PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 12

MAT1106 — Introducción al Cálculo Fecha: 2020-10-05

Problema 1:

Sea x_n una sucesión. Demuestre que $\lim_{n\to\infty} x_n = \infty$ si y solo si para todo k > 0 $\lim_{n\to\infty} k \cdot x_n = \infty$.

Solución problema 1: \Leftarrow Es trivial tomando k = 1.

 \implies Sea R>0, se nota que $\frac{R}{k}>0$, por lo que existe un $n_0\in\mathbb{N}$ tal que para $n\geq n_0$ se tiene que $x_n>\frac{R}{k}$, o equivalentemente $k\cdot x_n>R$, lo que nos da que $\lim_{n\to\infty}$.

Problema 2:

Demuestre que si $\lim_{n\to\infty} x_n = \infty$ y $x_n \neq 0$, entonces $\frac{1}{x_n}$ está acotada inferiormente.

Solución problema 2: Sea R = 1 > 0, se tiene que existe un $n_0 \in \mathbb{N}$ tal que para $n \geq n_0$ se tiene $x_n > 1 > 0$, más específicamente se tiene que $1 > \frac{1}{x_n} > 0$. Ahora, sea $m = \min(\{0\} \cup \{x_n : n < n_0\})^1$, se nota que para $n < n_0$ $x_n > m$ y que para $n \geq n_0$ se tiene que $x_n > 0 \geq m$, por lo que se tiene que x_n está acotada inferiormente por m.

Problema 3:

Sea $x_n = \frac{1}{\sqrt{n^3} - \sqrt{n^3 - 1}}$, demuestre que $\lim_{n \to \infty} x_n = \infty$.

¹Esto está bien definido ya que $\{0\} \cup \{x_n : n < n_0\}$ es un conjunto no vacío y es finito.

Solución problema 3: Se ve la siguiente factorización:

$$\frac{1}{\sqrt{n^3} - \sqrt{n^3 - 1}} = \frac{1}{\sqrt{n^3} - \sqrt{n^3 - 1}} \cdot \frac{\sqrt{n^3} + \sqrt{n^3 - 1}}{\sqrt{n^3} + \sqrt{n^3 - 1}}$$
$$= \sqrt{n^3} + \sqrt{n^3 - 1}$$

Como $\sqrt{n^3-1} \ge 0$ y $\sqrt{n^3} \ge n$, se tiene que $x_n \ge n$, y por ayudantía anterior al tenerse que $\lim_{n\to n} n = \infty$ se tiene que $\lim_{n\to\infty} x_n = \infty$.

Problema 4:

Sea L_n definida como

$$L_n = \begin{cases} 2 & \text{si } n = 1 \\ 1 & \text{si } n = 2 \\ L_{n-1} + L_{n-2} & \text{si } n > 2 \end{cases}$$

Demuestre que $L_n \to \infty$

Solución problema 4: Se demuestra por inducción que $L_n \ge n-1$, para n < 4 se ve lo siguiente:

$$L_1 = 2 \ge 0$$
$$L_2 = 1 \ge 1$$

$$L_3 = 3 \ge 2$$

Luego para L_n se ve

$$L_n = L_{n-1} + L_{n-2}$$

$$L_n \ge n - 2 + n - 3$$

$$L_n \ge 2n - 5$$

$$L_n \ge n - 1$$

la última desigualdad se tiene porque $n \geq 4$. Ahora por ayudantia anterior se tiene que $\lim_{n \to \infty} L_n = \infty$.

Problema 5:

Sea $x_n = \frac{1}{n^k} \binom{n}{m}$ con $k, m \in \mathbb{N}$ y k < m, demuestre que $x_n \to \infty$.

Solución problema 5: