Лабораторна робота 5

Тема: дослідження системи управління

Мета:отримати практичні навички створення математичних моделей об'єктів, які складаються з типових елементів принципових схем.

Завдання для самостійної роботи

- 1. Навести структурну схему об'єкта, згідно з даними варіанта завдання та вихідних даних.
 - 2. Навести математичну модель у вигляді передавальних функцій.
 - 3. Навести математичну модель у вигляді диференціального рівняння.
 - 4. Навести структурну схему моделі (пакет MATLAB) та її опис.
 - 5. Навести дослідження моделі на адекватність при заданих типових

впливах: константа; б-функція; синусоїдальний сигнал; лінійний сигнал.

Рисунок 1- Структурна схема об'єкта моделювання

Вихідні дані $C(мк\Phi)$; $L(м\Gamma H)$; R(MOM)

<u>№</u> вар	R_1	R_2	R_3	L_1	L_2	C_1	C_2	C_3
12	1,0	0,4	0,9	1,5	0,23	1,9	1,5	2,9

Ємність вимірюється у мк Φ ; індуктивність – у м Γ н; опір – у МOм.

Структура і параметри фізичної моделі

Індивідуальна схема:

Рисунок 2 - Структурна схема фізичної системи

Індивідуальні дані:

№ вар	R_1	R_2	R_3	L_1	L_2	C_1	C_2	C_3
12	1,0	0,4	0,9	1,5	0,23	1,9	1,5	2,9

Розбиття схеми

 $U_{\it ex}=U_{\it R_1}+U_{\it L_1}+U_{\it C_1}$. Звідки $U_{\it ex}-U_{\it C_1}=U_{\it R_1}+U_{\it L_1}$. Отримати загальний струм i_1 можна, використовуючи залежності на одному з елементів $\it R_1,\it L_1,\it C_1,$ знаючи напругу на них:

$$U_{L_1} = U_{ex} - U_{C_1} - U_{R_1}; i_1 = U_{L_1} \frac{1}{L_1 p}; U_{R_1} = i_1 R_1.$$

Тому перша частина схеми моделі буде мати вигляд:

Напруга U_{C_1} є напругою, яка подається на частину схеми, що залишилася. Тому її необхідно визначити. $U_{C_1}=i_{C_1}\frac{1}{C_1p}$. Струм i_{C_1} можна знайти в такий спосіб: $i_{C_1}=i_1-i_2$. Звідси схема моделі має вигляд:

Використовуючи напругу U_{C_1} , можна знайти напругу U_{C_2} : $U_{C_2} = U_{C_1} - U_{R_2}$, за допомогою якої отримати невідомий струм $i_2 = U_{C_2} \cdot C_2 p$:

Струм i_2 використаємо для знаходження струму $i_3 = i_2 - i_{R_2}$, який дозволить отримати напруги на елементах R_3, L_2, C_3 , доданок яких ϵ напругою

$$U_{R_2} = U_{R_3} + U_{L_2} + U_{C_3}; \qquad U_{R_3} = i_3 R_3; \qquad U_{L_2} = U_{\text{BMX}} = i_3 \cdot L_2 p; \qquad U_{C_3} = i_3 \frac{1}{C_3 p};$$

$$i_{R_2} = \frac{U_{R_2}}{R_2} \ .$$

Таким чином отримаємо наступну схему у вигляді передавальних функцій (рис. 5.5).

Рисунок 3 - Схема системи у вигляді передавальних функцій

Виконаємо спрощення цієї схеми, а саме отримання загальної передавальної функції. Для цього використаємо такі позначки:

$$\begin{split} W_1 &= \frac{1}{L_1 p}; \, W_2 = R_2; \, W_3 = \frac{1}{C_1 p}; \, W_4 = C_2 \, p; \, W_5 = L_2 \, p; \, W_6 = R_3; \, W_7 = \frac{1}{C_3 \, p}; \\ W_8 &= \frac{1}{R_2} \text{ (рис. 5.6)}. \end{split}$$

Рисунок 4 - Модель у вигляді передавальних функцій

Застосуємо формулу для отримання передавальної функції для паралельного з'єднання. Для цього перенесемо точку 1 через передавальну функцію W_5 . Отримаємо наступну схему:

Звідки $W_9 = W_5 + W_6 + W_7$.

Після незначного перетворення отримаємо наступну схему:

Перенесемо точку 1 через передавальну функцію W_9 .

Передавальна функція $W_{10} = \frac{1}{1 + W_8 W_9}$, а $W_{11} = \frac{W_1}{1 + W_1 W_2}$.

Перенесемо точку 1 через передавальну функцію W_{10} .

Передавальна функція $W_{12} = \frac{W_4 W_{10}}{1 + W_4 W_{10} W_9}$.

Перенесемо точку 1 через передавальну функцію W_{12} .

Після відповідних перетворень отримаємо:

$$W_{13} = \frac{W_3 W_{12}}{1 + W_3 W_{12} \frac{1}{W_{10}}} = \frac{W_3 W_{10} W_{12}}{W_{10} + W_3 W_{12}} \; ; \; W_{14} = \frac{W_{11} W_{13}}{1 + W_{11} W_{13} \frac{1}{W_{12}}} = \frac{W_{11} W_{12} W_{13}}{W_{12} + W_{11} W_{13}} \; .$$

Таким чином, загальна передавальна функція має вигляд: $W_3 = W_{14}W_5$.

Код програми

```
syms p;
R1=1; R2=0.4; R3=0.9; L1=1.5; L2=0.23; C1=1.9; C2=1.5;
C3=2.9;
W1=1/(L1*p); W2 = R2; W3=1/(C1*p); W4=C2*p; W5=L2*p;
W6=R3;
W7=1/(C3*p); W9=1/R2; W8=1/R2;
W9=W5+W6+W7; W10=1/(1+W8*W9); W11=W1/(1+W1*W2);
W12=(W4*W10)/(1+W9*W4*W10);
W13=(W3*W10*W12)/(W10+W3*W12);
W14=(W11*W12*W13)/(W12+W11*W13);
W=W14*W5;
pretty(collect(W));
```

Результат програми

У результаті отримаємо такий вираз для передавальної функції всієї системи:

Рисунок 5 - Модель системи у Simulink

Надірян Г.О. КІТ-36

Висновок

Навели структурну схему об'єкта, згідно з даними варіанта завдання та вихідних даних Навели математичну модель у вигляді передавальних функцій. Навели математичну модель у вигляді диференціального рівняння. Навели структурну схему моделі (пакет *MATLAB*) та її опис. Навели дослідження моделі на адекватність при заданих типових впливах: константа; δ-функція; синусоїдальний сигнал; лінійний сигнал. Отримали практичні навички створення математичних моделей об'єктів, які складаються з типових елементів принципових схем.