Devoir à la maison nº 14 : corrigé

Problème 1 — Division selon les puissances croissantes et applications

Partie I – Division selon les puissances croissantes

 $\textbf{1.} \ \operatorname{Soit} \ (A,B) \in \mathbb{K}[X]^2 \ \operatorname{tel} \ \operatorname{que} \ B(0) \neq 0 \ \operatorname{et} \ p \in \mathbb{N}. \ \operatorname{Supposons} \ \operatorname{qu'il} \ \operatorname{existe} \ Q_1,R_1,Q_2,R_2 \in \mathbb{K}[X] \ \operatorname{tels} \ \operatorname{que} \ \operatorname{que} \ \mathbb{K}[X] \ \operatorname{tels} \ \operatorname{que} \ \mathbb{K}[X] \ \operatorname{que} \ \mathbb{K}[X] \ \operatorname{tels} \ \operatorname{que} \ \mathbb{K}[X] \ \mathbb{K}[X] \ \operatorname{que} \ \mathbb{K}[X] \ \mathbb{K}[X]$

$$A=BQ_1+X^{p+1}R_1=BQ_2+X^{p+1}R_2 \qquad \qquad \deg Q_1\leqslant p \qquad \qquad \deg Q_2\leqslant$$

On a donc $B(Q_1-Q_2)=X^{p+1}(R_2-R_1)$. Puisque 0 n'est pas racine de B, X n'est pas un facteur irréductible de B. Puisque le seul facteur irréductible de X^{p+1} est X, B et X^{p+1} n'ont aucun facteur irréductible commun : ils sont donc premiers entre eux. D'après le théorème de Gauss, X^{p+1} divise $Q_1 - Q_2$. Or $\deg(Q_1 - Q_2) \leqslant p$ donc $Q_1 - Q_2 = 0$ i.e. $Q_1 = Q_2$. Ensuite, $X^{p+1}(R_2 - R_1) = 0$ puis $R_1 = R_2$ par intégrité.

2. Soient $A, B \in \mathbb{K}[X]$ tels que $B(0) \neq 0$. On fait l'hypothèse de récurrence suivante :

 $\mathsf{HR}(\mathfrak{p}): \mathrm{il} \ \mathrm{existe} \ (Q,R) \in \mathbb{K}[X]^2 \ \mathrm{tel} \ \mathrm{que} \ A = BQ + X^{\mathfrak{p}+1}R \ \mathrm{et} \ \mathrm{deg} \ Q \leqslant \mathfrak{p}.$

Initialisation : Posons $Q = \frac{A(0)}{B(0)}$. Alors A - BQ admet 0 pour racine : on peut donc le factoriser par X. Il existe alors $R \in \mathbb{K}[X]$ tel que A - BQ = XR i.e. A = BQ + XR. On a bien deg $Q \leq 0$.

 $\textbf{H\acute{e}r\acute{e}dit\acute{e}}: \mathrm{Supposons}\ \mathsf{HR}(\mathfrak{p})\ \mathrm{vraie}\ \mathrm{pour}\ \mathrm{un}\ \mathrm{certain}\ \mathfrak{p}\in\mathbb{N}.\ \mathrm{Il}\ \mathrm{existe}\ \mathrm{donc}\ (\tilde{Q},\tilde{R})\in\mathbb{K}[X]^2\ \mathrm{tel}\ \mathrm{que}\ A=B\tilde{Q}+X^{p+1}\tilde{R}$ et deg $\tilde{Q} \leq p$. Mais en raisonnant comme dans l'initialisation, on montre qu'il existe $\lambda \in \mathbb{K}$ tel que $\tilde{R} = \lambda B + XR$. On a alors $A = BQ + X^{p+2}R$ en posant $Q = \tilde{Q} + \lambda X^{p+1}$. Comme deg $\tilde{Q} \leq p$, deg $Q \leq p+1$.

Conclusion: Par récurrence, HR(p) est vraie pour tout $p \in \mathbb{N}$.

3.

Le quotient est donc $2 + 3X + 5X^2$ et le reste est 6 - 5X.

Partie II - Application aux développements limités

1. Si on note R le reste de la division selon les puissances croissantes de A par B à l'ordre p, on a $A - BQ = X^{p+1}R$. Comme R est continue en 0, elle est bornée au voisinage de 0 et donc $A(x) - B(x)Q(x) = \mathcal{O}(x^{p+1})$ et a fortiori

 $A(x) - B(x)Q(x) \underset{x \to 0}{=} o(x^p). \text{ Comme B est continue et non nulle en 0, } \frac{1}{B} \text{ est continue et donc bornée au voisinage de 0. On en déduit que } \frac{A(x) - B(x)Q(x)}{B(x)} \underset{x \to 0}{=} o(x^p) \text{ i.e. } \frac{A(x)}{B(x)} \underset{x \to 0}{=} Q(x) + o(x^p).$

2. On note à nouveau R le reste de la division selon les puissances croissantes de A par B à l'ordre p. Pour x au voisinage de 0,

$$f(x) - g(x)Q(x) = A(x) - B(x)Q(x) + (f(x) - A(x)) - (g(x) - B(x))Q(x)$$

= $x^{p+1}R(x) + (f(x) - A(x)) - (g(x) - B(x))Q(x)$

On prouve comme à la question précédente que $x^{p+1}R(x) = o(x^p)$. De plus, $f(x) - A(x) = o(x^p)$. Enfin, $g(x) - B(x) = o(x^p)$ et comme Q est continue et donc bornée au voisinage de 0, $(g(x) - B(x))Q(x) = o(x^p)$. On a donc $f(x) - g(x)Q(x) = o(x^p)$. Puisque $g(x) = B(x) + o(x^p)$, g admet $g(x) = o(x^p)$ pour limite en 0, de sorte que $g(x) = o(x^p)$ bornée au voisinage de 0. Par conséquent, $g(x) = o(x^p)$ i.e. $g(x) = o(x^p)$ i.e. $g(x) = o(x^p)$.

3. On a $\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$ et $\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)$. On effectue donc la division selon les puissances croissantes de $1 - \frac{X^2}{2} + \frac{X^4}{24}$ par $1 + X + \frac{X^2}{2} + \frac{X^3}{6} + \frac{X^4}{24}$ à l'ordre 4.

On a volontairement omis les puissances strictement supérieures à 5 dans les restes car elles n'interviennent pas dans le calcul du quotient qui est de degré au plus 4. D'après la question précédente, on a donc

$$\frac{\cos x}{\exp x} = 1 - x + \frac{x^3}{3} - \frac{x^4}{6} + o(x^4)$$

Partie III - Décomposition en éléments simples

1. On effectue la division selon les puissances croissantes de $X^3 - 1$ par X + 1.

Ainsi $X^3-1=(X+1)(2X^3-X^2+X-1)-2X^4.$ On en déduit que

$$\frac{X^3 - 1}{X^4(X + 1)} = \frac{2}{X} - \frac{1}{X^2} + \frac{1}{X^3} - \frac{1}{X^4} - \frac{2}{X + 1}$$

ce qui est bien la décomposition en éléments simples de $\frac{X^3-1}{X^4(X+1)}$.

2. Posons
$$F = \frac{X^2 + 1}{(X - 1)^4 (X + 1)^3}$$
 et

$$G = F(X+1) = \frac{X^2 + 2X + 2}{X^4(X+2)^3} = \frac{X^2 + 2X + 2}{X^4(X^3 + 6X^2 + 12X + 8)}$$

On effectue la division selon les puissances croissantes de $X^2 + 2X + 2$ par $X^3 + 2X^2 + 4X + 8$ à l'ordre 3.

