武汉大学计算机学院 《离散数学》第四次练习

- §4.1.2 画出下列关系的关系图, 并写出关系矩阵:
 - (1) $A = \{1, 2, 3\}, R = \{\langle 2, 2 \rangle, \langle 1, 2 \rangle, \langle 3, 1 \rangle\};$
 - (2) $A = \{0, 1, 2, 3\}, R = \{\langle x, y \rangle \mid x \le 2 \land y \ge 1\};$

- $\S 4.1.3$ 设|A| = n,则A上的不同的一元、二元关系分别又多少个? A上的不同的m元关系有多少个?
 - (1) 一元关系: 2^n ;
 - (2) 二元关系: 2^{n²};
 - (3) m元关系: 2^{n^m} .
- §4.1.4 设 $A = \{a_1, a_2, \dots, a_n\}, n \in \mathbb{Z}_+, \mathbb{Q}A$ 上的含元素最少的二元关系是什么?A上的含元素最多的二元关系是什么? \mathbf{m} : 最少元素的二元关系为空关系 \mathbb{Q} , 而最多元素的二元关系为全域关系 A^2 .
- §4.2.1 下图中关系分别满足哪些性质:

解:

关系序号	自反性	反自反性	对称性	反对称性	传递性
a	√	X	X	✓	\checkmark
b	Х	X	Х	✓	√
c	√	X	√	X	√
d	Х	✓	Х	✓	Х
е	Х	✓	Х	✓	Х
f	✓	X	✓	✓	√

§4.2.2 设A是集合, R_1, R_2, R_3, R_4, R_5 是A上的二元关系:

$$R_1 = \{ \langle x, y \rangle | x + y = 10 \};$$

$$R_2 = \{ \langle x, y \rangle | xy > 0 \};$$

$$R_{2} = \{\langle x, y \rangle | xy > 0 \};$$

$$R_{3} = \{\langle x, y \rangle | |x - y| = 6 \};$$

$$R_{4} = \{\langle x, y \rangle | |x| = |y| \};$$

$$R_4 = \{ \langle x, y \rangle | |x| = |y| \};$$

$$R_5 = \{ \langle x, y \rangle | x + 3y = 12 \}.$$

试分析在下面两种情况下, R_1, R_2, R_3, R_4, R_5 的性质:

$$(1) A = \{0, 1, 2, \dots, 12\};$$

解:

关系	自反性	反自反性	对称性	反对称性	传递性
R_1	Х	X	√	X	X
R_2	Х	X	√	X	✓
R_3	Х	✓	√	X	Х
R_4	√	X	√	✓	✓
R_5	Х	Х	√	Х	Х

- R_3 无传递性,因为 $\langle 0,6 \rangle \in R_3 \land \langle 6,12 \rangle \in R_3$,但 $\langle 0,12 \rangle \notin$ R_3 ;
- R_5 无传递性,因为 $\langle 12,0 \rangle \in R_5 \land \langle 0,4 \rangle \in R_5$,但 $\langle 12,4 \rangle \notin$ R_5 .

(2) $A = \mathbb{Z}$.

解:

关系	自反性	反自反性	对称性	反对称性	传递性
R_1	X	X	√	X	Х
R_2	X	X	√	X	√
R_3	Х	✓	√	X	Х
R_4	√	X	✓	X	√
R_5	Х	X	√	X	Х

2

§4.2.5 设 $A = \{a, b, c\}, R_i \subseteq A \times A(i = 1, 2, 3, 4),$ 并且:

$$M_{R_1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad M_{R_2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$M_{R_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad M_{R_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

画出 R_i (i=1,2,3,4)的关系图,并分析它们的性质. 解:关系图如下所示:

关系的性质如下表所示:

大水的压/大州 1 × 1/1/1/1							
关系序号	自反性	反自反性	对称性	反对称性	传递性		
R_1	\checkmark	X	X	X	Х		
R_2	Х	✓	✓	X	Х		
R_3	Х	X	Х	✓	✓		
R_4	X	Х	✓	✓	√		

 $\S 4.3.2$ 设A是集合, $R_1, R_2 \in A^2$,填写下表并举例说明:**解**:

关系属性	$R_1 \cup R_2$	$R_1 \cap R_2$	$R_1 - R_2$	$A^2 - R_1$	$\widetilde{R_1}$	$R_1 \circ R_2$
自反性	T	\mathbb{T}	\mathbb{F}	\mathbb{F}	\mathbb{T}	\mathbb{T}
反自反性	T	\mathbb{T}	\mathbb{T}	\mathbb{F}	\mathbb{T}	\mathbb{F}
对称性	T	\mathbb{T}	\mathbb{T}	T	\mathbb{T}	\mathbb{F}
反对称性	\mathbb{F}	\mathbb{T}	\mathbb{T}	\mathbb{F}	\mathbb{T}	\mathbb{F}
传递性	\mathbb{F}	\mathbb{T}	\mathbb{F}	\mathbb{F}	\mathbb{T}	\mathbb{F}

 $R_1 \circ R_2$ 的反例: (图中 $R_3 = R_1 \circ R_2$)

 $\S 4.3.4$ 设 $R,S\subseteq A\times A,R$ 和S都是对称的.证明 $R\circ S$ 是对称的当且仅 当 $R\circ S=S\circ R.$

证明: R和S都是对称的, 则 $\widetilde{R} = R \wedge \widetilde{S} = S$.

$$R \circ S$$
是对称关系
 $\iff \widetilde{R \circ S} = R \circ S$
 $\iff \widetilde{S} \circ \widetilde{R} = R \circ S$
 $\iff S \circ R = R \circ S$

 $\S 4.3.5$ 设A是集合, $R \subseteq A \times A$. 证明:

(1) R是反自反关系当且仅当 $\mathbb{1}_A \cap R = \emptyset$;

$$\iff \forall x \in A, \langle x, x \rangle \notin R$$

$$\iff \forall x \in A, \langle x, x \rangle \in \overline{R}$$

$$\iff$$
 $\mathbb{1}_A \subseteq \overline{R}$

$$\iff$$
 $\mathbb{1}_A \cap \overline{\overline{R}} = \emptyset$

$$\iff$$
 $\mathbb{1}_A \cap R = \emptyset$

(2) R是反对称反关系当且仅当 $R \cap \tilde{R} \subseteq \mathbb{1}_A$;

R是反对称关系

$$\iff \ \forall \langle x,y \rangle \in R \land \langle y,x \rangle \in R, x=y$$

$$\iff \ \, \forall \langle x,y \rangle \in R \land \langle x,y \rangle \in \widetilde{R}, x=y$$

$$\iff \ \, \forall \langle x,y \rangle \in R \cap \widetilde{R}, \langle x,y \rangle \in \mathbb{1}_A$$

$$\iff$$
 $R \cap \widetilde{R} \subseteq \mathbb{1}_A$

(3) R是传递关系的充分必要条件是 $R^2 \subseteq R$. 证明: 必要性:

$$\implies t(R) = R$$

$$\implies \bigcup_{i=1}^{\infty} R^{i} = R$$

$$\implies R^{2} \subseteq R$$

$$\implies R^2 \subseteq R$$

充分性:

$$R^{2} \subseteq R$$

$$\implies R^{3} = R^{2} \circ R \subseteq R \circ R \subseteq R$$

$$\implies \forall i \geqslant 2, R^{i} \subseteq R$$

$$\implies R \subseteq \bigcup_{i=1}^{\infty} R \subseteq R$$

$$\implies \bigcup_{i=1}^{\infty} R = R$$

$$\implies R$$

$$\implies R$$

$$\implies R$$

$$\implies R$$

 $\S4.3.6$ 设 R_1 和 R_2 是非空集合A上的二元关系,证明:

(1)
$$r(R_1 \cup R_2) = r(R_1) \cup r(R_2);$$

证明: $r(R) = \mathbb{1}_A \cup R.$

$$r(R_1 \cup R_2)$$

$$= \mathbb{1}_A \cup R_1 \cup R_2$$

$$= (\mathbb{1}_A \cup R_1) \cup (\mathbb{1}_A \cup R_2)$$

$$= r(R_1) \cup r(R_2)$$

(2)
$$s(R_1 \cup R_2) = s(R_1) \cup s(R_2);$$

证明: $s(R) = R \cup \widetilde{R}.$

$$s(R_1 \cup R_2)$$

$$= R_1 \cup R_2 \cup \widetilde{R_1 \cup R_2}$$

$$= R_1 \cup R_2 \cup \widetilde{R_1} \cup \widetilde{R_2}$$

$$= (R_1 \cup \widetilde{R_1}) \cup (R_2 \cup \widetilde{R_2})$$

$$= s(R_1) \cup s(R_2)$$

(3) $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2);$ 证明:

 $\therefore R_1 \subseteq R_1 \cup R_2 \subseteq t(R_1 \cup R_2), \therefore t(R_1 \cup R_2)$ 是包含 R_1 的传递关系,而 $t(R_1)$ 是包含 R_1 的最小传递关系,故 $t(R_1) \subseteq t(R_1 \cup R_2)$;同理 $t(R_2) \subseteq t(R_1 \cup R_2)$,故 $t(R_1) \cup t(R_2) \subseteq t(R_1 \cup R_2)$.

(4) 举反例证明: $t(R_1) \cup t(R_2) \neq t(R_1 \cup R_2)$; **反例**:

 $\S 4.3.7 \ R_1, R_2 \subseteq A \times A, A \neq \emptyset$. 证明:

(2) $s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2);$ 证明:

$$s(R_1) \cap s(R_2)$$

$$= (R_1 \cup \widetilde{R_1}) \cap (R_2 \cup \widetilde{R_2})$$

$$= (R_1 \cap R_2) \cup (\widetilde{R_1} \cap \widetilde{R_2}) \cup (R_1 \cap \widetilde{R_2}) \cup (\widetilde{R_1} \cap R_2)$$

$$\supseteq (R_1 \cap R_2) \cup (\widetilde{R_1} \cap \widetilde{R_2})$$

$$= (R_1 \cap R_2) \cup \widetilde{R_1} \cap \widetilde{R_2}$$

$$= s(R_1 \cap R_2)$$

(3) 举反例证明 $s(R_1 \cap R_2) \neq s(R_1) \cap s(R_2)$; **反例**:

(4) $t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2);$

证明:

$$R_{1} \cap R_{2} \subseteq R_{1} \wedge R_{1} \cap R_{2} \subseteq R_{2}$$

$$\implies \forall i > 0 (R_{1} \cap R_{2})^{i} \subseteq R_{1}^{i} \wedge (R_{1} \cap R_{2})^{i} \subseteq R_{2}^{i})$$

$$\implies \bigcup_{i=1}^{\infty} (R_{1} \cap R_{2})^{i} \subseteq \bigcup_{i=1}^{\infty} R_{1}^{i} \wedge \bigcup_{i=1}^{\infty} (R_{1} \cap R_{2})^{i} \subseteq \bigcup_{i=1}^{\infty} R_{2}^{i}$$

$$\implies t(R_{1} \cap R_{2}) \subseteq t(R_{1}) \wedge t(R_{1} \cap R_{2}) \subseteq t(R_{2})$$

$$\implies t(R_{1} \cap R_{2}) \subseteq t(R_{1}) \cap t(R_{2})$$

(5) 举反例证明 $t(R_1 \cap R_2) \neq t(R_1) \cap t(R_2)$; **反例**:

- §4.3.9 设A是集合, $R \subseteq A^2$,若 $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land x R y \land y R z \rightarrow x R z)$,则称R为反传递关系:
 - (1) 试举一反传递关系的例子; **例子**: $A = \{a,b\}, R = \{\langle a,b \rangle\}$, 因为前提为假,所以蕴涵式为真,即满足反传递关系的条件.
 - (2) 证明: *R*是反传递关系, iff, *R*² ∩ *R* = ∅. **证明**:
 - \Longrightarrow 设 $\langle x,z\rangle \in R \cap R^2$,则 $\exists y, xRy \wedge yRz$,由于R是反传递 关系, $\therefore xRz$,矛盾; $\therefore R \cap R^2 = \varnothing$;
 - \leftarrow 反证法: 设R不是反传递关系,则: $\exists x,y,z\in A \land xRy \land yRz \land xRz$,这样 $xR^2z \land xRz$,即 $\langle x,z \rangle \in R \cap R^2$,与条件矛盾。

 $\S4.4.1$ 设A是有n个元素的集合,那么

(1) A上的最大等价关系有多少个元素? 它的秩等于多少? **答**: 全域关系 $A \times A$ 是A上的最大等价关系, 它的秩是1;

- (2) A上的最小等价关系有多少个元素? 它的秩等于多少? 答: 恒等关系 1_A 是A上的最小等价关系,它的秩是n.
- $\S 4.4.2$ 设 R_1 和 R_2 是集合A上的等价关系,下列关系是否等价关系,不是请举反例说明:
 - (1) $A \times A R_1$: 答: 不是,: $\mathbb{1}_A \nsubseteq A \times A - R_1$;
 - (2) $R_1 R_2$: 答: 不是, $: \mathbb{1}_A \nsubseteq R_1 - R_2$;
 - (3) R₁²:
 答: 是的,因为R是等价关系,则R² = R;
 - (4) $r(R_1 R_2)$: 答: 不是, 反例如下:

(5) R₁ ∘ R₂: **答**: 不是, 反例如下:

(6) R₁ ∪ R₂: 答: 不是, 反例如下:

§4.4.3 设A是集合, $R\subseteq A^2$,若(1) R是自反的;(2) R是循环的,即: $\forall x \forall y \forall z (x \in A \land y \in A \land z \in A \land xRy \land yRz \rightarrow zRx)$ 则R是等价关系.

证明:

- (i) 对称性: 设xRy, 根据R的自反性, yRy, $\therefore R$ 是循环关系, $\therefore yRx$, 对称性成立;
- (ii) 传递性: 设 $xRy \wedge yRz$, 则zRx, 而由上得知R是对称的, $\therefore xRz$, 即R是传递关系.

§4.4.4 设 R_1 是 $A(\neq\varnothing)$ 上的自反和传递二元关系, $R_2\subseteq A\times A$,且满足 $\langle x,y\rangle\in R_2\Leftrightarrow \langle x,y\rangle\in R_1\land \langle y,x\rangle\in R_1$. 则 R_2 是A上的等价关系.

证明:

- (i) 对称性: $R_2 = R_1 \cap \widetilde{R_1}$, $\widetilde{R_2} = R_1 \cap \widetilde{R_1} = \widetilde{R_1} \cap R_1 = R_2$, 即 R_2 是对称关系;
- (ii) 自反性: R_1 是自反的, $L_A \subseteq R_1 \wedge L_A \subseteq \widetilde{R_1}$, 即 $L_A \subseteq R_1 \cap \widetilde{R_1} = R_2$, 故 R_2 是自反关系;
- (iii) 传递性: R_1 和 \widetilde{R}_1 是自反和传递关系, $R_1^2 = R_1 \wedge \widetilde{R}_1^2 = \widetilde{R}_1$. $R_1 \cap \widetilde{R}_1$ 是自反关系, $R_1 \cap \widetilde{R}_1 \subseteq (R_1 \cap \widetilde{R}_1)^2$; 而另一方面 $R_1 \cap \widetilde{R}_1 \subseteq R_1$, $R_1 \cap \widetilde{R}_1 \supseteq R_1^2$. 同理 $(R_1 \cap \widetilde{R}_1)^2 \subseteq R_1^2$. 同理 $(R_1 \cap \widetilde{R}_1)^2 \subseteq R_1^2$. 即 $(R_1 \cap \widetilde{R}_1)^2 \subseteq R_1 \cap \widetilde{R}_1^2$. 故 $(R_1 \cap \widetilde{R}_1)^2 = R_1 \cap \widetilde{R}_1^2$, 及 R_2 是传递关系.

 $\S4.4.5$ 有人说等价关系的定义中的自反性可以不要,因为自反性可由对称性和传递性推出,即 $aRb \Longrightarrow bRa \Longrightarrow aRa \wedge bRb$,这个

推理正确吗? 为什么?

答: 不正确,因为对任意的a可能不存在b使得aRb,这样的a就不能推出aRa. 如下图的关系具有对称和传递性,但是没有自反性.

 $\S4.4.8$ *R*是 $A = \{1, 2, ..., 6\}$ 上的等价关系:

 $R = \mathbb{1}_A \cup \{\langle 1, 5 \rangle, \langle 5, 1 \rangle, \langle 2, 4 \rangle, \langle 4, 2 \rangle, \langle 3, 6 \rangle, \langle 6, 3 \rangle\}$

求R诱导的划分 π .

$$\mathbf{M}$$: $\pi = \{\{1,5\}, \{2,4\}, \{3,6\}\}.$

- $\S4.4.10$ 设 π_1 和 π_2 是非空集合A上的划分,下列哪些不是A的划分,为什么?
 - (1) $\pi_1 \cup \pi_2$;

答: 不是, 求并后的集簇破坏了俩俩相交为空或相等的性质. 如 $A = \{1,2,3\}, \pi_1 = \{\{1\},\{2,3\}\}, \pi_2 = \{\{1,2\},\{3\}\}, 则在<math>\pi_1 \cup \pi_2 \cap \{1\} \neq \{1,2\} \land \{1\} \cap \{1,2\} \neq \emptyset$.

- (2) $\pi_1 \cap \pi_2$;
 - 答: 是,设 $B \in \pi_1$,根据习题\$4.4.7有{ $C \cap B \mid C \in \pi_2 \land C \cap B \neq \emptyset$ } 是B的划分,这样 $\bigcup_{B \in \pi_1} \{C \cap B \mid C \in \pi_2 \land C \cap B \neq \emptyset\}$ 是A 的划分,即 $\pi_1 \cap \pi_2$ 是A的划分.
- (3) $\pi_1 \pi_2$; **答**: 不是. 如果 $\pi_1 = \pi_2$, 则 $\pi_1 \pi_2 = \emptyset$. 显然不是划分.
- (4) $\pi_1 \cap (\pi_2 \pi_1) \cup \pi_2$. 答: 是. $\therefore \pi_1 \cap (\pi_2 - \pi_1) \cup \pi_2 = \pi_2$.
- §4.5.2 设 $A = \{0,1,2,3\}, R_i (i = 1,2,...,6)$ 是A上的二元关系,其关系图如下所示.

解:

(1) R₅, R₆不是偏序关系, 其他的Hass图如下:

(2) 无拟序关系, R1是良序关系。

 $\S 4.5.4\ R\subseteq A^2$, $B\subseteq A,\ R'=R\cap B^2\subseteq B^2$,下列命题哪些是真?

(1) R是偏序关系,则R'也是;

答:该命题为真. 可以验证R'作为B上的关系也满足自反性、反对称性和传递性;注意R'如果作为A上的关系,并且当 $B \subseteq A$ 时,则不满足自反性,所以不是A上的偏序关系.

(2) R是拟序关系,则R'也是;

答:该命题为真.可以验证R'作为B上的关系也满足反对称性和传递性;注意R'如果作为A上的关系,并且当 $B \subseteq A$ 时,则不满足自反性,所以不是A上的偏序关系.