Data Structures & Algorithms

TREES

Trees

Root Leaf

Node

Tree with one node

Height: 0

Trees

All Trees are Graphs

Not all Graphs are Trees

Trees

Full Binary Tree

All Nodes have either Zero or Two Child Nodes

Complete Binary Tree

All levels are full except possibly the last level, and all nodes on the last level are as far left as possible

Balanced Binary Tree

► The difference in height of any subtree is no greater than 1

Perfect Binary Tree

- All interior nodes have two children
- All leaves have the same depth or same level

Complete and Full

Complete but NOT Full

Full but NOT Complete

Neither Complete nor Full

General Tree Binary Tree

5 6 7 8 9 10 4 5

Binary Search Tree

Traversal Order

Level-Order Traversal: Level-by-level from left to right

Pre-Order Traversal:

Parent Left Child (recursively) Right Child (recursively)

In-Order Traversal:

Left Child (recursively)
Parent
Right Child (recursively)

Post-Order Traversal:

Left Child (recursively) Right Child (recursively) Parent

Pre-Order:

A, B, D, H, I, E J, L C, F, G, K

In-Order:

H, D, I, B, J, L, E, A, F, C, K, G

Post-Order:

H, I, D, L, J, E, B, F, K, G, C, A

Binary Search Tree

In-Order Traversal is in increasing values – it's in order.

AVL Trees

Georgy Adelson-Velsky

Self-healing binary search trees named for two Russian mathematicians

Evgenii Landis

AVL Trees

AVL Trees

AVL Tree Rotation

- An AVL Tree is a self-balancing Binary Search Tree (BST)
- Follows the same insertion rules as BST
- ▶ In-Order Traversal is in numerical order
- Balance Factor is the height difference between the right and left subtrees
- ▶ Balance Factor must be -1, 0, or +1
- Rotations must preserve the in-order traversal
- Rotations happen at the lowest level first

AVL Tree Rotation

Balance Factor: Height difference between left and right subtrees Balanced if factor is -1, 0, or +1

AVL Tree Rotation

Rotations must preserve in-order traversal Single Rotation can only take place along the in-order arc

AVL Tree Rotation: Single Rotation

AVL Tree Rotation: Single Rotation

AVL Tree Rotation: Double Rotation

AVL Tree Rotation: Double Rotation

AVL Tree Rotation: Double Rotation

AVL Tree Rotation: Rotation with Children

AVL Tree Rotation: Rotation with Children

Rotation works because 27 could be a child of either node

AVL Tree Rotation: Rotation with Children

Always maintain the traversal order

AVL Rotation

AVL Rotation

- Right-Right Problem: Left Rotation (single)
- Left-Left Problem: Right Rotation (single)
- Right-Left Problem: Double Rotation
 - Right Rotation (one level down)
 - ▶ Left Rotation
- Left-Right Problem: Double Rotation
 - ▶ Left Rotation (one level down)
 - Right Rotation
- Rotation with Children: Conflicting subtree moves to the former parent

AVL Rotation

If the order of numbers in an In-Order Traversal changed after a Rotation, you did it wrong.