## Лабораторная работа №1

## Аналитический Метод

#### Заданная функция

function

### 1.1 Докажите, что f измерима по Лебегу на E

Рассмотрим измеримость f по определению. Исходя из факта, о равносильности измеримости Лебеговых множеств, проверим с помощью множеств вида  $\{f \geq a\}_{a \in \mathbb{R}}$ 

$$a>\pi\Leftrightarrow\{f\geq a\}=\emptyset o$$
 измеримо  $a\in(3;\pi]\Leftrightarrow\{f\geq a\}=\{0\} o$  измеримо  $a\in(2;3]\Leftrightarrow\{f\geq a\}=\{0,3\} o$  измеримо  $a\in(1;2]\Leftrightarrow\{f\geq a\}=[2,3]\cup\{0\} o$  измеримо  $a\in(0.8;1]\Leftrightarrow\{f\geq a\}=[1,3]\cup\{0\} o$  измеримо  $a\in(0;0.8]$ 

- имеем множество случаев, рассмотрим каждый из них

1:  $a=0,0\dots 0$  (до  $a_k$  идет k>0 нулей; причем после  $a_k$  идут только нули)

1.1: 
$$a_k < 5 o \{f \geq a\} = [a;3] \cup \{0\}$$
 — измеримо

1.2: 
$$5 \leq a_k < 9 o \{f \geq a\} = [0,0\dots 0(a_k+1);3] \cup \{0\}$$
 — измеримо

$$a_k = 9 o \{f \geq a\} = [0,0\dots 01;3] \quad (k-1$$
 нулей)  $\quad \cup \, \{0\} -$  измеримс

2:  $a=0,0\dots 0 a_k\dots a_m$  (разница с первым пунктом в том, что после  $a_k$  у нас может появиться еще одна цифра [к примеру  $a_m$ ])

2.1: 
$$a_k < 4 \rightarrow \{f \geq a\} = [0, 0 \dots 0 (a_k + 1); 3] \cup \{0\}$$
 — измеримо

$$4 \leq a_k < 8 
ightarrow \{f \geq a\} = [0,0\dots 0(a_k+2);3] \cup \{0\}$$
 — измеримо

$$a_k \geq 8 o \{f \geq a\} = [0,0\dots 01;3] \quad (k-1$$
 нулей)  $\quad \cup \ \{0\}$  — измеримс

$$a \in (0;0.8] \Leftrightarrow \{f \geq a\}$$
 — измеримо

$$a \leq 0 \Leftrightarrow \{f \geq a\} = [0;3]$$
 — измеримо

#### Значит, что

$$orall a \in \mathbb{R} 
ightarrow \{f \geq a\}$$
 — измеримо  $\Rightarrow$ 

 $\Rightarrow$  все Лебеговы множества измеримы  $\Rightarrow$ 

$$\Rightarrow f$$
 — измеримо по определению

1.2 Постройте последовательность простых ф-ий  $f_n(x)$  такую, чтобы  $f_n \leq f$ ,  $f_n o f$  почти всюду на E

$$f_n = egin{cases} \pi, & ext{for } x = 0 \ 1, & ext{for } x \in [1;2) \ 2, & ext{for } x \in [2;3) \ 3, & ext{for } x = 3 \ f(x), & ext{for } x = 0, 0 \dots a_k \dots & (a_k > 0, k \leq n) \ 0, & ext{otherwise} \ \end{cases}$$

#### Знаем что

$$orall n \in \mathbb{N},$$
 на отрезке  $[1;3]:f_n=f$ 

$$orall n \in \mathbb{N}: f_n(0) = f(0)$$

$$x \in (0;1) \Leftrightarrow f_n = f(x)$$
 или  $f_n = 0 \Rightarrow f_n \leq f \Rightarrow orall x \in E: f_n \leq f$ 

$$n o\infty\Rightarrow$$
 мера  $X=\{\,x\,|f_n(x)
eq f(x)\} o0\Rightarrow x\in(0;1)\Leftrightarrow f_n o f$  та

на 
$$[1;3] \cup \{0\} \Rightarrow f_n = f,$$
 означает  $f_n \to f$  на  $E$ 

Также

$$f_{n+1} > f_n$$

так как  $f_{n+1}$  отличается от  $f_n$  только в тех точках, где  $f_n=0$ , вдовесок мы знаем что  $f_{n+1}$  доопределено в этих точках " $\geq 0$ " значениями  $\Rightarrow f_n$  - возрастающая последовательность

