"Statistical Color Models with Application to Skin Detection"

M. J. Jones and J. M. Rehg

Int. J. of Computer Vision, 46(1):81-96, Jan 2002

presented by Robert Collins

Robert Collins CSE586

Goal: Label Skin Pixels in an Image

Applications:

Person finding/tracking
Gesture recognition
Flag possible adult content

General Overview

- Learn distributions of skin and nonskin color
- Histograms; Gaussian Mixture Models (GMMs)
- Bayesian classification of skin pixels
- Combining with text-based classification

Approach: Learning from Examples

First, have some poor grad student hand label thousands of images

P(rgb | skin) = number of times rgb seen for a skin pixel total number of skin pixels seen

 $P(rgb \mid not \ skin) = \underbrace{number \ of \ times \ rgb \ seen \ for \ a \ non-skin \ pixel}_{total \ number \ of \ non-skin \ pixels \ seen}$

These statistics stored in two 32x32x32 RGB histograms

Skin histogram

Non-Skin histogram

Likelihood Ratio Classifier

Label a pixel skin if
$$\frac{P(rgb \mid skin)}{P(rgb \mid not skin)} > \Theta$$

$$\Theta = \frac{\text{(cost of false positive) P(seeing not skin)}}{\text{(cost of false negative) P(seeing skin)}}$$

$$0 \le \Theta \le 1$$

Sample Pixel Classifications

 $\Theta = .4$

Gaussian Mixture Model

A compact description is provided by converting the histogram-based model into a Gaussian Mixture model.

$$P(\mathbf{x}) = \sum_{i=1}^{N} w_i \frac{1}{(2\pi)^{\frac{3}{2}} |\Sigma_i|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \mu_i)^T \Sigma_i^{-1}(\mathbf{x} - \mu_i)},$$

Mixture of Gaussians Skin Color Model

Mixture of Gaussians Non-skin Color Model

(a) Contour plot for skin model.

(b) Contour plot for non-skin model.

Jones and Rehg Mixture Model

Mixture of Gaussian Skin Color Model

Kernel	Mean	Covariance	Weight
1	(73.53, 29.94, 17.76)	(765.40, 121.44, 112.80)	0.0294
2	(249.71, 233.94, 217.49)	(39.94, 154.44, 396.05)	0.0331
3	(161.68, 116.25, 96.95)	(291.03, 60.48, 162.85)	0.0654
4	(186.07, 136.62, 114.40)	(274.95, 64.60, 198.27)	0.0756
5	(189.26, 98.37, 51.18)	(633.18, 222.40, 250.69)	0.0554
6	(247.00, 152.20, 90.84)	(65.23, 691.53, 609.92)	0.0314
7	(150.10, 72.66, 37.76)	(408.63, 200.77, 257.57)	0.0454
8	(206.85, 171.09, 156.34)	(530.08, 155.08, 572.79)	0.0469
9	(212.78, 152.82, 120.04)	(160.57, 84.52, 243.90)	0.0956
10	(234.87, 175.43, 138.94)	(163.80, 121.57, 279.22)	0.0763
11	(151.19, 97.74, 74.59)	(425.40, 73.56, 175.11)	0.1100
12	(120.52, 77.55, 59.82)	(330.45, 70.34, 151.82)	0.0676
13	(192.20, 119.62, 82.32)	(152.76, 92.14, 259.15)	0.0755
14	(214.29, 136.08, 87.24)	(204.90, 140.17, 270.19)	0.0500
15	(99.57, 54.33, 38.06)	(448.13, 90.18, 151.29)	0.0667
16	(238.88, 203.08, 176.91)	(178.38, 156.27, 404.99)	0.0749

Jones and Rehg Mixture Model

Mixture of Gaussian Non-skin Color Model

Kernel	Mean	Covariance	Weight
1	(254.37, 254.41, 253.82)	(2.77, 2.81, 5.46)	0.0637
2	(9.39, 8.09, 8.52)	(46.84, 33.59, 32.48)	0.0516
3	(96.57, 96.95, 91.53)	(280.69, 156.79, 436.58)	0.0864
4	(160.44, 162.49, 159.06)	(355.98, 115.89, 591.24)	0.0636
5	(74.98, 63.23, 46.33)	(414.84, 245.95, 361.27)	0.0747
6	(121.83, 60.88, 18.31)	(2502.24, 1383.53, 237.18)	0.0365
7	(202.18, 154.88, 91.04)	(957.42, 1766.94, 1582.52)	0.0349
8	(193.06, 201.93, 206.55)	(562.88, 190.23, 447.28)	0.0649
9	(51.88, 57.14, 61.55)	(344.11, 191.77, 433.40)	0.0656
10	(30.88, 26.84, 25.32)	(222.07, 118.65, 182.41)	0.1189
11	(44.97, 85.96, 131.95)	(651.32, 840.52, 963.67)	0.0362
12	(236.02, 236.27, 230.70)	(225.03, 117.29, 331.95)	0.0849
13	(207.86, 191.20, 164.12)	(494.04, 237.69, 533.52)	0.0368
14	(99.83, 148.11, 188.17)	(955.88, 654.95, 916.70)	0.0389
15	(135.06, 131.92, 123.10)	(350.35, 130.30, 388.43)	0.0943
16	(135.96, 103.89, 66.88)	(806.44, 642.20, 350.36)	0.0477

Sample Use: Adult Image Classification

Based on Five Features:

- Percentage of pixels detected as skin.
- Average probability of the skin pixels.
- Size in pixels of the largest connected component of skin.
- Number of connected components of skin.
- Percentage of colors with no entries in the skin and non-skin histograms

Adult Image Classification

Combining Color and Text

	% correctly detected adult images	% false alarms
Color-based Detector	85.8%	7.5%
Text-based Detector	84.9%	1.1%
Combined Detector	93.9%	8.0%

Lessons Learned

- Harness the web as a source of data!
- With enough data, even simple learning methods based on counting can produce good classification results
- Likelihood ratio is important model both the object AND not-object distributions to avoid thresholds on raw probabilities.
- EM and GMM models used to encode compact descriptions of color histograms.

Questions

I wonder how k-nearest-neighbor classification would work?