STATS 217: Introduction to Stochastic Processes I

Lecture 17

Total variation distance

- Let μ and ν be two probability distributions on Ω .
- The **total variation distance** between them, denoted by $\mathsf{TV}(\mu,\nu)$, is defined by

$$\mathsf{TV}(\mu, \nu) := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|.$$

• On the homework, you will show that

$$\mathsf{TV}(\mu,\nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

• Note that $\mathsf{TV}(\mu, \nu)$ is a metric on the set of probability measures on Ω .

Total variation distance is a metric

- $\mathsf{TV}(\mu, \nu) \geq 0$ and $\mathsf{TV}(\mu, \nu) = \mathsf{TV}(\nu, \mu)$.
- If $TV(\mu, \nu) = 0$, then $|\mu(x) \nu(x)| = 0$ for all $x \in \Omega$ so that $\mu \equiv \nu$.
- Finally, TV satisfies the triangle inequality: for probability measures μ, ν, η on Ω , $\mathsf{TV}(\mu, \nu) \leq \mathsf{TV}(\mu, \eta) + \mathsf{TV}(\eta, \nu)$.
- Indeed.

$$2 \operatorname{TV}(\mu, \nu) = \sum_{x \in \Omega} |\mu(x) - \nu(x)|$$

$$= \sum_{x \in \Omega} |\mu(x) - \eta(x) + \eta(x) - \nu(x)|$$

$$\leq \sum_{x \in \Omega} |\mu(x) - \eta(x)| + \sum_{x \in \Omega} |\eta(x) - \nu(x)|$$

$$= 2 \operatorname{TV}(\mu, \eta) + 2 \operatorname{TV}(\eta, \nu).$$

Dual characterization of total variation distance

- Let μ, ν be probability measures on Ω . Let \mathcal{F} denote the collection of all functions $f: \Omega \to \mathbb{R}$ satisfying $\max_{x \in \Omega} |f(x)| < 1$.
- Then,

$$\mathsf{TV}(\mu,\nu) = \frac{1}{2} \sup_{f \in \mathcal{F}} \left\{ \sum_{x \in \Omega} f(x) \mu(x) - \sum_{x \in \Omega} f(x) \nu(x) \right\}.$$

• Why? For any $f \in \mathcal{F}$,

$$\begin{aligned} |\sum_{x \in \Omega} f(x)\mu(x) - \sum_{x \in \Omega} f(x)\nu(x)| &\leq \sum_{x \in \Omega} |f(x)||\mu(x) - \nu(x)| \\ &\leq \sum_{x \in \Omega} |\mu(x) - \nu(x)|. \end{aligned}$$

• You will prove the reverse inequality on the homework.

Coupling

- Let μ and ν be two probability measures on Ω_1 and Ω_2 respectively.
- A coupling of μ and ν is a probability measure γ on $\Omega_1 \times \Omega_2$ such that

$$\gamma(A \times \Omega_2) = \mu(A) \quad \forall A \subseteq \Omega_1 \text{ and}$$

 $\gamma(\Omega_1 \times B) = \nu(B) \quad \forall B \subseteq \Omega_2.$

• Similarly, a coupling of random variables $X:\Omega_1'\to\Omega_1$ and $Y:\Omega_2'\to\Omega_2$ is a pair of random variables $\widehat{X}:\Omega\to\Omega_1$ and $\widehat{Y}:\Omega\to\Omega_2$ defined on a common probability space Ω such that

$$\mathbb{P}[\widehat{X} = x] = \mathbb{P}[X = x] \quad \forall x \in \Omega_1 \text{ and}$$
 $\mathbb{P}[\widehat{Y} = y] = \mathbb{P}[Y = y] \quad \forall y \in \Omega_2.$

Lecture 17 STATS 217 5 / 11

Example: independent coupling

- Let $X \sim \text{Ber}(p)$ and $Y \sim \text{Ber}(q)$ where $0 \le p \le q \le 1$.
- ullet Formally, we can think of $X:[0,1] \to \{0,1\}$ where [0,1] is equipped with the uniform measure and

$$X(r) = \begin{cases} 0 \text{ if } r \leq 1 - p \\ 1 \text{ if } r > 1 - p. \end{cases}$$

- Y admits a similar interpretation.
- An obvious coupling of X and Y is the **independent coupling** i.e., $\Omega = [0,1] \times [0,1]$ equipped with the uniform measure,

$$\widehat{X}(r_1,r_2) = \begin{cases} 0 \text{ if } r_1 \leq 1-p \\ 1 \text{ if } r_1 \geq 1-p, \end{cases}$$

and similarly for \widehat{Y} (with r_1 replaced by r_2 and p replaced by q).

