PHY204 Project: The Faraday Effect (P9)

Sascha Rosenbaum, Emma Sampietro, Clemence Moullet Supervised by Professor Arnaud Couairon (CPHT)

May 2024

Introduction

- 1845: Michael Faraday
- evidence of interaction between light and electromagnetism \rightarrow early demonstration of light as an electromagnetic wave

Illustration of the Faraday effect [1]

Table of contents

- A theoretical approach to the Faraday effect
- Modeling the Faraday effect in a plasmonic medium
 - The Finite Difference Time Derivative (FDTD) and Yee-Grid methods
 - Results and Discussion
- Applications of the Faraday effect
 - Fiber Optic Current Sensors (FOCS)
 - Relevance of the Faraday effect in the lonosphere and satellite communication
- Summary and discussion

Why is the plane of polarization rotated by the Faraday effect?

Right-handed and left-handed circularly polarized components propagate at different velocity through the medium

 \rightarrow the index of refraction depends on the handedness of the wave

Using Lorentz model for the bound electron of charge -e and mass m_e :

$$\vec{\underline{r}} + \omega_0^2 \vec{\underline{r}} = \frac{-e}{m_e} \vec{E} + \frac{-e}{m_e} \vec{v_e} \times \vec{B_0}$$
 (1)

- $\omega_0^2 = \frac{e^2}{4\pi\epsilon_0 m_e R^3}$ with R = 1Å the radius of the atom.
- Contribution from the damping term is neglected
- $\vec{E} = Re(\vec{E_0}e^{i(kx-\omega t)}).$
- $\vec{B_0} = B_0 \vec{e_x}$
- Non relativistic motion $v \ll c$

- Ansatz $\vec{r} = \text{Re}(y_0 e^{-i\omega t} \vec{e_v} + z_0 e^{-i\omega t} \vec{e_z})$
- current density $\vec{i} = -ne\vec{v}$ where *n* is the electron number density
- introducing plasma frequency $\omega_p^2 = \frac{ne^2}{m_e \epsilon_0}$ and cyclotron frequency

$$\Omega = \frac{eB_0}{m_e}$$

$$\vec{j} = \begin{pmatrix} j_y \\ j_z \end{pmatrix} = \frac{-i\omega\epsilon_0\omega_p^2}{(\omega_0^2 - \omega^2)^2 - (\omega\Omega)^2} \begin{pmatrix} \omega_0^2 - \omega^2 & i\omega\Omega \\ -i\omega\Omega & \omega_0^2 - \omega^2 \end{pmatrix} \begin{pmatrix} E_y \\ E_z \end{pmatrix} =: [\sigma] \begin{pmatrix} E_y \\ E_z \end{pmatrix} \tag{2}$$

Maxwell's equation:

$$\Delta \vec{E} - \mu_0 \epsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\partial \vec{j}}{\partial t}$$

Matricial form:

$$(-k^2\mathbb{1} + \frac{\omega^2}{c^2}\mathbb{1} + i\omega\mu_0[\sigma])\begin{pmatrix} E_y \\ E_z \end{pmatrix} = 0$$

Not interested in the trivial solution $\vec{E} = \vec{0} \Rightarrow$

$$\left(-k^2\mathbb{1} + \frac{\omega^2}{c^2}\mathbb{1} + i\omega\mu_0[\sigma]\right) = 0$$

Diagonal in the basis: $(\binom{E_y}{-iE_z}, \binom{E_y}{iE_z})$ (right-handed and left-handed circular polarized wave).

$$(-k^2\mathbb{1} + \frac{\omega^2}{c^2}\mathbb{1} + i\omega\mu_0[\sigma]) = 0$$

$$\begin{cases} k_R^2 = \frac{\omega^2}{c^2} \left(1 + \frac{\omega_p^2}{(\omega_0^2 - \omega^2) - \omega\Omega} \right) & \begin{cases} n_R^2 = 1 + \frac{\omega_p^2}{(\omega_0^2 - \omega^2) - \omega\Omega} \\ k_L^2 = \frac{\omega^2}{c^2} \left(1 + \frac{\omega_p^2}{(\omega_0^2 - \omega^2) + \omega\Omega} \right) & \begin{cases} n_R^2 = 1 + \frac{\omega_p^2}{(\omega_0^2 - \omega^2) + \omega\Omega} \end{cases} \end{cases}$$

$$\begin{cases} n_R^2 = 1 + \frac{\omega_p^2}{(\omega_0^2 - \omega^2) - \omega\Omega} \\ n_L^2 = 1 + \frac{\omega_p^2}{(\omega_0^2 - \omega^2) + \omega\Omega} \end{cases}$$

