CLASS-9 CHAPTER-10 CIRCLES

Exercise 10.4

- 1. If two equal chords of a circle intersect prove that the parts of one chord are separately equal to the parts of the other chord
- 2. If non-parallel sides of a trapezium are equal. prove that it is cyclic
- 3. If \mathbf{P}, \mathbf{Q} and \mathbf{R} are the mid-points of the sides BC, CA and AB of a triangle and AD is the perpendicular from \mathbf{A} on BC, prove that $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{D} are concyclic
- 4. ABCD is a parallelogram. A circle through **A**, **B** is so drawn that it intersects AD at **P** and BC at **Q**. prove that **P**, **Q**, **R** and **D** are concyclic.
- 5. Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersent on the circumcircle of the triangle.
- 6. If two chords AB and CD of a circle AYDZBWCX intersect at right angles see Fig 1. Prove that

$$arc(CXA) + arc(DZB) = arc(AYD) + arc(AYD) + arc(BWC)$$

= $semi - circle$

- 7. If ABC is an equilateral triangle inscribed in a circle and **P** be any point on the minor arc BC which does not coincide with **B** or **C**, prove that PA is angle bisector of $\angle BPC$
- 8. In Fig.2, AB and CD are two chords of a circle intersecting each other at point ${\bf E}$ prove that

$$\angle AEC = \frac{1}{2}$$
 (Angle subtended by arc CXA at centre +angle subtended by arc DYB at the centre).

Figure 1

9. If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at the points \mathbf{P} and \mathbf{Q} , prove that PQ is a diameter of the circle,

Figure 2

- 10. A circle has radius $\sqrt{442}$ cm it is divided into two segments by a chord of length 2cm. Prove that the angle subtended by the chord at a point in major segment is 45° .
- 11. Two equal chords AB and CD of a circle when produced intersect at a point **P**.Prove that PB = PD
- 12. AB and AC are two chords of a circle of radius r such that AB = 2AC.

If ${\bf P}$ and ${\bf Q}$ are the distances of AB and AC from the centre, prove that $4q^2=p^2+3r^2$

13. In Fig 3, **O** is the centre of the circle, $\angle BCO = 30^{\circ}$. Find x and y

Figure 3

14. In fig 4, **O** is the centre of the circle, BD = 0D and $CD \perp AB$. Find $\angle CAB$

