Artificial Intelligence - INFOF311

Neural networks and conclusion

Instructor: Tom Lenaerts

Acknowledgement

We thank Stuart Russell for his generosity in allowing us to use the slide set of the UC Berkeley Course CS188, Introduction to Artificial Intelligence. These slides were created by Dan Klein, Pieter Abbeel and Anca Dragan for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

The slides for INFOF311 are slightly modified versions of the slides of the spring and summer CS188 sessions in 2021 and 2022

Review: Perceptron

$$\begin{array}{c|c} x_1 & w_1 \\ \hline x_2 & w_2 \\ \hline x_3 & w_3 \end{array} \longrightarrow \begin{array}{c} >0? \\ \hline \end{array}$$

$$y = \begin{cases} 1 & w_1 x_1 + w_2 x_2 + w_3 x_3 > 0 \\ 0 & \text{otherwise} \end{cases}$$

Review: Perceptron with Sigmoid Activation

$$y = \phi(w_1x_1 + w_2x_2 + w_3x_3)$$
$$= \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + w_3x_3)}}$$

intermediate output
$$h_1 = \phi(w_{11}x_1 + w_{21}x_2 + w_{31}x_3)$$

= $\frac{1}{1 + e^{-(w_{11}x_1 + w_{21}x_2 + w_{31}x_3)}}$

intermediate output
$$h_2 = \phi(w_{12}x_1 + w_{22}x_2 + w_{32}x_3)$$

= $\frac{1}{1 + e^{-(w_{12}x_1 + w_{22}x_2 + w_{32}x_3)}}$

$$y = \phi(w_1 h_1 + w_2 h_2)$$
$$= \frac{1}{1 + e^{-(w_1 h_1 + w_2 h_2)}}$$

$$y = \phi(w_1 h_1 + w_2 h_2)$$

= $\phi(w_1 \phi(w_{11} x_1 + w_{21} x_2 + w_{31} x_3) + w_2 \phi(w_{12} x_1 + w_{22} x_2 + w_{32} x_3))$

$$y = \phi(w_1 h_1 + w_2 h_2)$$

= $\phi(w_1 \phi(w_{11} x_1 + w_{21} x_2 + w_{31} x_3) + w_2 \phi(w_{12} x_1 + w_{22} x_2 + w_{32} x_3))$

The same equation, formatted with matrices:

$$\phi \left(\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix} \right)
= \phi \left(\begin{bmatrix} w_{11}x_1 + w_{21}x_2 + w_{31}x_3 & w_{12}x_1 + w_{22}x_2 + w_{32}x_3 \end{bmatrix} \right)
= \begin{bmatrix} h_1 & h_2 \end{bmatrix}$$

$$\phi\left(\left[\begin{array}{cc}h_1 & h_2\end{array}\right]\left[\begin{array}{c}w_1\\w_2\end{array}\right]\right) = \phi\left(w_1h_1 + w_2h_2\right) = y$$

The same equation, formatted more compactly by introducing variables representing each matrix:

$$\phi(x \times W_{\text{layer 1}}) = h$$
 $\phi(h \times W_{\text{layer 2}}) = y$

Generalize: Number of hidden neurons

The hidden layer doesn't necessarily need to have 3 neurons; it could have any arbitrary number *n* neurons.

Generalize: Number of hidden neurons

The hidden layer doesn't necessarily need to have 3 neurons; it could have any arbitrary number *n* neurons.

Generalize: Number of input features

The input feature vector doesn't necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.

Generalize: Number of input features

The input feature vector doesn't necessarily need to have 3 features; it could have some arbitrary number dim(x) of features.

Generalize: Number of outputs

The output doesn't necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalize: Number of input features

The output doesn't necessarily need to be just one number; it could be some arbitrary dim(y) length vector.

Generalized 2-Layer Neural Network

Layer 1 has weight matrix with shape (dim(x), n). These are the weights for n neurons, each taking dim(x) features as input.

This transforms a dim(x)-dimensional input vector into an n-dimensional output vector.

Layer 2 has weight matrix with shape (n, dim(y)). These are the weights for dim(y) neurons, each taking n features as input.

This transforms an n-dimensional input vector into a dim(y)-dimensional output vector.

Big idea: The shape of a weight matrix is determined by the dimensions of the input and output of that layer.

Layer 1:

- x has shape (1, 3). Input vector, 3-dimensional.
- W_{layer 1} has shape (3, 3). Weights for 3 neurons, each taking in a 3-dimensional input vector.
- $h_{laver 1}$ has shape (1, 3). Outputs of the 3 neurons at this layer.

Layer 2:

- h_{layer 1} has shape (1, 3). Outputs of the 3 neurons from the previous layer.
- W_{layer 2} has shape (3, 3). Weights for 3 new neurons, each taking in the 3 previous perceptron outputs.
- h_{layer 2} has shape (1, 3). Outputs of the 3 new neurons at this layer.

Layer 3:

- $h_{layer 2}$ has shape (1, 3). Outputs from the previous layer.
- W_{layer 3} has shape (3, 1). Weights for 1 final neuron, taking in the 3 previous perceptron outputs.
- y has shape (1, 1). Output of the final neuron.

$$\phi(x \times W_{\text{layer 1}}) = h_{\text{layer 1}}$$
$$\phi(h_{\text{layer 1}} \times W_{\text{layer 2}}) = h_{\text{layer 2}}$$
$$\phi(h_{\text{layer 2}} \times W_{\text{layer 3}}) = y$$

Generalized 3-Layer Neural Network

Layer 1:

- x has shape (1, dim(x))
- $W_{laver 1}$ has shape (dim(x), dim(L1))
- $h_{layer 1}$ has shape (1, dim(L1))

Layer 2:

- $h_{layer 1}$ has shape (1, dim(L1))
- W_{layer 2} has shape (dim(L1), dim(L2))
- $h_{laver 2}$ has shape (1, dim(L2))

Layer 3:

- $h_{laver 2}$ has shape (1, dim(L2))
- W_{layer 3} has shape (dim(L2), dim(y))
- y has shape (1, dim(y))

$$\phi(x \times W_{\text{layer 1}}) = h_{\text{layer 1}}$$
$$\phi(h_{\text{layer 1}} \times W_{\text{layer 2}}) = h_{\text{layer 2}}$$
$$\phi(h_{\text{layer 2}} \times W_{\text{layer 3}}) = y$$

Multi-Layer Neural Network

Multi-Layer Neural Network

- Input to a layer: some dim(x)-dimensional input vector
- Output of a layer: some dim(y)-dimensional output vector
 - dim(y) is the number of neurons in the layer (1 output per neuron)
- Process of converting input to output:
 - Multiply the (1, dim(x)) input vector with a (dim(x), dim(y)) weight vector. The result has shape (1, dim(y)).
 - Apply some non-linear function (e.g. sigmoid) to the result.
 The result still has shape (1, dim(y)).
- Big idea: Chain layers together
 - The input could come from a previous layer's output
 - The output could be used as the input to the next layer

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

$$y_1 = \phi(w_1 h_{11} + w_2 h_{12})$$

$$= \phi(w_1 \phi(w_{11} x_{11} + w_{21} x_{12} + w_{31} x_{13}) + w_2 \phi(w_{12} x_{11} + w_{22} x_{12} + w_{32} x_{13}))$$

$$y_2 = \phi(w_1 h_{21} + w_2 h_{22})$$

$$= \phi(w_1 \phi(w_{11} x_{21} + w_{21} x_{22} + w_{31} x_{23}) + w_2 \phi(w_{12} x_{21} + w_{22} x_{22} + w_{32} x_{23}))$$

We're not changing the architecture; we're just running the 2-neuron, 2-layer network twice to classify 2 inputs.

$$y_1 = \phi(w_1 h_{11} + w_2 h_{12})$$

$$= \phi(w_1 \phi(w_{11} x_{11} + w_{21} x_{12} + w_{31} x_{13}) + w_2 \phi(w_{12} x_{11} + w_{22} x_{12} + w_{32} x_{13}))$$

$$y_2 = \phi(w_1 h_{21} + w_2 h_{22})$$

$$= \phi(w_1 \phi(w_{11} x_{21} + w_{21} x_{22} + w_{31} x_{23}) + w_2 \phi(w_{12} x_{21} + w_{22} x_{22} + w_{32} x_{23}))$$

Rewriting in matrix form:

$$\begin{split} \phi\left(\left[\begin{array}{ccc} x_{11} & x_{21} & x_{31} \\ x_{12} & x_{22} & x_{32} \end{array}\right] \left[\begin{array}{ccc} w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{array}\right] \right) \\ &= \phi\left(\left[\begin{array}{ccc} w_{11}x_{11} + w_{21}x_{21} + w_{31}x_{31} & w_{12}x_{11} + w_{22}x_{21} + w_{32}x_{31} \\ w_{11}x_{12} + w_{21}x_{22} + w_{31}x_{32} & w_{12}x_{12} + w_{22}x_{22} + w_{32}x_{32} \end{array}\right] \right) \\ &= \left[\begin{array}{ccc} h_{11} & h_{21} \\ h_{12} & h_{22} \end{array}\right] \\ \phi\left(\left[\begin{array}{ccc} h_{11} & h_{21} \\ h_{12} & h_{22} \end{array}\right] \left[\begin{array}{ccc} w_{1} \\ w_{2} \end{array}\right] \right) = \phi\left(\left[\begin{array}{ccc} w_{1}h_{11} + w_{2}h_{21} \\ w_{1}h_{12} + w_{2}h_{22} \end{array}\right] \right) = \left[\begin{array}{ccc} y_{1} \\ y_{2} \end{array}\right] \end{split}$$

Outputs of layer 1, Weights to be learned. Output of network. inputs to layer 2.

Shape (batch, n).

Big idea: We can "stack" inputs together to classify multiple inputs at once. The result is multiple outputs "stacked" together.

Shape (*n*, *dim*(*y*)).

Shape (batch, dim(y)).

Multi-Layer Network, with Batches

- Input to a layer: batch different dim(x)-dimensional input vectors
- Output of a layer: *batch* different *dim(y)*-dimensional output vectors
 - dim(y) is the number of neurons in the layer (1 output per neuron)
- Process of converting input to output:
 - Multiply the (batch, dim(x)) input matrix with a (dim(x), dim(y)) weight vector. The result has shape (batch, dim(y)).
 - Apply some non-linear function (e.g. sigmoid) to the result.
 The result still has shape (batch, dim(y)).
- Big idea: Stack inputs / outputs to batch them
 - The multiplication by weights and non-linear function will be applied to each row (data point in the batch) separately.

Training Neural Networks

Training Neural Networks

• Step 1: For each input in the training (sub)set *x*, predict a classification *y* using the current weights

$$\phi(x \times W_{\text{layer } 1}) = h$$
 $\phi(h \times W_{\text{layer } 2}) = y$

- Step 2: Compare predictions with the true *y* values, using a **loss function**
 - Higher value of loss function = bad model
 - Lower value of loss function = good model
 - Example: **zero-one loss**: count the number of misclassified inputs
 - Example: log loss (derived from maximum likelihood; more on this soon)
 - Example: sum of squared errors (if you're solving a regression problem)
- Step 3: Use numerical method (e.g. gradient descent) to minimize loss
 - Loss is a function of the weights. Optimization goal: find weights that minimize loss

Log Loss Function

- Recall: loss function is a measure of how far off our model is
 - Higher value of loss function = bad model
 - Lower value of loss function = good model
- Log loss function for binary classification:

Log Loss =
$$-\sum_{i} y_{i} \log(p_{i}) + (1 - y_{i}) \log(1 - p_{i})$$

- y_i = The true class of the *i*th data point in the training dataset
- p_i = The probability of positive class, predicted by our classifier
- Each data point contributes some loss. The total loss is the sum over all data points.
- Note: Log loss is a function of the weights
 - Changing the weights changes the predictions p_i . The y_i do not change.

