

Classes Schedule

- 1. Kickoff meeting. Introduction. Simple Grain Growth Cellular Automaton
- 2. Inclusions, precipitations feature
- 3. Consideration of grain curvature
- 4. Substructures / Dual-phase
- 5. Boundaries detection
- 6. Leftovers, project submitting

Substructures

Different grain sizes

Different grain sizes

DP Microstructure

DP Steel Usage

DP Structure

Lamellar structure

Perlite = Martenizite (Fe-C) + Ferrite (Fe α)

Implementation

- User can delete selected grains after grain growth
 - by clicking on them or by selecting from list
- User can perform second Grain Growth (Substructures feature)
- User can perform second Grain Growth, now using another distinct phase (Dual-Phase feature)