Predicting Condo prices in Sao Paulo

IBM APPLIED DATA SCIENCE CAPSTONE

MAIN OBJECTIVE OF THIS PROJECT

Our main goal is to building a machine learning model for predicting condo price in Sao Paulo to help real state investors to make better business decisions.

- Build a simple regression model for predicting land prices in Sao Paulo.
- Improve prediction model by adding data through the Foursquare API.

DESCRIPTION OF THE DATA

Data sources

The main data used for this project will be from two sources:

- The rent/sale condo price in Sao Paulo. (Kaggle)
- The venues in each neighborhood. (FourSquare API)

LIMITATIONS

Due to limited calling API from Foursquare each times, we can't use all sale data from the original (6412 rows) so in this project, we will focus on recent property marked as 'New' = 1 in the original dataset.

		Price
	Price	1.000000
	Condo	0.458293
	Size	0.834325
	Rooms	0.654590
	Toilets	0.519361
	Suites	0.405709
	Parking	0.577019
	Elevator	IValv
	Furnished	0.000887
	rumancu	0.000001
Swin	nming Pool	0.261181
Swin		
Swin	nming Pool	0.261181
Swin	nming Pool New	0.261181 NaN
	nming Pool New Latitude	0.261181 NaN 0.038552

- We can clearly see that 'Size' affect 'Price' significantly.
- 'Rooms' 'Parking' and 'venues_near' seem slightly affect 'Price'.

PEARSON CORRELATION TABLE

Detect some outliner

Multiple Linear Regression Implementation

MODEL1: WE USE 'SIZE', 'ROOMS', 'PARKING' AS FEATURES

MODEL2: LET'S TAKE 'VENUES_NEAR' INTO ACCOUNT

Model1

- R Square = 0.897
- MSE = 13,160,500,765.816427
- RMSE = 114,719.22578982316

Model2 (add near venues)

- R Square = 0.932
- MSE = 8,703,312,256.41301
- RMSE = 93,291.54439933455

RESULT

WE CAN CONCLUDE
THAT MODEL2 IS
BETTER THAN MODEL1.

FURTHER DEVELOPMENT

The following are suggestions how this project could be further developed:

- Due to Foursqure limitation in this project, we should use all the dataset (6412 rows) from kaggle for building a model.
- Due to wealth difference of each districts in sao paulo, we should categorize the wealth level and then create a model based on each wealth level.
- Find the other features that may affect the condo price for better accuracy. For example, How old, facility rating from resident, etc.