TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Pseudo-Likelihood and Contrastive Divergence

Notation

x is an input (e.g. an image).

 $\mathcal{Y}[N]$ is a structured label for x — a vector $\mathcal{Y}[0], \ldots, \mathcal{Y}[N-1]$. (e.g., n ranges over pixels where $\mathcal{Y}[n]$ is a semantic label of pixel n.)

 \mathcal{Y}/n is the set of labels assigned by \mathcal{Y} at indeces (pixels) other than n.

 $\mathcal{Y}[n=y]$ is the structured label identical to \mathcal{Y} except that it assigns label y to index (pixel) n.

Intractable Exponential Softmax

We consider a softmax distribution

$$P_s(\mathcal{Y}) = \frac{1}{Z} e^{s(\mathcal{Y})}$$
$$Z = \sum_{\mathcal{Y}} e^{s(\mathcal{Y})}$$

Computing Z is intractable.

Psuedo-Likelihood

For any distribution $P(\mathcal{Y})$ on structured labels \mathcal{Y} , we define the pseudo-likelihood $\tilde{P}(\mathcal{Y})$ as follows

$$\tilde{P}(\mathcal{Y}) = \prod_{n} P(\mathcal{Y} \mid \mathcal{Y}/n)$$

$$P_s(\mathcal{Y} \mid \mathcal{Y}/n) = \frac{1}{Z_n} e^{s(\mathcal{Y})}$$
 $Z_n = \sum_y e^{s(\mathcal{Y}[n=y])}$

While computing $P_s(\mathcal{Y})$ is intractable, computing $\tilde{P}_s(\mathcal{Y})$ involves only local partition functions and is tractable.

Pseudo Cross-entropy Loss

We can then do SGD on pseudo cross-entropy loss.

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} E_{\langle x, \mathcal{Y} \rangle \sim \operatorname{Pop}} - \ln \tilde{P}_{\Phi, x}(\mathcal{Y})$$

Pseudolikelihood Theorem

$$\underset{Q}{\operatorname{argmin}} \ E_{\mathcal{Y} \sim \operatorname{Pop}} \ - \ln \tilde{Q}(\mathcal{Y}) = \operatorname{Pop}$$

It suffices to show that for any Q we have

$$E_{\mathcal{Y} \sim \text{Pop}} - \ln \widetilde{\text{Pop}}(\mathcal{Y}) \le E_{\mathcal{Y} \sim \text{Pop}} - \ln \widetilde{Q}(\mathcal{Y})$$

Proof II

$$\min_{Q} E_{Y \sim \text{Pop}} - \ln Q(Y)$$

$$= \min_{Q} E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} - \ln Q(\mathcal{Y}[n] \mid \mathcal{Y}/n)$$

$$\geq \min_{P_{1}, \dots, P_{N}} E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} - \ln P_{n}(\mathcal{Y}[n] \mid \mathcal{Y}/n)$$

$$= \min_{P_{1}, \dots, P_{N}} \sum_{n} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n] \mid \mathcal{Y}/n)$$

$$= \sum_{n} \min_{P_{n}} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n] \mid \mathcal{Y}/n)$$

$$= \sum_{n} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n] \mid \mathcal{Y}/n)$$

$$= \sum_{n} E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}[n] \mid \mathcal{Y}/n) = E_{\mathcal{Y} \sim \text{Pop}} - \ln P_{n}(\mathcal{Y}(n))$$

Contrastive Divergence (CDk)

In contrastive divergence we first construct an MCMC process whose stationary distribution is P_s . This could be Metropolis or Gibbs or something else.

Algorithm CDk: Given a gold segmentation \mathcal{Y} , start the MCMC process from initial state \mathcal{Y} and run the process for k steps to get \mathcal{Y}' . Then take the loss to be

$$\mathcal{L}_{\text{CD}} = s(\mathcal{Y}') - s(\mathcal{Y})$$

If P_s = Pop then the distribution on \mathcal{Y}' is the same as the distribution on \mathcal{Y} and the expected loss gradient is zero.

Gibbs CD1

CD1 for the Gibbs MCMC process is a particularly interesting special case.

Algorithm (Gibbs CD1): Given \mathcal{Y} , select a node n at random and draw $y \sim P(\mathcal{Y}[n] = y \mid \mathcal{Y}/n)$. Define $\mathcal{Y}[n = y]$ to be the assignment (segmentation) which is the same as \mathcal{Y} except that node n is assigned label y. Take the loss to be

$$\mathcal{L}_{CD} = s(\mathcal{Y}[n=y]) - s(\mathcal{Y})$$

Gibbs CD1 Theorem

Gibbs CD1 is equivalent in expectation to pseudolikelihood.

$$\mathcal{L}_{\text{PL}} = E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} -\ln P_{s}(\mathcal{Y} \mid \mathcal{Y}/n)$$

$$= E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} -\ln \frac{e^{s(\mathcal{Y})}}{Z_{n}} \qquad Z_{n} = \sum_{y'} e^{s(\mathcal{Y}[n=y'])}$$

$$= E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} \left(\ln Z_{n} - s(\mathcal{Y}) \right)$$

$$\nabla_{\Phi} \mathcal{L}_{\text{PL}} = E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} \left(\frac{1}{Z_{n}} \sum_{y'} e^{s(\mathcal{Y}[n=y'])} \nabla_{\Phi} s(\mathcal{Y}[n=y']) \right) - \nabla_{\Phi} s(\mathcal{Y})$$

$$= E_{\mathcal{Y} \sim \text{Pop}} \sum_{n} \left(\sum_{y'} P_{s}(\mathcal{Y}[n] = y' \mid \mathcal{Y}[N(n)]) \nabla_{\Phi} s(\mathcal{Y}[n=y']) \right) - \nabla_{\Phi} s(\mathcal{Y})$$

Gibbs CD1 Theorem

$$\nabla_{\Phi} \mathcal{L}_{PL} = E_{\mathcal{Y} \sim Pop} \sum_{n} \left(\sum_{y'} P_{s}(\mathcal{Y}[n] = y' \mid \mathcal{Y}[N(n)]) \nabla_{\Phi} s(\mathcal{Y}[n] = y') \right) - \nabla_{\Phi} s(\mathcal{Y})$$

$$= E_{\mathcal{Y} \sim Pop} \sum_{n} \left(E_{y' \sim P_{s}(\mathcal{Y}[n] = y' \mid \mathcal{Y}[N(n)])} \nabla_{\Phi} s(\mathcal{Y}[n = y']) \right) - \nabla_{\Phi} s(\mathcal{Y})$$

$$\propto E_{\mathcal{Y} \sim Pop} E_{n} E_{y' \sim P_{s}(\mathcal{Y}[n] = y' \mid \mathcal{Y}[N(n)])} \left(\nabla_{\Phi} s(\mathcal{Y}[n = y']) - \nabla_{\Phi} s(\mathcal{Y}) \right)$$

$$= E_{\mathcal{Y} \sim Pop} E_{n} E_{y' \sim P_{s}(\mathcal{Y}[n] = y' \mid \mathcal{Y}[N(n)])} \nabla_{\Phi} \mathcal{L}_{Gibbs CD(1)}$$

\mathbf{END}