Linear polarization=superposition of right-handed and left-handed circular components

At the end of the medium, we find:

$$\vec{E}(x=L) = E_0(\cos(\frac{k_R + k_L}{2}L - \omega t)(\cos(\frac{k_R - k_L}{2}L)\vec{e_y} + \sin(\frac{k_R - k_L}{2}L)\vec{e_z})$$
(3)

$$\beta = \frac{k_R - k_L}{2} L$$

9/27

Extra assumption:

- ullet ω is far enough from resonance such that $rac{\omega\Omega}{\omega_n^2-\omega^2}\ll 1$
- $\omega_0 \approx 0$
- $\omega_p \ll \omega$

$$\beta = VB_0L \tag{4}$$

with the Verdet constant $V = \frac{e}{2m_e c} \frac{\omega_p^2}{\omega^2}$.

Modeling the Faraday effect in a plasmonic medium

Consider:

- incident wave: sine wave of frequency ω , modulated by a Gaussian, propagating in the x-direction, y polarized
- $\vec{B_0} = B_0 \vec{e_x}$
- $\vec{H} = \frac{\vec{B}}{\mu_0}$ assuming $\vec{M} = 0$
- $\omega_0 \approx 0$

Recall Maxwell's equations:

•
$$\nabla \times \vec{H} = \vec{J} + \epsilon_0 \frac{\vec{E}}{\partial t}$$

as well as the time-evolution equation for the current density \vec{J} :

$$\bullet \ \frac{\partial \vec{J}}{\partial t} = -\gamma \vec{J} + \frac{ne^2}{m} \vec{E} - \frac{e}{m} \vec{J} \times \vec{B}_0$$

The Finite Difference Time Derivative (FDTD)

Finite Difference Time Derivative (FDTD) method

•
$$\frac{\partial E_y}{\partial x}|_{x+\frac{\Delta x}{2}} \approx \frac{E_y(x+\Delta x)-E_y(x)}{\Delta x}$$

•
$$\frac{\partial E_y}{\partial t}|_{t+\frac{\Delta t}{2}} \approx \frac{E_y(t+\Delta t)-E_y(t)}{\Delta t}$$

and similarly for E_z , H_v and H_z

Sascha Rosenbaum, Emma Sampietro, Cleme PHY204 Project: The Faraday Effect (P9)

The Finite Difference Time Derivative (FDTD)

[6] This gives us (setting x = m, t = n):

$$\bullet \ \, \frac{E_{y}(m+1,n)-E_{y}(m,n)}{\Delta x} \approx \mu_{0} \frac{H_{z}(m+\frac{1}{2},n+\frac{1}{2})-H_{z}(m+\frac{1}{2},n-\frac{1}{2})}{\Delta t}$$

•
$$\frac{H_z(m+\frac{1}{2},n+\frac{1}{2})-H_z(m-\frac{1}{2},n+\frac{1}{2})}{\Delta x} \approx (J_y(n+\frac{1}{2})+\epsilon_0 \frac{E_y(m,n+1)-E_y(m,n)}{\Delta t})$$

and so

•
$$H_z(m+\frac{1}{2},n+\frac{1}{2}) = H_z(m+\frac{1}{2},n-\frac{1}{2}) + \frac{\Delta t}{\mu_0 \Delta x} (E_y(m+1,n) - E_y(m,n))$$

•
$$E_y(m, n+1) =$$

$$E_y(m, n) + \frac{\Delta t}{\epsilon_0 \Delta x} (H_z(m+\frac{1}{2}, n+\frac{1}{2}) - H_z(m-\frac{1}{2}, n+\frac{1}{2})) - \frac{\Delta t}{\epsilon_0} J_y(n+\frac{1}{2})$$

4 D > 4 B > 4 E > 4 E > 9 Q P

Sascha Rosenbaum, Emma Sampietro, Cleme PHY204 Project: The Faraday Effect (P9)

Yee-Grid method

Staggered Yee-grid layout[2]:

- E and H are offset by half a grid cell
- Current density J computed at the same point as H

Integer indices for iteration

Python implementation \implies integer indices \implies shift

•
$$m + \frac{1}{2} \mapsto m'$$

$$\bullet \ m-\tfrac{1}{2}\mapsto m'-1$$

Implementation: loop for H: m=0 to $m=m_{max}-1$

loop for E: m=1 to $m=m_{max}$

•
$$H_z(m,n) = H_z(m,n-1) + \frac{\Delta t}{\mu_0 \Delta x} (E_y(m+1,n) - E_y(m,n))$$

