

Functional Analysis I

Tutorial Assignment 9

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Let $(E, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{R} . Prove that for all $x, y \in E$ it holds

$$(\|x\| + \|y\|) \cdot \langle x, y \rangle \le \|x + y\| \cdot \|x\| \|y\|.$$

Exercise 2: Prove that a scalar product $\langle \cdot, \cdot \rangle$ on ℓ_2 is defined via

$$\langle (x_n)_n, (y_n)_n \rangle := \sum_{n \in \mathbb{N}} x_n \overline{y_n} \quad \text{for } (x_n)_{n \in \mathbb{N}}, \ (y_n)_{n \in \mathbb{N}} \in \ell_2.$$

Exercise 3: Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be an inner product space. For $S \subset \mathcal{H}$ define

$$S^{\perp} := \Big\{ x \in \mathcal{H} \ : \ \langle x, y \rangle = 0 \text{ for all } y \in S \Big\}.$$

Show that S^{\perp} is a closed subspace of \mathcal{H} . Moreover, prove the following relation:

$$\overline{S}^{\perp} = S^{\perp} = (\operatorname{span} S)^{\perp}.$$

Exercise 4: Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be an inner product space and let $A \subset \mathcal{H}$ be a set whose interior is non-empty. Prove that $A^{\perp} = \{0\}$.

Exercise 5: Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{K} , and let $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ be Cauchy sequences in \mathcal{H} . Prove that then $(\langle f_n, g_n \rangle)_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{K} .

Exercise 6: Let \mathcal{H} be a Hilbert space and let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{H} . Show the following statements:

- (a) If $(f(x_n))_{n\in\mathbb{N}}$ converges for each $f\in\mathcal{H}^*$, then there exists $x\in\mathcal{H}$ such that $(x_n)_{n\in\mathbb{N}}$ converges weakly to x.
- (b) If $(x_n)_{n\in\mathbb{N}}$ converges weakly to x and $\limsup_{n\to\infty} \|x_n\| \le \|x\|$, then $(x_n)_{n\in\mathbb{N}}$ converges to x in norm.

Exercise 7: Let $T: \mathcal{H} \to \mathcal{H}$ be a linear operator acting on a Hilbert space \mathcal{H} . Show if $\langle Tx, y \rangle = \langle x, Ty \rangle$ holds for all $x, y \in \mathcal{H}$, then $T \in L(\mathcal{H})$.

Exercise 8: Let \mathcal{H} be an inner product space which is not complete. Then prove that there exists a closed subspace $U \subsetneq \mathcal{H}$ such that $U^{\perp} = \{0\}$. *Hint:* Assume the contrary and prove that the Riesz mapping is surjective.