CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 20, 2024

Lecture 10 – Basic structures: Countable and Uncountable sets

Logistics

Quiz 1

- ► VENUE: LH 101, 102, 301, 302
- ▶ Date and time: Aug 28th, 8.25am

).

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- ▶ A set is **countable** if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary (\exists surj from any infinite set to \mathbb{N}) Countably infinite sets are the "smallest" infinite sets.

Countable and countably infinite sets

Definition

- For a given set C, if there is a bijection from C to \mathbb{N} , then C is called countably infinite.
- ▶ A set is **countable** if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary $(\exists \text{ surj from any infinite set to } \mathbb{N})$

Countably infinite sets are the "smallest" infinite sets.

What are the other properties of countable sets?

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- \triangleright the set of all integers \mathbb{Z}
- $ightharpoonup \mathbb{N} \times \mathbb{N}$
- \triangleright $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- \triangleright the set of all integers \mathbb{Z}
- $ightharpoonup \mathbb{N} \times \mathbb{N}$
- ightharpoonup $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

To show these it suffices to show that

 \triangleright there is an injection from these sets to $\mathbb N$

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- \triangleright the set of all integers \mathbb{Z}
- $ightharpoonup \mathbb{N} \times \mathbb{N}$
- ightharpoonup $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

To show these it suffices to show that

- \triangleright there is an injection from these sets to $\mathbb N$
- \triangleright or there is a surjection from \mathbb{N} (or any countable set) to these sets.

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, ...\}$ is a countably infinite set Can we say $\{a_0, ..., b_0, ...\}$ is a countably infinite set?

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?

▶ But then what is the position of b_i (i.e., natural number corresponding to it)?

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?

- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i + 1)^{th}$ position.

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?

- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i + 1)^{th}$ position.
- ▶ Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?

- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i + 1)^{th}$ position.
- ▶ Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$
- ► Is this correct?

Theorem: The cartesian product of two countably infinite sets is countably infinite

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

 \triangleright N × N, N × N × N, N × Z × N are countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- \triangleright N × N, N × N × N, N × Z × N are countable.
- ► The set of (positive) rationals is countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- \triangleright N × N, N × N × N, N × Z × N are countable.
- ▶ The set of (positive) rationals is countable.

Hint: Show that $f(a,b) = \begin{cases} a/b \text{ if } b \neq 0 \\ 0 \text{ if } b = 0 \end{cases}$, is a surjection. How does the result follow?

Exercises

1. Show that set of primes P is countable.

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

1. Show that set of primes P is countable.

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

- 1. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1.1 In Lecture 1, we showed that set of primes is infinite.

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

- 1. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1.1 In Lecture 1, we showed that set of primes is infinite.
 - 1.2 So there is surjection from P to \mathbb{N} .

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

- 1. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1.1 In Lecture 1, we showed that set of primes is infinite.
 - 1.2 So there is surjection from P to \mathbb{N} .
 - 1.3 Now, $P \subseteq \mathbb{N}$. $Id: P \to \mathbb{N}$ is an injection.

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

- 1. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1.1 In Lecture 1, we showed that set of primes is infinite.
 - 1.2 So there is surjection from P to \mathbb{N} .
 - 1.3 Now, $P \subseteq \mathbb{N}$. $Id : P \to \mathbb{N}$ is an injection.
 - 1.4 Id^{-1} is a surjection from \mathbb{N} to P (by HW exercise!).

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

- 1. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1.1 In Lecture 1, we showed that set of primes is infinite.
 - 1.2 So there is surjection from P to \mathbb{N} .
 - 1.3 Now, $P \subseteq \mathbb{N}$. $Id : P \to \mathbb{N}$ is an injection.
 - 1.4 Id^{-1} is a surjection from \mathbb{N} to P (by HW exercise!).
 - 1.5 Conclude by Schroder-Bernstein Theorem. (If there a surjection between A and B and a surjection between B and A, then there is a bijection from A to B).

2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Exercises

- 1. Show that set of primes P is countable.
 - ▶ Proof 1
 - 1.1 In Lecture 1, we showed that set of primes is infinite.
 - 1.2 So there is surjection from P to \mathbb{N} .
 - 1.3 Now, $P \subseteq \mathbb{N}$. $Id : P \to \mathbb{N}$ is an injection.
 - 1.4 Id^{-1} is a surjection from \mathbb{N} to P (by HW exercise!).
 - 1.5 Conclude by Schroder-Bernstein Theorem. (If there a surjection between A and B and a surjection between B and A, then there is a bijection from A to B).
 - ▶ Proof 2 Show $f: P \to \mathbb{N}$ by f maps i^{th} prime to i is a bijection
- 2. Show that $((\mathbb{Z} \times \mathbb{N}) \cup (\mathbb{N} \times \mathbb{Q}) \cup \{\pi, \sqrt{2}\})$ is countable.

Countable sets and functions

Are the following sets countable?

- \triangleright the set of all integers \mathbb{Z}
- \triangleright $\mathbb{N} \times \mathbb{N}$
- ightharpoonup $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- ▶ Proving existence just needs one to exhibit a function
- ▶ But how do we prove non-existence?

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- ▶ Proving existence just needs one to exhibit a function
- ▶ But how do we prove non-existence? Try contradiction.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} . Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

			2	3	
f(0)	√×	×	×	×	
f(1) $f(2)$	\checkmark	* <		\checkmark	
f(2)	×	×	* 🗸	×	
f(3)	×	\checkmark	×	√×	

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} . Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	
f(0)	√×	×	×	×	
f(1)	\checkmark	* <	\checkmark	\checkmark	
f(2)	×	×	* 🗸	×	
$f(2) \\ f(3)$	×	\checkmark	×	$\checkmark \times$	

▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} . Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0	1	2	3	
f(0)	√×	×	×	×	
f(1)	✓ ×	* 🗸	\checkmark		
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

		1	2	3	
f(0)	√×	×	×	×	
f(1)	✓× ✓ × ×	* <	\checkmark	\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- \triangleright S and f(j) differ at position j, for any j.

Comparing \mathbb{N} and set of all subsets of \mathbb{N}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} . Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0		2	3	
f(0)	√×	×	×	×	
f(1)	✓× ✓ × ×	* 🗸		\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists i \in \mathbb{N}, f(i) = S$.
- \triangleright S and f(j) differ at position j, for any j.
- ▶ Thus, $S \neq f(j)$ for all $j \in \mathbb{N}$, which is a contradiction!

Does this proof look familiar??

Does this proof look familiar??

Figure: Cantor and Russell

Does this proof look familiar??

Figure: Cantor and Russell

▶ $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.

Does this proof look familiar??

Figure: Cantor and Russell

- ▶ $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.
- ▶ If $\exists j \in \mathbb{N}$ such that f(j) = S, then we have a contradiction.
 - ▶ If $j \in S$, then $j \notin f(j) = S$.
 - ▶ If $j \notin S$, then $j \notin f(j)$, which implies $j \in S$.

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...
- ▶ There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- ightharpoonup But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .
- ▶ Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- \triangleright But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .
- ▶ Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Can there be some set whose "size" is in between the two?

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- \triangleright But, there is a surjection from set of all subsets of \mathbb{N} to \mathbb{N} .
- ▶ Thus, the "size" of $\mathcal{P}(\mathbb{N})$ is strictly greater that \mathbb{N} !

Can there be some set whose "size" is in between the two?

Cantor's Continuum hypothesis

There is no set whose "cardinality" is strictly between \mathbb{N} and $\mathcal{P}(\mathbb{N})$ (i.e., between naturals and reals).

Figure: 1st of Hilbert's 23 problems for the 20th century in 1900.

What did the world think about these proofs (in 1890s?)

(a) Kronecker (b) Poincare

(c) Theologians

- ► Kronecker: Only constructive proofs are proofs! "Scientific Charlatan", "Corruptor of youth"!
- ▶ Poincare: Set theory is a "disease" from which mathematics will be cured.
- ► Christian Theologians: God=Uniqueness of an absolute infinity. So, what is all this different infinities...?!

What did the world think about these proofs (in 1890s?)

(a) Kronecker (b) Poincare

(c) Theologians

- ► Kronecker: Only constructive proofs are proofs! "Scientific Charlatan", "Corruptor of youth"!
- ▶ Poincare: Set theory is a "disease" from which mathematics will be cured.
- ► Christian Theologians: God=Uniqueness of an absolute infinity. So, what is all this different infinities...?!
- ► Hilbert: No one can expel us from the paradise that Cantor has created for us.

Summary and moving on...

- ▶ Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ▶ Countable, countably infinite and uncountable sets.
- ► Cantor's diagonalization argument (A new powerful proof technique!).

Summary and moving on...

- ► Finite and infinite sets.
- ▶ Using functions to compare sets: focus on bijections.
- ► Countable, countably infinite and uncountable sets.
- ➤ Cantor's diagonalization argument (A new powerful proof technique!).

Next: Basic Mathematical Structures – Relations