

Formelsammlung Wärme- und Stoffübertragung

Version 7 ab WS 2015

vom 1. Oktober 2015

1. Kennzahlen

Kennzahlen – Strömungsmechanik

$$Gr_L = \frac{\beta g \rho^2 |T_W - T_\infty| L^3}{\eta^2}$$
 (Grashof-Zahl)

$$Re_L = \frac{\rho u L}{\eta}$$
 (Reynolds-Zahl)

Kennzahlen - Wärmeübertragung

$$Bi_L = \frac{\alpha L}{\lambda}$$
 (Biot-Zahl)

Fo =
$$\frac{at}{L^2}$$
 mit $a = \frac{\lambda}{\rho c_p}$ (Fourier-Zahl)

$$Nu_L = \frac{\alpha L}{\lambda}$$
 (Nusselt-Zahl)

$$Pr = \frac{\eta c_{p}}{\lambda} = \frac{\nu}{a}$$
 (Prandtl-Zahl)

$$St_L = \frac{Nu}{Re_L Pr}$$
 (Stanton-Zahl)

Kennzahlen - Stoffübertragung

$$Le = \frac{\lambda}{\rho D c_{p}} = \frac{a}{D}$$
 (Lewis-Zahl)

$$Sc = \frac{\eta}{\rho D}$$
 (Schmidt-Zahl)

$$Sh_L = \frac{gL}{\rho D}$$
 (Sherwood-Zahl)

2. Wärmestrahlung

$$\dot{q}''_{\lambda s} = \frac{c_1 \lambda^{-5}}{\exp\left[c_2/(\lambda T)\right] - 1}$$

 $(Planck sches\ Verteilungsgesetz)$

$$\dot{q}_{
m s}^{''}=\int\limits_{\lambda=0}^{\infty}\dot{q}_{\lambda
m s}^{''}d\lambda=\sigma T^4$$

(Stefan-Boltzmann-Gesetz)

$$\lambda_{\rm max}T = 2898\,\mu{\rm m\,K}$$

(Wiensches Verschiebungsgesetz)

mit den Konstanten

$$\sigma = 5,67 \ 10^{-8} \frac{\text{W}}{\text{m}^2 \text{ K}^4}$$
$$c_1 = 3,741 \ 10^{-16} \text{ W m}^2$$

(Stefan-Boltzmann-Konstante)

λT in µm K	1000,0	1250,0	1500,0	1750,0	2000,0	2500,0
$F(\lambda)$	0,00031	0,00308	0,01283	0,03363	0,06663	0,16115
λT in $\mu m K$	3000,0	3500,0	4000,0	5000,0	6000,0	8000,0
$F(\lambda)$	0,27322	0,38250	0,48085	0,63315	0,73715	0,85556

Verteilung der Schwarzkörperstrahlung mit $F(\lambda)=\int_0^\lambda \dot{q}_{\lambda \rm s}''d\lambda\,/\,\sigma T^4$

Eigenschaften strahlender Körper

• wellenlängenabhängig

$$\rho(\lambda) \equiv \frac{\dot{q}_{\lambda\rho}^{"}}{\dot{q}_{\lambdao}^{"}}$$

$$\alpha(\lambda) \equiv \frac{\dot{q}_{\lambda\alpha}^{"}}{\dot{q}_{\lambdao}^{"}}$$

$$\tau(\lambda) \equiv \frac{\dot{q}_{\lambda\sigma}^{"}}{\dot{q}_{\lambdao}^{"}}$$

$$r(\lambda) \equiv \frac{\dot{q}_{\lambda\tau}^{"}}{\dot{q}_{\lambdao}^{"}}$$

hier: $\dot{q}_{\lambda o}^{''}$ auftreffende spektrale Wärmestromdichte

$$\begin{split} \varepsilon\left(\lambda\right) &\equiv \frac{\dot{q}_{\lambda\varepsilon}^{''}}{\dot{q}_{\lambda\mathrm{s}}^{''}} \\ \alpha(\lambda) &= \varepsilon(\lambda) \end{split} \tag{Kirchhoffsches Gesetz}$$

• gemittelt

$$\varepsilon \equiv \frac{\dot{q}''_{\varepsilon}}{\dot{q}''_{s}} \equiv \frac{\int\limits_{0}^{\infty} \dot{q}''_{\lambda\varepsilon} d\lambda}{\int\limits_{0}^{\infty} \dot{q}''_{\lambda s} d\lambda} \qquad \qquad \alpha \equiv \frac{\dot{q}''_{\alpha}}{\dot{q}''_{o}} \equiv \frac{\int\limits_{0}^{\infty} \dot{q}''_{\lambda \alpha} d\lambda}{\int\limits_{0}^{\infty} \dot{q}''_{\lambda o} d\lambda}$$

$$\rho \equiv \frac{\dot{q}''_{\rho}}{\dot{q}''_{o}} \equiv \frac{\int\limits_{0}^{\infty} \dot{q}''_{\lambda \rho} d\lambda}{\int\limits_{0}^{\infty} \dot{q}''_{\lambda o} d\lambda} \qquad \qquad \tau \equiv \frac{\dot{q}''_{\tau}}{\dot{q}''_{o}} \equiv \frac{\int\limits_{0}^{\infty} \dot{q}''_{\lambda \sigma} d\lambda}{\int\limits_{0}^{\infty} \dot{q}''_{\lambda o} d\lambda}$$

• Sonderfälle

Strahlungseigenschaften wellenlängenunabhängig:

$$\rho + \alpha + \tau = 1$$
 und $\alpha = \varepsilon$ (grauer Körper)
 $\alpha = 1$ und $\alpha = \varepsilon = 1$ (schwarzer Körper)

Strahlungseigenschaften wellenlängenabhängig:

$$\rho(\lambda) + \alpha(\lambda) = 1$$
 (strahlungsundurchlässiger Festkörper)

$$\alpha(\lambda) + \tau(\lambda) = 1$$
 (Gas)

Strahlungsaustausch

 $\dot{Q}_{\mathrm{i,netto}} = \dot{Q}_i - \sum_i \dot{Q}_{j \to i}$

$$\dot{Q}_{i\to j} = \dot{Q}_i \Phi_{ij} \qquad (Strahlungswärmestrom)$$

$$\dot{Q}_i = \dot{q}_i'' A_i = \dot{Q}_{i,s} \, \varepsilon_i + \sum_{j} \dot{Q}_{j\to i} \, \rho_i + \sum_{k} \dot{Q}_{k\to i} \, \tau_i \qquad (Flächenhelligkeit)$$

$$mit \quad \dot{Q}_{i,s} = \dot{q}_{i,s}'' A_i \qquad (Schwarzkörperstrahlung)$$

$$\Phi_{ij} = \frac{1}{A_i} \int_{A_j} \int_{A_i} \frac{\cos \varphi_i \, \cos \varphi_j}{\pi r^2} \, dA_i \, dA_j$$
 (Einstrahlzahl)

$$A_i \Phi_{ij} = A_j \Phi_{ji}$$
 (Reziprozitätsbeziehung)

$$\sum_j \Phi_{ij} = 1$$
 (Summenbeziehung)

$$\dot{Q}_{1\rightleftharpoons 2} = \dot{Q}_{1\to 2} - \dot{Q}_{2\to 1}$$
 (Strahlungswärmeaustausch)

$$\dot{Q}_{1\rightleftharpoons 2} = A_1 \Phi_{12} \sigma \left[(T_1)^4 - (T_2)^4 \right]$$
 (zwischen zwei Schwarzkörpern)

$$= A_2 \Phi_{21} \sigma \left[(T_1)^4 - (T_2)^4 \right]$$

(Nettostrahlungswärmestrom)

$$\dot{q}_{1\rightleftharpoons 2}^{"} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \sigma \left(T_1^4 - T_2^4 \right)$$
 (zwischen zwei grauen Platten)

• Platten eben, parallel und unendlich groß

$$\dot{Q}_{1\rightleftharpoons 2} = \frac{A_1}{\frac{1}{\varepsilon_1} + \frac{A_1}{A_2} \left(\frac{1}{\varepsilon_2} - 1\right)} \sigma \left(T_1^4 - T_2^4\right) \qquad \text{(zwischen zwei grauen Körpern)}$$

- Körper 2 umschließt Körper 1 $(A_2 > A_1)$
- Körper 1 konvex $(\Phi_{11} = 0)$

Einstrahlzahlen einfacher Geometrien

Diagramm 1: Einstrahlzahlen zwischen senkrechten Platten

Diagramm 2: Einstrahlzahlen zwischen parallelen Platten

3. Wärmeleitung

$$\dot{q}^{''} = -\lambda \frac{\partial T}{\partial x}$$
 (Fouriersches Gesetz)

Wärmetransportgleichung

• Karthesische Koordinaten

$$\rho c \frac{\partial T}{\partial t} = \left[\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) \right] + \dot{\Phi}^{'''}$$

• Zylinderkoordinaten

$$\rho c \frac{\partial T}{\partial t} = \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda \frac{\partial T}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\lambda \frac{\partial T}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) \right] + \dot{\Phi}^{'''}$$

Kugelkoordinaten

$$\rho c \frac{\partial T}{\partial t} = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \lambda \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\lambda \sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial}{\partial \Phi} \left(\lambda \frac{\partial T}{\partial \Phi} \right) \right] + \dot{\Phi}^{'''}$$

Stationäre Wärmeleitung in Wänden ohne Wärmequellen

$$W = \frac{T_{\rm A} - T_{\rm B}}{\dot{Q}}$$
 mit $W = \sum_{i} W_{i}$ (Wärmewiderstand)

Ebene Wand

$$\frac{\mathrm{d}^2 T}{\mathrm{d}x^2} = 0 \quad \text{mit RB} \quad \frac{T(x=0) = T_1}{T(x=\delta) = T_2}$$

$$T = T_1 + \frac{T_2 - T_1}{\delta}x \qquad \text{(Temperaturverlauf)}$$

$$\dot{Q} = -\lambda A \frac{\mathrm{d}T}{\mathrm{d}x} = \lambda A \frac{T_1 - T_2}{\delta} \qquad \text{(Wärmestrom)}$$

$$W = \frac{\delta}{\lambda A} \qquad \text{(Wärmewiderstand)}$$

(Wärmewiderstand)

• Ebene Wand aus n Schichten

$$\dot{Q} = \lambda_1 \frac{A}{\delta_1} (T_1 - T_2) = \lambda_2 \frac{A}{\delta_2} (T_2 - T_3) = \dots = \lambda_n \frac{A}{\delta_n} (T_n - T_{n+1})$$

$$\dot{Q} = \frac{A}{\sum_{i=1}^n \frac{\delta_i}{\lambda_i}} (T_1 - T_{n+1}) \qquad \text{(ohne konv. Wärmeübergang)}$$

$$\dot{Q} = \frac{A}{\frac{1}{\alpha_A} + \sum_{i=1}^n \frac{\delta_i}{\lambda_i} + \frac{1}{\alpha_B}} (T_A - T_B) \qquad \text{(mit konv. Wärmeübergang)}$$

Rohrwand

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}T}{\mathrm{d}r}\right) = 0 \quad \text{mit RB} \qquad T(r=r_1) = T_1$$

$$T(r=r_2) = T_2$$

$$T = T_1 + \ln\left(\frac{r}{r_1}\right) \frac{T_2 - T_1}{\ln\frac{r_2}{r_1}} \qquad \text{(Temperaturverlauf)}$$

$$= T_2 + \ln\left(\frac{r}{r_2}\right) \frac{T_2 - T_1}{\ln\frac{r_2}{r_1}}$$

$$\dot{Q} = 2\pi\lambda L \frac{T_1 - T_2}{\ln\frac{r_2}{r_1}}$$

$$W = \frac{1}{2\pi\lambda L} \ln\frac{r_2}{r_1} \quad \text{mit} \quad r_2 > r_1$$
(Wärmewiderstand)

• Rohrwand aus n Schichten

$$\dot{Q} = 2\pi r L \left(-\lambda_i \frac{\mathrm{d}T}{\mathrm{d}r} \right) = \text{konst.}$$

$$\dot{Q} = \frac{T_1 - T_{n+1}}{\frac{1}{2\pi L} \sum_{i=1}^n \frac{1}{\lambda_i} \ln \frac{r_{i+1}}{r_i}} \qquad \text{(ohne konv. Wärmeübergang)}$$

$$\dot{Q} = \frac{2\pi L}{\frac{1}{\alpha_{\mathrm{A}} r_1} + \sum_{i=1}^n \frac{1}{\lambda_i} \ln \frac{r_{i+1}}{r_i} + \frac{1}{\alpha_{\mathrm{B}} r_{n+1}}} (T_{\mathrm{A}} - T_{\mathrm{B}}) \qquad \text{(mit konv. Wärmeübergang)}$$

Rippen

$$\theta = T - T_{\rm u} \qquad \qquad \text{(Übertemperatur)}$$

$$\eta_{\rm R} = \frac{\dot{Q}_{\rm R}}{\dot{Q}_{\rm max}} = \frac{\dot{Q}_{\rm R}}{A_0 \, \alpha \, \theta_{\rm F}} = \frac{\ddot{\rm ubertragene} \, \, \text{W\"{a}rme}}{\text{max. \"{u}bertragbare} \, \, \text{W\"{a}rme}} \qquad \text{(Rippenwirkungsgrad)}$$

hier: A_0 wärmeübertragende Fläche

 $\theta_{\rm F}$ Fußtemperatur

Stabrippen und ebene Rippen

$$\frac{\mathrm{d}^2 \theta}{\mathrm{d}x^2} - \underbrace{\frac{\alpha U}{\lambda A_Q}}_{=m^2} \theta = 0 \quad \text{mit} \quad \begin{array}{l} \mathrm{RB1:} \quad \theta(x=0) = \theta_{\mathrm{F}} \\ \mathrm{RB2:} \quad \text{verschieden, s.u.} \end{array}$$

$$\theta(x) = A \cosh(mx) + B \sinh(mx) \qquad \text{(L\"osungsansatz)}$$

$$\cdots = C \exp(mx) + D \exp(-mx)$$

$$m = \sqrt{\frac{\alpha U}{\lambda A_Q}} = \sqrt{\frac{4\alpha}{\lambda d}} \qquad \text{(Stabrippe)}$$

$$m = \sqrt{\frac{\alpha U}{\lambda A_Q}} = \sqrt{\frac{2\alpha}{\lambda \delta}} \qquad \text{(ebene Rippe)}$$

Randbedingung 2:

• Rippen mit adiabatem Rippenkopf:

RB2:
$$-\lambda \frac{\mathrm{d}\theta}{\mathrm{d}x}\Big|_{x=L} = 0$$

$$\theta = \theta_{\rm F} \frac{\cosh\left[m\left(L - x\right)\right]}{\cosh\left[mL\right]} \tag{Temperaturverlauf}$$

$$\dot{Q} = \lambda \, A_{\rm Q} \, m \, \theta_{\rm F} \, \tanh\left(mL\right) \tag{""bertragener W"armestrom"}$$

$$\eta = \frac{\tanh(mL)}{mL} \tag{Rippenwirkungsgrad}$$

• Rippen mit Umgebungstemperatur am Rippenkopf (lange Rippen):

RB2:
$$\theta(x = L) = 0$$

• Rippen mit Wärmeübergang am Rippenkopf:

RB2:
$$-\lambda \frac{\mathrm{d}\theta}{\mathrm{d}x}\Big|_{x=L} = \alpha \,\theta(x=L)$$

Kreisrippen mit adiabatem Rippenkopf*

$$\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}\left(r\frac{\mathrm{d}\theta}{\mathrm{d}r}\right) - \frac{2\alpha}{\lambda\delta}\theta = 0 \quad \text{mit} \quad \frac{\mathrm{RB1:}}{\mathrm{RB2:}} \frac{\theta(r = r_{\mathrm{F}}) = \theta_{\mathrm{F}}}{\mathrm{RB2:}} - \lambda\frac{\mathrm{d}\theta}{\mathrm{d}x}\big|_{r = r_{\mathrm{K}}} = 0$$

$$\theta(r) = A I_0(mr) + B K_0(mr) \qquad \text{(Lösungsansatz)}$$

$$\mathrm{mit} \quad m = \sqrt{\frac{2\alpha}{\lambda\delta}}$$

$$\theta(r) = \theta_F \frac{I_0(m\,r)\,K_1(m\,r_{\rm K}) + I_1(m\,r_{\rm K})\,K_0(m\,r)}{I_0(m\,r_{\rm F})\,K_1(m\,r_{\rm K}) + I_1(m\,r_{\rm K})\,K_0(m\,r_{\rm F})}$$
(Temperaturverlauf)

$$\dot{Q} = 2\pi r_{\rm F} \lambda \delta m \theta_{\rm F} \cdots \qquad (\ddot{\rm u} bertragener \ W \ddot{\rm a} r mestrom)$$

$$\cdots \frac{I_1(m \, r_{\rm K}) \, K_1(m \, r_{\rm F}) - I_1(m \, r_{\rm F}) \, K_1(m \, r_{\rm K})}{I_0(m \, r_{\rm F}) \, K_1(m \, r_{\rm K}) + I_1(m \, r_{\rm K}) \, K_0(m \, r_{\rm F})}$$

$$\eta_{R} = \frac{2}{mr_{F} \left[\left(\frac{r_{K}}{r_{F}} \right)^{2} - 1 \right]} \cdots$$

$$\cdots \frac{I_{1}(m \, r_{K}) \, K_{1}(m \, r_{F}) - I_{1}(m \, r_{F}) \, K_{1}(m \, r_{K})}{I_{0}(m \, r_{F}) \, K_{1}(m \, r_{K}) + I_{1}(m \, r_{K}) \, K_{0}(m \, r_{F})}$$
(Rippenwirkungsgrad)

$$\approx \frac{\tanh(m r_{\rm F}\phi)}{m r_{\rm F}\phi}$$
 mit $\phi = \left(\frac{r_{\rm K}}{r_{\rm F}} - 1\right) \left(1 + 0.35 \ln \frac{r_{\rm K}}{r_{\rm F}}\right)$

Ausgewertete Bessel-Funktionen I_0, I_1, K_0 und $K_1 \rightarrow$ Tabelle 9

Eindimensionale instationäre Wärmeleitung

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \frac{\partial^2 T}{\partial x^2}$$

$$\frac{\partial \theta^*}{\partial t} = a \frac{\partial^2 \theta^*}{\partial x^2}$$
mit
$$\theta^* = \frac{T - T_0}{T_u - T_0}$$

• Halbunendliche Platte, Wärmeübergangswiderstand vernachlässigbar:

$$Bi = \frac{\alpha L}{\lambda} \gg 1$$

$$\begin{cases} t > 0 \\ x = 0 \end{cases} \quad T = T_{\mathbf{u}} \qquad \theta^* = 1$$
 (RB1)

$$\begin{cases} t > 0 \\ x \to \infty \end{cases} \quad T = T_0 \qquad \theta^* = 0$$
 (RB2)

$$\theta^* = \frac{T - T_0}{T_u - T_0} = 1 - \operatorname{erf}\left(\frac{1}{\sqrt{4\operatorname{Fo}}}\right) \quad \operatorname{mit} \quad \operatorname{Fo} = \frac{at}{x^2}$$
 (Temperaturverlauf)

$$\dot{q}''|_{x=0} = \sqrt{\frac{\lambda c \rho}{\pi t}} \left(T_{\rm u} - T_0 \right)$$
 (Wärmestromdichte)

$$\delta(t) \approx 3.6 \sqrt{at}$$
 (Eindringtiefe)

• Halbunendliche Platte, Wärmeübergangswiderstand nicht vernachlässigbar:

$$\begin{cases} t > 0 \\ x = 0 \end{cases} \quad \alpha \left(T_{\mathbf{u}} - T(x = 0) \right) = -\lambda \left. \frac{\partial T}{\partial x} \right|_{x = 0}$$
 (RB1)

$$\theta^* = \frac{T - T_0}{T_u - T_0} = 1 - \operatorname{erf}\left(\frac{1}{\sqrt{4\operatorname{Fo}}}\right) \cdots \qquad (\text{Temperaturverlauf})$$

$$\cdots - \left[\exp\left(\operatorname{Bi}_x + \operatorname{Fo}\operatorname{Bi}_x^2\right)\right] \left[1 - \operatorname{erf}\left(\frac{1}{\sqrt{4\operatorname{Fo}}} + \sqrt{\operatorname{Fo}}\operatorname{Bi}_x\right)\right]$$

$$\operatorname{mit} \quad \operatorname{Bi}_x = \frac{\alpha x}{\lambda}$$

$$\operatorname{Fo} = \frac{at}{x^2}$$

• Halbunendliche Platte, periodisch veränderliche Oberflächentemperatur: *

$$\begin{cases} t > 0 \\ x = 0 \end{cases} T(x = 0) = T_{\rm m} + (T_{\rm max} - T_{\rm m}) \cos(2\pi t/\tau)$$
 (RB1)

$$\theta^* = \frac{T - T_{\rm m}}{T_{\rm max} - T_{\rm m}} = \exp\left(-\sqrt{\frac{\pi x^2}{a\tau}}\right) \cos\left(\frac{2\pi}{\tau}t - \sqrt{\frac{\pi x^2}{a\tau}}\right) \quad \text{(Temperaturverlauf)}$$

Eindimensionale instationäre Wärmeleitung in einfachen Körpern

$$\frac{T_{\rm m}-T_{\rm u}}{T_0-T_{\rm u}}$$
 (dimensionslose Temperatur in der Körpermitte)
$$\frac{T-T_{\rm u}}{T_0-T_{\rm u}}$$
 (dimensionslose Temperatur an der Stelle x o. r)

$$\frac{Q}{Q_0}$$
 mit $Q_0 = m c (T_0 - T_u)$ (dimensionsloser Wärmeverlust)

Bestimmung des instationären Temperaturverlaufs und Wärmestroms \rightarrow Diagramme 3 – 11

Diagramm 3: Temperatur in der Mitte einer Platte der Dicke $2x_1$

Diagramm 4: Temperaturverteilung in einer Platte (gültig für Fo > 0.2)

Diagramm 5: Temperatur auf der Achse eines Zylinders mit dem Radius r_1

Diagramm 6: Temperaturverteilung in einem Zylinder (gültig für Fo > 0.2)

Diagramm 7: Temperatur im Mittelpunkt einer Kugel mit dem Radius r_1

Diagramm 8: Temperaturverteilung in einer Kugel (gültig für Fo > 0.2)

Diagramm 9: Wärmeverlust einer Platte

Diagramm 10: Wärmeverlust eines Zylinders

Diagramm 11: Wärmeverlust einer Kugel

4. Konvektion

$$\rho u c_{\mathbf{p}} \frac{\partial T}{\partial x} + \rho v c_{\mathbf{p}} \frac{\partial T}{\partial y} + \rho w c_{\mathbf{p}} \frac{\partial T}{\partial z} = \cdots$$

$$(\text{Energiegleichung})$$

$$\cdots = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \dot{\Phi}'''$$

Konvektiver Wärmeübergang

$$\frac{\dot{Q}}{A} = \dot{q}_{\rm w}^{"} = \alpha (T_{\rm w} - T_{\rm fl}) \qquad \text{(konvektive Wärmestromdichte)}$$

$$W = \frac{1}{\alpha A} \qquad \text{(Wärmewiderstand)}$$

$$\alpha = \frac{-\left(\lambda \frac{dT}{dy}\right)_{\rm Fluid,\,w}}{T_{\rm w} - T_{\rm fl}} \qquad \text{(Wärmeübergangskoeffizient)}$$

$$\overline{\alpha} = \frac{1}{L} \int_{0}^{L} \alpha (x) \, \mathrm{d}x \qquad \text{(mittl. Wärmeübergangskoeffizient)}$$

Grenzschichtgleichungen (Näherungen mit linearem Geschwindigkeitsprofil)

$$\frac{\delta_u}{x} \approx \sqrt{\frac{12\,\eta}{\rho\,u_\infty x}} = \sqrt{\frac{12}{\mathrm{Re}_x}}$$
 (Dicke Geschwindigkeitsgrenzschicht)
$$\frac{\delta_T}{\delta_u} \approx \left(\frac{\lambda}{\eta c_\mathrm{p}}\right)^{1/3} = \frac{1}{\mathrm{Pr}^{1/3}}$$
 (Dicke Temperaturgrenzschicht)

5. Wärmeübergangsgesetze

$$\Delta T_{\rm ln} = (T_{\rm w} - T_{\rm fl})_{\rm m} = \frac{\Delta T_{\rm E} - \Delta T_{\rm A}}{\ln \frac{\Delta T_{\rm E}}{\Delta T_{\rm A}}}$$
 (logarithmische Temperaturdifferenz)

$$\dot{Q}_{\rm m} = \bar{\alpha} A (T_{\rm w} - T_{\rm fl})_{\rm m}$$
 (mittlerer Wärmestrom)

Erzwungene Konvektion umströmter Körper

$$\mathrm{Nu}_x = f\left(\mathrm{Re}_x,\,\mathrm{Pr},\ldots\right)$$
 (Nusselt-Korrelation)
 $T_\mathrm{St} = \frac{T_\mathrm{w} + T_\infty}{2}$ (Temperatur zur Stoffwertermittlung)

• Ebene Platte – laminare Grenzschicht, isotherme Oberfläche (1)

$$(0.6 < \text{Pr} < 10 \text{ und } \text{Re}_x < \text{Re}_{x, \text{krit}} \approx 2 \cdot 10^5)$$

$$Nu_x = 0.332 \text{ Re}_x^{1/2} Pr^{1/3}$$
 (WÜK.1)

$$\overline{\text{Nu}}_L = 0.664 \text{ Re}_L^{1/2} \text{Pr}^{1/3}$$
 (WÜK.2)

• Ebene Platte - laminare Grenzschicht, isotherme Oberfläche (2)

Beheizung oder Kühlung ab Stelle $x = x_0$

 $(0.6 < \mathrm{Pr} < 10 \text{ und } \mathrm{Re}_x < \mathrm{Re}_{x,\,\mathrm{krit}} \approx 2 \cdot 10^5)$

$$Nu_x = 0.332 \text{ Re}_x^{1/2} Pr^{1/3} \left[1 - \left(\frac{x_0}{x}\right)^{3/4} \right]^{-1/3}$$
 (WÜK.3)

$$\overline{Nu}_{L} = \frac{L}{L - x_{0}} \frac{1}{\lambda} \int_{x_{0}}^{L} \alpha(x) dx$$

$$= 0,664 \operatorname{Re}_{L}^{1/2} \operatorname{Pr}^{1/3} \frac{\left[1 - \left(\frac{x_{0}}{L}\right)^{3/4}\right]^{2/3}}{\left[1 - \frac{x_{0}}{L}\right]} \tag{W\"{U}K.4}$$

• Ebene Platte – turbulente Grenzschicht, isotherme Oberfläche

 $({\rm Re}_{L,\,{\rm krit}} \approx 2 \cdot 10^5 \ {\rm und} \ 5 \cdot 10^5 < {\rm Re} < 10^7)$

$$Nu_x = 0.0296 \text{ Re}_x^{0.8} \text{Pr}^{0.43}$$
 (WÜK.5)

$$\overline{\text{Nu}}_L \approx 0.036 \text{ Pr}^{0.43} \left(\text{Re}_L^{0.8} - 9400 \right)$$
 (WÜK.6)

Längs angeströmter Zylinder

Wenn der Körperdurchmesser deutlich größer als die Grenzschichtdicke ist, kann ein längsangeströmter Zylinder wie eine ebene Oberfläche behandelt werden.

• Quer angeströmter Zylinder

$$\overline{\mathrm{Nu}}_d = C \, \mathrm{Re}_d^m \mathrm{Pr}^{0,4} \tag{W\ddot{\mathrm{U}}\mathrm{K}.7}$$

Re_d	C	\overline{m}
$0,\!4-4$	0,989	0,330
4-40	0,911	0,385
40 - 4000	0,683	0,466
4000 - 40000	0,193	0,618
40000 - 400000	0,0266	0,805

Alternativ zu WÜK.7 kann WÜK.8 verwendet werden:

$$\overline{Nu}_d = \left[0.40 \text{ Re}_d^{1/2} + 0.06 \text{ Re}_d^{2/3}\right] \Pr^{0.4} \left(\frac{\eta_\infty}{\eta_w}\right)^{1/4}$$
 (WÜK.8)

hier: $T_{\rm St} = T_{\infty}$

• Mittlerer Wärmeübergang bei nicht-kreisförmigen Zylindern

$$\overline{\mathrm{Nu}}_d = C \, \mathrm{Re}_d^m \mathrm{Pr}^{0,4} \tag{W\ddot{\mathrm{U}}\mathrm{K}.9}$$

Geometrie	Re_d	C	m	
u_{∞} d	$5\cdot 10^3-10^5$	0,246	0,588	
u_{∞} d	$5\cdot 10^3-10^5$	0,102	0,675	
u_{∞} d	$5 \cdot 10^3 - 1{,}95 \cdot 10^4 \\ 1{,}95 \cdot 10^4 - 10^5$	0,160 $0,0385$	0,638 0,782	
u_{∞} d	$5 \cdot 10^3 - 10^5$	0,153	0,638	
u_{∞} d	$4\cdot 10^3 - 1,5\cdot 10^4$	0,228	0,731	

• Quer angeströmtes Glattrohrbündel

$$\overline{\text{Nu}}_d = 0.287 \text{ Re}_d^{0.6} \text{ Pr}^{0.36} f_e$$
 (WÜK.10)

fluchtende Anordnung

versetzte Anordnung

Diagramm 12: Anordnungfaktoren $f_{\rm e}$ für fluchtende Anordnung

Diagramm 13: Anordnungfaktoren $f_{\rm e}$ für versetzte Anordnung

Umströmte Kugel

$$(0.7 < \text{Pr} < 380 \text{ und } 3.5 < \text{Re}_d < 8 \cdot 10^4, T_{\text{St}} = T_{\infty})$$

$$\overline{\text{Nu}}_d = 2 + \left(0.4 \text{ Re}_d^{1/2} + 0.06 \text{ Re}_d^{2/3}\right) \text{ Pr}^{0.4} \left(\frac{\eta_\infty}{\eta_w}\right)^{1/4}$$
 (WÜK.11)

hier: $T_{\rm St} = T_{\infty}$

Erzwungene Konvektion durchströmter Körper

$$Nu_x = f (Re_x, Pr, ...)$$
 (Nusselt-Korrelation)
$$T_{St} = \frac{T_{fl, A} + T_{fl, E}}{2}$$
 (Temperatur zur Stoffwertermittlung)
$$d_h = 4\frac{A_Q}{U}$$
 (Hydraulischer Durchmesser)

hier: $A_{\mathbf{Q}}$ durchströmter Querschnitt

U benetzter Umfang

• Laminare Rohrströmung – isotherme Oberfläche (1)

Hydrodynamisch ausgebildete Strömung bei Beginn des wärmeübertragenden Rohrabschnitts ($\text{Re}_{d,\,\text{krit}}\approx 2300$)

$$\overline{Nu}_{d} = \left(3,66 + \frac{0,19 \left(Re_{d} Pr_{\overline{L}}^{d}\right)^{0,8}}{1 + 0,117 \left(Re_{d} Pr_{\overline{L}}^{d}\right)^{0,467}}\right) \left(\frac{\eta}{\eta_{w}}\right)^{0,14}$$
 (WÜK.12)

$$\frac{L_{\rm th}}{d} \approx 0.05 \; {\rm Re}_d {\rm Pr}$$
 (thermische Einlauflänge)

Nach Erreichen der thermischen Einlauflänge gilt $\overline{Nu}_{\infty} = 3,66 \left(\eta/\eta_W \right)^{0,14}$.

• Laminare Rohrströmung – isotherme Oberfläche (2)

Gleichzeitiger hydrodynamischer und thermischer Anlauf (Re_{d, krit} ≈ 2300)

$$\overline{\mathrm{Nu}}_{d} = \left(3,66 + \frac{0,0677 \left(\mathrm{Re}_{d} \mathrm{Pr} \frac{d}{L}\right)^{1,33}}{1 + 0,1 \mathrm{Pr} \left(\mathrm{Re}_{d} \frac{d}{L}\right)^{0,83}}\right) \left(\frac{\eta}{\eta_{\mathrm{w}}}\right)^{0,14} \tag{W\ddot{\mathrm{U}}\mathrm{K}.13}$$

$$\frac{L_{\rm th}}{d} \approx 0.05 \; {\rm Re}_d {\rm Pr}$$
 (thermische Einlauflänge)

Nach Erreichen der thermischen Einlauflänge gilt $\overline{Nu}_{\infty} = 3,66 \left(\eta/\eta_W \right)^{0.14}$.

• Laminare Rohrströmung – aufgeprägte Wärmestromdichte

Wird anstelle der Wandtemperatur die Wärmestromdichte an der Wand konstant gehalten, ergeben sich etwa 20% höhere Wärmeübergangskoeffizienten.

Turbulente Rohrströmung – isotherme Oberfläche

Gleichzeitiger hydrodynamischer und thermischer Anlauf (Re_{d, krit} ≈ 2300 , Re_d > 2300, 0,6 < Pr < 500 und L/d > 1)

$$\overline{\text{Nu}}_d = 0.0235 \left(\text{Re}_d^{0.8} - 230 \right) \left(1.8 \text{Pr}^{0.3} - 0.8 \right) \left(1 + \left(\frac{d}{L} \right)^{2/3} \right) \left(\frac{\eta}{\eta_w} \right)^{0.14}$$
 (WÜK.14)

Vereinfachtes Nusselt-Gesetz für die voll ausgebildete turbulente Rohrströmung ($\text{Re}_{d,\,\text{krit}} \approx 2300,\,3000 < \text{Re}_d < 10^5 \,\,\text{und}\,\,L/d > 40$)

$$\overline{\mathrm{Nu}}_{d} = 0.027 \,\mathrm{Re}_{d}^{0.8} \mathrm{Pr}^{1/3} \left(\frac{\eta}{\eta_{\mathrm{w}}}\right)^{0.14} \tag{W\ddot{\mathrm{U}}\mathrm{K}.15}$$

• Turbulente Rohrströmung – aufgeprägte Wärmestromdichte

Die Wärmeübergangskoeffizienten bei aufgeprägtem Wärmestrom sind mit denen bei aufgeprägter Wandtemperatur vergleichbar.

Natürliche Konvektion

$$\mathrm{Nu}_x = f\left(\mathrm{Gr}_x,\,\mathrm{Pr},\ldots\right)$$
 (Nusselt-Korrelation)
$$T_\mathrm{St} = \frac{T_\mathrm{w} + T_\infty}{2}$$
 (Temperatur zur Stoffwertermittlung)
$$\beta = \frac{1}{T_\infty}$$
 (Ausdehnungskoeffizient Idealgas)

Vertikale Platte – laminare Grenzschicht, isotherme Oberfläche

$$Nu_x = 0.508 \left(\frac{Pr}{0.952 + Pr}\right)^{1/4} (Gr_x Pr)^{1/4}$$
 (WÜK.16)

$$\overline{\mathrm{Nu}}_{L} = C \left(\mathrm{Gr}_{L} \mathrm{Pr} \right)^{1/4} \tag{W\ddot{\mathrm{U}}\mathrm{K}.17}$$

für
$$Gr_L Pr < Gr_{L,krit} Pr = 4 \cdot 10^9$$

\Pr	0,003	0,01	0,03	0,72	1	2	10	100	1000	∞
C	$0,\!182$	$0,\!242$	0,305	0,516	0,535	0,568	0,620	0,653	0,665	0,670

• Vertikale Platte - laminare Grenzschicht, aufgeprägte Wärmestromdichte

$$Nu_{x} = 0,60 (Gr_{x}^{*}Pr)^{1/5}$$

$$f\ddot{u}r \quad 10^{5} < Gr_{x}^{*} < 10^{11}$$

$$mit \quad Gr_{x}^{*} = Gr_{x}Nu_{x} = \frac{\rho^{2}g\beta\dot{q}_{w}^{"}x^{4}}{\lambda n^{2}}$$

Vertikale Platte – turbulente Grenzschicht, isotherme Oberfläche

$$\overline{\text{Nu}}_L = 0.13 \, (\text{Gr}_L P r)^{1/3}$$
 (WÜK.19)
für $10^9 < (\text{Gr}_L \text{Pr}) < 10^{12}$

Vertikaler Zylinder – laminare und turbulente Grenzschicht

Für Durchmesser-Längen-Verhältnisse von $d/L>35\,{\rm Gr}_L^{-1/4}$ gelten die für die vertikale Platte angegebenen Beziehungen.

• Horizontaler Zylinder – isotherme Oberfläche

laminar:
$$\overline{\text{Nu}}_d = 0.53 \, (\text{Gr}_d \text{Pr})^{1/4}$$
 (WÜK.20)
für $10^4 < \text{Gr}_d \text{Pr} < 10^9$

turbulent:
$$\overline{\text{Nu}}_d = 0.13 \, (\text{Gr}_d \text{Pr})^{1/3}$$
 (WÜK.21)
für $10^9 < \text{Gr}_d \text{Pr} < 10^{12}$

Horizontale Platte – isotherme Oberfläche

Plattenoberseite mit $T_{\rm W} > T_{\infty}$ / Plattenunterseite mit $T_{\rm W} < T_{\infty}$

laminar:
$$\overline{\text{Nu}}_L = 0.54 \left(\text{Gr}_L \text{Pr}\right)^{1/4}$$
 (WÜK.22a)
für $2 \cdot 10^4 < \text{Gr}_L \text{Pr} < 8 \cdot 10^6$

turbulent:
$$\overline{\text{Nu}}_L = 0.15 \, (\text{Gr}_L \text{Pr})^{1/3}$$
 (WÜK.23a)
für $8 \cdot 10^6 < \text{Gr}_L \text{Pr} < 10^{11}$

Platten
oberseite mit $T_{\rm W} < T_{\infty}$ / Plattenunterseite mit
 $T_{\rm W} > T_{\infty}$

laminar:
$$\overline{\text{Nu}}_L = 0.27 \, (\text{Gr}_L \text{Pr})^{1/4}$$
 (WÜK.24a)
für $10^5 < \text{Gr}_L \text{Pr} < 10^{11}$

• Horizontale Platte - aufgeprägte Wärmestromdichte

Platten
oberseite mit $T_{\rm W} > T_{\infty}$ / Plattenunterseite mit
 $T_{\rm W} < T_{\infty}$

laminar:
$$\overline{\text{Nu}}_L = 0.13 \left(\text{Gr}_L \text{Pr}\right)^{1/3}$$
 (WÜK.22b)
für $\text{Gr}_L \text{Pr} < 2 \cdot 10^8$

turbulent:
$$\overline{\text{Nu}}_L = 0.16 \, (\text{Gr}_L \text{Pr})^{1/3}$$
 (WÜK.23b)
für $2 \cdot 10^8 < \text{Gr}_L \text{Pr} < 10^{11}$

Plattenoberseite mit $T_{\rm W} < T_{\infty}$ / Plattenunterseite mit $T_{\rm W} > T_{\infty}$

laminar:
$$\overline{\text{Nu}}_L = 0.58 \, (\text{Gr}_L \text{Pr})^{1/5}$$
 (WÜK.24b)
für $10^6 < \text{Gr}_L \text{Pr} < 10^{11}$

• Fluidschichten zwischen isothermen, vertikalen Wänden

Höhen-Abstand-Verhältnis 3,1 < H/s < 42,2

reine Wärmeleitung:
$$\overline{\mathrm{Nu}}_s = 1$$
 für $\mathrm{Gr}_s < 2 \cdot 10^3$

laminar:
$$\overline{\text{Nu}}_s = 0.20 (H/s)^{-1/9} (\text{Gr}_s \text{Pr})^{1/4}$$
 (WÜK.25)
für $2 \cdot 10^3 < \text{Gr}_s < 2 \cdot 10^4$

turbulent:
$$\overline{\text{Nu}}_s = 0.071 \, (H/s)^{-1/9} \, (\text{Gr}_s \text{Pr})^{1/3}$$
 (WÜK.26)
für $2 \cdot 10^5 < \text{Gr}_s < 10^7$

Fluidschichten zwischen isothermen, horizontalen Wänden

reine Wärmeleitung:
$$\overline{\mathrm{Nu}}_s = 1$$
 für $\mathrm{Gr}_s < 2 \cdot 10^3$

laminar:
$$\overline{\text{Nu}}_s = 0.21 \, (\text{Gr}_s \text{Pr})^{1/4}$$
 (WÜK.27)
für $2 \cdot 10^3 < \text{Gr}_s < 3.2 \cdot 10^5$

turbulent:
$$\overline{\text{Nu}}_s = 0.075 \left(\text{Gr}_s \text{Pr}\right)^{1/3}$$
 (WÜK.28)
für $3.2 \cdot 10^5 < \text{Gr}_s < 10^7$

Bei Heizung von oben gilt stets die Beziehung für reine Wärmeleitung.