Log Loss Function

- Log loss function for a single data point: $-y \log(p) (1-y) \log(1-p)$
- Case I: True class is y = 1
 - Log loss function becomes just –log(p)
 - If classifier gives p near 0:
 The model was confident in guessing y=0
 Bad model → high loss value
 - If classifier gives p near 1:
 The model was confident in guessing y=1
 Good model → low loss value

Log Loss Function

- Log loss function for a single data point: $-y \log(p) (1-y) \log(1-p)$
- Case II: True class is y = 0
 - Log loss function becomes just –log(1-p)
 - If classifier gives p near 0:
 The model was confident in guessing y=0
 Good model → low loss value
 - If classifier gives p near 1:
 The model was confident in guessing y=1
 Bad model → high loss value
 - Note: This equation uses y=0, not y=-1, for the negative class

Log Loss Example

Log Loss =
$$-\sum_{i} y_{i} \log(p_{i}) + (1 - y_{i}) \log(1 - p_{i})$$

- Data point 1: True class y=1. We predicted p=0.1 probability it's the positive class.
 - Intuitively: Our guess is bad. We should have guessed closer to p=1.
 - This contributes $-\log(0.1) = 1$ to the loss function.
- Data point 2: True class y=0. We predicted p=0 probability it's the positive class.
 - Intuitively: Our guess was perfect. We were certain it was y=0.
 - This contributes $-\log(1.0) = 0$ to our loss function.
- Data point 3: True class y=1. We predicted 0.8 probability it's the positive class.
 - Intuitively: Our guess was pretty good, but not perfect.
 - This contributes $-\log(0.8) = 0.1$ to the loss function.
- Total loss: 1 + 0 + 0.1 = 1.1
 - Goal: Find the weights that lead to the probabilities that minimize this loss function

Optimization Procedure: Gradient Descent

• init w• for iter = 1, 2, ... $w \leftarrow w - \alpha \nabla \text{Log Loss}(w)$ where $\text{Log Loss} = -\sum_i y_i \log(p_i) + (1-y_i) \log(1-p_i)$ and p_i is computed by running the network on input x_i and weights w

ullet α : learning rate --- tweaking parameter that needs to be chosen carefully

Computing Gradients

- How do we compute gradients of these loss functions?
 - Repeated application of the chain rule:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

→ Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. Theano, TensorFlow, PyTorch, Chainer
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
 - This is typically done by caching info during forward computation pass of f, and then doing a backward pass = "backpropagation"
 - Autodiff / Backpropagation can often be done at computational cost comparable to the forward pass
- Need to know this exists
- How this is done? -- outside of scope of INFOF311

Backpropagation*

- Gradient of $g(w_1, w_2, w_3) = w_1^4 w_2 + 5w_3$
- Think of *g* as a composition of many functions
 - Then, we can use the chain rule to compute the gradient
- g = b + c $\frac{\partial g}{\partial b} = 1, \frac{\partial g}{\partial c} = 1$
- $b = a \times w_2$

$$\frac{\partial g}{\partial a} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial a} = 1 \cdot w_2 = 3 \qquad \frac{\partial g}{\partial w_2} = \frac{\partial g}{\partial b} \frac{\partial b}{\partial w_2} = 1 \cdot a = 16$$

- $\mathbf{a} = \mathbf{w}_1^4$ $\frac{\partial g}{\partial w_1} = \frac{\partial g}{\partial a} \frac{\partial a}{\partial w_1} = 3 \cdot 4w_1^3 = 96$
- $\mathbf{c} = 5\mathbf{w}_1$ $\frac{\partial g}{\partial w_3} = \frac{\partial g}{\partial c} \frac{\partial c}{\partial w_3} = 1 \cdot 5 = 5$

at
$$w_1 = 2$$
, $w_2 = 3$, $w_3 = 2$

Properties of Neural Networks

Neural Networks Properties

• Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.

