Machine learning with Azure machine learning with R extension

DR. UROS GODNOV

Before we start

- Machine learning is suddenly very popular
- All non-scientist and non-statisticians are now data scientist
- Very easy to accomplish something
- No knowledge needed for "something" to do "something" that returns "something"

Machine learning

- ► Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed.
- Similar to data mining, but there is a difference!
- "Hierarchy":
 - ► **Statistics** quantifies numbers
 - Data Mining explains patterns
 - ► Machine Learning predicts with models
 - ► Artificial Intelligence behaves and reasons

Machine learning

- ► Facebook's News Feed uses machine learning to personalize each member's feed.
- WolframAlpha engine
- ► R or Phyton

Azure machine learning (free version)

	FREE	STANDARD
Price	Free	\$9.99 per Seat per month \$1 per Studio Experimentation Hour
Azure Subscription	Not Required	Required
Max Number of Modules per Experiment	100	Unlimited
Max Experiment Duration	1 hour per experiment	Up to 7 days per experiment with a maximum of 24 hours per module
Max Storage Space	10 GB	Unlimited - BYO
Read Data from On-Premises SQL Preview	No	Yes
Execution / Performance	Single Node	Multiple Nodes
Production Web API	No	Yes
SLA	No	Yes

Types of data

- Plain text (.txt)
- Comma-separated values (CSV) with a header (.csv) or without (.nh.csv)
- ► Tab-separated values (TSV) with a header (.tsv) or without (.nh.tsv)
- ▶ Hive table
- ▶ SQL database table
- OData values
- SVMLight data (.svmlight)
- Attribute Relation File Format (ARFF) data (.arff)
- Zip file (.zip)
- R object or workspace file (.RData)

Variables

General statistics

<u>Apply Math Operation</u> -> Applies a mathematical operation to column values <u>Compute Elementary Statistics</u> -> Calculates specified summary statistics for selected dataset columns

<u>Compute Linear Correlation</u> -> Calculates the linear correlation between column values in a dataset

<u>Descriptive Statistics</u> -> Generates a basic descriptive statistics report for the columns in a dataset

<u>Evaluate Probability Function</u> -> Fits a specified probability distribution function to a dataset

Replace Discrete Values -> Replaces discrete values from one column with numeric values based on another column

<u>Test Hypothesis Using t-Test</u> -> Compares means from two datasets using a t-test

Demo 1

- Automobile price data
- Select column (length, horsepower, city-mpg, highway-mpg, price)
- Summarize data
- ▶ Compute linear correlation

Extensions – data preparation phase

- ▶ Pyhton extension
- R extension:
 - ▶ ggplot2
 - Preparing data
- print(rownames(installed.packages()))

Back to previous example

- ► Add Execute R script task
- Inside task add the following:
 - ► library(PerformanceAnalytics)
 - ▶ chart.Correlation(dataset1)

R (visualization) – ggplot2

- ggplot2 -> golden standard for plots in R
- Vizualizing using a "grammar":
 - Data
 - Chart type
 - ► Smoothing curve
 - ▶ Facets
- Calculated columns with function within

R – ggplot2

- install packages ggplot2 and reshape2, dplyr
- ► Show "tips" data set
- Add calculated column ratio
- Show scatterplot(total_bill,ratio)
- Expand basic graph with sex/time
- Add smooth linear curve

Demo 1/a

- Select columns
- ▶ Edit metadata
- ► Execute R script

Data manipulation/transformation

Manipulation	
Add Columns	- 1
Add Rows	- 1
Apply SQL Transformation	- 1
Clean Missing Data	1
Convert to Indicator Values	1
Edit Metadata	11
Group Categorical Values	11
Join Data	11
Project Columns	1
Remove Duplicate Rows	11
Select Columns Transform	11
SMOTE	- 1

Scale and Reduce	
Clip Values	
Group Data into Bins	
Normalize Data	
Principal Component Analysis	

Demo 1/b

- Group into bins
- ► Split data:
 - ▶ random
 - stratified

Now, we are ready!

Ţ

Microsoft Azure Machine Learning: Algorithm Cheat Sheet

This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the question you're trying to answer.

Making list of algorithms more transparent

	Classification		ication
	Regresssion	Two-class	Multiclass
Average Perceptron		4	
Bayes Point Machine		4	
Decision Forest	4	4	4
Decision Jungle		4	4
Decision Tree	✓	4	
Fast Forest	4		
Linear Regression	4		
Bayes Linear Regression	4		
Log Regression		4	4
Neural Network	4	4	4
Ordinal Regression	4		
Poisson Regression	4		
SVM		4	
SVM Deep Support		4	

Linear

Regression

Azure ML: Linear Regression

and Logistic

Azure ML: <u>Two-class Classification</u> Logistic Regression

Multiclass classification Logistic Regression.

