Chap. 5 Building Logistic Regression Models

- Model selection
- Model checking
- Be careful with "sparse" categorical data(infinite estimates possible)

Model Selection with Many Predictors

ex) Horseshoe crab study

Y= whether female crab has satellites (1=yes, 0=no) Explanatory variable - weight, width, color (ML, M, MD, D) (dummy variables $c_1,\ c_2,\ c_3$), Spine condition (3 categories) (dummy var. $s_1,\ s_2$).

Consider model for Crabs:

$$logitP(Y=1) = \alpha + \beta_1 c_1 + \beta_2 c_2 + \beta_3 c_3 + \beta_4 s_1 + \beta_5 s_2 + \beta_6 (weight) + \beta_7 (width)$$

LR test of $H_0: \beta_1 = \beta_2 = \cdots = \beta_7 = 0$ has test stat.

$$\begin{array}{l} -2\left(L_{0}-L_{1}\right)=difference\ of\ Deviance\\ =225.8-185.2=40.6,\ df=7\ \left(p-vale<0.0001\right) \end{array}$$

Strong evidence at least one predictor has an effect. But, look at Wald test of individual effects(eg. weight). None of individual effects seem "significant"

<u>Multicollinearity</u> (Strong correlations among predictors) also plays havoc with GLMs

eg) corr(weight, width)=0.89

Individual Z- test of $\frac{\widehat{\beta}_i}{SE}$ affected by multicollinearity sufficient to use one of weight/width in model(we use width)

Backward elimination using color, width, spine condition as predictors

- Start with complex model, including all interactions
- lacktriangle Drop "least significant" (eg, largest p- value) variable among highest-order terms
- Refit model
- Continue until all variables left are significant.

 $\underline{\text{Note:}}$ If testing many interactions, simpler and perhaps better to test at one time as a group of terms. (like the previous example)

ex) see Table 5.2 (p141 in 2^{nd} edition) or Table 5.1 (p127 in 3^{rd} edition)

Model	Predictors	Deviance G^2	df	AIC	Models Compared	Deviance Difference	Corr. $r(y,\hat{\mu})$
1	(C^*S^*W)	170.44	152	212.4	-		
2	(C*S + C*W + S*W)	173.68	155	209.7	(2)-(1)	3.2 (df=3)	
3a	$(C^*S + S^*W)$	177.34	158	207.3	(3a)-(2)	3.7 (df=3)	
3b	(C*W+S*W)	181.56	161	205.6	(3b)-(2)	7.9 (df=6)	
3с	$(C^*S + C^*W)$	173.69	157	205.7	(3c)-(2)	0.0 (df=2)	
4a	(S+C*W)	181.64	163	201.6	(4a)-(3c)	8.0 (df=6)	
4b	(W+C*S)	177.61	160	203.6	(4b)-(3c)	3.9 (df=3)	
5	(C+S+W)	186.61	166	200.6	(5)-(4b)	9.0 (df=6)	
6a	(C+S)	208.83	167	220.8	(6a)-(5)	22.2 (df=1)	
6b	(S+W)	194.42	169	202.4	(6b)-(5)	7.8 (df=3)	
6c	(C+W)	187.46	168	197.5	(6c)-(5)	0.8 (df=2)	0.452
7a	(C)	212.06	169	220.1	(7a)-(6c)	24.5 (df=1)	0.285
7b	(W)	194.45	171	198.5	(7b)-(6c)	7.0 (df=3)	0.402
8	(C = dark + W)	187.96	170	194.0	(8)-(6c)	0.5 (df=2)	0.447
9	None	225.76	172	227.8	(9)-(8)	37.8 (df=2)	0.000

Table C=color, S=spine condition, W=width

 $H_0: \mathrm{Model}\ C+S+W$ has 3 parameters for C, 2 parameters for S, and 1 parameter W.

 $H_a: \text{Model } C*S*W=C+S+W+C\times S+C\times W+S\times W+C\times S\times W.$

$$LR \ stat. = difference \ in \ Deviances$$

= $186.6 - 170.4 = 16.2$
 $df = 166 - 152 = 14 \ (p - value = 0.30)$

Simpler model C+S+W is adequate.

At next stage, S can be dropped from model C+S+W

$$diff. in deviance = 187.5 - 186.6 = 0.9, df = 2$$

Results in model fit

$$\begin{array}{ccc} \log it \hat{\pi} = & -12.7 + 1.3c_1 + 1.4c_2 + 1.1c_3 + 0.47 (width) \\ (\alpha) & (\beta_1) & (\beta_2) & (\beta_3) & (\beta_4) \end{array}$$

Setting $\beta_1 = \beta_2 = \beta_3$ gives

$$\log it\hat{\pi} = -13.0 + 1.3 C + 0.48 (width)$$

where
$$C = \begin{cases} 1 & ML, M, MD \\ 0 & D \end{cases}$$

Conclude

• Given width, estimated odds of satellite for nondark crabs equal $e^{1.3} = 3.7$ times estimated odds for dark crabs.

95% C.I. :
$$e^{1.3 \pm 1.96(0.525)} = (1.3, 10.3)$$

• Given color, estimated odds of satellite multiplied by $e^{0.48 \pm 1.96(0.104)} = (1.3, 2.0)$ for each 1cm increase in width.

Criterion for selecting a model

- Use theory, other research as guide.
- Parsimony (simplicity) is good
- Can use some criterion to choose among set of models. Most popular criterion is Akaike information criterion (AIC):

Choose model with minimum AIC

$$AIC = -2(L - no. model parameters)$$

where $L = \log likelihood$

- For explanatory purpose, can use automated procedure such as backward elimination.
- lacktriangle Ideally should have ≥ 10 outcomes of each type per predictor.

ex) n=1000, (Y=1) 30 times, (Y=0) 970 times Model should contain ≤ 3 predictors n=173 horseshoe crabs (Y=1):111 crabs, (Y=0):62 crabs. use ≤ 6 predictors

Note:

- Some software (eg. PROC LOGISTIC in SAS) has options for stepwise selection procedures.
- Can further check fit with residuals for grouped data, influence measures, cross validation
- To summarize predictive power, can use correlation $(Y, \hat{\pi})$

Predictors	Correlation
color	0.280
width	0.400
color+width	0.452
color=dark+width	0.447

input program crab(genmode and logistic)

```
data crab;
infile 'C:Wcrabs_SAS.dat';
 input color spine width satell weight;
if satell>0 then y=1 if satell=0 then y=0 n=1:
weight=weight/1000 color=color-1;
if color=4 then dark=0 if color<4 then dark=1:
/* Model with color and width */
proc genmod:
class color;
model y/n=color width / dist=bin link=logit;
run:
/* Model with dark and width */
proc genmod;
model y/n=dark width / dist=bin link=logit;
run:
/* Model with color and width using logistic regression */
proc logistic order=data;
class color (ref='4')/param=ref;
model y/n=color width;
run:
proc logistic order=data;
class color (ref='4')/param=ref;
model y/n=color width/selection=backward;
run:
```

Another summary : Classification table predict $\hat{Y}=1$ if $\hat{\pi}>0.50$ and $\hat{Y}=0$ if $\hat{\pi}<0.50$

SAS: Get with CTABLE option in PROC LOGISTIC for various "cutpoints"

Predictive Power

classification table

$$\begin{array}{ll} \text{Predict} & \begin{cases} \hat{Y}\!\!=\!1 \text{ if } \hat{\pi}\!\!>\!\pi_0 \\ =\!0 \text{ if } \hat{\pi}\!\!\leq\!\pi_0 \end{cases} \quad \text{for some cutoff } \pi_0 \text{ (for example, } \pi_0=0.5) \end{array}$$

Sensitivity =
$$P(\hat{Y}=1 \mid Y=1) = \frac{94}{94+17} = 0.85$$

Specificity =
$$P(\hat{Y}=0 \mid Y=0) = \frac{28}{34+28} = 0.45$$

ex) Horseshoe crab (model using width and color)

ROC (receiver operating characteristic) Curve

- lacktriangle Plot of sensitivity as a function of (1-specificity) for the possible cutoffs π_0
- Summarize predictive power for all possible π_0 . When π_0 gets near 0, almost all predictions are $\hat{y}=1$ (sensitivity is near 1 and specificity is near 0)
- For a given specificity, better predictive power correspond to higher sensitivity (The better the predictive power, the higher the ROC curve)
- lacktriangle The area under the ROC curve the value of a measure of predictive power (concordance index). concordance index c estimates the probability that the

predictions and the outcomes are concordant.(the observation with the large y also has the larger $\hat{\pi}$)

input program crab(ROC)

```
data crab;
 infile 'C:\Wcrabs_SAS.dat';
 input color spine width satell weight;
 if satell>0 then y=1; if satell=0 then y=0; n=1;
 weight=weight/1000;
 color=color-1;
 if color=4 then dark=0; if color<4 then dark=1;
run;
proc logistic data=crab order=data;
class color (ref='4')/param=ref;
model y=width color / outroc=ROCData;
run;
symbol v=dot i=join;
proc gplot data=ROCData;
plot _sensit_*_lmspec_;
run;
quit;
```

The LOGISTIC Procedure

Model Information

Data Set WORK.CRAB

Response Variable y

Number of Response Levels 2

Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 173 Number of Observations Used 173

Response Profile
Ordered Total
Value y Frequency
1 1 111
2 0 62
Probability modeled is y=1.

 $\begin{array}{c|cccc} & \text{Class Level Information} \\ \text{Class} & \text{Value} & \text{Design Variables} \\ \text{color} & 1 & 1 & 0 & 0 \\ & 2 & 0 & 1 & 0 \\ & 3 & 0 & 0 & 1 \\ & 4 & 0 & 0 & 0 \end{array}$

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

	Intercept
Intercept	and
Only	Covariates
$227.75\overline{9}$	197.457
230.912	213.223
225.759	187.457
	0nly 227.759 230.912

The LOGISTIC Procedure
Testing Global Null Hypothesis: BETA=0

TODULING GIO	bur nurr nipoon	OD 10 DI 111	•
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	38.3015	4	<.0001
Score	34.3384	4	<.0001
Wald	27.6788	4	<.0001

Type 3 Analysis of Effects

		wala	
Effect	DF	Chi-Square	Pr > ChiSq
width	1	19.6573	<.0001
color	3	6.6246	0.0849

		Analys	sis of Maxim	um Likelihood	Estimates	
		_		Standard	Wald	
Parameter		DF	Estimate	Error	Chi-Square	Pr > ChiSq
Intercept		1	-12.7151	2.7618	21.1965	<.0001
width -		1	0.4680	0.1055	19.6573	<.0001
color	1	1	1.3299	0.8525	2.4335	0.1188
color	2	1	1.4023	0.5484	6.5380	0.0106
color	マ	1	1 1061	0 5021	7 /10/1	0.0617

	Udds Katio	Estimates	
	Point	95% Wai	ld
Effect	Estimate	Confidence	Limits
width	1.597	1.298	1.964
color 1 vs 4	3.781	0.711	20.102
color 2 vs 4	4.065	1.387	11.909
color 3 vs 4	3.023	0.947	9.646

Association of Predicted	Probabiliti	ies and Obs	served Responses
Percent Concordant	76.9	Somers' I	0.543
Percent Discordant	22.6	Gamma	0.546
Percent Tied	0.5	Tau-a	0.251
Pairs	6882	С	0.771

Model Checking

Is the chosen model adequate?

Goodness of fit test

But test using deviance G^2 , X^2 limited to "non-sparse" contingency tables.

• Check whether fit improves by adding other predictors, interactions between predictors.

 $LR \ stat. =$ change in deviance is useful for comparing models even when G^2 not valid as overall test of fit.

ex) Revisit Florida death penalty data

Victim's	Victim's Suspect's		Death Penalty(Y)		
Race	Race	Yes	No	n	
Dlogl	Black	4	139	143	
Black	White	0	16	16	
White	Black	11	37	48	
	White	53	44	467	

$$\pi = P(Y = Yes)$$

data death;

input v \$ d \$ p total @@;

cards;

b b 4 143 b w 0 16 w b 11 48 w w 53 467

run

• proc genmod data=death;

class v d;

model p/total = d v / dist=bin link=logit lrci type3;

run;

proc genmod data=death;

class v d;

model p/total = v / dist=bin link=logit lrci;

run;

OUTPUT:

0

The GENMOD Procedure Model Information

WORK.DEATH
Binomial
Logit
p
total
4
4
68
674

 $\begin{array}{ccc} \text{Class Level Information} \\ \text{Class} & \text{Levels} & \text{Values} \\ \text{V} & 2 & \text{b w} \\ \text{d} & 2 & \text{b w} \end{array}$

a	_	•	~ 1	~ ~	п.,
('rifaria	HOT	Assessing	I÷000mpdd	()+	H'1 T
OT TOCK TO	LOT	TIDDCDDTIIA	doodifcaa	UΤ	LIL

Criterion	DF	Value	Value/DF
Deviance	1	0.3798	0.3798
Scaled Deviance	1	0.3798	0.3798
Pearson Chi-Square	1	0.1978	0.1978
Scaled Pearson X2	1	0.1978	0.1978
Log Likelihood		-209.4783	

Algorithm converged.

Analysis Of Parameter Estimates

				Standard	Likelihood	l Ratio 95%	Chi-	
Parameter		DF	Estimate	Error	Confidence	ce Limits	Square	Pr > ChiSq
Intercept		1	-2.0595	0.1458	-2.3565	-1.7836	$\bar{1}99.40$	<.0001
ď	b	1	0.8678	0.3671	0.1140	1.5633	5.59	0.0181
d	W	0	0.0000	0.0000	0.0000	0.0000		•
V	b	1	-2.4044	0.6006	-3.7175	-1.3068	16.03	<.0001
V	W	0	0.0000	0.0000	0.0000	0.0000		•
Scale		0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

The GENMOD Procedure

LR	Statistics	For	Туре	3	Analysis

		Cn1-	
Source	DF	Square	Pr > ChiSq
d	1	5.01	0.0251
V	1	20.35	<.0001

Ø

The GENMOD Procedure Model Information

Data Set	WORK.DEATH
Distribution	Binomial
Link Function	Logit
Response Variable (Events)	p
Response Variable (Trials)	total

Number of Observations Read 4
Number of Observations Used 4
Number of Events 68
Number of Trials 674

 $\begin{array}{ccc} \text{Class Level Information} \\ \text{Class Levels} & \text{Values} \\ \text{V} & 2 & \text{b w} \\ \text{d} & 2 & \text{b w} \end{array}$

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	2	5.3940	2.6970
Scaled Deviance	2	5.3940	2.6970
Pearson Chi-Square	2	5.8109	2.9054
Scaled Pearson X2	2	5.8109	2.9054
Log Likelihood		-211.9854	

Algorithm converged.

