# AN11128 PTN3460 Programming Guide Rev. 1.1 - 3/31/12

#### **Document information**

| Info     | Content                                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Keywords | PTN3460, DisplayPort, eDP, LVDS, bridge                                                                                                  |
| Abstract | This document describes the PTN3460 programming guide which is the supporting document for the DisplayPort to LVDS bridge device PTN3460 |

# AN11128 PTN3460 Programming Guide Rev. 1.1 - 3/31/12

#### **Revision history**

| Rev   | Date     | Description                        |
|-------|----------|------------------------------------|
| v.1   | 20111215 | Application note; initial version. |
| v.1.1 | 20120320 | Revise                             |
| v.1.2 | 20120331 | Revise                             |

Rev. 1.1 - 3/31/12

### 1. Introduction

PTN3460 is built in a configuration table in internal SRAM, which allows user to program seven EDID and 128 configuration registers through M/S I2C-bus. It can change PTN3460 functionality by changing and storing the configuration table. This application note provides detailed explanations for the configuration table, programming method, and how to program EDID and configuration setting into PTN3460 internal flash.

### 2. Configuration table

### 2.1. Configuration table in internal SRAM memory

The configuration table is stored in the SRAM of the PTN3460 and is 1K bytes (1024 bytes) long. It consists 896 bytes to store seven EDID (128  $\times$  7 = 896 bytes) and 128 bytes of configuration registers used to control PTN3460 functionality. This configuration table is located at a fixed address in XDATA memory (x:0x0C00 - -0x0F00) of the PTN3460.



Fig 1. Configuration table location in XDATA memory

### 2.2. Configuration table initialization

PTN3460 offers two ways to initialize the configuration table

- Read it from internal flash memory.
- Read it from an external EEPROM.

PTN3460 firmware will first check DEV\_CFG pin (pin 12 of PTN3460) status during initialization stage, and it will read 1K bytes configuration table from external EEPROM if DEV\_CFG pin is high, otherwise it will read 1K bytes configuration table from internal flash memory.

PTN3460 firmware uses all zero to initialize configuration table in SRAM in following two cases

- If DEV\_CFG pin = high, but no external EEPROM is existed.
- If DEV\_CFG pin = open or low, but magic number in configuration table in internal flash is incorrect.

### 2.3. Configuration table access through I2C bus

PTN3460 is in I2C slave mode (DEV\_CFG pin = open or low)

The configuration table is a 1024 bytes table which consists of 7 EDID and 128 bytes of configuration registers. However, PTN3460 supports 8 bit I2C addressing mode which allows external MCU or PCH to access entire 1024 bytes of configuration table through M/S I2C interface of PTN3460.

When accessing PTN3460 M/S I2C as an I2C slave, it can only be addressed up to 256 bytes with standard I2C protocols, so the layout of the configuration table is modified by firmware to fit in these 256 bytes. The 256 bytes configuration table is shown in Fig 2, the Offset 0 - 255 means I2C register address 0x00 – 0xFF.

If an external MCU or PCH wants to access EDID2 which the data is physically located in PTN3460 internal SRAM location 0x0D00 – 0x0D80, then it needs to set configuration register 0x85[2:0] = 0x03 (EDID ROM access control register) and reads 128 byte EDID data from I2C register 0x00 – 0x7F over PTN3460 M/S I2C bus. And firmware will move EDID2 data from internal SRAM location 0x0D00 – 0x0D80 to I2C register 0x00 – 0x7F while external MCU or PCH access to it.



Rev. 1.1 - 3/31/12



Fig 2. Configuration table layout modified by firmware to fit 256 bytes

PTN3460 M/S I2C slave address is set 0xC0 while DEV\_CFG pin is set to open, and set to 0x40 while DEV\_CFG pin is set to low.

PTN3460 M/S I2C pins are located at pin 24 (MS\_SDA) and pin 25 (MS\_SCL).

#### PTN3460 is in I2C master mode (DEV\_CFG pin = high)

PTN3460 I2C master mode application block diagram is shown as figure below.



PTN3460 reads 256 bytes of configuration table from external EEPROM when it's set as I2C master mode (DEV\_CFG pin = 1), the configuration table includes 128 bytes EDID and 128 bytes of configuration register bytes.

When PTN3460 is in I2C master mode, it reads 256 bytes configuration table from external EEPROM to internal SRAM in system initialization phase. It only supports one EDID storing in external EEPROM, however the system designer can change the EDID in external EEPROM easier by using EEPROM programmer to program it.



