財團法人大學入學考試中心基金會

111學年度分科測驗試題

數學甲考科

—作答注意事項—

考試時間:80分鐘

作答方式:

- •選擇(填)題用 2B 鉛筆在「答題卷」上作答;更正時,應以橡皮擦擦拭,切勿使用 修正液(帶)。
- 除題目另有規定外,非選擇題用筆尖較粗之黑色墨水的筆在「答題卷」上作答;更正時,可以使用修正液(帶)。
- 考生須依上述規定劃記或作答,若未依規定而導致答案難以辨識或評閱時,恐將影響 成績並損及權益。
- 答題卷每人一張,不得要求增補。
- 選填題考生必須依各題的格式填答,且每一個列號只能在一個格子劃記。請仔細閱讀下面的例子。

例:若答案格式是 (18-2), 而依題意計算出來的答案是 3/8, 則考生必須分別在答題卷上

的第 18-1 列的 → 與第 18-2 列的 ● 劃記,如:

例:若答案格式是 $\underbrace{19-1)(19-2)}_{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答題卷的第 19-1 列

的 □ 與第 19-2 列的 □ 劃記,如:

選擇(填)題計分方式:

- 單選題:每題有n個選項,其中只有一個是正確或最適當的選項。各題答對者,得該題的分數;答錯、未作答或劃記多於一個選項者,該題以零分計算。
- 多選題:每題有n個選項,其中至少有一個是正確的選項。各題之選項獨立判定,所有選項均答對者,得該題全部的分數;答錯k個選項者,得該題 $\frac{n-2k}{n}$ 的分數;但得分

低於零分或所有選項均未作答者,該題以零分計算。

選填題每題有 n 個空格,須全部答對才給分,答錯不倒扣。

※試題中參考的附圖均為示意圖,試題後附有參考公式及數值。

第壹部分、選擇(填)題(占76分)

一、單選題(占18分)

說明:第1題至第3題,每題6分。

- 1. 設 a_1, a_2, a_3, a_4 是 首 項 為 10 、 公比 是 10 的 等 比 數 列 。 令 $b = \sum_{n=1}^{3} \log_{a_n} a_{n+1}$, 試 選 出 正 確 的 選項。

- (1) $2 < b \le 3$ (2) $3 < b \le 4$ (3) $4 < b \le 5$ (4) $5 < b \le 6$ (5) $6 < b \le 7$

- 2. 設 $_c$ 為實數使得三元一次方程組 $\Big\{2x+cy+3z=1$ 無解。試選出 $_c$ 之值。
 - $(1) -3 \qquad (2) -2 \qquad (3) 0 \qquad (4) 2 \qquad (5) 3$

- 3. 坐標空間中O為原點,點P在第一卦限且 $\overline{OP}=1$ 。已知直線OP與x軸有一夾角為 45°,且 P點到 y軸的距離為 $\frac{\sqrt{6}}{3}$ 。試選出點 P的 z坐標。
- (1) $\frac{1}{2}$ (2) $\frac{\sqrt{2}}{4}$ (3) $\frac{\sqrt{3}}{3}$ (4) $\frac{\sqrt{6}}{6}$ (5) $\frac{\sqrt{3}}{6}$

二、多選題(占40分)

說明:第4題至第8題,每題8分。

- 4. 設多項式 $f(x) = x^3 + 2x^2 2x + k$ 、 $g(x) = x^2 + ax + 1$, 其中 k, a 為實數。已知 g(x) 整除 f(x),且方程式 g(x)=0有虚根。試選出為方程式 f(x)=0的根之選項。
 - (1) -3
- (2) 0
- (3) 1
- (4) $\frac{1+\sqrt{-3}}{2}$ (5) $\frac{3+\sqrt{-5}}{2}$

- 5. 坐標平面上有一圖形 Γ , 其方程式為 $(x-1)^2 + (y-1)^2 = 101$ 。試選出正確的選項。
 - (1) Γ 與x軸負向、y軸負向分別交於(-9,0)、(0,-9)
 - (2) Γ上 x 坐標最大的點是點 (11,0)
 - (3) Γ 上的點與原點距離的最大值為 $\sqrt{2} + \sqrt{101}$
 - (4) Γ 在第三象限的點之極坐標可用 $\left[9,\theta\right]$ 表示,其中 $\pi < \theta < \frac{3}{2}\pi$
 - (5) Γ經旋轉線性變換後,其圖形仍可用一個不含xy項的二元二次方程式表示

- 6. 假設 2階方陣 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 所代表的線性變換將坐標平面上三點 O(0,0), A(1,0), B(0,1)分別映射到 O(0,0), $A'(3,\sqrt{3})$, $B'(-\sqrt{3},3)$, 並將與原點距離為 1 的點 C(x,y) 映射到點 C'(x',y')。 試選出正確的選項。
 - (1) 行列式 $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 6$
 - (2) $\overline{OC'} = 2\sqrt{3}$
 - (3) OC和 OC'的夾角為 60°
 - (4) 有可能 y=y'
 - (5) 若 *x* < *y* 則 *x*' < *y*'

7. 假設 A,B為一拋物線 Γ 上兩點且其連線段通過 Γ 的焦點 F。設 A,F,B在 Γ 之準線上的投影分別為 A',F',B'。試選出等於 $\overline{\frac{A'F'}{A'A}}$ 的選項。(注意:此示意圖僅說明各點的

相關位置,各點間距離關係並不正確)

- (1) $\tan \angle 1$, 其中 $\angle 1 = \angle A'F'A$
- (2) $\sin \angle 2$, 其中 $\angle 2 = \angle AF'F$
- (3) $\sin \angle 3$, 其中 $\angle 3 = \angle A'AF$
- (4) $\cos \angle 4$,其中 $\angle 4 = \angle F'FB$
- (5) $\tan \angle 5$,其中 $\angle 5 = \angle FF'B$

- 8. 假設兩數列 $\langle a_n \rangle$ 、 $\langle b_n \rangle$,對所有正整數 n都滿足 $b_n + \frac{4n-1}{n} \langle a_n \langle 3b_n \rangle$ 已知 $\lim_{n \to \infty} a_n = 6$, 試選出正確的選項。
 - (1) $b_n < 6 \frac{4n-1}{n}$
- $(2) \quad b_n > \frac{4n-1}{2n}$
- (3) 數列 $\langle b_n \rangle$ 有可能發散

- (4) $a_{10000} < 6.1$
- $(5) \quad a_{10000} > 5.9$

三、選填題(占18分)

說明:第9題至第11題,每題6分。

9. <u>大吉百貨</u>春節期間準備許多紅包讓顧客抽籤得紅包,並宣稱活動會一直持續到送 出所有的紅包。抽籤的籤筒內有 5 支籤、其中只有 1 支籤有標示「大吉」,且每 支籤被抽中的機會均等。每位顧客從籤筒中抽取一支籤記錄後,將籤放回籤筒再 抽下一回,最多抽取 3 回。當抽取過程中出現連續兩回抽中「大吉」,則該顧客 停止抽籤並得到紅包。

我們可將每位顧客抽籤是否得到紅包視為一次伯努力試驗。設整個活動第一個得到紅包的顧客是第X位抽籤的顧客,並以E(X)表示隨機變數X的期望值,則

E(X) =	(9-1)	(9-2)	。(四捨五入到整數位)
()			() () () () () () () () () ()

10. 老師要求班上學藝安排在下週一、二、三、四這4天,發完國、英、數、社、自 共5張複習卷,每天至少發其中一科的卷子給同學帶回家練習,隔天繳交。由 於週二有國、英兩門課,國文老師要求國文的卷子<u>一定要</u>在週一發出以便檢討; 而英文老師因為當天另有指派作業,所以要求英文的卷子**不要**在週二發出。依

此要求,學藝共有 (10-1) (10-2) 種安排方式。

11. 在複數平面上,複數 z 在第一象限且滿足 |z|=1以及 $\left|\frac{-3+4i}{5}-z^3\right|=\left|\frac{-3+4i}{5}-z\right|$,其中

$$i = \sqrt{-1}$$
。若 z 的實部為 a 、虛部為 b ,則 $a = \frac{\sqrt{11-1}}{11-2}$ 、 $b = \frac{11-3}{11-5}$

(化為最簡根式)

背面還有試題

第貳部分、混合題或非選擇題(占24分)

說明:本部分共有 2 題組,選填題每題 2 分,非選擇題配分標於題末。限在答題卷標示題 號的作答區內作答。選填題與「非選擇題作圖部分」使用 2B 鉛筆作答,更正時, 應以橡皮擦擦拭,切勿使用修正液(帶)。非選擇題請由左而右橫式書寫,作答時 必須寫出計算過程或理由,否則將酌予扣分。

12-14 題為題組

有一積木(如圖),其中 ACFD和 ABED是兩個全等的等腰梯形, BCFE是一個

矩形。設 A點在直線 BC的投影為 M 且在平面 BCFE的投影為 P。已知 \overline{AD} = 30、 \overline{CF} = 40、 \overline{AP} = 15 且 \overline{BC} = 10。將平面 BCFE 置於水平桌面上,且將與 BCFE 平行的平面稱為水平面。

試回答下列問題。

12. 利用 \overline{AD} 在平面 BCFE 的投影長為 30, 可得 $tan \angle AMP = \underbrace{12}$ 。(選填題, 2分)