- Practical considerations
 - Can be seen as learning the features
 - Large number of neurons
 - Danger for overfitting
 - (hence early stopping!)

Universal Function Approximation Theorem*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then, for any finite measure μ , standard multilayer feedforward networks can approximate any function in $L^p(\mu)$ (the space of all functions on R^k such that $\int_{R^k} |f(x)|^p d\mu(x) < \infty$) arbitrarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-constant, then, for arbitrary compact subsets $X \subseteq \mathbb{R}^k$, standard multilayer feedforward networks can approximate any continuous function on X arbitrarily well with respect to uniform distance, provided that sufficiently many hidden units are available.

• <u>In words</u>: Given any continuous function f(x), if a 2-layer neural network has enough hidden units, then there is a choice of weights that allow it to closely approximate f(x).

Universal Function Approximation Theorem*

Math. Control Signals Systems (1989) 2: 303-314

Mathematics of Control, Signals, and Systems © 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenko†

Abstract. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set of affine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube, only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of single hidden layer neural networks. In particular, we show that arbitrary decision regions can be arbitrarily well approximated by continuous feedforward neural networks with only a single internal, hidden layer and any continuous sigmoidal nonlinearity. The paper discusses approximation properties of other possible types of nonlinearities that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse application areas are concerned with the representation of general functions of an n-dimensional real variable, $x \in \mathbb{R}^n$, by finite linear combinations of the form

$$\sum_{j=1}^{N} \alpha_{j} \sigma(y_{j}^{\mathsf{T}} x + \theta_{j}), \tag{1}$$

where $y_j \in \mathbb{R}^n$ and α_j , $\theta \in \mathbb{R}$ are fixed. (y^T) is the transpose of y so that y^Tx is the inner product of y and x.) Here the univariate function σ depends heavily on the context of the application. Our major concern is with so-called sigmoidal σ 's:

$$\sigma(t) \to \begin{cases} 1 & \text{as } t \to +\infty \\ 0 & \text{as } t \to -\infty \end{cases}$$

Such functions arise naturally in neural network theory as the activation function of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main result of this paper is a demonstration of the fact that sums of the form (1) are dense in the space of continuous functions on the unit cube if or is any continuous sigmoidal

303

Neural Networks, Vol. 4, pp. 251–257, 1991 Printed in the USA. All rights reserved. 0893-6080/91 \$3.00 + .00 Copyright © 1991 Pergamon Press ple

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer Feedforward Networks

KURT HORNIK

Technische Universität Wien, Vienna, Austria

(Received 30 January 1990; revised and accepted 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and arbitrary bounded and nonconstant activation function are universal approximators with respect to U(µ) performance criteria. Jor arbitrary finite input environment measures p, provided only that sufficiently many hidden units are available. If the activation function is continuous, bounded and nonconstant, then continuous mappings can be learned uniformly over compact input sets. We also give very general conditions resurring that networks with sufficiently smooth activation functions are capable of arbitrarily accurate approximation to a function and its derivatives.

Keywords—Multilayer feedforward networks, Activation function, Universal approximation capabilities, Input environment measure, $D(\mu)$ approximation, Uniform approximation. Soboley spaces, Smooth approximation.

1. INTRODUCTION

The approximation capabilities of neural network architectures have recently been investigated by many authors, including Carroll and Dickinson (1989), Cybenko (1989), Funahashi (1989), Gallant and White (1988), Hecht-Nielsen (1989), Hornik, Stinchcombe, and White (1989, 1990), Irie and Miyake (1988), Lapedes and Farber (1988), Stinchcombe and White (1989, 1990), Clins list is by no means complete.)

