

팀 프이 (김동규, 전현욱)

목차

1	대회 개요
2	데이터 분석
3	데이터 전처리
4	모델링 및 학습

LGAIMERS 3기 팀 프이

대회개요

대회배경및주제

배경 및 주제

- 기업의 효율적인 재고 관리와 타켓 마게팅 전략을 세우 기 위해 판매량 예측의 필요성 증대
- 온라인 판매 채널에서 수집되는 대규모 데이터를 활용 해 판매 예측을 수행하는 AI 모델 개발

목표

- 온라인 채널 제품들의 실제 판매량을 예측
 (23.04.05~ 23.04.25)
- 위 예측값의 PSFA 정확도를 최대화 하는 모델 개발

대이터 셋 요약

데이터 셋

대이터셋요약

sales.csv

Features

• ID : 실제 판매되고 있는 고유 ID

• 제품 : 제품 코드

• 대분류: 제품의 대분류 코드

• 중분류: 제품의 중분류 코드

• 소분류 : 제품의 소분류 코드

• 브랜드 : 제품의 브랜드 코드

• 2022-01-01 ~ 2023-04-04 : 실제 일별 판매량

Features

• 브랜드 : 브랜드 코드

• 2022-01-01 ~ 2023-04-04 : 브랜드의 연관키 워드 언급량을 정규화한 일별 데이터

• ID : 실제 판매되고 있는 고유 ID

• 제품 : 제품 코드

• 대분류 : 제품의 대분류 코드

• 중분류 : 제품의 중분류 코드

• 소분류 : 제품의 소분류 코드

• 브랜드 : 제품의 브랜드 코드

• 2022-01-01 ~ 2023-04-04 : 실제 일별 총 판매금액

Features

• 제품 : 제품 코드

• 제품특성 : 제품 특성 데이터(Text)

대회개발환경

Google Colab에서 진행

• OS: Ubuntu 22.04.2 LTS

• System RAM: 51.0 GB

• GPU(V100) RAM: 16.0 GB

• Python Version: Python 3.10.12

• ML/DL FrameWork: Torch 2.0.1+cu118

사용한 라이브러리는 코드제출 파일에 자세하게 기록

1 !pip list

₽	Package	Version
	absl-py	1.4.0
	aiohttp	3.8.5
	aiosignal	1.3.1
	alabaster	0.7.13
	albumentations	1.3.1
	altair	4.2.2
	annotated-types	0.5.0
	anyio	3.7.1
	appdirs	1.4.4
	argon2-cffi	23.1.0
	argon2-cffi-bindings	21.2.0
	array-record	0.4.1
	arviz	0.15.1
	astropy	5.3.2
	astunparse	1.6.3
	async-timeout	4.0.3
	attrs	23.1.0
	audioread	3.0.0
	autograd	1.6.2
	Babel	2.12.1
	backcall	0.2.0
	beautifulsoup4	4.11.2
	bleach	6.0.0
	blinker	1.4
	blis	0.7.10
	blosc2	2.0.0

데이터분석

데이터분석방법

스케일링

- train.csv 파일의 일별 데이터에 스케일링 적용
- StandardScaler로 진행

그룹화

• 스케일링된 데이터를 각 범주 데이터별로 그 룹으로 묶고 일별로 더함

범주 데이터: ['대분류', '중분류', '소분류', '브랜드']

```
2#대분류와 기준으로 그룹화하며 개수를 합산
3 big_grouped = train_data.groupby(["대분류"]).sum().reset_index()
4 big_grouped.head()
<ipython-input-7-cd1125b1082d>:2: Future\arning: The default value of numeric_only in DataFrameGroupBy.sum is
 big_grouped = train_data.groupby(["대분류"]).sum().reset_index(
                                                2022-01- 2022-01- 2022-01-
   B002-
                                              -601.581613 -65.972421 242.159825 239.527948
   B002-
        -1579.309552 -2278.686137 -2339.700640 -1951.209608 -767.059821 -213.347378 -275.740877 -1117.988364
   0002
   B002-
2 C001-
          -259.811012 -260.207453 -263.439624
                                              -265.735887 -263.083525 -258.230495 -260.633613
   0003
   B002-
  C001-
           -33.473165
                                                                                              -27.636053
   0004
   B002-
          -146,447020
4 C001-
                     -175.320747 -195.275983
                                             -176.575959 -147.998581 -154.828800
   0005
```

데이터 groupby

데이터분석방법

평균 이동 적용

- 25일 간의 단순 이동 평균을 적용
- 보다 뚜렷한 흐름 및 판매 변화량을 파악
- pandas의 `.rolling()` method 사용

시각화

- 그룹으로 묶인 데이터들의 matplotlib 라이브러 리로 시각화를 진행
- 나머지 범주 데이터도 위와 같은 방식으로 시각 화를 통해 데이터의 상관성을 파악

대분류 기준으로 본 평균 이동

데이터분석결과

데이터 불균형

- 범주 데이터들의 분포를 파악
- 확인 결과 범주 데이터들이 불균형하게 분포
- 모델 학습에 사용할 학습 데이터와 평가 데이 터를 분리할 때 불균형성을 고려하며 분리

데이터분석결과

시계열 분석

- 범주 데이터 별 평균 이동 시각화로 분석
- 범주 데이터들 중에서 비슷한 양상(변화량)을 보인 데이터들이 존재했으나, 약간의 차이도 분명 존재했 기 때문에 모든 범주 데이터를 사용하기로 결정

중분류 시계열 분석

데이터전처리

결측치처리

결측치 확인

- 결론부터 말하면 brand_keyword_cnt.csv 파일은 Best 모델에 사용하지 않지만, 여러 모델들을 실험하기 위해 해당 데이터를 전처리
- 키워드 언급량에 결측치가 존재하는 브랜드 제품 확인
- 확인 결과, 35개의 브랜드에 결측치가 존재

```
# 결측치가 있는 행의 인덱스 찾기
missing_indices = df[df.isnull().any(axis=1)].index

missing_indices

✓ 0.0s

Index([ 95, 246, 250, 303, 385, 440, 444, 466, 515, 647, 765, 811, 1105, 1162, 1398, 1486, 1518, 1588, 1706, 1893, 1980, 1999, 2117, 2125, 2298, 2328, 2349, 2430, 2471, 2495, 2529, 2711, 2855, 3142, 3149], dtype='int64')
```

결측치가 존재하는 브랜드 키워드 언급량의 index

결측치처리

결측치 평균

결측치 대체값을 위해 해당 브랜드 키워드 언급량을 일별로 평균값을 구함

```
[4.150099159543218,
4.353330219486435,
 5.4342538641511045,
 5.3508732162135635,
 5.489068538548581,
 5.497235631896844,
 5.121293894101893,
4.25357116967571,
4.620276290919558,
 6.066850589747004,
 5.838891149421135,
 5.54786084010347,
 5.346266585368138,
 5.271491355290851,
4.308546669059622,
4.585508526620189,
 6.147032044102208,
6.255355432233124
```

brand_keyword_cnt 평균값

결측치처리

결측치 대체

- 데이터 분석에서 구한 시각화 비교를 바탕으로 결측치 대체
- 변화량이 유의미한 결측치에는 평균값
- 변화가 무의미한 결측치는 0
- `brand_keyword_cnt_preprocess.csv` 파일로 저장

결측치 평균값과 0값으로 대체

데이터통합

평균값 계산

- sales.csv 파일에만 해당
- sales 데이터의 총합과 train의 데이터의 총 합을 제품별로 단가 유추

```
그 # 각 제품의 가격 추정
2 estimated_prices = []
3 for idx, row in sales_data.iterrows():
      corresponding_row = train_data.loc[idx]
      total_price = sum(row[1:])
      total_quantity = sum(corresponding_row[train_data.columns[1:]])
      if total_quantity == 0:
          estimated_prices.append(0)
9
10
          estimated_prices.append(total_price // total_quantity)
11
1 print(estimated_prices)
2 rounded_prices = [round(price, -2) for price in estimated_prices]
3 print(rounded_prices)
4# 추정된 가격을 train_data에 추가
5 train_data.insert(1, '가격', rounded_prices)
     , 24338, 11750, 4005, 5092, 7650, 7205, 12040, 4787, 14650, 20416, 3893,
[5500, 24300, 11800, 4000, 5100, 7600, 7200, 12000, 4800, 14600, 20400, 3900, 64000, 10800
```

데이터통합

Feature 추가

- 유추한 단가를 100자리수로 반올림
- train.csv 파일에 새로운 열로 추가
- 열 이름: '가격'
- `new_train_round.csv` 파일로 저장
- brand_keyword_cnt와 마찬가지로 Best 모델에는 사용하지 않지만 성능 테스트를 위 해 사용

ŀ격	대분류	중분류	소분류	브랜드	2022-01- 01	2022-01- 02	2022-
5500 BO	02-C001- 0002	B002-C002- 0007	B002-C003- 0038	B002- 00001	0	0	
1300 BO	02-C001- 0003	B002-C002- 0008	B002-C003- 0044	B002- 00002	0	0	
800 BO	02-C001- 0003	B002-C002- 0008	B002-C003- 0044	B002- 00002	0	0	
1000 BO	02-C001- 0003	B002-C002- 0008	B002-C003- 0044	B002- 00002	0	0	
5100 BO	02-C001- 0001	B002-C002- 0001	B002-C003- 0003	B002- 00003	0	0	
	300 B00 800 B00 800 B00	B002-C001- 0002 B002-C001- 0003 B002-C001- 0003 B002-C001- 0003 B002-C001- 0003 B002-C001-	500 B002-C001- 0002 B002-C002- 0007 300 B002-C001- 0003 B002-C002- 0008 800 B002-C001- 0003 B002-C002- 0008 000 B002-C001- 0003 B002-C002- 0008 100 B002-C001- 0003 B002-C002- 0008	500 B002-C001- 0002 B002-C002- 0007 B002-C003- 0038 300 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 800 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 900 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 900 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 900 B002-C001- 0003 B002-C002- 0004 B002-C003- 0044	500 B002-C001- 0002 B002-C002- 0007 B002-C003- 0038 B002- 00001 300 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 B002- 0002 800 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 B002- 0002 800 B002-C001- 0003 B002-C002- 0008 B002-C003- 0044 B002- 0004 800 B002-C001- 0003 B002-C002- 0004 B002-C003- 0044 B002- 0002	13	100 B002-C001- B002-C002- B002-C003- B002- 0

train 데이터 가격 열 추가

데이터스케일링

스케일링

- MinMax, Standard, Robust, Normalizer 등 다양한 Scaler 비교 분석
- 학습 성능 및 최적화로 평가한 결과 Min Max Scaler가 가장 적합했음
- 행 기준으로 scaling
- `train_data.csv`의 시계열 데이터 스케일링

```
1 # 시계열 데이터 스케일링
2 sc_main = MinMaxScaler()
3
4 train_data.iloc[:, cat_size:] = sc_main.fit_transform(train_data.iloc[:,cat_size:]
```

모델링및학습

모델정의

모델 선택 배경

배경

- 여러 시계열 모델을 바탕으로 실험적으로 평가
- 성능이 가장 괜찮았던 Time Series Transformer 선택
- 정확히는 Time Series Transformer를 사용한 것이 아닌 참고해서 Customize 해서 사용

평가 비교 모델

- LSTM (Baseline)
- Time Series Transformer (Customized)
- Informer (빠른 Attention 학습과 좋은 LSTF 성능)
- DLinear (간단한 linear층만 이용)

Customized Time Series Transformer

모델데이터

구축 Pipeline

사용 파일:

`train.csv`,

`new_train_round.csv` (평가),

`brand_keyword_cnt_preprocess.csv` (평가)

데이터 구축 Process:

- 1.시계열 데이터만 MinMax 스케일링
- 2. 범주 데이터 LabelEncoding
- 3. Window 사이즈 만큼 Stride(STEP_SIZE) 주기로 Input, Target 데이터 생성
- 4. 생성한 학습 데이터를 StratifiedKFold를 활용해 범주 데이터가 균등하게 분포하도록 학습 데이터와 평가 데이터로 분리(Validation 비율: 0.2)

모델데이터

모델 입출력 정의

Input 데이터 Shape: (Batch, Train Size, 5) Target 데이터 Shape: (Batch, Predict Size)

Input Data Feature (3D Tensor)

- Index 0~3 : 인코딩된 범주데이터
 - [대분류, 중분류, 소분류, 브랜드] 순
- Index 4 : 스케일링된 시계열 데이터
 - [판매량]
- 총합 5개의 특징데이터를 가진 입력 데이터

Target Data Feature (2D Tensor)

• predict days의 스케일링된 판매량 데이터 (정답 data)

1 print(train_input.shape, train_target.shape,val_input.shape, val_targ

(572040, 126, 5) (572040, 21) (143010, 126, 5) (143010, 21)

모델 구조

크게 3개의 Part로 나뉨

- 1. Data Embedding Layer
- 2. Transformer Encoder
- 3. Fully-Connected Layer

Custom Model Architecture

모델

임베딩 레이어

- 1. Category와 Time Series 데이터로 분리
- 2. Category Data는 Embedding Layer를 거쳐 H(hidden size) 차원만큼 매핑
- 3. Time Series Data는 먼저 학습 시에만 가우시안 노이즈를 추가해서 과적합 방지
- 4. 그 후에 ConvLayer를 통해 H차원만큼 임베딩
- 5. Positional Encoding을 통해 위치 정보 추가 (sin, cos)
- 6. 범주 데이터, 시계열 데이터 모두 더하고 Dropout 적용

Data Embedding Architecture

모델

트랜스포머 + FC

Transformer의 Encoder 파트만 가져와서 사용

- 1. Data Embedding Layer를 거친 Data가 Input으로 시작
- 2. Norm은 Layer Normalization 사용
- 3. Activation Fuction은 ReLU 사용
- 4. Transformer Encoder를 거친 Output을 FC Layer를 거쳐 최종 Output 생성
- 5.FC Layer에는 Activation Function 사용 X, 단순 projection

학습설정

최적화

Loss Function 및 Optimizer 정보

• Loss: MSE

Optimizer: AdamW

• Scheduler: MultiplicativeLR

Gradient Clipping

• 최적화가 잘 이루어지는 지를 확인하기 위해 HuberLoss와 PSFA Loss도 확인 (학습에 사용 안함)

```
1 num_epochs = CFG.EPOCHS
2
3 optimizer = optim.AdamW(model.parameters(), Ir=CFG.LEARNING_RATE)
4
5 total_steps = len(train_loader) * num_epochs
6
7 criterion = nn.MSELoss()
8 huberloss = nn.HuberLoss()
9
```


학습설정

하이퍼 파라미터

• train window size: 126

• epochs: 10

• learning rate: 1e-4

• (transformer) num heads: 4

• hidden size: 512

• (transformer) num layers: 4

```
class CFG:
   TRAIN_WINDOW_SIZE = 126
   PREDICT_SIZE = 21
   EPOCHS = 10
   LEARNING_RATE = 1e-4
   BATCH_SIZE = 256
   SEED = 41
  학습 파라미터 및 Config
```

```
1 # Hyper-parameters
2 num_time_steps = CFG.TRAIN_WINDOW_SIZE
3 num_heads = 4
4 hidden_size = 512
5 num_layers = 4
6 num_output_days = CFG.PREDICT_SIZE
```

모델 파라미터

모델평가

Window Size

- Window Size 에 따른 Valiation 결과를 비교
- MSE Loss와 PSFA의 값을 비교하여 좋은 window size를 탐색
- 실험 결과 126이 가장 성능이 좋았음

Window Size	MSE	Validation PSFA	
96	0.0188	0.5645	
126	0.0179	0.5749	
192	0.0185	0.5689	
336	0.0201	0.5621	

모델평가

학습 데이터

- 여러 학습 데이터를 모델에 대입해서 학습 후 평가
- 가격의 경우 5개의 범주 데이터와 1개의 시계 열 데이터
- 가격 + 키워드의 경우 5개의 범주 데이터와 2 개의 시계열 데이터
- MSE Loss는 비슷했으나 Valid PSFA는 기본 모델이 가장 높았음

학습 데이터	MSE	Valid PSFA	
기본(train.csv)	0.0179	0.5749	
가격(new_train_round.csv)	0.0175	0.5549	
가격 + 키워드 (brand_keyword_cnt.csv)	0.0179	0.5569	

결론

- 시계열 데이터 특성 상 이상치에 영향을 덜 주기 위해서 모델 일반화에 초점을 두고 학습 전략을 설계
- 여러 모델을 시도해서 가장 성능이 높았던 Time Series Transformer 모델 선택
- 다양한 데이터 입력을 넣었을 때, Basic하게 넣는 방법의 성능이 가장 높았음
- Window Size 역시 126이 가장 성능이 높았음
- 최종 모델
 - Time Series Transformer
 - Data: `train.csv`
 - Input Shape: [B, T, 5]
 - Output Shape: [B, O]
 - Public Score: 0.56224
 - o Private Score: 0.55444

참고자료

Paper:

- Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transformers in Time Series: A Survey. International Joint Conference on Artificial Intelligence.
- Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2020). Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. AAAI Conference on Artificial Intelligence.
- Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2016). Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. *IEEE Transactions on Image Processing*, 26, 3142-3155.

GitHub:

- TST Review: https://github.com/qingsongedu/time-series-transformers-review
- Dlinear: https://github.com/cure-lab/LTSF-Linear
- Informer: https://github.com/zhouhaoyi/Informer2020