3.7 Differentials

Blast From the Past

What was Newton's Method?

used targent line to approximate zeroes

Examples – Tangent Line Approximations

Find the equation of the tangent line to the function f(x) = 1 + sinx at the point (0,1). Use linear approximation to complete the table and compare this to the actual values of the function.

$$f'(x) = \cos x$$

 $f'(0) = \cos(0) = 1$

Х	-0.5	-0.1	-0.01	0	0.01	0.1	0.5
y = 1 + sinx	, 52057	.90017	. 91	- Company of the Comp	1.01	1.0918	1.4794
$y = \chi_{\uparrow}$.5		,99	**************************************	1.01	The second of th	

Use tangent line approximation to find 1.99^{5}

$$f(x) = \chi^{5}$$
 (2,32)
 $f'(x) = 5x^{4}$
 $f'(2) = 5(11e) = 60$

Differentials

DA = Lico Dx

Dx: Change in X

Dy: change in y

dx: differential of x

dy: differential of y

Example: Comparing Δy and dy

Compare Δy and dy for each of the functions below.

$$y = 1 - 2x^{2}, x = 0, \Delta x = dx = -0.1$$

$$\Delta y = (1 - 2(0)^{2}) - (1 - 2(-1)^{2}) = 1 - 1.98 = .02$$

$$\Delta y = (-4(0))(-1) = 0$$

$$y = \sqrt{x}, x = 4, \Delta x = dx = 0.1$$

$$\Delta y = \sqrt{4.1} - \sqrt{4} = 2.02 - 2 = .02$$

$$\Delta y = \left[\frac{1}{2}(4)^{-\frac{1}{2}}\right] \left[\frac{1}{2}(4)^{-\frac{1}{2}$$

^{*}As Δx becomes smaller and smaller, what happens to the relationship between Δy and dy?

Calculating Differentials

$$y = \chi^n$$

$$\frac{dy}{dx} = n \chi^{n-1}$$

$$dy = (u \cdot v' + u'v') dx$$

Examples – Finding Differentials

Find the differential, dy, of each function.

$$y=2x^{\frac{3}{2}}$$

$$y = x \sin x$$

$$y = sec3x^2$$

$$dy = (lox sec 3x^2 tan 3x^2) dx$$

Using Differentials to Approximate Function Values

$$\Delta y = f(x + \Delta x) - f(x) \approx dy$$

$$f(x + \Delta x) \approx f(x) + dy$$

Since
$$dy = f'(x)dx$$

$$f(x + \Delta x) \approx f(x) + f'(x) dx$$

Examples - Using Differentials to approximate values

Use differentials to approximate each of the values below

$$f(x) = \sqrt[4]{x} \qquad x = 8 \qquad \Delta x = .7$$

$$f'(x) = \frac{1}{3}x^{-\frac{2}{3}}$$

$$f(x) + f'(x)(\Delta x)$$

$$\sqrt[4]{8} + \frac{1}{3}(8)^{-\frac{1}{3}}(\frac{7}{10}) = 2 + (\frac{1}{3})(\frac{1}{4})(\frac{7}{10}) = 2 + \frac{7}{120} = 2\frac{7}{120}$$

$$(2.99)^{3} \quad f(x) = x^{3} \qquad x=3 \qquad \Delta x = -.01$$

$$f(x) = 3x^{2}$$

$$f(3) + f'(3)(-01) = 27 + 27(-\frac{1}{100}) \approx 26.73$$

Error	Propa	gation
	IIOPO	544141

IfX represents t	he measured value and $\underline{\chi}$	∆xrepre	esents the exact value then
$\underline{\qquad}$ is the error in meas	surement.		
If χ is then use	d in a calculation to compute	f(x)	then the difference between
$f(x+\Lambda_x)$ and $f(x)$	is the propagated error		
	٠		
$\Delta y = f(x + \Delta x) -$	$-f(x) \approx dy$		
Relative Error	$-f(x) \approx dy$ is found by comparing	with	this ratio is
usually given as a percent error.	L)		U

Examples – Error Propagation

The measured length of one side of a wooden cube is 4 inches. The measurement is correct to within 0.02 inch. Estimate the propagated error in the volume of the cube.

$$X=4$$
 $\Delta x = \pm .02$
 $V = \chi^{3}$
 $dV = 3\chi^{2} dx$
 $dV = 3(4)^{2}(\pm .02) \approx \pm .96$ in³

Find the relative error in the calculation of the volume.

Estimate the propagated error in the surface area of the cube.

$$X=4$$
 $dx=\pm .02$
 $S=6x^2$
 $dS=12x dx$
 $dS=12(4)(502)=\pm 0.94$ in²

Find the relative error in the calculation of the surface area.

In which calculation did any possible error in measurement seem to have the greatest affect? Is this what you would expect? Why or why not?