Correction ciblée.

- A quest 1 : avoir considéré deux parties dans \mathcal{A} et les avoir introduites de façon standard : "Soient..."
- B quest 1 : avoir compris que $[a_1, +\infty[\cap [a_2, +\infty[= [\max(a_1, a_2), +\infty[$.
- C quest 2-(a) : avoir prouvé l'égalité $\mathbb{Z}_a = \mathbb{Z}$ par double-inclusion (rédaction où on distingue bien les deux preuves d'inclusion sur la copie).
- D quest 2-(b) avoir commencé un raisonnement par l'absurde pour prouver que $\mathbb{Z} \cap \mathbb{Z}_{1/2}$ est vide : "supposons qu'il est non vide, soit $x \in \mathbb{Z} \cap \mathbb{Z}_{1/2}$.
- $\boxed{\mathrm{E}}$ quest 2-(b) avoir traduit l'appartenance $x \in \mathbb{Z}_{1/2}$ à l'aide du quantificateur il existe : "il existe k entier tel que $x = \frac{1}{2} + k$ ".

Problème. π -systèmes.

0. Un exemple trivial.

Considérons deux parties A_1 et A_2 de \mathcal{S} : nécessairement $A_1 = A_2 = A$ et donc $A_1 \cap A_2 = A \in \mathcal{S}$. Ceci prouve que le singleton \mathcal{S} est un π -système.

1. Un exemple.

 $\overline{\text{Considérons}}$ deux parties A_1 et A_2 dans \mathcal{A} .

Il existe deux réels a_1 et a_2 tels que $A_1 = [a_1, +\infty[$ et $A_2 = [a_2, +\infty[$.

Il est clair que $A_1 \cap A_2 = [\max(a_1, a_2), +\infty[$: être dans A_1 et A_2 , c'est être supérieur à a_1 et à a_2 , ce qui équivaut à être supérieur à $\max(a_1, a_2)$.

Ceci montre que $A_1 \cap A_2$ est une partie de la forme $[a', +\infty[: A_1 \cap A_2 \in \mathcal{A}]$. On a bien que A est un π -système de \mathbb{R} .

2. Des contre-exemples.

(a) Soit $a \in \mathbb{Z}$.

On va prouver l'égalité d'ensembles $\mathbb{Z}_a = \mathbb{Z}$ par double-inclusion.

- Clair : \mathbb{Z}_a contient des sommes d'entiers donc des entiers : $\mathbb{Z}_a \subset \mathbb{Z}$.
- Soit $p \in \mathbb{Z}$. On a $p = a + \underbrace{(p-a)}_{\mathbb{Z}^{\mathbb{Z}}}$, donc $p \in \mathbb{Z}_a$: on a $\mathbb{Z} \subset \mathbb{Z}_a$.

Par double-inclusion, on a prouvé $\mathbb{Z}_a = \mathbb{Z}$

Ce qui précède prouve que $\mathcal{B} = \{\mathbb{Z}\}$: c'est un singleton et donc un π -système d'après la question 0.

(b) Raisonnons par l'absurde et supposons $\mathbb{Z} \cap \mathbb{Z}_{1/2}$ non vide. Il existe alors un réel x qui appartient à \mathbb{Z} et à $\mathbb{Z}_{1/2}$. On peut donc écrire $x \in \mathbb{Z}$ et $x = \frac{1}{2} + k$, avec $k \in \mathbb{Z}$. Mais alors $\frac{1}{2} = x - k$ est entier comme différence d'entiers : c'est absurde! On a bien $\mathbb{Z} \cap \mathbb{Z}_{1/2} = \emptyset$.

L'ensemble \mathcal{C} n'est donc pas un π -système. En effet, les parties \mathbb{Z}_0 et $\mathbb{Z}_{1/2}$ appartiennent à \mathcal{C} . Or, $\mathbb{Z}_0 = \mathbb{Z}$ et donc $\mathbb{Z}_0 \cap \mathbb{Z}_{1/2} = \emptyset \notin \mathcal{C}$. En effet, \mathcal{C} ne contient par définition que des parties non vides.

