We start with the expression for the susceptibility for the intraband transitions,

$$\chi_{i,\text{abc}}^{s,\ell} = -\frac{e^3}{\Omega \hbar^2 \omega_3} \sum_{mnk} \frac{\mathcal{V}_{mn}^{\Sigma,\text{a},\ell}}{\omega_{nm}^S - \omega_3} \left(\frac{f_{mn} r_{nm}^{\text{b}}}{\omega_{nm}^S - \omega_\beta} \right)_{;k^c}, \tag{1}$$

where s denotes surface and S refers to the scissors correction. This expression diverges as $\omega_3 \to 0$. To eliminate this divergence we take the partial fraction expansion,

$$I = C \left[-\frac{1}{2(\omega_{nm}^S)^2} \frac{1}{\omega_{nm}^S - \omega} + \frac{2}{(\omega_{nm}^S)^2} \frac{1}{\omega_{nm}^S - 2\omega} + \frac{1}{2(\omega_{nm}^S)^2} \frac{1}{\omega} \right] - D \left[-\frac{3}{2(\omega_{nm}^S)^2} \frac{1}{\omega_{nm}^S - \omega} + \frac{4}{(\omega_{nm}^S)^3} \frac{1}{\omega_{nm}^S - 2\omega} + \frac{1}{2(\omega_{nm}^S)^3} \frac{1}{\omega} - \frac{1}{2(\omega_{nm}^S)^2} \frac{1}{(\omega_{nm}^S - \omega)^2} \right], \quad (2) \quad \text{[pfi]}$$

where $C = f_{mn} \mathcal{V}_{mn}^{\Sigma,a}(r_{nm}^{\text{LDA,b}})_{;k^c}$, and $D = f_{mn} \mathcal{V}_{mn}^{\Sigma,a} r_{nm}^{\text{b}} \Delta_{nm}^{\text{c}}$.

Time-reversal symmetry leads to the following relationships:

$$\mathbf{r}_{mn}(\mathbf{k})|_{-\mathbf{k}} = \mathbf{r}_{nm}(\mathbf{k})|_{\mathbf{k}},$$

$$(\mathbf{r}_{mn})_{;\mathbf{k}}(\mathbf{k})|_{-\mathbf{k}} = (-\mathbf{r}_{nm})_{;\mathbf{k}}(\mathbf{k})|_{\mathbf{k}},$$

$$\mathcal{V}_{mn}^{\Sigma,a}(\mathbf{k})|_{-\mathbf{k}} = -\mathcal{V}_{nm}^{\Sigma,a}(\mathbf{k})|_{\mathbf{k}},$$

$$\omega_{mn}^{S}(\mathbf{k})|_{-\mathbf{k}} = \omega_{mn}^{S}(\mathbf{k})|_{\mathbf{k}},$$

$$\Delta_{nm}^{a}(\mathbf{k})|_{-\mathbf{k}} = -\Delta_{nm}^{a}(\mathbf{k})|_{\mathbf{k}}.$$
(3) time_revers

For a clean cold semiconductor, $f_n = 1$ for an occupied or valence (n = v) band, and $f_n = 0$ for an empty or conduction (n = c) band independent of \mathbf{k} , and $f_{nm} = -f_{mn}$.

The $\frac{1}{\omega}$ terms cancel each other out. We notice that the energy denominators are invariant under $\mathbf{k} \to -\mathbf{k}$, and then we only look at the numerators, then

$$C \to f_{mn} \mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} |_{\mathbf{k}} + f_{mn} \mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} |_{-\mathbf{k}}$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} |_{\mathbf{k}} + \left(-\mathcal{V}_{nm}^{\Sigma,a} \right) \left(-r_{mn}^{\text{LDA,b}} \right)_{;k^{c}} |_{\mathbf{k}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} + \mathcal{V}_{nm}^{\Sigma,a} \left(r_{mn}^{\text{LDA,b}} \right)_{;k^{c}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} + \left(\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} \right)^{*} \right]$$

