Derivatives Crib Sheet

For constant $a \in \mathbb{R}$ and arbitrary real functions f and g

Function	Derivative	Function	Derivative
\overline{a}	0	af	af'
f+g	f'+g'	fg	f'g + fg'
$\frac{f}{g}$	$\frac{f'g-fg'}{g^2}$	$f \circ g$	$f' \circ g)g'$
f^{-1}	$\frac{1}{f' \circ f^{-1}}$	x^a	ax^{a-1}
a^x	$a^x \ln a$	$\log_a x $	$\frac{1}{x \ln a}$
$\sin x$	$\cos x$	$\csc x$	$-\csc x \cot x$
$\cos x$	$-\sin x$	$\sec x$	$\sec x \tan x$
$\tan x$	$\sec^2 x$	$\cot x$	$-\csc^2 x$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	$\operatorname{arccsc} x$	$\frac{-1}{ x \sqrt{x^2-1}}$
$\arccos x$	$\frac{-1}{\sqrt{1-x^2}}$	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$
$\arctan x$	$\frac{1}{1+x^2}$	$\operatorname{arccot} x$	$\frac{-1}{1+x^2}$
$\sinh x$	$\cosh x$	$\cosh x$	$\sinh x$

Geometry Crib Sheet

Pythagorean Identity $a^2 + b^2 = c^2$

a + b = c				
Circle: radius r	$A = \pi r^2$	$c = 2\pi r$		
Box: dimensions x, y, z	V = xyz	A = 2(yz + xz + xy)		
Sphere: radius r	$V = \frac{4}{3}\pi r^3$	$A = 4\pi r^2$		
Right pyramid: height $h \dim x, y$	$V = \frac{1}{3}hxy$	$A = xy + x\sqrt{(y/2)^2 + h^2} + y\sqrt{(x/2)^2 + h^2}$		
Cylinder: height h radius r	$V = \pi h r^2$	$A = 2\pi r(h+r)$		
Right Cone: height h radius r	$V = \frac{\pi}{3}hr^2$	$A = \pi r \left(r + \sqrt{r^2 + h^2} \right)$		
Torus: radii $R > r$	$V = 2\pi^2 r^2 R$	$A = 4\pi^2 rR$		
Tetrahedron: edge x	$V = \frac{1}{6\sqrt{2}}x^3$	$A = \sqrt{3}x^2$		
Octahedron: edge x	$V = \frac{\sqrt{2}}{3}x^3$	$A = 2\sqrt{3}x^2$		
Dodecahedron: edge x	$V = \frac{15 + 7\sqrt{5}}{4}x^3$	$A = 3\sqrt{20 + 10\sqrt{5}}x^2$		
Icosahedron: edge x	$V = \frac{5(3+\sqrt{5})}{12}x^3$	$A = 5\sqrt{3}x^2$		