## Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

#### Part 1. Stochastic learning

**Exercise 1.**  $(\star)$ Let  $f: \mathbb{R}^d \to \mathbb{R}$  such that  $f(w) = g(\langle w, x \rangle + y)$  or some  $x \in \mathbb{R}^d$ ,  $y \in \mathbb{R}$ . Show that: If g is convex function then f is convex function.

**Exercise 2.** (\*)Let functions  $g_1$  be  $\rho_1$ -Lipschitz and  $g_2$  be  $\rho_2$ -Lipschitz. Then, show that, f with  $f(x) = g_1(g_2(x))$  is  $\rho_1\rho_2$ -Lipschitz.

**Exercise 3.**  $(\star)$ Let  $f: \mathbb{R}^d \to \mathbb{R}$  with  $f(w) = g(\langle w, x \rangle + y)$   $x \in \mathbb{R}^d$  and  $y \in \mathbb{R}$ . Let  $g: \mathbb{R} \to \mathbb{R}$  be a  $\beta$ -smooth function. Then show that f is a  $(\beta ||x||^2)$ -smooth.

**Hint::** You may use Cauchy-Schwarz inequality  $\langle y, x \rangle \leq ||y|| \, ||x||$ 

**Exercise 4.** (\*)Show that  $f: S \to \mathbb{R}$  is  $\rho$ -Lipschitz over an open convex set S if and only if for all  $w \in S$  and  $v \in \partial f(w)$  it is  $||v|| \le \rho$ .

**Hint::** You may use Cauchy-Schwarz inequality  $\langle y, x \rangle \leq ||y|| \, ||x||$ 

**Exercise 5.** (\*)Let  $g_1(w), ..., g_r(w)$  be r convex functions, and let  $f(\cdot) = \max_{\forall j} (g_j(\cdot))$ . Show that for some w it is  $\nabla g_k(w) \in \partial f(w)$  where  $k = \arg \max_j (g_j(w))$  is the index of function  $g_j(\cdot)$  presenting the greatest value at w.

**Exercise 6.** (\*)Consider the regression learning problem  $(\mathcal{H}, \mathcal{Z}, \ell)$  with predictor rule  $h(x) = \langle w, x \rangle$  labeled by some unknown parameter  $w \in \mathcal{W}$ , loss function  $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$ , feature  $x \in \mathcal{X}$ , and target  $y \in \mathbb{R}$ . Let  $\mathcal{W} = \mathcal{X} = \{\omega \in \mathbb{R}^d : |\omega| \leq \rho\}$  for some  $\rho > 0$ .

- (1) Show that the resulting learning problem is Convex-Lipschitz-Bounded learning problem.
- (2) Specify the parameters of Lipschitnzess.

**Exercise 7.** (\*) Consider the binary classification problem with inputs  $x \in \mathcal{X}$  where  $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$ for some given value L > 0, target  $y \in \mathcal{Y}$  where  $\mathcal{Y} := \{-1, +1\}$ , and prediction rule  $h_w : \mathbb{R}^d \to \mathbb{R}^d$  $\{-1, +1\}$  with

$$(1) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis  $h_w \in \mathcal{H}$  is parametrized by  $w \in \mathbb{R}^d$  it receives an input vector  $x \in \mathcal{X} := \mathbb{R}^d$  and it returns the label  $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$ .

Consider a loss function  $\ell : \mathbb{R}^d \to \mathbb{R}_+$  with

(3) 
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\mathsf{T}}x) + \lambda \|w\|_{2}^{2}$$

for some given value  $\lambda > 0$ .

Assume there is available a dataset of examples  $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$  of size n. Do the following tasks.

**Hint-1::** We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

**Hint-2::** The notation  $\pm 1$  means either -1 or +1.

**HInt-3::** We define  $\mathbb{R}_+ := (0, +\infty)$ 

**Hint-4::** We denote  $||x||_2 := \sqrt{\sum_{\forall j} (x_j)^2}$  the Euclidean distance.

(1) Show that the function  $f: \mathbb{R} \to \mathbb{R}_+$  with  $f(x) = \max(0, 1-x)$  is convex in  $\mathbb{R}$ ; and show that the loss (3) is convex.

**Hint:** You may use Example 13 from Handout 1.

(2) Show that the loss  $\ell(w,z)$  for  $\lambda=0$  (3) is L-Lipschitz (with respect to w) when  $x\in\mathcal{X}$ where  $\mathcal{X} := \{ x \in \mathbb{R}^d : ||x||_2 \le L \}.$ 

Hint:: You may use the definition of Lipschitz function. Without loss of generality, you can consider any  $w_1 \in \mathbb{R}^d$  and  $w_2 \in \mathbb{R}^d$  such that  $1 - yw_2^\top x \le 1 - yw_1^\top x$ , and then take cases  $1 - yw_2^\top x > \text{or} < 0$  and  $1 - yw_1^\top x > \text{or} < 0$  to deal with the max.

(3) Construct the set of sub-gradients  $\partial f(x)$  for  $x \in \mathbb{R}$  of the function  $f: \mathbb{R} \to \mathbb{R}_+$  with  $f(x) = \max(0, 1 - x)$ . Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is  $v \in \partial_w \ell(w, z = (x, y))$ , aka a sub-gradient of  $\ell(w, z = (x, y))$  at w, for any  $w \in \mathbb{R}^d$ .

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate  $\eta_t > 0$ , batch size m, and termination criterion  $t > T_{\text{max}}$  for some  $T_{\text{max}} > 0$  in order to discover  $w^*$  such as

(4) 
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left( \mathbb{E}_{z \sim g} \left( \ell \left( w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm have to be tailored to 3.

- (5) Use the R code given below in order to generate the dataset of observed examples  $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$  that contains  $n = 10^6$  examples with inputs x of dimension d = 2. Consider  $\lambda = 0$ . Use a seed  $w^{(0)} = (0, 0)^{\top}$ .
  - (a) By using appropriate values for m,  $\eta_t$  and  $T_{\text{max}}$ , code in R the algorithm you designed in part 4, and run it.
  - (b) Plot the trace plots for each of the dimensions of the generated chain  $\{w^{(t)}\}$  against the iteration t.
  - (c) Report the value of the output  $w_{\text{adaGrad}}^*$  (any type) of the algorithm as the solution to (4).
  - (d) To which cluster y (i.e., -1 or 1)  $x_{\text{new}} = (1,0)^{\top}$  belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x <- z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} < c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}$x
y <- out$y
#z_obs2=z_obs
\#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```

# Exercise 8. $(\star)$ Assume a Bayesian model

$$\begin{cases} z_{i}|w & \stackrel{\text{ind}}{\sim} f\left(z_{i}|w\right), \ i = 1, ..., n \\ w & \sim f\left(w\right) \end{cases}$$

and consider that our objective is the discovery of MAP estimate  $w^*$  i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left( -\log\left(L_n\left(w\right)\right) - f\left(w\right) \right) = \arg\min_{\forall w \in \Theta} \left( -\sum_{i=1}^n \log\left(f\left(\mathbf{z}_i|\mathbf{w}\right)\right) - \log\left(f\left(w\right)\right) \right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left( \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left( f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left( f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set  $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$  of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbb{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left( \frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left( f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left( f\left(z_i | w^{(t)}\right) \right)$$

