Formális nyelvek - 3. előadás

Csuhaj Varjú Erzsébet

Algoritmusok és Alkalmazásaik Tanszék Informatikai Kar Eötvös Loránd Tudományegyetem H-1117 Budapest Pázmány Péter sétány 1/c

E-mail: csuhaj@inf.elte.hu

Környezetfüggetlen grammatikák normálformái

Grammatikai transzformációkkal nyert grammatikák,

- melyek bizonyos szintaktikai feltételeknek vagy tulajdonságoknak tesznek eleget,
- általában valamilyen szempontból egyszerűbbek, mint az eredeti grammatikák,
- de ugyanazon típusba tartoznak,
- és ugyanazt a nyelvet generálják.

Tétel

Minden G = (N, T, P, S) környezetfüggetlen grammatikához meg tudunk konstruálni egy vele ekvivalens G' = (N', T, P', S') környezetfüggetlen grammatikát úgy, hogy

- G' minden szabályának jobboldala nemüres szó,
- kivéve azt az esetet, ha az üres szó benne van a G által generált nyelvben,
- mely esetben $S' \to \varepsilon$ az **egyetlen** olyan szabály, melynek jobboldala az üres szó és ekkor S' **nem fordul elő** a G' egyetlen szabályának jobboldalán sem.

Bizonyításvázlat:

Tekintsük a G = (N, T, P, S) környezetfüggetlen grammatikát.

Definiáljuk az $U_i \subseteq N$ halmazokat a következőképpen:

$$U_1 = \{X \mid X \to \varepsilon \in P\}$$

$$U_{i+1} = U_i \cup \{X \mid X \to u \in P \text{ \'es } u \in U_i^*\}, i \ge 1.$$

Nyilvánvaló, hogy az U_i sorozat, $i=1,2,\ldots,$ a tartalmazásra nézve hierarchiát alkot és van olyan k index, hogy $U_k=U_{k+1}$ és így $U_k=U_j$ minden $j\geq k$ -ra.

Legyen $U = U_k$.

Ekkor azonnal látható, hogy $X \Longrightarrow_G^* \varepsilon$ akkor és csak akkor, ha $X \in U$.

Vagyis, $\varepsilon \in L(G)$ akkor és csak akkor, ha $S \in U$.

P'-t a következőképpen konstruáljuk meg:

Minden $X \to u$ szabály benne van P'-ben, akkor és csak akkor, ha $u \neq \varepsilon$ és van olyan v szó, $v \in (N \cup T)^*$, hogy $X \to v \in P$ és u-t v-ből úgy kapjuk meg, hogy U-beli nemterminálisok valahány, azaz nulla vagy több előfordulását elhagyjuk v-ből.

(**Példa**: Legyen $A, B \in U$ és $C \notin U$, akkor az $S \to ACAB$ szabályból a következő szabályokat képezzük: $S \to CAB$, $S \to ACB$, $S \to ACA$, $S \to CB$, $S \to CA$,

Ekkor látható, hogy $L(G')\subseteq L(G)-\{\varepsilon\}$, hiszen minden $X\to u$ szabály alkalmazása megfelel az $X\to v$ szabály alkalmazásának, amelyet valahány $Z\Longrightarrow_G^*\varepsilon$ levezetés alkalmazásával kombinálunk, ahol $Z\in U$ és Z előfordul u-ban.

Megfordítva, ha $S \Longrightarrow_G^* u$ and $u \neq \varepsilon$, akkor $S \Longrightarrow_{G'}^* u$, hiszen az $X \to \varepsilon$ -típusú szabályok alkalmazása elkerülhető P' megfelelő szabályának alkalmazásával.

A fentiek alapján $L(G') = L(G) - \{\varepsilon\}.$

Ha $\varepsilon \in L(G)$, akkor vesszük a $G_1 = (N \cup \{S_1\}, T, P' \cup \{S_1 \to \varepsilon, S_1 \to S\}, S_1)$ grammatikát, amely az L(G) nyelvet generálja.

ε -mentes grammatika

Definíció

A G grammatikát ε -mentesnek nevezzük, ha egyetlen szabályának jobboldala sem az üres szó.

Tétel

Minden környezetfüggetlen G grammatikához meg tudunk konstruálni egy G' ε -mentes környezetfüggetlen grammatikát, amelyre $L(G') = L(G) - \{\varepsilon\}$ teljesül.

Az állítás közvetlen következménye a megelőző állításnak.

Környezetfüggetlen grammatikák Chomsky-normálformája

Definíció

A G=(N,T,P,S) környezetfüggetlen grammatikát Chomsky-normálformájúnak mondjuk, ha minden egyes szabálya vagy

- 1. $X \to a$, ahol $X \in \mathbb{N}$, $a \in T$, vagy
- 2. $X \rightarrow YZ$, ahol $X, Y, Z \in N$ alakú.

Chomsky-normálforma - folytatás:

Tétel:

Minden ε -mentes G=(N,T,P,S) környezetfüggetlen grammatikához meg tudunk konstruálni egy vele **ekvivalens** G'=(N',T,P',S) **Chomsky-normálformájú** környezetfüggetlen grammatikát.

Bizonyításvázlat:

- 1) Az általánosság megszorítása nélkül feltehetjük, hogy a P szabályhalmaz elemei terminális szimbólumokat csak az $X \to a, \ a \in T$ alakú szabályokban tartalmaznak (lásd egy megelőző normálforma tétel).
- 2) Minden további szabály $X \to u$ alakú, ahol $u \in N^*$.
- 3) Ekkor minden

$$X \rightarrow Y_1 Y_2 \dots Y_k, \ k \geq 3$$

alakú szabályt helyettesítünk egy

$$X \rightarrow Y_1 Z_1,$$
 $Z_1 \rightarrow Y_2 Z_2,$
 $\cdots,$
 $Z_{k-2} \rightarrow Y_{k-1} Y_k,$

szabályhalmazzal, ahol Z_1,\ldots,Z_{k-2} új nemterminális szimbólumok.

Így egy $G_1 = (N', T, P_1, S)$ grammatikát kapunk, ahol P_1 olyan szabályokból áll, amelyek alakja az alábbi három típus valamelyike:

- 1. $X \to a, X \in N', a \in T$
- $2. X \rightarrow Y, X, Y \in N'$
- 3. $X \rightarrow YZ$, $X, Y, Z \in N'$.

Az N' halmaz N elemeiből, valamint azokból az új nemterminálisokból áll, amelyeket külön-külön bevezettünk P azon szabályaihoz, amelyek jobboldalának hosszát csökkentettük.

Az $X \to Y$ alakú szabályokat, ahol X és Y nemterminálisok, láncszabályoknak nevezzük és elimináljuk a szabályhalmazból.

Ezen célból minden egyes $X \in N'$ nemterminálisra definiáljuk az $U_i(X)$ halmazokat a következőképpen:

$$U_1(X) = \{X\},$$

 $U_{i+1}(X) = U_i(X) \cup \{Y \mid Y \to Z \in P_1, Z \in U_i(X)\}, i = 1, 2, \dots$

Nyilvánvaló, hogy van olyan k természetes szám, hogy $U_k(X) = U_{k+1}(X)$, és így $U_k(X) = U_l(X)$ teljesül minden l-re, ahol $l \ge k$.

Legyen $U_k(X) = U(X)$.

Látható, hogy $Y \Longrightarrow^* X$ akkor és csak akkor, ha $Y \in U(X)$.

Definiáljuk P'-t a következőképpen:

- 1. $X \to a \in P'$ akkor és csak akkor, ha van olyan $A \in N'$, ahol $X \in U(A)$ és $A \to a \in P_1$,
- 2. $X \to YZ$ akkor és csak akkor, ha van olyan $A \in N'$, ahol $X \in U(A)$ és $A \to YZ \in P_1$.

Látható, hogy $X \to a \in P'$ akkor és csak akkor, ha $X \Longrightarrow_{G_1}^* a$ és $X \to YZ \in P'$ akkor és csak akkor, ha $X \Longrightarrow_{G_1}^* A \Longrightarrow_{G_1}^* YZ$ teljesül valamely A-ra.

Azaz, ha egy terminális szó generálható a G_1 grammatikával, akkor generálhatő a G' grammatikával is és a fordított állítás is fennáll.

Következmények:

Tétel:

Minden G környezetfüggetlen grammatika esetében eldönthető, hogy egy u szó benne van-e G grammatika által generált nyelvben.

Bizonyításvázlat:

Elég az $u \neq \varepsilon$ esetet vizsgálni, továbbá az általánosság megszorítása nélkül feltehetjük, hogy G Chomsky-normálformájú. Ha u levezethető G-ben k lépésben, akkor $|u| \leq k+1$. Pontosabban, ha u levezethető a G grammatikában, akkor k=2|u|-1 lépésben levezethető. Minthogy a G grammatikában $1,2,\ldots k$ lépésben levezethető szavak száma véges, el tudjuk dönteni, hogy u előfordul-e ebben a halmazban.

Korollárium:

Minden G környezetfüggetlen grammatika és minden L véges nyelv esetében eldönthető, hogy igazak-e a következő állítások: $L \subseteq L(G)$, valamint $L \cap L(G) = \emptyset$.

Irodalom:

György E. Révész, Introduction to Formal Languages, McGraw-Hill Book Company, 1983, Chapter 3.1.