CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CURSO DE ENGENHARIA DE COMPUTAÇÃO MODELAGEM MATEMÁTICA E COMPUTACIONAL

TÍTULO DO TRABALHO: SUBTÍTULO DO TRABALHO

Nome completo do acadêmico

Orientador: Nome do orientador

Centro Federal de Educação Tecnológica de Minas Gerais - CEFET-MG

Coorientador: Nome do co-orientador

Centro Federal de Educação Tecnológica de Minas Gerais - CEFET-MG

Belo Horizonte Janeiro de 2014

NOME COMPLETO DO ACADÊMICO

TÍTULO DO TRABALHO: SUBTÍTULO DO TRABALHO

Modelo canônico de trabalho monográfico acadêmico em conformidade com as normas ABNT apresentado à comunidade de usuários LATEX.

Área de concentração: Modelagem Matemática e Computacional

Linha de pesquisa: Sistemas Inteligentes

Orientador: Nome do orientador

Centro Federal de Educação Tecnológica

de Minas Gerais - CEFET-MG

Coorientador: Nome do co-orientador

Centro Federal de Educação Tecnológica

de Minas Gerais - CEFET-MG

Nome completo do acadêmico

TÍTULO DO TRABALHO

Modelo canônico de trabalho monográfico acadêmico em conformidade com as normas ABNT apresentado à comunidade de usuários IATEX.

Trabalho aprovado. Belo Horizonte, 24 de novembro de 2014

Nome do orientador
Orientador

Professor
Convidado 1

Professor

Convidado 2

Centro Federal de Educação Tecnológica de Minas Gerais Curso de Engenharia de Computação Belo Horizonte Janeiro de 2014

Agradecimentos

Resumo

Síntese do trabalho em texto cursivo contendo um único parágrafo. O resumo é a apresentação clara, concisa e seletiva do trabalho. No resumo deve-se incluir, preferencialmente, nesta ordem: brevíssima introdução ao assunto do trabalho de pesquisa (qualificando-o quanto à sua natureza), o que será feito no trabalho (objetivos), como ele será desenvolvido (metodologia), quais serão os principais resultados e conclusões esperadas, bem como qual será o seu valor no contexto acadêmico. Para o projeto de dissertação sugere-se que o resumo contenha até 200 palavras.

Palavras-chave: Entre 3 a 6 palavras ou termos (separados por ponto) descritores do trabalho. Utilizado para indexação.

Abstract

Translation of the abstract into English, possibly adapting or slightly changing the text in order to adjust it to the grammar of English educated.

Key-words: latex. abntex. text editoration.

Lista de figuras

Figura 1 – Exemplo da estrutura de uma árvore KD	6
--	---

Lista de tabelas

Tabela 1 –	Correlação de valores	xey.	 		 •			 				7
Tabela 2 –	Resultado dos testes		 					 				7

Lista de quadros

Quad	ro 1	. –	Hierarq	uia de	e restrições	s das que	stões.								•		7
------	------	-----	---------	--------	--------------	-----------	--------	--	--	--	--	--	--	--	---	--	---

Lista de algoritmos

1	Algoritmo	para remoção aleatória de vértices		8
---	-----------	------------------------------------	--	---

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

DECOM Departamento de Computação

Lista de símbolos

- Γ Letra grega Gama
- λ Comprimento de ondada
- \in Pertence

Sumário

1 – Intr	odução	1
1.1	Motivação	1
2 – Tral	balhos Relacionados	2
2.1	Citações livres	3
2.2	Citações literais	3
2.3	Informações sobre as referências utilizadas	5
3 – Fun	ndamentação Teórica	6
3.1	Figuras	6
3.2	Quadros e Tabelas	6
3.3	Equações	8
3.4	Algoritmos	8
4 – Me	todologia	9
4.1	Delineamento da pesquisa	9
4.2	Coleta de dados	9
5 – Aná	álise de Resultados	10
5.1	Situação atual	10
5.2	Análise dos dados coletados	10
6 – Cor	nclusão	11
6.1	Trabalhos Futuros	11
Referê	ncias	12
Apên	dices	14
APÊNI	DICE A-Nome do apêndice	15
APÊNI	DICE B – Nome do apêndice	16
Anex	os :	17
ANEX	O A – Nome do anexo	18
ANEX	O B – Nome do anexo	19

1 Introdução

Este modelo prove um arquivo *makefile*, portanto, para gerar este documento no formato PDF, basta apenas executar o comando make all no linux. Para limpar os arquivos temporários, basta digitar o comando make clean.

Cada capítulo deve conter uma pequena introdução (tipicamente, um ou dois parágrafos) que deve deixar claro o objetivo e o que será discutido no capítulo, bem como a organização do capítulo. Veja o exemplo abaixo.

A inclusão de reticências (...) no texto deverá ser feita através de um comando especial denominado \ldots. Assim esse comando deverá ser utilizado ao invés da digitação de três pontos.

A introdução deverá apresentar uma visão de conjunto do trabalho a ser realizado, com o apoio da literatura, situando-o no contexto do estado da arte da área científica específica, sua relevância no contexto da área inserida e sua importância específica para o avanço do conhecimento.

Para melhor entendimento do uso do estilo de formatação, aconselha-se que o potencial usuário analise os comandos existentes no arquivo main.tex e os resultados obtidos no arquivo main.pdf depois do processamento pelo software LATEX + BIBTEX (LATEX, 2009; BIBTEX, 2009). Recomenda-se a consulta ao material de referência do software para a sua correta utilização (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

1.1 Motivação

O estilo de documento utilizado é o abntex2. Através desse estilo a constituição do documento torna-se facilitada, uma vez que o mesmo possui comandos especiais para auxiliar a distribuição/definição das diversas partes constituintes do projeto. Esse estilo é baseado nas normas da ABNT. Maiores detalhes relacionados aos comandos existentes no estilo poderão ser adquiridos através da documentação disponível no site https://code.google.com/p/abntex2/.

Uma das principais vantagens do uso do estilo de formatação para LATEX é a formatação *automática* dos elementos que compõem um documento acadêmico, tais como capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo, abstract, listas de figuras, tabelas, siglas e símbolos, sumário, capítulos, referências, etc.

2 Trabalhos Relacionados

Este capítulo inclui muitas citações bibliográficas. Os principais itens de bibliografia citados são livros, artigos em conferências, artigos em *j*ournals e páginas Web. A bibliografia deve seguir o padrão ABNT¹.

A bibliografia é feita no padrão bibtex. As referências são colocadas em um arquivo separado. Os elementos de cada item bibliográfico que devem constar na bibliografia são apresentados a seguir.

Para livros, o formato da bibliografia no arquivo fonte é o seguinte:

```
@Book{linked,
   author = {A. L. Barabasi},
   title = {Linked: The New Science of Networks},
   publisher = {Perseus Publishing},
   year = {2002},
}
```

A citação deste livro se faz da seguinte forma \cite{linked} e o resultado fica assim (BARABASI, 2002). Para os artigos em *j*ournals, veja por exemplo (CHAKRABARTI; FALOUTSOS, 2006), descrito da seguinte forma no arquivo .bib:

```
@article{acmsurveys,
   author = {Deepayan Chakrabarti and Christos Faloutsos},
           = {Graph mining: Laws, generators},
   title
           = {ACM Computing Surveys},
   journal
   volume
            = \{38\},
   number
           = \{1\},
           = \{2006\},
  year
  pages
           = \{2-59\},
  publisher = \{ACM\},
   address = {New York, NY, USA},
}
```

O artigo (FALOUTSOS et al., 1999) foi publicado em conferência. Embora às vezes seja difícil distinguir um artigo publicado em *j*ournal de um artigo publicado em

¹Este não é o endereço oficial da ABNT pois as Normas Técnicas oficiais são pagas e não estão disponíveis na Web.

conferência, esta distinção é fundamental. Em caso de dúvida, procure ajuda de seu orientador.

Veja também duas citações juntas (PAGH, 1999; NEUBERT, 2000) e como citar endereços Web (IRL, 2007). O trabalho realizado para editar as citações no formato correto é compensado por uma bibliografia impecável.

2.1 Citações livres

Citações são trechos transcritos ou informações retiradas das publicações consultadas para a realização do trabalho. As citações são utilizadas no texto com o propósito de esclarecer, completar, embasar ou corroborar as idéias do autor.

Todas as publicações consultadas e efetivamente utilizadas (através de citações) devem ser listadas, obrigatoriamente, nas referências bibliográficas, de forma a preservar os direitos autorais e intelectuais.

Na utilização de citações, normalmente, utiliza-se referências. Para cada tipo de referência presente no texto será apresentado um exemplo do comando utilizado para criá-lo.

Há basicamente dois tipos de citações: citações livres e citações literais.

Nas citações livres, reproduzem-se as idéias e informações de um autor, sem, entretanto, "copiar letra-por-letra" o texto do autor. Há várias maneiras de se fazer uma citação livre, como mostra os exemplos abaixo.

Por outro lado, Maturana e Varela (2003) defende um princípio de lógica. Para o autor, quando dizemos . . .

Além disso, Barbosa et al. (2004) argumenta que ... Observe o detalhe do termo *et al*. que deve ser utilizado quando o trabalho citado possui mais de três autores. Esse recurso é automatizado pelo estilo abntex2. Caso não haja desejo em abreviar o nome dos demais autores através do termo *et al.*, deve-se incluir a opção abnt-no-etal-label.

Para evitar uma interrupção na sequência do texto, o que poderia, eventualmente, prejudicar a leitura, pode-se indicar a fonte entre parênteses imediatamente após a citação livre. Porém, neste caso específico, o nome do autor deve vir em caixa alta, seguido do ano da publicação, como no exemplo a seguir.

A física, então, constituiu-se como a prova mínima da efetividade do método científico para descobrir as verdades do universo (BARBOSA et al., 2004; MATURANA; VARELA, 2003).

2.2 Citações literais

Nas citações literais, reproduzem-se as idéias e informações de um autor, exatamente como este a expressou, ou seja, faz-se uma "copia letra-por-letra" do texto do autor. Há várias maneiras de se fazer uma citação literal, como mostra os exemplos abaixo.

As citações longas (mais de 3 linhas) devem usar um parágrafo específico para ela, na forma de um texto recuado (4 cm da margem esquerda), com tamanho de letra menor do aquela utilizada no texto e espaçamento simples entre as linhas, seguido dos sobrenomes dos autores em caixa alta (separados por ponto e vírgula), ano de publicação e número da página. Veja o exemplo abaixo.

Desse modo, opera-se uma ruptura decisiva entre a reflexividade filosófica, isto é a possibilidade do sujeito de pensar e de refletir, e a objetividade científica. Encontramo-nos num ponto em que o conhecimento científico está sem consciência. Sem consciência moral, sem consciência reflexiva e também subjetiva. Cada vez mais o desenvolvimento extraordinário do conhecimento científico vai tornar menos praticável a própria possibilidade de reflexão do sujeito sobre a sua pesquisa (MORIN; Le MOIGNE, 2000, p. 28).

Para se criar o efeito demonstrado na citação anterior, deve-se utilizar o comando:

Opcionalmente, pode-se referenciar os autores no corpo de texto (neste caso seus nomes devem vir em minúsculas), e em seguida colocar a citação literal, em um novo parágrafo recuado. Note que pode após a citação literal não mais aparece o nome dos autores, visto que já se encontra no texto. Veja o exemplo seguinte.

Morin e Le MOIGNE (2000, p. 33), ao fazerem as suas críticas à ciência, explicitam uma idéia coletiva:

Mas o curioso é que o conhecimento científico que descobriu os meios realmente extraordinários para, por exemplo, ver aquilo que se passa no nosso sol, para tentar conceber a estrutura das estrelas extremamente distantes, e até mesmo para tentar pesar o universo, o que é algo de extrema utilidade, o conhecimento científico que multiplicou seus meios de observação e de concepção do universo, dos objetos, está completamente cego, se quiser considerar-se apenas a si próprio!

As citações curtas (menos de 3 linhas) devem ser inseridas diretamente no texto (entre aspas), seguida do nome do autor (em caixa alta), ano e página, como no exemplo a seguir.

