Hypothesis Testing in Regression Models

Recall the regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon.$$

Test for significance of regression:

- $H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0;$
- $H_1: \beta_i \neq 0$ for at least one $j \neq 0$.
- Note that under H_0 , β_0 is still non-zero:

$$H_0: y = \beta_0 + \epsilon.$$

The ANOVA table:

Source	SS	df	MS	F_0
Regression Error		k $n-k-1$		MS_R/MS_E
Total	SS_T	n-1		

Here, as before, SS_E is the *residual* sum of squares,

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n e_i^2 = \mathbf{e}'\mathbf{e} = \mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}.$$

ST 516

Also SS_T is the *total* sum of squares,

$$\mathsf{SS}_{\mathcal{T}} = \sum_{i=1}^{n} (y_i - \bar{y})^2,$$

and the regression sum of squares is

$$SS_R = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 = SS_T - SS_E.$$

Test statistic:

$$F_0 = \frac{\mathsf{SS}_R/k}{\mathsf{SS}_E/(n-k-1)} = \frac{\mathsf{SS}_R/k}{\mathsf{SS}_E/(n-p)} = \frac{\mathsf{MS}_R}{\mathsf{MS}_E}.$$

Assuming ϵ s are NID(0, σ^2), reject H_0 if $F_0 > F_{\alpha,k,n-p}$.

Note: under H_0 ,

$$y = \beta_0 + \epsilon,$$

so y has a non-zero mean, but no dependence on any of the regressors.

 F_0 is calculated and reported by all packages.

Also calculated: the *coefficient of multiple determination*

$$R^2 = \frac{\mathsf{SS}_R}{\mathsf{SS}_T} = 1 - \frac{\mathsf{SS}_E}{\mathsf{SS}_T}.$$

Note: R^2 always increases if you add a new regressor to a model, so high R^2 may result from including too many regressors.

Adjusted R²

$$R_{\rm adj}^2 = 1 - \frac{{\sf SS}_E/(n-p)}{{\sf SS}_T/(n-1)}$$

allows for the number of regressors, and may either increase or decrease.

ST 516

Example

Recall R output from viscosity example:

```
summary(viscosityLm)
```

Output

Test for an individual coefficient

$$H_0: \beta_j = 0;$$

$$H_1: \beta_j \neq 0$$
;

Test statistic:

$$t_0 = rac{\hat{eta}_j}{\mathsf{Standard Error of } \hat{eta}_j} = rac{\hat{eta}_j}{\sqrt{\hat{\sigma}^2 C_{j,j}}},$$

where $C_{j,j}$ is the j^{th} diagonal entry in $(\mathbf{X}'\mathbf{X})^{-1}$.

Reject H_0 if $|t_0| > t_{\alpha/2,n-p}$.

Example

Again, recall R output from viscosity example:

```
summary(viscosityLm)
```

Output

```
. . .
```

. . .

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1566.0778 61.5918 25.43 1.80e-12 ***

Temperature 7.6213 0.6184 12.32 1.52e-08 ***

CatalystFeedRate 8.5848 2.4387 3.52 0.00376 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Test for a group of coefficients

"Extra Sum of Squares Method": suppose we want to test the significance of *part* of the model.

Recall the matrix form of the model

$$y = X\beta + \epsilon$$
.

Partition the design matrix and the parameters as

$$\mathbf{X} = \left[\mathbf{X}_1, \mathbf{X}_2 \right], \quad oldsymbol{eta} = \left[egin{array}{c} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{array}
ight].$$

The *full* model is now

$$\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon},$$

with regression sum of squares $SS_R(\beta)$.

The null hypothesis $H_0: \beta_1 = \mathbf{0}$ implies the *reduced* model:

$$\mathbf{y} = \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\epsilon},$$

with regression sum of squares $SS_R(\beta_2)$.

The sum of squares due to β_1 given β_2 is defined to be

$$SS_R(\beta_1|\beta_2) = SS_R(\beta) - SS_R(\beta_2)$$
.

To test $H_0: \boldsymbol{\beta}_1 = \mathbf{0}$, the test statistic is

$$F_0 = \frac{\mathsf{SS}_R\left(\boldsymbol{\beta}_1|\boldsymbol{\beta}_2\right)/r}{\mathsf{MS}_E}$$

where r is the number of coefficients being tested.

