Association rules

February 17, 2020

0.1 Introduction

The goal of this assignment is to determine which SKUs appear to have relationships with each other, such that we can move them appropriately around the Dillard's store to increase revenues. The steps involved in this experiment our outlined below, with the appropriate code.

0.2 Understanding the data

To understand the data, I imported all of the data into Python using the pandas feature. Most of the data matched with the data schema, except the trnsact dataset which appeared to have an extra column. After looking at the data more, it was realized that the column was the sale price. Additionally, each of the datasets had a column with zeroes, which had to be removed.

```
[186]: import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      from mlxtend.frequent_patterns import apriori
      from mlxtend.frequent_patterns import association_rules
      from random import randint
      from random import seed
      from sklearn.model_selection import train_test_split
      from tqdm import tqdm
  [3]: deptinfo = pd.read_csv("/Users/ArshyaSrinivas/Google Drive/Engineering/Junior_
       -year/WINTER 2019/IEMS 308/association_rules/DillardsPOS/deptinfo.csv",
       →header = None)
  [4]: skst = pd.read_csv("/Users/ArshyaSrinivas/Google Drive/Engineering/Junior year/
       →WINTER 2019/IEMS 308/association_rules/DillardsPOS/skstinfo.csv", header = U
       →None)
[190]: | %%capture
      skuinfo = pd.read_csv("/Users/ArshyaSrinivas/Google Drive/Engineering/Junior_
       →year/WINTER 2019/IEMS 308/association_rules/DillardsPOS/skuinfo.csv", header U
       →= None, error_bad_lines=False);
  [6]: strinfo = pd.read_csv("/Users/ArshyaSrinivas/Google Drive/Engineering/Junior⊔
       →year/WINTER 2019/IEMS 308/association_rules/DillardsPOS/strinfo.csv", header ...
       →= None)
```

```
[7]: trnsact = pd.read_csv("/Users/ArshyaSrinivas/Google Drive/Engineering/Junior_
       →year/WINTER 2019/IEMS 308/association_rules/DillardsPOS/trnsact.csv", header
       \rightarrow= None)
  [8]: trnsact = trnsact.iloc[:,:-1]
  [9]: trnsact.columns = [ 'SKU', 'STORE', 'REGISTER', 'TRANNUM', 'SEQ', L
       →'SALEDATE', 'STYPE', 'QUANTITY', 'ORGPRICE', 'SPRICE', 'AMT', 'INTERID', 'MIC']
 [10]: #Renaming the rest of the columns
      deptinfo = deptinfo.iloc[:,:-1]
      skst = skst.iloc[:,:-1]
      skuinfo = skuinfo.iloc[:,:-1]
      strinfo = strinfo.iloc[:,:-1]
      #Renaming more columns
      deptinfo.columns = ['DEPT', 'DEPTDESC']
      skuinfo.columns =
       → ['SKU', 'DEPT', 'CLASSID', 'UPC', 'STYLE', 'COLOR', 'SIZE', 'PACKSIZE', 'VENDOR', 'BRAND']
      strinfo.columns = ['STORE', 'CITY', 'STATE', 'ZIP']
      skst.columns = ['SKU','STORE','COST','RETAIL']
        Next, I looked at some of the values and the counts of different categories in the data. The first
     thing I looked at was the breakdown per state.
[188]: #Determining the how many states there are
      strinfo.STATE.value_counts()
[188]: TX
            79
      FL
            48
      AR
            27
      ΑZ
            26
      OH
            25
      NC
            24
      LA
            22
      MO
            20
      TN
            19
      GA
            16
      OK
            15
      KS
            15
      CO
            14
      ΚY
            14
      ΑL
            13
      VA
            10
      SC
             8
      CA
             8
      MS
             7
      NM
             6
      UT
             6
```

ΙA

5

```
NV
         5
NE
         4
ID
         3
IL
         3
         3
NJ
MT
         3
         2
IN
NY
         2
WY
         1
```

Name: STATE, dtype: int64

Looking at the breakdown of the number of stores in each state, we can see how diverse the spread of stores are. After conducting some intial research, it was found that the state of California has the largest number of retail stores in the United States. It would be beneficial to apply the association rules found in this experiment to the stores in California, as these stores would appear to have the largest amount of competition. Hence, this data will be subsetted to the state of California.

```
[12]: strinfo_CA = strinfo.loc[strinfo['STATE'] == "CA", "STORE"]
     str_CA_stores = [600,2600,3000,3600,6009,6109,6209,9106]
     test = trnsact[trnsact.STORE.isin(str_CA_stores)]
[13]:
    test.head(10)
[13]:
            SKU
                  STORE
                         REGISTER
                                     TRANNUM
                                                      SEQ
                                                              SALEDATE STYPE
                                                                                QUANTITY
     433
            164
                   6109
                               580
                                         2700
                                                        0
                                                            2005-08-25
                                                                             Ρ
                                                                                        1
     434
                               580
                                         2700
                                                                             Ρ
            164
                   6109
                                                        0
                                                            2005-08-25
                                                                                        1
                                                                             Ρ
     436
            164
                   6209
                               550
                                                        0
                                                            2005-08-27
                                                                                        1
                                         4200
     860
            326
                   6009
                                160
                                         2800
                                                        0
                                                            2004-08-19
                                                                             Ρ
                                                                                        1
     2430
            450
                   6009
                               270
                                          700
                                                        0
                                                            2005-08-23
                                                                             Ρ
                                                                                        1
     2431
            450
                   6009
                               470
                                         7200
                                                        0
                                                            2005-07-23
                                                                             Ρ
                                                                                        1
     2432
            450
                                         3600
                                                                             Ρ
                   6009
                               580
                                                        0
                                                            2005-07-18
                                                                                        1
     2433
            450
                   6009
                               580
                                         7400
                                                        0
                                                            2005-07-14
                                                                             Ρ
                                                                                        1
     2441
            450
                   6109
                                20
                                         2500
                                               549308154
                                                            2005-06-18
                                                                             Ρ
                                                                                        1
     2442
                                                                             Ρ
            450
                   6109
                               260
                                         6600
                                                        0
                                                            2005-07-08
                                                                                        1
            ORGPRICE
                       SPRICE
                                   AMT
                                           INTERID
                                                     MIC
     433
                 20.0
                         20.00
                                20.00
                                         255400008
                                                     822
     434
                 20.0
                         20.00
                                20.00
                                         255500008
                                                     822
     436
                 20.0
                         20.00
                                20.00
                                         266300013
                                                     822
     860
                 72.0
                         72.00
                                72.00
                                                     106
                                         682500004
     2430
                  6.0
                         3.00
                                  3.00
                                        842300006
                                                     844
     2431
                  6.0
                          3.00
                                  3.00
                                         427500010
                                                     844
                          3.99
                                  3.99
     2432
                  6.0
                                        838500005
                                                     844
     2433
                  6.0
                          3.99
                                  3.99
                                         930200006
                                                     844
     2441
                  6.0
                          5.00
                                  5.00
                                          76400012
                                                     844
     2442
                  6.0
                          3.99
                                  3.99
                                        231800007
                                                     844
```

Next, I decided to use the store with the highest number of data points for my analysis. I decided to choose the store with the highest value as it would provide the greatest competitive advantage. Here, I am making an assumption that the larger the store is, the more customers are likely to come. By applying these association rules to the largest store, we can take advantage of a larger customer base.

```
[14]: test.STORE.value_counts()
[14]: 6009     546321
     6109     336128
     6209     94297
     Name: STORE, dtype: int64
[15]: trnsact_store = test.loc[test['STORE'] == 6009]
```

The final subsetting done after exploring the data was determining the split of transactions that are either purchases or return transactions

```
[17]: trnsact_store.STYPE.value_counts()
```

[17]: P 502593 R 43728

Name: STYPE, dtype: int64

Here, it can be seen that the majority of the transactions are purchases. The data will be subsetted to only to this subset in order to only focus on what customers want to buy together initially. This will result in a fairer comparison of transactions.

```
[18]: trnsact_purchase = trnsact_store.loc[trnsact_store['STYPE'] == "P"] trnsact_purchase.head(10)
```

[18]:		SKU	STORE	REGISTER	TRANNUM	SEQ	SALEDATE	STYPE	QUANTITY	\
	860	326	6009	160	2800	0	2004-08-19	P	1	
	2430	450	6009	270	700	0	2005-08-23	P	1	
	2431	450	6009	470	7200	0	2005-07-23	P	1	
	2432	450	6009	580	3600	0	2005-07-18	Р	1	
	2433	450	6009	580	7400	0	2005-07-14	Р	1	
	2957	497	6009	50	8000	0	2005-02-25	P	1	
	2958	497	6009	60	20300	0	2005-02-26	P	1	
	2959	497	6009	150	300	44809161	2005-02-01	P	1	
	2960	497	6009	160	700	0	2005-05-06	P	1	
	2962	497	6009	160	1900	922905343	2004-10-27	P	1	

	ORGPRICE	SPRICE	AMT.	INTERID	MIC
860	72.0	72.00	72.00	682500004	106
2430	6.0	3.00	3.00	842300006	844
2431	6.0	3.00	3.00	427500010	844
2432	6.0	3.99	3.99	838500005	844
2433	6.0	3.99	3.99	930200006	844
2957	24.0	24.00	24.00	653300012	881
2958	24.0	24.00	24.00	367100016	881
2959	24.0	24.00	24.00	240300005	881
2960	24.0	24.00	24.00	404000008	881
2962	24.0	24.00	24.00	40000004	881

0.3 Exploratory data analysis

Since the data has been subsetted, some exploratory data analysis will be done on the transact dataset in order to look for underlying patterns.

The quantity section does not appear to have any split for this particular store and hence, we will disregard this. The first type of analysis that will be done is looking at the range of different quantities of a certain item purchased.

Next, I looked at the spread of data for the sale price. From here, it appeared that the majority of the data is skewed to the right, with the majority of the prices less than 100 dollars. This gives a sense of how often more expensive items are purchased and can help us consider how to set the minimum support of the association rules later on in the experiment. Since there are definitely products that are considered to be "rare" but do generate a profit because they are relatively expensive, the minimum support of the experiment should be set low.

```
[144]: plt.hist(trnsact_purchase.SPRICE, range=[0, 200])

[144]: (array([266755., 146122., 51268., 24243., 7775., 2042., 1369., 749., 395., 595.]),

array([ 0., 20., 40., 60., 80., 100., 120., 140., 160., 180., 200.]),

<a href="mailto:alienter-new content of the content of t
```


Looking deeper at prices, I identified whether the original price and the sale price of items are the same. If they are not, the compnay may have offered a discounted price, or were willing to take a cut in the price because they were desperate to sell the item. From here, it can be seen that approximately half of the subsetted data has a sale price that was less than the original sale price. It is interesting to note that this makes up half of the purchases and going forward, it should be kept in mind that a discounted price could have affected an association.

```
[142]: sum(trnsact_purchase.ORGPRICE == trnsact_purchase.SPRICE)
```

[142]: 240997

I also took a look at whether there are any null values; it appears that there are no null values or missing values in the dataset that I subsetted.

```
[140]: trnsact_purchase.isnull().values.any()
```

[140]: False

0.4 Completing association rules.

Now that the exploratory data analysis is complete, we can move forward with looking at the association rules within the data set.

```
[20]: new_df = trnsact_purchase.loc[:,["REGISTER", "TRANNUM", "SKU"]]
```

One hot encoding is required to be done to determine which SKUs were purchased when. However, the computation power of my computer does not allow one hot encoding to be done for every single SKU. Hence, a subset of SKUs will be selected. This subset will randomly select 1000 SKUs and the analysis will be done on these 1000 SKUs. Since the assignment only requested 100 SKUs to be selected for moving around in the store, randomly selecting 1000 SKUs in this part

