Sinikäyrä $y = A \sin(\omega t + \phi)$

kertoo pisteen P korkeuden hetkellä t, kun se pyörii A-säteistä ympyrää vastapäivään nopeudella ω **rad**iaania sekunnissa ja kiertokulma on ϕ hetkellä t=0.

Kosinikäyrä $x = A\cos(\omega t + \phi)$ kertoo P:n vaakasuoran paikan. A = amplitudi

 $\omega = 2\pi f = \text{kulmataajuus (rad/sek)}$

f = taajuus (kierrosta/sek)

 $T=2\pi/\omega=1/f=$ jakso = yhteen kierrokseen kuluva aika

 $\phi = \text{vaihekulma (rad, yleensä välillä } -\pi \dots \pi)$

$$y_1 = 2\sin(100\pi t)$$

 $y_2 = 2\sin(100\pi t + \pi/6)$

$$y_1 = 10\sin(80\pi t)$$

 $y_2 = 8\sin(80\pi t + 2\pi/3)$

RL-piiri \cdot

Jos jännite $u = U \sin(\omega t)$, niin virta

 $i = I\sin(\omega t - \phi)$, missä

$$I = \frac{U}{\sqrt{R^2 + (\omega L)^2}}$$

$$\phi = \tan^{-1}(\omega L/R)$$

Mekaaninen värähtelijä: massa m, jousivakio k, alkupaikka x_0 ja -nopeus v_0

Paikka $x = A\sin(\omega t + \phi)$, missä

$$\omega = \sqrt{k/m}$$

$$A = \sqrt{x_0^2 + (v_0/\omega)^2}$$

$$\phi = \operatorname{atan2}(x_0, v_0/\omega).$$

Samantaajuisten sinikäyrien

$$y_1 = A_1 \sin(\omega t)$$
 ja $y_2 = A_2 \sin(\omega t + \phi)$

vaihe-ero $\phi = \omega \cdot \Delta t$, missä Δt on sinikäyrien huippu- tai nollakohtien aika-ero.

Samantaajuisten sinikäyrien summa on myös sinikäyrä, eli jos

$$y_1 = A_1 \sin(\omega t)$$
 ja $y_2 = A_2 \sin(\omega t + \phi)$, niin

$$y_1 + y_2 = A\sin(\omega t + \theta)$$

missä amplitudi

$$A = \sqrt{(A_1 + A_2 \cos(\phi))^2 + (A_2 \sin(\phi))^2}$$

ja vaihekulma

$$\theta = \operatorname{atan2}(A_2 \sin(\phi), A_1 + A_2 \cos(\phi))$$

 $\langle \omega t \rangle$

 $y_1 = 10\sin(\omega t), \ y_2 = 4\sin(\omega t + \pi/3)$

$$y_1 + y_2 = 12.5\sin(\omega t + 0.28)$$

 $y_1 = 10\sin(\omega t), \ y_2 = 4\sin(\omega t + \pi/2)$

 $y_1 + y_2 = 10.8\sin(\omega t + 0.38)$

 $10\sin(\omega t) + 4\sin(\omega t + 5\pi/6)$

 $=6.8\sin(\omega t+0.30)$

$10\sin(\omega t) + 4\sin(\omega t) = 14\sin(\omega t)$

$10\sin(\omega t) + 4\sin(\omega t + \pi) = 6\sin(\omega t)$

RLC-piiri:

jos virta $i = I \sin(\omega t)$, niin jännitteet

$$u_R = RI \sin(\omega t)$$

$$u_L = \omega L I \sin(\omega t + \pi/2)$$

$$u_C = \frac{I}{\omega C} \sin(\omega t - \pi/2)$$

$$u = u_R + u_L + u_C = A\sin(\omega t + \theta)$$

$$A = \sqrt{(RI)^2 + \left(\omega LI - \frac{I}{\omega C}\right)^2} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} I$$

$$\theta = \operatorname{atan2}\left(\omega LI - \frac{I}{\omega C}, RI\right) = \operatorname{atan2}\left(\omega L - \frac{1}{\omega C}, R\right)$$

R = 4, L = 0.005, C = 0.001, ω = 100 π , I = 5, A = 21.5636, θ = -21.9532°

