

SLU11 - Tree-based Models

October 1st and 2nd, 2022

Before we start

Ask and vote for questions through https://www.sli.do/ with the code:

#7815174

Overview

Objective: build an intuition on different tree-based models and techniques

We will cover:

- Rule-based systems
- Decision trees
- Ensemble learning: Bagging (random forests) and Gradient Boosting

Motivation

- Tree-based models represent knowledge as a set of rules
- Ensemble methods:
 - Combine basic models to create more powerful models
 - Avoid overfitting
- Tree-based models are very widely used and very flexible

Decision Trees

First 5 rows from the data table:

	Outlook	Temperature	Humidity	Windy	Class
0	sunny	hot	high	false	0
1	sunny	hot	high	true	0
2	overcast	hot	high	false	1
3	rain	mild	high	false	1
4	rain	cool	normal	false	1

What would be the best root?

Building a decision tree

What could go wrong, really?

Many minds are better than one

Bootstrap aggregating or bagging

With random feature selection

One decision-tree per data set

With random feature selection

Decision trees Random forests Gradient boosting

Each tree uses the previous tree

New training each time

Fitting on pseudo-residuals

New training each time

3. Recap

Recap

- Decision-trees are a way to learn sets of rules from a training set, but prone to overfitting
- Ensemble learning techniques can be used to combine the predictions of several models, and reduce overfitting
- Random forests use row sampling and column sampling to build several trees in parallel and control overfitting
- Gradient boosting build shallow trees sequentially to reduce the bias of the combined estimator,
 by making each tree specialize in correcting past errors
- Both random forests and gradient boosting improve the performance of decision-trees, at the expense of interpretability

4. Q&A #7815174