What is a Constrained Optimization Problem?

subject to Optimize

f(x, y)

g(x, y) = k

 $g(x, y) = x^2 + y^2 = 1$

f(x,y) = 2x + y

$\max_{\beta_0,\beta_1,\ldots,\beta_p} M$

subject to:

$$\|\beta\| = 1$$

$$y_i(\beta_0 + \beta^T x_i) \ge M$$

What is a Constrained Optimization Problem?

Optimize
$$f(x, y)$$
 subject to $g(x, y) = k$

$$f(x, y) = 2x + y$$

 $g(x, y) = x^2 + y^2 = 1$

max M $\beta_0,\beta_1,\ldots,\beta_p$

subject to:

$$\|\beta\| = 1$$

$$y_i(\beta_0 + \beta^T x_i) \ge M$$

The Non-Separable Case

the optimization problem for the maximal margin classifier often has no solution with M>0

