Variables aléatoires à densité

Rappels:

Une variable aléatoire réelle (VAR) est une application $X : \Omega \to \mathbb{R}$ où (Ω, \mathcal{A}, P) est un espace probabilisé. Lorsque $X(\Omega)$ est un ensemble discret on dit que X est une VAR discrète.

Pour **toutes** les VAR (discrètes ou non) on définit la fonction de répartition de X, que l'on note F_X , par $F_X(x) = P(X \le x)$ pour tout réel x.

I Notion de variable aléatoire à densité

1 Densité

Définition 1 Soit X une VAR définie sur un espace probabilisé (Ω, \mathcal{A}, P) et F_X sa fonction de répartition. On dit que X est une variable aléatoire réelle à densité s'il existe une fonction $f_X : \mathbb{R} \to \mathbb{R}$ vérifiant :

- (i) f_X est à valeur réelles positives ou nulles
- (ii) f_X est continue sur \mathbb{R} , sauf éventuellement en un nombre fini de points

(iii)
$$\int_{-\infty}^{+\infty} f_X(t) dt$$
 est convergente et $\int_{-\infty}^{+\infty} f_X(t) dt = 1$

(iv) Pour tout
$$x \in \mathbb{R}$$
, $F_X(x) = \int_{-\infty}^x f_X(t) dt$

La fonction f_X s'appelle alors **une densité** de la variable aléatoire X.

Remarque:

La fonction f_X n'est pas unique c'est pourquoi on dit que c'est **une** densité de X. En effet si g est une fonction égale à f_X sauf en un nombre fini de points alors g est aussi une densité de X.

Nous admettrons le théorème suivant, qui nous permet de vérifier si une fonction f donnée est une densité d'une variable X.

Théorème 1 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction vérifiant :

- (i) f est à valeur réelles positives ou nulles
- (ii) f est continue sur \mathbb{R} , sauf éventuellement en un nombre fini de points

(iii)
$$\int_{-\infty}^{+\infty} f(t) dt$$
 est convergente et $\int_{-\infty}^{+\infty} f(t) dt = 1$

alors il existe un espace probabilisé (Ω, \mathcal{A}, P) et une variable aléatoire réelle X définie sur cet espace, tels que f est une densité de la variable X.

On dit alors que f est une **densité** de **probabilité**.

Exemple 1:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} e^{-x} & \text{si } x \geq 0 \\ 0 & \text{si } x < 0 \end{cases}$. Montrons que c'est une densité de probabilité.

Nous allons ici appliquer le théorème 1 donc il nous faut vérifier les 3 hypothèses de ce théorème :

- (i) Comme l'exponentielle est positive, f est bien une fonction à valeurs positives ou nulles.
- (ii) Sur $]-\infty;0[f \text{ est la fonction nulle donc } f \text{ est continue sur }]-\infty;0[.$
 - Sur $[0; +\infty[$, f est la composée des fonctions $x \to -x$ et $t \to e^t$ qui sont continues sur \mathbb{R} , donc f est continue sur $[0; +\infty[$.
 - Ainsi on a montré que f est continue sur \mathbb{R}^* .

(On pourrait essayer de voir si f est continue en 0 mais ce n'est pas nécessaire pour utiliser le théorème 1 donc nous n'allons pas faire de travail inutile...)

- (iii) Il nous faut maintenant vérifier la convergence de $\int_{-\infty}^{+\infty} f(x) dx$ et calculer la valeur de cette intégrale.
 - f est nulle $sur] \infty; 0[$ $donc \int_{-\infty}^{0} f(x) dx$ est convergente et vaut 0.
 - Montrons la convergence de $\int_0^{+\infty} f(x) dx$.

La fonction f est continue sur $[0; +\infty[$ donc le problème se pose uniquement en $+\infty$.

Soit
$$A > 0$$
, $\int_0^A f(x) dx = \int_0^A e^{-x}$, $dx = \left[-e^{-x} \right]_0^A = 1 - e^{-A}$.

Donc
$$\lim_{A \to +\infty} \int_0^A f(x) dx = 1.$$

Ainsi
$$\int_0^{+\infty} f(x) dx$$
 converge et $\int_0^{+\infty} f(x) dx = 1$

• En conclusion l'intégrale $\int_{-\infty}^{+\infty} f(x) dx$ est convergente et vaut 0+1=1.

f est donc bien une densité de probabilité.

