Homework 5

- **Problem 1.** Consider the graph Q_n , the n-dimensional cube for $n \geq 1$. Find $v(Q_n)$, $e(Q_n)$, $\delta(Q_n)$, and $\Delta(Q_n)$. What is the distance from \emptyset to [n]? And what is the number of shortest paths from \emptyset to [n]? What is the size of $Aut(Q_n)$?
- **Problem 2.** Let G be a graph on n vertices (n > 3) with no vertex of degree n-1. Suppose that for any two vertices of G, there is a unique vertex adjacent to both of them.
- (a) If u and v are not adjacent, prove that they have the same degree. (Hint: Construct a bijection between the two sets of neighbors.)
- (b) Show that G is k-regular for some k.
- (c) Express n in terms of k.
- **Problem 3.** Let G_n be the graph with 2n $(n \ge 3)$ vertices $v_1, v_2, ..., v_n$ and $u_1, u_2, ..., u_n$, where $v_1v_2...v_n$ form a cycle, and u_i is only adjacent to v_i for each i. Compute the chromatic polynomial for G_n .
- **Problem 4.** Suppose G is a graph on n vertices and $G \cong \overline{G}$. Prove that (a) G is connected; (b) Either n or n-1 is a multiple of 4; (c) If n=4k+1 for some integer k, then there is a vertex v such that deg(v)=2k.
- **Problem 5.** Color the edges of K_n by yellow and blue. A cycle is called monochromatic if all its edges have the same color. Prove that, if there is a monochromatic cycle of length 2k + 1 for some k > 2, then there is also a monochromatic cycle of length 2k.
- **Problem 6.** Prove that there exists a constant c > 0 and N > 0, such that the number of isomorphic classes of trees on [n] is at least c^n whenever n > N.