

703308 VO High-Performance Computing Energy in HPC

Philipp Gschwandtner

Overview

motivation / indications

- supercomputers
- Green500 & accelerators

basics

- power & energy
- instrumentation, measurement and modeling
- control mechanisms

consequences & applications

multi-objective optimization, workload co-scheduling, MPI slack optimization, etc.

Why is energy consumption relevant in HPC?

- ▶ Current No. 1 in Top500: El Capitan
 - > 30 MW of power
 - But how much is that?

- ▶ 78% Aurora supercomputer (No. 3 world-wide)
- ▶ 41% of Innsbruck
- 9x University of Innsbruck
- 4,5x University of Vienna

Power consumption projected to 1 exaflop

https://www.hpcwire.com/2021/07/15/15-years-later-the-green500-continues-its-push-for-energy-efficiency-as-a-first-order-concern-in-hpc/

TOP500 & Green500

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	11,039,616	1,742.00	2,746.38	29,581
2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE D0E/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00	2,055.72	24,607
3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
4	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
5	HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9, HPE Eni S.p.A. Italy	3,143,520	477.90	606.97	8,461

Rank	TOP500 Rank	System	Cores	Rmax (PFlop/ s)	Power (kW)	Energy Efficiency (GFlops/ watts)
1	222	JEDI - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, ParTec/ EVIDEN EuroHPC/FZJ Germany	19,584	4.50	67	72.733
2	122	ROMEO-2025 - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, Red Hat Enterprise Linux, EVIDEN ROMEO HPC Center - Champagne-Ardenne France	47,328	9.86	160	70.912
3	440	Adastra 2 - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, RHEL, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de L'Enseignement Suprieur (GENCI-CINES)	16,128	2.53	37	69.098
4	155	Isambard-Al phase 1 - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, <u>NVIDIA GH200</u> Superchip, Slingshot-11, HPE University of Bristol United Kingdom	34,272	7.42	117	68.835

Why are we using accelerators?

- All top 10 systems above 10GFLOPS/Watt use accelerators
 - Nov '21 data

Exceptions:

- Fugaku: ARM-based, no accelerators
- Tianhe-2A: Matrix 2000 accelerators (128 core RISC CPUs)

Power Efficiency of all Top 500 Systems

Market share

- Accelerator market share in HPC has been steadily increasing and will likely continue to do so
 - 10 out of top 10 on Green500 list (Nov. 2024)
- Application developers need to use accelerators to get high performance on modern systems

Market share cont'd

- Problem: No market competition
 - Nvidia is predominant
 - originally also Cell processor (Playstation 3!)
 and Intel Xeon Phi
 - disappeared since ~2015
 - right now (2024): AMD comeback, new Intel attempts
- Nvidia encourages using CUDA
 - vendor lock-in
- ▶ There are alternatives!
 - SYCL, ROCm/HIP, OpenMP, etc.

Disclaimer

- ▶ Yes, according to thermodynamics, there is no energy "consumption"
 - We are just efficiently converting electricity to heat
 - Computational result is a side-product
- We're still going to call it "power consumption" and "energy consumption" for practical purpose

Power vs. energy

- Power is instantaneous, i.e. measured at a specific point in time
 - E.g. 10 W (watts)
 - does not have a time component
- energy is power over time $(E = \int P)$
 - ▶ E.g. 10 Wh (watt-hours) or 36 kJ kiloJoules
 - Could be measured using analogue means
 - Often just power sampling $(E \cong P_{avg} \times T)$
 - Often requires very high temporal resolution for reasonable accuracy

Power consumption of integrated circuits

- $ightharpoonup P_{total} = P_{short-circuit} + P_{static} + P_{dynamic}$
 - $ightharpoonup P_{short-circuit}$: Power due to short-circuit current during transistor switching
 - $ightharpoonup P_{static}$: Power due to leakage current, increases with decreasing feature size
 - $P_{dynamic} = C \times F \times V^2 \times \alpha \approx F^3$ (C... capacitance, F... frequency, V... voltage, α ... switching factor)
 - Frequency and voltage are tightly connected
 - ▶ Hence: Sometimes referred to as "cube rule"

Power consumption of supercomputers

- Cores are not everything
 - Off-core entities: shared caches, memory controllers, system agents, etc.
 - Off-chip entities: RAM, mainboard, NIC, etc.
- Computing nodes are not everything
 - Network, storage, management, etc.
 - Cooling system
 - Lights, office equipment, etc.
- ▶ Efficiency measured via e.g. PUE Power Usage Effectiveness
 - Ratio of power required by supercomputer vs. power for its entire facility
 - ▶ E.g. SuperMUC-NG @ LRZ: PUE of 1.08
 - ▶ 10-20 years ago: PUEs as high as 2-3
 - Mostly caused by cooling overhead

