Graph Convolutional Network

Tejas Gaikwad gaikwad.2@iitj.ac.in Indian Institute of Technology, Jodhpur, Rajasthan, India

Performing binary classification on given data set

1 Introduction

The objective is breast-cancer classification (two classes: "benign" and "malignant"). Data set contains 569 rows, where each row is a sample. In each row, the first entry denotes patient-id, the second denotes the ground-truth category, and 3-32 entries denote 30 real-valued input features. Data set is divided into 70 percent training set, 20 percent validation set and 10 percent test set.

2 Summary

GCNs are a very powerful neural network architecture for machine learning on graphs. In fact, they are so powerful that even a randomly initiated 2-layer GCN can produce useful feature representations of nodes in networks. Below are the results of analyses for several classifiers and comparison between them.

3 Experimental Results

GCN training accuracy is given as follows.

Figure 1: Training Vs. Error

^{© 2014.} The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.

Method for Classification	Accuracy Obtained
Graph Convolutional Network	
1.1 Training Accuracy	99.91%
1.2 Testing Accuracy	99.91%
1.3 Validation Accuracy	99.94%
2. Logistic Regression	93.85964912280701 %
3. K-Nearests Neighbour	94.73684210526315 %
4. Support Vector Machine	100.0 %

Figure 2: Results

4 Conclusion

GCN is much more effective as compared to other methods of classification, based on results I have obtained.

References

[1] Adeniyi Bello. Coding for 2 layer neural network. Kaggle, 2019.