Introducción comportamientos

Javier Lucas Gómez

Programador de Inteligencia Artificial Lead de Automatización MercurySteam

Inteligencia artificial

IA en videojuegos:

Qué, Quién, Cómo, Cuándo, Dónde

Scripting

FSMs

Planificadores

Behavior Trees

Inteligencia artificial

IA en videojuegos:

Qué, Quién, Cómo, Cuándo, Dónde

Scripting

FSMs

Planificadores

Behavior Trees

Inteligencia artificial

Inteligencia Artificial

Rama de las ciencias computacionales encargada de estudiar modelos de cómputo capaces de realizar actividades propias de los seres humanos.

Singularidad

Advenimiento hipotético de la Inteligencia Artificial General (o IA fuerte) cuya capacidad intelectual superará al ser humano.

IA fuerte vs IA débil

IA fuerte

También llamada Inteligencia Artificial General: Potencial teórico de la IA para simular la cognición humana y tomas decisiones complejas en distintos contextos.

IA débil

También llamada Inteligencia Artificial Estrecha: IA aplicada a una tarea única y bien definida, como una traducción o el reconocimiento facial.

IA débil

IA en videojuegos: ¿Qué?

¿Qué debe tener una Inteligencia Artificial (IA) en un videojuego?

- 1. Ser **divertida**: que suponga un reto
- Ser predecible (o por lo menos un poco)
 - 3. No parecer estúpida

"If the player can't read the AI's behaviour, it just seems random"

Christiaan Moleman - Animator at Ubisoft

"Game AI is seldom about any deep intelligence but about the illusion of intelligence"

Steve Ravin- Nintendo, GDC Al Summit founder

IA en videojuegos: ¿Qué?

IA en videojuegos: ¿Quién?

¿Quién participa en la creación de una IA en un videojuego?

Programadores: Todo super genérico y eficiente

Diseñadores: Todo super versátil y configurable

Artistas: Todo super bonito y complejo

En el **equilibrio** está el acierto...

IA en videojuegos: ¿Cómo?

¿Cómo implemetar una inteligencia artificial en un videojuego?

Scripting: Programación pura y dura

FSM: Finite State machines: Máquinas de estados finitos

HTN: Hierarchical Task Networks - Red jerárquica de tareas

BTs: Behavior Trees - Árboles de comportamiento

IA en videojuegos: ¿Cuándo?

¿Cúando implemetar IA en un videojuego?

La IA: Desde el principio de los videojuegos

Yo: De 8 a 16 de Lunes a Viernes

IA en videojuegos: ¿Dónde?

mercurysteam

Inteligencia artificial

IA en videojuegos:

Qué, Quién, Cómo, Cuándo, Dónde

Scripting

FSMs

Planificadores

Behavior Trees

Scripting: Programación pura y dura

Pseudocódigo

```
if(HaveAmmo())
{
     Shoot();
}
else
{
     Reload();
}
```

Scripting: Programación pura y dura

PROS

- Flexibilidad
- Computacionalmente muy barato

CONTRAS

- Conocimientos de programación necesarios
- Mantenimiento arduo y dificil escalabilidad
- Comprobar si las acciones han funcionado o han fallado.
- No comprobarlo genera bugs.

Scripting: Programación pura y dura

<u>Pseudocódigo</u>

```
void AttackWhileHidding()
   Hide();
   while(!IsHidden())
       if(HaveAmmo())
           Shoot();
       else
           Reload();
       KeepHidding();
```

Inteligencia artificial

IA en videojuegos:

Qué, Quién, Cómo, Cuándo, Dónde

Scripting

FSMs

Planificadores

Behavior Trees

Históricamente más utilizadas Conjunto de estados y transiciones

PROS

- Representación visual simple e intuitiva
- No requieren conocimientos de programación
- Computacionalmente barato
- Gran control del diseñador

CONTRAS

 Problemas cuando el número de transiciones es muy grande, crece muy rápido si el problema a resolver se hace más complejo.

HFSMs (Hierarchical FSMs)

- Máquinas de estados jerárquicas para mayores complejidades
- Reusabilidad de transiciones, habiendo agrupado estados con mismas transiciones.
- Crear una secuencia es difícil porque hay que poner transiciones "acabado" de los estados, y transiciones hacia fuera para los posibles fallos.

Inteligencia artificial

IA en videojuegos:

Qué, Quién, Cómo, Cuándo, Dónde

Scripting

FSMs

Planificadores

Behavior Trees

HTN: Hierarchical Task Networks Red jerárquica de tareas

- Algoritmo de planificación automática que crea un plan por descomposición de tareas en subtareas hasta lograr primitivas que pueden se ejecutadas directamente.
- Muy usadas en robótica

PROS:

- Autonomía para la IA
- Búsqueda para creación de planes
- Dirigidas por objetivos

CONTRAS:

- La búsqueda puede llegar a ser MUY costosa
- Poco control de los diseñadores

Inteligencia artificial

IA en videojuegos:

Qué, Quién, Cómo, Cuándo, Dónde

Scripting

FSMs

Planificadores

Behavior Trees

Behavior Trees: Árboles de comportamiento

Árbol

Jerárquico

Flujo de decisión

Inteligencia artificial

Un agente

Behavior Trees: ¿por qué molan?

- Son Intuituvos
- Prototipados e iteraciones rápidas.
- Más **escalables, mantenibles y versátiles** que las FSMs
- Modulares: Más reutilizables; complejidad por combinación
- Sub-árboles reutilizables entre comportamientos y personajes (algo clave en el desarrollo de Raiders).
- Facilidad de extensión de nuevos nodos.

Behavior Trees: ¿contras?

- > Ocupan mucha **memoria**
- Pueden ser complicados de depurar -> necesidad de depurador gráfico
- > Hace falta aprender a generar árboles con un **buen diseño**
- Si se hacen muy complejos pueden llegar a ser costoso ejecutarlos

Historia de los Behavior Trees

Managing Complexity in the Halo 2 AI System Damian Isla Bungie Studios GDC 2005

"The Brute Force Approach to Common Sense"

Halo2: Behavior Trees

BT's vs FSM's y Planificadores

✓ **Estados**: Acciones

- ✓ **Transiciones**: Nodos de control y condiciones
- ✓ Prioridades: Estructura jerárquica
- ✓ BT: Planificación reactiva

✓ BT: Planificación compilada

Referencias

Mark Deloura (Ed.) (2000). Game Programming Gems. Massachusetts: Charles River Media

Boston Dynamics reserach and resources

Christiaan Moleman: https://ninjadodo.wordpress.com/

AiGameDev.com

Rabin, Steve (Ed.) (2014). Game AI Pro: Collected Wisdom of Game AI Professionals. New York: A K Peters/CRC Press.

GDC '15 Managing Complexity in the Halo 2 Al System - Damian Isla - Bungie Studios