•
$$E_y(m, n+1) = E_y(m, n) + \frac{\Delta t}{\epsilon_0 \Delta x} (H_z(m+1, n) - H_z(m, n)) - \frac{\Delta t}{\epsilon_0} J_y(n)$$

Similarly, for the couple (E_z, H_v)

4 D > 4 B > 4 E > 4 E > 9 Q P

Boundary conditions

To avoid reflection at the boundaries of our medium, we implement the Absorbing Boundary condition (ABC) [4]:

$$E_y(m = 0, n + 1) = E_y(m = 1, n)$$

$$H_z(m_{max}, n) = H_z(m_{max} - 1, n - 1)$$

We impose the analogous condition for the couple (E_z, H_v)

Results and discussion

Recall that

$$\beta = VB_0L$$

Goal of our simulations:

- qualitative: Verify
 - $\beta \propto B_0$
 - $\beta \propto L$
- quantitative: compare simulated values of β to theoretical ones

Linearity of the rotation: Distance

Rotation of polarization: fixed $B_0 = 500$ T and varying distance L

Theoretical value for the slope: $VB_0=2.02~{
m deg}~{
m \mu m}^{-1}$ 5% relative error

Linearity of the rotation: Magnetic field

Rotation of polarization: fixed $L=23.7\mu m$ and varying magnetic field B_0

Theoretical value for the slope: $VL = 0.096 \text{ deg}\text{T}^{-1}$ 4.2% relative error

Fiber Optic Current Sensors (FOCS)

- $\beta = VB_0L = V \int \vec{B} d\vec{l}$ Ampère's law $\Rightarrow \beta = V \mu_0 I$
- Measurement of β to deduce current value I

FOCS to measure lightning current on planes[3]

Relevance of the Faraday effect in the lonosphere and satellite communication

Faraday effect in the ionosphere: $\beta \propto \lambda^2$, TEC, B_{Farth}

Consequences? [5]

- reduction in phase coherence ⇒ impairs interferometric data from satellite (useful for topographical maps)
- Faraday effect must be taken into account!

Summary and discussion

Key takeaways: Faraday effect = rotation of the plane of polarization of an electromagnetic wave propagating in a media where we apply a \vec{B} field

- due to a difference in index of refraction for right-handed and left-handed circular polarized wave
- rotation angle $\propto L$ (length of medium) and B_0 (magnitude of the magnetic field along the direction of propagation)

Numerical simulation using FDTD and Yee staggered grid

Summary and discussion

Simulation: getting rid of the assumption $\omega_0 \approx 0$.

Time-evolution equation for the current becomes:

•
$$\frac{\partial \vec{J}}{\partial t} = -\gamma \vec{J} + \frac{ne^2}{m} \vec{E} - \frac{e}{m} \vec{J} \times \vec{B}_0 + \omega_0^2 \vec{P}$$

with $\vec{J} = \frac{\partial P}{\partial t}$

References I

- [1] Wikipedia contributors. Faraday effect.
 - https://en.wikipedia.org/wiki/Faraday_effect. Accessed: 2024-05-27, 2024.
- [2] Anand Kumar, Jogesh Dash, and Debdeep Sarkar. Computational Techniques for Design and Analysis of Time-Varying Capacitor loaded Transmission Lines using FDTD and Simulink. The Yee-grid template was taken from that reference and edited according to our model. May 2022. DOI: 10.36227/techrxiv.19846576.v1.

References II

- Truong Giang Nguyen. "A REVIEW ON PROBLEMS AND [3] COUNTER-MEASURES IN DESIGN AND FABRICATION OF OPICAL CURRENT SENSORS". In: Nov. 2016.
- [4] Ansys Optics. PML boundary conditions in FDTD and MODE.

```
Accessed: 2024-05-23. 2023. URL: https:
//optics.ansys.com/hc/en-us/articles/360034382674-PML-
boundary-conditions-in-FDTD-and-MODE.
```

References III

- [5] Eric J. M. Rignot. "Effect of Faraday Rotation on L-Band Interferometric and Polarimetric Synthetic-Aperture Radar Data". In: IEEE Transactions on Geoscience and Remote Sensing 38.1 (Jan. 2000), p. 383. DOI: 10.1109/36.823905.
- [6] John B. Schneider. Understanding the Finite-Difference Time-Domain Method. Pullman, WA: School of Electrical Engineering and Computer Science, Washington State University, Aug. 2023.