Analog Electronic Circuits (EC2.103): Quiz-1

Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Date: 3rd April, 2023, Duration: 45 minutes, Max. Marks: 10

Instructions:

- Clearly write your valid assumptions (if any)
- Numerical answers must be correct upto two places of decimal to get any credit
- Refrain from copying
- You can use your lecture notebooks and own handwritten short notes in the exam hall
- Mobile phone, computers can not be used during exam
- 1. For the circuit shown in figure 1, find values of R_x , V_1 and V_2 correct upto two places of decimal at room temperature. It is given that D_1 and D_2 are identical diodes. The reverse saturation current of diode is $I_0 = 5 \times 10^{-15}$ A and $V_T = 25$ mV at room temperature. [3 Mark]

Figure 1

2. For the circuit shown in figure 2(a), it is given that $R_1=10~M\Omega$, $C_1=2~pF$, $R_2=5M\Omega$ and $C_2=50~pF$. As shown in figure 2(b), an input step voltage V_{IN} is applied to the circuit. As shown in the figure, V_{IN} changes from $V_1=1~V$ to $V_2=2~V$ in $t_r=10~ps$ time. Find the values of $V_{C1}(t=0-)$, $V_{C1}(t=0+)$ and $I_{C1}(t=0+)$. [3 Mark] (Hint: You can assume t_r is very small and from t=0 to $t=t_r$ all current flows through capacitors only. I=Cdv/dt)

Figure 2

3. Find $V_{C2}(t)$ as a function of time for the circuit given below in Fig. 3. Assume that C_2 was completely discharged at $t = 0^-$. [2 Mark]

Figure 3

4. For the circuit shown in figure 4, plot voltage transfer characteristic (V_{OUT} vs V_{IN}) considering ideal diodes. Also plot $V_{OUT}(t)$ as a function of time for $V_{in}=20cos(\omega_0 t)$ V. Clearly label axis and values on all plots to get any credit. [2 Mark]

Figure 4

Good luck!! 11076V