DEVOIR DE MATH

Durée :4h Niveau: 7DProposé le 11/02/2018 de 8h à 12h

EXERCICE 1 (3 POINTS)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte.

Ecrire le numéro de chaque question et donner, avec justification, la réponse qui lui correspond.

N	Questions	Réponse A	Réponse B	Réponse C
0	Q	F		
1	Les racines carrées de :	3+2i et-3-2i	-3+2i et3-2i	2+3i et-2-3i
	5–12i sont :	www.	amım	iain.i
2	Si $z+2\overline{z}-3-i=0$ alors:	z=1+i	z=-1+i	z=1-i
3	$f(x) = x + \frac{1}{a}$ alors:	$\mathbf{D_f} = \mathbb{R}$	f'(1) = 0	La droite $y=1$
	$\mathbf{X} = \mathbf{X} + \mathbf{X} + \mathbf{X}$. ,7		est une AH
4/	Si $f(4-x)=6-f(x)$ alors	A(2;6)	A(2;3)	La droite
	la courbe de f est			d'équation $x = 4$
	symétrique par rapport			
	à :			7 .
5	$x^2 + 5x + 6$	a=1;b=-4	a=1;b=4	a=1;b=4
	Si $f(x) = \frac{x^2 + 5x + 6}{x + 1}$ et	et $c = 3$	et $c = 2$	et $c = -2$
	$f(x) = ax + b + \frac{c}{x+1}$ alors:	• 7 -		
6	La tangente à la courbe	y=xlCll/l.	y = x + 1	y = x - 1
	de la fonction			
	$f(x) = \frac{x}{x^2 + x + 1}$ en $x_0 = 0$. 7
	a pour équation:	www.	amin	iath.i

 $\frac{EXERCICE\ 2\ (4\ POINTS)}{Soit\ la\ suite\ numérique\ (u_{_{n}})\ définie\ par:\ u_{_{0}}=3\ et\ \forall n\in\mathbb{N}, u_{_{n+1}}=\frac{1}{2}\bigg(\frac{2n+5}{2n+3}\bigg)U_{_{n}}$

- 1.a) Calculer u₁ et u₂
- b) Montrer que : $\forall n \in \mathbb{N}, \quad \frac{2n+5}{2n+3} \le \frac{5}{3}$. En déduire que pour tout entier naturel n, on a : $0 \le U_{n+1} \le \frac{5}{6}U_n$
- c) Prouver alors que $\forall n \in \mathbb{N}$, $U_n \le 3 \left(\frac{5}{6}\right)^n$ et calculer la limite de la suite (u_n) .
- 2) Pour tout entier naturel n on pose : $v_n = \frac{u_n}{2n+3}$.
- a) Montrer que (v_n) est une suite géométrique dont on déterminera la raison.
- b) Calculer v_0 et exprimer v_n puis u_n en fonction de n.

EXERCICE 3 (5 POINTS)

Le plan complexe est muni d'un repère orthonormé (O, u, v)

On considère le polynôme: $P(z) = z^3 - (5+7i)z^2 + (-6+26i)z + 24 - 24i$

- 1.a) Calculer P(2).
- b) Déterminer les nombres complexes a et b tels que pour tout nombre z : $P(z) = (z-2)(z^2 + az + b)$
- c) Déterminer les racines carrées de : 8-6i
- d) Déterminer les solutions z_0 , z_1 et z_2 de l'équation P(z)=0 avec $|z_0| \le |z_1| \le |z_2|$.
- 2) Soient A, B et C les points d'affixes respectives 4i, 2 et 3+3i. On pose : $f(z) = \frac{z-2}{z-4i}$
- a) Placer les points A,B et C.
- b) Calculer $f(z_c)$ et interpréter le résultat
- c) Déterminer et construire Γ_1 l'ensemble des points M d'affixe z tel que f(z) soit imaginaire pur.
- d) Déterminer et construire Γ_2 l'ensemble des points M d'affixe z tel que |f(z)-1|=2

EXERCICE 4 (8 POINTS)

Partie A

Partie A

Soit la fonction numérique définie par $g(x) = x^3 - 3x - 4$

- 1) Dresser le tableau de variation de g. 2) Montrer que l'équation g(x)=0 admet une unique solution α dans $\mathbb R$ et que $2<\alpha<3$.
- 3) Donner le signe de g(x) sur \mathbb{R} .

Partie B

On considère la fonction numérique f définie par : $f(x) = \frac{x^3 + 2x^2}{x^2 - 1}$ et soit (C) sa courbe

représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$

- 1.a) Calculer $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1^+} f(x)$, $\lim_{x \to 1^-} f(x)$, $\lim_{x \to 1^+} f(x)$.
- b) Interpréter graphiquement les limites précédentes.
- 2.a) Montrer que ∀x ∈ D_f, f(x) = x + 2 + x + 2/x² 1
 b) En déduire que la courbe (C) admet une asymptote oblique Δ à préciser puis étudier la position relative de (C) et Δ .
- c) Calculer $\lim_{x\to\infty} f(x)$, $\lim_{x\to\infty} f(x)$.

 3) Montrer que $\forall x\in D_f$, $f'(x)=\frac{xg(x)}{(x^2-1)^2}$. En déduire le signe de f'(x) sur D_f (On pourra utiliser A.3).
- 4) Dresser le tableau de variations de f.
- 5) Déterminer les points de (C) où la tangente est parallèle la droite d'équation y = x + 2.
- 6) Donner une équation de la tangente de (C) en $x_0 = -2$
- 7) Construire la courbe (C)
- 8) Soit h la restriction de f sur l'intervalle $I = -\infty; -1$
- a) Montrer que h réalise une bijection de I sur un intervalle J à préciser.

4 heures

b) Calculer $(h^{-1})'(0)$.

Fin.