Лабораторная работа № 3 Изучение режимов движения жидкости

Цель работы: закрепление знаний по разделу "Режимы течения жидкостей", визуальное наблюдение характера и структуры потока жидкости при разных скоростях движения и приобретение навыков по установлению режима течения.

Обработка опытных данных

1)	Объем воды, вытекшей за время опыта
,	$V = S_6 \cdot \Delta H = \underline{\qquad} \text{cm}^3,$
где	$S_6 = 620 \text{ cm}^2 - \text{площадь сечения мерного бака;}$
	ΔH — приращение уровня воды в баке за время опыта, см.
2)	Расход воды
	Q = V / t = cm ³ /c,
где	t — время опыта.
3)	Средняя скорость движения воды
	$\upsilon_{\mathrm{cp}} = Q / S_{\Pi} = $ cm/c,
где	$S_{\scriptscriptstyle \Pi}$ – площадь живого сечения потока воды, определяется как площадь
попе	речного сечения круглой трубы диаметром $d=0,7\mathrm{cm}$.
4)	Кинематический коэффициент вязкости воды
	0.0178
	$v = \frac{0.0178}{1 + 0.0337 \cdot T + 0.000221 \cdot T^2} = \underline{\qquad} C_{T},$
где	T – температура воды в период опыта, ${}^{\circ}$ С.
5)	Число Рейнольдса
	$Re = \frac{\upsilon \cdot d}{} = \underline{\qquad}.$
	ν =
6)	Максимальная скорость воды в трубопроводе (только для ламинар-
ного	режима)
	$v_{\text{max}} = L/t_{\text{cp}} = $ cm/c,
где	$t_{\rm cp}-$ среднее время прохождения частицами воды контрольного
участ	гка;
	$t_{\rm cp} = t_i/n = \underline{\qquad}$ c.
	Длина контрольного участка $L = $ см.
7)	Коэффициент Кориолиса
•	

Результаты измерений и вычисления записываются в таблицу 3.1.

Таблица 3.1. - Результаты измерений и расчетов

Наименование измеренных и вы-	Опыты					
численных величин	1	2	3	4	5	6
1. Приращение уровня воды в						
баке ΔH , см						
2. Время опыта <i>t</i> , с						
3. Объем вытекшей воды V , см 3						
4. Расход воды Q , см 3 /с						
5. Средняя скорость $\upsilon_{\rm cp}$, см/с						
6. Число Рейнольдса Re						
7. Время прохождения частицей						
струйки мерного участка t_i , с						
7. Температура воды <i>T</i> , °C						
8. Кинематический коэффициент						
вязкости V , cm^2/c						
9. Максимальная скорость υ_{max} ,						
см/с						
10. Коэффициент Кориолиса α						

По результатам расчетов в масштабе строится график зависимости $\mathrm{Re} = f(\upsilon)$, на котором нужно показать зоны различных режимов движения и точки перехода от одного режима к другому.