Snakes: Active Contour Models

CS 6640

Guido Gerig

SCI Institute, School of Computing

University of Utah

(some material from Zoltan Kato http://www.cab.u-szeged.hu/~kato/variational/)

J. Prince, JHU: http://www.iacl.ece.jhu.edu/static/gvf/gvfsnake5.html

Principle: Active Contour Models

Websites

- Andy Witkin's homepage: <u>http://www.cs.cmu.edu/~aw/</u>
- Terzopoulos: http://www.cs.ucla.edu/~dt/vision.html
 - → Snakes: Active Contour Models
- Original snake demo: Kass, Witkin, Terzopoulos 1988: http://www.cs.ucla.edu/~dt/videos/deformable-models/snakes.avi
- Other Demos:
 - Xu/Prince: http://www.iacl.ece.jhu.edu/static/gvf/
 - http://users.ecs.soton.ac.uk/msn/book/new_demo/
 - http://www.markschulze.net/snakes/index.html

Original Demo Kass et al., 1988

Click to run

http://www.cs.ucla.edu/~dt/videos/deformable-models/snakes.avi

Example Movie Sequences

Video Analysis

http://www.ee.iitb.ac.in/uma/~krishnan/OneStopNoEnter2cor-SS.avi http://www.ee.iitb.ac.in/uma/~krishnan/ShopAssistant1cor.avi

Snake: Active Contour Model

(a) Initial Snake

(b) Final Snake

From: PhD thesis Dr Jim Ivins

Snake's Energy Function

- Position of the snake v(s) = (x(s), y(s))
- $E_{\text{snake}} = \int [E_{\text{int}} v(s) + E_{\text{image}} v(s) + E_{\text{con}} v(s)] ds$
 - Internal: Internal energy due to bending. Serves to impose piecewise smoothness constraint
 - Image: Image forces pushing the snake toward image features (edges, etc...)
 - Constraints: External constraints are responsible for putting the snake near the desired local minimum

Internal Energy

• $E_{int} = [\alpha(s) |v_s(s)|^2 + \beta(s) |v_{ss}(s)|^2]$

- First order term: membrane, α(s):"elasticity"
- Second order term: thin plate, β(s): "rigidity, stiffness"
- If $\alpha(s)=\beta(s)=0$, we allow breaks in the contour

Image Forces: Potential Energy

- Edge Functional : negative gradient magnitude: E_{edge}= - | \(\nabla I(x,y)|^2\)
- Better: negative gradient magnitude of Gaussian-smoothed image:

$$E_{\text{edge}} = - |\nabla G(\sigma) \otimes I(x,y)|^2$$

→ Attracts the snake to locations of large gradients = strong edges

Image Term: Potential Energy

(a) Unprocessed Image

(b) Potential (Edge) Energy

From: PhD thesis Dr Jim Ivins

External Constraint Forces: Spring

External Constraint Forces

• Springs: add $k(\mathbf{x}_1-\mathbf{x}_2)^2$ to E_{con}

 Volcano: 1/r² repulsion force, combine with image potential

External Constraint Forces

From: PhD thesis Dr Jim Ivins

External Forces (Suri/Farag)

Spring: Adds

 $k(x_1-x_2)^2$ to E_{con}

Use: Pull a snake to the specified true boundary

Figure 7. A pair of points for the snake pit. See attached CD for color version.

External Forces (Suri/Farag)

Figure 6. Geometric interpretation of Snake Pit. The two dark curves are different snakes, and the tow springs (dashed line) are connected between them to create a coupling effect. The other springs attach points on the snakes to fixed positions in the image. In addition, two volcanos are set to bend a nearby snake. See attached CD for color version.

External Forces (Suri/Farag)

Numerical Solutions

 The spline v(s) which minimizes E*_{snake} must satisfy

$$-\frac{d^{2}}{ds^{2}}\left(\frac{\partial E}{\partial \left(\frac{d^{2}x}{ds^{2}}\right)} + \frac{\partial E}{\partial \left(\frac{d^{2}y}{ds^{2}}\right)}\right) + \frac{d}{ds}E_{v_{s}} - E_{v} = 0$$

 Solutions: Greedy local updates, Euler Lagrange etc. (see handouts)

Using Snakes for Dynamic Scenes

- Once a snake finds a feature, it "locks on"
- If feature begins to move, the snake will track the same local minimum
- Fast motion could cause the snake to flip into a different minimum