### Part 2. Artificial Neural Networks

**Exercise 9.** (\*)Consider the regression problem, with a predictive rule  $h_w : \mathbb{R}^d \to \mathbb{R}$ , as a classification probability, that receives values  $x \in \mathbb{R}^d$  returns vales in  $\mathbb{R}$ . Let  $h_w(x)$  be modeled as an ANN

$$h(x) = \sigma_2 \left( \sum_{j=1}^{c} w_{2,1,j} \sigma_1 \left( \sum_{i=1}^{d} w_{1,j,i} x_i \right) \right)$$

and let the associated activation function be

$$\sigma_2\left(a\right) = a\Phi\left(a\right)$$

where  $\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$  is considered as known function, and  $\phi(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}t^2\right)$  and

$$\sigma_1\left(a\right) = \exp\left(-a^2\right)$$

Consider a loss

$$\ell(w, z = (x, y)) = \frac{1}{2} (y - h_w(x))^2$$

at w and example z=(x,y), where  $x \in \mathbb{R}^d$  is the input vector (features), and y is the output vector (targets) with  $y \in \mathbb{R}$ . Consider that d, c, and q are known integers.

- (1) Perform the forward pass of the back-propagation procedure to compute the activations which may be denoted as  $\{a_{t,i}\}$  and outputs which may be denoted as  $\{o_{t,i}\}$  at each layer t.
- (2) Perform the backward pass of the back-propagation procedure in order to compute the elements of the gradient  $\nabla_w \ell(w,(x,y))$ .

Exercise 10.  $(\star)$  Students are encouraged to practice on the Exercises 5.1-5.28 from the textbook

• Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.

available from

 $\bullet \ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf \\$ 

The solutions are available from

 $\bullet \ https://www.maths.dur.ac.uk/users/georgios.karagiannis/Solutions-Machine-learning-and-pattern-recognition-Bishop/ \\$ 

The following is given as a homework (Formative assessment 2)

**Exercise 11.** (\*)Consider the multi-class classification problem, with a predictive rule  $h_w : \mathbb{R}^d \to \mathcal{P}$ , as a classification probability i.e,  $h_{w,k}(x) = \Pr(x \text{ belongs to class } k)$ , that receives values  $x \in \mathbb{R}^d$  returns vales in  $\mathcal{P} = \left\{ p \in (0,1)^q : \sum_{j=1}^q p_j = 1 \right\}$ . Let  $h_w = (h_{w,1}, ..., h_{w,q})^\top$ , let  $h_w(x)$  be modeled as an ANN

$$h_k(x) = \sigma_2 \left( \sum_{j=1}^{c} w_{2,k,j} \sigma_1 \left( \sum_{i=1}^{d} w_{1,j,i} x_i \right) \right)$$

for k = 1, ..., q, and let the associated activation functions be

$$\sigma_2(a_k) = \frac{\exp(a_k)}{\sum_{k'=1}^q \exp(a_{k'})}, \text{ for } k = 1, ..., q$$

(called softmax function) and  $\sigma_1(a) = \arctan(a)$ . Consider a loss

$$\ell(w, z = (x, y)) = -\sum_{k=1}^{q} y_k \log(h_{w,k}(x))$$

at w and example z=(x,y), where  $x \in \mathbb{R}^d$  is the input vector (features), and  $y=(y_1,...,y_q)$  is the output vector (labels) with  $y \in \{0,1\}^q$  and  $\sum_{k=1}^q y_k = 1$ . Consider that d, c, and q are known integers.

Hint: You may use

$$\frac{\mathrm{d}}{\mathrm{d}x}\arctan\left(x\right) = \frac{1}{1+x^2}$$

- (1) Perform the forward pass of the back-propagation procedure to compute the activations which may be denoted as  $\{a_{t,i}\}$  and outputs which may be denoted as  $\{o_{t,i}\}$  at each layer t.
- (2) Show that

$$\frac{\partial}{\partial a_k} \sigma_2\left(a_j\right) = \sigma_2\left(a_j\right) \left(1\left(j=k\right) - \sigma_2\left(a_k\right)\right)$$

for 
$$k = 1, ..., q$$
. Let  $1 (j = k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$ .

(3) Perform the backward pass of the back-propagation procedure in order to compute the elements of the gradient  $\nabla_w \ell(w,(x,y))$ .