13. 令 Q為 \overline{FC} 上一點,滿足 \overline{AQ} 與 \overline{DF} 平行。利用 ΔABC 、 ΔACQ 為全等三角形,證明 若水平面 W介於 A,P之間且與 A的距離為 x,則 W與此積木所截的矩形區域之面 積為 $20x + \frac{4}{9}x^2$ 。(非選擇題,4 分)

14. 將線段 \overline{AP} 的 n等分點沿著向量 \overline{AP} 的方向依序設為 $A = P_0, P_1, ..., P_{n-1}, P_n = P$ 。在每一個分段 $\overline{P_{k-1}P_k}$,考慮以通過 P_k 的水平面與此積木所截的矩形為底、 $\overline{P_{k-1}P_k}$ 為高,所形成的長方體。請利用此切片方法寫下估計此積木體積的黎曼和(不需化簡),且以定積分形式表示此積木的體積並求其值。(非選擇題,6分)

背面還有試題

15-17 題為題組

考慮坐標平面上之向量 \overrightarrow{a} 、 \overrightarrow{b} 滿足 $|\overrightarrow{a}|+|\overrightarrow{b}|=9$ 以及 $|\overrightarrow{a}-\overrightarrow{b}|=7$ 。若令 $|\overrightarrow{a}|=x$,其中 1< x<8,且令 \overrightarrow{a} 、 \overrightarrow{b} 的夾角為 θ ,則利用向量 \overrightarrow{a} 、 \overrightarrow{b} 、 $\overrightarrow{a}-\overrightarrow{b}$ 所形成的三角形,可將 $\cos\theta$ 以 x表示成 $\frac{c}{9x-x^2}+d$,其中 c、d 為常數且 c>0。令此表示式為 f(x),且其定義域為 $\{x|1< x<8\}$ 。試回答下列問題。

15. 求 f(x)及其導函數。(非選擇題,4分)

16. 說明 f(x)在定義域中遞增、遞減的情況。並說明 x為多少時 \overrightarrow{a} 、 \overrightarrow{b} 的夾角 θ 最大。 (非選擇題,4分)

17. 利用 f(x)的一次估計 (一次近似),求當 x = 4.96 時, $\cos\theta$ 約為多少? (非選擇題,4分)

参考公式及可能用到的數值

1. 首項為a,公差為d的等差數列前n項之和為 $S = \frac{n(2a + (n-1)d)}{2}$

首項為a,公比為 $r(r \neq 1)$ 的等比數列前n項之和為 $S = \frac{a(1-r^n)}{1-r}$

2. 級數和:
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
; $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$

3. 三角函數的和角公式: sin(A+B) = sin A cos B + cos A sin B

$$cos(A+B) = cos A cos B - sin A sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

4. $\triangle ABC$ 的正弦定理: $\frac{a}{\sin A} = \frac{b}{\sin R} = \frac{c}{\sin C} = 2R$ ($R \triangleq \triangle ABC$ 外接圓半徑)

 $\triangle ABC$ 的餘弦定理: $c^2 = a^2 + b^2 - 2ab\cos C$

5. 一維數據 $X: x_1, x_2, \dots, x_n$,

算術平均數
$$\mu_X = \frac{1}{n} \sum_{i=1}^n x_i$$
 ; 標準差 $\sigma_X = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu_X)^2} = \sqrt{\frac{1}{n} (\sum_{i=1}^n x_i^2 - n\mu_X^2)}$

6. 二維數據 $(X,Y):(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)$

相關係數
$$r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \mu_X)(y_i - \mu_Y)}{n\sigma_X \sigma_Y}$$

最適直線(迴歸直線)方程式 $y-\mu_Y=r_{X,Y}\frac{\sigma_Y}{\sigma_X}(x-\mu_X)$

- 7. 参考數值: $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$, $\sqrt{6} \approx 2.449$, $\pi \approx 3.142$ $\sin 23^{\circ} \approx 0.40$, $\sin 37^{\circ} \approx 0.60$, $\sin 53^{\circ} \approx 0.80$, $\cos 23^{\circ} \approx 0.92$, $\cos 37^{\circ} \approx 0.80$, $\cos 53^{\circ} \approx 0.60$
- 8. 對數值: $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$, $\log 5 \approx 0.6990$, $\log 7 \approx 0.8451$
- 9. 若 $X \sim B(n,p)$ 為二項分布,則期望值 E(X) = np ,變異數 Var(X) = np(1-p) ; 若 $X \sim G(p)$ 為幾何分布,則期望值 $E(X) = \frac{1}{p}$,變異數 $Var(X) = \frac{1-p}{p^2}$ 。