Presentation on Machine Learning

Advanced Programming Language

Under the guidance of Prof. Chang

Presented by Anuradha - 阿洛拉 (M07158023)

Dated: 27th may, 2019.

Topic:

Association Rule Learning (ARL)

Content of presentation

- Introduction
 - Data Mining
 - Associated Rule Learning (ARL)
 - Apriori model
- Explanation with Example
- Explanation of Program (How it works)
- Results & Interpretation
- Conclusion
- Reference

Data Mining

- The discovery of new information in terms of patterns or rules from vast amounts of data.
- The process of finding interesting structure in data.
- The process of employing one or more computer learning techniques to automatically analyze and extract knowledge from data.
- Data mining is actually one step of a larger process known as knowledge discovery in databases (KDD).
- The KDD process model comprises six phases
 - Data selection
 - Data cleansing
 - Enrichment
 - Data transformation or encoding
 - Data mining
 - Reporting and displaying discovered knowledge

Prediction:

Determine how certain attributes will behave in the future.

Identification:

Identify the existence of an item, event, or activity.

Classification:

Partition data into classes or categories.

Optimization:

Optimize the use of limited resources.

Aim of Data mining

Association Rule learning (ARL)

 Association rules are if-then statements that help to show the probability of relationships between data items within large data sets in various types of databases. Association rule mining has a number of applications and is widely used to help discover sales correlations in transactional data or in medical data sets.

What Association Rule Mining Aims to Achieve?

Association Rule Mining is one of the ways to find patterns in data. It finds:

- features (dimensions) which occur together
- features (dimensions) which are "correlated"

Association Rules

- ☐ Association rules are frequently used to generate rules from market-basket data.
 - A market basket corresponds to the sets of items a consumer purchases during one visit to a supermarket.
- ☐ The set of items purchased by customers is known as an item set.
- An association rule is of the form X=>Y, where X = $\{x_1, x_2,, x_n\}$, and Y = $\{y_1, y_2,, y_n\}$ are sets of items, with x_i and y_i being distinct items for all i and all j.

For an association rule to be of interest, it must satisfy a minimum support and confidence.

Support:

The minimum percentage of instances in the database that contain all items listed in a given association rule.

Support is the percentage of transactions that contain all of the items in the item set .

Confidence:

Given a rule of the form A=>B, rule confidence is the conditional probability that B is true when A is known to be true.

Lift:

Lift controls for the *support* (frequency) of consequent while calculating the conditional probability of occurrence of {Y} given {X}.

$$Support(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Total\ number\ of\ transactions}$$

$$Confidence(\{X\} \rightarrow \{Y\}) = \frac{Transactions\ containing\ both\ X\ and\ Y}{Transactions\ containing\ X}$$

$$Lift(\{X\} \to \{Y\}) = \frac{(Transactions\ containing\ both\ X\ and\ Y)/(Transactions\ containing\ X)}{Fraction\ of\ transactions\ containing\ Y}$$

- 1. Association Rule: Ex. $\{X \rightarrow Y\}$ is a representation of finding Y on the basket which has X on it.
- 2. Item set: Ex. {X,Y} is a representation of the list of all items which form the association rule.
- 3. Support: Fraction of transactions containing the item set.
- 4. Confidence: Probability of occurrence of {Y} given {X} is present.
- 5. Lift: Ratio of *confidence* to baseline probability of occurrence of {Y}.

Apriori Intuition

"People who bought something also bought something else."