2 Caractérisation par la fonction de répartition

Théorème 2 Si F est la fonction de répartition d'une variable à densité X et si f est une densité de X alors :

- F est continue sur \mathbb{R} .
- F est de classe C^1 sauf éventuellement en un nombre fini de points et lorsque F est dérivable en x, F'(x) = f(x).

Remarques:

- Les variables discrètes ne sont donc pas des variables à densité.
- Comme f est positive, la fonction de répartition est bien croissante.
- La fonction de répartition est une primitive de la densité.

Ces propriétés sur la fonction de répartition suffisent à caractériser les variables à densité :

Théorème 3 Soit X une variable aléatoire réelle de fonction de répartition F. Si :

- (i) F est continue sur \mathbb{R}
- (ii) F est \mathcal{C}^1 sur \mathbb{R} sauf en un nombre fini de points

alors X est une variable aléatoire à densité.

De plus si f est une fonction positive ou nulle telle que F'(x) = f(x) en tout point x où F est dérivable, alors f est une densité de X.

En pratique:

Pour démontrer qu'une variable X donnée est une variable à densité, il faut trouver sa fonction de répartition et vérifier qu'elle est continue sur \mathbb{R} et \mathcal{C}^1 sauf peut être en un nombre fini de points. Pour trouver la densité de X il suffit de prendre la dérivée de F.

Exemple 2:

Soit X une variable aléatoire dont la fonction de répartition est la fonction F définie sur $\mathbb R$ par :

$$F(x) = \begin{cases} 0 & \text{si } x < 2\\ 1 - \frac{8}{x^3} & \text{si } x \geqslant 2 \end{cases}$$

Montrer que X est une variable à densité et en déterminer une densité.

On va utiliser le théorème 3 donc nous avons deux choses à vérifier sur F.

(i) Sur $]-\infty;2[$, F est une fonction constante donc continue. Sur $]2;+\infty[$ la fonction $x\to \frac{8}{r^3}$ est continue donc F est continue sur cet intervalle.

De plus $\lim_{x\to 2^-} F(x) = 0$ et $\lim_{x\to 2^+} F(x) = 1 - \frac{8}{8} = 0 = F(2)$. Donc F est continue sur \mathbb{R} .

(ii) Sur $]-\infty; 2[$, F est une fonction constante donc C^1 . Sur $]2; +\infty[$ la fonction $x \to \frac{8}{r^3}$ est C^1 donc F est C^1 sur $]2; +\infty[$.

Ainsi F est de classe C^1 sur $\mathbb{R} \setminus \{2\}$ et pour $x \neq 2$:

$$F'(x) = \begin{cases} 0 & \text{si } x < 2\\ \frac{24}{x^4} & \text{si } x > 2 \end{cases}$$

X est donc bien une variable à densité et une densité de X est par exemple $f(x) = \begin{cases} 0 & \text{si } x < 2 \\ \frac{24}{x^4} & \text{si } x \geqslant 2 \end{cases}$

Le théorème suivant permet de déterminer si une fonction F donnée est la fonction de répartition d'une variable à densité X.

Théorème 4 Soit F une fonction de \mathbb{R} dans \mathbb{R} . Si

- (i) F est une fonction continue sur \mathbb{R}
- (ii) F est \mathcal{C}^1 sur \mathbb{R} sauf en un nombre fini de points
- (iii) F est croissante sur \mathbb{R} .
- $\lim_{x \to +\infty} F(x) = 1 \text{ et } \lim_{x \to -\infty} F(x) = 0$

alors il existe un espace probabilisé (Ω, \mathcal{A}, P) et une variable aléatoire X définie sur cet espace, tels que F est la fonction de répartition de X.

De plus X est alors une variable à densité et si f est une fonction positive ou nulle telle que F'(x) = f(x) en tout point x où F est dérivable, alors f est une densité de X.

<u>Exemple 3:</u> On considère la fonction F définie par :

$$F(x) = \begin{cases} 0 & \text{si } x < -1\\ \frac{1 - \sqrt{-x}}{2} & \text{si } -1 \le x < 0\\ \frac{1 + \sqrt{x}}{2} & \text{si } 0 \le x \le 1\\ 1 & \text{si } x > 1 \end{cases}$$

Montrer que F est la fonction de répartition d'une variable à densité et en déterminer une densité.

