SZÁMÍTÓGÉPES SZEMANTIKA

VECTOR SEMANTICS AND EMBEDDINGS

Ferenczi Zsanett 2020. április 27.

Vázlat

- 1. Bevezetés
- 2. Lexikális szemantika
- 3. Szavak és vektorok
- 4. Vektorok hasonlósága
- 5. tf-idf
- 6. PPMI
- 7. Skip-gram
- 8. Szóbeágyazási modellek vizualizációja
- 9. A szóbeágyazások szemantikai jellemzői
- 10. Elfogultság, sztereotípia
- 11. Vektoros modellek kiértékelése

Bevezetés

Bevezetés

- a szavakat ábrázolhatjuk atomi elemekként, de így elveszítjük a kapcsolatokat közöttük
- · szavak hasonlósága fontos bizonyos feladatok esetén
- ötlet: a szavakat próbáljuk jelentésük alapján kódolni, ezáltal a hasonlóság is megragadható lesz két szó között
- 1950-es évek: disztribúciós hipotézis: a szinonimák gyakran hasonló környezetben fordulnak elő
- pl. oculist és eye-doctor gyakran állnak együtt az eye, examined szavakkal
- → a hasonló környezetben álló szavak hasonló jelentéssel bírnak

Egy példa

Tesgüino?

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk We make **tesgüino** out of corn.

"You shall know a word by the company it keeps!" (Firth (1957))

Lexikális szemantika

Lexikális szemantika

egér (főnév)

- 1. nagy szemű és fülű, hegyes orrú rágcsáló...
- 2. számítógép kézi vezérlőeszköze...
 - · lemma (címszó): egér
 - · szóalakok: egér, egerek, egérnek, stb.
 - jelentés (word sense): itt a két definíció adja meg az egyes jelentéseket
 - · poliszémia: egy szónak több jelentése van \rightarrow jelentés egyértelműsítés (WSD)

Jelentések közötti kapcsolatok

- szinonímia: egyik szó jelentése közel azonos egy másik szó jelentésével
- hasonlóság (word similarity): szavak között állhat fenn, pl. kutya és macska
- · word relatedness: szavak közötti egyéb kapcsolat
 - szemantikai mező: olyan szavak halmaza, amelyek egy szemantikai domént fednek le (pl. pincér, étlap, szakács, stb.)
 - \cdot ilyen még: hiperonímia, antonímia, meronímia (ld. 19. fejezet)
- szemantikai keret, szerepek: olyan szavak, szereplők halmaza, melyek egy eseményhez köthetők
- konnotáció: pl. negatív konnotáció: szomorú, pozitív konnotáció: boldog

Vector Semantics

	Valence	Arousal	Dominance
courageous	8.05	5.5	7.38
music	7.67	5.57	6.5
heartbreak	2.45	5.65	3.58
cub	6.71	3.95	4.24
life	6.68	5.59	5.89

- egy szó jelentése ábrázolható pontként a térben (Osgood et al. (1957))
- hasonló környezetben előforduló szavak hasonló jelentésűek (egy szó ábrázolása a körülötte előforduló szavak számlálásával)
- ezen két megfigyelést ötvözi a vector semantics
- · szóbeágyazás: olyan vektor, amely egy szót reprezentál

Szavak és vektorok

Szavak és vektorok

- a vektorok általában együttes előfordulási mátrixon alapulnak (co-occurence matrix)
- pl. term-document matrix: minden sor egy szót jelöl, minden oszlop egy dokumentumot
- · V. Henriket a [13, 89, 4, 3] vektorral lehetne ábrázolni
- · a vektortér dimenziója ebben az esetben 4

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Vektorok

- Shakespeare 4 darabja két dimenzión ábrázolva (4 dokumentumvektor)
- \cdot egy term-document mátrix annyi dimenziós lenne, ahány type van a dokumentumokban (|V| sor)

Term-term mátrix

- term-term (word-word vagy term-context) mátrix: sorok és oszlopok is szavakat jelölnek
- a dimenziója: $|V| \times |V|$ (a |V| általában 10 000 és 50 000 közötti)
- · sor: célszó (target word), oszlop: kontextus(szavak)
- az egyes cellák azt jelölik, hogy a célszó hányszor fordult elő a kontextusszó környezetében
- a környezet lehet egy dokumentum, de lehet kisebb egység is, pl. a szó körüli ablak (a célszótól jobbra és balra 4-4 szó)

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

- \cdot két vektor közötti hasonlóság mérése ightarrow skaláris szorzattal
- · nagy lesz, ha két vektor ugyanazon dimenzióinak értékei nagyok
- · 0 pedig, ha egyáltalán nem hasonlóak

dot product(**v**, **w**) = **v** · **w** =
$$\sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + ... + v_N w_N$$

- a skaláris szorzat előnyben részesíti a hosszabb vektorokat, így a gyakoribb szavak magasabb értékeket kapnak, míg a kevésbé gyakori szavakhoz nehéz hasonlót találni → ez probléma
- egy megoldás: elosztjuk a vektorok hosszával → a bezárt szög koszinusza (0 és 1 közötti szám)
- · vektor hossza:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \cos\theta$$

		pie	data	computer	
	cherry	442	8	2	
	digital	5	1683	1670	
	information	5	3982	3325	
cos(cherry, information	$\frac{1}{\sqrt{442^2}}$	$x^2 + 8^2 \\ x + 5 + 6^2$	$\frac{1}{2} + 2^{2} + \frac{1}{2}$	3982 + 2 * $\sqrt{5^2 + 3982}$ *3982 + 1 $670^2 \sqrt{5^2 + 1}$	$\frac{1}{2^2 + 3325^2} = .017$

- a sokszor együtt előforduló szavak fontosabbak, mint a csak néhányszor előfordulók
- de a túl gyakori szavak nem segítenek: a good minden dokumentumban nagyjából ugyanannyiszor fordul elő (ld. 7. dia)
- \cdot ezt egyensúlyozni kell o tf-idf algoritmus
- term frequency (tf): $tf_{t,d}$ = t szó gyakorisága d dokumentumban

$$tf_{t,d} = \log_{10}(count(t,d) + 1)$$

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

- document frequency (df): df_t = hány dokumentumban fordul elő t szó
- collection frequency: hányszor szerepel t szó az összes dokumentumban
- · az Romeo-hoz hasonló szavaknak nagyobb súlyt ad az idf
- inverse document frequency (idf): a kevesebb dokumentumban előforduló szavak előnyben részesítése (N = dokumentumok száma)

$$idf_t = \log_{10}(\frac{N}{df_t})$$

· a tf-idf ezek szorzata:

$$W_{t,d} = tf_{t,d} \times idf_t$$

- tf-idf model:
 - · szavak vektorokként való ábrázolása
 - · annyi dimenzióval, ahány type van a dokumentumokban
 - · az előfordulások tf-idf-fel súlyozva
 - · vektorok hasonlósága: koszinusszal

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

· dokumentumok hasonlósága:

$$d = \frac{w_1 + w_2 + \dots + w_k}{k}$$

PPMI

- PMI (pointwise mutual information): két szó mennyivel gyakrabban fordulnak elő együtt, mint ha függetlenek lennének
- w célszó, c kontextus(szó)

$$PMI(w,c) = \log_2 \frac{P(w,c)}{P(w)P(c)}$$

- \cdot ez $-\infty$ és $+\infty$ közötti eredményt ad
- ahhoz, hogy valami kevesebbszer forduljon elő, mint várnánk, hatalmas korpusz kellene → Positive PMI
- · minden negatív értéket 0-ra cserélünk

$$PPMI(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P(c)}, 0)$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$P(information, data) = \frac{3982}{11716} = 0.3399$$

$$P(information) = \frac{7703}{11718} = 0.6575$$

$$P(data) = \frac{5673}{11716} = 0.4842$$

 $ppmi(information, data) = log_2(0.3399/(0.6575 * 0.4842)) = 0.0944$

	computer	data	result	pie	sugar	
cherry	0	0	0	4.38	3.30	
strawberry	0	0	0	4.10	5.51	
digital	0.18	0.01	0	0	0	
information	0.02	0.09	0.28	0	0	

- · a word2vec egyik algoritmusa (CBOW mellett)
- · a vektorok eddig hosszúak és ritkák (sok elem 0) voltak
- rövidebb (50-1000) és sűrűbb vektorok \rightarrow skip-gram with negative sampling
- \cdot eddig: az "apricot" szó környezetében mi hányszor szerepel o ehelyett egy bináris klasszifikációs feladat
- · Valószínű, hogy w szó közel lesz az "apricot" szóhoz?


```
... lemon, a [tablespoon of apricot jam,
                                                 a] pinch ...
               c1
                          c2
                                       c3
                                                 c4
positive examples +
                                    negative examples -
       c
                              t
                                                      c
                              apricot aardvark apricot seven
apricot tablespoon
                                              apricot forever
                              apricot my
apricot of
                              apricot where
                                              apricot dear
apricot jam
                              apricot coaxial
                                              apricot if
apricot a
```

- · logisztikus regresszióval betanítunk egy bináris osztályozót
- · k-szor annyi negatív példát használ, mint pozitívat (itt k=2)
- · a cél- és kontextusszavak hasonlóságának maximalizálása
- negatív párok hasonlóságának minimalizálása

- minden szóhoz két különböző vektort tanul meg: amikor t célszó, vagy amikor c kontextusszó
- két mátrixban vannak ezek tárolva: T target matrix, és C context matrix
- · 3 lehetőség:
 - · csak a T-t tartjuk meg
 - összeadjuk egy szó minden szóbeágyazását → új, d-dimenziós vektor
 - · konkatenáljuk őket ightarrow új, 2d-dimenziós vektor

Szóbeágyazási modellek

vizualizációja

Vizualizáció hasonló vektorok lekérdezésével

0	alma	1	63906	0	kenyerek	1	2270
1	körte	0.8392	13339	1	zsemlék	0.8105	283
2	eper	0.8356	16159	2	péksütemények	0.8048	997
3	banán	0.8222	17732	3	kekszek	0.7972	1046
4	szilva	0.8046	12602	4	pékáruk	0.7957	771
5	őszibarack	0.8011	4698	5	tészták	0.7881	2466
6	uborka	0.7971	14735	6	lepények	0.7849	202
7	répa	0.7937	14107	7	kiflik	0.7843	349
8	cseresznye	0.7848	11676	8	kalácsok	0.7841	277
9	ananász	0.7820	4827	9	sonkák	0.7836	613
10	dinnye	0.7689	11428	10	pogácsák	0.7787	539

• Novák et al. (2017)

Vizualizáció - hierarchikus klaszterezés

 a vektortérben egymáshoz közeli vektorok hierarchikus reprezentációja

Vizualizáció t-SNE algoritmussal

- sokdimenziós vektorokat kétdimenziós térben jelenítjük meg
- megtartja az elemek közötti távolságok arányát

Novák et al. (2017)

A szóbeágyazások szemantikai

jellemzői

A szóbeágyazások szemantikai jellemzői

- · ablak mérete: általában 3 és 21 közötti (1-10 mindkét oldalon)
 - ha kisebb, inkább szintaktikai hasonlóságot mutatnak (pl. szófaj megegyezik)
 - · ha nagyobb, témában hasonlóak
- · pl. Hogwartshoz legközelibb szavak (Levy és Goldberg (2014))
 - ±2 ablakkal: Evernight, Sunnydale, Collinwood, stb.
 - ±5-össel: Dumbledore, half-blood, Malfoy, stb.
- first-order co-occurence: tipikusan közel állnak egymáshoz, pl. wrote, book
- second-order co-occurence: hasonló szomszédjaik vannak, pl. wrote, said

