Prova scritta di Calcolo Scientifico

Udine, 9 settembre 2020

- 1. Sia $\mathcal{F}=\mathcal{F}(2,t,e_{\mathrm{max}},e_{\mathrm{min}})$ l'insieme di numeri di macchina con l'arrotondamento.
 - Determina gli interi $t, e_{\text{max}}, e_{\text{min}}$ in modo che $realmin = 1/16, e_{\text{max}} = t$, e realmax/u = 56
 - Siano dati $x=(1.\overline{101})_2$ e $y=(10.\overline{101})_2$. Determina $\tilde{x}=fl(x)\in\mathcal{F}, \, \tilde{y}=fl(y)\in\mathcal{F}$ e $\tilde{z}=\tilde{x}fl(+)\tilde{y}\in\mathcal{F}$.
 - * Scrivi $x, y \in \tilde{x}, \tilde{y}$ come frazioni di numeri interi in base 10.
 - Determina l'esponente intero e tale che $\tilde{z} \cdot 2^e = realmin$. Qual è il risultato di $realmax \tilde{z}$? Giustifica la risposta.
- 2. Si vuole calcolare la funzione y = f(x) con $f(x) = e^{g(x)}$, g funzione reale.
 - Scrivi il numero di condizionamento di f in funzione di quello di g. Sia $g(x) = \sqrt{1 x^2}$. Studia il condizionamento della funzione f(x) con x che varia nel campo di esistenza di f.
 - Supponi che le funzioni $\exp(x)$, \sqrt{x} forniscano delle approssimazioni i cui errori relativi sono maggiorati dalla precisione di macchina u. Studia la stabilità in avanti dell'algoritmo che calcola la funzione f con x numero di macchina.
 - In presenza di instabilità per alcuni valori di x, proponi una variante stabile dell'algoritmo.
- 3. Sia $f(x) = -2x^3 + 2x^2 + 10x + 6$.
 - Disegna il grafico di f. Determina le radici $\alpha, \beta, \cos \alpha < \beta$.
 - Studia la convergenza del metodo di Newton a α e β .
 - Considera le successioni ottenute con il metodo di Newton con i seguenti valori iniziali
 - (a) $x_0 = -2$
 - (b) $x_0 = 0$
 - (c) $x_0 = 1/3$
 - (d) $x_0 = 5/3$
 - (e) $x_0 = 2$
 - (f) $x_0 = 3$

Sono convergenti? Se convergenti, convergono ad α o a β ? Qual è l'ordine di convergenza? Giustifica tutte le risposte.

Sia $g(x) = x - \frac{f(x)}{m}$. Verifica che α, β sono punti fissi di g e considera il metodo iterativo $x_{k+1} = g(x_k), k = 0, 1$

- Determina m in modo che il metodo sia localmente convergente in maniera monotona a β con fattore asintotico di convergenza pari a $\frac{1}{5}$. La successione ottenuta con $x_0 = 2$ è convergente? Giustifica la risposta.
- * Determina m in modo che il metodo sia localmente convergente ad β con ordine di convergenza quadratico. La successione ottenuta con $x_0 = 2$ è convergente? Giustifica la risposta.
- Sia m=20. Studia la convergenza locale ad α del metodo. La successione ottenuta con $x_0=0$ è convergente? Se convergente, qual è l'ordine di convergenza? Giustifica la risposta.
- 4. Sia data la matrice

$$A = \begin{pmatrix} 2 - \alpha & 2 & \alpha + 1 \\ 2 & 1 & -2 \\ \alpha + 1 & -2 & 5 \end{pmatrix}.$$

- Calcola la fattorizzazione LU di A. Per quale scelta del parametri α esiste tale fattorizzazione?
- Studia al variare di α il comportamento del metodo di Gauss con il pivot parziale al primo passo.
- Sia $\alpha = -6$. Calcola la fattorizzazione PA = LU con la tecnica del pivot parziale.
- \star Proponi un algoritmo per risolvere il sistema Ux=d. Scrivi la sua pseudocodifica e analizzane la complessità computazionale.
- 5. Sia $f(x) = \log_3(1+2x^2)$. Dati i punti $P_0 = (0, f(0)), P_1 = (1, f(1))$ e $P_2 = (2, f(2))$.
 - Determina il polinomio p che interpola i tre punti nella forma di Newton.
 - Determina il polinomio \tilde{p} che interpola i tre punti e $P_3=(-2,f(-2))$ nella forma di Newton.
 - Determina il polinomio q di primo grado di miglior approssimazione dei quattro punti P₀, P₁, P₂ e P₃ nel senso dei minimi quadrati.
- * Si vogliono stimare i parametri r, I_0 della funzione $I(t) = e^{rt}I_0, t \ge 0$ che descrive la crescita del numero degli infetti nello sviluppo di un'epidemia nella fase iniziale. Siano I_k , il numero degli infetti rilevati al tempo $t_k > 0, k = 1, 2, \dots, N$. Ponendo $I_0 = e^{\ell}$, scrivi il sistema sovradeterminato da risolvere per determinare r, ℓ . (Suggerimento: scrivi $I(t) = e^{f(t)}$.)