

Workshop

Einführung in den MapServer

Toni Pignataro > where Group

Jörg Thomsen Map Media

Anatomie einer MapServer-Anwendung

... und womit wir uns beschäftigen

Wo bekomme ich MapServer her?

MapServer CGI Application

- MS Windows
 - http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe
 - http://www.maptools.org → ms4w
- Linux
- siehe http://www.mapserver.org/download.html#binaries
 - DebianGIS
 - Enterprise Linux GIS
 - FGS
 - OpenSUSE
 - UbuntuGIS
- OSGEO Live DVD

MapServer CGI Application

- Hurra, er kann schon rum motzen!
- Aber ihm fehlen Informationen:
 - Auf welche Geodaten soll er zugreifen?
 - Wie soll die Karte aussehen?
 - Das alles steht in der Konfigurationsdatei, der Mapdatei

Wir erinnern uns:

Grundlegender Aufbau der Mapdatei

Mapfile configuration

Das Mapfile besteht aus einzelnen Blöcken. Diese beginnen mit einem Schlüsselwort und werden mit einem "END" abgeschlossen.

```
MAP
...
WEB
...
END
...
LAYER
...
CLASS
...
END
END
END
```


Mapfile configuration

Der Header

Der Header enthält für das gesamte Projekt gültige Angaben, die das Aussehen der Karte bestimmen.

```
NAME 'schwalmtal'
STATUS ON

PROJECTION
    'init=epsg:31466'
END

SIZE 450 320
EXTENT 2516438.410 5671903.377 2519958.410 5674103.695
UNITS meters
SHAPEPATH 'data/'
SYMBOLSET 'symbols/symbset.sym'
FONTSET 'c:/ms4w/Apache/htdocs/schwalmtal/fonts/font.fnt'
...
END
```


Mapfile configuration

Die Web Sektion

Die WEB-Sektion definiert das Verhalten der Applikation und enthält die für OGC-konforme Anwendungen erforderlichen Metadaten. Definition von HTML-Templates (sofern benötigt)

WEB

IMAGEPATH '/data/umn/umn_tmp/' #Speicherort für Temporäre Dateien IMAGEURL 'http://localhost/umn_tmp/' #Speicherort für Temporäre Dateien

```
METADATA
```

```
WMS_TITLE 'Schwalmtal'
WMS_ONLINERESOURCE 'http://server/cgi-bin/mapserv.exe?map=c:/data/demo.map'
WMS__BBOX_EXTENDED 'true'
WMS_SRS 'EPSG:31466 EPSG:31467 EPSG:4326 EPSG:31466'
WMS_EXTENT '2516438 5671903 2519958 5674103'
WMS_ACCESSCONSTRAINTS "none"
WMS_FEATURE_INFO_MIME_TYPE 'text/html'
WMS_ABSTRACT 'Beschreibung des Projektes Schwalmtal'
OWS_ENABLE_REQUEST '*'
```

END

END

Mapfile configuration

Die Layer

- Im Layer werden Daten, Datentyp, Ausgestaltung, Beschriftung sowie eine Klassifizierung definiert.
- Es werden verschiedene Typen von Layern unterschieden RASTER, POLYGON, LINE, POINT, ANNOTATION, CIRCLE, QUERY.
- Hierbei wird für jede Klasse ein eigenes "CLASS"-Objekt angelegt.

Mapfile configuration

Die Layer

```
LAYER
    NAME 'agricultur'
    STATUS ON
    TYPE POLYGON
    DATA agric # verweist auf die Datei agric.shp im data-Verzeichnis (im Header definiert)
    PROIECTION
        'init=epsq:31466'
    END
    METADATA
                     'Anbauflächen
        ows title
    END
    CLASSITEM 'DANGER'
    CLASS
        NAME ' alle Flächen'
        EXPRESSION /./ # alle
        STYLE
            COLOR 255 255 0
            OUTLINECOLOR 0 0 0
        END
                 # STYLE
            # CLASS
    END
END
        # LAYER
```


Mapfile configuration

Schlüssel, Werte und Kommentare

- Feststehende Schlüsselworte ohne Anführungszeichen, z.B.
 - STATUS ON
 - TYPE POLYGON
- Variable Zeichenketten mit Anführungszeichen, z.B.
 - NAME 'schwalmtal'
 - CLASSITEM 'DANGER'
- Zahlenwerte ohne Anführungszeichen, z.B.
 - COLOR 255 125 125
- Kommentare werden mit # eingeleitet
 - Die gesamte Zeile ab dem Kommentarzeichen wird als Kommentar gewertet und vom MapServer nicht weiter beachtet

Ihr erster Mapfile

osm_01.map

- Öffnen Sie die Datei mit einem Editor
- Laden Sie die Karte in ein GIS, z.B. QuantumGIS

```
CLASS
NAME 'roads'
STYLE
WIDTH 4
COLOR 91 91 91
END
END
```


Ihr erstes Mapfile

- Das geht noch etwas schöner
 - Suchen Sie den Abschnitt 'STYLE END' und fügen die 4 Zeilen noch einmal direkt darunter ein
 - Ändern im Sie die Linienbreite auf 6 und die Farbe auf 255 255 255

```
CLASS
NAME 'roads'
STYLE
WIDTH 4
COLOR 91 91 91
END
STYLE
WIDTH 2
COLOR 255 255 255
END
END
```


"Aufwind durch Wissen"

