

Table of	Table of Contents									
One-way Data Table	Page 2									
Two-way Data Table	Page 8									
Three-way Data Table	<u>Page 14</u>									
N-way Data Table	<u>Page 20</u>									

Create a One-way Data Table Excel Step-by-Step How-to for PC

Instructions: Use this guide to create a one-way data table using Excel.

Data requirement: probability distribution for a scenario, simulations of the scenario (enough for stable data output) **Sample Data:** stocking and distributing standard and luxury cars

represent the standard car variables effect on profit.

	STANDARD										
	Frequency	Relative Freq.	Cumlative Prob.	-							
10	2	0.02	0				Upgrades				
11	1	0.01	0.02		Standard	15		33		AVG	449.9
12		0.06		-	Luxury	10		39	14		
13	3	0.03	0.09	Replication	S- Demand	L- Demand	S-Sales	S-Surplus	S-Ups	L -sales	Profit
14	6	0.06	0.12	1 Nephication	3- Demand				2		
15	3	0.03	0.18	2	23						44
16	7	0.07	0.21	3	23						44
17	7	0.07	0.28	4	20	11	15	5	5	5	46
18	6	0.06	0.35	5	17	12	15	2	2	8	47
19	14	0.14	0.41	6							43
20	6	0.06	0.55	7	18				_		47.
21		0.09		. 8							46
22		0.1		. 9							45
23		0.13		10					-		46
24		0.07		11							490
- 24	,	0.07	0.55	. 12					1	9	484

2. Enter the range of variables that are being evaluated in this table in a column to the right of your data.

For this example the range of 10 to 24 standard cars is being evaluated. Reference the average profit above the column to the right.

		E14							
		Fleet	Upgrades						
	Standard	15	5	33			451.252		
	Luxury	10		39	14				
								=010	
Replication	S- Demand	L- Demand	S-Sales	S-Surplus	S-Ups	L -sales	Profit	10	
1	20	11	15	5	5	5	460	11	
2	13	11	13	0	0	10	430	12	
3	16	12	15	1	1	9	484	13	
4	13	11	13	0	0	10	430	14	
5	17	12	15	2	2	8	478	15	
6	17	13	15	2	2	8	478	16	
7	18	10	15	3	3	7	472	17	
8	12	13	12	0	0	10	400	18	
9	21	12	15	6	6	4	454	19	
10	17	10	15	2	2	8	478	20	
11	24	. 9	15	9	9	1	436	21	
12	19	12	15	4	4	6	466	22	
13	23	13	15	8	8	2	442	23	
14	19	12	15	4	4	6	466	24	
15	17	11	15	າ	າ	0	170		

3. Select the two columns and navigate to the data tab. Select What-If Analysis and Data Table.

4. Populate the data table with the correspondin g column data.

In this case it is the Standard Fleet cell.

		Fleet	Upgrades						
	Standard	15	5	33	1	2 AVG	447.82		
	Luxury	10		39		ta Table	? >		
					Da	ita Table	. /	`	447.82
Replication	S- Demand	L- Demand	S-Sales	S-Surplus	S-Ups Ro	w input cell:		<u>1</u>	
1	17	14	15	2		lumn input cell:		<u>↑</u>	L
2	19	9	15	4	<u>c</u> 0	idiliii iliput teli.		12	2
3	20	10	15	5		OK	Cancel	13	3
4	22	14	15	7				14	1
5	12	13	12	0		0 10	400	15	5
6	21	12	15	6		6 /	1 454	16	

TIP: If the data table is not populating with new numbers...

hit F9 to recalculate your data tables.

	452.428	
1	0 352.576	
1	1 371.824	
1	2 393.436	
1	3 412.036	
1	4 430.576	
1	5 449.68	
1	6 464.632	
1	7 474.46	
1	8 486.064	
1	9 498.46	
2	0 504.4	
2	1 502.528	
2	2 497.032	
2	3 496.312	
2	4 482.248	

5. Visualize the data table. Select the one-way table and navigate to Insert. Select Scatter chart and customize the labels.

Change the number of standard cars that will be stocked and recalculate the table. The numbers in the table and charts should adjust based on probability.

Create a Two-Way Data Table Excel Step-by-Step How-to for PC

Instructions: Use this guide to create a two-way data table using Excel.

Data requirement: probability distributions for at least two scenarios, simulations of the scenario (enough for stable data output)

Sample Data: stocking and distributing standard and luxury cars

	STANDARD										
	Frequency	Relative Freq.	Cumlative Prob.								
10		0.02	0								
11	1	0.01	0.02								
12	6		0.03								
13	3		0.09								
14	6		0.12			Fleet	Upgrades				
15	3		0.18		Standard	15	5 5	33		AVG	450.052
16			0.21		Luxury	10)	39	14		
17	7		0.28								
18	6	0.06	0.35	Replication	S- Demand	L-Demand	S-Sales	S-Surplus	S-Ups	L -sales	Profit
19	14	0.14	0.41	1						8	
20	6	0.06	0.55	2	17	8	15	2	2	8	478
21	9		0.61	3	21	14			6	4	454
22	10		0.7	4		_			1	9	
23	13	0.13	0.8	5		_			4	6	
24	7	0.07	0.93	6					1	9	
			1	7		_				2	
	LUXURY			8						7	
	Frequency	Relative Freq.	Cumlative Prob.	9						2	
6	1	0.01	0	10	22	12	15	7	7	3	448
7	4	0.04	0.01	11		12			6	4	454
8	2	0.02	0.05	12						6	
9	6	0.06	0.07	13	24	12	15	9	9	1	436
10	13	0.13	0.13	14	18	13	15	3	3	7	472

2. To the right of the data simulations outline the two variables that are being evaluated. Put one variable in a column and one in a row, creating a matrix.

This example evaluates the stocking of standard cars in the column and the stocking of luxury cars in the row.

	Standard									
Luxury		6	7	8	9	10	11	12	13	14
	10									
	11									
	12									
	13									
	14									
	15									
	16									
	17									
	18									
	19									
	20									
	21									
	22									
	23									
	24									

3. Reference the dependent in the cell between the two variables.

4. Highlight the entire matrix and navigate to the Data tab. Select What-If Analysis and Data Table.

5. Populate the row input cell field with the variable represented at the top of the data table. Populate the column input cell with the variable represent along the side of data table.

For this example the row input cell is the number of luxury cars to stock (J11) and the column input cell is the number of standard cars to stock (J10). Click OK.

H	1	J	K	L	M	N		0	P	AF	AG
		Fleet	Upgrades								
	Standard	15	5	33	12	AVG		448.9			
	Luxury	10		39	14						Standard
										Luxury	448.9
Replication	S- Demand	L-Demand	S-Sales	S-Surplus	Data Table			?	X		10
1	22	11	15	1							11
2	12	11	12	4	Row input of	elli	SJS1	1	1		12
3	15	13	15	4	Now impact		3731	1			13
4	14	12	14	4	Column inp	ut cell:	SJ\$1	0	<u>+</u>		14
5	23	12	15	4	_						15
6	19	10	15	4		OK		Cancel			16
7	20	11	15	1			_				17
8	23	13	15	8	8		2	442			18
9	20	12	15	5	5		5	460			19
10	18	10	15	3	3		7	472			20
11	20	13	15	5	5		5	460			21

TIP: If the data table is not populating with new numbers...

hit F9 to recalculate your data tables.

	Standard							Standard					
Luxury	449.608	6	7	8	9	10	Luxury	448.864	6	7	8	9	10
	10	448.9	448.9	448.9	448.9	448.9		10	266.136	287.032	310.292	329.892	353.056
	11	448.9	448.9	448.9	448.9	448.9		11	283.488	305.296	328.508	351.444	371.176
	12	448.9	448.9	448.9	448.9	448.9		12	305.28	327.316	350.144	370.8	392.704
	13	448.9	448.9	448.9	448.9	448.9		13	326.736	349.192	372.032	390.828	413.812
	14	448.9	448.9	448.9	448.9	448.9		14	346.608	368.368	389.324	409.956	429.136
	15	448.9	448.9	448.9	448.9	448.9		15	364.428	384.628	407.624	428.424	450.46
	16	448.9	448.9	448.9	448.9	448.9		16	378.6	401.56	422.936	444.996	467.404
	17	448.9	448.9	448.9	448.9	448.9		17	394.836	418.72	434.372	458.592	479.008
	18	448.9	448.9	448.9	448.9	448.9		18	406.236	426.484	451.52	468.072	482.56
	19	448.9	448.9	448.9	448.9	448.9		19	413.1	438.832	459.536	473.532	501.736

6. Identify the best outcome from the scenarios.

Identify the maximum profit using the =MAX() function.

AF	AG	AH	Al	AJ	AK	AL	AM	AN	AO	AP
	Standard									
Luxury	449.812	6	7	8	9	10	11	12	13	14
	10	266.136	287.032	310.292	329.892	353.056	374.528	394.092	415.228	435.584
	11	283.488	305.296	328.508	351.444	371.176	394.652	412.824	434.38	452.192
	12	305.28	327.316	350.144	370.8	392.704	411.692	433.224	450.628	467.336
	13	326.736	349.192	372.032	390.828	413.812	432.188	450.636	467.728	481.304
	14	346.608	368.368	389.324	409.956	429.136	451.976	470.832	485.704	494.504
	15	364.428	384.628	407.624	428.424	450.46	468.572	484.908	498.052	508.052
	16	378.6	401.56	422.936	444.996	467.404	481.7	502.224	513.04	523.7
	17	394.836	418.72	434.372	458.592	479.008	495.644	507.564	521.788	528.608
	18	406.236	426.484	451.52	468.072	482.56	507.032	517.932	523.408	531.908
	19	413.1	438.832	459.536	473.532	501.736	517.424	523.74	527.644	523.592
	20	416.28	441.688	466.064	481.344	504.04	520.184	525.468	521.824	528.704
	21	417.312	446.536	461.276	481.44	508.18	518.876	515.52	527.704	509.336
	22	426.852	438.22	466.424	478.416	500.656	510.344	525.876	520.42	503.312
	23	414.312	440.92	446.852	475.764	494.2	509.624	509.64	507.784	502.52
	24	404.46	424.78	445.148	463.644	494.02	500.864	514.068	489.256	482.36
	Maximum:	531.908								

Navigate to the Home Tab and select Conditional Formatting. Set the condition to highlighting cells that equal the maximum profit.

For this example the highest profit is yielded when 14 luxury and 18 standard cars are stocked. Test that you have a stable data set by recalculating your data table. If the optimal cell is the same then you have enough simulations. If it changes then create more replications for your data set.

		J				J	• •			
	Standard									
Luxury	446.368	6	7	8	9	10	11	12	13	14
	10	266.136	287.032	310.292	329.892	353.056	374.528	394.092	415.228	435.584
	11	283.488	305.296	328.508	351.444	371.176	394.652	412.824	434.38	452.192
	12	305.28	327.316	350.144	370.8	392.704	411.692	433.224	450.628	467.336
	13	326.736	349.192	372.032	390.828	413.812	432.188	450.636	467.728	481.304
	14	346.608	368.368	389.324	409.956	429.136	451.976	470.832	485.704	494.504
	15	364.428	384.628	407.624	428.424	450.46	468.572	484.908	498.052	508.052
	16	378.6	401.56	422.936	444.996	467.404	481.7	502.224	513.04	523.7
	17	394.836	418.72	434.372	458.592	479.008	495.644	507.564	521.788	528.608
	18	406.236	426.484	451.52	468.072	482.56	507.032	517.932	523.408	531.908
	19	413.1	438.832	459.536	473.532	501.736	517.424	523.74	527.644	523.592
	20	416.28	441.688	466.064	481.344	504.04	520.184	525.468	521.824	528.704
	21	417.312	446.536	461.276	481.44	508.18	518.876	515.52	527.704	509.336
	22	426.852	438.22	466.424	478.416	500.656	510.344	525.876	520.42	503.312
	23	414.312	440.92	446.852	475.764	494.2	509.624	509.64	507.784	502.52
	24	404.46	424.78	445.148	463.644	494.02	500.864	514.068	489.256	482.36
	Maximum:	531.908								

Create a Three-Way Data Table

Excel Step-by-Step How-to for PC

Instructions: Use this guide to create a three-way data table using Excel.

Data requirement: probability distributions for at least two scenarios, simulations of the scenario (enough for stable data output)

Sample Data: stocking and distributing standard and luxury cars

	STANDARD												
	Frequency	Relative Freq.	Cumlative Prob.										
10	2	0.02	0										
11	1	0.01	0.02										
12	6	0.06	0.03										
13	3	0.03	0.09										
14	6	0.06	0.12				Fleet	Upgrades					
15	3	0.03	0.18			Standard	15	5	33	12	AVG	450.052	
16	7	0.07	0.21			Luxury	10		39	14			
17	7	0.07	0.28										
18	6	0.06	0.35		Replication	S- Demand	L- Demand	S-Sales	S-Surplus	S-Ups	L -sales	Profit	
19	14	0.14	0.41		1	17	11	15	2	2	. 8	478	
20	6	0.06	0.55		2	17	8	15	2	2	. 8	478	
21	9	0.09	0.61		3	21	14	15	6	6	4	454	
22	10	0.1	0.7		4	16	13		1	1	. 9	484	
23	13	0.13			5	19	13		4	4	- 6	466	
24	7	0.07	0.93		6	16	11		1	1	9	484	
			1		7	23	13	15	8	8	2	442	
	LUXURY				8	18	14		3	3	7	472	
	Frequency		Cumlative Prob.		9	23	11		8	8	2		
6	1	0.01	0		10	22	12		7	7	3	448	
_ 7	4	0.04			11	21	12		6	6	4	454	
8		0.02			12	19	10		4	4	6		
9		0.06			13	24	12		9	9		436	
10	13	0.13	0.13		14	18	13	15	3	3	7	472	

2. To the right of the data simulations outline the variables that will be evaluated. This will be achieved by creating a table of possible combinations of two of the variables and a matrix of the third variable

and counter.

Start by creating a table with each possible combination of two of the variables that should be evaluated. In this case, a combination of 12-13 luxury cars and 2-5 upgrades are being tested.

Luxury	12	12	12	12	13	13	13	13	
Upgrade	s 2	3	4	5	2	3	4	5	

=OFFSET(reference, rows, columns)

Use the offset function to allow the data table to count through these combinations that have been laid out. Label the offset and give it a starting value of 1.

Luxury	12	12	
Upgrades	2	3	
Offset			
1			

Populate the variable decision cell (in this example, luxury fleet cell) with the offset function. The reference is the cell labeled luxury beside the combinations table, the rows is zero, and the number of columns is the number below the label "Offset".

Create a second table below the combinations table. The table should mimic those created for two-way data tables. The column of the table holds the possibilities for the third variable. In this case that is the standard car stock. The row of the table holds an index for each column of the combinations table.

Р	AF	AG	AH	Al	AJ	AK	AL	AM	AN
	Luxury	12	12	12	12	13	13	13	13
	Upgrades	2	3	4	5	2	3	4	5
	Offset								
	1								
	Standard								
Index	481.476	1	2	3	4	5	6	7	8
	10								
	11								
	12								
	13								
	14								
	15								
	16								
	17								
	18								
	19								
	20								
	21								
	22								
	23 24								
	24								

3. Highlight the matrix and navigate to the Data tab. Select What-If Analysis and Data Table.

4. Populate the row input cell and the column input cell with the appropriate data.

The row input cell should reference the offset counter (the cell below the label offset) and the column input cell should reference the standard fleet cell.

