

LACAM Laboratory Machine Learning

Towards Representation Learning with Tractable Probabilistic Models

Antonio Vergari, Nicola Di Mauro and Floriana Esposito

19th September - ECML-PKDD - Riva del Garda, Italy

Tractable Probabilistic Models (TPMs)

Plenty of Probabilistic Models learned as density estimators

Many Machine Learning problems can be reframed as probabilitic inference ...but *inference is hard*.

ightarrow TPMs allow **exact** inference to be computed in **polynomial time!**

Representation learning with TPMs

Given a set of i.i.d samples $\{\mathbf{x}^i\}_{i=1}^m \sim \mathbf{X}$, a TPM θ , we want to generate an embedding $\mathbf{e}^i \in \mathbb{R}^d$ for each sample i such as:

$$\mathbf{e}^i = f_{p,\theta}(\mathbf{x}^i)$$

with f being the transformation by θ encoding the distribution $p(\mathbf{X})$.

Idea: evaluate θ several times by constructing random queries (e.g. sample $\mathbf{Q}_j \subseteq \mathbf{X}, j=1\dots,d$), then use the probability value of each query as an embedding component:

$$e_j^i = p_\theta(\mathbf{Q}_j = \mathbf{x}_{\mathbf{Q}_j}^i)$$

- ightarrow reuse previously learned models, as black boxes
- \rightarrow exploit embeddings for clustering, classification,...

Experimental evaluation

- I Learning SPNs and MTs unsupervisedly on five binary image datasets
- II extract embeddings from 1000 random marginal queries
- III train a supervised linear classifier on them
 - ightarrow meaningful representations if better accuracy scores

ightarrow $\operatorname{\underline{trade-off}}$ between likelihood over ${f X}$ and accuracy over Y