• $Sur \] - \infty; -1[$ et $sur \]1; + \infty[$, F est une fonction constante donc continue. $Sur \] - 1; 0[$ et $sur \]0; 1[$, F est continue comme composée de fonctions usuelles continues. La continuité ne pose problème qu'en -1, O et O:

$$\lim_{-1^{-}} F = \lim_{-1^{+}} F = 0 = F(-1)$$

$$\lim_{0^{-}} F = \lim_{0^{+}} F = \frac{1}{2} = F(0)$$

$$\lim_{1^{-}} F = \lim_{1^{+}} F = 1 = F(1)$$

Donc F est continue sur \mathbb{R} .

• A l'aide des fonctions usuelles on voit que F est C^1 sur $\mathbb{R} \setminus \{-1, 0, 1\}$ et sur cet ensemble :

$$F'(x) = \begin{cases} 0 & \text{si } x < -1 \text{ ou } x > 1\\ \frac{1}{4\sqrt{-x}} & \text{si } -1 < x < 0\\ \frac{1}{4\sqrt{x}} & \text{si } 0 < x < 1 \end{cases}$$

- Aux points où F est dérivable, on voit que $F'(x) \ge 0$ et comme F est continue, F est bien croissante sur \mathbb{R} .
 - Enfin $\lim_{x \to -\infty} F(x) = 0$ et $\lim_{x \to +\infty} F(x) = 1$

On peut donc dire que F est la fonction de répartition d'une variable aléatoire X à densité. Une densité de X est par exemple :

$$f(x) = \begin{cases} \frac{1}{4\sqrt{|x|}} & si \ 0 < |x| \leqslant 1\\ 0 & sinon \end{cases}$$

3 Quelques propriétés

Propriété 1

Soit X une variable aléatoire admettant une densité f.

(i) Pour tout x réel :

$$P(X < x) = P(X \leqslant x) = \int_{-\infty}^{x} f(t) dt$$

$$P(X > x) = P(X \geqslant x) = \int_{x}^{+\infty} f(t) dt$$

(ii) Pour tout a et b réels tels que $a \leq b$:

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b) = \int_{a}^{b} f(t) dt$$

(iii) Pour tout $a \in \mathbb{R}$, P(X = a) = 0

Corollaire 5 Soit X une variable à densité et f une densité de X. Si f est nulle en dehors d'un intervalle [a;b], alors on a P(X < a) = 0 et P(X > b) = 0. On dit alors que X prend ses valeurs dans l'intervalle [a;b].

Remarques:

- La probabilité de l'événement $[a \leqslant X \leqslant b]$ apparait comme l'aire de la partie du plan située en dessous de la courbe représentative de f, au dessus de l'axe des abscisse et entre les droites d'équation x = a et x = b.
- On voit que contrairement aux variables discrètes, on a ici pour tout x, P(X = x) = 0. Ainsi ce n'est pas la donnée de P(X = x) qui est la loi de X mais plutôt la donnée de la fonction de répartition ou de la densité.

4 Indépendance

Définition 2 Des VAR à densité X_1, \dots, X_n sur le même espace probabilisé (Ω, \mathcal{A}, P) sont dites **indépendantes** si pour tous réels (x_1, \dots, x_n) :

$$P\left(\bigcap_{k=1}^{n} [X_k \leqslant x_k]\right) = \prod_{k=1}^{n} P(X_k \leqslant x_k)$$

Remarque:

Pour montrer que deux variables à densité X et Y sont indépendantes il faut montrer que pour tout $x \in \mathbb{R}$ et $y \in \mathbb{R}$ on a $P([X \leq x] \cap [Y \leq y]) = P(X \leq x) \times P(Y \leq y)$.

II Moments d'une variable aléatoire à densité

1 Espérance

a Définition

Définition 3 Soit X une VAR de densité f. Si l'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergente alors on dit que X admet une espérance que l'on note E(X) et on a :

$$E(X) = \int_{-\infty}^{+\infty} t f(t) \, dt$$

Exemple 4:

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \begin{cases} 6x(1-x) & \text{si } x \in [0;1] \\ 0 & \text{sinon} \end{cases}$

Montrer que f est une densité d'une variable aléatoire X. X admet-elle une espérance? Si oui, la calculer.

- (i) Comme $x(1-x) \ge 0$ pour $x \in [0, 1]$, f est bien une fonction positive.
- (ii) De plus on vérifie facilement que f est continue sur \mathbb{R} .
- (iii) Enfin on voit que $\int_{-\infty}^{0} f(x) dx$ et $\int_{1}^{+\infty} f(x) dx$ sont convergentes car f est nulle sur $]-\infty;0]$ et sur $[1;+\infty[$ et $\int_{0}^{1} f(x) dx$ est convergente car f est continue sur [0;1].

 Donc $\int_{0}^{+\infty} f(x) dx$ est convergente et :

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{1} 6x (1-x) \, dx + \int_{1}^{+\infty} 0 \, dx = \int_{0}^{1} (6x - 6x^{2}) \, dx = [3x^{2} - 2x^{3}]_{0}^{1} = 1$$

Donc f est bien une densité de probabilité.

• La fonction $x \to |xf(x)|$ est nulle $\sup]-\infty;0]$ et $\sup [1;+\infty[]$ donc $\int_{-\infty}^{0} |xf(x)| \, dx$ et $\int_{1}^{+\infty} |xf(x)| \, dx$ sont convergente. De plus $x \to |xf(x)|$ est continue $\sup [0;1]$ donc $\int_{0}^{1} |xf(x)| \, dx$ est aussi convergente.

Par conséquent $\int_{-\infty}^{+\infty} x f(x) dx$ est absolument convergente et X admet donc une espérance. De plus :

$$E(X) = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{1} 6x^{2} (1-x) \, dx + \int_{1}^{+\infty} 0 \, dx = \int_{0}^{1} (6x^{2} - 6x^{3}) \, dx = \left[2x^{3} - \frac{3}{2}x^{4}\right]_{0}^{1} = \frac{1}{2}$$

Exemple 5:

Soit f la fonction définie sur \mathbb{R} par $f(x) = \begin{cases} 0 & \text{si } x < 1 \\ \frac{1}{x^2} & \text{si } x \geqslant 1 \end{cases}$.

Montrer que f est une densité d'une variable aléatoire X. X admet-elle une espérance? Si oui, la calculer.

•

- (i) f est bien une fonction à valeurs positive
- (ii) De plus f est continue sur $\mathbb{R} \setminus \{1\}$.
- (iii) On voit que $\int_{-\infty}^{1} f(x) dx$ est convergente car f est nulle sur $]-\infty;1[$.

Sur $[1; +\infty[$, $\int_{1}^{+\infty} f(x) dx$ converge car c'est une intégrale de Riemann avec $\alpha = 2 > 1$.

Donc $\int_{-\infty}^{+\infty} f(x) dx$ est convergente et:

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{1} 0 \, dx + \int_{1}^{+\infty} \frac{1}{x^2} \, dx = \lim_{A \to +\infty} \int_{1}^{A} \frac{1}{x^2} \, dx = \lim_{A \to +\infty} \left[-\frac{1}{x} \right]_{1}^{A} = \lim_{A \to +\infty} \left(1 - \frac{1}{A} \right) = 1$$

f est donc bien une densité de probabilité.

- - $Sur] \infty; 1[, |xf(x)| = 0 donc \int_{-\infty}^{1} |xf(x)| dx converge.$
- $Sur [1; +\infty[, |xf(x)| = \frac{1}{x} et donc \int_{1}^{+\infty} |xf(x)| dx diverge.$

Donc $\int_{-\infty}^{+\infty} x f(x) dx$ n'est pas absolument convergente et donc X n'admet donc pas d'espérance.

Définition 4 Si X est une VAR telle que E(X) = 0 on dit que X est une variable centrée.

b Linéarité

Propriété 2

Soit X une VAR à densité admettant une espérance. Alors pour tout réels a et b, aX + b admet une espérance et E(aX + b) = aE(X) + b.

Théorème 6 Soient X et Y deux VAR à densité admettant une espérance. Si X+Y est une VAR à densité alors elle admet une espérance et E(X+Y)=E(X)+E(Y).

c Moment d'ordre r

Définition 5 Soit $r \in \mathbb{N}^*$. Si l'intégrale $\int_{-\infty}^{+\infty} x^r f(x) dx$ est absolument convergente alors on dit que X admet un moment d'ordre r, notée $m_r(X)$ et on a

$$m_r(X) = \int_{-\infty}^{+\infty} x^r f(x) \, dx$$

Remarque:

 $\overline{\text{Le moment d'ordre 1 de } X}$ est tout simplement l'espérance de X.

2 Variance et écart-type

Définition 6 Si la variable aléatoire X admet une espérance et si la variable $(X - E(X))^2$ admet une espérance, on appelle **variance de** X le réel

$$V(X) = E\left((X - E(X))^2\right)$$

Pour le calcul de variance dans la pratique on utilisera tout comme pour les variables discrètes plutôt le théorème suivant :

Théorème 7 Soit X une VAR à densité. X admet une variance ssi X admet un moment d'ordre 2 et en cas d'existence, on a :

$$V(X) = E(X^{2}) - [E(X)]^{2}$$

Exemple 6:

Soit X une VAR dont une densité f est définie par f(x) = 6x(1-x) si $x \in [0;1]$ et f(x) = 0 sinon. Nous avons vu que $E(X) = \frac{1}{2}$.

X admet-elle une variance? Si oui, la calculer

Il nous reste ici à vérifier que X admet un moment d'ordre 2 et à le calculer.

- $Sur]-\infty; 0] \ et \ sur [1; +\infty[, |x^2f(x)| = 0 \ donc \int_{-\infty}^{0} |x^2f(x)| \ dx \ et \int_{1}^{+\infty} |x^2f(x)| \ dx \ sont \ convergentes.$
- Sur [0;1] $x \to |x^2 f(x)|$ est continue donc $\int_0^1 |x^2 f(x)| dx$ est convergente.

Donc l'intégrale $\int_{-\infty}^{+\infty} x^2 f(x) dx$ est absolument convergente ainsi X admet un moment d'ordre 2 et donc une variance.

De plus :

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) \, dx = \int_0^1 (6x^3 - 6x^4) \, dx = \left[\frac{3}{2} x^4 - \frac{6}{5} x^5 \right]_0^1 = \frac{3}{10}$$

Donc
$$V(X) = E(X^2) - E(X)^2 = \frac{3}{10} - \frac{1}{4} = \frac{1}{20}$$
.

Exemple 7:

Soit X une VAR dont une densité f est définie par f(x) = 0 si x < 1 et $f(x) = \frac{2}{x^3}$ si $x \ge 1$.

X admet-elle une espérance? Si oui, la calculer. Même question pour la variance.

•
$$Sur] - \infty; 1[, |xf(x)| = 0 \ donc \int_{-\infty}^{1} |xf(x)| dx \ converge.$$

Sur
$$[1; +\infty[, |xf(x)| = \frac{2}{x^2} \text{ et donc } \int_1^{+\infty} |xf(x)| dx \text{ converge, car } 2 > 1.$$

Donc $\int_{-\infty}^{+\infty} xf(x) dx$ est absolument convergente ce qui signifie que X admet une espérance qui vaut $E(X) = \int_{1}^{+\infty} \frac{2}{x^2} dx = 2$. (On a déjà calculé dans l'exemple $5 \int_{1}^{+\infty} \frac{1}{x^2} dx$)

•
$$Sur] - \infty; 1[, |x^2 f(x)| = 0 \ donc \int_{-\infty}^{1} |x^2 f(x)| \, dx \ converge.$$

Sur
$$[1; +\infty[, |x^2f(x)|] = \frac{2}{x}$$
 et donc $\int_1^{+\infty} |x^2f(x)| dx$ diverge.

Donc $\int_{-\infty}^{+\infty} x^2 f(x) dx$ ne converge pas absolument et ainsi X n'admet pas de moment d'ordre 2 et donc n'admet pas de variance.

Définition 7 Si X admet une variance alors $V(X) \ge 0$. On appelle alors **écart-type** le réel $\sigma(X) = \sqrt{V(X)}$

Propriété 3

Soit X une variable à densité admettant une variance. Alors pour tout réels a et b, aX + b admet une variance et $V(aX + b) = a^2V(X)$

Définition 8 Si X est une variable à densité telle que $\sigma(X) = 1$, on dit que X est une variable réduite.

Définition 9 Si X admet une espérance et un écart-type non nul, la variable $X^* = \frac{X - E(X)}{\sigma(X)}$ est appelée la variable centrée réduite associée à X.

III Lois usuelles

1 Loi uniforme

Il s'agit ici de la loi la plus simple pour les variables aléatoires à densité. Elle correspond au fait de choisir au hasard un réel dans un segment [a;b].

Définition 10 Soient a et b deux réels tels que a < b. On dit qu'une variable aléatoire X suit **la loi uniforme sur** [a;b], et on note $X \hookrightarrow \mathcal{U}([a;b])$, si elle admet pour densité la fonction f définie par :

$$f(t) = \begin{cases} \frac{1}{b-a} & \text{si } t \in [a;b] \\ 0 & \text{sinon} \end{cases}$$

Propriété 4

La fonction de répartition d'une variable aléatoire suivant une loi uniforme sur [a; b] est :

$$F(x) = \begin{cases} 0 & \text{si } x \leqslant a \\ \frac{x-a}{b-a} & \text{si } a < x < b \\ 1 & \text{si } x \geqslant b \end{cases}$$

<u>Démonstration</u>:

Par définition de la densité, on sait que la fonction de répartition de X est donnée par $F(x) = \int_{-x}^{x} f(t) dt$.

— Si
$$x \le a$$
 sur $]-\infty;x]$ on a $f(t)=0$ et donc alors $F(x)=\int_{-\infty}^x 0\,dt=0$.

— Si
$$a < x < b$$
 alors si $t \in]-\infty; x]$ on a $f(t) = 0$ si $t \leqslant a$ et $f(t) = \frac{1}{b-a}$ si $a < t \leqslant x$ donc

$$F(x) = \int_{-\infty}^{a} 0 \, dt + \int_{a}^{x} \frac{1}{b-a} \, dt = 0 + \left[\frac{t}{b-a} \right]_{a}^{x} = \frac{x-a}{b-a}$$

— Si $x \geqslant b$ alors

$$F(x) = \int_{-\infty}^{a} 0 \, dt + \int_{a}^{b} \frac{1}{b-a} \, dt + \int_{b}^{x} 0 \, dt = 0 + \left[\frac{t}{b-a} \right]_{a}^{b} + 0 = \frac{b-a}{b-a} = 1$$

On a donc bien le résultat demandé.

Voici la représentation graphique de la densité et de la fonction de répartition d'une VAR suivant une loi uniforme sur [1; 3] :

Densité de la loi $\mathcal{U}([1;3])$

Fonction de répartition de la loi $\mathcal{U}([1;3])$

Théorème 8 Soit X une VAR à densité suivant une loi uniforme sur [a;b]. Alors X admet une espérance égale à $\frac{a+b}{2}$.

<u>Démonstration</u>:

Sur $]-\infty;a]$ et sir $[b;+\infty[$, la fonction $t\to |tf(t)|$ est nulle donc $\int_{-\infty}^a |tf(t)|\,dt$ et $\int_b^{+\infty} |tf(t)|\,dt$ sont convergente. De plus $t\to |tf(t)|$ est continue sur]a;b[et admet des limites finies en a et b donc $\int_a^b |tf(t)|\,dt$ est convergente.

L'intégrale $\int_{-\infty}^{+\infty} t f(t) dt$ est donc absolument convergente et X admet donc une espérance. De plus :

$$E(X) = \int_{a}^{b} \frac{t}{b-a} dt = \frac{1}{b-a} \left[\frac{t^{2}}{2} \right]_{a}^{b} = \frac{b^{2} - a^{2}}{2(b-a)} = \frac{a+b}{2}$$

La variance sera vue en exercice mais doit savoir être retrouvée très vite.

2 Loi exponentielle

Définition 11 Soit λ un réel strictement positif. On dit qu'une variable aléatoire X suit la loi exponentielle de paramètre λ ; et on note $X \hookrightarrow \mathcal{E}(\lambda)$, si elle admet pour densité la fonction f définie sur \mathbb{R} par :

$$f(x) = \begin{cases} 0 & \text{si } x < 0\\ \lambda e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$$

Propriété 5

La fonction de répartition d'une variable aléatoire suivant une loi exponentielle de paramètre λ est :

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$$

Démonstration:

Probabilités : Chapitre 3 Page 10 Variables aléatoires à densité

On a pour tout réel x, $F(x) = \int_{-\infty}^{x} f(t) dt$.

— Si x < 0 alors pour tout $t \in]-\infty; x]$, f(t) = 0 et donc $F(x) = \int_{-\infty}^{x} 0 dt = 0$.

— Si $x \ge 0$, $F(x) = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} \lambda e^{-\lambda t} dt = \left[-e^{-\lambda t} \right]_{0}^{x} = 1 - e^{-\lambda x}$

Voici la représentation graphique de la densité et de la fonction de répartition d'une variable aléatoire suivant une loi $\mathcal{E}(1)$:

Théorème 9 Si X suit une loi exponentielle de paramètre $\lambda>0$ alors X admet une espérance et une variance et :

 $E(X) = \frac{1}{\lambda} \quad V(X) = \frac{1}{\lambda^2}$

Démonstration:

Calculons uniquement l'espérance.

Sur $]-\infty;0[$ la fonction $t\to |tf(t)|$ est nulle donc $\int_{-\infty}^{0} |tf(t)| dt$ est convergente et vaut 0. Sur $[0;+\infty[$ la fonction $t\to |tf(t)|$ est continue donc le problème se pose uniquement en $+\infty$. Soit A>0:

$$\int_0^A |tf(t)| \, dt = \int_0^A \lambda t e^{-\lambda t} \, dt = \left[-te^{-\lambda t} \right]_0^A + \int_0^A e^{-\lambda t} \, dt = -Ae^{-\lambda A} - \frac{e^{-\lambda A}}{\lambda} + \frac{1}{\lambda}$$

Or $\lim_{A \to +\infty} -Ae^{-\lambda A} - \frac{e^{-\lambda A}}{\lambda} + \frac{1}{\lambda} = \frac{1}{\lambda} \text{ donc } \int_0^{+\infty} |tf(t)| dt \text{ est convergente et vaut } \frac{1}{\lambda}.$

Ainsi $\int_{-\infty}^{+\infty} t f(t) dt$ est absolument convergente donc X admet une espérance et $E(X) = \frac{1}{\lambda}$.

Théorème 10 Caractérisation de la loi exponentielle

Soit X une VAR à densité, qui n'est pas la variable certaine nulle et qui est à valeur dans \mathbb{R}^+ . X suit une loi exponentielle ssi :

$$\forall (s,t) \in \mathbb{R}^+ \times \mathbb{R}^+, \quad P_{[X>s]}(X>s+t) = P(X>t)$$
 (1)

Remarque:

<u>L'égalité (1)</u> est équivalente à P(X > s + t) = P(X > s)P(X > t).

Définition 12 Un VAR à densité vérifiant l'égalité (1) est dite sans mémoire

<u>Démonstration</u>: hors cours

Nous n'allons ici démontrer qu'un sens de l'équivalence :

Soit X suivant la loi $\mathcal{E}(\lambda)$. Alors pour tout réels s et t positifs :

$$P_{[X>s]}(X>s+t) = \frac{P([X>s+t] \cap [X>s])}{P(X>s)}$$
$$= \frac{P(X>s+t)}{P(X>s)}$$

Or
$$P(X > s) = \int_{s}^{+\infty} \lambda e^{-\lambda x} dx = [-e^{-\lambda x}]_{s}^{+\infty} = e^{-\lambda s}$$
 et de même $P(X > s + t) = e^{-\lambda (s + t)}$. Donc :

$$P_{[X>s]}(X>s+t) = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X>t)$$

3 Loi normale

a Loi normale centrée réduite

Définition 13 On dit qu'une variable aléatoire X suit la loi normale centrée réduite si elle admet pour densité la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

On note $X \hookrightarrow \mathcal{N}(0,1)$.

Remarque:

Pour vérifier que f est une densité de probabilité, il vous faudra admettre que $\int_{-\infty}^{+\infty} e^{-x^2/2} dx = \sqrt{2\pi}$.

Voici la représentation graphique de la densité d'une loi normale centrée réduite :

Densité de la loi $\mathcal{N}(0,1)$

Pour la fonction de répartition, nous ne sommes pas capable de l'exprimer avec de fonctions usuelles. Il faudra cependant bien savoir utiliser la propriété que nous allons mettre ci-dessous et savoir utiliser le tableau de valeurs approchées que nous verrons en exercice.

Propriété 6

Soit Φ la fonction de répartition d'une VAR X suivant la loi $\mathcal{N}[0,1)$. Alors Φ vérifie :

$$\forall x \in \mathbb{R} \qquad \Phi(-x) = 1 - \Phi(x)$$

<u>Démonstration</u>:

Tout repose ici sur le fait que la densité est paire :

$$\Phi(-x) = \int_{-\infty}^{-x} f(t) dt = \lim_{A \to -\infty} \int_{A}^{-x} f(t) dt$$

$$= \lim_{A \to -\infty} \int_{-A}^{x} f(-u) (-du) \quad \text{changement de variable } u = -t$$

$$= \lim_{A \to -\infty} \int_{x}^{-A} f(u) du = \int_{x}^{+\infty} f(u) du = 1 - \Phi(x)$$

Théorème 11 Soit X qui suit une loi normale centrée réduite. Alors X admet une espérance et une variance :

$$E(X) = 0 \qquad V(X) = 1$$

b Loi normale de Laplace-Gauss

Définition 14 Soit m un réel, et σ un réel strictement positif. On dit que X suit **la loi normale de paramètres** (m, σ^2) si elle admet pour densité la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

On note $X \hookrightarrow \mathcal{N}(m, \sigma^2)$.

Voici la représentation graphique de la densité d'une loi normale.

Densité de la loi $\mathcal{N}(m, \sigma^2)$

Théorème 12 Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ alors X admet une espérance et une variance et :

$$E(X) = m$$
 $V(X) = \sigma^2$

$\overline{A\ savoir}$

- Je dois savoir répondre à la question « Montrer que f est une densité de probabilité. »(cf. théo 1)
- Si on me donne une VAR X dont je connais la densité f je dois savoir calculer sa fonction de répartition grâce à la formule : $F(x) = \int_{-\infty}^{x} f(t) dt$. (cf. exercice 1)
- Si je connais la fonction de répartition F d'une VAR X je dois savoir répondre à la question « Montrer que X est une VAR à densité et donner une densité de X. »(cf. théo 3)
- Si on me donne une fonction F, sans rien me dire de plus, je dois savoir répondre à la question « Montrer que F est la fonction de répartition d'une variable à densité X et donner une densité de X. »(cf. théo 4)

La différence avec le point d'avant est qu'ici on ne sait pas déjà que F est une fonction de répartition.

— Je dois savoir rapidement faire le lien entre des calculs de probabilités, la densité et la fonction de répartition. Soit X une VAR de densité f et de fonction de répartition F:

$$\forall a \in \mathbb{R}, \quad P(X = a) = 0$$

$$\forall a \in \mathbb{R}, \quad P(X \leqslant a) = P(X < a) = F(a) = \int_{-\infty}^{a} f(t) \ dt$$

$$\forall a \in \mathbb{R}, \quad P(X \geqslant a) = P(X > a) = 1 - F(a) = 1 - \int_{-\infty}^{a} f(t) \ dt = \int_{a}^{+\infty} f(t) \ dt$$

$$\forall (a, b) \in \mathbb{R}^{2}, \quad P(a \leqslant X \leqslant b) = F(b) - F(a) = \int_{a}^{b} f(t) \ dt$$

la formule est aussi valable avec des inégalités strictes

- Je dois connaître la définition de l'indépendance de VAR à densité (cf. définition 2)
- Je dois connaître la définition de l'espérance, du moment d'ordre r, et de la variance d'une VAR à densité (cf. définitions 3, 5 et 6) et je dois savoir les reconnaître dans un exercice pour utiliser les variables usuelles (cf. exercice 14).
- Je dois connaître les propriétés de l'espérance : théorème de transfert, linéarité, ...
- Je dois savoir construire la variable centrée réduite associée à n'importe quelle variable aléatoire X. On la note X^* :

$$X^* = \frac{X - E(X)}{\sigma(X)}$$

— Lois usuelles:

	Densité	Fonction de répartition	Espérance	Variance
$\mathcal{U}([a;b])$	$f(t) = \begin{cases} \frac{1}{b-a} & \text{si } t \in [a;b] \\ 0 & \text{sinon} \end{cases}$	$F(x) = \begin{cases} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } x \in [a;b] \\ 1 & \text{si } x > b \end{cases}$	$E(X) = \frac{a+b}{2}$	$V(X) = \frac{(b-a)^2}{12}$
$\mathcal{E}(\lambda)$	$f(t) = \begin{cases} 0 & \text{si } t < 0\\ \lambda e^{-\lambda t} & \text{si } t \geqslant 0 \end{cases}$	$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$	$E(X) = \frac{1}{\lambda}$	$V(X) = \frac{1}{\lambda^2}$
$\mathcal{N}(0,1)$	$f(t) = \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$	$\Phi(x)$	E(X) = 0	V(X) = 1
$\mathcal{N}(m,\sigma^2)$	$f(t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(t-m)^2}{2\sigma^2}\right)$		E(X) = m	$V(X) = \sigma^2$

- Je dois savoir bien manipuler la fonction de répartition de la loi normale centrée réduite : formule $\Phi(x) + \Phi(-x) = 1$ et savoir lire le tableau de valeur de Φ .
- Je dois savoir que si X suit la loi $\mathcal{N}(m,\sigma)$ alors X^* suit la loi normale centrée réduite.
- Si on me donne une VAR X je dois savoir trouver la fonction de répartition d'une VAR Y qui s'exprime en fonction de X (par exemple $2X 1, X^2, e^X, ...$)