512 304

516.432

529.032

513.888

517.884

508.608

23 517.128

520 416

518.196

523.104

524.664

523.596

503.772

513.036

520 416

521.52

525.36

513.3

483.816

525.156

513 576

522,996

523.812

522.444

511.596

522.276

502,548

526 564

535.852

529.348

524.848

512.392

511.792

485,464

523 264

528.868

527.584

532.888

516.796

498.244

524 476

531.808

531.82

533.608

505.228

522 868

531.34

533.188

523.696

512.812

510.004

489,532

TIP: If the data table is not populating with new numbers...

19

20

21

22

23

24

481,476

481.476

481.476

481.476

481.476

481.476

481 476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481.476

481,476

481.476

481.476

481.476

481.476

481,476

481.476

481.476

481.476

481.476

481,476

481.476

481.476

481.476

481.476

481.476

481,476

481.476

481.476

481.476

481.476

481.476

481,476

481.476

481.476

481.476

481.476

481.476

hit F9 to recalculate your data tables.

6. Identify the best outcome from the scenarios.

Use the same methods that are found in "Create Two-Way Data Table" to identify the maximum profit.

Luxury	12	12	12	12	13	13	13	13
Upgrades	2	3	4	5	2	3	4	5
Offset								
1								
Standard								
486	1	2	3	4	5	6	7	8
10	394.98	394.68	396.972	395.484	415.156	415.552	416.212	417.124
11	415.356	412.392	415.08	414.804	434.08	434.224	432.508	433.024
12	432.648	432.12	430.968	432.6	450.28	450.364	450.448	448.7
13	449.22	451.776	449.58	451.452	471.736	469.492	470.296	469.08
14	468.744	467.832	469.896	468.732	487.504	486.676	486.232	484.4
15	483.924	483.336	484.212	485.328	500.608	498.484	493.192	501.592
16	498.528	501.84	499.404	500.82	509.536	509.308	511.108	506.57
17	514.752	508.08	508.212	512.916	516.82	518.056	520.54	515.95
18	521.58	516.06	520.956	519.612	516.712	527.596	523.564	521.29
19	521.292	522.84	519.576	520.152	533.236	527.8	529.576	525.32
20	525.432	513.912	525.336	520.344	522.952	531.34	531.436	525.8
21	526.608	525.576	518.58	519.588	521.164	524.968	525.556	517.7
22	524.568	516.528	516.42	520.116	518.656	519.016	517.864	520.63
23	521.88	509.076	507.492	512.808	513.484	510.772	508.168	514.97
24	499.332	489	495.948	505.716	496.96	493.348	489.088	492.53
Maximum:	533.236							

For this example the highest profit is yielded when 13 luxury and 19 standard cars are stocked and 2 upgrades are available. Test that you have a stable data set by recalculating your data table. If the optimal cell is the same then you have enough simulations. If it changes then create more replications for your data set.

Create an N-Way Data Table Excel Step-by-Step How-to for PC

Instructions: Use this guide to create an N-way data table using Excel.

Data requirement: probability distributions for at least two scenarios, simulations of the scenario (enough for stable data

output)

Sample Data: stocking and distributing standard and luxury cars

Step Instru
1. Follow the "Creating a Three-Way Data Table" tutorial for the basis of this process. The of

2. Edit the combinations table in order to factor in the desired number of variables.

For each additional variable, add a row to the combination table. Then add each possibility for that row. You will need to add to the number of columns of this table if the options for the additional variable is greater than or equal to the smallest number of options present so far in the table.

Repeat the process of setting up the offset function and the rest of the process follows that of the three-way table.