SEQUENCE LISTING

```
5
       (1) GENERAL INFORMATION:
            (i) APPLICANT:
                  (A) NAME: Hoechst Aktiengesellschaft
                  (B) STREET: -
  10
                  (C) CITY: Frankfurt
                 (D) STATE: -
                  (E) COUNTRY: Germany
                  (F) POSTAL CODE (ZIP): 65926
                  (G) TELEPHONE: 069-305-7072
  15
                  (H) TELEFAX: 069-35-7175
                  (I) TELEX: -
           (ii) TITLE OF INVENTION: Purification of higher order transcription
                   complexes from transgenic non-human animals
  20
          (iii) NUMBER OF SEQUENCES: 17
10 125
130 11 135
           (iv) COMPUTER READABLE FORM:
                 (A) MEDIUM TYPE: Floppy disk
                 (B) COMPUTER: IBM PC compatible
                 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
                 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
       (2) INFORMATION FOR SEQ ID NO: 1:
            (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 12 amino acids
                 (B) TYPE: amino acid
                 (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: peptide
 40
           (ix) FEATURE:
                 (A) NAME/KEY: Peptide
                 (B) LOCATION: 1..12
 45
           (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
           Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Val
                            5
                                                 10
 50
      (2) INFORMATION FOR SEQ ID NO: 2:
            (i) SEQUENCE CHARACTERISTICS:
 55
                 (A) LENGTH: 11 amino acids
```

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear
. 5	(ii) MOLECULE TYPE: peptide
10	<pre>(ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 111</pre>
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 10
20	(2) INFORMATION FOR SEQ ID NO: 3:
10 125 11	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
Control of the contro	(ii) MOLECULE TYPE: peptide
1130 1130	<pre>(ix) FEATURE: (A) NAME/KEY: Peptide (B) LOCATION: 110</pre>
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:
Targette	Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 10
40	(2) INFORMATION FOR SEQ ID NO: 4:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: peptide
	(ix) FEATURE: (A) NAME/KEY: Peptide
55	(B) LOCATION: 19

	(XI) DECORNCE DESCRIPTION: SEQ ID NO: 4:	
•	Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5	
. 5		
	(2) INFORMATION FOR SEQ ID NO: 5:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: cDNA	
20	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 122	
The same of the sa	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
25	GGAGCAACCG CCTGCTGGGT GC	22
	(2) INFORMATION FOR SEQ ID NO: 6:	
130 135	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
40	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 121	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	CCTGTGTTGC CTGCTGGGAC G	21
50	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 21 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	
55	(D) TOPOLOGY: linear	

	(ii) MOLECULE TYPE: cDNA	
5	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 121	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
10	GGAGACTGAA GTTAGGCCAG C	21
15	(2) INFORMATION FOR SEQ ID NO: 8:	
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 76 base pairs(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
EAT.	(ii) MOLECULE TYPE: cDNA	
25	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 176	
3 0	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
Official Control Contr	GCGGCACCAG GCCGCTGCTG TGATGATGAT GATGATGGCT GCTGCCCATG ACTGCGTAAT	60
	GCGGTCATGA CGCTTT	76
Statement Spanners Sp	(2) INFORMATION FOR SEQ ID NO: 9:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 75 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: cDNA	
50	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 175	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
55	GAAGGGGGTG GGGGAGGCAA GGGTACATGA GAGCCATTAC GTCGTCTTCC TGAATCCCTT	60

	5	(2) INFORMATION FOR SEQ ID NO: 10:	
•	10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
		(ii) MOLECULE TYPE: cDNA	
	15	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 122	
	20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
		CCCTATGACG TCCCGGATTA CG	2 2
	25	(2) INFORMATION FOR SEQ ID NO: 11:	
	30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	35	(ii) MOLECULE TYPE: cDNA	
	55	<pre>(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 122</pre>	
	40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
		GTGGAGTGGT GCCCGGCAAG GG	22
	45	(2) INFORMATION FOR SEQ ID NO: 12:	
	50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	55	(ii) MOLECULE TYPE: peptide	

