Компактная схема для уравнения Эйлера – Хопфа

Уравнение $u_t + uu_x = 0$ или $u_t + (u^2/2)_x = 0$ (1) можно записать в виде линейного соотношения: $u_t = f_x$ с подстановкой $f = -u^2/2$. Явная схема Эйлера:

$$u_j^{n+1} = \frac{\left(u_{j-1}^n\right)^2 - \left(u_{j+1}^n\right)^2}{4h} \tag{2}.$$

Реализовать легко. Но она неустойчива и имеет 1 порядок аппроксимации по времени.

Компактная схема для линейного соотношения на двух (для u и f) шаблонах 3×2 :

$$a_1 = 1$$
; $b_1 = 4$; $c_1 = 1$; $a_0 = -1$; $b_0 = -4$; $c_0 = -1$; $p_1 = -3\tau / (2h)$; $q_1 = 0$; $r_1 = 3\tau / (2h)$; $p_0 = -3\tau / (2h)$; $q_0 = 0$; $r_0 = 3\tau / (2h)$.

Это решение получается из СЛАУ:

№	u _{km}	f _{km}	Уравнение
1	1	0	$a_0 + b_0 + c_0 + a_1 + b_1 + c_1 = 0$
2	0	1	$p_0 + q_0 + r_0 + p_1 + q_1 + r_1 = 0$
3	0	t	$(p_1 + q_1 + r_1)\tau = 0$
4	t	X	$(a_1 + b_1 + c_1)\tau = (r_0 + r_1 - p_0 - p_1)h$
5	t^2	2tx	$(a_1 + b_1 + c_1)\tau^2 = 2h\tau(r_1 - p_1)$
6	\mathcal{X}	0	$(c_0 + c_1 - a_0 - a_1)h = 0$
7	x^2	0	$(c_0 + c_1 + a_0 + a_1)h^2 = 0$
8	tx	$x^{2}/2$	$(c_1 - a_1)\tau h = (r_0 + r_1 + p_0 + p_1)h^2/2$
9	t	$x^{3}/3$	$(c_1 + a_1)h^2\tau = (r_0 + r_1 - p_0 - p_1)h^3/3$
	x^2		
10	X	tx^2	$(c_1 - a_1)h\tau^2 = \tau h^2(r_1 + p_1)$
	t^2		
11	x^2t	$2tx^3$	$(c_1 + a_1)h^2\tau^2 = 2\tau(r_1 - p_1)h^3/3$
		/3	
12	Нормиро		$p_1 = -3\tau/(2h)$
	вочное		
	условие		

Замечание. Однородная часть СЛАУ вырождена. Наше решение получается, если дополнительно предположить кососимметрию коэффициентов: $p_j = -r_j, \ j = 0,1.$

Итак, компактная схема дает соотношение в произвольной точке сетки:

$$a_1 u_{j-1}^{n+1} + b_1 u_j^{n+1} + c_1 u_{j+1}^{n+1} = -a_0 u_{j-1}^n - b_0 u_j^n - c_0 u_{j+1}^n + \boldsymbol{\rho}_1 \boldsymbol{f}_{j-1}^{n+1} + \boldsymbol{q}_1 \boldsymbol{f}_j^{n+1} + \boldsymbol{r}_1 \boldsymbol{f}_{j+1}^{n+1} + \boldsymbol{\rho}_0 \boldsymbol{f}_{j-1}^n + \boldsymbol{q}_0 \boldsymbol{f}_j^n + \boldsymbol{r}_0 \boldsymbol{f}_{j+1}^n, \boldsymbol{j} = 1, ..., N-1$$

Подставим вместо f ее представление $f = -u^2 / 2$:

$$a_{1}U_{j-1}^{n+1} + c_{1}U_{j+1}^{n+1} + b_{1}U_{j}^{n+1} = -a_{0}U_{j-1}^{n} - c_{0}U_{j+1}^{n} - b_{0}U_{j}^{n} - p_{0}\frac{(U_{j-1}^{n})^{2}}{2} - r_{0}\frac{(U_{j+1}^{n})^{2}}{2} - r_{0}\frac{(U_{j+1}^{n})^{2}}{2} - r_{0}\frac{(U_{j+1}^{n})^{2}}{2} - r_{0}\frac{(U_{j+1}^{n})^{2}}{2} - r_{0}\frac{(U_{j+1}^{n})^{2}}{2} - r_{0}\frac{(U_{j}^{n})^{2}}{2}, \quad j = 1,...,N-1.$$
(3)

Схема точная, но как решить нелинейную (квадратичную) систему алгебраических уравнений? Линеаризация! Пусть

$$u_j^{n+1} = \tilde{u}_j^{n+1} + \varepsilon_j, \tag{4}$$

где первое слагаемое получено по явной схеме Эйлера (2), а второе – малая поправка к первому слагаемому. При подстановке в (3) квадратами малых величин $\left\{ \varepsilon_{j}\right\}$ пренебрегаем.

Тогда получаем из (3) СЛАУ относительно малых поправок $\{\varepsilon_j\}$, где в левой части трехдиагональная матрица с элементами: $a_1 + p_1 \tilde{u}_{j-1}^{n+1}$, $b_1 + q_1 \tilde{u}_j^{n+1}$, $c_1 + r_1 \tilde{u}_{j+1}^{n+1}$.

При достаточно малых шагах по времени au в такой матрице будет доминировать главная диагональ.

После определения неизвестных $\left\{ \varepsilon_{j}\right\}$ подставляем их в формулу (4). Теперь можно снова делать шаг по явной схеме Эйлера.

Замечание 1. Малость $\{\varepsilon_j\}$ необходимо контролировать на каждом шаге. Если они не слишком малы, стоит сделать вторую итерацию для нахождения второй поправки.

Замечание 2. При приближении решения к моменту градиентной катастрофы, следует опасаться вычислительных осцилляций решения. При возникновении «пилы» нужно применять к решению оператор сглаживания.

Замечание 3. Вместо схемы Эйлера на первом шаге можно использовать Лакса – Вендроффа или Мак-Кормака. Они условно устойчивы и поточнее, чем Эйлер.

Замечание 4. В уравнении Эйлера – Хопфа $f = -u^2/2$. Для другого вида f будут другие уравнения. Но метод линеаризации и применения компактной схемы остается применимым.