Forme Normale

Redundanța

Redundanța este cauza principală a majorității problemelor legate de structura bazelor de date relaționale:

- spațiu utilizat,
- anomalii de inserare / stergere / actualizare

•

Redundanta

- Dependențele funcționale pot fi utilizate pentru identificarea problemelor de proiectare și sugerează posibile îmbunătățiri
- Fie relația R cu 3 atribute, ABC.
 Nici o DF: nu avem redundanțe.

 - Pentru A→B: Mai multe înregistrări pot avea aceeași valoare pentru A, caz în care avem valori identice pentru B!

Tehnica de rafinare a structurii: descompunerea

Descompunerea trebuie folosită cu "măsură":

- Este necesară o rafinare? Există motive de decompunere a relației?
- Ce probleme pot rezulta prin descompunere?

Forme Normale

- Dacă o relație se află într-o *formă normală* particulară avem certitudinea că anumite categorii de probleme sunt eliminate/minimizate → ne ajută să decidem daca descompunerea unei relații este necesară sau nu.
- Formele normale bazate pe DF sunt:
 - prima formă normală (1NF),
 - a doua formă normală (2NF),
 - a treia formă normală (3NF),
 - forma normală Boyce-Codd (BCNF).

 $\{BCNF \subseteq 3NF, 3NF \subseteq 2NF, 2NF \subseteq 1NF\}$

Definiție. O relație se află în *Prima Formă Normală* (1NF) dacă fiecare atribut al relației poate avea doar valori atomice (deci listele și mulțimile sunt excluse)

(această condiție este implicită conform definiției modelului relațional)

Spunem că avem o dependență funcțională parțială într-o relație atunci când un atribut neprim este dependent funcțional de o parte a cheii primare a relației (dar nu de întreaga cheie).

Definiție. O relație se află în *A Doua Formă Normală* (2NF) dacă este 1NF și nu are dependențe parțiale.

Partial dependencies (A not in a KEY)

BCNF

Definiție. O relație R ce satisface dependențele funcționale F se află în *Forma Normală Boyce-* Codd (BCNF) dacă, pentru toate $\alpha \rightarrow A$ din F^+ :

- $A \in \alpha$ (DF trivială), sau
- α conține o cheie a lui R (α este o supercheie).

R este în BCNF dacă singurele dependențe funcționale satisfăcute de R sunt cele corespunzătoare constrângerilor de cheie.

BCNF

A not in a KEY

Definitie. O relație R ce satisface dependențele funcționale F se află în *A Treia Formă Normală* (3NF) dacă, pentru toate $\alpha \rightarrow A$ din F^+

- $A \in \alpha$ (DF trivială), sau
- α este o supercheie pentru R, sau
- A este un atribut prim.
- Dacă R este în BCNF, evident este și în 3NF.
- Dacă R este în 3NF, este posibil să apară anumite redundanțe. Este un compromis, utilizat atunci când BCNF nu se poate atinge.
- Descompunerea cu joncțiune fără pierderi & cu păstrarea dependențelor a relației R într-o mulțime de relații 3NF este întotdeauna posibilă.

A is in KEY

BCNF & 3NF

Forme Normale bazate pe DF

Normalizarea pe scurt

```
Fiecare atribut depinde:
```

```
de cheie, definiție cheie
de întreaga cheie, → 2NF
şi de nimic altceva
decât de cheie → BCNF
```

Normalizarea pe scurt

```
neprim
Fiecare atribut depinde:
       de cheie, definiție cheie
   de întreaga cheie, -----> 2NF
  și de nimic altceva
     decât de cheie 3NF
```

Exemple de nerespectare a FN

2NF - toate atributele neprime trebuie să depindă de întreaga cheie

Exam (Student, Course, Teacher, Grade)

3NF - toate atributele neprime trebuie să depindă doar de cheie

Dissertation(Student, Title, Teacher, Department)

BCNF - toate DF sunt implicate de cheile candidat

Schedule (Day, Route, Bus, Driver)

"Strategia" de normalizare

BCNF prin descompunere cu joncțiune fără pierderi și păstrarea dependențelor (prima alegere)

3NF prin descompunere cu <u>joncțiune fără</u> <u>pierderi</u> și <u>păstrarea dependențelor</u> (a doua alegere)

deoarece uneori dependențele nu pot fi păstrate pt a obține BCNF

Descompunerea în BCNF

Fie relația R cu dependențele funcționale F. Dacă $\alpha \rightarrow A$ nu respectă BCNF, descompunem R în

R - A şi αA .

Aplicarea repetată a acestei idei va conduce la o colecție de relații care

- sunt în BCNF;
- conduc la joncțiune fără pierderi;
- garantează terminarea.

Descompunerea în BCNF

```
Exemplu: R(\underline{\mathbb{C}}, S, J, D, P, Q, V), C cheie, \{JP \rightarrow C, SD \rightarrow P, J \rightarrow S\} Alegem SD \rightarrow P, decompunând în (\underline{S},\underline{D},P), (\underline{C},S,J,D,Q,V). Apoi alegem J \rightarrow S, decompunând (\underline{C},S,J,D,Q,V) în (\underline{J},S) şi (\underline{C},J,D,Q,V)
```

În general, mai multe dependențe pot cauza nerespectarea BCNF. Ordinea în care le ``abordăm'' poate conduce la decompuneri de relații complet diferite! În general, descompunerea în BCNF nu păstrează dependențele.

Exemplu. R(C,S,Z), {CS $\rightarrow Z,Z\rightarrow C$ }

Exemplu. R(C, S, J, P, D, Q, V) în (S, D, P), (J, S) şi (C, J, D, Q, V) nu păstrează dependențele inițiale $\{JP \rightarrow C, SD \rightarrow P, J \rightarrow S\}$).

! adăugând JPC la mulțimea de relații obținem descompunere cu păstrarea dependențelor.

BCNF & redundanță

Exemplu

- 1. Fie $\alpha \rightarrow$ A o DF din F ce nu respectă BCNF
- 2. Descompunem R în R_1 = αA şi R_2 = R A.
- 3. Dacă R_1 sau R_2 nu sunt în BCNF, descompunerea continuă

Descompunerea în 3NF

Evident, procedeul descompunerii din BCNF poate fi utilizat și pentru descompunerea 3NF.

- Cum asigurăn păstrarea dependențelor?
 - Dacă X→Y nu se păstrează, adăugăm XY.
 - Problema este că XY e posibil să nu respecte 3NF! (pp. că adăugăm CJP pt `păstrarea' JP→C. Dacă însă are loc şi J→C atunci nu e corect.)
- Rafinare: În loc de a utiliza mulțimea inițială F, folosim o *acoperire minimală a lui F*.

Redundanța in DF

- Un atribut $A \in \alpha$ e redundant în DF $\alpha \to B$ dacă $(F \{\alpha \to B\}) \cup \{\alpha A \to B\} \equiv F$
- Pentru a verifica dacă $A \in \alpha$ e redundant în $\alpha \to B$, calculăm $(\alpha A)^+$. Apoi $A \in \alpha$ e redundant în $\alpha \to B$ dacă $B \in (\alpha A)^+$

■ *Exercițiu*: Care sunt atributele redundante in $AB \rightarrow C$ având:

$${AB \rightarrow C, A \rightarrow B, B \rightarrow A}$$
?

Redundanța in DF

- O DF $f \in F$ e redundantă dacă $F \{f\}$ e echivalent cu F
- Verificăm că $\alpha \to A$ e redundantă in F, calculând α^+ pe baza F-{ $\alpha \to A$ }. Atunci $\alpha \to A$ e redundantă în F dacă $A \in \alpha^+$
- *Exercițiu*: Care sunt dependențele funcționale redundante în:

$${A \rightarrow C, A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow A}$$
?

Acoperire minimală

- O acoperire minimală pentru mulțimea F de dependente functionale este o multime G de dependente functionale pentru care:
 - 1. Fiecare DF din G e de forma $\alpha \rightarrow A$
 - 2. Pt fiecare DF $\alpha \rightarrow A$ din G, α nu are atribute redundante
 - 3. Nu sunt DF redundante in G
 - 4. G şi F sunt echivalente

Fiecare multime de DF are cel putin o acoperire minimala!

Algoritm de calcul al acoperirii minimale pt F:

- 1. Folosim descompunerea pentru a obtine DF cu 1 atribut in partea dreapta.
 - 2. Se elimina atributele redundante
- 3. Se elimina dependentele functionale redundante

Calcul Acoperire Minimală

Fie F = {ABCD
$$\rightarrow$$
E, E \rightarrow D, A \rightarrow B, AC \rightarrow D}

Atributele BD din ABCD
$$\rightarrow$$
 E sunt redundante: $F = \{AC \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$

$$AC \rightarrow D$$
 este redundantă
 $F = \{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$

care este o acoperire minimală

Acoperirile minimale nu sunt unice (depind de ordinea de alegere a DF/atr. redundante)

Decompunere în 3NF

Initialize $D = \emptyset$ Apply union rule to combine FDs in F with same L.H.S. into a single FD

For each FD $\alpha \to \beta$ in F do Insert the relation schema $\alpha\beta$ into D Insert δ into D, where δ is some key of R Remove redundant relation schema from D as follows: delete R_i from D if $R_i \subseteq R_i$, where $R_i \in D$

return D

Exemplu

Fie R(A,B,C,D,E) cu dependentele functionale:

$$F = \{ABCD \rightarrow E, E \rightarrow D, A \rightarrow B, AC \rightarrow D\}$$

- Acoperirea minimala a F este $\{AC \rightarrow E, E \rightarrow D, A \rightarrow B\}$
- Unica cheie: AC
- R nu e in 3NF deoarece A \rightarrow B nu respecta 3NF
- descompunerea 3NF a R:
 - Relatii pentru fiecare DF: $R_1(A, C, E)$, $R_2(E,D)$, si $R_3(A,B)$
 - Relatie pentru cheia lui R: $R_4(A, C)$
 - Eliminare relatie redundanta: R_4 (deoarece $R_4 \subseteq R_1$)
 - \Rightarrow descompunerea 3NF este {R₁(A,C,E),R₂(E,D),R₃(A,B)}
- Descompunerea 3NF nu este unică. Depinde de:
 - Alegerea *acoperirii minimale* sau
 - Alegerea *relatiei redundante care va fi eliminata*

BCNF vs 3NF

- BCNF: joncțiune fără pierderi (posibil să nu păstreze dependențele)
- 3NF: joncțiune fără pierderi & păstrare dependențe
- R(Course, Teacher, Time) cu DF {Course → Teacher; Teacher, Time → Course}
 - Chei: {Course, Time} şi { Teacher, Time }
 - R este în 3NF dar nu în BCNF
- descompunere BCNF $\{R_1(Course, Teacher), R_2(Course, Time)\}$ este (doar) cu joncțiune fără pierderi

Din nou despre... descompunere

- Descompunerea este ultima solutie de rezolvare a problemelor generate de redundanțe & anomalii
- Excesul poate fi nociv! Exemplu:

```
R = (Teacher, Dept, Phone, Office)
cu DF F = {Teacher \rightarrow Dept Phone Office}
```

R = (Teacher, Dept, Phone, Office)

$$R_1$$
 = (Teacher, Dept) R_2 = (Teacher, Phone) R_3 = (Teacher, Office)

Uneori, din motive de performanță se practica denormalizarea

Dependențe multivaloare

course	teacher	book
alg101	Green	Alg Basics
alg101	Green	Alg Theory
alg101	Brown	Alg Basics
alg101	Brown	Alg Theory
logic203	Green	Logic B.
logic203	Green	Logic F.
logic203	Green	Logic intro.

relația e în BCNF

Dependențe multivaloare

	X	Y	Z
$t_1 \longrightarrow$	a	b_1	c_1
$t_2 \longrightarrow$	a	b_2	c_2
$t_3 \longrightarrow$	a	b_1	c_2
$t_4 \longrightarrow$	a	b_2	c_1

$$\forall t_1, t_2 \in r \text{ i } \pi_x(t_1) = \pi_x(t_2) \Rightarrow$$

$$\exists t_3 \in r \text{ astfel încât}$$

$$\pi_{XY}(t_1) = \pi_{XY}(t_3),$$

$$\pi_z(t_2) = \pi_z(t_3)$$

Reguli adiționale:

Complementare: $X \rightarrow Y \Rightarrow X \rightarrow R - XY$

Augumentare: $X \rightarrow Y$, $Z \subseteq W \Rightarrow WX \rightarrow YZ$

Tranzitivitate: $X \rightarrow Y$, $Y \rightarrow Z \Rightarrow X \rightarrow Z - Y$

Replicare: $X \rightarrow Y \Rightarrow X \rightarrow Y$

Fuzionare: $X \rightarrow Y$, $W \cap Y = \emptyset$, $W \rightarrow Z$, $Z \subseteq Y \Rightarrow X \rightarrow Z$

A patra formă normală (4NF)

Definiție. Fie R o schemă relațională și F o mulțime de dependențe funcționale și multivaloare pe R.

Spunem că R este în a patra forma normală NF4 dacă, pentru orice dependență multivaloare $X \rightarrow \rightarrow Y$:

- Y⊆X sau
- -XY = R sau
- X e super-cheie

A patra formă normală (4NF)

course	teacher	book
alg101	Green	Alg Basics
alg101	Green	Alg Theory
alg101	Brown	Alg Basics
alg101	Brown	Alg Theory
logic203	Green	Logic B.
logic203	Green	Logic F.
logic203	Green	Logic intro.

course→→teacher

Relatia se poate descompune in: (Course, Teacher) si (Course, Book)

course	teacher
alg101	Green
alg101	Brown
logic203	Green

course	book
alg101	Alg Basics
alg101	Alg Theory
logic203	Logic B.
logic203	Logic F.
logic203	Logic intro.

Dependența Join

Spunem ca R satisface dependența join

$$\otimes \{R_1, \dots, R_n\}$$
 dacă

$$R_1, R_2, ..., R_n$$

este o descompunere cu joncțiuni fără pierderi a lui R.

O dependență multivaloare $X \rightarrow Y$ poate fi exprimată ca o dependență join:

$$\otimes$$
{XY,X(R-Y)}.

A cincea formă normală (5NF)

O relație R este în NF5 dacă și numai dacă pentru orice dependență *join* a lui R:

- R_i =R pentru un i oarecare, sau
- dependența este implicată de o mulțime de dependențe functionale din R in care partea stângă e o cheie pentru R