

8-557

198357

Access DB# _____

SEARCH REQUEST FORM

Scientific and Technical Information Center

Requester's Full Name: Richard Schnizer Examiner #: 76557 Date: 8/11/06
 Art Unit: 1635 Phone Number 30 2-0762 Serial Number: 09/627,787
 Mail Box and Bldg/Room Location: Z-18 Results Format Preferred (circle): PAPER DISK E-MAIL
2D30

If more than one search is submitted, please prioritize searches in order of need.

Please provide a detailed statement of the search topic, and describe as specifically as possible the subject matter to be searched. Include the elected species or structures, keywords, synonyms, acronyms, and registry numbers, and combine with the concept or utility of the invention. Define any terms that may have a special meaning. Give examples or relevant citations, authors, etc, if known. Please attach a copy of the cover sheet, pertinent claims, and abstract.

Title of Invention: _____

Inventors (please provide full names): Eugen Uhlmann, Beate Greiner, Eberhard Unger,
Gislinde Gothe, Marc Schwerdel

Earliest Priority Filing Date: 7/28/04

For Sequence Searches Only Please include all pertinent information (parent, child, divisional, or issued patent numbers) along with the appropriate serial number.

Please search the structures in claim 9, attached, i.e.

wherein R_1 is methyl or t-butyl

n is 1 or 2, ~~and~~

R_2 is one of the 11 structures
 $(\text{F}_1 - \text{F}_{11})$ set forth at the end of
 claim 9, and

R_3 is anything

STAFF USE ONLY		Type of Search	Vendors and cost where applicable
Searcher: <u>Selma Shem</u>		NA Sequence (#)	STN <input checked="" type="checkbox"/>
Searcher Phone #:		AA Sequence (#)	Dialog _____
Searcher Location:		Structure (#)	Questel/Orbit _____
Date Searcher Picked Up: <u>8/15/06</u>		Bibliographic	Dr.Link _____
Date Completed: <u>8/18/06</u>		Litigation	Lexis/Nexis _____
Searcher Prep & Review Time: <u>760</u>		Fulltext	Sequence Systems _____
Clerical Prep Time:		Patent Family	WWW/Internet _____
Online Time: <u>130</u>		Other	Other (specify) _____

STIC Search Report

Biotech-Chem Library

STIC Database Tracking Number: 198357

TO: Richard Schnizer
Location: REM-2D30/2C18
Art Unit: 1635
Friday, August 18, 2006
Case Serial Number: 09/627787

From: Saloni Sharma
Location: Biotech-Chem Library
REM-1A64
Phone: (571)272-8601

saloni.sharma@uspto.gov

Search Notes

Examiner Schnizer,

See attached results.

If you have any questions about this search feel free to contact me at any time.

Thank you for using STIC search services!

Saloni Sharma
Technical Information Specialist
STIC Biotech/Chem Library
(571)272-8601

<Schnizer 09/627,787> Page 1

=> file caplus

FILE 'CAPLUS' ENTERED AT 15:56:08 ON 18 AUG 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 18 Aug 2006 VOL 145 ISS 9
FILE LAST UPDATED: 17 Aug 2006 (20060817/ED)

Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at:

<http://www.cas.org/infopolicy.html>
'OBI' IS DEFAULT SEARCH FIELD FOR 'CAPLUS' FILE

=> d his nofile

(FILE 'HOME' ENTERED AT 10:31:52 ON 18 AUG 2006)
FILE 'REGISTRY' ENTERED AT 10:31:57 ON 18 AUG 2006
FILE 'STNGUIDE' ENTERED AT 10:32:13 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 10:33:07 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 10:35:15 ON 18 AUG 2006
L*** DEL STRUCTURE uploaded
FILE 'STNGUIDE' ENTERED AT 10:35:42 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 10:36:29 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 11:14:26 ON 18 AUG 2006
L1 STRUCTURE uploaded
D QUE L1
FILE 'STNGUIDE' ENTERED AT 11:15:00 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 11:15:56 ON 18 AUG 2006
L2 STRUCTURE uploaded
L*** DEL STRUCTURE uploaded
L3 STRUCTURE uploaded
L4 10 SEA SSS SAM L1
L5 1 SEA SSS SAM L2
L6 7 SEA SSS SAM L***
L7 7 SEA SSS SAM L3
FILE 'REGISTRY' ENTERED AT 11:25:02 ON 18 AUG 2006
L*** DEL STRUCTURE uploaded
L8 18 SEA SSS SAM L***
FILE 'REGISTRY' ENTERED AT 11:25:59 ON 18 AUG 2006
L*** DEL STRUCTURE uploaded
L9 18 SEA SSS SAM L***
FILE 'STNGUIDE' ENTERED AT 11:26:17 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 11:26:58 ON 18 AUG 2006
L*** DEL STRUCTURE uploaded
L10 17 SEA SSS SAM L***
FILE 'STNGUIDE' ENTERED AT 11:27:16 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 11:32:44 ON 18 AUG 2006
L11 STRUCTURE uploaded
L12 50 SEA SSS SAM L11
FILE 'REGISTRY' ENTERED AT 13:20:12 ON 18 AUG 2006
D QUE L1
D QUE L2
D QUE L***
D QUE L3
D QUE L***
L13 18 SEA SSS SAM L***

```

        D QUE L***  

        D QUE L***  

        D QUE L11  

        D QUE L1  

        D QUE L2  

        D QUE L3  

        D QUE L11  

L14      10 SEA SSS SAM L1  

L15      232 SEA SSS FUL L1  

L16      1 SEA SSS SAM L2  

L17      40 SEA SSS FUL L2  

L18      7 SEA SSS SAM L3  

L19      871 SEA SSS FUL L3  

L20      50 SEA SSS SAM L11  

L21      14873 SEA SSS FUL L11  

          SAVE L15 RICHARD1/A TEMP  

          SAVE L17 RICHARD2/A TEMP  

          SAVE L19 RICHARD3/A TEMP  

          SAVE L21 RICHARD4/A TEMP

```

FILE 'CAPLUS' ENTERED AT 13:24:57 ON 18 AUG 2006

```

L22      280 SEA ABB=ON PLU=ON L15  

L23      19 SEA ABB=ON PLU=ON L17  

L24      552 SEA ABB=ON PLU=ON L19  

L25      30089 SEA ABB=ON PLU=ON L21  

L26      0 SEA ABB=ON PLU=ON L22 AND L23 AND L24 AND L25

```

FILE 'STNGUIDE' ENTERED AT 13:26:04 ON 18 AUG 2006

FILE 'CAPLUS' ENTERED AT 13:26:46 ON 18 AUG 2006

```

E US2000-627787/APPS
E US00-627787/APPS
E US09-627787/APPS
E WO1999-GE19935/APPS

```

FILE 'STNGUIDE' ENTERED AT 13:28:51 ON 18 AUG 2006

FILE 'CAPLUS' ENTERED AT 13:30:10 ON 18 AUG 2006

```

L27      103 SEA ABB=ON PLU=ON L22 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L28      19 SEA ABB=ON PLU=ON L23 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L29      386 SEA ABB=ON PLU=ON L24 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L30      21727 SEA ABB=ON PLU=ON L25 NOT (PY>1999 OR AY>1999 OR PRY>1999)

```

FILE 'REGISTRY' ENTERED AT 13:31:01 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 13:47:47 ON 18 AUG 2006

```

L31      STRUCTURE UPLOADED
        D QUE L31
L32      2 SEA SUB=L15 SSS SAM L31
        D SCAN
L33      227 SEA ABB=ON PLU=ON L15 AND O>7
L34      75 SEA SUB=L15 SSS FUL L31

```

FILE 'CAPLUS' ENTERED AT 13:50:14 ON 18 AUG 2006

```

L35      162 SEA ABB=ON PLU=ON L34

```

FILE 'REGISTRY' ENTERED AT 13:50:25 ON 18 AUG 2006

```

L36      75 SEA ABB=ON PLU=ON L34 AND O>7
L37      0 SEA ABB=ON PLU=ON L36 AND CH3/MF

```

FILE 'STNGUIDE' ENTERED AT 13:52:38 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 13:54:16 ON 18 AUG 2006
L38 STRUCTURE uploaded
L39 2 SEA SUB=L15 SSS SAM L38
 D SCAN
L40 28 SEA SUB=L15 SSS FUL L38
 D SCAN

FILE 'CAPPLUS' ENTERED AT 13:56:13 ON 18 AUG 2006
L41 21 SEA ABB=ON PLU=ON L40
L42 118 SEA ABB=ON PLU=ON L15 NOT L36

FILE 'REGISTRY' ENTERED AT 13:57:57 ON 18 AUG 2006
L43 157 SEA ABB=ON PLU=ON L15 NOT L36
 D COST

FILE 'STNGUIDE' ENTERED AT 13:58:55 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 14:00:44 ON 18 AUG 2006
L44 STRUCTURE uploaded
L45 5 SEA SUB=L15 SSS SAM L44
 D SCAN
L46 84 SEA SUB=L15 SSS FUL L44
L47 84 SEA ABB=ON PLU=ON L46 NOT L36

FILE 'CAPPLUS' ENTERED AT 14:01:52 ON 18 AUG 2006
L48 125 SEA ABB=ON PLU=ON L47

FILE 'REGISTRY' ENTERED AT 14:02:24 ON 18 AUG 2006
 D QUE L44
 D QUE L38
 D QUE L31
 D QUE L38

FILE 'REGISTRY' ENTERED AT 14:21:51 ON 18 AUG 2006
L49 STRUCTURE uploaded
 D QUE L3
L50 17 SEA SUB=L19 SSS SAM L49
L51 320 SEA SUB=L19 SSS FUL L49

FILE 'CAPPLUS' ENTERED AT 14:23:20 ON 18 AUG 2006
L52 89 SEA ABB=ON PLU=ON L51

FILE 'STNGUIDE' ENTERED AT 14:23:39 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 14:24:09 ON 18 AUG 2006
L53 STRUCTURE uploaded
L54 25 SEA SUB=L19 SSS SAM L53
L55 551 SEA SUB=L19 SSS FUL L53
L56 551 SEA ABB=ON PLU=ON L55 NOT L51

FILE 'CAPPLUS' ENTERED AT 14:24:46 ON 18 AUG 2006
L57 463 SEA ABB=ON PLU=ON L55

FILE 'REGISTRY' ENTERED AT 14:31:00 ON 18 AUG 2006
 D QUE L11

FILE 'CAPLUS' ENTERED AT 14:33:11 ON 18 AUG 2006
E DE99-19935302/APPS

L58 1 SEA ABB=ON PLU=ON (DE99-19935302/AP OR DE99-19935302/PRN)
D SCAN
SEL RN L58

FILE 'REGISTRY' ENTERED AT 14:33:36 ON 18 AUG 2006

D E1-E64
L59 64 SEA ABB=ON PLU=ON (110616-00-7/BI OR 116364-61-5/BI OR
146216-12-8/BI OR 146397-20-8/BI OR 147178-75-4/BI OR 159845-57
-5/BI OR 161415-79-8/BI OR 161415-81-2/BI OR 163665-40-5/BI OR
164910-61-6/BI OR 165447-62-1/BI OR 166436-80-2/BI OR 173432-53
-6/BI OR 173432-56-9/BI OR 173432-57-0/BI OR 173432-58-1/BI OR
173432-59-2/BI OR 173432-60-5/BI OR 173432-61-6/BI OR 173432-62
-7/BI OR 173432-63-8/BI OR 173432-67-2/BI OR 173432-68-3/BI OR
173432-69-4/BI OR 173432-70-7/BI OR 173432-71-8/BI OR 181988-02
-3/BI OR 181988-09-0/BI OR 186071-78-3/BI OR 186162-52-7/BI OR
186162-55-0/BI OR 189356-60-3/BI OR 195184-12-4/BI OR 195184-27
-1/BI OR 246223-25-6/BI OR 257601-47-1/BI OR 325605-36-5/BI OR
325605-37-6/BI OR 325605-38-7/BI OR 325605-39-8/BI OR 325605-40
-1/BI OR 325605-41-2/BI OR 325605-42-3/BI OR 325605-43-4/BI OR
325605-44-5/BI OR 325605-45-6/BI OR 325605-46-7/BI OR 325605-47
-8/BI OR 325605-48-9/BI OR 325605-49-0/BI OR 325605-50-3/BI OR
325605-51-4/BI OR 325605-52-5/BI OR 325760-02-9/BI OR 325760-03
-0/BI OR 325760-04-1/BI OR 325760-05-2/BI OR 325760-06-3/BI OR
325760-07-4/BI OR 325760-08-5/BI OR 325760-09-6/BI OR 325760-10
-9/BI OR 325761-26-0/BI OR 89962-57-2/BI)
L60 2 SEA ABB=ON PLU=ON L59 NOT MAN/CI
D SCAN

FILE 'CAPLUS' ENTERED AT 14:36:04 ON 18 AUG 2006

D IALL L58
L61 14 SEA ABB=ON PLU=ON L15 (L) CONJUGATE?/OBI

FILE 'REGISTRY' ENTERED AT 14:48:45 ON 18 AUG 2006

L62 STRUCTURE UPLOADED
L63 2 SEA SUB=L15 SSS SAM L62
L64 70 SEA SUB=L15 SSS FUL L62

FILE 'CAPLUS' ENTERED AT 14:49:49 ON 18 AUG 2006

L65 157 SEA ABB=ON PLU=ON L64
L66 7 SEA ABB=ON PLU=ON L64 (L) CONJUGATE?/OBI
L67 46 SEA ABB=ON PLU=ON L64 (L) BIOL/RL
E BIOLOGICAL TRANSPORT/CT

FILE 'HCAPLUS' ENTERED AT 14:50:57 ON 18 AUG 2006

E BIOLOGICAL TRANSPORT/CT
E E3+ALL
L68 255615 SEA ABB=ON PLU=ON "BIOLOGICAL TRANSPORT"+PFT/CT
E BIOLOGICAL TRANSPORT/CT
E CELL MEMBRANE/CT
E E3+ALL
L69 109725 SEA ABB=ON PLU=ON "CELL MEMBRANE"+PFT/CT
E CARRIERS/CT
E E3+ALL
L70 30897 SEA ABB=ON PLU=ON (MATERIALS+PFT/CT OR CARRIERS+PFT/CT OR
"DRUG DELIVERY SYSTEMS (L) CARRIERS"+PFT/CT)
L71 723266 SEA ABB=ON PLU=ON (CARRIER? OR BIOLOGICAL TRANSPORT? OR CELL
MEMBRANE? OR CELLULAR MEMBRANE?)/OBI,BI

L72 188219 SEA ABB=ON PLU=ON CONJUGATE?
L73 188219 SEA ABB=ON PLU=ON CONJUGATE?/OBI,BI
L74 44 SEA ABB=ON PLU=ON L65 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)
L75 77 SEA ABB=ON PLU=ON (L67 OR L74)
L76 13 SEA ABB=ON PLU=ON L67 AND L74
L77 18 SEA ABB=ON PLU=ON (L66 OR L76)
L78 4 SEA ABB=ON PLU=ON L18 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L79 14 SEA ABB=ON PLU=ON L67 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L80 5 SEA ABB=ON PLU=ON L77 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L81 77 SEA ABB=ON PLU=ON (L67 OR L74)
L82 27 SEA ABB=ON PLU=ON L81 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L83 32 SEA ABB=ON PLU=ON (L66 OR L82)

FILE 'REGISTRY' ENTERED AT 15:00:16 ON 18 AUG 2006
D QUE L1

FILE 'STNGUIDE' ENTERED AT 15:01:21 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 15:06:33 ON 18 AUG 2006

L84 STRUCTURE uploaded
L85 0 SEA SUB=L15 SSS SAM L84
D QUE L84
L86 7 SEA SUB=L15 SSS FUL L84
D SCAN

FILE 'CAPLUS' ENTERED AT 15:08:29 ON 18 AUG 2006

L*** DEL 4 S L6
L87 7 SEA ABB=ON PLU=ON L86
L88 6 SEA ABB=ON PLU=ON L87 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'HCAPLUS' ENTERED AT 15:09:13 ON 18 AUG 2006
L89 7 SEA ABB=ON PLU=ON L86

FILE 'STNGUIDE' ENTERED AT 15:09:52 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 15:13:11 ON 18 AUG 2006
L90 STRUCTURE uploaded
D QUE L90
L91 0 SEA SUB=L15 SSS SAM L90
D QUE L90
L92 0 SEA SSS SAM L90
L93 2 SEA SUB=L15 SSS FUL L90
D SCAN

FILE 'CAPLUS' ENTERED AT 15:15:11 ON 18 AUG 2006
L94 2 SEA ABB=ON PLU=ON L93

FILE 'HCAPLUS' ENTERED AT 15:15:25 ON 18 AUG 2006
L95 2 SEA ABB=ON PLU=ON L93

FILE 'REGISTRY' ENTERED AT 15:15:34 ON 18 AUG 2006

FILE 'STNGUIDE' ENTERED AT 15:15:35 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 15:17:48 ON 18 AUG 2006
L96 STRUCTURE uploaded
D QUE L19
L97 6 SEA SUB=L19 SSS SAM L96

L98 75 SEA SUB=L19 SSS FUL L96

FILE 'HCAPLUS' ENTERED AT 15:18:28 ON 18 AUG 2006

L99 49 SEA ABB=ON PLU=ON L98

L100 35 SEA ABB=ON PLU=ON L99 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'STNGUIDE' ENTERED AT 15:19:01 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 15:20:21 ON 18 AUG 2006

L101 STRUCTURE uploaded

L102 16 SEA SUB=L19 SSS SAM L101

L103 425 SEA SUB=L19 SSS FUL L101

FILE 'HCAPLUS' ENTERED AT 15:20:46 ON 18 AUG 2006

L104 432 SEA ABB=ON PLU=ON L103

L105 4 SEA ABB=ON PLU=ON L104 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)

L106 18 SEA ABB=ON PLU=ON L103 (L) BIOL/RL

L107 22 SEA ABB=ON PLU=ON (L105 OR L106)

L*** DEL 17 S L10

L108 1 SEA ABB=ON PLU=ON L103 (L) CONJUGATE?

L109 22 SEA ABB=ON PLU=ON (L107 OR L108)

FILE 'REGISTRY' ENTERED AT 15:24:09 ON 18 AUG 2006

D QUE L21

FILE 'HCAPLUS' ENTERED AT 15:25:18 ON 18 AUG 2006

L110 17320 SEA ABB=ON PLU=ON L21 (L) BIOL/RL

L111 916 SEA ABB=ON PLU=ON L110 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)

L112 356 SEA ABB=ON PLU=ON L111 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'HCAPLUS' ENTERED AT 15:26:29 ON 18 AUG 2006

E UHLMANN E/AU

L113 197 SEA ABB=ON PLU=ON ("UHLMANN E"/AU OR "UHLMANN E V"/AU OR
"UHLMANN EUGEN"/AU OR "UHLMANN EUGEN DR"/AU OR "UHLMANN
EUGENE"/AU OR "UHLMANN EUGENIE V"/AU OR "UHLMANN EUGENIE
VICTORIA"/AU)
E GREINER B/AU

L114 34 SEA ABB=ON PLU=ON ("GREINER B"/AU OR "GREINER B F"/AU OR
"GREINER BEATE"/AU)
E UNGER E/AU

L115 214 SEA ABB=ON PLU=ON ("UNGER E"/AU OR "UNGER E C"/AU OR "UNGER
E D"/AU OR "UNGER E F"/AU OR "UNGER E H"/AU OR "UNGER E M"/AU
OR "UNGER E R"/AU OR "UNGER E W"/AU OR "UNGER EBERHARD"/AU OR
"UNGER EBERTHARD"/AU)
E GOTHE G/AU

L116 6 SEA ABB=ON PLU=ON ("GOTHE G"/AU OR "GOTHE GISLINDE"/AU)
E SCHWERDEL M/AU

L117 3 SEA ABB=ON PLU=ON "SCHWERDEL MARC"/AU

L118 7 SEA ABB=ON PLU=ON (L113 AND (L114 OR L115 OR L116 OR L117))
OR (L114 AND (L115 OR L116 OR L117)) OR (L115 AND (L116 OR
L117)) OR (L116 AND L117)

=> file reg

FILE 'REGISTRY' ENTERED AT 15:29:24 ON 18 AUG 2006

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2006 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 16 AUG 2006 HIGHEST RN 902024-59-3
DICTIONARY FILE UPDATES: 16 AUG 2006 HIGHEST RN 902024-59-3

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 6, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/ONLINE/UG/regprops.html>

=> file hcplus
FILE 'HCPLUS' ENTERED AT 15:29:28 ON 18 AUG 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 18 Aug 2006 VOL 145 ISS 9
FILE LAST UPDATED: 17 Aug 2006 (20060817/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d que l118
L113 197 SEA FILE=HCPLUS ABB=ON PLU=ON ("UHLMANN E"/AU OR "UHLMANN E V"/AU OR "UHLMANN EUGEN"/AU OR "UHLMANN EUGEN DR"/AU OR "UHLMANN EUGENE"/AU OR "UHLMANN EUGENIE V"/AU OR "UHLMANN EUGENIE VICTORIA"/AU)
L114 34 SEA FILE=HCPLUS ABB=ON PLU=ON ("GREINER B"/AU OR "GREINER B F"/AU OR "GREINER BEATE"/AU)
L115 214 SEA FILE=HCPLUS ABB=ON PLU=ON ("UNGER E"/AU OR "UNGER E C"/AU OR "UNGER E D"/AU OR "UNGER E F"/AU OR "UNGER E H"/AU OR "UNGER E M"/AU OR "UNGER E R"/AU OR "UNGER E W"/AU OR "UNGER EBERHARD"/AU OR "UNGER EBERTHARD"/AU)
L116 6 SEA FILE=HCPLUS ABB=ON PLU=ON ("GOTHE G"/AU OR "GOTHE GISLINDE"/AU)

L117 3 SEA FILE=HCAPLUS ABB=ON PLU=ON "SCHWERDEL MARC"/AU
L118 7 SEA FILE=HCAPLUS ABB=ON PLU=ON (L113 AND (L114 OR L115 OR
L116 OR L117)) OR (L114 AND (L115 OR L116 OR L117)) OR (L115
AND (L116 OR L117)) OR (L116 AND L117)

=> d ibib abs l118 tot

L118 ANSWER 1 OF 7 HCAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2002:805617 HCAPLUS
DOCUMENT NUMBER: 139:64923
TITLE: (2'-O-methyl-RNA)-3'-PNA chimeras: A new class of mixed backbone oligonucleotide analogues with high binding affinity to RNA
AUTHOR(S): Greiner, Beate; Breipohl, Gerhard;
Uhlmann, Eugen
CORPORATE SOURCE: Aventis Pharma Deutschland GmbH, Frankfurt a.M., D-65926, Germany
SOURCE: Helvetica Chimica Acta (2002), 85(9), 2619-2626
CODEN: HCACAV; ISSN: 0018-019X
PUBLISHER: Verlag Helvetica Chimica Acta
DOCUMENT TYPE: Journal
LANGUAGE: English
OTHER SOURCE(S): CASREACT 139:64923
AB The automated online synthesis of DNA-3'-PNA chimeras 1-4 and (2'-O-methyl-RNA)-3'-PNA chimeras 5-8 is described, in which the 3'-terminal part of the oligonucleotide is linked to the N-terminal part of the PNA via N-(ω -hydroxyalkyl)-N-[(thymin-1-yl)acetyl]glycine units (alkyl=Et, Ph, Bu, and pentyl). By means of UV thermal denaturation, the binding affinities of all chimeras were directly compared by determining their Tm values in the duplex with complementary DNA and RNA. All investigated DNA-3'-PNA chimeras and (2'-O-methyl-RNA)-3'-PNA chimeras form more-stable duplexes with complementary DNA and RNA than the corresponding unmodified DNA. Interestingly, a N-(3-hydroxypropyl)glycine linker resulted in the highest binding affinity for DNA-3'-PNA chimeras, whereas the (2'-O-methyl-RNA)-3'-PNA chimeras showed optimal binding with the homologous N-(4-hydroxybutyl)glycine linker. The duplexes of (2'-O-methyl-RNA)-3'-PNA chimeras and RNA were significantly more stable than those containing the corresponding DNA-3'-PNA chimeras. Surprisingly, we found that the charged (2'-O-methyl-RNA)-3'-PNA chimera with a N-(4-hydroxybutyl)glycine-based unit at the junction to the PNA part shows the same binding affinity to RNA as uncharged PNA. Potential applications of (2'-O-methyl-RNA)-3'-PNA chimeras include their use as antisense agents acting by a RNase-independent mechanism of action, a prerequisite for antisense-oligonucleotide-mediated correction of aberrant splicing of pre-mRNA.
REFERENCE COUNT: 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L118 ANSWER 2 OF 7 HCAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2001:101001 HCAPLUS
DOCUMENT NUMBER: 134:183461
TITLE: Conjugates and methods for the production thereof for transporting molecules across biological membranes
INVENTOR(S): Uhlmann, Eugen; Greiner, Beate;
Unger, Eberhard; Gothe, Gislinde;
Schwerdel, Marc
PATENT ASSIGNEE(S): Aventis Pharma Deutschland GmbH, Germany

SOURCE: PCT Int. Appl., 84 pp.
 CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001008707	A2	20010208	WO 2000-EP6936	20000720
WO 2001008707	A3	20011108		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
DE 19935302	A1	20010208	DE 1999-19935302	19990728
CA 2377977	AA	20010208	CA 2000-2377977	20000720
AU 2000068252	A5	20010219	AU 2000-68252	20000720
AU 776114	B2	20040826		
BR 2000012757	A	20020402	BR 2000-12757	20000720
EP 1204430	A2	20020515	EP 2000-956220	20000720
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL				
TR 200200222	T2	20020722	TR 2002-222	20000720
JP 2003505517	T2	20030212	JP 2001-513437	20000720
EE 200200035	A	20030415	EE 2002-35	20000720
NZ 516838	A	20040730	NZ 2000-516838	20000720
RU 2275936	C2	20060510	RU 2002-105016	20000720
NO 2002000367	A	20020326	NO 2002-367	20020123
ZA 2002000657	A	20030825	ZA 2002-657	20020124
HK 1047042	A1	20060407	HK 2002-108623	20021129
PRIORITY APPLN. INFO.:			DE 1999-19935302	A 19990728
			WO 2000-EP6936	W 20000720

OTHER SOURCE(S): MARPAT 134:183461

AB The invention relates to conjugates, methods for their production, and to the use of these conjugates for transporting low mol. weight compds. and macromols. across biol. membranes, in particular, for transporting mols. into cells. The invention also relates to medicaments, diagnostic agents and test kits in which these conjugates are present or introduced.

L118 ANSWER 3 OF 7 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2001:78521 HCPLUS

DOCUMENT NUMBER: 134:141728

TITLE: Antisense oligonucleotides for inhibition of synthesis of the mitotic spindle motor protein EG5 for control of cell division

INVENTOR(S): Uhlmann, Eugen; Greiner, Beate; Unger, Eberhard; Gothe, Gislinde; Schwerdel, Marc

PATENT ASSIGNEE(S): Aventis Pharma Deutschland G.m.b.H., Germany

SOURCE: PCT Int. Appl., 49 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001007602	A2	20010201	WO 2000-EP7345	20000721
WO 2001007602	A3	20010517		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW				
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG				
DE 19935303	A1	20010208	DE 1999-19935303	19990728
CA 2380192	AA	20010201	CA 2000-2380192	20000721
BR 2000013180	A	20020409	BR 2000-13180	20000721
EP 1204742	A2	20020515	EP 2000-953119	20000721
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL				
TR 200200201	T2	20020521	TR 2002-201	20000721
JP 2003505080	T2	20030212	JP 2001-512871	20000721
EE 200200044	A	20030616	EE 2002-44	20000721
NZ 516839	A	20040430	NZ 2000-516839	20000721
RU 2249458	C2	20050410	RU 2002-105021	20000721
US 6472521	B1	20021029	US 2000-627122	20000727
NO 2002000365	A	20020325	NO 2002-365	20020123
ZA 2002000655	A	20030724	ZA 2002-655	20020124
HK 1048337	A1	20050225	HK 2003-100581	20030123

PRIORITY APPLN. INFO.:

DE 1999-19935303	A	19990728
WO 2000-EP7345	W	20000721

AB Antisense nucleotides that can inhibit expression of the gene for the mitotic spindle motor protein EG5 and that can be used in the therapeutic control of cell division are described. The oligonucleotides can be used to treat infections or proliferative disorders. Effectiveness of these oligonucleotides was shown in REH and A549 cells where inhibition of proliferation of up to 70% were found.

L118 ANSWER 4 OF 7 HCPLUS COPYRIGHT 2006 ACS.on STN
 ACCESSION NUMBER: 2000:258582 HCPLUS
 DOCUMENT NUMBER: 133:89771
 TITLE: Olefinic peptide nucleic acids (OPAs): new aspects of the molecular recognition of DNA by PNA
 Schutz, Rolf; Cantin, Michel; Roberts, Christopher;
Greiner, Beate; Uhlmann, Eugen;
 Leumann, Christian
 CORPORATE SOURCE: Department of Chemistry and Biochemistry, University of Bern, Bern, 3012, Switz.
 SOURCE: Angewandte Chemie, International Edition (2000), 39(7), 1250-1253
 CODEN: ACIEF5; ISSN: 1433-7851
 PUBLISHER: Wiley-VCH Verlag GmbH
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB In order to study the structural and electrostatic effect of the PNA rotameric forms, the authors have synthesized olefinic polyamide nucleic acids (OPAs) in which the central amide functionality was replaced by an isostructural, configurationally stable C-C double bond in either the Z or E configuration (I; BASE = thymidine or adenine), and used them to prepare (E)- or (Z)-OPA oligomers. A series of mono-substituted PNAs and fully-modified (E) and (Z)-OPAs were synthesized and their duplex-forming behavior with DNA studied. Both (E)- and (Z)-OPAs bound to complementary DNA with similar affinities as DNA itself, but in contrast to PNA, OPA2/DNA tripleplexes were not formed, and OPA preferentially bound in the parallel mode to DNA. Results led to the conclusion that amide functionality in the base-linked unit in PNA determined significantly the affinity and preferred strand orientation in PNA/DNA duplexes, and seemed to be responsible for the propensity to form PNA2/DNA tripleplexes; these properties do not depend on the conformational constraints that the amide functionality exerts on the base-linker unit, but rather on its electrostatic properties.

REFERENCE COUNT: 22 THERE ARE 22 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L118 ANSWER 5 OF 7 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 2000:41751 HCPLUS

DOCUMENT NUMBER: 132:304723

TITLE: Influence of the type of junction in DNA-3'-peptide nucleic acid (PNA) chimeras on their binding affinity to DNA and RNA

AUTHOR(S): Greiner, Beate; Breipohl, Gerhard;
Uhlmann, Eugen

CORPORATE SOURCE: Hoechst Marion Roussel Deutschland GmbH, Chemical Research G 838, Frankfurt, D-65926, Germany

SOURCE: Helvetica Chimica Acta (1999), 82(12), 2151-2159
CODEN: HCACAV; ISSN: 0018-019X

PUBLISHER: Verlag Helvetica Chimica Acta

DOCUMENT TYPE: Journal

LANGUAGE: English

AB The automated online synthesis of a series of three DNA-3'-PNA (PNA = Polyamide Nucleic Acids) chimeras is described, in which the 3'-terminus of the oligonucleotide is linked to the amino terminus of the PNA via an N-(2-mercaptopethyl)- (X=S), N-(2-hydroxyethyl)- (X=O), or N-(2-aminoethyl)- (X=NH) N-[(thymin-1-yl)acetyl]glycine unit. In addition, the DNA-3'-PNA chimera with no nucleobase at the linking unit was prepared. The binding affinities of all chimeras were directly compared by determining their Tm values in duplexes with complementary DNA, RNA, or DNA containing a mismatch or abasic site opposite to the linker unit. We found that all

chimeras in this study which have a nucleobase at the junction were able to form more stable duplexes with complementary DNA and RNA than the corresponding unmodified DNA. The influence of X on duplex stabilization was determined to be O > S ≈ NH, thus demonstrating the phosphodiester bridge to be the most favored linkage at the DNA/PNA junction. The strong duplex destabilizing effects observed when base mismatches or non-basic sites were introduced opposite the nucleobase at the DNA/PNA junction, suggest that the base situated at the linking unit contributes significantly to duplex stabilization.

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L118 ANSWER 6 OF 7 HCAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1999:514952 HCAPLUS
 DOCUMENT NUMBER: 131:286760
 TITLE: Conversion of unprotected amino-link oligonucleotides into their tetramethylguanidinium derivatives
 AUTHOR(S): Greiner, B.; Uhlmann, E.
 CORPORATE SOURCE: Hoechst Marion Roussel, Chemical Research G 838, Frankfurt, D-65926, Germany
 SOURCE: Nucleosides & Nucleotides (1999), 18(6 & 7), 1457-1458
 CODEN: NUNUD5; ISSN: 0732-8311
 PUBLISHER: Marcel Dekker, Inc.
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 AB A symposium with two refs. The preparation of tetramethylguanidinium oligodeoxynucleotide (ODN) derivs. by reaction of the corresponding aminoalkyl-ODN with the uronium salts HBTU, TBTU or HATU, resp., is described. The binding affinity of the new tetramethylguanidinium ODN derivs. was determined
 REFERENCE COUNT: 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L118 ANSWER 7 OF 7 HCAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1999:501533 HCAPLUS
 DOCUMENT NUMBER: 132:194633
 TITLE: PNA/DNA chimeras
 AUTHOR(S): Uhlmann, Eugen; Greiner, Beate; Breipohl, Gerhard
 CORPORATE SOURCE: Hoechst Marion Roussel Deutschland GmbH Chemical Research G 838, Frankfurt am Main, D-65926, Germany
 SOURCE: Peptide Nucleic Acids (1999), 51-70. Editor(s): Nielsen, Peter E.; Egholm, Michael. Horizon Scientific Press: Norfolk, UK.
 CODEN: 67YLA6
 DOCUMENT TYPE: Conference
 LANGUAGE: English
 AB A convenient method for the solid-support synthesis of PNA/DNA chimeras is described which makes use of monomethoxytrityl/acyl-protected monomeric building blocks. The acid-labile monomethoxytrityl (Mmt) group is employed for the temporary protection of the amino function of aminoethyl-glycine, while the exocyclic amino functions of the nucleobases are protected with ammonia-cleavable acyl protecting groups. This orthogonal protecting-group strategy is fully compatible with the standard phosphoramidite DNA synthesis method. The resulting PNA/DNA chimeras obey the Watson-Crick rules on binding to complementary DNA and RNA. Binding affinity of the PNA-DNA chimeras strongly depends on the PNA:DNA ratio. The PNA/DNA chimeras bind with higher affinity to RNA than to DNA, and the type of linking moiety between PNA and DNA could be adjusted to obtain

<Schnizer 09/627,787> Page 1

=> d his nofile

(FILE 'HOME' ENTERED AT 10:31:52 ON 18 AUG 2006)

FILE 'REGISTRY' ENTERED AT 10:31:57 ON 18 AUG 2006

FILE 'STNGUIDE' ENTERED AT 10:32:13 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 10:33:07 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 10:35:15 ON 18 AUG 2006

L*** DEL STRUCTURE uploaded

FILE 'STNGUIDE' ENTERED AT 10:35:42 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 10:36:29 ON 18 AUG 2006

L1 FILE 'REGISTRY' ENTERED AT 11:14:26 ON 18 AUG 2006
STRUCTURE uploaded
D QUE L1

FILE 'STNGUIDE' ENTERED AT 11:15:00 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 11:15:56 ON 18 AUG 2006

L2 STRUCTURE uploaded

L*** DEL STRUCTURE uploaded

L3 STRUCTURE uploaded

L4 10 SEA SSS SAM L1

L5 1 SEA SSS SAM L2

L6 7 SEA SSS SAM L***

L7 7 SEA SSS SAM L3

FILE 'REGISTRY' ENTERED AT 11:25:02 ON 18 AUG 2006

L*** DEL STRUCTURE uploaded

L8 18 SEA SSS SAM L***

FILE 'REGISTRY' ENTERED AT 11:25:59 ON 18 AUG 2006

L*** DEL STRUCTURE uploaded

L9 18 SEA SSS SAM L***

FILE 'STNGUIDE' ENTERED AT 11:26:17 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 11:26:58 ON 18 AUG 2006

L*** DEL STRUCTURE uploaded

L10 17 SEA SSS SAM L***

FILE 'STNGUIDE' ENTERED AT 11:27:16 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 11:32:44 ON 18 AUG 2006

L11 STRUCTURE uploaded

L12 50 SEA SSS SAM L11

FILE 'REGISTRY' ENTERED AT 13:20:12 ON 18 AUG 2006

D QUE L1

D QUE L2

D QUE L***

D QUE L3

D QUE L***

L13 18 SEA SSS SAM L***

D QUE L***
D QUE L***
D QUE L11
D QUE L1
D QUE L2
D QUE L3
D QUE L11
L14 10 SEA SSS SAM L1
L15 232 SEA SSS FUL L1
L16 1 SEA SSS SAM L2
L17 40 SEA SSS FUL L2
L18 7 SEA SSS SAM L3
L19 871 SEA SSS FUL L3
L20 50 SEA SSS SAM L11
L21 14873 SEA SSS FUL L11
SAVE L15 RICHARD1/A TEMP
SAVE L17 RICHARD2/A TEMP
SAVE L19 RICHARD3/A TEMP
SAVE L21 RICHARD4/A TEMP

FILE 'CAPPLUS' ENTERED AT 13:24:57 ON 18 AUG 2006
L22 280 SEA ABB=ON PLU=ON L15
L23 19 SEA ABB=ON PLU=ON L17
L24 552 SEA ABB=ON PLU=ON L19
L25 30089 SEA ABB=ON PLU=ON L21
L26 0 SEA ABB=ON PLU=ON L22 AND L23 AND L24 AND L25

FILE 'STNGUIDE' ENTERED AT 13:26:04 ON 18 AUG 2006

FILE 'CAPPLUS' ENTERED AT 13:26:46 ON 18 AUG 2006
E US2000-627787/APPS
E US00-627787/APPS
E US09-627787/APPS
E WO1999-GE19935/APPS

FILE 'STNGUIDE' ENTERED AT 13:28:51 ON 18 AUG 2006

FILE 'CAPPLUS' ENTERED AT 13:30:10 ON 18 AUG 2006
L27 103 SEA ABB=ON PLU=ON L22 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L28 19 SEA ABB=ON PLU=ON L23 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L29 386 SEA ABB=ON PLU=ON L24 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L30 21727 SEA ABB=ON PLU=ON L25 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'REGISTRY' ENTERED AT 13:31:01 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 13:47:47 ON 18 AUG 2006
L31 STRUCTURE uploaded
D QUE L31
L32 2 SEA SUB=L15 SSS SAM L31
D SCAN
L33 227 SEA ABB=ON PLU=ON L15 AND O>7
L34 75 SEA SUB=L15 SSS FUL L31

FILE 'CAPPLUS' ENTERED AT 13:50:14 ON 18 AUG 2006
L35 162 SEA ABB=ON PLU=ON L34

FILE 'REGISTRY' ENTERED AT 13:50:25 ON 18 AUG 2006
L36 75 SEA ABB=ON PLU=ON L34 AND O>7
L37 0 SEA ABB=ON PLU=ON L36 AND CH3/MF

FILE 'STNGUIDE' ENTERED AT 13:52:38 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 13:54:16 ON 18 AUG 2006
L38 STRUCTURE uploaded
L39 2 SEA SUB=L15 SSS SAM L38
 D SCAN
L40 28 SEA SUB=L15 SSS FUL L38
 D SCAN
FILE 'CAPPLUS' ENTERED AT 13:56:13 ON 18 AUG 2006
L41 21 SEA ABB=ON PLU=ON L40
L42 118 SEA ABB=ON PLU=ON L15 NOT L36
FILE 'REGISTRY' ENTERED AT 13:57:57 ON 18 AUG 2006
L43 157 SEA ABB=ON PLU=ON L15 NOT L36
 D COST
FILE 'STNGUIDE' ENTERED AT 13:58:55 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 14:00:44 ON 18 AUG 2006
L44 STRUCTURE uploaded
L45 5 SEA SUB=L15 SSS SAM L44
 D SCAN
L46 84 SEA SUB=L15 SSS FUL L44
L47 84 SEA ABB=ON PLU=ON L46 NOT L36
FILE 'CAPPLUS' ENTERED AT 14:01:52 ON 18 AUG 2006
L48 125 SEA ABB=ON PLU=ON L47
FILE 'REGISTRY' ENTERED AT 14:02:24 ON 18 AUG 2006
 D QUE L44
 D QUE L38
 D QUE L31
 D QUE L38
FILE 'REGISTRY' ENTERED AT 14:21:51 ON 18 AUG 2006
L49 STRUCTURE uploaded
 D QUE L3
L50 17 SEA SUB=L19 SSS SAM L49
L51 320 SEA SUB=L19 SSS FUL L49
FILE 'CAPPLUS' ENTERED AT 14:23:20 ON 18 AUG 2006
L52 89 SEA ABB=ON PLU=ON L51
FILE 'STNGUIDE' ENTERED AT 14:23:39 ON 18 AUG 2006
FILE 'REGISTRY' ENTERED AT 14:24:09 ON 18 AUG 2006
L53 STRUCTURE uploaded
L54 25 SEA SUB=L19 SSS SAM L53
L55 551 SEA SUB=L19 SSS FUL L53
L56 551 SEA ABB=ON PLU=ON L55 NOT L51
FILE 'CAPPLUS' ENTERED AT 14:24:46 ON 18 AUG 2006
L57 463 SEA ABB=ON PLU=ON L55
FILE 'REGISTRY' ENTERED AT 14:31:00 ON 18 AUG 2006
 D QUE L11

