Linear Algebra

Definition 1.1

A vector space (or linear space) V over a field \mathbb{F} consists of a set on which two operations (called addition and multiplication respectively here) are defined so that;

- (A) (V is Closed Under Addition) For all $\mathbf{x}, \mathbf{y} \in V$, there exists a unique element $\mathbf{x} + \mathbf{y} \in V$.
- (M) (V is Closed Under Scalar Multiplication) For all elements $a \in \mathbb{F}$ and elements $\mathbf{x} \in V$, there exists a unique element $a\mathbf{x} \in V$.

Such that the following properties hold:

- (VS 1) (Commutativity of Addition) For all $\mathbf{x}, \mathbf{y} \in V$, we have $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- (VS 2) (Associativity of Addition) For all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, we have $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$.
- (VS 3) (Existence of The Zero/Null Vector) There exists an element in V denoted by $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- (VS 4) (Existance of Additive Inverses) For all elements $\mathbf{x} \in V$, there exists an element $\mathbf{y} \in V$ such that $\mathbf{x} + \mathbf{y} = \mathbf{0}$.
- (VS 5) (Multiplicative Identity) For all elements $x \in V$, we have $1\mathbf{x} = \mathbf{x}$, where 1 denotes the multiplicative identity in \mathbb{F} .
- (VS 6) (Compatibility of Scalar Multiplication with Field Multiplication) For all elements $a, b \in \mathbb{F}$ and elements $\mathbf{x} \in V$, we have $(ab)\mathbf{x} = a(b\mathbf{x})$.
- (VS 7) (Distributivity of Scalar Multiplication over Vector Addition) For all elements $a \in \mathbb{F}$ and elements $\mathbf{x}, \mathbf{y} \in V$, we have $a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + a\mathbf{y}$.
- (VS 8) (Distributivity of Scalar Multiplication over Field Addition) For all elements $a, b \in \mathbb{F}$, and elements $\mathbf{x} \in V$, we have $(a + b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$.

General Information

- Let V be a vector space and W a subset of V. Then W is a subspace of V iff the following 3 conditions hold for the operations defined in V.
 - (a) $\mathbf{0} \in W$
 - (b) $\mathbf{x} + \mathbf{y} \in W$ whenever $\mathbf{x} \in W$ and $\mathbf{y} \in W$.
 - (c) $c\mathbf{x} \in W$ whenever $c \in \mathbb{F}$ and $\mathbf{x} \in W$.
- A subset S of a vector space V generates (or spans) V iff span(S) = V. In this case, we also say that the vectors of S generate (or span) V.
- A set subset S of a vector space V is called *linearly dependent* iff there exists a finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n not all zero, such that

$$a_1u_1 + a_2u_2 + a_nu_n = \mathbf{0}.$$

- A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a basis for V, we also say that the vectors of β form a basis for V.
- For any matrix, its row space, column space, and rank are identical.

- A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is homogeneous iff $\mathbf{b} = 0$; otherwise it is nonhomogeneous.
- A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of m linear equations in n unknowns has a solution space of dimension n rank(A).
- A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ of linear equations is *consistent* iff its solution set is nonempty; otherwise it is *inconsistent*.
- A system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent iff $rank(\mathbf{A}) = rank(\mathbf{A}|\mathbf{b})$.
- A matrix is said to be in reduced row echelon form iff
 - Any row containing a nonzero entry precedes any row in which all the entries are zero (if any).
 - The first nonzero entry in each row is the only nonzero entry in its column.
 - The first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row.
- Gaussian elimination.
 - In the forward pass, the augmented matrix is transformed into an upper triangular matrix in which the first nonzero entry of each row is 1 and it occurs in a column to the right of the first nonzero entry of each preceding row.
 - In the backward pass, the upper triangular matrix is transformed into reduced row echelon form by making the first nonzero entry of each row the only nonzero entry of its column.
- Let **A** be an $m \times n$ matrix, and \mathbf{a}_j its jth column. For any $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{\top}$,

$$\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{a}_j.$$

• Let **A** and **B** be matrices having n rows. For any matrix **M** with n columns, we have

$$\mathbf{M}(\mathbf{A}|\mathbf{B}) = (\mathbf{M}\mathbf{A}|\mathbf{M}\mathbf{B}).$$

• The determinant of a square matrix can be evaluated by cofactor expansion along any row. That is, if $\mathbf{A} \in \mathrm{M}_{n \times n}(\mathbb{F})$, then for any integer $1 \le i \le n$,

$$\det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{i+j} \mathbf{A}_{ij} \cdot \det(\widetilde{\mathbf{A}}_{ij}).$$

Here, $\widetilde{\mathbf{A}}_{ij}$ is the $(n-1)\times(n-1)$ matrix obtained from \mathbf{A} by deleting its *i*th row and *j*th column.

• The determinant of a square matrix can also be evaluated by cofactor expansion along any column, since

$$\det(\mathbf{A}) = \det(\mathbf{A}^{\top}).$$

- A matrix **A** is invertible iff its determinant is nonzero.
- Let **A** be an invertible $n \times n$ matrix. Then, for some elementary row matrices \mathbf{E}_1 to \mathbf{E}_n ,

$$\mathbf{E}_p \mathbf{E}_{p-1} \dots \mathbf{E}_1(\mathbf{A} \mid \mathbf{I}_n) = \mathbf{A}^{-1}(\mathbf{A} \mid \mathbf{I}_n) = (\mathbf{I}_n \mid \mathbf{A}^{-1}).$$

In other words, we can perform Gaussian elimination, so that $(\mathbf{A} \mid \mathbf{I}_n) \to (\mathbf{I}_n \mid \mathbf{A}^{-1})$.

Alternatively,

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \operatorname{adj}(A),$$

where $\operatorname{adj}(\mathbf{A})$ is the adjugate / classical adjoint of \mathbf{A} . That is, the matrix whose (i, j)th entry is the (j, i)th cofactor $(-1)^{j+i} \det(\widetilde{\mathbf{A}}_{ji})$

Numerical Methods

General Information

- The parity of the degree of a real polynomial is the same as that of its number of real roots.
- Let the real polynomial p given by $p(x) = a_{2n}x^{2n} + a_{2n-1}x^{2n-1} + \cdots + a_0$ have coefficients $a_n > 0$ and $a_0 < 0$. Then, it has at least one positive and one negative root.
- Linear interpolation on an interval [a, b]. The (i + 1)th iteration it given by

$$x_{i+1} = \frac{a|f(x_i)| + x_i|f(a)|}{|f(a)| + |f(x_i)|}.$$

G.C. Skills

Linear interpolation: finding an approximation to a root in [a, b] up to n decimal places.

- 1. $Y_1 = f(x)$,
- 2. $a \to A$ and $b \to B$,
- $3. \ \frac{B|Y_1(A)| + A|Y_1(B)|}{|Y_1(A)| + |Y_1(B)|},$
- 4. Ans $\rightarrow A$ or B (choose the one that has the opposite sign to Ans),
- 5. Repeat steps 4 to 5,
- 6. Terminate this process when the approximations are consistent up to n decimal places.