The utility of standardized or crude weight measures in modeling of postnatal growth trajectories: Are there differences?

Ann Von Holle, Kari North, Ran Tao, UNC, Chapel Hill, NC; Sheila Gahagan, UCSD, San Diego, CA

Introduction

- Growth trajectory characteristics are frequently used in life course analyses as an exposure through which later life adverse outcomes, such as cardiovascular disease, are linked.
- Z-scores are a frequent outcome choice when modeling weight growth trajectories. Advantages include linear sex- and ageindependent measures of weight outcomes. Disadvantage is measure designed for cross-sectional use.
- Advantages of a standardized measure, such as Z-scores, are unclear in postnatal longitudinal analyses when compared to crude measure of weight.

Aim

 Estimate group differences in postnatal weight change across three different outcomes and three models and assess precision, type I error and parameter estimate values via Monte Carlo simulations.

Samples

 Growth trajectory parameters for baseline exposure correspond to published estimates for three samples: Italy, Portugal and Chile

Method

 We generated fixed effects infant growth data with a Reed first order parametric model

(Source):
$$y_{ij} = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot \ln(t_{ij}) + \frac{\beta_3}{t_{ij}} + \beta_4 \cdot \operatorname{group}_i + \beta_5 \cdot t \cdot \operatorname{group}_i + \boldsymbol{e}_{ij}$$

 After simulating weight values, we converted simulated weight to Z-score and percentiles and fit three models:

Model 1

 $E(m_{ij}) = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot \text{group} + \beta_3 \cdot t \cdot \text{group}$ Model 2

 $E(m_{ij}) = \beta_0 + \beta_1 \cdot t + \beta_2 \cdot \text{group} + \beta_3 \cdot t \cdot \text{group} + \beta_4 \cdot t^2$ Model 3

 $E(m_{ij}) =$

 $\beta_0 + \beta_1 \cdot \text{month6} + \beta_2 \cdot \text{group} + \beta_3 \cdot \text{month6} \cdot \text{group}$

Model Terms

weight for person *i* and time *j*, age (months) weight, Z-score, percentile for person *i* and time j

a binary exposure factor group

a binary variable for time with 1=month 6 month6

and 0=month 0

error term with variance following an eij autocorrelation structure, ρ =0.5 and σ =0.75

Results

Figure 1: Simulated weight growth curves with corresponding Z-score and percentile outcomes using Chilean growth parameters

Figure 2: Comparison of power, type-I error and estimate for product term of time and exposure effect, β_3 .

Results, cont...

Power Consistently greater with crude weight.

 Weight difference at baseline results in larger differential.

Type I error Crude weight measure closest to nominal Type I error of 0.05.

 Z-scores have greatest type I error for models 1 and 2.

Parameter estimates Baseline weight differences lead to opposite direction of effect for Z-score vs crude weight outcomes.

 No weight differences at baseline leads to similar estimates between Z-score and original weight outcomes.

Conclusions

Each measure examined in this project, Z-scores, percentiles and crude weight measures, serves a purpose as needed in research. However, these outcomes in growth trajectory analyses are not equivalent, and if used incorrrectly can have adverse effects.

- Even at similar age and gender values, reference to a standard, such as Z-scores, is not equivalent to crude weight values when assessing group differences in weight change over time. Evidence from these simulations supports this conclusion, with parameter estimates only coinciding under certain conditions – equivalence at baseline.
- ⇒ Special attention needed when interpreting standardized measures in longitudinal models
- If comparisons to a referent such as WHO are not an objective, use of Z-scores instead of crude weight can lead to
- ⇒ biased estimates and conflicting inference. ⇒ lower power and inflated type I error.
- This finding replicates similar work with adolescents [2].
- Future efforts: How does this finding extend to other contexts beside group comparisons in infant growth?

References

- C. Pizzi et al. "Prenatal Influences on Size, Velocity and Tempo of Infant Growth: Findings from Three Contemporary Cohorts". In: PLoS ONE 9.2 (Feb. 27, 2014). DOI: 10.1371/journal.pone.0090291.
- C. S Berkey et al. "Adiposity in adolescents: Change in actual BMI works better than change in BMI z score for longitudinal studies". In: Annals of Epidemiology 17.1 (Jan. 2007), pp. 44-50. DOI: 10.1016/j.annepidem.2006.07.014.

