

Aula 3

Prof. Marcelo Sousa

Agenda

• Segurança e Confiabilidade

• Tolerância a Falhas por Software

Tipos de Tarefas de Tempo Real

- Sistema Seguro
 - É um sistema que nunca causa danos, mesmo em caso de fala

- Sistema Confiável:
 - É um sistema que permanece em funcionamento por longos períodos de tempo sem apresentar uma falha

- Em sistemas tradicionais
 - É comum observar sistemas onde essas características são independentes.
 - Exemplos:
 - Sistemas de processamento de texto.
 - Pouco confiável
 - Seguro
 - Arma de fogo
 - Confiável
 - Pouco seguro

- Fail-Safe State
 - Estado no qual o sistema deve se encontrar em caso de falha do sistema e nenhum dano deve ser gerado como resultado.
 - É necessária preocupação com a transição entre os estados anteriores à entrada no fail-safe state.

- Fail-Safe State
 - Sistema de Semáforos não confiável e inseguro
 - Falha várias vezes durante um dia de operação, não sincronizando os semáforos.
 - Sistema de Semáforos Seguro, mas ainda não confiável
 - Criação de um *fail-safe state*, onde todas as luzes ficam amarelas em caso de falha.

- Sistema Safety-Critical
 - Sistema que, em caso de falha, pode causar danos severos.
 - Exemplo:
 - Sistema de navegação de um avião
 - Em caso de falha do computador do avião, não há *fail-safe state*, pois não é possível desligar as turbinas em caso de falha, por exemplo.

- Sistema Safety-Critical
 - Em sistemas onde não é possível a existência de *fail-safe state*, a única forma de garantir a segurança é aumentando a confiabilidade.
 - Exemplo:
 - Em sistemas de controle de voo (*fly-by-wire aircraft*) a maioria dos controles é realizado por um computador. Logo, falha no computador é inaceitável
 - Taxa de Falhas: 1 a cada 10⁹ horas de voo (milhões de anos de voo contínuo)

- Alta Confiabilidade Software
 - Error Avoidance
 - Utilização de boas práticas de programação
 - Utilização de metodologias de desenvolvimento
 - Adoção de padrões de programação
 - Error Detection and Removal
 - Erros ainda podem ser encontrados
 - Realização de testes extensivos e intensivos
 - Realização de revisões constantes
 - Todos os erros identificados devem ser corrigidos

- Alta Confiabilidade Software
 - Fault-Tolerance
 - Não interessa o quanto as duas técnicas anteriores sejam utilizadas, é praticamente impossível existir um sistema que não possua falhas (*error-free*)
 - Mesmo que o erro haja no sistema, este deve ser tolerado e sua computação deve ser realizada corretamente.

- Alta Confiabilidade Hardware
 - Built In Self Test (BIST)
 - O sistema analisa periodicamente os componentes do sistema.
 - Em caso de detecção de falha este componente é removido do sistema e outro é componente redundante é inserido no sistema.

Segurança e Confiabilidade

- Alta Confiabilidade Hardware
 - Triple Modular Redundancy (TMR)

Legend:

C1,C2,C3: Redundant copies of the same component

- N-Version Programming
 - Adaptação da Técnica TMR
 - Desenvolvimento de times independentes para a o mesmo conjunto de funcionalidades
 - Tarefas rodam concorrentemente e seus resultados são comparados através de votação
 - Utiliza o princípio que equipes diferentes podem cometer erros diferentes que são eliminados quando postos em votação.

- N-Version Programming
 - Problemas:
 - Erros comuns podem surgir, pois problemas de difícil resolução para uma equipe usualmente são difíceis para outra equipe.
 - Pouco eficiente em sistemas de complexidade elevada
 - Correlação Estatística das Falhas: Os componentes do sistema podem falhar pelos mesmos motivos

- Recovery Blocks
 - Utilização de blocos redundantes (try blocks)
 - Cada try block é desenvolvido intencionalmente com um algoritmo diferente
 - Quando há falha no resultado de alguns dos try blocks
 outro bloco é habilitado para ser executado

Tolerância a Falhas por Software

• Recovery Blocks

- Recovery Blocks
 - Problemas:
 - Correlação Estatística das Falhas: Os componentes do sistema podem falhar pelos mesmos motivos
 - Apenas pode ser utilizada se o *deadline* de uma tarefa for muito maior que seu tempo computacional

- Checkpointing and Rollback Recovery
 - Testes de coerência dos estados são realizados periodicamente.
 - Em caso de sucesso, todos os estados do sistema são armazenados em forma de *backup* (*checkpoints*)
 - Em caso de falha, o sistema retorna ao checkpoint anterior (rollback recovery)
 - Após o rollback recovery, o processo computacional é retomado iniciado novamente

Tolerância a Falhas por Software

Checkpointing and Rollback Recovery

Tarefas de Tempo Real

• Definição: é uma tarefa dentro do sistema no qual expressões quantitativas de tempo são utilizadas para descrever seu comportamento.