of the analysis gives the ability to have a large enough dataset to work with, but is constrained enough to receive results in a timely manner.

```
[40]: | %%capture
     seed(1)
     random_SKU = []
     for i in tqdm(range(2000)):
         r = randint(0,unique_SKU.shape[0])
         if unique_SKU.get_value(r,0) not in random_SKU:
             random_SKU.append(unique_SKU.get_value(r,0))
      0%1
                    | 0/2000 [00:00<?,
    ?it/s]/Users/ArshyaSrinivas/anaconda3/lib/python3.7/site-
    packages/ipykernel_launcher.py:8: FutureWarning: get_value is deprecated and
    will be removed in a future release. Please use .at[] or .iat[] accessors
    instead
    /Users/ArshyaSrinivas/anaconda3/lib/python3.7/site-
    packages/ipykernel_launcher.py:9: FutureWarning: get_value is deprecated and
    will be removed in a future release. Please use .at[] or .iat[] accessors
    instead
      if __name__ == '__main__':
    100%|| 2000/2000 [00:00<00:00, 16766.45it/s]
[41]: final_df = new_df[new_df['SKU'].isin(random_SKU)]
     final_df
[41]:
                REGISTER
                           TRANNUM
                                        SKU
                                       9791
     119964
                      190
                              2300
     177036
                      290
                              3900
                                      16036
                      290
                              6000
     177037
                                       16036
     329386
                      240
                               200
                                      26316
     470341
                      290
                              1300
                                      34005
     470343
                      290
                              8000
                                      34005
     470344
                      290
                              8000
                                      34005
     470346
                      290
                             13900
                                      34005
     470347
                      290
                             14300
                                      34005
     670657
                      480
                              3600
                                      47535
     743041
                      380
                              2200
                                      54148
     743042
                      380
                              5500
                                      54148
     743043
                      380
                             10000
                                      54148
                      370
     756766
                               300
                                      56585
     781434
                       50
                              1800
                                      57773
     781435
                       80
                              2100
                                      57773
                              3300
     781436
                       80
                                      57773
                              1900
     781437
                      240
                                      57773
```

838665	150	700	60697
838666	250	800	60697
858827	50	7500	64045
892225	230	1900	67364
1000869	780	200	76646
1074694	580	4000	82782
1088421	290	11500	84470
1123356	310	11600	87612
1157899	160	2800	90497
1157900	160	4100	90497
1157901	160	4900	90497
1157902	240	2300	90497
120168847	710	5000	9936627
120171166	360	801	9936751
120171167	360	900	9936751
120171169	360	3400	9936751
120171170	360	11400	9936751
120171171	370	2700	9936751
120171172	370	6900	9936751
120171173	530	8000	9936751
120171174	530	13600	9936751
120296820	460	800	9947889
120303547	270	2100	9948312
120384052	330	3600	9954563
120384053	340	600	9954563
120384054	340	1000	9954563
120391954	470	1700	9956428
120391955	470	1900	9956428
120391956	470	10100	9956428
120404734	580	4200	9956673
120407602	130	5500	9956869
120407603	140	3300	9956869
120550330	160	2800	9969033
120550332	240	3000	9969033
120550333	250	4300	9969033
120550334	780	1100	9969033
120605168	50	300	9976460
120694496	80	2800	9982466
120718191	50	500	9986460
120718192	110	4300	9986460
120718193	300	5400	9986460
120813028	360	11500	9992316

[6419 rows x 3 columns]

```
[42]: #One-hot-encoding
     onehot = pd.get_dummies(final_df['SKU'],prefix='sku')
     df = pd.concat([final_df,onehot],axis=1)
     df.drop(['SKU'],axis=1, inplace=True)
```

We would have to adjust our dataset in order to determine which of the items were ordered together. My assumption is that if items are ordered together, they would have the same TRAN-NUM number and would have the same REGISTER number. The data is now grouped together like this.

```
[43]: | finalData = df.groupby(['REGISTER', 'TRANNUM']).sum()
```

Before moving forward, we are going to split the data set into a training data set and a testing data set, so we can test the association rules on a subset of data after arriving to these rules. For this method, we will be training our model on 80% of our data and testing our model on 20% of our data. This ratio was chosen as we need a relatively large training set as we are determining patterns between a large number of SKUs; we need to reduce the probability of a SKU association happening by pure chance.

```
[145]: training_data = finalData.iloc[:round(finalData.shape[0]*0.8),:]
      testing_data = finalData.iloc[round(finalData.shape[0]*0.8)+1:,:]
```

When looking at the training dataset, it was noticed that a couple of products did not have binary values in their columns because of the group by function. Since we are only interested in seeing whether some products can be associated with each other (instead of looking at whether multiple of the same product are purchased at the same time), I decided to replace values that were more than one by one in the dataset.

```
[120]: %%capture
      training_data[training_data >= 1] = 1
```

```
/Users/ArshyaSrinivas/anaconda3/lib/python3.7/site-
packages/ipykernel_launcher.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
```

See the caveats in the documentation: http://pandas.pydata.org/pandasdocs/stable/indexing.html#indexing-view-versus-copy """Entry point for launching an IPython kernel.

Now, association rules will be applied to the training dataset.

mean

```
[121]: | frequentItemsets_train = apriori(training_data, min_support=0.00001,__
       →use colnames=True)
      train_rules = association_rules(frequentItemsets_train, metric="lift", __
[122]:
       →min threshold=1)
[123]: train_rules.describe()
[123]:
                                                                          confidence
             antecedent support
                                  consequent support
                                                             support
                  297990.000000
                                       297990.000000 297990.000000 297990.000000
      count
                        0.000768
```

0.000768

0.000424

0.875454

```
std
                       0.001388
                                            0.001388
                                                            0.000022
                                                                           0.273903
     min
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           0.012821
      25%
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           1.000000
      50%
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           1.000000
      75%
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           1.000000
                       0.033023
                                            0.033023
                                                            0.002964
                                                                           1.000000
     max
                      lift
                                  leverage
                                              conviction
             297990.000000
                             297990.000000
                                            2.979900e+05
      count
                                  0.000423
      mean
               1803.234527
                                                     inf
      std
                820.002148
                                  0.000021
                                                     NaN
     min
                  2.523504
                                  0.000256
                                            1.007841e+00
      25%
               1181.000000
                                  0.000423
                                                     inf
      50%
               2362.000000
                                  0.000423
                                                     inf
      75%
               2362.000000
                                  0.000423
                                                     inf
      max
               2362.000000
                                  0.002880
                                                     inf
     train_rules[train_rules['lift'] >= 100 ].describe()
[124]:
[124]:
             antecedent support
                                  consequent support
                                                             support
                                                                         confidence
                  293284.000000
                                       293284.000000
                                                      293284.000000
                                                                      293284.000000
      count
                       0.000680
      mean
                                            0.000680
                                                            0.000424
                                                                           0.883993
      std
                       0.000874
                                            0.000874
                                                            0.000010
                                                                           0.263156
     min
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           0.043478
      25%
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           1.000000
      50%
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           1.000000
      75%
                       0.000423
                                            0.000423
                                                            0.000423
                                                                           1.000000
                                                                           1.000000
      max
                       0.009738
                                            0.009738
                                                            0.001270
                                              conviction
                      lift
                                  leverage
             293284.000000
                             293284.000000
                                            2.932840e+05
      count
      mean
               1831.221971
                                  0.000423
                                                     inf
      std
                795.980938
                                  0.000010
                                                     NaN
                                            1.045012e+00
      min
                102.695652
                                  0.000419
      25%
               1181.000000
                                  0.000423
                                                     inf
      50%
               2362.000000
                                  0.000423
                                                     inf
      75%
               2362.000000
                                  0.000423
                                                     inf
               2362.000000
                                  0.001265
     max
                                                     inf
[168]: assoc_rules = train_rules[(train_rules['lift'] >= 100) &_
       train assoc rules = assoc rules.sort values(by=['lift', 'support', |
       [169]:
     train assoc rules
[169]:
                                                     antecedents
                                                                     consequents
      90
                                                    (sku 2118790)
                                                                    (sku_134727)
                                                                   (sku_2118790)
      91
                                                     (sku_134727)
```

```
210
                                               (sku_7282946)
                                                                (sku_153077)
                                                               (sku_7282946)
211
                                                (sku_153077)
214
                                                (sku_158434)
                                                               (sku_4856105)
215
                                               (sku_4856105)
                                                                (sku_158434)
404
                                               (sku_3486768)
                                                                (sku_304816)
405
                                                (sku_304816)
                                                               (sku_3486768)
                                                                (sku 358142)
598
                                               (sku 5464851)
599
                                                (sku_358142)
                                                               (sku_5464851)
600
                                               (sku 5988914)
                                                                (sku 358142)
601
                                                (sku 358142)
                                                               (sku_5988914)
604
                                               (sku 8542489)
                                                                (sku 358142)
605
                                                (sku_358142)
                                                               (sku_8542489)
612
                                                (sku_362486)
                                                               (sku_3743023)
613
                                               (sku_3743023)
                                                                (sku_362486)
                                               (sku_6913238)
                                                                (sku_362486)
614
615
                                                (sku_362486)
                                                               (sku_6913238)
                                                               (sku_7246549)
712
                                                (sku_433765)
713
                                               (sku_7246549)
                                                                (sku_433765)
850
                                                (sku_503907)
                                                               (sku_7620930)
851
                                               (sku_7620930)
                                                                (sku_503907)
882
                                                (sku_524475)
                                                               (sku_1963776)
883
                                               (sku 1963776)
                                                                (sku 524475)
                                                (sku_524475)
                                                               (sku_5917683)
886
887
                                               (sku 5917683)
                                                                (sku 524475)
                                                                (sku_524475)
888
                                               (sku_9417053)
889
                                                (sku_524475)
                                                               (sku 9417053)
968
                                                (sku_581043)
                                                               (sku_3283740)
969
                                               (sku_3283740)
                                                                (sku_581043)
        (sku_8983775, sku_9272339, sku_1889441, sku_35...
                                                               (sku_6246359)
205842
        (sku_8983775, sku_3517442, sku_2631162, sku_23...
207454
                                                               (sku_6246359)
        (sku_9272339, sku_3517442, sku_2631162, sku_23...
                                                               (sku_6246359)
207516
207640
         (sku_8983775, sku_9272339, sku_3517442, sku_26...
                                                               (sku_6246359)
207702
        (sku_8983775, sku_9272339, sku_2631162, sku_23...
                                                               (sku_6246359)
         (sku_8983775, sku_9272339, sku_3517442, sku_23...
207764
                                                               (sku_6246359)
211546
        (sku_2616370, sku_8683742, sku_8831186, sku_48...
                                                               (sku_6246359)
        (sku 8983775, sku 9272339, sku 3517442, sku 26...
211670
                                                               (sku 6246359)
        (sku_4156310, sku_3307427, sku_9343595, sku_54...
                                                               (sku_6246359)
212538
212600
        (sku 4156310, sku 9507892, sku 3307427, sku 54...
                                                               (sku_6246359)
         (sku_4156310, sku_9507892, sku_3307427, sku_93...
                                                               (sku 6246359)
212662
        (sku 4156310, sku 9507892, sku 3307427, sku 93...
212786
                                                               (sku 6246359)
212848
        (sku_9507892, sku_3307427, sku_9343595, sku_54...
                                                               (sku_6246359)
        (sku_5373579, sku_4617567, sku_5441167, sku_34...
213282
                                                               (sku_6246359)
        (sku_8983775, sku_5373579, sku_4617567, sku_54...
                                                               (sku_6246359)
213344
        (sku_8983775, sku_5373579, sku_4617567, sku_34...
                                                               (sku_6246359)
213468
        (sku_8983775, sku_4617567, sku_5441167, sku_34...
213530
                                                               (sku_6246359)
213592
        (sku_8983775, sku_5373579, sku_5441167, sku_34...
                                                               (sku_6246359)
```

```
215762
         (sku_4156310, sku_9507892, sku_9343595, sku_54...
                                                               (sku_6246359)
        (sku_8983775, sku_5373579, sku_4617567, sku_54...
216692
                                                               (sku_6246359)
261164
         (sku 8983775, sku 1889441, sku 3517442, sku 26...
                                                               (sku_6246359)
         (sku 9272339, sku_1889441, sku_3517442, sku_26...
261290
                                                                (sku_6246359)
         (sku_8983775, sku_9272339, sku_1889441, sku_35...
261542
                                                                (sku_6246359)
261668
         (sku_8983775, sku_9272339, sku_1889441, sku_26...
                                                                (sku_6246359)
         (sku 8983775, sku 9272339, sku 1889441, sku 35...
                                                               (sku 6246359)
261794
261920
         (sku_8983775, sku_9272339, sku_1889441, sku_35...
                                                                (sku_6246359)
         (sku 8983775, sku 9272339, sku 3517442, sku 26...
262424
                                                               (sku 6246359)
         (sku 4156310, sku 9507892, sku 3307427, sku 93...
                                                               (sku 6246359)
264314
         (sku 8983775, sku 5373579, sku 4617567, sku 54...
264566
                                                                (sku 6246359)
289066
        (sku_8983775, sku_9272339, sku_1889441, sku_35...
                                                               (sku_6246359)
        antecedent support
                              consequent support
                                                     support
                                                              confidence
90
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
91
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
210
                                         0.000423
                                                                      1.0
                   0.000423
                                                   0.000423
211
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
214
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
215
                   0.000423
                                         0.000423
                                                                      1.0
                                                   0.000423
404
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
                                                   0.000423
405
                                                                      1.0
                   0.000423
                                         0.000423
598
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
599
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
                                                   0.000423
                                                                      1.0
600
                   0.000423
                                         0.000423
601
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
604
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
605
                                                                      1.0
                   0.000423
                                         0.000423
                                                   0.000423
                                                   0.000423
612
                   0.000423
                                         0.000423
                                                                      1.0
613
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
614
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
615
                                         0.000423
                                                   0.000423
                                                                      1.0
                   0.000423
712
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
713
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
850
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
851
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
882
                   0.000423
                                         0.000423
                                                                      1.0
                                                   0.000423
883
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
886
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
                                                                      1.0
887
                   0.000423
                                         0.000423
                                                   0.000423
888
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
                   0.000423
889
                                         0.000423
                                                   0.000423
                                                                      1.0
968
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
969
                   0.000423
                                         0.000423
                                                   0.000423
                                                                      1.0
                                                                      . . .
                                                                      1.0
205842
                   0.000423
                                         0.009738
                                                   0.000423
207454
                   0.000423
                                         0.009738
                                                   0.000423
                                                                      1.0
```

207516	0.	000423	0.009738	0.000423	1.0
207640	0.	000423	0.009738	0.000423	1.0
207702	0.000423		0.009738	0.000423	1.0
207764	0.	000423	0.009738	0.000423	1.0
211546	0.	000423	0.009738	0.000423	1.0
211670	0.	000423	0.009738	0.000423	1.0
212538	0.	000423	0.009738	0.000423	1.0
212600	0.	000423	0.009738	0.000423	1.0
212662	0.	000423	0.009738	0.000423	1.0
212786	0.	000423	0.009738	0.000423	1.0
212848	0.	000423	0.009738	0.000423	1.0
213282	0.	000423	0.009738	0.000423	1.0
213344	0.	000423	0.009738	0.000423	1.0
213468	0.	000423	0.009738	0.000423	1.0
213530	0.	000423	0.009738	0.000423	1.0
213592	0.	000423	0.009738	0.000423	1.0
215762	0.	000423	0.009738	0.000423	1.0
216692	0.	000423	0.009738	0.000423	1.0
261164	0.	000423	0.009738	0.000423	1.0
261290	0.	000423	0.009738	0.000423	1.0
261542	0.	000423	0.009738	0.000423	1.0
261668	0.	000423	0.009738	0.000423	1.0
261794	0.	000423	0.009738	0.000423	1.0
261920	0.	000423	0.009738	0.000423	1.0
262424	0.	000423	0.009738	0.000423	1.0
264314	0.	000423	0.009738	0.000423	1.0
264566	0.	000423	0.009738	0.000423	1.0
289066	0.	000423	0.009738	0.000423	1.0
	lift	leverage	conviction		
90	2362.000000	0.000423	inf		
91	2362.000000	0.000423	inf		
210	2362.000000	0.000423	inf		
211	2362.000000	0.000423	inf		
214	2362.000000	0.000423	inf		
215	2362.000000	0.000423	inf		
404	2362.000000	0.000423	inf		
405	2362.000000	0.000423	inf		
598	2362.000000	0.000423	inf		
599	2362.000000	0.000423	inf		
600	2362.000000	0.000423	inf		
601	2362.000000	0.000423	inf		
604	2362.000000	0.000423	inf		
605	2362.000000	0.000423	inf		
612	2362.000000	0.000423	inf		
613	2362.000000	0.000423	inf		
044	0000 00000	0 000166			

inf

614

2362.000000 0.000423

615	2362.000000	0.000423	inf
712	2362.000000	0.000423	inf
713	2362.000000	0.000423	inf
850	2362.000000	0.000423	inf
851	2362.000000	0.000423	inf
882	2362.000000	0.000423	inf
883	2362.000000	0.000423	inf
886	2362.000000	0.000423	inf
887	2362.000000	0.000423	inf
888	2362.000000	0.000423	inf
889	2362.000000	0.000423	inf
968	2362.000000	0.000423	inf
969	2362.000000	0.000423	inf
205842	102.695652	0.000419	inf
207454	102.695652	0.000419	inf
207516	102.695652	0.000419	inf
207640	102.695652	0.000419	inf
207702	102.695652	0.000419	inf
207764	102.695652	0.000419	inf
211546	102.695652	0.000419	inf
211670	102.695652	0.000419	inf
212538	102.695652	0.000419	inf
212600	102.695652	0.000419	inf
212662	102.695652	0.000419	inf
212786	102.695652	0.000419	inf
212848	102.695652	0.000419	inf
213282	102.695652	0.000419	inf
213344	102.695652	0.000419	inf
213468	102.695652	0.000419	inf
213530	102.695652	0.000419	inf
213592	102.695652	0.000419	inf
215762	102.695652	0.000419	inf
216692	102.695652	0.000419	inf
261164	102.695652	0.000419	inf
261290	102.695652	0.000419	inf
261542	102.695652	0.000419	inf
261668	102.695652	0.000419	inf
261794	102.695652	0.000419	inf
261920	102.695652	0.000419	inf
262424	102.695652	0.000419	inf
264314	102.695652	0.000419	inf
264566	102.695652	0.000419	inf
289066	102.695652	0.000419	inf

[243115 rows x 9 columns]

The process is now replicated for the testing dataset.

/Users/ArshyaSrinivas/anaconda3/lib/python3.7/sitepackages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

[171]: test assoc rules

204

205

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
"""Entry point for launching an IPython kernel.

```
[171]:
                                                       antecedents \
                                                      (sku_129494)
      8
      9
                                                      (sku_433765)
      18
                                                     (sku_7754715)
      19
                                                      (sku_157625)
      28
                                                     (sku_8519573)
      29
                                                      (sku_297301)
      32
                                                      (sku_313920)
      33
                                                     (sku_9559575)
      66
                                                      (sku_464685)
      67
                                                     (sku_4328372)
      102
                                                      (sku_617092)
      103
                                                     (sku_3543767)
      118
                                                    (sku_9890223)
      119
                                                      (sku_808731)
      144
                                                     (sku_1124554)
      145
                                                     (sku_9007392)
      146
                                                     (sku_3779378)
      147
                                                     (sku_1349409)
      148
                                                    (sku_1368356)
      149
                                                    (sku_9918125)
      190
                                                    (sku_1978847)
      191
                                                    (sku_8237759)
```

(sku_2061199)

(sku_4128431)

```
206
                                            (sku_2061199)
207
                                            (sku_6246359)
216
                                            (sku_3497924)
217
                                            (sku_2159229)
                                            (sku_9491276)
218
219
                                            (sku_2159229)
470
                                            (sku_8278844)
475
                                            (sku 9760024)
                                            (sku 7386821)
612
                                (sku 172986, sku 6116307)
706
710
                                (sku_9621612, sku_172986)
1202
                               (sku 8278844, sku 1653173)
1269
                               (sku_9621612, sku_2049781)
1478
                               (sku_2603067, sku_5498692)
                               (sku_2603067, sku_7766405)
1484
                              (sku_8911575, sku_2603067)
1490
                               (sku_2878582, sku_6680056)
1524
1526
                              (sku_6680056, sku_3681414)
1532
                               (sku_7766405, sku_5498692)
                              (sku_8911575, sku_5498692)
1538
                              (sku 9621612, sku 6116307)
1543
1550
                              (sku_8911575, sku_7766405)
                              (sku 3508247, sku 3129701)
1566
                               (sku_6493835, sku_3931575)
1668
1674
                              (sku 6887725, sku 3931575)
                              (sku_3951543, sku_4978283)
1681
1686
                              (sku_6887725, sku_6493835)
1956
                               (sku_9407745, sku_7766605)
1975
                  (sku_9621612, sku_172986, sku_6116307)
3195
                 (sku_2603067, sku_7766405, sku_5498692)
                 (sku_8911575, sku_2603067, sku_5498692)
3209
                 (sku_8911575, sku_2603067, sku_7766405)
3223
                 (sku_8911575, sku_7766405, sku_5498692)
3251
3332
                 (sku_6887725, sku_6493835, sku_3931575)
3716
                               (sku_1983514, sku_3998011)
4300
      (sku_8911575, sku_2603067, sku_7766405, sku_54...
                                   consequents
                                                antecedent support
8
                                  (sku_433765)
                                                           0.001698
9
                                  (sku 129494)
                                                           0.001698
18
                                  (sku_157625)
                                                           0.001698
19
                                 (sku_7754715)
                                                           0.001698
28
                                  (sku_297301)
                                                           0.001698
29
                                 (sku_8519573)
                                                           0.001698
32
                                 (sku_9559575)
                                                           0.001698
33
                                  (sku_313920)
                                                           0.001698
```

66	(sku_4328372)	0.001698
67	(sku_464685)	0.001698
102	(sku_3543767)	0.001698
103	(sku_617092)	0.001698
118	(sku_808731)	0.001698
119	(sku_9890223)	0.001698
144	(sku_9007392)	0.001698
145	(sku_1124554)	0.001698
146	(sku_1349409)	0.001698
147	(sku_3779378)	0.001698
148	(sku_9918125)	0.001698
149	(sku_1368356)	0.001698
190	(sku_8237759)	0.001698
191	(sku_1978847)	0.001698
204	(sku_4128431)	0.001698
205	(sku_2061199)	0.001698
206	(sku_6246359)	0.001698
207	(sku_2061199)	0.001698
216	(sku_2159229)	0.001698
217	(sku_3497924)	0.001698
218	(sku_2159229)	0.001698
219	(sku_9491276)	0.001698
• • •	•••	
470	(sku_4706642)	0.001698
475	(sku_4706642)	0.001698
612	(sku_9936627)	0.001698
706	(sku_2878582)	0.001698
710	(sku_2878582)	0.001698
1202	(sku_4706642)	0.001698
1269	(sku_3681414)	0.001698
1478	(sku_2878582)	0.001698
1484	(sku_2878582)	0.001698
1490	(sku_2878582)	0.001698
1524	(sku_3681414)	0.001698
1526	(sku_2878582)	0.001698
1532	(sku_2878582)	0.001698
1538	(sku_2878582)	0.001698
1543	(sku_2878582)	0.001698
1550	(sku_2878582)	0.001698
1566	(sku_3681414)	0.001698
1668	(sku_3681414)	0.001698
1674	(sku_3681414)	0.001698
1681	(sku_3681414)	0.001698
1686	(sku_3681414)	0.001698
1956	(sku_9327745)	0.001698
1975	(sku_2878582)	0.001698
3195	(sku_2878582)	0.001698

3209 3223 3251 3332 3716	(sku_2416897, sku_3	(sku (sku (sku	2878582) 2878582) 2878582) 3681414)		0.001698 0.001698 0.001698 0.001698 0.001698	
4300	(0		_2878582)		0.001698	
	consequent support	support	confidence	lift	leverage	conviction
8	0.001698	0.001698	1.0	589.0	0.001695	inf
9	0.001698	0.001698	1.0	589.0	0.001695	inf
18	0.001698	0.001698	1.0	589.0	0.001695	inf
19	0.001698	0.001698	1.0	589.0	0.001695	inf
28	0.001698	0.001698	1.0	589.0 589.0	0.001695	inf
29 32	0.001698 0.001698	0.001698 0.001698	1.0 1.0	589.0	0.001695 0.001695	inf inf
33	0.001698	0.001698	1.0	589.0	0.001695	inf
66	0.001698	0.001698	1.0	589.0	0.001695	inf
67	0.001698	0.001698	1.0	589.0	0.001695	inf
102	0.001698	0.001698	1.0	589.0	0.001695	inf
103	0.001698	0.001698	1.0	589.0	0.001695	inf
118	0.001698	0.001698	1.0	589.0	0.001695	inf
119	0.001698	0.001698	1.0	589.0	0.001695	inf
144	0.001698	0.001698	1.0	589.0	0.001695	inf
145	0.001698	0.001698	1.0	589.0	0.001695	inf
146	0.001698	0.001698	1.0	589.0	0.001695	inf
147	0.001698	0.001698	1.0	589.0	0.001695	inf
148	0.001698	0.001698	1.0	589.0	0.001695	inf
149	0.001698	0.001698	1.0	589.0	0.001695	inf
190	0.001698	0.001698	1.0	589.0	0.001695	inf
191	0.001698	0.001698	1.0	589.0	0.001695	inf
204	0.001698	0.001698	1.0	589.0	0.001695	inf
205	0.001698	0.001698	1.0	589.0	0.001695	inf
206	0.001698	0.001698	1.0	589.0	0.001695	inf
207	0.001698	0.001698	1.0	589.0	0.001695	inf
216	0.001698	0.001698	1.0	589.0	0.001695	inf
217	0.001698	0.001698 0.001698	1.0	589.0	0.001695	inf
218 219	0.001698 0.001698	0.001698	1.0 1.0	589.0 589.0	0.001695 0.001695	inf inf
		0.001098			0.001095	
470	0.008489	0.001698	1.0	 117.8	0.001683	inf
475	0.008489	0.001698	1.0	117.8	0.001683	inf
612	0.008489	0.001698	1.0	117.8	0.001683	inf
706	0.008489	0.001698	1.0	117.8	0.001683	inf
710	0.008489	0.001698	1.0	117.8	0.001683	inf
1202	0.008489	0.001698	1.0	117.8	0.001683	inf
1269	0.008489	0.001698	1.0	117.8	0.001683	inf
1478	0.008489	0.001698	1.0	117.8	0.001683	inf

```
1484
                0.008489
                           0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
                                             1.0 117.8
1490
                0.008489
                           0.001698
                                                         0.001683
                                                                           inf
1524
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
1526
                0.008489
                                             1.0 117.8
                                                         0.001683
                           0.001698
                                                                           inf
                0.008489
                                             1.0 117.8
1532
                          0.001698
                                                         0.001683
                                                                           inf
1538
                0.008489
                                             1.0 117.8
                                                         0.001683
                                                                           inf
                          0.001698
                                             1.0 117.8
1543
                0.008489
                          0.001698
                                                         0.001683
                                                                           inf
1550
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
                          0.001698
1566
                0.008489
                                             1.0 117.8
                                                         0.001683
                                                                           inf
                                             1.0 117.8
1668
                0.008489
                          0.001698
                                                         0.001683
                                                                           inf
1674
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
1681
                0.008489
                                             1.0 117.8
                                                         0.001683
                                                                           inf
                          0.001698
1686
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
                0.008489
                                             1.0 117.8
1956
                          0.001698
                                                         0.001683
                                                                           inf
1975
                0.008489
                                             1.0 117.8
                          0.001698
                                                         0.001683
                                                                           inf
3195
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
3209
                0.008489
                                             1.0 117.8
                          0.001698
                                                         0.001683
                                                                           inf
3223
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
3251
                0.008489
                          0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
3332
                                             1.0 117.8
                0.008489
                           0.001698
                                                         0.001683
                                                                           inf
3716
                0.008489
                           0.001698
                                             1.0 117.8
                                                         0.001683
                                                                           inf
4300
                           0.001698
                0.008489
                                             1.0 117.8
                                                         0.001683
                                                                           inf
```

