Computer Modelling and Simulation

Lectures 1 and 2

Introduction to Modelling and Simulation

- Modeling and Simulation (M&S) is a separate discipline with it's own body of knowledge, theory and research methodology.
- M&S is founded on the following concepts:
 - Modeling: Models are approximations for the real world.
 - Simulation: Repeated observation of the model.
 - Analysis: Aids in the ability to draw conclusions and make recommendations based on various iterations or simulations of the model.
 - Visualization: The ability to represent data as a way to interface with the model
 - Verification and Validation

Modelling and Simulation

 Modelling and simulation (M&S) is the use of models as a basis for simulations to develop data utilized for managerial or technical decision making.

What you'll be able to do after this course?

- Make simulations of different types of systems used in real world with the help of a simulation software i.e. **AnyLogic.**
- Create mathematical and graphical models of natural phenomena like population growth, predator-prey relationships, drug-dosage model, fall under gravity, spread of SARS etc
- Study numerical solutions for the mathematical models of the systems
- Study different types of modeling techniques (like Petri Nets, Cellular Automata etc) to represent systems.
- Understand the role of randomness in real-world systems and model that randomness.

Mathematical Model of different systems

Predator Prey Relationship

```
ds/dt = ks s - khshs

dh/dt = ksh sh - kh h
```

Drug dosage Model

```
elimination = elimination_constant * aspirin_in_plasma
plasma_concentration = aspirin_in_plasma/plasma_volume
```

Graphical Representation of Predator-Prey Relationship and It's analysis

Graphical Representation of Drug Dosage Model and It's analysis

- *Training* goal is to provide real world experience/opportunities in a controlled environment e.g. <u>flight simulator</u>
- Decision Support to provide a descriptive, explanatory, predictive tool
- Understanding this type of modeling and simulation facilitates testing a hypothesis relative to the structure and function of a complex system e.g. modeling spread of covid or other infectious diseases
- Education and Learning used for teaching and learning systems with dynamic behavior and with serious gaming (this is also called game based learning) e.g SuperBetter (a motivational game), FoldIt (puzzle solving game for the benefit of scientific research)
- Entertainment simulation provides a realistic representation for elements possessing dynamic behavior e.g. modern video games

How learning M&S will help you?

- Job opportunities
- https://www.glassdoor.com/Job/simulation-and-modeling-jobs-SRC H KO0,23.htm
- https://www.ziprecruiter.com/Jobs/Modeling-and-Simulation-Analysto-
 t

Pre-Requisites

- Knowledge of Basic Mathematics
- Knowledge of Programming Language
- Willingness to work on many assignments and class activities

Course Policies

- Attendance (strict 80% attendance no compromise on attendance)
- Zero Tolerance Policy for Plagiarism in assignments -(again no compromise)
- Grading Policy:
 - Relative

Evaluations in the course

- Quizzes 5%-10%
- Assignments 15%
- Sessionals (1&2) 30% each
- Final Exam 45%-50%

Recommended Books

Learning Resources

- AnyLogic Video Tutorials
- AnyLogic Youtube Channel

What is this?

- This is not an apple.
- It's a representation of an apple
 - Sufficient for those who want to know what an apple looks like but not for those who want to know how it tastes like

What is a model?

- A model is an abstract representation of a system.
- An abstraction in which only the essential ingredients are retained according to the questions we ask about the system.
- Level of details?
 - "Everything should be made as simple as possible but not simpler." Albert Einstein.
- The same system can be described at different scales.
 - Cells, tissues, organs, living beings
 - Mechanical parts, cars, traffic

System

- The term "system" comes from the Latin word systēma, "whole concept made of several parts or members"
- An entity or group of entities that exist and operate in time and space.
- International Council of Systems Engineering INCOSE suggests that a system is a construct or collection of different elements that together produces results not obtainable by the elements alone.
- System refers to the subject of model development; that is, it is the subject or thing that will be investigated or studied using M & S.

System

System

Examples

- Planetary system in the universe (gravitation bound objects in orbit around a star)
- Banking system in finance industry (payment, loan, deposit, investment processes)
- Software system in a computer (processes, threads, IPC, etc.)
- Other examples are in medicine, biology, socio-economic, political, communications, environment, transportation, electrical, mechanical, etc

Types of Models

- Physical
- Notional

Types of Models

• A model can be **physical**, such as a scale model of an airplane to study aerodynamic behavior.

