Neural Networks Formula Sheet

Motivation

- Classification: Approximate membership function y = f(x, w), where y is discrete.
- Regression: Approximate generating function y = f(x, w), where y is continuous.

Artificial Neuron

Weighted Sum:
$$s=\sum_i w_i x_i$$
 Activation Function: $g(s)=\begin{cases} 1, & \text{if } s\geq \theta\\ 0, & \text{if } s<\theta \end{cases}$

Learning: Adjust weights w_i to obtain intended outputs.

Single-layer Perceptron

- Classification Function: $g(u) = \mathbf{w} \cdot \mathbf{u}$.
- Hyperplane: q(u) = 0, divides classes.
- Perceptron Convergence Theorem: Finds a hyperplane for any linearly separable dataset in finite steps.
- Limitation: Cannot classify non-linearly separable data (e.g., XOR).

Multi-layer Perceptron (MLP)

• Layered Structure: Inputs pass sequentially through hidden layers to outputs.

• Feedforward Propagation:

$$a_j = g\left(\sum_i w_{i,j}a_i + b_j\right)$$

• Activation Functions:

- Linear Function: g(s) = s

- Step Function:

$$g(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ 0, & \text{if } s < 0 \end{cases}$$

– Sigmoid: $g(s) = \frac{1}{1+e^{-s}}$

– Hyperbolic Tangent (Tanh): $g(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$

 $- \text{ ReLU: } g(s) = \max(0, s)$

- Leaky ReLU:

$$g(s) = \begin{cases} s, & \text{if } s > 0\\ \alpha s, & \text{if } s \le 0 \end{cases}$$

where α is a small positive constant.

Linear Discriminant Function

$$g(u) = \mathbf{w} \cdot \mathbf{u} + b$$

• w: Weight vector.

• u: Input vector.

• *b*: Bias.

Learning Rule

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = \eta (y - \hat{y}) x_i$$

• η : Learning rate.

- y: Desired output.
- \hat{y} : Predicted output.

Backpropagation Algorithm

- 1. Forward Pass: Compute outputs for all layers.
- 2. Error Calculation:

$$E = \frac{1}{2} \sum (y_{\text{desired}} - y_{\text{actual}})^2$$

3. Backward Pass: Update weights to minimize error:

$$\Delta w_{i,j} = -\eta \frac{\partial E}{\partial w_{i,j}}$$

where η is the learning rate.

Hebbian Learning Rule

- Update Rule: $\Delta w_{ij} = \eta a_i a_j$
- Principle: "Neurons that fire together, wire together."

Activation Functions in Neural Networks

1. Linear Function

$$g(s) = s$$

Used for regression tasks where the output is continuous.

2. Step Function

$$g(s) = \begin{cases} 1, & \text{if } s \ge 0\\ 0, & \text{if } s < 0 \end{cases}$$

Commonly used in early perceptron models for binary classification.

3. Sigmoid Function

$$g(s) = \frac{1}{1 + e^{-s}}$$

Maps inputs to the range (0,1), often used in the output layer for binary classification.

4. Hyperbolic Tangent (Tanh) Function

$$g(s) = \frac{e^s - e^{-s}}{e^s + e^{-s}}$$

Maps inputs to the range (-1,1). It is zero-centered and often preferred over sigmoid for hidden layers.

5. Rectified Linear Unit (ReLU) Function

$$g(s) = \max(0, s)$$

Efficient and widely used activation function for hidden layers in deep learning.

6. Leaky ReLU Function

$$g(s) = \begin{cases} s, & \text{if } s > 0\\ \alpha s, & \text{if } s \le 0 \end{cases}$$

where α is a small positive constant, typically $\alpha=0.01$. This prevents the dying ReLU problem.

7. Parametric ReLU (PReLU) Function

$$g(s) = \begin{cases} s, & \text{if } s > 0\\ \alpha s, & \text{if } s \le 0 \end{cases}$$

where α is learned during training.

8. Exponential Linear Unit (ELU) Function

$$g(s) = \begin{cases} s, & \text{if } s > 0\\ \alpha(e^s - 1), & \text{if } s \le 0 \end{cases}$$

where α is a hyperparameter. ELU is smooth and avoids the dead ReLU problem.

9. Softmax Function

$$g_i(s) = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

Used in the output layer for multi-class classification. It converts logits into probabilities.

10. Swish Function

$$g(s) = s \cdot \sigma(s)$$

where $\sigma(s)$ is the sigmoid function. Swish is a smooth, self-gated activation function.