Graph Theory

Module 1

Section 5: Paths and Connectedness

August 3, 2023

Walk

Definition (walk)

A walk is an alternating finite sequence $W: v_0e_1v_1e_2v_2\dots e_pv_p$ where v_{j-1} and v_j are end vertices of e_j for $j=1,2,\dots$

The length of a walk is the number of edges in it.

```
origin is the vertex v_0.

terminus is the vertex v_p,

closed A walk is closed if v_0 = v_p.

trail is a walk in which every edges are distinct.

path is a walk in which every vertex is distinct.

cycle is a closed trail.
```

Path

- C_k is a cycle of length k.
- P_k is a path on k vertices.
- Path, P Let $P: v_1, e_1, v_2, \ldots, e_p, v_p$ be a path in G. Then we omit edges and write $P: v_1, v_2, \ldots, v_p$.
- Inverse of P The path $P': v_p, v_{p-1}, \ldots, v_1$ is the inverse of P.
- section of P Let $P: v_1, v_2, \ldots, v_p$ be a path in G. A subsequence $v_j, v_{j+1}, \ldots, v_k$ is $v_j v_k$ section of P.

Connected

Definition

Two vertices u, v are connected in a graph G if there is a u - v path in G.

Definition

A graph G is connected if every pair of vertices in G are connected.

Equivalence Relation : Connectedness

```
reflexive Every vertex is connected to itself by trivial path. symmetric every u-v path is a v-u path transitive u-v path followed by v-w path contains a u-w path.
```

Definition (component)

Let $V_1, V_2, \ldots, V_{\omega}$ be the equivalence classes of the relation 'connectedness' in G. Then the induced subgraphs $G[V_1], G[V_2], \ldots, G[V_{\omega}]$ are the component of G.

- ▶ If $\omega = 1$, then *G* is connected.
- ▶ If ω > 2, then *G* is disconnected.

Metric Space

Definition

Let d be a function on the vertex set of a graph G defined as d(u, v) is the length of the shortest u - v path in G.

Function d is a metric on V(G)

- 1. $d(u, v) \ge 0$ and $d(u, v) = 0 \iff u = v$.
- 2. d(u, v) = d(v, u)
- 3. $d(u, v) \le d(u, w) + d(w, v)$.

Minimum Degree of a Simple, Connected Graph

Proposition

If G is simple and $\delta(G) \geq \frac{n-1}{2}$, then G is connected.

Proof.

- ▶ Let *G* be disconnected graph of order *n*.
- Suppose G has at least two components.
- Number of vertices in each component is at least $\frac{n-1}{2} + 1$.
- Number of vertices in G is n + 1.(contradiction)

Exercises: Minimum Degree

- ► There exists non-simple disconnected graph G with $\delta(G) \geq (n-1)/2$.
 - Draw a graph with two components.
 - Use parallel edge or loops to increase minimum degree of the graph.
- ▶ $\delta(G) \ge (n-2)/2$ does not imply that G is connected.
 - If $\delta(G) = 1$, then we have a graph of order 4, say $2K_2$
 - ▶ In general, $2K_{\delta(G)+1}$ has order $n = 2\delta(G) + 2$.

Ramsey Number, R(3,3) = 6

In a group of six people, there must be three people who are mutually acquainted or three people are not mutually acquainted.

- ▶ Let $u \in V(G)$. Then $deg(u) \neq 0$
- $ightharpoonup \Delta(G) \neq 1$.
- ▶ Let deg(u) = 2. Let $uv, uw \in E(G)$.
- ▶ $vw \notin E(G)$ otherwise (u, v, w) forms \triangle .
- ▶ WLOG $vx \in E(G)$, otherwise (v, w, x) forms \triangle .
- ▶ $ux \notin E(G)$, otherwise (u, v, x) forms \triangle .
- ▶ Similarly, uy, $uz \notin E(G)$.
- ▶ $xy \in E(G)$, otherwise (u, x, y) forms \triangle .
- ▶ Similarly, $yz, zx \in E(G)$.
- \blacktriangleright (x, y, z) forms \triangle (contradiction)

Complement of a disconnected Graph

Theorem

If a simple graph G is disconnected, then G^c is connected.

Proof.

- Let G be a disconnected graph.
- ▶ Let G_1 and G_2 be two components of G.
 - Let $u \in V(G_1)$ and $v \in V(G_2)$. $uv \notin G \implies uv \in G^c$.
 - Let $u, w \in V(G_1)$ and $v \in V(G_2)$. $uv, vw \notin G \implies u, v, w \text{ is a } u - w \text{ path in } G^c$.

Characterisation of Self complementary Graph

If G is self complementary, then $n(G) \cong 0$ or 1 (mod 4).

- $ightharpoonup m(G) = m(G^c) = m(K_n)/2.$
- m = n(n-1)/4.
- $ightharpoonup m \cong 0 \text{ or } 1 \pmod{4}.$

A self complementary graph with one pendant vertex must have at least another pendant vertex.

- ightharpoonup Let G be a self complementary graph with pendant vertex u.
- $ightharpoonup G^c$ has a pendant vertex v.
- v is another pendant vertex in G.

