

What is claimed is:

1. A compound having the formula (I):



5 where

n is 1-3;

X is either O or S;

10 R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

15 R<sub>2</sub> is a carboxylic acid or a carboxylic acid isostere; and wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, or carboxylic acid isostere is optionally substituted with one or more substituents selected from R<sup>3</sup> and Z, where

20 R<sup>3</sup> and Z are independently hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, or CO<sub>2</sub>R<sup>7</sup> where R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl;

25 or a pharmaceutically acceptable salt, ester, or solvate

thereof;

provided that:

when n=1, and D is a bond, and R<sub>2</sub> is COOH,  
then R<sub>1</sub> is not C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>9</sub>  
straight or branched chain alkenyl, C<sub>5</sub>-C, cycloalkyl, C<sub>5</sub>-C,  
5 cycloalkenyl, phenylamine, 2-(3,4-dichlorophenyl)ethyl,  
hydroxy, ethoxy, benzyl, or Ar<sub>1</sub>, where Ar<sub>1</sub> is 1-naphthyl, 2-  
naphthyl, 2-indolyl, 3-indolyl, 2-furyl, 3-furyl, 2-  
thiazolyl, 2-thienyl, 3-thienyl, 1-pyridyl, 2-pyridyl, 3-  
10 pyridyl, 4-pyridyl, or phenyl, and wherein said alkyl,  
alkenyl, cycloalkyl, cycloalkenyl, or Ar<sub>1</sub> are optionally  
substituted with one or more substituents selected from the  
group consisting of hydrogen, halo, hydroxyl, nitro,  
trifluoromethyl, C<sub>1</sub>-C<sub>9</sub> straight or branched alkyl, C<sub>2</sub>-C<sub>9</sub>,  
straight or branched alkenyl, C<sub>1</sub>-C<sub>4</sub> alkoxy, C<sub>2</sub>-C<sub>4</sub> alkenyloxy,  
phenoxy, benzyloxy, COOH, and amino;

further provided that:

when n=1, and D is the carboxylic acid  
isostere -CONZ(R<sup>3</sup>), and Z is hydrogen or C<sub>1</sub>-C<sub>6</sub> alkyl, and  
R<sup>3</sup> is phenyl, or C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkyl or  
alkenyl, wherein said alkyl is unsubstituted or substituted  
in one or more positions with Ar<sub>2</sub> as defined below, C<sub>3</sub>-C<sub>8</sub>  
cycloalkyl, cycloalkyl connected by methyl or a C<sub>2</sub>-C<sub>6</sub>  
straight or branched chain alkyl or alkenyl chain, C<sub>1</sub>-C<sub>4</sub>  
25 alkyl ester, or Ar<sub>3</sub>, where Ar<sub>3</sub> is selected from the group  
consisting of 2-indolyl, 3-indolyl, 2-furyl, 3-furyl, 2-  
thiazolyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-  
pyridyl, or phenyl, having one to three substituents  
30 independently selected from the group consisting of hydrogen,  
halo, hydroxy, nitro, trifluoromethyl, C<sub>1</sub>-C<sub>6</sub> straight or  
branched alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched alkenyl, C<sub>1</sub>-C<sub>4</sub>  
alkoxy, C<sub>2</sub>-C<sub>4</sub> alkenyloxy, phenoxy, benzyloxy, and amino;  
wherein said alkyl ester is optionally substituted with  
phenyl; or R<sup>3</sup> is the fragment:



where  $R_4$  is selected from the group consisting of straight or branched chain  $C_1-C_8$  alkyl optionally substituted with  $C_3-C_8$  cycloalkyl, benzyl, or  $Ar_2$ , as defined below, and where  $R_2$  is  $COOZ$  or  $CONR^6$ , where  $R^6$  is selected from the group consisting of hydrogen,  $C_1-C_6$  straight or branched alkyl, and  $C_2-C_6$  straight or branched alkenyl, and where  $R_5$  is selected from the group consisting of phenyl, benzyl,  $C_1-C_6$  straight or branched alkyl, and  $C_2-C_6$  straight or branched alkenyl, where said alkyl or alkenyl is optionally substituted with phenyl; then  $R_1$  is not  $C_1-C_8$  straight or branched chain alkyl,  $C_2-C_9$  straight or branched chain alkenyl, substituted thiophene, or  $C_1-C_4$  alkoxy, wherein said alkyl or alkenyl is optionally substituted in one or more positions with  $C_3-C_8$  cycloalkyl,  $C_5-C_7$  cycloalkenyl, or  $Ar_2$ , where  $Ar_2$  is defined below, where said alkyl, alkenyl, cycloalkyl or cycloalkenyl groups may be optionally substituted with  $C_1-C_4$  alkyl,  $C_1-C_4$  alkenyl, or hydroxy, and where  $Ar_2$  is 1-naphthyl, 2-naphthyl, 2-indolyl, 3-indolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, or phenyl, having one to three substituents selected from the group consisting of hydrogen, halo, hydroxy, nitro, trifluoromethyl,  $C_1-C_6$  straight or branched alkyl,  $C_2-C_6$  straight or branched alkenyl,  $C_1-C_4$  alkoxy,  $C_2-C_4$  alkenyloxy, phenoxy, benzyloxy, and amino; further provided that:  
when  $n=1$ , and  $X$  is  $O$ , and  $D$  is a bond, and  $R_2$  is  $-CONH_2$ , then  $R_1$  is not methyl, ethyl, iso-propyl, iso-butyl, iso-pentyl, 4-methylpentyl, indolyl, phenyl, or hydroxyphenyl;  
further provided that:

when n=1, and X is O, and D is a bond, and R<sub>2</sub> is cyano, then R<sub>1</sub> is not methyl;

further provided that:

when n=2, and X is O, and D is a bond, and R<sub>2</sub> is CONZ(R<sup>3</sup>), and R<sub>1</sub> is ethoxy, then R<sup>3</sup> or Z is not halo-substituted phenyl;

further provided that:

when n=2, and X is O, and D is a bond, and R<sub>2</sub> is CONZ(R<sup>3</sup>) and R<sub>1</sub> is substituted thiophene or tetrahydropyranoxy, or methoxy, then R<sup>3</sup> or Z is not C<sub>1</sub>-C<sub>4</sub> alkyl ester substituted ethyl;

further provided that:

when n=2, and X is O, and D is a bond, and R<sub>2</sub> is CONZ(R<sup>3</sup>) and R<sub>1</sub> is ethoxy, then R<sup>3</sup> or Z is not 4-chlorophenyl;

further provided that:

when n=2, and X is O, and D is a bond, and R<sub>2</sub> is CONZ(R<sup>3</sup>) and R<sub>1</sub> is cyclohexyl, then R<sup>3</sup> or Z is not ethyl or propyl substituted with phenyl;

further provided that:

when D is CH<sub>2</sub>, then R<sub>2</sub> is not -OMe, -NHMe, or substituted -NHcyclohexyl;

further provided that:

when D is CH<sub>2</sub>, and R<sub>2</sub> is -OH, then R<sub>1</sub> is not phenyl or pyrrolidinemethanol;

further provided that:

when n=2, and X is O, and D is a bond, and R<sub>2</sub> is COOH, then R<sub>1</sub> is not methyl, tert-butyl, 1,1-dimethyl-2-methyl-propyl, 1,1-dimethyl-propyl, methoxy, ethoxy, phenyl, tetrahydropyranoxy substituted C<sub>4</sub>-C<sub>6</sub> alkyl, 1-methyl-1-methoxyamide, 1-methylcyclohexyl, 3-iodophenyl, 3-methyl ester-cyclopentyl, 1,1-dimethyl-6-phenyl-hex-3,5-dioxy, or trimethoxyphenyl.

