交叉带通用版本固件通讯协议+配置说明

一、通讯规则

- 读码器作为服务端,在拍照触发高电平,并且是触发 10ms 之后 50ms 之内,接收到客户系统发送的托盘号(索引号)
- 读码器作为客户端,向服务器端主机发送小车+条码数据

以上报文格式详见如下内容

二、数据格式

- 1. 索引号报文
 - <STX>INDEX<ETX>
- ▶ 报文结构如下:
 - <STX>起始符, 0x02
 - INDEX 托盘号,分别为千位,百位,十位和个位的 ASCII 码。
 - <ETX>结束符, 0x03
- ▶ 给相机控制单元发 1234 (一千二百三十四) 号托盘的帧如下所示:

消息头	千位	百位	十位	个位	结束符
02H	31H	32H	33H	34H	03H

2. 数据格式报文

<STX>INDEX# (Barcode1&Barcode2& Barcode3& Barcode4&...Barcode n) <ETX>

报文结构如下:

<STX>起始符, 0x02

INDEX 托盘号,分别为千位,百位,十位和个位的 ASCII 码。

#字符分隔符

- <Barcode1>&
- < Barcode 2>&

. . .

- < Barcode n-1>&
- < Barcode n>
- 其中条码区使用"()"
- <ETX>结束符. 0x03

• 单条码实例

单条码:条码长度 13, 托盘号 0025, 条码 123456789abcd (一维码)

消息头	千位	百位	十位	个位	分隔#	分隔(Barcode	Barcode
02H	30H	30H	32H	35H	23H	28H	31H	32H
Barcode								
33H	34H	35H	36H	37H	38H	39H	61H	62H
Barcode	Barcode	分隔)	结束符					
63H	64H	29H	03H					

• 无条码 实例

无满足条件条码(Noread) 托盘号 0025

消息头	千位	百位	十位	个位	分隔#	分隔(N	0	r
02H	30H	30H	32H	35H	23H	28H	4EH	6FH	72H
e	a	d	分隔)	结束符					
65H	61H	64H	29H	03H					

• 多条码 实例

多条码

托盘号 0025

条码 1 长度 13 条码 abcdefghijklm

条码 2 长度 13 条码 ABCDEFGHIJKLM

消息头	千位	百位	十位	个位	分隔#	分隔(Bearcod	Bcarcod
							e1	e1
02H	30H	30H	32H	35H	23H	28H	61H	62H
Bcarcod								
e1								
63H	64H	65H	66H	67H	68H	69H	6AH	6BH
Bcarcod	Bearcod	分隔&	Bearcod	Bearcod	Bcarcod	Bearcod	Bearcod	Bearcod
e1	e1		e2	e2	e2	e2	e2	e2
6CH	6DH	26H	41H	42H	43H	44H	45H	46H
Bcarcod	Bearcod	Bearcod	Bearcod	Bearcod	Bcarcod	Bearcod	分隔)	结束符
e2								
47H	48H	49H	4AH	4BH	4CH	4DH	29H	03H

• 无索引数据

相机没有收到索引号消息(托盘号未知)返回托盘号 9999。不返回条码内容;

消息头	千位	百位	十位	个位	结束符
02H	39H	39H	39H	39H	03H

三、配置步骤

1、配置 PLC 给相机发送数据的方式

- CustomProtocolEnable: 是否接受来自客户的数据;
- CustomProtocolSource: 选择什么方式接来自客户的数据; 支持 TCP server UDP serial 方式;
- CustomTCPPort: 用 TCPserver 接收相机数据的端口号;
- HeadText: 客户的协议数据的头这里<>内是不可见的字符的配置;
- MsgLength: 客户的发送数据内容的长度,最大支持30,客户发送来的数据长度不定会导致解析失败;
- TailText:客户发送来的数据的尾部信息;
- CustomOutputAddNoRec: 当没接收到客户的数据,但是有一次触发是否需要 补充默认数据;
- CustomAddNoRecText: 当接收不到客户数据但是触发了一次输出了;
- CustomAddNoRecDelimiter: 用于客户数据和其他数据之前的间隔符号;

2、配置输出的数据格式:

~	∨ Communication Control						
	Communication Protocols	TCP Client					
	TCP Protocol						
	TCP Dst Addr	10.64.49.39					
	TCP Dst Port 客户接收数据的 server IP和端口号	5000					
	GEV Current IP Address	10.64.49.104					
	GEV Current Subnet Mask						
	GEV Current Default Gateway	10.64.49.254					

● Communication Protocols: 发送客户融合结果"小车号+条码"的方式-选择客

户端

● TCP Dst Addr/TCP Dst Port: 客户接收数据的 server IP 和端口号

● Tcp Output Barcode Name Enable: TCP 通信输出条码使能

● Tcp Output Barcode Position Enable: TCP 通信输出条码位置

● Tcp Output Barcode Angle Enable: TCP 通信输出条码角度

● Tcp Output Barcode MainPckageId Enable: TCP 通信輸出 包裹 ID

● Tcp Output Noread Enable: TCP 通信输出未识别信号

● Tcp Output Noread Text:未读到条码的情况下自定义的相机输出内容

- Tcp Output Start Text: TCP 通信输出自定义报头
- Tcp Output Stop Text: TCP 通信输出自定位报尾
- Tcp Output TcpDelimiter: TCP 通信输出读取到多条码的分隔符
- Tcp Output Add TcpserRec Enable: 输出融合 TcpServer 接收数据使能
- Tcp Output NORec Text: 没有接受到小车号时的自定义的填充数据
- Tcp Outpu TcpserRec Delimiter: 小车号和后面的条码间隔符号

▶ 配置示例:

需求是输出的格式按照如下:

{"CarNo":0456, "WayBillNO": "abc123456, ABCD67890, "}

{"CarNo": 这里是输出时候的开始字符:

, "WayBillNO": "是小车号和码之前"间隔字符"

<mark>,是条码之间的间隔符</mark>

"} 是结束的字符

