

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01		
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5		
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129		
Název projektu	SŠPU Opava – učebna IT		
Tue žehlenu lilížený elstinitu.	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20		
Typ šablony klíčové aktivity:	vzdělávacích materiálů)		
Název sady vzdělávacích materiálů:	Automatizace IV		
Popis sady vzdělávacích materiálů:	Automatizace IV, 4. ročník		
Sada číslo:	E-15		
Pořadové číslo vzdělávacího materiálu:	09		
Označení vzdělávacího materiálu:	VV 22 INOVACE E 1E 00		
(pro záznam v třídní knize)	VY_32_INOVACE_E-15-09		
Název vzdělávacího materiálu:	Minimalizace logických výrazů		
Zhotoveno ve školním roce:	2011/2012		
Jméno zhotovitele:	Ing. Jiří Miekisch		

Minimalizace logických výrazů

Logická funkce vyjádřená úplnou základní součtovou nebo součinovou formou z pravdivostní tabulky není jediným možným vyjádřením realizované logické funkce. Většinou lze nalézt jednodušší algebraické vyjádření, které povede ke snížení počtu operací a tedy menší složitosti obvodu. Výsledkem této činnosti je tedy nalezení minimálního výrazu, to znamená výrazu, který má nejmenší četnost všech vyskytujících se proměnných. Četnost proměnných je v tomto případě dána prostým algebraickým součtem proměnných vyskytujících se ve výrazu bez ohledu na jejich index, a bez ohledu na to, zda proměnné jsou přímé nebo negované. Pojem minimálnosti lze definovat i z jiných hledisek, např. počtu operací, součástkové základny, doby zpoždění, atd. K minimalizaci logické funkce vyjádřené pomocí logického výrazu se nejčastěji používá:

- Algebraická minimalizace.
- Minimalizace pomocí Karnaughovy mapy.

Algebraická minimalizace

Obecný postup se dá charakterizovat následujícím způsobem:

- 1. Je třeba získat Booleovský výraz pro požadovanou logickou funkci buď z popisu, nebo z pravdivostní tabulky, nebo ze schématu logické sítě.
- 2. Provést vlastní zjednodušení aplikací Booleovských zákonů, vytýkáním, substitucí apod.
- 3. Porovnat výsledný vztah s původní pravdivostní tabulkou.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Příklad:

Zjednodušte zadaný logický výraz:

$$x = a \times b \times \overline{c} \times d + \overline{a} \times b \times \overline{c} \times d + a \times b \times c \times d + \overline{a} \times b \times c \times d$$

Vytkneme před závorku proměnnou **b** a **d**

$$x = b \times d \times (a \times \overline{c} + \overline{a} \times \overline{c} + a \times c + \overline{a} \times c)$$

Vytkneme proměnné c a negaci c

$$x = b \times d \times (\overline{c} \times (a + \overline{a}) + c \times (a + \overline{a}))$$

Logický součet a plus negace a je vždy rovno jedné – tento člen můžeme ignorovat

$$x = b \times d \times (c + \overline{c})$$

Logický součet **c** a negace **c** je opět rovno log 1 – možno zanedbat

$$x = b \times d$$

Toto je výsledný minimalizovaný tvar.

Minimalizace pomocí K-mapy

Příklad:

Minimalizujte logickou funkci, která je zadaná pravdivostní tabulkou.

	Α	В	С	D	Υ
0	0	0	0	0	1
1	1	0	0	0	1
2	0	1	0	0	1
3	1	1	0	0	1
4	0	0	1	0	0
5	1	0	1	0	1
6	0	1	1	0	0
7	1	1	1	0	0
8	0	0	0	1	0
9	1	0	0	1	0
10	0	1	0	1	0
11	1	1	0	1	0
12	0	0	1	1	0
13	1	0	1	1	0
14	0	1	1	1	0
15	1	1	1	1	0

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Do K – mapy zapíšeme log 1 tam, kde v tabulce nabývá výstupní proměnná Y také log 1.

		D			
	1	0	0	1	
	0	0	0	0	С
A	1	0	0	0	
	1	0	0	1	'

Rohové log 1 se dají spojit a popsat rovnicí

$$Y1 = \overline{B} \times \overline{C}$$

Zbývající log 1 zapíšeme jako průnik negované B plus negované C plus A

$$Y2=A \times \bar{B} \times \bar{D}$$

Výsledná funkce je součet dílčích funkcí.

$$Y = Y1 + Y2$$

$$Y = B \times C + A \times B \times D$$

Podle pravidel Booleovy algebry můžeme \overline{B} vytknout před závorku a dostáváme minimalizovaný tvar logické funkce:

$$Y = \overline{B} \times (\overline{C} + A \times \overline{D})$$

Tato rovnice je podkladem pro technickou realizaci logického obvodu pomocí spínacích prvků.

Otázky a úkoly pro zopakování učiva

- 1. Co je minimalizace logické funkce?
- 2. Technický význam minimalizace?
- 3. Jaké znáte metody minimalizace?

Seznam použité literatury

• ŠTOLO A., KESL, J.: Elektronika 3 - číslicová technika. Praha: BEN, ISBN 80-7300-182-9.