Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2021-22

Απόδοση ΚΜΕ

(Μέτρηση και τεχνικές βελτίωσης απόδοσης)

http://mixstef.github.io/courses/comparch/

Μ.Στεφανιδάκης

Χρόνος απόκρισης – Ρυθμός Ολοκλήρωσης

- Απόδοση ΚΜΕ
- Χρόνος απόκρισης (response time)
 - Συνολικός χρόνος για την ολοκλήρωση των εργασιών ενός προγράμματος (από την έναρξη μέχρι τη λήξη)
- Ρυθμός ολοκλήρωσης (throughput)
 - Ρυθμός ολοκλήρωσης έργου σε συγκεκριμένο χρόνο
- Τα δύο μεγέθη είναι αλληλένδετα
 - Συνήθως η βελτίωση του ενός επιδρά θετικά και στο άλλο

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

3

Απόδοση (Κεντρικής) Μονάδας Επεξεργασίας

- Απόδοση ΚΜΕ
- Απόδοση υπολογιστικού συστήματος
 - Η απόδοση εξαρτάται από όλα τα επιμέρους τμήματα του συστήματος
 - Υλικό και λογισμικό
- Απόδοση (Κεντρικής) Μονάδας Επεξεργασίας
 - Πόσο γρήγορα εκτελείται ένα πρόγραμμα;
 - Πώς επηρεάζει η αρχιτεκτονική της (Κ)ΜΕ την απόδοση;
 - Πόσο γρηγορότερα εκτελείται ένα πρόγραμμα μετά από μια αρχιτεκτονική αλλαγή;

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

2

Χρόνος Εκτέλεσης (Execution Time)

- Απόδοση ΚΜΕ
- Χρόνος εκτέλεσης στην (Κ)ΜΕ
 - Ο χρόνος για τον οποίο η ΚΜΕ εκτελεί εντολές του προγράμματος
 - Όχι χρόνος για αναμονή Ε/Ε ή για άλλες διεργασίες
- Συνιστώσες
 - Χρόνος προγράμματος χρήστη
 - Για το πρόγραμμα καθεαυτό
 - Χρόνος συστήματος
 - Λειτουργίες ΛΣ για την εξυπηρέτηση του προγράμματος

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

Εκτέλεση προγραμμάτων

• Απόδοση ΚΜΕ

- Χρόνος εκτέλεσης (execution time)
 - Αύξηση απόδοσης ⇔ Μείωση χρόνου εκτέλεσης
- Για υπολογιστή Χ:

 $Aπόδοση(X) = {1 \over Xρόνος Εκτέλεσης(X)}$

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

5

Βασικά μεγέθη μέτρησης χρόνου εκτέλεσης

• Απόδοση ΚΜΕ

- Κύκλος ρολογιού (περίοδος)
 - Clock Cycle (CC)
 - Η διάρκεια ενός κύκλου ρολογιού (περίοδος ρολογιού) κατά τον οποίο η ΚΜΕ εκτελεί τις μικρότερες βασικές λειτουργίες
 - Απόλυτα σταθερό μέγεθος
- Poλόι (clock)
 - Περιοδικό σήμα (εναλλάσσεται συνεχώς μεταξύ 0 και 1)
 - Ο παλμός κάθε υπολογιστικού συστήματος, συγχρονίζει τις λειτουργίες του συστήματος

Συγκρίνοντας δύο υπολογιστές

• Απόδοση ΚΜΕ

Ο Χ εκτελεί ένα

πρόγραμμα σε 10 sec και ο Υ σε 15 sec. Πόσο πιο

γρήγορος είναι ο

- Συγκρίνοντας αποδόσεις
 - Έστω υπολογιστές X και Y
 - Εάν:

Απόδοση(Χ) > Απόδοση(Υ)

Τότε (και αντίστροφα):

Χρόνος Εκτέλεσης(Χ) < Χρόνος Εκτέλεσης(Υ)

 $\frac{A\pi\delta\delta\sigma\sigma\eta(X)}{A\pi\delta\delta\sigma\sigma\eta(Y)} = \frac{X\rho\delta\nuo\varsigma E\kappa\tau\epsilon\lambda\epsilon\sigma\eta\varsigma(Y)}{X\rho\delta\nuo\varsigma E\kappa\tau\epsilon\lambda\epsilon\sigma\eta\varsigma(X)}$

Ο Χ είναι η φορές γρηγορότερος από τον Υ

Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ"

6

Βασικά μεγέθη μέτρησης χρόνου εκτέλεσης

• Απόδοση ΚΜΕ

Κύκλοι ρολογιού ανά εντολή

- Clocks Per Instruction (CPI)
 - Οι απαιτούμενοι κύκλοι ρολογιού για την ολοκλήρωση μιας εντολής
 - Ενδεχομένως διαφορετικό μέγεθος ανά τύπο εντολής
 - Σε προσεγγιστικούς υπολογισμούς χρησιμοποιείται ένα μέσο CPI
 - Σε λεπτομερείς υπολογισμούς χρησιμοποιούνται μεγέθη από προσομοιώσεις ή μετρήσεις μέσω μετροπρογραμμάτων
- Αριθμός εντολών
 - Instruction Count (IC)
 - Ο αριθμός των εντολών ενός προγράμματος

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

Χρόνος εκτέλεσης στην (Κ)ΜΕ

• Απόδοση ΚΜΕ

• Χρόνος Εκτέλεσης για ένα πρόγραμμα

- Τι μπορεί να κάνει ο σχεδιαστής ΚΜΕ για να βελτιώσει την απόδοση;
 - Να μειώσει τον κύκλο ρολογιού (CC)
 - Να μειώσει τον αριθμό κύκλων ανά εντολή (CPI)
 - Ο αριθμός εντολών δεν αλλάζει

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

9

Συσχέτιση με λογισμικό

• Απόδοση ΚΜΕ

- Αλγόριθμος
 - Καθορίζει το IC
 - Ενδεχομένως καθορίζει το CPI, ευνοώντας ορισμένους τύπους εντολών (π.χ. κινητής υποδιαστολής)
- Γλώσσα προγραμματισμού Μεταγλωττιστής
 - Καθορίζει το IC (μετάφραση εντολών υψηλού επιπέδου)
 - Καθορίζει το CPI απαιτώντας/χρησιμοποιώντας συγκεκριμένους τύπους εντολών

!

Το υλικό (ISA) καθορίζει και τα τρία μεγέθη (IC, CPI και CC)

Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ"

11

Παράδειγμα

• Απόδοση ΚΜΕ

	Τύπος εντολής	A	В	С
	СРІ	1	2	3

Ακολουθία κώδικα	A	В	С
1	2	1	2
2	4	1	1

- Επιλογή μεταξύ 2 ακολουθιών εντολών
 - Ποια ακολουθία εκτελεί τις περισσότερες εντολές;
 - Ποια είναι ταχύτερη;
 - Ποιο το μέσο CPI σε κάθε περίπτωση;

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ"

10

Μετροπρογράμματα

• Απόδοση ΚΜΕ

Benchmarks

- Για τη μέτρηση της απόδοσης
- Και τη σύγκριση μεταξύ υπολογιστών
- Θα πρέπει να αντιπροσωπεύουν τις πραγματικές εφαρμογές
- Υπό ρεαλιστικές συνθήκες εκτέλεσης και δεδομένα εισόδου
- Χωρίς "εσωτερικές" ειδικές βελτιστοποιήσεις
- Δυνατότητα επανάληψης μέτρησης
- Διαφορετικά για ανόμοιες κλάσεις υπολογιστών
 - PCs, servers, embedded systems...

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

Ο "νόμος" του Amdahl

• Απόδοση ΚΜΕ

• Ένα πρόγραμμα

τρέχει για 100 sec σε έναν υπολογιστή και εκτελεί πολλαπλασιασμούς για 80 sec. Πόσο πρέπει να βελτιάσσο τη ταχύτητα του πολλαπλασιασμού για να πενταπλασιάσω τη συνολική απόδοση;

 "Η βελτίωση της συνολικής απόδοσης ενός συστήματος μέσω της εισαγωγής ενός νέου χαρακτηριστικού, περιορίζεται από το βαθμό χρήσης αυτού του νέου χαρακτηριστικού"

- Ερμηνεία συνέπειες
 - Οι περισσότερο χρησιμοποιούμενες περιπτώσεις πρέπει να είναι γρήγορες
 - Δεν ωφελεί η βελτιστοποίηση των σπάνιων περιπτώσεων
 - Η μη χρήση του νέου χαρακτηριστικού εμποδίζει να επιτύχουμε την «τέλεια» απόδοση

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

13

ΚΜΕ ενός κύκλου (single-cycle)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- CPI = 1
 - Σε κάθε έναν κύκλο ρολογιού ολοκληρώνεται μια εντολή ή
 - κάθε εντολή απαιτεί έναν κύκλο ρολογιού
- Πόσο πρέπει να είναι το CC;
 - Ίσο με τη διάρκεια της μεγαλύτερης λειτουργίας
 - Μη αποδοτικό σχήμα
 - Όλες οι εντολές δεν απαιτούν τον ίδιο χρόνο

Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ"

15

KME ενός κύκλου (single-cycle) • Απόδοση ΚΜΕ • ΚΜΕ ενός επόμενη διεύθυνση MUX κύκλου έλεγχος διακλάδωσης op R1 R2 offs εντολή εντολών Κάθε εντολή Ň ολοκληρώνεται σε έναν κύκλο register ρολογιού μνήμη Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ" 14

Υποθετικό παράδειγμα

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου

Εντολή	IF	ID	EX	DM	WB	Σύνολο		
Αριθμητική	200	50	100	0	50	400 ps		
Διακλάδωση	200	50	100	0	0	350 ps		
Ανάγνωση μνήμης	200	50	100	200	50	600 ps		
Εγγραφή μνήμης	200	50	100	200	0	550 ps		

- CC πρέπει να είναι 600 ps (single cycle CPU)
 - Αν ήταν δυνατή η χρήση με μεταβλητό CC (προσοχή: πρακτικά αδύνατο!)
 - Ποια η βελτίωση της απόδοσης;
 - 25% ανάγνωση, 10% εγγραφή, 45% αριθμητικές, 20% διακλάδωσης

[Patterson-Hennessy "Computer Organization and Design", 3rd ed]

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

ΚΜΕ πολλαπλών κύκλων (multi-cycle)

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων
- CPI > 1
 - Κάθε εντολή χωρίζεται σε έναν μεταβλητό αριθμό βημάτων
 - Κάθε βήμα απαιτεί έναν κύκλο ρολογιού
- Πόσο πρέπει να είναι το CC;
 - Ίσο με τη διάρκεια ολοκλήρωσης του μεγαλύτερου βήματος
- Καταχωρητές για τη συγκράτηση αποτελεσμάτων μεταξύ βημάτων
- Μέρη της ΚΜΕ μπορούν να χρησιμοποιηθούν για περισσότερες από μία φορές κατά την εκτέλεση μιας εντολής

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

17

Παράδειγμα: Εντολή load (βήμα ID) • Απόδοση ΚΜΕ • ΚΜΕ ενός κύκλου • ΚΜΕ πολλαπλών κύκλων R1 \leftarrow mem[R2 + offset] Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ"

Παράδειγμα: Εντολή load (βήμα IF) • Απόδοση ΚΜΕ • ΚΜΕ ενός κύκλου · KME πολλαπλών κύκλων μνήμη ανμκληση εντολής υπολογισμός νέου ΡΟ Η εντολή load απαιτεί τα περισσότερα βήματα (κύκλους R1 ← mem[R2 + offset] ρολογιού) για να εκτελεστεί Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ" 18

Μονάδα Ελέγχου ΚΜΕ πολλαπλών κύκλων

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων
- Πολυπλοκότητα σημάτων ελέγχου
 - Δημιουργία σημάτων σε κάθε βήμα εκτέλεσης
 - Ανάλογα με το είδος της εντολής
 - Διατήρηση προηγούμενης κατάστασης
- Μέθοδοι υλοποίησης
 - Αυτόματα πεπερασμένων καταστάσεων
 - Ακολουθιακά λογικά κυκλώματα
 - Παραγωγή σημάτων ελέγχου ανάλογα με εισόδους και τρέχουσα κατάσταση
 - Μικροπρόγραμμα
 - Καθορισμός σημάτων μέσω μικροεντολών
 - Εσωτερικά στην ΚΜΕ
 - Για υλοποίηση σύνθετων εντολών με πολλά βήματα και πολλαπλά περάσματα από το datapath
 - Μερικές φορές είναι εγγράψιμο (updates, patches..)

Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ"

23

Παράδειγμα: Εντολή load (βήμα WB) • Απόδοση ΚΜΕ • ΚΜΕ ενός κύκλου • KME πολλαπλών κύκλων μνήμη αποθήκευση σε R1 Σε κάθε βήμα, μερικά τμήματα μένουν ανενεργά. Πώς θα R1 ← mem[R2 + offset] μπορούσαμε να τα εκμεταλλευτούμε; Αρχιτεκτονική Υπολογιστών - "Απόδοση ΚΜΕ" 22

Απόδοση ΚΜΕ πολλαπλών κύκλων

- Απόδοση ΚΜΕ
- ΚΜΕ ενός κύκλου
- ΚΜΕ πολλαπλών κύκλων
- Πλεονεκτήματα
 - Δεν απαιτείται ο μέγιστος χρόνος για το CC
 - Μέρη της ΚΜΕ μπορούν να χρησιμοποιηθούν με πολλαπλό τρόπο κατά την εκτέλεση μιας εντολής
- Μειονεκτήματα
 - Η μονάδα ελέγχου γίνεται πολυπλοκότερη
 - Η πολυπλοκότητα πιθανόν να ακυρώνει τα πλεονεκτήματα
- Σήμερα
 - Οι ΚΜΕ υψηλής απόδοσης χρησιμοποιούν πρόσθετες τεχνικές παραλληλισμού σε επίπεδο εντολών (instruction level parallelism – ILP)
 - (στο επόμενο μάθημα...)

Αρχιτεκτονική Υπολογιστών – "Απόδοση ΚΜΕ"