

1. Seja M o ponto médio de [AB].

$$\overline{AM} = \frac{\overline{AB}}{2} = \frac{2\sqrt{3}}{2} = \sqrt{3}$$

$$\tan 30^{\circ} = \frac{\overline{CM}}{\overline{AM}} \Leftrightarrow \frac{\sqrt{3}}{3} = \frac{\overline{CM}}{\sqrt{3}} \Leftrightarrow \frac{\left(\sqrt{3}\right)^2}{3} = \overline{CM} \Leftrightarrow \overline{CM} = 1$$

$$A_{[ABC]} = \frac{\overline{AB} \times \overline{MC}}{2} = \frac{2\sqrt{3} \times 1}{2} = \sqrt{3}$$
, ou seja, $\sqrt{3}$ cm².

2.
$$1920^{\circ} = 5 \times 360^{\circ} + 120^{\circ}$$

 $-1920^{\circ} = -5 \times 360^{\circ} - 120^{\circ}$

O ângulo de amplitude -1920° corresponde ao ângulo generalizado $(-5,-120^{\circ})$.

Assim, a imagem do ponto B pela rotação de centro O e amplitude -120° é o ponto F.

Opção (D)

3.
$$A(1,0)$$

$$B(\cos 60^{\circ}, \sin 60^{\circ})$$
, ou seja, $B\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$. $C(1, \tan 60^{\circ})$, ou seja, $C(1, \sqrt{3})$.

$$\overline{AC} = \tan 60^{\circ} = \sqrt{3}$$

Seja P a projeção ortogonal de B sobre a reta r.

$$\overline{BP} = 1 - \cos 60^{\circ} = 1 - \frac{1}{2} = \frac{1}{2}$$

$$A_{[ABC]} = \frac{\overline{AC} \times \overline{BP}}{2} = \frac{\sqrt{3} \times \frac{1}{2}}{2} = \frac{\sqrt{3}}{4}$$

Opção (C)

4. Um radiano é a amplitude do ângulo ao centro que determina na circunferência um arco de comprimento igual ao raio.

Assim,
$$r = \frac{7}{4,2} = \frac{5}{3}$$
, ou seja, $\frac{5}{3}$ cm.

Opção (B)

5. A **afirmação I** é falsa uma vez que $-1 \le \cos \alpha \le 1$, $\forall \alpha \in \mathbb{R}$ pelo que, $\cos \alpha$ não poderá tomar o valor 2.

A **afirmação II** é falsa uma vez que se α e β são dois ângulos de amplitudes pertencentes ao intervalo $\left[\frac{21\pi}{2},11\pi\right[$, como $\frac{21\pi}{2}=5\times\frac{4\pi}{2}+\frac{\pi}{2}$ e $11\pi=5\times2\pi+\pi$, conclui-se que α e β são dois ângulos com lado extremidade no 2.º quadrante. Neste quadrante, o cosseno é decrescente. Logo, se $\alpha<\beta$, então $\cos\alpha>\cos\beta$.

A **afirmação III** é falsa pois
$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos\alpha$$
, pelo que:
 $\sin^2 \alpha + (-\cos \alpha)^2 = \sin^2 \alpha + \cos^2 \alpha = 1$ (fórmula fundamental da trigonometria)

6. $P(k, -\sqrt{3}k)$, $k \in IR^+$ de onde se pode concluir que $\cos \alpha = k$ e $\sin \alpha = -\sqrt{3}k$.

Assim,
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-\sqrt{3}k}{k} = -\sqrt{3}$$

 $\cos \alpha \times \sin \alpha - \tan \alpha = k \times (-\sqrt{3}k) - (-\sqrt{3}) = -\sqrt{3}k^2 + \sqrt{3} = -\sqrt{3}(k^2 - 1)$

Opção (A)

7.
$$\cos\left(\frac{\pi}{7}\right) = a$$
 e $\sin\left(\frac{15\pi}{7}\right) = \sin\left(\frac{14\pi}{7} + \frac{\pi}{7}\right) = \sin\left(\frac{\pi}{7}\right)$

$$\sin^2\left(\frac{\pi}{7}\right) + \cos^2\left(\frac{\pi}{7}\right) = 1 \Leftrightarrow \sin^2\left(\frac{\pi}{7}\right) + a^2 = 1$$

$$\Leftrightarrow \sin^2\left(\frac{\pi}{7}\right) = 1 - a^2$$

$$\Leftrightarrow \sin\left(\frac{\pi}{7}\right) = \pm\sqrt{1 - a^2}, \quad \frac{\pi}{7} \in \left]0, \frac{\pi}{2}\right[$$

$$\Rightarrow \sin\left(\frac{\pi}{7}\right) = \sqrt{1 - a^2}$$
Logo, $\sin\left(\frac{15\pi}{7}\right) = \sqrt{1 - a^2}$.

8.

8.1. A medida da área do trapézio [ABCD] é dada por:

$$A(\alpha) = \frac{\left(\overline{AB} + \overline{CD}\right) \times \overline{BC}}{2}$$

$$A(\alpha) = \frac{\sin \alpha + \tan \alpha}{2} \times (1 - \cos \alpha)$$

$$= \frac{\sin \alpha + \tan \alpha - \sin \alpha \cos \alpha - \sin \alpha}{2}$$

$$= \frac{\tan \alpha - \sin \alpha \cos \alpha}{2}$$

8.2. $\tan \alpha = 2$

$$\tan \alpha = 2 \wedge \tan^2 \alpha + 1 = \frac{1}{\cos^2 \alpha}$$

$$2^2 + 1 = \frac{1}{\cos^2 \alpha} \Leftrightarrow \cos^2 \alpha = \frac{1}{5} \Leftrightarrow \cos \alpha = \pm \sqrt{\frac{1}{5}} , \alpha \in \left] 0, \frac{\pi}{2} \right[$$

Assim,
$$\cos \alpha = \sqrt{\frac{1}{5}} = \frac{\sqrt{5}}{5}$$
.

Como $\sin \alpha = \tan \alpha \times \cos \alpha$, então $\sin \alpha = \frac{2\sqrt{5}}{5}$.

$$A(\alpha) = \frac{\tan \alpha - \sin \alpha \cos \alpha}{2}$$

$$A(\alpha) = \frac{2 - \frac{2\sqrt{5}}{5} \times \frac{\sqrt{5}}{5}}{2} = \frac{2 - \frac{2}{5}}{2} = \frac{4}{5}$$

Neste caso, a medida da área é $\frac{4}{5}$.

8.3. Pretendemos determinar o valor de α para o qual a medida da área do quadrilátero [ABCD] é igual ao triplo da medida da área do triângulo [ABC].

A solução do problema é o valor de $\alpha \in \left]0, \frac{\pi}{2}\right[$ que é solução da equação:

$$A(\alpha) = 3 \times \frac{\cos \alpha \sin \alpha}{2} \Leftrightarrow$$

$$\Leftrightarrow \frac{\tan \alpha - \sin \alpha \cos \alpha}{2} = \frac{3\cos \alpha \sin \alpha}{2}$$

$$\Leftrightarrow \tan \alpha - \sin \alpha \cos \alpha = 3\cos \alpha \sin \alpha$$

 $\alpha \approx 1.05$ rad

9.
$$\cos\left(\frac{\pi}{2} + \alpha\right) = \frac{1}{3} \Leftrightarrow -\sin(\alpha) = \frac{1}{3} \Leftrightarrow \sin(\alpha) = -\frac{1}{3}$$

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\left(-\frac{1}{3}\right)^{2} + \cos^{2}\alpha = 1 \Leftrightarrow \cos^{2}\alpha = 1 - \frac{1}{9} \Leftrightarrow \cos\alpha = \pm\sqrt{\frac{8}{9}} \quad , \alpha \in \left]\pi, \frac{3\pi}{2}\right[$$
$$\Rightarrow \cos\alpha = -\frac{2\sqrt{2}}{3}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \Leftrightarrow \tan \alpha = \frac{-\frac{1}{3}}{-\frac{2\sqrt{2}}{3}} \Leftrightarrow \tan \alpha = \frac{\sqrt{2}}{4}$$

$$\sin\left(-\frac{13\pi}{2} + \alpha\right) - 4\tan\left(3\pi - \alpha\right) = \sin\left(-\frac{\pi}{2} + \alpha\right) + 4\tan\left(\alpha\right) = -\cos\left(\alpha\right) + 4\tan\left(\alpha\right) =$$

$$= \frac{2\sqrt{2}}{3} + 4 \times \frac{\sqrt{2}}{4} = \frac{5\sqrt{2}}{3}$$

10.

$$\frac{1 - \cos x}{\sin x} + \frac{\sin x}{1 + \cos x} = \frac{(1 - \cos x)(1 + \cos x) + \sin^2 x}{\sin x (1 + \cos x)}$$

$$= \frac{1 - \cos^2 x + \sin^2 x}{\sin x (1 + \cos x)}$$

$$= \frac{\sin^2 x + \sin^2 x}{\sin x (1 + \cos x)}$$

$$= \frac{2\sin^2 x}{\sin x (1 + \cos x)}$$

$$= \frac{2\sin x}{1 + \cos x}$$