ESTIMATION OF THE SURFACE SHRINKAGE RATE BASED ON THE EFFECT OF DIFFERENT WASHING ALGORITHMS VIA MACHINE LEARNING APPROACH

SEN MÜHENDISSIN BIZIMLESIN PROJECT

Prepared by: Belce KAYA

Project Mentors: Zehra YALÇIN

Gökhan SIR

EXECUTIVE SUMMARY

The aim of the project is to analyze first input features with EDA (Explotary Data Analysis) methodology by using Excel, Tableau and Python programs (such as descriptive analysis, correlation computation between inputs and also output, detecting outliers with statistic tests, OLS regression for backward selection to be able to analyze features' p-values, r^2 score, feature importance scores after fitting the ML algorithms...) and then to install the model for estimation on surface area shrinkage rate of woolen textiles.

For the best model, bagging and boosting ensemble learning algorithms and linear regression will be used, also to avoid high variance and overfitting/underfitting, grid search method will be used to optimize algos' hyper params.

INTRODUCTION Predictive Modeling

Generally used to feed predictive models:

- Transaction data
- CRM data
- Customer service data
- Survey or polling data
- Digital marketing and advertising data
- Economic data
- Demographic data
- Machine-generated data (for example, telemetric data or data from sensors)
- Geographical data
- Web traffic data

INTRODUCTION Types of Predictive Models

- Generalized Linear Models (GLM)
- Random Forests
- Decision Trees
- Neural Networks
 - In prediction problems involving <u>unstructured data (images, text, etc.)</u> artificial neural networks tend to <u>outperform</u> all other algorithms or frameworks.
- Gradient Boosting Models (GBM)
- Support vector machines (Support Vector Regression-SVR)
- Extended Gradient Boosting Models (XGBoost)
 - Small-to-medium structured /tabular data, decision tree-based algorithms are considered best-in-class.

GENERALIZED LINEAR MODEL

The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

EVOLUTION OF TREE-BASED ALGOS

METHODOLOGY

DATA ACQUISITION & UNDERSTANDING

DATA ACQUISITION & UNDERSTANDING Washing Machine algorithm flow:

- First, water is taken,
- · The laundry is washed with this water for a certain period of time without heating,
- Then the heater turns on,
- After turning on the heater, water is heated,
- Again the laundry is washed with heated water,
- · Then, dirty waters are drainaged,
- After the drainage, the 1st rinse water is taken. The laundry is cleaned with detergent and 1st rinse water. And same process is applied again for 2nd and 3rd rinse water,
- Then, after the drainage, process is finished by wring laundry.

Test_No

of test washings (1,2,3,4,5,6)

Numune_1_ Relakse_Sonrasi_ En_1

Measured width-1 value of the sample

Numune_1_ Relakse_Sonrasi_ En_2

Measured width-2 value of the sample

Numune_1_ Relakse_Sonrasi_ En_3

Measured width-3 value of the sample

Numune_1_Relakse_Sonrasi_Boy_1

Measured length-1 value of the sample

Numune_1_Relakse_Sonrasi_Boy_2

Measured length-2 value of the sample

Numune_1_Relakse_Sonrasi_Boy_3

Measured length-3 value of the sample

Giris_Alan_Ortalama

Average inlet surface area of the sample

Deterjan_Miktarı(gr)

The amount of detergent used in the algorithm

Test_Kapasitesi(kg)

Weight of sample and filling load (kg)

Su_Sertligi Water hardness – German hardness (pH value)

Tambur_Hacmi_(It) The volume of the washing machine

SY1_Sure_(sn) Cold Washing Time (in seconds)

SY1_Devir_(rpm) Cold Washing speed

SY1_ED Total rotation rate of the engine in cold wash (in %)

SG_Sic_(C) Entry Temperature at which water enters first to washing machine

in cold wash

I_Bas_Sic (C) Heater start Temperature at the end of the Cold Wash

I_Sure_(sn) Heating time of the heater (in mins)

I_Devir_(rpm) Heater speed

I_MHY_ED Total rotation rate of the engine in heater period (in %)

I_Tset_(C) Amount of temperature at the end of heating

AY_Su_Mik_(It) The amount of water used in the main wash

AY_Sure_(sn) Main wash time

AY_Devir_(rpm) Main wash speed

AY_MHY_ED Total rotation rate of the engine in the main wash (in %)

AY_Tah_(C) The temperature of the discharged water during the 1st rinse water

removal after the main wash is finished

Jet_Pompa Jet pump system, 1 means machine has, 0 means does not have

Durulama_Sayisi # of rinses

1D_Su_Mik_(lt) The amount of water taken in the 1st rinsing

1D_Sure_(sn) 1st rinsing time

1D_Devir_(rpm) 1st rinsing speed

1D_MHY_ED Total rotation rate of the engine in the 1st rinsing (in %)

2D_Su_Mik_(It) The amount of water taken in the 2nd rinsing

2D_Sure_(sn) 2nd rinsing time

2D_Devir_(rpm) 2nd rinsing speed

2D_MHY_EDTotal rotation rate of the engine in the 2nd rinsing (in %)

2D_Sikma_(rpm) 2nd rinsing spin amount

3D_Su_Mik_(It)The amount of water taken in the 3rd rinsing

3D_Sure_(sn) 3rd rinsing time

3D_Devir_(rpm) 3rd rinsing speed

3D_MHY_EDTotal rotation rate of the engine in the 3rd rinsing (in %)

Cikis_Alan_Ortalama

Average surface area of the sample at the end of the process

df.dtypes

Test_No	float64
Numune_I_ Relakse_Sonrasi_ En_I	float64
Numune_I_ Relakse_Sonrasi_ En_2	float64
Numune_I_ Relakse_Sonrasi_ En_3	float64
Numune_I_Relakse_Sonrasi_Boy_I	float64
Numune_I_Relakse_Sonrasi_Boy_2	float64
Numune_I_Relakse_Sonrasi_Boy_3	float64
Giris_Alan_Ortalama	float64
Deterjan_Miktarı(gr)	float64
Test_Kapasitesi(kg)	float64
Su_Sertligi	float64
Tambur_Hacmi_(lt)	float64
SYI_Sure_(sn)	float64
SYI_Devir_(rpm)	float64
SYI_ED	float64
SG_Sic_(C)	float64
I_Bas_Sic (C)	float64
I_Sure_(sn)	float64
I_Devir_(rpm)	float64
I_MHY_ED	float64
I_Tset_(C)	float64

float64
float64

```
NO MISSING VALUE
In [52]: df.isnull()
    Test_No Numune_1 Relakse_Sonrasi_ En_1 ... 3D_MHY_ED Cikis_Alan Ortalama
      False
                                  False ... False
                                                                False
     False
                                  False ... False
                                                                False
   False
                                  False ... False
                                                                False
   False
                                  False ... False
                                                                False
   False
                                  False ... False
                                                                False
                                   . . . .
      . . . . .
175
    False
                                  False ... False
                                                                False
                                  False ... False
176
    False
                                                                False
177
    False
                                  False ... False
                                                                False
178
    False
                                  False ... False
                                                                False
179
     False
                                  False ... False
                                                                False
[180 rows x 42 columns]
```

```
In [53]: duplicate rows df = df[df.duplicated()]
```

NO DUPLICATE ROW

```
In [54]: print('number of duplicate rows:', duplicate_rows_df.shape)
number of duplicate rows: (0, 42)
```

									l							(1)	(-)				(2)	
	Test_No	En_1	En_2	En_3	Boy_1	Boy_2	Boy_3	GAO	Deterjan_Mikt arı(gr)	Test_Kapasitesi (kg)	Su_Sertligi	Tambur_Hacmi _(lt)	SY1_Sure_(sn)	SY1_Devir_(rp m)	SY1_ED	SG_Sic_(C)	I_Bas_Sic (C)	I_Sure_(sn)	I_Devir_(rpm)	I_MHY_ED	I_Tset_(C)	AY_Su_Mik_(lt)
count	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
mean	3,5	273,05	272,4166667	272,9	267,5	267,3666667	267,4833333	72953,2907	56,27333333	1,866666667	6,2	65,36	382,4111111	28,33333333	0,040266667	15,18066667	16,19766667	456,0111111	24,33333333	0,824666667	34,98666667	12,63722222
std	1,712588945	1,694634978	2,018420756	1,814282258	5,000558628	4,722938201	4,688301142	1170,208449	3,647446493	0,34088285	3,496846145	0,681896796	327,8284991	7,695315269	0,018103859	0,500015195	6,437890811	232,9864644	12,26340334	1,607392017	8,339758581	0,55238038
min	1	271	270	270,5	248,5	250	250	68986,75	47	1	3	64	176,9	0	0	12,98	0	0	0	0	15,98	11,48
25%	2	272	271	271,5	268	268	268	72807,778	57,7	2	5	65,7	180	30	0,029	14,83	17,57	300	30	0,011	30,94	12,32
50%	3,5	272,75	271,75	272,5	268,75	268,25	268,75	73144	57,7	2	5	65,7	297	30	0,036	15,23	18,265	477	30	0,058	37,47	12,685
75%	5	275	273,5	273,5	269,5	269	269	73485,833	57,7	2	5	65,7	357	30	0,058	15,51	19,32	636	30	0,058	41,77	12,8
max	6	276,5	277	277	271	270	270,5	74292,167	57,7	2	15	65,7	1480	35	0,058	16,2	21	810	35	4,76	46,26	14,44
max=min	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil								
max-min	5	5,5	7	6,5	22,5	20	20,5	5305,417	10,7	1	12	1,7	1303,1	35	0,058	3,22	21	810	35	4,76	30,28	2,96
median-																						
mean	0	-0,3	-0,666666667	-0,4	1,25	0,883333333	1,266666667	190,7093	1,426666667	0,133333333	-1,2	0,34	-85,41111111	1,666666667	-0,004266667	0,049333333	2,067333333	20,98888889	5,666666667	-0,766666667	2,483333333	0,047777778
SKEWNESS	0	0,613060857	0,660676599	0,83572226	-3,260261705	-3,329913682	-3,327572638	-2,394629595	-2,175448351	-2,175448351	2,076044927	-1,512634581	2,603931062	-3,330688423	-0,713845603	-0,867887424	-2,082686198	-0,618799546	-1,470632541	1,602676423	-0,945102159	0,696366716
KURTOSIS	-1,270438828	-0,783263545	-0,712381127	-0,230475788	9,401776493	9,642285988	9,641744814	6,035844615	2,763155003	2,763155003	2,570052941	0,291174697	5,886342993	9,73013713	-0,439179542	2,635950529	2,54767411	-0,392994428	0,247312818	0,739203732	-0,045574969	2,56451849

	AY_Sure_(sn)	AY_Devir_(rp m)	AY_MHY_ED	AY_Tah_(C)	Jet_Pompa	Durulama_Say isi	1D_Su_Mik_(I t)	1D_Sure_(sn)	1D_Devir_(rp m)	1D_MHY_ED	2D_Su_Mik_(I t)	2D_Sure_(sn)	2D_Devir_(rp m)	2D_MHY_ED	2D_Sikma_(rp m)	3D_Su_Mik_(I t)	3D_Sure_(sn)	3D_Devir_(rp m)	3D_MHY_ED	CAO
coun	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180
mea	1187,833333	28,33333333	0,038666667	29,78288889	0,866666667	3	11,24555556	264,4333333	28,33333333	0,039466667	11,29544444	255,9555556	28,33333333	1,426133333	81,57777778	13,99811111	222,85	28,33333333	0,039533333	67735,04257
st	535,8431825	7,695315269	0,019429862	5,759223304	0,34088285	0	0,635216254	68,39681295	7,695315269	0,018863343	0,675129056	58,98696213	7,695315269	1,78588724	208,5725884	0,53650617	40,8537636	7,695315269	0,018759995	3541,243852
mi	438	0	0	17,85	0	3	9,82	160	0	0	9,82	160	0	0	0	13,26	160	0	0	55492,5
259	612	30	0,024	26	1	3	10,83	179	30	0,024	10,87	180	30	0,058	0	13,66	180	30	0,024	65556,12475
50%	955	30	0,036	31,585	1	3	11,595	295	30	0,036	11,62	295	30	0,058	0	13,78	235	30	0,036	68284
75%	1808	30	0,058	33,58	1	3	11,72	300	30	0,058	11,74	299	30	3,61	0	14,58	240	30	0,058	70600,49975
ma	1918	35	0,058	41,28	1	3	11,84	366	35	0,058	12,71	304	35	4,76	620	15,91	352	35	0,058	73840,5
max=mi	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil	eşit değil
max-mi	1480	35	0,058	23,43	1	0	2,02	206	35	0,058	2,89	144	35	4,76	620	2,65	192	35	0,058	18348
median			-							-				-	-	-			-	
mea	232,8333333	1,666666667	0,002666667	1,802111111	0,133333333	0	0,349444444	30,56666667	1,666666667	0,003466667	0,324555556	39,04444444	1,666666667	1,368133333	81,57777778	0,218111111	12,15	1,666666667	0,003533333	548,9574333
SKEWNES	0,102343503	- 3,330688423	-0,53507349	- 0,588976304	- 2,175448351	0	- 1,185669638	0,334065516	3,330688423	- 0,626218518	0,990964029	0,726616709	- 3,330688423	0,653548692	2,175836646	1,025273445	0,386394596	- 3,330688423	- 0,621556795	0,771024791
	-		-	-			0.4.42570770	-	0.73043743	-	0.070204427	-	0.72042742	-	2.76564044	0.254440722	0.2005.420.42	0.73043743		0.200074.767
KURTOSI	1,619877749	9,/3013/13	0,994405967	0,337445911	2,763155003	0	0,1425/8//8	1,263010795	9,/3013/13	0,//1316/86	0,078394437	1,453543148	9,/3013/13	1,363625826	2,76564041	0,354449722	0,266542043	9,/3013/13	0,766140788	0,3088/1/6/

Interpretation for descriptive statistics

- Count: This is important for the first perception about the volume of «missing data».
 - Therefore, there are no missing values for all features.
- Min and max values: This can give an idea about the range of values and is helpful to detect outliers.
 - «Durulama Sayısı» has the same min and max values, which means this feature has to be dropped from the data frame. Bcz it causes error during the calculation of the standard deviation.
 - Furthermore, the other exception could eventually be the max values of «<u>SYI_Sure_(sn)</u>», «<u>3D_Sure_(sn)</u>» and «<u>2D_Sikma_(rpm)</u>».
- **Median and mean:** The proximity of the mean and median values indicate proximity to the normal distribution.

!!! If median equals mean (or is very close), the distribution can be considered as normally distributed!!!

• **Mean and standard deviation:** «mean»; the central tendency of the distribution, «standard deviation», quantifies its amount of variation.

!!! A low standard deviation suggests that data points tend to be close to the mean!!!

Example of variables that have high max values

Example of min outlier value and zero outlier that caused by non-measurable value

No Skewness (Normal Distribution)

SKEWNESS ANALYSIS

Skewness_values = df.skew()

	-		
Test_No	0	AY_Su_Mik_(lt)	0,696366716
Numune_1_ Relakse_Sonrasi_ En_1	0,613060857	AY_Sure_(sn)	0,102343503
Numune_1_ Relakse_Sonrasi_ En_2	0,660676599	AY_Devir_(rpm)	-3,330688423
Numune_1_ Relakse_Sonrasi_ En_3	0,83572226	AY_MHY_ED	-0,53507349
Numune_1_Relakse_Sonrasi_Boy_1	-3,260261705	AY_Tah_(C)	-0,588976304
Numune_1_Relakse_Sonrasi_Boy_2	-3,329913682	Jet_Pompa	-2,175448351
Numune_1_Relakse_Sonrasi_Boy_3	-3,327572638	Durulama_Sayisi	0
Giris_Alan_Ortalama	-2,394629595	1D_Su_Mik_(It)	-1,185669638
Deterjan_Miktarı(gr)	-2,175448351	1D_Sure_(sn)	-0,334065516
Test_Kapasitesi(kg)	-2,175448351	1D_Devir_(rpm)	-3,330688423
Su_Sertligi	2,076044927	1D_MHY_ED	-0,626218518
Tambur_Hacmi_(lt)	-1,512634581	2D_Su_Mik_(It)	-0,990964029
SY1_Sure_(sn)	2,603931062	2D_Sure_(sn)	-0,726616709
SY1_Devir_(rpm)	-3,330688423	2D_Devir_(rpm)	-3,330688423
SY1_ED	-0,713845603	2D_MHY_ED	0,653548692
SG_Sic_(C)	-0,867887424	2D_Sikma_(rpm)	2,175836646
I_Bas_Sic (C)	-2,082686198	3D_Su_Mik_(It)	1,025273445
I_Sure_(sn)	-0,618799546	3D_Sure_(sn)	0,386394596
I_Devir_(rpm)	-1,470632541	3D_Devir_(rpm)	-3,330688423
I_MHY_ED	1,602676423	3D_MHY_ED	-0,621556795
I_Tset_(C)	-0,945102159	Cikis_Alan_Ortalama	-0,771024791

Skewness is 0 in a normal distribution, so the farther away from 0, the more non-normal the distribution

KURTOSIS ANALYSIS

Kurtosisi_values = df.kurtosis()

-1,270438828	AY_Su_Mik_(lt)	2,56451849
-0,783263545	AY_Sure_(sn)	-1,619877749
-0,712381127	AY_Devir_(rpm)	9,73013713
-0,230475788	AY_MHY_ED	-0,994405967
9,401776493	AY_Tah_(C)	-0,337445911
9,642285988	Jet_Pompa	2,763155003
9,641744814	Durulama_Sayisi	0
6,035844615	1D_Su_Mik_(lt)	0,142578778
2,763155003	1D_Sure_(sn)	-1,263010795
2,763155003	1D_Devir_(rpm)	9,73013713
2,570052941	1D_MHY_ED	-0,771316786
0,291174697	2D_Su_Mik_(lt)	0,078394437
5,886342993	2D_Sure_(sn)	-1,453543148
9,73013713	2D_Devir_(rpm)	9,73013713
-0,439179542	2D_MHY_ED	-1,363625826
2,635950529	2D_Sikma_(rpm)	2,76564041
2,54767411	3D_Su_Mik_(lt)	0,354449722
-0,392994428	3D_Sure_(sn)	0,266542043
0,247312818	3D_Devir_(rpm)	9,73013713
0,739203732	3D_MHY_ED	-0,766140788
-0,045574969	Cikis_Alan_Ortalama	0,308871767
	-0,783263545 -0,712381127 -0,230475788 9,401776493 9,642285988 9,641744814 6,035844615 2,763155003 2,763155003 2,570052941 0,291174697 5,886342993 9,73013713 -0,439179542 2,635950529 2,54767411 -0,392994428 0,247312818 0,739203732	-0,783263545 AY_Sure_(sn) -0,783263545 AY_Devir_(rpm) -0,230475788 AY_MHY_ED 9,401776493 AY_Tah_(C) 9,642285988 Jet_Pompa 9,641744814 Durulama_Sayisi 6,035844615 1D_Su_Mik_(lt) 2,763155003 1D_Devir_(rpm) 2,570052941 1D_MHY_ED 0,291174697 2D_Su_Mik_(lt) 5,886342993 2D_Sure_(sn) -0,439179542 2D_MHY_ED 2,635950529 2D_Sikma_(rpm) 2,54767411 3D_Su_Mik_(lt) -0,392994428 3D_Devir_(rpm) 0,247312818 3D_Devir_(rpm) 3D_MHY_ED 0,739203732 3D_MHY_ED

The value is often compared to the kurtosis of the normal distribution, which is equal to 3. If the kurtosis is greater than 3, then the dataset has heavier tails than a normal distribution (more in the tails). If the kurtosis is less than 3, then the dataset has lighter tails than a normal distribution (less in the tails).

Detecting Outliers

"Sometimes outliers are bad data, and should be excluded, such as typos. Sometimes they are Wayne Gretzky or Michael Jordan, and should be kept."

- According to <u>IQR</u>, (not considering zero (0) values)
 - * Numune I Relakse Sonrasi En 3
 - * Numune_I_Relakse_Sonrasi_Boy_I
 - Numune_I_Relakse_Sonrasi_Boy_2
 - Numune_I_Relakse_Sonrasi_Boy_3
 - ❖ Giris_Alan_Ortalama
 - Deterjan_Miktarı(gr)
 - * Test_Kapasitesi(kg)
 - ❖ Su Sertligi
 - Tambur_Hacmi_(lt)
 - SYI_Sure_(sn)
 - SYI_Devir_(rpm)
 - \$ SG_Sic_(C)
 - ❖ I_Bas_Sic (C) (bcz of zero values)
 - I_Sure_(sn)
 - AY_Su_Mik_(It)
 - * AY_Devir_(rpm)
 - Jet_Pompa (bcz of zero values)
 - ID Devir (rpm)
 - * 2D Devir (rpm)
 - ❖ 2D Sikma (rpm) *
 - * 3D_Sure_(sn) -> (2 outliers)
 - \$ 3D_Devir_(rpm)
 - * 3D_MHY_ED
 - Cikis_Alan_Ortalama -> (2 outliers)

- According to Z SCOPE,
 - Numune_I_Relakse_Sonrasi_ Boy_I
 - Numune_I_Relakse_Sonrasi_ Boy_2
 - Numune_I_Relakse_Sonrasi_ Boy_3
 - * Giris Alan Ortalama
 - SYI_Sure_(sn)
 - SYI_Devir_(rpm)
 - \$ SG_Sic_(C)
 - * AY_Su_Mik_(lt)
 - * AY_Devir_(rpm)
 - ❖ ID Devir (rpm)
 - \$ 2D_Devir_(rpm)
 - * 3D_Su_Mik_(lt)
 - 3D_Sure_(sn)
 - 3D_Devir_(rpm)
 - Cikis_Alan_Ortalama

variables have values more than the shold which is 3.

An outlier is a point which falls more than 1.5 times the interquartile range above the third (75%) quartile or below the first quartile (25%).

Formula for Z score =

(Observation - Mean)/Standard Deviation

```
########## Detecting Outliers- Uc noktalarrrr #############
df.shape
(180, 42)
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3-Q1
print(IQR)
df = df[\sim((df < (Q1-1.5*IQR)) | (df > (Q3+1.5*IQR))).any(axis=1)]
df.shape
(48, 42) #132 rows are outliers.....
#z-score-outliers
from scipy import stats
import numpy as np
z = np.abs(stats.zscore(df))
print(z)
z score = pd.DataFrame(data = z, index= range(180), columns = df.columns)
z score.to excel('C:\\Users\\DSİ\\Desktop\\Z score outliers.xlsx')
threshold = 3
print(np.where(z > 3))
# print(z[18][21])
```


Variables that do not have a density

- Deterjan_Miktarı(gr)
- ∘ Su_Sertligi
- SYI_Devir_(rpm)
- AY_Devir_(rpm)
- ID_Devir_(rpm)
- 2D_Sikma_(rpm)

Test_Kapasitesi(kg)

Tambur_Hacmi_(lt)

I_Devir_(rpm)

Jet_Pompa

2D_Devir_(rpm)

3D_Devir_(rpm)

PEARSON VS. SPEARMAN'S RANK CORRELATION ANALYSIS

Pearson r correlation is a parametric correlation statistic to measure the degree of the relationship between linearly related variables.

The Spearman's rank coefficient of correlation is a nonparametric measure of rank correlation.

Size of Correlation	Interpretation
.90 to 1.00 (90 to -1.00)	Very high positive (negative) correlation
.70 to .90 (70 to90)	High positive (negative) correlation
.50 to .70 (50 to70)	Moderate positive (negative) correlation
.30 to .50 (30 to50)	Low positive (negative) correlation
.00 to .30 (.00 to30)	negligible correlation

Feature\Response	Continuous	Categorical
Continuous	Pearson's Correlation	LDA
Categorical	Anova	Chi-Square

To be able to calculate pearson's correlation, the condition of normality and linearity should be provided for each variable.

When variables do not have normal distribution, Spearman Rank correlation coefficient is preferred.

DEĞER Sol Korelasyon	to	Üst Korelasyon	Çıkarılacak
1,00 Deterjan Miktarı(gr)		Test Kapasitesi(kg)	Deterjan Miktarı(gr)
1,00 SY1_Devir_(rpm)		AY_Devir_(rpm)	AY_Devir_(rpm)
1,00 SY1_Devir_(rpm)		1D_Devir_(rpm)	1D_Devir_(rpm)
1,00 SY1 Devir (rpm)	_	2D Devir (rpm)	2D Devir (rpm)
1,00 SY1_Devir_(rpm)		3D_Devir_(rpm)	3D Devir (rpm)
1,00 AY_Devir_(rpm)		1D_Devir_(rpm)	*
1,00 AY_Devir_(rpm)		2D Devir (rpm)	*
1,00 AY_Devir_(rpm)	_	3D_Devir_(rpm)	*
1,00 1D_Devir_(rpm)		2D_Devir_(rpm)	*
1,00 1D Devir (rpm)		3D Devir (rpm)	*
1,00 2D_Devir_(rpm)	=>	3D_Devir_(rpm)	*
1,00 1D MHY ED	_	3D MHY ED	3D_MHY_ED
0,99 Numune_1_Relakse_Sonrasi_Boy_1			Numune_1_Relakse_Sonrasi_Boy_1
0,99 Numune 1 Relakse Sonrasi Boy 1			*
0,99 Numune 1 Relakse Sonrasi Boy 2	_		Numune_1_Relakse_Sonrasi_Boy_2
0,99 SY1 ED		1D MHY ED	SY1 ED
0,99 SY1 ED	_	3D MHY ED	*
0,98 Sure (sn)		AY Tah (C)	I Sure (sn)
0,97 1D Su Mik (It)		2D Su Mik (It)	2D Su Mik (It)
0,95 SY1_ED		AY_MHY_ED	*
0,95 1D Sure (sn)		2D Sure (sn)	2D Sure (sn)
0,95 Sure (sn)		I Tset (C)	I Sure (sn)
0,94 I_Tset_(C)		AY Tah (C)	I Tset (C)
0,94 AY_MHY_ED	=>	3D MHY ED	*
0,94 AY_MHY_ED	=>	1D_MHY_ED	1D_MHY_ED
0,94 Numune_1_Relakse_Sonrasi_Boy_1	=>	Giris_Alan_Ortalama	*
0,93 Numune_1_Relakse_Sonrasi_En_1			Numune_1_ Relakse_Sonrasi_ En_2
0,93 Numune_1_Relakse_Sonrasi_Boy_2	=>	Giris_Alan_Ortalama	*
0,92 Numune_1_Relakse_Sonrasi_Boy_3	=>	Giris_Alan_Ortalama	Numune_1_Relakse_Sonrasi_Boy_3
0,91 Numune_1_ Relakse_Sonrasi_ En_2	=>	Numune_1_ Relakse_Sonrasi_ En_3	*
0,91 Numune_1_ Relakse_Sonrasi_ En_1	=>	Numune_1_ Relakse_Sonrasi_ En_3	Numune_1_ Relakse_Sonrasi_ En_3
0,88 1D_Sure_(sn)	=>	3D_Sure_(sn)	3D_Sure_(sn)
0,87 2D_Sure_(sn)	=>	3D_Sure_(sn)	*
0,85 I_Bas_Sic (C)	=>	I_Tset_(C)	*
0,85 Test_Kapasitesi(kg)	=>	1D_Su_Mik_(lt)	1D_Su_Mik_(It)
0,85 Deterjan_Miktarı(gr)	=>	1D_Su_Mik_(lt)	*
0,82 Test_Kapasitesi(kg)	=>	2D_Su_Mik_(It)	*
0,82 Deterjan_Miktarı(gr)	=>	2D_Su_Mik_(It)	*
0,82 Tambur_Hacmi_(It)	=>	1D_Su_Mik_(lt)	*
0,81 I_Bas_Sic (C)		I_Devir_(rpm)	I_Devir_(rpm) ???
0,80 Tambur_Hacmi_(It)	=>	2D_Su_Mik_(It)	*
0,79 I_Bas_Sic (C)	=>	I_Sure_(sn)	*
0,79 I_Bas_Sic (C)	=>	AY_Tah_(C)	AY_Tah_(C)
0,78 Test_Kapasitesi(kg)	=>	Tambur_Hacmi_(It)	Tambur_Hacmi_(It)
0,78 Deterjan_Miktarı(gr)	=>	Tambur_Hacmi_(It)	*
0,73 I_MHY_ED	=>	2D_MHY_ED	2D_MHY_ED
0,71 Giris_Alan_Ortalama	_	Deterjan_Miktarı(gr)	
0,71 Giris_Alan_Ortalama	=>	Test_Kapasitesi(kg)	
-0,88 SY1_Sure_(sn)	=>	I_Bas_Sic (C)	SY1_Sure_(sn)

