

CS120: Computer Networks

Lecture 21. RPC and RTP

Zhice Yang

Other End-to-end Protocols

- Transportation Protocols
 - UDP
 - TCP
 - Remote Procedure Call (RPC)
 - Realtime Transport Protocol (RTP)
 - Others

Remote Procedure Call (RPC)

Remote Procedure Call (RPC)

Why RPC?

- Computation Limitation
 - e.g.: phone, wearables, UAVs, etc.
- Hide the Implementation
 - Similar as libs.
 - e.g.: protect proprietary algorithms
- Functions that just can't run locally
 - e.g.: different architecture
- Super Computing
- Local Procedure Call
 - Special RPC runs in local machine, used for cross domain function calls
- And more

Why TCP/UDP is not Enough?

- TCP/UDP (socket) is data oriented
 - Not so convenient for programming function call
 - Would like to invoke remote function seamlessly just like a local function
 - Almost transparent for the programmer

RPC Challenges

- Network Issues
 - ➤ An end-to-end RPC protocol to deal with the potentially undesirable properties of the underlying network
- Heterogeneity
 - Client and Server might have different:
 - OS versions
 - Languages
 - Endian-ness
 - Hardware architectures
 - etc.
 - ➤ Programming language and compiler support to package local functions and arguments into request messages (unpackage on the server)

RPC Mechanism

RPC Mechanism

Marshals parameters and calls the server

Unmarshals parameters and calls the local function

Generating Stub

- Language-level Support
 - Complier generates stub
 - e.g.: Java, Python, Haskell, Go
- Higher level Support
 - Through additional libs, applications, compliers.
 - e.g.: C, C++

RPC Mechanism

RPC Protocol: Identifiers in RPC

- Identifying Remote Function/Methods
 - Similar as IP address
 - IP address + port + function name
- Identifying Each Message
 - Message ID
- Identifying Unexpected Response
 - Boot ID

Identifying Unexpected Response

Identifying Unexpected Response

RPC Protocol: RPC Semantics

- At-most-once
 - Must recognize duplicate requests
 - Maintain identifiers of past requests
 - e.g., payment, launch a missile
- Zero-or-more
 - e.g., HTTP GET, Hash, etc.

Why TCP/UDP is not Enough?

- TCP/UDP (socket) is data oriented
 - Not so convenient for programming function call
 - Would like to invoke remote function seamlessly just like a local function
 - Almost transparent for the programmer
- RPC and TCP/UDP have different service models
 - Network delay
 - Reliability
 - Fragmentation
 - Error handling
 - etc.

RPC Protocol: Examples from DCE RPC

Fragmentation and ACK

RPC Implementations

- Sun PRC
- DCE-PRC
- Java RMI
- DCOM
- etc.

RPC Demo

- Java RMI (Remote Method Invocation)
 - To capture loopback traffic https://www.netresec.com/index.ashx?page=RawCap

Other End-to-end Protocols

- Transportation Protocols
 - UDP
 - TCP
 - Remote Procedure Call (RPC)
 - ➤ Realtime Transport Protocol (RTP)
 - Others

Realtime Network Applications

Realtime Network Applications

- Multimedia Applications
 - Applications involve video, audio, and data.
 - Two Classes:
 - Streaming application
 - TV broadcast, music broadcast
 - Interactive application
 - VoIP

Server

Realtime Network Applications: Challenges

Realtime Network Applications: Solution

- Increase Network Capacity
- Upgrade Network Infrastructure/Protocol
 - Resource Reservation: RSVP
- Host Buffer
- ➤ End-to-end Transport Protocol for Realtime Applications

Why a New Transport Protocol?

- TCP is not enough
 - TCP retransmissions introduce latency
 - Multimedia applications have their own needs
 - Have the information of video encoding
 - Better framing, error handling, etc.
- > A new transport protocol

A New Transport Protocol

- Data Plane: Realtime Transport Protocol (RTP)
 - Carrier Data
- Control Plane: Realtime Transport Control Protocol (RTCP)
 - If RTP data is sent to the UDP-port P (should be even) RTCP messages should be sent on port P+1
 - Control Messages
 - Control Rate
 - Synchornization
 - Measurement Messages
 - Feedback Congestions/Qualities

RTP Basic Design

- To support various multimedia applications
 - Protocol is partially determined by application
 - Profile
 - Specify common information
 - Format
 - Format for the RTP payload

RTP Use Case

RTP Header

- V: Version
- P: Padding
- X: Extension
- CC: # of CSRC
- M: Marker
- PT: Payload Type
 - Encoding schemes
- Sequence number
 - For loss detection and reorderin
- SSRC: Source ID
- CSRC List: List of Contributing Source ID
- Timestamp

RTP Use Case

RTP Timestamp

- Relative Timestamp
 - Real time of each tick is defined in profile
- Difference of timestamps of consecutive packets may differ
 - Due to video encoding
- Consecutive timestamps may have same value
 - From coupled source (video and audio)

RTP Demo

- VLC RTP Broadcast
 - https://www.bogotobogo.com/VideoStreaming/VLC/How_to_Streaming_ Live_Network_rtp.php
- Audio Broadcast via RTP
 - http://www.radioparadise.com/rp_2.php?#

Reference

- Textbook 5.3 & 5.4
- https://docs.oracle.com/javase/tutorial/rmi/