This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Problem Image Mailbox.

CATALYST HANDBOOK

WITH SPECIAL REFERENCE TO UNIT PROCESSES IN AMMONIA AND HYDROGEN MANUFACTURE

165/6

1970

SPRINGER-VERLAG NEW YORK INC.
WOLFE SCIENTIFIC BOOKS/LONDON-ENGLAND

FIG. 35. Equilibrium concentration of hydrogen as a function of temperature, pressure, and steam ratio for naphtha.

Heats of reaction

The enthalpy change for the steam-reforming reaction varies with the reaction conditions.

The methane-steam reaction is always endothermic, as demonstrated by consideration of the reactions

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$
 $\Delta H_{25^{\circ}C} = +49.2 \text{ kcal/mole}$
 $CH_4 + 2H_2O \rightleftharpoons CO_2 + 4H_2$ $\Delta H_{25^{\circ}C} = +39.4 \text{ kcal/mole}$

Typical heats of reaction are given below in Fig. 36 for the naphtha-steam reaction proceeding to equilibrium under conditions of practical interest for naphtha CH_{2·2}.

The reaction is most endothermic at the limit when the whole of the carbon is reformed to give oxides of carbon together with hydrogen and becomes less