Mathematische Grundlagen (1141)

WS 07/08

Klausur am 09.02.2008:

Aufgabenstellungen

Die Lösungen der folgenden Aufgaben müssen Sie begründen.

Aufgabe 1

Bestimmen Sie die Lösungsmenge $\mathcal L$ des folgenden linearen Gleichungssystems über $\mathbb R.$

$$\begin{pmatrix} 0 & 1 & 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

[8 Punkte]

Aufgabe 2

Sei
$$V=\mathrm{M}_{22}(\mathbb{R}),$$
 und sei $f:V\to V$ definiert durch $f\begin{pmatrix} a & b \\ c & d \end{pmatrix}=\begin{pmatrix} 2a & b+c \\ b+c & 2d \end{pmatrix}$ für alle $\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in V.$

- 1. Beweisen Sie, dass f linear ist.
- 2. Bestimmen Sie eine Basis von Bild(f) und von Kern(f).

[4 + 12 = 16 Punkte]

Aufgabe 3

Beweisen Sie, dass $V=\left\{\begin{pmatrix} a & b \\ b & c \end{pmatrix}\mid a,b,c\in\mathbb{R}\right\}$ ein Unterraum von $\mathrm{M}_{22}(\mathbb{R})$ ist.

[4 Punkte]

Aufgabe 4

Beweisen Sie folgende Formel mit vollständiger Induktion.

Für alle
$$n \in \mathbb{N}$$
 gilt
$$\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}.$$

[10 Punkte]

Aufgabe 5

Beweisen Sie, dass die Folge (a_n) mit $a_n = \sqrt{n^2 + n} - n$ für alle $n \in \mathbb{N}$ konvergent ist, und bestimmen Sie ihren Grenzwert.

Hinweis: Mit der dritten binomischen Formel gilt $(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n) = n$.

[8 Punkte]

Aufgabe 6

Beweisen Sie, dass die Reihe $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ konvergent ist.

[8 Punkte]

Aufgabe 7

Sei I ein Intervall in \mathbb{R} , und seien $f: I \to \mathbb{R}$ und $g: I \to \mathbb{R}$ stetige Funktionen. Für alle $x \in I \cap \mathbb{Q}$ sei f(x) = g(x).

Beweisen Sie, dass f(x) = g(x) für alle $x \in I$ gilt.

[10 Punkte]

Aufgabe 8

Sei $x \in \mathbb{R}$ so, dass $f(x) = \sqrt{\sin(\frac{\cos(x)}{x})}$ definiert ist. Berechnen Sie f'(x). [8 Punkte]

Aufgabe 9

- 1. Konstruieren Sie eine Interpretation, sodass die Formel $\forall x (P(x) \lor Q(x))$ wahr ist.
- 2. Konstruieren Sie eine Interpretation, sodass die Formel $\forall x (P(x) \lor Q(x))$ falsch ist.

[4 + 4 = 8 Punkte]

Definitionsbereich	Stammfunktion
IR	$x \mapsto \frac{1}{n+1} x^{n+1}$
R \ {0}	$x \mapsto \frac{1}{-n+1} x^{-n+1}$
	$x \mapsto \ln(x)$
$(-\infty,0)$	$x \mapsto \ln(-x)$
(0,∞)	$x \mapsto \frac{1}{\alpha+1}x^{\alpha+1}$
R	$x \mapsto \arctan(x)$
(-1,1)	$x \mapsto \arcsin(x)$
IR	$x \mapsto \exp(x)$
R	$x\mapsto rac{1}{\ln(a)}a^x$
IR	$x \mapsto \sin(x)$
	$x \mapsto -\cos(x)$
$((k-\frac{1}{2})\pi,(k+\frac{1}{2})\pi),k\in\mathbb{Z}$	
	$x \mapsto -\cot(x)$
	\mathbb{R} $\mathbb{R} \setminus \{0\}$ $(0, \infty)$ $(-\infty, 0)$ $(0, \infty)$ \mathbb{R} $(-1, 1)$ \mathbb{R} \mathbb{R}