Numune_1_Relakse_Sonrasi_En_3 Numune_1_Relakse_Sonrasi_En_3 Numune_1_Relakse_Sonrasi_En_3 Numune_1_Relakse_Sonrasi_En_3 Numune_1_Relakse_Sonrasi_Boy_1 Numune_1_Relakse_Sonrasi_Boy_2 Numune_1_Relakse_Sonrasi_Boy_2	Deterjan_Miktari(gr) Test_Kapasitesi(kg) Su_Sertligi Tambur_Hacmi_(it) SY1_Sure_(sn)	SY1_Devir_(rpm) SY1_ED	SG_Sic_(C) _Bas_Sic_(C)	!_Sure_(sn) !_Devir_(rpm)	I_MHY_ED	_Tset_(C) AY_Su_Mik_(it)	AY_Sure_(sn)	AY_Devir_(rpm) AY_MHY_ED	AY_Tah_(C)	Jet_Pompa 1D Su Mik (It)	1D_Sure_(sn)	1D_Devir_(rpm)	1D_MHY_ED	2D_Sure_(sn)	2D_Devir_(rpm)	2D_MHY_ED	2D_Sikma_(rpm)	3D_Su_Mik_(it)	3D_Sure_(sn)	3D_Devir_(rpm)	3D_MHY_ED Cikis_Alan_Ortalama
5. E/ III IV IV 55 III	0,00 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0	0,03 0,05	-0,02 0,00	0,00	0,02 0,02	0,00	0,00 0,	00 -0,02	0,00 -0,	0,01	0,00	0,00 -0	01 -0,0	3 0,00	0,00	0,00	-0,03	-0,04	0,00	0,00 -0,72
Numune_1_Relakse_Sonrasi_En_1 1,00 0,94 0,86 0,08 0,08 -0,01 0	,51 -0,07 -0,07 -0,36 -0,03 0,05	0,13 -0,14	0,28 0,36	0,12 0,31	0,07	0,28 -0,40	0,09	0,13 -0,	0,20	0,11 0,	31 -0,19	0,13	-0,13 0	21 -0,2	0,13	-0,18	0,18	-0,34	-0,24	0,13	0,13 -0,13
Numune_1_Relakse_Sonrasi_En_2 1,00 0,85 0,02 -0,05 -0,09 0	,51 -0,06 -0,06 -0,40 -0,08 0,12	0,05 -0,22	0,28 0,32	0,14 0,23	0,06	0,30 -0,35	0,10	0,05 -0,	0,21	0,18 0,	31 -0,17	0,05	-0,21 0	25 -0,2	0,05	-0,18	0,20	-0,27	-0,23	0,05	0,21 -0,06
Numune_1_Relakse_Sonrasi_En_3 1,00 0,00 0,01 -0,10 0	,45 -0,11 -0,11 -0,30 -0,07 -0,01	0,06 -0,13	0,31 0,31	-0,03 0,29	0,04	0,17 -0,45	0,19	0,06 -0,	0,07	0,10 0,	28 -0,35	0,06	-0,14 0	14 -0,3	7 0,06	-0,20	0,11	-0,32	-0,38	0,06	0,14 -0,11
Numune_1_Relakse_Sonrasi_Boy_1 1,00 0,83 0,86 0	,74 0,41 0,41 0,41 0,39 0,29	0,01 0,10 -0	0,30 -0,17	0,18 -0,13	-0,11	0,01 0,36	-0,18	0,01 0,	12 0,07	-0,25 0,	17 0,02	0,01	0,11 0	14 0,0	0,01	-0,13	-0,34	0,41	0,05	0,01	0,11 0,18
Numune_1_Relakse_Sonrasi_Boy_2 1,00 0,74 0	,70 0,46 0,46 0,24 0,46 0,08	0,07 -0,06 -0	0,07 -0,02	0,24 0,03	-0,10	0,30	-0,05	0,07 -0,	0,11	-0,28 0,	-0,03	0,07	-0,06 0	24 -0,0	1 0,07	-0,08	-0,31	0,23	0,00	0,07	0,06 0,15
Numune_1_Relakse_Sonrasi_Boy_3 1,00 0	,65 0,35 0,35 0,42 0,29 0,12	-0,03 0,16 -0	0,35 -0,18	0,07 -0,15	-0,12 -	0,11 0,32	-0,28	-0,03 0,	15 -0,07	-0,29 0,	06 -0,04	-0,03	0,17 0	0,0	1 -0,03	-0,12	-0,40	0,37	0,01	-0,03	0,17 0,21
Giris_Alan_Ortalama 1	,00 0,48 0,48 0,00 0,39 0,15	0,04 -0,25	0,00 0,03	0,18 0,12	-0,12	0,14 0,10	0,09	0,04 -0,	20 0,07	-0,10 0,	44 -0,28	0,04	-0,24 0	34 -0,2	0,04	-0,22	-0,39	0,16	-0,27	0,04	0,24 0,24
Deterjan_Miktarı	(gr) 1,00 1,00 0,07 0,78 -0,02	0,00 -0,43	0,16 -0,27	0,05 -0,12	-0,19 -	0,59	0,44	0,00 -0,	42 -0,17	-0,15 0,	-0,17	0,00	-0,43 0	59 -0,1	0,00	0,14	-0,38	0,34	-0,15	0,00	0,43 0,28
Test_Ka	pasitesi(kg) 1,00 0,07 0,78 -0,02	0,00 -0,43	0,16 -0,27	0,05 -0,12	-0,19 -	0,59	0,44	0,00 -0,	42 -0,17	-0,15 0,	-0,17	0,00	-0,43 0	59 -0,1	0,00	0,14	-0,38	0,34	-0,15	0,00	0,43 0,28
	Su_Sertligi 1,00 0,08 0,03	-0,39 0,51 -0	0,30 -0,40	-0,29 -0,53	-0,04 -	0,50	-0,37	-0,39 0,	47 -0,34	-0,39 -0,	26 0,12	-0,39	0,47 -0	24 0,1	-0,39	0,06	-0,06	0,62	0,18	-0,39	0,47 0,06
	Tambur_Hacmi_(lt) 1,00 -0,25	0,46 -0,08	0,21 0,02	0,29 0,20	0,08	0,14 0,32	0,49	0,46 -0,	08 0,13	-0,20 0,	-0,09	0,46	-0,08 0	63 -0,0	0,46	0,40	-0,26	0,04	-0,06	0,46	0,08 -0,01
	SY1_Sure_(sn) 1,00	-0,05 -0,20 -0	0,47 0,03	0,15 -0,13	-0,31	0,20 0,15	-0,15	-0,05 -0,	14 0,19	0,07 -0,	25 -0,12	-0,05	-0,16 -0	19 -0,2	-0,05	-0,66	0,10	0,35	-0,13	0,05	0,16 0,17
	SY1_Devir_(rpm)		0,10 0,54	0,45 0,71		0,49 -0,37		1,00 0,		0,00 0,				06 -0,1		0,09	0,00	-0,57			0,13 -0,26
			0,03	0,02 -0,01		0,02 -0,08		0,09 0,		-0,43 -0,		0,09		23 0,2		0,16	0,12	0,08			1,00 -0,36
			1,00 0,22	0,01 0,05		0,11 -0,10		-0,10 -0,		0,26 0,				51 0,1		0,35	0,26	-0,33			-0,37 -0,14
		I_Bas_Si		0,55 0,73		0,67 -0,45		0,54 0,		-0,02 0,				17 -0,2	-	-0,23	0,45	-0,43		_	0,06 -0,38
			I_Sure_(sn)	1,00 0,56		0,00		0,45 0,		-0,33 0,				44 0,1		0,03	0,25	-0,05			0,05 -0,21
			I_Devir			0,61 -0,44		0,71 0,		-0,12 0,	_			21 -0,2	_	-0,01	0,12	-0,42			0,02 -0,31
				I_MHY_ED		0,35 -0,05		0,13 0,		-0,19 0,				38 0,2		0,53	0,36	0,15			0,41 -0,37
						1,00 -0,27		0,49 0,		-0,20 0,3 -0,38 0,3				38 -0,0		-0,15	0,23	-0,25			0,02 -0,25 -0,09 0,16
					AY_Su_Mik	_(lt) 1,00 Y Sure (sn)		0.33 -0.		0,32 0,		-0,37 0,33		19 0,3 26 -0,2		0,18	-0,26	0,71 -0.28		-,-	
					A	Y_Sure_(sn) AY_Devi		0,33 -0,		0,32 0,	-			06 -0,1	_	0,26	0,00	-0,28		.,	0,54 0,12 0,13 -0,26
						AY_Devi	AY_MH		-	-0,42 -0,3	_			21 0,1		0,09	0,00	0,11			0,97 -0,38
							AT_IVIN	AY_Tah_	_	-0,42 -0,				31 0,2		0,02	0,15	-0,17			0,11 -0,29
									et_Pompa	1,00 -0,	_			05 -0,0		0,02	0,15	-0,31		_	0,43 0,12
									1D_Su_N					87 -0,1	_	0,23	-0,24	-0,01			0,23 0,03
										1D_Sure_(s				03 0,9		0,52	0,42	0,05		_	0,18 -0,21
											evir_(rpm)			06 -0,1		0,09	0,00	-0,57			0,13 -0,26
											1D_N	HY_ED	1,00 -0	24 0,1	9 0,13	0,13	0,12	0,07	0,27	0,13	1,00 -0,36
												2D_Su_Mi		00 0,0	_	0,37	0,08	0,11		0,06	0,24 -0,05
													2D_Sure_	sn) 1,0	0 -0,19	0,54	0,28	0,05	0,92	0,19	0,19 -0,14
													2D_0	evir_(rpm	1,00	0,09	0,00	-0,57	-0,15	1,00	0,13 -0,26
														2D_	MHY_ED	1,00	0,16	-0,03	0,46	0,09	0,13 -0,19
															2D_Sikma	a_(rpm)	1,00	-0,06	0,35	0,00	0,12 -0,39
																BD_Su_N	/lik_(lt)	1,00	0,08	-0,57	0,07 0,26
																	3D_Sur	re_(sn)	1,00	0,15	0,27 -0,18
																	30	D_Devir_	(rpm)	1,00	0,13 -0,26
																			3D_MH		1,00 -0,36
																			Cikis_Al	an_Orta	lama 1,00

SPEARMAN'S RANK

DEĞER	Sol_Korelasyon	to	Üst_Korelasyon
1,00	Deterjan_Miktarı(gr)	=>	Test_Kapasitesi(kg)
1,00	SY1_Devir_(rpm)	=>	AY_Devir_(rpm)
1,00	SY1_Devir_(rpm)	=>	1D_Devir_(rpm)
1,00	SY1_Devir_(rpm)	=>	2D_Devir_(rpm)
1,00	SY1_Devir_(rpm)	=>	3D_Devir_(rpm)
<mark>1,00</mark>	AY_Devir_(rpm)	=>	1D_Devir_(rpm)
1,00	AY_Devir_(rpm)	=>	2D_Devir_(rpm)
1,00	AY_Devir_(rpm)	=>	3D_Devir_(rpm)
1,00	1D_Devir_(rpm)	=>	2D_Devir_(rpm)
1,00	1D_Devir_(rpm)	=>	3D_Devir_(rpm)
1,00	1D_MHY_ED	=>	3D_MHY_ED
1,00	2D_Devir_(rpm)	=>	3D_Devir_(rpm)
1,00	SY1_ED	=>	1D_MHY_ED
<mark>1,00</mark>	SY1_ED	=>	3D_MHY_ED
0,97	SY1_ED	=>	AY_MHY_ED
0,97	AY_MHY_ED	=>	1D_MHY_ED
0,97	AY_MHY_ED	=>	3D_MHY_ED
0,95	1D_Sure_(sn)	=>	2D_Sure_(sn)
0,95	I_Sure_(sn)	=>	AY_Tah_(C)
0,94	Numune_1_ Relakse_Sonrasi_ En_1	=>	Numune_1_ Relakse_Sonrasi_ En_2
0,92	2D_Sure_(sn)	=>	3D_Sure_(sn)
0,91	1D_Sure_(sn)	=>	3D_Sure_(sn)
0,90	I_Tset_(C)	=>	AY_Tah_(C)
0,89	I_Sure_(sn)	=>	I_Tset_(C)
0,87	1D_Su_Mik_(lt)	=>	2D_Su_Mik_(lt)
0,86	Numune_1_Relakse_Sonrasi_Boy_1	=>	Numune_1_Relakse_Sonrasi_Boy_3
0,86	Numune_1_ Relakse_Sonrasi_ En_1	=>	Numune_1_ Relakse_Sonrasi_ En_3
0,85	Numune_1_ Relakse_Sonrasi_ En_2	=>	Numune_1_ Relakse_Sonrasi_ En_3
0,83	Numune_1_Relakse_Sonrasi_Boy_1	=>	Numune_1_Relakse_Sonrasi_Boy_2
0,78	Deterjan_Miktarı(gr)	=>	Tambur_Hacmi_(lt)
0,78	Test_Kapasitesi(kg)	=>	Tambur_Hacmi_(lt)
0,74	Numune_1_Relakse_Sonrasi_Boy_2	=>	Numune_1_Relakse_Sonrasi_Boy_3
0,74	Numune_1_Relakse_Sonrasi_Boy_1	=>	Giris_Alan_Ortalama
0,73	I_Bas_Sic (C)	=>	I_Devir_(rpm)
0,71	SY1_Devir_(rpm)	=>	I_Devir_(rpm)
0,71	I_Devir_(rpm)	=>	AY_Devir_(rpm)
0,71	I_Devir_(rpm)	=>	1D_Devir_(rpm)
0,71	I_Devir_(rpm)	=>	2D_Devir_(rpm)
0,71	I_Devir_(rpm)	=>	3D_Devir_(rpm)
0,71	AY_Su_Mik_(lt)	=>	3D_Su_Mik_(lt)
-0,72	Test_No	=>	Cikis_Alan_Ortalama

