

88তম বিসিএস লিখিত প্রস্তুতি

লেকচার # ০৪

☑ Water

General Science ◆ লেকচার-8

☑ Polymer

BCS Syllabus on Water & Polymer

Water: Properties of water; melting and boiling points of water; electrical conductivity; structure of water; hydrogen bonding; sources of water; sources of fresh water in Bangladesh; water quality parameters (color and taste; turbidity; presence of radioactive substances; presence of waste; dissolved oxygen; temperature; pH and salinity); recycling of water; role of water in conservation of nature; necessity of quality water; a purification of water (filtration; chlorination; boiling and distillation); reasons for pollution of water sources in Bangladesh; effects of water pollution on plants, animals and human beings; effects of global warming on fresh water; strategy for preventing water pollution and responsibility of citizens or public awareness; prevention of water pollution by industries; prevention of water pollution due to soil erosion from agricultural land; conservation of water sources and development.

Polymer: Natural and synthetic polymer; polymerization process; sources, characteristics and usage of natural and synthetic polymers; manufacturing process, characteristics and uses of fibers, silk, wool, nylon and rayon; physical and chemical properties of rubber and plastic; role of rubber and plastic for environmental imbalance; aware of using rubber and plastic.

BCS বিগত সালের প্রশ্নবিলা	
🔲 চারটি পানিবাহী রোগের নাম লিখুন। বেরিবেরি রোগের কারণ কী? সূর্যেরশ্মিতে ভিটামিন-ডি পাওয়া যায়-ব	্যাখ্যা করুন। (৪০তম বিসিএস)
🔲 পলিমার সেমিকভাক্টর কী? এর বৈশিষ্ট্যসমূহ আলোচনা করুন।	(৪০তম বিসিএস)
🔲 টেফলন ও পলিস্টার-এর সংশ্লেষণ পদ্ধতি বর্ণনা করুন। পরিবেশ দূষণে রাবার এবং প্লাস্টিকের ভূ	মিকা সম্পর্কে সংক্ষিপ্ত আলোচনা
করুন।	(৪০তম বিসিএস)
🔲 পানি দূষণ কি? পানি দূষণ এর কারণ ও প্রতিকার আলোচনা করুন।	(৩৮তম বিসিএস)
🔲 পলিথিন কৃষিজমিকে কিভাবে দৃষিত করে?	(৩৮তম বিসিএস)
পানিতে পুঁতে রাখা বাঁশের খুঁটির ছায়া পানিতে বাঁকা দেখায় কেন?	(৩৮তম বিসিএস)
🗖 Modulation কি? এটি কত প্রকার? এর প্রয়োজনীয়তা ব্যাখ্যা করুন।	(৩৭তম বিসিএস)
🔲 বাজারে প্রচলিত আলুর চিপসের প্যাকেটে বায়ুর পরিবর্তে কোন গ্যাস ব্যবহার করা হয়?	(৩৭তম বিসিএস)
🔲 বিদ্যুৎ এবং সার উৎপাদনে প্রাকৃতিক গ্যাসের ব্যবহার কেন প্রয়োজন?	(৩৭তম বিসিএস)
🔲 গুদামজাত খাদ্যদ্রব্যের স্থায়িত্বকাল কি কি বিষয়ের উপর নির্ভরশীল?	(৩৭তম বিসিএস)
🔲 বন্যার সময় দূষিত পানি কি কি উপায়ে বিশুদ্ধ করা যায়?	(৩৭তম বিসিএস)
🔲 খাবার স্যূলাইনে লবণ এবং চিনি/গুড় ব্যবহার করা হয় কেন?	(৩৭তম বিসিএস)
🔲 পলিথিন ব্যাগ ব্যবহারের ফলে পরিবেশের কি কি ক্ষতি হয়- আলোচনা করুন।	(৩৭তম বিসিএস)
🔲 কৃষিজমিতে এসিড ও ক্ষারের ভূমিকা আলোচনা করুন।	(৩৭তম বিসিএস)

যেভাবে প্রশ্ন হতে পারে

- ফসল উৎপাদনে মৃত্তিকার P^{H} এবং P^{F} এর গুরুত্বপূর্ণ আলোচনা করুন।
- ২. দৃষিত ও পানযোগ্য পানির বৈশিষ্ট্য লিখন।
- ৩. পানি জীবাণুমুক্ত করতে বহুল ব্যবহৃত ক্লোরিন যৌগের নাম লিখুন। এ যৌগটি কীভাবে পানিকে জীবাণুমুক্ত করে? ব্যাখ্যা করুন।
- 8. সামূদ্রিক জলোচ্ছাস কি? এবং কেন ঘটে?
- ৫. সাধারণ পানি (Soft Water) ও ভারী পানি (Heavy Water) এর মধ্যে পার্থক্য কি?
- ৬. হাইড্রোজেন (H) বন্ধন কি? পানিতে হাইড্রোজেনে বন্ধনের প্রভাব আলোচনা করুন।
- ৭. দ্রবীভূত অক্সিজেন (Dissolved oxygen) বলতে কি বুঝেন? জলজ উদ্ভিদ ও প্রাণীর জন্য দ্রবীভূত অক্সিজেনের গুরুত্ আলোচনা করুন।
- ৮. পলিমার ও মনোমার কি? প্রাকৃতিক ও কৃত্রিম পলিমার বলতে কি বুঝায়? উদাহরণ দিন।
- ৯. নাইলন (Nylon) কি? এর বৈশিষ্ট্য আলোচনা করুন।
- ১০. প্লাষ্টিক কী? প্লাষ্টিকের রাসায়নিক ধর্ম আলোচনা করুন।

BCS প্রশ্নাবলী Water

🔲 চারটি পানিবাহী রোগের নাম লিখুন। বেরিবেরি রোগের কারণ কী? সূর্যেরশ্মিতে ভিটামিন-ডি পাওয়া যায়-ব্যাখ্যা করুন।

(৪০তম বিসিএস)

পানিবাহিত রোগ: ১. ডায়রিয়া, ২. টাইফয়েড, ৩. জন্ডিস ও ৪. আমাশয়।

বেরিবেরি রোগের কারণ: ভিটামিন বি-১ (থিয়ামিন) এর ঘাটতির কারণে বেরিবেরি রোগ হয়।

সূর্যরশ্রিতে ভিটামিন ডি: সূর্যের স্বল্প পরিমাণ অতিবেগুনি রশ্মির উপস্থিতিতে দেহের Cholecalciferol ও Eargocalciferol-এর রাসায়নিক রূপান্তরের ফলে $Vit\ D_1$, $Vit\ D_2$ ও $Vit\ D_3$ উৎপন্ন হয়। এভাবে সূর্যরশ্বিতে ভিটামিন-ডি পাওয়া যায়।

🔲 পলিমার সেমিকভাক্টর কী? এর বৈশিষ্ট্যসমূহ আলোচনা করুন।

পলিমার সেমিকভাক্টর: সিনথেটিক পলিমার থেকে উৎপন্ন সেমিকভাক্টর হচ্ছে পলিমার সেমিকভাক্টর। যেমন– লেড (LED) কিংবা ট্রানজিস্টর (transistor)।

🛂 বৈশিষ্ট্য :

- i. পলিমার সেমিকন্ডাক্টর অধিক নমনীয়।
- ii. এটা সহজে রূপান্তরিত হতে পারে।
- iii. এটা সহজে বাঁকতে পারে যে কারণে এটা দিয়ে বিভিন্ন ধরনের ডিভাইস তৈরি করা যায়।
- iv. পলিমার সেমিকভাক্টর বেশ সুসংহত।

🔲 টেফলন ও পলিস্টার-এর সংশ্লেষণ পদ্ধতি বর্ণনা করুন। পরিবেশ দূষণে রাবার এবং প্লাস্টিকের ভূমিকা সম্পর্কে সংক্ষিপ্ত আলোচনা (৪০তম বিসিএস) করুন।

টেফলন: টেট্রাফ্রোরো ইথিলিন থেকে যুত পলিমারকরণ প্রক্রিয়ায় টেফলন বা পলি টেট্রাফ্রোরো ইথিলিন (PTEE) প্রস্তুত করা হয়। এখানে প্রভাবকরূপে ফেরাস সালফেট ও হাইড্রোজেন পার অক্সাইড ব্যবহৃত হয়।

🛂 বিক্রিয়া :

$$n(CF_2 = CF_2)$$
 $\xrightarrow{\text{প্রভাষেরকরণ}} (-CF_2 - CF_2) \text{ ev, } (C_2F_4)n$

পলিস্টার: সাধারণত পলিকন্ডেনসেশন বিক্রিয়ায় পলিস্টার সংশ্লেষিত হয়:

 $(n+1) R(OH)_2 + n R'(COOH)_2 \rightarrow HO(ROOCR'COO]_n ROH + 2n H_2O.$

পরিবেশ দৃষণে রাবার ও প্লাস্টিকের ভূমিকা :

- প্লাস্টিক ও বেশিরভাগ রাবার পচনশীল নয়। ফলে এর পুনঃব্যবহার না করে বর্জ্য হিসেবে অপসারণ করলে এগুলো পরিবেশে জমা হয়ে থাকে এবং নানা রকম প্রতিবন্ধকতার সৃষ্টি করে। মারাত্মক পরিবেশ বিপর্যয় ঘটিয়ে পরিবেশের ভারসাম্য নষ্ট করতে পারে।
- ii. এগুলো পোড়ালে বায়ুদূষণ ঘটে এবং এগুলো মাটিতে অক্সিজেনের সরবরাহে বাধা দিয়ে মাটি দৃষিত করে।
- iji. এগুলোর বর্জ্য মাটির উর্বরতা নষ্ট করে।
- iv. বিভিন্ন নালা-নর্দমায় প্রচুর প্লাস্টিক ও রাবারের তৈরি বস্তু জমা হয়ে থাকে। এগুলো জমতে থাকলে একসময় নালা-নর্দমার পানি প্রবাহ বন্ধ হয়ে যায়।

🔲 পানি দৃষণ কি? পানি দৃষণ এর কারণ ও প্রতিকার আলোচনা করুন।

(৩৮তম বিসিএস)

পানি দূষণ : পানির স্বাভাবিক বিন্যাসে পরিবেশের ক্ষতি করে এরূপ পদার্থসমূহের উপস্থিতিই পানি দূষণ। শিল্পকারখানার বর্জ্য পদার্থ, রাসায়নিক সার, কীটনাশক, মানব বসতির বর্জ্য পদার্থ প্রভৃতি মিশে পানি দূষিত হয়। জনসংখ্যা বৃদ্ধি, অপরিকল্পিত নগরায়ন এবং শিল্পকারখানা স্থাপনের জন্য পানি দূষণ বাড়ছে।

১০ পানি দৃষণের কারণ : পানি দৃষণের কারণগুলো দুই শ্রেণির−

(ক) মানবসৃষ্ট কারণ:

- i. গৃহস্থালী বর্জ্য পদার্থ উপযুক্তভাবে নিষ্কাশিত না হলে তা পানিতে মিশে গেলে।
- ii. পানিতে মৃত জীবজন্তু ফেললে।
- iii. পানিতে অতিরিক্ত রাসায়নিক পদার্থ যেমন সাবান, ডিটারজেন্ট মিশে গেলে।
- iv. কৃষি জমিতে সার ও কীটনাশকের অবাধ ব্যবহারের ফলে।
- v. কল-কারখানার রাসায়নিক বর্জ্য পদার্থ পানিতে ফেললে।
- vi. প্য়ঃনিষ্কাশন ব্যবস্থা অনুন্নত হলে।
- vii. তেলবাহী জাহাজের দুর্ঘটনার ফলে।

(খ) প্রাকৃতিক কারণ :

- i. ভূমি ক্ষয়ের ফলে বিভিন্ন অপদ্রব্য পানিতে মিশতে পারে।
- ii. বন্যা বা জলাবদ্ধতার কারণে পানি দৃষণ হতে পারে।
- iii. জলজ আগাছার অবাধ বৃদ্ধিতে হতে পারে।

🔰 পানি দৃষণ প্রতিকার

- i. কল-কারখানার বর্জ্য পদার্থ পানিতে না ফেলা।
- ii. বিষাক্ত অপদ্রব্যকে কম বিষাক্ত দ্রব্যে পরিণত করা।
- iii. গৃহস্থালি বর্জ্য পদার্থ যেখানে-সেখানে না ফেলে সঠিকভাবে নিষ্কাশন করা।
- iv. প্লাস্টিক জাতীয় পদার্থ ব্যবহার সর্বনিম্ন পর্যায়ে রাখা।
- v. সার ও কীটনাশকের মাত্রাতিরিক্ত ব্যবহার না করা।
- vi. মৃত জীব-জন্তু মাটিতে পুঁতে ফেলা।
- vii. উন্নত পয়ঃনিষ্কাশণের ব্যবস্থা করা।
- viii. কল-কারখানার জন্য আইন প্রণয়ন ও তা বান্তবায়ন করা।
- ix. জনগণকে পানি দৃষণের ক্ষতিকর প্রভাব সম্পর্কে বলা।

পলিথিন কৃষিজমিকে কিভাবে দৃষিত করে?

(৩৮তম বিসিএস)

পলিথিন একপ্রকার সাদা, অম্বচ্ছ ও শক্ত প্লাস্টিক পদার্থ। 1000-1200 বায়ুচাপে ইথিন গ্যাসকে তরলীভূত করে সামান্য অক্সিজেনের উপস্থিতিতে 200° C উষ্ণতায় উত্তপ্ত করলে ইথিনের অসংখ্য অণু পরপর যুক্ত হয়ে যুত পলিমার পলিথিন গঠন করে। পলিথিন সহজে মাটিতে মিশে না। ফেলে দেয়ার পর দীর্ঘকাল অপরিবর্তিত থাকে বলে দুই দিকের মাটি মিশে না। ফলে জমির উর্বরাশক্তি হাস ও মাটির গুণ নম্ভ করে।

পানিতে পুঁতে রাখা বাঁশের খুঁটির ছায়া পানিতে বাঁকা দেখায় কেন?

(৩৮তম বিসিএস)

পানিতে পুঁতে রাখা বাঁশের খুঁটির ছায়া পানিতে বাঁকা দেখায়। আলোর প্রতিসরণের জন্য এরূপ হয়। পানি বায়ুর তুলনায় ঘন মাধ্যম। তাই পানি থেকে আগত রশ্মি বায়ুতে প্রবেশ করার সময় অভিলম্ব হতে দূরে সরে যাবে। এ কারণে পানিতে পুঁতে রাখা বাঁশের খুঁটি থেকে আগাত রশ্মি পানি থেকে বায়ুতে প্রবেশের সময় নিমজ্জিত অংশের প্রত্যেক অংশই কিছুটা উপরে উঠে আসে, ফলে খুঁটির ছায়া পানিতে বাঁকা দেখায়।

বাজারে প্রচলিত আলুর চিপসের প্যাকেটে বায়ুর পরিবর্তে কোন গ্যাস ব্যবহার করা হয়?

(৩৭তম বিসিএস)

আলু চিপসের প্যাকেটের উপরের অংশে সামান্য জায়গা ফাঁকা থাকে। বায়ুর পরিবর্তে চিপসের প্যাকেট পূর্ণ থাকে নাইট্রোজেন গ্যাস দ্বারা। নাইট্রোজেন গ্যাস তার আশেপাশে থাকা কোনো পদার্থের সাথে বিক্রিয়া করে না। প্যাকেটের খাবার যাতে অন্য গ্যাসের দ্বারা বিক্রিয়া না করে সে কারণে ব্যবহার করা হয় নাইট্রোজেন গ্যাস। নাইট্রোজেন গ্যাস অন্যতম খাবার সংরক্ষক হিসেবে পরিচিত। নাইট্রোজেন গ্যাস ব্যবহারের কারণে প্যাকেটের চিপস থাকে মচমচে এবং ফ্রেশ। চিপসের মেয়াদ ঠিক রাখতেও কাজে লাগে নাইট্রোজেন গ্যাস। স্বাদ এবং গন্ধ মুক্ত নাইট্রোজেন গ্যাস প্যাকেটের ভেতরের চিপসের স্বাদ এবং ঘ্রাণ বজায় রাখে।

□ বিদ্যুৎ এবং সার উৎপাদনে প্রাকৃতিক গ্যাসের ব্যবহার কেন প্রয়োজন?