Decision Tree, Decision Forests, Decision Jungles

Decision tree

Azure ML: <u>Regression</u> boosted decision tree <u>Two-class classification</u> boosted decision tree **Decision Forest**

Decision Jungle

Azura MI · Regression decision forrest

Neural networks and perceptrons

Azure ML: <u>Regression</u> Neural networks <u>Two Class classification</u> Neural networks Multi Class classification Neural networks

SVM

Azure ML: <u>Two Class classification</u> SVM <u>Two Class classification</u> locally deep SVM

Anomaly detection SVM

Regression algorithms

- Regression is method for estimating relations among parameters/varibles.
- Linear vs. Logistic (linear combination of parameters vs. Logistic combination of parameters)
- Typical Problem would be predicting Y; a numeric value.
- Typical Azure Algorithms
 - Boosted <u>Decision Tree</u> Regression
 - <u>Decision Forest</u> Regression
 - <u>Linear</u> Regression
 - Bayesian Linear Regression

~

Evaluating regression algorithms

Mean Absolute Error:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |f_i - y_i|$$

Metrics to measure how close predictions are to eventual outcomes

Root Mean Square Error:
$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (f_i - y_i)^2}{n}}$$

Metrics of differences between predicted values and actual values.

Relative square Error:

$$RSE = \frac{\sum_{i=1}^{n} (f_i - y_i)^2}{\sum_{i=1}^{n} (\overline{y} - y_i)^2}$$

Coeff. of Determination:

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Summarization of regression model how well fits a statistical model; R^2 = 1 model is perfect, respectively

Demo 1/c

- Regression model
- Score
- Evaluation

Comparison of Regression

Regression Algorithm	Accuracy	Training time	Linearity	Customization	Predicting Variable	Type of independant variable(s)	Data Quantity
linear	Good	Fast	Excellent	Good	Interval	Any	small to big
Bayesian linear	Good	Fast	Excellent	Moderate	Interval	Any	big
decision forest	Excellent	Moderate	Good	Good	Interval	Any	
boosted decision tree	Excellent	Fast	Good	Good	Interval	Any	big
fast forest quantile	Excellent	Moderate	Moderate	Excellent	Distribution (Interval)	Any	
neural network	Excellent	Slow	Moderate	Excellent	Interval	Any	smaller
Poisson	Good	Moderate	Excellent* (log linear)	Good	Interval (counts)	Any	small to big
ordinal	Good	Moderate	Excellent	None	Ordinal (order)	Any	small to big

Scale:

Excellent	Good	Moderate
Fast	Moderate	Slow

Two-class clasification

- Creates classification estimates for label / prediction variable with dichotomious values
- Typical Problem would be predicting a binary class for label variable
- Typical Azure Algorithms
 - Boosted <u>Decision Tree</u> two-class
 - <u>Decision Forest</u> two-class
 - <u>Decision Jungle</u> two-class
 - <u>Logistic Regression</u> two-class
 - Neural Network two-class
 - Averaged Perceptron two-class
 - <u>SVM</u> two-class

Two-Class Boosted Decision Tree	▲ Two-Class Decision Jungle	▲ Two-Class Bayes Point Machine	
Create trainer mode	Resampling method	Number of training iterati	
Single Parameter	Bagging ~	30	▲ Two-Class Logistic Regression
Maximum number of leav	Create trainer mode	✓ Include bias	Create trainer mode
20	Single Parameter	✓ Allow unknown value	Single Parameter
Minimum number of sam	Number of decision DAGs		Optimization tolerance
10	8	▲ Two-Class Support Vector Mac	1E-07
Learning rate	Maximum depth of the d	Create trainer mode	L1 regularization weight
0.2	32	Single Parameter	1
Number of trees construc	Maximum width of the de	Number of iterations	L2 regularization weight
100	128	1	1
Random number seed	Number of optimization s	Lambda	Memory size for L-BFGS
	2048	0.001	20
	▲ Two-Class Averaged Perceptron	✓ Normalize features	Random number seed
	Create trainer mode	Project to the unit-sp	
	Single Parameter	. —	✓ Allow unknown categ ≡
	Learning rate	Random number seed	
	Maximum number of iter		-
	10	🗹 Allow unknown categ 📃	
-	. Random number seed		-
	M Allowers :		
	🗹 Allow unknown categ		

Regularization weight

- Used for avoiding overfitting.
- L1, L2 penalized estimation methods shrink the estimates of regre.
 coefficient towards zero in relation to maximize likelihood of estimates.
- L1 for sparse, high-dimensional model
- L2 for dense (or smaller) model and computationally efficient

Evaluating two-class Classification

ROC (AUC) Curve / Precision / Lift Chart

False Positive Rate

AUC/ROC:

$$0.9 - 1 - WTF$$
?

