

MACHINE LEARNING

Q1 to Q11 have only one correct answer. Choose the correct option to answer your question.
 Movie Recommendation systems are an example of: Classification Clustering Regression Options: 2 Only 1 and 2

c) 1 and 3d) 2 and 3

- 2. Sentiment Analysis is an example of:
 - i) Regression
 - ii) Classification
 - iii) Clustering
 - iv) Reinforcement

Options:

- a) 1 Only
- b) 1 and 2
- c) 1 and 3

d) 1, 2 and 4

- 3. Can decision trees be used for performing clustering?
 - a) True
 - b) False
- 4. Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis, given less than desirable number of data points:
 - i) Capping and flooring of variables
 - ii) Removal of outliers

Options:

a) 1 only

- b) 2 only
- c) 1 and 2
- d) None of the above
- 5. What is the minimum no. of variables/ features required to perform clustering?
 - a) 0
 - b) 1
 - c) 2
 - d) 3
- 6. For two runs of K-Mean clustering is it expected to get same clustering results?
 - a) Yes
 - b) No
- 7. Is it possible that Assignment of observations to clusters does not change between successive iterations in K-Means?
 - a) Yes
 - b) No
 - c) Can't say
 - d) None of these

MACHINE LEARNING

- 8. Which of the following can act as possible termination conditions in K-Means?
 - i) For a fixed number of iterations.
 - ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local minimum.
 - iii) Centroids do not change between successive iterations.
 - iv) Terminate when RSS falls below a threshold.
 - Options:
 - a) 1, 3 and 4
 - b) 1, 2 and 3 c) 1, 2 and 4
 - d) All of the above
- 9. Which of the following algorithms is most sensitive to outliers?
 - a) K-means clustering algorithm
 - b) K-medians clustering algorithm
 - c) K-modes clustering algorithm
 - d) K-medoids clustering algorithm
- 10. How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning):
 - i) Creating different models for different cluster groups.
 - ii) Creating an input feature for cluster ids as an ordinal variable.
 - iii) Creating an input feature for cluster centroids as a continuous variable.
 - iv) Creating an input feature for cluster size as a continuous variable.

 Options:
 - a) 1 only
 - b) 2 only
 - c) 3 and 4
 - d) All of the above
- 11. What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a) Proximity function used
 - b) of data points used
 - c) of variables used
 - d) All of the above

Q12 to Q14 are subjective answers type questions, Answers them in their own words briefly

12. Is K sensitive to outliers?

k-means clustering algorithm is most sensitive outliers as it uses the mean of cluster data point to find cluster center

- 13. Why is K means better?
 - a) Relatively simple to implement
 - b) Scales to large data sets
 - c) Guarantees convergence
 - d) Can warm-start the positions of centroids
 - e) Easily adapts to new examples
 - f) Generalizes to clusters of different shapes and sizes, such as elliptical clusters
- 14. Is K means a deterministic algorithm?
 - No. The **non-deterministic** nature of K-Means is due to its random selection of data points as initial centroids