

Introduction to

Algorithm Design and Analysis

[19] NP Complete Problems 1

Yu Huang

http://cs.nju.edu.cn/yuhuang Institute of Computer Software Nanjing University

Syllabus

Model of Computation

Algorithm design & analysis techniques

Computation complexity

Hard Games & Puzzles

Complexity of games & puzzles

Complexity of algorithmic problems

https://www.bilibili.com/video/BV1Jt4y117Fi/ http://erikdemaine.org/

NP-Complete Problems

- Decision Problem
- The Class P
- The Class NP
- Reduction between problems

How Functions Grow

Algorithm	1	2	3	4	
Time function(ms)	33 <i>n</i>	46 <i>n</i> lg <i>n</i>	13 <i>n</i> ²	$3.4n^3$	2 ⁿ
Input size(<i>n</i>)			Solution time	2	
10	0.00033 sec.	0.0015 sec.	0.0013 sec.	0.0034 sec.	0.001 sec.
100	0.0033 sec.	0.03 sec.	0.13 sec.	3.4 sec.	4×10^{16} yr.
1,000	0.033 sec.	0.45 sec.	13 sec.	0.94 hr.	
10,000	0.33 sec.	6.1 sec.	22 min.	39 days	
100,000	3.3 sec.	1.3 min.	1.5 days	108 yr.	
Time allowed	Maximum solvable input size (approx.)				
1 second	30,000	2,000	280	67	20
1 minute	1,800,000	82,000	2,200	260	26

Hanoi Tower Revisited

- It is easy to provide a recursive algorithm to resolve the problem of Hanoi Tower
 - \circ The solution requires 2^{N} -1 moves of disc.
- It is extremely difficult to obtain the result for an input of moderate size
 - o For the input of 64, it takes half a million years even if the Tibetan priest has superhuman strength to move a million discs in a second.

Max Clique - an Example

- A complete subgraph of a graph G is called a clique, whose size is the number of vertices in it.
 - o **Optimization problem**: Find the maximal clique in a given graph G.
 - Decision problem: Has G a clique of size at least k for some given k?

Decision Problem

- Statement of a decision problem
 - o Part 1: instance description defining the input
 - o Part 2: question stating the actual yes-or-no question
- A decision problem is a mapping from all possible inputs into the set {yes, no}

Optimization vs. Decision

- Usually, an optimization problem can be rephrased as a decision problem.
- If the decision problem cannot be solved in polynomial time, then the corresponding optimization problem cannot either.
- Often, it can be proved that the decision problem can be solved in polynomial time if and only if the corresponding optimization problem can.

Max Clique Revisited

- The max clique problem can be solved in polynomial time iff. the corresponding decision problem can be solved in polynomial time.
 - o If the size of a max clique can be found in time g(n), the corresponding decision may be settled in that time of course.
 - o If deciClique is algorithm for the decision problem with k in the complexity of f(n), then we apply the algorithm at most n time, for k=n, n-1, ..., 2, 1, and we can solve the optimization problem, and with the complexity no worse than nf(n), which is polynomial only if f(n) is polynomial.

Some Typical Decision Problems

Graph coloring

o Given a undirected graph *G* and a positive integer *k*, is there a coloring of *G* using at most *k* colors?

Job scheduling with penalties

o Given a group of jobs, each with its execution duration, deadline and penalty for missing the deadline, and a nonnegative integer *k*, is there a schedule with the total penalty bounded by *k*?

Some Typical Decision Problems

Bin packing

o Given k bins each of capacity one, and n objects with size $s_1, ..., s_n$, (where s_i is a rational number in (0,1]). Do the n objects fit in k bins?

Knapsack

o Given a knapsack of capacity C, n objects with sizes $s_1, ..., s_n$ and "profits" $p_1, ..., p_n$, and a positive integer k. Is there a subset of the n objects that fits in the knapsack and has total profit at least k?

(Subset sum as a simplified version)

Some Typical Decision Problems

CNF-Satisfiability

o Given a CNF formula, is there a truth assignment that satisfies it?

Hamiltonian cycles or Hamiltonian paths

o Given a undirected graph *G*. Does *G* have a Hamiltonian cycle or Hamiltonian path?

Traveling salesperson

o Given a complete, weighted graph and an integer *k*, is there a Hamiltonian cycle with total weight at most *k*?

Theory of NP-Completeness

What it cannot do

- o Provide a method of obtaining polynomial time algorithms for those "hard" problems
- Negate the existence of algorithms of polynomial complexity for those problems

What it can do

 Show that many of the problems for which there is no known polynomial time algorithm are computationally related.

The Class P

- A polynomially bounded algorithm
 - o is one with its worst-case complexity bounded by a polynomial function of the input size.
- A polynomially bounded problem
 - o is one for which there is a polynomially bounded algorithm.
- The class P is the class of decision problems that are polynomially bounded.

Notes on the Class P

Class P has a too broad coverage

o In the sense that not every problems in P has an acceptable efficient algorithm

However

- o The problem not in P must be extremely expensive and probably impossible to solve in practice.
- o The problems in P have nice "closure" properties for algorithm integration.
- o The property of being in P is independent of the particular formal model of computation used.

