Principais Protocolos

Denival A. Santos

Protocolo IP

- Responsável pelo endereçamento e seleção de rota;
- Para identificar os hosts e as redes das quais fazem parte, é definido um número identificador conhecido como endereço IP. O
- Eis o que está incluído em um pacote IP:
 - Endereço IP de origem e destino;
 - Um identificador de protocolo;
 - Um valor calculado para verificação de erro;
 - Um TTL.
- O TTL é uma informação importante do pacote IP. Expresso em segundos, ele diz quanto tempo o pacote poderá permanecer na rede. Quanto o pacote passa de uma rede para outra o valor do TTL é decrescido de um. A finalidade disso é evitar que o pacote fique em loop trafegando infinitamente na rede.

Protocolo ARP

- Em uma rede local, permite a descoberta de endereços físicos (endereço Ethernet) de outro equipamento da mesma rede local a partir de seu endereço IP;
- Na arquitetura TCP/IP a identificação da máquina parceira da comunicação é realizada através do endereço IP. Em uma rede local, o pacote IP é transportado em um pacote Ethernet que utiliza um outro tipo de endereçamento (endereço Ethernet).

Protocolo ARP

Funcionamento

- Quando a camada Ethernet recebe um pacote com um endereço IP para ser transmitido, é necessário traduzir este endereço IP para endereço físico;
- Para descobrir o endereço físico associado a um endereço IP é enviado um pacote de broadcast ARP;
- Todos os equipamentos que possuírem a informação devem enviar a resposta;
- Assim que tiver uma resposta (uma tradução) é possível realizar o envio do pacote Ethernet.
- Utilitário para verificação do protocolo ARP
 - Windows Exemplo: arp -a
 - Unix Exemplo: arp -a

Protocolo RARP

- Permite a descoberta de endereço IP de um outro equipamento da mesma rede local a partir de seu endereço ethernet;
- Utilizado por estações diskless no momento do boot;
- Uma Desvantagem do RARP é que ele usa um endereço de destino composto somente de 1s (método de broadcast) para chegar ao servidor RARP, ou seja, para identificar o servidor RARP, a solução adotada é o envio de broadcast, o que deixar a rede lenta.

Protocolo ICMP

- Internet Control Message Protocol, é um protocolo integrante do protocolo IP, definido pelo RFC 792, e utilizado para fornecer relatórios de erros à fonte original;
- Usado para emitir informações de controle e erro quando acontecerem problemas na rede;
- São geradas na impossibilidade de rotear um datagrama ou quando houver um congestionamento na rede;
- Utiliza o IP para o transporte da mensagem, n\u00e3o oferecendo portanto garantia de entrega;
- Dois utilitários de diagnóstico usam o ICMP, o ping e o tracert;
- Uma das mensagens que o ICMP pode enviar é Destino Inalcançável que pode ser dos seguintes tipos:
 - Rede inalcançável;
 - Host inalcançável;
 - Porta inalcançável;
 - Host de destino desconhecido;
 - Rede de destino desconhecida.

Introdução

- Os protocolos de transporte são capazes de manipular múltiplas requisições em um mesmo computador, permitindo que várias aplicações executadas no mesmo computador possam enviar e receber pacotes independentemente;
- Dependendo do tipo de comunicação utilizado, as funções da camada de transporte podem ser executadas pelos protocolos TCP ou UDP;
- O protocolos TCP (Transmission Control Protocol) oferece serviços de comunicação confiáveis e orientados à conexão, enquanto o protocolo UDP (User Datagram Protocol) oferece serviços do tipo datagrama, isto é, não orientados a conexão;

TCP

- O TCP é o protocolo da camada de transporte que oferece o serviço de comunicação confiável e é orientado à conexão sobre a camada IP;
- A identificação do protocolo TCP é feito através de portas. Um endereço de porta é um número inteiro de 16 bits que pode variar entre 1 e 65536. É importante lembrar que as portas entre 1 e 1024 são reservadas para protocolos padrões tais como DNS, SMTP, FTP, POP3, SNMP entre outros. As demais portas são utilizadas para comunicação entre computadores;
- O TCP foi formalmente definido na RFC 793. As extensões são fornecidas na RFC 1323.

