# Markov chain approximation methods for continuous-time optimal control problems

Keyvan Eslami and Tom Phelan<sup>1</sup>

Ryerson University and Federal Reserve Bank of Cleveland

November 25, 2020

<sup>&</sup>lt;sup>1</sup>The views expressed in this lecture are those of the authors and don't necessarily reflect the position of the Federal Reserve Bank of Cleveland or the Federal Reserve System.

#### Introduction

Optimization problems ubiquitous in economics.

This lecture considers Markov-chain approximation (MCA) methods:

- illustration and contrast with finite-difference methods.
- applies to income fluctuation problem with discrete-choice.

#### Introduction

Optimization problems ubiquitous in economics.

This lecture considers Markov-chain approximation (MCA) methods:

- illustration and contrast with finite-difference methods.
- applies to income fluctuation problem with discrete-choice.

Applications exist in literature but some benefits unexplored.

(see paper for further discussion)

#### Outline

Example 1: one-sector neoclassical growth model.

• Implicit finite-difference scheme of Achdou et al special case of MCA.

#### Outline

Example 1: one-sector neoclassical growth model.

• Implicit finite-difference scheme of Achdou et al special case of MCA.

#### General framework:

- Local consistency (moment-matching) conditions.
- Reduction to discrete-time discrete-state problem.

#### Outline

Example 1: one-sector neoclassical growth model.

• Implicit finite-difference scheme of Achdou et al special case of MCA.

#### General framework:

- Local consistency (moment-matching) conditions.
- Reduction to discrete-time discrete-state problem.

Example 2: Income-fluctuation problem with discrete-choice.

Illustrates benefits of using alternatives to PFI.

(additional macrofinance application in paper)



## Neoclassical growth model

Suppose farmer has preferences

$$U(c) = \mathbb{E}\left[\rho \int_0^\infty e^{-\rho t} u(c_t) dt\right]$$
 (1)

and capital stock evolves according to

$$dk_t = [f(k_t) - \delta k_t - c_t]dt + \sigma(k_t)dZ_t,$$
(2)

for concave f,  $\delta > 0$ , BM Z and smooth  $\sigma$  vanishing outside of some  $[\underline{k}, \overline{k}]$ .

PROBLEM: maximize (1) s.t. (2) and  $k_0 = k$ .



## Standard discrete-time approach

Given  $k_0 \in [\underline{k}, \overline{k}]$  of capital, replace (2) with

$$k_{t+\Delta_t} = k_t + (f(k_t) - \delta k_t - c_t)\Delta_t + \sqrt{\Delta_t}\sigma(k_t)X_t$$

for  $\Delta_t>0$  and i.i.d.  $(X_t)_{t=0}^\infty$  with mean zero assuming  $\pm 1$ , and define

$$BV(k) = \max_{c \ge 0} \Delta_t u(c) + e^{-\rho \Delta_t} \mathbb{E} \left[ V \left( k + (f(k) - \delta k - c) \Delta_t + \sqrt{\Delta_t} \sigma(k) X \right) \right]$$
(3)

Key points:

- Principle of Optimality  $\implies$  value function unique solution to BV = V.
- T is contraction  $\implies \lim_{N\to\infty} B^N V_0 = V$  for any  $V_0$ .



#### MCA approach

MCA method approximates problem in fundamentally different way.

## MCA approach

MCA method approximates problem in fundamentally different way.

Consider Markov chain for capital s.t.:

- restricted to *finite* set  $S := \{\underline{k}, \underline{k} + \Delta_k, \dots, \overline{k}\}.$
- $\Delta k := k_{t+\Delta_t} k_t$  supported on  $\{-\Delta_k, 0, \Delta_k\}$ .
- same mean and variance as original process.

## MCA approach

MCA method approximates problem in fundamentally different way.

Consider Markov chain for capital s.t.:

- restricted to *finite* set  $S := \{\underline{k}, \underline{k} + \Delta_k, \dots, \overline{k}\}.$
- $\Delta k := k_{t+\Delta_t} k_t$  supported on  $\{-\Delta_k, 0, \Delta_k\}$ .
- same mean and variance as original process.

#### Example:

$$p(k, k \pm \Delta_k, c) = \frac{\Delta_t}{\Delta_k^2} \left( \frac{\sigma^2(k)}{2} + \Delta_k [f(k) - c - \delta k]^{\pm} \right)$$

$$p(k, k, c) = 1 - p(k, k - \Delta_k, c) - p(k, k + \Delta_k, c).$$
(4)



### Discrete-time dynamic programming arguments

Consider Bellman operator

$$\tilde{B}V(k) = \max_{c \ge 0} \Delta_t u(c) + e^{-\rho \Delta_t} \mathbb{E}[V(k')]. \tag{5}$$

As above  $\tilde{B}$  is contraction so  $\lim_{N\to\infty} \tilde{B}^N V_0 = V$  for any  $V_0$ .

(Approximately) same conditional moments:

- Mean:  $\mathbb{E}[k_{t+\Delta_t}|k_t=k]=k+\Delta_t(f(k)-c-\delta k)$
- Variance:  $\mathbb{E}[\operatorname{Var}(k_{t+\Delta_t})|k_t=k] = \Delta_t \sigma(k)^2 + o(\Delta_t)$ .

## Comparison of above problems

Above laws of motion "close" to one another for small  $\Delta_t$ .

 $\implies$  fixed points B and  $\tilde{B}$  of (3) and (5) "close" as  $\Delta_t \to 0$ .

Why is second formulation useful?

#### Comparison of above problems

Above laws of motion "close" to one another for small  $\Delta_t$ .

 $\implies$  fixed points B and  $\tilde{B}$  of (3) and (5) "close" as  $\Delta_t \to 0$ .

Why is second formulation useful? Key point:

Optimal control depends only on local payoffs.

Shape and regularity of value function irrelevant.

## No non-linear root-finding

Maximization becomes

$$\max_{c \ge 0} u(c) + e^{-\rho \Delta_t} [f(k) - \delta k - c]^+ V^F - [f(k) - \delta k - c]^- V^B + \frac{\sigma(k)^2}{2} V^C$$

where  $V^F$ ,  $V^B$  and  $V^C$  = forward and backward and central differences.

Optimal c in closed-form for any V and f.

Figure 1 plots examples with

$$u(c) = 2c^{1/2}$$
,  $f(k) = \max\left\{\sqrt{k}, 5\sqrt{k-5}\right\}$ ,  $\rho = 1, \delta = 0.05$ ,  $N = 1000$ .

### Example

Converges with tol.  $10^{-8}$  in < 0.03 seconds from initial  $c(k) = f(k) - \delta k$ .



Figure 1: Value and policy functions

### Intuition for computational benefits

Two properties make this fast:

- Consumption update in closed-form.
- Capital only moves up/down/stay \imp updating matrix in PFI sparse.

Above features shared by other methods (endogenous grid, finite-differences).

Virtue of above: generalizes more easily to richer environments.

No need for complicated interpolation or clever choice of grids.

#### Formal analysis

Consider problems of form

$$V(X) = \max_{u \in \mathcal{C}} \mathbb{E} \left[ \int_0^{\tau} e^{-\rho t} F(X_t, u_t) dt + I_{\tau < \infty} g(X_{\tau}) \right]$$
$$dX_t = \mu(X_t, u_t) dt + \sigma(X_t, u_t) dB_t$$
$$X_0 = X$$

#### where

- $X \subseteq \mathbb{R}^n$  denotes *state*;  $B \in \mathbb{R}^n$  Brownian motion;
- C set of admissible controls in  $\mathbb{R}^m$ ; and
- $\tau =$  (possibly stochastic) time when  $(X_t, t)$  exits some  $U \subseteq \mathbb{R}^{n+1}$ .

Basic idea: approximate above with simpler finite-state problem.



#### Local consistency

#### **Definition**

Suppose X solves  $dX_t = \mu(X_t, u_t)dt + \sigma(X_t, u_t)dZ_t$  and  $(X^h)_{h>0}$  is family of Markov chains with finite state spaces  $(S_h)_{h>0}$ .

It is locally consistent if

$$\mathbb{E}[\Delta_n^h X] = \Delta_n^h(X)\mu(X, u) + o(\Delta_t^h(X))$$

$$\mathbb{E}[(\Delta_n^h X - \mathbb{E}[\Delta_n^h X])^2] = \Delta_n^h(X)\sigma(X, u)\sigma(X, u)^t + o(\Delta_t^h(X))$$
(6)

where increments and times denoted

$$\Delta_{n}^{h}X = X_{n+1}^{h} - X_{n}^{h}$$
  $t_{n}^{h} = \sum_{i=1}^{n} \Delta^{h}t(X_{n}^{h}, u_{n}^{h}).$ 



## Fundamental convergence result

#### Theorem (Kushner and Dupuis)

If  $(X^h)_{h\geq 0}$  is locally consistent with X, then  $X^h\to X$  in distribution as  $h\to 0$ . For all x we have  $V^h(x)\to V(x)$  as  $h\to 0$ , where  $V^h$  is value function for finite-state problem.

Standard (discrete-time) arguments show  $V^h$  solves

$$V^{h}(x) = \max \left\{ g(x), \max_{u} \Delta_{t} F(x, u) + e^{-\rho \Delta_{t}} \mathbb{E}^{u} [V^{h}(x')] \right\}$$
 (7)

where x follows given Markov chain.

Solution methods well-understood for problem (7).



### Comparison with finite-difference methods

Common method for PDE problems: finite-differences (Achdou et al (2020)).

Derives limit of Bellman equation (a PDE) and replaces derivatives with quotients.

Briefly, for any t, h > 0, Principle of Optimality gives

$$V(k,t) = \max_{c} \int_{t}^{t+h} e^{-\rho s} u(c(s)) ds + V(k(t+h), t+h)$$

rearranging and using Ito's lemma gives

$$0 = \max_{c} e^{-\rho t} u(c) + \frac{\partial V}{\partial t} + [f(k) - c - \delta k] \frac{\partial V}{\partial k} + \frac{\sigma(k)^2}{2} \frac{\partial^2 V}{\partial k^2}.$$



## Implicit finite-difference method

Write  $V_j^n = V(k_j, t_n)$  for  $(k_j, t_n)$  in fixed grid.

Implicit method: given  $(V^n, c^n)$ ,  $V^{n+1}$  solves

$$\left(\frac{1}{\Delta_t} + \rho\right) V^{n+1} = \frac{V^n}{\Delta_t} + u(c^n) + [f(k) - c^n - \delta k]^+ (V^{n+1})^F - [f(k) - c - \delta k]^- (V^{n+1})^B + \frac{\sigma(k)^2}{2} (V^{n+1})^C.$$

## Implicit finite-difference method

Write  $V_j^n = V(k_j, t_n)$  for  $(k_j, t_n)$  in fixed grid.

Implicit method: given  $(V^n, c^n)$ ,  $V^{n+1}$  solves

$$\left(\frac{1}{\Delta_t} + \rho\right) V^{n+1} = \frac{V^n}{\Delta_t} + u(c^n) + [f(k) - c^n - \delta k]^+ (V^{n+1})^F - [f(k) - c - \delta k]^- (V^{n+1})^B + \frac{\sigma(k)^2}{2} (V^{n+1})^C.$$

Bellman equation of discrete problem:

$$\frac{(1 - e^{-\rho \Delta_t})}{\Delta_t} V = \max_{c \ge 0} u(c) + e^{-\rho \Delta_t} [f(k) - \delta k - c]^+ V^F$$
$$- e^{-\rho \Delta_t} [f(k) - \delta k - c]^- V^B + e^{-\rho \Delta_t} \frac{\sigma(k)^2}{2} V^C$$



