Chapter 12.2b Weakly informative priors and inference through MCMC

Jim Albert and Monika Hu

Chapter 12 Bayesian Multiple Regression and Logistic Models

Priors

- ► In situations where the data analyst has limited prior information, one can assign a weakly informative prior that has little impact on the posterior.
- Assuming independence, the prior density for the set of parameters $(\beta_0, \beta_1, \beta_2, \sigma)$ is written as a product of the component densities:
- ▶ Each of the regression parameters β_0 , β_1 , and β_2 is assigned a normal density with mean 0 and standard deviations large, say 20.
- ▶ One assigns the precision $\phi = 1/\sigma^2$ a Gamma prior with small values of the shape α and the rate parameter β .

MCMC fitting using JAGS

- One uses JAGS to draw MCMC samples from this multiple linear regression model. The process of using JAGS mimics the general approach used in earlier chapters.
- First step in using JAGS describes the multiple regression model by a script.

JAGS Script

```
modelString <-"
model {
## sampling
for (i in 1:N){
   v[i] ~ dnorm(beta0 + beta1*x income[i] +
               beta2*x rural[i], invsigma2)
## priors
beta0 ~ dnorm(mu0, g0)
beta1 ~ dnorm(mu1, g1)
beta2 ~ dnorm(mu2, g2)
invsigma2 ~ dgamma(a, b)
sigma <- sqrt(pow(invsigma2, -1))</pre>
11
```

Comments

- ▶ In the sampling section , the iterative loop goes from 1 to N, where N is the number of observations with index i.
- Recall that dnorm in JAGS represents a normal distribution in terms of the mean and the precision parameter invsigma2.
- ▶ The variable sigma is defined so one can track the simulated values of the standard deviation σ .
- ► The variables m0, m1, m2 correspond to the means, and g0, g1, g2 correspond to the precisions of the Normal prior densities for the three regression parameters.

Define the data and prior parameters

- ▶ In the R script below, a list the_data contains the vector of log expenditures, the vector of log incomes, the indicator variables for the categories of the binary categorical variable, and the number of observations.
- This list also contains the means and precisions of the Normal priors for beta0 through beta2 and the values of the two parameters a and b of the Gamma prior for invsigma2.
- Since our prior is weakly informative, the regression coefficients have small precision values and the Gamma prior parameter values are small.

Define the data and prior parameters

```
y <- as.vector(CEsample$log TotalExp)</pre>
x income <- as.vector(CEsample$log TotalIncome)</pre>
x rural <- as.vector(CEsample$Rural)</pre>
N <- length(y)
the data <- list("y" = y, "x income" = x income,
                  "x rural" = x rural, "N" = N,
                  "mu0" = 0, "g0" = 0.0025,
                  "mu1" = 0, "g1" = 0.0025,
                  "mu2" = 0, "g2" = 0.0025,
                  "a" = 0.001, "b" = 0.001)
```

Generate samples from the posterior distribution

- ► The run.jags() function in the runjags package generates posterior samples.
- ▶ The script below runs one MCMC chain with an adaption period of 1000 iterations, a burn-in period of 5000 iterations, and an additional set of 20,000 iterations to be run and collected for inference.
- By using the argument monitor = c("beta0", "beta1", "beta2", "sigma"), one keeps tracks of all four model parameters. The output variable posterior contains a matrix of simulated draws.

Run JAGS function

MCMC diagnostics

- ➤ To obtain valid inferences from the posterior draws from the MCMC simulation, one should assess convergence of the MCMC chain.
- ► The plot() function with the argument input vars returns four diagnostic plots (trace plot, empirical CDF, histogram and autocorrelation plot) for the specified parameter.

MCMC Diagnostic plots for β_1

plot(posterior, vars = "beta1")

Comments

- The trace plot shows MCMC mixing for the 20,000 simulated draws of β_1 .
- ▶ The autocorrelation plot indicates relatively large correlation values between adjacent posterior draws of β_1 .
- Since the mixing was not great, it was decided to take a larger sample of 20,000 draws to get good estimates of the posterior distribution.

Summarization of the posterior

► Posterior summaries of the parameters are obtained by use of the print() function.

```
print(posterior, digits = 3)

Lower95 Median Upper95 Mean SD Mode MCen
beta0 4.59 4.95 5.36 4.95 0.201 -- 0.016
beta1 0.328 0.365 0.4 0.365 0.0188 -- 0.0018
beta2 -0.482 -0.267 -0.0476 -0.269 0.112 -- 0.0017
sigma 0.735 0.769 0.802 0.769 0.0172 -- 0.00017
```

Useful Predictors?

- ➤ One can determine if the two variables are useful predictors by inspecting the location of the 90% probability intervals
- The interval for β_1 (corresponding to log income) is (0.328, 0.400) and the corresponding interval for β_2 (corresponding to the rural variable) is (-0.482, -0.048).
- ➤ Since both intervals do not cover zero, both log income and the rural variables appear helpful in predicting log expenditure.

Posterior of Expected Response

► Suppose one is interested in learning about the expected log expenditure equal to

$$\beta_0 + \beta_1 x_{income}$$

for urban CUs, and equal to

$$\beta_0 + \beta_1 x_{income} + \beta_2$$

for rural CUs.

ightharpoonup Compute these functions on the simulated draws of β to find posteriors of expected response.

Posterior of Expected Response

- Figure displays simulated draws from the posterior of the expected log expenditure for the urban and rural cases.
- ► There is more variation in the posterior draws for the rural units.

Posterior Expected Values (continued)

- ► Figure displays the posterior density of the mean log expenditure for four values of the predictors.
- ▶ It is pretty clear from this graph that log income is the more important predictor.

Prediction

- Want to predict a CU's log expenditure for a particular set of predictor values.
- Let \tilde{Y} denote the future response value for the expenditure for given values of income x_{income}^* and rural value x_{rural}^* .
- lackbox One represents the posterior predictive density of \widetilde{Y} as

$$f(\tilde{Y} = \tilde{y} \mid y) = \int f(\tilde{y} \mid y, \beta, \sigma) \pi(\beta, \sigma \mid y) d\beta,$$

where $\pi(\beta, \sigma|y)$ is the posterior density and $f(\tilde{Y} = \tilde{y} \mid y, \beta, \sigma)$ is the Normal sampling density.

R Work

To simulate from the posterior predictive distribution . . .

- One simulates a single draw from $f(\tilde{Y} = \tilde{y} \mid y)$ by first simulating a value of (β, σ) from the posterior call this draw $(\beta^{(s)}, \sigma^{(s)})$.
- One simulates a draw of \tilde{Y} from a Normal density with mean $\beta_0^{(s)} + \beta_1^{(s)} x_{income}^* + \beta_2^{(s)} x_{rural}^*$ and standard deviation $\sigma^{(s)}$.

Repeat this process for a large number of iterations to get a sample from the posterior predictive distribution of \tilde{Y} .

R function

▶ The function one_predicted() simulates a sample from the posterior prediction distribution for particular predictor values x_{income}^* and x_{rural}^* .

```
one predicted <- function(x1, x2){
  lp <- post[ , "beta0"] + x1 * post[ , "beta1"] +</pre>
    x2 * post[, "beta2"]
  y <- rnorm(5000, lp, post[, "sigma"])</pre>
  data.frame(Value = paste("Log Income =", x1,
                             "Rural =", x2).
             Predicted log TotalExp = y)
df < -map2 df(c(12, 12),
               c(0, 1), one predicted)
```

Example

- This procedure is implemented for two pairs of predictor values (log income, rural).
- ► Figure displays density estimates of the posterior predictive distributions for the two cases. (Compare with the posterior density estimates for the expected response.)

