[13.40] Let V be an *n*-dimensional vector space, $\mathcal{V} = V \otimes V$ the tensor product of V with itself, and $Q^{ab} \in \mathcal{V}$ a $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ -tensor. Let

$$\mathbf{Q}^{(ab)} = \frac{1}{2} ig(\mathbf{Q}^{ab} + \mathbf{Q}^{ba} ig)$$
 be the symmetric part

and

$$Q^{[ab]} = \frac{1}{2} (Q^{ab} - Q^{ba})$$
 be the antisymmetric part.

Define

$$\mathcal{V}_{_{+}} = \left\{ \mathbf{Q}^{(ab)} : \mathbf{Q}^{ab} \in \mathcal{V} \right\} \text{ and } \mathcal{V}_{_{-}} = \left\{ \mathbf{Q}^{[ab]} : \mathbf{Q}^{ab} \in \mathcal{V} \right\}.$$

Then

dim
$$\mathcal{V}_{+} = \frac{n}{2}(n+1)$$
 and dim $\mathcal{V}_{-} = \frac{n}{2}(n-1)$.

Solution.

Let
$$\mathscr{B} = \{e^1, \dots, e^n\}$$
 be the basis for V where $e^k = \begin{bmatrix} 0 \\ \vdots \\ 1_k \\ \vdots \\ 0 \end{bmatrix}$. Set

$$\mathbf{e}^{ab} = \mathbf{e}^{a} \otimes \mathbf{e}^{b} = \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 1_{ab} & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}.$$

By definition, $\mathscr{B}=\left\{e^{ab}\right\}$ is a basis for \mathscr{V} , and it has n^2 terms. Observe that $e^{(aa)}=e^{aa}$ and $e^{[aa]}=0$. So, we define

$$\mathscr{B}_{+} = \left\{ e^{(ab)} : a \leq b \right\} \text{ and } \mathscr{B}_{-} = \left\{ e^{[ab]} : a < b \right\}.$$

 \mathscr{B}_{+} has $\frac{n}{2}(n+1)$ terms with $a \le b$ and \mathscr{B}_{-} has $\frac{n}{2}(n-1)$ terms with a < b.

Note: The reason for defining \mathscr{B}_+ and \mathscr{B}_- with $a \leq b$ is that $e^{(ab)} = e^{(ba)}$ and $e^{[ba]} = -e^{[ab]}$, so terms with b > a are not independent from the others. As defined, each of \mathscr{B}_+ and \mathscr{B}_- consists of linearly independent vectors, so

dim span $(\mathscr{B}_{+}) = \frac{n}{2}(n+1)$ and dim span $(\mathscr{B}_{-}) = \frac{n}{2}(n-1)$.

We proceed to show that $\mathcal{V}_+=\operatorname{span}\left(\mathscr{B}_+\right)$ and $\mathcal{V}_-=\operatorname{span}\left(\mathscr{B}_-\right)$, which completes the problem.

First, since $\dim \operatorname{span}\left(\mathscr{B}_{+}\right) + \dim \operatorname{span}\left(\mathscr{B}_{-}\right) = \frac{n}{2}(n+1) + \frac{n}{2}(n-1) = n^2 = \dim \mathscr{V}$, we have that $\mathscr{V} = \operatorname{span}\left(\mathscr{B}_{+}\right) + \operatorname{span}\left(\mathscr{B}_{-}\right)$.

Next, we claim that span $(\mathscr{B}_{+})\subseteq \mathscr{V}_{+}$ and span $(\mathscr{B}_{-})\subseteq \mathscr{V}_{-}$:

 $\mathbf{Q} \in \operatorname{span} \left(\mathscr{B}_{+}\right) \Rightarrow \exists \text{ scalars } \alpha_{i} \text{ and basis elements } \mathbf{E}_{i} \in \mathscr{B}_{+} \text{ such that } \mathbf{Q} = \sum_{i} \alpha_{i} \mathbf{E}_{i} \text{ .}$ Since each \mathbf{E}_{i} is symmetric, \mathbf{Q} is symmetric. That is, $\mathbf{Q} \in \mathcal{V}_{+}$.

Similarly, if $Q \in \text{span}\left(\mathscr{B}_{_}\right)$ then Q is antisymmetric, or $Q \in \mathscr{V}_{_}$.

Finally,
$$\mathcal{V} = \operatorname{span}\left(\mathscr{B}_{_{+}}\right) + \operatorname{span}\left(\mathscr{B}_{_{-}}\right) \subseteq \mathcal{V}_{_{+}} + \mathcal{V}_{_{-}} \subseteq \mathcal{V}$$

$$\Rightarrow \mathcal{V}_{_{+}} = \operatorname{span}\left(\mathscr{B}_{_{+}}\right) \operatorname{and} \, \mathcal{V}_{_{-}} = \operatorname{span}\left(\mathscr{B}_{_{-}}\right) \quad \checkmark$$

Example with n = 2:

Let
$$e^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $e^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\mathscr{B} = \left\{e^1, e^2\right\}$ is a basis for V. Let $e^{11} = e^1 \otimes e^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e^{12} = e^1 \otimes e^2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $e^{21} = e^2 \otimes e^1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $e^{22} = e^2 \otimes e^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then $\mathscr{B} = \left\{e^{11}, e^{12}, e^{21}, e^{22}\right\}$ is a basis for $\mathscr{V} = \mathsf{V} \otimes \mathsf{V}$. Observe that $e^{(11)} = \frac{1}{2} \left(e^{11} + e^{11}\right) = e^{11}$ and $e^{(22)} = e^{22}$. These are 2 elements of \mathscr{B}_+ . Note that $e^{[11]} = 0 = e^{[22]}$ so they do not contribute to \mathscr{B}_- . The other term in \mathscr{B}_+ is $e^{(12)}$ [which equals $e^{(21)} = \frac{1}{2} \left(e^{12} + e^{21}\right)$]. The only term in \mathscr{B}_- is $e^{[12]}$ (which equals $e^{(21)} = \frac{1}{2} \left(e^{12} + e^{21}\right)$]. Thus dim $\mathscr{V}_+ = \frac{n}{2} (n+1) = 3$ and dim $\mathscr{V}_- = \frac{n}{2} (n-1) = 1$.