Analysis Of Parameter Estimates

	midiford of landmeder modifiated							
				Standard	Likelihood	l Ratio 95%	Chi-	
Parameter		DF	Estimate	Error	Confidenc	ce Limits	Square	Pr > ChiSq
Intercept		1	-1.9526	0.1336	-2.2234	-1.6989	213.68	<.0001
V	b	1	-1.7045	0.5237	-2.9072	-0.7995	10.59	0.0011
V	W	0	0.0000	0.0000	0.0000	0.0000		
Scale		0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

Goodness of fit

For model fit with d=1 (Black suspect) or d=0 (White) and $\nu=1$ (Black victim) or $\nu=0$ (White)

$$\hat{\pi} = \frac{e^{-2.06 + 0.87d - 2.40\nu}}{1 + e^{-2.06 + 0.87d - 2.40\nu}}$$

eg) for 467 cases with white suspect, victim, $d = \nu = 0$

$$\hat{\pi} = \frac{e^{-2.06}}{1 + e^{-2.06}} = 0.113$$

Fitted count "Yes"=467 (0.113)=5.28 (53: observed "Yes") Fitted count "No"=467 (0.887)=414.2 (414: observed "No")

Summarizing fit over 8 cells,

$$X^2 = \sum \frac{(obs-fit)^2}{fit} = 0.20$$

$$G^2 = 2\sum obs. \log\left(\frac{obs}{fit}\right) = 0.38 = deviance \text{ for model}$$

$$df = 4-3 \text{ (no. binomial observation - no. model parameters)}$$

For $G^2 = 0.38$, p-value = 0.54 for $H_0:$ model holds (No evidence of lack of fit)

Note:

- lacktriangle Model assumes lack of interaction between d and ν in effects on Y. So goodness of fit test in this example is a test of H_0 : no interaction.
- For continuous predictors or many predictors with small $\hat{\mu}_i$, G^2 and X^2 are not approx. χ^2 . For better approximation, can group data befor applying X^2 , G^2 . Hosmer-Lemershow test groups using ranges of $\hat{\pi}$ values(available in PROC LOGISTIC). Or, can try to group predictor value(if only 1 or 2 predictors)

Residuals for Logistic Regression

At setting i or explanatory variables, let

 $y_i = \text{no. successes}$

 $n_i = \text{no. trials (preferably 'large')}$

 $\hat{\pi}$ =estimated prob. of success, besed on ML model fit.

For a binomial GLM, Pearson residuals are

$$e_i = rac{y_i - n_i \hat{\pi_i}}{\sqrt{n_i \hat{\pi_i} (1 - \hat{\pi_i})}} \quad (X^2 = \sum_i e_i^2)$$

 e_i (called Reschi in SAS GENMOD) is approx. $N(0,~\nu)\,,$ when model holds, but $\nu < 1$

Standardized Pearson residual (adjusted residual in some books, SPSS)

$$\qquad \qquad r_i = \frac{y_i - n_i \hat{\pi}_i}{SE} = \frac{y_i - n_i \hat{\pi}_i}{\sqrt{n_i \hat{\pi}_i (1 - \hat{\pi}_i)(1 - h_i)}}$$

where h_i is called "leverage" (r_i labelled stReschi in SAS)

- \Rightarrow 0 < h_i < 1 High values of h_i (close to 1) correspond to extreme points in the design space
- $lackbox{ } r_i$ is approx. N(0, 1) when model holds
- $lackbox{ } \mid r_i \mid > 2 \text{ or } 3 \text{ (approx.)}$ suggests lack of fit
- ex) Y= admitted into graduate school at Berkely (1 = Yes, 0 = No)

Data on textbook

G = gender (g = 0 female, g = 1 male)

D = department (A, B, C, D, E, F)

$$d_1 = \begin{cases} 1 & dept \cdot A \\ 0 & otherwise \end{cases} \;, \; \; \cdots \; \; , \; \; d_5 = \begin{cases} 1 & dept \cdot E \\ 0 & otherwise \end{cases}$$

For dept. F, $d_1 = d_2 = \cdots = d_5 = 0$

Model

$$\log i \, t \, P(Y=1) = \alpha + \beta_1 d_1 + \dots + \beta_5 d_5 + \beta_6 g \tag{1}$$

Seems to fit poorly (deviance $G^2 = 20.2$, df = 5, p-value = 0.01)

lacktriangle Simpler models fit poorly, eg, model with $eta_6=0$ assumes Y indep, of G controlling for D, has

$$G^2 = 21.7$$
, $df = 6$, $p - value = 0.001$

It seems to fit poorly

lacktriangle Standardized Pearson residuals for model (1) show model fits well except in Dept. A ($\mid r_i \mid = r_2 = 4.03$), where fewer males accepted than model predicts.

In oter dept.s, model with no gender effect is adequate.

