ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE CIENCIAS

ANÁLISIS COMPARATIVO DE LOS MÉTODOS PARA CALCULAR LA RESERVA DE RIESGO EN CURSO Y LA RESERVA DE SINIESTROS OCURRIDOS Y NO REPORTADOS DEL SISTEMA ASEGURADOR ECUATORIANO

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERÍA MATEMÁTICA

PROYECTO DE INVESTIGACIÓN

KAREN PRISCILLA CALVA YAGUANA karen.calva@epn.edu.ec

Director: DR. CADENA CEPEDA MEITNER NASSARY meitner.cadena@gmail.com

Codirector: DRA. UQUILLAS ANDRADE ADRIANA adriana.uquillas@epn.edu.ec

MAYO 2017

DECLARACIÓN

Yo, KAREN PRISCILLA CALVA YAGUANA, declaro bajo juramento que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y que he consultado las referencias bibliográficas que se incluyen en este documento.

A través de la presente declaración cedo mis derechos de propiedad intelectual, correspondientes a este trabajo, a la Escuela Politécnica Nacional, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normatividad institucional vigente.

Karen Priscilla Calva Yaguana

CERTIFICACIÓN

Certificamos que el presente trabajo fue d CALVA YAGUANA, bajo nuestra supervisión	-
	Dr. Cadena Cepeda Meitner Nassary Director del Proyecto
	Dra. Uquillas Andrade Adriana Codirector del Proyecto

AGRADECIMIENTOS

AAA

DEDICATORIA

AAA

Índice general

Resumen							
Ał	ostrac	rt .	ΧI				
1.	Cap	itulo	1				
2.	Con	clusiones y recomendaciones	3				
	2.1.	Conclusiones	3				
	2.2.	Recomendaciones	3				
Bi	bliog	rafía	5				

Índice de figuras

1.1.	Simulación de una																	2	

Índice de tablas

Resumen

En el presente trabajo se utilizarÃ; el AnÃ; lisis Clð ster para agrupar estaciones (asociadas a rÃos en Brasil), basÃ; ndonos en el comportamiento temporal del caudal de los rÃos que se mide en dichas estaciones, y posteriormente modelar los caudales (1 modelo por clð ster) usando variables micro y macro climÃ; ticas.

Abstract

Capítulo 1

Capitulo

Para citar un libro: juego favorable, indiferente y desfavorable para un jugador respectivamente, ver [8].

Para insertar imagen con los comando creados en este paquete

Figura 1.1: Simulación de una...

Capítulo 2

Conclusiones y recomendaciones

- 2.1. Conclusiones
- 2.2. Recomendaciones

Título

Bibliografía

- [1] K. Alligood, T. Sauer, y J. Yorke. *CHAOS: An Introduction to Dynamical Systems*. Springer-Verlag New York, New York, 1996.
- [2] E. Bibbona, G. Panfilo, y P. Tavella. *The Ornstein-Uhlenbeck process as a model of a low-pass filtered white noise*. U.S.A., 2008.
- [3] K. Chung y R. Williams. *Introduction to Stochastic Integrtion*. Birkhäuser, New York, 1990.
- [4] F. Klebaner. *Introduction to Stochastic Calculus with Applications*. Imperial College Press, Londres, 2005.
- [5] P. Kloeden y E. Platen. *Numerical Solution to Stochastic Differential Equations*. Springer-Verlag, Berlin, 1992.
- [6] M. Lakshmanan y S. Rajasekar. *Nonlinear Dynamics*. Springer-Verlag Berlin Heidelberg, Berlin, 2003.
- [7] D. Lemons. *An Introduction to Stochastic Processes in Physics*. The Johns Hopkins University Press, Baltimore, 2002.
- [8] G. Mircea. *Stochastic Calculus: Applications in Science and Engineering*. Birkhäuser, Boston, 2002.
- [9] P. Möters y Y. Peres. Brownian Motion. Cambridge University Press, 2008.
- [10] E. Nelson. *Dynamical Theories of Brownian Motion*. Pricenton University Press, U.S.A., 2001.
- [11] D. Nualart. Cálculo Estocástico. Technical report, Universidad de Barcelona.
- [12] P. Protter. *Stochastic Integrtion and Differential Equations*. Springer-Verlag, Berlin, 2004.

- [13] L. Rincón. *Introducción a los Procesos Estocásticos*. Technical report, Facultad de Ciencias UNAM, México DF, 2012.
- [14] S. Ross. Simulation. Academic Press, University of Southern California, 2013.
- [15] R. Rubstein. *Simulation and the Monte Carlo method*. John Wiley and Sons, Inc., 1981.
- [16] J. Steele. Stochastic Calculus and Financial Aplications. Springer, New York, 2001.
- [17] M. Suárez y F. Tapia. *Interaprendizaje de Estadística Básica*. Universidad Técnica del Norte, Ibarra, 2012.
- [18] D. Wagg y S. Neild. Nonlinear Vibration with Control. Springer, Bristol, 2010.