## Part 3. Support Vector Machines

The following is given as a homework (Formative assessment 3)

**Exercise 12.**  $(\star\star)$  Consider a training data set  $\mathcal{D} = \{z_i = (x_i, y_i)\}_{i=1}^m$ . Consider the Soft-SVM Algorithm that requires the solution of the following quadratic minimization problem (in a slightly modified but equivalent form to what we have discussed)

### Primal problem:

(5) 
$$(w^*, b^*, \xi^*) = \underset{(w,b,\xi)}{\operatorname{arg \, min}} \left( \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m \xi_i \right)$$

(6) subject to: 
$$y_i(\langle w, x_i \rangle + b) \ge 1 - \xi_i, \ \forall i = 1, ..., m$$

(7) 
$$\xi_i \ge 0, \ \forall i = 1, ..., m$$

for some user-specified fixed parameter C > 0.

- (1) Specify the Lagrangian function L associated to the above primal quadratic minimization problem, where  $\{\alpha_i\}$  are the Lagrange coefficients wrt (6), and  $\{\beta_i\}$  are the Lagrange coefficients wrt (7). Write down any possible restrictions on the Lagrange coefficients.
- (2) Compute the dual Lagrangian function denoted as  $\tilde{L}$  as a function of the Lagrange coefficients and the data points  $\mathcal{D}$ .
- (3) Apply the Karush–Kuhn–Tucker (KKT) conditions to the above problem, and write them down.
- (4) Derive and write down the dual Lagrangian quadratic maximization problem, along with the inequality and equality constraints, where you seek to find  $\{\alpha_i\}$ .
- (5) Justify why the *i*-th point  $x_i$  lies on the margin boundary when  $\alpha_i \in (0, C)$  (beware it is  $\alpha_i \neq C$ ), and why the *i*-th point  $x_i$  lies inside the margin when  $\alpha_i = C$ .
- (6) Given optimal values  $\{\alpha_i^*\}$  for Lagrangian coefficients  $\{\alpha_i\}$  as they are derived by solving the dual Lagrangian maximization problem in part 4, derive the optimal values  $w^*$  and  $b^*$  for the parameters w and b as function of the support vectors. Regarding parameter b it should be in the derived in the form

$$b^* = \frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \left( y_i - \sum_{j \in \mathcal{S}} \alpha_j^* y_j \langle x_j, x_i \rangle \right)$$

where you determine the sets  $\mathcal{M}$  and  $\mathcal{S}$ .

(7) Report the halfspace predictive rule  $h_{w,b}(x)$  of the above problem as a function of  $\alpha^*$  and  $b^*$ .

**Exercise 13.**  $(\star\star)$  Show that K with

$$K(x,y) = \frac{\sin\left(2\pi\left(N + \frac{1}{2}\right)(x - y)\right)}{\sin\left(\pi(x - y)\right)}$$

is a valid kernel.

**Hint-1:** You may use that  $\sum_{n=0}^{r} z^n = \frac{1-z^{r+1}}{1-z}$ 

**Hint-2:** You may use that  $e^{ix} = \cos(x) + i\sin(x)$ 

Exercise 14.  $(\star)$  Students are encouraged to practice on the Exercises 6.1-6.19 from the textbook

• Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.

### available from

 $\bullet \ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf \\$ 

The solutions are available from

 $\bullet \ https://www.maths.dur.ac.uk/users/georgios.karagiannis/Solutions-Machine-learning-and-pattern-recognition-Bishop/ \\$ 

# Part 4. Gaussian process regression

Exercise 15. (\*) Students are encouraged to practice on the Exercises 6.19-6.27 from the textbook

• Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.

#### available from

 $\bullet \ https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf \\$ 

The solutions are available from

 $\bullet \ https://www.maths.dur.ac.uk/users/georgios.karagiannis/Solutions-Machine-learning-and-pattern-recognition-Bishop/ \\$