Ist x^y größer oder kleiner als y^x

Frage:

$$x^y$$
 ? y^x

Lösung:

Lege den Definitionsbereich fest: x, y > 0

Betrachte die Funktion

$$f(z) = \frac{\ln(z)}{z}$$

Bestimme Maximum:

$$f'(z) = z^{-1} \cdot z^{-1} - \ln(z) \cdot z^{-2} = \frac{1 - \ln(z)}{z^2}$$

1. not. Bed.:

$$f'(z) = 0 \Leftrightarrow 1 - \ln(z) = 0$$

$$\ln(z) = 1$$

$$z = e$$

2. hinr. Bed.: VZW

Für $z\in(0;e)$ gilt ln(z)<0 und damit $\frac{1-\ln(z)}{z^2}>0$

 $\label{eq:definition} \text{Damit ist } f \text{ auf } I_1 = (0;e) \text{ streng mono steigend.}$

Für $z \in (e;\infty)$ gilt $\ln(z) > 0$ und damit $\frac{1-\ln(z)}{z^2} < 0$

Damit ist f auf $I_2=(e;\infty)$ streng mono fallend.

Conclusio:

Wenn y < x < e, dann gilt:

$$\frac{\ln(y)}{y} < \frac{\ln(x)}{x}$$

$$\Leftrightarrow \quad x \cdot \ln(y) < y \cdot \ln(x)$$

$$\Leftrightarrow \quad y^x < x^y$$

Wenn e < y < x, dann gilt:

$$\frac{\ln(y)}{y} > \frac{\ln(x)}{x}$$

$$\Leftrightarrow \quad x \cdot \ln(y) > y \cdot \ln(x)$$

$$\Leftrightarrow \qquad y^x > x^y$$