电子电路与系统基础

理论课第十四讲 运算放大器应用

李国林 清华大学电子工程系

运算放大器应用大纲

- 运算放大器及其外端口特性
- 理想运算放大器特性
- 负反馈线性应用
 - 四种负反馈放大器
- 线性应用
- 非线性应用

一、负反馈线性应用

- 理想受控源
 - 四种负反馈类型,四种接近理想的受控源
- 加法电路
 - 源自反相放大电路
 - Mixer, DAC
- 电压跟随器
 - 源自同相放大电路
- 差分放大电路
 - 同时有反相和同相放大电路
- 调制与解调
 - 可用开关切换增益大小(规定不同的输入: 非线性/时变线性)
- 多运放负反馈分析
 - 确保负反馈,则可虚短和虚断分析

1.1 四种反馈连接方式,四种受控源

1.2 加法电路 inverting summing amplifier

二进制加权转换

二进制加权DAC: Digital to Analog Converter

Binary-weighted D/A converter

$$v_{out} = -\frac{1}{8} \left(D_3 \cdot 2^3 + D_2 \cdot 2^2 + D_1 \cdot 2^1 + D_0 \cdot 2^0 \right) = -\frac{1}{2^3} \sum_{k=0}^3 D_k 2^k$$

0: 0000: 0V

1: 0001: -0.125V

2: 0010: -0.25V

3: 0011: -0.375V

4: 0100: -0.5V

5: 0101: -0.625V

6: 0110: -0.75V

7: 0111: -0.875V

8: 1000: -1V

9: 1001: -1.125V

10: 1010: -1.25V

11: 1011: -1.375V

12: 1100: -1.5V

13: 1101: -1.625V

14: 1110: -1.75V

15: 1111: -1.875V

数字模拟线性转换关系

R/2R ladder D/A converter

李国林 电子电路与系统基础

清华大学电子工程系 2020年春季学期

应输出电压为多少? 假设v_{ref}=5V。

1.3 电压跟随器 Voltage Follower

$$v_{out} = v_{in}$$

跟随器有什么用处? 输入输出直通不行吗?

R_S BL R_L V_L

缓冲器

Buffer

R_2 R_1 $R_3 = R_1$ R_4 $R_4 = R_2$

1.4 差分放大器 Differential Amplifier

$$v_{out} = \frac{R_2}{R_1} (v_{in2} - v_{in1})$$
$$= \frac{R_2}{R_1} v_{id} + 0 \cdot v_{ic}$$

• 差分放大器,可有效抑制共模信号

差模信号
$$v_{id} = v_{in2} - v_{in1}$$
 共模信号 $v_{ic} = \frac{v_{in2} + v_{in1}}{2}$

$$v_{in2} = v_{ic} + 0.5v_{id}$$
 $v_{in1} = v_{ic} - 0.5v_{id}$

全差分放大器FDA Fully Differential Amplifier

全差分放大器,在输出端也同样对共模干扰信号进行抑制, 在数模混合集成电路中大量采用

理想的差分放大器原则上可以有效抑制共模信号

CMRR

- 失配导致共模信号并不能完全被抑制
 - 事实上,失调、共模放大电压的存在,都是因为运放输入端不 对称(失配)导致的
- 即使运放是理想的,外部电阻值不对称也会导致有限的CMRR

外部电阻非理想引入的CMRR

$$v_{out} = A_v^- \cdot v_{in}^- + A_v^+ \cdot v_{in}^+$$

$$A_v^- = -\frac{R_2}{R_1}$$

$$A_{v}^{+} = \left(\frac{R_{2}}{R_{1}} + 1\right) \frac{R_{4}}{R_{3} + R_{4}} \qquad v_{out} = A_{vd}v_{d} + A_{vc}v_{c}$$

$$v_{in}^{+} = v_c + 0.5v_d$$
 $v_{in}^{-} = v_c - 0.5v_d$

$$R_1 = R_{10}(1 + \delta_1)$$
 $R_2 = R_{20}(1 + \delta_2)$
 $R_3 = R_{10}(1 + \delta_3)$ $R_4 = R_{20}(1 + \delta_4)$

$$|\delta_1|, |\delta_2|, |\delta_3|, |\delta_4| < 5\% = \delta_{\text{max}}$$

$$v_{out} = A_{vd} v_d + A_{vc} v_c$$

$$CMRR = \left| \frac{A_{vd}}{A_{vc}} \right| \qquad CMRR_{\min} = \frac{1}{4\delta_{\max}}$$

作业题3:要想获得80dB的CMRR,对外部电 阳精度提出什么要求?

