

Ch 1.1 Finite Automata (S)

Markov chains?

State diagram

- 3 states, labeled q_1, q_2, q_3 , output accept/reject
- **start state**: q_1 (indicated by the arrow from nowhere)
- accept state/final states: q_2 (double circle)
- **transitions**: arrows

▼ Ex. 1101

- 1. start in state q_1
- 2. Read 1, follow transition from q_1 to q_2
- 3. Read 1, follow transition from q_2 to q_2
- 4. Read 0, follow transition from q_2 to q_3
- 5. Read 1, follow transition from q_3 to q_2
- 6. Accept because M_1 is in an accept state q_2 at the end

Formal Definition of a Finite Automaton

Y

A *finite automaton* is a 5-tuple $(Q, \sum, \delta, q_0, F)$, where

- 1. *Q* is a finite set called the **states**,
- 2. \sum is a finite set called the **alphabet**,
- 3. $\delta:Q imes\sum \longrightarrow Q$ is the **transition function**,
- $4. \ q_0 \in Q$ is the **start state**, and
- 5. $F \subseteq Q$ is the **set of accept states**.

▼ Example M_1

We can describe M_1 formally by writing $M_1=(Q,\sum,\delta,q_1,F)$, where

- 1. $Q = \{q_1, q_2, q_3\},\$
- 2. $\sum = \{0, 1\},\$
- 3. δ is described as

$$\mid 0 \mid 1$$

- $q_1 \mid q_1 \quad q_2$
- $q_2 \mid q_3 \mid q$
- $q_3 \mid q_2 \mid q_3$

4. q_1 is the start state, and

5.
$$F = \{q_2\}.$$

 $A = \{w | w \text{ contains at least one 1 and an even number of 0s follow the last 1}\}.$

 $L(M_1) = A$, or equivalently, M_1 recognizes A.

Let A be the set of all strings M accepts, A is the language of machine M and write L(M)=A. We say that M recognizes A.

Examples of Finite Automata

▼ Example 1.13: Modulo 3

*view <RESET> as a single symbol

$$\sum = \{\langle \text{RESET} \rangle, 0, 1, 2\}$$

This machine is running count of the sum of the numerical input symbols it reads, modulo 3.

▼ Example 1.15: no diagram but description

Consider a generalization of Example 1.13, using the same four-symbol alphabet \sum . For each $i \geq 1$ let A_i be the language of all strings where the sum of the numbers is a multiple of i, except that the sum is reset to 0 whenever the symbol <RESET> appears. For each A_i we give a finite automaton $B_i = (Q_i, \sum, \delta_i, q_0, \{q_0\})$, where Q_i is the set of i states $\{q_0, q_1, q_2, \ldots, q_{i-1}\}$, and we design the transition function δ_i so that for each j, if B_i is in q_j , the running sum is j, modulo i. For each q_j let

$$\delta_i(q_j,0)=q_j$$
 ,

$$\delta_i(q_j,1)=q_k$$
 , where $k=j+1 \mod i$,

$$\delta_i(q_i,2)=q_k$$
, where $k=j+2 \mod i$, and

$$\delta_i(q_j, <\!\! ext{RESET}>) = q_0$$
 ,

Formal Definition of Computation

Let $M=(Q,\sum,\delta,q_0,F)$ be a finite automaton and let $w=w_1w_2\dots w_n$ be a string where each w_i is a member of the alphabet \sum . Then M accepts w if a sequence of states r_0,r_1,\dots,r_n in Q exists with three conditions:

1.
$$r_0 = q_0$$
,

2.
$$\delta(r_i, w_{i+1}) = r_{i+1}$$
, for $i = 0, \dots, n-1$, and

3.
$$r_n \in F$$
.

A language is called a **regular language** if some finite automaton recognizes it.

Designing Finite Automata

- put *yourself* in the place of the machine
- only remember certain crucial input
- ▼ All strings with an odd number of 1s.

$$\sum = \{0,1\}$$

Possibilities

- 1. even so far, and
- 2. odd so far

Assign transitions (seeing how to go from one possibility to another)

set start state \rightarrow the possibility having seem 0 symbols so far (ϵ) \rightarrow q_{even} \because 0 is even

set accept states $\rightarrow q_{\rm odd}$

The Regular Operations

Let *A* and *B* be languages. We define the regular operations **union**, **concatenation**, and **star** as follows:

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Concatenation: $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}$
- Star: $A^* = \{x_1x_2\dots x_k \mid k\geq 0 ext{ and each } x_i\in A\}$

▼ Example 1.24

```
Let the alphabet \sum be the standard 26 letters \{a,b,\ldots,z\}. If A=\{\text{good, bad}\} and B=\{\text{boy, girl}\}, then A\cup B=\{\text{good, bad, boy, girl}\}, A\circ B=\{\text{goodboy, goodgirl, badboy, badgirl}\}, and A^*=\{\epsilon, \text{good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbaddood, goodbaddood, ...}\}
```


The class of regular languages is closed under the concatenation operation. In other words, if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$.

Ch 1.1 Finite Automata (S)