Topic 9: Napoleon's Theorem

MATH 199B SHALLY FAN

Starting Question

The area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths $2\sqrt{3}$, 5, and $\sqrt{37}$, as shown, is $m\sqrt{p}/n$, where m, n, and p are positive integers, m and n are relatively prime, and p is not divisible by the square of any prime. Find m+n+p.

The area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths $2\sqrt{3}$, 5, and $\sqrt{37}$, as shown, is $m\sqrt{p}/n$, where m, n, and p are positive integers, m and n are relatively prime, and p is not divisible by the square of any prime. Find m+n+p.

If
$$x, y$$
 satisfy $px+qy=1$, then minimal value of $\sqrt{x^2+y^2}$ is $\sqrt{p^2+q^2}$.

Distance between point (x_0, y_0) and line $px+qy+r=0$ is $\frac{1px_0+q}{\sqrt{p^2+q^2}}$
 $=>$ distance between origin 4 any point (x,y) on $px+qy=1$ is at least $\frac{1}{\sqrt{p^2+q^2}}$

How let the righe triangle vertices be $(0,0)$, $(5,0)$, $(0,2\sqrt{3})$
 $(0,0)$ $(3,0)$, $(0,2\sqrt{3})$

Let $(a,0)$, $(0,b)$ be 2 vertices of equilateral \triangle on the legs of right \triangle

=) 3rd vertice of equilateral
$$\Delta = \left(\frac{a+b\sqrt{3}}{2}, \frac{a\sqrt{3}+b}{2}\right)$$

if lies on hypotenuse $\frac{x}{5} + \frac{u}{2\sqrt{3}} = 1$

=) $a \cdot b$ must satisfy
$$\frac{a+b\sqrt{3}}{10} + \frac{2\sqrt{3}+b}{4\sqrt{2}} = 1$$

$$= > \frac{7}{20} a + \frac{11\sqrt{3}}{60} b = 1$$

By Lumma min of $\sqrt{a^2+b^2} = \sqrt{\left(\frac{7}{20}\right)^2 + \left(\frac{11\sqrt{3}}{60}\right)^2} = \frac{10\sqrt{3}}{\sqrt{67}}$

Min circa of equilateral $\Delta = \frac{\sqrt{3}}{4} \cdot \left(\frac{10\sqrt{3}}{\sqrt{67}}\right)^2 = \frac{75\sqrt{32}}{67}$
 $75 + 3 + 67 = 145$

How to determine the minimal inscribed equilateral triangle of a given triangle?

Theorem 1. (Napoleon's Theorem)

In the following, $\triangle BCP$, $\triangle CAQ$, and $\triangle ABR$ are equilateral triangle. Let X,Y,Z be the centers of $\triangle BCP$, $\triangle CAQ$, and $\triangle ABR$ respectively. Then $\triangle XYZ$ is equilateral.

Proof:

Assume A, B, C correspond to complex numbers a, b, c. Let $\sigma = e^{\Lambda} \pi i/3$.

- -Then complex number of point $P=(b-c)\sigma + c$
- -Complex number of the center $X=1/3(b+c+(b-c)\sigma+c)$ = $1/3((1+\sigma)b+(2-\sigma)c)$.
- -By this we can conclude:

$$Y=1/3((1 + \sigma)c + (2 - \sigma)a)$$

$$Z=1/3((1 + \sigma)a + (2 - \sigma)b)$$

We would need to prove : |Z-X|=|Y-X|

$$Z-X = 1/3((1+\sigma)a+(1-2\sigma)b-(2-\sigma)c)$$

Let a=0
Z-X=
$$\frac{1}{3}(0+(1-2\sigma)b-(2-\sigma)c)$$

= $\frac{1}{3}((1-2\sigma)b-(2-\sigma)c)$

$$|Z-X|=|Y-X|=\sqrt{3}/3(|b-\sigma c|)$$

Theorem 1. (Napoleon's Theorem)

In the following, $\triangle BCP$, $\triangle CAQ$, and $\triangle ABR$ are equilateral triangle. Let X,Y,Z be the centers of $\triangle BCP$, $\triangle CAQ$, and $\triangle ABR$ respectively. Then $\triangle XYZ$ is equilateral.

$$Y-X = 1/3((2-\sigma)a-(1+\sigma)b-(1-2\sigma)c)$$

Y-X=
$$\frac{1}{3}$$
 (0-(1+ σ)b-(1-2 σ)c)
= $\frac{1}{3}$ ((-1- σ)b+(-1+2 σ)c)

Theorem

Assume that $\triangle DEF$ is an inscribed equilateral triangle. Assume also that $DE \parallel PQ$, $EF \parallel QR$, and $FD \parallel RP$. Then

$$DE \cdot PQ = \frac{4}{\sqrt{3}} \operatorname{Area}(\triangle ABC).$$

Now assume $\triangle PQR$ is an equilateral triangle. Let $\angle A = \alpha$, $\angle B = \beta$, and $\angle C = \gamma$. Let R be the radius of the circumscribed circle of $\triangle ABC$.

Then Let DE=a and QR=b Using the law of sines

b=RA+AQ=AB/sin 60(sinx) +AC/sin 60(sin y) =4R/ $\sqrt{3}$ (sinx siny + siny sin β)

BC=BD+DC=a/ $sin\beta(sinx)$ +a/ $sin\gamma(sin y)$

$$a = \frac{BC}{\frac{\sin x}{\sin \beta} + \frac{\sin y}{\sin \gamma}} = \frac{2R \sin \alpha}{\frac{\sin x}{\sin \beta} + \frac{\sin y}{\sin \gamma}}$$

Therefore, we have

$$ab = \frac{8R^2}{\sqrt{3}}\sin\alpha\sin\beta\sin\gamma.$$

Theorem

Assume that $\triangle DEF$ is an inscribed equilateral triangle. Assume also that $DE \parallel PQ$, $EF \parallel QR$, and $FD \parallel RP$. Then

$$DE \cdot PQ = \frac{4}{\sqrt{3}} \operatorname{Area}(\triangle ABC).$$

Theorem

In the following picture, starting from a point U on the circumscribed circle of $\triangle BCP$. Connecting UB intersecting at W, and UC intersecting on V. Then U, A, W are collinear. Moreover, $\triangle UVW$ is equilateral.

Thus U, A, W are collinear.

 $WU = 2 RS \le 20102$.

W U will be maximized when W U \perp AB. When W U \perp AB, we get the maximum circumscribed equilateral triangle

Hence the minimal inscribed triangle can be located.