Classification Using K-Nearest Neighbor

Nearest Neighbor and Exemplar

Nearest Neighbor Search

- Given: a set P of n points in \mathbb{R}^d
- Goal: a data structure, which given a query point q, finds the *nearest neighbor* p of q in P

K=5

Select 5 Nearest Neighbors
 as Value of K=5 by Taking their
 Euclidean Distances

• Decide if majority of Instances over a given value of K Here, K=5.

Distances

- Distance are used to measure similarity
- There are many ways to measure the distance s between two instances

Distances

Manhattan Distance

$$|X1-X2| + |Y1-Y2|$$

Euclidean Distance

•
$$\sqrt{(x1-x2)^2} + \sqrt{(y1-y2)^2}$$

Euclidean

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \sum_{k=1}^{p} |a_k - b_k|^r$$

Where r is a parameter, p is the number of dimensions (attributes) and a_k and b_k are, respectively, the k-th attributes (components) or data objects a and b

Minkowski Distance: Examples

- r = 1. City block (Manhattan, taxicab, L1 norm) distance.
 - A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors
- r = 2. Euclidean distance
- $r \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance.
 - This is the maximum difference between any component of the vectors
- Do not confuse r with p, i.e., all these distances are defined for all numbers of dimensions.

Cosine Similarity

Properties of Distance

- Dist (x,y) >= 0
- Dist (x,y) = Dist (y,x) are Symmetric
- Detours can not Shorten Distance
 Dist(x,z) <= Dist(x,y) + Dist (y,z)

Distance

Hamming Distance

Distances Measure

- Distance Measure What does it mean "Similar"?
- Minkowski Distance

- Norm:
$$d(x, y) = ||x - y||_m = \left[\sum_{i=1}^N (x_i - y_i)^m\right]^{1/m}$$

- Chebyshew Distance
- Mahalanobis distance:

$$d(x, y) = |x - y|^{T}S_{xy}^{-1}|x - y|$$

Example

Points	X1 (Acid Durability)	X2(strength)	Y=Classification
P1	7	7	BAD
P2	7	4	BAD
Р3	3	4	GOOD
P4	1	4	GOOD

KNN Example

Points	X1(Acid Durability)	X2(Strength)	Y(Classification)
P1	7	7	BAD
P2	7	4	BAD
Р3	3	4	GOOD
P4	1	4	GOOD
P5	3	7	?

Scatter Plot

Scatter plot

Euclidean Distance From Each Point

		KNN		
	P1	P2	Р3	P4
Euclidean Distance of	(7,7)	(7,4)	(3,4)	(1,4)
P5(3,7) from	Sqrt((7-3) 2 + (7-7) 2) = $\sqrt{16}$ = 4	Sqrt((7-3) 2 + (4-7) 2) $= \sqrt{25}$ $= 5$	Sqrt((3-3) 2 + (4-7) 2) = $\sqrt{9}$ = 3	Sqrt((1-3) 2 + (4-7) 2) = $\sqrt{13}$ = 3.60

3 Nearest NeighBour

	P1	P2	P3	P4
Euclidean Distance of	(7,7)	(7,4)	(3,4)	(1,4)
P5(3,7) from	Sqrt((7-3) 2 + (7-7) 2) = $\sqrt{16}$	Sqrt((7-3) 2 + (4-7) 2) = $\sqrt{25}$	Sqrt((3-3) 2 + (4-7) 2) = $\sqrt{9}$	Sqrt((1-3) 2 + (4-7) 2) = $\sqrt{13}$
	= 4	= 5	= 3	= 3.60
Class	BAD	BAD	GOOD	GOOD

KNN Classification

Points	X1(Durability)	X2(Strength)	Y(Classification)
P1	7	7	BAD
P2	7	4	BAD
Р3	3	4	GOOD
P4	1	4	GOOD
P5	3	7	GOOD

Variation In KNN

Different Values of K

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

The KNN classification algorithm

Let k be the number of nearest neighbors and D be the set of training examples.

- 1. for each test example z = (x',y') do
- 2. Compute $d(\mathbf{x}',\mathbf{x})$, the distance between z and every example, $(\mathbf{x},y) \in D$
- 3. Select $D_z \subseteq D$, the set of k closest training examples to z.
- 4. $y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$

5. end for

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - · height of a person may vary from 1.5m to 1.8m
 - · weight of a person may vary from 60 KG to 100KG
 - · income of a person may vary from Rs10K to Rs 2 Lakh

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - · curse of dimensionality: all vectors are almost equidistant to the query vector
 - Can produce undesirable results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Choosing appropriate k

- Deciding how many neighbors to use for kNN determines how well the mode will generalize to future data.
- The balance between overfitting and underfitting the training data is a problem known as the biasvariance tradeoff.
- Choosing a large k reduces the impact or variance caused by noisy data, but can bias the learner such that it runs the risk of ignoring small, but important patterns.

Choosing appropriate k

- In practice, choosing k depends on the difficulty of the concept to be learned and the number of records in the training data.
- Typically, k is set somewhere between 3 and 10.
 One common practice is to set k equal to the square root of the number of training examples.
- In the classifier, we might set k = 4, because there were 15 example ingredients in the training data and the square root of 15 is 3.87.

The kNN Algorithm

Strengths	Weaknesses
Simple and effective Makes no assumptions about the underlying data distribution	 Does not produce a model, which limits the ability to find novel insights in relationships among features
the underlying data distributionFast training phase	Slow classification phase
	 Requires a large amount of memory
	 Nominal features and missing data require additional processing