Quantum Computing and Cryptography

Damien, Théo, Matthieu

February 12, 2025

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - What is a lattice ?
 - Limits of PQ cryptography
- Conclusion

Outline

- Intro
- - Introduction to the quantum world
 - Quantum algorithms
- - Intro to PQ cryptography
 - Lattice cryptography
 - What is a lattice ?
 - Limits of PQ cryptography

Introduction

- Cryptography=TODO
- TODO: secret

Introduction

- Cryptography=TODO
- TODO: secret
- → Science of secret

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - What is a lattice ?
 - Limits of PQ cryptography
- Conclusion

RSA

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptographyWhat is a lattice?
 - Limits of PQ cryptography
- Conclusion

Quantum computing

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 What is a lattice?
 - Limits of PQ cryptography
- 2 Ellinis of Fig. cryptograph

Classical bit

 $b \in \{0,1\}$

Classical bit

 $b \in \{0,1\}$

• 0

Classical bit

 $b \in \{0,1\}$

- 0
- 1

Classical bit

 $b \in \{0,1\}$

- 0
- 1

Quantum bit

 $|\psi\rangle \in \mathbb{C}^2$

Classical bit

 $b \in \{0,1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

- $\bullet \ |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\bullet \ |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet$$
 $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$ullet$$
 $|+\rangle=rac{1}{\sqrt{2}}egin{bmatrix}1\\1\end{bmatrix}$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet$$
 $|1
angle=egin{bmatrix}0\\1\end{bmatrix}$

$$\bullet \ |+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$ullet |-
angle = rac{1}{\sqrt{2}} egin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

We measure 0 or 1 with a probability that depends on the state of the qubit.

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

We measure 0 or 1 with a probability that depends on the state of the qubit.

• $|0\rangle \rightarrow 0$ (100%)

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get?

We measure 0 or 1 with a probability that depends on the state of the qubit.

- $|0\rangle \rightarrow 0$ (100%)
- ullet |1
 angle
 ightarrow 1 (100%)

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

We measure 0 or 1 with a probability that depends on the state of the qubit.

• $|0\rangle \rightarrow 0$ (100%)

ullet |+
angle o 0 (50%), 1 (50%)

ullet |1
angle
ightarrow 1 (100%)

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

We measure 0 or 1 with a probability that depends on the state of the qubit.

• $|0\rangle \rightarrow 0$ (100%)

 $\bullet \ |+\rangle \to 0 \ (50\%), \ 1 \ (50\%)$

ullet |1
angle
ightarrow 1 (100%)

ullet |angle
ightarrow 0 (50%), 1 (50%)

NOT gate

X gate

- ullet X |0
 angle
 ightarrow |1
 angle
- ullet X |1
 angle
 ightarrow |0
 angle

NOT gate

X gate

- ullet $X\ket{0}
 ightarrow \ket{1}$
- $X|1\rangle \rightarrow |0\rangle$

Circuit representation

Hadamard gate

H gate

- ullet $H\left|0\right>
 ightarrow\left|+\right>$
- ullet $H\ket{1}
 ightarrow \ket{-}$

Hadamard gate

H gate

- $H|0\rangle \rightarrow |+\rangle$
- ullet $H\ket{1}
 ightarrow \ket{-}$

Circuit representation

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 What is a lattice?
 - What is a lattice ?
 - Limits of PQ cryptography
- Conclusion

Bernstein-Vazirani Problem

Problem Definition

Given an oracle for a function f:

$$f: \{0,1\}^n \to \{0,1\}$$

$$f(x) = x \cdot s$$

where s is a secret bit string. Find s with the fewest oracle calls. (\cdot is the bitwise dot product, XOR sum).

Classical Algorithm - Example

Example (n=2)

To find $s = s_0 s_1$:

Requires 2 queries.

Classical Algorithm - Example

Example (n=2)

To find $s = s_0 s_1$:

• Query f(10). Result: s_0 .

Requires 2 queries.

Classical Algorithm - Example

Example (n=2)

To find $s = s_0 s_1$:

- Query f(10). Result: s_0 .
- Query f(01). Result: s_1 .

Requires 2 queries.

Classical Algorithm - General Case

Complexity: $\mathcal{O}(n)$

We need to isolate each bit of s by querying with inputs that have a single '1'. This requires n queries for an n-bit string.

