Homework 3

3170102587 蒋仕彪

Problem description

Denote between-class scatter matrix S_B as: $S_B = \sum\limits_{i=1}^c n_i (m{\mu_i} - m{\mu}) (m{\mu_i} - m{\mu})^T$

Where
$$m{\mu_i} = rac{1}{n_i} \sum_{m{x} \in \omega_i} m{x}, \quad m{\mu} = rac{1}{n} \sum m{x}$$

Prove that the rank of S_B is a most c-1.

Lemma

If A, B are two matrices, then $rk(A \times B) = \min(rk(A), rk(B))$

It is one of the basic knowledge in linear algebra, so I just skip the proof.

Proof

We know
$$oldsymbol{\mu} = rac{1}{n} \sum oldsymbol{x} = rac{1}{n} \sum_{i=1}^{c} n_i oldsymbol{\mu}_i$$

So that
$$\pmb{\mu}_c = n\pmb{\mu} - \sum\limits_{i=1}^{c-1} \pmb{\mu}_i, \pmb{\mu}_c - \pmb{\mu} = \sum\limits_{i=1}^{c-1} (\pmb{\mu} - \pmb{\mu}_i) = -\sum\limits_{i=1}^{c-1} (\pmb{\mu}_i - \pmb{\mu}).$$

That's to say, $\pmb{\mu_c} - \pmb{\mu}$ can be represented by $\pmb{\mu_1} - \pmb{\mu}, \pmb{\mu_2} - \pmb{\mu}, \dots, \pmb{\mu_{c-1}} - \pmb{\mu}$

Now we rewrite S_B as the following form:

According to the lemma, $rk(S_B) \leq rk([m{\mu}_1 - m{\mu}, m{\mu}_2 - m{\mu}, \dots, m{\mu_c} - m{\mu}]).$

We have already known that $m{\mu}_c - m{\mu} = -\sum\limits_{i=1}^{c-1} (m{\mu_i} - m{\mu})$, so $rk(S_B) \leq c-1$