CASE STUDY: PROGETTAZIONE DI VITIMETALLICHE ENDOSSEE

Scopo della ricerca

Obiettivo della ricerca è la messa a punto di una metodologia per la progettazione di impianti endossei che permettano:

- una migliore integrazione tra impianto e tessuto ospite
- una migliore e più rapida guarigione

Base di partenza

Evidenze di partenza:

- □ comprovata biocompatibilità del titanio
- ☐ importanza della **morfologia superficiale** nel permettere
- l'adesione degli osteoblasti
- □ capacità di alcune **sequenze peptidiche** di favorire i
- processi fisiologici coinvolti nell'osteointegrazione

Procedura sperimentale

- ☐ applicazione di trattamenti meccanici e chimici di modifica superficiale
- □ caratterizzazione delle superfici ottenute (SEM, AFM e profilometro)
- □ progettazione e sintesi del peptide di adesione
- ☐ individuazione di un carrier riassorbibile per veicolare il peptide di adesione
- ☐ determinazione della cinetica di rilascio
- ☐ test in vitro (colture cellulari)
- □ test in vivo (modello animale)

Dimensioni dei cilindri in Ti:

$$Q_{int} = 2.56 \text{ mm}$$

$$Q_{\text{est}} = 3.04 \text{ mm}$$

$$h = 14.08 \text{ mm}$$

I cilindri sono stati:

- > trattati con tecniche di modifica superficiale;
- ➢ rivestiti (dip-coating) con un film sottile di SiO₂ arricchito con il peptide di adesione.

Trattamento superficiale

È noto che la rugosità rappresenta uno dei principali parametri che controllano il processo di osteointegrazione; conseguentemente i cilindri in Ti sono stati trattati per riprodurre opportune caratteristiche morfologiche

Rivestimento

SOL-GEL

Si realizzano *network* inorganici usando come monomeri alcossidi di silicio:

- ➤ idrolisi dell'alcossido
- > formazione sospensione colloidale
- condensazione di una fase gel

DIP-COATING

VANTAGGI

- basse temperature di processo;
- comportamento bioattivo del film di silice;
- > esatta quantificazione del peptide di adesione nello strato depositato.

Analisi superficiale: SEM

SUPERFICIE SL

La superficie sabbiata presenta:

- > profili irregolari e distinguibili
- > rugosità grossolana
- ➤ imperfezioni di diverse dimensioni

SUPERFICIE SLA

L'attacco acido produce:

- ➤ appiattimento della topografia
- ➤ doppio livello di rugosità
- > tessitura compatta e uniforme
- > struttura alveolare microporosa

Analisi superficiale: AFM

Cilindro SL Cilindro SLA Cilindro SLA + SiO₂ Attacco con Rivestimento con miscela di film di SiO₂ con acidi minerali dip-coating

Principali parametri di rugosità misurati all'AFM

CAMPIONE	S _a [nm]	S _q [nm]	S _z [nm]	S _{sk} []	S _{ku} []	S _{ds} [1/μm]	S _{sc} [1/nm]	S _{dq} [1/nm]	S _{dr} [%]
SL (1° misura)	746	932	7038	0.642	2.81	0.178	0.000135	1.14	23.4
SL (2° misura)	726	876	5674	0.613	2.53	0.243	0.000104	0.815	24.1
SLA (1° misura)	843	1044	6342	0.128	2.77	0.228	0.000078	0.874	35.7
SLA (2° misura)	862	1048	6419	0.106	2.38	0.167	0.000064	1.11	31.1
$\mathrm{SLA} + \mathrm{film}\mathrm{SiO}_2$	1074	1322	8360	0.273	2.73	0.578	0.0002	1.43	64.3

Parametri di rugosità

Parametro	Descrizione	Unità di misura
$\mathbf{S_a}$	Rugosità media	[nm]
$\mathbf{S_q}$	Rugosità media quadratica	[nm]
$\mathbf{S}_{\mathbf{z}}$	Rugosità media in cinque punti	[nm]
$\mathbf{S}_{\mathbf{sk}}$	Asimmetria del profilo	[]
$\mathbf{S}_{\mathbf{ku}}$	Curtosi del profilo (descrive la distribuzione del profilo)	[]
$\mathbf{S}_{\mathbf{ds}}$	Densità degli altipiani di profilo	[1/µm²]
$\mathbf{S_{sc}}$	Raggio di curvatura medio dei picchi	[1/nm]
$\mathbf{S}_{\mathbf{dq}}$	Media quadratica della pendenza del profilo	[1/nm]
$S_{ m dr}$	Rapporto tra l'area della superficie e l'area della superficie proiettata	[%]

Analisi superficiale: confronto

CONFRONTO TRA SUPERFICI SL E SLA

- \triangleright S_a, S_q, S_z aumentano
- ightharpoonup S_{sk} diminuisce pur registrando valori positivi
- ► S_{dr} aumenta sensibilmente

CONFRONTO TRA SUPERFICIE SLA E SLA RICOPERTA

- \triangleright S_a, S_q, S_z aumentano
- ➤ S_{sk} aumenta rispetto a SLA restando inferiore ai valori di SL
- \triangleright S_{ds}, S_{dq}, S_{sc} riportano un incremento sensibile
- ➤ S_{dr} cresce notevolmente

Analisi superficiale: confronto

- ➤ l'attacco acido produce un secondo livello di microrugosità che si sovrappone alla precedente tessitura
- ➢ il rivestimento con film di SiO₂ pur non alterando la morfologia, determina una topografia più frastagliata e disomogenea

Analisi superficiale: profilometro

Principali parametri di rugosità misurati al profilometro

CAMPIONE	S _a [μm]	S _q [Å]	S _z [Å]	S _{sk} []	S _{ku} []	S _{Δq} [°]	$egin{aligned} \mathbf{S_{ds}} \ [1/ ext{Å}^2] \end{aligned}$
SLA	3.120	41079	196779	-1.00	4.55	5.01	5.30E-11
SLA + film di SiO ₂	3.197	40770	196745	-0.667	4.08	4.92	5.30E-11

Rilascio da carrier

La tendenza all'adsorbimento del peptide è stata preliminarmente valutata impiegando diverse combinazioni di materiali:

- il polietilene non è adatto per effettuare saggi di rilascio
- > il teflon risulta inerte al peptide
- la sequenza mostra elevata affinità per il vetro e per il ricoprimento in SiO₂

Il *network* di silice non rilascia il peptide nel tempo sperimentale impostato e si può quindi ipotizzare che:

- ➤ il peptide d'adesione resti disponibile all'interfaccia impianto-tessuto osseo e...
- > ... non si generino fenomeni d'inibizione.

Saggi in vitro

Sono stati utilizzati come substrato dischetti in Ti con le stesse caratteristiche superficiali dei cilindri:

Il test *in vitro* consente di:

- ➤ indagare la relazione dose-risposta;
- ➤ determinare la concentrazione superficiale ottimale del peptide di adesione.

Saggi in vitro

- ➤ il solo film di SiO₂ aumenta l'adesione;
- ➤ il peptide promuove l'adesione degli osteoblasti;
- ➤ la concentrazione influenza la bioattività (max 0.23 mM)

Saggi in vivo

Modello animale: conigli maschi razza White New Zealand

Inserimento dei cilindri nei femori dx e sin

- sacrificio degli

 animali a 2 e a 4
 settimane
 dall'intervento
- inclusione dei segmenti ossei in araldite
- osservazione in luce UV di reperti istologici prelevati ad altezze corrispondenti

Saggi in vivo: chirurgia

artrotomia

lussazione della rotula creazione sede implantare

inserimento cilindri in Ti

Saggi in vivo: chirurgia

Saggi in vivo: risultati a due settimane

Il marcatore osseo rileva una attività osteogenica più diffusa nei campioni arricchiti col peptide d'adesione

Saggi in vivo: risultati a quattro settimane

La differenza in termini di attività osteogenica tra campioni arricchiti e non arricchiti risulta meno marcata

Conclusioni

- ➢ il rivestimento in film di SiO₂ non altera la morfologia superficiale
- ➢ il peptide d'adesione, intrappolato nel *network* di silice, resta disponibile all'interfaccia impianto-tessuto
- il peptide d'adesione favorisce l'adesione cellulare *in vitro*
- > il peptide d'adesione promuove l'osteogenesi in vivo

I risultati ottenuti consentono di:

- > validare l'approccio progettuale alla fabbricazioni di viti metalliche bioattive
- > estendere l'attività sperimentale a modelli animali più complessi