

HIGH SPEED SWITCHES

DESCRIPTION

The 2N2219A and 2N2222A are silicon planar epitaxial NPN transistors in Jedec TO-39 (for 2N2219A) and in Jedec TO-18 (for 2N2222A) metal case. They are designed for high speed switching application at collector current up to 500mA, and feature useful current gain over a wide range of collector current, low leakage currents and low saturation voltage.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage (I _E = 0)	75	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	40	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	6	V
Ic	Collector Current	0.8	Α
P _{tot}	Total Dissipation at $T_{amb} \le 25$ °C for 2N2219A for 2N2222A at $T_{case} \le 25$ °C for 2N2219A for 2N2222A	0.8 0.5 3 1.8	W W W
T _{stg}	Storage Temperature	-65 to 200	°C
Tj	Max. Operating Junction Temperature	175	°C

June 1999 1/8

THERMAL DATA

			TO-39	TO-18	
R _{thj-case}	Thermal Resistance Junction-Case	Max	50	83.3	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	187.5	300	°C/W

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 60 V V _{CB} = 60 V T _{case} = 150 °C			10 10	nA μA
I _{CEX}	Collector Cut-off Current (V _{BE} = -3V)	V _{CE} = 60 V			10	nA
I _{BEX}	Base Cut-off Current (V _{BE} = -3V)	V _{CE} = 60 V			20	nA
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 3 V			10	nA
V _{(BR)CBO} *	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 10 μA	75			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 10 mA	40			V
V _{(BR)EBO} *	Emitter-Base Breakdown Voltage (I _C = 0)	Ι _Ε = 10 μΑ	6			V
$V_{CE(sat)}*$	Collector-Emitter Saturation Voltage	$I_{C} = 150 \text{ mA}$ $I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}$ $I_{B} = 50 \text{ mA}$			0.3 1	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 150 mA I _B = 15 mA I _C = 500 mA I _B = 50 mA	0.6		1.2 2	V V
h _{FE} *	DC Current Gain	$\begin{array}{llllllllllllllllllllllllllllllllllll$	35 50 75 100 40 50		300	
h _{fe} *	Small Signal Current Gain	I _C = 1 mA V _{CE} = 10 V f = 1KHz I _C = 10 mA V _{CE} = 10 V f = 1KHz	50 75		300 375	
f _T	Transition Frequency	I _C = 20 mA V _{CE} = 20 V f = 100 MHz	300			MHz
Сево	Emitter Base Capacitance	I _C = 0 V _{EB} = 0.5 V f = 100KHz			25	pF
С _{СВО}	Collector Base Capacitance	I _E = 0 V _{CB} = 10 V f = 100 KHz			8	pF
R _{e(hie)}	Real Part of Input Impedance	I _C = 20 mA V _{CE} = 20 V f = 300MHz			60	Ω

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 1 %

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
NF	Noise Figure	$I_C = 0.1 \text{ mA}$ $V_{CE} = 10 \text{ V}$ $f = 1 \text{KHz}$ $R_g = 1 \text{K}\Omega$		4		dB
h _{ie}	Input Impedance	I _C = 1 mA V _{CE} = 10 V I _C = 10 mA V _{CE} = 10 V	2 0.25		8 1.25	kΩ kΩ
h _{re}	Reverse Voltage Ratio	I _C = 1 mA V _{CE} = 10 V I _C = 10 mA V _{CE} = 10 V			8 4	10 ⁻⁴ 10 ⁻⁴
hoe	Output Admittance	I _C = 1 mA	5 25		35 200	μS μS
t _d **	Delay Time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = 15 \text{ mA}$ $V_{BB} = -0.5 \text{ V}$			10	ns
t _r **	Rise Time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = 15 \text{ mA}$ $V_{BB} = -0.5 \text{ V}$			25	ns
t _s **	Storage Time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = -I_{B2} = 15 \text{ mA}$			225	ns
t _f **	Fall Time	$V_{CC} = 30 \text{ V}$ $I_{C} = 150 \text{ mA}$ $I_{B1} = -I_{B2} = 15 \text{ mA}$			60	ns
r _{bb} , C _b ,c	Feedback Time Constant	$I_C = 20 \text{ mA} V_{CE} = 20 \text{ V}$ f = 31.8MHz			150	ps

^{*} Pulsed: Pulse duration = 300 μs, duty cycle ≤ 1 % ** See test circuit

Normalized DC Current Gain.

Contours of Constant Narrow Band Noise Figure.

Collector-emitter Saturation Voltage.

Switching Time vs. Collector Current.

Test Circuit fot td, tr.

Test Circuit fot td, tr.

TO-18 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		12.7			0.500		
В			0.49			0.019	
D			5.3			0.208	
E			4.9			0.193	
F			5.8			0.228	
G	2.54			0.100			
Н			1.2			0.047	
I			1.16			0.045	
L	45°			45°			

TO-39 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	12.7			0.500			
В			0.49			0.019	
D			6.6			0.260	
E			8.5			0.334	
F			9.4			0.370	
G	5.08			0.200			
Н			1.2			0.047	
I			0.9			0.035	
L	45° (typ.)						

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

 $\ensuremath{\mathbb{C}}$ 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.