PTN3460 I2C slave mode function is disabled when it is set to I2C master mode, so PTN3460 would not be able listening to I2C command from PCH or external MCU which means that the accessing to PTN3460 I2C registers would not be supported through SMBus. The functional control such as brightness control and backlight control would be required through AUX commands instead of SMBus commands.

PTN3460 I2C master mode application only requires 256 bytes space in external EEPROM which the I2C slave address is 0xA0, the rest space of EEPROM can be shared with other device in application.

### • I2C Programming Protocol

I2C master (PCH or MCU) WSRITES to I2C salve (PTN3460) protocol



I2C master (PCH or MCU) READS to I2C slave (PTN3460) protocol



### **PTN3460 Programming Guide**

Rev. 1.1 - 3/31/12

### 3. EDID Table

PTN3460 stores 7 EDID in configuration table in SRAM shown as fig 3.

| EDID N0 | Resolution        | EDID Description |
|---------|-------------------|------------------|
| 0       | 1024 x 768 @60Hz  | NXP Generic      |
| 1       | 1920 x 1080 @60Hz | NXP Generic      |
| 2       | 1920 x 1080 @60Hz | NXP Generic      |
| 3       | 1600 x 900 @60Hz  | Samsung LTM200KT |
| 4       | 1920 x 1080 @60Hz | Samsung LTM230HT |
| 5       | 1366 x 768 @60Hz  | NXP Generic      |
| 6       | 1600 x 900 @60Hz  | ChiMei M215HGE   |

### 4. Programming Flow Chart

### 4.1. EDID Emulation ON/OFF Setting Control Flow



### PTN3460 Programming Guide

Rev. 1.1 - 3/31/12



### PTN3460 Programming Guide

Rev. 1.1 - 3/31/12



Rev. 1.1 - 3/31/12

### 5. Configuration Registers

There are 128 bytes configuration registers in configuration table. Some of configuration registers have been defined and used in firmware, and some of them were reserved for further usage. Following are the detail explanations for the used configuration registers.

| Offset<br>(HEX) | Name                           | Size<br>(bytes) | Default<br>Value | Bit<br>field | Comment                                                                                                                                                                   |
|-----------------|--------------------------------|-----------------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0               | EDID                           | 128             |                  |              | EDID stored for emulation (7 EDID can be accessed from here, EDID selection is made through configuration register 0x85[2:0] - EDID ROM access control register.)         |
| 0x80            | DisplayPort interface control  | 1               | 00               | 7:2          | Reserved                                                                                                                                                                  |
|                 |                                |                 |                  | 1            | 0 = AUX P/N swapping disabled. 1 = AUX P/N swapping enabled                                                                                                               |
|                 |                                |                 |                  | 0            | 0 = Main link P/N swapping disabled. 1 = Main link P/N swapping enabled                                                                                                   |
| 0x81            | LVDS<br>interface<br>control 1 | 1               | 0x0B             | 7:6          | Reserved                                                                                                                                                                  |
|                 |                                |                 |                  | 5:4          | Color depth and data packing format  00 — VESA 24 bpp  01 — JEIDA 24 bpp  10 — VESA and JEIDA18 bpp  11 — reserved                                                        |
|                 |                                |                 |                  | 3            | Dual LVDS mode  0 — Single LVDS bus mode  1 — Dual LVDS bus mode                                                                                                          |
|                 |                                |                 |                  | 2            | Data enable polarity 0 — active LOW 1 — active HIGH                                                                                                                       |
|                 |                                |                 |                  | 1:0          | Clock output for dual LVDS mode.  00 — valid clock output on even bus only  01 — valid clock output on odd bus only  10 — reserved  11 — valid clock output on both buses |

## PTN3460 Programming Guide Rev. 1.1 - 3/31/12

| Offset<br>(HEX)                     | Name                           | Size<br>(bytes) | Default<br>Value | Bit<br>field | Comment                                                                                                                                                                          |
|-------------------------------------|--------------------------------|-----------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x82 LVDS<br>interface<br>control 2 |                                |                 | 0x03             | 7:6          | Reserved                                                                                                                                                                         |
|                                     |                                |                 |                  | 5:3          | LVDS clock frequency center spreading depth $000$ — no spreading $001$ — $0.5$ % $010$ — $1.0$ % $011$ — $1.5$ % $100$ — $2.0$ % $101$ — $2.5$ %                                 |
|                                     |                                | 1               |                  |              | 110 to 111 — reserved                                                                                                                                                            |
|                                     |                                |                 |                  | 2:0          | LVDS differential output swing level<br>000 — 150 mV<br>001 — 200 mV<br>010 — 250 mV<br>011 — 300 mV<br>100 — 350 mV<br>101 — 400 mV<br>110 — 450 mV<br>111 — reserved           |
| 0x83                                | LVDS<br>interface<br>control 3 |                 | 0x00             | 7:3          | Reserved                                                                                                                                                                         |
|                                     |                                |                 |                  | 2            | Differential pair (P/N) swapping<br>0 — normal (as indicated by pin name)<br>1 — swapped (P ↔ N)                                                                                 |
|                                     |                                | 1               |                  | 1            | Channel differential pairs order swapping $0$ — normal (as indicated by pin names) $1$ — channel swapped (A $\leftrightarrow$ D, B $\leftrightarrow$ CLK, C $\leftrightarrow$ C) |
|                                     |                                |                 |                  | 0            | LVDS bus swapping 0 — normal (as indicated by pin name) 1 — swapped (odd bus ↔ even bus)                                                                                         |