A szóbeágyazások szemantikai jellemzői

- analógia: az egyes vektorok közötti eltolások mintha valamilyen jelentéssel bírnának
- vector('king') vector('man') + vector('woman') =
 vector('queen')
- vector('Paris') vector('France') + vector('Italy') =
 vector('Rome')

A szóbeágyazások szemantikai jellemzői

- · történeti szemantika: hogyan változott a jelentése egy szónak
- egy szóhoz különböző korokban íródott korpuszokból számolunk szóbeágyazásokat
- a kontextusszavak szóbeágyazását a modern szöveg alapján készült vektortérből vesszük

Elfogultság, sztereotípia

Elfogultság, sztereotípia

- a korpuszban megtalálható sztereotípiákat, hiányosságokat is ábrázolják a szóbeágyazások
- · 'man' 'computer programmer' + 'woman' = 'homemaker'
- · 'father' is to 'doctor' as 'mother' is to 'nurse'
- kimutatták azt is, hogy a kompetenciával kapcsolatos melléknevek szóbeágyazása közelebb állt a férfi(aka)t jelölő szavakhoz, 1960 óta ez a hatás csökkenni látszik
- debiasing: a szóbeágyazások ilyen jellegű elfogultságának enyhítése
- lehet, hogy sikerül az egyes szóbeágyazásokból kiirtani ezt, de ettől még nem szűnik meg a probléma

Vektoros modellek kiértékelése

Kiértékelés

- extrinsic (beépítve más NLP feladatokba)
- · intrinsic
 - · hasonlóság mérése, összevetve egy gold standarddel
 - · kontextus nélkül:
 - → WordSim-353 (0-10-es skálán 353 főnévpárt osztályoztak)
 - → SimLex-999 (melléknevek, igék, főnevek)
 - → TOEFL dataset (80 kérdés, 4 lehetséges válasszal)
 - · kontextussal:
 - → **Stanford Contextual Word Similarity** (SCWS) dataset (2 003 szópár mondatba illesztve, ezek hasonlóságának értékelése)
 - → Word-in-Context dataset (egy célszó két kontextusban való megadása, el kell dönteni, hogy azonos jelentésben szerepel-e)
 - · analógiatesztek:
 - \rightarrow "a is to b as c is to d", ahol d-t keressük
 - ightarrow Athén olyan Görögországnak, mint Oslo ____-nak
 - → szintaktikai: mouse mice, dollar dollars

Egyéb szóbeágyazásos algoritmusok

· GloVe:

- célszavakhoz valószínűséget számolunk
- ahol két célszó hasonló valószínűségű, ott kb. 1 lesz a valószínűségek hányadosa

· fasttext:

- · a word2vec kiterjesztése
- kezeli az ismeretlen szavakat és ezáltal a gazdag morfológiájú nyelveket
- a szót n-gramokra bontjuk, ezekre külön-külön számolunk skip-gram szóbeágyazásokat
- · az összes alkotóelem vektorát összeadjuk, ez reprezentálja a szót

Bibliográfia

- John R Firth. A synopsis of linguistic theory, 1930-1955. *Studies in linguistic analysis*, 1957.
- Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving word representations via global context and multiple word prototypes. In *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1*, pp. 873–882. Association for Computational Linguistics, 2012.
- Daniel Jurafsky and James Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, volume 3.

Bibliográfia

- Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 302–308, 2014.
- Attila Novák, Borbála Siklósi, and Nóra Wenszky. Szóbeágyazási modellek vizualizációjára és böngészésére szolgáló webes felület. XIII. Magyar Számítógépes Nyelvészeti Konferencia, Szeged, Szegedi Tudományegyetem, Informatikai Tanszékcsoport, pp. 355–362, 2017.
- Charles Egerton Osgood, George J Suci, and Percy H Tannenbaum. *The measurement of meaning.* Number 47. University of Illinois press, 1957.