实验四 Python字典和while循环

班级: 21计科3班

学号: B20210302312

姓名: 曾靖

Github地址: https://github.com/flojelr/python-class

CodeWars地址: https://www.codewars.com/users/flojelr

实验目的

1. 学习Python字典

2. 学习Python用户输入和while循环

实验环境

- 1. Git
- 2. Python 3.10
- 3. VSCode
- 4. VSCode插件

实验内容和步骤

第一部分

Python列表操作

完成教材《Python编程从入门到实践》下列章节的练习:

- 第6章 字典
- 第7章 用户输入和while循环

第二部分

在Codewars网站注册账号,完成下列Kata挑战:

第一题:淘气还是乖孩子 (Naughty or Nice)

难度: 7kyu

圣诞老人要来镇上了,他需要你帮助找出谁是淘气的或善良的。你将会得到一整年的JSON数据,按照这个格式:

```
{
    January: {
        '1': 'Naughty','2': 'Naughty', ..., '31': 'Nice'
},
February: {
        '1': 'Nice','2': 'Naughty', ..., '28': 'Nice'
},
...
December: {
        '1': 'Nice','2': 'Nice', ..., '31': 'Naughty'
}
```

你的函数应该返回 "Naughty!"或 "Nice!",这取决于在某一年发生的总次数(以较大者为准)。如果两者相等,则返回 "Nice!"。

代码提交地址:

https://www.codewars.com/kata/5662b14e0a1fb8320a00005c

第二题:观察到的PIN (The observed PIN)

难度: 4kyu

好了,侦探,我们的一个同事成功地观察到了我们的目标人物,抢劫犯罗比。我们跟踪他到了一个秘密仓库,我们认为在那里可以找到所有被盗的东西。这个仓库的门被一个电子密码锁所保护。不幸的是,我们的间谍不确定他看到的密码,当罗比进入它时。

键盘的布局如下:

他注意到密码1357,但他也说,他看到的每个数字都有可能是另一个相邻的数字(水平或垂直,但不是对角线)。例如,代替1的也可能是2或4。而不是5,也可能是2、4、6或8。

他还提到,他知道这种锁。你可以无限制地输入错误的密码,但它们最终不会锁定系统或发出警报。 这就是为什么我们可以尝试所有可能的(*)变化。

*可能的意义是:观察到的PIN码本身和考虑到相邻数字的所有变化。

你能帮助我们找到所有这些变化吗?如果有一个函数,能够返回一个列表,其中包含一个长度为1到8位的观察到的PIN的所有变化,那就更好了。我们可以把这个函数命名为getPINs(在python中为get_pins,在C#中为GetPINs)。

但请注意,所有的PINs,包括观察到的PINs和结果,都必须是字符串,因为有可能会有领先的 "0"。我们已经为你准备了一些测试案例。

侦探,我们就靠你了!

代码提交地址:

https://www.codewars.com/kata/5263c6999e0f40dee200059d

第三题: RNA到蛋白质序列的翻译 (RNA to Protein Sequence Translation)

难度: 6kyu

蛋白质是由DNA转录成RNA,然后转译成蛋白质的中心法则。RNA和DNA一样,是由糖骨架(在这种情况下是核糖)连接在一起的长链核酸。每个由三个碱基组成的片段被称为密码子。称为核糖体的分子机器将RNA密码子转译成氨基酸链,称为多肽链,然后将其折叠成蛋白质。

蛋白质序列可以像DNA和RNA一样很容易地可视化,作为大字符串。重要的是要注意,"停止"密码子不编码特定的氨基酸。它们的唯一功能是停止蛋白质的转译,因此它们不会被纳入多肽链中。"停止"密码子不应出现在最终的蛋白质序列中。为了节省您许多不必要(和乏味)的键入,已为您的氨基酸字典提供了键和值。

给定一个RNA字符串,创建一个将RNA转译为蛋白质序列的函数。注意:测试用例将始终生成有效的字符串。

protein ('UGCGAUGAAUGGGCUCGCUCC')

将返回 CDEWARS

作为测试用例的一部分是一个真实世界的例子!最后一个示例测试用例对应着一种叫做绿色荧光蛋白的蛋白质,一旦被剪切到另一个生物体的基因组中,像GFP这样的蛋白质可以让生物学家可视化细胞过程!

Amino Acid Dictionary

```
# Your dictionary is provided as PROTEIN_DICT
  PROTEIN_DICT = {
   # Phenylalanine
   'UUC': 'F', 'UUU': 'F',
   # Leucine
    'UUA': 'L', 'UUG': 'L', 'CUU': 'L', 'CUC': 'L', 'CUA': 'L', 'CUG': 'L',
   # Isoleucine
    'AUU': 'I', 'AUC': 'I', 'AUA': 'I',
   # Methionine
    'AUG': 'M',
   # Valine
    'GUU': 'V', 'GUC': 'V', 'GUA': 'V', 'GUG': 'V',
   # Serine
    'UCU': 'S', 'UCC': 'S', 'UCA': 'S', 'UCG': 'S', 'AGU': 'S', 'AGC': 'S',
   # Proline
    'CCU': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
   # Threonine
    'ACU': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
   # Alanine
    'GCU': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
   # Tyrosine
    'UAU': 'Y', 'UAC': 'Y',
   # Histidine
    'CAU': 'H', 'CAC': 'H',
   # Glutamine
    'CAA': 'Q', 'CAG': 'Q',
   # Asparagine
    'AAU': 'N', 'AAC': 'N',
   # Lysine
    'AAA': 'K', 'AAG': 'K',
   # Aspartic Acid
    'GAU': 'D', 'GAC': 'D',
   # Glutamic Acid
    'GAA': 'E', 'GAG': 'E',
   # Cystine
    'UGU': 'C', 'UGC': 'C',
   # Tryptophan
    'UGG': 'W',
   # Arginine
    'CGU': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R', 'AGA': 'R', 'AGG': 'R',
   # Glycine
    'GGU': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G',
   # Stop codon
    'UAA': 'Stop', 'UGA': 'Stop', 'UAG': 'Stop'
}
```

代码提交地址:

https://www.codewars.com/kata/555a03f259e2d1788c000077

第四题: 填写订单 (Thinkful - Dictionary drills: Order filler)

难度: 8kyu

您正在经营一家在线业务,您的一天中很大一部分时间都在处理订单。随着您的销量增加,这项工作占用了更多的时间,不幸的是最近您遇到了一个情况,您接受了一个订单,但无法履行。

您决定写一个名为 fillable() 的函数,它接受三个参数:一个表示您库存的字典 stock ,一个表示客户想要购买的商品的字符串 merch ,以及一个表示他们想购买的商品数量的整数n。如果您有足够的商品库存来完成销售,则函数应返回 True ,否则应返回 False 。

有效的数据将始终被传入,并且n将始终大于等于1。

代码提交地址:

https://www.codewars.com/kata/586ee462d0982081bf001f07/python

第五题: 莫尔斯码解码器 (Decode the Morse code, advanced)

难度: 4kyu

在这个作业中,你需要为有线电报编写一个莫尔斯码解码器。

有线电报通过一个有按键的双线路运行,当按下按键时,会连接线路,可以在远程站点上检测到。莫尔斯码将每个字符的传输编码为"点"(按下按键的短按)和"划"(按下按键的长按)的序列。

在传输莫尔斯码时, 国际标准规定:

- "点" 1个时间单位长。
- "划" 3个时间单位长。
- 字符内点和划之间的暂停 1个时间单位长。
- 单词内字符之间的暂停 3个时间单位长。
- 单词间的暂停 7个时间单位长。

但是,该标准没有规定"时间单位"有多长。实际上,不同的操作员会以不同的速度进行传输。一个业余人士可能需要几秒钟才能传输一个字符,一位熟练的专业人士可以每分钟传输60个单词,而机器人发射器可能会快得多。

在这个作业中,我们假设消息的接收是由硬件自动执行的,硬件会定期检查线路,如果线路连接(远程站点的按键按下),则记录为1,如果线路未连接(远程按键弹起),则记录为0。消息完全接收

后,它会以一个只包含0和1的字符串的形式传递给你进行解码。

例如,消息 HEY JUDE ,即 ···· ·--- ·-- 可以如下接收:

如您所见,根据标准,这个传输完全准确,硬件每个"点"采样了两次。

因此, 你的任务是实现两个函数:

函数decodeBits(bits),应该找出消息的传输速率,正确解码消息为点(.)、划(-)和空格(字符之间有一个空格,单词之间有三个空格),并将它们作为一个字符串返回。请注意,在消息的开头和结尾可能会出现一些额外的0,确保忽略它们。另外,如果你无法分辨特定的1序列是点还是划,请假设它是一个点。

函数decodeMorse(morseCode),它将接收上一个函数的输出,并返回一个可读的字符串。

注意: 出于编码目的, 你必须使用ASCII字符.和-, 而不是Unicode字符。

莫尔斯码表已经预加载给你了(请查看解决方案设置,以获取在你的语言中使用它的标识符)。

morseCodes(".--") #to access the morse translation of ".--"

下面是Morse码支持的完整字符列表:

```
Α
В
      -...
C
      - • - •
D
      -..
Е
F
       • • - •
G
Н
       . . . .
Ι
       . .
J
K
L
Μ
N
0
P
Q
R
S
Τ
U
Χ
Υ
Z
0
1
2
3
4
5
6
7
8
9
&
       •-••
```

代码提交地址:

https://www.codewars.com/kata/decode-the-morse-code-advanced

第三部分

使用Mermaid绘制程序流程图

安装VSCode插件:

- Markdown Preview Mermaid Support
- Mermaid Markdown Syntax Highlighting

使用Markdown语法绘制你的程序绘制程序流程图(至少一个), Markdown代码如下:

```
flowchart TD

A[Start] --> B{Is it?}

B --> | Yes | C[OK]

C --> D[Rethink]

D --> B

B ----> | No | E[End]
```

显示效果如下:

查看Mermaid流程图语法-->点击这里

使用Markdown编辑器(例如VScode)编写本次实验的实验报告,包括实验过程与结果、实验考查和实验总结,并将其导出为 PDF格式 来提交。

实验过程与结果

第一题: 淘气还是乖孩子

圣诞老人要来镇上了,他需要你帮助找出谁是淘气的或善良的。你将会得到一整年的JSON数据,按照这个格式:

```
{
    January: {
        '1': 'Naughty','2': 'Naughty', ..., '31': 'Nice'
},
February: {
        '1': 'Nice','2': 'Naughty', ..., '28': 'Nice'
},
...
December: {
        '1': 'Nice','2': 'Nice', ..., '31': 'Naughty'
}
```

你的函数应该返回 "Naughty!"或 "Nice!",这取决于在某一年发生的总次数(以较大者为准)。如果两者相等,则返回 "Nice!"。

代码提交地址:

https://www.codewars.com/kata/5662b14e0a1fb8320a00005c

流程图如下:

第二题: 观察到的PIN

好了,侦探,我们的一个同事成功地观察到了我们的目标人物,抢劫犯罗比。我们跟踪他到了一个秘密仓库,我们认为在那里可以找到所有被盗的东西。这个仓库的门被一个电子密码锁所保护。不幸的是,我们的间谍不确定他看到的密码,当罗比进入它时。

键盘的布局如下:

他注意到密码1357,但他也说,他看到的每个数字都有可能是另一个相邻的数字(水平或垂直,但不是对角线)。例如,代替1的也可能是2或4。而不是5,也可能是2、4、6或8。

他还提到,他知道这种锁。你可以无限制地输入错误的密码,但它们最终不会锁定系统或发出警报。这就是为什么我们可以尝试所有可能的(*)变化。

*可能的意义是:观察到的PIN码本身和考虑到相邻数字的所有变化。

你能帮助我们找到所有这些变化吗?如果有一个函数,能够返回一个列表,其中包含一个长度为1到8位的观察到的PIN的所有变化,那就更好了。我们可以把这个函数命名为getPINs(在python中为get_pins,在C#中为GetPINs)。

但请注意,所有的PINs,包括观察到的PINs和结果,都必须是字符串,因为有可能会有领先的 "0"。我们已经为你准备了一些测试案例。

侦探,我们就靠你了!

代码提交地址:

https://www.codewars.com/kata/5263c6999e0f40dee200059d

```
from itertools import product
def get pins(observed):
    x=list(observed)
    lenth=len(observed)
    z=[[]for i in range(lenth)]
    pin_dict={'1':{'1','2','4'},'2':{'1','2','3','5'},'3':{'2','3','6'},'4':{'1','4','5','7'
    for i in range(0,lenth):
        z[i]=pin_dict[x[i]]
        z[i]=list(z[i])
    a=list(product(*z))
    n=len(a)
    for i in range(0,n):
        a[i]=" ".join(a[i])
        a[i]=a[i].replace(' ','')
    return a
    pass # TODO: This is your job, detective!
```

第三题: RNA到蛋白质序列的翻译

蛋白质是由DNA转录成RNA,然后转译成蛋白质的中心法则。RNA和DNA一样,是由糖骨架(在这种情况下是核糖)连接在一起的长链核酸。每个由三个碱基组成的片段被称为密码子。称为核糖体的分子机器将RNA密码子转译成氨基酸链,称为多肽链,然后将其折叠成蛋白质。

蛋白质序列可以像DNA和RNA一样很容易地可视化,作为大字符串。重要的是要注意,"停止"密码子不编码特定的氨基酸。它们的唯一功能是停止蛋白质的转译,因此它们不会被纳入多肽链中。"停止"密码子不应出现在最终的蛋白质序列中。为了节省您许多不必要(和乏味)的键入,已为您的氨基酸字典提供了键和值。

给定一个RNA字符串,创建一个将RNA转译为蛋白质序列的函数。注意:测试用例将始终生成有效的字符串。

代码提交地址:

https://www.codewars.com/kata/555a03f259e2d1788c000077

```
def protein(rna):
    PROTEIN_DICT = {
    # Phenylalanine
    'UUC': 'F', 'UUU': 'F',
    # Leucine
    'UUA': 'L', 'UUG': 'L', 'CUU': 'L', 'CUC': 'L', 'CUA': 'L', 'CUG': 'L',
    # Isoleucine
    'AUU': 'I', 'AUC': 'I', 'AUA': 'I',
    # Methionine
    'AUG': 'M',
    # Valine
    'GUU': 'V', 'GUC': 'V', 'GUA': 'V', 'GUG': 'V',
    # Serine
    'UCU': 'S', 'UCC': 'S', 'UCA': 'S', 'UCG': 'S', 'AGU': 'S', 'AGC': 'S',
    # Proline
    'CCU': 'P', 'CCC': 'P', 'CCA': 'P', 'CCG': 'P',
    # Threonine
    'ACU': 'T', 'ACC': 'T', 'ACA': 'T', 'ACG': 'T',
    # Alanine
    'GCU': 'A', 'GCC': 'A', 'GCA': 'A', 'GCG': 'A',
    # Tyrosine
    'UAU': 'Y', 'UAC': 'Y',
    # Histidine
    'CAU': 'H', 'CAC': 'H',
    # Glutamine
    'CAA': 'Q', 'CAG': 'Q',
    # Asparagine
    'AAU': 'N', 'AAC': 'N',
    # Lysine
    'AAA': 'K', 'AAG': 'K',
    # Aspartic Acid
    'GAU': 'D', 'GAC': 'D',
    # Glutamic Acid
    'GAA': 'E', 'GAG': 'E',
    # Cystine
    'UGU': 'C', 'UGC': 'C',
    # Tryptophan
    'UGG': 'W',
    # Arginine
    'CGU': 'R', 'CGC': 'R', 'CGA': 'R', 'CGG': 'R', 'AGA': 'R', 'AGG': 'R',
    # Glycine
    'GGU': 'G', 'GGC': 'G', 'GGA': 'G', 'GGG': 'G',
    # Stop codon
    'UAA': 'Stop', 'UGA': 'Stop', 'UAG': 'Stop'
}
    n=len(rna)
```

```
str=[[]for i in range(int(n/3))]
end=[]
for i in range(0,int(n/3)):
    str[i].append(rna[i*3])
    str[i].append(rna[i*3+1])
    str[i].append(rna[i*3+2])
    str[i]="".join(str[i])
    if str[i]!='UAA' and str[i]!='UGA' and str[i]!='UAG':
        end.append(PROTEIN_DICT[str[i]])
    else: break
end=''.join(end)
return end
# your code here
```

第四题: 填写订单

您正在经营一家在线业务,您的一天中很大一部分时间都在处理订单。随着您的销量增加,这项工作占用了更多的时间,不幸的是最近您遇到了一个情况,您接受了一个订单,但无法履行。

您决定写一个名为 fillable() 的函数,它接受三个参数:一个表示您库存的字典 stock ,一个表示客户想要购买的商品的字符串 merch ,以及一个表示他们想购买的商品数量的整数n。如果您有足够的商品库存来完成销售,则函数应返回 True ,否则应返回 False 。

有效的数据将始终被传入,并且n将始终大于等于1。

代码提交地址:

https://www.codewars.com/kata/586ee462d0982081bf001f07/python

```
def fillable(stock, merch, n):
    if merch in stock.keys():
        x=stock[merch]
    if x>=n:
        return True

return False
```


第五题: 莫尔斯码解码器

在这个作业中,你需要为有线电报编写一个莫尔斯码解码器。

有线电报通过一个有按键的双线路运行,当按下按键时,会连接线路,可以在远程站点上检测到。莫尔斯码将每个字符的传输编码为"点"(按下按键的短按)和"划"(按下按键的长按)的序列。

代码提交地址:

https://www.codewars.com/kata/decode-the-morse-code-advanced

```
def decode_bits(bits):
    # ToDo: Accept 0's and 1's, return dots, dashes and spaces
    bits=bits.strip('0')
    if '0' not in bits:
        return '.'
    minOnes = min(len(s) for s in bits.split('0') if s)
    minZeros = min(len(s) for s in bits.split('1') if s)
    m = min(minOnes, minZeros)
    return bits.replace('111'*m, '-').replace('000'*m, ' ').replace('1'*m, '.').replace('0'*
def decode_morse(morseCode):
    # ToDo: Accept dots, dashes and spaces, return human-readable message
    print(morseCode)
    x=[]
    z=[]
    j=0
    while(j < len(morseCode)):</pre>
        if(morseCode[j]!=' '):
            x.append(morseCode[j])
        else:
            if(len(x)!=0):
                end=''.join(x)
                x.clear()
                z.append(MORSE_CODE[end])
            else:
                z.append(' ')
        j+=1
    if(len(x)!=0):
        end=''.join(x)
        x.clear()
        z.append(MORSE_CODE[end])
    return ''.join(z)
```

实验考查

请使用自己的语言并使用尽量简短代码示例回答下面的问题,这些问题将在实验检查时用于提问和答辩以及实际的操作。

1. 字典的键和值有什么区别?

答:键可以是数字、字符串、元组。就像英汉词典一样,可以通过查找某个特定的词语(键),从而找到它的定义(值)。键必须是唯一的,但值则不必。值可以取任何数据类型,但键必须是不可变的,如字符串,数字或元组。

2. 在读取和写入字典时,需要使用默认值可以使用什么方法?

答:可使用.setdefault (key,value)方法

3. Python中的while循环和for循环有什么区别?

答: for 适用于已知循环次数的循环 while 适用于未知循环次数的循环; for 通常用于遍历可迭代对象 while 很少进行遍历使用; for 循环是在序列穷尽时停止, while 循环是在条件不成立时停止。

4. 阅读PEP 636 – Structural Pattern Matching: Tutorial, 总结Python 3.10中新出现的match语句的使用方法。

答: match语句是一种用于结构模式匹配的强大工具,使用结构大致为

```
match expression:
    case pattern1:
        # 对应的代码块
    case pattern2:
        # 对应的代码块
    ...
    case patternN:
        # 对应的代码块
        # 如果没有匹配的模式,可以添加一个默认的case
    case _:
        # 默认的代码块
```

其中expression是需要进行模式匹配的表达式, pattern1, pattern2 patternN 则是用于匹配的模式, 当他们匹配成功后, 才会进行对应去的代码块。

实验总结

通过本次实验,我更加深入了解了字典的使用,学会了字典遍历与取值。同时我也知道了while循环与for循环之间的不同之处。