Дискретная математика. Коллоквиум.

Пешехонов Иван. БПМИ1912

23 ноября 2019 г.

Оглавление

1	Спи	сок определений.	2
	1.1	Логические операции: конъюнкция, дизъюнкция и отрицание	2
	1.2	Логические операции: импликация, XOR (исключающее или) и эквивалентность .	2
	1.3	Булевы функции. Задание таблицей истинности и вектором значений	2
		1.3.1 Задание булевой функции через таблицу истинности	2
		1.3.2 Задание булевой функции через вектор значений	3
	1.4	Существенные и фиктивные переменные булевой функции	3

Глава 1

Список определений.

1.1 Логические операции: конъюнкция, дизъюнкция и отрицание

Логическими операциями (функциями) называются функции, которые зависят от набора **логических переменных**, принимающих значения 0 или 1, и сами так же принимают значения 0 (ложь) или 1 (истина).

Пусть есть две логические переменные: A и B. Тогда операции отрицание, конъюнкция и дизъюнкция задаются следующей **таблицей истинности**:

1.2 Логические операции: импликация, XOR (исключающее или) и эквивалентность

Пусть есть две логические переменные: A и B. Тогда операции эквивалентность, импликация и XOR задаются следующей таблицей истинности:

1.3 Булевы функции. Задание таблицей истинности и вектором значений

Булевыми (логическими) функциями называются функции, которые зависят от набора **логических переменных**, принимающих значения 0 или 1, и сами так же принимают значения 0 (ложь) или 1 (истина).

Есть два основных способа задать булеву функцию:

1.3.1 Задание булевой функции через таблицу истинности

Если булева функция зависит от k переменных, то первые k столбцов таблицы соотвествуют переменным, а k+1-ый столбец соотвествует значению функции на соотвествующем наборе значений.

Кроме того наборы значений переменных вычисляются по следующему правилу: i-ая строка таблицы содержит двоичную запись числа i-1. Таким образом таблица истинности содержит 2^k строк.

1.3.2 Задание булевой функции через вектор значений

Любую функцию от k переменных можно задать столбцом её значений в таблице истинности, причём значений в векторе будет ровно 2^k . Пример:

Булевой функции, заданой вектором значений f(a,b) = 0001 соотвествует таблица истинности

1.4 Существенные и фиктивные переменные булевой функции

Пусть задана булевая функция от k переменных: $f(x_1, x_2, \cdots, x_k)$. Переменная x_i называется фиктивной, если выполняется тождество

 $f(x_1, x_2, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_k) = f(x_1, x_2, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_k).$

Если же для переменной x_i такое тождество не выполняется, то говорят, что переменная x_i является **существенной**.

1.5 Множество, подмножество, равенство множеств

Множеством принято называть совокупность уникальных объектов без учёта отношений между этими объектами.

Пусть дано множество A=1,2,3,4,5. Говорят, что множество B=2,4,5 является **подмножеством** A, если B входит в A, т.е. $\forall e \in B: e \in A$. Обозначается как $B \subseteq A$. Говорят, что два множества A и B **равны**, если AB и $B \subseteq A$.

1.6 Операции с множествами: объединение, пересечение, разность, симметрическая разность. Диаграммы Эйлера-Венна.

Пусть заданы два множества A и B.

- 1) Объединением множеств A и B является множество C, такое что $C = a : (a \in A) \lor (a \in B)$. Обозначается $A \cup B = C$.
- 1) **Пересечением** множеств A и B является множество C, такое что $C=a:(a\in A)\land (a\in B)$. Обозначается $A\cap B=C$.
- 1) **Разностью** множеств A и B является множество C, такое что $C=a:(a\in A)\land (a\notin B)$. Обозначается $A\backslash B=C$.
- 1) Симметрической разностью множеств A и B является множество C, такое что $C=(A\cup B)\backslash (A\cap B)$. Обозначается $A\Delta B=C$.