Tesis

Una tesis

Elio Campitelli

Índice general

1	Intr	roducción	5	
2	Métodos y Materiales			
	2.1	Conceptos básicos	7	
	2.2	Fuentes de datos	9	
	2.3	Descripción de SPEEDY	9	
3	Climatología observada			
	3.1	Altura geopotencial	11	
	3.2	Temperatura	11	
	3.3	Viento zonal	17	
	3.4	Viento meridional	17	
	3.5	Gradiente meridional de vorticidad absoluta	22	
	3.6	Función corriente	22	
	3.7	Ondas Quasiestacionarias	22	
4	Onda 3			
	4.1	Características típicas	29	
	4.2	Antecedentes	29	
	4.3	Amplitud	32	
		4.3.1 Máximo o media	32	
	4.4	R2	34	
	4.5	Composición de campos	38	
	4.6	Fase	38	
	4.7	Análisis dinámica de septiembre	46	
	4.8	Fuentes de variabilidad interna	46	
	4.9	Fuentes externas	46	
5	Experimentos 49			
	5.1	Validación SPEEDY	49	
	5.2	Comparación	49	
	5.3	Cosas inesperadas	49	
6	Conclusiones 5:			
7	Agr	adecimientos	53	
8	Referencias			

4 ÍNDICE GENERAL

 ${\bf Resumen.}$

Introducción

- Antecedentes
 Además de lo que hay en lo de las becas + lo que fui encontrando, agregar sobre las climatologías disponibles y sus limitaciones.
- Objetivo General
- Objetivo particular

Esto es para probar una referencia bibliográfica: [?]

Métodos y Materiales

2.1 Conceptos básicos

- Ondas cuasiestacionarias
- Fourier

Ejemplo:

Cosas para ver de Figura 2.1:

Descripción del "rol" de cada número de onda en generar el campo final. La onda 1 es la principal, marcando altas presiones al sur del pacífico y bajas al sur de África. La onda 3 modifica ese patrón simple haciendo que los máximos y mínimos no sean contínuos.

• Wavelets

Cosas para ver:

Cambio en el máximo. Localización en vez de un número para cada latitud.

Notar que en la amplitud está normalizada en el primer ejemplo pero no lo está en el segundo.

Figura 2.1: Ejemplo fourier

Figura 2.2: Wavelets

- 2.2 Fuentes de datos
- 2.3 Descripción de SPEEDY

Climatología observada

3.1 Altura geopotencial

Campo medio:

Cosas para ver:

Estructura dominantemente zonal. Zona de jet, variación de intensidad estacional. Vórtice polar en invierno/primavera.

Anomalías

Cosas para ver:

Estructura de onda 1. Ciclo estacional de la amplitud. Baroclinicidad.

Propuesta: unir ambos mapas

Corte zonal en -60°

Complementa la figura anterior.

Desvío estándar por círculo de latitud:

Cosas para ver:

Latitud de mayor actividad de onda. Máximo en octubre en 300 hPa. Más adelante, se hace la misma figura pero con el desvío estándar asociado a cada número de onda.

3.2 Temperatura

Cosas para ver:

Gradiente muy pequeño en 200 hPa. Gradiente inverso en estratósfera. Núcleo cálido en $\sim 50^{\circ}$ (que se va a ver mejor en la anomalía zonal). Temperaturas frías en altas y bajas latitudes pero relativamente cálidas en $\sim 50^{\circ}$ en 100 hPa.

Corte zonal en - 60°

Cosas para ver:

Coincidencia entre la onda estacionaria 1 en gh y de t (en primavera).

Propuesta: combinar mapa de T y T*

Figura 3.1: Altura geopotencial.

Figura 3.2: Anomalía zonal de altura geopotencial.

300

240

180

120

9

09-

-120

-240 -180

Figura 3.3: Altura geopotencial (contornos) y anomalías (sombreado).

Figura 3.4: Corte zonal de anomalía de geopotencial en -65°.

Figura 3.5: Desvío estándar por círculo de latitud.

Figura 3.6: Temperatura media.

