Classification: Alternative Techniques

Imbalanced Class Problem

Introduction to Data Mining, 2nd Edition by

Tan, Steinbach, Karpatne, Kumar

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line

Challenges

 Evaluation measures such as accuracy is not well-suited for imbalanced class

 Detecting the rare class is like finding needle in a haystack

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
OLAGO	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because the model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5
Recall (r) = $\frac{10}{10+0}$ = 1
F - measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	10	0
CLASS	Class=No	10	980

Precision (p) = $\frac{10}{10+10}$ = 0.5
$Recall(r) = \frac{10}{10+0} = 1$
F-measure (F) = $\frac{2*1*0.5}{1+0.5}$ = 0.62
Accuracy = $\frac{990}{1000}$ = 0.99

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL Class=Yes	1	9	
CLASS	Class=No	0	990

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F-measure (F) = $\frac{2*0.1*1}{1+0.1}$ = 0.18
Accuracy = $\frac{991}{1000}$ = 0.991

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision
$$(p) = 0.8$$

Recall (r)
$$=0.8$$

$$F$$
 - measure $(F) = 0.8$

Accuracy
$$=0.8$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL Class=Y	Class=Yes	40	10
CLASS	Class=No	10	40

Precision (p) =
$$0.8$$

Recall (r) = 0.8
F - measure (F) = 0.8
Accuracy = 0.8

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	ACTUAL Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p)
$$\Rightarrow$$
 0.04
Recall (r) =0.8
F - measure (F) \Rightarrow 0.08
Accuracy \Rightarrow 0.8

Measures of Classification Performance

	PREDICTED CLASS		
A OTUA		Yes	No
ACTUA L	Yes	TP	FN
CLASS	No	FP	TN

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$ErrorRate = 1 - accuracy$$

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$FP\ Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$

$$Power = sensitivity = 1 - \beta$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	10	40

Precision $(p) = 0.8$
TPR = Recall (r) = 0.8
FPR = 0.2
F-measure $(F) = 0.8$
Accuracy $=0.8$

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL	Class=Yes	40	10			
CLASS	Class=No	1000	4000			

Precision (p)
$$\Rightarrow$$
 0.04
TPR =Recall (r) =0.8
FPR =0.2
F-measure (F) \Rightarrow 0.08
Accuracy \Rightarrow 0.8

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	10	40		
CLASS	Class=No	10	40		

	PREDICTED CLASS				
	Class=Yes Class=No				
ACTUAL	Class=Yes	25	25		
CLASS	Class=No	25	25		

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	40	10		

Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Changing the threshold parameter of classifier changes the location of the point

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record

- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

Example: Decision Trees

Decision Tree

ROC Curve Example

$\alpha =$: 0.3	Predicted Class		
		Class o	Class +	
Actual	Class o	645	209	
Class	Class +	298	948	

$\alpha =$	0.7	Predicted Class		
		Class o	Class +	
Actual	Class o	181	673	
Class +		78	1168	

ROC Curve Example

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t is classified as positive

Using ROC for Model Comparison

- No model consistently outperform the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- ∀ Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	>=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Problem

- Class-based ordering (e.g. RIPPER)
 - Rules for rare class have higher priority
- Cost-sensitive classification
 - Misclassifying rare class as majority class is more expensive than misclassifying majority as rare class

Sampling-based approaches

Cost Matrix

	PREDICTED CLASS					
ACTUAL		Class=Yes	Class=No			
CLASS	Class=Yes	f(Yes, Yes)	f(Yes,No)			
	Class=No	f(No, Yes)	f(No, No)			

C(i,j): Cost of misclassifying class i example as class j

Cost Matrix	PREDICTED CLASS					
	C(i, j)	Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	C(Yes, Yes)	C(Yes, No)			
	Class=No	C(No, Yes)	C(No, No)			

$$Cost = \sum C(i, j) \times f(i, j)$$

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS				
	C(i,j)	+	-		
ACTUAL CLASS	+	-1	100		
	-	1	0		

Model M ₁	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	150	40
	-	60	250

Model M ₂	PREDICTED CLASS		
ACTUAL CLASS		+	-
	+	250	45
	=	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost Sensitive Classification

- Example: Bayesian classifer
 - Given a test record x:
 - Compute p(i|x) for each class i
 - Decision rule: classify node as class k if

$$k = \arg\max_{i} p(i \mid x)$$

- For 2-class, classify x as + if p(+|x) > p(-|x)
 - This decision rule implicitly assumes that
 C(+|+) = C(-|-) = 0 and C(+|-) = C(-|+)

Cost Sensitive Classification

- General decision rule:
 - Classify test record x as class k if

$$k = \arg\min_{j} \sum_{i} p(i \mid x) \times C(i, j)$$

- 2-class:
 - Cost(+) = p(+|x) C(+,+) + p(-|x) C(-,+)
 - Cost(-) = p(+|x) C(+,-) + p(-|x) C(-,-)
 - Decision rule: classify x as + if Cost(+) < Cost(-)
 - if C(+,+) = C(-,-) = 0: $p(+ | x) > \frac{C(-,+)}{C(-,+) + C(+,-)}$

Sampling-based Approaches

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - Oversample the rare class

Advantages and disadvantages