PROJEKTOWANIE

DANE

PARAMETRY MATERIAŁOWE

Beton

MPa Stal fyk=

SIŁY WEWNĘTRZNE

 $M_{Ed} =$

 $N_{Ed} =$

 $V_{Ed} =$

PARAMETRY GEOMETRYCZNE

b =

h = $a_2 =$

 $a_1 =$

Leff =

WYNIKI

STAN GRANICZNY NOŚNOŚCI

ZBROJENIE PODŁUŻNE SYMETRYCZNE

 $A_{s1,req}=$

 cm^2

As1,prov=

 cm^2

ф

A_{s2,req}=

 cm^2

A_{s2,prov}=

 cm^2

ф

ZBROJENIE PODŁUŻNE NIESYMETRYCZNE

 $A_{s1,req}=$

cm²

 $A_{s1,prov}=$

cm²

ф

A_{s2,req}=

 cm^2

A_{s2,prov}=

cm²

ф

ZBROJENIE POPRZECZNE

strzemiona:

ф

nsw1=

S1=

pręty odgięte:

ф

nsw2=

S2=

PARAMETRY DODATKOWE

Przekrój betonowy:

 $I_c =$

 cm^4

 $x_c =$

m

Siła krytyczna:

Faza I:

 $I_I =$

 cm^4

 $x_I =$

m

 $N_B =$

kN

Faza II:

 $I_{II} =$

 cm^4

 $x_{II} =$

m

 $\rho_s =$

%

Zbrojenie niesymetryczne:

Zbrojenie symetryczne:

 $N_B =$

kN

 $\rho_s =$

%

Pozostałe:

 $\sigma_s =$

MPa

[-]

 $S_{r,max} =$

mm

 $\varphi_{ef} =$

[-]

 $\varepsilon_{cs} =$