M1J2 Summary Notes (JMC Year 1, 2017/2018 syllabus)

Fawaz Shah

(STILL UNDER CONSTRUCTION)

Dr Lawn refers to propositions, theorems, corollaries and lemmas. In this document I will refer to them all as 'theorems'.

This document contains a list of definitions and a list of theorems.

Contents

Ι	Abstract Linear Algebra	3
1	Definitions	3
2	Theorems	3
II	Group Theory	4
3	Definitions	4
4	Theorems	5
II	I Analysis	6
5	Definitions	6

6	The	eorems	11
	6.1	Sequences	. 11
	6.2	Subsequences	12
	6.3	Summability	13
	6.4	Power series	14
	6.5	Continuity	15
	6.6	Differentiable functions	15

Part I Abstract Linear Algebra

1 Definitions

Vector space

2 Theorems

Part II

Group Theory

3 Definitions

Binary operation A binary operation on a set G is a any function $f: G \times G \to G$

Associative A binary operation \star on a set G is associative if it satisfies:

$$(a \star b) \star c = a \star (b \star c) \tag{1}$$

for all $a, b, c \in G$.

Commutative A binary operation \star on a set G is commutative if it satisfies:

$$a \star b = b \star a \tag{2}$$

for all $a, b \in G$.

Left/right identity An element $e \in G$ is called the left identity if:

$$e \star q = q \tag{3}$$

for all $g \in G$. Similar statement for right identity.

(Two sided) Identity element An element $e \in G$ is a two-sided identity element if it is both a left identity and a right identity.

From now on the two-sided identity element will be referred to as e.

Left/right inverse An element $h \in G$ is called the left inverse of $g \in G$ if:

$$h \star g = e \tag{4}$$

Similar statement for right inverse.

Two sided inverse A two sided inverse of an element $g \in G$ is both a left inverse and a right inverse of g.

From now on the two-sided inverse of g will be referred to as g^{-1} .

4 Theorems

Part III

Analysis

5 Definitions

Sequence A sequence is simply a map $f: \mathbb{N} \to \mathbb{R}$, denoted by a_n

Convergence (as $n \to \infty$) A sequence a_n converges to a limit L if for all real numbers $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N we have $|a_n - L| < \epsilon$.

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad s.t \quad \forall n > N \quad |a_n - L| < \epsilon$$
 (5)

Tends to infinity (sequence) We say a sequence tends to infinity if for all $R \in \mathbb{R}$, the sequence a_n is eventually bigger than R.

$$\forall R \in \mathbb{R} \quad \exists N \in \mathbb{N} \quad s.t. \quad \forall n > N \quad a_n > R \tag{6}$$

Shift The shift of a sequence by say, k, is the sequence $b_n = a_{n+k}$

Triangle inequality The general triangle inequality is:

$$|x - y| < |x - z| + |z - y| \tag{7}$$

Setting z = 0 gives us:

$$|x - y| > |x| - |y| \tag{8}$$

Then setting y = -y gives us the familiar case:

$$|x+y| < |x| + |y| \tag{9}$$

Bounded above A sequence a_n is bounded above if there's a real number A such that $a_n < A$ for all n.

Bounded below A sequence a_n is bounded below if there's a real number A such that $a_n > A$ for all n.

Bounded A sequence a_n is bounded if there's a real number A such that $|a_n| < A$ for all n.

Increasing A sequence is increasing if $a_{n+1} \ge a_n$ for all n.

Strictly increasing A sequence is strictly increasing if $a_{n+1} > a_n$ for all n.

Decreasing A sequence is decreasing if $a_{n+1} \leq a_n$ for all n.

Strictly decreasing A sequence is strictly decreasing if $a_{n+1} < a_n$ for all n.

Monotonic A sequence is monotonic if it is increasing or decreasing.

Supremum The supremum A of a set S is the least upper bound of that set i.e. the smallest number such that $s \leq A$ for all $s \in S$.

Supremum (function) The supremum of a function f is the sup of $\{f(x)|x\in \text{dom}(f)\}.$

Infimum The infimum B of a set S is the greatest lower bound of that set i.e. the largest number such that $s \geq B$ for all $s \in S$.

Infimum (function) The infimum of a function f is the inf of $\{f(x)|x \in \text{dom}(f)\}$.

