Indexmengen

Definition

Es sei $n \in \mathbb{N}$. Für

Zahlen a_1, \ldots, a_n ,

Mengen M_1, \ldots, M_n und

Aussagen A_1, \ldots, A_n definieren wir:

$$ightharpoonup \sum_{i=1}^{n} a_i := a_1 + \ldots + a_n$$

$$ightharpoonup \prod_{i=1}^n a_i := a_1 \cdot \ldots \cdot a_n$$

$$\blacktriangleright \bigcup_{i=1}^n M_i := M_1 \cup \ldots \cup M_n$$

$$ightharpoonup \bigcap_{i=1}^n M_i := M_1 \cap \ldots \cap M_n$$

$$\bigvee_{i=1}^{n} A_i := A_1 \vee \ldots \vee A_n$$

$$\wedge \bigwedge_{i=1}^n A_i := A_1 \wedge \ldots \wedge A_n$$

Indexmengen (Forts.)

Verallgemeinerung auf beliebige Indexmengen I.

Definition

Für jedes $i \in I$ sei M_i eine Menge.

▶ Wir definieren $\bigcup_{i \in I} M_i$ durch

$$x \in \bigcup_{i \in I} M_i :\Leftrightarrow \text{ es gibt } i \in I \text{ mit } x \in M_i.$$

▶ Wir definieren $\bigcap_{i \in I} M_i$ durch

$$x \in \bigcap_{i=I} M_i : \Leftrightarrow \text{ für alle } i \in I \text{ gilt } x \in M_i.$$

Indexmengen (Forts.)

Verallgemeinerung des Begriffs paarweise verschieden.

Definition

Sei I eine Menge und für jedes $i \in I$ sei x_i ein Objekt.

Die Objekte $x_i, i \in I$, heißen *paarweise verschieden*, wenn für alle $i, j \in I$ gilt: $x_i = x_j \Rightarrow i = j$.

Beispiele

- ▶ Die Zahlen n^2 , $n \in \mathbb{N}$, sind paarweise verschieden.
- ▶ Die Zahlen n^2 , $n \in \mathbb{Z}$, sind nicht paarweise verschieden.

Mengenpartitionen

Definition

- ▶ Zwei Mengen A, B heißen *disjunkt*, wenn $A \cap B = \emptyset$.
- ▶ Sei I eine Menge und für jedes $i \in I$ sei M_i eine Menge. Die $M_i, i \in I$, heißen paarweise disjunkt, wenn für alle $i, j \in I$ mit $i \neq j$ gilt: $M_i \cap M_j = \emptyset$.
- ► Es sei \mathcal{M} eine Menge von Mengen. Die Elemente von \mathcal{M} heißen *paarweise disjunkt*, wenn je zwei davon disjunkt sind, d.h. wenn für alle $M, M' \in \mathcal{M}$ mit $M \neq M'$ gilt: $M \cap M' = \emptyset$.

Erinnerung \mathbb{P} : Menge der Primzahlen in \mathbb{N} .

Beispiel

Für $p \in \mathbb{P}$ sei $M_p := \{p^n \mid n \in \mathbb{N}\}$ (d.h. die Menge aller Potenzen von p).

Dann sind die Mengen M_p , $p \in \mathbb{P}$ paarweise disjunkt.

Es sei M eine Menge.

Definition

Eine Partition von M ist eine Menge $\mathcal P$ nicht-leerer, paarweise disjunkter Teilmengen von M mit $M = \bigcup_{C \in \mathcal P} C$.

Die Elemente $C \in \mathcal{P}$ heißen *Teile* der Partition.

Bemerkung

Für jede Partition \mathcal{P} von M ist $\mathcal{P} \subseteq \operatorname{Pot}(M) \setminus \{\emptyset\}$.

Beispiele

- ▶ $\mathcal{P} = \{ \{ n \in \mathbb{N} \mid n \text{ gerade} \}, \{ n \in \mathbb{N} \mid n \text{ ungerade} \} \}$ ist eine Partition von \mathbb{N} mit zwei Teilen.
- ▶ $\mathcal{P} = \{ \{ n \in \mathbb{N} \mid n \text{ hat genau } k \text{ Dezimalstellen} \} \mid k \in \mathbb{N} \}$ ist eine Partition von \mathbb{N} mit unendlich vielen Teilen.
- ▶ Die Menge $\mathcal{P} = \{ \{p^n \mid n \in \mathbb{N}\} \mid p \in \mathbb{P} \}$ ist keine Partition von \mathbb{N} .
- ▶ Die einzige Partition von \emptyset ist $\mathcal{P} = \emptyset$.

