Pruba HDI

Max Benjamín Austria Salazar

• El objetivo es crear un modelo de regresión adecuado para la Frecuencia, y otro para la Severidad, utilizando algunas de las variables compartidas como variables explicativas.

```
Frecuencia = rac{NumSiniestros}{UnidadesExpuestas} Severidad = rac{MontoOcurrido}{NumSiniestros}
```

Precio = Frecuencia * Severidad

- Como entregable hay que proporcionar el código para generar dichos modelos, la validación con las métricas respectivas,
- y por último, la tabla con la predicción de la Frecuencia y Severidad para cada uno de los registros.
- Hay que añadir la columna de Precio, multiplicando las predicciones de Frecuencia y Severidad respectivamente

Paquetes

```
In [1]:
         #Para las gráficas
         library(dplyr)
         library(ggplot2)
         library(ggfortify)
         library(ranger)
         library(ggpubr)
         library(lattice)
         #Para el análisis
         library(glmmTMB)#0tra opción es Rfast2
         #library(statmod)
        Attaching package: 'dplyr'
        The following objects are masked from 'package:stats':
            filter, lag
        The following objects are masked from 'package:base':
            intersect, setdiff, setequal, union
```

Cargando los datos

```
In [2]: #Carga de los datos
    datos <- readr::read_csv(file = "datos.csv", locale = readr::locale(encoding = "ISO-8859-
#Formateando
    datos$Anio = as.factor(datos$Anio)
    datos$ID = as.character(datos$ID)
    datos$NombreSubdireccion = as.factor(datos$NombreSubdireccion)
    datos$DescTipoVehiculo = as.factor(datos$DescTipoVehiculo)
    datos$TipoPersona = as.factor(datos$TipoPersona)
    datos$Edad = as.integer(datos$Edad)</pre>
```

```
datos$Sexo = as.factor(datos$Sexo)
datos$DescMarcaVehiculo = as.factor(datos$DescMarcaVehiculo)
datos$DescCarroceriaVehiculo = as.factor(datos$DescCarroceriaVehiculo)
datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
datos$DescUsoVehiculo = as.factor(datos$DescUsoVehiculo)
#datos$UnidadesExpuestas = abs(datos$UnidadesExpuestas)

#Ejemplo
head(datos)

Rows: 50000 Columns: 16

— Column specification
Delimiter: ","
chr (7): NombreOficina, NombreSubdireccion, DescTipoVehiculo, TipoPersona, D...
dbl (9): Anio, ID, UnidadesExpuestas, Edad, Sexo, ModeloVehiculo, PrimaNetaP...
```

Anio	ID	NombreOficina	UnidadesExpuestas	NombreSubdireccion	DescTipoVehiculo	TipoPersona
<fct></fct>	<chr></chr>	<chr></chr>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>
2021	40480000012367	048 Croz Promotores	0.0000000	Promotorias Guadalajara	Vehiculos Residentes	Fisica
2020	42730000831079	273 Morris	0.0000000	Noroeste	Pick Up	Fisica
2021	40100001237795	010 Queretaro	0.0000000	Centro	Vehiculos Residentes	Fisica
2019	40740000829763	074 Telemarketing Corporativo	0.1589041	Telemarketing	Pick Up	Fisica
2019	40980000054921	098 Abs Actuarios Consultores Sociedad Civil	0.3287671	Promotorias México Sur	Vehiculos Residentes	Fisica
2021	40570001238666	057 Mochis	0.9698630	Noroeste	Vehiculos Residentes	Fisica

Estadística Descriptiva

Estadística descriptiva entre las variables: MontoOcurrido, NumSiniestros, UnidadesExpuestas.

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

```
In [3]:
    col = which(colnames(datos) %in% c("MontoOcurrido", "NumSiniestros", "UnidadesExpuestas")
    cor(datos[,col])
```