Subsequence A subsequence of a_n is a sequence $a_{f(n)}$, where f(n) is a strictly increasing function.

Cauchy sequence A sequence is Cauchy if all the terms get arbitrarily close to one another. To put it mathematically:

$$\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad s.t \quad \forall m, n \ge N \quad |a_n - a_m| < \epsilon$$
 (10)

Partial sum The n^{th} partial sum S_n of a sequence a_n is the sum of terms up to that point:

$$S_n = \sum_{i=1}^n a_n \tag{11}$$

Summable A sequence is summable if the sequence of its partial sums converges. The limit of the sequence of partial sums will be:

$$L = \sum_{i=1}^{\infty} a_n \tag{12}$$

Absolutely summable A sequence a_n is absolutely summable if $|a_n|$ is summable.

Conditionally summable A sequence is conditionally summable if it is summable but not absolutely summable.

Power series The power series associated with a sequence a_n is the sequence of partial sums:

$$\sum_{i=1}^{n} a_i x^i \tag{13}$$

Radius of convergence The radius of convergence R of a power series P(x) is defined as the largest x for which P(x) is convergent.

$$R = \sup\{x \in \mathbb{R} | P(x) \text{ convergent}\}$$
 (14)

Limit as $x \to \infty$ (function) A function f(x) tends to a limit L as $x \to \infty$ if for all real numbers $\epsilon > 0$, there exists an $R \in \mathbb{R}$ such that for all $x \ge R$ we have $|f(x) - L| < \epsilon$.

$$\forall \epsilon > 0 \quad \exists R \in \mathbb{R} \quad s.t \quad \forall x > R \quad |f(x) - L| < \epsilon$$
 (15)

Tends to infinity (function) A function f(x) tends to infinity as $x \to \infty$ if for any $M \in \mathbb{R}$ there exists an $R \in \mathbb{R}$ such that if x > M then f(x) > R.

$$\forall M \in \mathbb{R} \quad \exists R \in \mathbb{R} \quad s.t. \quad x > M \Rightarrow f(x) > R$$
 (16)

One-sided limit A function f(x) tends to a limit L as $x \to a^-$ if for any $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in (a - \delta, a)$ then $|f(x) - L| < \epsilon$.

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t. \quad x \in (a - \delta, a) \Rightarrow |f(x) - L| < \epsilon$$
 (17)

Same format for the other sided limit $(x \to a^+)$

(Note that $\epsilon - \delta$ definition is only used for limits as x tends to a finite number a, not infinity)

Limit as $x \to a$ A function f(x) tends to a limit L as $x \to a$ if we have both:

$$\lim_{x \to a^{-}} f(x) = L \quad \text{and} \quad \lim_{x \to a^{+}} f(x) = L \tag{18}$$

Limit as $x \to a$ (ϵ - δ def.) A function f(x) tends to a limit L as $x \to a$ if:

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t. \quad |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon$$
 (19)

Continuous A function f(x) is continuous at a if:

$$\lim_{x \to a} f(x) = f(a) \tag{20}$$

Continuous (ϵ - δ def.) A function f(x) is continuous at a if for all $\epsilon > 0$ there is a $\delta > 0$ such that if $|x - a| < \delta$ then $|f(x) - f(a)| < \epsilon$.

$$\forall \epsilon > 0 \quad \exists \delta > 0 \quad s.t. \quad |x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$$
 (21)

Continuous everywhere A function f(x) is continuous everywhere if it is continuous at a for all $a \in \text{dom}(f)$.

Open interval An open inteval I is a set $I \subseteq \mathbb{R}$ of the form:

- 1. I = (a, b) for some $a, b \in \mathbb{R}$, or
- 2. $I = (-\infty, b)$, or
- 3. $I = (a, +\infty)$, or
- 4. $I = \mathbb{R}$

Discontinuity Discontinuity is the negation of continuity. Hence a function f(x) is discontinuous at a if there exists $\epsilon > 0$ such that for all $\delta > 0$, $|x - a| < \delta$ AND $|f(x) - f(a)| > \epsilon$.

$$\exists \epsilon > 0 \quad s.t. \quad \forall \delta > 0 \quad |x - a| < \delta \text{ AND } |f(x) - f(a)| > \epsilon \quad (22)$$

Bounded (function) A function f(x) is bounded if the set of all possible values of f(x) is bounded.

