Mathematics for Robotics (ROB-GY 6013) Section A

Formula Sheet

$$q \to p$$
 (converse of $p \to q$) $\sim q \to \sim p$ (contrapositive of $p \to q$)

A **field** consists of a set, denoted by \mathcal{F} , of elements called **scalars** and two operations called addition "+" and multiplication "·"; the two operations are defined over \mathcal{F} such that they satisfy the following conditions:

- 1. To every pair of elements α and β in \mathcal{F} , there correspond an element $\alpha + \beta$ in \mathcal{F} , called the sum of α and β , and an element $\alpha \cdot \beta$ (or simply $\alpha\beta$) in \mathcal{F} called the product of α and β .
- 2. Addition and multiplication are respectively commutative: For any α and β in \mathcal{F} ,

$$\alpha + \beta = \beta + \alpha \qquad \qquad \alpha \cdot \beta = \beta \cdot \alpha$$

3. Addition and multiplication are respectively associative: For any α , β , γ in \mathcal{F} ,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma) \qquad (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$$

4. Multiplication is distributive with respect to addition: For any α , β , γ in \mathcal{F} ,

$$\alpha \cdot (\beta + \gamma) = (\alpha \cdot \beta) + (\alpha \cdot \gamma)$$

- 5. \mathcal{F} contains an element, denoted by 0, and an element, denoted by 1, such that $\alpha + 0 = \alpha$ and $1 \cdot \alpha = \alpha$ for every α in \mathcal{F} .
- 6. To every α in \mathcal{F} , there is an element β in \mathcal{F} such that $\alpha + \beta = 0$. The element β is called the *additive inverse*.
- 7. To every α in \mathcal{F} which is not the element 0, there is an element γ in \mathcal{F} such that $\alpha \cdot \gamma = 1$. The element γ is called the *multiplicative inverse*.

A vector space (or, linear space) over a field \mathcal{F} , denoted by $(\mathcal{X},\mathcal{F})$, consists of a set, denoted by \mathcal{X} , of elements called vectors, a field \mathcal{F} , and two operations called vector addition and scalar multiplication. The two operations are defined over \mathcal{X} and \mathcal{F} such that they satisfy all the following conditions:

- 1. To every pair of vectors v^1 and v^2 in \mathcal{X} , there corresponds a vector $v^1 + v^2$ in \mathcal{X} , called the sum of v^1 and v^2 .
- 2. Addition is commutative: For any v^1 , v^2 in \mathcal{X} , $v^1 + v^2 = v^2 + v^1$.
- 3. Addition is associative: For any v^1 , v^2 , and v^3 in \mathcal{X} , $(v^1 + v^2) + v^3 = v^1 + (v^2 + v^3)$
- 4. \mathcal{X} contains a vector, denoted by $\mathbf{0}$, such that $\mathbf{0} + v = v$ for every v in \mathcal{X} . The vector $\mathbf{0}$ is called the zero vector or the origin.
- 5. To every v in \mathcal{X} , there is a vector \overline{v} in \mathcal{X} , such that $v + \overline{v} = 0$.
- 6. To every α in \mathcal{F} , and every v in \mathcal{X} , there corresponds a vector $\alpha \cdot v$ in \mathcal{X} called the scalar product of α and v.
- 7. Scalar multiplication is associative: For any α , β in \mathcal{F} and any ν in \mathcal{X} , $\alpha \cdot (\beta \cdot \nu) = (\alpha \cdot \beta) \cdot \nu$.
- 8. Scalar multiplication is distributive with respect to vector addition: For any α in \mathcal{F} and any v^1 , v^2 in \mathcal{X} , $\alpha \cdot (v^1 + v^2) = \alpha \cdot v^1 + \alpha \cdot v^2$.
- 9. Scalar multiplication is distributive with respect to scalar addition: For any α , β in \mathcal{F} and any ν in \mathcal{X} , $(\alpha + \beta) \cdot \nu = \alpha \cdot \nu + \beta \cdot \nu$.
- 10. For any v in \mathcal{X} , $1 \cdot v = v$, where 1 is the element 1 in \mathcal{F} .

Mathematics for Robotics (ROB-GY 6013) Section A

Let $(\mathcal{X}, \mathcal{F})$ be a vector space, and let \mathcal{Y} be a subset of \mathcal{X} . Then \mathcal{Y} is a **subspace** if using the rules of vector addition and scalar multiplication defined in $(\mathcal{X}, \mathcal{F})$, we have that $(\mathcal{Y}, \mathcal{F})$ is a vector space.

The following are equivalent:

- a) $(\mathcal{Y}, \mathcal{F})$ is a subspace of $(\mathcal{X}, \mathcal{F})$.
- b) $\forall v^1, v^2 \in \mathcal{Y}$, $v^1 + v^2 \in \mathcal{Y}$ (closed under vector addition) and $\forall y \in \mathcal{Y}$, $\forall \alpha \in \mathcal{F}$, $\alpha y \in \mathcal{Y}$ (closed under scalar multiplication)
- c) $\forall v^1, v^2 \in \mathcal{Y}, \forall \alpha \in \mathcal{F}, \alpha \cdot v^1 + v^2 \in \mathcal{Y}$
- d) $\forall v^1, v^2 \in \mathcal{Y}, \ \forall \alpha_1, \alpha_2 \in \mathcal{F}, \ \alpha_1 \cdot v^1 + \alpha_2 \cdot v^2 \in \mathcal{Y}$

A linear combination is a finite sum of the form:

$$\alpha_1 v^1 + \alpha_2 v^2 + ... + \alpha_n v^n$$
 where $n \ge 1$, $\alpha_1 \in \mathcal{F}$, $v^i \in \mathcal{X}$, $v^i \in \mathcal{X}$, $1 \le i \le n$

$$[x]_{v} := \begin{bmatrix} \alpha_{1} & \alpha_{2} & \dots & \alpha_{n} \end{bmatrix}^{T} \in \mathcal{F}^{n}$$

$$[x]_{\overline{u}} = P[x]_u$$

$$[\mathcal{L}(x)]_{v} = A[x]_{u} \qquad [x]_{u} \stackrel{\mathcal{L}}{\downarrow} \qquad \downarrow [y]_{v}$$

$$\mathcal{F}^{m} \stackrel{A}{\longrightarrow} \mathcal{F}^{n}$$

$$Av = \lambda v$$
 $A = M \Lambda M^{-1}$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

$$\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \det \begin{bmatrix} e & f \\ h & i \end{bmatrix} - b \det \begin{bmatrix} d & f \\ g & i \end{bmatrix} + c \det \begin{bmatrix} d & e \\ g & h \end{bmatrix}$$