Instituto de Matemática e Estatística Universidade de São Paulo

Lista 8

MAE0330 - Análise Multivariada de Dados Prof^a Lucia Pereira Barroso

Bruno Groper Morbin - n^{o} USP 11809875 Luigi Pavarini de Lima - n^{o} USP 11844642

São Paulo 19 de dezembro, 2022

Exercício 2

Considera-se o arquivo vendedores.xlsx para análise dos dados. Ajusta-se então um modelo de regressão multivariada, considerando o Índice de crescimento de vendas(X1) e Índice de lucratividade(X2) como variáveis respostas e Criatividade(X4) e Habilidade matemática(X7) como variáveis explicativas. Para o conjunto de dados, tem-se o seguinte dicionário:

- Análise do desempenho:
 - X1: índice de crescimento de vendas;
 - X2: índice de lucratividade e;
 - X3: índice de captação de novas vendas.
- Análise de habilidades:
 - X4: criatividade;
 - X5: raciocínio mecânico;
 - X6: raciocínio abstrato e;
 - X7: habilidade matemática.

Tabela 1: Conjunto de dados 'vendedores.xlsx'

Rotulo	X1	X2	Х3	X4	X5	X6	X7
1	93.0	96.0	97.8	9	12	9	20
2	88.8	91.8	96.8	7	10	10	15
3	95.0	100.3	99.0	8	12	9	26
4	101.3	103.8	106.8	13	14	12	29
5	102.0	107.8	103.0	10	15	12	32
6	95.8	97.5	99.3	10	14	11	21
7	95.5	99.5	99.0	9	12	9	25
8	110.8	122.0	115.3	18	20	15	51
9	102.8	108.3	103.8	10	17	13	31
10	106.8	120.5	102.0	14	18	11	39
11	103.3	109.8	104.0	12	17	12	32
12	99.5	111.8	100.3	10	18	8	31
13	103.5	112.5	107.0	16	17	11	34
14	99.5	105.5	102.3	8	10	11	34
15	100.0	107.0	102.8	13	10	8	34
16	81.5	93.5	95.0	7	9	5	16
17	101.3	105.3	102.8	11	12	11	32
18	103.3	110.8	103.5	11	14	11	35
19	95.3	104.3	103.0	5	14	13	30
20	99.5	105.3	106.3	17	17	11	27
21	88.5	95.3	95.8	10	12	7	15
22	99.3	115.0	104.3	5	11	11	42
23	87.5	92.5	95.8	9	9	7	16
24	105.3	114.0	105.3	12	15	12	37
25	107.0	121.0	109.0	16	19	12	39
26	93.3	102.0	97.8	10	15	7	23
27	106.8	118.0	107.3	14	16	12	39
28	106.8	120.0	104.8	10	16	11	49
29	92.3	90.8	99.8	8	10	13	17
30	106.3	121.0	104.5	9	17	11	44
31	106.0	119.5	110.5	18	15	10	43
32	88.3	92.8	96.8	13	11	8	10
33	96.0	103.3	100.5	7	15	11	27
34	94.3	94.5	99.0	10	12	11	19
35	106.5	121.5	110.5	18	17	10	42
36	106.5	115.5	107.0	8	13	14	47
37	92.0	99.5	103.5	18	16	8	18
38	102.0	99.8	103.3	13	12	14	28
39	108.3	122.3	108.5	15	19	12	41
40	106.8	119.0	106.8	14	20	12	37
41	102.5	109.3	103.8	9	17	13	32
42	92.5	102.5	99.3	13	15	6	23
43	102.8	113.8	106.8	17	20	10	32
44	83.3	87.3	96.3	1	5	9	15
45	94.8	101.8	99.8	7	16	11	24
46	103.5	112.0	110.8	18	13	12	37
47	89.5	96.0	97.3	7	15	11	14
48	84.3	89.8	94.3	8	8	8	9
49	104.3	109.5	106.5	14	12	12	36
50	106.0	118.5	105.0	12	16	11	39

Obtenção dos coeficientes estimados

Tem-se o seguinte modelo de regressão multivariada:

$$Y_{(n\times p)} = X_{(n\times q)}B_{(q\times p)} + U_{(n\times p)}$$

onde $X\equiv$ matriz das variáveis explicativas, $Y\equiv$ matriz das variáveis respostas, $B\equiv$ coeficientes da regressão, e $U\equiv$ erro aleatório do modelo.

