

(11)Publication number:

2000-339894

(43) Date of publication of application: 08.12.2000

(51)Int.CI.

G11B 21/21

(21)Application number: 11-145585

(71)Applicant: FUJITSU LTD

(22)Date of filing:

(72)Inventor: TOKURA FUMIHIKO

USHIMARU AKIHIKO

IMAKADO MASAYUKI

(54) METHOD AND DEVICE FOR CORRECTING SUSPENSION

25.05.1999

(57)Abstract:

PROBLEM TO BE SOLVED: To simplify non-contact and non-mechanical correction by correcting the rolling and pitch angles of a magnetic head held by applying twisting to a suspension arm.

SOLUTION: The correction of the rolling and pitch angles of a suspension arm 1 is carried out by scanning on the asymmetrical position line of the beam part 9 of the arm 1 by a laser pulse having a high peak value and a short interval, using an optical machine such as a switch. Especially, the pulse of a high peak value is effectively operated on the beam part 9 of the arm 1 having a plate thickness set equal to 30 µm or lower, and the rolling and pitch angles are corrected. The metallic part of the arm 1 is linearly scanned by an optical device, and the angles are corrected based on the generated bending deformation of the metallic part. The control of a necessary displacing amount is performed, and corrected not only by laser strength but also laser scanning according to the shape of the arm 1. Then, bending and

machining are executed on the laser spot scanning line S1-S2 of a laser machining position, and the tip displacing point P1 of the arm and the tip displacing point P2 of a magnetic head loading surface are changed.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁 (JP)

(12)公開特許公報(A)

(11)特許出願公開番号 特開2000—339894

(P2000-339894A) (43)公開日 平成12年12月8日(2000.12.8)

(51) Int. Cl. 7

G11B 21/21

識別記号

F I G11B 21/21 テーマコート' (参考)

A 5D059

審査請求 未請求 請求項の数14 OL (全7頁)

(21)出願番号

特願平11-145585

(22)出願日

平成11年5月25日(1999.5.25)

(71)出願人 000005223

富士通株式会社

神奈川県川崎市中原区上小田中4丁目1番

1号

(72) 発明者 十倉 史彦

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(72)発明者 牛丸 明彦

神奈川県川崎市中原区上小田中4丁目1番

1号 富士通株式会社内

(74)代理人 100089141

弁理士 岡田 守弘

最終頁に続く

(54) 【発明の名称】サスペンション修正方法およびその修正装置

(57)【要約】

【課題】 本発明は、磁気ヘッドを支持するサスペンションアームを曲げて磁気ヘッドの媒体に対するロール角およびピッチ角を修正するサンペンション修正方法およびその修正装置に関し、サスペンションアームのに両側のビーム部の一方あるいは両者を微小レーザスポットで線上に1あるいは複数、走査して折り曲げ結果としてサスペンションアームをねじりロール角およびピッチ角を修正し、非接触で非機械的かつ折り曲げてロール角およびピッチ角の修正を簡易な操作で確実に実現することを目的とする

【解決手段】 サスペンションアームの磁気ヘッドを保持する一方あるいは両方のビーム部あるいはその近傍をレーザビームで線上に走査して折り曲げて当該サスペンションアームにねじりを与えて保持する磁気ヘッドのロール角およびピッチ角を修正するサスペンション修正方法およびその修正装置である。

1

【特許請求の範囲】

【請求項1】磁気ヘッドを支持するサスペンションアームを曲げて磁気ヘッドの媒体に対するロール角およびピッチ角を修正するサンペンション修正方法において、上記サスペンションアームの磁気ヘッドを保持する一方あるいは両方のビーム部あるいはその近傍をレーザビームで線上に走査して折り曲げて当該サスペンションアームにねじりを与えて保持する磁気ヘッドのロール角およびピッチ角を修正することを特徴とするサスペンション修正方法。

【請求項2】上記レーザビームで線上に走査する速度を変えて上記修正量を調整することを特徴とする請求項1 記載のサスペンション修正方法。

【請求項3】上記レーザビームで線上に走査する同じ位置あるいは隣接する位置の回数を変えて上記修正量を調整することを特徴とする請求項1あるいは請求項2記載のサスペンション修正方法。

【請求項4】上記レーザビームで線上に走査する位置を変えて上記ロール角の修正量を調整することを特徴とする請求項1から請求項3のいずれかに記載のサスペンシ 20ョン修正方法。

【請求項5】上記レーザビームで線上に走査する傾きを変えて上記ピッチ角の修正量を調整することを特徴とする請求項1から請求項3のいずれかに記載のサスペンション修正方法。

【請求項6】上記レーザビームで線上に走査するときにレーザスポット形状が同じになるようにフォーガス制御することを特徴とする請求項1から請求項5のいずれかに記載のサスペンション修正方法。

【請求項8】磁気ヘッドを支持するサスペンションアームを曲げて磁気ヘッドの媒体に対するロール角およびピッチ角を修正するサンペンション修正装置において、レーザビームを照射するレーザ照射装置と、

上記サスペンションアームの磁気ヘッドを保持する一方あるいは両方のビーム部を上記レーザビーム照射装置から発生されたレーザビームで線上に走査して折り曲げて 40 当該サスペンションアームにねじりを与える装置とを備えたことを特徴とするサスペンション修正装置。

【請求項9】上記レーザビームで線上に走査する速度を変えて上記修正量を調整する装置を備えたことを特徴とする請求項8記載のサスペンション修正装置。

【請求項10】上記レーザビームで線上に走査する同じ 位置あるいは隣接する位置の回数を変えて上記修正量を 調整する装置を備えたことを特徴とする請求項8あるい は請求項9記載のサスペンション修正装置。

【請求項11】上記レーザビームで線上に走査する位置 50

を変えて上記ロール角の修正量を調整する装置を備えたことを特徴とする請求項8から請求項10のいずれかに 記載のサスペンション修正装置。

【請求項12】上記レーザビームで線上に走査する傾きを変えて上記ピッチ角の修正量を調整する装置を備えたことを特徴とする請求項8から請求項10のいずれかに記載のサスペンション修正装置。

【請求項13】上記レーザビームで線上に走査するとき にレーザスポット形状が同じになるようにフォーカス制 御する装置を備えたことを特徴とする請求項8から請求 項12のいずれかに記載のサスペンション修正装置。

【請求項14】上記レーザビームで線上に走査して折り曲げ部分の厚さを 30μ m以下としたことを特徴とする請求項8から請求項13のいずれかに記載のサスペンション修正装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ハードディスク装置 (HDDという)のデータを読み書きする磁気ヘッドスライダのロール方向の傾き角となる磁気ヘッド搭載面のロール角と、ピッチ方向の傾き角となる磁気ヘッド搭載面のピッチ角とを適正な角度範囲に修正する修正方法およびその修正装置に関するものである。

[0002]

【従来の技術】従来、HDDの磁気ヘッドは記録媒体上を微小に浮上させるため、磁気ヘッド搭載面の要求する位置精度を満足するサスペンショシアームの製造は難しくなっている。サスペンションアームの磁気ヘッド搭載面のロール角は磁気ディスクへのデータの書込み、読み出しにとって重要である浮上時の磁気ヘッドの姿勢に影響する。現在、ロール角およびピッチ角が不良のサスペンションアームは機械的に変位を与えることでロール角およびピッチ角の修正を行なっている。これは、磁気ヘッド搭載面あるいは磁気ヘッドを直接押して機械的に曲げたり、またはねじりを加える方法で、直接触れて動かすため、サスベンションアームや磁気ヘッドを破壊してしまったり、機械的な特性変化や応力至みが発生し、修正後の経時変化や環境変化等により修正前の形状に戻り勝ちであるという問題があった。

[0003]

【発明が解決しようとする課題】本発明もロール角およびピッチ角の修正は、サスペンションアームを変形させせて磁気ヘッド搭載面のロール各およびピッチ角を修正するが、サスペンションアームの変形をレーザ照射による金属曲げ加工を利用して実現する。レーザを金属に照射して加熱、冷却するとレーザ照射側に収縮が発生し、レーザ照射された方向(側)に曲げが生じることが知られている。この曲げ変形を利用し、ロール角およびピッチ角を修正する方法は、レーザを1点に照射し局部を加熱、冷却して曲げを発生させロール角およびピッチ角を

調整する技術がある。

【0004】しかし、HDDの小型化が進むにつれて各部品が小型化し、サスペンションアームもこれまでより薄膜化した。従来のレーザのビームスポット照射による曲げ加工では、照射部に孔が開いてしまったり、レーザ照射部の熱は容易に照射部の裏面にまで達し所望する曲げ変形が困難である。また、連続波では、レーザにピークがなく曲げ加工を発生させることが困難であった。

【0005】本発明は、これらの問題を解決するため、サスペンションアームのに両側のビーム部あるいはその 10 近傍の一方あるいは両者を微小レーザスポットで線上に 1 あるいは複数、走査して折り曲げ結果としてサスペンションアームをねじりロール角およびピッチ角を修正し、非接触で非機械的かつ折り曲げてロール角およびピッチ角の修正を簡易な操作で確実に実現することを目的としている。

[0006]

【課題を解決するための手段】図1を参照して課題を解決するための手段を説明する。図1において、サスペンションアーム1は、両側に図示のようにビーム部9を設 20けると共にジンバル部5に磁気ヘッドを搭載して保持するものである。

【0007】ビーム部9は、ジンバル部5を保持するものであって、ここでは、レーザスポットで一方あるいは両方を走査して折り曲げジンバル部5に搭載した磁気へッドの媒体に対するロール角およびピッチ角(図1の(a)参照)を修正するものである。

【0008】次に、動作を説明する。サスペンションアーム1の磁気ヘッドを保持する一方あるいは両方のビーム部9あるいはその近傍をレーザビームで線上に走査し 30 て折り曲げて当該サスペンションアーム1にねじりを与えて保持する磁気ヘッドのロール角およびピッチ角を修正するようにしている。

【0009】この際、レーザビームで線上に走査する速度を変えて修正量を調整するようにしている。また、レーザビームで線上に走査する同じ位置あるいは隣接する位置の回数を変えて修正量を調整するようにしている。 【0010】また、レーザビームで線上に走査する位置を変えてロール角の修正量を調整するようにしている(図4条略) また レーザビームで線上に走査する傾

(図4参照)。また、レーザビームで線上に走査する傾 40 る。図中、先端の座標中回転方向は、ロール(ロールきを変えてピッチ角の修正量を調整するようにしている 角)およびピッチ(ピッチ角)の回転方向をそれぞれば(図5参照)。 す。

【0011】また、レーザビームで線上に走査するときにレーザスポット形状が同じになるようにフォーカス制御するようにしている(図6参照)。従って、サスペンションアーム1のに両側のビーム部9あるいはその近傍の一方あるいは両者を微小レーザスポットで線上に1あるいは複数、走査して折り曲げ結果としてサスペンションアーム1をねじりロール角およびピッチ角を修正することにより、非接触で非機械的かつ折り曲げてロール角

およびピッチ角の修正を簡易な操作で確実に行うことが 可能となる。

[0012]

【実施例】本発明は、サスペンションアームのロール角 およびピッチ角を修正するために、レーザはQスイッチ のような光学機器を使いパルス幅が短くピークがあるレ ーザを毎秒数千パルス(ピーク値が10倍位と高く、間 隔がms以下と短いパルス)でサスペンションアーム1 のビーム部9の非対称位置に線上に走査することによっ て初めて実現したものである。特に、板厚が30μm以 下の従来技術では不可であったサスペンションアーム1 のビーム部9に対して、ピーク値が高い点が有効に作用 し、良好なロール角およびピッチ角の修正ができた。レ ーザヘッドあるいはレーザビームあるいはサスペンショ ンアーム1が移動あるいは鏡を使ってレーザビームを移 動させ、レーザビームが線上にビーム部9を走査して照 射するようにしている。これにより、サスペンションア ーム1を従来の単なる曲げではなく、折り曲げてサスペ ンションアーム1をねじり、確実に変形を与えてロール 角およびピッチ角を修正することが可能となる。

【0013】ロール角およびピッチ角を修正させるため、レーザの種別や修正装置の構成、照射方法および照射条件(出力、スポット径、繰り返し回数、照射位置、移動速度、走査位置または角度)がある。本発明ではQスイッチユニットなどの光学機器によるYAGレーザで、サスペンションアーム1の金属部を直線状に走査し発生した金属部の折り曲げ変形によりロール角およびピッチ角を修正する。必要な変位量の制御はレーザの強度などの設定だけでなく、サスペンションアーム1の形状にあわせレーザを走査する方法によって制御、修正する。本発明が提供するロールおよびピッチ角の修正方法および修正装置について以下に例を挙げ順次詳細に脱明する。

【0014】図1は、本発明のサスペンションアームの構成図を示す。図1の(a)は、標準的なサスペンションアーム1は、アクチュエータアーム取付部2、アーム剛性部4、アームばね部3、ジンバル部5、磁気ヘッド搭載部7、磁気ヘッド6、その他電気信号ケーブルなどで構成されている。図中、先端の座標中回転方向は、ロール(ロール角)およびピッチ(ピッチ角)の回転方向をそれぞれ示す。

【0015】図1の(b)は、図1の(a)に示すジンバル部5を示す。ジンバル部5は、ジンバルばね部8、サスペンションアーム取付部10、磁気ヘッド搭載部7、ビーム部9から構成されている。

の一方あるいは両者を微小レーザスポットで線上に1あ 【0016】図1の(c)は、図1の(b)と同様に図るいは複数、走査して折り曲げ結果としてサスペンショ 1の(a)に示すジンバル部5であって、レーザ加工すンアーム1をねじりロール角およびピッチ角を修正する る位置である点線S1-S2を示す。点線S1-S2でことにより、非接触で非機械的かつ折り曲げてロール角 50 折り曲げ加工することで、アーム先端P1、磁気ヘッド

搭載面先端P2を変位させる。修正前のジンバル先端部 11の拡大図を図2の(a)に示し、A-A断面の拡大 図を図2の(b-1), (b-2)に示す。

【0017】図2は、本発明の説明図(ロール角修正、 その1)を示す。図2の(a)の点線S1-S2にレー ザを線走査することで折り曲げ変形が発生し先端の一方 のP1が図2の(b-1)に示す矢印の金属面側に変位 することで、磁気ヘッド搭載面先端P2が図2の(b-1) に示す矢印の媒体面側に変位するように、ねじりが 加わり、図2の(b-1)に示すロール角 α は図2の (b-2) に示すように修正される。

【0018】図3は、本発明の説明図(ロール角修正、 その2)を示す。この図3は、図2の(a), (b-1), (b-2) で説明したロール角の修正方向を逆に させたい場合の方法で、磁気ヘッド搭載部7を対称にど ちらか一方に加工(修正)することでロール角の修正方 向を制御したものである。

【0019】一般に、ロール角などの修正は、レーザの 出力、繰り返し周波数、パルス数、スポット径などのレ ーザ発振条件で制御するが、本発明の設定条件は、サス 20 ペンションアーム1、修正する角度、修正する角度量に 対してレーザ発振条件以外のレーザ走査速度、レーザ走 査方向(角度)、レーザ走査繰り返し回数を変えること でロール角の修正量を任意に制御する。

【0020】図4は、本発明の説明図(ロール角修正、 その3)を示す。ここで、図4の(a)は走査線aから 走査線bへ段階的に走査角度を変えて加工している。こ れにより、サスペンションアーム1の折り曲げ変形量に 差が生じ、図4の(b)に示すように、走査線a, bは ロール角修正量をAO, BOのように制御できる。ま た、走査線a, bの走査する速度をVO、V1、V2 (ここで、V1 < V0 < V2) に変更することで走査線 上のレーザ照射エネルギー量を制御し、図4の(b)に 示すA1、B1やA2、B2のように修正角度量を制御

【0021】図5は、本発明の説明図(ピッチ角修正) を示す。これは、図4のロール角修正に対するピッチ角 修正の例を示し、図5の(a)のR1部のa1からb1 の変化ではピッチ角は変化しないが(ロール角のみ変 化)、ビーム部9の加工位置を磁気ヘッド搭載部7のR 40 1からR2のように離すことでピッチ角の修正角度を図 5の(b)のA1からA2のように減少できる。

【0022】また、レーザ加工を繰り返し行う場合、前 の加工位置とレーザ照射位置部分をを重ねたり、ずらし たりすることで、ロール角およびピッチ角の変化量を制 御することができる。

【0023】前述した修正方法は、対象となるサスペン ションアーム1や磁気ヘッド搭載面の形状、材料の種類 によって同じ加工であってもロール角およびピッチ角の 定を実験により求めて設定するようにする。

【0024】図6は、本発明の全体構成図を示す。図6 では、対象となるサスペンションアーム1は数本から数 十本のロットでまとめられたもので、本装置にてロール 角およびピッチ角の良否判定と修正量を測定して修正で きる。修正に使用するレーザ照射装置13、配置された サスペンションアーム1のロール角およびピッチ角と加 工位置との距離を常に測定している測定部14、サスペ ンションアーム1を位置決めする移動部12とステージ 10 部15、測定したロール角およびピッチ角の判定、修正 角度の算出、予め修正角に必要なレーザ照射条件設定テ ーブルがあり、その中から条件設定を決める制御部15 で構成され、必要な場合には、前後に他工程との搬送部 を配置する。

【0025】図6に示すように、ある程度まとまった数 で一度に加工あるいは単体でサスペンションアーム1を 加工する場合、レーザ加工を安定にさせるため、測定時 に加工焦点レンズと加工位置の距離を測定し、加工時に ステージ部15が適正なレーザスポット照射できるよう に光軸方向にレーザあるいは光学系を配置する。

【0026】また、図6に示す装置を使って、サスペン ションアーム1に対しレーザ設定条件一定で、加工条件 設定をビームスポット径 φ 1 5 0 μm, レーザ走査速度 10mm/sec, 加工回数1回にて、図2の(a), 図3の(a)で示す加工位置に図4の(a)で示すaか ら b まで走査角度を変化させた 1 個の加工で、ロール角 を-0.50~0.50度、ピッチ角を-0.50~0 度の範囲で制御修正できた。

【0027】本実施例の実験の結果、サスペンションア 30 ームに熱エネルギー (例えばQスイッチレーザのピーク 値が高くパルス間隔m s 以下のパルス状のレーザ形状) を与えることができれば修正を実現することは可能であ るが、Qスイッチパルス制御YAGレーザが良好であ り、他のYAGレーザではレーザパルス形状に近づける 必要がある(現状では困難である)。

【0028】また、本実施例はサスペンションアーム1 に磁気ヘッドを搭載あるいは非搭載のいずれでもサスペ ンションアーム1のロール角およびピッチ角の修正が可 能であり、例えばサスペンションアーム1自身のロール 角およびピッチ角は正確でも搭載する磁気ヘッドが傾い て接着されてしまっても、当該傾いた磁気ヘッドのロー ル角およびピッチ角を許容値内に修正できる。

[0029]

【発明の効果】以上説明したように、本発明によれば、 サスペンションアーム1の両側のビーム部9あるいはそ の近傍の一方あるいは両者を微小レーザスポットで線上 に1あるいは複数、走査して折り曲げ結果としてサスペ ンションアーム1をねじりロール角およびピッチ角を修 正する構成を採用しているため、非接触で非機械的かつ 修正量が異なる。修正量を正確に制御するには、条件設 50 折り曲げてロール角およびピッチ角の修正を簡易な操作 7

で確実に行うことができる。

【図面の簡単な説明】

【図1】本発明のサスペンションアーム構成図である。

【図2】本発明の説明図(ロール角修正、その1)であ

る。

【図3】本発明の説明図(ロール角修正、その2)であ

る。

【図4】本発明の説明図(ロール角修正、その3)であ z

【図5】本発明の説明図(ピッチ角修正)である。

【図6】本発明の全体構成図である。

【符号の説明】

1:サスペンションアーム

2:アタチュエータアーム取付部

3:アームばね部

4:アーム剛性部

5:ジンバル部

6:磁気ヘッド

7:磁気ヘッド搭載部

8:ジンバルばね部

9:ビーム部

10:サスペンションアーム取付部

11:ジンバル先端部

12:移動部

13: レーザ照射装置

14: 測定部

15:ステージ部

16:制御部

p1: レーザ加工によるアーム先端部変位点

10 p2: レーザ加工によるアーム先端部変位点

p3:レーザ加工による磁気ヘッド搭載面端部変位点

p 4: レーザ加工による磁気ヘッド搭載面端部変位点

S1-S2:レーザスポット走査線

S3-S4:レーザスポット走査線

a:レーザ加工位置

b:レーザ加工位置

A:ロール角変化量

B:ロール角変化量

α:磁気ヘッドスライダのロール角

20

【図1】

本発明のサスペンションアームの構成図

[図6]

本発明の全体構成図

【図2】

本発明の説明図 (ロール角修正、その1)

(b) 図1の (c) のA-A断面

【図3】

本発明の説明図(ロール角修正、その2)

(b) 図1の(c) のA-A断面

【図4】

本発明の説明図 (ロール角修正、その3)

【図5】

本発明の説明図 (ピッチ角修正)

フロントページの続き

(72) 発明者 今門 正幸

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 5D059 AA01 BA01 CA14 CA16 CA26 DA15 DA17 DA40