TAGCCGCTTT GCTCG

, Fi
ni.
-
Ū
H
ij
ĝi.
1 1
M
1

~	(A) NAME/KEY: Peptide (B) LOCATION: 119	
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
10	Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15	
10	Arg Gly Cys	
15	(2) INFORMATION FOR SEQ ID NO: 13:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1310 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
25	(ix) FEATURE: (A) NAME/KEY: exon (B) LOCATION: 11310	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	CCATGGGCTA TCCCTATGAC GTCCCGGATT ACGCAGTCAT GGGCAGCAGC CATCATCATC	60
35	ATCATCACAG CAGCGGCCTG GTGCCGCGCG GCAGCCATAT GGATCAGAAC AACAGCCTGC	120
	CACCTTACGC TCAGGGCTTG GCCTCCCCTC AGGGTGCCAT GACTCCCGGA ATCCCTATCT	180
40	TTAGTCCAAT GATGCCTTAT GGCACTGGAC TGACCCCACA GCCTATTCAG AACACCAATA	240
40	GTCTGTCTAT TTTGGAAGAG CAACAAAGGC AGCAGCAGCA ACAACAACAG CAGCAGCAGC	300
	AGCAGCAGCA GCAGCAACAG CAACAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC	360
45	AGCAGCAGCA GCAGCAGCAA CAGGCAGTGG CAGCTGCAGC CGTTCAGCAG TCAACGTCCC	420
	AGCAGGCAAC ACAGGGAACC TCAGGCCAGG CACCACAGCT CTTCCACTCA CAGACTCTCA	480
50	CAACTGCACC CTTGCCGGGC ACCACTCCAC TGTATCCCTC CCCCATGACT CCCATGACCC	540
50	CCATCACTCC TGCCACGCCA GCTTCGGAGA GTTCTGGGAT TGTACCGCAG CTGCAAAATA	600
	TTGTATCCAC AGTGAATCTT GGTTGTAAAC TTGACCTAAA GACCATTGCA CTTCGTGCCC	660

GAAACGCCGA ATATAATCCC AAGCGGTTTG CTGCGGTAAT CATGAGGATA AGAGAGCCAC 720

	20
100 mm	25
	30
3	
	35

45

50

55

5

10

15

GAACCACGGC	ACTGATTTTC	AGTTCTGGGA	AAATGGTGTG	CACAGGAGCC	AAGAGTGAAG	780
AACAGTCCAG	ACTGGCAGCA	AGAAAATATG	CTAGAGTTGT	ACAGAAGTTG	GGTTTTCCAG	840
CTAAGTTCTT	GGACTTCAAG	ATTCAGAACA	TGGTGGGGAG	CTGTGATGTG	AAGTITCCTA	900
TAAGGTTAGA	AGGCCTTGTG	CTCACCCACC	AACAATTTAG	TAGTTATGAG	CCAGAGTTAT	960
TTCCTGGTTT	AATCTACAGA	ATGATCAAAC	CCAGAATTGT	TCTCCTTATT	TTTGTTTCTG	1020
GAAAAGTTGT	ATTAACAGGT	GCTAAAGTCA	GAGCAGAAAT	TTATGAAGCA	TTTGAAAACA	1080
TCTACCCTAT	TCTAAAGGGA	TTCAGGAAGA	CGACGTAATG	GCTCTCATGT	ACCCTTGCCT	1140
CCCCCACCCC	CTTCTTTTTT	TTTTTTTAAA	CAAATCAGTT	TGTTTTGGTA	CCTTTAAATG	1200
GTGGTGTTGT	GAGAAGATGG	ATGTTGAGTT	GCAGGGTGTG	GCACCAGGTG	ATGCCCTTCT	1260
GTAAGTGCCC	CTTCCGGCAT	CCCGGAATTC	CTGCAGCCCA	ACGCGGCCGC		1310

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 4286 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: exon(B) LOCATION: 1..4286

