Il problema dell'immersione di varietà compatte in spazi euclidei

Lorenzo Cecchi

20 settembre 2019

Descrizione del problema

Ogni varietà C^{∞} si immerge in qualche \mathbb{R}^k , ma vale di più:

Teorema (Whitney, 1943)

Per ogni n-varietà liscia esiste:

- un'immersione in \mathbb{R}^{2n-1}
- un embedding in \mathbb{R}^{2n}

È quindi ben posto, in particolare, il problema di determinare il minimo k sufficiente per immergere qualunque varietà di dimensione n

La congettura di immersione

Nel 1960 Massey pubblica un articolo in cui riscontra un'omogeneità nel verificarsi di condizioni necessarie all'esistenza di immersioni in codimensione $n-\alpha(n)$, dove $\alpha(n)$ rappresenta il numero di 1 nell'espansione diadica di n

Congettura (di immersione)

Ogni n-varietà liscia compatta si immerge in $\mathbb{R}^{2n-\alpha(n)}$. In questo lavoro si ripercorrono le tappe e l'intreccio di idee che hanno portato Cohen a dimostrare la congettura nel 1985

La congettura di immersione

Nel 1960 Massey pubblica un articolo in cui riscontra un'omogeneità nel verificarsi di condizioni necessarie all'esistenza di immersioni in codimensione $n-\alpha(n)$, dove $\alpha(n)$ rappresenta il numero di 1 nell'espansione diadica di n

Congettura (di immersione)

Ogni *n*-varietà liscia compatta si immerge in $\mathbb{R}^{2n-\alpha(n)}$.

In questo lavoro si ripercorrono le tappe e l'intreccio di idee che hanno portato Cohen a dimostrare la congettura nel 1985

Il fibrato tangente

Idea di base: data un'immersione $f\colon M\to\mathbb{R}^k$ il pullback del fibrato tangente di \mathbb{R}^k è banale, ed è dato da $\tau_M\oplus\nu_f$: intuitivamente si tratta di trovare il minimo k per cui esista un fibrato che sommato al tangente dia un fibrato banale

Esempio

Una varietà non orientabile ha fibrato tangente non banale, dunque non può immergersi in codimensione 0.

È naturale dunque interrogarsi sulla struttura di τ_M o, più in generale, su una possibile classificazione di fibrati su M a meno di isomorfismo

Il fibrato tangente

Idea di base: data un'immersione $f\colon M\to\mathbb{R}^k$ il pullback del fibrato tangente di \mathbb{R}^k è banale, ed è dato da $\tau_M\oplus\nu_f$: intuitivamente si tratta di trovare il minimo k per cui esista un fibrato che sommato al tangente dia un fibrato banale

Esempio

Una varietà non orientabile ha fibrato tangente non banale, dunque non può immergersi in codimensione 0.

È naturale dunque interrogarsi sulla struttura di τ_M o, più in generale, su una possibile classificazione di fibrati su M a meno di isomorfismo

Intreccio di idee

La dimostrazione di Cohen è il risultato della combinazione di contributi da parte di molti ricercatori:

Le classi di Stiefel-Whitney sono invarianti coomologici associati a ciascun fibrato; esse possono essere caratterizzate in modo assiomatico:

1. (Esistenza) Per ogni n-fibrato ξ esistono classi caratteristiche

$$w_i(\xi) \in H^i(B; \mathbb{Z}_2), \qquad i \in \mathbb{N}$$

tali che $w_0 = 1$ e $w_i = 0$ per i > n

2. (Naturalità) Per ogni $f: B(\xi) \to B(\eta)$ indotta da un morfismo di fibrati vale

$$w_i(\xi) = f^* w_i(\eta)$$

Le classi di Stiefel-Whitney sono invarianti coomologici associati a ciascun fibrato; esse possono essere caratterizzate in modo assiomatico:

1. (Esistenza) Per ogni n-fibrato ξ esistono classi caratteristiche

$$w_i(\xi) \in H^i(B; \mathbb{Z}_2), \qquad i \in \mathbb{N}$$

tali che $w_0 = 1$ e $w_i = 0$ per i > n

2. (Naturalità) Per ogni $f: B(\xi) \to B(\eta)$ indotta da un morfismo di fibrati vale

$$w_i(\xi) = f^* w_i(\eta)$$

Le classi di Stiefel-Whitney sono invarianti coomologici associati a ciascun fibrato; esse possono essere caratterizzate in modo assiomatico:

1. (Esistenza) Per ogni n-fibrato ξ esistono classi caratteristiche

$$w_i(\xi) \in H^i(B; \mathbb{Z}_2), \qquad i \in \mathbb{N}$$

tali che $w_0 = 1$ e $w_i = 0$ per i > n

2. (Naturalità) Per ogni $f: B(\xi) \to B(\eta)$ indotta da un morfismo di fibrati vale

$$w_i(\xi) = f^* w_i(\eta)$$

3. (Prodotto di Whitney) Vale la relazione

$$w_i(\xi \oplus \eta) = \sum_{j=0}^i w_j(\xi) \smile w_{i-j}(\eta)$$

4. (Non banalità) Il fibrato canonico γ^1 su \mathbb{P}^1 ha una classe non banale

L'elemento $w=\sum_{i=0}^\infty w_i$, detto classe *totale*, è un invertibile di $H^{\Pi}(B;\mathbb{Z}_2)$, e dunque ammette unico inverso \bar{w} . In termini di classi totali l'Assioma 3 si scrive semplicemente

$$w(\xi \oplus \eta) = w(\xi) \smile w(\eta)$$

3. (Prodotto di Whitney) Vale la relazione

$$w_i(\xi\oplus\eta)=\sum_{j=0}^i w_j(\xi)\smile w_{i-j}(\eta)$$

4. (Non banalità) Il fibrato canonico γ^1 su \mathbb{P}^1 ha una classe non banale

L'elemento $w=\sum_{i=0}^\infty w_i$, detto classe *totale*, è un invertibile di $H^{\Pi}(B;\mathbb{Z}_2)$, e dunque ammette unico inverso \bar{w} . In termini di classi totali l'Assioma 3 si scrive semplicemente

$$w(\xi \oplus \eta) = w(\xi) \smile w(\eta)$$

3. (Prodotto di Whitney) Vale la relazione

$$w_i(\xi \oplus \eta) = \sum_{j=0}^i w_j(\xi) \smile w_{i-j}(\eta)$$

4. (Non banalità) Il fibrato canonico γ^1 su \mathbb{P}^1 ha una classe non banale

L'elemento $w=\sum_{i=0}^\infty w_i$, detto classe *totale*, è un invertibile di $H^\Pi(B;\mathbb{Z}_2)$, e dunque ammette unico inverso \bar{w} . In termini di classi totali l'Assioma 3 si scrive semplicemente

$$w(\xi \oplus \eta) = w(\xi) \smile w(\eta)$$

Immersioni e classi di Stiefel-Whitney

Fibrato tangente e normale di un'immersione si sommano per dare un fibrato banale, il quale ha w=1. Di conseguenza

Teorema (Dualità di Whitney)

$$w(\nu_M) = \bar{w}(\tau_M)$$

Corollario

Se una n-varietà M si immerge in \mathbb{R}^{n+k} allora

$$\bar{w}_i(\tau_M) = 0$$
 per ogni $i > k$

Esempio (con $n = 2^m$)

$$w(\mathbb{P}^n) = (1+a)^{n+1} \implies \bar{w}(\mathbb{P}^n) = 1+a+\ldots+a^{n-1}$$

e dunque vale la congettura di immersione

Immersioni e classi di Stiefel-Whitney

Fibrato tangente e normale di un'immersione si sommano per dare un fibrato banale, il quale ha w=1. Di conseguenza

Teorema (Dualità di Whitney)

$$w(\nu_M) = \bar{w}(\tau_M)$$

Corollario

Se una n-varietà M si immerge in \mathbb{R}^{n+k} allora

$$\bar{w}_i(\tau_M) = 0$$
 per ogni $i > k$

Esempio (con $n = 2^m$)

$$w(\mathbb{P}^n) = (1+a)^{n+1} \implies \bar{w}(\mathbb{P}^n) = 1+a+\ldots+a^{n-1}$$

e dunque vale la congettura di immersione

Immersioni e classi di Stiefel-Whitney

Fibrato tangente e normale di un'immersione si sommano per dare un fibrato banale, il quale ha w=1. Di conseguenza

Teorema (Dualità di Whitney)

$$w(\nu_M) = \bar{w}(\tau_M)$$

Corollario

La congettura

Se una n-varietà M si immerge in \mathbb{R}^{n+k} allora

$$\bar{w}_i(\tau_M) = 0$$
 per ogni $i > k$

Esempio (con $n = 2^m$)

$$w(\mathbb{P}^n)=(1+a)^{n+1}\implies \bar{w}(\mathbb{P}^n)=1+a+\ldots+a^{n-1}$$
 e dunque vale la congettura di immersione.

I quadrati di Steenrod sono un esempio di *operazione coomologica*, ossia una trasformazione naturale di funtori

$$\theta \colon H^n(-, G_1) \to H^q(-, G_2)$$

Anche in questo caso si dà una caratterizzazione assiomatica (i coefficienti sono in \mathbb{Z}_2):

1. (Esistenza) Per ogni coppia $i, n \in \mathbb{N}$ esiste un omomorfismo

$$Sq^i: H^n(X) \to H^{n+i}(X)$$

2. (Naturalità) Data $f: X \to Y$ si ha

$$Sq^i \circ f^* = f^* \circ Sq^i$$

I quadrati di Steenrod sono un esempio di operazione coomologica, ossia una trasformazione naturale di funtori

$$\theta \colon H^n(-, G_1) \to H^q(-, G_2)$$

Anche in questo caso si dà una caratterizzazione assiomatica (i coefficienti sono in \mathbb{Z}_2):

1. (Esistenza) Per ogni coppia $i, n \in \mathbb{N}$ esiste un omomorfismo

$$Sq^i: H^n(X) \rightarrow H^{n+i}(X)$$

$$Sq^i \circ f^* = f^* \circ Sq^i$$

I quadrati di Steenrod sono un esempio di *operazione coomologica*, ossia una trasformazione naturale di funtori

$$\theta \colon H^n(-, G_1) \to H^q(-, G_2)$$

Anche in questo caso si dà una caratterizzazione assiomatica (i coefficienti sono in \mathbb{Z}_2):

1. (Esistenza) Per ogni coppia $i, n \in \mathbb{N}$ esiste un omomorfismo

$$Sq^i: H^n(X) \rightarrow H^{n+i}(X)$$

2. (Naturalità) Data $f: X \to Y$ si ha

$$Sq^i \circ f^* = f^* \circ Sq^i$$

3. (Quadrato) Per ogni $a \in H^n(X)$ si ha

$$Sq^{0}(a) = a$$
, $Sq^{n}(a) = a^{2}$, $Sq^{i}(a) = 0$ per $i > n$

4. (Formula di Cartan) Vale la relazione

$$Sq^{k}(a \smile b) = \sum_{i+j=k} Sq^{i}(a) \smile Sq^{j}(b)$$

L'analogia con le classi di Stiefel-Whitney non è casuale: infatti

$$w(\xi) = \phi^{-1} \circ Sq \circ \phi(1)$$

dove ϕ è l'isomorfismo di Thom

3. (Quadrato) Per ogni $a \in H^n(X)$ si ha

$$Sq^{0}(a) = a$$
, $Sq^{n}(a) = a^{2}$, $Sq^{i}(a) = 0$ per $i > n$

4. (Formula di Cartan) Vale la relazione

$$Sq^k(a\smile b)=\sum_{i+j=k}Sq^i(a)\smile Sq^j(b)$$

L'analogia con le classi di Stiefel-Whitney non è casuale: infatti

$$w(\xi) = \phi^{-1} \circ Sq \circ \phi(1)$$

dove ϕ è l'isomorfismo di Thom

3. (Quadrato) Per ogni $a \in H^n(X)$ si ha

$$Sq^{0}(a) = a$$
, $Sq^{n}(a) = a^{2}$, $Sq^{i}(a) = 0$ per $i > n$

4. (Formula di Cartan) Vale la relazione

$$Sq^k(a\smile b)=\sum_{i+j=k}Sq^i(a)\smile Sq^j(b)$$

L'analogia con le classi di Stiefel-Whitney non è casuale: infatti

$$w(\xi) = \phi^{-1} \circ Sq \circ \phi(1)$$

dove ϕ è l'isomorfismo di Thom

L'enunciato

La congettura di immersione nasce dal seguente

Teorema (Massey, 1960)

Sia M una n-varietà compatta e connessa. Allora

$$\bar{w}_i(\tau_M) = 0$$
 per ogni $i > n - \alpha(n)$

Il risultato è ottimale, in quanto

Esempio

Se $n=2^{h_1}+\ldots+2^{h_{lpha(n)}}$, ponendo

$$M = \mathbb{P}^{2^{h_1}} \times \ldots \times \mathbb{P}^{2^{h_{\alpha(n)}}}$$

si ha $\bar{w}_{n-\alpha(n)} \neq 0$

L'enunciato

La congettura di immersione nasce dal seguente

Teorema (Massey, 1960)

Sia M una n-varietà compatta e connessa. Allora

$$\bar{w}_i(\tau_M) = 0$$
 per ogni $i > n - \alpha(n)$

Il risultato è ottimale, in quanto

Esempio

Se
$$n = 2^{h_1} + \ldots + 2^{h_{\alpha(n)}}$$
, ponendo

$$M = \mathbb{P}^{2^{h_1}} \times \ldots \times \mathbb{P}^{2^{h_{\alpha(n)}}}$$

si ha $\bar{w}_{n-\alpha(n)} \neq 0$.

Alcune definizioni e risultati preliminari:

- una sequenza di interi positivi $I=(i_1,\ldots,i_r)$ si dice ammissibile se $i_i \geq 2i_{i+1}$; si pone $Sq^I=Sq^{i_1}\circ\ldots\circ Sq^{i_r}$
- in questo caso si può definire la corrispondente sequenza di "differenze" (a_1, \ldots, a_r) , con $a_i = i_i 2i_{i+1}$, $a_r = i_r$
- si definiscono le due quantità $e(I) = \sum_j a_j$ e $n(I) = \sum_j i_j$
- vale la relazione $\deg(Sq^I(x)) = \deg(x) + n(I)$

Lemma

Per ogni $x \in H^q(M)$

$$q < e(1) \implies Sq^{I}(x) = 0$$

Alcune definizioni e risultati preliminari:

- una sequenza di interi positivi $I = (i_1, \ldots, i_r)$ si dice ammissibile se $i_i \geq 2i_{i+1}$; si pone $Sq^l = Sq^{i_1} \circ \ldots \circ Sq^{i_r}$
- in questo caso si può definire la corrispondente sequenza di "differenze" (a_1, \ldots, a_r) , con $a_i = i_i 2i_{i+1}$, $a_r = i_r$
- si definiscono le due quantità $e(I) = \sum_i a_i$ e $n(I) = \sum_i i_i$
- vale la relazione $\deg(Sq^I(x)) = \deg(x) + n(I)$

Lemma

Per ogni $x \in H^q(M)$

$$q < e(I) \implies Sq^I(x) = 0$$

Alcune definizioni e risultati preliminari:

- una sequenza di interi positivi $I = (i_1, \dots, i_r)$ si dice ammissibile se $i_i \geq 2i_{i+1}$; si pone $Sq^I = Sq^{i_1} \circ \dots \circ Sq^{i_r}$
- in questo caso si può definire la corrispondente sequenza di "differenze" (a_1, \ldots, a_r) , con $a_j = i_j 2i_{j+1}$, $a_r = i_r$
- si definiscono le due quantità $e(I) = \sum_j a_j$ e $n(I) = \sum_j i_j$
- vale la relazione $\deg(Sq^I(x)) = \deg(x) + n(I)$

Lemma

Per ogni $x \in H^q(M)$

$$q < e(I) \implies Sq^I(x) = 0$$

Alcune definizioni e risultati preliminari:

- una sequenza di interi positivi $I = (i_1, \ldots, i_r)$ si dice ammissibile se $i_i \geq 2i_{i+1}$; si pone $Sq^l = Sq^{i_1} \circ \ldots \circ Sq^{i_r}$
- in questo caso si può definire la corrispondente sequenza di "differenze" (a_1, \ldots, a_r) , con $a_j = i_j 2i_{j+1}$, $a_r = i_r$
- si definiscono le due quantità $e(I) = \sum_j a_j$ e $n(I) = \sum_j i_j$
- vale la relazione $\deg(Sq^I(x)) = \deg(x) + n(I)$

Lemma

Per ogni $x \in H^q(M)$

$$q < e(1) \implies Sq^{I}(x) = 0$$

Alcune definizioni e risultati preliminari:

- una sequenza di interi positivi $I = (i_1, \ldots, i_r)$ si dice ammissibile se $i_i \geq 2i_{i+1}$; si pone $Sq^l = Sq^{i_1} \circ \ldots \circ Sq^{i_r}$
- in questo caso si può definire la corrispondente sequenza di "differenze" (a_1, \ldots, a_r) , con $a_j = i_j 2i_{j+1}$, $a_r = i_r$
- si definiscono le due quantità $e(I) = \sum_{j} a_{j}$ e $n(I) = \sum_{j} i_{j}$
- vale la relazione $\deg(Sq^I(x)) = \deg(x) + n(I)$

Lemma

Per ogni $x \in H^q(M)$

$$q < e(1) \implies Sq^{I}(x) = 0$$

Alcune definizioni e risultati preliminari:

- una sequenza di interi positivi $I = (i_1, \ldots, i_r)$ si dice ammissibile se $i_i \geq 2i_{i+1}$; si pone $Sq^l = Sq^{i_1} \circ \ldots \circ Sq^{i_r}$
- in questo caso si può definire la corrispondente sequenza di "differenze" (a_1, \ldots, a_r) , con $a_i = i_i 2i_{i+1}$, $a_r = i_r$
- si definiscono le due quantità $e(I) = \sum_{j} a_{j}$ e $n(I) = \sum_{j} i_{j}$
- vale la relazione $\deg(Sq^I(x)) = \deg(x) + n(I)$

Lemma

Per ogni $x \in H^q(M)$

$$q < e(I) \implies Sq^I(x) = 0$$

Preparazione (seconda parte)

Lemma

Per ogni I ammissibile esiste J ammissibile e $k \in \mathbb{N}$ tali che

$$deg(x) = e(I) \implies Sq^{I}(x) = (Sq^{J}(x))^{2^{k}}$$

e inoltre e(J) < e(I).

Dimostrazione

Si pone $J = (i_{k+1}, \dots, i_r)$, dove k è il minimo intero per cui $a_k > 0$; banalmente $e(I) = a_k + e(J)$ e

$$\deg(Sq^{J}(x)) = \deg(x) + n(J) = e(J) + n(J) + a_{k} = i_{k}$$

e gli omomorfismi rimanenti sono tutti quadrati.

Preparazione (seconda parte)

Lemma

Per ogni I ammissibile esiste J ammissibile e $k \in \mathbb{N}$ tali che

$$deg(x) = e(I) \implies Sq^{I}(x) = (Sq^{J}(x))^{2^{k}}$$

e inoltre e(J) < e(I).

Dimostrazione.

Si pone $J = (i_{k+1}, \dots, i_r)$, dove k è il minimo intero per cui $a_k > 0$; banalmente $e(I) = a_k + e(J)$ e

$$\deg(Sq^{J}(x)) = \deg(x) + n(J) = e(J) + n(J) + a_{k} = i_{k}$$

e gli omomorfismi rimanenti sono tutti quadrati.

Preparazione (terza parte)

Lemma

Sia
$$x \in H^q(M)$$
. Se $e(I) < q$ allora

$$\deg(Sq^{I}(x)) = 1 + 2^{h_1} + \ldots + 2^{h_{q-1}}$$

Infatti
$$n(I) = \sum_{j=1}^{r} (2^{j} - 1)a_{j} \implies \deg(Sq^{I}(x)) = 1 + \sum_{j=1}^{r} 2^{j}a_{j}$$

Lemma

Per ogni $x \in H^q(M)$ con 0 < q < n vale

$$x \smile \bar{w}_{n-q} = \sum_{i>0} Sq^i(x) \smile \bar{w}_{n-q-i}$$

Preparazione (terza parte)

Lemma

Sia $x \in H^q(M)$. Se e(I) < q allora

$$\deg(Sq^{I}(x)) = 1 + 2^{h_1} + \dots + 2^{h_{q-1}}$$

Infatti
$$n(I) = \sum_{j=1}^{r} (2^{j} - 1)a_{j} \implies \deg(Sq^{I}(x)) = 1 + \sum_{j=1}^{r} 2^{j}a_{j}$$

Lemma

Per ogni $x \in H^q(M)$ con 0 < q < n vale

$$x \smile \bar{w}_{n-q} = \sum_{i>0} Sq^i(x) \smile \bar{w}_{n-q-i}$$

La dimostrazione

Se $\bar{w}_{n-q}
eq 0$ allora l'omomorfismo

$$\phi \colon H^q(M; \mathbb{Z}_2) \to H^n(M; \mathbb{Z}_2), \qquad \phi(x) = x \smile \bar{w}_{n-q}$$

è non banale e, senza perdita di generalità, si scrive come somma di Sq^I ammissibili con $e(I) \leq q$, di cui uno non nullo

A questo punto

- se e(I) < q allora $n = \deg(Sq^I(x))$ e si applica il lemma precedente
- se e(I) = q si considera $Sq^I = (Sq^J)^{2^k}$, da cui $n = 2^k \deg(Sq^I(x))$ e si applica il lemma precedente

Si conclude osservando l'equivalenza tra i seguenti fatti:

- $n=2^{h_1}+\ldots+2^{h_q}$ per qualche $h_1,\ldots,h_q\in\mathbb{N}$
- $\alpha(n) \leq q$

La dimostrazione

Se $\bar{w}_{n-q} \neq 0$ allora l'omomorfismo

$$\phi \colon H^q(M; \mathbb{Z}_2) \to H^n(M; \mathbb{Z}_2), \qquad \phi(x) = x \smile \bar{w}_{n-q}$$

è non banale e, senza perdita di generalità, si scrive come somma di Sq^I ammissibili con $e(I) \leq q$, di cui uno non nullo A questo punto

- se e(I) < q allora $n = \deg(Sq^I(x))$ e si applica il lemma precedente
- se e(I) = q si considera $Sq^I = (Sq^J)^{2^k}$, da cui $n = 2^k \deg(Sq^I(x))$ e si applica il lemma precedente

Si conclude osservando l'equivalenza tra i seguenti fatti:

- $n=2^{h_1}+\ldots+2^{h_q}$ per qualche $h_1,\ldots,h_q\in\mathbb{N}$
- $\alpha(n) \leq q$

La dimostrazione

Se $\bar{w}_{n-q}
eq 0$ allora l'omomorfismo

$$\phi \colon H^q(M; \mathbb{Z}_2) \to H^n(M; \mathbb{Z}_2), \qquad \phi(x) = x \smile \bar{w}_{n-q}$$

è non banale e, senza perdita di generalità, si scrive come somma di Sq^I ammissibili con $e(I) \leq q$, di cui uno non nullo A questo punto

- se e(I) < q allora $n = \deg(Sq^I(x))$ e si applica il lemma precedente
- se e(I) = q si considera $Sq^I = (Sq^J)^{2^k}$, da cui $n = 2^k \deg(Sq^I(x))$ e si applica il lemma precedente

Si conclude osservando l'equivalenza tra i seguenti fatti:

- $n=2^{h_1}+\ldots+2^{h_q}$ per qualche $h_1,\ldots,h_q\in\mathbb{N}$
- $\alpha(n) \leq q$

La dimostrazione

Se $\bar{w}_{n-q} \neq 0$ allora l'omomorfismo

$$\phi \colon H^q(M; \mathbb{Z}_2) \to H^n(M; \mathbb{Z}_2), \qquad \phi(x) = x \smile \bar{w}_{n-q}$$

è non banale e, senza perdita di generalità, si scrive come somma di Sq^I ammissibili con $e(I) \leq q$, di cui uno non nullo A questo punto

- se e(I) < q allora $n = \deg(Sq^I(x))$ e si applica il lemma precedente
- se e(I) = q si considera $Sq^I = (Sq^J)^{2^k}$, da cui $n = 2^k \deg(Sq^I(x))$ e si applica il lemma precedente

Si conclude osservando l'equivalenza tra i seguenti fatti:

- $n=2^{h_1}+\ldots+2^{h_q}$ per qualche $h_1,\ldots,h_q\in\mathbb{N}$
- $\alpha(n) \leq q$

Ostruzioni

Dato un fibrato su un CW complesso si possono dare condizioni necessarie e sufficienti di tipo algebrico, dette *ostruzioni*, a costruire una sua sezione ricorsivamente su ciascun *i*-scheletro L'ostruzione all'estensione di k sezioni (di un n-fibrato) su B^i è data da un elemento di $H^i(B; \pi_{i-1}(V_k(\mathbb{R}^n)))$

Fatto

$$V_k(\mathbb{R}^n)$$
 è $n-k-1$ -connesso e

- $\pi_{n-k} \cong \mathbb{Z}$ se k=1 oppure n-k è pari
- $\pi_{n-k} \cong \mathbb{Z}_2$ altriment

La prima ostruzione non banale è quindi in $H^{n-k+1}(B; \pi_{n-k})$.

Teorema

La riduzione modulo 2 dell'ostruzione primaria coincide con la classe di Stiefel-Whitney w_{n-k+1} .

Ostruzioni

Dato un fibrato su un CW complesso si possono dare condizioni necessarie e sufficienti di tipo algebrico, dette *ostruzioni*, a costruire una sua sezione ricorsivamente su ciascun *i*-scheletro L'ostruzione all'estensione di k sezioni (di un n-fibrato) su B^i è data da un elemento di $H^i(B; \pi_{i-1}(V_k(\mathbb{R}^n)))$

Fatto

 $V_k(\mathbb{R}^n)$ è n-k-1-connesso e

- $\pi_{n-k} \cong \mathbb{Z}$ se k=1 oppure n-k è pari
- $\pi_{n-k} \cong \mathbb{Z}_2$ altrimenti

La prima ostruzione non banale è quindi in $H^{n-k+1}(B; \pi_{n-k})$.

Teorema

La riduzione modulo 2 dell'ostruzione primaria coincide con la classe di Stiefel-Whitney w_{n-k+1} .

Ostruzioni

Dato un fibrato su un CW complesso si possono dare condizioni necessarie e sufficienti di tipo algebrico, dette *ostruzioni*, a costruire una sua sezione ricorsivamente su ciascun *i*-scheletro L'ostruzione all'estensione di k sezioni (di un n-fibrato) su B^i è data da un elemento di $H^i(B; \pi_{i-1}(V_k(\mathbb{R}^n)))$

Fatto

 $V_k(\mathbb{R}^n)$ è n-k-1-connesso e

- $\pi_{n-k} \cong \mathbb{Z}$ se k=1 oppure n-k è pari
- $\pi_{n-k} \cong \mathbb{Z}_2$ altrimenti

La prima ostruzione non banale è quindi in $H^{n-k+1}(B; \pi_{n-k})$.

Teorema

La riduzione modulo 2 dell'ostruzione primaria coincide con la classe di Stiefel-Whitney w_{n-k+1} .

Nel 1959 Smale identifica le immersioni lisce $S^n \to \mathbb{R}^k$, a meno di omotopia regolare, con elementi di $\pi_k(V_k(\mathbb{R}^n))$. Estendendo i suoi risultati, Hirsch trova la seguente condizione sufficiente:

Teorema (Hirsch)

Se M si immerge in \mathbb{R}^{k+r} con un r-campo trasversale allora si immerge in \mathbb{R}^k .

Esempio

- si estendono a M^1 per connessione di $V_2(\mathbb{R}^3)$
- si estendono a M^2 perché $w_2(\nu_M) = \bar{w}_2(\tau_M) = 0$ (per Massey
- si estendono a $M^3=M$ perché $V_2(\mathbb{R}^3)\cong SO(3)\cong \mathbb{P}^3$ dunque $\pi_2=0$

Nel 1959 Smale identifica le immersioni lisce $S^n \to \mathbb{R}^k$, a meno di omotopia regolare, con elementi di $\pi_k(V_k(\mathbb{R}^n))$. Estendendo i suoi risultati, Hirsch trova la seguente condizione sufficiente:

Teorema (Hirsch)

Se M si immerge in \mathbb{R}^{k+r} con un r-campo trasversale allora si immerge in \mathbb{R}^k .

Esempio

- si estendono a M^1 per connessione di $V_2(\mathbb{R}^3)$
- si estendono a M^2 perché $w_2(\nu_M) = \bar{w}_2(\tau_M) = 0$ (per Massey
- si estendono a $M^3=M$ perché $V_2(\mathbb{R}^3)\cong SO(3)\cong \mathbb{P}^3$ e dunque $\pi_2=0$

Nel 1959 Smale identifica le immersioni lisce $S^n \to \mathbb{R}^k$, a meno di omotopia regolare, con elementi di $\pi_k(V_k(\mathbb{R}^n))$. Estendendo i suoi risultati, Hirsch trova la seguente condizione sufficiente:

Teorema (Hirsch)

Se M si immerge in \mathbb{R}^{k+r} con un r-campo trasversale allora si immerge in \mathbb{R}^k .

Esempio

- ullet si estendono a M^1 per connessione di $V_2(\mathbb{R}^3)$
- si estendono a M^2 perché $w_2(\nu_M) = \bar{w}_2(\tau_M) = 0$ (per Massey
- si estendono a $M^3=M$ perché $V_2(\mathbb{R}^3)\cong SO(3)\cong \mathbb{P}^3$ dunque $\pi_2=0$

Nel 1959 Smale identifica le immersioni lisce $S^n \to \mathbb{R}^k$, a meno di omotopia regolare, con elementi di $\pi_k(V_k(\mathbb{R}^n))$. Estendendo i suoi risultati, Hirsch trova la seguente condizione sufficiente:

Teorema (Hirsch)

Se M si immerge in \mathbb{R}^{k+r} con un r-campo trasversale allora si immerge in \mathbb{R}^k .

Esempio

- si estendono a M^1 per connessione di $V_2(\mathbb{R}^3)$
- si estendono a M^2 perché $w_2(\nu_M) = \bar{w}_2(\tau_M) = 0$ (per Massey)
- si estendono a $M^3=M$ perché $V_2(\mathbb{R}^3)\cong SO(3)\cong \mathbb{P}^3$ e dunque $\pi_2=0$

Nel 1959 Smale identifica le immersioni lisce $S^n \to \mathbb{R}^k$, a meno di omotopia regolare, con elementi di $\pi_k(V_k(\mathbb{R}^n))$. Estendendo i suoi risultati, Hirsch trova la seguente condizione sufficiente:

Teorema (Hirsch)

Se M si immerge in \mathbb{R}^{k+r} con un r-campo trasversale allora si immerge in \mathbb{R}^k .

Esempio

- si estendono a M^1 per connessione di $V_2(\mathbb{R}^3)$
- si estendono a M^2 perché $w_2(\nu_M) = \bar{w}_2(\tau_M) = 0$ (per Massey)
- si estendono a $M^3=M$ perché $V_2(\mathbb{R}^3)\cong SO(3)\cong \mathbb{P}^3$ e dunque $\pi_2=0$

Una riscrittura

Teorema (di classificazione)

Le classi di omotopia di mappe $f: B \to BO(n)$ sono in bigezione con le classi di isomorfismo di fibrati su B, dove la corrispondenza è data dal pullback di γ^n tramite f.

Componendo una mappa di classificazione $M \to BO(k)$ con l'inclusione $BO(k) \hookrightarrow BO$ si ottiene una classificazione a meno di equivalenza stabile $M \rightarrow BO$

$$BO(k)$$

$$\tilde{\nu}_{M} \longrightarrow \emptyset$$

$$M \xrightarrow{\tilde{\nu}_{M}} BO$$

Una riscrittura

Teorema (di classificazione)

Le classi di omotopia di mappe $f: B \to BO(n)$ sono in bigezione con le classi di isomorfismo di fibrati su B, dove la corrispondenza è data dal pullback di γ^n tramite f.

Componendo una mappa di classificazione $M \to BO(k)$ con l'inclusione $BO(k) \hookrightarrow BO$ si ottiene una classificazione a meno di equivalenza stabile $M \to BO$

Inoltre la teoria di Hirsch, dato un diagramma commutativo a meno di omotopia come quello a fianco, implica l'esistenza di un'immersione in codimensione k

L'obiettivo è dunque realizzare questo sollevamento con $k = n - \alpha(n)$

La mappa in coomologia (prima parte)

Si consideri $u_M^* \colon H^*(BO) \to H^*(M)$ e sia

$$I_n = \bigcap_M \ker \nu_M^*$$

al variare di tutte le n-varietà

Si ottiene il diagramma

$$H^*(BO)/I_n \xrightarrow{\tilde{\nu}_M^*} H^*(M)$$

$$\downarrow^{\nu_M^*} \uparrow$$

$$H^*(BO)$$

La mappa in coomologia (prima parte)

Si consideri $u_M^* \colon H^*(BO) \to H^*(M)$ e sia

$$I_n = \bigcap_M \ker \nu_M^*$$

al variare di tutte le *n*-varietà Si ottiene il diagramma

$$H^*(BO)/I_n \xrightarrow{\tilde{\nu}_M^*} H^*(M)$$

$$\downarrow^{\nu_M^*} \uparrow$$

$$H^*(BO)$$

con ρ^* proiezione al quoziente

La mappa in coomologia (seconda parte)

Inoltre poiché $H^*(BO(n-\alpha(n))) \cong \mathbb{Z}_2[w_1,\ldots,w_{n-\alpha(n)}]$ e $BO = \varinjlim BO(k)$, data

$$i^*: H^*(BO) \to H^*(BO(n-\alpha(n)))$$

si ha ker $i^* = \mathbb{Z}_2[w_{n-\alpha(n)+1}, w_{n-\alpha(n)+2}, \dots]$. In particolare, per ogni $j > n - \alpha(n)$, il teorema di Massey implica

$$0 = \bar{w}_j(\tau_M) = w_j(\nu_M) = \nu_M^* w_j \implies \ker i^* \subset I_n$$

e si ottiene

La mappa in coomologia (seconda parte)

Inoltre poiché $H^*(BO(n-\alpha(n))) \cong \mathbb{Z}_2[w_1,\ldots,w_{n-\alpha(n)}]$ e $BO = \varinjlim BO(k)$, data

$$i^*$$
: $H^*(BO) o H^*(BO(n-\alpha(n)))$

si ha ker $i^* = \mathbb{Z}_2[w_{n-\alpha(n)+1}, w_{n-\alpha(n)+2}, \dots]$. In particolare, per ogni $j > n - \alpha(n)$, il teorema di Massey implica

$$0 = \bar{w}_j(\tau_M) = w_j(\nu_M) = \nu_M^* w_j \implies \ker i^* \subset I_n$$

e si ottiene

La mappa in coomologia (seconda parte)

Inoltre poiché $H^*(BO(n-\alpha(n))) \cong \mathbb{Z}_2[w_1,\ldots,w_{n-\alpha(n)}]$ e $BO = \varinjlim BO(k)$, data

$$i^*$$
: $H^*(BO) \rightarrow H^*(BO(n-\alpha(n)))$

si ha ker $i^* = \mathbb{Z}_2[w_{n-\alpha(n)+1}, w_{n-\alpha(n)+2}, \dots]$. In particolare, per ogni $j > n - \alpha(n)$, il teorema di Massey implica

$$0 = \bar{w}_j(\tau_M) = w_j(\nu_M) = \nu_M^* w_j \implies \ker i^* \subset I_n$$

e si ottiene

La mappa in coomologia (terza parte)