1.3 Запишите определение интеграла Лебега функции f по E, используя построенную последовательность  $f_n$ . Вычислите аналитически, ссылаясь на соответствующие теоремы

$$\int f\,d\lambda = \sup\left\{\int g\,d\lambda,\, 0\leq g\leq f,\, g$$
 — простая $ight\}$ 

где

$$\int_E g\,d\lambda = \sum_{i=1}^N c_i\,\lambda E_i \quad E = igsqcup_{i=1}^N E_i$$

 $f_n o f; f_n$  — измеримо;  $0\le f_n\le f; f_n$  — возрастающая  $\Rightarrow$  по теореме Леви

$$0 \Rightarrow \int_E f d\mu = \lim_{n o \infty} \int_E f_n d\mu$$

$$\int_{E}fd\mu=\int_{[0,1)}fd\mu+\int_{[1,2)}fd\mu+\int_{[2,3)}fd\mu+\int_{\{3\}}fd\mu$$

$$\int_{[1,2)}fd\lambda=1\cdot\lambda([1;2))=1$$

т.к на этом полуинтервале, f - простая функция

Аналогично

$$\int_{[2,3)}fd\lambda=2\cdot\lambda([2;3))=2$$

Также

$$\int_{\{3\}}fd\lambda=0 \Leftarrow \lambda(\{3\})=0$$

Нужно посчитать

$$\int_{[0,1)}fd\lambda$$

Чтобы применить т. Леви, в первую очередь нужно доказать что  $f_n$  - измеримая  $\Rightarrow \{f \geq a\}_{orall a \in \mathbb{R}}-$  докажем что измеримое

Доказательство аналогично доказательству измеримости f, кроме момента с  $a:=0,0\dots0a_k\Leftrightarrow$  для таких a -  $\{f\geq a\}$ — совпадает с уже измеримым множеством  $\{f\geq 0,0\dots01\}, (n$  нулей)  $\Rightarrow f_n$ — измеримо  $\forall n\in\mathbb{N}$ 

Используем теорему Леви

$$\int_{[0,1)}f_nd\lambda+\int_{\{0\}}f_nd\lambda+\int_{(0,1)}f_nd\lambda=\int_{(0,1)}f_nd\lambda=$$

$$=\sum_{j=1}^n\frac{1}{10^j}\cdot(1+2+3+4+4+5+6+7+8)\cdot\frac{1}{10^j}=40\,\sum_{j=1}^n\frac{1}{10^{2j}}$$

$$\lim_{n \to \infty} 40 \, \sum_{j=1}^n \frac{1}{10^{2j}} = 40 \cdot \lim_{n \to \infty} \sum_{j=1}^n \frac{1}{10^{2j}} = 40 \cdot \frac{1}{10^2} \cdot \frac{1}{1 - \frac{1}{10^2}} = \frac{40}{99} \Rightarrow$$

$$\Rightarrow \int_E f\,d\lambda = 3 + rac{40}{99} = rac{337}{99}$$

1.4 Докажите (опираясь на соответствующие теоремы), что данная функция F задает меру Лебега-Стилтьеса на  $\mu_F$ 

Требуется доказать что функция возрастающая и непрерывная слева

3x возрастающая

$$[-2x]$$
 убывает  $\Rightarrow$   $-[-2x]$  возрастающая

$$\Rightarrow 3x - [-2x]$$
 возрастающая

3x - очевидно непрерывная слева

 $\lceil -2x 
ceil$  - непрерывная слева, можно увидеть на графике

```
In [2]: def func(x):
    return np.floor(-2*x)

In [10]: X = np.linspace(-2, 2, 1000)
    y = func(X)
    plt.scatter(X, y)
```

Out[10]: <matplotlib.collections.PathCollection at 0x12d404950>



F(x)=3x-[-2x] - непрерывная функция  $\Rightarrow$  задает меру Лебега-Стилтьеса

#### 1.5 Вычислите интеграл Лебега-Стилтьеса

$$\int_E f\,d\mu_F$$

#### аналитически

$$\int_E f d\mu_F = \int_{[0,1)} f d\mu_F + \int_{[1,2)} f d\mu_F + \int_{[2,3)} f d\mu_F + \int_{\{3\}} f d\mu_F$$

$$\int_{[1,2)} f d\mu_F = 1 \cdot \mu_F([1;2)) = 1 \cdot (F(2) - F(1)) = 5$$

$$\int_{[2,3)} f d\mu_F = 2 \cdot \mu_F([2;3)) = 2 \cdot (F(3) - F(2)) = 10$$

$$\int_{\{3\}} f d\mu_F = 3 \cdot \mu_F(\{3\}) = 3 \cdot (F(3^+) - F(3)) = 3$$

$$\int_{[0,1)} f d\mu_F = \int_{\{0\}} f d\mu_F + \int_{(0,1)} f d\mu_F = \pi \cdot (F(0^+) - F(0)) + \int_{(0,1)} f d\mu_F = \pi + \int_{(0,1)} f$$

Рассмотрим

$$\int_{(0,1)} f d\mu_F = \int_{(0,0.1)} f d\mu_F + \int_{[0.1,1)} f d\mu_F$$

Так как  $orall x \in (0;0.1): [-2x] = -1 \Rightarrow \mu_F$ (ячейки)  $= 3 \cdot \lambda$ (ячейки)

По теореме Леви

$$\int_{(0,0.1)} f d\mu_F = \lim_{n o \infty} \int_{(0,0.1)} f_n d\mu_F = \sum_j rac{3}{10^j} \cdot (1+2+3+4+4+5+6+7+8) \cdot rac{1}{10^j}$$

$$\int_{[0.1,1)} f d\mu_F = \lim_{n o\infty} \int_{[0.1,1)} f_n d\mu_F = rac{3}{10} \cdot rac{1}{10} + rac{3}{10} \cdot rac{2}{10} + rac{3}{10} \cdot rac{3}{10} + rac{3}{10} \cdot rac{4}{10} +$$

$$+\frac{4}{10}\cdot\mu([0.5;0.6))+\frac{3}{10}\cdot\frac{5}{10}+\frac{3}{10}\cdot\frac{6}{10}+\frac{3}{10}\cdot\frac{7}{10}+\frac{3}{10}\cdot\frac{8}{10}=\frac{8}{5}$$

#### Следовательно

$$\int_E f \, d\mu_F = \pi + rac{12}{990} + rac{8}{5} + 18$$

#### Численный метод

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sympy
from sympy import limit, symbols
import time
from functools import wraps
from decimal import *
```

# 2.1 Изобразите графики, $f_n$ при нескольких значениях n или анимированный график (при увеличении n)

```
In [35]: def function_formula(x, L, variant):
             if variant == 1:
                  condition = (4 \ge \text{np.floor}(x * 10**L)) \& (\text{np.floor}(x * 10**L) > 0)
                  return condition * (np.floor(x * 10**L) / 10**L)
             elif variant == 2:
                  condition = (9 >= np.floor(x * 10**L)) \& (np.floor(x * 10**L) > 4)
                  return condition * (np.floor(x * 10**L - 1) / 10**L)
In [36]: def generate_fractal(n, x_range, num_points):
             x = np.linspace(*x_range, num_points)
             y = np.zeros_like(x)
             for L in range(1, n + 1):
                  y += function_formula(x, L, 1) + function_formula(x, L, 2)
              return x, y
         x_range = (0, 1)
         num_points = 10000
         n_{values} = [1, 2, 3, 4, 5, 10]
         fig, axes = plt.subplots(len(n_values), 1, figsize=(10, 20))
         scaling_factors = [1, 2, 4, 8, 16, 32]
         assert len(scaling_factors) == len(n_values)
         for i, n in enumerate(n values):
             x, y = generate_fractal(n, x_range, num_points)
             axes[i].scatter(x, y, label=f'n={n}', s=2)
             axes[i].set_xlim(0, 1)
             axes[i].set_ylim(0, 1 / scaling_factors[i])
             axes[i].set_title(f'Fractal for n={n} with custom scaling')
             axes[i].legend()
             axes[i].grid(True)
         plt.tight_layout()
         plt.show()
```





2.2 & 2.3 Вычислите интеграл Лебега от  $f_n$  по E для нескольких (больших) значений n. Сравните результат с аналитическим. Вычислите интеграл Лебега-Стилтьеса для функции  $f_n$  при нескольких (больших) значениях n. Сравните результат с аналитическим

```
In [38]: # Задаем константы
getcontext().prec = 15

# Определение функций и глобальных переменных
x = symbols('x')
measure_functions = {
    "Lebegue": x,
    "Lebegue-Stieltjes": 3 * x - sympy.floor(-2 * x)
}
real_values = {
    "Lebegue": 337 / 99,
    "Lebegue-Stieltjes": np.pi + 18 + 8 / 5 + 12 / 990
}
intervals = [(0, 0, True), (1, 2, True), (2, 3, True), (3, 3, True)]
significant_digit_numbers = [10, 100, 200]
number_range = range(1, 10)
```

```
In [39]: # Зададим функцию

def f_n(x):
    match x:
        case 0:
            return np.pi
        case 3:
            return 3
        case _ if 1 <= x < 2:
            return 1
        case _ if 2 <= x < 3:
            return 2
        case _:
            check_num = str(x)
```

```
for i, char in enumerate(check_num):
    if char.isdigit() and (new_number := int(char)) > 0:
        if new_number > 4:
            new_number -= 1
        return Decimal(check_num[:i] + str(new_number))
return 0
```

```
In [41]: # Считаем меру ячеек, точек и интервалов
         def calculate_interval_measure(interval_simple, measure):
             left point measure = limit(measure, x, interval simple[0], "+") - measur
             if interval simple[0] == interval simple[1]:
                 return left_point_measure
             cell measure = measure.subs(x, interval simple[1]) - measure.subs(x, int
             return cell_measure if interval_simple[2] else cell_measure - left_point
         # Считающаем значение интеграла простой ф-ции
         def calculate_integral_simple(interval_simple, measure, function):
             interval_measure = Decimal(str(calculate_interval_measure(interval_simpl
             mid_point = (Decimal(interval_simple[0]) + Decimal(interval_simple[1]))
             return interval_measure * Decimal(function(mid_point))
         def profile_function(func): # Функция-декоратор для профилирования вызовов
             stats = {
                 'call count': 0,
                 'total_time': 0
             }
             @wraps(func)
             def wrapper(*args, **kwargs):
                 stats['call count'] += 1
                 start time = time.time()
                 result = func(*args, **kwargs)
                 end time = time.time()
                 elapsed time = end time - start time
                 stats['total_time'] += elapsed_time
                 print(f"Function {func.__name__} call {stats['call_count']}: {elapse
                 return result
             wrapper.stats = stats
             return wrapper
         @profile function
         def compute_integral(option, measure_func):
             results = []
             for number in significant digit numbers:
                 integral = sum(calculate_integral_simple(interval, measure_func, f_r
                 integral += sum(
                     sum(
                         calculate_integral_simple(
                              (Decimal(l) * Decimal(10) ** Decimal(-i), Decimal(l + 1)
                             measure func,
                              f n
                         ) for l in number_range
```

```
) for i in range(1, number + 1)
                 diff = integral - Decimal(real_values[option])
                 results.append({
                      'option': option,
                      'n': number,
                      'integral': integral,
                      'analytical_value': real_values[option],
                      'diff': diff
                 })
             return results
         # Сборка данных в DataFrame
         all results = []
         for option, measure_func in measure_functions.items():
             all_results.extend(compute_integral(option, measure_func))
         df = pd.DataFrame(all results)
         # Вывод статистики профилирования
         print(f"Function {compute_integral.__name__} was called {compute_integral.st
         print(f"Total time spent in {compute_integral.__name__}): {compute_integral.s
        Function compute_integral call 1: 0.392600 seconds
        Function compute_integral call 2: 8.860082 seconds
        Function compute integral was called 2 times
        Total time spent in compute_integral: 9.252682 seconds
In [42]: df
```

|          | • |                       |     |                  |                  |                        |
|----------|---|-----------------------|-----|------------------|------------------|------------------------|
| Out[42]: |   | option                | n   | integral         | analytical_value | diff                   |
|          | 0 | Lebegue               | 10  | 3.40404484804000 | 3.404040         | 0.00000444399959602240 |
|          | 1 | Lebegue               | 100 | 3.40404484848444 | 3.404040         | 0.00000444444403602240 |
|          | 2 | Lebegue               | 200 | 3.40404484848444 | 3.404040         | 0.00000444444403602240 |
|          | 3 | Lebegue-<br>Stieltjes | 10  | 22.7537271977098 | 22.753714        | 0.0000133319987937077  |
|          | 4 | Lebegue-<br>Stieltjes | 100 | 22.7537271990431 | 22.753714        | 0.0000133333320937077  |
|          | 5 | Lebegue-<br>Stieltjes | 200 | 22.7537271990431 | 22.753714        | 0.0000133333320937077  |

In []: