

Publication number:

0 325 262 A2

(<u>:</u>

EUROPEAN PATENT APPLICATION

- 2 Application number: 89100913.6
- (2) Date of filing: 20.01.89

(3) Int. Cl.4: C12N 15/00 , C12P 21/02 , A61K 39/395 , G01N 33/569 , //A61K39/21

The applicant has filed a statement in accordance with Rule 28 (4) EPC (issue of a sample only to an expert). Accession number(s) of the deposit(s): ATCC 67608 - 67609 - 67610 - 67611.

Claims for the following Contracting States: ES + GR.

- Priority: 22.01.88 US 147351
- ② Date of publication of application: 26.07.89 Bulletin 89/30
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE

- Applicant: THE GENERAL HOSPITAL CORPORATION
 55 Fruit Street
 Boston MA 02114(US)
- Inventor: Brian, Seed, Dr. 47A Joy Street Boston MA 02114(US)
- Representative: Kleln, Otto, Dr. et al Hoechst AG Zentrale Patentabteilung Postfach 80 03 20
 D-6230 Frankfurt am Main 80(DE)
- (S) Cloned genes encoding IG-CD4 fusion proteins and the use thereof.
- Fusion proteins of immunoglobulins of the IgM, IgG1 or IgG3 class, wherein the variable region of the light or heavy chain has been replaced with CD4 or fragments thereof capable of binding to gp120 or immunoglobulin-like molecules comprising such fusion proteins together with an immunoglobulin light or heavy chain can be administered to an animal suffering from HIV or SIV infection. They also are useful in assays for HIV or SIV comprising contacting a sample suspected of containing HIV or SIV gp120 with the immunoglobulin-like molecule or fusion protein, and detecting whether a complex is formed.

CLONED GENES ENCODING IG-CD4 FUSION PROTEINS AND THE USE THEREOF

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. Application Serial No. 07/147,351 filed January 22, 1988.

FIELD OF THE INVENTION

The invention is in the field of recombinant genetics.

10

5

BACKGROUND OF THE INVENTION

The human and simian immunodeficiency viruses HIV and SIV are the causative agents of Acquired Immune Deficiency Syndrome (AIDS) and Simian Immunodeficiency Syndrome (SIDS), respectively. See Curren, J. et al., Science 329:1359-1357 (1985); Weiss, R. et al., Nature 324:572-575 (1986). The HIV virus contains an envelope glycoprotein, gp120 which binds to the CD4 protein present on the surface of helper T lymphocytes, macrophages and other cells. Dalgleish et al. Nature. 312:763 (1984). After the gp120 binds to CD4, virus entry is facilitated by an envelope-mediated fusion of the viral target cell membranes.

During the course of infection, the host organism develops antibodies against viral proteins, including the major envelope glycoproteins gp120 and gp41. Despite this humoral immunity, the disease progresses, resulting in a lethal immunosuppression characterized by multiple opportunistic infections, parasitemia, dementia and death. The failure of host anti-viral antibodies to arrest the progression of the disease represents one of the most vexing and alarming aspects of the infection, and augurs poorly for vaccination efforts based upon conventional approaches.

Two factors may play a role in the inefficacy of the humoral response to immunodeficiency viruses. First, like other RNA viruses (and like retroviruses in particular), the immunodeficiency viruses show a high mutation rate which allows antigenic variation to progress at a high rate in response to host immune surveillance. Second, the envelope glycoproteins themselves are heavily glycosylated molecules presenting few epitopes suitable for high affinity antibody binding. The poorly antigenic, "moving" target which the viral envelope presents, allows the host little opportunity for restricting viral infection by specific antibody production.

Cells infected by the HIV virus express the gp120 glycoprotein on their surface. Gp120 mediates fusion events among CD4° cells via a reaction similar to that by which the virus enters the uninfected cell, leading to the formation of short-lived multinucleated giant cells. Syncytium formation is dependent on a direct interaction of the gp120 envelope glycoprotein with the CD4 protein. Dalgleish et al., supra, Klatzmann, D. et al., Nature 312:763 (1984); McDougal, J.S. et al. Science, 231:382 (1986); Sodroski, J. et al., Nature, 322:470 (1986); Lifson, J.D. et al., Nature, 323:725 (1986); Sodroski, J. et al., Nature, 321:412 (1986).

The CD4 protein consists of a 370 amino acid extracellular region containing four immunoglobulin-like domains, a membrane spanning domain, and a charged intracellular region of 40 amino acid residues. Maddon, P. et al., Cell 42:93 (1985); Clark, S. et al., Proc. Natl. Acad. Sci. (USA) 84:1649 (1987).

Evidence that CD4-gp120 binding is responsible for viral infection of cells bearing the CD4 antigen includes the finding that a specific complex is formed between gp120 and CD4. McDougal et al., supra. Other workers have shown that cell lines, which were non-infective for HIV, were converted to infectable cell lines following transfection and expression of the human CD4 cDNA gene. Maddon et al., Cell 47:333-348 (1986).

In contrast to the majority of antibody-envelope interactions, the receptor-envelope interaction is characterized by a high affinity ($K_a = 10^8 \, l/mole$) immutable association. Moreover, the affinity of the virus for CD4 is at least 3 orders of magnitude higher than the affinity of CD4 for its putative endogenous ligand, the MHC class II antigens. Indeed, to date, a specific physical association between monomeric CD4 and class II antigens has not been demonstrated.

In response to bacterial or other particle infection, the host organism usually produces serum antibodies that bind to specific proteins or carbohydrates on the bacterial or particle surface, coating the bacteria. This antibody coat on the bacterium or other particle stimulates cytolysis by Fc-receptor-bearing lymphoid cells by antibody-dependent cellular toxicity (ADCC). Other serum proteins, collectively called complement (C),

bind to antibody-coated targets, and also can coat foreign particles nonspecifically. They cause cell death by lysis, or stimulate ingestion by binding to specific receptors on the macrophage called complement receptors. See Darnell J. et al., in Molecular Cell Biology. Scientific American Books, pp. 641 and 1087 (1986).

The most effective complement activating classes of human Ig are IgM and IgG1. The complement system consists of 14 proteins that, acting in order, cause lysis of cells. Nearly all of the C proteins exist in normal serum as inactive precursors. When activated, some become highly specific proteolytic enzymes whose substrate is the next protein in a sequential chain reaction.

The entire C sequence can be triggered by either of two initiation pathways. In one (the classic pathway), Ab-Ag complexes bind and activate C1, C4 and C2 to form a C3-splitting enzyme. In the second pathway, polysaccharides commonly on the surface of many bacteria and fungi bind with trace amounts of a C3 fragment and then with two other proteins (factor B and properdin) to form another C3-splitting enzyme. Once C3 is split by either pathway, the way is open for the remaining sequence of steps which lead to cell lysis. See Davis, B.D., et al., In Microbiology, 3rd ed., Harper and Row, Philadelphia, PA, pp. 452-466 (1980).

A number of workers have disclosed methods for preparing hybrid proteins. For example, Murphy, United States Patent 4,675,382 (1987), discloses the use of recombinant DNA techniques to make hybrid protein molecules by forming the desired fused gene coding for a hybrid protein of diptheria toxin and a polypeptide ligand such as a hormone, followed by expression of the fused gene.

Many workers have prepared monoclonal antibodies (Mabs) by recombinant DNA techniques. Monoclonal antibodies are highly specific well-characterized molecules in both primary and tertiary structure. They have been widely used for in vitro immunochemical characterization and quantitation of antigens. Genes for heavy and light chains have been introduced into appropriate hosts and expressed, followed by reaggregation of the individual chains into functional antibody molecules (see, for example, Munro, Nature 312:597 (1984); Morrison, S.L., Science 229:1202 (1985); Oi et al., Biotechniques 4:214 (1986); Wood et al., Nature 314:446-449 (1985)). Light- and heavy-chain variable regions have been cloned and expressed in foreign hosts wherein they maintained their binding ability (Moore et al., European Patent Application 0088994 (published September 21, 1983)).

Chimeric or hybrid antibodies have also been prepared by recombinant DNA techniques. Oi and Morrison, Biotechniques 4:214 (1986) describe a strategy for producing such chimeric antibodies which include a chimeric human IgG anti-leu3 antibody.

Gascoigne, N.R.J., et al., Proc. Natl. Acad. Sci. (USA) 84:2936-2940 (1987) disclose the preparation of a chimeric gene construct containing a T-cell receptor a-chain variable (V) domain and the constant (C) region coding sequence of an immunoglobulin $_{\gamma}$ 2a molecule. Cells transfected with the chimeric gene synthesize a protein product that expresses immunoglobulin and T-cell receptor antigenic determinants as well as protein A binding sites. This protein associates with a normal λ chain to form an apparently normal tetrameric (H₂L₂, where H = heavy and L = light) immunoglobulin molecule that is secreted.

Sharon, J., et al.. Nature 309:54 (1984), disclose construction of a chimeric gene encoding the variable (V) region of a mouse heavy chain specific for the hapten azophenyl resonate and the constant (C) region of a mouse kappa light chain (V_HC_K). This gene was introduced into a mouse myeloma cell line. The chimeric gene was expressed to give a protein which associated with light chains secreted from the myeloma cell line to give an antibody molecule specific for azophenylarsonate.

Morrison. Science 229:1202 (1985), discloses that variable light-or variable heavy-chain regions can be attached to a non-lg sequence to create fusion proteins. This article states that the potential uses for the fusion proteins are three: (1) to attach antibody specifically to enzymes for use in assays; (2) to isolate non-lg proteins by antigen columns; and (3) to specifically deliver toxic agents.

Recent techniques for the stable introduction of immunoglobulin genes into myeloma cells (Banerji, J., et al., Cell 33:729-740 (1983); Potter, H., et al., Proc. Natl. Acad. Sci. (USA) 81:7161-7165 (1984)), coupled with detailed structural information, have permitted the use of in vitro DNA methods such as mutagenesis, to generate recombinant antibodies possessing novel properties.

PCT Application W087/02671 discloses methods for producing genetically engineered antibodies of desired variable region specificity and constant region properties through gene cloning and expression of light and heavy chains. The mRNA from cloned hybridoma B cell lines which produce monoclonal antibodies of desired specificity is isolated for cDNA cloning. The generation of light and heavy chain coding sequences is accomplished by excising the cloned variable regions and ligating them to light or heavy chain module vectors. This gives cDNA sequences which code for immunoglobulin chains. The lack of introns allows these cDNA sequences to be expressed in prokaryotic hosts, such as bacteria, or in lower eukaryotic hosts, such as yeast.

The generation of chimeric antibodies in which the antigen-binding portion of the immunoglobulin is fused to other moieties has been demonstrated. Examples of non-immunoglobulin genes fused to antibodies include Stanphylococcus aureus nuclease, the mouse oncogene c-myc, and the Klenow fragment of E. coli DNA polymerase I (Neuberger, M.S., et al., Nature 312:604-612 (1984); Neuberger, M.S., Trends in Biochemical Science, 347-349 (1985)). European Patent Application 120,694 discloses the genetic engineering of the variable and constant regions of an immunoglobulin molecule that is expressed in E. coli host cells. It is further disclosed that the immunoglobulin molecule may be synthesized by a host cell with another peptide moiety attached to one of the constant domains. Such peptide moieties are described as either cytotoxic or enzymatic. The application and the examples describe the use of a lambda-like chain derived from a monoclonal antibody which binds to 4-hydroxy-3-nitrophenyl (NP) haptens.

European Patent Application 125,023 relates to the use of recombinant DNA techniques to produce immunoglobulin molecules that are chimeric or otherwise modified. One of the uses described for these immunoglobulin molecules is for whole-body diagnosis and treatment by injection of the antibodies directed to specific target tissues. The presence of the disease can be determined by attaching a suitable label to the antibodies, or the diseased tissue can be attacked by carrying a suitable drug with the antibodies. The application describes antibodies engineered to aid the specific delivery of an agent as "altered antibodies."

PCT Application W083/101533 describes chimeric antibodies wherein the variable region of an immunoglobulin molecule is linked to a portion of a second protein which may comprise the active portion of an enzyme.

Boulianne et al., Nature 312:643 (1984) constructed an immunoglobulin gene in which the DNA segments that encode mouse variable regions specific for the hapten trinitrophenol (TNP) are joined to segments that encode human mu and kappa regions. These chimeric genes were expressed to give functional TNP-binding chimeric IgM.

Morrison et al., P.N.A.S. (USA) 81:6851 (1984), disclose a chimeric molecule utilizing the heavy-chain variable region exons of an anti-phosphoryl choline myeloma protein G, which were joined to the exons of either human kappa light-chain gene. The genes were transfected into mouse myeloma cell lines, generating transformed cells that produced chimeric mouse-human IgG with antigen-binding function.

Despite the progress that has been achieved on determining the mechanism of HIV infection, a need continues to exist for methods of treating HIV viral infections.

SUMMARY OF THE INVENTION

The invention relates to a gene comprising a DNA sequence which encodes a fusion protein comprising 1) CD4, or a fragment thereof which binds to HIV gp120, and 2) an immunoglobulin light or heavy chain; wherein said CD4 or HIV gp120-binding fragment thereof replaces the variable region of the light or heavy immunoglobulin chain.

The invention also relates to vectors containing the gene of the invention and hosts transformed with the vectors.

The invention also relates to a method of producing a fusion protein comprising CD4, or fragment thereof which binds to HIV gp120, and an immunoglobulin light or heavy chain, wherein the variable region of the immunoglobulin light or heavy chain has been substituted with CD4, or HIV gp120-binding fragment thereof, which comprises:

45 cultivating in a nutrient medium under protein producing conditions, a host strain transformed with the vector containing the gene of the invention, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.

The invention also relates to a fusion protein comprising CD4, or fragment thereof which is capable of binding to HIV gp120, fused at the C-terminus to a second protein which comprises an immunoglobulin light or heavy chain, wherein the variable region of said light or heavy chain is substituted with CD4 or a HIV gp120 binding fragment thereof.

The invention also relates to an immunoglobulin-like molecule comprising the fusion protein of the invention together with an immunoglobulin light or heavy-chain, wherein said immunoglobulin like molecule binds HIV gp120.

The IgG1 fusion proteins and immunoglobulin-like molecules may be useful for both complement-mediated and cell-mediated (ADCC) immunity, while the IgM fusion proteins are useful principally through complement-mediated immunity.

.

30

The invention also relates to a complex between the fusion proteins and immunoglobulin-like molecule of the invention and HIV gp120.

The invention also relates to a method for treating HIV or SIV infections comprising administering the fusion protein or immunoglobulin-like molecule of the invention to an animal.

The invention further relates to a method for detecting HIV gp120 in a sample comprising contacting a sample suspected of containing HIV or gp120 with the fusion protein or immunoglobulin-like molecule of the invention, and detecting whether a complex has formed.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention is directed to a protein gene which comprises

- 1) a DNA sequence which codes for CD4, or fragment thereof which binds to HIV gp120, fused to
- 2) a DNA sequence which encodes an immunoglobulin heavy chain.

Preferably, the antibody has effector function.

10

15

The invention is also directed to a protein gene which comprises

- 1) a DNA sequence which codes for CD4, or fragment thereof which binds to HIV gp120, fused to
- 2) a DNA sequence which encodes an immunoglobulin light chain; wherein said sequence which codes for CD4, or HIV gp120-binding fragment thereof, replaces the variable region of the light immunoglobulin chain.

The invention is also directed to the expression of these novel fusion proteins in transformed hosts and the use thereof to treat and diagnose HIV infections. In particular, the invention relates to expressing said genes in mammalian hosts which express complementary light or heavy chain immunoglobulins to give immunoglobulin-like molecules which have antibody effector function and also bind to HIV or SIV gp120.

The term "antibody effector function" as used herein denotes the ability to fix complement or to activate ADCC.

The fusion proteins and immunoglobulin-like molecules may be administered to an animal for the purpose of treating HIV or SIV infections. By the terms "HIV infections" is intended the condition of having AIDS, AIDS related complex (ARC) or where an animal harbors the AIDS virus, but does not exhibit the clinical symptoms of AIDS or ARC. By the terms "SIV infections" is intended the condition of being infected with simian immunodeficiency virus.

By the term "animal" is intended all animals which may derive benefit from the administration of the fusion proteins and immunoglobulin-like molecules of the invention. Foremost among such animals are humans, however, the invention is not intended to be so limited.

By the term "fusion protein" is intended a fused protein comprising CD4, or fragment thereof which is capable of binding to gp120, linked at its C-terminus to an immunoglopulin chain wherein a portion of the N-terminus of the immunoglobulin is replaced with CD4. In general, that portion of immunoglobulin which is deleted is the variable region. The fusion proteins of the invention may also comprise immunoglobulins where more than just the variable region has been deleted and replaced with CD4 or HIV gp120 binding fragment thereof. For example, the V_H and CH1 regions of an immunoglobulin chain may be deleted. Preferably, any amount of the N-terminus of the immunoglobulin heavy chain can be deleted as long as the remaining fragment has antibody effector function. The minimum sequence required for binding complement encompasses domains CH2 and CH3. Joining of Fc portions by the hinge region is advantageous for increasing the efficiency of complement binding.

The CD4 portion of the fusion protein may comprise the complete CD4 sequence, the 370 amino acid extracellular region and the membrane spanning domain, or the extracellular region. The fusion protein may comprise fragments of the extracellular region obtained by cutting the DNA sequence which encodes CD4 at the BspM1 site at position 514 or the Pvull site at position 629 (see Table 1) to give nucleotide sequences which encode CD4 fragments which retain binding to gp120. In general, any fragment of CD4 may be used as long as it retains binding to gp120.

Where the fusion protein comprises an immunoglobulin light chain, it is necessary that no more of the Ig chain be deleted than is necessary to form a stable complex with a heavy chain Ig. In particular, the cysteine residues necessary for disulfide bond formation must be preserved on both the heavy and light chain moieties.

When expressed in a host, e.g., a mammalian cell, the fusion protein may associate with other light or

heavy Ig chains secreted by the cell to give a functioning immunoglobulin-like molecule which is capable of binding to gp120. The gp120 may be in solution, expressed on the surface of infected cells, or may be present on the surface of the HIV virus itself. Alternatively, the fusion protein may be expressed in a mammalian cell which does not secrete other light or heavy Ig chains. When expressed under these conditions, the fusion protein may form a homodimer.

Genomic or CDNA sequences may be used in the practice of the invention. Genomic sequences are expressed efficiently in myeloma cells, since they contain native promoter structures.

The constant regions of the antibody cloned and used in the chimeric immunoglobulin-like molecule may be derived from any mammalian source. The constant regions may be complement binding or ADCC active. However, preliminary work (see Examples) indicates that the fusion proteins of the invention may mediate HIV or SIV infected cell death by an ADCC or complement-independent mechanism. The constant regions may be derived from any appropriate isotype, including IgG1, IgG3, or IgM.

The joining of various DNA fragments, is performed in accordance with conventional techniques, employing blunt-ended or staggered-ended termini for ligation, restriction enzyme digestion to provide appropriate termini, filling in of cohesive ends as appropriate, alkali and phosphatase treatment to avoid undesirable joining, and ligation with appropriate ligases. The genetic construct may optionally encode a leader sequence to allow efficient expression of the fusion protein. For example, the leader sequence utilized by Maddon et al., Cell 42:93-104 (1985) for the expression of CD4 may be used.

For cDNA, the cDNA may be cloned and the resulting clone screened, for example, by use of a complementary probe or by assay for expressed CD4 using an antibody as disclosed by Dalgleish et al., Nature 312:763-766 (1984); Klatzmann et al., Immunol. Today 7:291-297 (1986); McDougal et al., J. Immunol. 135:3151-3162 (1985); and McDougal, J. et al., J. Immunol. 137:2937-2944 (1986).

To express the fusion hybrid protein, transcriptional and translational signals recognized by an appropriate host element are necessary. Eukaryotic hosts which may be used include mammalian cells capable of culture in vitro, particularly leukocytes, more particularly myeloma cells or other transformed or oncogenic lymphocytes, e.g., EBV-transformed cells. Alternatively, non-mammalian cells may be employed, such as bacteria, fungi, e.g., yeast, filamentous fungi, or the like.

Preferred hosts for fusion protein production are mammalian cells, grown in vitro in tissue culture or in vivo in animals. Mammalian cells provide post translational modification to immunoglobulin protein molecules which provide for correct folding and glycosylation of appropriate sites. Mammalian cells which may be useful as hosts include cells of fibroblast origins such as VERO or CHO-K1 or cells of lymphoid origin, such as the hybridoma SP2/0-AG14 or the myeloma P3x63Sgh, and their derivatives. For the purpose of preparing an immunoglobulin-like molecule, a plasmid containing a gene which encodes a heavy chain immunoglobulin, wherein the variable region has been replaced with CD4 or fragment thereof which binds to gp120, may be introduced, for example, into J558L myeloma cells, a mouse plasmacytoma expressing the lambda-1 light chain but which does not express a heavy chain (see Oi et al., P.N.A.S. (USA) 80:825-829 (1983)). Other preferred hosts include COS cells, BHK cells and hepatoma cells.

The constructs may be joined together to form a single DNA segment or may be maintained as separate segments, by themselves or in conjunction with vectors.

Where the fusion protein is not glycosylated, any host may be used to express the protein which is compatible with replicon and control sequences in the expression plasmid. In general, vectors containing replicon and control sequences are derived from species compatible with a host cell are used in connection with the host. The vector ordinarily carries a replicon site, as well as specific genes which are capable of providing phenotypic selection in transformed cells. The expression of the fusion protein can also be placed under control with other regulatory sequences which may be homologous to the organism in its untransformed state. For example, lactose-dependent E. coli chromosomal DNA comprises a lactose or lac operon which mediates lactose utilization by elaborating the enzyme beta-galactosidase. The lac control elements may be obtained from bacterial phage lambda plac5, which is infective for E. coli. The lac promoter-operator system can be induced by IPTG.

Other promoters/operator systems or portions thereof can be employed as well. For example, colicin E1, galactose, alkaline phosphatase, tryptophan, xylose, tax, and the like can be used.

For mammalian hosts, several possible vector systems are available for expression. One class of vectors utilize DNA elements which are derived from animal viruses such as bovine papilloma virus, polyoma virus, adenovirus, vaccinia virus, baculovirus, retroviruses RSV, MMTV or MOMLV), or SV40 virus. Cells which have stably integrated the DNA into their chromosomes may be selected by introducing one or more markers which allow selection of transfected host cells. The marker may provide for prototropy to an auxotrophic host, biocide resistance, e.g., antibiotics, or heavy metals such as copper or the like. The selectable marker gene can be either directly linked to the DNA sequences to be expressed, or introduced

into the same cell by cotransformation. Additional elements may also be needed for optimal synthesis of mRNA. These elements may include splice signals, as well as transcriptional promoters, enhancers, and termination signals. The cDNA expression vectors incorporating such elements includes those described by Okayama, H., Mol. Cel. Biol., 3:280 (1983) and others.

Once the vector or DNA sequence containing the constructs has been prepared for expression, the DNA constructs may be introduced to an appropriate host. Various techniques may be employed, such as protoplast fusion, calcium phosphate precipitation, electroporation or other conventional techniques. After the fusion, the cells are grown in media and screened for the appropriate activity. Expression of the gene(s) results in production of the fusion protein. This expressed fusion protein may then be subject to further assembly to form the immunoglobulin-like molecule.

The host cells for immunoglobulin production may be immortalized cells, primarily myeloma or lymphoma cells. These cells may be grown in appropriate nutrient medium in culture flasks or injected into a synergistic host, e.g., mouse or a rat, or immunodeficient host or host site, e.g., nude mouse or hamster pouch. In particular, the cells may be introduced into the abdominal cavity of an animal to allow production of ascites fluid which contains the immunoglobulin-like molecule. Alternatively, the cells may be injected subcutaneously and the chimeric antibody is harvested from the blood of the host. The cells may be used in the same manner as hybridoma cells. See Diamond et al., N. Eng. J. Med. 304:1344 (1981), and Kennatt, McKearn and Bechtol (Eds.), Monoclonal Antibodies: Hybridomas: — A New Dimension in Biologic Analysis, Plenum, 1980.

The fusion proteins and immunoglobulin-like molecules of the invention may be isolated and purified in accordance with conventional conditions, such as extraction, precipitation, chromatography, affinity chromatography, electrophoresis or the like. For example, the lgG1 fusion proteins may be purified by passing a solution through a column which contains immobilized protein A or protein G which selectively binds the Fc portion of the fusion protein. See, for example, Reis, K.J., et al., J. Immunol. 132:3098-3102 (1984); PCT Application, Publication No. W087/00329. The chimeric antibody may the be eluted by treatment with a chaotropic salt or by elution with aqueous acetic acid (1 M).

Alternatively the fusion proteins may be purified on anti-CD4 antibody columns, or on anti-im-munoglobulin antibody columns.

In one embodiment of the invention, cDNA sequences which encode CD4, or a fragment thereof which binds gp120, may be ligated into an expression plasmid which codes for an antibody wherein the variable region of the gene has been deleted. Methods for the preparation of genes which encode the heavy or light chain constant regions of immunoglobulins are taught, for example, by Robinson, R. et al., PCT Application, Publication No. W087-02671.

25

Preferred immunoglobulin-like molecules which contain CD4, or fragments thereof, contain the constant region of an IgM. IgG1 or IgG3 antibody which binds complement at the Fc region.

The fusion protein and immunoglobulin-like molecules of the invention may be used for the treatment of HIV viral infections. The fusion protein complexes to gp120 which is expressed on infected cells. Although the inventor is not bound by a particular theory, it appears that the pc portion of the hybrid fusion protein may bind with complement, which mediates destruction of the cell. In this manner, infected cells are destroyed so that additional viral particle production is stopped.

For the purpose of treating HIV infections, the fusion protein or immunoglobulin-like molecule of the invention may additionally contain a radiolabel or therapeutic agent which enhances destruction of the HIV particle or HIV-infected cell.

Examples of radioisotopes which can be bound to the fusion protein or immunoglobulin-like molecule of the invention for use in HIV-therapy are ¹²⁵I, ¹³¹I, ⁹⁰Y, ⁶⁷Cu, ²¹⁷Bi, ²¹¹At, ²¹²Pb, ⁴⁷Sc, and ¹⁰⁹Pd. Optionally, a label such as boron can be used which emits α and β particles upon bombardment with neutron radiation.

For in vivo diagnosis radionucleotides may be bound to the fusion protein or immunoglobulin-like molecule of the invention either directly or by using an intermediary functional group. An intermediary group which is often used to bind radioisotopes, which exist as metallic cations, to antibodies is diethylenetriaminepentaacetic acid (DTPA). Typical examples of metallic cations which are bound in this manner are ^{99m}Tc ¹²³I, ¹¹¹In, ¹³¹I, ⁹⁷Ru, ⁶⁷Cu, ⁶⁷Ga, and ⁶⁸Ga.

Moreover, the fusion protein and immunoglobulin-like molecule of the invention may be tagged with an NMR imaging agent which include paramagnetic atoms. The use of an NMR imaging agent allows the in vivo diagnosis of the presence of and the extent of HIV infection within a patient using NMR techniques. Elements which are particularly useful in this manner are ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, ⁵²Cr, and ⁵⁶Fe.

Therapeutic agents may include, for example, bacterial toxins such as diphtheria toxin, or ricin. Methods for producing fusion proteins comprising fragment A of diphtheria toxin are taught in U.S. Patent 4.675.382 (1987). Diphtheria toxin contains two polypeptide chains. The B chain binds the toxin to a receptor on a cell

surface. The A chain actually enters the cytoplasm and inhibits protein synthesis by inactivating elongation factor 2, the factor that translocates ribosomes along mRNA concomitant with hydrolysis of ETP. See Darnell, J., et al., in Molecular Cell Biology, Scientific American Books, Inc., page 662 (1986). Alternatively, a fusion protein comprising ricin, a toxic lectin, may be prepared.

Introduction of the chimeric molecules by gene therapy may also be contemplated, for example, using retroviruses or other means to introduce the genetic material encoding the fusion proteins into suitable target tissues. In this embodiment, the target tissues having the cloned genes of the invention may then produce the fusion protein in vivo.

The dose ranges for the administration of the fusion protein or immunoglobulin-like molecule of the invention are those which are large enough to produce the desired effect whereby the symptoms of HIV or SIV infection are ameliorated. The dosage should not be so large as to cause adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex and extent of disease in the patient, counterindications, if any, immune tolerance and other such variables, to be adjusted by the individual physician. Dosage can vary from .01 mg/kg to 50 mg/kg, preferably 0.1 mg/kg to 1.0 mg/kg, of the immunoglobulin-like molecule in one or more administrations daily, for one or several days. The immunoglobulin-like molecule can be administered parenterally by injection or by gradual perfusion over time. They can be administered intravenously, intraperitoneally, intramuscularly, or subcutaneously.

Preparations for parenteral administration include sterile or aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers, such as those based on Ringer's dextrose, and the like. Preservatives and other additives may also be present, such as, for example, antimicrobials, antioxidants, chelating agents, inert gases and the like. See, generally, Remington's Pharmaceutical Science, 16th Ed., Mack Eds., 1980.

The invention also relates to a method for preparing a medicament or pharmaceutical composition comprising the components of the invention, the medicament being used for therapy of HIV or SIV infection in animals.

30

55

The detection and quantitation of antigenic substances and biological samples frequently utilized immunoassay techniques. These techniques are based upon the formation of the complex between the antigenic substance, e.g., gp120, being assayed and an antibody or antibodies in which one or the other member of the complex may be detectably labeled. In the present invention, the immunoglobulin-like molecule or fusion protein may be labeled with any conventional label.

Thus, the hybrid fusion protein or immunoglobulin-like molecule of the invention can also be used in assay for HIV or SIV viral infection in a biological sample by contacting a sample, derived from an animal suspected of having an HIV or SIV infection, with the fusion protein or immunoglobulin-like molecule of the invention, and detecting whether a complex with gp120, either alone or on the surface of an HIV-infected cell, has formed.

For example, a biological sample may be treated with nitrocellulose, or other solid support which is capable of immobilizing cells, cell particles or soluble protein. The support may then be washed with suitable buffers followed by treatment with the fusion protein which may be detectably labeled. The solid phase support may then be washed with the buffer a second time to remove unbound fusion protein and the label on the fusion protein detected.

In carrying out the assay of the present invention on a sample containing gp120, the process comprises:

- a) contacting a sample suspected containing gp120 with a solid support to effect immobilization of gp120, or cell which expresses gp120 on its surface;
- b) contacting said solid support with the detectably labeled immunoglobulin-like molecule or fusion protein of the invention;
- c) incubating said detectably labeled immunoglobulin-like molecule with said support for a sufficient amount of time to allow the immunoglobulin-like molecule or fusion protein to bind, to the immobilized qp120 or cell which expresses gp120 on its surface;
 - d) separating the solid phase support from the incubation mixture obtained in step c); and
- e) detecting the bound immunoglobulin-like molecule or fusion protein and thereby detecting and quantifying gp120.

Alternatively, labeled immunoglobulin-like molecule (or fusion protein) -gp120 complex in a sample may be separated from a reaction mixture by contacting the complex with an immobilized antibody or protein which is specific for an immunoglobulin or, e.g., protein A, protein G, anti-IgM or anti-IgG antibodies. Such anti-immunoglobulin antibodies may be monoclonal or polyclonal. The solid support may then be washed with suitable buffers to give an immobilized gp120-labeled immunoglobulin-like molecule antibody complex. The label on the fusion protein may then be detected to give a measure of endogenous gp120 and, thereby, the presence of HIV.

This aspect of the invention relates to a method for detecting HIV or SIV viral infection in a sample comprising

- (a) contacting a sample suspected of containing gp120 with a fusion protein or immunoglobulin-like molecule comprising CD4, or fragment thereof which binds to gp120, and the Fc portion of an immunoglobulin chain.
 - (b) detecting whether a complex is formed.

10

15

20

The invention also relates to a method of detecting gp120 in a sample, further comprising

- (c) contacting the mixture obtained in step (a) with an Fc binding molecule, such as an antibody, protein A, or protein G, which is immobilized on a solid phase support and is specific for the hybrid fusion protein, to give a gp120 fusion protein-immobilized antibody complex
 - (d) washing the solid phase support obtained in step (c) to remove unbound fusion protein.
 - (e) and detecting the label on the hybrid fusion protein.

Of course, the specific concentrations of detectably labeled immunoglobulin-like molecule (or fusion protein) and gp120, the temperature and time of incubation, as well as other assay conditions may be varied, depending on various factors including the concentration of gp120 in the sample, the nature of the sample, and the like. Those skilled in the art wild be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.

Other such steps as washing, stirring, shaking, filtering and the like may be added to the assays as is customary or necessary for the particular situation.

One of the ways in which the immunoglobulin-like molecule or fusion protein of the present invention can be detectably labeled is by linking the same to an enzyme. This enzyme, in turn, when later exposed to its substrate, will react with the substrate in such a manner as to produce a chemical moiety which can be detected as, for example, by spectrophotometric, fluorometric or by visual means. Enzymes which can be used to detectably label the immunoglobulin-like molecule or fusion protein of the present invention include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-V-steroid isomerase; yeast alcohol dehydrogenase, alpha-glycerophosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-VI-phosphate dehydrogenase, glucoamylase and acetylcholine esterase.

The immunoglobulin-like molecule or fusion protein of the present invention may also be labeled with a radioactive isotope which can be determined by such means as the use of a gamma counter or a scintillation counter or by autoradiography. Isotopes which are particularly useful for the purpose of the present invention are: ³H, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, ⁵¹Cr, ³⁶Cl, ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe and ⁷⁵Se.

It is also possible to label the immunoglobulin-like molecule or fusion protein with a fluorescent compound. When the fluorescently labeled immunoglobulin-like molecule is exposed to light of the proper wave length, its presence can then be detected due to the fluorescence of the dye. Among the most commonly used fluorescent labelling compounds are fluorescein isothiocyanate, rhodamine, phycocrytherin, phycocyanin, allophycocyanin, o-phthaldehyde and fluorescamine.

The immunoglobulin-like molecule or fusion protein of the invention can also be detectably labeled using fluorescence emitting metals such as ¹⁵²Eu, or others of the lanthanide series. These metals can be attached to the immunoglobulin-like molecule or fusion protein using such metal chelating groups as diethylenetriaminepentaacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA).

The immunoglobulin-fike molecule or fusion protein of the present invention also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged immunoglobulin-like molecule or fusion protein is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt and oxalate ester.

Likewise, a bioluminescent compound may be used to label the immunoglobulin-like molecule or fusion protein of the present invention. Bioluminescence is a type of chemituminescence found in biological

systems in which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.

Detection of the immunoglobulin-like molecule or fusion protein may be accomplished by a scintillation counter, for example, if the detectable label is a radioactive gamma emitter, or by a fluorometer, for example, if the label is a fluorescent material. In the case of an enzyme label, the detection can be accomplished by colorimetric methods which employ a substrate for the enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.

The assay of the present invention is ideally suited for the preparation of a kit. Such a kit may comprise a carrier means being compartmentalized to receive in close confinement therewith one or more container means such as vials, tubes and the like, each of said container means comprising the separate elements of the immunoassay. For example, there may be a container means containing a solid phase support, and further container means containing the detectably labeled immunoglobulin-like molecule or fusion protein in solution. Further container means may contain standard solutions comprising serial dilutions of analytes such as gp120 or fragments thereof to be detected. The standard solutions of these analytes may be used to prepare a standard curve with the concentration of gp120 plotted on the abscissa and the detection signal on the ordinate. The results obtained from a sample containing gp120 may be interpolated from such a plot to give the concentration of gp120.

