CS 107, Probability, Spring 2019 Lecture 28

Michael Poghosyan

AUA

29 March 2019

Content

- Normal Distribution
- Functions of Random Variables (aka Transformations of Random Variables)

LZ

This could be in one of our Midterms $\ddot{\ }$

LZ

This could be in one of our Midterms $\ddot{\ }$

What is the Probability of choosing the correct answer to this MCh question at random?

LZ

This could be in one of our Midterms $\ddot{\ }$

What is the Probability of choosing the correct answer to this MCh question at random?

- $\frac{1}{4}$
- $\frac{1}{2}$
- **3** 1
- $\frac{1}{4}$

This could be in one of our Midterms $\ddot{-}$

What is the Probability of choosing the correct answer to this MCh question at random?

- $\frac{1}{2}$
- **3** 1
- $\frac{1}{4}$

Your answer is not correct! :P

Recall that the Normal Distribution is one of the most important distributions in the Universe $\ddot{-}$

Recall that the Normal Distribution is one of the most important distributions in the Universe $\ddot{-}$ And the PDF of $X \sim \mathcal{N}(\mu, \sigma^2)$ was

$$f(x) =$$

Recall that the Normal Distribution is one of the most important distributions in the Universe $\ddot{\ }$ And the PDF of $X\sim \mathcal{N}(\mu,\sigma^2)$ was

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad x \in \mathbb{R}.$$

where μ is the Mean of X and σ^2 is the Variance of X.

Recall that the Normal Distribution is one of the most important distributions in the Universe $\ddot{\ }$

And the PDF of $X \sim \mathcal{N}(\mu, \sigma^2)$ was

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad x \in \mathbb{R}.$$

where μ is the Mean of X and σ^2 is the Variance of X. Recall also that if $X \sim \mathcal{N}(0,1)$, then we say that X is Standard Normal r.v. (or has a Standard Normal Distribution).

Some Examples

Example: Assume that the heights of women in Armenia are Normally distributed with the Mean 158.1cm and Standard Deviation 5.7cm¹.

¹See https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0018962

Some Examples

Example: Assume that the heights of women in Armenia are Normally distributed with the Mean 158.1cm and Standard Deviation 5.7cm¹.

• Calculate the Probability that the (randomly chosen) woman height will be smaller than 158.1cm.

¹See https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0018962

Some Examples

Example: Assume that the heights of women in Armenia are Normally distributed with the Mean 158.1cm and Standard Deviation 5.7cm¹.

- Calculate the Probability that the (randomly chosen) woman height will be smaller than 158.1cm.
- Calculate the Probability that the (randomly chosen) woman height will be larger than 170cm.

¹See https://journals.plos.org/plosone/article?id=10. 1371/journal.pone.0018962

Assume $X \sim \mathcal{N}(\mu, \sigma^2)$. Then

Assume $X \sim \mathcal{N}(\mu, \sigma^2)$. Then

• $\mathbb{P}(\mu - \sigma < X < \mu + \sigma) \approx 0.68$

Assume $X \sim \mathcal{N}(\mu, \sigma^2)$. Then

- $\mathbb{P}(\mu \sigma < X < \mu + \sigma) \approx 0.68$
- $\mathbb{P}(\mu 2\sigma < X < \mu + 2\sigma) \approx 0.95$

Assume $X \sim \mathcal{N}(\mu, \sigma^2)$. Then

- $\mathbb{P}(\mu \sigma < X < \mu + \sigma) \approx 0.68$
- $\mathbb{P}(\mu 2\sigma < X < \mu + 2\sigma) \approx 0.95$
- $\mathbb{P}(\mu 3\sigma < X < \mu + 3\sigma) \approx 0.997$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim \mathcal{N}(0, \sigma^2);$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim \mathcal{N}(0, \sigma^2);$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Z = \frac{X - \mu}{\sigma} \sim$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim \mathcal{N}(0, \sigma^2);$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

so $Z = \frac{X - \mu}{\sigma}$ is a Standard Normal Variable.

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim \mathcal{N}(0, \sigma^2);$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Z = rac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

so $Z = \frac{X - \mu}{\sigma}$ is a Standard Normal Variable. This transformation is called a Standardization, and Z usually named the Z-score (of X).

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim \mathcal{N}(0, \sigma^2);$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

so $Z = \frac{X - \mu}{\sigma}$ is a Standard Normal Variable. This transformation is called a Standardization, and Z usually named the Z-score (of X).

• If $X \sim \mathcal{N}(0,1)$, then

$$Y = \mu + \sigma \cdot X \sim$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Y = X - \mu \sim \mathcal{N}(0, \sigma^2);$$

• If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

so $Z = \frac{X - \mu}{\sigma}$ is a Standard Normal Variable. This transformation is called a Standardization, and Z usually named the Z-score (of X).

• If $X \sim \mathcal{N}(0,1)$, then

$$Y = \mu + \sigma \cdot X \sim \mathcal{N}(\mu, \sigma^2)$$

Functions of Random Variables: Making new R.V.s from the old ones

Given a r.v. X, one can form new r.v.s by applying functions on X.

²(18+) Measurable!

Given a r.v. X, one can form new r.v.s by applying functions on X.

Example: Say, X is the amount we will earn if selling 100 AMZN shares at the end of the year.

Given a r.v. X, one can form new r.v.s by applying functions on X.

Example: Say, X is the amount we will earn if selling 100 AMZN shares at the end of the year. Of course, X is a r.v.

Given a r.v. X, one can form new r.v.s by applying functions on X.

Example: Say, X is the amount we will earn if selling 100 AMZN shares at the end of the year. Of course, X is a r.v. Then the amount of the income tax we will pay, Y, will be a function of X

Given a r.v. X, one can form new r.v.s by applying functions on X.

Example: Say, X is the amount we will earn if selling 100 AMZN shares at the end of the year. Of course, X is a r.v. Then the amount of the income tax we will pay, Y, will be a function of X. Say, if the tax rate is 10%, then $Y = 0.1 \cdot X$, and Y is again a r.v.

²(18+) Measurable!

Given a r.v. X, one can form new r.v.s by applying functions on X.

Example: Say, X is the amount we will earn if selling 100 AMZN shares at the end of the year. Of course, X is a r.v. Then the amount of the income tax we will pay, Y, will be a function of X. Say, if the tax rate is 10%, then $Y = 0.1 \cdot X$, and Y is again a r.v.

Now, if X is a r.v., and $g: \mathbb{R} \to \mathbb{R}$ is some function², then the r.v.

$$Y = g(X)$$

is called the transformation of X.

²(18+) Measurable!

Given a r.v. X, one can form new r.v.s by applying functions on X.

Example: Say, X is the amount we will earn if selling 100 AMZN shares at the end of the year. Of course, X is a r.v. Then the amount of the income tax we will pay, Y, will be a function of X. Say, if the tax rate is 10%, then $Y = 0.1 \cdot X$, and Y is again a r.v.

Now, if X is a r.v., and $g: \mathbb{R} \to \mathbb{R}$ is some function², then the r.v.

$$Y = g(X)$$

is called the transformation of X.

Example: For example, $Y = X^3$, $Y = \ln(X)$, $Y = \frac{X}{1+X}$, $Z = \sin(X)$,... are all (if defined, of course) new r.v.s obtained from the r.v. X.

 $^{^{2}(18+)}$ Measurable!

Assume X is a r.v., and Y = g(X) is the transformation of X.

Assume X is a r.v., and Y = g(X) is the transformation of X. The general problem here is

Describe the Distribution of Y, having the Distribution of X.

Assume X is a r.v., and Y = g(X) is the transformation of X. The general problem here is

Describe the Distribution of Y, having the Distribution of X.

Let us try to see if you can guess:

• Assume X is Discrete Uniform. What can be said about $Y = X^2$? Say, will Y be Discrete Uniform?

Assume X is a r.v., and Y = g(X) is the transformation of X. The general problem here is

Describe the Distribution of Y, having the Distribution of X.

Let us try to see if you can guess:

- Assume X is Discrete Uniform. What can be said about $Y = X^2$? Say, will Y be Discrete Uniform?
- Assume $X \sim Unif[-2, 2]$. What can be said about Y = 3X + 1?

Assume X is a r.v., and Y = g(X) is the transformation of X. The general problem here is

Describe the Distribution of Y, having the Distribution of X.

Let us try to see if you can guess:

- Assume X is Discrete Uniform. What can be said about $Y = X^2$? Say, will Y be Discrete Uniform?
- Assume $X \sim Unif[-2, 2]$. What can be said about Y = 3X + 1? What about $Z = X^2$?

Simulation of Transformed RVs: R Examples

R Code

```
x <- runif(50000, min = -2, max = 2)
hist(x)
hist(x, freq = F, col = "cyan")
abline(h = 0.25, col = "red", lwd = 2)

y <- 3*x +1
hist(y, freq = F, col = "lightblue") #shows uniform

z <- x^2
hist(z, freq = F, col = "lightcyan") #shows non-uniform!</pre>
```