Nondeterministic Algorithm

Phase 1
Guessing:
generating
arbitrarily a
solution s

Phase 2 Verifying: determining if s is a valid description of a object for answer, and satisfying the criteria for solution

Nondeterministic Algorithm

```
In O(1)
void nondetSearch(int k; int[ ] S)
                                                     Note: \Omega(n) for
  int i =guessSolution();
                                                     deterministic algorithm
  if (S[i]=k)
    Output "accept";
  else Output "reject";
                                       void nondetSort(int[1..n] S)
  return;
                                         A[1..n] = guessSolution();
                                          if(A[1..n] is a permutation of S[1..n],
                                            and A[1] < A[2] < ... < A[n]
               In O(n)
                                            Output "accept"
       Note: \Omega(n\log n) for
                                          else Output "reject";
  deterministic algorithm
                                          return;
```


Nondeterministic Graph Coloring

Problem instance *G* Input string:

4,5,(1,2)(1,4)(2,4)(2,3)(3,5)(2,5)(3,4)(4,5)

S Output Reason verified by RGRBG reject v_2 and v_5 conflict Phase 2

RGRB reject Not all vertices are colored RBYGO reject Too many colors used RGRBY accept A valid 4-coloring ----> (G,4) \rightarrow accept R%*,G@ reject Bad syntax

The Class NP

- A polynomial bounded nondeterministic algorithm
 - o O(p(n)) time for some polynomial function p(n)
 - o For all possible executions
- The class NP
 - o is the class of decision problems for which there is a polynomial bounded nondeterministic algorithm.

The Class NP

https://book.douban.com/subject/30384859/

The Class NP

NP means Non-deterministic P

- o From "deterministic" to "non-deterministic"
- o From "solve a problem" to "verify the answer of a problem"

What does NP indicate?

- o Harder problems
- o Not too hard
 - At least, you can quickly understand the answer

Proof of Being in NP

Graph coloring is in NP

- o Phase1 Guess a solution
 - Description of the input and the output
- o Phase2 Verify the solution
 - There are n colors listed: $c_1, c_2, ..., c_n$ (not necessarily different)
 - Each c_i is in the range 1,...,k
 - Scan the list of edges to see if a conflict exists
- o Phase 1 and 2 in polynomial time

CLIQUE is in NP

```
void nondeteClique(graph G; int n, k)

S = guessSolution();

if (S is a clique of size k) Output "accept";
else Output "reject";

return;
in O(n)
```

So, we have an algorithm for the maximal clique problem with the complexity of $O(n+k^2)=O(n^2)$

SAT

An example of propositional conjunctive normal form (CNF) is like this:

$$(p \lor q \lor s) \land (q \lor r) \land (p \lor r) \land (r \lor s) \land (p \lor s \lor q)$$

Satisfiability Problem

Given a CNF formula, is there a truth assignment that satisfies it?

In other words, is there a assignment for the set of propositional variable in the CNF, such that the value of the formula is **true**.

```
void nondetSat(E, n)
boolean p[];
for int i =1 to n do
    p[i]= guessSolution(true, false);
if E(p[1], p[2], ..., p[n])=true
    then Output "accept";
else Output "reject";
```

So, the problem is in **NP**

Relation between P and NP

- An deterministic algorithm for a decision problem is a special case of a nondeterministic algorithm, which means: $P \subseteq NP$
 - o The deterministic algorithm is looked as the phase 2 of a nondeterministic one, which always ignore the *s* the phase 1 has written.
- Intuition implies that NP is much larger than P.
 - o The number of possible s is exponential in n.
 - No one problem in NP has been proved not in P.

P, NP and ...

Reduction

The correct answer for P on x is yes if and only if the correct answer for Q on T(x) is yes.

Polynomial Reduction

- Let T be a function from the input set for a decision problem P into the input set for Q. T is a polynomial reduction from P to Q if:
 - T can be computed in polynomial bounded time
 - o x is a yes input for $P \rightarrow T(x)$ is a yes input for Q
 - o x is a *no* input for $P \rightarrow T(x)$ is a *no* input for Q

An example:

P: Given a sequence of Boolean values, does at least one of them have the value true?

Q: Given a sequence of integers, is the maximum of them positive?

 $T(x_1, ..., x_n) = (y_1, ..., y_n),$ where: $y_i = 1$ if $x_i = true$, and $y_i = 0$ if $x_i = false$

Relation of Reducibility

- Problem P is polynomially reducible to Q if there exists a polynomial reduction from P to Q, denoted as: $P \le_P Q$
- If $P \leq_P Q$ and Q is in class P, then P is in P
 - o The complexity of P is the sum of T, with the input size n, and Q, with the input size p(n), where p is the polynomial bound on T,
 - o So, the total cost is: p(n)+q(p(n)), where q is the polynomial bound on Q.

Thank you!

Q & A

Yu Huang

http://cs.nju.edu.cn/yuhuang

