3.1 Linear Algebra Review3.2 Systems of two ODEs

3.3 Real Eigenvalues

3.4 Complex Eigenvalues

3.5 Repeated Eigenvalues

Fall 2018

Consider a lions-cheetahs example without "harvesting":

$$\frac{d\vec{p}}{dt} = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} \quad \vec{p}$$

Look for solutions that look like

$$\vec{p}(t) = \vec{v}e^{rt}$$
.

- 11 What problem is satisfied by \vec{v} and r?
- **2** Find possible values for \vec{v} and r.
- **3** What is the solution $\vec{p}(t)$?

$$\frac{d\vec{p}}{dt} = \begin{bmatrix} 3 & -2 \\ -1 & 4 \end{bmatrix} \quad \vec{p}$$

We obtained two solutions:

$$ec{p}_1(t) = egin{bmatrix} 2 \ 1 \end{bmatrix} e^{2t} \qquad ext{ and } \qquad ec{p}_2(t) = egin{bmatrix} -1 \ 1 \end{bmatrix} e^{5t}$$

- 4 Is $\vec{p}_1(t) + \vec{p}_2(t)$ a solution?
- Is $\vec{p}_1(t) \vec{p}_2(t)$ a solution?
- **6** Is $2\vec{p}_1(t) + 3\vec{p}_2(t)$ a solution?

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

Sketch the solution for A = 1 and B = 0 in the phase plane.

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

Sketch the solution for A = -1 and B = 0 in the phase plane.

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

f S Sketch the solution for A=0 and $B=\pm 1$ in the phase plane.

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

 \blacksquare Sketch the solution for A=1 and B=1 in the phase plane.

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

II Sketch the solution for $A=\pm 1$ and $B=\pm 1$ in the phase plane.

Source Unstable

Sketch the phase plane if the eigenvalues $r_1 < 0 < r_2$:

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

Sketch the phase plane if the eigenvalues $r_1 < 0 < r_2$:

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

Sketch the phase plane if the eigenvalues $r_1 < 0 < r_2$:

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{5t}$$

Saddle Point Unstable

■ Sketch the phase plane if the eigenvalues were negative:

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-5t}$$

$$c_{\blacktriangle}$$

IS Sketch the phase plane if the eigenvalues were negative:

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-5t}$$

IS Sketch the phase plane if the eigenvalues were negative:

$$\vec{p} = A \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{-2t} + B \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-5t}$$

Sink Stable

Preparation for next lecture

Section 3.4

 How to solve a system of linear ODEs with complex eigenvalues

https://youtu.be/TRVS5Wo9LoM

 How to sketch a phase portrait for such systems: all three types