1. Diagrams of Finite Type

In this section, we shall review the structure of diagrams of finite type, and how their cycles are effected by mutation. This section is simply a recap of [?, Section 2].

Definition 1.1. A chordless cycle of an unoriented graph G is a connected subgraph $H \subset G$ such that the number of vertices in H is equal to the number of edges in H, and the edges in H form a single cycle.

Proposition 1.2. Let Γ be a diagram of finite type. Then, a chordless cycle in the unoriented graph of Γ is cyclically oriented in Γ . Furthermore, the unoriented graph underlying the cycle must either be a cycle such that all edges have weight 1, a triangle with two edges of weight 2 and one of weight 1, or a square with two opposite edges of weight 2 and two opposite edges of weight 1, as pictured below.

Proof. See [?, Proposition 2.1].

Lemma 1.3. Let Γ be a diagram of finite type with $\Gamma' = \mu_k(\Gamma)$ the mutation of Γ at vertex k. Below, we list induced subdiagrams in Γ on the left and the resulting induced subdiagrams in Γ' with chordless cycles C' on the right, after mutation at k. We draw the diagrams so that C' always has a clockwise cycle. Furthermore, in case (i), we assume C' has at least three vertices, while in case (j), we assume C' has at least four vertices. Every chordless cycle in Γ' is of one of these types.

(k) C is an oriented cycle in Γ not connected to k and C' is the corresponding cycle in Γ' .

(1) C is an oriented cycle in Γ with exactly one vertex in C connected to k by an edge of either weight 1 or 2. Then, C' is the corresponding cycle in Γ' .

Proof. See [?, Lemma 2.5].
$$\Box$$

2. The Group of a Diagram in an Artin Group

Definition 2.1. For Γ a diagram of finite type, we define the associated Artin Group as follows. The associated artin group W_{Γ} is generated by s_i , where there is one s_i for each vertex i in Γ . These generators are subject to the relations

(R2') For all $i \neq j$, we add the relations

$$\begin{cases} s_i s_j = s_j s_i, & \text{if there is no edge between } i \text{ and } j \\ s_i s_j s_i = s_j s_i s_j & \text{if there is an edge of weight 1 between } i \text{ and } j. \\ s_i s_j s_i s_j = s_j s_i s_j s_i & \text{if there is an edge of weight 2 between } i \text{ and } j. \\ s_i s_j s_i s_j s_i s_j = s_j s_i s_j s_i s_j s_i & \text{if there is an edge of weight 3 between } i \text{ and } j. \end{cases}$$
 (R3')(a) For every chordless cycle of the form

$$i_0 \longrightarrow i_1 \longrightarrow \cdots \longrightarrow i_{d-1} \longrightarrow i_0$$

such that all edges have weight 1, for all i, with $0 \le a \le d-1$, we include the relation

$$s_a s_{a+1}^{-1} s_{a+2}^{-1} \dots s_{a-2}^{-1} s_{a-1} s_{a-2} s_{a-3} \dots s_{a+1} = s_{a+1}^{-1} \dots s_{a-3}^{-1} s_{a-2}^{-1} s_{a-1} s_{a-2} \dots s_{a+1} s_a.$$

Where subscripts are taken \pmod{d} .

we include the three relations

- (1) $s_i s_j^{-1} s_k s_j = s_j^{-1} s_k s_j s_i$ (2) $s_j s_k^{-1} s_i s_k = s_k^{-1} s_i s_k s_j$ (3) $s_k^{-1} s_i^{-1} s_j s_i s_k s_i^{-1} s_j s_i s_k^{-1} s_i^{-1} s_j^{-1} s_i = e$.

we include the two relations

- (1) $s_i s_j^{-1} s_k^{-1} s_l s_k s_j = s_j^{-1} s_k^{-1} s_l s_k s_j s_i$ (2) $s_k s_l^{-1} s_i^{-1} s_j s_i s_l = s_l^{-1} s_i^{-1} s_j s_i s_l s_k$

Remark 2.2. Note that if Γ is the graph associated to a dynikin diagram, then W_{Γ} as we have defined it is precisely the corresponding Artin group corresponding to that dynkin diagram. This is the case since in this case we have no cycles in Γ , and so we only have relation of the form (R2'), which define the Artin Group.

3. Symmetry among (R3') Relations

As in [?], given the relations (R2'), many of the relations in (R3')(a) and (b) become redundant. For example,

Lemma 3.1. Let Γ be a diagram of finite type which contains a chordless cycle $C: i_0 \longrightarrow i_1 \longrightarrow \cdots \longrightarrow i_{d-1}$ so that all edges have weight 1. Then if W is a group generated by s_1, \ldots, s_n satisfying the relations (R2') and $r(i_a, i_{a+1})$ for some $a \in \{1, \ldots, d\}$, all of the relations in (R3)(a) hold for C.

Proof. As in Barot-Marsh, it suffices to prove that the relation r(0, 1) implies the relation r(d-1, 0). So suppose W_{γ} satisfies the relation r(0, 1). Then we have

$$\begin{split} s_{d-1}s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0 \\ &= s_0^{-1}s_0s_{d-1}s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}s_0s_{d-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}s_0s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-1}^{-1}s_{d-3}\dots s_1s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}\left(s_0s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}^{-1}s_{d-1}s_{d-2}s_{d-3}\dots s_1\right)s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}\left(s_1^{-1}\dots s_{d-2}^{-1}s_{d-1}s_{d-2}s_{d-3}\dots s_0\right)s_{d-1}s_0 \\ &= s_0^{-1}s_{d-1}^{-1}\left(s_1^{-1}\dots s_{d-3}^{-1}s_{d-1}s_{d-2}s_{d-1}^{-1}s_{d-3}\dots s_0\right)s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}s_0s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0s_{d-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_0s_{d-1} \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3}^{-1}s_0 \\ &= s_0^{-1}s_1^{-1}\dots s_{d-3$$

as required. Note that line 3 is equal to 4 and line 7 is equal to line 8 since the cycle is chordless, meaning that s_{d-1} commutes with every element except s_0 and s_{d-2} .

Furthermore, we obtain similar results for cycles containing edges of weight 2.

Lemma 3.2. Let Γ be a diagram of finite type containing a 3-cycle as in (R3')(b) of 2.1. Let W be the group with generators s_1, \ldots, s_n defined by Γ . Then the relations (1) and (2) of (R3')(b) are equivalent, and they together imply the relation (3).

Proof. The equivalence of (1) and (2) follows from the fact that

$$\begin{split} s_1^{-1}s_3s_2s_3^{-1}s_1s_3s_2^{-1}s_3^{-1}s_1^{-1}s_3s_3^{-1}s_1\\ &= s_1^{-1}s_3s_2s_3^{-1}s_1s_3s_2^{-1}s_3^{-1}\\ &= s_1^{-1}s_2^{-1}s_3s_2s_1s_2^{-1}s_3^{-1}s_2 \end{split}$$

In showing that (1) and (2) imply (3), we will underline the terms being manipulated in each line for emphasis.

$$s_{1}s_{3}s_{1}\left(s_{3}^{-1}s_{1}^{-1}s_{2}s_{1}s_{3}s_{1}^{-1}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{1}\right)s_{1}^{-1}s_{3}^{-1}s_{1}^{-1}$$

$$= s_{1}\underbrace{s_{3}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}s_{1}s_{3}s_{1}^{-1}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{1}^{-1}s_{1}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{1}s_{1}^{-1}s_{3}^{-1}s_{1}s_{3}s_{2}s_{1}s_{3}s_{1}^{-1}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{2}s_{3}^{-1}s_{1}s_{3}s_{1}s_{3}s_{1}^{-1}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{2}s_{1}s_{3}s_{1}s_{3}^{-1}s_{3}s_{1}^{-1}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{2}s_{1}s_{3}s_{2}s_{1}s_{3}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{2}s_{3}s_{2}s_{3}^{-1}s_{1}s_{3}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{2}s_{3}s_{2}s_{3}^{-1}s_{1}s_{3}s_{2}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{2}s_{3}s_{2}s_{3}^{-1}s_{1}s_{3}s_{1}s_{3}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{2}s_{3}s_{3}^{-1}s_{1}s_{3}s_{1}s_{3}s_{1}^{-1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{2}s_{1}s_{1}^{-1}s_{3}^{-1}s_{1}s_{3}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{2}s_{2}s_{1}s_{1}^{-1}s_{3}^{-1}s_{1}s_{3}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{2}s_{2}s_{1}s_{1}^{-1}s_{3}^{-1}s_{1}s_{3}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{2}s_{2}s_{1}s_{1}^{-1}s_{3}^{-1}s_{1}s_{3}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{3}s_{1}^{-1}s_{1}s_{1}^{-1}s_{2}^{-1}s_{3}^{-1}s_{1}^{-1}}$$

