Kecall

- · It is normal \Leftrightarrow $\forall g \circ G$, gitgic It
- center $Z(G) = \{ac\ G: ab = ba, \forall bcG\}$.

Z(G) & G

§93 Quotients

Def 9.4 The quotient $G/H = \frac{1}{3} \frac{1}{3} = \frac$

Def 9.5. Given A and B of G, the multiplication of A,13 is defined by element-wise multiplication.

AB = qab: aGA, bGB

Thm9.4 If 11 is normal, then the quotient G/H with the above multiplication law on subsets, is a group

$$\frac{g_{1}}{g_{2}H} = g_{1}g_{2}H = g_{1}g_{2}\frac{g_{2}}{g_{1}}\frac{g_{2}}{g_{2}}H = g_{1}g_{2}H + g_{2}H = g_{1}g_{2}H + g_{2}H + g_{3}g_{2}H + g_{3}g_{3}H + g_{3}H + g_{$$

- · Associativity: clearly.
- · Identity. H
- · Inverse . (gH) = g-1 H

We call G/H the quotient group of Greepect to H.

Exam 9.1
$$S_3 = 3e, a, a^2, b, ab, a^2b$$
 $a^3=e, b^2=e, ab=ba^2$ $ab=ba^2$ $ab=ba^2$

$$g=e$$
 $g=a$, a^2

 $(a^2b)^{-1}=b^{-1}a^{-2}=ba$

$$bab = a^2 G H$$
. $ba^2b = a G H$

$$(a^2b)a(ba) = a^2baba = a^2a^2a = a^2GH$$

$$(a^2b)a^2ba) = a GH$$

Sto Kernel, Image and the idomomorphism Theorem.

Def 1v.1 Let & be a homomorphism of G, onto G. Then the Kernel of & is

(North - 2 96 C . 1919 - 0.)

 $\frac{1}{\sqrt{2}} \frac{(ker)\phi = 3gGG_1: \phi(g) = e_2}{\sqrt{2}}$

injective

$$\forall g \in G$$
, $\phi(g) = e' \Rightarrow g = e$. $\Rightarrow \ker \phi = \text{des}$.

"
$$\phi(g_1) = \phi(g_2) \implies g_1 - g_2$$

$$\phi g_{11} = \phi g_{21} = \phi g_{11} \phi g_{21}^{-1} = e'$$

=)
$$\phi(g_1) \phi(g_2^{-1}) = e^1$$

$$\Rightarrow$$
 $\phi(g_1g_2^{-1}) = e'$

$$\exists g_i g_{i-1} = e \Rightarrow g_i = g_2.$$

Thm 10.2 The kernel is a normal subgroup.

Pf Prove the Kernel is a group.

closure.
$$\forall g_1, g_2 \in \text{Ker} \beta$$
, $\Rightarrow g_1g_2 \in \text{Ker} \beta$.

· Normal, gkerdg-1 c Kerd.)

Vagkerd, 490G, Bigag-

V a G Kerφ, 4g G G. β (gag-1) = φ(g) (β(a)) φ(g)-1 = e'

=> gag G Kord => (kerd = G)

Thm 10.3 The image of ϕ : $G_1 \rightarrow G_2$ homomorphism is a subgroup of G_2 . Im ϕ = $2g_2 G_3 G_4 : \phi(g_1) = g_2$, $\exists g_1 G_3 G_4$

Exercise = $\phi(G_i)$

§ 10.1 The idomomorphism Theorem.

Exam 10.1. (R* = (R) 203, 1)

 $\phi: \mathbb{R}^* \to \mathbb{R}^* = \lambda \times 0$ $\chi \mapsto |\chi|.$

· p is a homomorphism.

 $\forall x_1, x_2 \in \mathbb{R}^{\times}$, $\phi(x_1x_2) = |x_1x_2| = |x_1||x_2| = \phi(x_1)|\phi(x_2)$

(kerd)= 2 x 6 1k*: (m) 1 } = 2-1,13 = (2)

Thm 10.4 (The homomorphism theorem) Let G and G'be groups, and $\theta: G \to G'$ be homomorphism. Then $G/\ker \phi \cong 1m\phi$.

Pf. Let
$$H=\ker \emptyset$$
, $\widehat{G}=G/H$.

$$\widehat{\emptyset}: \widehat{G} \to Im \emptyset$$

$$\widehat{g}H \mapsto \emptyset g$$

$$\widehat{g}H \mapsto \widehat{g}$$

$$\widehat{\phi}(g_1H) = \widehat{\phi}(g_1) = \widehat{\phi}(g_2H) = \widehat{\phi}(g_2)$$

$$(=) (g_1 - g_2) = (g_2) = (g_1 - g_2) = (g_1 - g_2) = (g_2 - g_2) = (g_1 - g_2) = (g_2 - g_2) = (g$$

· \$\phi\$ is homomorphism

$$\frac{\vec{\phi}(\vec{g}_{1}|\vec{g}_{2}|\vec{f})}{\vec{g}_{1}|\vec{g}_{2}|\vec{f}} = \vec{\phi}(\vec{g}_{1}|\vec{g}_{2}|\vec{f}) = \vec{\phi}(\vec{g}_{1}|\vec{g}_{2}|\vec{f})$$

$$= \vec{\phi}(\vec{g}_{1}) \vec{\phi}(\vec{g}_{2}) = \vec{\phi}(\vec{g}_{1}|\vec{f}) \vec{\phi}(\vec{g}_{2}|\vec{f})$$

· Injective

$$\widehat{\phi}(g,H) = \widehat{\phi}(g,H) \Rightarrow g,H = g,H$$

$$\widehat{\phi}(g_1H) = \widehat{\phi}(g_2H) \Rightarrow \widehat{\phi}(g_1) = \widehat{\phi}(g_2)$$

· Surjective

$$\widetilde{\phi}(g_1) = \phi(g_2) = g'.$$

$$\phi: GL(N, \mathbb{R}) \to \mathbb{R}^*$$

$$(A) \mapsto \det(A)$$

· f is homomorphism.

 $\phi(AB) = \det(AB) = (\det A) (\det B) = \phi(A) \phi(B)$

special linear group

\Rightarrow $\frac{CL(N, \mathbb{R})}{SL(N, \mathbb{R})} \stackrel{>}{\sim} \mathbb{R}^*$

Thm 10.5 Given a group G and a normal subgroup if, there exists a homomorphism $\phi: G \to G/H$ (onto) such that $(\ker \phi = H)$

Pf.
$$G \rightarrow G/H = 3gH: gGG)$$
.

 $g \mapsto gH$

- · Well-defined. V
- $\psi(g_1g_2) = g_1g_2H = g_1Hg_2H = \psi(g_1)\psi(g_2)$
- · Kerd=dg: dg=H3.CH
 gH=H => gGH