NIKKO J. CLERI

EBERLY POSTDOCTORAL FELLOW
THE PENNSYLVANIA STATE UNIVERSITY

Summary

Research: Galaxy Evolution, High-Redshift Galaxies, Emission-Line Galaxies, Population III

Stars, Active Galactic Nuclei, Black Hole Seeds, Star Formation, Dust Attenuation

Techniques: UV/Optical/Near-IR Spectroscopy, Photoionization Modeling

Collaborations: CEERS, NGDEEP, RUBIES, CAPERS

Awarded Proposals: >135k USD awarded as PI from JWST and HST, >400 total hours awarded on

JWST and Gemini

Publications: 4 first author, 4 significant author, 45 coauthor, 1809 citations, h-index 22

Presentations: 13 research, 8 outreach and professional development

Academic and Professional Appointments

2024-	Eberly Postdoctoral Fellow (Starting July 2024)	PSU
2021-24	Graduate Student (Advisor: Prof. Casey Papovich)	TAMU
2021	Research Technician (Advisor: Prof. Jonathan Trump)	UConn
2019-21	Graduate Student (Advisor: Prof. Jonathan Trump)	UConn
2017-20	Research Assistant (Advisor: Prof. Gerald Dunne)	UConn
2018	NSF REU Student (Advisor: Prof. Louis Strigari)	TAMU

Education

2021 - 2024 Ph.D. Astronomy Texas A&M University

Advisor: Casey Papovich

▶ Thesis: Spectroscopic Studies of Stars and Black Holes Across Cosmic Time

2019 - 2021 M.S. Physics University of Connecticut

Advisor: Jonathan R. Trump

Thesis: CLEAR: Paschen-β Star Formation Rates and Dust Attenuation in Low Redshift Galaxies

2015 - 2019 B.S. Physics | Mathematics Minor University of Connecticut

Advisor: Gerald V. Dunne

Undergraduate Research: Resurgent trans-series for generalized Hastings-McLeod solutions

Awarded Proposals and Grants

Summary

Observatories: JWST, HST, Gemini

▶ Total Observing Time (PI + Co-I): 434.78 hours

Total Money Awarded to Cleri: \$136k

Principal Investigator 2

2024	JWST Cycle 3 - AR 5558: A Census of Optical Diagnostics of Ionizing Sources Across Cosmic Time		
2021	HST Cycle 29 - AR 16609: Peering Through the Dust: Paschen-beta Indicators of Star Formation and Dust Attenuation	~\$136k	
Co-Investiç	5		
2024	JWST Cycle 3 - GO 5407: MEOW: The MIRI Early Obscured-AGN Wide Survey (PI: G. Leung)	73.95 hours	
2024	JWST Cycle 3 - GO 5507: Deep Spectroscopy of Galaxies at z=4-14: Uncovering Drivers of Early Galaxy Formation and Black Hole Growth (PI: T. Hutchison)	23.29 hours	
2024	JWST Cycle 3 - GO 6368: The CANDELS-Area Prism Epoch of Reionization Survey (CAPERS) (PI: M. Dickinson)	293.21 hours	
2023	JWST Cycle 2 - GO 3703: Breaking the z=10 barrier with MIRI: redshift confirmation and detection of rest-frame optical emission lines (PI: J. Zavala)	24.33 hours	
2023	Gemini : <i>GS-2023A-Q-136</i> : Optical Spectroscopy of JWST ERO Galaxies (PI: B. Backhaus)	20 hours	
Honors	s and Awards		
2022	Texas Space Grant Consortium Graduate Fellow - \$5K	TAMU	
2018	NSF REU - \$5K	TAMU	
2016	Dean's List - College of Liberal Arts and Sciences	UConn	
2015-19	Governor's Scholarship - \$8.5K/yr	UConn	
2015	Community Service Scholarship - \$1K	UConn	
Teachi	ng Experience		
2019-21	TA - PHYS 1501: Physics for Engineers I	UConn	
2021	TA/CA - PHYS 1025: Introduction to Astronomy	UConn	
Professional Service			

2021- **Referee** - Astrophysical Journal (ApJ)

Mentoring

2023-24	Graduate Representative - TAMU Astronomy	TAMU
2022-24	Coordinator - Mentoring and Advising Graduates in an Inclusive Community (MAGIC)	TAMU
2022-24	Mentor - Mentoring and Advising Graduates in an Inclusive Community (MAGIC)	TAMU
2017-18	Mentor - UConn Undergraduate Peer Mentoring	UConn

