Math 217 Worksheet 22: Eigenvalues and Eigenvectors (§7.1)

Definition. Let V be a vector space and let $T: V \to V$ be a linear transformation.

A non-zero vector $v \in V$ is an **eigenvector** of T if there exists $\lambda \in \mathbb{R}$ such that $T(v) = \lambda v$. A scalar λ is an **eigenvalue** of T if there exists a non-zero vector $v \in V$ such that $T(v) = \lambda v$.

Whenever a pair consisting of a non-zero $v \in V$ and a scalar $\lambda \in \mathbb{R}$ satisfies $T(v) = \lambda v$, we say that v is an eigenvector of the eigenvalue λ , or that v is a λ -eigenvector.

Note that, by definition, eigenvectors (but not eigenvalues) are required to be nonzero!

Problem 1. Warm-up.

- (a) Find all eigenvectors of the *identity map* $V \to V$. What are the associated eigenvalues?
- (b) Find all eigenvectors of the zero map $V \to V$. What are the associated eigenvalues?
- (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the map "scale by 2". What are the eigenvectors of T? What are the associated eigenvalues?
- (d) The transformation $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ rotating counterclockwise by $\pi/6$ has no eigenvectors. Why not?

Solution: Every non-zero vector is an eigenvector of the identity map, with eigenvalue 1. Every non-zero vector is an eigenvector of the zero map, with eigenvalue 0. Every non-zero vector is an eigenvector of the "scale by k" map, with eigenvalue k. For (d), note that rotation in \mathbb{R}^2 moves every vector in such a way that no vector is taken to a scaling of itself (unless we rotate by π , so vectors go to a their negatives, in which case -1 is an eigenvalue. So there are no eigenvectors (nor eigenvalues) for (d).

Problem 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be multiplication by $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$. Explain why any non-zero vector in the span of \vec{e}_1 is an eigenvector. What are the corresponding eigenvalues? Find all eigenvectors with eigenvalue 4. Are there any eigenvectors with eigenvalue zero? Prove you've found *all* eigenvectors of T. [Hint: Take arbitrary \vec{v} which is *not* one you found before...]

Solution: Note that $T(k\vec{e}_1)=3k\vec{e}_1$, so $k\vec{e}_1$ is an eigenvector with eigenvalue 3. The eigenvectors with eigenvalue 4 are the vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ such that $T(\begin{bmatrix} a \\ b \end{bmatrix})=4\begin{bmatrix} a \\ b \end{bmatrix}$. To find them, we solve $\begin{bmatrix} 3a \\ 4b \end{bmatrix}=4\begin{bmatrix} a \\ b \end{bmatrix}=4\begin{bmatrix} 4a \\ 4b \end{bmatrix}$. We must have a=0, but b can be arbitrary. So the eigenvectors with eigenvalues 4 are exactly the span of \vec{e}_2 (except for $\vec{0}$). To see we that there are no further eigenvectors, suppose, on the contrary, that $c\neq 3,4$ is an eigenvalue. This means there exists a non-zero vector $\begin{bmatrix} a \\ b \end{bmatrix}$ such that $T(\begin{bmatrix} a \\ b \end{bmatrix})=c\begin{bmatrix} a \\ b \end{bmatrix}$. In other words, $\begin{bmatrix} 3a \\ 4b \end{bmatrix}=\begin{bmatrix} ca \\ cb \end{bmatrix}$. Since one of either a or b is non-zero, we conclude that either c=3 or c=4.

Problem 3. Explain why the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by orthogonal projection onto the line spanned by $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ has eigenvectors $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$, $\begin{bmatrix} -\pi \\ -5\pi \end{bmatrix}$, $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1/5 \end{bmatrix}$. What are the eigenvalues of each of these eigenvectors?

Solution: The vectors on the one-dimensional subspace L (a line through the origin) are taken to themselves when we project to L. So the vectors $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 10 \end{bmatrix}$, and $\begin{bmatrix} -\pi \\ -5\pi \end{bmatrix}$ are eigenvectors for the eigenvalue 1, since they are all on the line spanned by $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$. Everything in L^{\perp} is sent to zero, so zero is also an eigenvalue, and the (non-zero) vectors $\begin{bmatrix} -5 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 1/5 \end{bmatrix}$, which are in L^{\perp} , are eigenvectors with eigenvalue 0.