Tem-se também as premissas de $\mathbb{E}(U)=0,\ Var(U_k)=\Sigma,$ onde $U_k\equiv$ k-ésima linha de U, correspondente a k-ésima unidade amostral.

No caso em questão, tem-se n=50 e p=q=2, portanto obtem-se os coeficientes estimados por Mínimos Quadrados da regressão multivariada através do cálculo:

$$\hat{B} = (X^T X)^{-1} X^T Y$$

```
> # Obtenção atráves do método multivariado
> Y = as.matrix(vendedores[c("X1","X2")])
> X = as.matrix(vendedores[c("X4","X7")])
>
> B_hat = solve(t(X)%*%X)%*%t(X)%*%Y
> colnames(B_hat) <- NULL; rownames(B_hat) <- NULL
>
> print(B_hat)
```

```
[,1] [,2]
[1,] 3.605998 3.638801
```

```
[2,] 1.756552 2.006603
```

```
> # Obtenção atráves do método univariado
> y = c(Y)
> x = kronecker(diag(1,nrow=2), X)
>
> b_hat = solve(t(x)%*%x)%*%t(x)%*%y
> print(b_hat)
```

[,1]

[1,] 3.605998

[2,] 1.756552

[3,] 3.638801

[4,] 2.006603

Nota-se que b_hat (obtido pelo método univariado) é equivalente a $vec(B_hat)$ obtido pelo método multivariado.

Verificação de normalidade multivariada

Para verificar uma das premissas do modelo que trata da normalidade multivariada do erro aleatório, calcula-se a distância de Mahalanobis obtida por:

$$(D_M)_i = \sqrt{(\epsilon_i - \mu_\epsilon)^T S^{-1}(\epsilon_i - \mu_\epsilon)}$$

sendo $\epsilon_i \equiv$ resíduos do ajuste da i-ésima unidade amostral, $\mu_\epsilon \equiv$ média amostral dos resíduos ajustados sendo representada por um vetor coluna, e $S \equiv$ matriz de covariância dos resíduos amostral, ou seja $S = \frac{1}{n-1} \sum_{j=1}^{n} (\epsilon_j - \mu_\epsilon) (\epsilon_j - \mu_\epsilon)^T$.

Portanto, visto que $\epsilon = Y - X\hat{B}$, obtém-se as seguintes distâncias de Mahalanobis por unidade amostral:

(A) IME

```
> e <- Y - X%*%B_hat</pre>
> mu_e <- t(c(mean(e[1]), mean(e[2]))); mu_e</pre>
         [,1]
                  [,2]
[1,] 25.41497 37.20973
> S <- cov(e); S
         X1
                  X2
X1 445.4927 439.7480
X2 439.7480 445.1363
> D_M <- apply(e, FUN=function(x) sqrt((x-mu_e)%*%solve(S)%*%t(x-mu_e)), MARGIN=1)</pre>
> # ou equivalentemente: > sqrt(mahalanobis(e,center = mu_e, cov = S))
>
≥ D_M
 [1] 4.237262 3.836750 4.012866 5.291878 4.431027 4.724733 4.347081 5.532128 4.417386 3.187828
[11] 4.323259 2.467348 4.149314 4.486935 4.513259 1.206779 5.026148 4.266663 3.149000 4.448741
[21] 2.726044 2.267494 3.329947 4.164182 3.351026 2.821335 3.834315 4.013288 5.337374 2.969026
[31] 4.223690 3.080665 3.460328 5.016111 3.765846 4.791342 3.263050 6.582452 3.416966 3.346177
[41] 4.078836 2.654091 3.525029 3.623647 3.309112 4.822890 2.743045 2.679526 5.230392 3.308187
```

Realiza-se o teste de Henze-Sirklers para verificar hipótese nula de normalidade multivariada.

```
> # Teste de Henze-Zirklers para normalidade multivariada

> par(cex=0.95)
> test_MN <- MVN::mvn(e,mvnTest = "hz",desc = F, multivariatePlot = "qq")</pre>
```


Figura 1: QQ-Plot para verificação da hipótese de normalidade multivariada

```
> # p-valor do teste
> library(ascii)
> print(ascii(test_MN$multivariateNormality), type = 'pandoc')
```

	Test	HZ	p value	MVN
1	Henze-Zirkler	0.53	0.38	YES

Com p-valor > 0,05 não rejeita-se hipótese nula e infere-se, juntamente com o gráfico QQ-Plot, que ϵ segue Normalidade Multivariada.

Exercício 2 Teste de contraste:

Teste de contrastes

Objetiva-se testar simultaneamente se os coeficientes associados a Criativididade nas duas funções de regressão são iguais a zero, ou seja:

Tem-se que
$$B = \begin{matrix} X1 & X2 \\ X4 \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$$

Logo, os coeficientes associados a Criatividade(X4) são β_{11} e β_{12} referentes às equações da variável resposta X1 e X2, respectivamente. Portanto, o objetivo do teste é analisar a hipótese $\{H_0: \beta_{11} = \beta_{12} = 0.$

Para tal, considera-se $C_1BM_1=D$ para o modelo Y=XB+U, sob a hipótese de normalidade multivariada.

Tem-se que dimensão $(C1)=(g\times q)$, dimensão $(M1)=(p\times r)$, dimensão $(D)=(g\times r)$, portanto, com $\{H_0:\beta_{11}=\beta_{12}=0\}\implies r=2$ restrições, $g=1\implies D=\begin{bmatrix}0&0\end{bmatrix}_{(1\times 2)}\implies (C_1)_{(1\times 2)}$ e $(M_1)_{(2\times 2)}$, resultando em:

$$C_1BM_1 = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}$$

Ou seja, $M_1=I$ e usando o material de apoio, tem-se que a estatística do TRV é dada por:

$$\lambda^{2/n} = \frac{|Y^T P Y|}{|Y^T P Y + Y_+^T P_2 Y_+|}$$

que sob a hipótese nula, tem distribuição de Wilks $\Lambda(p,n-1,g)$. Além disso, $Y_+=Y-XB_0$, onde B_0 tal que $C_1B_0=D$ e $P=I-X(X^TX)^{-1}X^T$, com $P_2=X(X^TX)^{-1}C_1^T[C_1(X^TX)^{-1}C_1^T]^{-1}C_1(X^TX)^{-1}X^T$. Portanto, toma-se então:

$$C_1B_0 = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix} \implies B_0 = \begin{pmatrix} 0 & 0 \\ 4 & 3 \end{pmatrix}$$

Calcula-se então a estatística do teste:

```
> n <- nrow(Y) # n = número de unidades amostrais
> Yt <- t(Y) # Y transposto
> Xt <- t(X) # X transposto
> C1 <- matrix(c(1,0),ncol=2, nrow=1) # C_1
> C1t <- t(C1)
> B0 <- matrix(c(0,0,4,3), byrow = T, ncol=2, nrow=2)
>
> P <- diag(1,nrow = n) - X%*%solve(Xt%*%X)%*%Xt # I - X(XtX)^{-1}Xt = P = projeção
> P2 <- X%*%solve(Xt%*%X)%*%C1t%*%solve(C1%*%solve(Xt%*%X)%*%C1t)%*%C1%*%solve(Xt%*%X)%*%Xt
> Yp <- Y - X%*%B0 # Y_{+}
> Ypt <- t(Yp)
>
2 lambda_obs <- det(Yt%*%P%*%Y)/det(Yt%*%P%*%Y+Ypt%*%P2%*%Yp)# Estatística lambda^{2/n} do TRV
> lambda_obs
```

[1] 0.6715128

Observa-se também que poderia ser considerado $B_0 = \begin{pmatrix} 0 & 0 \\ 32 & 55 \end{pmatrix},$

Exercício 2 Teste de contraste:

e chegaria-se no mesmo resultado da estatística do teste observada $\lambda^{2/n}$, ou seja, não importa qual solução para B_0 tal que $C_1B_0=D$ escolha, pois a estatística do teste será a mesma:

```
> # alterando apenas as partes que dependem de B_0 e chega-se no mesmo resultado que anteriormente

> B0 <- matrix(c(0,0,32,55), byrow = T, ncol=2, nrow=2)

> Yp <- Y - X%*%B0 # Y_{+}

> Ypt <- t(Yp)

> lambda_obs <- det(Yt%*%P%*%Y)/det(Yt%*%P%*%Y+Ypt%*%P2%*%Yp)# Estatística lambda^{2/n} do TRV

> lambda_obs
```

[1] 0.6715128

Tem-se então que $\lambda^{2/n} \stackrel{H_0}{\sim} \Lambda(p,n-1,g)$, ou seja, com $p=2,n=50,g=1 \implies \lambda^{2/n} \stackrel{H_0}{\sim} \Lambda(2,49,1)$. Pode-se usar a relação com a distribuição F, em que:

$$\frac{1-\Lambda(p,m,1)}{\Lambda(p,m,1)}\sim \frac{p}{m-p+1}F_{p,m-p+1}$$

Portanto,

$$\begin{split} \frac{1-\Lambda(2,49,1)}{\Lambda(2,49,1)} \sim \frac{2}{49-2+1} F_{2,49-2+1} &= \frac{2}{48} F_{2,48} \\ \Longrightarrow \frac{48}{2} \frac{1-\lambda^{2/n}}{\lambda^{2/n}} \overset{H_0}{\sim} F_{2,48} \end{split}$$

Usando a estatística do teste observada, tem-se $\lambda_{obs}^{2/n}=0.6715128,$ então:

```
> transf_lambda_obs <- 24*(1-lambda_obs)/lambda_obs
> pvalor <- 1-pf(transf_lambda_obs, df1=2, df2=48) # quantil da estatística transformada observada
> pvalor
```

[1] 7.068114e-05

Portanto, encontrou-se um p-valor <0,05 então rejeita-se hipótese nula dos coeficientes serem iguais a zero. Ou seja, rejeita-se $\{H_0:\beta_{11}=\beta_{12}=0\ \text{a nível de 5\% de significância}.$

