Total No. of printed pages = 4

Alun

PH 181101

Roll No. of candidate

2021

B.Tech. 1st Semester End-Term Examination

PHYSICS - 101

(New Regulation w.e.f. 2017-18) and

(New Syllabus - (Group-B) (w.e.f. 2018-19))

Full Marks - 70

Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer question No. 1 and any four from the rest.

1. Write the correct answer from MCQ:

 $(10 \times 1 = 10)$

- (i) If curl of a vector point function is zero then the vector is
 - (a) Rotational
 - (b) Irrotational
 - (c) Both rotational
 - (d) Solenoidal
- (ii) Displacement current exist whenever there is a
 - (a) change of electric flux
 - (b) steady condition
 - (c) external magnetic field
 - (d) none of above
- (iii) To obtain interference, we need two sources which emit radiation
 - (a) the two sources should be coherent
 - (b) the two source must emit continuous waves of the same wavelength and time period
 - (c) both (a) and (b)
 - (d) none of above

- (iv) Laser light is produce due to
 - (a) Interference of light
 - (b) Spontaneous emission of light
 - (c) Light amplification by stimulated emission of radiation
 - (d) Diffraction phenomenon
- (v) Ratio of probability of spontaneous emission and probability of stimulated emission is proportional to
 - (a) v^2
 - (b) v^3
 - (c) u
 - (d) independent of v
- (vi) Which of the following is true for if n_1 is refractive index of core glass and n_2 is refractive index of clad glass then
 - (a) $n_1 < n_2$
 - (b) $n_1 = n_2$
 - (c) $n_1 > n_2$
 - (d) n_1 and n_2 can have any value
- (vii) The Davisson and Garmer experiment relates to
 - (a) Polarization
 - (b) Interference
 - (c) Electron diffraction
 - (d) Phosphorescence
- (viii) The product of wave function ψ and its complex conjugate ψ^* is known as
 - (a) Probability density
 - (b) Charge density
 - (c) Mass density
 - (d) Current density
- (ix) The correct expression for mobility of electron is
 - (a) $\mu = v_d E$
 - (b) $\mu = v_d^2 E$
 - (c) $\mu = \frac{v_d}{E}$
 - (d) $\mu = \frac{v_d}{E^2}$

- (x) When superconductor is placed in a magnetic field at critical temperature then the induced current flow in the super conductor such that it opposed the field and eject lines of force————
 - (a) Inside the superconductor
 - (b) Outside the superconductor
 - (c) Towards the superconductor
 - (d) None of above
- 2. (a) What do you mean by gradient of a scalar field? Find the gradient of a scalar function $\phi = 5xy 3y^2z^3$ at the point (-1, 2,-2). (1+3)
 - (b) State the Maxwell's equations in differential form and write their physical significance. (2+4)
 - (c) Compare hard and soft magnetic material with examples. (5)
- 3. (a) In interference due to reflected light in plane parallel film, find the effective path difference between the interfering reflected rays. Hence write the conditions for constructive and destructive interference. (6+2)
 - (b) The dispersive powers of a crown and flint glass are 0.02 and 0.04 respectively. Find the focal length of the component lens of an achromatic doublet of focal length 20 cm.
 - (c) The central part in Newton's ring seen in reflected rays appears dark. Why? The interference fringes produced in the Newton ring experiment are real or virtual. (2+1)
- 4. (a) What do you mean by metastable state? Why existence of metastable state is an essential requirement for achieving population inversion? (2+2)
 - (b) What is population inversion and why it is sometimes referred to as negative temperature state? (2+1)
 - (c) Determine the condition under which stimulated emission equal to spontaneous emission. (4)
 - (d) What is holography? What is the difference between holography and photography? (2+2)
- 5. (a) What is phase velocity? Show that the group velocity associated with a wave packet is equal to the velocity of the particle. (2+3)
 - (b) What is wave function? Derive the one dimensional time dependent Schrödinger's wave equation for non relativistic particle. (2+5)
 - (c) Evaluate de Broglie's wave length of helium nucleus that accelerate through 500 V.

(Given mass of proton = mass of neutron = $\times 1.67 \times 10^{-27}$ kg). (3)

- 6. (a) Derive an expression for electrical conductivity of a conductor based on classical free electron theory. (5)
 - (b) What is Hall Effect? Show that Hall coefficient is independent of the applied magnetic field and is inversely proportional to the current density and electric charge. (2+3)
 - (c) Discuss the propagation mechanisms of light waves in optical fibre. What are single mode, multimode, and graded index fibre? (2+3)
- 7. (a) Write about the phenomenon of superconductivity and explain the behaviour of superconductor in an external magnetic field. How does it behave in a different manner compared to normal conductor? (2+4+4)
 - (b) The critical temperature for lead is 7.2K. It loses its superconductive state at 5K, when it is placed in an external magnetic field of strength 3.3×10^4 A/m. Determined the corresponding value of field strength at 0K.

(5)