Introduction to quantum computing - Professor	Elras Fernandez - Comborro Alvarez
	(Universided de Oviedo)
Port 1 - Definitions	
	0, 1, 16
Quantum Computing is a computing paradigm that quantum mechanical properties (superposition, entings	
of matter in order to do calculations	
Models of Quantum computing	
· Quantum Furing machines	
Quentum Circuits	Regarding computacional capabilities, hines
· Measurement based Quantum campaking (MBQC)	they are equivalent to Turing Mac
· Adiabatic quentum computing	
Topological quentum computing	J
What technologics are used to build quantum computers?	
- Supercanducting Loops - Silican Quantum	90+1
- Trapped ions - Topologieal gubi	41
- Diamond Vaconcies > mainly used by Google, IBM, etc	
Elements of a Quentum Circuit	
- Data -> grafts	
- Oberezioni -> diouxim defoi (nuitorà travitametici)	
- Resuls -> measurements	
Port 2 - One-qubit Systems	
· Clossical bits can take time values (I or O) -> Discret	e 0
· Qubit can "take" infinitely many different values -> Contin	$ 0\rangle + 1\rangle$
· Qubit live in Hilbert Vector Space with a bons of two	1
elements 10> y 11>	Classical Bit Qubit
- A generic qubit is in a superposition	
$ V\rangle = a(0) + \beta(1)$ where d and B	ore complex numbers
Such that Idl ²	$+ B ^2 = \bot$

- The way to know the volue of a gubit is to perform a measurement. However
 - . The result of a measurement is random
 - · When we measure, we only obtain one (classed) but of intermetion
- · Meosurma: |V> = d/0> + B/L> => 0 -> ld2 probability
 - I -> |B|2 probability
- · So, the result after measuring will be 10> or 11> depending of the result
- · We consist perform independent measures of IN> becouse we connot copy the state (no-closing theorem)

Quantum Cotes

- · Question Mechanica tells or that the evolution of on $H(t) | y(t) \rangle = i \pi \frac{2}{2!} y(t) \rangle$ isolated State is given by Schrödinger equation
- To the case of quantum circuits, this implies that the operations that can be comed out one given by unitary matrices. That is, matrices U of complex numbers verifying

$$U.U^{\dagger} = U^{\dagger}.U = I$$

where U-1 is the consugate transpose of U

· Each such metriz is a possible quentum gate in a circuit

Reversible Camputation

- · All the operations have on inverse: reversible computing
- Every gots has the same number of inpuls and outputs
- We cannot directly implement some classical gates
- But we can simulate any classical computation

One - Qubit gotes

• Qubit
$$|y\rangle = \alpha |0\rangle + \beta |1\rangle \xrightarrow{r \text{ upresented}} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

· One-Qubit gate can be represented witho a transformation motifix

to:
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} ab \\ B \end{pmatrix} = \begin{pmatrix} ad + bB \\ cd + \deltaB \end{pmatrix}$$

$$\cdot \begin{pmatrix} c - T \\ T & C \end{pmatrix}$$

$$\begin{array}{cccc} \cdot & \underline{\perp} & \left(\begin{array}{ccc} \underline{\perp} & \underline{\perp} \\ \underline{-1} \end{array} \right) \end{array}$$

· Usually denote:

$$|-\rangle := \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$