k-means algorithm (6pt)

This problem requires you to implement the k-means algorithm. The input is a set \mathcal{X} of n data points in the d-dimensional space $R \in d$, the given number of clusters k, and the set of k initial centroids \mathcal{C} . The distance between any two points is computed using the Euclidean distance.

The corresponding cost function Φ that is minimized when we assign points to clusters using the Euclidean distance metric is given by:

$$\Phi = \sum_{x \in \mathcal{X}} \min_{c \in \mathcal{C}} ||x - c||^2$$

Task. Implement the k-means algorithm. In this task, we use k = 10. Please use data.txt as the data points and centroid.txt as the initial centroids.

- data.txt contains the dataset with 1000 rows (i.e., n = 1000) and 20 columns (i.e., d = 20).
- centroid.txt contains 10 initial cluster centroids.

For the convergence condition, you can either set the number of iterations to 20 or use a threshold 0.01.

Run the k-means on data.txt and centroid.txt. Generate a graph where you plot the cost function as a function of the number of iterations.

Bonus (3pt)

Implement the MapReduce-based k-means algorithm on Spark. In order to receive the bonus points, you also need to briefly explain (comments in the code) the operations in map and reduce functions.

What to submit

- 1. The source code.
- 2. The plot of cost vs. iteration.