$$= \underbrace{s_{3}s_{3}s_{1}^{-1}s_{1}s_{1}^{-1}s$$

Lemma 3.3. Let Γ be a diagram of finite type containing a 4-cycle as in (R3')(c) of 2.1. Let W be the group with generators s_1, \ldots, s_n defined by Γ . Then the relations (1) and (2) of (R3')(c) are equivalent.

Proof. We have that

$$\begin{split} s_3^{-1} s_4^{-1} s_2 &(s_1 s_2^{-1} s_3^{-1} s_4 s_3 s_2 s_1^{-1} s_2^{-1} s_3^{-1} s_4^{-1} s_3 s_2) s_2^{-1} s_4 s_3 \\ &= s_3^{-1} s_4^{-1} (s_2 s_1 s_2^{-1}) (s_3^{-1} s_4 s_3) (s_2 s_1^{-1} s_2^{-1}) s_3^{-1} s_4^{-1} s_3 s_4 s_3 \\ &= s_3^{-1} s_4^{-1} s_1^{-1} s_2 s_1 s_4 s_3 s_4^{-1} s_1^{-1} s_2^{-1} s_1 s_3^{-1} (s_4^{-1} s_3 s_4) s_3 \\ &= s_3^{-1} s_4^{-1} s_1^{-1} s_2 s_1 s_4 s_3 s_4^{-1} s_1^{-1} s_2^{-1} s_1 s_4 \end{split}$$

Finally, we conclude the section by establishing a relationship between the groups defined by Γ and Γ^{op} .

Lemma 3.4. (Analogue of 4.6) Let W_{Γ} be generated by s_1, \ldots, s_n . Then $s_1^{-1}, \ldots, s_n^{-1}$ satisfy the relations (R2') and (R3') in $W_{\Gamma^{op}}$.

Proof. One can see that the elements satisfy (R2') in $W_{\Gamma^{op}}$ by taking the inverse of both sides of the relation in W_{Γ} . To see that the elements satisfy (R3') in $W_{\Gamma^{op}}$, note that for a chordless cycle in Γ with all weights equal to one, we have

$$s_0^{-1} \dots s_{d-2}^{-1} s_{d-1} s_{d-2} \dots s_0 = s_1^{-1} \dots s_{d-2}^{-1} s_{d-1} s_{d-2} \dots s_1$$

by the relation r(0,1) in (R3') in W_{Γ} . But then applying relations from (R2'), we have that

$$s_0^{-1} \dots s_{d-1} s_{d-2} s_{d-1}^{-1} \dots s_0 = s_1^{-1} \dots s_{d-1} s_{d-2} s_{d-1}^{-1} \dots s_1,$$

and since the cycle in chordless, we then have

$$s_0^{-1}s_{d-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_{d-1}^{-1}s_0=s_{d-1}s_1^{-1}\dots s_{d-3}^{-1}s_{d-2}s_{d-3}\dots s_1s_{d-1}^{-1}.$$

Repeating this process, we find that

$$s_0^{-1}s_{d-1}s_{d-2}\dots s_2s_1s_2^{-1}\dots s_{d-2}^{-1}s_{d-1}^{-1}s_0=s_{d-1}s_{d-2}\dots s_2s_1s_2^{-1}\dots s_{d-2}^{-1}s_{d-1}^{-1}.$$

But this can only occur if $s_1^{-1}, \ldots, s_n^{-1}$ satisfies the relation r'(0, d-1) in $W_{\Gamma^{op}}$. For a triangle as in (R3')(b) of 2.1, by the relation r'(1, 2) we have

$$s_1 s_2^{-1} s_3 s_2 s_1^{-1} = s_2^{-1} s_3 s_2.$$

Hence

$$s_1 s_3 s_2 s_3^{-1} s_1^{-1} = s_3 s_2 s_3^{-1}$$
.

