Digital Logic Circuits 'Memory Elements' ELEC2200 Summer 2009

David J. Broderick brodedj@auburn.edu http://www.auburn.edu/~brodedj Office: Broun 360

Memory Elements

- Combinational Logic
 - Output is function of inputs only
- Sequential Logic
 - Output is function of inputs and previous outputs
- We need a way to `remember' a previous logical value
- 2 basic types of memory elements
 - Latches Level-sensitive to inputs
 - Flip-flops Edge triggered on active edge of clock

Simplest Memory Element

2 NOR gates with feedback R

- Level sensitive
- Active High
 - Input must be high to perform command
- Only one input can be active

Recall the NOR gate:

X	Y	(X+Y)'
0	0	1
0	1	0
1	0	0
1	1	0

R	S	Q*	Q'	Command
0	0	Q	Q'	Remember
0	1	1	0	Set
1	0	0	1	Reset
1	1	?	?	Invalid

S

R

- State Diagram
- In this case:
 - State is output(Q)
 - Each transition has a stimulus, (SR)
- Don't cares still used for some stimuli

R	S	Q*	Q'*	Command
0	0	Q	Q'	Remember
0	1	1	0	Set
1	0	0	1	Reset
1	1	?	?	Invalid

Characteristic Equation

- Output of sequential logic is not only dependent on inputs but also the previous states
- Q*=f(S,R,Q)
- For an SR Latch:

R	S	Q*	Q'*	Command
0	0	Q	Q'	Remember
0	1	1	0	Set
1	0	0	1	Reset
1	1	?	?	Invalid

Set-Reset Latch (NAND)

Dual circuit

2 NAND gates with feedback R

- Level sensitive
- Active Low
 - Input must be low to perform command
- Only one input can be active
- Outputs: current state and its inverse
- Outputs reversed from NOR SR latch

Set-Reset Latch (NAND)

Recall the NAND gate:

X	Y	(X·Y)'
0	0	1
0	1	1
1	0	1
1	1	0

This leads to:

R	S	Q*	Q'*	Command
0	0	Q	Q'	Invalid
0	1	1	0	Reset
1	0	0	1	Set
1	1	?	?	Storage

- If new input, E (enable), is inactive (low in this case) latch will be in 'remember' state
- Still level sensitive, so still a latch
- Active high inputs
 - E (enable)
 - R (Reset)
 - S (Set)
- Invalid command still possible
- Dual circuit also possible (NAND)

E	R	S	Q*	Q'*	Command
0	X	X	Q	Q'	Remember
1	0	0	Q	Q'	Remember
1	0	1	1	0	Set
1	1	0	0	1	Reset
1	1	1	?	?	Invalid 🦳

- State Diagram
- Don't cares on inputs can be 0 or 1
- If E=0, other inputs don't matter
- When Q=0, both reset and remember will remain in the same state
- When Q=1, both set and remember will remain in the same state

Е	R	S	Q*	Q'*	Command
0	X	X	Q	Q'	Remember
1	0	0	Q	Q'	Remember
1	0	1	1	0	Set
1	1	0	0	1	Reset
1	1	1	?	?	Invalid

Characteristic Equation

$$Q*=SE+QR+EQ$$

Enabled Data Latch

- AKA: Delay Latch, D Latch, transparent D Latch
- No more undefined state!

Ε	D	Q*	Command
0	X	Q	Remember
1	0	0	Tra <mark>n</mark> sparent
1	1	1	Transparent

 When enabled (E=1) the latch is transparent (Q=D)

Enabled Data Latch

Enabled Data Latch

- D Latch State Diagram
 - Still only two states,
 - Stimulus changed
- When Q=0, both reset and remember will remain in the same state
- When Q=1, both set and remember will remain in the same state

Е	D	Q*	Command
0	X	Q	Remember
1	0	0	Transparent
1	1	1	Transparent

Characteristic Equation

Enabled D Latch

Q\ED	00	01	11	10
0	0	0	1	0
1	1	1	1	0

Ε	D	Q*	Command
0	X	Q	Remember
1	0	0	Transparent
1	1	1	Transparent

$$Q^* = DE + \overline{E}Q$$

Something to avoid

- Transitions on D and E at the same time
- Inputs don't change instantaneously, can lead to unknown state

Flip-Flops

- Latches are level sensitive, transition when a level (0 or 1) is present on the inputs
- Flip-flops transition on a clock signal
 - Positive pulse
 - Negative pulse
 - Positive edge
 - Negative edge
- Can be built from basic gates or from latches

- When clock is low
 - Master D latch is transparent
 - Slave D latch is remembering
- When clock is high
 - Master D latch is remembering
 - Slave D latch is transparent

- Qm can transition whenever C is low
- Q (Qs) transitions on the positive edge of a pulse
- Whatever value was present on D when the positive edge of the clock (C) occurred is allowed to pass to Q at that time
- Ideally all transitions occur simultaneously

 Negative edge of clock can be active too

 Q transitions on negative going edge of clock

Negative edge is now the active edge

D	С	Q*	Command
0	\downarrow	0	Reset
1	\downarrow	1	Set

Characteristic Equation

Master-Slave D Flip-flop

D	С	Q*	Command
0		0	Reset
1	1	1	Set

$$Q*=D$$

J-K Flip-Flop

Another method of removing the invalid input

present in a SR latch/flip-flop

J	K	С	Q*	Command
0	0	\uparrow	Q	Remember
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	\uparrow	Q'	Toggle

Characteristic Equation

JK Flip-flop

Q\JK	00	01	11	10	
0	0	0	1	1	
1_	1	0	0	1	

J	K	C	Q*	Command
0	0	↑	Q	Remember
0	1	↑	0	Reset
1	0	↑	1	Set
1	1	1	Q'	Toggle

$$Q^* = \overline{K}Q + J\overline{Q}$$

Toggle (T) Flip-Flop

- Built from J-K Flip-flops
- Edge-triggered (1st type)

Т	Q*	Command
\downarrow	Q'	Toggle

Characteristic Equation

• T Flip-flop (edge triggered)

Toggle (T) Flip-Flop

- Built from J-K Flip-flops
- Clocked (2nd type)

Т	С	Q*	Command
0	\downarrow	Q	Remember
1	\downarrow	Q	Toggle

Characteristic Equation

T Flip-flop (clocked)

$$Q*=TQ+TQ$$

Timing Considerations

- Transitions don't actually happen simultaneously
- Minimum setup time (t_{su}) –
 minimum time D must be valid at
 input before active edge of clock
- Minimum hold time (t_h) minimum Clk
 time D must remain valid after
 active edge of clock
- Clock-to-output delay (t_{co}) –
 maximum time before Q is valid
 after the active edge of clock

Timing Considerations

- Violations of these times must be avoided in design process
- If violation occurs:
 - Real circuit will resolve to an unknown state (Q=Q')
 - Simulation will not be valid and can lead to invalid simulation and manufacturing problems (clock-data-races)

Clock Signals

- Typically a periodic signal (a sequence of pulses) used to:
 - Sample data
 - Store sampled data in memory elements
- T= period of periodic signal, the time it take the signal to repeat itself

f= clock frequency, 1/T

Flip-Flop Initialization

- Some flip-flops have another set of inputs for initialization
- These input can be
 - Synchronous Change output on active clock edge
 - Asynchronous Change inputs regardless of active clock edge
- Initialization important:
 - To remove undefined logic value in simulation
 - Start a system in a known state

Flip-Flop Initialization

- Initialization inputs called:
 - Preset (pre) sets output (Q) to logic 1 (high)
 - Clear (clr) sets output (Q) to logic 0 (low)
- Initialization inputs can also be:
 - Active high affect output when logic 1
 - Active low affect output when logic 0

Flip-Flop Initialization

For this example:

 Preset (Pre) is active high and synchronous

 Clear (Clr) is active low and asynchronous