A matrix: 3×3 of type dbl

	UnidadesExpuestas	MontoOcurrido	NumSiniestros
UnidadesExpuestas	1.00000000	0.07868049	0.2084499
MontoOcurrido	0.07868049	1.00000000	0.3500598
NumSiniestros	0.20844989	0.35005984	1.0000000

```
In [4]:
summary(datos[,col])
```

```
UnidadesExpuestas
                   MontoOcurrido
                                       NumSiniestros
       :-0.99178
Min.
                   Min.
                                       Min.
                                               :0.00000
                                 0.0
1st Qu.: 0.00000
                   1st Qu.:
                                 0.0
                                       1st Qu.:0.00000
                   Median :
Median : 0.09041
                                 0.0
                                       Median :0.00000
     : 0.25217
                               828.6
                                              :0.03916
                   Mean
                                       Mean
Mean
                   3rd Qu.:
                                       3rd Qu.:0.00000
3rd Qu.: 0.48219
                                 0.0
       : 1.00274
                           :904414.3
                                              :5.00000
                   Max.
Max.
                                       Max.
```

```
In [5]: options(repr.plot.width = 7, repr.plot.height = 7)
  plot(datos[,col])
```



```
In [6]:
    hist(datos$UnidadesExpuestas, main ="UnidadesExpuestas", breaks = 25)
```

UnidadesExpuestas

Observación.

Hay valores negativos en variables que (en principio) deberían ser positivas. Por ahora voy a trabajar con el valor absoluto, pues considero que el signo debe ser por algún tema contable.

```
In [7]:
    col = which(colnames(datos) %in% c("UnidadesExpuestas","PrimaNetaPropiaSinCoaseguro"))
    datos[which(datos$UnidadesExpuestas<0),col]</pre>
```

A tibble: 207×2

—————————————————————————————————————	PrimaNetaPropiaSinCoaseglino
<dbl></dbl>	<dbl></dbl>
-0.076712329	-711.0069
-0.052054795	-1733.8314
-0.249315069	0.0000
-0.084931507	-1872.4415
-0.471232878	-874.9088
-0.016438356	-109.1596
-0.504109590	-698.6279
-0.394520549	-821.0379
-0.419178083	-3269.4355
-0.161643836	0.0000
-0.495890412	0.0000
-0.169863014	-502.9333
-0.161643836	0.0000
-0.693150686	-1074.9416
-0.753424659	-2457.0736
-0.084931507	0.0000
-0.252054795	-1894.0723
-0.257534247	-4008.2273
-0.482191782	-1004.2275
-0.019178082	-336.1824
-0.739726029	-4461.2622
-0.391780823	-805.2055
-0.005479452	-2715.7158
-0.167123288	-1216.5265
-0.410958905	-1813.0169
-0.082191781	0.0000
-0.915068495	-2758.6844
-0.167123288	-462.9903
-0.504109590	-1274.4028
-0.249315069	0.0000
÷	:
-0.24657534	0.0000
-0.67123288	-2818.3636
-0.10684932	-610.7502
-0.06849315	-181.1018
-0.08493151	0.0000
-0.49589041	0.0000
-0.66849315	-1686.1638
-0.16164384	0.0000
-0.50410959	-2695.5949
-0.30410939	-2095.5949
-0.48219178	0.0000
-0.05205480	0.0000

UnidadesExpuestas PrimaNetaPropiaSinCoaseguro

<dbl></dbl>	<dbl></dbl>
-0.10958904	-3703.3999
-0.32876712	0.0000
-0.41643836	-460.8016
-0.88767123	-4033.5549
-0.08493151	-2638.8796
-0.91506849	-4825.5302
-0.40273973	-126.5582
-0.16164384	0.0000
-0.16164384	0.0000
-0.53424658	-1631.6256
-0.25205479	-13333.9975
-0.16164384	0.0000
-0.15342466	-1069.8869
-0.74794521	-2412.5051
-0.64109589	-2071.0505
-0.09315068	-165.6685
-0.99178082	-1825.3856
-0.08493151	-1649.8458
-0.16164384	-411.0078

Limpiando los datos

```
In [8]:
    datos$signo = sign(datos$UnidadesExpuestas)
    datos$UnidadesExpuestas = abs(datos$UnidadesExpuestas)
```

Las siguientes expresiones deberían ser ciertas:

- $UnidadesExpuestas = 0 \implies NumSiniestros = 0$.
- $NumSiniestros = 0 \implies MontoOcurrido = 0$.

