

Fine-Tuning SecureLLM

Abdulrahman Alabdulkareem, Juan Duitama, Anastasiia Uvarova

Motivation:

- LLMs are notorious for leaking data (Jailbreaks, etc.)
- Security limitations: Big concern in systems with multiple data access levels (Health/Gov./Confidential)
- Existing methods focus on detoxifying or building guardrails to the LLM, but no guarantees!
- SecureLLM maintains efficiency and assures security by creating a fine-tuned model for each of the data silos and using an appropriate composition of them for each user
- Any fine-tuning can theoretically work with SecureLLM, with preference to composable finetunings (minimum degradation in performance)
- Aim to explore flexibility of SecureLLM and benchmark using most popular different PEFTs

Dataset:

Custom dataset of pairs of (Q:NLP, A:SQL) containing three independent silos (S₁, S₂, S₃) sep. schema + unions of silos (S_{1U2} , S_{1U3} , S_{2U3} , S_{1U2U3})

(c) Sample from Union Silo 1,2 $(S_{1\cup 2})$

SecureLLM Framework:

Fine-Tunings:

Composition (Simplicity Triumphs)

Input Text

Tunable Soft

Prompt

Maximum Logit Technique: Query each of fine-tuning take the token with highest logit.

Adaption

Prompt

Transformer Layers x N-L

 $f(M_1 \circ ... \circ M_n | x) = f(M_i | x)$ where $i := \operatorname{argmax}_{i \in \{1, \dots, n\}} \{Logits(M_i | x)\}$

Experimental Results: W/ Llama 2-7B

Q&A Accuracy (publicly available datasets)

	dataset	generalized model	LoraHub	PEM Addition	p_tuning	prefix	ia3	lora	adalora
ı	commonsenseqa	82%	63%	71%	20%	20%	48%	79%	64%
ı	helloswag	75%	63%	67%	28%	32%	27%	31%	73%
ı	qasc	42%	22%	35%	15%	12%	12%	31%	42%

SQL Generation. Metric is between ground SQL and LLM SQL parsed into trees => Normalized Unordered Tree Edit Distance (Zhang, 1996)

dataset	generalized model	LoraHub	PEM Addition	prefix	ia3	lora	adalora	adalora (w/db norm
$\overline{\text{Silos}_1}$	0.02	0.76	0.56	15.12	5.05	0.12	0.42	0.17
$Silos_2$	0.01	0.68	0.43	20.25	2.27	0.15	0.46	0.07
$Silos_3$	0.0	0.95	0.48	8.36	2.64	0.06	0.08	0.03
$Silos_{1\cup 2}$	0.36	0.66	0.75	5.27	1.56	0.59	0.83	0.4
$Silos_{1\cup 3}$	0.26	0.6	0.73	17.03	4.95	0.53	1.25	0.29
$Silos_{2\cup 3}$	0.25	0.62	0.75	17.08	2.85	0.47	0.98	0.35
$Silos_{1\cup 2\cup 3}$	0.65	0.88	1.57	7.29	2.46	0.68	1.28	0.39

Ablation #1: Obfuscated column names

dataset	generalized model	LoraHub	PEM Addition	p_tuning	prefix	ia3	lora	adalora	lora (w/db nor
$Silos_1$	0.0	1.68	0.81	2.93	22.37	5.05	0.47	0.41	0.05
$Silos_2$	0.0	0.68	0.55	3.76	31.84	2.27	0.43	0.33	0.14
$Silos_3$	0.0	0.76	0.49	1.63	11.07	2.64	0.16	0.08	0.13
$Silos_{1\cup 2}$	0.37	0.91	0.74	2.15	8.12	1.56	0.56	0.65	0.29
$Silos_{1\cup 3}$	0.33	1.69	0.7	3.77	23.44	4.95	0.53	1.14	0.33
$\mathrm{Silos}_{2\cup 3}$	0.47	1.22	0.73	3.92	26.54	2.85	0.46	0.53	0.37
$Silos_{1\cup 2\cup 3}$	0.82	1.62	1.99	2.71	12.01	2.46	0.78	0.8	0.49

Ablation #2: GPT rephrased questions

dataset	generalized model	LoraHub	${ m PEM} \ { m Addition}$	prefix	ia3	lora	adalora	adalora (w/db norn
$Silos_1$	0.02	0.61	0.4	16.23	2.56	0.2	0.52	0.26
$Silos_2$	0.17	0.8	0.38	23.69	0.69	0.35	0.74	0.24
$Silos_3$	0.11	0.87	0.29	8.05	2.96	0.19	0.32	0.14
$Silos_{1\cup 2}$	0.4	1.11	0.57	6.69	1.26	0.53	0.64	0.46
$Silos_{1\cup 3}$	0.21	0.59	0.51	17.11	1.29	0.48	0.44	0.2
$Silos_{2\cup 3}$	0.26	0.58	0.44	17.49	0.83	0.37	0.47	0.25
$Silos_{1\cup 2\cup 3}$	0.37	0.7	0.49	9.82	1.7	0.4	0.56	0.23

Analysis:

- Some PEFT are far more composable than others!
 - O Potentially a suboptimal PEFT is superior at composing?
- AdaLoRa/LoRa is close to the generalized model in certain cases! (specifically in unions, which are OOD samples)
- Union datasets are essential for benchmarking this framework
- o Generate union datasets without relying on SQL?
- Fine-tunings are destructive, can we make them cooperative.
- o Future work: normalize by novelty metric per PEFT?