Data Analysis Brown Bag: July 2015 An Overview of Effect Size Statistics

An Overview of Effect Size Statistics and Why They Are so Important

Jeff Meyer
THE ANALYSIS
F A C T O R

The "d-Family" Effect Size

Difference in means example 1:

- A drug company is developing two new drugs.
- Both new drugs have a difference in means between treatment and control groups of 0.50.
- Both new drugs have two-tailed p-values of 0.000
- The drug company has limited funding and can only develop one drug.
- Which drug does it promote?

Treatment Group 1 versus Control Group 1

Two-sample t test with equal variance	ces	
---------------------------------------	-----	--

Variable	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
control1 treatm~1	1000 1000	.0852022 .5852022	.0638943	2.020515 2.020515	0401802 .4598198	.2105847 .7105847
combined	2000	.3352022	.0455136	2.035429	.2459432	.4244612
diff		5	.0903602		6772101	3227899

diff = mean(control1) - mean(treatment1) t = -5.5334Ho: diff = 0 degrees of freedom = 1998

Ha: diff < 0 Pr(T < t) = 0.0000 Ha: diff != 0 Pr(|T| > |t|) = 0.0000

Ha: diff > 0 Pr(T > t) = 1.0000

Treatment Group 2 versus Control Group 2

Two-sample t	test	with	equal	variances
--------------	------	------	-------	-----------

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
control2 treatm~2	1000 1000	.0426011 .5426011	.0319472 .0319472	1.010258 1.010258	0200901 .4799099	.1052923
combined	2000	.2926011	.0232663	1.040501	.2469724	.3382298
diff		5	.0451801		588605	411395

Ha: diff < 0 Pr(T < t) = 0.0000

Ha: diff != 0 Pr(|T| > |t|) = 0.0000 Ha: diff > 0 Pr(T > t) = 1.0000

Red shaded: treatment observations greater than the mean of the control group.

Blue shaded: treatment observations less than the mean of the control group.

The "d-Family" Effect Size

Difference in means example 2:

One control group, three treatment groups

- All three treatment groups have two-tailed p-values of 0.000
- Treatment two costs more to produce than treatment one. Treatment three costs more to produce than treatment two.
- The drug company needs to determine which drug has the best cost/benefit ratio.

Treatment 1 vs Control Group

Two-sample t test with equal variances

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
control treat1	1000 1000	0883709 .4116291	.0627212 .0627212	1.983417 1.983417	2114513 .2885487	.0347094
combined	2000	.1616291	.0446906	1.998626	.0739839	.2492742
diff		5	.0887011		6739564	3260436

diff = mean(control) - mean(treat1) t = -5.6369Ho: diff = 0 degrees of freedom = 1998

Ha: diff < 0 Pr(T < t) = 0.0000 Ha: diff != 0 Pr(|T| > |t|) = 0.0000

Ha: diff > 0 Pr(T > t) = 1.0000

Treatment 2 vs Control Group

Two-sample t test with equal variances

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
control treat2	1000 1000	0883709 .9116291	.0627212 .0627212	1.983417 1.983417	2114513 .7885487	.0347094 1.034709
combined	2000	.4116291	.045728	2.045019	.3219495	.5013086
diff		-1	.0887011		-1.173956	8260436

Treatment 3 vs Control Group

Two-sample t test with equal variances

Variable	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
control treat3	1000 1000	0883709 1.911629	.0627212 .0627212	1.983417 1.983417	2114513 1.788549	.0347094 2.034709
combined	2000	.9116291	.0496612	2.220918	.8142359	1.009022
diff		-2	.0887011		-2.173956	-1.826044

The Equation for the "d" (difference) Family Effect Size

(Mean of experimental group)- (Mean of control group)

Standard Deviation

Standard deviation using Hedge's
$$g : s = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Standard deviation using Cohen's $d : s = \sqrt{\frac{n_1s_1^2 + n_2s_2^2}{n_1 + n_2 - 2}}$

95% confidence interval: EffectSize ± 1.96*SE

$$SE = \sqrt{\frac{n_1 + n_2}{n_1 n_2} + \frac{EffectSize^2}{2(n_1 + n_2)}}$$

Data Analysis Brown Bag: July 2015 An Overview of Effect Size Statistics

Have you seen this formula before?

Standardizing a variable: <u>variable's mean- observation</u>
Standard Deviation

A standardized variable has a mean of zero and a standard deviation of 1.

The only difference with "effect size" is we use the "sample's mean" rather than the "observation".

Difference in Means Example 1

The difference in means standardized

. esize unpaired control1 == treatment1

Effect size based on mean comparison

		Number of ob	s = 2000
Effect Size	Estimate	[95% Conf.	Interval]
Cohen's <i>d</i> Hedges's <i>g</i>	2474616 2473687	3354182 3352923	1594435 1593836

. esize unpaired control2 == treatment2

Effect size based on mean comparison

		Number of ob	s = 2000
Effect Size	Estimate	[95% Conf.	Interval]
Cohen's <i>d</i> Hedges's <i>g</i>	4949232 4947374	5838482 583629	4058778 4057255

Difference in Means Example 2

The difference in means standardized

. esize unpaired control == treat1

Effect size based on mean comparison

		Number of ob	15 = 2000
Effect Size	Estimate	[95% Conf.	Interval]
Cohen's <i>d</i> Hedges's <i>g</i>	2520902 2519955	3400589 3399312	1640588 1639973

. esize unpaired control == treat2

Effect size based on mean comparison

		Number of ob	s = 2000
Effect Size	Estimate	[95% Conf.	Interval]
Cohen's <i>d</i> Hedges's <i>g</i>	5041803 503991	5931542 5929315	415084 4149281

. esize unpaired control == treat3

Effect size based on mean comparison

		Number of ob:	s = 2000
Effect Size	Estimate	[95% Conf.	Interval]
Cohen's <i>d</i> Hedges's <i>g</i>	-1.008361 -1.007982	-1.101309 -1.100895	9151874 9148438

How do We Interpret the *d-family* Effect Size Estimate?

The *d-family* effect size estimate represents the number of standard deviations the means of the two groups are from each other.

For example, an effect size score of 1.2 tells us that the mean of the experimental group is 1.2 standard deviations greater than the mean of the control group.

Interpreting the Effect Size Estimates?

We can use a standard normal distribution z-table

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	06443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Va	ariables	Effect Size (Stand. Dev.)	% of treat group greater than Mean of Control Group
Control mean = Treatment mean		0.00	50.0%
Control 1	Treatment 1	0.247	59.9%
Control 2	Treatment 2	0.495	69.2%
Control	Treat 1	0.252	59.9%
Control	Treat 2	0.504	69.2%
Control	Treat 3	1.010	84.4%

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	06443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830

Effect Size Table

Effect	Percentile	Percentile	Percent of
Size	below	above	non-overlap
0.0	50%	50%	0.0%
0.1	46%	54%	7.7%
0.2	42%	58%	14.7%
0.3	38%	62%	21.3%
0.4	34%	66%	27.4%
0.5	31%	69%	33.0%
0.6	27%	73%	38.2%
0.7	24%	76%	43.0%
0.8	21%	79%	47.4%
0.9	18%	82%	51.6%
1.0	16%	84%	55.4%
1.1	14%	86%	58.9%
1.2	12%	88%	62.2%
1.3	10%	90%	65.3%
1.4	8.1%	91.9%	68.1%
1.5	6.7%	93.3%	70.7%
1.6	5.5%	94.5%	73.1%
1.7	4.5%	95.5%	75.4%
1.8	3.6%	96.4%	77.4%
1.9	2.3%	97.7%	79.4%
2.0	2.3%	97.7%	81.1%

The *r-Family* Effect Size

- proportion of variance explained.
- the ratio of variance attributed to an effect versus the total variance.

The formula, which is commonly known as eta-squared:

$$\eta^2 = \frac{SS_{model}}{SS_{total}}$$

An Example of the *r-Family*Effect Size

From a research study on wages, we regress the worker's gender on wages and calculate eta-squared:

Source	SS	df	MS		Number of obs	=	534
					F(1, 532)	=	23.43
Model	593.713779	1 59	3.713779		Prob > F	=	0.0000
Residual	13482.9849	532 25	.3439566		R-squared	=	0.0422
					Adj R-squared	=	0.0404
Total	14076.6987	533 26	.4103165		Root MSE	=	5.0343
	•						
wage	Coef.	Std. Err	`. t	P> t	[95% Conf.	In	terval]

Note that Eta-squared for the model and for the variable "sex" equal R-squared.

Effect sizes for linear models

Source	Eta-Squared	df	[95% Conf.	. Interval]
Model	.0421771	1	.0150494	.0801068
sex	.0421771	1	.0150494	.0801068

An Example of the *r-Family* Effect Size (cont.)

