Studi terhadap prestasi pompa hidraulik ram dengan variasi beban katup limbah

Yosef Agung Cahyanta⁽¹⁾, Indrawan Taufik⁽²⁾

⁽¹⁾ Staff pengajar Prodi Teknik Mesin Universitas Sanata Dharma Yogyakarta
⁽²⁾ Mahasiswa Prodi Teknik Mesin Universitas Sanata Dharma Yogyakarta

Abstrak

Mayarakat yang tinggal jauh dari sumber air memiliki kesulitan dalam mendapatkan air. Untuk memompa air ke dalam rumah umumnya mereka menggunakan pompa sentrifugal. Jenis pompa ini membutuhkan energi listrik untuk mengoperasikannya, namun kadang-kadang listrik juga merupakan suatu masalah tersendiri bagi masyarakat. Pompa hidrolik ram merupakan suatu solusi karena tidak membutuhkan energi listrik atau bahan bakar. Pompa jenis ini dapat bekerja terus menerus 24 jam sehari, harganya murah dan mudah dibuat. Penelitian ini dilakukan untuk mengetahui unjuk kerja pompa hidrolik ram dengan variasi berat katup buang dan head input. Pompa hidrolik ram yang digunakan memiliki diameter pipa masuk 1,5 inch dan diameter pipa keluar 0,5 inch. Variasi berat katup limbah yang dipakai adalah 410 g, 450 g, 490 g, 580 g dan 630 g. Hasil penelitian menunjukkan bahwa kapasitas aliran maksimum, maksimum head discard dan efisiensi maksimum dicapai pada berat katup limbah 410 g. Kapasitas aliran maksimum adalah 11,146 × 10⁻⁵ m³/s, maksimum head discard adalah 7,378 m dan eficiensi maksimum adalah 16,302 %..

Kata kunci: Pompa ram hidrolik, katup buang, head discard

Abstract

People who live far away from the water source have a problem to get water. Usually they use centrifugal pump to pumping the water to their house. Using this pump needs electricity, but some times they have problem with electricity. Hydraulic ramp pump is the solution because it doesn't need electricity or fuel. Hydraulic ramp pump can work continuously 24 hours/day. Hydraulic ramp pump is cheaper and easy to build. This experiment has done to know the performance of the hydraulic ramp pump using the weight of waste valve variations and the head input. The hydraulic ramp pump use on this experiment has 1,5 inch inlet pipe and 0,5 inch outlet pipe. The variations of the waste valve weight are 410 g, 450 g, 490 g, 540 g, 580g and 630 g. The result of investigation shows that the maximum flow capacity, the maximum head discard and the maximum efficiency are obtained when the weight of the waste valve is 410 g. The maximum flow capacity is $11,146 \times 10^{-5}$ m³/s, the maximum head discard is 7,378 m and the maximum efficiency is 16,302 %.

Keyword: Hydraulic ram pump, waste valve, head discard

1. Pendahuluan

1.1. Latar belakang masalah

Air merupakan kebutuhan yang sangat penting manusia, hewan dan tumbuh-tumbuhan. Kebutuhan air yang cukup banyak seringkali menimbulkan permasalahan baru bagi manusia, khususnya bagi masyarakat yang tinggal jauh dari sumber air atau berada di tempat yang berada diatas sumber air. Masyarakat biasa menggunakan pompa air untuk memompakan air dari sumber air ke tempat tinggal mereka. Penggunaan pompa air ini juga masih mengalami kesulitan, antara lain tidak tersedianya sumber tenaga listrik atau sulitnya mendapatkan bahan bakar dan mahalnya biaya operasional pompa. Sehingga pompa hidraulik ram dinilai cukup tepat untuk mengatasi permasalahan tersebut, sebab mempunyai beberapa keuntungan jika dibandingkan dengan jenis pompa yang lain, yaitu tidak membutuhkan energi listrik atau bahan bakar, tidak membutuhkan pelumasan, biaya pembuatan dan pemeliharaannya relatif murah dan pembuatannnya cukup mudah.

1.2. Tujuan Penelitian

Penelitian bertujuan untuk mengamati pengaruh berat beban katup limbah pada pompa hidraulik ram terhadap effisiensi, kapasitas pemompaan dan head pemompaan.

2. Dasar Teori

2.1 Tinjauan Pustaka

Penelitian tentang pompa hidraulik ram pernah dilakukan oleh PTP-ITB [1] dengan memodifikasi pompa hidraulik ram dari ITDG London. Pada penelitian ini digunakan pompa hiraulik ram berukuran 2 inci dengan diameter pipa masuk pompa 2 inci dan diameter pipa penghantar 1 inci. Dari studi tersebut diperoleh bahwa beban katup limbah berpengaruh terhadap efisiensi pompa hiraulik ram. Penelitian ini menunjukkan bahwa efisiensi pompa terbesar diperoleh pada beban katup limbah 400 gram yaitu 42,92 %.

2.2 Landasan Teori

Pompa hidraulik ram adalah pompa yang energi atau tenaga pengeraknya berasal dari tekanan atau hantaman air yang masuk ke dalam pompa itu sendiri. Pompa hidraulik ram ini cukup sederhana dan efektif digunakan pada kondisi yang sesuai dan dengan syarat-syarat kerja yang diperlukan untuk

operasinya. Prinsip kerja pompa hidraulik ram adalah melipatgandakan kekuatan pukulan air pada rumah pompa, sehingga terjadi perubahan energi kinetik menjadi tekanan dinamik yang mengakibatkan terjadinya palu air (water hammer) dan terjadi tekanan tinggi di dalam pompa. Water hammer adalah hentakan tekanan atau gelombang air yang disebabkan oleh energi kinetik air dalam gerakannya ketika tenaga air ini dihentikan atau arahnya dirubah secara tiba-tiba. Tekanan dinamik diteruskan ke dalam tabung udara yang berfungsi sebagai penguat tekanan air dan memaksa air naik ke pipa penghantar. Bagian-bagian pompa hidraulik ram dapat dilihat pada gambar 1.

Gambar 1. Bagian-bagian pompa hidraulik ram Keterangan gambar:

1) Rumah pompa, 2) Lubang udara, 3) Pipa masuk, 4) Katup penghantar, 5) Tabung udara, 6) Pipa penghantar, 7) Katup limbah, 8) Saluran air katup limbah

2.3 Persamaan yang Digunakan

a. Persamaan untuk menghitung efisiensi pompa hiraulik ram [1].

Dalam menghitung efisiensi pompa hidraulik ram, digunakan rumus *D'Aubuisson*

$$\eta D = \frac{QdHd}{(Qd + Qb)Hs} \times 100\% \tag{1}$$

Dengan:

 $\eta D = \text{efisiensi } D'Aubuisson \ (\%)$

Qd = kapasitas pemompaan (1/menit)

Qb = kapasitas terbuang (l/menit)

Hd = head pemompaan (m)

Hs = head input (m)

b. Persamaan yang digunakan untuk mengukur debit air.

$$Q = \frac{V}{t} \tag{2}$$

Dengan:

Q = debit air yang ditampung (m³/detik)

t = waktu (detik)

V = volume air yang ditampung (liter)

c. Persamaan yang digunakan untuk mengukur head hantar pompa [2].

$$p = \rho g \cdot H \tag{3}$$

Dengan:

 $p = \text{tekanan (N/m}^2)$

 ρ = massa jenis air (1000 kg/m³)

g = percepatan gravitasi

H = Tinggi kolom air/head pemompaan (m)

3. Metode Penelitian

3.1 Bahan Penelitian

Penelitian ini menggunakan pompa hidraulik ram dengan diameter pipa masuk 1,5 inchi dan pipa keluar 0,5 inchi [3]. Pompa hidraulik ram dari pipa galvanis. Pompa hidraulik ram ini bekerja pada head hantar air 2,5 m.

3.2 Peralatan penelitian

Skema dari peralatan penelitian dapat dilihat pada gambar 2.

Gambar 2. Skema instalasi pompa hidram Keterangan gambar:

1)Pompa sirkulasi, 2) Bak sirkulasi, 3) Bak sumber (reservoir), 4) Bak suplai, 5) Pipa hantar φ 0,5 inchi, 6) Pipa masukan φ 1,5 inchi, 7) Pompa hidram, 8) Manometer, 9) Bak limbah

3.3. Pelaksanaan penelitian

Tinggi angkat katup limbah diatur pada ketinggian 1,2 cm. Pengukuran debit air dilakukan selama 30 detik dengan mengukur debit pemompaan air yang keluar dari saluran keluar pompa, katup limbah pompa dan lubang udara pompa. Head pemompaan dihitung dengan mengkonversi tekanan yang terukur di manometer. Percobaan dilakukan dengan variasi beban katup limbah pompa sebesar 410, 450, 490, 540, 580 dan 630 gram. Head pemompaan divariasikan dengan mengatur bukaan kran pada pipa hantar sebesar 90°, 60°, dan 30°

4. Hasil dan Pembahasan

4.1 Hasil Penelitian

Untuk beban katup limbah kurang dari 410 gram dan beban katup limbah lebih besar 630 gram, tidak dapat dilakukan pengambilan data, sebab pada beban tersebut pompa hidraulik ram yang digunakan pada penelitian ini tidak dapat bekerja. Data penelitian dapat dilihat pada tabel 1 sampai dengan tabel 6.

Tabel 1. Tabel Q_d, H_d dan efisiensi

Tabel 2. Tabel Q_d, H_d dan efisiensi untuk bukaan kran 90°

untuk tanpa kran								
No	Beban (gram)	Q _d (m³/detik) ×10 ⁵	H _d (m)	Efisiensi (%)				
1	410	11,125	3,162	16,302				
2	450	11,042	3,162	14,411				
3	490	10,667	2,811	15,035				
4	540	9,833	2,811	13,414				
5	580	8,313	3,162	9,089				
6	630	8,667	3,162	9,433				

	untun suntun mun s							
No	Beban (gram)	Q_d (m³/detik) × 10 ⁵	H _d (m)	Efisiensi (%)				
1	410	11,146	3,513	14,121				
2	450	10,375	3,162	13,366				
3	490	10,333	2,811	14,409				
4	540	9,750	2,811	12,969				
5	580	8,583	3,513	8,518				
6	630	8.583	3.513	8.439				

Tabel 3. Tabel Q_d, H_d dan efisiensi untuk bukaan kran 30°

TEddel 144. TEddel 100_d, H_{do}ddameffisierus i uuntukklbukkaaamkkraam 300°

No	Beban (gram)	Q _d (m³/detik) ×10 ⁵	H _d (m)	Efisiensi (%)	Nivito	Beetleem ((greem))	Q d ((m³⁄dddilid)) ※1100⁵⁵	Hd⊲((n))	⊞ińsseerrssi (%%)
1	410	10,208	3,865	11,514	11	441100	33,88996	<i>77,3378</i> 8	22,113377
2	450	9,667	3,513	11,223	22	445500	33,652255	77,002286	11,99733
3	490	9,479	3,162	11,616	33	449900	55,662255	55,227700	33,882211
4	540	9,250	3,162	10,693	44	5581400	55,3333333	44,991155	33,77488
5	580	7,500	3,865	6,398	55	558600	33,225500	66,332214	11,5788222
6	630	7,292	3,865	5,996	66	633300	33,091422	55,662211	11,55568

Tabel 5. Tabel Q pemompaan (Q_d) dan Head pemompaan (H_d) untuk tiap bukaan kran

		Q	pemompaan	(m³/detik) >	< 10 ⁵	Head pempompaan(m)			
No Beban (gram)	Tanpa kran	Kran terbuka 90°	Kran terbuka 60°	Kran terbuka 30°	Tanpa kran	Kran terbuka 90°	Kran terbuka 60°	Kran terbuka 30°	
1	410	11,125	11,146	10,208	3,896	3,162	3,513	3,865	7,378
2	450	11,042	10,375	9,667	3,625	3,162	3,162	3,513	7,026
3	490	10,667	10,333	9,479	5,625	2,811	2,811	3,162	5,270
4	540	9,833	9,750	9,250	5,333	2,811	2,811	3,162	4,915
5	580	8,313	8,583	7,500	3,250	3,162	3,513	3,865	6,324
6	630	8,667	8,583	7,292	3,042	3,162	3,513	3,865	5,621

Tabel 6. Tabel efisiensi untuk tiap bukaan kran

Tuber of Tuber emplement that bankaan kran									
No	Beban (gram)	Efisiensi (%)							
		Tanpa kran	Kran	Kran	Kran				
			terbuka 90°	terbuka 60°	terbuka 30°				
1	410	16,302	14,121	11,514	2,137				
2	450	14,411	13,366	11,223	1,973				
3	490	15,035	14,409	11,616	3,821				
4	540	13,414	12,969	10,693	3,748				
5	580	9,089	8,518	6,398	1,582				
6	630	9,433	8,439	5,996	1.558				

4.3 Pembahasan

Grafik hubungan antara Q pemompaan dengan beban katup limbah pada pompa hidraulik ram menunjukkan bahwa Q pemompaan dipengaruhi oleh beban katup limbah, yaitu Q pemompaan semakin kecil jika beban katup limbah semakin besar. Q pemompaan pompa hidraulik ram maksimum diperoleh sebesar 11,146 × 10⁻⁵ m³/detik, saat beban katup limbah 410 gram pada keadaan kran

buka penuh, sedangkan Q pemompaan minimum sebesar $3,042 \times 10^{-5}$ m³/detik saat beban katup limbah 630 gram pada bukaan kran 30° . Grafik hubungan antara head suplai dengan beban katup limbah pada pompa hidraulik ram menunjukkan bahwa head suplai yang dihasilkan dipengaruhi oleh beban katup limbah, yaitu head suplai semakin kecil jika beban katup limbah semakin besar. Head suplai pompa hidraullik ram maksimum diperoleh sebesar

7,378 m, saat beban katup 410 gram pada bukaan kran 30°, sedangkan head suplai H minimum sebesar 2,811 m, saat beban katup 490 gram dan 540 gram pada keadaan tanpa kran dan bukaan kran 90°. Grafik hubungan antara efisiensi dengan beban katup limbah pada pompa hidraulik ram menunjukkan bahwa efisiensi pompa hidraulik ram dipengaruhi oleh beban katup limbah pompa, yaitu efisiensi semakin kecil jika beban katup limbah semakin besar. Efisiensi pompa hidraulik ram maksimum diperoleh sebesar 16,302 %, saat beban katup limbah 410 gram

pada keadaan tanpa menggunakan kran, sedangkan efisiensi minimum sebesar 1,558 % saat beban katup limbah 630 gram pada bukaan kran 30°. Penelitian ini menunjukkan bahwa beban katup limbah sebesar 410 gram memberikan debit maksimum, head suplai maksimum serta efisiensi maksimum. Besarnya beban ini mendekati beban optimum pada penelitian PTP-ITB (400 gram) [1] yang menggunakan dimensi pompa yang berbeda maupun tinggi jatuh air yang berbeda.

Gambar 3. Grafik Q pemompaan, head suplai dan efisiensi pompa untuk tanpa kran

Gambar 5. Grafik Q pemompaan, head suplai dan efisiensi pompa pada bukaan kran 60°

Gambar 7. Grafik Q pemompaan pada tiap bukaan kran

Gambar 4. Grafik Q pemompaan, head suplai dan efisiensi pompa pada bukaan kran 90°

Gambar 6. Grafik Q pemompaan, head suplai dan efisiensi pompa pada bukaan kran 30°

Gambar 8. Grafik head suplai pada tiap bukaan kran

Gambar 9. Grafik efisiensi pompa pada setiap bukaan kran

Pompa hidraulik ram bekerja berdasarkan prinsip palu air. Penutupan katup limbah menyebabkan aliran air seperti dihentikan secara tiba-tiba sehingga terjadi perubahan bentuk energi kinetik menjadi energi tekanan. ditentukan oleh kecepatan menutupnya katup Water hammer adalah hentakan tekanan atau gelombang air yang disebabkan oleh energi kinetik air dalam gerakannya ketika tenaga air ini dihentikan atau arahnya dirubah secara tiba-tiba. Untuk beban katup limbah kurang dari 410 gram dan beban katup limbah lebih besar dari 630 gram pompa hidraulik ram yang digunakan pada penelitian ini tidak dapat bekerja. Hal ini terjadi karena beban katup limbah yang terlalu ringan akan menyebabkan katup limbah tidak mau terbuka. Gaya berat yang diberikan oleh katup limbah kurang besar sehingga katup limbah terdorong oleh tekanan air dalam rumah pompa. Sedangkan untuk beban katup limbah terlalu besar mengakibatkan katup limbah terbuka terus karena tekanan dalam rumah pompa tidak mampu mengangkat katup limbah. Jika beban katup limbah terlalu ringan atau terlalu berat mengakibatkan siklus terbuka dan tertutupnya katup limbah tidak terjadi sehingga siklus palu air (water hammer) juga tidak terjadi.

5. Kesimpulan dan Saran

5.1. Kesimpulan

Kapasitas pemompaan, head hantar dan efisiensi yang dihasilkan pompa berbanding terbalik dengan variasi beban katup limbah yang digunakan dengan hasil tertinggi diperoleh pada beban 410 gram. Kapasitas pemompaan terbesar $11,146 \times 10^{-5}$ m³/detik pada bukaan kran 90° , head hantar tertinggi 7,378 m pada bukaan kran 30° dan efisiensi tertinggi 16,302 % pada saat tanpa kran.

5.2 Saran

- a. Meneliti pompa hidraulik ram dengan ukuran yang berbeda
- Meneliti pompa hidraulik ram dengan variasi tinggi angkat katup limbah, volume tabung udara dan diameter katup limbah

Daftar Pustaka

- [1] Hanafie Jahja, 1979, Teknologi Pompa Hidraulik Ram, Bandung, Pusat Teknologi Pembangunan Institut Teknologi Bandung.
- [2] Sriyono Dakso dan Fritz Dietzel, 1994, Turbin, Pompa Dan Kompresor, Jakarta: Penerbit Erlangga.
- [3] Widarto L dan FX. Sudarto C. Ph, 1997,

 Membuat Pompa Hidram, Yogyakarta.

 Penerbit Kanisius