Lab 4F: Some models have curves

Directions: Record your responses to the lab questions in the spaces provided.

Makin	g mod	els do	o voga
			- 1 - 6

•	Before moving on,	load the movie	data and s	plit it into two sets:
---	-------------------	----------------	------------	------------------------

•	A set named	training	that inclu	ıdes 75%	of the data
---	-------------	----------	------------	----------	-------------

• And	a set named	ltesting	that in	cludes t	the rema	aining	25%.
-------	-------------	----------	---------	----------	----------	--------	------

Problems with lines

• Train a linear model predicting audience_rating based on critics_rating for the training data. Assign this model to movie_linear.

• Fill in the blanks below to create a scatterplot with audience_rating on the y-axis and critics_rating on the x-axis using your testing data.

• Run the code below to add the *line of best fit* for the training data to the plot.

•	Describe, in words, how the line fits the data. Are there any values for critics_rating that would make obviously poor predictions?
•	Compute the MSE of the model for the testing data and write it down for later.
Ad	ding flexibility
Ma •	Aking bend-y models Fill in the blanks below to train a quadratic model predicting audience_rating from critics_rating, and assign that model to movie_quad.
•	What is the role of the number 2 in the poly() function?
Co. •	mparing lines and curves Fill in the blanks below to create a scatterplot with audience_rating on the y-axis and critics_rating on the x-axis using your testing data, and

•	add the line of best fit and best fitting quadratic curve.
•	Compare how the <i>line of best fit</i> and the <i>quadratic</i> model fit the data. Which do you think has a lower test MSE?
•	Compute the MSE of the quadratic model for the test data and write it down for later.
•	Use the difference in each model's test MSE to describe why one model fits better than the other.
On •	your own Create a model that predicts audience_rating using a cubic curve (polynomial with degree 3), and assign this model to movie_cubic.
•	Create a scatterplot with audience_rating on the y-axis and critics_rating on the x-axis using your test data.

•	Using the names of the three models you have trained, add the <i>line of best fit</i> , best fitting quadratic curve, and best fitting cubic curve for the training data to the plot.
•	Based on the plot, which model do you think is the best at predicting the testing data?
•	Use the difference in testing MSE to verify which model is the best at predicting the testing data.