## Probability and Mathematical Statistics in Data Science

Lecture 31: Section 11.3: Least Squares Regression

All models are wrong but some are useful

—George E. Box



## What 5 Coronavirus Models Say the Next Month Will Look Like – NY Times – April 22<sup>nd</sup>, 2020

#### U.S. coronavirus deaths in five different forecasts



# Coronavirus in the U.S.: Latest Map and Case Count – NY Times – June 20th

#### New reported deaths by day in the United States





### Specifying Linear Relationships with Linear Regression





## Modeling Relationships: Linear Regression

- We can summarize the linear relationship between two quantitative variables by fitting a line to the scatterplot of data points
- In this context, the x-axis variable is known as the **explanatory variable**. The y-axis variable is known as the **response variable**
- In our example of 19 children, height is our explanatory variable and weight is our response variable
- We are using the variable height to try and explain (at least some) of the variability in weight measurements



## Modeling Relationships: Linear Regression

- Regression analysis is used to:
  - Predict the value of a dependent variable based on the value of at least one independent variable
  - Explain the impact of changes in an independent variable on the dependent variable

**Dependent variable:** the variable we wish to predict or explain **Independent variable:** the variable used to predict or explain the dependent variable



### Specifying Linear Relationships with Linear Regression





### Specifying Linear Relationships with Linear Regression





## Least Squares Regression

- Given a random variable pair X, Y, we want a model that describes the relationship between the predictor (X) and response (Y) variables. That is, can we express the relationship mathematically?
- Perhaps as Y = f(X) or  $Y = f(X) + random\ error$
- Want to use a linear function of X to estimate Y, say aX + b
- What is the "Best" line these these data.



## Least Squares Regression



What is the best line to use?



## The Simple Linear Regression Model

#### The Simple Linear Regression Model

There are parameters  $\beta_0$ ,  $\beta_1$ , and  $\sigma^2$ , such that for any fixed value of the independent variable x, the dependent variable is a random variable related to x through the model equation

$$Y = \beta_0 + \beta_1 x + \epsilon \tag{12.1}$$

The quantity  $\epsilon$  in the model equation is a random variable, assumed to be normally distributed with  $E(\epsilon) = 0$  and  $V(\epsilon) = \sigma^2$ .



## Modeling Relationships: Linear Regression





## Modeling Relationships: Linear Regression



## Least Squares Regression

- The regression method is used to draw the regression line which can be used for prediction.
- It is also called the **least squares line** because it minimizes mean squared error. By error we mean the vertical difference between the y-value for some x, and the height of the regression line at that x.
- $e_i = y_i (b_0 + b_1 x), i = 1, 2, ..., n$



#### Principle of Least Squares

The vertical deviation of the point  $(x_i, y_i)$  from the line  $y = b_0 + b_1 x$  is

height of point – height of line = 
$$y_i - (b_0 + b_1 x_i)$$

The sum of squared vertical deviations from the points  $(x_1, y_1), \ldots, (x_n, y_n)$  to the line is then

$$f(b_0, b_1) = \sum_{i=1}^{n} [y_i - (b_0 + b_1 x_i)]^2$$

The point estimates of  $\beta_0$  and  $\beta_1$ , denoted by  $\hat{\beta}_0$  and  $\hat{\beta}_1$  and called the least squares estimates, are those values that minimize  $f(b_0, b_1)$ . That is,  $\hat{\beta}_0$  and  $\hat{\beta}_1$  are such that  $f(\hat{\beta}_0, \hat{\beta}_1) \leq f(b_0, b_1)$  for any  $b_0$  and  $b_1$ . The estimated regression line or least squares line is then the line whose equation is  $y = \hat{\beta}_0 + \hat{\beta}_1 x$ .



## Taking the Derivatives

The minimizing values of  $b_0$  and  $b_1$  are found by taking partial derivatives of  $f(b_0, b_1)$  with respect to both  $b_0$  and  $b_1$ , equating them both to zero [analogously to f'(b) = 0 in univariate calculus], and solving the equations

$$\frac{\partial f(b_0, b_1)}{\partial b_0} = \sum 2(y_i - b_0 - b_1 x_i) (-1) = 0$$

$$\frac{\partial f(b_0, b_1)}{\partial b_1} = \sum 2(y_i - b_0 - b_1 x_i) (-x_i) = 0$$

## The Least Squares Intercept and Slope

The least squares estimate of the slope coefficient  $\beta_1$  of the true regression line is

$$b_1 = \hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}$$
(12.2)

Computing formulas for the numerator and denominator of  $\hat{\beta}_1$  are

$$S_{xy} = \sum x_i y_i - (\sum x_i)(\sum y_i)/n$$
  $S_{xx} = \sum x_i^2 - (\sum x_i)^2/n$ 

The least squares estimate of the intercept  $\beta_0$  of the true regression line is

$$b_0 = \hat{\beta}_0 = \frac{\sum y_i - \hat{\beta}_1 \sum x_i}{n} = \overline{y} - \hat{\beta}_1 \overline{x}$$
 (12.3)



## Modeling Relationships: Linear Regression

The simple linear regression equation provides an estimate of the population regression line





## 19 Children Height-Weight Example



- Our aim is to fit a line to the data that gets as close to the data points as possible.
- For this reason, the line is often called the line of best fit.



