FireFly:

A Reconfigurable Wireless Datacenter Fabric using Free-Space Optics

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir Das, Jon Longtin, Himanshu Shah, Ashish Tanwer

Carnegie Mellon

Datacenter network design is hard!

Existing Data Center Network Architectures

Over provisioned (e.g. FatTree, Jellyfish)

Over subscribed (e.g. simple tree)

Augmented (e.g. cThrough)

Our Vision: FireFly

Coreless

Wireless

Steerable

Potential Benefits of This Vision

Challenges in Realizing the Vision

Steerable wireless links

- Network Design
- Network Management

FireFly shows this vision is feasible

Outline

- Motivation
- Steerable Wireless Links
- Network Design
- Network Management
- Evaluation

Why FSO instead of RF?

RF (e.g. 60GHZ)

Wide beam →
High interference
Limited active links
Limited Throughput

FSO (Free Space optical)

Narrow beam →
Zero interference
No limit on active links
High Throughput

Today's FSO

Cost: \$15K per FSO

• Size: 3 ft³

Power: 30w

Non steerable

- Current: bulky, power-hungry, and expensive
- Required: small, low power and low expense

Why Size, Cost, Power Can be Reduced?

- Traditional use: outdoor, long haul
 - High power
 - Weatherproof
- Data centers: indoor, short haul
- Feasible roadmap via commodity fiber optics
 - E.g. Small form transceivers (Optical SFP)

FSO Design Overview

FSO Design Overview

FSO Design Overview

• large cores (> 125 microns) are more robust

Steerability

Shortcomings of current FSOs

- ✓ Cost
- ✓ Size
- ✓ Power
- Not Steerable

Via Switchable mirrors or Galvo mirrors

Steerability via Switchable Mirror

- Switchable Mirror: glass \longleftrightarrow mirror
- Electronic control, low latency

Steerability via Galvo Mirror

- Galvo Mirror: small rotating mirror
- Very low latency

FSO Prototype in Data center

FSO Link Performance

- Effect of vibrations, etc.
- 6mm movement tolerance
- Range up to 24m tested

FSO link is as robust as a wired link

Outline

- Motivation
- Steerable Wireless Links
- Network Design
- Network Management
- Evaluation

How to design FireFly network?

- Goals: Robustness to current and future traffic
- Budget & Physical Constraints
- Design parameters
 - Number of FSOs?
 - Number of steering mirrors?
 - Initial mirrors' configuration

- Performance metric
 - Dynamic bisection bandwidth

FireFly Network Design

- # of FSOs = # of Servers
 # of Switchable Mirrors = [10-15] for up to 512 racks
- # of Galvo Mirrors = 1 per FSO
- Mirror Configuration = Random graph
- less than ½ the ports of FatTree

Projected Cost: 40% to 60% lower than FatTree

Outline

- Motivation
- Steerable Wireless Links
- Network Design
- Network Management
- Evaluation

Network Management Challenges

- Reconfiguration
 - Traffic engineering
 - Topology control

Correctness during flux

FireFly Reconfiguration Algorithm

- Joint optimization problem
- Massive ILP

- Decouple
 - Traffic engineering

Max-flow, greedy

Topology control

- Weighted Matching
- Above is done periodically
- In addition: Trigger-based reconfiguration
 - E.g. Create direct link for large flows

Correctness Problems During Flux

Connectivity

Black Holes

Latency

Simple Rules To Ensure Correctness

Disallow deactivations that disconnect the network.

Stop using a link before deactivating it

Start using a link only after activating it

"Small" gap between reconfigurations

Outline

- Motivation
- Steerable Wireless Links
- Network Design
- Network Management
- Evaluation

FireFly Evaluation

- Packet-level
- Flow-level (for large scale networks)
- Evaluation of network in-flux
- Evaluation of Our Heuristics

FireFly Throughput

FireFly is comparable to FatTree with less than ½ the ports

Flow completion time better than FatTree

Conclusions

- Vision: Extreme DC network architecture
 - Fully Steerable, No core switches, All-wireless inter-rack
- Unprecedented benefits:
 - No Cabling, Adapt to traffic patterns, Less clutter
- Firefly shows a viable proof point
 - Practical steerable FSO for datacenters
 - Practical network design and management heuristics
 - Close to fat tree performance over several workloads
 - Less than half of FatTree ports
- Just a start .. Many directions for improvement