SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF MATHEMATICS

18MAB201T - Transforms and Boundary value problems

UNIT V – Z-Transform

TUTORIAL SHEET -15

<u>PART-B</u>		
Sl.No	Questions	Answer
1	Find $Z^{-1}\left[\frac{2z^2+3z}{(z+2)(z-4)}\right]$ by partial fraction method.	$\frac{(-2)^n}{6} + \frac{11(4)^n}{6}$
2	If $F(z) = \frac{3z}{(z-1)(z-2)}$, find the residue of $F(z)z^{n-1}$ at $z = 2$.	3.(2) ⁿ
3	If $F(z) = \frac{z+3}{(z+1)(z-2)}$, find the residue of $F(z)z^{n-1}$ at $z = -1$.	$\frac{2}{3}(-1)^n$
4	Using convolution Theorem evaluate $Z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$.	$\frac{1}{2}(3^{n+1}-1)$
5	Solve: $y_{n+1} - 2y_n = 0$ given $y_0 = 3$ using Z transforms.	3.(2) ⁿ
PART-C		
6	Find the inverse Z transform of $\frac{8z^2}{(2z-1)(4z-1)}$ by using convolution theorem.	$2\left[\left(\frac{1}{2}\right)^n - \left(\frac{1}{2}\right)^{2n+1}\right]$
7	Find by Residue method if $Z^{-1} \left[\frac{2z^2 + 4z}{(z-2)^3} \right]$.	$n^2.(2)^n$
8	Find $Z^{-1}\left[\frac{z^3}{(z-2)(z-1)^2}\right]$ by using method of partial fraction.	$-3.1^n - n + 4.2^n$
9	Solve: $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$, given $y_0 = y_1 = 0$, using Z transforms.	$\frac{1}{25} \cdot 2^n - \frac{1}{25} (-3)^n + \frac{1}{15} n (-3)^n$
10	Solve $y_{n+2} - 7y_{n+1} + 12y_n = 2^n$, given $y_0 = 0$, $y_1 = 0$, using Z transform method.	$\frac{1}{2} \cdot 2^n - 3^n + \frac{1}{2} \cdot 4^n$