

与代做 CS编程辅导 Information Technology

FIT1006 Business mation Analysis

Assignment Project Exam Help

Lecture 14

Email: tutorcs@163.com

Theoretical Sampling Distributions

Topics covered: 代写代做 CS编程辅导

- Theoretical Sar → Distributions
 - Introduction tell
 - The Central Lymic The exempores
 - The sampling distribution of the mean and proportion.

Email: tutorcs@163.com

QQ: 749389476

Course outline: Progress report

Update: Bein程序は写成的 CS编程辅导

Two samples are decision?

ave they come from different populations, or the What factors would affect your

WeChat: cstutorcs

Estimating a 特色的语名的 parameter

- The usual meth stimating a population parameter is to the sample, and using the sample statistics make an interence about the population parameter. WeChat: cstutorcs
- We are frequently interested just hexage apply a population, or the proportion of a population exhibiting a certain characteristic.
- We look at how we determine the accuracy of our estimate of the selparameters hased on the value of the parameter in question and the sample size.

Estimation

程序代写代做 CS编程辅导

Part 1. The beh

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Populations 都然多的的是多程辅导

■ We want to use make an inference about the bulation

Populations 都然 Samples 程辅导

■ Taking differe om samples of the same size from a position may yield different means.

CLTProject.e某序代写代做 CS编程辅导

This application take multiple samples from a population and the samples as a function of samples are the will do this in Tutorial 8)

A Binomial destribution problem

- The following slide states samples taken from a population where, for examples taken from a population
- 0 = right handed (p = 0.9)
- 1 = left handed $(p \stackrel{\text{WeChat: cstutorcs}}{=} 0.1)$
- 1000 samples were taken with replacement. (That means each sample was chosen observed and put back into the population)
 https://tutorcs.com

Observation 程序代写代做 CS编程辅导

- As sample size larger, 3 things happen:
- 1 Histogram god having a Binomial distribution to approaching a Normal distribution.

 WeChat: cstutorcs
- 2 Sample mean converges to the population mean. Assignment Project Exam Help
- 3 Variance of the sample mean decreases inversely proportional to sample size.

QQ: 749389476

Estimation

程序代写代做 CS编程辅导

Part 2. The Cers

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

The Central 性所任子代的CS编程辅导

The Central Limits
 statistics.

em is fundamental to inferential

The main idea is that if we take large enough sample from a population we take large enough sample from a population with the sample distribution of the pagant population with the sample mean is:

Email: tutorcs@163.com

- Normally distributed around the population mean.
 QQ: 749389476
- 2. The variance of the sample mean is the population variance divided by the sample sample.

Conditions fdrfheCLTCS编码值

- 1 Samples muliple in ficiently large (n≥30).
- 2 Samples must be of equal size.
- 3 Sampling must be carried out with replacement.

Email: tutorcs@163.com

In practice we usually only take and analyse one sample from a population. The conditions above are used to establish the validity of the CLT.

CLT demons群岛代的 CS编程辅导

■ 10000 uniformly [(秦 below.

程序代写代做 CS编程辅导

■ CLTProject.exe

■ CLTProject

File: FIT1006 Lecture 17 CLT.syz

程序代写代做 CS编程辅导

The randomly ge later was saved as text, copied and pasted into Copied ct.exe. 500 samples of size 100 were taken and the calculated. A histogram of the means is below.

程序代写代做 CS编程辅导

Comparing the (statistics for both the original data and samples of size 100.

		RESAMPLED				
N	of	E ca	ases	PRIGINAL 10000 t: cstutores	500	
Mi	ni	imun	0.410			
Maximum			n , .	1.000	0.590	
Ме	edi	ian	Assigni	nent ¹ Project I		
Ме	ear	l	Emoile	tutores 20163.	com 0.501* 0.028*	
St	ar	ndaı	ed Dev		0.028*	
			00.74	9389476 0.247		
N	1	of	4 22. 7.	0.247	0.480	
N	2	of	⁴ https://t	utores.com 0.754	0.500	
N	3	of	4	0.754	0.520	

Estimation

程序代写代做 CS编程辅导

Part 3. The ing distribution of means and propolities.

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Notation, math^今chāracter等: ^{程辅导}

Parameter

Mean

Standard Deviat

pulation Sample

 \overline{x}

2

Proportion WeChat: cstutorcsp

Assignment Project Exam Help

 $\sigma_{\bar{x}}$ = standard error of the sample mean

 σ_p = standard error of the sample proportion

QQ: 749389476

The sample values are used to estimate the <u>unknown</u> https://tutorcs.com population parameters; taking into account variability introduced by sampling.

From the CL take a sample of size n,

From a population with mean μ and variance σ^2

Then, as n increases ment Project Exam Help

The sample mean,
$$\dot{x} \to \mu$$
, and variance(\bar{x}) $\to \frac{\sigma^2}{n}$

QQ: $\overline{749389476}$

thus
$$\overline{x} = \mu$$
 and \overline{x} the torcs form large.

Sample standard devious standard error) (standard error)

https://flux.qa (年色色色色色色色色)

Question 1

If a sample of 1 sunts is taken from a population, with # itea = \$2000 and standard deviation \$500; wheel distribution of the sample mean is:

Assignment Project Exam Help

Email: tutorcs@163.com

- A. Normal(mean = 20, stdey = 5)
- B. Normal(mean = 20, stdev = 50) https://tutorcs.com
 C. Normal(mean = 2000, stdev = 5)
- D. Normal(mean = 2000, stdev = 50)

Example 1

程序代写代做 CS编程辅导

A sample of 100 a 🚉 🔛 were taken from a population of accounts with meals 1.200 and standard deviation \$500. What is the proballing that the sample mean will be less than 2050?

		(Z <z) fo<="" th=""><th>$rZ = iv_{\chi}$</th><th colspan="6">We Chat: From the population, $\mu = 2000$, $\sigma = 50$</th></z)>	$rZ = iv_{\chi}$	We Chat: From the population, $\mu = 2000$, $\sigma = 50$					
	z	0.00	0.01	Assignment the sample $\bar{x} = 2000$, $n = 100$					
	0.0	0.5000	0.5040	Assignment Project Exam herp, " 100					
	0.1	0.5398	0.5438	0.547					
	0.2	0.5793	0.5832	Email: tutores $\frac{\sigma}{163 \text{ com}} = 50$					
	0.2	0.6170	0.6217	Email. tutores ex 105, com (100)					

 $\sqrt{100}$ \sqrt{n} 0.4 0.6554 0.6591 0.6628 0.6915 0.5 0.6950 $4938947 \& N(2000.50^2)$ 0.7257 0.7291 0.6

8.0

0.8869

0.9049

0.7611 0.7 0.7580 0.7642 https://tutorcs.com 0.8212 $(x < 2050) = P \left(z < \frac{2050 - 2000}{50} \right)$ 0.8 0.7881 0.7910 0.8159 0.8186 0.9 0.8413 0.8438 0.84 0.8643 0.8665

 $= P(z < 1), z \approx N(0,1^2) = 0.8413$

0.8849

0.9032

The Sampling程序的的。Proportion

If we take a samp

From a population proportion ρ of interest

Then, from the CVFChatneintreases:

Sample proportion,
$$p \to p$$
, variance $(p) \to \frac{p(1-p)}{n}$
Email: tutorcs@163.com

Thus
$$p = p$$
, $S_p = \frac{Q0p(493p9)476}{\text{for n large,}}$ for n large, https://thitorcs.com

 $np, n(1-p) \ge 5$

MONASH University

Example 2

									_
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	
46.3	₹0.61 ₹9.	50.621.7	5 0.625 5	编码室	辅6針	0.6368	0.6406	0.6443	Γ
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	
0.5	<u>0 6915</u>	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	
	White	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	
7	77.PEG	3 ~ ~~~~	0.7640		~			A ==A.	_

It is thought that the population is 10% probability that a sample of 100 people taken at random would have a proportion of left handers less than 0.12?

$$\pi = 0.1, n = 400$$

$$\pi = 0.1, n = 400$$

$$E(p) = 6.1, i \text{ the project Exam}$$

$$100$$

$$100$$

$$\text{thus } p = 0.03^2$$

$$100$$

$$P(p < 0.1, 0.03^2) = 476$$

$$P(p < 0.67), z \approx N(0, 1^2) = 0.7486$$

Reading/Questions (Servarian)

Sampling inference makes a marging distributions.

Reading: 7th E
 The control of the control of

Questions: 7th Ed. 9.4, 9.12, 9.13, 9.18, 9.24, 9.25
 WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476