Problem 4. Let $\mathcal{C}^{\infty}(\mathbb{R})$ be the vector space of all real valued functions that are infinitely differentiable. Consider the differentiation map $d: \mathcal{C}^{\infty}(\mathbb{R}) \to \mathcal{C}^{\infty}(\mathbb{R})$. Why is this linear? For any constant k, show that the function $f(x) = e^{kx}$ is an eigenvector of d. What is its eigenvalue? What are all the possible eigenvalues of differentiation on $\mathcal{C}^{\infty}(\mathbb{R})$?

Solution: Check: $d(f) = \frac{d}{dx}e^{kx} = ke^{kx} = kf$, so f is an eigenvector with eigenvalue k. This shows that every real number is an eigenvalue for d.

Problem 5. Prove or disprove the following statements.

- (a) Any non-zero element in the kernel of $V \xrightarrow{T} V$ is an eigenvector of T.
- (b) The linear transformation $V \xrightarrow{T} V$ is injective if and only if zero is not an eigenvalue of T.
- (c) If v is an eigenvector of T, then v is an eigenvector of T^2 as well.
- (d) If v is an eigenvector for T with eigenvalue λ , then so is kv for any non-zero scalar k.

Solution:

- (a) True: T(v) = 0 = 0 v so the 0-eigenvectors are exactly the (non-zero) elements in the kernel.
- (b) True: This basically restates (a), remembering that T is injective if and only if ker T is zero.
- (c) True: If $T(v) = \lambda v$, then $T^2(v) = T(T(v)) = T(\lambda v) = \lambda T(v) = \lambda^2 v$. So v is an eigenvector for T also (though the corresponding eigenvalue could be different.)
- (d) True. Suppose v is an eigenvector with eigenvalue λ . This means $T(v) = \lambda v$. Compute $T(kv) = kT(v) = k\lambda v = \lambda(kv)$. So kv is also an λ -eigenvector. The first = is coming from the fact T is linear, the second is from the fact that v is an λ -eigenvector, and the third from the axioms of vector spaces.

Definition. Let $T: V \to V$ be a linear transformation. Fix any eigenvalue λ . The λ -eigenspace of T is the subset of V defined by

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}.$$

Problem 6. Let $T: V \to V$ be a linear transformation of a vector space V.

(a) Prove that for any scalar λ (eigenvalue or not), the set

$$E_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

is a subspace of V.

- (b) With E_{λ} as defined in (a), prove that λ is an eigenvalue of T if and only if $E_{\lambda} \neq \{0_V\}$.
- (c) For an eigenvalue λ of T, the subspace E_{λ} is almost, but not quite, the set of all λ -eigenvectors of T. Explain.

Solution:

- (a) Since $T(0_V) = 0_V = \lambda 0_V$, we have $0_V \in E_\lambda$. If $v \in E_\lambda$ and $c \in \mathbb{R}$, then $T(cv) = cT(v) = \lambda(cv)$, so $cv \in E_\lambda$. Finally, if $v, w \in E_\lambda$ then $T(v+w) = T(v) + T(w) = \lambda v + \lambda w = \lambda(v+w)$, so $v+w \in E_\lambda$. This shows that E_λ is a subspace of V. Furthermore, λ is an eigenvalue of T if and only if $E_\lambda \neq \{\vec{0}\}$.
- (b) If $E_{\lambda} \neq \{0_V\}$, then there is a non-zero vector $v \in V$ such that $T(v) = \lambda v$. This means v is an eigenvector, and hence λ is an eigenvalue. On the other hand, if $E_{\lambda} = \{0_V\}$, then there is no non-zero vector v such that $T(v) = \lambda v$. This means λ is not an eigenvalue.
- (c) Since eigenvectors must be non-zero, the set of λ -eigenvectors never includes the zero vector, so can not be a subspace. But the zero is the only missing element to make the set of eigenvectors a subspace.

Problem 7. For the following transformations $T:V\to V$, try to find an eigenvalue using any methods you can think of, including basic geometry, if this is possible. For your eigenvalue, find the corresponding **eigenspace.** If none exist, explain why.