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GAATTCCCCT GCAGGTCACT TAGCGTTGGC CACATAGTAG GTTCTCAAAT ACTTGTTAAT 60 AAATAAGTTT GTTCGAGAAG CTGGGCAATG ATATTCTACA GCTGGAAGAA GAAACATAAT 120 GATCTAGTAA TTAGCTCAAT TAAAAATAAA CGTTCTTCTT TCCTCAGAGG AGCATTTCCC 180 AAGGCCTGCC TTGATAGCCA TCCAAAAAGG CCAAGCTCAT CCAATCTTGC CCTAGATTTA 240 TGCTAAAATG CAGTTACAAT CGATAGGATG ACAGAAAACG ACAGCACTTA TTTAAATATA 300 ATAGGCACTT ATTTAAATAG GAGAAGCTGT GACTTCATAG CAAGTGTTGG GGTTAGGAAA 360 CTGGGTGGAT AAACTTGCTG ATGCTGTAGA TCTTAGCCTC TACATGAGAT CATGTGGAAA 420 ATCTGAAAGC ATTTTAGGTT CCTTATGTTT GCAATCAAAT AACTGTACAC CTTTTAATTT 480 AAAAAGTACC ATGAGGCACA CACACACACT CGCAGGAACT TTTTGGCGTA ACAAAACTAG 540

	•	CGTCTTTAGG	TTGGGGGGAG	GGGTTTTATG	CGATGGAGTT	TCCCCACACT	GAGTGGGTGG	2280
	5	AGACTGAAGT	TAGGCCAGCT	TGGCACTTGA	TGTAATTCTC	CTTGGAATTT	GCCCTTTTTG	2340
	3	AGTTTGGATC	TTGGTTCATT	CTCAAGCCTC	AGACAGTGGT	TCAAAGTTTT	TTTCTTCCAT	2400
		TTCAGGTGTC	GTGAGGAATT	GCCCGGGGGA	TCCATGGGCT	ATCCCTATGA	CGTCCCGGAT	2460
	10	TACGCAGTCA	TGGGCAGCAG	CCATCATCAT	CATCATCACA	GCAGCGGCCT	GGTGCCGCGC	2520
		GGCAGCCATA	TGGATCAGAA	CAACAGCCTG	CCACCTTACG	CTCAGGGCTT	GGCCTCCCCT	2580
	15	CAGGGTGCCA	TGACTCCCGG	AATCCCTATC	TTTAGTCCAA	TGATGCCTTA	TGGCACTGGA	2640
	13	CTGACCCCAC	AGCCTATTCA	GAACACCAAT	AGTCTGTCTA	TTTTGGAAGA	GCAACAAAGG	2700
		CAGCAGCAGC	AACAACAACA	GCAGCAGCAG	CAGCAGCAGC	AGCAGCAACA	GCAACAGCAG	2760
	20	CAGCAGCAGC	AGCAGCAGCA	GCAGCAGCAG	CAGCAGCAGC	AGCAGCAGCA	ACAGGCAGTG	2820
11,125		GCAGCTGCAG	CCGTTCAGCA	GTCAACGTCC	CAGCAGGCAA	CACAGGGAAC	CTCAGGCCAG	2880
Test Test	25	GCACCACAGC	TCTTCCACTC	ACAGACTCTC	ACAACTGCAC	CCTTGCCGGG	CACCACTCCA	2940
	23	CTGTATCCCT	CCCCCATGAC	TCCCATGACC	CCCATCACTC	CTGCCACGCC	AGCTTCGGAG	3000
a 4		AGTTCTGGGA	TTGTACCGCA.	GCTGCAAAAT	ATTGTATCCA	CAGTGAATCT	TGGTTGTAAA	3060
nan.	30	CTTGACCTAA	AGACCATTGC	ACTTCGTGCC	CGAAACGCCG	AATATAATCC	CAAGCGGTTT	3120
		GCTGCGGTAA	TCATGAGGAT	AAGAGAGCCA	CGAACCACGG	CACTGATTTT	CAGTTCTGGG	3180
an along on	35	AAAATGGTGT	GCACAGGAGC	CAAGAGTGAA	GAACAGTCCA	GACTGGCAGC	AAGAAAATAT	3240
Third Hill	<i></i>	GCTAGAGTTG	TACAGAAGTT	GGGTTTTCCA	GCTAAGTTCT	TGGACTTCAA	GATTCAGAAC	3300
		ATGGTGGGGA	GCTGTGATGT	GAAGTTTCCT	ATAAGGTTAG	AAGGCCTTGT	GCTCACCCAC	3360
	40	CAACAATTTA	GTAGTTATGA	GCCAGAGTTA	TTTCCTGGTT	TAATCTACAG	AATGATCAAA	3420
		CCCAGAATTG	TTCTCCTTAT	TTTTGTTTCT	GGAAAAGTTG	TATTAACAGG	TGCTAAAGTC	3480
	45	AGAGCAGAAA	TTTATGAAGC	ATTTGAAAAC	ATCTACCCTA	TTCTAAAGGG	ATTCAGGAAG	3540
		ACGACGTAAT	GGCTCTCATG	TACCCTTGCC	TCCCCCACCC	CCTTCTTTT	TTTTTTTAA	3600
		ACAAATCAGT	TTGTTTTGGT	ACCTTTAAAT	GGTGGTGTTG	TGAGAAGATG	GATGTTGAGT	3660
	50	TGCAGGGTGT	GGCACCAGGT	GATGCCCTTC	TGTAAGTGCC	CCTTCCGGCA	TCCCGGATAT	3720
		CCTGCAGCCC	AACACGGCCG	CTCGAGCATG	CATCTAGAGA	ACGTCACGGC	CGCGATCCCC	3780
	55	CTGTGCCTTC	TAGTTGCCAG	CCATCTGGTT	GTTTGCCCCT	CCCCGTGCC	TTCCTTGACC	3840
		CTGGAAGGTG	CCACTCCCAC	TGTCCTTTCC	TAATAAAATG	AGGAAATTGC	ATCGCATTGT	3900