(৩৭তম বিসিএস)

বিদ্যুৎ উৎপাদনে প্রাকৃতিক গ্যাস ব্যবহারের কারণ: বিদ্যুৎ উৎপাদনে প্রাকৃতিক গ্যাস ব্যবহারের বিভিন্ন কারণ নিম্নর্নপ— প্রথমত, গত কয়েক দশকে বিদ্যুৎ উৎপাদনে প্রাকৃতিক গ্যাসের ব্যবহার ক্রমশ বৃদ্ধি পাচ্ছে। কয়লা ভিত্তিক বিদ্যুৎকেন্দ্র অপেক্ষা গ্যাসভিত্তিক বিদ্যুৎ উৎপাদন কেন্দ্র অনেক উন্নত, তাই যান্ত্রিক ক্রটির কারণে বিদ্যুৎ উৎপাদনে প্রাকৃতিক গ্যাস ব্যবহারের নিরাপত্তা ব্যক্তিও অনেক কম।

দ্বিতীয়ত, অর্থনৈতিক দৃষ্টিকোণ থেকে, গ্যাস ভিত্তিক বিদ্যুকেন্দ্র পরিচালনার নিত্য নৈমিত্তিক খরচ অন্যান্য পদ্ধতির তুলনায় অনেক কম। কারণ অল্প পরিমাণ গ্যাস ব্যবহার করে প্রচুর বিদ্যুৎ উৎপাদন করা সম্ভব। বিশেষ করে পরিবহন খরচ অনেক কম। তৃতীয়ত, বিদ্যুৎ উৎপাদনে প্রাকৃতিক গ্যাস ব্যবহারের ফলে পরিবেশে দৃষণ কম ঘটে। মূলত এই পদ্ধতিতে কোনো জ্বালানি

পোড়ানো হয় না বলে বাতাসে কার্বন ডাই-অক্সাইড নির্গমনের পরিমাণ তুলনামূলকভাবে কম।

🔰 সার উৎপাদনে প্রাকৃতিক গ্যাস ব্যবহারের কারণ :

প্রাকৃতিক গ্যাস ব্যবহার করে ইউরিয়া সার তৈরি করা হয়। ইউরিয়াতে কার্বন, অক্সিজেন, হাইড্রোজেন ও নাইট্রোজেন পরমাণু থাকে। ইউরিয়া তৈরির জন্য প্রথমে প্রাকৃতিক গ্যাসকে পানির সাথে বিক্রিয়ায় (স্টিম রিফর্মিং ও শিফট বিক্রিয়া) কার্বন ডাই-অক্সাইড ও হাইড্রোজেন এর মিশ্রণ উৎপন্ন করা হয়। এবার বাতাসের নাইট্রোজেনের সাথে উক্ত মিশ্রণের হাইড্রোজেনের বিক্রিয়ায় অ্যামোনিয়া উৎপন্ন হয়। এ অ্যামোনিয়া মিশ্রণের কার্বন ডাই-অক্সাইডের সাথে বিক্রিয়ায় ইউরিয়া সার তৈরি হয়। সার তৈরিতে প্রয়োজনীয় কার্বন ডাই-অক্সাইড ও হাইড্রোজেনের সহজ যোগানদাতা হিসেবে প্রাকৃতিক গ্যাস ব্যবহার করা হয়।

বন্যার সময় দৃষিত পানি কি কি উপায়ে বিশুদ্ধ করা যায়?

(৩৭তম বিসিএস)

বন্যার সময় পানি নিম্নোক্ত উপায়ে বিশুদ্ধ করা যায়:

- পানি ফুটিয়ে
 সরসরি বন্যার পানি ফুটানোর সময় বুদবুদ ওঠার ১৫ থেকে ২০ মিনিট পর রোগ জীবাণু ধ্বংস হয়ে পানি বিশুদ্ধ
 হয়ে যায়।
- ২. বিভিন্ন রাসায়নিক পদার্থ দিয়ে পানি বিশুদ্ধকরণ:

ফিটকিরি– এক জগ পানিতে ৩০ মিনিট ফিটকিরি রেখে দিলে পানি বিশুদ্ধ হয়। আয়োডিন– প্রতি লিটার পানিতে দুই ভাগ আয়োডিন দ্রবণ মিশিয়ে এক ঘণ্টা রেখে দিলে পানি বিশুদ্ধ হয়। হ্যালোজেন– তিন লিটার পানিতে একটি হ্যালোজেন ট্যাবলেট গুলিয়ে রেখে দিলে ১ ঘণ্টা পর পানি বিশুদ্ধ হয়।

□ খাবার স্যলাইনে লবণ এবং চিনি/গুড ব্যবহার করা হয় কেন?

(৩৭তম বিসিএস)

ভায়রিয়া হলে শরীর থেকে পটাসিয়াম, ক্যালসিয়াম, গ্লুকোজ, সোডিয়াম প্রভৃতি ইলেকটোলাইট তথা লবণ ও পানি শরীর থেকে বেরিয়ে যায়। এতে শরীর পানিশূন্য হয়ে দুর্বল হয়ে পড়ে এবং বিভিন্ন ধরনের আয়ন পরিবহনে সমস্যা সৃষ্টি হয়। ভায়রিয়া হলে রোগীকে লবণ-গুড়ের শরবত খাওয়ানো হয়। এখানে লবণের (NaCI) ভূমিকা হলো দেহের অভ্যন্তরীণ কাজ নিয়ন্ত্রণ; যেমন– রোগীর দেহের কোষের ভিতরের ও বাইরের তরল পদার্থের চাপ ঠিক রাখা, দেহের তরল পদার্থের গঠনগত ধর্ম বজায় রাখা এবং দেহে অস্ত্র ও ক্ষারের সমতা রক্ষা করা অর্থাৎ সোডিয়ামের ঘাটতি পূরণ করে। আর গুড় বা চিনি অর্থাৎ কার্বোহাইড্রেটের ভূমিকা হলো দেহে তাপশক্তি সরবরাহ করে শক্তি যোগান দেওয়া অর্থাৎ শরীরে শর্করার অভাব দূর করে। এর ফলে শরীর সুস্থ থাকে।

🔲 পলিথিন ব্যাগ ব্যবহারের ফলে পরিবেশের কি কি ক্ষতি হয়- আলোচনা করুন।

(৩৭তম বিসিএস)

পলিথিন একপ্রকার সাদা, অম্বচ্ছ ও শক্ত প্লাস্টিক পদার্থ।

🔰 পরিবেশের উপর পলিথিনের ক্ষতিকারক প্রভাব :

- i. পলিথিন সহজে মাটিতে মিশে না। ফেলে দেয়ার পর দীর্ঘকাল অপরিবর্তিত থাকে বলে দুই দিকের মাটি মিশে না। ফলে জমির উর্বরাশক্তি হ্রাস ও মাটির গুণ নষ্ট করে।
- ii. পলিথিন নর্দমায় জমে পয়ঃনিষ্কাশন ব্যবস্থায় বাধার সৃষ্টি করে।
- iii. যত্রতত্র পলিথিন পড়ে থেকে পরিবেশের সৌন্দর্যহানি ঘটে।

🔲 কৃষিজমিতে এসিড ও ক্ষারের ভূমিকা আলোচনা করুন।

(৩৭তম বিসিএস)

জ্যান্তি 🙏 ৪৪তম 🔣 নিখিত প্রস্তৃতি

८७०

General Science ♦ লেকচার-8

একটি নির্দিষ্ট মাত্রার অম্লত্বের মধ্যে মাটি থাকলেই কেবল সেখানে ফসল জন্মে।

মাটিতে অম্লুত্ব বেড়ে গেলে তা ফসল উৎপাদনে ব্যাহত হয়। অম্লুত্ব দূর করার জন্য চুন ও ক্যালসিয়াম, ম্যাগনেসিয়াম প্রভৃতি বিভিন্ন সাব ব্যবহৃত হয়।

আবার মাটিতে অমুত্ব কমে বা ক্ষারত্ব বেড়ে গেলে এটিও ফসল উৎপাদন হ্রাস করে।

ক্ষারত্ব দূর করার জন্য বিভিন্ন ধরনের নাইট্রেট সার যেমন– KNO₃, NH₄NO₃ এবং ফসফেট সার যেমন : TSP ও সুপার ফসফেট ইত্যাদি ব্যবহৃত হয়।

☐ পানির BOD এবং TDS কী?

(৩৬তম বিসিএস)

নির্দিষ্ট পারিমাণ নমুনায় থাকা জৈব বস্তুকে 20° c তাপমাত্রায় পাঁচ দিন যাবৎ বিয়োজিত করতে যে পরিমাণ অক্সিজেন প্রয়োজন হয় তাকে পানির BOD বা Biological Oxygen Demand বলে। BOD এর মাত্রা 1-2mg/L হওয়া অত্যাবশ্যক।

TDS: TDSএর পূর্ণরূপ Total Dissolved Solid, অর্থাৎ পানিতে দ্রবীভূত অবস্থায় যেসব কঠিন পদার্থ থাকে তার মাত্রা নির্ধারণে পানির টিডিএস পরীক্ষা করা হয়।

lacksquare ফসল উৎপাদনে মৃত্তিকার ${f P}^{ m H}$ এবং ${f P}^{ m F}$ এর গুরুত্বপূর্ণ আলোচনা করুন।

(৩৬তম বিসিএস)

ফসল উৎপাদনে মৃত্তকার P^F : ফসল উৎপাদনের জন্য অত্যন্ত গুরুত্বপূর্ণ একটি মানদণ্ড হলো $P^H.P^H$ মান জানা থাকলে মাটি এসিডিক, ক্ষারীয় না নিরপেক্ষ তা বোঝা যায়। যে কারণে মাটির P^H অত্যন্ত গুরুত্বপূর্ণ তা হলো বেশির ভাগ ফসলের ক্ষেত্রে সর্বোচ্চ উৎপাদন পাওয়া যায় মাটির P^H নিরপেক্ষ হলে অর্থাৎ এর মান ৭ বা তার কাছাকাছি হলে। তাই কোনো একটি জমির মাটি পরীক্ষা করে যদি দেখা যায় এর P^H =৭ এর চেয়ে বেশ কম বা বেশি তাহলে এর P^{H} =৭ করার জন্য প্রয়োজনীয় ব্যবস্থা গ্রহণ করতে হবে। তবে কিছু কিছু ফসল আছে, যেমন- আলু এবং গম এরা মাটির P^H =৫-৬ হলে সর্বোচ্চ উৎপাদন দেয়। অন্যদিকে কিছু ফসল যেমন- যব, মাটির P^H =৮ হলে ভালো উৎপাদন হয়। এই জন্য ভালো ফসলের জন্য মাটির P^H =৩০ গ্রুত্বপূর্ণ ভূমিকা পালন করে থাকে।

ফসল উৎপাদনে মৃত্তিকার P^F : মৃত্তিকার কৈশিক বিভব প্রকাশক একক হলো P^F । নির্দিষ্ট পরিমাণ মাটি থেকেবিশেষ পরিমাণ পানি বের করে নিতে যে কাজ করতে হয় তাকে কৈশিক বিভব বলে। যে প্রবল চাপ বা শক্তি দিয়ে মৃত্তিকা পানি ধরে রাখে, সেই শক্তির সাহায্যে নির্দিষ্ট পরিমাণ পানিস্ভাকে যত সেন্টিমিটার উঁচু রাখা সম্ভব, সে উচ্চতার লগারিদমকে মৃত্তিকার P^F বলে। মৃত্তিকার P^F যত বেশি হবে সে মৃত্তিকার পানি ধারণ ক্ষমতা তত বেশি হবে। তাই, কোনো জমির মৃত্তিকার P^F জানা থাকলে সে মাটিতে চাষের জন্য কী পরিমাণ সেচ দিতে হবে তা সহজেই নির্ণয় করা যায়। আর ফসল উৎপাদনে একটি গুরুত্বপূর্ণ নিয়ামক হলো জমি সেচ। তাই বলা যায়, ফসল উৎপাদনে মৃত্তিকার P^F এর গুরুত্ব অপরিসীম।

পরিবেশ রক্ষায় মিঠাপানির গুরুত্ব আলোচনা করুন।

(৩৬তম বিসিএস)

পানি পরিবেশের একটি গুরুত্বপূর্ণ উপাদান। ভূ-পৃষ্ঠের প্রায় ৭১ শতাংশ পানি দ্বারা আবৃত। এ বিশাল জলরাশির ৯৭.২ শতাংশই লবণাক্ত পানি। অবশিষ্ট মাত্র ২.৮ শতাংশ মিটা পানি বা Fresh Water। পরিবেশের প্রায় প্রতিটি উপাদান ও প্রক্রিয়া প্রত্যক্ষ বা পরোক্ষভাবে পানির উপর নির্ভরশীল। পানি না থাকলে বেশিরভাগ জলজ উদ্ভিদ জন্মাতো না, অথবা কিছু উদ্ভিদ জন্মালেও বাঁচতে পারতো না। সেক্ষেত্রে পরিবেশে মারাত্মক বিপর্যয় ঘটবে। কারণ জলজ উদ্ভিদগুলো একদিকে যেমন সালোকসংশ্লেষণের মাধ্যমে অক্সিজেন তৈরি করে পানিতে দ্রবীভূত অক্সিজেনের মাত্রা ঠিক রাখে, অন্যদিকে এদের অনেকজলজ প্রাণীর খাদ্যভাণ্ডার হিসেবে কাজ করে। এ সমস্ত জলজ উদ্ভিদ না থাকলে মাছসহ অন্যান্য জলজ প্রাণী বাঁচতে পারবে না। যা পরিবেশের জন্য মারাত্মক হুমকির কারণ হয়ে দাঁড়াবে। আবার, পানি না থাকলে আমরা ফসল ফলাতে পারতাম না, ফলে খাদ্য সংকটে ভূগতাম। আমাদের অন্তিত্ব হুমকির সন্মুখীন হত, পরিবেশের ভারসাম্য ব্যাহত হত। তাই বলা যায়, পরিবেশের ভারসাম্য রক্ষায় পানি তথা মিঠা পানির গুরুত্ব অপরিসীম।

■ DDT মানব শরীরে কী প্রতিক্রিয়া সৃষ্টি করে?

(৩৬তম বিসিএস)

ডিডিটি গৃহস্থলী জিনিসপত্র পরিষ্কারকরণে ব্যবহৃত একটি রাসায়নিক। এর পুরো নাম ডাইক্লোরো ডাইফেনাইল ট্রাইক্লোরো ইথেন। এটি মূলত একটি কীটনাশক। যদিও এটি ম্যালেরিয়া ও অন্যান্য পতঙ্গবাহিত জ্বর ঠেকাতে মশা ও অন্যান্য পতঙ্গ মারতে ব্যবহার করার কথা, কিন্তু এটি ঘরের ভিতর, খাবারের দোকান। মানুষ ও অন্যান্য শরীরে বাছবিচার না করেই ব্যবহার করা হয়। কৃষিক্ষেত্রে এর ব্যবহার থেকেই সবচেয়ে বেশি বিপদের সম্ভাবনা। এটি উর্বর ভূমিকে দৃষিত করে, মাটির উপরের স্তরে থেকে চুঁইয়ে নিচের জলতলে পৌঁছায় এবং মাটির নিচের জলকেও দৃষিত করে। তৃণভোজী প্রাণীরা ঘাস এবং জল থেকে এই ডিডিটি গ্রহণ করে এবং মাংস ও দুধের মাধ্যমে তা মানবদেহের চলে আসে। এর ফলে ডিডিটি মানবদেহের ত্বকিন্মন্থ চর্বিতে জমা হয় এবং সোডিয়াম ও পটাশিয়ামের সৃক্ষ্ণ ভারসাম্যকে নষ্ট করে।

মানব শরীরে সৃষ্ট প্রতিক্রিয়া:

ক) ডিডিটির বিষক্রিয়ায় পুরুষের শুক্রাণু ও নারীর ডিম্বাশয় নষ্ট হয়ে যেতে পারে।

- খ) এর ফলে মানুষ শ্লায়ুবিক শৈথিল্য সমস্যায় ভুগতে শুরু করে।
- গ) সম্প্রতি রাটজার্স বিশ্ববিদ্যালয়ের গবেষকরা একটি প্রতিবেদনে বলেন, ডিডিটির প্রভাবে বিশেষ করে ষাটোর্ধ্ব বৃদ্ধদের শ্লায়ুঘটিত আলজেইমার্স রোগের ঝুঁকি ও ব্যাপকতা বাড়ে।
- গ) ডিডিটি মিশ্রিত খাদ্য গ্রহণের ফলে মানুষের রোগ প্রতিরোধ ক্ষমতা হ্রাস পায়।
- ঘ) যদি কোনো মা ডিডিটি মিশ্রিত খাদ্য বেশি মাত্রায় গ্রহণ তরে তবে ঐ মায়ের শালদুধের মাধ্যমে সন্তানেরও ক্ষতি হয়। শিশুর শারীরিক ও মানসিক বিকাশ ব্যাহত হয়।
- ঙ) ডিডিটি মিশ্রিত খাদ্য গ্রহণ করলে চর্মরোগে আক্রান্ত হওয়ায় সম্ভাবনা থাকে।
- চ) দীর্ঘদিন যাবত ডিডিটি মিশ্রিত খাদ্য গ্রহণে মানুষের নানারকমের দুরারোগ্য ব্যাধিতে আক্রান্ত হাওয়ার আশঙ্কা থাকে।

🔲 দৃষিত ও পানযোগ্য পানির বৈশিষ্ট্য লিখুন।

(৩৫তম বিসিএস)

- পানযোগ্য নিরাপদ পানির বৈশিষ্ট্য হলো-
- ১. দেখতে পরিষ্কার হবে। ২. কোন গন্ধ থাকবে না। ৩. স্বাদ গ্রহণযোগ্য হবে। ৪. জীবাণু থাকবে না। আর্সেনিক বা অন্য খনিজ গ্রহণযোগ্য মাত্রায় থাকবে। পানিস্বাদহীন, গন্ধহীন, বর্ণহীন, নিরপেক্ষ তরল পদার্থ। এতে তেজন্ত্রিয় ও বর্জ্য পদার্থ নেই। সামান্য সোডিয়াম, পটাসিয়াম ক্লোরাইড থাকতে পারে। এতে সামান্য দ্রবীভূত অক্সিজেন থাকে।
- দৃষিত পানির বৈশিষ্ট্য হলো-
- এ পানিতে নানা ধরনের অপদ্রব্য মিশ্রিত হয়ে পানি স্বাদ, বর্ণ ও গন্ধ নষ্ট হয়। পয়ঃনিষ্কাশন; রাসায়নিক সার; ডিটারজেন্ট; কীট-পতঙ্গ নাশক; শিল্প-বর্জ্য; তেলজাতীয় পদার্থ; তাপসংক্রান্ত পানি দূষণ প্রভৃতির মাধ্যমে পানি দূষিত হয়ে থাকে।
- □ আধুনিক কৃষিকাজ পদ্ধতির বিস্তারের সাথে সাথে বাংলাদেশের কৃষি জমিতে এখন আর আগের মত ব্যাঙ ও পাখ-পাখালীর উপস্থিতি লক্ষ্য করা যায় না। আবাসস্থল ধ্বংস হওয়া এবং প্রজনন প্রতিকূল পরিবেশই এর কারণ। (৩৫তম বিসিএস)
 - ক. ফসলীজমিতে আগের মত ব্যাঙ ও পাখ-পাখালীর উপস্থিতি লক্ষ্য করা যায় না কেন? প্রতি ক্ষেত্রে সুনির্দিষ্ট কারণ উল্লেখ করুন। ব্যাঙ সাধারণত নতুন পানিতে মে থেকে আগস্ট পর্যন্ত প্রজনন ক্রিয়া সম্পন্ন করে, পুরাতন পানিতে করে না। ফসলি জমিতে মাত্রাতিরিক্ত রাসায়নিক সার কীটনাশক ব্যবহার এবং বনজঙ্গল উজাড় করায় জীববৈচিত্র্য রক্ষাকারী ব্যাঙের বাসন্থান এবং প্রজনক্ষেত্র নষ্ট হচ্ছে প্রতিনিয়ত, বিলুপ্তির পথে বিভিন্ন প্রজাতির ব্যাঙ। বিভিন্ন স্থানে বাঁধ প্রয়োগের মাধ্যমেপানির যাভাবিক প্রবাহে বাধা, ফসলি জমি নষ্ট করে শিল্প ও আবাসন্থল তৈরির কারণে ব্যাঙের বিচরণন্থল প্রবাহে বাধা, ফসলি জমি নষ্ট করে শিল্প ও আবাসন্থল তৈরির কারণে ব্যাঙের বিচরণভ্ল কমে যাচ্ছে। এ কারণে ফসলি জমিতে আগের মত ব্যাঙের উপস্থিতি লক্ষ্য করা যাচ্ছে না। শিকারি কর্তৃক ব্যাঙ নিধন এবং মানুষের নির্বিচার কর্মকান্ডের কারণেও প্রতিনিয়ত ব্যাঙ কমে যাচ্ছে। ফসলি জমিতে মাত্রাতিরিক্ত সার এবং কীটনাশক ব্যবহারের কারণে পাখিরা বিষে আক্রান্ত কীটপতঙ্গ খেয়ে মারা যাচ্ছে। আবার শিকারিরা ট্রিগার টিপে কিংবা ফাঁদ পেতে পাখিদের জীবন হরণ করে চলেছে। এছাড়া বনাঞ্চল ধ্বংস, বনভূমি উজাড়, কৃষি জমিতে শিল্প স্থাপন, কৃষি জমিতে বসতবাড়ি তৈরি প্রভৃতি কারণে পাখিদের আবাসন্থল ধ্বংস হচ্ছে প্রতিনিয়ত। এ কারণে ফসলি জমিতে আগের মত পাখ-পাখালির উপস্থিতি লক্ষ্য করা যাচেছ না।
 - খ. ব্যাঙ্ক ও পাখ-পাখালী কীভাবে পরিবেশবান্ধব কৃষি ব্যবস্থাপনায় সাহায্য করে তা ব্যাখ্যা করুন।
 শস্যক্ষেত্রের ঘাসফড়িং, সবুজ পাতা ফড়িং, বাদামি গাছফড়িং, পামরি পোকা ও হলুদ মাজরা পোকা খেয়ে ব্যাঙ্ক উপকার করে
 থাকে। এরা মশা ও ছোট ক্ষতিকর জীব খেয়ে প্রাকৃতিক পরিবেশে কীটপতঙ্গ দমন করে। কৃষি জমিতে ব্যাঙ্কের মলমূত্র ও

দেহাবশেষ পঁচে মাটির উর্বরতা শক্তি এবং ফসলের উৎপাদন ক্ষমতা বৃদ্ধি পায়। পাখি কীটপতঙ্গ খেয়ে জীববৈচিত্রে পরিবেশের ভারসাম্য রক্ষা করে ফুল ও শস্যের পরাগায়ন ঘটায়, ইঁদুরের সংখ্যা নিয়ন্ত্রণ করে, পাখির মলমূত্র জমির উর্বরতা বৃদ্ধি করে।

গ. ডিডিটি এর মত ক্ষতিকারক রাসায়নিক পদার্থ এখন খাদ্য-শৃঙ্খেলের অংশ- সুনির্দিষ্ট তথ্যসহ এ মন্তব্যটি বিশ্লেষণ করুন। ডিডিটি এর রাসায়নিক নাম-ডাইক্লোরো ডাইফেনাইল ট্রাইক্লোরো ইথেন।

বাংলাদেশে ডিডিটি, হিলডন, অ্যালডিন, ফুরাডন প্রভৃতি কীটনাশক প্রতিনিয়ত ব্যবহৃত হচ্ছে। ডিডিটি সাদা বর্ণের জৈব ক্লোরিন জাতীয় কীটনাশক। এটি নিজে নিজে বা প্রাকৃতিক কারণে বা ব্যাকটেরিয়ার দ্বারা সহজে ভেঙ্গে যায় না। এগুলো মানুষের হরমোনের ভারসাম্যকে নষ্ট করে দেয়। আমাদের দেশে শাকসবজিতে সর্বাধিক কীটনাশক প্রয়োগ করা হয়। কীটনাশক উদ্ভিদের মূল ও কাভের ভেতরে প্রবেশ করে খাদ্যদ্রব্য বিষাক্ত করে। শাকসবজিতে বিষ প্রয়োগের ২/১ দিনের মধ্যে এগুলো বাজারে আসলে ভোক্তার দেহে কীটনাশক প্রবেশ করে। শাকসবজি ভালভাবে ধুয়ে রান্না করলেও কীটনাশকের ক্ষতিকর প্রভাব দূরীভূত হয় না। আলু আবাদের সময় ডিডিটি ব্যবহৃত হয়। এর প্রভাবে বহু জলজ প্রাণির শুক্রকীট ধ্বংস হয়। এদেশে যশোর এলাকায় বেগুন উৎপাদনে সর্বাধিক কীটনাশক প্রয়োগ করা হয়। শাকসবজিতে ব্যবহৃত কীটনাশক এখন সরাসরি আমাদের খাদ্যচক্রের অংশ হয়ে দাঁড়িয়েছে। ডিডিটিও অন্যান্য কীটনাশকের নির্বিচার ব্যবহার মাছের জন্যহুমিক। কীটনাশকের একটি অংশ জলাশয়ে মিশে জলজ পরিবেশ দূষিত করেছে।

এ দূষণ মাছসহ অন্যান্য জলজ প্রাণিকে বিষাক্ত করে তোলে, ফলে মাছ প্রজনন ক্ষমতা হারাচ্ছে এবং প্রজাতি বিলুপ্ত হচ্ছে। বিষাক্ত কীটনাশকের দেয়া ফসল খেয়ে ক্ষতির শিকার হচ্ছে গৃহপালিত পশুপাখি। কীটনাশকের ক্রিয়ার গাভীর দুধ বিষাক্ত হয়ে পড়েছে, এমনকি শিশু খাদ্য মায়ের দুধেও নীরব ঘাতক হয়ে ঢুকে পড়ছে বিষ।

আমাদের দেশে শুটকি মাছ প্রক্রিয়াজাতকরণের জন্য ডিডিটি, বাসুডিন প্রভৃতি বিষাক্ত কীটনাশক ব্যবহৃত হয়। এ বিষাক্ত উপাদান গরম পানিতে ধোয়ার পরও শুটকি মাছে থেকে যায়। অর্থাৎ রান্না করা শুটকি মাছও কোনভাবে বিষমুক্ত হচ্ছে না। বিষাক্ত কীটনাশক প্রয়োগের কারণে এগুলো চুড়ান্তভাবে মানুষের খাদ্যচক্রে প্রবেশ করছে।

☐ ঈদের পরের দিন রহিম মিয়ার পুকুরের বাড়ীর মহিলারা উচ্ছিষ্ট হাড়ি-পাতিল পরিষ্কার করেছে। পরদিন সকালে রহিম মিয়া লক্ষ্য করলেন পুকুরে প্রচুর মাছ উপরিভাগে শ্বাসকষ্টে খাবি খাচেছ। রহিম মিয়া একটি লম্বা বাঁশের লাঠি দিয়ে পানির উপরিভাগে বারবার আঘাত করে এ সমস্যার সমাধানের চেষ্টা করতে থাকেন।

(৩৫০ম বিসিএস)

ক. Algal Bloom কি?

বাতাস এবং তাপমাত্রা অনুকূলে থাকলে ফাইটোপ্লাংকটন খুব দ্রুত বংশবিস্তার করে শৈবালের যে ঘন দৃশ্যমান আবরণ বা স্তর তৈরি করে একে অ্যালগাল ব্রুম বলে। এটি মূলত শৈবাল কর্তৃক পানি দূষণকে চিহ্নিত করে। সাধারণভাবে ফসফরাস, নাইট্রোজেন প্রভৃতি মৌল বিষাক্ত শেওলার বৃদ্ধিতে সহায়তা করে। এ শেওলা ধীরে ধীরে বদ্ধ পানিতে ডেড জোন তৈরি করে।

- খ. মাছগুলো শ্বাসকষ্টে খাবি খাচ্ছিলো কেন? এ সমস্যা কেন উদ্ভূত হলো?
 - মাছগুলো শ্বাসকষ্টে খাবি খাওয়ার কারণ হলো পানিতে অক্সিজেনের অভাব। পুকুরের পানিতে অক্সিজেনেরপরিমাণ কমার কারণগুলো হলো- উচ্চ তাপমাত্রা (> ৩২°c), মেঘাচ্ছন্ন আবহাওয়া, পানি ঘোলা হওয়া, মৃত শৈবাল পুকুরের তলদেশে জমা হওয়া, পানিতে রাসায়নিক দূষণ ইত্যাদি। উদ্ভিদ প্লাংকটন ও জলজ উদ্ভিদের সালোকসংশ্লেষণে উৎপন্ন অক্সিজেন পানিতে দ্রবীভূত থাকে। বাতাস থেকেও কিছু পরিমাণ অক্সিজেন পানিতে মিশে। রাতে সূর্যালোকের অভাবে পানিতে অক্সিজেন প্রস্তুত হয় না। এজন্য সকাল বেলায় পানিতে অক্সিজেনের পরিমাণ ৫ মিলিগ্রাম/লিটারের কম হলে মাছ পানি হতে পর্যাপ্ত অক্সিজেন পায় না। তখন মাছ শ্বাসকষ্টে খাবি খায়। এছাড়া অক্সিজেনের অভাব হলে মাছ পানির উপরিভাগে ঘোরাফেরা করে।
- গ. রহিম মিয়া মাছগুলোকে বাঁচানোর জন্যপানির উপর কেন বারবার আঘাত করছিলেন?

পানিতে সাময়িক অক্সিজেন ঘাটতি দূর করে মাছ বাঁচিয়ে রাখা যায়। সাময়িক অক্সিজেন ঘাটতি মোকাবেলার উপায় হলো-

- ১. পানির উপরিভাগে ঢেউ সৃষ্টি করে বা পানি আন্দোলিত করে।
- ২. সাঁতার কেটে বা বাঁশ পিটিয়ে বা হাত দিয়ে পানি ছিটিয়ে।

৩. পাম্প দিয়ে নতুন পানি সরবারাহ করে। রহিম মিয়া বাঁশ দিয়ে পানিতে বারবার আঘাত করার মাধ্যমে পানির উপরিভাগে ঢেউ সৃষ্টি বা পানিকে আন্দোলিত করার চেষ্টা করে। এতে পানিসংলগ্ন বাতাস থেকে পানিতে অক্সিজেন মিশে সাময়িক অক্সিজেন ঘাটতি দূর করতে পারে।

ঘ. গৃহস্থলি বর্জ্য কোনোরূপ পরিশোধন ছাড়াই জলাশয়ে ফেলার ক্ষতিকর দিকগুলো আলোচনা করুন।

গৃহস্থলির বর্জা, ময়লা আর্বজনা মলমূত্র, কসাইখানায় আবর্জনা প্রভৃতি পরিশোধন ব্যতীত জলাশয়ে ফেললে বিভিন্ন রোগ সৃষ্টিকারী ব্যাকটেরিয়া, ভাইরাস ও অন্যান্য জীবাণু পানিতে মিশে। এ পানি মানুষের অস্ত্র বা অন্যান্য অঙ্গ সংক্রমণের কারণ হয়, যার প্রভাবে কলেরা, টাইফয়েড, পরিপাকতন্ত্রেরর প্রদাহ ও যকৃতের প্রদাহ সৃষ্টি করে। বিভিন্ন পরিষ্কার পদার্থ, সাবান জাতীয় বস্তু, ডিটারজেন্ট, কীটনাশক ঔষধ, কৃত্রিম রসায়নিক বর্জ্য প্রভৃতি পানিতে মিশে জলজ উদ্ভিদ, প্রাণী, শিশু ও পাখি সম্প্রদায়কে প্রত্যক্ষ ও পরোক্ষভাবে ক্ষতিগ্রন্থ করে তোলে। অনেকক্ষেত্রে পানিতে এদের পরিমাণ বেড়ে গেলে শৈবাল ও আগাছার ব্যাপক বৃদ্ধি ঘটে এবং পরিশেষে তা পঁচে পানি দূষণ হয়ে অস্বাভাবিক পরিস্থিতির সৃষ্টি করে।

ধাতব লবণ, এসিড, অজৈব রাসায়নিক পদার্থ, তেল জাতীয় পদার্থ ও কৃষিক্ষেত্রে ব্যবহৃত অজৈব রাসায়নিক পদার্থ পানিতে মিশে পানি দূষণ করেছে। এর ফলে প্রাকৃতিক পানি শোধন প্রক্রিয়ার ব্যাঘাত ঘটে, মাছ ও অন্যান্য জলজ প্রাণির ক্ষতি হয়, পানির ক্ষারত্ব বৃদ্ধি পায় এবং ক্যান্সারসহ মানুষ ও পশুপাখির নানা রোগদেখা দেয়।

পুকুরের চেয়ে সমুদ্রের পানিতে সাঁতার কাটা সহজ কেন?

(৩৪তম বিসিএস)

সমুদ্রের পানিতে নানা ধরনের লবণ দ্রবীভূত থাকে। তাই সমুদ্রের পানির ঘনত্ব নদীর পানি বা পুকুরের পানির চেয়ে বেশি। ঘনত্ব বেশি হওয়ার কারণে সমুদ্রের পানির প্রবতা নদী বা পুকুরের পানির প্রবতার চেয়ে বেশি। ফলে সমুদ্রের পানিতে সাঁতার কাটার সময় সাতারুর শরীরে উপর প্রবতা বেশি হওয়ায় শরীর হালকা বলে মনে হয়। এ কারণে নদী বা পুকুরের পানির তুলনায় সমুদ্রের পানিতে সাঁতার কাটা সহজ।

সামুদ্রিক জলোচ্ছ্যাস কি? এবং কেন ঘটে?

(৩৪ ও ১০তম বিসিএস)

সমুদ্রে ঘূর্ণিঝড়ের সঙ্গে বাতাস সমুদ্রের উপর বল প্রয়োগ করে প্রচন্ড ঢেউয়ের সৃষ্টি করে যাকে সামুদ্রিক জলোচ্ছ্বাস বলে। বাতাস ছাড়া জলোচ্ছ্বাস সৃষ্টি অন্যান্য কারণগুলো হলো বায়ুর চাপের তারতাম্য, চন্দ্র সূর্যের আকর্ষণ জনিত প্রভাব এবং সুনামী। বর্তমানে বায়ুমন্ডলে কার্বন-ডাইঅক্সাইডের পরিমাণ বেড়ে যাওয়ায় গ্রীন হাউজ ইফেক্টের সৃষ্টি হচ্ছে। এ কারণেও ঘন-ঘন জলোচ্ছ্বাস ঘটছে। খর পানি: যে পানি সাবানের সহজে ফেনা দেয় না এবং যে পানিতে Ca ও Mg এর দ্রবণীয় SO_4^{2-} ও HCO^{3-} এর উপস্থিতি বিদ্যমান তাকে খর পানি বলে।

মৃদু পানি: যে পানি অতি সহজেই সাবানের ফেনা তৈরি করে তাকে মৃদু পানি বলে। এ পানিতে কোনো অপদ্রব্য থাকে না।

পানির খরতার কারণ: খর পানিতে এমন কিছু অপদ্রব্য আছে যার ফলে পানি সাবানের সঙ্গে সহজে ফেনা দেয় না। খর পানির এই অপদ্রব্যগুলো হলো ক্যালসিয়াম ও ম্যাগনেসিয়াম ধাতুদ্বয়ের দ্রবণীয় হাইড্রোজেন কার্বনেট, সালফেট, প্রভৃতি লবণ। এই অপদ্রব্যগুলো পানিতে দ্রবীভূত থাকলে পানি খর হয়।

পানির খরতা দূর করার উপায়: পানিতে দ্রবণীয় লবণকে রাসায়নিকভাবে অদ্রবীভূত লবণে পরিণত করে পানি থেকে পৃথক করলে পানির খরতা দূর হয়। দুটি পদ্ধতিতে পানির খরতা দূর করা যায়।

- 🕽 । অস্থায়ী খরতা দূরীকরণ। যেমন-পানি ফুটিয়ে।
- ২। স্থায়ী খরতা দূরীকরণ। যেমন-সোডা প্রণালী।
- এ পদ্ধতিতে পানির সাথে সোডিয়াম কার্বনেট মিশ্রিত করে পানির খরতা দূর করা হয়।

সাধারণ পানি (Soft Water) ও ভারী পানি (Heavy Water) এর মধ্যে পার্থক্য কি?

(১৮তম বিসিএস)

দুই পরমাণু হাইড্রোজেন ও এক পরমাণু অক্সিজেন সমন্বয়ে গঠিত পানি হলো সাধারণ পানি। হাইড্রোজেনের একটি আইসোটোপ হলো প্রোটিয়াম। আর দুই পরমাণু ডিউটেরিয়াম ও এক পরমাণু অক্সিজেন সমন্বয়ে গঠিত পানি হলো কঠিন পানি D_2O । সাধারণ পানির ঘনত্বের (১.০০৮) চেয়ে কঠিন পানির ঘনত্ব (১.১০৬) বেশি।

🔲 সব সময় পানীয় হিসেবে পাতিত বিশুদ্ধ পানি, ব্যবহার করা স্বাস্থ্যসম্মত নয় কেন?

(২৩তম বিসিএস)

সাধারণ পানিতে অনেক খানিজ লবণ তাকে, যা আমাদের দেহের জন্য উপকারী। কিন্তু পাতিত পানিতে খনিজ লবণ থাকে না এবং কার্বন ডাইঅক্সাইড ও সিলিকা থাকে, যা আমাদের জন্য স্বাস্থ্যসম্মত নয়।

সমুদ্রের পানি পান করা যায় না কেন?

(২০তম বিসিএস)

প্রাবাটি 🛧 ৪৪তম 🔣 লিখিত প্রস্তৃতি

সমুদ্রের পানিতে দ্রবীভূত অবস্থায় লবণ থাকে বলে এই পানি পান করা যায় না। এক গ্যালন (প্রায় সাড়ে চার লিটার) সমুদ্রের পানিতে লবণ থাকে প্রায় ১০০ গ্রাম। আবার যে সমুদ্র একটু ঘেরা জায়গায় অর্থাৎ মহাসাগর নয় তাতে লবণের পরিমাণ আরও বেশি। নদীর পানি সাগরে মিশবার আগে বয়ে নিয়ে আসে বিভিন্ন রকম খনিজ পদার্থ ও লবণ। সারাদিন সমুদ্রের পানি বাষ্পীভূত হয়ে উপরে উঠে যায় কিন্তু লবণ থেকে যায়, আবার নদী লবণ নিয়ে আসে। এভাবেই দিন দিন সমুদ্রের পানিতে লবণের পরিমাণ বাড়তে থাকে। সমুদ্রের পানিতে এত লবণ দ্রবীভূত অবস্থায় থাকে বলে তা পানের অযোগ্য।

STUDENT & STUDY

Water

পানি কি? পানির প্রধান বৈশিষ্ট্যগুলো কি কি?

পানি একটি রংহীন, গন্ধহীন যৌগিক পদার্থ। এটি হাইড্রোজেন ও অক্সিজেন পরমাণু দ্বারা গঠিত। যেমন- $m H_2O$ পানিকে যে পাত্রে নেয়া হয় তা সেই পাত্রের আকার ধারণ করে।

পানির প্রধান বৈশিষ্ট্য হলো-

- পানি একটি যৌগিক পদার্থ। এটি দুই পরমাণু হইড্রোজেন ও এক পরমানু অক্সিজেন দ্বারা গঠিত।
- পানি স্বাদহীন, গন্ধহীন পদার্থ।

পানির নিজম্ব কোনো বর্ণ নেই।

পানির সান্দ্রতা ধর্ম বিদ্যমান।

পানি একটি উভয়ধর্মী অক্সাইড।

🔲 পানির গলনাংক ও স্ফুটনাংক আলোচনা করুন।

পানি যখন কঠিন অবস্থায় থাকে সেটিকে আমরা বরফ বলি। যে তাপমাত্রায় বরফ গলে যায়, সেটিই হলো গলনাংক। বরফের গলনাংক 0° সেলসিয়াস। অন্যদিকে বায়ুমন্ডলীয় চাপে কোনো তরল পদার্থ যে তাপমাত্রায় বাচ্পে পরিণত হয়, তাকে স্কুটনাংক বলে। পানির স্কুটনাংক ৯৯.৯৮° সেলসিয়াস বা ১০০° সেলসিয়াসের খুবই কাছাকাছি। তাই সাধারণভাবে আমরা পানির স্কুটনাংক ১০০° সেলসিয়াস বলে থাকি।

বিশুদ্ধ পানি স্বাদহীন, গন্ধহীন ও বর্ণহীন হয়। পানির ঘনত্ব তাপমাত্রার ওপর নির্ভর করে। ৪°সেলিসিয়াস তাপমাত্রায় পানির ঘনত্ব সর্বোচ্চ আর তা হলো ১ গ্রাম/সি.সি বা ১০০০ কেজি/মিটার° অর্থাৎ ১ সি.সি পানির ভর হলো ১ গ্রাম বা ১ কিউবিক মিটার পানির ভর হলো ১০০০ কেজি।

পানির পরিবাহিকতা আলোচনা করুন।

বিশুদ্ধ পানি তড়িৎ পরিবহন করে না, তবে এতে তড়িৎ বিশ্লেষ্য পদার্থ (যেমন-লবণ, এসিড) দ্রবীভূত থাকলে তড়িৎ পরিবহন করে। পানির একটি বিশেষ ধর্ম হলো এটি বেশির ভাগ অজৈব যৌগ ও অনেক জৈব যৌগকে দ্রবীভূত করতে পারে। এজন্য একে সর্বজনীন দ্রাবকও বলা হয়। পানি একটি উভয়ধর্মী পদার্থ হিসেবে কাজ করে অর্থাৎ কখনো এসিড, কখনো ক্ষার হিসেবে কাজ করে। সাধারণত এসিডের উপস্থিতিতে পানি ক্ষার হিসেবে আর ক্ষারের উপস্থিতিতে এসিড হিসেবে কাজ করে। তবে বিশুদ্ধ পানি পুরোপুরি নিরপেক্ষ অর্থাৎ এর \mathbf{P}^{H} হলো ৭।

পানির গঠন আলোচনা করুন।

পানি দুইটি হাইড্রোজেন পরমাণু ও একটি অক্সিজেন পরমাণু দিয়ে গঠিত। পানির সংকেত হলো $m H_2O$ ।

আমরা যে পানি দেখি, (আধুনিক প্রযুক্তির মাধ্যমে জানা গেছে, সেখানে অনেক পানির অনু ক্লাষ্টার (Clustter) আকার থাকে।

□ হাইড্রোজেন (H) বন্ধন কি?

হাইড্রোজেন পরমাণু উচ্চ ইলেকট্রো নেগেটিভ মৌল যেমন- অক্সিজেন এবং নাইট্রোজেনের সাথে মিলিত হয়ে সমযোজী যৌগ গঠন করে, তখন এদের বন্ধন ইলেকট্রনযুগল উচ্চ ইলেকট্রো নেগেটিভ মৌল কর্তৃক খুব বেশি আকৃষ্ট হয়। ফলে ঐ পরমাণুতে বেশি পরিমাণে আংশিক ঋণাত্মক চার্জ সৃষ্টি হয় এবং হাইড্রোজেন পরমাণুতে একই পরিমাণ ধনাত্মক চার্জের সৃষ্টি হয়। হাইড্রোজেন প্রান্ত

অন্য অণুর ঋণাতাক প্রান্তের দিকে বিশেষভাবে আকৃষ্ট হয়ে একটি দুর্বল বন্ধন সৃষ্টি করে। এই দুর্বল আকর্ষণকে হাইড্রোজেন বন্ধন বলা হয়। হাইড্রোজেন বন্ধনকে ড্ট ড্ট "......." চিহ্ন দ্বারা প্রকাশ করা হয়।

উদাহরণ: HF, H2O ইত্যাদির মধ্যে হাইড্রোজেন বন্ধন ঘটে।

🔲 পানিতে হাইড্রোজেনে বন্ধনের প্রভাব আলোচনা করুন।

সমযোজী যৌগের ধর্মে হাইড্রোজেন বন্ধনের প্রভাব: হাইড্রোজেন বন্ধনের ফলে অণুসমূহের বিপরীত প্রান্তসমূহ পরস্পরের প্রতি আকৃষ্ট হয়ে বিরাট অণু সৃষ্টি করে। তরল অবস্থায় অণুসমূহ পরস্পরের সংস্পর্শে থাকলেও তারা মোটামুটি মুক্তভাবে চলাফেরা করে। তরল অবস্থায় হাইড্রোজেন বন্ধন থাকলেও কঠিন অবস্থা থেকে তরল অবস্থায় আনতে কিছু হাইড্রোজেন বন্ধন ভাঙা অপরিহার্য। এ কারণে সাধারণ সমযোজী যৌগ অপেক্ষা এসব যৌগের গলনের ক্ষেত্রে অধিকতর শক্তি প্রয়োগ প্রয়োজন। এসব যৌগের গলনাংক একই ধরনের অন্যান্য যৌগ অপেক্ষা অনেক বেশি হয়।

চিত্র: হাইড্রোজেনের বন্ধন

কিন্তু বাস্তবে H_2O এর গলনাংক ও স্ফুটনাংক যথাক্রমে 0^0C ও 100^0C । এটা হয়েছে পানিতে হাইড্রোজেন বন্ধনের উপস্থিতির কারণে।

🔲 পানির গুণগত মান বিশ্লেষণ ও ব্যাখ্যা করুন।

পানির (H²O) মতো এত বেশি আর কোনো রাসায়নিক পদার্থ ব্যবহৃত হয় না। পানির এমন কিছু বিশেষত্ব আছে বা এমন কিছু বৈচিত্র্যময় ধর্মাবলি আছে যার জন্য এর ব্যবহারিক ক্ষেত্রের কোনো সীমা-পরিসীমা নেই। বিশুদ্ধ অবস্থায় পানির কোনো রং স্বাদ এবং গন্ধ থাকে না। তবে পানিতে দ্রবীভূত গ্যাস ও লবণের কারণে পানি কিছুটা স্বাদযুক্ত। তাত্ত্বিকভাবে যদি পানির ভৌত ধর্মাবলি পরিবর্তিত হয় তবে তাকে দৃষিত পানি বলে। এখানে বিশুদ্ধ পানির কিছু ভৌত ধর্মাবলি উল্লেখ করা হলো।

ভৌত বৈশিষ্ট্য (Physical Parameter)	মান (Value)
১. স্ফুটনাংক	100° C
২. হিমাংক	0° C
৩. ঘনত্ব	4° C তাপমাত্রা 1g/cc
8. বর্ণ	বৰ্ণহীন
৫. পরিবাহিতা	25° C তাপমাত্রায় 5.54 ×10 ⁻⁵ Ohm ⁻¹
৬. প্রতিসাংক	1.33 (20° C তাপমাত্রায়)
৭. আপেক্ষিক তাপ	4200 Jkg ⁻¹ K ⁻¹
৮. আপেক্ষিক গুরুত্ব	4° C তাপমাত্রায় 1.000
৯. P ^H	7.0
১০. সান্দ্রতা	20° C তাপমাত্রায় ও 1 atm চাপে 1.0016

বিভিন্ন ক্ষেত্রে ব্যবহার যেমন- পান করা, গৃস্থালি, সেচ, শিল্পক্ষেত্রে, চিত্তবিনোদন, মৎস্য চাষের জন্য পানির আবশ্যক গুনাগুণ এক এক রকম। পানির গুণাগুণ নির্ণয় করতে বিভিন্ন রকম রাসায়নিক, প্রাণরাসায়নিক এবং অনুজীব সম্পর্কিত পরীক্ষা-নিরীক্ষা প্রয়োজন এবং পরীক্ষিত মান প্রমাণ মানের (Standard Value) সাথে তুলনা করে পানির গুনাগুণ সম্পর্কে মন্তব্য করা হয়।

□ দ্রবীভূত অক্সিজেন (Dissolved oxygen) বলতে কি বুঝেন?

দ্রবীভূত (Dissolved oxygen): অ্যাকুয়াটিক সিস্টেমে জীবন ধারণের পরিমাণ ও ধারণ নির্ণীত হয় পানির বডিতে (Water Bodies) দ্রবীভূত অক্সিজেন দ্বারা। দ্রবীভূত অবস্থায় ন্যুনতম পরিমাণ অক্সিজেন না থাকলে পানিতে কোনো রকম প্রাণী বা উদ্ভিদ

বেচে থাকতে পারে না। পানিতে অক্সিজেন যখন দ্রবীভূত অবস্থায় থাকে, তখন একে দ্রবীভূত অক্সিজেন বলে। পানির গুণগত মান নির্ণয়ের জন্য দ্রবীভূত অক্সিজেন একটি উৎকষ্ট প্যারামিটার।

পানিতে জৈব দূষকের পরিমাণ অগণিত (Micro Organism) এর বৃদ্ধি ঘটায়। এসব অণুবীক্ষণিক জীবাণু জটিল জৈব যৌগকে বিয়োজিত করে সাধারণ অজৈব উপাদান যেমন-কার্বনেট, নাইট্রেট, সালফেট এবং ফসফেট যৌগে পরিণত করে। Hazardos জৈব যৌগ পানি থেকে অণুবীক্ষণিক জীবাণু দ্বারা অপসারণ প্রক্রিয়াকে Self-pirification বলে। যেসব অণুবীক্ষণ জীবাণু এরূপ Self-purification ঘটায় তারা পানিতে দ্রবীভূত অক্সিজেনকে খরচ করে বা কাজে লাগায়। Respiration প্রক্রিয়া দ্বারা যদি পানিতে দ্রবীভূত অক্সিজেনের পরিমাণ বেশি হয়, তখন Self-purification এর মাত্রাও বেশি হয়। যদি দ্রবীভূত অক্সিজেনের পরিমাণ কম হয়, তখন দৃষিত পদার্থ কর্তৃক পানির Self-purification দ্বারা দূর করা সম্ভব হয়। এভাবে দ্রবীভূত অক্সিজেনের লেভেল দৃষিত পানির অবস্থা পরিমাপের ক্ষেত্রে একটি উল্লেখযোগ্য বিশ্লেষণীয় পরিমাপক বা প্যারামিটার

🔲 জলজ উদ্ভিদ ও প্রাণীর জন্য দ্রবীভূত অক্সিজেনের গুরুত্ব আলোচনা করুন।

জলজ উদ্ভিদ এবং প্রাণীর অন্তিত্বের জন্য পানিতে দ্রবীভূত অক্সিজেনের প্রয়োজন। দ্রবীভূত এই অক্সিজেন জলজ প্রাণীর শ্বসনে ব্যবহৃত হয়। 25°C উষ্ণতায় পানিতে দ্রবীভূত অক্সিজেনের সর্বোচ্চ পরিমাণ 8ppm (8mg/L)। তাপমাত্রার সাথে পানিতে অক্সিজেনের দ্রাব্যতা 14ppm। পানিতে জৈব বা অজৈব দূষক দ্রবীভূত থাকলে তা অক্সিজেনের দ্রাব্যতার উপর প্রভাব ফেলে এ ধরনের দূষিত পানিতে দ্রবীভূত অক্সিজেনের মাত্রা (Dissolved) কমে যায়। এ ধারনা থেকেই দূষণের নির্দেশক হিসেবে দ্রবীভূত অক্সিজেনকে (DO) ব্যবহার করা হয়। অধিকাংশ জলজ প্রাণীর বেঁচে থাকার জন্য দ্রবীভূত অক্সিজেনের পরিমাণ 5ppm হওয়া বাঞ্ছনীয়।

🔲 পানির উৎসসমূহ আলোচনা করুন।

পানির উৎস:পানির সবচেয়ে বড় উৎস হলো সাগর, মহাসাগর বা সমুদ্র। পৃথিবীতে যত পানি আছে তার প্রায় শতকরা ৯০ ভাগেই উৎস সমুদ্র। আর সমুদ্রের পানিতে প্রচুর লবণ থাকায় তা কিন্তু পানযোগ্য নয়। এমনকি বেশির ভাগ ক্ষেত্রেই অন্য কাজেও ব্যবহারের উপযোগী নয়। সমুদ্রের পানিকে লোনা পানি (Marine Water) বলে।

পানির আরেকটি অন্যতম উৎস হলো হিমবাহ ও তুষার শ্রোত, যেখানে পানি মূলত বরফ আকারে থাকে। এই উৎসে প্রায় শতকরা ২ ভাগের মতো পানি আছে। উল্লেখ্য যে বরফ আকারে থাকায় এই পানিও কিন্তু অন্য কাজে ব্যবহার উপযোগী পানির উৎস হলো নদননদী, খাল-বিল, হ্রদ, পুকুর ও ভূগর্বস্ত পানি। ভূগর্বস্ত পানি নলকূপের সাহায্যে পাই। অবশ্য পাহাড়ের উপর জমে থাকা বরফ বা তুষার হলেও ঝর্ণা সৃষ্টি করতে পারে। লক্ষণীয় ব্যাপার হলো, ব্যবহারের উপযোগী পানি মাত্র শতকরা ৩ ভাগ।

বাংলাদেশের মিঠা পানির উৎস: আমরা বাসা বাড়িতে রান্না থেকে শুরু করে কাপড় ধোয়া ও খাওয়ার পানি মিঠা পানির থেকে পাই। মাঠে ফসল ফলাতে কখনো কখনো (যেমন-ইরি ধানের জন্য) প্রচুর পরিমাণে পানি লাগে। এ পানি আমরা সেখানে থেকে পাই। আমাদের দেশে ঝর্ণা তেমন একটা না থাকায় মিঠা পানির মূল উৎস নদ-নদী, খাল-বিল, পুকুর, হ্রদ ও ভূগর্বস্ত। তবে ক্ষতিকর রাসায়নিক পদার্থ থাকায় (বিশেষ করে আর্সেনিক) বাংলাদেশের বিস্তৃত এলাকার ভূগর্বস্ত পানি পানের অনুপযোগী হয়ে পড়েছে এবং ঐ সকল এলাকায় বৃষ্টির পানি সংগ্রহ করে পরিশোধন করে তা পান করছে।

🔲 মানব জীবনে পানির গুরুত্ব আলোচনা করুন।

পানি প্রকৃতির আত্মা, ভবিষ্যতের আশা। পানিই জীবন, এটি ছাড়া জীবন ও জীবন সংশ্লিষ্ট কোনো কিছুই সম্ভব নয়। প্রকৃতির অপার দান এই পানি জীবনের প্রতিটি ক্ষেত্রেই প্রয়োজন। পানিতে 'পানি' ছাড়া আরও অনেক পুষ্টি থাকে, যা আমাদের শরীরের বৃদ্ধি ও বিকাশের জন্য আবশ্যক। ফলে পানি আমরা শুধু খাওয়ার জন্যই খাই না, বরং সাথে সাথে আরও অনেক প্রয়োজনীয় জিনিস গ্রহণের জন্য পান করি। এছাড়া একটি অঞ্চলের অর্থনীতি অনেকটাই পানি ও তার সহজ প্রাপ্যতার উপর নির্ভর করে।

ইতিহাস হতে দেখা পৃথিবীতে অধিকাংশ জনবসতি গড়ে উঠেছে হয় কোনো নদীকে না হয় কোনো সাগরকে কেন্দ্র করে। বাতাসের নিশ্চয়তা সবখানে থাকে না। ফলে সভ্যতা গড়ে উঠেছিল নীল অথবা ট্রাইগ্রিস-ইউফ্রেটিস নদীর কূলেই। পানি পান ছাড়া আমরা মাত্র কয়েকদিন বেচে থাকতে পারি। শরীর ৭০ ভাগই পানি। সমগ্র পৃথিবীতে 51 কোটি বর্গ কি. মি. সাগর বা মহাসাগর।

পৃথিবীতে পানি মজুদ আছে মোট 26.6 ট্রিলিয়ন টন। এর মধ্যে 94.7%আছে লিথোন্ফায়ারে এবং বাকি 5.3%বান্তবে দেখা যায় হাইড্রোন্ফেয়ারে, যার মধ্যে 97% থাকে সাগরে। সমন্ত মজুদের মাত্র 3% মৃদু পানি। শুধু এই 3% পানিই কেবল মানুষের পান বা অন্যান্য কাজে ব্যবহৃত হয়। এর মধ্যে সেচ কাজে 30%, তাপ বিদ্যুৎ কেন্দ্রে 50% গৃহস্থলির কাজে 7% এবং শিল্প কারখানায় 12% ব্যবহৃত হয়।

পানিতে দ্রবীভূত অজৈব যৌগের অপসারণের উপায় কি?

দ্রবীভূত অজৈব যৌগের অপসারণ (Removal of dissolved inorganics): পূর্ণাঙ্গ বিশোধনে অজৈব দ্রবণসমূহের অপসারণ অপরিহার্য। সেকেন্ডারি বর্জ্য বিশোধন থেকে প্রাপ্ত প্রবাহে সাধারণত (300-400)mg/L দ্রবীভূত অজৈব পদার্থ থাকে। সুতরাং পানির পুর্নব্যবহার কিংবা ভূপৃষ্ঠীয় জলাধারে নিক্ষেপের পূর্বে সংক্রমিত পানি থেকে অজৈব যৌগের অপসারণ অত্যন্ত প্রয়োজনীয় পদক্ষেপ হিসেবে পরিচিত।

বিশেষ করে পানি থেকে নাইট্রোজেন এবং ফসফরাস অপসারণ করা না হলে পরবর্তী পর্যায়ে জলাশয়ে ইউট্রোফিকেশন প্রক্রিয়ার উদ্ভদ ঘটে। কতিপয় ক্ষেত্রে বিষাক্ত স্বল্প মাত্রার ধাতুর অপসারণও অপরিহার্য। অজৈব পদার্থের অপসারণে পাতন প্রণালী অত্যন্ত কার্যকর পদ্ধতি হলেও এটি অত্যন্ত ব্যয়বহুল। অধিকন্ত পানিতে বিদ্যমান উদ্বায়ী পদার্থসমূহ (যেমন-NH3) পাতন প্রনালীতে কার্যকরভাবে পথক হয় না বরং পাতিতের সাথে বাহিত হয়।

মেমব্রেন প্রক্রিয়াসমূহ বর্তমানে অধিকতর ফলপ্রসূ হিসেবে পরিগণিত হয়ে আসছে; ইলেকট্রোডায়ালাইসিস, আয়ন বিনিময়, বিপরীত অসমোসিস প্রক্রিয়াসমূহ উল্লেখ্যযোগ্য। পানির বিশুদ্ধকরণে অন্যান্য মেমব্রন প্রক্রিয়াসমূহের মধ্যে ন্যানোফিল্ট্রেশন, আল্ট্রাফিল্ট্রেশন, মাইক্রোফিল্ট্রেশন অন্যতম।

🔲 পানির পুনঃআবর্তন বিষয়টি বিস্তারিত লিখুন।

পানির পুনঃআবর্তন: ভূপৃষ্ঠের শতকরা ৭৫ ভাগই পানি দ্বারা আবৃত, কিন্তু বেশির ভাগই পানিই (শতকরা ৯৭ ভাগ) লবণাক্ত হওয়ায় তা সরাসরি বিভিন্ন কাজে ব্যবহার করা যায় না। মিঠা পানির একটি অংশ বিশেষ করে নদ-নদী, খাল-বিল ও হ্রদের পানি নানাভাবে প্রতিনিয়ত দূষিত হয়ে চলছে এমনকি ভূগর্ভন্থ পানি যা আমরা কূপ বা নলকূপ থেকে পাই এবং খাওয়া থেকে শুরু করে বিভিন্ন কাজে ব্যবহার করি, সেটিও নানা রকম রাসায়নিক পদার্থ (যেমন-আর্সেনিক) দ্বারা দৃষিত হয়ে খাওয়ার অনুপযোগী হয়ে পড়ছে।

তাহলে আমাদের ব্যবহারের উপযোগী পানির পরিমাণ কি খুবই সীমিত? হাঁ, যদিও আমাদের প্রচুর পানিসম্পদ রয়েছে, কিন্তু ব্যবহার উপযোগী পানির পরিমাণ খুবই অল্প ও সীমিত। তাই পানি ব্যবহারে আমাদের অত্যন্ত সাশ্রীয় হতে হবে এবং একই পানি কীভাবে বারবার ব্যবহার করা যায় সেটিও চিন্তা করতে হবে। প্রকৃতিতে পানির পুনঃআর্বতন ঘটছে। দিনের বেলা সূর্যের তাপে ভূপৃষ্ঠের পানি (সমূদ্র, নদ-নদী, খাল-বিলের পানি) বাষ্পীভূত হয়েবায়ুমন্ডলে প্রবেশ করে। একপর্যায়ে বাষ্প ঘনীভূত হয়ে প্রথমে মেঘ ও পরে তা বৃষ্টি আকারে ফিরে আসে। এই বৃষ্টির পানি বড় একটি নদ-নদী, খাল-বিল ও সমুদ্রে গিয়ে পড়ে এবং আবার বাষ্পীভূত হয় ও বৃষ্টি আকারে ফিরে আসে। পানির এই পুনঃআবর্তন অত্যন্ত গুরুত্বপূর্ণ। এই পুনঃআবর্তন না হলে বৃষ্টিই হতো না, ফলে মরুভূমিতে পরিণত হয়ে যেত পুরো পৃথিবী। প্রচণ্ড খরা হতো, ফসল উৎপাদন কমে যেত। বৃষ্টি হলো প্রাকৃতিকভাবে পানির পুনঃআবর্তন। আমরা যদি ব্যবহারের পর বর্জ্য পানি সংগ্রহ করে তা পরিশোধন করে আবার ব্যবহার করি তাহলে সেটিও কিন্তু এক ধরনের পুনঃআবর্তনই হবে।

পরিবেশ সংরক্ষণে পানির ভূমিকা লিখুন।

পরিবেশ সংরক্ষণে পানির ভূমিকা: যেহেতু পরিবেশের প্রায় প্রতিটি উপাদান ও প্রক্রিয়া প্রত্যক্ষ ও পরাক্ষভাবে পানির উপর নির্ভরশীল, তাই পরিবেশকে টিকিয়ে রাখতে হলে পানি অপরিহার্য। পানি না থাকলে গাছপালা জন্মাবে না, ফসল উৎপাদন হবে না এবং আমাদের অন্তিত তথা পরো পরিবেশই ধ্বংস হয়ে যাবে।

মানসম্মত পানির প্রয়োজনীয়তা: হাত-মুখ ধোয়া থেকে শুক্ত করে গোসল, রান্না-বান্না, কাপড় পরিষ্কার করা এবং সর্বোপরি খাওয়ার জন্য পানি যদি গদ্ধযুক্ত বা লবণাক্ত হয়, তবে তা খাওয়ার উপযোগী হবে না। এর বাস্তব প্রমাণ হলো আমাদের দেশের দক্ষিণ-পশ্চিমাঞ্চলের অনেক জেলায় নদী ও ভূগর্ভস্থ পানি লবণাক্ত হওয়ায় তারা ঐ পানি খেতে তো পারছেই না, এমনকি প্রাত্যাহিক জীবনের বেশির ভাগ কাজেই ব্যবহার করতে পারছে না। তারা বৃষ্টির পানি সংগ্রহ পর পরিশোধন করে, তারপর পান করছে ও অন্যান্য কাজে ব্যবহার করছে। আবার খাওয়ার পানি যদি মানসম্মত না হয়, বিশেষ করে এতে যদি রোগজীবাণু থাকে, যা শিল্প-কারখানায় স্বাস্থ্য বিপর্যয় ঘটাতে পারে। সমুদ্রের পানি কৃষি কাজে বা শিল্প কারখানায় ব্যবহার করা যায় না। কারণ সমুদ্রের পানিতে প্রচুর লবণ থাকে, যা শিল্প কারখানায় ব্যবহৃত যন্ত্রপাতির (যেমন-বয়লার) ক্ষয়সাধন করে ও নষ্ট করে ফেলে। একইভাবে আমাদের বেশিরভাগ ফসলাদিই লবণ পানিতে জন্মাতে পারে না। অর্থাৎ লবণাক্ত পানি কৃষিকাজের জন্য উপযোগী নয়। মোট কথা, শিল্প-কারখানা থেকে শুক্ত করে কৃষিকাজ ও দৈনন্দিন জীবনের প্রতিটি কাজেই মানসম্মত পানি অত্যাবশ্যক। তা না হলে একদিকে যেমন স্বাস্থ্যহানি ঘটতে পারে অন্যদিকে অর্থনৈতিকভাবে মারাত্মক ক্ষতিসাধন হতে পারে।

🔲 পানি দৃষণ বলতে কি বুঝেন? দৃষিত পানির বৈশিষ্ট্য লিখুন।

পানি দৃষণঃপানিতে অতিরিক্ত বাহ্যিক পদার্থ যুক্ত হলে বা কোনো তাপীয় প্রক্রিয়ার দ্বারা ভৌত, রাসায়নিক এবং জীব বৈজ্ঞানিক ধর্মের এবং পানীয় গুণাগুণে পরিবর্তন ঘটে, তাকে পানি দৃষণ বলে। আবার যে পানি উদ্ভিদ ও প্রাণিকূলের জন্য নিরাপদ নয়, এমন পানিকে দৃষিত পানি বলে। মানুষের অদূরদর্শী ক্রিয়াকলাপের জন্য ক্রমবর্ধমান পানি দৃষণের ফলে পানি সম্পদের ব্যাপকতা সংকচিত হচ্ছে।

দৃষিত পানির বৈশিষ্ট্যসমূহ:

- ভৌত বৈশিষ্ট্যসমূহ-
- ক. পানির স্বাভাবিক বর্ণ বিনষ্ট হয়ে যায়;
- গ. পানিতে সহজে ফেনা হয় না;
- ঙ. পানির তাপমাত্রা স্বাভাবিকের চেয়ে বেশি হয় এবং
- রাসায়নিক বৈশিষ্ট্যসমূহ-
- ক. পানির অমুত্ব ও ক্ষারত্ব বেড়ে যায়;
- খ. পানির খরতা বেড়ে যায়;
- গ. পানিতে রাসায়নিক অক্সিজেনের চাহিদা বাড়ে এবং
- ঘ. পানিতে বিভিন্ন আয়নের পরিমাণ বেড়ে যায়।
- প্রাণরাসায়নিক বৈশিষ্ট্যসমূহ-
- ক. পানির প্রাণরাসায়নিক চাহিদা বেড়ে যায়;
- গ. পানিতে জলজ জীবাণুর পরিমাণ বেড়ে যায় এবং

- খ. পানি দুর্গন্ধ আসতে পারে;
- ঘ. পানিতে দ্রবীভূত অক্সিজেনের পরিমাণ কম থাকে;
- চ. পানির স্বচ্ছতা থাকে না।

- খ. পানিতে বিভিন্ন আগাছা, শেওলা প্রভৃতি জন্মে;
- ঘ. পানি পানের অযোগ্য হয়ে পড়ে।

🔲 পানি বিশুদ্ধকরণ প্রক্রিয়াসমূহ আলোচনা করুন।

ভূপৃষ্ঠে যে পানি পাওয়া যায় তাতে ক্ষতিকর রাসায়নিক পদার্থ এমনকি রোগ সৃষ্টি করে জীবন ধ্বংসকারী জীবাণুও থাকে। তাই ব্যবহারের পূর্বে পানি বিশুদ্ধকরণের প্রয়োজন হয়। ভূগর্ভস্থ পানি সাধারণত রোগজীবাণু মুক্ত হলেও এ পানিতে নানা রকম ক্ষতিকর রাসায়নিক পদার্থের (যেমন- আর্সেনিক) উপস্থিতি সর্বজনবিদিত।

পানি বিশুদ্ধকরণ কীভাবে করা হবে তা নির্ভর করে মূলত এটি কোন কাজে ব্যবহৃত হবে, তার উপর। স্বাভাবিকভাবে খাওয়ার জন্য বিশুদ্ধ পানি লাগলেও জমিতে সেচকাজের জন্য তত বিশুদ্ধ পানির দরকার হয় না। তবে যেসব প্রক্রিয়ায় সাধারণত পানি বিশুদ্ধ করা হয় সেগুলো হলো পরিশ্রাবণ, ক্লোরিনেশন, স্কুটন, পাতন ইত্যাদি। নিচে এই প্রক্রিয়াগুলো বর্ণনা করা হলো-

পরিশ্রাবন: প্ররিশ্রাবণ হলো তরল ও কঠিন পদার্থের মিশ্রন থেকে কঠিন পদার্থকে আলাদা করার একটি প্রক্রিয়া। পানিতে অদ্রবণীয় ধূলি-বালির কণা থেকে শুরু করে নানারকম ময়লা আবর্জনার কণা থাকে। এদেরকে পরিশ্রাবণের মাধ্যমে পানি থেকে দূর করা হয়। এক্ষেত্রে বালির স্তরের মধ্য দিয়ে পানিকে প্রবাহিত করা হয়, এতে করে পানিতে অদ্রবণীয় ময়লার কনাশুলো বালির স্তরে আটকে যায়। বালির স্তর ছাড়াও খুব সুক্ষভাবে তৈরি কাপড় ব্যবহার করে পরিশ্রাবণ করা যায়। ইদানিং আমাদের অনেকের বাসা-বাড়িতে আমরা যেসব ফিল্টার ব্যবহার করি, সেখানে আরো উন্নতমানের সামগ্রী দিয়ে পরিশ্রাবণ করা হয়।

ক্লোরিনেশন: যদি পানিতে রোগ সৃষ্টিকারী জীবাণু থাকে, তবে তা অবশ্যই দূর করতে হবে এবং তা করা হয় জীবাণুনাশক ব্যবহার করে। নানারকম জীবাণুনাশক পানি বিশুদ্ধকরণে ব্যবহার করা হয়ে থাকে। এদের মধ্যে অন্যতম হলো ক্লোরিন গ্যাস (Cl2)। এছাড়া ব্লিচিং পাউডার [Ca(OCl)Cl] এবং আরও কিছু পদার্থ যার মধ্যে ক্লোরিন আছে এবং যা জীবাণু ধ্বংস করতে পারে তা ব্যবহার করা হয়।

আমাদের দেশে বন্যার সময় পানি বিশুদ্ধকরণের জন্য যে ট্যাবলেট বা কীট ব্যবহার করা হয় তা হলো মূলত সোডিয়াম হাইপোক্লারাইড (NaOCl)। এতে বিদ্যমান ক্লোরিন পানিতে থাকা রোগ জীবাণুকে ধ্বংস করে। ক্লোরিন ছাড়াও ওজন (O₃) গ্যাস দিয়ে অথবা অতিবেগুনি রশ্মি দিয়েও পানিতে থাকা রোগজীবাণু ধ্বংস করা যায় বোতলজাত পানির কারখানায় এ পদ্ধতিতে পানিকে রোগজীবাণুমুক্ত করা হয়।

স্ফুটন: পানির স্ফুটন প্রক্রিয়ায় পানিকে জীবাণুমুক্ত করা সম্ভব। পানিকে খুব ভালোভাবে ফুটালে এতে উপস্থিত জীবাণু মরে যায়। স্ফুটন শুরু হওয়ার পর ১৫-২০ মিনিট ধরে স্ফুটন করলে পানি জীবাণুমুক্ত হয়। বাসা-বাড়িতে খাওয়ার পানির জন্য এটি একটি সহজ ও সাশ্রয়ী প্রক্রিয়া।

পাতন: যখন খুব বিশুদ্ধ পানির প্রয়োজন হয়, তখন পাতন প্রক্রিয়ায় পানি বিশুদ্ধ করা হয়। যেমন- ঔষধ তৈরির জন্য পরীক্ষাগারে রাসায়নিক পরীক্ষা-নিরীক্ষা ইত্যাদি কাজে পুরোপুরি বিশুদ্ধ পানির প্রয়োজন। এই প্রক্রিয়ায় একটি পাত্রে পানি নিয়ে তাপ দিয়ে বাষ্পে পরিণত করা হয়। পরে ঐ বাষ্পকে আবার ঘনীভূত করে বিশুদ্ধ পানি সংগ্রহ করা হয়। এই প্রক্রিয়ায় বিশুদ্ধকৃত পানিতে অন্য পদার্থ থাকার সম্ভাবনা খুবই কম থাকে।

🔲 পানি দৃষণের উৎসসমূহ দু'ভাগে ভাগ করা যায়। যথা-

১. প্রাকৃতিক উৎসসমূহ ও ২. মনুষ্য

২. মনুষ্য সৃষ্ট উৎসমূহ।

- ০১. প্রাকৃতিক উৎসসমূহ: পানি দৃষণের প্রাকৃতিক উৎসগুলোর মধ্যে রয়েছে অয়েয়াগিরির অয়ৢৎপাতে নির্গত গ্যাস ও পদার্থসমূহ, প্রাণী ও উদ্ভিদের মৃত্যুজনিত বর্জ্য পদার্থসমূহ পাহাড়ের ক্ষয়ক্ষতি পদার্থসমূহ, ভূমি ধস ও ভূমি ক্ষয়জনিত পদার্থসমূহ দ্বারা প্রাকৃতিক পানি য়েমন- নদী, খাল-বিলের পানি দৃষিত হয়। প্রাকৃতিক দুর্যোগ য়েমন- ঘূর্ণিঝড়, টর্নেডো, হারিকেন, টাইফুন প্রভৃতি কারণে সমুদ্রের উপকূল এলাকাসমূহ পানিতে প্লাবিত হয় ও প্রাণীক্লের মৃত্যু, গাছপালা ও বিভিন্ন অপদ্রব্য পানিতে মিশে গিয়ে পানিকে দৃষিত করে। বন্যায় ব্যাপক এলাকা য়খন ভেসে য়য় তখন প্রচুর জলজ উদ্ভিদ ও প্রাণীকে ভাসিয়ে নিয়ে য়য়, য়াদের মৃত্যুর পচনের দ্বারা পানি দৃষিত হয়।
- ০২. মনুষ্যসৃষ্ট উৎসসমূহ: পানি দৃষণের মধ্যে মনুষ্য সৃষ্ট উৎস হলো পানি দৃষণের প্রধান কারণ। শিল্প-কারখানার বর্জ্য, পানি ও মিউনিসিপালিটির বর্জ্য, গৃহস্থালির ব্যবহৃত বর্জ্য পানি, মানুষ ও অন্যান্য প্রাণীর মল-মূত্র, পশু-পাখির মৃতদেহ, হাট-বাজারের ব্যবহৃত ময়লা-আবর্জনা প্রভৃতি পানিতে ব্যাকটেরিয়ার সাহায্যে প্রচুর দ্রবীভূত অক্সিজেন খরচ হয়ে পানি দৃষিত হয়। বিভিন্ন শিল্পের বর্জ্য, ধাতব শিল্পের বর্জ্য, নিউক্লিয়ার প্ল্যান্ট থেকে নির্গত পৃষিত পানি, কৃষিক্ষেত্রে ব্যবহৃত বিভিন্ন কীটনাশক ঔষধ, পেস্টি-সাইড প্রভৃতি পানিতে মিশে পানিকে দৃষিত করে। এসব আবর্জনা ও বর্জ্য পানিতে মিশ্রিত হওয়ার ফলে পানিতে দ্রবীভূত অক্সিজেনের পরিমাণ কমিয়ে দিয়ে পানি দৃষিত করে।

🔲 পানির শিল্প দৃষণ বিস্তারিত আলোচনা করুন।

শিল্প দৃষণ:বিশ্বব্যাপী পানি দৃষণের প্রধান উৎস হলো শিল্পকারখানার তরল বর্জা। এক এক শিল্প কারখানা হতে এক এক রকম দৃষণকারী পদার্থ নির্গত হয়। আমাদের দেশের মত শিল্পে অনুমৃত দেশে শিল্প দৃষণের মাত্রা কম হলেও সবচেয়ে উদ্বেগের বিষয় হলো হাতেগোনা কয়েকটি শিল্পকারখানায় ছাড়া বাকি সবগুলোর কোনোটিতেই নিজস্ব কোন বর্জা শোধনাগার নেই। ফলে কারখানা হতে তরল বর্জা নালা-নর্দমার মাধ্যমে সরাসরি নদীতে বা সাগরে গিয়ে মিশে। তরল বর্জাের রাসায়নিক পদার্থ পানিতে রাসায়নিক দৃষণ, কঠিন বর্জা জৈব দৃষণ ও তলানি সৃষ্টি এবং বিষাক্ত ধাতু পানিতে দৃষণ ঘটায়। কাগজ ও মন্ড কারখানা হতে কাঠের টুকরা সেলুলােজ তন্তু, দ্রবীভূত লিগনিন, মন্ড ও কাঠ সংরক্ষণকারী রাসায়নিক পদার্থ, মিথাইল মারকেপট্যান, উচ্চ বিজারক পদার্থ সালফাইট প্রভৃতি নির্গত হয়ে পানিতে মিশতে পারে। এসব পদার্থ পানিতে দ্রবীভূত অক্সিজেন (DO) গ্রহণ করতে পারে। এছাড়া ট্যানারি হতে নির্গত ক্রোমিয়াম, মাছ ও অন্যান্য জলজ প্রণীর জন্য মারাত্রক ক্ষতিকর পদার্থ । সোডা-ক্লেরিন শিল্প হতে নির্গত পারে। বিষাক্ত হতে নির্গত বিষাক্ত ধাতব পদার্থ পানিতে মিশে পানিতে মারাত্রক দৃষণ ঘটাতে পারে।

🔲 পানি দৃষণের ক্ষতিকর প্রভাব আলোচনা করুন।

পানি দৃষণের ক্ষতিকর প্রভাব নিম্নে আলোচনা করা হলো-

- ১. নদী, পুকুর, হ্রদ, কুয়া ইত্যাদি স্থানের বদ্ধ দুর্গন্ধ পচা পানিতে অসংখ্য রোগজীবাণু জন্মায়। এরা মানুষ ও গবাদি পশুর কলেরা, টাইফয়েড ও আমাশয় রোগ সৃষ্টি করে।
- ২. পানিতে যদি অতিরিক্ত পরিমাণ উদ্ভিদের জন্য ক্ষতিকর পদার্থসমূহ উপস্থিতি থাকে, তবে ক্ষতিকর উদ্ভিদসমূহ ব্যাপক বৃদ্ধি পেতে পারে। পরিশেষে সেগুলো পচনের ফলে পানি শ্বাদহীন ও দুর্গন্ধযুক্ত হয়ে ওঠে ও পানি শোষণ পদ্ধতির ব্যাঘাত ঘটে। বৃদ্ধিপ্রাপ্ত উদ্ভিদগুলো যখন মরে যায় ও পচন আরম্ভ হয় তখন পানিতে দ্রবীভূত অক্সিজেনের পরিমাণও হ্রাস পায়।
- ৩. শিল্প ও আণবিক চুল্লি হতে নির্গত গরম পানি পাশ্ববর্তী এলাকার জলাশয়ের পানির দ্রবীভূত অক্সিজেনের পরিমাণ কমিয়ে ফেলে। এতে জলজ প্রাণী ও উদ্ভিদের মারাত্মক ক্ষতি হয়।
- 8. আগাছা ও কীটনাশক মিশ্রিত পানি মাছ ও উদ্ভিদভক্ষণ করলে লিউকোমিয়া ও শ্লায়বিক দুর্বরতা মস্তিষ্কের বিকৃতি ও ক্যান্সার রোগের উৎপত্তি হতে পারে।
- ৫. বিভিন্ন পদার্থ মিশ্রিত পানি মানুষের জন্য খুবই ক্ষতিকর। ধাতব পদার্থের মধ্যে পারদ ও সীসা মানুষের জন্য খুবই মারাত্মক ক্ষতি করে। ফলে পানির জীবাণু বিশুদ্ধকরণ বিঘ্লিত হয়।
- ৬. রাসায়নিক জটিল পদার্থ, তৈলাক্ত ও মার্বেল জাতীয় আবর্জনা পানির ব্যাকটেরিয়া ও ক্ষুদ্র জীবাণুগুলো ধ্বংস করে। ফলে পানির জীবাণু বিশুদ্ধকরণ বিঘ্নিত হয়।
- ৭. নদী বা অন্যান্য জলাশয়ের ঘোলাটে পানি জলজ জীবের বিভিন্ন প্রকার ক্ষতি করতে পারে। যেমন-
 - ক. পানিতে সাতার কাটে বা ভাসে এমন জীবের উপর সরাসরি বিষক্রিয়া হতে পারে।
 - খ. জলজ প্রাণীর ডিম ও লার্ভার স্বাভাবিক বৃদ্ধি বন্ধ হয়ে যেতে পারে এবং বৃদ্ধি ক্ষমতা ও রোগ প্রতিরোধ ক্ষমতা কমে গিয়ে মারা যেতে পারে।
 - গ. জলজ জীবের স্থানান্তর ও চলাফেরার অসুবিধা হতে পারে।
 - ঘ. জলজ জীবের পর্যাপ্ত পরিমাণ খাদ্য কমে যেতে পারে।

- ৮. প্রাকৃতিক ও কৃত্রিম বর্জনীয় পদার্থের উদ্ভিদজাত পদার্থের পচন পানির ঠান্ডা স্তরে হয়ে থাকে। এতে দ্রবীভূত O_2 এর পরিমাণ এ স্তরে হ্রাস পায়। ফলে জলজ জীবের উপর ক্ষতিকর প্রভাব পড়ে।
- ৯. প্রাকৃতিক পানিতে মিশ্রিত তেজন্ক্রিয় পদার্থ, মানুষ, জলজ অন্যান্য প্রাণীসমূহের উপর ক্ষতিকর প্রতিক্রিয়া সৃষ্টি করে।

🔲 মিঠা পানিতে বৈশ্বিক উষ্ণতার প্রভাব বিস্তারিত লিখুন।

মিঠা পানিতে বৈশ্বিক উষ্ণতার প্রভাব: বৈশ্বিক উষ্ণতা হলো বিশ্বের বায়ুমন্ডলের তাপমাত্রা বেড়ে যাওয়। বায়ুমন্ডলের তাপমাত্রা বেড়ে যাওয়। বায়ুমন্ডলের তাপমাত্রা বেড়ে গেলে পানির তাপমাত্রাও বেড়ে যায়। প্রায় ১০০ বছর আগে বায়ুমন্ডলের তাপমাত্রা প্রায় ১° সেলসিয়াস কম ছিল। বিষয়টি অত্যন্ত গুরুত্বপূর্ণ। কারণ, তাপমাত্রার সামান্য বৃদ্ধিতেই মেরু অঞ্চলসহ অন্যান্য জায়গায় সঞ্চিত বরফ গলতে গুরু করে। এ বরফ গলা পানি দ্রুত সমুদ্রে গিয়ে পড়বে। এর ফলে সমুদ্রের পানির উচ্চতা বেড়ে যাবে। ফলে পৃথিবীর যে সকল দেশ নিচু, সেগুলো পানির নিচে তলিয়ে যাবে। সমুদ্রের লবণাক্ত পানি নদ-নদী, খাল-বিল, পুকুর, ভূগর্ভস্থ পানি ও হ্রদের পানিতে মিশে যাবে। ফলে পানির সকল উৎস লবণাক্ত হলে প্রথমত মিঠা পানিতে বসবাসকারী জলজ উদ্ভিদ ও প্রাণীসমূহ মারাত্মক বিপর্যয়ের মুখে পড়বে এবং এক পর্যায়ে নিশ্চিহ্ন হয়ে যাবে। কারণ, পানির তাপমাত্রা বাড়লে দ্রবীভূত অক্সিজেন কমে আবার লবণাক্ততা বাড়লেও কিন্তু দ্রবীভূত অক্সিজেন অনেক কমে যাবে, যার ফলে জলজ প্রাণীসমূহ বাঁচতে পারবে না। যে কারণে পানির জীব বৈচিত্র্য হুমকির মুখে পড়বে।

🔲 পানি দৃষণ নিয়ন্ত্রণের সাধারণ পদ্ধতি আলোচনা করুন।

পানি দূষণ নিয়ন্ত্রণের সাধারণ পদ্ধতি: আমাদের দেশ পানি দূষণের প্রধান উৎস হচ্ছে শিল্পজাত বর্জ্য নির্গমণ, পয়ঃনিক্ষাশন জনিত বর্জ্য এবং কৃষি সম্পর্কিত বর্জ্য। এ তিনটি উৎস যদি কার্যকারীভাবে নিয়ন্ত্রণ করা যায়, তবে অধিকাংশ ক্ষেত্রেই পানি দূষণ নিয়ন্ত্রণ করা যাবে। এজন্য নিমূলিখিত পদ্ধতিসমূহ অবলম্বন করা যেতে পারে-

- ১. আমাদের দেশে শিল্পে উন্নত না হলেও পানি দৃষণের ক্ষেত্রে শিল্পজাত বর্জা গুরুত্বপূর্ণ স্থান দখল করে আছে। উন্নত বিশ্বে প্রায় সকল শিল্প কারখানাতে নিজস্ব বর্জা সংশোধনাগার আছে। কিন্তু নিয়ম থাকলেও আমাদের দেশে খুব কম শিল্প কারখানা আছে যাদের নিজস্ব বর্জা সংশোধনের ব্যবস্থা রয়েছে।
- ২. জমিতে অপরিকল্পিতভাবে এবং অতিরিক্ত পরিমাণ রাসায়নিক সার ব্যবহার রোধ করতে হবে। এক্ষেত্রে রাসায়নিক সারের বিকল্প হিসেবে জৈব সার ব্যবহার করা যেতে পারে। জমিতে প্রয়োগকৃত নাইট্রেট বা ফসফেট সার বৃষ্টির পানি দ্বারা ধুয়ে যাতে নদীতে পতিত না হতে পারে সেজন্য জমির চারপাশে উঁচু বাঁধ দিতে হবে।
- ৩. পয়ঃনিষ্কাশনের জন্য নর্দমাবাহিত ময়লা পানি অবশ্যই রাসায়নিক বা জীব-রাসায়নিক পদ্ধতিতে জৈব পদার্থ ক্ষুদ্রাংশকরণ বা ধ্বংসকরণের মাধ্যমে তা নদী বা জলাশয়ে নির্গত করা যেতে পারে। এক্ষেত্রে বর্জ্য সংশ্লেষিত সকল ধাপ সুচারুভাবে মেনেই সম্পাদন করতে হবে।
- 8. সংশ্লেষিত ডিটারজেন্ট ব্যবহার নিষিদ্ধ করে বায়ো-ডেগ্রেডাবল ডিটারজেন্ট অথবা পরিষ্কারক হিসেবে সোডা বা সাবান ব্যবহার করা যেতে পারে।
- ৫. রাসায়নিক কীটনাশক পানি দূষণের একটি গুরুত্বপূর্ণ মাধ্যম। Cl-যুক্ত কীটনাশক উৎপাদন ও আমদানি নিষিদ্ধ করে তুলনামূলক পরিবেশের জন্য কম ক্ষতিকর কীটনাশক বা জৈব কীটনাশক ব্যবহার করা যেতে পারে। কীটনাশক ব্যবহারের ক্ষেত্রে প্রদত্ত নির্দেশনা সঠিকভাবে পালন করা উচিত।
- ৬. জলাধারের পাশে মলমূত্র ত্যাগ না করা, রোগীর জামা-কাপড় না ধোয়া, নদী বা পুকুরে পশুর গোসল না করানো, গৃহস্থালির ময়লা আর্বজনা না ফেলা-এসব সচেতনতামূলক বিষয়গুলো সকলকে মেনে চলা উচিত।

🔲 কৃষি জমি থেকে মাটির ক্ষয়জনিত কারণে দূষণ প্রতিরোধ সম্পর্কে আলোচনা করুন।

কৃষি জমিতে বছরের পর বছর ফসল চাষ করলে এর উর্বরতা নষ্ট হয়। আর উর্বরতা নষ্ট হলে মাটির ক্ষয় অনেক বেড়ে যায়। আমরা যদি জৈব সার ব্যবহার করে মাটির উর্বরতা বৃদ্ধি করি, তবে তা মাটির ক্ষয়রোধ করতে সাহায্য করে।

মাটিতে জৈব সার থেকে আসা জৈব পদার্থ বেশি থাকে বলে তা বৃষ্টির পানি রাখতে সহায়তা করে। ফলে, বৃষ্টি হলে খুব সহজেই তা প্রবাহিত হয় না বা মাটির কণা সহজে বাতাসে উড়ে গিয়ে নদীর পানি দৃষিত করে না। এতে মাটির কণা ছাড়াও অন্যান্য ক্ষতিকর পদার্থ যেমন- কীটনাশক, নাইট্রোজেন ও ফসফরাস ইত্যাদি দ্বারা দূষণ কমে যায়। আবাদি জমির চারপাশে পুকুর খনন করেও পানির দূষণ প্রতিরোধ করা যায়।

আবার ক্ষেত থেকে ফসল কাটার পর যে অবশিষ্ট অংশ জমিতে থাকে, তা পানির দূষণ রোধ করে। এছাড়া ফসলের ধরন পরিবর্তন করে দূষণ রোধ করা যায়। যখন-তখন সার প্রয়োগ না করে ঠিক সময়ে বিশেষ করে বৃষ্টিপাতের আগ মুহূর্তে সার প্রয়োগ না করে দূষণ প্রতিরোধ করা যায়।

🔲 বাংলাদেশে পানির উৎসে হুমকি সম্পর্কে বিস্তারিত আলোচনা করুন।

বাংলাদেশে পানির উৎসে হুমিক:বাংলাদেশে যে সকল পানির উৎস রয়েছে (নদ-নদী, খাল-বিল, হাওর, হ্রদ) সেগুলো স্পষ্টতই বেশ কয়েকটি হুমিকর রয়েছে। এক্ষেত্রে প্রথমেই বলা যায়, জলবায়ুজনিত পরিবর্তনের হুমিক। এ জাতীয় পরিবর্তনের ফলে বাংলাদেশের প্রায় এক-তৃতীয়াংশ এলাকা লবণাক্ত পানির নিচে তলিয়ে যেতে পারে। যার ফলে আমাদের পানির উৎসসমূহ বিপর্যন্ত হয়ে পড়বে। এক সমীক্ষার দেখা গেছে যে সমুদ্রের উচ্চতা ২ মিটার বাড়লে বাংলাদেশের প্রায় এক-দশমাংশ অঞ্চল পানি নিচে চলে যাবে। জাপান ও ইন্দোনেশিয়ায় ঘটে যাওয়া সুনামির ভয়াবহতা ছিল পরিবেশের হুমিকস্বরূপ। বাংলাদেশও সুনামির মতো প্রাকৃতিক দুর্যোগের মারাত্মক ঝুঁকিতে রয়েছে।

🔲 পানির উৎস সংরক্ষণ ও উন্নয়ন সম্পর্কে আলোচনা করুন।

পানির উৎস সংরক্ষণ ও উন্নয়ন: আমরা সবাই জানি, আমাদের প্রচুর পানি সম্পদ আছে। কিন্তু সত্যিকারের অর্থে ব্যবহার যোগ্য পানিসম্পদের পরিমাণ খুবই সীমিত। এমতাবস্থায় আমরা যদি পানির উৎস সংরক্ষণে সজাগ না হই, তাহলে পরিণাম ভোগ করতে হতে পারে। যেকোনো ধরনের উন্নয়নকাজ তা শিল্প-কারখানা, রাস্তাঘাট, ঘরবাড়ি, নগরায়ন যাই হোক না কেন পানির প্রয়োজনীয়তা অপরিসীম। আবার এই সকল উন্নয়নের ফলে পানির উৎসসমূহ যদি হুমকির মুখে পড়ে, তাহলে প্রকৃতপক্ষে সব ধরনের উন্নয়ন কর্মকান্ডই থমকে যাবে। কাজেই যেখানে-সেখানে শিল্প কারখানা নগরায়ন না করে অত্যন্ত পরিকল্পিত উপায়ে করতে হবে। যাতে করে পানির উৎসমূহ কোনোভাবেই ক্ষতিগ্রন্থ না হয়।

STUDENT & STUDY

Polymer

পিলমার ও মনোমার কি?

পলিমার (Polimer): মেলামাইনের থালা-বাসন, বৈদ্যুতিক সুইচ বোর্ড, কার্পেট, পিভিসি পাইপ, পলিথিনের ব্যাগ, পাটের ব্যাগ সিল্কের বা উল্লের কাপড়, সুতি কাপড়, নাইলনের সুতা, রাবার-এসব জিনিস আমাদের খুবই পরিচিত ও বহুল ব্যবহৃত। এরা সবাই পলিমার। পলিমার (Polymer) শব্দটি এসেছে দুটি গ্রিক শব্দ পলি (Poly) ও মেরোস (Meros) থেকে, যার অর্থ হলো যথাক্রমে অনেক (Many) ও অংশ (Part)। অর্থাৎ অনেকগুলো একই রকম ছোট ছোট অংশ একের পর এক জোড়া লাগালে যে একটি জিনিস পাওয়া যায়, তাই পলিমার। রসায়ন বিজ্ঞানের ভাষায় একই ধরনের অনেকগুলো ছোট অণু পরপর যুক্ত হয়ে পলিমার তৈরি করে।

মনোমার (Monomer): যে ছোট অণু থেকে পলিমার তৈরি হয়, তাদেরকে বলে মনোমার (Monomer) ।

আমরা যে পলিথিনের ব্যাগ ব্যবহার করি, তা হলো ইথিলিন মনোমার থেকে তৈরি পলিমার। একইভাবে আমরা যে পিভিসি পাইপ (PVC) ব্যবহার করি, তা হলো ভিনাইল ক্লোরাইড নামক মনোমার থেকে তৈরি পলিমার। তবে সব সময় একটি মনোমার থেকেই পলিমার তৈরি হবে এমন কোনো কথা নেই, একের অধিক মনোমার থেকে তৈরি হতে পারে। যেমন- বৈদ্যুতিক সুইচ বোর্ড বা বৈদ্যুতিক সুইচ হলো বাকেলাইট নামের একটি পলিমার, যা তৈরি হয় ফেনল ও ফরমালডিহাইড নামের দুটি মনোমার থেকে। আবার মেলামাইনের থালা-বাসন হলো মেলামাইন রেজিন নামের পলিমার, যা তৈরি হয় মেলামাইন ও ফরমালডিহাইড নামের দুটি মনোমার থেকে।

🔲 প্রাকৃতিক ও কৃত্রিম পলিমার বলতে কি বুঝায়? উদাহরণ দিন।

প্রাকৃতিক পলিমার: যে সকল পলিমার প্রকৃতিতে পাওয়া যায়, সে সকল পলিমারকে প্রাকৃতিক পলিমার বলে। যেমন: রাবার। কৃত্রিম পলিমার: যে সকল পলিমার প্রকৃতিতে পাওয়া যায় না, মানুষ শিল্প-কারখানায় কৃত্রিমভাবে তৈরি করে, সে সকল পদার্থকে কৃত্রিম পলিমার বলে। যেমন: পিভিসি।

কিছু প্রাকৃতিক ও কৃত্রিম পলিমার-এর উদাহরণ নিম্নে দেয়া হলো-

প্রাকৃতিক পলিমার	কৃত্রিম পলিমার
পাট	মেলামাইন
সিল্ক	রেজিন

সুতি কাপড়	বাকেলাইট
রাবার	পিভিসি
ফাইবার	পলিথিনের ব্যাগ
উল (Wool)	বৈদ্যুতিক সুইচ

	পলিমারকরণ	कि	কো ক	<u>্যত</u> প্র	কাস ১	هر ه	6 2
_	116141222	14.3	ভাগ	<i>•</i> ভ প্র	๚ม '	3 IV	14.3

ইথিন, প্রপিন ও অন্যান্য প্রতিষ্থাপিত অ্যালকিনসমূহ উচ্চতাপে ও চাপে অনুঘটকের উপস্থিতিতে এক অণু অপর অণুর সাথে পর পর যুক্ত হয়ে উচ্চ আণবিক ভর বিশিষ্ট পদার্থের সৃষ্টি করে। এ উচ্চ আণবিক ভর বিশিষ্ট পদার্থকে পলিমার (Polymer) বলে এবং যে প্রক্রিয়ায় পলিমার তৈরি হয় তাকেপলিমারকরণ (Polymeriaztion) বলে। গ্রিক শব্দ পলি (poly) অর্থ বহু এবং মেরোস (Meros) অর্থ অংশ বা একক (Unit)। সুতরাং ছোট একক অণু থেকে বৃহৎ অণু সৃষ্টির প্রক্রিয়াই হচ্ছে পলিমারকরণ। অর্থাৎ যে বিক্রিয়ায় একই যৌগের (যেমন- সম্পৃক্ত হাইড্রোকার্বন) বহুসংখ্যক অণু পরপর যুক্ত হয়ে বৃহৎ অণু বিশিষ্ট নতুন যৌগ উৎপন্ন করে, সে বিক্রিয়াকে পলিমারকরণ বলে এবং উৎপন্ন যৌগিক পলিমার ও মূল যৌগকে (monomer) বলে। যেমন- উচ্চ চাপে (1000-1200) atm ও (100-200)°C তাপমাত্রায় সামান্য অক্সিজেনের উপস্থিতিতে 600-1000 ইথিন অণুর সংযোগে পলিথিন উৎপন্ন হয়।

যেমন-

n
$$CH_2 = CH_2 \frac{O_2 \ , 1000 \sim 1200 \ atm}{100^\circ - 200^\circ \ C} \quad [-H_2C - CH_2 -]$$
 ইথিন পলিথিন
$$100\text{-}200^\circ C$$
 ইথিন (মনোমার) \longrightarrow পলিথিন (পলিমার)

🔰 পলিমারকরণ বিক্রিয়ার দুপ্রকার। যথা-

- ক) সংযোজন বা যুত বা চেইন পলিমারকরণ (addition or chain polymerizations)
- খ) ঘনীভবন বা ধাপভিত্তিক পলিমারকরণ (condensation or stepwise ploymerizations)

🔲 রেশম কি? উদাহরণসহ আলোচনা করুন।

আমরা শীতের হাত থেকে আত্মরক্ষার জন্য যে পোশাকের কথা সবচেয়ে আগে ভাবি তা হচ্ছে পশম বা উলের পোশাক। তাপ কুপরিবাহী বলে পশমি পোশাক শীতবন্ত্র হিসেবে বহুল ব্যবহৃত হয়। নমনীয়তা, দ্বিতিস্থাপকতা, কুঞ্চন প্রতিরোধের ক্ষমতা, রং ধারণক্ষমতা ইত্যাদি পশমের উল্লেখযোগ্য বৈশিষ্ট্য। এই তন্তুর মাঝে ফাঁকা জায়াগা থাকে যেখানে বাতাস আটকে থাকতে পারে। পশম তাপ কুপরিবাহী বিধায় শীতের দিনের শরীর থেকে তাপ কুপরিবাহী বিধায় শীতের দিনে শরীর থেকে তাপ বেরিয়ে যেতে পারে না। তাই গায়ে দিলে গরম বোধ হয়। লঘু এসিড ও ক্ষারে পশমের তেমন কোনো ক্ষতি হয় না। মথ পোকা পশম তন্তু নষ্ট করে। তাছাড়া ছত্রাক পশম তন্তুকে সহজেই আক্রান্ত করে নষ্ট করে দিতে পারে। পশম একটি অতি প্রাচীন তন্তু। বিভিন্ন জাতের ভেঁড়া বা মেষের লোম হতে পশম উৎপন্ন হয়। প্রায় ৪০ জাতের মেষ থেকে ২০০ প্রকার পশম তৈরি করা হয়। জীবন্ত মেষ থেকে লোম সরিয়ে যে পশম তৈরি করা হয় তাকে 'ক্লুল্ড উল' (Pulled wool) বলা হয়। মানুষের চুল ও নখে যে প্রোটিন থাকে অর্থাৎ কেরোটিন (Kerotin), তা দিয়ে পশম তন্তু গঠিত। পশমের মধ্যে আলপাকা, মোহেরা, কাশ্মিরী ও ভিকুনা ইত্যাদি উল্লেখযোগ্য।

নাইলন (Nylon) কি? এর বৈশিষ্ট্য আলোচনা করুন।

কৃত্রিম-নন-সেলুলোজিক তন্তুর মধ্যে নাইলন সর্বপ্রধান। সাধারণত এডিপিক এসিড ও হেক্সামিথিলিন ডাই অ্যামিন নামক রাসায়নিক পদার্থের পলিমারকরণ প্রক্রিয়ার মাধ্যমে নাইলন তৈরি হয়। নাইলন প্রধানত দুই শ্রেণিতে ভাগ করা যায়। যথা: নাইলন-৬.৬ এবং নাইলন-৬। নাইলন খুব হালকা ও শক্ত। এর ছিতিছাপকতা ভিজলে দ্বিগুণ হয়। এটি আগুনে পোড়ে না, তবে গলে গিয়ে বোরাক্স বিডের (Borax Bead) মতো স্বচ্ছ বিড গঠন করে। কার্পেট, দড়ি, টায়ার, প্যারাসুটের কাপড় ইত্যাদি প্রস্তুতিতে নাইলন ব্যবহৃত হয়।

🔲 রেয়ন কি? এর বৈশিষ্ট্যগুলো আলোচনা করুন।

কৃত্রিম তদ্ভর মধ্যে রেয়ন হলো প্রধান ও প্রথম তদ্ভ। উদ্ভিজ্জ সেলুলোজ ও প্রাণিজ পদার্থ থেকে রেয়ন প্রস্তুত করা হয়। তিন প্রকারের প্রধান রেয়ন হলো-

১) ভিসকোষ, ২) কিউপ্রামোনিয়াম ও ৩) অ্যাসিটেট।

এরা সুন্দর, উজ্জুল, মনোরম, অভিজাত এবং আকর্ষণীয় এবং মোটামুটি টেকসই। লঘু এসিডের সাথে তেমন কোনো বিক্রিয়া করে না কিন্তু ধাতব লবণে সহজে রেয়ন বিক্রিয়া করে। অধিক উত্তাপে রেয়ন গলে যায়। তাই রেয়ন বন্ত্রে বেশি গরম ইন্ত্রি ব্যবহার করা যায় না। 🔲 পিভিসি কি? এর ব্যবহার লিখুন। ইথাইন (অ্যাসিটিলিন) ও শুৰুHCI গ্যাসের মিশ্রণকে (150-250)ºCউষ্ণতায় উত্তপ্ত মারকিউরিক ক্লোরাইডের উপর দিয়ে চালনা করলে উভয়ই সংযোজিত হয়ে ভিনাইল ক্লোরাইড বা ক্লোরোইথিন উৎপন্ন হয়। ক্লোরোইথিনকে জৈব পারঅক্সাইড যেমন- টারসিয়ারী বিউটাইল পারঅক্সাইডের উপস্থিতিতে উচ্চ চাপে উত্তপ্ত করলে পলিক্লোরোইথিন বা পলিভিনাইল ক্লোরাইড (PVC) উৎপন্ন হয়। পিভিসি অত্যাধিক শক্ত প্লাষ্টিক। গৃহ নির্মাণের কাজে ব্যাপকভাবে ব্যবহৃত হয়। বৈদ্যুতিক সামগ্রী, পানির পাইপ ও কত্রিম চামড়া তৈরিতে এটি ব্যবহৃত হয়। রাবার ভৌত ধর্ম আলোচনা করুন। মোছার জন্য যে ইরেজার ব্যবহার করা হয় তা হলো রাবার। সাইকেল, রিকশা বা অন্যান্য গাডির টায়ার, টিউব, জন্মদিনে ব্যবহৃত বেলুন- এসবই রাবার। পানির পাইপ, সার্জিক্যাল মোজা, কনভেয়ার বেল্ট, রাবার ব্যান্ড, বাচ্চাদের দুধ খাওয়ানোর নিপল -এসবই রাবারের তৈরি সামগ্রী রাবার ও রাবারজাত পণ্যসামগ্রী আমাদের জীবনের অনেক কাজের সাথে ওতপ্রোতভাবে জড়িত। 🔲 রাবারের রাসায়নিক ধর্ম আলোচনা করুন। আমরা জানি, প্রায় প্রতিটি পদার্থ তাপ দিলে আয়তনে বাডে। কিন্তু রাবারের ক্ষেত্রে ঠিক উল্টোটি ঘটে অর্থাৎ তাপ দিলে রাবারের আয়তন কমে যায়। রাবারের একটি অতি গুরুত্বপূর্ণ রাসায়নিক ধর্ম হলো, এটি বেশ কিছু রাসায়নিক পদার্থ, যেমন- দুর্বল ক্ষার, এসিড, পানি ইত্যাদির সাথে রাসায়নিক বিক্রিয়া করে না। যে কারণে প্রলেপ দেওয়ার কাজে এটি ব্যবহৃত হয়। রাবার দীর্ঘদিন রেখে দিলে তা ধীরে ধীরে নষ্ট হয়ে যায়। এর কারণ হলো, রাবার বাতাসের অক্সিজেনের সাথে বিক্রিয়ার করে। অক্সিজেন ছাড়াও আরো কিছু রাসায়নিক পদার্থ, বিশেষ করে ওজন (O3) প্রাকৃতিক রাবারের সাথে বিক্রিয়া করে, ফলে রাবার ধীরে ধীরে ক্ষয়প্রাপ্ত হয়ে নষ্ট হয়ে যায়। প্রাষ্টিক কী? প্রাষ্টিক শব্দের অর্থ হলো সহজে ছাঁচযোগ্য। নরম অবস্থায় প্রাষ্টিক দিয়ে ইচেছমতো ছাঁচে ফেলে নির্দিষ্ট আকার আকতিবিশিষ্ট পদার্থ তৈরি করা যায়। আমরাবাসাবাড়িতে নানারকম প্লাষ্টিক সামগ্রী ব্যবহার করে থাকি। মগ, বালতি, জগ বাচ্চাদের খেলনা, গাড়ির সিটবেল্ট, এমনকি আসবাবপত্র সবকিছুই কিন্তু প্লাষ্টিক এণ্ডলো সবই পলিমার। প্লাষ্টিকের ভৌত ধর্ম আলোচনা করুন। প্লাষ্টিক পানিতে দ্রবীভূত হয় না। বেশির ভাগ প্লাষ্টিকই অদ্রবণীয়। প্লাষ্টিকের একটি গুরুত্বপূর্ণ ধর্ম হলো, এরা বিদ্যুৎ ও তাপ পরিবহন করে না। তাই বিদ্যুৎ তাপ নিরোধক হিসেবে এদের বহুল ব্যবহার রয়েছে। প্লাষ্টিকের সবচেয়ে বড় ধর্ম হলো গলিত অবস্থায় এদেরকে যে কোনো আকার দেওয়া যায়। এই সুবিধার কারণেই এটি নানবিধ কাজে ব্যবহৃত হয়। তাপ দিলে প্লাষ্টিক নানা ধরনের পরিবর্তন ঘটে। পলিথিন, পিভিসি পাইপ, পলিষ্টার কাপড়, বাচ্চাদের খেলনা এসব গ্লাষ্টিক তাপ দিলে নরম হয়ে যায় এবং গলিত প্লাষ্টিক ঠাণ্ডা করলে শক্ত হয়ে যায়। এভাবে যতবারই এদেরকে তাপ দেওয়া যায়, এরা নরম হয় ও ঠাণ্ডা করলে শক্ত হয়ে যায়। এদেরকে থার্মোপ্লাষ্টিকস (Thermooplastics) বলে। পক্ষান্তরে মেলামাইন, বাকেলাইট (যা ফ্রাইং প্যানের হাতলে এবং বৈদ্যুতিক সকেটে ব্যবহার করা হয়) এগুলো তাপ দিলে নরম হয় বরং পুড়ে শক্ত হয়ে যায়। এদেরকে একবারের বেশি ছাঁচে ফেলে নির্দিষ্ট আকার দেওয়া যায় না। এই সকল প্লাষ্টিক থার্মোসেটিং প্লাষ্টিকস (Thermosetting Plastics) বলে। প্রাষ্টিকের রাসায়নিক ধর্ম আলোচনা করুন। বেশিরভাগ গ্লাষ্টিক রাসায়নিকভাবে অনেকটাই নিষ্ক্রিয়। তাই বাতাসের জলীয় বাষ্প ও অক্সিজেনের সাথে বিক্রিয়া করে না এবং ক্ষয়প্রাপ্ত হয় না। এমনকি পাতলা এসিড বা ক্ষারের সাথেও বিক্রিয়া করে না। তবে শক্তিশালী ও বেশি ঘনমাত্রায় এসিডে কিছু কিছু প্লাষ্টিক দ্রবীভূত হয়। প্লাষ্টিক সাধারণত সাধারণত দাহ্য হয় অর্থাৎ এদেরকে আগুন ধরালে পুড়তে থাকে ও প্রচুর তাপশক্তি উৎপন্ন করে। প্লাষ্টিক পচনশীল নয়। দীর্ঘদিন মাটি বা পানিতে পড়ে থাকলেও এরা পচে না। অবশ্য ইদানিং বিজ্ঞানীরা পচনশীল প্লাষ্টিক আবিষ্কার করেছেন, যা বিশেষ কাজে ব্যবহৃত হয়। হাত-পা কেটে গেলে বা মেডিক্যাল অপারেশনের পরে সেলাইয়ের কাজে যে সুতা ব্যবহৃত হয় তা এক ধরনের পচনশীল প্লাষ্টিক।

প্লাষ্টিক পোড়ালে অনেক ক্ষতিকর পদার্থ তৈরি হয়। যেমন-পিভিসি পোড়ালে হাইড্রোজেন ক্লোরাইড (HCl) নিঃসৃত হয়। আবার পলিইউরেথেন (Polyurethane) প্লাষ্টিক (যা আসবাবপত্র, যেমন-চেয়ার তৈরিতে ব্যবহৃত হয়) পোড়ালে কার্বন মনোক্সাইড গ্যাস ও হাইড্রোজেন সায়ানাইড গ্যাস তৈরি হয়।

🔲 পরিবেশের ভারসাম্যহীনতায় রাবার ও প্লাষ্টিকের প্রভাব আলোচনা করুন।

বেশিরভাগ প্লাষ্টিক এবং কৃত্রিম রাবার পচনশীল নয়। এর ফলে পুনঃব্যবহার না করে বর্জ্য হিসেবে অপসারণ করলে এগুলো পরিবেশে জমা হতে থাকে এবং নানা রকম প্রতিবন্ধকতা সৃষ্টি করে। আমরা একটু খেয়াল করলেই দেখবো যে, ঢাকা বা অন্যান্য শহরের বেশির ভাগ নালা-নর্দমায় প্রচুর প্লাষ্টিক বা রাবার জাতীয় জিনিস পড়ে আছে। ফলে দেখা যায়, সামান্য বৃষ্টিপাত হলেই রাস্তায় পানি জমে জলাবদ্ধতা সৃষ্টি হয়, যা পরিবেশের ভারসাম্যহীনতা নষ্ট করে। একইভাবে প্লাষ্টিক ও বর্জ্য পরিকল্পিত উপায়ে ব্যবস্থাপনা না করায় এর বড় একটি অংশ নদ-নদী, হদে বা জলাশয়ে গিয়ে পড়ে। এভাবে জমতে থাকলে একসময় নদীর গভীরতা কমে যায়, যা নাব্যতার জন্য মারাত্মক হুমকি হয়ে দাঁড়ায়। আবার ফেলে দেওয়া প্লাষ্টিক বা রাবারের বর্জ্য অনেক সময় মাটিতে উর্বরতা নষ্ট করতে পারে। ফেলে দেওয়া এসব বর্জ্য অনেক সময় গরু, ছাগল, ভেড়া ইত্যাদি পশুর খাবারের সাথে মিশে পাকস্থলিতে যায় এবং এক পর্যায়ে তা মাংস ও চর্বিতে জমতে থাকে। এমনকি নদ-নদী, খাল-বিলে ফেলে দেওয়া প্লাষ্টিক/রাবার বর্জ্য খাবার গ্রহণের সময় মাছের দেহেও প্রবেশ করতে পারে ও জমা হতে থাকে। আর আমরা মাছ, মাংস খেলে শেষ পর্যন্ত তা আমাদের দেহে প্রবেশ করে, যা ক্যাঙ্গারের মতো মারাত্মক রোগ সৃষ্টি করতে পারে। তাহলে এটি স্পষ্ট যে, প্লাষ্টিক ও রাবার সামগ্রী যতবার সম্ভব নিজেরা পুনরায় ব্যবহার করতে হবে ও অন্যদের ব্যবহারে উদ্বুদ্ধ করতে হবে। ব্যবহার অনুপযোগী হয়ে পড়লে যেখানে সেখানে ফেলে না দিয়ে একসাথে জড়ো করে রাখতে হবে। এভাবে জড়ো করা সামগ্রী বিক্রিও করা যায়। একে একদিকে যেমন পরিবেশ সংরক্ষিত হবে, অন্যদিকে তেমনি অর্থনৈতিকভাবেও লাভবান হওয়া যায়। বিক্রি করার সুযোগ না থাকলে এটি যথাযথ কর্তৃপক্ষের কাছে পৌঁছে দিতে হবে।

পানি দৃষণ বলতে কি বুঝেন? ইহার উৎস কি কি?

(২৮তম বিসিএস)

পানি দৃষণ: যে প্রক্রিয়ায় পানির সাথে বিভিন্ন রোগজীবাণু, ময়লা-আর্বজনা বা বিষাক্ত পদার্থ মিশ্রিত হয়ে পানি নিরাপদভাবে ব্যবহারের অনুপযুক্ত হয়ে পড়ে তাকে পানি দৃষণ বলে।

- পানি দৃষণের কারণ: বহুবিদ কারণে পানি দৃষিত হয়। পানি দৃষণের প্রধান কয়েকটি উৎস নিচে উল্লেখ করা হলো-
- ক) কলকারখানা থেকে নিক্ষিপ্ত বিষাক্ত বর্জা ও ক্ষতিকর রাসায়নিক পদার্থ।
- খ) কৃষিকাজে ব্যবহৃত কীটনাশক ও রাসায়নিক সার।
- গ) বিভিন্ন জলযান থেকে নিক্ষিপ্ত তেল, ময়লা-আবর্জনা ও মানুষের মলমূত্র।
- ঘ) নদী বা খালের পাড়ে অবস্থিত শৌচাগার থেকে পতিত মানুষের মলমূত্র।
- ৬) মরা জলজ উদ্ভিদ ও জলজ প্রাণীর মৃতদেহ।
 এছাড়াও আরো নানাবিদ কারণে পানি দৃষিত হয়।
- 🔲 "সুস্থ্য পৃথিবীর জন্য চাই সুস্থ্য সমুদ্র" এই শ্লোগানের উপর মন্তব্য করুন।

(২৯তম বিসিএস)

যেহেতু ভূ-পৃষ্টের অধিকাংশ স্থানই দখল করে আছে সমুদ্র, কাজেই সুস্থ সমুদ্র ব্যতীত সুস্থ পৃথিবী কল্পনাতীত। সমুদ্রের পরিবেশ দূষিত হলে এর প্রভাব স্থলভাগের ওপরও পরিলক্ষিত হয়। সমুদ্রদূষণ পৃথিবীর সমস্ত জীবকুল ও প্রাকৃতিক পরিবেশের ওপর মারাত্মক প্রভাব সৃষ্টি করে। কাজেই সুস্থ পৃথিবীর জন্য সুস্থ সমুদ্রের কোনো বিকল্প নেই।

পানিচক্র

বায়োক্ষিয়ারকে নানাভাবে সচল রাখে পানি। উদ্ভিদ, প্রাণী, মানবজাতি সকলের জীবনধারনের জন্যই পানি অপরিহার্য। পানিচক্রের মূলত দুটি শাখা বায়ুমণ্ডলীয় শাখা ও পার্থিব শাখা। বায়ুমণ্ডলে পানি থাকে মূলত গ্যাসীয় বা বাষ্পীয় অবস্থায়। পৃথিবীতে পানি থাকে মূলত তরল ও কঠিন অবস্থায়। পানি থেকেই জীবজগৎ হাইড্রোজেন সংগ্রহ করে। কার্বোহাইড্রেট রূপে এই হাইড্রোজেন যাবতীয় জীবজগতের শক্তির উৎস। যদিও মহাসাগরে প্রচুর পানি, কিন্তু তা সরাসরি আমাদের কাজে লাগে না। আমরা নির্ভর করি সামান্য পরিমাণ নদী, মিঠে পানির ব্রুদ ও ভূগর্ভে সঞ্চিত পানির উপর যা মোট পানির এক শতাংশেরও কম। এই সামান্য পানির আবার অতি সামান্য অংশই বায়ুমণ্ডলে ফিরে যায়। এই জল বায়ুমণ্ডলে জলীয় বাষ্প হিসেবে থাকে ও পৃথিবীতে বৃষ্টি হিসেবে ফিরে আসে। বায়োক্ষিয়ারের জলচক্র পুরোপুরি নির্ভরশীল এই পারম্পরিক আদান-প্রদান অর্থাৎ বাষ্পীভবন ও অধ্যক্ষেপণের উপর। সাধারণ বাষ্পীভবন ও উদ্ভিদজগৎ নির্গত বাষ্পকারের পৃথিবীর পানি বাতাসে মিশে যায়। এই জলীয় বাষ্প আবার পৃথিবীতে ফিরে আসে বৃষ্টি বা তুষার পাতের মধ্য দিয়ে অধ্যক্ষেপণ প্রক্রিয়ায়।

	খনিজ পানি কাকে বলে?
	যে পানির মধ্যে বেশি পরিমাণ খনিজ লবণ থাকে তাকে খনিজ পানি বলে। খনিজ পানিতে Na, Li, Fe, Mg প্রভৃতি ধাতুর লবণ
	থাকার জন্য ক্ষারীয় স্বাদ হয়। ${ m CO}_2$ থাকার জন্য অম্লীয় স্বাদ হয়। তাছাড়া আয়োডিন এবং সিলিকেট দ্রবীভূত থাকে। এই কারণে
	খনিজ পানির স্বাদ সাধারণ তুলনায় অন্য রকম হয়ে থাকে। তাছাড়া বিভিন্ন ধরনের ধাতব লবণ এবং অন্যান্য পদার্থ মিশে থাকায়
	কয়েকটি রোগ প্রশমিত করতে খনিজ পানি সাহায্য করে।
	পরিবেশের জল কী ভাবে দুষিত হচ্ছে সংক্ষেপে উত্তর দাও?
	পরিবেশের জল নানাভাবে দূষিত হচ্ছে যথা-
	ক. মানুমের এবং অন্যান্য প্রাণীর মল-মূত্র ও অন্যান্য বর্জ্য পদার্থ, যার মধ্যে কলেরা, টাইফয়েড, আমাশা, পোলিও, হেপাটাইটিস
	প্রভৃতি রোগ সৃষ্টিকারী ব্যাকটেরিয়া, ভাইরাস দ্বারা জল দৃষিত হচেছ,
	খ. জামা কাপুড় কাঁচার জন্য ব্যবহৃত সাবান, ডিটারজেন্টের মধ্যে থাকা সালফেট, ফসফেট প্রভৃতি রাসায়নিক পদার্থ জলকে দূষণ করছে, গ. বিভিন্ন শিল্প কারখানা থেকে উৎপন্ন বিষাক্ত পদার্থ জলকে দৃষিত করছে এবং
	ঘ. কৃষি ক্ষেত্রে ব্যবহৃত কীটনাশক পদার্থ জলের সঙ্গে মিশে জলকে দূষিত করছে।
	পানি দৃষণের ফলে পরিবেশের কী ক্ষতি হয়?
	পানির নাইট্রেট যৌগ থাকলে মানুষের স্বাস্থ্যের ক্ষতি হয়। পানির মধ্যে লিগিওনেলা জীবাণু শ্বাস প্রশ্বাসের অসুখ সৃষ্টি করে। এন্ট্রিক
	ভাইরাস এবং জিয়োটিয়া ল্যামক্ষিলা জাতীয় জীবাণু পাকস্থলির রোগ সৃষ্টি করে। মানুষের মলমূত্র, শিল্প থেকে উৎপন্ন নোংরা পদার্থ,
	থেকে জীবাণুর সংক্রামণ ঘটায় ফলে কলেরা, টাইফয়েড, আমায়, পোলিও, হেপাটাইটিস প্রভৃতি পানি মহামারি রোগ দেখা দেয়।
	ডব্লিউ.টি.ও এর সমীক্ষাণুসারে তৃতীয় বিশ্বের দেশগুলির প্রায় ৩৫% মানুষের মৃত্যুর কারণ হল অপরিশুদ্ধ পানীয় জলের ব্যবহার।
	পানীয় জলে আর্সেনিকের উপস্থিতি কী ভাবে আমাদের ক্ষতি করে?
	পানীয় জলে আর্সেনিকের মাত্রা $0.05~{ m mg/l}$ হলে মানুষের ত্বকের নানা রকম উপসূর্গ দেখা দেয়। সম্প্রতি বাংলাদেশ এবং ভারতের
_	পশ্চিম বঙ্গে আর্সেনিক দূষণের প্রধান কারণ হচ্ছে জিওলজিক্যাল উৎস থেকে আর্সেনিক (As) জলের সঙ্গে মিশ্রিত হয়ে যাচ্ছে।
	পানির খরতা (Hardness) বলতে কি বুঝায়?
	যে পানিতে সাবান ঘষলে সহজে ফেনা উৎপন্ন হয় না তাকে খর পানি বলে। প্রাকৃতিক পানির মধ্যে সাধারণত ক্যালসিয়াম ও ম্যাগনেশিয়ামের বাই কার্বনেট, ক্লোরাইড ও সালফেট লবণ দ্রবীভূত থাকার জন্য পানি খর হয়। পানির খরতাকে ppm একককে প্রকাশ করা হয়। 10^6 ভাগ
	বাহ কাবনেত, ফ্লোৱাহণ্ড ও সাণাকেত গ্রাব্দ প্রবাস্থিত বাকোর জন্য সালি বর হর। সালির বর্তাকে ppm একককে একাশ করা হয়। পানির মধ্যে যতভাগ CaCO3 অথবা তার তুল্যক্তি পরিমাণ অন্য কোন বস্তু উপস্থিত থাকে তাকে ppm হিসাবে লেখা হয়।
	পানি ফুটলে উথলে ওঠে না, কিন্তু ফুটন্ত দুধ উথলে ওঠে কেন? দুধে বাতাসের পরিমাণ কম থাকে এবং ফ্যাট মিশ্রিত থাকে বলে বুদবুদ তৈরি হয়ে উথলে উঠে, অন্যদিকে পানিতে প্রচুর বাতাস
	মূলে বাতালোর নার্যান করে বাবে এবং বিলাগানত বাবেল বলো বুলুর তোর হয়ে তবলো তাতে, অন্যালকে নালিতে এটুর বাতাল মিশ্রিত থাকে বলে সহজেই বাস্পায়িত হয়।
	গরম পানিতে পাতলা কাঁচের গ্লাসের চেয়ে মোটা কাঁচের গ্লাস সহজে ফেটে যায় কেন? (২০তম ও ১৭তম বিসিএস)
	পুরু কাঁচের গ্লাসে গরম পানি ঢাললে ঐ গ্লাসের ভেতরের অংশ গরম পানি সংস্পর্শে প্রসারিত হয় কিন্তু কাচ তাপের কুপরিবাহী বলে ঐ তাপ বাইরে
	অংশে সঞ্চালিত হতে পারে না। তাই ভেতরের অংশ প্রসারিত হলেও বাইরের অংশ প্রসারিত পারে না। ফলে প্রসারণ বলের জন্য গ্লাস ফেটে
_	যায়। কিন্তু কাঁচ পাতলা হলে ভেতরের তাপ দ্রুত বাইরে যেতে পারে এবং কাঁচের প্রসারণ সব জায়গায় সমান হয়। ফলে গ্লাস ফাটে না।
	অতিরিক্ত সাবান ব্যবহারে পুকুরের পানিতে কি ক্ষতি হয়? (১০তম বিসিএস)
	সাবানে থাকে সোডিয়াম স্টিয়ারেট। অতিরিক্ত সাবান ব্যবহার সাবানের উপাদান সোডিয়াম স্টিয়ারেট মিশে পুকুরের পানি দূষিত পড়ে। সাবান যুক্ত দূষিত পানি মাছের ডিম ও পোনার ক্ষতি করে। সাবানের রাসায়নিক উপাদান খাদ্য উৎপাদনকারী শৈবাল ও
	প্লাংকটন ধ্বংস করে। ফলে পুকুরের ইকোসিস্টেম নষ্ট হয় এবং খাদ্যচক্র ক্ষতিগ্রন্থ হয়।