The load line

V65= VDD R11R2 = 5V

 \circ $V_{DD} = 10V$

 $R_1 = 10k$

 $R_3 = 2k$

Load line: V_{DS}= V_{DD}- I_{DS} x R_D

The quiescent point (Q) is determined by intersecting the characteristic curve of MOSFET and the load line.

2.3 The MOSFET in switching mode

The transistor operates between cut-off and linear regions

Ve = V_{DD} → Mosfet ≈ R_{on} (very low resistance - ideally a closed switch-ON)

The MOSFET in switching mode (2)

$$Ve = V_{GS}$$

Two state:

•Ve
$$<$$
 $V_T \rightarrow$ Cut-off \rightarrow $V_{OH} = V_{DD} = "1"$

$$R_{ON} \approx \frac{1}{2 \cdot K(V_{GS} - V_T)}; V_{OL} = V_{DD} \times \frac{R_{ON}}{R_D + R_{ON}}$$

if
$$R_{on} << R_D \rightarrow V_{OL} \approx 0V = "0"$$

There is static power consumption (I > 0)

The MOSFET in switching mode (3)

The MOSFET in switching mode (4)

Ve

Example:

Design an NMOS inverter with pull-up resistor

Data:

Power consumption at low level = 0.25 mW

$$V_{OL} = 0.5V, V_{OH} = V_{DD} = 5V$$

Transistor: $V_T = 1V$

Find out R_{on} and K

LOW LEVEL! VO = VOS= VOL = 0.5V PL= VDD · JOS(L); JOS(L)= PL = 0.25 = 0.05 mA VOL = 0.5V VOH= VDD=5V P1=0.25mW