135	Разница: 3			294,247	Изм. %;	

1.2 Подготовка Данных

Мы имеем наблюдения ежемесячной стоимости валюты за последние 15 лет, но сами по себе эти данные интересуют нас лишь косвенно по следующей причине.

В середине 20 века появились работы, в которых было доказано, что в поведении цен акций и товаров нет ни ритмов, ни трендов, ни циклов, а суммы логарифмов цен - являются случайным блужданием, которые описывают всю эволюцию цен.

Поэтому при исследовании ценовых рядов используются логарифмы цен $H_{tk} = \ln\left(\frac{S_{t_k}}{S_{t_{k-1}}}\right)$.

2 ИССЛЕДОВАНИЕ ДОХОДНОСТИ ТЕНГЕ НА СЛУЧАЙНОСТЬ

Проверим логарифмическую доходность тенге разными статистическими методами $H_{t_k} = \ln\left(\frac{S_{t_k}}{S_{t_{k-1}}}\right)$ с общим числом наблюдений равным 179.

2.1 Ранговый критерий Вальда-Вольфовица

Проверка статистических гипотез заключается в том, чтобы решить какой из исходов влечет наибольшие риски, а затем ставят задачу отклонить этот исход.

Данный критерий использует понятие Ранга R_k наблюдения $\ln\left(\frac{S_{t_k}}{S_{t_{k-1}}}\right)$, которое является номером наблюдения в соответсвующем вариационном ряду, для вычисления статистики $R^\star = \frac{R}{\sqrt{D[R]}}$ и улучшении ее до статистики $R^{\star\star} = R^\star + 1.1216 \cdot n^{-0.523}$

- 1)Построим по известному ряду логарифмических доходностей вариационный ряд.
 - 2) Введем гипотезу H_0 и альтернативу H_1 :

 H_0 : Тренд отсутствует - т.е.случайность ряда,

 H_1 : Тренд присутствует - неслучайность ряда.

3) В нашем случае ошибка I рода - это наиболее критическая. Значит, ошибка I рода - наиболее критическая Таким образом наша (статистическая) задача сделать ошибку I рода α как можно меньше, однако это увеличит ошибку II рода β (что не несет рисков кроме возможной потери прибыли).

4) Выберем уровень значимости α (Ошибка I рода). Для объема

выборки 100 < n < 1000 рекомендуется $\alpha = 0.01$.

Критерий двусторонний, гипотеза об отсутствии тренда принимается, если $R^{\star\star} \in [-2.57, 2.57]$, где 2.57 - критическое значение нормального распределения, соответствующее $\alpha = 0.01$.

5) Построим статистику $\mathbf{R} = \sum_{i=1}^{n-1} \left(R_i - \frac{n+1}{2}\right) \left(R_{i+1} - \frac{n+1}{2}\right)$ для $n=179: \mathbf{R} = 68436$

6)Вычислим D[R] =
$$\frac{n^2 \cdot (n+1) \cdot (n-3) \cdot (5n+6)}{720}.$$

$$7)R^* = \frac{R}{\sqrt{D[R]}} = 1.9201840279563078$$

8) улучшим \dot{R}^{\star} до $R^{\star\star}$: $R^{\star\star}=1.9945879562302098$

Таким образом принимаем гипотезу H_0 об отсутствии тренда и получаем, что ряд логарифмических доходностей - случаен.

3 ПРОВЕРКА НА НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ

3.1 Коэффициент Эксцесса(вытянутости)

коэффициент эксцесса

$$K_N = \frac{\left(\frac{1}{n}\sum_{i=1}^n (r_i - \bar{r})^4\right)}{\left(\frac{1}{n}\sum_{i=1}^n (r_i - \bar{r})^2\right)^2} - 3,$$

где r_i - это логарифмическая доходность в момент времени i, где \overline{r} - средняя логарифмическая доходность, а n - количество наблюдений.

Для нормального распределения E=0.