Now we want to add the indicator variable for union membership

Source	SS	df	MS		Number of obs =	
Model Residual	835.81628 13240.8824		7.90814 9357484			= 0.0000 = 0.0594
Total	14076.6987	533 26.	4103165		J 1	= 4.9936
wage	Coef.	Std. Err.	t	P> t	[95% Conf.]	Interval]
sex union _cons	-1.901207 1.775493 9.57715	.439108 .5698107 .3228908	-4.33 3.12 29.66	0.000 0.002 0.000	-2.763809 - .6561335 8.94285	-1.038605 2.894853 10.21145

Effect size measures magnitude of relationship

Source	Eta-Squared	df	[95% Conf. Interval]			
Model	.0593759	2	.0248309	.1000036		
sex union	.0341 .0179562	1 1	.0102594 .0024553	.0694044 .0462399		

Now that we have added an additional variable eta-squared for the model equals R-squared and the eta-squared for the variables do not. "sex" explains 3.4% of "wages" variance while union only explains about half of it. Note that both were statistically significant at 0.05

An Example of the *r-Family* Effect Size (cont.)

Now lets add the indicator variable for marital status

	Source	SS	df	MS	Number of obs = 534
-					F(3, 530) = 12.81
	Model	951.629532	3	317.209844	$Prob > F \qquad = 0.0000$
	Residual	13125.0692	530	24.7642814	R-squared = 0.0676
-					Adj R-squared = 0.0623
	Total	14076.6987	533	26.4103165	Root MSE = 4.9764

sex -1.926098 .437747 -4.40 0.000 -2.78603 -1.066166 union 1.656903 .57049 2.90 0.004 .5362036 2.777602 marr .9845776 .4552854 2.16 0.031 .0901923 1.878963 _cons 8.964568 .4286988 20.91 0.000 8.12241 9.806725	wage	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
	union marr	1.656903 .9845776	.57049 .4552854	2.90	0.004 0.031	.5362036	2.777602 1.878963

Source	Eta-Squared df		[95% Conf. Interval]			
Model	.0676032	3	.0290796	.1082288		
sex union marr	.0352414 .0156662 .0087466	1 1 1	.0108903 .0016375	.0709863 .0426903 .0310048		

All three variables are statistically significant at 0.05. But notice that marital status amounts to less than 1% of wages variance.

An Example of the *r-Family* Effect Size (cont.)

Using "anova" for our partial sum of squares

. anova wage sex union marr

	Number of obs Root MSE			quared R-squared	= 0.0676 = 0.0623
Source	Partial SS	df	MS	F	Prob > F
Model	951.629532	3	317.209844	12.81	0.0000
sex union marr	479.441928 208.892904 115.813252	1 1 1	479.441928 208.892904 115.813252	19.36 8.44 4.68	0.0000 0.0038 0.0310
Residual	13125.0692	530	24.7642814		
Total	14076.6987	533	26.4103165		

Source	Eta-Squared	df	[95% Conf.	Interval]
Model	.0676032	3	.0290796	.1082288
sex union marr	.0352414 .0156662 .0087466	1 1 1	.0108903 .0016375	.0709863 .0426903 .0310048

$$\eta^{2} = \frac{SS_{model}}{SS_{total}} = \frac{951.6}{14,076.7} = 0.676$$

$$\eta^{2} = \frac{SS_{sex}}{SS_{total}} = \frac{479.4}{14,076.7} = 0.034$$

$$\eta^{2} = \frac{SS_{union}}{SS_{total}} = \frac{208.9}{14,076.7} = 0.014$$

$$\eta^{2} = \frac{SS_{marr}}{SS_{total}} = \frac{115.8}{14,076.7} = 0.008$$

d-family: continuous outcomes

Cohen's *d*: standardized mean difference between two groups based on the pooled standard deviation (formula shown on slide 14)

Hedges' *g*: standardized mean difference between two groups based on the pooled, weighted standard deviation (formula shown on slide 14)

Glass's *d*: standardized mean difference between two groups based on the standard deviation of the control group

Probability of superiority: the probability that a random value from one group will be greater than a random value drawn from another

d-family: dichotomous outcomes

Risk difference in probabilities: difference between the probability of an event or outcome occurring in two groups.

Risk or rate ratio: compares the probability of an event or outcome happening in one group with the probability of it occurring in another

Odds ratio: compares the odds of an event or outcome occurring in one group with the odds of it occurring in another

r-family: proportion of variance indexes

The coefficient of determination (r^2) : used in bivariate regression analysis.

R squared (R^2): used in multiple regression analysis

Adjusted R squared $(adjR^2)$: adjusted for sample size and the number of predictor variables

Eta squared (η^2): used in ANOVA and regression analysis, uses sample variance.

Partial Eta-squared (η_p^2) : the proportion of the total variability attributable to a given factor after excluding variance explained by other predictor variables.

Epsilon squared (\mathcal{E}^2): an unbiased alternative to η^2

Omega squared (ω^2): an unbiased alternative to η^2 . Uses population variance.

Cohen's f: quantifies the dispersion of means in three or more groups

Cohen's f^2 : an alternative to R^2 in regression analysis and Δ R^2 in hierarchical regression analysis. Represents the proportion of explained variance over unexplained variance.

r-family: correlation indexes

Pearson product moment correlation coefficient(r): used when both variables are measured on an interval or ratio scale.

Spearman's rho (ρ) : used when both variables are measured on an ordinal or ranked scale

Kendall's tau(t): used when both variables are measured on an ordinal or ranked scale; tau-b is used for square-shaped tables: tau-c for rectangular tables

Point-biserial correlation coefficient: used when one variable is measured on a binary scale and the other variable is continuous.

Phi coefficient (ψ): used when variables and effects can be arranged in a 2 x 2 contingency table

Pearson's contingency coefficient (C): used when variables and effects can be arranged in a contingency table of any size

Cramer's V: adjusted version of phi that can be used with categorical variables with more than two categories.

Goodman & Kruskal's lambda(λ): used when both variables are measured on nominal scales

Warning!

Jacob Cohen developed the following effect size gauges in his book Statistical Power Analysis for the Behavioral Sciences:

	Relevant	<u>Eff</u>	Effect size classes		
Test	effect size	Small	Medium	Large	
Comparison of independent means	d , Δ , Hedges' g	0.20	0.50	0.80	
Comparison of two correlations	q	0.10	0.30	0.50	
Difference between proportions	Cohen's g	0.05	0.15	0.25	
Correlation	W	0.10	0.30	0.50	
	r²	0.01	0.09	0.25	
Crosstabulation	,φ, V, C	0.10	0.30	0.50	
ANOVA	f	0.10	0.25	0.10	
	η²	0.01	0.06	0.14	
Multiple Regression	R ²	0.02	0.13	0.26	
	f^2	0.02	0.15	0.35	

It is tempting to use the above guidelines when reporting effect size but definitely not advisable. Every field of research has different standards. Discussion should be focused within the context of previously reported effect size for similar research.

Careful Which Effect Size You Report

1988 Physicians' Health Study Research Group Analysis on the Effect of Aspirin on Reducing Heart Attacks

Treatment Group = 11,000 doctors taking one low-dose aspirin daily over a five year period Control Group = 11,000 doctors taking one placebo daily over a five year period

Proportion-of-variance accounted for, r^2 , was extremely small (.001)

Study was discontinued due to unfairness to those taking the placebo, they had a significantly greater chance of having a heart attack.

There was a 44% reduction in the risk of myocardial infarction in the aspirin group: 254.8 per 100,000 per year vs 439.7 in the placebo group. Relative risk 0.56, 95% CI 0.45 to 0.70

References:

Breaugh, James. "Effect Size Estimation: Factors to Consider and Mistakes to Avoid", Journal of Management, 2003 29(1), 79-97

Coe, Robert. (2002) "It's the Effect Size, Stupid. What effect size is and why it is important" Paper presented at the Annual Conference of the British Educational Research Association. http://www.leeds.ac.uk/educol/documents/00002182.htm

Durlak, Joseph. "How to Select, Calculate, and Interpret Effect Sizes" Journal of Pediatric Psychology 34(9) pp. 917-928, 2009 http://jpepsy.oxfordjournals.org/

Ellis, Paul (2010) The Essential Guide to Effect Sizes, Cambridge University Press. Kindle Edition

Kirk, Roger. "Practical Significance: A Concept Whose Time Has Come" Educational and Psychological Measurement, 1996 56:746 http://epm.sagepub.com/content/56/5/746.refs.html

Kline, Rex (2004) Beyond Significance Testing, American Psychological Association, Washington D.C.

Lakens, Daniel. "Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs", Frontiers in Psychology, November, 2013 http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00863/abstract

Thompson, Bruce. "Effect Sizes, Confidence Intervals, and Confidence Intervals for Effect Sizes", Psychology in the Schools, Vol 44(5), 2007 http://onlinelibrary.wiley.com/doi/10.1002/pits.20234/abstract

Wuensch, Karl. "Standardized Effect Size Estimation: Why and How" (2015) copy and paste following into your browser: core.ecu.edu/psyc/wuenschk/StatHelp/Effect%20Size%20Estimation.pdf

http://www.psychometrica.de/effect_size.html