國立台灣海洋大學資訊工程學系專題報告

題目

Keypro

作者

00857035 戴芷柔 taijustina0807@gmail.com

00857047 邱莘瑜 sheenachiu.pub@gmail.com

報告編號:NTOUCSE 111 年度 - 競賽組第 29 組

指導教授:嚴茂旭 博士

目錄

專題分工及貢獻度說明

專案管理系統

摘要

簡介

理論推導

架構與演算法則

模組設計描述

實驗結果

討論

結論

相關資源

專題分工及貢獻度說明

編號	姓名	主要工作內容	專題貢獻度
			(100%)
1	戴芷柔	rs232 傳接收控制,結合 aes	55%
		加密實作,上機燒版測試,報	
		告撰寫。	
2	邱莘瑜	ram 資料存取,金鑰輸入,	45%
		test bench 撰寫,海報設計,	
		do 檔撰寫。	

專案管理系統截圖

摘要:

目標為可傳輸加解密資料的 FPGA 設計,使用 verilog 實現。傳輸規格為 RS232,加密技術使用 AES。可透過 verilog 程式實現 PC 傳送的資料到 DEO 板子後,進行 AES 加密及解密,使用的 AES 模式為 ECB 模式,加解密完成的 資料亦可回傳到 PC 端,PC 可透過 RS232 軟體進行測試結果。

使用 verilog 實現 AES 加密的程式,在 github 上已經有人撰寫出來,過去 也已經有前人使用過 SPI 的傳輸規格撰寫類似項目,因此這項專題希望能藉 由不同的傳輸規格去做到 FPGA 的加密設計,專題主要為專研 rs232 的傳輸 規格,以及理解 AES 加密規則並使用。

二· 理論推導:

● 首先要了解 rs232 的傳輸規格,rs232 傳輸線是一種 UART,UART 主要 pin 腳為 RX、TX、GND 及 VCC,VCC 為供電用 pin,在專題中沒有使用, 只有連接前三個 pin 腳,RX 控制接收,TX 控制傳輸,GND 則是接地線, RS232 傳輸的資料均由邏輯 0 跟 1 組成,在訊息尚未開始傳送時,不管 是 RX 或 TX 均是停留在高電平等待,當要開始傳送或接收時,訊號將從 高電平掉到低電平,以表示開始傳接收訊息。

● 在這過程中會需要處理 rs232 傳輸頻率與 DE0 板子接收訊息頻率的問題,需要藉由 DE0 板子使用的 clock 及 rs232 測試軟體傳輸速率去計算並使兩者傳接收可以同步, DE0 板子使用的 clock 為 50MHz, rs232 測試軟體選用 baud rate 19200, DE0 的 clock 會比 rs232 傳輸速度快很多, 因此在撰寫程式時,需要計算每過多少 clock 才需要接收一次 rs232 訊息,而這個 clock 的值在這邊用△代稱。

● △ 的計算方式:

 \triangle = 資料傳輸 1bit 的時間 = $1/19200 \approx 52.08 \,\mu\,\mathrm{s}$,DEO 傳輸 1 clock 的時間 = $1/50\mathrm{MHz} = 0.02 \,\mu\,\mathrm{s}$,故每 \triangle = $52.08/0.02 \approx 2600$ 個 clock。

當一接收到訊號 0,便開始計數經過的 clock,為了更精確地接收訊息,因此避免在訊息傳送來的瞬間接收,而是在中心點接收,如下圖的紅線位置,在接收 bit 0 時需計數 1.5 個△才會是接收到中心線的資料,後續每接收一個資料均是計數 1 個△。

三· 架構與演算法則:

● Verilog 程式架構說明:這項專案主要撰寫橘色框內 rs232.v、 RX_code.v、TX_code.v 三組程式碼,這三組程式碼控制了 rs232 傳接收資訊及資料存取,而紫色框內為 AES 架構,使用 secworks 的 source code,只需要詳讀 aes_code.v 規格後便可方便的使用 aes 加解密,此程式碼有支援 128 bits 及 256 bits 兩種金鑰模式。

