Persistent Homology

(Or how I learn this new data analysis methodology in 2020)

Tzu-Chi Yen

MATH 6220: Introduction to Topology II

Class Presentation

April 17, 2020

A Motivating Example

- Letter A × 1?
- Letter B \times 11?
- Points × 176?

Scale matters!

Outline

- A motivating example
- Introduction & active research directions

[Gunnar Carlsson "Persistent Homology and Applied Homotopy Theory." arXiv (2020)]

Theoretical foundations

Stability theorem

Topological / algebraic persistence, & stability

Structure theorem

Computation

[Steve Oudot "Persistence Theory." AMS monograph (2015)]

[Vidit Nanda's notes on computational algebraic topology (2020)]

(Three interesting applications)

[Ann E. Sizemore et al., "TDA for the network neuroscientist." Network Neuroscience (2019).]

[Tamal. K. Dey et al. "An efficient algorithm for 1-dimensional (persistent) path homology." SoCG (2020).]

[Michelle Feng & Mason A. Porter "Persistent Homology of Geospatial Data: A Case Study with Voting." SIAM Review (2020).]

Beyond persistence homology

[Han Riess. "Beyond Persistent Homology: A Mathematical Guide." Preprint (2019).]

Conclusion

Introduction

- Original motivation: Extend the ideas of algebraic topology from the category of spaces X to situations where we only have a sampling of the space X.
 - Only 20 years in history!
- Active directions include:
 - Coordinatization of barcodes
 - Stability results
 - Coverage and evasion problems
 - Generalized persistence
 - Probabilistic analysis and inference
 - Symplectic geometry

Topological Persistence

Def: Filtration

A filtration is a sequence of nested topological spaces $X_0 \subseteq X_1 \subseteq \ldots \subseteq X_n$.

• Note: From topological persistence to algebraic persistence

Applying the "d-dimensional" homology with coefficient in a field \mathbb{F} , i.e., $H_d(\cdot, \mathbb{F})$, to a filtration gives a sequence of vector spaces & linear maps,

$$H_d(K_0; \mathbb{F}) \xrightarrow{H_d \circ f_0} H_d(K_1; \mathbb{F}) \xrightarrow{H_d \circ f_1} \cdots \xrightarrow{H_d \circ f_{n-1}} H_d(K_n; \mathbb{F})$$

where f_* is the inclusion simplicial map sending K_* to the next K_{*+1} .

Algebraic Persistence (1 of 2)

• Def: Persistence module

A persistence module is a sequence V_* of vector spaces and linear maps, i.e.,

$$V_0 \xrightarrow{\phi_0} V_1 \xrightarrow{\phi_1} V_2 \xrightarrow{\phi_2} \dots \xrightarrow{\phi_{n-1}} V_n$$

• Def: Persistence homology groups

The persistent homology groups of \mathbb{V}_* are $H_i^j(\mathbb{V}_*) = \operatorname{Im}\left[\psi_{j-1} \circ \ldots \circ \psi_{i+1} \circ \psi_i\right]$, assuming $i \leq j$. For convenience, we can write $\psi_i^j: V_i \to V_j$. Then, we have the following interpretation:

An element $\alpha \in V_i$ is <u>BORN</u> at i if $\alpha \notin \operatorname{Im} \psi_{i-1}$ and <u>DIES</u> at j > 1 if $\psi_i^j(\alpha) = 0$ but $\psi_i^{j-1}(\alpha) \neq 0$.

• Def: Interval module

Given i < j, the interval module $\mathbb{I}_*^{[i,j)}$ is:

Nicest possible persistence modules

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{F} \xrightarrow{\operatorname{Id}} \mathbb{F} \xrightarrow{\operatorname{Id}} \cdots \xrightarrow{\operatorname{Id}} \mathbb{F} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow$$

Algebraic Persistence (2 of 2)

Structure theorem

To each persistence module V_* of vector spaces over $\mathbb F$, one can associate a multi-set of intervals,

$$Bar(V_*) = \{ [i, j) \mid 0 \le i < j < \infty \} .$$

such that V_* is isomorphic to a direct sum of interval modules,

$$\mathbb{V}_* \cong \bigoplus_{[i,j) \in \text{Bar}(V)} \mathbb{I}_*^{[i,j)} .$$

"proof"

Every persistence module is an "honest module" in the sense of abstract algebra over the polynomial ring $\mathbb{F}[t]$, where t acts on $\alpha \in V_i$ by pushing it to $\psi_i(\alpha) \in V_{i+1}$. These "finitely generated modules" over $\mathbb{F}[t]$ (a principle ideal domain) decompose as follows.

$$\exists \{\alpha_i, i \in I\}$$
 and $\exists \{\beta_i < \delta_i, j \in J\}$, such that