Ainsi

$$X^2 + 2X + 2 = (X^3 + 2X^2 + 4X + 8)\left(-\frac{1}{8}X^3 + \frac{1}{8}X^2 - \frac{1}{8}X + \frac{1}{4}\right) + X^4\left(\frac{1}{8}X^2 + \frac{5}{8}X + \frac{7}{8}\right)$$

d'où

$$G = -\frac{1}{8X} + \frac{1}{8X^2} - \frac{1}{8X^3} + \frac{1}{4X^4} + \frac{X^2 + 5X + 7}{8(X+2)^3}$$

On en déduit

$$F = G(X - 1) = -\frac{1}{8(X - 1)} + \frac{1}{8(X - 1)^2} - \frac{1}{8(X - 1)^3} + \frac{1}{4(X - 1)^4} + \frac{X^2 + 3X + 3}{8(X + 1)^3}$$

Posons
$$\tilde{F}=\frac{X^2+3X+3}{8(X+1)^3}$$
 et $\tilde{G}=\tilde{F}(X-1).$ Ainsi

$$\tilde{G} = \frac{X^2 + X + 1}{8X^3} = \frac{1}{8X} + \frac{1}{8X^2} + \frac{1}{8X^3}$$

On en déduit

$$\tilde{F} = \tilde{G}(X+1) = \frac{1}{8(X+1)} + \frac{1}{8(X+1)^2} + \frac{1}{8(X+1)^3}$$

puis

$$\mathsf{F} = -\frac{1}{8(\mathsf{X}-1)} + \frac{1}{8(\mathsf{X}-1)^2} - \frac{1}{8(\mathsf{X}-1)^3} + \frac{1}{4(\mathsf{X}-1)^4} + \frac{1}{8(\mathsf{X}+1)} + \frac{1}{8(\mathsf{X}+1)^2} + \frac{1}{8(\mathsf{X}+1)^3}$$

Problème 2 — ENSI 1979

Partie I – Etude de cas particuliers

1. On trouve

$$P_1 = X$$
 $P_2 = 2X$ $P_3 = 3X - X^3$ $P_4 = 4X - 4X^3$ $Q_1 = 1$ $Q_2 = 1 - X^2$ $Q_3 = 1 - 3X^2$ $Q_4 = 1 - 6X^2 + X^4$

2. Les décompositions en facteurs irréductibles de P_2 , Q_2 , P_3 , Q_3 ne posent pas de problèmes.

$$P_2 = 2X$$
 $Q_2 = (1 - X)(1 + X)$ $P_3 = X(\sqrt{3} - X)(\sqrt{3} + X)$ $Q_3 = (1 - X\sqrt{3})(1 + X\sqrt{3})$

La factorisation de P₄ est évidente. Les racines de $1-6X+X^2$ sont $3-2\sqrt{2}$ et $3+2\sqrt{2}$. Les racines de Q₄ sont donc les racines carrées de ces derniers réels. Puisque $3-2\sqrt{2}=(1-\sqrt{2})^2$ et $3+2\sqrt{2}=(1+\sqrt{2})^2$, les racines de Q₄ sont $1-\sqrt{2}$, $-1+\sqrt{2}$, $1+\sqrt{2}$, $-1-\sqrt{2}$. Finalement,

$$P_4 = 4X(1-X)(1+X)$$

$$Q_4 = (X+1+\sqrt{2})(X-1+\sqrt{2})(X+1-\sqrt{2})(X-1-\sqrt{2})$$

3. La décomposition en éléments simples de R_2 est directe :

$$R_2 = \frac{2X}{(1-X)(1+X)} = \frac{(X+1) - (1-X)}{(1-X)(1+X)} = \frac{1}{1-X} - \frac{1}{1+X}$$

Une division euclidienne montre que la partie entière de R_3 est $\frac{1}{3}X$. La méthode usuelle montre que

$$R_3 = \frac{1}{3}X - \frac{4}{9\left(X - \frac{1}{\sqrt{3}}\right)} - \frac{4}{9\left(X + \frac{1}{\sqrt{3}}\right)}$$

La décomposition en éléments simples de R_4 est de la forme

$$R_4 = \frac{\alpha}{X - 1 - \sqrt{2}} + \frac{\beta}{X - 1 + \sqrt{2}} + \frac{\gamma}{X + 1 - \sqrt{2}} + \frac{\delta}{X + 1 + \sqrt{2}}$$

avec

$$\alpha = \frac{P_4(1+\sqrt{2})}{Q_4'(1+\sqrt{2})} \qquad \qquad \beta = \frac{P_4(1-\sqrt{2})}{Q_4'(1-\sqrt{2})} \qquad \qquad \gamma = \frac{P_4(-1+\sqrt{2})}{Q_4'(-1+\sqrt{2})} \qquad \qquad \delta = \frac{P_4(-1-\sqrt{2})}{Q_4'(-1-\sqrt{2})}$$

On remarquera pour simplifier les calculs que $\frac{P_4}{Q_4'} = \frac{1-X^2}{X^2-3}$ et on tirera profit du fait que R_4 est impaire. On trouve alors

$$R_4 = \frac{-1 - \frac{1}{\sqrt{2}}}{X - 1 - \sqrt{2}} + \frac{-1 + \frac{1}{\sqrt{2}}}{X - 1 + \sqrt{2}} + \frac{-1 + \frac{1}{\sqrt{2}}}{X + 1 - \sqrt{2}} + \frac{-1 - \frac{1}{\sqrt{2}}}{X + 1 + \sqrt{2}}$$

Partie II - Etude du cas général

1. Remarquons que pour tout $n \in \mathbb{N}$,

$$Z_{n+1} = Q_{n+1} + iP_{n+1} = -XP_n + Q_n + iP_n + iXQ_n = (1+iX)(Q_n + iP_n) = (1+iX)Z_n$$

Puisque $Z_0=1,$ on montre alors aisément que $Z_{n+1}=(1+iX)^n$ pour tout $n\in\mathbb{N}.$

2. Tout d'abord, $1+i\tan\alpha=\frac{e^{i\alpha}}{\cos\alpha}$ donc $(1+i\tan\alpha)^n=\frac{e^{in\alpha}}{\cos^n\alpha}$. Puisque P_n et Q_n sont à coefficients réels, il s'ensuit que

$$P_n(\tan\alpha) = \operatorname{Im}((1+i\tan\alpha)^n) = \frac{\sin n\alpha}{\cos^n\alpha} \qquad \qquad Q_n(\tan\alpha) = \operatorname{Re}((1+i\tan\alpha)^n) = \frac{\cos n\alpha}{\cos^n\alpha}$$

3. D'après la formule du binôme,

$$Z_n = (1 + iX)^n = \sum_{k=0}^n \binom{n}{k} i^k X^k = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k X^{2k} + i \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k X^{2k+1}$$

donc

$$P_n = \sum_{0 \leqslant 2k+1 \leqslant n} \binom{n}{2k+1} (-1)^k X^{2k+1} \qquad \qquad Q_n = \sum_{0 \leqslant 2k \leqslant n} \binom{n}{2k} (-1)^k X^{2k+1}$$

4. D'après la question II.3, P_n est impair et Q_n est pair.

Remarque. On peut également déterminer la parité de P_n et Q_n sans leurs formes développées. D'une part,

$$\overline{Z}_n = (1 - iX)^n = Z_n(-X) = Q_n(-X) + iP_n(-X)$$

D'autre part, puisque P_n et Q_n sont à coefficients réels,

$$\overline{Z}_n = Q_n - iP_n$$

Puisque P_n , Q_n , $P_n(-X)$, $Q_n(-X)$ sont à coefficients réels, $P_n(-X) = -P_n(X)$ et $Q_n(-X) = Q_n(X)$. Autrement dit, P_n est impair et Q_n est pair.

La question II.3 montre également que

- ▶ si n est pair, deg $P_n = n 1$, deg $Q_n = n$, le coefficient dominant de P_n est $-(-1)^{\frac{n}{2}}n$ et le coefficient dominant de Q_n est $(-1)^{\frac{n}{2}}$;
- ▶ si n est impair, deg $P_n = n$, deg $Q_n = n-1$, le coefficient dominant de P_n est $(-1)^{\frac{n-1}{2}}$ et le coefficient dominant de Q_n est $(-1)^{\frac{n-1}{2}}n$.
- **5.** ► Supposons n pair.

La question II.2 montre que les réels tan $\frac{k\pi}{n}$ pour $k \in \left[-\frac{n}{2} + 1, \frac{n}{2} - 1 \right]$ sont racines de P_n . La fonction tan étant strictement croissante sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, ces n-1 réels sont distincts. Puisque deg $P_n = n-1$, ce sont exactement les racines de P_n et elles sont simples.

La question II.2 montre que les réels tan $\frac{(2k+1)\pi}{2n}$ pour $k \in \left[-\frac{n}{2}, \frac{n}{2} - 1\right]$ sont racines de Q_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, ces n réels sont distincts. Puisque deg $Q_n = n$, ce sont exactement les racines de P_n et elles sont simples.

▶ Supposons n impair.

La question II.2 montre que les réels $\tan\frac{k\pi}{n}$ pour $k\in\left[-\frac{n-1}{2},\frac{n-1}{2}\right]$ sont racines de P_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, ces n réels sont distincts. Puisque deg $P_n=n$, ce sont exactement les racines de P_n et elles sont simples.

La question II.2 montre que les réels $\tan\frac{(2k+1)\pi}{2n}$ pour $k\in\left[\!\left[-\frac{n-1}{2},\frac{n-1}{2}-1\right]\!\right]$ sont racines de Q_n . La fonction tan étant strictement croissante sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$, ces n-1 réels sont distincts. Puisque deg $Q_n=n-1$, ce sont exactement les racines de P_n et elles sont simples.

6. Les questions précédentes montrent que si n est pair

$$\begin{split} P_n &= -(-1)^{\frac{n}{2}} n \prod_{k=-\frac{n}{2}+1}^{\frac{n}{2}-1} \left(X - \tan \frac{k\pi}{n} \right) \\ &= -(-1)^{\frac{n}{2}} n X \prod_{k=1}^{\frac{n}{2}-1} \left(X - \tan \frac{k\pi}{n} \right) \left(X + \tan \frac{k\pi}{n} \right) \\ Q_n &= (-1)^{\frac{n}{2}} \prod_{k=-\frac{n}{2}}^{\frac{n}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \\ &= (-1)^{\frac{n}{2}} \prod_{k=0}^{\frac{n}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \left(X + \tan \frac{(2k+1)\pi}{2n} \right) \end{split}$$

et que si n est impair

$$\begin{split} P_n &= (-1)^{\frac{n-1}{2}} \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}} \left(X - \tan \frac{k\pi}{n} \right) \\ &= (-1)^{\frac{n-1}{2}} X \prod_{k=1}^{\frac{n-1}{2}} \left(X - \tan \frac{k\pi}{n} \right) \left(X + \tan \frac{k\pi}{n} \right) \\ Q_n &= (-1)^{\frac{n-1}{2}} n \prod_{k=-\frac{n-1}{2}}^{\frac{n-1}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \\ &= (-1)^{\frac{n-1}{2}} n \prod_{k=0}^{\frac{n-1}{2}-1} \left(X - \tan \frac{(2k+1)\pi}{2n} \right) \left(X + \tan \frac{(2k+1)\pi}{2n} \right) \end{split}$$

