POLOCY GRADIENT INTRODUCTION TO REINFORCEMENT LEARNING

Bogdan Ivanyuk-Skulskyi, Dmytro Kuzmenko

Department of Mathematics, National University of Kyiv-Mohyla Academy

March 20, 2023

RL ALGORITHMS INVOLVE

- **▶** Optimization
- ► Delayed consequences
- ► Exploration
- ► Generalization
- ► And statistical and computational efficiency matters

LAST TIME: GENERALIZATION AND EFFICIENCY

Can use structure and additional knowledge to help constrain and speed reinforcement learning

POLICY-BASED REINFORCEMENT LEARNING

ightharpoonup In the last lecture we approximated the value or action-value function using parameters w,

$$V_w(s) \approx V^{\pi}(s)$$

$$Q_w(s,a) \approx Q^{\pi}(s,a)$$

- \blacktriangleright A policy was generated directly from the value function (using ϵ -greedy)
- ▶ In this lecture we will directly parametrize the policy, and will typically use θ to show parameterization:

$$\pi_{\theta}(s, a) = \mathbb{P}[a|s; \theta]$$

- Goal is to find a policy π with the highest value function V^{π}
- ▶ We will focus again on model-free reinforcement learning

VALUE-BASED AND POLICY-BASED RL

- ► Value Based
 - learned Value Function
 - Implicit policy (e.g. -greedy)
- ► Policy Based
 - No Value Function
 - Learned Policy
- ► Actor-Critic
 - Learned Value Function
 - Learned Policy

Types of Policies to Search Over

- ▶ So far have focused on deterministic policies or ϵ -greedy policies
- Now we are thinking about direct policy search in RL, will focus heavily on stochastic policies

POLICY OBJECTIVE FUNCTIONS

- Goal: given a policy $\pi_{\theta}(s, a)$ with parameters θ , find best θ
- ▶ But how do we measure the quality for a policy π_{θ} ?
- ▶ In episodic environments can use policy value at start state $V(s_0, \theta)$
- ► For simplicity, today will mostly discuss the episodic case, but can easily extend to the continuing / infinite horizon case

POLICY OPTIMIZATION

- ▶ Policy based reinforcement learning is an optimization problem
- ▶ Find policy parameters θ that maximize $V(s_0, \theta)$

POLICY OPTIMIZATION

- ▶ Policy based reinforcement learning is an optimization problem
- Find policy parameters θ that maximize $V(s_0, \theta)$
- ► Can use gradient free optimization
 - Hill climbing
 - Simplex / amoeba / Nelder Mead
 - Genetic algorithms
 - Cross-Entropy method (CEM)
 - Covariance Matrix Adaptation (CMA)

HUMAN-IN-THE-LOOP EXOSKELETON OPTIMIZATION (ZHANG ET AL. SCIENCE 2017)

Figure: Zhang et al. Science 2017

Optimization was done using CMA-ES, variation of covariance matrix evaluation

GRADIENT FREE POLICY OPTIMIZATION

Can often work embarrassingly well: "discovered that evolution strategies (ES), an optimization technique that's been known for decades, rivals the performance of standard reinforcement learning (RL) techniques on modern RL benchmarks (e.g. Atari/MuJoCo)" (https://blog.openai.com/evolution-strategies/)

GRADIENT FREE POLICY OPTIMIZATION

- ► Often a great simple baseline to try
- **▶** Benefits
 - Can work with any policy parametrizations, including non-differentiable
 - Frequently very easy to parallelize
- ► Limitations
 - Often less sample efficient because it ignores temporal structure

POLICY OPTIMIZATION

- ▶ Policy based reinforcement learning is an optimization problem
- Find policy parameters θ that maximize $V(s_0, \theta)$
- ► Can use gradient free optimization:
- ► Greater efficiency often possible using gradient
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- ▶ We focus on gradient descent, many extensions possible
- ▶ And on methods that exploit sequential structure

POLICY GRADIENT

- ▶ Define $V(\theta) = V(s_0, \theta)$ to make explicit the dependence of the value on the policy parameters [but don't confuse with value function approximation, where parameterized value function]
- ► Assume episodic MDPs (easy to extend to related objectives, like average reward)