# PTN3460 Programming Guide Rev. 1.1 - 3/31/12

| Offset<br>(HEX) | Name                                | Size<br>(bytes) | Default<br>Value | Bit<br>field | Comment                                                                                                                 |
|-----------------|-------------------------------------|-----------------|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------|
| 0x84            | EDID<br>ROM<br>emulation<br>control | 1               | 0x09             | 7:4          | Reserved                                                                                                                |
|                 |                                     |                 |                  | 3:1          | Emulated EDID selection. Legal values are [06]                                                                          |
|                 |                                     |                 |                  | 0            | Enable EDID emulation  0 — emulation OFF, EDID is read from DDC bus  1 — emulation ON, EDID is read from internal flash |
| 0x85            | EDID<br>ROM<br>access<br>control    | 1               | 0x00             | 7:3          | Reserved                                                                                                                |
|                 |                                     |                 |                  | 2:0          | EDID to be accessed through offset 0127 legal values are [06]                                                           |
| 0x86            | PWM<br>minimum<br>frequency         | 3               | 0x000001         |              | 24-bit PWM minimum allowed frequency (big endian)                                                                       |
| 0x89            | PWM<br>maximum<br>frequency         | 3               | 0xFE0000         |              | 24-bit PWM maximum allowed frequency (big endian)                                                                       |
| 0x8C            | Fast link<br>training<br>control    | 1               | 0x08             | 7:4          | Reserved                                                                                                                |
|                 |                                     |                 |                  | 3:1          | Default equalizer setting for fast link training (default 4) Legal values are 0 (strong EQ) to 7 (no EQ)                |
|                 |                                     |                 |                  | 0            | Enable fast link training (default 0 = disabled) 0 - FALT is disabled 1 - FALT is enabled                               |

# AN11128 PTN3460 Programming Guide Rev. 1.1 - 3/31/12

| Offset<br>(HEX) | Name                    | Size<br>(bytes) | Default<br>Value | Bit<br>field |                                                                                                                                                                |  |
|-----------------|-------------------------|-----------------|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0x8D            | Pin config<br>control 1 |                 | 0x00             | 7            | Reserved                                                                                                                                                       |  |
|                 |                         |                 |                  | 6            | Use CFG1 & CFG2 for brightness control (CFG1 = Br+,<br>CFG2 = Br-)<br>0 - Don't use CFG1 & 2 for brightness control                                            |  |
|                 |                         |                 |                  |              | 1 - Use CFG1 & 2 for brightness control                                                                                                                        |  |
|                 |                         |                 |                  | 5            | Use CFG3 & CFG4 for EDID selection (CFG3:CFG4 = EDID ROM Emulation control)  0 - Don't use CFG3 & 4 for EDID selection                                         |  |
|                 |                         |                 |                  | 4            | 1 - Use CFG3 & 4 for EDID selection  Enable PWMI passtrough 0 - PWMI is disabled, PWM is internally generated (eDP) 1 - PWMI is enabled and used as PWM source |  |
|                 |                         | 1               |                  | 3            | PWMO disable (default 0 = enabled) 0 - PWMO output is enabled 1 - PWMO output is disabled (high impedance)                                                     |  |
|                 |                         |                 |                  | 2            | Pin 33 behavior (default 0 = PVCCEN) 0 - PVCCEN 1 - GPIO                                                                                                       |  |
|                 |                         |                 |                  | 1            | Pin 31 & 32 behavior (default 0 = LVDSE) 0 - LVSDE_P and LVSDE_N pins 1 - BKLTEN and PWMO pins                                                                 |  |
|                 |                         |                 |                  | 0            | Pin 23 behavior (default 0 = CFG3) 0 - CFG3 configuration input 1 - BKLTEN (overrides pin 32 configuration)                                                    |  |
| 0x8E            | Pin config<br>control 2 |                 | 0x00             | 7:4          | Reserved                                                                                                                                                       |  |
|                 |                         |                 |                  | 3            | Override CFG4 pin 0 - CFG4 pin has priority on I2C/Flash configuration table 1 - I2C/Flash configuration table overrides CFG1 pin                              |  |
|                 |                         | 1               |                  | 2            | Override CFG3 pin 0 - CFG3 pin has priority on I2C/Flash configuration table 1 - I2C/Flash configuration table overrides CFG1 pin                              |  |
|                 |                         |                 |                  | 1            | Override CFG2 pin 0 - CFG2 pin has priority on I2C/Flash configuration table 1 - I2C/Flash configuration table overrides CFG1 pin                              |  |

# PTN3460 Programming Guide Rev. 1.1 - 3/31/12

|  | 0 | Override CFG1 pin                                                                                               |
|--|---|-----------------------------------------------------------------------------------------------------------------|
|  |   | 0 - CFG1 pin has priority on I2C/Flash configuration table 1 - I2C/Flash configuration table overrides CFG1 pin |

| Offset<br>(HEX) | Name                       | Size<br>(bytes) | Default<br>Value | Bit<br>field | Comment                                                                            |  |
|-----------------|----------------------------|-----------------|------------------|--------------|------------------------------------------------------------------------------------|--|
| 0x8F            | PWM<br>default<br>bitcount | 1               | 0x0C             | 7:0          | O Default bitcount for PWM control value in DPCD register 0x724                    |  |
| 0x90-<br>91     | PWM<br>value               | 2               | 0x07FF           | 7:0          | Actual value of PWM in DPCD registers 0x722 & 0x723                                |  |
| 0x92            | PWM<br>default<br>freq     | 1               | 0x00             | 7:0          | Default value for PWM frequency in DPCD register 0x728                             |  |
| 0x93            | Panel T3<br>timing         | 1               | 0x0A             | 7:0          | Minimum T3 timing of panel power sequence to enforce (expressed in units of 50ms)  |  |
| 0x94            | Panel T12<br>timing        | 1               | 0x14             | 7:0          | Minimum T12 timing of panel power sequence to enforce (expressed in units of 50ms) |  |
| 0x95            | Backlight control          | 1               | 0x00             | 7:1          | Reserved                                                                           |  |
|                 |                            |                 |                  | 0            | Backlight disable 0 - Backlight enabled 1 - Backlight disabled                     |  |
| 0x96            | Panel T2<br>delay          | 1               | 0x01             | 7:1          | Reserved                                                                           |  |
|                 | ,                          |                 |                  | 0            | Enable T2 delay 0 - T2 is not delayed 1 - T2 is delayed by 16 ms                   |  |
| 0x97            | Panel T4<br>timing         | 1               | 0x02             | 7:0          | Minimum T4 timing of panel power sequence to enforce (expressed in units of 50ms)  |  |
| 0x98            | Panel T5<br>delay          | 1               | 0x01             | 7:1          | Reserved                                                                           |  |
|                 |                            |                 |                  | 0            | Enable T5 delay<br>0 - T5 is not delayed<br>1 - T5 is delayed by 16 ms             |  |

# PTN3460 Programming Guide Rev. 1.1 - 3/31/12

| Offset<br>(HEX) | Name                             | Size<br>(bytes) | Default<br>Value | Bit<br>field | Comment                                                                                                                       |
|-----------------|----------------------------------|-----------------|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|
| 0x99 -<br>0xD6  | Reserved                         |                 | 0x00             |              |                                                                                                                               |
| 0xD7<br>- E7    | FoA Mailbox                      | 17              | 0x00             |              | Byte area mapped to the FoA mailbox                                                                                           |
| 0xE8            | Flash<br>command                 | 1               | 0x00             | 7:0          | Flash operation to be executed (default 0)<br>0 - Erase only<br>1 - Erase and flash                                           |
| 0xE9            | Flash magic<br>number            | 2               | 0x00             | 7:0          | Must be equal to 0x7845 for the flash command to be actually processed (big endian) (default 0)                               |
| OxEB            | Flash trigger                    | 1               | 0x00             | 7:0          | If 0x56 is written in this register and if Flash magic number is correct, then the flash command will be executed (default 0) |
| 0xEC            | Configuration<br>magic<br>number | 4               | 0x12345678       | 7:0          | Must be equal to 0x12345678 for PTN3460 to consider flashed configuration table (big endian) (default 0)                      |

### 6. Programming Examples

### 6.1. Panel Brightness Control

// Register 0x90, 0x91 in configuration table are used for controlling PWM output for panel brightness control.

i2c\_start(); // Generates I2C START condition

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

// Select I2C Register 0x90 i2c\_write(0x90);

// Register 0x90 0x91: PWM value registers i2c write(0x07);

i2c\_write(0xFF); // Write PWM value 0x07FF to register 0x90, 0x91

i2c stop(): // Sends I2C stop-condition

### 6.2. Panel LVDS channel and data format setting

// Register 0x80 in configuration table is used for LVDS channel and data format setting

i2c\_start(); // Generates I2C START condition

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

i2c write(0x80); // Register 0x80: LVDS interface control 1 register

i2c\_write(0x0B); // Set dual LVDS channel, VESA 24 bpp (bit per pixel)

i2c\_stop(); // Sends I2C stop-condition

### 6.3. LVDS clock frequency spreading depth setting

// Register 0x82 bit [5:3] in configuration table is used for LVDS clock frequency spreading depth setting

// Generates I2C START condition i2c start();

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

// Select register 0x82: LVDS interface control 2 i2c\_write(0x82);

 $i2c_write(0x10)$ ; // Set Register 0x82 bit [5:3] = 0b010: Set 1% spreading

i2c stop(); // Sends I2C stop-condition

#### 6.4. LVDS differential output swing level

// Register 0x82 bit [2:0] in configuration table is used for LVDS differential output swing level

// Generates I2C START condition i2c start();

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

i2c\_write(0x82); // Select register 0x82: LVDS interface control 2

i2c\_write(0x10); // Set Register 0x82 bit [2:0] = 0b010: Set 250 mV swing level

i2c stop(); // Sends I2C stop-condition

### 6.5. Panel backlight control

// Register 0x95 bit [0] in configuration table is used for panel backlight control

// Generates I2C START condition i2c\_start();

i2c write(0x40); // Select PTN3460 slave address (DEV CFG pin = low)

i2c\_write(0x95); // Select register 0x95: Backlight control

i2c\_write(0x00); // Set Register 0x95 bit [0] = 0: Set panel backlight off

i2c stop(); // Sends I2C stop-condition

### 6.6. PWM output frequency setting

// Register 0x8F, 0x92 in configuration table are used for PWM output frequency setting

// PWM output frequency formula is Fpwm = 27000000 / (2^Pn \* Fd)

// Pn is register 0x8F, Fd is register 0x92

// Generates I2C START condition i2c\_start();

```
i2c_write(0x40);
                  // Select PTN3460 slave address (DEV_CFG pin = low)
i2c write(0x8F);
                  // Register 0x8F: PWM default bitcount
i2c_write(0x0C);
                 // Register 0x8F = 0x0C
i2c_stop();
                 // Sends I2C stop-condition
                  // Generates I2C START condition
i2c_start();
i2c_write(0x40);
                  // Select PTN3460 slave address (DEV_CFG pin = low)
                 // Register 0x92: PWM default freq
i2c write(0x92);
i2c_write(0x2e); // Register 0x92 = 0x1e,
                 // Fpwm = 27000000 / (2^12 * 0x1e) = 27000000 / (4096 * 30) = ~ 220Hz
i2c_stop();
                 // Sends I2C stop-condition
```

### 6.7. Program CFG3, CFG4 pins as panel selection pins

// Register 0x8D bit 5 (Pin config control 1) in configuration table is used to set CFG3 and CFG4 // pins for EDID (panel) selection.

```
i2c_start();
                   // Generates I2C START condition
                   // Select PTN3460 slave address (DEV CFG pin = low)
i2c write(0x40);
i2c_write(0x8D);
                   // Register 0x8D: Pin config control 1 register
i2c_write(0x20);
                   // Register 0xE8 = 0x20: set CFG3 and CFG4 pins for EDID selection
                  // Sends I2C stop-condition
i2c_stop();
// Set CFG 3pin = 0, CFG4 pin = 0 to select emulation EDID no. 0 (Panel A)
// Set CFG 3pin = 0, CFG4 pin = 1 to select emulation EDID no. 1 (Panel B)
// Set CFG 3pin = 1, CFG4 pin = 0 to select emulation EDID no. 2 (Panel C)
// Set CFG 3pin = 1, CFG4 pin = 1 to select emulation EDID no. 3 (Panel D)
```

### 6.8. Write EDID No 0 - 6 to configuration table in internal SRAM

// Register 0x85 bit [2:0] (EDID ROM access control) is used to set where the EDID is going to be written to EDID 0 – 6 in 1k bytes configuration table in PTN3460 internal SRAM.