	25
200	
1999	
T.	
Į,į	30
2	
hame	
-	25
	3 5
	3 5
	3 5

10

15

20

25

40

45

50

55

CTGAGTAGGT	GTCATTCTAT	TCTGGGGGGT	GGGGTGGGGC	AGGACAGCAA	GGGGGAGGAT	3960
TGGGAAGACA	ATAGCAGGCA	TGCTGGGGAT	GCGGTGGGCT	CTATGGGTAC	CCAGGTGCTG	4020
AAGAATTGAC	CCGGTTCCTC	CTGGGCCAGA	AAGAAGCAGG	CACATCCCCT	TCTCTGTGAC	4080
ACACCCTGTC	CACGCCCCTG	GTTCTTAGTT	CCAGCCCCAC	TCATAGGACA	CTCAACTTGG	4140
AGCGGTCTCT	CCCTCCCTCA	TCAGCCCACC	AAACCAAACC	TAGCCTCCAA	GAGTGGGAAG	4200
AAATTAAAGC	AAGAAGGCTA	TTAAGTGCAG	AGGGAGAGAA	AATGCCTCCA	ACATGTGAGG	4260
AAGTAATGAT	AGAAATCATA	GAATTC				4286

(2) INFORMATION FOR SEQ ID NO: 15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3263 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(ix) FEATURE:

(A) NAME/KEY: exon (B) LOCATION: 1..3263

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

ATCGATAAGC TGAGATCCGG CTAGAAACTG CTGAGGGCTG GACCGCATCT GGGGACCATC 60 TGTTCTTGGC CCTGAGCGGG GCAGGAACTG CTTACCGCAG ATATCCTGTT TGCCCCAATT 120 CAGCTGTTCC ATCTGTTCTT GGCCCTGAGC GGGGCAGGAA CTGCTTACCA CAGATATCCT 180 GTTTGGCCCA TATTCAGCTG TCTCTCTGTT CCTGACCTTG ATCTGAACTT CTCTATTCTC 240 AGTTATGTAT TTTTCCCATG CCTTGCAAAA TGGCGTTACT TAAGCTAGCT TGCCAAACCT 300 ACGGCTGGGG TCTTTCACGT TTATATCTAT GAGGGGAAGG ACCCAGAGTG GGGAAGCTGG 360 GATCTTGGGA ACACGCTTCT CTACATGGCA TTGTCTGCAC GGTGGAGTCC GGATCTGAGC 420 TTGGCTTGGT TTTTAAAACC AGCCTGGAGT AGAGCAGATG GGTTAAGGTG AGTGACCCCT 480 CAGCCCTGGA CATTCTTAGA TGAGCCCCCT CAGGAGTAGA GAATAATGTT GAGATGAGTT 540 CTGTTGGCTA AAATAATCAA GGCTAGTCTT TATAAAACTG TCTCCTCTTC TCCTAGCTTC 600 GATCCAGAGA GAGACCTGGG CGGAGCTGGT CGCTGCTCAG GAACTCCAGG AAAGGAGAAG 660

