Constant Series

Theorem:

$$\sum_{r=1}^{n} 1 = n.$$

Example: Evaluate the summation

$$(a)\sum_{r=1}^{n}e$$

$$(b)\sum_{r=1}^{30} (-\pi)$$

Linear Series

Theorem:

$$\sum_{r=1}^{n} r = \frac{1}{2} n(n+1).$$

Example: Evaluate the summations

$$(a)\sum_{r=1}^{n}3r$$

$$(b)\sum_{r=1}^{20} (-r)$$

Evaluate the following summations:

(a)
$$\sum_{r=0}^{2n} (3r-5)$$
 (b) $\sum_{r=1}^{n+1} (e-\pi r)$

Quadratic Series

Theorem:

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1).$$

Evaluate the following summations:

(a)
$$\sum_{r=1}^{n} r(r+1)$$
 (b) $\sum_{r=1}^{100} (3r^2 - 3r + 1)$

Evaluate
$$\sum_{r=1}^{50} (2r-1)^2$$
.

Cubic Series

Theorem:

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2.$$

Evaluate the following summations:

(a)
$$\sum_{r=1}^{n} r(r+1)(r+2)$$
 (b) $\sum_{r=1}^{50} (2r-1)^3$

Given the series $S_n = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 + 4 \cdot 7 + ... + u_n$.

- (a) State u_n .
- (b) Express S_n in terms of n.

Homework

Please attempt all the questions in the following slides.

Questions are to be discussed on the next day of the instruction.

If
$$\sum_{r=n+3}^{2n} r = 312$$
, find the value of n .

Find the sum of *n* terms of the series

$$(p-1)(p+1)+(p-2)(p+2)+(p-3)(p+3)+...$$

Given the series $S_n = 1 \cdot 2^2 + 2 \cdot 3^2 + 3 \cdot 4^2 + ... + u_n$.

- (a) State u_n .
- (b) Express S_n in terms of n.