

7 = 1V

1= 1/2A

R1=10SL

B2=22

Ley de kirchoff

Jey de Ohm

$$1_1 = \frac{V}{R_1} = \frac{1}{R_1}$$
; $1_1 = \frac{V}{R_2} = \frac{1}{R_1}$

$$i = 1 + 1
R1 R1
i = 1 + 1
ADR R1
i = 0.6A
i = 0.6A$$

LEY DE KITCHOFF DE CORRIENTES: En todo nodo, la suma de 45

corrientes que entido es igual a la suma de les que solon

LEY DE OHM

leboion entre tension, corriente y resistencia

POTENCIA DIST PADA

$$PR_{2} = i_{2}^{2} \cdot R_{2}$$

$$= \left(\frac{1}{2\Omega}\right)^{2} \cdot 2\Omega$$

$$= \frac{1}{2} \cdot 2$$

$$= \frac{1$$

POTENCIA DISTPADA POR LA RZ

$$f(t) = \begin{cases} I_m \cdot Sen(wt) & s: Sen(wt) \geq \frac{1}{4} \\ 0 & s: Sen(wt) \leq \frac{1}{4} \end{cases}$$

Sen
$$(W^{+}) = \frac{1}{4}$$

 $W^{+} = \partial + \cos(\frac{1}{4})$
 $W^{+} = 0,2527 \text{ rad}$

Sen (W+) =
$$\frac{1}{4}$$
 desde $\partial 1 = \operatorname{arcosen}(\frac{1}{4})$ $\partial 1 = \operatorname{ser}^{-1}(\frac{1}{4}) = 0.257$.

W+ = $\operatorname{arcosen}(\frac{1}{4})$ desde $\partial 2 = \pi - \operatorname{arcosen}(\frac{1}{4})$ $\partial 2 = \pi - \partial 1 = 0.257$.

como es señal periodica y se repite igual en cada medio

medio periodo X2

como es señal periodica y se repite igual en cada medio
$$\{ef = \sqrt{\frac{2}{T}} \int_{\partial I}^{\partial I} I^{2}m \, sen^{2}(ut)dt \}$$
 sen $I(x) = 1 - cos(2x)$ medio periodo X2

Valor — $fef = \sqrt{\frac{1}{T}} \int_{I}^{T} f^{2}h dt$. $f(h)$ fonción $\int_{I}^{2} \frac{1}{I} \int_{\partial I}^{\partial I} A dt - \int_{I}^{\partial I} cos(xw) dt$

fef = Im.
$$\left[\frac{1}{\pi}\left(\frac{\partial z-\partial t}{2} - \frac{\text{Sen}(2\alpha z)}{y} - \frac{\text{Sen}(2\alpha z)}{y}\right)\right]$$