TUTORIAL 4: Boolean Algebra and Logic Simplification

1. Using any logic gates, draw the logic diagram of the given function. Do NOT simplify the function

$$X = \overline{A} + B(D + \overline{E}\overline{F})(\overline{A + C})$$

2. Directly apply DeMorgan's law to the following expressions. You do NOT have to simplify the expressions.

i)
$$Y = (\overline{A + \overline{B} + C}) + \overline{\overline{C}D\overline{E}}$$

ii)
$$Y = \overline{P + \overline{Q}(\overline{R + SP})}$$

3. Simplify the function using Boolean Algebra

$$Y = AB\overline{C} + A\overline{B} + ABC + \overline{A}\overline{B}$$

4. Develop a truth table for the following expression. From the truth table derive a standard product-of-sums (POS) expression.

$$f = (A + \overline{B}) (A + C) (A + B + \overline{C})$$

5. Use a Karnaugh map to reduce the expression to a minimum sum-of-products (SOP) form

$$f = \overline{A} B (C \overline{D} + C D) + A C D$$

6. For the truth table given below,

A	В	С	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- i) Express the output function, f in Standard Sum-of-Products (SOP) form.
- ii) Express the output function, f in Standard Product-of-Sums (POS) form.
- iii) If the following waveforms are applied to the inputs, A, B, and C of the logic circuit, draw the output waveform for the function, f.

 Using any logic gates, draw the logic diagram of the given function. Do NOT simplify the function

$$X = \overline{A} + B(D + \overline{E}\overline{F})(\overline{A + C})$$

Directly apply DeMorgan's law to the following expressions. You do NOT have to simplify the expressions.

i)
$$Y = (\overline{A + \overline{B} + C}) + \overline{\overline{C}D\overline{E}}$$

ii)
$$Y = \overline{P + \overline{Q}(\overline{R + SP})}$$

3. Simplify the function using Boolean Algebra

$$Y = AB\overline{C} + A\overline{B} + ABC + \overline{A}\overline{B}$$

 Develop a truth table for the following expression. From the truth table derive a standard product-of-sums (POS) expression.

$$f = (A + \overline{B})(A + C)(A + B + \overline{C})$$

A	B	C	f	
0	O	0	0	f=(A+B+C)(A+B+Z)(A+B+Z)(A+B+Z)
0	0		0	
O	l	0	0	
C	1	ſ	0	
1	0	0	1	
1	0		1	
(1	0		
l	1		1	

5. Use a Karnaugh map to reduce the expression to a minimum <u>sum-of-products</u> (SOP) form

$$f = \overline{A} B (C \overline{D} + C D) + A C D$$

6. For the truth table given below,

-	Tuest British	,		
	A	В	С	f
	0	0	0	0
	0	0	1	1 ,
	0	1	0	1 ,
	0	1	1	0
	1	0	0	1 ,
	1	0	1	0
	1	1	0	0
	1	1	1	1

- i) Express the output function, f in Standard Sum-of-Products (SOP) form.
- ii) Express the output function, f in Standard Product-of-Sums (POS) form.
- iii) If the following waveforms are applied to the inputs, A, B, and C of the logic circuit, draw the output waveform for the function, f.

7. Below is the truth table of a three-input XOR gate.

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

) Y= ABC + ABC + ABC + ABC

- Express Y in standard sum-of-product (SOP) variable form.
- ii) Express Y in standard product-of-sum (POS) variable form

8.	Construct	the	truth	table	for

i)

0	O	0	C
O	0	1	1
U	1	0	
0			
(0	0	0
(0	-	1
(1	0	1
			A

7. Below is the truth table of a three-input XOR gate.

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- i) Express Y in standard sum-of-product (SOP) variable form.
- ii) Express Y in standard product-of-sum (POS) variable form
- 8. Construct the truth table for

$$Y = ABC + ABC + ACB$$

9. Using any logic gates, draw the logic diagram of

$$P = (\overline{\overline{X} + Z}) + \overline{Y}(W + \overline{XZ})$$

10. Using Karnaugh Map, find the minimum SOP expression for the following function

i)
$$Y = \overline{PQRS} + \overline{PQRS}$$

ii)
$$G(w, x, y, z) = \sum m(1, 3, 14, 15) + d(0, 2, 6, 8, 13)$$

- 11. Implement $Y = \overline{a}(b + \overline{d}(\overline{\overline{ac} + e}))$ using any type of logic devices
- 12. Using Karnaugh Map, find the minimum SOP of the given m-notation

$$F(p,q,r) = \sum m(0.1,3.4.6)$$

13. Prove that

$$xy + x\overline{y} + \overline{x}\overline{y} = x + \overline{y}$$

i)
$$Y = \overline{PQRS} + \overline{PQRS}$$

ii)
$$G(w, x, y, z) = \sum m(1, 3, 14, 15) + d(0, 2, 6, 8, 13)$$

13. Prove that

$$xy + x\overline{y} + \overline{x}\overline{y} = x + \overline{y}$$