Note:

• Simpson's paradox holds

$$\textit{Marginal } \hat{\theta} = \frac{1198 \times 1278}{1493 \times 557} = 1.84 \text{ between } Y \text{ and } g$$

• Controlling for dept.,

$$\hat{\theta}_{\,Yg\,(dept)} = e^{-\,0.0999} = 0.90\,$$
 for logit model

- $lackbox{ In dept. } A$, $\hat{ heta} = 0.35$ (odds of admission lower for males)
- If delete dept. A, $G^2 = 2.6$, df = 4 (Good fit).

```
options ls=100 ps=70
data berkeley;
input dept $ gender yes no @@;
  n=yes+no;
cards
a 0 512 313 a 1 89 19
b 0 353 207 b 1 17
                                          Enter data as 12 binomials
c 0 120 205 c 1 202 391
                                               (1=female, 0=male)
d 0 138 279 d 1 131 244
e 0 53 138 e 1 94 299
f 0 22 351 f 1 24 317
run;
proc genmod data=berkeley;
 class dept gender;
 model yes/n=gender dept / dist=bin link=logit residuals type3;
proc genmod data=berkeley;
 class dept gender;
 model yes/n=dept / dist=bin link=logit residuals;
run:
```

The GENMOD Procedure

```
Model Information
WORK.BERKELEY
Data Set
Distribution
                                             Binomial
Link Function
Response Variable (Events)
Response Variable (Trials)
                                                   yes
                                                      n
  Number of Observations Read
Number of Observations Used
Number of Events
Number of Trials
                                                1755
                                                4526
            Class Level Information
Levels Values
      Class
                     Levels
                                  abcdef
      dept
                            6
      gender
                  Response Profile
       0rdered
                                          Total
                      Binary
                                     Frequency
1755
                      Outcome
          Value
                      Event
                      Nonevent
              Parameter Information
Parameter
                    Effect
                                               gender
                    Intercept
Prml
                                                0
Prm2
                     gender
Prm3
                    gender
Prm4
                    dept
                                     a
Prm5
                    dept
                                     b
Prm6
                     dept
                                     С
                                     d
Prm7
                    dept
Prm8
                    dept
                                     e
f
                    dept
   Criteria For Assessing Goodness Of Fit
```

Criterion Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood	DF 5 5 5 5	Value 20. 2043 20. 2043 18. 8243 18. 8243 -2593. 7442 -44. 5720	Value/DF 4.0409 → 4.0409 3.7649 3.7649	$\boxed{p-value = 0.001}$
AIC (smaller is better)		103.1440		

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

		Chi-	
Source	DF	Square	Pr > ChiSq
gender	1	1.53	0.2159
dept	5	763.40	<.0001

Observation Statistics

	Observation Statistics						
				Std	Std		
	Raw	Pearson	Deviance	Deviance	Pearson	Likelihood	
Observation	Residual	Residual	Residual	Residual	Residual	Residual	
1	-17.26992	-1.253808	-1.248674	-4.010799	-4.027288	-4.025693	
2	17.269919	3.5186675	3.7189203	4.2564872	4.027288	4.2033791	
3	-0.639509	-0.056021	-0.056009	-0.279662	-0.279722	-0.27972	
4	0.6395092	0.2689516	0.270608	0.281445	0.2797222	0.2813152	
5	10.754724	1.2628723	1.2533375	1.8666311	1.8808316	1.8744428	
6	-10.75472	-0.920778	-0.92434	-1.888107	-1.880832	-1.882578	
7	0.7926099	0.0826077	0.0825674	0.1411928	0.1412619	0.1412383	
8	-0.79261	-0.085732	-0.085771	-0.141327	-0.141262	-0.141286	
9	7.3191902	1.2415132	1.2205137	1.6058628	1.6334923	1.6175896	
10	-7.31919	-0.844033	-0.850933	-1.646846	-1.633492	-1.637068	
11	-0.957096	-0.206201	-0.207564	-0.304644	-0.302644	-0.303574	
12	0.9570957	0.2064808	0.2051779	0.3007342	0.3026438	0.3017565	

The GENMOD Procedure

Model Information

L
WORK.BERKELEY
Binomial
Logit
yes
n
12
12
1755
4526

Class Level Information
Class Levels Values
dept 6 a b c d e f
gender 2 0 1

Response Profile Binary Outcome Fr Event Nonevent Ordered Value Total Frequency 1755 2771

Parameter Information eter Effect Intercept Parameter dept Prml Prm2 Prm3 Prm4 Prm5 dept a b c d dept dept dept dept dept dept Prm6 Prm7 e f

Criteria For Assessing Goodness Of Fit

Criteria For	Assessing	Goodness Of Fit	
Criterion	DF	Value	Value/DF
Deviance	6	21.7355	3.6226
Scaled Deviance	6	21.7355	3.6226
Pearson Chi-Square	6	19.9384	3.3231
Scaled Pearson X2	6	19.9384	3.3231
Log Likelihood		-2594.5099	
Full Log Likelihood		-45.3376	
AIC (smaller is better)		102.6752	
AICC (smaller is better)		119. 4 752	
BIC (smaller is better)		105.5846	
Algorithm converged.			