The immunoglobulin-like molecule or fusion protein of the present invention can also be used as a stain for tissue sections. For example, a labeled immunoglobulin-like molecule comprising CD4 or fragment thereof which binds to gp120 may be contacted with a tissue section, e.g., a brain biopsy specimen. This section may then be washed and the label detected.

The following examples are illustrative, but not limiting the method and composition of the present invention. Other suitable modifications and adaptations which are obvious to this skill in the art are within the spirit and scope of this invention.

EXAMPLES

30

20

Example 1: Preparation of CD4-Ig cDNA Constructs

The extracellular portion of the CD4 molecule (See Madden, P.J., et al., Cell 42:93-104 (1985)) was fused at three locations in a human IgG1 heavy chain constant region gene by means of a synthetic splice donor linker molecule. To exploit the splice donor linker, a BamHI linker having the sequence CGCGGATCCGCG was first inserted at amino acid residue 395 of the CD4 precursor sequence (nucleotide residue 1295). A synthetic splice donor sequence

40

GATCCCGAGGGTGAGTACTA GGCTCCCACTCATGATTCGA

45

bounded by BamHI and HindIII complementary ends was created and fused to the HindIII site in the intron preceding the CH1 domain, to the EspI site in the intron preceding the hinge domain, and to the BanI site preceding the CH2 domain of the IgG1 genomic sequence. Assembly of the chimeric genes by ligation at the BamHI site afforded molecules in which either the variable (V) region, the V+CH1 regions, or the V. CH1 and hinge regions were replaced by CD4. In the last case, the chimeric molecule is expected to form a monomer structure, while in the former, a dimeric molecule is expected.

On such genetic construct which contains the DNA sequence which encodes CD4 linked to human IgG1 at the Hind3 site upstream of the CH1 region (fusion protein CD4H₇1) is depicted in Table 1. The plasmid containing this genetic construct (pCD4H₇1) has been deposited in E. coli (MC1061/P3) at the American Type Culture Collection (ATCC) under the terms of the Budapest Treaty and given accession number 67611.

A second genetic construct which contains the DNA sequence which encodes CD4 linked to human IgG1 at the Esp site upstream of the hinge region (fusion protein CD4E₇1) is depicted in Table 2. The

plasmid containing this genetic construct (pCD4E₇1) has been deposited in E. coli (MC1061.P3) at the ATCC under the terms of the Budapest Treaty and given accession number 67610.

A third genetic construct which contains the DNA sequence which encodes CD4 linked to human IgM at the Mst2 site upstream of the CH1 region (fusion protein CD4Mu) is depicted in Table 3. The plasmid containing this genetic construct (PCD4Mu) has been deposited in E. coli (MC1061/P3) at the ATCC under the terms of the Budapest Treaty and given accession number 67608.

A fourth genetic construct which contains the DNA sequence which encodes CD4 linked to human IgM at the Pst site upstream of the CH2 region (fusion protein CD4Pu) is depicted in Table 4. The plasmid containing this genetic construct (PCD4Pu) has been deposited in E. coli (MC1061/P3) at the ATCC under the terms of the Budapest Treaty and given accession number 67609.

A fifth genetic construct which contains the DNA sequence which encodes CD4 linked to human lgG1 at the Ban1 site downstream from the hinge region (fusion protein CD4B $_{\gamma}1$) is depicted in Table 5.

Two similar constructs were prepared from the human IgM heavy chain constant region by fusion with the introns upstream of the μ CH1 and CH2 domains at an MStII site and a PStI site respectively. The fusions were made by joining the PStI site of the CD4/IgG1 construct fused at the Esp site in IgG1 gene to the MStII and Pst sites in the IgM gene. In the first instance, this was performed by treatment of the Pst end with T4 DNA Polymerase and the MStII end with E. coli DNA Polymerase, followed by ligation; and in the second instance, by ligation alone.

Immunoprecipitation of the fusion proteins with a panel of monoclonal antibodies directed against CD4 epitopes showed that all of the epitopes were preserved. A specific high affinity association is demonstrated between the chimeric molecules and HIV envelope proteins expressed on the surface of cells transfected with an attenuated (reverse transcriptase deleted) provinal construct.

25

30

35

40

45

50

Table 1

70					F N U 4 H	N S P B		8 8 V	}	M N L		H G A	;	DH RA AB	U 9				B S T X 1		
	1	GCCTG CGGAC											- + -							• •	60
20		DBS DAF EN1 122	AD VR AA 2 22	AM9 416 //		D D E 1	F	SHNA RALU NEAS 2346	\ J 5				l l	4 N	HM AN EL 31				S HNC PCR AIF 211		
	61	CCGAC																			120
25								•		F				•			M F	N	R	G	•
30		H I N F I GAGTO	ссст	TTT/	AGGC/	B B V 1 ACTT	GC⊤	TCTO	GCT (NU4H	GCA	ACTO		HH HA AE 12 GCT	ССТ	ccc.	N U 4 H	M N L 1	D D E 1 CAC	TC	180
35	121	CTCA	GGGA	AAA1		TGAA	CGA/	AGA(CA(GA(CGT	TGA	CCG	CGA	GGA	GGG	TCG [*]	TCG	GTG T	AG	
40		B B V 1 AGGG	C 0	E C O K			GGG	CAA	V AAA	AGG	`	TAC	AGT	GGA.	# ACT	•		R S A 1 TAC	A L U 1 AGC		240
45	181	TCCC	r K	тт к '	CACC V V	ACGA L	CCC	GTT K	ПТ К	TCC	CCT D	ATG	TCA V	CCT E	TGA L	CTG T	GAC.	ATG	TCG		240

12

50

```
В
                         В
                         0
5
          CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA
      241 ----
          GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
                                                      KILGN-
10
                                     KNSNQ
                                                   Ī
            QKKSIQF
                                S
                  В
                         F
                 NBS
                                                U
                                VU
                         0
                 LAP
15
                                                3
                                A9
                         Κ
                 AN1
                                26
                 422
          ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA
          TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT
20
            Q G S F L T K G P S K L N D R A D S R R -
                                                Н
                                       S
                      S
                                                               I D
                                                I
25
                                       BA
                   MANAS
                                                               N D
                                                    F
                                       CU
                   BYLUT
                                                               FE
                   DAA9Y
                   22461
          GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT
30
       361 ---
           CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA
                            NFPLIIKNLKI
35
                                    S
                                   MAMA
                       M
                                   VNUN
                       N
                В
                                                          Ε
                                   AL9L
                0
40
                                   2161
                                   //
           CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG
           GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC
 45
             D T Y I C E V E D Q K E E V Q L L V F G -
```

13

50

5												B S P M							S T Y 1			
·	481	CTAAC									- 4			-+-				+	GAČ(•	540
10		L	T	A	N	\$	D	T	Н	L	L	Q	G	Q	\$	L	T	L	T	L	E -	-
15		ì	B BS AP N1 22	B S T N	C R F 1				D D E 1		(N L	1	H I N F	S T Y 1							
20	541	TCTC																			-+	600
		S	P	P	G	S	S	P	S	٧	Q	С	R	S	Ρ	R	C	K	N	I	Q	•
25								M B 0 2	MD ND LE		N ASP LPV UBU 122	!	A B L A U N		SC AR	B S T X 1	B A N	L	BS SC TR NF 11	-		
30		AGGG	GGG	GAA	GAC	:001	CTO	CGI	rgtc	TCA	// TODI		GCT	/ / CCA		ATA(STG	CA(/ CTG	GAC		
	601	TCCC	ccc	сп	CTO	GGA	\GA(GGC/	ACAG	AGT	CGA	CCT	CGA	GGT	CCI	AT(AC(GT	GGAC	CTG		660
35		C	G	K	T	L	S	٧	S	Q	L	Ε	L	Q	D	\$	C	T	W	T	C	-
40		N NS LP AH 31										M B 0 2				1			NM HA EE 11	A L U 1		
45	661	CGTO						-4-										-+-			-+	720
		Ŧ	V	ı	۵	N	Ω	K	K	V	Ε	F	K	I	D	I	V	V	L	A	F	-

5				HS AT EU 31	1			M N L	M N L		٠					•••	•	^	e T e	c = -	•	
72															TGT			4			- +	780
10		1	K	A	S	S	I	٧	Y	K	K	Ε	C	Ε	Q	٧	Ε	F	S	F	P	-
: 1 5								!	A L U						A L U		N L					
78															I GCT						-	840
20	GTG		CG(GAA F	ATG T	TCA V	ACT E	П К	CGA:	CTG T	CCC G	GTC. S	ACC G	GCT E	CGA L	CAC:	CAC:	Q	CCG A	E	R	•
- 25	•	•	Пс	ירדנ	H P H 1	i	P M F N L L M 1 1	M A N U L 3]	CAC	сп	TGA	.cc1	GA/	A GAA	ICA A		M B O 2	·GT0	TOT	` A A	•••
84 30															CT	GTT	CCT	TCA	CAC	ACA	ιП	,
35	ı		S B SM	5	S 85		S PS NPA	₩	I	T	F	D	L	K	N A I	Н	E	٧	\$	V	, K	•••
33			TA EE 23		TI	RVRI FAA	LUU[AM9[416]) E	L U 1						L I						٠	
40 9 (AGG									AGC TCG							
	77	GC R	(CC)	_	_	_	_	K		AUU Q	M	G				P		Н		T	ι	-

```
BSS
            BS
                                              SCAHM
            SC HS
                                              TRUAN
            TR AT
                                              NF9EL
            NF EU
                                              11631
                             1
            11-31
                                                        ---- 1020
        ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
10
                                   GNLTLALEAK-
                                 S
                              G
                                 BS
                                 SC
                                                PD
                                                     L
                                 TR
15
                                                HE
                                                     U
                                 NF
                                                1 1
                                  11
        AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
                                                          --+ 1080
    1021 -----
20
        TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
                                           RATQLQK-
          TGKLHQE
                                PS
25
                             ADNNPA
                                        DF
                                           MA
                                                  DS
                                                     L
                                        DA
                                           LN
                             VRLLUU
                                                  EΡ
                                                     U
                                        EN
                                           UL
                                           11
                                                  11
                                        11
30
         AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
                                                 ----- 1140
     1081 -----
         TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGGATTCGACTACGACTCGAACTTTG
                            GPTSPKL
                                               W L S L K L -
            LTCEVW
35
                                                          DM
                                          Н
                                                          DS
                                          P
                                                    N
          N
                                                          ET
          L
                                                           12
40
         TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCŤG
     1141 -----
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCCACGACTTGGGAC
45
           ENKEAKVSKRE
                                       K P
```

16

50

```
PS
                                             ADPA
                                                      I
                           F
                              D
 5
                                             VRUU
                                                      N
                           0
                              D
                                   NV
                                                      F
                              Έ
                                             AAM9
                                 Ε
                                             2215
                                 3
                                              ///
          AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
. 10
                                                  ----- 1260
      1201 -
          TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                             LSDSGQVLLESNI-
 15
                                   SA
                                       BHF BS
                            S
                                                        RSD I A
                                 HNCP
                                       SCHMAANXA
                          ANA
                                       PIUNMULHV
                                                        SCD N L
                          VLU
                                 PCRA
                                                         AAE D U
                                       1ADLH3AOA
                          AA9
                                 AIFL
                                                         111 3 1
                          236
                                       21211A421
                                 2111
                                        1111
20
                                  //
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
                                                     ·---- 1320
      1261 -----
          AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
                                          D
 25
              VLPTW
                           S
                              T P
                                   ٧
                                                         В
                       BS
                                                         S
                                                     D
                      H SC HS
                               S
                                                         P
                                                     D
                               T
                                      N
                                                   N
                      A TR AT
          P
                                                         M
                                                     Ε
 30
                      E NF EU
                               Y
          н
                                                     1
                      3 11 31
                               1
           1
           1321 -
           35
                                             В
                            BH
                В
                                                  F
                                             BS
                                                             н
                                         N
                            SG
               BASHBHHNN
                                                             G
                                             AP
                                         L
                            PI
               AHPHBAPAL
                                         A
                                             N1
                                                             A
               NAMAEEHRA
                            18
 40
                                         3
                                             22
                                                  1
               121112114
                            21
           CAGGTGGCGCCÁGCAGGTGCACACCCAATGCCCATGAGCCCAGACACTGGACGCTGAACC
                 ______1440
      1381 -
           GTCCACCGCGGTCGTCCACGTGTGGGTTACGGGTACTCGGGTCTGTGACCTGCGACTTGG
 45
                                                             FN
                                        B SS
                                               B S
                                S
                           BS
                                                             NS
                           SC DNHA
                                       H SMAAHNABSAC
             N
                                                             UP
                                       H TNUUALPAPLR
                  N
                           TR RLAU
             U
                                                             DB
                                       A NL99EAAN1UF
                           NF AAE9
             D
 50
                                       1 11663412211
                                                              22
                           11 2436
           TEGEGGACAGTTAAGAACCEÁGGGGÉCTETGEGECTGGGÉCÉÁGÉTETGTECEACACEGÉ
                                                         ----- 1500
       1441 --
           AGCGCCTGTCAATTCTTGGGTCCCCGGAGACGCGGACCCGGGTCGAGACAGGGTGTGGCG
 55
```

```
855
                                                            BS
                                       S BMDMHNABSAA
                                                            SCB
                               NM
          MS
                 BNN
                                       T BBRNALPAPUU
                                                            TRA
                               UN
          AA
                 ALL
5
                                                            NFN
                                       Y VOALEAAN199
          EC
                               4L
                 NAA
                                                            111
                               H1
                                       1 12213412266
          32
                 134
          GGTCACATGGCACCACCTCTCTTGCAGCCTCCACCAAGGGCCCATCGGTCTTCCCCCTGG
     1501 ---
10
          CCAGTGTACCGTGGTGGAGAACGTCGGAGGTGGTTCCCGGGTAGCCAGAAGGGGGACC
                                 ASTKGPSVFPLA-
                                    B NES
                                            BS
                         BH
                                   MSB SNAH
                                            SC
                                                N
                                                    SC
                        MSG
15
                                   NPB PUUA
                                                U
                                                    TR
                                            TR
                        NPI
                                           NF
                                                    NF
                                   L1V B49E
                        L1A
                                   121 2H63
                                            11
                                                    11
                        121
          CACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACT
20
          GTGGGAGGAGGTTCTCGTGGAGACCCCCGTGTCGCCGGGACCCGACGGACCAGTTCCTGA
            PSSKSTSGGTAALGCLVKDY-
                                                     NF
                                                              BH
25
                                                          P
                                                              SG
                                                     SN
                                      D
                                         BANHBHN
                    H M
                           T
                                                     PU
                                                             PI
                           T
                                      D
                                         AHAHBAL -
                    PA
                                                              18
                    A E
                                      E
                                         NARAEEA
                                                     84
                           H
                                Н
                                                     2H
                                                              21
                                          1211124
                    2 3
30
          ACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACA
          TGAAGGGGCTTGGCCACTGCCACAGCACCTTGAGTCCGCGGGACTGGTCGCCGCACGTGT
            FPEPVTVSWNSGALTSGVHT-
35
                S
                                                     M SM
                                            D
                                                 N
                              DM
                                  I
               HNC
                                                     N TA
                                                           В
                                            D
                                                 U
                              DS
                                  N
                                      N
               PCR
                                                     L EE
                                                           ٧
                                  F
                                            Ε
               AIF
                              ET
                                                     1 23
                                                           1
                                      1
                              12
               211
40
          CCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGC
                                                              --+ 1740
      1681 -----
          GGAAGGGCCGACAGGATGTCAGGAGTCCTGAGATGAGGGAGTCGTCGCACCACTGGCACG
            FPAVLQSSGLYSLSSVVTVP-
45
                 F B
           В
                 N ASM B NSB
                                               I
           SH
                 U LTN A LPB
                                              N
           PP
                 4 UXL N A1V
           1H
50
                 H 111
                       1 421
           21
           CCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACA
           GGAGGTCGTCGAACCCGTGGGTCTGGATGTAGACGTTGCACTTAGTGTTCGGGTCGTTGT
            SSSEGTQTYICNVNHKPSNT-
55
```

```
HM
                                  HM
        5
                                  PN
        Ť
5
                                  HL
                               EL
                               31
                                  11
        _____ 1860
        1801 -
10
                 K
                   K
                                                     F
                                                  BS
                                        F
                                   SS
                        BS
                 E
                                                 BSC
                                        N
                                 HHNCF
                CHH
                        SC
            DE
                                                 BTR
                                        U
15
                                 PGCRA
                        TR
                 DHA
                     0
            DS
                                                 VNF
                                 AAIFN
                 4AE
                     K
                        NF
             ΕP
                                                 111
                                 21111
                 712
                     1
                        11
             11
         GCAGGCTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCÁGGGCAGCA
20
         CGTCCGAGTCGCGAGGACGGACCTGCGTAGGGCCGATACGTCGGGGTCAGGTCCCGTCGT
    1861 -
                               S
                  S
                                                 MNDM
                             HMNCN
             DBHMHNA
                                                 NLDB
                                          N
25
                             PNCRL
             RBABPLU
                                                 LAED
                             ALIFA
             AVEDHA9
                                                  1312
                             21114
             2132146
         30
         1921
                                                        BS
                                                  В
                              P
                          BS
                                                        SC
                                                  S
                                              BN
                          SC
                                                        TR
                                               L
                                                 P
35
                          TR
                                                        NF
                                              N
                                               Α
                                                  1
                          NF
                                                        11
                          11
         GAGGGTCTTCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCA
                                                     ----- 2040
40
         CTCCCAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGT
                                                      S
                                             В
                                   В
                   В
           S
                                                     HNC
                                                         A
                                             5
                                  DBS
                   S
         DHA
                                                          ٧
                                             P
                                                     PCR
                                                N
                                  DAP
45
                   P
         RAU
                                                     AIF
                                                          A
                                             M
                                  EN1
                   M
          AE9
                                             1
          236
         GGÉCCTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAG
50
         CCGGGACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTC
     2041 ---
```

```
PS
         DNPA
                                      H
                                                     D
                      D
         RLLU
                                                     Ε
                       Ε
                                      E
         AAM9
         2416
         GACCCTGCCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCGGA
     2101
10
         CTGGGACGGGGACTGGATTCGGGTGGGGTTTCCGGTTTGAGAGGTGAGGGAGTCGAGCCT
                                                         В
                                                   P
                                                        BS
                        I
                           M
                             MM
                                                   S
                                                        AP
                        N
                           N
                              AB
15
                                                        N1
                              E0
                                                        22
                           1
                              32
         CACCTTCTCTCCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGAGCCCAAATCT
                                                            --- 2220
20
         GTGGAAGAGAGGGGTCTAAGGTCATTGAGGGTTAGAAGAGAGACGTCTCGGGTTTAGA
                                                    E P
                                                          K S
                                                  BS
                                    B8S
25
                                                  SC HS
                          NS
                                    SSC
                          LP
                                    PTR
          A
                                                  NF EU
         Ε
                          AH
                                    1NF
                                    211
                                                  11 31
          3
                          31
30
          2221 --
         CDKTHTCPPCP
35
                                             BS
                                                S
                                                      S
                                                           HNC
                                             SC
                                                F
                                                    DHNA
                        BN
                            SM F
                                                           PCR
                                             TR
                                                    RALU
                            PA 0
                        AL
              N
                                                           AIF
                            1E K
                                             NF
                                                   AEA9
                        NA
           u
                                                           211
                                             11
                                                    2346
                            21 1
40
     2281 --
          TCGAGTTCCGCCCTGTCCACGGGATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGGCCC
45
                                                        S
                                                BS
                                                SC
                                          M
                                                TR
                                                    B VLU B
                                          N
                                  D
                A
                   В
               F
                                                NF
                                                    0 AA9 0
                Ε
                   0
                                                    2 246 2
50
                                                              -+ 2400
          ACGACTGTGCAGGTGGAGGTAGAGAAGGAGTCGTGGACTTGAGGACCCCCCTGGCAGTCA
55
                                                   G
                                                      G
                                           Ε
```

```
SS
                                               M HMANNAC DM
                                           AN
                                               N PNVCLUR DS
                             T
                                               L ALAIA9F ET
                                                            Ε
5
                                           3A
                                               1 2121461 12
          CTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCAC
                                                     ____ 2460
     2401 --
          GAAGGAGAAGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTG
10
                                            ISRTPEVT
                              K D
                                    T
                        K P
             N
                                                           RM
                                 M
                                        DM
            NS
15
                                                           SA
                                                               N
                                             В
                                 N
                                        DS
            LP
                                             0
                                                           AE
                                                               L
                                        ET
                        Ε
            AH
                                             2
                                        12
            31
          ATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGA
20
                                                      ----- 2520
          TACGCACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCT
                         V S H E D P E V K F N W Y V
25
                                        F FN
                                        N NSS
                                                     R
                                                                5
                                                     5
                                        U UPA
                                                              Ε
                                        4 DBC
                                                              2
                                        H 222
30
                                          //
           CGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTA
      2521 -----
           GCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCAT
                                     KPREEQYNSTY-
35
                               K
                                  T
                                        BS
             S
                                                               R
                                        SC
           HNC HH
                                                               S
                                        TR
           PCR GP
                                        NF
           AIF AH
40
                                        11
           211 11
           CCGGGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAA
           GGCCCACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTT
45
                                                   NGKEYK-
                                           D
                                     н
                                        0
50
            GTGCAAGGTCTCCAACAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAA
                                                     _____ 2700
       2641 --
            CACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTT
            C K V S N K A L P A P I E K T I S K A K -
55
```

```
S
                                               HHN
                                                     BSAH
               ADNNPMA
                               AHM
                                                     GFUA
                                               APA
                                 AN
               VRLLUNU
5
                                               EAE
                                                     LI9E
                                 EL
               AAAAML9
                                                     1163
                                               321
               2244116
                1111-1
          AGGTGGGACCCGTGGGGTGCGAGGGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTG
                                                    ----- 2760
     2701 -
10
          TCCACCCTGGGCACCCCACGCTCCCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGAC
                       N
                       S
                           R
                                                N
            DM
                                                          8
                           S
            D
              N
15
            1 1
          CCCTGAGAGTGACCGCTGTACCAACCTCTGTCCTACAGGGCAGCCCCGAGAACCACAGGT
                                     -+----- 2820
     2761 ---
          GGGACTCTCACTGGCGACATGGTTGGAGACAGGATGTCCCGTCGGGGCTCTTGGTGTCCA
20
                                                Q P
                                                     REP
                                                             0 V -
                                                BS
                                                                 BS
                              SS
                          AHNNCCS
                                          F
                                                SC
                                                                 SC
           RF
25
                          VPCCRRM
                                          0
                                                TR
                                                                 TR
           S 0
                          AAIIFFA
                                                NF
                                                                 NF
                          1211111
                                                11
                                                                 11
                            /////
          GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT
30
      2821 --
          CATGTGGGACGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGA
                               DELTKNQVSL
                                                          Ţ
           В
                                                            N
           S
                                                            U
           P
40
           GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGA
           CCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCT
                            SDIAVEWESNGQPE-
45
                                      MI
              В
                                      N
                                        N
                                            В
              В
                                        F
                                            0
50
                                      1 1
           GAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAG
           CTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTC
55
                                        D S
                                             D
                                                 G
                                                  SF
                                                        FLYS
```

5		1	A L U			B S P M 1					F NM UB 40 H2	} }		A E 2	BX BM VN			N L A 3	A N 1	M N L		
10	3001				CGT			- + -							.			- + -			+	3060
15	i	K	L	T	٧	D	K	S	R	W	Q	Q	C	N	٧	F	\$	C	s s	٧	М	-
20		N S I 1	A												-	M B 0 2	M N L	HN PC AI 21	C R F			
	3061				TCT AGA			- + -			+				.			-+-			+	3120
25		н	Ε	A	L	н	N	н	Y	T	Q	K	\$	L	S	L	\$	P	C	K	•	
30				FM/ RAI 13:	HHN APA EAE 321									•								٠,
35	3121				CGG	- 3:	133															

```
Table 2
                                                 S
                                                            S
                                               DHA
                                                            Ť
                                           G
                                               RAU
                                               AE9
                                               236
          CCCTGTTTGAGAAGCAGCGGGCAAGAAGACGCCAAGCCCAGAGGCCCTGCCATTTCTGTG
10
          CGGACAAACTCTTCGTCGCCCGTTCTTTCTGCGTTCGGGTCTCCGGGACGGTAAAGACAC
                  PS
             В
                                S
                                                            S
                                             M
                                                 HM
                                                           HNC
           DBS ADNPA
                          D
                             DHNA
15
                                                 AN
                                                           PCR
                          D
           DAP VRLUU
                             RALU
                                                 EL
                                                           AIF
           EN1 AAAM9
                             AEA9
                             2346
                                                           211
           122 22416
20
          CCGAGTCCAGGGATGACCGAGTCCGGGGACGGAGGGGAGCCGTTCCGGTGTTACTTGGCCC
                                                      WNRG-
25
                                    Ν
                                             HH
                                   U
                                             HA
                                             AE
                                             12
30
          GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC
          CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG
              P F R H L L L V L Q L A L L P A A
35
            В
                Ε
                  Ε
            В
                C
                  C
                                                        S
40
          AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT
      181 ----- 24(
          TECETTTETTCACCACGACCEGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA
              KKVVLGKKGDTVELTCTAS-
45
                                                      Ι
                        ₿
                        0
50
                        2
          CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA
          GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
55
                           F
              KKS
                     I
                             HWKNS
                                              QIKILGN-
```

```
S
               В
                                          N H
                    F
                         AA
             NBS
                                          UH
                         VU
                    0
             LAP
                                          DA
5
                         A9
             AN1
                                          2 1
                                              1
                                  1
                         26
             422
        ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA
     301 ----- 360
        TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT
10
         Q G S F L T K G P S K L N D R A D S R R -
                               S
                 5
                                                   I D
                                      Ι
                               BA
               MANAS
                                          F
                                                   N D
                                      N
                               CU
15
               EVLUT
                                                   FE
                                      F
                               L3
               DAA9Y
                               18
               22461
        GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT
20
        CTTCGGAAACCCTGGTTCCTTTGAAGGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA
          SLWDQGNFPLIIKNLKIEDS-
                             S
25
                           MAMA
                  M
                           VNUN
                  N
            В
                           AL9L
            0
                           2151
            2
                            //
        CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG
30
     421 ----- 480
        GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC
          D T Y I C E V E D Q K E E V Q L L V F G -
                                 В
35
                                 S
                                                 T
                                 P
                                                 Υ
        GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGACCTTGG
40
     481 ----- 540
        CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC
          LTANSDTHLLQGQSLTLTLE-
              PS
             В
45
            ES
               SC
                         D
                                    I
                                       S
                                       T
            AP
               TR
                         D
                                    N
                                N
               NF
                                        Y
            N1
              11
            22
50
        AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
           ..... 600
        TCTCGGGGGGACCATCATCGGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
          SPPGSSPSVQCRSPRGKNIQ-
55
```

```
BBH S
                                                      BS
                                  N
                                                      SC
                             MD
                                  ASP
                                       A BSSGSC
                                                      TR
                             ND
                                  LPV
                                       L APTIAR
                          В
5
                                       U NINACF
                                                      NF
                          0
                             LE
                                  UBU
                                                      11
                                  122
                                       1 221111
                             11
          AGGGGGGGAAGACCCTCTCCCTGTCTCAGCTGGAGCTCCAGGATAGTGGCACCTGGACAT
      601 ---
10
          TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
           G G K T L S V S Q L E L Q D S G T W T C -
           'n
                                                      NV.
          NS
15
                                                         L
                                                      HA
                                     В
          LP
                                                         U
                                     0
          AH
                                     2
          31
          GCACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
20
      661 ----- 720
          CGTGACAGAACGTCTTGGTCTTCCTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
           TVLQNQKKVEFKIDIVVLAF-
                 HS
25
                          N
                 AT
                 EU
                 31
          TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
30
          AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
             K A S S I V Y K K E G E Q
                                                  EFSFP-
35
                                                   N
                                            U
40
          CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
                                                           --- 840
      781 --
          GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
                  TVEKLTGSGELWWQAER-
45
                                                    В
                        N LN U
                        L ML 3
                    H
50
                        1 11 A
          GGGCTTCCTCCAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
                                                          ---- 900
          CCCGAAGGAGGAGGTTCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
55
            ASSSKSWITFDL
                                          KNKEVSVK-
```

```
PS
                 BS
                 SCADNPAD
           SM
           TA
                 TRVRLUUD
5
                 NFAAAN9E
           EE
                 11224161
           23
        AACGGGTTACCCAGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
        TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
10
          RVTQDPKLQMGKKLPLHLTL-
                                            BSS
            BS
                                            SCAHM
            SC HS
                    D
                                            TRUAN
15
                            N
            TR AT
                    D
                                            NF9EL
                    Ε
            NF EU
                                            11631
                    1
            11 31
        TGCCCCÁGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
20
        ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
          PQALPQYAGSGNLTLALEAK-
                           S
                                BS
25
                                              H D
                                SC
                          F
                                              P D
                                                   L
                                TR
                           A
                                NF
                                              H E
                          N
                                                   1
                                11
        AAACAGGAAAGTT GCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
30
    1021 ----- 1080
        TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
          T G K L H Q E V N L V V M R A T Q L Q K -
35
                              PS
                                               DE
                                      DF
                                         AM
                           ADNNPA
           N
                                         LN
                                               DS
                                      DA
                           VRLLUU -
           ٨
                                               EΡ
                                        UE
                                                  U
                                      EN
                           FAAAM9
                                               11
                                         11
                                      11
                           224416
40
                            /////
        AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
    1081 ----- 1143
        TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGGATTCGACTACGACTCGAACTTTG
          NLTCEVWGPTSPKLMLSŁKL-
45
                                                       DM
                           T
                                        H
                                                       DS
                                                 N
         N
                                                 L
                                                       ET
                           Q
                                                       12
                           1
50
        TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCŤG
                                                    ----- 1200
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
          ENKEAKVSKREKPVWVLNPE-
```

```
PS
                                                        н
                                               ADPA
                                                         I
                                D
                                     Ι
5
                                               VRUU
                            0
                                D
                                     N
                                               AAM9
                                               2216
          AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
10
      1201
           TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                      QCLLSDSG
                                             Q V L L E S N I -
15
                             S
                                    SA
                                         BHF BS
                                  HNCP
                                         SGNMAANXA
                                                           RSD I A
                           ANA
                           VLU
                                  PCRA
                                         PIUNWULHV
                                                           SCD N L
                           AA9
                                   AIFL
                                         1ADLH3AOA
                                                           AAE D U
                           236
                                   2111
                                         21211A421
                                                           111 3 1
20
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
                                                          ----- 1320
          AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
25
                       T
                            STPV
                                             D
                                                   Ε
                        BS
                                     55
                                                     BS
          H
                CHH
                        SC
                                  HHNCF
                                          - N
                                                    BSC
          P
                OHA
                    0
                        TR
                                  PGCRA
                                          U
                                                    BTR
          н
                        NF
                4AE
                                  AAIFN
                                          4
                                                     VNF
30
          1
                712
                        11
                                  21111
                                                     111
          CTTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGC
          GAAGTEGEGAGGAEGGACCTGEGTAGGGCCGATACGTEGGGGTCAGGTCCCGTCGTTCCG
35
           D9HVHN4
                             HYNCN
                                                    MONV
           R645PLU
                             PNCRL
                                            N
                                                     NLDB
           AVEOHA9
                              A_IFA
                                                    LAED
40
           2132146
                              21114
                                                    1312
             11 11
          1381
                                                         ----- 1440
          45
                          BS
                                                    8
                                                            BS S
                          SC
                                                8
                                                    S
                                                            SCDHA
                          TR
                                                    P
                                                            TRRAU
                          NF
                                                    1
                                                            NFAE9
50
                          11
                                                            11236
          GTCTTCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCC
                                                          ----- 1500
          CAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGTCCGG
55
```

```
В
                                    В
                                                         S
                                                             ADNPA
                                                        HNC
                 S
                                  DBS
                                                       PCR
                                                             VRLUU
                                  DAP
                                                        AIF
                                  EN1
                                                             AAAV9
                                                        211
                                  122
                                                             22416
         CTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACC
10
    1501 --
         GACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTCCTGG
                                                    D
                    D
                                    Н
                                                    D
                                    A
                                                            N
                    D
15
                                    Ε
                                                    Ε
                    Ε
                                    3
                    1
         CTGCCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTCCCTCAGCTCGGACACC
                                                           ----- 1620
    1561 --
         GACGGGGACTGGATTCGGGTGGGGTTTCCGGTTTGAGAGGTGAGGGAGTCGAGCCTGTGG
20
                                                       В
                                                       BS
                     I
                           MM
                                                       AP
                           AB
                                                      N1
                                                              Ε
                           ΕO
25
                                                      22
                           32
         TTCTCTCCTCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGAGCCCAAATCTTGTG
                                         ------ 1680
         AAGAGAGGAGGGTCTAAGGTCATTGAGGGTTAGAAGAGAGACGTCTCGGGTTTAGAACAC
30
                                                   EPKSCD-
                                                BS
                                  BES
                        N
                                                SC HS
                        NS
35
                        LP
                                                TR AT
                        FA
                                  1NF
                                                NF EU
                                                11 31
         ACALLATTCACACATGCCCACTGTGCCCAGGTAAGCCAGCCCAGGCCTCGCCCTCCAGCT
40
     1681 -
         THTCP
                               CP
45
                                           BS
                                           SC
                                                  DHNA
                                                          HNC
                         SW F
                         PA 0
                                           TR
                                                  RALU
                                                          PCR
          N
                                           NF
                                                  AEA9
                                                          AIF
                                                          211
                                                   2346
50
         GTTCCGCCCTGTCCACGGGATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGGCCCACGA
```

29

```
85
                                                 SC
                                                 TR
                                                    B VLU B
                                          N
                                                NF
                                                    2 246 2
                                                 11
          CTGTGCAGGTGGAGGTAGAGAAGGAGTCGTGGACTTGAGGACCCCCCTGGCAGTCAGAAG
10
                                     APELLGGPSVF
                                         S
                                                     :5
                          S
                                              M HMANNAC DM
                                                                   NS
                          Ť
                                                                   LP
                                         UL
15
                          Y
                                         34
                                                                   AH
                                               2121461 12
                                                                   31
          CTCTTCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGC
      1861 -
20
          GAGAAGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACG
                                                         Ε
                                                           VT
                                             S
                                      DM
25
                                      DS
                                           В
                                           0
                                                         AΕ
                                      ET
                                      12
           GTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGC
30
                                                             ----- 1980
      1921
           CACCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCG
35
                                                    R
                                 N
                                     4 DEC
                                     H 222
40
           GTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGG
           CACCTCCACGTATTACGGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCC
45
                              TKP
                                      R
                                          Ε
                                            EQYNSTYR
```