● RX 接收格式:

資料一次接收 8 組 bytes,以下介紹每組 byte 的作用,由左向右開始接收,如下圖所示,此外注意 addr 及讀寫共用一組 byte。

功能	結束	check byte	data	data	data	data	addr	讀寫	開始
bit	8	8	8	8	8	8	7	1	8
說明	03 結束	check byte (未使 用)	入,因 ex:若需	免 02 及 此第 1 個 需要輸入 0 0010)	國 bit 不 02 資料	使用, 則輸入	ram 128*32	1 寫 0 讀	02 開始

TX 傳送檔案格式:

功能	data	data	data	data
bit	8	8	8	8
說明	直接輸出從 RAM 選取位置的資料,寬度為 32bits,但每個 byte 的第1個 bit 資料不使用。			過 byte

四· 模組設計描述:

- 設計環境:
 - Altera Tool: ModelSim-Altera 10.1d (Quartus II 13.1)
 - Quartus Tool: Quartus II 13.1 (64-bit) Web Edition
 - FPGA Device: Cyclone III (EP3C16F484C6)
 - AES S-box: 參考<u>secworks</u>
- rs232. v:為模組的 top 檔案,括號內接連接 FPGA 的 pin 腳。
- rs232(TX, RX, clk, rst)

input output • TX: 從FPGA傳出資料(64bits) • RX: FPGA接收資料(64bits) • clk: 50MHz • rst: 重製資料

RX_code. v: FPGA 接收資訊的主要處理檔案,右半部為 FSM。

TX code. v: FPGA 傳送資訊的主要處理檔案,右半部為 FSM。

- aes core. v: AES 加解密的主要檔案,各個接腳用途說明如下。
- aes_core(clk, reset_n, encdec, init, next, ready, key, keylen, block, result, result_valid)

input • ready: key擴展完成或是加密完成都會使ready為1 • encdec:加解密控制接腳 • result:加密後結果資料 • init: key開始擴展 • next: 資料開始加密 • result valid:判斷加密成功 • key: 初始key • keylen:加密寬度控制 (128/256) • block: 需加密資料

● RAM 資料存取格式及 AES 接收格式說明: RAM 分配了 7bits 因此有 128 個位址,以下為有使用到的位址分別功能。

```
    /////WRITE AND READ////////

                                  //////////READ ONLY/////////
                                  //*[60]
                                            AES OUTPUT TYPE
• //*[4]-[8]
         INPUT DATA(5)
                                            AES OUTPUT(5)
                                  //*[64]-[68]
                                                              *//
• //*[9]
         DO 128 ENCRYPT
                          *//
                                  //*[73]-[76]
                                            AES OUTPUT(4)
• //*[10]
         DO 128 DECRYPT
                          *//
                                  • //*[11]
         DO 256 ENCRYPT
                          *//
                                  /////AES TYPE/////
                                  //* 1:128 ENCRYPT
                          *//
• //*[12]
         DO 256 DECRYPT
                                  //* 2:128 DECRYPT
                                                   *//
                          *//
• //*[13]-[16] INPUT DATA(4)
                                  //* 3:256 ENCRYPT
                                                   *//
• //*[24-33] KEY
                          *//
                                  //* 4:256 DECRYPT
                                                   *//
```

- [4]-[8]:每個 ram 存取一次 rx 接收資料,包含 4 組 data,也就是 32 bits,由於每組 data 的第 1 個 bit 不使用,因此每個 ram 實際使用到資料只有 28 bits,而 AES 一次加解密資料需要使用 128 bits,128/28 = 4...16,因此需要 5 組 ram 資料做一次 AES 加解密,其中四筆資料取 28 bits,而其中一筆只取 16bits,這五組待加解密資料存在[4]-[8]。
- [9]-[12]:而當 RX 接收到的 addr 為[9]-[12],執行上述的加解密指令。
- [13]-[16]:由於[4]-[8]是為了排除接收問題而存取的格式,在檢查 AES 加解密是否正確時相當不值觀,因此在[13]-[16]的位址另外存放扣除 掉每個 data 的 1 個 bit 之後合併的資料。
- [24]-[33]:存放接收的 key,當 key 正確,[9]-[12]指令才可以執行。
- [60]:顯示 AES 的輸出是什麼模式,各個模式如下圖 AES TYPE。
- [64]-[68]:執行完 AES 的結果,同上述[4]-[8],若需要將資料重新丢回 input 執行,為了符合 5bytes 的輸入格式因此提供 5bytes 的輸出。

- [73]-[76]:執行完 AES 的結果,同上述[13]-[16]原因,可供直觀的方式查看加解密原始結果。
- 下圖為[4]-[8]傳送給 aes 的輸入範例圖,由於截圖當時版本不同,這 裡請將[109]-[113]當作[4]-[8]位置理解即可,第一張圖由十六進制顯 示,第二章圖由二進制顯示。

五・實驗結果:

● RX 接收模擬結果:

此筆測試資料為

結束	X	data	write/read	addr	開始
03	c3	44332211	1(write)	1	02

- RX:一開始為1,到0開始接收資料。
- start:開始接收一個 package。
- rst_start: 結束接收一個 package。
- tx_start:若接收到 read 指令,則令其變1,使 tx 開始傳送資料。
- cnt:用來記錄目前接收了幾筆 bit、幾筆 byte。
- shift_reg:接收rx資料並存到data out。
- watch_dog:在02開始後跟著開始計數,若接收 package 的時間超出預期,則結束 package 接收並將接收一半的資料清除,回到 idle 狀態。

● TX 傳送模擬結果:

此筆測試資料為

data	baf5e380

- TX:一開始為1,掉到0開始傳送資料。
- tx_start:判斷一個 package 開始傳送。
- cnt:用來記錄目前接收了幾筆 bit、幾筆 byte。
- shift_reg:傳送tx資料。
- start_data:開始傳送一個 package。
- rst_data:結束傳送一個 package。

- data_r:需要傳送的資料,tx 每次都將傳送 data_r[0]的位置資料,因此 data r 的資料會不斷向右 shift。
- 整套模組包含 AES 加密模擬結果:

aes output 原始資料必須等於 aes input 原始資料,亦為加解密正確。

● 使用 RS232 測試軟體測試結果,這裡使用 128bits key:

六・討論:

- 優點:在RS232傳送資料時,多了一種可選擇的加密方式,使用規則簡單,資料輸出直觀明確,加解密需透過FPGA設備進行,FPGA本身就是一層鑰匙,可以更有效的保護資料。
- 缺點:本項專案在 RX 接收資料的部分, check bit 未使用到,因此在大量資料連續傳送時,有可能會有資料接收錯誤卻未發現的情況。

● 改進方向:

- 1. 添加 check bit 使用,以確保資料正確性。
- 2. 目前 key 使用為預設 key,希望能添加令使用者更改自訂 key。
- 3. baud rate 目前預設為 19200,可分配一組 ram 存取 baud rate,提供多種不同 baud rate 選擇,確保完整性。
- 未來發展:前項專案制做得還不夠成熟,在小型測試尚可使用,但未在 大筆測資上進行實作,這項技術可有效的對資料傳輸進行加密,若能完 善其正確性、完整性,相信未來會是個有用的技術。

七·結論:

 本專題最終可令使用者自行輸入 128 或 256 bits 的 key 並比較是否與 內建的 key 相同,以此達到實作簡易的 KEYPRO 功能,但還有許多地方 值得改進。一方面是預設內建 key 啟用過一次後如何產生下一組隨機的 內建 key ,以及更人性化一點的構想:如何實作可令使用者於加密時 自行設定內建 key;另一方面則是本專題如何與生活中的應用結合,這 些問題都值得再去探討。

八、相關資源:

aes 程式碼來源:https://github.com/secworks/aes

製作的 gi thub 紀錄, 目前為 private:

https://github.com/Justina0331/rs232_AES

UART 傳輸器說明:<u>https://zh.wikipedia.org/zh-tw/UART</u>

測試結果影片:https://www.youtube.com/watch?v=QLBHetRdFaM