Então significa apenas que "assumo que não posso fazer referência a entidades independentes de mim para construir meu explicar" (MATURANA; VARELA, 2003, p. 35).

O conhecimento de Maturana e Varela (2003, p. 35) aponta que isto significa apenas que "assumo que não posso fazer referência a entidades independentes de mim para construir meu explicar".

Finalmente, e isto vale para citações curtas ou longas, caso seja necessário inserir, no meio de uma citação uma palavra ou frase curta de sua autoria, que sirva para clarear ou completar a frase do autor citado, isto deve ser feito colocando a citação entre aspas. O comentário deverá ser inserido sem aspas. Ou seja, todo texto da citação deverá ficar envolvido por aspas. O exemplo abaixo apresenta o resultado esperado.

Significa apenas que "assumo que não posso fazer referência a entidades" objetivas no sentido tradicional "independentes de mim para construir meu explicar" Maturana e Varela (2003, p. 35).

2.3 Informações sobre as referências utilizadas

Nesta seção serão apresentadas os comandos necessários para a criação das referências utilizadas anteriormente. As informações serão apresentadas da seguinte maneira:

• Maturana e Varela (2003)

```
\citeonline{maturana:2003}
```

• Barbosa et al. (2004)

```
\citeonline{teste:2004}
```

• (MORIN; Le MOIGNE, 2000, p. 28)

```
\cite[p.~28]{morinmoigne:2000}
```

• Morin e Le MOIGNE (2000, p. 33)

```
\citeonline[p.~33]{morinmoigne:2000}
```

• (MATURANA; VARELA, 2003, p. 35)

```
\cite[p.~35] {maturana:2003}
```

• Maturana e Varela (2003, p. 35)

```
\citeonline[p.~35]{maturana:2003}
```

• (BARBOSA et al., 2004; MATURANA; VARELA, 2003)

```
\cite{teste:2004, maturana:2003}
```

3 Fundamentação Teórica

A seguir ilustra-se a forma de incluir figuras, tabelas, equações, siglas e símbolos no documento, obtendo indexação automática em suas respectivas listas. A numeração sequencial de figuras, tabelas e equações ocorre de modo automático. Referências cruzadas são obtidas através dos comandos \label{} e \ref{}. Por exemplo, não é necessário saber que o número deste capítulo é 3 para colocar o seu número no texto. Isto facilita muito a inserção, remoção ou relocação de elementos numerados no texto (fato corriqueiro na escrita e correção de um documento acadêmico) sem a necessidade de renumerá-los todos.

3.1 Figuras

Abaixo é apresentado um exemplo de figura. A Figura 1 aparece automaticamente na lista de figuras. Para uso avançado de imagens no LATEX, recomenda-se a consulta de literatura especializada (GOOSSENS et al., 2007).

Figura 1 – Exemplo da estrutura de uma árvore KD

Fonte: Souza (2012)

3.2 Quadros e Tabelas

Também é apresentado o exemplo do Quadro ?? e da Tabela 1, que aparece automaticamente na lista de quadros e tabelas. Informações sobre a construção de tabelas no LATEX podem ser encontradas na literatura especializada (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

Muitos confundem, mas existe diferença entre tabelas e quadros. Um quadro é formado por linhas horizontais e verticais, sendo, portanto "fechado". Normalmente é usado para apresentar dados secundários. Nada impede, porém, que um quadro

Quadro 1 – Hierarquia de restrições das questões.

BD Relacionais	BD Orientados a Objetos
Os dados são passivos, ou seja, certas	Os processos que usam dados mudam
operações limitadas podem ser auto-	constantemente.
maticamente acionadas quando os da-	
dos são usados. Os dados são ativos,	
ou seja, as solicitações fazem com que	
os objetos executem seus métodos.	

Fonte: Carvalho et al. (2001)

apresente resultados da pesquisa. Um quadro normalmente apresenta resultados qualitativos (textos). O número do quadro e o título vêm acima do quadro, e a fonte, deve vir abaixo. Uma tabela é formada apenas por linhas verticais, sendo, portanto "aberta". Normalmente é usada para apresentar dados primários, e geralmente vem nos "resultados" e na discussão do trabalho. Nada impede, porém, que uma tabela seja usada no referencial teórico de um trabalho. Uma tabela normalmente apresenta resultados quantitativos (números). O número da tabela e o título vêm acima da tabela, e a fonte, deve vir abaixo, como no quadro.

Exemplos de tabelas:

Tabela 1 – Exemplo de uma tabela mostrando a correlação entre x e y.

X	у
1	2
3	4
5	6
7	8

Fonte: Autoria própria.

Tabela 2 – Resultado dos testes.

	Valores 1	Valores 2	Valores 3	Valores 4
Caso 1	0,86	0,77	0,81	163
Caso 2	0,19	0,74	0,25	180
Caso 3	1,00	1,00	1,00	170

3.3 Equações

A transformada de Laplace é dada na equação (1), enquanto a equação (2) apresenta a formulação da transformada discreta de Fourier bidimensional¹.

$$X(s) = \int_{t=-\infty}^{\infty} x(t) e^{-st} dt$$
 (1)

$$F(u,v) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \exp\left[-j2\pi \left(\frac{um}{M} + \frac{vn}{N}\right)\right]$$
 (2)

3.4 Algoritmos

Os algoritmos devem ser feitos segundo o modelo abaixo. Para isso, utilizar o pacote algorithm2e no início do arquivo principal como neste exemplo.

```
Algoritmo 1: Algoritmo para remoção aleatória de vértices

Input: o número n de vértices a remover, grafo original G(V, E)

Output: grafo reduzido G'(V, E)

removidos \leftarrow 0

while removidos < n do

v \leftarrow \text{Random}(1, ..., k) \in V

for u \in adjacentes(v) do

remove aresta (u, v)

removidos \leftarrow removidos + 1

end

if h\acute{a} componentes desconectados then

remove os componentes desconectados

end

end
```

¹Deve-se reparar na formatação esteticamente perfeita destas equações.

4 Metodologia

Inserir seu texto aqui...

4.1 Delineamento da pesquisa

Inserir seu texto aqui...

4.2 Coleta de dados

5 Análise de Resultados

Inserir seu texto aqui...

5.1 Situação atual

Inserir seu texto aqui...

5.2 Análise dos dados coletados

6 Conclusão

Espera-se que o uso do estilo de formatação LATEX adequado às Normas para Elaboração de Trabalhos Acadêmicos do CEFET-MG (abntex2-cefetmg.cls) facilite a escrita de documentos no âmbito desta instituição e aumente a produtividade de seus autores. Para usuários iniciantes em LATEX, além da bibliografia especializada já citada, existe ainda uma série de recursos (CTAN, 2009) e fontes de informação (TEX-BR, 2009; WIKIBOOKS, 2009) disponíveis na Internet.

Recomenda-se o editor de textos Kile como ferramenta de composição de documentos em LATEX para usuários Linux. Para usuários Windows recomenda-se o editor TEXnicCenter (TEXNICCENTER, 2009). O LATEX normalmente já faz parte da maioria das distribuições Linux, mas no sistema operacional Windows é necessário instalar o software MiKTeX (MIKTEX, 2009).

Além disso, recomenda-se o uso de um gerenciador de referências como o JabRef (JABREF, 2009) ou Mendeley (MENDELEY, 2009) para a catalogação bibliográfica em um arquivo BIBTEX, de forma a facilitar citações através do comando \cite{} e outros comandos correlatos do pacote ABNTEX. A lista de referências deste documento foi gerada automaticamente pelo software LATEX + BIBTEX a partir do arquivo refbase.bib, que por sua vez foi composto com o gerenciador de referências JabRef.

6.1 Trabalhos Futuros

Referências

BARABASI, A. L. Linked: The New Science of Networks. [S.l.]: Perseus Publishing, 2002.

BARBOSA, C.; CARDOSO, M. da S.; SILVA, T. da; SOARES, C. **Testando a utilização de "et al."**. 2. ed. Cidade: Editora, 2004.

BIBTEX. **BibTeX.org**. 2009. Disponível em: http://www.bibtex.org>. Acesso em: 8 de novembro de 2009.

BUERGER, D. J. LaTeX for scientists and engineers. Singapura: McGraw-Hill, 1989.

CARVALHO, C.; FAJARDO, J.; CRUZ, J. Inteligência competitiva numa visão de futuro: proposta metodológica. **DataGramaZero - Revista da Ciência da Informação**, v. 2, n. 3, p. 12–16, 2001.

CHAKRABARTI, D.; FALOUTSOS, C. Graph mining: Laws, generators, and algorithms. **ACM Computing Surveys**, ACM, New York, NY, USA, v. 38, n. 1, p. 2–59, 2006.

CTAN. **The comprehensive TeX archive network**. 2009. Disponível em: http://www.ctan.org. Acesso em: 8 de novembro de 2009.

FALOUTSOS, M.; FALOUTSOS, P.; FALOUTSOS, C. On power-law relationships of the internet topology. In: **Book Title**. New York, NY, USA: ACM Press, 1999. p. 251–262. ISBN 1-58113-135-6.

GOOSSENS, M.; MITTELBACH, F.; RAHTZ, S.; ROEGEL, D.; VOSS, H. **The LaTeX graphics companion**. 2. ed. Boston: Addison-Wesley, 2007.

IRL. **Internet Research Laboratory**. 2007. http://irl.cs.ucla.edu/topology. Acesso em março de 2007.

JABREF. **JabRef reference manager**. 2009. Disponível em: http://jabref.sourceforge.net>. Acesso em: 8 de novembro de 2009.

KOPKA, H.; DALY, P. W. Guide to LaTeX. 4. ed. Boston: Addison-Wesley, 2003.

LAMPORT, L. LaTeX: a document preparation system. Boston: Addison-Wesley, 1986.

LATEX. **The LaTeX project**. 2009. Disponível em: http://www.latex-project.org. Acesso em: 8 de novembro de 2009.

MATURANA, H. R.; VARELA, F. J. **A Árvore do Conhecimento**: as bases biológicas da compreenão humana. 3. ed. São Paulo: Editora Palas Athena, 2003.

MENDELEY. **Mendeley: academic software for research papers**. 2009. Disponível em: http://www.mendeley.com. Acesso em: 8 de novembro de 2009.

MIKTEX. **The MiKTeX project**. 2009. Disponível em: http://www.miktex.org. Acesso em: 8 de novembro de 2009.

Referências 13

MITTELBACH, F.; GOOSSENS, M.; BRAAMS, J.; CARLISLE, D.; ROWLEY, C. The LaTeX companion. 2. ed. Boston: Addison-Wesley, 2004.

MORIN, E.; Le MOIGNE, J.-L. **A Inteligência da Complexidade**. São Paulo: Editora Petrópolis, 2000.

NEUBERT, M. S. **Algoritmos Distribuídos para a Construção de Arquivos Invertidos**. Dissertação (Mestrado) — Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Março 2000.

PAGH, R. Hash and displace: Efficient evaluation of minimal perfect hash functions. In: **Workshop on Algorithms and Data Structures**. [S.l.: s.n.], 1999. p. 49–54.

SOUZA, C. L. de. Recuperação de Vídeos Baseada em Conteúdo em um Sistema de Informação para Apoio à Análise do Discurso Televisivo. Dissertação (Mestrado) — Centro Federal de Educação tecnológica de Minas Gerais, 2012.

TEX-BR. **Comunidade TeX-Br**. 2009. Disponível em: http://www.tex-br.org/index.php. Acesso em: 8 de novembro de 2009.

TEXNICCENTER. **TeX nicCenter: the center of your LaTeX universe**. 2009. Disponível em: http://www.texniccenter.org. Acesso em: 8 de novembro de 2009.

WIKIBOOKS. **LaTeX**. 2009. Disponível em: http://en.wikibooks.org/wiki/LaTeX. Acesso em: 8 de novembro de 2009.

APÊNDICE A - Nome do apêndice

APÊNDICE B - Nome do apêndice

ANEXO A - Nome do anexo

ANEXO B - Nome do anexo