Name			 Sec	_

Questions:

Answers:

1. For the graph below, use ordinary arithmetic to compute A^3 . What does this matrix represent?

2. As directed below, prove that the following algorithm produces a matrix in which the number in the ith row and jth column is the number of paths of length n from the ith node to the jth node.

initialize \boldsymbol{A} as the adjacency matrix for graph \boldsymbol{G} ; $\boldsymbol{M} = \boldsymbol{A}$

for (i = 2 to n)

 $M = M \times A$ (using ordinary arithmetic)

- a) In terms of A, what is the value of M when the loop terminates?
- b) Give the loop invariant. (This should be a statement based on k—the number of loops—such that when the algorithm stops, it will yield the result we want.)
- c) Give the basis for an induction proof. (This will be the case before going through the loop, i.e. for k=0.)
- d) Prove the induction implication. (That is, prove $S(k) \Rightarrow S(k+1)$ where S(k) is your loop invariant.)

3. Assuming Warshall's algorithm uses node 1 for its first pivot and node 2 as its second pivot, give the adjacency matrix after the first two iterations, i.e. after using both node 1 as a pivot and node 2 as a pivot.

4. Assuming Floyd's algorithm uses node 1 for its first pivot and node 2 as its second pivot, give the adjacency matrix after the first two iterations, i.e. after using both node 1 as a pivot and node 2 as a pivot.

After proof 1:

After pivot 2:

