Models of Perception: Predictive Coding

Alex Hess

Computational Psychiatry Course Zurich 06.09.2023

"Bayesian brain" hypothesis

Bayes' rule

x: state of the world

y: sensory data

m: model

"Bayesian brain" hypothesis

(Bayesian) Predictive Coding

what? (approximate) Bayesian inference

how? predictive coding

implementation? (predictive coding in the brain)

(Bayesian) Predictive Coding

Marr's levels of analysis

Marr 1982

computational

algorithmic

implementational

(approximate) Bayesian inference

predictive coding

(predictive coding in the brain)

Side note

predictive coding can serve different computational goals

approximate Bayesian inference can be realised by other representations

Aitchison & Lengyel 2017, Curr Op Neurobiol

PC in engineering and information theory

Redundancy reduction

(Barlow, 1961)

- Efficient way to transmit a signal s(n):
 - Model ⇒ prediction p(n) Residual error e(n)reconstruct signal s(n)
- Decorrelation

Adapted from O'Shaughnessy 1988, IEEE Potentials

Predictive Coding as neuroscientific theory

Intellectual antecedents

$s(n) \xrightarrow{p(n)} e(n)$ $\downarrow \\ model$

Neuroanatomy

Felleman & Van Essen 1991, Cereb Cortex

Redundancy reduction

Cerebral Cortex

Budday et al. 2014, Sci Rep

Barrett 2017

Cell layers of the neocortex

Area B

Visual cortex of macaque monkeys

Felleman & Van Essen 1991, Cereb Cortex

- Reciprocity of cortico-cortical connections
- Laminar patterns
 - Forward connections (ascending pathways):
 - Origin: superficial pyramidal cells (layers II & III)
 - Termination: granular layer (IV)
 - Backward connections (descending pathways):
 - Origin: deep pyramidal cells (layer V)
 - Termination: agranular layers (mainly I & VI)

Hierarchical Relationships in the Visual Cortex

Visual cortex of macaque monkeys

Felleman & Van Essen 1991, Cereb Cortex

- Reciprocity of cortico-cortical connections
- Laminar patterns
 - Forward connections (ascending pathways):
 - Origin: superficial pyramidal cells (layers II & III)
 - Termination: granular layer (IV)
 - Backward connections (descending pathways):
 - Origin: deep pyramidal cells (layer V)
 - Termination: agranular layers (mainly I & VI)
- Identify hierarchy based on laminar patterns of cortical connectivity (forward & backward connections)
- Hierarchical relationships also...
 - In other regions (somatosensory, auditory cortex, etc.)
 - In other species (other primates, cats, rats, etc.)

Felleman & Van Essen 1991, Cereb Cortex

Predictive Coding as neuroscientific theory

Intellectual antecedents

$s(n) \xrightarrow{p(n)} e(n)$ $\downarrow \\ model$

Neuroanatomy

Felleman & Van Essen 1991, Cereb Cortex

Redundancy reduction

- Hierarchical organization of cortex
- Laminar patterns of connectivity

Hierarchical PC model

Rao & Ballard 1999, Nat Neurosci

On the computational architecture of the neocortex

D. Mumford 1992, Biol Cybern

- Hierarchical network
 - Feedback connections: predictions
 - Feedforward connections: error signal
 - Predictive estimator: use error signal to generate next prediction

$$I = f(Ur) + n$$
 $\mathbf{r} = r^{td} + n^{td}$
= $f(U^h r^h) + n^{td}$

I: inputs

 U^h : higher-level weights

 $m{r}$: causes

 $m{r}^h$: higher-level causes

U: weights

 $oldsymbol{n}^{td}$: noise

f : activation function

n: noise

- Hierarchical network
 - Feedback connections: predictions
 - Feedforward connections: error signal
 - Predictive estimator: use error signal to generate next prediction
- Train network on patches of static natural images
 - Learned synaptic weights resemble cell-like receptive fields
 - Receptive field sizes: lower vs. upper levels

