WHAT IS CLAIMED IS:

1	1.	A device for analyzing microparticles, comprising:
2		a chamber comprising an inlet and an outlet for respectively introducing and
3	•	dispensing a flowing fluid comprising microparticles;
4		a light source adapted to provide incident light through the chamber;
5		a photometer configured to measure the intensity of light transmitted through
6		individual microparticles; and
7		an imaging system configured to acquire images of the flowing fluid within the
8		chamber.
1	2.	The device of claim 1, further comprising additional light sources configured to
2	provi	de incident light through the chamber at different wavelengths than the light source.
1	3.	The device of claim 1, wherein the chamber is configured to induce a laminar
2	flow	of the fluid
1	4.	The device of claim 1, wherein the chamber comprises a channel having a width
2	betwe	een approximately 10 microns and approximately 1200 microns.
1	5.	The device of claim 1, further comprising a microprocessor controller with a
2	stora	ge medium comprising program instructions for analyzing the measured light
3	inten	sities and acquiring images of the flowing fluid.

1	6.	The device of claim 5, wherein the storage medium further comprises program			
2	instr	uctions for controlling fluid flow through the chamber.			
1	7.	The device of claim 1, wherein the imaging system comprises a magnification			
2	lens configured to enlarge the appearance of individual microparticles within the flowing				
3	fluid to be equal to or slightly larger than a pixel size of the images produced by the				
4	imaging system.				
1	8.	The device of claim 1, further comprising a moveable mirror system configured to			
2	reflect the light transmitted through the chamber to the imaging system.				
1	9.	The device of claim 1, wherein the device is configured to operate from battery			
2	powe	er.			
1	10.	A microparticle flow sensor system, comprising:			
2		a chamber comprising opposing optical view ports;			
3		one or more light sources configured to provide incident light through the optical			
4		view ports;			
5		an imaging system configured to acquire images of a fluid flowing within the			
6		chamber; and			
7		a storage medium comprising program instructions executable using a processor			
8		for:			

identifying and characterizing microparticles within the fluid; and

determining a quantity of the microparticles.

- 1 11. The microparticle flow sensor system of claim 10, further comprising bandpass
- 2 filters configured to simultaneously collect light intensity data from multiple wavelengths
- 3 of the incident light.
- 1 12. The microparticle flow sensor system of claim 10, wherein the program
- 2 instructions for identifying the microparticles within the fluid comprise program
- 3 instructions for distinguishing different types of microcapsules contained within the fluid.
- 1 13. The microparticle flow sensor system of claim 12, wherein the program
- 2 instructions for identifying the microparticles within the fluid comprise program
- 3 instructions for distinguishing the microcapsules from debris microparticles.
- 1 14. The microparticle flow sensor system of claim 10, wherein the program
- 2 instructions for identifying the microparticles within the fluid comprise program
- 3 instructions for determining a shape and size of the microparticles.
- 1 15. The microparticle flow sensor system of claim 10, wherein the program
- 2 instructions for identifying the microparticles within the fluid comprise program
- 3 instructions for tracking the trajectory of particles within a fluid.
- 1 16. The microparticle flow sensor system of claim 10, wherein the program
- 2 instructions for identifying the microparticles within the fluid comprise program
- 3 instructions for comparing measured intensities of light transmitted through the
- 4 microparticles at different locations within the chamber.
- 1 17. The microparticle flow sensor system of claim 10, wherein the program
- 2 instructions for identifying the microparticles within the fluid comprise program

- 3 instructions for matching the measured light intensities with spectral characteristics of
- 4 known microparticles.
- 1 18. A method for identifying and tracking microparticles in motion, comprising:
- 2 flowing a fluid comprising microparticles in laminar motion through a chamber;
- transmitting light through the fluid within the chamber;
- 4 measuring the intensities of the light transmitted through the fluid;
- 5 imaging the fluid a plurality of times as the microparticles flow through the
- 6 chamber; and
- 7 comparing at least some of the intensities of light between different images of the
- 8 fluid to detect and characterize the microparticles.
- 1 19. The method of claim 18, wherein the step of transmitting light comprises
- 2 transmitting a spectrum of light through the fluid.
- 1 20. The method of claim 18, wherein the step of flowing the fluid comprises flowing
- 2 the fluid at a rate between approximately 0.10 milliliters per minute and approximately
- 3 1.0 milliliters per minute.
- 1 21. The method of claim 18, wherein the step of comparing the intensities of light is
- 2 used to identify and count the microparticles within the fluid.
- 1 22. The method of claim 18, further comprising comparing the different images of the
- 2 fluid to:

3	calculate a time of flight of individual microparticles; and	
4	determine trajectories for the individual microparticles.	
1	23. The method of claim 18, further comprising calculating sedimentation rates for	
2	the particles within the fluid.	
1	24. The method of claim 18, further comprising calculating buoyancy rates for the	
2	particles within the fluid.	
1	25. A device for analyzing microparticles, comprising:	
2	a laminar-flow chamber comprising an inlet and an outlet for respectively	
3	introducing and dispensing a flowing fluid comprising microparticles;	
4	one or more light sources adapted to provide incident light through the chamber;	
5	a photometer configured to measure the intensity of light transmitted through the	
6	chamber;	
7	an imaging system configured to acquire images of the flowing fluid within the	
8	chamber; and	
9	a storage medium comprising program instructions executable using a processor	
10	for:	
11	analyzing the measured light intensities;	

1

2

28.

out the laminar-flow chamber.

Express Mailing Certificate No. EU657647938US

The device of claim 25, further comprising a fluid subsystem configured to clean