"torsion part" (quotient by ideal)

$$\mathbb{V}_* \cong \bigoplus_{\alpha_i} t^{\alpha_i} \cdot \mathbb{F}[t] \oplus \bigoplus_{\beta_j < \gamma_j} t^{\beta_j} \cdot \mathbb{F}[t]/t^{\gamma_j} \ .$$
 "free part"

And in this case ...

$$Bar(\mathbb{V}_*) = \coprod_{i,j} \{ [\alpha_i, \infty) \} \{ [\beta_j, \gamma_j) \}.$$

Computation


```
Algorithm 1: Matrix reduction

Input: m \times m binary matrix M

1 Let R = M;

2 for j = 1 to m do

3 | while there exists k < j with low(k, R) = low(j, R) \neq 0 do

4 | add (modulo 2) column k to column k in k;

5 | end

6 end

Output: k
```

• Caveat: The row & col operations are computationally expensive!

The time complexity scales at most cubic in the number m of simplices of K. But m is combinatorially large.

Example Persistent Homology Calculation (outcome: barcodes)

From Data to Simplicial Complex

- Vietoris-Rips complex
 - Input format: point cloud

- Clique (or flag) complex
 - Input format: binary graph

- Nerve complex
 - Input format: graph where groups of nodes share a feature
- Other flavors include witness complex, Čech complex, Alpha complex, etc. You can even craft your own! For example, statistically sound filtrations or filtrations that better detect the changes in data. [Rob Ghrist, "Elementary Applied Topology." (2014)]
- To learn which computational tool to use (e.g., software packages), see Nina Otter et al., "A roadmap for the computation of persistent homology." EPJ Data Science (2017).

Stability (1 of 2; Goal: be able to compare barcodes & persistence modules)

• Def: ϵ -matching

Let B and B' be two barcodes. A ϵ -matching between them is a bijection $\mu: B_0 \xrightarrow{\simeq} B'_0$ where $B_0 \subseteq B$ and $B'_0 \subseteq B'$ satisfying:

- (A) All intervals in $(B-B_0)$ and $(B'-B_0')$ have length $\leq 2\epsilon$.
- (B) If $\mu\left([a,b)\right)=[a',b')$ for some $[a,b)\in B_0$, then $|a-a'|<\epsilon$ and $|b-b'|<\epsilon$.
- Def: The Bottleneck distance between barcodes B and B' is $d_{\text{Bottle}}(B,B') = \inf\{\epsilon > 0 \mid \exists \epsilon \text{-matching } B \leftrightarrow B'\}$.

Stability (2 of 2; Goal: be able to compare barcodes & persistence modules)

• Def: ϵ -interleaving

Let U_* and V_* be two \mathbb{R}^+ -indexed persistence modules. A ϵ -interleaving between them is a family of maps $\{\phi_t: U_t \to V_{t+\epsilon} \mid \forall t \in \mathbb{R}^+\}$ and $\{\psi_t: V_t \to U_{t+\epsilon} \mid \forall t \in \mathbb{R}^+\}$ such that all possible triangles and parallelograms commute, e.g.,

- Def: The Interleaving distance between U_* and V_* is $d_{\text{Interl}}(U_*, V_*) = \inf\{\epsilon > 0 \mid \exists \epsilon \text{-interleaving } U_* \leftrightarrow V_*\}$.
- Stability Theorem

If U_* and V_* are tame \mathbb{R}^+ -indexed persistence modules, then there is an isometry:

$$d_{\text{Interl}}(U_*, V_*) = d_{\text{Bottle}(\text{Bar}(U_*), \text{Bar}(V_*))}$$
.

"proof" See Lesnick & Bauer's "induced matchings" (SOCG'14)

Application 1 of 3: Persistent Homology in Neuroscience

"Find 'holes' in the network of interacting brain regions, across organisms"

Application 2 of 3: Persistent Homology of Geospatial Data

"Find a Blue island in the Red sea …"

"... by constructing better complexes for 2D data"

[Ann E. Sizemore et al., "TDA for the network neuroscientist." Network Neuroscience (2019).]

Application 3 of 3: Persistent Path Homology

- On the right : Minimal cycles for persistent path homology on migration network
- Dataset : UN's net migration network (a weighted directed graph)

Compute "minimal homology basis"

Topological analysis -> Geometric analysis!

Beyond Persistent Homology

- Computation & math issues (e.g., do we really need <u>all</u> simplices before we can compute homology?)

Han Riess, "Beyond Persistent Homology: A Mathematical Guide." Preprint (2019).

Justin Curry, Robert Ghrist & Vidit Nanda, "Discrete Morse Theory for Computing Cellular Sheaf Cohomology." FoCM (2016).

Conclusion

(see the whole slides)

Thanks!