G2 de Álgebra Linear I -2013.2

18 de outubro de 2013.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Ques.	1.a	1.b	1.c	2.a	2.b	2.c	2. d	2.e	3	soma
Valor	2.0	2.0	0.5	0.5	1.5	1.0	0.5	1.0	1.0	10.0
Nota										

Instruções – leia atentamente

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$T(1,1,1) = (0,0,2),$$

 $T(1,1,0) = (0,1,1),$
 $T(1,0,0) = (1,0,1),$

e a transformação linear $E: \mathbb{R}^3 \to \mathbb{R}^3$ espelhamento em relação ao plano que contém a origem e é paralelo aos vetores $\{(1,0,-1),(1,0,1)\}$.

- (a) Determine as matrizes [T], [E] e $[E \circ T]$ das transformações lineares T, E e $E \circ T$ na base canônica, respectivamente.
- (b) Considere o plano π cuja equação cartesiana é x=0 e o subespaço $\mathbb V$ definido como a imagem de π pela transformação linear $E\circ T$, isto é, $\mathbb V=E\circ T(\pi)$.

Verifique que

$$G = \{(-1, 0, 1), (1, 2, 1), (0, 2, 2)\}$$

é um conjunto gerador do subespaço \mathbb{V} .

Encontre uma base β de \mathbb{V} formada por vetores do conjunto G.

Determine as coordenadas do vetor $(1,4,3) \in \mathbb{V}$ na base β .

(c) Determine, se possível, um vetor \vec{u} tal que $T^{-1}(\vec{u})=(3,0,0).$ Justifique cuidadosamente.

Lembre que a imagem de um subespaço \mathbb{W} de \mathbb{R}^3 por uma transformação linear $L\colon \mathbb{R}^3 \to \mathbb{R}^3$ é o subespaço

$$L(\mathbb{W}) = \{ \vec{u} \in \mathbb{R}^3 \text{ tal que existe } \vec{w} \in \mathbb{W} \text{ tal que } T(\vec{w}) = \vec{u} \}.$$

Resposta:

2) Considere as transformações lineares

$$S: \mathbb{R}^3 \to \mathbb{R}^3, \qquad T: \mathbb{R}^3 \to \mathbb{R}^3 \quad \mathrm{e} \qquad Z: \mathbb{R}^3 \to \mathbb{R}^3$$

cujas matrizes na base canônica são, respectivamente,

$$[S] = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -1 & 2 \\ 0 & 1 & 1 \end{bmatrix}, \quad [T] = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \quad \text{e} \quad [Z] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- (a) Encontre a forma geral da transformação S, isto é, S(x, y, z).
- (b) Considere os subespaços de \mathbb{R}^3 definidos por
 - $\mathbb{W} = \{ \vec{w} \in \mathbb{R}^3 \text{ tais que } S(\vec{w}) = \vec{0} \},$
 - $\mathbb{U} = \{ \vec{u} \in \mathbb{R}^3 \text{ tais que } T(\vec{u}) = \vec{0} \}$ e
 - $\mathbb{N} = \{ \vec{n} \in \mathbb{R}^3 \text{ tais que } Z(\vec{n}) = \vec{0} \}.$

Determine uma base ortogonal β de \mathbb{W} , uma base ortogonal γ de \mathbb{U} e uma base ortogonal η de \mathbb{N} .

- (c) Decida se a transformação linear S é sobrejetora.
- (d) Encontre dois vetores distintos $\vec{u}, \vec{v} \in \mathbb{R}^3$ tais que $S(\vec{u}) = S(\vec{v})$.
- (e) Determine a equação paramétrica de um plano π tal que $S(\pi)$ (a imagem de π pela transformação S) seja a reta r de equações paramétricas

$$r:(t,-t,0), t \in \mathbb{R}.$$

Resposta:

3) Considere o plano

$$\pi: x + y + z = 1.$$

Determine uma equação cartesiana de um plano ρ tal que a distância entre os planos π e ρ seja $\frac{\sqrt{3}}{3}$.

Resposta: