시뮬레이션 연동을 통한 CPS 기반 최적 초동대응방안 결정 아키텍처

Contents

01 작품의 배경 및 목적

02 해결방법

03 작품 설명

04 결론 및 기대 효과

05 참고문헌

작품의 배경 및 목적

기계의 IoT 적용이 확대될수록, 안정적인 제조환경 구축 위해서는 무인 상황에서의 돌발 상황의 대처에 대한 연구가 시급

- 시뮬레이션을 이용한 의사결정 구조에 대한 논의 지속
- 사전에 정의되지 못한 문제가 발생할 때 단순한 정지만으로는 큰 손실이 발생하는 환경이 존재.
- IoT 장비 도입 활성화에 따른 부분적 무인 생산시스템에 대한 관심의 증대
- 스마트공장에서, 정의되지 못한 문제 발생 시, 대처 방안의 부재
- 단순 일시정지보다 합리적인 조치를 결정하는 아키텍처가 필요

돌발 상황을 가장 처음 대면하는 주체는 "시스템"! 인간의 위기대처능력을 제조시스템이 모방하게 할 방법이 없을까?

해결방법

- ✓ 예상하지 못한 급박한 상황이 발생했을 때, 모델 구성 데이터베이스의 데이터를 활용하여
 새로운 형태의 시뮬레이션 모델을 실시간으로 생성
- ✓ 시뮬레이션을 이용해 최적의 대처 방안을 결정 후 생산시스템에 조치
- ✓ 작업자의 개입 없이도 장비 스스로의 판단 하에 최적의 조치사항을 실시간으로 적용

작업자 없이도, 단순한 긴급정지를 넘어서 현재 상황 정보를 바탕으로 스스로 대처방법을 고르는 시스템!

해결방법

예상하지 못한 상황이란, 시뮬레이션 개발 단계에서 사전에 정의되지 못한 상태 및 행동을 의미.

- □ 일반적으로 시뮬레이션은 사전에 모든 상태와 행동을 정의하고 각 상태에 따른 발생 가능한 행동과 다음으로 나타날 수 있는 상태로 전이를 일으키며 수행(예상한 상황).
- □ 사전에 상태와 행동이 정의되어 있지 않으면 오류를 일으키며 사용자의 추가 작업 요구.

(1) 시뮬레이션을 적극적으로 활용한 CPS 기반의 스마트 팩토리 (사출 금형 공장 모델)

동영상 1. 스마트 팩토리 모델

- 갑비싼 장비, 혹은 PLC를 사용하지 않고 아두이노를 활용하는 현장
- 측정되는 실시간 온도를 온라인 상에 구현하여 무인 작업장 운영 중
- MySQL Server 데이터베이스에 실시간으로 저장

아두이노 데이터 수집 화면

대쉬보드를 온라인 상에 구현

아두이노 구성도

MySQL서버에 실시간 연동

- (2) 인간 없이 예열 작업을 수행중인 사출기
- (3) 상한선 이상의 온도 값이 검출
- (4) 바로 정지명령을 내리면 막대한 손실이 발생, 가동을 지속해도 막대한 손실 발생

동영상 2. 공정 타켓팅 모델 (Main Model)

(5) 디지털 트윈은 실행 가능한 대처 방안에 대해 시뮬레이션을 생성

(6) 시뮬레이션의 판단 하에 최적의 방안을 결정

(7) 결정된 조치사항을 사출기 및 공장 전체에 수행

그림 2. 대안 시뮬레이션 모델 (Sub Model)

결론 및 기대효과

 비싼 솔루션 없이도 현재 가진 장비만으로 무인 상황에서의 초동대응의 실현

스마트공장 도입기에 있는 중소기업 • 초기대처뿐 아니라 여러가지 환경 정보를 조합하여 무인 환경에서 실시간 으로 반응하는 통합적 솔루션으로 확장 가능

안정적인 CPS를 운영중 <u>인 제조공</u>정

- DB의 변경만으로
 다양한 공장에 적용 가능
- 빠른 의사 결정이 가능 하며 합리적으로 대안 도출

데이터 기반 합리적 대응체계를 구축

참고문헌

- [1] Young Jun Son, Richard A. Wysk, "Automatic simulation model generation for simulation-based, real-time shop floor control," Computers in Industry, vol. 45, Issue 3, pp 291-308, 2001.
- [2] Ali Yalcin, Ravi Kalyan Namballa, An object-oriented simulation framework for real-time control of automated flexible manufacturing systems, Computers & industry engineering, vol. 48, Issue 1, pp 111-127, 2005.
- [3] John. W. Fowler, Oliver Rose, Grand Challenges in Modeling and Simulation Complex Manufacturing Systems, The Society for Modeling and Simulation International, vol. 80, Issue 9, pp 469-476, 2004.
- [4] J.S.Smith, S.B. Joshi & R.G. Qiu, Message based Part State Graphs(MPSG): A formal Model for shop-floor control implementation, International Journal of Production Research, vol. 41, no. 8, pp 1739-1746, 2003.
- [5] Branislav Bako, Pavol Bozek, Trend in Simulation and Planning of Manufacturing Companies (2016), International Conference on Manufacturing Engineering and Materials (ICMEM2016), vol. 149, pp 571-575, 2016.
- [6] Richard Fujimoto, Parallel and Distributed Simulation, Proceedings of the 2015 Winter Simulation Conference, 2015.
- [7] Richard Fujimoto, Asad Wagar Malik and Alfred J. Park, Parallel and Distributed Simulation in the Cloud, SCS M&S Magazine, 2010.
- [8] S Robinson, Conceptual modelling for simulation Part 1: definition and requirements, Journal of the Operational Research Society, vol. 59, Issue 3, pp 278-290, 2008.
- [9] S Robinson, Conceptual modelling for simulation Part 2: a framework for conceptual modelling, Journal of the Operational Research Society, vol. 59, Issue 3, pp 291-304, 2008.
- [10] Scott Miler, Dennis Pegden, Introduction to Manufacturing Simulation, Proceeding of the 2000 Winter Simulation Conference, 2000.
- [11] Gabriele D'Angelo, Stefano Ferretti, Moreno Marzolla, Fault tolerant adaptive parallel and distributed simulation through functional replication, Simulation Modelling Practice and Theory, 2018.