컴퓨터과학기초

10주차 구축되고 그리즘(120년)

조합논리회로(2)

인하공업전문대학 컴퓨터정보과

이수정 교수

지난 시간

Ch.7 조합논리회로

1. 가산기

개요

- 조합논리회로는 논리곱(AND), 논리합(OR), 논리 부정(NOT)의 세 가지 기본 논리 회로를 조합하여 구성한 논리 회로
- 조합논리회로는 입력변수, 논리 게이트, 그리고 출력변수들로 구성

<조합논리회로 블록도>

1. 반가산기(half-adder, HA)

$$\begin{array}{c}
A \\
+ B \\
\hline
C S
\end{array}$$

$$\begin{array}{c} 0 \\ + 0 \\ \hline 0 & 0 \end{array}$$

$$\begin{array}{c} 0 \\ + 1 \\ \hline 0 1 \end{array}$$

입	력	출력		
\boldsymbol{A}	В	S	C	
0	0	0	0	
0	1	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	
1	0	1	0	
1	1	0	1	

$$S = \overline{AB} + A\overline{B} = A \oplus B$$

$$C = A \cdot B$$

<진리표와 논리식>

2. 전가산기(full-adder, FA)

• 자리 올림수(carry)를 고려하여 만든 덧셈 회로

	입력	출	력	
A	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
_ 1	1	1	1	1

$$S = \overline{ABC}_{in} + \overline{ABC}_{in} + A\overline{BC}_{in} + ABC_{in}$$

$$= \overline{A(BC}_{in} + B\overline{C}_{in}) + A(\overline{BC}_{in} + BC_{in})$$

$$= \overline{A(B \oplus C_{in})} + A(\overline{B \oplus C_{in}})$$

$$= A \oplus (B \oplus C_{in}) = (A \oplus B) \oplus C_{in}$$

$$C_{out} = \overline{ABC}_{in} + A\overline{BC}_{in} + AB\overline{C}_{in} + ABC_{in}$$

$$= C_{in}(\overline{AB} + A\overline{B}) + AB(\overline{C}_{in} + C_{in})$$

$$= C_{in}(A \oplus B) + AB$$

<진리표와 논리식>

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = C_{in}(A \oplus B) + AB$$

<논리기호>

• 전가산기는 반가산기 2개와 OR 게이트를 이용하여 구성

3. 병렬가감산기

• 병렬가산기(parallel-adder): 전가산기 여러 개를 병렬로 연결한 회로

<전 가산기를 이용한 병렬 가산기>

• 병렬가감산기(parallel-adder/subtracter): 병렬가산기의 B입력을 부호 S(sign)와 XOR하여 전가산기의 입력으로 사용함으로써 덧셈과 뺄셈이 모두 가능한 회로

4. 고속가산기(high-speed-adder)

- 아랫단에서 윗단으로 전달되는 자리올림수 때문에 병렬가산기는 속도가 매우 느리다는 단점이 있음
- 단점을 해결하기 위해 캐리예측가산기(carry-look-ahead-adder, CLA)를 사용
- CLA는 원리 : i단에서 발생하는 캐리의 논리식은 $A_i,\,B_i$ 모두가 1일 때, 또는 $A_i,\,B_i$ 둘 중에 하나가 1이고 C_i 가 1일 때 캐리가 발생

$$C_{out} = C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i = G_i + P_i C_i$$
where $G_i = A_i B_i$ $P_i = A_i \oplus B_i$

G: generate

P: propagate

• 캐리예측가산기: 캐리를 미리 계산해서 위로 보내는 것

• S_i , P_i , G_i 를 발생시키는 부분전가산기(PFA)와 위의 식 C_1 , C_2 , C_3 , C_4 을 발생

하는 캐리예측 회로로 구성

partial full adder

AB

5. BCD 가산기

- BCD 코드는 2진수와 달리 표현 범위가 0에서 9까지
- BCD 계산을 하려면 결과를 보정해 주어야 한다.
- 2진수 합의 결과가 1010(2)~10011(2)인 경우 보정
- 6+7=13인 경우

