Inner Product Spaces

Michael Brodskiy

Professor: Lynn Knight

April 14, 2021

- Let \overrightarrow{u} , \overrightarrow{v} , and \overrightarrow{w} be vectors in vector space V, and c is a scalar. The Inner Product on V is a function that associates a real number $\langle \overrightarrow{u}, \overrightarrow{v} \rangle$ with each pair of vectors \overrightarrow{u} and \overrightarrow{v} and satisfies the following axioms:
 - 1. $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \langle \overrightarrow{v}, \overrightarrow{u} \rangle$
 - 2. $\langle \overrightarrow{u}, \overrightarrow{v} + \overrightarrow{w} \rangle = \langle \overrightarrow{u}, \overrightarrow{v} \rangle + \langle \overrightarrow{u}, \overrightarrow{w} \rangle$
 - 3. $c\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \langle c\overrightarrow{u}, \overrightarrow{v} \rangle$
 - 4. $\langle \overrightarrow{v}, \overrightarrow{v} \rangle > 0$ and $\langle \overrightarrow{v}, \overrightarrow{v} \rangle = 0$ iff $\overrightarrow{v} = 0$
- ullet A vector space V with an inner product is an inner product space
- $\bullet\,$ The dot product is the standard inner product
- Standard Inner Products:
 - 1. \mathbb{R}^n : $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \overrightarrow{u}_1 \overrightarrow{v}_1 + \overrightarrow{u}_2 \overrightarrow{v}_2 + \dots + \overrightarrow{u}_n \overrightarrow{v}_n$
 - 2. P_n : $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = a_0 b_0 + a_1 b_1 x + \dots + a_n b_n x^n$
 - 3. $M_{2,2}$: $\langle \mathbf{A}, \mathbf{B} \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$
- On [a,b]: $\langle \overrightarrow{f}, \overrightarrow{g} \rangle = \int_a^b f(x)g(x) dx$
- Properties:
 - 1. $(1)\langle \overrightarrow{u}, \overrightarrow{v} \rangle = \langle \overrightarrow{u}, \overrightarrow{v} \rangle$
 - $2. \ \langle \overrightarrow{u}, \overrightarrow{v} + \overrightarrow{w} \rangle = \langle \overrightarrow{u}, \overrightarrow{w} \rangle + \langle \overrightarrow{u}, \overrightarrow{v} \rangle$
 - 3. $\langle \overrightarrow{u}, 0 \rangle = 0$
- Norm or Distance
 - 1. $||\overrightarrow{u}|| = \sqrt{\langle \overrightarrow{u}, \overrightarrow{u} \rangle}$
 - 2. $d\langle \overrightarrow{u}, \overrightarrow{v} \rangle = ||\overrightarrow{u} \overrightarrow{v}||$

• Angle Between Vectors:

1.
$$\cos(\theta) = \frac{\langle \overrightarrow{u}, \overrightarrow{v} \rangle}{||\overrightarrow{u}||||\overrightarrow{v}||}, \quad 0 \le \theta \le \pi$$

- \overrightarrow{u} and \overrightarrow{v} are orthogonal iff $\langle \overrightarrow{u}, \overrightarrow{v} \rangle = 0$
- The projection of \overrightarrow{u} onto \overrightarrow{v} , or $\operatorname{proj}_{\overrightarrow{v}}\overrightarrow{u} = \frac{\langle \overrightarrow{u}, \overrightarrow{v} \rangle}{\langle \overrightarrow{v}, \overrightarrow{v} \rangle}\overrightarrow{v} = \frac{\langle \overrightarrow{u}, \overrightarrow{v} \rangle}{||\overrightarrow{v}||}\overrightarrow{v}$