Tentamen Mekanik fk MT1483 16 mars, 2016

Betyg: 0-11=F, 12-14=E, 15-18=D, 19-22=C, 23-26=B, 27-30=A. Tillåtna hjälpmedel: räknare, matematik och fysiktabeller och formelsamlingar, kursens formelsamling

Övre änden av stången har, när vinkeln $\theta=30^\circ$, en hastighet $v_A=2$ m/s nedåt. Bestäm:

i) stångens vinkelhastighet ω , samt

ii) hastigheten för stångens masscentrum G, dvs hastighetsvektorn \vec{v}_G ! Stångens längd L=0.20 m.

Två massor hänger runt en lätt trissa där M > m. De släpps från vila. Vad blir hastigheten hos massorna uttryckt som funktion av tiden? (Att trissan är "lätt' betyder att vi försummar trissans massa och rotationströghet.)

3.

En hylsa med massan m kan glida på en fix rak stång som lutar vinkeln β mot horisontalplanet. Det dynamiska friktionstalet är μ . Hylsan släpps från vila. Bestäm hylsans fart just innan den når fjädern för a) $\mu = 0$ (3 p); och $\mu \neq 0$ (2 p)!

(Om man vet vad man gör så är det lättast att lösa b) först, och sedan sätta $\mu=0$ för att få a).)

4.

Två lersfärer med massor $m_1 = 0.4$ kg och $m_2 = 0.2$ kg kolliderar, se bilden. Deras hastigheter före är $v_{1f} = 3$ m/s, och $v_{2f} = 2$ m/s vinkelrätt mot varandra (enligt figuren). Efteråt rör de sig tillsammans.

- i) Vad blir deras hastighet (belopp och riktning)?
- ii) Hur mycket energi förloras i kollisionen?

5.

En snurra består bla av en tunn skiva med massa m som dras upp av ett snöre vilket sitter fast på radien b från rotationsaxeln. Dragkraften är konstant F_0 . Vad får snurran för vinkelhastighet ω om man drar under tiden t_2 ?

6. En fyrkantig låda med massa m_0 står på ett band som plötsligt accelererar med a=g framåt så lådan börjar välta. Vad blir lådans vinkelacceleration precis när accelerationen börjar ? - dvs finn $\alpha = \dot{\omega}$!