1.5 简单调制电路

调制 modulation

1.6 多运放负反馈分析

第一步: 确认负反馈

分析负反馈时,所有输 入激励都不起作用(交 流置零)

如果是负反馈,工作区 即可假设在线性区,用 虚断和虚短进行分析

复杂负反馈连接方式不 要分析连接类型,只需 用虚短、虚断分析即可

$$v_{n1} = \frac{R_2}{R_1 + R_2} v_{in1}$$

$$v_A = v_{p1} = v_{n1} = \frac{R_2}{R_1 + R_2} v_{in1}$$

断

分

$$i = \frac{v_A - v_{in2}}{R_1} = \frac{v_C - v_A}{R_2}$$

$$v_{m1}$$
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8

$$v_C = -\frac{R_3}{R_G} v_B = -\frac{R_3}{R_G} v_{out}$$

$$v_C = \left(1 + \frac{R_2}{R_1}\right) v_A - \frac{R_2}{R_1} v_{in2} = \frac{R_2}{R_1} (v_{in1} - v_{in2})$$

$$v_C = \frac{R_2}{R_1} (v_{in1} - v_{in2}) = -\frac{R_3}{R_G} v_{out}$$

$$v_{out} = \frac{R_G}{R_3} \frac{R_2}{R_1} (v_{in2} - v_{in1})$$

馈 运 要点

- 首先确认负反馈,如果确实是负反馈,就可假设工作在负责。就可假设工厂。 作在线性区,虚短、虚断分析结果表明**v**out确实位于正负饱和电压之间,则假设无误
 - 如果超出,则输出饱和
 - 线性反馈网络具有唯一解
- 如果确认是正反馈,则需分别假设工作在正饱和区、 负饱和区、线性区,分别 验证结果是否符合假设, 如果符合,则假设无误
 - 即使是线性反馈网络,也存在多解的可能性

线性负反馈:只有一个交点

线性正反馈:可能有多个交点

二、非线性应用

- 负反馈+非线性元件
 - 运放线性区+非线性元件
 - 对数运算
 - 输出限幅
 - 半波信号产生
- 开环
 - 运放饱和区
 - 比较器
- 正反馈
 - 运放饱和区可能性大,线 性区也有一定的可能性
 - 施密特触发器
 - 负阻

- 正反馈: positive feedback
 - 正反馈是导致行为后果进一步加强的反馈
 - 假设初始线性区,其输出幅度将呈现指数增长规律,从而最终脱离线性区
 - positive runaway
 - 指数增长电压电流会导致 器件进入非线性工作区
 - 依靠非线性的负反馈机制,系统最终会稳定下来
 - 电阻正反馈网络,则一般进入饱和状态: saturation: 进入饱和区:或者闩锁状态: latch:锁定在某个饱和区
 - 一 动态元件反馈网络,或者进入振荡状态: oscillation: 张弛、正弦振荡均有可能
 - 也有可能非线性正反馈机制 得以加强,系统最终损坏
 - 呈现出热损毁: thermal runaway: 个别设计不过关

22

 $v_{in} < 0$?

$$v_C = V_{BE2} - V_{BE1} = v_T \ln \frac{I_{C2}}{I_{CS0}} - v_T \ln \frac{I_{C1}}{I_{CS0}} = v_T \ln \frac{I_{C2}}{I_{C1}}$$

消除I_{CS0}影响

$$I_{C2} = \frac{V_{REF}}{R_{REF}} = I_{REF}$$
 $I_{C1} = \frac{v_{IN}}{R} = i_{IN}$

$$v_{OUT} = \frac{R_C + R_D}{R_C} v_C = \frac{R_C + R_D}{R_C} v_T \ln \left(\frac{V_{REF}}{R_{REF}} \frac{R}{v_{IN}} \right) \approx -\frac{R_D}{R_C} v_T \ln \left(\frac{v_{IN}}{V_{REF}} \frac{R_{REF}}{R} \right)$$

2.3 半波信号产生

思考:两种方法除了输出波形稍有差别之外,还有什么本质的差别?

负反馈具有唯一解, 假设成立则分析完成

$$v_{IN} > 0$$

 D_1 导通

$$v_{OUT} = 0$$

$$v_{OPA,O} = -0.7V$$

$$v_{IN} < 0$$

 D_2 导通

$$v_{OUT} = -\frac{R_2}{R_1} v_{IN}$$

$$v_{OPA,O} = v_{OUT} + 0.7V$$

2.4 过零比较器 zero-crossing detector

- 只要输入信号足够大, 中间过渡区时间很短, 可以忽略不计,于是 可以极致化抽象为:
 - 当输入大于0,输出为+1(+V_{sat})
 - 当输入小于0,输出为-1 (-V_{sat})

比较器应用1: Flash ADC

模拟输入电压	$C_2C_1C_0$	数字输出码D ₁ D ₀
?	000	00
•••	•••	•••

作业4: 画出V_{in}-D_{out}的转移特性曲线

比较器应用2: 脉冲宽度调制

PWM: Pulse Width Modulation

低频基带信号

过零比较器的噪声问题

2.5 施密特触发器

Schmitt Trigger

Hysteresis: 滞回现象 具有记忆功能

用施密特触发器消除毛刺

线性负反馈

线性正反馈与线性负反馈的区别

唯一输出

线性区

$$v_{IN} = F \cdot v_{OUT}$$

$$v_{OUT} = \frac{1}{F} v_{IN} = \left(1 + \frac{R_2}{R_1}\right) v_{IN}$$

线性正反馈

非唯一

输出

线性区

$$v_{IN} = F \cdot v_{OUT}$$

$$v_{OUT} = \frac{1}{F} v_{IN} = \left(1 + \frac{R_2}{R_1}\right) v_{IN}$$

不稳定区: 待不住

理论转移特性曲线 实际转移特性曲线:滞回曲线

负反馈令其工作点可以待在线性区 】 线性区正反馈可等效为线性负阻

$$R_{in} = \frac{v_{test}}{i_{test}} = -R \frac{R_1}{R_2}$$

- 己知理想运放的转移特性,分析确认如图 所示单端口网络的伏安特性为**S**型负阻
 - 提示**1**: 假设在线性区,假设在正饱和区, 假设在负饱和区
 - 提示2: 电流源驱动,S型具有唯一解
 - 电流源驱动确保负反馈大于正反馈

作业1 S型负阻

李国林 电子电路与系统基础

清华大学电子工程系 2020年春季学期

- 已知理想运放的转移特性,分析确认如图 所示单端口网络的伏安特性为N型负阻
 - 提示**1**: 假设在线性区,假设在正饱和区, 假设在负饱和区
 - 提示2: 电压源驱动,N型具有唯一解
 - 电压源驱动,确保负反馈

作业2 N型负阻

李国林 电子电路与系统基础

作业4

Flash-ADC编码表

- 填写flash-ADC编码的码表
- · 画出输入V_{in}输出D_{out}转移特性曲线

模拟输入电压	$C_2C_1C_0$	数字输出码 D_1D_0
	000	00
		01
		10
		11

- 假设运放理想,证明:
- 回答:要想获得80dB的 CMRR,对外部电阻精 度提出什么要求?

$$CMRR_{\min} = \frac{1}{4\delta_{\max}}$$

作业5 CMRR

$$v_{in}^{+} = v_c + 0.5v_d$$

$$v_{in}^- = v_c - 0.5v_d$$

$$v_{out} = A_{vd}v_d + A_{vc}v_c$$

$$CMRR = \left| \frac{A_{vd}}{A_{vc}} \right|$$

给出你的解调方案, 画出电路图或原理方框图。

作业**6**解调方案

- 分析并画出如下 滞回比较器的输 入输出转移特性 曲线(滞回曲线 分析)
 - 和课堂上讲述 的反相施密特 触发器的滞回 曲线比较,两 者差别在哪里?
 - 用图解法分析 其转移特性曲 线和反相电压 放大器的区别
 - 课堂上讨论了 反相施密特触 发器与同相电 压放大器的图 解法

作业7 同相施密特触发器

作业8 双运放非线性应用

- 分析这个双运放二极管电路实现了什么电路功能?
 - 画出输入输出转移特性曲线
 - 如果输入为正弦波,输出为什么波形?

CAD: 理论/仿真分析

