Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima

AP1: Analyse 2

Devoir Libre

A Rendre le 03/04/2020

Professeur A. MOUSSAID

Année: 2019/2020

EXERCICE 1

Résoudre les équations différentiellles suivantes dans \mathbb{R} :

1.
$$y' - 2y = \cos(x) + 2\sin(x)$$

2.
$$y' - 2xy = -(2x - 1)e^x$$

3.
$$xy' + 2y = \frac{x}{1+x^2}$$

4.
$$y'' - 4y' + 3y = x^{2}e^{x} + xe^{2x}\cos(x)$$

5.
$$y'' - 2y' + 5y = -4xe^{-x}\cos(x) + 7e^{-x}\sin(x) - 4e^{x}\sin(2x)$$

EXERCICE 2

Trouver toutes les fonctions $f: \mathbb{R}^+ \to \mathbb{R}^+$, vérifiant, pour tout x > 0:

$$\frac{1}{2} \int_0^x f(t)dt = \frac{1}{x} (\int_0^x f(t)dt)^2$$

EXERCICE 3

Soient $\sum U_n$ et $\sum V_n$ deux séries et n_0 un entier tel que pour $n \geq n_0, \ 0 \leq U_n \leq V_n$, Pour tout $n \in \mathbb{R}$, on pose

$$S_n = \sum_{k=0}^n U_k \qquad et \qquad t_n = \sum_{k=0}^n V_k$$

- 1) Montrer que les suites (s_n) et (t_n) sont croissantes à partir de n_0 , et qu'il existe un réel a tel que pour tout $n \in \mathbb{R}$,
- 2) En déduire que si $\sum V_n$ converge, alors $\sum U_n$ converge et si $\sum U_n$ diverge, alors $\sum V_n$ diverge. 3) On suppose que U_n est équivalent à V_n quand n tend vers l'infini. Démontrer que $\sum U_n$ converge si et seulement si $\sum V_n$ converge.
- 4) On suppose que $\sum U_n$ diverge. Démontrer que la série de terme général $\frac{(-1)^n}{S_n}$ converge.

EXERCICE 4

1) Montrer que la série de terme général

$$U_n = \frac{1}{4n^2 - 1}, \qquad n \in \mathbb{N}^*$$

est convergente.

Déterminer une suite (x_n) telle que $U_n = x_{n-1} - x_n$

En déduire le calcule de la somme

$$\sum_{n=1}^{+\infty} U_n$$

2) On pose $V_n = \frac{1}{(4n^2-1)^2}, n \in \mathbb{N}^*$ Montrer que la série $\sum_{n=1}^{+\infty} V_n$ est convergente.

Exprimer V_n en fonction des U_n , W_n et W_n où $W_n = \frac{1}{(2n-1)^2}$

3) En supposant que

$$\sum_{n=1}^{+\infty} W_n = \frac{\pi^2}{8}$$

, calculer

$$\sum_{n=1}^{+\infty} V_n$$

EXERCICE 5

Pour $n \in \mathbb{N}$, on pose :

$$U_n = \int_0^1 \frac{x^{2n}}{1+x^2} dx$$
 et $V_n = \frac{(-1)^n}{2n+1}$

1)

a- Calculer U_0

b-Montrer que pour tout $n \in \mathbb{N}$ on a :

$$0 \le U_n \le \frac{1}{2n+1}$$

2)

a-Montrer que pour tout $n \in \mathbb{N}$ on a :

$$U_n + U_{n+1} = \frac{1}{2n+1}$$

b- En déduire que :

$$\sum_{k=0}^{n} V_k = \frac{\pi}{4} + (-1)^n U_n$$

c- Montrer que la série de terme général V_n converge et calculer sa somme.

Bon Courage