(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 15.09,1999 Bulletin 1999/37
- (21) Application number: 94909546.7
- (22) Date of filing: 04.02.1994

- (51) Int Cl.⁶: **C04B 35/52**, C04B 35/56, F27B 9/04, F27B 9/10
- (86) International application number: PCT/US94/01273

(11)

- (87) International publication number: WO 94/18141 (18.08.1994 Gazette 1994/19)
- (54) DENSE, SELF-SINTERED SILICON CARBIDE/CARBON-GRAPHITE COMPOSITE AND PROCESS FOR PRODUCING SAME

DICHTES, SELBSTGESINTERTES SILICUMCARBID/KOHLENSTOFF-GRAPHITKOMPOSIT UND VERFAHREN ZUR HERSTELLUNG DESSELBEN

COMPOSITE DENSE ET AUTO-FRITTE DE CARBURE DE SILICIUM/CARBONE-GRAPHITE ET SON PROCEDE DE PRODUCTION

- (84) Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL
 PT SE
- (30) Priority: 10.02.1993 US 17735
- (43) Date of publication of application: 11.12.1996 Bulletin 1996/50
- (60) Divisional application: 98203777.2 / 0 906 896
- (73) Proprietor: THE MORGAN CRUCIBLE COMPANY PLC
 Windsor, Berkshire SL4 1EP (GB)
- (72) Inventors:
 - CHEN, Xin, E.
 Illinois 600014 (US)
 - PFAFF, Mark, E.
 St. Marys, PA 15857 (US)
- (74) Representative: Boff, James Charles et al c/o Phillips & Leigh
 7 Staple Inn
 Holborn
 London WC1V 7QF (GB)

(56) References cited:

DE-A- 2 234 924	DE-A- 3 329 225
US-A- 3 968 194	US-A- 3 969 124
US-A- 4 525 461	US-A- 4 690 909
US-A- 4 692 418	US-A- 4 693 988
US-A- 5 135 893	

- CHEMICAL ABSTRACTS, vol. 110, no. 18, 1 May 1989 Columbus, Ohlo, US; abstract no. 159286, XP002032824 & JP 63 260 861 A (BROTHER IND., LTD.) 27 October 1988
- CHEMICAL ABSTRACTS, vol. 110, no. 20, 15 May 1989 Columbus, Ohlo, US; abstract no. 178331, XP002032825 & JP 63 265 850 A (BROTHER IND., LTD.) 2 November 1988
- CHEMICAL ABSTRACTS, vol. 108, no. 18, 2 May 1988 Columbus, Ohlo, US; abstract no. 155356, XP002032826 & JP 63 011 559 A (BROTHER IND., LTD.) 19 January 1988

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

FIELD OF THE INVENTION

[0001] This invention relates to the field of silicon carbide/graphite composite materials and more particularly to dense, self-sintered silicon carbide/graphite composite materials.

BACKGROUND OF THE INVENTION

[0002] Silicon carbide is hard, strong, and exhibits good corrosion and abrasion resistance and high thermal conductivity. It can be used in oxidizing temperatures up to 2500°F. These properties render silicon carbide a useful material in many acid, caustic, corrosive, abrasive, or high temperature environments. Such applications include pump seals and bearings, gas turbine components, mixing nozzles, and flame holders.

[0003] Silicon carbide bodies are frequently formed by a sintering process. Sintered silicon carbide has a high hardness, good corrosion resistance, and high thermal conductivity. In sintering, particles of a material bond together when heated to a high temperature, below the material's melting point. In some processes, the material is also subjected to high pressure as well. A self-sintered process is one which does not require application of pressure during the heating step for sintering to occur

[0004] A drawback to silicon carbide is its lack of self-lubricity. A self-lubricating solid is one having low friction in the absence of an additional lubricant. For example, in applications having a high PV (pressure-sliding velocity) limit or dry running applications, parts, such as seals, having a silicon carbide face adjoining a face made of silicon carbide, other ceramics, or steel, will wear excessively due to the forces generated by the high friction. In dry running applications with mating surfaces, special wear surfaces must be provided on at least one of the bodies.

[0005] Graphite is a known lubricant and has been incorporated into carbon and silicon carbide materials to impart a self-lubricating property to the material. However, with sintered materials, it has been difficult to incorporate large amounts of a second phase such as graphite into a ceramic matrix without causing cracks to occur in the microstructure or without increasing the material's porosity. Further, adding graphite to silicon carbide is even more difficult, because sintering of silicon carbide already requires stringent conditions, such as fine, high purity powders, sintering aids, and high temperature.

[0006] It is known to form a silicon carbide/graphite material by reaction bonding or reaction sintering. However, reaction bonded silicon carbide/graphite material typically has a residual silicon phase which limits corrosion resistance due to reaction with the silicon in some chemical applications. Also, controlling the reaction

bonding process to obtain fully reacted and fully dense parts is difficult.

[0007] Another known silicon carbide material incorporating graphite is disclosed in U.S. Patent No. 4,525,461. This material comprises a sintered silicon carbide/graphite/carbon composite ceramic body having a homogeneous fine grain microstructure. At least 50% of the silicon carbide grains are less than 8 µm, and the graphite grains have an average size no larger than that of the silicon carbide grains. However, if the amount of graphite is greater than approximately 8% by weight in this material, the material's density decreases. Less than 8% by weight graphite, while providing a more dense, impervious structure, limits the graphite's lubricating capability in the material.

[0008] Thus, there exists a need for a dense, impervious self-sintered silicon carbide body with a greater amount of graphite inclusions to increase the lubricity of the material while maintaining the integrity of the microstructure.

SUMMARY OF THE INVENTION

[0009] The composite material of the present invention provides a dense, self-sintered silicon carbide/carbon-graphite composite material while incorporating larger amounts of graphite, leading to increased lubricating capability, and maintaining the integrity of the microstructure. The composite material comprises a silicon carbide matrix, between 2 and 30 percent by weight carbon-graphite, and small amounts between 0.1 and 15 percent by weight, of sintering aids such as boron and free carbon. The silicon carbide has an average grain size between 2 and 15 µm, and the carbon-graphite has an average grain size between 10 and 75 µm, the average grain size of the carbon-graphite being greater than the average grain size of the silicon carbide. The composite material has a density of at least 80 percent of theoretical and preferably at least 90 percent as determined by the rule of mixtures for a composite material.

[0010] The composite body is formed by providing a particulate mixture of silicon carbide, graphite coated with a carbon-precursor binder, and sintering aids. The carbon-bonded graphite comprises at least 5 percent by weight of a carbon-precursor binder, such as a phenolic resin. The silicon carbide may comprise α-silicon carbide, α-silicon carbide, or a combination of both. A binder, a sintering aid, and other temporary additives are also generally present in the particulate mixture.

[0011] The mixture is shaped to form a green body. The green body is heated to carbonize the carbon-precursor binder. The carbonized body is then sintered at a temperature ranging from 1900°C to 2300°C in a substantially inert atmosphere at or below atmospheric pressure to produce a sintered body having a theoretical density of at least 80 percent and a microstructure in which the average grain size of the carbon-graphite is

larger than the average grain size of the silicon carbide.

DESCRIPTION OF THE DRAWINGS

[0012] The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:

Fig. 1 is a schematic illustration of the process for producing a dense, self-sintered silicon carbide/carbon-graphite composite material according to the present invention;

Fig. 2 is a table of test results;

Fig. 3 is an optical photomicrograph at 50X magnification of a silicon carbide/carbon-graphite composite material according to the present invention; Fig. 4 is a further optical photomicrograph at 50X magnification of a silicon carbide/carbon-graphite composite material according to the present invention; and

Figs. 5a, 5b, 5c, and 5d are scanning electron micrographs at 50X, 500X, 1000X, and 2000X magnification respectively, of a further silicon carbide/carbon-graphite composite material according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0013] The composite material of the present invention provides a dense, self-sintered silicon carbide/carbon-graphite composite material which also incorporates large amounts of graphite, leading to increased lubricating capability. The integrity of the microstructure, i.e., relative absence of cracks and porosity, is also maintained.

[0014] The composite material comprises silicon carbide, between 2 and 30 percent by total material weight carbon-graphite, and between 0.1 and 15 percent by total material weight sintering aids, such as boron and free carbon. The carbon-graphite comprises particles of graphite coated with carbon. The average grain size of the carbon-graphite is greater than the average grain size of the silicon carbide. The silicon carbide has an average grain size between 2 and 15 µm. The carbon-graphite has an average grain size between 10 and 75 µm and preferably between 20 and 30 µm. The composite material has a theoretical density of at least 80 percent, and preferably at least 90 percent, as determined by the rule of mixtures for a composite material.

[0015] The process for producing the dense, self-sintered composite material of the present invention is shown schematically in Fig. 1. The composite body is formed from a particulate mixture of a silicon carbide matrix formulation and a carbon-bonded graphite. The carbon binder for the graphite comprises a carbon-precursor resin capable of leaving a carbon residue upon heating, to be described more fully below.

[0016] The silicon carbide matrix formulation may

comprise a fine-grained, high purity α -silicon carbide, β -silicon carbide, or a combination thereof. Preferably, at least 0.5 percent α -silicon carbide relative to β -silicon carbide is present to achieve better densification. A formulation comprising approximately 90 to 91 percent β -SiC, 4 to 5 percent α -SiC, and 5 percent resin binder has been found to provide satisfactory results. The α -SiC and β -SiC may be supplied from any commercially available source.

10 [0017] Generally, a slurry of α -SiC and β -SiC in distilled water is prepared. The SiC is typically provided in powder form and should be fine-grained, having a BET surface area of more than 5 m²/g and preferably more than 10 m²/g. Also, the powder should be of a high purity, generally at least 95 percent and preferably 97 percent pure. Typically, a sintering aid, such as boron or boron carbide, B₄C, is added to the SiC suspension. Other known sintering aids, such as aluminum or beryllium or compounds thereof, may be provided if desired. Alternatively, a sintering aid may be introduced at other known steps in the process of forming a sintered composite body. A dispersant, for example, ammonium polymethacrylate, is generally added to the slurry. The dispersant is a temporary additive not forming part of the final composite body. The slurry is mixed, for example, in a ball mill for a period of time, typically about eight hours, sufficient to disperse the ingredients. The slurry is then transferred to a mixing tank.

[0018] The carbon-bonded graphite is prepared for addition to the SiC slurry. It comprises at least 5 percent by weight of a carbon binder, the balance comprising a coarse graphite. In the preferred embodiment, a mixture of approximately 70 to 80 percent graphite and 20 to 30 percent binder is provided. A greater amount of binder may be used, although the lubricating capability of the graphite in the final composite body may be reduced. [0019] A coarse graphite such as Lonza KS-150, available from Lonza, Inc., Fairlawn, NJ, in which 55 percent of the particles are larger than 45 µm, is suitable. A suitable binder is a phenolic resin, although other materials which will decompose upon heating to leave a carbon residue, such as furfuryl alcohol, polyester resin, coal tar pitch, or mixtures of these and other materials, may be used. Upon decomposition, the binder causes an increase in the porosity of the graphite particles, as discussed further below.

[0020] The binder in powdered form is dissolved in acetone or any other suitable solvent and mixed thoroughly with the graphite to bond the graphite particles. The mixture is dried to evaporate the solvent and crushed to obtain carbon-bonded graphite particles of the desired size. Preferably, the carbon-bonded graphite is passed through a 200-mesh sieve to obtain particles of less than 75 µm. The carbon-bonded graphite is then added to the mixing tank with the SiC slurry. The carbon-bonded graphite generally comprises between 2 and 30 percent by weight of the solids content of the mixture, preferably between 10 and 20 percent by weight.

[0021] A resin solution in distilled water is also added to the mixing tank as a binder for subsequent shaping of the particulate mixture to form a green body. The resin, for example, phenolic resin, typically comprises 5 percent of the total SiC matrix formulation. Also, a die lubricant, such as oleic acid, is generally added in an amount equal to approximately 5 percent of the total SiC matrix formulation (SiC and resin binder). The die lubricant, which is also a temporary additive not forming a part of the final composite body, facilitates subsequent removal from the die in which the particulate mixture is shaped.

[0022] The resulting slurry is mixed thoroughly and dried. Typically, the slurry is spray dried to form spherical granules having an average size less than approximately 500 μ m. Any other suitable methods for obtaining such granules may be used. For example, the slurry may be pan dried, crushed to obtain a flour, and passed through a sieve to obtain the desired particle size.

[0023] A measured amount of the particulate mixture is fed into a die and compacted, typically at pressures ranging between 2 to 20 tons/in², to the desired shape to form a green body. Any other suitable method of shaping the mixture may be employed. The shaped green body is carbonized in a non-oxidizing atmosphere above 371°C (700°F). In a typical carbonization cycle, the component is heated in an oven from room temperature to 177°C (350°F) during a half hour period and allowed to soak at that temperature for another half hour. The temperature is raised to 454°C (850°F) over a period of ten hours and held at 454°C (850°F) for five hours to carbonize the resin. The component is then cooled to room temperature. Other suitable carbonization cycles may be used.

[0024] Next, the carbonized body is sintered at a temperature ranging from 1900°C to 2300°C, preferably 2000°C to 2200°C, in a substantially inert atmosphere such as helium or argon at or below atmospheric pressure. Generally, the temperature is raised to the sintering temperature over an eight hour period, although the actual time depends on the particular furnace used. The furnace is held at the peak temperature for one hour and then allowed to cool to room temperature. Other suitable sintering cycles may be used. Additionally, the carbonization cycle and the sintering cycle may be carried out in separate furnaces or in a single furnace.

[0025] The process of the present invention results in a sintered composite body comprising between 55 and 97.9 percent by weight silicon carbide, between 2 and 30 percent by weight carbon-graphite, and between 0.1 and 15 percent by weight sintering aids. The material has a density of at least 80 percent, and preferably 90 percent, of the theoretical density of the particular mixture. This density may be achieved, since during carbonization, part of the carbon-precursor binder for the graphite volatilizes, leaving voids, while the remainder forms a coke residue on the graphite. Thus, the carbon-graphite particles at this stage have a greater porosity

than graphite alone. Subsequently during sintering, the porous carbon-graphite collapses, allowing greater shrinkage of the SiC matrix despite the presence of the carbon-graphite inclusions. Thus, a relatively dense and impervious composite body results. The resulting composite body has a microstructure in which the average grain size of the carbon-graphite is larger than the average grain size of the carbon-graphite ranges between 10 and 75 µm, and the average grain size of the silicon carbide ranges between 2 and 15 µm. Preferably, the carbon-graphite has an average grain size between 20 and 30 µm.

Tests of several different compositions were [0026] performed according to the present invention. See Fig. 2. In test bake nos. 1-17, the silicon carbide matrix was provided by a mix consisting of 90.25 percent of a finegrained β-SiC powder having a BET surface area of 13.5 to 18.5 m²/g, 4.75 percent of a fine-grained α-SiC having a BET surface area of 9.0 to 11.0 m²/g, and 5.0 percent liquid phenolic resin. In test bake no. 18, the silicon carbide matrix was provided by 100 percent α-SiC having a BET surface area of 15 m2/g. B4C was used as a sintering aid, comprising approximately one percent of the total mix. Oleic acid was added as a die lubricant in an amount comprising approximately 5.0 percent of the total mix. These components are readily available from known commercial sources.

[0027] Several grades of graphite were tested to determine which provided the best sinterability: a fine graphite in which 50 percent of the particles are smaller than 2.4 µm, a coarse graphite in which 55 percent of the particles are larger than 45 µm, and a coarse, resinbonded graphite in which 50 percent of the particles are larger than 74 µm. The fine graphite used in the tests was Lonza KS-6, commercially available from Lonza, Inc. The coarse graphite used was Lonza KS-150, also commercially available from Lonza, Inc. The coarse, carbon-bonded graphite was specially mixed as described above and consisted of 20 percent by weight phenolic resin and 80 percent by weight Lonza KS-150. [0028] In the tests, the composite body was formed by mixing a slurry of the silicon carbide with the graphite or carbon-bonded graphite. The mixture was dried and granulated and molded at 27.6 to 275.9 MPa (2 to 20 tons per square inch). The molded green body was carbonized at 454°C (850°F) and the carbonized body was sintered at temperatures of 2070°C and 2090°C.

[0029] Test results are shown in Fig. 2. In some test bakes, the graphite was sieved prior to mixing with the silicon carbide to obtain a specific size range. This is indicated in the column "Graphite Size." The entry "Unsized" indicates that the graphite was not sieved. The sieved graphite is indicated by the appropriate size ranges. The specially mixed carbon-bonded graphite is designated Mix No. 1 in the column labeled "Graphite Type."

[0030] The tests show that samples containing large

10

25

35

amounts of the commercially available non-carbon-bonded graphites, i.e., the fine graphite, Lonza KS6, and the coarse graphite, Lonza KS150, (Test Bake Nos. 3-8) did not provide satisfactory results. The resulting sintered samples were too porous, as indicated by the percent of water absorption, and did not achieve sufficient densification.

[0031] The samples using the specially mixed coarse, carbon-bonded graphite (Test Bake Nos. 9-17) indicate that greater densification was achieved with a graphite loading of 15 percent by weight than has been achieved in prior art composite bodies using a comparable loading of non-carbon-bonded graphite. Some lamination in removal from the die, leading to some water absorption, occurred using the larger graphite particles. Lamination did not occur when carbon-bonded graphite particles small enough to pass through the 200-mesh sieve, that is, less than 75 μ m, were used.

[0032] Silicon carbide/carbon-graphite composite materials according to the present invention are shown in the photomicrographs of Figs. 3 through 5. The carbon-graphite appears as the darker inclusions among the lighter silicon carbide matrix. Fig. 3 shows an optical micrograph of a polished cross-section of test bake no. 11 magnified 50 times (50X). The material appears fully dense and the carbon-graphite is uniformly distributed. [0033] Fig. 4 shows an optical micrograph of a polished cross-section of test bake no. 17 at 50X magnification. The material appears fully dense and the carbon-graphite is uniformly distributed.

[0034] Figs. 5a through 5d show scanning electron micrographs at 50X, 500X, 1000X, and 2000X magnification respectively of test bake no. 17 polished and etched to show the grain structure. The grain size of the silicon carbide is less than 10 μ m, and the carbon-graphite grain size is in the range of 20 to 60 μ m.

[0035] The invention is not to be limited by what has been particularly shown and described, except as indicated in the appended claims.

Claims

- A dense, self-sintered silicon carbide/carbongraphite composite material comprising:
 - (a) silicon carbide,
 - (b) between 2 and 30 percent by total material weight of carbon-graphite, and
 - (c) between 0.1 and 15 percent by total material weight of sintering aid,

the silicon carbide having an average grain size between 2 and 15 μm and the graphite having an average grain size between 10 and 75 μm , the average grain size of the graphite being greater than the average grain size of the silicon carbide, the composite material having a density of at least

80 percent of theoretical as determined by the rule of mixtures for a composite material.

- The composite material of claim 1, comprising between 10 and 20 percent by total material weight of carbon-graphite.
 - The composite material of claim 2, wherein the composite material has a theoretical density of at least 90 percent.
 - The composite material of claim 1, wherein the carbon-graphite has an average grain size between 20 and 30

 µm.
 - The composite material of claim 1, wherein the sintering aid comprises boron, aluminum, beryllium, or compounds thereof, or mixtures thereof.
- The composite material of claim 1, wherein the sintering aid comprises boron carbide.
 - The composite material of claim 1, wherein the sintering aid comprises free carbon.
 - The composite material of claim 1, wherein the carbon-graphite comprises graphite coated with a carbon residue.
- 30 9. The composite material of claim 1, wherein the carbon-graphite comprises graphite coated with a carbon residue produced by heating the graphite mixed with a carbon precursor binder to a temperature sufficient to carbonize the binder.
 - 10. The composite material of claim 1, wherein the average grain size of the carbon-graphite is at least twice as great as the average grain size of the silicon carbide.
 - The composite material of claim 1, wherein the silicon carbide comprises α-silicon carbide, β-silicon carbide, or a mixture thereof.
- 12. A raw batch for producing a dense, self-sintered silicon carbide/carbon-graphite composite material as claimed in Claim 1 comprising:
 - (a) carbon-bonded graphite of between 2 and 30 percent by weight of the raw batch, the carbon-bonded graphite comprising at least 5 percent by weight carbon-precursor binder, the balance being graphite bound by the carbonprecursor binder;
 - (b) a binder of between 1 and 10 percent by weight of the raw batch;
 - (c) sintering aid of between .1 and 30 percent of the raw batch;

5

10

15

20

- (d) a lubricant of between 1 and 5 percent by weight of the raw batch; and
- (e) the balance of the raw batch being silicon carbide.
- 13. The raw batch of claim 12, wherein the carbon-precursor resin comprises a phenolic resin, furfuryl alcohol resin, polyester resin, coal tar pitch, or mixtures thereof.
- 14. The raw batch of claim 12, wherein the carbon-bonded graphite comprises between 20 and 30 percent by weight carbon-precursor resin and between 70 and 80 percent by weight graphite.
- The raw batch of claim 12, wherein the carbonbonded graphite has a particle size less than about 75

 µm.

Patentansprüche

- Dichtes, selbstgesintertes Siliciumcarbid/Kohlenstoff-Graphitkomposit-Material, aufweisend:
 - (a) Siliciumcarbid,
 - (b) zwischen 2 und 30 Prozent Kohlenstoff-Graphit am Gesamtmaterialgewicht, und
 - (c) zwischen 0,1 und 15 Prozent Sinterhilfsmittel am Gesamtmaterialgewicht, wobei das Siliciumcarbid eine mittlere Korngröße zwischen 2 und 15 μm aufweist und das Graphit eine mittlere Korngröße zwischen 10 und 75 μm aufweist, wobei die mittlere Korngröße des Graphits größer ist als die mittlere Korngröße des Siliciumcarbids, wobei das Komposit-Material eine Dichte von mindestens 80 Prozent theoretisch aufweist, wie nach der Regel für Mischungen eines Komposit-Materials bestimmt ist.
- Komposit-Material nach Anspruch 1, welches zwischen 10 und 20 Prozent Kohlenstoffgraphit am Gesamtmaterialgewicht aufweist.
- Komposit-Material nach Anspruch 2, wobei das Komposit-Material eine theoretische Dichte von mindestens 90% aufweist.
- Komposit-Material nach Anspruch 1, wobei das Kohlenstoffgraphit eine mittlere Korngröße zwischen 20 und 30 μm aufweist.
- Komposit-Material nach Anspruch 1, wobei das Sinterhilfsmittel Bor, Aluminium, Beryllium oder Verbindungen oder Mischungen davon aufweist.
- Komposit-Material nach Anspruch 1, wobei das Sinterhilfsmittel Borcarbid aufweist.

- Komposit-Material nach Anspruch 1, wobei das Sinterhilfsmittel freien Kohlenstoff aufweist.
- Komposit-Material nach Anspruch 1, wobei das Kohlenstoffgraphit mit einem Kohlenstoffrückstand überzogenes Graphit aufweist.
- 9. Komposit-Material nach Anspruch 1, wobei das Kohlenstoffgraphit mit einem Kohlenstoffrückstand überzogenes Graphit aufweist, welcher durch Erhitzen des mit einen auf einer Kohlenstoff-Vorstufe basierenden Bindemittel gemischten Graphits auf eine Temperatur, welche ausreichend ist, um das Bindemittel zu carbonisieren, hergestellt ist.
- Komposit-Material nach Anspruch 1, wobei die mittlere Komgröße des Kohlenstoffgraphits mindestens doppelt so groß ist wie die mittlere Komgröße des Siliciumcarbids.
- Komposit-Material nach Anspruch 1, wobei das Siliciumcarbid α-Siliciumcarbid, β-Siliciumcarbid oder eine Mischung davon aufweist.
- 25 12. Rohmasse zum Herstellen eines dichten, selbstgesinterten Siliciumcarbid/Kohlenstoff-Graphitkomposit-Materials nach Anspruch 1, aufweisend:
 - (a) Kohlenstoff-gebundenes Graphit von zwischen 2 und 30 Gewichtsprozent der Rohmasse, wobei das Kohlenstoff-gebundene Graphit mindestens 5 Gewichtsprozent von einem auf einer Kohlenstoff-Vorstufe basierenden Bindemittel aufweist, wobei der Restbestandteil Graphit ist, welches durch das auf einer Kohlenstoff-Vorstufe basierende Bindemittel gebunden ist:
 - (b) ein Bindemittel von mindestens zwischen 1 und 10 Gewichtsprozent der Rohmasse;
 - (c) Sinterhilfsmittel von zwischen 0,1 und 30 Prozent der Rohmasse; und
 - (d) ein Schmiermittel von zwischen 1 und 5 Gewichtsprozent der Rohmasse, wobei
 - (e) der Restbestandteil der Rohmasse Siliciumcarbid ist.
 - 13. Rohmasse nach Anspruch 12, wobei das auf einer Kohlenstoff-Vorstufe basierende Harz ein Phenolharz, ein Furfurylalkoholharz, ein Polyesterharz, Teerpech oder Mischungen davon aufweist.
 - 14. Rohmasse nach Anspruch 12, wobei das Kohlenstoff-gebundene Graphit zwischen 20 und 30 Gewichtsprozent auf einer Kohlenstoff-Vorstufe basierendes Harz aufweist und zwischen 70 und 80 Gewichtsprozent Graphit.
 - 15. Rohmasse nach Anspruch 12, wobei das Kohlen-

6

55

5

25

stoff-gebundene Graphit eine Teilchengröße von weniger als 75 µm hat.

Revendications

 Matériau composite dense auto-fritté à base de carbure de silicium/carbone-graphite comprenant :

- (a) du carbure de silicium,
- (b) entre 2 et 30 % de carbone-graphite par rapport au poids total du matériau, et
- (c) entre 0,1 et 15 % en poids d'auxiliaire de frittage par rapport au poids total du matériau,

le carbure de silicium ayant une dimension moyenne des grains entre 2 et 15 µm et le graphite ayant une dimension moyenne des grains entre 10 et 75 µm, la dimension moyenne des grains du graphite étant supérieure à la dimension moyenne des grains du carbure de silicium, le matériau composite ayant une densité d'au moins 80 % de la densité théorique, déterminée au moyen de la règle des mélanges pour un matériau composite.

- Matériau composite selon la revendication 1, comprenant entre 10 et 20 % de carbone-graphite par rapport au poids total du matériau.
- Matériau composite selon la revendication 2, le matériau composite ayant une densité théorique d'au moins 90 %.
- Matériau composite selon la revendication 1, dans lequel le carbone-graphite a une dimension moyenne des grains entre 20 et 30

 µm.
- Matériau composite selon la revendication 1, dans lequel l'auxiliaire de frittage comprend du bore, de l'aluminium, du béryllium, ou des composés de ceux-ci, ou des mélanges de ceux-ci.
- Matériau composite selon la revendication 1, dans lequel l'auxiliaire de frittage comprend du carbure de bore.
- Matériau composite selon la revendication 1, dans lequel l'auxiliaire de frittage comprend du carbone libre.
- Matériau composite selon la revendication 1, dans lequel le carbone-graphite comprend du graphite revêtu d'un résidu de carbone.
- Matériau composite selon la revendication 1, dans lequel le carbone-graphite comprend du graphite revêtu d'un résidu de carbone produit par chauffage du graphite mélangé avec un liant précurseur de

carbone à une température suffisante pour carboniser le liant.

- 10. Matériau composite selon la revendication 1, dans lequel la dimension moyenne des grains du carbone-graphite vaut au moins deux fois la dimension moyenne des grains du carbure de silicium.
- Matériau composite selon la revendication 1, dans lequel le carbure de silicium comprend du carbure de silicium α, du carbure de silicium β ou un mélange de ceux-ci.
- 12. Lot brut pour produire un matériau composite dense auto-fritté à base de carbure de silicium/carbonegraphite selon la revendication 1, comprenant :
 - (a) du graphite lié avec du carbone, en une quantité comprise entre 2 et 30 % en poids du lot brut, le graphite lié avec du carbone comprenant au moins 5 % en poids de liant précurseur de carbone, le reste étant du graphite lié au moyen du liant précurseur de carbone;
 - (b) un liant en une quantité comprise entre 1 et 10 % en poids du lot brut ;
 - (c) un auxiliaire de frittage en une quantité comprise entre 0,1 et 30 % en poids du lot brut; (d) un lubrifiant en une quantité comprise entre
 - (e) le reste du lot brut étant du carbure de silicium.
 - 13. Lot brut selon la revendication 12, dans lequel la résine précurseur de carbone comprend une résine phénolique, une résine d'alcool furfurylique, une résine de polyester, un brai de houille ou des mélanges de ceux-ci.

1 et 5 % en poids du lot brut; et

- 14. Lot brut selon la revendication 12, dans lequel le graphite lié avec du carbone comprend entre 20 et 30 % en poids de résine précurseur de carbone et entre 70 et 80 % en poids de graphite.
 - 15. Lot brut selon la revendication 12, dans lequel le graphite lié avec du carbone a une dimension de particules inférieure à environ 75 µm.

55

50

45

FIG. 1

RENARKS					UNABLE TO NOLD, LANIHATION	UNABLE TO NOLD, LAWINATION				LAMINATION	SLIGHT LAMINATION							
WATER ABSORPTION %	0.12%	1.48%	4.80%	8.59%			6.02%	5.00%	0	1.18%	0.21%	3.87%	0.72%	1.08%	2.36%	0	0	0
FINAL DENSITY 6/CC	2.95	2.79	2.56	2.28			2.45	2.49	303	2.83	2.78	2.48	2.63	2.65	273	2.74	2.75	2.80
SINTERING TEMP. DEG. C	2010	2070	2070	2070			2090	2090	2070	2070	2070	2070	2090	2090	2090	2090	2090	2090
SIC FORMULATION	90.25% B-SIC, 4.75% CASIC	•	·	•	•	•	.•	•	,	,	,	1	ı	ı	1	•	,	100% a-SIC
GRAPHITE SIZE	OHSIZED	UNSIZEO	O321SHA	UNSIZED	-70, +100 NESH	-100,+200MESH	-200,+325MESH	-325 MESH	UMSIZED	UNSIZED	UNSIZED	UNSIZED	UNSIZEO	-200, +325 MESH	-100, +325MESH	-200 MESH	-325 MESH	- 325 MESH
CRAPHITE SOURCE	NS6.	¥28	N.S6	#S6	NS150	KS150	NS150	KS/50	NIX NO. 1	MIX NO.1	MIX NO.1	NIX NO.1	NIX NO.1	NIX HO.1	NIX NO.1	MIX NO. 1	HIX HO. I	MIX NO. I
GRAPHITE WT.%	4.6%	8.7%	16.0%	22.2%	15%	15%	15%	15%	4.6%	8.7%	16.0%	22.2%	15%	15%	15%	15%	15%	15%
TEST BAKE N.	`	0	~	*	3	ø	<u>`</u>	80	ο,	9	>	2/	57	*	52	. 9/	× .	8/

FIG. 2

(a) T.B. #11, 16wt % UNSIZED 10042 GRAPHITE, 50X FIG.~3

(b) T.B. #17, 15w1 % 10042 GRAPHITE, -325 MESH, 50X $FIG.\ 4$

FIG. 5A

FIG. 5B

1000X

FIG. 5C

2000 X

FIG. 5D