# Układy cyfrowe i systemy wbudowane 2

## Dokumentacja projektu

## Oscyloskop cyfrowy

| Uczestnicy                                       | Prowadzący              | Termin zajęć          |
|--------------------------------------------------|-------------------------|-----------------------|
| Olha Solovei (223176)<br>Iwo Bujkiewicz (226203) | Dr inż. Jarosław Sugier | Wtorek parzysty 15:00 |

### 1. Wprowadzenie

#### 1. Cel i zakres projektu

Celem projektu było zbudowanie układu cyfrowego realizującego zadanie oscyloskopu cyfrowego. W zakres prac wchodziła implementacja wyświetlania przebiegu zarejestrowanego cyfrowo sygnału analogowego na podłączonym do układu monitorze VGA z określoną częstotliwością próbkowania.

#### 2. Sprzęt

Do realizacji projektu wykorzystano układ FPGA XC3S500E firmy Xilinx, zainstalowany na płycie Spartan-3E. Zestaw ten wyposażony był [1] w wyjście obrazu w standardzie VGA, przetwornik analogowo-cyfrowy z przedwzmacniaczem, a także zestaw przełączników i przycisków, które również wykorzystano.

#### 3. Zagadnienia teoretyczne

Zaprojektowany układ używa opisanych w [2] protokołów sterowania interfejsem VGA oraz przetwornikiem analogowocyfrowym (ADC) z przedwzmacniaczem, dostępnymi na płycie Spartan-3E. W celu ułatwienia korzystania z ADC, układ wykorzystuje moduł ADC\_Ctrl zaczerpnięty z [3]. Dodatkowo, podczas implementacji wyświetlania obrazu przez interfejs VGA, skorzystano z opisu synchronizacji sygnałów dla trybu VGA 800x600@72Hz, dostępnego w [4]. Przy tworzeniu kodu VHDL modułów projektu korzystano również w celach referencyjnych z [5] oraz [6].

## 2. Projekt

#### 1. Hierarchia

Głównym elementem projektu jest schemat połączeń logicznych.



Na schemat składa się szereg modułów, odpowiadających za poszczególne funkcje podsystemowe:

- ADC\_Ctrl Moduł autorstwa dra Sugiera, ułatwiający sterowanie przetwornikiem analogowo-cyfrowym
- Sampler Moduł odpowiedzialny za pobieranie cyfrowych próbek sygnału z ADC\_Ctrl z odpowiednią częstotliwością i wpisywanie ich do pamięci
- SampleMemory Pamięć dwuportowa przechowująca próbki
- VGACt1 Kontroler interfejsu VGA, pobierający próbki z pamięci i generujący na ich podstawie punkty na ekranie

W ogólnym ujęciu praca układu wygląda następująco:

- Sampler pobiera próbki cyfrowe z ADC\_Ctrl
  - 1. Sampler wysyła do ADC\_Ctrl impuls ADC\_Start i oczekuje na wyłączenie sygnału ADC\_Busy
  - 2. Po odebraniu na wejściu ADC\_Data 14-bitowej próbki Sampler wybiera z niej 9 najstarszych bitów
  - 3. Sampler wysyła 9-bitową próbkę do pamięci poprzez port Sample\_Data i wpisuje ją pod odpowiedni adres ustawiony na porcie Sample\_Addr , wysyłając do SampleMemory impuls Sample\_WE

2. Moduly

## 3. Implementacja

- 1. Rozmiar układu
- 2. Szybkość pracy
- 3. Podręcznik obsługi

#### 4. Podsumowanie

#### 5. Literatura

 Xilinx, Inc., 2013. Spartan-3E FPGA Family Data Sheet (https://www.xilinx.com/support/documentation/data\_sheets/ds312.pdf)

- 2. Xilinx, Inc., 2011. Spartan-3E FPGA Starter Kit Board User Guide (https://www.xilinx.com/support/documentation/boards\_and\_kits/ug230.pdf)
- 3. Sugier, J. *Zajęcia projektowe do przedmiotu "Układy cyfrowe i systemy wbudowane": Zestawy Digilent S3E-Starter* (http://www.zsk.iiar.pwr.edu.pl/zsk\_ftp/fpga/)
- 4. SECONS Ltd., 2008. VESA Signal 800 x 600 @ 72 Hz timing (http://tinyvga.com/vga-timing/800x600@72Hz)
- 5. Zhang, W., 2001. *VHDL Tutorial: Learn by Example* (University of California, Riverside, 2001) (http://esd.cs.ucr.edu/labs/tutorial/)
- 6. Hilbert, S., 2013. \_VHDL Type Conversion (BitWeenie, LLC, 2013) (http://www.bitweenie.com/listings/vhdl-type-conversion/)