Input Space Splitting for OpenCL

Simon Moll, Johannes Doerfert, Sebastian Hack

Saarbrücken Graduate School of Computer Science Saarland University Saarbrücken, Germany

October 29, 2015

OpenCL: Execution Model

NDRange

OpenCL: Parallelized & Vectorized

NDRange

Vectorization (SIMD)

Perform the same operation for multiple vector lanes simultaneously.

Vectorization (SIMD)

Perform the same operation for multiple vector lanes simultaneously.

Vector Patterns

Consecutive: contiguous entries

Uniform: single entry

Divergent: unrelated entries

$$\frac{\langle i, i+1, i+2, i+3 \rangle}{\langle i, i, i, i \rangle \to i}$$

$$\overline{<$$
 i, j, 7, ->

for (i = 0; i < 16; i++) for (
$$\underline{i}$$
 = 0; \underline{i} < 16; \underline{i} += 2)
0[i] = I[i] + 2; 0[\underline{i}] = I[\underline{i}] + 1;

Diverging Control Flow

Thread	Trace
1	abcef
2	a b d e f
3	abcebcef
4	abcebdef

■ Different threads execute different code paths

Diverging Control Flow

Thread	Trace
1	abcdebcdef
2	abcdebcdef
3	abcdebcdef
4	abcdebcdef

- Different threads execute different code paths
- Execute everything, mask out results of inactive threads (using predication, blending)
- Control flow to data flow conversion on ASTs [Allen & Kennedy '83]
- Whole-Function Vectorization on SSA CFGs [K & H '11]

Thread	Trace
1	abcebdef
2	abcebdef
3	abceb <mark>d</mark> ef
4	abcebdef

Thread	Trace
1	abcebdef
2	abcebdef
3	a b c e b d e f
4	abcebdef

- Option 1: Insert dynamic predicate-tests & branches to skip paths
 - "Branch on superword condition code" (BOSCC) [Shin et al. PACT'07]
 - Additional overhead for dynamic test
 - ► Does not help against increased register pressure

Thread	Trace
1	abcebdef
2	abcebdef
3	abcebdef
4	a b c e b d e f

- Option 2: Statically prove non-divergence of certain blocks
 - Non-divergent blocks can be excluded from linearization
 - Less executed code, less register pressure
 - More conservative than dynamic test

Thread	Trace	
1	abcef	
2	a b c e f	
3	abcebde	f
4	a b c e b d e	f
5	a b c e b d e	f

- Option 3: Statically split non-divergence inputs
 - Code versions with improved divergence properties
 - ▶ Orthogonal to both other options ⇒ combination possible


```
int left = x - 2;
int right = x + 2;
int top = y - 2;
int bottom = y + 2;

int sum = 0;
for (int i = left; i <= right; ++i)
    for (int j = top; j <= bottom; ++j)
        sum += input[j][i] * mask[j - top][i - left];
output[y][x] = sum;</pre>
```



```
auto left = x - 2;
auto right = x + 2;
int top = y - 2;
int bottom = y + 2;

int sum = 0;
for (auto i = left; i <= right; ++i)
    for (int j = top; j <= bottom; ++j)
        sum += input[j][i] * mask[j - top][i - left];
output[y][x] = sum;</pre>
```



```
int left = MAX(0, x - 2);
int right = MIN(width - 1, x + 2);
int top = MAX(0, y - 2);
int bottom = MIN(height - 1, y + 2);

int sum = 0;
for (int i = left; i <= right; ++i)
    for (int j = top; j <= bottom; ++j)
        sum += input[j][i] * mask[j - (y - 2)][i - (x - 2)];
output[y][x] = sum;</pre>
```



```
auto \overline{\text{left}} = MAX(0, \underline{x} - 2);

auto \overline{\text{right}} = MIN(width - 1, \underline{x} + 2);

int top = MAX(0, y - 2);

int bottom = MIN(height - 1, y + 2);

int sum = 0;

for (auto \overline{i} = \overline{\text{left}}; \overline{i} <= \overline{\text{right}}; ++\overline{i})

for (int \underline{j} = top; \underline{j} <= bottom; ++\underline{j})

sum += input[\underline{j}][\overline{i}] * mask[\underline{j} - (\underline{y} - 2)][\overline{i} - (\underline{x} - 2)];

output[\underline{y}][\underline{x}] = sum;
```

Input Space Splitting

Input Space Splitting

Input Space Splitting


```
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];</pre>
```



```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j++) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```