Supermuc-NG (Lenovo SD650 nodes, direct water cooling)

Cooling technologies

Air cooling

easy to build and maintain, inefficient

Direct water cooling

- warm: "free air cooling", water is not actively chilled, inlet temperature up to 50° C, difficult to build and maintain, very efficient, only for cooler climates
- cold: water is actively chilled, difficult to build and maintain, semi-efficient, for warmer climates

Indirect cooling

cool hardware with air, cool air with water

Immersion cooling

VSC-3 ("the oil thing")

2020 survey among tier-0 and tier-1 HPC sites in Europe

ESIF data center, NREL (PUE of 1.06)

NREL Data Center Energy Balance, From: 2020-11-27T06:00 To: 2020-11-29T23:59

Instrumentation, measurement & modeling

Measurement methods

Hardware instrumentation

- in-bound: data available directly at compute resource (e.g. on- or off-core register)
- out-of-bound: data available externally (e.g. via network interface)
 - Provided by vendor or self-made
 - Alternatively: wall socket measurements

Models and simulators

- Wattch, SimpleScalar, Sim-PowerCMP, CACTI, McPAT, GPUWATTCH, etc.
- Additional considerations: scalability & deployment of instrumentation hardware

Out-of-bound examples

Voltech PM1000+

PowerMon2

PowerSensor 2

Intel RAPL – Running Average Power Limit

- In-bound hardware method of monitoring and controlling power and energy
 - Available since Sandy Bridge (~2011)
 - Underlying model or measurement method depends on CPU microarchitecture
- Provides low-overhead measurements via model-specific registers (MSRs)
 - Directly provide energy consumption data in "energy units", model-dependent
 - E.g. Sandy Bridge: 15.3 μJ; Haswell: 61 μJ
 - Update once every 976 μs
 - Increase monotonically (similar to TSC register)
 - ▶ But only 32 bit! Overflows after some time, dependent on CPU stress
- Also supports controlling the hardware by power capping
 - ▶ E.g. "never exceed 43 watts"
 - Much more fine-grained than any OS/software mechanism

How to read Intel RAPL data

- Often requires root due to security implications
 - Reading MSRs requires raw register access to basically the entire CPU
 - Reading fine-grained energy/power data might enable side channel attacks
- Using the Linux kernel's perf_event interface
 - Using perf and sudo
 - > sudo perf stat -a -e "power/energy-cores/" <your_program_goes_here>
 - Alternative without root: requires a /proc/sys/kernel/perf_event_paranoid setting of less than 1
- Manually reading the MSRs (e.g. https://github.com/kentcz/rapl-tools)
 - sudo modprobe msr && sudo chmod o+rw /dev/cpu/0/msr
 - > sudo setcap cap_sys_rawio+ep <measurement_program>

Additional tools

Linux

- likwid: https://github.com/RRZE-HPC/likwid/wiki/Likwid-Powermeter
- powertop: https://github.com/fenrus75/powertop
- perf: sudo perf stat -a -e "power/energy-cores/" <your_program_goes_here>
- PAPI: https://icl.utk.edu/papi/
- nvidia-smi

Windows?

- Hwinfo, AIDA64, HWMonitor, PowerStrip, SpeedFan, ...
- Powercfg & windows energy estimation engine (E3), srumutil: https://devblogs.microsoft.com/sustainable-software/measuring-your-application-power-and-carbon-impact-part-1/?WT.mc_id=green-8660-cxa
- Intel Power Gadget
- WSL1/2?

Mac

Intel Power Gadget, ... ?

Other vendors

- ▶ A lot of "RAPL-compatible" systems from other vendors
 - Doesn't really mean "compatible", RAPL is used as a deonym here
 - Just means there is a user-accessible interface for getting power or energy data
- ▶ In-bound: AMD CPUs (RAPL/APM), Apple M (?), etc.
- Out-of-bound: Nvidia (?), AMD GPUs (?), IBM (Amester), Sun (?), etc.
- Third-party: PowerMon, PowerPack, PowerInsight, etc.
 - Always out-of-bound

DVFS – <u>Dynamic Voltage and Frequency Scaling</u>

- Hardware can operate at multiple clock frequency points
 - Usually requires to scale voltage along with frequency
 - Originally one frequency for all components, these days individual frequencies for cores, last-level cache, etc.
- ▶ Originally controlled in software by selecting next DVFS state ~30 ms latency
 - OS directly requests a so-called P-state by writing into a register
 - ▶ PCU halts CPU e.g. every few milliseconds, reads the requested & current P-state, acts accordingly
- Modern CPUs have much more autonomy in this
 - OS requests a certain range of frequencies, minimum QoS or maximum performance
 - ▶ CPU controls the actual setting in hardware (e.g. Intel SpeedShift, ~1 ms latency)
 - Required by AVX, Turbo and alike to work properly

AVX Turbo Frequencies (Intel Xeon 8174)

Green500 measurement methodology

- > 33 pages of definitions: measurement devices, topology, workload requirements, averaging, etc.
 - https://www.top500.org/static/media/uploads/methodology-2.0rc1.pdf
- Level 1 requires to measure
 - The entire "core" phase ≥1 minute, compute-nodes + measure or estimate network interconnect
 - Power and take the average
 - At least std::max({2 kW, 10% of the system, 15 nodes})
- ▶ Level 2
 - ▶ Level 1 + average power of full run, intermediate measurements (at least 10 averages in core phase)
 - Compute-node subsystem + measure or estimate all other subsystems
 - At least std::max({10 kW, 12% of the system, 15 nodes})
- Level 3
 - Level 2 but measure energy and compute average power consumption
 - ▶ Energy measurement resolution: 120 Hz for DC, 5 KHz for AC
 - ▶ Entire system (all components, all nodes, no extrapolations!)

Issues

Spatial resolution / topology

- E.g. Intel RAPL offers separate readings for entire package, cores and off-core entities (e.g. RAM controller or iGPU)
 - What about RAM? Mainboard? GPUs? Storage? Network?
- ▶ GPUs can draw up to 75 watts via PCIe, rest via ATX power connectors,
 - ▶ If no in-bound measurement available, you need PCIe riser cards

Temporal resolution and accuracy

- ▶ High-frequency CPU loads are hardly visible at the wall socket
- Resolution != accuracy
 - E.g. RAPL can have 15.3 μJ resolution but a mJ accuracy or worse

External conditions

- Temperature
- Measurement perturbation (often caused by high-frequency in-bound measurements)

In-bound measurement perturbation on a i7-2600k (RAPL)

Modeling Example

Lots of models available

- Some as simple as linear combination of performance counters
 - $E_{dynamic} = \sum \alpha_i c_i$
- All the way up to Support Vector Machines (SVEs), Deep Learning, etc.

Energy consumption in nJ for IBM POWER7 FMA operations

Multi-objective optimization

- We now have at least two objectives which are (partially) in conflict
 - Faster program execution (generally requires more power and energy)
 - Lower power or energy consumption (generally requires longer execution times)
- Two possible optimization approaches
 - Weight function to combine all objectives into a single one
 - ▶ E.g. EDP Energy Delay Product, also: ED²P, ED³P, PDP, ...
 - Alternatively use true multi-objective optimization, keeps flexibility
 - e.g. Pareto optimality

Multi-objective optimization and Pareto optimality

Definition of Pareto set:

- For each point in the set, no other point "dominates" it (=is better in all objectives)
- Entails that it's impossible to improve one objective without worsening another objective

Superior to weighted approach

 Provide all configurations in the Pareto set to the user, choose dynamically according to current preferences

MPI slack time optimization

- ▶ Recognize slack time in parallel applications
 - Wait states
 - Periods of extended memcopy operations or I/O
 - Even computation if not on the critical path
 - etc.

- Use DVFS to reduce energy footprint with minimal impact on wall time
 - ▶ Lots of work on that from 5-15 years ago

Slack time optimization example

Slack time optimization results

- Rizvandi et al. "Some Observations on Optimal Frequency Selection in DVFS—based Energy Consumption Minimization"
 - Simulations with 3000 randomly generated task graphs
 - ▶ Energy savings 10-20%

https://arxiv.org/ftp/arxiv/papers/1201/1201.1695.pdf

Near-Threshold Voltage

- Idea: reduce voltage below safe operating levels
 - Near-threshold voltage computing (NTV/NTC)
 - Can still operate transistors, but at large clock frequency reductions
 - ► Slowdown of 5x-10x
 - Might produce computational errors

Approximate Computing

- Idea: use NTV and mitigate slowdown with parallelism
 - Single, reliable core at super-threshold voltage
 - Several unreliable ones at near-threshold voltage (under the same power envelope!)
 - Switch cores depending on state of computation
- Investigate effects of bit flips in floating point data for converging algorithms (e.g. jacobi)

Approximate Computing cont'd

- Idea: reduce voltage below safe operating levels
 - Near-threshold voltage computing (NTV/NTC)
 - Replace single, reliable core with several unreliable ones under the same power envelope
 - Speedup through parallelism results in energy savings
- Investigate effects of bit flips in floating point data for converging algorithms (e.g. jacobi)

Fig. 4: Relative energy and time savings of an unreliable, parallel run of Jacobi on 16 cores compared to a reliable, sequential one. The missing data at bits 55–62 denotes divergence.