Mettendo insieme il tutto

$$H^{*}(BO)/I_{n} \xrightarrow{\tilde{\nu}_{M}^{*}} H^{*}(M)$$

$$\uparrow^{\rho_{n}^{*}} \uparrow \qquad \qquad \downarrow^{\nu_{M}^{*}} \uparrow$$

$$H^{*}(BO(n-\alpha(n))) \leftarrow_{i^{*}} H^{*}(BO)$$

Si è ottenuta una mappa

$$\tilde{\nu}_M^* \circ \rho_n^* \colon H^*(BO(n - \alpha(n))) \to H^*(M)$$

candidata a corrispondere, in coomologia, al sollevamento cercato

La mappa in coomologia (terza parte)

Mettendo insieme il tutto

$$H^{*}(BO)/I_{n} \xrightarrow{\tilde{\nu}_{M}^{*}} H^{*}(M)$$

$$\downarrow^{\rho_{n}^{*}} \qquad \qquad \downarrow^{\nu_{M}^{*}} \downarrow^{\nu_{M}^{*}}$$

$$H^{*}(BO(n-\alpha(n))) \leftarrow_{i^{*}} H^{*}(BO)$$

Si è ottenuta una mappa

$$\tilde{\nu}_{M}^{*} \circ \rho_{n}^{*} \colon H^{*}(BO(n-\alpha(n))) \to H^{*}(M)$$

candidata a corrispondere, in coomologia, al sollevamento cercato

Cosa rimane da fare

Ciò che si è visto è solo la prima parte del programma di dimostrazione delineato da Brown e Peterson

- 1. Calcolare esplicitamente l'ideale I_n
- 2. Costruire uno spazio BO/I_n e una mappa $\rho \colon BO/I_n \to BO$ tale che:
 - $H^*(BO/I_n) = H^*(BO)/I_n$ e ρ induca ρ^* in coomologia
 - Ciascuna mappa classificante ν_M si fattorizza (a meno di omotopia) come composizione $M \xrightarrow{\bar{\nu}_M} BO/I_n \xrightarrow{\rho} BO$
- 3. In analogia al diagramma di sopra, costruire una fattorizzazione di ρ (a meno di omotopia) tramite una mappa $\rho_n \colon BO/I_n \to BO(n-\alpha(n))$

Cohen realizza quest'ultimo punto nel 1985, trovando il sollevamento $ho_n\circ ilde{
u}_M$ e risolvendo definitivamente il problema

Cosa rimane da fare

Ciò che si è visto è solo la prima parte del programma di dimostrazione delineato da Brown e Peterson

- 1. Calcolare esplicitamente l'ideale I_n
- 2. Costruire uno spazio BO/I_n e una mappa $\rho \colon BO/I_n \to BO$ tale che:
 - $H^*(BO/I_n) = H^*(BO)/I_n$ e ρ induca ρ^* in coomologia
 - Ciascuna mappa classificante ν_M si fattorizza (a meno di omotopia) come composizione $M \xrightarrow{\tilde{\nu}_M} BO/I_n \xrightarrow{\rho} BO$
- 3. In analogia al diagramma di sopra, costruire una fattorizzazione di ρ (a meno di omotopia) tramite una mappa $\rho_n \colon BO/I_n \to BO(n-\alpha(n))$

Cohen realizza quest'ultimo punto nel 1985, trovando il sollevamento $\rho_n \circ \tilde{\nu}_M$ e risolvendo definitivamente il problema

Sviluppi ulteriori e problemi aperti

Alcuni spunti di riflessione:

- vale un analogo teorema per embedding?
- è possibile migliorare ulteriormente il risultato di Cohen restringendosi, ad esempio, a varietà con bordo oppure orientabili (oppure entrambe)?

Teorema (Haefliger, 1961)

Per ogni n-varietà liscia k-connessa, con $2k + 3 \le n$, esiste un embedding in \mathbb{R}^{2n-k} .

Sviluppi ulteriori e problemi aperti

Alcuni spunti di riflessione:

- vale un analogo teorema per embedding?
- è possibile migliorare ulteriormente il risultato di Cohen restringendosi, ad esempio, a varietà con bordo oppure orientabili (oppure entrambe)?

Teorema (Haefliger, 1961)

Per ogni n-varietà liscia k-connessa, con $2k + 3 \le n$, esiste un embedding in \mathbb{R}^{2n-k} .

Sviluppi ulteriori e problemi aperti

Alcuni spunti di riflessione:

- vale un analogo teorema per embedding?
- è possibile migliorare ulteriormente il risultato di Cohen restringendosi, ad esempio, a varietà con bordo oppure orientabili (oppure entrambe)?

Teorema (Haefliger, 1961)

Per ogni n-varietà liscia k-connessa, con $2k + 3 \le n$, esiste un embedding in \mathbb{R}^{2n-k} .

Ringraziamenti

Grazie a tutti per l'attenzione!