But as before, this can occur if and only if $s_1^{-1}, s_2^{-1}, s_3^{-1}$ satisfy the relation r'(1, 3) in $W_{\Gamma^{op}}$. Finally, given a square labeled as in (R3')(c) and the relations r'(1, 2) and r'(3, 4), we have

$$\begin{aligned} s_2s_1s_4s_3s_4^{-1}s_1^{-1} \\ &= s_1s_1^{-1}s_2s_1s_4s_3s_4^{-1}s_1^{-1} \\ &= s_1s_2s_1s_2^{-1}s_3^{-1}s_4s_3s_1^{-1} \\ &= s_1s_2(s_1s_2^{-1}s_3^{-1}s_4s_3s_2)s_2^{-1}s_1^{-1} \\ &= s_1s_2(s_2^{-1}s_3^{-1}s_4s_3s_2s_1)s_2^{-1}s_1^{-1} \\ &= s_1s_4s_3s_4^{-1}s_2s_2^{-1}s_1^{-1}s_2 \\ &= s_1s_4s_3s_4^{-1}s_1^{-1}s_2 \end{aligned}$$

But this relation holds if and only if $s_1^{-1}, \ldots, s_4^{-1}$ satisfy r'(2, 1) in $W_{\Gamma^{Op}}$. Therefore, we are done. \square

4. Main Results

Lemma 4.1. [Proposition 5.2 Analog] The elements t_i , for i a vertex of Γ , satisfy the relations (R2) and (R3).

After Lemma ?? we have left to check the relations (R2) when both i and j are connected to k and the relations (R3). Beginning with the relations (R2), and following cases a-f from Corollary 2.3 in Barot and Marsh:

$$t_i t_j = s_k s_i s_k^{-1} s_k s_j s_k^{-1} = s_k s_i s_j s_k^{-1} = s_k s_j s_i s_k^{-1} = t_j t_i$$
 ii)

$$t_i t_j = s_i s_j = s_j s_i = t_j t_i$$

$$t_{i}t_{j}t_{i} = s_{k}s_{i}s_{k}^{-1}s_{j}s_{k}s_{i}s_{k}^{-1}$$

$$= s_{k}s_{i}s_{j}s_{k}s_{j}^{-1}s_{i}s_{k}^{-1}$$

$$= s_{k}s_{j}s_{k}s_{i}s_{j}^{-1}s_{k}^{-1}$$

$$= s_{k}s_{j}s_{k}s_{i}s_{k}s_{j}^{-1}s_{k}^{-1}$$

$$= s_{j}s_{k}s_{j}s_{i}s_{j}^{-1}s_{k}^{-1}s_{j}$$

$$= s_{j}s_{k}s_{i}s_{k}^{-1}s_{j}$$

$$= s_{j}s_{k}s_{i}s_{k}^{-1}s_{j}$$

$$= t_{i}t_{j}t_{i}$$

$$t_{j}t_{k}^{-1}t_{i}t_{k} = s_{j}s_{k}^{-1}s_{k}s_{i}s_{k}^{-1}s_{k}$$

$$= s_{j}s_{i}$$

$$= s_{i}s_{j}$$

$$= t_{k}^{-1}t_{i}t_{k}t_{j}$$

ii)
$$t_it_j=s_is_ks_js_k^{-1}=s_is_j^{-1}s_ks_j=s_j^{-1}s_ks_js_i=s_ks_js_k^{-1}s_i=t_jt_i$$
 c) i)

$$t_i t_j = s_k s_i s_k^{-1} s_k s_j s_k^{-1} = s_k s_i s_j s_k^{-1} = s_k s_j s_i s_k^{-1} = t_i t_i$$

