Paths of analysis*

Synthia

October 11, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Tunnels, FGI, FGI with protections

Max. paths returned: 50

Max. iterations: 2000

Commercial:

- 1. Max. molecular weight 1000 g/mol
- 2. Max. price 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

1 path found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 186.11

Figure 1: Outline of path 1

2.1.1 Iodination Of Alkynes

Substrates:

1. 2-bromoethyl 2-propynoate

Products:

1. $O=C(OCCBr)/C(I)=C\setminus I$

Typical conditions: I2.ACN

Protections: none

Reference: 10.1002/chem.201102570 AND 10.1055/s-2007-966043 AND 10.1021/ol800845r

Retrosynthesis ID: 8998

2.1.2 Wittig-Schlosser olefination

Substrates:

1. 2-Butenal - available at Sigma-Aldrich

2. $O=C(OCCBr)/C(I)=C\setminus I$

Products:

1. $C/C=C/C=C/COC(=O)/C(I)=C\setminus I$

Typical conditions: 1.PPh3 or trialkylphosphite.2.base.aldehyde.3.base

Protections: none

Reference: 10.1021/ol049701h and 10.1021/ja00535a063 and Kurti and Czako; Strategic Applications of Named Reactions in Organic Synthesis. 1st edn., 488-489.

Retrosynthesis ID: 9546

2.1.3 Reformatsky Reaction

Substrates:

1. Ethanal - available at Sigma-Aldrich

$$2. \ C/C{=}C/C{=}C/COC({=}O)/C(I){=}C\backslash I$$

Products:

1.
$$C/C=C/C=C/COC(=O)/C(=C\setminus I)C(C)O$$

Typical conditions: Zn.THF

Protections: none

Reference: 10.1016/j.bmc.2016.07.052 p. 4521, 4520 and

10.1016/j.ejmech.2013.07.047 p. 214, 218

Retrosynthesis ID: 11539

2.1.4 Swern Oxidation

Substrates:

1.
$$C/C=C/C=C/COC(=O)/C(=C\setminus I)C(C)O$$

Products:

1.
$$C/C=C/C=C/COC(=O)/C(=C\setminus I)C(C)=O$$

Typical conditions: oxalyl chloride.DMSO.DCM.NMe3.-40C

Protections: none

Reference: 10.1055/s-1990-27036

Retrosynthesis ID: 11163

2.1.5 Stille Carbonylative Cross-Coupling

Substrates:

1. $C/C=C/C=C/COC(=O)/C(=C\setminus I)C(C)=O$

2. Tributyl(4-methoxyphenyl)stannane - available at Sigma-Aldrich

3. CORM-2 - available at Sigma-Aldrich

Products:

 $1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$

Typical conditions: Pd(0) complex

Protections: none

Reference: DOI: 10.1002/anie.198605081

Retrosynthesis ID: 245571

2.1.6 Diels-Alder

Substrates:

$$1. \ C/C = C/C = C/COC(=O)/C(=C \setminus C(=O)c1ccc(OC)cc1)C(C) = O$$

Products:

 $1. \ \ COc1ccc(C(=O)[C@@H]2[C@H](C)C=C[C@@H]3COC(=O)[C@@]32C(C)=O)cc1$

Typical conditions: Lewis acid or chiral Lewis acid. Solvent.

Protections: none

Reference: DOI: 10.1002/1521-3773(20020517)41:10<1668::AID-

ANIE1668 > 3.0.CO; 2-Z AND 10.1021/ja062508t

Retrosynthesis ID: 18116