Lucerne University of
Applied Sciences and Arts
HOCHSCHULE
LUZERN

Business

MSc Applied Information and Data Science Applied Machine Learning and Predictive Modelling 2

Classification

Prof. Dr. Fabio Sigrist

Institute of Financial Services Zug IFZ Lucerne University of Applied Sciences and Arts

Autumn Semester 2020

Outline of this chapter

- Introduction
- Classification approaches
 - Logistic regression
 - Linear and quadratic discriminant analysis (LDA & QDA)
 - Naive Bayes
- Evaluating and comparing classifiers

- Literature:
 - Chapters 4 and 5.1 of James et al. (2017)

INTRODUCTION

Goal of classification

- **Given**: data for variables *X* and *Y*.
 - **Response variable** Y. Y is categorical: $Y \in \{1, ..., k\}$. There are k classes / groups.
 - p predictor variables $X = (X_1, ..., X_p)^T$. Can be both quantitative or categorical.

Goal of classification:

- Predict to which group a new observation belongs (i.e., predict the class j for $X = x_{new}$).
- Often, the response variable Y is **binary**, i.e., it takes only two values.

Example use cases of classification

Example use cases:

- Churn prediction: will a customer churn or not?
- Cross selling: will a customer buy a certain product or not?
- Marketing: will a customer respond to a marketing action or not?
- Credit risk modeling: will a company default or not?
- Fraud detection: is a financial transaction fraudulent or not?
- Is an e-mail spam or not?
- Medicine: does a patient have a certain disease or not?

Example: Oscar winning movies¹

Oscar	BoxOffice	Budget	Country	Critics	Length
0	20.91	21.73	Other	77.4	112
0	37.8	33.56	Europe	68.2	124
1	43.61	46.16	UK	38.5	108
1	53.53	18.67	Other	68.6	127
0	19.95	29.34	India	45.2	153
			111		

predictor variables x

Example: Oscar winning movies

- **Dependent variable:** Oscar win (Y=1/N=0).
- Predictor variables:
 - Box office intake in millions of dollars.
 - Budget in millions of dollars.
 - Country of origin: US, UK, Europe, India, other.
 - Critical reception (average score 0-100).
 - Length of the movie in minutes.

Example: classification of Iris flowers

Iris setosa

Iris versicolor

Iris virginica

Goal: classify species based on data about sepal/petal length/width.

Example: Iris data

Sepal.Length	Sepal.Width	Petal.Length	n Petal.Width	Species
5	3.4	1.5	0.2	setosa
6.8	3.2	5.9	2.3	virginica
6.8	2.8	4.8	1.4	versicolor
4.9	2.4	3.3	1	versicolor
5.1	3.3	1.7	0.5	setosa
4.6	3.4	1.4	0.3	setosa
			/	
		Y		Υ
	•	<i>X</i>		<i>Y</i>
			classes (species): setos rsicolor, and virginica	

Fabio Sigrist

LOGISTIC REGRESSION

Example: Oscar winning movies

- At first, we only consider box office intake in millions of dollars as predictor variable.
- Will a movie with high a box office intake win the Oscar?

Recap: linear regression

- $y = \beta_0 + \beta_1 x_1 + \dots + \beta_K x_K + \epsilon$
 - y: dependent variable
 - $x_1, ..., x_K$: predictor variables
 - $\beta_0, \beta_1, ..., \beta_K$: coefficients
 - ϵ : random error

- In linear regression, the dependent variable y does not only take two
 values but any number on the real line.
- One should not use linear regression for modeling a binary variable.

Logistic regression

How can we model binary data?

→ use a "two step" approach.

Logistic regression

- 1. As in linear regression, we start with $\eta(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$.
 - This is called the **linear predictor.**
- 2. We then use a function to **transform** this, such that the resulting value is between 0 and 1:

$$p(x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)}} \qquad \left(= \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}} \right)$$

- This function is called the **logistic function**.
- This value p(x) is interpreted as the **probability** that y equals one: P(y = 1|X = x).

Logistic regression

Comparison of linear and logistic regression

Linear regression:

$$Y \sim N(\mu, \sigma^2)$$

$$\mu = \beta_0 + \beta_1 x_1$$

- Example: distance and travel time in tram

Logistic regression:

$$Y \sim \text{Bernoulli}(p)$$

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1)}}$$

- Example: failure probability and lifetime

Logistic regression in R

Build the logistic regression model using the glm function:

- Comments:
 - glm stands for generalized linear model.
 - **Generalized linear models** are an extension of the linear regression model that allow for the dependent variable to have distributions other than the normal distribution.
 - In the case of the logistic regression model, this is the so called **binomial distribution**.

Logistic regression in R

summary(boxOfficeModel)

```
Call:
               glm(formula = Oscar ~ BoxOffice, family = binomial(link = "logit"),
                   data = moviedata)
               Deviance Residuals:
Learned /
                                                                    Significance of
                            10 Median
                   Min
                                              30
                                                     Max
estimated
               -1.6432 -0.8316 -0.6997 1.2380 1.8546
                                                                    predictor
coefficients
                                                                    variables
               Coefficients:
                          Fstimate Std. Error z value Pr(>|z|)
               (Intercept) -1.750349
                                      0.256883 -6.814 9.50e-12 ***
               BoxOffice
                                      0.002507 4.510 6.48e-06 ***
                           0.011306
                              0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
               Signif. codes:
               (Dispersion parameter for binomial family taken to be 1)
                   Null deviance: 374.60 on 299 degrees of freedom
               Residual deviance: 350.82 on 298 degrees of freedom
               AIC: 354.82
               Number of Fisher Scoring iterations: 4
                         AIC: goodness of fit (lower = better)
```

Fabio Sigrist

Logistic regression in R

- The output is very similar to linear regression.
- The interpretation of the magnitudes of the coefficients is somewhat more complicated (no details here).
- The interpretation of the signs of the coefficients is the same as for linear regression models.
- The interpretation of the p-values is the same as for linear regression models.

Prediction with logistic regression

Assume we want to predict the probability that a movie with a \$50 million box office intake wins the Oscar.

1. We first calculate the linear predictor

$$-1.75 + 0.011 \cdot 50 = -1.2$$

2. We then transform this to obtain a probability

$$p = \frac{1}{1 + e^{-(-1.2)}} = 0.231$$

- Thus, our model says that the movie has a 23.1% chance of winning an Oscar.
- If we have to make a point prediction, we would say that the movie does not win the Oscar, since 23.1%<50%.

Kahoot question

Prediction in R

In R, predictions are obtained as follows:

EVALUATION

Quality of classification

- **Problem**: if we use the same data for model fitting and evaluation, there is the danger of **overfitting**: too optimistic for error on new data.
- **Solution**: separate the data into training and test data.

Cross-validation (CV)

Example: "leave-one-out" cross-validation. Every row / observation is the test case once, the rest in the training data.

Confusion matrix

Error rate:

(80+15)/300=0.32 (wrongly classified) / (number of samples)

• We expect that our classifier predicts 32% of new observations incorrectly.

Error rate = $\frac{FN+FP}{TN+FN+FP+TP}$

Example confusion matrix for more than 2 categories

Confusion matrix (e.g. 100 samples):

	Truth=0	Truth=1	Truth=2
Pred = 0	23	7	6
Pred = 1	3	27	4
Pred = 2	3	1	26

- Error (misclassification) rate:
 - 1 sum(diagonal entries) / (number of samples) =
 - = 1 76/100 = 0.24.
- We expect that our classifier predicts approx. 24% of new observations incorrectly.