MIME

Código

```
library(tidyverse)
library(dplyr)
library(readxl)
vendedores <- read_excel("vendedores.xlsx")</pre>
# Obtenção atráves do método multivariado
Y = as.matrix(vendedores[c("X1","X2")])
X = as.matrix(vendedores[c("X4","X7")])
B_hat = solve(t(X)%*%X)%*%t(X)%*%Y
colnames(B_hat) <- NULL; rownames(B_hat) <- NULL</pre>
print(B_hat)
# Obtenção atráves do método univariado
y = c(Y)
x = kronecker(diag(1,nrow=2), X)
b_hat = solve(t(x)%*%x)%*%t(x)%*%y
print(b_hat)
e <- Y - X%*%B_hat
mu_e \leftarrow t(c(mean(e[1]), mean(e[2]))); mu_e
S <- cov(e); S
\label{eq:decomposition} D_M <- \mbox{ apply(e, FUN=function(x) sqrt((x-mu_e)%*%solve(S)%*%t(x-mu_e)), MARGIN=1)}
# ou equivalentemente: > sqrt(mahalanobis(e,center = mu_e, cov = S))
# Teste de Henze-Zirklers para normalidade multivariada
test_MN <- MVN::mvn(e,mvnTest = "hz",desc = F, multivariatePlot = "qq")</pre>
# p-valor do teste
test_MN$multivariateNormality
n \leftarrow nrow(Y) # n = número de unidades amostrais
Yt <- t(Y) # Y transposto
Xt <- t(X) # X transposto
C1 <- matrix(c(1,0),ncol=2, nrow=1) # C_1
C1t <- t(C1)
B0 <- matrix(c(0,0,4,3), byrow = T, ncol=2, nrow=2)
P \leftarrow diag(1,nrow = n) - X%*%solve(Xt%*%X)%*%Xt # I - X(XtX)^{-1}Xt = P = projeção
P2 <- X%*%solve(Xt%*%X)%*%C1t%*%solve(C1%*%solve(Xt%*%X)%*%C1t)%*%C1%*%solve(Xt%*%X)%*%Xt
Yp <- Y - X%*%B0 # Y_{+}
Ypt <- t(Yp)
lambda\_obs <- \ \det(Yt\%*\%P\%*\%Y)/\det(Yt\%*\%P\%*\%Y+Ypt\%*\%P2\%*\%Yp)\# \ Estatística \ lambda^{2}/n\} \ do \ TRV
lambda_obs
# alterando apenas as partes que dependem de B_0 e chega-se no mesmo resultado que anteriormente
B0 <- matrix(c(0,0,32,55), byrow = T, ncol=2, nrow=2)
Yp <- Y - X%*%B0 # Y_{+}
Ypt <- t(Yp)
lambda\_obs <- \ \det(Yt\%*\%P\%*\%Y)/\det(Yt\%*\%P\%*\%Y+Ypt\%*\%P2\%*\%Yp)\# \ Estatistica \ lambda^{2}/n\} \ do \ TRV
lambda_obs
transf_lambda_obs <- 24*(1-lambda_obs)/lambda_obs</pre>
pvalor <- 1-pf(transf_lambda_obs, df1=2, df2=48) # quantil da estatística transformada observada
pvalor
```



```
Bruns Greper Morlin-11809875
MAE 330 - Amailise Multinoniado de Dados
Lista 8
```

1.)
$$Y = XB + E$$
, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{31} & y_{32} \end{pmatrix}$, $X = \begin{pmatrix} x_{21} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$, $B = \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{21} & \beta_{22} \end{pmatrix}$

2. $X = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{32} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{31} & y_{32} \end{pmatrix}$, $Y = \begin{pmatrix} x_{21} & x_{22} \\ x_{21} & x_{22} \end{pmatrix}$, $Y = \begin{pmatrix} \beta_{21} & \beta_{22} \\ \beta_{21} & \beta_{22} \end{pmatrix}$

2. $X = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, $Y = \begin{pmatrix} x_{21} & x_{22} \\ x_{21} & x_{22} \end{pmatrix}$, $Y = \begin{pmatrix} \beta_{21} & \beta_{22} \\ \beta_{21} & \beta_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$, and $Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{12} & y_{12}$

$$\begin{array}{c}
\Omega \setminus \text{Mec}(Y) = y = \begin{cases}
y_{21} \\
y_{32} \\
y_{33}
\end{cases} \\
(6 \times 1) \\
y_{34} \\
y_{34}$$

b)
$$E(E) = E(N^{2}(E)) = N^{2}(E(E)) = N^{2}(E) = N^{2}(E) = D$$
 $Van(E) = Van(N^{2}(E)) = \Omega = \Sigma \otimes I_{3}$
 $Van(E) = Van(N^{2}(E)) = \Omega = \Sigma \otimes I_{3}$
 $Van(E) = Van(N^{2}(E)) = \Omega = \Sigma \otimes I_{3}$
 $Van(E) = Van(N^{2}(E)) = \Omega = \Sigma \otimes I_{3}$

B=(X*^T \(\Omega^{-1}\)\(\chi\)\(\delta\)\(\d

Une-re entire a propriedade de produte de Pronechea em que (ABB)(CBD) = ACBBD

e alem dirro (ABB) = ATBBT from como (ABB) = ATBBT

.. de (D):

 $\beta = \left[\left(I_{2} \otimes \chi \right)^{T} \left(I_{2} \otimes I_{3} \right)^{-1} \left(I_{2} \otimes \chi \right)^{T} \left(I_{2} \otimes \chi \right)^{T} \left(I_{2} \otimes \chi \right)^{T} \left(I_{3} \otimes \chi$

