

CAD HW3-

Modeling Mixed-Signal System and Simulating with AMS

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Mixed-Signal Model Simulation with AMS
 - Lab2: 4-bit ADC with Verilog-AMS

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Mixed-Signal Model Simulation with AMS
 - Lab2: 4-bit ADC with Verilog-AMS

What is AMS Designer

- Top-down system-on-chip simulation for complex mixed-signal designs
- A single executable simulator incorporating the fastest in digital and most flexible analog simulation capability
 - Digital: NC-Sim
 - Analog: Spectre
- Simulation of complex designs incorporating any and all of the following:
 - Verilog, VHDL
 - Verilog-A, Verilog-AMS, VHDL-AMS
 - Spectre
 - SPICE
 - Composer schematics

What is AMS Designer(cont.)

Mixed-Signal Simulation with Model

- The mixed-signal behavioral model simulation can verify:
 - System behavior is correct or not?
 - System requirement is met or not?
 - System performance is satisfied or not?
- Weaknesses:
 - Only time domain information can be obtained directly
 - All behavioral model should be converted into time domain
 - Other characteristics might be calculated from time domain data

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Mixed-Signal Model Simulation with AMS
 - Lab2: 4-bit ADC with Verilog-AMS

Environment Setting

- NC-Verilog / Verilog-XL
 - e.g > source /usr/cad/cadence/CIC/incisiv.cshrc
- Spectre
 - e.g > source /usr/cad/cadence/CIC/mmsim.cshrc
- Composer / Virtuoso
 - e.g > source /usr/cad/cadence/CIC/ic_06.17.709.cshrc

Simulation Flow

Step 1. > virtuoso &

Step 2. Open library manager

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Open library manager

Simulation Flow

Create Verilog-A Cells

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Create a new cell view

Mixed-Signal Electronic Design

- 1. Choose your library
- 2. Input the name on the Cell Name column
- 3. Choose the **VerilogA** type for Analog model
- 4. OK

Designing with Verilog-A

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Mixed-Signal Electron it

Create Top Cell - Schematic

- Create library
- Create cell view & symbol
 - Verilog-A models
 - Verilog models
 - Schematic
 - Config
- Set ADE

Input the name on the Cell Name column and choose the Schematic

Mixed-Signal Electronic Design

Automation Lab.

Create Top Cell - Schematic

imouse L: schSingleSelectPt()

14(16) Check and Save

Simulation Environment

 Open Analog Design Environment (ADE) in schematic editing window

Mixed-Signal Electronic Design

Simulation Environment

Through Setup -> Simulator/Directory/Host

Mixed-Signal Electronic Design

Give input information (1/2)

Give input information(2/2)

Choose Analysis Type

MS Automation Lab.

Save Output Nodes

Submit the Simulation

- Execute the simulation job with Run
- Tools → Results Brower

Automation Lab.

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Mixed-Signal Model Simulation with AMS
 - Lab2: 4-bit ADC with Verilog-AMS

Create Verilog Cells

Design Hierarchy – AMS

 Before creating the top schematic cell (add instance and connection), creating a config view for AMS simulation

Create Config View for Simulation

- The mixed-signal simulation hierarchy is controlled by Hierarchy-Editor
 - It must have to be defined in the config cell view.

Mixed-Signal Electronic Design

Automation Lab

Set New Configuration

Mixed-Signal Electronic Design

Automation Lab

Configuration Setting

Open Simulation Tool

- Finish create config
 - Click config at library manager to open simulation tool
 - The simulation steps are the same as analog
 - Except give input information

Mixed-Signal Electronic Design

Automation Lab

Digital Stimulus

- Create a behavioral or functional view for the stimulus block
 - The stimulus (Verilog) could be created to symbol view as the same procedure with digital cell

```
//Verilog HDL for "PLL", "stimulus_D" "functional"

timescale 1ns/10ps
module stimulus_D (rst);
output rst;
reg rst;
initial begin
   rst=1'b0;
   #1 rst=1'b1;
end
endmodule
```

Analog Stimulus

The analog stimulus can be added as circuit instance

Add Instance

Choose analogLib & vpulse cell

Mixed-Signal Electronic Design

Analog Stimulus

- 1. Setup
 - ✓ Simulator choose AMS
- 2. Analysis
 - **✓** Tran analysis
 - ✓ Set simulation time and enable
- 3. Outputs
 - ✓ Save all or select on design
- 4. Run
- 5. Waveform viewer

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Mixed-Signal Model Simulation with AMS
 - Lab2: 4-bit ADC with Verilog-AMS

PLL Mixed-Signal Model

- All models are given
 - Analog model (Verilog-A): PFD, CP, LF, VCO, sin2plus
 - Digital model (Verilog): divider
- Import all models and create a testbench
 - Testbench: generate rst signal for divider

Mixed-Signal Electronic Design

Additional Description

- Connection
 - Connect <u>up</u> (<u>sigout_A</u>) signal of <u>PFD</u> to <u>siginc</u> signal of <u>CP</u>
 - Connect <u>dn</u> (<u>sigout_B</u>) signal of <u>PFD</u> to <u>sigdec</u> signal of <u>CP</u>
 - Connect in signal of divider to sin2pulse
 - Charge pump(CP)
 - Connect vsrc to GND
- VDD = 1.8V GND = 0V
- Simulator: AMS
- Input
 - Fin=50M Hz, Adding voltage source instance
- Simulation time ≥6μs
 - Related to the lock time of PLL

Results

 Show the waveform of vctrl, output of the divider and schematic view

Outline

- Introduction to AMS
- AMS Simulation Setup
 - Analog Simulation with Verilog-A Model
 - Mixed-Signal Behavioral Model Simulation
 - Lab1: Mixed-Signal Model Simulation with AMS
 - Lab2: 4-bit ADC with Verilog-AMS

Description

Type: AMS


```
connectmodule a2d(i,o);
   parameter vdd = 1.0;
   ddiscrete
   input
                i;
   output
                0;
                               Support output reg
   reg
                0;
   electrical
   always begin
                   @(\mathbf{cross}(V(i) - vdd/2, +1))o = 1; end
                   @(\mathbf{cross}(V(i) - vdd/2, -1))o = 0; end
   always begin
endmodule
```

Parameters of ADC Model

Input : sin wave

Amplitude: 16V, Frequency: 20M

Output: 4 bit output

R=0.5k, Vref=16V

Analysis Type : tran, 125n

Simulator: AMS

B3,B2,B1,B0 (bit)	Input (V)
0000	0
0001	1V
0010	2V
0011	3V
0100	4V
0101	5V
0110	6V
0111	7V
1000	8V
1001	9V
1010	10V
1011	11V
1100	12V
1101	13V
1110	14V
1111	15V

Results

- Hand in:
 - The waveform of outputs of comparators, encoder and input
 - The waveview need to clear shows the signal name

Hand in

- Please upload a compressed file (studentID.zip) includes:
 - Programming files (Verilog and Verilog-A files)
 - Lab1 (35%): Stimuli (testbench.v)
 - Lab2 (45%): Encoder file(.vams or .v), comparator file(.vams or .va)
 - Video files (.mp4): show the simulated process of lab 1&2 (5%)
 - From running ADE L to waveform creating
 - Mini report (studentID.pdf)
 - Simulation waveforms for two labs (6%)
 - Lab1: Mixed-signal simulation (Vctrl & output of the divider)
 - Lab2: ADC (outputs of comparators, encoder and input)
 - Two schematic cellviews (6%)
 - What you have learned from this course (2%)
 - Suggestion for this course (1%)
- Deadline: 2024/8/31 (Sat.) 11:59 a.m.