Glioblastoma Multi-omics Phenotyping and Subtype Mechanism Study

Zhiyun Gong Yuanqi Zhao

Introduction

Glioblastoma: aggressive cancer in the brain / spinal cord, originated from astrocytes that support nerve cells, difficult to treat

Main treatment options:

- 1. Surgery
- 2. Radiation therapy
- 3. Chemotherapy
- 4. Tumor treating fields (TTF) therapy
- 5. Targeted drug

https://www.mayoclinic.org/diseases-conditions/glioblast oma/cdc-20350148

Workflow

Multi-omics Integration and Subtyping

Data & Preprocessing

Omics

- Copy Number Variation
- Methylation
- Gene Expression

Preprocessing

- Intersection of omics
- Missing data imputation (means)
- 347 patients

Multi-omics Integration

- Why multi-omics?
 - Data Availability
 - Understanding Interplay of molecules
- Which method?
 - Similarity Network Fusion (SNF)
 - PINSPlus

Similarity Network Fusion (SNF)

Subtyping -- Decide Cluster Numbers

- According to TCGA, 4 clusters
 - SNF results comparing with ground truth

```
[(0, 0.3858267716535433),
(0, 0.2204724409448819),
(3, 0.6078431372549019),
(2, 0.5802469135802469)]
```

Problem:

- TCGA -- Consensus Clustering (hierarchical clustering)
- Wang et. al revealed the existence of 3 subtypes
- Clinical significance

Survival Analysis

Comparison	Logrank test statistic	p-value
Classical - Proneural	0.791758	0.373569
Classical - Mesenchymal	1.321919	0.250248
Classical - Neural	1.147819	0.284006
Proneural - Mesenchymal	3.878100	0.048920
Proneural - Neural	3.738071	0.053186
Mesenchymal - Neural	0.004247	0.948038

Comparison	Logrank test statistic	p-value
Group 1 - Group 2	6.206181	0.012730
Group 2 - Group 3	2.637399	0.104374
Group 3 - Group 3	0.242386	0.622487

Response to chemotherapy

Logrank	р	-log2(p)
13.03	<0.005	11.67

Logrank	р	-log2(p)
0.54	0.46	1.11

Logrank	p	-log2(p)
5.81	0.02	5.97

Response to radiation therapy

.0 -	A		n therapy ition therap
.8 -	1		
.4 -	4/		
.2 -	1		
.0			

Subtype 3

Logrank	р	-log2(p)
12.82	<0.005	11.51

Logrank	р	-log2(p)
2.10	0.15	2.76

Logrank	р	-log2(p)
9.95	<0.005	9.28

Clinical Feature Analysis

	CDE_DxAge	CDE_survival_time	days_to_birth	CDE_chemo_alk_days
Subtype 1	61.37	426.38	61.57	148.987
Subtype 2	52.54	633.61	53.64	143.187
Subtype 3	58.39	313.6	58.77	82.01

Anova Test

Clinical Feature Analysis Summary

Subtype 2 contains younger patients with favorable prognosis

Clinical Feature Analysis

	NON G-CIMP	G-CIMP
G1	161	4
G2	42	24
G3	108	5

Chi-square Test

```
[('CDE_therapy', 0.0239712693970924),
('CDE_vital_status', 0.04219955419397384),
('G_CIMP_STATUS', 1.897978420038419e-15),
('GeneExp_Subtype', 8.534673419184012e-22),
('_PANCAN_CNA_PANCAN_K8', 2.1989441476890682e-14),
('_PANCAN_DNAMethyl_GBM', 9.889506786244145e-30),
('_PANCAN_DNAMethyl_PANCAN', 2.253317472999156e-15),
('_PANCAN_mutation_PANCAN', 0.002746407829379185),
('form_completion_date', 0.04856771110301229),
('hormonal_therapy', 0.004905154740707577),
('initial_pathologic_diagnosis_method', 0.04956822543700062),
('tissue_source_site', 7.59186908651961e-05),
('vital_status', 0.023497201679813208),
```

Clinical Feature Analysis Summary

- Subtype 2 contains younger patients with favorable prognosis
- Baysan, et al also revealed a subset of GBM, G-CIMP tumors
- Lv, Shasha, et al revealed IDH1 subtype
 - O [0.9030303030303031, 0.9130434782608695, 0.8938053097345132]

Differential Expression Analysis

Differential Expression Analysis

MGMT: 3 > 1 Promoter unmethylation and high expression levels of *O*6-methylguanine DNA methyltransferase (MGMT) have been recognized as indicators of the TMZ-resistant phenotype,

CTSD: 3 > 1 significant association with Cathepsin D (CTSD) overexpression, which is reported to prevent the effect of TMZ.

