Лекция по теории вероятности №2.

Чудинов Никита (группа 145)

7 сентября 2015

Заметка. Список свойств P(A):

- 1. $\forall A \in \Omega P(A) \geqslant 0$;
- 2. $P(\Omega) = 1$;
- 3. Если $A \cdot B = \emptyset$, то P(A + B) = P(A) + P(B).

Определение 1. Если $A \cdot B = \emptyset$, то события A и B несовместны.

Определение 2 (Геометрическое определение вероятности). Пусть мы имеем n-мерное пространство конечной меры Ω . Тогда область A в ней будет показывать событие, а площадь его по отнод шению к площади пространства будет вероятностью:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

Определение 3 (Частота). Пусть опыт повторён n раз, из которых событие A произошло m_A раз. Тогда величина $\frac{m_A}{N}$ называется $uacmomo\check{u}$ события.

Определение 4 (Частотное определение (определение фон Мизеса)). Пусть m_A — частота события A. Тогда

$$\lim_{N \to \infty} \frac{m_A}{N} \to P(A),$$

является вероятностью события A.

Определение 5 (Аксиоматическое определение Колмогорова). Пусть $\mathcal{F}-\sigma$ -алгебра событий на пространстве Ω . Тогда числовая функция $P:\mathcal{F}\to\mathbb{R}^1$, удовлетворяющая условиям

- 1. $\forall A \in \mathcal{F}, P(A) \geqslant 0$;
- 2. $P(\Omega) = 1$;
- 3. Если $A_1, \ldots, A_n, \ldots \in \mathcal{F}$ попарно несовместны, то $P\left(\sum_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i);$

называется вероятностью.

Определение 6. Тройка $\{\Omega, \mathcal{F}, P\}$ называется вероятностным пространством.

Заметка. Свойства P(A):

- 1. $P(A) = 1 P(\overline{A});$
- 2. $P(\emptyset) = 0$;
- 3. $A \subseteq B \Rightarrow P(A) \leqslant P(B)$;
- 4. $\forall A \subseteq \Omega : 0 \leqslant P(A) \leqslant 1$;

5.
$$P(A + B) = P(A) + P(B) - P(AB);$$

Определение 7. Пусть P(B) > 0. Тогда P(A), вычисленная в предположении того, что событие B уже произошло, называется условной вероятностью события A при условии B:

$$P(A/B) = \frac{P(A \cdot B)}{P(B)} = \frac{|A \cdot B|}{|B|}.$$

Определение 8. События A и B называются *независимыми*, если P(A/B) = P(A).