Hands-on training session 2

Hui-Walter models for diagnostic test evaluation

Matt Denwood Giles Innocent 2020-02-18

Introduction

Overview

Date/time:

- 19th February 2020
- **1**6.00 17.00

Teachers:

- Matt Denwood (presenter)
- Giles Innocent

Recap

- Fitting models using MCMC is easy with JAGS / runjags
- But we must never forget to check convergence and effective sample size!
- More complex models become easy to implement
 - For example imperfect diagnostic tests
 - But remember to be realistic about what is possible with your data

Recap

- Fitting models using MCMC is easy with JAGS / runjags
- But we must never forget to check convergence and effective sample size!
- More complex models become easy to implement
 - For example imperfect diagnostic tests
 - But remember to be realistic about what is possible with your data
- So how do we extend these models to multiple diagnostic tests?

Session 2a: Hui-Walter models for 2

tests and 1 population

Hui-Walter Model

TODO

Background (not necessarily Bayesian)

Rabbits and hats

Model Specification

```
model{
1
      Tally ~ dmulti(prob, TotalTests)
      # Test1- Test2-
         prob[1] <- (prev * ((1-se[1])*(1-se[2]))) + ((1-prev) *
5
         \hookrightarrow ((sp[1])*(sp[2])))
6
      # Test1+ Test2-
7
         prob[2] <- (prev * ((se[1])*(1-se[2]))) + ((1-prev) *
         \hookrightarrow ((1-sp[1])*(sp[2])))
9
      # Test1- Test2+
10
         prob[3] <- (prev * ((1-se[1])*(se[2]))) + ((1-prev) *
11
         \hookrightarrow ((sp[1])*(1-sp[2])))
12
      # Test1+ Test2+
1.3
         prob[4] <- (prev * ((se[1])*(se[2]))) + ((1-prev) *
14
         \rightarrow ((1-sp[1])*(1-sp[2])))
```

```
1
2
     prev ~ dbeta(1, 1)
      se[1] ~ dbeta(1, 1)
3
      sp[1] ~ dbeta(1, 1)
4
      se[2] ~ dbeta(1, 1)
5
      sp[2] ~ dbeta(1, 1)
6
7
      #data# Tally, TotalTests
8
9
      #monitor# prev, prob, se, sp
      #inits# prev, se, sp
10
11
```

```
twoXtwo <- matrix(c(48, 12, 4, 36), ncol=2, nrow=2)
    t.woXt.wo
2
    ## [,1] [,2]
1
    ## [1,] 48 4
2
    ## [2,] 12 36
3
    library('runjags')
1
2
    Tally <- as.numeric(twoXtwo)</pre>
3
    TotalTests <- sum(Tally)
4
5
    prev <- list(chain1=0.05, chain2=0.95)</pre>
6
    se \leftarrow list(chain1=c(0.5,0.99), chain2=c(0.99,0.5))
7
    sp \leftarrow list(chain1=c(0.5,0.99), chain2=c(0.99,0.5))
8
9
    results <- run.jags('basic_hw.bug', n.chains=2)</pre>
10
    ## Warning: You should update the rjags package to version 5.x -
    \hookrightarrow if the version on CRAN is not currently up to date, try
    \hookrightarrow downloading from
        https://sourceforge.net/projects/mcmc-jags/files/rjags/
```

ingtoad

Note the wide confidence intervals!

Practicalities

TODO

Care with order of combinations in dmultinom

Lots of data needed

And/or strong priors for one of the tests

Convergence can be tricky

Label Switching

How to interpret a test with Se=0% and Sp=0%?

Label Switching

How to interpret a test with Se=0% and Sp=0%?

• The test is perfect - we are just holding it upside down...

Label Switching

How to interpret a test with Se=0% and Sp=0%?

The test is perfect - we are just holding it upside down...

We can force se+sp >= 1:

```
1    se[1] ~ dbeta(1, 1)
2    sp[1] ~ dbeta(1, 1)T(1-se[1], )

...

Or:

1    se[1] ~ dbeta(1, 1)T(1-sp[1], )
2    sp[1] ~ dbeta(1, 1)
```

But not both!

This allows the test to be useless but not werse than useless

Simulating data

+ TIOX + TIO

12

Analysing simulated data is useful to check that we can recover parameter values.

