

Apache Mahout - Tutorial

Cataldo Musto, Ph.D.

Corso di Accesso Intelligente all'Informazione ed Elaborazione del Linguaggio Naturale Università degli Studi di Bari – Dipartimento di Informatica – A.A. 2012/2013

Outline

- What is Mahout?
 - Overview
- How to use Mahout?
 - Java snippets

Part 1

What is Mahout?

Goal

- Mahout is a Java library
 - Implementing Machine Learning techniques

Goal

- Mahout is a Java library
 - Implementing Machine Learning techniques
 - Clustering
 - Classification
 - Recommendation
 - Frequent ItemSet

Goal

- Mahout is a Java library
 - Implementing Machine Learning technique
 - Clustering
 - Classification
 - Recommendation
 - Frequent ItemSet
 - Scalable

What can we do?

- Currently Mahout supports mainly four use cases:
 - Recommendation takes users' behavior and from that tries to find items users might like.
 - Clustering takes e.g. text documents and groups them into groups of topically related documents.
 - Classification learns from exisiting categorized documents what documents of a specific category look like and is able to assign unlabelled documents to the (hopefully) correct category.
 - Frequent itemset mining takes a set of item groups (terms in a query session, shopping cart content) and identifies, which individual items usually appear together.

Algorithms

Recommendation

- User-based Collaborative Filtering
- Item-based Collaborative Filering
- SlopeOne Recommenders
- Singular Value Decomposition

Algorithms

Clustering

- Canopy
- K-Means
- Fuzzy K-Means
- Hierarchical Clustering
- Minhash Clustering

(and much more...)

Algorithms

Classification

- Logistic Regression
- Bayes
- Support Vector Machines
- Perceptrons
- Neural Networks
- Restricted Boltzmann Machines
- Hidden Markov Models

(and much more...)

Mahout in the Apache Software Foundation

Focus

- In this tutorial we will focus just on:
 - Recommendation

Recommendation

- Mahout implements a Collaborative Filtering framework
 - Popularized by Amazon and others
 - Uses hystorical data (ratings, clicks, and purchases) to provide recommendations
 - **User-based**: Recommend items by finding similar users. This is often harder to scale because of the dynamic nature of users.
 - Item-based: Calculate similarity between items and make recommendations. Items usually don't change much, so this often can be computed offline.
 - **Slope-One**: A very fast and simple item-based recommendation approach applicable when users have given ratings (and not just boolean preferences).

Recommendation in Mahout

- Input: raw data (user preferences)
- Output: preferences estimation

Step 1

 Mapping raw data into a DataModel Mahoutcompliant

Step 2

- Tuning recommender components
 - Similarity measure, neighborhood, etc.

Recommendation Components

 Mahout implements interfaces to these key abstractions:

DataModel

Methods for mapping raw data to a Mahout-compliant form

UserSimilarity

Methods to calculate the degree of correlation between two users

ItemSimilarity

Methods to calculate the degree of correlation between two items

UserNeighborhood

Methods to define the concept of 'neighborhood'

Recommender

Methods to implement the recommendation step itself

Components: DataModel

- A DataModel is the interface to draw information about user preferences.
- Which sources is it possible to draw?
 - Database
 - MySQLJDBCDataModel
 - External Files
 - FileDataModel
 - Generic (preferences directly feed through Java code)
 - GenericDataModel

Components: DataModel

GenericDataModel

Feed through Java calls

FileDataModel

CSV (Comma Separated Values)

JDBCDataModel

- JDBC Driver
- Standard database structure

user_id	item_id	preference
BIGINT NOT NULL	BIGINT NOT NULL	FLOAT NOT NULL
INDEX	INDEX	
PRIMARY KEY		

FileDataModel – CSV input

Components: DataModel

- Regardless the source, they all share a common implementation.
- Basic object: Preference
 - Preference is a triple (user, item, score)
 - Stored in UserPreferenceArray

Components: DataModel

- Basic object: Preference
 - Preference is a triple (user, item, score)
 - Stored in UserPreferenceArray

- Two implementations
 - GenericUserPreferenceArray
 - It stores numerical preference, as well.
 - BooleanUserPreferenceArray
 - It skips numerical preference values.

Components: UserSimilarity

- UserSimilarity defines a notion of similarity between two Users.
 - (respectively) ItemSimilarity defines a notion of similarity between two Items.
- Which definition of similarity are available?
 - Pearson Correlation
 - Spearman Correlation
 - Euclidean Distance
 - Tanimoto Coefficient
 - LogLikelihood Similarity
 - Already implemented!

Pearson's vs. Euclidean distance

	Item 101	Item 102	Item 103	Correlation with user 1
User 1	5.0	3.0	2.5	1.000
User 2	2.0	2.5	5.0	-0.764
User 3	2.5	-	-	-
User 4	5.0	-	3.0	1.000
User 5	4.0	3.0	2.0	0.945

	Item 101	Item 102	Item 103	Distance	Similarity to user 1
User 1	5.0	3.0	2.5	0.000	1.000
User 2	2.0	2.5	5.0	3.937	0.203
User 3	2.5	-	-	2.500	0.286
User 4	5.0	-	3.0	0.500	0.667
User 5	4.0	3.0	2.0	1.118	0.472

Components: UserNeighborhood

- UserSimilarity defines a notion of similarity between two Users.
 - (respectively) ItemSimilarity defines a notion of similarity between two Items.
- Which definition of neighborhood are available?
 - Nearest N users
 - The first N users with the highest similarity are labeled as 'neighbors'
 - Tresholds
 - Users whose similarity is above a threshold are labeled as 'neighbors'
 - Already implemented!

Components: Recommender

- Given a DataModel, a definition of similarity between users (items) and a definition of neighborhood, a recommender produces as output an estimation of relevance for each unseen item
- Which recommendation algorithms are implemented?
 - User-based CF
 - Item-based CF
 - SVD-based CF
 - SlopeOne CF

(and much more...)

Recommendation Engines

Implementation	Key parameters	Key features
GenericUserBasedRecommender	User similarity metricNeighborhood definition and size	 Conventional implementation Fast when number of users is relatively small
GenericItemBasedRecommender	Item similarity metric Diff storage strategy	 Fast when number of items is relatively small Useful when an external notion of item similarity is available Recommendations and
SlopeOneRecommender	· Dill Storage Strategy	updates are fast at runtime Requires large precomputation Suitable when number of items is relatively small
SVDRecommender	Number of features	Good results Requires large precomputation
KnnItemBasedRecommender	 Number of means (k) Item similarity metric Neighborhood size 	Good when number of items is relatively small
TreeClusteringRecommender	Number of clustersCluster similarity definitionUser similarity metric	 Recommendations are fast at runtime Requires large precomputation Good when number of users is relatively small

Recap

- Hundreds of possible implementations of a CF-based recommender!
 - 6 different recommendation algorithms
 - 2 different neighborhood definitions
 - 5 different similarity definitions
- Evaluation fo the different implementations is actually very time-consuming
 - The strength of Mahout lies in that it is possible to save time in the evaluation of the different combinations of the parameters!
 - Standard interface for the evaluation of a Recommender System

Evaluation

- Mahout provides classes for the evaluation of a recommender system
 - Prediction-based measures
 - Mean Average Error
 - RMSE (Root Mean Square Error)
 - IR-based measures
 - Precision
 - Recall
 - F1-measure
 - F1@n
 - NDCG (ranking measure)

Evaluation

Prediction-based Measures

- Class: AverageAbsoluteDifferenceEvaluator
- Method: evaluate()
- Parameters:
 - Recommender implementation
 - DataModel implementation
 - TrainingSet size (e.g. 70%)
 - % of the data to use in the evaluation (smaller % for fast prototyping)

Evaluation

IR-based Measures

- Class: GenericRecommenderIRStatsEvaluator
- Method: evaluate()
- Parameters:
 - Recommender implementation
 - DataModel implementation
 - Relevance Threshold (mean+standard deviation)
 - % of the data to use in the evaluation (smaller % for fast prototyping)

Part 2

How to use Mahout?

Download Mahout

- Official Release
 - The latest Mahout release is 0.7
 - Available at:

http://www.apache.org/dyn/closer.cgi/mahout

- Java 1.6.x or greater.
- Hadoop is not mandatory!

Example 1: preferences

```
import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;
import org.apache.mahout.cf.taste.model.Preference;
import org.apache.mahout.cf.taste.model.PreferenceArray;
class CreatePreferenceArray {
  private CreatePreferenceArray() {
  public static void main(String[] args) {
    PreferenceArray user1Prefs = new GenericUserPreferenceArray(2);
    user1Prefs.setUserID(0, 1L);
    user1Prefs.setItemID(0, 101L);
    user1Prefs.setValue(0, 2.0f);
    user1Prefs.setItemID(1, 102L);
    user1Prefs.setValue(1, 3.0f);
    Preference pref = user1Prefs.get(1);
    System.out.println(pref);
```

