Qingchu Jin

110 W 39th St, Baltimore, MD, 21210 | (667) 207-1767 | qjin4@jhmi.edu

Self-motivated fast learner with the ability to lead and conduct research independently as well as collaboratively in teams. Looking for a position to apply computational biology to large medical problems.

Education

Johns Hopkins University (JHU), School of Medicine, Baltimore, MD

Nov 2021 - Jan 2022

PhD in Biomedical Engineering (Computational biology track)

Shanghai Jiao Tong University (SJTU), School of Biomedical Engineering, China

Jun 2017

BS in Biomedical Engineering

Industry Research Experience

Quantitative Relationship between HIV PrEP Drug Adherence and Efficacy

May 2021 - Present

Quantitative Pharmacology and Pharmacometrics group, Merck & Co.

- Performed a pharmacokinetic analysis on a HIV pre-exposure prophylaxis (PrEP) drug using a physiologicalbased pharmacokinetic (PBPK) model in MATLAB.
- Designed a dosing regimen simulation protocol to mimic the clinical adherence.
- Performed the analysis of the relationship between efficacy and exposure/adherence for this PrEP drug.

Academic Research Experience

Estimating the Probability of Arrhythmias and its Applications (PhD thesis)

Sept 2017 - Present

Dr. Raimond Winslow's Lab, Institute for Computational Medicine, JHU, Baltimore, MD

- Established a novel spatial stochastic local control cardiac myocyte model (a quantitative system biology model) in C++ by ordinary differential equations and stochastic process and ran simulations in HPC clusters.
- Developed a simplified approach (logistic regression model) to estimate the probability of cellular arrhythmias efficiently and faithfully in MATLAB.
- Predicted the risk of Long QT syndrome mutations using my simplified approach.
- Discovered that prolonged action potential duration does not always cause greater early-afterdepolarization risk.

Prediction of the Cardiac Arrest Neurologic outcome with Machine Learning Sept 2018 – Mar 2020 Methods

Dr. Robert Stevens's Lab, Dept. of Biomedical Engineering, JHU, Baltimore, MD

- Explored and preprocessed more than 200,000 patient healthcare data to with various data mining algorithms including spectrum clustering, random forest, and other learning methods using Python, MATALB and R.
- Designed different types of deep learning models (convolution neural nets and recurrent neural network) to predict the post-cardiac arrest neurological outcome with features extracted from the healthcare database using Python (Pytorch).
- Performed transfer learning method on patient healthcare data to improve model performance.

Intracranial Aneurysm Segmentation using Convolutional Neural Networks

Mar 2020 - July 2021

Dr. Rui Li's Lab, Dept. of Biomedical Engineering, Tsinghua University, Beijing, China

- Modified a two-inputs 3D convolutional neural net to perform the 3D MRI image segmentation task by PyTorch.
- Extracted and analyzed the prediction of aneurysm diameters from the segmentations using Python.

Image-guided pulmonary navigation system

Jun 2014 - Nov 2016

Dr. Lixu Gu's Lab, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China

- Developed a pulmonary nodule biopsy navigation software system for safer and more accurate biopsy using Python and C++.
- Developed a deformation algorithm to compensate the respiratory movement during biopsy based on linear regression.
- Conducted animal studies and clinical trials to evaluate the accuracy and reliability of the system.

Teaching Experience

Teaching Assistant, Introduction to Computational Medicine, JHU

Aug 2018 - Dec 2018

Aug 2019 - Dec 2019

 Facilitated outstanding support for two classes of ~100 students and administered student-centered mentoring along with in-depth feedback to improve performance and abilities in python and MATLAB

Honors

Gakenheimer Fellowship, JHU	2019-2020
Star Research Achievement Award in Society of Critical Care Medicine Meeting	2020
 Young Investigator Award in AHA Resuscitation Science Symposium 	2019
 Graduation with honor of Shanghai, SJTU (highest graduation honor) 	2017

Publications

- **Q Jin**, JL Greenstein and RL Winslow. Estimating Ectopic Beat Probability with Simplified Statistical Models that Account for Experimental Uncertainty. *PLoS Comp. Bio. (major revision)*.
- **Q Jin**, JL Greenstein and RL Winslow. Estimating the Probability of Early Afterdepolarization and Predicting Arrhythmic Risk associated with Long QT Syndrome Type 1 Mutations. *J. Mol. Cell. Cardio. (submitted).*
- **Q Jin**, JL Greenstein and RL Winslow. Does prolonged action potential always indicate greater early afterdepolarization risk? (*In preparation*).
- *HB Kim, *H Nguyen, *Q Jin et al. A Physiology-Driven Computational Model for Post-Cardiac Arrest Outcome Prediction. *The Lancet Digital Health (submitted)*. *: equal contribution.
- *M Zhang, *Q Jin et al. Intracranial aneurysm segmentation from TOF-MRA and black-blood MRI using a deep convolutional neural network (*In preparation*). *: equal contribution.

Conferences

- **Q Jin**, JL Greenstein and RL Winslow. Simplified Models Predict Cellular Arrhythmia Probabilities and Reveal the Impact of Experimental Parameter Uncertainty on the Predicted Distribution of Arrhythmic Events. (poster) *Biophysical Society Meeting.* 2019
- H Kim, H Nguyen, Q Jin et al. A machine learning-based prediction of cardiac arrest outcome using a large multi-center database. (oral) AHA Resuscitation Science Symposium 2019 and Society of Critical Care Medicine 2020
- M Zhang, Q Jin et. al. Intracranial aneurysm segmentation using a deep convolutional neural network. (oral)
 ISMRM 29th Annual Meeting & Exhibition 2021.

Patents

- Q Jin, W Yu, S Hong et al. "Fast fusion method for dynamically simulating lung deformation in segmented model." P. R. China Patent No. 2015101287785. 15 July 2015
- W Yu, Q Jin, S Hong et al. "Dynamic registration method based on reference point in computer-aided

pulmonary surgery." P. R. China Patent No. 201510128779X. 24 June 2015

<u>Skills</u>

- **Programming languages and packages**: C++, MATLAB, Python, R, SQL, High performance computing (HPC) cluster, Pytorch, OpenMP, MPI, Git & Github, Linux system.
- **Modeling techniques:** quantitative system pharmacology (QSP) modeling, physiological-based pharmacokinetic (PBPK) modeling, parallel computing, Markov chain stochastic modeling, deep learning, data analysis, generalized linear regression.
- **Courses:** immunology, deep learning, system bioengineering, introduction to stochastic process, introduction to nonlinear system and chaos, statistics in public health, precision care medicine.