Лабораторная работа № 4

ИССЛЕДОВАНИЕ СИСТЕМ УПРАВЛЕНИЯ

Цель работы: Ознакомление с принципами построения систем управления и Получение основными методами регулирования. практических навыков в преобразовании структурных схем управления. Составление уравнений динамики систем управления ДЛЯ передаточных функций замкнутых И разомкнутых систем. Приведение уравнений динамики к нормальной форме Коши. Исследование устойчивости систем управления.

Порядок выполнения работы

- 1. Используя правила перестановки и переноса узлов и сумматоров, избавиться от перекрестных связей. Затем с помощью правил преобразования звеньев, соединенных последовательно, параллельно обратной преобразовать или охваченных связью, исходную многоконтурную схему в одноконтурную. Все вычисления проделать в общем виде (не подставляя выражений для передаточных функций звеньев). При преобразовании передаточных функций воспользоваться обозначениями, приведенными в исходных данных.
- 2. В полученные передаточные функции системы подставить выражения для передаточных функций звеньев и числовые значения их параметров. Используя передаточные функции замкнутой СУ, записать их представление в форме уравнений n-го порядка и в форме Коши.
- 3. Построить асимптотические амплитудно-частотные и фазо-частотные характеристики разомкнутой системы управления по асимптотическим характеристикам отдельных звеньев. Исследовать устойчивость и определить предельный коэффициент усиления схемы.

- 4. Используя алгебраический критерий Рауса или Гурвица, исследовать устойчивость и определить предельный коэффициент усиления схемы.
- 5. Сравнить результаты пп. 3 и 4 задания. Если они не совпадают с точностью ± 3 дб. Следует искать ошибку.
- 6. Построить годографы передаточных функций и определить с помощью частотных критериев Найквиста или Михайлова устойчивость системы управления.

Теоретические сведения

Представление дифференциальных уравнений в форме Коши В общем случае для уравнения вида

$$(a_0p^n + a_1p^{n-1} + ... + a_n)y(t) = (b_0p^m + b_1p^{m-1} + ... + b_m)x(t)$$

система уравнений 1-го порядка в форме Коши примет вид (при этом x(t)=x, y(t)=y)

$$y(t) = u_n + \beta_0 x(t),$$

$$pu_n = u_{n-1} + \beta_1 x,$$

$$pu_2 = u_1 + \beta_{n-1} x,$$

$$pu_1 = -(a_1 u_1 + a_2 u_2 + ... + a_n u_n - \beta_n x) a_0^{-1}$$

Введенные коэффициенты определяются из соотношений

$$\beta_{i} = \begin{cases} 0 & npu & i < n - m \\ (b_{i-n+m} - \sum_{j=1}^{i-n+m} a_{j} \beta_{i-j}) * a_{0}^{-1} & npu & n - m \le i < n \\ b_{m} - \sum_{j=1}^{m} a_{j} \beta_{n-j} & npu & i = n \end{cases}$$

Правила преобразования схем

1. При перемещении звена через узел по направлению ветвления необходимо в подсоединенные к узлу ветви добавить звенья с передаточной функцией перемещаемого звена

2. При перемещении звена через узел против направления ветвления необходимо в подсоединенные к узлу ветви добавить звенья с передаточной функцией, обратной передаточной функции перемещаемого звена

3. При перемещении суммирующего узла через узел по направлению ветвления необходимо в отходящих от разветвления узлах добавить такие же, как и перемещаемый узел суммирующие узлы

4. При перемещении суммирующего узла через узел разветвления против направления ветвления необходимо в отходящих от разветвления узлах добавить суммирующие узлы, отличающиеся от перемещаемого знаками прибавляемых величин.

№	Тип звена	Передаточная функция
1	Безынерционное	W(p) = k
2	Апериодическое 1-го порядка	$W(p) = \frac{k}{1 + Tp}, T = const$
3	Апериодическое 2-го порядка	$W(p) = \frac{k}{1 + T_1 p + T_2^2 p^2}$
4	Колебательное (ξ<1)	$W(p) = \frac{k}{1 + 2\xi T p + T^{2} p^{2}}$
5	Идеальное интегрирующее	$W(p) = \frac{k}{p}$
6	Интегрирующее с замедлением	$W(p) = \frac{k}{p(1+Tp)}$
7	Идеальное диф- ференцирующее	W(p) = kp
8	Дифференцирующее 1-го порядка	W(p) = 1 + kp
9	Дифференцирующее с замедлением	$W(p) = \frac{kp}{1 + Tp}$

ВАРИАНТЫ ЗАДАНИЙ ДЛЯ СТРУКТУРНЫХ СХЕМ

Соотношения для передаточных функций схем 1-5

$$\frac{W_1}{1+W_1W_4} = \frac{k_1}{T_1p+\tau}; \quad W_2 = T_2p+1;$$

$$W_3 + W_6 = \frac{k_2}{T_3^2p^2 + T_4p+1}; \quad W_5 = 0; \quad W_7 = k_3.$$

Схема 7

Соотношения для передаточных функций схем 6-10

$$W_{1} = \frac{k_{1}}{T_{1}p + \tau}; \quad W_{2} = \frac{k_{2}}{T_{2}p + \alpha_{2}}; \quad W_{3} = \frac{k_{3}(\tau p + \alpha_{3})}{T_{3}p + 1}$$

$$W_{4} = \frac{k_{4}}{T_{4}p + \tau}; \quad W_{5} = \frac{k_{5}}{T_{8}^{2}p^{2} + T_{5}p + 1}; \quad W_{6} = \frac{k_{6}}{T_{6}p + \alpha_{6}}; \quad W_{7} = \frac{k_{7}}{T_{7}p + 1};$$

Таблица 1. Значения параметров систем управления

№ варианта	№ схемы.	\mathbf{k}_1	\mathbf{k}_2	\mathbf{k}_3	k_4	\mathbf{k}_{5}	k_6	\mathbf{k}_7	α_2	α_3	α_6
1	2	3	4	5	6	7	8	9	10	11	12
1	1	10	10	1	-	-	-	-	-	-	-
2	2	10	20	0,5	-	-	-	-	-	-	-
3	3	5	20	1	-	-	-	-	-	-	-
4	4	25	40	0,1	-	-	-	-	-		-
5	5	5	4	5	-	-	-	-	-	-	-
6	6	10	1	2	2	5	-	4	0	1	-
7	7	2	10	3	5	2	1	1	0	1	1
8	8	1	1	0,1	3	2	3	4	1	0	1
9	9	10	4	2	3	9	5	1	0	1	1
10	10	0,3	10	5	10	1	4	1	0	1	1
11	1	4	5	5	-	-	-	-	-	-	-
12	2	2	5	10	-	_	-	-	ī	_	-
13	3	25	4	1	-	-	-	-	1	-	-
14	4	50	1	2	-	-	-	-	-	-	-
15	5	2	2	25	-	-	-	-	-	-	-
16	6	25	25	0,1	2	3	-	1	0	1	-
17	7	2	2	5	10	1	2	1	0	1	1
18	8	1	1	0,1	1	4	6	2	1	0	1
19	9	5	5	4	3	1	7	2	0	1	1
20	10	1	1	5	2	1	4	2	0	1	1
21	1	20	20	5	-	-	-	-	-	-	-
22	2	25	25	2	-	-	-	-	-	-	-
23	3	25	25	1	-	-	-	-	-	-	-
24	4	8	8	4	-	-	-	-	-	-	-
25	5	5	5	6	-	-	-	-	-	-	-
26	6	4	4	2,5	3	7	-	2	0	1	-
27	7	2	2	3,8	4	1	2	1	0	1	1
28	8	4	4	7,5	1	8	2	4	1	0	1
29	9	2	2	8,5	5	1	2	3	0	1	1
30	10	10	10	6,5	4	2	1	1	0	1	1

Таблица 2. Значения временных характеристик

№ варианта	№ схемы	T_1,c	T_2 ,c	T ₃ ,c	T_4 ,c	T_5 ,c	T_6 ,c	T ₇ ,c	T ₈ ,c	τ,c
1	2	3	4	5	6	7	8	9	10	11
1	1	0,05	0,05	0,1	0,1	-	-	-	-	0,1
2	2	0,05	0,1	0,5	0,5	-	-	-	-	0,1
3	3	0,02	0,1	0,63	0,2	-	-	-	-	0,1
4	4	1,0	0,02	0,32	1,1	-	-	-	-	0
5	5	1,0	0,04	0,32	1,1	-	-	-	-	0
6	6	0,1	1,0	0,02	3,0	0	-	0	0	0
7	7	0	1,0	2,0	2,0	0,05	0	0	0,04	0
8	8	0	0,2	0	0	0,5	0	0,03	0	1
9	9	0	1,0	0,2	0	0,6	0	0	0,33	0
10	10	0	1,0	0,35	1,0	0	1,0	0	0	0
11	1	1,0	0,5	0,1	0,1			-	- .	1
12	2	0,8	0,3	0,5	0,6	- .		-	- .	1
13	3	0,6	0,2	0,3	0,4	=	-	-	=	1
14	4	0,4	0,2	0,8	0,3	-	-	-	-	1
15	5	0,2	0,1	0,6	0,2	-	-	-	-	1
16	6	0,5	0,2	0,2	0,1	0	-	0	0	0
17	7	0	0,5	0,8	1,2	0,1	0	0	0,1	0
18	8	0	0,1	0	0	0,4	0	0,1	0	1
19	9	0	0,8	1,5	0	0,1	0	0,1	0,1	0
20	10	0	1,2	0,4	0,9	0	1,2	0	0	0
21	1	0,8	0,6	1,4	2,0	-	-	-	-	0,5
22	2	1,2	1,0	2,5	2,0	- .		-	- .	0,5
23	3	1,6	1,0	1,8	2,0	=	-	-	=	0,5
24	4	0,1	0,7	1,2	1,0	=	-	-	=	0,5
25	5	0,7	0,6	0,6	1,0	-	-	-	-	0,5
26	6	0,1	0,3	1,2	0,8	0	-	0	0	0
27	7	0	0,4	1,2	0,4	0,4	0	0	0,2	0
28	8	0	0,8	0	0	0,6	0	0,4	0	1
29	9	0	1,2	0,6	0	0,3	0	0	0,5	0
30	10	0	2,2	0,8	1,1	0	0,7	0	0	0