// Generates I2C START condition i2c start();

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

// Register 0x85: EDID ROM access control i2c\_write(0x85);

i2c\_write(0x02); // Register 0x85 = 0x02, the EDID writes to I2C register 0x00 - 0x7F will be

// written to EDID 2 in configuration table in internal SRAM

i2c\_stop(); // Sends I2C stop-condition

i2c start(); // Generates I2C START condition

i2c write(0x40); // Select PTN3460 slave address (DEV CFG pin = low)

i2c\_write(0x00); // Set EDID writing from I2C Register 0x00

i2c\_write(128); // Write 128 bytes EDID to EDID 2 into configuration table

// Sends I2C stop-condition i2c\_stop();

### 6.9. Program configuration table into PTN3460 internal flash memory

// Register 0xE8 – 0xEB configuration table are used for programming configuration table into PTN3460 internal flash memory

i2c\_start(); // Generates I2C START condition

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

i2c\_write(0xE8); // Register 0xE8: Flash operation register

// Register 0xE8 = 0x01: Perform erase and then flash operation i2c write(0x01);

i2c\_write(0x78); // Register 0xE9, EA = 0x7845: Flash magic number. Only flash magic

i2c\_write(0x45); // number is correct, then flash operation can be executed

// Register 0xEB = 0x56: Flash trigger register. The 1K configuration table i2c write(0x56);

// will be written into PTN3460 internal flash memory.

### N3460 Programming Guide

i2c\_stop(); // Sends I2C stop-condition

```
6.10. Select emulation EDID No 0
// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID
// selection
i2c start();
                   // Generates I2C START condition
i2c_write(0x40);
                   // Select PTN3460 slave address (DEV_CFG pin = low)
i2c_write(0x84);
                   // Register 0x84: EDID ROM emulation control register
i2c write(0x01);
                   // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 0: Select EDID no 0
// for EDID emulation data.
i2c stop();
                   // Sends I2C stop-condition
// When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 0
// from PTN3460.
// Emulation EDID no 0 in configuration table in PTN3460 firmware is 1024x768 @ 60Hz
// and the EDID data is as following.
// 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x3B, 0x10, 0x60, 0x34, 0x00, 0x00, 0x00, 0x00,
// 0x26, 0x15, 0x01, 0x03, 0x68, 0x1E, 0x16, 0x78, 0xEE, 0x37, 0x25, 0x9E, 0x58, 0x4A, 0x97, 0x26,
// 0x19, 0x50, 0x54, 0xAD, 0xEE, 0x00, 0x01, 0x01,
// 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x64, 0x19, 0x00, 0x40, 0x41, 0x00, 0x26, 0x30, 0x18, 0x88,
// 0x36, 0x00, 0x30, 0xE4, 0x10, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0xFD, 0x00, 0x32, 0x4C, 0x1E,
// 0x3F, 0x08, 0x00, 0x0A, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x41,
// 0x49, 0x4F, 0x20, 0x50, 0x43, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0xFF,
// 0x00, 0x4E, 0x58, 0x50, 0x20, 0x50, 0x54, 0x4E, 0x33, 0x34, 0x36, 0x30, 0x20, 0x20, 0x00, 0xAF,
```

#### 6.11. Select emulation EDID No 1

// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID selection



### PTN3460 Programming Guide

Rev. 1.1 - 3/31/12

```
i2c_start();
                   // Generates I2C START condition
                    // Select PTN3460 slave address (DEV CFG pin = low)
i2c write(0x40);
i2c_write(0x84);
                   // Register 0x84: EDID ROM emulation control register
i2c_write(0x03);
                    // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 1: Select EDID no 1
// for EDID emulation data.
                   // Sends I2C stop-condition
i2c stop():
// When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 1
// from PTN3460.
// Emulation EDID no 1 in configuration table in PTN3460 firmware is 1920 x 1080 @ 60Hz
// and the EDID data is as following.
// x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x3b, 0x10, 0x36, 0x92, 0x89, 0x25, 0x71, 0x02,
// 0x20, 0x13, 0x01, 0x04, 0xa5, 0x34, 0x20, 0x78, 0x26, 0x6e, 0xa1, 0xa7, 0x55, 0x4c, 0x9d, 0x25,
// 0x0e, 0x50, 0x54, 0x00, 0x00, 0x00, 0xd1, 0xc0, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
// 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x02, 0x3a, 0x80, 0x18, 0x71, 0x38, 0x2d, 0x40, 0x58, 0x2c,
// 0x45, 0x00, 0xe0, 0x0e, 0x11, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 0xff, 0x00, 0x32, 0x41, 0x39,
// 0x33, 0x32, 0x30, 0x45, 0x41, 0x30, 0x4b, 0x30, 0x0a, 0x20, 0x00, 0x00, 0x00, 0xfc, 0x00, 0x50,
// 0x54, 0x4e, 0x33, 0x34, 0x36, 0x30, 0x20, 0x20, 0x20, 0x0a, 0x20, 0x20, 0x00, 0x00, 0x00, 0x00,
// 0x00, 0xCD,
6.12. Select emulation EDID No 2
// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID
// selection
                   // Generates I2C START condition
i2c_start();
i2c_write(0x40);
                    // Select PTN3460 slave address (DEV_CFG pin = low)
i2c_write(0x84);
                   // Register 0x84: EDID ROM emulation control register
i2c write(0x05);
                    // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 2: Select EDID no 2
for EDID emulation data.
i2c stop();
                   // Sends I2C stop-condition
```



### PTN3460 Programming Guide

Rev. 1.1 - 3/31/12

```
// When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 2 // from PTN3460.
```

// Emulation EDID no 2 in configuration table in PTN3460 firmware is  $1920 \times 1080$  @ 60Hz // and the EDID data is as following.

```
// 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x3b, 0x10, 0x01, 0x10, 0x01, 0x00, 0x00, 0x00,
```

// 0x27, 0x14, 0x01, 0x03, 0x80, 0x33, 0x1d, 0x78, 0xee, 0x0c, 0xb0, 0xa2, 0x57, 0x51, 0x9f, 0x27,

// 0x0a, 0x50, 0x54, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,

// 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x9d, 0x34, 0x80, 0x64, 0x70, 0x38, 0x1f, 0x40, 0x1e, 0x14,

// 0x35, 0x00, 0xfd, 0x1e, 0x11, 0x00, 0x00, 0x1e, 0x9d, 0x34, 0x80, 0x64, 0x70, 0x38, 0x1f, 0x40,

// 0x28, 0x14, 0xc7, 0x00, 0xfd, 0x1e, 0x11, 0x00, 0x00, 0x1e, 0x00, 0x00, 0x00, 0xfc, 0x00, 0x41,

// 0x49, 0x4f, 0x20, 0x50, 0x43, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0xfd,

 $//\ 0x00,\ 0x32,\ 0x4b,\ 0x37,\ 0x53,\ 0x08,\ 0x00,\ 0x0a,\ 0x20,\ 0x20,\ 0x20,\ 0x20,\ 0x20,\ 0x20,\ 0x00,\ 0x0c,$ 

#### 6.13. Select emulation EDID No 3

// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID selection

i2c start(); // Generates I2C START condition

i2c\_write(0x40); // Select PTN3460 slave address (DEV\_CFG pin = low)

i2c\_write(0x84); // Register 0x84: EDID ROM emulation control register

 $i2c_write(0x07);$  // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 3: Select EDID no 3

//for EDID emulation data.

i2c\_stop(); // Sends I2C stop-condition

// When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 3 from // PTN3460.

// Emulation EDID no 3 in configuration table in PTN3460 firmware is 1600 x 900 @ 60Hz // and the EDID data is as following.

// 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x3B, 0x10, 0x4a, 0x31, 0x00, 0x00, 0x00, 0x00,

// 0x00, 0x14, 0x01, 0x01, 0x80, 0x33, 0x1d, 0x78, 0x0a, 0x87, 0xf5, 0x94, 0x57, 0x4f, 0x8c, 0x27,

Rev. 1.1 - 3/31/12

```
// 0x27, 0x50, 0x54, 0x00, 0x00, 0x00, 0x01, 0x00, 0x2e, 0x40, 0x00, 0x62, 0x84, 0x22, 0x30, 0x58, 0xa8, // 0x35, 0x00, 0xbb, 0xf9, 0x10, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x41, 0x49, 0x4f, 0x20, 0x50, 0x43, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6, // 0x00, 0x31, 0x38, 0x34, 0x48, 0x54, 0x30, 0x33, 0x2d, 0x30, 0x31, 0x0a, 0x20, 0x20, 0x30, 0x30, 0x31, 0x0a, 0x20, 0x00, 0x30, 0x30
```