Quantum Algorithm - Overview

Complexity: $\mathcal{O}(1)$

The quantum algorithm can find s with just **one** query. It uses superposition to query all possible inputs simultaneously.

Quantum Algorithm - Circuit

Circuit Diagram

Explanation

Circuit Diagram

Explanation

ullet $H^{\otimes n}$: Hadamard gates on all n input qubits (creates superposition).

Circuit Diagram

Explanation

- ullet $H^{\otimes n}$: Hadamard gates on all n input qubits (creates superposition).
- \bullet U_f : The quantum oracle.

Circuit Diagram

Explanation

- $H^{\otimes n}$: Hadamard gates on all n input qubits (creates superposition).
- \bullet U_f : The quantum oracle.
- Final Hadamards and measurement reveal s.

Complexity Gain

Classical factoring is very slow (roughly $\mathcal{O}(e^{\sqrt[3]{n}})$). Shor's algorithm is much faster (polynomial, $\mathcal{O}(n^3)$).

Complexity Gain

Classical factoring is very slow (roughly $\mathcal{O}(e^{\sqrt[3]{n}})$). Shor's algorithm is much faster (polynomial, $\mathcal{O}(n^3)$).

Requirements

Complexity Gain

Classical factoring is very slow (roughly $\mathcal{O}(e^{\sqrt[3]{n}})$). Shor's algorithm is much faster (polynomial, $\mathcal{O}(n^3)$).

Requirements

• Requires a large number of high-quality (low-error) qubits (roughly 2n for an n-bit number).

Complexity Gain

Classical factoring is very slow (roughly $\mathcal{O}(e^{\sqrt[3]{n}})$). Shor's algorithm is much faster (polynomial, $\mathcal{O}(n^3)$).

Requirements

- Requires a large number of high-quality (low-error) qubits (roughly 2n for an n-bit number).
- We currently don't have quantum computers large and stable enough to break practical RSA encryption.

Outline

- - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - What is a lattice ?
 - Limits of PQ cryptography

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 What is a lattice?
 - Limits of PQ cryptography
- Conclusion

What is PQ cryptography

- Based on (other) mathematical problems
- Considered unsolvable by a quantum computer

What it is not:

Cryptography using quantum technologies

The problems

- Codes
- Hash functions
- Multivariates polynomials systems
- Isogenies
- Lattices

The problems

- Codes
- Hash functions
- Multivariates polynomials systems
- Isogenies
- Lattices

Why lattices ?

- Well spread
- Good results

Encryption/Key encapsulation	
Crystals-Kyber	Lattices
Signatures	
Crystals-Dilithium	Lattices
Falcon	Lattices
Sphincs+	Hash

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - What is a lattice?
 - Limits of PQ cryptography
- Conclusion

Some definitions

A discret subgroup of RRⁿ

Like vector spaces, we have :

- Vectors and matrices
 - Linear combination

Example

Learning with error problem

TODO

Based on lattices (variant of LWE problem)

- Based on lattices (variant of LWE problem)
- We can evaluate a circuit (operations) on encrypted data
- ullet Two operations : + and \cdot , forms a ring

- Based on lattices (variant of LWE problem)
- We can evaluate a circuit (operations) on encrypted data
- ullet Two operations : + and \cdot , forms a ring
- We can evaluate (or compile) a function $f: P \times P \rightarrow P$ on encrypted data C_1 and C_2 :

$$eval(f, C_1, C_2) = Enc(f(Dec(C_1), Dec(C_2)))$$

- Based on lattices (variant of LWE problem)
- We can evaluate a circuit (operations) on encrypted data
- ullet Two operations : + and \cdot , forms a ring
- We can evaluate (or compile) a function $f: P \times P \rightarrow P$ on encrypted data C_1 and C_2 :

$$eval(f, C_1, C_2) = Enc(f(Dec(C_1), Dec(C_2)))$$

Used to manipulate private data (e.g. Medical data, data science)

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptographyWhat is a lattice?
 - Limits of PQ cryptography
- 5 Conclusion

Sizes of the keys and data

TODO

Not necessarly robust to classical computer

• Example : Supersingular isogenies Diffie-Hellman key exchange

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - What is a lattice ?
 - Limits of PQ cryptography
- Conclusion

Conclusion