```
In [1]:
import os
os.getcwd()
```

Out[1]:

'C:\\Users\\Preksha\\Simplilearn\\Project'

In [2]:

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import seaborn as sns
import pandas as pd
%matplotlib inline
```

1 Import a 311 NYC service request

00:33:00 03:40:00

has raised = await self.run ast nodes(code ast.body, cell name,

In [3]:

```
dataset = pd.read_csv('311_Service_Requests_from_2010_to_Present.csv', parse_dates=["Crea
ted Date", "Closed Date"])
C:\anaconda\lib\site-packages\IPython\core\interactiveshell.py:3146: DtypeWarning: Column
s (48,49) have mixed types.Specify dtype option on import or set low memory=False.
```

In [4]:

dataset

Out[4]:

	Unique Key	Created Date	Closed Date	Agency	Agency Name	Complaint Type	Descriptor	Location Type	Incident Zip	Ir A
0	32310363	2015- 12-31 23:59:00	2016- 01-01 00:55:00	NYPD	New York City Police Department	Noise - Street/Sidewalk	Loud Music/Party	Street/Sidewalk	10034.0	VERN A'
1	32309934	2015- 12-31 23:59:00	2016- 01-01 01:26:00	NYPD	New York City Police Department	Blocked Driveway	No Access	Street/Sidewalk	11105.0	2: A'
2	32309159	2015- 12-31 23:59:00	2016- 01-01 04:51:00	NYPD	New York City Police Department	Blocked Driveway	No Access	Street/Sidewalk	10458.0	VALE A'
3	32305098	2015- 12-31 23:57:00	2016- 01-01 07:43:00	NYPD	New York City Police Department	Illegal Parking	Commercial Overnight Parking	Street/Sidewalk	10461.0	B/ A'
4	32306529	2015- 12-31 23:56:00	2016- 01-01 03:24:00	NYPD	New York City Police Department	Illegal Parking	Blocked Sidewalk	Street/Sidewalk	11373.0	87
						•••				
300693	30281872	2015- 03-29 00:33:00	NaT	NYPD	New York City Police Department	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	NaN	CRE:
300694	30281230	2015- 03-29 00:33:00	2015- 03-29 02:33:00	NYPD	New York City Police Department	Blocked Driveway	Partial Access	Street/Sidewalk	11418.0	101 A'
300695	30283424	2015- 03-29	2015- 03-29	NYPD	New York City Police	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	11206.0	Tŀ Δ\

Department

300696	Unique 30280 6€¥	Created (2)2 <u>169</u> 00:33:00	C<u>lugaeg</u>d (2)2<u>169</u> 04:38:00	Agency NYPD	Ne Newcek City Newce Department	Complaint Type Commercial	Descriptor Music/Party	Location Type Club/Bar/Restaurant	Incident 1046 7ip	31 9 TF A
300697	30281825	2015- 03-29 00:33:00	2015- 03-29 04:41:00	NYPD	New York City Police Department	Noise - Commercial	Loud Music/Party	Store/Commercial	10036.0	251 48 S

300698 rows × 53 columns

In [5]:

dataset.columns

Out[5]:

```
Index(['Unique Key', 'Created Date', 'Closed Date', 'Agency', 'Agency Name',
        'Complaint Type', 'Descriptor', 'Location Type', 'Incident Zip',
        'Incident Address', 'Street Name', 'Cross Street 1', 'Cross Street 2',
        'Intersection Street 1', 'Intersection Street 2', 'Address Type',
        'City', 'Landmark', 'Facility Type', 'Status', 'Due Date',
        'Resolution Description', 'Resolution Action Updated Date',
        'Community Board', 'Borough', 'X Coordinate (State Plane)',
       'Y Coordinate (State Plane)', 'Park Facility Name', 'Park Borough', 'School Name', 'School Code', 'School Phone Number', 'School Address', 'School City', 'School State',
        'School Zip', 'School Not Found', 'School or Citywide Complaint',
        'Vehicle Type', 'Taxi Company Borough', 'Taxi Pick Up Location',
        'Bridge Highway Name', 'Bridge Highway Direction', 'Road Ramp',
        'Bridge Highway Segment', 'Garage Lot Name', 'Ferry Direction',
        'Ferry Terminal Name', 'Latitude', 'Longitude', 'Location'],
      dtype='object')
```

In [6]:

dataset.replace('Unspecified', np.NaN, inplace=True)

In [7]:

```
# Check for duplicates and NA values and resolving them
remove columns= ['Agency Name', 'Incident Address', 'Street Name', 'Cross Street 1', 'Cross
Street 2', 'Intersection Street 1',
'Intersection Street 2', 'Address Type', 'Park Facility Name', 'Park Borough', 'School Name',
'School Number', 'School Region', 'School Code', 'School Phone Number', 'School Address', 'Sch
ool City',
'School State', 'School Zip', 'School Not Found', 'School or Citywide Complaint', 'Vehicle Ty
'Taxi Company Borough', 'Taxi Pick Up Location', 'Bridge Highway Name', 'Bridge Highway Dire
ction',
'Road Ramp', 'Bridge Highway Segment', 'Garage Lot Name', 'Ferry Direction', 'Ferry Terminal
Name','Landmark',
'X Coordinate (State Plane)', 'Y Coordinate (State Plane)', 'Due Date', 'Resolution Action
Updated Date', 'Community Board', 'Facility Type',
'Location']
dataset.drop(remove columns, inplace=True, axis=1)
dataset = dataset[dataset['Status']=='Closed']
dataset.drop(['Status'],inplace=True, axis=1)
dataset = dataset[(dataset['Latitude'].notnull()) & (dataset['Longitude'].notnull()) & (d
ataset['Descriptor'].notnull())]
dataset.info()
C:\anaconda\lib\site-packages\pandas\core\frame.py:4163: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user g
uide/indexing.html#returning-a-view-versus-a-copy
  return super().drop(
<class 'pandas.core.frame.DataFrame'>
```

```
Int64Index: 291204 entries, 0 to 300697
Data columns (total 13 columns):
                               Non-Null Count Dtype
 0 Unique Key
                               291204 non-null int64
 1 Created Date 291204 non-null datetime64[ns]
2 Closed Date 291204 non-null datetime64[ns]
3 Agency 291204 non-null object
   Agency 291204 non-null datetime object Complaint Type 291204 non-null object Descriptor 291204 non-null object Location Type 291149 non-null object Incident Zip 291164 non-null float64 City 291164 non-null object Resolution D
 5
 7
 8
 9 Resolution Description 291204 non-null object
 10 Borough
                               291204 non-null object
 11 Latitude
                                291204 non-null float64
 12 Longitude
                               291204 non-null float64
dtypes: datetime64[ns](2), float64(3), int64(1), object(7)
memory usage: 31.1+ MB
In [8]:
# Making a uniform format for city names
def camel case(city):
    try:
         city = city.split(' ')
         city = ' '.join([x.lower().capitalize() for x in city])
         if city == 'Unknown':
             return np.nan
             return city
    except:
        return np.nan
# Apply camel case function to City column
dataset['City'] = dataset['City'].apply(camel_case)
dataset['City'].value counts()
Out[8]:
Brooklyn
                         96881
New York
                         61940
                         40223
Bronx
                        12214
Staten Island
                          7155
Jamaica
Astoria
                          6970
                          5919
Flushing
Ridgewood
                          5124
Corona
                          4266
Woodside
                          3614
South Richmond Hill 2759
East Elmhurst
                          2739
Ozone Park
                          2735
Elmhurst
                          2624
Long Island City
                         2543
Woodhaven
                          2449
Maspeth
                          2445
                         2165
South Ozone Park
Fresh Meadows
Richmond Hill
                           1886
```

Queens Village Middle Village

Jackson Heights

Forest Hills

College Point

Rego Park

Far Rockaway

Whitestone

Howard Beach

Hollis

Rosedale

Bayside

1788 1759

1671

1655

1477

1215

1163

1093

1001

923

913

1217

```
Springfield Gardens
                        871
Saint Albans
                        825
Kew Gardens
                        763
Rockaway Park
                        738
Sunnyside
                        708
Little Neck
                        558
Oakland Gardens
Cambria Heights
                        546
                        471
Bellerose
                        370
                        304
Glen Oaks
                        214
Arverne
                       152
Floral Park
New Hyde Park
                        98
Central Park
                         97
Breezy Point
                         30
Oueens
                         28
Name: City, dtype: int64
In [9]:
```

dataset.count()

Out[9]:

Unique Key	291204
Created Date	291204
Closed Date	291204
Agency	291204
Complaint Type	291204
Descriptor	291204
Location Type	291149
Incident Zip	291164
City	291164
Resolution Description	291204
Borough	291204
Latitude	291204
Longitude	291204
dtype: int64	

In [10]:

dataset.nunique()

Out[10]:

Unique Key	291204
Created Date	194128
Closed Date	166384
Agency	1
Complaint Type	15
Descriptor	41
Location Type	14
Incident Zip	200
City	48
Resolution Description	12
Borough	5
Latitude	123042
Longitude	123141
dtype: int64	

2 Read or convert the columns 'Created Date' and Closed Date' to datetime datatype and create a new column 'Request_Closing_Time' as the time elapsed between request creation and request closing.

```
In [11]:
```

import datetime

```
exclude_columns = ['Created Date','Closed Date']

for col in exclude_columns:
    dataset[col] = pd.to_datetime(dataset[col], format='%m/%d/%Y %I:%M:%S %p')

for col in dataset.columns:
    if dataset[col].nunique() < 300 and col not in exclude_columns:
        dataset[col] = dataset[col].astype('category')

dataset.dropna(subset=['Created Date','Closed Date','City'], inplace=True)
dataset['Request_Closing_Time'] = dataset['Closed Date'] - dataset['Created Date']</pre>
```

In [12]:

dataset

Out[12]:

	Unique Key	Created Date	Closed Date	Agency	Complaint Type	Descriptor	Location Type	Incident Zip	City	Resol Descri
0	32310363	2015- 12-31 23:59:00	2016- 01-01 00:55:00	NYPD	Noise - Street/Sidewalk	Loud Music/Party	Street/Sidewalk	10034.0	New York	The P Depart respo and a
1	32309934	2015- 12-31 23:59:00	2016- 01-01 01:26:00	NYPD	Blocked Driveway	No Access	Street/Sidewalk	11105.0	Astoria	The P Depart respo t comp
2	32309159	2015- 12-31 23:59:00	2016- 01-01 04:51:00	NYPD	Blocked Driveway	No Access	Street/Sidewalk	10458.0	Bronx	The P Depart respo and a
3	32305098	2015- 12-31 23:57:00	2016- 01-01 07:43:00	NYPD	Illegal Parking	Commercial Overnight Parking	Street/Sidewalk	10461.0	Bronx	The P Depart respo t comp
4	32306529	2015- 12-31 23:56:00	2016- 01-01 03:24:00	NYPD	Illegal Parking	Blocked Sidewalk	Street/Sidewalk	11373.0	Elmhurst	The P Depart respo and a
					•••		***			
300692	30281370	2015- 03-29 00:34:00	2015- 03-29 01:13:00	NYPD	Noise - Commercial	Loud Music/Party	Store/Commercial	10002.0	New York	The P Depart respo t comp
300694	30281230	2015- 03-29 00:33:00	2015- 03-29 02:33:00	NYPD	Blocked Driveway	Partial Access	Street/Sidewalk	11418.0	Richmond Hill	The P Depart respo and a
300695	30283424	2015- 03-29 00:33:00	2015- 03-29 03:40:00	NYPD	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	11206.0	Brooklyn	The P Depart respo t comp
300696	30280004	2015- 03-29 00:33:00	2015- 03-29 04:38:00	NYPD	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	10461.0	Bronx	The P Depart respo t comp

The P Unique Created Closed Incident Agency Complaint Type Noise **Location Type** City Descriptor 300697 30281825 10036.8 Store/Commercial **NYPD New York** Commercial Music/Party 00:33:00 comp

291164 rows × 14 columns

In [13]:

