Looking into the BMY-BMR overlapped cell cluster

Zinger Yang Loureiro October 4, 2021

Cluster 9 contains cells from all samples Iteration 3, min.feature = 2000, resolution = 0.5 (14 clusters)

Cluster 9 cells contribution to each sample

BMY-32 148 of 3947 cells (3.75%)

BMR-32 537 of 12037 cells (4.46%)

BMS-32 119 of 8688 cells (1.37%)

Cluster 9 in PCA vs UMAP projections PCA projects cluster 9 as the outliers, primary contributor to PC1

Top markers of the Cluster 9, "KI67-high" cluster are cell proliferation genes

What is the identity of the Kl67-high cluster? Are there shared features beyond cell cycle genes?

Cluster marker genes identified by DE: 219 genes

Possibilities:

- The BMY, BMR cells cluster together due to shared strong expression of cell-proliferation genes
- 2. There are shared biology beyond cell-proliferation.

Approach:

- 1. Set enrichment (cell cycle genes strongly enriched)
- 2. Set enrichment of genes not involved in cell cycle

DE Test: Wilcoxon Rank Sum test, Seurat package Features: limited to ones detected in >25% cells in the cluster Threshold: log2 fold change > 1

Set enrichment analysis returns cell cycle gene sets

Enrichment: GSEA MSigDB GO biological processes, set size < 1000, top 50 displayed

Gene Set Name CELL DIVISION CHROMOSOME SEGREGATION MITOTIC NUCLEAR DIVISION ORGANELLE FISSION SISTER_CHROMATID_SEGREGATION NUCLEAR_CHROMOSOME_SEGREGATION MITOTIC_SISTER_CHROMATID_SEGREGATION DNA CONFORMATION CHANGE CELL CYCLE PHASE TRANSITION DNA METABOLIC PROCESS DNA PACKAGING PROTEIN DNA COMPLEX SUBUNIT ORGANIZATION MICROTUBULE CYTOSKELETON ORGANIZATION SPINDLE ORGANIZATION MICROTUBULE_CYTOSKELETON_ORGANIZATION_INVOLVED_IN_MITOSIS REGULATION_OF_CELL_CYCLE_PROCESS REGULATION_OF_CHROMOSOME_ORGANIZATION MICROTUBULE_BASED_PROCESS REGULATION_OF_CHROMOSOME_SEGREGATION CHROMOSOME SEPARATION MITOTIC SPINDLE ORGANIZATION CENTROMERE COMPLEX ASSEMBLY REGULATION OF MITOTIC CELL CYCLE CHROMATIN ORGANIZATION REGULATION OF CHROMOSOME SEPARATION KINETOCHORE ORGANIZATION METAPHASE_ANAPHASE_TRANSITION_OF_CELL_CYCLE CHROMATIN_ASSEMBLY_OR_DISASSEMBLY NUCLEOSOME_ASSEMBLY NUCLEOSOME_ORGANIZATION REGULATION_OF_MITOTIC_NUCLEAR_DIVISION REGULATION_OF_MITOTIC_SISTER_CHROMATID_SEGREGATION CHROMATIN REMODELING AT CENTROMERE REGULATION OF CELL CYCLE PHASE TRANSITION NEGATIVE REGULATION OF METAPHASE ANAPHASE TRANSITION OF CELL CYCLE REGULATION OF NUCLEAR DIVISION NEGATIVE REGULATION OF CHROMOSOME ORGANIZATION DNA RECOMBINATION HISTONE EXCHANGE CHROMOSOME CONDENSATION DNA REPLICATION MEIOTIC CELL CYCLE NEGATIVE REGULATION OF CELLULAR COMPONENT ORGANIZATION DNA REPLICATION INDEPENDENT NUCLEOSOME ORGANIZATION NEGATIVE REGULATION OF NUCLEAR DIVISION PROTEIN LOCALIZATION TO CHROMOSOME NEGATIVE REGULATION OF CELL CYCLE CELLULAR RESPONSE TO DNA DAMAGE STIMULUS MEIOTIC_CELL_CYCLE_PROCESS POSITIVE_REGULATION OF CELL CYCLE

The 73 genes not contributing to the cell cycle gene sets are mostly genes involved in splicing 30 genes contributed to gene sets below. 43 genes not contributing to any gene sets.

Gene Set Name	# Genes in Overlap (k)	FDF	R q-value	
GOBP_RNA_SPLICING_VIA_TRANSESTERIFICATION_REACTIONS		17	2.46E-15	
GOBP_RNA_SPLICING		17	4.83E-14	
GOBP_MRNA_METABOLIC_PROCESS		20	1.70E-13	
GOBP_MRNA_PROCESSING		17	2.01E-13	
GOBP_NUCLEAR_TRANSPORT		11	4.73E-08	
GOBP_MRNA_EXPORT_FROM_NUCLEUS		7	1.94E-06	
GOBP_RNA_EXPORT_FROM_NUCLEUS		7	8.20E-06	
GOBP_MRNA_TRANSPORT		7	1.02E-05	
GOBP_RNA_3_END_PROCESSING		7	1.02E-05	
GOBP_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS		10	1.02E-05	
GOBP_MRNA_3_END_PROCESSING		6	1.88E-05	
GOBP_ESTABLISHMENT_OF_RNA_LOCALIZATION		7	4.83E-05	
GOBP_NUCLEAR_EXPORT		7	4.83E-05	
GOBP_RNA_LOCALIZATION		7	1.22E-04	00000
GOBP_NUCLEOBASE_CONTAINING_COMPOUND_TRANSPORT		7	1.93E-04	SRSF7 serine and arginine rich splicing factor 7
GOBP_PROTEIN_CONTAINING_COMPLEX_LOCALIZATION		7	3.94E-04	SRSF3 serine and arginine rich splicing factor 3
GOBP_REGULATION_OF_MRNA_METABOLIC_PROCESS		7	1.11E-03	MRPL15 mitochondrial ribosomal protein L15
GOBP_RIBONUCLEOPROTEIN_COMPLEX_SUBUNIT_ORGANIZATION		6	1.60E-03	•
GOBP_REGULATION_OF_RNA_SPLICING		5	2.60E-03	PFKP phosphofructokinase, platelet
GOBP_RNA_CATABOLIC_PROCESS		7	3.84E-03	
GOBP_RESPONSE_TO_LEUKEMIA_INHIBITORY_FACTOR		4	4.95E-03	SNRPA1 small nuclear ribonucleoprotein
GOBP_REGULATION_OF_MRNA_SPLICING_VIA_SPLICEOSOME		4	1.14E-02	·
GOBP_NUCLEAR_TRANSCRIBED_MRNA_CATABOLIC_PROCESS		5	1.26E-02	polypeptide A'
GOBP_PEPTIDE_BIOSYNTHETIC_PROCESS		8	1.79E-02	LMNB1 lamin B1
GOBP_RRNA_METABOLIC_PROCESS		5	2.20E-02	HNRNPDL heterogeneous nuclear
GOBP_NCRNA_PROCESSING		6	2.53E-02	ribonucleoprotein D like
GOBP_RESPONSE_TO_INTERLEUKIN_12		3	2.87E-02	
GOBP_SPLICEOSOMAL_SNRNP_ASSEMBLY		3	3.11E-02	
GOBP_REGULATION_OF_MRNA_PROCESSING		4	3.12E-02	
GOBP_ORGANIC_CYCLIC_COMPOUND_CATABOLIC_PROCESS		7	3.87E-02	
GOBP_AMIDE_BIOSYNTHETIC_PROCESS		8	4.46E-02	

The 43 genes not contributing to gene sets

ARHGAP11A Rho GTPase activating protein 11A

ARL6IP1 ADP ribosylation factor like GTPase 6 interacting protein 1

BZW1 basic leucine zipper and W2 domains 1
C12orf75 chromosome 12 open reading frame 75
CKAP2L cytoskeleton associated protein 2 like
COMMD4 COMM domain containing 4
CXCL3 C-X-C motif chemokine ligand 3
CYCS cytochrome c, somatic

DEPDC1 DEP domain containing 1
DIAPH3 diaphanous related formin 3
DIRAS3 DIRAS family GTPase 3

DNAJC9 DnaJ heat shock protein family (Hsp40) member C9

DTYMK deoxythymidylate kinase

EMP2 epithelial membrane protein 2 FABP5 fatty acid binding protein 5

GNPNAT1 glucosamine-phosphate N-acetyltransferase 1
HNRNPAB heterogeneous nuclear ribonucleoprotein A/B
HSPE1 heat shock protein family E (Hsp10) member 1
HSPH1 heat shock protein family H (Hsp110) member 1
ILF2 interleukin enhancer binding factor 2

JPT1 Jupiter microtubule associated homolog 1

KCNMA1 potassium calcium-activated channel subfamily M alpha 1

MT2A metallothionein 2A
ODC1 ornithine decarboxylase 1

PAICS phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase

PBK PDZ binding kinase

PGP phosphoglycolate phosphatase PHGDH phosphoglycerate dehydrogenase

PHLDA2 pleckstrin homology like domain family A member 2 PPP1R14B protein phosphatase 1 regulatory inhibitor subunit 14B

PTMA prothymosin alpha

SAP30 Sin3A associated protein 30

SHCBP1 SHC binding and spindle associated 1

SMS spermine synthase
STEAP1 STEAP family member 1
STEAP1B STEAP family member 1B
STIP1 stress induced phosphoprotein 1
TFAM transcription factor A, mitochondrial
TFPI2 tissue factor pathway inhibitor 2

TIMM10 translocase of inner mitochondrial membrane 10

TMPO thymopoietin

TNFRSF12A TNF receptor superfamily member 12A

TOMM40 translocase of outer mitochondrial membrane 40

DE genes between BMR and BMY in Kl67-high cluster are differentially expressed in the overall samples DE Test: Wilcoxon Rank Sum test, Seurat package

Features: limited to ones detected in >25% cells in the cluster Threshold: average log2 fold change > 1

Summary

- Besides cell cycle and splicing, I did not observe obvious shared biology across BMR and BMY in the KI67-high cluster.
- BMY cells in KI67-high cluster retains features consistent with other BMY cells. Vice versa for BMR cells.