DILLAN MARROQUIN MATH 331.1001 Scribing Week 11 Due. 8 November 2021

Lecture 26

Paulin Chapter 4: Rings!

Idea: Study objects like $(\mathbb{Z}, +, 0, *, 1)$, develop an abstract notion of primes and the fundamental theorem of arithmetic.

Definition (26.1). A <u>ring</u> (\mathbf{R} , +, 0, *, 1) is a set R equipped with binary operators +, * : $R \times R \to R$ and elements 0, 1 $\in R$ such that

- 1. (R, +, 0) is an abelian group,
- 2. (R,*,1) is a monoid (i.e. a group where multiplicative inverses may not exist),
- 3. Left/Right distributive law holds: $\forall a, b, c \in R$, (a + b) * c = a * c + b * c and a * (b + c) = a * b + a * c.

<u>Notation:</u> ab := a * b and $\forall n \ge 0 \in \mathbb{Z}$, $na := a + a \cdots + a$ (n times) and $a^n := a * a * \cdots * a$ (n times). Note that $na \ne a^n$ in general.

Definition (26.2). A ring *R* is commutative iff $\forall a, b \in R$, a * b = b * a.

Basic Examples of Rings

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Commutative.
- 2. $(\mathbb{Z}/n, \overline{+}, \overline{0}, \overline{*}, \overline{1})$. Commutative.
- 3. The Zero Ring $R = \{0_R\}$, where $1_R = 0_R$. Commutative.
- 4. $M_n(\mathbb{R}) := \{n \times n \text{ matrices with entries in } \mathbb{R}\}, (M_n(\mathbb{R}), +, 0_n, *, I_n)$. Non-commutative for $n \ge 2$.
- 5. $\mathcal{C}([0,1]) := \{f : [0,1] \to \mathbb{R} | f \text{ is continuous} \}$. In this ring, (f+g)(x) := f(x) + g(x), (fg)(x) := f(x)g(x), $0(x) := 0 \in \mathbb{R}$, $1(x) := 1 \in \mathbb{R} \ \forall x \in [0,1]$.

Abstract Properties of Rings

Proposition (26.3). Let R be a ring.

- 1. $\forall n, m \ge 1$, let $a_1, ..., a_n \in R$ and $b_1, ..., b_m \in R$. Then $\left(\sum_{i=1}^n a_i\right) \cdot \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j$.
- 2. $\forall a \in R, a * 0 = 0 = 0 * a$.
- 3. $\forall a,b \in R$, a(-b) = -a(b) = -ab, where -b,-a are the additive inverses of b,a respectively. In particular, (-a)(-b) = ab.

Important Example: Polynomial Rings

Let R be a commutative ring. Then

$$R[x] := \{a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n | \forall n \ge 0 \ a_i \in R\} = "R \text{ adjoin } x".$$

Let $f, g \in R[x]$. Write $f = \sum_{i=0}^{n} a_i x^i$, $g = \sum_{j=0}^{m} b_j x^j$. WLOG, assume $m \le n$. Define $b_{m+1} = b_{m+2} = \cdots = b_n = 0 \in R$, then $f + g := \sum_{i=0}^{n} (a_i + b_i) x^i$. Also, $fg := \sum_{k=0}^{m+n} c_k x^k$, where $c_k := \sum_{l=0}^{k} a_l b_{k-l}$.

Lecture 27

Additive Identity: $0 := \sum_i a_i x^i$, $a_i = o \in R \ \forall i \ge 0$.

Multiplicative Identity: $1 := \sum_i a_i x^i$, $a_0 = 1 \in R$, $a_i = 0 \in R \ \forall i \ge 1$.

Proposition (27.1). R commutative implies R[x] is commutative.

Remark. R[x][y]. This is just a polynomial in 2 variables.

Definition (27.2). Let $f = \sum a_k x^k \in R[x]$, where $\sum a_k x^k$. Then the **degree** of f, $\deg(f) \in \mathbb{N}$ is the largest $n \in \mathbb{Z}$ such that $a_n \neq 0$. Often, $\deg(0) := -\infty$.

Basic Constructions

Definition (27.3). Let *R* be a ring. A subset $S \subseteq R$ is a **subring** iff

- 1. $(S, +, 0_R) \le (R, +, 0_R)$ is a subgroup with respect to +.
- 2. $\forall x, y \in S, x * y \in S$. i.e. *S* is closed under multiplication.
- 3. $1_R \in S$.

We write $S \le R$ to denote that S is a subring of R.

Example. 1. We have $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$.

- 2. Let *R* be commutative. Then $R \le R[x]$.
- 3. (Non-Commutative Examples): Let $R = M_2(\mathbb{R})$ and $S = \left\{ A \in R | A = \alpha = \begin{pmatrix} a_1 & a_2 \\ 0 & 3 \end{pmatrix} \right\}$. Then $S \leq R$.

CAUTION!!! Some authors...

- 1. don't require a ring to have 1 (multiplicative identity)
- 2. don't require subrings to have $1_R \in S$ (no Axiom 3).

Basic Constructions

- 1. $n\mathbb{Z} \not\leq \mathbb{Z}$, n > 1 since $1 \notin \mathbb{Z}$.
- 2. If $R \neq \{0_R\}$, then $\{0_R\} \not\leq R$ since $1_R \notin \{0_R\}$.
- 3. Take $S = \{ f = \sum a_i x^2 \in R[x] | a_0 = 0 \} \not\leq R[x] \text{ since } 1 \notin R[x].$

Lecture 28

Ring Homomorphisms

Definition (28.1). Let R, S be rings. A **ring homomorphism** from R to S is a function $\varphi : R \to S$ such that $\forall a,b \in R$,

- 1. $\varphi(a+b) = \varphi(a) + \varphi(b)$,
- 2. $\varphi(ab) = \varphi(a)\varphi(b)$, and
- 3. $\varphi(1_R) = 1_S$. A **ring isomorphism** is a ring homomorphism φ such that φ is a bijection.

Example. 1. id: $R \rightarrow R$ is a ring isomorphism. BOOOORING!!!

- 2. Let n > 1. Then $\pi : \mathbb{Z} \to \mathbb{Z}/n$, $\pi(a) := [a]$ is a ring homomorphism.
- 3. (NON-EXAMPLE) Let det : $M_2(\mathbb{R}) \to \mathbb{R}$ be a function. Then Axioms 2 and 3 are satisfied, but not Axiom 1 since det(A + B) \neq det(A) + det(B) in general.

Proposition (28.2). Let $r \in R$. The function $ev_r(f) := f(r)$ is a ring homomorphism ("evaluation at r").

In general, elements of R[x] "aren't functions."

Example. $\mathbb{Z}/2[x]$.

$$deg(-\infty): \overline{0} \qquad \qquad deg(1): x, x + \overline{1}$$

$$deg(0): \overline{1} \qquad \qquad deg(2): x^2, x^2 + x, x^2 + \overline{1}, x^2 + x + \overline{1}.$$

The number of ev homomorphisms is 2: $ev_{\overline{0}}$, $ev_{\overline{1}} : \mathbb{Z}/2[x] \to \mathbb{Z}/2$.

Let
$$f := x^2 + x + \overline{1}$$
, $g := \overline{1}$. Then $\operatorname{ev}_{\overline{0}}(f) = \overline{1}$, $\operatorname{ev}_{\overline{1}}(f) = \overline{1}^2 + \overline{1} + \overline{1} = \overline{1}$. Also, $\operatorname{ev}_{\overline{0}}(g) = \overline{1}$, $\operatorname{ev}_{\overline{1}}(g) = \overline{1}$, BUT $f \neq g$.

Definition (28.3). Let $\varphi : R \to S$ be a ring homomorphism. The **<u>kernel</u>** of φ is the subset $\ker(\varphi) := \{r \in R | \varphi(r) = 0_S\}$ of R.

The **image** of φ is the subset $\operatorname{im}(\varphi) := {\{\varphi(r) | r \in R\}}$ of S.

Proposition (28.4). 1. $im(\varphi) \le S$ is a subgroup of S.

2. $\ker(\varphi) \le R$ is a subring of R iff $S = \{0_S\}$ is the trivial ring.