MapServer Workshop

Ihr erster Mapfile

- Jetzt fehlt noch die Beschriftung
 - Das ist etwas aufwendiger, aber es gibt eine Vorlage: osm_02.map
 - Sämtliche Beschriftungsoptionen finden Sie unter http://www.mapserver.org/de/mapfile/label.html

```
LABELITEM 'name'

CLASS
....

LABEL
FONT arial
TYPE truetype
SIZE 9
COLOR 0 0 0
OUTLINECOLOR 220 220 220
ANGLE follow
POSITION cc
FORCE false
ANTIALIAS true
PARTIALS true
FND
```


Ihr erster Mapfile

- Es gibt zahlreiche Parameter für die Beschriftung
 - Was passiert, wenn Sie einige Parameter ändern? Versuchen Sie es:

ANGLE follow → ANGLE auto

FORCE false → FORCE true

PARTIALS true → PARTIALS false

Sämtliche Beschriftungsoptionen finden Sie unter http://www.mapserver.org/de/mapfile/label.html

Darstellung von Polygonen

- Flächen werden fast genau so wie Linien dargestellt
 - In der Layerdefinition ist der TYPE POLYGON (anstatt LINE)
 - In der Style-Sektion bezeichnet COLOR die Füllfarbe
 - Für die Farbe der Flächenbegrenzung gibt es das Schlüsselwort OUTLINECOLOR

Die Flächen finden Sie vorbereitet in osm_03.map

Laden Sie die Datei in den Editor und die Karte ins GIS .

Klassifizierung

- Noch ist alles grün, erstellen wir nun eine gesonderte Klasse für die Gewässer
 - Für die Klassifizierung benötigen wir ein Attribut nach dem klassifiziert werden soll → CLASSITEM 'type' (wobei type der Spaltenname der Attributetabelle ist)
 - Innerhalb von CLASS wird mit dem Schlüsselwort EXPRESSION auf den Attributwert zugegriffen: EXPRESSION "forest" (Zeile 47)
 - Die STYLE-Angaben innerhalb dieser Klasse gelten nun nur für Geometrien deren Attributwert in der mit dem CLASSITEM definierten Spalte der EXPRESSION entspricht, also
 - für alle Objekte deren 'type' gleich 'forest' ist
 - Um eine weitere Klasse hinzuzufügen, fügen sie dem LAYER einfach eine weitere Klasse hinzu
 - Öffnen Sie osm_04.map im Editor

"Aufwind durch Wissen"

MapServer Workshop

Klassifizierung

```
LAYER
  NAME 'natural'
  CLASSITEM 'type'
  CLASS
    NAME "type = forest"
    EXPRESSION "forest"
  END
  CLASS
    NAME "type = water"
    EXPRESSION "water"
    STYLE
      WIDTH 0.91
      OUTLINECOLOR 85 0 255
      COLOR 142 213 213
    END
    LABEL
  END
END
```


"Aufwind durch Wissen"

MapServer Workshop

Darstellung von Punkten

- Punkte werden fast genau so wie Linien und Polygone dargestellt
 - In der Layerdefinition ist der TYPE POINT
 - Wie ein Punkt dargestellt wird, wird über das SYMBOL definiert
 - Als Symbol können MapServer-Symbole, TrueTypeFonts oder Rasterbilder genutzt werden
 - http://mapserver.org/mapfile/symbol.html
 - http://mapserver.org/mapfile/style.html

Darstellung von Punkten

Einbinden von Rasterdaten

- Das Einbinden von georeferenzierten Rasterdaten ist einfach
 - In der Layerdefinition ist der TYPE RASTER
 - Logischerweise entfällt der Style- und Annotation-Block
 - Die transparente Farbe kann definiert werden, es können sogar Frabwerte umdefiniert werden
 - Es können auch Bild-Kataloge eingebunden werden
 - Ein Bildkatalog kann mit gdaltindex erstellt werden: http://www.remotesensing.org/gdal/gdal_utilities.html

```
LAYER
NAME "DGK5"
TYPE RASTER
DATA "raster/280926GS.tif"
STATUS ON
...
END
```

```
LAYER
NAME "DGK5"
TILEINDEX "raster\index_dgk5.shp"
TILEITEM "location"
TYPE RASTER
...
```

END

Es geht noch viel mehr

- MapServer als WFS
- Abfrage von Sachdaten (GetFeatureInfo) und deren Präsentation in individuellen html-Dateien
- Bereitstellung von Legenden (GetLegendGraphic)
- Datenbanken oder andere OWS als Datenquellen
- Bereitstellung verschiedener STYLES für denselben Layer
- Maßstabsabhängige Darstellungen
- Kreis- und Säulendiagramme in Karten
- Nutzung von Attributwerten für verschiedene Angaben im Mapfile (Farben, Winkel, Linienstärken, Schriftgrößen, ...)
- •

Zum Schluss noch ein paar Adressen

- Dokumentation: http://www.mapserver.org/
 - Online
 - Download als PDF
- Mailinglisten: http://www.mapserver.org/community/lists.html
 - Users list (international, englisch): http://lists.osgeo.org/mailman/listinfo/mapserver-users
 - Archiv: http://osgeo-org.1560.n6.nabble.com/
 - Deutschsprachig: http://freegis.org/mailman/listinfo/mapserver-de
- Die Beispieldaten stammen von http://download.geofabrik.de

Für Rückfragen stehen wir Ihnen gerne zur Verfügung:

Toni Pignataro
WhereGroup, Bonn
toni.pignataro@wheregroup.com

Jörg Thomsen

MapMedia, Berlin

jt@mapmedia.de

Copyright: WhereGroup GmbH & Co. KG.