Porta	Protocolo	Uso
21	FTP	Transferência de arquivos
23	Telnet	Login remoto
25	SMTP	Correio eletrônico
69	TFTP	Protocolo trivial de transferência de arquivos
79	Finger	Pesquisa de informações sobre um usuário
80	HTTP	World Wide Web
110	POP-3	Acesso remoto a correio eletrônico
119	NNTP	Notícias da USENET

UDP

- O UDP é um protocolo não orientado a conexão, de maneira que não proporciona nenhum controle de erros nem de fluxo. Ou seja cada datagrama UDP existe com independência do resto dos datagramas UDP;
- Em caso de detecção de um erro, o UDP não entrega o datagrama a aplicação sendo que os descarta;
- O UDP não realiza controle de fluxo, controle de erros ou retransmissão após a recepção de um segmento incorreto. Tudo isso cabe aos processos do usuário. O que ele faz é fornecer uma interface para o protocolo IP com o recurso adicional de demultiplexação de vários processos que utilizam as portas;
- Se um usuário estiver utilizando vários programas baseados em UDP, ao mesmo tempo, no seu computador, é através do uso de portas, que o sistema operacional sabe a qual programa se destina cada pacote UDP que chega.

Número de porta UDP Descrição

53	Consultas de nomes DNS (Domain Name System, sistema de nomes de domínios)
69	Trivial File Transfer Protocol (TFTP)
137	Serviço de nomes de NetBIOS
138	Serviço de datagrama de NetBIOS
161	Simple Network Management Protocol (SNMP)
520	Routing Information Protocol (RIP, protocolo de informações de roteamento)

FTP

- FTP significa *File Transfer Protocol* (Protocolo de Transferência de Arquivos);
- O FTP é um serviço confiável, orientado a conexão, que usa TCP para transferir arquivos entre sistemas que suportam FTP. A finalidade principal do FTP é transferir arquivos de um computador para outro, copiando e movendo arquivos dos servidores para os clientes e vice-versa;
- É o padrão da pilha TCP/IP para transferir arquivos, é um protocolo genérico independente de hardware e do sistema operacional e transfere arquivos por livre arbítrio, tendo em conta restrições de acesso e propriedades dos mesmos.

Telnet

- O Telnet é um protocolo membro da família TCP/IP de protocolos e permite que um usuário estabeleça uma sessão remota em um servidor. O protocolo oferece suporte somente a terminais alfanuméricos, ou seja, não oferece suporte a mouses e outros dispositivos apontadores nem a interfaces gráficas do usuário. Em vez disso, todos os comandos devem ser inseridos na linha de comando;
- O protocolo Telnet oferece muito pouca segurança. Em uma sessão Telnet que não usa autenticação, todos os dados, incluindo senhas, são transmitidos entre o cliente e o servidor em texto sem formatação. Uma vez que o tráfego da sessão Telnet não é seguro, você precisa garantir que nenhum dado confidencial seja enviado durante uma sessão Telnet;
- Este protocolo vem sendo gradualmente substituído pelo SSH, cujo conteúdo é criptografado antes de ser enviado.

SMTP

- Simple Mail Transfer Protocol (SMTP) é o protocolo padrão para envio de e-mails através da Internet;
- SMTP é um protocolo relativamente simples, baseado em texto simples, onde um ou vários destinatários de uma mensagem são especificados sendo, depois, a mensagem transferida;
- Este protocolo corre sobre a porta 25 numa rede TCP;
- O SMTP é um protocolo de envio apenas, o que significa que ele não permite que um usuário descarregue as mensagens de um servidor. Para isso, é necessário um cliente de email com suporte ao protocolo POP3 ou IMAP, que é o caso da maioria dos clientes atuais.

POP

- O Post Office Protocol (POP3) é um protocolo utilizado no acesso remoto a uma caixa de correio eletrônico. Ele está definido no RFC 1225 e permite que todas as mensagens contidas numa caixa de correio eletrônico possam ser transferidas sequencialmente para um computador local. Aí, o utilizador pode ler as mensagens recebidas, apagá-las, responder-lhes, armazená-las, etc;
- A característica offline do protocolo POP3 é particularmente útil para utilizadores que se ligam à Internet através de redes públicas comutadas, em que o custo da ligação é proporcional ao tempo de ligação (ex: a rede telefônica convencional ou a rede RDIS). Com o POP3, a ligação apenas precisa de estar ativa durante a transferência das mensagens, e a leitura e processamento das mensagens pode depois ser efetuada com a ligação inativa.

IMAP

- IMAP (Internet Message Access Protocol) é um protocolo de gerenciamento de correio eletrônico superior em recursos ao POP3 protocolo que a maioria dos provedores oferece aos seus assinantes. A última versão é o IMAP4. O mais interessante é que as mensagens ficam armazenadas no servidor e o internauta pode ter acesso a suas pastas e mensagens em qualquer computador, tanto por webmail como por cliente de correio eletrônico (como o Outlook Express ou o Evolution);
- Outra vantagem deste protocolo é o compartilhamento de caixas postais entre usuários membros de um grupo de trabalho. Além disso, é possível efetuar pesquisas por mensagens diretamente no servidor, utilizando palavras-chaves.

MIME

- Multipurpose Internet Mail Extensions (Extensões Multifunção para Mensagens de Internet), é uma norma da internet para o formato das mensagens de correio eletrônico. A grande maioria das mensagens de correio eletrônico são trocadas usando o protocolo SMTP e usam o formato MIME;
- O MIME provê mecanismos para o envio de outros tipos de informações por e-mail, incluindo caracteres não utilizados no idioma inglês, usando codificações diferentes do ASCII, assim como formatos binários contendo imagens, sons, filmes, e programa de computadores. MIME é também um componente fundamental de comunicação de protocolos como o HTTP, que requer que os dados sejam transmitidos em contextos semelhantes a mensagens de email, mesmo que o dado a ser transmitido não seja realmente um e-mail;
- O MIME aceita 05 tipos de conteúdo, que são:
 - Text para informações de texto;
 - Image para imagens;
 - Áudio para audio;
 - Vídeo para vídeo;
 - Aplicações para qualquer outro tipo de dado (aplicações).

Formato das mensagens

- O formato das mensagens esta especificados na RFC 822 e se baseia nos elementos típicos de uma carta postal que contém remetente, destinatário e conteúdo;
- Formato das mensagens de correio eletrônico:
 - Cabeçalho que contém as informações gerais da mensagem;
 - Corpo que contém o corpo da mensagem e sí.

Partes do Cabeçalho

- O cabeçalho da mensagem deve proporcionar informações gerais da mensagem, desta forma encontramos os seguintes campos:
 - From/Resent-From Identifica a pessoa que originou a mensagem;
 - To/Resent-To Identifica o destinatário principal da mensagem;
 - Cc/Resent-Cc Identifica o destinatário secundário da mensagem;
 - Bcc/Resent-Bcc Usado quando se deseja enviar uma mensagem a um destinatário adicional sem que os outros destinatários saibam (cópia cega);
 - Reply-To/Resent-Reply-To Identifica a quem se deve enviar a resposta da mensagem;
 - Sender/Resent-Sender Identifica a pessoa que realmente enviou a mensagem (o emissor não é a autor da mensagem)
 - Subject Assunto da mensagem;
 - Comments inserir comentários a mensagem
 - Date/Resent-Date Data e hora de envio da mensagem;
 - Entre outros.

A RFC 822 estabelece que os únicos campos do cabeçalho que são obrigatórios na mensagem são os seguintes: Date (Data), From(Émissor) e To (Destinatário).

Exemplo

```
Date: 25 Jun 2003 0932 PDT
From: Jordi Inyigo <jinyigo@uoc.edu>
Subject: Ejemplo mensaje RFC 822
Sender: jmmarques@uoc.edu
Reply-To: jinyigo@uoc.edu
To: Ramon Marti <rmarti@uoc.edu>,
    xperramon@uoc.edu
Cc: Llorenc Cerda <lcerda@uoc.edu>,
    Jose Barcelo < jbarcelo@uoc.edu>,
    epeig@uoc.edu
Comment: os envío esta información que os puede interesar
In-Reply-To: <1234321.567898765@uoc.edu>
Received: from uoc.edu by peru.uoc.es
      (8.8.5/8.8.5) with ESMTP id SAA14826
      for <rmarti@uoc.edu >; Fri, 20 Jun 2003
      18:35:52 +0200 (MET DST)
Received: from rectorat.uoc.edu(147.83.35.35)
      by uoc.es via smap (V2.0) id xma020193;
      Mon, 20 Jun 2003 18:38:50 +0200 for
      rmarti@uoc.edu
Message-Id: <199809211639.SAA20364@uoc.edu>
Este mensaje tiene formato RFC 822 e incluye
algunos de los campos de cabecera mas utilizados.
```

HTTP

- Hyper Text Transfer Protocol é o protocolo usado na World Wide Web para a distribuição e recuperação de informação;
- A troca de informações entre um browser e um servidor Web é toda feita através desse protocolo, que foi criado especificamente para a World Wide Web;
- Normalmente, este protocolo utiliza o porta 80 e é usado para a comunicação de "sites" (sítios), comunicando na linguagem HTML (Hipertext Markup Language, ou Linguagem de Marcação de Hipertexto);
- Métodos do HTTP
 - GET este método serve para obter a entidade correspondente a URL especificada;
 - HEAD este método é igual ao GET, exceto que a resposta estará vazia. Se utiliza o método para comprovar se a URL é valida para obter informações sobre o recurso sem necessidade de transferir seu conteúdo;
 - POST Este método serve para enviar uma entidade que um servidor deve incorporar ao recurso por uma URL.

WWW

- O serviço WWW (world wide web) oferece acesso a informações multimídia que pode incluir conteúdos de diferentes tipos (texto, imagem, áudio, vídeo, etc.);
- O HTML (hypertext Markup Language) é designado para especificar os documentos hipermídia;
- Atualmente a especificação oficial do HTML esta sobre controle de um grupo de empresas e organizações conhecido como W3C (World Wide Web Consortium);
- O HTTP (hipertext transfer protocol) é a base do WWW.

URL

- Identificador Uniforme de Recurso;
- Representação:
 - Esquema: identificador
- Exemplo de diferentes URL:

```
ftp://ftp.uoc.es/pub/doc/README
news:comp.infosystems.www.misc
mailto:Ernest.Udiant@campus.uoc.edu
http://www.uoc.es/
http://www.acme.com/%7Eadmin/
http://www.acme.com/buscador/busca.cgi?nom=Internet
http://www.acme.com/doc/ayuda.html#buscador
/doc/ayuda.html#buscador
ayuda.html#buscador
```

DNS

- DNS é a abreviatura de Domain Name System (Sistema de Resolução de Nomes);
- O DNS é um serviço de resolução de nomes, ou seja, quando o usuário tenta acessar um determinado recurso da rede usando o nome de um determinado servidor, é o DNS o responsável por localizar e retornar o número IP associado com o nome utilizado;
- O DNS é, na verdade, um grande banco de dados distribuído em milhares de servidores DNS no mundo inteiro;
- Cada computador com o Windows instalado (qualquer versão), tem dois nomes: um host name (que é ligado ao DNS) e um NetBios name (que é ligado ao WINS);
- Por padrão estes nomes devem ser iguais, ou seja, é aconselhável que você utilize o mesmo nome para o host name e para o NetBios name do computador;
- O DNS é um sistema para nomeação de computadores e equipamentos de rede em geral (tais como roteadores, hubs, switchs). Os nomes DNS são organizados de uma maneira hierárquica através da divisão da rede em domínios DNS.

Estrutura hierárquica do DNS

"Para mapear um nome em um endereço IP, um programa aplicativo chama um procedimento de biblioteca denominado resolvedor (cliente DNS) e repassa a ele o nome como um parâmetro. O resolvedor envia um pacote UDP (Porta 53) a um servidor DNS local, que procura o Nome e retorna o endereço IP ao resolvedor. Em seguida, o resolvedor retorna o endereço IP ao programa aplicativo que fez a chamada. Munido do endereço IP, o programa pode então estabelecer uma conexão TCP com o destino ou enviar outros pacotes UDP até ele." (Andrews Tanenbaum)

- O principal domínio, o domínio root, o domínio de mais alto nível foi nomeado como sendo um ponto (.). No segundo nível foram definidos os chamados "Top-leveldomains";
- Estes domínios são bastante conhecidos, sendo os principais descritos na Tabela a seguir:

Top-level-domain	Descrição
com	Organizações comerciais
gov	Organizações governamentais
edu	Instituições educacionais
org	Organizações não comerciais
net	Diversos
mil	Instituições militares

DHCP

- O DHCP é a abreviatura de Dynamic Host Configuration Protocol (Protocolo de configuração dinâmica de hosts);
- O DHCP é um serviço utilizado para automatizar as configurações do protocolo TCP/IP nos dispositivos de rede (computadores, impressoras, ou seja, qualquer dispositivo conectado à rede e que esteja utilizando o protocolo TCP/IP);
- Sem o uso do DHCP, o administrador da rede e a sua equipe teriam que configurar, manualmente, as propriedades do protocolo TCP/IP em cada dispositivo de rede (genericamente denominados hosts). Com o uso do DHCP esta tarefa pode ser completamente automatizada. O uso do DHCP traz diversos benefícios, dentro os quais podemos destacar os seguintes:
 - Automação do processo de configuração do protocolo TCP/IP nos dispositivos da rede;
 - Facilidade de alteração de parâmetros tais como Default Gateway, Servidor DNS e assim por diante, em todos os dispositivos da rede, através de uma simples alteração no servidor DHCP;
 - Eliminação de erros de configuração, tais como digitação incorreta de uma máscara de sub-rede ou utilização do mesmo númeor IP em dois dispositivos diferentes, gerando um conflito de endereço IP.

DHCP

- Os principais parâmetros que devem ser configurados para que o protocolo TCP/IP funcione corretamente são os seguintes:
 - Número IP
 - Máscara de sub-rede
 - Default Gateway (Gateway Padrão)
 - Número IP de um ou mais servidores DNS
 - Número IP de um ou mais servidores WINS
 - Sufixos de pesquisa do DNS