Short documentation of the input file syntax for atom-HF solver.

(2023.08.10)

Written by Jānis Užulis janis.uzulis@lu.lv

The input template looks like this in example of a neon atom, where all the parameters that must be replaced are between low dash symbols "_". Only the text in **bold** contains input information, everything else is just comments.

```
Z Rmin Rmax Ngrid version sigma
Z Rmin Rmax Ngrid 1 sigma
xc id(libxc id or -1(LDA) -2(PBE))
_f1_ _f1w_ _f1par_
_f2_ _f2w_ 0
_f3_ _f3w_ 0
Non-local exchange:
_hyboverride_ (true to override hybrid libxc functional parameters)
HFw
               (HF weigth)
HFsrw HFsrp (SR HF weigth and parameter)
Grid 0-equidistant 2-exponential 3-advanced cubic
grid
Relativity(0-false, 1-nZORA, 2-ZORA)
Spin polarised:
.false.
Number of shells:
List of shells: n l occupation
1 0 2.0d0
2 0 2.0d0
2 1 6.0d0
```

There is a script "script_list.py" that can generate and run inputs for you. Description of the parameters:

Z	atomic number
Rmin	coordinate of the first grid point (everithing in Borh units (a.u.))
Rmax	coordinate of the last grid point
Ngrid	number of grid points
sigma	R_RMS of the nucleus. 0d0 in case of point-like nucleus
f1	id number of the first xc functional list of them available here:
	https://tddft.org/programs/libxc/functionals/.
	by using negative parameters -1 or -2 we use the build-in implementation of
	LDA (in case if -1) or PBE (in case if -2).
f1w	weight of the first xc functional.
f1par	0 if we leave all the default functional parameters defined in libxc. If we want
	to use different functional parameters, then this is the number of parameters
	defined for the functional in libxc and then should follow all the parameters in
	new lines.

f2	id number of the second xc functional.
f2w	weight of the second xc functional
f3	id number of the third xc functional
f3w	weight of the third xc functional
hyboverride	.true. if we want to override non-local exchange weigths, .false. if we will
	define them by ourselves.
HFw	weight of the exact HF exchange
HFsrw	weight of the short-range part of the HF exchange
HFsrp	range separation parameter
grid	type of the radial grid 0 - equidistant, 3 - cubic, 5 - 5-th order grid (5 is the best
	choice)
rel	relativity (0 – non, 1 - nZORA, 2 - ZORA)

Some examples of input files are available:

```
examples/ne-pbe
examples/ne-phe
examples/ne-phe0-a
examples/ne-pbe0-a
examples/ne-pbe0-b (the same as ne-pbe0-a, just manually constructed PBE0)
examples/ne-lcblyp-a
examples/ne-lcblyp-b (the same as ne-lcblyp-a, just the short range parameter 0.33 passed to the libxc manually)
examples/ne-lcblyp-c (the same as ne-lcblyp-a, just the non-local part is set manually)
```

Some examples with spin polarization (these results coincide with LDA and LSD configurations in: https://www.nist.gov/pml/atomic-reference-data-electronic-structure-calculations/atomic-reference-data-electronic-7-13):

examples/si-lda-a examples/si-lda-b

To run the calculation the input file has to be passed like this:

./atomHF < examples/ne-lda

In the std output the solver gives useful information about functional like this:

```
*********XC functional info:*******
Libxc version: 5.1.5
1-st XC functional number:
                                  400
The functional 'LC version of BLYP' is an exchange-correlation functional, it belongs to the
'Hybrid GGA' family and is defined in the reference(s):
[1] Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004)
FUCTIONAL: LC version of BLYP Supports: 1 external parameters.
          0 . _omega default value: 0.33000000000000000
                                                             Range separation parameter
********Non-local exchange info********
XC funcitional
               400 contains non-local part.
Fock exchange with weigth: 1.00000000000000000
Fock SR exchange with weigth: -1.00000000000000000
                                                       parameter: 0.33000000000000002
```