- Hierarchical network
 - Feedback connections: predictions
 - Feedforward connections: error signal
 - Predictive estimator: use error signal to generate next prediction
- Train network on patches of static natural images
 - Learned synaptic weights resemble cell-like receptive fields
 - Receptive field sizes: lower vs. upper levels
- Functional explanation for extra-classical receptive field effects:
 - Endstopping: error-detecting model neurons

Rao & Ballard 1999, Nat Neurosci

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)

$$\frac{1}{\sigma^2} (\boldsymbol{I} - f(U\boldsymbol{r}))^T (\boldsymbol{I} - f(U\boldsymbol{r})) + \frac{1}{\sigma_{td}^2} (\boldsymbol{r} - \boldsymbol{r}^{td})^T (\boldsymbol{r} - \boldsymbol{r}^{td})$$

$$E = -\log p(\boldsymbol{I}|\boldsymbol{r}, U) - \log p(\boldsymbol{r}) - \log p(U)$$

$$= -\log(p(\boldsymbol{I}|\boldsymbol{r}, U) p(\boldsymbol{r}) p(U))$$
posterior \propto likelihood * prior

 $p(x|y,m) \propto p(y|x,m)p(x|m)$

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)
- Network dynamics & synaptic learning rules
 - Error signal weighted by inverse variances (precisions)
 - Single cost function accounts for inference (updating r) & learning (updating U)

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = -\frac{k_1}{2} \frac{\partial E}{\partial \boldsymbol{r}}$$

$$= \frac{k_1}{\sigma^2} U^T \frac{\partial f}{\partial U \boldsymbol{r}}^T \left(\boldsymbol{I} - f(U \boldsymbol{r}) \right) + \frac{k_1}{\sigma_{td}^2} (\boldsymbol{r}^{td} - \boldsymbol{r}) - k_1 \alpha \boldsymbol{r}$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\frac{k_2}{2} \frac{\partial E}{\partial U} = \frac{k_2}{\sigma^2} \frac{\partial f}{\partial U r}^T \left(\mathbf{I} - f(U r) \right) r^T - \frac{k_2}{2} \lambda U$$

$$I = f(Ur) + n \qquad \qquad \mathbf{r} = r^{td} + n^{td}$$

I: inputs

 $m{r}$: causes

U: weights

f : activation function

n: noise

- Assume probabilistic hierarchical generative model for images
 - Cost function: negative log joint (⇒ MAP estimation)
- Network dynamics & synaptic learning rules
 - Error signal weighted by inverse variances (precisions)
 - Single cost function accounts for inference (updating r) & learning (updating U)
 - Separation of timescales

$$\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = -\frac{k_1}{2} \frac{\partial E}{\partial \boldsymbol{r}}$$

$$= \frac{k_1}{\sigma^2} U^T \frac{\partial f}{\partial U \boldsymbol{r}}^T \left(\boldsymbol{I} - f(U \boldsymbol{r}) \right) + \frac{k_1}{\sigma_{td}^2} (\boldsymbol{r}^{td} - \boldsymbol{r}) - k_1 \alpha \boldsymbol{r}$$

$$\frac{\mathrm{d}U}{\mathrm{d}t} = -\frac{k_2}{2} \frac{\partial E}{\partial U} = \frac{k_2}{\sigma^2} \frac{\partial f}{\partial U r}^T \left(I - f(U r) \right) r^T - \frac{k_2}{2} \lambda U$$

$$I = f(Ur) + n \qquad \qquad r = r^{td} + n^{td}$$

I: inputs

 $m{r}$: causes

U: weights

f : activation function

n: noise

Predictive Coding as neuroscientific theory

Intellectual antecedents

$s(n) \xrightarrow{p(n)} e(n)$ $\downarrow \\ model$

CALLANTERINE

Redundancy reduction

Hierarchical organization of cortex

Felleman & Van Essen 1991, Cereb Cortex

Laminar patterns of connectivity

Neuroanatomy Hierarchical PC model

Rao & Ballard 1999, Nat Neurosci

- Visual cortex
- Point estimate of posterior
- Static representations

rchical PC model PC as variational inference

Friston 2003, 2005, 2008

On the computational architecture of the neocortex

D. Mumford 1992, Biol Cybern

Recap: Methods for Bayesian inference

Generative Models: Lecture (*Tue*)

