

Ministry of Education

BIG IDEAS

Mathematics has developed over many centuries and continues to evolve.

Mathematics is a global language used to understand the world.

Societal needs across cultures have influenced the development of mathematics.

Tools and technology are catalysts for mathematical development.

Notable mathematicians in history nurtured a sense of play and curiosity that led to the development of many areas in mathematics.

Learning Standards

Curricular Competencies	Content
Students are expected to do the following:	Students are expected to know the following:
Reasoning and modelling	number and number systems:
 Develop thinking strategies to solve historical puzzles and play games 	— written and oral numbers— zero
 Explore, analyze, and apply historical mathematical ideas using reason, technology, and other tools 	rational and irrational numberspi
 Think creatively and with curiosity and wonder when exploring problems 	prime numberspatterns and algebra:
Understanding and solving	early algebraic thinking
 Critique multiple strategies used to solve mathematical problems throughout history 	variablesearly uses of algebra
 Develop, demonstrate, and apply conceptual understanding of mathematical ideas through play, story, inquiry, and problem solving 	Cartesian plane notation
 Visualize to explore and illustrate mathematical concepts and relationships 	- Fibonacci sequence • geometry:
Apply flexible and strategic approaches to solve problems	of lines, angles, triangles
 Solve problems with persistence and a positive disposition 	Euclid's five postulates
 Engage in problem-solving experiences connected with place, story and cultural practices, including local First Peoples 	geometric constructionsdevelopments through time

Ministry of Education

Learning Standards (continued)

Curricular Competencies	Content
 Explain and justify mathematical ideas and decisions in many ways Use historical symbolic representations to explore mathematics Use mathematical vocabulary and language to contribute to discussions in the classroom Take risks when offering ideas in classroom discourse Connecting and reflecting Reflect on mathematical thinking Connect mathematical concepts with each other, with other areas, and with personal interests Reflect on the consequences of mathematics culturally, socially, and politically Use mistakes as opportunities to advance learning Incorporate First Peoples worldviews, perspectives, knowledge, and practices to make connections with mathematical concepts 	 probability and statistics: Pascal's triangle games involving probability early beginnings of statistics and probability tools and technology: development over time, from clay tablets to modern-day calculators and computers cryptography: use of ciphers, encryption, and decryption throughout history modern uses of cryptography in war and digital applications

Big Ideas – Elaborations

· developed:

Sample questions to support inquiry with students:

- What is the connection between the development of mathematics and the history of humanity?
- How have mathematicians overcome discrimination in order to advance the development of mathematics?
- Where have similar mathematical developments occurred independently because of geographical separation?

language:

Sample questions to support inquiry with students:

- How universal is the language of mathematics?
- How is learning a language similar to learning mathematics?
- How does oral language influence our conceptual understanding of mathematics?

Societal needs:

Sample questions to support inquiry with students:

- Have societal needs always had a positive impact on mathematics?
- How have politics influenced the development of mathematics?
- How might mathematics influence decisions regarding social justice issues?

Tools and technology:

Sample questions to support inquiry with students:

- Did tools and technology affect mathematical development or did mathematics affect the development of tools and technology?
- What does technology enable us to do and how does this lead to deeper mathematical understanding?

mathematicians:

Sample questions to support inquiry with students:

- What drives a mathematician to solve the seemingly unsolvable?
- What do you wonder about in the mathematical world?
- What are some examples of mathematical play that led to practical applications?

Curricular Competencies – Elaborations

thinking strategies:

- using reason to determine winning strategies
- generalizing and extending

analyze:

examine the structure of and connections between mathematical ideas from historical contexts

· reason:

- inductive and deductive reasoning
- predictions, generalizations, conclusions drawn from experiences

technology:

- historically appropriate tools
- can be used for a wide variety of purposes, including:
 - exploring and demonstrating mathematical relationships
 - organizing and displaying data
 - generating and testing inductive conjectures
 - mathematical modelling
 - presenting historical solutions or mathematical ideas from a current perspective

· other tools:

manipulatives such as rulers, compass, abacus, and other historically appropriate tools

• Think creatively:

- by being open to trying different strategies
- refers to creative and innovative mathematical thinking rather than to representing math in a creative way, such as through art or music

• curiosity and wonder:

asking questions to further understanding or to open other avenues of investigation

• inquiry:

- includes structured, guided, and open inquiry
- noticing and wondering
- determining what is needed to make sense of and solve problems

Visualize:

- create and use mental images to support understanding
- Visualization can be supported using dynamic materials (e.g., graphical relationships and simulations), concrete materials, drawings, and diagrams.

Curricular Competencies – Elaborations

flexible and strategic approaches:

- deciding which mathematical tools to use to solve a problem
- choosing an effective strategy to solve problems (e.g., guess and check, model, solve a simpler problem, use a chart, use diagrams, role-play, historical representations)

solve problems:

- interpret a situation to identify a problem
- apply mathematics to solve the problem
- analyze and evaluate the solution in terms of the initial context
- repeat this cycle until a solution makes sense

• persistence and a positive disposition:

- not giving up when facing a challenge and persevering through struggles (e.g., struggles of mathematicians and how their persistence led to mathematical discoveries)
- problem solving with vigour and determination

· connected:

- through daily activities, local and traditional practices, popular media and news events, cross-curricular integration
- by posing and solving problems or asking questions about place, stories, and cultural practices

Explain and justify:

- use mathematical argument to convince
- includes anticipating consequences

· decisions:

Have students explore which of two scenarios they would choose and then defend their choice.

• many ways:

- including oral, written, visual, use of technology
- communicating effectively according to what is being communicated and to whom

discussions:

- partner talks, small-group discussions, teacher-student conferences

discourse:

- is valuable for deepening understanding of concepts
- can help clarify students' thinking, even if they are not sure about an idea or have misconceptions

Reflect:

 share the mathematical thinking of self and others, including evaluating strategies and solutions, extending, posing new problems and questions

Curricular Competencies – Elaborations

Connect mathematical concepts:

to develop a sense of how mathematics helps us understand ourselves and the world around us (e.g., daily activities, local and traditional practices, popular media and news events, social justice, cross-curricular integration)

· mistakes:

range from calculation errors to misconceptions

opportunities to advance learning:

- by:
 - analyzing errors to discover misunderstandings
 - making adjustments in further attempts
 - identifying not only mistakes but also parts of a solution that are correct

Incorporate:

- by:
 - collaborating with Elders and knowledge keepers among local First Peoples
 - exploring the <u>First Peoples Principles of Learning</u> (e.g., Learning is holistic, reflexive, reflective, experiential, and relational [focused on connectedness, on reciprocal relationships, and a sense of place]; Learning involves patience and time)
 - making explicit connections with learning mathematics
 - exploring cultural practices and knowledge of local First Peoples and identifying mathematical connections

knowledge:

local knowledge and cultural practices that are appropriate to share and that are non-appropriated

practices:

- Bishop's cultural practices: counting, measuring, locating, designing, playing, explaining
- Aboriginal Education Resources
- Teaching Mathematics in a First Nations Context, FNESC

MATHEMATICS – History of Mathematics Grade 11

Content – Elaborations

number and number systems:

- Egyptian, Babylonian, Roman, Greek, Arabic, Mayan, Indian, Chinese, First Peoples
- exploring the idea of different bases, different forms of arithmetic
- infinity
- problems from the Rhind Mathematical Papyrus
- Eratosthenes

Content – Elaborations

• patterns and algebra:

- Al-Khwarizmi's Algebra
- Indian mathematics
- Islamic mathematics
- Descartes
- the golden ratio
- patterns in art

· geometry:

- problems from the Rhind Mathematical Papyrus, Moscow Mathematical Papyrus
- Pythagoras
- Hippocrates and construction problems of antiquity
- geometry in Euclid's *Elements*, Archimedes, Apollonius, Pappus's *Book III*
- Indian and Arabic contributions
- Descartes and Fermat

• probability and statistics:

- Pascal, Cardano, Fermat, Bernoulli, Laplace
- ancient games such as dice and the Egyptian game Hounds and Jackals
- Egyptian record keeping
- Graunt and the development of statistics through the need for merchant insurance policies

• early beginnings:

- forms of tabulating information, leading to the beginnings of probability and statistics

· tools and technology:

papyrus, stone tablet, bone, compass and straightedge, abacus, scales, slide rule, ruler, protractor, calculator, computer

• cryptography:

- cuneiform
- Spartan military use of ciphers
- first documentation of ciphers in the Arab world
- John Wallis
- World War II and the Enigma machine
- barcodes
- modular arithmetic
- RSA coding
- current coding techniques and security in digital password encryption