

"Diseño y fabricación de una prótesis mecánica para el dedo índice de la mano"

Propuesta de Investigación por:

Lizeth Alexandra Ibarra Alfaro Karen Alexa Pérez Ortiz Maria de los Angeles Puente Peña Viviana Nathalie Tienda Tellez Miguel Angel Martinez Villanueva

Supervisado por:

Isaac Estrada García

Contenido

Resumen	3
1 Introducción (Motivación y Justificación)	4
2 Antecedentes y Estado del Arte	4
Antecedentes	5
3 Hipótesis	6
4. – Propuesta (Concreta)	6
5 Objetivos	6
Objetivo General:	6
Objetivos Específicos (Actividades Concretas):	6
6. – Metodología (¿Cómo?)	7
Diagrama de Flujo	8
7. – Equipos e Infraestructura	10
Herramientas	10
Materiales	10
8. – Referencias	11

Keywords: diseño, biomecánica, dedo, mecánica, prótesis.

Facultad de Ingeniería Mecánica y Eléctrica, 26/sep./2022

Resumen

Se propone hacer una prótesis de dedo índice que sea funcional para personas que no cuenten con ingresos suficientes y que puedan tener esta opción, se espera lograr que esta cuente con la misma funcionalidad de la de un dedo índice real, así como también se espera que esta tenga materiales de buena resistencia, y sea de bajo costo.

Los materiales que se utilizaran son hilo de pescar trenzado fuerte, cordón elástico, filamentos para una impresora 3D y pernos pequeños para las articulaciones y tornillos prisioneros, porque algunos son muy fáciles de conseguir, así como baratos.

En cuanto a las herramientas utilizaremos una impresora 3D, los softwares donde se desarrollarán las piezas para imprimirlas, los cuales son SolidWorks y OpenSCAD, un micrómetro, destornilladores, un cautín de temperatura configurable, diversas lijas, cúter y pinzas para cortar cable.

Observando la implementación de la prótesis en un usuario que no cuente con esta extremidad y viendo de igual forma con el pasar del tiempo como es que el individuo se va acostumbrando a la misma y así poder ver que tan resistentes es esta, de esta forma podemos comprobar la hipótesis propuesta.

Este proyecto aportara a la comunidad debido a que se está creando con el propósito de que sea accesible en cuanto a los costos pero que siga manteniendo cierta calidad, en cuanto a la ciencia se espera que esta sea cómoda y más funcionales que otras prótesis mecánicas, esto haciendo que se permita mejor movilidad y los materiales sean livianos para así mejorar la calidad de vida de los usuarios.

1. - Introducción (Motivación y Justificación)

La problemática que se espera resolver es la de poder elaborar prótesis del dedo índice que sean prácticas al momento de estarlas utilizando y de bajo costo para aquellas personas que no cuenten con los ingresos necesarios y necesiten de estas para continuar de forma más eficiente su día a día, ya sea en su trabajo, en su hogar, etc.

Esto llega a ser interesante debido a que se busca que las personas tengan mejor accesibilidad a este tipo de prótesis y que no solamente sean estéticas si no funcionales para que estas puedan remplazar de forma eficiente el dedo índice que les hace falta, por esto mismo también vale mucho la pena estudiarlo, puesto que hay muchas personas que no cuentan con los recursos necesarios para conseguir una prótesis de calidad.

El beneficio que tendrá la comunidad es, como se mencionó anteriormente, la de poder obtener prótesis del dedo índice funcionales a un precio bajo y de buena calidad. Además, la ciencia ha dado grandes saltos creando prótesis más cómodas y más funcionales. La tendencia es a permitir mayor movilidad y utilizar materiales livianos para mejorar la calidad de vida de quienes han perdido alguna extremidad o han nacido sin ella.

2. - Antecedentes y Estado del Arte

La sustitución por pérdida de miembros humanos por artefactos distintos a los naturales es una realidad desde hace más de dos mil años. Con el tiempo los inventos en los campos de la robótica, en particular de la biomecánica, han proporcionado al ser humano extremidades complementarias que cada día se perfeccionan.

Las amputaciones de los dedos de la mano incapacitan al trabajador de forma permanente para realizar sus actividades de la vida diaria y ocupacional, dependiendo de los dedos afectados. Las manos son el principal instrumento para la manipulación física del medio, siendo la zona con más terminaciones nerviosas del cuerpo humano y fuente de información táctil sobre el entorno.

El principal uso de las manos es el de tomar y sostener objetos, aunque de estos derivan muchos más por la gran versatilidad y precisión de movimientos que posee, siendo usadas como "utensilios" para comer, en el lenguaje de señas, la escritura y para aliviar el dolor mediante técnicas de masaje denominándose "tacto estructurado".

Según la Administración de Salud, Higiene y Seguridad Ocupacional Norteamericana (O.S.H.A), de los 2 millones de trabajadores norteamericanos incapacitados cada año, alrededor de 400.000 presentan lesiones de las manos, siendo la localización más frecuente en los dedos (72%). Los costos de las lesiones de mano en México, genera un total de 2'525.086 días de incapacidad temporal, con un costo promedio por día de 66.7 dólares, generando una erogación en subsidios de 168.473.737 dólares.

Las lesiones de la mano adquieren gran importancia, por ser una región anatómica de excepcional valor, por su utilización en casi todas las profesiones u ocupaciones. Cualquier nivel de amputación, lleva a un grado de incapacidad que puede limitar al individuo incluso para realizar actividades tan elementales como la alimentación y el aseo personal, de manera permanente, requiriendo posteriormente la readaptación laboral o cambio de puesto de trabajo.

Antecedentes

Con el paso de los años la investigación ha experimentado una gran evolución, y actualmente, estas prótesis son capaces de recrear, por ejemplo, el sentido del tacto de zonas amputadas, función que era impensable hace unos años. La primera prótesis de miembro superior registrada data del año 2000 a. C. Fue encontrada en una momia egipcia. La prótesis estaba sujeta al antebrazo por medio de un soporte adaptado al mismo. Existen registros entre los años 950 al 710 A.C. de una prótesis de un dedo del pie encontrada en Cairo, Egipto (se cree que pertenecía a una mujer de la nobleza egipcia).

Posteriormente, con el manejo del hierro, en el año de 1400 se fabricó la mano de Alt-Ruppin. Constaba de un pulgar rígido en oposición y dedos flexibles, los cuales eran flexionados pasivamente: éstos se podían fijar mediante un mecanismo de trinquete. Además, tenía la muñeca movible. En el siglo XIX se emplean el cuero, los polímeros naturales y la madera en la fabricación de prótesis, y en 1946 se crean sistemas de propulsión asistida, dando origen a las prótesis neumáticas y eléctricas.

En las últimas décadas las investigaciones en el desarrollo protésico han permitido importantes avances en sus aplicaciones.

3. - Hipótesis

Nuestra aportación para abordar el problema es poder desarrollar una prótesis que genere gran movilidad debido a su estructura del modelo, así como también gracias a que será creada con materiales livianos y de bajo costo, pudiendo dar respuesta a la pregunta: ¿Es posible crear una prótesis con materiales de calidad y que a su vez sea accesible a personas de bajos recursos que hayan perdido el dedo índice?

4. – Propuesta (Concreta)

Se elaborará una prótesis mecánica para el dedo índice, pero esta deberá ser funcional, de buena calidad y de bajo costo para aquellas personas que necesitan de esta pero no cuentan con los recursos necesarios para su obtención. Para la solución de esta problemática se deberá de analizar correctamente como es que el dedo índice se mueve para hacer de la prótesis una funcional, así como también se deberán usar materiales que sean resistentes y de bajo costo.

5. - Objetivos

Objetivo General:

La elaboración de una prótesis mecánica de algún dedo de la mano para ayudar a personas que no cuenten con el dedo índice, además de ser objeto de estudio para la comprobación de conceptos de biomecánica.

Objetivos Específicos (Actividades Concretas):

- A) Investigar. Sobre prótesis mecánica para los dedos de la mano y la anatomía de la misma.
- **B**) Analizar. Tipos de materiales de buena calidad, resistentes y a buen precio.
- C) Evaluar. Precios y tiempos de diseño y producción de la prótesis.
- **D) Manufacturar.** La prótesis por medio del método de impresión 3D, con diversos materiales de filamento.
- **E**) **Probar.** El funcionamiento correcto y que este sea similar en cuanto a la biología del dedo índice.

F) Examinar. La resistencia, movilidad, comodidad de la prótesis siendo usada por un individuo que le falte esta extremidad (dedo índice).

6. – Metodología (¿Cómo?)

Para cumplir con el objetivo de crear esta prótesis de dedo, tenemos varias opciones, pero la que se ajusta más a nuestra necesidad es hacerla por medio de impresión 3D, ya que no es como tal un producto final, sino un prototipo de una prótesis.

Primero aplicaremos todos nuestros conocimientos sobre como son los mecanismo y formas de las prótesis de dedos, que adquirimos a lo largo que llevamos del curso, como se mencionó anteriormente nuestro diseño se basará en el dedo índice de la mano. Una vez que el diseño esté finalizado procederemos a usar la máquina de impresión 3D, este será nuestro principal proceso de manufactura, en cuanto al material se usara un filamento convencional.

Cuando las piezas ya estén impresas procederemos a lijarlas esto se hace con la finalidad de tener un mejor acabado en las piezas y este sea estético y agradable. Después procederemos a ensamblar cada una de las piezas a presión, además de colocar un perno del tamaño necesario para colocar un perno en los eslabones de los dedos y estos sirvan como ejes de para poder mover el dedo, para al final colocar un cordón elástico por medio de toda la prótesis del dedo ya que con este nosotros podremos moverlo con otros movimientos de la mano o existe la posibilidad de colocar un actuador y él se encargue de realizar este movimiento.

Diagrama de Flujo

7. – Equipos e Infraestructura

Para el diseño y creación de este proyecto haremos uso de programas de software de diseño CAD para poder realizar cada falange y articulación en 3D del dedo índice, y viendo como quedaría el dedo completo ayudándonos de la opción de ensamblaje, para darnos una idea completa del diseño final.

- SolidWorks
- OpenSCAD

Por otro lado, para poder realizar el desarrollo de nuestro proyecto haremos uso de ciertos materiales y herramientas que serían:

Herramientas

- Un micrómetro
- Destornilladores
- Un cautín de temperatura configurable
- Diversas lijas
- Cúter
- Pinzas para cortar cable
- Impresora 3D

Materiales

- Hilo de pescar trenzado fuerte
- Cordón elástico
- Filamentos para una impresora 3D
- Pernos pequeños para las articulaciones
- Tornillos prisioneros

- Dorador González, J. M., Murillo, P. R., Flores Luna, I., & Juárez Mendoza, A. (2004, January 18). ROBÓTICA Y PRÓTESIS INTELIGENTES. *Revista Digital Universitaria*, 6(1). https://www.revista.unam.mx/vol.6/num1/art01/art01_enero.pdf
- Goffreri, C. L. (2015, 28 noviembre). Los avances más notables en la tecnología de prótesis.

 BioBioChile La Red de Prensa Más Grande de Chile. Recuperado 26 de septiembre de 2022, de https://www.biobiochile.cl/noticias/2015/11/28/los-avances-mas-notables-en-la-tecnologia-de-protesis.shtml
- Sullaez, L. C. (s. f.). Repercusión Ocupacional de las Amputaciones Traumáticas en Dedos de la Mano por Accidente de Trabajo. Recuperado 26 de septiembre de 2022, de https://scielo.isciii.es:443/scielo.php?script=sci_arttext&pid=S0465-546X2009000400005