Linear Regression Assumptions

DATA SCIENCE BOOTCAMP

First, some notes about Covariance

Covariance

• It's a measure of how two random variables change together.

Covariance

- It's a measure of how two random variables change together.
- The sign (+/-) shows the tendency of the linear relationship between X and Y
- The magnitude is harder to interpret.

Covariance (math)

Let's say X and Y are two random variables, where:

$$E(X) = \mu_X$$
 and $E(Y) = \mu_Y$

The <u>covariance</u> between X and Y is:

Cov(X, Y) = E[(X -
$$\mu_X$$
)(Y - μ_Y)]
= E(XY) - $\mu_X\mu_Y$
= σ_{XY}

Covariance, normalized

Pearson's correlation coefficient

$$\rho_{X,Y} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

- Here, magnitude shows strength of the linear relationship.
- $-1 \le \rho_{X,Y} \le 1$

Covariance (more math facts)

- Cov(X, X) = Var(X)
- Cov(X, Y) = Cov(Y, X)
- Cov(X, aY) = aCov(X, Y); a is any constant number
 - Var(aX) = Cov(aX, aX)= $a^2Var(X)$

Covariance

- If random variables X and Y are independent,
 Then Cov(X, Y) = 0
- BUT if Cov(X, Y) = 0, it *does not necessarily* mean that X and Y are independent!

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

$$\beta_0 = 80$$
 million $\beta_1 = 0.5$

$$\beta_0 = 0$$

$$\beta_0 = 0$$
 $\beta_0 = 120$ million
 $\beta_1 = 1.5$
 $\beta_1 = 0.1$

$$\beta_0 = 30$$
 million $\beta_1 = 2$

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

If those assumptions highlighted in blue are true, then the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_0$, ..., $\hat{\beta}_p$ are the

Best:

Linear

Unbiased:

Estimators

If those assumptions highlighted in blue are true, then the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_0$, ..., $\hat{\beta}_p$ are the

Best: smallest variances among all linear

unbiased estimators (efficient)

Linear

Unbiased:

Estimators

If those assumptions highlighted in blue are true, then the OLS estimators $\hat{\beta}_0$, $\hat{\beta}_0$, ..., $\hat{\beta}_p$ are the

Best: smallest variances among all linear

unbiased estimators (efficient)

Linear

Unbiased: $E(\hat{\beta}_i) = \beta_i = \text{ for i from 1, 2, ..., p}$

Estimators

Note: an unbiased estimator with the least variance is known as an *efficient* estimator.

Note: an unbiased estimator with the least variance is known as an *efficient* estimator.

i.e.: if you have an *efficient* estimator, you require the least amount of data to get an estimate $\hat{\beta}_i$ with reasonable variance.

Note: an unbiased estimator with the least variance is known as an *efficient* estimator.

i.e.: if you have an *efficient* estimator, you require the least amount of data to get an estimate $\hat{\beta}_i$ with reasonable variance.

If an estimate is *not efficient* (but still unbiased), you're still generally OK if you use enough data, i.e.: your estimate will be asymptotically correct.

Examples:

• (good): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2 + \epsilon$

Examples:

- (good): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2 + \epsilon$
- (bad) Y: ranks of films, or categorical variable
 - Here, the underlying models are nonlinear
- (bad): $Y = \beta_0 + e^{\beta_1}X^{\beta_2} + \epsilon$

Examples:

- (good): $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_2^2 + \epsilon$
- (bad) Y: ranks of films, or categorical variable
 - Here, the underlying models are nonlinear
- (bad): $Y = \beta_0 + e^{\beta_1} X^{\beta_2} + \epsilon$

Test:

- Ask yourself: is Y numerical? Are you sure Y is not a rank?
- Try partial regressions and plots: Y ~ X_i, see if there's a linear relationship
- If all your standard errors are really big, might suspect nonlinearity
- (Assumption #8) residuals vs fitted plot: nonlinear

- Estimates for $\hat{\beta}_0$ and their standard errors will be wrong, so predictions Y will be wrong.
- Whole model will be wrong.

Consequences:

- Estimates for $\hat{\beta}_0$ and their standard errors will be wrong, so predictions Y will be wrong.
- Whole model will be wrong.

