

Project Initialization and planning phase

Maximum marks	Identifying Rotten Fruits and Vegetables	
Project Title	Smart Sorting: Transfer Learning for	
Team-id	SWTID1750180744	
Date	21/06/25	

Project proposal

Project Overview			
Objective	Smart Sorting: Transfer Learning for Identifying Rotten Fruits and Vegetables		
Scope	It is used in Agricultural and Farming Sector, Supply Chain and Warehousing Retail and Supermarket, Food Processing Industry, Technical and Research Applications		
Problem Statement			
Description	In the fresh produce industry, ensuring the quality of fruits and vegetables is critical. However, current sorting methods are predominantly manual or rely on outdated automation systems, which are time-consuming, error-prone, and inefficient when dealing with large volumes of produce. These systems struggle with variability in size, shape, colour, and lighting conditions, resulting in frequent misclassification of rotten versus fresh items.		
Impact	Economic benefit, Supply chain efficiency, Empowerment of farmers and Small business, Advancement in AI and		

	agriculture, Environment Impact		
Proposed Solution			
Approach	 Data collection and preprocessing Model selection:Transfer learning(pre trained CNN model VGG16) Training the model Model evaluation Deployment(Tensorflow) Testing and feedback loop 		
Key features	 Transfer Learning for Low-Data Adaptability Generalization Across Multiple Fruit/Vegetable Types Real-Time Detection Capability Cost-Effective Automation for Low-Infrastructure Settings Environmental and Social Impact 		

Resource Requirements

Resource Type	Description	Specification/Allocati on			
Hardware					
Computing Resources	GPU specification, number of cores	NVIDIA T4,P100, V100			
Memory	RAM specification	12.67GB			
Storage	Disk space for data, models and logs	112.64 GB SSD			
Software					
Frameworks	Python Frameworks	Flask			

Libraries	Additional libraries	Tensorflow, Scikit- learn			
Development Environment	IDE, version control	Google colab notebook,GitHub			
Data					
Data	Source, size, format	Kaggle dataset.10000images			