Planche nº 9. Series numériques

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I: Incontournable

Exercice nº 1

Nature de la série de terme général

1) (*)
$$\ln \left(\frac{n^2 + n + 1}{n^2 + n - 1} \right)$$
 2) (*) $\frac{1}{n + (-1)^n \sqrt{n}}$ 3) (**) $\left(\frac{n+3}{2n+1} \right)^{\ln n}$

2) (*)
$$\frac{1}{n + (-1)^n \sqrt{n}}$$

3) (**)
$$\left(\frac{n+3}{2n+1}\right)^{\ln n}$$

4) (**)
$$\frac{1}{\ln(n)\ln(\cosh n)}$$

5) (**) Arccos
$$\sqrt[3]{1-\frac{1}{n^2}}$$

6) (*)
$$\frac{n^2}{(n-1)!}$$

7) (**)
$$\left(\cos\frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}}$$

8) (**)
$$\ln\left(\frac{2}{\pi}\operatorname{Arctan}\frac{n^2+1}{n}\right)$$

4) (**)
$$\frac{1}{\ln(n)\ln(\cosh n)}$$
 5) (**) $\operatorname{Arccos} \sqrt[3]{1 - \frac{1}{n^2}}$ 6) (*) $\frac{n^2}{(n-1)!}$ 7) (**) $\left(\cos\frac{1}{\sqrt{n}}\right)^n - \frac{1}{\sqrt{e}}$ 8) (**) $\ln\left(\frac{2}{\pi}\operatorname{Arctan}\frac{n^2+1}{n}\right)$ 9) (**) $\int_0^{\pi/2}\frac{\cos^2 x}{n^2 + \cos^2 x} dx$

10) (**)
$$n^{-\sqrt{2}\sin(\frac{\pi}{4} + \frac{1}{n})}$$

11) (**)
$$e - \left(1 + \frac{1}{n}\right)^{r}$$

10) (**)
$$n^{-\sqrt{2}\sin(\frac{\pi}{4}+\frac{1}{n})}$$
 11) (**) $e - \left(1 + \frac{1}{n}\right)^n$ 12) (**) $1 - n \ln\left(\frac{2n+1}{2n-1}\right)$

Exercice nº 2

Nature de la série de terme général.

1) (***)
$$\sqrt[4]{n^4 + 2n^2} - \sqrt[3]{P(n)}$$
 où P est un polynôme.

1) (***)
$$\sqrt[4]{n^4 + 2n^2} - \sqrt[3]{P(n)}$$
 où P est un polynôme. 2) (**) $\frac{1}{n^{\alpha}}S(n)$ où $S(n) = \sum_{p=2}^{+\infty} \frac{1}{p^n}$.

3) (**)
$$u_n$$
 où $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{n}e^{-u_{n-1}}$.

4) (**** I)
$$u_n = \frac{1}{p_n}$$
 où p_n est le n-ème nombre premier

$$(\mathrm{indication}: \mathrm{consid\acute{e}rer} \ \sum_{n=1}^N \ln \left(\frac{1}{1-\frac{1}{p_n}} \right) = \sum_{n=1}^N \ln \left(1 + \frac{1}{p_n} + \frac{1}{p_n^2} + \ldots \right)).$$

5) (***)
$$u_n = \frac{1}{n(c(n))^{\alpha}}$$
 où $c(n)$ est le nombre de chiffres de n en base 10.

6) (*)
$$\frac{\left(\prod_{k=2}^{n} \ln k\right)^{a}}{(n!)^{b}} \ a > 0 \text{ et } b > 0.$$

6) (*)
$$\frac{\left(\prod_{k=2}^{n} \ln k\right)^{a}}{(n!)^{b}} \quad a > 0 \text{ et } b > 0.$$
7) (**)
$$\operatorname{Arctan}\left(\left(1 + \frac{1}{n}\right)^{a}\right) - \operatorname{Arctan}\left(\left(1 - \frac{1}{n}\right)^{a}\right).$$

8) (**)
$$\frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^{3/2}$$

8) (**)
$$\frac{1}{n^{\alpha}} \sum_{k=1}^{n} k^{3/2}$$
. 9) (***) $\left(\prod_{k=1}^{n} \left(1 + \frac{k}{n^{\alpha}} \right) \right) - 1$.

Exercice nº 3

Nature de la série de terme général.

1) (**)
$$\sin\left(\frac{\pi n^2}{n+1}\right)$$

2) (**)
$$\frac{(-1)^n}{n+(-1)^{n-1}}$$

3) (**)
$$\ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$$

4) (**)
$$(-1)^n \frac{\ln n}{n}$$

1) (**)
$$\sin\left(\frac{\pi n^2}{n+1}\right)$$
 2) (**) $\frac{(-1)^n}{n+(-1)^{n-1}}$ 3) (**) $\ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right)$ 4) (**) $(-1)^n \frac{\ln n}{n}$ 5) (**) $(-1)^n \frac{P(n)}{Q(n)}$ où P et Q sont deux polynômes non nuls

6) (****)
$$(\sin(n!\pi e))^p$$
 p entier naturel non nul.

Exercice nº 4

Calculer les sommes des séries suivantes après avoir vérifié leur convergence.

1) (**)
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$

2) (**)
$$\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$$

3) (***)
$$\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$$

1) (**)
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$
 2) (**) $\sum_{n=3}^{+\infty} \frac{2n-1}{n^3-4n}$ 3) (***) $\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$ 4) (**) $\sum_{n=2}^{+\infty} \ln\left(1+\frac{(-1)^n}{n}\right)$

$$5) \ (*) \sum_{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}} \right)$$

$$6) \ (***) \sum_{n=0}^{+\infty} \ln \left(\cos \frac{\alpha}{2^n} \right) \alpha \in \left] 0, \frac{\pi}{2} \right[$$

$$7) \ (***) \sum_{n=0}^{+\infty} \frac{\operatorname{th} \frac{\alpha}{2^n}}{2^n}$$

6) (***)
$$\sum_{n=0}^{+\infty} \ln \left(\cos \frac{a}{2^n}\right) a \in \left]0, \frac{\pi}{2}\right[$$

7) (***)
$$\sum_{n=0}^{+\infty} \frac{\ln \frac{a}{2^n}}{2^n}$$

Exercice nº 5 (*** I)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de nombres réels strictement positifs telle que la série de terme général u_n converge. Montrer que $u_n = 0$ o $\left(\frac{1}{n}\right)$. Trouver un exemple de suite $(u_n)_{n \in \mathbb{N}}$ de réels strictement positifs telle que la série de terme général u_n converge mais telle que la suite de terme général nu_n ne tende pas vers 0.

Exercice nº 6 (***)

Soit σ une injection de \mathbb{N}^* dans lui-même. Montrer que la série de terme général $\frac{\sigma(n)}{n^2}$ diverge.

Exercice no 7 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Montrer que les séries de termes généraux u_n , $\frac{u_n}{1+u_n}$, $\ln(1+u_n)$ et $\int_0^{u_n} \frac{dx}{1+x^e}$ sont de mêmes natures.

Exercice nº 8 (***)

Trouver un développement limité à l'ordre 4 quand n tend vers l'infini de $\left(e - \sum_{i=1}^{n} \frac{1}{k!}\right) \times (n+1)!$.

Exercice nº 9 (***)

Nature de la série de terme général $u_n = \sin \left(\pi \left(2 + \sqrt{3}\right)^n\right)$.

Exercice nº 10 (**)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive telle que la série de terme général u_n converge. Etudier la nature de la série de terme général $\frac{\sqrt{u_n}}{n}$

Exercice nº 11 (***)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Trouver la nature de la série de terme général $\nu_n=\frac{u_n}{(1+u_1)\dots(1+u_n)},\, n\geqslant 1,$ connaissant la nature de la série de terme général $\mathfrak{u}_{\mathfrak{n}}$ puis en calculer la somme en cas de convergence

Exercice no 12 (****)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs telle que la série de terme général u_n diverge. Pour $n \in \mathbb{N}$, on pose $S_n = u_0 + ... + u_n$. Etudier en fonction de $\alpha > 0$ la nature de la série de terme général $\frac{u_n}{(S_n)^{\alpha}}$

