Problem: Very high accuracy using DNN

Reason:-

The approach of formation of dataset was not correct. This is causing over-fitting of model during training.

Previous Approach

New Approach

Dataset in table format

	Actual Records	Train Records	Test Records	Train Dataset	Test Dataset
MI	148	118	30	5318	1372
HC	54	42	12	1946	555
Total	202	160	42	7264	1927

Sampling Frequency of Dataset:- 1000 Hz Downsampled to:- 250 Hz

So, each record has dimension (625, 12) [2.5 sec* 250Hz; 12 leads]

```
(7264, 625, 12)
(7264,)
(1927, 625, 12)
(1927,)
Total number of unique combinations of diagnosis(TRAINING): 7264
MI Records: 5318
HC Records: 1946
Total number of unique combinations of diagnosis(TESTING): 1927
MI Records: 1372
HC Records: 555
```

Create Images and then read them to retrieve the data

Objective 2: Visual Comparison

Objective 3: Quantitative Comparison

- For $I = 0^{th}$ record,
 - Mean Square Error: 0.003045019
 - Mean Absolute Error: 0.045140551
 - WPRD:-

```
WPRD: (6+1 levels along rows as cA6 cD6 cD5 cD4 cD3 cD2 cD1)*(12 leads along columns)
cA6 0.431.
           0.216,
                   0.392,
                           0.161,
                                   0.423,
                                           0.279,
                                                   0.270,
                                                           0.376,
                                                                   0.400,
                                                                           0.453,
                                                                                   0.204,
                                                                                           0.308.
cD6 0.235.
                                           0.272,
                                                                                           0.451,
           0.304.
                   0.337,
                           0.306.
                                   0.241,
                                                   0.371.
                                                           0.292.
                                                                   0.364.
                                                                           0.488.
                                                                                   0.433.
                                           0.435, 0.627,
cD5 0.625.
           0.396, 0.588,
                           0.499, 0.561,
                                                           0.386, 0.567,
                                                                           0.725, 0.521,
                                                                                           0.513.
cD4 0.798,
                                           0.793, 0.805,
           0.605.
                  0.864,
                           0.572, 0.786,
                                                           0.593, 0.708,
                                                                           0.903.
                                                                                   0.657,
                                                                                           0.659,
cD3 1.170,
           1.080.
                  0.835,
                           0.793, 0.924,
                                           1.024, 1.206,
                                                           0.733.
                                                                   1.101,
                                                                           1.257.
                                                                                   0.884.
                                                                                           0.966.
cD2 1.040,
           1.615, 1.269,
                           1.265, 1.151,
                                           1.319, 1.158,
                                                           0.944,
                                                                   1.353,
                                                                           1.333,
                                                                                   0.997,
                                                                                           1.115,
cD1 0.657,
           1.428, 0.707,
                           0.860.
                                   0.580.
                                           0.718.
                                                   0.689.
                                                           0.508.
                                                                   0.783.
                                                                           2.714,
                                                                                   0.910.
                                                                                           1.046,
```

Conclusion from WPRD calculation

```
WPRD: (6+1 levels along rows as cA6 cD6 cD5 cD4 cD3 cD2 cD1)*(12 leads along columns)
cA6 0.431.
           0.216, 0.392, 0.161, 0.423, 0.279, 0.270, 0.376, 0.400, 0.453,
                                                                              0.204.
                                                                                     0.308.
cD6 0.235, 0.304, 0.337, 0.306, 0.241, 0.272, 0.371, 0.292, 0.364, 0.488,
                                                                             0.433.
                                                                                     0.451,
cD5 0.625, 0.396, 0.588, 0.499, 0.561, 0.435, 0.627, 0.386, 0.567,
                                                                             0.521,
                                                                                     0.513,
                                                                      0.725,
cD4 0.798, 0.605, 0.864, 0.572, 0.786, 0.793, 0.805, 0.593, 0.708, 0.903,
                                                                                     0.659.
                                                                             0.657.
cD3 1.170, 1.080, 0.835, 0.793, 0.924, 1.024, 1.206, 0.733, 1.101, 1.257,
                                                                             0.884.
                                                                                     0.966,
cD2 1.040, 1.615, 1.269, 1.265, 1.151, 1.319, 1.158, 0.944, 1.353, 1.333, 0.997,
                                                                                     1.115.
cD1 0.657, 1.428, 0.707, 0.860, 0.580, 0.718, 0.689, 0.508, 0.783, 2.714, 0.910,
                                                                                     1.046.
```

The distortion measured is maximum in cD3, cD2, cD1 bands, which are usually ignored as they contains high freq components.

So data retrieved from the images is quite good.

Split the data & Feed to the Model

Results

- Without 5 fold CV:-
 - Accuracy: 0.8780
 - Recall: 0.9286
 - Precision: 0.9029
 - AUC: 0.9426

Model: "functional_1"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 625, 12)]	0
conv1d (Conv1D)	(None, 625, 128)	12416
batch_normalization (BatchNo	(None, 625, 128)	512
activation (Activation)	(None, 625, 128)	0
conv1d_1 (Conv1D)	(None, 625, 256)	164096
batch_normalization_1 (Batch	(None, 625, 256)	1024
activation_1 (Activation)	(None, 625, 256)	0
conv1d_2 (Conv1D)	(None, 625, 128)	98432
batch_normalization_2 (Batch	(None, 625, 128)	512
activation_2 (Activation)	(None, 625, 128)	0
global_average_pooling1d (Gl	(None, 128)	0
dense (Dense)	(None, 1)	129
Total pages 277 121		

Total params: 277,121 Trainable params: 276,097 Non-trainable params: 1,024 After 5 fold Cross Validation:-

(created 5 models and take average of the predicted output)

- Accuracy: 0.88

Comparison with SOTA paper[2]

Classifiers	Sensitivity(%)	Accuracy(%)	Specificity(%)
KNN	85	81	77
SVM Lin	90.42	89	87.69
SVM RBF	93	96	99
KNN*	88.23	83.07	69.81
SVM Lin*	81.25	81.73	84.56
SVM RBF*	93.53	91.31	85.77
DNN Model	<mark>92.86</mark>	<mark>87.80</mark>	<mark>78.94</mark>

[2] Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction https://ieeexplore.ieee.org/document/7047810

^{* (}Implemented SOTA paper Result)

Future Work

- Found a new dataset PTB-XL[1] published on Apr 2020.
- Features:-

Dataset of 21837 clinical 12-lead ECGs from 18885 patients of 10

second length.

Sampling Freq: 100 Hz & 500 Hz

#Records	Superclass	Description
9528	NORM	Normal ECG
5486	MI	Myocardial Infarction
5250	STTC	ST/T Change
4907	CD	Conduction Disturbance
2655	HYP	Hypertrophy

[1] https://www.physionet.org/content/ptb-xl/1.0.1/

 Needed some preprocessing work to segregate the data into different classes.

Figure 1: Graphical summary of the *PTB-XL* dataset in terms of diagnostic superclasses and subclasses, see Table 5 for a definition of the used acronyms.