Aufgabe 2.1

Zum Rechnen mit Rotations- und Transformationsmatrizen sind folgende Funktionen in Python zu definieren. Benutzten Sie dazu das Paket numpy.matlib.

rot(theta)	liefert eine 2D-Rotationsmatrix mit Drehwinkel theta zurück.
rotx(theta)	liefert eine elementare 3D-Rotationsmatrix mit Drehwinkel theta um Drechachse x zurück.
roty(theta)	liefert eine elementare 3D-Rotationsmatrix mit Drehwinkel theta um Drechachse y zurück.
rotz(theta)	liefert eine elementare 3D-Rotationsmatrix mit Drehwinkel theta um Drechachse z zurück.
rot2trans(r)	wandelt die Rotationsmatrix r in eine homogene Transfromationsmatrix um und liefert diese zurück.
trans(t)	liefert eine homogene Translationsmatrix mit Translation t zurück. t ist ein Tupel der Größe 2 bzw. 3 für den 2D- bzw. 3D- Fall.

Prof. Dr. O. Bittel, HTWG Konstanz

Mobile Roboter - Position und Orientierung - Aufgaben

WS 14/15

2-1

Aufgabe 2.1 - Fortsetzung

Testen Sie Ihre Funktionen für das folgende 2D-Szenario:

- Das KS B ist gegenüber dem KS A um (1,1)^T verschoben und dem Winkel 90° gedreht.
- Definieren Sie den Punkt p^B = (2,1)^T
- Überzeugen Sie sich zunächst, dass p^A = (1,4)^T ist.
- Berechnen Sie p^A mit Ihren Python-Funktionen.

Aufgabe 2.2

Die Abbildung zeigt drei 3-dimensionale KS'e A, B und C.

 a) Geben Sie die folgenden homogenen Transformationsmatrizen an:

$$\mathbf{T}_{B}^{A}$$
, \mathbf{T}_{C}^{B} , \mathbf{T}_{C}^{A}

b) Prüfen Sie durch Nachrechnen mit Ihren Python-Funktionen:

$$\mathbf{T}_C^A = \mathbf{T}_B^A \; \mathbf{T}_C^B$$

c) Prüfen Sie durch Nachrechnen mit Ihren Python-Funktionen:

$$\mathbf{T}_A^C = (\mathbf{T}_C^A)^{-1}$$

- d) Führen Sie für den Punkt P einen Koordinatenwechsel von B nach A durch.
- e) Führen Sie für den Punkt P einen Koordinatenwechsel von A nach C durch.

Die z-Achsen sind nicht eingezeichnet und ragen aus dem Bild heraus.

Prof. Dr. O. Bittel, HTWG Konstanz

Mobile Roboter - Position und Orientierung - Aufgaben

WS 14/15

2-3

Aufgabe 2.3

Gegeben seien ein raumfestes, globales KS O und zwei transformierte KSe A und B, wobei B um θ = 30° gedreht ist. Die KS'e seien 2-dimensional.

- a) Geben Sie die homogenen Transformationsmatrizen $\mathbf{T}_{\!\scriptscriptstyle A}^{\!\scriptscriptstyle O}$ und $\mathbf{T}_{\!\scriptscriptstyle B}^{\!\scriptscriptstyle O}$ an.
- b) Führen Sie für den Punkt P mit $\mathbf{p}^{B} = (1,1)$ einen Koordinatentransformation nach O durch.
- c) Wie lässt sich \mathbf{T}_{B}^{A} aus \mathbf{T}_{A}^{O} und \mathbf{T}_{B}^{O} bestimmen?
- d) Bestimmen Sie pA.
- e) Was ergibt sich durch $\mathbf{T}_{R}^{A}\mathbf{p}^{A}$?

Aufgabe 2.4

Ein Roboter befindet sich im KS O an der Position $(x_R, y_R) = (2,1)$ mit der Ausrichtung $\theta = 30^\circ$.

Am Roboter ist ein Roboterarm befestigt, der in z-Richtung um α = 10° geschwenkt ist

Der Roboterarm besteht aus 2 Teilen A_1 und A_2 , die jeweils um β_1 = 20° bzw. β_2 = -10° geneigt sind.

Die weiteren Abmessungen sind h = 0.2, r = 0.1, d = 0.3 und $I_1 = I_2 = 0.5$.

Berechnen Sie die Position $p = (x_p, y_p)$ der Armspitze P im globalen KS O.

Prof. Dr. O. Bittel, HTWG Konstanz

Mobile Roboter - Position und Orientierung - Aufgaben

WS 14/15