K-Mean Clustering

Clustering

- Finding similarity groups in data, called clusters.
 i.e.,
 - Data instances that are similar to (near) each other are in the same cluster
 - Data instances that are very different (far away) from each other fall in different clusters.

Different ways for clustering:

- <u>Hierarchical</u> approach: Create a hierarchical decomposition of the set of data (or objects) using some criterion (Wald)
- <u>Partitioning</u> approach: Construct various partitions and then evaluate them by some criterion, e.g., minimizing the sum of square errors (K-means, Spectral clustering)
- Model-based methods: A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other (EM)

Hierarchical Clustering

Decomposes data objects into several levels of nested partitioning (<u>tree</u> of clusters).

A <u>clustering</u> of the data objects is obtained by <u>cutting</u> the dendrogram at the desired level, then each <u>connected</u> <u>component</u> forms a cluster.

Agglomerative Clustering (Hierarchical)

- Assign each item to its own cluster, so that if you have N items, you now have N clusters, each containing just one item.
- Merge most similar clusters into a single cluster, so that now you have one less cluster.
- Compute distances (similarities) between the new cluster and each of the old clusters.
- Repeat steps 2 and 3 until all items are clustered into a single cluster of size N.

K-Mean

- K-means is a partitioning based clustering algorithm as it partitions the given data into *k* clusters.
 - Each cluster has a cluster center, called centroid.
 - -k is specified by the user

The k-means algorithm belongs to the category of **prototype-based clustering**. Prototype-based clustering means that each cluster is represented by a prototype, which can either be the **centroid** (*average*) of similar points with continuous features, or the **medoid** (the most *representative* or most frequently occurring point) in the case of categorical features.

In K mean clustering our goal is to group the samples based on their feature similarities, which can be achieved using the k-means algorithm that can be summarized by the following four steps:

- 1. Randomly pick k centroids from the sample points as initial cluster centres.
- 2. Assign each sample to the nearest centroid $\mu^{(j)}$, $j \in \{1, ..., k\}$.
- 3. Move the centroids to the centre of the samples that were assigned to it.
- 4. Repeat steps 2 and 3 until the cluster assignments do not change or a user-defined tolerance or the maximum number of iterations is reached.

Now, the next question is how do we measure the similarity between objects?

Note:

- If d_1 is near d_2 , then d_2 is near d_1 .
- If d_1 near d_2 , and d_2 near d_3 , then d_1 not far from d_3 .
- No document is closer to d than d itself.

What do we mean by distance between clusters?

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = min(t_{ie}, t_{id})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = max(t_{ip}, t_{iq})$
- Average: average distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = avg(t_{ip}, t_{iq})$
- Centroid: distance between the centroids of two clusters, i.e.,
 dis(K_i, K_i) = dis(C_i, C_i)

Mostly used ways to calculate distance are as follow:

Some Other Common Metrics

- Weighted distances
 - More important variables get higher weights
- Minkowski distance
- The maximum distance amongst all attributes
- Correlation between rows

Stopping/Convergence Criterion

- 1. No (or minimum) re-assignments of data points to different clusters,
- 2. No (or minimum) change of centroids, or
- Minimum decrease in the sum of squared error (SSE),

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} dist(\mathbf{x}, \mathbf{m}_j)^2$$

 C_i is the jth cluster, \mathbf{m}_i is the centroid of cluster C_i

Stability Check of the Clusters

- To check the stability of the clusters take a random sample of 95% of records.
- Compute the clusters.
- If the clusters formed are very similar to the original, then the clusters are fine.