* Spé - St Joseph/ICAM Toulouse * -

2019-2020 -

Math. - ES 1 - S1 - Algèbre

mercredi 8 janvier 2020 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

On se place dans $\mathbb{R}[X]$ muni du produit scalaire défini par :

$$\forall (P,Q) \in E^2, \langle P,Q \rangle = \int_{-1}^1 P(t)Q(t)dt$$

On considère l'endomorphisme Φ de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \Phi(P) = (X^2 - 1)P'' + 2XP'$$

où l'on note respectivement P' ou P'(X), ainsi que P'' ou P''(X) les dérivées premières et deuxième de P = P(X).

Pour $n \in \mathbb{N}$, on note $U_n = (X^2 - 1)^n$ et $L_n = \frac{1}{2^n n!} U_n^{(n)}$, où $U_n^{(n)}$ désigne la dérivée n-ième de U_n . Les polynômes L_n sont appelés polynômes de Legendre.

Partie I - Quelques résultats généraux

- 1. Déterminer L_0, L_1 et vérifier que $L_2 = \frac{1}{2}(3X^2 1)$.
- 2. Justifier que L_n est de degré n, et préciser son coefficient dominant.
- **3.** Montrer que la famille (L_0, \dots, L_n) est une base de $\mathbb{R}_n[X]$.

Partie II - Etude des éléments propres de Φ

- 1. Justifier que $\mathbb{R}_n[X]$ est stable par Φ . On note Φ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Φ , c'est-à-dire l'endomorphisme de $\mathbb{R}_n[X]$ défini pour tout $P \in \mathbb{R}_n[X]$ par $\Phi_n(P) = \Phi(P)$.
- **2.** On note $M=(m_{i,j})_{0\leq i,j\leq n}$ la matrice de Φ_n dans la base canonique de $\mathbb{R}_n[X]$. Montrer que M est triangulaire supérieure et que : $\forall k\in [0,n], m_{k,k}=k(k+1)$.
- **3.** En déduire que Φ_n est diagonalisable.
- 4. Vérifier que : $\forall k \in [0, n], (X^2 1)U'_k 2kXU_k = 0.$
- 5. Soit $k \in [0, n]$. En dérivant (k+1) fois la relation établie dans la question précédente, montrer que :

$$(X^{2} - 1)U_{k}^{(k+2)} + 2XU_{k}^{(k+1)} - k(k+1)U_{k}^{(k)} = 0$$

On rappelle la formule de Leibniz : si f et g sont k fois dérivables, alors $(fg)^{(k)} = \sum_{i=0}^{k} \binom{k}{i} f^{(i)} g^{(k-i)}$

- **6.** Montrer que pour $k \in [0, n]$, le polynôme L_k est un vecteur propre de Φ_n , et préciser la valeur propre associée.
- 7. Déduire de ce qui précède les valeurs propres et sous-espaces propres associés à Φ .

Partie III - Distance au sous-espace vectoriel $\mathbb{R}_n[X]$.

- 1. Montrer que : $\forall (P,Q) \in \mathbb{R}[X]^2$, $\langle \Phi(P), Q \rangle = -\int_{-1}^1 (t^2 1)P'(t)Q'(t)dt$, puis que $\forall (P,Q) \in \mathbb{R}[X]^2$, $\langle \Phi(P), Q \rangle = \langle P, \Phi(Q) \rangle$
- **2.** Montrer que la famille $(L_n)_{n\in\mathbb{N}}$ est orthogonale pour le produit scalaire $\langle \cdot, \cdot \rangle$. On pourra utiliser la question 6 de la partie II.
- 3. Montrer que :

$$\forall n \in \mathbb{N}^*, \forall P \in \mathbb{R}_{n-1}[X], \langle P, L_n \rangle = 0$$

- **4.** On admet que $||L_n||^2 = \frac{2}{2n+1}$. Pour $n \in \mathbb{N}$, on pose $Q_n = \sqrt{\frac{2n+1}{2}}L_n$. Que peut-on dire de la famille $(Q_n)_{n\in\mathbb{N}}$ pour le produit scalaire $\langle \cdot, \cdot \rangle$?
- 5. Soit $P \in \mathbb{R}[X]$. Justifier qu'il existe un unique polynôme $T_n \in \mathbb{R}_n[X]$ tel que

$$d(P, \mathbb{R}_n[X]) = \inf_{Q \in \mathbb{R}_n[X]} ||P - Q|| = ||P - T_n||$$

puis justifier l'égalité :

$$(d(P, \mathbb{R}_n[X]))^2 = ||P||^2 - \sum_{k=0}^n (c_k(P))^2, \text{ où } c_k(P) = \langle P, Q_k \rangle$$

6. Prouver que la série $\sum (c_k(P))^2$ converge et que

$$\sum_{k=0}^{+\infty} (c_k(P))^2 \le ||P||^2$$

Partie IV - Fonction génératrice

On admet dans cette partie que : $\forall n \in \mathbb{N}^*$, $(n+1)L_{n+1} - (2n+1)XL_n + nL_{n-1} = 0$, et on considère la série entière de la variable $t : \sum L_n(x)t^n$.

On note r la racine positive du polynôme $X^2 - 2X - 1$.

- 1. Montrer par récurrence que $\forall x \in [-1, 1], \forall n \in \mathbb{N}, |L_n(x)| \leq r^n$. On pourra utiliser la relation admise au début de cette partie.
- 2. Pour $x \in [-1,1]$, on note R(x) le rayon de convergence de la série entière $\sum L_n(x)t^n$. Montrer que $R(x) \ge \frac{1}{r}$.
- **3.** Pour $x \in [-1,1]$ et $t \in \left] -\frac{1}{r}, \frac{1}{r} \right[$, on pose $S_x(t) = \sum_{n=0}^{+\infty} L_n(x) t^n$.

Montrer que S_x est solution sur $\left] -\frac{1}{r}, \frac{1}{r} \right[$ de l'équation différentielle

$$(1 - 2tx + t^2)y' + (t - x)y = 0$$

- **4.** En déduire que : $\forall x \in [-1, 1], \forall t \in \left] -\frac{1}{r}, \frac{1}{r} \right[, \sum_{n=0}^{+\infty} L_n(x) t^n = \frac{1}{\sqrt{t^2 2tx + 1}}.$
- 5. A partir du seul résultat de la question précédente, retrouver les valeurs de L_0, L_1 et L_2 .

Fin de l'énoncé d'algèbre