COMPUTING CUP-PRODUCTS IN INTEGER COHOMOLOGY OF HILBERT SCHEMES OF POINTS ON K3 SURFACES

SIMON KAPFER

ABSTRACT. We study the images of cup products in integer cohomology of the Hilbert scheme of n points on a K3 surface.

1. Preliminaries

Definition 1.1. Let S be a projective K3 surface. We fix integral bases 1 of $H^0(S,\mathbb{Z})$, x of $H^4(X,\mathbb{Z})$ and $\alpha_1,\ldots,\alpha_{22}$ of $H^2(S,\mathbb{Z})$. The cup product induces a symmetric bilinear form B_{H^2} on $H^2(X,\mathbb{Z})$, written as a symmetric matrix with respect to this basis, looks like

where U stands for the intersection matrix of the hyperbolic lattice and E stands for the negative matrix of the E_8 lattice, *i.e.*

We may extend B_{H^2} to a symmetric non-degenerate bilinear form on $H^*(S, \mathbb{Z})$ by setting $B(1,1)=0,\ B(1,\alpha_i)=0,\ B(1,x)=1,\ B(x,x)=0.$

Definition 1.2. B induces a form $B \otimes B$ on $\operatorname{Sym}^2 H^*(S, \mathbb{Z})$. So the cup-product

$$\mu: \operatorname{Sym}^2 H^*(S, \mathbb{Z}) \longrightarrow H^*(S, \mathbb{Z})$$

has an adjoint comultiplication Δ , given by:

$$\Delta: H^*(S, \mathbb{Z}) \longrightarrow \operatorname{Sym}^2 H^*(S, \mathbb{Z}), \quad \Delta = (B \otimes B)^{-1} \mu^T B$$

The image of 1 under the composite map $\mu(\Delta(1)) = B(\Delta(1), \Delta(1)) = 24x$, denoted by e is called the Euler Class.

Date: August 29, 2014.

We denote by $S^{[n]}$ the Hilbert scheme of n points on S, *i.e.* the classifying space of all zero-dimensional closed subschemes of length n, which is smooth. A classical result by Nakajima gives an explicit description of $H^*(S^{[n]}, \mathbb{Q})$ in terms of creation operators $\mathfrak{q}_l(\beta)$, $\beta \in H^*(S, \mathbb{Q})$, acting on the direct sum $\bigoplus_n H^*(S^{[n]}, \mathbb{Q})$. An integral basis for $H^*(S^{[n]}, \mathbb{Z})$ in terms of Nakajima's operators was given by Qin–Wang:

Theorem 1.3. [5, Thm. 5.4.] *The classes*

$$\frac{1}{z_{\lambda}}\mathfrak{q}_{\lambda}(1)\mathfrak{q}_{\mu}(x)\mathfrak{m}_{\nu^{1},\alpha_{1}}\dots\mathfrak{m}_{\nu^{22},\alpha_{22}}|0\rangle,\quad \|\lambda\|+\|\mu\|+\sum_{i=1}^{22}\|\nu^{i}\|=n$$

form an integral basis for $H^*(S^{[n]}, \mathbb{Z})$. Here, λ , μ , ν^i are partitions, $\|\cdot\|$ means the weight of a partition i.e. $\|\lambda\| = \sum_i m_i i$ and $z_{\lambda} := \prod_i i^{m_i} m_i!$, if $\lambda = (1^{m_1}, 2^{m_2}, \ldots)$. The symbol \mathfrak{q} stands for Nakajima's creation operator. The relation of $\mathfrak{m}_{\nu,\alpha}$ to $\mathfrak{q}_{\bar{\nu}}(\alpha)$ is the same as the monomial symmetric functions m_{ν} to the power sum symmetric functions $p_{\bar{\nu}}$.

The ring structure of $H^*(S^{[n]}, \mathbb{Q})$ has been studied in [2], where an explicit algebraic model is constructed. Since $H^{\text{odd}}(S^{[n]}, \mathbb{Z}) = 0$ and $H^{\text{even}}(S^{[n]}, \mathbb{Z})$ is torsion-free by [3], we can also apply these results to $H^*(S^{[n]}, \mathbb{Z})$ to determine the multiplicative structure of cohomology with integer coefficients.

2. Computational results

With the help of a computer, we are able to compute arbitrary products in $H^*(S^{[n]}, \mathbb{Z})$. We give some results in low degrees. The algebra generated by classes of degree 2 is an interesting object to study. For cohomology with complex coefficients, Verbitsky has proven that the algebra generated by $H^2(X, \mathbb{C})$

Notation 2.1. To enumerate the basis of $H^*(S^{[n]}, \mathbb{Z})$, we introduce the following abbreviation:

$$1^{\lambda}\alpha_1^{\nu_1}\dots\alpha_{22}^{\nu_{22}}x^{\mu}:=\frac{1}{z_{\tilde{\lambda}}}\mathfrak{q}_{\tilde{\lambda}}(1)\mathfrak{q}_{\mu}(x)\mathfrak{m}_{\nu^1,\alpha_1}\dots\mathfrak{m}_{\nu^{22},\alpha_{22}}|0\rangle$$

where the partition $\tilde{\lambda}$ is built from λ by appending sufficiently many Ones, such that $\|\tilde{\lambda}\| + \|\mu\| + \sum \|\nu^i\| = n$.

By computing multiplication matrices with respect to the integral basis and a reduction to Smith normal form (with the help of a computer), images of cup products can be explored.

Proposition 2.2. Studying the image of $Sym^2 H^2$ in H^4 , we obtain:

$$\frac{H^4(S^{[2]}, \mathbb{Z})}{\operatorname{Sym}^2 H^2(S^{[2]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 23} \oplus \frac{\mathbb{Z}}{5\mathbb{Z}}$$

This was already known to Boissière, Nieper-Wißkirchen and Sarti, [1, Prop. 3].

$$\frac{H^4(S^{[3]},\mathbb{Z})}{\operatorname{Sym}^2 H^2(S^{[3]},\mathbb{Z})} \cong \frac{\mathbb{Z}}{3\mathbb{Z}} \oplus \mathbb{Z}^{\oplus 23}$$

The torsion part of the quotient is generated by the integral class $\frac{1}{3}\mathfrak{q}_{(3)}(1)|0\rangle$.

$$\frac{H^4(S^{[n]}, \mathbb{Z})}{\operatorname{Sym}^2 H^2(S^{[n]}, \mathbb{Z})} \cong \mathbb{Z}^{\oplus 24}, \quad \textit{for } n \ge 4.$$

This was already proven by Markman, [4, Thm. 1.10].

Proposition 2.3. Comparing $H^2(S^{[n]}, \mathbb{Z}) \cup H^4(S^{[n]}, \mathbb{Z})$ with $H^6(S^{[n]}, \mathbb{Z})$, we obtain:

(1)
$$\frac{H^6(S^{[2]}, \mathbb{Z})}{H^2(S^{[2]}, \mathbb{Z}) \cup H^4(S^{[2]}, \mathbb{Z})} = 0$$

$$(2) \quad \frac{H^{6}(S^{[3]}, \mathbb{Z})}{H^{2}(S^{[3]}, \mathbb{Z}) \cup H^{4}(S^{[3]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12}$$

$$(3) \quad \frac{H^6(S^{[4]}, \mathbb{Z})}{H^2(S^{[4]}, \mathbb{Z}) \cup H^4(S^{[4]}, \mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 23} \oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12}$$

$$(4) \quad \frac{H^{6}(S^{[5]},\mathbb{Z})}{H^{2}(S^{[5]},\mathbb{Z}) \cup H^{4}(S^{[5]},\mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 23} \oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12} \oplus \left(\frac{\mathbb{Z}}{5\mathbb{Z}}\right)^{\oplus 3}$$

$$(5) \quad \frac{H^6(S^{[n]},\mathbb{Z})}{H^2(S^{[n]},\mathbb{Z}) \cup H^4(S^{[n]},\mathbb{Z})} \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 22} \oplus \left(\frac{\mathbb{Z}}{3\mathbb{Z}}\right)^{\oplus 12} \oplus \left(\frac{\mathbb{Z}}{5\mathbb{Z}}\right)^{\oplus 2} \oplus \mathbb{Z}, \ n \geq 6.$$

- The 3-torsion part is generated by the 12 integral classes $\alpha_i^{(1,1,1)} \in H^6$, where i=1,2,3,4,5,6,8,9,11,16,17,19.
- The 2-torsion part is generated by the 22 integral classes $\alpha_i^{(1,1,1)} + \alpha_i^{(2,1)} + \alpha_i^{(3)} + 1^{(2)}\alpha_i^{(1,1)} + 1^{(3)}\alpha_i^{(1)}$, $i = 1, \ldots, 22$ and, in the cases n = 4, 5, by the integral class $1^{(4)} \in H^6$.
- The 5-torsion part is generated by the 2 integral classes $\alpha_i^{(1,1,1)} + 2\alpha_i^{(2,1)} + 3\alpha_i^{(3)} + 4 \cdot 1^{(2)}\alpha_i^{(1,1)} + 2 \cdot 1^{(2)}\alpha_i^{(2)} + 2 \cdot 1^{(3)}\alpha_i^{(1)} + 3 \cdot 1^{(2,2)}\alpha_i^{(1)}$, i = 13, 21 and, in the case n = 5, by the integral class $1^{(4)} + 1^{(3,2)}$.
- The free summand is generated by the class $3 \cdot 1^{(4)} 12 \cdot 1^{(3,2)} + 10 \cdot 1^{(2,2,2)}$.

Proposition 2.4.

$$\frac{H^6(S^{[2]}, \mathbb{Z})}{\operatorname{Sym}^3 H^2(S^{[2]}, \mathbb{Z})} \cong \frac{\mathbb{Z}}{2\mathbb{Z}}$$

The quotient is generated by the integral class $\frac{1}{2}\mathfrak{q}_{(2)}(1)|0\rangle$.

$$\begin{split} \frac{H^6(S^{[3]},\mathbb{Z})}{\operatorname{Sym}^3 H^2(S^{[3]},\mathbb{Z})} &\cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}}\right)^{\oplus 230} \oplus \left(\frac{\mathbb{Z}}{36\mathbb{Z}}\right)^{\oplus 22} \oplus \frac{\mathbb{Z}}{72\mathbb{Z}} \oplus \mathbb{Z}^{\oplus 507} \\ &\qquad \qquad \frac{H^6(S^{[4]},\mathbb{Z})}{\operatorname{Sym}^3 H^2(S^{[4]},\mathbb{Z})} \cong \\ &\qquad \qquad \frac{H^6(S^{[5]},\mathbb{Z})}{\operatorname{Sym}^3 H^2(S^{[5]},\mathbb{Z})} \cong \\ &\qquad \qquad \frac{H^6(S^{[n]},\mathbb{Z})}{\operatorname{Sym}^3 H^2(S^{[n]},\mathbb{Z})} \cong n \geq 6. \end{split}$$

References

- S. Boissière, M. Nieper-Wißkirchen, and A. Sarti, Smith theory and irreducible holomorphic symplectic manifolds, J. Topol. 6 (2013), no. 2, 316–390.
- M. Lehn and C. Sorger, The cup product of Hilbert schemes for K3 surfaces, Invent. Math. 152 (2003), no. 2, 305–329.
- E. Markman, Integral generators for the cohomology ring of moduli spaces of sheaves over Poisson surfaces, Adv. Math. 208 (2007), no. 2, 622-646.

- 4. _____, Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface, Internat. J. Math. 21 (2010), no. 2, 169–223.
- Z. Qin and W. Wang, Integral operators and integral cohomology classes of Hilbert schemes, Math. Ann. 331 (2005), no. 3, 669–692.

Simon Kapfer, Lehrstuhl für Algebra und Zahlentheorie, Universitätsstrasse 14, D-86159 Augsburg

 $E\text{-}mail\ address: \verb|simon.kapfer@math.uni-augsburg.de|}$