```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j++) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```


$$\mathcal{I}_{\mathtt{S}} = \{(\mathtt{S}, (\mathtt{i}, \mathtt{j})) \mid \mathtt{0} \leq \mathtt{i} \leq \mathtt{N} \land \mathtt{0} \leq \mathtt{j} \leq \mathtt{N}\}$$


```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j++) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```


$$\begin{split} \mathcal{I}_S &= \{ \left(\texttt{S}, \left(\texttt{i}, \texttt{j} \right) \right) \mid \texttt{0} \leq \texttt{i} \leq \texttt{N} \land \texttt{0} \leq \texttt{j} \leq \texttt{N} \} \\ \mathcal{I}_{\textbf{P}} &= \{ \left(\texttt{P}, \left(\texttt{i}, \texttt{j} \right) \right) \mid \texttt{0} \leq \texttt{i} \leq \texttt{N} \land \texttt{0} \leq \texttt{j} \leq \texttt{i} \} \end{split}$$


```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j++) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```


$$\mathcal{F}_{\mathtt{S}} = \{(\mathtt{S}, (\mathtt{i}, \mathtt{j}))
ightarrow (\mathtt{i}, \mathtt{j})\}$$


```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j++) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```


$$\begin{split} \mathcal{F}_{\mathtt{S}} &= \{ (\mathtt{S}, (\mathtt{i}, \mathtt{j})) \rightarrow (\mathtt{i}, \mathtt{j}) \} \\ \mathcal{F}_{\mathtt{P}_{\mathtt{1}}} &= \{ (\mathtt{P}, (\mathtt{i}, \mathtt{j})) \rightarrow (\mathtt{i}, \mathtt{j}) \} \quad \mathcal{F}_{\mathtt{P}_{\mathtt{2}}} &= \{ (\mathtt{P}, (\mathtt{i}, \mathtt{j})) \rightarrow (\mathtt{j}, \mathtt{i}) \} \end{split}$$

Splitting Predicates

Full Tile Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

Splitting Predicates

SAARLAND UNIVERSITY

Full Tile Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$Full_{S} = \{(S, (i, j)) \mid (j - (j \mod 8)) + 7 \le N\}$$

Splitting Predicates

SAARLAND UNIVERSITY

Full Tile Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$\begin{aligned} & \text{Full}_{\text{S}} = \{ (\text{S}, (i, j)) \mid (j - (j \text{ mod } 8)) + 7 \leq N \} \\ & \text{Full}_{\text{P}} = \{ (\text{P}, (i, j)) \mid (j - (j \text{ mod } 8)) + 7 \leq \min(i, N) \} \end{aligned}$$

SAARLAND UNIVERSITY

Uniform Access Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$\mathsf{Uni}_{\mathcal{F}_{\mathcal{S}}} = \{ (\mathcal{S}, (i, j)) \mid \mathcal{F}_{\mathcal{S}} (i, j+1) = \mathcal{F}_{\mathcal{S}} (i, j) \}$$

SAARLAND UNIVERSITY

Uniform Access Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$\begin{aligned} & \text{Uni}_{\mathcal{F}_{S}} \ = \{ (S, (i, j)) \mid \mathcal{F}_{S} \ (i, j + 1) = \mathcal{F}_{S} \ (i, j) \} \\ & \text{Uni}_{\mathcal{F}_{P_{1}}} \ = \{ (P, (i, j)) \mid \mathcal{F}_{P_{1}} (i, j + 1) = \mathcal{F}_{P_{1}} (i, j) \} \\ & \text{Uni}_{\mathcal{F}_{P_{2}}} \ = \{ (P, (i, j)) \mid \mathcal{F}_{P_{2}} (i, j + 1) = \mathcal{F}_{P_{2}} (i, j) \} \end{aligned}$$

SAARLAND UNIVERSITY

Uniform Access Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$\begin{aligned} & \text{Uni}_{\mathcal{F}_{\mathcal{S}}} \ = \{ \left(\mathcal{S}, (i, j) \right) \mid \mathcal{F}_{\mathcal{S}} \left(i, j + 1 \right) = \mathcal{F}_{\mathcal{S}} \left(i, j \right) \} = \{ \} \\ & \text{Uni}_{\mathcal{F}_{P_{1}}} = \{ \left(\mathcal{P}, (i, j) \right) \mid \mathcal{F}_{P_{1}} (i, j + 1) = \mathcal{F}_{P_{1}} (i, j) \} = \{ \} \\ & \text{Uni}_{\mathcal{F}_{P_{2}}} = \{ \left(\mathcal{P}, (i, j) \right) \mid \mathcal{F}_{P_{2}} (i, j + 1) = \mathcal{F}_{P_{2}} (i, j) \} = \{ \} \end{aligned}$$

SAARLAND UNIVERSITY

Consecutive Access Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$\begin{aligned} &\mathsf{Cons}_{\mathcal{F}_{S}} \ = \{ (S, (i, j)) \mid \mathcal{F}_{S} \ (i, j + 1) = \mathcal{F}_{S} \ (i, j) + 1 \} \\ &\mathsf{Cons}_{\mathcal{F}_{P_{1}}} = \{ (P, (i, j)) \mid \mathcal{F}_{P_{1}} (i, j + 1) = \mathcal{F}_{P_{1}} (i, j) + 1 \} \\ &\mathsf{Cons}_{\mathcal{F}_{P_{2}}} = \{ (P, (i, j)) \mid \mathcal{F}_{P_{2}} (i, j + 1) = \mathcal{F}_{P_{2}} (i, j) + 1 \} \end{aligned}$$

SAARLAND UNIVERSITY

Consecutive Access Predicate

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8) {
S: A[i][j] = /* ... */;
    if (j <= i)
P: A[i][j]+= A[j][i];
}</pre>
```

$$\begin{aligned} &\mathsf{Cons}_{\mathcal{F}_{\mathcal{S}}} \ = \{ (\mathcal{S}, (i, j)) \mid \mathcal{F}_{\mathcal{S}} \ (i, j + 1) = \mathcal{F}_{\mathcal{S}} \ (i, j) + 1 \} = \mathcal{I}_{\mathcal{S}} \\ &\mathsf{Cons}_{\mathcal{F}_{P_{1}}} = \{ (P, (i, j)) \mid \mathcal{F}_{P_{1}} (i, j + 1) = \mathcal{F}_{P_{1}} (i, j) + 1 \} = \mathcal{I}_{P} \\ &\mathsf{Cons}_{\mathcal{F}_{P_{2}}} = \{ (P, (i, j)) \mid \mathcal{F}_{P_{2}} (i, j + 1) = \mathcal{F}_{P_{2}} (i, j) + 1 \} = \{ \} \end{aligned}$$

SAARLAND UNIVERSITY COMPUTER SCIENCE

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8)
    if (i <= NumParticles) {
S: ...
}</pre>
```



```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8)
    if (i <= NumParticles) {
S: ...
}

for (int i = 0; i <= NumParticles; i++)
  for (int j = 0; j <= i; j += 8)
S: ...</pre>
```

SAARLAND UNIVERSITY COMPUTER SCIENCE

```
for (int i = 0; i <= N; i++)
  for (int j = 0; j <= N; j += 8)
    if (reverse) {
S: ...
    } else {
P: ...
}</pre>
```

SAARLAND UNIVERSITY

```
for (int i = 0; i \le N; i++)
   for (int j = 0; j \le N; j += 8)
     if (reverse) {
S: ...
    } else {
P: ...
if (reverse) {
  for (int i = 0; i \le N; i++)
    for (int j = 0; j \le i; j += 8)
 S: . . . .
} else {
  for (int i = 0; i \le N; i++)
    for (int j = 0; j \le i; j += 8)
 P: ...
```


Kernel

Evaluation

Pipeline

Evaluation

SAARLAND UNIVERSITY COMPUTER SCIENCE

Performance

Ongoing Work

- Model synchronization the Polyhedral Model.
- Apply polyhedral optimizations (scheduling).
- Improve the representation of non-affine parts.

Conclusion

OpenCL Programming Model

work			

OpenCL Programming Model

OpenCL Programming Model

Codelet Score

$$Score_n(k) := egin{cases} \sum_{Q \in k, \mathcal{F} \in \mathbb{F}_Q} & w_{cons} \| \mathit{Box}(\mathit{Cons}_{\mathcal{F}}(\mathit{d}_k)) \| & \text{if } n \geq w \ + w_{uni} \| \mathit{Box}(\mathit{Uni}_{\mathcal{F}}(\mathit{d}_k)) \| & otw. \end{cases}$$

Access Splitting Predicate

$$\mathcal{I}_k^{\mathcal{C}} := \bigcap_{Q \in k} \bigcap_{\substack{\mathcal{F} \in \mathbb{F}_Q, st \ Cons_{\mathcal{F}}(d_k)
eq \varnothing}} Cons_{\mathcal{F}}(d_k) \ .$$

Full Tile Predicate

