МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Построение и анализ алгоритмов»

Тема: Поиск с возвратом

Вариант: 3р

Студентка гр. 3388	Титкова С.Д.
Преподаватель	Жангиров Т.Р

Санкт-Петербург 2025

Цель работы:

Изучить принцип работы алгоритма поиска с возвратом. Решить с его помощью задачу. Также провести исследование зависимости количества итераций от стороны квадрата.

Задание:

У Вовы много квадратных обрезков доски. Их стороны (размер) изменяются от 1 до N-1, и у него есть неограниченное число обрезков любого размера. Но ему очень хочется получить большую столешницу - квадрат размера N. Он может получить ее, собрав из уже имеющихся обрезков(квадратов).

Например, столешница размера 7×7 может быть построена из 9 обрезков.

Внутри столешницы не должно быть пустот, обрезки не должны выходить за пределы столешницы и не должны перекрываться. Кроме того, Вова хочет использовать минимально возможное число обрезков.

Входные данные:

Размер столешницы - одно целое число $N \ (2 \le N \le 20)$.

Выходные данные:

Одно число K, задающее минимальное количество обрезков(квадратов), которых построить онжом ИЗ столешницу (квадрат) заданного размера N. Далее должны идти K строк, каждая из которых должна содержать три целых числа x,y и w, задающие $(1 \le x, y \le N)$ верхнего угла координаты И длину стороны левого соответствующего обрезка (квадрата).

Пример	входных	данных:
7		
Соответствующие	выходные	данные:
9		
112		
132		
311		
411		
322		
513		
444		
153		

341

Реализация

Описание алгоритма:

Для решения поставленной задачи был использован рекурсивный бэктрекинг (рекурсивный поиск с возвратом). Так, после ввода стороны генерируется набор возможных высот для начального размещения крупных квадратов. Этот набор зависит от размера входного значения. Для каждой возможной высоты из набора выполняет следующие действия:

- 1. Инициализирует начальную диаграмму высот прямоугольника с учётом размещения крупных начальных блоков.
- 2. Вызывает рекурсивную функцию поиска оптимального решения.
- 3. Обновляет лучшее решение, если найденное решение лучше текущего лучшего решения.

Описание функций и структур:

- Square структура для представления квадрата с координатами х, у и высотой h;
- vector<tuple<int, int, int>> result вектор кортежей для хранения результатов (координаты и размеры квадратов);
- *bool DEBUG* это переменная, которая является переключателем. При значении 1 будет выводиться отладочная информация(ставить в самом коде).
- void print_solution_matrix(int n, const vector<tuple<int, int, int>>& result) функция выводит матрицу с расположением найденных квадратов;
- void rec(vector<int>& diagram, vector<int> marks, vector<Square>& ans):
 - 1. Аргументы:
 - *Diagram* вектор целых чисел, представляющий высоты оставшихся областей прямоугольника;
 - Marks вектор целых чисел, хранящий информацию о максимально возможных высотах квадратов на каждой позиции;
 - *Ans* вектор структур Square, хранящий лучшее найденное решение.

2. Возвращаемое значение: функция модифицирует содержимое ans, обновляя его при нахождении более оптимального решения;

3. Алгоритм:

Если все области диаграммы равны нулю, то текущее решение сохраняется в ans, если оно лучше предыдущего.

Для каждой позиции на диаграмме вычисляется максимально возможная высота нового квадрата (max_h) и удаляется из диаграммы соответствующая область.

Затем вызывается сама функция с обновлённой диаграммой и новым состоянием стека частичных решений. После каждого рекурсивного вызова состояние восстановливается: добавленные элементы удаляются из стека частичных решений, а изменения в диаграмме отменяются.

Main():

Принимает на вход число. Генерирует набор возможных высот для начального размещения крупных квадратов. Находит 3 стороны для заполнения наибольшей площади за одну итерацию, затем ставит их в диаграмму. Затем вызывается рекурсивная функция для поиска оптимального решения. В конце выводится количество квадратов, а также строчки, в которых отражаются координаты левых верхних вершин квадратов и соотвествующая им высота. Количество строк равно количеству найденых квадратов.

Способ хранения частичных решений:

Частичные решения хранятся в виде:

1. *static vector*<*Square*> *stack* - это статический вектор, который хранит текущее частичное решение во время рекурсивного поиска. Каждый элемент stack представляет собой квадрат с координатами x, y и высотой h.

2. *vector*<*Square*> *ans* - это вектор, который хранит лучшее найденное решение на данный момент. Он обновляется каждый раз, когда находит более оптимальное решение.

Способ хранения:

- Когда добавляется новый квадрат к текущему решению, он помещается в конец stack.
- о После того как все возможные ветви для данного квадрата были рассмотрены (т.е., после рекурсивного вызова), последний добавленный квадрат удаляется из конца stack. Это позволяет восстановить предыдущее состояние решения.
- Если текущее частичное решение становится полным (все области покрыты) и оно лучше предыдущего лучшего решения, то содержимое stack копируется в ans.

Алгоритмы оптимизации:

- *Ограничение рекурсии* используется условие остановки рекурсии при достижении ситуации, когда текущее решение не может быть лучше найденного ранее.
- Генерация начальных крупных блоков генерируются только те начальные блоки, которые имеют шанс дать лучшее решение, что сокращает количество ненужных рассмотрений. Сторона наибольшего из возможных квадратов вычисляется, как (N+1)/2, это верно для большинства простых чисел. Данная оптимизация значительно сокращает количество рекурсивных вызовов.
- Отсечение по количеству углов вычисляет количество углов в текущей диаграмме. Если количество квадратов в текущем наборе плюс количество углов больше или равно размеру лучшего найденного решения, то текущая ветвь поиска отсекается, так как она не может привести к лучшему решению.

Оценка сложности алгоритма:

Основной идеей алгоритма является рекурсия, соответственно количество возможных переборов будет расти, как степенная функция. Ввиду использования оптимизаций, сложность алгоритма уменьшается на некоторую константу, но в худших всё ещё приближается к экспоненциальной сложности $(O(e^n))$, где n-сторона квадрата.

Относительно памяти: наш алгоритм хранит матрицу $O(n^2)$, стек O(n), а также в ходе алгоритма у нас производится рекурсия. Каждая рекурсия — O(1), их степенное количество. Таким образом, итоговая сложность $O(n^2+n+e^n)$. Относительно степенной функции другое слагаемый довольно малы, следовательно итоговой сложностью относительно памяти будет: $O(e^n)$.

Тестирование

Таблица 1. Тестирование.

Входные данные	Выходные данные
2	4
	1 1 1
	2 2 1
	1 2 1
	2 1 1
3	6
	1 2 1
	2 1 1
	1 1 1
	2 2 2
	1 3 1
	3 1 1
11	11
	5 6 1
	4 6 1
	4 3 3
	1 4 3

	5.1.2
	5 1 2
	421
	4 1 1
	1 1 3
	6 6 6
	1 7 5
	7 1 5
15	6
	165
	615
	1 1 5
	6 6 10
	1 11 5
	11 1 5
19	13
	9 10 1
	8 10 1
	873
	474
	183
	5 1 6
	461
	451
	153
	114
	10 10 10
	1 11 9
	11 1 9
	1117

Иследование

Также в ходе лабораторной работы было проведено исследование зависимости количества итераций от стороны квадрата. В ходе исследования получились следующие результаты(рис. 1 и табл. 2).

Таблица 2. Зависимость количества итераций от стороны квадрата.

Сторона квадрата	Количество итераций
3	5

4	3
5	31
6	39
7	188
9	686
11	4582
12	1864
13	16201
15	14276
17	97188
23	2148501

Рис. 1. Зависимость количества итераций от стороны квадрата

Построим логарифмический график зависимости количества итераций от стороны квадрата. Не сложно заметить, что значения в простых числах образуют прямую, что свидетельствует о экспоненциальной зависимости.

Вывод

В ходе лабораторной работы была написана программа с использованием алгоритма бэктрекинга. Также было проведено тестирование

на различных входных данных. По результатом исследования можно заключить, что зависимость числа операций от размера поля экспоненциальна.

Исходный код программы см. в ПРИЛОЖЕНИИ А.

приложение А.

ИСХОДНЫЙ КОД ПРОГРАММЫ

Algorithm.cpp

```
#include <algorithm>
#include <iostream>
#include <vector>
#include <tuple>
using namespace std;
struct Square {
    int x, y, h;
};
int cnt = 0;
bool DEBUG=0;
void print solution matrix(int n, const vector<tuple<int, int, int>>&
result) {
    vector<vector<int>> matrix(n, vector<int>(n, 0));
    int num = 0;
    for (const auto& s : result) {
        num += 1;
        int x, y, h;
        tie(x, y, h) = s;
        for (int i = x; i < x + h; ++i) {
             for (int j = y; j > y - h; --j) {
                matrix[i][j] = num;
        }
    }
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            if (matrix[i][j] < 10) {</pre>
                 cout << matrix[i][j] << " ";</pre>
             } else {
                 cout << matrix[i][j] << " ";</pre>
        cout << endl;</pre>
    }
}
void rec(vector<int>& diagram, vector<int> marks, vector<Square>& ans)
    static vector<Square> stack = {};
    if (DEBUG==1) {
        cnt += 1;
        cout << "IT #" << cnt << '\n';
```

```
cout << '\t' << s.x << ' ' << s.y << ' ' << s.h << '\n';
        }
    }
    if (*max element(diagram.begin(), diagram.end()) == 0) {
        if (ans.empty() || ans.size() > stack.size()) {
            ans = stack;
        }
        return;
    }
    int corners = (diagram.back() != 0);
    for (int i = 0; i < diagram.size() - 1; ++i) {
        corners += (diagram[i] != diagram[i + 1]);
    }
    if (!ans.empty() && stack.size() + corners >= ans.size()) {
        return;
    }
    for (int i = 0; i < diagram.size(); ++i) {
        int j = diagram[i] - 1;
        int max h = 0;
        while (i - max h) = 0 \& diagram[i - max h] = diagram[i]) {
             ++\max h;
        }
        if (i == diagram.size() - 1) {
            \max h = \min(\max h, \operatorname{diagram}[i]);
        } else {
            \max h = \min(\max h, \operatorname{diagram}[i] - \operatorname{diagram}[i + 1]);
        \max h = \min(\max h, (int) \operatorname{diagram.size}() - 1);
        for (int k = 0; k < \max h; ++k) {
             diagram[i - k] -= max h;
        for (int h = \max h; h >= 1; --h) {
             if (h > marks[i]) {
                 stack.push back(\{i + 1 - h, j, h\});
                 int x = marks[i];
                 marks[i] = -1;
                 rec(diagram, marks, ans);
                 marks[i] = x;
                 stack.pop back();
             diagram[i + 1 - h] += h;
             for (int k = 0; k < h - 1; ++k) {
                 ++diagram[i - k];
        marks[i] = max h;
    }
int main() {
    int n;
    cin >> n;
    vector<Square> ans;
    vector<int> hs;
```

for (Square s : stack) {

```
for (int h = (n + 1) / 2; h < min((n + 1) / 2 + 5, n); ++h) {
    hs.push back(h);
if (n > 20) {
    if (n % 2 == 0) {
       hs = \{n / 2\};
    } else if (n % 3 == 0) {
        hs = \{2 * n / 3\};
    else if (n == 25 || n == 27) {
       hs = \{ (n + 1) / 2 + 2 \};
    } else if (n == 37) {
       hs = \{ (n + 1) / 2 + 1 \};
    } else {
       hs = \{(n + 1) / 2 + 1, (n + 1) / 2 + 3\};
}
for (int h : hs) {
    vector<int> diagram(n, n);
    vector<Square> cur ans;
    for (int i = 0; i < h; ++i) {
        diagram[n - 1 - i] -= h;
    for (int i = 0; i < n - h; ++i) {
        diagram[i] -= n - h;
    for (int i = 0; i < n - h; ++i) {
       diagram[n-1-i] -= n-h;
    }
    rec(diagram, vector<int>(n, -1), cur ans);
    cur ans.push back(\{n - h, n - 1, h\});
    cur ans.push back(\{0, n - 1, n - h\});
    cur ans.push back(\{n - 1 - (n - h) + 1, n - h - 1, n - h\});
    if (ans.empty() || ans.size() > cur ans.size()) {
        ans = cur ans;
    }
}
cout << ans.size() << endl;</pre>
for (Square s : ans) {
    cout << s.x + 1 << ' ' << s.y - s.h + 2 << ' ' << s.h << endl;
vector<tuple<int, int, int>> result;
for (const auto& s : ans) {
    result.push back(make tuple(s.x, s.y, s.h));
}
if (DEBUG==1) {
```

```
cout << "Total iterations: " << cnt << '\n';
    print_solution_matrix(n, result);
}
return 0;
}</pre>
```