7. Stoffübertragung

$$j^{"}=-\rho\,D\frac{\partial\xi}{\partial x}$$
 (Ficksches Gesetz)
$$\xi_i=\frac{\rho_i}{\rho_{\rm ges}}$$
 (Massenanteil)
$$\sum j_i^{"}=0$$
 (Summe aller Diffusionströme)
$$\sum \xi_i=1$$
 (Summe aller Massenanteile)

Transportgleichung

$$\rho u \frac{\partial \xi}{\partial x} + \rho v \frac{\partial \xi}{\partial y} + \rho w \frac{\partial \xi}{\partial z} = \cdots$$

$$\cdots = \frac{\partial}{\partial x} \left(\rho D \frac{\partial \xi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\rho D \frac{\partial \xi}{\partial y} \right) + \frac{\partial}{\partial z} \left(\rho D \frac{\partial \xi}{\partial z} \right) + \dot{m}^{"}$$

Stoffübergang an einer Oberfläche

$$\frac{\dot{m}}{A} = \dot{m}'' = g\left(\xi_{\rm O} - \xi_{\infty}\right) \qquad \text{(konvektive Massenstromdichte)}$$

$$\mathrm{Sh}_x = f\left(\mathrm{Re}_x, \, \mathrm{Sc}, \ldots\right) \qquad \text{(Stoffübergangsgesetze)}$$

$$\mathrm{vgl.:} \qquad \mathrm{Nu}_x = f\left(\mathrm{Re}_x, \, \mathrm{Pr}, \ldots\right) \qquad \text{(W\"{a}rme\"{u}bergangsgesetze)}$$

Stoffübergang an einer halbdurchlässigen Oberfläche (z.B. Verdunstung)

$$\dot{m}'' = g \frac{\xi_{\rm O} - \xi_{\infty}}{1 - \xi_{\rm O}}$$
 (Massenstromdichte mit Stefanstrom)

Analogie zwischen Wärme- und Stoffübertragung

$$\begin{split} \operatorname{Sh}_{x} &= C \operatorname{Re}_{x}^{m} \operatorname{Sc}^{n} \\ \operatorname{Nu}_{x} &= C \operatorname{Re}_{x}^{m} \operatorname{Pr}^{n} \end{split} \quad \frac{\operatorname{Sh}_{x}}{\operatorname{Nu}_{x}} = \left(\frac{\operatorname{Sc}}{\operatorname{Pr}}\right)^{n} \\ \operatorname{Le} &= \frac{\operatorname{Sc}}{\operatorname{Pr}} = \frac{\lambda}{\rho D \, c_{\mathrm{p}}} \\ \operatorname{Le} &= 1 \quad \rightarrow \quad \frac{g}{\alpha / c_{\mathrm{p}}} = 1 \end{split} \quad \text{(Lewissches Gesetz)}$$

Wärmeübert	ragung	Stoffübertragung		
Temperatur	T	Massenanteil	ξ	
Wärmestromdichte	$\dot{q}^{\prime\prime}$	Massenstromdichte	$j^{''}$	
Vol. Wärmekapazität	$ hoc_{ m p}$	Dichte	ho	
Wärmeleitfähigkeit	λ		ho D	
Temperaturleitfähigkeit	$a = \lambda/(\rho c_{\rm p})$	Diffusionskoeffizient	D	
kon	vektiver Wärme-	und Stofftransport		
Wärmeübergangskoeff.	α	Stoffübergangskoeff.	g	
Nusselt-Zahl	$Nu_x = \alpha x/\lambda$	Sherwood-Zahl	$Sh_x = g x/(\rho D)$	
Prandtl-Zahl	$\Pr = \eta c_{\rm p}/\lambda$	Schmidt-Zahl	$\mathrm{Sc} = \eta/(\rho D)$	

Anhang A – Stoffwerte

Tabelle 1: Metalle bei 20°C

	ρ	c	λ	a
	$10^3~\rm kg/m^3$	$\rm kJ/kgK$	$\mathrm{W/mK}$	$10^{-6} \; \mathrm{m^2/s}$
Aluminium	2,70	0,888	237	98,80
Blei	11,34	0,129	35	23,90
Chrom	6,92	0,440	91	29,90
Eisen	7,86	0,452	81	22,80
Gold	19,26	0,129	316	127,20
Kupfer	8,93	0,382	399	117,00
Magnesium	1,74	1,020	156	87,90
Mangan	$7,\!42$	0,473	21	6,00
Molybdän	10,20	$0,\!251$	138	53,90
Natrium	9,71	1,220	133	11,20
Nickel	8,85	0,448	91	23,00
Platin	21,37	0,133	71	$25,\!00$
Silber	10,50	0,235	427	173,00
Titan	4,50	0,522	22	9,40
Wolfram	19,00	0,134	173	67,90
Zink	7,10	0,387	121	44,00
Zinn, weiß	7,29	$0,\!225$	67	40,80
Bronze	8,80	0,377	62	18,70
Gusseisen	7,80	0,540	4250	1012
Kohlenstoffstahl ($<0,4\%$ C)	$7,\!85$	$0,\!465$	4250	1215
Cr-Ni-Stahl (X12CrNi 18,8)	7,80	0,500	15	3,80

Tabelle 2: Nichtmetallische Festkörper bei 20° C

	ρ	c	λ	a
	$10^3~\rm kg/m^3$	$\rm kJ/kgK$	$\mathrm{W/mK}$	$10^{-6} \text{ m}^2/\text{s}$
Acrylglas (Plexiglas)	1,18	1,44	0,184	0,108
Asphalt	2,12	0,92	0,7	$0,\!36$
Beton	2,1	0,88	1	$0,\!54$
Eis $(0^{\circ}C)$	0,917	2,04	$2,\!25$	1,203
Erdreich, grobkiesig	2,04	1,84	$0,\!52$	$0,\!14$
Sandboden, trocken	1,65	0,8	$0,\!27$	$0,\!2$
Sandboden, feucht	1,75	1	0,58	0,33
Tonboden	$1,\!45$	0,88	1,28	1
Glas,				
Fensterglas	2,48	0,7	0,87	0,5
Spiegelglas	2,7	0,8	0,76	$0,\!35$
Quarzglas	2,21	0,73	1,4	0,87
Glaswolle	1,2	0,66	0,046	$0,\!58$
Gips	1	1,09	0,51	$0,\!47$
Granit	2,75	0,89	2,9	1,18
Korkplatten	$0,\!19$	1,88	0,041	$0,\!115$
Marmor	2,6	0,8	2,8	1,35
Mörtel	1,9	0,8	0,93	0,61
Papier	0,7	1,2	$0,\!12$	$0,\!14$
Polyethylen	0,92	2,3	$0,\!35$	$0,\!17$
Polytetrafluoräthylen	2,2	1,04	$0,\!23$	0,1
PVC	1,38	0,96	0,15	0,11
Porzellan (95°C)	2,4	1,08	1,03	0,4
Steinkohle	$1,\!35$	1,26	$0,\!26$	$0,\!15$
Tannenholz (radial)	$0,\!415$	2,72	$0,\!14$	0,12
Verputz	1,69	0,8	0,79	$0,\!58$
Ziegelstein	1,61,8	0,84	$0,\!38.\dots0,\!52$	$0,\!280,\!34$

Tabelle 3: Flüssigkeiten bei $1\,\mathrm{bar}$

	T	ρ	c	λ	ν	a	Pr
	$^{\circ}\mathrm{C}$	$10^3~\rm kg/m^3$	$\rm kJ/kgK$	$\mathrm{W/mK}$	$10^{-6} \text{ m}^2/\text{s}$	$10^{-6} \; \mathrm{m^2/s}$	1
Stickstoff	-190	0,861	1,988	0,161	0,321	0,0939	3,42
Wasser	0	0,9998	4,218	0,561	1,793	0,133	13,48
	20	0,9982	4,181	0,598	1,004	0,1434	7,001
	40	0,9922	4,177	0,631	0,658	$0,\!1521$	4,3280
	60	0,9832	4,184	0,654	0,475	$0,\!1591$	2,983
	80	0,9718	$4,\!197$	0,67	$0,\!365$	0,1643	2,221
	99,63	0,9586	4,216	0,679	$0,\!295$	0,168	1,757
wässrige Lösung							
$21\%\mathrm{NaCl}$	-10	1,187	3,312	$0,\!528$	4,02	$0,\!136$	29,5
Benzol	20	$0,\!879$	1,738	$0,\!154$	0,74	0,101	7,33
Methanol	20	0,792	$2,\!495$	$0,\!22$	0,737	0,111	$6,\!57$
Heizöl	20	0,819	2	0,116	1,82	0,0709	25,7
	100	0,766	2,38	0,104	0,711	0,0572	12,4
Quecksilber	20	13,55	0,139	9,3	0,115	4,9	0,023

Tabelle 4: Gase bei $1\,\mathrm{bar}$

	T	ρ	c	λ	ν	a	Pr
	$^{\circ}\mathrm{C}$	${\rm kg/m^3}$	$\rm kJ/kgK$	$10^{-3}\;\mathrm{W/mK}$	$10^{-6} \text{ m}^2/\text{s}$	$10^{-6} \text{ m}^2/\text{s}$	1
Luft	-200	5,106	1,186	6,886	0,979	1,137	0,8606
	-100	2,019	1,011	16,2	5,829	7,851	0,7423
	0	1,275	1,006	24,18	$13,\!52$	18,83	0,7179
	20	1,188	1,007	25,69	$15,\!35$	$21,\!47$	0,7148
	40	1,112	1,007	27,16	$17,\!26$	$24,\!24$	0,7122
	80	0,9859	1,01	30,01	$21,\!35$	$30,\!14$	0,7083
	100	0,9329	1,012	$31,\!39$	$23,\!51$	$33,\!26$	0,707
	200	0,7356	1,026	37,95	$35,\!47$	50,3	0,7051
	400	0,517	1,069	49,96	$64,\!51$	$90,\!38$	0,7137
	600	$0,\!3986$	1,116	61,14	$99,\!63$	137,5	0,7247
	800	0,3243	$1,\!155$	$71,\!54$	140,2	191	0,7342
	1000	$0,\!2734$	1,185	80,77	185,9	249,2	0,7458
Wasserdampf	100	$0,\!5896$	2,042	25,08	20,81	20,83	0,999
	200	$0,\!4604$	1,975	33,28	$35{,}14$	36,6	0,96
	400	0,3223	2,07	54,76	$75,\!86$	82,07	0,9243
	600	0,2483	2,203	79,89	131,4	146,1	0,8993
	800	0,2019	2,343	107,3	199,9	226,8	0,8816
	1000	$0,\!1702$	2,478	163,3	280	323,2	0,8665
Wasserstoff	0	0,0886	$14,\!24$	176	95	139	0,68
	50	0,0748	14,36	202	126	188	0,67
	100	0,0649	$14,\!44$	229	159	244	0,65
Kohlendioxid	0	1,95	0,829	14,3	7,1	8,86	0,8
	50	1,648	0,875	17,8	9,8	12,3	0,8
	100	1,428	0,925	21,3	$12,\!4$	16,1	0,8
Helium	27	$0,\!1625$	5,193	155,7	122,6	184,5	0,655

 ${\bf Tabelle~5:~Diffusions koeffizienten~von~Gasgemischen}$

	T	D
	K	$10^{-4} \text{ m}^2/\text{s}$
$Luft - CO_2$	276	0,144
	317	$0,\!179$
$Luft - C_2H_5OH$	313	$0{,}147$
$\mathrm{Luft}-\mathrm{He}$	276	0,632
$\mathrm{Luft}-\mathrm{H_2O}$	313	0,292
$CO_2 - H_2O$	307	0,201
$\mathrm{He}-\mathrm{H_2O}$	352	1,136
$H_2 - H_2O$	307	0,927
$\mathrm{CH_4}-\mathrm{H_2O}$	352	0,361

Tabelle 6: Diffusionskoeffizienten von wässrigen Lösungen

	T	D	
	K	$10^{-9} \text{ m}^2/\text{s}$	
$CH_4 - H_2O$	275	0,85	
	333	$3,\!55$	
$CO_2 - H_2O$	298	2	
$\mathrm{CH_3OH} - \mathrm{H_2O}$	288	1,26	
$C_2H_5OH - H_2O$	288	1	
$O_2 - H_2O$	298	2,4	
$N_2 - H_2O$	298	2,6	
$\mathrm{H_2}-\mathrm{H_2O}$	298	6,3	

Tabelle 7: Emissionsgrade von Festkörpern (Gesamtemmisionsgrad $\varepsilon,$ Flächennormal $\varepsilon_{\rm n})$

Oberfläche	T	$arepsilon_{ m n}$	ε	Oberfläche	T	ε_{n}	ε
	K				K		
Metalle				Zink, rein poliert	500		0,045
Aluminium, walzblank	443	0,039	0,049		600		0,055
\dots poliert	373	0,095		verzinktes Eisenblech			
stark oxidiert	366	0,2		\dots blank	301	$0,\!228$	
	777	0,31		\dots grau oxidiert	297	$0,\!276$	
Aluminiumoxid	550	0,63		Zinn, nicht oxidiert	298		0,043
	1100	0,26			373	0,05	
	1089	0,052		Nichtmetalle			
Chrom, poliert	423	423	423	Asbest, Pappe	296	0,96	
, 1				Papier	311	0,93	
Gold, hochglanzpoliert	500	0,018			644	0,94	
	900	900		Beton, rau	273 – 36		0,94
Kupfer, poliert	293	0,03		Dachpappe	294	0,91	0,01
leicht angelaufen	$\frac{293}{293}$	0,037		Gips		0.8 - 0.9	
schwarz oxidiert				_			
	293	0.78		Glas	293	0,94	
oxidiert	403	0,76	0.00	Quarzglas (7 mm dick)		0,93	
Inconel, gewalzt	1089		0,69		1111	0,47	
\dots sandgestrahlt	1089		0,79	Gummi	293	0,92	
Eisen und Stahl,				Holz,			
\dots hochglanzpoliert	450	0,052		Eiche, gehobelt	273 - 36		0,9
\dots poliert	700	0,144		\dots Buche	343	0,94	0,91
	1300	0,377		Keramik, feuerfest			
geschmirgelt	293	0,242		weißes Al_2O_3	366		0,9
Gusseisen, poliert	473	0,21		Kohlenstoff,			
Stahlguss, poliert	1044	$0,\!52$		nicht oxidiert	298		0,81
State (State)	1311	0,56			773		0,79
Eisenblech	1011	0,00		\dots Fasern	533		0,95
stark verrostet	292	0,685		graphitisch	373		0,76
Walzhaut	$\frac{232}{294}$	0,657		Korund, Schmirgel rai		0,85	0,84
Gusseisen,	294	0,007		Lacke, Farben:	1 300	0,00	0,64
	470	0.64			200		0.00
oxidiert bei 866 K	472	0,64		Ölfarbe schwarz	366		0,92
C. 11	872	0,78		grün	366		0,95
Stahl,				rot	366		0,97
oxidiert bei 866 K	472	0,79		weiß	373		0,94
	872	0,79		Lack, weiß	373	0,925	
Messing, nicht oxidiert	298	0,035		\dots matt schwarz	353		0,97
	373	0,035		Bakelitlack	353	0,935	
\dots oxidiert	473	0,61		Menniganstrich	373	0,93	
	873	0,59		Heizkörper (VDI-74)	373	0,925	
	1673	$0,\!17$		Emaille, weiß auf Eise		0,897	
Nickel, nicht oxidiert	298	0,045		Marmor			
,	373	0,06		hellgrau poliert	273 – 36	66	0,9
	873	0,478		Papier	273	, ,	0,92
oxidiert	473	0,37		apiei	366		0,94
Platin	$473 \\ 422$	0.022		Porzellan, weiß	$\frac{300}{295}$		0,94 0,924
1 1001II							
O1:11	1089	0,123		Ton, glasiert	298		0,9
Quecksilber,	200	0.1		matt	298	0.05	0,93
nicht oxidiert	298	0,1		Wasser	273	0,95	
	373	$0,\!12$			373	0,96	
Silber, poliert	311	0,022		Eis, glatt mit Wasser	273	0,966	0,92
	644	0,031		\dots rauer Reifbelag	273	0,985	
Wolfram	298		0,024	Ziegelstein rot	273 - 36	66	0,93
	1273		$0,\!15$	<u> </u>			,
	1210						

Anhang B – Mathematische Formelsammlung

Fehlerfunktionen (error function)

$$\operatorname{erf}(\eta) = \frac{2}{\sqrt{\pi}} \int_{\xi=0}^{\xi=\eta} \exp(-\xi^2) d\xi$$
$$\operatorname{erfc}(\eta) = 1 - \operatorname{erf}(\eta) = \frac{2}{\sqrt{\pi}} \int_{\xi=\eta}^{\xi=\infty} \exp(-\xi^2) d\xi$$

Wichtige Eigenschaften

$$\operatorname{erf}(\infty) = 1 \quad \operatorname{erf}(-\eta) = -\operatorname{erf}(\eta) \quad \frac{d}{d\eta} \left[\operatorname{erf}(\eta) \right] = \frac{2}{\sqrt{\pi}} \exp(-\eta^2)$$

Tabelle 8: Auswertung der Fehlerfunktion

η	$\operatorname{erf}(\eta)$	$\operatorname{erfc}(\eta)$	$2/\sqrt{\pi}\exp(-\eta^2)$
0	0	1	1,128
0,05	0,056	0,944	1,126
0,1	0,112	0,888	1,117
0.15	$0,\!168$	0,832	1,103
0,2	0,223	0,777	1,084
$0,\!25$	$0,\!276$	0,724	1,060
0,3	$0,\!329$	0,671	1,031
$0,\!35$	$0,\!379$	0,621	0,998
0,4	$0,\!428$	0,572	0,962
$0,\!45$	$0,\!475$	0,525	0,922
0,5	$0,\!520$	$0,\!480$	0,879
$0,\!55$	$0,\!563$	$0,\!437$	0,834
0,6	0,604	$0,\!396$	0,787
0,65	0,642	$0,\!378$	0,740
0,7	0,678	0,322	0,691
0,75	0,711	0,289	0,643
0,8	0,742	$0,\!258$	0,595
$0,\!85$	0,771	0,229	0,548
0,9	0,797	0,203	0,502
0,95	0,821	$0,\!179$	$0,\!458$
1	0,843	$0,\!157$	0,415
1,1	0,880	$0,\!120$	0,337
1,2	0,910	0,090	0,267
1,3	0,934	0,066	0,208
1,4	0,952	0,048	0,159
1,5	0,966	0,034	0,119
1,6	0,976	0,024	0,087
1,7	0,984	0,016	0,063
1,8	0,989	0,011	0,044
1,9	0,993	0,007	0,030
2	0,995	0,005	0,021

Bessel-Funktionen *

Tabelle 9: Auswertung der Bessel-Funktionen 1. und 2. Art

	DCD	ber i umkuto	nen 1. und 2	
X	$I_0(x)$	$I_1(x)$	$2/\pi \cdot K_0(x)$	$2/\pi \cdot K_1(x)$
0	1	0	∞	∞
0,2	1,0100	$0,\!1005$	1,1160	3,0410
0,4	1,0404	0,2040	0,7095	1,3910
0,6	1,0920	0,3137	0,4950	0,8294
0,8	1,1665	0,4329	0,3599	0,5486
1	1,2661	$0,\!5652$	0,2680	0,3832
1,2	1,3937	0,7147	0,2028	0,2768
1,4	1,5534	0,8861	0,1551	0,2043
1,6	1,7500	1,0848	0,1197	$0,\!1532$
1,8	1,9896	1,3172	$0,9290\ 10^{-1}$	0,1163
$2^{'}$	2,2796	1,5906	0,7251	$0,8904 \ 10^{-1}$
2,2	2,6291	1,9141	0,5683	0,6869
$^{-,-}_{2,4}$	3,0493	2,2981	0,4470	0,5330
$^{-,-}_{2,6}$	3,5533	2,7554	0,3527	0,4156
2,8	4,1573	3,3011	0,2790	0,3254
$\frac{2}{3}$	4,8808	3,9534	0,2212	0,2556
3,2	5,7472	4,7343	0,1757	0,2014
3,2 $3,4$	6,7848	5,6701	0,1398	0,1592
3,4 $3,6$	8,0277	6,7028	0,1330 $0,1114$	0,1332 $0,1261$
$^{3,0}_{3,8}$	9,5169	8,1404	$0.8891 \ 10^{-2}$	$0,9999 \ 10^{-2}$
3,0 4	11,302	9,7595	0,7105	0,7947
4,2	13,443	11,706	0,7103 $0,5684$	0,6327
,	16,010	14,046	0,3084 $0,4551$	0,5044
4,4				
4,6	19,093 $22,794$	16,863	0,3648	0,4027
$\frac{4,8}{5}$		20,253	0,2927	0,3218
	27,240	24,336	0,2350	0,2575
5,2	32,584	29,254	0,1888	0,2062
5,4	39,009	35,182	0,1518	0,1653
5,6	46,738	42,328	0.1221	0,1326
$_{c}^{5,8}$	56,038	50,946	$0.9832 \ 10^{-3}$	0,1064
6	67,234	61,342	0,7920	$0.8556 \ 10^{-3}$
6,2	80,718	73,886	0,6382	0,6879
6,4	96,962	89,026	0,5146	0,5534
6,6	116,54	107,31	0,4151	0,4455
6,8	140,14	129,38	0,3350	0,3588
7	168,59	156,04	0,2704	0,2891
7,2	202,92	188,25	0,2184	0,2331
7,4	244,34	227,18	0,1764	0,1880
7,6	294,33	274,22	0,1426	0,1517
7,8	354,69	331,10	0,1153	0,1424
8	427,56	399,87	$0.9325 \ 10^{-4}$	$0.9891 \ 10^{-4}$
8,2	515,59	483,05	0,7543	0,7991
8,4	621,94	583,66	0,6104	0,6458
8,6	750,46	705,38	0,4941	0,5220
8,8	905,80	852,66	0,4000	0,4221
9	1.093,0	1.030,90	0,3239	0,3415
9,2	1.320,7	1.246,70	0,2624	0,2763
9,4	1.595,3	1.507,90	0,2126	0,2236
9,6	1.927,5	1.824,10	$0,\!1722$	0,1810
9,8	2.329,4	$2.207,\!10$	$0,\!1396$	$0,\!1465$
10	2.815,7	2.671,00	0,1131	0,1187

