Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has five (5) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	30	
3	20	
4	20	
5	30	
Total	100	

Problem 1 (20 pts). The volume of a cube is increasing at a rate of 300 cm³/min. How fast are the edges increasing when the length of an edge is 10 cm?

The edges are increasing at a speed of

Problem 2 (10 pts). Find an equation of the tangent line to the curve $y = \ln(xe^{x^2})$ at the point (1,1).

Problem 3 (20 pts). Find the absolute extrema of $f(x) = \frac{8}{3}x^{4/3} - \frac{4}{3}x^{1/3}$ on the interval [-1, 1].

Absolute maxima at

Absolute minima at

Problem 4 (20 pts). Use logarithmic differentiation to find the derivative of the function

$$y = \frac{\tan^2 x \sin^4 x}{e^{3x}(x^2 + 1)}$$

Problem 5 (30 pts). Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 3 cm and 4 cm if two sides of the rectangle lie along the legs.

Area of largest rectangle: