Question 1. Let X and Y be jointly distributed random variables whose joint PMF p(x, y) is given in the follow table.

$X \setminus Y$	1	2	3	4
1 (0.1	0.05	0.02	0.02
2	0.05	0.2	0.05	0.02
3	0.02	0.05	0.2	0.04
4	0.02	0.02	0.04	0.1

- (a) Write marginal PMFs $p_X(x)$ of X and $p_Y(y)$ of Y in the same table above.
- (b) Are X and Y independent?
- (c) Find Cov(X, Y).

(a)
$$P(X=1) = 0.1 + 0.05 + 0.02 + 0.02 = 0.19 = P(Y=1)$$

 $P(X=2) = 0.05 + 0.2 + 0.05 + 0.02 = 0.32 = P(Y=2)$
 $P(X=3) = 0.02 + 0.05 + 0.2 + 0.04 = 0.31 = P(Y=3)$
 $P(X=4) = 0.02 + 0.02 + 0.04 + 0.1 = 0.18 = P(Y=4)$

(b)
$$P(X=2 \text{ and } Y=2) = 0.2.$$

 $P(X=2) = 0.32 = P(Y=2)$
 $P(X=2, Y=2) \neq P(X=2)P(Y=2)$ Hence X and Y are dependent.

$$XY = \{1, 1, 3, 4, 6, 8, 9, 12, 16\}$$
 $P(XY = 1) = 0.$
 $P(XY = 1) = 0.$
 $P(XY = 2) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = 0.$
 $P(XY = 3) = P(X = 1, Y = 3) + P(X = 3, Y = 1) = 0.24$
 $P(XY = 4) = P(X = 1, Y = 4) + P(X = 2, Y = 2) + P(X = 4, Y = 1) = 0.24$
 $P(XY = 6) = P(X = 2, Y = 3) + P(X = 3, Y = 2) = 0.$
 $P(XY = 6) = P(X = 2, Y = 4) + P(X = 4, Y = 2) = 0.04$
 $P(XY = 12) = P(X = 3, Y = 4) + P(X = 4, Y = 3) = 0.06$
 $P(XY = 16) = P(X = 4, Y = 4) = 0.$
 $E(XY = 16) = P(X = 4, Y = 4) = 0.$

Question 2. Let X be a random variable that takes on values -2, -1, 0, 1, 2, each with probability 1/5. Let $Y = X^2$.

- (a) Express the values of p(x, y), $p_X(x)$, $p_Y(y)$ in the joint probability table.
- (b) Show that Cov(X, Y) = 0.

Question 3. Let X and Y be jointly distributed variables with joint PDF

$$f(x,y) = \begin{cases} 2x + 2y - 4xy & \text{if } 0 \le x, y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the marginal PDFs $f_X(x)$ of X and $f_Y(y)$ of Y.
- (b) Compute E(X) and E(Y).
- (c) Compute Cov(X, Y).

(0) If
$$\kappa_0$$
 or κ_1 $\int_{x}^{+\infty} f(x,y) = \int_{-\infty}^{+\infty} f(x,y) dy = 0$.

. ^

If
$$0 \le x \le 1$$
 $f_{x}(x, y) = \int_{0}^{1} (2x+2y-4xy) dy$
 $= (2xy+y^{2}-2xy^{2})|_{0}^{1} = 2x+1-2x = 1$
 $f_{x}(x, y) = \int_{0}^{1} if x < 0 \text{ or } x > 1$

If $0 \le x \le 1$

Similarly

 $f_{y}(x, y) = \int_{0}^{1} if y < 0 \text{ or } y > 1$
 $f_{y}(x, y) = \int_{0}^{1} if y < 0 \text{ or } y > 1$

Ib) $E(x) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y > 1$
 $E(y) = \int_{0}^{1} if x < 0 \text{ or } y >$

Question 4. Let c be a real number and let f(x,y) be the following function

$$f(x,y) = \begin{cases} c(x+y)^2 \text{ if } 0 \le x \le 1, 0 \le y \le 1\\ 0 \text{ otherwise.} \end{cases}$$

- (a) Find c so that f(x, y) is the joint PDF of two random variables X and Y.
- (b) Find the marginal PDFs $f_X(x)$ of X and $f_Y(y)$ of Y.
- (c) Are X and Y independent?
- (d) Compute Cov(X, Y).

(b)
$$f(x,y) = \left(\frac{6}{7}(x+y)^2 \quad 6 \leq x, y \leq 1\right)$$
otherwise.

If
$$x < 0$$
 or $x > 1$

$$f_{x}(x) = \int_{-L}^{+\infty} f(x, y) dy = 0$$
If $0 \le x \in 1$

$$f_{x}(x) = \int_{0}^{+\infty} (x + y)^{2} dy$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} (x^{2} + 2xy + y^{2}) dy$$

$$= \int_{0}^{+\infty} (x^{2}y + 2xy^{2} + y^{2}) dy$$

$$= \frac{6}{7} \left(x^2 + \frac{1}{3} + x \right) = \frac{6}{7} x^2 + \frac{2}{7} + \frac{6}{7} x$$

We obtain
$$f_{x}(x) = \begin{cases} \frac{6}{7}x^{2} + \frac{6}{7}x + \frac{7}{7} \\ 0 \end{cases}$$
of therein.

Similarly, we have
$$f(y) = \xi + \frac{4}{7}y + \frac{2}{7}y = 0 = y = 1$$

$$f_{\gamma}(y) = \begin{cases} \frac{1}{2}y^2 + \frac{1}{2}y + \frac{1}{2} \\ 0 \end{cases}$$
 Of thermise.

(c)
$$f(x,y) = f_{x}(x) f_{y}(y)$$
.?
 $f(o,o) = o$.
 $f_{x}(o) \cdot f_{y}(o) = (\frac{2}{7})^{2}$

fix, 1) \ f_x(x) x f_y(t) Not independent.

$$E(x) = E(Y) = \int_{0}^{1} x + \int_{x} (x) dx$$

$$= \int_{0}^{1} x \cdot (-\frac{6}{7}x^{2} + \frac{6}{7}x + \frac{2}{7}x) dx$$

$$= \int_{0}^{1} (-\frac{6}{7}x^{3} + \frac{6}{7}x^{2} + \frac{2}{7}x) dx$$

$$=\frac{6}{7}\frac{x^{4}}{4}+\frac{6}{7}\frac{x^{3}}{3}+\frac{2}{7}\frac{2}{7}\Big|_{0}^{2}=\frac{9}{14}$$

$$E(XY) = \frac{1}{9} \int_{0}^{1} \int_{0}^{1} xy (x+y)^{2} dy dx$$

$$= \frac{1}{9} \int_{0}^{1} \int_{0}^{1} xy (x^{2}+y^{2}+2xy) dy dx$$

$$= \frac{1}{9} \int_{0}^{1} \int_{0}^{1} x^{2}y + xy^{2} + xx^{2}y^{2} dy dx$$

$$= \frac{1}{9} \int_{0}^{1} \left(x^{2} + \frac{1}{2} + x^{2} + x^{2$$