Classification Matrix / Confussion matrix / Metrics

True Positive	False Negative	Accuracy 0.900	Precision 0.885	Threshold 0.5	■ AUC 0.988
False Positive	True Negative	Recall	F1 Score		
6	44	0.920	0.902		
Positive Label	Negative Label				
1	0				

Evaluating two-class Classification

True Positive (TP) – correctly identified: Buyes is classified as Buyer False Positive (FP) – Incorrectly identified: Buyes is classified as non-buyer True Negative (TN) - correctly identified: Non-buyes is classified as non-buyer False Negative (FN) - Incorrectly identified: Non-buyes is classified as buyer

Accuracy (TP + TN) / (TP + TN + FP + FN) – Proportion of correctly classified Precision TP / (TP+FP) – Proportion of positive cases classified correctly Sensitivity* TP / (TP + TN) – Proportion of actual positive cases classified correctly Score 2TP / (2TP + FP + FN) – Harmonic mean of precision and Sensitivity

Demo 2

- Adult Census Income Binary Classification dataset
- Download dataset and create ggplot in R
- ► Focus only on USA
- Omit fnlwgt, education-num, capital-gain, capital-loss

Comparison of Two-class Classification Algorithms

Two-class classification	Accuracy	Training time	Linearity	Customization	Predicting Variable	Type of independant variable(s)	Data Quantity
logistic regression	Good	Fast	Excellent	Good	dichotomous / binary	Any	small-big
decision forest	Excellent	Moderate	Good	Good	dichotomous / binary	Any	small-big
decision jungle	Excellent	Moderate	Good	Good	dichotomous / binary	Any	big
boosted decision tree	Excellent	Moderate	Good	Good	dichotomous / binary	Any	big
neural network	Excellent	Slow	Moderate	Excellent	dichotomous / binary	Any	
averaged perceptron	Good	Moderate	Excellent	Moderate	dichotomous / binary	Any	
support vector machine	Excellent	Moderate	Excellent	Good	dichotomous / binary	Any	big
locally deep support vector machine	Good	Slow	Good	Excellent	dichotomous / binary	Any	big
Bayes' point machine	Moderate	Moderate	Excellent	Moderate	dichotomous / binary	Any	

Scale:

Excellent	Good	Moderate
Fast	Moderate	Slow

Multi-class Classification

- Creates classification estimates for label / prediction variable with 2+ classes
- Decision trees vs. Logistic Regression vs. Neural Network
- Typical Problem would be predicting a class for label variable
- Typical Azure Algorithms
 - <u>Decision Forest</u> Multiclass
 - <u>Decision Jungle</u> Multiclass
 - Logistic Regression Multiclass
 - Neural Network Multiclass

Multiclass Decision Forest	4	Multiclass Decision Jungle	4	Multiclass Logistic Regression
Resampling method		Resampling method		Create trainer mode
Bagging	~	Bagging	~	Single Parameter
Create trainer mode		Create trainer mode		Optimization tolerance
Single Parameter	~	Single Parameter	~	1E-07
Number of decision trees		Number of decision DAGs		L1 regularization weight
8		8		1
Maximum depth of the d		Maximum depth of the d		L2 regularization weight
32		32		1
Number of random splits		Maximum width of the de		Memory size for L-BFGS
128		128		20
Minimum number of sam		Number of optimization s		Random number seed
1		2048		
✓ Allow unknown value	=	✓ Allow unknown value		🗹 Allow unknown categ 📃

Evaluating multi-class Classification

Metrics

Macro-averaged recall

Metrics

Overall accuracy 0.42

Average accuracy 0.613333

Micro-averaged precision 0.42

Macro-averaged precision 0.408059

Micro-averaged recall 0.42

0.427369

Confusion Matrix

Predicted Class

1 2 3

 40.0%
 52.0%
 8.0%

 25.0%
 40.4%
 34.6%

 21.7%
 30.4%
 47.8%

Actual Class

2

3

Demo 3

Steel data

Comparison of Multi-class Classification Algorithms

Multi-class classification	Accuracy	Training time	Linearity	Customization	Predicting Variable	Type of independant variable(s)	Data Quantity
logistic regression	Good	Fast	Excellent	Good	Nominal / ordinal (with 2+ classes)	any	small-big
decision forest	Excellent	Moderate	Good	Good	Nominal / ordinal (with 2+ classes)	any	big
decision jungle	Excellent	Moderate	Good	Good	Nominal / ordinal (with 2+ classes)	any	big
neural network	Excellent	Slow	Moderate	Excellent	Nominal / ordinal (with 2+ classes)	any	small

Scale:

Excellent	Good	Moderate
Fast	Moderate	Slow

Good to know!

- ▶ Importing large dataset → zip it → upload
- ▶ When using it → use Unpack zipped datasets

Webservice

- ▶ Publish model as webservice
- Deploy it and connect with excel via Machine learning add-in

Jupiter Notebook

- Jupyter notebooks provide an interactive environment for exploring data and collaborating with other data scientists.
- Jupyter.org
- ▶ When running in Azure ML, we don't need to worry about security
- ▶ 50 kernells available

Jupyter Notebook

- ▶ 3 types of cells:
 - ▶ Code
 - Raw
 - Markdown
- ► In Azure ML only csv files
- ► To run code (ctrl+enter)