- 1) Для ряда логарифмических доходностей $H_{tk} = \ln\left(\frac{S_{t_k}}{S_{t_{k-1}}}\right)$. найдем величину \overline{r} как среднеарифметическое логарифмов цен:
 - $\overline{r} = 0.00607391656991618$
 - 2) Подставляем \overline{r} в формулу:

 $K_{179} = 16.38912221565546.$

3.2 Гистограмма

Рассмотрим гистограмму: Наблюдаются выбросы справа - это сигна-

лизирует о существенном отклонении от нормальности. Если от них избавится, то на практике можно считать что распределение условно нормально, так как гистограмма имеет колоколообразную форму и небольшую ассиметрию. Однако нашем случае распределение нормальным не будет, убедимся в этом:

Тест Шапиро-Уилка

 H_0 : Распределение нормальное,

 H_1 : Распределение не нормальное..

```
ff = pd.DataFrame(logarithmic_returns_array, columns=['LogReturns'])

res = stats.shapiro(df)

print('p-value: ', res[1])

PROBLEMS 10 OUTPUT DEBUG CONSOLE TERMINAL PORTS

p-value: 4.006752775774608e-19
```

р-значение намного меньше, значит гипотеза отклоняется.

4 РАСПРЕДЕЛЕНИЕ ЛОГАРИФМИЧЕСКИХ ДОХОДНОСТЕЙ H_K

Было выяснено, что ряд логарифмических доходностей является случайным(с распределением отличным от нормального)

Это означает, что $\mathbf{H}=(H_{t_k})$ - выборка случайных величин. Для дальнейшего анализа, проверим являются ли H_{t_k} независимыми одинаково распределенными случайными величинами(H.O.P.)

4.1 НЕЗАВИСИМОСТЬ

Проведем тест Льюнга-Бокса на наличие автокорреляции в остатках после внедрения модели линейной регрессии в структуру ряда.

Тест Бройша-Годфри

і.Модель регрессии

1) Модель линейной регрессии

Введем модель линейной регрессии с известной числовой матрицей X, строками которой являются предшествующие 13 значений і-го элемента, в качестве предиктора(независимой переменной) и лог. доходностью Y в качестве зависимой переменной.

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_{13} X_{13i} + \epsilon_i$$

$$Y = X * \beta + \epsilon$$

Преждем чем использовать эту модель, выясним является ли она статистически значимой, т.е. описывает ли Ү. Для этого найдем коэффициенты и исследуем их значимость.

===========	=======		_	sion Resu ======	========	========	======
Dep. Variable			Υ	R-squar			0.097
Model:			OLS	Adj. R-	squared:		0.013
Method:		Least So	quares	F-stati	stic:		1.156
Date:	₩e	ed, 30 Oct	2024	Prob (F	-statistic)	:	0.315
Time:		19:	33:42	Log-Lik	elihood:		322.50
No. Observati	ons:		165	AIC:			-615.0
Df Residuals:			150	BIC:			-568.4
Df Model:			14				
Covariance Ty	pe:	nonr	robust				
========							=======
	coef	std err		t	P> t	[0.025	0.975]
const	0.0062	0.003		1.913	0.058	-0.000	0.013
LogReturns	0.1797	0.081		2.206	0.029	0.019	0.341
X1	-0.0191	0.083		9.231	0.817	-0.183	0.144
X2	0.0191	0.083		9.231	0.817	-0.144	0.182
X3	0.2029	0.083		2.451	0.015	0.039	0.366
X4	-0.0608	0.084		721	0.472	-0.228	0.106
X5	-0.0677	0.084		803	0.423	-0.234	0.099
Х6	-0.0317	0.084	1 -6	377	0.707	-0.198	0.135
X7	-0.1225	0.085	-1.449	0.149	-0.290	0.045	
X8	0.0612	0.085	0.720	0.473	-0.107	0.229	
Х9	0.0527	0.085	0.620	0.536		0.221	
X10	0.0224	0.083	0.269	0.788		0.187	
X11	-0.0418	0.084	-0.500	0.618		0.123	
X12 X13	-0.0486 -0.0656	0.084 0.083	-0.581 -0.795	0.562 0.428		0.117 0.097	
=========							
Omnibus:		150.50		in-Watson:		2.001	
Prob(Omnibus):		0.00		ue-Bera (J	B):	2427.390	
Skew:		3.34		(JB):		0.00	
Kurtosis:		20.56 	52 Cond	. No.		40.1	
=======================================	=========	=========	=======	=======	=========	=======	

Обратим внимание на р-значение F-теста:

 H_0 : Модель с одной только константой объясняет данные так же как и текущая модель, т.е. модель статитически незначима,

Н₁: Текущая модель значительно лучше модели с одной константой,
 т.е. модель статистически значима.