- (a) $V = \mathbb{R}^2$, T = orthogonal projection onto the x-axis.
- (b) $V = \mathbb{R}^2$, T = reflection over the line x = y.
- (c) $V = \mathbb{R}^2$, $T = \text{rotation by } 90^\circ$.
- (d) $V = \mathbb{R}^2$, $T = \text{left multiplication by} \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$.
- (e) $V = \mathbb{R}^3$, T is rotation around some axis L through the origin in \mathbb{R}^3 .
- (f) $V = \mathcal{P}_3$ the space of polynomials of degree less than or equal 3 in the variable t,

$$T(f) = f'.$$

(g) $V = \mathbb{R}^{2 \times 2}$, T is the zero transformation.

Solution:

- (a) The eigenvalues are 1 and 0, with eigenspaces the x-axis and y-axis, respectively.
- (b) The eigenvalues are 1 and -1, with eigenspaces the line spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, respectively.
- (c) no eigenvectors or eigenvalues
- (d) Since $T(\vec{e}_1) = 2\vec{e}_2$, the x-axis is the eigenspace of the eigenvalue 2. It's not as easy to find, but also, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalues 3. It's eigenspace is the line y = x.
- (e) The line L is the eigenspace for the eigenvalue 1. Rotation in \mathbb{R}^3 fixes every vector on the axis of rotation. So each (non-zero) vector in this axis is an eigenvector with eigenvalue 1. This is the only eigenvalue unless we are rotating by π , in which case every vector perpendicular to the axis of rotation is taken to its negative. So if we rotate by π , then -1 is also an eigenvalue.
- (f) Any constant function is an eigenvector, with eigenvalue 0. The eigenspace of 0 is the subspace of constant functions.
- (g) Any zero transformation has $\lambda = 0$ as its only eigenvalue, with the entire space $\mathbb{R}^{2\times 2}$ the corresponding eigenspace.

Problem 8. Show that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is an *orthogonal transformation*, then the only possible eigenvalues are 1 or -1. [Hint: Recall that orthogonal transformations *preserve lengths*.]

Solution: Suppose that λ is an eigenvalue of an orthogonal transformation T, and let \vec{v} be the corresponding eigenvector. Then $||T(\vec{v})|| = ||(\lambda \vec{v})|| = |\lambda| ||\vec{v}||$. But since T is orthogonal this means $||\vec{v}|| = |\lambda| ||\vec{v}||$. So $|\lambda| = 1$.

Problem 9. Suppose that λ is an eigenvalue of the linear transformation $T:V\to V$.

- (a) Given $n \in \mathbb{N}$, show that λ^n is an eigenvalue of T^n . [Hint: You thought about this already in 5c.]
- (b) Supposing that T is invertible, what can you say about the eigenvalues of T^{-1} ?

Solution:

- (a) If v is an eigenvector of T corresponding to λ , then $T^n(v) = \lambda^n v$, so v is an eigenvector of T^n with corresponding eigenvalue λ^n .
- (b) If T is invertible and v is an eigenvector of T with corresponding eigenvalue λ , then $T^{-1}(\lambda v) = v$, so $T^{-1}(v) = \frac{1}{\lambda}v$, which shows that v is an eigenvector of T^{-1} with corresponding eigenvalue λ^{-1} . Indeed, λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1} .

- (a) Prove that 1 is an eigenvalue of T, with eigenspace the subspace of all symmetric matrices.
- (b) Prove that -1 is an eigenvalue of T, with eigenspace the subspace of all skew-symmetric matrices.
- (c) Are there any other eigenvalues for the transpose map?

Solution:

- (a) By definition, $A \in \mathbb{R}^{n \times n}$ is symmetric if and only if $A = A^{\top}$. So T(A) = 1 A^{\top} if and only if A is symmetric, which means 1 is an eigenvalue with eigenspace the set of symmetric matrices.
- (b) By definition, $A \in \mathbb{R}^{n \times n}$ is skew-symmetric if and only if $A = -A^{\top}$. So T(A) = -1 if and only if A is skew-symmetric, which means -1 is an eigevnalue with eigenspace the set of skew symmetric matrices.
- (c) No. Assume c is an eigenvalue not equal to 1 or -1. This means there is a non-zero matrix $A \in \mathbb{R}^{n \times n}$ such that T(A) = cA. In other words, such that $cA = A^{\top}$. So for all i, j, we have $ca_{ji} = a_{ij}$ and so substituting $a_{ji} = ca_{ij}$, we get $c^2a_{ij} = a_{ij}$ for all i, j. Now, because A is non-zero, some entry $a_{ij} \neq 0$. Thus we can divide by a_{ij} and see that $c^2 = 1$, so $c = \pm 1$.