Comparing binary classifiers

- Binary classifiers: we usually predict Y=1 if $\hat{P}(Y=1|X)>\delta$ where $\delta=0.5$
- The threshold $\delta=0.5$ can be arbitrary and does not always produce the best results
- To avoid choosing one single threshold, one can compare classifiers for various choices of thresholds
 - → choose classifier which is best for "many thresholds".

Comparing binary classifiers using the ROC curve

Recall confusion matrix for binary classification

	Truth = 0	Truth = 1
Pred = 0	True negative (TN)	False negative (FN)
Pred = 1	False positive (FP)	True positive (TP)

https://en.wikipedia.org/wiki/Roc_(mythology)

Receiver operating characteristic (ROC) plots

- true positive (TP) rate vs.

- false positive (FP) rate for various thresholds.

The higher the better

The lower the better

 Summary measure: area under the receiver operating characteristic (AUC)

The higher the better

Example: SPAM detection

See R examples.

LDA & QDA

Classification

 Most approaches for classification calculate an estimate for the probability

$$P(Y=j|X=x).$$

- In general, X = x is then classified into the group j for which this probability is highest.
- There are two different approaches to obtain P(Y = j | X = x):
 - Direct modelling of P(Y = j | X = x) (e.g., logistic regression).
 - First model P(X = x | Y = j) and then use Bayes' theorem to obtain P(Y = j | X = x) (LDA & QDA).

Idea of LDA and QDA

- Both linear and quadratic discriminant analysis (LDA & QDA) start by specifying:
 - 1. The **prior probability** $p_j = P(Y = j)$ that an observation belongs to class i.
 - The distribution of X given that an observation belongs to class j. This is assumed to be a multivariate normal distribution $X|Y = j \sim N(\mu_j, \Sigma_j)$.
- Bayes' theorem is then used to calculate **posterior probability** P(Y=j|X=x).
 - Bayes' theorem:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}.$$

 $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$. For LDA and QDA, we apply this with A replaced by "X=x" and B replaced by "Y=j".

LDA & QDA

It follows that the (unconditional) distribution of X is a Gaussian mixture with density

 $\sum_{j=1}^k p_j g_j(x;\theta_j),$

Note: Observe the similarity to model based clustering. In contrast to clustering, we know the number of groups k and, in particular, to which group an observation in the data belongs to.

where

$$g_j(x;\theta_j) = \frac{1}{(2\pi)^{\frac{p}{2}} |\Sigma_j|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu_j)^T \Sigma_j^{-1}(x-\mu_j)\right)$$

is the multivariate normal density and

$$\sum_{j=1}^k p_j = 1.$$

Gaussian mixture model example

2D example

LDA & QDA

By applying Bayes' theorem, one obtains the so-called **posterior** probability that an observation belongs to class j given X = x

$$P(Y=j|X=x) = \frac{p_j g_j(x;\theta_j)}{\sum_{j'=1}^k p_{j'} g_{j'}(x;\theta_{j'})}.$$

- X = x is classified into the class j for which this probability is maximal.
- How can we find this class *j*?
 - Use the fact that

$$\circ \underset{j}{\operatorname{argmax}} P(Y = j | X = x) = \underset{j}{\operatorname{argmax}} \log(P(Y = j | X = x))$$

$$\circ \underset{j}{\operatorname{argmax}} P(Y = j | X = x) = \underset{j}{\operatorname{argmax}} \log (P(Y = j | X = x))$$

$$\circ \log (P(Y = j | X = x)) = \log(p_j) + \log(g_j(x; \theta_j)) - \log(\sum_{j'=1}^k p_{j'} g_{j'}(x; \theta_{j'}))$$

The last term is the same for all j. So we can drop it for finding the maximum.

Slide 34 Fabio Sigrist

Quadratic discriminant analysis (QDA)

- **Quadratic discriminant analysis (QDA)** assigns an observation X = x to the class j for which

$$\delta_{j}(x) = \log(p_{j}) - \frac{1}{2}\log(|\Sigma_{j}|) - \frac{1}{2}(x - \mu_{j})^{T}\Sigma_{j}^{-1}(x - \mu_{j})$$

is maximal.

