Техническое задание на разработку информационный системы

Автоматизированная система управления инвентаризацией (АСУИ)

Дата: 25 марта 2025 г.

	Согласовано
Заказчик:	В. С. Тарасов
Исполнители:	А. И. Власенко Я. Юаньпэн
	Я. Юаныпэн П. Джурдже В. В. Беликов

Оглавление

1	Гло	оссарий				
2	Обі	Общие сведения				
	2.1	Полное наименование системы и её условное обозначение				
	2.2	Наименования организаций				
	2.3	Плановые сроки начала и окончания работы				
	2.4	Источники финансирования				
	2.5	Порядок оформления результатов				
3	Цел	ти и назначение создания автоматизированной системы				
	3.1	Цели создания системы				
	3.2	Назначение системы				
4	Тре	ребования к автоматизированной системе				
	4.1	Требования к структуре АС в целом				
	4.2	Общие требования				
		4.2.1 Производительность				
		4.2.2 Надёжность				
		4.2.3 Безопасность				
		4.2.4 Описание экранов приложения				
4.3 Требования к структуре		• •				
		Требования к функциям				
		4.4.1 Пользовательские истории				
		4.4.2 Прецеденты использования				
	4.5	Требования к видам обеспечения				
		4.5.1 Техническое обеспечение				
		4.5.2 Хранение данных				
		4.5.3 Лингвистическое обеспечение				
5	Пор	рядок разработки автоматизированной системы				
5.1 Порядок организации разработки		Порядок организации разработки				
	5.2					
6	Пор	Порядок контроля и приёмки системы				
	6.1	Документы приёмки				
7	Ист	гочники разработки				

8	При	іложен	пие А	31
	8.1	Польз	овательские истории	31
		8.1.1	МН1. Сканирование предмета инвентаризации	31
		8.1.2	МН2. Генерация отчёта по оборудованию	31
		8.1.3	МНЗ. Подтверждение и корректировка результатов сканирования	32
		8.1.4	МН4. Управление заявками на ремонт (для технического спе-	
			циалиста)	32
		8.1.5	МН5. Создание заявки на ремонт	33
		8.1.6	SH1. Просмотр и аренда техники клиентом	33
		8.1.7	SH2. Одобрение и просмотр заявок менеджером	34
		8.1.8	SH3. Добавление пользователя в чёрный список	34
		8.1.9	SH4. Возможность бронирования техники клиентом	34
		8.1.10	SH5. Чёткое отображение сроков аренды	34
		8.1.11	СН1. Определение местонахождения техники	34
		8.1.12	СН2. Контроль истории использования техники	34
		8.1.13	СНЗ. Продление срока аренды клиентом	35
		8.1.14	СН4. Ранний возврат техники клиентом	35
		8.1.15	СН5. Аналитика загрузки и частоты аренды	35
		8.1.16	СН6. Детальная информация по технике для клиента	35
			СН7. История аренд конкретного клиента	35
		8.1.18	СН8. Выявление причин повреждения оборудования	35

Глоссарий

- 1. АС автоматизированная система;
- 2. АСУИ автоматизированная система управления инвентаризацией;
- 3. ПО программное обеспечение;
- 4. ТЗ техническое задание;
- 5. API application programming interface (англ.), интерфейс программирования приложения;
- 6. OCR optical character recognition (англ.), оптическое распознование символов;
- 7. ML machine learning (англ.), машинное обучение;
- 8. GDPR general data protection regulation (англ.), общий регламент защиты персональных данных.

Общие сведения

В данном разделе описаны общие сведения о заказчике, разработчике, сроках выполнения работ, а также наименовании системы.

2.1. Полное наименование системы и её условное обозначение

Автоматизированная система управления инвентаризацией (АСУИ).

2.2. Наименования организаций

Заказчик: Преподователь дисциплины «Проектирование информационных систем» Тарасов Вячеслав Сергеевич.

Разработчик: студенты команды 1.6:

- Власенко Антон Ильич;
- Ян Юаньпэн;
- Беликов Владимир Владимирович;
- Павлович Джурдже.

2.3. Плановые сроки начала и окончания работы

- Начало работ: 01.03.2025.
- Предоставление ТЗ: 25.03.2025.
- Окончание работ: 01.06.2025.

2.4. Источники финансирования

Источники финансирования отсутствуют. Работа осуществляется в свободное время студентов.

2.5. Порядок оформления результатов

Результаты работы предъявляется по заврешению каждого шага, описанного в главе 5. Предъявляемые документы описаны в главе 6.

Цели и назначение создания автоматизированной системы

3.1. Цели создания системы

Целью разработки автоматизированной системы управления инвентаризацией (АСУИ) является создание системы, позволяющей автоматизировать, ускроить и упростить процесс учёта, аренды и управления оборудованием (инвентарем) в организациях средних масштабов.

При этом запланрирован результат (точные метрики):

- обеспечение оперативного обновления данных об оборудовании в режиме реального времени (время запроса до 500мс);
- уменьшение времени выполнения учета инвентаря по крайней мере на 50% (оценка путем отсчета времени).

При этом запланрирован результат (опросы):

- обеспечение прозрачности и контроля над процессами эксплуатации оборудования (оценка удобства через опрос о качестве опыта пользования оценка должна повысится);
- упрощение процесса подачи заявок на аренду и ремонт (оценка через опрос о качестве опыта пользования оценка должна повысится);
- улучшение пользовательского опыта клиентов, берущих оборудование в аренду (оценка удобства через опрос о качестве опыта пользования оценка должна повысится).

3.2. Назначение системы

АСУИ предназначена для автоматизированного управления оборудованием предприятия, включая:

• учёт инвентаря с возможностью его идентификации с помощью сканирования штрих-кодов и QR-кодов;

- управление статусами объектов (доступно, на диагностике, в ремонте);
- организацию процесса аренды оборудования;
- формирование списков иневтаря с информацией по его состоянию и эксплуатации;
- контроль заявок на ремонт и выдачу оборудования;
- поддержку работы в онлайн и оффлайн режимах с последующей синхронизацией данных.

Требования к автоматизированной системе

В этой главе описаны все требования к системе.

4.1. Требования к структуре АС в целом

АС представляет собой клиент-серверную архитектуру:

- клиент мобильное приложение (гарантирована реализация под Android), явялется пользовательским интерфейсом для администратора, арендующего и технического специалиста, обращается к ML сервисам для распознования информации с изображений, хранит буфер сведений при оффлайн работе;
- сервер удаленная система, обрабатывющая и предоставляющую данные, обеспечивающая целостность процесса инвентаризации, аутентификацию;
- база данных хранение всех сведений системы

При этом компноненты разворачиваются с ипользованием Docker и взаимодействуют посредством REST API (HTTPs протокол).

Сревисы ML – Firebase ML.

Также предполагается реализация логирования и сбора метрик средствами Grafana, Grafana Loki и Prometheus.

4.2. Общие требования

В этом разделе описаны требования общие требования, такие как надежность, безопастность.

4.2.1. Производительность

• Запросы на получение сведений о всех объектах инвентаря должны выполнятся мене чем за 500мс.

4.2.2. Надёжность

Система должна обеспечивать безотказную работу при стандартных нагрузках (до 5 одновременных пользователей)

Также программное обеспечение должно обрабатывать случаи некорректных запросов и/или недоступности технических средств

- Устойчивость системы к потерям сети.
- Точность распознавания: не менее 95%.

4.2.3. Безопасность

• Ограничение доступа на основе ролей.

4.2.4. Описание экранов приложения

Описание экранов приложения приведено в соотвествующем документе

4.3. Требования к структуре

- Построение клиент-серверной архитектуры.
- Взаимодействие через REST API.

4.4. Требования к функциям

В этом разделе представлены основные требовния к функциям системы.

- 1. Авторизация пользователей через логин, пароль
- 2. Регистрация пользователей (клиентов)

Детальные требования описаны в форме прецедентов использования.

4.4.1. Пользовательские истории

Пользовательские истории приведлены в Приложении А

4.4.2. Прецеденты использования

На рисунке 4.1 Изображены прецеденты использования в АС.

Рис. 4.1: Диаграмма Use Case для системы

UC-MH2: Генерация отчёта по оборудованию

Основан на пользовательской истории МН2

Акторы:

• Менеджер (ответственный за инвентаризацию и эксплуатацию оборудования).

• Система инвентаризации оборудования.

Цель: Получить детальный и фильтруемый отчёт по инвентаризации, чтобы эффективно контролировать использование ресурсов и предотвращать убытки.

Предусловия:

- Система содержит актуальные и полные данные о текущем состоянии оборудования.
- Менеджер авторизован в приложении.
- Приложение корректно подключено к базе данных или имеет локальное хранилище для работы в оффлайн-режиме.

Постусловия:

- Отчёт успешно сформирован и доступен для анализа или выгрузки.
- Если данные отсутствуют, менеджер получил уведомление и возможность скорректировать запрос.
- Лог создания отчёта зафиксирован в системе.

Основной поток:

- 1. Менеджер входит в раздел «Отчёты» приложения.
- 2. Система извлекает данные о всех объектах инвентаризации из базы данных или локального хранилища (при оффлайн-режиме).
- 3. Для каждого объекта инвентаризации уточняется его статус: «доступно», «на диагностике» или «на ремонте».
- 4. Если объект отсутствует в инвентаризации, система отображает данные о текущем пользователе объекта и ожидаемой дате возврата.
- 5. Менеджер задаёт параметры фильтрации, такие как временной интервал, статусы и другие критерии.
- 6. Система формирует отчёт на основе заданных параметров.
- 7. Отчёт отображается на экране менеджера и доступен для анализа или выгрузки (в формате PDF/Excel).

Альтернативные потоки:

- 1а. Нет данных для выбранного интервала:
 - Система уведомляет: «Для указанного временного интервала данные отсутствуют. Попробуйте изменить критерии поиска».
 - Менеджер возвращается к настройке фильтров.
- 2а. Отсутствие интернет-соединения:

- Если база данных недоступна, система использует данные из локального хранилища (при наличии).
- Если локальные данные недоступны, система уведомляет: «Не удалось получить данные. Проверьте подключение к интернету».
- 3а. Ошибка при извлечении данных:
 - Система уведомляет: «Произошла ошибка при получении данных. Повторите попытку позже или обратитесь в службу поддержки».
- 5а. Выбор полного отчёта:
 - Система генерирует полный отчёт обо всех объектах, но уведомляет, что выгрузка может занять больше времени.

Исключения:

- Проблемы с сохранением отчёта:
 - Если отчёт невозможно сохранить (например, недостаточно места), система уведомляет: «Не удалось сохранить отчёт. Проверьте свободное место на устройстве».
- Сбой при выгрузке файла:
 - Если выгрузка отчёта не удалась (например, из-за сбоя соединения), система уведомляет: «Ошибка выгрузки. Повторите попытку позже».

Диаграмма последовательности:

На рисунке 4.2 изображена диаграмма последовательности для вышеописанного прецедента использования.

Рис. 4.2: Диаграмма последовательности: UC-MH2 Генерация отчёта по оборудованию

UC-MH3. одтверждение и корректировка результатов сканирования

Основан на пользовательской истории МНЗ

Акторы:

- Менеджер (занимается учётом оборудования).
- Система инвентаризации оборудования.

Цель: Обеспечить точность данных об оборудовании в учётной базе, используя подтверждение результатов сканирования или корректировку информации в случае необходимости.

Предусловия:

- Сканирование объекта выполнено, результаты распознавания доступны.
- Менеджер авторизован в системе.

Постусловия:

- Информация об объекте успешно подтверждена либо скорректирована и сохранена в базе данных.
- Система фиксирует время, пользователя и изменения, внесённые в данные.

Описание:

После завершения сканирования система предлагает менеджеру просмотреть данные, извлечённые из объекта. Менеджер может выбрать один из предложенных

вариантов, если данные корректны, либо вручную внести исправления в случае ошибок или неопределённости системы.

Основной поток:

- 1. Система завершает сканирование и предоставляет менеджеру результаты распознавания объекта на экране (например, название, серийный номер, местоположение и т.д.).
- 2. Менеджер просматривает данные, извлечённые системой.
- 3. Если предложенные системой данные корректны, менеджер подтверждает выбор нажатием кнопки «Подтвердить».
- 4. Система сохраняет данные в центральную базу и фиксирует время подтверждения.
- 5. Менеджеру отображается уведомление: «Данные успешно сохранены».

Альтернативные потоки:

- 1а. Низкая точность распознавания:
 - Если система определяет низкую точность (например, менее 80%), она предлагает менеджеру до трёх альтернативных вариантов.
 - Менеджер выбирает один из предложенных вариантов. Если ни один из вариантов не подходит, переходит к ручному редактированию (поток 2a).
- 2а. Ввод данных вручную:
 - Если предложенные варианты некорректны или отсутствуют, менеджер вручную вводит данные об объекте (например, наименование, серийный номер).
 - После ввода данных менеджер подтверждает их корректность.
- 3а. Изменение ранее подтверждённых данных:
 - Если менеджер замечает ошибку после подтверждения, он может открыть данные объекта для редактирования.
 - После внесения исправлений система сохраняет обновлённые данные и фиксирует изменения в журнале.
- 4а. Отмена процесса:
 - Если менеджер решает отменить процесс (например, закрывает экран редактирования), система выводит уведомление: «Изменения не сохранены».
 - Менеджер возвращается на главный экран или повторно запускает процесс сканирования/подтверждения.

Исключения:

- Ошибка сохранения данных:
 - Если система не может сохранить данные в базу (например, из-за сбоя), она уведомляет менеджера: «Ошибка сохранения данных. Попробуйте повторить позже».
 - Данные временно сохраняются локально для повторной отправки.
- Сбой при загрузке вариантов:
 - Если система не может загрузить предложенные варианты (например, из-за отсутствия связи с сервером), она предлагает менеджеру сразу перейти к ручному вводу данных.

Диаграмма последовательности:

На рисунке 4.3 изображена диаграмма последовательности для вышеописанного прецедента использования.

Рис. 4.3: Диаграмма последовательности: Подтверждение и корректировка результатов сканирования

UC-MH4: Управление заявками на ремонт

Основан на пользовательской истории МН4

Акторы:

- Технический специалист (занимается ремонтом техники).
- Система управления заявками на ремонт.

Цель: Эффективно обрабатывать заявки на ремонт, изменять их статусы и заполнять отчёты о проделанных работах, чтобы поддерживать непрерывную работу оборудования.

Предусловия:

- Система содержит активные заявки на ремонт.
- Технический специалист авторизован в системе.

Постусловия:

- Статусы заявок обновлены в системе.
- Заполненные отчёты о ремонте сохранены и доступны для последующего анализа.

Описание:

Технический специалист входит в систему, чтобы просмотреть активные заявки на ремонт, изменить статусы заявок по мере их выполнения и заполнить отчёт с описанием проделанных работ, что способствует прозрачности и оперативности процесса.

Основной поток:

- 1. Технический специалист входит в раздел «Заявки на ремонт» в приложении.
- 2. Система отображает все активные заявки с подробной информацией о каждой (например, описание проблемы, дата подачи заявки).
- 3. Специалист выбирает одну из заявок для обработки.
- 4. Специалист меняет статус заявки на подходящий (например, «ремонтируется», «на диагностике»).
- 5. После завершения ремонта специалист заполняет форму отчёта, указав:
 - Даты начала и завершения работ.
 - Описание выполненных работ.
 - Выявленные проблемы и их решения (если применимо).
- 6. Система сохраняет заполненный отчёт, а статус заявки обновляется до «Завершено».
- 7. Специалист получает подтверждение от системы, что отчёт сохранён и заявка закрыта.

Альтернативные потоки:

- 5а. Незавершённое заполнение отчёта:
 - Если специалист не завершает заполнение формы (например, закрывает приложение или прерывает работу), система сохраняет промежуточное состояние данных.
 - При следующем входе в заявку система предлагает продолжить заполнение с последнего сохранённого шага.
- 5b. Ошибка ввода данных:

- Если система обнаруживает некорректно введённые данные (например, пустое обязательное поле), она уведомляет специалиста: «Заполните все обязательные поля перед сохранением».
- Специалист исправляет ошибку и повторно сохраняет отчёт.
- 6а. Отмена изменения статуса:
 - Если специалист случайно изменяет статус заявки, он может отменить действие до финального сохранения.
 - Система возвращает заявку к предыдущему состоянию.
- 6b. Откат изменений:
 - Если специалист замечает ошибку после сохранения данных, система предоставляет функцию редактирования, где он может внести исправления и сохранить обновлённый отчёт.

Исключения:

- Сбой при сохранении данных:
 - Если система не может сохранить изменения (например, из-за временной технической ошибки), специалист получает уведомление: «Ошибка сохранения. Попробуйте повторить позже».
 - Данные временно остаются на устройстве для повторной отправки.
- Ошибка синхронизации с сервером:
 - Если синхронизация с сервером невозможна (например, из-за отсутствия интернета), система уведомляет: «Заявка не может быть обновлена. Проверьте подключение к сети».
 - Заявка сохраняется локально и будет синхронизирована позже.

Диаграмма последовательности:

На рисунке 4.4 изображена диаграмма последовательности для вышеописанного прецедента использования.

Рис. 4.4: Диаграмма последовательности: UC-MH4 Управление заявками на ремонт

UC-MH5: Создание заявки на ремонт

Основан на пользовательской истории МН5

Акторы:

- Менеджер (ответственный за обнаружение неисправностей и создание заявок).
- Система управления заявками на ремонт.

Цель: Оперативно создать и отправить заявку на ремонт обнаруженного неисправного оборудования, чтобы ускорить процесс устранения неисправности.

Предусловия:

- Менеджер обнаружил неисправность оборудования.
- Приложение установлено и поддерживает возможность прикрепления фотографий.
- Менеджер авторизован в системе.

Постусловия:

- Заявка успешно создана и отображается в списке активных заявок.
- Система отправила уведомление техническому специалисту о новой заявке.

Описание:

Менеджер инициирует процесс создания заявки, вводит подробное описание проблемы, прикрепляет фотографии повреждений и отправляет заявку через приложение. Система проверяет корректность заполнения и отправляет уведомление ответственному техническому специалисту.

Основной поток:

- 1. Менеджер открывает раздел «Создать заявку на ремонт» в приложении.
- 2. Приложение отображает форму с обязательными полями для ввода описания неисправности и возможностью прикрепить фотографии повреждений.
- 3. Менеджер вводит описание неисправности, указывает основные детали (например, модель оборудования) и прикрепляет фотографии через интерфейс приложения.
- 4. Система проверяет, чтобы все обязательные поля были заполнены корректно.
- 5. Менеджер нажимает кнопку «Отправить», и заявка сохраняется в базе данных.
- 6. Новая заявка отображается в списке активных заявок менеджера и технического специалиста.
- 7. Система автоматически отправляет уведомление техническому специалисту о новой заявке.

Альтернативные потоки:

- 3а. Неправильный формат данных:
 - Если прикрепляемый файл (например, фото) имеет неподдерживаемый формат, система уведомляет менеджера: «Неподдерживаемый формат файла. Загрузите другой файл».
 - Менеджер выбирает файл, соответствующий требованиям приложения.
- 4а. Обязательные поля не заполнены:
 - Если менеджер оставляет одно из обязательных полей пустым, система уведомляет: «Заполните все обязательные поля перед отправкой».
 - Менеджер дополняет недостающие данные и повторяет попытку отправки.
- 4b. Отмена заполнения формы:
 - Если менеджер отменяет процесс заполнения, система уведомляет: «Вы уверены, что хотите отменить создание заявки? Все введённые данные будут потеряны».
 - Менеджер подтверждает отмену, и система возвращает его к главному экрану.
- 5а. Проблемы с подключением:
 - Если на момент отправки отсутствует подключение к интернету, система сохраняет заявку локально.
 - Приложение уведомляет менеджера: «Заявка сохранена локально. Она будет автоматически отправлена при восстановлении соединения».
 - После восстановления соединения система синхронизирует данные с сервером.

Исключения:

- Ошибка при сохранении данных:
 - Если система не может сохранить заявку (например, из-за сбоя), она уведомляет: «Ошибка сохранения заявки. Попробуйте повторить позже».
- Ошибка синхронизации:
 - Если синхронизация локальной заявки с сервером не удалась, система уведомляет: «Не удалось отправить заявку. Повторная попытка через [N] минут».

Диаграмма последовательности:

На рисунке 4.5 изображена диаграмма последовательности для вышеописанного прецедента использования.

Рис. 4.5: Диаграмма последовательности: UC-MH5 Создание заявки на ремонт

UC-SH1. Просмотр и аренда техники клиентом

Основана на пользовательской истории SH1

Описание Use Case:

Цель данного сценария заключается в предоставлении клиенту функционала для просмотра доступной техники и выбора нужного оборудования на основе информации о состоянии, местоположении и сроках аренды.

Акторы:

- Клиент.
- Система инвентаризации оборудования.

Основной поток:

- 1. Клиент входит в систему под своими учетными данными.
- 2. Клиент открывает раздел «Просмотр доступной техники».
- 3. Система отображает список доступной техники с указанием статуса оборудования (например, «доступно», «в аренде», «на ремонте») и сроков сдачи/возврата.
- 4. Клиент выбирает интересующее оборудование.
- 5. Система предоставляет дополнительную информацию об оборудовании (например, технические характеристики, доступность по времени, возможность бронирования).
- 6. Клиент подтверждает выбор и завершает процесс аренды (если оборудование доступно).

Альтернативные потоки:

- Если оборудование недоступно для аренды, клиенту предоставляется информация о его сроках освобождения и возможность бронирования.
- Если клиент покидает процесс выбора, система возвращает его в главное меню.

Исключения:

- Если у клиента нет доступа к системе или учетная запись заблокирована, отображается соответствующее уведомление.
- Если произошел сбой при загрузке данных, система уведомляет клиента о недоступности информации и предлагает повторить запрос позже.

4.5. Требования к видам обеспечения

Данный раздел содержит требования к программному и лингвистическому обеспечению AC а также сведения о данных.

4.5.1. Техническое обеспечение

Клиентская часть (мобильное приложение)

- приложение должно устанавливаться и работать на мобильных устройствах под управлением операционной системы Android 10 и выше;
- должна поддерживаться камера с автофокусом для сканирования QRкодов;
- должен использоваться Flutter для разработки.

Серверная часть

- должна работать на linux;
- должна использовать контейнеры для развертывания;
- должна использовать базу данных PostgreSQL.

API

• должен использоваться Firebase ML API;

4.5.2. Хранение данных

Данные хранятся в БД PostgreSQL.

Далее на рисунке 4.6 представлена схема сущность-связь для базы данных:

Рис. 4.6: Диаграмма сущность-связь

4.5.3. Лингвистическое обеспечение

Приложение должно быть на русском языке и иметь возможность расширения для использования других языков.

Порядок разработки автоматизированной системы

5.1. Порядок организации разработки

В этом раздели описаны шаги, которые необходимо пройти в ходе разработке информационной системы.

Разработка автоматизированной системы (AC) осуществляется в соответствии с методологией Agile (Scrum) с использованием следующих исходных документов:

Техническое задание (ТЗ):

- описание функциональных и нефункциональных требований;
- описание экранов приложения.

Ожидаемое время выполнения 25.03.2025

Архитектурная проектирование:

- описание прецедентов исопльзования;
- описание ERD;
- описание АРІ.

Ожидаемое время выполнения 25.03.2025.

Непосредственно разработка:

- график выполнения этапов проекта;
- ресурсное планирование (человеческие и технические ресурсы);
- реализация АРІ;
- реализация фронтэнда;
- Настройка использования Firebase ML.

Разработка – итеративный процесс, включающий исполнение задач, выделенных на конкретный спринт и корректировки планирования.

Ожидаемое время выполнения первичного этапа 01.04.2025.

Ожидаемое время реализации MVP 10.05.2025.

Тестирование:

- выполнение автоматических тестов (покрытие от 40%, желаемое >=60%);
- тестирование на пользователях.

Ожидаемое время завершения тестирования 12.05.2025.

Приемка:

• Осуществления проецесса приемки (см раздел 7;

Ожидаемое время завершения приемки 25.05.2025.

5.2. перечень документов и исходных данных для разработки ${ m AC}$

 ${\bf B}$ этом разделе приведен список документов, используемых при разработке AC.

- open API спецификация;
- описание UI экранов и форм;
- пользовательские истории.

Порядок контроля и приёмки системы

В этой главе описаны документы, которые необходимо предоставить при осуществлении приемки.

6.1. Документы приёмки

Перечень документов:

- отчет о завершении этапа проектирования:
 - архитектурная схема системы.
- результаты разработки:
 - исходный код (на GitHub);
 - конфигурационные файлы.
- тестовые отчеты:
 - результаты тестирования функциональности Firebase ML;
 - отчеты по нагрузочному тестированию локального сервера.

Источники разработки

Ресурсы, значимые в контексте разработки:

1. Machine learning for mobile developers – URL: https://firebase.google.com/products/ml (дата обращения 25.03.2025).

Документы и материалы, на основе которых проводилась разработка ТЗ:

- 1. ΓΟCT 34.602-2020.
- 2. Вигерс К., Битти Д. Разработка требований к программному обеспечению //М.: Русская редакция. -2004.

Аналогичные системы, нацеленные на ведение инвентаризации и учета оборудования

- 1. 1С:Предприятие 8. Инвентаризация и управление имуществом URL: https://solutions.1c.ru/catalog/asm/features (дата обращения 14.03.2025).
- 2. Zoho Inventory. Облачная система для управления запасами URL: https://squeezegrowth.com/ru/best-inventory-control-software-platforms/ (дата обращения 14.03.2025).
- 3. Odoo Inventory. Модуль управления запасами в ERP-системе URL: https://picktech.ru/catalog/inventory-control-software/ (дата обращения 08.03.2025).
- 4. SkladPro. Российская система для учёта и инвентаризации URL: https://picktech.ru/catalog/inventory-control-software/ (дата обращения 14.03.2025).

Приложение А

8.1. Пользовательские истории

Категория Must Have

Реализация в рамках разработки MVP, в первую очередь

8.1.1. МН1. Сканирование предмета инвентаризации

User Story:

«Я, как менеджер отдела инвентаризации в крупной компании, хочу отсканировать предмет инвентаря с помощью камеры смартфона, даже если доступ к интернету ограничен, чтобы оперативно добавить его в базу данных и точно указать место хранения, обеспечивая удобство и скорость выполнения учёта.»

Acceptance Criteria:

- Активация сканирования: Менеджер может запустить режим сканирования через кнопку/иконку в приложении.
- Распознавание предмета: Система распознаёт предмет с точностью не менее 95% (данные от CV-модуля).
- Обработка переменной связи: При слабом интернете данные сохраняются локально с последующей синхронизацией.
- Запись в базу данных: После успешного сканирования объект автоматически добавляется в БД с информацией о местоположении (через GPS или выбор пользователя).
- Подтверждение данных: Интерфейс предоставляет менеджеру возможность проверить и подтвердить внесённые данные до их сохранения.

8.1.2. MH2. Генерация отчёта по оборудованию

User Story:

«Я, как менеджер, ответственный за инвентаризацию и эксплуатацию оборудования, хочу получить детальный отчёт по всему инвентарю, включая статус

каждого предмета (доступно, на диагностике, на ремонте) и информацию о наличии на складе или текущем пользователе, чтобы эффективно контролировать ресурсы и предотвращать убытки.»

Acceptance Criteria:

- Сбор данных: Система собирает информацию по каждому объекту инвентаризации.
- Категоризация состояния: Для каждого объекта указывается статус («доступно», «на диагностике», «на ремонте»).
- Данные использования: При отсутствии объекта выводятся данные о том, кто его использует, с указанием ожидаемой даты возврата (если применимо).
- Фильтрация и сортировка: Пользователь может фильтровать данные по статусу, дате и другим параметрам.
- Формирование отчёта: Отчёт генерируется за заданный период (с возможностью выбора интервала).

8.1.3. MH3. Подтверждение и корректировка результатов сканирования

User Story:

«Я, как менеджер, который занимается учётом оборудования, хочу видеть результаты определения оборудования после сканирования, иметь возможность выбрать из предложенных альтернатив или вручную ввести данные, чтобы гарантировать точность записи в инвентарной базе.»

Acceptance Criteria:

- Отображение результатов сканирования: После сканирования система выводит данные оборудования для проверки.
- Альтернативные варианты: При сомнениях система предлагает минимум два альтернативных варианта.
- Ручное изменение: Менеджер может вручную внести корректные данные.
- Логирование изменений: Все изменения фиксируются с указанием времени и пользователя.

8.1.4. МН4. Управление заявками на ремонт (для технического специалиста)

User Story:

«Я, как технический специалист, занимающийся ремонтом техники, хочу видеть список всех заявок на ремонт, отмечать их статус (например, «ремонтируется»

или «на диагностике») и заполнять отчёт о проделанной работе, чтобы обеспечивать бесперебойную эксплуатацию оборудования.»

Acceptance Criteria:

- Просмотр заявок: Система выдаёт список активных заявок с подробной информацией.
- Изменение статуса: Технический специалист может менять статус заявки.
- Форма отчёта: После ремонта появляется форма с датами, описанием работ и выявленными проблемами.
- Сохранение отчёта: Заполненный отчёт сохраняется и доступен для анализа.