Upper bound for the size of a Simple Graph

Theorem

The size m of simple graph of order n with ω components cannot exceed $(n-\omega)(n-\omega+1)/2$.

$$m<\frac{(n-\omega)(n-\omega+1)}{2}$$

Proof.

- Let G be a graph of order n, size m, and components ω .
- ▶ Let $G_1, G_2, \ldots, G_{\omega}$ be the components of G.
- ▶ Let n_i , m_i be the order, size of G_i for each i.
 - $ightharpoonup n_i \leq (n-\omega+1).$
 - $ightharpoonup m_i \leq n_i(n_i 1)/2.$
- $m = \sum n_i(n_i 1)/2 < (n \omega + 1) \sum (n_i 1).$
- ► $m < (n \omega + 1)(n \omega)/2$.

Local Connectedness

Definition

A graph G is locally connected if for each vertex v in G, the subgraph induced by the open neighbourhood $N_G(v)$ is connected.

Figure: G is locally connected at x, u and w, but not at v

Characterisation of Bipartite Graph

Theorem

A graph is bipartite if and only if it has no odd cycles.

Proof.

- Suppose G is bipartite.
 - ▶ Let $u \in V(G)$.
 - ▶ Let $C: v_1, e_1, v_2, ..., v_k, e_k, e_1$ be a cycle in G.
 - Length of cycle k is even, since v_k adjacent to v_1 .
- Suppose G has no odd cycle.
 - Suppose *G* is connected.
 - ► $X = \{v \in V(G) : d(u, v) \text{ is even.} \}$
 - ► $Y = \{v \in V(G) : d(u, v) \text{ is odd.}\}$
 - Let $v, w \in X$. Then u v path P and u w path Q.
 - Let w_1 be a common vertex P, Q such that $w_1 w$ section of P and $w_1 v$ section of Q has no other common vertices.
 - Suppose v is adjacent to w.
 - \triangleright $w w_1 + w_1 v + vw$ is an odd cycle.(contradiction)
 - ▶ If G has components. Then $X = \bigcup X_i$ and $Y = \bigcup Y_i$.

A simple nontirivial graph G is connected if and only if for any partition (V_1, V_2) of V(G) there is an edge joining a vertex of V_1 and a vertex of V_2 .

- ► Suppose *G* is connected.
 - ▶ Let V_1 , V_2 be a partition of V(G).
 - ▶ Let $u \in V_1$ and $v \in V_2$.
 - ▶ Since *G* is connected, there exists u v path, say *P*.
 - ightharpoonup P contains an edge joining V_1 and V_2 .
- Suppose that for every partition (V_1, V_2) , there exists an edge joining V_1 and V_2 .
 - ▶ Let $u, v \in V(G)$.
 - ▶ Let $V_1 = \{u\}$. There exists $uw \in E(G)$ where $w \in V_2$.
 - ▶ Let $V_1 = \{u, w\}$. There exists ux or wx where $x \in V_2$.
 - ightharpoonup Continuing like this, we get V_1 containing both u and v.

Longest paths does intersect

In a connected graph G with at least three vertices, any two longest paths have a vertex in common.

- Let $u_1 u_k$ and $v_1 v_k$ be two longest paths, say P, Q.
- $u_1 v_1$ path has three sections : $u_1 u_r$, $u_r v_s$, $v_s v_1$.
- ▶ WLOG suppose $u_1 u_r$ and $v_1 v_s$ are at least half as long as longest paths.
- Then $(u_1 u_r) + (u_r v_s) + (v_s v_1)$ is longer. (contradiction)

Union of Disjoint Paths

Union of two disjoint paths joining two distinct vertices contains a cycle.

- ▶ Let P, Q be two distinct u v paths.
- Let P', Q' be disjoint sections of P, Q with common end vertices.
- ightharpoonup P' + Q' is a cycle.

Union of two distinct walks joining two distinct vertices need not contain a cycle.

Two walks are distinct if one walk visits an edge one more time compared to the other.

Characterisation of an incomplete Graph

If a simple graph G is not complete, there exists three vertices u, v, w such that uv, vw are edge of G but uw is not an edge of G.

Generalised Petersen Graph

Definition (Generalised Petersen Graph)

Generalised Petersen Graph is defined by

$$V(P(n,k)) = \{a_i, b_i : 0 \le i \le n-1\}$$

$$E(P(n,k)) = \{a_i a_{i+1}, a_i b_i, b_i b_{i+k}, 0 \le i \le n-1\}$$

If n is even and k is odd, then generalised Petersen Graph P(n, k) is bipartite.

Longest Path and Minimum Degree

If G is simple and $\delta(G) \ge k$, then G contains a path of length at least k.

- ▶ Let G be a graph with $\delta(G) \ge k$.
- Let v_0, v_1, \ldots, v_r be the longest path in G.
- \triangleright v_r is at most adjacent to $v_0, v_1, \ldots, v_{r-1}$.
 - ▶ Otherwise $v_0, v_1, ..., v_r, w$ is longer. (contradiction)
- $degree(v_r) \le r \implies k \le \delta(G) \le r$.
- Longest path has length at least k.

Thank You