A CONSTRUCTING DATASETS FOR THE ACCURACY EXPERIMENT

The goal of this section is to show that given an upper-triangular matrix $R_{\rm fixed}$ we can devise matrices S and T with arbitrary dimensions such that $S \times T = QR$ for an upper-triangular $R = \begin{bmatrix} R_{\rm fixed} & V \\ 0 & W \end{bmatrix}$, for some matrices V, W.

We denote by $\mathbf{1}_{m \times n}$ the $m \times n$ matrix that consists entirely of 1s and by $\mathbf{0}_{m \times n}$ the $m \times n$ matrix that consists entirely of 0s.

We use the following two observations.

Lemma A.1 ([1]). For arbitrary real matrices A and B with respective QR decompositions $A = Q_A R_A$ and $B = Q_B R_B$ it holds

$$\mathbf{A} \otimes \mathbf{B} = (\mathbf{Q}_A \otimes \mathbf{Q}_B)(\mathbf{R}_A \otimes \mathbf{R}_B).$$

LEMMA A.2. Let $A \in \mathbb{R}^{m \times n_1}$ and $B \in \mathbb{R}^{m \times n_2}$ be arbitrary and let $A = Q_A R_A$ be the QR decomposition of A, where $Q_A \in \mathbb{R}^{m \times n_1}$, $R_A \in \mathbb{R}^{n_1 \times n_1}$. There is an orthogonal matrix $Q' \in \mathbb{R}^{m \times n_2}$ and matrices $V \in \mathbb{R}^{n_1 \times n_2}$, $W \in \mathbb{R}^{n_2 \times n_2}$ such that

$$\begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} Q_A & Q' \end{bmatrix} \begin{bmatrix} R_A & V \\ \mathbf{0}_{n_2 \times n_1} & W \end{bmatrix}.$$

We revisit the notion of Kronecker products. For an $m \times n$ matrix **A** and a $p \times q$ matrix **B**, the Kronecker product $\mathbf{A} \otimes \mathbf{B}$ is the $mp \times nq$ matrix

$$\begin{bmatrix} A[1:1]B & \cdots & A[1:n]B \\ \vdots & \ddots & \vdots \\ A[m:1]B & \cdots & A[m:n]B \end{bmatrix},$$

where each A[i:j]**B** is the matrix **B** multiplied by the scalar A[i:j]. Now observe that we can express a Cartesian products in terms of Kronecker products: for $S \in \mathbb{R}^{m_1 \times n_1}$ and $T \in \mathbb{R}^{m_2 \times n_2}$, we have

$$S \times T = \begin{bmatrix} S \otimes 1_{m_2 \times 1} & 1_{m_1 \times 1} \otimes T \end{bmatrix}$$
.

From Lemma A.1 it follows that for a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with QR decomposition $\mathbf{A} = \mathbf{Q}\mathbf{R}$ we have

$$\mathbf{A} \otimes \mathbf{1}_{m \times 1} = (\mathbf{Q} \otimes \mathbf{Q}_1)(\mathbf{R}\sqrt{m})$$
$$\mathbf{1}_{m \times 1} \otimes \mathbf{A} = (\mathbf{Q}_1 \otimes \mathbf{Q})(\mathbf{R}\sqrt{m}),$$

where $\mathbf{1}_{m\times 1} = \mathbf{Q}_1\left[\sqrt{m}\right]$ is the QR decomposition of $\mathbf{1}_{m\times 1}$, $\left[\sqrt{m}\right]$ is a 1×1 matrix with only entry \sqrt{m} , and $\mathbf{R}\sqrt{m}$ is the multiplication \mathbf{R} with the scalar \sqrt{m} .

Together, this implies the following.

COROLLARY A.3. Let $S \in \mathbb{R}^{m_1 \times n_1}$, $T \in \mathbb{R}^{m_2 \times n_2}$ be arbitrary and let $S = Q_S R_S$ be the QR decomposition of S, where $Q_S \in \mathbb{R}^{m_1 \times n_1}$, $R_S \in \mathbb{R}^{n_1 \times n_1}$. There is an orthogonal matrix $Q' \in \mathbb{R}^{m_1 m_2 \times n_2}$ and matrices $V \in \mathbb{R}^{n_1 \times n_2}$, $W \in \mathbb{R}^{n_2 \times n_2}$ such that

$$\begin{split} \mathbf{S} \times \mathbf{T} &= \begin{bmatrix} \mathbf{S} \otimes \mathbf{1}_{m_2 \times 1} & \mathbf{1}_{m_1 \times 1} \otimes \mathbf{T} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{Q}_S \otimes \mathbf{Q}_1 & \mathbf{Q}' \end{bmatrix} \begin{bmatrix} \mathbf{R}_S \sqrt{m_2} & \mathbf{V} \\ \mathbf{0}_{n_2 \times n_1} & \mathbf{W} \end{bmatrix}. \end{split}$$

Let $\mathbf{R}_S \in \mathbb{R}^{n_1 \times n_1}$ be an arbitrary given upper-triangular matrix. We arbitrarily choose a vector $\mathbf{v} = (v_1, \dots, v_{m_1})^\mathsf{T} \in \mathbb{Q}^{m_1}$ with $||\mathbf{v}||_2 = 1$ and a $m_2 \times n_2$ matrix T of natural numbers, where m_2 is

square, so $\sqrt{m_2}$ is a natural number. We set Q_S to be the first n_1 columns of the orthogonal matrix of rational numbers [2]

$$\hat{\mathbf{Q}} = \begin{bmatrix} v_1 & v_2 & v_3 & \cdots & v_{n_1} \\ v_2 & \frac{v_2^2 - v_1 - 1}{v_1 + 1} & \frac{v_2 v_3}{v_1 + 1} & \cdots & \frac{v_2 v_{m_1}}{v_1 + 1} \\ v_3 & \frac{v_3 v_2}{v_1 + 1} & \frac{v_3^2 - v_1 - 1}{v_1 + 1} & \cdots & \frac{v_3 v_{m_1}}{v_1 + 1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{m_1} & \frac{v_{m_1} v_2}{v_1 + 1} & \frac{v_{m_1} v_3}{v_1 + 1} & \cdots & \frac{v_{m_1}^2 - v_1 - 1}{v_1 + 1} \end{bmatrix},$$

so $Q_S = \hat{Q}[: \{1, ..., n_1\}]$. We obtain S as $S = Q_S R_S$.

It follows from Corollary A.3 that there is an orthogonal matrix Q as well as matrices V, W such that $S \times T = Q \begin{bmatrix} R_S \sqrt{m_2} & V \\ 0 & W \end{bmatrix}$, as desired. Furthermore, if R_S only consists of rational numbers then so do S, T and $R_S \sqrt{m_2}$. When computing the QR decomposition of $S \times T$ we can compare the ground truth $R_S \sqrt{m_2}$ with the corresponding part of the computed result.

REFERENCES

- Charles F Van Loan. 2000. The ubiquitous Kronecker product. Journal of computational and applied mathematics 123, 1-2 (2000), 85-100.
- [2] CL Zihwei. 2006. Extending an orthonormal rational set of vectors into an orthonormal rational basis. Unpublished online notes, available at the URL www. math. uchicago. edu/may/VIGRE/VIGRE2006/PAPERS/Lin (2006).