智能家庭能源管理系统 结构化设计文档

年级: 2022 级

项目成员: 刘蕊

专业: 信息管理与信息系统

目录

— 、	引言	3
	1. 项目背景	3
	2. 文档目的	3
	3. 设计范围	
=\	系统架构设计	4
	1. 总体结构模块图	
	2. 各功能模块内部结构图设计	
	2.1 数据采集与模拟模块	5
	2.2 能源监控模块	6
	2.3 模式分析模块	7
	2.4 用户交互模块	8
	2.5 系统管理模块	9
	2.6 用电数据库	9
	2.7 表结构	9
	3.前端技术架构	10
	3.1 前端框架	10
	3.2 模块化设计	10
	3.3 响应式设计	10
	4. 接口设计	11
	4.1 人机界面设计	11
	4.2 主要功能模块接口设计	12
	5. 用户体验设计	15
	5.1 用户反馈机制	15
	5.2 错误提示和异常处理	15
	5.3 系统帮助文档	15
	6. 过程设计	15
	6.1 数据录入过程	15
	6.2 数据清洗与预处理	16
	6.3 实时监控	16
	6.4 历史分析	16
	6.5 建议生成	16
	6.6 通知过程	16

一、引言

1. 项目背景

本设计文档针对"智能家庭能源管理系统"项目,提供全面的结构化设计方案。该系统的需求分析已在《智能家庭能源管理系统》需求分析文档中详细阐述,包括数据流图、数据字典和 ER 图。这些文档为系统设计奠定了基础,确保设计方案准确反映需求分析成果。

"智能家庭能源管理系统"旨在帮助用户管理和优化家庭能源消耗,通过收集和分析设备能源数据,提供实时监控、历史分析和节能建议。用户可通过 Web 界面查看能源使用情况、接收优化建议,并在异常时获得通知。该系统不仅满足能源管理需求,还支持家庭节能和环境保护。

随着智能家居技术普及,能源管理系统需求日益增长。研究表明,家庭能源消耗约 20%-30%可通过优化使用习惯和设备管理节约(来源:能源效率研究报告)。本系统通过数 据驱动分析和用户友好交互设计,助力用户实现这一目标,减少能源浪费并降低碳足迹。

2. 文档目的

本结构化设计文档的目的是提供一个详细的、结构化的设计方案,为"智能家庭能源管理系统"的开发和实施提供清晰的指导。文档将涵盖系统架构设计、功能结构图、接口设计、数据设计和过程设计等关键部分,确保系统的功能需求得到全面实现,同时满足可扩展性和维护性的要求。本文档的目标包括:

通过数据流图的改进和优化,清晰展示系统的数据流动和处理过程。

设计系统的整体架构,并提供架构示意图,帮助开发团队理解系统的组成部分及其相互关系。

基于数据流图,逐步转换为功能结构图,确保系统功能的分解和模块化设计。

设计人机交互界面和主要功能模块间的接口,保证系统的可用性和模块间的高效通信。定义数据库表结构,确保数据存储和管理的准确性和完整性。

描述主要功能的算法流程,为后续的编码和测试提供参考。

通过这些目标,本文档旨在为开发团队提供一个可靠的蓝图,减少开发中的不确定性,并确保系统能够顺利实施和运行。

3. 设计范围

- (1) 系统架构设计:软件功能概述、功能结构图和架构示意图。
- (2)接口设计:人机交互界面和模块间接口设计。
- (3)数据设计:改进后的数据流图(0层、1层、2层)和数据库表设计。
- (4) 过程设计:主要功能的算法流程图。

二、系统架构设计

1. 总体结构模块图

总体结构模块图展示了系统的五个主要功能模块:数据采集与模拟模块、能源监控模块、模式分析模块、用户交互模块和系统管理模块,以及共享的用电数据库。外部实体包括用户、公开数据集和模拟数据生成器。图表使用 Mermaid 语法绘制,确保可视化效果清晰,适合开发团队参考。

模块间的交互关系:

- (1) 数据采集与模拟模块:从公开数据集和模拟数据生成器获取数据,存储到用电数据库。
- (2) 能源监控模块和模式分析模块: 从数据库读取数据,进行实时监控和历史分析,存储结果。
- (3) 用户交互模块:接收用户请求,从数据库和模式分析模块获取数据和建议,返回给用户。
- (4) 系统管理模块:负责数据导入、用户管理等,确保系统运行稳定。

图表 1 总体结构模块

图例说明:

- (1) 外部实体:用户、公开数据集、模拟数据生成器,分别表示系统的输入来源和用户交互点。
- (2) 功能模块:包括数据采集与模拟模块、能源监控模块、模式分析模块、用户交互模块和系统管理模块,展示系统的核心功能单元。
- (3) 共享资源: 用电数据库作为中央数据存储,连接各个模块,支持数据存储和读取。
- (4)箭头:表示数据流方向,例如"公开数据集 → 数据采集与模拟模块"表示数据从公 开数据集流向数据采集模块。

2. 各功能模块内部结构图设计

为每个主要功能模块设计了内部结构图,展示其子组件和数据流动,以下是每个模块的详细设计。

2.1 数据采集与模拟模块

功能描述: 该模块负责从外部数据源获取能源消耗数据,包括公开数据集(如 CSV 格式的 历史用电数据)和模拟数据生成器(用于开发和测试的虚拟数据)。

主要任务:

- (1) 从公开数据集获取 CSV 文件, 提取时间戳、设备名称、功率等字段。
- (2) 从模拟数据生成器获取虚拟数据,模拟家庭设备的使用场景。
- (3) 进行数据预处理,如格式转换(CSV到数据库记录)、初步清洗(去除无效值)。
- (4) 将处理后的数据存储到用电数据库中。

交互: 与外部实体(公开数据集、模拟数据生成器)交互,数据流向用电数据库。

图表 2 数据采集与模拟模块

2.2 能源监控模块

功能描述:负责实时监控家庭设备的能源消耗,动态计算功率变化,检测异常(如功率超出阈值 300W)。

主要任务:

- (1) 从用电数据库中读取实时数据,每分钟更新一次。
- (2) 计算设备功率变化率,检测异常(如突然上升500%)。
- (3)将监控结果(如异常记录、实时功率)存储回用电数据库。
- (4)触发用户交互模块发送通知(如"冰箱功率异常,建议检查")。

交互:与用电数据库交互,读取和存储数据;间接通过用户交互模块发送通知。

图表 3 能源监控模块

2.3 模式分析模块

功能描述:基于历史用电数据进行深入分析,计算能效评分(0-100 分),识别高能耗设备和使用模式,生成节能建议。

主要任务:

- (1) 从用电数据库中获取历史数据(如过去30天的用电记录)。
- (2)进行单设备分析(如日均功率、峰值时段)、多设备关联分析(如设备组合能耗)。
- (3)使用算法(如动态阈值判断、移动平均±3σ)检测异常。
- (4) 计算能效评分并生成建议(如"建议夜间调低空调温度1°C")。
- (5) 将分析结果和建议存储到用电数据库。

交互:与用电数据库交互,读取和存储数据;向用户交互模块提供节能建议。

图表 4 模式分析模块

2.4 用户交互模块

功能描述:提供用户友好的 Web 界面,支持用户通过浏览器或手机 App 查看实时数据、历史分析报告和节能建议。

主要任务:

- (1)接收用户查询请求(如"查看今日用电情况"或"查询节能建议")。
- (2)从用电数据库中检索数据(如历史功率曲线)。
- (3) 从模式分析模块获取节能建议(如"建议关闭待机设备")。
- (4)生成可视化报告(如线图、热力图)和 PDF 格式的报告。
- (5) 推送异常通知(如"空调功耗异常,请检查")。

交互:与用户直接交互;与用电数据库和模式分析模块交互,获取数据和建议。

图表 5 用户交互模块

2.5 系统管理模块

功能描述:负责系统的整体管理,包括数据导入、用户账号管理、系统日志记录和安全控制。

主要任务:

- (1) 管理数据导入(如从公开数据集导入新 CSV 文件)。
- (2)管理用户账号(如注册、登录、权限分配)。
- (3) 记录系统操作日志(如用户查询时间、数据导入记录)。
- (4) 确保数据安全(如使用 SHA-256 加密用户密码)。

交互:与用电数据库交互(管理数据);与用户交互模块交互(管理用户);与数据采集模块交互(管理数据导入)。

图表 6 系统管理模块

2.6 用电数据库

作为系统的核心数据存储组件,存储原始用电记录、分析结果、用户信息和系统日志,支持数据的存储、读取和更新操作。

2.7 表结构

表名 主要字段 描述

存储设备实时用电数

用电记录表 记录 ID,时间戳,设备名称,功率,状态 据

分析 ID, 设备名称, 分析日期, 平均功率, 能

分析结果表 存储分析结果和评分

效评分

用户表 用户 ID, 用户名, 密码, 最后登录时间 存储用户信息

设备元数据表 设备 ID,设备类型,生产厂商,额定功率 存储设备基本信息

3.前端技术架构

3.1 前端框架

为满足组件化开发、响应式数据绑定和丰富生态,选择 Vue. js (版本 3.x),采用 Composition API。

3.2 模块化设计

(1) 组件划分:

Dashboard. vue: 仪表盘组件,显示总功耗、今日用电图表和设备列表。

DeviceList. vue:设备列表组件,支持点击查看详情。

DeviceDetail.vue:设备详情组件,包含实时数据和历史图表。

HistoryData.vue: 历史数据组件,支持日期选择和数据展示。

Suggestions. vue: 节能建议组件,列表展示建议。

Settings. vue: 设置组件,包含用户信息和偏好设置。

(2) 复用策略:

公共组件如 ChartComponent.vue (图表封装)、TableComponent.vue (表格封装)在多页面复用。并且使用 Vue Router 管理页面跳转,确保导航流畅。

3.3 响应式设计

- (1) 技术: CSS 媒体查询和 Flexbox/Grid 布局。
- (2) 适配:

桌面端 (宽度 ≥ 1024px): 完整布局。

平板端 (768px ≤ 宽度 < 1024px): 调整图表和列表布局。

移动端 (宽度 < 768px): 单列布局, 隐藏次要信息。

(3) 交互:移动设备支持触摸手势,如滑动切换图表视图。

4. 接口设计

4.1 人机界面设计

4.1.1 UI 设计草图

(1) 登录页面:

包含用户名、密码输入框和登录按钮。

(2) 仪表盘页面:

顶部: 当前总功耗(大字体,单位"瓦")。

中部: 今日用电折线图(横轴时间,纵轴功耗)。

底部:设备列表(名称、当前功率、状态:运行/待机/关闭)。

(3) 设备详情页面:

顶部:设备名称和当前功率。

中部: 历史数据折线图, 支持日期范围选择。

底部:设备状态和节能建议。

(4) 历史数据页面:

顶部: 日期选择器 (开始和结束日期)。

中部: 多设备用电对比柱状图。

底部:详细用电记录表格。

(5)建议页面:

列表展示节能建议,每条含标题、描述和"应用建议"按钮。

(6) 设置页面:

个人信息编辑、通知偏好设置和退出登录按钮。

4.1.2 交互流程图

(1) 登录流程:

用户输入用户名和密码 → 点击登录 → 系统验证 → 成功后跳转仪表盘

(2) 查看设备详情:

在仪表盘点击设备名称 → 跳转设备详情页面 → 显示实时数据和历史图表

(3) 查询历史数据:

在历史数据页面选择日期范围 → 点击查询 → 系统加载图表和表格

(4) 接收通知:

系统检测异常 → 弹出通知弹窗 → 用户点击查看详情

4.2 主要功能模块接口设计

4.2.1 API 接口规范

风格: RESTful API

数据格式: JSON

认证: JWT (JSON Web Token)

版本控制: 使用 /v1/ 前缀, 如 /v1/api/devices

4.2.2 错误码定义

错误码	描述
400	请求参数无效
500	服务器处理失败

4.2.3 接口示例

(1) 获取设备列表:

```
请求: GET /api/devices
```

响应:

7

```
{"id": 1, "name": "空调", "type": "空调", "status": "运行", "currentPower": 1200.50},
...
```

(2) 获取设备历史数据:

```
请求: GET /api/devices/{id}/history?start=2023-01-01&end=2023-01-31响应:
```

```
"deviceId": 1,
"data": [
```

```
{"timestamp": "2023-01-01T00:00:00", "power": 1000.00},
...
]
}
(3) 获取节能建议:
请求: GET /api/suggestions
响应:
[
{"id": 1, "title": "夜间调低空调温度", "description": "建议调低 1° C, 可节省 10%能耗", "action": "应用"},
...
]
```

4.2.4 前端数据缓存与刷新策略

- (1)缓存:使用 Vuex/Pinia 管理状态,缓存设备列表、用户信息等静态数据。
- (2) 刷新:

仪表盘每 5 分钟自动刷新实时数据 用户手动点击"刷新"按钮立即更新 历史数据页面在选择新日期范围后重新请求数据

4.3 数据设计

4.3.1 数据可视化实现

- (1) 折线图: 使用 ECharts 绘制实时功率变化,支持鼠标悬停显示数值
- (2) 柱状图: 展示多设备用电对比, 支持日期范围筛选
- (3) 饼图: 仪表盘页面展示设备能耗占比
- (4) 仪表盘: 展示当前总功耗,指针指向当前值,背景显示阈值范围

数据示例: {"timestamp": "2023-01-01T00:00:00", "power": 1000.00}

4.3.2 样例图表和交互设计

(1) 今日用电折线图:

X轴: 0:00-23:59, 间隔 1 小时

Y轴: 0-最大功率, 自动缩放

交互: 鼠标悬停显示时间和功率

(2)设备能耗饼图:

每个扇区代表设备,显示名称和占比

交互: 点击扇区高亮设备详情

(3) 历史数据柱状图:

X轴:设备名称

Y轴: 总用电量

交互: 支持按日期范围筛选

4.3.3 数据库表设计

表名	字段名	类型	约束条	:件	取值范围	描述
用电记录表	记录 ID	BIGINT	主键,	自增	1 ~ 99999999	唯一标识用电记录
	时间戳	DATETIME	非空		2000-01-01 ~ 当前时间	记录具体时间
	功率	DECIMAL(8,2)	非空		0.00 ~ 9999.99	实时功率 (瓦)
	- 状态	VARCHAR (10)	非空		["运行", "待机", "关闭"]	设备当前状态
分析结果表	分析 ID	BIGINT	主键,	自增	1 ~ 99999999	唯一标识分析记录
	设备名称	VARCHAR (50)	非空,	外键	同用电记录表	关联用电记录表
	分析日期	DATE	非空		2000-01-01 ~ 当前日期	分析日期
	平均功率	DECIMAL(8,2)	非空		0.00 ~ 9999.99	当日平均功率(丙
	峰值时段	JSON	无		{"18:00-20:00": 800}	峰值时段及功率
	能效评分	INT	0 <= s	score <= 100	0 ~ 100	能效评分
用户表	用户 ID	INT	主键,	自增	1 ~ 999999	用户唯一标识
	用户名	VARCHAR (50)	非空,	唯一	1~50 字符 (字母/数字)	用户登录名
	密码	CHAR (64)	非空		SHA-256 加密字符串	加密后的密码
	最后登录时间	DATETIME	无		最近登录时间	最后登录时间
设备元数据表	设备 ID	INT	主键,	自增	1 ~ 999999	设备唯一标识
	设备类型	VARCHAR (20)	非空		["空调", "冰箱",]	设备类型分类
	生产厂商	VARCHAR (50)	无		1~50 字符	设备生产厂商
	额定功率	DECIMAL(6,2)	非空		0.00 ~ 3000.00	额定功率(瓦)

4.3.4 数据备份

每日 00:00 自动备份数据库至独立存储,确保数据安全。

5. 用户体验设计

5.1 用户反馈机制

- (1) 反馈表单: 在 Web 界面添加表单, 收集用户意见。
- (2) 在线客服: 支持实时问题解答。

5.2 错误提示和异常处理

- (1) 登录失败:红色提示框"用户名或密码错误"。
- (2) 网络异常: Toast 通知"网络连接失败,请重试"。
- (3) 数据加载失败:图表区域显示"数据加载失败"并提供重试按钮。

5.3 系统帮助文档

在界面嵌入操作教程,帮助用户快速上手。

5.3.1 引导式操作流程

- (1)新用户引导:首次登录后弹出弹窗,介绍仪表盘功能。
- (2) 操作提示:设备详情页面图表悬停时显示 tooltip 解释数据。

5.3.2 无障碍设计

- (1) 色彩:色盲友好方案,避免纯红绿对比,采用蓝色和橙色。
- (2)字体:支持大小调整,满足视力受限用户。
- (3) 键盘导航:支持 Tab 键切换焦点, Enter 键确认操作。

6. 过程设计

6.1 数据录入过程

- (1) 接收 CSV 文件或模拟数据流
- (2)解析数据:提取时间戳、设备名称、功率、状态
- (3) 验证数据: 检查缺失值或无效格式
- (4) 将有效记录插入用电记录表
- (5) 记录错误或无效记录日志

6.2 数据清洗与预处理

- (1) 过滤无效数据(如负功率)
- (2) 使用插值方法补全缺失时段
- (3) 将不同设备的时间分辨率统一
- (4) 将功率单位标准化为瓦特

6.3 实时监控

- (1)每分钟查询数据库最新记录
- (2) 检查每个设备当前功率是否超过阈值
- (3) 检测到异常时触发通知服务
- (4) 更新仪表盘显示最新数据

6.4 历史分析

- (1) 计算每日平均功率、峰值时段、待机功耗占比
- (2) 分析设备组合的能耗和联动频率
- (3) 基于历史数据设定动态阈值
- (4) 生成能效评分(0-100分)
- (5) 将结果存储在分析结果表

6.5 建议生成

- (1) 根据历史分析结果, 生成节能建议
- (2) 将建议显示在用户界面

6.6 通知过程

- (1) 检测到异常(如功率超阈值) 时触发
- (2) 通过邮件或应用内消息发送警报