东南大学 2012-2013 学年第二学期《高等数学(上)》 期中考试试卷

课程名称	高等数:	学A、B(期	中) 考试	学期 12-	13-2 特	寻分	
适用专业	工科类		考试形式 闭卷		考试时间长度_120 分钟		
题号	_	=	Ξ	四	五	六	七
得分							
一、 填空题(本题共6小题,前5题每题4分,第6题9分,共29分)							
1. 设斜率为 $-\frac{1}{2}$ 的直线 L 是曲线 $y=\frac{2}{x}(x>0)$ 的切线,则 L 的方程为:							
2. 函数 $f(x) = \frac{3}{2 - \frac{2}{x}}$ 的全部间断点分别是							
3.							
4. 设 $y = f(\ln(x + \sqrt{a^2 + x^2}))$, 其中 $f(u)$ 为可微函数, 则微分d $y =;$							
5. 函数 $f(x) = e^{\sin x}$ 带Peano余项的 2 阶Maclaurin公式是;							
6. 分别举出符合下列各题要求的一例,并将其填写在横线上:							
(1) 极限 $\lim_{n\to\infty} a_n $ 存在, 但极限 $\lim_{n\to\infty} a_n$ 不存在的数列 $a_n =$;							
(2) 极限 $\lim_{x\to 0} f(x)$ 与 $\lim_{x\to 0} f(x)g(x)$ 都存在,但极限 $\lim_{x\to 0} g(x)$ 不存在的函数							
$f(x) = \underline{\hspace{1cm}}$		g(x) =	;				
(3) 在 $x = 0$ 处导数不存在,但 $x = 0$ 是极值点的连续函数有							
二、 单项选择题(本题共3小题,每小题4分,满分12分)							
1. 设 $f(x) =$					[]	
(A) a = b = 0	e (B) a	$= b = e^{-1}$	(C) $\dot{a} = -b$	$b = e^{-1}$ (I	a = -b =	$= -e^{-1}$	
2. 设 f(x) =	$=(x+ \sin x)$	$\ln x)\cos x,$	则			[]
(Δ) f'(0) —	2 (B)	f'(0) = 0	(C) f'(0) -	1 (D) f	(r) 在 r -	0 炒不可	导

- 3. 下列命题正确的是:
- (A)任何两个无穷小量之比的极限必存在(极限值为有限实数或∞);
- (B)若数列 $\{a_{2k-1}\}$ 和 $\{a_{2k}\}$ 都收敛,则数列 $\{a_n\}$ 也收敛;
- (C)若数列 $\{a_n\}$ 收敛,数列 $\{b_n\}$ 发散,则数列 $\{a_nb_n\}$ 必发散;
- (D)若数列 $\{a_n\}$ 单调增加,数列 $\{b_n\}$ 单调减少,且 $\lim_{n\to\infty}(a_n-b_n)=0$,则 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$.
- 三、 计算下列各题(本题共5小题,每小题7分,满分35分)
- 1. 求极限 $\lim_{x\to 0} \frac{\sqrt{1+x^4}-\sqrt[3]{1-2x^4}}{(1-\cos x)\sin^2 x}$.
- 2. 求极限 $\lim_{n\to\infty} \sqrt[n]{n^4+4^n}$.
- 3. 设 y = y(x) 是由方程 $x + y = \arctan(x y)$ 所确定的隐函数,求导数 $\frac{dy}{dx}$.
- - 四、(本题满分8分) 证明: 当x > 0 时, $x^2 + 1 > \ln x$.
 - 五、 (本题满分8分) 设函数f(x)在闭区间[0,3a] (a>0)上连续,在开区间(0,3a)内可导,且f(3a)=f(a)< f(0)< f(2a). 证明:至少存在一点 $\xi\in(0,2a)$,使得 $f'(\xi)=f'(\xi+a)$.

六、(本題满分8分) (1) 证明不等式: $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$;

(2) 设 $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$, 利用单调有界原理证明数列 $\{x_n\}$ 收敛.

12-13-2 高等数学(A,B)期中试卷参考答案

一、填空题(本题共6小题,前5题每题4分,第6题9分,共29分)

1.
$$\underline{x+2y-4=0}$$
; 2. $\underline{0,1}$; 可去,无穷; 3. $\underline{-2011!}$; 4. $\underline{f'(\ln(x+\sqrt{a^2+x^2}))}$ dx ;

5.
$$1 + x + \frac{x^2}{2} + o(x^2)$$
; 6. $(1)(-1)^n$; $(2)x, \sin\frac{1}{x}$; $(3)f(x) = |x|$.

- 二、 单项选择题(本题共3小题,每小题4分,满分12分)
- 1. D; 2. D; 3. D
- 三、计算下列各题(本题共5小题,每小题7分,满分35分)

1.
$$\lim_{x \to 0} \frac{\sqrt{1 + x^4} - \sqrt[3]{1 - 2x^4}}{(1 - \cos x)\sin^2 x} = 2\lim_{x \to 0} \frac{\frac{1}{2}x^4 + \frac{2}{3}x^4 + o(x^4)}{x^4} = \frac{7}{3}. (5 \% + 2 \%)$$

2. 解 $4 \le \sqrt[n]{n^4 + 4^n} \le 4\sqrt[n]{2}$ $(n \ge 5)$ (2分), 由于 $\lim_{n \to \infty} \sqrt[n]{2} = 1$ (2分), 由夹逼定理得, $\lim_{n \to \infty} \sqrt[n]{n^4 + 4^n} = 4$. (3分)

3. **A**
$$y = \frac{1-y'}{1+(x-y)^2}$$
, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x-y)^2}{2+(x-y)^2}$. $(5\%+2\%)$

4. 解

$$f^{(n)}(x) = \frac{1}{3} \left(\frac{1}{x-1} - \frac{1}{x+2} \right)^{(n)} = \frac{n!}{3} \left(\frac{(-1)^n}{(x-1)^{n+1}} - \frac{(-1)^n}{(x+2)^{n+1}} \right)$$

5.
$$\mathbf{K} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}t^2\mathrm{e}^{-2t}$$
, $(3\mathcal{G}) \frac{\mathrm{d}^2y}{\mathrm{d}x^2}|_{t=2} = \frac{3}{2}t(1-t)\mathrm{e}^{-4t}|_{t=2} = -3\mathrm{e}^{-8}$. $(4\mathcal{G})$

四、 (本題满分8分) 证 设 $f(x) = x^2 + 1 - \ln x$, (2分)

令
$$f'(x) = 2x - \frac{1}{x} = \frac{2x^2 - 1}{x} = 0$$
, 得 $x = \frac{1}{\sqrt{2}}$ 是 $f(x)$ 唯一的极小值点, 因而是 最小值点, (4分) 所以 $f(x) \ge f(\frac{1}{\sqrt{2}}) = \frac{3}{2} + \frac{1}{2} \ln 2 > 0$, 即 $x^2 + 1 > \ln x$. (2分)

五、 (本題满分8分) 证 设 F(x) = f(x+a) - f(x), (2分)

$$F(0) = f(a) - f(0) < 0, F(a) = f(2a) - f(a) > 0, F(2a) = f(3a) - f(2a) < 0,$$

由连续函数零点存在定理,知存在 $\xi_1 \in (0,a), \xi_2 \in (a,2a),$ 使 $F(\xi_1) = F(\xi_2) = 0,$ (4分)再由Rolle定理知,存在 $\xi \in (0,2a),$ 使 $F'(\xi) = 0,$ 即 $f'(\xi) = f'(\xi+a).(2分)$

六、 (本题满分8分) 证 (1) 由Lagrange中值定理知,存在 $\xi \in (n, n+1)$, 使得 $\ln(n+1) - \ln n = \frac{1}{\xi}$, 从而 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$ (3分)

$$(2) x_{n+1} - x_n = \frac{1}{n+1} - \ln\left(1 + \frac{1}{n}\right) < 0$$
,所以 $\{x_n\}$ 单减. $(2分)$

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n$$

$$> \ln(1+1) + \ln\left(1 + \frac{1}{2}\right) + \ln\left(1 + \frac{1}{3}\right) + \dots + \ln\left(1 + \frac{1}{n}\right) - \ln n$$

$$= \ln\left(2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \dots \cdot \frac{n+1}{n} \cdot \frac{1}{n}\right) = \ln\left(1 + \frac{1}{n}\right) > 0$$

所以 $\{x_n\}$ 有下界. 由单调有界原理知 $\{x_n\}$ 收敛. (3分)