TS326: Reconnaissance des Formes

Filière Electronique - option TSI, 3^E année

Rémi Giraud remi.giraud@enseirb-matmeca.fr 2021-2022

TP Classification non supervisée

1 Introduction

L'objectif de ce TP est d'implémenter plusieurs techniques populaires de classification non supervisée. Plus particulièrement, il s'agira d'implémenter les méthodes des centres mobiles ou K-moyennes, ainsi que la méthode de classification ascendante hiérarchique. Ces algorithmes seront appliqués dans un premier temps au clustering spatial de nuages de points 2D, puis à des descripteurs extraits d'imagettes d'épi de blé.

1.1 Travail demandé

Le but de ce TP est de compléter les codes Matlab fournis pour réaliser l'implémentation des algorithmes K-moyennes et de classification ascendante hiérarchique. Dans un premier temps, nous chercherons à grouper les données de nuage de points 2D en K=4 classes par ces deux méthodes. Les mesures d'inerties intra classes, inter classes et totale seront données à chaque étape. Ensuite, nous pourrons tenter d'appliquer ces algorithmes aux données issues d'images d'épi de blé, en considérant une distance multi-critères et un nombre de classes K=2.

1.2 Données

• Trois ensembles de données spatiales 2D sont fournis dans les fichiers "cloud_data_#1-3.mat". Les données sont rangées sous la forme X=(y,x,classe) et sont représentées comme nuages de points en Figure 1, .

Figure 1 : Nuages de points 2D.

• Dans la partie 3, nous nous intéresserons aux données d'épi de blé vue en cours. Des imagettes sont extraites d'une image d'épi et classifiées manuellement en deux classes : épis de blés (classe = 1) et feuilles / fond (classe = 2). Quatre descripteurs statistiques sont issus des matrices de cooccurrences et sont fournis dans le dossier "ble_data.mat".

2 Algorithmes de classification non supervisée

2.1 Algorithme *K*-moyennes

- 1. Implémenter l'algorithme K-moyennes pour un nombre de classes K quelconque. Les centres seront d'abord choisis aléatoirement dans l'espace des données. On utilisera comme distance la norme euclidienne L_2 .
- 2. Quelles solutions envisager pour arrêter l'algorithme automatiquement ?
- 3. Calculer les inerties intra classes, inter classes et totale à chaque itération.
- 4. Visualiser l'évolution de l'algorithme aux données du nuage de points "cloud_data_1.mat" pour K=4.
 - Arrive-t-il d'avoir un nombre de classe variable en sortie de l'algorithme?
- 5. Implémenter la méthode d'optimisation de l'initialisation K-moyennes++. Vérifier que l'algorithme converge plus rapidement.
- 6. Observer la difficulté d'obtenir un bon clustering sur le nuage "cloud_data_2.mat". Implémenter la méthode K-médoïdes (les centres sont les points avec la faible distance moyenne aux autres points de la même classe).
- 7. Comparer les coûts temporels des méthodes sur le nuage "cloud_data_3.mat"

2.2 Algorithme de classification ascendante hiérarchique

- 1. Implémenter l'algorithme de classification ascendante hiérarchique. On propose d'utiliser les structures de données suivantes :
 - Données initiales data de taille $n \times p$ (ici n = 160 et p = 2 pour "cloud_data_1.mat")
 - Tableau de classification $classif_exp$ de taille $n \times n$ à modifier à chaque itération : (ici à l'itération 1, les clusters 1 et 3 ont fusionné)

Itération	1	2	3	 i	•••	n
0	1	2	3	 i		\overline{n}
1	1	2	1	 i		n
n	i	i	i	 i		i

- Barycentres G_i updatés à chaque nouvelle association
- 2. Implémenter et comparer les quatre stratégies d'agrégation (simple, complet, moyen, méthode de Ward).

3 Multi-critères

On peut dans un dernier temps appliquer les algorithmes implémentés à des données réelles provenant d'images d'épis de blé.

- 1. Tenter d'obtenir un clustering pertinent en utilisant un des quatre descripteurs.
- 2. Proposer une stratégie pour utiliser tous les descripteurs à la fois dans le calcul de distance, sachant qu'ils ne représentent pas la même information.