Math 401: Homework 4

Tim Farkas

Sep 2021

Problem 1

Suppose A and B are nonempty sets of negative numbers.

a)

Prove that $\sup(A \cup B)$ exists.

Proof: Because A and B both have an upper bound of 0, 0 is an upper bound of $A \cup B$. Furthermore, $A \cup B \neq \emptyset$, since $A \neq \emptyset$ and $B \neq \emptyset$. Therefore, $A \cup B$ is a nonempty subset of \mathbb{R} and is bounded above, so by the completeness axiom, $A \cup B$ has a supremum.

b)

Prove that $\sup(A) \leq \sup(A \cup B)$.

Proof. Suppose $\sup(A) > \sup(A \cup B)$. This implies that $\forall c \in C = (A \cup B), \exists a \in A \text{ such that } a > c$. This is because by definition of the supremum we have that for any number $\alpha' < \sup(A)$, there exists a number $a \in A$ such that $a > \alpha'$. Take $\sup(A \cup B) = \alpha'$ demonstrates the implication.

But we also have that $\forall a \in A, \exists c \in C$ such that c = a, a clear contradiction that a > c.

Therefore, $\sup(A) \not\geqslant \sup(A \cup B) \Leftrightarrow \sup(A) \leq \sup(A \cup B)$. \square

Problem 2

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Consider also the set

$$C = \left\{ \left(-\frac{1}{2} \right)^n \middle| n \in \mathbb{N} \right\}$$

Compute the following:

 \mathbf{a}

$$\inf((1,2)) = 1$$

b)

 $\inf(f((1,2))) = \inf((1,4)) = 1$, because f is monotonic increasing on the interval (1,2).

c)

 $\inf(C) = \inf([-1/2, 1/4]) = -1/2$, because the sequence defined by C alternates from negative to positive across increasing n, and decreases in absolute value. Hence C(1) = -1/2 is it's most extremely negative value, and C(2) = 1/4 is it's most extreme positive value, and the values of C(n) are therefore contained in the closed interval [-1/2, 1/4].

d)

inf $((f(C))) = \inf((0, f(-1/2)]) = \inf((0, 1/4]) = 0$, because f maps all values to the positive reals, and C(n) approaches but never equals zero as $n \to \infty$.

Problem 3

Consider two sequences a_1, a_2, \ldots and b_1, b_2, \ldots with restrictions

$$0 \le a_n \le 1$$
 and $0 \le b_n \le 1$

for all n. We can form two different sets by adding these:

$$C = \{a_n + b_n | n \in \mathbb{N}\}$$

and

$$D = \{a_m + b_n | m, n \in \mathbb{N}\}\$$

a)

Prove that $\sup(C) \leq \sup(D)$.

Proof: Suppose that $\sup(C) > \sup(D)$. This implies $\exists c \in C$ s.t. $\forall d \in D$ we have c > d. This is because by definition of the supremum we have that for any number $\alpha' < \sup(C)$, there exists a number $c \in C$ such that $c > \alpha'$. Take $\sup(D) = \alpha'$ demonstrates the implication. But we also have that $\forall c \in C, \exists d \in D$ s.t. c = d, a clear contradiction. This last statement is true because we have $\forall n \in \mathbb{N}, \exists m \in N \text{ s.t. } m = n, \text{ yielding } c = d$. \square

b)

Find an example of two sequences for which $\sup(C) \neq \sup(D)$.

An example is $a_n = 1 - 1/n$, which increases monotonically with range = [0, 1), and $g_n = 1/n$, which decreases monotonically with range = [0, 1].

 $C=\{1\}$ is a constant function of n, and hence has $\sup(C)=1$. D=(0,2), and hence has $\sup(D)=2$