226252

Sprawozdanie z laboratorium nr.1

1. Cel ćwiczenia

Zbadanie jak na czas działania programu wpływa dobór algorytmu powiększania tablicy dynamicznej.

2. Metoda badań

Dla podanej ilości danych, sprawdź długość wykonywania się programu z wykorzystaniem 2 metod:

Metoda 1

Stwórz tablice z 1 elementem.

Start:

Sprawdź czy zostały wpisane wszystkie dane. (Tak- zakoncz metode, Nie- idź dalej)

Wypełniaj tablice zaczynając od 1 elementu.

Jeśli tablica jest wypełniona zwiększ jej rozmiar o jeden.

Wróć do punktu Start.

Metoda 2

Metoda 1

Stwórz tablice z 1 elementem.

Start

Sprawdź czy zostały wpisane wszystkie dane. (Tak- zakoncz metode, Nie- idź dalej)

Wypełniaj tablice zaczynając od 1 elementu.

Jeśli tablica jest wypełniona zwiększ jej rozmiar dwukrotnie.

Wróć do punktu Start.

3. Wyniki

Dla każdej ilości danych zostało przeprowadzone 20 pomiarów w celu wyeliminowania wpływu innych procesów komputera na badania.

czas(średni)	nanosekundy	nanosekundy
Ilość danych	2-krotne powiekszenie	Zwiekszenie o 1
10	1034	986
100	3905	38688
1000	26818	2728802
10000	339406	265779156
100000	3538903	254794621451
1000000	30952066	234561479321547

Wykres zaleznosci czasu od ilosci danych dla dwukrotnego powiekszania

wykres zaleznosci czasu od ilosci danych dla powiekszania o 1

4. Wnioski

Na podstawie danych z pomiarów można stwierdzić, że metoda dwukrotnego zwiększania alokowanej pamięci jest wielokrotnie szybsza od zwiększania jej o 1. Dane zwizualizowane na wykresach pozwalają stwierdzić, że obie metody mają liniową złożoność obliczeniową.