Some simultion code:

```
se1 <- 0.9
    sp1 < -0.95
    sp2 < -0.99
    se2 < -0.8
    prevalence <- 0.5
    N < -100
6
7
    truestatus <- rbinom(N, 1, prevalence)</pre>
8
    Test1 <- rbinom(N, 1, (truestatus * se1) + ((1-truestatus) *
    \hookrightarrow (1-sp1)))
    Test2 <- rbinom(N, 1, (truestatus * se2) + ((1-truestatus) *</pre>
10
    11
    twoXtwo <- table(Test1, Test2)</pre>
12
```

Exercise

Modify JAGS code to force tests to be better than useless Simulate data and recover parameters for:

■ N=10, N=100, N=1000

Optional Exercise

Use priors for test1 taken from session 1 and compare the results

Solution

2

4

5

6

7

8

9

11

12

13

14

15

Model definition: model{ Tally ~ dmulti(prob, TotalTests) # Test1- Test2prob[1] <- (prev * ((1-se[1])*(1-se[2]))) + ((1-prev) * \rightarrow ((sp[1])*(sp[2]))) # Test1+ Test2prob[2] <- (prev * ((se[1])*(1-se[2]))) + ((1-prev) * $\hookrightarrow ((1-sp[1])*(sp[2])))$ # Test1- Test2+ prob[3] <- (prev * ((1-se[1])*(se[2]))) + ((1-prev) * $\hookrightarrow ((sp[1])*(1-sp[2])))$ # Test1+ Test2+ prob[4] <- (prev * ((se[1])*(se[2]))) + ((1-prev) * \rightarrow ((1-sp[1])*(1-sp[2])))

Optional Solution

```
HPSe[1,] \leftarrow c(148.43, 16.49)
   HPSp[1,] \leftarrow c(240.03, 12.63)
2
3
   HPSe
1 ## [,1] [,2]
2 ## [1,] 148.43 16.49
3 ## [2,] 1.00 1.00
   HPSp
1 ## [,1] [,2]
2 ## [1,] 240.03 12.63
   ## [2,] 1.00 1.00
   results <- run.jags('basic_hw.bug', n.chains=2)
```

Finished running the simulation

tests and N populations

Session 2b: Hui-Walter models for 2

Independent intercepts for populations

```
model{
2
      for(p in 1:Populations){
        Tally[1:4, p] ~ dmulti(prob[1:4, p], TotalTests[p])
        # Test1- Test2- Pop1
5
6
          prob[1, p] \leftarrow (prev[p] * ((1-se[1])*(1-se[2]))) +
    \rightarrow ((1-prev[p]) * ((sp[1])*(sp[2])))
7
        ## etc ##
8
9
        prev[p] ~ dbeta(1, 1)
10
11
12
      se[1] ~ dbeta(HPSe[1,1], HPSe[1,2])T(1-sp[1], )
13
      sp[1] ~ dbeta(HPSp[1,1], HPSp[1,2])
14
      se[2] ~ dbeta(HPSe[2,1], HPSe[2,2])T(1-sp[2], )
15
      sp[2] ~ dbeta(HPSp[2,1], HPSp[2,2])
16
17
18
      #data# Tally, TotalTests, Populations, HPSe, HPSp
19
      #monitor# prev, prob, se, sp
```

Auto Hui-Walter

hand (aimdata)

We would usually start with individual-level data in a dataframe e.g.:

```
se1 <- 0.9
    sp1 < -0.95
    sp2 < -0.99
3
    se2 <- 0.8
    prevalences <- c(0.1, 0.5, 0.9)
5
    N < -100
6
7
    simdata <- data.frame(Population = sample(seq_along(prevalences),</pre>
8

→ N, replace=TRUE))
    simdata$probability <- prevalences[simdata$Population]</pre>
9
    simdata$truestatus <- rbinom(N, 1, simdata$probability)</pre>
10
    simdata$Test1 <- rbinom(N, 1, (simdata$truestatus * se1) +</pre>
11
    \rightarrow ((1-simdata\$truestatus) * (1-sp1)))
    simdata$Test2 <- rbinom(N, 1, (simdata$truestatus * se2) +</pre>
12
    13
```

The model code and data format for an arbitrary number of populations (and tests) can be determined automatically

There is a function (soon to be included in the runjags package, but for now provided in the GitHub repo) that can do this for us:

- 1 ## The model and data have been written to autohw.bug in the \hookrightarrow current working directory
- 2 ## You should check and alter priors before running the model

This generates self-contained model/data/initial values etc (ignore covse and covsp for now):

```
## ## Auto-generated Hui-Walter model created by script version
    \rightarrow 0.1 on 2020-02-18
    ##
2
    ## model{
3
    ##
4
        ## Observation layer:
    ##
5
    ##
6
    ##
        # Complete observations (N=100):
7
        for(p in 1:Populations){
    ##
8
             Tally_RR[1:4,p] ~ dmulti(prob_RR[1:4,p], N_RR[p])
9
    ##
10
    ##
             prob_RR[1:4,p] <- se_prob[1:4,p] + sp_prob[1:4,p]
    ##
11
    ##
       }
12
13
    ##
14
    ##
15
    ##
        ## Observation probabilities:
    ##
16
    ##
        for(p in 1:Populations){
17
    ##
18
             # Probability of observing Test1- Test2- from a true
    ##
19
```

And can be run directly from R:

```
results <- run.jags('autohw.bug')

## Note: The monitored variables 'covse12' and 'covsp12'

## appear to be non-stochastic; they will not be

## included in the convergence diagnostic

## Finished running the simulation
```

```
results
   ##
1
   ## JAGS model summary statistics from 20000 samples (chains = 2;
   \rightarrow adapt+burnin = 5000):
   ##
3
   ## Lower95 Median Upper95 Mean
                                                 SD
4
5 ## se[1] 0.87189 0.96816 1 0.95577 0.042197
   ## se[2] 0.60525 0.76164 0.89516 0.75667 0.07517
6
   ## sp[1] 0.92611 0.9804 1 0.97362 0.02416
   ## sp[2] 0.88409 0.94591 0.99308 0.9417 0.029668
8
   ## prev[1] 0.0069498 0.069215 0.16152 0.076369 0.043371
9
   ## prev[2] 0.18076 0.32083 0.46915 0.32322 0.075138
10
   ## prev[3] 0.7327 0.88449 0.99128 0.87414 0.072603
11
   ## covse12
                   0
                           0
12
   ## covsp12
                  0
                           0
                                          0
13
   ##
14
                Mode MCerr MC%ofSD SSeff AC.10
15
   ##
   ## se[1] 0.98579 0.00066739 1.6 3998 0.015552
16
17
   ## se[2] 0.76962 0.00071055 0.9 11192 0.014574
18
   ## sp[1] 0.99125 0.00035858 1.5 4540 0.0054374
   ## sp[2] 0.9504 0.0003137 1.1 8944 -0.0064593
19
   ## prev[1] 0.057135 0.00049806
                                 1.1 7583 -0.00044204
```

20

21

Observation-level model specification

```
model{
1
 2
      for(i in 1:N){
         Status[i] ~ dcat(prob[i, ])
4
5
           prob[i,1] <- (prev[i] * ((1-se[1])*(1-se[2]))) +
6
                         ((1-prev[i]) * ((sp[1])*(sp[2])))
7
           prob[i,2] \leftarrow (prev[i] * ((se[1])*(1-se[2]))) +
8
                         ((1-prev[i]) * ((1-sp[1])*(sp[2])))
9
           prob[i,3] \leftarrow (prev[i] * ((1-se[1])*(se[2]))) +
10
                         ((1-prev[i]) * ((sp[1])*(1-sp[2])))
11
           prob[i,4] \leftarrow (prev[i] * ((se[1])*(se[2]))) +
12
                         ((1-prev[i]) * ((1-sp[1])*(1-sp[2])))
13
14
           logit(prev[i]) <- intercept +</pre>
15
           → population_effect[Population[i]]
      }
16
17
      intercept ~ dnorm(0, 0.33)
18
      population_effect[1] <- 0</pre>
19
      for(n in 2. Pone) {
```

Just like in session 1, the main difference is the prior for prevalence (this time in each population)

We also need to give initial values for intercept and population_effect rather than prev, and tell run.jags the data frame from which to extract the data (except N and Pops):

```
intercept <- list(chain1=-1, chain2=1)</pre>
population_effect <- list(chain1=c(NA, 1, -1), chain2=c(NA, -1,
```

1 → 1))

 $se \leftarrow list(chain1=c(0.5,0.99), chain2=c(0.99,0.5))$ $sp \leftarrow list(chain1=c(0.5,0.99), chain2=c(0.99,0.5))$

```
3
4
5
   simdata$Status <- with(simdata, factor(interaction(Test1, Test2),</pre>
6
   → levels=c('0.0','1.0','0.1','1.1')))
```

N <- nrow(simdata)</pre> Pops <- length(levels(simdata\$Population))</pre>

glm_results <- run.jags('glm_hw.bug', n.chains=2, data=simdata)</pre> ## Note: The monitored variable 'population_effect[1]' ## appears to be non-stochastic; it will not be included

in the convergence diagnostic

8

9

Also like in session 1, the estimates for se/sp should be similar, although this model runs more slowly.

Note: this model could be used as the basis for adding covariates

For a handy way to generate a GLM model see

runjags::template.jags

 Look out for integration with autohuiwalter in the near (ish) future...

Practicalities

Need to be very careful with tabulating the data, or use automatically generated code

Works best when populations have very different prevalences

Exercise

Play around with the autohuiwalter function

Notice the model and data and initial values are in a self contained file

Ignore the covse and covsp for now