

COMPUTER SCIENCE AND ENGINEERING

Indian Institute of Technology, Palakkad

CS5016: Computational Methods and Applications

Coding Assignment 4

 $8~{\rm Feb},~2024$

 $Numerical \ \overline{Differentiation \ and \ Integration}$

1. Write a program to visualize actual derivative $(f'(x))$ and forward finite difference approximation $(\delta_{0.01}^+(x))$ of the function $\sin(x^2)$ in the internal $[0,1]$.	[10]
2. Write a program to visualize the absolute errors of approximation $\delta_{0.01}^+(x)$, $\delta_{0.01}^-(x)$ and $\delta_{0.01}^c(x)$ of function $\sin(x^2)$ in the internal $[0,1]$.	[10]
3. Write a program to visualize, as a function of h , the maximum absolute error of approximations $\delta_h^+(x)$ and $\delta_h^c(x)$ of function $\sin(x^2)$ in the internal $[0,1]$. In the same figure, also plot the theoretical maximum absolute error of approximations $\delta_h^+(x)$ and $\delta_h^c(x)$.	[20]
4. Write a program to visualize, as a function of M (number of intervals), area under the curve $y(x) = 2x \cdot e^{x^2}$ in the interval [1,3] computed using the trapezoidal formula. In the figure, also indicate the exact area.	[20]
5. Write a program to visualize, as a function of u , area under the curve $y(x) = 2x \cdot e^{x^2}$ in the interval $[0, u]$ computed using various integration functions available in Python's scipy.integrate module. In the figure, also indicate the actual area under the curve.	[20]
6. Enhance the class Polynomial, developed in the last coding assignment, as follows	[10]
• Add a method derivative that will return the polynomial's derivative.	
<pre>p = Polynomal([1, 2, 3]) pd = d.derivative() print(pd)</pre>	
Expected output:	
Coefficients of the polynomial are: 2 6	
• Add a method area that takes two arguments a and b , and returns the exact area under the polynomial in the interval $[a, b]$	
<pre>p = Polynomal([1, 2, 3]) print(p.area(1,2))</pre>	
Expected output:	

Area in the interval [1, 2] is: 11

CSE

7. Write a program that uses the enhanced Polynomial class to approximate area under the curve $y(x) = e^x \cdot \sin x$ in the interval [0, 1/2] within a guaranteed error of 10^{-6} .

[10]

NOTE: Your code should not use any numerical integration techniques, and should not compute the actual area under the curve.

End of document