Exercice nº 13

- 1) (**) Soit $\alpha \in \mathbb{R}$. Nature de la série de terme général $u_n = \frac{1 + (-1)^n n^{\alpha}}{n^{2\alpha}}, n \geqslant 1$.
- $\textbf{2) (***)} \text{ Soit } \alpha > 0. \text{ Nature de la série de terme général } u_n = \ln \bigg(1 + \frac{(-1)^n}{n^\alpha} + \frac{1}{2n^{2\alpha}}\bigg), \, n \geqslant 1.$

Exercice no 14 (****)

On sait que $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \ln 2$. A partir de la série précédente, on construit une nouvelle série en prenant p termes positifs, q termes négatifs, p termes positifs ... (Par exemple pour p = 3 et q = 2, on s'intéresse à $1 + \frac{1}{3} + \frac{1}{5} - \frac{1}{2} - \frac{1}{4} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} - \frac{1}{8} + \dots$). Convergence

2

Exercice nº 15 (***)

Nature de la série de terme général $\mathfrak{u}_n=\sum_{k=1}^{n-1}\frac{1}{(k(n-k))^{\alpha}},\;\alpha\in\mathbb{R}.$

Exercice nº 16

$$\text{Convergence et somme \'eventuelle de la s\'erie de terme g\'en\'eral} \\ \textbf{1) (**) } u_n = \frac{2n^3 - 3n^2 + 1}{(n+3)!} \\ \textbf{2) (***) } u_n = \frac{n!}{(\alpha+1)(\alpha+2)\dots(\alpha+n)}, \, n\geqslant 1, \, \alpha\in\mathbb{R}^{+*} \text{ donn\'e}.$$

Exercice nº 17 (*)

Nature de la série de terme général $u_n = \sum_{k=1}^n \frac{1}{(n+k)^p}, \ p \in]0,+\infty[.$

Exercice nº 18 (*** I)

1) Soit $(\mathfrak{u}_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. On suppose qu'il existe un réel α tel que

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right).$$

Montrer qu'il existe un réel K > 0 tel que $\mathfrak{u}_n \underset{n \to +\infty}{\sim} \frac{K}{\mathfrak{n}^{\alpha}}$ (règle de Raabe-Duhamel). Indication : poser $\nu_n = \mathfrak{n}^{\alpha}\mathfrak{u}_n$ puis $w_n = \ln\left(\frac{\nu_{n+1}}{\nu_n}\right)$ et étudier la nature de la série de terme général w_n .

2) Nature de la série de terme général $\frac{n!}{(a+1)(a+2)\dots(a+n)}$ (a réel positif donné).

Exercice nº 19 (** I)

$${\rm Calculer} \, \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} \, {\rm et} \, \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2}.$$

Exercice nº 20 (*** I)

Développement limité à l'ordre 4 de $\sum_{k=n+1}^{+\infty}\frac{1}{k^2}$ quand n tend vers l'infini.

Exercice nº 21 (**)

Equivalent simple quand $\mathfrak n$ tend vers $+\infty$ de $\sum_{\mathfrak p=1}^{\mathfrak n} \mathfrak p^{\mathfrak p}$.

Exercice nº 22 (***)

$$\text{Soit } p \in \mathbb{N}^*, \text{ calculer } \sum_{p \in \mathbb{N}^*} \left(\sum_{n \in \mathbb{N}^*, \; n \neq p} \frac{1}{n^2 - p^2} \right) \text{ et } \sum_{n \in \mathbb{N}^*} \left(\sum_{p \in \mathbb{N}^*, \; p \neq n} \frac{1}{n^2 - p^2} \right). \text{ Que peut-on en déduire ?}$$

Exercice nº 23 (**)

Calculer
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}.$$

Exercice nº 24 (****)

Soient $(u_n)_{n\geqslant 1}$ une suite réelle. Pour $n\geqslant 1$, on pose $\nu_n=\frac{u_1+\ldots+u_n}{n}$. Montrer que si la série de terme général $(u_n)^2$ converge alors la série de terme général $(\nu_n)^2$ converge et que $\sum_{n=1}^{+\infty}(\nu_n)^2\leqslant 4\sum_{n=1}^{+\infty}(u_n)^2$ (indication : majorer $\nu_n^2-2u_n\nu_n$).

Exercice nº 25 (***)

Convergence et somme de la série de terme général $u_n = \frac{\pi}{4} - \sum_{k=0}^n \frac{(-1)^k}{2k+1}, \ n \geqslant 0.$