shift	
Dopen shift cipher	Dython
2) replace message	·
3) look for cga in o	
vigerere	
Drun pex2 with Ciphe	r text
2) run pexi with out	put
ex: most frequent = v =	7 e=4
r-re: 4-17=13	C
f →e: 4+5=1	<u>G</u>
i→e: 4→8=4	A
1-e: 4-11=7	
U→e: 4 > 20 = 16	
j→e: 4+ 9=5	
m=e 4 + 12 = 8	
Z+e 4+25=21	
X+e 4+23=19	
g-e 4- 6= 2	
e→e 4 → 4 = 0	
Pegular Affine 1) open affine py 2) Change Message 3) run script	1) Open bruteforce 2) run script 3) input message in wi no spaces
	4) look for CGA
RSA a theory	
1) run estrprobleml. A	
•	
3) open Zip file	
4) enter pm	

WPA2
Dopen and prompt a type wsc
2) cd into file
3) aircrack-ng - W wifi_passwas. +x+ +vaffic_capturer. cap
4) gpg -d readme +xt.gpg
WEP a linear congruency
1) alreyack-no traffic_capturez.cap
2)gpg-d readine txt.gpg
3) ex problem given:
Solve for x. 264=428 (mod 364)
1)take mod of 42x be bigger than 264
6 = 264 = 64 (mod 364)
Ladivide by 4:66€16 (mod 91)
2) mod inverse in python
→ ροw (66, -1, 91) = 40
3> 16 · 40 % 91 = 3
4 for 1 in range (0,4):
print (3+91·i)
- 3, 94,185,276
Hash text euclidean
1) MDs hash
2) Make sure hashcat is in the final folder
3) hashcathelp if you need 1x
4) hashcat -m 0 -a 1 *hash* 10ckyou.+xt question9.+xt
5)go into WSL
6) gpg Import yeathon. Key
7)gpg -a readme. +xxx. gpg

Hashcat a treasure pairs				
hasnoot -m100 - a 3 Value in ctf ?s?d?d?d?d?d?d?d?				
Ladd Show after its done				
unzipfile				
use torins code				
Hasn +ec				
1) hashcat - m 1400 -a 7 * nash* ?s rockyov. +xt				
2) gpg -a readme.txt.gpg 3) Use ECDH to find Key.				
RSA & CPT				
DPUT Vallues in wiener outlack				
2) WSC				
3) gpg Import bob. key				
4) gpg -d readme.txt.gpg				
5) Open CRT code				
(b) in moduli a remainders add au the #s				
Openssi+ diffe helman + theory				
1) Openssi pkey - in Key. pem				
2) Copy priyar key in subline				
- remove: L spaces				
3) paste into DH. theory				
4) take prito under file *k*				
Assymetric Symetric				
EL gamal				
<u> Pia</u>				

BSG8+e1 gamal +miller rabbin	
1)BSGS et gama python	
2) input p, alpha, beta, t, r	
3) Use por to unzip	
4) USE MILLER GARBIN Code	
Openssl +RSA theory	
1) Opensor rsa -pubin -in rsa_key.pem - text	
2) USe Openssivia	
3) multiply the top 2 #s	
4) plug that # into dec2 Ascii	
5) run geg -d readme. txt. geg	
- EAHER DAY	