Example 1: preferences

```
import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;
import org.apache.mahout.cf.taste.model.Preference;
import org.apache.mahout.cf.taste.model.PreferenceArray;
class CreatePreferenceArray {
  private CreatePreferenceArray() {
  public static void main(String[] args) {
    PreferenceArray user1Prefs = new GenericUserPreferenceArray(2);
    user1Prefs.setUserID(0, 1L);
    user1Prefs.setItemID(0, 101L);
                                                  Score 2 for Item 101
    user1Prefs.setValue(0, 2.0f);
    user1Prefs.setItemID(1, 102L);
    user1Prefs.setValue(1, 3.0f);
    Preference pref = user1Prefs.get(1);
    System.out.println(pref);
```

Example 2: data model

PreferenceArray stores the preferences of a single user

- Where do the preferences of all the users are stored?
 - An HashMap? No.
 - Mahout introduces data structures optimized for recommendation tasks
 - HashMap are replaced by FastByIDMap

Example 2: data model

```
import org.apache.mahout.cf.taste.impl.common.FastByIDMap;
import org.apache.mahout.cf.taste.impl.model.GenericDataModel;
import org.apache.mahout.cf.taste.impl.model.GenericUserPreferenceArray;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.model.PreferenceArray;
class CreateGenericDataModel {
 private CreateGenericDataModel() {
 public static void main(String[] args) {
    FastByIDMap<PreferenceArray> preferences = new FastByIDMap<PreferenceArray>();
    PreferenceArray prefsForUser1 = new GenericUserPreferenceArray(10);
   prefsForUser1.setUserID(0, 1L);
   prefsForUser1.setItemID(0, 101L);
   prefsForUser1.setValue(0, 3.0f);
   prefsForUser1.setItemID(1, 102L);
   prefsForUser1.setValue(1, 4.5f);
   preferences.put(1L, prefsForUser1);
    DataModel model = new GenericDataModel(preferences);
    System.out.println(model);
```

```
import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
class RecommenderIntro {
 private RecommenderIntro() {
 public static void main(String[] args) throws Exception {
    DataModel model = new FileDataModel(new File("intro.csv"));
   UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
   UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
   Recommender recommender = new GenericUserBasedRecommender(
        model, neighborhood, similarity);
   List<RecommendedItem> recommendations = recommender.recommend(1, 1);
   for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
```

```
import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
class RecommenderIntro {
 private RecommenderIntro() {
 public static void main(String[] args) throws Exception {
   DataModel model = new FileDataModel(new File("intro.csv"));  FileDataModel
   UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
   UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
   Recommender recommender = new GenericUserBasedRecommender(
       model, neighborhood, similarity);
   List<RecommendedItem> recommendations = recommender.recommend(1, 1);
   for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
```

```
import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
class RecommenderIntro {
 private RecommenderIntro() {
 public static void main(String[] args) throws Exception {
   DataModel model = new FileDataModel(new File("intro.csv"));
   UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
   UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
   Recommender recommender = new GenericUserBasedRecommender(
       model, neighborhood, similarity);
                                                                           2 neighbours
   List<RecommendedItem> recommendations = recommender.recommend(1, 1);
   for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
```

```
import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
class RecommenderIntro {
 private RecommenderIntro() {
 public static void main(String[] args) throws Exception {
   DataModel model = new FileDataModel(new File("intro.csv"));
   UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
   UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
   Recommender recommender = new GenericUserBasedRecommender(
       model, neighborhood, similarity);
   List<RecommendedItem> recommendations = recommender.recommend(1, 1);
   for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
                                                                   Top-1 Recommendation
                                                                   for User 1
```

Example 4: MovieLens Recommender

- Download the GroupLens dataset (100k)
 - Its format is already Mahout compliant

 Now we can run the recommendation framework against a state-of-the-art dataset

Example 4: MovieLens Recommender

```
import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
class RecommenderIntro {
 private RecommenderIntro() {
 public static void main(String[] args) throws Exception {
    DataModel model = new FileDataModel(new File("ua.base"));
   UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
   UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
   Recommender recommender = new GenericUserBasedRecommender (
        model, neighborhood, similarity);
   List<RecommendedItem> recommendations = recommender.recommend(1, 20);
    for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
```

Example 4: MovieLens Recommender

```
import org.apache.mahout.cf.taste.impl.model.file.*;
import org.apache.mahout.cf.taste.impl.neighborhood.*;
import org.apache.mahout.cf.taste.impl.recommender.*;
import org.apache.mahout.cf.taste.impl.similarity.*;
import org.apache.mahout.cf.taste.model.*;
import org.apache.mahout.cf.taste.neighborhood.*;
import org.apache.mahout.cf.taste.recommender.*;
import org.apache.mahout.cf.taste.similarity.*;
class RecommenderIntro {
 private RecommenderIntro() {
 public static void main(String[] args) throws Exception {
   DataModel model = new FileDataModel(new File("ua.base"));
   UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
   UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
   Recommender recommender = new GenericUserBasedRecommender(
       model, neighborhood, similarity);
   List<RecommendedItem> recommendations = recommender.recommend(10, 50);
   for (RecommendedItem recommendation : recommendations) {
      System.out.println(recommendation);
                                                                         We can play with
                                                                           parameters!
```

```
class EvaluatorIntro {
                                         Ensures the consistency between
 private EvaluatorIntro() {
                                             different evaluation runs.
 public static void main(String[] args; throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
     @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
       UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
       UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
       return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
   double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
  System.out.println(score);
```

```
class EvaluatorIntro {
 private EvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
       UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
       UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
       return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
   double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
  System.out.println(score);
```

```
class EvaluatorIntro {
 private EvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
       UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
       UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
       return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
  double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
  System.out.println(score);
                                                    70%training
                                              (evaluation on the whole
```

