ЛАБОРАТОРНА РОБОТА № 6

Створення рекомендаційних систем

Мета: використовуючи спеціалізовані бібліотеки та мову програмування Руthon навчитися створювати рекомендаційні системи

Хід роботи:

Завдання 2.1. Створення навчального конвеєра (конвеєра машинного навчання)

Необхідно створити конвеєр, призначений для вибору найбільш важливих ознак з вхідних даних і їх подальшої класифікації з використанням класифікатора на основі гранично випадкового лісу.

```
rom sklearn.datasets import _samples_generator
 from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import Pipeline
from sklearn.ensemble import ExtraTreesClassifier
 # Генерування даних
X, y = _samples_generator.make_classification(n_samples=150, n_features=25, n_classes=3, n_informative=6,
                                                        n redundant=0, random state=7)
# Вибір k найважливіших озна
k_best_selector = SelectkBest(f_regression, k=9)
# Ініціалізація класифікатора на основі гранично випадкового лісу classifier = ExtraTreesclassifier(n_estimators=60, max_depth=4)
# Створення конвеєра processor_pipeline = Pipeline([('selector', k_best_selector), ('erf', classifier)])
# <u>Встановлення параметрів</u>
processor_pipeline.set_params(selector__k=7, erf__n_estimators=30)
# <u>Habyahha Kohbeepa</u>
processor_pipeline.fit(X, y)
 # Прогнозування результатів для вхідних даних
output = processor_pipeline.predict(X)
print('Predicted output:\n', output)
print('Score: ', processor_pipeline.score(X, y))
# <u>Виведення ознак, відібраних селектором конвеєра</u>
status = processor_pipeline.named_steps['selector'].get_support()</u>
# Вилучення та виведення індексів обраних ознак selected = [i for i, x in enumerate(status) if x]
print('Indices of selected features:', ','.join([str(x) for x in selected]))
```

Рис. 1. Код програми

					ДУЖП.22. <mark>12</mark> 1.1 <mark>9</mark> .000 – Лр6			
Змн.	Арк.	№ докум.	Підпис	Дата				
Розр	00 δ.	Хіміч В.О.				Літ.	Арк.	Аркушів
Пере	евір.	Пулеко І.В.			Звіт з	1	11	
Кері	вник							
Н. контр.					лабораторної роботи	Р ФІКТ Гр. ПІ-60[2		71-60[2]
Зав.	каф.						,	

Рис. 2. Результат виконання програми

Predicted output – це список, який містить в собі спрогнозовані результати, score – значення якості отриманого результату, indices – індекси обраних ознак, котрі вважаються найбільш важливими.

Завдання 2.2. Пошук найближчих сусідів.

Здійсніть пошук найближчих сусідів заданої точки даних.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import NearestNeighbors
# Вхідні дані
X = np.array([[2.1, 1.3], [1.3, 3.2], [2.9, 2.5], [2.7, 5.4], [3.8, 0.9], [7.3, 2.1], [4.2, 6.5],
              [3.8, 3.7], [2.5, 4.1], [3.4, 1.9], [5.7, 3.5], [6.1, 4.3], [5.1, 2.2], [6.2, 1.1]])
# Тестова точка даних
test_datapoint = [4.3, 2.7]
# Тестова точка даних
plt.figure()
plt.title('Вхідні дані')
plt.scatter(X[:, 0], X[:, 1], marker='o', s=75, color='black')
# <u>Побудова моделі</u> на <u>основі методу</u> k найближчих сусідів
knn_model = NearestNeighbors(n_neighbors=k, algorithm='ball_tree').fit(X)
distances, indices = knn_model.kneighbors([test_datapoint])
# Виведемо 'k' найближчих сусідів
print('K Nearest Neighbors:')
for rank, index in enumerate(indices[0][:k], start=1):
    print(str(rank) + '-->', X[index])
# Візуалізація найближчих сусідів разом із тестовою точкою даних
plt.figure()
plt.title('Найближчі сусіди')
plt.scatter(X[:, 0], X[:, 1], marker='0', s=75, color='k')
plt.scatter(X[indices][0][:][:, 0], X[indices][0][:][:, 1], marker='o', s=250, color='k', facecolors='none')
plt.scatter(test_datapoint[0], test_datapoint[1], marker='x', s=75, color='k')
plt.show()
```

Рис. 3. Код програми

На першому графіку відображаються вхідні дані, помічені точками, що були визначені у масиві X:

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 4. Графік вхідних даних

На другому графіку можемо побачити k=5 найближчих сусідів, які обведені кружочками, відносно тестової точки.

Рис. 5. Графік найближчих сусідів тестової точки

```
K Nearest Neighbors:

1--> [5.1 2.2]

2--> [3.8 3.7]

3--> [3.4 1.9]

4--> [2.9 2.5]

5--> [5.7 3.5]
```

Рис. 6. Координати сусідніх точок

		Хіміч В.О.				Арк.
		Пулеко І.В.			ДУЖП.22. <mark>121.19</mark> .000 – Лр6	2
Змн.	Арк.	№ докум.	Підпис	Дата	•	3

Завдання 2.3. Створити класифікатор методом к найближчих сусідів.

Використовуючи для аналізу дані, які містяться у файлі data.txt створіть класифікатор методом k найближчих сусідів.

```
import matplotlib.cm as cm
input_file = 'Task/data.txt
data = np.loadtxt(input_file, delimiter=',')
X, y = data[:, :-1], data[:, -1].astype(np.int32)
 # Відображення вхідних даних на графіку
plt.figure()
plt.title('Вхідні дані')
marker_shapes =
mapper = [marker_shapes[i] for i in y]
for i in range(X.shape[0]):
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[i], s=75, edgecolors='black', facecolors='none')
# Кількість найближчих сусідів
num_neighbors = 12
step_size = 0.01
# Створення класифікатора на основі методу k найближчих сусідів classifier = neighbors.kNeighborsClassifier(num_neighbors, weights='distance')
# Навчання моделі на основі методу k найближчих сусідів classifier.fit(X, y)
# Створення сітки для відображення меж на графіку x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 x_values, y_values = np.meshgrid(np.arange(x_min, x_max, step_size), np.arange(y_min, y_max, step_size))
# <u>Виконання класифікатора</u> на <u>scix точках сітки</u>
output = classifier.predict(np.c_[x_values.ravel(), y_values.ravel()])
```

Рис. 7. Код програми

```
# Візуалізація передбачуваного результату output = output.reshape(x_values.shape)
 plt.figure()
plt.pcolormesh(x_values, y_values, output, cmap=cm.Paired)
# Накладання навчальних точок на карту for i in range(X.shape[0]):
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[i], s=50, edgecolors='black', facecolors='none')
plt.xlim(x_values.min(), x_values.max())
plt.ylim(y_values.min(), y_values.max())
plt.title('Mexi моделі класифікатора на основі й найблихчих сусідів')
# Тестування вхідної точки даних test_datapoint = [5.1, 3.6]
 plt.figure()
 plt.title('Тестова точка даних')
 for i in range(X.shape[0]):
plt.scatter(X[i, 0], X[i, 1], marker=mapper[i], s=75, edgecolors='black', facecolors='none')
plt.scatter(test_datapoint[0], test_datapoint[1], marker='x', linewidths=6, s=200, facecolors='black')
 † Вилучення К найбликчих сусідів
_, indices = classifier.<mark>kneighbors</mark>([test_datapoint])
indices = indices.astype(np.int32)[0]
plt.figure()
plt.title('К найближчих сусідів')
 for i in indices:
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[y[i]], linewidths=3, s=100, facecolors='black')
 plt.scatter(test_datapoint[0], test_datapoint[1], marker='x', linewidths=6, s=200, facecolors='black')
 for i in range(X.shape[0]):
    plt.scatter(X[i, 0], X[i, 1], marker=mapper[i], s=75, edgecolors='black', facecolors='none')
print('Predicted output:', classifier.predict([test_datapoint])[0])
plt.show()
```

Рис. 8. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 9. Графік вхідних даних

Рис. 10. Графік вхідних даних з межами

Рис. 11. Графік вхідних даних з тестовою точкою

		Хіміч В.О.			
		Пулеко І.В.			
Змн.	Арк.	№ докум.	Підпис	Дата	

Рис. 12. Графік з найближчими сусідами

У виводі консолі можна побачити, що результуюча точка належить до класу під номером 1.

Predicted output: 1

Рис. 13. Вивід консолі

Завдання 2.4. Обчислення оцінок подібності

Рис. 14. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
return 1 / (1 + np.sqrt(np.sum(squared_diff)))
def pearson_score(dataset, user1, user2):
   if user1 not in dataset:
       raise TypeError('Cannot find ' + user1 + ' in the dataset')
    if user2 not in dataset:
       raise TypeError('Cannot find ' + user2 + ' in the dataset')
   # Фільми, оцінені обома користувачами, user1 та user2
   common movies = {}
   for item in dataset[user1]:
       if item in dataset[user2]:
           common_movies[item] = 1
   num_ratings = len(common_movies)
    # За відсутності фільмів, оцінених обома користувачами, оцінка приймається рівною 0
   if num_ratings == 0:
       return 0
   # Обчислення суми рейтингових оцінок усіх фільмів, оцінених обома користувачами
   user1_sum = np.sum([dataset[user1][item] for item in common_movies])
   user2_sum = np.sum([dataset[user2][item] for item in common_movies])
   # Обчислення суми квадратів рейтингових оцінок всіх фільмів, оцінених обома користувачами
   user1_squared_sum = np.sum([np.square(dataset[user1][item]) for item in common_movies])
   user2_squared_sum = np.sum([np.square(dataset[user2][item]) for item in common_movies])
   # Обчислення суми творів рейтингових оцінок всіх фільмів, оцінених обома користувачами
    sum_of_products = np.sum([dataset[user1][item] * dataset[user2][item] for item in common_movies])
```