8.1.5. МН5. Создание заявки на ремонт

User Story:

«Я, как менеджер, обнаруживший неисправность оборудования, хочу создать заявку на ремонт с описанием проблемы, прикрепить фото повреждений и отправить её ответственному техническому специалисту, чтобы ускорить процесс устранения неисправности.»

Acceptance Criteria:

- Интуитивный интерфейс: Форма создания заявки доступна и понятна.
- Вложение данных: Возможность добавления описания неисправности и прикрепления фотографий.
- Отображение заявки: Заявка сразу появляется в списке активных заявок.
- Уведомление: Система отправляет уведомление техническому специалисту.
- Проверка обязательных полей: Все поля проверяются перед отправкой заявки

Kaтeropия Should Have

Реализация в рамках разработки MVP, но во вторую очередь

8.1.6. SH1. Просмотр и аренда техники клиентом

User Story:

«Я, как клиент, работающий в компании, хочу видеть список доступной техники с информацией о её состоянии и сроках сдачи/возврата, чтобы выбрать подходящее оборудование и эффективно спланировать свою работу.»

8.1.7. SH2. Одобрение и просмотр заявок менеджером

User Story:

«Я, как менеджер, ответственный за выдачу оборудования, хочу проверять и одобрять заявки на аренду через приложение, чтобы быстрее обрабатывать запросы клиентов и избежать задержек в работе команды.»

8.1.8. SH3. Добавление пользователя в чёрный список

User Story:

«Я, как менеджер, столкнувшийся с нарушением правил возврата оборудования, хочу добавлять пользователей в чёрный список с указанием причины (например, задержка или повреждение инвентаря), чтобы минимизировать риски и защитить ресурсы компании.»

8.1.9. SH4. Возможность бронирования техники клиентом

User Story:

«Я, как клиент, планирующий свою работу, хочу заранее бронировать нужное оборудование через приложение, если оно временно недоступно, чтобы обеспечить его использование в нужное время.»

8.1.10. SH5. Чёткое отображение сроков аренды

User Story:

«Я, как клиент, берущий оборудование в аренду, хочу видеть чётко указанные сроки сдачи и возврата техники в интерфейсе приложения, чтобы избежать недоразумений и штрафов за несвоевременный возврат.»

Категория Could Have

Реализация возможна в последующих релизах, не должны быть представлены в первой версии

8.1.11. СН1. Определение местонахождения техники

User Story:

«Я, как менеджер, хочу видеть информацию о текущем местоположении каждой единицы оборудования (например, в каком помещении или отделе она находится), чтобы сократить время на её поиск и оптимизировать инвентаризацию.»

8.1.12. СН2. Контроль истории использования техники

User Story:

«Я, как менеджер, хочу видеть данные о том, кто и когда брал оборудование в аренду, чтобы анализировать его использование и выявлять отклонения или нарушения.»

8.1.13. СНЗ. Продление срока аренды клиентом

User Story:

«Я, как клиент, использующий оборудование, хочу продлевать срок аренды, если техника продолжает быть необходимой, чтобы избежать её возврата до завершения работы.»

8.1.14. СН4. Ранний возврат техники клиентом

User Story:

«Я, как клиент, хочу возвращать оборудование раньше согласованного срока, если оно мне больше не требуется, чтобы не быть привязанным к длительному процессу возврата.»

8.1.15. СН5. Аналитика загрузки и частоты аренды

User Story:

«Я, как менеджер, хочу видеть аналитические данные о частоте использования и загрузке оборудования, чтобы принимать решения о необходимости дополнительных закупок или перераспределения ресурсов.»

8.1.16. СН6. Детальная информация по технике для клиента

User Story:

«Я, как клиент, выбирающий оборудование в аренду, хочу видеть подробную информацию о нем (например, технические характеристики и документацию) через приложение, чтобы убедиться в его соответствии моим требованиям.»

8.1.17. СН7. История аренд конкретного клиента

User Story:

«Я, как менеджер, хочу просматривать историю аренд каждого клиента, чтобы оценивать их надежность и принимать решения о дальнейшем сотрудничестве.»

8.1.18. CH8. Выявление причин повреждения оборудования

User Story:

«Я, как менеджер, хочу видеть зафиксированные причины повреждения оборудования (например, износ, неаккуратное использование), чтобы принимать меры для предотвращения подобных случаев и обеспечивать ответственность пользователей.»