	COMBUSTI	DAI F	IDI AF	4919
--	----------	-------	--------	------

- Combustion analysis is used to deduce the formula of an organic compound and then it's combustion equation
- A hydrocarbon in the vapour phase is burnt in excess oxygen to form CO2 and water vapour. When the mixture of gases is cooled, the water vapour condenses to occupy a very small volume.
- The gaseous mixture consists of CO2 and any unreacted oxygen
- The volume of CO2 can be found by bubbling it through an alkali like NaOH (aq) or KOH (aq).

 - · CO2 will be absorbed by the alkali (because it's acidic)
 · The only gas that will come out will be the unreacted oxygen
 · From these volumes of gases, the equation for the reaction +
 the molecular formula of the hydrocarbon can be determined

Total volume of gases = CO2 + unreacted O2

Complete combustion of any hydrocarbon (General Equation)

$$(2 + (x + y) 02 (g)) \xrightarrow{\text{burn}} (2 + y) 02 (g) \xrightarrow{\text{g}} (2 + y) 02 (g)$$

Avogadro's law: Equal volumes of gas under the same conditions of temperature and pressure contain equal number of moles ie. CHy + 202 -> CO2 + 2H2O order of balancing combustion

	1	; <u>2</u>	>	1	, 2	equations:
٦	mol	lom		mol	lam	
	ie. Idn	n ³ 2dm ³		1dm³	2dv	n³ 2. Hydrogen
						3. Oxygen

4) Mole ratio is equal to the volume ratio

10 cm² of a garsesom alkane is burnt in excess 02 and the product garses are parmed through a NaOH solution. The vol. of gen decreased by 30 cm². Deduce the equation for this combination
By 30 cm². Deduce the equation for this combustion
reaction
Couly + (x+y) O2 -> xCO2 + yH2O
10 n = 30
1 : 3
C3Hy
Alcane - Cn H2n+2
= C3 H8 + S02 3C02 + 4H20