POLICY GRADIENT

- ▶ Define $V^{\pi_{\theta}} = V(s_0, \theta)$ to make explicit the dependence of the value on the policy parameters
- ► Assume episodic MDPs
- ▶ Policy gradient algorithms search for a local maximum in V (s0,) by ascending the gradient of the policy, w.r.t parameters

$$\Delta\theta = \alpha\nabla_{\theta}V(s_0, \theta)$$

▶ Where $\nabla_{\theta}V(s_0, \theta)$ is the policy gradient

$$\nabla_{\theta} V(s_0, \theta) = \begin{pmatrix} \frac{\partial V(s_0, \theta)}{\partial \theta_1} \\ \frac{\partial V(s_0, \theta)}{\partial \theta_2} \\ \vdots \\ \frac{\partial V(s_0, \theta)}{\partial \theta_n} \end{pmatrix}$$

ightharpoonup and α is a step-size parameter

SUMMARY OF BENEFITS OF POLICY-BASED RL

Advantages:

- ▶ Better convergence properties
- ► Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- ► Typically converge to a local rather than global optimum
- ► Evaluating a policy is typically inefficient and high variance

Shortly will see some ideas to help with this last limitation

TABLE OF CONTENTS

- **▶** Differentiable Policies
- ► Temporal Structure
- Baseline
- ► Alternatives to MC Returns

COMPUTING THE GRADIENT ANALYTICALLY

- ▶ We now compute the policy gradient analytically
- Assume policy π_{θ} is differentiable whenever it is non-zero
- Assume we can calculate gradient $\nabla_{\theta} \pi_{\theta}(s, a)$ analytically
- ▶ What kinds of policy classes can we do this for?

DIFFERENTIABLE POLICY CLASSES

- ► Many choices of differentiable policy classes including:
 - Softmax
 - Gaussian
 - Neural networks

VALUE OF A PARAMETERIZED POLICY

- Now assume policy π_{θ} is differentiable whenever it is non-zero and we know the gradient $\nabla_{\theta}\pi_{\theta}(s,a)$
- ▶ Recall policy value is $V(s_0, \theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^T R(s_t, a_t); \pi_\theta, s_0 \right]$ where the expectation is taken over the states actions visited by π_θ
- ► We can re-express this in multiple ways
 - $V(s_0, \theta) = \sum_a \pi_{\theta}(a|s_0)Q(s_0, a, \theta)$

VALUE OF A PARAMETERIZED POLICY

- Now assume policy π_{θ} is differentiable whenever it is non-zero and we know the gradient $\nabla_{\theta}\pi_{\theta}(s,a)$
- ► Recall policy value is $V(s_0, \theta) = \sum_a \pi_{\theta}(a|s_0)Q(s_0, a, \theta)$ where the expectation is taken over the states actions visited by π_{θ}
- ► We can re-express this in multiple ways
 - $V(s_0, \theta) = \sum_a \pi_{\theta}(a|s_0)Q(s_0, a, \theta)$ $V(s_0, \theta) = \sum_{\tau} P(\tau; \theta)R(\tau)$
 - - where $\tau = (s_0, a_0, r_0, ..., s_{T1}, a_{T1}, r_{T1}, s_T)$ is a state-action trajectory,
 - \triangleright $P(\tau;)$ is used to denote the probability over trajectories when executing policy $\pi(\theta)$ starting in state s_0 , and
 - $ightharpoonup R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ the sum of rewards for a trajectory τ
- ▶ To start will focus on this latter definition. See Chp 13.1-13.3 of SB for a nice discussion starting with the other definition

LIKELIHOOD RATIO POLICIES

- ▶ Denote a state-action trajectory as $\tau = (s_0, a_0, r_0, ..., s_{T1}, a_{T1}, r_{T1}, s_T)$
- Use $R(\tau) = \sum_{t=0}^{T} R(s_t, a_t)$ to be the sum of rewards for a trajectory τ
- ▶ Policy value is

$$V(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} R(s_{t}, a_{t}); \pi_{\theta} \right] = \sum_{\tau} P(\tau; \theta) R(\tau)$$

- where $P(\tau;\theta)$ is used to denote the probability over trajectories when executing policy $\pi(\theta)$
- ▶ In this new notation, our goal is to find the policy parameters θ :

$$argmax_{\theta}V(\theta) = argmax_{\theta} \sum_{\tau} P(\tau; \theta)R(\tau)$$

LIKELIHOOD RATIO POLICY GRADIENT

• Goal is to find the policy parameters θ :

$$argmax_{\theta}V(\theta) = argmax_{\theta} \sum_{\tau} P(\tau; \theta)R(\tau)$$

▶ Take the gradient with respect to θ :

$$\begin{split} \nabla_{\theta} V(\theta) &= \nabla_{\theta} \sum_{\tau} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} \nabla_{\theta} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} \frac{P(\tau;\theta)}{P(\tau;\theta)} \nabla_{\theta} P(\tau;\theta) R(\tau) \\ &= \sum_{\tau} P(\tau;\theta) R(\tau) \frac{\nabla_{\theta} P(\tau;\theta)}{P(\tau;\theta)} \\ &= \sum_{\tau} P(\tau;\theta) R(\tau) \nabla_{\theta} log P(\tau;\theta) \end{split}$$

LIKELIHOOD RATIO POLICY GRADIENT

▶ Goal is to find the policy parameters θ :

$$argmax_{\theta}V(\theta) = argmax_{\theta} \sum_{\tau} P(\tau; \theta)R(\tau)$$

▶ Take the gradient with respect to θ :

$$\nabla_{\theta} V(\theta) = \sum_{\tau} P(\tau; \theta) R(\tau) \nabla_{\theta} log P(\tau; \theta)$$

▶ Approximate with empirical estimate for m sample trajectories under policy π_{θ} :

$$\nabla_{\theta} V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} log P(\tau^{(i)}; \theta)$$

DECOMPOSING THE TRAJECTORIES INTO STATES AND ACTIONS

▶ Approximate with empirical estimate for m sample paths under policy :

$$\nabla_{\theta} V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} log P(\tau^{(i)}; \theta)$$

$$\nabla_{\theta} \log P(\tau^{(i)}; \theta) = \nabla_{\theta} \log \left[\mu(s_0) \quad \Pi_{t=0}^{T-1} \pi_{\theta}(a_t | s_t) P(s_{t+1} | s_t, a_t) \right]$$

$$= \nabla_{\theta} \left[\log \mu(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) + \log P(s_{t+1} | s_t, a_t) \right]$$

$$= \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \quad \text{(score function)}$$

SCORE FUNCTION

- ▶ A score function is the derivative of the log of a parameterized probability / likelihood
- **Example:** let $\pi(s, \theta)$ be the probability of state s under parameter
- ► Then the score function would be

$$\nabla_{\theta} log \pi(s; \theta)$$

▶ For many policy classes, it is not hard to compute the score function

SOFTMAX POLICY

- Weight actions using linear combination of features $\phi(s,a)^T\theta$
- ▶ Probability of action is proportional to exponentiated weight

$$\pi_{\theta}(s,a) = e^{\phi(s,a)^T \theta} / (\sum_a e^{\phi(s,a)^T \theta})$$

► The score function is

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \phi(s, a) - \mathbb{E}_{\pi_{\theta}}[\phi(s, \cdot)]$$

GAUSSIAN POLICY

- ▶ In continuous action spaces, a Gaussian policy is natural
- Mean is a linear combination of state features $\mu(s) = \phi(s)^T \theta$
- ▶ Variance may be fixed σ^2 , or can also parametrised
- ▶ Policy is Gaussian $a \sim N(\mu(s), \sigma^2)$
- ► The score function is

$$\nabla_{\theta} \log \pi_{\theta}(s, a) = \frac{(a - \mu(s))\phi(s)}{\sigma^2}$$

LIKELIHOOD RATIO / SCORE FUNCTION POLICY GRADIENT

Goal is to find the policy parameters :

$$argmax_{\theta}V(\theta) = argmax_{\theta} \sum_{\tau} P(\tau; \theta)R(\tau)$$

• Approximate with empirical estimate for m sample paths under policy π_{θ} using score function:

$$\nabla_{\theta} V(\theta) \approx \hat{g} = (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \nabla_{\theta} \log P(\tau^{(i)}; \theta)$$

$$= (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})$$

Do not need to know dynamics model

SCORE FUNCTION GRADIENT ESTIMATOR: INTUITION

- ► Consider generic form of $R(\tau^{(i)})\nabla_{\theta} \log P(\tau^{(i)}; \theta)$: $\hat{g}_i = f(x_i)\nabla_{\theta} \log p(x_i|\theta)$
- ightharpoonup f(x) measures how good the sample x is.
- ▶ Moving in the direction \hat{g}^i pushes up the logprob of the sample, in proportion to how good it is
- ightharpoonup Valid even if f(x) is discontinuous, and unknown, or sample space (containing x) is a discrete set

SCORE FUNCTION GRADIENT ESTIMATOR: INTUITION

SCORE FUNCTION GRADIENT ESTIMATOR: INTUITION

POLICY GRADIENT THEOREM

The policy gradient theorem generalizes the likelihood ratio approach

Theorem 1

For any differentiable policy $\pi_{\theta}(s,a)$, for any of the policy objective function $J=J_1$, (episodic reward), J_{avR} (average reward per time step), or $\frac{1}{I_{avV}}$ (average value), the policy gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(s, a) Q^{\pi_{\theta}}(s, a) \right]$$

Chapter 13.2 in SB has a nice derivation of the policy gradient theorem for episodic tasks and discrete states

TABLE OF CONTENTS

- ▶ Differentiable Policies
- **▶** Temporal Structure
- Baseline
- ► Alternatives to MC Returns

LIKELIHOOD RATIO / SCORE FUNCTION POLICY GRADIENT

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

- Unbiased but very noisy
- ► Fixes that can make it practical
 - Temporal structure
 - Baseline

POLICY GRADIENT: USE TEMPORAL STRUCTURE

► Previously:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

 \triangleright We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$abla_{ heta}\mathbb{E}[r_{t'}] = \mathbb{E}\left[r_{t'}\sum_{t=0}^{t'}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)
ight]$$

► To see this, recall $V(s_0, \theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{T} R(s_t, a_t); \pi_{\theta}, s_0 \right]$ expectation is taken over the states actions visited by π_{θ}

POLICY GRADIENT: USE TEMPORAL STRUCTURE

► Previously:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\left(\sum_{t=0}^{T-1} r_t \right) \left(\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) \right]$$

 \blacktriangleright We can repeat the same argument to derive the gradient estimator for a single reward term $r_{t'}$.

$$abla_{ heta}\mathbb{E}[r_{t'}] = \mathbb{E}\left[r_{t'}\sum_{t=0}^{t'}
abla_{ heta}\log\pi_{ heta}(a_t|s_t)
ight]$$

▶ Summing this formula over t, we obtain

$$V(\theta) = \nabla_{\theta} \mathbb{E}[R] = \mathbb{E}\left[\sum_{t'=0}^{T-1} r_{t'} \sum_{t=0}^{t'} \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)\right]$$

POLICY GRADIENT: USE TEMPORAL STRUCTURE

Recall for a particular trajectory $\tau^{(i)}$, $\sum_{t'=t}^{T-1} r_{t'}^{(i)}$ is the return $G_t^{(i)}$

$$\nabla_{\theta} \mathbb{E}[R] \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) G_t^{(i)}$$

MONTE-CARLO POLICY GRADIENT (REINFORCE)

Leverages likelihood ratio / score function and temporal structure

$$\Delta \theta_t = \alpha \nabla_\theta \log \pi_\theta(s_t, a_t) G_t$$

REINFORCE:

```
Initialize policy parameters \theta arbitrarily for each episode \{s_1, a_1, r_2, \cdots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do for t=1 to T-1 do \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) G_t endfor endfor return \theta
```

LIKELIHOOD RATIO / SCORE FUNCTION POLICY GRADIENT

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_{t}^{(i)}|s_{t}^{(i)})$$

- Unbiased but very noisy
- ► Fixes that can make it practical
 - Temporal structure
 - Baseline
 - Alternatives to using Monte Carlo returns $R(\tau^{(i)})$ as targets

DESIRED PROPERTIES OF A POLICY GRADIENT RL ALGORITHM

Goal: Converge as quickly as possible to a local optima

▶ Incurring reward / cost as execute policy, so want to minimize number of iterations / time steps until reach a good policy

TABLE OF CONTENTS

- ▶ Differentiable Policies
- ► Temporal Structure
- **▶** Baseline
- ► Alternatives to MC Returns

POLICY GRADIENT: INTRODUCE BASELINE

ightharpoonup Reduce variance by introducing a baseline b(s)

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- ► For any choice of *b*, gradient estimator is unbiased.
- ▶ Near optimal choice is the expected return,

$$b(s_t) \approx \mathbb{E}\left[r_t + r_{t+1} + \dots + r_{T1}\right]$$

▶ Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

BASELINE B(S) DOES NOT INTRODUCE BIAS-DERIVATION

$$\begin{split} &\mathbb{E}_{\tau} \big[\nabla_{\theta} \log \pi(a_t | s_t; \theta) b(s_t) \big] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \big[\mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \big[\nabla_{\theta} \log \pi(a_t | s_t; \theta) b(s_t) \big] \big] \text{ (break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \big[b(s_t) \mathbb{E}_{s_{(t+1):T}, a_{t:(T-1)}} \big[\nabla_{\theta} \log \pi(a_t | s_t; \theta) \big] \big] \text{ (pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \big[b(s_t) \mathbb{E}_{a_t} \big[\nabla_{\theta} \log \pi(a_t | s_t; \theta) \big] \big] \text{ (remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi(a_t | s_t; \theta)}{\pi_{\theta}(a_t | s_t)} \right] \text{ (likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \nabla_{\theta} \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \sum_{a} \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \big[b(s_t) \nabla_{\theta} 1 \big] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \big[b(s_t) \cdot 0 \big] = 0 \end{split}$$

"VANILLA" POLICY GRADIENT ALGORITHM

```
Initialize policy parameter \theta, baseline b for iteration=1,2,... do Collect a set of trajectories by executing the current policy At each timestep t in each trajectory \tau^i, compute Advantage estimate \hat{A}^n_{it} Update the policy, using a policy gradient estimate \hat{g}, Which is a sum of terms \nabla_{\theta} \log \pi(a_t|s_t,\theta) \hat{A}^n_{it}. (Plug \hat{g} into SGD or ADAM) endfor
```

OTHER CHOICES FOR BASELINE?

```
Initialize policy parameter \theta, baseline b for iteration=1,2,... do Collect a set of trajectories by executing the current policy At each timestep t in each trajectory \tau^i, compute  Return \ G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i, \text{ and } \\ Advantage \ estimate \ \hat{A}_t^i = G_t^i - b(s_t). \\ \text{Re-fit the baseline, by minimizing } \sum_i \sum_t ||b(s_t) - G_t^i||^2, \\ \text{Update the policy, using a policy gradient estimate } \hat{g}, \\ \text{Which is a sum of terms } \nabla_{\theta} \log \pi(a_t|s_t,\theta) \hat{A}_t. \\ \text{(Plug } \hat{g} \text{ into SGD or ADAM)}  endfor
```

CHOOSING THE BASELINE: VALUE FUNCTIONS

► Recall Q-function / state-action-value function:

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 ... | s_0 = s, a_0 = a]$$

▶ State-value function can serve as a great baseline

$$V^{\pi}(s) = \mathbb{E}_{\pi}[r_0 + \gamma r_1 + \gamma^2 r_2 ... | s_0 = s]$$
$$= \mathbb{E}_{a \sim \pi}[Q^{\pi}(s, a)]$$

TABLE OF CONTENTS

- ▶ Differentiable Policies
- ► Temporal Structure
- ► Baseline
- ► Alternatives to MC Returns

LIKELIHOOD RATIO / SCORE FUNCTION POLICY GRADIENT

► Policy gradient:

$$\nabla_{\pi} \mathbb{E}[R] \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t, s_t) (G_t^{(i)} - b(s_t))$$

- ► Fixes that improve simplest estimator
 - Temporal structure (shown in above equation)
 - Baseline (shown in above equation)
 - Alternatives to using Monte Carlo returns G_t^i as estimate of expected discounted sum of returns for the policy parameterized by θ ?

CHOOSING THE TARGET

- $ightharpoonup G_t^i$ is an estimation of the value function at st from a single roll out
- ► Unbiased but high variance
- ▶ Reduce variance by introducing bias using bootstrapping and function approximation
 - Just like in we saw for TD vs MC, and value function approximation

ACTOR-CRITIC METHODS

- ► Estimate of V /Q is done by a critic
- ► Actor-critic methods maintain an explicit representation of policy and the value function, and update both
- ▶ A3C (Mnih et al. ICML 2016) is a very popular actor-critic method

POLICY GRADIENT FORMULAS WITH VALUE FUNCTIONS

► Recall:

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$
$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(Q(s_t, a_t; w) - b(s_t) \right) \right]$$

ightharpoonup Letting the baseline be an estimate of the value V, we can represent the gradient in terms of the state-action advantage function

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] \approx \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \hat{A}^{\pi}(s_t, a_t) \right]$$

• where the advantage function $A^{\pi}(s_t, a_t) = Q^{\pi}(s, a) - V^{\pi}(s)$

CHOOSING THE TARGET: N-STEP ESTIMATORS

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{T-1} R_t^i \nabla_{\theta} log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

▶ Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2})$$
...
$$\hat{R}_{t}^{(inf)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots$$

▶ If subtract baselines from the above, get advantage estimators

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(inf)} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots - V(s_{t})$$