The GENMOD Procedure

Analysis Of Maximum Likelihood Parameter Estimates

Parameter	DF	Estimate	Standard Error	Wald 95% (Limi		Wald Chi-Square	Pr > ChiSq
Intercept dept a dept b dept c dept d dept e dept f Scale NOTE: The scale p	1 1 1 1 1 0 0	-2.6756 3.2691 3.2185 2.0600 2.0108 1.5861 0.0000 1.0000	0.1524 0.1671 0.1749 0.1674 0.1699 0.1798 0.0000 0.0000	-2.9744 2.9417 2.8757 1.7319 1.6778 1.2337 0.0000 1.0000	-2.3769 3.5966 3.5613 2.3880 2.3438 1.9385 0.0000 1.0000	308.10 382.88 338.63 151.45 140.07 77.82	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001

Observation Statistics

				Std	Std	
	Raw	Pearson	Deviance	Deviance	Pearson	Likelihood
Observation	Residual	Residual	Residual	Residual	Residual	Residual
1	-19.43087	-1.412995	-1.40638	-4.133629	-4.153073	-4.150827
2	19.430868	3.9053116	4.1323246	4.3944879	4.1530728	4.3672258
3	-1.188034	-0.104129	-0.104087	-0.503506	-0.503708	-0.503699
4	1.1880342	0.4928272	0.497804	0.5087944	0.5037077	0.5085781
5	6.0021786	0.6976841	0.6949825	0.8647048	0.8680662	0.8658963
6	-6.002179	-0.516503	-0.517671	-0.870029	-0.868066	-0.868762
7	-3.632576	-0.375617	-0.376411	-0.547028	-0.545873	-0.54642
8	3.6325758	0.3960931	0.3951975	0.5446391	0.5458732	0.5452238
9	4.9229452	0.8207706	0.8119543	0.989787	1.0005342	0.9933147
10	-4.922945	-0.572193	-0.575427	-1.00619	-1.000534	-1.002388
11	-2.030812	-0.428298	-0.434127	-0.628187	-0.619753	-0.623795
12	2.0308123	0.4479439	0.4417581	0.6111942	0.6197526	0.6152965

Sparse Data

Caution: Parameter estimates in logistic regression can be infinite.

ex1)

$$\begin{array}{c|ccccc} & S & F \\ \hline 1 & 8 & 2 \\ 0 & 10 & 0 \\ \end{array}$$

Model

$$\log\left(\frac{P(S)}{P(F)}\right) = \alpha + \beta x$$

$$e^{\hat{\beta}} = odds \ ratio = \frac{8 \times 0}{10 \times 2} = 0$$

$$\hat{\beta} = \log \ odds \ ratio = -\infty$$

ex2) Multi-center clinical trial (5centers, each with 2×2 table)

ex3)
$$y = \begin{cases} 1 & \text{for } x < 50 \\ 0 & \text{for } x > 50 \end{cases}$$

$$\log itP(Y=1) = \alpha + \beta x$$

has $\hat{\beta} = \infty$. software may not realize this!

1 PROC GENMOD : $\hat{\beta}$ = 3.84, SE = 15601054

2 PROC LOGISTIC gives warning

3 SPSS : $\hat{\beta}$ = 1.83, SE = 674.8

Infinite estimates exists when we can separate x values where y=1 from x- values where y=0 (perfect discrimination)

Inference about Conditional Associations in $2 \times 2 \times K$ tables(X, Y, Z)

Consider $H_0: X$ and Y independent, given Z

1. Using logistic regression

$$\begin{split} \log i\,t\,[\,P(\,Y=1\mid X=i,Z=k)\,] &= \alpha + \beta x_i + \beta_k^Z,\ i=1,2,\ k=1,\cdots,K \\ \text{with } x_1=1,\ x_2=0\,\text{(dummy variable)},\ \left\{\beta_k^Z\right\} \quad K \quad \text{parameters for effects of } Z \quad \text{with constraint such as } \beta_K^Z=0 \quad \text{or} \quad \beta_1^Z=0 \\ H_0:\beta=0\,. \quad \text{Test using Wald or LR test.} \end{split}$$

2. Cochran-Mental-Haenszel Test (CMH): a non-model-base test Cochran \rightarrow binomial case given k (1950)

Mental-Haenszel \rightarrow Hypergeometric dist. given k (1959)

K 2×2 tables of each

n_{11k}	n_{12k}	n_{1+k}
n_{21k}	n_{22k}	n_{2+k}
n_{+1k}	n_{+2k}	n_{++k}

Under H_0 , Conditional on $\{n_{1+k}, n_{2+k}, n_{+1k}, n_{+2k}\}$ for each partial table, n_{11k} has hypergeometric dist.