Example:

Apriori Algorithm works :-

Step 1 : Support

Movie Recommendation:

Support(M) = # user watch lists containing M # user watch lists

Market Basket Optimisation:

Support(I) = # transactions containing I

transactions

Step 2 : confidence

Movie Recommendation:

Confidence(M_1 - M_2) = # user watch lists containing $M_1 \& M_2$ # user watch lists containing M_1

Market Basket Optimisation:

Confidence(I_1-I_2) = # transactions containing $I_1 \& I_2$

transactions containing I_1

Step 3 : Lift

Movie Recommendation

Lift(
$$M_1$$
- M_2) = $\frac{\text{Confidence}(M_1-M_2)}{\text{Support}(M_2)}$

Market Basket Optimisation:

$$Lift(I_1-I_2) = Confidence(I_1-I_2)$$

Support (I₂)

Example

Five transactions from a supermarket

TID	List of Items
1	Beer, Diaper, Baby Powder, Bread, Umbrella
2	Diaper,Baby Powder
3	Beer, Diaper, Milk
4	Diaper, Beer, Detergent
5	Beer, Milk, Coca-Cola

Step 1

• Min_sup 40% (2/5)

 C_1

Item	Support	
Beer	"4/5"	
Diaper	"4/5"	
Baby Powder	"2/5"	
Bread	"1/5"	
Umbrella	"1/5"	
Milk	"2/5"	
Detergent	"1/5"	
Coca-Cola	"1/5"	

 L_1

Item	Support	
Beer	"4/5"	
Diaper	"4/5"	
Baby Powder	"2/5"	
Milk	"2/5"	

Step 2 and Step 3

 C_{2}

-2

Item	Support	
Beer, Diaper	"3/5"	
Beer, Baby Powder	"1/5"	
Beer, Milk	"2/5"	
Diaper,Baby Powder	"2/5"	
Diaper,Milk	"1/5"	
Baby Powder, Milk	"0"	

Item	Support	
Beer, Diaper	"3/5"	
Beer, Milk	"2/5"	
Diaper,Baby Powder	"2/5"	

Step 4

 C_3 empty

Item	Support	
Beer, Diaper, Baby Powder	"1/5"	
Beer, Diaper, Milk	"1/5"	
Beer, Milk, Baby Powder	"0"	
Diaper,Baby Powder,Milk	"0"	

• Min_sup 40% (2/5)

Step 5

■ min_sup=40% min_conf=70%

Item	Support(A,B)	Suport A	Confidence
Beer, Diaper	60%	80%	75%
Beer, Milk	40%	80%	50%
Diaper,Baby Powder	40%	80%	50%
Diaper,Beer	60%	80%	75%
Milk,Beer	40%	40%	100%
Baby Powder, Diaper	40%	40%	100%

Results

$$Beer \Rightarrow Diaper$$

• support 60%, confidence 70%

$$Diaper \Rightarrow Beer$$

• support 60%, confidence 70%

$$Milk \Rightarrow Beer$$

support 40%, confidence 100%

$$BabyPowder \Rightarrow Diaper$$

• support 40%, confidence 70%

Interpretation

- Some results are believable, like baby powder and diaper bought together.
- Some results need more analysis, like milk and beer bought together.
- Some results are unbelievable, like diaper and beer.
- It contains unreal results because of the small data, so data interpretation plays a huge role in this.

Conclusion

From this concept of associated data learning (ARL), we learn many things : -

- How to short out the data from a number of data's.
- There are lot of information hidden in the data, if we can extract them well it will be very beneficial.
- The information can be extracted from the data on the daily basis without any interruption.
- We can make assumption and interpret the result by seeing the clear analysis of data.
- Data plays a huge role in marketing business, so if handled well, can make an effortless effect in the surrounding environment.

Reference

- 1. https://stackabuse.com/association-rule-mining-via-apriori-algorithm-in-python/
- 2. https://searchbusinessanalytics.techtarget.com/definition/association-rules-in-data-mining
- 3. https://github.com/topics/apriori-algorithm?l=python
- 4. https://en.wikipedia.org/wiki/Association-rule-learning
- 5. https://towardsdatascience.com/association-rules-2-aa9a77241654
- 6. https://www.analyticsindiamag.com/understanding-association-rule-learning-its-role-in-data-mining/
- 7. https://www.r-bloggers.com/association-rule-learning-and-the-apriori-algorithm/
- 8. https://github.com/topics/association-rule-learning
- 9. https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84

Thank you