Reject H_0 if $F_0 > F_{\alpha,r,n-p}$.

Calculate $SS_R(\beta_1|\beta_2)$ either:

- by fitting the full and reduced models separately;
- by fitting the full model sequentially, with X₁ fitted after X₂; in R, the aov() method does this.

Example

The viscosity example:

```
summary(aov(Viscosity ~ CatalystFeedRate + Temperature, viscosity))
```

Output

```
Df Sum Sq Mean Sq F value Pr(>F)
CatalystFeedRate 1 3516 3516 13.138 0.003083 **
Temperature 1 40641 40641 151.871 1.518e-08 ***
Residuals 13 3479 268
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

The "Sum Sq" for CatalystFeedRate is SS_R (CatalystFeedRate), and the "Sum Sq" for Temperature is SS_R (Temperature|CatalystFeedRate).

The *F*-statistic for testing Temperature given CatalystFeedRate has 1 degree of freedom; it is just the square of the *t*-statistic from the earlier output.

Testing a quadratic model against a linear model

Output

```
Df Sum Sq Mean Sq F value
                                                             Pr(>F)
                                    40841
                                            40841 148.3362 2.541e-07 ***
Temperature
CatalystFeedRate
                                     3316
                                             3316
                                                   12.0448 0.006015 **
I(Temperature^2)
                                      399
                                              399 1.4495 0.256330
I(CatalystFeedRate^2)
                                       24
                                               24
                                                   0.0874 0.773558
I(CatalystFeedRate * Temperature)
                                      302
                                              302
                                                    1.0985 0.319273
Residuals
                                     2753
                                              275
                                10
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
```

$$F_0 = \frac{(399+24+302)/3}{2753/10} = 0.88$$
, df = 3, 10; P = 0.48; do not reject H_0 : model is linear.

Confidence Intervals

To interpret the regression equation, note that β_j measures the effect on the response y of increasing x_j by 1 unit; it is in units (units of y / units of x_j).

Again, assuming ϵ s are NID(0, σ^2), a 100(1 – α)% confidence interval for β_j is

$$\hat{\beta}_j \pm t_{\alpha/2,n-p} \times \operatorname{se}\left(\hat{\beta}_j\right) = \hat{\beta}_j \pm t_{\alpha/2,n-p} \sqrt{\hat{\sigma}^2 C_{j,j}}.$$

Predicting the mean response

A regression equation may also be used to predict the mean response under some new experimental (or operational) conditions.

Mean response at $\mathbf{x}_0 = [1, x_{0,1}, x_{0,2}, \dots, x_{0,k}]'$ is $\hat{y}(\mathbf{x}_0) = \mathbf{x}_0' \hat{\boldsymbol{\beta}}$ with standard error

$$\operatorname{se}\left[\hat{y}\left(\mathbf{x}_{0}\right)\right]=\sqrt{\hat{\sigma}^{2}\mathbf{x}_{0}^{\prime}(\mathbf{X}^{\prime}\mathbf{X})^{-1}\mathbf{x}_{0}}.$$

and $100(1-\alpha)\%$ confidence interval

$$\hat{y}\left(\mathbf{x}_{0}\right)\pm t_{lpha/2,n-p} imes \operatorname{se}\left[\hat{y}\left(\mathbf{x}_{0}
ight)
ight].$$

To compute se $[\hat{y}(\mathbf{x}_0)]$, you need the standard errors of the estimated coefficients, which are given in the usual table of estimates.

You also need their correlations, which are not part of the usual output, but can be extracted.

Most software will compute se $[\hat{y}(\mathbf{x}_0)]$ for you.

In R, use the predict() method to estimate the mean response, with the option se.fit = TRUE; e.g., to estimate the expected viscosity for a temperature of $90^{\circ}C$ and catalyst feed rate 10lb/h:

```
predict(viscosityLm,
    newdata = data.frame(Temperature = 90, CatalystFeedRate = 10),
    se.fit = TRUE, interval = "confidence")
```

Output

```
$fit lwr upr
1 2337.842 2328.786 2346.899
$se.fit
[1] 4.192114
$df
[1] 13
```

\$residual.scale