Recap: Variational inference

VB & MCMC: Lecture (Tue)

posterior
$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)}$$
model evidence

$$p(y|m) = \int p(y|x,m)p(x|m)dx$$

Approximate posterior $q(x|y;\phi)$

e.g. for q Gaussian, $\phi = \{\mu, \Sigma\}$

Find best proxy

$$q^*(x|y;\phi) = argmin_{\phi} D_{KL}[q(x|y;\phi)||p(x|y,m)]$$

Figure adapted from slide by Yu Yao

Recap: Variational inference

VB & MCMC: Lecture (Tue)

posterior
$$p(x|y,m) = \frac{p(y|x,m)p(x|m)}{p(y|m)}$$
model evidence

$$\frac{p(y|m)}{p(y|m)} = \int p(y|x,m)p(x|m)dx$$

Approximate posterior $q(x|y;\phi)$ e.g. for q Gaussian, $\phi = \{\mu, \Sigma\}$

Find best proxy

$$q^*(x|y;\phi) = argmin_{\phi} D_{KL}[q(x|y;\phi)||p(x|y,m)]$$

Figure adapted from slide by Yu Yao

$$D_{KL}[q(x|y;\phi)||p(x|y,m)] = \ln \frac{p(y|m)}{p(y|m)} - \int q(x|y;\phi) \frac{p(x,y|m)}{q(x|y;\phi)} dx$$
$$= \ln \frac{p(y|m)}{p(y|m)} - F$$

$$\ln \frac{p(y|m)}{p(y|m)} = D_{KL}[q(x|y;\phi)||p(x|y,m)] + F(q(x|y;\phi),p(x,y|m))$$

Stephan et al. 2017 NeuroImage

Predictive coding as variational inference

The free energy formulation of predictive coding

Friston 2003, 2005, 2008

- Minimal neuronal model
 - PE units (SG layers)
 - Prediction units (IG layers)
 - ⇒ canonical microcircuit model Bastos et al. 2012, Neuron
- Model dynamics
 - Differential equations
 - Gradient descent on free energy F
- Importance of precision
- Extension to ...
 - Temporal sequences (dynamic environment) \Rightarrow minimize free action \overline{F}
 - Action (active inference) Friston et al. 2010, Biol Cybern; Adams et al. 2013, Brain Struct Funct

at each level of the hierarchy

Active Inference: Lecture (*Today*)

Friston 2008, PLoS Comput Biol

$$F = \int q(x|y;\phi) \frac{p(x,y|m)}{q(x|y;\phi)} dx$$

$$\bar{F} = \int F_t dt$$

Predictive Coding as neuroscientific theory

Non-Bayesian

Intellectual antecedents

Redundancy reduction

Neuroanatomy

Felleman & Van Essen 1991, Cereb Cortex

- Hierarchical organization of cortex
- Laminar patterns of connectivity

On the computational architecture of the neocortex

D. Mumford 1992, Biol Cybern

PC as approximate Bayesian inference

Hierarchical PC model

Rao & Ballard 1999, Nat Neurosci

- Visual cortex
- Point estimate of posterior
- Static representations

PC as variational inference

Friston 2003, 2005, 2008

- Cortical function
- Estimate full posterior
- Dynamic representations

Predictive coding in computational psychiatry

Predictive coding in computational psychiatry

The role of precision

- Finding the right balance
- Disorders of precision?

From exteroception ...

Schizophrenia: Lecture (*Mon*)

Schizophrenia/Psychosis

(Stephan et al. 2006, *Biol Psychiatry*; Corlett et al. 2011, *NPP*; Adams et al. 2013, *Front Psychiatry*; Friston et al. 2016, *Schizophr Res*; Sterzer et al. 2018, *Biol Psychiatry*)

Autism: Lecture (*Mon*)

Autism Spectrum Disorder

(Pellicano & Burr 2012, *TiCS*; Van de Cruys et al. 2014, *Psychol Rev*; Lawson et al. 2014, *Front Hum Neurosci*; Haker et al. 2016, *Front Psychiatry*; Lawson et al. 2017, *Nat Neurosci*)

Figure based on slide by Klaas Enno Stephan

Predictive coding in computational psychiatry

The role of precision

- Finding the right balance
- Disorders of precision?