[1070 rows x 9 columns]

To compare how well the training set works against the test set, I determined whether similar SKU associations were created in the test set. Unfortunately, only 2 similar SKU associations were found. One of them is already included in the top 100 SKU associations, so the only additional one that needs to be added is the one with the index larger than 100.

```
[173]: [51, 784]
```

```
[178]: val_1 = combined_results_train.index(combined_results_test[784])
final_SKU = train_assoc_rules.iloc[[val_1],:]
```

A final SKU dataframe was created by adding the top 98 SKU associations from the training dataset and adding the remaining two SKU associations from the validation set. This dataset is ordered by lift, support and confidence.

```
[179]: remaining_98 = train_assoc_rules.iloc[:99,:]
      final_SKU = pd.concat([final_SKU, remaining_98])
[180]: final_SKU.sort_values(['lift', 'support', 'confidence'], ascending = False)
[180]:
               antecedents
                               consequents
                                             antecedent support
                                                                   consequent support
             (sku 2118790)
                              (sku 134727)
                                                        0.000423
                                                                             0.000423
      90
      91
              (sku_134727)
                             (sku_2118790)
                                                        0.000423
                                                                             0.000423
      210
             (sku 7282946)
                              (sku 153077)
                                                                             0.000423
                                                        0.000423
      211
              (sku_153077)
                             (sku_7282946)
                                                        0.000423
                                                                             0.000423
      214
              (sku_158434)
                             (sku_4856105)
                                                        0.000423
                                                                             0.000423
             (sku_4856105)
      215
                              (sku_158434)
                                                        0.000423
                                                                             0.000423
      404
             (sku_3486768)
                              (sku_304816)
                                                        0.000423
                                                                             0.000423
      405
              (sku_304816)
                             (sku_3486768)
                                                        0.000423
                                                                             0.000423
      598
             (sku_5464851)
                              (sku_358142)
                                                        0.000423
                                                                             0.000423
      599
              (sku_358142)
                             (sku_5464851)
                                                        0.000423
                                                                             0.000423
      600
             (sku_5988914)
                              (sku_358142)
                                                        0.000423
                                                                             0.000423
      601
              (sku_358142)
                             (sku_5988914)
                                                        0.000423
                                                                             0.000423
      604
             (sku_8542489)
                              (sku_358142)
                                                                             0.000423
                                                        0.000423
      605
              (sku 358142)
                             (sku 8542489)
                                                        0.000423
                                                                             0.000423
      612
              (sku_362486)
                             (sku_3743023)
                                                        0.000423
                                                                             0.000423
      613
             (sku 3743023)
                              (sku 362486)
                                                        0.000423
                                                                             0.000423
      614
             (sku_6913238)
                              (sku_362486)
                                                        0.000423
                                                                             0.000423
              (sku_362486)
                             (sku_6913238)
      615
                                                        0.000423
                                                                             0.000423
              (sku_433765)
                             (sku_7246549)
      712
                                                        0.000423
                                                                             0.000423
      713
             (sku_7246549)
                              (sku_433765)
                                                        0.000423
                                                                             0.000423
      850
                             (sku_7620930)
              (sku_503907)
                                                        0.000423
                                                                             0.000423
      851
             (sku_7620930)
                              (sku_503907)
                                                        0.000423
                                                                             0.000423
      882
              (sku_524475)
                             (sku_1963776)
                                                        0.000423
                                                                             0.000423
      883
             (sku_1963776)
                              (sku_524475)
                                                        0.000423
                                                                             0.000423
      886
              (sku_524475)
                             (sku_5917683)
                                                        0.000423
                                                                             0.000423
             (sku_5917683)
                              (sku_524475)
      887
                                                        0.000423
                                                                             0.000423
      888
                              (sku_524475)
             (sku_9417053)
                                                        0.000423
                                                                             0.000423
      889
              (sku_524475)
                             (sku_9417053)
                                                        0.000423
                                                                             0.000423
      968
              (sku_581043)
                             (sku_3283740)
                                                        0.000423
                                                                             0.000423
                                                                             0.000423
      969
             (sku_3283740)
                              (sku_581043)
                                                        0.000423
      2578
             (sku_9049654)
                             (sku_1617258)
                                                        0.000423
                                                                             0.000423
      2579
             (sku_1617258)
                             (sku_9049654)
                                                        0.000423
                                                                             0.000423
             (sku_9907725)
      2676
                             (sku_1652352)
                                                        0.000423
                                                                             0.000423
```

2677	(sku_1652352)) (sku_9	907725)		0.000423	0.000423
2870	(sku_1726593)) (sku 8	928206)		0.000423	0.000423
2871	(sku_8928206)		726593)		0.000423	0.000423
2878	(sku_1746864)		189903)		0.000423	0.000423
2879	(sku_6189903)	_	746864)		0.000423	0.000423
2900	(sku_1764166)) (sku_2	731751)		0.000423	0.000423
2901	(sku_2731751)) (sku_1	764166)		0.000423	0.000423
2902	(sku_3694213)) (sku 1	764166)		0.000423	0.000423
2903	(sku_1764166)	_	694213)		0.000423	0.000423
2950	(sku_1788856)	_	388194)		0.000423	0.000423
	-	_				
2951	(sku_9388194)	_	788856)		0.000423	0.000423
2956	(sku_1796791)	_	467918)		0.000423	0.000423
2957	(sku_4467918)) (sku_1	796791)		0.000423	0.000423
2988	(sku_2581489)) (sku_1	854133)		0.000423	0.000423
2989	(sku 1854133)) (sku 2	581489)		0.000423	0.000423
3120	(sku_1916600)) (sku 9	826609)		0.000423	0.000423
3121	(sku_9826609)	_	916600)		0.000423	0.000423
	-	_				
3184	(sku_4080106)	_	941912)		0.000423	0.000423
3185	(sku_1941912)	_	080106)		0.000423	0.000423
3234	(sku_1963776)) (sku_5	917683)		0.000423	0.000423
3235	(sku_5917683)) (sku_1	963776)		0.000423	0.000423
3236	(sku_9417053)) (sku_1	963776)		0.000423	0.000423
3237	(sku_1963776)	_	417053)		0.000423	0.000423
3362	(sku_2057800)	_	000063)		0.000423	0.000423
3363	(sku_8000063)	_	057800)		0.000423	0.000423
	-	_				
3368	(sku_2061791)	_	053923)		0.000423	0.000423
7595	(sku_9706694)) (sku_6	137996)		0.000423	0.001693
	support con	nfidence	lift	leverage	conviction	
90	0.000423	1.0	2362.0	0.000423	inf	
91	0.000423	1.0	2362.0	0.000423	inf	
210	0.000423	1.0	2362.0	0.000423	inf	
211	0.000423	1.0	2362.0	0.000423	inf	
214	0.000423		2362.0	0.000423		
		1.0			inf	
215	0.000423	1.0	2362.0	0.000423	inf	
404	0.000423	1.0	2362.0	0.000423	inf	
405	0.000423	1.0	2362.0	0.000423	inf	
598	0.000423	1.0	2362.0	0.000423	inf	
599	0.000423	1.0	2362.0	0.000423	inf	
600	0.000423	1.0	2362.0	0.000423	inf	
601	0.000423	1.0	2362.0	0.000423	inf	
604	0.000423	1.0	2362.0	0.000423	inf	
605	0.000423	1.0	2362.0	0.000423	inf	
612	0.000423	1.0	2362.0	0.000423	inf	
613	0.000423	1.0	2362.0	0.000423	inf	
614	0.000423	1.0	2362.0	0.000423	inf	
615	0.000423	1.0	2362.0	0.000423	inf	

712	0.000423	1.0	2362.0	0.000423	inf
713	0.000423	1.0	2362.0	0.000423	inf
850	0.000423	1.0	2362.0	0.000423	inf
851	0.000423	1.0	2362.0	0.000423	inf
882	0.000423	1.0	2362.0	0.000423	inf
883	0.000423	1.0	2362.0	0.000423	inf
886	0.000423	1.0	2362.0	0.000423	inf
887	0.000423	1.0	2362.0	0.000423	inf
888	0.000423	1.0	2362.0	0.000423	inf
889	0.000423	1.0	2362.0	0.000423	inf
968	0.000423	1.0	2362.0	0.000423	inf
969	0.000423	1.0	2362.0	0.000423	inf
2578	0.000423	1.0	2362.0	0.000423	inf
2579	0.000423	1.0	2362.0	0.000423	inf
2676	0.000423	1.0	2362.0	0.000423	inf
2677	0.000423	1.0	2362.0	0.000423	inf
2870	0.000423	1.0	2362.0	0.000423	inf
2871	0.000423	1.0	2362.0	0.000423	inf
2878	0.000423	1.0	2362.0	0.000423	inf
2879	0.000423	1.0	2362.0	0.000423	inf
2900	0.000423	1.0	2362.0	0.000423	inf
2901	0.000423	1.0	2362.0	0.000423	inf
2902	0.000423	1.0	2362.0	0.000423	inf
2903	0.000423	1.0	2362.0	0.000423	inf
2950	0.000423	1.0	2362.0	0.000423	inf
2951	0.000423	1.0	2362.0	0.000423	inf
2956	0.000423	1.0	2362.0	0.000423	inf
2957	0.000423	1.0	2362.0	0.000423	inf
2988	0.000423	1.0	2362.0	0.000423	inf
2989	0.000423	1.0	2362.0	0.000423	inf
3120	0.000423	1.0	2362.0	0.000423	inf
3121	0.000423	1.0	2362.0	0.000423	inf
3184	0.000423	1.0	2362.0	0.000423	inf
3185	0.000423	1.0	2362.0	0.000423	inf
3234	0.000423	1.0	2362.0	0.000423	inf
3235	0.000423	1.0	2362.0	0.000423	inf
3236	0.000423	1.0	2362.0	0.000423	inf
3237	0.000423	1.0	2362.0	0.000423	inf
3362	0.000423	1.0	2362.0	0.000423	inf
3363	0.000423	1.0	2362.0	0.000423	inf
3368	0.000423	1.0	2362.0	0.000423	inf
7595	0.000423	1.0	590.5	0.000423	inf

[100 rows x 9 columns]

0.5 Conclusion

The above dataframe represents the 100 SKU associations present in the 1000 SKUs selected earlier. Hence, by moving products with these SKUs closer to each other, there could be a greater number of purchases. Alternatively, if these products are further away from each other, customers would be forced to walk across the store and may be tempted to buy additional products. Essentially, Dillards can use this information to effectively move around their products to affect customer revenue.