I. บทนิยาม

ฟังก์ชันไซน์ ฟังก์ชันโคไซน์

ไซน์ $\sin \theta = y$

 $D_f = R \qquad R_f = [-1, 1]$

โคไซน์ $\cos \theta = x$

 $D_f = R \qquad R_f = \begin{bmatrix} -1, 1 \end{bmatrix}$

 $-1 \le \cos \theta \le 1$

 $-1 \leq \sin \theta \leq 1$

 $\sin^2\theta + \cos^2\theta = 1$

ฟังก์ชันตรีโกณมิติอื่นๆ

$\tan \theta = \frac{\sin(\theta)}{\cos(\theta)}$	$\cot \theta = \frac{\cos(\theta)}{\sin(\theta)}$	
$\csc\theta = \frac{1}{\sin(\theta)}$	$\sec \theta = \frac{1}{\cos(\theta)}$	

เอกลักษณ์ตรีโกณมิติ

บทนิยาม (ต่อ)

ค่าของฟังก์ชันตรีโกณมิติ

ฟังก์ซัน	0	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{\pi}{2} = 90^{\circ}$	$\pi = 180^\circ$
sin	0	1/2	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	0
cot	-	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	2
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	-	-1
cosec	-	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	

การแปลงมุม

$egin{aligned} \bullet & $ มุมแกนราบ $f(n\pi\pm\theta)=\pm f(\theta) \\ & \pm \ $ ดูที่ $\ Q$	$\sin(\pi - \theta) = \sin(\theta)$ $\cos(\pi - \theta) = -\cos(\theta)$ $\tan(\pi - \theta) = -\tan(\theta)$	$ csc(\pi - \theta) = csc(\theta) sec(\pi - \theta) = -sec(\theta) cot(\pi - \theta) = -cot(\theta) $
• มุมแกนดิ่ง (n เป็นเลขคี่) $f(\frac{n\pi}{2} \pm \theta) = \pm Co \cdot f(\theta)$ \pm ดูที่ Q	_	$ \begin{vmatrix} \csc(\frac{\pi}{2} + \theta) &= \sec(\theta) \\ \sec(\frac{\pi}{2} + \theta) &= -\csc(\theta) \\ \cot(\frac{\pi}{2} + \theta) &= -\tan(\theta) \end{vmatrix} $
$ullet$ มุมติดลบ $f(\mbox{-} heta) = \pm f(heta)$ \pm ดูที่ Q	$\sin(-\theta) = -\sin(\theta)$ $\cos(-\theta) = \cos(\theta)$ $\tan(-\theta) = -\tan(\theta)$	$csc(-\theta) = -csc(\theta)$ $sec(-\theta) = sec(\theta)$ $cot(-\theta) = -cot(\theta)$

I. บทนิยาม (ต่อ)

Co - function

$$\sin A = \cos B$$

$$tan_A = cot_B$$

$$sec_A = cosec_B$$

$$A+B=90^\circ$$
 หรือ $rac{\pi}{2}$

II. กราฟ**ง**องฟังก์ชันตรีโกณมิติ

คาบ = 2π แอมพลิจูด = 1 โดเมน = R เรนจ์ = [-1, 1]

$$2. \quad y = \cos(x)$$

คาบ = 2 π แอมพลิจูด = I
โดเมน = Rเรนจ์ = [-1, 1]

3.
$$y = \tan(x)$$

คาบ = π แอมพลิจูด = ไม่มี $\label{eq:loss}$ โดเมน = $\left\{x\in R\,\middle|\,x\neq n\pi+\frac{\pi}{2},n\in I\right\}$ เรนจ์ = R

กราฟของฟังก์ชันตรีโกณมิติ (ต่อ)

คาบ = 2π แอมพลิจูด = ไม่มี $\text{โดเมน} = \{x \in R \,|\, x \neq n\pi, n \in I\}$ เรนจ์ = $(-\infty, -1] \cup [1, \infty)$

คาบ = 2π แอมพลิจูด = ไม่มี $\lceil n \rfloor = \left\{ x \in R \,\middle|\, x \neq n\pi + \frac{\pi}{2}, n \in I \right\}$ เรนซ์ = $(-\infty, -1] \cup [1, \infty)$

คาบ = π แอมพลิจูด = ไม่มี $\label{eq:loss} \text{โดเมน} = \big\{x \in R \, \big| \, x \neq n\pi, n \in I \big\}$ เรนจ์ = R

III. สูตรของฟังก์ชันตรีโกณมิติ

ผลบวก ผลต่างของมุม

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\cot(A \pm B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$$

(ค่าสูงสุดและต่ำสุดของ $a\sin\theta+b\cos\theta$

คือ max =
$$\sqrt{a^2+b^2}$$

$$\min = -\sqrt{a^2 + b^2}$$

มุมสองเท่า ครึ่งเท่า สามเท่า

มุมสองเท่า

$$\sin 2A = 2\sin A \cos A$$
$$= \frac{2\tan A}{1 + \tan^2 A}$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$
$$= 1 - 2\sin^2 A$$

$$= \frac{1 - \tan^2 A}{1 + \tan^2 A}$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cot 2A = \frac{\cot^2 A - 1}{2 \cot A}$$

มุมครึ่งเท่า

$$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$$

$$\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}$$

$$\tan\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{1+\cos A}}$$

$$rac{A}{2}$$
 ว่าอยู่จตุภาคไหน

มุมสามเท่า

$$\sin 3A = 3\sin A - 4\sin^3 A$$

$$\cos 3A = 4\cos^3 A - 3\cos A$$

III. สูตรของฟังก์ซันตรีโกณมิติ (ต่อ)

ผลคูณ ผลบวก ผลต่าง ของฟังก์ชันไซน์ โคไซน์

ผลบวก ผลต่าง
$$\rightarrow$$
 ผลคูณ
$$\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$

$$\sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)$$

$$\sin(A+B) + \sin(A-B) = 2\sin A \cos B$$

$$\sin(A+B) - \sin(A-B) = 2\cos A \sin B$$

$$\cos(A+B) + \cos(A-B) = 2\cos A \cos B$$

$$\cos(A+B) - \cos(A-B) = -2\sin A \sin B$$

IV. การแก้สมการ อสมการของฟังก์ชันตรีโกณมิติ

- 1. ใช้เอกลักษณ์/ สูตรต่างๆ เพื่อจัดรูป แล้วแยกตัวประกอบ
- 2. ตรวจคำตอบ
 - $-1 \le \sin(x) \le 1, -1 \le \cos(x) \le 1$
 - tan(x) หาค่าไม่ได้เมื่อ x เป็นมุมแกนดิ่ง
 cot(x) หาค่าไม่ได้เมื่อ x เป็นมุมแกนราบ
 - การยกกำลังสองอาจทำให้ได้คำตอบเกินมา

อินเวอร์สของฟังก์ชันตรีโกณมิติ

บทนิยาม

	ฟังก์ชันตรีโกณมิติ	อินเวอร์สของ ฟังก์ชัน	ฟังก์ชันอินเวอร์ส	โดเมนของ ฟังก์ชันอินเวอร์ส	เรนจ์ของ ฟังก์ชันอินเวอร์ส	
Gr.1	$y = \sin x$	$x = \sin y$	$y = \arcsin x \text{ who}$ $y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	
	$y = \tan x$	$x = \tan y$	$y = \arctan x$ หรือ $y = \tan^{-1}x$	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	
	$y = \csc x$	$x = \csc y$	$y = \operatorname{arccsc} x \text{ wiso}$ $y = \operatorname{csc}^{-1} x$	R - (-1, 1)	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$	
Gr.2	$y = \cos x$	$x = \cos y$	$y = \arccos x \text{ with}$ $y = \cos^{-1} x$	[-1, 1]	$[0,\pi]$	
	$y = \cot x$	$x = \cot y$	$y = \operatorname{arccot} x$ หรือ $y = \cot^{-1} x$	R	$(0,\pi)$	
	$y = \sec x$	$x = \sec y$	$y = \operatorname{arcsec} x \text{ with}$ $y = \operatorname{sec}^{-1} x$	R - (-1, 1)	$[0,\pi] \cdot \left\{ \frac{\pi}{2} \right\}$	

ความสัมพันธ์ของฟังก์ชันตรีโกณมิติกับอินเวอร์สของฟังก์ซันตรีโกณมิติ

KEY IDEA
$$f(f^{-1}(x)) = x, f^{-1}(f(x)) = x$$

$$\sin(\arcsin x) = x \leftrightarrow x \in [-1,1] \qquad \csc(\arccos x) = x \leftrightarrow x \in R - (-1,1)$$

$$\arcsin(\sin x) = x \leftrightarrow x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \qquad \arccos(\csc x) = x \leftrightarrow x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$$

$$\cos(\arccos x) = x \leftrightarrow x \in [-1,1] \qquad \sec(\arccos x) = x \leftrightarrow x \in R - (-1,1)$$

$$\arccos(\cos x) = x \leftrightarrow x \in [0,\pi] \qquad \arccos(\sec x) = x \leftrightarrow x \in [0,\pi] - \left\{\frac{\pi}{2}\right\}$$

$$\tan(\arctan x) = x \leftrightarrow x \in R \qquad \cot(\arctan x) = x \leftrightarrow x \in R$$

$$\arctan(\tan x) = x \leftrightarrow x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \qquad \operatorname{arc}\cot(\cot x) = x \leftrightarrow x \in (0,\pi)$$

V. อินเวอร์สของฟังก์ซันตรีโกณมิติ (ต่อ)

สมบัติของอินเวอร์สของฟังก์ชันตรีโกณมิติ

• สมบัติยุบ arctan

$$\arctan x + \arctan y = \arctan \frac{x+y}{1-xy} ; xy < 1$$

$$\arctan x + \arctan y = \pi + \arctan \frac{x+y}{1-xy} ; xy > 1, x > 0, y > 0$$

$$\arctan x + \arctan y = -\pi + \arctan \frac{x+y}{1-xy} ; xy > 1, x < 0, y < 0$$

สมบัติคู่ co - function

$$\arcsin x + \arccos x = \frac{\pi}{2}$$
$$\arctan x + \arctan x = \cot x = \frac{\pi}{2}$$
$$\operatorname{arc} \sec x + \operatorname{arc} \csc x = \frac{\pi}{2}$$

VI. การแก้สมการของอินเวอร์สของฟังก์ซันตรีโกณมิติ

- 1. ใช้หลักการเปลี่ยน arc (วาดรูปสามเหลี่ยม) หรือใช้สมบัติเพื่อจัดรูปสมการ
- 2. take ฟังก์ชันตรีโกณมิติ เพื่อกำจัด arc
- 3. ต้องตรวจคำตอบทุกครั้ง !!!

VII. ฟังก์ซันตรีโกณมิติกับเรขาคณิต

กฎของไซน์

กฎของไซน์
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

NOTE

กฎนี้ใช้เมื่อโจทย์กำหนด

- (1) ความยาวของด้าน 2 ด้าน และมุมที่อยู่ตรงข้ามกับด้านทั้งสอง มุมใดมุมหนึ่งมาให้
- (2) ขนาดของมุม 2 มุม และความยาวของด้านที่อยู่ตรงข้ามกับมุมทั้งสอง มุมใดมุมหนึ่งมาให้

กฎของโคไซน์

$$a^{2} = b^{2} + c^{2} - 2bc \cos A \rightarrow \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B \rightarrow \cos B = \frac{a^{2} + c^{2} - b^{2}}{2ac}$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C \rightarrow \cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

NOTE

กฎนี้ใช้เมื่อโจทย์กำหนด

- (1) ความยาวของด้าน 2 ด้าน และมุมที่อยู่ระหว่างด้านทั้งสองมาให้
- (2) ความยาวด้านทั้งสามด้านมาให้