Types of Models

- A model can be **notional** i.e. a model consists of a set of mathematical equations or logic statements that describes the behavior of the system.
 - Mathematical model
 - Simple equations often result in analytic solutions that has mathematical proofs.
 - Some mathematical models require numerical solutions
 - Logical model
 - Software analysis/design models, computer programs.

Example of Mathematical model

If you apply more force to an object, it accelerates at a higher rate.

F = ma

Example of a Logical model

An example Class Diagram

Mathematical Model of a free falling body

Consider a model that represents the vertical height of an object moving in one dimension under the influence of gravity.

The mathematical model takes the form of an equation

$$h = 1/2 at^2 + vt + s$$

where

h = height (feet),

t = time in motion (seconds),

v = initial velocity (feet per second, + is up),

s = initial height (feet),

a = acceleration (feet per second per second).

Simulation

Multiple definitions:

- a nontechnical meaning not real, imitation
- A method for implementing a model over time.
- a technique for testing, analysis, or training in which real world systems are used
- an unobtrusive scientific method of inquiry involving experiments with a model rather than with the portion of reality that the model represents
- a methodology for extracting information from a model by observing the behavior of the model as it is executed

Simulation of a free falling body

Simulation Example 1

```
/* Height of an object moving under gravity. */
/* Initial height v and velocity s constants. */
main()
float h, v = 100.0, s = 1000.0;
int t;
for (t = 0, h = s; h >= 0.0; t++)
h = (-16.0 * t * t) + (v * t) + s;
printf("Height at time %d = %f\n ", t, h);
```

Simulation of a free falling body

t	V	h	
0	100	1000	
1	68	1052	
2	36	972	
3	4	860	
4	-28	719	
5	-60	540	
6	-92	332	
7	-124	92	

Another definition of Simulation

- Sometimes the mathematical model is sufficiently complex that the only way to solve the equations is numerically. This process is referred to as computer simulation.
- Essentially, a system is modeled using mathematical equations; then, these equations are solved numerically using a digital computer to indicate likely system behavior.
- Analytic solutions are precise mathematical proofs, and as such, they cannot be conducted for all classes of models.
- The alternative is to solve numerically with the understanding that an amount of error may be present in the numerical solution.

Another definition of Simulation

- Live Simulation
- Virtual Simulation
- Constructive simulation

- A live simulation involves real people operating real systems.
- Example: War games
- The purpose of live simulation training is to provide a meaningful and useful experience for the trainee.

- A *virtual simulation* is different from live simulation in that it involves real people operating in simulated systems.
- These systems are recreated with simulators, and they are designed to immerse the user in a realistic environment.
- Example: Cockpit simulator

- Constructive simulation
- This simulation involves real people making inputs into a simulation that carry out those inputs by simulated people operating in simulated systems.
- The expected result of constructive simulation is that it will provide a useful result.
- Example: <u>SimCity</u>

Advantages of M&S

- The ability to *choose correctly* by testing every aspect of a proposed change without committing additional resources.
- Compress and expand time to allow the user to speed up or slow down behavior or phenomena to facilitate in depth research
- *Understand why* by reconstructing the scenario and examining the scenario closely by controlling the system
- Explore possibilities in the context of policies, operating procedures, methods without disrupting the actual or real system
- Diagnose problems by understanding the interaction among variables that make up complex systems
- Develop understanding by observing how a system operates rather than predictions about how it will operate
- Visualize the plan with the use of animation to observe the system or organization actually operating
- Better training can be done less expensively and with less disruption than on the job training

Disadvantages of M & S

- Simulation results may be difficult to interpret
- Some simulations may take months to complete
- Some simulations may require expensive hardware
- Some simulations may be run when they are not needed. For example, when analytical solutions are available.

Domains

- Transportation M & S
- Business M & S
- Medical M & S
- Social Science M & S

Examples of Network Simulations in Omnet++ (IMG: omnetplusplus.blogspot.com)

Crowd Modelling during Tawaf IMG: L. Manenti et. al., MAKKSim: Dealing with Pedestrian Groups in MAS-based Crowd Simulation

Simulation of Urban Mobility (SUMO)