Vectors

Linear combinations

- D1.7: A linear combination $\lambda_1 v_1 + \cdots + \lambda_n v_n$ is called
 - 1. affine if $\lambda_1 + \cdots + \lambda_n = 1$,
 - 2. conic if $\lambda_1, \ldots, \lambda_n \geq 0$,
 - 3. convex if it is both affine and conic.

Scalar products, lengths, angles

- $\overline{\text{O1.10: Let } u, v, w \in \mathbb{R}^m, \lambda \in \mathbb{R}$. Then
 - 1. $v \cdot w = w \cdot v$;
 - 2. $(\lambda v) \cdot w = \lambda (v \cdot w) = v \cdot (\lambda w)$;
 - 3. $u \cdot (v+w) = u \cdot v + u \cdot w$ and $(u+v) \cdot w = u \cdot v + v \cdot w$;
 - 4. $v \cdot v \ge 0$. equality iff v = 0.
- D1.11 (Euclidean norm): Let $v \in \mathbb{R}^m$. Then $\|v\| :=$ $\sqrt{v\cdot v}$.
- L1.12 (Cauchy-Schwarz inequality): Let $v, w \in \mathbb{R}^m$. Then $|v\cdot w| \leq ||v|| ||w||$. Equivalently $(uw)^2 \leq v^2w^2$. Equality
- D1.14 (Angle): Let $v, w \in \mathbb{R}^m$ nonzero. Then $\cos(\alpha) =$ $\frac{v \cdot w}{\|v\| \|w\|}$.
- D1.15: Two vectors $v, w \in \mathbb{R}^m$ are called perpendicular/orthogonal iff $v \cdot w = 0$.
- L1.16: Let $v, w \in \mathbb{R}^m$. Then $||v + w|| \le ||v|| + ||w||$.

Linear independence

- L1.19: Let $v_1, \ldots, v_n \in \mathbb{R}^n$. The following statements are equivalent:
 - 1. At least one of the vectors is a linear combination of the other ones.
 - 2. 0 is nontrivial linear combination of the vectors.
 - 3. At least one of the vectors is a linear combination of the prevous ones.
- L1.21: Let $v_1,\ldots,v_n\in\mathbb{R}^m$ be linearly independent and $\sum_{i=1}^{n} \lambda_j v_j = \sum_{i=1}^{n} \mu_j v_j$. Then $\lambda_j = \mu_j$ for all $j \in [n]$.
- D1.22 (Span): Let $v_1, \ldots, v_n \in \mathbb{R}^m$. Then $\operatorname{Span}(v_1,\ldots,v_n):=\{\sum_{j=1}^n\lambda_jv_j:\lambda_j\in\mathbb{R}\}.$
- L1.23: Let $v_1,\ldots,v_n\in\mathbb{R}^m$ and $v\in\mathbb{R}^m$ a linear combination of $v_1, \ldots v_n$. Then $\mathrm{Span}(v_1, \ldots, v_n) =$ $\operatorname{Span}(v_1,\ldots,v_n,v).$

Matrices

Linear combinations

- D2.3: Let $A = [a_{ij}]_{i=1,j=1}^{mm}$. If j < i, j = i, j > i then a_{ij} is below, on, above the diagonal.
 - 1. If $a_{ii} = 1$ and $a_{ij} = 0$ for $j \neq i$ then A = I is the identity matrix.
 - 2. If $a_{ij} = 0$ for $j \neq i$ then A is diagonal.

- 3. If $a_{ij} = 0$ for j < i then A is upper triangular.
- 4. If $a_{ij} = 0$ for j > i then A is lower triangular.
- 5. If $a_{ij} = a_{ji}$ for all i, j then A is symmetric.
- D2.9: Let $A \in \mathbb{R}^{m \times n}$ with columns v_1, \ldots, v_n . Column v_i is independent iff v_i is not a linear combination of v_1, \ldots, v_{i-1} . rank(A) is the number of independent columns.
- D2.11: A^{\top} is the transpose of A.
- O2.12: Let $A \in \mathbb{R}^{m \times n}$. Then $(A^{\top})^{\top} = A$.
- D2.13: Let $A \in \mathbb{R}^{m \times n}$. Then $R(A) := C(A^{\top})$.

Matrix multiplication

- D2.16: Let $A \in \mathbb{R}^{a \times n}$ and $B \in \mathbb{R}^{n \times b}$ with columns b_k Then $AB \in \mathbb{R}^{a \times b}$ has columns Ab_k .
- L2.19: Let $A \in \mathbb{R}^{a \times n}$, $B \in \mathbb{R}^{n \times b}$. Then $(AB)^{\top} =$ $B^{\top}A^{\top}$.
- C2.20: Let $I \in \mathbb{R}^{m \times m}$. Then IA = A for $A \in \mathbb{R}^{m \times n}$ and $AI = A \text{ for } A \in \mathbb{R}^{n \times m}.$
- L2.21: Let $A \in \mathbb{R}^{m \times n}$. The following statements are equi-
 - 1. rank(A) = 1.
 - $A = vw^{\top}$
- L2.22: Let A, B, C, D matrices sucht that sums and products are defined. Then
 - 1. A(B+C) = AB+AC and (B+C)D = BD+CD
 - 2. (AB)C = A(BC).

CR decomposition

T2.23: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = r. Let $C \in \mathbb{R}^{m \times r}$ be $\boxed{\text{D3.7: Let } M \in \mathbb{R}^{m \times m}$. M is called *invertible* iff there is the submatrix of A containing the independent columns. Then there exists a unique $R \in \mathbb{R}^{r \times n}$ such that A = CR.

Linear transformations

- D2.25: Let $A \in \mathbb{R}^{m \times n}$. $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T_A(x) = Ax$.
- O2.26: T_A is a linear transformation.
- D2.27 (Linear transformation): Let $T: \mathbb{R}^n \to \mathbb{R}^m$. T is T3.11: Let $A \in \mathbb{R}^{m \times m}$. The following statements are called a *linear transformation* iff for all $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$ | equivalent.
 - 1. T(x + y) = T(x) + T(y) and
 - 2. $T(\lambda x) = \lambda T(x)$.
- T2.29: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There exists a unique $A \in \mathbb{R}^{m \times n}$ such that $T = T_A$.
- L2.30: Let $T_A: \mathbb{R}^n \to \mathbb{R}^a, T_B: \mathbb{R}^b \to \mathbb{R}^n$ be linear transformations. Then $T_A(T_B(x)) = T_{AB}(x)$.
- D2.31 (Kernel and image): Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then
 - 1. Ker $(T) := \{x \in \mathbb{R}^n : T(x) = \mathbf{0}\} \subseteq \mathbb{R}^n$,

- 2. $\operatorname{Im}(T) := \{T(x) : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$.
- O2.32: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $A \in \mathbb{R}^{m \times n}$ such that $T = T_A$. Then $\mathrm{Im}(T) = C(A)$.

Solving linear equations

Systems of linear equations

 $\overline{\text{O3.2: Let } A \in \mathbb{R}^{m \times n}}$. The columns of A are linearly independent iff Ax = 0 has a unique solution, x = 0.

Gauss elimination

- $\overline{\mathsf{A}}$: Let $A \in \mathbb{R}^{m \times m}$. $b \in \mathbb{R}^m$. Then
- **procedure** Gauss-elimination(A, b)

for
$$i \leftarrow 1, \dots, m$$
 do

if
$$A_{j,j} = 0$$
 then

$$k \leftarrow j + 1$$

while $k \leq m \wedge A_{k,j} = 0$ do $k \leftarrow k+1$

if k > m then return "gibs auf"

else exchange rows j and k in A, b

for $i \leftarrow j + 1, \dots, m$ do

 $c \leftarrow A_{i,j}/A_{j,j}$

subtract $c \cdot \text{row } j$ from row i in A, b

L3.3: Let Ax = b be a system of m linear equations in n variables, $M \in \mathbb{R}^{m \times m}$ be a row operation matrix. Let 2. There are nonzero $v \in \mathbb{R}^m, w \in \mathbb{R}^n$ such that A' = MA, b' = Mb. Then Ax = b and A'x = b' have the same solutions.

T3.5: The following statements are equivalent:

- 1. Gauss elimination succeeds.
- 2. The columns of A are linearly independent.
- T3.6: Gauss elimination is in $O(m^3)$.

Inverse matrices

- an $M^{-1} \in \mathbb{R}^{m \times m}$ such that $MM^{-1} = M^{-1}M = I$.
- L3.8: The inverse of a matrix is unique.
- L3.9: Let $A, B \in \mathbb{R}^{m \times m}$ be invertible. Then $(AB)^{-1} =$ $B^{-1}A^{-1}$.
- L3.10: Let $A \in \mathbb{R}^{m \times m}$ be invertible. Then $(A^{\top})^{-1} =$
- 1. A is invertible.
- 2. For every $b \in \mathbb{R}^m$, Ax = b has a unique solution.
- 3. The columns of A are linearly independent.

LU and LUP decomposition

T3.13: Let $A \in \mathbb{R}^{n \times n}$ on which Gauss elimination succeeds without row exchanges, resulting in an upper triangular matrix U. Let c_{ij} be the multiple of row i that we subtract from row i > j when we eliminate in column j. Then A = LU where

$$L = \begin{bmatrix} 1 & & & \\ c_{2,1} & 1 & & \\ \vdots & & \ddots & \\ c_{m,1} & \cdots & c_{m,m-1} & 1 \end{bmatrix}$$

D3.14: A permutation of [m] is a bijective function $\pi \colon [m] \to [m].$

D3.15: Let $\pi: [m] \to [m]$ be a permutation. The permutation matrix associated with π is $P \in \mathbb{Z}^{m \times m}$ with

$$p_{ij} = \begin{cases} 1 & \text{if } j = \pi(i) \\ 0 & \text{otherwise} \end{cases}.$$

L3.16: Let P be a permutation matrix. Then $P^{-1} = P^{\top}$.

L3.17: Let $P, P' \in \mathbb{Z}^{n \times n}$ be permutation matrices with associated permutations π, π' . Then PP' is a permutation matrix as well, associated with the permutation $\pi' \circ \pi$.

T3.18: Let $A \in \mathbb{R}^{n \times n}$, $m \ge 1$ have linearly independent columns. There exist $P, L, U \in \mathbb{R}^{n \times n}$ such that PA = LU where P is a permutation matrix. L a lower triangular matrix with 1s on the diagonal and U an upper triangular matrix with nonzero diagonal entries.

R (Solving Ax = b from PA = LU): Because $P^{-1} = P^{\top}$ we have $P^{\top}LUx = b$. Solve $P^{\top}z = b$ for z be permutation. Solve Ly = z for y using forward substitution and Ux = y for x using backward substitution.

Gauss-Jordan elimination

but:

D3.19 (REF, RREF): Let $R \in \mathbb{R}^{m \times n}$. R is in row echelon form (REF) if the following holds. There exist $r \leqslant m$ column indices $1 \leq j_1 \leq \cdots \leq j_r \leq n$ such that the following statements hold:

- 1. For i = 1, ..., r we have $r_{i,i} = 1$.
- 2. For all i, j we have $r_{ij} = 0$ whenever i > r or $j < j_i$ or $j = j_k$ for some k > i.

If r=m, R is in reduced row echelon form (RREF). We use the notation REF (j_1, \ldots, j_r) and RREF (j_1, \ldots, j_r) .

O3.20: A matrix R in $REF(j_1, \ldots, j_r)$ has rank r. A (Gauss-Jordan elimination): Like Gauss elimination,

- 1. Normalize pivot of each row to 1.
- 2. Eliminate above the pivot to get REF.

T3.21 (Gauss-Jordan elimination): Let $A \in \mathbb{R}^{m \times n}$. There exists an invertible matrix $M \in \mathbb{R}^{m \times m}$ such that $R_0 = MA$ is in REF.

L3.22: Let $A \in \mathbb{R}^{m \times n}$. $M \in \mathbb{R}^{m \times m}$ invertible. and $R_0 = MA$ in $REF(j_1, \ldots, j_r)$. Then A has independent columns j_1, \ldots, j_r .

T3.23: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = r and $b \in \mathbb{R}^m$.

- 1. Using Gauss-Jordan elimination, A can be transformed into $R_0 = MA$ in REF as given by [T3.21] in time O(rmn + mn).
- 2. By simultaneously transforming $I \in \mathbb{R}^{m \times m}$ using the same row operations. M = MI can be computed in additional time $O(rm^2 + m^2)$.
- 3. Given M, the system Ax = b can be solved in $O(m^2)$.

Computing the CR decomposition

T3.24: Let $A \in \mathbb{R}^{m \times n}$ and let A = CR as in [T2.23]. Let $R_0 = MA$ in $REF(j_1, \dots, j_r)$ be the result of Gauss-Jordan elimination on A [T3.21]. Then R results from R_0 by removing the zero rows at the end (if there are any); in particular R is in RREF (j_1, \ldots, j_r) , and C is the submatrix of A with columns j_1, \ldots, j_r .

The four fundamental subspaces

Vector spaces

D4.1 (Vector space): A vector space is a triple $(V, +, \cdot)$ where V is a set and

- 1. $+: V \times V \to V$.
- 2. $\cdot : \mathbb{R} \times V \to V$.

statisfying the following axioms for $u, v, w \in V$; $\lambda, \mu \in \mathbb{R}$.

