# Descriptive Statistics

## Agenda

- What is Statistics?
- Population Vs. Sample
- Descriptive Statistics
- Univariate Analysis
- Measures of Center (Central Tendency)
- Five Number Summary

- Measure of Spread (Dispersion)
- Shape of Data
- Normal Distribution
- Outliers & Boxplot
- Covariance & Correlation

## What is Statistics?

#### What is Statistics?

 The science of collecting, analyzing, presenting, and interpreting data.

To get information from Data.



# Population Vs. Sample



Source : datatab.net

#### <u>Population Vs. Sample</u>

- Population is the entire group that you want to draw conclusions about.
- Sample is the specific representative group that you will collect data from.

#### **Descriptive Vs. Inferential**

- Descriptive statistics are used to describe the characteristics or features of a dataset (also known as 'summary statistics')
- Inferential statistics focus on making generalizations about a larger population based on a representative sample of that population.

# **Descriptive Statistics**



| Employee | Position      | L | _evel | 5 | Salary | # supervision |
|----------|---------------|---|-------|---|--------|---------------|
| Ahmad    | HR Specialist |   | Α     |   | 6500   | 2             |
| Mohamed  | Accountant    |   | В     |   | 7500   | 1             |
| Sayed    | Lawyer        |   | С     |   | 8450   | 0             |
| Alaa     | Engineer      |   | В     |   | 9150   | 3             |
| Adel     | Trainer       |   | С     |   | 4757   | 0             |
| Osama    | Sales         |   | Α     |   | 7546   | 2             |

Analysis

Bivariate

Univariate

# Univariate Analysis

# Measures of Center (Central Tendency)

#### Why Center?

 To give one representative number about some feature.

#### Mean

The average value

#### How to find the Mean:

- Add up all the numbers.
- Divide the sum by the number of values.

E.g. The mean of 3,2,10,5 is

$$\frac{3+2+10+5}{4} = \frac{20}{4} = 5$$

#### Median

The middle number

#### How to find the Median:

- Put the numbers from smallest to largest.
- The number in the middle is the median. If there are two middle numbers, add them and divide by two.

#### Mode

The most frequent number

#### **Special Cases:**

- No Mode if all the numbers occur the same amount of times.
- More than one Mode if more than one number is the most frequent.

Source: onlinemathlearning.com

## Example



Source : datatab.net

#### Median for Odd & Even Numbers

#### Odd number of values

The median is a value that actually occurs.



#### Even number of values

The mean value of the two middle values



Source: datatab.net

#### Mean Vs. Median



Source : datatab.net

## Example

| Employee | Salary | Country |
|----------|--------|---------|
| Ahmad    | 6500   | Egypt   |
| Mohamed  | 7500   | Iraq    |
| Sayed    | 8450   | UAE     |
| Alaa     | 9150   | Egypt   |
| Adel     | 8450   | Libya   |
| Osama    | 7500   | Egypt   |



Mean or Median





Mode

# Five Number Summary

#### Tell me More!

- 1. Minimum: The smallest number in the dataset.
- 2. Q1: The value such that 25% of the data fall below.
- 3. Q2: The value such that 50% of the data fall below.
- 4. Q3: The value such that 75% of the data fall below.
- 5. Maximum: The largest value in the dataset

#### Five Number Summary



Source: math-salamanders

# Measure of Spread (Dispersion)

- The mean can be affected by extreme values.
- Dispersion, or spread of data, is measured in terms of how far the data differs from the center.

| Salary | Salary |
|--------|--------|
| 6500   | 650    |
| 7500   | 7500   |
| 8450   | 8450   |
| 9150   | 9150   |
| 8450   | 8450   |
| 7500   | 13350  |
| 8450   | 8450   |



- 1. Range: max min
- 2. Interquartile Range: IQR = Q3 Q1

- 3. Variance
- 4. Standard Deviation



Source: scribbr.co.uk

- Variance is the average squared difference of each observation from the mean.
- Standard deviation is the square root of the variance

Variance 
$$\dfrac{1}{n}\sum_{i=1}^n(x_i-ar{x})^2$$
 Standard deviation  $\sqrt{\dfrac{1}{n}\sum_{i=1}^n(x_i-ar{x})^2}$ 

Source: datatab.net

Sample/Population Variance & Standard Deviation

-----

Sample Variance:

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{(N-1)}$$

Sample Standard Deviation:

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{(N-1)}}$$

Population Variance:

$$\sigma^2 = \frac{\sum (x_i - \bar{x})^2}{N}$$

Population Standard Deviation:

$$\sigma = \sqrt{\frac{\sum (x_i - \bar{x})^2}{N}}$$

Source: Screened-Instructor

| Salary | Mean | Diff. from<br>Mean | Diff. from<br>Mean ^ 2 | Diff. from Mean ^ 2 / n-1 |
|--------|------|--------------------|------------------------|---------------------------|
| 6500   |      | -1425              | 2030625                |                           |
| 7500   |      | -425               | 180625                 |                           |
| 8450   |      | 525                | 275625                 | 000                       |
| 9150   | 7925 | 1225               | 1500625                | 888750                    |
| 8450   |      | 525                | 275625                 |                           |
| 7500   |      | -425               | 180625                 |                           |

| dia            | Salary | Salary   |  |
|----------------|--------|----------|--|
|                | 6500   | 650      |  |
|                | 7500   | 7500     |  |
|                | 8450   | 8450     |  |
|                | 9150   | 9150     |  |
|                | 8450   | 8450     |  |
|                | 7500   | 13350    |  |
| Mean           | 7925   | 7925     |  |
| Variance       | 888750 | 16917750 |  |
| Std. Deviation | 943    | 4113     |  |
| Range          | 2650   | 12700    |  |
| IQR            | 950    | 1238     |  |

# Shape of Data

## Histogram

| Salary |
|--------|
| 6500   |
| 7500   |
| 8450   |
| 9150   |
| 8450   |
| 7500   |

| Frequency Table |           |  |  |  |
|-----------------|-----------|--|--|--|
| Groups          | Frequency |  |  |  |
| 6000-7000       | 1         |  |  |  |
| 7000-8000       | 2         |  |  |  |
| 8000-9000       | 2         |  |  |  |
| 9000-10000      | 1         |  |  |  |
|                 |           |  |  |  |



#### Histogram

- Each bar typically covers a range of numeric values called a bin or class
- A bar's height indicates the frequency of data points
- Histograms are good for showing general distributional features of dataset variables.
- You can see roughly where the peaks of the distribution are, whether the distribution is skewed or symmetric, and if there are any outliers.

## Histogram



Source: chartio.com

## **Density Plot**



continuous and smoothed version



Source: askpython

#### Skewness



Source: analyticsvidhya

## **Normal Distribution**

#### **Normal Distribution**



The Normal Distribution has:

- mean = median = mode
- symmetry about the center
- 50% of values less than the mean and 50% greater than the mean

Source: mathsisfun

#### **Standard Normal Distribution**



Source: mathsisfun

# **Empirical Rule**



Source: algaestudy.

# **Outliers**

#### **Outliers**

- At least note they exist and the impact on
  - summary statistics.
- If typo remove or fix



Source: medium

## **Box Plot**



Source: kdnuggets

# **Box Plot & Histogram**



Source: chartio.com

## **Box Plot**



Source: kdnuggets

# From Univariate To Bivariate



Range IQR Var. Sta

Five Number Summary

Min Q1 Q2 Q3 Max

#### Shape of Data









# **Bivariate Analysis**

| Level | Salary |
|-------|--------|
| A     | 6500   |
| В     | 7500   |
| С     | 8450   |
| В     | 9150   |
| С     | 4757   |
| A     | 7546   |



## **Bar Plot**

# **Bivariate Analysis**

| Salary | # Experience |
|--------|--------------|
| 6500   | 1            |
| 7500   | 1.5          |
| 8450   | 2            |
| 9150   | 2.7          |
| 8450   | 2.2          |
| 10000  | 3            |
| 6500   | 2            |
| 6500   | 1.8          |
| 8450   | 2.4          |
| 6500   | 1.2          |
| 5000   | 1            |
| 13500  | 3.5          |
| 14000  | 3.4          |
| 8450   | 3            |
| 9150   | 3.1          |



#### **Scatter Plot**

## **Bivariate Analysis**

What is the relation between Salary and No. of years of Experience?

#### Covariance

 It tells us if the paired values tend to rise together, or if one tends to rise as the other falls.

$$\frac{1}{n-1}\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

# Experience vs. Salary

25000
20000
15000
5000
5000
1 2 3 4 5 6

No. of years of Experience

Source: mathsisfun

#### Covariance

- It is used for the linear relationship between variables.
- It can take any value between
  - -∞ and +∞



Source: medium

#### Correlation

- how strong the relationship is.
- a dimensionless metric and its value ranges from -1 to +1.
- The closer it is to +1 or -1, the more closely the two variables are related.

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Source: analyticsvidhya



Source: cuemath

# Go for Practice



#### Contact me:

https://www.linkedin.com/in/ahmadmmostafa