EE2023 Signals & Systems Quiz Semester 1 AY2014/15

Date: 2 October 2014 Time Allowed: 1.5 hours

T 4 4 •	
Instructions	•

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. Tables of Fourier transforms and trigonometric identities are given on Pages 11 and 12.
- 4. No programmable or graphic calculator is allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :		 	
Matric #: _			
Class Group	#:		

For your information:

Group 1: A/Prof Loh Ai Poh Group 2: A/Prof Ng Chun Sum Group 3: A/Prof Tan Woei Wan Group 4: Prof Lawrence Wong

Question #	Marks
1	
2	
3	
4	
Total Marks	

Q.1 Consider the signal processing system shown in Figure Q1-1.

Figure Q1-1: Signal Processing System

Assume that x(t) is a real signal with its spectrum given in Figure Q1-2a. Figure Q1-2b shows the low pass filter characteristics of H(f).

Figure Q1-2a : Spectrum of x(t)

Figure Q1-2b: Filter Characteristics

(a) Sketch and label clearly the spectra of $x_1(t)$, $x_2(t)$ and $x_3(t)$. You may choose any T you wish as long as your spectrum of $x_3(t)$ is consistent.

(8 marks)

(b) Determine the maximum T such that x(t) is recoverable from $x_3(t)$.

(2 marks)

Q.1 ANSWER

Q.1 ANSWER ~ continued

Q.2	A signal $x(t)$ is modeled by $x(t) = \sum_{n} \operatorname{sinc}(t-3n)$.	
	(a) Express $x(t)$ in the form of a convolution and then derive its Fourier transform $X(f)$.	(4 marks)
	(b) Find the inverse Fourier transform of $X(f)$.	
	[Your answer for this part should not contain the summation \sum operator.]	(3 marks)
	(c) Using the result of Part (b), or otherwise, determine the Fourier series coefficients, X_k , or	of $x(t)$.
		(3 marks)
Q.2	ANSWER	
1		

Q.2 ANSWER ~ continued

Q.3 Consider a periodic signal, x(t), whose Fourier Series expansion may be expressed as

$$x(t) = \sum_{n = -\infty}^{\infty} c_n e^{jnt}$$

(a) What is the period of the signal x(t)?

(2 marks)

(b) Write down an equation for evaluating the Fourier Series coefficients, $\,c_n^{}$.

(2 marks)

(c) Consider the generating function $x_g(t) = \begin{cases} t & -\pi < t < \pi \\ 0 & otherwise \end{cases}$ and the periodic signal

$$y(t) = \sum_{k=-\infty}^{\infty} x_g(t - 2k\pi).$$

i. Compute the Fourier Series coefficient of y(t) for the frequency index n = 0 i.e. c_0 , the DC value of y(t).

(3 marks)

ii. The Fourier Series expansion for y(t) is

$$y(t) = 2\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \sin\left(nt\right)}{n}.$$

Using the Fourier Series expansion for y(t), show that $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$

(3 marks)

Q.3 ANSWER

Q.3 ANSWER ~ continued

Q.4. (a) Determine the Fourier transform of the signal x(t) that comprises two rectified cycles of a sinusoid as shown in Figure Q.4(a).

(b) Using the Dirac- δ replication property, derive an expression that shows the relationship between x(t) and the periodic signal $x_p(t)$ shown in Figure Q.4(b).

(c) Determine the Fourier transform and the Fourier Series coefficients of the periodic signal $x_p(t)$.

(4 marks)

Q.4 ANSWER

Q.4 ANSWER ~ continued

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference. Anything written on this page will not be graded.

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

Fourier Series:
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k \, t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k \, t/T) \end{cases}$$
Fourier Transform:
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi f t) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi f t) df \end{cases}$$

FOURIER TRANSFORMS OF BASIC FUNCTIONS			
	x(t)	X(f)	
Constant	K	$K\delta(f)$	
Unit Impulse	$\delta(t)$	1	
Unit Step	u(t)	$\frac{1}{2} \left[\delta(f) + \frac{1}{j\pi f} \right]$	
Sign (or Signum)	$\operatorname{sgn}(t)$	$\frac{1}{j\pi f}$	
Rectangle	$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$	
Triangle	$\operatorname{tri}\!\left(rac{t}{T} ight)$	$T\operatorname{sinc}^2(fT)$	
Sine Cardinal	$\operatorname{sinc}\left(\frac{t}{T}\right)$	$T \operatorname{rect}(fT)$	
Complex Exponential	$\exp(j2\pi f_o t)$	$\delta(f-f_o)$	
Cosine	$\cos(2\pi f_o t)$	$\frac{1}{2} \Big[\delta \big(f - f_o \big) + \delta \big(f + f_o \big) \Big]$	
Sine	$\sin(2\pi f_o t)$	$-\frac{j}{2} \Big[\delta (f - f_o) - \delta (f + f_o) \Big]$	
Gaussian	$\exp\left(-\frac{t^2}{\alpha^2}\right)$	$\alpha\pi^{0.5}\exp(-\alpha^2\pi^2f^2)$	
Comb	$\sum_{m=-\infty}^{\infty} \delta(t-mT)$	$\frac{1}{T} \sum_{k=-\infty}^{\infty} \delta \left(f - \frac{k}{T} \right)$	

FOURIER TRANSFORM PROPERTIES		
	Time-domain	Frequency-domain
Linearity	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(f) + \beta X_2(f)$
Time scaling	$x(\beta t)$	$\frac{1}{ \beta }X\bigg(\frac{f}{\beta}\bigg)$
Duality	$X\left(t ight)$	x(-f)
Time shifting	$x(t-t_o)$	$X(f)\exp(-j2\pi ft_o)$
Frequency shifting (Modulation)	$x(t)\exp(j2\pi f_o t)$	$X(f-f_o)$
Differentiation in the time-domain	$\frac{d^n}{dt^n}x(t)$	$(j2\pi f)^n X(f)$
Multiplication in the time-domain	$x_1(t)x_2(t)$	$\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$
Convolution in the time-domain	$\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$	$X_1(f)X_2(f)$
Integration in the time-domain	$\int_{-\infty}^t x(\tau)d\tau$	$\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$

TRIGONOMETRIC IDENTITIES		
$\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$	$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	
$\cos(\theta) = \frac{1}{2} \left[\exp(j\theta) + \exp(-j\theta) \right]$	$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\sin(\theta) = \frac{1}{j2} \left[\exp(j\theta) - \exp(-j\theta) \right]$	$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$	
$\sin^2(\theta) + \cos^2(\theta) = 1$	$\tan(\alpha \pm \beta) = 1 \mp \tan(\alpha) \tan(\beta)$	
$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$	$\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]$	
$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$	$\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$	
$\sin^2(\theta) = \frac{1}{2} \left[1 - \cos(2\theta) \right]$	$\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$	
$\cos^2(\theta) = \frac{1}{2} \Big[1 + \cos(2\theta) \Big]$	$\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$	