If we think of the network architecture as a rule for computing values at l output units given values at k input units, hence implementing a class of mappings from R^k to R', we can ask how well arbitrary mappings from R^k to R' can be approximated by the network, in particular, if as many hidden units as required for internal representation and computation may be employed.

How to measure the accuracy of approximation depends on how we measure closeness between functions, which in turn varies significantly with the specific problem to be dealt with. In many applications, it is necessary to have the network perform simultaneously well on all input samples taken from some compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstraße 8-10/107, A-1040 Wien, Austria

measured by the uniform distance between functions on X, that is,

$$\rho_{\mu,x}(f,g) = \sup |f(x) - g(x)|.$$

In other applications, we think of the inputs as random variables and are interested in the $average\ performance where the average is taken with respect to the input environment measure <math display="inline">\mu$, where $\mu(R^k)<\infty$. In this case, closeness is measured by the $L^p(\mu)$ distances

$$\rho_{r,s}(f, g) = \left[\int_{\mathbb{R}^{k}} |f(x) - g(x)|^{r} d\mu(x) \right]^{1/r},$$

 $1 \le p < \infty$, the most popular choice being p = 2, corresponding to mean square error.

Of course, there are many more ways of measuring closeness of functions. In particular, in many applications, it is also necessary that the derivatives of the approximating function implemented by the network closely resemble those of the function to be approximated, up to some order. This issue was first taken up in Hornik et al. (1990), who discuss the sources of need of smooth functional approximation in more detail. Typical examples arise in robotics (learning of smooth movements) and signal processing (analysis of chaotic time series); for a recent application to problems of nonparametric inference in statistics and econometrics, see Gallant and White (1989).

All papers establishing certain approximation ca-

251

MULTILAYER FEEDFORWARD NETWORKS WITH NON-POLYNOMIAL ACTIVATION FUNCTIONS CAN APPROXIMATE ANY FUNCTION

b

Moshe Leshno Faculty of Management Tel Aviv University Tel Aviv, Israel 69978

and

Shimon Schocken Leonard N. Stern School of Business New York University New York, NY 10003

September 1991

Center for Research on Information Systems Information Systems Department Leonard N. Stern School of Business New York University

Working Paper Series

STERN IS-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) "Approximations by superpositions of sigmoidal functions"

Hornik (1991) "Approximation Capabilities of Multilayer Feedforward Networks"

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation Functions Can Approximate Any Function"

Date received: October 21, 1988. Date revised: February 17, 1989. This research was supported in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FG02-SER25001.

[†] Center for Supercomputing Research and Development and Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, U.S.A.

Summary of Key Ideas

Optimize probability of label given input

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

- Continuous optimization
 - Gradient ascent:
 - Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 - Take step in the gradient direction
 - Repeat (until held-out data accuracy starts to drop = "early stopping")
- Deep neural nets
 - Last layer = still logistic regression
 - Now also many more layers before this last layer
 - = computing the features
 - → the features are learned rather than hand-designed
 - Universal function approximation theorem
 - If neural net is large enough
 - Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
 - But remember: need to avoid overfitting / memorizing the training data → early stopping!
 - Automatic differentiation gives the derivatives efficiently (how? = outside of scope of INFOF311)

Where to Go Next?

Where to go next?

Congratulations, you've seen the basics of modern AI

... and done some amazing work putting it to use!

• How to continue:

- Machine learning: INFOF422
- Multi-agent learning: INFOF409
- Swam intelligence: INFOH414
- Data Science: INFOF515, INFOF440
- Optimization: INFOF413, INFOF424
- Bioinformatics: INFOF439
- NLP: INFOY004
- ... and more; ask if you're interested

Ketrina Yim CS188 Artist

That's It!