7. Lorsque n est pair, $\deg P_n < \deg Q_n$ donc la partie entière de R_n est nulle.

Lorsque n est impair, $\deg P_n = \deg Q_n + 1$ donc la partie entière de R_n est de degré 1. Puisque P_n et Q_n sont respectivement impair et pair, R_n est impaire. L'unicité de la décomposition en éléments simples nous apprend donc que la partie entière de R_n est également impaire. Elle est donc de la forme $\mathfrak{a}X$ où \mathfrak{a} est le quotient du coefficient de P_n par le coefficient dominant de Q_n . Ainsi $\mathfrak{a} = \frac{1}{n}$. La partie entière de la fraction rationnelle R_n est donc $\frac{1}{n}X$.

8. D'une part,

$$Z'_{n} = ni(1+iX)^{n-1} = niZ_{n-1} = -nP_{n-1} + niQ_{n-1}$$

D'autre part.

$$Z'_n = Q'_n + iP'_n$$

Puisque $P_{n-1},\ Q_{n-1},\ P'_n,\ Q'_n$ sont à coefficients réels, on en déduit que $Q'_n=-nP_{n-1}$ et $P'_n=nQ_{n-1}$.

9. Supposons n pair. Puisque R_n est impaire, la décomposition en éléments simples de R_n est de la forme

$$R_n = \sum_{k=0}^{\frac{n}{2}-1} \frac{\lambda_k}{X - \tan\frac{(2k+1)\pi}{2n}} + \frac{\lambda_k}{X + \tan\frac{(2k+1)\pi}{2n}}$$

avec

$$\lambda_k = \frac{P_n\left(\tan\frac{(2k+1)\pi}{2n}\right)}{Q_n'\left(\tan\frac{(2k+1)\pi}{2n}\right)} = -\frac{1}{n} \cdot \frac{P_n\left(\tan\frac{(2k+1)\pi}{2n}\right)}{P_{n-1}\left(\tan\frac{(2k+1)\pi}{2n}\right)}$$

D'après la question II.2, on obtient après simplification

$$\lambda_k = -\frac{1}{n\cos^2\frac{(2k+1)\pi}{2n}}$$

Supposons n impair. Puisque R_n est impaire, la décomposition en éléments simples de R_n est de la forme

$$R_n = \frac{1}{n}X + \sum_{k=0}^{\frac{n-1}{2}-1} \frac{\lambda_k}{X - \tan\frac{(2k+1)\pi}{2n}} + \frac{\lambda_k}{X + \tan\frac{(2k+1)\pi}{2n}}$$

avec

$$\lambda_k = -\frac{1}{n\cos^2\frac{(2k+1)\pi}{2n}}$$

10. ► Supposons n pair.

Les racines non nulles de P_n autrement dit de $\frac{P_n}{X}$ sont les $\tan \frac{k\pi}{n}$ et les $-\tan \frac{k\pi}{n}$ pour $k \in [1, \frac{n}{2} - 1]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n}{2}-1} \prod_{k=1}^{\frac{n}{2}-1} \tan^2 \frac{k\pi}{n} = (-1)^{\frac{n}{2}-1} A_n^2$$

Par ailleurs,

$$\frac{P_n}{X} = \sum_{k=0}^{\frac{n}{2}-1} {n \choose 2k+1} (-1)^k X^{2k}$$

donc le produit des racines de $\frac{P_n}{X}$ est aussi

$$(-1)^{n-2} \frac{\binom{n}{1}(-1)^0}{\binom{n}{n-1}(-1)^{\frac{n}{2}-1}} = (-1)^{\frac{n}{2}-1}$$

Ainsi $A_n^2=1$. Puisque $\tan\frac{k\pi}{n}>0$ pour $k\in [1,\frac{n}{2}-1]$, on a donc $A_n>0$ de sorte que $A_n=1$. Les racines de Q_n sont les $\tan\frac{(2k+1)\pi}{2n}$ et les $-\tan\frac{(2k+1)\pi}{2n}$ pour $k\in [0,\frac{n}{2}-1]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n}{2}} \prod_{k=0}^{\frac{n}{2}-1} \tan^2 \frac{(2k+1)\pi}{2n} = (-1)^{\frac{n}{2}} B_n^2$$

Par ailleurs,

$$Q_{n} = \sum_{k=0}^{\frac{n}{2}} \binom{n}{2k} (-1)^{k} X^{2k}$$

donc le produit des racines de Q_n est aussi

$$(-1)^{n} \frac{\binom{n}{0}(-1)^{0}}{\binom{n}{n}(-1)^{\frac{n}{2}}} = (-1)^{\frac{n}{2}}$$

Ainsi $B_n^2=1$. Puisque $\tan\frac{(2k+1)\pi}{2n}>0$ pour $k\in\left[\!\left[0,\frac{n}{2}-1\right]\!\right],$ on a donc $B_n>0$ de sorte que $B_n=1$.

Remarque. On peut aussi remarquer que les tangentes intervenant dans chacun des produits A_n et B_n sont inverses l'une de l'autre deux à deux en vertu de la relation trigonométrique $\tan\left(\frac{\pi}{2}-\theta\right)=\frac{1}{\tan(\theta)}$.

► Supposons n impair.

Les racines non nulles de P_n autrement dit de $\frac{P_n}{X}$ sont les $\tan\frac{k\pi}{n}$ et les $-\tan\frac{k\pi}{n}$ pour $k \in [1, \frac{n-1}{2}]$. Le produit de ces racines vaut donc

$$(-1)^{\frac{n-1}{2}} \prod_{k=1}^{\frac{n-1}{2}} \tan^2 \frac{k\pi}{n} = (-1)^{\frac{n-1}{2}} A_n^2$$

Par ailleurs,

$$\frac{P_n}{X} = \sum_{k=0}^{\frac{n-1}{2}} \binom{n}{2k+1} (-1)^k X^{2k}$$

donc le produit des racines de $\frac{P_n}{X}$ est aussi

$$(-1)^{n-1} \frac{\binom{n}{1}(-1)^0}{\binom{n}{n}(-1)^{\frac{n-1}{2}}} = (-1)^{\frac{n-1}{2}} n$$

Ainsi $A_n^2=n$. Puisque $\tan\frac{k\pi}{n}>0$ pour $k\in [1,\frac{n-1}{2}]$, on a donc $A_n>0$ de sorte que $A_n=\sqrt{n}$. Les racines de Q_n sont les $\tan\frac{(2k+1)\pi}{2n}$ et les $-\tan\frac{(2k+1)\pi}{2n}$ pour $k\in [0,\frac{n-1}{2}-1]$. Le produit de ces racines

$$(-1)^{\frac{n-1}{2}} \prod_{k=0}^{\frac{n-1}{2}-1} \tan^2 \frac{(2k+1)\pi}{2n} = (-1)^{\frac{n-1}{2}} B_n^2$$

Par ailleurs,

vaut donc

$$Q_n = \sum_{k=0}^{\frac{n-1}{2}} \binom{n}{2k} (-1)^k X^{2k}$$

donc le produit des racines de Q_n est aussi

$$(-1)^{n-1} \frac{\binom{n}{0}(-1)^0}{\binom{n}{n-1}(-1)^{\frac{n-1}{2}}} = (-1)^{\frac{n-1}{2}} \frac{1}{n}$$

Ainsi $B_n^2 = \frac{1}{n}$. Puisque $\tan \frac{(2k+1)\pi}{2n} > 0$ pour $k \in [0, \frac{n-1}{2} - 1]$, on a donc $B_n > 0$ de sorte que $B_n = \frac{1}{\sqrt{n}}$.

Remarque. A nouveau, en utilisant la relation trigonométrique $\tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan(\theta)}$, on peut montrer que $B_n = \frac{1}{A_n}$.