## IFD method special case of MCA

Fixed point may be written as solution to

$$0 =: \max_{c \in \Gamma(k)} u(c) + T_{\mathsf{IFD}}(c; \Delta_t) V \tag{8}$$

for  $T_{\mathsf{IFD}}(c): \mathbb{R}^{N} \to \mathbb{R}^{N}$ . If  $\Delta_{t} = \infty$  IFD algorithm becomes:

- fix  $V_0$  arbitrarily;
- ② find  $c_0$  by solving  $\max_{c \in \Gamma(k)} u(c) + T(c)V_0$ ;
- **1** replace  $V_0$  with  $V_1$  s.t.  $0 = u(c_0) + T(c_0)V_1$  and repeat until convergence.

This is policy function iteration "in disguise".

Operators coincide in the limit.



## IFD method special case of MCA

#### Lemma

Given 
$$\Delta_t$$
 and (4) write  $T(c; \Delta_t) = [e^{-\rho \Delta_t} P(c) - I]/\Delta_t$ . Then for all  $c$ , 
$$\lim_{\Delta_t \to 0} T(c; \Delta_t) = \lim_{\Delta_t \to \infty} T_{\mathsf{IFD}}(c, \Delta_t) \in \mathbb{R}^{\mathsf{N} \times \mathsf{N}}.$$

### IFD method special case of MCA

#### Lemma

Given 
$$\Delta_t$$
 and (4) write  $T(c; \Delta_t) = [e^{-\rho \Delta_t} P(c) - I]/\Delta_t$ . Then for all  $c$ ,

$$\lim_{\Delta_t \to 0} T(c; \Delta_t) = \lim_{\Delta_t \to \infty} T_{\mathsf{IFD}}(c, \Delta_t) \in \mathbb{R}^{N \times N}.$$

I.e. limit of implicit method as  $\Delta_t \to \infty$  equivalent to:

- 1 particular choice of Markov chain; and
- 2 particular method for solving the resulting equation (PFI).

Policy function iteration sometimes not the best option.



#### Finite-dffierences vs MCA

Vast literatures for both techniques.

In my opinion, MCA deserves to be more widely known:

- 1 Intuitive task: approx with Markov chain by matching moments.
- Oiscretized problem solved using techniques familiar to economists.
- 3 Avoids (technical) PDE theory.

For Point 2, you can use any technique you want for the discrete problem:

• e.g. VFI, PFI, modified PFI, etc.

#### Finite-dffierences vs MCA

Vast literatures for both techniques.

In my opinion, MCA deserves to be more widely known:

- Intuitive task: approx with Markov chain by matching moments.
- Oiscretized problem solved using techniques familiar to economists.
- 3 Avoids (technical) PDE theory.

For Point 2, you can use any technique you want for the discrete problem:

• e.g. VFI, PFI, modified PFI, etc.

QUESTION: when to use each approach?



#### Pros and cons of implicit FDM and PFI

Previous lecture gave intuition for speed of implicit FDM:

- FOCs in closed-form.
- Typically converges in small number of iterations.

Point 2 breaks down in multiple dimensions and large state spaces:

- Transition matrix becomes less sparse.
- Approximating solution to Ax = b slow for large A.

However, no need to use PFI. Often better to use modified PFI or alternatives.

## Recap of PFI and modified PFI

State space S; timestep  $\Delta_t \in \mathbb{R}^{|S|}$ ; transition probabilities  $P: S^2 \times U \to [0,1]$ .

DP equation of form

$$V(x) = \max_{u \in U} \Delta_t(x) f(x, u) + e^{-\rho \Delta_t(x)} \sum_{x' \in S} P(x, x', u) V(x').$$

Define  $T(\hat{u}) := e^{-\rho \Delta_t} P(\hat{u}) - I$  and write Bellman equation as

$$0 = \max_{\hat{u} \in U^{|S|}} F(\hat{u}) + T(\hat{u})v =: B(v)$$
(9)

PFI may be summarized:

- Given  $v_0$  choose  $\hat{u}(v_0)$  to solve  $B(v_0) = F(\hat{u}(v_0)) + T(\hat{u}(v_0))v_0$ .
- Define  $v_1 = -T(\hat{u}(v_0))^{-1}F(\hat{u}(v_0)).$
- Repeat above with  $v_1$  in place of  $v_0$  until convergence.



#### Modified PFI

Write  $\hat{u}(v)$  for optimal control given v and abbreviate  $\hat{u}_n := \hat{u}(v_n)$ .

Updating law:

$$v_{n+1} = -T(\hat{u}(v_n))^{-1}F(\hat{u}(v_n))$$

$$= v_n - T(\hat{u}(v_n))^{-1}B(v_n)$$

$$= v_n + \sum_{i=0}^{\infty} (I + T(\hat{u}_n))^{i}B(v_n).$$
(10)

Modified policy function iteration truncates sum in (10) at fixed k.

No solving of large linear system.



## Durable and non-durable consumption

Illustrate with income fluctuation problem with discrete-choice.

Assume preferences over non-durable and durable consumption given by

$$U(c,D) := \mathbb{E}\left[\rho \int_0^\infty e^{-\rho t} u(c_t, D_t) dt\right]$$
 (11)

for some u. Possible values of durable consumption

$$S_D := \{\underline{D}, \underline{D} + \Delta_D, \dots, \underline{D} + N_D \Delta_D\}$$

for some  $\underline{D}$ ,  $N_D$  and  $\Delta_D$ .

( $S_D$  primitive of problem, not chosen in discretization.)



## Durable and non-durable consumption

Income:  $y_t = e^{z_t}$  for AR(1) z. Price of durable good =  $\overline{p}$ .

- At  $t \ge 0$  agent chooses whether to increase durable consumption.
- Opportunities to purchase arrive at rate  $\lambda > 0$ .
- As  $\lambda \to \infty$  durable good changes instantaneously.

Law of motion for state variables

$$da_{t} = [ra_{t} + y_{t} - c_{t}]dt - \overline{p}dD_{t}(q_{t})$$

$$dz_{t} = -\theta z_{t}dt + \sigma dZ_{t}$$

$$dD_{t}(q_{t}) = dJ_{t}(q_{t})$$
(12)

 $J = \text{jump process with arrival rate } \lambda$ ;  $q_t$  indicates purchase of durable good.



#### Reduction to discrete problem

Two steps: approximate with finite-state problem; then solve that problem.

Define  $S := S_a \times S_z \times S_D$ , where

$$S_a := \{\underline{a} + \Delta_a, \dots, \overline{a} - \Delta_a\}$$

$$S_z := \{\underline{z} + \Delta_z, \dots, \overline{z} - \Delta_z\}$$

for some  $\Delta_a$ ,  $\Delta_v > 0$ .

To ensure income remains on grid impose  $\overline{p}\Delta_D=K\Delta_a$  for some  $K\geq 1$ .

Need to match conditional moments of process.



#### Transition probabilities

Wealth and income:

$$p(a \pm \Delta_a, z, D) = \frac{\Delta_t}{\Delta_a} [ra + y - c]^{\pm}.$$

Income:

$$p(a, z \pm \Delta_z, D) = \frac{\Delta_t}{\Delta_y^2} \left( \frac{\sigma^2}{2} 1_{z \notin \{\underline{z} + \Delta_z, \overline{z} - \Delta_z\}} + \Delta_z [-\theta z]^{\pm} \right).$$

Durable good:

$$p(\mathbf{a} - \overline{p}\Delta_D, \mathbf{z}, D + \Delta_{\mathbf{a}}) = \lambda \mathbf{1}_{q_t = (-\overline{p}\Delta_{\mathbf{a}}, \mathbf{0}, \Delta_D)} \Delta_t$$

where

$$q_t \in \{(0,0,0), (-\overline{p}\Delta_a,0,\Delta_D)\}$$
 .



## Durable and non-durable consumption

Define

$$T(c,q;\Delta_t) = u(c,D) + rac{1}{\Delta_t} \Big( e^{-r\Delta_t} \mathbb{E}[V(a',z',D')] - V(a,z,D) \Big).$$
 details

Optimal policy for durable good

$$q := \overline{q} 1_{V(a-K\Delta_a,z,D+\Delta_D)>V(a,z,D)}$$

## Durable and non-durable consumption

Define

$$T(c,q;\Delta_t) = u(c,D) + rac{1}{\Delta_t} \Big( e^{-r\Delta_t} \mathbb{E}[V(a',z',D')] - V(a,z,D) \Big).$$
 details

Optimal policy for durable good

$$q := \overline{q} 1_{V(a-K\Delta_a,z,D+\Delta_D)>V(a,z,D)}.$$

Discrete choice poses no problems for policy functions:

- No need for interpolation.
- No clever choice of grids. Uniform and fixed throughout.



#### Numerical illustration

Parameters mainly from Fella (2014) (see paper for details).

Table 2 gives convergence times for MPFI with tolerance  $10^{-5}$ .

|               | PFI       | VFI        | k = 10    | k = 50   | k = 100  |
|---------------|-----------|------------|-----------|----------|----------|
| (50, 10, 10)  | 0.382562  | 2.896908   | 0.349048  | 0.168027 | 0.159010 |
| (100, 20, 10) | 4.794657  | 21.105528  | 2.114040  | 0.608535 | 0.567014 |
| (150, 30, 10) | 16.679804 | 80.534670  | 9.213652  | 2.320960 | 1.716259 |
| (200, 40, 10) | 44.446097 | 253.265637 | 25.383114 | 7.502274 | 4.233294 |

Figure 2: Time until convergence for discrete choice problem

MPFI up to 10x faster than PFI for three-dimensional problem.



#### Numerical illustration

Durable consumption obviously discontinuous, but no problem for algorithm.



Figure 3: Non-durable and durable policy functions

#### Conclusion

Comprehensive theory for MCA methods developed by Kushner and Dupuis.

(authors dot all the i's and cross all the t's that I omitted here)

Goal of our paper: make accessible to economists and illustrate some benefits.

#### Main points:

- Implicit FDM of Achdou et al is PFI "in disguise".
- Modified PFI much faster than PFI when state space large.

Omitted from lecture: avoids headaches when state variables highly correlated.

### Operator in discrete-choice case

We now define  $\tilde{T}(c,q) = \lim_{\Delta_t \to 0} T(c,q;\Delta_t)$ .

Simplification gives

$$\tilde{T}(c,q) = u(c,D) + \frac{1}{\Delta_{a}}[ra + y - c]^{+}[V(a + \Delta_{a}, z, D) - V(a, z, D)] 
+ \frac{1}{\Delta_{a}}[ra + y - c]^{-}[V(a - \Delta_{a}, y, D) - V(a, y, D)] 
+ \frac{1}{\Delta_{z}^{2}}\left(\frac{\sigma^{2}}{2}\chi(z) + \Delta_{z}[-\theta z]^{+}\right)[V(a, z + \Delta_{z}, D) - V(a, z, D)] 
+ \frac{1}{\Delta_{z}^{2}}\left(\frac{\sigma^{2}}{2}\chi(z) + \Delta_{z}[-\theta z]^{-}\right)[V(a, z - \Delta_{z}, D) - V(a, z, D)] 
+ \lambda(V(a - q_{a}, z + q_{z}, D + q_{D}) - V(a, z, D)) - rV(a, z, D).$$
(13)