Spezielle Funktionen

$$\sin(x \pm y) = \sin(x) \cdot \cos(y) \pm \cos(x) \cdot \sin(y)$$

$$\cos(x \pm y) = \cos(x) \cdot \cos(y) \mp \sin(x) \cdot \sin(y)$$

$$\sin(2x) = 2 \cdot \sin(x) \cdot \cos(x)$$

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sinh(x) = \frac{\exp(x) - \exp(-x)}{2}$$

$$\cosh(x) = \frac{\exp(x) + \exp(-x)}{2}$$

$$\sinh(x \pm y) = \sinh(x) \cdot \cosh(y) \pm \cosh(x) \cdot \sinh(y)$$

$$\cosh(x \pm y) = \cosh(x) \cdot \cosh(y) \pm \sinh(x) \cdot \sinh(y)$$

$$\sinh(2x) = 2 \cdot \sinh(x) \cdot \cosh(x)$$

$$\cosh(2x) = \sinh^2(x) + \cosh^2(x) = 2\cosh^2(x) - 1$$

$$\operatorname{artgh}(x) = \frac{1}{2} \ln \frac{1+x}{1-x} \quad \operatorname{mit} \quad (|x| < 1)$$

$$\operatorname{arsinh}(x) = \ln \left(x + \sqrt{x^2 + 1}\right)$$

$$\operatorname{arcosh}(x) = \ln \left(x + \sqrt{x^2 - 1}\right) \quad \operatorname{mit} \quad (|x| \ge 1)$$

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp\left(-\eta^2\right) d\eta \quad \operatorname{mit} \quad \operatorname{erf}(\infty) = 1$$

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$$

$$\exp\left(\ln(x)\right) = x$$

$$\lg(x) = \frac{\ln(x)}{\ln(10)}$$

Reihen

• Arithmetische Reihe

$$s = a + (a+d) + (a+2d) + \dots + (a+(n-1)d) = \frac{n}{2}(2a+(n-1)d)$$

• Geometrische Reihe

$$s = a + aq + aq^2 + \dots + aq^{n-1} = \sum_{\nu=0}^{n-1} aq^{\nu} = a \frac{1 - q^n}{1 - q}$$
 unendliche Reihe: $s = \sum_{\nu=0}^{\infty} aq^{\nu} = a \frac{1}{1 - q}$ für $|q| < 1$

• Taylor-Reihe

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots$$

• Potenzreihen spezieller Funktionen

$$(1 \pm x)^{m} = 1 \pm mx + \frac{m(m-1)}{2!}x^{2} \pm \frac{m(m-1)(m-2)}{3!}x^{3} + \dots$$

$$= \sum_{\nu=0}^{m} {m \choose \nu} x^{\nu} \quad \text{mit} \quad {m \choose \nu} = \frac{m!}{\nu!(m-\nu)!}$$

$$\exp(x) = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{\nu=0}^{\infty} \frac{x^{\nu}}{\nu!}$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots = \sum_{\nu=0}^{\infty} (-1)^{\nu+1} \frac{x^{\nu}}{\nu}$$

$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots = \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{x^{2\nu+1}}{(2\nu+1)!}$$

$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots = \sum_{\nu=0}^{\infty} (-1)^{\nu} \frac{x^{2\nu}}{2\nu!}$$

Differentialrechnung

Produktregel

$$\frac{d}{dx}[f(x) \cdot g(x)] = [f \cdot g]' = f' \cdot g + g' \cdot f$$

• Quotientenregel

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \left[\frac{f}{g} \right]' = \frac{f' \cdot g - g' \cdot f}{g^2}$$

• Kettenregel

$$\frac{d}{dx}\left[f\left(g(x)\right)\right] = \left[f\left(g(x)\right)\right]' = \frac{df}{dq} \cdot \frac{dg}{dx}$$

• Totales Differential einer Funktion z = f(x,y)

$$dz = df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

• Ableitung einer zusammengesetzten Funktion mehrerer Veränderlicher, d.h. z = f(x,y) mit x(t) und y(t)

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t}$$

Ableitungen elementarer Funktionen

Funktion
$$\xrightarrow{d/dx(...)}$$
 Ableitung
$$x^{n} \qquad n \, x^{n-1}$$

$$\exp(x) \qquad \exp(x)$$

$$\ln(x) \qquad \frac{1}{x}$$

$$a^{x} \qquad a^{x} \ln(a)$$

$$\sin(x) \qquad \cos(x)$$

$$\cos(x) \qquad -\sin(x)$$

$$\tan(x) \qquad \frac{1}{\cos^{2}(x)} \qquad = 1 + \tan^{2}(x)$$

$$\cot(x) \qquad -\frac{1}{\sin^{2}(x)} \qquad = -(1 + \cot^{2}(x))$$

Funktion
$$\xrightarrow{d/dx(...)}$$
 Ableitung $\sinh(x)$ $\cosh(x)$ $\sinh(x)$ $\sinh(x)$ $\tanh(x)$ $\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$ $\coth(x)$ $-\frac{1}{\sinh^2(x)}$ $\lg(x)$ $\frac{1}{\ln(10)}\frac{1}{x}$

Unbestimmte Ausdrücke

Regeln von Bernoulli de l'Hospital

• Unbestimmte Ausdrücke der Form $\frac{0}{0}$ oder $\frac{\infty}{\infty}$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

• Unbestimmte Ausdrücke der Form $0 \cdot \infty$ mit $f(x_0) = 0$ und $g(x_0) = \infty$

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} \frac{f(x)}{\frac{1}{g(x)}} = \lim_{x \to x_0} \frac{f'(x)}{\left(\frac{1}{g(x)}\right)'}$$

• Unbestimmte Ausdrücke der Form $\infty - \infty$

$$\lim_{x \to x_0} (f(x) - g(x)) = \lim_{x \to x_0} \frac{\left(\frac{1}{g(x)} - \frac{1}{f(x)}\right)'}{\left(\frac{1}{g(x)} \cdot \frac{1}{f(x)}\right)'}$$

Integralrechnung

• Unbestimmtes Integral

$$\int f(x)dx = F(x) + C \quad \text{mit der Stammfunktion} \quad F(x)$$

• Bestimmtes Integral

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx = -\int_{b}^{a} f(x)dx = F(b) - F(a)$$

• Differentation eines Integrals nach der oberen Grenze

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

$$\frac{d}{dx} \int_{a}^{x} f(x,t)dt = \int_{a}^{x} \frac{\partial f(x,t)}{\partial x} dt + f(x,t)$$

Integrationsregeln

• Partielle Integration

$$\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) dx$$

• Substitutionsregel

$$\int f(x)dx$$
 Substitution von $x = g(t) \rightarrow t = h(x)$

- unbestimmte Integration

$$\int f(x)dx = \int f(g(t)) \cdot g'(t)dt + C$$

- bestimmte Integration

$$\int_{a}^{b} f(x)dx = \int_{h(a)}^{h(b)} f(g(t)) \cdot g'(t)dt$$

Integrale elementarer Funktionen

Integrand	\rightarrow Stammfunktion	Integrand	\rightarrow	Stammfunktion
f(x)	$\to F(x) = \int f(x)dx$	f(x)	\rightarrow	$F(x) = \int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1}$	$\exp(x)$		$\exp(x)$
$\frac{1}{x}$	$\ln x $	a^x		$rac{a^x}{\ln(a)}$
$\sin(x)$	$-\cos(x)$	$\sinh(x)$		$ \cosh(x) $
$\cos(x)$	$\sin(x)$	$\cosh(x)$		$\sinh(x)$
$\frac{1}{\sin^2(x)}$	$-\operatorname{ctan}(x)$	$\frac{1}{\sinh^2(x)}$	-	$-\operatorname{ctanh}(x)$
tan(x)	$-\ln \cos(x) $	tanh(x)		$\ln \cosh(x) $
$\cot(x)$	$\ln \sin(x) $	$\coth(x)$		$\ln \sinh(x) $
$\frac{1}{a^2 + x^2}$	$\frac{1}{a}\arctan\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$		$\arcsin \frac{x}{a}$ $= \ln x + \sqrt{x^2 + a^2} $
1	1 m	1		
$\frac{1}{a^2 - x^2}$	$\frac{1}{a}$ arc $\tanh \frac{x}{a}$	$\frac{1}{\sqrt{a^2 - x^2}}$		$\arcsin \frac{x}{a}$
(x < a)	$= \frac{1}{2a} \ln \left \frac{a+x}{a-x} \right $			
$\frac{1}{x^2 - a^2}$	$-\frac{1}{a}\operatorname{arc}\coth\frac{x}{a}$	$\frac{1}{\sqrt{x^2 - a^2}}$		$\operatorname{arc} \cosh \frac{x}{a}$
(x > a)	$= \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $			$= \ln x + \sqrt{x^2 - a^2} $
$\frac{1}{a^4 - x^4}$	$\frac{1}{4a^3} \ln \left \frac{a+x}{a-x} \right \cdots$	$\sqrt{x^2 \pm a^2}$		$\frac{x}{2}\sqrt{x^2 \pm a^2} \cdots$
	$+\frac{1}{2a^3} \arctan \frac{x}{a}$			$\pm \frac{a^2}{2} \ln x + \sqrt{x^2 \pm a^2} $

Integrale jeweils plus Integrationskonstante ${\cal C}$

Integrationsmethoden

• gebrochen rationale Funktionen

$$\int \frac{Q(x)}{P(x)} dx$$
 mit den Polynomen $Q(x), P(x) \rightarrow$ Partialbruchzerlegung

irrationale Funktionen

$$R(...)$$
 = rationale Funktion von $(...)$

$$\int R(\sinh(x),\cosh(x))dx \quad \rightarrow \quad \text{Substitution} \qquad t = \tanh\left(\frac{x}{2}\right)$$

$$\sinh(x) = \frac{2t}{1-t^2}$$

$$\cosh(x) = \frac{1+t^2}{1-t^2}$$

$$dx = \frac{2}{1-t^2}dt$$

$$\int R(\sinh(x)) \cdot \cosh(x)dx \quad \rightarrow \quad \text{Substitution} \qquad t = \sinh(x)$$

$$\int R(\cosh(x)) \cdot \sinh(x)dx \quad \rightarrow \quad \text{Substitution} \qquad t = \cosh(x)$$

$$\int R\left[x, \left(\frac{ax+b}{cx+d}\right)^{1/n}\right]dx \quad \rightarrow \quad \text{Substitution} \qquad t = \left(\frac{ax+b}{cx+d}\right)^{1/n}$$

$$\int R\left(x, \sqrt{ax^2 + 2bx + c}\right)dx \quad \text{mit} \quad ac - b^2 \neq 0$$

$$ac - b^2 > 0 , a > 0 \quad \rightarrow \quad \text{Substitution} \qquad \sinh(t) = \frac{ax+b}{\sqrt{ac-b^2}}$$

$$ac - b^2 < 0 , a > 0 \quad \rightarrow \quad \text{Substitution} \qquad \cosh(t) = \frac{ax+b}{\sqrt{b^2 - ac}}$$

$$ac - b^2 < 0 , a < 0 \quad \rightarrow \quad \text{Substitution} \qquad \sinh(t) = \frac{ax+b}{\sqrt{b^2 - ac}}$$

• trigonometrische Funktionen

$$\int R(\sin(x), \cos(x)) dx \quad \to \quad \text{Substitution} \qquad t = \tan\left(\frac{x}{2}\right)$$

$$\sin(x) = \frac{2t}{1+t^2}$$

$$\cos(x) = \frac{1-t^2}{1+t^2}$$

$$dx = \frac{2}{1+t^2} dt$$

$$\int R(\sin(x)) \cdot \cos(x) dx \quad \to \quad \text{Substitution} \qquad t = \sin(x)$$

$$\int R(\cos(x)) \cdot \sin(x) dx \quad \to \quad \text{Substitution} \qquad t = \cos(x)$$

• andere transzendente Funktionen

$$\int R(\exp(x)) dx \longrightarrow \text{Substitution} \qquad t = \exp(x)$$

$$\int R(\ln(x)) dx \longrightarrow \text{Substitution} \qquad t = \ln x$$

$$\cdots \longrightarrow \text{partielle Integration}$$

Anwendung ein- bzw. mehrfacher partieller Integration bei Integralen folgender Form:

$$\int \exp(ax) \sin(bx) dx^* \qquad \qquad \int P(x) \exp(ax)$$

$$\int \exp(ax) \cos(bx) dx^* \qquad \int P(x) \ln(bx)$$

$$\int \exp(ax) \sinh(bx) dx^* \qquad \int P(x) \sin(bx)$$

$$\int \exp(ax) \cosh(bx) dx^* \qquad \int P(x) \cos(bx)$$

$$\int P(x) \sinh(bx)$$

$$\int P(x) \cosh(bx)$$

^{*)} Die wiederholte Anwendung der partiellen Integration führt wieder auf das ursprüngliche Integral: Auflösen einer algebraischen Gleichung

Differentialgleichungen

Die Ordnung einer Differentialgleichung ist die höchste darin auftretende Ableitung. Wird neben der Bedingungen der DGL auch noch ein bestimmter Ausgangszustand (Anfangswerte) bestimmt, so spricht man von einem Anfangswertproblem.

Gewöhnliche Differentialgleichungen erster Ordnung

• Separable Typen

Typ:
$$y' = f(x) \cdot g(y)$$
 \rightarrow Lösung: $\int \frac{dy}{g(y)} = \int f(x)dx + C$
Typ: $y' = f(ax + by + c)$ \rightarrow Substitution: $z = ax + by + c$
 $\cdots \rightarrow$ separable DGL: $z' = a + b f(z)$

• Lineare DGL

Die abhängige Variable y und ihre Ableitungen treten nur in der ersten Potenz auf. Koeffizienten f(x) nicht konstant, inhomogen falls $g(x) \neq 0$

Typ:
$$y' + y f(x) = g(x)$$

 \rightarrow Lösung: $y = \exp\left(-\int f(x)dx\right) \left(C + \int g(x) \exp\left(\int f(x)dx\right)dx\right)$

• Bernoullische DGL

Typ:
$$y' + y \ f(x) = g(x)y^n$$
 \rightarrow Substitution: $z = y^{1-n}$
$$z' = (1-n)y^{-n}y'$$

$$\cdots \rightarrow \text{lineare DGL:} \ z' + (1-n)f(x)z \cdots$$

$$\cdots = (1-n)g(x)$$

Gewöhnliche Differentialgleichungen höherer Ordnung

Gewöhnliche Differentialgleichungen beliebiger Ordnung größer als Eins lassen sich immer auf ein System von gewöhnlichen Differentialgleichungen erster Ordnung zurückführen. Hat eine gewöhnliche Differentialgleichung in y_1 die Ordnung n, so führt man dazu die folgenden Hilfsfunktionen ein:

$$y_{1}^{'} = y_{2}$$
 $y_{2}^{'} = y_{3}$
 \vdots
 $y_{n-1}^{'} = y_{n}$
 $y_{n}^{'} = f(x, y_{1}, y_{2}, y_{3}, \dots, y_{n})$

Dadurch erhält man ein System von n gewöhnlichen Differentialgleichungen erster Ordnung, die wie oben gelöst werden können.

Lineare Differentialgleichungen zweiter Ordnung mit konstanten Koeffizienten

Typ:
$$y'' + a_1 y' + a_0 y = f(x) \rightarrow \text{L\"osung: } y = y_H + y_P$$

Homogene Lösung

Ansatz $y_{\rm H} = \exp(\mu x)$, Bestimmung der Nullstellen des charakteristischen Polynoms, das für die homogene Lösung ermittelt worden ist:

$$\mu^2 + a_1 \mu + a_0 = 0 \quad \to \quad \mu_{1/2} = -\frac{a_1}{2} \pm \sqrt{\left(\frac{a_1}{2}\right)^2 - a_0}$$

Fallunterscheidung Nullstellen:

•
$$\left(\left(\frac{a_1}{2}\right)^2 - a_0\right) > 0 \rightarrow \mu_1 \neq \mu_2$$
 (zwei reelle Nullst.)

Ansatz: $y_{\rm H} = C_1 \exp(\mu_1 x) + C_2 \exp(\mu_2 x)$

$$a_1 = 0, \ a_0 < 0 \quad \rightarrow \quad \mu_{1/2} = \pm \sqrt{-a_0}, \ \mu = \sqrt{-a_0}$$

Ansatz: $y_{\rm H} = C_1 \sinh(\mu x) + C_2 \cosh(\mu x)$

•
$$\left(\left(\frac{a_1}{2}\right)^2 - a_0\right) = 0 \rightarrow \mu_{1/2} = -\frac{a_1}{2}$$
 (eine doppelte Nullst.)
Ansatz: $y_{\rm H} = \exp\left(-\frac{a_1}{2}x\right) (C_1 + C_2x)$

•
$$\left(\left(\frac{a_1}{2}\right)^2 - a_0\right) < 0 \rightarrow \mu_{1/2} = -\frac{a_1}{2} \pm i\sqrt{a_0 - \left(\frac{a_1}{2}\right)^2}$$
 (konj. komplexe Nullst.)

Ansatz: $\mu_{1/2} = \exp\left(-\frac{a_1}{2}x\right) \cdots$

Ansatz: $y_{\rm H} = \exp(-\frac{a_1}{2}x) \cdots$

$$\cdots \left(C_1 \sin \left(x \sqrt{a_0 - \left(\frac{a_1}{2}\right)^2} \right) + C_2 \cos \left(x \sqrt{a_0 - \left(\frac{a_1}{2}\right)^2} \right) \right)$$

$$a_1 = 0, \ a_0 > 0 \quad \to \quad \mu_{1/2} = \pm i \sqrt{a_0}, \ \mu = \sqrt{a_0}$$

Ansatz: $y_{\rm H} = C_1 \sin(\mu x) + C_2 \cos(\mu x)$

Partikuläre Lösung – Spezielle Form des Störglieds

$$f(x) = \exp(kx) \left(P_n(x) \cos(\omega x) + Q_n(x) \sin(\omega x) \right)$$

Ansatz in Form des Störglieds:

$$y_{\rm P} = \exp(kx) \left(M_n(x) \cos(\omega x) + N_n(x) \sin(\omega x) \right) \cdot x^m$$

- Für $\omega \neq 0$ müssen immer beide Polynome M_n und N_n in den Lösungsansatz aufgenommen werden, für $\omega = 0$ entfällt N_n .
- Die Polynome M_n und N_n müssen immer vollständig in den Lösungsansatz aufgenommen werden, d.h. kein Koeffizient ist als Null anzunehmen.

Fallunterscheidung für m auf Grundlage der Nullstellen des charakteristischen Polynoms:

$$\mu_1 = \mu_2 \stackrel{!}{=} k \qquad \rightarrow \qquad m = 2$$

$$\mu_{1/2} \stackrel{!}{=} k \pm i\omega \quad \rightarrow \qquad m = 1$$
 ansonsten:
$$\mu_{1/2} \neq k \pm i\omega \quad \rightarrow \qquad m = 0$$

Einsetzen des Störglieds f(x) und der Ansatzfunktion y_P in die Differentialgleichung. Die Koeffizienten der Polynome $M_n(x)$ und $N_n(x)$ werden durch Koeffizientenvergleich ermittelt.

Partikuläre Lösung - Allgemein

Lösung des Faltungsintegrals

$$y_{\mathrm{P}}(x) = \int_0^x y_{\mathrm{H},0}(x-\xi) \cdot f(\xi) d\xi$$

Hier ist $y_{\rm H,0}$ eine spezielle homogene Lösung mit den Anfangs-/Randbedingungen $y_{\rm H}(0)=1$ und $y'_{\rm H}(0)=1$.