$$\mu_{11k} = E_{H_0}(n_{11k}) = \frac{n_{1+k}n_{+1k}}{n_{++k}}$$

$$Var(n_{11k}) = \frac{n_{1+k}n_{2+k}n_{+1k}n_{+2k}}{n_{++k}^2(n_{++k}-1)}$$

Mentel and Haenszel(1959) proposed $M^2 = \frac{(\sum_k n_{11k} - \sum_k \mu_{11k})^2}{\sum_k Var(n_{11k})}$

Under H_0 , $M^2 \stackrel{d}{\rightarrow} \chi_1^2$

 $(n_{11k}-\mu_{11k}$ is fluctuated around 0 (+ or -). It is bad)

Testing for conditional independence of X and Y given Z

In fact, this is the score test of $H_0: \beta = 0$ in logit model

$$logit[P(Y=1)] = \alpha + \beta x_i + \beta_k^Z$$

(Day and Byar, 1979) (tink about suff. stat.)

ex)

Contor	Group	Resp	onse	0 5 5
Center	Treatment	S	F	0 9 9 0 14 14
1	Treatment	0	5	$n_{111} = 0$
1	Placebo	0	9	$\hat{\mu}_{111} = 0$
2	T	1	12	$\widehat{Var}(n_{111}) = 0$
	F	0	10	No information for
3	T	0	7	treatment effect exists
	F	0	5	in center 1, 3
4	Т	6	3	•
4	F	2	6	-
5 -	Т	5	9	•
	F	2	12	•

CMH test statistic \rightarrow [CMH test does not give any direction(higher or lower). Just give significance. But Wald, LR test give it]

$$M^2 = 5.02$$
, $df = 1$, $p - value = 0.025$

Model

$$logit[P(Y=1)] = \alpha + \beta x + \beta_k^Z$$

has $\hat{\beta}=1.546$, s.e.=0.702 ($e^{1.546}=4.69$ estimated odds for each partial table) Wald~stat.=4.85 for $H_0:\beta=0~(p-value=0.028)$

LR stat. comparing this model to model with $\beta = 0$ is 5.49 (p-value = 0.019)

```
data trial;
input center $ group $ response $ count @@;
cards;
1 treatment success 0 1 treatment failure 5
           success 0 l placebo
                                failure 9
l placebo
2 treatment success 1 2 treatment failure 12
2 placebo
           success 0 2 placebo
                                failure 10
3 treatment success 0 3 treatment failure 7
3 placebo success 0 3 placebo
                                failure 5
4 treatment success 6 4 treatment failure 3
4 placebo
          success 2 4 placebo
                                failure 6
5 treatment success 5 5 treatment failure 9
5 placebo
          success 2 5 placebo
                                failure 12
run;
proc freq data=trial;
weight count;
table center*group*response/cmh;
run;
```

Summary Statistics for group * response Controlling for center

Cochran-Mantel-Haenszel Statistics (Based on table Scores)(CMH)

Statistic	Alternative Hypothesis	DF	Value	Prob
1	Nonzero Correlation	1	5.0170	0.0251
2	Row Mean Scores Differ	1	5.0170	0.0251
3	General Association	1	5.0170	0.0251

Estimates	of the Common Relative	MH odds ratio estima	te	
Types of Study	Method	Value	95% Confidence Limits	
Case-Control	Mantel-Haenszel	4.7151	1.1840 18.7768	
(Odds Ratio)	Logit **	3.9677	1.0978 14.3395	
Cohort	Mantel-Haenszel	1.2143	1.0231 1.4413	
(Coll Risk)	Logit	1.1252	0.9719 1.3026	
Cohort	Mantel-Haenszel	0.3575	0.1350 0.9466	
(Col2 Risk)	Logit **	0.3890	0.1547 0.9782	

** These logit estimators use a correlation of 0.5 in every cell of those tables that contain a zero. Tables with a zero row or a zero column are not included in computing the logit estimators.

Breslow-Day Test for Homogeneity of the odds Ratios -------Chi-Square 0.3611

Chi-Square 0.3611 DF 2 Pr > ChiSq 0.8348

Total Sample Size = 94

```
/* SAS (genmod) showing effects of sampling zeroes(sandoz data) */
data sparse;
input center $ treat success n @@;
cards;
11051009
2 1 1 13 2 0 0 10
31073005
41694028
5 1 5 14 5 0 2 14
run;
proc genmod data=sparse;
class center;
model success/n=treat center/dist=bin link=logit;
run;
```

Number of Obse Number of Obse Number of Even Number of Tria	ervations Used ts		
Class Class center		tion alues . 2 3 4 5	
Re Ordered Value 1 2	esponse Profil Binary Outcome Event Nonevent	e Total Frequency 16 78	
Criteria For Criterion Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X2 Log Likelihood Full Log Likelihood AIC (smaller is better) AICC (smaller is better) BIC (smaller is better)	Assessing Good DF 4 4 4 4 4	dness Of Fit Value 0.5021 0.5021 0.3602 0.3602 -28.8701 -6.4293 24.8587 52.8587 26.6742	Value/DF 0.1255 0.1255 0.0900 0.0900

