ElGamal	
Motivation	
The ElGamal encryption system is an asymmetric key encryption algorithm for public key cryptography which is based on the Diffie-Hellman key exchange. The advantage of the ElGamal algorithm is the generation of keys using discrete logarithms. ElGamalhas the disadvantage that the ciphertext is twice as long as the plaintext and it has the advantage that the same plaintext gives a different ciphertext (with near certainty) each time it is encrypted. ElGamal encryption is used in the free GNU privacy guard software, recent versions of PGP, and other cryptosystems.	
Method	
	Encrypt
	Step 1: Public Parameter Creation
	A trusted party must choose and publish a (large) prime p, and an element g modulo p of large (prime) order. (attach popup 3)
	Bob's part: Key Creation Step 2: choosing a private key
	Bob has to choose a private key $1 \le a \le p-1$.
	Step 3: Compute the public key and publishing it Bob computes $A = g^a mod(p)$ and publishes it.
single	Now, we get to Encryption (What Alice does): Step 4: Choose plaintext m and a random
	ephemeral key k
	The number k is called an <i>ephemeral key</i> , since it exists only for the purposes of encrypting a
	Message. So, ALice will pick a random number for the secret key and pick a message to encrypt.
	Step 5: Compute c_1 and c_2
	Use Bob's public key A, to compute:
	$c_1 = g^k \pmod{p}$
	$c_2 = mA^k \ (mod \ p)$
	Step 6: send ciphertext!
	Send ciphertext (c_1 , c_2) to Bob.
	Decrypt
Bob	Recall, Bob knows the values of a and A. And has received the cipher text (c_1, c_2) from Alice.
	only has to do one simple step:
	Compute $(c_1^a)^{-1} * c_2 \pmod{p}$. This quantity is equal to m.

Step 1: Public Parameter Creation

For our example, let's use: p = 2579 and g = 2

Bob's part: Key Creation Step 2: choosing a private key

Let's use a = 765

Step 3: Compute the public key and publishing it

Bob computes A = $g^a mod(p) = 2^{765} mod 2579 = 949$

Now, we get to Encryption (What Alice does): Step 4: Choose plaintext m and a random ephemeral key k

let's use m = 1299 and random key k = 853

Step 5: Compute c_1 and c_2

In our example,
$$c_1 = 2^{853} \mod 2579 = 435 \mod 2579$$
 and $c_2 = 1299 (949)^{853} \mod 2570 = 2396 \mod 2579$

Step 6: send ciphertext!

So, Alice would send (435, 2396) to Bob.

-- Decrypt -----

In our example, Bob will compute: $m' = (2579^{765})^{-1} * 2396 \mod 2579 = 1299 \mod 2579$