```
dataset['Complaint Type'].unique()
```

Out[13]:

['Noise - Street/Sidewalk', 'Blocked Driveway', 'Illegal Parking', 'Derelict Vehicle', 'N oise - Commercial', ..., 'Traffic', 'Drinking', 'Noise - Park', 'Graffiti', 'Disorderly Y outh']

Length: 15

Categories (15, object): ['Noise - Street/Sidewalk', 'Blocked Driveway', 'Illegal Parking ', 'Derelict Vehicle', ..., 'Drinking', 'Noise - Park', 'Graffiti', 'Disorderly Youth']

In [14]:

```
dataset['Descriptor'].unique()
```

Out[14]:

['Loud Music/Party', 'No Access', 'Commercial Overnight Parking', 'Blocked Sidewalk', 'Po sted Parking Sign Violation', ..., 'Chronic Speeding', 'Playing in Unsuitable Place', 'Dr ag Racing', 'Police Report Not Requested', 'Nuisance/Truant'] Length: 41

Categories (41, object): ['Loud Music/Party', 'No Access', 'Commercial Overnight Parking' , 'Blocked Sidewalk', ..., 'Playing in Unsuitable Place', 'Drag Racing', 'Police Report N ot Requested', 'Nuisance/Truant']

In [15]:

complaintTypecity = pd.DataFrame({'count':dataset.groupby(['Complaint Type','City']).siz e()}).reset index() complaintTypecity

Out[15]:

	Complaint Type	City	count
0	Animal Abuse	Arverne	38
1	Animal Abuse	Astoria	125
2	Animal Abuse	Bayside	37
3	Animal Abuse	Bellerose	7
4	Animal Abuse	Breezy Point	2
715	Vending	Staten Island	25
716	Vending	Sunnyside	15
717	Vending	Whitestone	1
718	Vending	Woodhaven	6
719	Vending	Woodside	15

720 rows × 3 columns

In [16]:

```
dataset.groupby(['Borough','Complaint Type','Descriptor']).size()
```

Borough BRONX	Complaint Type Animal Abuse	Descriptor After Hours - Licensed Est Banging/Pounding Blocked Hydrant Blocked Sidewalk	0 0 0
		Building	0
STATEN ISLAND	Vending	Unauthorized Bus Layover	0
		Underage - Licensed Est	0
		Unlicensed	20
		Vehicle	0
		With License Plate	0
Length: 3075,	dtype: int64		

3 Provide major insights/patterns that you can offer in a visual format (graphs or tables); at least 4 major conclusions that you can come up with after generic data mining.

```
In [17]:
```

```
# MAJOR INSIGHTS - 1
# Most frequent type of complain
dataset['Complaint Type'].value_counts().head(10).plot(kind='barh',figsize=(10,10), titl
e = ('Most Frequent Complaint Type'));
```


In [18]:

```
# MAJOR INSIGHTS - 2
# Least frequent type of complain
dataset['Complaint Type'].value_counts().tail(10).plot(kind='barh',figsize=(10,10), titl
e = ('Least Frequent Complaint Type'));
```


In [19]:

```
# MAJOR INSIGHTS - 3
# Most frequently fount descriptor
dataset['Descriptor'].value_counts().head(10).plot(kind='barh',figsize=(10,10), title =
('Most Frequently found Descriptor Type'));
```



```
Loud Music/Party - 0 10000 20000 30000 40000 50000 60000
```

In [20]:

```
# MAJOR INSIGHTS - 4
# Least frequent type of complain
dataset['Descriptor'].value_counts().tail(10).plot(kind='barh',figsize=(10,10), title =
('Least Frequently found Descriptor Type'));
```


In [21]:

```
# MAJOR INSIGHTS - 5
# A Pie Chart representing maximum number of complaints filed for cities
majorComplintsCity = dataset.dropna(subset=["City"])
majorComplintsCity = dataset.groupby("City")

sortedCityType = majorComplintsCity.size().sort_values(ascending = False)
sortedCityType = sortedCityType.to_frame('count').reset_index()

sortedCityType
sortedCityType.head()
```

Out[21]:

	City	count
0	Brooklyn	96881
1	New York	61940
2	Bronx	40223

```
3 Staten Island £22114
4 Jamaica 7155
```

In [22]:

```
#MAJOR INSIGHT - 6
# Pie Chart Representation for 5 most frequently complaint registering cities
sortedCityType = sortedCityType.head()
plt.figure(figsize=(10,10))
plt.pie(sortedCityType['count'],labels=sortedCityType["City"], autopct="%1.1f%%")
plt.show()
```


4 Order the complaint types based on the average 'Request_Closing_Time', grouping them for different locations.

In [23]:

```
dataset['Request_Closing_Hours'] = dataset['Request_Closing_Time'].astype('timedelta64[h
]')+1
dataset[['Request_Closing_Time','Request_Closing_Hours']].head()
mean = dataset['Request_Closing_Hours'].mean()
std = dataset['Request_Closing_Hours'].std()
print('Mean: ',mean)
print('Std: ',std)
```

Mean: 4.823075654957344 Std: 6.064308137841479

In [24]:

```
sort = dataset['Request_Closing_Hours'].sort_values(ascending=True)
```

```
In [25]:
```

```
req_time_grouping = dataset.groupby(['Complaint Type','Borough'])[['Request_Closing_Hour
s']].mean().unstack()
```

In [26]:

```
req_time_grouping
```

Out[26]:

Request_Closing_Hours

Borough	BRONX	BROOKLYN	MANHATTAN	QUEENS	STATEN ISLAND
Complaint Type					
Animal Abuse	7.840057	5.343096	4.200529	5.925827	5.466786
Blocked Driveway	6.766266	4.919404	4.062257	5.043218	4.585708
Derelict Vehicle	9.711134	6.472421	4.784906	9.011849	5.546795
Disorderly Youth	4.746032	4.652778	2.926471	3.796610	4.434783
Drinking	6.329787	4.038911	3.588435	4.397759	3.977143
Graffiti	9.333333	8.767442	5.545455	7.054054	10.500000
Illegal Parking	7.074320	4.781229	3.896002	5.267016	4.362277
Noise - Commercial	5.220485	3.501484	3.259326	4.289369	3.516987
Noise - House of Worship	5.037975	3.600592	2.851852	4.120401	3.058824
Noise - Park	5.254789	3.662980	3.472151	4.365931	3.462687
Noise - Street/Sidewalk	5.745262	3.817888	3.258668	4.147802	3.498160
Noise - Vehicle	6.081241	3.799650	3.155721	4.225844	3.724719
Posting Advertisement	4.062500	3.911111	3.463415	5.700000	2.071845
Traffic	5.429775	3.628466	3.181462	4.778972	4.025510

5.035019

Vending 7.339523

5 (a) Whether the average response time across complaint types is similar or not (overall)

```
In [27]:
```

```
dataset['Request_Closing_Minutes'] = dataset['Request_Closing_Time'].astype('timedelta64
[m]')+1
```

3.815546 5.291405

4.720000

In [28]:

```
data = {}
for complaint in dataset['Complaint Type'].unique():
    data[complaint] = np.log(dataset[dataset['Complaint Type']==complaint]['Request_Closing_Minutes'])
```

In [29]:

```
data.keys()
```

Out[29]:

```
dict_keys(['Noise - Street/Sidewalk', 'Blocked Driveway', 'Illegal Parking', 'Derelict Ve
hicle', 'Noise - Commercial', 'Noise - House of Worship', 'Posting Advertisement', 'Noise
- Vehicle', 'Animal Abuse', 'Vending', 'Traffic', 'Drinking', 'Noise - Park', 'Graffiti',
'Disorderly Youth'])
```

```
TIL [OV] .
[ complaint for complaint in data.keys() ]
Out[30]:
['Noise - Street/Sidewalk',
 'Blocked Driveway',
 'Illegal Parking',
 'Derelict Vehicle'
 'Noise - Commercial',
 'Noise - House of Worship',
 'Posting Advertisement',
 'Noise - Vehicle',
 'Animal Abuse',
 'Vending',
 'Traffic',
 'Drinking',
 'Noise - Park',
 'Graffiti',
 'Disorderly Youth']
```

Null Hypothesis: Average response time for all the complaints type is same.

Alternate Hypothesis: Average response time for all the complaints type is not same and theres is some difference among the groups.

Below We conduct ANOVA test for top 5 type of complaints

if p < alpha(0.05): Reject Null Hypothesis, Average response time for all the complaints type is not same.

if p > alpha(0.05): Fail to reject Null Hypothesis, Average response time for all the complaints type is same.

```
In [31]:
```

```
Statistics=2457.700, p=0.000
Different distributions (reject H0)
```

As our p-value is quite low, hence it is being converted to 0.0 Since our p-value is lowere that our critical p-value, we will conclude that we have enogh evidence to reject pur Null Hypothesis and that

Average response time for all the complaints type is not same.

5(b) Are the type of complaint or service requested and location related?

```
In [32]:

dataset1 = dataset[['Complaint Type', 'City']]
dataset1 = dataset1.dropna()
dataset1.shape

Out[32]:
(291164, 2)
```

```
In [33]:
```

```
C C = pd.crosstab(dataset1['Complaint Type'], dataset1['City'], margins=True, margins_na
me = 'Total')
C_C
```

Out[33]:

City	Arverne	Astoria	Bayside	Bellerose	Breezy Point	Bronx	Brooklyn	Cambria Heights	Central Park	College Point	 Saint Albans	South Ozone Park
Complaint Type												
Animal Abuse	38	125	37	7	2	1413	2390	11	0	28	 30	55
Blocked Driveway	35	2734	376	95	3	12741	28128	147	0	435	 244	942
Derelict Vehicle	27	363	198	89	3	1949	5167	115	0	184	 202	358
Disorderly Youth	2	3	1	2	0	63	72	0	0	1	 1	2
Drinking	1	35	1	1	1	188	257	0	0	0	 3	13
Graffiti	1	4	3	0	0	9	43	0	0	1	 0	0
Illegal Parking	58	1278	512	106	15	7831	27394	76	2	352	 181	494
Noise - Commercial	2	1543	40	37	4	2431	11452	12	0	35	 29	70
Noise - House of Worship	11	19	2	1	0	79	338	2	0	0	 1	3
Noise - Park	2	61	3	1	0	522	1537	0	0	2	 1	4
Noise - Street/Sidewalk	29	499	15	13	1	8865	13317	25	95	33	 79	105
Noise - Vehicle	7	204	16	10	1	3385	5146	77	0	131	 41	85
Posting Advertisement	0	1	0	1	0	16	45	0	0	0	 0	1
Traffic	0	47	9	7	0	354	1081	6	0	14	 11	28
Vending	1	54	2	0	0	377	514	0	0	1	 2	5
Total	214	6970	1215	370	30	40223	96881	471	97	1217	 825	2165
6 rows × 49 columns												

In [34]:

```
#Chi Square test
```

Null Hypothesis: Complaint type is not related to Cities. Alternate Hypothesis: Complaint type is related to Cities.

Below We conduct CHI SQUARE test for complaints

if p < alpha(0.05): Reject Null Hypothesis, Complaint type is not related to Cities.

if p > alpha(0.05): Fail to reject Null Hypothesis, Complaint type is related to Cities.

In [35]:

```
from scipy.stats import chi2 contingency
#Defining the data
stat,p,dof,expected = chi2 contingency(C C)
print('Chi Square value : ', stat)
alpha = 0.05
```

```
print('p value is ' +str(p))

if p > alpha:
    print('Same distributions (fail to reject H0)')

else:
    print('Different distributions (reject H0)')

Chi Square value : 104694.51946928105
p value is 0.0
Different distributions (reject H0)
```

As our p-value is quite low, hence it is being converted to 0.0 Since our p-value is lowere that our critical p-value, we will conclude that we have enogh evidence to reject pur Null Hypothesis and that

Complaint type is related to Cities.