Por lo que, de no cumplirse, se debe corregir.

```
In [9]:
    col = which(colnames(datos) %in% c("MontoOcurrido", "NumSiniestros", "UnidadesExpuestas")
    ind = which((datos$UnidadesExpuestas == 0) & (datos$NumSiniestros!=0))
    datos[ind,col]
```

UnidadesExpuestas MontoOcurrido NumSiniestros

<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	0.0000	0
1	0.0000	0
1	0.0000	0
2	5043.9358	0
1	20191.1836	0
1	44900.4715	0
1	211662.2741	0
1	1498.5651	0

A tibble: 34×3

UnidadesExpuestas	MontoOcurrido	NumSiniestros
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	714.2900	1
0	951.1667	1
0	667.1579	1
0	34698.7704	1
0	11580.8333	1
0	1541.8831	1
0	32198.2640	1
0	4343.9764	1
0	5440.3510	1
0	13319.3599	1
0	36357.8377	1
0	2962.0682	1
0	2921.6560	1
0	688.0954	1
0	0.0000	1
0	5383.2000	1
0	88954.8460	1
0	0.0000	1
0	120270.2400	1
0	0.0000	1
0	10712.6140	1
0	1142.3504	1
0	13596.7165	1
0	1508.0367	2
0	0.0000	1
0	8658.9826	1

Como son pocas observaciones que no cumplen con la regla ($UnidadesExpuestas=0 \implies NumSiniestros=0$), las voy a quitar.

```
In [10]: datos = datos[-ind,]
```

La segunda regla ($NumSiniestros=0 \implies MontoOcurrido=0$), también se rompe en pocas ocasiones, por lo que también se borran las observaciones.

```
ind = which((datos$MontoOcurrido != 0) & (datos$NumSiniestros==0))
print(pasteO("Número de observaciones irregulares: ",dim(datos[ind,col])[1]))
datos[ind,col]
```

[1] "Número de observaciones irregulares: 253" A tibble: 253 × 3

UnidadesExpuestas MontoOcurrido NumSiniestros

<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0	4599.882	0.08493151
0	9706.784	0.49589041
0	1528.879	0.66849315

<dbl></dbl>	<dbl></dbl>
3218.671	0
20839.481	0
1005.120	0
2781.929	0
3908.783	0
89913.716	0
13990.996	0
139479.786	0
6286.348	0
7892.063	0
3424.601	0
0.004	0
15856.470	0
6242.400	0
61674.730	0
5451.937	0
3611.099	0
27027.791	0
9720.399	0
4758.256	0
24117.381	0
3319.640	0
3243.378	0
5349.000	0
13834.320	0
103239.257	0
8421.697	0
:	:
5.001397e+03	0
1.010000e-04	0
4.451036e+04	0
4.190900e+03	0
1.366925e+03	0
1.449141e+03	0
2.500000e+03	0
1.607670e+03	0
1.040000e-04	0
1.275497e+04	0
1.214044e+03	0
1.981899e+03	0
3.358380e+04	0
3.358380e+04 2.220314e+04	0
	20839.481 1005.120 2781.929 3908.783 89913.716 13990.996 139479.786 6286.348 7892.063 3424.601 0.004 15856.470 6242.400 61674.730 5451.937 3611.099 27027.791 9720.399 4758.256 24117.381 3319.640 3243.378 5349.000 13834.320 103239.257 8421.697 ⋮ 5.001397e+03 1.010000e-04 4.451036e+04 4.190900e+03 1.366925e+03 1.010000e-04 4.451036e+04 4.190900e+03 1.366925e+03 1.040000e-04 1.275497e+04 1.275497e+04

UnidadesExpuestas	MontoOcurrido	NumSiniestros
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.74794521	4.915093e+04	0
0.00000000	8.916934e+02	0
0.00000000	1.010000e-04	0
0.00000000	3.904770e+03	0
0.58630137	2.774659e+03	0
0.16164384	5.811060e+03	0
0.08493151	2.745128e+04	0
0.00000000	2.684871e+03	0
0.00000000	2.167627e+04	0
0.58082192	3.710934e+05	0
0.91780822	9.567518e+04	0
0.00000000	7.990272e+04	0
0.00000000	3.819400e+03	0
0.00000000	1.040000e-04	0
0.33150685	1.032098e+05	0

```
In [12]: datos = datos[-ind,]
In [13]: dim(datos)
  length(apply(datos[,col],1,function(x){if(x[3] == 0){0}else{x[3]/x[1]}}))
  49713 · 17
  49713
```

Cálculo de las variables: Frecuencia y Severidad.

```
In [14]:
#Cálculo de la frecuencia observada
datos$FrecObs = apply(datos[,col],1,function(x){if(x[3] == 0){0}else{x[3]/x[1]}})
ind = which(datos$FrecObs>0)
hist(datos$FrecObs[ind], main="Frecuencia Observada", breaks = 50)
```

Frecuencia Observada

Sólo 1747 observaciones tienen una frecuencia mayor a cero.

```
In [15]: length(ind)

1747

In [16]: #Cálculo de la severidad observada
    datos$Sev0bs = apply(datos[,col],1,function(x){if(x[2] == 0){0}else{x[2]/x[3]}})
    ind = which(datos$Sev0bs>0)
    hist(datos$Sev0bs[ind], main="Severidad Observada", breaks = 50)
```


Sólo 1501 observaciones tienen una severidad mayor a cero.

```
In [17]:
length(ind)
```

```
In [18]:
datos$Anio = as.factor(datos$Anio)
```

Estadística descriptiva del resto de variables.

```
In [19]:
                                                           #Estadística para la Frecuencia Observada
                                                           ind = which(datos$Frec0bs>0)
                                                            img1 = ggplot(datos[ind,], aes(x = DescTipoVehiculo, y = log(FrecObs), color = DescTipoVehiculo, y = log(Fre
                                                            labs(title = "Log-Frecuencia por DescTipoVehiculo", y= "Log-Frecuencia Observada", x= "Dog-Frecuencia Observada", x= "Dog-Fre
                                                            img2 = ggplot(datos[ind,], aes(x = TipoPersona, y = log(FrecObs), color = TipoPersona)) +
                                                            labs(title = "Log-Frecuencia por TipoPersona", y= "Log-Frecuencia Observada", x = "TipoPe
                                                            datos Edadx = as.factor(as.integer(datos Edad /10)*10)
                                                            img3 = ggplot(datos[ind,], aes(x = Edadx, y = log(FrecObs), color = Edadx)) + geom_boxplor
                                                            labs(title = "Log-Frecuencia observada por Edad", y= "Log-Frecuencia Observada", x= "Eda
                                                            img4 = ggplot(datos[ind,], aes(x = Sexo, y = log(FrecObs), color = Sexo)) + geom_boxplot(
                                                            labs(title = "Log-Frecuencia observada por Sexo", y= "Log-Frecuencia Observada", x = "Sex
                                                            datos$ModeloVehiculo = as.factor(datos$ModeloVehiculo)
                                                            img5 = ggplot(datos[ind,], aes(x = ModeloVehiculo, y = log(FrecObs), color = ModeloVehiculo)
                                                            labs(title = "Log-Frecuencia observada por ModeloVehiculo", y= "Log-Frecuencia Observada"
                                                            datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
                                                            img6 = ggplot(datos[ind,], aes(x = DescUsoVehiculo, y = log(FrecObs), color = DescUsoVehiculo, y = log(FrecOb
                                                            labs(title = "Log-Frecuencia observada por DescUsoVehiculo", y= "Log-Frecuencia DescUsoVe
                                                            img7 = ggplot(datos[ind,], aes(x = DescMarcaVehiculo, y = log(FrecObs), color = DescMarcaVehiculo, y = log(Fr
                                                            labs(title = "Log-Frecuencia observada por DescMarcaVehiculo", y= "Log-Frecuencia DescMar
                                                            options( repr.plot.height = 5)
                                                            ggarrange(img1,img2, ncol = 2)
                                                           ggarrange(img3,img4, ncol = 2)
```


In [20]:

```
options(repr.plot.width = 7, repr.plot.height = 7)
img5
img6
```


In [21]:

img7

Observación.

De los diagramas anteriores, sugieren que las mejores variables que más reflejan la variabilidad de la frecuencia pueden ser:

- DescUsoVehiculo: En especial el Transporte para Turismo y de Personal.
- Edad: Sobre todo, en edades mayores a los 50 años.

In [22]:

#Estadística para la Severidad Observada

ind = which(datos\$Sev0bs>0)

```
img1 = ggplot(datos[ind,], aes(x = DescTipoVehiculo, y = log(SevObs), color = log(SevObs), color = log(SevObs
labs(title = "Log-Severidad por DescTipoVehiculo", y= "Log-Severidad Observada", x = "Des
img2 = ggplot(datos[ind,], aes(x = TipoPersona, y = log(SevObs), color = TipoPersona)) + (
labs(title = "Log-Severidad por TipoPersona", y= "Log-Severidad Observada", x = "TipoPers
datos\$Edadx = as.factor(as.integer(datos\$Edad /10)*10)
img3 = ggplot(datos[ind,], aes(x = Edadx, y = log(SevObs), color = Edadx)) + geom_boxplot
labs(title = "Log-Severidad observada por Edad", y= "Log-Severidad Observada", x= "Edad"
img4 = ggplot(datos[ind,], aes(x = Sexo, y = log(SevObs), color = Sexo)) + geom_boxplot()
labs(title = "Log-Severidad observada por Sexo", y= "Log-Severidad Observada", x= "Sexo"
datos$ModeloVehiculo = as.factor(datos$ModeloVehiculo)
img5 = ggplot(datos[ind,], aes(x = ModeloVehiculo, y = log(SevObs), color = ModeloVehiculo
labs(title = "Log-Severidad observada por ModeloVehiculo", y= "Log-Severidad Observada",
datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
img7 = ggplot(datos[ind,], aes(x = DescMarcaVehiculo, y = log(SevObs), color = log(SevObs),
labs(title = "Log-Severidad observada por DescMarcaVehiculo", y= "Log-Severidad DescMarca'
options( repr.plot.height = 5)
ggarrange(img1,img2, ncol = 2)
ggarrange(img3,img4, ncol = 2)
```



```
In [23]:
    options(repr.plot.width = 7, repr.plot.height = 7)
    img5
    img6
```

Log-Severidad observada por ModeloVehiculo

Log-Frecuencia observada por DescUsoVehiculo

In [24]: options(repr.plot.width = 10, repr.plot.height = 10) $\verb"img7"$

Observación

De los diagramas anteriores, sugieren que las mejores variables que más reflejan la variabilidad de la severidad pueden ser:

- Modelo Vehiculo: Muestra una tendencia creciente respecto del modelo.
- DescUsoVehiculo: Muestra una ligera diferencia entre los tipos de uso del vehiculo, pero parece haber diferencias marcadas entre una ambulacia y el transporte de turismo.

Quitando variables faltantes.

```
In [25]:
    apply(datos,2,function(x){any(is.na(x))})
```

Anio: FALSE ID: FALSE NombreOficina: FALSE UnidadesExpuestas: FALSE NombreSubdireccion: TRUE DescTipoVehiculo: FALSE TipoPersona: TRUE Edad: TRUE Sexo: TRUE DescMarcaVehiculo: FALSE DescCarroceriaVehiculo: FALSE ModeloVehiculo: FALSE DescUsoVehiculo: FALSE

PrimaNetaPropiaSinCoaseguro: FALSE MontoOcurrido: FALSE NumSiniestros: FALSE signo: FALSE

FrecObs: FALSE SevObs: FALSE Edadx: TRUE

```
In [26]: #quitanto NA de TipoPersona
  nas = which(is.na(datos$TipoPersona))
  print(paste0("Quitando ",length(nas)," observaciones."))
  datos = datos[-nas,]
```

[1] "Quitando 84 observaciones."

```
In [27]: #quitanto NA de Edad
```

```
nas = which(is.na(datos$Edad))
print(paste0("Quitando ",length(nas)," observaciones."))
datos = datos[-nas,]
```

[1] "Quitando 20 observaciones."

```
In [28]: #quitanto NA de NombreSubdireccion
   nas = which(is.na(datos$NombreSubdireccion))
   print(paste0("Quitando ",length(nas)," observaciones."))
   datos = datos[-nas,]
```

[1] "Quitando 1 observaciones."

Se conventiran los factores dentro de los datos dummy, ya que el paquete Rfast2 require esa representación.

```
In [29]: apply(datos,2,class)
```

Anio: 'character' ID: 'character' NombreOficina: 'character' UnidadesExpuestas: 'character'

NombreSubdireccion: 'character' DescTipoVehiculo: 'character' TipoPersona: 'character' Edad: 'character'

Sexo: 'character' DescMarcaVehiculo: 'character' DescCarroceriaVehiculo: 'character' ModeloVehiculo:

'character' **DescUsoVehiculo**: 'character' **PrimaNetaPropiaSinCoaseguro**: 'character' **MontoOcurrido**:

'character' NumSiniestros: 'character' signo: 'character' FrecObs: 'character' SevObs: 'character' Edadx:

'character'

```
In [30]: datos$Anio = as.integer(datos$Anio)
    datos$Edad = as.integer(datos$Edad)
    datos$ModeloVehiculo = as.integer(datos$ModeloVehiculo)
In [31]: DescMarcaVehiculo = model.matrix( ~ DescMarcaVehiculo - 1, datos)
    dim(DescMarcaVehiculo)
    head(DescMarcaVehiculo)
```