- 1. v + w = w + v
- 2. u + (v + w) = (u + v) + w
- 3. There is $0 \in V$ such that v + 0 = v.
- 4. There is $-v \in V$ such that v + (-v) = 0.
- 5. $1 \cdot v = v$
- 6. $(\lambda \mu)v = \lambda(\mu v)$
- 7. $\lambda(v+w) = \lambda v + \lambda w$
- 8. $(\lambda + \mu)v = \lambda v + \mu v$
- O4.2: $(\mathbb{R}^m, +, \cdot)$ is a vector space.

D4.3: A polynomial p is a sum of the form $p = \sum_{i=0}^{m} p_i x^i$ for some $m \in \mathbb{N}$. x is a variable and $p_0, \ldots, p_m \in \mathbb{R}$ are coefficients of p. The largest i such that $p_i \neq 0$ is the degree of p. The zero polynomial $\mathbf{0} = 0$ has degree -1.

T4.4: Let $\mathbb{R}[x]$ be the set of polynomials in x. Given $p = \sum_{i=0}^{m} p_i x^i$ and $q = \sum_{i=0}^{n} q_i x^i$ and $\lambda \in \mathbb{R}$. We define $p+q=\sum_{i=0}^{\max(m,n)}(p_i+q_i)x^i \text{ and } \lambda p=\sum_{i=0}^m(\lambda P_i)x^i$ Then $(\mathbb{R}[x], +, \cdot)$ is a vector space.

T4.5: $(\mathbb{R}^{m \times n}, +, \cdot)$ is a vector space.

F4.6: Each vector space contains exactly one zero vector.

F4.7: Each v in a vector space has exactly one -v.

D4.8: Let V be a vector space. $U \subseteq V$, $U \neq \emptyset$ is called a subspace of V iff for all $v, w \in \mathbb{U}$ and $\lambda \in \mathbb{R}$.

1. $v + w \in U$;

2. $\lambda v \in U$.

L4.9: Let $U \subseteq V$ be a subspace. Then $\mathbf{0} \in V$.

L4.11: Let $A \in \mathbb{R}^{m \times n}$. Then $C(A) = \{Ax : x \in \mathbb{R}^n\}$ is a subspace of \mathbb{R}^m .

L4.12: Let V be a vector space and U a subspace. Then U is a vector space.

Bases and dimension

L4.14: Let V be a vector space $G \subseteq V$. Every linear combination of G is in V.

D4.16 (Basis): Let V be a vector space. $B\subseteq V$ is called a basis of V iff B is linearly independent and | lumns. For $x \in \mathbb{R}^n$, let $\operatorname{Span}(B) = V.$

O4.18: Every set of m linearly independent vectors is a basis of \mathbb{R}^m .

L4.19 (Steinitz exchange lemma): Let V be a vector space. $F \subseteq V$ finite and linearly independent and $G \subseteq V$ finite with Span(G) = V. Then

- 1. $|F| \leq |G|$
- 2. There exists $E \subseteq G$ of size |G| |F| such that $\operatorname{Span}(F \cup E) = V.$

T4.20: Let V be a vector space and $B, B' \subseteq V$ two finite bases of V. Then |B| = |B'|.

D4.21: A vector space V is called finitely generated iff there exists a finite $G \subseteq V$ with Span(G) = V.

 $G \subseteq V$ be a finite subset with $\operatorname{Span}(G) = V$. Then V has a basis $B \subseteq G$.

D4.23 (Dimension): Let V be a finitely generated vector space. Then $\dim(V)$ is the size of any basis B of V.

L4.24: Let V be a vector space with $\dim(V) = d$.

- 1. Let $F \subseteq V$ be a set of linearly independent vectors. Then F is a basis of V.
- 2. Let $G \subseteq V$ be a set of d vectors with Span(G) =V. Then G is a basis of V.

Computing the fundamental subspaces

Computing a basis of C(A) and R(A)

T4.25/T4.28: Let $A \in \mathbb{R}^{m \times n}$ and R_0 in REF (i_1, \ldots, i_r) the result of Gauss-Jordan elimination on A [T3.21] Then A has independent columns j_1, \ldots, j_r and these form the basis for C(A). The first r rows of R_0 form a L4.41: Let $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) = m$. Then Ax = b has basis of R(A). Hence $\dim(C(A)) = \dim(R(A)) = r = |$ a solution for every $b \in \mathbb{R}^m$.

L4.27: Let $A \in \mathbb{R}^{m \times n}$ and $M \in \mathbb{R}^{m \times m}$ invertible. Then Orthogonality R(A) = R(MA).

T4.29: Let $A \in \mathbb{R}^{m \times n}$. Then $\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$.

C4.30: Let A = CR be the CR decomposition A [T2.23]. The columns of C form a basis of C(A) [T4.25]. The rows of R form a basis of R(A) [T4.28], [T3.24].

D4.31: Let $A \in \mathbb{R}m \times n$. Then $N(A) = \{x \in \mathbb{R}^n : Ax = a\}$ $0\} \subseteq \mathbb{R}^n$

L4.32: Let $A \in \mathbb{R}^{m \times n}$. Then N(A) is a subspace of \mathbb{R}^n . L4.33: Let $A \in \mathbb{R}^{m \times n}$ and $M \in \mathbb{R}^{m \times m}$ invertible. Then N(A) = N(MA).

Computing a basis of N(A)

L4.34: Let $R \in \mathbb{R}^{r \times n}$ be in $RREF(j_1, \ldots, j_r)$ (see [D3.19]). Let $j_{r+1} < \cdots < j_n$ denote the indices of the dependent columns. The $r \times r$ submatrix of R formed by the independent columns is I. We let $Q \in \mathbb{R}^{r \times (n-r)}$ denote the submatrix of R formed by the dependent co-

$$x(I) = \begin{bmatrix} x_{j_1} \\ \vdots \\ x_{j_r} \end{bmatrix} \in \mathbb{R}^r \text{ and } x(Q) = \begin{bmatrix} x_{j_{r+1}} \\ \vdots \\ x_{j_n} \end{bmatrix} \in \mathbb{R}^{n-r}.$$

denote the subvectors of basic and free entries. Let T5.2.6: Let S be a subspace in \mathbb{R}^n and the columns $v_1, \ldots, v_{n-r} \in \mathbb{R}^n$ be the vectors defined via $v_i(Q) = e_i$ of A are a basis of S. Then $\operatorname{proj}_S(b) = Pb$ where and $v_i(I) = -Qv_i(Q)$. Then $\{v_1, \dots, v_{n-r}\}$ is a basis $P = A(A^TA)^{-1}A^T$. of N(R).

T4.35: Let $A \in \mathbb{R}^{m \times n}$ and let R_0 in $\text{REF}(j_1, \dots, j_r)$ be the result of Gauss-Jordan elimination on A (see [T3.21]). Let R in RREF (j_1,\ldots,j_r) be the submatrix of R_0 consisting of the first r rows. The vectors v_1, \ldots, v_{n-r} as constructed in [L4.34] form a basis of $N(A) = N(R_0) =$ T4.22: Let V be a finitely generated vector space and let |N(R)| and therefore $\dim(N(A)) = n - r = n - \operatorname{rank}(A)$. Least squares approximation L4.36: Let $A \in \mathbb{R}^{m \times n}$. Then $LN(A) := N(A^{\top}) \subseteq \mathbb{R}^m$. L4.32 (L4.37): Let $A \in \mathbb{R}^{m \times n}$. Then N(A) (LN(A)) is (3): $A \top A \hat{x} = A^{\top} b$. a subspace of \mathbb{R}^n (\mathbb{R}^m).

Computing a basis of LN(A)

T4.38: Let $A \in \mathbb{R}^{m \times n}$ and let $R_0 = MA$ in $REF(j_1, \ldots, j_r)$ be the result of Gauss-Jordan elimination on A (see [T3.21]). Then the last m-r rows w_{r+1},\ldots,w_m of $M\in\mathbb{R}^{m\times m}$ form a basis of LN(A)and therefore $\dim(LN(A)) = m - r = m - \operatorname{rank}(A)$.

Solution space of Ax = b

D4.39 (Solution space): Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Then $Sol(A, b) := \{x \in \mathbb{R}^n : Ax = b\} \subseteq \mathbb{R}^n.$

T4.40: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and s a solution to Ax = b. Then $Sol(A, b) = \{s + x : x \in N(A)\}.$

Orthogonality

 $\overline{\mathsf{T5.1.6}}\ \mathsf{Let}\ A \in \mathbb{R}^{m \times n}.\ N(A) = C(A^\top)^\perp = R(A)^\perp.$

T5.1.7 Let V, W be orthogonal subspaces of \mathbb{R}^n . The following Statements are equivalent:

1. $W = V^{\perp}$.

- 2. $\dim(V) + \dim(W) = n$.
- 3. Every $u \in \mathbb{R}^n$ can be written as u = v + w with unique $v \in V, w \in W$.

L5.1.8 Let V be a subspace of \mathbb{R}^n . Then $V = (V^{\perp})^{\perp}$.

T5.1.1 $\{x \in \mathbb{R}^n \mid Ax = b\} = x_1 + N(A)$ where $x_1 \in R(A)$ such that $Ax_1 = b$.

L5.1.11 Let $A \in \mathbb{R}^{m \times n}$. Then $N(A) = N(A^{\top}A)$ and $C(A^{\top}) = C(A^{\top}A).$

Projections

 $\overline{\mathsf{L5.2.2:}}\ \mathsf{Let}\ a \in \mathbb{R}^m_{+}\ \mathsf{and}\ S = \{\lambda a \mid \lambda \in \mathbb{R}\} = C(a).$ $\operatorname{proj}_{S}(b) = \frac{aa^{\top}}{a^{\top}a}b.$

L5.2.3: Let $b \in \mathbb{R}^m$ and S = C(A). Then $\operatorname{proj}_S(b) = A\hat{x}$ where \hat{x} satisfies $A^{\top}A\hat{x} = A^{\top}\hat{b}$.

L5.2.4: $A^{\top}A$ is invertible iff A has linearly independent

R5.2.7:

- 1. $P^2 = P$.
- 2. $(I P)b = \text{proj}_{S^{\perp}}(b)$.
- 3. $(I-P)^2 = I P$.

(2): $\min_{\hat{x} \in \mathbb{R}^n} ||A\hat{x} - b||^2$.

F5.3.1: A minimizer of (2) is also a solution of (3). When A has independent columns the unique solution \hat{x} of (2) is given by $\hat{x} = (A^{\top}A)^{-1}A^{\top}b$.

Linear regression

Problem: Consider data points $(t_1, b_1), \ldots, (t_m, b_m)$. Find $\alpha_0, \alpha_1 \in \mathbb{R}$ such that $b_k \approx \alpha_0 + \alpha_1 t_k$.

Solution: Let

$$b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}, \ A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \text{ and } \alpha = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \ .$$

Then $\alpha = (A^{\top}A)^{-1}A^{\top}b$ which can be written as

$$\alpha = \begin{bmatrix} m & \sum_{k=1}^{m} t_k \\ \sum_{k=1}^{m} t_k & \sum_{k=1}^{m} t_k^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{k=1}^{m} b_k \\ \sum_{k=1}^{m} t_k b_k \end{bmatrix}$$

R5.3.3: If the columns of A are pairwise orthogonal, then $A^{\top}A$ is a diagonal matrix, which is easy to invert. In this case this corresponds to $\sum_{k=1}^m t_k = 0$. Then the formula for α simplifies to

$$\alpha = \begin{bmatrix} \frac{1}{m} \sum_{k=1}^m b_k \\ (\sum_{k=1}^m t_k b_k)/(\sum_{k=1}^m t_k^2) \end{bmatrix} \,.$$

Orthonormal bases. Gram-Schmidt

D5.4.1: Vectors $q_1, \ldots, q_n \in \mathbb{R}^m$ are orthonormal iff they are orthogonal and have norm 1. In other words, for all $i,j \in [n]$ we have $q_i^{\top}q_i = \delta_{ij}$. In this case for Q with columns q_i we have $Q^{\top}Q = I$.

D5.4.3: $Q \in \mathbb{R}^{n \times n}$ is orthogonal iff $Q^{\top}Q = I$. In this case $QQ^{\top} = I, Q^{-1} = Q^{\top}$ and the columns form an orthonormal basis for \mathbb{R}^n .

P5.4.6: Let $Q \in \mathbb{R}^{m \times m}$ be orthogonal and $x, y \in \mathbb{R}^m$. Then ||Qx|| = ||x|| and $(Qx)^{\top}(Qy) = x^{\top}y$.

P5.4.7: Let S be a subspace of \mathbb{R}^m and q_1, \ldots, q_n be an orthonormal basis for S. Let $Q \in \mathbb{R}^{m \times n}$ with columns q_i Then the projection matrix that projects onto S is QQ^{\uparrow} and the Least squares solution to Qx = b is $\hat{x} = Q^{T}b$.

Gram-Schmidt process

A5.4.9: Let a_1, \ldots, a_n be linearly independent. Then

- $q_1 = \frac{a_1}{\|a_1\|}$.
- $\begin{array}{l} \bullet \;\; \mathsf{For} \; k = 2, \dots, n \; \mathsf{set} \\ q_k' = a_k \sum_{i=1}^{k-1} (a_k^\top q_i) q_i \end{array}$ $q_k = \frac{q'_k}{\|q'\|}$.

T5.4.10: The Gram-Schmidt process returns an orthonormal basis for the span of a_1, \ldots, a_n .

QR decomposition

D5.4.11: Let $A \in \mathbb{R}^{m \times n}$ have linearly independent columns. The QR decomposition is A = QR where $Q \in \mathbb{R}^{m \times n}$ is orthonormal (the output of [A5.4.9]) and $R = Q^{T}A$.

L5.4.12: In [D5.4.11] R is upper triangular und invertible. Moreover $QQ^{T}A = A$ and hence A = QR is well defined.

F5.4.13: The QR decomposition simplifies some calcula-

- C(A) = C(Q) leads to $\operatorname{proj}_{C(A)}(b) = QQ^{\top}b$.
- $A^{\top}A\hat{x} = A^{\top}b$ becomes $R\hat{x} = Q^{\top}b$.

Pseudoinverse

 $\overline{\mathsf{D5.5.1:}}$ Let $A \in \mathbb{R}^{m \times n}, \mathrm{rank}(A) = n.$ Then the pseudoinverse $A^+ \in \mathbb{R}^{n \times m}$ of A is $A^+ = (A^\top A)^{-1} A^\top$.

P5.5.2: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = n. Then $A^+A = I$.

D5.5.3: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = m. Then $A^+ =$ $A^{\top}(AA^{\top})^{-1}$.

L5.5.4: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = m. Then $AA^+ = I$. (10): $\min_{x \in \mathbb{R}^n} ||x||^2$.

L5.5.5: Let $A \in \mathbb{R}^{n \times n}$. $b \in C(A)$, the (unique) solution to (10) is given by $\hat{x} \in C(A^{\top})$ that satisfies the constraint $A\hat{x} = b$.

P5.5.6: For a full row rank matrix A, the unique solution to (10) is given by $\hat{x} = A^+b$.

D5.5.7: Let $A \in \mathbb{R}^{m \times n}$ with CR decomposition A = CR. Then $A^+ = R^+ C^+ = R^\top (C^\top A R^\top)^{-1} C^\top$.

L5.5.8: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$. The (unique) solution to $\min_{x \in \mathbb{R}^n} ||x||^2$ s.t. $A^{\top}Ax = A^{\top}b$, is given by $\hat{x} = A^+b$. P5.5.9: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = r and $S \in \mathbb{R}^{m \times r}$ $T \in \mathbb{R}^{r \times n}$ such that A = ST. Then $A^+ = T^+S^+$.

T5.5.11: Let $A \in \mathbb{R}^{m \times n}$.

- 1. $AA^{+}A = A$.
- $2 A^{+}AA^{+} = A^{+}$
- 3. AA^+ is symmetric and projects on C(A).
- 4. A^+A is symmetric and projects on $C(A^\top)$.
- 5. $(A^{\top})^+ = (A^+)^{\top}$

P5.5.12: Let $A \in \mathbb{R}^{m \times n}$. Then $f: C(A^\top) \to C(A)$, that $y \geqslant \mathbf{0}$, $y^\top A = \mathbf{0}$ and $y^\top b < 0$. $f: x \mapsto Ax$ is a bijection.

Farkas' lemma

 $\overline{\text{D5.6.1:}}$ Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $P = \{x \in \mathbb{R}^n \mid x \in \mathbb{$ $Ax \leq b$. P is called a polyhedron. Let S = [s]. The projection of P on the subspace \mathbb{R}^s associated with the variables in the subset S is $\operatorname{proj}_{S}(P) := \{x \in \mathbb{R}^{s} \mid \exists y \in \mathbb{R$ \mathbb{R}^{n-s} such that $(x,y) \in P$.

P5.6.2: $P \neq \emptyset \iff l \leq u \iff 0 \leq u - l \iff 0 \leq u + l \iff 0 \leq$ $u^{\top}b$ for all $u \ge 0$ such that $u^{\top}a = 0$.

A: Let $A \in \mathbb{O}^{m \times n}$. $b \in \mathbb{O}^m$ and $P = \{x \in \mathbb{R}^n \mid x \in \mathbb{$ $Ax \leq b$. Let the entries of A be denoted by a_{ij} Then row i gives us the inequality $\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}$ Let $\bar{x} = (x_1, \dots, x_{n-1})$ and \bar{A} consist of the first n-1columns of A. Consider the following algorithm.

- 1. Partition the indices M = [m] of the rows into three subsets $M_0 = \{i \in M \mid a_{i,n} = 0\}$ $M_{+} = \{i \in M \mid a_{i,n} > 0\} \text{ and } M_{-} = \{i \in M \mid a_{i,n} > 0\}$ $M \mid a_{i,n} < 0 \}.$
- 2. For every row with index $i \in M_+$ multi- $|\det(A)\det(B)$. This gives a new representation of row i as $\det(A^{-1}) = \frac{1}{\det(A)}$ $x_n \leqslant d_i + f_i^{\top} \bar{x} \text{ for } i \in M_+ \text{ where } d_i = \frac{b_i}{a_{in}},$
 - Every row with index $k \in M_0$ can be rewritten as $0 \leq d_k + f_k^{\top} \bar{x}$ for $k \in M_0$ where $d_k = b_k, f_{ki} = -a_{ki}.$
 - ullet For every row with index $i\in M_-$ multi- $\sum_{j=1}^n A_{ij}C_{ij}$. $x_n \geqslant d_i + f_i^{\top} \bar{x}$ for $i \in M_-$ where $d_i = \frac{b_i}{a_{in}}$ $f_{ij} = -\frac{a_{ij}}{a_{ij}}$

 $M_0, d_l + f_b^{\top} \bar{x} \leq d_i + f_i^{\top} \bar{x}$ for all $l \in M_-, i \in M_+$ column of A with b.

T5.6.3: The set Q returned in Step 3 is a polyhedron. Moreover $Q = \operatorname{proj}_{S}(P)$, where S = [n-1].

L5.6.4: Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^n$ and $P = \{x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x$ $Ax \leq b$. Let $S_1 = [n-1]$ and $S_2 = [n-2]$. Then $\operatorname{proj}_{S_2}(P) = \operatorname{proj}_{S_2}(\operatorname{proj}_{S_1}(P)).$

D5.6.5: Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$ and $P = \{x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x$ $Ax \leq b$. For $k \in [j]$ let $A^{(j)}$ be the submatrix of Awith column vectors $A_{\cdot k}$. Let $P^{(0)} = P$ and $C^{(0)} = \mathbb{R}^m$. Define for $i \in [n] = C^{(i)} = (1)$ and $P^{(i)} = (2)$

 $(1) = \{ y \in \mathbb{R}^m_+ \mid y^\top A_{\cdot k} = 0 \text{ for all } k = n - i + 1, \dots, n \}$ $(2) = \{ \hat{x} \in \mathbb{R}^{n-1} \mid y^{\top} A^{(n-i)} \hat{x} \leq y^{\top} b \text{ for all } y \in C^{(i)} \}$

T5.6.6: $\operatorname{proj}_{S_{n-i}}(P) = P^{(i)}$.

Farkas' lemma

T5.6.7: Let $A \in \mathbb{O}^{m \times n}$. $b \in \mathbb{O}^m$. Either there exists an $x \in \mathbb{R}^n$ such that $Ax \leq b$ or there exists a $y \in \mathbb{R}^m$ such

Determinant

D6.0.4: Let $\sigma: [n] \to [n]$ be a permutation of n elements. The sign $sgn(\sigma)$ counts the parity of the numer of pairs of elements that are out of order after applying D (Complex numbers): σ (1 if even, -1 if odd).

D6.0.6: Let $A \in \mathbb{R}^{n \times n}$. The *determinant* is defined as $\det(A):=\textstyle\sum_{\sigma\in\Pi_n}\mathrm{sgn}(\sigma)\prod_{i=1}^nA_{i,\sigma(i)}\text{, where }\Pi_n\text{ is the set of all permutations of }n\text{ elements.}$

P6.0.7: Let $P \in \mathbb{R}^{m \times m}$ be the permutation matrix corresponding to σ . Then $\det(P) = \operatorname{sgn}(\sigma)$.

P6.0.8: Let $T \in \mathbb{R}^{m \times m}$ be triangular. Then $\det(T) =$ $\prod_{k=1}^n T_{kk}$. In particular $\det(I) = 1$.

T6.0.9: Let $A \in \mathbb{R}^{m \times m}$. Then $\det(A^{\top}) = \det(A)$.

P6.0.10: Let $Q \in \mathbb{R}^{m \times m}$ be orthogonal. Then $\det(Q) =$

P6.0.11: A matrix $A \in \mathbb{R}^{m \times m}$ is invertible iff $\det(A) \neq 0$. P6.0.12: Let $A, B \in \mathbb{R}^{m \times m}$. Then $\det(AB) =$

ply the corresponding constraint by $\frac{1}{a_{in}}$. P6.0.13: Let $A, B \in \mathbb{R}^{m \times m}$ with $\det(A) \neq 0$. Then F7.0.2: A complex number $z \in \mathbb{C}$ can be written as

D5.0.15: Let $A \in \mathbb{R}^{m \times m}$ and let \mathcal{A}_{ij} denote the (m - m)1) \times (m-1) matrix obtained by removing row i and column j from A. Then we define the co-factors of A as $C_{ij} = (-1)^{i+j} \det(\mathscr{A}_{ij}).$

P5.0.16: Let $A \in \mathbb{R}^{m \times m}$, $i \in [n]$. Then $\det(A) =$

ply the corresponding constraint by $\frac{1}{a_{in}}$. P5.0.17: Let $A \in \mathbb{R}^{m \times m}$ with $\det(A) \neq 0$ and C the This gives a new representation of row i as matrix with the cofactors of A. Then $A^{-1} = \frac{1}{\det(A)}C^{\top}$.

P6.0.19 (Cramer's rule): Let $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ with $\det(A) \neq 0$. Then the solution to Ax = b is given by D: Let $A \in \mathbb{C}^{m \times n}$. Then $A^* := \overline{A}^{\top}$.

3. Return $Q = \{\bar{x} \in \mathbb{R}^{n-1} \mid 0 \leqslant d_k + f_k^\top \bar{x} \text{ for all } k \in \left| x_j = \frac{\det(\mathscr{B}_j)}{\det(A)} \right| \text{ where } \mathscr{B}_j \text{ is obtained by replacing the } j\text{th}$

P6.0.21: Let $A \in \mathbb{R}^{n \times n}$ and P a permutation that swaps two elements. Then $\det(PA) = -\det(A)$.

P6.0.22: The determinant is linear in each row or each column. In other words, for any $a_0, \ldots, a_n \in \mathbb{R}^n$ and $\alpha_0, \alpha_1 \in \mathbb{R}$ we have

Eigenvalues and Eigenvectors

Complex numbers

- (a+ib) + (x+iy) = (a+x) + i(b+y)
- (a + ib)(x + iy) = (ax by) + i(ay + bx)
- $(a+ib)(a-ib) = a^2 + b^2$
- $\frac{a+ib}{x+iy} = \frac{(x-iy)(a+ib)}{(x-iy)(x+iy)} = \frac{ax+by}{x^2+y^2} + i\frac{bx-ay}{x^2+y^2}$

D (Notation):

- $\Re(a+ib) := a$
- $\Im(a+ib) := b$
- $|z| := \sqrt{a^2 + b^2}$ (modulus)
- $\overline{a+ib} := a-ib$ (complex conjugate)

F7.0.1: Let $\theta \in \mathbb{R}$. Then $e^{i\theta} = \cos \theta + i \sin \theta$.

 $z=re^{i\theta}$ where $r\geqslant 0$ is the modulus and $\theta\in\mathbb{R}$ is the argument.

T7.0.3 (Fundamental theorem of algebra): Any degree nnon-constant polynomial $P(z) = \alpha_n z^n + \cdots + \alpha_1 z + \alpha_0$ with $\alpha_n \neq 0$ has a zero: $\lambda \in \mathbb{C}$ such that $P(\lambda) = 0$.

C7.0.4: Any degree n non-constant polynomial P(z) = $\alpha_n z^n + \cdots + \alpha_1 z + \alpha_0$ has n zeros: $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, perhaps with repetitions, such that $P(z) = \alpha_n(z (\lambda_1)\cdots(z-\lambda_n)$. The number of times $\lambda\in\mathbb{C}$ appears in the expansion is called the algebraic multiplicity of the

F: Let $v, w \in \mathbb{C}^n$. Then $||v||^2 = v^*v = \bar{v} \top v$. Furthermore L7.1.14: Let $A, B, C \in \mathbb{R}^{n \times n}$. Then $\langle v, w \rangle = w * v.$

Introduction to Eigenvalues and Eigenvectors

Problem: Find the explicit representation of the linear recurrence $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$.

Solution: Let

$$M=egin{bmatrix}1&1\1&0\end{bmatrix}$$
 , $g_0=egin{bmatrix}1\0\end{bmatrix}$ and $g_n=egin{bmatrix}F_n\F_{n-1}\end{bmatrix}$.

Then $q_n = Mq_{n-1} = \cdots = M^nq_0$. We now solve $0 = \det(M - \lambda I)$ and get $\lambda_1 = \frac{1 + \sqrt{5}}{2}$ and $\lambda_2 = \frac{1 - \sqrt{5}}{2}$ We find v_k , the non-zero element of $N(M-\lambda_k I)$ for k=1,2. We write $g_0=\alpha_1v_1+\alpha_2v_2$ and get $\alpha_1=\frac{1}{\sqrt{\kappa}}$ and $\alpha_2 = -\frac{1}{\sqrt{5}}$. Then $g_n = A^n g_0 = A^n (\alpha_1 v_1 + \alpha_2 v_2) =$ $\alpha_1 \lambda_1^n v_1 + \alpha_2 \lambda_2^n v_2$.

D7.1.1: Let $A \in \mathbb{R}^{n \times n}$. Then $\lambda \in \mathbb{C}$ is an eigenvalue (EW) and $v \in \mathbb{C}^n \setminus \{0\}$ is an eigenvector (EV) of A iff $Av = \lambda v$.

P7.1.2: Let $A \in \mathbb{R}^{n \times n}$. Then $\lambda \in \mathbb{R}$ is a (real) EW of Aiff $det(A - \lambda I) = 0$ and $v \in \mathbb{R}^n$ is an EV associated with λ iff it is a nonzero element of $N(A - \lambda I)$.

P7.1.3: $det(A - \lambda I)$ is a polynomial in λ of degree n. The coefficient of the λ^n term is $(-1)^n$.

T7.1.4: Every matrix $A \in \mathbb{R}^{n \times n}$ has an EW (perhaps in

P7.1.6: Let λ and v be an EW-EV pair of the matrix AThen for $k \ge 1$, λ^k and v are an EW-EV pair of the

P7.1.7: Let λ and v be an EW-EV pair of the invertible matrix A. Then $\frac{1}{N}$ and v are an EW-EV pair of the matrix

corresponding to EVs $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. If $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ is a diagonal matrix. are pairwise distinct, the EVs v_1, \ldots, v_k are linearly independent.

T7.1.9: Let $A \in \mathbb{R}^{n \times n}$ with n pairwise distinct real EVs (see [T7.1.8], [C7.0.4]) then there is a basis of \mathbb{R}^n made up of the EVs of A.

P7.1.10: Let $A \in \mathbb{R}^{n \times n}$. Then A and A^{\top} have the same

D7.1.11: Let $A \in \mathbb{R}^{n \times n}$. The *trace* of A is Tr(A) := $\sum_{i=1}^{n} A_{ii}$.

(Characteristic polynomial $(-1)^n \det(A - zI) = \det(zI - A) = (z - \lambda_1) \cdots (z - A)$

P7.1.12 Let $A \in \mathbb{R}^{n \times n}$ and $\lambda_1, \dots, \lambda_n$ its n EWs as they show up in (33) (meaning that a value may be repeated). Then $\operatorname{Tr}(A) = \sum_{i=1}^n \lambda_i$ and $\det(A) = \prod_{i=1}^n \lambda_i$.

1. $\operatorname{Tr}(AB) = \operatorname{Tr}(BA)$.

2. $\operatorname{Tr}(ABC) = \operatorname{Tr}(BCA) = \operatorname{Tr}(CAB)$.

R7.1.15: Important words of caution:

- 2. The EWs of A+B are not easily computed from the EWs of A and B!
- 3. The EWs of $A \cdot B$ are not easily computed from the EWs of A and B!
- 4. Gauss elimination does not preserve EWs or EVs! | P7.3.7: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and $\lambda \in \mathbb{C}$ The EWs are not the diagonal elements of U in an EW of A. Then $\lambda \in \mathbb{R}$. the PA = LU factorization.

P7.1.17: Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal and $\lambda \in \mathbb{C}$ an EW λ . of Q. Then $|\lambda| = 1$.

D7.1.20: If, given $A \in \mathbb{R}^{n \times n}$ we can build a basis of \mathbb{R}^n with EVs of A, we say that A has a complete set of real

most two EWs, 0 and 1, and a complete set of real EVs. D7.1.22: Let $A \in \mathbb{R}^{n \times n}$ and λ an EW of A. Then we call the dimension of $N(A - \lambda I)$ the geometric multiplicity

Diagonalizing and change of basis

of real EVs (see [D7.1.20]) and let $v_1, \dots, v_n \in \mathbb{R}^n$ be F7.3.13: Let $A, B \in \mathbb{R}^{n \times n}$ be PSD (PD). Then their sum a basis formed with EVs of A and let $\lambda_1, \ldots, \lambda_n$ be the is PSD (PD). associated EWs. Let V be the matrix whose columns are the v_i s. Then $A = V\Lambda V^{-1}$, where Λ is a diagonal matrix with $\Lambda_{ii} = \lambda_i$.

D7.2.2: $A \in \mathbb{R}^{n \times n}$ is called *diagonalizable* iff there exists P7.1.8: Let $A \in \mathbb{R}^{n \times n}$ and let $v_1, \dots, v_k \in \mathbb{R}^n$ be EWs an invertible matrix V such that $V^{-1}AV = \Lambda$, where Λ

> D7.2.3: $A, B \in \mathbb{R}^{n \times n}$ are called *similar* iff there exists an invertible matrix S such that $B = S^{-1}AS$.

P7.2.4: Similar matrices have the same EWs.

R7.2.5: If we have a matrix $A \in \mathbb{R}^{n \times n}$ with a complete set of real EVs then [T7.2.1] tells us that the corresponding linear transformation, when viewed in the basis v_1, \ldots, v_n is simply a diagonal matrix.

Symmetric matrices and Spectral theorem

Spectral theorem

T7.3.1: Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then A has n real EWs and an orthogonal basis made of EVs of A.

C7.3.2: Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then there exists an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ (whose columns are EVs of A) such that $A = V\Lambda V^{\top}$, where $\Lambda \in \mathbb{R}^{n \times n}$ is a dia- where $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix, where the dia-R7.1.13: [P7.1.12] can be useful to check computations. gonal matrix with the eigenvalues of A on its diagonal.

R7.3.3: The decomposition in [C7.3.2] and [T7.2.1] is ding order. The columns u_1, \ldots, u_m (v_1, \ldots, v_n) of Ucalled eigendecomposition.

C7.3.4: The rank of a real symmetric matrix A is the number of non-zero eigenvalues (counting repetitions).

R7.3.5: Let $A \in \mathbb{R}^{n \times n}$. Then $\operatorname{rank}(A) = n - \dim(N(A))$ which is the geometric multiplicity of $\lambda=0$ (see R8.1.2: Let $A\in\mathbb{R}^{m\times n}$, $\mathrm{rank}(A)=r$. We can write 1. The EWs of A and A^{\top} are the same, the EVs [D7.1.22]). Since symmetric matrices always have a complete set of EWs and EVs, the geometric multiplicities are always the same as the algebraic multiplicities.

> P7.3.6: Let $A \in \mathbb{R}^{n \times n}$ be symmetric and let v_1, \ldots, v_n be an orthonormal basis of EVs of A (the columns of Vin [C7.3.2]) and $\lambda_1, \ldots, \lambda_n$ the associated EWs. Then $A = \sum_{k=1}^{n} \lambda_i v_i v_i^{\top}$.

C7.3.8: Every symmetric matrix $A \in \mathbb{R}^{n \times n}$ has a real EW

Rayleigh quotient

P7.3.10: Let $A \in \mathbb{R}^{n \times n}$. Then the Rayleigh quotient defined for $x \in \mathbb{R}^n \setminus \{0\}$ as $R(x) := \frac{x^{\top} Ax}{x^{\top}}$ attains its maximum at $R(v_{\text{max}}) = \lambda_{\text{max}}$ and its minimum at P7.1.21: Let P be a projection matrix. Then P has at $R(v_{\min}) = \lambda_{\min}$ where $\lambda_{\max}(\lambda_{\min})$ is the largest (smaller)

> D7.3.11: $A \in \mathbb{R}^{n \times n}$ is said to be positive semidefinite (PSD) (positive definite (PD)) iff all its EWs are nonnegative (strictly positive).

P7.3.12: Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then A is PSD $\overline{\mathsf{T7.2.1:}}$ Let $A \in \mathbb{R}^{n \times n}$ be a matrix with a complete set (PD) iff $x^\top Ax \geq 0$ ($x^\top Ax > 0$) for all $x \in \mathbb{R}^n \setminus \{0\}$.

D7.3.14 (Gram matrix): Let $v_1, \ldots, v_n \in \mathbb{R}^m$. We define their Gram matrix $G \in \mathbb{R}^{n \times n}$ as $G_{ij} = v_i^\top v_j$. Note that if $V \in \mathbb{R}^{m \times n}$ has the v_i s as columns then $G = V^\top V$.

R7.3.15: Let $A \in \mathbb{R}^{m \times n}$. As an abuse of notation we also call AA^{\top} a Gram matrix of A. If $a_1, \ldots, a_n \in \mathbb{R}^m$ are the columns of A then $AA^{\top} \in \mathbb{R}^{m \times m}$ and $AA^{\top} =$ $\sum_{i=1}^{n} a_i a_i^{\top}.$

P7.3.16: Let $A \in \mathbb{R}^{m \times n}$. Then the non-zero EWs of $A^{\top}A \in \mathbb{R}^{n \times n}$ are the same as the ones of $AA^{\top} \in \mathbb{R}^{m \times m}$. Both matrices are symmetric and PSD.

Cholesky decomposition

P7.3.17: Every symmetric PSD matrix M is a gram matrix of an upper triangular matrix $C. M = C^{T}C$ is known as the Cholesky decomposition.

Singular value decomposition

Singular value decomposition (SVD)

D8.1.1: Let $A \in \mathbb{R}^{m \times n}$. There exist orthogonal matrices $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ such that $A = U \Sigma V^{\top}$ gonal elements are non-negative and ordered in descen-

(V) are called the *left* (right) singular vectors of A and are orthonormal. The diagonal elements of Σ , $\sigma_i = \Sigma_{ii}$ are called the singular values of A and are ordered as $\sigma_1 \geqslant \cdots \geqslant \sigma_{\min\{m,n\}}$.

the SVD in a more compact form $A = U_r \Sigma_r V_r^{\top}$ where $U_r \in \mathbb{R}^{m \times r}$ $(V_r \in \mathbb{R}^{n \times r})$ contains the first r left (right) singular vectors, and $\Sigma_r \in \mathbb{R}^{r \times r}$ is a diagonal matrix with the first r singular values. This requires considerably less space for a large matrix with small rank.

R8.1.3: Let $A \in \mathbb{R}^{m \times n}$ and $A = U \Sigma V^{\top}$ be its SVD [D8.1.1]. Then $AA^{\top} = U(\Sigma \Sigma^{\top})U^{\top}$. Thus the left singular vectors of A, the columns of U are the EVs of AA^{\top} and the singular values of A are the square-roots of the EWs of AA^{\top} . Note that $\Sigma\Sigma^{\top}\in\mathbb{R}^{m\times m}$ is diagonal. If m > n, A has n singular values and AA^{\top} has m EWs (which are larger than n but the "missing" ones are 0). Analogously, $A^{\top}A = V(\Sigma^{\top}\Sigma)V^{\top}$), and so the right singular vectors of A, the columns of V, are the EVs of $A^{\top}A$ and the singular values of A are the square-roots of the EWs of $A^{\top}A$. Note that $\Sigma^{\top}\Sigma \in \mathbb{R}^{n \times n}$ is diagonal. If n > m A has m singular values and $A^{\top}A$ has n EWs (which are larger than m but the "missing" ones are 0). This observation makes it easier to write the singular values/vectors of A in terms of EWs and EVs of AA^{\top} and $A^{\top}A$, which are symmetric. This directly implies the uniqueness of singular values and the fact that the rank of a matrix is the number of non-zero singular values.

P8.1.4: Let $A \in \mathbb{R}^{m \times n}$, rank(A) = r. Let $\sigma_1, \ldots, \sigma_r$ be the non-zero singular values of A, u_1, \ldots, u_r (v_1, \ldots, v_r) the corresponding left (right) singular vectors. Then A = $\sum_{k=1}^{r} \sigma_k u_k v_k^{\top}$.

T8.1.5: Every $A \in \mathbb{R}^{m \times n}$ has an SVD (see [D8.1.1]).

Vector and matrix norms

D (l_p -norm): For $1 \leq p \leq \infty$ the l_p -norm is given by $||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}.$

D8.2.1 (Frobenius and Spectral norm): Let $A \in \mathbb{R}^{m \times n}$.

1.
$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2}$$
,

2. $||A||_{op} = \max_{x \in \mathbb{R}^n \text{ s.t. } ||x|| = 1n} ||Ax||$

P: Let $A \in \mathbb{R}^{m \times n}$ with singular values $\sigma_1 \geqslant \cdots \geqslant$ $\sigma_{\min\{m,n\}}$. Then:

1.
$$||A||_F^2 = \text{Tr}(A^{\top}A)$$

2.
$$||A||_F^2 = \sum_{i=1}^{\min\{m,n\}} \sigma_i^2$$

3.
$$||A||_{op} = \sigma_1$$

4. $||A||_{op} \leq ||A||_F \leq \sqrt{\min\{m,n\}} ||A||_{op}$.

Appendix

Notation

R: The word iff stands for "if and only if".

R: The abbreviation *s.t.* stands for "such that".

D: Let $n \in \mathbb{Z}^+$. Then $[n] := \{1, \dots, n\}$.

D: A function is bijective iff it is invertible.

D: Let V be a vector space. Then V^\perp denotes the orthogonal complement of V.

D (Kronecker delta):

$$\delta_{ij} := egin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

D: Let $A \in \mathbb{R}^{m \times n}$ with entries a_{ij} . Then

$$\begin{vmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \cdots & a_{m,n} \end{vmatrix} = \det(A).$$

Symbols

Α	Algorithm
С	Corollary
D	Definition
F	Fact
L	Lemma
0	Observation
Р	Proposition
R	Remark
Т	Theorem