You will analyze Python scripts modeling **sexual inheritance**. You'll:

- · Understand key features of each script,
- · Identify differences between versions,
- · Compare sexual and non-sexual inheritance,
- · Reflect on applicability in cultural sciences (e.g. textual transmission).

For each script (netgraph1.py to netgraph4.py), answer the following:

Script	What is new here? What changed from the previous version?
netgraph1.py	What is simulated here? Which rules create the next generation?
netgraph2.py	How is fitness defined? How are unfit individuals marked?
netgraph3.py	How is selection handled more strictly here? What is removed first?
netgraph4.py	What makes this version easier to read ? How is the code organized differently?

Sexual vs. Asexual Inheritance

You previously worked with **non-sexual inheritance** (mutation only). Think:

- How does **sexual inheritance** differ in terms of:
 - · Complexity of relationships?
 - Diversity of offspring?
 - Graph structure (e.g. networks vs. trees)?

Reflection: Culture & Transmission

In textual scholarship (e.g. manuscript studies), non-sexual models use stemmata to track changes. Now think:

- Could sexual inheritance also apply in cultural contexts?
- Are there examples where two versions (texts, ideas) mix?
- Would a **network** model make more sense than a tree?

If you run netgraph1.py or others, note:

- What kinds of sequences appear over time?
- How do mutations affect balance?
- Can you predict which individuals survive?