Schizophrenia: Lecture (*Mon*)

Schizophrenia/Psychosis

(Stephan et al. 2006, *Biol Psychiatry*; Corlett et al. 2011, *NPP*; Adams et al. 2013, *Front Psychiatry*; Friston et al. 2016, *Schizophr Res*; Sterzer et al. 2018, *Biol Psychiatry*)

Autism: Lecture (*Mon*)

Autism Spectrum Disorder

(Pellicano & Burr 2012, *TiCS*; Van de Cruys et al. 2014, *Psychol Rev*; Lawson et al. 2014, *Front Hum Neurosci*; Haker et al. 2016, *Front Psychiatry*; Lawson et al. 2017, *Nat Neurosci*)

From exteroception to interoception

- Interoceptive predictive coding
 Seth et al. 2012, Front Psychol; Seth 2013, TiCS; Barrett & Simmons 2015, Nature Rev Neurosci
- Crucial role in mental health disorders
- Fatigue & depression Stephan et al. 2016, Front Hum Neurosci

Fatigue: Lecture (*Mon*)

Figure based on slide by Klaas Enno Stephan

Hierarchical Bayesian Inference in Computational Psychiatry

Petzschner et al. 2017, Biol Psychiatry

Framework for modelling adaptive behaviour

- Possible primary disruption at:
 - Sensory inputs (sensations)
 - Inference (perception)
 - Forecasting
 - Control (action)
 - Metacognition
- At any of the above, possible disturbance of:
 - predictions
 - prediction error computation
 - Estimation of precision

⇒ guide differential diagnosis

Petzschner et al. 2017, Biol Psychiatry

Hierarchical Bayesian Inference in Computational Psychiatry

Petzschner et al. 2017, Biol Psychiatry

Example: Autism Spectrum Disorder

- Patients: excessive processing of irrelevant details
- 2 competing explanations
 - Sensory inputs of overwhelming precision
 - Too imprecise higher-order beliefs
 - ⇒ large PEs during perception
- Disambiguate 2 hypotheses:
 - Assess individual sensory processing (experiment + model)
 - Detect (sub)groups

Petzschner et al. 2017, Biol Psychiatry

Predictive coding in a nutshell

- Possible way of implementing Hierarchical Bayesian inference in the brain
- Based on
 - Redundancy reduction
 - Hierarchical organization of cortex
- Computational quantities:
 - Each layer makes predictions about activity in layer immediately below
 - Predictions are compared with inputs of each layer
 - Prediction errors (PE) signalled upwards
 - Relative influence of PEs and predictions is determined by their relative precision (certainty)
- Goal of the brain:
 - minimize PE at each level of the hierarchy
- Utility of this framework for Computational Psychiatry & Computational Psychosomatics

Further reading

REVIEWS

Theoretical & experimental review Millidge et al. 2021, arXiv:2107.12979

Experimental evidence for PC in the brain Walsh et al. 2020, Ann N Y Acad Sci

PC algorithms Spratling et al. 2017, Brain Cogn

TUTORIALS

PC as variational inference Bogacz 2017, J Math Psychol; Buckley 2017, J Math Psychol

OTHER

PC & laminar fMRI Stephan et al. 2019, NeuroImage

PC networks and backpropagation of error algorithm Whittington & Bogacz 2017, Neural Comput; Song et al. 2020, Adv Neural Inf Process Syst

PC, variational autoencoders & normalizing flows Marino 2020, arXiv:2011.07464

Thank you!

Lilian Weber
Matthias Müller-Schrader
Stefan Frässle
Sandra Iglesias
Klaas Enno Stephan

Alex Hess

Translational Neuromodeling Unit University of Zurich & ETH Zurich E-Mail: <u>hess@biomed.ee.ethz.ch</u>