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates Standard Wald 95% Confidence Wald Pr > ChiSq 0.0025 DF Estimate Chi-Square Parameter Error Limits -3.3354 0.1708 -2.0223 1.5460 0.6700 0.7017 -0.7092 Intercept 2.9212 418250.7 treat 0.0276 -25.9997 213410.4 -418303 center 1 0.00 0.9999 1.1327 188688.5 0.7011 0.0000 0.0000 -4.4003 -369849 0.0399 369796.7 3.70 0.00 2.30 0.0543 0.9999 0.1294 23 -2.1802 -25.9070 1.0631 center 1 center 2.4373 0.0000 4 ī -0.3110 center 0.0000 0 0.0000 center Scale 1.0000 NOTE: The scale parameter was held fixed. too large in absolute values. (\because) center 1 and center 3 : $n_{+\,1k}=0,\ k=1,3$ estimated odds ratio= $e^{1.546} = 4.69$

Note: M^2 is a test sta. for testing conditional independence of X and Y given Z• Mentel and Haenszel (1959) suggested

$$\hat{\theta}_{MH} = \frac{\displaystyle\sum_{k} n_{11k} n_{22k} / n_{++\,k}}{\displaystyle\sum_{k} n_{12k} n_{21k} / n_{++\,k}} \; \text{ => the strength of association (simillar to odds ratio)}$$

for estimating an assumed common odds ratio for the K partial tables.

*[It is preferred over the ML estimator when K is large and the data are sparse (The ML estimator $\hat{\beta}$ of the log odds ratio then tends to be too large in absolute value)]

Robins et al. (1986) derived a std. error for $\log \hat{\theta}_{\mathit{MH}}$

ex)
$$\hat{\theta}_{MH} = 4.72$$

95% C.I. (1.18, 18.78) for θ_{MH}

Note:

- For $2 \times 2 \times K$ tables, Breslow and Day (1980) gave large-sample Chi-squared test for equality of K odds ratios (df = K 1)
 - ex) B-D stat.=0.36, df=2 (not 4=K-1[2 centers do not have successes]) or, could use goodness-of-fit test(deviance pearson) of model,

$$logit(\pi) = \alpha + \beta x + \beta_k^Z$$

which is equivalent to residual odds ratios (e^{β} in each stratum), with df=K-1

- ⇒ There is also a small-sample test (Zelon, 1972, in statXact)
- $lackbox{ Small-sample exact test of conditional indep. of X and Y given Z (i.e., $H_0:eta=0$) uses dist. of $\sum_k n_{11k}$, conditional on $\{n_{i+k}\}$ and $\{n_{+jk}\}$ (StatXact)$

(SAS V8.2 Proc logistic has this test)

lacktriangle CMH test generalized to test conditional indep. in $I \times J \times K$ table, for ordered and unordered rows and columns (Landis, et al., 1978) see 7.5

PROC FREQ in SAS

Stat.	X	Y	df
Nonzero corr.	Ordinal	Ordinal	1
Row means diff.	Nominal	Ordinal	I– 1
General Assoc.	Nominal	Nominal	(I-1)(J-1)

ex) K case-control pair (matched pairs with $n_{1+k} = n_{2+k} + 1$ for k)

Pair	Exposure	case	Control (no cancer)	
Pall	(Y : response)	(cancer)		
	Yes			
1	N0			
		1	1	
	Yes			
2	N0			
		1	1	
:	:			
	Yes			
K	N0			
		1	1	

(In general ML theory, as $n \rightarrow \infty$, the parameter space is fixed)

LR test of $H_0:\beta=0$ has asymptotic bias on $n\to\infty$ with fixed no. parameter Here n=2K. As $n\uparrow$, so does K and no. parameter.

In fact, $\hat{\beta} \stackrel{p}{\longrightarrow} 2\beta$ (Andersen, 1980)

Note: tables

case	control	
1	1	
0	0	
1	1	and

 case
 control

 0
 0

 1
 1

make no contribution to CMH M^2 , but for other tables, $\sum_k n_{11k}$ is a sum of i.i.d,

Bernoulli r.v's and $M \to \text{normality}$ as no. of such tables $\uparrow (M^2 \xrightarrow{d} \chi_1^2)$

In fact, $\hat{\beta}_{MH} \xrightarrow{p} \theta\left(e^{\beta}\right)$

In $2 \times 2 \times K$ tables, Model

$$logitP(Y=1) = \alpha + \beta x + \beta_k^Z$$

Note:

- An alternative inference approach is <u>conditional logistic regression.</u> eliminating $\{\beta_k^Z\}$ by conditioning on their sufficient statistics (see 6.7) (SAS V8.2)
 - * Frequentist: $k{\to}\infty$, ML consistency is broken but conditional MLE given Z is consistent.
 - * Bayesian β_k^Z : random effect is considered.
- For multi-center clinical trial data, alternative approach treats center effects as random.

eg)
$$\beta_k^Z = u_k \sim N(\mu, \ \sigma^2)$$

(Agresti & Hartzel, Stat. in Med., 2000)