1	. Linear functional (in-class) (★☆☆)
	a) Let $n \in \mathbb{N}^+$. Consider the function $T: \mathbb{R}^n \to \mathbb{R}$ defined by
	$T: \mathbf{x} \mapsto \sum_{k=1}^{n} kx_k$
	for all $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{T} \in \mathbf{R}^n$. Prove that T is a linear functional.
	b) Let $n \in \mathbb{N}^+$ with $n \ge 2$ be arbitrary. Consider the function $T : \mathbb{R}^n \to \mathbb{R}$ defined by
	$T: \mathbf{x} \mapsto \sum_{k=1}^{\infty} (x_k)^k$
	for all $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^{T} \in \mathbb{R}^n$. Is T a linear functional?
a)	Tist eine lineare Funktion gerau dann, wann $T(x+y) = T(x) + T(y)$ und
	$T(x) = \lambda T(x)$ for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
	V:- shaven, ob das stimut: Seien x, y e R, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$T(x+y) = Z_{k=1}^{n} k(x_k+y_k) = Z_{k=1}^{n}(kx_k+ky_k)$
	$= \sum_{k=1}^{n} k x_k + \sum_{k=1}^{n} k y_k = T(x) + T(y)$
	und
	$T(\lambda_{x}) = \sum_{k=1}^{n} k(\lambda_{x_{k}}) = \lambda \sum_{k=1}^{n} k_{x_{k}} = \lambda T(x)$
	Also ist T eine lineare Funktion.
P)	Verschiedene Strategien möglich, z. B.:
,	
	1. Beneis vie in a) versuchen und schauen, ab des
	Beveis funktionest
	2. Versuchen, Ge genbeispie zu finden
	Wir nachen 2:
	Wif nacter &
	(2) 22 \ 15 (2) \ 1 \ (8) \ \ 2
	Gegenbeispiel: $x = c_n = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \lambda = 2.$
	$T(2.e_{i}) = Z_{k=1}^{n}(2^{k}.(e_{i})_{k}) = Z_{k=1}^{n-1}(2^{k}.0) + 2^{n} = 2^{n}$
	$2 \cdot T(e_n) = 2 \cdot Z_{k=1}^n (e_n)_k^{l_c} = 2 \cdot (Z_{k=1}^{n-1} O^k + 1^k) = 2$
	D_a $n \ge 2$, ist $T(2 \cdot e_n) \ne 2 T(e_n)$.
	Also ist T für kein n eine Lineartransformation.