49608 - 57

	DescMarcaVehiculoACURA	DescMarcaVehiculoALFA ROMEO	DescMarcaVehiculoAUDI	DescMarcaVehiculoBAIC	DescMar
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	0	0	
6	0	0	0	0	
4					•

```
In [32]:
```

colnames(DescMarcaVehiculo)

'DescMarcaVehiculoACURA' · 'DescMarcaVehiculoALFA ROMEO' · 'DescMarcaVehiculoAUDI' ·

'DescMarcaVehiculoBAIC' · 'DescMarcaVehiculoBMW' · 'DescMarcaVehiculoBUICK' ·

'DescMarcaVehiculoCADILLAC' · 'DescMarcaVehiculoCHANGAN' · 'DescMarcaVehiculoCHEVROLET' ·

'DescMarcaVehiculoCHRYSLER' · 'DescMarcaVehiculoCLASICO' · 'DescMarcaVehiculoCUPRA' ·

'DescMarcaVehiculoDFSK' · 'DescMarcaVehiculoDODGE' · 'DescMarcaVehiculoFAW' ·

'DescMarcaVehiculoFIAT' · 'DescMarcaVehiculoFORD' · 'DescMarcaVehiculoGIANT' ·

'DescMarcaVehiculoGMC' · 'DescMarcaVehiculoHINO' · 'DescMarcaVehiculoHONDA' ·

'DescMarcaVehiculoHUMMER' · 'DescMarcaVehiculoHYUNDAI' · 'DescMarcaVehiculoINFINITI' ·

'DescMarcaVehiculoISUZU' · 'DescMarcaVehiculoJAC' · 'DescMarcaVehiculoJAGUAR' ·

'DescMarcaVehiculoJEEP' · 'DescMarcaVehiculoKIA' · 'DescMarcaVehiculoLAND ROVER' ·

'DescMarcaVehiculoLINCOLN' · 'DescMarcaVehiculoMASERATI' · 'DescMarcaVehiculoMAZDA' ·

'DescMarcaVehiculoMERCEDES BENZ' · 'DescMarcaVehiculoMERCURY' · 'DescMarcaVehiculoMG' ·

'DescMarcaVehiculoMINI' · 'DescMarcaVehiculoMITSUBISHI' · 'DescMarcaVehiculoNISSAN' ·

'DescMarcaVehiculoPEUGEOT' · 'DescMarcaVehiculoPIAGGIO' · 'DescMarcaVehiculoPONTIAC' ·

'DescMarcaVehiculoPORSCHE' · 'DescMarcaVehiculoRAM' · 'DescMarcaVehiculoRENAULT' ·

'DescMarcaVehiculoROVER' · 'DescMarcaVehiculoSAAB' · 'DescMarcaVehiculoSEAT' ·

'DescMarcaVehiculoSMART' · 'DescMarcaVehiculoSPARTAK' · 'DescMarcaVehiculoSTRUDER' ·

'DescMarcaVehiculoSUBARU' · 'DescMarcaVehiculoSUZUKI' · 'DescMarcaVehiculoTODAS' ·

'DescMarcaVehiculoTOYOTA' · 'DescMarcaVehiculoVOLKSWAGEN' · 'DescMarcaVehiculoVOLVO'

```
In [33]:
    datos$HONDA = DescMarcaVehiculo[,which(colnames(DescMarcaVehiculo) == 'DescMarcaVehiculoHondard
    datos$TOYOTA = DescMarcaVehiculo[,which(colnames(DescMarcaVehiculo) == 'DescMarcaVehiculo')
```

Modelación

Decidi modelar ambas variables con modelo Gamma - Cero Inflado por las siguientes razones:

- Si no ocurre el siniestro, las variables pueden tomar el valor 0 (que, además es la moda de los valores calculados).
- En principio ambas variables son positivas, siempre y cuando ocurra el siniestro.

El modelo Gamma - Cero Inflado combina una regresión Bernoulli, con una regresión Gamma. De esta forma, la gamma sólo se expresa si previamente la regresión Bernoulli no toma el valor cero.

Nota: Si bien, una opción modelarlos de esta manera, también se pudo haber intentado un modelo de Cuasiverosimilitud.

