MATH 220A

Name: Quin Darcy Due Date: 2/19/21 Instructor: Dr.Martins Assignment: Homework 2

1. Show that if \mathcal{A} is a basis for a topology on X, then the topology generated by \mathcal{A} equals the intersection of all topologies on X that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.

Proof. Let \mathfrak{J} denote the topology generated by \mathcal{A} , and let \mathcal{T} be any topology on X which contains \mathcal{A} . Suppose $S \in \mathfrak{J}$. Then by Lemma 13.1, $S = \bigcup B_{\alpha}$ for $B_{\alpha} \in \mathcal{A}$. Furthermore, since $\mathcal{A} \subseteq \mathcal{T}$ and \mathcal{T} is closed under unions, then $S \in \mathcal{T}$. Hence, S is in the intersection of all topologies containing \mathcal{A} . Thus, $\mathfrak{J} \subseteq \mathcal{T}$, which implies $\mathfrak{J} \subseteq \bigcap \mathcal{T}$.

To obtain the other inclusion, we note that \mathfrak{J} is a topology which contains \mathcal{A} and so $\bigcap \mathcal{T} \subseteq \mathfrak{J}$. Thus proving the equality.

If \mathcal{A} is a subbasis and \mathfrak{J} is the topology generated by \mathcal{A} . Then if $S \in \mathfrak{J}$, we can write S as a union of finite intersections of elements of \mathcal{A} . Thus, as $\mathcal{A} \subseteq \mathcal{T}$, then $S \in \mathcal{T}$ since \mathcal{T} is closed under finite intersections. Hence, $\mathfrak{J} \subseteq \bigcap \mathcal{T}$.

To prove the other inclusion, we can use the same argument as above. Namely, with \mathfrak{J} being a topology which contains \mathcal{A} , it is then in the intersection of all topologies containing \mathcal{A} . Thus, $\bigcap T \subseteq \mathfrak{J}$.

7. Consider the following topologies on \mathbb{R} .

 \mathfrak{J}_1 = the standard topology.

 \mathfrak{J}_3 = the finite complement topology.

 \mathfrak{J}_4 = the upper limit topology, having all sets (a, b] as basis.

 \mathfrak{J}_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.

Proof. \Box

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational } \}$$

is a basis that generates the standard topology on \mathbb{R} .

Proof.

MATH 220A Darcy

	(b) Show that the collection	
	$C = \{[a, b) \mid a < b, a \text{ and } b \text{ rational } \}.$	
	Proof.	
1.	Show that if Y is a subspace of X , and A is a subset of Y , then the topology A inh as a subspace of Y is the same as the topology it inherits as a subspace of X .	erits
	Proof.	