UVA CS 4501: Machine Learning

Lecture 23: Unsupervised Clustering (II)

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? major sections of this course

- ☐ Regression (supervised)
- ☐ Classification (supervised)
 - ☐ Feature selection
- Unsupervised models
- Dimension Reduction (PCA)
 - ☐ Clustering (K-means, GMM/EM, Hierarchical)
- ☐ Learning theory
- ☐ Graphical models

An unlabeled Dataset X

a data matrix of n observations on p variables $x_1, x_2, ... x_p$

Unsupervised learning = learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification label of examples is given

- Data/points/instances/examples/samples/records: [rows]
- Features/attributes/dimensions/independent variables/covariates/predictors/regressors: [columns]

What is clustering?

 Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
- Partitional algorithms
 - Hierarchical algorithms
 - Formal foundation and convergence

Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
 - 5
- K means clustering
- Mixture-Model based clustering

- Hierarchical algorithms
 - Bottom-up, agglomerative
 - Top-down, divisive

(2) Partitional Clustering

- Nonhierarchical
- Construct a partition of n objects into a set of K clusters
- User has to specify the desired number of clusters K.

Partitional clustering (e.g. K=3)

Original points

Partitional clustering

Partitional clustering (e.g. K=3)

Clustering Algorithms

- Partitional algorithms
 - Usually start with a random (partial) partitioning
 - Refine it iteratively
- K means clustering
- Mixture-Model based clustering

Partitioning Algorithms

Given: a set of objects and the number K

- Find: a partition of K clusters that optimizes a chosen partitioning criterion
 - Globally optimal: exhaustively enumerate all partitions
 - Effective heuristic methods: K-means and K-medoids algorithms

tso expensive LN

K-Means

Algorithm

- Decide on a value for <u>k</u>.
- 2. Initialize the *k* cluster centers randomly if necessary.
- 3. Decide the class memberships of the N objects by assigning them to the nearest cluster centroids (aka the center of gravity or mean)

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

- 4. Re-estimate the *k* cluster centers, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise go to 3.

K-means Clustering: Step 1 - random guess of cluster centers

K-means Clustering: Step 1 - random guess of cluster centers

K-means Clustering: Step 1 - random guess of cluster centers

K-means Clustering: Step 2

- Determine the membership of each data points

K-means Clustering: Step 3

- Adjust the cluster centers

K-means Clustering: Step 4redetermine membership

关

K-means Clustering: Step 5readjust cluster centers

How K-means partitions?

When *K* centroids are set/fixed, they partition the whole data space into *K* mutually exclusive subspaces to form a partition.

A partition amounts to a

Voronoi Diagram

Changing positions of centroids leads to a new partitioning.

How to draw voronoi diagram

K-means

- Start with a random guess of cluster centers
- Determine the membership of each data points
- Adjust the cluster centers

User set up the number of clusters they'd like. (e.g. k=5)

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess K cluster Center locations

- User set up the number of clusters they'd like. (e.g. K=5)
- Randomly guess K cluster Center locations
- Each data point finds out which Center it's closest to. (Thus each Center "owns" a set of data points)

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess K cluster centre locations
- 3. Each data point finds out which centre it's closest to. (Thus each Center "owns" a set of data points)
- 4. Each centre finds the centroid of the points it owns

- 1. User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess *K* cluster centre locations
- Each data point finds out which centre it's closest to. (Thus each centre "owns" a set of data points)
- 4. Each centre finds the centroid of the points it owns
- 5. ...and jumps there

- User set up the number of clusters they'd like. (e.g. K=5)
- 2. Randomly guess *K* cluster centre locations
- Each data point finds out which centre it's closest to. (Thus each centre "owns" a set of data points)
- 4. Each centre finds the centroid of the points it owns
- 5. ...and jumps there
- 6. ...Repeat until terminated!

K-means

- 1. Ask user how many clusters they'd like. (e.g. k=5)
- Randomly guess k cluster Center locations
- 3. Each datapoint finds out which Center it's closest to.
- 14. Each Center finds the centroid of the points it owns

Any Computational Problem?

K-means

- 1. Ask user how many clusters
 Computational Complexity: O(n)
 where n is the number of points?
- Center cations
- 3. Each datapoint finds out which Center it's closest to.
- 14. Each Center finds the centroid of the points it owns

Any Computational Problem?

Time Complexity

- Computing distance between two objs is O(p) where p is the dimensionality of the vectors.
- Reassigning clusters: O(Knp) distance computations,
- Computing centroids: Each obj gets added once to some centroid: O(np).
- Assume these two steps are each done once for l iterations: O(lKnp).

Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- How many clusters?
- Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms

How to Find good Clustering?

 Find groups (clusters) of data points such that data points in a group will be similar (or related) to one another and different from (or unrelated to) the data points in other groups

How to Find good Clustering? E.g.

Minimize the sum of distance within clusters

$$\begin{aligned}
\tilde{j} &= 1, 2, \cdots, \\
& \underset{\tilde{C}_{j}, m_{i,j}}{\text{arg min}} \sum_{j=1}^{5} \sum_{i=1}^{n} m_{i,j} \left(\vec{x}_{i} - \vec{C}_{j} \right)^{2} \\
& \left\{ \vec{C}_{j}, m_{i,j} \right\} j = 1 i = 1
\end{aligned}$$

$$m_{i,j} = \begin{cases} 1 & \vec{x}_i \in \text{the j-th cluster} \\ 0 & \vec{x}_i \notin \text{the j-th cluster} \end{cases}$$

$$\sum_{i=1}^{5} m_{i,j} = 1$$

$$\sum_{j=1}^{5} m_{i,j} = 1$$

4/26/18

 \rightarrow any $\vec{x}_i \in$ a single cluster

$$\underset{\left\{\vec{C}_{j}, m_{i,j}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{5} \sum_{i=1}^{n} m_{i,j} \left(\vec{x}_{i} - \vec{C}_{j}\right)^{2}$$

When given
$$\{m_{ij}\}$$
, $J_{oss}(\vec{c}_{j}) = \sum_{j=1}^{k} \sum_{l=1}^{n} m_{ij}(\vec{x}_{i} - \vec{c}_{j})^{2}$

$$\frac{\partial \lambda_{655}(C_j)}{\partial C_j} = 0$$

$$\vec{C}_j = \frac{\sum_{i=1}^n m_{i,j} \vec{x}_i}{\sum_{i=1}^n m_{i,j}}$$

$$m_{i,j} = \begin{cases} 1 & j = \arg\min(\vec{x}_i - \vec{C}_j)^2 \\ 0 & \text{otherwise} \end{cases}$$

Iterative Optimization

$$\underset{\left\{\vec{C}_{j}, m_{i, j}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{5} \sum_{i=1}^{n} m_{i, j} \left(\vec{x}_{i} - \vec{C}_{j}\right)^{2}$$

Memberships $\{m_{i,j}\}$ and centers $\{C_i\}$ are correlated.

Given centers
$$\{\vec{C}_j\}$$
, $m_{i,j} = \begin{cases} 1 & j = \arg\min(\vec{x}_i - \vec{C}_j)^2 \\ 0 & \text{otherwise} \end{cases}$

Given centers
$$\{\vec{C}_j\}$$
, $m_{i,j} = \begin{cases} 1 & j = \arg\min(\vec{x}_i - \vec{C}_j)^2 \\ 0 & \text{otherwise} \end{cases}$

Given memberships $\left\{m_{i,j}\right\}$, $\vec{C}_j = \frac{\sum_{i=1}^n m_{i,j} \vec{x}_i}{\sum_{i=1}^n m_{i,j}} = \frac{\sum_{i=1}^n m_{i,j}}{\sum_{i=1}^n m_{i,j}} = \frac{\sum_{i=1}^n m_{i,j}}{\sum_{i=1}^n m_{i,j}} = \frac{\sum_{i=1}^n m_{i,j}}{\sum_{i=1}^n m_{i,j}} = \frac{\sum_{i=1}^n m_{i,j}}{\sum_{i=1}^n m_{i,j}} = \frac{\sum_{i=1}^n m_{i,j}}{\sum_{i=1$

Convergence

- Why should the K-means algorithm ever reach a fixed point?
 - A state in which clusters don't change.
- K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm.
 - EM is known to converge.
 - Number of iterations could be large.
- Optimize the goodness measure (i.e., minimize the Loss function)
 - sum of squared distances from cluster centroid:
- Reassignment monotonically decreases the goodness measure since each vector is assigned to the closest centroid.

Seed Choice

• Results can vary based on random seed selection.

 $C_{i}, C_{2}, \dots, C_{K}$

- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
 - Select good seeds using a heuristic (e.g., sample least similar to any existing mean)
 - Try out multiple starting points (very important!!!)
 - Initialize with the results of another method.

(2) K-means Clustering

4/26/18

Roadmap: clustering

- Definition of "groupness"
- Definition of "similarity/distance"
- Representation for objects
- **▶** Ho
 - How many clusters?
 - Clustering Algorithms
 - Partitional algorithms
 - Hierarchical algorithms
 - Formal foundation and convergence

4/26/18 40

How can we tell the *right* number of clusters?

In general, this is a unsolved problem. However there exist many approximate methods.

$$\underset{\left\{\vec{C}_{j}, m_{i, j}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{K} \sum_{i=1}^{n} m_{i, j} \left(\vec{x}_{i} - \vec{C}_{j}\right)^{2}$$

When k = 1, the objective function is 873.0

$$\underset{\left\{\vec{C}_{j}, m_{i, j}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{K} \sum_{i=1}^{n} m_{i, j} \left(\vec{x}_{i} - \vec{C}_{j}\right)^{2}$$

When k = 2, the objective function is 173.1

$$\underset{\left\{\vec{C}_{j}, m_{i, j}\right\}}{\operatorname{arg\,min}} \sum_{j=1}^{K} \sum_{i=1}^{n} m_{i, j} \left(\vec{x}_{i} - \vec{C}_{j}\right)^{2}$$

When k = 3, the objective function is 133.6

$$f(=N,ob)=0$$

We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as "knee finding" or "elbow finding".

What Is A Good Clustering?

- Internal criterion: A good clustering will produce high quality clusters in which:
 - the intra-cluster similarity is high
 - the inter-cluster similarity is low
 - The measured quality of a clustering depends on both the data representation and the similarity measure used
- External criteria for clustering quality
 - Quality measured by its ability to discover some or all of the hidden patterns or latent classes in gold standard data
 - Assesses a clustering with respect to ground truth
 - Example:
 - Purity
 - entropy of classes in clusters (or mutual information between classes and clusters)

External Evaluation of Cluster Quality, e.g. using purity

- Simple measure: purity the ratio between the dominant class in the cluster and the size of cluster
 - Assume data samples with C gold standard classes/groups, while the clustering algorithms produce K clusters, ω_1 , ω_2 , ..., ω_K with n_i members.

$$Purity(w_i) = \frac{1}{n_i} \max_{j} (n_{ij}) \quad j \in C$$

Example

3 Classes

Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6

Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6

Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

References

- ☐ Hastie, Trevor, et al. *The elements of statistical learning*. Vol. 2. No. 1. New York: Springer, 2009.
 - ☐ Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
 - ☐ Big thanks to Prof. Ziv Bar-Joseph @ CMU for allowing me to reuse some of his slides
 - ☐ clustering slides from Prof. Rong Jin @ MSU

4/26/18