Modelo de la Frecuencia

Separando la muestra en entrenamiento y prueba

Modelo de la Severidad

Bondad de Ajuste

```
In [39]:
          summary(regFrec)
          Family: Gamma ( log )
         Formula:
         FrecObs ~ log(ModeloVehiculo) * TipoPersona + log(Anio) + HONDA +
                                                                              T0Y0TA
         Zero inflation:
         ~log(Edad) * TipoPersona + log(ModeloVehiculo) + log(Anio) +
                                                                        HONDA + TOYOTA
         Data: datos[entrenamiento, ]
                      BIC
                            logLik deviance df.resid
              AIC
          16877.0 17014.4 -8422.5 16845.0
                                               39591
         Dispersion estimate for Gamma family (sigma^2): 0.461
         Conditional model:
                                             Estimate Std. Error z value Pr(>|z|)
         (Intercept)
                                                         0.78337
                                              0.21586
                                                                  0.276 0.782887
         log(ModeloVehiculo)
                                                        0.20254
                                                                 0.726 0.468040
                                              0.14697
         TipoPersonaMoral
                                                        2.11675 2.388 0.016924 *
                                              5.05555
                                                                  5.478 4.31e-08 ***
         log(Anio)
                                              0.17305
                                                         0.03159
                                             -0.27089
         HONDA
                                                         0.08060
                                                                  -3.361 0.000777 ***
                                                         0.06077
                                                                  1.865 0.062228 .
         TOYOTA
                                              0.11331
         log(ModeloVehiculo):TipoPersonaMoral -1.30850
                                                         0.53906
                                                                 -2.427 0.015208 *
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Zero-inflation model:
                                   Estimate Std. Error z value Pr(>|z|)
         (Intercept)
                                    9.42684
                                               1.14459
                                                         8.236 < 2e-16 ***
         log(Edad)
                                               0.10537 4.929 8.26e-07 ***
                                    0.51940
                                                        3.106 0.00190 **
         TipoPersonaMoral
                                    1.52876
                                               0.49222
         log(ModeloVehiculo)
                                               0.26992 -8.111 5.03e-16 ***
                                   -2.18927
         log(Anio)
                                    0.38392
                                               0.04585
                                                        8.373 < 2e-16 ***
                                                         2.353 0.01862 *
                                               0.12048
         HONDA
                                    0.28348
                                   -0.29104
         TOYOTA
                                               0.09152 -3.180 0.00147 **
         log(Edad):TipoPersonaMoral -0.33142
                                               0.14434 -2.296 0.02167 *
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
In [40]:
          summary(regSevObs)
          Family: Gamma ( log )
         Formula:
         SevObs ~ log(ModeloVehiculo) * log(Anio) + log(Edad) + TipoPersona
         Zero inflation:
         ~log(Edad) * TipoPersona + log(ModeloVehiculo) + log(Anio) +
                                                                        HONDA + TOYOTA
         Data: datos[entrenamiento, ]
                      BIC logLik deviance df.resid
              AIC
          36357.6 36486.4 -18163.8 36327.6
                                               39592
         Dispersion estimate for Gamma family (sigma^2): 1.7
         Conditional model:
                                      Estimate Std. Error z value Pr(>|z|)
                                                   2.4262 -4.899 9.63e-07 ***
                                      -11.8859
         (Intercept)
         log(ModeloVehiculo)
                                        5.9840
                                                   0.6316 9.475 < 2e-16 ***
                                        5.3028
                                                   2.1076 2.516 0.01187 *
         log(Anio)
                                       -0.2844
                                                   0.1017 -2.796 0.00517 **
         log(Edad)
                                       -0.3780
         TipoPersonaMoral
                                                   0.1473 -2.565 0.01031 *
         log(ModeloVehiculo):log(Anio) -1.4611
                                                   0.5434 -2.689 0.00717 **
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Zero-inflation model:
                                   Estimate Std. Error z value Pr(>|z|)
```

```
8.59895
                                               1.21232
                                                         7.093 1.31e-12 ***
         (Intercept)
                                               0.11308
         log(Edad)
                                    0.55606
                                                         4.918 8.76e-07 ***
         TipoPersonaMoral
                                   1.48598
                                               0.52492 2.831 0.004642 **
                                               0.28542 -6.856 7.11e-12 ***
         log(ModeloVehiculo)
                                 -1.95667
         log(Anio)
                                               0.04956 6.705 2.01e-11 ***
                                    0.33229
         HONDA
                                    0.29091
                                               0.13090 2.222 0.026251 *
                                    -0.36242
                                               0.09583 -3.782 0.000156 ***
         T0Y0TA
         log(Edad):TipoPersonaMoral -0.30776
                                               0.15412 -1.997 0.045839 *
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
In [41]:
          FrecP = predict(regFrec,datos[entrenamiento,], type = "response")
          SevP = predict(regSev0bs,datos[entrenamiento,], type = "response")
         Warning message in log(Edad):
         "NaNs produced"
         Warning message in log(Edad):
         "NaNs produced"
In [42]:
          summary(lm(datos$FrecObs[entrenamiento]~FrecP + 0))
         Call:
         lm(formula = datos$FrecObs[entrenamiento] ~ FrecP + 0)
         Residuals:
                    1Q Median 3Q
            Min
                                       Max
         -0.301 -0.107 -0.088 -0.068 33.072
         Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           0.03674
                                    27.18 <2e-16 ***
         FrecP 0.99835
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.696 on 39606 degrees of freedom
           (1 observation deleted due to missingness)
         Multiple R-squared: 0.01831, Adjusted R-squared: 0.01828
         F-statistic: 738.6 on 1 and 39606 DF, p-value: < 2.2e-16
In [43]:
          summary(lm(datos$SevObs[entrenamiento]~SevP + 0))
         Call:
         lm(formula = datos$SevObs[entrenamiento] ~ SevP + 0)
         Residuals:
            Min
                    10 Median 30
                                       Max
          -5265 -855 -542 -292 903093
         Coefficients:
              Estimate Std. Error t value Pr(>|t|)
         SevP 0.96588 0.05943 16.25 <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 10230 on 39606 degrees of freedom
           (1 observation deleted due to missingness)
         Multiple R-squared: 0.006625, Adjusted R-squared: 0.0066
         F-statistic: 264.1 on 1 and 39606 DF, p-value: < 2.2e-16
```

