Introduction to Scene Classification

Jia Xu jiaxu@cs.wisc.edu

Outline

- > Introduction
- Key Components for Scene Classification
- Locality-constrained Linear Coding(LLC)
- Experimental Evaluation
- > Discussion

Human Vision

What is the scene?
- office? street?
suburb?

How do you recognize this scene?

http://alfi.soils.wisc.edu/asig/webcam/big.jpg

Computer Recognition/Classification

- Low level features
 - Color histogram, SIFT, HOG, Object Bank, e.t.c
- > Feature engineering
 - Bag of Words, Spatial Pyramid Matching (SPM), Sparse Coding(SC), Localityconstrained Linear Coding(LLC)
- > Classifier
 - SVM (linear, nonlinear, multiple kernel), linear/logistic regression, random forest

Image Classification Overview

[Source: K. Yu, R. Urtasun]

Feature Extraction

Weak features

Edge points at 2 scales and 8 orientations (vocabulary size 16)

Strong features

SIFT descriptors of 16x16 patches sampled on a regular grid, quantized to form visual vocabulary (size 200, 400)

For each image, we get N feature points: \mathbf{x}_i , i=1, ..., N.

Depending on sample scheme, N can be different for different images

[Source: S. Lazebnik]

Codebook Generation

K-means

- o partition N features $\{\mathbf{x}_1,...\mathbf{x}_N\}$ into K clusters $\{\mathbf{b}_1,...,\mathbf{b}_K\}$, where \mathbf{b}_k is the center of k-th cluster
- hard assignment

Gaussian Mixture Model(GMM)

- learn K Gaussian mixtures from the feature set {x₁,...x_N}
- soft assignment

[Source: X. Wang et al.]

Feature Encoding

Vector Quantization (VQ)

$$c_{nk} = \begin{cases} 1, & \text{if } k = \operatorname{argmin}_k ||\mathbf{x}_n - \mathbf{b}_k||^2 \\ 0, & \text{otherwise} \end{cases}$$

Soft-assignment Encoding

$$c_{nk} = \frac{\exp(-\beta \|\mathbf{x}_n - \mathbf{b}_k\|^2)}{\sum_{i=1}^K \exp(-\beta \|\mathbf{x}_n - \mathbf{b}_i\|^2)}$$

Spatial context completely ignored!

Spatial Pyramid Representation

[Source: S. Lazebnik]

Pyramid Matching

[Source: S. Lazebnik]

Feature histograms:

Level 3

$$=\mathcal{I}_3$$

Level 2

 $=I_2$

Level 1

Level 0

$$\square\cap\square$$
 = ${\cal I}_0$

Total weight (value of *pyramid match kernel*): $I_3 + \frac{1}{2}(I_2 - I_3) + \frac{1}{4}(I_1 - I_2) + \frac{1}{8}(I_0 - I_1)$

Limitations of SPM

- Non-linear SVM is not scalable
- > VQ coding may be too coarse
- Average pooling is not optimal

Why not non-linear coding and linear SVM?

LLC

LLC Coding process

Step 3:

 c_i is an Mx1 vector with K non-zero elements whose values are the corresponding c^* of step 2

Step 2:

Reconstruct x_i using B_i $c^* = \operatorname{argmin} \| \mathbf{x}_i - \mathbf{c}_i^{\mathsf{T}} \|$

Step 1:

Find K-Nearest Neighbors of x_i , denoted as B_i

[Source: J. Wang et al.]

SC vs LLC

Sparse Coding(SC)

$$\arg\min_{\mathbf{C}} \sum_{i=1}^{N} \|\mathbf{x}_i - \mathbf{B}\mathbf{c}_i\|^2 + \lambda \|\mathbf{c}_i\|_{\ell^1}$$

Locality-constrained Linear Coding(LLC)

$$\min_{\mathbf{\tilde{C}}} \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{\tilde{c}}_i \mathbf{B_i}||^2$$
 $st. \ \mathbf{1}^{\top} \mathbf{\tilde{c}}_i = 1, \ \forall i.$

Reconstruct LLC Demo

```
clear; clc; close all;
N = 100; % feature dimension
K = 5; % number of nearest neighbours
% construct codebook
B = randn(K, N);
% create truth code
c = randn(K, 1);
c = c / sum(c);
% compute feature
x = B'*c;
% compute data covariance matrix
one = ones(K, 1);
B 1x = B - one *x';
C = B 1x * B 1x';
% reconstruct LLC code
c hat = C \ one;
c hat = c hat /sum(c hat);
% compute reconstruction error
diff = norm(c-c hat)
```

Properties of LLC

- Better reconstruction
- Local smooth sparsity
- Analytical solution

Pooling and Normalization

- > Pooling

 - sum pooling: c_{out} = c_{in1}+,...,+c_{in2}
 max pooling: c_{out} = max(c_{in1},...,c_{in2})
- Normalization
 - sum normalization: c_{out} = c_{in} / sum(c_{in})
 - L2 normalization: $\mathbf{c}_{out} = \mathbf{c}_{in} / ||\mathbf{c}_{in}||_2$

Classification

Linear SVM

- Given training data D={ (x_i,y_i) | x_i is a p dimensional feature vector and y_i = -1 or 1, i=1,...,n}
- Solve for argmin_{w,b} 1/2 ||w||₂ subject to (for any i=1,...,n)
 y_i (w*x_i b) >= 1
- Various setting are implemented in liblinear

Multi-Class SVM

- Crammer and Singer algorithm
 - already implemented in liblinear

- ➤ One-vs-all
 - train C binary classifier (w_c,b_c) for each category c
 - final label for image i is argmax_c w_cx_i+b_c

Dataset

- Scene category dataset from Lazebnik et al.
- > 15 categories
- ➤ Each category has 200 to 400 images
- ➤ Average image size is 300*250

Experimental Evaluation Protocol

- > Training with 100 images per class
 - codebook generation and linear SVM
- Testing with the rest images
- Report confusion matrix
- Report mean accuracy (mean of diagonal elements in your confusion matrix)

Confusion Matrix

[Source: S. Lazebnik]

Evaluation Tips

- Only change one parameter each time, and save your results in a table
- ➤ Important parameters: # of codebook size (start with 1024), # of nearest neighbors (start with 5), -s -C -w in liblinear
- Grid search

Extensions

- Codebook Optimization
 - Algorithm 4.1
- Evaluate your implementation on other applications, e.g. action recognition.
- Combine LLC with Object Bank

Discussion

> Q & A