## Objective 2 - Graph Rational functions

Convert between a rational function and its graph.

## Link to section in online textbook.

First, watch this video to learn about what rational functions look like. We will work with two specific rational functions:  $f(x) = \frac{1}{x}$  and  $g(x) = \frac{1}{x^2}$ . By using what we know about shifting and leading coefficients from Quadratics, Radicals, and Polynomials, we have two basic equations for rational functions:

$$f(x) = \frac{a}{x - h} + k$$

Graph of f(x) = a/(x-h) + k, a = 1, h = 0, k = 0, x = h, y = k

$$g(x) = \frac{a}{(x-h)^2} + k$$

Graph of 
$$f(x) = a/(x-h)^2 + k$$
,  $a = 1, h = 0, k = 0, x = h, y = k$ 

Thinking back to the previous objective, our rational functions **are not defined** at x = h. So while (h, k) acts like our vertex for quadratics, it is not actually a point on the graph! Check out the Desmos graphs to see how a, h, and k affect the graphs of these two functions.

We will focus on working from graphs to the equation. If you master this, you'll be able to work backwards and graph a radical function from the equation.

**Question** 1 Write an equation of the function graphed below. Assume a=1 or a=-1.



Learning outcomes:

Author(s): Darryl Chamberlain Jr.

Objective 2 - Graph Rational functions

$$f(x) = \frac{\boxed{1}}{(x-\boxed{0})^{\boxed{1}}} + \boxed{-2}$$

**Hint:** The leading coefficient is either a=1 or a=-1. Try going back to the Desmos graphs and switch between 1 and -1. For the other parts, what acts like the "vertex" of the graph?

**Question 2** Write an equation of the function graphed below.



$$f(x) = \frac{\boxed{-1}}{(x - \boxed{-2})^{\boxed{1}}} + \boxed{2}$$

**Question 3** Write an equation of the function graphed below.



$$f(x) = \frac{\boxed{1}}{(x - \boxed{-3})^{\boxed{2}}} + \boxed{1}$$

**Question 4** Write an equation of the function graphed below.



$$f(x) = \frac{\boxed{-1}}{(x - \boxed{-2})^{\boxed{2}}} + \boxed{0}$$

**Question 5** Write an equation of the function graphed below.



$$f(x) = \frac{\boxed{1}}{(x-\boxed{2})^{\boxed{2}}} + \boxed{1}$$

**Question 6** Write an equation of the function graphed below.



$$f(x) = \frac{\boxed{-1}}{(x - \boxed{-3})^{\boxed{1}}} + \boxed{2}$$

**Question 7** Main takeaway: Before looking, you should work through the previous problems. Have you finished working through the examples? Yes

Feedback(correct): The important components of a basic rational function are:

- The vertical asymptote (vertical line where the function is not defined);
- ullet Horizontal asymptote (horizontal line normally at y=0, shifted by k); and
- The power of the denominator (1 has curves in opposite corners, 2 has curves side-by-side).