Remedies:

Give up (try a nonlinear model)

a.k.a. No exact pairwise collinearity,
No exact multicollinearity

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Examples:

Exact multicollinearity:

```
X_1 = production budget
```

 X_2 = announced budget (= 2 × production budget)

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Examples:

Exact multicollinearity:

```
X_1 = production budget
```

 X_2 = announced budget (= 2 × production budget)

Near collinearity:

```
X_1 = production budget
```

 X_2 = # opening theatres

a.k.a. No exact pairwise collinearity,
No exact multicollinearity

Examples:

Exact multicollinearity:

 X_1 = production budget

 X_2 = announced budget (= 2 × production budget)

Near collinearity:

 X_1 = production budget

 X_2 = # opening theatres

Test:

- Check 1 versus 1 scatterplots of suspect pairs of X_i's
- High R² and significant F-statistic but mostly insignificant t-statistics

a.k.a. No exact pairwise collinearity, No exact multicollinearity

- $\hat{\beta}$ and \hat{Y} estimates are still BLUE:
 - Still unbiased (best point estimates)
 - Still minimum possible variances

a.k.a. No exact pairwise collinearity, No exact multicollinearity

- β and Υ estimates are still BLUE:
 - Still unbiased (best point estimates)
 - Still minimum possible variances
- BUT:
 - Large variances (large standard errors)

a.k.a. No exact pairwise collinearity, No exact multicollinearity

- $\hat{\beta}$ and \hat{Y} estimates are still BLUE:
 - Still unbiased (best point estimates)
 - Still minimum possible variances
- BUT:
 - Large variances (large standard errors)
 - In perfect collinearity, standard errors would be infinite
 - Wide confidence intervals

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Consequences (continued):

- t-tests tend to fail to reject the null (statistically insignificant covariates)
 - Thus you would be incorrectly concluding that covariates aren't related to Y, when in actuality, they are.
- Tiny changes in data \rightarrow large differences in $\hat{\beta}$ and \hat{Y}

a.k.a. No exact pairwise collinearity, No exact multicollinearity

Remedies:

- Feature selection; then see if standard errors get smaller
 - Regularize (Ridge/Lasso) this gets rid of some of the overlapping
- Be careful: sometimes it's better to have near-collinearity than a loss in signal.

Examples:

- (good) Store offering % discounts. Experimenting with sales revenue.
 - % discount levels (10%, 20%, 25%, etc.) are fixed.

Examples:

- (good) Store offering % discounts. Experimenting with sales revenue.
 - % discount levels (10%, 20%, 25%, etc.) are fixed.
- (non-experimental) treat movie budget as a random variable; then movie budget must not be correlated with ϵ

Examples:

- (good) Store offering % discounts. Experimenting with sales revenue.
 - % discount levels (10%, 20%, 25%, etc.) are fixed.
- (non-experimental) treat movie budget as a random variable;
 then movie budget must not be correlated with ε

Test:

Mostly you can assume the former. Else: don't worry about it.

3. Either: all X's are fixed, OR some X's are random, but independent of ε

Consequences:

Model may be mis-specified (see Assumption #10)

Remedies:

- Mostly you can assume X is fixed.
- Specify the model as best you can.
- Most importantly: be aware, but don't worry too much.

4. Number of Observations > Number of β Parameters

4. Number of Observations > Number of β Parameters

Examples:

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$
 - Number of data points > (p + 1)
- (bad) Fitting all possible X_i's, their interactions
 (1000 covariates), but only having 100 movies in your dataset

4. Number of Observations > Number of β Parameters

Examples:

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p + \varepsilon$
 - Number of data points > (p + 1)
- (bad) Fitting all possible X_i's, their interactions
 (1000 covariates), but only having 100 movies in your dataset

Test:

Count.

Consequences:

Overfit

Remedies:

- Feature selection / Regularization
- Get more data

5. Sufficient variation in your covariates (X_i's)

5. Sufficient variation in your covariates (X_i's)

Examples:

- (bad) revenue = $\beta_0 + \beta_1$ budget; but all the budget values in your dataset are \$100 million
 - Then you try to predict revenues of films with \$50,000 budget

5. Sufficient variation in your covariates (X_i's)

Examples:

- (bad) revenue = β_0 + β_1 budget; but all the budget values in your dataset are \$100 million
 - Then you try to predict revenues of films with \$50,000 budget

Test:

• Look. (Be smart).

Consequences:

Wrong about anything outside of your covariate (X_i) range.

Remedies:

Don't.

