You are given two integers *K* and *S*.

The three variables X, Y, and Z are integer values satisfying $0 \le X$, Y, $Z \le K$.

How many different assignments of values to X, Y, and Z are there such that X + Y + Z = S?

Input Format

A single string parameter to your function in the form:

• K S

Constraints

- 2<=K<=2500
- 0<=S<=3K
- *K* and *S* are integers.

Output Format

Print the integer number of triples of *X*, *Y*, and *Z* that satisfy the conditions stated above.

Sample Input 0

22

Sample Output 0

6

Explanation 0

There are six triples of *X*, *Y*, and *Z* that satisfy the condition:

- *X*=0, *Y*=0, *Z*=2
- *X*=0, *Y*=2, *Z*=0
- X=2, Y=0, Z=0
- *X*=0, *Y*=1, *Z*=1
- *X*=1, *Y*=0, *Z*=1
- *X*=1, *Y*=1, *Z*=0

Sample Input 1

5 15

Sample Output 1

1

Explanation 1

The maximum value of X + Y + Z is 15, achieved by one triple of X, Y, and Z.