FILE 'CAPLUS' ENTERED AT 14:33:11 ON 18 AUG 2006
E DE99-19935302/APPS
L58 1 SEA ABB=ON PLU=ON (DE99-19935302/AP OR DE99-19935302/PRN)
D SCAN
SEL RN L58

FILE 'REGISTRY' ENTERED AT 14:33:36 ON 18 AUG 2006
D E1-E64
L59 64 SEA ABB=ON PLU=ON (110616-00-7/BI OR 116364-61-5/BI OR
146216-12-8/BI OR 146397-20-8/BI OR 147178-75-4/BI OR 159845-57
-5/BI OR 161415-79-8/BI OR 161415-81-2/BI OR 163665-40-5/BI OR
164910-61-6/BI OR 165447-62-1/BI OR 166436-80-2/BI OR 173432-53
-6/BI OR 173432-56-9/BI OR 173432-57-0/BI OR 173432-58-1/BI OR
173432-59-2/BI OR 173432-60-5/BI OR 173432-61-6/BI OR 173432-62
-7/BI OR 173432-63-8/BI OR 173432-67-2/BI OR 173432-68-3/BI OR
173432-69-4/BI OR 173432-70-7/BI OR 173432-71-8/BI OR 181988-02
-3/BI OR 181988-09-0/BI OR 186071-78-3/BI OR 186162-52-7/BI OR
186162-55-0/BI OR 189356-60-3/BI OR 195184-12-4/BI OR 195184-27
-1/BI OR 246223-25-6/BI OR 257601-47-1/BI OR 325605-36-5/BI OR
325605-37-6/BI OR 325605-38-7/BI OR 325605-39-8/BI OR 325605-40
-1/BI OR 325605-41-2/BI OR 325605-42-3/BI OR 325605-43-4/BI OR
325605-44-5/BI OR 325605-45-6/BI OR 325605-46-7/BI OR 325605-47
-8/BI OR 325605-48-9/BI OR 325605-49-0/BI OR 325605-50-3/BI OR
325605-51-4/BI OR 325605-52-5/BI OR 325760-02-9/BI OR 325760-03
-0/BI OR 325760-04-1/BI OR 325760-05-2/BI OR 325760-06-3/BI OR
325760-07-4/BI OR 325760-08-5/BI OR 325760-09-6/BI OR 325760-10
-9/BI OR 325761-26-0/BI OR 89962-57-2/BI)
L60 2 SEA ABB=ON PLU=ON L59 NOT MAN/CI
D SCAN

FILE 'CAPLUS' ENTERED AT 14:36:04 ON 18 AUG 2006
D IALL L58
L61 14 SEA ABB=ON PLU=ON L15 (L) CONJUGATE?/OBI

FILE 'REGISTRY' ENTERED AT 14:48:45 ON 18 AUG 2006
L62 STRUCTURE uploaded
L63 2 SEA SUB=L15 SSS SAM L62
L64 70 SEA SUB=L15 SSS FUL L62

FILE 'CAPLUS' ENTERED AT 14:49:49 ON 18 AUG 2006
L65 157 SEA ABB=ON PLU=ON L64
L66 7 SEA ABB=ON PLU=ON L64 (L) CONJUGATE?/OBI
L67 46 SEA ABB=ON PLU=ON L64 (L) BIOL/RL
E BIOLOGICAL TRANSPORT/CT

FILE 'HCAPLUS' ENTERED AT 14:50:57 ON 18 AUG 2006
E BIOLOGICAL TRANSPORT/CT
E E3+ALL
L68 255615 SEA ABB=ON PLU=ON "BIOLOGICAL TRANSPORT"+PFT/CT
E BIOLOGICAL TRANSPORT/CT
E CELL MEMBRANE/CT
E E3+ALL

L69 109725 SEA ABB=ON PLU=ON "CELL MEMBRANE"+PFT/CT
E CARRIERS/CT
E E3+ALL

L70 30897 SEA ABB=ON PLU=ON (MATERIALS+PFT/CT OR CARRIERS+PFT/CT OR
"DRUG DELIVERY SYSTEMS (L) CARRIERS"+PFT/CT)

L71 723266 SEA ABB=ON PLU=ON (CARRIER? OR BIOLOGICAL TRANSPORT? OR CELL
MEMBRANE? OR CELLULAR MEMBRANE?)/OBI, BI

L72 188219 SEA ABB=ON PLU=ON CONJUGATE?
L73 188219 SEA ABB=ON PLU=ON CONJUGATE?/OBI,BI
L74 44 SEA ABB=ON PLU=ON L65 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)
L75 77 SEA ABB=ON PLU=ON (L67 OR L74)
L76 13 SEA ABB=ON PLU=ON L67 AND L74
L77 18 SEA ABB=ON PLU=ON (L66 OR L76)
L78 4 SEA ABB=ON PLU=ON L18 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L79 14 SEA ABB=ON PLU=ON L67 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L80 5 SEA ABB=ON PLU=ON L77 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L81 77 SEA ABB=ON PLU=ON (L67 OR L74)
L82 27 SEA ABB=ON PLU=ON L81 NOT (PY>1999 OR AY>1999 OR PRY>1999)
L83 32 SEA ABB=ON PLU=ON (L66 OR L82)

FILE 'REGISTRY' ENTERED AT 15:00:16 ON 18 AUG 2006
D QUE L1

FILE 'STNGUIDE' ENTERED AT 15:01:21 ON 18 AUG 2006

FILE 'RÉGISTRY' ENTERED AT 15:06:33 ON 18 AUG 2006

L84 STRUCTURE uploaded
L85 0 SEA SUB=L15 SSS SAM L84
D QUE L84
L86 7 SEA SUB=L15 SSS FUL L84
D SCAN

FILE 'CAPLUS' ENTERED AT 15:08:29 ON 18 AUG 2006
L*** DEL 4 S L6
L87 7 SEA ABB=ON PLU=ON L86
L88 6 SEA ABB=ON PLU=ON L87 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'HCAPLUS' ENTERED AT 15:09:13 ON 18 AUG 2006
L89 7 SEA ABB=ON PLU=ON L86

FILE 'STNGUIDE' ENTERED AT 15:09:52 ON 18 AUG 2006

FILE 'RÉGISTRY' ENTERED AT 15:13:11 ON 18 AUG 2006
L90 STRUCTURE uploaded
D QUE L90
L91 0 SEA SUB=L15 SSS SAM L90
D QUE L90
L92 0 SEA SSS SAM L90
L93 2 SEA SUB=L15 SSS FUL L90
D SCAN

FILE 'CAPLUS' ENTERED AT 15:15:11 ON 18 AUG 2006
L94 2 SEA ABB=ON PLU=ON L93

FILE 'HCAPLUS' ENTERED AT 15:15:25 ON 18 AUG 2006
L95 2 SEA ABB=ON PLU=ON L93

FILE 'RÉGISTRY' ENTERED AT 15:15:34 ON 18 AUG 2006

FILE 'STNGUIDE' ENTERED AT 15:15:35 ON 18 AUG 2006

FILE 'RÉGISTRY' ENTERED AT 15:17:48 ON 18 AUG 2006
L96 STRUCTURE uploaded
D QUE L19
L97 6 SEA SUB=L19 SSS SAM L96

L98 : 75 SEA SUB=L19 SSS FUL L96

FILE 'HCAPLUS' ENTERED AT 15:18:28 ON 18 AUG 2006

L99 : 49 SEA ABB=ON PLU=ON L98

L100 : 35 SEA ABB=ON PLU=ON L99 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'STNGUIDE' ENTERED AT 15:19:01 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 15:20:21 ON 18 AUG 2006

L101 : STRUCTURE uploaded

L102 : 16 SEA SUB=L19 SSS SAM L101

L103 : 425 SEA SUB=L19 SSS FUL L101

FILE 'HCAPLUS' ENTERED AT 15:20:46 ON 18 AUG 2006

L104 : 432 SEA ABB=ON PLU=ON L103

L105 : 4 SEA ABB=ON PLU=ON L104 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)

L106 : 18 SEA ABB=ON PLU=ON L103 (L) BIOL/RL

L107 : 22 SEA ABB=ON PLU=ON (L105 OR L106)

L*** DEL : 17 S L10

L108 : 1 SEA ABB=ON PLU=ON L103 (L) CONJUGATE?

L109 : 22 SEA ABB=ON PLU=ON (L107 OR L108)

FILE 'REGISTRY' ENTERED AT 15:24:09 ON 18 AUG 2006
D QUE L21

FILE 'HCAPLUS' ENTERED AT 15:25:18 ON 18 AUG 2006

L110 : 17320 SEA ABB=ON PLU=ON L21 (L) BIOL/RL

L111 : 916 SEA ABB=ON PLU=ON L110 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)

L112 : 356 SEA ABB=ON PLU=ON L111 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'HCAPLUS' ENTERED AT 15:26:29 ON 18 AUG 2006
E UHLMANN E/AU

L113 : 197 SEA ABB=ON PLU=ON ("UHLMANN E"/AU OR "UHLMANN E V"/AU OR
"UHLMANN EUGEN"/AU OR "UHLMANN EUGEN DR"/AU OR "UHLMANN
EUGENE"/AU OR "UHLMANN EUGENIE V"/AU OR "UHLMANN EUGENIE
VICTORIA"/AU)
E GREINER B/AU

L114 : 34 SEA ABB=ON PLU=ON ("GREINER B"/AU OR "GREINER B F"/AU OR
"GREINER BEATE"/AU)
E UNGER E/AU

L115 : 214 SEA ABB=ON PLU=ON ("UNGER E"/AU OR "UNGER E C"/AU OR "UNGER
E D"/AU OR "UNGER E F"/AU OR "UNGER E H"/AU OR "UNGER E M"/AU
OR "UNGER E R"/AU OR "UNGER E W"/AU OR "UNGER EBERHARD"/AU OR
"UNGER EBERTHARD"/AU)
E GOTHE G/AU

L116 : 6 SEA ABB=ON PLU=ON ("GOTHE G"/AU OR "GOTHE GISLINDE"/AU)
E SCHWERDEL M/AU

L117 : 3 SEA ABB=ON PLU=ON "SCHWERDEL MARC"/AU

L118 : 7 SEA ABB=ON PLU=ON (L113 AND (L114 OR L115 OR L116 OR L117))
OR (L114 AND (L115 OR L116 OR L117)) OR (L115 AND (L116 OR
L117)) OR (L116 AND L117)

FILE 'REGISTRY' ENTERED AT 15:29:24 ON 18 AUG 2006

FILE 'HCAPLUS' ENTERED AT 15:29:28 ON 18 AUG 2006
D QUE L118
D IBIB ABS L118 TOT

D QUE L83
D IBIB ABS HITIND HITSTR L83 TOT
D QUE L89
D IBIB ABS HITSTR L89 TOT
D QUE L95
D IBIB ABS HITSTR L95 TOT
D QUE L100
D IBIB ABS HITIND HITSTR L100 TOT
D QUE L112
D IBIB ABS HITIND HITSTR L112 336-356
D QUE L109
D IBIB ABS HITIND HITSTR L109 TOT
D QUE L17
D QUE L23

FILE 'CAPLUS' ENTERED AT 15:33:47 ON 18 AUG 2006
D IBIB ABS HITSTR L23 TOT

FILE 'HCAPLUS' ENTERED AT 15:33:54 ON 18 AUG 2006

L119 33 SEA ABB=ON PLU=ON (L58 OR L83)
L120 8 SEA ABB=ON PLU=ON (L58 OR L89)
L121 3 SEA ABB=ON PLU=ON (L58 OR L95)
L122 36 SEA ABB=ON PLU=ON (L58 OR L100)
L123 357 SEA ABB=ON PLU=ON (L58 OR L112)
L124 23 SEA ABB=ON PLU=ON (L58 OR L109)
L125 20 SEA ABB=ON PLU=ON (L58 OR L17)

FILE 'REGISTRY' ENTERED AT 15:53:15 ON 18 AUG 2006
SAVE L64 RICHSUB1/A TEMP
SAVE L86 RICHSUB2/A TEMP
SAVE L93 RICHSUB3/A TEMP
SAVE L98 RICHSUB4/A TEMP

FILE 'CAPLUS' ENTERED AT 15:56:08 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 16:32:03 ON 18 AUG 2006
D QUE L112

FILE 'STNGUIDE' ENTERED AT 16:32:33 ON 18 AUG 2006

FILE 'REGISTRY' ENTERED AT 16:33:46 ON 18 AUG 2006
L126 STRUCTURE UPLOADED
D QUE L112
D QUE L21
L127 50 SEA SUB=L21 SSS SAM L126
L128 7024 SEA SUB=L21 SSS FUL L126

FILE 'HCAPLUS' ENTERED AT 16:35:21 ON 18 AUG 2006
L129 522 SEA ABB=ON PLU=ON L128 (L) BIOL/RL
L130 15 SEA ABB=ON PLU=ON L129 AND (L68 OR L69 OR L70 OR L71 OR L72
OR L73)
L131 10 SEA ABB=ON PLU=ON L130 NOT (PY>1999 OR AY>1999 OR PRY>1999)

FILE 'REGISTRY' ENTERED AT 16:36:23 ON 18 AUG 2006
SAVE L128 RICHSUB5/A TEMP

FILE 'HCAPLUS' ENTERED AT 16:36:43 ON 18 AUG 2006
L132 14 SEA ABB=ON PLU=ON L128 (L) CONJUGATE?
L133 4 SEA ABB=ON PLU=ON L132 NOT (PY>1999 OR AY>1999 OR PRY>1999)

<Schnizer 09/627,787> Page 8

L134 : 18 SEA ABB=ON PLU=ON (L130 OR L133)
L135 : 26 SEA ABB=ON PLU=ON (L130 OR L132)

=> file hcaplus
FILE 'HCAPLUS' ENTERED AT 16:37:43 ON 18 AUG 2006
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2006 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 18 Aug 2006 VOL 145 ISS 9
FILE LAST UPDATED: 17 Aug 2006 (20060817/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d que 1134
L11 STR

G1

G1 [01], [02]

Structure attributes must be viewed using STN Express query preparation.

L21 14873 SEA FILE=REGISTRY SSS FUL L11
L68 255615 SEA FILE=HCAPLUS ABB=ON PLU=ON "BIOLOGICAL TRANSPORT"+PFT/CT

```

L69      109725 SEA FILE=HCAPLUS ABB=ON PLU=ON "CELL MEMBRANE"+PFT/CT
L70      30897 SEA FILE=HCAPLUS ABB=ON PLU=ON (MATERIALS+PFT/CT OR CARRIERS+
          PFT/CT OR "DRUG DELIVERY SYSTEMS (L) CARRIERS"+PFT/CT)
L71      723266 SEA FILE=HCAPLUS ABB=ON PLU=ON (CARRIER? OR BIOLOGICAL
          TRANSPORT? OR CELL MEMBRANE? OR CELLULAR MEMBRANE?) /OBI,BI
L72      188219 SEA FILE=HCAPLUS ABB=ON PLU=ON CONJUGATE?
L73      188219 SEA FILE=HCAPLUS ABB=ON PLU=ON CONJUGATE?/OBI,BI
L126      STR

```


Structure attributes must be viewed using STN Express query preparation.

```

L128    7024 SEA FILE=REGISTRY SUB=L21 SSS FUL L126
L129    522 SEA FILE=HCAPLUS ABB=ON PLU=ON L128 (L) BIOL/RL
L130    15 SEA FILE=HCAPLUS ABB=ON PLU=ON L129 AND (L68 OR L69 OR L70
          OR L71 OR L72 OR L73)
L132    14 SEA FILE=HCAPLUS ABB=ON PLU=ON L128 (L) CONJUGATE?
L133    4 SEA FILE=HCAPLUS ABB=ON PLU=ON L132 NOT (PY>1999 OR AY>1999
          OR PRY>1999)
L134    18 SEA FILE=HCAPLUS ABB=ON PLU=ON (L130 OR L133)

```

=> d ibib abs hitind hitstr l134 tot

L134 ANSWER 1 OF 18 HCAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2006:301176 HCAPLUS
 DOCUMENT NUMBER: 144:331423
 TITLE: Novel tetracyclic heteroatom containing derivatives useful as sex steroid hormone receptor modulators and their preparation, pharmaceutical compositions and use for treatment of sex steroid hormone receptor mediated diseases
 INVENTOR(S): Sui, Zhihua; Zhang, Xuqing; Li, Xiaojie
 PATENT ASSIGNEE(S): Janssen Pharmaceutica N.V., Belg.
 SOURCE: PCT Int. Appl., 160 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2006034090	A1	20060330	WO 2005-US33272	20050916
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,				

GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ,
 LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ,
 NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
 SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
 YU, ZA, ZM, ZW

RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,
 IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ,
 CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG, BW, GH,
 GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY,
 KG, KZ, MD, RU, TJ, TM

US 2006116415 A1 20060601 US 2005-228562 20050916

PRIORITY APPLN. INFO.: US 2004-611376P P 20040920
 GI

I

II

AB The invention is directed to tetracyclic heteroatom containing derivs., of formula I, pharmaceutical compns. containing them, their use in the treatment of disorders mediated by one or more sex steroid hormone receptors and processes for their preparation. Compds. of formula I wherein X is O, S, or NH and derivs.; R1 is H, OH, C1-6 alkyl, C(O)C1-6 alkyl, C1-4 alkyl-NH2 and derivs.; and L1R4(L2)cR5; A is 5- to 7-membered (un)saturated (un)substituted (hetero)aromatic ring; m and n are independently an integer from 0 to 2; R2 and R3 are independently H, OH, carboxy, oxo, CN, NO2, amino, (mono/di)C1-4 alkylamino, C1-4 (halo)alkyl, C1-4 alkoxy, O-aralkyl, CO2C1-4 alkyl, C(O)C1-4 alkyl, OC(O)C1-4 alkyl, OSO2C1-4 (halo)alkyl, and OTBDMS; L1 is CH2, or CO; R4 is 5- to 6-membered (hetero)aryl; c is 0 or 1; L2 is C1-4 alkyl, C2-4 alkenyl, OC1-3 alkyl, SC1-3 alkyl, or NHC1-3alkyl and derivs.; R5 is NH2 and derivs., C(O)C1-4 alkyl, CO2H, CO2C1-4 alkyl, or OC(O)C1-4 alkyl; and pharmaceutically acceptable salts thereof are claimed in this invention. Example compound II was prepared by condensation of 4-methoxyphenyl hydrazine with 3,4-dihydro-2H-benzo[b]thiepin-5-one. All the invention compds. were evaluated for their sex steroid receptor hormone affinity. From the assays, the IC50 values were determined. Example compound II showed IC50 values of 10µM for estrogen.

