

Departamento de Matemáticas Facultad de Ciencias Naturales y Exactas 111051M - Cálculo II Gr. 05 Profesor Héber Mesa P.

Septiembre 27 de 2018

## Taller 9. Sustitución trigonométrica

1. Utilice el método de sustitución trigonométrica para plantear, en cada item, una integral equivalente a la integral inicial que sólo contenga funciones trigonométricas.

(a) 
$$\int \frac{x^3}{\sqrt{1-x^2}} dx$$
 (g)  $\int \frac{1}{(9-16x^2)^{\frac{3}{2}}} dx$  (m)  $\int \frac{x^2}{\sqrt{1+x^2}} dx$  (b)  $\int \sqrt{16-x^2} dx$  (h)  $\int x^3 \sqrt{9+4x^2} dx$  (n)  $\int (1-x^2)^{\frac{3}{2}} dx$  (c)  $\int \frac{1}{(4x^2+9)^2} dx$  (i)  $\int \frac{1}{x^2 \sqrt{1+4x^2}} dx$  (o)  $\int \frac{1}{(4-x^2)^3} dx$  (d)  $\int \frac{\sqrt{x^2-25}}{x} dx$  (j)  $\int \frac{x^2}{\sqrt{25-x^2}} dx$  (p)  $\int \frac{1}{\sqrt{1+x^2}} dx$  (e)  $\int \frac{1}{\sqrt{x^2-1}} dx$  (k)  $\int x^2 \sqrt{x^2-1} dx$  (q)  $\int \sqrt{3+4x^2} dx$  (f)  $\int \frac{1}{x^2 \sqrt{4-x^2}} dx$  (l)  $\int \frac{x^3}{\sqrt{25-x^2}} dx$  (r)  $\int \frac{\sqrt{1-4x^2}}{x} dx$ 

Siguiendo las mismas ideas del método de sustitución trigonométrica, plantee un método de sustitución hiperbólica y plantee, en cada item, una integral equivalente a la integral inicial que sólo contenga funciones hiperbólicas.

(a) 
$$\int \frac{1}{\sqrt{25+x^2}} dx$$
 (c)  $\int \frac{\sqrt{x^2-4}}{x^2} dx$  (d)  $\int x^2 \sqrt{1+x^2} dx$