Automated Proofs

- The process of formal proofs is mechanical
- Computers can do it
- Cast it as a search problem
- Successor function generates all 1-step consequences of an applicable inference rule
- But big branching factor
- Proof by cases

Prove R 1 P v Q 2 Q → R 3 P → R

Propositional Resolution

Resolution rule:

- Single inference rule is a sound and complete proof system
- Requires all sentences to be converted to conjunctive normal form

Conjunctive Normal Form

Conjunctive normal form (CNF) formulas:

$$(A \lor B \lor \neg C) \land (B \lor D) \land (\neg A) \land (B \lor C)$$

- (A∨B∨¬C) is a clause, which is a disjunction of literals
- A, B, and ¬ C are literals, each of which is a variable or the negation of a variable.
- Every sentence in propositional logic can be written in CNF

Propositional Resolution

Resolution rule:

- Resolution refutation:
 - Convert all sentences to CNF
 - Negate the desired conclusion (converted to CNF)
 - Apply resolution rule until either
 - Derive false (a contradiction)
 - Can't apply any more

Propositional Resolution Example

Prove R

1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given
2	¬P∨R	Given
3	¬Q∨R	Given
4	¬ R	Negated conclusion

Propositional Resolution Example

Prove R

1	PvQ	
2	$P\toR$	
3	$Q\toR$	

Step	Formula	Derivation
1	PvQ	Given
2	¬PvR	Given
3	¬ Q v R	Given
4	¬ R	Negated conclusion
5	QvR	1,2
6	¬ P	2,4
7	¬ Q	3,4

Resolution Example 2 (Propositional)

Prove R

1	$(P \rightarrow Q) \rightarrow Q$
2	$(P \rightarrow P) \rightarrow R$
3	$(R \rightarrow S) \rightarrow \neg (S \rightarrow Q)$

Convert to CNF

- -(- P v Q) v Q (P ∧ ¬ Q) v Q (P v Q) ∧ (¬ Q v Q) (PvQ)
- ¬(¬PVP)VR (P ∧ ¬ P) ∨ R (P ∨ R) ∧ (¬ P ∨ R)
- ¬(¬R v S) v ¬ (¬S v Q) (R ∧ ¬S) v (S ∧ ¬Q) (R v S) ∧ (¬S v S) ∧ (R v ¬Q) ∧ (¬S v ¬Q) (R v S) ∧ (R v ¬Q) ∧ (¬S v ¬Q)

1	PVQ	
2	PVR	
3	¬PVR	
4	RVS	
5	R∨¬Q	
6	¬ S v ¬ Q	
7	¬ R	Neg

1	PvQ	
2	PVR	
3	¬PVR	
4	RvS	
5	Rv¬Q	
6	¬Sv¬Q	
7	¬ R	Neg
8	S	4,7
9	¬ Q	6,8
10	Р	1,9
11	R	3,10
12		7,11