## 19 Children Height-Weight Example

There are two children in our sample, Janet and Jeffrey, with a height of 62.5 inches. The individual observed weights for Janet and Jeffrey are 112.5 lbs. and 84 lbs., respectively.

Predicted Weight = 
$$-143 + 3.9 \times (62.5)$$
  
=  $-143 + 243.75$   
=  $100.75$  lbs.

Therefore, the individual residual deviations for Janet and Jeffrey are as follows:

$$\mathbf{e}_i = \mathbf{y}_i - \hat{\mathbf{y}}_i$$

residual deviation = observed weight - predicted weight

Janet: 112.5 lbs.: residual deviation = 112.5 – 100.75 = 11.75 lbs. Jeffrey: 84 lbs.: residual deviation = 84 – 100.75 = –16.75 lbs.



## 19 Children Height-Weight Example



Line of Best Fit -> Minimize the Sum of the Squared Residuals

## The Least Squares Method

 $b_0$  and  $b_1$  are obtained by finding the values of that minimize the sum of the squared differences between Y and  $\hat{Y}$ :

$$\min \sum (Y_i - \hat{Y}_i)^2 = \min \sum (Y_i - (b_0 + b_1 X_i))^2$$



### Example: From STATS: Data and Models

57. Body fat. It is difficult to determine a person's body fat percentage accurately without immersing him or her in water. Researchers hoping to find ways to make a good estimate immersed 20 male subjects, then measured their waists and recorded their weights.

| Waist (in.) | Weight (lb) | Body<br>Fat (%) | Waist<br>(in.) | Weight (lb) | Body<br>Fat (%) |
|-------------|-------------|-----------------|----------------|-------------|-----------------|
| 32          | 175         | 6               | 33             | 188         | 10              |
| 36          | 181         | 21              | 40             | 240         | 20              |
| 38          | 200         | 15              | 36             | 175         | 22              |
| 33          | 159         | 6               | 32             | 168         | 9               |
| 39          | 196         | 22              | 44             | 246         | 38              |
| 40          | 192         | 31              | 33             | 160         | 10              |
| 41          | 205         | 32              | 41             | 215         | 27              |
| 35          | 173         | 21              | 34             | 159         | 12              |
| 38          | 187         | 25              | 34             | 146         | 10              |
| 38          | 188         | 30              | 44             | 219         | 28              |

- a) Create a model to predict %Body Fat from Weight.
- b) Do you think a linear model is appropriate? Explain.
- c) Interpret the slope of your model.
- d) Is your model likely to make reliable estimates? Explain.
- e) What is the residual for a person who weighs 190 pounds and has 21% body fat?



# Textbook Body Fat Example: Excel Output

### The regression equation is:

Body Fat(%) = 
$$-27.376 + 0.2499$$
 (weight)

| SUMMARY OUTPUT    |                          |                |          |          |                |              |
|-------------------|--------------------------|----------------|----------|----------|----------------|--------------|
| Regression        | Statistics               |                |          |          |                |              |
| Multiple R        | 0.69663276               |                |          |          |                |              |
| R Square          | 0.485297203              |                |          |          |                |              |
| Adjusted R Square | R Square 0.456702603     |                |          |          |                |              |
| Standard Error    | andard Error 7.049132279 |                |          |          |                |              |
| Observations      | 20                       |                |          |          |                |              |
| ANOVA             |                          |                |          |          |                |              |
|                   | df                       | SS             | MS       | F        | Significance F |              |
| Regression        | 1                        | 843.325214     | 843.3252 | 16.97164 | 0.000643448    |              |
| Residual          | 18                       | 894.424786     | 49.69027 |          |                |              |
| Total             | 19                       | 1737.75        |          |          |                |              |
|                   |                          |                |          |          |                |              |
|                   | Coefficients             | Standard Error | t Stat   | P-value  | Lower 95%      | Upper 95%    |
| Intercept         | -27.37626233             | 11.54742832    | -2.37077 | 0.029119 | -51.63650899   | -3.116015659 |
| Weight            | 0.249874137              | 0.060653997    | 4.119665 | 0.000643 | 0.122444818    | 0.377303457  |
|                   |                          |                |          |          |                |              |

# Textbook Body Fat Example: Interpretation of b<sub>o</sub>

$$\overrightarrow{\text{Body Fat}(\%)} = -27.376 + 0.2499 \text{ (weight)}$$

 b<sub>0</sub> (-27.376) is the estimated average value of body fat(%) when the value of weight(lb) is zero (if weight = 0 is in the range of observed X values)

Because we can't have a weight of 0, b<sub>0</sub> has no practical application



# Textbook Body Fat Example: Interpreting b<sub>1</sub>

$$\overrightarrow{\text{Body Fat}}(\%) = -27.376 + 0.2499 \text{ (weight)}$$

▶ b₁ (0.2499) estimates the change in the average value of body fat(%) as a result of a one-unit increase in weight(lb)

Here,  $b_1 = 0.2499$  tells us that the mean value of body fat(%) increases by 0.2499, on average, for each additional one pound increase in weight



# Textbook Body Fat Example: Making Predictions

Predict the body fat(%) for a person whose weight is I 90 lbs:

Body 
$$Fat(\%) = -27.376 + 0.2499$$
 (weight)

Body Fat(%) = 
$$-27.376 + 0.2499 (190)$$
  
=  $20.1$ 

What is the residual for someone who weighs 190 lbs and has a body fat content of 21%?