Outreach

2022-	Volunteer - Gateway to Graduate School	TAMU
2022-	Demonstrator - Physics and Engineering Festival	TAMU
2022	High School Research Reviewer - Lumiere	TAMU
2021-	Presenter - Astronomy on Tap BCS 'In the News'	TAMU

2021-22	Treasurer - Astronomy on Tap BCS	TAMU
2021-	Pen-Pal - Letters to a Pre-Scientist	TAMU
2018	Volunteer - Mitchell Institute Star Party Group	TAMU
2014-	Member - Booth Memorial Astronomical Society Stratford, CT	

Collaborations

JWST	CAPERS The CANDELS-Area Prism Epoch of Reionization Survey	Co-I
JWST	RUBIES (not an acronym)	Member
JWST	CEERS: The Cosmic Evolution Early Release Science Survey	Member
JWST	NGDEEP: The Next Generation Deep Exploratory Public Survey	Member
HST	CLEAR : The CANDELS Ly α Emission at Reionization Survey	Member

Technical Skills and Programming Languages

Programming Fluent - Python, LaTeX

Familiar - SQL, Julia, C, C++, R, IDL, perl, Mathematica, MATLAB, HTML, CSS

Software Fluent - Cloudy, PyNeb

Familiar - grizli, DS9, IRAF, sbatch, slurm

Website Architect

- **▶ Personal Website**: njcleri.github.io
- **▶ TAMU Astronomy** (co-author): tamu-astro.github.io/
- Mentoring and Advising Graduates in an Inclusive Community (MAGIC) (co-author): tx.ag/tamumagic

Publications

Summary Statistics from NASA ADS

Refereed: 37, Submitted: 16

Papers as Lead/Significant Author: 8
 Total Citations: 1809, H-Index: 22

Lead/Co-Lead Author

- 4. Cleri, N. J., Olivier, G. M., Hutchison T. A., et al. 2023, *Using [Ne V]/[Ne III] to Understand the Nature of Extreme-Ionization Galaxies*, ApJ, 953, 10
- 3. Cleri, N. J., Yang, G., Papovich, C, et al. 2023, CLEAR: High-Ionization [Ne V] λ 3426 Emission-line Galaxies at 1.4 < z < 2.3, ApJ, 948, 112
- 2. **Cleri, N. J.**, Trump, J. R., Backhaus, B. E., et al. 2022, *CLEAR: Paschen-β Star Formation Rates and Dust Attenuation of Low Redshift Galaxies*, ApJ, 929, 3
- 1. **Cleri, N. J.**, Dunne, G. V., 2020, *Resurgent trans-series for generalized Hastings-McLeod solutions*, Journal of Physics A: Mathematical General, 53, 355203

Significant Author

- 4. Larson, R.L., Finkelstein, S.L., Kocevski, D.D., Hutchison, T.A., Trump, J.R., Arrabal Haro, P., Bromm, V., **Cleri, N.J.**, et al. 2023, *A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars*, ApJL, 953, L29
- 3. Backhaus, B.E., Bridge J.S., Trump, J.R., Cleri, N.J., et al. 2023, CLEAR: Detecting Low-Luminosity Active Galactic Nuclei at 0.6 < z < 1.3 via Spatially Resolved Hubble Space Telescope Grism Emission Line Ratios, ApJ, 943, 37
- 2. Prescott, M.K.M., Finlator, K.M., Cleri, N.J., et al. 2022, Using Multiple Emission Line Ratios to Constrain the Slope of the Dust Attenuation Law, ApJ, 928, 71
- 1. Backhaus, B.E., Trump, J.R., Cleri, N.J., et al. 2022, CLEAR: Emission Line Ratios at Cosmic High Noon, ApJ, 926, 161

Co-Author: Refereed

- 29. Morales, A.M., et al. 2023, Rest-Frame UV Colors for Faint Galaxies at $z\sim 9-16$ with the JWST NGDEEP Survey, ApJL, 964, L24
- 28. Cheng, Y., et al. 2024, Exploring the Gas-Phase Metallicity Gradients of Star-forming Galaxies at Cosmic Noon, ApJ, 964, 94
- 27. Shen, L., et al. 2024, NGDEEP Epoch 1: Spatially Resolved H α Observations of Disk and Bulge Growth in Star-Forming Galaxies at $z\sim 0.6$ -2.2 from JWST NIRISS Slitless Spectroscopy, ApJL, 963, L49
- 26. Barro, G., et al. 2023, Extremely Red Galaxies at z = 5–9 with MIRI and NIRSpec: Dusty Galaxies or Obscured Active Galactic Nuclei?, ApJ, 963, 128
- 25. Backhaus, B.E., et al. 2023, CEERS Key Paper. VIII. Emission-line Ratios from NIRSpec and NIRCam Wide-Field Slitless Spectroscopy at z > 2, ApJ, 962, 195
- 24. Kirkpatrick, A., et al. 2023, CEERS Key Paper VII: JWST/MIRI Reveals a Faint Population of Galaxies at Cosmic Noon Unseen by Spitzer, ApJL, 959, L7
- 23. Calabró, A, et al. 2023, Near-infrared emission line diagnostics for AGN from the local Universe to redshift 3, A&A, 679, A80

- 22. Fujimoto, S., et al. 2023, ALMA FIR View of Ultra High-redshift Galaxy Candidates at $z \sim 11$ -17: Blue Monsters or Low-z Red Interlopers?, ApJ, 955, 130
- 21. Kocevski, D.D., et al. 2023, Hidden Little Monsters: Spectroscopic Identification of Low-Mass, Broad-Line AGN at z > 5 with CEERS, ApJL, 954, L4
- 20. Arrabal Haro, P., et al. 2023, *Spectroscopic confirmation of CEERS NIRCam-selected galaxies at* $z \simeq 8-10$, ApJL, 951, L22
- 19. Estrada-Carpenter, V., et al. 2023, *CLEAR: The Morphological Evolution of Galaxies in the Green Valley*, ApJ, 951, 115
- 18. Yang, G., et al. 2023, CEERS Key Paper VI: JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts, ApJL, 950, L5
- 17. Papovich, C., et al. 2023, CEERS Key Paper IV: Galaxies at 4 < z < 9 are Bluer than They Appear Characterizing Galaxy Stellar Populations from Rest-Frame ~ 1 micron Imaging, ApJL, 949, L18
- 16. Simons, R.C., et al. 2023, CLEAR: Survey Overview, Data Analysis and Products, ApJS, 266, 13
- 15. Constantin, L. et al. 2023, Expectations of the size evolution of massive galaxies at $3 \le z \le 6$ from the TNG50 simulation: the CEERS/JWST view, ApJ, 946, 71
- 14. Perez-Gonzalez, P.G.. et al. 2022, CEERS Key Paper V: A triality on the nature of HST-dark galaxies, ApJL, 946, L16
- 13. Kocevski, D.D., et al. 2023, CEERS Key Paper II: The Resolved Host Properties of AGN at 3 < z < 5 with JWST, ApJL, 946, L14
- 12. Finkelstein, S.L.. et al. 2023, CEERS Key Paper I: An Early Look into the First 500 Myr of Galaxy Formation with JWST, ApJL, 946, L13
- 11. Guo, Y. et al. 2023, First Look at z > 1 Bars in the Rest-Frame Near-Infrared with JWST Early CEERS Imaging, ApJL, 945, L10
- 10. Trump, J.R. et al. 2023, The Physical Conditions of Emission-Line Galaxies at Cosmic Dawn from JWST/NIRSpec Spectroscopy in the SMACS 0723 Early Release Observations, ApJ, 945, 35
- 9. García-Argumánez, A. et al. 2023, Probing the earliest phases in the formation of massive galaxies with simulated HST+JWST imaging data from Illustris, ApJ, 944, 3
- 8. Zavala, J. et al. 2023, Dusty starbursts masquerading as ultra high redshift galaxies in JWST observations, ApJL, 943, L9
- 7. Rose, C. et al. 2023, *Identifying Galaxy Mergers in Simulated CEERS NIRCam Images using Random Forests*, ApJ, 942, 54
- 6. Finkelstein, S.L. et al. 2022, A Long Time Ago in a Galaxy Far, Far Away: A Candidate $z \sim 14$ Galaxy in Early JWST CEERS Imaging, ApJL, 940, L55
- 5. Papovich, C. et al. 2022, CLEAR: The Ionization and Chemical-Enrichment Properties of Galaxies at 1.1 < z < 2.3 ApJ, 937, 22
- 4. Matharu, J. et al. 2022, CLEAR: The Evolution of Spatially Resolved Star Formation in Galaxies between $0.5 \le z \le 1.7$ using $H\alpha$ Emission Line Maps, ApJ, 937, 16
- 3. Jung, I. et al. 2022, CLEAR: Boosted Ly α Transmission of the Intergalactic Medium in UV bright Galaxies, ApJ, 933, 87
- 2. Simons, R. C. et al. 2021, CLEAR: The Gas-Phase Metallicity Gradients of Star-Forming Galaxies at 0.6 < z < 2.6, ApJ, 923, 203
- 1. Estrada-Carpenter, V. et al. 2020, CLEAR II: Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift, ApJ, 880, 2

- 16. de Graaff, A., et al. 2024 Efficient formation of a massive quiescent galaxy at redshift 4.9, arXiv e-prints, arXiv:2404.05683
- 15. Kocevski, D.D., et al. 2024, The Rise of Faint, Red AGN at z > 4: A Sample of Little Red Dots in the JWST Extragalactic Legacy Fields, arXiv e-prints, arXiv:2404.03576
- 14. Zavala, J., et al. 2024, Detection of ionized hydrogen and oxygen from a very luminous and young galaxy 13.4 billion years ago, arXiv e-prints, arXiv:2403.10491
- 13. Llerena, M., et al. 2024, *Physical properties of extreme emission-line galaxies at* $z \sim 4-9$ *from the JWST CEERS survey*, arXiv e-prints, arXiv:2403.05362
- 12. Wang, B., et al. 2024, RUBIES: JWST/NIRSpec Confirmation of an Infrared-luminous, Broad-line Little Red Dot with an Ionized Outflow, arXiv e-prints, arXiv:2403.02304
- 11. Calabró, A., et al. 2024, The evolution of the SFR and Σ_{SFR} of galaxies in cosmic morning (4 < z < 10), arXiv e-prints, arXiv:2402.17829
- 10. Napolitano, L., et al. 2024, 'Peering into cosmic reionization: the Ly α visibility evolution from galaxies at z=4.5-8.5 with JWST, arXiv e-prints, arXiv:2402.11220
- 9. Hu, W., et al. 2024, Characterizing the Average Interstellar Medium Conditions of Galaxies at $z \sim 5.6$ -9 with UV and Optical Nebular Lines, arXiv e-prints, arXiv:2401.12402
- 8. Cole, J.W., et al. 2023, CEERS: Increasing Scatter along the Star-Forming Main Sequence Indicates Early Galaxies Form in Bursts, arXiv e-prints, arXiv:2312.10152
- 7. Pirzkal, K., et al. 2023, The Next Generation Deep Extragalactic Exploratory Public Near-Infrared Slitless Survey Epoch 1 (NGDEEP-NISS1): Extra-Galactic Star-formation and Active Galactic Nuclei at 0.5 < z < 3.6, arXiv e-prints, arXiv:2312.09972
- 6. Davis, K., et al. 2023, A Census from JWST of Extreme Emission Line Galaxies Spanning the Epoch of Reionization in CEERS, arXiv e-prints, arXiv:2312.07799
- 5. Chworowsky, K., et al. 2023, Evidence for a Shallow Evolution in the Volume Densities of Massive Galaxies at z=4 to 8 from CEERS, arXiv e-prints, arXiv:2311.14804
- 4. Finkelstein, S.L., et al. 2023, The Complete CEERS Early Universe Galaxy Sample: A Surprisingly Slow Evolution of the Space Density of Bright Galaxies at $z \sim 8.5-14.5$, arXiv e-prints, arXiv:2311.04279
- Ronayne, K., et al. 2023, CEERS: 7.7 μm PAH Star Formation Rate Calibration with JWST MIRI, arXiv e-prints, arXiv:2310.07766
- Jung, I., et al. 2023, CEERS: Diversity of Lyman-Alpha Emitters during the Epoch of Reionization, arXiv e-prints, arXiv:2304.05385
- 1. Jung, I, et al. 2022, New z>7 Lyman-alpha Emitters in EGS: Evidence of an Extended Ionized Structure at $z\sim7.7$, arXiv e-prints, arXiv:2212.09850

