

Sistemas de Processamento Digital de Sinal (SPDSina)

2º Exame – 14 de Julho de 2023 - Duração: 2h00 Número: Nome:

Número:Nome:
${\bf I} = {\bf Assinale\ apenas\ uma\ resposta\ correcta}.\ {\bf Cada\ resposta\ errada\ desconta\ } \frac{1}{4}\ {\bf valor}.\ {\bf A\ nota\ m\'inima\ neste\ grupo\ \'e\ zero\ valores}.$
1) Numa estrutura de processamento de sinal multirimo com fator racional L/M :
se $L>M$ nunca há perda de informação se a interpolação for feita depois da decimação. \square se $L< M$ a operação conjunta é de interpolação.
\square se $L>M$ pode haver perda de informação.
se a decimação for realizada antes da interpolação há sempre perda de informação.
2) Um sinal com largura de banda bilateral $\Delta f=4$ kHz , centrado na frequência $f_0=8$ kHz pode ser amostrado: apenas com $f_s\geq 20$ kHz .
\sqcup com $f_s \geq 8 \; \mathrm{kHz}$.
\square apenas com 10 kHz $\leq f_s \leq$ 12 kHz .
$\Box \ \mbox{com} \ f_s \geq 20 \ \mbox{kHz} \ \mbox{ou} \ 10 \ \mbox{kHz} \leq f_s \leq 12 \ \mbox{kHz} .$
3) Um filtro CIC (Cascaded Integrator-Comb):
requer muitas multiplicações.
tem sempre fase linear.
☐ não pode ser utilizado como filtro anti-imagem.
☐ não pode ser utilizado como filtro anti-aliasing.
4) Um conversor sigma-delta ($\Sigma\Delta$) funciona com factor de sobreamostragem $F=64$ e pretende-se que o número de bits efetivos seja igual a 16. Então:
\square a ordem mínima do conversor é $n=2$.
\square a ordem mínima do conversor é $n=3$.
\square a ordem mínima do conversor é $n=4$.
\square com $F=64$ não é possível obter 16 bits efetivos independentemente da ordem.
5) Numa malha PLL de 2ª ordem estável, se o ganho de retorno λ aumentar 2 vezes:
\Box a banda de manutenção $\Delta\omega_L$ aumenta aproximadamente 2 vezes.
\Box a malha PLL pode tornar-se instável.
\Box a banda de aquisição $\Delta\omega_{C}$ mantém-se.
\Box nem $\Delta\omega_L$ nem $\Delta\omega_C$ sofrem qualquer alteração.
6) A amostragem impulsiva ideal origina um sinal:
\square com infinitas réplicas do espectro original centradas em todos os múltiplos pares da frequência de amostragem.
\square com infinitas réplicas distorcidas do espectro original centradas em todos os múltiplos da frequência de amostragem.
com infinitas réplicas do espectro original centradas em todos os múltiplos da frequência de amostragem.
com um número finito de réplicas do espectro original.

Nota: Em todas as operações em aritmética de vírgula fixa considere a utilização de complemento para 2 e o intervalo simétrico $-(2^i-2^{-m}) \le Z \le 2^i-2^{-m}$ para a representação da variável Z na notação $Q_{i,m}$.

II — Considere os números reais x e y representados com 16 bit nos formatos Q_{14} e Q_{13} respetivamente, num processador de vírgula fixa de 16 bit.

- a) Diga qual é o formato aritmético que garante que $z=x^2-y^2$ é sempre calculado corretamente. Escreva o código C que realiza esta multiplicação considerando x, y e z variáveis do tipo Int16.
- b) Determine os valores real e calculados de z para os valores particulares de x = 1.85 e y = 3. Explique a que se deve o erro entre estes valores, se existir, e como o pode minimizar.

III — Considere um sistema de processamento de sinal com $f_s = \frac{1}{T_s} = 100 \text{ kHz}$.

- a) Determine a função de transferência H(z) de um filtro digital IIR por meio da transformação bilinear aplicada ao filtro passa-baixo analógico $H_{LP}(s)=2\frac{\omega_c}{s+\omega_c}$ de modo que a frequência de corte do filtro digital seja exatamente $\omega_d=2\pi\times 10~{\rm krad/s}$. Escreva a equação às diferenças do filtro e represente o diagrama de fluxo de sinal na forma direta I.
- b) Determine o ganho dos filtros digital e analógico para $\,f=0\,,\;f=f_{\!s}\,/\,2\,$ e $\,f=f_{\!s}\,.$
- c) Faça um esboço do módulo da resposta em frequência do filtro analógico e do filtro digital para $0 \le f \le f_s$ (use os valores da alínea anterior). Explique as diferenças entre as duas respostas em frequência.

 ${\bf IV}$ — Considere uma malha PLL realizada com um detetor de fase XOR que funciona com níveis $\pm 3V$. A malha tem um filtro passabaixo com tensões de saturação $\pm 4V$, ganho DC F(0)=1e um polo em $f_p\!=300~{\rm kHz}$. O oscilador controlado (VCO) tem as

$$\omega_o = \begin{cases} \omega_{o1} = 10\pi \times 10^6 \text{ rad/s}, & v_E \leq -4V \\ \omega_{ol} + k_o v_E & -4V \leq v_E \leq 4V \\ \omega_{o2} = 2\pi \times 10^6 \text{ rad/s}, & v_E \geq 4V \end{cases}$$

características indicadas na caixa ao lado. Tanto o sinal do VCO como o sinal de entrada são ondas quadradas com níveis $\pm 3V$.

- a) Determine a característica de transferência estática de todos os componentes da malha e faça a sua representação gráfica encadeada. Determine k_o , ω_{ol} e o ganho do detetor de fase.
- b) Determine a banda de acompanhamento $\Delta\omega_L$ indicando quais os componentes que a limitam. Determine a banda de aquisição aproximada $\Delta\omega_C$.
- c) Determine a frequência de entrada ω_i para a qual a diferença de fase entre o sinal do oscilador e o sinal de entrada é $\Delta\phi=5\pi/4\,\mathrm{rad}$.
- d) Represente o diagrama de blocos linearizado da malha PLL e determine a função de sistema $T(s) = \Phi_o(s)/\Phi_i(s)$.

$$\begin{split} \frac{2}{N} \bigg(f_0 + \frac{\Delta f}{2} \bigg) &\leq f_s \leq \frac{2}{N-1} \bigg(f_0 - \frac{\Delta f}{2} \bigg) & \therefore \quad \left| H_{LP}(\omega) \right| = 2 \frac{\omega_c}{\sqrt{\omega^2 + \omega_c^2}} \\ & \text{Bilinear: } s = \frac{2}{T_s} \frac{1-z^{-1}}{1+z^{-1}} \quad \therefore \quad \omega_c = \frac{2}{T_s} \tan \left(\frac{\omega_d T_s}{2} \right) \\ & \Delta \omega_C &\simeq \sqrt{2 \omega_p^{\ 2} \left(\sqrt{1 + \left(\frac{\Delta \omega_L}{\omega_p} \right)^2 - 1} \right)} \quad \overset{\Delta \omega_L \gg \omega_p}{\approx} \sqrt{2 \omega_p \cdot \Delta \omega_L} \\ & \text{SNR}_{\mathbf{Q}} \approx 6 \text{ dB/bit} \quad \therefore \quad \text{SNR}_{\Sigma \Delta} (\text{ordem } n) \approx (3+6n) \text{ dB/oitava} \end{split}$$