$$t_i t_i = s_i s_i = s_i s_i = t_i t_i$$

d) i)
$$t_{i}t_{j}t_{i}t_{j}t_{i}^{-1}t_{j}^{-1}t_{i}^{-1}t_{j}^{-1} = s_{k}s_{i}s_{k}^{-1}s_{j}s_{k}s_{i}s_{k}^{-1}s_{j}^{-1}s_{k}s_{i}^{-1}s_{k}^{-1}s_{j}^{-1}s_{k}s_{i}^{-1}s_{j}^{-1}s_{k}s_{i}^{-1}s_{j}^{-1}s_{k}s_{i}^{-1}s_{j}^{-1}s_{k}^{-1}s_{k}^{-1}s_{j}^{-1}s_{k}^{-1}s_{k}^{-1}s_{j}^{-1}s_{k}^{-1}$$

We also have

$$t_j t_k^{-1} t_i t_k = s_j s_k^{-1} s_k s_i s_k^{-1} s_k = s_i s_j = t_k^{-1} t_i t_k t_j$$

ii)
$$t_{i}t_{j} = s_{i}s_{k}s_{j}s_{k}^{-1}$$

$$= s_{i}s_{j}^{-1}s_{k}s_{j}$$

$$= s_{j}^{-1}s_{k}s_{j}s_{i}$$

$$= s_{k}s_{j}s_{k}^{-1}s_{i}$$

$$= t_{i}t_{i}$$

e) i)
$$t_{i}t_{j}t_{i}t_{j}t_{i}^{-1}t_{j}^{-1}t_{i}^{-1}t_{j}^{-1} = s_{k}s_{i}s_{k}^{-1}s_{j}s_{k}s_{i}s_{k}^{-1}s_{j}^{-1}s_{k}s_{i}^{-1}s_{k}^{-1}s_{i}^{-1}s_{k}^{-1}s_{j}^{-1}$$

$$= s_{i}^{-1}s_{k}s_{i}s_{j}s_{i}^{-1}s_{k}s_{i}s_{j}s_{i}^{-1}s_{k}^{-1}s_{i}s_{j}^{-1}s_{i}^{-1}s_{k}^{-1}s_{i}s_{j}^{-1}$$

$$= s_{i}^{-1}s_{k}s_{j}s_{k}s_{j}s_{k}^{-1}s_{j}^{-1}s_{k}^{-1}s_{j}^{-1}s_{i}$$

$$= e$$

We also have

$$t_j t_k^{-1} t_i t_k = s_j s_k^{-1} s_k s_i s_k^{-1} s_k = s_j s_i = s_i s_j = t_i t_j$$

ii)
$$s_k^{-1}t_it_jt_i^{-1}t_j^{-1}s_k = s_k^{-1}s_is_ks_js_k^{-1}s_i^{-1}s_ks_j^{-1}$$

$$= s_is_ks_i^{-1}s_js_is_k^{-1}s_i^{-1}s_j^{-1}$$

$$= e$$

f) i)
$$s_k^{-1}t_it_jt_it_j^{-1}t_i^{-1}t_j^{-1} = s_is_k^{-1}s_js_ks_is_k^{-1}s_j^{-1}s_ks_i^{-1}s_k^{-1}s_j^{-1}s_k$$

$$= e$$

$$\begin{split} t_i t_j^{-1} t_k t_j t_i^{-1} t_j^{-1} s_k^{-1} t_j &= s_k s_i s_k^{-1} s_j^{-1} s_k s_j s_k s_i^{-1} s_k^{-1} s_j^{-1} s_k^{-1} s_j \\ &= s_k s_i s_j s_k s_j^{-1} s_k^{-1} s_k s_i^{-1} s_k^{-1} s_j^{-1} s_k^{-1} s_j \\ &= s_k s_i s_j s_k s_j^{-1} s_i^{-1} s_k^{-1} s_j^{-1} s_k^{-1} s_j \\ &= s_k s_i s_j s_k s_j^{-1} s_i^{-1} s_j s_k^{-1} s_j^{-1} s_k^{-1} \\ &= s_k s_j s_k s_j^{-1} s_i s_i^{-1} s_j s_k^{-1} s_j^{-1} s_k \\ &= e \end{split}$$

ii) This follows from part (i) by symmetry