III SEMANA DE ENGENHARIA, TECNOLOGIA E COMPUTAÇÃO

AutoML

Alan Cândido de Souza

Bambuí, 27 de setembro de 2018

APRESENTAÇÃO

- Engenheiro Eletricista FASA (Montes Claros-MG)
- Mestrando em Inteligência Computacional (UFMG)

ROTEIRO PARTE 1:

- Motivação
- Conceitos básicos de aprendizado de máquina
- Apresentação dos modelos
- Mãos na massa: #LetsCode

ROTEIRO PARTE 2:

- Introdução ao Aprendizado de Máquina automatizado
- H2O AutoML
- Mãos na massa: #LetsCode

PARTE 1: Motivação

Por que AutoML?

Problema hipotético:

Dataset de diagnóstico de pacientes em uma tomografia.

Qual modelo usar?

Vantagens do AutoML

- Rápida experimentação (poucas linhas de código)
- Identificação dos melhores modelos
- Configuração de parâmetros
- Warning: só mais uma ferramenta do seu toolbox

Aprendizado de Máquina

Aprendizado de Máquina

- Conceitos Básicos
- Tipos de problemas
- Métricas de desempenho
- Parâmetros

Conceitos Básicos:

Tipos de aprendizado:

- Aprendizado Supervisionado
- Aprendizado não-supervisionado
- Outros (Reinforcement Learning, etc)

Tipos de Problemas:

Métricas de desempenho:

• O quão bom é o seu algoritmo?

Métricas de regressão:

- MSE (Mean Squared Error)
- Outras métricas (deviance, R², etc...)

Métricas de classificação:

- Confusion Matrix (Misclassification)
- Erro médio por classe
- Logloss
- MSE

Dados desbalanceados

AUC-ROC

• TPR (Taxa de verdadeiros positivos- *Recall*):

$$\frac{TP}{TP + FN}$$

• FPR (Taxa de falsos positivos):

$$\frac{FP}{FP + TN}$$

▼ ROC CURVE - VALIDATION METRICS , AUC = 0.644682

, ,	
threshold	0.5038
f1	0.4804
f2	0.4237
f0point5	0.5546
accuracy	0.6419
precision	0.6183
recall	0.3928
specificity	0.8234
absolute_MCC	0.2411
min_per_class_accuracy	0.3928
tns	970
fns	521
fps	208
tps	337
tnr	0.8234
fnr	0.6072
fpr	0.1766
tpr	0.3928
idx	151

CM -

Actual/Predicted	Θ	1	Error	кате
Θ	970	208	0.1766	208 / 1178
1	521	337	0.6072	521 / 858
Total	1491	545	0.3581	729 / 2036

Estágios do aprendizado

- Treinamento
- Validação
- Teste

Treinamento:

- Processo iterativo (definição do número de epochs)
- Scoring (acompanhamento do modelo)
- Early stoping

Underfitting e overfitting

Underfitted

Good Fit/Robust

Overfitted

Validação Cruzada

Modelos de Aprendizado de Máquina

Modelos de aprendizado supervisionado

- Modelos baseados em árvores de decisão (Random Forest e GBM)
- Modelos Lineares
- Redes Neurais Artificiais

Modelos baseados em árvores de decisão

Árvores de Decisão: Classificação

Árvores de Decisão: Regressão

Random Forest

- Modelo ensemble (Combina várias árvores)
- Atribui os dados de forma aleatória
- Classificação: a resposta mais popular
- Regressão: a média dos valores

Principais parâmetros:

- Número de árvores do modelo
- Profundidade máxima (controla a complexidade de cada árvore

Random Forest:

Conjunto de árvores de decisão com profundidade 1, 3, e 6 respectivamente

Gradient Boosting Machines (GBM)

- Modelo ensemble (assim como Random Forest)
- Bosting: melhora a interpretação de cada árvore em cada iteração a partir da atribuição de pesos (gradiente) nos dados mais "difíceis"

Problemas com outliers e overfitting (algoritmos de poda)

Gradient Boosting Machines:

Modelos Lineares

Generalized Linear Models (GLM):

- Aprendizado estatístico
- Regressão Linear
- Regressão Logística
- Linear Discriminant Analysis
- Flexibilidade para trabalhar com grandes quantidades de dados

Regressão Linear

$$\hat{y} = x^T \beta + \beta_0$$

$$\max_{\beta,\beta_0} \frac{-1}{2N} \sum_{i=1}^{N} (x_i^T \beta + \beta_0 - y_i)^2 - \lambda(\alpha \| \beta \|_1 + \frac{1}{2}(1 - \alpha) \| \beta \|_2^2$$

$$D = \sum_{i=1}^{N} (y_i - \widehat{y}_i)$$

Regressão Logística:

- Classificação Binomial:
- Modela a probabilidade de determinado dado de entrada pertencer à uma das classes

Regressão Logística:
$$\hat{y} = \frac{e^{x^T \beta + \beta_0}}{1 + e^{x^T \beta + \beta_0}}$$

$$\max_{\beta,\beta_0} \frac{1}{N} \sum_{i=1}^{N} y_i (x_i^T \beta + \beta_0) - \log(e^{x_i^T \beta + \beta_0})) - \lambda(\alpha \| \beta \|_1 + \frac{1}{2} (1 - \alpha) \| \beta \|_2^2$$

$$D = -2\sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

Regressão Logística:

Regularização:

- L1: Lasso Regression
- L2: Ridge Regression
- Elastic Net

Redes Neurais

Deep Learning

- Redes neurais (simulação do cérebro humano)
- Organizado por camadas
- Transforma dados (inputs) em saídas (outputs)
- Apresenta bons resultados para problemas difíceis (reconhecimento de padrões em imagens por exemplo)

MÃOS NA MASSA PARTE 1:

H2O Frame work

- Implementada em Java
- Open source
- Escalável para big data
- APIs disponíveis em R, python, scala, e interface web (Flow)

Google Colaboratory

https://colab.research.google.com/

PARTE 2: Introdução ao Aprendizado de Máquina **Automatizado**

Aspectos de AutoML:

Model Generation

Ensembles

Fonte: H2O World 2017

Preparação dos dados

- Normalização ~N(0,1)
- Remoção de Nas (missing data)
- One-hot encoding de variáveis categóricas
- Extração de características (PCA)
- Feature Engineering

Geração de Modelos:

- Grid Search (Random e Cartesian)
- Ajuste de parâmetros via Early stopping
- Bayesian Hyperparameter Optimization

Ensembles:

Ensembles:

- Bagging/Averiging
- Staking/Super Learning
- Ensemble selection

H2O AutoML

Random Staking:

Combinação entre o *Grid Search* aleatório e os *Stacked Ensembles*

Stacked Ensembles:

- Define n "Base learners" (outros modelos de ML)
- Especifica um "metalearner" (apenas mais um alg.)
- Implementa validação cruzada (K-fold) nos base learners

Stacked Ensembles:

- Coleta os valores obtidos dos base learners
- Treina um novo algoritmo (metalearner) para encontrar a combinação ótima dos base learners
- Como adiciona-se apenas mais uma etapa, o custo computacional é pequeno

Stacked Ensembles:

$$\operatorname{n}\left\{ \left[p_{1}\right] \cdots \left[p_{L}\right] \left[y\right]
ight.
ightarrow \operatorname{n}\left\{ \left[\begin{array}{c} Z \end{array} \right] \left[y\right]
ight.$$

Random Grid + Stacking:

- Random Grid Search permite comparar o ajuste de diferentes parâmetros
- Permite ainda gerar diferentes configurações de um mesmo modelo

Random Grid + Stacking:

 No stacked ensemble é recomendável observar se os modelos de base têm boa performance sozinhos e se geram erros não correlacionados entre si

Disponível em vários pacotes

- Auto-Keras
- Auto-sklearn
- H2O AutoML
- tpot
- (...)

Disponível em vários pacotes

Benchmarking Automatic Machine Learning Frameworks

Adithya Balaji * 1 Alexander Allen * 1

Abstract

AutoML serves as the bridge between varying levels of expertise when designing machine learning systems and expedites the data science process. A wide range of techniques is taken to address this, however there does not exist an objective comparison of these techniques. We present a benchmark of current open source AutoML solutions using open source datasets. We test autosklearn, TPOT, auto_ml, and H2Os AutoML solu-

dardized techniques to the data developed over the years and collected in open source machine learning libraries such as scikit-learn. However, the methods that are used to automate the application and assessment of these techniques widely differ. These methods cannot be assessed on the rigor of their theory alone or by the individual performance of the constituent algorithms. Thus, they must be experimentally assessed as a whole across a variety of data. We perform a quantitative assessment on the most mature open source solutions available for AutoML.

Comparação entre modelos:

Comparação entre modelos:

H20 AutoML

H2O AutoML

- Pré-processamento dos dados
- Random Grid Search em parâmetros pré-definidos
- Early Stopping
- Random Forest, GBM, GLM, Deep Learning
- Rankeamento dos modelos

H2O AutoML em R

```
library(h2o)
h2o.init()
train <- h2o.importFile("train.csv")</pre>
aml <- h2o.automl(y = "response_colname",</pre>
                    training_frame = train,
                    max_runtime_secs = 600)
lb <- aml@leaderboard</pre>
```


H2O AutoML em Python

```
import h2o
from h2o.automl import H20AutoML
h2o.init()
train = h2o.import file("train.csv")
aml = H20AutoML(max_runtime_secs = 600)
aml.train(y = "response_colname",
          training_frame = train)
lb = aml.leaderboard
```


H2O AutoML em FLOW

H2O AutoML Leaderboard

model_id	auc	logloss
StackedEnsemble_AllModels_0_AutoML_20171121_012135	0.788321	0.554019
StackedEnsemble_BestOfFamily_0_AutoML_20171121_012135	0.783099	0.559286
GBM_grid_0_AutoML_20171121_012135_model_1	0.780554	0.560248
GBM_grid_0_AutoML_20171121_012135_model_0	0.779713	0.562142
GBM_grid_0_AutoML_20171121_012135_model_2	0.776206	0.564970
GBM_grid_0_AutoML_20171121_012135_model_3	0.771026	0.570270
DRF_0_AutoML_20171121_012135	0.734653	0.601520
XRT_0_AutoML_20171121_012135	0.730457	0.611706
GBM_grid_0_AutoML_20171121_012135_model_4	0.727098	0.666513
GLM_grid_0_AutoML_20171121_012135_model_0	0.685211	0.635138

Referências:

- Cook, Darren. Practical machine learning with H2O: powerful, scalable techniques for deep learning and Al. " O'Reilly Media, Inc.", 2016.
- Documentação H2O: http://docs.h2o.ai
- Tutoriais H2O: https://github.com/h2oai/h2o-tutorials
- Vídeos: https://www.youtube.com/user/0xdata

contato: alansouza@ufmg.br

MÃOS NA MASSA PARTE 2: