Задача S05. Да се докаже, че за всеки n на брой множества A_1,A_2,\ldots,A_n е изпълнено, че $\mathscr{P}\left(\bigcap_{i=1}^\infty A_i\right)=\bigcap_{i=1}^\infty \mathscr{P}\left(A_i\right).$

Доказателство:

$$(\subseteq)$$
 Нека $X\in\mathscr{P}\left(\bigcap_{i=1}^\infty A_i\right)$. Тогава $X\subseteq\bigcap_{i=1}^\infty A_i\Leftrightarrow \forall i,\,x\in A_i$, където $x\in X$, тоест $\bigcap_{i=1}^\infty A_i\subseteq A_k$ за всяко k . Но за всяко $k\in\mathbb{N}$: $\bigcap_{i=1}^\infty A_i\subseteq A_k$, откъдето $X\in A_k$ за всяко $k\in\mathbb{N}$. Следователно $\forall k\in\mathbb{N}: x\in\mathscr{P}(A_k)$.

$$(\ \supseteq\) \ \operatorname{Heka}\ Y \in \bigcap_{i=1}^\infty \mathscr{P}\left(A_i\right) \Rightarrow Y \in \mathscr{P}\left(A_1\right) \wedge Y \in \mathscr{P}(A_2) \wedge \dots \ \text{ за всяко}\ i \in \mathbb{N} \ \text{и}\ Y \in \mathscr{P}(A_i).$$

 Тоест $Y \subseteq A_i$. Ще докажем, че $Y \subseteq \bigcap_{i=1}^\infty A_i$. Нека $y \in Y$, но за всяко $i \in \mathbb{N}:\ Y \subseteq A_i \Rightarrow y \in A_i \Rightarrow y \in \bigcap_{i=1}^\infty A_i \Rightarrow y \subseteq \mathscr{P}\left(\bigcap_{i=1}^\infty A_i\right).$

github.com/andy489