• Classificações:

- Hard real-time
- Soft real-time
- Firm real-time

- Hard Real-Time Tasks
 - É uma tarefa que DEVE produzir seus resultados até um certo limite de tempo;
 - O sistema é considerado falho caso nenhuma tarefa deste tipo seja atendida;
 - Sistemas que possuem Hard Real-Time Tasks, em sua maioria, são Safety-Critical
 - Deadline : de poucos μs a poucos ms

- Hard Real-Time Tasks
 - Exemplos:
 - Robô
 - Detecção e reação a objetos são hard-real time tasks
 - Sistema Anti-Míssel
 - Detecção de mísseis, movimentação do canhão e disparo são hardreal time tasks
 - OBS: Não é necessário que uma tarefa seja atendida o mais rápido possível, apenas que ela seja atendida em seu tempo especificado sem o ultrapassar.

- Firm Real-Time Tasks
 - Este tipo de tarefa é associado a um deadline
 - Não implica em falha do sistema em caso de não atendimento do *deadline*
 - Seu resultado é descartado caso exceda o deadline

- Firm Real-Time Tasks
 - Exemplos:
 - Vídeo Conferência
 - A transmissão de pacotes é firm real time task
 - Sistema de rastreamento de inimigos baseado em satélites
 - A transmissão de pacotes até a base central é firm real time task
 - Deadline : de poucos ms a centenas de ms

- Soft Real-Time Tasks
 - Também possui restrições de tempo
 - Tempo necessário para a resposta é expressa através de valores aproximados
 - Valores tardios no atendimento de uma tarefa demonstram degradação do sistema e não falha

- Soft Real-Time Tasks
 - Exemplos:
 - Web Browser
 - Resposta a uma requisição de URL é soft real time task
 - Reserva de assentos de aviões
 - Tempo de resposta à requisição de reserva é *soft real time task*

- Non-Real-Time Tasks
 - Não está associada a nenhum tipo de restrição de tempo (ou quase).
 - No entanto, antigamente várias tarefas que são soft real time eram non-real time
 - Non-real-time task
 - Deadline: Alguns minutos, horas ou mesmo dias
 - Soft-real-time task
 - Dealine:Poucos segundos

Restrições de Tempo

• O perfeito funcionamento (*correctness*) depende de dois fatores:

- Lógico
 - Computação correta
- Temporal
 - Atendimento dentro do tempo estabelecido

- Eventos em Sistemas de Tempo Real
 - Eventos de Estímulo
 - Gerados pelo ambiente agindo no sistema
 - Eventos de Resposta
 - Gerados pelo sistema agindo no ambiente

- Classificação
 - Performance
 - Imposta a uma resposta dada pelo sistema
 - Garante que o sistema computacional está funcionando perfeitamente
 - Comportamental
 - Imposta a um estímulo gerado pelo ambiente
 - Garante que o ambiente se comporta bem

Restrições de Tempo

- Classificação (comportamental ou *performance*)
 - Delay
 - Deadline

- Duration

- Delay
 - Tempo mínimo entre a ocorrência de dois eventos arbitrários

- Deadline
 - Tempo máximo da ocorrência de dois eventos

- Duration
 - Tempo específico de atuação de um evento

- Exemplos
 - Deadline
 - Stimulus Stimulus (SS) Comportamental
 - Uma vez completado o primeiro dígito o usuário deve digita o próximo em até 5 segundos. Caso contrário o tom de ocupado soará.
 - Stimulus Response (SR) Performance
 - Um vez levantado o fone do gancho o sistema deve produzir um tom de discagem. Caso contrário o som de beeping é produzido até que o fone seja colocado no gancho

- Exemplos
 - Deadline
 - Response Stimulus (RS) Comportamental
 - Um vez soado o tom de discagem, o primeiro digito deve ser discado em até 30 segundos. Caso contrário o sistema entra em espera e um tom de ocupado é gerado.
 - Response Response (RR) Performance
 - Uma vez que o tom de chamando do destinatário soar um tom de chamando equivalente também deve soar. Caso contrário a chamada deve ser terminada.

- Exemplos
 - Delay
 - Stimulus Stimulus (SS) Comportamental
 - Uma vez discado um digito, o próximo digito só pode ser discado após 1 segundo. Caso contrário um som de beep é soado enquanto o fone não é posto no gancho.

- Exemplos
 - Duration
 - Se você pressionar o botão por menos de 15 segundos, o sistema se conecta com a operadora local
 - Se você pressionar por um intervalo de 15 a 30 segundos, o sistema se conecta a operadora internacional
 - Se pressionar por um tempo maior que 30 segundos, produz um tom de discagem quando liberado

Referência

• http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Real%20time%20sys tem/New_index1.html