Figura 3.7: Corte meridional de temperatura media.

3.3 Viento zonal

Cosas para ver:

Extensión y localización vertical de los jets.

Campo medio:

Cosas para ver:

Jet polar en invierno y primavera en niveles altos (< 100 hPa). Jest subtropical en niveles "medios".

Anomalía zonal

Cosas para ver (ambos):

3.4 Viento meridional

Campos medios.

Corte meridional (v medio zonal):

Cosas para ver:

Dipolo entre niveles bajos y altos que alterna entre invierno y verano (parte convergente en superficie y divergente en altura de la ITCZ que se mueve hacia el hemisferio de verano). En altas latitudes, en superficie hay máximos de viento del sur debido a los vientos catabáticos de la antártida.

Cosas para ver:

No mucha actividad salvo por la onda 1 en niveles altos (consistente con la onda 1 de geopotenical).

La anomalía zonal es casi igual. No poner gráfico pero aclarar que es no hay casi diferencia ya que la media zonal es casi cero en casi todo el dominio.

T

Figura 3.8: Anomalía zonal de temperatura.

Figura 3.9: Corte zonal de anomalía de temperatura en -65°.

Figura 3.10: Viento zonal medio.

Figura 3.11: Viento zonal.

Figura 3.12: Anomalía zonal de viento zonal.

Figura 3.13: Media zonal del viento meridional.

3.5 Gradiente meridional de vorticidad absoluta

Cosas para ver:

Máximos asociado con los flancos del jet. Zona "prohibida" en 200 y 300 hPa.

3.6 Función corriente

3.7 Ondas Quasiestacionarias

• Fourier

Cosas para ver:

Estructura. Zona donde onda 3 explica más que la onda 1 (zona marcada en negro)

Cosas para ver:

Onda 1 y 2 principalmente en estratósfera pero baja, salvo en verano. Onda 3 y 4 más de atmósfera media/alta. Región recuadrada: máximo de amplitud de QS 3 y donde su R2 es mayor que la de QS 1.

Figura 3.14: Viento meridional medio.

Figura 3.15: Gradiente meridional de vorticidad absoluta.

Figura 3.16: Función corriente x 1099

Figura 3.17: \mathbb{R}^2 de Fourier.

Figura 3.18: Ampllitud de Fourier.

Onda 3

4.1 Características típicas

Cosas para ver:

Solo en 300 porque la estructura es barotrópica (no se gana mucho mirando varios niveles). Localización de los centros de altas y bajas. Corrimiento de fase verano/invierno. Aparente ciclo anual con mínimo en primavera, que luego se ve que no es tan así, parece mínimo porque la fase varía mucho y el promedio se desdibuja mucho.

Esto es el promedio de las ondas 3, pero es idéntico a la onda 3 del promedio.

Cosas para ver:

Estrucutra vertical barotrópica equivalente. Ciclo anual en la extensión vertical (se ve también en los cortes de amplitud). Aunque notar que en este corte la extensión en primavera parece la menor, pero de nuevo es por la variabilidad en la fase, ya que en el corte de amplitud se ve que la amplitud es mayor en altura incluso que en otoño.

No tengo idea de cómo interpretar esto...

• Wavelets

Venajas y desventajas. Justificaicón de decisión.

4.2 Antecedentes

Breve comentario sobre los índices usados en otros lados. Discutir ventajas y debilidades.

- Amplitud
- Fase (impacto en SA)

De todo eso, motiva decisión del índice.

- Niveles elegidos
- Promedio vs. máximo
- Composiciones de campos y flujos.
- Decisión del índice.

Figura 4.1: Media de reconstrucción de onda 3.

Figura 4.2: Corte

Figura 4.3: Desvío estándar de la reconstrucción de QS3.

Figura 4.4: Amplitud de fourier y amplitud de wavelets (faaaaaltaaaaa)

Figura 4.5: Distribució de amplitud para 12 fechas. En rojo la amplitud máxima, en azul la amplitud media.

