Handwritten English Alphabet Recognition Using Bigram Cost Chengshu (Eric) Li

Introduction & Motivation

Handwritten character recognition has been one of the most challenging and fascinating areas in the field of image processing. It has a wide variety of applications:

- receipt/invoice recognition
- business card information extraction
- books canning
- assistive technology for blind

My approach is to use both image recognition and bigram cost between English alphabets to achieve high performance.

Data & Preprocessing

NIST Database 19 (800,000+ hand-printed samples)

I used 19240 samples (370 samples for each of the 52 upper and lower case English alphabet)

Preprocessing:

- Crop out the central part where the character lies
- Resize it to a standardized size (e.g. 128×128 pixels)

Feature Extraction

- Raw pixels: used as my baseline
- Blackness threshold: an approximation of the original matrix

- Blackness percentage: another approximation
- Zoning: put a 3 by 3 grid on top of the original image. Use aspect ratio to classify each grid to six different types

Naïve Bayes (scikit-learn)

Modeling & Algorithm

Convolutionary Neural Network (PyBrain)

Test Result

Conclusion & Future Work

Conclusion:

- Test error decreases when training data increases
- Convolutionary neural network performs significantly better than other models
- Bigram cost helps improve accuracy

Future Work:

- Find better features to feed in SVM and Naïve Bayes
- Improve performance on 'bottleneck'
- Extend bigram cost method to words, not just characters

