p-Adic Numbers and Krasner's Lemma

Jonatan Beiruty and Alois Schaffler

May 22, 2025

Plan for Today

- 1. Construction of the p-adic numbers and their properties
- 2. Reminder of field theory and Krasner's lemma
- 3. Krasner's lemma in Lean.
- 4. Lean implementation and main takeaways

Norms and Induced Metrics

Let K be a field. A function $\|\cdot\|:K\to\mathbb{R}_{\geq 0}$ is called a **norm** (or absolute value) on K if it satisfies, for all $x,y\in K$:

- ▶ Non-degeneracy: $||x|| = 0 \iff x = 0$,
- ► Multiplicativity: $||xy|| = ||x|| \cdot ||y||$,
- ▶ Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

Norms and Induced Metrics

Let K be a field. A function $\|\cdot\|: K \to \mathbb{R}_{\geq 0}$ is called a **norm** (or absolute value) on K if it satisfies, for all $x, y \in K$:

- ▶ Non-degeneracy: $||x|| = 0 \iff x = 0$,
- ► Multiplicativity: $||xy|| = ||x|| \cdot ||y||$,
- ► Triangle inequality: $||x + y|| \le ||x|| + ||y||$.

A norm is called **non-Archimedian** if

$$||x + y|| \le \max\{||x||, ||y||\}.$$

The *p*-Adic Norm on \mathbb{Q}

Let p be a fixed prime number. Define

$$\operatorname{ord}_p(n) := \max\{k \in \mathbb{Z}_{\geq 0} \mid p^k \mid n\}.$$

The *p*-Adic Norm on \mathbb{Q}

Let p be a fixed prime number. Define

$$\operatorname{ord}_p(n) := \max\{k \in \mathbb{Z}_{\geq 0} \mid p^k \mid n\}.$$

This extends naturally to nonzero rationals:

$$\operatorname{ord}_p\left(\frac{a}{b}\right) := \operatorname{ord}_p(a) - \operatorname{ord}_p(b).$$

The *p*-Adic Norm on \mathbb{Q}

Let p be a fixed prime number. Define

$$\operatorname{ord}_p(n) := \max\{k \in \mathbb{Z}_{\geq 0} \mid p^k \mid n\}.$$

This extends naturally to nonzero rationals:

$$\operatorname{ord}_p\left(\frac{a}{b}\right) := \operatorname{ord}_p(a) - \operatorname{ord}_p(b).$$

The *p*-adic norm on \mathbb{Q} is then defined as:

$$|x|_p := \begin{cases} p^{-\operatorname{ord}_p(x)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

This is a non-Archimedian norm.

Examples

$$|27|_3 = 3^{-\operatorname{ord}_3(27)} = 3^{-3} = \frac{1}{27}$$

$$\left|\frac{81}{2}\right|_3 = 3^{-(\text{ord}_3(81) - \text{ord}_3(2)} = 3^{-4} = \frac{1}{81}$$
,

$$\left| \frac{1}{243} \right|_3 = 3^{-(\text{ord}_3(1) - \text{ord}_3(243))} = 3^5 = 243.$$

Examples

$$|27|_3 = 3^{-\operatorname{ord}_3(27)} = 3^{-3} = \frac{1}{27},$$

$$\left|\frac{81}{2}\right|_3 = 3^{-(\text{ord}_3(81) - \text{ord}_3(2))} = 3^{-4} = \frac{1}{81}$$
,

$$\left| \frac{1}{243} \right|_3 = 3^{-(\text{ord}_3(1) - \text{ord}_3(243))} = 3^5 = 243.$$

Observation: The *p*-adic concept of size is very different from our usual understanding.

Ostrowski's Theorem

Theorem: Every absolute value $\|\cdot\|$ on $\mathbb Q$ is equivalent to exactly one of the following:

- ▶ The trivial absolute value, given by $||x||_{\text{triv}} = 1$ for $x \neq 0$.
- ► The usual absolute value | · |.
- A *p*-adic norm $|\cdot|_p$ for some prime *p*.

Completeness

Recall that a metric space is called complete if every Cauchy sequence is convergent. Completeness is one of the most fundamental properties of metric spaces.

Completeness

Recall that a metric space is called complete if every Cauchy sequence is convergent. Completeness is one of the most fundamental properties of metric spaces.

The space $(\mathbb{Q}, |\cdot|_p)$ is not complete. Its **completion** is denoted \mathbb{Q}_p , the *p*-adic numbers.

We will construct a normed field $(\mathbb{Q}_p, |\cdot|_p)$ satisfying the following properties:

 $ightharpoonup (\mathbb{Q}_p, |\cdot|_p)$ is complete.

- $ightharpoonup (\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ There is an embedding $\iota: \mathbb{Q} \to \mathbb{Q}_p$.

- \blacktriangleright $(\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ There is an embedding $\iota: \mathbb{Q} \to \mathbb{Q}_p$.
- $ightharpoonup \iota(\mathbb{Q})$ is dense in \mathbb{Q}_p .

- $ightharpoonup (\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ There is an embedding $\iota: \mathbb{Q} \to \mathbb{Q}_p$.
- $ightharpoonup \iota(\mathbb{Q})$ is dense in \mathbb{Q}_p .
- $ightharpoonup \iota$ is an isometry, that is $|\iota(x)|_p = |x|_p$ for all $x \in \mathbb{Q}$.

Step 1: Consider the set of all Cauchy sequences in $(\mathbb{Q}, |\cdot|_p)$:

 $\mathcal{C}_p := \{(a_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \mid (a_n)_{n \in \mathbb{N}} \text{ is a Cauchy sequence } \}.$

Step 1: Consider the set of all Cauchy sequences in $(\mathbb{Q}, |\cdot|_p)$:

$$\mathcal{C}_p := \{(a_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \mid (a_n)_{n \in \mathbb{N}} \text{ is a Cauchy sequence } \}.$$

Step 2: Define the following equivalence relation:

$$(a_n)_{n\in\mathbb{N}}\sim (b_n)_{n\in\mathbb{N}}\iff \lim_{n\to\infty}|a_n-b_n|_p=0.$$

Step 1: Consider the set of all Cauchy sequences in $(\mathbb{Q}, |\cdot|_p)$:

$$\mathcal{C}_p := \{(a_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \mid (a_n)_{n \in \mathbb{N}} \text{ is a Cauchy sequence } \}.$$

Step 2: Define the following equivalence relation:

$$(a_n)_{n\in\mathbb{N}}\sim (b_n)_{n\in\mathbb{N}}\iff \lim_{n\to\infty}|a_n-b_n|_p=0.$$

Step 3: Define the *p*-adic numbers as

$$\mathbb{Q}_p := \mathcal{C}_p / \sim .$$

Step 1: Consider the set of all Cauchy sequences in $(\mathbb{Q}, |\cdot|_p)$:

$$\mathcal{C}_p := \{(a_n)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \mid (a_n)_{n \in \mathbb{N}} \text{ is a Cauchy sequence } \}.$$

Step 2: Define the following equivalence relation:

$$(a_n)_{n\in\mathbb{N}}\sim (b_n)_{n\in\mathbb{N}}\iff \lim_{n\to\infty}|a_n-b_n|_p=0.$$

Step 3: Define the *p*-adic numbers as

$$\mathbb{Q}_p := \mathcal{C}_p / \sim .$$

Defining the norm on \mathbb{Q}_p : For a class $[(a_n)_{n\in\mathbb{N}}] \in \mathbb{Q}_p$, define:

$$|[(a_n)_{n\in\mathbb{N}}]|_p := \lim_{n\to\infty} |a_n|_p$$

Operations on \mathbb{Q}_p :

$$\begin{aligned} [(a_n)_{n\in\mathbb{N}}] + [(b_n)_{n\in\mathbb{N}}] &:= [(a_n + b_n)_{n\in\mathbb{N}}], \\ [(a_n)_{n\in\mathbb{N}}] [(b_n)_{n\in\mathbb{N}}] &:= [(a_n b_n)_{n\in\mathbb{N}}]. \end{aligned}$$

Operations on \mathbb{Q}_p :

$$\begin{aligned} [(a_n)_{n\in\mathbb{N}}] + [(b_n)_{n\in\mathbb{N}}] &:= [(a_n + b_n)_{n\in\mathbb{N}}], \\ [(a_n)_{n\in\mathbb{N}}] [(b_n)_{n\in\mathbb{N}}] &:= [(a_n b_n)_{n\in\mathbb{N}}]. \end{aligned}$$

We define

$$\iota\colon \mathbb{Q}\to \mathbb{Q}_p$$
$$x\mapsto [(x)_{n\in\mathbb{N}}].$$

Operations on \mathbb{Q}_p :

$$[(a_n)_{n\in\mathbb{N}}] + [(b_n)_{n\in\mathbb{N}}] := [(a_n + b_n)_{n\in\mathbb{N}}],$$
$$[(a_n)_{n\in\mathbb{N}}][(b_n)_{n\in\mathbb{N}}] := [(a_nb_n)_{n\in\mathbb{N}}].$$

We define

$$\iota \colon \mathbb{Q} \to \mathbb{Q}_p$$
$$x \mapsto [(x)_{n \in \mathbb{N}}].$$

All of these definitions are well-defined, which is checked by routine arguments, and our desired properties are fulfilled.

 $ightharpoonup (\mathbb{Q}_p, |\cdot|_p)$ is complete.

- \blacktriangleright $(\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ The norm $|\cdot|_p$ on \mathbb{Q}_p is non-Archimedian.

- \triangleright $(\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ The norm $|\cdot|_p$ on \mathbb{Q}_p is non-Archimedian.
- ▶ The values of $|\cdot|_p$ lie in the set

$$\{p^n \mid n \in \mathbb{Z}\} \cup \{0\}.$$

- \triangleright $(\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ The norm $|\cdot|_p$ on \mathbb{Q}_p is non-Archimedian.
- ▶ The values of $|\cdot|_p$ lie in the set

$$\{p^n \mid n \in \mathbb{Z}\} \cup \{0\}.$$

 $ightharpoonup \mathbb{Q}_p$ is totally disconnected.

- \triangleright $(\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ The norm $|\cdot|_p$ on \mathbb{Q}_p is non-Archimedian.
- ▶ The values of $|\cdot|_p$ lie in the set

$$\{p^n \mid n \in \mathbb{Z}\} \cup \{0\}.$$

- $ightharpoonup \mathbb{Q}_p$ is totally disconnected.
- $ightharpoonup \mathbb{Q}_p$ is locally compact.

- \triangleright $(\mathbb{Q}_p, |\cdot|_p)$ is complete.
- ▶ The norm $|\cdot|_p$ on \mathbb{Q}_p is non-Archimedian.
- ▶ The values of $|\cdot|_p$ lie in the set

$$\{p^n \mid n \in \mathbb{Z}\} \cup \{0\}.$$

- \triangleright \mathbb{Q}_p is totally disconnected.
- $ightharpoonup \mathbb{Q}_p$ is locally compact.
- \triangleright \mathbb{Q}_p is **not** algebraically closed.

We would like to have an algebraically closed and complete field containing \mathbb{Q} . Consider the algebraic closure $\overline{\mathbb{Q}_p}$. It is possible to extend $|\cdot|_p$ to $\overline{\mathbb{Q}_p}$.

We would like to have an algebraically closed and complete field containing \mathbb{Q} . Consider the algebraic closure $\overline{\mathbb{Q}_p}$. It is possible to extend $|\cdot|_p$ to $\overline{\mathbb{Q}_p}$. However, $(\overline{\mathbb{Q}_p}, |\cdot|_p)$ is not complete.

We would like to have an algebraically closed and complete field containing \mathbb{Q} . Consider the algebraic closure $\overline{\mathbb{Q}_p}$. It is possible to extend $|\cdot|_p$ to $\overline{\mathbb{Q}_p}$. However, $(\overline{\mathbb{Q}_p}, |\cdot|_p)$ is not complete.

Question: In the *p*-adic world, can we ever reach a field that is *both* complete and algebraically closed?

We would like to have an algebraically closed and complete field containing \mathbb{Q} . Consider the algebraic closure $\overline{\mathbb{Q}_p}$. It is possible to extend $|\cdot|_p$ to $\overline{\mathbb{Q}_p}$. However, $(\overline{\mathbb{Q}_p},|\cdot|_p)$ is not complete.

Question: In the *p*-adic world, can we ever reach a field that is *both* complete and algebraically closed?

Answer: Yes, we can. Completing $(\overline{\mathbb{Q}_p}, |\cdot|_p)$ yields a non-Archimedian normed field $(\mathbb{C}_p, |\cdot|_p)$ which is complete and algebraically closed.

3-adic Visualization Animation

Some Field Theory

Let L/K be a field extension, meaning that K is a subfield of L.