Рис. 15. Код програми

```
# Обчислення коефіцієнта кореляції Пірсона
Sxy = sum_of_products - (user1_sum * user2_sum / num_ratings)
Sxx = user1_squared_sum - np.square(user1_sum) / num_ratings
Syy = user2_squared_sum - np.square(user2_sum) / num_ratings
if Sxx * Syy == 0:
   return 0
return Sxy / np.sqrt(Sxx * Syy)
_name__ == '__main__':
args = build_arg_parser().parse_args()
user1 = args.user1
user2 = args.user2
score_type = args.score_type
ratings_file = 'Task/ratings.json'
with open(ratings_file, 'r') as f:
   data = json.loads(f.read())
if score_type == 'Euclidean':
   print('Euclidean score: ', euclidean_score(data, user1, user2))
    print('Pearson score: ', pearson_score(data, user1, user2))
```

Рис. 16. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Рис. 17. Виконання програми (не всі дані відображені на рисунку)

Таблиця 1

Результати порівнянь

Поєднання	За Евклідом	За Пірсоном
David Smith – Bill Duffy	~ 0.586	~ 0.99
David Smith – Brenda Peterson	~ 0.14	~ -0.72
David Smith – Samuel Miller	~ 0.3	~ 0.76
David Smith – Julie Hammel	~ 0.285	~ 0
David Smith – Clarissa Jackson	~ 0.29	~ 0.69
David Smith – Adam Cohen	~ 0.39	~ 0.91
David Smith – Chris Duncan	~ 0.39	~ 1.0

За даними таблички вище можна зробити висновок, що за Евклідом найбільш спорідненим до David Smith ϵ Bill Duffy, а найменш спорідненою Brenda Peterson. За Пірсоном найбільш спорідненим ϵ Chris Duncan та Bill Duffy, а найменш спорідненою знову ж Brenda Peterson. Загалом результати подібні, проте з певними відмінностями.

Завдання 2.5. Пошук користувачів зі схожими уподобаннями методом колаборативної фільтрації.

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

```
from LR_6_task_4 import pearson_score
def build_arg_parser():
    parser = argparse.ArgumentParser(description='Find users who are similar to the input user')
parser.add_argument('--user', dest='user', required=True, help='Input user')
     return parser
def find_similar_users(dataset, user, num_users):
          raise TypeError('Cannot find ' + user + ' in the dataset')
     # Обчислення оцінки подібності за Пірсоном між вказаним користувачем та всіма іншими користувачами в наборі даних scores = np.array([[x, pearson_score(dataset, user, x)] for x in dataset if x != user])
     # Сортування оцінок за спаданням scores_sorted = np.argsort(scores[:, 1])[::-1]
     # Вилучення оцінок перших 'num_users' користувачів top_users = scores_sorted[:num_users]
     return scores[top_users]
if __name__ == '__main__':
    args = build_arg_parser().parse_args()
     user = args.user
     ratings_file = 'Task/ratings.json'
with open(ratings_file, 'r') as f:
    data = json.loads(f.read())
     print('User similar to ' + user + ':\n')
     similar_users = find_similar_users(data, user, 3)
     print('User\t\t\Similarity score')
print('-' * 41)
       print(item[0], '\t\t', round(float(item[1]), 2))
```

