Corso di Laurea in Informatica Calcolo Numerico Esame del 10/2/2017

1. Si supponga di dover calcolare

$$f(x) = \cos\left(\frac{\pi}{3} + x\right) - \cos\left(\frac{\pi}{3} - x\right)$$

per piccoli valori positivi di x.

- (a) Determinare (e discutere) il condizionamento del problema del calcolo di f(x).
- (b) Determinare il condizionamento delle funzioni seno e coseno.
- (c) Studiare l'errore di arrotondamento nei seguenti algoritmi per il calcolo di f(x):

(a1):
$$x \mapsto p3 := \frac{\pi}{3} + x$$
, $m3 := \frac{\pi}{3} - x \mapsto c1 := \cos p3$, $c2 := \cos m3 \mapsto y1 := c1 - c2$
(a2): $x \mapsto p6 := \frac{\pi}{6} + x$, $m6 := \frac{\pi}{6} - x \mapsto s1 := \sin p6$, $s2 := \cos m6 \mapsto y2 := s2 - s1$

(a2):
$$x \mapsto p6 := \frac{\pi}{6} + x, \ m6 := \frac{\pi}{6} - x \mapsto s1 := \sin p6, \ s2 := \cos m6 \mapsto y2 := s2 - s2$$

(a3):
$$x \mapsto s := \sin x \mapsto y3 := -\sqrt{3} \cdot s$$

2. Determinare una sequenza di rotazioni di Givens che porti il vettore

$$\begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 1 \end{pmatrix} \text{ nella forma } \begin{pmatrix} \alpha \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \text{ con } \alpha \text{ opportuno (esplicitare le matrici}$$

di rotazione). Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

3. Determinare la retta di regressione che approssima ai minimi quadrati i seguenti dati:

Dare inoltre un'interpretazione geometrica dell'esercizio svolto.

4. Calcolare, se esiste, una diagonalizzazione di $A=\left(\begin{array}{cc}-1&-1/2\\1&1/2\end{array}\right)$.

Studiare la convergenza del metodo delle potenze inverse applicato alla matrice A nei due casi in cui vengono usati rispettivamente gli shift p=1 e p=-1.

5. Che relazione c'è tra la SVD di una matrice $A \in \mathbf{R}^{m \times n}$, il suo nucleo $\mathcal{N}(A)$ e la sua immagine $\mathcal{R}(A)$?

Nel seguito, sia Auna matrice 4×7 avente i valori singolari 25, 2, 10^{-2} e 0.

- (a) Determinare la dimensione delle matrici U, Σ, V della SVD di A.
- (b) Determinare la dimensione di $\mathcal{N}(A)$ e $\mathcal{R}(A)$.
- (c) Le trasformazioni lineari associate alle matrici Ae A^t sono surgettive?