Optimization – Exercises

Day 1

Let $(H, \langle \cdot, \cdot \rangle)$ be a real Hilbert space. We denote $\| \cdot \|$ the norm derived by the scalar product.

Exercise 1 (Necessary and sufficient optimality conditions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show that if x is a local minimizer of f, then

$$\nabla f(x) = 0$$

$$\nabla^2 f(x) \ge 0$$

Is the first order condition a sufficient condition for x to be a local minimizer? If no, give an example. What assumption can you make for this condition to be an equivalence?

Exercise 2 (Caracterizations of convex functions).

Let $f: H \longrightarrow \mathbb{R}$ be a twice differentiable function. Show the following equivalences:

1. f is convex if, and only if,

$$\forall (x,y) \in H \times H, \ f(y) \geqslant f(x) + \langle \nabla f(x) \mid y - x \rangle.$$

2. f is convex if, and only if,

$$\forall x \in H, \ \nabla^2 f(x) \ge 0,$$

where $\nabla^2 f(x)$ is the hessian of f at x.

Exercise 3 (Squared distance function).

Let A be a nonempty closed convex subset of H. We consider the function "squared distance to A" defined for all $x \in H$ by

$$g(x) = \inf_{y \in A} ||x - y||^2.$$

- 1. Show that q is convex.
- 2. Show that g is Fréchet differentiable, with $\nabla g(x) = 2(x p_A(x))$, where p_A denotes the projection on A.

Exercise 4 (Minimization of a quadratic function).

Let $A \in \mathcal{S}_n^{++}(\mathbb{R})$ (set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$) and $b \in \mathbb{R}^n$. Let f be defined for all $x \in \mathbb{R}^n$ by

$$f(x) = \frac{1}{2} \langle Ax, x \rangle - \langle b, x \rangle.$$

Show that f admits a unique minimizer and give an expression of this minimizer.

Exercise 5 (Convex optimization exam 2019).

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a convex, differentiable and bounded function on \mathbb{R}^n . Show f is constant.

Exercise 6 (About ε -minimizers).

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuous function bounded from below on \mathbb{R}^n . Let $\varepsilon > 0$ and u a ε -minimizer of f, i.e. u satisfies

$$f(u) \leqslant \inf_{x \in \mathbb{R}^n} f(x) + \varepsilon.$$

Let $\lambda > 0$ and consider

$$g: x \in \mathbb{R}^n \mapsto g(x) := f(x) + \frac{\varepsilon}{\lambda} ||x - u||.$$

- 1. Show there exists $v \in \mathbb{R}^n$ which minimizes g on \mathbb{R}^n . Show this point v satisfies the following conditions:
 - (i) $f(v) \leq f(u)$,
 - (ii) $||u-v|| \leq \lambda$,
 - (iii) $\forall x \in \mathbb{R}^n, f(v) \leq f(x) + \frac{\varepsilon}{\lambda} ||x v||.$
- 2. Suppose in addition that f is differentiable on \mathbb{R}^n . Show that for all $\epsilon > 0$, there exists $x_{\epsilon} \in \mathbb{R}^n$ such that

$$\|\nabla f(x_{\epsilon})\| \leq \epsilon.$$

Exercise 7.

Let $\mathcal{O} = \mathcal{S}_n^{++}(\mathbb{R})$ be the (open) set of symmetric positive definite matrices of $\mathbb{R}^{n \times n}$. \mathcal{O} is endowed with the scalar product $\langle U, V \rangle = \text{Tr}(UV)$. Let $A \in \mathcal{O}$ and f be defined for all $X \in \mathcal{O}$ by

$$f(X) = \operatorname{Tr}(X^{-1}) + \operatorname{Tr}(AX).$$

- 1. Show there exists a minimizer to f on \mathcal{O} . Hint: you may use the inequality $\text{Tr}(UV) \geqslant \sum_{i=1}^{n} \lambda_i(U)\lambda_{n-i+1}(V)$, where all eigenvalues $\lambda_1, \ldots, \lambda_n$ are in descending order; i.e., $\lambda_1 \geqslant \cdots \geqslant \lambda_n$.
- 2. Find the minimizer and the optimal value of f.

Exercise 8 (Penalty method).

Let $F: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a lower semi-continuous function, coercive on \mathbb{R}^n . Let C be a closed set of \mathbb{R}^n with $\text{dom}(f) \cap C \neq \emptyset$. We seek to solve the constrained problem

Let $R: \mathbb{R}^n \longrightarrow \mathbb{R}^+$ be a lower semi-continuous function such that

$$R(x) = 0 \iff x \in C.$$

R is called penalty function as it assigns a positive cost to any point that is not in the constraint set C. Let $(\gamma_k)_{k\in\mathbb{N}}$ be a nondecreasing sequence of positive reals satisfying $\lim_{k\to+\infty} \gamma_k = +\infty$. We denote by (\mathcal{P}_k) the following penalized problem:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad F_{\gamma_k}(x) := F(x) + \gamma_k R(x). \tag{\mathcal{P}_k}$$

Show that:

- 1. For all $k \in \mathbb{N}$, (\mathcal{P}_k) has at least one solution x_k .
- 2. The sequence $(x_k)_{n\in\mathbb{N}}$ is bounded.
- 3. Any cluster point of $(x_k)_{k\in\mathbb{N}}$ is a solution to (\mathcal{P}) .
- 4. What can we say if F is strictly convex?