(c) Raisonnons par l'absurde et supposons $\mathbb{Q} \cap \mathbb{Q}_{\sqrt{2}}$ non vide. Il existe alors un réel x qui appartient à \mathbb{Q} et à $\mathbb{Q}_{\sqrt{2}}$. On peut donc écrire $x \in \mathbb{Q}$ et $x = \sqrt{2} + r$, avec $r \in \mathbb{Q}$. Mais alors $\sqrt{2} = x - r$ est rationnel comme différence de rationnels*: absurde! On a bien $\mathbb{Q} \cap \mathbb{Q}_{\sqrt{2}} = \emptyset$.

Détaillons le fait que \mathbb{Q} est stable par différence. Soient deux nombres rationnels. Il s'écrivent respectivement $\frac{p}{q}$ et $\frac{p'}{q'}$ avec (p,q) et (p',q') deux couples de $\mathbb{Z} \times \mathbb{Z}^$. On a

$$\frac{p}{q} - \frac{p'}{q'} = \frac{pq' - p'q}{qq'} \in \mathbb{Q}$$
 (quotient d'entiers).

L'ensemble \mathcal{D} n'est donc pas un π -système. En effet, les parties \mathbb{Q}_0 et $\mathbb{Q}_{\sqrt{2}}$ appartiennent à \mathcal{D} . Or, $\mathbb{Q}_0 = \mathbb{Q}$ et donc $\mathbb{Q}_0 \cap \mathbb{Q}_{\sqrt{2}} = \emptyset \notin \mathcal{D}$. En effet, \mathcal{D} ne contient par définition que des parties non vides.

3. Stabilité par intersection.

Soit $(C, C') \in \mathcal{C}^2$. Les parties C et C' sont donc dans \mathcal{A} et dans \mathcal{B} . On a $C \cap C' \in \mathcal{A}$ puisque C et C' sont dans \mathcal{A} et que \mathcal{A} est un π -système. On a $C \cap C' \in \mathcal{B}$ puisque C et C' sont dans \mathcal{B} et que \mathcal{B} est un π -système. Ceci montre que $C \cap C' \in \mathcal{A} \cap \mathcal{B}$ et achève de prouver que $\mathcal{A} \cap \mathcal{B}$ est stable par intersection : $\boxed{\mathcal{C}}$ est un π -système de \boxed{E}

4. Et avec l'union?

Considérons D et D' deux parties de \mathcal{D} .

Il existe $(A, B) \in \mathcal{A} \times \mathcal{B}$ tel que $D = A \cup B$ et il existe $(A', B') \in \mathcal{A} \times \mathcal{B}$ tel que $D' = A' \cup B'$. Ainsi, en développant,

$$D \cap D' = (A \cup B) \cap (A' \cup B')$$

$$= (A \cap A') \cup \underbrace{(A \cap B')}_{=\emptyset} \cup \underbrace{(A' \cap B)}_{=\emptyset} \cup (B \cap B')$$

$$= (A \cap A') \cup (B \cap B')$$

On a bien sûr utilisé l'hypothèse de l'énoncé : une partie de $\mathcal A$ et une partie de $\mathcal B$ sont toujours disjointes

Il ne reste plus qu'à dire que $A \cap A' \in \mathcal{A}$ et que $B \cap B' \in \mathcal{B}$ (définition de π -système). Ceci montre que $D \cap D'$ est bien dans \mathcal{D} et achève de prouver que $\boxed{\mathcal{D}}$ est un π -système de E

5. Et avec le produit cartésien?

Soient deux éléments de \mathcal{E} , qui s'écrivent par définition $A \times B$ et $A' \times B'$, avec $(A, A') \in \mathcal{A}^2$ et $(B, B') \in \mathcal{B}^2$. On a

$$(A \times B) \cap (A' \times B') = (A \cap A') \times (B \cap B').$$

En effet, cet ensemble est celui des couples de E^2 dont la première coordonnée est dans A et A', et la seconde dans B et B'.

Par définition de π -système, $A \cap A' \in \mathcal{A}$ et $B \cap B' \in \mathcal{B}$.

Ceci démontre que l'intersection des deux éléments pris dans \mathcal{E} est encore un élément de \mathcal{E} : l'ensemble \mathcal{E} est un π -système de $E \times E$.