Multiple testing

March 7, 2024

Identifying genes associated with cancer

 $X_{n_1 \times p}$ - expressions of p genes for n_1 healthy individuals $Y_{n_2 \times p}$ - expressions of p genes for n_2 cancer patients Assumption: X_{ii} for $i = 1, ..., n_1$ are iid with $E(X_{ii}) = \mu_{1i}$ and $Var(X_{ii}) = \sigma_{1i}^2 < \infty$ Y_{ii} for $i = 1, ..., n_2$ are iid with $E(Y_{ii}) = \mu_{2i}$ and $Var(Y_{ii}) = \sigma_{2i}^2 < \infty$ Gene *j* is associated with cancer if $\mu_{1i} \neq \mu_{2i}$ We test $H_{0j}: \mu_{1j} = \mu_{2j}$ with a t-test $t_j = \frac{\bar{X}_j - \bar{Y}_{\cdot j}}{S(\bar{X}_{\cdot i} - \bar{Y}_{\cdot i})}$, where $S(\bar{X}_{i} - \bar{Y}_{i})$ is the estimate of the standard deviation of $\bar{X}_{i} - \bar{Y}_{i}$ If n_1 and n_2 are large enough then $t_i \sim N(\mu_i, 1)$ with $\mu_j = \frac{\mu_{1j} - \mu_{2j}}{\sigma_{1i}/\sqrt{\rho_{1i}} + \sigma_{2i}/\sqrt{\rho_{2i}}}$ and $H_{0j}: \mu_j = 0$

Multiple testing (1)

$$X_i \sim N(\mu_i, 1), \quad i = 1, \ldots, p$$

$$H_{0i}: \mu_i = 0$$
 vs $\mu_i \neq 0$

Reject H_{0i} when $|X_i| > c$

Multiple comparison problem: if all μ_i s are equal to zero than $max(|X_1|, \dots, |X_p|) = \sqrt{2 \log p} (1 + o_p)$

Thus to separate signal from noise we need $c = c(p) \to \infty$ as $p \to \infty$.

Testing for global null, Bonferroni procedure

$$X_i \sim N(\mu_i, 1), \quad i = 1, \dots, p$$

 $H_{0i}: \mu_i = 0 \quad \text{vs} \quad \mu_i \neq 0$

$$H_0: \bigcap_{i=1}^{p} H_{0i}$$

Bonferroni procedure: Reject Ho when

$$\max(|X_1|,\ldots,|X_p|) \geq \Phi^{-1}\left(1-rac{lpha}{2p}\right) = c_{Bon}$$

Probability of type I error:

$$P_{H_0}\left(\bigcup_{j=1}^p\{|X_j|>c_{Bon}\}\right)\leq \sum_{j=1}^pP(\{|X_j|>c_{Bon}\}=lpha)$$

Exact type I error of Bonferroni

Due to independence

$$P(\textit{Type I Error}) = 1 - P_{H_0} \left(\bigcap_{j=1}^{p} \{|X_j| < c_{Bon} \} \right)$$

$$= 1 - \left(1 - \frac{\alpha}{p} \right)^p \rightarrow 1 - e^{-\alpha} = \alpha + o(\alpha)$$

$$\alpha = 0.05 , n = 30000, P(\textit{Type I Error}) \approx 0.0488$$

Multiple testing

We now separately test each of hypotheses H_{0i} : $\mu_i = 0$

	H ₀ accepted	H ₀ rejected	
H₀ true	U	V	p_0
H_0 false	Т	S	<i>p</i> ₁
	W	R	р

FWER =
$$P(V > 0)$$
, $FDR = E\left(\frac{V}{R \lor 1}\right)$
 $E(V) = \alpha p_0$
 $\alpha = 0.05, p_0 = 5000 \rightarrow E(V) = 250$

Multiple testing procedures

Bonferroni correction: Use significance level $\frac{\alpha}{p}$.

Reject
$$H_{0i}$$
 if $|X_i| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2p} \right) = \sqrt{2 \log p} (1 + o(1))$

Benjamini-Hochberg (1995) procedure:

- (1) $|X|_{(1)} \ge |X|_{(2)} \ge \ldots \ge |X|_{(p)}$
- (2) Find the largest index i such that

$$|X|_{(i)} \ge \Phi^{-1}(1-\alpha_i), \quad \alpha_i = \alpha \frac{i}{2p},$$
 (1)

Call this index isu.

(3) Reject all $H_{(i)}$'s for which $i \leq i_{SU}$

Bonferroni correction

Benjamini and Hochberg correction

FWER and FDR control

For Bonferroni correction $FWER \leq \alpha$

(Benjamini, Hochberg, 1995) If X_1, \ldots, X_p are independent then BH controls FDR at:

$$FDR = \mathbb{E}\left[\frac{V}{R \vee 1}\right] = \alpha \frac{\rho_0}{\rho},$$
 (2)

where p_0 is the number of true null hypotheses,

$$p_0 = |\{i : \mu_i = 0\}|$$

(Benjamini, Yekutieli, 2001) When test statistics are "positively correlated" then BH controls FDR at or below the level $\alpha \frac{p_0}{p}$. Independently of the correlation structure FDR is controlled at or below the level $\alpha \frac{p_0}{p}$ if $|X|_{(j)}$ is compared to

$$\Phi^{-1}\left(1-\frac{j\alpha}{2p\sum_{i=1}^{p}\frac{1}{i}}\right).$$