Рис. 18. Код програми

User similar to Bill Du	ffy:
User	Similarity score
David Smith	0.99
Samuel Miller	0.88
Adam Cohen	0.86
PS D:\LabsNew\Fourth Co	urse\Second semester\
User similar to Clariss	a Jackson:
User	Similarity score
Chris Duncan	1.0
Bill Duffy	0.83
Samuel Miller	0.73

Рис. 19. Результат виконання програми

За результатами виконання програми можна зробити висновок, що Bill Duffy має найбільш схожі вподобання з David Smith, a Clarissa Jackson – з Chris Duncan.

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Завдання 2.6. Створення рекомендаційної системи фільмів

Створіть рекомендаційну систему на основі даних, наданих у файлі ratings.json. У цьому файлі міститься інформація про користувачів та оцінки, дані ними різним фільмам. Щоб рекомендувати фільми конкретному користувачу, ми повинні знайти аналогічних користувачів у наборі даних.

```
from LR_6_task_4 import pearson_score
def build_arg_parser():
   parser = argparse.ArgumentParser(description='Find the movie recommendations for the given user')
parser.add_argument('--user', dest='user', required=True, help='Input user')
    return parser
Отримати рекомендації щодо фільмів для вказаного користувача ef get_recommendations(dataset, input_user):
   if input_user not in dataset:
        raise TypeError('Cannot find ' + input_user + ' in the dataset')
   similarity_scores = {}
    for user in [x for x in dataset if x != input_user]:
        similarity_score = pearson_score(dataset, input_user, user)
        if similarity_score <= 0:
        filtered_list = [x for x in dataset[user] if x not in dataset[input_user] or dataset[input_user][x] == 0]
         for item in filtered list:
             overall_scores.update({item: dataset[user][item] * similarity_score})
             similarity_scores.update({item: similarity_score})
        if len(overall_scores) == 0:
             return ['No recommendations possible']
        # <a href="[Feneralia pentuntia pintunia a допомогою їх нормалізації" movie_scores = np.array([[score / similarity_scores[item], item] for item, score in overall_scores.items()])</a>
        # CODIVBAHHS 30 CHARAHHSM
movie_scores = movie_scores[np.argsort(movie_scores[:, 0])[::-1]]
```

Рис. 20. Код програми

```
# Вилучення рекомендацій фільмів
movie_recommendations = [movie for _, movie in movie_scores]
return movie_recommendations

if __name__ == '__main__':
    args = build_arg_parser().parse_args()
    user = args.user

ratings_file = 'Task/ratings.json'
    with open(ratings_file, 'r') as f:
    data = json.loads(f.read())

print('Movie recommendations for ' + user + ':')
movies = get_recommendations(data, user)
for i, movie in enumerate(movies):
    print(str(i + 1) + '. ' + movie)
```

Рис. 21. Код програми

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Movie recommendations for Chris Duncan:
1. Goodfellas
2. Scarface
3. Vertigo
PS D:\LabsNew\Fourth Course\Second semeste
Movie recommendations for Julie Hammel:
1. The Apartment
2. Vertigo
3. Raging Bull

Рис. 22. Результат виконання програми

За результатами вище можемо побачити, що у двох користувачів співпав один фільм зі списку.

User similar to Julie Hammel:				
User	Similarity score			
Brenda Peterson	1.0			
Chris Duncan David Smith	0.0 0.0			

Рис. 23. Результат перевірки спорідненості методом колаборативної фільтрації

При цьому перевірка показує, що у цих двох користувачів немає спільних характеристик

Висновок: в ході виконання лабораторної роботи було навчено створювати рекомендаційні системи за допомогою мови програмування Python.

GitHub

		Хіміч В.О.		
		Пулеко І.В.		
Змн.	Арк.	№ докум.	Підпис	Дата