MAT454 Academic Offense Sheet

Jad Elkhaleq Ghalayini

April 22, 2020

A quick collection of useful facts, theorems, and definitions for complex analysis. May be incorrect, and is certainly incomplete. Use at your own risk!

Contents

1	Basic Definitions and Theorems	2
2	Useful Results and Formulas	Ę
3	Residues and Integrals	6
4	Elliptic Curves	7

1 Basic Definitions and Theorems

For f = u + iv holomorphic, we have

$$2\frac{\partial f}{\partial \bar{z}} = \frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y} = 0 \iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \wedge \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 (1)

Definition 1. The differential of f is given by

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d\bar{z}$$
 (2)

$$dz = dx + idy, \qquad d\bar{z} = dx - idy \iff dx = \frac{1}{2}(dz + d\bar{z}), \qquad dy = \frac{1}{2i}(dz - d\bar{z})$$
 (3)

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \qquad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) \implies df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z} \tag{4}$$

Definition 2 (Harmonic). We say a real or complex valued function f(x,y) is harmonic if f is C^2 and

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \iff \frac{\partial^2 f}{\partial z \partial \bar{z}} = 0 \tag{5}$$

Proposition 1. Every real-valued harmonic function is, not necessarily everywhere but at least locally, the real part of a holomorphic function.

Theorem 1. ω has a primitive in Ω if and only if, for any piecewise differentiable closed curve $\gamma:[a,b]\to\Omega$ (i.e. with $\gamma(a)=\gamma(b)$), or equivalently any piecewise differentiable $\gamma:S^1\to\Omega$, we have

$$\int_{\gamma} \omega = 0 \tag{6}$$

Definition 3. We say a differential form ω on a domain Ω is **closed** if every point in Ω has a neighborhood in which ω has a primitive.

Theorem 2. Any closed differential form ω in a simply-connected open set Ω has a primitive.

Theorem 3 (Cauchy's Theorem). Let Ω be a domain and let f(z) be continuous in Ω and holomorphic except on a set of discrete lines and points. Then the differentiable form f(z)dz is closed.

Corollary 1. A holomorphic function f(z) locally has a primitive, which is holomorphic (i.e. a function F such that dF = f(z)dz)

Corollary 2 (Morera's Theorem). If f(z) is continuous in Ω and df = f(z)dz is closed, then f(z) is holomorphic.

Definition 4. Let $\gamma: S^1 \to \Omega$ be a closed curve and $a \notin \gamma(S^1)$ be a point not in the image of γ . Then the winding number of γ with respect to a is given by the integral

$$w(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \tag{7}$$

This integral is an integer as it is the difference between two branches of log.

Theorem 4 (Cauchy's Integral Formula). If f(z) is holomorphic in Ω , $a \in \Omega$ and $\gamma : S^1 \to \Omega$ is a closed curve with $a \notin \gamma$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)dz}{z-a} = w(\gamma, a)f(a) \tag{8}$$

Theorem 5 (Liouville's Theorem). A bounded holomorphic function on all of \mathbb{C} is a constant.

Definition 5 (Zero). If f is holomorphic in a neighborhood of $z_0 \in \mathbb{C}$ and $f(z_0) = 0$, we can write, for some $k \in \mathbb{N}$,

$$f(z) = (z - z_0)^k f_1(z) (9)$$

where $f_1(z)$ is nonvanishing near z_0 . In this case k is called the **order** or **multiplicity** of the **zero** z_0

Definition 6 (Meromorphic). A function f is **meromorphic** on an open $\Omega \subseteq \mathbb{C}$ if it is defined and holomorphic in the complement of a discrete set such that in some neighborhood of every point of Ω we can write f(z) = g(z)/h(z) where g, h are holomorphic and h is not identically zero.

Definition 7 (Laurent expansion). Holomorphic functions in an annulus r < |z| < R have a convergent Laurent expansion in an annulus

$$\sum_{n=-\infty}^{\infty} a_n z^n = P(z) + R(z), \qquad P(z) = \sum_{n<0} a_n z^n, \qquad R(z) = \sum_{n\geq 0} a_n z^n$$
 (10)

Theorem 6. Every meromorphic function f on S^2 is rational.

Definition 8 (Isolated singularity). A holomorphic function in a <u>punctured</u> disk 0 < |z| < R has an **isolated** singularity at 0 if f(z) cannot be extended to be holomorphic at $\overline{0}$.

Theorem 7 (Weierstrass Theorem). If 0 is an essential singularity, then for all $\epsilon > 0$, $f(\{0 \le |z| \le \epsilon\})$ is dense in \mathbb{C} .

Definition 9. Let $\Omega \subset \mathbb{C}$ be open. We define $\mathbb{C}(\Omega)$ to be the **ring of continuous**, **complex-valued** functions on Ω and $\mathcal{H}(\Omega)$ to be the **subring of holomorphic functions on** Ω

Definition 10 (Uniform convergence on compact subsets). We say that a sequence of functions $\{f_n\} \subset C(\Omega)$ converges uniformly on compact subsets if for all compact subsets $K \subset \Omega$, $\{f_n|K\}$ converges uniformly, i.e.

$$\forall \ compact \ K \subset \Omega, \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n \geqslant N, \forall z \in K, |f_m(x) - f_n(x)| < \epsilon$$
 (11)

Theorem 8 (Weierstrass). 1. $\mathcal{H}(\Omega)$ is a closed subspace of $\mathcal{C}(\Omega)$, i.e. if $\{f_n\} \subset \mathcal{H}(\Omega)$ converges uniformly to f on compact sets then $f = \lim_{n \to \infty} f_n \in \mathcal{H}(\Omega)$ is holomorphic.

2. The mapping $\mathcal{H}(\Omega) \to \mathcal{H}(\Omega)$ $f \mapsto f'$ is continous, i.e. if $\{f_n\} \subset \mathcal{H}(\Omega)$ converges uniformly to f on compact sets then $\{f'_n\}$ converges uniformly to f' on compact sets.

Corollary 3. Let $\{f_n\}$ be a series of holomorphic functions. If $\{g_n = \sum_{k=0}^n f_k\}$ converges uniformly on compact subsets of Ω , then the sum

$$f = \sum f_n \tag{12}$$

is holomorphic on Ω and the series can be differentiated term by term.

Proposition 2. Let Ω be a domain. If $\{f_n\} \subset \mathcal{H}(\Omega)$ converges uniformly on compact sets and each f_n vanishes nowhere in Ω then $f = \lim_{n \to \infty} f_n$ is either never zero or identically zero.

Corollary 4. Let Ω be a domain. If $\{f_n\} \subset \mathcal{H}(\Omega)$ converges uniformly on compact sets and each f_n is one-to-one, then $\lim_{n\to\infty} f_n$ is either one-to-one or constant.

Definition 11. We say that $\sum_{n=1}^{\infty} f_n$ converges uniformly (respectively converges uniformly absolutely) on $X \subset \Omega$ if all but finitely many f_n have no pole in X and form a uniformly convergent (respectively uniformly absolutely convergent) series on X.

Definition 12. Let $X \subset \mathbb{C}$ and $S \subset \mathcal{C}(X)$. We say that S is equicontinuous at $a \in X$ if

$$\forall \epsilon > 0, \exists \delta > 0, \forall z \in X, |z - a| < \delta \implies \forall f \in \mathcal{S}, |f(z) - f(a)| < \epsilon \tag{13}$$

S is equicontinuous on X if it is equicontinuous at each $a \in X$. It is uniformly equicontinuous on X if

$$\forall \epsilon > 0, \exists \delta > 0, \forall z, w \in X, |z - w| < \delta \implies \forall f \in \mathcal{S}, |f(z) - f(w)| < \epsilon \tag{14}$$

Theorem 9 (Arzela-Ascoli). Let $\Omega \subset \mathbb{C}$ be a **domain**. Then $\mathcal{S} \subset \mathcal{C}(\Omega)$ is normal if and only if

- 1. S is equicontinuous on Ω
- 2. There exists $z_0 \in \Omega$ such that $\{f(z_0) : f \in \mathcal{S} \text{ is a bounded subset of } \mathbb{C}$

Definition 13. $S \subset C(\Omega)$ is locally bounded on Ω if

$$\forall z_0 \in \Omega, \exists \delta > 0, M < \infty, \forall z \in \Omega, f \in \mathcal{S}, |z - z_0| < \delta \implies |f(z)| \le M \tag{15}$$

This is true if and only if S is uniformly bounded on compact subsets of Ω , i.e. for all $K \subset \Omega$ compact,

$$\exists M = M(K), \forall z \in K, \forall f \in \mathcal{S}, |f(z)| \le M \tag{16}$$

Theorem 10 (Montel). Let $S \subset \mathcal{H}(\Omega)$ where $\Omega \subset \mathbb{C}$ is a domain. Then the following are equivalent:

- 1. S is normal
- 2. S is locally bounded
- 3. $S' = \{f' : f \in S\}$ is locally bounded and there exists $z_0 \in \Omega$ such that $\{f(z_0) : f \in S\}$ is bounded in \mathbb{C} .

The Arzela-Ascoili theorem holds for families of continuous functions with values in a complete metric space, e.g. continuos functions with values in the Riemann sphere S^2 (or the extended complex plane $\mathbb{C}^* = \mathbb{C} \cup \{\infty\}$) with the (induced) **chordal metric**

$$d(z,w) = \frac{2|z-w|}{\sqrt{(1+|z|)^2(1+|w|)^2}}$$
(17)

(we note that the topology induced by \mathbb{C} by the chordal metric is the usual Euclidean topology).

Definition 14 (Normal in the chordal metric). A family S of continuous functions on Ω is **normal in the chordal metric** if and only if it is equicontinuous in the chordal metric: condition (2) of the Arzela-Ascoli theorem is not needed because \mathbb{C}^* or S^2 is compact in this topology.

We can use this definition to analyze, e.g., a family S of meromorphic functions on $\Omega \subset \mathbb{C}$ (or $\Omega \subset S^2$), since these can be considered holomorphic functions with values in S^2 .

Lemma 1. Let $\{f_n\}$ be a sequence of meromorphic functions which converges uniformly on compact subsets of the domain $\Omega \subset \mathbb{C}$ (on S^2 , in the chordal metric). Then the limit function is either meromorphic or identically ∞ .

Definition 15 (Spherical derivative). If f is meromorphic on a domain $\Omega \subset \mathbb{C}$ (or S^2), we define the spherical derivative of f at $z \in \Omega$ by

$$f^{\sharp}(z) = \lim_{w \to z} \frac{d(f(z), f(w))}{|z - w|} \tag{18}$$

If z is not a pole, we have

$$f^{\sharp}(z) = \lim_{w \to z} \frac{2|f(z) - f(w)|}{|z - w|\sqrt{(1 + |f(z)|^2)(1 + |f(w)|^2)}} = \frac{2|f'(z)|}{1 + |f(z)|^2}$$
(19)

We have that

$$\left(\frac{1}{f}\right)^{\sharp} = f^{\sharp} \tag{20}$$

implying that $f^{\sharp}(z)$ is finite and continuous at all $z \in \Omega$, and greater than zero at z if and only if f is one-to-one near z.

Theorem 11 (Marty's Theorem). Let S be a family of meromorphic functions on a domain Ω . Then S is normal in the chordal metric if and only if

$$\mathcal{S}^{\sharp} = \{ f^{\sharp} : f \in \mathcal{S} \} \tag{21}$$

is bounded.

Theorem 12 (Riemann mapping theorem). Any simply connected open $\Omega \subset \mathbb{C}$ except \mathbb{C} itself has a biholomorphic mapping onto the open unit disc D

Theorem 13 (Picard's Little Theorem). A non-constant entire function f omits at most a point, i.e. $\#(\mathbb{C}\backslash f(\mathbb{C})) \leq 1$

Theorem 14 (Picard's Big Theorem). If z_0 is an isolated essential singularity of a holomorphic function f(z), then f takes every complex value with one possible exception in any neighborhood Ω of z_0 , i.e. $\#(\mathbb{C}\backslash f(\Omega)) \leq 1$.

2 Useful Results and Formulas

• Projection from the Riemann Sphere:

$$\pi: S^2 \setminus \{N\} \to \mathbb{C}, \pi(x, y, t) = \frac{x + iy}{1 - t}$$
 (22)

• Green's Formula:

Theorem 15 (Green's formula).

$$\int_{\gamma} P dx + Q dy = \iint_{A} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy \tag{23}$$

• Schwarz Reflection Principle:

Theorem 16 (Schwarz Reflection Principle). If $f: H \to \mathbb{C}$ is continuous on the closed upper half-plane H, holomorphic on the open upper half-plane and takes real values on the real axis (i.e. $f(\mathbb{R}) \subseteq \mathbb{R}$) then it can be extended to an entire function by $f(\overline{z}) = \overline{f(z)}$. More generally, this can be applied to reflecting any half-domain over any line.

• Fourier coefficients and Cauchy inequalities:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{\zeta - z} \implies f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)d\zeta}{(\zeta - z)^{n+1}}$$
(24)

$$f(re^{i\theta}) = \sum_{n=0}^{\infty} a_n r^n e^{i\pi\theta}, \qquad a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} e^{-in\theta} f(re^{i\theta}) d\theta$$
 (25)

$$M(r) = \sup_{\theta} |f(re^{i\theta})| \implies |a_n| \leqslant \frac{M(r)}{r^n}$$
 (26)

• The Mean Value Property (MVP): harmonic functions satisfy

$$f(\text{center of disk}) = \text{mean value on boundary}$$
 (27)

• The Maximum Modulus Principle (MMP): if f is a continuous complex-valued function on an open $\Omega \subseteq \mathbb{C}$ with the MVP, then it satisfies the MMP, that is, if |f| has a local maximum at a point a of Ω , then f is constant in a neighborhood of a.

• Schwarz's Lemma:

Theorem 17 (Schwarz's Lemma). Suppose f(z) is holomorphic in |z| < 1, f(0) = 0 and |f(z)| < 1. Then

- 1. $|f(z)| \le |z|$ if |z| < 1
- 2. If $|f(z_0)| = |z_0|$ at some $z_0 \neq 0$, then $f(z) = \lambda z$ for some $|\lambda| = 1$.
- Automorphisms of the complex plane:

Aut
$$\mathbb{C} = \{ \text{linear transformations } w = az + b, \quad a \neq 0 \}$$
 (28)

• Automorphisms of the Riemann Sphere:

$$w = \frac{az+b}{cz+d}, \quad ad-bc \neq 0 \tag{29}$$

Inverse:

$$\frac{dz - b}{-cz + a} \tag{30}$$

• Automorphisms of the upper half-plane:

$$w = \frac{az+b}{cz+d}, \quad a, b, c, d \in \mathbb{R}$$
(31)

3 Residues and Integrals

Definition 16 (Residue). Let f(z) be a holomorphic function in a punctured disc centered around a, and let γ be a closed curve lying entirely in the punctured disc (in particular, never touching a) with winding number $w(\gamma, a) = 1$. We define the **residue** of the differential form f(z)dz (or "of f") at a to be

$$\operatorname{Res}_{a}(f) = \frac{1}{2\pi i} \int_{\gamma} f(z)dz = a_{-1} \tag{32}$$

where a_n are the coefficients in the Laurent expansion of f at a. Note that this is independent of the choice of curve γ .

Definition 17 (Residue at ∞). Writing $z = \frac{1}{z'}$, we have in coordinates at ∞

$$f(z)dz = -\frac{1}{z'^2}f(1/z')dz' = g(z')dz'$$
(33)

We define

$$\operatorname{Res}_{\mathcal{O}}(f) = \operatorname{Res}_{0}(q) = -a_{-1} \tag{34}$$

where a_n are the terms of the Laurent expansion in |z| > R.

Theorem 18 (Residue Theorem). Let $\Omega \subset S^2$ be open and let f(z) be holomorphic in Ω except perhaps on a discrete set of isolated points. Let Γ be the oriented (piecewise C^1) boundary of a compact set $K \subset \Omega$ not containing any singularity (either essential singularities or poles). Then

$$\int_{\Gamma} f(z)dz = 2\pi i \sum \operatorname{Res}_{a}(f) \tag{35}$$

where a ranges over the singularities contained in K, perhaps including ∞ .

4 Elliptic Curves

Definition 18. Let $e_1, e_2 \in \mathbb{C}$ be linearly independent over \mathbb{R} . We can define a discrete subgroup of \mathbb{C} with basis e_1, e_2

$$\Gamma = \{ n_1 e_1 + n_2 e_2 : n_1, n_2 \in \mathbb{Z} \}$$
(36)

We say that f has Γ as **group of periods** if

$$\forall z \in \mathbb{C}, f(z) = f(z + e_1) = f(z + e_2) \tag{37}$$

Definition 19 (Weierstrass \wp -function). We define the Weierstrass \wp -function by the infinite sum

$$\wp(z) = \frac{1}{z^2} + \sum_{\substack{w \in \Gamma \\ w \neq 0}} \left[\frac{1}{(z-w)^2} - \frac{1}{w^2} \right]$$
 (38)

Claim. 1. \wp has a double pole at each $w \in \Gamma$ with prime part $\frac{1}{(z-w)^2}$

- 2. \wp is an even function
- 3. $\wp' = -z \sum_{w \in \Gamma} (z-w)^{-2}$ converges absolutely uniformly on compact subsets of $\mathbb C$
- 4. \wp' is doubly periodic: $\forall w \in \Gamma, \wp'(z+w) = \wp'(z)$
- 5. \wp' is odd
- 6. \wp itself has Γ as group of periods

We have

$$(\wp')^2 - 4\wp^3 + 20a_2\wp + 28a_4 \tag{39}$$

Proposition 3. If f is a non-constant meromorphic function on \mathbb{C} with Γ as group of periods, then the number of zeros of f in a period parallelogram is equal to the number of poles in the same parallelogram