dataset)

```
class EvaluatorIntro {
 private EvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
       UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
       UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
       return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
   double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
  System.out.println(score);
```

Recommendation Engine

```
class EvaluatorIntro {
 private EvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
   RecommenderEvaluator rmse = new RMSEEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
       UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
       UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
       return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
   double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
  System.out.println(score);
                                                     We can add more measures
```

```
class EvaluatorIntro {
 private EvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
   RecommenderEvaluator rmse = new RMSEEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
       UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
       UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
       return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
   double score = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
  double rmse = evaluator.evaluate(recommenderBuilder, null, model, 0.7, 1.0);
   System.out.println(score);
  System.out.println(rmse);
```

Example 6: IR-based evaluation

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
        return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,0);
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                                                   Precision@5, Recall@5, etc.
```

Example 6: IR-based evaluation

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
    DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity, model);
        return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,0);
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                                                   Precision@5, Recall@5, etc.
```

Mahout Strengths

Fast-prototyping and evaluation

 To evaluate a different configuration of the same algorithm we just need to update a parameter and run again.

- Example
 - Different Neighborhood Size

Example 6b: IR-based evaluation

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
    DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood = new NearestNUserNeighborhood(200, similarity, model);
        return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                                                    Set Neighborhood to 200
```

Example 6b: IR-based evaluation

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        UserNeighborhood neighborhood = new NearestNUserNeighborhood (500, similarity, model);
        return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                                                    Set Neighborhood to 500
```

Mahout Strengths

Fast-prototyping and evaluation

 To evaluate a different configuration of the same algorithm we just need to update a parameter and run again.

Example

Different Similarity Measure (e.g. Euclidean One)

Example 6c: IR-based evaluation

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
    DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        UserSimilarity similarity = new EuclideanDistanceSimilarity(model);
        UserNeighborhood neighborhood = new NearestNUserNeighborhood (500, similarity, model);
        return new GenericUserBasedRecommender (model, neighborhood, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model,)
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                                                         Set Euclidean Distance
```

Mahout Strengths

Fast-prototyping and evaluation

 To evaluate a different configuration of the same algorithm we just need to update a parameter and run again.

Example

Different Recommendation Engine (e.g. SlopeOne)

Example 6d: IR-based evaluation

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
    RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
         return new SlopeOneRecommender (model);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,0);
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                             Change Recommendation
                                                     Algorithm
```

- Mahout provides Java classes for building an item-based recommender system
 - Amazon-like
 - Recommendations are based on similarities among items (generally pre-computed offline)


```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);
        return new GenericItemBasedRecommender(model, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD, 1,0);
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
```

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
   DataModel model = new FileDataModel(new File("ua.base"));
   RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
     public Recommender buildRecommender(DataModel model) throws TasteException {
        ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);
        return new GenericItemBasedRecommender (model, similarity)
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESHOLD,
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
                                                                             ItemSimilarity
```

```
class IREvaluatorIntro {
 private IREvaluatorIntro() {
 public static void main(String[] args) throws Exception {
   RandomUtils.useTestSeed();
    DataModel model = new FileDataModel(new File("ua.base"));
    RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
   // Build the same recommender for testing that we did last time:
   RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
      @Override
      public Recommender buildRecommender(DataModel model) throws TasteException {
        ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);
        return new GenericItemBasedRecommender(model, similarity);
    };
    IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 5,
                        GenericRecommenderIRStatsEvaluator.CHOOSE THRESELD, 1,0);
    System.out.println(stats.getPrecision());
    System.out.println(stats.getRecall());
    System.out.println(stats.getF1());
```

No Neighborhood definition for itembased recommenders

End. Do you want more?

Do you want more?

- Recommendation
 - Deploy of a Mahout-based Web Recommender
 - Integration with Hadoop
 - Integration of content-based information
 - Custom similarities, Custom recommenders, Rescoring functions

Classification, Clustering and Pattern Mining