安徽大学 2016—2017 学年第一学期

《高等数学 A (三)》(概率论与数理统计)考试试卷(A卷) (闭卷 时间120分钟)

考场登记表序号

题 号	_	=	三	四	五	总分
得 分						
阅卷人						

一、 填空题(每小题3分,共15分)

名线

得 分

- 1. 设A, B是随机事件,P(A)=0.4,P(AB)=0.2, $P(A|B)+P(\overline{A}|\overline{B})=1$,则 $P(A \cup B)=$
- 2. 设随机变量 X 服从参数为 1 的泊松分布,则方程 $x^2 2x + X = 0$ 无实根的概率为 _____.
- 3. 设X 服从正态分布N(3,4),Y 服从参数 $\lambda = \frac{1}{2}$ 的指数分布,且X,Y 相互独立,又 Z = X 2Y + 5,则 $DZ = _____$.
- 4. 设 X_1, X_2, \dots, X_n 为来自二项分布总体B(n, p)的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差,若 $\overline{X}+kS^2$ 为 np^2 的无偏估计量,则k= .
- 5. 设总体 X 服从正态分布 $N(\mu,8)$, μ 为未知参数, X_1,X_2,\cdots,X_{32} 是取自总体 X 的一个简单随机样本, \overline{X} 为样本均值,如果以区间 $\left(\overline{X}-1,\overline{X}+1\right)$ 作为 μ 的置信区间,则置信水平为

(标准正态分布函数值 $\Phi(2)=0.977$, $\Phi(3)\approx 0.999$, $\Phi(4)\approx 1$)

二、选择题(每小题3分,共15分)

得分

- 6. 将一枚均匀硬币连续抛掷两次,引进事件: $A_1 = \{$ 掷第一次出现正面 $\}$, $A_2 = \{$ 掷第二次出现正面 $\}$, $A_3 = \{$ 正反面各出现一次 $\}$, $A_4 = \{$ 正面出现两次 $\}$,则事件().
 - (A) A, A, A, 相互独立.

(B) A₂, A₃, A₄相互独立.

(C) A₁, A₂, A₃ 两两独立.

(D) A₂, A₃, A₄ 两两独立.

- 7. 设随机变量 X 的分布函数为 F(x),概率密度为 f(x), Y=1-X, Y 的分布函数 记为G(v),概率密度记为g(v),则有().
- (A) g(y) = f(1-y) (B) g(y) = 1 f(y) (C) G(y) = F(1-y) (D) G(y) = 1 F(y)
- 8. 设随机变量 X , Y 相互独立, 且 EX , EY 和 DX , DY 存在,则下列等式中不成 立的是 (),下列表示式中a,b均为常数.
- (A) $E(aX \pm bY) = aEX \pm bEY$.
- (B) $E(aX \cdot bY) = abEX \cdot EY$.
- (C) $D(aX + bY) = a^2DX + b^2DY$. (D) $D(aX bY) = a^2DX b^2DY$.
- 9. 设 X_1, X_2, \dots, X_n 是来自总体X的简单随机样本, $EX = \mu$,DX = 1,下列命题
 - ① $\sqrt{n}\left(\overline{X}-\mu\right) \sim N(0,1)$. ② $E\left(\overline{X}^2\right) = \mu^2$.
 - ③ 由切比雪夫不等式可知 $P(|\overline{X} \mu| < \varepsilon) \ge 1 \frac{1}{nc^2}$ (ε 为任意正数).
- ④ $\Xi \mu$ 为未知参数,则样本均值 \overline{X} 是 μ 的矩估计量. 中正确的有()个.
- (A) 1 2 (C) 3 (B) (D)
- 10. 在正态总体的假设检验中,显著性水平为 α ,则下列结论正确的是(
- (A) 若在 $\alpha = 0.1$ 下接受 H_0 ,则在 $\alpha = 0.05$ 下必接受 H_0 .
- (B) 若在 $\alpha = 0.1$ 下接受 H_0 ,则在 $\alpha = 0.05$ 下必拒绝 H_0 .
- (C) 若在 $\alpha = 0.1$ 下拒绝 H_0 ,则在 $\alpha = 0.05$ 下必接受 H_0 .
- (D) 若在 $\alpha = 0.1$ 下拒绝 H_0 ,则在 $\alpha = 0.05$ 下必拒绝 H_0 .

得 分

三、分析计算题(每小题12分,共60分)

- 11. 选择题有四个答案可供选择. 已知 60%考生对相关知识完全掌握, 他们可选出正 确答案; 20%的考生对相关知识部分掌握,他们可剔除两个不正确答案,然后随机选 一个答案; 20%的考生对相关知识完全不掌握, 他们随机选一个答案.
- (1) 现任意挑位考生,求他选得正确答案的概率:
- (2) 已知某位考生选对了答案,求他确实是完全掌握相关知识的概率.

$$f(x) = \begin{cases} Axe^{-x^2} & x \ge 0, \\ 0, & x < 0. \end{cases}$$

求: (1) 常数 A 的值; (2) X 的分布函数 F(x); (3) 概率 $P(-1 \le X < 2)$.

13. 设随机变量 X 与 Y 的分布律分别为:

X	0	1
P	$\frac{1}{3}$	$\frac{2}{3}$

Y	-1	0	1
P	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

且 $P(X^2 = Y^2) = 1$, 求:

姓名线

(1) (X,Y)的联合分布律; (2) Z = XY的分布律; (3) X 与 Y的相关系数 ρ_{XY} .

15. 设总体 X 的概率密度函数为

$$f(x) = \begin{cases} (\theta + 1)x^{\theta}, \ 0 < x < 1, \\ 0, \quad \\ \text{其他.} \end{cases}$$

其中 $\theta>-1$ 是未知参数. 设 X_1,X_2,\cdots,X_n 为来自总体X的简单随机样本,试求参数 θ 的矩估计量和极大似然估计量.

四、应用题(每小题5分,共5分)

得分

16. 某保险公司接受了 10000 电动自行车的保险,每辆车每年的保费为 12 元. 若车丢失,则车主得赔偿 1000 元. 假设车丢失率为 0.006,试利用中心极限定理,求保险公司一年获利润不少于 60000 元的概率为多少?

五、证明题(每小题5分,共5分)

得分

17. 设 X_1 , X_2 , X_3 , X_4 为来自总体 $N\left(0,\frac{1}{2}\right)$ 的简单随机样本,证明: 统计量 $Y = \frac{X_1 - X_2}{\sqrt{\sum_{i=3}^4 X_i^2}}$ 服从自由度为 2 的t分布.