Presentations

Research Presentation	S	13
10 January 2024	Diagnostics of AGN, Black Hole Seeds, and Population III Stars with JWST at the AAS 243rd Meeting, New Orleans, Louisiana, USA	Talk
11 September 2023	Emission Line Ratio Diagnostics of AGN, Black Hole Seeds and Population III Stars with JWST at the First Year of JWST Science Conference, Space Telescope Science Institute, Baltimore, Maryland, USA	Poster
17 August 2023	Diagnostics of Exotic Ionizing Sources with JWST at Texas A&M Astrosymposium, College Station, Texas, USA	Talk
10 May 2023	Diagnostics of Exotic Ionizing Sources Across Cosmic Time - High-Ionization Emission-Line Ratios: Ne53 at University of Texas, Austin, Texas, USA	Talk
12 January 2023	High-Ionization [Ne V] Emission-Line Galaxies at Cosmic Noon and the Epoch of Reionization at AAS 241st Meeting, Seattle, Washington, USA	Poster
2 December 2022	Using [Ne V] to Constrain the Sources of Highly-Energetic Photoionization Across Cosmic Time: Exploring the "Mystery of Neon" with HST and JWST at Texas A&M University, College Station, Texas, USA	Talk
18 August 2022	Extreme High-Ionization Emission-Line Galaxies at Cosmic Noon and the Epoch of Reionization: Exploring the "Mystery of Neon" with HST and JWST at Texas A&M University, College Station, Texas, USA	Talk
22 July 2022	The Evolution of Spectroscopy from HST to JWST: Implications for the Epoch of Reionization at Texas A&M University, College Station, Texas, USA	Talk
14 June 2022	HST Grism Observations of Paschen-Line Star-Formation and Dust Attenua- tion: A Precursor to the JWST Era at AAS 240th Meeting, Pasadena, California, USA	Poster
27 August 2021	Paschen- β Star Formation Rates and Dust Attenuation with HST and JWST at Texas A&M Astrosymposium, College Station, Texas, USA	Talk
13 January 2021	CLEAR: Paschen- $\hat{\beta}$ Star Formation Rates and Dust Attenuation in Low Redshift Galaxies at AAS 237th Meeting, Virtual	Poster
9 January 2019	Modeling ⁸ B Solar Neutrino Detection with CEνNS at AAS 233rd Meeting, Seattle, Washington, USA	Poster
1 August 2018	Modeling ⁸ B Solar Neutrino Detection with CEνNS at TAMU Undergraduate Research Poster Session, College Station, Texas, USA	Poster
Outreach and Profession	onal Development Presentations	8
8 March 2024	GLASS Postdoc Panel at Texas A&M University, College Station, Texas, USA	Panel
10 November 2023	How to Be A Referee at Texas A&M University, College Station, Texas, USA	Talk
28 July 2023	How to Get Into Grad School at Texas A&M University, College Station, Texas, USA	Panel
11 November 2022	Data Visualization in Astronomy: More Important than the Science Itself? at Texas A&M University, College Station, Texas, USA	Talk
29 July 2022	How to Get Into Grad School at Texas A&M University, College Station, Texas, USA	Panel
2 June 2022	Data Visualization in Astronomy: More Important than the Science Itself? at Texas A&M University, College Station, Texas, USA	Talk
2 June 2022	Matplotlib: The Champion of Plotting in Python at Texas A&M University, College Station, Texas, USA	Workshop
1 June 2022	pandas: Your Best Friend for Data Analysis in Python at Texas A&M University, College Station, Texas, USA	Workshop

References

PhD Advisor Prof. Casey J. Papovich

Texas A&M

- Mitchell Institute for Fundamental Physics and Astronomy, 4242 TAMU, College Station, TX 77843-4242
- papovich@tamu.edu

M.S. Advisor Prof. Jonathan R. Trump

UConn

- ▶ University of Connecticut Department of Physics, 196A Auditorium Road, Unit 3046, Storrs, CT, 06269-3046
- jonathan.trump@uconn.edu

PhD Mentor Prof. Robert C. Kennicutt

Texas A&M

- Mitchell Institute for Fundamental Physics and Astronomy, 4242 TAMU, College Station, TX 77843-4242
- rck@tamu.edu