

Arrangement

Duality: Minimum Area Triangle

Junhui DENG

deng@tsinghua.edu.cn

MAT

- ❖ Given a set P of n points in the plane,
 find 3 points forming the triangle of minimum area
- ❖ Naive algorithm:
 - checks all possible triangles
 - needs $O(n^3)$ time
- ❖ Any faster algorithm?
- ❖ Dual arrangement! construct the dual arrangement $\mathcal{A}(\mathcal{D}(P))$ in the dual space //say, by RIC algorithm in $\boxed{\mathcal{O}(n^2)}$ time

Ray-Shooting

- ❖ Denote the two vertical rays from v as $r^+(v)$ and $r^-(v)$ resp.
- ❖ For each vertex v of A(H),

```
find l^+(v) / l^-(v)
```

//the 1st line of H intersecting $r^+(v) / r^-(v)$

❖ Claim:

these $|O(n^2)|$ pairs of lines

can be determined

in $|O(n^2)|$ time //how?

r+(v)

Ray-Shooting vs. MAT

- ❖ Consider two fixed points p and q in P ...
- ❖ Each of the other n-2 points

 defines a triangle with segment pq

r lies nearest to the line h = pq //what does this mean in dual space?

❖ In the dual space, the condition translates to

$$-1^+(\mathcal{D}(p)\cap\mathcal{D}(q)) = \mathcal{D}(r^-)$$

$$-1^{-}(\mathcal{D}(p)\cap\mathcal{D}(q)) = \mathcal{D}(r^{+})$$

❖ Therefore, MAT can also be solved in <a>O(n²) time