Для F-статистики р-значение =0.315>0.01 и, следовательно, гипотеза H_0 принимается и модель требуется доработать.

Для этого оставим в модели только те коэффициенты, р-значения которых достаточно малы(p < 0.01) - именно они являются статистически значимыми. Согласно результатам, таких коэффициентов нет, значит заключаем, что модель линейной регрессии не подходит для анализа ряда.

2)Модель регрессии Фурье

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_{13} X_{13i} + \epsilon_i + \sum_{k=1}^{6} \left(\gamma_k \sin\left(\frac{2\pi kt}{n}\right) + \delta_k \cos\left(\frac{2\pi kt}{n}\right) \right)$$

		OLS Res	gression Res	ults.		
========	========	; :========	========	========	========	=======
Dep. Variab	le:		Y R-squa	red:		0.278
Model:		(DLS Adj. R	:		0.148
Method:		Least Squar	res F-stat	istic:		2.139
Date:	Tue	e, 03 Dec 20	324 Prob (F-statistic):	0.00297
Time:		21:22:	:30 Log-Li	.kelihood:		340.89
No. Observa	tions:	:	L65 AIC:			-629.8
Df Residuals	s:	:	L39 BIC:			-549.0
Df Model:			25			
Covariance [·]	Туре:	nonrobi	ıst			
========	=========	:======:	========		=========	========
	coef	std err	t	P> t	[0.025	0.975]
const	0.0201	0.004	5.135	0.000	0.012	0.028
X1	-0.1946	0.083	-2.356	0.020	-0.358	-0.031
X2	-0.1599	0.082	-1.949	0.053	-0.322	0.002
X3	0.0214	0.083	0.258	0.797	-0.143	0.186
X4	-0.2096	0.084	-2.507	0.013	-0.375	-0.044
X5	-0.2236	0.083	-2.679	0.008	-0.389	-0.059
Х6	-0.1784	0.083	-2.158	0.033	-0.342	-0.015
X7	-0.2702	0.084	-3.227	0.002	-0.436	-0.105
X8	-0.0968	0.084	-1.159	0.248	-0.262	0.068
X9	-0.0788	0.084	-0.936	0.351	-0.245	0.088
X10	-0.1112	0.085	-1.315	0.191	-0.278	0.056

211.1						
X11	-0.1532	0.084	-1.826	0.070	-0.319	0.013
X12	-0.1461	0.083	-1.761	0.080	-0.310	0.018
X13	-0.1765	0.084	-2.104	0.037	-0.342	-0.011
sin_1	0.0104	0.004	2.681	0.008	0.003	0.018
cos_1	-0.0213	0.005	-4.321	0.000	-0.031	-0.012
sin_2	-0.0172	0.005	-3.789	0.000	-0.026	-0.008
cos_2	-0.0050	0.004	-1.350	0.179	-0.012	0.002
sin_3	0.0111	0.004	2.603	0.010	0.003	0.019
cos_3	0.0098	0.004	2.553	0.012	0.002	0.017
sin_4	-0.0057	0.004	-1.360	0.176	-0.014	0.003
cos_4	-0.0150	0.004	-3.620	0.000	-0.023	-0.007
sin_5	0.0031	0.004	0.762	0.447	-0.005	0.011
cos_5	0.0117	0.004	2.903	0.004	0.004	0.020
sin_6	0.0046	0.004	1.166	0.246	-0.003	0.013
cos_6	-0.0113	0.004	-2.596	0.010	-0.020	-0.003
=======	:========	=======		========	=======	=======
Omnibus:		106.3	316 Durbin	ı-Watson:		2.105
Prob(Omnib	us):	0.6	000 Jarque	e-Bera (JB):		809.978
Skew:		2.3	305 Prob(J	B):		1.30e-176
Kurtosis:		12.8	327 Cond.	No.		46.6
========	===========	========	========	:=======	========	========

Р-значение F-теста меньше чем 0.01 и тогда нулевая гипотеза отклоняется и данная модель хорошо объясняет природу данных.

II.Применив модель регрессии Фурье к ряду, получим остатки и проверим тестом Бройша-Годфри наличие автокорреляции в них.

 H_0 : Автокорреляция отсутствует в остатках, данные независимы,

 H_1 : Автокорреляция присутствует, данные зависимы...

Вычисляем статистику:

```
bg_test = acorr_breusch_godfrey(initial_model, nlags=13)
print(f"Статистика теста Бреуша-Годфри: {bg_test[0]}")
print(f"Р-значение теста: {bg_test[1]}")
```

Статистика теста Бреуша-Годфри: 51.27151119893768 Р-значение теста: 1.8013798830419523e-06

Так же значение p-value < 0.01 значит нужно отклонить H_0 и тогда данные в выборке зависимы.

4.2 ОДИНАКОВАЯ РАСПРЕДЕЛЕННОСТЬ

Рассмотрим график ряда на временной шкале:

Видно явное различие между первыми 80 и оставшимися величинами. Проверим эти 2 подвыборки на однородность.

Тест Колмогорова-Смирнова Пусть эмпирическая функция

распределения (ЭФР) F_n построенная по выборке $X = (X_1, \dots, X_n)$, имеет вид: $F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \leqslant x}$, где $I_{X_i \leqslant x}$ указывает, попало ли

наблюдение
$$X_i$$
 в область $(-\infty, x]: I_{X_i \leqslant x} = \begin{cases} 1, & X_i \leqslant x; \\ 0, & X_i > x. \end{cases}$

Таким образом имеем 2 эмпирические функции распределения F_{80} и F_{99}

 H_0 : Распределения подвыборок совпадают и данные одинаково распределены.

 H_1 : Распределения отличаются и данные не являются одинаково распределёнными.

Теорема Смирнова

Пусть $F_{1,n}(x), F_{2,m}(x)$ — эмпирические функции распределения, построенные по независимым выборкам объёмом n и m случайной величины ξ . Тогда, если $F(x) \in C^1(\mathbb{X})$, то

$$\forall t > 0 : \lim_{n,m \to \infty} P\left(\sqrt{\frac{nm}{n+m}}D_{n,m} \leqslant t\right) = K(t) = \sum_{j=-\infty}^{+\infty} (-1)^j e^{-2j^2t^2},$$

где $D_{n,m} = \sup_x |F_{1,n} - F_{2,m}|$.

Построим критическое множество $R = D \mid D \ge K_{0.01} = 0.121$ Вычислим статистику: $D = \sqrt{\frac{80.99}{80+99}} \cdot D_{80,99}$ Результат: D = 0.36

Таким образом выборки не одинаково распределены.

5 ВЕРОЯТНОСТНЫЕ МОДЕЛИ ДЛЯ РЯДА

5.1 ОЧИСТКА ДАННЫХ

Исключим выбросы основанные, например, на отклонении данных от среднего значения на более чем 3 стаднартных отклонения:

	LogReturns	
56	0.170719	
74	0.241325	
75	0.127618	
129	0.159723	
152	0.116695	

Теперь протестируем очищенный ряд на стационарность тестом Дики-Фуллера

гипотеза H_0 : существует единичный корень, ряд нестационарный.

```
df_cleaned = df[(df['LogReturns'] >= mean - 3 * std_dev) & (df['LogReturns'] <=
# Выполняем тест Дики-Фуллера на стационарность
result = adfuller(df['LogReturns'])
```

```
ADF Statistic: -10.986895194268861
p-value: 7.221386125274187e-20
Critical Values: {'1%': -3.467631519151906,
Ряд стационарен (отклоняем нулевую гипотезу)
```

Таким образом ряд доходностей стационарен, не имеет пропусков и выбросов, и не распределен нормально.

ЛИТЕРАТУРА

- 1. "Основы Стохастической Финансовой Математики Том 1, А.Н. Ширяев.
- 2. "Критерии проверки гипотез о случайности и отсутствии тренда Б.Ю. Лемешко, И.В. Веретельникова.