Quiero hacer el íncide a partir de la actividad de la onda 3 tomando la región del máximo (latitud entre -65 y -40, y entre 700 y 100 hPa). Variables posibles: amplitud media, amplitud máxima, r2, correlación entre campo teórico y observado.

4.3 Amplitud

4.3.1 Máximo o media.

Cosas para ver:

Casos donde el máximo es mayor pero la media, menor. (1985-01-01 vs 1988-07-01 o). 1987-11-01 vs 2008-01-01 muestra el caso: igual amplitud máxima pero en 2008 está más "concentrada". Casos donde la actividad está ligeramente fuera de la caja (2000-09-01).

Cosas para ver:

Analizar nivel de similitud entre los campos y similitud entre la estructura de la ampltiud.

Cosas para ver:

Relación lineal entre ambas. Ergo, da más o menso igual usar cualquiera.

Luego... concluir que vamos a usar la media.

4.3. AMPLITUD 33

Figura 4.6: Corte vertical de amplitud

Figura 4.7: Anomalía zonal geopotencial en 300hPa para fechas seleccionadas.

Figura 4.8: Correlación entre amplitud máxima y media.

4.4 R2

Se puede estimar de dos maneras distintas: a partir del ajuste de fourier para cada nivel y latitud (figura blabla) y haciendo un promedio, o reconstruyendo el campo tridimensional de la onda 3 y haciendo la correlación (global) con el campo tridimensional observado. Esta segunda forma da casi siempre un valor menor.

Para ver:

La relación ya no es lineal y hay bastante más scatter. Ergo, hay diferencia en la información.

Dos regímenes: Cuando el R^2 es bajo, la relación es "menor" que 1:1 y hay algunos casos donde el R2 reconstruido es mayor que el r2 medio. Para R2 más grandes, la pendiente es 1. Modelar la relación... ¿Cómo se interpreta?

Cosas para ver:

Comparando con las figuras anteriores, casos donde la amplitud es grande pero el R2 no tanto.

Cosas para ver:

El ciclo anual no es para nada tan claro. Varios outliers. La correlación reconstruida (azul) no tiene casi ciclo anual.

Una ventaja de la correlación entre el campo real y el reconstruido es que puede hacerse para cada punto y analizar la variación espacial de la misma.

Cosas para ver:

Esto es, para cada punto de grilla, la correlación entre el campo observado y el reconstruido en todos los meses y años. Además de la dependencia latitudinal de la importancia de la onda 3 (que se puede ver en los cortes anteriores), se ve la dependencia zonal. La onda 3 es más importante en el Pacífico sur que en el Atlántico o el Índico. Además, se ve un patrón de altas correlaciones que asemejan a un tren de ondas

¿Confirma? lo que se ve en en análisis de wavelets.

Figura 4.9: Amplitud media

Figura 4.10: Relación entre R2 medio y R2 reconstruido.

Figura 4.11: R2 medio

4.4. R2

Figura 4.12: R2 medio

Figura 4.13: Media anual de la correlación cuadrada de cada mes entre el campo observado y el reconstruido.

Conclusión: no voy a usar el r2 a partir del campo reconstruido.

4.5 Composición de campos.

Descripción de la seleccion.

Cosas para ver:

Años con coincidencia, años sin coindicentica. Meses donde la fase coincide (julio) vs meses donde no coindice (septiembre). También, años donde hay seguidilla de meses seleccionados (1999). Aunque posiblemente sea casualidad (no hay mucha persistencia mes a mes.)

Pequeña digresión: Efecto de la fase.

La climatología de la fase se va a discutir más adelante, pero... discutir el efecto de promediar campos con similar amplitud pero fase distinta. Del gráfico, septiembre tiene 1997 y 2003 con fase a 180°, lo que significa que va a haber cancelación parcial. Enero, por el contrario, no tiene ningún año en contrafase, aunque sí algunos a 90°, que desdibujan el patrón.

Cosas para ver:

Ambos criterios coinciden en casi todos los años seleccionados, así que no hay mucha diferencia. En efecto, las composiciones son casi iguales (no se muestra). Voy a usar la amplitud.

Estos gráficos me parecen importantes para ver lo que hay "adentro" de la composición, pero no sé bien qué decir sobre ellos. Supongo que lo principal es que hay años donde la onda

4.6 Fase

Además de eso, tengo la fase. Puedo tomar la fase media en la región o la fase correspondiente a donde está el máximo de la amplitud (lo que equivale al centro del

Figura 4.14: Tabla de selección

Figura 4.15: Tabla de interacción

anticición) o la moda de la fase.

(más explicación...)

¿Cuál usar?

Cosas para ver:

Se ve que hay muchos casos donde coinciden bastante bien, pero otros que se alejan mucho. La razón es que al tomar el promedio, puede quedar cualquier cosa si la estructura cambia mucho con la latitud. Por ejemplo, los casos marcados en rojo.

En el primer caso el máximo de geopotencial se encuentra cercano a 0° lo que hace que la fase oscile entre valores cercanos a 0° y a 120° en distintas latitudes a pesar de que representan el mismo centro de máxima. El promedio, por lo tanto, queda en el centro y termina estando en una región donde el campo de geopotencial de onda 3 es nulo. Si bien la fase de la amplitud máxima y la moda de la fase parecen ser muy distintas, la naturaleza cíclica de la fase implica que representan aproximadamente el mismo punto.

En segundo caso la estructura de onda 3 es de dos centros a distintas latitudes. La fase promedio de ambas (punto negro) representa el punto medio y, por lo tanto, está más cerca del mínimo de geopotencial que del máximo. En este caso la moda de la fase es una mejor representación del campo de onda 3 que la fase del máximo.

Conclusión: vamos a usar la moda de la fase.

Ciclo anual de la fase.

Cosas para ver:

Se ve el ciclo anual que ya se veía en una figura anterior. Pero hay mucha variabilidad. Recordar que este es aproximadamente el centro del máximo de geopotencial y que,

Figura 4.16: Composición de campos

Figura 4.17: Campos para los $10\ {\rm eneros}$ seleccionados.

Figura 4.18: Campos para los 10 septiembres seleccionados.

Figura 4.19: Fase promedio vs Fase del máximo

Figura 4.20: Campo de onda 3 reconstruido para junio de 2013. El punto rojo es la fase en la latitud de amplitud máxima; el punto negro, la fase promedio; el punto azul, la moda de la fase. El rectángulo la región donde puede encontrarse la fase. Los límites meridionales definidos por la región donde se calcula el índice y los zonales por 360/3.

Figura 4.21: Ciclo anual de la fase (20 mayores amplitudes para cada mes)

Figura 4.22: Ciclo anual de la fase (todos)

por construcción, hay un centro de mínima a 60° . Eso implica que en los casos donde hay puntos cerca de -120° o 0° , hay el centro de mínima está en \sim -60°.

También notar que, como se trata en realidad de una variable cíclica, los puntos extremos representan una situación similar.

¿Hay mucha diferencia entre el boxplot con todos los datos y el de sólo los 20 más intensos? Yo no veo mucha y me parece que excluir a los 10 más débiles invita más preguntas que las que responde.

Cosas para ver:

La mayoría del tiempo estamos afectados por centro de máxima, pero hay casos intensos donde hay mínima.

4.7 Análisis dinámica de septiembre

4.8 Fuentes de variabilidad interna

(Discusión escrita más de papers), Pero nos concentramos en la fuente externa.

4.9 Fuentes externas

Campos de correlación con SST y OLR, principalmente ¿Discusión de otros forzantes?

Figura 4.23: Centros de máxima (puntos rojos) y mínima (puntos azules) para los 10 años con mayor amplitud de la onda 3, para cada mes.

Experimentos

5.1 Validación SPEEDY

- Comparación campos medios.
- Validación de las corridas experimentales (mostrar que es constante lo que tiene que ser consante)

5.2 Comparación

Comparación entre corridas y ncep.

5.3 Cosas inesperadas...

- ??
- protif!

Conclusiones

Agradecimientos

Referencias