Valorisation multi-courbe.

Antonin Chaix - Richard Guillemot

Master IFMA

27 Février 2014

Unicité de la courbe des taux

Nous supposons qu'il existe une **unique courbe** des taux dite **sans risque**, cela a 2 conséquences :

 On peut déduire les taux forwards à partir des taux au comptant.

$$L(t, T_1, T_2) = \frac{1}{\delta} \left(\frac{B(t, T_1)}{B(t, T_2)} - 1 \right)$$

 La valeur d'une jambe variable de swap est indépendante de sa fréquence.

$$\sum_{i=1}^n \delta_i \times L(t, T_{i-1}, T_i) \times B(t, T_i) = B(t, T_0) - B(t, T_n)$$

Risque de crédit et liquidité

Cette méthode de valorisation avec une unique courbe des taux ignore 2 risques :

- le risque de crédit : L'emprunteur va t'il rembourser sa créance et payer les intérets au prêteur?
- le risque **de liquidité** : Le prêteur va t'il prêter à un emprunteur pour la maturité demandée ?

Collatéralisation

 V_t le prix d'un actif collatéralisé.

Les flux d'un actif collatéralisé à la date t + dt:

On rembourse le collatéral livré en t.
On paie les intérêts au taux de collatéral c.
On reçoit la nouvelle valeur du collatéral. $-V_t$ $-cV_tdt$ V_t

Le flux résultant : $dV_t - c \times V_t \times dt$

Collatéralisation et actualisation

Soient les prix de 2 actifs sous la probabilité historique P :

$$dV_t^1 = \mu_1 V_t^1 dt + \sigma_1 V_t^1 dW_t$$

$$dV_t^2 = \mu_2 V_t^2 dt + \sigma_2 V_t^2 dW_t$$

On constitue un portefeuille en vue de neutraliser l'aléa. Il génère le flux suivant en t+dt:

$$\sigma_2 V_2 \times (dV_t^1 - cV_t^1 dt) - \sigma_1 V_1 \times (dV_t^2 - cV_t^2 dt)$$

En l'absence d'opportunité d'arbitrage, un tel portefeuille a une valeur nulle, par conséquent son drift est aussi nul :

$$\lambda = \frac{\mu_1 - c}{\sigma_1} = \frac{\mu_2 - c}{\sigma_2}$$

Collatéralisation et actualisation

On définit une nouvelle probabilité dite risque neutre Q:

$$d\widetilde{W}_t = dW_t + \lambda dt$$

Sous cette probabilité les actifs on drift égal au taux de collatéral :

$$dV_t^1 = cV_t^1 dt + \sigma_1 V_t^1 d\widetilde{W}_t$$

$$dV_t^2 = cV_t^2 dt + \sigma_2 V_t^2 d\widetilde{W}_t$$

Il nous faut donc actualiser les flux des actifs collatéralisés au taux de collatéral *c*.

Les produits de liquidité

Sur le marché on peut traiter de catégories de produits de liquidité :

- les swaps à taux fixe : on distingue les différentes cotations de ce swap K^f suivant la fréquence f de la jambe variable.
- les swaps de basis : ces produits échangent des jambes variables de fréquences différentes. $m^{f_1-f_2}$ est la marge à ajouter à la jambe de la fréquence la plus faible qui rend le swap nulle.

Jambe	Fixe	OIS	1M	3M	6M	12M
Fixe		K ^{OIS}	K^{1M}	K ^{3M}	K^{6M}	K^{12M}
OIS			m ^{OIS−1M}		m ^{OIS-6M}	m ^{OIS−12M}
1M				m^{1M-3M}	m^{1M-6M}	m^{1M-12M}
3M					m^{3M-6M}	m^{3M-12M}
6M						m^{6M-12M}

Les produits de liquidité

Les produits de liquidité

Toutes ces cotations sont liées les unes aux autres :

$$K^{m} - K^{n} = \frac{LVL^{m}(T_{0}^{m}, T_{m}^{m})}{LVL(T_{0}, T_{n})} m^{n,m}$$

On peut approximer cette relation :

$$K^m - K^n \simeq m^{n,m}$$

On en déduit une "sorte" de relation de Chasles pour les marges de basis :

$$m^{n,m}+m^{m,p}\simeq m^{n,p}$$

m,n et p correspondent à trois fréquences différentes.

Algorithme de callage "des" courbes.

Il nous faut construire un algorithme,

- où tous les flux sont actualisés au taux de collatéral standard, c'est à dire l'OIS de la devise,
- consistant avec les cotations de tous les produits de liquidité.

Algorithme en 2 étapes :

- Etape 1 : On calibre la courbe OIS avec l'algorithme classique, en effet une jambe variable OIS utilise la même courbe calculer les taux forwards et actualiser les flux.
- Etape 2 : On calibre une courbe pour chacune des fréquences 1M, 3M, 6M et 12M afin de reproduire les cotations de marchés K^f.

Exemple de callage

Produit	Taux (%)	Symbole
EURIBOR 6M	1%	R_1
EURIBOR 12M	1.5%	R_2
EONIA vs BOR 6M	50bps	m
EONIA vs BOR 12M	50bps	m
SWAP 12M vs 6M	1.5%	R_2
FRA 6M dans 6M	??	F

Il nous faut résoudre l'équation suivante

$$\delta_1 \times B^{OIS}(t, T_1) \times R_1 + \delta_2 \times B^{OIS}(t, T_2) \times F = (\delta_1 + \delta_2) \times R_2 \times B^{OIS}(t, T_2)$$

Exemple de callage

Les différents facteurs d'actualisation :

$$B^{OIS}(t, T_1) = \frac{1}{1 + \delta_1 i(R_1 - m)}$$

 $B^{OIS}(t, T_2) = \frac{1}{1 + (\delta_1 + \delta_2)(R_2 - m)}$

Le taux forward classique :

$$L(t, T_{6M}, T_{12M}) = \frac{1}{\delta_2} \left(\frac{1 + (\delta_1 + \delta_2) R_2}{1 + \delta_1 R_1} - 1 \right)$$

La solution de l'équation est la suivante :

$$F = \frac{(\delta_1 + \delta_2)R_2}{\delta_2} - R_1\delta_1 \frac{1 + (\delta_1 + \delta_2)(R_2 - m)}{\delta_2(1 + \delta_1(R_1 - m))}$$
Ajustement = $F - L(t, T_{6M}, T_{12M})$

Exemple de callage

OIS-BOR	F	Ajustement	
0 bps	1.9900%	0.00bps	
10 bps	1.9905%	0.05bps	
20 bps	1.9910%	0.10bps	
30 bps	1.9915%	0.15bps	
40 bps	1.9920%	0.20bps	
50 bps	1.9925%	0.25bps	