<BCD 덧셈표>

	4	2진 힡	ļ i			BCD 합			10진값	
K	Z_8	Z_4	Z_2	Z_1	C	S_8	S_4	S_2	S_1	TU선벖
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	2
0	0	0	1	1	0	0	0	1	1	3
0	0	1	0	0	0	0	1	0	0	4
0	0	1	0	1	0	0	1	0	1	5
0	0	1	1	0	0	0	1	1	0	6
0	0	1	1	1	0	0	1	1	1	7
0	1	0	0	0	0	1	0	0	0	8
0	1	0	0	1	0	1	0	0	1	9
0	1	0	1	0	1	0	0	0	0	10
0	1	0	1	1	1	0	0	0	1	11
0	1	1	0	0	1	0	0	1	0	12
0	1	1	0	1	1	0	0	1	1	13
0	1	1	1	0	1	0	1	0	0	14
0	1	1	1	1	1	0	1	0	1	15
1	0	0	0	0	1	0	1	1	0	16
1	0	0	0	1	1	0	1	1	1	17
1	0	0	1	0	1	1	0	0	0	18
1	0	0	1	1	1	1	0	0	1	19

차례

Ch.7 조합논리회로

- 1. 가산기
- 2. 비교기
- 3. 디코더
- 4. 인코더

6. 반감산기와 전감산기

- □ 반감산기
 - 반감산기(half subtractor)는 한 자리 2진수 2개를 입력하여 차(D: difference)와 빌림 수(K: borrow)를 계산하는 뺄셈 회로다.

입력	출력	설명(<i>D=A-B</i>)						
A B	D K	뺄셈이	뺄셈이 안 되면 위에서 빌려 와서 계산한다.					
0 0	0 0	0 - 0 = 0	빌림 수 없음 (<i>K</i> =0)	$\therefore D=0$				
0 1	1 1	0 - 1 = -1	벨립수2(K=1)	$\therefore D = 2 - 1 = 1$				
1 0	1 0	1 - 0 = 1	빌림 수 없음 (<i>K</i> =0)	$\therefore D = 1$				
1 1	0 0	1 - 1 = 0	빌림 수 없음 (<i>K</i> =0)	$\therefore D = 0$				

진리표

$$D = \overline{A}B + A\overline{B} = A \oplus B$$
$$K = \overline{A}B$$

논리회로 및 논리식

□전감산기

- 전감산기(full subtractor)는 두 2진수 입력 A, B와 아래 단으로 빌려주는 수 K_i 를 포함하여 $A-B-K_i$ 를 계산하는 조합논리회로다. 계산이 안 될 때, 즉, $A-B-K_i$ 가 음수이면 위의 자리에서 빌려와서 계산한다.
- 위에서 빌려 오는 수는 현재 자리보다 한 단계 높은 자리이므로 2이다.
- 전감산기 회로는 반감산기 2개와 OR게이트 1개를 이용하여 구성

입력	출력	설명(D=A-B)					
$A B K_i$	$D K_o$	뺄셈이 안 5	리면 위에서 빌려 와서	너 계산한다.			
0 0 0	0 0	0 - 0 - 0 = 0	벨립 $oldsymbol{\xi}$ 없음 $(K_o\!\!=\!\!0)$	$\therefore D=0$			
0 0 1	1 1	0 - 0 - 1 = -1	벨립 수 2 (K _o =1)	$\therefore D=2-1=1$			
0 1 0	1 1	0 - 1 - 0 = -1	벨립 수 2 (K _o =1)	$\therefore D=2-1=1$			
0 1 1	0 1	0 - 1 - 1 = -2	빌림 수 2 (K _o =1)	$\therefore D=2-2=0$			
1 0 0	1 0	1 - 0 - 0 = 1	벨림 수 없음 $(K_o=0)$	$\therefore D=1$			
1 0 1	0 0	1 - 0 - 1 = 0	빌림 $\not \leftarrow$ 없음 $(K_o=0)$	$\therefore D=0$			
1 1 0	0 0	1 - 1 - 0 = 0	빌림 수 없음 $(K_o=0)$	$\therefore D=0$			
1 1 1	1 1	1 - 1 - 1 = -1	빌림 수 2 (K _o =1)	$\therefore D=2-1=1$			

$$D = \overline{ABK}_i + \overline{ABK}_i + A\overline{BK}_i + ABK_i$$

$$= \overline{A}(\overline{BK}_i + B\overline{K}_i) + A(\overline{BK}_i + BK_i)$$

