AXIOM **2.1.1** [PRINCIPLE OF MATHMATICAL INDUCTION]. If a set $S \subseteq \mathbb{N}$ is such that the following two conditions hold,

- 1. $1 \in S$.
- 2. For each $k \in \mathbb{N}$, if $k \in S$, then $k + 1 \in S$.

then $S = \mathbb{N}$.

AXIOM **2.2.3** [LEAST UPPER BOUND PROPERTY]. A nonempty subset $S \subset \mathbb{R}$ that is bounded above always has a least upper bound.

Theorem **2.2.5** [Greatest Lower Bound Property]. A nonempty subset $S \subset \mathbb{R}$ that is bounded below always has a greatest lower bound.

THEOREM **2.2.6** [ARCHIMEDEAN PROPERTY]. The set $\mathbb{N} \subset \mathbb{R}$ has no upper bound in \mathbb{R} . That is, \mathbb{N} is not bounded above.

COROLLARY 2.2.7 [ARCHIMEDEAN PROPERTY]. For every $\epsilon > 0$, then there exists an $n \in \mathbb{N}$ satisfying $0 < \frac{1}{n} < \epsilon$.

COROLLARY **2.2.9** [DENSITY OF RATIONALS AND IRRATIONALS]. For every a, $b \in \mathbb{R}$ with a < b, there exists $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$ satisfying a < r < b and a < s < b.

Absolute Value 1. [Positive Definiteness:] $|x| \ge 0$, with |x| = 0 if and only if x = 0,

- 2. [Positive Homogeneity:] |xy| = |x||y|, and
- 3. [Triangle Inequality:] $|x + y| \le |x| + |y|$.

Idenity

- 1. $|x a| < \delta$ if and only if $x \in (a \delta, a + \delta)$.
- 2. $0 < |x a| < \delta$ if and only if $x \in (a \delta, a + \delta) \setminus \{a\}$,
- 3. $|x a| \le \delta$ if and only if $x \in [a \delta, a + \delta]$.

Theorem 2.3.4 [Triangle Inequality]. For all x, y, $z \in R$, $|x - y| \le |x - z| + |z - y|$.

Corollary 2.3.5 [Triangle Inequality II]. For all $x, y \in R$, $|x + y| \le |x| + |y|$.

Corollary 2.3.6 [Triangle Inequality III]. For all $x, y \in R$, $||x| - |y|| \le |x - y|$.

THEOREM 3.1.4. Suppose that $\lim_{n\to\infty} a_n = L$ and that $\lim_{n\to\infty} a_n = M$. Then L = M.

Theorem 3.1.5. Every convergent sequence is bounded

Theorem 3.2.2 [Monotone Convergence Theorem]. If a sequence {an} is monotonic and bounded, then it converges.

Corollary 3.2.3. A monotonic sequence converges if and only if it is bounded

THEOREM 3.3.2 [GEOMETRIC SERIES TEST]. A geometric series $\sum_{n=0}^{\infty} r^n$ converges if and only if |r| < 1.

Theorem 3.3.3. Assume that $a1 \le a2 \le a3 \le \cdots$ and $0 \le b1 \le b2 \le b3 \le \cdots$; that is, assume that $\{an\}$ and $\{bn\}$ are non-decreasing sequences. Assume also that $an \le bn$ for each $n \in \mathbb{N}$. Then $\{an\}$ converges if $\{bn\}$ converges.

Theorem 3.4.2. Suppose that {an} converges to L. Let {ank } be a subsequence of {an}. Then {ank } converges to L.

Lemma 3.4.5 [Peak Point Lemma]. Every sequence has a monotone subsequence.

Theorem 3.4.6 [Bolzano-Weierstrass Theorem]. Every bounded sequence has a convergent subsequence

THEOREM **3.5.2.** Assume that $\{a_n\}$ and $\{b_n\}$ are sequences with $b_n \neq 0$ for all $n \in \mathbb{N}$. Suppose $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and equals L. Also suppose that $\lim_{n \to \infty} b_n$ exists and equals 0. Then $\lim_{n \to \infty} a_n$ exists and equals 0.

THEOREM 3.6.1 [SQUEEZE THEOREM]. Assume that $a_n \leq b_n \leq c_n$, and

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n.$$

Then $\{b_n\}$ converges and $\lim_{n\to\infty} b_n = L$.

Theorem 3.7.2. Any convergent sequence {an} is Cauchy.

Lemma 3.7.3. If {an} is Cauchy, then {an} is bounded

LEMMA 3.7.4. If $\{a_n\}$ is Cauchy, and if $\{a_{n_k}\}$ is a subsequence of $\{a_n\}$ with $\lim_{k\to\infty} a_{n_k} = L$, then $\{a_n\}$ converges and $\lim_{n\to\infty} a_n = L$.

Theorem 3.7.5 [Completeness Theorem]. If a sequence {an} is Cauchy, then {an} converges.

THEOREM 4.1.2. Assume that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} f(x) = M$. Then L = M.

THEOREM **4.1.6** [SEQUENTIAL CHARACTERIZATION OF LIMITS]. Suppose that $f: S \to \mathbb{R}$, where $S \subseteq \mathbb{R}$. Also suppose that $a \in \mathbb{R}$ is such that there exists an open interval I containing a with $I \setminus \{a\} \subset S$. Then the following are equivalent.

- 1. $\lim_{x\to a} f(x)$ exists and is equal to L.
- 2. Every sequence $\{x_n\} \subset S$ such that $x_n \neq a$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = a$ has the property that $\{f(x_n)\}$ is a sequence that converges to L.

Partial Fraction Expansion of $\sqrt{2}$.

Let
$$a_1 = 1$$
 and $a_{n+1} = 1 + \frac{1}{1+a_n}$.

Herron's Method for Calculating Square Roots.

Let
$$a > 0$$
. Let $a_1 = 1$ and $a_{n+1} = \frac{1}{2}(a_n + \frac{a}{a_n})$ for all $n \in \mathbb{N}$.

Decimal Expansion

defined $a_1, a_2, ..., a_n$ and $s_1, s_2, ..., s_n$, then we define $a_{n+1} = \max\{k \in \{0, 1, 2, ..., 9\} \mid \frac{k}{10^{n+1}} \le \alpha - s_n\}$ and

$$s_{n+1} = \sum_{i=1}^{n+1} \frac{a_i}{10^i}$$

Golden Ratio

$$a_n = \frac{F(n+1)}{F(n)}$$
 l

Compact sequence

A subset K of \mathbb{R} is called *compact* if every sequence $\{x_n\}$ in K has a subsequence $\{x_{n_k}\}$ that converges to some $x_0 \in K$. Show that K is

Nested Interval

Theorem:

Let $\{[a_n, b_n]\}$ be a sequence of closed intervals such that $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n]$. Prove that $\bigcap [a_n, b_n] \neq \emptyset$.