#### 6.14. Select emulation EDID No 4

// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID selection

```
i2c start();
                   // Generates I2C START condition
i2c write(0x40);
                   // Select PTN3460 slave address (DEV CFG pin = low)
i2c_write(0x84);
                   // Register 0x84: EDID ROM emulation control register
i2c write(0x09);
                    // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 4: Select EDID no 4
for EDID emulation data.
                   // Sends I2C stop-condition
i2c_stop();
// When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 4
// from PTN3460.
// The emulation EDID no 4 in configuration table in PTN3460 firmware is 1920 x 1080 @ 60Hz
// and the data is as following.
// 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x3B, 0x10, 0x11, 0x11, 0x01, 0x00, 0x00, 0x00,
// 0x2B, 0x15, 0x01, 0x03, 0x80, 0x35, 0x1F, 0x78, 0xEE, 0x9A, 0x80, 0xA3, 0x58, 0x51, 0x9E, 0x25,
// 0x0E, 0x50, 0x54, 0x00, 0x00, 0x00, 0x01, 0x01,
// 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x40, 0x38, 0x80, 0x00, 0x71, 0x38, 0x14, 0x40, 0x58, 0x2C,
// 0x45, 0x00, 0xFE, 0x1E, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x4F, 0x70, 0x74,
// 0x69, 0x50, 0x6C, 0x65, 0x78, 0x20, 0x39, 0x30, 0x31, 0x30, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x0A,
```

// 0x20, 0x00, 0x00, 0x00, 0xFC,

// 0x00, 0x0A, 0x20, 0x00, 0x1D,

#### 6.15. Select emulation EDID No 5

// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID selection

```
// Generates I2C START condition
i2c start();
i2c write(0x40);
                    // Select PTN3460 slave address (DEV CFG pin = low)
i2c write(0x84);
                   // Register 0x84: EDID ROM emulation control register
i2c_write(0x0B);
                    // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 5: Select EDID no 5
for EDID emulation data.
i2c_stop();
                   // Sends I2C stop-condition
// When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 5
// from PTN3460.
// Emulation EDID no 5 in configuration table in PTN3460 firmware is 1366 x 768 @ 60Hz
// and the EDID data is as following.
// 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x3B, 0x10, 0x60, 0x34, 0x84, 0x0D, 0x00, 0x00.
// 0x26, 0x15, 0x01, 0x03, 0x80, 0x33, 0x1D, 0x78, 0x0A, 0x87, 0xF5, 0x94, 0x57, 0x4F, 0x8C, 0x27,
// 0x27, 0x50, 0x54, 0x00, 0x00, 0x00, 0x01, 0x01,
// 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x31, 0x3E, 0x1C, 0x56, 0xA0, 0x50, 0x00, 0x16, 0x30, 0x30, 0x20,
// 0x25, 0x00, 0x99, 0xE6, 0x10, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x00, 0x00,
// 0x00, 0x00, 0x00, 0x00, 0x00, 0x1B, 0xE8, 0x04, 0x5A, 0x00, 0x00, 0x00, 0x00, 0xFE, 0x00, 0x4E,
// 0x58, 0x50, 0x20, 0x00, 0x00, 0x00, 0xFE,
// 0x00, 0x41, 0x49, 0x4F, 0x20, 0x50, 0x43, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0xC6,
```

#### 6.16. Select emulation EDID No 6

// Register 0x84 in configuration table is used for EDID ROM emulation control and 7 EDID selection



### PTN3460 Programming Guide

Rev. 1.1 - 3/31/12

i2c\_start(); // Generates I2C START condition // Select PTN3460 slave address (DEV CFG pin = low) i2c write(0x40); i2c\_write(0x84); // Register 0x84: EDID ROM emulation control register // 0x84 bit [0] = 1: EDID emulation is on. 0x84 bit [3:1] = 6: Select EDID no 6 i2c write(0x0D); for EDID emulation data. i2c\_stop(); // Sends I2C stop-condition // When GPU uses I2C-Over-Aux to read EDID from PTN3460, it will get emulation EDID no 6 // from PTN3460. // Emulation EDID no 6 in configuration table in PTN3460 firmware is 1600 x 900 @ 60Hz // and the data is as following. // 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x3B, 0x10, 0xBF, 0x01, 0x01, 0x00, 0x50, 0x63, // 0x0C, 0x14, 0x01, 0x04, 0xA5, 0x30, 0x1B, 0x78, 0x22, 0x35, 0x85, 0xA6, 0x56, 0x48, 0x9A, 0x24, // 0x12, 0x50, 0x54, 0x21, 0x08, 0x00, 0x81, 0xC0, 0x95, 0xC0, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, // 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2F, 0x26, 0x40, 0xA0, 0x60, 0x84, 0x1A, 0x30, 0x30, 0x20, // 0x35, 0x00, 0xDD, 0x0C, 0x11, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0xFD, 0x00, 0x38, 0x4B, 0x1E, // 0x53, 0x11, 0x00, 0x0A, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0xFC, 0x00, 0x41, // 0x49, 0x4F, 0x20, 0x50, 0x43, 0x0a, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x00, 0x00, 0x00, 0xFF, // 0x00, 0x4C, 0x35, 0x36, 0x30, 0x35, 0x31, 0x37, 0x39, 0x34, 0x33, 0x30, 0x32, 0x0A, 0x01, 0xAD