MEASUREMENT & INSTRUMENT LAB 4

Page 1

Displacement Sensor

วัตถุประสงค์

- 1.ศึกษาระบบการทำงานของ LDR
- 2.เข้าใจหลักการทำงานของ Displacement Sensor
- 3.สามารถนำหลักการทำงานของ LDR มาประยุกต์ใช้งานได้

ทฤษฎีที่เกี่ยวข้อง

LDR: Light Dependent Resistor

ตัวต้านทานชนิดหนึ่งหรือเรียกอีกอย่างว่าตัวต้านทานแปลค่าตามแสง หลักการทำงานคือ เมื่อถูกแสงตัว LDR จะมีความต้านทานลดลงและเมื่อไม่ถูกแสงตัว LDR จะมีความต้านทานมากขึ้น

1.LDR Page 2

2. resistor

4. Protoboard

3. LED

5. สายไฟ

6. Power Supply

7. Multi-meter

- 8. คีมจับ คีมตัด
- 9. ไขควง
- 10. คัตเตอร์

Page 3

Page 4

- 1.ให้ Design วงจรโดยใช้ LDR เพื่อควบคุมการเปิดและปิดของ LED
- 2. หาค่าความต้านทานของ LDR ขณะมืดและสว่าง หลังจากนั้นใช้ค่าความต้านทานที่ได้หาค่ากระแส ขณะมืดและสว่าง
- 3.คำนวณหาค่าความต่างศักย์ของ LDR
- 4.ต่อ Power Supply 12 V เข้ากับวงจรที่เรา Design
- 5.บันทึกผลการทำงานของ LDR Sensor

การทำงานของ RTD Sensor

Page 6

ระยะห่างของการทำงาน

- 1.1 cm

เมื่อไม่มีวัตถุมาบังบริเวณ Sensor (บริเวณ Sensor มีแสงสว่างมากขึ้น)

- LED ดับ

เมื่อเอาวัตถุมาบังบริเวณ Sensor (บริเวณ Sensor มีแสงสว่างน้อยลง)

- LED สว่าง

LAB 4.2 Through Beam

1.ต่อวงจรเพิ่มโดยใช้แสงจากหลอด LED เป็นตัวควบคุมความต้านทาน บันทึกผลการทำงานของ RTD Sensor

Page 7

ผลการทดลคง

การทำงานของ RTD Sensor

ระยะห่างของการทำงาน

- 1.5 cm

เมื่อไม่มีวัตถุมาบังบริเวณ Sensor (บริเวณ Sensor มีแสงสว่างมากขึ้น)

- LED ดับ

เมื่อเอาวัตถุมาบังบริเวณ Sensor (บริเวณ Sensor มีแสงสว่างน้อยลง)

- LED สว่าง

LAB 4.3

1.ต่อวงจรเหมือนLAB 4.1

2.นำวัตถุมาวางที่หน้า LDR วัดระยะห่าง(cm) และค่าความต่างศักย์(v) หาระยะห่าง 4 ค่า และวัด ความต่างศักย์ 3 ครั้งแล้วหาค่าเฉลี่ย บันทึกผลการทดลอง

ผลการทดลอง

ระยะห่าง(cm)	$V_1(V)$	$V_2(V)$	$V_3(V)$	$V_{ m laar{h}}(V)$
5	3.50	3.51	3.52	3.51
10	5.59	5.60	5.61	5.60
15	6.62	6.63	6.64	6.63
20	7.36	7.37	7.38	7.37

$$y = ax^3 + bx^2 + cx + d$$

$$\therefore V = ax^3 + bx^2 + cx + d$$

$$a(5)^3 + b(5)^2 + c(5) + d = 3.51$$
 (1)

$$a(10)^3 + b(10)^2 + c(10) + d = 5.60$$
 (2)

$$a(15)^3 + b(15)^2 + c(15) + d = 6.63$$
 (3)

$$a(20)^3 + b(20)^2 + c(20) + d = 7.37$$
 (4)

แก้สมการจะได้
$$a=1.026 imes 10^{-3}$$
 , $b=-0.052$, $c=1.018$, $d=-0.41$ $\therefore V=1.026 imes 10^{-3} x^3 - 0.052 \, x^2 + 1.018 x - 0.41$

สรุปผลการทดลอง

จากการทดลองทำให้ทราบการทำงานของ LDR คือเมื่อมีแสงเข้า LDR มากๆ (ความเข้มแสงมาก) ความต้านทานก็จะลดลง แต่ถ้ามีแสงเข้า LDR น้อยๆ (ความเข้มแสงน้อย) ความต้านทานก็จะ เพิ่มขึ้นตาม ซึ่งจะได้ความสัมพันธ์ระหว่างค่าความต้านทานและความเข้มของแสงคือ "ความต้านทานจะ แปรผกผันกับความเข้มของแสง" เมื่อนำตัวต้านทาน LDR ต่อกับหลอด LED ในวงจร เมื่อเอาวัตถุ ผ่านหรือไปบัง LDR หลอด LED ก็จะสว่าง และเมื่อเราเอาวัตถุออกจาก LDR หลอด LED ก็จะ ดับลง