Example: monotone coupling

A particularly useful coupling in this case is the monotone coupling.

• $\Omega = [0,1]$ with the uniform measure.

$$\widehat{X}(r) = \begin{cases} 0 \text{ if } r \leq 1 - p \\ 1 \text{ if } r > 1 - p. \end{cases}$$

$$\widehat{Y}(r) = \begin{cases} 0 \text{ if } r \leq 1 - q \\ 1 \text{ if } r > 1 - q. \end{cases}$$

• Then,

$$\mathbb{P}[\hat{X} = 1] = \mathbb{P}[r > 1 - p] = p = \mathbb{P}[X = 1]$$

and similarly for \widehat{Y} .

ullet The name monotone coupling comes from the observation that if $p \leq q$, then

$$\widehat{X} \leq \widehat{Y}$$
 determistically.

7/11

An application of monotone coupling

- Let $(P_t)_{t\geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is p.
- Let $(Q_t)_{t\geq 0}$ denote a simple random walk starting from 0 where the probability of taking a step to the right is q.
- Then, if $p \leq q$, intuitively,

$$\mathbb{P}[Q_t \leq z] \leq \mathbb{P}[P_t \leq z] \quad \forall t \geq 0, z \in \mathbb{Z}.$$

• Monotone coupling lets us see this directly.

8 / 11

An application of monotone coupling

- Let $(\widehat{X}, \widehat{Y})$ denote the monotone coupling of Ber(p) and Ber(q).
- Let $(\widehat{X}_t, \widehat{Y}_t)_{t \geq 1}$ denote iid copies of $(\widehat{X}, \widehat{Y})$.
- Let $\widehat{P}_t = \sum_{i=1}^t (2\widehat{X}_i 1)$ and $\widehat{Q}_t = \sum_{i=1}^t (2\widehat{Y}_i 1)$.
- Then, by construction, $\widehat{P}_t \leq \widehat{Q}_t$ for all t.
- Moreover, $P_t \sim \widehat{P}_t$ and $Q_t \sim \widehat{Q}_t$ for all t.
- So, for any $z \in \mathbb{Z}$ and any $t \ge 0$,

$$\mathbb{P}[Q_t \leq z] = \mathbb{P}[\widehat{Q}_t \leq z] \leq \mathbb{P}[\widehat{P}_t \leq z] = \mathbb{P}[P_t = z].$$

Coupling and total variation

- Let μ and ν be two probability distributions on Ω .
- The coupling lemma asserts that

$$\mathsf{TV}(\mu,\nu) = \inf\{\mathbb{P}[X \neq Y] : (X,Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$$

- Example: let $\mu = \mathsf{Ber}(p)$ and $\nu = \mathsf{Ber}(q)$ with $0 \le p \le q \le 1$.
- Then, by direct computation,

$$\mathsf{TV}(\mathsf{Ber}(p),\mathsf{Ber}(q)) = rac{1}{2}(|q-p|+|1-q-1+p|) = q-p.$$

• For the monotone coupling $(\widehat{X}, \widehat{Y})$, we have

$$\mathbb{P}[\widehat{X} \neq \widehat{Y}] = \mathbb{P}[1 - q \le r \le 1 - p] = q - p.$$

 The above characterization shows that the monotone coupling is an optimal coupling.

Lecture 17 STATS 217 10 / 11

Coupling and total variation

- $\mathsf{TV}(\mu, \nu) = \inf\{\mathbb{P}[X \neq Y] : (X, Y) \text{ is a coupling of } \mu \text{ and } \nu\}.$
- Easy direction: ≤. Why?
- Let (X, Y) be any coupling of μ, ν . Let $A \subseteq \Omega$. Then,

$$\mu(A) - \nu(A) = \mathbb{P}[X \in A] - \mathbb{P}[Y \in A]$$

$$= \mathbb{P}[X \in A] - \mathbb{P}[X \in A, Y \in A] - \mathbb{P}[X \notin A, Y \in A]$$

$$= \mathbb{P}[X \in A, Y \notin A] - \mathbb{P}[X \notin A, Y \in A]$$

$$\leq \mathbb{P}[X \in A, Y \notin A]$$

$$\leq \mathbb{P}[X \neq Y].$$

• The reverse inequality is a starred problem on HW7.