Classical Assumptions of Ordinary Least Squares

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

Classical Assumptions of Ordinary Least Squares

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

Linear Regression Assumptions: The Sequel

DATA SCIENCE BOOTCAMP

Classical Assumptions of Ordinary Least Squares

- 1. Linear in parameters
- Identifiability / No exact pairwise collinearity
 / No exact multicollinearity
- 3. Either: the covariates $(X_i's)$ are fixed, OR, if $X_i's$ are random variables, then $X_i's$ are independent of ϵ i.e.: $Cov(X_1, \epsilon) = Cov(X_2, \epsilon) = ... = Cov(X_p, \epsilon) = 0$
- 4. Number of observations > number of β parameters
- 5. Sufficient variation in the values of the X variables
- 6. Errors ε are normally distributed
- 7. Mean of the errors ε is 0 i.e.: $E(\varepsilon) = 0$
- 8. Homoskedasticity. $Var(\varepsilon_i) = x^2$ for all i observations
- 9. No autocorrelation / no serial correlation i.e.: $Cov(\varepsilon_i, \varepsilon_i) = 0$ for any $i \neq j$
- 10. The model is correctly specified.

Examples:

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

• (good) residuals follow:

(Note axes!)

Examples:

• (good) residuals follow normal distribution:

$$\beta_0 = 94.68 \text{million}$$

$$\beta_1 = 0.1$$

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \varepsilon$$

- Normality tests (Jacques Bera / Omnibus)
- Q-Q plot (the residuals should follow the line)

Consequences

- $\hat{\beta}$ point estimates, \hat{Y} point predictions still totally fine and BLUE (by the Central Limit Theorem)
- $\hat{\beta}$ would no longer follow t-distribution
- Standard errors and \hat{Y} prediction intervals are slightly screwed up

Consequences

- $\hat{\beta}$ point estimates, \hat{Y} point predictions still totally fine and BLUE (by the Central Limit Theorem)
- $\hat{\beta}$ would no longer follow t-distribution
- Standard errors and \hat{Y} prediction intervals are slightly screwed up
 - Therefore t-tests, F-tests not valid, especially with small dataset
 - Confidence intervals for $\hat{\beta}$ not quite right
 - However, all t-tests, F-tests are asymptotically correct.

Consequences

 But with the Central Limit Theorem, error terms will tend toward the normal distribution anyways, as you get more data.

Consequences

 But with the Central Limit Theorem, error terms will tend toward the normal distribution anyways, as you get more data.

Remedies

- Mostly, as long as you have a lot of data, don't worry.
- Getting more data helps.
- Transformation of the response:
 - OLS on log(y) or f(y) generally
- Generalized Linear Models (later)

Examples

• (bad) Consistently underestimating movie gross

Examples

(bad) Consistently underestimating movie gross

- Can take the mean of the error terms, i.e. calculate E(ε̂)
- But really, don't worry

Examples

(bad) Consistently underestimating movie gross

Test:

- Can take the mean of the error terms, i.e. calculate E(ε)
- But really, don't worry

Consequences

- Intercept $\hat{\beta}_0$ estimate might lose some meaning.
- Everything else is totally fine.

Examples

(bad) Consistently underestimating movie gross

Test:

- Can take the mean of the error terms, i.e. calculate E(ε)
- But really, don't worry

Consequences

- Intercept $\hat{\beta}_0$ estimate might lose some meaning.
- Everything else is totally fine.

Remedies

• Don't worry. Perhaps be cautious not to trust $\hat{\beta}_0$ interpretation

Λ

Examples

 (bad) Variance is different for different X values. As you invest more budget into a movie, there is more uncertainty in how it will perform

Tests:

• After fitting, plot the residuals $\hat{\epsilon}$ versus fitted values \hat{Y}

- White-test:
 - Perform OLS (Y ~ X) as per usual; from this, get residuals $\hat{\epsilon}_i$

- White-test:
 - Perform OLS (Y ~ X) as per usual; from this, get residuals $\hat{\epsilon}_i$
 - Perform a second Linear Regression:
 - $\hat{\epsilon}_i \sim X$

- White-test:
 - Perform OLS (Y ~ X) as per usual; from this, get residuals $\hat{\epsilon}_i$
 - Perform a second Linear Regression:
 - $\hat{\epsilon}_i \sim X$
 - Get those parameters: $\hat{\epsilon}_i = \alpha_0 + \alpha_1 X_1 + ... + \alpha_p X_p + \epsilon_i'$

- White-test:
 - Perform OLS (Y ~ X) as per usual; from this, get residuals $\hat{\epsilon}_i$
 - Perform a second Linear Regression:
 - ε̂; ~ X
 - Get those parameters: $\hat{\epsilon}_i = \alpha_0 + \alpha_1 X_1 + ... + \alpha_p X_p + \epsilon_i'$
 - The R² of this fit should be close to 0.

Tests:

- White-test:
 - Perform OLS (Y \sim X) as per usual; from this, get residuals $\hat{\epsilon}_i$
 - Perform a second Linear Regression:
 - ε̂; ~ X
 - Get those parameters: $\hat{\epsilon}_i = \alpha_0 + \alpha_1 X_1 + ... + \alpha_p X_p + \epsilon_i'$
 - The R² of this fit should be close to 0.
- Statsmodels has an implementation of this test:

from statsmodels.stats.diagnostic import het_white
het_white(residuals, X)

Consequences:

- $\hat{\beta}_0$ estimates are still unbiased
- But these estimates are no longer "best," i.e. "efficient"
 - Thus, standard errors are wrong.
 - Thus, t-tests, F-tests lose meaning for any inference

Remedies:

- Transformation of Y (i.e. this will also transform ε).
 - Example: $log(Y) = \beta_0 + \beta_1 X_1 + ... + \beta_p X_p + \epsilon_i$
 - Then re-check for heteroskedasticity.
 - Remember: with log(Y), your prediction intervals no longer

uniform:

Remedies:

- (rare) if you know Var(ε_i) exactly for each i
 → Weighted Least Squares (WLS)
- (if your dataset is large enough) use White's heteroskedasticity-consistent variances
 - a.k.a. "Sandwich estimators"
 - This will produce "robust standard errors"

Remedies:

- (rare) if you know Var(ε_i) exactly for each i
 → Weighted Least Squares (WLS)
- (if your dataset is large enough) use White's heteroskedasticity-consistent variances
 - a.k.a. "Sandwich estimators"
 - This will produce "robust standard errors"
- If you only want the point estimates of β , then with large n (number of observations), don't worry too much. Just be aware of the caveats.

9. No Autocorrelation i.e. $Cov(\epsilon_{i,} \epsilon_{j}) = 0$ for all $I \neq j$

9. No Autocorrelation i.e. $Cov(\epsilon_{i_j}, \epsilon_{j_j}) = 0$ for all $I \neq j$

Example:

- (bad) Movie gross time series
- (bad) Spatial correlation: snowfall over latitude/longitude

9. No Autocorrelation i.e. $Cov(\varepsilon_{i}, \varepsilon_{i}) = 0$ for all $I \neq j$

Tests:

- If possible, plot residuals over time:
 - Plot ε_t versus ε_{t+1}

Durbin-Watson test (in statsmodels summary already)

9. No Autocorrelation i.e. $Cov(\varepsilon_{i,} \varepsilon_{i}) = 0$ for all $I \neq j$

Consequences:

- $\hat{\beta}$, \hat{Y} still unbiased, but:
- Standard errors of $\hat{\beta}$ will be wrong (generally they'll be big)
 - Thus confidence intervals will be wrong
- Variance of the residuals $\hat{\epsilon}$, $\hat{\sigma}^2$, will be underestimated
 - Thus prediction intervals will be smaller than they should be, i.e: size of the prediction interval will be underestimated
 - Likely to overestimate R²

9. No Autocorrelation i.e. $Cov(\varepsilon_{i_i}, \varepsilon_{i_j}) = 0$ for all $I \neq j$

Remedies:

- Time series analysis examples:
 - Autoregressive model, AR(1):
 - $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$
 - Moving average model, MA(q):
 - Captures long term trends over time, with seasonality effects
- (rare) if you could identify how the errors change over time, could use Generalized Least Squares;
 - But this is rare, so don't worry about it.

Example:

• (not ideal) Using $Y = \beta_0 + \beta_1 X_1 + \epsilon$, but the true underlying model is $Y = \beta_0 + \beta_1 X_1^2 + \beta_2 \log(X_2) + \beta_3 X_3 + \epsilon$

Example:

• (not ideal) Using $Y = \beta_0 + \beta_1 X_1 + \epsilon$, but the true underlying model is $Y = \beta_0 + \beta_1 X_1^2 + \beta_2 \log(X_2) + \beta_3 X_3 + \epsilon$

Test:

• Practice the art of trying different model forms and measuring their performances (i.e. with R², cross-validation, AIC, etc.)

Consequences:

- Your model won't perform as well as you want.
- Might be under/over-fitting

Consequences:

- Your model won't perform as well as you want.
- Might be under/over-fitting

Remedies:

- This is the whole art of linear regression!
- Model selection via feature selection
- Try different models, compare them
- For different transformations of variables, make scatterplots