Additional Consequences

- Job Scheduling: Profile applications, compute roofline model, set optimal DVFS setting for consecutive runs
 - ▶ E.g. EAR Energy Aware Runtime (SLURM tool @ SuperMUC, LRZ, Germany)
- Influences load balancing & scheduling decisions
 - Data movement is expensive
 - Move tasks to location of data instead of data to location of tasks
- Stacked memory, processing-in-memory, etc.

Open issues

- There is more than just energy and power
 - Carbon Usage Effectiveness (CUE)
 - Water Usage Effectiveness (WUE)
 - Space Usage Effectiveness (SpUE)
- There are too many metrics and many are inaccurate
 - Power Usage Effectiveness (PUE)
 - Partial PUE (pPUE)
 - Energy Reuse Effectiveness (ERE)
 - Energy Reuse Factor (ERF)

- The metrics are often flawed
 - e.g. PUE cannot be used to compare
 HPC sites in different climate zones
- There are diverging interests
 - Operator: minimize power/energy, maximize workload throughput
 - User: minimize wall time
 - Taxpayer/politicians: minimize costs

Future developments and ideas

High-bandwidth memory (HBM)

Memory and computational units physically as close together as possible, minimize data transport distance

Fabrication size reduction

 Research in new designs and materials (away from silicon) to decrease below
 2 nm threshold

Special purpose hardware

- Accelerators (scientific computing, AI, etc.)
- FPGAs
- Custom hardware designs for domainspecific problems

Optical computing

- Use photons instead of electrons
- Various approaches in research, not clear yet if viable alternative

Reversible computing and Landauer principle: the future?

- There's a lower theoretical limit ("Landauer limit") to energy consumption of computation
 - Irreversible computation (e.g. logical AND) erases information, hence must be accompanied by corresponding entropy increase (=heat) in a closed system
 - ▶ because thermodynamics ¯_(ツ)_/¯
 - ▶ Landauer limit is approx. 0.0175 eV or 2.805 * 10⁻²¹ J at room temperature
 - We're currently still several orders of magnitude away from that...

Reversible computing and Landauer principle: the future? cont'd

- Koomey's Law: The number of computations per joule doubles every 1.57 years
 - Coupled with Landauer limit: no more energy efficiency increase after 2080...
 - Also applies to quantum computing
- Solution: reversible computing
 - In theory, computing without losing information doesn't need to increase entropy, hence no heat

Summary

- Energy is a hot topic in HPC
- ▶ Instrumentation and measurements got a lot easier over the past decade
 - Availability not an issue these days
 - Accuracy and granularity however is
- Discussed several research perspectives on the topic
 - Multi-objective optimization, slack time optimization, approximate computing, ...

Image Sources

- Voltech PM1000: https://www.voltech.com/media/8d8595acca6d01f/pm1000-user-manual-v14.pdf
- ▶ Shunt transistor: https://articles.saleae.com/oscilloscopes/how-to-measure-current-with-an-oscilloscope
- PowerMon:

https://ieeexplore.ieee.org/abstract/document/5453824?casa_token=Ax4_mcUUF0IAAAAA:YFY5X2H6aCU2pMDs5gwvMqbvA28huJePfLkRDveibf6d1TKkKmvqXfgCVtyVz1nZCp_z8-mIT9U

- PowerSensor 2:
 - https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8366941&casa_token=T70QZiDS9F4AAAAA:002oYwOTJXaLIRj8as2ZAGQSmYUDeigrjd5 Mt-sAIGfegoz0NIH25rfXL1gsEM8mmM6WYtr6DdE
- ▶ PCle riser: https://www.igorslab.de/en/power-recording-graphics-card-power-supply-interaction-measurement/3/
- ► Supermuc-NGn nodes: https://www.lenovo.com/us/en/p/servers-storage/servers/high-density/thinksystem-sd650-n-v2/77xx7dsd672?orgRef=https%253A%252F%252Fwww.google.com%252F
- ▶ Intel Architecture Day Slide: https://download.intel.com/newsroom/2021/client-computing/intel-architecture-day-2021-presentation.pdf
- ▶ Alder Lake Die Shots: https://www.reddit.com/r/intel/comments/qhbbow/10nm esf intel 7 alder lake die shot/