		CTGAGGTTAC	CACGCTGCGA	ATGGGTTTAC	GGAGATAGCT	GGCTTTCCGG	GGTGAGTTCT	720
•	•	CGTAAACTCC	AGAGCAGCGA	TAGGCCGTAA	TATCGGGGAA	AGCACTATAG	GGACATGATG	780
•	5	TTCCACACGT	CACATGGGTC	GTCCTATCCG	AGCCAGTCGT	GCCAAAGGGG	CGGTCCCGCT	840
		GTGCACACTG	GCGCTCCAGG	GAGCTCTGCA	CTCCGCCCGA	AAAGTGCGCT	CGGCTCTGCC	900
	10	AGGACGCGGG	GCGCGTGACT	ATGCGTGGGC	TGGAGCAACC	GCCTGCTGGG	TGCAAACCCT	960
	10	TTGCGCCCGG	ACTCGTCCAA	CGACTATAAA	GAGGGCAGGC	TGTCCTCTAA	GCGTCACCAC	1020
		GACTTCAACG	TCCTGAGTAC	CTTCTCCTCA	CTTACTCCGT	AGCTCCAGCT	TCACCAGATC	1080
	15	CTCGAGAACG	TCTCCCATGG	GCTATCCCTA	TGACGTCCCG	GATTACGCAG	TCATGGGCAG	1140
		CAGCCATCAT	CATCATCATC	ACAGCAGCGG	CCTGGTGCCG	CGCGGCAGCC	ATATGGATCA	1200
	20	GAACAACAGC	CTGCCACCTT	ACGCTCAGGG	CTTGGCCTCC	CCTCAGGGTG	CCATGACTCC	1260
gi reg	20	CGGAATCCCT	ATCTTTAGTC	CAATGATGCC	TTATGGCACT	GGACTGACCC	CACAGCCTAT	1320
The state of the s		TCAGAACACC	AATAGTCTGT	CTATTTTGGA	AGAGCAACAA	AGGCAGCAGC	AGCAACAACA	1380
To the second se	25	ACAGCAGCAG	CAGCAGCAGC	AGCAGCAGCA	ACAGCAACAG	CAGCAGCAGC	AGCAGCAGCA	1440
		GCAGCAGCAG	CAGCAGCAGC	AGCAGCAGCA	GCAACAGGCA	GTGGCAGCTG	CAGCCGTTCA	1500
17124 17124	30	GCAGTCAACG	TCCCAGCAGG	CAACACAGGG	AACCTCAGGC	CAGGCACCAC	AGCTCTTCCA	1560
The Property of the Property o	50	CTCACAGACT	CTCACAACTG	CACCCTTGCC	GGGCACCACT	CCACTGTATC	CCTCCCCCAT	1620
		GACTCCCATG	ACCCCCATCA	CTCCTGCCAC	GCCAGCTTCG	GAGAGTTCTG	GGATTGTACC	1680
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35	GCAGCTGCAA	AATATTGTAT	CCACAGTGAA	TCTTGGTTGT	AAACTTGACC	TAAAGACCAT	1740
The state of the s		TGCACTTCGT	GCCCGAAACG	CCGAATATAA	TCCCAAGCGG	TTTGCTGCGG	TAATCATGAG	1800
	40	GATAAGAGAG	CCACGAACCA	CGGCACTGAT	TTTCAGTTCT	GGGAAAATGG	TGTGCACAGG	1860
	10	AGCCAAGAGT	GAAGAACAGT	CCAGACTGGC	AGCAAGAAAA	TATGCTAGAG	TTGTACAGAA	1920
		GTTGGGTTTT	CCAGCTAAGT	TCTTGGACTT	CAAGATTCAG	AACATGGTGG	GGAGCTGTGA	1980
	45	TGTGAAGTTT	CCTATAAGGT	TAGAAGGCCT	TGTGCTCACC	CACCAACAAT	TTAGTAGTTA	2040
		TGAGCCAGAG	TTATTTCCTG	GTTTAATCTA	CAGAATGATC	AAACCCAGAA	TTGTTCTCCT	2100
	50	TATTTTTGTT	TCTGGAAAAG	TTGTATTAAC	AGGTGCTAAA	GTCAGAGCAG	AAATTTATGA	2160
	~~	AGCATTTGAA	AACATCTACC	CTATTCTAAA	GGGATTCAGG	AAGACGACGT	AATGGCTCTC	2220
		ATGTACCCTT	GCCTCCCCCA	CCCCCTTCTT	TTTTTTTTT	TAAACAAATC	AGTTTGTTTT	2280
	55	GGTACCTTTA	AATGGTGGTG	TTGTGAGAAG	ATGGATGTTG	AGTTGCAGGG	TGTGGCACCA	2340

15

20

	GGTGATGCCC	TTCTGTAAGT	GCCCCTTCCG	GCATCCCGGA	ATTCCTGCAG	CCCAACGCGG	2400
	CCGCTTCGAG	GGATCTTTGT	GAAGGAACCT	TACTTCTGTG	GTGTGACATA	ATTGGACAAA	2460
5	CTACCTACAG	AGATTTAAAG	CTCTAAGGTA	TAAAATTAA	TTTTAAGTGT	ATAATGTGTT	2520
	AAACTACTGA	TTCTAATTGT	TTGTGTATTT	TAGATTCCAA	CCTATGGAAC	TGATGAATGG	2580
10	GAGCAGTGGT	GGAATGCCTT	TAATGAGGAA	AACCTGTTTT	GCTCAGAAGA	AATGCCATCT	2640
	AGTGATGATG	AGGCTACTGC	TGACTCTCAA	CATTCTACTC	СТССАААААА	GAAGAGAAAG	2700
	GTAGAAGACC	CCAAGGACTT	TCCTTCAGAA	TTGCTAAGTT	TTTTGAGTCA	TGCTGTGTTT	2760
15	AGTAATAGAA	CTCTTGCTTG	CTTTGCTATT	TACACCACAA	AGGAAAAAGC	TGCACTGCTA	2820
	TACAAGAAAA	TTATGGAAAA	ATATTCTGTA	ACCTTTATAA	GTAGGCATAA	CAGTTATAAT	2880
20	CATAACATAC	TGTTTTTCT	TACTCCACAC	AGGCATAGAG	TGTCTGCTAT	TAATAACTAT	2940
	GCTCAAAAAT	TGTGTACCTT	TAGCTTTTTA	ATTTGTAAAG	GGGTTAATAA	GGAATATTTG	3000
	ATGTATAGTG	CCTTGACTAG	AGATCATAAT	CAGCCATACC	ACATTTGTAG	AGGTTTTACT	3060
25	TGCTTTAAAA	AACCTCCCAC	ACCTCCCCCT	GAACCTGAAA	CATAAAATGA	ATGCAATTGT	3120
	TGTTGTTAAC	TTGTTTATTG	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	GCATCACAAA	3180
30	TTTCACAAAT	AAAGCATTTT	TTTCACTGCA	TTCTAGTTGT	GGTTTGTCCA	AACTCATCAA	3240
	TGTATCTTAT	CATGTCTGGA	TCC				3263

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 371 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

45 (ix) FEATURE:

(A) NAME/KEY: Protein

(B) LOCATION: 1..371

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Val Met Gly Ser Ser

His His His His His Ser Ser Gly Leu Val Pro Arg Gly Ser His 55 20 25 30

	•	Met	Asp	Gln 35	Asn	Asn	Ser	Leu	Pro 40	Pro	Tyr	Ala	Gln	Gly 45	Leu	Ala	Ser
The state of the s	5	Pro	Gln 50	Gly	Ala	Met	Thr	Pro 55	Gly	Ile	Pro	Ile	Phe 60	Ser	Pro	Met	Met
	10	Pro 65	Tyr	Gly	Thr	Gly	Leu 70	Thr	Pro	Gln	Pro	Ile 75	Gln	Asn	Thr	Asn	Ser 80
	10	Leu	Ser	Ile	Leu	Glu 85	Glu	Gln	Gln	Arg	Gln 90	Gln	Gln	Gln	Gln	Gln 95	Gln
	15	Gln	Gln	Gln	Gln 100	Gln	Gln	Gln	Gln	Gln 105	Gln	Gln	Gln	Gln	Gln 110	Gln	Gln
		Gln	Gln	Gln 115	Gln	Gln	Gln	Gln	Gln 120	Gln	Gln	Gln	Gln	Gln 125	Gln	Gln	Ala
	20	Val	Ala 130	Ala	Ala	Ala	Val	Gln 135	Gln	Ser	Thr	Ser	Gln 140	Gln	Ala	Thr	Gln
	25	Gly 145	Thr	Ser	Gly	Gln	Ala 150	Pro	Gln	Leu	Phe	His 155	Ser	Gln	Thr	Leu	Thr 160
	23	Thr	Ala	Pro	Leu	Pro 165	Gly	Thr	Thr	Pro	Leu 170	Tyr	Pro	Ser	Pro	Met 175	Thr
	30	Pro	Met	Thr	Pro 180	Ile	Thr	Pro	Ala	Thr 185	Pro	Ala	Ser	Glu	Ser 190	Ser	Gly
. 1011 MHz Jean 1907 JF		Ile	Val	Pro 195	Gln	Leu	Gln	Asn	Ile 200	Val	Ser	Thr	Val	Asn 205	Leu	Gly	Сув
	35	Lys	Leu 210	Asp	Leu	Lys	Thr	Ile 215	Ala	Leu	Arg	Ala	Arg 220	Asn	Ala	Glu	Tyr
	40	Asn 225	Pro	Lys	Arg	Phe	Ala 230	Ala	Val	Ile	Met	Arg 235	Ile	Arg	Glu	Pro	Arg 240
		Thr	Thr	Ala	Leu	Ile 245	Phe	Ser	Ser	Gly	Lys 250	Met	Val	Cys	Thr	Gly 255	Ala
	45	Lys	Ser	Glu	Glu 260	Gln	Ser	Arg	Leu	Ala 265	Ala	Arg	Lys	Tyr	Ala 270	Arg	Val
		Val	Gln	Lys 275	Leu	Gly	Phe	Pro	Ala 280	Lys	Phe	Leu	Asp	Phe 285	Lys	Ile	Gln
	50	Asn	Met 290	Val	Gly	Ser	Cys	Asp 295	Val	Lys	Phe	Pro	Ile 300	Arg	Leu	Glu	Gly
	55	Leu 305	Val	Leu	Thr	His	Gln 310	Gln	Phe	Ser	Ser	Tyr 315	Glu	Pro	Glu	Leu	Phe 320
		Pro	Gly	Leu	Ile	Tyr	Arg	Met	Ile	Lys 54	Pro	Arg	Ile	Val	Leu	Leu	Ile

Phe Val Ser Gly Lys Val Val Leu Thr Gly Ala Lys Val Arg Ala Glu 340 345 350

5

Ile Tyr Glu Ala Phe Glu Asn Ile Tyr Pro Ile Leu Lys Gly Phe Arg 355 360 365

Lys Thr Thr

10 370

- (2) INFORMATION FOR SEQ ID NO: 17:
- 15 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

20

- (ii) MOLECULE TYPE: protein
- (ix) FEATURE:
 - (A) NAME/KEY: Protein
 - (B) LOCATION: 1..18
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val Pro 1 5 10 15

Arg Gly