30

5		HH GP AH 11) 						M N L		BS SC TR NF 11	: !							R S A 1			
10	2041				- + -				•		·	·			- + -						CACO	2100
		٧	٧	S	٧	L	T	٧	L	Н	Q	D	W	L	N	C	K	Ε	Y	K	C	-
15	٠		GGT	CTC	CAA	CAA	AGC	:001	TCCC	AGC	M N L I	T A Q 1 CAT		GAA	AAC	CAT	СТС	CAA	AGC	CAA	AGGT	
20	2101	TT K	CCA V	GAG	GTT(STT K	TCG	GG	AGGG	TCG	GCC	GTA	GCT E	CTT K	TTG	GTA	GAG S	GTT	700		TCCA	2160
25		A	•	P S PWA UNU	N	•	^	S A U 9	H W A N E L	ı	r N L	•		HHN APA EAE	·	S BSA GFU LI9	H A	•	^	K	D D E	
30	2161	GC	244 /// GAC	116 / / CCG1	•			AGC	3 1 GCC	ACA	3 TGG	 .	GAG	321 GCC	GGC'	116 / TCG	GCC	•			I CCCT GGGA	2220~
35		M N L 1 GA	M A E 3 GAG	TGA(N S P B 2		1	CAA	NCCT	CTG	TCC'	M N L 1	A G G	F N U 4 H GCA	A V A 1 GCC	t ca		B B V 1	ACA	GGT	R F S O A K 1 1 GTAC	
40	2221				• • • •							•			- + -			+	TGT		CATG	2280

5

```
BS B
                                    BS
                     SS
                                                   SC S
                                    SC
                  AHNNOCS
                                    TR
                                0
                  VPCCPRM
                                    NF
                  AAIIFFA
                                K
5
                                                   11 1
                               . 1
                                    11
        2281 --
        10
          LPPSRDELTKNQVSLT
                                                C
                                                  LV
                                                       В
15
                                                       ٧
        AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAAC
        TTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTG
20
                   SDIAVEWESNGQP
            FYP
25
                                               H
                                               P
                                                      NL
                                 В
                                               Н
                                                      LU
                              F
                                 0
                                                      1 1
                            1 1
                                 2
         AACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAG
     2401 -
         TTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTC
                                   DGSFFLYSK
                                              S
35
                 В
                                             NF
                                    MBX
                 S
                            NM
                                                       S
                                             LA
                                    ABM
                 ρ
                            UB
                                                       I
                                            ZAN
                                    EVN
                            40
                                             31
                            H2
40
         CTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCAT
                                                   ----+ 2520
         GAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTA
45
```

32

50

5		N L A													M B 0 2	M N L	HN PC AI 21	R F				
		GA	agc	TCT	GC,	A(A	ACC	ACT.	AÇA	cgc	AGE.	AGA	CCT	CTC	сст	GTC	TCC	ccc	TAA	ATG.	AGTG	
10	2521																	+			TCAC	2580
	٠	Ε	A	L	н	N	Н	Y	T	Q	¥	5	L	S	L	\$	P	C	K	•		
15			CX FW RA 13	E																		
20	2581			coc	-	258	9															
•	,																					
25																						
30																						

0

Table 3

5						N	N S P B		,	B B V	. N L			+ G A	R/	S HA AU E9 36				B S T X 1		
10	1							+	AAG		- + -							+			- +	60
15		D. El	AP N1	ADNA VRLU AAAA 2241	JU /9 16	•	D D E 1		DHN/ RALI AEAS 2346) 9		•		N N L	i -	HW AN EL 31	l			HNC PCR AIF 211		
20	61			GGT(CCT				ccc													120
25																		M	N	R	G	•
30		H I N F 1 GAG	TCC	CTT	ΓΤΑG		B B V	GCT	TCT	G,GT (F N U 4 H GCT	GCA.	A CT(H A	IH IA IE 2	CCT	ccc	F N U 4 .H AGC	N L	D D E 1	TC	
	121	CTC	AGG	GAA	ATC	CGT	GAA	CGA	AGA	CA	CGA	CGT	TGAC	CGC	GA	GGA	GGG	TCG	TCG	GTG.	AG	180
35		٧	Ρ	F	R	Н	L	L	L	٧	L	Q	L	A	L	L	P	A	A	T	Q	•
40		B B V 1 AGG	GA'A	E C D K AGA/	E C D K	GGT	GCT	GGG	CAA	AAA,	AGG:	GGA [*]	TACA	AGTG	(GA/	1 ACT	! GAC		R S A 1 TAC	A L U 1 AGC	π	
	181	TCC	CTT	TCT	ПСА	CCA	CGA	ccc	GTT	111	TCC	CCT	ATGT	CAC	СT	TGA	CTG	GAC.	ATG	TCG	- + A A	240
45		G	K	K	٧	٧	L	G	K	K	G	D	T	٧	Ε	L	T	C	T	A	S	-

50

```
٧
                                                      N
                        9
                          ₿
5
                        2
         CCCAGAAGAAGAGCATACAATTCCACTGCAAAAACTCCAACCAGATAAAGATTCTGGGAA
                                       300
         GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
      241 ----
                     I Q F H W K N S N Q I K I L G N-
10
             K K S
                                              S
                               S
                  В
                               AA
                NBS
                                              U
                               VU
                        0
                LAP
15
                                                   DA
                                              3
                               A9
                AN1
                                                   2 1
                               25
                422
         ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA
                                                         ----- 360
         TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT
20
           QGSFLTKGPSKLNDRADSRR-
                                              Н
                                      5
                     S
                                                             I D
25
                                     BA
                                              I
                  WANAS
                                                             N D
                                                  F
                                     CU
                                              N
                  BYLUT
                                     L3
                  DAA9Y
                                     1A
                  22461
          GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT
30
      361 --
          CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA
                            N F P L I I K N L K I E D S -
35
                                   S
                                 MAMA
                                 VNUN
               В
                      N
                                                        E
                                 AL9L
               0
40
                                 2161
                                  //
          CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG
          GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC
45
            D T Y I C E V E D Q K E E V Q L L V F G -
```

\$5

50

```
В
                                                       S
                                     S
5
        GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGACCTTGG
        CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC
                                                 TLTLE-
10
                                         Q
                                           SL
                                       G
                                    Q
            TANSDTHL
              8
                BS
                            D
                SC
             BS
                                            T
                                   N
                            D
             AP
                TR
15
                NF
             N1
                11
             22
         AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
                                              ----- 600
         TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
20
                             SVQCRSPRGKN
                                                         I Q -
                       S P
           SPPG
                     S
                                                      BS
                                         BBH S
                                               В
                                  N
                                                  BN
                                                      SC
25
                                  ASP
                             MD
                                                      TR
                                  LPV
                         В
                             ND
                                                      NF
                                       U NINACF
                                  UBU
                         0
                             LE
                                                      11
                                       1 221111
                          2
                                  122
                             11
         AGGGGGGGAAGACCCTCTCCGTGTCTCAGĆŤGGAGCTĆCÁGGATAGTGGCACCŤGGACAT
30
                                                     ----- 660 <
      601 -----
         TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
             GKTLSVSQLELQDSGTWTC-
35
          N
                                                       NM
          NS
                                                       HA
                                    В
          LP
                                                       EE
                                                          U
                                    0
          AH
40
          31
          GCACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
      661 -----
          CGTGACAGAACGTCTTGGTCTTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
45
           T V L Q N Q K K V E F K I D I V V L A F-
```

36

50

```
HS
               AT
               ΕU
               31
5
        - TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
         AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
10
          QKASSIVYKKEGEQVEFSFP-
                                        A
                          L
                                              N
                                        L
                          U
                                              L
15
                          1
                                        1
                                              1
         CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
      781 ------ 840
         GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
20
          LAFTVEKLTGSGELWWQ
                                                 AER-
                         S
                  Н
                  P
                                               В
25
                  Н
                                               ٥
                     1 11 A
                                               2
                  1
         GGGCTTCCTCCAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
      841 -----
         CCCGAAGGAGGAGGTTCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
30
          ASSSKSWITFDLKNKEVSVK-
            В
                 BS
                     PS
            SM
                 SCADNPAD
35
            TA
                 TRVRLUUD
                                        L P
            EE
                 NFAAAM9E
                 11224161
            23
                  1 / //
         AACGGGTTACCCAGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
40
     901
                                        ----- 950
         TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
          RVTQDPKLQMGKKLPLHLTL-
45
            BS
                                           855
            SC HS
                    D
                           М
                             Н
                                           SCAHM
            TR AT
                    D
                           N
                             P
                                           TRUAN
            NF EU
                    Ε
                             Н
                           L
                                           NF9EL
            11 31
                                           11631
50
        TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
            ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
          P Q A L P Q Y A G S G N L T L A L E A K-
55
```

```
BS
                             F
                                   SC
                                   TR
                                                 PD
                                   NF
                                                 HE
                                                      U
         AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
10
     1021 --
         TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
               KLHQEVNLVV
                                            RATOLOK-
15
                             ADNNPA.
                                        DF
                                            AN'
                                                  DE
             N
                             VRLLUU
                                        DA
                                           LN
                                                  DS
                             EVALAA
                                                  EP
                                        EΝ
                                           UL
                             224415
                                            11
                                                  11
20
         AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
     1081 ----
                                                  ------ 1140
         TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGATTCGACTACGACTCGAACTTTG
25
           NLTC
                    ΕV
                                  T
                                    S P
                                         KLMLSLKL-
                             T
                                                          DM
          N
                             A
                                                          DS
                                                    N
                             Q
          L
                                                          ET
30
                                                          12
         TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCTG
     1141 ---
            ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
35
           ENKEAKVSK
                                  R E
                                             PS
                                  н
                          F
                             D
                                M
                                  I
                                            ADPA
40
                          ٥
                             D
                                            VRUU
                                  N
                             Ε
                                            AAY9
                                            2216
                                                    1
         AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
45
                                                     ----- 1260
         TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                    QCLLSD
                                    S
                                                   ESNI-
```

50

```
BHF BS
                             S
                                     SA
                                                             RSD I A
                                   HNCP
                                          SCHMAANXA
                            ANA
                                   PCRA
                                          PIUNMULHV
                                                             SCD N L
                            VLU
                                                             AAE D U
                                   AIFL
                                          1ADLH3AOA
5
                            AA9
                                          21211A421
                                                             111 3 1
                                   2111
                            236
                                           1111
          TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
                                                             ----+ 1320
      1261 -----
          AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
10
                      TWSTPVHA
                                              DPE
                                            F
                Ε
                        85
                                      SS
                                                       BS
                                                           F
15
                    F
                CHH
                         SC
          Н
                                   HHNCF
                                            N
                                                      BSC
                         TR
          P
                OHA
                    0
                                   PGCRA
                                            U
                                                      BTR
                                                           U
          H.
                4AE
                    K
                        NF
                                   AAIFN
                                            4
                                                      VNF
                                                           4
                                   21111
                712
                        11
                                            н
          1
                                                      111
20
          CTTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGC
                                                  ----- 1380
          GAAGTEGEGAGGAEGGAECTGEGTAGGGECGATACGTEGGGGTCAGGTECEGTEGTTEEG
25
           DBHMHNA
                              HMNIN
                                                      MNOW
                                             V
                              PN(R_
                                                      NLDE
           RBASPLU
                                             ٨
           AVEOHA9
                              ALIFA
                                                      LAED
                                             Ŀ
           2132146
                              21114
                                                      1312
             // //
30
          TCCGGGGCAGACGGAGAAGTGGGCCTCGGAGACGGCCGGGGTGAGTACGAGTCCCTCTCC
                                                             BS S
                               Ρ
                          BS
                                                      В
35
                               F
                          SC
                                                 BN
                                                      S
                                                              SCDHA
                                                      P
                          TR
                               L
                                              Α
                                                 AL
                                                              TRRAU
                          NF
                                              E
                               M
                                                 NA
                                                      1
                                                              NFAE9
                          11
                                                              11236
40
          GTCTTCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCC
     1441 ----
          CAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGTCCGG
                  В
                                     В
                                                В
                                                          S
                                                                 PS
45
                  S
                                   DBS
                                                S
                                                   M
                                                         HNC
                                                              ADNPA
                  P
                                   DAP
                                                   N
                                                         PCR
                                                              VRLUU
                  M
                                   EN1
                                                   L
                                                         AIF
                                                              AAAM9
                  1
                                   122
                                                1
                                                         211
                                                              22416
                                                               1 11
50
          CTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACC
     1501 ------
                                             1560
          GACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTCCTGG
```

5	D E	H D A A D L E E U 3 1 1	M N L 1
19	GACGGGGACTGGATTCGGGTGGGGTTTC	-+	1520
10	LPLT + AHPKG CP + PKPTPK APDLSPPQR	QTLHSLS AKLSTPSA PNSPLPQL	SDT - RTP - GHL-
15	H I M MM N N AB F L EO	DF DO EK	S F A
	1 1 32	11	1
16	TTCTCTCCTCCCAGATTCCAGTAACTCCC 621 AAGAGAGGAGGGTCTAAGGTCATTGAGGC	+	1680
25	Ē.	G S A	S A P -
	M (N 0 L R	•	
30	AACCCTTTTCCCCCTCGTCTCCTGTGAGA	1714	
35	TTGGGAAAAGGGGGGAGCACTCT T L F P L V S C E N		

Table 4

5																						
10						4	S		•	8 8 7		_		H G A	R	S HA RAU RE9				B S T X		
15	, 1	GCCT CGGA	ACA	AAC	TCT			- 4 -		777	- + -							- + -			+	60
20		DA EN	N1 22 /	ADN VRL AAA 224	UU Y9 16 //	TAC	. [E 1	DHI RAL AEA 234	.U 19 16 /	·Too	cto	רכד	coo	N N L 1	HM AN EL 31	!		r c a a	HNO PCF AIF 211	2	
25	61	CCGA			•			- • • •			-+-			+								120
30		H I N F			•		B B V			_	F N U 4 H				HH HA AE 12			F N U	M	D D E 1		•
35	121	GAGT CTCA V			•	CGT					- + -			GC	GCT(AGC	AGC	CAČ	- •	180
40		B B V	•	ECOK	ECOK	Н		L		v		ų		^	<i>t</i>	L	r		R S A	A L U	4	•
45	181	AGGG TCCC									- + -			- +				•				240

55

5	241	CCCA																				300
10		Q	K	K	\$	I	Q	F	Н	W	K	N	5	N	Q	I	K	I	L	G	N	-
15		ATCA	.cco	NBS LAF AN1 422 /		стт	F O K 1	TAX	S AA VU A9 26 /		ATC		A L U 1	GAA	S A U 3 A	0	H H A	H I N F 1	ICT(· AAC	AA	
20	301	TAGT	ccc	GAG	GAA	GAA	ıπα	ΑTI	псс	AGG	TAG	ςπ	CGA		AC1	AGC	GCC	ACT	GAG	 :T	П	360
		Q	G	S	F	L	T	K	G	P	s	K	L	N	D	R	A	D	S	R	R	-
25				8	S ANA IVLU IAA9 1246	S IT IY					B C L	U 3			H I N. F	A F L 2				H I N F 1	D D E 1	
30	361	GAAG		•	• • •			+			- + -			+				+			-+	420
35		S	L	W	D	Q	G	N	F	P	L	I	I	K	N	L	K	I	Ε	D	S	-
40			M B 0 2			M N L				S AMA VNU AL9	ν Ν L					1		V A E				
		CAGA		ΙΤΑ	CAT	1 CTG	TGA	AGT		216 // GGA	_	GAA	GGA	GGA	GGT	GCA.	ATT	1 GCT	AGT	СП	CG	
45	421			+				•			-+-			+				•			- •	480
		D	T	Y	I	C	Ε	٧	Ε	D	Q	ĸ	Ε	E	٧	Q	L	L	v	F	G	-

```
8
                                     S
                                                       S
                                     Ρ
                                                       T
5
         GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGGCAGAGCCTGACCCTGACCTTGG
         CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC
10
           LTANSDIHLLQGQSLILILE-
              В
                BS
                                            S
                                        I
             BS
                SC
                                            T
15
             AP
                TR
                            D
                                   N
                                        N
                            Ε
                                            Y
             N1
                NF
             22
                11
         AGAGCCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
20
      541 --
         TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
           SPPGSSPSVQCRSPRGKNIQ-
                                         BBH S
                                              В
                                  N
                                 ASP
                                                 BN
25
                             GM
                                      A BSSGSC
                                              S
                         M
                                                     TR
                                                 AL
                         В
                             ND
                                 LPV
                                      L APTIAR
                                              T
                         0
                             LE
                                 UBU
                                      U NINACE
                             11
                                 122
                                      1 221111
                                         |  |||
         AGGGGGGGAAGACCCTCTCCGTGTCTCAGCTGGAGCTCCAGGATAGTGGCACCTGGACAT
30
      601 -----
         TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
           G G K T L S V S Q L E L Q D S G T W T C -
35
          N
                                                     NV
         NS
                                                     HΑ
                                    В
         LP
                                    0
         AH
                                    2
         31
40
         GCACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
         CGTGACAGAACGTCTTGGTCTTCCTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
           TVLQNQKKVEFKIDIVVLAF-
45
                HS
                AT
                          N
                EU
                31
50
          TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGTGGAGTTCTCCTTCC
      721 ----- 780
          AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCCTTGTCCACCTCAAGAGGAAGG
55
                                KKEGEQVEFSFP-
```

```
1
       CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
    781 ----- 840
        GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
10
         LAFTVEKLTGSGELWWQAER-
                    M. FM
                 Н
                                              8
                 P
                    N LN U
15
                    L ML 3
                                              0
                 Н
                    1 11 A
        GGGCTTCCTCCTAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
        CCCGAAGGAGGATCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
20
         ASSSKS WITF DLKNKE VSVK-
                BS PS
           В
                SCADNPAD
                                       A H
           SM.
                                       L P
                TRYRLUUD
           TA
25
                                       UH
                NFAAAM9E
           EE
           23
                11224161
                 1111
        AACGGGTTACCCÁGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
     901 ----- 960
30
        TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
          R V T Q D P K L Q M G K K L P L H L T L -
                                           888
            BS
                                           SCAHY
            SC HS
                    D
35
                                           TRUAN
                             Ρ
                    D
          N
            TR AT
                                           NF9EL
            NF EU
                    E
                             н
                                          11631
            11 31
        TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
40
     961 ------ 1020
        ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
          PQALPQYAGSGNLTLALEAK-
                          S
                               BS
45
                          F
                               SC
                                            H D
                          A
                               TR
                          N
                               NF
                                            HE
                                                 U
                          1
                               11
50
        AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
    1021 -----
                                              ·---- 1080
        TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
                                          ATQLQK-
55
```

```
PS
                             ADNNPA
                                       DF
                                          AM
                                                 DE
5
             N
                             VRLLUU
                                                 DS
                                       DA
                                          LN
                            AAAAM9
                                       EN
                                          UL
                                                 ΕF
                                                    U
                             224415
                                          11 -
                                       11
                                                 11
                             11111
         AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
10
     1081 -----
         TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGATTCGACTACGACTCGAACTTTG
           NLTCEVWGPTSPKLMLSLKL-
                                                         DM
15
                                         P
                                                         DS
                                                         ET
                                                  ı
                                                         12
         TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCTG
20
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCCACGACTTGGGAC
           ENKEAKVSKREKPVWVLNPE-
                                            PS
                                                   н
25
                            D
                                 IA
                                           ADPA
                                                   I
                         ٥
                            D
                                 NV
                                           VRUU
                                                   N
                            Ε
                         Κ
                              Ε
                                                   F
                                          AAV9
                                           2216
                                            ///
30
         AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGGACAGGTCCTGCTGGAATCCAACA
            1260
         TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
           A G M W Q C L L S D S G Q V L L E S N I -
35
                                SA
                                    BHF BS
                          S
                                    SGNVAANXA
                                                     RSD I A
                               HNCP
                        ANA
                                    PIUNMULHV
                                                     SCD N L
                               PCRA
                        VLU
                                                     AAE D U
                                     AGAEHJCA1
                               AIFL
                        AA9
                                     21211A421
                                                     111 3 1
                        236
                               2111
40
         TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTACTAAG
                                                    ----- 1320
     1261 -----
         AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCATGATTC
45
           KVLPT
                       WSTPVHADPE
                     BS
                                 SS
                                                BS F
              CHH F
                     SC
                              HHNCF
                                      N
                                               BSC
         Н
                     TR
                              PGCRA
                                      U
                                               BTR
                                                   U
         P
              DHA
50
                     NF
              4AE .K
                               AAIFN
                                               VNF
         н
              712 1
                     11
                               21111
                                               111
                                                   Н
                                                11
         CTTCAGCGCTCCTGCCTGGACGCATCCCGGCTATGCAGCCCCAGTCCAGGGCAGCAAGGC
     1321 ----- 1350
55
         GAAGTCGCGAGGACGGACCTGCGTAGGGCCGATACGTCGGGGTCAGGTCCCGTCGTTCCG
```

```
5
                                                   MNDY
                            HMNCN
          DBHMHNA
                                                   NLDS
                            PNCRL
          RBABPLU
                                                   LAEC
                             ALIFA
          AVECHA9
                             21114
                                                   1312
          2132146
            II II
10
         BS S
                                                   8
                         BS
15
                                                   S
                                               BN
                                                           SCDHA
                         SC
                              F
                                                   P
                                                           TRRAU
                         TR
                             L
                                                           NFAE9
                                               NA
                                                   1
                         NF
                                                           11236
20
          GTCTTCTGGCTTTTTCCCAGGCTCTGGGCAGGCACAGGCTAGGTGCCCCTAACCCAGGCC
                                                          ----- 1500
          CAGAAGACCGAAAAAGGGTCCGAGACCCGTCCGTGTCCGATCCACGGGGATTGGGTCCGG
                                                              PS
                                                        S
                                   В
                                              В
                 В
25
                                                      HNC
                                                            ADNPA
                                              5
                 S
                                 DBS
                                                      PCR
                                                            VRLUU
                 P
                                 DAP
                                                      AIF
                                                            EVAAA
                                  EN1
                                                      211
                                                            22415
                                  122
30
          CTGCACACAAAGGGGCAGGTGCTGGGCTCAGACCTGCCAAGAGCCATATCCGGGAGGACC
                                                                 1550
     1501
          GACGTGTGTTTCCCCGTCCACGACCCGAGTCTGGACGGTTCTCGGTATAGGCCCTCCTGG
                                                   D
                                   H
35
                                                   D
                                                      L
                    D
                                                   Ε
                                                      U
                    E
                    1
          CTGCCCTGACCTAAGCCCACCCCAAAGGCCAAACTCTCCACTC¶CTCAGCTCGGACACC
                                                          ----- 1520
     1561 -
          GACGGGGACTGGATTCGGGTGGGGTTTCCGGTTTGAGAGGTGAGGGAGTCGAGCCTGTGG
                                                 BP
                                                        DE
                                                            AN
                      I
                                                 BS
                                                        DS
                                                            LU
                           AB
                      N
                         N
45
                                                        EΡ
                                                            U4
                                                 VT
                      F
                            E0
                                                            1H
                                                 11
                                                         11
          TTCTCTCCTCCCAGATTCCAGTAACTCCCAATCTTCTCTCTGCAGTGATTGCTGAGCTGC
                                         ------ 1680
50
          AAGAGAGGAGGGTCTAAGGTCATTGAGGGTTAGAAGAGAGACGTCACTAACGACTCGACG
                                                       AELP-
```

```
BG
5
         CTCCCAAAGTGAGCGTCTTCGTCCCACCCCGCGACGGCTTCTTCGGCAACCCCCGCAAGT
         GAGGGTTTCACTCGCAGAAGCAGGGTGGGGGCGCTGCCGAAGAAGCCGTTGGGGGGCGTTCA
10
           PKVSVFVPPRDGFFGNPRKS-
                                                         BSF
                                          5
                                              Н
                      BS
                                                         SMC N
                                         HNC
                                              I
                                                 В
                      SC H
                                              N B
                                                         TNR U
                                         PCR
                      TR A
             L
15
                                                         NLF 4
                                         AIF
                                                 ٧
                      NF E
             U
                                                          111 H
                      11 3
                                         211
             1
                                                          //
         CCAAGCTCATCTGCCÁGGCCACGGGTTTCAGTCCCCGGCAGATTCAGGTGTCCTGGCTGC
         GGTTCGAGTAGACGGTCCGGTGCCCAAAGTCAGGGGCCGTCTAAGTCCACAGGACCGACG
20
           K L I C Q A T G F S P R Q I Q V S W L R -
                                                                Н
                                          S
                                            BS
25
                                                                I
                                            SCM
                                                      D
                                         AA
                                A٧
             S
         NH
                                         ٧U
                                            TRN
                                                      D
                                                                N
                                HA
         UH
                                                      Ε
                                                           Ε
                                                                F
                                            NFL
                       HA
                                AE
                                         A9
         DA
                                         26
                                            111
                       1 1
                                23
         21
         GCGAGGGGAAGCAGGTGGGGTCTGGCGTCACCACGGACCAGGTGCAGGCTGAGGCCAAAG
30
                                         ._____ 1850
         CGCTCCCCTTCGTCCACCCCAGACCGCAGTGGTGCCTGGTCCACGTCCGACTCCGGTTTC
           E G K Q V G S G V T T D Q V Q A E A K E-
35
              SS
                              В
                                         Н
              AAHNABS
                              SM
                                         P
                              TA
              UUALPAP
                                         Н
              99EAAN1
                              EE
40
                              23
              6634122
          AGTCTGGGCCCACGACCTACAAGGTGACCAGCACACTGACCATCAAAGAG....
                                                              1910
     1861 ---
          TCAGACCCGGGTGCTGGATGTTCCACTGGTCGTGTGACTGGTAGTTTCTC....
45
            S G P T T Y K V T S T L T I K E ....
```

47

```
Table 5
5
                          N
                            S
                                     В
                                                       DHA
                          U
                                     8
                                          N
                                                       RAU
                            В
                                                       AE9
                                          L
                          H 2
                                                       236
10
            CGGACAAACTCTTCGTCGCCCGTTCTTTCTGCGTTCGGGTCTCCGGGACGGTAAAGACAC
                В
                     PS
                                     S
                                                                      S
15
              DBS ADNPA
                              D
                                  DHNA
                                                         HM
                                                                    HNC
              DAP VRLUU
                              D
                                  RALU
                                                         AN
                                                                    PCR
              EN1 AAAM9
                              Ε
                                  AEA9
                                                         EL
                                                                    AIF
              122 22416
                                   2346
                                                         31
                                                                    211
20
            GGCTCAGGTCCCTACTGGCTCAGGCCCCTGCCTCCCTCGGCAAGGCCACAATGAACCGGG
         61 --
            CCGAGTCCAGGGATGACCGAGTCCGGGGGACGGAGGGGAGCCGTTCCGGTGTTACTTGGCCC
                                                                     R
                                                                        G -
25
            Ī
                            В
                                         N
                                                     HH
                            В
                                                    HA
                                                                      D
                                                     ΑE
                                                                      Ε
30
                                                     12
                                                                H 1
            GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC
        121 -
            CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG
35
                 P F R H L L L V L Q L A L L P A A
              В
                   Ε
                   C
                     C
              В
                                                                 S
              ٧
                   0
                     0
                                                                 A
                                                                     U
40
            AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT
            TCCCTTTCTTTCACCACGACCCGTTTTTTCCCCCTATGTCACCTTGACTGGACATGTCGAA
45
                                               T
                                                    E
                                                          T C
                                                       L
                                                              I
                            В
                               В
                                                              N
                            0
50
                            2
           CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA
       241 --
                                                                       -+ 3CC
            GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT
55
                                        KNS
                                                  NQIKILGN-
```

5		ATC	A (3.0.1	NES LAS ANS 423	2	TCT:	F O K I	· T A A	A A A A A A A A A A A A A A A A A A A)) ;	ATC	~ A A	A L U 1	GAA	S A U 3 A	2	H	H I N F 1	ACT (* A A /	^ A A	
70	301										- • -			4				+				360
15	•	Q	C	S		L 5	T	K	G	P		K S	L	N	Ĥ	R	A	D	S	R	R	-
20				2	ANA BVLU BAA9 246)T 9Y 51					B C L	U 3 A			I N F 1	F L 2				I N F 1	D E 1	
25	361.	CTT		•				.			- + -			•				+			•	420
		S	L	W	D	Q	C	N	F	P S	L	I	Ι	. K	N	L	K	I	Ε	D	.	-
30			B 0 2			M N L				AVAI VNUI AL 91 216:	Y N L							M A E 1				
35	421	CAGA		+						GĞA(- +			+				+			-+	480
		D	T	Y	I	C	E	V	Ε	D	Q	K	Ε	E	¥	Q	L	L	V	F	G	-
40								•				B S P M							S T Y			
45	481	GATT		+				• •			• • •			- +		•		•	i GAC		- •	540
		L	T	A	N	\$	D	T	н	L	L	Q	G	Q	S	L	T	L	T	L	E	-

```
BS
               В
                  SC
                              D
                                                S
              BS
                  TR
                              D
                                                T
              AP
                              Ε
              N1
                  NF
5
                              1
                                                1
              22 11
                                      1
         AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC
         TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG
10
           SPPGSSPSVQCRSPRGKNIQ-
                                            BBH S
                                                          BS
                                     N
                                          A BSSGSC
                                                     BN
                               MD
                                    ASP
                                                   S
                                                          SC
                                    LPV
                                                   T
                                         L APTIAR .
                                                      A L
                                                          TR
                           В
                               ND
15
                                         U NINACF
                                                  X
                                                     NA
                                                          NF
                                    UBU
                           0
                               LE
                                    122
                                          1 221111
                                                          11
                               11
                                            | |||
         AGGGGGGGAAGACCCTCTCCGTGTCTCAGCTGGAGCTCCAGGATAGTGGCACCTGGACAT
      601 ---
20
         TCCCCCCTTCTGGGAGAGGCACAGAGTCGACCTCGAGGTCCTATCACCGTGGACCTGTA
           G G K T L S V S Q L E L Q D S G T W T C -
          N
                                                          NY
                                                              A
          NS
25
         LP
                                       В
                                                          HA
          ΑH
                                       0
                                                           EE
                                       2
          31
          GCACTGTCTTGCAGAACCAGAAGAAGGTGGAGTTCAAAATAGACATCGTGGTGCTAGCTT
30
      661 --
          CGTGACAGAACGTCTTGGTCTTCTTCCACCTCAAGTTTTATCTGTAGCACCACGATCGAA
           T V L Q N Q K K V E F K I D I V V L A F-
                 HS
35
                  AT
                  ΕU
                           1
                  31
          TCCAGAAGGCCTCCAGCATAGTCTATAAGAAAGAGGGGGGAACAGGT
40
      721 --
          AGGTCTTCCGGAGGTCGTATCAGATATTCTTTCTCCCCCTTGTCCACCTCAAGAGGAAGG
            Q K A S S I V Y K K E G E Q V E F S F P -
45
                                                       N
                               U
                                               U
          CACTCGCCTTTACAGTTGAAAAGCTGACGGGCAGTGGCGAGCTGTGGTGGCAGGCGGAGA
50
          GTGAGCGGAAATGTCAACTTTTCGACTGCCCGTCACCGCTCGACACCACCGTCCGCCTCT
                                  T G S G E L W W Q A E R -
                  FTVE
```

```
S
                                                 В
                      N LN U
                      L WL 3
                                                 0
5
                                                 2
                      1 11 A
         GGGCTTCCTCCTCCAAGTCTTGGATCACCTTTGACCTGAAGAACAAGGAAGTGTCTGTAA
         CCCGAAGGAGGAGGTTCAGAACCTAGTGGAAACTGGACTTCTTGTTCCTTCACAGACATT
10
           ASSSKSWITFDLKNKEVSVK-
            В
                      PS
                  BS
                  SCADNPAD
            SW
                                          A H
                  TRVRLUUD
                                          L P
            TA
15
            EE
                  NFAAAM9E
                           U
                                          UH
            23
                  11224161
                   1 1 11
         AACGGGTTACCCAGGACCCTAAGCTCCAGATGGGCAAGAAGCTCCCGCTCCACCTCACCC
                                     ----- 960
20
         TTGCCCAATGGGTCCTGGGATTCGAGGTCTACCCGTTCTTCGAGGGCGAGGTGGAGTGGG
          RVTQDPKLQMGKKLPLHLTL-
             85
                                             BSS
25
             SC HS
                     D
                            М
                                             SCAHM
                               Ρ
             TR AT
                     D
                            Ν
                                             TRUAN
            NF EU
                     Ε
                                             NF9EL
             11 31
                                             11631
30
         TGCCCCAGGCCTTGCCTCAGTATGCTGGCTCTGGAAACCTCACCCTGGCCCTTGAAGCGA
     961 ----- 1020
         ACGGGGTCCGGAACGGAGTCATACGACCGAGACCTTTGGAGTGGGACCGGGAACTTCGCT
             QALPQY
                           AGSGNLTLALEAK-
35
                           S
                                BS
                           F
                                SC
                                              H D
                           A
                                TR
                                               D
                                NF
                           N
                                              HE
                                                   U
                                11
                                              1 1
                                                   1
         AAACAGGAAAGTTGCATCAGGAAGTGAACCTGGTGGTGATGAGAGCCACTCAGCTCCAGA
     1021 -----
                                             ----- 1080
         TTTGTCCTTTCAACGTAGTCCTTCACTTGGACCACCACTACTCTCGGTGAGTCGAGGTCT
45
          T G K L H Q E V N L V V M R A T Q L Q K-
```

55

```
PS
                            ADNNPA
                                           AM.
                                                 DE
                                        DA
                                           LN
                                                 DS
                            VRLLUU
                                                 EP
                                                     U
                                        EN
                                           UL
                             AAAAM9
                                                 11
                                        11
                                           11
                             224416
        AAAATTTGACCTGTGAGGTGTGGGGACCCACCTCCCCTAAGCTGATGCTGAGCTTGAAAC
                                                          --- 1140
    1081 -----
        TTTTAAACTGGACACTCCACACCCCTGGGTGGAGGGGATTCGACTACGACTCGAACTTTG
10
                                 T S P
                                         KLM
                                                   S
                    Ε
                                                          DM
                                                   M
                                                          DS
                                          P
                                                   N
         N
15
                                                          ET.
                                                   L
                             Q
         L
                                                          12
                                          2
                             1
          1
         TGGAGAACAAGGAGGCAAAGGTCTCGAAGCGGGAGAAGCCGGTGTGGGTGCTGAACCCŤG
    1141 -----
20
         ACCTCTTGTTCCTCCGTTTCCAGAGCTTCGCCCTCTTCGGCCACACCCACGACTTGGGAC
                             SKREKP
          ENKEAKV
                                             PS
                                                    H
25
                                            ADPA
                                                    I
                                  I
                             D
                                            VRUU
                                                    N
                          0
                             D
                                A
                                  N. V
                                                     F
                             E
                                E
                                  F
                                   A
                                            AAY9
                                            2215
                                             ///
30
         AGGCGGGGATGTGGCAGTGTCTGCTGAGTGACTCGGCACAGGTCCTGCTGGAATCCAACA
                                              ----- 1260
     1201 -----
         TCCGCCCCTACACCGTCACAGACGACTCACTGAGCCCTGTCCAGGACGACCTTAGGTTGT
                         LLSDS GQVLLESNI-
35
                                      BHF BS
                                                            В
                          S
                                  SA
                                                            SH
                                      SCHMAANXA
                                HNCP
                         ANA
                                                            PP
                                      PIUNMULHV
                         VLU
                                PCRA
                                                            1H
                                AIFL
                                      1ADLH3AOA
                         AA9
40
                                                            21
                         236
                                2111
                                      21211A421
         TCAAGGTTCTGCCCACATGGTCCACCCCGGTGCACGCGGATCCCGAGGGTGAGTGTGCCC
                                           1261 ---
         AGTTCCAAGACGGGTGTACCAGGTGGGGCCACGTGCGCCTAGGGCTCCCACTCACACGGG
45
           KVLPTWST
```