2. The compound of claim 1, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in

any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

5 3. The compound of claim 1, wherein R<sub>2</sub> is selected from the group consisting of:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

4. The compound of claim 1, wherein R<sub>2</sub> is selected from the  
5 group consisting of:

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>;  
-NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CONZ(R<sup>3</sup>); -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>;  
-COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN.

10 5. The compounds, (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-hydroxymethylpyrrolidine; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinetetrazole; (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-pyrrolidinecarbonitrile; and (2S)-1-(1,2-dioxo-3,3-dimethylpentyl)-2-aminocarbonyl piperidine; and  
15 compounds 1-25, 27, 28, 31-33, and 35-136 of Tables I, II, and III.

6. The compound 1-[2-[3-(4-Fluorophenyl)(1,2,4-oxadiazol-5-yl)]pyrrolidinyl]-3,3-di-methylpentane-1,2-dione.

20 7. The compound 3,3-Dimethyl-1-[2-(3-methyl(1,2,4-oxadiazol-5-yl))pyrrolidinyl]pentane-1,2-dione.

8. A pharmaceutical composition, comprising:

25 a) an effective amount of an N-heterocyclic carboxylic acid or carboxylic acid isostere; and  
b) a pharmaceutically acceptable carrier.

30 9. The pharmaceutical composition of claim 8, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere comprises a compound of formula (I):



where

n is 1-3;

-- X is either O or S;

5 R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, 10 C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>1</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere; and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, or heterocycle is optionally substituted with one 15 or more substituents selected from R<sup>3</sup>, where

R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, 20 C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl; or a pharmaceutically acceptable salt, ester, or solvate thereof.

10. The pharmaceutical composition of claim 9, wherein R<sub>2</sub> is

a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

5

11. The pharmaceutical composition of claim 9, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

12. The pharmaceutical composition of claim 9, wherein R<sub>2</sub> is  
5 selected from the group consisting of:  
-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>;  
-NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>;  
-COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN..

10 13. The pharmaceutical composition of claim 9, wherein the  
N-heterocyclic carboxylic acid or carboxylic acid isostere  
compound is selected from the group consisting of compounds  
1-139.

15 14. The pharmaceutical composition of claim 8, further  
comprising a neurotrophic factor different from formula (I).

15. The pharmaceutical composition of claim 14, wherein said  
neurotrophic factor different from formula (I) is selected  
20 from neurotrophic growth factor, brain derived growth factor,  
glial derived growth factor, ciliary neurotrophic factor,  
insulin growth factor and active truncated derivatives  
thereof, acidic fibroblast growth factor, basic fibroblast  
growth factor, platelet-derived growth factors, neurotropin-3  
25 and neurotropin 4/5.

16. A method of treating a neurological disorder in an  
animal, comprising:  
30 administering to the animal an effective amount of an  
N-heterocyclic carboxylic acid or carboxylic acid isostere  
to stimulate growth of damaged peripheral nerves or to  
promote neuronal regeneration.

35 17. The method of claim 16, wherein the neurological  
disorder is selected from the group consisting of peripheral

neuropathies cause by physical injury or disease state, physical damage to the brain, physical damage to the spinal cord, stroke associated with brain damage, and neurological disorders relating to neurodegeneration.

5

18. The method of claim 16, wherein the neurological disorder is selected from the group consisting of Alzheimer's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, and Huntington's Disease.

10

19. The method of claim 16, wherein the neurological disorder is Alzheimer's disease.

15

20. The method of claim 16, wherein the neurological disorder is Parkinson's disease.

21. The method of claim 16, wherein the neurological disorder is amyotrophic lateral sclerosis.

20

22. The method of claim 16, wherein the neurological disorder is Huntington's disease.

25

23. The method of claim 16, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere is non-immunosuppressive.

24. The method of claim 16, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere comprises a compound of formula (I):

30



where

n is 1-3;

X is either O or S;

R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub> straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere; and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, or heterocycle is optionally substituted with one or more substituents selected from R<sup>3</sup>, where

R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulphydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub> straight or branched chain alkenyl; or a pharmaceutically acceptable salt, ester, or solvate thereof.