Let L/K be a field extension, meaning that K is a subfield of L.

An element $x \in L$ is called **algebraic** over K if there exists a non-zero polynomial $P \in K[X]$ with P(x) = 0.

- An element $x \in L$ is called **algebraic** over K if there exists a non-zero polynomial $P \in K[X]$ with P(x) = 0.
- ▶ The **minimal polynomial** $P_x \in K[X]$ of an algebraic element is the unique monic irreducible polynomial in K[X] with $P_x(x) = 0$.

- An element $x \in L$ is called **algebraic** over K if there exists a non-zero polynomial $P \in K[X]$ with P(x) = 0.
- ▶ The **minimal polynomial** $P_x \in K[X]$ of an algebraic element is the unique monic irreducible polynomial in K[X] with $P_x(x) = 0$.
- ▶ The extension L/K is called algebraic if every element of L is algebraic over K.

- An element $x \in L$ is called **algebraic** over K if there exists a non-zero polynomial $P \in K[X]$ with P(x) = 0.
- ▶ The **minimal polynomial** $P_x \in K[X]$ of an algebraic element is the unique monic irreducible polynomial in K[X] with $P_x(x) = 0$.
- ▶ The extension L/K is called algebraic if every element of L is algebraic over K.
- ▶ Suppose that the minimal polynomial P_x of $x \in L$ splits as a product of linear factors in L[X]. The **conjugates** of x over X are the zeros of P_x in L.

- An element $x \in L$ is called **algebraic** over K if there exists a non-zero polynomial $P \in K[X]$ with P(x) = 0.
- ▶ The **minimal polynomial** $P_x \in K[X]$ of an algebraic element is the unique monic irreducible polynomial in K[X] with $P_x(x) = 0$.
- ▶ The extension L/K is called algebraic if every element of L is algebraic over K.
- ▶ Suppose that the minimal polynomial P_x of $x \in L$ splits as a product of linear factors in L[X]. The **conjugates** of x over x are the zeros of x in x.
- An algebraic element $x \in L$ is called **separable** if the minimal polynomial $P_x \in K[X]$ only has simple roots (in some field where it splits).

- ▶ An element $x \in L$ is called **algebraic** over K if there exists a non-zero polynomial $P \in K[X]$ with P(x) = 0.
- ▶ The minimal polynomial $P_x \in K[X]$ of an algebraic element is the unique monic irreducible polynomial in K[X] with $P_{x}(x) = 0.$
- \blacktriangleright The extension L/K is called algebraic if every element of L is algebraic over K.
- \triangleright Suppose that the minimal polynomial P_x of $x \in L$ splits as a product of linear factors in L[X]. The **conjugates** of x over K are the zeros of P_x in L.
- An algebraic element $x \in L$ is called **separable** if the minimal polynomial $P_x \in K[X]$ only has simple roots (in some field where it splits).
- ▶ We denote K(x) the smallest subfield of L containing $K \cup \{x\}$.

Krasner's Lemma

Theorem: Let $a, b \in \overline{\mathbb{Q}_p}$. Suppose that for every conjugate $a_i \neq a$ of a in $\overline{\mathbb{Q}_p}$ (over \mathbb{Q}_p) it holds that

$$|b-a|_p<|a_i-a|_p.$$

Then $\mathbb{Q}_p(a) \subseteq \mathbb{Q}_p(b)$.

Krasner's Lemma

Theorem: Let $a, b \in \overline{\mathbb{Q}_p}$. Suppose that for every conjugate $a_i \neq a$ of a in $\overline{\mathbb{Q}_p}$ (over \mathbb{Q}_p) it holds that

$$|b-a|_p<|a_i-a|_p.$$

Then $\mathbb{Q}_{\rho}(a) \subseteq \mathbb{Q}_{\rho}(b)$.

Krasner's lemma can be used to prove that \mathbb{C}_p is algebraically closed.

Set $K := \mathbb{Q}_p(b)$, and assume by way of contradiction that $a \notin K$.

Set $K := \mathbb{Q}_p(b)$, and assume by way of contradiction that $a \notin K$. By basic results from field theory, it follows that there exists a conjugate $a_i \neq a$ of a over K.

Set $K := \mathbb{Q}_p(b)$, and assume by way of contradiction that $a \notin K$. By basic results from field theory, it follows that there exists a conjugate $a_i \neq a$ of a over K. Again by field theory, there exists an isomorphism

$$\sigma \colon \mathit{K}(a) \to \mathit{K}(a_i)$$

such that $\sigma|_{\mathcal{K}} = \mathrm{id}_{\mathcal{K}}$ and $\sigma(a) = a_i$.

Set $K := \mathbb{Q}_p(b)$, and assume by way of contradiction that $a \notin K$. By basic results from field theory, it follows that there exists a conjugate $a_i \neq a$ of a over K. Again by field theory, there exists an isomorphism

$$\sigma \colon \mathit{K}(a) \to \mathit{K}(a_i)$$

such that $\sigma|_K = \mathrm{id}_K$ and $\sigma(a) = a_i$. We will see later that $|\cdot|_p$ is invariant under isomorphisms, i.e. $|\sigma(x)|_p = |x|_p$ for every $x \in K(a)$.

This implies that

$$|b-a|_p = |\sigma(b-a)|_p = |b-\sigma(a)|_p = |b-a_i|_p.$$

This implies that

$$|b-a|_p = |\sigma(b-a)|_p = |b-\sigma(a)|_p = |b-a_i|_p.$$

We conclude that

$$|a_i - a|_p = |a_i - b + b - a|_p \le \max\{|a_i - b|_p, |b - a|_p\}$$

= $|b - a|_p < |a_i - a|_p,$

which is a contradiction.

Krasner's Lemma in Lean

```
theorem lemma_krasner \{p: \mathbb{N}\} [Fact (Nat.Prime p)] (ab: AlgebraicClosure <math>\mathbb{Q}_p) (b: \forall x \in AlgebraicClosure <math>\mathbb{Q}_p, x \neq a \land IsConjRoot <math>\mathbb{Q}_p ax \to PAdicNormExt(b-a) < PAdicNormExt(x-a)): adjoin \mathbb{Q}_p (\{a\}: Set (AlgebraicClosure <math>\mathbb{Q}_p)) \leq adjoin \mathbb{Q}_p (\{b\}: Set (AlgebraicClosure <math>\mathbb{Q}_p)):=
```

Lean	Explanation
have ha : a adjoin $Q_p (\{b\})$:	We prove that a belongs to $K = Qp(b)$
Set (AlgebraicClosure Q_p)) :=	using the 'main_lemma'
lemma_main a b h	
adjoin_of_mem_adjoin a b ha	We explain why that is enough to de-
	duce that $Qp(a)$ is contained in $Qp(b)$

Main Lemma in Lean

```
lemma lemma_main \{p: \mathbb{N}\} [Fact (Nat.Prime p)] (ab: AlgebraicClosure <math>\mathbb{Q}_p) (b: \forall x \in AlgebraicClosure <math>\mathbb{Q}_p, a \neq x \land IsConjRoot <math>\mathbb{Q}_p ax \to PAdicNormExt(b-a) < PAdicNormExt(x-a)): a \in adjoin \mathbb{Q}_p (\{b\}: Set (AlgebraicClosure \mathbb{Q}_p)):=
```

Lean	Explanation
have h1 : (c : AlgebraicClosure	Get a Galois conj.
Q_p), $a \neq c \land IsConjRoot K a c :=$	
conj_lemma K a h0	
have h2 : \exists (σ : AlgebraicClosure	Get an isom. from the conj.
Q_p [K] AlgebraicClosure Q_p),	
σ a = c \wedge \forall x \in K, σ x = x :=	
sigma_isom K a c h_conj_in_K	

Norm Invariance

```
have h4 : PAdicNormExt (b - a) = PAdicNormExt (c - b) := calc
```

PAdicNormExt (b - a) = PAdicNormExt (σ (b - a)) := h_norm_inv	Norm invariance	
= PAdicNormExt (σ b - σ a) := Lin_of_sigma	Linearity	
= PAdicNormExt (b - σ a) := by rw [sigma_b]	b is fixed	
= PAdicNormExt (b - c) := by rw [h_sigma1]	a is sent to c	
= PAdicNormExt (-(b - c)) :=	Norm inv -1	
PAdicNormExt_mult_minus (b - c)		
= PAdicNormExt (c - b) := neg_sub_norm	Norm sym.	

Contradiction Step

```
have h5 : PAdicNormExt (c - a) < PAdicNormExt (c - a) := calc
```

PAdicNormExt (c - a) = PAdicNormExt ((c - b) + (b - a)) := by rw [sub_add_sub_cancel]	Add and subtract
S max (PAdicNormExt (c - b)) (PAdicNormExt (b - a)) :=	Non-arch triangle ineq.
PAdicNormExt_non_arch (c - b) (b - a)	
= PAdicNormExt (b - a) := max_is_b_sub_a	By h4
< PAdicNormExt (c - a) := h c a_c_IsConj_in_Q_p	Our assumption

Let L/K be a finite (hence also algebraic) field extension.

▶ For $x \in L$, denote m_x : $L \to L$ to be the K-linear map of multiplication by x.

- ▶ For $x \in L$, denote m_x : $L \to L$ to be the K-linear map of multiplication by x.
- ▶ We define the norm of x as $N_{L/K}(x) = \det(m_x)$.

- ▶ For $x \in L$, denote m_x : $L \to L$ to be the K-linear map of multiplication by x.
- ▶ We define the norm of x as $N_{L/K}(x) = \det(m_x)$.
- ▶ It holds that $N_{L/K}(x) \in K$ and $N_{L/K}(xy) = N_{L/K}(x)N_{L/K}(y)$.

- ▶ For $x \in L$, denote m_x : $L \to L$ to be the K-linear map of multiplication by x.
- We define the norm of x as $N_{L/K}(x) = \det(m_x)$.
- ▶ It holds that $N_{L/K}(x) \in K$ and $N_{L/K}(xy) = N_{L/K}(x)N_{L/K}(y)$.
- ▶ For $x \in K$, we have that $N_{L/K}(x) = x^{[L:K]}$.

- ▶ For $x \in L$, denote m_x : $L \to L$ to be the K-linear map of multiplication by x.
- We define the norm of x as $N_{L/K}(x) = \det(m_x)$.
- ▶ It holds that $N_{L/K}(x) \in K$ and $N_{L/K}(xy) = N_{L/K}(x)N_{L/K}(y)$.
- ▶ For $x \in K$, we have that $N_{L/K}(x) = x^{[L:K]}$.
- If M/L is another finite field extension, then $N_{M/K} = N_{L/K} \circ N_{M/L}$.

Let L/K be a finite field extension and suppose that K is a normed field.

Let L/K be a finite field extension and suppose that K is a normed field. We define a norm an L that extends the norm on K via

$$||x|| = ||N_{L/K}(x)||^{1/[L:K]}.$$

Let L/K be a finite field extension and suppose that K is a normed field. We define a norm an L that extends the norm on K via

$$||x|| = ||N_{L/K}(x)||^{1/[L:K]}.$$

If M is an intermediate field of L/K containing x, then

$$||N_{L/K}(x)||^{1/[L:K]} = ||N_{M/K}(N_{L/M}(x))|^{1/[L:K]}$$

= $||N_{M/K}(x)||^{[L:M]/[L:K]} = ||N_{M/K}(x)||^{1/[M:K]}$.

Let L/K be a finite field extension and suppose that K is a normed field. We define a norm an L that extends the norm on K via

$$||x|| = ||N_{L/K}(x)||^{1/[L:K]}.$$

If M is an intermediate field of L/K containing x, then

$$||N_{L/K}(x)||^{1/[L:K]} = ||N_{M/K}(N_{L/M}(x))|^{1/[L:K]}$$

= $||N_{M/K}(x)||^{[L:M]/[L:K]} = ||N_{M/K}(x)||^{1/[M:K]}$.

Hence we can extend the norm on K to a norm on the algebraic closure \bar{K} .

▶ Showing that the triangle inequality holds is not so easy.

- ▶ Showing that the triangle inequality holds is not so easy.
- ▶ If *K* is complete, then this extension is unique.

- Showing that the triangle inequality holds is not so easy.
- If K is complete, then this extension is unique.
- ► If K is complete, non-Archimedian and locally compact, the extended norm is also non-Archimedian. Again, the non-Archimedian triangle inequality is a little tricky to check.

Implementation in Lean - Key Points and Takeaways

- Many parts of this were already implemented in Lean 3 (approx. 5000 lines of code) in a more general context, but it has not been migrated to Lean 4 as of yet.
- ▶ Intermediate fields: Sometimes it's best to work under a much bigger field than you "need" to avoid complications from type mismatches and coercions.