WO 2004/007704

1/12

SEQUENCE LISTING

<110> Max-Delbrück-Centrum für Molekulare Medizin							
<120> Neuronally expressed tryptophane hydroxylase and its use	Neuronally expressed tryptophane hydroxylase and its use						
<130> M30317PCT	M30317PCT						
<160> 14	14						
<170> PatentIn version 3.2	170> PatentIn version 3.2						
<210> 1 <211> 2350 <212> DNA <213> homo sapiens							
<400> 1 cattgctctt cagcaccagg gttctggaca gcgccccaag caggcagctg atcgcacgcc	60						
cettectete aateteegee agegetgeta etgeceetet agtaceeeet getgeagaga	120						
aagaatatta caccgggatc catgcagcca gcaatgatga tgttttccag taaatactgg	180						
gcacggagag ggttttccct ggattcagca gtgcccgaag agcatcagct acttggcagc	240						
tcaacactaa ataaacctaa ctctggcaaa aatgacgaca aaggcaacaa gggaagcagc	300						
aaacgtgaag ctgctaccga aagtggcaag acagcagttg ttttctcctt gaagaatgaa	360						
gttggtggat tggtaaaagc actgaggctc tttcaggaaa aacgtgtcaa catggttcat	420						
attgaatcca ggaaatctcg gcgaagaagt tctgaggttg aaatctttgt ggactgtgag	480						
tgtgggaaaa cagaattcaa tgagctcatt cagttgctga aatttcaaac cactattgtg	540						
acgctgaatc ctccagagaa catttggaca gaggaagaag agctagagga tgtgccctgg	600						
ttccctcgga agatctctga gttagacaaa tgctctcaca gagttctcat gtatggttct	660						
gagettgatg etgaceacce aggatttaag gacaatgtet ategacagag aagaaagtat	720						
tttgtggatg tggccatggg ttataaatat ggtcagccca ttcccagggt ggagtatact	780						
gaagaagaaa ctaaaacttg gggtgttgta ttccgggagc tctccaaact ctatcccact	840						
catgcttgcc gagagtattt gaaaaacttc cctctgctga ctaaatactg tggctacaga	900						
gaggacaatg tgcctcaact cgaagatgtc tccatgtttc tgaaagaaag gtctggcttc	960						
acggtgaggc cggtggctgg atacctgagc ccacgagact ttctggcagg actggcctac	1020						
agagtgttcc actgtaccca gtacatccgg catggctcag atcccctcta caccccagaa	1080						
ccagacacat gccatgaact cttgggacat gttccactac ttgcggatcc taagtttgct	1140						
cagttttcac aagaaatagg totggcgtot otgggagcat cagatgaaga tgttcagaaa	1200						
ctagccacgt gctatttctt cacaatcgag tttggccttt gcaagcaaga agggcaactg	1260						
cgggcatatg gagcaggact cettteetee attggagaat taaagcacge cetttetgae	1320						
aaggcatgtg tgaaagcctt tgacccaaag acaacttgct tacaggaatg ccttatcacc	1380						

accttccagg aagcctactt tgtttcagaa agttttgaag aagccaaaga aaagatgagg 1440 gactttgcaa agtcaattac ccgtcccttc tcagtatact tcaatcccta cacacagagt 1500 attgaaattc tgaaagacac cagaagtatt gaaaatgtgg tgcaggacct tcqcaqcqac 1560 ttgaatacag tgtgtgatgc tttaaacaaa atgaaccaat atctggggat ttgatgcctg 1620 gaactatgtt gttgccagca tgatcttttt ggggcttagc agcagttcag tcaatgtcat 1680 ataacgcaaa taaccttctg tgtcatggct tggctaataa gcatgcaatt ccatatatct 1740 ataccatctt gtaactcact gtgttagtat ataaagcacc ataagaaatc caatggcaga 1800 taacctgaaa taacgtatta tgtttaaaca tcttaaaaag atttgacatt cctgcttagt 1860 gtccttaacc aaactgcatc tagttaaaat ttgtaacaaa tagccctctt atgagtctca 1920 tttatgccct tttcttttc agatctaagc ctttcctctg tgttcattag ataaaatgaa 1980 aaaaagcagt gaagctgttt ccattttcaa tagtatcagt gttttcacgc attatttgag 2040 ataaacccag aattgtagga aacttcccat cacaataaca aaggttcaat attctatttc 2100 aaaaattgtt gaggtaacac agcagttgga atgattttta ggttgagtat ttacacaatg 2160 caagaaaaca cctttttaca aatggaatta tgtaggttgc gttgaccttg tagaacctga 2220 gttatgacaa gcttcctgaa gtattttgga agatagtact tccggaaagg acattaggaa 2280 agactaaaca gtggacaatc aatcttggga ctatqaattt tatqctqqaa taaaqtaaat 2340 tatcatgttc 2350

<210> 2

<211> 490

<212> PRT

<213> homo sapiens

<400> 2

Met Gln Pro Ala Met Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg 1 5 10 . 15

Gly Phe Ser Leu Asp Ser Ala Val Pro Glu Glu His Gln Leu Leu Gly 20 25 30

Ser Ser Thr Leu Asn Lys Pro Asn Ser Gly Lys Asn Asp Asp Lys Gly 35 40 45

Asn Lys Gly Ser Ser Lys Arg Glu Ala Ala Thr Glu Ser Gly Lys Thr 50 55 60

Ala Val Val Phe Ser Leu Lys Asn Glu Val Gly Gly Leu Val Lys Ala 65 70. 75 80

W	200	4/007	704					2	/13					PC	T/EP2
Leu	Arg	Leu	Phe	Gln 85	Glu	Lys	Arg		/ 12 Asn 90	Met	Val	His	Ile	Glu 95	Ser
Arg	Lys	Ser	Arg 100	Arg	Arg	Ser	Ser	Glu 105	Val	Glu	Ile	Phe	Val 110	Asp	Cys
Glu	Cys	Gly 115	Lys	Thr	Glu	Phe	Asn 120	Glu	Leu	Ile	Gln	Leu 125	Leu	Lys	Phe
Gln	Thr 130	Thr	Ile	Val	Thr	Leu 135	Asn	Pro	Pro	Glu	Asn 140	Ile	Trp	Thr	Glu
Glu 145	Glu	Glu	Leu	Glu	Asp 150	Val	Pro	Trp	Phe	Pro 155	Arg	Lys	Ile	Ser	Glu 160
Leu	Asp	Lys	Cys	Ser 165	His	Arg	Val	Leu	Met 170	Tyr	Gly	Ser	Glu	Leu 175	Asp
Ala	Asp	His	Pro 180	Gly	Phe	Lys	Asp	Asn 185	Val	Tyr	Arg	Gln	Arg 190	Arg	Lys
Tyr	Phe	Val 195	Asp	Val	Ala	Met	Gly 200	Tyr	Lys	Tyr	Gly	Gln 205	Pro	Ile	Pro
Arg	Val 210	Glu	Tyr	Thr	Glu	Glu 215	Glu	Thr	Lys	Thr	Trp 220	Gly	Val	Val	Phe
Arg 225	Glu	Leu	Ser	Lys	Leu 230	Tyr	Pro	Thr	His	Ala 235	Cys	Arg	Glu	Tyr	Leu 240
Lys	Asn	Phe	Pro	Leu 245	Leu	Thr	Lys	Tyr	Cys 250	Gly	Tyr	Arg	Glu	Asp 255	Asn
Val	Pro	Gln	Leu 260	Glu	Asp	Val	Ser	Met 265	Phe	Leu	Lys	Glu	Arg 270	Ser	Gly
Phe	Thr	Val 275	Arg	Pro	Val	Ala	Gly 280	Tyr	Leu	Ser	Pro	Arg 285	Asp	Phe	Leu
Ala	Gly 290	Leu	Ala	Tyr	Arg	Val 295	Phe	His	Cys	Thr	Gln 300	Tyr	Ile	Arg	His
Gly 305	Ser	Asp	Pro	Leu	Tyr 310	Thr	Pro	Glu	Pro	Asp 315	Thr	Cys	His	Glu	Leu 320
Leu	Gly	His	Val	Pro 325	Leu	Leu	Ala	Asp	Pro 330	Lys	Phe	Ala	Gln	Phe 335	Ser

Gln Glu Gly Gln Leu Arg Ala Tyr Gly Ala Gly Leu Leu Ser Ser Ile 370 375 380

Gly Glu Leu Lys His Ala Leu Ser Asp Lys Ala Cys Val Lys Ala Phe 385 390 395

Asp Pro Lys Thr Thr Cys Leu Gln Glu Cys Leu Ile Thr Thr Phe Gln 405 410 415

Glu Ala Tyr Phe Val Ser Glu Ser Phe Glu Glu Ala Lys Glu Lys Met 420 425 430

Arg Asp Phe Ala Lys Ser Ile Thr Arg Pro Phe Ser Val Tyr Phe Asn 435 440 445

Pro Tyr Thr Gln Ser Ile Glu Ile Leu Lys Asp Thr Arg Ser Ile Glu 450 455 460

Asn Val Val Gln Asp Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala 465 470 475 480

Leu Asn Lys Met Asn Gln Tyr Leu Gly Ile 485 490

<210> 3

<211> 2638

<212> DNA

<213> mus musculus

<400> 3

cactgetett cageaccagg gttetggaca gegeeccgag caggeagetg ceactgeagt 60 tectectica tetetgecaa ggeegeeeet etggteeeee etgetgetga gaaagaaaat 120 tacatcggga gccatgcagc ccgcaatgat gatgttttcc agtaaatact gggccaggag 180 agggttgtcc ttggattctg ctgtgccaga agatcatcag ctacttggca gcttaacaca 240 aaataaggct atcaaaagcg aggacaagaa aagcggcaaa gagcccggca aaggcgacac 300 cacagagage agcaagacag cagttgtgtt ctccttgaag aatgaagttg gtgggctggt 360 gaaagcactt agactattcccaggaaaaaca tgtcaacatg cttcatatcg aatccaggcg 420 gtcccggcga agaagttctg aagtcgaaat cttcgtggac tgcgaatgtg gcaaaacgga 480

						F 4 0
	ctcatccagt					540
tgagagcatt	tggacggagg	aagaagatct	cgaggatgtg	ccgtggttcc	ctcggaagat	600
ctctgagtta	gacagatgct	ctcaccgagt	cctcatgtac	ggcaccgagc	ttgatgccga	660
ccatccagga	tttaaggaca	atgtctatcg	acagaggagg	aagtattttg	tggatgtggc	720
catgggctat	aaatatggtc	agcccattcc	cagggtcgag	tacacagaag	aagagactaa	780
aacttggggt	gttgtgttcc	gggagctctc	caaactctac	ccgactcatg	cttgccggga	840
gtacctgaaa	aacctccccc	tgctgaccaa	gtactgtggc	tacagggaag	acaacgtgcc	900
gcaactggaa	gacgtctcca	tgtttctgaa	agagcgatct	ggcttcacag	tgagaccagt	960
ggctggctac	ctgagcccaa	gagacttcct	ggcgggcctg	gcctacagag	tattccactg	1020
cacccagtac	gtgcggcatg	gctccgaccc	cctctacacc	ccggaaccag	atacatgcca	1080
tgaactcttg	ggacacgtgc	cactgcttgc	ggatcccaag	tttgctcagt	tttcccaaga	1140
gataggctta	gcgtctctgg	gagcctcaga	tgaggacgtt	cagaaactag	ccacgtgcta	1200
tttcttcaca	atcgagttcg	gcctttgcaa	gcaagagggt	caactgcggg	cgtatggagc	1260
agggttactt	tcgtccatcg	gagaattgaa	gcatgctctt	tccgacaagg	cgtgtgtgaa	1320
atcctttgac	ccaaagacga	cctgcttgca	ggaatgccta	atcaccacct	ttcaggacgc	1380
ttactttgtt	tcggacagtt	ttgaagaagc	caaagaaaag	atgagggact	ttgcaaagtc	1440
aattacccgt	cccttctcgg	tatacttcaa	ccgctacacg	cagagcattg	aaattctgaa	1500
agacaccaga	agtattgaga	atgtggtgca	ggacctgcgc	agtgatttga	acacagtgtg	1560
tgatgccttg	aataaaatga	accaatatct	ggggatttga	tgcctagaac	cagagttatt	1620
gtcagcatga	gctcttgggg	ggtgtagcaa	caatgcagtc	aatgttatcc	aacatcaaca	1680
actttctgtg	tcatggttgg	ctagtaagca	tgcaattctg	tatgtccata	cctctgtgta	1740
acttaataac	acaaaaatgc	tctaaagaac	ccatgcagat	aaccactcac	catttgaaag	1800
attgtgatcc	tatttggaca	tctcaagtag	agttgacatt	tctgattagc	gaacaaactg	1860
ttaacttaag	caaactgtga	ctttgaaatc	tgtagcaaac	attcctcgca	caattccagt	1920
cggtgagttg	tggaactttt	cttccttgga	cctgagactt	tcctctgtgt	tcattagata	1980
aaatgaaaat	agttgggagg	tggtttctat	tttcaatagt	atccgtgtta	tttgagataa	2040
actagagttg	ctccacgctt	tgcatcacag	caacaaagga	tttaatattc	tacttcagaa	2100
gctgttcaga	aacacagcag	ttgggatgga	tgtagactga	gtgttcagac	aatgcaagca	2160
aagaaaagtt	ttgataaaca	ggatatatag	gttgtactga	cctcgttgaa	accaatttgt	2220
ggcaagcttc	ctgaagagct	tctggaagga	aacacttgaa	caaagaatat	tcgggaagct	2280
taaacagaag	ggatgaaaat	cttggaactg	tgaatgtatt	gttaggatag	agtgaattat	2340
cactgcaggc	ttttgactcc	ttttgcttag	actgagaacc	tcaaatccca	cagggatgta	2400

aataccatct ctgattccaa agagttggag acggagtcgt agagaaacaa agggatttgc 2460 ttcagttagg tctgatgaga tgtgccatgg tcataagcca ctgccctttt atgttggaca 2520 tctgacaagt ctactgtagt gtacatgcat gtttatgtat tgacacagaa agaaaattat 2580 tgcttataaa atgaatgctt ctcaataaac agaatcttgc ccccaaaaaa aaaaaaaa 2638

<210> 4

<211> 488

<212> PRT

<213> mus musculus

<400> 4

Met Gln Pro Ala Met Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg 1 5 10 15

Gly Leu Ser Leu Asp Ser Ala Val Pro Glu Asp His Gln Leu Leu Gly 20 25 30

Ser Leu Thr Gln Asn Lys Ala Ile Lys Ser Glu Asp Lys Lys Ser Gly
35 40 45

Lys Glu Pro Gly Lys Gly Asp Thr Thr Glu Ser Ser Lys Thr Ala Val 50 55 60

Val Phe Ser Leu Lys Asn Glu Val Gly Gly Leu Val Lys Ala Leu Arg 65 70 75 80

Leu Phe Gln Glu Lys His Val Asn Met Leu His Ile Glu Ser Arg Arg 85 90 95

Ser Arg Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys Glu Cys 100 105 110

Gly Lys Thr Glu Phe Asn Glu Leu Ile Gln Leu Leu Lys Phe Gln Thr 115 120 125

Thr Ile Val Thr Leu Asn Pro Pro Glu Ser Ile Trp Thr Glu Glu Glu 130 135 140

Asp Leu Glu Asp Val Pro Trp Phe Pro Arg Lys Ile Ser Glu Leu Asp 145 150 155 160

Arg Cys Ser His Arg Val Leu Met Tyr Gly Thr Glu Leu Asp Ala Asp 165 170 175

His Pro Gly Phe Lys Asp Asn Val Tyr Arg Gln Arg Arg Lys Tyr Phe
180 185 190

Val Asp Val Ala Met Gly Tyr Lys Tyr Gly Gln Pro Ile Pro Arg Val 200 195 Glu Tyr Thr Glu Glu Glu Thr Lys Thr Trp Gly Val Val Phe Arg Glu 215 210 Leu Ser Lys Leu Tyr Pro Thr His Ala Cys Arg Glu Tyr Leu Lys Asn 230 235 Leu Pro Leu Leu Thr Lys Tyr Cys Gly Tyr Arg Glu Asp Asn Val Pro 245 250 Gln Leu Glu Asp Val Ser Met Phe Leu Lys Glu Arg Ser Gly Phe Thr 265 270 260 Val Arg Pro Val Ala Gly Tyr Leu Ser Pro Arg Asp Phe Leu Ala Gly 275 285 280 Leu Ala Tyr Arg Val Phe His Cys Thr Gln Tyr Val Arg His Gly Ser 290 295 300 Asp Pro Leu Tyr Thr Pro Glu Pro Asp Thr Cys His Glu Leu Leu Gly 305 315 His Val Pro Leu Leu Ala Asp Pro Lys Phe Ala Gln Phe Ser Gln Glu 325 330 Ile Gly Leu Ala Ser Leu Gly Ala Ser Asp Glu Asp Val Gln Lys Leu Ala Thr Cys Tyr Phe Phe Thr Ile Glu Phe Gly Leu Cys Lys Gln Glu 355 360 Gly Gln Leu Arg Ala Tyr Gly Ala Gly Leu Leu Ser Ser Ile Gly Glu 375 Leu Lys His Ala Leu Ser Asp Lys Ala Cys Val Lys Ser Phe Asp Pro Lys Thr Thr Cys Leu Gln Glu Cys Leu Ile Thr Thr Phe Gln Asp Ala 405 410 Tyr Phe Val Ser Asp Ser Phe Glu Glu Ala Lys Glu Lys Met Arg Asp 420 , . 425

Phe Ala Lys Ser Ile Thr Arg Pro Phe Ser Val Tyr Phe Asn Arg Tyr

445

440

Thr Gln Ser Ile Glu Ile Leu Lys Asp Thr Arg Ser Ile Glu Asn Val 450 455 460

Val Gln Asp Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala Leu Asn 465 470 475 480

Lys Met Asn Gln Tyr Leu Gly Ile 485

<210> 5

<211> 2581

<212> DNA

<213> rattus norvegicus

435

<400> 5 cagggttetg gacagegect egageageca getgeegete acetteetee tacatetetg . 60 ccaaggctgc ccctctgatc ccccctgctg ctgagaaaga aaattacatc gggatccatg 120 cagcccgcaa tgatgatgtt ttccagtaaa tactgggcca ggagagggtt gtccttggat 180 240 tcaqcqqtqc caqaaqaqca tcaqatactt qqcqqcttaa cacaaaataa qqctaccqct aqcaaaaqcq aqqacaaqag aagcggcaaa gacacttcgg agagcagcaa gactgcggtt 300 gtgttctccc tgaagaatga agttggcggg ctggtgagag cactgagact cttccaggaa 360 420 aaacacgtca acatgctcca tattgaatcc aggaggtccc ggcgaagaag ttctgaagtc gaaatcttcg tggactgtga atgtggcaaa acagaattca acgagctcat tcagttgctc 480 aagtttcaga ccaccattgt gacgctgaat ccacctgaca acatttggac ggaggaagaa 540 600 gaactagagg atgtgccgtg gttccctcgg aagatctctg agttagacag atgctctcac 660 aqagteetea tgtaeggeae egagettgae geegaeeaee eaggatteaa ggaeaaegte 720 tatcqacaga qqaqqaaqta ttttqtqqat qtqqccatqq qttataaata tqqccaqccc attcccaggg tggaatacac agaagaagag actaaaactt ggggtgttgt gtttcgggag 780 ctctccaaac tctaccccac tcatgcttgc cgagagtacc tgaaaaactt ccccctgctg 840 accaaqtact qcqqctacaq qgaaqacaac gtcccqcaqc tggaaqacqt ctccatgttt 900 960 ctgaaagagc gatctggctt cacagtgaga ccagtggctg gctacctgag cccaagagac ttcctggctg ggctggccta cagagtattc cactgcactc agtacgtgcg gcatggctcc 1020 1080 gaccccctct acaccccgga accagacaca tgccatgagc tcctgggaca tgtgccactg ctggcggatc ccaagttcgc tcagttttct caagaaatag gcttagcctc tctgggagcc 1140 tcagatgaag acgttcagaa actggccacg tgctatttct tcacaatcga gttcggcctt 1200 1260 tgcaagcaag aaggtcaact gcgggcgtac ggagcagggt tactttcctc catcggagaa

			9/12			
ttgaagcatg	ctctttctga	caaggcgtgt	gtaaaagcct	ttgacccgaa	gacaacctgc	1320
ttgcaggaat	gcctaatcac	caccttccaa	gatgcttact	ttgtttctga	aagttttgaa	1380
gaagccaaag	agaagatgag	ggattttgca	aagtcaatta	cccgtccttt	ctcagtatat	1440
ttcaacccct	acacacagag	cattgaaatt	ctgaaagaca	ccagaagtat	tgagaatgtg	1500
gtgcaggacc	tgcgcagtga	tttgaacacc	gtgtgcgacg	ccttgaataa	aatgaaccaa	1560
tatttgggga	tttgagccta	ttgtcagcac	gagctcttgg	gggcttagca	acaatgcagt	1620
caatgttatc	caacatcaac	aactttctgt	gtcatggctg	gctagtaagc	atgcaattcc	1680
atgtgtctat	acctctatgt	aacttaacat	acaaaaatga	tctaagaaac	ccaggcagat	1740
gaccattcag	cattttaaag	attgtgatct	atttgaacat	ctcaagtaga	tttgacattt	1800
ctgattagtg	agcaaactgt	aacttaagca	aactgtgtct	ttaaaatttg	tagccaacat	1860
tcctcacaca	attccagctg	ctgagtcctt	gaccttttct	tccttggacc	tgagtctttc	1920
ctctgtgttc	attagataaa	atgaaaacag	ttgggaggtg	gtttctactt	tcaatagtat	1980
tggtgttctc	tgagataaac	tagagttgct	ccaagcttcg	catcacagta	acaaaagatt	2040
taatattta	cttcagaagc	tgttcagaaa	cacagcgatt	ggaatgaatc	tggactgagt	2100
gtttagacaa	tgcaagaaaa	gaaaaatttt	gataaacagg	atatatagat	tgcactgacc	2160
ttgttgaaac	caatttgtgg	tacgcttcct	gaagtgcttt	tggaaggaaa	cactttgaca	2220
aagaatattt	ggaaaggtta	aacagaaggg	aagaaaatct	tggaactgtg	aatgtgtcat	2280
tagaataaag	tgaattatca	gtgcaggtgt	gactcctttc	tcttacactg	agaaccccaa	2340
atcctgcagg	gatgtgagta	ccatctctga	ttccgaagat	ttggaaaccg	agtcacagag	2400
aaacaaaggg	atttgcttca	gttaggtctg	ttggctgggg	gtgcagtcat	aatcccccc	2460
cccctttatg	ttggacttct	ggcaagtcta	ctgtagtgta	catgcgggtt	tatgtatgga	2520

caaaaaaaga aaactaatgc gtataaaact aatgcttctc aataaacaga aacttgcccc 2580

2581

<210> 6

С

<211> 485

<212> PRT

<213> rattus norvegicus

<400> 6

Met Gln Pro Ala Met Met Met Phe Ser Ser Lys Tyr Trp Ala Arg Arg 1 5 10 15

Gly Leu Ser Leu Asp Ser Ala Val Pro Glu Glu His Gln Ile Leu Gly 20 ... 25 30

Gly Leu Thr Gln Asn Lys Ala Thr Ala Ser Lys Ser Glu Asp Lys Arg

WO 2004/007704 PCT/EP2003/007744

35 40 45

Ser Gly Lys Asp Thr Ser Glu Ser Ser Lys Thr Ala Val Val Phe Ser 50 55 60

Leu Lys Asn Glu Val Gly Gly Leu Val Arg Ala Leu Arg Leu Phe Gln 65 70 75 80

Glu Lys His Val Asn Met Leu His Ile Glu Ser Arg Arg Ser Arg Arg 85 90 95

Arg Ser Ser Glu Val Glu Ile Phe Val Asp Cys Glu Cys Gly Lys Thr 100 105 110

Glu Phe Asn Glu Leu Ile Gln Leu Leu Lys Phe Gln Thr Thr Ile Val 115 120 125

Thr Leu Asn Pro Pro Asp Asn Ile Trp Thr Glu Glu Glu Glu Leu Glu 130 135 140

Asp Val Pro Trp Phe Pro Arg Lys Ile Ser Glu Leu Asp Arg Cys Ser 145 150 155 160

His Arg Val Leu Met Tyr Gly Thr Glu Leu Asp Ala Asp His Pro Gly 165 170 175

Phe Lys Asp Asn Val Tyr Arg Gln Arg Arg Lys Tyr Phe Val Asp Val 180 185 190

Ala Met Gly Tyr Lys Tyr Gly Gln Pro Ile Pro Arg Val Glu Tyr Thr 195 200 205

Glu Glu Glu Thr Lys Thr Trp Gly Val Val Phe Arg Glu Leu Ser Lys 210 225

Leu Tyr Pro Thr His Ala Cys Arg Glu Tyr Leu Lys Asn Phe Pro Leu 225 230 235 240

Leu Thr Lys Tyr Cys Gly Tyr Arg Glu Asp Asn Val Pro Gln Leu Glu 245 250 255

Asp Val Ser Met Phe Leu Lys Glu Arg Ser Gly Phe Thr Val Arg Pro

Val Ala Gly Tyr Leu Ser Pro Arg Asp Phe Leu Ala Gly Leu Ala Tyr 275 280 285

11/12

Arg Val Phe His Cys Thr Gln Tyr Val Arg His Gly Ser Asp Pro Leu 290 295 300

Tyr Thr Pro Glu Pro Asp Thr Cys His Glu Leu Leu Gly His Val Pro 305 310 315 320

Leu Leu Ala Asp Pro Lys Phe Ala Gln Phe Ser Gln Glu Ile Gly Leu 325 330 335

Ala Ser Leu Gly Ala Ser Asp Glu Asp Val Gln Lys Leu Ala Thr Cys 340 . 345 . 350

Tyr Phe Phe Thr Ile Glu Phe Gly Leu Cys Lys Gln Glu Gly Gln Leu 355 360 365

Arg Ala Tyr Gly Ala Gly Leu Leu Ser Ser Ile Gly Glu Leu Lys His 370 375 380

Ala Leu Ser Asp Lys Ala Cys Val Lys Ala Phe Asp Pro Lys Thr Thr 385 390 395 400

Cys Leu Gln Glu Cys Leu Ile Thr Thr Phe Gln Asp Ala Tyr Phe Val 405 410 415

Ser Glu Ser Phe Glu Glu Ala Lys Glu Lys Met Arg Asp Phe Ala Lys 420 425 430

Ser Ile Thr Arg Pro Phe Ser Val Tyr Phe Asn Pro Tyr Thr Gln Ser 435 440 445

Ile Glu Ile Leu Lys Asp Thr Arg Ser Ile Glu Asn Val Val Gln Asp 450 455 460

Leu Arg Ser Asp Leu Asn Thr Val Cys Asp Ala Leu Asn Lys Met Asn 465 470 475 480

22

Gln Tyr Leu Gly Ile 485

<210> 7

<211> 22

<212> DNA

<213> mus musculus

<400> 7

gacatcggat cagaagactc cc

<210> 8 <211> 21

WO 2004/007704			PCT/EP2003/007744		
			12/12		
<212> DNA <213> mus	musculus				
<400> 8 ctccctcttt	cggaggaatg	g		21	
<210> 9 <211> 23 <212> DNA <213> mus	musculus				
<400> 9	gaagacaaca	agg		23	
<210> 10 <211> 23 <212> DNA					
<213> mus	musculus				
<400> 10 cgtgaattca	atcttgggaa	tgg		23	
<210> 11 <211> 30 <212> DNA <213> mus	musculus				
<400> 11	gaagatctct	gagttagaca		30	
<210> 12 <211> 28 <212> DNA					
<213> mus <400> 12	musculus				
	gaatacaaca	ccccaagt		28	
<210> 13 <211> 26 <212> DNA <213> mus	musculus				
<400> 13 tgctcttcag	caccagggtt	ctggac		26	
<210> 14 <211> 25 <212> DNA					
<400> 14	. gcttactagc	G3.2.GG		25	
ayaactycat	guradiage	Caacc		25	

** 0