$$= 2f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{\text{LDA,b}} \right)_{;k^{c}} \right], \tag{4} \quad \text{ct}$$

and likewise,

$$D \to f_{mn} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} \Delta_{nm}^{\mathbf{c}}|_{\mathbf{k}} + f_{mn} \mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} \Delta_{nm}^{\mathbf{c}}|_{-\mathbf{k}}$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} \Delta_{nm}^{\mathbf{c}}|_{\mathbf{k}} + \left(-\mathcal{V}_{nm}^{\Sigma, \mathbf{a}} \right) r_{mn}^{\mathbf{b}} \left(-\Delta_{nm}^{\mathbf{c}} \right) |_{\mathbf{k}} \right]$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} + \mathcal{V}_{nm}^{\Sigma, \mathbf{a}} r_{mn}^{\mathbf{b}} \right] \Delta_{nm}^{\mathbf{c}}$$

$$= f_{mn} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} + \left(\mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} \right)^* \right] \Delta_{nm}^{\mathbf{c}}$$

$$= 2 f_{mn} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma, \mathbf{a}} r_{nm}^{\mathbf{b}} \right] \Delta_{nm}^{\mathbf{c}}. \tag{5}$$

The last term in the second line of $\binom{pfi}{2}$ is dealt with as follows,

$$\frac{D}{2(\omega_{nm}^S)^2} \frac{1}{(\omega_{nm}^S - \omega)^2} = \frac{f_{mn}}{2} \frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^b}{(\omega_{nm}^S)^2} \frac{\Delta_{nm}^c}{(\omega_{nm}^S - \omega)^2} = \frac{f_{mn}}{2} \frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^b}{(\omega_{nm}^S)^2} \left(\frac{1}{\omega_{nm}^S - \omega}\right)_{;k^c} \\
= -\frac{f_{mn}}{2} \left(\frac{\mathcal{V}_{mn}^{\Sigma,a} r_{nm}^b}{(\omega_{nm}^S)^2}\right)_{;k^c} \frac{1}{\omega_{nm}^S - \omega}. \tag{6}$$

We use the fact that

$$(\omega_{nm}^S)_{;k^c} = (\omega_{nm}^{LDA})_{;k^c} = \frac{p_{nn}^c - p_{mm}^c}{m_e} \equiv \Delta_{nm}^c, \tag{7}$$

and for the last line, we performed an integration by parts over the Brillouin zone, where the contribution from the edges vanishes. Using the chain rule, we obtain

$$\left(\frac{\mathcal{V}_{mn}^{\Sigma,\mathbf{a}}r_{nm}^{\mathbf{b}}}{(\omega_{nm}^{S})^{2}}\right)_{:k^{c}} = \frac{r_{nm}^{\mathbf{b}}}{(\omega_{nm}^{S})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,\mathbf{a}}\right)_{;k^{c}} + \frac{\mathcal{V}_{mn}^{\Sigma,\mathbf{a}}}{(\omega_{nm}^{S})^{2}} \left(r_{nm}^{\mathbf{b}}\right)_{;k^{c}} - \frac{\mathcal{V}_{mn}^{\Sigma,\mathbf{a}}r_{nm}^{\mathbf{b}}}{2(\omega_{nm}^{S})^{3}} \left(\omega_{nm}^{S}\right)_{;k^{c}}.$$
(8) Chr

We will check each term of (8) over $\mathbf{k} \to -\mathbf{k}$ using the relations in (8). The first term is reduced to

$$\frac{r_{nm}^{b}}{(\omega_{nm}^{S})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a} \right)_{;k^{c}} |_{\mathbf{k}} + \frac{r_{nm}^{b}}{(\omega_{nm}^{S})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a} \right)_{;k^{c}} |_{-\mathbf{k}} = \frac{r_{nm}^{b}}{(\omega_{nm}^{S})^{2}} \left(\mathcal{V}_{mn}^{\Sigma,a} \right)_{;k^{c}} |_{\mathbf{k}} - \frac{r_{mn}^{b}}{(\omega_{nm}^{S})^{2}} \left(\mathcal{V}_{nm}^{\Sigma,a} \right)_{;k^{c}} |_{\mathbf{k}} \\
= \frac{1}{(\omega_{nm}^{S})^{2}} \left[r_{nm}^{b} \left(\mathcal{V}_{mn}^{\Sigma,a} \right)_{;k^{c}} - \left(r_{nm}^{b} \left(\mathcal{V}_{mn}^{\Sigma,a} \right)_{;k^{c}} \right)^{*} \right] \\
= \frac{2i}{(\omega_{nm}^{S})^{2}} \operatorname{Im} \left[r_{nm}^{b} \left(\mathcal{V}_{mn}^{\Sigma,a} \right)_{;k^{c}} \right], \tag{9} \quad \text{first_term}_{-}$$

the second term is reduced to

$$\frac{\mathcal{V}_{mn}^{\Sigma,a}}{(\omega_{nm}^{S})^{2}} \left(r_{nm}^{b}\right)_{;k^{c}} |_{\mathbf{k}} + \frac{\mathcal{V}_{mn}^{\Sigma,a}}{(\omega_{nm}^{S})^{2}} \left(r_{nm}^{b}\right)_{;k^{c}} |_{-\mathbf{k}} = \frac{\mathcal{V}_{mn}^{\Sigma,a}}{(\omega_{nm}^{S})^{2}} \left(r_{nm}^{b}\right)_{;k^{c}} |_{\mathbf{k}} + \frac{\mathcal{V}_{nm}^{\Sigma,a}}{(\omega_{nm}^{S})^{2}} \left(r_{mn}^{b}\right)_{;k^{c}} |_{\mathbf{k}}$$

$$= \frac{1}{(\omega_{nm}^{S})^{2}} \left[\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{b}\right)_{;k^{c}} + \left(\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{b}\right)_{;k^{c}}\right)^{*} \right]$$

$$= \frac{2}{(\omega_{nm}^{S})^{2}} \operatorname{Re} \left[\mathcal{V}_{mn}^{\Sigma,a} \left(r_{nm}^{b}\right)_{;k^{c}} \right], \qquad (10) \quad \text{[second_term]}$$

and by using $(\stackrel{\mbox{\scriptsize W}{\mbox{\scriptsize k}}}{(7)},$ the third term is reduced to

$$\frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{2(\omega_{nm}^{S})^{3}}\left(\omega_{nm}^{S}\right)_{;k^{c}}|_{\mathbf{k}} + \frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{2(\omega_{nm}^{S})^{3}}\left(\omega_{nm}^{S}\right)_{;k^{c}}|_{-\mathbf{k}} = \frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{2(\omega_{nm}^{S})^{3}}\Delta_{nm}^{c}|_{\mathbf{k}} + \frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{2(\omega_{nm}^{S})^{3}}\Delta_{nm}^{c}|_{-\mathbf{k}}$$

$$= \frac{\mathcal{V}_{nm}^{\Sigma,a}r_{mn}^{b}}{2(\omega_{nm}^{S})^{3}}\Delta_{nm}^{c}|_{\mathbf{k}} + \frac{\mathcal{V}_{mn}^{\Sigma,a}r_{nm}^{b}}{2(\omega_{nm}^{S})^{3}}\Delta_{nm}^{c}|_{\mathbf{k}}$$

$$= \frac{1}{2(\omega_{nm}^{S})^{3}}\left[\mathcal{V}_{nm}^{\Sigma,a}r_{mn}^{b} + \left(\mathcal{V}_{nm}^{\Sigma,a}r_{mn}^{b}\right)^{*}\right]\Delta_{nm}^{c}$$

$$= \frac{1}{(\omega_{nm}^{S})^{3}}\operatorname{Re}\left[\mathcal{V}_{nm}^{\Sigma,a}r_{mn}^{b}\right]\Delta_{nm}^{c} \qquad (11) \quad \text{[third_term]}$$