

Sistemas Operativos

Introducción a los Sistemas Operativos

Eloy Anguiano

Rosa Carro

Ana González

Escuela Politécnica Superior Universidad Autónoma de Madrid

Definición

Evolución

Estructura de los Sistemas Operativos

Sistemas Operativos

El futur

Parte I

Introducción a los Sistemas Operativos

Definición Sistema informático

Introducción a los Sistemas Operativos

Definición

Sistema informático

¿Qué es un Sistema Operativo? Objetivos de un Sistema Operativo

Niveles de un sistema informático

Servicios de un Sistema Operativo Características

Evolución

Estructura de los Sistemas Operati

Sistemas Op modernos

El futuro

Sistema informático

Sistema informatio

¿Qué es un Sistema Operativo?

Objetivos de un Sistema Operativo Niveles de un sistema informático Servicios de un Sistema Operativo Características

El núcleo Evolución

Estructura de los Sistemas Operativ

Sistemas Oper

El futuro

Definición ¿Qué es un Sistema Operativo?

- Programa que controla la ejecución de los programas de aplicación permitiendo un acceso eficiente a recursos compartidos limitados.
- Actúa como interfaz entre las aplicaciones del usuario y el hardware:
 - Simplifica la labor del programador.
 - Una interfaz es un conjunto de comandos y/o métodos que permiten la intercomunicación del programa con:
 - Cualquier otro programa
 - Módulos del propio programa
 - Elementos internos o externos (los periféricos son controlados por interfaces)

Definicion

Sistema informático ¿Qué es un Sistema

Objetivos de un

Sistema Operativo
Niveles de un sistema informático
Servicios de un Sistema Operativo
Características

El núcleo Evolución

Sistemas Operativos

modernos Operat

El futuro

DefiniciónObjetivos de un Sistema Operativo

- Comodidad
 - Hace que un computador sea más cómodo de utilizar. Abstracción
- Eficiencia
 - Permite un uso eficiente de los recursos de un sistema informático. Concurrencia
- Capacidad de evolución
 - Permite el desarrollo efectivo, la verificación y la introducción de nuevas funciones en el sistema sin interferir en los servicios. Modularidad

Definición

Sistema informático ¿Qué es un Sistema Óperativo?

Obietivos de un

Sistema Operativo
Niveles de un sistema

informático
Servicios de un

Sistema Operativo Características El núcleo

Evolución

Sistemas Operati

Sistemas Operat modernos

El futuro

DefiniciónNiveles de un sistema informático

Definició

Sistema informático ¿ Qué es un Sistema Operativo? Objetivos de un Sistema Operativo Niveles de un sistema informático.

Servicios de un Sistema Operativo Características

El núcleo

Evolución

Estructura de los Sistemas Operativos

Sistemas Operati

El futuro

DefiniciónServicios de un Sistema Operativo

- O Creación de programas:
 - Editores.
 - Compiladores.
 - Depuradores.
 - Profilers.
- Acceso ordenado a los dispositivos de E/S.
- Acceso controlado a los archivos.
- Acceso al sistema.
- Detección y respuesta a errores.
 - Errores internos y externos del hardware:
 - Error de memoria.
 - Fallo de dispositivos.
 - Errores de software:
 - Desbordamiento aritmético. Overflow
 - Acceso a una posición prohibida de memoria. Segmentation Fault
 - Incapacidad del sistema operativo para satisfacer la solicitud de una aplicación.

Definició

Sistema informático ¿ Qué es un Sistema Operativo?
Objetivos de un Sistema Operativo
Niveles de un sistema informático.

Servicios de un Sistema Operativo Características

El núcleo

Evolución

Sistemas Operativ

Sistemas Oper modernos

El futuro

Definición Servicios de un Sistema Operativo

Contabilidad:

- Recoger estadísticas.
- Supervisar su rendimiento.
- Utilizado para anticiparse a las mejoras futuras. Adaptabilidad: interfaces adaptativas.
- Utilizado para los usuarios de cuotas.

Definició

Sistema informático ¿ Qué es un Sistema Operativo? Objetivos de un Sistema Operativo Niveles de un sistema informático Servicios de un Sistema Operativo Sistema Operativo

Características

El núcleo

Evolución

Sistemas Operativos

Sistemas Ope modernos

El futur

Definición Características

- Funciona de la misma manera que el software normal de un computador:
 - Es un programa ejecutado por el procesador.
 - Compite, por tanto, por el procesador y otros recursos.
- El sistema operativo abandona el control del procesador para ejecutar otros programas.

Definici

Sistema informático ¿Qué es un Sistema Operativo? Objetivos de un Sistema Operativo Niveles de un sistema informático Servicios de un Sistema Operativo Características

El núcleo

Evolución

Sistemas Operation

Sistemas Opera modernos

El futuro

Definición El núcleo

- Parte del sistema operativo que reside en la memoria principal.
- Incluye las funciones utilizadas con más frecuencia.
- Carece de estructura.
- Se suele denominar
 - kernel (Sistemas Operativos relativamente antiguos: DOS, Windows, Unices).
 - Microkernel o micronúcleo (Sistemas Operativos más avanzados: WNT, W2K).
 En este caso, el S.O. se ocupa sólo de unas pocas funciones muy relevantes (gestión de memoria, procesos, Inter Process Communication IPC-), reduciendo el núcleo a su mínima expresión. El resto de las funciones del S.O. pasan a estar en el espacio de usuario.

Definició

Mejoras en el Sistema

Correcciones

Estructura de los

Sistemas Operativo

Sistemas Operativo modernos

El future

Evolución Mejoras en el Sistema

Los sistemas operativos son dinámicos, necesitan puestas a punto motivadas por:

- Correcciones.
- Actualizaciones del hardware.
- Aparición de nuevos tipos de hardware.
- Nuevos servicios.

Introducción a los

Sistemas Operativos

Definici

Mejoras en el Sistema

Correcciones

Hardware

Estructura de los Sistemas Operativ

Sistemas Operativ

El fotom

EvoluciónCorrecciones

Solaris 8 Complete Listing of Released Patches:
SunOS Released Patch List: ————————————————————————————————————
Total Patches: 450 Total Bugfixes: 4728 Patch-ID# 108528-12 Synopsis: SunOS 5.8: kernel update patch Bugld's fixed with this patch:
4365247 4365330 4365336 4365604 4365733 4365739 4367538 4367584 4367625 4367773 4367903 4368026 4368057 4368109 4368758 4368921 4369175 436930
4369543 4369993 4370121 4370146 4370148 4370240 4370475 4370674 4371112 4371183 4371549 4371615 4371697 4371769 4371774 4371775 4371777 4371777
4371970 4371993 4372173 4372356 4395481 4395736 4397335 4398255 4398298 4398373 4399968 4400262 4400356 4400359 4400361 4400743 4401168 440174
4401837 4401865 4401980 4402359 4402387 4402431 4402452 4402894 4403129 4403503 4403696 4404021 4405240 4405395 4406476 4406484 4406571 440657
4406576 4406578 4340924 4340960 4341008 4341185 4341337 4341378 4341664 4341714 4342756 4343039 4343115 4343189 4343237 4343285 4343391 434342
4343443 4343480 4343762 4343991 4344008 4344042 4345163 4345667 4346088 4346167 4346319 4346494 4346495 4346666 4346837 4346875 4346976 434699
4347240 4347358 4347359 4347965 4348040 4348738 4349102 4349272 4349393 4349603 4350263 4350354 4350574 4350726 4350849 4351116 4351181 435187
4351971 4352174 4352284 4352611 4353353 4353432 4353449 4353719 4354331 4354397 4354498 4354564 4354802 4354995 4355025 4355205 4355206 435550

Changes incorporated in this version: 4466418 4466463 4290918 4294240 4318695 4340183 4353719 4362950 4374518 4423730 4455088 4456307 4457852 4466948 4467264 4468171 4474994 4477967 4479235 4479846 4480169 4483007 4484446 4484613 4484810 4484819 4484980 4487325 4489520 Date: Nov/09/01

4364314 4364556 4320297 4320338 4320394 4320440 4320471 4320547 4320653 4321259 4321326

4356439 4356587 4356615 4356614 4356821 4357092 4357097 4357216 4357245 4357371 4357552 4357646 4357714 4357897 4357919 4358151 4358192 4358385 4358416 43588416 4358831 4358837 4359294 4359440 4359501 4359524 4359812 4359983 4360867 4361705 4362122 4362141 4362327 4362522 4362948 4362950 4362966 4362970 4362997 4362980 4362988 4362986 4363986 4363678 4363751 4363907 4363985 4364096 4364129 4364167

Definici

Evolució

Mejoras en el Sistema

Correcciones

Hardware

Sistemas Operativos

Sistemas Operativo modernos

El fotom

Evolución Hardware

La historia de los SSOO está ligada a la rápida evolución del hardware (\$ decreciente, con el nivel de integración) y a condicionantes sociales (encarecimiento del precio mano de obra): ADAPTACIÓN.

	1981	2007	2019	factor
CPU (MHz)	10	3800	8000	800
RAM	128 KB	4 GB	8GB	64000
Disco	10 MB	0.5 TB	8 TB	50000
Red (Bwth)	9600 b/s	1 Gb/s	1 Gb/s	100000
N° bits direcc.	16	128	128	8
Nº usuarios/máquina	decenas	1	1	0.1
Precio	30000€	1000€	900€	0.03

Hardware

Introducción a los Sistemas Operativos

Meioras en el

Hardware

Ejemplo actual

Evolución

Portátil - Asus ZenRook UX430UA-6V266T, 14", Full HD. Intel® Core i7-8550U. 8GB RAM. 256GB SSD. Resolución: Full HD

Tipo de pantalla: Marca del Procesados Cofee Lake Modelo Procesador: i7-8550U Valoridad Procesador 1 0-4 CH

14" LED IPS Full HIT Intel Core i7-8550U (4 x 1.8 GHz) Antes 1049. más envín 2 99 🕦

- No disposible online Consulta disponibilidad en tu tienda

Añadir al carrito

Características de un superordenador

MareNostrum IV - Barcelona Supercomputer Center (2017)

- 48 racks con 3.456 nodos. Cada nodo tiene dos chips Intel Xeon Platinum, con 24 procesadores = 165.888 procesadores.
- Memoria central de 390 Terabytes
- Potencia máxima de 11,15 Petaflops, capaz de realizar más de 11.500 billones de operaciones por segundo.

- . .

Mejoras en el Sistema

Correcciones

Hardware

Sistemas Operativos

Sistemas Operative modernos

El futuro

Evolución Hardware

El superordenador más bonito del mundo (2018) situado en una capilla desacralizada.

Estructura de los Sistemas Operativos

Introducción a los Sistemas Operativos

Definició

Evolución

Estructura de los Sistemas Operativos

Sistemas Monolíticos Sistema por capas Máquinas Virtuales Modelo

Sistemas Operativo

El futuro

- Se puede contemplar el sistema como una serie de niveles.
- Cada nivel lleva a cabo un determinado subconjunto de funciones.
- Cada nivel se basa en el nivel inferior para llevar a cabo funciones más primitivas.
- De este modo, se descompone un problema en un número de subproblemas más manejables.

Sistemas Operativos

Estructura de los Sistemas Operativos

Definició

Estructura de los Sistemas Operativos

Sistemas Monolíticos Sistema por capas Máquinas Virtuales Modelo

Sistemas Operativo modernos

El futuro

Evolución de las estructuras del sistema

- Sistemas Monolíticos
- Sistemas en Capas
- Máguinas Virtuales
- Sistemas Cliente/Servidor

Sistemas Operativos

Estructura de los Sistemas Operativos Sistemas Monolíticos

Definició

English (A)

Estructura de los

Sistemas Monolíticos Sistema por capas

Máquinas Virtuales

Modelo

Cliente-Servidor

Sistemas Operativo modernos

El futuro

- Su estructura (o falta de ella) es la más común (MS-DOS, UNIX).
- El S.O. es un conjunto de procedimientos que pueden llamarse mutuamente.
- No hay modos usuario/núcleo (el hardware no lo permite).
- PROBLEMAS: No hay ocultación de datos y es difícil de modificar y depurar.

Definici

Evolució

Estructura de los Sistemas Operativos Sistemas Monolíticos

Sistema por capas Máquinas Virtuales Modelo

Cliente-Servidor

Sistemas Operativ modernos

El futur

Estructura de los Sistemas Operativos Sistema por capas

- El S.O. se organiza en una jerarquía de capas, cada una cimentada en la que está por debajo.
- El sistema en capas es una ayuda para el diseño ⇒ todas las partes del sistema se enlazan en un solo programa objeto.
- Problema: distribución de tareas en capas, baja eficiencia
- Solución: arquitecturas mixtas:
 - IBM-OS/2, primera versión 1987
 - Windows NT 4.0, lanzado en 1996

Definici

Evolució

Estructura de los Sistemas Operativos Sistemas Monolíticos Sistema por capas

Máquinas Virtuales

Cliente-Servido

Sistemas Operativo modernos

El futuro

Estructura de los Sistemas Operativos Máquinas Virtuales

- Extensión del sistema por capas, donde cada proceso tiene la ilusión de estar ejecutándose en un sistema monoprogramado. Ej: IBM VM, VM/370 (1972).
 La ilusión se consigue mediante el uso de planificación de CPU y de memoria virtual.
- La Máquina virtual proporciona copias exactas del hardware subyacente.
- Ejemplo: JAVA Virtual Machine (JVM).

Proceso	Proceso Proceso					
Núcleo	Núcleo	Núcleo				
Máquina Virtual						
Hardware						

Sistemas Monolíticos Sistema por capas

Máquinas Virtuales

Modelo

Estructura de los Sistemas Operativos Máguinas Virtuales

Ventajas

- El SO (virtual) no tiene problemas de seguridad y protección de recursos compartidos (memoria, disco, periféricos), ya que se ejecuta sobre una máquina (virtual) monoprogramada.
- Coexistencia de distintos SSOO sobre un mismo hardware. Por ejemplo, PowerPC incluve una máquina virtual (emulador) del Motorola 68000 que permite ejecutar programas compilados para el M68000.

Desventajas

Perdida de eficiencia en las "traducciones".

Sistemas Operativos

Estructura de los Sistemas Operativos Máquinas Virtuales

Estructura de los Sistemas Operativos Sistemas Monolíticos

Sistema por capas
Máquinas Virtuales

Modelo Cliente-Servido

Sistemas Operativo

El futuro

Ejemplos

- Emuladores: Interpretes software de las instrucciones de la CPU que se simula. Ej: Ejecución de programas para MS-DOS (16 bits) en un pentium (32 bits) o wine para emular Windows sobre Linux.
- VMWare, virtualbox o Xen: virtualización de sistemas operativos.
- JAVA Virtual Machine (JVM): Máquina virtual de aplicación.

Estructura de los Sistemas Operativos Máquinas Virtuales

Introducción a los Sistemas Operativos

Definition

E ... L. ... L. C.

Estructura de los

Sistemas Monolíticos

Sistema por capas Máquinas Virtuales

Modelo

Cliente-Servidor

Sistemas Operativo

El futuro

Estructura de los Sistemas Operativos Máquinas Virtuales

Introducción a los Sistemas Operativos

Definició

- . .

Estructura de los

Sistemas Monolíticos

Sistema por capas Máquinas Virtuales

Modelo Cliente-Servidor

Sistemas Operativ

El future

Definici

Evolucio

Estructura de los Sistemas Operativos Sistemas Monolíticos Sistema por capas Máguinas Virtuales

Modelo Cliente-Servidor

Sistemas Operativo

El futuro

Estructura de los Sistemas Operativos Modelo Cliente-Servidor

- Simplificación del núcleo, al mover el código correspondiente de algunas funcionalidades a capas superiores.
- Acceso a los servicios mediante mensajes desde los procesos de usuario (clientes) a los procesos que controlan los distintos servicios (servidores) que se ejecutan en modo usuario.
- El núcleo se limita a encauzar los mensajes.
- Ejemplos: UNIX moderno, Linux (Linus Torvalds, 1991).

Definici

Evolucia

Estructura de los Sistemas Operativos Sistemas Monolíticos Sistema por capas Máquinas Virtuales

Modelo Cliente-Servidor

Sistemas Operativo

El futuro

Estructura de los Sistemas Operativos Modelo Cliente-Servidor

Ventajas

- Facilidad de mantenimiento, debido a la modularización de los servicios.
- Robustez, al ejecutarse los procesos de servicio en modo usuario: un servicio puede dejar de funcionar sin que todo el sistema tenga que interrumpir.
- Extensión natural del modelo a sistemas distribuidos.

Definición

Evolución

Estructura de los Sistemas Operativ

Sistemas Operative

modernos

Arquitectura micronúcleo

Sistema operativo distribuido Diseño orientado a obietos

El futuro

Sistemas Operativos modernos Arquitectura micronúcleo

Asigna solamente una pocas funciones esenciales al núcleo:

- Espacios de direcciones.
- Comunicación entre procesos (IPC).
- Planificación básica de procesos.
- Gestión de memoria.
- ...

