Course Code	EEE4001F	EEE4001B				
Course Category	Profession	Professional Elective -V				
Course Title	Artificial l	Artificial Intelligence and Machine Learning				
Weekly Teaching Hrs and Credits	L	T	Laborator y	Credits		
	3	0	2	3 + 0 + 1		

Pre-requisites: Graph Theory, Probability, Statistics, Calculus.

Course Objectives:

- 1. To provide an introduction to the field of artificial intelligence.
- 2. To understand various problem algorithms and methods for solving complex problems.
- 3. To solve practical problems via implementation of fuzzy logic techniques.

Course Outcomes: After completion of this course students will be able to

- 1. Understand the fundamentals of artificial intelligence technique (CL-II).
- 2. Apply artificial intelligence technique for problem solving (CL-III).
- 3. Identify the applications of Fuzzy Logic (CL-III).
- 4. Analyze various machine learning algorithms for solving problems (CL-IV).

Course Contents:

Basics of Artificial Intelligent Systems: Fundamentals of artificial intelligence. Intelligent control approaches and architecture. Types of AI Agent, Concept of Rationality, nature of environment, structure of agents. Turing Test in AI.

Problem Solving Algorithms: Search Algorithms in artificial intelligence, types of search algorithms, problem reduction. Constraint satisfaction problem: Interference in CSPs; Back tracking search for CSPs, Local Search for CSPs, structure of CSP Problem. Beyond classical Search: local search algorithms and optimization problem.

Introduction to Fuzzy Logic Control System: Fuzzy sets, fuzzy relations, basic fuzzy set operations, properties of fuzzy sets. Fuzzy logic controller.

Foundations of Machine Learning: Machine learning techniques. AI & ML, dataset for ML, data pre-processing, training versus testing, positive and negative Class, cross-validation.

Types of Learning: Supervised, Unsupervised and semi-Supervised learning. Supervised Learning, types of supervised machine learning algorithms, types of unsupervised learning algorithm, dimensionality reduction, subset selection, and introduction to principal component analysis

Laboratory Exercises / Practical:

- 1. Write program of Vacuum Cleaner World Agent using Python.
- 2. Calculate the output of a simple neuron.
- 3. Create and view custom neural networks.
- 4. Classification of linearly separable data with a perceptron.
- 5. Classify species of Iris flower using MLP.
- 6. Implement and test MLP trained with back propagation algorithm
- 7. Linear Regression Using Python
- 8. Implementation of fuzzy logic membership functions.

- 9. Temperature monitoring using Fuzzy Logic.
- 10. Mini Project on any of the technologies studied in the course (Group activity)

Learning Resources:

- 1. DanW. Patterson. *Introduction to Artificial Intelligence & Expert system*, Prentice Hall of India, 2004.
- 2. Russell, S. and Norvig, P. 2015. *Artificial Intelligence A Modern Approach*, 3rd edition, Prentice Hall, 2009.
- 3. Rich E., Knight K. and Nair B. S., Artificial Intelligence, Tata McGraw Hills (2009).

Supplementary Reading:

- 1. K. Gurney. An Introduction to Neural Networks, UCL Press, London, 1997.
- 2. S. Rajasekaran, G.A. Vijayalakshmi Pai. Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis and Applications, Prentice Hall of India, 2003.

Web Resources:

Weblinks:

https://nptel.ac.in/courses/117105084/

MOOCs:

https://www.coursera.org/learn/neural-networks-deep-learning

Pedagogy:

- Power Point Presentations, Videos
- Co-teaching
- Group Activities

Assessment Scheme:

Class Continuous Assessment (CCA) (30 Marks)

Assignments	Midterm Exam	Class Test	Students Initiatives
10	15	5	NIL

Laboratory Continuous Assessment (LCA) (30 Marks)

Understandin g the Objectives	Understanding of Procedure and Initiatives	Experimenta l Skills	Oral
5	5	5	15

Term End Examination:

Term end exam of 40 marks will be based on entire syllabus.

Syllabus:

Modul	Contents		Workload in Hrs		
e No.			Lab	Assess	
1	Basics of Artificial Intelligent Systems: Fundamentals of artificial intelligence. Intelligent control approaches and architecture. Types of AI Agent, Concept of Rationality, nature of environment, structure of agents. Turing Test in AI.	09	04		
2	Problem Solving Algorithms : Search Algorithms in artificial intelligence, types of search algorithms, problem reduction. Constraint satisfaction problem: Interference in CSPs; Back tracking search for CSPs, Local Search for CSPs, structure of CSP Problem. Beyond classical Search: local search algorithms and optimization problems.	09	04		
3	Introduction to Fuzzy Logic Control System: Fuzzy sets, fuzzy relations, basic fuzzy set operations, properties of fuzzy sets. Fuzzy logic controller.	09	06		
4	Foundations of Machine Learning: Machine learning techniques. AI & ML, dataset for ML, data pre-processing, training versus testing, positive and negative Class, cross-validation.	09	06		
5	Types of Learning : Supervised, Unsupervised and semi-Supervised learning. Supervised Learning, types of supervised machine learning algorithms, types of unsupervised learning algorithm, dimensionality reduction, subset selection, and introduction to principal component analysis	09	10		