Differentiable (ver. 1) A function f(x) is differentiable at a if:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \tag{23}$$

exists.

Differentiable (ver. 2) A function f(x) is differentiable at a if:

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{24}$$

exists.

Differentiable everywhere A function f(x) is differentiable everywhere if it is differentiable at a for all $a \in \text{dom}(f)$.

Global maximum A function f(x) has a global maximum at a if $f(a) \ge f(x)$ for all other values of f(x).

Similar definition for global minimum.

Local maximum A function f(x) has a local maximum at a if $f(a) \ge f(x)$ for all x in the set $(a - \epsilon, a + \epsilon)$, for some ϵ .

Similar definition for local minimum.

Lipschitz continuous A function is Lipschitz continuous if:

$$|f'(x)| \le L \Rightarrow |f(x_1) - f(x_2)| \le L|x_1 - x_2|$$
 (25)

6 Theorems

6.1Sequences

Every convergent sequence has a unique limit.

Every convergent sequence is bounded.

If all terms of a convergent sequence are larger than a number B, then so is its limit.

Some properties of limits:

$$\lim_{x \to \infty} (a_n + b_n) = \lim_{x \to \infty} a_n + \lim_{x \to \infty} b_n \tag{26}$$

$$\lim_{x \to \infty} (\lambda a_n) = \lambda \lim_{x \to \infty} a_n \tag{27}$$

$$\lim_{x \to \infty} (a_n b_n) = \lim_{x \to \infty} a_n \lim_{x \to \infty} b_n \tag{28}$$

$$\lim_{x \to \infty} (a_n b_n) = \lim_{x \to \infty} a_n \lim_{x \to \infty} b_n$$

$$\lim_{x \to \infty} (\frac{a_n}{b_n}) = \frac{\lim_{x \to \infty} a_n}{\lim_{x \to \infty} b_n}$$
(28)

where λ is any real number.

If $a_n \to \infty$ and b_n is bounded below, $a_n + b_n \to \infty$.

If $a_n \to \infty$ and b_n is bounded below by a positive number, $a_n b_n \to$

If a_n is bounded and $b_n \to \infty$, then $\frac{a_n}{b_n} \to 0$.

If $a_n \to \infty$, for any real number λ :

- $\lambda < 0 \Rightarrow \lambda a_n \to -\infty$
- $\lambda = 0 \Rightarrow \lambda a_n \to 0$
- $\lambda > 0 \Rightarrow \lambda a_n \to \infty$

If $a_n \to a$ and $b_n \to b$, and for all n $a_n < b_n$, then a < b.

Sandwich Theorem

If $a_n \leq b_n \leq c_n$ for all n, and a_n and c_n tend to the same limit L, then $b_n \to L$.

Every bounded monotonic sequence is convergent.

 $Completeness\ Axiom$

Every non-empty subset of the real numbers which is bounded above has a supremum. Similar statement for infimum.

Useful results for sequences:

$$\lim_{n \to \infty} \lambda^n = \begin{cases} \infty & \lambda > 1\\ 1 & \lambda = 1\\ 0 & -1 < \lambda < 1 \end{cases}$$
 (30)

 λ^n diverges if $\lambda = -1$.

If m > 0 and $\lambda > 1$ then $\frac{\lambda^n}{n^m} \to \infty$ (exponentials beat powers).

If
$$m > 0$$
 then $\frac{\log(n)}{n^m} \to 0$ (powers beat logs).

6.2 Subsequences

If $a_n \to L$ then any subsequence $a_{f(n)} \to L$.

If two subsequences of a_n converge to different limits, a_n doesn't converge to a limit.

Every sequence has a monotonic subsequence.

Bolzano-Weierstrass Theorem

Every bounded sequence has a convergent subsequence.

Every Cauchy sequence is bounded.

Cauchy sequence \Leftrightarrow convergent sequence (for real numbers).

6.3 Summability

A sequence is summable iff the sequence of its partial sums converges.

If two subsequences of a sequence a_n converge to two different limits, a_n is not summable.

If a_n and b_n are summable with $\sum_{i=0}^{\infty} a_i = a$ and $\sum_{i=0}^{\infty} b_i = b$:

- $a_n + b_n$ is summable with $\sum_{i=0}^{\infty} (a_i + b_i) = a + b$.
- λa_n is summable with $\sum_{i=0}^{\infty} \lambda a_i = \lambda a$ (for any real number λ)

If $b_n = a_{n+k}$ then a_n summable $\Leftrightarrow b_n$ summable.

 a_n is summable $\Rightarrow a_n \to 0$.

Let S_n denote the sequence of partial sums of a_n ($S_n = \sum_{i=0}^n a_n$). A sequence of non-negative numbers a_n is summable iff S_n is bounded above. Similar statement for sequences of non-positive numbers.

Every absolutely summable sequence is summable.

Comparison test

If $b_n > a_n$ for all n then b_n summable $\Rightarrow a_n$ summable.

Alternating series test

If a_n is a decreasing sequence AND $a_n \ge 0$ for all n AND $a_n \to 0$ then $(-1)^{n+1}a_n$ is a convergent sequence.

Ratio test for sequences Let $r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$:

- $r < 1 \Rightarrow a_n$ is absolutely summable
- $r > 1 \Rightarrow a_n$ is not summable
- r = 1 is an indeterminate case

Power series

The power series associated with a sequence a_n converges iff the sequence of partial sums of $a_n x^n$ converges (i.e. if $\sum_{i=0}^n a_i x^i$ converges).

Let P(x) be a power series. If P(a) converges absolutely for some a, then P(x) converges absolutely for all x such that |x| < |a|

Let R be the radius of convergence of P(x). For all real numbers a:

- $|a| < R \Rightarrow P(a)$ converges absolutely
- $|a| > R \Rightarrow P(a)$ diverges

Ratio test for power series

Let $r = \frac{a_{n+1}}{a_n}$. Let $P(x) = \sum_{i=0}^n a_i x^i$ (i.e. the power series associated with a_n):

- $r \to 0 \Rightarrow R = \infty$
- $r \to L$ for some $L \Rightarrow R = \frac{1}{L}$
- $r \to \infty \Rightarrow R = 0$

Note: if r=1 here then R=1. This is DIFFERENT to the ratio test for sequences, where r = 1 is an indeterminate case.

6.5 Continuity

The limit of a function at any specific point is unique.

If functions f and g are continuous at a:

- (f+g) is continuous at a
- fg is continuous at a
- $\frac{1}{f(x)}$ and $\frac{1}{g(x)}$ are continuous at a
- $g \circ f$ is continuous at a

Any polynomial in \mathbb{R} is continuous

Any rational function in \mathbb{R} is continuous

Sequential continuity

A function f is continuous at a iff $f(a_n) \to f(a)$ for all sequences a_n such that $a_n \to a$.

Any continuous function on a closed bounded interval is bounded.

Intermediate Value Theorem

If f continuous and $f(a) \le f(b)$ for some a, b, then there exists some $c \in [a, b]$ such that $f(a) \le f(c) \le f(b)$.

Fixed Point Theorem

If f continuous and $f:[a,b]\to [a,b]$, then there exists some $c\in [a,b]$ such that f(c)=c.

Polynomials of odd degree have at least 1 root.

f differentiable $\Rightarrow f$ continuous.

6.6 Differentiable functions

If functions f and g are differentiable at a:

- (f+g) is differentiable at a
- \bullet fg is differentiable at a

- $\frac{1}{f(x)}$ and $\frac{1}{g(x)}$ are differentiable at a
- $g \circ f$ is differentiable at a
- g^{-1} and f^{-1} are differentiable at a

Let f be continuous and differentiable. If f has a local extremum at a then f'(a) = 0 (except at endpoints of the interval).

Let f be continuous and differentiable. If f has a local extremum at c (say in the interval [a, b]), there are 3 possibilities:

- c is an endpoint of [a, b]
- f'(c) = 0
- \bullet c is a non-differentiable point

Mean Value Theorem

Let f be continuous on [a, b] and differentiable on (a, b). There exists a point $c \in (a, b)$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 (31)

Rolle's Theorem

Let f be continuous and differentiable on (a, b). If f(a) = f(b) then there exists some $c \in (a, b)$ such that f'(c) = 0. This is a special case of the Mean Value Theorem.