25

25. The method of claim 24, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

30  
26. The method of claim 24, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

27. The method of claim 24, wherein R<sub>2</sub> is selected from the  
5 group consisting of:

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>;  
-NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>;  
-COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN..

10 28. The method of claim 16, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere compound is selected from the group consisting of compounds 1-139.

15 29. The method of claim 16, further comprising administering a neurotrophic factor different from formula (I).

20 30. The method of claim 29, wherein said neurotrophic factor different from formula (I) is selected from the group consisting of neurotrophic growth factor, brain derived growth factor, glial derived growth factor, ciliary neurotrophic factor, insulin growth factor and active truncated derivatives thereof, acidic fibroblast growth factor, basic fibroblast growth factor, platelet-derived growth factors, neurotropin-3, and neurotropin 4/5.

25 31. A method of stimulating growth of damaged peripheral nerves, comprising:

30 administering to damaged peripheral nerves an effective amount of an N-heterocyclic carboxylic acid or carboxylic acid isostere to stimulate or promote growth of the damaged peripheral nerves.

35 32. The method of claim 31, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere is non-immunosuppressive.

33. The method of claim 31, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere comprises a compound of formula (I):



5 where

n is 1-3;

X is either O or S;

10 R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere;

15 and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, or heterocycle is optionally substituted with one or more substituents selected from R<sup>3</sup>, where

20 R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulphydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where

25 R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl;

or a pharmaceutically acceptable salt, ester, or solvate

thereof.

34. The method of claim 33, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

35. The method of claim 33, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

36. The method of claim 33, wherein R<sub>2</sub> is selected from the group consisting of:

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>; -NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>; -COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN.

10 37. The method of claim 31, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere compound is selected from the group consisting of compounds 1-139.

15 38. The method of claim 31, further comprising administering a neurotrophic factor different from formula (I).

20 39. The method of claim 38, wherein said neurotrophic factor different from formula (I) is selected from the group consisting of neurotrophic growth factor, brain derived growth factor, glial derived growth factor, ciliary neurotrophic factor, insulin growth factor and active truncated derivatives thereof, acidic fibroblast growth factor, basic fibroblast growth factor, platelet-derived growth factors, neurotropin-3, and neurotropin 4/5.

25 40. A method for promoting neuronal regeneration and growth in animals, comprising:

30 administering to an animal an effective amount of a N-heterocyclic carboxylic acid or carboxylic acid isostere to promote neuronal regeneration.

35 41. The method of claim 40, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere is non-immunosuppressive.

42. The method of claim 40, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere comprises a compound of formula (I):



5 where

n is 1-3;

X is either O or S;

R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere;

15 and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, or heterocycle is optionally substituted with one or more substituents selected from R<sup>3</sup>, where

R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulphydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where

25 R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl;

or a pharmaceutically acceptable salt, ester, or solvate

thereof.

43. The method of claim 42, wherein  $R_2$  is a carbocycle or heterocycle containing any combination of  $CH_2$ , O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with  $R^3$ .

44. The method of claim 42, wherein  $R_2$  is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

45. The method of claim 42, wherein R<sub>2</sub> is selected from the group consisting of:

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>; -NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>; -COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN..

10 46. The method of claim 40, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere compound is selected from the group consisting of compounds 1-139.

15 47. The method of claim 40, further comprising administering a neurotrophic factor different from formula (I).

20 48. The method of claim 47, wherein said neurotrophic factor different from formula (I) is selected from the group consisting of neurotrophic growth factor, brain derived growth factor, glial derived growth factor, ciliary neurotrophic factor, insulin growth factor and active truncated derivatives thereof, acidic fibroblast growth factor, basic fibroblast growth factor, platelet-derived growth factors, neurotropin-3, and neurotropin 4/5.

25

49. A method for preventing neurodegeneration in an animal, comprising:

30 administering to an animal an effective amount of a N-heterocyclic carboxylic acid or carboxylic acid isostere to prevent neurodegeneration.

50. The method of claim 49, wherein the neurodegeneration is Alzheimer's disease.

35 51. The method of claim 49, wherein the neurodegeneration

is Parkinson's disease.

52. The method of claim 49, wherein the neurodegeneration is amyotrophic lateral sclerosis.

5

53. The method of claim 49, wherein the neurodegeneration is Huntington's Disease.

10 54. The method of claim 49, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere is non-immunosuppressive.

15 55. The method of claim 49, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere comprises a compound of formula (I):



where

n is 1-3;

X is either O or S;

20 R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, 25 C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere; and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, or heterocycle is optionally substituted with one or more substituents selected from R<sup>3</sup>, where

R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, 5 alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where  
10 R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub> straight or branched chain alkenyl;  
or a pharmaceutically acceptable salt, ester, or solvate thereof.

15 56. The method of claim 55, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

20 57. The method of claim 55, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

58. The method of claim 55, wherein R<sub>2</sub> is selected from the group consisting of:

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>; -NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>; -COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN.

10 59. The method of claim 49, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere compound is  
-- selected from the group consisting of compounds 1-139.

15 60. The method of claim 49, further comprising administering a neurotrophic factor different from formula (I).

20 61. The method of claim 60, wherein said neurotrophic factor different from formula (I) is selected from the group consisting of neurotrophic growth factor, brain derived growth factor, glial derived growth factor, ciliary neurotrophic factor, insulin growth factor and active truncated derivatives thereof, acidic fibroblast growth factor, basic fibroblast growth factor, platelet-derived growth factors, neurotropin-3, and neurotropin 4/5.

25 62. A method for treating alopecia or promoting hair growth in an animal, which comprises administering to said animal an effective amount of an N-heterocyclic carboxylic acid or carboxylic acid isostere.

30 63. The method of claim 62, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere is non-immunosuppressive.

35 64. The method of claim 62, wherein the N-heterocyclic

carboxylic acid or carboxylic acid isostere is a compound of formula (I):



-- where

5 n is 1-3;

X is either O or S;

R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

10 D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere; and

15 wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, or carboxylic acid isostere is optionally substituted with one or more substituents selected from R<sup>3</sup>, where

20 R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulphydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where

25 R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl; or a pharmaceutically acceptable salt, ester, or solvate

thereof.

65. The method of claim 64, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

66. The method of claim 64, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

67. The method of claim 64, wherein R<sub>2</sub> is selected from the group consisting of

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>; -NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>; -COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN.

68. The method of claim 62, wherein the carboxylic acid or carboxylic acid isostere is selected from the group consisting of compounds 1-139.

69. A pharmaceutical composition comprising:

(i) an effective amount of a N-heterocyclic carboxylic acid or carboxylic acid isostere for treating alopecia or promoting hair growth in an animal; and  
(ii) a pharmaceutically acceptable carrier.

70. The pharmaceutical composition of claim 69, wherein the N-heterocyclic carboxylic acid or carboxylic acid isostere is non-immunosuppressive.

71. The composition of claim 69, wherein the carboxylic acid or carboxylic acid isostere is a compound of formula (I):



where

n is 1-3;

X is either O or S;

5 R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub>, straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub>, straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

10 R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere; and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, or carboxylic acid isostere is optionally substituted with one or more substituents selected 15 from R<sup>3</sup>, where

R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, 20 C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub> straight or branched chain alkenyl; or a pharmaceutically acceptable salt, ester, or solvate 25 thereof.

