CS 301 - Lecture 10 Chomsky and Greibach **Normal Forms** Fall 2008

Review

- Languages and Grammars
- Alphabets, strings, languages
- Regular Languages
 - Deterministic Finite and Nondeterministic Automata
 Equivalence of NFA and DFA
 Regular Expressions

 - Regular Grammars
 - Properties of Regular Languages
- Languages that are not regular and the pumping lemma
 Context Free Languages
- - Context Free Grammars - Derivations: leftmost, rightmost and derivation trees

 - Parsing and ambiguity
 Simplifying Context Free Grammars
- Today:
 More Simplifications
 - Normal Forms

Nullable Variables

 λ – production : $A \rightarrow \lambda$

 $A \Rightarrow ... \Rightarrow \lambda$ Nullable Variable:

Which Variables are Nullable?

0) Nullable Variables = $V_n = \emptyset$

For every production $A \to \lambda$ Add A to V_n

1) For every variable $B \not\in V_n$

check each production $B \to A_1 A_2 ... A_n$

Add B to V_n if all $A_i \in V_n$

2) If step 1 added any B to V_n repeat step 1

Unit-Productions

Unit Production: $A \rightarrow B$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \rightarrow aA$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$
 $S \rightarrow aA \mid aB$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A \mid B$
 $B \rightarrow bb$

Remove repeated productions

Final grammar
$$S \rightarrow aA \mid aB \mid aA$$
 $S \rightarrow aA \mid aB$ $A \rightarrow a$ $A \rightarrow a$ $B \rightarrow bb$ $B \rightarrow bb$

Removing All

- Step 1: Remove Nullable Variables
- Step 2: Remove Unit-Productions
- Step 3: Remove Useless Variables

Normal Forms for Context-free Grammars

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

$$S \rightarrow AS$$

$$S \rightarrow \widehat{AAS}$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

 $T_c \rightarrow c$

Conversion to Chomsky Normal Form

$$S \rightarrow ABa$$

• Example:
$$A \rightarrow aab$$

$$B \rightarrow Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

$$S \to ABT_a$$

$$A \to T_a T_a T_b$$

$$A \to aab$$

$$B \to Ac$$

$$T_a \to a$$

$$T_b \to b$$

Introduce intermediate variable: V_1

$$S \rightarrow ABT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

$$T_{c} \rightarrow c$$

$$S \rightarrow AV_{1}$$

$$V_{1} \rightarrow BT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

$$T_{c} \rightarrow c$$

Introduce intermediate variable:
$$V_2$$

$$S \rightarrow AV_1$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_aT_aT_b$$

$$B \rightarrow AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

$$S \rightarrow AV_1$$

$$V_1 \rightarrow BT_a$$

$$A \rightarrow T_aV_2$$

$$V_2 \rightarrow T_aT_b$$

$$B \rightarrow AT_c$$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$

$$T_c \rightarrow c$$

Final grammar in Chomsky Normal Form:
$$S \to AV_1$$

$$V_1 \to BT_a$$

$$A \to T_aV_2$$
 Initial grammar
$$V_2 \to T_aT_b$$

$$S \to ABa$$

$$A \to aab$$

$$T_a \to a$$

$$T_a \to a$$

$$T_b \to b$$

$$T_c \to c$$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

we can obtain:

An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

Add production $T_a \rightarrow a$

In productions: replace a with T_a

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with $A \rightarrow C_1 V_1$ $V_1 \rightarrow C_2 V_2$... $V_{n-2} \rightarrow C_{n-1} C_n$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem: For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

 Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

Greibach Normal Form

All productions have form:

$$A \to a V_1 V_2 \cdots V_k \qquad k \ge 0$$
 symbol variables

Examples:

$$S \rightarrow cAB$$

 $A \rightarrow aA \mid bB \mid b$
 $B \rightarrow b$
 $S \rightarrow abSb$
 $S \rightarrow aa$

Greibach
Normal Form
Normal Form

Conversion to Greibach Normal Form:

$$S \rightarrow abSb$$
 $S \rightarrow aa$

$$S \rightarrow aT_bST_b$$
 $S \rightarrow aT_a$

$$T_a \rightarrow a$$

$$T_b \rightarrow b$$
Greibach
Normal Form

Theorem: For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greibach Normal Form

Observations

- Greibach normal forms are very good for parsing
- It is hard to find the Greibach normal form of any context-free grammar

What's Next

- Read
- Linz Chapter 1,2.1, 2.2, 2.3, (skip 2.4), 3, 4, 5, 6.1, 6.2, (skip 6.3), and 7.1
- JFLAP Chapter 1, 2.1, (skip 2.2), 3, 4, 5, 6.1, 7
- Next Lecture Topics from Chapter 7.1
 - Nondeterminstic Pushdown Automata
- Quiz 2 in Recitation on Wednesday 10/1
 - Covers Linz 2, 3, 4 and JFLAP 3, 4
 - Closed book, but you may bring one sheet of 8.5 x 11 inch paper with any notes you like.
 - Quiz will take the full hour
- Homework
 - Homework Due Today
 - New Homework Available Friday Morning
 - New Homework Due Next Thursday