Bemerkungen

- ► Sind M, N endliche, disjunkte Mengen, so gilt $|M \cup N| = |M| + |N|$.
- lacktriangle Sind M_1,\ldots,M_n endliche, paarweise disjunkte Mengen, so gilt

$$|\bigcup_{i=1}^n M_i| = \sum_{i=1}^n |M_i|.$$

▶ Ist M eine endliche Menge und \mathcal{P} eine Partition von M, dann ist

$$|M| = \sum_{C \in \mathcal{P}} |C|.$$

1.3 Beweisprinzipien

Direkter Beweis

Ziel

Zeige die Implikation $A \Rightarrow B$.

Methode

Finde und verwende Implikationen

- $ightharpoonup A_1 \Rightarrow A_2$
- $ightharpoonup A_2 \Rightarrow A_3$
- $A_{n-1} \Rightarrow A_n$
- für eine natürliche Zahl n mit
 - $ightharpoonup A = A_1$
 - ► $B = A_n$

Direkter Beweis (Forts.)

Beispiel

Für alle $z \in \mathbb{Z}$ gilt: z ungerade $\Rightarrow z^2$ ungerade.

Kontraposition

Ziel

Zeige die Implikation $A \Rightarrow B$.

Methode

Zeige stattdessen: $\neg B \Rightarrow \neg A$.

Beruht auf der Tautologie: $(A \rightarrow B) \Leftrightarrow (\neg B \rightarrow \neg A)$.

Beispiel

Für alle $z \in \mathbb{Z}$ gilt: z^2 gerade $\Rightarrow z$ gerade.

Beweis einer Äquivalenz

Beispiel

 $[A \Leftrightarrow B] \Leftrightarrow [(A \Rightarrow B) \land (B \Rightarrow A)]$

Beispiel

Für jede ganze Zahl z gilt:

Genau dann ist z^2 gerade, wenn z gerade ist.

Widerspruchsbeweis

Ziel

Zeige $A \Rightarrow B$ ist wahr.

Methode

Zeige stattdessen: $\neg A \Rightarrow (B \land \neg B)$ für eine passende Aussage B.

Beweis der Methode

- ▶ $B \land \neg B$ ist falsch.
- ▶ Aus $\neg A \Rightarrow (B \land \neg B)$ folgt (per Definition):
- ▶ $\neg A \rightarrow (B \land \neg B)$ ist wahr.
- ▶ Aus der Definition von \rightarrow folgt: $\neg A$ ist falsch.
- ► Damit ist *A* wahr.

Widerspruchsbeweis (Forts.)

Beispiel

 $\sqrt{2} \not\in \mathbb{Q}$.

Vollständige Induktion

Ziel

Für alle $n \in \mathbb{N}$ gilt A(n).

Methode

- ► Führe die folgenden Beweisschritte durch:
 - ► Induktionsanfang: Zeige A(1) ist wahr.
 - ► Induktionsschritt: Zeige die Implikation $A(n) \Rightarrow A(n+1)$ für alle $n \in \mathbb{N}$.
- ▶ Dann ist A(n) für alle $n \in \mathbb{N}$ wahr.

Man spricht präziser von einer vollständigen Induktion $\ddot{u}ber\ n$. Im Induktionsschritt nennt man die Aussage A(n) die Induktionsvoraussetzung.

Vollständige Induktion (Forts.)

Beweis des Prinzips

Beruht auf der folgenden Eigenschaft von \mathbb{N} :

Für jede Teilmenge $A \subseteq \mathbb{N}$ gilt: Ist $1 \in A$ und ist für jedes $n \in A$ auch $n+1 \in A$, dann ist $A = \mathbb{N}$.

Bei der vollständigen Induktion zeigen wir:

Die Menge $A:=\{n\in\mathbb{N}\mid A(n) \text{ ist wahr}\}$ erfüllt diese Bedingung.

Damit ist $A = \mathbb{N}$.

Vollständige Induktion (Forts.)

Beispiel

Für alle $n \in \mathbb{N}$ gilt $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Beweis

Vollständige Induktion über n.

Sei A(n) die Aussageform $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Vollständige Induktion (Forts.)

Bemerkung

Es gibt verschiedene Varianten der Induktion, z.B.

- ▶ Induktionsanfang bei $n_0 \in \mathbb{N}$ statt bei 1. Damit wird die Aussage A(n) für alle $n \ge n_0$ gezeigt.
- ▶ Induktionsvoraussetzung: $A(1) \land ... \land A(n)$ anstelle von A(n).