72. The composition of claim 71, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the 30 atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

73. The composition of claim 71, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

74. The composition of claim 71, wherein R<sub>2</sub> is selected from  
5 the group consisting of:

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>;  
-NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>;  
-COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN.

10 75. The composition of claim 69, wherein the carboxylic acid  
or carboxylic acid isostere is selected from the group  
consisting of compounds 1-139.

15 76. A method for treating a vision disorder, improving  
vision, treating memory impairment, or enhancing memory  
performance in an animal, which comprises administering to  
said animal an effective amount of an N-heterocyclic  
carboxylic acid or carboxylic acid isostere.

20 77. The method of claim 76, wherein the N-heterocyclic  
carboxylic acid or carboxylic acid isostere is non-  
immunosuppressive.

25 78. The method of claim 76, wherein the N-heterocyclic  
carboxylic acid or carboxylic acid isostere is a compound of  
formula (I):



where

n is 1-3;

X is either O or S;

R<sub>1</sub> is selected from the group consisting of C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl or alkenyl, C<sub>2</sub>-C<sub>9</sub> straight or branched chain alkenyl, aryl, heteroaryl, carbocycle, or heterocycle;

D is a bond, or a C<sub>1</sub>-C<sub>10</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>10</sub> alkenyl or C<sub>2</sub>-C<sub>10</sub> alkynyl;

R<sub>2</sub> is carboxylic acid or a carboxylic acid isostere; and

wherein said alkyl, alkenyl, alkynyl, aryl, heteroaryl, carbocycle, heterocycle, or carboxylic acid isostere is optionally substituted with one or more substituents selected from R<sup>3</sup>, where

R<sup>3</sup> is hydrogen, hydroxy, halo, haloalkyl, thiocarbonyl, alkoxy, alkenoxy, alkylaryloxy, aryloxy, arylalkyloxy, cyano, nitro, imino, alkylamino, aminoalkyl, sulfhydryl, thioalkyl, alkylthio, sulfonyl, C<sub>1</sub>-C<sub>6</sub> straight or branched chain alkyl, C<sub>2</sub>-C<sub>6</sub> straight or branched chain alkenyl or alkynyl, aryl, aralkyl, heteroaryl, carbocycle, heterocycle, and CO<sub>2</sub>R<sup>7</sup> where R<sup>7</sup> is hydrogen or C<sub>1</sub>-C<sub>9</sub> straight or branched chain alkyl or C<sub>2</sub>-C<sub>9</sub> straight or branched chain alkenyl; or a pharmaceutically acceptable salt, ester, or solvate thereof.

79. The method of claim 78, wherein R<sub>2</sub> is a carbocycle or heterocycle containing any combination of CH<sub>2</sub>, O, S, or N in any chemically stable oxidation state, wherein any of the atoms of said ring structure are optionally substituted in one or more positions with R<sup>3</sup>.

80. The method of claim 78, wherein R<sub>2</sub> is selected from the following group:



where the atoms of said ring structure may be optionally substituted at one or more positions with R<sup>3</sup>.

81. The method of claim 78, wherein R<sub>2</sub> is selected from the  
5 group consisting of

-COOH; -SO<sub>3</sub>H; -SO<sub>2</sub>HNR<sup>3</sup>; -PO<sub>2</sub>(R<sup>3</sup>)<sub>2</sub>; -CN; -PO<sub>3</sub>(R<sup>3</sup>)<sub>2</sub>; -OR<sup>3</sup>; -SR<sup>3</sup>;  
-NHCOR<sup>3</sup>; -N(R<sup>3</sup>)<sub>2</sub>; -CON(R<sup>3</sup>)<sub>2</sub>; -CONH(O)R<sup>3</sup>; -CONHNHSO<sub>2</sub>R<sup>3</sup>;  
-COHNSO<sub>2</sub>R<sup>3</sup>; and -CONR<sup>3</sup>CN.

10 82. The method of claim 76, wherein the carboxylic acid or carboxylic acid isostere is selected from the group consisting of compounds 1-139.