PEARSON CORRELATION W/ OUTPUT

Cikis_Alan_Ortalama	1,00
Numune 1 Relakse Sonrasi Boy 3	0,50
Giris_Alan_Ortalama	0,48
Numune_1_Relakse_Sonrasi_Boy_1	0,48
Numune_1_Relakse_Sonrasi_Boy_2	0,48
Test_Kapasitesi(kg)	0,34
Deterjan Miktarı(gr)	0,34
3D_Su_Mik_(It)	0,25
SY1_Sure_(sn)	0,22
AY_Sure_(sn)	0,21
1D_Su_Mik_(It)	0,17
AY_Su_Mik_(It)	0,16
Jet_Pompa	0,12
2D_Su_Mik_(lt)	0,11
Su_Sertligi	0,09
Tambur_Hacmi_(It)	0,07
2D_MHY_ED	-0,01
I_MHY_ED	-0,07
Numune_1_ Relakse_Sonrasi_ En_2	-0,09
3D_Sure_(sn)	-0,11
2D_Sure_(sn)	-0,13
SG_Sic_(C)	-0,15
1D_Sure_(sn)	-0,15
Numune_1_ Relakse_Sonrasi_ En_3	-0,18
Numune_1_ Relakse_Sonrasi_ En_1	-0,20
I_Sure_(sn)	-0,28
I_Tset_(C)	-0,31
3D_Devir_(rpm)	-0,33
SY1_Devir_(rpm)	-0,33
AY_Devir_(rpm)	-0,33
1D_Devir_(rpm)	-0,33
2D_Devir_(rpm)	-0,33
AY_Tah_(C)	-0,34
I_Devir_(rpm)	-0,35
I_Bas_Sic (C)	-0,36
1D_MHY_ED	-0,40
SY1_ED	-0,40
3D_MHY_ED	-0,40
AY_MHY_ED	-0,41
2D_Sikma_(rpm)	-0,49
Test_No	-0,67

1,00	Cikis_Alan_Ortalama
0,28	Deterjan_Miktarı(gr)
0,28	Test_Kapasitesi(kg)
0,26	3D_Su_Mik_(lt)
0,24	Giris_Alan_Ortalama
0,21	Numune_1_Relakse_Sonrasi_Boy_3
0,18	Numune_1_Relakse_Sonrasi_Boy_1
0,17	SY1_Sure_(sn)
0,16	AY_Su_Mik_(It)
0,15	Numune_1_Relakse_Sonrasi_Boy_2
0,12	AY_Sure_(sn)
0,12	Jet_Pompa
0,06	Su_Sertligi
0,03	1D_Su_Mik_(It)
-0,01	Tambur_Hacmi_(It)
-0,05	2D_Su_Mik_(lt)
-0,06	Numune_1_ Relakse_Sonrasi_ En_2
-0,11	Numune_1_ Relakse_Sonrasi_ En_3
-0,13	Numune_1_ Relakse_Sonrasi_ En_1
-0,14	2D_Sure_(sn)
-0,14	SG_Sic_(C)
-0,18	3D_Sure_(sn)
-0,19	2D_MHY_ED
-0,21	1D_Sure_(sn)
-0,21	I_Sure_(sn)
-0,25	I_Tset_(C)
-0,26	SY1_Devir_(rpm)
-0,26	AY_Devir_(rpm)
-0,26	1D_Devir_(rpm)
-0,26	2D_Devir_(rpm)
-0,26	3D_Devir_(rpm)
-0,29	AY_Tah_(C)
-0,31	I_Devir_(rpm)
-0,36	SY1_ED
-0,36	1D_MHY_ED
-0,36	3D_MHY_ED
-0,37	I_MHY_ED
-0,38	I_Bas_Sic (C)
-0,38	AY_MHY_ED
-0,39	2D_Sikma_(rpm)
-0.72	Test No

SPEARMAN CORRELATION W/ OUTPUT


```
DEĞER Sol_Korelasyon to Üst_Korelasyon

0,94 Numune_I_ Relakse_Sonrasi_ En_I => Numune_I_ Relakse_Sonrasi_ En_2

0,86 Numune_I_ Relakse_Sonrasi_ En_I => Numune_I_ Relakse_Sonrasi_ En_3

0,85 Numune_I_ Relakse_Sonrasi_ En_2 => Numune_I_ Relakse_Sonrasi_ En_3
```


Revolution and Engine Motion Analysis (rpm)

- All cycle data are batch data.
 According to the Spearman correlation, if Isitici_devir (heater speed) increases, the shrinkage amount increases by 31%!!
- In addition, among the ED variables, Isitici_ED variable contains outliers, the distribution of other ED variables is seen regularly.
- Of the ED variables, AY_ED (main wash) has the most relation with CAO. If AY_ED increases, it can be interpreted that the shrinkage rate in woolen textile increases 38%. AY is also 97% same with ID, 3D and SY values.
- SY_ED = ID_ED = 3D_ED THESE MUST BE REMOVED!!!!
- Also Isitici_ED has 53% corr with 2D_ED, with Isitici_devir has 51%.

It should have been like this line..

Due to zero outliers, there is a negative correlation between I_Bas_Sic (C) and SYI_Sure_(sn). We have to look the detail info for the best interpretation on the next sheet.

The amount which is the most intense with the shrinkage value, is 608.

0 is too high, when the spin increase, shouldn't the CAO be lower ??

BACKWARD ELIMINATION APPROACH

OLS REGRESSION

If the P value found in a test is below 0.05, it means that there is a significant difference in comparison.

	coef	std err	t	P> t	[0.025	0.975]
x1	-1411.7982	45,312	-31,157	0.000	-1501.361	-1322,235
x2	-1.55e+04	3844.863	-4.030	0.000	-2.31e+04	-7896.867
x3	-1.614e+04	3917.947	-4.119	0.000	-2.39e+84	-8393.571
x4	-1.559e+04	3798.370	-4.103	0.000	-2.31e+04	-8075.020
750	26712112			100000000000000000000000000000000000000	200000000000000000000000000000000000000	-8261.567
X5	-1.628e+04	4855.109	-4.014	0.000	-2.43e+84	
x6	-1.613e+04	3905.510	-4,129	0.000	-2.38e+04	-8408.085
×7	-1.63e+84	3957.895	-4.119	0.000	-2.41e+84	-8481.420
x8	177.5966	43.249	4.106	0.000	92.113	263.081
x9	3.057e+05	2.1e+05	1.455	0.148	-1.09e+05	7.21e+05
x10	-3,345e+06	2.07e+06	-1.619	0.108	-7.43 ≥+0 6	7.38e+05
x11	145.6956	431.173	0.338	0.736	-706.549	997.941
x12	3.335e+04	1.15e+85	8.291	0.772	-1.93e+85	2.66+85
x13	-24.6923	7.697	-3.208	0.002	-39.907	-9.478
×14	-3.8339	1107.726	-0.003	0.997	-2193.337	2185.670
x15	-3.667e+06	2.65e+06	-1.386	0.168	-8.9e+86	1.56e+06
x16	-366,8278	326.012	-1.125	0.262	-1011.215	277.559
×17	233.5882	267.009	0.875	0.383	-294.174	761.351
×18	-2.8730	6.792	-0.423	0.673	-16.298	10.552
x19	-1826.4961	426.477	-4.283	0.000	-2669.460	-983.532
x28	211.5068	1129.090	0.187	0.852	-2020.224	2443.237
x21	70.5015	76.100	8.926	0.356	-79.917	220,919
x22	-1085.6314	1232.639	-0.881	0.380	-3522.035	1350.772
x23	-7.6903	6.254	-1,230	0.221	-20.051	4.670
x24	75.5238	955.551	0.079	0.937	-1813.194	1964.242
x25	2.094e+86	5.35e+05	3.914	0.000	1.04e+06	3.15e+86
x26	-141.7146	124.476	-1.138	0.257	-387.750	104.321
×27	-1.482e+84	8263.429	-1.794	0.075	-3.12e+04	1511.764
x28	1554.5145	2240.689	0.694	0.489	-2874.375	5983.404
×29	21.9687	44.012	0.499	9.618	-65.025	108.963
x38	-11.8885	1123.194	-8.011	8.992	-2231.965	2208.188
x31	1.92c+07	3.71e+07	0.517	0.606	-5.42e+07	9.25e+07
x32	324,2592	858.464	0.378	0.706	-1372,560	2021.078
x33	-118.6065	45,810	-2.589	0.011	-209.154	-28.059
x34	-11.8493	1123.119	-0.011	0.992	-2231.777	2208.079
x35	416.9914	3559.369	0.117	8.987	-6618.369	7452.352
x36	-4.6607	2.965	-1.572	0.118	-10.521	1,199
x37	572.9766	403.536	1.428	0.158	-224,643	1370.596
x38	18.8322	5.224	3.605	0.000	8.506	29,158
x39	75.4863	955,776	0.079	0.937	-1813.756	1964,569
						100000000000000000000000000000000000000
x40	-1.833e+07	3.55e+07	-0.516	0.606	-8.85e+07	5.18e+07

P değeri	Yorumu
0.01<=p<0.05	İstatistiksel anlamlılık
0.001<=p<0.01	Yüksek düzeyde istatistiksel anlamlılık
p<0.001	Çok yüksek istatistiksel anlamlılık
0.05<=p<0.10	Anlamlılık eğilimi(sınırda anlamlılık)
p>0.10	Fark tesadüften ileri gelmiştir (istatistiksel olarak anlamlı farklılık saptanmamıştır)

	<u></u>			===== <u>===</u>		
	coef	std err	t	P> t	[0.025	0.975]
x1	-1424.2883	41.546	-34.282	0.000	-1506.354	-1342.222
x2	-1.494e+04	3675.500	-4.066	0.000	-2.22e+04	-7683.499
x3	-1.565e+04	3779.256	-4.140	0.000	-2.31e+04	-8182.817
x4	-1.504e+04	3633.424	-4.141	0.000	-2.22e+04	-7867.729
x5	-1.574e+04	3901.616	-4.034	0.000	-2.34e+04	-8032.835
x6	-1.563e+04	3758.532	-4.158	0.000	-2.31e+04	-8204.565
x7	-1.58e+04	3810.109	-4.146	0.000	-2.33e+04	-8270.164
x8	171.7781	41.533	4.136	0.000	89.739	253.818
x9	3.028e+05	8.43e+04	3.592	0.000	1.36e+05	4.69e+05
x10	-3.3e+06	9.01e+05	-3.662	0.000	-5.08e+06	-1.52e+06
x11	249.7330	75.779	3.296	0.001	100.047	399.419
x12	2.798e+04	5812.875	4.814	0.000	1.65e+04	3.95e+04
x13	-26.5936	5.047	-5.269	0.000	-36.563	-16.625
x14	-3.155e+06	6.15e+05	-5.129	0.000	-4.37e+06	-1.94e+06
x15	-1565.5358	297.796	-5.257	0.000	-2153.769	-977.302
x16	-4.2560	0.943	-4.512	0.000	-6.119	-2.393
x17	1.813e+06	3.69e+05	4.919	0.000	1.08e+06	2.54e+06
x18	-1.027e+04	2158.900	-4.757	0.000	-1.45e+04	-6005.311
x19	41.5232	7.523	5.520	0.000	26.664	56.382
x20	1.519e+07	2.81e+06	5.410	0.000	9.65e+06	2.07e+07
x21	-125.5091	16.597	-7.562	0.000	-158.294	-92.725
x22	-5.9319	0.748	-7.930	0.000	-7.409	-4.454
x23	16.6047	4.412	3.764	0.000	7.890	25.319
x24	-1.437e+07	2.65e+06	-5.418	0.000	-1.96e+07	-9.13e+06
======						

OLS Regression Results							
======================================	y OLS Least Squares Sun, 17 May 2020 16:20:46 180 144 35	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:	0.944 0.930 69.09 1.25e-73 -1466.8 3006. 3121.				

OLS Regression Results						
 Dep. Variable:	у	R-squared:	0.940			
Model:	OLS	Adj. R-squared:	0.931			
Method:	Least Squares	F-statistic:	106.4			
Date:	Sun, 17 May 2020	Prob (F-statistic):	3.18e-83			
Time:	16:15:31	Log-Likelihood:	-1472.6			
No. Observations:	180	AIC:	2993.			
Df Residuals:	156	BIC:	3070.			
Df Model:	23					
Covariance Type:	nonrobust					

Omnibus: 3.959 Durbin-Watson: 0.961
Prob(Omnibus): 0.138 Jarque-Bera (JB): 4.910
Skew: -0.038 Prob(JB): 0.0859
Kurtosis: 3.806 Cond. No. 1.11e+16

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 7.73e-21. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

______ Omnibus: 2.875 Durbin-Watson: 0.945 Prob(Omnibus): Jarque-Bera (JB): 2.877 Skew: -0.100 Prob(JB): 0.237 Kurtosis: 3.586 Cond. No. 4.14e+09 ______

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.14e+09. This might indicate that there are strong multicollinearity or other numerical problems.

SL=0.05 (Significance L	evel)	Column	p-value	Değişken adı	
1	iterasyon	13	0.997	SY1_Devir_(rpm)	çıkarılır
2	iterasyon	29	0.981	1D_Devir_(rpm)	çıkarılır
3	iterasyon	33	0.993	2D_Devir_(rpm)	çıkarılır
4	iterasyon	38	0.995	3D_Devir_(rpm)	çıkarılır
5	iterasyon	23	0.981	AY_Devir_(rpm)	çıkarılır
6	iterasyon	34	0.806	2D_MHY_ED	çıkarılır
7	iterasyon	31	0.695	2D_Su_Mik_(It)	çıkarılır
8	iterasyon	17	0.708	I_Sure_(sn)	çıkarılır
9	iterasyon	19	0.561	I_MHY_ED	çıkarılır
10	iterasyon	21	0.401	AY_Su_Mik_(lt)	çıkarılır
11	iterasyon	20	0.299	I_Tset_(C)	çıkarılır
12	iterasyon	15	0.427	SG_Sic_(C)	çıkarılır
13	iterasyon	25	0.296	AY_Tah_(C)	çıkarılır
14	iterasyon	27	0.209	1D_Su_Mik_(It)	çıkarılır
15	iterasyon	16	0.217	I_Bas_Sic (C)	çıkarılır
16	iterasyon	36	0.115	3D_Su_Mik_(It)	çıkarılır

									Spe	arm	an c	orre	logi	ram								_
Test_No	al.	0	0	0			100					0.00034		0.0046	0.50	0	0.0088	.9	-0.00	8.0011	0.036	9.72
Numune_1_Relakse_Somasi_En_1	0				0.003	D.Dilli	a aan		0.004		0.004	0.05	0.01	0.083	0.000	0.11	4010	830	431	616	434	0.13
Numune_1_Retakas_Sonrasi_En_2	ii.	mi		ans	0.002	0.048	4 260		0.057		0.079	0.12	0.00	0.007	210	0.16	40	421	421	0.2	421	0.000
Numura_1_Relakse_Somasi_En_3	n	64	885		3.6366	0.012	41		-0.11	-4.8	4.166	6.0091	0.29	0.19	0.872	8.5	216	-2.18	410	6.11		411
Numure_1_Relakae_Sorrani_Soy_1	.0	0.063	0.000	0.0066	77	19.63	O.M.	974	1001	9.41	-	0.20	-0.13	0.10	0.42	6.05	0.023	B#1	0.056	0.54	0.053	0.18
Namurai_1_Relekasi_Screasi_Soy_2	O	0.084	0.048	0.012	0.03					0.04	ym:	0.079	400	0.947	0.002	438	-0.000	0.059	0.0008	421	0.0000	216
Namune_1_Relakee_Sornee_Soy_3	it	a.0070	-0.060	41	man			ans	0.00		11,286	0.12	a m	11.20	iiti	Lis	0.04	W17	aace		0.0067	0.91
Citta_Alan_Ortolema	n	0.97	4.51	elas			180		bate	come	(LIF	0.15	0.12	0.049	43	-0.1	426	-0.24	436		421	0.24
Test_Kapinitesi(kg)	.0	0.074	0.057	0.11	541	-0.00	nan	0.43		0.065	0.70	9.219	-0.12	DAG	-245	0.15	-0.17		412		4.12	0.38
Ba_SerEgi	D.	.=	44	43	0.01	3024		0.0000	0.069	1	0.001	0.008	0.53	mar.		6	0.12		10.17	0.001	0.16	0.057
Tambur_Hacrii_(ft)	11	0.004	0.079	0.000	11.00	1100	11,2%	0.39	am.	11003	4	1111	42		-0.06	0.3	0.00	4.00	11.000	-0.26	0.004	0.0000
SY1_Sum_pm)	0.00014	0.05	8.92	(1,0091	11.2%	950.0	11.12	0.15	4,016	2.009	435	9	-0.1S	(E.15	-0.14	6007	-0.12	-2.16	412	0.5	-0.15	8:17
LDevir_irpm)	0	0.81	0.25	0.20	-0.53	0.004	0.10	0.12	-0.12	0.50	82	0.13	7	9.097	0.16	0.13	421	0.010	429	0.12	4.53	431
AY_Sure_(an)	0.0046	0.088	0,000	0.10	0.10	0.067	0.28	0.068	100	0.01	10.00	0.15	0.007	14	0.00	0.00	0.1	134	1236	-826	421	0.13
AY_MHY_ED	11	0.000	-0.19	0.072	612	0.002	11.10	4.1			-0.08	0.14	0.14	10.00		542	0.12		11.12	0.15	0.00	
Jet_Pompe	В	0.11	15.38	81	-0.25	4129	-0.29	-0.1	-0.10		4.1	aar	-8.12	100	500	¥	-0.0s	- 48	0.682	615	-0.2	812
tD_Sure_(ur)	0.0000	.n. sa	0.17	0.00	0.003	-0-000	0.04	0.20	-0.47	0.12	-0.00	-0.12	0.21	46.8	0.42	0.00		0.10	niss.		0.01	1621
1D MHY ED	b	0.13	031	-0.54	0.11	0.050	0.17	0.04	0.00	D.ET	0.00	-0.10	029	11.54	ii.or	010	20.00	14	1010	0.00	our.	
20 Sure (arr)	0.01	n21	-0.21	NIN.	0.054	0.0000	0.012	0.00	-0.12	MIT	4 996	0.2	4120	inavi	11.12	410	DES	0.10		0.26	0.00	411
3D 94ma inmi		0.10	6.2	g11	-8.5A	-0.21	41		4.0	-0.085	-bon	8.1	0.12	-0.20	8.15	0.15	W.	0.12	9.20		112	
30_Sark_(sr)					0.051	0.9000	HE.	-0.07	-m en	(Califo	GEWH.	10.13			11.22	0.2	0.01	027	nso.	0.00	-	4.18
Chia Alan Ortalama			0.065		2000	0.45		034			0.0002		-0.01	0.42		612	4.21		-011		411	
CANSTANT CHINAINA				100	-	PL.	-							-	0			9		8		2
	Test_No	Namane, T., Ridakse, Borrasi, En.	Numme 1, Relakse Sonasi, En. 2	Numbe 1, Relakse Bonasi, En.	Numerical Foliabola Somiaal Boy	Numerical Fieldon, Signal Box	Mumtine, 1, Reduction, Scenario, Boy.	GBS, Alan, Onallana	Test_Kapasčesíkg	St. Sertig	Tambur Hacmi, 18	SY1_Bure_(av	(_Dwwt_opm)	AY_Sun_len)	AY MHY ED	Jef. Pompa	TO SUM (DIT	10_MHY_ED	20, Sure, (M)	2D_Same_(rpm)	310, Sure (MI)	Ghis, Abet, Ortoberta

10-	_								Pe	arso	n Co	orrel	logra	am								_
Test_No	1				0.	0	.00	0	2/te-10	5.7m H		0.0068	-	7/he-85	II Ser. 95	I2 16-18	0.0014	.0	0.0041	3 1+00	0.04	447
Numune_1_Relakse_Sonrasi_En_1			0.005					0.10	0.19	iim	0.10	800	028	0.000	0.000	00000	-0.0	-01	0.33	031	-0,00	0.1
Numune_1_Rolekse_Sonrasi_En_2								0.003	æn.		0.17	0.15	13.19	dant	4.19	0.15	0.22	421	-0.26	0.01	0.28	0.094
Numune_1_Relakse_Sonrasi_En_3		jusi	0.91				415	4(2)	41.24	4.21	425	-814	REF	0.035	-116	3.087	428	40.00	-0.27	0.26	231	-6.18
Numune_1_Relakae_Sorrasi_Boy_1						***	100	994		9.2	BOT	0.49	-0.34	9.23	0.2	4.16	oare	42	0.13	0.07	-0.000	D.48
Numune_1_Relakse_Sorrasi_Boy_2	6				300			000		0.14	nor	0.081	-0.1	626	924	4.16	411	11.26	0.17	0.07	-0 0/0	0.40
Numune_1_Relakse_Sorvasi_Boy_3	÷	-0.01		428	6.00	120			0.01	0.10		otte	-614	0.22	-0.22	0.38	-0.007	020	-0.14	0.00	-0.009	4.8
Girls_Alan_Ortalama		-0.18	am	421	111	111	132		3,71	0.00	11.66	0.964	4164	827	429	-0.12	421	422	-0.27	-000	4114	-
Tent_Kapashow(kg) 2	16,18	-0.19	-0.11	324			111			0.19	0.70	8.1	-0.10	146		40.16	411		0.07	1111	40,110	0.04
Su_Sertigi 1	76-16	0.39		A29	0.2	8.16	309	9.00	0.19	0	0.17	0.80	438	(0.10	1.0		4.21		631	0.59	0.10	0.042
Tambur_Hacro_(0)	ė	0.10	4.07	A 29	687	117	111	48	0.79	0.17	16	0.10	0.10	8.00	Je. 17	0.2	.0.20	0.021	0.04	0.79	0.10	0.072
5Y1_Sure_(sn) -0	0000	4.0	.0,10	41.54	0.18	9.001	811	0.084	21	0.54	-0.12			0,0003	0.007	0.1	118	0.0092	0.20	41	0.084	0.22
(_Devetrpm)	0	0.26	0.10	0.29	=14	-0.1	0.16	0.054	0.10	830	0.18	0.00	1	a ass	8337	4.0	-0.36	8.98		0.10	0.04	*
AY_Suru_(arr) 7	6+ 05	-0.108	E-0-17	aam	0.29	126	633	03E		0.19		0.0000	0.050	11		0.30			0.55	0.00	440	0.01
AY_MHY_ED 3	Se 19	0.046	0.16	-0.06	0.0	-0.34	0.32	40,28			Sec. 17	9.037	10.07		¥.	0.06	616	0.94	0.10	0.17	0.12	=11
AM_Parisin 2	14-15	E.000	0.15	0.087	-0.10	410	-0.15	411	44		-0.3	0.1	-0.10	0.33		4	411		tutt	0.15	-0.14	0.02
10_Sure_(hri) 4	0014	0.7	0.00	428	-0.076	411	0.007	0.21	-0.10	0.21	0.73	nte	-0.26	5.54	D:14	0.18	Ť	0.25	0.30	0.38	0.00	4.10
1D_MHY_ED	0	0.1	0.29	4.11	-0.2	434	0,21	411			0.001	0.0004	0,10	-0.HT	034		0.21	10	a.u	0.10	0.23	3 11
20_Sure_(sn) 4	0091	0.22	-0.20	425	FE 13	-0.17	an.	421	-0.27	0.01	0.04	0.23		428	0.19	421	181	0.23	T.	0.26	not	4.15
20_5#ms_(rpm)-3	No-Uti	0.27	0.21	nze	-8.67	40	0.88	0.00		4.10	020	41	8.18	4.32	0.17	0.15	838	0.10	0.28	4	trin	-0.40
30_Sum_(sn)	0.04	034	100	431	-0.099	олт.	-0.00m	4.11	48,119	0.16	0.15	8184	0.24	-16	0.12	4.14	488	0.33	0.87	0.99	7	411
Cisia_Alan_Ortalams	_	-0.2	-0.094	-0.19					33.04	0.000	8.072	0.22		0.21		0.12	0.11		-0.19	0.00	-0.11	1.
	Test_No	Numane_f_Retakse_Samas_En_f	Numarie_1_Relation_Squase_En_2	Numero, 1, Relates Sorras, En.3	Namine_1_Ridakse_Sorrasi_Boy_1	Number 1 Relative Sorrati Soy 2	Number 1 Relakee Sorrati Boy 3	Orts_Nan_Ortslams	Test_Kapsshes6kg)	Su_Semigr	Tambur_Haomi_[II]	871 Sum on	("Devir "Irpm)	AY_Sum_(km)	AY MHY ED	Jal. Porrps	(VII) Brus Di	10 MAY ED	2D_Sum_0001	2D_Skine_opmi	3D_Sure_(in)	Chis, Mar, Orlalami

√ What would be good to reduce p-values?

increase the power of analysis by taking larger sample size and doing better data collection (reducing error-for exp; zero values in our study!!!)

CROSS VALIDATION

Determining train size for train-test split

```
##### svr
from sklearn.svm import SVR
from sklearn.model selection import learning curve
features = df.columns
target = 'CAO'
train sizes, train scores, validation scores = learning curve(
estimator = SVR(),
X = df[features],
y = Cikis_AO[target], train_sizes = train_sizes, cv = 10,
scoring = 'neg mean squared error', shuffle=True)
print('Training scores:\n\n', train scores)
print('\n', '-' * 70) # separator to make the output easy to read
print('\nValidation scores:\n\n', validation scores)
train scores mean = np.abs(train scores).mean(axis = 1)
validation scores mean = np.abs(validation scores).mean(axis =1 )
print('Mean training scores\n\n', pd.Series(train scores mean,
                                            index = train sizes))
print('\n', '-' * 20) # separator
print('\nMean validation scores\n\n',pd.Series(validation scores mean,
                                               index = train sizes))
import matplotlib.pyplot as plt
plt.style.use('seaborn')
plt.plot(train sizes, train scores mean, label = 'Training error')
plt.plot(train sizes, validation scores mean, label = 'Validation error')
plt.ylabel('MSE', fontsize = 14)
plt.xlabel('Training set size', fontsize = 14)
plt.title('Learning curves for a SVR', fontsize = 18 , y = 1.03)
plt.legend()
plt.ylim(-3,3)
```

train_sizes = [1, 2, 5, 9, 13, 25, 36, 72, 90, 108, 126, 135, 144](180*0.50 - 180*0.80)

```
######### GBM
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model selection import learning curve
features = df.columns
target = 'CAO'
train sizes, train scores, validation scores = learning curve(
estimator = GradientBoostingRegressor(),
X = df[features],
y = Cikis AO[target], train sizes = train sizes, cv = 10,
scoring = 'neg mean squared error', shuffle=True)
print('Training scores:\n\n', train scores)
print('\n', '-' * 70) # separator to make the output easy to read
print('\nValidation scores:\n\n', validation scores)
train scores mean = np.abs(train scores).mean(axis = 1)
validation scores mean = np.abs(validation scores).mean(axis =1)
print('Mean training scores\n\n', pd.Series(train_scores_mean,
                                            index = train sizes))
print('\n', '-' * 20) # separator
print('\nMean validation scores\n\n',pd.Series(validation scores mean,
                                               index = train sizes))
import matplotlib.pyplot as plt
plt.style.use('seaborn')
plt.plot(train sizes, train scores mean, label = 'Training error')
plt.plot(train_sizes, validation_scores_mean, label = 'Validation error')
plt.ylabel('MSE', fontsize = 14)
plt.xlabel('Training set size', fontsize = 14)
plt.title('Learning curves for a GBM', fontsize = 18 , y = 1.03)
plt.legend()
plt.ylim(-3,3)
```

Determining train size for train-test split

- Adding more training instances
- Adding more features
- •Feature selection
- Hyperparameter optimization

Data multiplexing, multiplexing variables extracted from df before fitting

GBM – CROSS VALIDATION MEAN SCORE: 93,16% / STD: 0.04

SVR – CROSS VALIDATION MEAN SCORE: 90,36% / STD: 0.04

RF – CROSS VALIDATION MEAN SCORE: 87,59% / STD: 0.05

GLM - CROSS VALIDATION MEAN SCORE: 87,79% / STD: 0.06

AdaBoost - CROSS VALIDATION MEAN SCORE: 82,21% / STD: 0.07

GBM – CROSS VALIDATION MEAN SCORE: 93,16% / STD: 0.04


```
#model5 - Gradient Descent
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import cross_val_score
gb_reg = GradientBoostingRegressor()
gb_scores = cross_val_score(gb_reg, x_train, y_train, cv=10)
print(gb_scores)
# [0.88337849 0.95637685 0.94947434 0.96500836 0.96981316 0.84037879
# 0.97163019 0.87310394 0.93085526 0.976291 ]
print(gb scores.mean())
# 0.9316310368054921
print(gb scores.std())
# 0.046020003468920455
from sklearn.model selection import learning curve
title = "Learning Curves (GBM)"
cv = 10
plot_learning_curve(gb_reg, title,
                    x_train, y_train, ylim=(0, 1.5),
                    cv=cv, n_jobs=-1);
```

SVR – CROSS VALIDATION MEAN SCORE: 90,36% / STD: 0.04


```
#model2 - SVR
from sklearn.svm import SVR
from sklearn.model selection import cross val score
svr_reg = SVR()
svr_scores = cross_val_score(svr_reg, x_train, y_train, cv=10)
print(svr scores)
# [0.82345469 0.94368955 0.84945493 0.89961801 0.88704056 0.89142335
# 0.89996566 0.8452074 0.95932952 0.97146793]
print(svr scores.mean())
# 0.8970651587841191
print(svr scores.std())
# 0.047019328549225234
# Assessing model performance
# Plot learning curve
from sklearn.model selection import learning curve
title = "Learning Curves (SVR)"
cv = 10
plot learning curve(svr_reg, title,
                    x_train, y_train, ylim=(0, 1.5),
                    cv=cv, n jobs=-1);
```

RF – CROSS VALIDATION MEAN SCORE: 87,59% / STD: 0.05


```
# model3- RandomForest
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import cross val score
rf_reg = RandomForestRegressor()
rf_scores = cross_val_score(rf_reg, x_train, y_train, cv=10)
print(rf_scores)
# [0.81600877 0.92538804 0.87121921 0.92250344 0.88830655 0.75914512
# 0.90155346 0.82045205 0.81484911 0.94420484]
print(rf scores.mean())
# 0.8663630577214168
print(rf_scores.std())
# 0.057646548431513824
from sklearn.model_selection import learning_curve
title = "Learning Curves (RF)"
cv = 10
plot_learning_curve(rf_reg, title,
                   x_train, y_train, ylim=(0, 1.5),
                    cv=cv, n_jobs=-1);
```

GLM - CROSS VALIDATION MEAN SCORE: 87,79% / STD: 0.06


```
#model1- linear regression
from sklearn.linear_model import LinearRegression
from sklearn.model selection import cross val score
lr = LinearRegression()
lr scores = cross val score(lr, x train, y train, cv=10)
print(lr scores)
# [0.80768775 0.94315428 0.929207 0.95287587 0.91778322 0.88557883
# 0.62466177 0.69620303 0.8999114 0.9549427 ]
print(lr scores.mean())
# 0.8612005846129721
print(lr scores.std())
# 0.10948336320814078
from sklearn.model_selection import learning_curve
title = "Learning Curves (GLM)"
cv = 10
plot_learning_curve(lr, title,
                    x_train, y_train, ylim=(0.7, 1.0),
                    cv=cv, n_jobs=-1);
```

AdaBoost – CROSS VALIDATION MEAN SCORE: 82,21% / STD: 0.07


```
#model4 - AdaBoost
from sklearn.ensemble import AdaBoostRegressor
from sklearn.model_selection import cross_val_score
ab reg = AdaBoostRegressor()
ab_scores = cross_val_score(ab_reg, x_train, y_train, cv=10)
print(ab_scores)
# [0.77385224 0.86439727 0.8469751 0.92960135 0.81351651 0.75816734
# 0.82270168 0.64031523 0.6504978 0.90786072]
print(ab_scores.mean())
# 0.8007885251110226
print(ab_scores.std())
# 0.09260657075819591
from sklearn.model_selection import learning_curve
title = "Learning Curves (AdaBoost)"
cv = 10
plot learning curve(ab reg, title,
                   x train, y train, ylim=(0, 1.5),
                    cv=cv, n_jobs=-1);
```

INTERPRETATION OF LEARNING CURVES

- When the model overfits, it means that it performs well on the training set, but not on the validation set. Accordingly, the model is not able to generalize to unseen data. If the model is overfitting, the learning curve will present a gap between the training and validation scores. Two common solutions for overfitting are reducing the complexity of the model and/or collect more data.
- o On the other hand, underlitting means that the model is not able to perform well in either training or validations sets. In those cases, the learning curves will converge to a low score value. When the model underfits, gathering more data is not helpful because the model is already not being able to learn the training data. Therefore, the best approaches for these cases are to improve the model (e.g., tuning the hyperparameters) or to improve the quality of the data (e.g., collecting a different set of features).

Hyperparameter optimization – GBM/XGBoost

```
#model5 - Gradient Descent
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model selection import GridSearchCV
model gbm = GradientBoostingRegressor()
grid param gbm = [\{'max \ depth': [4,5,6,7,8,10,12,15],
                    'learning rate': [0.05,0.02,0.01,0.1,0.15,0.2,0.3,0.4,0.5],
                    'n estimators': [10,30,50,100,200,300,500],
              }]
gs gbm = GridSearchCV(model gbm,
                 param grid=grid param gbm,
                 scoring = 'neg root mean squared error',
                 cv=10,
                 n jobs = -1)
grid search gbm = gs gbm.fit(x train, y train)
best model = grid search gbm.best score
best parameters = grid search gbm.best params
print(best model)
# 0.19228813093340386
print(best parameters)
# {'learning rate': 0.15, 'max depth': 4, 'n estimators': 500}
# {'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 200}
model gbm = GradientBoostingRegressor(learning rate=0.1,
                                      max depth = 4,
                                      n estimators=200)
model_gbm.fit(x_train, y_train)
pred gbm = model gbm.predict(x test)
```

```
from sklearn.model selection import GridSearchCV
from xgboost import XGBModel
estimator = XGBModel(objective= 'reg:linear',
                     nthread=4,
                     seed=12345
grid_param_xgb = [{'max_depth': range (2, 10, 1),
                    'n estimators': range(60, 300, 40),
                    'learning_rate': [0.05,0.01,0.1,0.3],
                    'gamma': [0,0.3,0.6,1],
                    'booster': ['abtree', 'dart']
grid search = GridSearchCV(estimator=estimator,
                           param grid=grid param xgb,
                           scoring = 'neg root mean squared error',
                           n jobs = 20,
                           cv = 10.
                           verbose=True
grid search.fit(sparse train, label train)
grid search.best estimator
grid search.best params
```



```
##### feature importance #####
model_gbm.fit(x_train, y_train)
print(model_gbm.feature_importances_)
#plot graph of feature importances for better visualization
feat_importances_gb = pd.Series(model_gbm.feature_importances_, index=x_test.columns)
feat_importances_gb.nlargest(33).plot(kind='barh')
plt.title('Feature Importance with GBM')
plt.show()
```


Mean Squared Error (MSE): 690.61

Root Mean Squared Error (RMSE): 26.28

Mean Absolute Error (MAE): 19.87

R-squared: 0.89

Mean Squared Error (MSE): 1137282.24

Root Mean Squared Error (RMSE): 1066.43

Mean Absolute Error (MAE): 776.27

XGBOOST

R-squared: 1.00

Mean Squared Error (MSE): 0.93

Root Mean Squared Error (RMSE): 0.97

Mean Absolute Error (MAE): 0.71

R-squared: 0.93

Mean Squared Error (MSE): 653156.78

Root Mean Squared Error (RMSE): 808.18

Mean Absolute Error (MAE): 605.77

Feature selection (extraction)

```
#adım 2: p value 0.05 den büyük değişkenler çıkarılır...
#OLS vriabls to remove
df.drop(['Numune_1_ Relakse_Sonrasi_ En_1',
         'Numune 1 Relakse Sonrasi En 2',
         'Numune 1 Relakse Sonrasi En 3',
         'Numune 1 Relakse Sonrasi Boy 1',
         'Numune 1 Relakse Sonrasi Boy 2',
         'Numune 1 Relakse Sonrasi Boy 3',
         '2D MHY ED',
         '2D Su Mik (lt)',
         'I Sure (sn)',
         # 'I MHY ED', #
         'AY Su Mik (lt)',
         'I Tset (C)',
         # 'SG Sic (C)', #
         # 'AY Tah (C)', #
         '1D Su Mik (lt)', #
         # 'I Bas Sic (C)', #
          # '3D Su Mik (lt)' #
          'Tambur_Hacmi_(lt)',
          '1D MHY ED',
          '2D Sure (sn)',
          '3D Sure (sn)',
          'I Devir (rpm)'], axis=1, inplace=True)
```


FEATURE IMPORTANCE FOR GBM, XGBOOST

MODEL PERFORMANCE GRAPHS

R-squared: 0.98

Mean Squared Error (MSE): 0.02

Root Mean Squared Error (RMSE): 0.16

Mean Absolute Error (MAE): 0.09

R-squared: 0.86

Mean Squared Error (MSE): 0.14

Root Mean Squared Error (RMSE): 0.38

Mean Absolute Error (MAE): 0.32

Mean Squared Error (MSE): 3109.46

Root Mean Squared Error (RMSE): 55.76

Mean Absolute Error (MAE): 36.68

R-squared: 0.87

Mean Squared Error (MSE): 1311147.36

Root Mean Squared Error (RMSE): 1145.05

Mean Absolute Error (MAE): 779.59

55000

55000

Mean Squared Error (MSE): 0.93

60000

Root Mean Squared Error (RMSE): 0.97

65000

CAO

70000

Mean Absolute Error (MAE): 0.72

R-squared: 0.92

Mean Squared Error (MSE): 793557.76

Root Mean Squared Error (RMSE): 890.82

Mean Absolute Error (MAE): 684.89


```
#adım 2: p value 0.05 den büyük değişkenler çıkarılır...
#OLS vriabls to remove
df.drop(['Numune 1 Relakse Sonrasi En 1',
         'Numune 1 Relakse Sonrasi En 2',
         'Numune 1 Relakse Sonrasi En 3',
         'Numune 1 Relakse Sonrasi Boy 1',
         'Numune 1 Relakse Sonrasi Boy 2',
         'Numune 1 Relakse Sonrasi Boy 3',
         '2D MHY ED',
         '2D Su Mik (lt)',
         'I Sure (sn)',
          'I MHY ED', #
         'AY Su Mik (lt)',
         'I_Tset_(C)',
          'SG Sic (C)', #
          'AY Tah (C)', #
         '1D Su Mik (lt)', #
          'I Bas Sic (C)', #
          '3D Su Mik (lt)' #
           # 'Tambur Hacmi (lt)',
           # '1D MHY ED',
           # '2D Sure (sn)',
           # '3D Sure (sn)',
           # 'I Devir (rpm)'
          ], axis=1, inplace=True)
```


Mean Squared Error (MSE): 2.63

Root Mean Squared Error (RMSE): 1.62

Mean Absolute Error (MAE): 1.11

R-squared: 0.94

Mean Squared Error (MSE): 577380.88

Root Mean Squared Error (RMSE): 759.86

Mean Absolute Error (MAE): 584.50

CONCLUSION

- o In this project, five machine learning algorithms used for prediction in Python program. Model performance was measured with R^2 score, MSE, RMSE and MAE KPI forecast error types. After examination of KPI values for test samples and also model performance graphs, the XGBoost algorithm was chosen as an optimal model for this case. The best result has been gotten with removing variables that have bigger p-values than significance level(0.05), in that way, test MAE, RMSE and R^2 score values were found 584.50, 759.86, 94% respectively.
- As a result, the XGBoost model predicted well. GBM and SVR model followed it. In other words, the aim of the project could be reached.