COMP 335: Introduction to Theoretical Computer Science

Assignment 3

Nathan Grenier

October 7, 2024 Fall 2024

- 1. [20 Points] For each of the following languages over $\Sigma = \{a, b\}$, write a regular grammar and then convert it into an equivalent NFA using the procedure described in class.
 - (a) (10 Points) L(r) where $r = ((a+b)(a+b))^*b + a((a+b)(a+b))^*$
 - (b) (10 Points) $\{w \in \{a, b\}^* : w \text{ ends in } a \text{ and } | w | \equiv 1 \pmod{3} \}$

2. [25 Points] Fix an alphabet Σ . For any string w with $|w| \ge 2$, let skip(w) be the string obtained by removing the first two symbols of w. Define 2 operators on languages:

$$f_1(L) = \{ w \in \Sigma^* : skip(w) \in L \}$$

$$f_2(L) = \{skip(w) \in \Sigma^* : w \in L\}$$

- (a) (5 Points) Consider $L' = L(bba^*)$ over the alphabet $\Sigma = \{a, b\}$. Write a regular expression representing $f_1(L')$. Write another regular expression representing $f_2(L')$.
- (b) (10 Points) Claim: For every regular language L the language $f_1(L)$ is regular. Clearly state whether the claim is TRUE or FALSE, and then prove your answer.

Answer:

Proof:

(c) (10 Points) Claim: For every regular language L the language $f_2(L)$ is regular. Clearly state whether the claim is TRUE or FALSE, and then prove your answer.

Answer:

Proof:

- 3. [20 Points] For each of the following languages, use the Pumping Lemma and/or closure properties of regular languages to show that the language is not regular.
 - (a) (10 Points) $L_1 = \{0^k 1^l : k \ge l^4 \ge 0\}$
 - (b) (10 Points) $L_2 = \{a^n : n \text{ is not a perfect cube}\}$