Chapter 1 B: Picard's Method

(a) Use Picard's method with $\psi_0(x) = 1$ to obtain the next four successive approximations of the solution to

$$y'(x) = y(x), \quad y(0) = 1$$

Show that these approximations are just the partial sums of the Maclaurin series for the actual solution e^x

Solution Given that

$$y'(x) = y(x), \quad y(0) = 1$$
 (1)

Also given that

$$f(x,y) = y(x) \tag{2}$$

According to picards theorem, we have

$$\phi_{n+1}(x) = y_0 + \int_{x_0}^x f(t, \phi_0(t)) dt$$

$$= 1 + \int_0^x 1 dt$$

$$= 1 + x$$
(3)

$$\phi_2(x) = y_0 + \int_0^x f(t, \phi_1(t))dt$$

$$= 1 + \int_0^x f(t, (1+t))dt$$

$$= 1 + x + \frac{x^2}{2}$$
(4)

$$\phi_3(x) = y_0 + \int_0^x f(t, \phi_2(t)) dt$$

$$= 1 + \int_0^x f\left(t, \left(1 + t + \frac{t^2}{2}\right)\right) dt$$

$$= 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$$
(5)

$$\phi_4(x) = y_0 + \int_0^x f(t, \phi_3(t)) dt$$

$$= 1 + \int_0^x f\left(t, \left(1 + t + \frac{t^2}{2}\right)\right) dt$$

$$= 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$$
(6)

By observing the pattern as n goes, it is enough to say that

$$\phi_n(x) = 1 + x + x^2 + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!}$$

This is the partial sum of the Maclaurian series of e^x .

(b) Use Picard's method with $\psi + 0(x) = 0$ to obtain the next three successive approximations of the solution to the nonlinear problem

$$y'(x) = 3x - [y(x)^2], \quad y(0) = 0$$

Graph these approximations for $0 \le x \le 1$.

Solution

$$y(x_1) = y(x_0) + \int_{x_0}^x f(x, y) dx$$

= $f(x, y) = 2x - y^2$
 $y(0) = 0$ (1)

We assume that $x_0 = 0, x_1 = 0.25$ then

$$\phi_{1}(x) = y(0) + \int_{0}^{x} \phi_{0}(x)dx = 0 + \int_{0}^{x} 2x - 0dx = x^{2}$$

$$\phi_{2}(x) = y(0) + \int_{0}^{x} \phi_{1}(x)dx = 0 + \int_{0}^{x} (2x - x^{2})dx = x^{2} - ex^{2} + ex^{2} - ex^{2} + ex^{2} +$$

If x = 0.25, $\phi_1(x) = 0.0625$, $\phi_2(x) = 0.05729$, $\phi_3(x) = 0.05761$, $\phi_4(x) = 0.0576009$. Thus, the better approximation at x = 0.25 is 0.0576.

If
$$x = 0.5$$
, $\phi_1(x) = 0.25$, $\phi_2(x) = 0.2083$, $\phi_3(x) = 0.203125$, $\phi_4(x) = 0.21302$.

If
$$x = 0.75$$
, $\phi_1(x) = 0.5625$, $\phi_2(x) = 0.421875$, $\phi_3(x) = 0.44824$, $\phi_4(x) = 0.605419$.

Figure 1:

(c) In Problem 29 in Exercises 1.2, we showed that the initial value problem

$$y'(x) = 3 \left[y(x)^{2/3}, y(2) = 0 \right]$$

does not have a unique solution. Show that Picard's method beginning with $\psi_0(x) = 0$ converges to the solution y(x) = 0, whereas Picard's method beginning with $\psi_0(x) = x - 2$ converges to the second solution $y(x) = (x - 2)^3$.

Solution