Espase Probabilisé 1

Soit Ω est Univers (est random ensemble).

Définition 1. σ - algebra

La famille des ensembles \mathcal{A} s'appelle σ -ALGEBRA si :

- 1. $\Omega \in \mathcal{A}$
- 2. Pour tout $A \in \mathcal{A}, A^c \in \mathcal{A} \ (A^C = \bar{A})$
- 3. Si $\{A_k\}_{k=1}^{\infty} \in \mathcal{A}: \cup_{k=1}^{\infty} A_k \in \mathcal{A}$

Définition 2. Probabilité

- 1. $\mathbb{P}(\Omega) = 1$
- 2. Si $\{A_k\}_k^\infty$ disjoint (pour tout $i\neq j:\ A_i\cup A_j=\emptyset):$

$$\mathbb{P}(\cup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mathbb{P}(A_k)$$

Espasce probabilisable ($\underbrace{\Omega}_{\text{univers}}$, $\underbrace{\mathcal{A}}_{\text{tribu}}$).

Espase probabillisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Variable Aléatoire (random variable) est fonction measurable X:

$$X:\Omega \to \mathbb{R}$$

Soit Ω un ensemble. Soit \mathcal{F} un famille d'ensembles de Ω , qui n'est pas forcément une σ -algebre.

Définition 3. On appelle σ -algebr engendrée par \mathcal{F} , denotée $\sigma(\mathcal{F})$ la plus petite σ -algebre que contient \mathcal{F} .

Définition 4. Borel (\mathcal{B}) est la σ -algebre engendrée par les intervalles ouvertes de \mathbb{R} c'est-â-dire de la forme $(a, b), |a|, |b| < \infty$ (famile \mathcal{F}_0).

On dit Borel (\mathcal{B}) est aussi σ -algebre engendrée par des intervalles de la forme $(-\infty, |a|], |a| < \infty \text{ (famile } \mathcal{F}_{FN}).$

Remarque. $\sigma(\mathcal{F}_0) = \sigma(\mathcal{F}_{FN})$

Proposition 1. Pour verifier la measurable il suffit de la tester sur une famile qui engendrée la σ-algebre de Borele.

Exercice. (simple mais important) Soit Ω un ensemble. $\mathcal{P} = \{P_1, P_2, ..., P_k\}$ est une partition finit de Ω , c'est-âdire $\bigcup_{j=1}^k P_j = \Omega$ et $P_\alpha \cap P_\beta = \emptyset$.

1. Trouve $\sigma(\mathcal{P})$.

Réponse:

 $\sigma(\mathcal{P})$ contient tout reunion d'elementes \mathcal{P} .

(En partiqulier si $A \in \sigma(\mathcal{P})$: $A = \bigcup_{k=1}^{l} P_{i_k}$)

2. Trouve commont sont faites les v.a. par rapport â $\sigma \mathcal{P}$. Réponse:

Consider $\Omega = \mathbb{R}$. $X(\omega) = \alpha$. α est l'image ω . Le point α est aussi un ensemble, qu'on denote $\{\alpha\}$: "singlitore" qui est un borelien. Car X est measurable par rapport â $\sigma(\mathcal{P})$, $X^{-1}(\{\alpha\}) = \cup P_{i_k}$.

Une function measurable pour rapport à $\sigma(\mathcal{P})$ est constante par morceaux sr les éléments de la partition.

On replace X avec autre object qui "approxime" X est measurable par rapport â $\sigma(\mathcal{P})$.

Espase probabilisé (Ω , \mathcal{A} , \mathbb{P}). $X:\Omega\to \underbrace{\mathbb{R}}_{\mathrm{Borel}}$, X est v.a.

Loi de X on définir un mesure de probabilite sur $(\mathbb{R}, \mathcal{B})$ de la maniere sivante si $B \in \mathcal{B}$: $P_X(B) = \mathbb{P}(X^{-1}(B))$.

On appelle P_X de LA LOI DE X.

 $X: \Omega \to \mathbb{R}$ On pourra écrite X de la maniere suivante : $X(\omega) = \sum_{k=1}^{\infty} x_k \mathbb{1}_{A_k}(\omega)$, $A_k = \{\omega \,|\, X(\omega) \in A_k\}.$ Calculer P_X (la loi de X) :

Si $B \in \mathcal{F}$, $P_X(B) = \mathbb{P}(X^{-1}(B))$.

On appelle D l'ensemble valiur de $X: D = \{x_1, X_2, ... x_k ...\}$. $P_X(B) = P_X(B \cap D) = P_X(B \cap \bigcup_{k=1}^{\infty} \{x_k\}) = P_X(\bigcup_{k=1}^{\infty} (B \cap \{x_k\})) = \sum_{k=1}^{\infty} P_X(B \cap \{x_k\}) = \sum_{k=1}^{\infty} P(X = x_k) \delta_{\{x_k\}}(B) = \sum_{k=1}^{\infty} p_k \delta_{\{x_k\}}(B)$

$$\delta_a(B) = \begin{cases} 1 & \text{si } a \in B \\ 0 & \text{si } a \notin B \end{cases}$$

On introduit la measure de Dirrac :

$$X = \sum_{k=1}^{\infty} x_k \mathbb{1}_{A_k}$$

$$P_x = \sum_{k=1}^{\infty} p_k \delta_{\{x_k\}}$$

$$P_x = \mathbb{P}(A_k)$$
v.a. discrete

Exemple. (v.a. discrete)

1. B(n, p) dinomiale

Valeurs : $X = \{0, 1, ... n\}$.

$$P_k = \mathbb{P}(X = k) = C_n^k p^k (1 - p)^{n - k}, \ i \in \{0, \dots, n\}$$

2. Poisson $P(\lambda)$. Valeurs $X = \{0, 1, 2, ...\}$ - dénombrable.

$$P_X(\{k\}) = \mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Independances

Si X et Y sond independantes

$$P_{XY}(x \in A, Y \in B) = P_X(A)P_X(B)$$

Produit direct de deux measure?

Considere $S = S_1 \times S_2$.

Defiltat

Di ou construit l'espase measurable $(S_1 \times S_2, A_1 \times A_2)$

Il existe une seule measure $\bar{\nu}$ telle que :

$$\bar{\mu}(A_1 \times A_2) = \mu_1(A_1)\mu_2 A_2$$

Cette measure $\bar{\mu}$ est le produit direct de μ_1 et μ_1 , denote $\bar{\mu}\mu_1 \times \mu_1$. C'est-â-dire :

$$P_{XY} = P_X \times P_Y$$

 $\mathbf{E}\mathbf{x}$

$$\int\limits_{\mathbb{R}} f(t,u) \, dP_{XY}(t,u) \mu$$

On a besoin d'une autre quantiti; fouction de repartition de deux variables.

Définition 5. Si X et Y sont 2 v.a. ou definit

$$F_{xy}(u, v) = \mathbb{P}(X \le u, Y \le v)$$

Proposition 2. Si ou connait la founction de repartition du couple (X,Y) on peut calculer les fouctions de repartition marginales

$$F_X(u) = \lim_{v \to +\infty} F_{XY}(u, v)$$

$$F_Y(v) = \lim_{u \to +\infty} F_{XY}(u, v)$$

 $\begin{array}{ll} \textit{D\'{e}monstration.} \ F_X(u) = \mathbb{P}(X \leq u) = P_X((-\infty,u]). \ \text{Utilize} \ \mathbb{R} = \cup_{k=1}^\infty (-\infty,k] \\ (-\infty,k) \ \text{est croissant.} \ \mathbb{P}(X \leq u) = \mathbb{P}(X \leq u,Y \in \mathbb{R}) = \mathbb{P}(X \leq u,Y \in \mathbb{R}) \\ \cup_{k=1}^\infty (-\infty,k]). \ F_X(u) = \mathbb{P}(X \leq u) = P_X((-\infty,u]). \end{array}$

Proposition 3. Si X est Y sont independent v.a. donc $F_{XY}(u,v) = F_x(U)F_Y(V)$

$$D\acute{e}monstration.$$
 ...

Proposition 4. Si on $a: F_{XY} = (u, v) = F_X(u)F_Y(v)$ cest-a que X et Y sont independente? Oui.

Démonstration.

$$P_{XY}(X \le u, Y \le v) = P_X(X \le u)P_Y(Y \le u)$$

la borelien de la forme $\{(-\infty, u], |u| < \infty\}$ verifiet le properte de l'intersection firme.

Définition 6. La measure de lebegue dans \mathbb{R}^2 est la measure droduit direct des measure des lebesgue dans \mathbb{R} .

Convention $\int f d\lambda(x) = \int f dx$.

Définition 7. Un couple de v.a (X,Y) a une loi conjointe P_{XY} a density si pour toute borelie $B \in \mathcal{B}^{(2)}$ (σ -algebre produite), on a

$$P_{XY}(B) = \iint_{R} f_{XY}(u, v) \, d\lambda(u) \, d\lambda(v)$$

. En particulier s ou a $g(u,v) \in L^1(P_{XY})$ on a :

$$\iint\limits_{\mathbb{R}^2} g(u,v) \, dP_{XY}(u,v) = \iint g(u,v) f_{XY}(u,v) \, d\lambda(u) \, d\lambda(v)$$

Questions

- 1. Donnet les proprieties de f_{XY} quand X et Y sont independents.
- 2. Si on connait $F_{XY}(u, v)$ est-ce qu'on peut calculer les marginales $f_X(u)$, f_Yv ?

Proposition 5. generale Si on connait $f_{XY}(u,v)$ on a: $\begin{cases} f_X(u) = \int_{\mathbb{R}} F_{XY}(u,v) dv \\ f_X(v) = \int_{\mathbb{R}} F_{XY}(u,v) du \end{cases}$

Démonstration. $F_X(t) = \lim_{r \to \infty} F_{XY}(t,r) = |$

$$F_{XY}(t,r) = \mathbb{P}(X \leq t, Y \leq r) = P_{XY}((-\infty,t] \times (-\infty,r]) = \iint_{-\infty-\infty}^{t} d\lambda(u) \, d\lambda(v) = F_{XY}(t,r)$$

| = | $\lim_{r \to \infty} \iint_{-\infty - \infty}^{t} f_{XY}(u, v) \, d\lambda(u) \, d\lambda(v) = \lim_{r \to \infty} \iint_{-\infty - \infty}^{t} f_{XY}(u, v) \mathbb{1}(u) \mathbb{1}(v) \, d\lambda(u) \, d\lambda(v) =$ | Par Fubini ou sont itirer les integrales : |

$$=\lim_{r\to\infty}\int_{\mathbb{R}}du\int_{\mathbb{R}}dv\mathbb{1}(u)\mathbb{1}(v)f_{XY}(u,v)=\lim_{r\to\infty}\int_{-\infty}^{t}du\int_{-\infty}^{r}dvf_{XY}(u,v)=|\text{B. Levi}|==\int_{\mathbb{R}}du\lim_{r\to\infty}\int_{\mathbb{R}}dv\mathbb{1}(u)\mathbb{1}f_{XY}(u,v)\ F_X(t)=\int_{\mathbb{R}}du\int_{\mathbb{R}}dv\mathbb{1}(u)\mathbb{1}f_{XY}(u,v).$$

Si
$$X$$
 est à densite $F_X(T) = \int_{-\infty}^t f_X(u) du$.

Question (Independantes et densités)

Proposition 6. Ou a deux parties.

1. Si 2 v.a. X et Y admetteit, des densitis f_X et f_Y admetteut des densitis f_X et f_y et X et Y sont independantes, alors le couple (X, Y) ament une loi conjointe a densité et $f_{XY} = f_X f_Y$.

2. Si le couple (X,Y) adment une densite f_{XY} produit de deux fouctions integrable f_1 et f_2 alors f_1 et f_2 sont les densities (à une constant pvit) de X et Y et Y sont indipendantes.

Exercise On a un couple de v.a. (X,Y) à valuers dans \mathbb{R}^2 de loi conjointe :

$$P_{(XY)}(B) = \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{1}{2^{k+l}} \delta_{\{k,l\}}(B)$$

Determiner la loi de $Z = \sup\{X, Y\}$.

1. question. Determiner P_X , P_Y oui $P_X(X=k)$. Si X et Y sont discrette $\mathbb{P}(X=k)=\sum_j\mathbb{P}(X=k,\ Y=j)$.

$$P_X(\{x\} = \sum_{j} P_{XY}(\{k, j\}))$$

$$\mathbb{P}(X = k) = P_X(\{k\}) = \sum_{i=1}^{\infty} \frac{1}{2^{k+j}}$$

$$\mathbb{P}(Z \le k) = \mathbb{P}(X \le k, Y \le k) = \int \mathbb{1}_{[0,k]^2}(X,Y) \, d\mathbb{P} = \iint \mathbb{1}_{[0,k]^2} \, dP_{XY}(u,v) = \sum_{i,l=1}^{\infty} \frac{1}{2^{i+l}} \mathbb{1}_{[1,k]^2}(i,l) = \sum_{i=1}^{k} \sum_{l=1}^{k} \frac{1}{2^{i+l}}$$