CC α and β , 7.5 μ M for androgen rat cos-7, -0.2 % inhibition for androgen rat cystol and 54% inhibition for progestin at 10 μ M concentration
28-2 (Heterocyclic Compounds (More Than One Hetero Atom))
Section cross-reference(s): 1, 63

IT **Drug delivery systems**

(carriers; preparation of tetracyclic heteroatom containing derivs.
useful as sex steroid hormone receptor modulators)

IT 4079-29-2P 7202-87-1P 85302-16-5P, 1-Methyl-1,5,6,7-tetrahydroindazol-4-one 880552-68-1P 880552-75-0P 880552-78-3P 880552-79-4P 880552-81-8P 880552-90-9P 880552-91-0P 880552-97-6P 880552-99-8P 880553-00-4P, 5,11-Dimethyl-5,11-dihydro-6H-indolo[3,2-c]quinoline-2,8-diol 880553-01-5P, 2-Methoxy-5,11-dimethyl-5,11-dihydro-6H-indolo[3,2-c]quinolin-8-ol 880553-02-6P 880553-04-8P 880553-05-9P 880553-06-0P 880553-07-1P, 12-Methyl-5,6,7,12-tetrahydrobenzo[6,7]cyclohepta[1,2-b]indol-9-ol 880553-08-2P 880553-09-3P 880553-10-6P 880553-11-7P 880553-12-8P 880553-13-9P 880553-14-0P, 3-Ethylsulfanyl methyl-2-(2-hydroxyphenyl)-1-methyl-1H-indol-5-ol 880553-16-2P, 5,11-Dimethyl-5,11-dihydro-6H-indolo[3,2-c]quinolin-8-ol 880553-18-4P 880553-19-5P 880553-20-8P 880553-21-9P 880553-22-0P 880553-23-1P 880553-24-2P 880553-26-4P 880553-28-6P 880553-30-0P 880553-31-1P 880553-32-2P 880553-33-3P 880553-34-4P 880553-36-6P **880553-37-7P** 880553-38-8P 880553-39-9P 880553-40-2P 880553-41-3P 880553-42-4P 880553-44-6P 880553-45-7P 880553-46-8P 880553-47-9P 880553-48-0P 880553-49-1P 880553-51-5P 880553-52-6P 880553-53-7P 880553-54-8P 880553-55-9P 880553-56-0P 880553-58-2P 880553-59-3P 880553-60-6P 880553-61-7P 880553-62-8P 880553-63-9P 880553-66-2P 880553-70-8P 880553-73-1P, 11-Methyl-5,11-dihydro-6H-pyrido[3,2-a]carbazol-8-ol 880553-76-4P 880553-79-7P, 11-Methyl-5,11-dihydro-6H-pyrido[3,2-a]carbazol-9-ol 880553-82-2P, 10-Methyl-5,10-dihydro-4H-thieno[3,2-a]carbazol-7-ol 880553-84-4P, 3,10-Dimethyl-3,4,5,10-tetrahydropyrrolo[3,2-a]carbazol-7-ol 880553-85-5P 880553-87-7P 880553-89-9P 880553-93-5P 880553-96-8P 880553-97-9P 880554-04-1P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); **BIO**L (Biological study); PREP (Preparation);
USES (Uses)

(drug candidate; preparation of tetracyclic heteroatom containing derivs.

useful

as sex steroid hormone receptor modulators)

IT **880553-37-7P**

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); **BIO**L (Biological study); PREP (Preparation);
USES (Uses)

(drug candidate; preparation of tetracyclic heteroatom containing derivs.

useful

as sex steroid hormone receptor modulators)

RN 880553-37-7 HCAPLUS

CN [1]Benzopyrano[4,3-b]indole, 11-[4-(acetyloxy)benzoyl]-6,11-dihydro-8-methoxy- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L134 ANSWER 2 OF 18 HCAPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2005:961905 HCAPLUS
 DOCUMENT NUMBER: 143:260403
 TITLE: Protein kinase inhibitors and methods for identifying same
 INVENTOR(S): Lawrence, David S.
 PATENT ASSIGNEE(S): Albert Einstein College of Medicine of Yeshiva University, USA
 SOURCE: PCT Int. Appl., 116 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2005079300	A2	20050901	WO 2005-US4410	20050214
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				

PRIORITY APPLN. INFO.: US 2004-544376P P 20040213

OTHER SOURCE(S): MARPAT 143:260403

AB Inhibitors of protein kinase C (PKC) α , PKC δ and PKC ζ are provided which are selective for those PKC isotypes. Combinatorial libraries for identifying protein kinases are also provided, as are methods of identifying protein kinases using those libraries. Addnl., methods of treating a mammal having a deleterious condition, where the condition is dependent on a protein kinase for induction or severity, are provided. Methods of inhibiting protein kinases are also provided.

IC ICM A61K

CC 1-12 (Pharmacology)

Section cross-reference(s): 7, 34

IT Peptides, biological studies
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(**conjugates**, with chemical moieties; protein kinase C inhibitors and methods for identifying same for disease treatment)
IT 50-43-1D, **conjugates** with consensus peptides 50-45-3D,
conjugates with consensus peptides 50-78-2D, **conjugates** with consensus peptides 50-79-3D, **conjugates** with consensus peptides 50-84-0D, **conjugates** with consensus peptides 50-85-1D, **conjugates** with consensus peptides 51-44-5D,
conjugates with consensus peptides 55-10-7D, **conjugates** with consensus peptides 57-08-9D, **conjugates** with consensus peptides 65-82-7D, **conjugates** with consensus peptides 66-99-9D, 2-Naphthaldehyde, **conjugates** with consensus peptides 74-11-3D, **conjugates** with consensus peptides 75-98-9D,
conjugates with consensus peptides 76-93-7D, **conjugates** with consensus peptides 77-55-4D, **conjugates** with consensus peptides 79-09-4D, Propanoic acid, **conjugates** with consensus peptides 79-14-1D, **conjugates** with consensus peptides 79-33-4D, **conjugates** with consensus peptides, biological studies 81-25-4D, **conjugates** with consensus peptides 83-05-6D,
conjugates with consensus peptides 83-30-7D, **conjugates** with consensus peptides 83-40-9D, **conjugates** with consensus peptides 83-44-3D, **conjugates** with consensus peptides 85-46-1D, 1-Naphthalenesulfonyl chloride, **conjugates** with consensus peptides 85-54-1D, **conjugates** with consensus peptides 85-55-2D, **conjugates** with consensus peptides 85-56-3D, **conjugates** with consensus peptides 85-73-4D, Phthalylsulfathiazole, **conjugates** with consensus peptides 86-48-6D, **conjugates** with consensus peptides 86-55-5D,
1-Naphthalenecarboxylic acid, **conjugates** with consensus peptides 86-87-3D, 1-Naphthylacetic acid, **conjugates** with consensus peptides 88-09-5D, **conjugates** with consensus peptides 88-13-1D, 3-Thiophenecarboxylic acid, **conjugates** with consensus peptides 88-65-3D, 2-Bromobenzoic acid, **conjugates** with consensus peptides 88-67-5D, **conjugates** with consensus peptides 88-82-4D, **conjugates** with consensus peptides 89-32-7D, **conjugates** with consensus peptides 89-35-0D,
conjugates with consensus peptides 89-41-8D, **conjugates** with consensus peptides 89-86-1D, **conjugates** with consensus peptides 90-02-8D, 2-Hydroxybenzaldehyde, **conjugates** with consensus peptides 90-59-5D, 3,5-Dibromosalicylaldehyde,
conjugates with consensus peptides 91-40-7D, **conjugates** with consensus peptides 92-70-6D, **conjugates** with consensus peptides 93-09-4D, 2-Naphthalenecarboxylic acid, **conjugates** with consensus peptides 93-11-8D, 2-Naphthalenesulfonyl chloride,
conjugates with consensus peptides 93-25-4D, **conjugates** with consensus peptides 93-72-1D, 2-(2,4,5-Trichlorophenoxy)propionic acid, **conjugates** with consensus peptides 93-76-5D,
conjugates with consensus peptides 94-74-6D,
4-Chloro-o-tolyloxyacetic acid, **conjugates** with consensus peptides 94-82-6D, **conjugates** with consensus peptides 96-84-4D, **conjugates** with consensus peptides 96-98-0D,
conjugates with consensus peptides 97-05-2D, **conjugates** with consensus peptides 97-61-0D, **conjugates** with consensus peptides 97-67-6D, **conjugates** with consensus peptides 98-09-9D, Benzenesulfonyl chloride, **conjugates** with consensus peptides 98-58-8D, **conjugates** with consensus peptides 98-59-9D, **conjugates** with consensus peptides 98-60-2D,

conjugates with consensus peptides 98-61-3D, **conjugates** with consensus peptides 98-73-7D, **conjugates** with consensus peptides 98-74-8D, **conjugates** with consensus peptides 98-89-5D, Cyclohexanecarboxylic acid, **conjugates** with consensus peptides 99-06-9D, **conjugates** with consensus peptides 99-34-3D, **conjugates** with consensus peptides 99-50-3D, **conjugates** with consensus peptides 99-64-9D, **conjugates** with consensus peptides 99-66-1D, **conjugates** with consensus peptides 99-94-5D, **conjugates** with consensus peptides 99-96-7D, **conjugates** with consensus peptides 100-09-4D, **conjugates** with consensus peptides 100-10-7D, 4-(Dimethylamino)benzaldehyde, **conjugates** with consensus peptides 101-10-0D, **conjugates** with consensus peptides 102-32-9D, **conjugates** with consensus peptides 103-82-2D, Benzeneacetic acid, **conjugates** with consensus peptides 105-43-1D, **conjugates** with consensus peptides 107-93-7D, **conjugates** with consensus peptides 108-55-4D, **conjugates** with consensus peptides 109-52-4D, Pentanoic acid, **conjugates** with consensus peptides 110-15-6D, Butanedioic acid, **conjugates** with consensus peptides, biological studies 110-44-1D, **conjugates** with consensus peptides 110-99-6D, **conjugates** with consensus peptides 111-14-8D, Heptanoic acid, **conjugates** with consensus peptides 111-20-6D, Decanedioic acid, **conjugates** with consensus peptides 112-05-0D, Nonanoic acid, **conjugates** with consensus peptides 112-38-9D, Undecylenic acid, **conjugates** with consensus peptides 115-28-6D, **conjugates** with consensus peptides 116-53-0D, **conjugates** with consensus peptides 117-34-0D, **conjugates** with consensus peptides 118-90-1D, **conjugates** with consensus peptides 118-91-2D, **conjugates** with consensus peptides 118-92-3D, **conjugates** with consensus peptides 120-23-0D, **conjugates** with consensus peptides 121-32-4D, 3-Ethoxy-4-hydroxybenzaldehyde, **conjugates** with consensus peptides 121-34-6D, **conjugates** with consensus peptides 121-51-7D, **conjugates** with consensus peptides 121-92-6D, **conjugates** with consensus peptides 122-59-8D, **conjugates** with consensus peptides 122-88-3D, 4-Chlorophenoxyacetic acid, **conjugates** with consensus peptides 123-43-3D, **conjugates** with consensus peptides 123-99-9D, Nonanedioic acid, **conjugates** with consensus peptides 124-07-2D, Octanoic acid, **conjugates** with consensus peptides 126-00-1D, **conjugates** with consensus peptides 127-17-3D, **conjugates** with consensus peptides 128-13-2D, **conjugates** with consensus peptides 132-60-5D, 2-Phenyl-4-Quinolinecarboxylic acid, **conjugates** with consensus peptides 133-32-4D, 1H-Indole-3-butanoic acid, **conjugates** with consensus peptides 134-11-2D, **conjugates** with consensus peptides 134-96-3D, Syringaldehyde, **conjugates** with consensus peptides 139-85-5D, 3,4-Dihydroxybenzaldehyde, **conjugates** with consensus peptides 142-62-1D, Hexanoic acid, **conjugates** with consensus peptides 143-07-7D, Dodecanoic acid, **conjugates** with consensus peptides 148-53-8D, o-Vanillin, **conjugates** with consensus peptides 149-57-5D, **conjugates** with consensus peptides 149-91-7D, **conjugates** with consensus peptides 156-38-7D, 4-Hydroxyphenylacetic acid, **conjugates** with consensus peptides 156-39-8D, **conjugates** with consensus peptides 300-85-6D, **conjugates** with consensus peptides 302-79-4D, all-trans-Retinoic acid, **conjugates** with consensus peptides 303-07-1D, **conjugates** with consensus peptides 303-38-8D, **conjugates** with consensus peptides 306-08-1D, **conjugates**

with consensus peptides 307-78-8D, **conjugates** with consensus peptides 320-72-9D, **conjugates** with consensus peptides 320-94-5D, **conjugates** with consensus peptides 321-12-0D, **conjugates** with consensus peptides 328-50-7D, **conjugates** with consensus peptides 330-12-1D, **conjugates** with consensus peptides 331-25-9D, **conjugates** with consensus peptides 334-48-5D, Decanoic acid, **conjugates** with consensus peptides 345-16-4D, **conjugates** with consensus peptides 351-35-9D, **conjugates** with consensus peptides 366-77-8D, **conjugates** with consensus peptides 375-72-4D, **conjugates** with consensus peptides 375-85-9D, **conjugates** with consensus peptides 375-95-1D, **conjugates** with consensus peptides 376-68-1D, **conjugates** with consensus peptides 381-98-6D, **conjugates** with consensus peptides 385-00-2D, **conjugates** with consensus peptides 395-35-7D, **conjugates** with consensus peptides 395-64-2D, 2,5-Bis(trifluoromethyl)benzaldehyde, **conjugates** with consensus peptides 399-76-8D, **conjugates** with consensus peptides 403-16-7D, **conjugates** with consensus peptides 403-20-3D, **conjugates** with consensus peptides 405-79-8D, **conjugates** with consensus peptides 433-97-6D, **conjugates** with consensus peptides 434-13-9D, **conjugates** with consensus peptides 434-75-3D, **conjugates** with consensus peptides 445-29-4D, **conjugates** with consensus peptides 451-13-8D, **conjugates** with consensus peptides 451-69-4D, **conjugates** with consensus peptides 451-82-1D, **conjugates** with consensus peptides 453-71-4D, **conjugates** with consensus peptides 454-92-2D, **conjugates** with consensus peptides 455-19-6D, α,α,α -Trifluoro-p-tolualdehyde, **conjugates** with consensus peptides 455-86-7D, **conjugates** with consensus peptides 456-22-4D, **conjugates** with consensus peptides 458-09-3D, **conjugates** with consensus peptides 459-80-3D, **conjugates** with consensus peptides 464-78-8D, **conjugates** with consensus peptides 465-48-5D, **conjugates** with consensus peptides 474-25-9D, **conjugates** with consensus peptides 480-63-7D, **conjugates** with consensus peptides 482-05-3D, [1,1'-Biphenyl]-2,2'-dicarboxylic acid, **conjugates** with consensus peptides 486-73-7D, 1-Isoquinolinecarboxylic acid, **conjugates** with consensus peptides 487-54-7D, **conjugates** with consensus peptides 488-93-7D, 3-Furancarboxylic acid, **conjugates** with consensus peptides 490-18-6D, **conjugates** with consensus peptides 490-64-2D, **conjugates** with consensus peptides 490-79-9D, **conjugates** with consensus peptides 495-69-2D, **conjugates** with consensus peptides 495-78-3D, **conjugates** with consensus peptides 501-52-0D, Benzenepropanoic acid, **conjugates** with consensus peptides 501-97-3D, **conjugates** with consensus peptides 503-74-2D, **conjugates** with consensus peptides 504-88-1D, **conjugates** with consensus peptides 510-20-3D, **conjugates** with consensus peptides 514-10-3D, **conjugates** with consensus peptides 515-30-0D, **conjugates** with consensus peptides 522-87-2D, **conjugates** with consensus peptides 530-78-9D, **conjugates** with consensus peptides 534-59-8D, **conjugates** with consensus peptides 536-69-6D, **conjugates** with consensus peptides 537-55-3D, **conjugates** with consensus peptides 537-73-5D, **conjugates** with consensus peptides 537-98-4D, **conjugates** with consensus peptides 548-51-6D, **conjugates** with consensus peptides 552-16-9D, **conjugates** with consensus peptides 554-95-0D, 1,3,5-Benzenetricarboxylic acid, **conjugates** with consensus peptides 555-16-8D, 4-Nitrobenzaldehyde, **conjugates** with

consensus peptides 555-68-0D, 3-Nitrocinnamic acid, **conjugates** with consensus peptides 556-08-1D, **conjugates** with consensus peptides 557-24-4D, **conjugates** with consensus peptides 573-03-5D, **conjugates** with consensus peptides 573-11-5D, **conjugates** with consensus peptides 573-54-6D, **conjugates** with consensus peptides 579-18-0D, **conjugates** with consensus peptides 579-75-9D, **conjugates** with consensus peptides 579-92-0D, **conjugates** with consensus peptides 581-96-4D, 2-Naphthaleneacetic acid, **conjugates** with consensus peptides 585-76-2D, **conjugates** with consensus peptides 586-38-9D, m-Anisic acid, **conjugates** with consensus peptides 586-76-5D, **conjugates** with consensus peptides 586-89-0D, **conjugates** with consensus peptides 588-22-7D, **conjugates** with consensus peptides 591-80-0D, 4-Pentenoic acid, **conjugates** with consensus peptides 594-61-6D, **conjugates** with consensus peptides 595-91-5D, **conjugates** with consensus peptides 598-10-7D, 1,1-Cyclopropanedicarboxylic acid, **conjugates** with consensus peptides 598-78-7D, **conjugates** with consensus peptides 601-75-2D, **conjugates** with consensus peptides 602-94-8D, **conjugates** with consensus peptides 603-79-2D, **conjugates** with consensus peptides 609-71-2D, **conjugates** with consensus peptides 609-99-4D, **conjugates** with consensus peptides 610-02-6D, **conjugates** with consensus peptides 610-30-0D, **conjugates** with consensus peptides 611-01-8D, **conjugates** with consensus peptides 611-71-2D, **conjugates** with consensus peptides 611-73-4D, **conjugates** with consensus peptides 612-35-1D, **conjugates** with consensus peptides 612-40-8D, **conjugates** with consensus peptides 614-75-5D, **conjugates** with consensus peptides 616-75-1D, **conjugates** with consensus peptides 616-76-2D, 5-Formylsalicylic acid, **conjugates** with consensus peptides 616-82-0D, **conjugates** with consensus peptides 618-51-9D, **conjugates** with consensus peptides 618-58-6D, **conjugates** with consensus peptides 618-65-5D, Helicin, **conjugates** with consensus peptides 618-83-7D, **conjugates** with consensus peptides 619-14-7D, **conjugates** with consensus peptides 619-21-6D, 3-Carboxybenzaldehyde, **conjugates** with consensus peptides 619-58-9D, **conjugates** with consensus peptides 619-64-7D, **conjugates** with consensus peptides

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(protein kinase C inhibitors and methods for identifying same for disease treatment)

IT 619-86-3D, 4-Ethoxybenzoic acid, **conjugates** with consensus peptides 621-37-4D, **conjugates** with consensus peptides 621-54-5D, 3-(3-Hydroxyphenyl)propionic acid, **conjugates** with consensus peptides 625-45-6D, **conjugates** with consensus peptides 626-86-8D, **conjugates** with consensus peptides 632-25-7D, **conjugates** with consensus peptides 632-46-2D, **conjugates** with consensus peptides 638-32-4D, **conjugates** with consensus peptides 639-91-8D, **conjugates** with consensus peptides 643-43-6D, **conjugates** with consensus peptides 645-08-9D, **conjugates** with consensus peptides 645-12-5D, **conjugates** with consensus peptides 646-07-1D, **conjugates** with consensus peptides 652-03-9D, **conjugates** with consensus peptides 652-12-0D, **conjugates** with consensus peptides 652-18-6D, **conjugates** with consensus peptides 652-32-4D, **conjugates** with consensus peptides 652-34-6D, **conjugates** with consensus peptides 653-21-4D, **conjugates** with consensus

peptides 657-06-7D, **conjugates** with consensus peptides
680-15-9D, **conjugates** with consensus peptides 699-90-1D,
conjugates with consensus peptides 701-97-3D,
Cyclohexanepropanoic acid, **conjugates** with consensus peptides
704-13-2D, 3-Hydroxy-4-nitrobenzaldehyde, **conjugates** with
consensus peptides 708-06-5D, 2-Hydroxy-1-naphthaldehyde,
conjugates with consensus peptides 712-97-0D, 6-Nitropiperonal,
conjugates with consensus peptides 719-60-8D, **conjugates**
with consensus peptides 723-62-6D, 9-Anthracenecarboxylic acid,
conjugates with consensus peptides 771-50-6D,
1H-Indole-3-carboxylic acid, **conjugates** with consensus peptides
772-79-2D, **conjugates** with consensus peptides 775-01-9D,
conjugates with consensus peptides 777-44-6D, **conjugates**
with consensus peptides 779-89-5D, **conjugates** with consensus
peptides 818-88-2D, **conjugates** with consensus peptides
824-72-6D, **conjugates** with consensus peptides 828-51-3D,
conjugates with consensus peptides 830-96-6D,
1H-Indole-3-propanoic acid, **conjugates** with consensus peptides
832-53-1D, Pentafluorobenzenesulfonyl chloride, **conjugates** with
consensus peptides 837-95-6D, **conjugates** with consensus
peptides 879-65-2D, 2-Quinoxalinecarboxylic acid, **conjugates**
with consensus peptides 882-09-7D, **conjugates** with consensus
peptides 900-91-4D, **conjugates** with consensus peptides
928-64-3D, **conjugates** with consensus peptides 940-31-8D,
conjugates with consensus peptides 940-64-7D, **conjugates**
with consensus peptides 942-91-6D, **conjugates** with consensus
peptides 943-14-6D, **conjugates** with consensus peptides
947-84-2D, [1,1'-Biphenyl]-2-carboxylic acid, **conjugates** with
consensus peptides 1007-01-8D, Bicyclo[2.2.1]heptane-2-acetic acid,
conjugates with consensus peptides 1007-16-5D,
conjugates with consensus peptides 1008-72-6D,
conjugates with consensus peptides 1009-67-2D,
conjugates with consensus peptides 1019-52-9D,
conjugates with consensus peptides 1075-49-6D,
conjugates with consensus peptides 1076-97-7D,
1,4-Cyclohexanedicarboxylic acid, **conjugates** with consensus
peptides 1078-61-1D, **conjugates** with consensus peptides
1080-44-0D, **conjugates** with consensus peptides 1123-00-8D,
Cyclopentaneacetic acid, **conjugates** with consensus peptides
1123-25-7D, **conjugates** with consensus peptides 1124-65-8D,
conjugates with consensus peptides 1142-20-7D,
conjugates with consensus peptides 1142-39-8D,
conjugates with consensus peptides 1149-26-4D,
conjugates with consensus peptides 1161-13-3D,
conjugates with consensus peptides 1171-47-7D,
conjugates with consensus peptides 1188-21-2D,
conjugates with consensus peptides 1194-98-5D,
2,5-Dihydroxybenzaldehyde, **conjugates** with consensus peptides
1200-07-3D, **conjugates** with consensus peptides 1201-31-6D,
conjugates with consensus peptides 1204-75-7D,
conjugates with consensus peptides 1205-30-7D,
conjugates with consensus peptides 1218-34-4D,
conjugates with consensus peptides 1421-49-4D,
conjugates with consensus peptides 1477-49-2D,
conjugates with consensus peptides 1498-96-0D,
conjugates with consensus peptides 1505-50-6D,
conjugates with consensus peptides 1551-39-9D,
conjugates with consensus peptides 1552-96-1D,
conjugates with consensus peptides 1573-92-8D,

conjugates with consensus peptides 1577-18-0D,
conjugates with consensus peptides 1583-58-0D,
conjugates with consensus peptides 1583-67-1D,
conjugates with consensus peptides 1596-84-5D,
conjugates with consensus peptides 1634-82-8D,
2-(4-Hydroxyphenylazo)benzoic acid, **conjugates** with consensus peptides 1656-44-6D, **conjugates** with consensus peptides 1667-99-8D, **conjugates** with consensus peptides 1679-53-4D,
conjugates with consensus peptides 1679-64-7D,
conjugates with consensus peptides 1771-65-9D,
conjugates with consensus peptides 1821-12-1D, Benzenebutanoic acid, **conjugates** with consensus peptides 1829-32-9D,
conjugates with consensus peptides 1877-72-1D,
conjugates with consensus peptides 1877-73-2D,
conjugates with consensus peptides 1878-66-6D,
conjugates with consensus peptides 1878-81-5D,
conjugates with consensus peptides 1882-69-5D,
conjugates with consensus peptides 1914-58-5D,
conjugates with consensus peptides 1918-77-0D, 2-Thiopheneacetic acid, **conjugates** with consensus peptides 1939-99-7D,
Benzemethanesulfonyl chloride, **conjugates** with consensus peptides 1947-00-8D, **conjugates** with consensus peptides 1975-50-4D, **conjugates** with consensus peptides 2018-61-3D,
conjugates with consensus peptides 2018-66-8D,
N-Carbobenzyloxy-L-Leucine, **conjugates** with consensus peptides 2062-25-1D, **conjugates** with consensus peptides 2107-70-2D,
conjugates with consensus peptides 2124-55-2D,
1H-Indole-4-carboxylic acid, **conjugates** with consensus peptides 2168-06-1D, **conjugates** with consensus peptides 2215-89-6D,
conjugates with consensus peptides 2224-00-2D,
2-Ethoxy-1-naphthoic acid, **conjugates** with consensus peptides 2237-36-7D, **conjugates** with consensus peptides 2243-42-7D,
conjugates with consensus peptides 2252-51-9D,
conjugates with consensus peptides 2270-20-4D, Benzenepentanoic acid, **conjugates** with consensus peptides 2302-80-9D,
conjugates with consensus peptides 2305-32-0D,
conjugates with consensus peptides 2345-34-8D,
4-Acetoxybenzoic acid, **conjugates** with consensus peptides 2345-38-2D, **conjugates** with consensus peptides 2358-29-4D,
conjugates with consensus peptides 2359-09-3D,
conjugates with consensus peptides 2373-76-4D,
conjugates with consensus peptides 2373-80-0D,
conjugates with consensus peptides 2386-60-9D, 1-Butanesulfonyl chloride, **conjugates** with consensus peptides 2426-87-1D,
4-Benzylxy-3-methoxybenzaldehyde, **conjugates** with consensus peptides 2438-05-3D, **conjugates** with consensus peptides 2444-36-2D, **conjugates** with consensus peptides 2444-37-3D,
conjugates with consensus peptides 2459-05-4D,
conjugates with consensus peptides 2493-84-7D,
conjugates with consensus peptides 2516-96-3D,
conjugates with consensus peptides 2612-02-4D,
conjugates with consensus peptides 2613-89-0D,
conjugates with consensus peptides 2638-94-0D,
conjugates with consensus peptides 2645-07-0D,
conjugates with consensus peptides 2650-64-8D,
conjugates with consensus peptides 2736-23-4D,
conjugates with consensus peptides 2777-65-3D, 10-Undecynoic acid, **conjugates** with consensus peptides 2785-98-0D,
conjugates with consensus peptides 2861-28-1D,

1,3-Benzodioxole-5-acetic acid, **conjugates** with consensus peptides 2881-31-4D, **conjugates** with consensus peptides 2882-15-7D, **conjugates** with consensus peptides 2905-25-1D, **conjugates** with consensus peptides 2942-59-8D, **conjugates** with consensus peptides 2959-96-8D, **conjugates** with consensus peptides 2976-75-2D, **conjugates** with consensus peptides 2991-28-8D, **conjugates** with consensus peptides 3006-96-0D, **conjugates** with consensus peptides 3011-34-5D, 4-Hydroxy-3-nitrobenzaldehyde, **conjugates** with consensus peptides 3038-48-0D, **conjugates** with consensus peptides 3095-95-2D, **conjugates** with consensus peptides 3113-72-2D, **conjugates** with consensus peptides 3128-07-2D, **conjugates** with consensus peptides 3160-59-6D, **conjugates** with consensus peptides 3222-47-7D, **conjugates** with consensus peptides 3257-18-9D, **conjugates** with consensus peptides 3307-39-9D, 2-(4-Chlorophenoxy)propionic acid, **conjugates** with consensus peptides 3337-62-0D, 3,5-Dibromo-4-Hydroxybenzoic acid, **conjugates** with consensus peptides 3343-24-6D, Benzeneundecanoic acid, **conjugates** with consensus peptides 3405-88-7D, **conjugates** with consensus peptides 3438-16-2D, 5-Chloro-O-Anisic acid, **conjugates** with consensus peptides 3443-45-6D, 1-Pyrenebutanoic acid, **conjugates** with consensus peptides 3575-31-3D, **conjugates** with consensus peptides 3639-21-2D, **conjugates** with consensus peptides 3739-38-6D, **conjugates** with consensus peptides 3740-52-1D, 2-Nitrophenylacetic acid, **conjugates** with consensus peptides 3900-93-4D, **conjugates** with consensus peptides 3970-35-2D, **conjugates** with consensus peptides 3971-31-1D, 1,3-Cyclohexanedicarboxylic acid, **conjugates** with consensus peptides 3984-34-7D, **conjugates** with consensus peptides 4026-18-0D, **conjugates** with consensus peptides 4033-40-3D, **conjugates** with consensus peptides 4042-36-8D, **conjugates** with consensus peptides 4052-30-6D, **conjugates** with consensus peptides 4075-59-6D, **conjugates** with consensus peptides 4224-70-8D, **conjugates** with consensus peptides 4251-21-2D, 1,4-Benzenedipropanoic acid, **conjugates** with consensus peptides 4282-31-9D, 2,5-Thiophenedicarboxylic acid, **conjugates** with consensus peptides 4355-11-7D, 1,1-Cyclohexanediacetic acid, **conjugates** with consensus peptides 4376-18-5D, **conjugates** with consensus peptides 4389-53-1D, **conjugates** with consensus peptides 4394-00-7D, **conjugates** with consensus peptides 4397-53-9D, 4-Benzoyloxybenzaldehyde, **conjugates** with consensus peptides 4431-00-9D, Aurintricarboxylic acid, **conjugates** with consensus peptides 4441-63-8D, Cyclohexanebutanoic acid, **conjugates** with consensus peptides 4519-39-5D, **conjugates** with consensus peptides 4521-28-2D, **conjugates** with consensus peptides 4536-23-6D, **conjugates** with consensus peptides 4547-57-3D, 4-Butoxyphenylacetic acid, **conjugates** with consensus peptides 4552-50-5D, **conjugates** with consensus peptides 4593-90-2D, **conjugates** with consensus peptides 4619-20-9D, **conjugates** with consensus peptides 4670-10-4D, (3,5-Dimethoxyphenyl)acetic acid, **conjugates** with consensus peptides 4707-95-3D, **conjugates** with consensus peptides 4767-03-7D, **conjugates** with consensus peptides 4771-47-5D, **conjugates** with consensus peptides 4790-79-8D,

conjugates with consensus peptides 4890-85-1D,
conjugates with consensus peptides 4919-33-9D,
conjugates with consensus peptides 4940-39-0D,
conjugates with consensus peptides 4998-07-6D,
conjugates with consensus peptides 5006-44-0D,
conjugates with consensus peptides 5081-36-7D,
conjugates with consensus peptides 5106-98-9D,
conjugates with consensus peptides 5107-12-0D,
conjugates with consensus peptides 5326-23-8D,
conjugates with consensus peptides 5334-40-7D,
conjugates with consensus peptides 5345-27-7D,
conjugates with consensus peptides 5402-73-3D,
conjugates with consensus peptides 5409-31-4D,
conjugates with consensus peptides 5411-14-3D,
conjugates with consensus peptides 5427-26-9D,
conjugates with consensus peptides 5429-28-7D,
conjugates with consensus peptides 5438-19-7D,
conjugates with consensus peptides 5438-36-8D, 5-Iodovanillin,
conjugates with consensus peptides 5438-68-6D,
conjugates with consensus peptides 5447-02-9D,
3,4-Dibenzoyloxybenzaldehyde, **conjugates** with consensus peptides
5451-55-8D, **conjugates** with consensus peptides 5469-45-4D,
conjugates with consensus peptides 5521-55-1D,
conjugates with consensus peptides 5600-62-4D,
conjugates with consensus peptides 5636-68-0D,
conjugates with consensus peptides 5657-19-2D,
conjugates with consensus peptides 5672-83-3D,
conjugates with consensus peptides 5683-31-8D,
conjugates with consensus peptides 5715-76-4D,
conjugates with consensus peptides 5718-83-2D,
conjugates with consensus peptides 5728-52-9D,
[1,1'-Biphenyl]-4-acetic acid, **conjugates** with consensus
peptides 5731-13-5D, 4'-Ethyl-4-biphenylcarboxylic acid,
conjugates with consensus peptides 5736-85-6D,
4-Propoxybenzaldehyde, **conjugates** with consensus peptides
5736-88-9D, 4-Butoxybenzaldehyde, **conjugates** with consensus
peptides 5736-94-7D, 4-Hexyloxybenzaldehyde, **conjugates** with
consensus peptides 5811-87-0D, 1,8-Naphthaldehydic acid,
conjugates with consensus peptides 5947-49-9D,
conjugates with consensus peptides 5962-42-5D,
conjugates with consensus peptides 5962-88-9D,
Cyclohexanepentanoic acid, **conjugates** with consensus peptides
5995-86-8D, Gallic acid monohydrate, **conjugates** with consensus
peptides 6054-99-5D, Mordant Yellow 10, **conjugates** with
consensus peptides

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
(**Biological study**); USES (Uses)

(protein kinase C inhibitors and methods for identifying same for
disease treatment)

IT 6064-63-7D, **conjugates** with consensus peptides 6089-09-4D,
4-Pentyoic acid, **conjugates** with consensus peptides
6120-95-2D, **conjugates** with consensus peptides 6236-09-5D,
conjugates with consensus peptides 6280-80-4D,
2-Formylphenoxyacetic acid, **conjugates** with consensus peptides
6284-80-6D, 9H-Fluorene-9-acetic acid, **conjugates** with consensus
peptides 6286-46-0D, **conjugates** with consensus peptides
6318-55-4D, **conjugates** with consensus peptides 6326-83-6D,
conjugates with consensus peptides 6340-79-0D,
conjugates with consensus peptides 6404-31-5D,

conjugates with consensus peptides 6553-96-4D,
conjugates with consensus peptides 6624-49-3D,
3-Isoquinolinecarboxylic acid, **conjugates** with consensus
peptides 6914-76-7D, **conjugates** with consensus peptides
6914-79-0D, **conjugates** with consensus peptides 6939-93-1D,
conjugates with consensus peptides 6950-82-9D,
conjugates with consensus peptides 6954-55-8D,
9H-Fluorene-4-carboxylic acid, **conjugates** with consensus
peptides 6964-21-2D, 3-Thiopheneacetic acid, **conjugates** with
consensus peptides 6973-60-0D, **conjugates** with consensus
peptides 7021-09-2D, **conjugates** with consensus peptides
7053-88-5D, **conjugates** with consensus peptides 7304-32-7D,
conjugates with consensus peptides 7326-19-4D,
conjugates with consensus peptides 7345-82-6D,
conjugates with consensus peptides 7355-22-8D,
conjugates with consensus peptides 7423-55-4D,
conjugates with consensus peptides 7432-21-5D,
conjugates with consensus peptides 7649-92-5D,
conjugates with consensus peptides 7697-26-9D,
conjugates with consensus peptides 7782-37-8D,
conjugates with consensus peptides 7795-95-1D, 1-Octanesulfonyl
chloride, **conjugates** with consensus peptides 7797-83-3D,
2,3-(Methylenedioxy)benzaldehyde, **conjugates** with consensus
peptides 10154-71-9D, **conjugates** with consensus peptides
10269-96-2D, **conjugates** with consensus peptides 10443-65-9D,
conjugates with consensus peptides 10463-20-4D,
conjugates with consensus peptides 10516-71-9D,
conjugates with consensus peptides 10538-51-9D,
conjugates with consensus peptides 13064-83-0D,
conjugates with consensus peptides 13205-46-4D,
conjugates with consensus peptides 13205-48-6D,
conjugates with consensus peptides 13205-49-7D,
conjugates with consensus peptides 13402-96-5D,
conjugates with consensus peptides 13419-69-7D,
conjugates with consensus peptides 13505-32-3D,
conjugates with consensus peptides 13506-76-8D,
conjugates with consensus peptides 13545-04-5D,
conjugates with consensus peptides 13575-74-1D,
conjugates with consensus peptides 13677-79-7D,
conjugates with consensus peptides 13794-14-4D,
conjugates with consensus peptides 14112-98-2D,
conjugates with consensus peptides 14615-72-6D,
3,5-Dibenzylxybenzaldehyde, **conjugates** with consensus peptides
14737-91-8D, **conjugates** with consensus peptides 14892-14-9D,
conjugates with consensus peptides 15030-72-5D,
conjugates with consensus peptides 15074-54-1D,
conjugates with consensus peptides 15084-51-2D,
conjugates with consensus peptides 15641-58-4D,
conjugates with consensus peptides 15687-27-1D,
conjugates with consensus peptides 15872-41-0D,
conjugates with consensus peptides 15872-43-2D,
conjugates with consensus peptides 16024-58-1D,
conjugates with consensus peptides 16036-85-4D,
conjugates with consensus peptides 16136-58-6D,
conjugates with consensus peptides 16188-55-9D,
conjugates with consensus peptides 16225-26-6D,
conjugates with consensus peptides 16273-37-3D,
conjugates with consensus peptides 16526-68-4D,
conjugates with consensus peptides 16533-71-4D,

conjugates with consensus peptides 16534-12-6D,
conjugates with consensus peptides 16555-77-4D,
conjugates with consensus peptides 16588-34-4D,
4-Chloro-3-nitrobenzaldehyde, **conjugates** with consensus peptides
16629-19-9D, 2-Thiophenesulfonyl chloride, **conjugates** with
consensus peptides 16727-43-8D, **conjugates** with consensus
peptides 16874-33-2D, **conjugates** with consensus peptides
17026-42-5D, **conjugates** with consensus peptides 17078-28-3D,
conjugates with consensus peptides 17257-71-5D,
conjugates with consensus peptides 17481-06-0D,
conjugates with consensus peptides 17754-90-4D,
4-(Diethylamino)salicylaldehyde, **conjugates** with consensus
peptides 17768-28-4D, **conjugates** with consensus peptides
17857-14-6D, **conjugates** with consensus peptides 18467-77-1D,
conjugates with consensus peptides 18698-97-0D,
conjugates with consensus peptides 18780-67-1D,
conjugates with consensus peptides 18951-85-4D,
conjugates with consensus peptides 19694-02-1D,
1-Pyrenecarboxylic acid, **conjugates** with consensus peptides
19719-28-9D, **conjugates** with consensus peptides 19728-63-3D,
conjugates with consensus peptides 19771-63-2D,
conjugates with consensus peptides 19887-32-2D,
conjugates with consensus peptides 19910-33-9D,
conjugates with consensus peptides 20312-36-1D,
conjugates with consensus peptides 20357-25-9D,
6-Nitroveratraldehyde, **conjugates** with consensus peptides
20445-31-2D, **conjugates** with consensus peptides 20595-30-6D,
conjugates with consensus peptides 20595-45-3D,
conjugates with consensus peptides 20651-71-2D,
conjugates with consensus peptides 20972-36-5D,
conjugates with consensus peptides 20972-37-6D,
conjugates with consensus peptides 21286-54-4D,
conjugates with consensus peptides 21346-66-7D,
conjugates with consensus peptides 21461-84-7D,
conjugates with consensus peptides 21598-06-1D,
conjugates with consensus peptides 21643-38-9D,
conjugates with consensus peptides 21651-12-7D,
trans-2,4-Pentadienoic acid, **conjugates** with consensus peptides
21752-35-2D, **conjugates** with consensus peptides 21752-36-3D,
conjugates with consensus peptides 22084-89-5D,
conjugates with consensus peptides 22106-33-8D,
conjugates with consensus peptides 22204-53-1D,
conjugates with consensus peptides 22219-63-2D,
conjugates with consensus peptides 22921-68-2D,
conjugates with consensus peptides 23243-68-7D,
conjugates with consensus peptides 23359-08-2D, 4-Formylcinnamic
acid, **conjugates** with consensus peptides 23814-12-2D,
1H-Benzotriazole-5-carboxylic acid, **conjugates** with consensus
peptides 24467-92-3D, **conjugates** with consensus peptides
24677-78-9D, 2,3-Dihydroxybenzaldehyde, **conjugates** with
consensus peptides 24974-75-2D, **conjugates** with consensus
peptides 25140-86-7D, (\pm)-2-(2-Chlorophenoxy)propionic acid,
conjugates with consensus peptides 25173-72-2D,
conjugates with consensus peptides 25999-20-6D, Lasalocid Sodium
Salt, **conjugates** with consensus peptides 26153-38-8D,
3,5-Dihydroxybenzaldehyde, **conjugates** with consensus peptides
26311-45-5D, **conjugates** with consensus peptides 26934-35-0D,
4-(3-Dimethylaminopropoxy)benzaldehyde, **conjugates** with
consensus peptides 27115-49-7D, **conjugates** with consensus

peptides 27115-50-0D, **conjugates** with consensus peptides
27593-22-2D, **conjugates** with consensus peptides 27696-01-1D,
conjugates with consensus peptides 28166-41-8D,
conjugates with consensus peptides 28169-46-2D,
conjugates with consensus peptides 28314-80-9D,
conjugates with consensus peptides 28752-82-1D,
2-Allyloxybenzaldehyde, **conjugates** with consensus peptides
29427-69-8D, **conjugates** with consensus peptides 29555-02-0D,
conjugates with consensus peptides 29582-31-8D,
trans-3-(4-Ethoxybenzoyl)acrylic acid, **conjugates** with consensus
peptides 29668-44-8D, 1,4-Benzodioxan-6-carboxaldehyde,
conjugates with consensus peptides 29678-81-7D,
conjugates with consensus peptides 29973-91-9D,
conjugates with consensus peptides 30529-70-5D,
conjugates with consensus peptides 31519-22-9D,
conjugates with consensus peptides 32634-66-5D,
conjugates with consensus peptides 32634-68-7D,
conjugates with consensus peptides 32723-67-4D,
3-Methyl-p-anisaldehyde, **conjugates** with consensus peptides
32857-62-8D, **conjugates** with consensus peptides 32862-97-8D,
conjugates with consensus peptides 32890-87-2D,
conjugates with consensus peptides 32890-94-1D,
conjugates with consensus peptides 33184-16-6D,
conjugates with consensus peptides 33513-44-9D,
conjugates with consensus peptides 33697-81-3D,
conjugates with consensus peptides 33744-74-0D,
conjugates with consensus peptides 33996-33-7D,
conjugates with consensus peptides 34225-81-5D,
conjugates with consensus peptides 36015-19-7D,
2-Chloro-5-nitrocinnamic acid, **conjugates** with consensus
peptides 36413-60-2D, **conjugates** with consensus peptides
36838-63-8D, **conjugates** with consensus peptides 37718-11-9D,
1H-Pyrazole-4-carboxylic acid, **conjugates** with consensus
peptides 37777-76-7D, **conjugates** with consensus peptides
37942-07-7D, 3,5-Di-tert-butyl-2-hydroxybenzaldehyde, **conjugates**
with consensus peptides 38289-29-1D, **conjugates** with consensus
peptides 38521-46-9D, **conjugates** with consensus peptides
38867-17-3D, **conjugates** with consensus peptides 39515-51-0D,
3-Phenoxybenzaldehyde, **conjugates** with consensus peptides
39589-98-5D, **conjugates** with consensus peptides 40138-16-7D,
2-Formylphenylboronic acid, **conjugates** with consensus peptides
40932-60-3D, **conjugates** with consensus peptides 41019-45-8D,
conjugates with consensus peptides 41667-95-2D,
conjugates with consensus peptides 42013-20-7D,
conjugates with consensus peptides 42580-42-7D,
conjugates with consensus peptides 48172-10-7D,
conjugates with consensus peptides 50772-35-5D,
conjugates with consensus peptides 50874-31-2D,
conjugates with consensus peptides 50910-55-9D,
2-Amino-3,5-dibromobenzaldehyde, **conjugates** with consensus
peptides 50996-73-1D, **conjugates** with consensus peptides
51146-56-6D, **conjugates** with consensus peptides 51546-12-4D,
conjugates with consensus peptides 51568-18-4D,
conjugates with consensus peptides 52034-92-1D,
conjugates with consensus peptides 53101-49-8D,
conjugates with consensus peptides 53174-06-4D,
conjugates with consensus peptides 53188-07-1D,
conjugates with consensus peptides 53483-12-8D,
conjugates with consensus peptides 53585-93-6D,

conjugates with consensus peptides 53623-42-0D,
conjugates with consensus peptides 53669-33-3D,
4-Acetoxy-3,5-dimethoxybenzaldehyde, **conjugates** with consensus peptides 54574-82-2D, **conjugates** with consensus peptides 54673-07-3D, **conjugates** with consensus peptides 55775-97-8D,
conjugates with consensus peptides 56586-13-1D,
conjugates with consensus peptides 57105-39-2D,
conjugates with consensus peptides 57105-42-7D,
conjugates with consensus peptides 57105-45-0D,
conjugates with consensus peptides 57105-50-7D,
conjugates with consensus peptides 57822-06-7D,
conjugates with consensus peptides 58574-03-1D,
conjugates with consensus peptides 59004-95-4D,
conjugates with consensus peptides 59160-29-1D,
conjugates with consensus peptides 59760-01-9D,
conjugates with consensus peptides 60491-16-9D,
conjugates with consensus peptides 61475-31-8D,
conjugates with consensus peptides 62935-72-2D,
conjugates with consensus peptides 64326-19-8D,
conjugates with consensus peptides 64700-15-8D,
conjugates with consensus peptides 64709-55-3D, 1-Pyreneacetic acid, **conjugates** with consensus peptides 65259-81-6D,
conjugates with consensus peptides 65489-71-6D,
conjugates with consensus peptides 67648-61-7D,
conjugates with consensus peptides 69056-67-3D,
conjugates with consensus peptides 69760-86-7D,
conjugates with consensus peptides 70748-53-7D,
conjugates with consensus peptides 72856-73-6D,
2-Methoxy-4-(methylthio)-benzoic acid, **conjugates** with consensus peptides 73152-70-2D, **conjugates** with consensus peptides 74927-72-3D, **conjugates** with consensus peptides 74928-54-4D,
conjugates with consensus peptides 74958-71-7D,
conjugates with consensus peptides 78725-46-9D,
3-(3-(Trifluoromethyl)phenoxy)benzaldehyde, **conjugates** with consensus peptides 79124-76-8D, 3-(3,4-Dichlorophenoxy)benzaldehyde,
conjugates with consensus peptides 79410-20-1D,
conjugates with consensus peptides 79815-20-6D,
(S)-Indoline-2-carboxylic acid, **conjugates** with consensus peptides 80789-69-1D, **conjugates** with consensus peptides 80866-86-0D, **conjugates** with consensus peptides 81172-89-6D,
Terephthalaldehyde mono(diethyl acetal), **conjugates** with consensus peptides 81228-09-3D, **conjugates** with consensus peptides 81311-95-7D, **conjugates** with consensus peptides 81925-04-4D, **conjugates** with consensus peptides 82998-57-0D,
conjugates with consensus peptides 83511-07-3D,
conjugates with consensus peptides 84392-17-6D,
conjugates with consensus peptides 85068-27-5D,
conjugates with consensus peptides 85068-28-6D,
conjugates with consensus peptides 85068-33-3D,
conjugates with consensus peptides 86023-17-8D,
conjugates with consensus peptides 86522-89-6D,
conjugates with consensus peptides

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)

(protein kinase C inhibitors and methods for identifying same for disease treatment)

IT 87199-16-4D, 3-Formylphenylboronic acid, **conjugates** with consensus peptides 87199-17-5D, 4-Formylphenylboronic acid, **conjugates** with consensus peptides 88768-45-0D,

conjugates with consensus peptides 90134-10-4D,
4-(Dibutylamino)benzaldehyde, **conjugates** with consensus peptides
94108-56-2D, **conjugates** with consensus peptides 94133-41-2D,
conjugates with consensus peptides 94977-52-3D,
conjugates with consensus peptides 95233-12-8D,
conjugates with consensus peptides 96623-58-4D,
conjugates with consensus peptides 99333-54-7D,
conjugates with consensus peptides 99799-10-7D,
conjugates with consensus peptides 102082-89-3D,
conjugates with consensus peptides 102936-05-0D,
conjugates with consensus peptides 108519-67-1D,
conjugates with consensus peptides 110877-64-0D,
conjugates with consensus peptides 112897-97-9D,
conjugates with consensus peptides 112898-33-6D,
conjugates with consensus peptides 113221-74-2D,
conjugates with consensus peptides 115029-22-6D,
conjugates with consensus peptides 115029-24-8D,
conjugates with consensus peptides 118514-35-5D,
conjugates with consensus peptides 130525-39-2D,
conjugates with consensus peptides 131401-56-4D,
conjugates with consensus peptides 132201-33-3D,
conjugates with consensus peptides 132794-07-1D,
conjugates with consensus peptides 141179-72-8D,
conjugates with consensus peptides 144332-60-5D,
conjugates with consensus peptides 147700-58-1D,
conjugates with consensus peptides 163438-05-9D,
conjugates with consensus peptides 163725-12-0D,
conjugates with consensus peptides 188815-32-9D,
conjugates with consensus peptides 198348-89-9D,
conjugates with consensus peptides 199679-38-4D,
conjugates with consensus peptides 206986-82-5D,
conjugates with consensus peptides 207556-13-6D,
conjugates with consensus peptides 207742-85-6D,
conjugates with consensus peptides 207742-86-7D,
conjugates with consensus peptides 863482-36-4 863482-37-5
863482-38-6 863482-39-7 863482-40-0 863482-41-1 863482-42-2
863482-50-2D, **conjugates** with chemical moieties 863482-51-3D,
conjugates with chemical moieties 863482-52-4D, **conjugates**
with chemical moieties 863482-53-5D, **conjugates** with consensus
peptides 863482-55-7D, **conjugates** with consensus peptides

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(protein kinase C inhibitors and methods for identifying same for
disease treatment)

IT 2345-34-8D, 4-Acetoxybenzoic acid, **conjugates** with
consensus peptides 53669-33-3D, 4-Acetoxy-3,5-
dimethoxybenzaldehyde, **conjugates** with consensus peptides
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL
(Biological study); USES (Uses)

(protein kinase C inhibitors and methods for identifying same for
disease treatment)

RN 2345-34-8 HCPLUS

CN Benzoic acid, 4-(acetoxy)- (9CI) (CA INDEX NAME)

RN 53669-33-3 HCPLUS
 CN Benzaldehyde, 4-(acetoxy)-3,5-dimethoxy- (9CI) (CA INDEX NAME)

L134 ANSWER 3 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2003:931127 HCPLUS
 DOCUMENT NUMBER: 140:784
 TITLE: Esterified N-hydroxypiperidine compounds for the amelioration of the development of cataracts and other ophthalmic diseases, preparation thereof, and compositions containing them
 INVENTOR(S): Matier, William L.; Patil, Ghanshyam
 PATENT ASSIGNEE(S): Othera Pharmaceuticals, Inc., USA
 SOURCE: PCT Int. Appl., 59 pp.
 CODEN: PIXXD2
 DOCUMENT TYPE: Patent
 LANGUAGE: English
 FAMILY ACC. NUM. COUNT: 2
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2003096991	A2	20031127	WO 2003-US15948	20030519
WO 2003096991	A3	20040226		
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW			BY, BZ, CA, CH, CN, FI, GB, GD, GE, GH, KR, KZ, LC, LK, LR, MZ, NO, NZ, OM, PH, TM, TN, TR, TT, TZ,	
RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML			ZM, ZW, AM, AZ, BY, CZ, DE, DK, EE, ES, RO, SE, SI, SK, TR, MR, NE, SN, TD, TG	
CA 2484512	AA	20031127	CA 2003-2484512	20030519
AU 2003243282	A1	20031202	AU 2003-243282	20030519
EP 1507826	A2	20050223	EP 2003-753107	20030519
R: AT, BE, CH, DE, DK, ES, FR, IE, SI, LT, LV, FI, RO, MK			GB, GR, IT, LI, CY, AL, TR, BG, CZ, EE, HU, SK	
CN 1653125	A	20050810	CN 2003-811221	20030519
JP 2005527605	T2	20050915	JP 2004-504990	20030519
NO 2004005483	A	20041216	NO 2004-5483	20041216
PRIORITY APPLN. INFO.:			US 2002-381287P	P 20020517
OTHER SOURCE(S): GI	MARPAT	140:784	WO 2003-US15948	W 20030519

AB Ophthalmically acceptable compns. used in arresting the development of cataracts or macular degeneration comprise a pharmaceutically acceptable **carrier** or diluent and a compound I (R₁, R₂ = H, C₁-3 alkyl, or R₁ and R₂ taken together form cycloalkyl; R₃, R₄ = C₁-3 alkyl, or R₃ and R₄ taken together form cycloalkyl; R₅ = H, OH, C₁-6 alkyl; R₆ = C₁-6 alkyl, alkenyl, alkynyl, or substituted alkyl or alkenyl; R₇ = C₁-6 alkyl, alkenyl, alkynyl, or substituted alkyl or alkenyl, or R₆ and R₇, or R₅, R₆ and R₇, taken together, form 3-7-membered carbocycle or heterocycle).

ICM A61K

CC 1-12 (Pharmacology)

Section cross-reference(s): 27, 63

IT **Biological transport**

(drug; esterified hydroxypiperidine compds. for amelioration of development of cataracts and other ophthalmic diseases, preparation, and compns.)

IT	4972-11-6D, 4-substituted derivs.	40520-87-4	50995-90-9	87321-85-5
	166438-11-5	627085-08-9	627085-26-1	627085-27-2
	627085-29-4	627085-30-7	627085-31-8	627085-32-9
	627085-34-1	627085-35-2	627085-36-3	627085-37-4
	627085-39-6	627085-40-9	627085-41-0	627085-42-1
	627085-43-3	627085-45-4	627085-46-5	627085-47-6
	627085-48-7	627085-49-8	627085-50-1	627085-51-2
	627085-53-4			

RL: PAC (Pharmacological activity); PRP (Properties); THU (Therapeutic use); **Biol (Biological study)**; USES (Uses)

(esterified hydroxypiperidine compds. for amelioration of development of cataracts and other ophthalmic diseases, preparation, and compns.)

IT **627085-43-2 627085-44-3**

RL: PAC (Pharmacological activity); PRP (Properties); THU (Therapeutic use); **Biol (Biological study)**; USES (Uses)

(esterified hydroxypiperidine compds. for amelioration of development of cataracts and other ophthalmic diseases, preparation, and compns.)

RN 627085-43-2 HCAPLUS

CN 1-Piperidinyloxy, 4-[[4-(acetoxy)benzoyl]oxy]-2,2,6,6-tetramethyl- (9CI)
(CA INDEX NAME)

RN 627085-44-3 HCPLUS
CN Benzoic acid, 4-(acetyloxy)-, 1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl ester, hydrochloride (9CI) (CA INDEX NAME)

● HCl

L134 ANSWER 4 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 2003:493399 HCPLUS
DOCUMENT NUMBER: 141:67978
TITLE: Catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria
AUTHOR(S): Wittmann, Steffen; Heinisch, Lothar;
Scherlitz-Hofmann, Ina; Stoiber, Thomas; Ankel-Fuchs,
Dorothe; Moellmann, Ute
CORPORATE SOURCE: Hans Knoell-Institute for Natural Products Research,
Jena, Germany
SOURCE: BioMetals (2004), 17(1), 53-64
CODEN: BOMEHH; ISSN: 0966-0844
PUBLISHER: Kluwer Academic Publishers
DOCUMENT TYPE: Journal
LANGUAGE: English
GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB Different mono-, bis- or triscatecholates and mixed mono- or biscatecholate hydroxamates, including I, II, III, and IV, were synthesized as potential siderophores for mycobacteria. Siderophore activity was tested by growth promotion assays using wild type strains and iron transport mutants of mycobacteria as well as Gram-neg. bacteria. Some triscatecholates and biscatecholate hydroxamates were active in mutants of *Mycobacterium smegmatis* deficient in mycobactin and exochelin biosynthesis or exochelin permease, resp., indicating an uptake route independent of the exochelin/mycobactin pathway. Structure-activity relationships were studied. Ampicillin **conjugates** of some of these compds. were inactive against mycobacteria but active against Gram-neg. bacteria.
CC 10-2 (Microbial, Algal, and Fungal Biochemistry)
Section cross-reference(s): 25
IT Siderophores
RL: BSU (Biological study, unclassified); BIOL (Biological study)
(**conjugates** with ampicillin; antibacterial activity of)
IT **Biological transport**

(iron; catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria)

IT 69-53-4D, Ampicillin, **conjugates** with siderophore analogs
 RL: BSU (Biological study, unclassified); BIOL (Biological study)
 (antibacterial activity of)

IT 709658-43-5P 709658-44-6P 709658-47-9P 709658-49-1P 709658-50-4P
 709658-54-8P **709658-56-0P** 709658-63-9P 709658-64-0P
 709658-65-1P
 RL: BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); **BIOL (Biological study)**; PREP (Preparation)
 (preparation, structure, and siderophore activity in mycobacteria and gram-neg. bacteria)

IT **709658-56-0P**
 RL: BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); **BIOL (Biological study)**; PREP (Preparation)
 (preparation, structure, and siderophore activity in mycobacteria and gram-neg. bacteria)

RN 709658-56-0 HCPLUS

CN L-Lysine, N₂,N₆-bis[3,4-bis(acetyloxy)-5-bromobenzoyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 20 THERE ARE 20 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L134 ANSWER 5 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 2002:424649 HCPLUS
 DOCUMENT NUMBER: 137:63092
 TITLE: Highly Antibacterial Active Aminoacyl Penicillin
Conjugates with Acylated Bis-Catecholate
 Siderophores Based on Secondary Diamino Acids and
 Related Compounds
 AUTHOR(S): Heinisch, Lothar; Wittmann, Steffen; Stoiber, Thomas;
 Berg, Albrecht; Ankel-Fuchs, Dorothe; Moellmann, Ute
 CORPORATE SOURCE: Hans Knoell-Institute for Natural Products Research,
 Jena, Germany
 SOURCE: Journal of Medicinal Chemistry (2002), 45(14),
 3032-3040
 PUBLISHER: CODEN: JMCMAR; ISSN: 0022-2623
 DOCUMENT TYPE: American Chemical Society
 LANGUAGE: Journal
 English
 OTHER SOURCE(S): CASREACT 137:63092
 GI

- AB New acylated bis-catecholates and 1,3-benzoxazine-2,4-dione derivs. based on secondary diamino acids (N-(aminoalkyl)glycines, N-aminopropyl-alanine, and N-aminopropyl-4-aminovaleric acid), on N-(aminoalkyl)aminomethyl benzoic acids, on N-(aminoalkyl)aminomethyl phenoxyacetic acids, or on 3,5-diaminobenzoic acid were synthesized as artificial siderophores. The corresponding diamino acids were obtained from the diamines and oxocarboxylic acids by catalytic hydrogenation. The acylated bis-catecholates and 1,3-benzoxazine-2,4-diones were coupled with ampicillin or amoxicillin to new siderophore aminoacylpenicillin **conjugates**. These **conjugates** exhibited very strong antibacterial activity in vitro against Gram-neg. bacterial pathogens including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Escherichia coli, Klebsiella pneumoniae, and Serratia marcescens. The ampicillin derivative I (R = ampicillin) (HKI 9924154) and the corresponding amoxicillin derivative I (R = amoxicillin) (HKI 9924155) represent the most active compds. The **conjugates** can use bacterial iron siderophore uptake routes to penetrate the Gram-neg. outer membrane permeability barrier. This was demonstrated by assays with mutants deficient in components of the iron transport systems. New siderophore penicillin V **conjugates** with the siderophore component attached to the Ph ring of penicillin V are inactive against these Gram-neg. bacteria.
- CC 26-5 (Biomolecules and Their Synthetic Analogs)
Section cross-reference(s): 10, 34
- ST penicillin **conjugate** acylated catecholate siderophore prepn
antibacterial; aminoacyl penicillin **conjugate** prepn iron
complexation antibacterial; siderophore aminoacyl penicillin
conjugate prepn; diamino acid acylated penicillin deriv prepn
antibacterial; artificial siderophore aminoacyl penicillin
- IT Antibacterial agents
Complexation
(preparation, antibacterial, siderophore, and iron-complexing activities of
aminoacyl penicillin **conjugates** with acylated bis-catecholate
siderophores)
- IT Siderophores
RL: BSU (Biological study, unclassified); SPN (Synthetic preparation);
BIOL (Biological study); PREP (Preparation)
(preparation, antibacterial, siderophore, and iron-complexing activities of
aminoacyl penicillin **conjugates** with acylated bis-catecholate
siderophores)
- IT 201296-72-2P 212776-99-3P 212777-03-2P 212777-05-4P 439216-63-4P
439216-81-6P 439216-82-7P 439216-83-8P 439216-84-9P 439216-85-0P
439216-86-1P 439216-87-2P **439216-88-3P** 439216-89-4P

439216-90-7P 439216-91-8P 439216-93-0P 439216-94-1P 439216-95-2P
 RL: BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); **BIOL (Biological study)**; PREP (Preparation); RACT (Reactant or reagent)

(preparation, antibacterial, siderophore, and iron-complexing activities of aminoacyl penicillin **conjugates** with acylated bis-catecholate siderophores)

IT 212777-33-8P 212777-35-0P 212777-37-2P 439216-64-5P 439216-65-6P
 439216-66-7P 439216-67-8P 439216-68-9P 439216-69-0P 439216-96-3P
 439216-97-4P 439216-98-5P 439216-99-6P 439217-00-2P 439217-01-3P
 439217-02-4P **439217-03-5P** 439217-04-6P 439217-05-7P
 439217-06-8P 439217-07-9P 439217-08-0P 439217-09-1P

RL: BSU (Biological study, unclassified); SPN (Synthetic preparation); **BIOL (Biological study)**; PREP (Preparation)

(preparation, antibacterial, siderophore, and iron-complexing activities of aminoacyl penicillin **conjugates** with acylated bis-catecholate siderophores)

IT 69-53-4, Ampicillin 109-76-2, 1,3-Diaminopropane 110-60-1,
 1,4-Butanediamine 119-67-5, 2-Formylbenzoic acid 123-76-2,
 4-Oxopentanoic acid 127-17-3, 2-Oxopropanoic acid, reactions 462-94-2,
 1,5-Pentanediamine 535-87-5, 3,5-Diaminobenzoic acid 551-16-6,
 6-Aminopenicillanic acid 6280-80-4 6291-84-5 22042-71-3 24123-14-6
 26787-78-0, Amoxicillin 57929-25-6 65055-19-8 201296-89-1
 212777-24-7 212777-29-2 439216-78-1 439216-79-2 439216-80-5

RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation, antibacterial, siderophore, and iron-complexing activities of aminoacyl penicillin **conjugates** with acylated bis-catecholate siderophores)

IT 13051-67-7P 44902-44-5P 439216-62-3P 439216-70-3P 439216-71-4P
 439216-72-5P 439216-73-6P 439216-74-7P 439216-75-8P 439216-77-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation, antibacterial, siderophore, and iron-complexing activities of aminoacyl penicillin **conjugates** with acylated bis-catecholate siderophores)

IT 439216-88-3P

RL: BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); **BIOL (Biological study)**; PREP (Preparation); RACT (Reactant or reagent)

(preparation, antibacterial, siderophore, and iron-complexing activities of aminoacyl penicillin **conjugates** with acylated bis-catecholate siderophores)

RN 439216-88-3 HCPLUS

CN Glycine, N-[3,4-bis(acetyloxy)benzoyl]-N-[4-[[3,4-bis(acetyloxy)benzoyl]amino]butyl]- (9CI) (CA INDEX NAME)

IT 439217-03-5P

RL: BSU (Biological study, unclassified); SPN (Synthetic preparation); **BIOL (Biological study)**; PREP (Preparation)

(preparation, antibacterial, siderophore, and iron-complexing activities of

aminoacyl penicillin **conjugates** with acylated bis-catecholate siderophores)

RN 439217-03-5 HCPLUS

CN Glycinamide, N-[3,4-bis(acetyloxy)benzoyl]-N-[4-[[3,4-bis(acetyloxy)benzoyl]amino]butyl]glycyl-N-[(2S,5R,6R)-2-carboxy-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-6-yl]-2-phenyl-, (2R)- (9CI)
(CA INDEX NAME)

Absolute stereochemistry.

REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L134 ANSWER 6 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1998:573493 HCPLUS

DOCUMENT NUMBER: 129:290321

TITLE: Synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**

AUTHOR(S): Poras, Herve; Kunesch, Gerhard; Barriere, Jean-Claude; Berthaud, Nadine; Andremont, Antoine

CORPORATE SOURCE: Laboratoire de Chimie Bioorganique et Bioinorganique (CNRS, URA 1384), Centre d'Orsay, Universite de Paris-Sud, Orsay, F-91405, Fr.

SOURCE: Journal of Antibiotics (1998), 51(8), 786-794
CODEN: JANTAJ; ISSN: 0021-8820

PUBLISHER: Japan Antibiotics Research Association

DOCUMENT TYPE: Journal

LANGUAGE: English

OTHER SOURCE(S): CASREACT 129:290321

GI

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

AB The first synthesis of siderophore **conjugates** of two macrolide antibiotics, spiramycin (I) and neospiramycin (II), which are unable to penetrate the outer membrane of Gram-neg. bacteria are described. These novel **conjugates** were prepared by regioselective acylation of a hydroxyl function of I and II with a dihydroxybenzoic Fe(III) complexing ligand linked via a carboxyl group containing spacer to the macrolide

antibiotics. The preliminary biol. evaluation of these novel **conjugates** under standard and iron depleted conditions has shown that their antibacterial activity was comparable to that of I and II.

CC 33-4 (Carbohydrates)
Section cross-reference(s): 1, 26
ST antibiotic catechol spiramycin siderophore **conjugate** prepn
IT Antibiotics
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
IT 70253-62-2P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
IT 24916-50-5
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); THU (Therapeutic use); BIOL (Biological study); RACT (Reactant or reagent); USES (Uses)
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
IT 89000-32-8P 214197-27-0P **214197-28-1P** 214197-30-5P
214197-31-6P 214197-32-7P 214197-34-9P 214197-35-0P 214197-36-1P
214197-38-3P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); **BIOL (Biological study)**; PREP (Preparation); USES (Uses)
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
IT 100-51-6, Benzenemethanol, reactions 108-24-7, Acetic anhydride
303-38-8, 2,3-Dihydroxybenzoic acid
RL: RCT (Reactant); RACT (Reactant or reagent)
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
IT 486-79-3P, 2,3-Diacetoxybenzoic acid 5514-99-8P 16652-76-9P
26727-22-0P 42854-62-6P 70656-95-0P 201296-76-6P 214197-42-9P
214197-43-0P 214197-44-1P 214197-46-3P 214197-48-5P 214197-49-6P
214197-50-9P 214197-52-1P 214197-53-2P 214197-54-3P 214197-55-4P
RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
IT **214197-28-1P**
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); **BIOL (Biological study)**; PREP (Preparation); USES (Uses)
(synthesis and in vitro antibacterial activity of catechol-spiramycin **conjugates**)
RN 214197-28-1 HCPLUS
CN Leucomycin V, 9-O-[(2R,5S,6R)-5-(dimethylamino)tetrahydro-6-methyl-2H-pyran-2-yl]-, 2A-[3,4-bis(acetoxy)benzoate] (9CI) (CA INDEX NAME)

Absolute stereochemistry.
Double bond geometry as shown.

PAGE 1-A

PAGE 2-A

REFERENCE COUNT: 14 THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L134 ANSWER 7 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1998:243816 HCPLUS

DOCUMENT NUMBER: 128:309039

TITLE: Moisture transport studies on newly developed aromatic and aromatic/aliphatic copolyester thin films

AUTHOR(S): Shi, Frank F.; Economy, James

CORPORATE SOURCE: Integrated Device Technology, Inc., Hillsboro, OR, 97124, USA

SOURCE: Journal of Polymer Science, Part B: Polymer Physics (1998), 36(6), 1025-1035

CODEN: JPBPEM; ISSN: 0887-6266

PUBLISHER: John Wiley & Sons, Inc.

DOCUMENT TYPE: Journal

LANGUAGE: English

AB In polymers for microelectronics applications, moisture has a deleterious effect upon device reliability. The moisture transport behaviors of a newly developed family of all-aromatic and aromatic/aliphatic copolyester thermo-setting films were described. The moisture uptake as a function of temperature, relative humidity, sample thickness, and processing conditions were

were presented via **conjugate** moisture sorption tests. The post-curing near but below Tg resulted in an increase in both total moisture uptake and diffusion coefficient due to the effect of phys. aging and the generation of sample defect volume **176516-40-8**. P P P P.

CC 37-5 (Plastics Manufacture and Processing)

Section cross-reference(s): 76

REFERENCE COUNT: 32 THERE ARE 32 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L134 ANSWER 8 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1997:414801 HCPLUS

DOCUMENT NUMBER: 127:108624

TITLE: Photo-responsive catalysis by thymine-cyclodextrin conjugates

AUTHOR(S): Nozaki, Tomoyuki; Maeda, Michiko; Maeda, Yasushi; Kitano, Hiromi

CORPORATE SOURCE: Department Chemical Biochemical Engineering, Toyama University, Toyama, 930, Japan

SOURCE: Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1997), (6), 1217-1220

CODEN: JCPKBH; ISSN: 0300-9580

PUBLISHER: Royal Society of Chemistry

DOCUMENT TYPE: Journal

LANGUAGE: English

AB Conference proceedings. Primary hydroxy groups of β -cyclodextrin (β -CD) have been substituted with thymine (Thy) groups. By photo-irradiation with UV light at 280 nm, the introduced thymine groups adjacent to the CD cavity underwent reversible dimerization and the catalytic efficiency (k_{cat}/K_{diss}) of the modified CD in the hydrolyses of p-nitrophenyl acetate and m-nitrophenyl acetate increased. By further irradiation with light at 240 nm, the catalytic efficiency decreased to that of the CD-Thy conjugate due to the photo-cleavage of the thymine dimer. This phenomenon implies that the binding of guest mols. by the CD-Thy conjugate and subsequent change in the catalytic efficiency of the conjugate occurred photo-responsively. The steric effect on the acceleration or deceleration of the hydrolyses of Ph esters by CD-Thy and its derivs. is also discussed.

CC 22-4 (Physical Organic Chemistry)
Section cross-reference(s): 7, 26, 33

IT 830-03-5, p-Nitrophenyl acetate **1210-97-5**, 4-Acetoxy-3-nitrobenzoic acid 1523-06-4, 3-Nitrophenyl acetate
RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)
(photoresponsive thymine-cyclodextrin **conjugate** as catalyst for nitrophenyl esters)

IT **1210-97-5**, 4-Acetoxy-3-nitrobenzoic acid
RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)
(photoresponsive thymine-cyclodextrin **conjugate** as catalyst for nitrophenyl esters)

RN 1210-97-5 HCPLUS

CN Benzoic acid, 4-(acetoxy)-3-nitro- (9CI) (CA INDEX NAME)

REFERENCE COUNT: 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L134 ANSWER 9 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1996:721150 HCPLUS
DOCUMENT NUMBER: 126:108758
TITLE: Transdermal iontophoresis of sodium nonivamide acetate I. Consideration of electrical and chemical factors
AUTHOR(S): Fang, Jia-You; Huang, Yaw-Bin; Wu, Pao-Chu; Tsai, Yi-Hung
CORPORATE SOURCE: School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan
SOURCE: International Journal of Pharmaceutics (1996), 143(1), 47-58
CODEN: IJPHDE; ISSN: 0378-5173
PUBLISHER: Elsevier
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Transdermal iontophoresis is a process which enhances skin permeation of ionized species by an elec. field as driving force. The aim of this present study was to investigate the transdermal iontophoresis of a newly

designed capsaicin derivative, sodium nonivamide acetate (SNA). Studies of elec. and physicochem. factors acting on the kinetics of in vitro iontophoresis were performed. Iontophoresis increased the transdermal penetration flux of SNA as compared to the passive diffusion in this study. Several application modes which possessed the same elec. energy had been researched. The iontophoretic flux of SNA increased following the decrease of donor buffer pH values. This trend could be due to the physiol. property of skin and electro-osmotic flow presented. Comparing the various application modes, the discontinuous on/off cyclic current mode showed higher penetration capacity than did continuous mode which was due to the intensity of effective current which would not decay for on/off cyclic application of iontophoresis. The result of the present study is particularly helpful in the development of a SNA transdermal iontophoretic delivery system.

CC 63-5 (Pharmaceuticals)
IT **Biological transport**

Skin

(permeation; elec. and chemical factors in transdermal iontophoresis of sodium nonivamide acetate)

IT **185993-43-5**

RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); **BIO1 (Biological study)**; PROC (Process); USES (Uses)

(elec. and chemical factors in transdermal iontophoresis of sodium nonivamide acetate)

IT **185993-43-5**

RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); **BIO1 (Biological study)**; PROC (Process); USES (Uses)

(elec. and chemical factors in transdermal iontophoresis of sodium nonivamide acetate)

RN 185993-43-5 HCPLUS

CN Benzamide, 4-(acetoxy)-3-methoxy-N-(1-oxononyl)-, sodium salt (9CI) (CA INDEX NAME)

● Na

L134 ANSWER 10 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1995:441850 HCPLUS
 DOCUMENT NUMBER: 122:222648
 TITLE: Modeling of controlled release of aspirin derivatives from human erythrocytes
 AUTHOR(S): Ohsako, Masahiko; Oka, Yasuhiro; Tsuzuki, Osami;
 Matsumoto, Yasuhiro
 CORPORATE SOURCE: Dep. Pharm., Daiichi Coll. Pharm. Sci., Fukuoka, 815,

SOURCE: Japan
Biological & Pharmaceutical Bulletin (1995), 18(2),
310-14

PUBLISHER: CODEN: BPBLEO; ISSN: 0918-6158
Pharmaceutical Society of Japan
DOCUMENT TYPE: Journal
LANGUAGE: English

AB The transport of aspirin (ASP) and its derivs. (m- or p-acetoxybenzoic acid (m- or p-AcOHBA), o-propionyloxybenzoic acid (PrOHBA), o-butyryloxybenzoic acid (BuOHBA), o-acetoxyhippuric acid (AcOHPA), and o-acetoxy-N-benzoyl-β-alanine (AcONBA)) through human erythrocyte membrane was investigated. ASP derivs. were transported into the erythrocytes where they were hydrolyzed and then released, although the derivs. varied in the rate of transport. In different binding positions, the hydrolyzed derivs. were released rapidly in the order of p- > m- > o-AcOHBA (ASP). The rates of derivs. were accelerated by lengthening of the side chain of the acetoxy group (BuOHBA > PrOHBA > ASP). The rate of release of o-, m- or p-AcOHBA, BuOHBA and PrOHBA was related to hydrolysis rate in erythrocytes but not to partition coefficient (log P). In different amino acids in a carboxyl group of ASP, the release of AcONBA was slower and about 2 h was required to attain equilibrium. The release of AcOHPA was also slower and increased gradually during an incubation of 3 h. The rate of release of AcOHPA and AcONBA was not related to hydrolysis rate in the erythrocytes. The rates were equivalent values with the predicted values calculated by log P of tested drugs. It was suggested from these results that ASP derivs. were able to control the release from human erythrocytes.

CC 63-5 (Pharmaceuticals)

IT **Biological transport**

Drug bioavailability

Erythrocyte

Hydrolysis

Kinetics of hydrolysis

Simulation and Modeling, biological

Solution rate

(modeling of controlled release of aspirin derivs. from human erythrocytes)

IT 50-78-2, Aspirin **2345-34-8**, p-Acetoxybenzoic acid 6304-89-8,
m-Acetoxybenzoic acid

RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); **BIO** (Biological study); PROC (Process); USES (Uses)

(modeling of controlled release of aspirin derivs. from human erythrocytes)

IT **2345-34-8**, p-Acetoxybenzoic acid

RL: BPR (Biological process); BSU (Biological study, unclassified); THU (Therapeutic use); **BIO** (Biological study); PROC (Process); USES (Uses)

(modeling of controlled release of aspirin derivs. from human erythrocytes)

RN 2345-34-8 HCAPLUS

CN Benzoic acid, 4-(acetoxy)- (9CI) (CA INDEX NAME)

L134 ANSWER 11 OF 18 HCAPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1994:239907 HCAPLUS
DOCUMENT NUMBER: 120:239907
TITLE: Growth promotion of synthetic catecholate derivatives
on Gram-negative bacteria
AUTHOR(S): Reissbrodt, Rolf; Heinisch, Lothar; Mollmann, Ute;
Rabsch, Wolfgang; Ulbricht, Hermann
CORPORATE SOURCE: Robert Koch-Inst., Bundesgesundheitsamtes,
Wernigerode, D-3700, Germany
SOURCE: BioMetals (1993), 6(3), 155-62
CODEN: BOMEHH; ISSN: 0966-0844
DOCUMENT TYPE: Journal
LANGUAGE: English
AB Derivs. of benzoic acid, glyoxylic acid benzhydrazone, oxanilic acid and N-dihydroxybenzylidene-2,4,6-trimethylaminobenzene were investigated as catecholic iron chelators under iron-depleted conditions. Some of the compds. showed strong pos. reactions in the universal chemical siderophore assay (CAS): 3,4-dihydroxybenzoic acid, glyoxylic acid 2,3-dihydroxybenzhydrazone, N-3,4-dihydroxybenzylidene-2,4,6-trimethylaminobenzene. In particular these compds. also enabled removal of iron from iron-saturated transferrin. Using various siderophore indicator strains (Enterobacteriaceae, Pseudomonas aeruginosa and Aeromonas hydrophila mutants) in bioassays the following growth promotion could be detected: vicinal substituents (e.g. 2,3- or 3,4-) were essential, the carboxyamido group seen in benzoic acids and glyoxylic acid benzhydrazones contributed to a pos. reaction as well as the azomethin group (in N-3,4-dihydroxybenzylidene-2,4,6-trimethylaminobenzene).
2,3-Dihydroxybenzoic acid and the 2,3-diacetoxy substitute preferably promoted growth of Enterobacteriaceae mutants. In contrast, the 3,4-positioned compds. preferably promoted growth of P. aeruginosa mutants and A. hydrophila SB 22. Glyoxylic acid di(methoxycarbonyloxy)-benzhydrazones (2,3- and 3,4- positioned) including the 2,3-dihydroxy compound preferably enabled growth of the non-fermenters. N-3,4-dihydroxybenzylidene-2,4,6-trimethylaminobenzene supplied all mutants of Salmonella, Escherichia coli, Klebsiella, Morganella, P. aeruginosa and A. hydrophila with iron. Transport of glyoxylic acid 2,3-dihydroxybenzhydrazone depended on tonB, and required the involvement of the iron-regulated outer membrane proteins (IROMPs) FepA, Cir and Fiu.
CC 10-3 (Microbial, Algal, and Fungal Biochemistry)
Section cross-reference(s): 26
IT **Biological transport**
(of glyoxylic acid dihydroxybenzhydrazone, by Escherichia coli, TonB and iron-regulated outer membrane proteins role in)
IT 69-72-7; Salicylic acid, biological studies 99-50-3,
3,4-Dihydroxybenzoic acid 303-38-8, 2,3-Dihydroxybenzoic acid 486-79-3, 2,3-Diacetoxybenzoic acid 500-72-1, Oxanilic acid 58534-64-8, 3,4-Diacetoxybenzoic acid 120370-69-6 120370-70-9 134313-88-5 141992-38-3 141992-39-4 141992-41-8 154263-79-3 154263-80-6
RL: **BIOl (Biological study)**
(Gram-neg. bacteria growth response to, structure and iron chelation in relation to)
IT 58534-64-8, 3,4-Diacetoxybenzoic acid
RL: **BIOl (Biological study)**
(Gram-neg. bacteria growth response to, structure and iron chelation in relation to)
RN 58534-64-8 HCAPLUS
CN Benzoic acid, 3,4-bis(acetyloxy)- (9CI) (CA INDEX NAME)

L134 ANSWER 12 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1993:665505 HCPLUS
DOCUMENT NUMBER: 119:265505
TITLE: Preparation of [1-11C]dopamine [1-11C]p-tyramine and [1-11C]m-tyramine. Autoradiography and PET examination of [1-11C]dopamine in primates
AUTHOR(S): Schoeps, Karol Olof; Halldin, Christer; Naagren, Kjell; Swahn, Carl Gunnar; Karlsson, Per; Hall, Haakan; Farde, Lars
CORPORATE SOURCE: Dep. Psychiatry Psychol., Karolinska Hosp., Stockholm, S-10401, Swed.
SOURCE: Nuclear Medicine and Biology (1993), 20(5), 669-78
CODEN: NMBIEO; ISSN: 0883-2897
DOCUMENT TYPE: Journal
LANGUAGE: English
AB A method for no-carrier-added I-11C-labeling of 3-hydroxy-, 4-hydroxy- and 3,4-dihydroxyphenethylamines is described. [11C]Dopamine, [11C]p-tyramine and [11C]m-tyramine were prepared from online produced [11C]nitromethane. Condensation of [11C]nitromethane with various protected and unprotected benzaldehydes was investigated. A one-pot 2-step reduction of the substituted 14C-labeled nitrostyrene intermediates, gave after hydrolysis and reversed-phase semi-preparative HPLC-purification the corresponding labeled amines in a total radiochem. yield of 8-20% (based on [11C]CO₂ and decay-corrected). The total synthesis time was 45-50 min with a specific radioactivity of 400-1000 Ci/mmol (15-37 GBq/ μ mol). The radiochem. purity was >98%. [11C]Dopamine was used for in vitro autoradiog. on human post-mortem brain sections and for positron emission tomog. (PET) on Cynomolgus monkeys. Autoradiog. examination of [11C]dopamine binding on human brain section post-mortem demonstrated specific binding in the caudate putamen and the substantia nigra, regions with a dense dopaminergic innervation. Some binding was also seen in the globus pallidum, nucleus ventralis of the thalamus and in nucleus dentatus of the cerebellum, regions where the dopaminergic innervation is very low. In PET exams. of [11C]dopamine binding in Cynomolgus monkeys, there was a high uptake of radioactivity in the pituitary, the kidneys and the heart. Any passage of [11C]dopamine across the blood-brain barrier could not be demonstrated. In human PET studies, [11C]dopamine has potential as a radioligand for examination of the myocardium, pituitary and kidneys.
CC 8-9 (Radiation Biochemistry)
Section cross-reference(s): 14, 25, 34
IT 100-83-4 123-08-0, 4-Hydroxybenzaldehyde 123-11-5, reactions
591-31-1 878-00-2 34231-78-2 67727-64-4
151560-64-4
RL: **BIO** (Biological study)
(condensation of, with carbon-11-labeled nitromethane)
IT 878-00-2 67727-64-4
RL: **BIO** (Biological study)
(condensation of, with carbon-11-labeled nitromethane)

RN 878-00-2 HCPLUS
CN Benzaldehyde, 4-(acetyloxy)- (9CI) (CA INDEX NAME)

RN 67727-64-4 HCPLUS
CN Benzaldéhyde, 3,4-bis(acetyloxy)- (9CI) (CA INDEX NAME)

L134 ANSWER 13 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1990:417437 HCPLUS

DOCUMENT NUMBER: 113:17437

TITLE: Urinary metabolites of benz bromarone in man

AUTHOR(S): Maurer, H.; Wollenberg, P.

CORPORATE SOURCE: Inst. Pharmacol. Toxicol., Univ. Saarland,
Homburg/Saar, D-6650, Germany

SOURCE: Arzneimittel-Forschung (1990), 40(4), 460-2

CODEN: ARZNAD; ISSN: 0004-4172

DOCUMENT TYPE: Journal

LANGUAGE: English

OTHER SOURCE(S): CASREACT 113:17437

AB Benzbromarone [(3,5-dibromo-4-hydroxyphenyl)-(2-ethyl-3-benzofuranyl)-ketone] is a widely used uricosuric drug which was reported to be metabolized by successive debromination. Recently, however, it was reported that benzbromarone is not debrominated but hydroxylated at the Et side chain. The presented paper describes further studies on the metabolism of the drug in man. The metabolites were identified in urine samples from 2 different patients intoxicated suicidally with high doses of benzbromarone after cleavage of **conjugates**, extraction and derivatization by acetylation using gas chromatog.-mass spectrometry. The following 5 metabolites could be identified besides the unchanged benzbromarone (BB): hydroxy-alkyl-BB, oxo-BB, 2 isomers of hydroxyaryl-BB and hydroxy-methoxy-aryl-BB. Therefore, the following 2 phase I metabolic pathways can be postulated: successive oxidation of the Et side chain and one and 2-fold hydroxylation of the benzofuran ring followed by methylation of one of the hydroxy groups. Benzbromarone and its metabolites are excreted in urine partly in a **conjugated** form. Debrominated metabolites could not be detected, although the concns. of benzbromarone and its metabolites were very high in the urine samples studied.

CC 1-2 (Pharmacology)

IT 127564-85-6 127564-86-7 127650-89-9

127650-90-2

RL: **BIO** (Biological study)

(as benzbromarone metabolite, gas chromatog.-mass spectrometry in determination

of, in urine of humans)

IT 127564-85-6 127564-86-7 127650-89-9

127650-90-2

RL: **BIO_L** (*Biological study*)

(as benbromarone metabolite, gas chromatog.-mass spectrometry in determination

of, in urine of humans)

RN 127564-85-6 HCPLUS

CN Methanone, [4-(acetyloxy)-3,5-dibromophenyl][(acetyloxy)-2-ethyl-3-benzofuranyl]- (9CI) (CA INDEX NAME)

D1-O-Ac

RN 127564-86-7 HCPLUS

CN Methanone, [4-(acetyloxy)-3,5-dibromophenyl][ar-(acetyloxy)-2-ethyl-ar-methoxy-3-benzofuranyl]- (9CI) (CA INDEX NAME)

D1-O-Ac

D1-O-Me

RN 127650-89-9 HCPLUS

CN Methanone, [4-(acetyloxy)-3,5-dibromophenyl](2-ethenyl-3-benzofuranyl)- (9CI) (CA INDEX NAME)

RN 127650-90-2 HCPLUS
 CN Ethanone, 1-[3-[4-(acetyloxy)-3,5-dibromobenzoyl]-2-benzofuranyl]- (9CI)
 (CA INDEX NAME)

L134 ANSWER 14 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
 ACCESSION NUMBER: 1990:180567 HCPLUS
 DOCUMENT NUMBER: 112:180567
 TITLE: Flexible, impact-resistant liquid-crystal polyester blends
 INVENTOR(S): Kishimoto, Yasushi; Shinjo, Yuji
 PATENT ASSIGNEE(S): Asahi Chemical Industry Co., Ltd., Japan
 SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.
 CODEN: JKXXAF
 DOCUMENT TYPE: Patent
 LANGUAGE: Japanese
 FAMILY ACC. NUM. COUNT: 1
 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 01182360	A2	19890720	JP 1988-4744	19880114
JP 05012391	B4	19930217		

PRIORITY APPLN. INFO.: JP 1988-4744 19880114
 AB Compns. with good flexibility, elongation, and impact resistance comprise
 (A) 70-99 parts anisotropic melt-forming liquid-crystalline polyester
 comprising
 CORO 20-80, CORICO 10-40, and OR20 10-40 mol% (R = C6-15 aromatic residue; R1
 = C6-15 aromatic residue, C4-20 alicyclic residue, C1-20 aliphatic residue; R2
 = C6-15 aromatic residue, C4-20 alicyclic residue, C2-20 aliphatic residue) and
 (B) 1-30 parts hydrogenated copolymer comprising aromatic vinyl polymer block
 and conjugated diene polymer block. Thus, a blend of 92 parts 40:30:30
 p-acetoxybenzoic acid-4,4'-diacetoxysopropylidenediphenyl-terephthalic
 acid copolymer (intrinsic viscosity at 30° in a 50:50
 CHCl₂CHCl₂-pentafluorophenol 0.85) and 8 parts hydrogenated (99%) 20:80
 styrene-butadiene block copolymer (I) (number-average mol. weight 53,000) was
 injection molded at 300° to give liquid-crystal test pieces with
 tensile strength 830 kg/cm², elongation 82%, flexural modulus 24,900
 kg/cm², and notched Izod impact strength 26 kg-cm/cm, vs. 920, 25, 28,000,
 and 4.1, resp., without I.
 IC ICM C08L067-00
 ICI C08L067-00, C08L053-02
 CC 37-3 (Plastics Manufacture and Processing)
 IT 52237-98-6P 70368-77-3P 118738-21-9P
 124996-78-7P 124996-79-8P 124996-80-1P
 RL: PREP (Preparation)
 (manufacture of liquid-crystalline, blends with vinyl-conjugated diene
 block copolymer, flexible, impact-resistant)

IT 52237-98-6P 70368-77-3P 118738-21-9P
124996-78-7P 124996-79-8P 124996-80-1P
RL: PREP (Preparation)

(manufacture of liquid-crystalline, blends with vinyl-conjugated diene
block copolymer, flexible, impact-resistant)

RN 52237-98-6 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, polymer with 4-(acetoxy)benzoic acid and
1,2-ethanediol (9CI) (CA INDEX NAME)

CM 1

CRN 2345-34-8

CMF C9 H8 O4

CM 2

CRN 107-21-1

CMF C2 H6 O2

CM 3

CRN 100-21-0

CMF C8 H6 O4

RN 70368-77-3 HCAPLUS

CN 1,4-Benzenedicarboxylic acid, polymer with 4-(acetoxy)benzoic acid and
[1,1'-biphenyl]-4,4'-diyl diacetate (9CI) (CA INDEX NAME)

CM 1

CRN 32604-29-8

CMF C16 H14 O4

CM 2

CRN 2345-34-8
CMF C9 H8 O4

CM 3

CRN 100-21-0
CMF C8 H6 O4

RN 118738-21-9 HCPLUS

CN 1,4-Benzenedicarboxylic acid, polymer with 4-(acetoxy)benzoic acid,
6-(acetoxy)-2-naphthalenecarboxylic acid and oxydi-4,1-phenylene
diacetate (9CI) (CA INDEX NAME)

CM 1

CRN 23446-80-2
CMF C16 H14 O5

CM 2

CRN 17295-26-0
CMF C13 H10 O4

CM 3

CRN 2345-34-8
CMF C9 H8 O4

CM 4

CRN 100-21-0
CMF C8 H6 O4

RN 124996-78-7 HCPLUS

CN 1,4-Benzenedicarboxylic acid, polymer with 4-(acetoxy)benzoic acid and
 $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl[1,1'-biphenyl]-4,4'-
diylbis(methylene) diacetate (9CI) (CA INDEX NAME)

CM 1

CRN 124996-77-6
CMF C22 H26 O4

CM 2

CRN 2345-34-8
CMF C9 H8 O4

CM 3

CRN 100-21-0
CMF C₈ H₆ O₄

RN 124996-79-8 HCAPLUS
CN 1,3-Benzeneddicarboxylic acid, polymer with 4-(acetoxy)benzoic acid,
1,4-benzeneddicarboxylic acid, 1,2-ethanediol and
 $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl[1,1'-biphenyl]-4,4'-
diylbis(methylene) diacetate (9CI) (CA INDEX NAME)

CM 1

CRN 124996-77-6
CMF C₂₂ H₂₆ O₄

CM 2

CRN 2345-34-8
CMF C₉ H₈ O₄

CM 3

CRN 121-91-5
CMF C₈ H₆ O₄

CM 4

CRN 107-21-1
CMF C₂ H₆ O₂

CM 5

CRN 100-21-0
CMF C₈ H₆ O₄

RN 124996-80-1 HCPLUS

CN 1,3-Benzenedicarboxylic acid, polymer with 4-(acetoxy)benzoic acid,
6-(acetoxy)-2-naphthalenecarboxylic acid, 1,4-benzenedicarboxylic acid,
1,2-ethanediol and $\alpha,\alpha,\alpha',\alpha'$ -tetramethyl[1,1'-
biphenyl]-4,4'-diylbis(methylene) diacetate (9CI) (CA INDEX NAME)

CM 1

CRN 124996-77-6
CMF C₂₂ H₂₆ O₄

CM 2

CRN 17295-26-0
CMF C₁₃ H₁₀ O₄

CM 3

CRN 2345-34-8
CMF C9 H8 O4

CM 4

CRN 121-91-5
CMF C8 H6 O4

CM 5

CRN 107-21-1
CMF C2 H6 O2

CM 6

CRN 100-21-0
CMF C8 H6 O4

L134 ANSWER 15 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1989:628958 HCPLUS

DOCUMENT NUMBER: 111:228958

TITLE:

Conjugates of trans-coniferyl alcohol in propolis and its sources

AUTHOR(S): Sokolov, I. V.; Torgov, I. V.

CORPORATE SOURCE: NPO "Vitaminy", Moscow, USSR

SOURCE: Khimiya Prirodnykh Soedinenii (1989), (3), 319-24

CODEN: KPSUAR; ISSN: 0023-1150

DOCUMENT TYPE: Journal

LANGUAGE: Russian

OTHER SOURCE(S): CASREACT 111:228958
GI

AB TLC of 22 g buds and 28 g propolis from *Populus tremula* afforded I 12.5 and 24.5 mg, II 20.0 and 60.0 mg, III 10.4 and 15.5 mg, IV 25.0 and 35.5 mg, V 5.0 and 11.6 mg, and VI 10.8 and 20.3 mg, resp. The trans-coniferyl ferulate, p-coumarate, and p-hydroxybenzoate are new natural compds. The structures of I-VI were determined by mass, NMR, and IR spectroscopy.

CC 11-1 (Plant Biochemistry)

Section cross-reference(s): 26

ST poplar bud propolis coniferyl **conjugate**; hydroxybenzoate coniferyl poplar bud propolis; coumarate coniferyl poplar bud propolis; ferulate coniferyl poplar bud propolis

IT Propolis

(trans-coniferyl alc. **conjugates** from poplar buds and)

IT Plant tissue

(bud; trans-coniferyl alc. **conjugates** from poplar propolis and)

IT Poplar

(*P. tremula*, trans-coniferyl alc. **conjugates** from buds and propolis from)

IT 123821-71-6 **123821-72-7** 123842-11-5

RL: **BIOL (Biological study)**

(from poplar buds and propolis)

IT 32811-40-8D, trans-Coniferyl alcohol, **conjugates** 67638-40-8

123821-69-2 123821-70-5

RL: **BIOL (Biological study)**

(from poplar buds and propolis, isolation and structure of)

IT **123821-72-7**

RL: **BIOL (Biological study)**

(from poplar buds and propolis)

RN 123821-72-7 HCPLUS

CN Benzoic acid, 4-(acetoxy)-, 3-[4-(acetoxy)-3-methoxyphenyl]-2-propenyl ester, (E)- (9CI) (CA INDEX NAME)

Double bond geometry as shown.

L134 ANSWER 16 OF 18 HCPLUS COPYRIGHT 2006 ACS on STM
 ACCESSION NUMBER: 1983:137308 HCPLUS
 DOCUMENT NUMBER: 98:137308
 TITLE: Inhibition of histidine decarboxylase and tumor promoter-induced arachidonic acid release by lecanoric acid analogs
 AUTHOR(S): Umezawa, Kazuo; Muramatsu, Shigemi; Ishizuka, Masaaki; Sawa, Tsutomu; Takeuchi, Tomio; Matsushima, Taijiro
 CORPORATE SOURCE: Inst. Med. Sci., Univ. Tokyo, Tokyo, 108, Japan
 SOURCE: Biochemical and Biophysical Research Communications (1983), 110(3), 733-9
 DOCUMENT TYPE: Journal
 LANGUAGE: English
 GI

AB Lecanoric acid analogs (I; R1 = OH, OAc; R2 = H, OAc, Me, F; R3 = H, Cl; R4 = H, OH, Br; R5 = H, OH, Cl, Me, NO2; R6 = H, CO2H, Cl, OH, CO2Me, OMe; R7 = H, Cl, Me, NO2) inhibited histidine decarboxylase [9024-61-7] and arachidonic acid [506-32-1] release from the **cell membrane** phospholipids induced a tumor promoter,

12-O-tetradecanoylphorbol-13-acetate [16561-29-8]. But the compds. did not inhibit cellular binding of phorbol-12,13-dibutyrate [37558-16-0].

Lecanoric acid analogs also inhibited prostaglandin synthetase [9055-65-6] and delayed-type hypersensitivity responses against sheep red blood cells in mice. Thus, lecanoric acid analogs antagonized several enzymic and cellular effects of the tumor promoter.

CC 1-6 (Pharmacology)

IT 480-56-8 480-56-8D, analogs 3679-63-8 55411-42-2 55411-48-8
 55411-56-8 55797-49-4 57976-98-4 62918-71-2 65482-90-8
 85120-54-3 **85120-55-4** 85120-56-5

RL: **BIOL (Biological study)**

(histidine decarboxylase and tumor promoter-induced arachidonic acid release inhibition by)

IT **85120-55-4**

RL: **BIOL (Biological study)**

(histidine decarboxylase and tumor promoter-induced arachidonic acid release inhibition by)

RN 85120-55-4 HCPLUS

CN Benzoic acid, 4-[[2,4-bis(acetoxy)benzoyl]amino]-2-hydroxy-, methyl ester (9CI) (CA INDEX NAME)

L134 ANSWER 17 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN

ACCESSION NUMBER: 1981:134430 HCPLUS

DOCUMENT NUMBER: 94:134430

TITLE: Preparation of phenol-protein **conjugates** by reaction of proteins with acetylated hydroxybenzoic acid nitrophenyl esters

AUTHOR(S): Wagner, G.; Hanfeld, V.

CORPORATE SOURCE: Sekt. Biowiss., Karl-Marx-Univ. Leipzig, Leipzig, DDR-7010, Ger. Dem. Rep.

SOURCE: Pharmazie (1980), 35(12), 739-41
CODEN: PHARAT; ISSN: 0031-7144

DOCUMENT TYPE: Journal
LANGUAGE: German

AB The phenolic hydroxyls of salicylic, β -resorcylic, and gentisic acids were acylated and the carboxyl groups of the acids were esterified with p-nitrophenol in the presence of DCCD. The resulting compds. reacted with free amino groups of human serum albumin and bovine γ -globulin; dialysis of the modified proteins at pH 8.0-9.0 to sep. unreacted material was accompanied by deacetylation to give phenolic protein derivs. Fifty-90% of the reagent in a given reaction mixture reacted with protein. Extents of modification ranged from 7.9 mol gentisyl residues/mol γ -globulin to 59.4 mol salicyl residues/mol albumin.

CC 6-3 (General Biochemistry)

ST Section cross-reference(s): 15

IT phenol protein **conjugate** prepn

IT 17374-48-0P 77008-85-6P 77008-86-7P 77008-87-8P **77008-88-9P**

RL: BSU (Biological study, unclassified); MFM (Metabolic formation); **BIOC** (**Biological study**); FORM (Formation, nonpreparative); PREP (Preparation)

(formation of, from acetoxybenzoate at alkaline pH)

IT **77008-88-9P**

RL: BSU (Biological study, unclassified); MFM (Metabolic formation); **BIOC** (**Biological study**); FORM (Formation, nonpreparative); PREP (Preparation)

(formation of, from acetoxybenzoate at alkaline pH)

RN 77008-88-9 HCPLUS

CN Benzoic acid, 4-(acetoxy)-2-hydroxy-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

L134 ANSWER 18 OF 18 HCPLUS COPYRIGHT 2006 ACS on STN
ACCESSION NUMBER: 1975:508150 HCPLUS
DOCUMENT NUMBER: 83:108150
TITLE: Cannabinoids. Influence on neurotransmitter uptake in rat brain synaptosomes
AUTHOR(S): Banerjee, Shailesh P.; Snyder, Solomon H.; Mechoulam, Raphael
CORPORATE SOURCE: Sch. Med., Johns Hopkins Univ., Baltimore, MD, USA
SOURCE: Journal of Pharmacology and Experimental Therapeutics (1975), 194(1), 74-81
CODEN: JPETAB; ISSN: 0022-3565
DOCUMENT TYPE: Journal
LANGUAGE: English
GI For diagram(s), see printed CA Issue.
AB Δ^1 -Tetrahydrocannabinol (Δ^1 -THC) (I) [1972-08-3] inhibited the accumulation of norepinephrine (NE) [51-41-2] and serotonin (5-HT) [50-67-9] into hypothalamic prepns. and dopamine (DA) [51-61-6] into the corpus striatum with K_i values of about 12 to 25 μM while γ -aminobutyric acid (GABA) [56-12-2] uptake into cerebral cortical prepns. was inhibited to a lesser extent ($K_i = 140 \mu\text{M}$). The affinities of Δ^6 -THC [5957-75-5], 7-hydroxy- Δ^1 -THC [29541-93-3], 7-hydroxy- Δ^6 -THC [28646-40-4] and cannabidiol [13956-29-1] for 5-HT, NE and GABA transports were similar to values for Δ^1 -THC, while cannabigerol [2808-33-5], cannabinol [521-35-7] and Δ^6 -THC-7-oic acid [39690-06-7] had substantially less affinity. Thus, hydroxylation of C-7 in Δ^6 -THC did not alter inhibitory potency, but its oxidation to an acid and aromatization of ring A greatly reduced affinity. The hydroxyl at C-31 of ring C was critical for inhibition of NE, 5-HT and GABA uptake, since its acetylation or methylation abolished activity. Inhibition of NE, DA, 5-HT and GABA uptake by all cannabinoids examined was noncompetitive.
CC 1-3 (Pharmacodynamics)
IT **Biological transport**
(of neurotransmitters, by brain, cannabinoids effect on)
IT 521-35-7 1242-67-7 1972-08-3 5957-75-5 13956-29-1 23132-17-4
25654-31-3 28646-40-4 29541-93-3 36403-68-6 39690-06-7
51263-83-3 **56420-97-4**
RL: **BIOL (Biological study)**
(neurotransmitter transport by brain synaptosome response to)
IT **56420-97-4**
RL: **BIOL (Biological study)**
(neurotransmitter transport by brain synaptosome response to)
RN 56420-97-4 HCPLUS
CN Benzoic acid, 2,4-bis(acetoxy)-3-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-6-pentyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