52

50

```
S
                        BS
                            S
                                       HNC
          MF
                            F
                               DHNA
                        SC
                                                    В
                                       PCR
          ΑO
                        TR
                               RALU
                                       AIF
5
          EΚ
                        NF
                                AEA9
                                                3 2
                                       211
                                2345
          11
                        11
          TAGAGTAGCCTGCATCCAGGGACAGGCCCCAGCCGGGTGCTGACACGTCCACCTCCATCT
          ATCTCATCGGACGTAGGTCCCTGTCCGGGGTCGGCCCACGACTGTGCAGGTGGAGGTAGA
     1321 ----
:0
                                   S
                            BS
                                                             S
                               M ANA M
                            SC
                     M
             D
                                                             T
                                                       N
                               B VLU B
                     Ν
                            TR
             D
                               0 AA9 0
                            NF
                     L
15
                               2 246 2
                            11
                     1
          CTTCCTCAGCACCTGAACTCCTGGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCA
          GAAGGAGTCGTGGACTTGAGGACCCCCCTGGCAGTCAGAAGGAGAAGGGGGGTTTTGGGT
20
                 A P E L L G G P S V F L F P P K P K -
                                              N
                                SS
                     S
                                             NS
                         M HVANNAC DM
                     AN
25
                                             LP
                         N PNVCLUR DS
                                      A
                     UL
                                              AH
                          L ALAIA9F ET
                                      Ε
                     3A
                                              31
                          1 2121461 12
                     A3
                             1 1 11
          AGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC
30
          TCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACTCGG
                      ISRTPEVTCVVV
               TLW
                                     RM.
35
                   DM
                                     SA
                                         N
                       В
                  DS
           N
                                         L
                                     AΕ
                   ET
                       0
           L
                                     12
                   12
           ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA
40
      1501 ----- 1560
           TGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGT
             EDPEVKFNWYVDGVEVHNAK-
45
                  F FN
                                R
                                          R HNC HH
                  N NSS
              М
                                          S PCR GP
                                S
                  U UPA
               N
                                        Ε
                                          A AIF AH
                  4 DBC
                                          1 211 11
                                        2
                  H 222
50
                    - //
           AGACAAAGCCGCGGGGGGGGGGGGGTACAACAGCACGTACCGGGTGGTCAGCGTCCTCACCG
                                                         ----- 1620
       1561 -----
           TCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCCCACCAGTCGCAGGAGTGGC
             TKPREEQYNSTYRVVSVLTV-
55
```

```
BS
                SC
                TR
           N
                NF
                11
           1
         TCCTGCACCÁGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC
10
                                                        ----- 1680
         AGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTCGGG
           LHQDWLNGKEYKCKVSN
15
                                                              5
                                                              A
                                               ADNNPMA
                    T
                1
                                                              U
                                               VRLLUNU
                    A
                N
                                               AAAAML9
                    Q
                                               2244116
20
         TCCCAGCCCCATCGAGAAACCATCTCCAAAGCCAAAGGTGGGACCCGTGGGGTGCGAG
                                                ----- 1740
     1681 -----
         AGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCACCCTGGGCACCCCACGCTC
25
                  IEKTISKAK
                                                       N
                               S
                                                       5
                                                           R
                        HHN
                             BSAH
          H M
                                                           S
                             GFUA
                 L
                        APA
30
                                                Ε
                        EAE
                             LI9E
           EL
                 A
                 3
                        321
                             1163
           3 1
          GGCCACATGGACAGAGGCCGGCTCGGCCCACCCTCTGCCCTGAGAGTGACCGCTGTACCA
                                       _____ 1800
     1741 -----
35
          CCGGTGTACCTGTCTCCGGCCGAGCCGGGTGGGAGACGGGACTCTCACTGGCGACATGGT
                                                             SS
                         F
                                                          AHNNCC
                                           RF
                                   В
                         N
                                                          VPCCRR
                                            S 0
                                   8
                    N
                         U
                                                          AAIIFF
                                                          121111
                                            1 1
          ACCTCTGTCCTACAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGG
                                                       ----- 1860
      1801
          TGGAGACAGGATGTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCC
45
                              REPQVYTLPPSRD-
```

50

```
BS
                                        BS B
                                        SC S
                   F
                         SC
          S
                                        TR P
                         TR
5
                                        NF M
                         NF
          1
                         11
          ATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCG
                                                     ----- 1920
      1861 --
          TACTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGACCAGTTTCCGAAGATAGGGTCGC
10
            ELTKNQVSLTCLVKGFYPSD-
                                   N
                                            В
15
                                   U
                                     Ρ
          ACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTC
                                                1983
      1921 -----
          TGTAGCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAG
20
                                        ENNYKTTPP-
            IAVENESNGQP
                                                      В
                 Н
                                                      S
                                    Н
               N I
                          N
25
                                    Ρ
                    В
               N N
                                           LU
                                    н
               L F
                                          1 1
               1 1
          CCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
      1981 -
30
          GGCACGACCTGAGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGT
            V L D S D G S F F L Y S K L T V D K S R -
               F
35
                                            N N
                       MBX
                                 NF
               N٧
                                            SL
               UB
                       ABM
                                 LA
                                            IA
               40
                       EVN
                                 AN
                       211
                                 31
               H2
          GCTGCCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACT
40
      2041 -----
          CCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGA
                             SCSVMHEALHNHY-
               O O G N V F
45
                                                CXH
                           M
                                                FMA
                           В
                                                RAE
                                 AIF
                           0
                                                133
50
           ACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGCGACGGCCG
      2101 -----
           TGTGCGTCTTCTCGGAGAGGGACAGAGGCCCATTTACTCACGCTGCCGGC
55
            TQKSLSLSPGK•
```

Example 2: Preparation of the Fusion Proteins from Supernatants of COS Cells

5

COS cells grown in DME medium supplemented with 10% Calf Serum and gentamicin sulfate at 15 µg/ml were split into DME medium containing 10% NuSerum (Collaborative Research) and gentamicin to give 50% confluence the day before transfection. The next day, CsCl purified plasmid DNA was added to a final concentration of 0.1 to 2.0 µg/ml followed by DEAE Dextran to 400 µg/ml and chloroquine to 100 µM. After 4 hours at 37 °C, the medium was aspirated and a 10% solution of dimethyl sulfoxide in phosphate buffered saline was added for 2 minutes, aspirated, and replaced with DME/10% Calf Serum. 8 to 24 hours later, the cells were trypsinized and split 1:2.

For radiolabeling, the medium was aspirated 40 to 48 hours after transfection, the cells washed once with phosphate buffered saline, and DME medium lacking cysteine or methionine was added. 30 minutes later, ³⁵S-labeled cysteine and methionine were added to final concentrations of 30-60 µci and 100-200 µci respectively, and the cells allowed to incorporate label for 8 to 24 more hours. The supernatants were recovered and examined by electrophoresis on 7.5% polyacrylamide gels following denaturation and reduction, or on 5% polyacrylamide following denaturation without reduction. The CD4B₇1 protein gave the same molecular mass with or without reduction, while the CD4E₇1 and CD4H₇1 fusion proteins showed molecular masses without reduction of twice the mass observed with reduction, indicating that they formed dimer structures. The CD4 lgM fusion proteins formed large multimers beyond the resolution of the gel system without reduction, and monomers of the expected molecular mass with reduction.

Unlabeled proteins were prepared by allowing the cells to grow for 5 to 10 days post transfection in DME medium containing 5% NuSerum and gentamicin as above. The supernatants were harvested, centrifuged, and purified by batch adsorption to either protein A trisacryl, protein A agarose, goat anti-human IgG antibody agarose, rabbit anti-human IgM antibody agarose, or monoclonal anti-CD4 antibody agarose. Antibody agarose conjugates were prepared by coupling purified antibodies to cyanogen bromide activated agarose according to the manufacturer's recommendations, and using an antibody concentration of 1 mg/ml. Following batch adsorption by shaking overnight on a rotary table, the beads were harvested by pouring into a sintered glass funnel and washed a few times on the funnel with phosphate buffered saline containing 1% Nonidet P40 detergent. The beads were removed from the funnel and poured into a small disposable plastic column (Quik-Sep QS-Q column, Isolab), washed with at least 20 column volumes of phosphate buffered saline containing 1% Nonidet P40, with 5 volumes of 0.15 N NaCl, 1 mM EDTA (pH 8.0), and eluted by the addition of either 0.1 M acetic acid, 0.1 M acetic acid containing 0.1 M NaCl, or 0.25 M glycine-HCl buffer, pH 2.5.

Example 3: Blockage of Syncytium Formation by the Fusion Proteins

Purified or partially purified fusion proteins were added to HPB-ALL cells infected 12 hours previously with a vaccinia virus recombinant encoding HIV envelope protein. After incubation for 6-8 more hours, the cells were washed with phosphate buffered saline, fixed with formaldehyde, and photographed. All of the full-length CD4 immunoglobulin fusion proteins showed inhibition of syncytium formation at a concentration of 20 μg/ml with the exception of the 4Hγ1 protein, which was tested only at 5 μg/ml and showed partial inhibition of syncytium formation under the same conditions.

Example 4: Chromium Release Cytolysis Assay

The purified fusion proteins were examined for ability to fix complement in a chromium release assay using vaccinia virus infected cells as a model system. Namalwa (8 cell) or HPB-ALL (T cell) lines were infected with vaccinia virus encoding HIV envelope protein, and 18 hours later were radiolabeled by incubation in 1 mci/ml sodium ⁵¹chromate in phosphate buffered saline for 1 hour at 37°. The labeled cells were centrifuged to remove the unincorporated chromate, and incubated in microtiter wells with serial dilutions of the CD4 immunoglobulin fusion proteins and rabbit complement at a final concentration of 40%. After 1 hour at 37°, the cells were mixed well, centrifuged, and the supernatants counted in a gamma-ray counter. No specific release could be convincingly documented.

Example 5: Binding of the CD4Ey1 Protein to Fc Receptors

Purified CD4E_Y1 fusion protein was tested for its ability to displace radiolabeled human IgG1 from human Fc receptors expressed on COS cells in culture. The IgG1 was radiolabeled with sodium **25iocide* using 1 mci of iodide, 100 µg of IgG1, and two idobeads (Pierce). The labeled protein was separated from unincorporated counts by passage over a Sephadex G25 column equilibrated with phosphate buffered satine containing 0.5 mM EDTA and 5% nonfat milk. Serial dilutions of the CO4E_Y1 fusion protein or unlabeled IgG1 were prepared and mixed with a constant amount of radiolabeled IgG1 tracer. After incubation with COS cells bearing the FcRI and RcRII receptors at 4°C for at least 45 minutes in a volume of 20 µI, 200 µI of a 3:2 mixture of dibutyl to dioctyl phthalates were added, and the cells separated from the unbound label by centrifugation in a microcentrifuge for 15 to 30 seconds. The tubes were cut with scissors, and the cell pellets counted in a gamma-ray counter. The affinity of the CD4E_Y1 protein for receptors was measured in parallel with the affinity of the authentic IgG1 protein, and was found to be the same, within experimental error.

15

Example 6: Stable Expression of the Fusion Construct pCD4E₇1 in Baby Hamster Kidney Cells

Twenty-four hours before transfection, 0.5 x 106 baby hamster kidney cells (BHK; ATCC CCL10) were seeded in a 25 cm² culture flask in Dulbecco's modified Eagle's medium (DMEN) containing 10% of fetal calf serum (FCS). The cells were cotransfected with a mixture of the plasmids pCD4Ey1 (20 µg), pSV2dhfr (5 µg; Lee et al., Nature 294:228-232 (1981)) and pRMH140 (5 µg, Hudziak et al., Cell 31:137-146 (1982)) according to a modified calcium phosphate transfection technique as described in Zettlmeissl et al. (Behring Inst. Res. Comm. 82:26-34 (1988)). 72 h post-transfection, cells were split 1:3 to 1:4 (60 mm culture dishes) and resistant colonies were selected in DMEM medium containing 10% FCS, 400 µg/ml G418 (Geneticin, Gibco) and 1 µM methotrexate (selection medium). The medium was changed twice a week. The resistant colonies (40-100/transfection) appeared 10-15 day post-transfection and were further propagated either as a mixture of clones (i.e., BHK-NK1) or as individually isolated clones. For the determination of the relative expression levels, clone mixtures or individual clones were grown to confluency in T25 culture flasks, washed twice with protein-free DMEM medium, and incubated for 24 h with 5 ml protein-free DMEM medium. These media were collected and subjected to a human IgG specific ELISA in order to determine the relative expression levels of the CD4-IgG1 fusion protein CD4Ey1. For further analysis an individual clone (BHK-UC3) was chosen due to its high relative expression levels.

35

Example 7: Detection of the CD4E₇1 Protein in Culture Supernatants

For ³⁵S methionine labeling of cells, the clone BHK-UC3 and untransfected BHK cells (control) were grown to confluency in T25 culture flasks and subsequently incubated for two hours in HamF12 medium without methionine. Labeling was achieved by incubating 24 h in 2.5 ml of the same medium containing 100 µCi ³⁵S methionine (1070 Ci/mmole, Amersham). For the preparation of cell lysates, the labeled cells were harvested in 1 ml of phosphate buffered saline, pH 7.2 (PBS) and lysed by repetitive freezing and thawing. Cleared lysates (after centrifugation 20000 rpm, 20 min) and culture supernatants were incubated with Protein A-Sepharose (Pharmacia) and the bound material was analyzed on a 10% SDS-Protein A-Sepharose (Pharmacia) and the bound material was analyzed on a 10% SDS-gel according to Laemmli (Nature 227:680-685 (1970)), which was subsequently autoradiographed. A specific band of about 80 KDa can be detected only in the supernatant of clone BHK-UC3, which is absent in the lysate of clone BHK-UC3 and in the respective controls.

50

Example 8: Purification of the Protein CD4E₇1 from Culture Supernatants

In order to demonstrate that the fusion protein coded by the plasmid pCD4E₇1 can be obtained in high quantities, the clone BHK-UC3 was grown in 1750 cm² roller bottles in selection medium (500 ml). Confluent monolayers were washed twice with protein-free DMEM medium (200 ml) and further incubated for 48 h with protein-free DMEM medium (500 ml). The conditioned culture supernatants (1-2 l) and respective supernatants from untransfected BHK cells were cleared by centrifugation (9000 rpm, 30 min) and microfiltered through a 0.45 µm membrane (Nalgene). After addition of 1% (v/v) of 1.9 M Tris-HCl buffer.

pH 8.6, the conditioned medium was absorbed to a Protein A-Sepharose column equilibrated with 50 mM Tris-HCl pH 8.6 buffer containing 150 mN NaCl (4°C). The loaded column was washed with 10 column volumes of equilibration buffer. Elution of the CD4-IgG1 fusion protein CD4E₇1 was achieved with 0.1 M sodium citrate buffer, pH 3, followed by immediate neutralization of the column efflux to pH 8 by Tris-base. The peak fractions were pooled, and the pool was analyzed on a Coomassie blue stained SDS-gel resulting in a band of the expected size (80 KDa), and which reacted with a polyclonal anti-human IgG heavy chain antibody and a mouse monoclonal anti-CD4 anti body (BMA040, Behringwerke) in Western Blots. The yields of purified fusion proteins obtained by the given procedure is 5-18 mg/24 h/l culture supernatant. The respective value for a BHK clone mixture (about 80 resistant clones; BHK-NK1) as described above was 2-3 mg/24 h/l.

Example 9: Physical and Biological Characterization of the CD4Ey1 Fusion Protein

As proven by SDS-electrophoresis on 10-15% gradient gels (Phast-System, Pharmacia) under non-reductive conditions, the CD4E $_{7}1$ fusion protein migrates at the position of a homodimer (about 160 KDa) like a non-reduced mouse monoclonal antibody. This result is supported by analytical equilibrium ultracentrifugation, where the fusion protein behaves as a homogeneous dimeric molecule of about 150 KDa. The absorbance coefficient of the protein was determined as $A_{280} = 18 \text{ cm}^2/\text{mg}$ using the quantitative protein determination according to Bradford (Anal. Biochem. 72:248-254 (1976)).

The CD4E_γ1-fusion protein shows specific complex formation with a solubilized βgal-gp120 fusion protein (pMB1790; Broker et al., Behring Inst. Res. Commun. 82:338-348 (1988)) expressed in E. coli. In this protein (110 KDa), a major part of the HIV gp120 protein (Valage-Trp646) is fused to β-galactosidase (amino acids 1-375). In a control experiment a 67-KDa β-gal-HIV 3 orf fusion protein (βgal1-375; 3 orf Pro14-Asp123) showed no complex formation. En these experiments, the CD4E_γ1-protein was incubated with the respective fusion protein in molar rations of about 5:1. The complex was isolated by binding to Protein A-Sepharose and the Protein A-Sepharose bound proteins--together with relevant controls--were analyzed on 10-15% gradient SDS-gels (Phast-System, Pharmacia).

The CD4E₇1 fusion protein binds to the surface of HIV (HIV1/HTLV-IIIB) infected cultured T4-lymphocytes as determined by direct immunofluorescence with fluorescein-isothiocyanate (FITC) labeled CD4E₇1 protein. It blocks syncytia formation in cultured T4-lymphocytes upon HIV infection (0.25 TCID/cell) at a concentration of 10 µg/ml. Furthermore, HIV-infected cultured T4-lymphocytes (subclone of cell line H9) are selectively killed upon incubation with CD4E₇1 in the presence or absence of complement: To a highly (>50%) HIV infected culture of T4-lymphocytes (10⁶ cells/ml) 50, 10 or 1 µg/ml CD4E₇1 fusion protein was added in the presence or absence of guinea pig complement. Cells were observed for specific killing by the fusion protein, which is defined by the percentage of killed cells after 3 days in relation to viable cells in the culture at the beginning of the experiment corrected by the values for unspecific killing observed in control cultures, lacking the CD4E₇1 fusion protein (Table §, Experiment I). Surprisingly, addition of CD4E₇1 protein to the infected T4 cells in the absence of complement resulted in similar specific killing rates as in the presence of complement (Table 5, Experiment II). This result demonstrates a complement independent cytolytic effect of CD4Ey1 on HIV infected T-lymphocytes in culture.

Table 5

45	No. Experiment	Assay System	Specific Killing (%)
	1	non-infected T4-cells + 50 µg/ml CD4Eyl + Compl.	0.7
		infected T4-cells + 50 µg/ml CD4E ₇ l + Compl.	35.1
50		infected T4-cells + 10 µg/ml CD4Eyl + Compl.	25.1
		infected T4-cells + 1 µg/ml CD4Eyl + Compl.	25
	n n	infected T4-cells + 10 µg/ml CD4E ₇ l + Compl.	49.9
		infected T4-cells + 10 µg/ml CD4E ₇ l + Compl.	69.4

Having now fully described this invention, it will be appreciated by those skilled in the art that the same can be performed with any wide range of equivalent parameters of composition, conditions, and methods of preparing such fusion proteins without departing from the spirit or scope of the invention or any embodiment thereof.

Claims

10

- A fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin heavy chain, characterized in that the DNA sequence which encodes the variable region of said immunoglobulin chain has been replaced with the DNA sequence which encodes CD4, or said gp120 binding fragment thereof.
 - 2. The fusion protein gene of claim 1, wherein the DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

		CAATGAACCGGG	
		-+ 120	
	4	GTTACTTGGCCC	
15			
		GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC	
	121		180
20		CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG	
	181	AGGGAAAGAAGTGGTGCTGGGCAAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT	
	101		240
25		TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA	
		CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA	
	241		300
		GGGTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT	300
30		•	
		ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA	
	301		360
		TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT	
35			
		GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT	
			120
		CTTCGGAAACCCTGGTTCCTTTGAAGGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA	
40			
	421	CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG	
45	421		480
•		GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC	
		GATTGACTGCCAACTCTGACACCCACCTGCTTC	
	481		
50		CTAACTGACGGTTGAGACTGTGGGTGGACGAAG	
		·	

or a degenerate variant thereof, or the following DNA sequence:

CAATGAACCGGG -+----- 120 GTTACTTGGCCC

GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG 10 AGGGAAAGAAGTGGTGCTGGGCAAAAAAGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA 15 CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA GGGTCTTCTCCCTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT 20 ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT 25 GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT 361 ------ 420 CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA 30 CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC 35 GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGACCTTGG 40 CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGAACC AGAGCCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAC 45 TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG AGGGGGGAAGACCCTCTCCGTGTCTCAG 50 TCCCCCCTTCTGGGAGAGGCACAGAGTC

or a degenerate variant thereof.

3. The fusion protein gene of claim 1 or 2, characterized in that said immunoglobulin chain is of the class IgM, IgG1 or IgG3.

- 4. A fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin light chain, characterized in that the DNA sequence which encodes the variable region of said immunoglobulin light chain has been replaced with the DNA sequence which encodes CD4, or HIV gp120-binding fragment thereof.
- 5. A fusion protein gene of claim 4, characterized in that the DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

		CAATGAACCGGG	
10		_+ 120	
,,,		GTTACTTGGCCC	
15	121	GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC	180
20	181	AGGGAAAGAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTCACCACGACCGGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCAA	240
25	241	CCCAGAAGAAGAAGATACAATTCCACTGGAAAAAACTCCAACCAGATAAAGATTCTGGGAA GGGTCTTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT	300
30	301	ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT	360
35	361	GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA	420
40	421	CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG	480
45	481	GATTGACTGCCAACTCTGACACCCACCTGCTTC	
50	or a dog	aperate variant thereof, or the following DNA sequence:	

CAATGAACCGGG -+---- 120 GTTACTTGGCCC GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG 10 AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA 15 CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA 20 GGGTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA 25 TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT 30 CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG 35 GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGGCAGAGCCTGACCTTGG 40 CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGGTAAAAAACATAC TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATG AGGGGGGAAGACCCTCTCCGTGTCTCAG

or a degenerate variant thereof.

TCCCCCCTTCTGGGAGGCCACAGAGTC

- 6. A vector comprising the fusion protein gene of claim 1, preferably having the identifying characteristics of pCD4H₇1, which has been deposited under Accession No. 67611, or pCD4Mμ, which has been deposited under Accession No. 67608, or of pCD4Pμ, which has been deposited under Accession No. 67609, or of pCD4E₇1, which has been deposited under Accession No. 67610, all in E. coli at the ATCC under the terms of the Budapest Treaty.
 - 7. A vector comprising the fusion protein gene of claim 4.
 - 8. A host-transformed with the vector of claim 6 or 7.
- 9. The host of claim 8 which expresses an immunoglobulin light chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to gp120 or an immunoglobulin heavy chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to HIV or SIV gp120.
 - 10. The host of claim 9, wherein said immunoglobulin heavy chain is of the immunoglobulin class IgM. IgG1 or IgG3.
 - 11. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and immunoglobulin heavy chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 6, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
 - 12. The method of claim 11, wherein said host strain is a myeloma cell line which produces immunoglobulin light chains and said fusion protein comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein an immunoglobulin-like molecule comprising said fusion protein is produced.
- 13. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin light chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 7, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
- 14. The method of claim 13, wherein said host produces immuno-globulin heavy chains of the class IgM, IgG1 and IgG3 together with said fusion protein to give an immunoglobulin-like molecule which binds to HIV-gp120.
 - 15. A fusion protein, which is preferably detectably labeled, comprising CD4, or fragment thereof which is capable of binding to HIV or SIV gp120, fused at the C-terminus to a second protein which comprises an immunoglobulin heavy chain of the class lgM, lgG1 or lgG3, wherein the variable region of said heavy chain immunoglobulin has been replaced with CD4, or HIV gp120-binding fragment thereof, and preferably further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said fusion protein.
 - 16. The fusion proteins CD4Hγ1, CD4Mμ, CD4Pμ, CD4Eγ1 or CD4Bγ1.
 - 17. An immunoglobulin-like molecule, comprising the fusion protein of claim 15 and an immunoglobulin light chain, preferably further comprising a detectable label, and especially further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said immunoglobulin-like molecule.
 - 18. A fusion protein comprising CD4, or fragment thereof which binds to HIV gp120, fused at the C-terminus to a second protein comprising an immunoglobulin light chain where the variable region has been deleted, and which fusion protein preferably is detectably labeled, especially further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said fusion protein.
 - 19. The fusion protein of claim 15, wherein said CD4 fragment comprises the following amino acid sequence:

50

M N R G
V P F R H L L L V L Q L A L L P A A T Q
G K K V V L G K K G D T V E L T C T A S
Q K K S I Q F H W K N S N Q I K I L G N
Q G S F L T K G P S K L N D R A D S R R
S L W D Q G N F P L I I K N L K I E D S
D T Y I C E V E D Q K E E V Q L L V F G

LTANSDTHLLQ

15 or the following amino acid sequence:

10

45

55

M N R G
V P F R H L L L V L Q L A L L P A A T Q
G K K V V L G K K G D T V E L T C T A S
Q K K S I Q F H W K N S N Q I K I L G N
Q G S F L T K G P S K L N D R A D S R R
S L W D Q G N F P L I I K N L K I E D S
D T Y I C E V E D Q K E E V Q L L V F G
L T A N S D T H L L Q G Q S L T L T L E
S P P G S S P S V Q C R S P R G K N I Q

30
G G K T L S V S Q

20. An immunoglobulin-like molecule comprising the fusion protein of claim 18 and an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, preferably further comprising a detectable label, and especially further comprising a therapeutic agent, radiolabel or NMR imaging agent linked to said immunoglobulin-like molecule.

21. A complex comprising the fusion protein of claim 15 or 18 and HIV or SIV gp120.

- 22. The complex of claim 21, wherein said gp120 is a part of an HIV or SIV, is expressed on the surface of an HIV or SIV-infected cell or is present in solution.
 - 23. A method for the detection of HIV or SIV gp120 in a sample, characterized by
- (a) contacting a sample suspected of containing HIV or SIV gp120 with the fusion protein of claim 15 or 18, and
 - (b) detecting whether a complex is formed, said fusion protein preferably being detectably labeled.

Claims for the following Contracting State: GR

- 1. A vector comprising a fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin heavy chain, characterized in that the DNA sequence which encodes the variable region of said immunoglobulin chain has been replaced with the DNA sequence which encodes CD4, or said gp120 binding fragment thereof.
 - 2. The vector of claim 1, having the identifying characteristics of pCD4H₇1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67611.
 - 3. The vector of claim 1, having the identifying characteristics of pCD4Mu, which has been deposited in E. coli at the ATCC under the terms of this Budapest Treaty under Accession No. 67608.
 - 4. The vector of claim 1, having the identifying characteristics of PCD4PL, which has been deposited in £. coli at the ATCC under the Budapest Treaty under Accession No. 67609.

- 5. The vector of claim 1, having the identifying characteristics of PC4E₇1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67610.
- A vector comprising a fusion protein gene characterized by 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin light chain, wherein the DNA sequence which encodes the variable region of said immunoglobulin light chain has been replaced with the DNA sequence which encodes CD4, or HIV gp120-binding fragment thereof.
 - 7. A host-transformed with the vector of claim 1.
 - 8. The host of claim 7 which expresses an immunoglobulin light chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to gp120.
 - 9. A host transformed with the vector of claim 6.

10

50

- 10. The host of claim 6 which expresses an immunoglobulin heavy chain together with the expression product of said fusion protein gene to give an immunoglobulin-like molecule which binds to HIV or SIV gp120.
- 11. The host of claim 10, characterized in that said immunoglobulin heavy chain is of the immunoglobulin class IgM, IgG1 or IgG3.
- 12. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin heavy chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 1, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
 - 13. The method of claim 12, characterized in that said host strain is a myeloma cell line which produces immunoglobulin light chains and said fusion protein-comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein an immunoglobulin-like molecule comprising said fusion protein is produced.
 - 14. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin light chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with the vector of claim 6, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.
 - 15. The method of claim 14, characterized in that said host produces immuno-globulin heavy chains of the class IgM, IgG1 and IgG3 together with said fusion protein to give an immunoglobulin-like molecule which binds to HIV-gp120.
 - 16. A method for the detection of HIV or SIV gp120 in a sample, characterized by
 - (a) contacting a sample suspected of containing HIV or SIV gp120 with a fusion protein comprising CD4, or fragment thereof which binds to HIV gp120, and 2) an immunoglobulin heavy chain, wherein the variable region of said immunoglobulin chain has been replaced with CD4, or said gp120 binding fragment thereof, and
 - (b) detecting whether a complex is formed.

 - 18. A method for the detection of HIV or SIV gp120 in a sample, characterized by

17. The method of claim 16, characterized in that said fusion protein is detectably labeled.

- (a) contacting a sample suspected of containing HIV or SIV gp120 with a fusion protein comprising comprising 1) CD4, or fragment thereof which binds to HIV gp120, and 2) an immunoglobulin light chain, wherein the variable region of said immunoglobulin light chain has been replaced with CD4, or HIV gp120-binding fragment thereof, and
 - (b) detecting whether a complex has formed.
 - 19. The method of claim 18, characterized in that said fusion protein is detectably labeled.

Claims for the following Contracting State: ES

A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120,
 and an immunoglobulin heavy chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with a vector comprising a fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV

gp120, and 2) the DNA sequence of an immunoglobulin heavy chain, wherein the DNA sequence which encodes the variable region of said immunoglobulin chain has been replaced with the DNA sequence which encodes CD4, or said gp120 binding fragment thereof, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.

2. The method of claim 1, characterized in that said vector has the identifying characteristics of pCD4H₂1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67611.

3. The method of claim 1, characterized in that said vector has the identifying characteristics of PCD4Mu, which has been deposited in E. coli at the ATCC under the terms of this Budapest Treaty under Accession No. 67608.

4. The method of claim 1, characterized in that said vector has the identifying characteristics of PCD4Pu, which has been deposited in E. coli at the ATCC under the Budapest Treaty under Accession No. 67609.

5. The method of claim 1, characterized in that said vector has the identifying characteristics of pCD4E₇1, which has been deposited in E. coli at the ATCC under the terms of the Budapest Treaty under Accession No. 67610.

6. The method of claim 1, characterized in that said host strain is a myeloma cell line which produces immunoglobulin light chains and said fusion protein comprises an immunoglobulin heavy chain of the class IgM, IgG1 or IgG3, wherein an immunoglobulin-like molecule comprising said fusion protein is produced.

7. A method of producing a fusion protein comprising CD4, or fragment thereof which binds to gp120, and an immunoglobulin light chain, wherein the variable region of the immunoglobulin chain has been substituted with CD4, or fragment thereof which binds to HIV or SIV gp120, characterized by cultivating in a nutrient medium under protein-producing conditions, a host strain transformed with a vector comprising a fusion protein gene comprising 1) the DNA sequence of CD4, or fragment thereof which binds to HIV gp120, and 2) the DNA sequence of an immunoglobulin light chain, wherein the DNA sequence which encodes the variable region of said immunoglobulin light chain has been replaced with the DNA sequence which encodes CD4, or HIV gp120-binding fragment thereof, said vector further comprising expression signals which are recognized by said host strain and direct expression of said fusion protein, and recovering the fusion protein so produced.

8. The method any one of claims 1 or 7, characterized in that the DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

35

15

40

45

50

CAATGAACCGGG

- +----- 120 GTTACTTGGCCC 5 GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG 10 AGGGAAAGAAGTGGTGGTGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA 15 CCCAGAAGAAGAGCATACAATTCCACTGGAAAAACTCCAACCAGATAAAGATTCTGGGAA 241 ----- 300 GGGTCTTCTTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT 20 San Maria Carante Carante ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA 301 ----- 360 TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT 25 GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA 30 CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG 421 ------ 480 GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC 35 GATTGACTGCCAACTCTGACACCCACCTGCTTC 481 ---------CTAACTGACGGTTGAGACTGTGGGTGGACGAAG

or a degenerate variant thereof.

40

55

9. The method of any one of claims 1 or 7, characterized in that said DNA sequence which encodes said fragment of CD4 comprises the following DNA sequence:

_		-+ 120	
5		GTTACTTGGCCC	
		GAGTCCCTTTTAGGCACTTGCTTCTGGTGCTGCAACTGGCGCTCCTCCCAGCAGCCACTC	
	121	++++	180
0		CTCAGGGAAAATCCGTGAACGAAGACCACGACGTTGACCGCGAGGAGGGTCGTCGGTGAG	
		AGGGAAAGAAAGTGGTGCTGGGCAAAAAAGGGGGATACAGTGGAACTGACCTGTACAGCTT	
			240
15		TCCCTTTCTTCACCACGACCCGTTTTTTCCCCTATGTCACCTTGACTGGACATGTCGAA	
		CCCAGAAGAAGACATACAATTCCACTGGAAAAAACTCCAACCAGATAAAGATTCTGGGAA	
			300
20		GGGTCTTCTCGTATGTTAAGGTGACCTTTTTGAGGTTGGTCTATTTCTAAGACCCTT	
		ATCAGGGCTCCTTCTTAACTAAAGGTCCATCCAAGCTGAATGATCGCGCTGACTCAAGAA	
	301		
25	551	TAGTCCCGAGGAAGAATTGATTTCCAGGTAGGTTCGACTTACTAGCGCGACTGAGTTCTT	
•			
		GAAGCCTTTGGGACCAAGGAAACTTCCCCCTGATCATCAAGAATCTTAAGATAGAAGACT	
	361		
30		CTTCGGAAACCCTGGTTCCTTTGAAGGGGGACTAGTAGTTCTTAGAATTCTATCTTCTGA	
		CAGATACTTACATCTGTGAAGTGGAGGACCAGAAGGAGGAGGTGCAATTGCTAGTGTTCG	;
	421		
35		GTCTATGAATGTAGACACTTCACCTCCTGGTCTTCCTCCTCCACGTTAACGATCACAAGC	:
		GATTGACTGCCAACTCTGACACCCACCTGCTTCAGGGGCAGAGCCTGACCCTGACCTTGC	;
	481		540
40		CTAACTGACGGTTGAGACTGTGGGTGGACGAAGTCCCCGTCTCGGACTGGGACTGGAACC	:
		AGAGCCCCCTGGTAGTAGCCCCTCAGTGCAATGTAGGAGTCCAAGGGGTAAAAACATAG	:
	541		600
45		TCTCGGGGGGACCATCATCGGGGAGTCACGTTACATCCTCAGGTTCCCCATTTTTGTATC	;
		AGGGGGGAAGACCCTCTCCGTGTCTCAG	
	601		
50		TCCCCCCTTCTGGGAGAGGCACAGAGTC	

68

the class IgM, IgG1 and IgG3 together with said fusion protein to give an immunoglobulin-like molecule

10. The method of claim 7, characterized in that said host produces immuno-globulin heavy chains of

or a degenerate variant thereof.

which binds to HIV-gp120.