Axiomas de los reales

Axioma 1. Conmutatividad. (Conm)

a)
$$(\forall x,y \in \mathbb{R})$$
 $x+y=y+x$

b)
$$(orall x, y \in \mathbb{R})$$
 $x \cdot y = y \cdot x$

Axioma 2. Asociatividad. (As.)

a)
$$(\forall x,y,z\in\mathbb{R})$$
 $x+(y+z)=(x+y)+z$

b)
$$(orall x,y,z\in\mathbb{R})$$
 $x\cdot(y\cdot z)=(x\cdot y)\cdot z$

Axioma 3. Distributividad. (Dist.)

a)
$$(\forall x,y,z\in\mathbb{R})$$
 $x\cdot(y+z)=x\cdot y+x\cdot z$

b)
$$(\forall x,y,c\in\mathbb{R})$$
 $(x+y)\cdot c=x\cdot c+y\cdot c$

Axioma 4. Existencia elementos neutros. (ENA y ENM)

a)
$$(\forall x \in \mathbb{R})$$
 $x + e = x$

b)
$$(\forall x \in \mathbb{R}) \quad x \cdot e = x$$

Axioma 5. Existencia de elementos inversos. (EIA y EIM)

a)
$$(\forall x \in \mathbb{R})$$
 $x + \text{opuesto}(x) = 0$

a)
$$(\forall x \in \mathbb{R})$$
 $x \cdot \operatorname{rećiproco}(x) = 1$

Propiedades.

Propiedad 1.

$$(\forall a \in \mathbb{R}) \quad a \cdot 0 = 0$$

Propiedad 2.

En \mathbb{R} , las ecuaciones

a)
$$a+x=b$$

b)
$$a \cdot x = b \quad (a \neq 0)$$

tienen solución, y dicha solución es única.

Propiedad 3. (Reglas de los inversos)

a)
$$(\forall a \in \mathbb{R})$$
 $-(-a)=a$

b)
$$(orall a \in \mathbb{R}^*) \quad (a^{-1})^{-1} = a \mid \mathbb{R} \setminus \{0\}$$

Propiedad 4. (Reglas de los signos)

a)
$$a \cdot (-b) = -(a \cdot b) = -ab$$

b)
$$(-a) \cdot (-b) = a \cdot b$$

c)
$$-(a+b) = (-a) + (-b) = -a - b$$

d)
$$Si \ a, b \neq 0 \implies (a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$$

e)
$$a - (b + c) = a - b - c$$

f)
$$a - (b - c) = a - b + c$$

Propiedad 5.

$$(\forall x,y \in \mathbb{R}) \quad x \cdot y = 0 \implies (x = 0) \lor (y = 0)$$

Propiedades adicionales.

$$1. \; rac{ac}{bc} = rac{a}{b} \quad orall a, b, c \in \mathbb{R} \; | \; b, d
eq 0$$

$$egin{array}{ll} 2. rac{a}{b} \pm rac{c}{d} = rac{ad \pm bc}{bd} & orall a, b, c \in \mathbb{R} \mid b, d
eq 0 \ 3. rac{a}{b} \cdot rac{c}{d} = rac{ac}{bd} & orall a, b, c \in \mathbb{R} \mid b, d
eq 0 \end{array}$$

$$3. \ rac{a}{b} \cdot rac{c}{d} = rac{ac}{bd} \quad orall a, b, c \in \mathbb{R} \mid b, d
eq 0$$

$$4. \; rac{a}{b} \div rac{c}{d} = rac{ad}{bc} \;\;\; orall a, b, c \in \mathbb{R} \;|\; b, d, c
eq 0$$

5.
$$(a \pm b)^2 = a^2 \pm 2ab \pm b^2$$

6.
$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

7.
$$(a+b)(a-b) = a^2 - b^2$$

8.
$$(a-b)(a^2+ab+b^2)=a^3-b^3$$

9.
$$(a+b)(a^2-ab+b^2)=a^3+b^3$$