Validación cruzada

```
In [44]:
FrecP = predict(regFrec,datos[prueba,], type = "response")
```

```
SevP = predict(regSev0bs,datos[prueba,], type = "response")
In [45]:
          summary(lm(datos$FrecObs[prueba]~FrecP + 0))
         Call:
         lm(formula = datos$FrecObs[prueba] ~ FrecP + 0)
         Residuals:
                      1Q Median
             Min
                                      30
                                            Max
         -0.2380 -0.0996 -0.0816 -0.0635 12.3132
         Coefficients:
               Estimate Std. Error t value Pr(>|t|)
         FrecP 0.93610 0.06346 14.75 <2e-16 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 0.6014 on 9999 degrees of freedom
         Multiple R-squared: 0.0213, Adjusted R-squared: 0.0212
         F-statistic: 217.6 on 1 and 9999 DF, p-value: < 2.2e-16
In [46]:
          summary(lm(datos$SevObs[prueba]~SevP + 0))
         Call:
         lm(formula = datos$SevObs[prueba] ~ SevP + 0)
         Residuals:
            Min
                   1Q Median 3Q
                                        Max
          -2999 -504 -321 -172 302618
         Coefficients:
              Estimate Std. Error t value Pr(>|t|)
         SevP 0.57937 0.07945 7.292 3.29e-13 ***
         Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
         Residual standard error: 6804 on 9999 degrees of freedom
         Multiple R-squared: 0.00529, Adjusted R-squared: 0.00519
         F-statistic: 53.17 on 1 and 9999 DF, p-value: 3.287e-13
        Predicción de todas las observaciones
In [48]:
          FreqT = predict(regFrec, datos, type = "response")
          SevT = predict(regSev0bs,datos, type = "response")
          Prima = FreqT*SevT
          datos$Prima = Prima
         Warning message in log(Edad):
         "NaNs produced"
         Warning message in log(Edad):
         "NaNs produced"
        Exportando los resultados
In [49]:
          write.csv(datos,file = "datos2.csv")
```

Conclusiones

Se expusieron dos modelos Gamma - Cero inflado con interacciones para la Frecuencia y Severidad.

- Se identificaron como variables correlacionadas positivamente con el siniestro a: Edad, Año, Que el vehiculo sea HONDA y Ser persona Moral (siendo la más relevante la última).
- Se identificaron como variables correlacionadas negativamente con el siniestro a: ModeloVehiculo, Que el vehiculo sea Toyota y la interacción entre ser persona moral y la edad (siendo el modelo el aspecto más relevante).
- En validación cruzada se comprobo que el modelo no tiene mucha presición (se logra explicar al rededor de un 15% de la variablilidad de la prima), pero es un modelo interpretable, por ejemplo:
- Para la parte de la regresión logistica del modelo de severidad, un incremento de un 1\% en el valor del año, esta asociado a un incremento del 139\% en el momio del evento (ya que $\exp(0.332)\sim 1.3937$.