

Perception for Robots

BASICS

Thanks to Peter Corke for the use of some slides

What is a robot

 For the purposes of this class a robot is a goal oriented machine that can sense, reason and act.

BASIC QUESTIONS

- Where am I
- Where are you
- What are you
- How do I get there
- How to achieve a task

Where am I

Why not use GPS?

GPS is not perfect and has severe limitations is environments where robots are needed:

--- cities, mines, industrial sites, underwater, deep forest.

It only tells where I am

Urban Canyon Problem

Industrial sites, mines

Underwater, deep forest

Humans and animals have a number of senses

- Sight
- Hearing
- Touch
- Smell
- Taste
- Balance

 Echolocation: bats, electric fields: sharks, compass: birds

Vision

www.mvrf.org - illustration based upon information from National Eye Institute / National Institutes of Health

Hearing

Echolocation of bats

Electric field sensing

Magnetic field sensing

Vision: most powerful sense

- Essential for survival: finding food, avoiding being food, finding mates
- Long range sensing: beyond our fingertip (vision is our way to touch the world)

Evolution of the eye ½ billion years

Climbing mount improbable 10 different designs

A plethora of eyes

Complex Eyes

Compound eyes

Human Eyes

If Elephyte Datour Throsis Healing 2010

Colors that feet as palls only

Two kinds of eyes at the top: Camera type or planar Spherical

Many cameras in the market

Catadioptric – panoramic images

How does Vision work?

Ancient Greeks: Extramission Theory

Descartes got it right

Many theories over the centuries

The Gestaltists

Von Helmholz: Unconscious inference

 David Marr: A reconstruction process that tells us where is what.

Theories influenced by the zeitgeist

Animal perception is active

Measuring eye movements

Robots with Vision

PR2 Humanoid

Perception for Robots 3 major problems

Reconstruction

Reorganization

Recognition

Reconstruction

Reorganization: segmentation

Reorganization: flow

Recognition

Images and Videos Contain

- Lines (contours, edges)
- Intensity and Color
- Texture
- movement

Lines

Color, Texture

Motion

A theoretical model of an eye

 Pick a point in space and the light rays passing through

Then cut the rays with a plane

This gives an image

Pinhole cameras

- Abstract camera model - box with a small hole in it
- Pinhole cameras work in practice

(Forsyth & Ponce)

If we change the plane, we get an new image

How are these images related? (what remains invariant?)

Conics

Projection of circle

Vanishing points

- Vanishing point
 - projection of a point at infinity

Vanishing points (2D)

Properties

- Any two parallel lines have the same vanishing point v
- The ray from C through v is parallel to the lines
- An image may have more than one vanishing point

Parallelism (angles) not invariant

Cross ratio = only invariant

Remember that the area of a triangle is 1/2 the base times the height. It is also the product of two sides times the side of the angle between them. Using this, we get:

$$\begin{split} & \text{Area}(p\,A\,C) = h/2\,(\,A\,C\,) = 1/2\,\,(p\,A\,)(p\,C\,)\,\,\sin(\,A\,p\,C\,) \\ & \text{Area}(p\,B\,C\,) = h/2\,(\,B\,C\,) = 1/2\,\,(p\,B\,)(\,p\,C\,)\,\,\sin(\,B\,p\,C\,) \\ & \text{Area}(p\,A\,D\,) = h/2\,(\,A\,D\,) = 1/2\,\,(\,p\,A\,)(\,p\,D\,)\,\,\sin(\,A\,p\,D\,) \\ & \text{Area}(p\,B\,D\,) = h/2\,(\,B\,D\,) = 1/2\,\,(\,p\,B\,)(\,p\,D\,)\,\,\sin(\,B\,p\,D\,) \end{split}$$

Thus the cross ratio of A,B,C,D = [(AC)/(BC)]/[(AD)/(BD)]

This last quantity is independent of the line we project to. Thus cross ratios are invariant under projection.

This discussion is based on Courant and Robbins, "What Is Mathematics."

Back to our question: how are the 2 images related to each other

Can we find a map, a function mapping x' to x?

Fundamental Theorem: If we know how 4 points map to each other in the two planes, then we know how all points map. (if $a \rightarrow A$, $b \rightarrow B$, $c \rightarrow C$, $d \rightarrow D$, then we can map any point)

Proof

The projective plane Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
- What is the geometric intuition?

a point in the image is a ray in projective space

- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

 Projective lines
 What does a line in the image correspond to in projective space?

- A line is a *plane* of rays through origin
 - all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation:
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

A line is also represented as a homogeneous 3-vector I

Point and line duality – A line I is a homogeneous 3-vector

- It is \perp to every point (ray) **p** on the line: **I p**=0

What is the line I spanned by rays \mathbf{p}_1 and \mathbf{p}_2 ?

- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• \mathbf{p} is \perp to $\mathbf{I_1}$ and $\mathbf{I_2}$ \Rightarrow $\mathbf{p} = \mathbf{I_1} \times \mathbf{I_2}$

Points and lines are *dual* in projective space

 given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines

- Ideal point ("point at infinity")
 - $-p \cong (x, y, 0)$ parallel to image plane
 - It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
- Corresponds to a line in the image (finite coordinates)

Fundamental Theorem (homography or collineation)

or x' = Hx, where H is a 3×3 non-singular homogeneous matrix.

Special Projectivities

Projectivity 8 dof
$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

Invariants

Collinearity, Cross-ratios

Affine transform
$$\begin{bmatrix} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_x \\ 0 & 0 & 1 \end{bmatrix}$$

Similarity 4 dof
$$\begin{bmatrix} s \, r_{11} & s \, r_{12} & t_x \\ s \, r_{21} & s \, r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Euclidean transform
$$\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
Projective Geometry

$$\begin{bmatrix} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Projective Geometry

Examples of Projective Transformations

- Central projection maps planar
 scene points to image plane by a projectivity
 - True because all points on a scene line are mapped to points on its image line
- The image of the same planar scene from a second camera can be obtained from the image from the first camera by a projectivity
 - True because $\mathbf{x}'_{i} = \mathbf{H}' \mathbf{x}_{i}, \mathbf{x}''_{i} = \mathbf{H}'' \mathbf{x}_{i}$

so
$$x''_{i} = H'' H'^{-1} x'_{i}$$

Projective vs Affine

Rectification

