Parameterized Pre-Coloring Extension and List Coloring Problems

Gregory Gutin¹ Diptapriyo Majumdar¹ Sebastian Ordyniak² Magnus Wahlström¹

¹Royal Holloway, University of London, United Kingdom

²University of Sheffield, United Kingdom

April 8, 2020, BCTCS, Swansea, United Kingdom

Outline

- 1 Definition and Properties
- 2 Our Results
- 3 Pre-Coloring Extension
- 4 Conclusions

Parameterized Problem

• A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$. Input instance of L is (x, k) where $x \in \Sigma^*, k \in \mathbb{N}$. k is called parameter.

Parameterized Problem

- A parameterized problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$. Input instance of L is (x, k) where $x \in \Sigma^*, k \in \mathbb{N}$. k is called parameter.
- Example: Vertex Cover parameterized by Solution Size. $L = \{(G,k) | \exists S \subseteq V(G) \text{ such that } |S| \leq k \text{ and } G \setminus S \text{ has no edge} \}.$

Fixed-Parameter Tractability (FPT)

- Algorithm \mathcal{A} runs in $f(k) \cdot |x|^c$ time.
- A is called FIXED PARAMETER ALGORITHM.

Hardness in Parameterized Complexity

į

Hardness in Parameterized Complexity

$$FPT \subseteq W[1] \subseteq W[2] \subseteq \ldots \subseteq XP$$
.

į

Kernelization

- \bullet Preprocessing takes poly(|x|,k) time.
- $(x,k) \in L$ if and only if $(x',k') \in L$.
- $\bullet |x'| + k' \le g(k).$
- If g(k) = poly(k), then we say that L has a polynomial kernel.

-

p-Coloring

Input: An undirected graph G = (V, E) and a set of p colors Q.

Goal: Does there exist $\lambda:V(G)\to Q$ such that for every $u,v\in V(G),\ \lambda(u)\neq\lambda(v)$?

p-Coloring

Input: An undirected graph G = (V, E) and a set of p colors Q.

Goal: Does there exist $\lambda: V(G) \to Q$ such that for every $u, v \in V(G), \lambda(u) \neq \lambda(v)$?

• For $p \leq 2$, p-Coloring is polynomial time solvable.

p-Coloring

Input: An undirected graph G = (V, E) and a set of p colors Q.

Goal: Does there exist $\lambda: V(G) \to Q$ such that for every $u, v \in V(G), \lambda(u) \neq \lambda(v)$?

- For $p \leq 2$, p-Coloring is polynomial time solvable.
- For $p \geq 3$, p-Coloring is NP-Complete in general graphs.

p-Coloring

Input: An undirected graph G = (V, E) and a set of p colors Q.

Goal: Does there exist $\lambda: V(G) \to Q$ such that for every $u, v \in V(G), \lambda(u) \neq \lambda(v)$?

- For $p \leq 2$, p-Coloring is polynomial time solvable.
- For $p \geq 3$, p-Coloring is NP-Complete in general graphs.
- p-Coloring is polynomial time solvable on chordal graphs.

Pre-coloring Extension

Input: A graph G, and a precoloring $\lambda_P: X \to Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Goal: Can λ_P be extended to a proper coloring of G using colors from only Q?

Pre-coloring Extension

Input: A graph G, and a precoloring $\lambda_P: X \to Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Goal: Can λ_P be extended to a proper coloring of G using colors from only Q?

• Pre-coloring Extension is polynomial time solvable in cluster graphs, but NP-Complete in bipartite graphs.

LIST COLORING

Input: A graph G, and a list L(v) for every $v \in V(G)$.

Goal: Is there a proper coloring $\lambda: V(G) \to \bigcup_{u \in V(G)} L(u)$ such

that for every $u \in V(G)$, $\lambda(u) \in L(u)$?

g

LIST COLORING

Input: A graph G, and a list L(v) for every $v \in V(G)$.

Goal: Is there a proper coloring $\lambda:V(G)\to\bigcup_{u\in V(G)}L(u)$ such

that for every $u \in V(G)$, $\lambda(u) \in L(u)$?

• LIST COLORING is polynomial time solvable in clique, and cluster graph.

.

LIST COLORING

Input: A graph G, and a list L(v) for every $v \in V(G)$.

Goal: Is there a proper coloring $\lambda: V(G) \to \bigcup_{u \in V(G)} L(u)$ such

that for every $u \in V(G)$, $\lambda(u) \in L(u)$?

- LIST COLORING is polynomial time solvable in clique, and cluster graph.
- LIST COLORING is NP-Complete in split graphs, and graphs of cliquewidth two.

Outline

- Definition and Properties
- 2 Our Results
- 3 Pre-Coloring Extension
- 4 Conclusions

Our problems and results

Our problems and results

Pre-Coloring Extension Clique Modulator

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

Our problems and results

PRE-COLORING EXTENSION CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k ver-

tices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

What is known

From Paulusma (WG 2015)

Parameter	Coloring	Pre-Color Ext	List-Color
clique-width	W[1]-hard	para-NPC	para-NPC
treewidth	FPT	W[1]-hard	W[1]-hard
cluster deletion	FPT	W[1]-hard	W[1]-hard
vertex cover	FPT	FPT	W[1]-hard

Pre-Coloring Extension Clique Modulator

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

PRE-COLORING EXTENSION CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

 Golovach, Paulusma, and Song (2014) asked to determine the parameterized complexity status of Pre-Coloring Extension Clique Modulator.

PRE-COLORING EXTENSION CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

- Golovach, Paulusma, and Song (2014) asked to determine the parameterized complexity status of Pre-Coloring Extension Clique Modulator.
- We prove positively that PRE-COLORING EXTENSION CLIQUE MODULATOR is FPT.

PRE-COLORING EXTENSION CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

- Golovach, Paulusma, and Song (2014) asked to determine the parameterized complexity status of Pre-Coloring Extension Clique Modulator.
- We prove positively that PRE-COLORING EXTENSION CLIQUE MODULATOR is FPT.
- We prove that PRE-COLORING EXTENSION CLIQUE MODULATOR admits a kernel with 3k vertices.

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n - k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n-k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k vertices, a list L(v) of colors for every $v \in V(G)$

tices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of *G*?

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n-k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k vertices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

• An instance (G, L, k) of (n - k)-Regular List Coloring can be transformed into an equivalent instance (G', D, L, k') of (n - k)-Regular List Coloring such that k' = 2k.

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k ver-

tices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k ver-

tices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

• Golovach, Paulusma, and Song [2014] asked to determine the parameterized complexity status of this problem.

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k ver-

tices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

- Golovach, Paulusma, and Song [2014] asked to determine the parameterized complexity status of this problem.
- We prove that LIST COLORING CLIQUE MODULATOR admits a randomized algorithm running in time $\mathcal{O}^*(2^k)$.

LIST COLORING CLIQUE MODULATOR

Input: A graph G, a clique modulator D with at most k ver-

tices, a list L(v) of colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

- Golovach, Paulusma, and Song [2014] asked to determine the parameterized complexity status of this problem.
- We prove that LIST COLORING CLIQUE MODULATOR admits a randomized algorithm running in time $\mathcal{O}^*(2^k)$.
- We prove that LIST COLORING CLIQUE MODULATOR admits no polynomial kernel unless NP ⊆ coNP/poly.

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n-k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n - k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

• Banik, Jacob, Paliwal, and Raman [IWOCA 2019] proved that (n-k)-REGULAR LIST COLORING is FPT and asked if (n-k)-REGULAR LIST COLORING admits a polynomial kernel.

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n-k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

- Banik, Jacob, Paliwal, and Raman [IWOCA 2019] proved that (n-k)-REGULAR LIST COLORING is FPT and asked if (n-k)-REGULAR LIST COLORING admits a polynomial kernel.
- We answer positively by proving that (n-k)-REGULAR LIST COLORING admits a polynomial kernel with $\mathcal{O}(k^2)$ vertices and colors.

(n-k)-Regular List Coloring

Input: A graph G, a list L(v) of (n-k) colors for every $v \in V(G)$.

Parameter: k

Question: Is there a proper list coloring of G?

- Banik, Jacob, Paliwal, and Raman [IWOCA 2019] proved that (n-k)-REGULAR LIST COLORING is FPT and asked if (n-k)-REGULAR LIST COLORING admits a polynomial kernel.
- We answer positively by proving that (n-k)-REGULAR LIST COLORING admits a polynomial kernel with $\mathcal{O}(k^2)$ vertices and colors.
- We also provide a compression to a variation of the problem with 11k vertices and $\mathcal{O}(k^2)$ colors, encodable in $\mathcal{O}(k^2 \log_2 k)$ bits.

Outline

- Definition and Properties
- 2 Our Results
- **3** Pre-Coloring Extension
- 4 Conclusions

Pre-Coloring Extension Clique Modulator

Input: A graph G, a clique modulator D with at most k vertices, and a precoloring $\lambda_P: X \mapsto Q$ for $X \subseteq V(G)$ where Q is a set of colors.

Parameter: k

Question: Can λ_P be extended to a proper coloring of G using colors from only Q?

 D_P : precolored vertices from D. $C_N = \{v \in C | \exists u \in D', uv \notin E(G)\}$

 D_P : precolored vertices from D. $C_N = \{v \in C | \exists u \in D', uv \notin E(G)\}$

• Rule 1: If a vertex $v \in D'$ has less than |Q| neighbors in G, then delete v from G.

$$\begin{split} D_P \colon & \text{precolored vertices from } D. \\ C_N &= \{v \in C | \exists u \in D', uv \notin E(G)\} \end{split}$$

- Rule 1: If a vertex $v \in D'$ has less than |Q| neighbors in G, then delete v from G.
- When Rule 1 is not applicable, and $|Q| \ge |C|$, hence $|C_N| \le k^2$.

• Construct auxiliary bipartite graph $J = (C_N, D)$.

- Construct auxiliary bipartite graph $J = (C_N, D)$.
- Rule 2: Let $A \subseteq C_N$ be an inclusion-wise minimal set such that $|A| > N_J(A)$. Remove $D' \cap N_J(A)$ from G.

- Construct auxiliary bipartite graph $J = (C_N, D)$.
- Rule 2: Let $A \subseteq C_N$ be an inclusion-wise minimal set such that $|A| > N_J(A)$. Remove $D' \cap N_J(A)$ from G.
- If Rule 2 is not applicable, then $|C_N| \leq |D| \leq k$.

$$\begin{split} D_P \colon & \text{precolored vertices from } D. \\ C_N &= \{v \in C | \exists u \in D', uv \notin E(G)\} \end{split}$$

 D_P : precolored vertices from D. $C_N = \{v \in C | \exists u \in D', uv \notin E(G)\}$

• Rule 3: Let $v \in C$ be a *pre-colored* vertex with color $\lambda_P(v)$. Then remove the vertex set $\lambda_P^{-1}(\lambda_P(v))$ from G and remove $\lambda_P(v)$ from Q.

 D_P : precolored vertices from D. $C_N = \{v \in C | \exists u \in D', uv \notin E(G)\}$

- Rule 3: Let $v \in C$ be a pre-colored vertex with color $\lambda_P(v)$. Then remove the vertex set $\lambda_P^{-1}(\lambda_P(v))$ from G and remove $\lambda_P(v)$ from Q.
- When Rule 3 is not applicable, there is no pre-colored vertex in C'.

 $\exists v \in V(G) \text{ s.t. } (u,v) \notin E(G) \text{ and } \lambda_P(v) \neq p$

Maxiumum matching M

 C_M : vertices of C' matched by M

 $\exists v \in V(G) \text{ s.t. } (u,v) \notin E(G) \text{ and } \lambda_P(v) \neq p$

Maxiumum matching M

 C_M : vertices of C' matched by M

• Construct bipartite graph H = (C, P) as above.

 $\exists v \in V(G) \text{ s.t. } (u,v) \notin E(G) \text{ and } \lambda_P(v) \neq p$

Maxiumum matching M

 C_M : vertices of C' matched by M

- Construct bipartite graph H = (C, P) as above.
- Rule 4: Remove the vertices of $C' \setminus C_M$ and arbitrary $|C' \setminus C_M|$ colors from Q.

 $\exists v \in V(G) \text{ s.t. } (u,v) \notin E(G) \text{ and } \lambda_P(v) \neq p$

Maxiumum matching ${\cal M}$

 C_M : vertices of C' matched by M

- Construct bipartite graph H = (C, P) as above.
- Rule 4: Remove the vertices of $C' \setminus C_M$ and arbitrary $|C' \setminus C_M|$ colors from Q.
- If Rule 4 is not applicable, then $|C'| \leq |P| \leq |D_P| \leq k$.

Precoloring Extension: Result

$$\begin{split} D_P \text{: precolored vertices from } D. \\ C_N = \{v \in C | \exists u \in D', uv \notin E(G)\} \end{split}$$

Precoloring Extension: Result

 D_P : precolored vertices from D. $C_N = \{v \in C | \exists u \in D', uv \notin E(G)\}$

•
$$|C_N| \le |D| \le k, |C'| \le |D_P| \le k.$$

Precoloring Extension: Result

 D_P : precolored vertices from D. $C_N = \{v \in C | \exists u \in D', uv \notin E(G)\}$

- $|C_N| \le |D| \le k, |C'| \le |D_P| \le k.$
- Hence, Pre-Coloring Extension Clique Modulator has a kernel with 3k vertices.

Outline

- Definition and Properties
- 2 Our Results
- 3 Pre-Coloring Extension
- 4 Conclusions

Conclusions

Conclusions

• Can we derandomize our algorithms for LIST COLORING CLIQUE MODULATOR?

Conclusions

- Can we derandomize our algorithms for LIST COLORING CLIQUE MODULATOR?
- For (n-k)-REGULAR LIST COLORING, can we get a kernel with $\mathcal{O}(k)$ veritces?

THANK YOU