Definició

English (4)

Estructura de los

Sistemas Operative

modernos

Arquitectura

Sistema operativo

Diseño orientado a obietos

El futur

Sistemas Operativos modernos Sistema operativo distribuido

- Colección de computadoras separadas físicamente y conectadas entre sí por una red de comunicaciones
- Cada máquina posee sus componentes de hardware y software que el programador percibe como un solo sistema. Proporciona la ilusión de un único espacio de memoria principal y un único espacio de memoria secundaria.
- Utilizado para el sistema de archivos distribuido. Permite almacenar y acceder a archivos remotos como si fueran locales, sin que se note pérdidas en el rendimiento.

Sistemas Operativos

Politécnica Superior Introducción a los

Definición

E. alvalda

Estructura de los

Sistemas Operativo

modernos Arquitectura

micronúcleo
Sistema operativo

Diseño orientado a obietos

El futuro

• Añade extensiones modulares a un pequeño núcleo.

Sistemas Operativos modernos

- El S.O. estará formado por un conjunto de objetos que proporcionan funcionalidades.
- Permite a los programadores personalizar un sistema operativo sin romper la integridad del sistema.

El futuro

Introducción a los Sistemas Operativos

Definic

Evolucio

Estructura de los

Sistemas Operat

modernos

El futuro

Es muy difícil predecir el futuro de los sistemas operativos. A modo de ejemplo de predicciones fallidas tenemos:

- "Computers in the future may weigh no more than 1.5 tons" (los ordenadores del futuro no pesarán más de 1 tonelada y media) Popular Mechanics (1949).
- "I think there is a world market for maybe five computers" (me parece que la demanda mundial de ordenadores será de no más de 5 máquinas). Thomas Watson. CEO de IBM (1943).
- "640K ought to be enough for anybody" (640K -de memoria- deberían ser suficientes para cualquiera), Bill Gates (1981).
- Linux es obsoleto, Andy Tanenbaum (1992).

Elementos básicos de un Sistema Informático

Registros del procesador

Ciclo básico de

Interrupcione

Parte II

Introducción a los sistemas informáticos

Sistemas Operativos

Elementos básicos de un Sistema Informático

Componentes

Ciclo básico de

instrucción

Interrupcione

Elementos básicos de un Sistema Informático

- Procesador (CPU cuando sólo hay uno)
- Memoria principal
 - Almacena datos y programas
 - Es la memoria real o memoria primaria
 - Volátil
- Módulos E/S: transportan datos entre procesador y ...
 - ... dispositivos de memoria secundaria
 - ... equipos de comunicación
 - ... terminales
- Interconexión de sistemas (buses)
 - Comunicación entre procesadores, memoria principal y módulos E/S

Elementos básicos de un Sistema

Componentes

Registros del procesador

Ciclo básico o instrucción

Interrupcione

Elementos básicos de un Sistema Informático

Elementos básicos de un Sistema

Registros del

Registros visibles al

Registros de control y de estado

Ciclo básico de instrucción

Interrupcione

Registros del procesador

Visibles al usuario

Permiten al programador minimizar referencias a memoria principal, optimizando el uso de estos registros

De control y de estado

- Usados por el procesador para controlar las operaciones del procesador
- Usados por las rutinas del SO para controlar la ejecución de los programas
- Ej: contador del programa

Elementos básicos de un Sistema

Registros de procesador

Registros visibles al usuario

Registros de control y de estado

Ciclo básico instrucción

Interrupcione

Registros del procesador Registros visibles al usuario

- Pueden ser referenciados mediante lenguaje máquina
- Disponibles para todos los programas (de aplicación y del sistema)
- Tipos de registros
 - Datos
 - Direcciones (de memoria principal)
 - De instrucciones
 - De datos

Elementos básicos de un Sistema

Registros de procesador

Registros visibles al usuario

Registros de control v de estado

Ciclo básico o instrucción

Interrupcione

Registros del procesador Registros visibles al usuario

Registros de direcciones (de instrucciones o de datos). Ejemplos:

Registro de índice

Implica sumar un índice a un valor base para obtener la dirección efectiva

Puntero de segmento

Cuando la memoria se divide en segmentos, se referencia mediante referencia al segmento particular + desplazamiento dentro del segmento

Puntero de pila

Apunta a la cima (tope) de la pila

Elementos básicos de un Sistema

Registros de procesador

Registros visibles al usuario

Registros de control

y de estado

Ciclo básico instrucción

Interrupcione

Registros del procesador Registros de control y de estado

Contador del programa (PC)

Contiene la dirección de la instrucción a ser leída

Registro de instrucción (IR)

Contiene la última instrucción leída

Palabra de estado del programa (PSW)

- Contiene información de estado
 - Códigos de condición (flags)
 - Activados por el Hw como resultado de operaciones
 - Programa puede leerlos, pero no modificarlos
 - Ejs: resultado positivo, resultado negativo, cero (zero), desbordamiento (overflow)
 - Bit para habilitar/deshabilitar interrupciones
 - Bit indicando modo supervisor/usuario

Ciclo básico de instrucción

Introducción a los Sistemas Operativos

Elementos básicos de un Sistema

Registros de procesador

Ciclo básico de instrucción

Registro de instrucción (IR) Ejemplo de ejecución de programa

Interrupcion

- Fase de búsqueda: procesador busca instrucción de memoria
- Contador de programa (PC) mantiene dirección de la siguiente instrucción a leer.
 Se incrementa después de cada lectura

Sistemas Operativos

Elementos básicos de un Sistema

Registros de procesador

Ciclo básico de instrucción

Registro de instrucción (IR)

Ejemplo de ejecución de programa

Interrupcione

Ciclo básico de instrucción Registro de instrucción (IR)

En él se coloca la instrucción leída

Tipos de instrucciones

- Procesador-memoria
 - Se transfieren datos entre ambos (en cualquier dirección)
- Procesador-E/S
 - ullet Se transfieren datos desde o hacia un dispositivo periférico (a través del módulo E/S)
- Tratamiento de datos
 - Operaciones aritméticas o lógicas sobre los datos
- Control
 - Altera la secuencia de la ejecución (saltos)

Ciclo básico de instrucción

Ejemplo de ejecución de programa

Introducción a los Sistemas Operativos

Elementos básicos de un Sistema Informático

Registros de procesador

Ciclo básico de instrucción Registro de

instrucción (IR) Ejemplo de ejecución de programa

nterrupcione

Elementos básicos de un Sistema

Registros de procesador

Ciclo básico dinstrucción

Interrupciones

Atención a las interrupciones interrupciones múltiples

Interrupciones

¿Qué son y para qué valen?

- Interrupción de la secuencia normal de ejecución
- Interrupción de un proceso causada por un evento externo al mismo de forma que el proceso podrá ser retomado
- Mejora la eficiencia del procesamiento
- Permite al procesador ejecutar otras instrucciones durante E/S

Tipos de interrupciones

- De programa
 - Desbordamiento aritmético
 - División por cero
 - Intento de ejecutar instrucción ilegal
 - Referencia a zona de memoria fuera del espacio de trabajo del usuario
- De reloj: para funciones periódicas
- De E/S: para indicar normalidad/error
- Fallo de Hw: cortes de energía, errores de paridad de memoria, etc.

Interrupciones Atención a las interrupciones

Elementos básicos de un Sistema

Sistemas Operativos

Registros de procesador

Ciclo básico de

instrucción

Interrupcione

Atención a las interrupciones interrupciones múltiples

- El control se transfiere a este programa
- \bullet Determina la naturaleza de la interrupción y realiza las acciones necesarias (detener proceso, \dots)
- Generalmente es una rutina que forma parte del SO

Elementos básicos de un Sistema

Registros de procesador

Ciclo básico de instrucción

Interrupciones

Atención a las interrupciones interrupciones múltiples

Interrupciones Atención a las interrupciones

- Después de cada ejecución de instrucción, el procesador comprueba si hay interrupciones:
 - Si no hay, lee la siguiente instrucción del programa.
 - Si hay interrupción pendiente, suspende la ejecución del programa y ejecuta el manejador de interrupciones.

Interrupciones múltiples

Introducción a los Sistemas Operativos

Elementos básicos de un Sistema

Registros de

Ciclo básico d

Interrupciones
Atención a la

Atención a las interrupciones interrupciones múltiples

Dos posibilidades

- Deshabilitar interrupciones
- Definir prioridades