$$= \overline{A}(B \oplus K_i) + A(\overline{B} \oplus K_i)$$

$$= A \oplus (B \oplus K_i) = (A \oplus B) \oplus K_i$$

$$K_o = \overline{ABK}_i + \overline{ABK}_$$

- 2진 비교기(comparator): 두 2진수 값의 크기를 비교하는 회로
- 1비트 비교기

입력 출력					
A	В	$A=B$ F_1	$A \neq B$ F_2	$A>B$ F_3	$A < B$ F_4
0	0	1	0	0	0
0	1	0	1	0	1
1	0	0	1	1	0
1	1	1	0	0	0

$$F_1 = \overline{A \oplus B}, \quad F_2 = A \oplus B,$$
 $F_3 = A\overline{B}, \quad F_4 = \overline{A}B$

<진리표와 논리식>

<회로도>

■2비트 비교기

٥Į	. 력	출력						
A	В	A=B	$A \neq B$	A>B	A < B			
A_1A_2	B_1B_2	F_1	F_2	F_3	F_4			
0 0	0 0	1	0	0	0			
	0 1	0	1	0	1			
	1 0	0	1	0	1			
	1 1	0	1	0	1			
0 1	0 0	0	1	1	0			
	0 1	1	0	0	0			
	1 0	0	1	0	1			
	1 1	0	1	0	1			
1 0	0 0	0	1	1	0			
	0 1	0	1	1	0			
	1 0	1	0	0	0			
	1 1	0	1	0	1			
1 1	0 0	0	1	1	0			
	0 1	0	1	1	0			
	1 0	0	1	1	0			
	1 1	1	0	0	0			

<진리표>

$$F_1 = (\overline{A_1 \oplus B_1})(\overline{A_2 \oplus B_2})$$

$$F_3 = A_1 \overline{B_1} + A_2 \overline{B_1} \overline{B_2} + A_1 A_2 \overline{B_2} \qquad F_4 = \overline{A_1} B_1 + \overline{A_1} \overline{A_2} B_2 + \overline{A_2} B_1 B_2$$

$$F_2 = (A_1 \oplus B_1) + (A_2 \oplus B_2)$$

$$F_4 = \overline{A_1}B_1 + \overline{A_1}\overline{A_2}B_2 + \overline{A_2}B_1B_2$$

<2비트 비교기 회로 설계 과정과 회로도>

- IC 7485(4비트 2진수 비교기)
 - A₃~A₀와 B₃~B₀의 크기를 비교하는 회로
 - A>B일 때 AGBO의 출력이 1, A<B일 때 ALBO의 출력이 1, A=B일 때 AEBO의 출력이 1
 - 확장 입력 AGBI, ALBI, AEBI는 LSB로 입력
 - 아랫단의 AGBO, ALBO, AEBO의 출력이 윗단의 AGBI, ALBI, AEBI의 입력
 - 맨 아랫단의 AGBI, ALBI는 0, AEBI는 1을 입력

<IC 7485 핀 배치도>

	입력							출력	
A_3 , B_3	A_2, B_2	A_1, B_1	A_0, B_0	AGBI	ALBI	AEBI	AGBO A>B	ALBO A <b< th=""><th>AEBO A=B</th></b<>	AEBO A=B
$A_3 > B_3$	×	×	×	×	×	×	1	0	0
$A_3 < B_3$	×	×	×	×	×	×	0	1	0
$A_3 = B_3$	$A_2 > B_2$	×	×	×	×	×	1	0	0
$A_3 = B_3$	$A_2 < B_2$	×	×	×	×	×	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	×	×	×	×	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 < B_1$	×	×	×	×	0	1	0
$A_3=B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	×	×	×	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	×	×	×	0	1	0
$A_3=B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	0	0	1	0	0
$A_3=B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	0	1	0	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0=B_0$	0	0	1	0	0	1
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0=B_0$	0	1	1	0	0	1
$A_3=B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	0	1	0	0	1
$A_3=B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	1	1	0	0	1
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	1	1	0	0	0	0
$A_3 = B_3$	$A_2 = B_2$	$A_1=B_1$	$A_0 = B_0$	0	0	0	1	1	0

<4비트 비교기 IC 7485 진리표>

<7485 IC를 이용한 16비트 비교 회로>