• It is called "quadratic", since x appears as a quadratic function in $\delta_i(x)$.

This is obtained by plugging in the Gaussian density for $g_j(x; \theta_j)$ (and dropping the term $-\frac{p}{2}\log(2\pi)$).

• The x's for which $\delta_j(x) = \delta_{j'}(x)$ are called **decision boundaries.**

Parameter estimation

- The **parameters** p_j , μ_j , and Σ_j are **estimated** as follows:
 - p_i : fraction of observations in the data that belong to class j.
 - μ_i : sample mean \bar{x}_i of all observations that belong to class j.
 - Σ_i : sample covariance S_i of all observations that belong to class j.

Intuition for QDA

•
$$\delta_j(x) = \log(p_j) - \frac{1}{2}\log(|\Sigma_j|) - \frac{1}{2}(x - \mu_j)^T \Sigma_j^{-1}(x - \mu_j)$$

• Example:

Classify to which class (assuming equal p_j and $|\Sigma_j|$)?

Kahoot question

Linear discriminant analysis (LDA)

- Depending on the number of variables p, $X = (X_1, ..., X_p)$, this can lead to a large number of parameters. In particular, the covariance matrices Σ_j can contain a lot of parameters.
- In linear discriminant analysis (LDA), we assume that all the covariance matrices are equal for all classes. I.e., we assume

$$X|Y = j \sim N(\mu_j, \Sigma)$$

instead of

$$X|Y=j \sim N(\mu_j, \Sigma_j).$$

Linear discriminant analysis

• It follows that linear discriminant analysis assigns an observation X = x to the class j for which

$$\delta_j(x) = \log(p_j) + x^T \Sigma^{-1} \mu_j - \frac{1}{2} \mu_j^T \Sigma^{-1} \mu_j$$

is maximal.

- The function $\delta_i(x)$ is linear in x.
- In contrast to QDA, the quadratic term $-\frac{1}{2}x^T\Sigma^{-1}x$ has been dropped since it does not depend on j.

Illustration of decision boundaries for LDA

• LDA example with three classes (k = 3) and two variables (p = 2). The dashed lines are the true decision boundaries $(\delta_j(x) = \delta_{j}, (x))$ and the solid lines the estimated ones.

Source: James et al. (2013)

LDA vs. QDA

LDA	QDA
+ Only few parameters to estimate;	 Many parameters to estimate; potentially less accurate estimates
- Less flexible (linear decision boundary)	+ More flexible (quadratic decision boundary)

Naïve Bayes and QDA

- Naïve Bayes is an often used technique in applied machine learning.
- Gaussian naïve Bayes is a special case of QDA:
 - Instead of $X|Y=j\sim N(\mu_j,\Sigma_j)$ with Σ_j being a general covariance matrix, it is assumed that Σ_i is diagonal

$$\Sigma_j = \operatorname{diag}(\sigma_{1j}^2, \dots, \sigma_{pj}^2).$$

• In general, naïve Bayes assumes that conditional on Y = j, the $(X_1, ..., X_p)$'s are independent.

Thomas Bayes 1702 - 1761

Comparing logistic regression and LDA

For LDA, we have

$$\log \left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)} \right) =$$

$$= \log \left(\frac{p_0}{p_1} \right) - \frac{1}{2} (\mu_0 + \mu_1)^T \Sigma^{-1} (\mu_1 - \mu_0) + x^T \Sigma^{-1} (\mu_1 - \mu_0)$$

$$\alpha_0$$

$$= \alpha_0 + x^T \alpha.$$

For logistic regression, we have

$$\log\left(\frac{P(Y=1|X=x)}{P(Y=0|X=x)}\right) = \beta_0 + x^T \beta.$$

• Logistic regression is thus based on less assumptions and directly finds the "best" β_0 and $\beta \rightarrow$ more flexible and often better