

3003

LOOK-AHEAD CARRY GENERATOR

The INTEL® 3003 Look-Ahead Carry Generator (LCG) is a high speed circuit capable of anticipating a carry across a full 16-bit 3002 Central Processing Array. When used with a larger 3002 CP Array multiple 3003 carry generators provide high speed carry look-ahead capability for any word length.

The LCG accepts eight pairs of active high cascade inputs (X,Y) and an active low carry input and generates active low carries for up to eight groups of binary adders.

High Performance — 10 ns typical propagation delay

Compatible with INTEL 3001 MCU and 3002 CPE

DTL and TTL compatible

Full look-ahead across 8 adders

Low voltage diode input clamp

Expandable

28-pin DIP

PACKAGE CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	NAME AND FUNCTION	TYPE
1,7,8,11 18,21,23 27	Y ₀ -Y ₇	Standard carry look-ahead inputs	Active HIGH
2,5,6,10 19,20,24 26	X ₀ -X ₇	Standard carry look-ahead inputs	Active HIGH
17	C _n	Carry input	Active LOW
4,9,12 13,15,16	C _{n+1} C _{n+8}	Carry outputs	Active LOW
3	EC _{n+8}	C _{n+8} carry output enable	Active HIGH
28	V _{CC}	+5 volt supply	
14	GND	Ground	

3003 LOGIC EQUATIONS

The 3003 Look-Ahead Generator is implemented in a compatible form for direct connection to the 3001 MCU and 3002 CPE. Logic equations for the 3003 are:

$$\overline{C_n + 1} = Y_0 X_0 + Y_0 \overline{C}_n$$

$$\overline{C_n + 2} = Y_1 X_1 + Y_1 Y_0 X_0 + Y_1 Y_0 \overline{C}_{n.}$$

$$\overline{\overline{c_n + 3}} = Y_2 X_2 + Y_2 Y_1 X_1 + Y_2 Y_1 Y_0 X_0 + Y_2 Y_1 Y_0 \overline{\overline{c}}_n$$

$$\overline{C_{n} + 4} = Y_{3}X_{3} + Y_{3}Y_{2}X_{2} + Y_{3}Y_{2}Y_{1}X_{1} + Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{3}Y_{2}Y_{1}Y_{0}\overline{C_{n}}$$

$$\overline{\overline{c_{n} + 5}} = Y_{4}X_{4} + Y_{4}Y_{3}X_{3} + Y_{4}Y_{3}Y_{2}X_{2} + Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{c}_{n}$$

$$\overline{\overline{c_{n} + 6}} = Y_{5}X_{5} + Y_{5}Y_{4}X_{4} + Y_{5}Y_{4}Y_{3}X_{3} + Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{c_{n}}$$

$$\overline{C_{n}^{+7}} = Y_{6}X_{6} + Y_{6}Y_{5}X_{5} + Y_{6}Y_{5}Y_{4}X_{4} + Y_{6}Y_{5}Y_{4}Y_{3}X_{3} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}X_{0} + Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C}_{n}$$

 $\overline{C_n + 8}$ = High Impedance State when $EC_n + 8$ Low

$$\overline{C_{n} + 8} = Y_{7}X_{7} + Y_{7}Y_{6}X_{6} + Y_{7}Y_{6}Y_{5}X_{5} + Y_{7}Y_{6}Y_{5}Y_{4}X_{4} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}X_{3} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}X_{2} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}X_{1} + Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}\overline{C_{n}} \text{ when EC}_{n} + 8 \text{ high}$$

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias	 	 	55°C to +125°C
Storage Temperature	 	 	65°C to +160°C
All Output and Supply Voltages .	 	 	0.5V to +7V
All Input Voltages	 	 	1.0V to +5.5V
Output Current	 	 	100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

 $T_A = -55^{\circ} C$ to $+125^{\circ} C$, $V_{CC} = 5.0 V \pm 10\%$.

SYMBOL	PARAMETER	MIN.	TYP. ⁽¹⁾	MAX.	UNIT	CONDITIONS
v _C	Input Clamp Voltage (All Input Pins)		-0.8	-1.2	٧	I _C = -5 mA
l _F	Input Load Current: X6,X7,Cn,EC _n +8 Y7,X0-X5, Yo-Y6		-0.07 -0.200 -0.6	-0.25 -0.500 -1.5	mA mA mA	V _F = 0.45V
^I R	Input Leakage Current: C _n and EC _n + 8 All Other Inputs			40 100	μΑ μΑ	V _{CC} = 5.25V, V _R = 5.5V
VIL	Input Low Voltage			8.0	V	V _{CC} = 5.0V
V _{IH}	Input High Voltage	2.1			V	V _{CC} = 5.0V
lcc	Power Supply Current		80	130	mA	All Y and $EC_n + 8$ high, All X and C_n low
V _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	V .	IOL = 4 mA
V _{ОН}	Output High Voltage (All Output Pins)	2.4	3		٧	$I_{OH} = -1 \text{ mA}$
los	Short Circuit Output Current (All Output Pins)	-15	-40	-65	mA	V _{CC} = 5V
l _{O(off)}	Off-State Output Current (C _n + 8)			-100 -100	μΑ μΑ	V _O = 0.45V V _O = 5.5V

NOTE:

A.C. CHARACTERISTICS

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = +5.0V \pm 10\%$

SYMBOL	PARAMETER	MIN.	TYP.(1)	MAX.	UNIT
txc	X, Y to Outputs	3	10	25	ns
tcc	Carry In to Outputs		13	40	ns
^t EN	Enable Time, C _n + 8		20	50	ns

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

⁽¹⁾ Typical values are for $T_A = 25^{\circ} C$ and nominal supply voltage.

D.C. AND OPERATING CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias												•		0°	C to 70°C
Storage Temperature														-65°C	to +160°C
All Output and Supply Voltages .														0.!	5V to +7V
All Input Voltages														1.0\	/ to +5.5V
Output Current		٠.													100 mA

^{*}COMMENT: Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

 $T_{\Delta} = 0^{\circ} \text{C to } +70^{\circ} \text{C} \quad V_{CC} = 5.0 \text{V } \pm 5\%$

SYMBOL	PARAMETER	MIN	I. TYP. ⁽¹) MAX.	UNIT	CONDITIONS
v _c	Input Clamp Voltage (All Input Pins)	-	-0.8	-1.0	٧	I _C = -5 mA
F	Input Load Current: X ₈ ,X ₇ Cn,EC _n + 8 Y ₇ ,X ₀ -X ₅ , Y ₀ -Y ₆		-0.07 -0.200 -0.6	-0.25 -0.500 -1.5	mA mA mA	V _F = 0.45V
^I R	Input Leakage Current: C _n and EC _n + 8 All Other Inputs			40 100	μΑ μΑ	V _R = 5.25V
VIL	Input Low Voltage			0.8	٧	V _{CC} = 5.0V
V _{IH}	Input High Voltage	2.0			٧	V _{CC} = 5.0V
lcc	Power Supply Current		80	130	mA	All Y and EC _n + 8 high, All X and C _n low
v _{OL}	Output Low Voltage (All Output Pins)		0.35	0.45	٧	I _{OL} = 4 mA
V _{OH}	Output High Voltage (All Output Pins)	2.4	.		V	I _{OH} = -1 mA
los	Short Circuit Output Current (All Output Pins)	-15	-40	-65	mA	V _{CC} = 5V
I _{O(off)}	Off-State Output Current (C _n + 8)			-100 +100	μA μA	$V_{O} = 0.45V$ $V_{O} = 5.25V$

NOTE:

(1) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

A.C. CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$, $V_{CC} = +5V \pm 5\%$

SYMBOL	PARAMETER	MIN.	TYP. ⁽¹⁾	MAX.	UNIT
^t XC	X, Y to Outputs	3	10	20	ns
^t CC	Carry In to Outputs		13	30	ns
t _{EN}	Enable Time, C _n + 8		20	40	ns

NOTE:

⁽¹⁾ Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

NOTE: ALTERNATE TEST LOAD:

CAPACITANCE (2) $T_A = 25^{\circ}C$

SYMBOL		PARAMETER	MIN	TYP	MAX	UNIT
C _{IN}	Input Capacitance	All inputs		12	20	pF
C _{OUT}	Output Capacitance	C _n + 8		7	12	pF

NOTE:

(2) This parameter is periodically sampled and is not 100% tested. Condition of measurement is f = 1 MHz, V_{BIAS} = 5.0V, V_{CC} = 5.0V and T_A = 25°C.

TEST CONDITIONS:

Input pulse amplitude of 2.5V. Input rise and fall times of 5 ns between 1 and 2 volts. Output loading is 5 mA and 30 pF. Speed measurements are made at 1.5 volt levels.