Gene Ontology/Pathway Enrichment Analysis

ShinyGO: http://bioinformatics.sdstate.edu/go/

Pathway Enrichment Analysis

Subtype 1 vs Subtype 2

KEGG pathways

GO Biological Processes

- anatomical structure morphogenesis: found to be enriched in the genes associated with overall glioblastoma survival (Serão, Nicola VL, et al, 2011)
- **P53 signaling pathway:** expression of p53 mutant correlates with worse prognosis (Zhang, Ying, et al., 2018)

Pathway Enrichment Analysis

Subtype 2 vs Subtype 3

TNF signaling pathway:
TNF receptor TNFR2 found to
be predictive of GBM
prognosis (Zhang, Wenqing, et
al., 2017)

Pathway Enrichment Analysis

Subtype 3 vs Subtype 1

- Phagosome: formed by apoptopic cells, target of chemotherapy in GBM (Trejo-Solís, Cristina, et al, 2018)
- Tuberculosis: possibly related to TMZ therapy (de Paiva, Tadeu Ferreira, et al, 2009)

Future Directions

- To investigate response to other types of therapy, eg. hormone therapy, targeted drugs
- To further investigate the pathway results to reveal more detailed biological mechanisms
- To study the mechanisms of subtypes using methylation and copy number variants data

Reference

- Lv, Shasha, et al. "Correlation between IDH1 gene mutation status and survival of patients treated for recurrent glioma." *Anticancer research* 31.12 (2011): 4457-4463.
- Subramanian, Indhupriya, et al. "Multi-omics data integration, interpretation, and its application." *Bioinformatics and biology insights* 14 (2020): 1177932219899051.
- Sidaway, Peter. "Glioblastoma subtypes revisited." *Nature Reviews Clinical Oncology* 14.10 (2017): 587-587.
- Baysan, Mehmet, et al. "G-cimp status prediction of glioblastoma samples using mRNA expression data." PloS one 7.11 (2012): e47839.
- Wang, Bo, et al. "Similarity network fusion for aggregating data types on a genomic scale." Nature methods 11.3 (2014): 333.
- Robinson, James T., et al. "Integrative genomics viewer." Nature biotechnology 29.1 (2011): 24-26.
- Wang, Qianghu, et al. "Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment." Cancer cell 32.1 (2017): 42-56.
- Serão, Nicola VL, et al. "Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival." *BMC medical genomics* 4.1 (2011): 49.
- Zhang, Ying, et al. "The p53 pathway in glioblastoma." Cancers 10.9 (2018): 297.
- Zhang, Wenqing, et al. "Prognostic significance of TNFR-associated factor 1 and 2 (TRAF1 and TRAF2) in glioblastoma." Medical Science
 Monitor: International Medical Journal of Experimental and Clinical Research 23 (2017): 4506.
- Ge, Steven Xijin, Dongmin Jung, and Runan Yao. "ShinyGO: a graphical gene-set enrichment tool for animals and plants." *Bioinformatics* 36.8 (2020): 2628-2629.
- Smyth, Gordon K. "Limma: linear models for microarray data." Bioinformatics and computational biology solutions using R and Bioconductor.
 Springer, New York, NY, 2005. 397-420.
- Trejo-Solís, Cristina, et al. "Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma." International journal of molecular sciences 19.12 (2018): 3773.
- de Paiva, Tadeu Ferreira, et al. "Tuberculosis in a patient on temozolomide: a case report." Journal of neuro-oncology 92.1 (2009): 33.