Variables aleatorias. Parte 3

Laboratorio de software y problemas 2 2021-2022

Contents

L	Tra	nsformación de variables aleatorias	1
	1.1	Pregunta 1	1
	1.2	Pregunta 2	1
	1.3	Pregunta 3	1
	1.4	Pregunta 4	2

1 Transformación de variables aleatorias

1.1 Pregunta 1.

A partir de

$$F_X(t) = \begin{cases} 0, & \text{si } t < -1, \\ \frac{t+1}{2}, & \text{si } -1 \le t \le 1, \\ 1, & \text{si } t > 1, \end{cases}$$

hallar la función de distribución para Y = 15 + 2X y la función de densidad para Y.

1.2 Pregunta 2.

 Si

$$F_X(t) = \begin{cases} 0, & \text{si } t < 0, \\ t, & \text{si } 0 \le t \le 1, \\ 1, & \text{si } t > 1, \end{cases}$$

hallar la función de distribución y la función de densidad de la forma estándar de X $(Z = \frac{X - \mu_X}{\sigma_X})$, donde $\mu_X = E(X)$ y $\sigma_X = \sqrt{\text{Var}(X)}$.

1.3 Pregunta 3

Para formar un jardín circular, un jardinero corta una cuerda, la ata a una estaca y marca el perímetro. Suponer que la longitud de la cuerda tiene la misma verosimilitud de estar en el intervalo comprendido entre r-0.1 y r+0.1. ¿Cuál es la distribución de X, el área de la superficie del jardín? ¿Cuál es la probabilidad de que el área de la superficie sea mayor que πr^2 ?

1.4 Pregunta 4

Sea X una variable aleatoria continua con función de densidad $f_X(x)$. Consideramos la variable aleatoria $Y = e^X$. Hallar la función de densidad de la variable aleatoria Y, $f_Y(y)$.