```
In [0]:
from google.colab import drive
drive.mount('/content/drive')
Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client id=947318989803-
6bn6qk8qdqf4n4q3pfee6491hc0brc4i.apps.qooqleusercontent.com&redirect uri=urn%3Aietf%3Awq%3Aoauth%3A2.0%3Aoob&scope=email%20https%3A%2F%2Fwww.qooqlea
%2Fauth%2Fdocs.test%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive%20https%3A%2F%2Fwww.googleapis.com%2Fauth%2Fdrive.photos.readonly%20https%3A%2
.googleapis.com%2Fauth%2Fpeopleapi.readonly&response type=code
Enter your authorization code:
Mounted at /content/drive
                                                                                                                                                   •
Importing libraries:
In [0]:
!pip install matplotlib==3.1.0
In [8]:
import matplotlib
matplotlib. version
Out[81:
'3.1.0'
In [0]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
import qc
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
from sklearn import linear model
from sklearn.model selection import RandomizedSearchCV, GridSearchCV, train test split
from sklearn import preprocessing # KBinsDiscretizer
```

```
from sklearn import metrics
from joblib import parallel_backend
import scipy.stats as st
import xgboost as xgb
import lightgbm as lgb
from prettytable import PrettyTable

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
```

Util Functions:

```
In [0]:
```

```
def auc plot(c, tr, cv, param):
 plt.figure(figsize=(20, 6))
 plt.plot(c, tr, label='Train AUC')
 plt.plot(c, cv, label='CV AUC')
 plt.scatter(c, tr, label='Train AUC points')
 plt.scatter(c, cv, label='CV AUC points')
 plt.legend()
 plt.xlabel("{} : hyperparameter".format(param))
 plt.ylabel("AUC")
 plt.title("AUC plots for Train vs CV")
 plt.grid()
 plt.show()
def roc plot(tr fpr, tr tpr, te fpr, te tpr):
 plt.plot(tr fpr, tr tpr, label="Train AUC = {}".format(metrics.auc(tr fpr, tr tpr)))
 plt.plot(te fpr, te tpr, label="Test AUC = {}".format(metrics.auc(te fpr, te tpr)))
 plt.legend()
 plt.xlabel("FPR")
 plt.vlabel("TPR")
 plt.title("ROC Curve")
 plt.grid()
 plt.show()
def plotTrainVsCV AUC(search, subplots, figsize, idx, cols):
 # Print seaborn heatmaps in subplots: https://stackoverflow.com/a/42712772/9079093
 figure, axes = plt.subplots(*subplots, figsize=figsize)
  # Using grid search parameters for heatmap: https://stackoverflow.com/a/48792210/9079093
  # Print values in seaborn heatmap without scientific notation: https://stackoverflow.com/a/29648332/9079093
 q1 = sns.heatmap(pd.pivot table(pd.DataFrame(search.cv results), values='mean train score', index=idx, columns=cols),\
                  annot=True, annot kws={"size": 13}, cmap='Oranges', fmt='.2g', ax=axes[0], xticklabels=True, yticklabels=True)
 gl.set title('Train AUC Heat Map plot')
 q1.set ylabel(idx)
 gl.set xlabel(cols)
  q2 = sns.heatmap(pd.pivot table(pd.DataFrame(search.cv results), values='mean test score', index=idx, columns=cols),
                   annot=True, annot kws={"size": 13},cmap=None, fmt='.2g', ax=axes[1], xticklabels=True, yticklabels=True)
```

```
q2.set title('CV AUC Heat Map plot')
 g2.set vlabel(idx)
 q2.set xlabel(cols)
 plt.subplots adjust(hspace=.3)
 plt.show()
def predict(proba, threshold, fpr, tpr, dtyp):
 t = threshold[np.argmax(tpr*(1-fpr))]
 # (tpr*(1-fpr)) will be maximum if your fpr is very low and tpr is very high
 print("The maximum value of {} tpr*(1-fpr) is {} for threshold {}".format(dtyp, max(tpr*(1-fpr)), np.round(t,3)),'\n')
 predictions = []
 for i in proba:
   if i>=t:
     predictions.append(1)
     predictions.append(0)
 return predictions
def printConfusionMatrix(y tr, y te, y tr pred, y te pred, tr thresh, te thresh, tr fpr, tr tpr, te fpr, te tpr):
 # Print seaborn heatmaps in subplots: https://stackoverflow.com/a/42712772/9079093
 figure, axes = plt.subplots(1,2, figsize=(15,5))
 # Print values in seaborn heatmap without scientific notation: https://stackoverflow.com/a/29648332/9079093
 g1 = sns.heatmap(metrics.confusion matrix(y tr, predict(y tr pred, tr thresh, tr fpr, tr tpr, 'Train')),\
                  annot=True, annot kws={"size": 16}, cmap='Oranges', fmt='g', ax=axes[0])
 g1.set title('Train confusion matrix')
 g1.set xlabel('Predicted Value')
 gl.set ylabel('Actual Value')
 g2 = sns.heatmap(metrics.confusion matrix(y te, predict(y te pred, te thresh, te fpr, te tpr, 'Test')),\
                  annot=True, annot kws={"size": 16}, cmap='Purples', fmt='g', ax=axes[1])
 q2.set title('Test confusion matrix')
 g2.set xlabel('Predicted Value')
 g2.set ylabel('Actual Value')
 plt.subplots adjust(top=.9, wspace=.5, hspace=.5)
 plt.show()
```

Reading the Data:

```
In [5]:
```

```
df_train = pd.read_csv('drive/My Drive/CoLab/CustomerTransactionPrediction/train.csv')
df_train.head()
Out[5]:
```

High level statistics:

df test.head()

9: var_159 10: var_179 11: var 199

In [0]:

```
In [0]:
print('Total Datapoints:',df train.shape[0],\
      '\nTotal Features:', df train.shape[1],'\n')
print('Some of the Features:')
for idx, col in enumerate(df train.columns[1::20]):
   print(idx+1,':',col)
Total Datapoints: 200000
Total Features: 202
Some of the Features:
1 : target
2 : var 19
3 : var 39
4 : var 59
5 : var 79
6 : var 99
7 : var 119
8 : var 139
```

df test = pd.read csv('drive/My Drive/CoLab/CustomerTransactionPrediction/test.csv')

```
In [0]:
```

```
print('Number of classes:', df_train.target.unique().size,'\n')
print('DataPoints per class:')
print(df_train.target.value_counts())
Number of classes: 2
```

DataPoints per class:

0 179902 1 20098

Name: target, dtype: int64

In [0]:

```
df_train['target'].value_counts().plot.bar()
plt.show()
```


In [0]:

```
if not (df_train.isnull().sum() > 0).any():
    print('No missing Values in the Training Data.')
else:
    print('Missing value features of Training Data :')
    print(df_train.columns[ df_train.isnull().sum() > 0 ])
```

No missing Values in the Training Data.

```
if not (df_test.isnull().sum() > 0).any():
```

```
print('No missing Values in the Test Data.')
else:
  print('Missing value features of Test Data :')
  print(df test.columns[ df test.isnull().sum() > 0 ])
No missing Values in the Test Data.
In [0]:
df train['target'].value counts()/df train.shape[0]*100.
Out[0]:
     89.951
     10.049
Name: target, dtype: float64
 • Based on the # data points per class we can observe that it's a highly imbalanced dataset.
     ■ Class 1:10%
     ■ Class 0:90%
EDA
Objective:
To identify if a customer will make a specific transaction or not in the future, irrespective of the amount of money transacted. The data provided here has the same structure as the real data we have
available to solve this problem.
In [0]:
# Let's consider some of the features for the EDA part as there are 200 features and each is numeric.
eda features = df train.columns[2::20]
eda features
Out[0]:
Index(['var 0', 'var 20', 'var 40', 'var 60', 'var 80', 'var 100', 'var 120',
```

In [0]:
Since all the required features are numeric we are excluding the non-numeric features and the target which is to be predicted.

'var 140', 'var 160', 'var 180'],

dtype='object')

```
df_train[df.columns.difference(['target'])].describe(exclude=['object'])
```

Out[0]:

	var_0	var_1	var_10	var_100	var_101	var_102	var_103	var_104	var_105	var_106	var_107	var_108	var
count	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.00
mean	10.679914	-1.627622	0.394340	-6.600518	13.413526	22.294908	1.568393	11.509834	4.244744	8.617657	17.796266	14.224435	18.45
std	3.040051	4.050044	5.500793	9.181683	4.950537	8.628179	0.185020	1.970520	0.855698	1.894899	7.604723	0.171091	4.35
min	0.408400	-15.043400	-20.731300	-39.179100	0.075700	-7.382900	0.979300	4.084600	0.715300	0.942400	-5.898000	13.729000	5.76
25%	8.453850	-4.740025	-3.594950	-13.198700	9.639800	16.047975	1.428900	10.097900	3.639600	7.282300	12.168075	14.098900	15.10
50%	10.524750	-1.608050	0.487300	-6.401500	13.380850	22.306850	1.566000	11.497950	4.224500	8.605150	17.573200	14.226600	18.28
75%	12.758200	1.358625	4.382925	0.132100	17.250225	28.682225	1.705400	12.902100	4.822200	9.928900	23.348600	14.361800	21.85
max	20.315000	10.376800	18.670200	25.140900	28.459400	51.326500	2.188700	19.020600	7.169200	15.307400	46.379500	14.743000	32.05

8 rows × 200 columns

In [0]:

df_test.describe()

Out[0]:

	var_0	var_1	var_2	var_3	var_4	var_5	var_6	var_7	var_8	var_9	var_10	var_11	Ví
count	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.000000	200000.00
mean	10.658737	-1.624244	10.707452	6.788214	11.076399	-5.050558	5.415164	16.529143	0.277135	7.569407	0.371335	-3.268551	14.02
std	3.036716	4.040509	2.633888	2.052724	1.616456	7.869293	0.864686	3.424482	3.333375	1.231865	5.508661	5.961443	0.19
min	0.188700	-15.043400	2.355200	-0.022400	5.484400	-27.767000	2.216400	5.713700	-9.956000	4.243300	-22.672400	-25.811800	13.42
25%	8.442975	-4.700125	8.735600	5.230500	9.891075	-11.201400	4.772600	13.933900	-2.303900	6.623800	-3.626000	-7.522000	13.89
50%	10.513800	-1.590500	10.560700	6.822350	11.099750	-4.834100	5.391600	16.422700	0.372000	7.632000	0.491850	-3.314950	14.02
75%	12.739600	1.343400	12.495025	8.327600	12.253400	0.942575	6.005800	19.094550	2.930025	8.584825	4.362400	0.832525	14.16
max	22.323400	9.385100	18.714100	13.142000	16.037100	17.253700	8.302500	28.292800	9.665500	11.003600	20.214500	16.771300	14.68

8 rows × 200 columns

• The Mean and Spread for some of the features differ a lot between the train and test data.

```
sns.set_style('whitegrid')
```

```
figure, axes = plt.subplots(2, 5, figsize=(23,10))
axes = axes.flatten()

df_train_0 = df_train[df_train.target == 0]
df_train_1 = df_train[df_train.target == 1]

for idx, feat in enumerate(eda_features):
    sns.kdeplot(df_train_0[feat], ax=axes[idx], label='0')
    sns.kdeplot(df_train_1[feat], ax=axes[idx], label='1').set_xlabel(feat)

plt.subplots_adjust(hspace=.5, wspace=.5)
plt.show()
plt.close()
```



```
#Box Plots and whiskers
figure, axes = plt.subplots(2, 5, figsize=(23,10))
axes = axes.flatten()
for idx, col in enumerate(eda features):
     sns.boxplot(x='target', y=col, data=df train, ax=axes[idx])
plt.subplots_adjust(wspace=.5, hspace=.5)
plt.show()
plt.close()
                                                                                 20
                                                                                                                        25
                                                                                                                                                              30
   20.0
                                           30
   17.5
                                                                                 10
                                           25
                                                                                                                        20
                                                                                                                                                              20
   15.0
                                           20
                                                                                  0
                                                                                                                       15
   12.5
                                                                             -10 var
                                        75 var 70
                                                                                                                     09 IN
                                                                                                                                                              10
                                                                                                                                                           var 80
10.0
    7.5
                                                                                -20
    5.0
                                                                                                                                                             -10
    2.5
                                                                                -30
    0.0
                                                                                                                                                             -20
                                                                                                      1
                  target
                                                        target
                                                                                               target
                                                                                                                                     target
                                                                                                                                                                           target
                                                                                                                        60
                                                                                 20
                                                                                                                                                              10
     20
                                                                                                                        50
                                           60
                                                                                 15
                                                                                                                                                               5
    10
                                                                                                                        40
                                                                                 10
                                           40
     0
 001- -10
                                                                              var_140
                                                                                                                    var_160
                                       var_120
                                                                                                                       30
                                                                                                                                                           var_180
                                                                                                                                                              -5
                                                                                                                                                             -10
   -20
                                                                                 -5
                                                                                                                       10
                                                                                                                                                             -15
                                                                                -10
   -30
                                                                                                                                                             -20
                                                                                -15
   -40
                                                                                                                       -10
                                                                                                      1
                                                                                                                                                                                   1
                  target
                                                                                               target
                                                                                                                                     target
                                                                                                                                                                           target
                                                        target
```

In [0]:

```
# # Violin Plots
# figure, axes = plt.subplots(2, 5, figsize=(23, 10))
```

```
sns.pairplot(df_train[[*eda_features, 'target']], vars=eda_features ,hue='target', height=1.8)
plt.show()
```


- It's hard to seperate the classes using the linear models as we can see from the pair plots of the features, almost all of them overlap.
- Most of the features are Gaussian distributed except for some like var 0, var 20, var 40, var 60, var 80 and so on with some bumps on left or right of mean value.

```
plots = ['Mean', 'Standard Deviation', 'Minimum', 'Maximum']
plot_funcs = [np.mean, np.std, np.min, np.max]

figure, axes = plt.subplots(2, 2, figsize=(20, 10))
axes = axes.flatten()

for idx, (stat, func) in enumerate(zip(plots, plot_funcs)):
    sns.distplot(df_train[df_train.columns.difference(['target', 'ID_code'])].apply(func), label='Train', ax=axes[idx])
    sns.distplot(df_test[df_train.columns.difference(['target', 'ID_code'])].apply(func), label='Test', ax=axes[idx])
    axes[idx].set_title('Distribution of each feature - {} values for Train and Test data'.format(stat))
```

```
axes[idx].legend()
plt.subplots_adjust(hspace=.3)
plt.show()
```


• We can see that the train and test data come from almost similar distrubutions based on mean, standard devation, minimum and maximum values plots for each feature.

```
df_train_0 = df_train[df_train.target == 0][df_train.columns.difference(['target', 'ID_code'])]
df_train_1 = df_train[df_train.target == 1][df_train.columns.difference(['target', 'ID_code'])]
figure, axes = plt.subplots(2, 2, figsize=(20, 10))
axes = axes.flatten()
```

```
for idx, (stat, func) in enumerate(zip(plots, plot_funcs)):
    sns.distplot(df_train_0.apply(func), label='Class-0', ax=axes[idx])
    sns.distplot(df_train_1.apply(func), label='Class-1', ax=axes[idx])
    axes[idx].set_title('Distribution of each feature - {} values for both classes'.format(stat))
    axes[idx].legend()

plt.subplots_adjust(hspace=.3)
plt.show()
```


In [0]:

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler

train scaled = StandardScaler().fit transform(df train[df train.columns.difference(['target', 'ID code'])])

```
PCA_train = PCA(n_components=2).fit_transform(train_scaled)
```

```
plt.figure(figsize=(10, 8))
plt.scatter(PCA_train[:, 0], PCA_train[:, 1], c=df_train.target.values, cmap='viridis',)

plt.xlabel('Component-1')
plt.ylabel('Component-2')
plt.colorbar()
plt.show()
```


• Even with the PCA the datapoints for both classes are almost overlapping that doesn't seems meaningful.

```
corr = df_train[eda_features].corr()
plt.figure(figsize=(12, 10))
```

sns.heatmap(corr, annot=True) # Correlation heatmap for choosen EDA features.
plt.show()

In [0]:

```
corr = df_train.columns.difference(['ID_code', 'target'])].corr()
corr = corr.abs().unstack().sort_values(ascending=False).reset_index()
corr = corr[corr['level_0'] != corr['level_1']]
corr.columns = ['Feature_1', 'Feature_2', 'Correlation']
corr.head(10) # Top 10 correlated features.
```

Out[0]:

Feature 1 Feature 2 Correlation

200	Feature 3	Feature ₂ 2	Correlation
201	var_26	var_139	0.009844
202	var_53	var_148	0.009788
203	var_148	var_53	0.009788
204	var_81	var_165	0.009714
205	var_165	var_81	0.009714
206	var_81	var_174	0.009490
207	var_174	var_81	0.009490
208	var_183	var_189	0.009359
209	var_189	var_183	0.009359

```
corr.tail(10) # Least 10 correlated features.
```

Out[0]:

	Feature_1	Feature_2	Correlation
39990	var_100	var_177	3.116544e-07
39991	var_177	var_100	3.116544e-07
39992	var_27	var_144	1.772502e-07
39993	var_144	var_27	1.772502e-07
39994	var_126	var_109	1.313947e-07
39995	var_109	var_126	1.313947e-07
39996	var_6	var_173	5.942735e-08
39997	var_173	var_6	5.942735e-08
39998	var_75	var_191	2.703975e-08
39999	var_191	var_75	2.703975e-08

• The correlation between the pair of features is less which implies features are independent.

Basic Features:

In [7]:

```
features = df_train.columns.difference(['ID_code', 'target'])
```

```
feat_names = ['mean', 'std', 'max', 'min', 'median']
feat_funcs = [np.mean, np.std, np.max, np.min, np.median]

for feat, func in tqdm(zip(feat_names, feat_funcs)):
    df_train[feat] = df_train[features].apply(func, axis=1)
    df_test[feat] = df_test[features].apply(func, axis=1)

5it [01:24, 17.99s/it]
```

df_train[feat_names].head()

Out[0]:

	mean	std	max	min	median
0	7.281591	9.308182	43.1127	-21.4494	6.77040
1	7.076818	10.310257	40.5632	-47.3797	7.22315
2	6.204483	8.731476	33.8820	-22.4038	5.89940
3	6.441160	9.570048	38.1015	-35.1659	6.70260
4	6.771155	11.258868	41.1037	-65.4863	6.94735

```
figure, axes = plt.subplots(2, 3, figsize=(20,10))
axes = axes.flatten()

for idx, feat in enumerate(feat_names):
    sns.distplot(df_train[feat], ax=axes[idx], label='Train')
    sns.distplot(df_test[feat], ax=axes[idx], label='Test').set_xlabel(feat)
    axes[idx].legend()

plt.subplots_adjust(hspace=.3)
plt.show()
```


• The basic features seems to follow the gaussian distribution.

```
In [0]:
```

```
df train 0 = df train[df train.target == 0][feat names]
df train 1 = df train[df train.target == 1][feat names]
figure, axes = plt.subplots(2, 3, figsize=(20,10))
axes = axes.flatten()
for idx, feat in enumerate(feat_names):
 sns.distplot(df train 0[feat], ax=axes[idx], label='Class-0')
  sns.distplot(df train 1[feat], ax=axes[idx], label='Class-1').set_xlabel(feat)
  axes[idx].legend()
plt.subplots adjust(hspace=.3)
plt.show()
 1.0
                                                                                                  0.07
                                    Class-0
                                                  0.7
                                                                                    Class-0
                                                                                                                                     Class-0
                                    Class-1
                                                                                    Class-1
                                                                                                                                     Class-1
                                                                                                  0.06
                                                  0.6
 0.8
                                                                                                  0.05
                                                  0.5
```


Modelling [1] - w/ basic features.

```
In [0]:
```

```
X = df_train[df_train.columns.difference(['ID_code', 'target'])]
y = df_train.target.values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2, random_state=23, stratify=y)

pt_1 = PrettyTable()
pt_1.field_names = ['Model', 'Hyper Parameters', 'Train AUC', 'Test AUC']
```

Logistic Regression(LR):

RandomSearch:

```
in iui:
clf = linear model.SGDClassifier('log', n jobs=-1, class weight='balanced')
params = dict(alpha=st.uniform(.00001, .01))
search = RandomizedSearchCV(clf, params, scoring='roc auc', n jobs=-1, verbose=10, return train score=True, cv=3)
In [0]:
with parallel backend('threading'):
 search.fit(X train, y train)
Fitting 3 folds for each of 10 candidates, totalling 30 fits
[CV] alpha=0.004119678779936287 .....
[CV] alpha=0.004119678779936287 .....
[Parallel(n jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[CV] alpha=0.004119678779936287, score=(train=0.859, test=0.855), total= 22.7s
[CV] alpha=0.004119678779936287 .....
[Parallel(n jobs=-1)]: Done 1 tasks
                                 | elapsed: 22.9s
[CV] alpha=0.004119678779936287, score=(train=0.857, test=0.855), total= 25.5s
[CV] alpha=0.0020817756520198705 .....
[CV] alpha=0.004119678779936287, score=(train=0.859, test=0.853), total= 23.8s
[CV] alpha=0.0020817756520198705 .....
[CV] alpha=0.0020817756520198705, score=(train=0.857, test=0.857), total= 37.7s
[CV] alpha=0.0020817756520198705 .....
[Parallel(n jobs=-1)]: Done 4 tasks
                                   | elapsed: 1.1min
[CV] alpha=0.0020817756520198705, score=(train=0.860, test=0.855), total= 34.2s
[CV] alpha=0.006450444852612077 ......
[CV] alpha=0.0020817756520198705, score=(train=0.856, test=0.851), total= 30.3s
[CV] alpha=0.006450444852612077 ......
[CV] alpha=0.006450444852612077, score=(train=0.857, test=0.854), total= 19.0s
[CV] alpha=0.006450444852612077 ......
[CV] alpha=0.006450444852612077, score=(train=0.858, test=0.854), total= 19.8s
[CV] alpha=0.003828692542999418 .....
[CV] alpha=0.006450444852612077, score=(train=0.860, test=0.856), total= 16.3s
[CV] alpha=0.003828692542999418 ......
[Parallel(n jobs=-1)]: Done 9 tasks
                                   | elapsed: 1.9min
    alpha=0.003828692542999418, score=(train=0.857, test=0.853), total= 22.7s
[CV] alpha=0 003828692542999418
```

```
[CV] alpha=0.003828692542999418, score=(train=0.858, test=0.857), total= 26.4s
[CV] alpha=0.008794147947487162 ......
[CV] alpha=0.008794147947487162, score=(train=0.857, test=0.855), total= 16.3s
[CV] alpha=0.008794147947487162 .....
[CV] alpha=0.003828692542999418, score=(train=0.859, test=0.855), total= 24.1s
[CV] alpha=0.008794147947487162 ......
[CV] alpha=0.008794147947487162, score=(train=0.860, test=0.857), total= 21.1s
[CV] alpha=0.001390875693309549 .....
[Parallel(n jobs=-1)]: Done 14 tasks
                                  | elapsed: 3.0min
[CV] alpha=0.008794147947487162, score=(train=0.859, test=0.853), total= 15.4s
[CV] alpha=0.001390875693309549 .....
[CV] alpha=0.001390875693309549, score=(train=0.859, test=0.855), total= 33.9s
[CV] alpha=0.001390875693309549 .....
[CV] alpha=0.001390875693309549, score=(train=0.856, test=0.854), total= 40.3s
[CV] alpha=0.006254124023839812 .....
[CV] alpha=0.006254124023839812, score=(train=0.855, test=0.853), total= 17.0s
[CV] alpha=0.006254124023839812 .....
[CV] alpha=0.001390875693309549, score=(train=0.857, test=0.853), total= 35.8s
[CV] alpha=0.006254124023839812 .....
[CV] alpha=0.006254124023839812, score=(train=0.859, test=0.855), total= 20.1s
[CV] alpha=0.006669809715255771 .....
[CV] alpha=0.006254124023839812, score=(train=0.859, test=0.855), total= 21.0s
[CV] alpha=0.006669809715255771 .....
[Parallel(n jobs=-1)]: Done 21 tasks
                                  | elapsed: 4.5min
    alpha=0.006669809715255771, score=(train=0.859, test=0.857), total= 20.5s
[CV] alpha=0.006669809715255771 .....
   alpha=0.006669809715255771, score=(train=0.858, test=0.854), total= 16.6s
[CV] alpha=0.005264553242148463 ......
[CV] alpha=0.006669809715255771, score=(train=0.859, test=0.853), total= 19.4s
[CV] alpha=0.005264553242148463 ......
[CV] alpha=0.005264553242148463, score=(train=0.861, test=0.860), total= 22.0s
[CV] alpha=0.005264553242148463 ......
[CV] alpha=0.005264553242148463, score=(train=0.860, test=0.856), total= 23.3s
[CV] alpha=0.005229899758690161 ......
[CV] alpha=0.005264553242148463, score=(train=0.858, test=0.856), total= 17.2s
[CV] alpha=0.005229899758690161 .....
[CV] alpha=0.005229899758690161, score=(train=0.857, test=0.854), total= 22.7s
[CV] alpha=0.005229899758690161 ......
[CV] alpha=0.005229899758690161, score=(train=0.861, test=0.858), total= 20.8s
[CV] alpha=0.005229899758690161, score=(train=0.858, test=0.854), total= 15.3s
[Parallel(n jobs=-1)]: Done 30 out of 30 | elapsed: 6.0min finished
```

```
search.best_params_

Out[0]:
{'alpha': 0.005264553242148463}

In [0]:
res = pd.DataFrame(search.cv_results_)
```

```
idxs = np.argsort(res.param_alpha.values.astype('float64'))
```

In [0]:

```
auc_plot(res.param_alpha.values.astype('float64')[idxs],\
    res.mean_train_score.values[idxs], res.mean_test_score.values[idxs], 'Alpha')
```



```
y_train_pred = search.best_estimator_.predict_proba(X_train)[:,1]
y_test_pred = search.best_estimator_.predict_proba(X_test)[:,1]
```

```
train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)
roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```


GridSearch:

```
In [0]:
```

```
clf = linear_model.SGDClassifier('log', n_jobs=-1, class_weight='balanced')
params = dict(alpha=[.00001, .0001, .001, .01, .1, 1, 10])
search = GridSearchCV(clf, params, scoring='roc_auc', n_jobs=-1, verbose=10, return_train_score=True, cv=3)
```

In [0]:

```
with parallel_backend('threading'):
    search.fit(X_train, y_train)
```

 $\label{lem:concurrent} \ensuremath{\texttt{[Parallel\,(n_jobs=-1)\,]:}} \ensuremath{\texttt{Using backend ThreadingBackend with 2 concurrent workers.}}$

```
[Parallel(n jobs=-1)]: Done I tasks
                                                      | elapsed: 44.8s
[CV] ..... alpha=1e-05, score=(train=0.836, test=0.834), total= 48.6s
[CV] alpha=0.0001 .....
[CV] .... alpha=0.0001, score=(train=0.845, test=0.845), total= 49.0s
[CV] alpha=0.0001 .....
[CV] ..... alpha=1e-05, score=(train=0.836, test=0.834), total= 53.7s
[CV] alpha=0.0001 .....
[Parallel(n jobs=-1)]: Done
                                       4 tasks
                                                           | elapsed: 1.6min
[CV] .... alpha=0.0001, score=(train=0.835, test=0.835), total= 38.9s
[CV] alpha=0.001 .....
[CV] .... alpha=0.0001, score=(train=0.843, test=0.840), total= 55.8s
[CV] alpha=0.001 .....
[CV] ..... alpha=0.001, score=(train=0.851, test=0.848), total= 43.2s
[CV] alpha=0.001 .....
[CV] ..... alpha=0.001, score=(train=0.858, test=0.854), total= 49.4s
[CV] alpha=0.01 .....
[CV] ..... alpha=0.01, score=(train=0.858, test=0.856), total= 16.0s
[CV] alpha=0.01 .....
[Parallel(n jobs=-1)]: Done 9 tasks
                                                           | elapsed: 3.7min
[CV] ..... alpha=0.001, score=(train=0.850, test=0.849), total= 38.9s
[CV] alpha=0.01 .....
[CV] ..... alpha=0.01, score=(train=0.859, test=0.854), total= 14.8s
[CV] alpha=0.1 ......
[CV] ..... alpha=0.01, score=(train=0.860, test=0.857), total= 17.4s
[CV] alpha=0.1 .....
[CV] ..... alpha=0.1, score=(train=0.848, test=0.846), total= 5.6s
[CV] alpha=0.1 ......
[CV] ...... alpha=0.1, score=(train=0.848, test=0.846), total= 5.3s
[CV] alpha=1 .....
[Parallel(n jobs=-1)]: Done 14 tasks
                                                          | elapsed: 4.0min
[CV] ..... alpha=1, score=(train=0.830, test=0.829), total= 2.5s
[CV] alpha=1 .....
[CV] ..... alpha=0.1, score=(train=0.849, test=0.843), total= 5.4s
[CV] alpha=1 .....
[CV] ..... alpha=1, score=(train=0.831, test=0.827), total= 2.6s
[CV] alpha=10 .....
[CV] ...... alpha=1, score=(train=0.831, test=0.827), total= 2.4s
[CV] alpha=10 ......
[CV] ...... alpha=10, score=(train=0.796, test=0.795), total= 1.8s
[CV] alpha=10 .....
[CV] ...... alpha=10, score=(train=0.796, test=0.791), total= 1.9s
                   a_{n}^{1}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a_{n}^{2}a
```

[CV] aipha-iu, Scote-(tiain-u./j/, test-u./ju/, totai- 1.05

```
[Parallel(n_jobs=-1)]: Done 21 out of 21 | elapsed: 4.2min remaining: 0.0s [Parallel(n_jobs=-1)]: Done 21 out of 21 | elapsed: 4.2min finished
```

In [0]:

```
search.best_params_
Out[0]:
```

{'alpha': 0.01}

In [0]:


```
y_train_pred = search.best_estimator_.predict_proba(X_train)[:,1]
y_test_pred = search.best_estimator_.predict_proba(X_test)[:,1]
```

```
train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)
roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```



```
pt_1 = PrettyTable()
pt_1.field_names = ['Model', 'Hyper Paramters', 'Train AUC', 'Test AUC']
pt_1.add_row(['Logistic Regression', 'alpha = 0.01', np.round(.85912393340231, 3), np.round(.8568498599277099, 3)])
```

• The results were almost similar with simple SGD based Logisitc Regression with test AUROC of ".856".

Random Forest

In [0]:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

```
clf = RandomForestClassifier(class_weight='balanced', n_jobs=-1, oob_score=True)
params = dict(max_depth=[5, 8, 10], n_estimators=[25, 50, 100], min_samples_split=[5, 10, 100])
search = GridSearchCV(clf, params, scoring='roc_auc', n_jobs=-1, verbose=10, return_train_score=True, cv=2)
```

```
with parallel backend('threading'):
  search.fit(X train, y train)
Fitting 2 folds for each of 27 candidates, totalling 54 fits
[CV] max depth=5, min samples split=5, n estimators=25 ...............[CV] max depth=5, min samples split=5, n estimators=25 ..............
[Parallel (n jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[CV] max depth=5, min samples split=5, n estimators=25, score=(train=0.810, test=0.770), total= 1.0min
[CV] max depth=5, min samples split=5, n estimators=25, score=(train=0.796, test=0.759), total= 1.0min
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=5, min samples split=5, n estimators=25, score=(train=0.790, test=0.752), total= 1.0min
[CV] max depth=5, min samples split=5, n estimators=50 ......
[Parallel(n jobs=-1)]: Done 1 tasks | elapsed: 1.0min
[CV] max depth=5, min samples split=5, n estimators=25, score=(train=0.802, test=0.760), total= 1.0min
[CV] max depth=5, min samples split=5, n estimators=50 .....
[CV] max depth=5, min samples split=5, n estimators=50, score=(train=0.821, test=0.781), total= 1.4min
[CV] max depth=5, min samples split=5, n estimators=100 .....
[CV] max depth=5, min samples split=5, n estimators=50, score=(train=0.807, test=0.771), total= 1.4min
[CV] max depth=5, min samples split=5, n estimators=100 .....
[Parallel(n jobs=-1)]: Done 4 tasks
                                       | elapsed: 2.4min
[CV] max depth=15, min samples split=5, n estimators=150, score=(train=1.000, test=0.774), total= 6.9min
[CV] max depth=15, min samples split=5, n estimators=150, score=(train=1.000, test=0.770), total= 7.2min
[CV] max depth=5, min samples split=5, n estimators=100, score=(train=0.834, test=0.794), total= 2.0min
[CV] max depth=5, min samples split=10, n estimators=25 .....
[CV] max depth=5, min samples split=5, n estimators=100, score=(train=0.824, test=0.783), total= 2.0min
[CV] max depth=5, min samples split=10, n estimators=25 .....
```

/usr/local/lih/nuthon? 6/dist-nackaggs/sklaarn/angamble/forget nu.160. HearWarning. Some inpute do not have OOR goorge. This probably means too few

```
/ usi/ tocal/ tib/ pychohs. v/ utst packages/ skteath/ensembte/ totest.py. tov. oset mathing. Dome thiputs uo not have oob scores. This probably means too tem
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
/usr/local/lib/pvthon3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=5, min samples split=10, n estimators=25, score=(train=0.798, test=0.759), total= 20.7s
[CV] max depth=5, min samples split=10, n estimators=50 .....
[CV] max depth=5, min samples split=10, n estimators=25, score=(train=0.811, test=0.773), total= 20.8s
[CV] max depth=5, min samples split=10, n estimators=50 .....
[CV] max depth=5, min samples split=10, n estimators=50, score=(train=0.814, test=0.773), total= 40.6s
[CV] max depth=5, min samples split=10, n estimators=100 ......
[Parallel(n jobs=-1)]: Done 9 tasks
                                       | elapsed: 5.5min
[CV] max depth=5, min samples split=10, n estimators=50, score=(train=0.821, test=0.781), total= 40.7s
[CV] max depth=5, min samples split=10, n estimators=100 ......
[CV] max depth=5, min samples split=10, n estimators=100, score=(train=0.830, test=0.790), total= 1.3min
[CV] max depth=5, min samples split=100, n estimators=25 ......
[CV] max depth=5, min samples split=10, n estimators=100, score=(train=0.825, test=0.786), total= 1.3min
[CV] max depth=5, min samples split=100, n estimators=25 ......
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=5, min samples split=100, n estimators=25, score=(train=0.795, test=0.760), total= 20.2s
[CV] max depth=5, min samples split=100, n estimators=50 ......
[CV] max depth=5, min samples split=100, n estimators=25, score=(train=0.796, test=0.760), total= 20.2s
[CV] max depth=5, min samples split=100, n estimators=50 ......
[Parallel(n jobs=-1)]: Done 14 tasks | elapsed: 7.2min
[CV] max depth=5, min samples split=100, n estimators=50, score=(train=0.814, test=0.780), total= 40.2s
[CV] max depth=5, min samples split=100, n estimators=100 ......
[CV] max depth=5, min samples split=100, n estimators=50, score=(train=0.819, test=0.780), total= 40.3s
[CV] max depth=5, min samples split=100, n estimators=100 ......
[CV] max depth=5, min samples split=100, n estimators=100, score=(train=0.822, test=0.785), total= 1.3min
[CV] max depth=8, min samples split=5, n estimators=25 ......
[CV] max depth=5, min samples split=100, n estimators=100, score=(train=0.826, test=0.787), total= 1.3min
[CV] max depth=8, min samples split=5, n estimators=25 ......
[CV] max depth=8, min samples split=5, n estimators=25, score=(train=0.886, test=0.758), total= 30.6s
```

```
[CV] max depth=8, min samples split=5, n estimators=50 ......
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=8, min samples split=5, n estimators=25, score=(train=0.876, test=0.758), total= 30.8s
[CV] max depth=8, min samples split=5, n estimators=50 ......
[CV] max depth=8, min samples split=5, n estimators=50, score=(train=0.899, test=0.783), total= 1.0min
[CV] max depth=8, min samples split=5, n estimators=100 .....
[Parallel(n jobs=-1)]: Done 21 tasks
                                       | elapsed: 10.8min
[CV] max depth=8, min samples split=5, n estimators=50, score=(train=0.898, test=0.786), total= 1.0min
[CV] max depth=8, min samples split=5, n estimators=100 .....
[CV] max depth=8, min samples split=5, n estimators=100, score=(train=0.909, test=0.796), total= 2.0min
[CV] max depth=8, min samples split=10, n estimators=25 .....
[CV] max depth=8, min samples split=5, n estimators=100, score=(train=0.910, test=0.796), total= 2.0min
[CV] max depth=8, min samples split=10, n estimators=25 .....
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=8, min samples split=10, n estimators=25, score=(train=0.877, test=0.758), total= 30.5s
[CV] max depth=8, min samples split=10, n estimators=50 .....
[CV] max depth=8, min samples split=10, n estimators=25, score=(train=0.880, test=0.766), total= 30.8s
[CV] max depth=8, min samples split=10, n estimators=50 .....
[CV] max depth=8, min samples split=10, n estimators=50, score=(train=0.904, test=0.784), total= 1.0min
[CV] max depth=8, min samples split=10, n estimators=100 ......
[CV] max depth=8, min samples split=10, n estimators=50, score=(train=0.903, test=0.786), total= 1.0min
[CV] max depth=8, min samples split=10, n estimators=100 ......
[Parallel(n jobs=-1)]: Done 28 tasks
                                      | elapsed: 14.5min
[CV] max depth=8, min samples split=10, n estimators=100, score=(train=0.908, test=0.796), total= 2.0min
[CV] max depth=8, min samples split=100, n estimators=25 ......
[CV] max depth=8, min samples split=10, n estimators=100, score=(train=0.911, test=0.796), total= 2.1min
[CV] max depth=8, min samples split=100, n estimators=25 ......
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
```

warn ("Some inputs do not have OOR scores "

```
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.pv:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=8, min samples split=100, n estimators=25, score=(train=0.877, test=0.782), total= 29.6s
[CV] max depth=8, min samples split=100, n estimators=50 ......
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=8, min samples split=100, n estimators=25, score=(train=0.870, test=0.769), total= 30.9s
[CV] max depth=8, min samples split=100, n estimators=50 ......
[CV] max depth=8, min samples split=100, n estimators=50, score=(train=0.892, test=0.796), total= 1.0min
[CV] max depth=8, min samples split=100, n estimators=100 ......
[CV] max depth=8, min samples split=100, n estimators=50, score=(train=0.884, test=0.788), total= 1.0min
[CV] max depth=8, min samples split=100, n estimators=100 ......
[CV] max depth=8, min samples split=100, n estimators=100, score=(train=0.896, test=0.804), total= 2.0min
[CV] max depth=10, min samples split=5, n estimators=25 .....
[CV] max depth=8, min samples split=100, n estimators=100, score=(train=0.899, test=0.805), total= 2.0min
[CV] max depth=10, min samples split=5, n estimators=25 .....
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
 warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=10, min samples split=5, n estimators=25, score=(train=0.941, test=0.743), total= 34.7s
[CV] max depth=10, min samples split=5, n estimators=50 .....
[Parallel(n jobs=-1)]: Done 37 tasks | elapsed: 20.6min
[CV] max depth=10, min samples split=5, n estimators=25, score=(train=0.944, test=0.743), total= 36.8s
[CV] max depth=10, min samples split=5, n estimators=50 .....
[CV] max depth=10, min samples split=5, n estimators=50, score=(train=0.958, test=0.770), total= 1.2min
[CV] max depth=10, min samples split=5, n estimators=100 ......
[CV] max depth=10, min samples split=5, n estimators=50, score=(train=0.961, test=0.776), total= 1.2min
[CV] max depth=10, min samples split=5, n estimators=100 ......
[CV] max depth=10, min samples split=5, n estimators=100, score=(train=0.969, test=0.792), total= 2.5min
[CV] max depth=10, min samples split=10, n estimators=25 ......
[CV] max depth=10, min samples split=5, n estimators=100, score=(train=0.964, test=0.793), total= 2.5min
[CV] max depth=10, min samples split=10, n estimators=25 ......
```

/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few trees were used to compute any reliable oob estimates.

```
warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=10, min samples split=10, n estimators=25, score=(train=0.943, test=0.747), total= 34.8s
[CV] max depth=10, min samples split=10, n estimators=50 ......
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:460: UserWarning: Some inputs do not have OOB scores. This probably means too few
trees were used to compute any reliable oob estimates.
  warn ("Some inputs do not have OOB scores. "
/usr/local/lib/python3.6/dist-packages/sklearn/ensemble/forest.py:465: RuntimeWarning: invalid value encountered in true divide
 predictions[k].sum(axis=1)[:, np.newaxis])
[CV] max depth=10, min samples split=10, n estimators=25, score=(train=0.938, test=0.744), total= 37.4s
[CV] max depth=10, min samples split=10, n estimators=50 ......
[CV] max depth=10, min samples split=10, n estimators=50, score=(train=0.956, test=0.778), total= 1.2min
[CV] max depth=10, min samples split=10, n estimators=100 ......
[CV] max depth=10, min samples split=10, n estimators=50, score=(train=0.952, test=0.773), total= 1.2min
[CV] max depth=10, min samples split=10, n estimators=100 ......
[Parallel(n jobs=-1)]: Done 46 tasks
                                      | elapsed: 26.5min
[CV] max depth=10, min samples split=10, n estimators=100, score=(train=0.968, test=0.792), total= 2.4min
[CV] max depth=10, min samples split=100, n estimators=25 ......
[CV] max depth=10, min samples split=10, n estimators=100, score=(train=0.968, test=0.795), total= 2.5min
[CV] max depth=10, min samples split=100, n estimators=25 ......
[CV] max depth=10, min samples split=100, n estimators=25, score=(train=0.917, test=0.775), total= 34.6s
[CV] max depth=10, min samples split=100, n estimators=50 ......
[CV] max depth=10, min samples split=100, n estimators=25, score=(train=0.908, test=0.775), total= 36.9s
[CV] max depth=10, min samples split=100, n estimators=50 ......
[CV] max depth=10, min samples split=100, n estimators=50, score=(train=0.934, test=0.798), total= 1.2min
[CV] max depth=10, min samples split=100, n estimators=100 ......
[CV] max depth=10, min samples split=100, n estimators=50, score=(train=0.933, test=0.796), total= 1.2min
[CV] max depth=10, min samples split=100, n estimators=100 ......
[CV] max depth=10, min samples split=100, n estimators=100, score=(train=0.941, test=0.810), total= 2.4min
[CV] max depth=10, min samples split=100, n estimators=100, score=(train=0.939, test=0.809), total= 2.3min
[Parallel(n jobs=-1)]: Done 54 out of 54 | elapsed: 33.1min finished
In [0]:
res = pd.DataFrame(search.cv results)
In [0]:
plotTrainVsCV AUC (search, subplots=(1, 2), figsize=(20, 5) idx='param n estimators', cols='param max depth')
```



```
y_train_pred = search.best_estimator_.predict_proba(X_train)[:,1]
y_test_pred = search.best_estimator_.predict_proba(X_test)[:,1]

train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)

roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```


• Tried Decision Tree and Random Forest but didn't gave better results as both were completely over-fitting on training data even with the various byper parameters

XGBOOST

In [0]:

In [0]:

```
with parallel_backend('multiprocessing'):
    search.fit(X_train, y_train)
```

Fitting 2 folds for each of 10 candidates, totalling 20 fits

```
[Parallel(n_jobs=-1)]: Using backend MultiprocessingBackend with 2 concurrent workers.
```

[CV] colsample_bytree=0.892207906442659, gamma=1.7488800353518186, learning_rate=0.06747751081039131, max_depth=8, min_child_weight=21.851606190465088, n_estimators=93, reg_lambda=0.08253053315245326, subsample=0.9226774110370277
[CV] colsample_bytree=0.892207906442659, gamma=1.7488800353518186, learning_rate=0.06747751081039131, max_depth=8, min_child_weight=21.851606190465088, n_estimators=93, reg_lambda=0.08253053315245326, subsample=0.9226774110370277
[CV] colsample_bytree=0.892207906442659, gamma=1.7488800353518186, learning_rate=0.06747751081039131, max_depth=8, min_child_weight=21.851606190465088, n_estimators=93, reg_lambda=0.08253053315245326, subsample=0.9226774110370277, score=(train=0.954, test=0.849), total= 7.8min
[CV] colsample_bytree=0.892207906442659, gamma=1.7488800353518186, learning_rate=0.06747751081039131, max_depth=8, min_child_weight=21.851606190465088, n_estimators=93, reg_lambda=0.08253053315245326, subsample=0.9226774110370277, score=(train=0.956, test=0.849), total= 7.8min
[CV] colsample_bytree=0.892207906442659, gamma=1.7488800353518186, learning_rate=0.06747751081039131, max_depth=8, min_child_weight=21.851606190465088, n_estimators=93, reg_lambda=0.08253053315245326, subsample=0.9226774110370277, score=(train=0.956, test=0.849), total= 7.8min

cest-0.017), cotat- /.0mili [CV] colsample bytree=0.8554388572158456, gamma=1.2808291901922786, learning rate=0.06480135327008976, max depth=4, min child weight=63.22383782769299, n estimators=91, reg lambda=0.016279529095083668, subsample=0.6932577829777565 [CV] colsample bytree=0.8554388572158456, gamma=1.2808291901922786, learning rate=0.06480135327008976, max depth=4, min child weight=63.22383782769299, n estimators=91, reg lambda=0.016279529095083668, subsample=0.6932577829777565 [Parallel(n jobs=-1)]: Done 1 tasks | elapsed: 7.8min [CV] colsample bytree=0.8554388572158456, gamma=1.2808291901922786, learning rate=0.06480135327008976, max depth=4, min child weight=63.22383782769299, n estimators=91, reg lambda=0.016279529095083668, subsample=0.6932577829777565, score=(train=0.860, test=0.824), total= 3.3min[CV] colsample bytree=0.9644454614980406, gamma=6.075913532620509, learning rate=0.002032830201545121, max depth=7, min child weight=55.72368578803438, n estimators=68, reg lambda=0.0358647229261306, subsample=0.9921905942236565 [CV] colsample bytree=0.8554388572158456, gamma=1.2808291901922786, learning rate=0.06480135327008976, max depth=4, min child weight=63.22383782769299, n estimators=91, reg lambda=0.016279529095083668, subsample=0.6932577829777565, score=(train=0.860, test=0.820), total= 3.3min [CV] colsample bytree=0.9644454614980406, gamma=6.075913532620509, learning rate=0.002032830201545121, max depth=7, min child weight=55.72368578803438, n estimators=68, reg lambda=0.0358647229261306, subsample=0.9921905942236565 [Parallel(n jobs=-1)]: Done 4 tasks | elapsed: 11.1min [CV] colsample bytree=0.9644454614980406, qamma=6.075913532620509, learning rate=0.002032830201545121, max depth=7, min child weight=55.72368578803438, n estimators=68, reg lambda=0.0358647229261306, subsample=0.9921905942236565, score=(train=0.732, test=0.698), total= 5.2min [CV] colsample bytree=0.9552976445386667, gamma=8.070588074129297, learning rate=0.03867883887926241, max depth=4, min child weight=38.298202983871086, n estimators=120, reg lambda=0.03309635037246653, subsample=0.9746209401382341 [CV] colsample bytree=0.9644454614980406, gamma=6.075913532620509, learning rate=0.002032830201545121, max depth=7, min child weight=55.72368578803438, n estimators=68, reg lambda=0.0358647229261306, subsample=0.9921905942236565, score=(train=0.732, test=0.697), total= 5.3min [CV] colsample bytree=0.9552976445386667, gamma=8.070588074129297, learning rate=0.03867883887926241, max depth=4, min child weight=38.298202983871086, n estimators=120, reg lambda=0.03309635037246653, subsample=0.9746209401382341 [CV] colsample bytree=0.9552976445386667, gamma=8.070588074129297, learning rate=0.03867883887926241, max depth=4, min child weight=38.298202983871086, n estimators=120, reg lambda=0.03309635037246653, subsample=0.9746209401382341, score=(train=0.852, test=0.805), total=5.3min [CV] colsample bytree=0.9760882562642434, gamma=7.33899070008214, learning rate=0.07511994983852938, max depth=6, min child weight=52.05549446335297, n estimators=16, reg lambda=0.016381614223396755, subsample=0.9846398442555937 [CV] colsample bytree=0.9552976445386667, gamma=8.070588074129297, learning rate=0.03867883887926241, max depth=4, min child weight=38.298202983871086, n estimators=120, reg lambda=0.03309635037246653, subsample=0.9746209401382341, score=(train=0.852, test=0.803), total= 5.3min [CV] colsample bytree=0.9760882562642434, gamma=7.33899070008214, learning rate=0.07511994983852938, max depth=6, min child weight=52.05549446335297, n estimators=16, reg lambda=0.016381614223396755, subsample=0.9846398442555937 [CV] colsample bytree=0.9760882562642434, gamma=7.33899070008214, learning rate=0.07511994983852938, max depth=6, min child weight=52.05549446335297, n estimators=16, reg lambda=0.016381614223396755, subsample=0.9846398442555937, score=(train=0.779, test=0.734), total= 1.1min [CV] colsample bytree=0.9392374918228288, gamma=1.2976168531850774, learning rate=0.0033690080424075832, max depth=9, min child weight=121.04345829562762, n estimators=189, reg lambda=0.0017891873407416261, subsample=0.8649567989813004

[GT] --1-----1- 1-1----- 0 07C0000FC0C40404 ------ 7 2200007000014 1-----!-- 0 07F110040020F0020 ---- 1----1- C

| elapsed: 22.8min

[Parallel(n jobs=-1)]: Done 9 tasks

```
|UV| COLSample pytree=U.9/6U88Z56Z64Z434, qamma=/.33899U/UUU8Z14, learning rate=U.U/51199498385Z938, max deptn=6,
min child weight=52.05549446335297, n estimators=16, reg lambda=0.016381614223396755, subsample=0.9846398442555937, score=(train=0.777,
test=0.731), total= 1.1min
[CV] colsample bytree=0.9392374918228288, gamma=1.2976168531850774, learning rate=0.0033690080424075832, max depth=9,
min child weight=121.04345829562762, n estimators=189, reg lambda=0.0017891873407416261, subsample=0.8649567989813004
[CV] colsample bytree=0.9392374918228288, gamma=1.2976168531850774, learning rate=0.0033690080424075832, max depth=9,
min child weight=121.04345829562762, n estimators=189, reg lambda=0.0017891873407416261, subsample=0.8649567989813004, score=(train=0.795,
test=0.748), total=16.8min
[CV] colsample bytree=0.9905388970901187, qamma=0.9553491010166437, learning rate=0.08297699202864298, max depth=7,
min child weight=33.349588022354965, n estimators=39, reg lambda=0.09579148177344904, subsample=0.9969684752561796
[CV] colsample bytree=0.9392374918228288, gamma=1.2976168531850774, learning rate=0.0033690080424075832, max depth=9,
min child weight=121.04345829562762, n estimators=189, reg lambda=0.0017891873407416261, subsample=0.8649567989813004, score=(train=0.794,
test=0.746), total=16.8min
[CV] colsample bytree=0.9905388970901187, gamma=0.9553491010166437, learning rate=0.08297699202864298, max depth=7,
min child weight=33.349588022354965, n estimators=39, reg lambda=0.09579148177344904, subsample=0.9969684752561796
[CV] colsample bytree=0.9905388970901187, gamma=0.9553491010166437, learning rate=0.08297699202864298, max depth=7,
min child weight=33.349588022354965, n estimators=39, reg lambda=0.09579148177344904, subsample=0.9969684752561796, score=(train=0.880,
test=0.804), total= 3.2min
[CV] colsample bytree=0.6822568644110761, gamma=0.21387817694568323, learning rate=0.06766228327528674, max depth=5,
min child weight=17.747049596571745, n estimators=42, reg lambda=0.055513040244731464, subsample=0.9330200170360701
[CV] colsample bytree=0.9905388970901187, gamma=0.9553491010166437, learning rate=0.08297699202864298, max depth=7,
min child weight=33.349588022354965, n estimators=39, reg lambda=0.09579148177344904, subsample=0.9969684752561796, score=(train=0.878,
test=0.800), total= 3.2min
[CV] colsample bytree=0.6822568644110761, gamma=0.21387817694568323, learning rate=0.06766228327528674, max depth=5,
min child weight=17.747049596571745, n estimators=42, reg lambda=0.055513040244731464, subsample=0.9330200170360701
[Parallel(n jobs=-1)]: Done 14 tasks
                                          | elapsed: 42.9min
[CV] colsample bytree=0.6822568644110761, gamma=0.21387817694568323, learning rate=0.06766228327528674, max depth=5,
```

```
min child weight=17.747049596571745, n estimators=42, reg lambda=0.055513040244731464, subsample=0.9330200170360701, score=(train=0.833,
test=0.779), total= 1.7min
[CV] colsample bytree=0.9086723055091218, gamma=0.21216894437701028, learning rate=0.07222791991688925, max depth=9,
min child weight=37.48636405680028, n estimators=181, reg lambda=0.014456759006000242, subsample=0.7045874614416053
[CV] colsample bytree=0.6822568644110761, gamma=0.21387817694568323, learning rate=0.06766228327528674, max depth=5,
min child weight=17.747049596571745, n estimators=42, reg lambda=0.055513040244731464, subsample=0.9330200170360701, score=(train=0.836,
test=0.785), total= 1.7min
[CV] colsample bytree=0.9086723055091218, gamma=0.21216894437701028, learning rate=0.07222791991688925, max depth=9,
min child weight=37.48636405680028, n estimators=181, reg lambda=0.014456759006000242, subsample=0.7045874614416053
[CV] colsample bytree=0.9086723055091218, gamma=0.21216894437701028, learning rate=0.07222791991688925, max depth=9,
min child weight=37.48636405680028, n estimators=181, reg lambda=0.014456759006000242, subsample=0.7045874614416053, score=(train=0.971,
test=0.877), total=14.6min
[CV] colsample bytree=0.8760430563901844, gamma=8.437628384358698, learning rate=0.02274271827471186, max depth=6,
min child weight=41.31544825645659, n estimators=157, reg lambda=0.031149218614658903, subsample=0.9020335523195462
[CV] colsample bytree=0.9086723055091218, gamma=0.21216894437701028, learning rate=0.07222791991688925, max depth=9,
min child weight=37.48636405680028, n estimators=181, reg lambda=0.014456759006000242, subsample=0.7045874614416053, score=(train=0.972,
test=0.876), total=14.7min
[CV] colsample bytree=0.8760430563901844, gamma=8.437628384358698, learning rate=0.02274271827471186, max depth=6,
min child weight=41.31544825645659, n estimators=157, reg lambda=0.031149218614658903, subsample=0.9020335523195462
[CV] colsample bytree=0.8760430563901844, gamma=8.437628384358698, learning rate=0.02274271827471186, max depth=6,
min child weight=41.31544825645659, n estimators=157, reg lambda=0.031149218614658903, subsample=0.9020335523195462, score=(train=0.874,
test=0.812), total= 9.1min
[CV] colsample bytree=0.8760430563901844, gamma=8.437628384358698, learning rate=0.02274271827471186, max depth=6,
```

```
min child weight=41.31544825645659, n estimators=157, reg lambda=0.031149218614658903, subsample=0.9020335523195462, score=(train=0.872,
test=0.809), total= 9.1min
[Parallel(n jobs=-1)]: Done 20 out of 20 | elapsed: 68.4min remaining:
                                                                                     0.0s
[Parallel(n jobs=-1)]: Done 20 out of 20 | elapsed: 68.4min finished
In [0]:
search.best params
Out[0]:
{'colsample bytree': 0.9086723055091218,
 'gamma': 0.21216894437701028,
 'learning rate': 0.07222791991688925,
 'max depth': 9,
 'min child weight': 37.48636405680028,
 'n estimators': 181,
 'reg lambda': 0.014456759006000242,
 'subsample': 0.7045874614416053}
In [0]:
xgb.plot importance?
In [0]:
plt.figure(figsize=(20, 40))
xgb.plot importance(search.best estimator , plt.gca(), grid=False, height=.4, edgecolor='blue', xlabel='Feature Weight')
plt.show()
                                                                            Feature importance
   var_76
var_13
   var 21
   var I46
                                                                                                                                              164
   var 165
var 22
                                                                                                                                              163
    var 53
    var 6
                                                                                                                                           160
   var 174
                                                                                                                                           160
    var 12
    var<sup>26</sup>
   var I90
                                                                                                                                  150
150
149
    var 80
   var I48
   var 198
   var 99
var 115
   var=166
   var 139
   var 110
                                                                                                                           140
                                                                                                                           140
   var 34
var 40
                                                                                                                          139
   var I33
```



```
res = pd.DataFrame(search.cv_results_)
res
```

In [0]:

plotTrainVsCV_AUC(search, subplots=(2, 1), figsize=(20, 10), idx='param_n_estimators', cols='param_max_depth')


```
y_train_pred = search.best_estimator_.predict_proba(X_train)[:,1]
y_test_pred = search.best_estimator_.predict_proba(X_test)[:,1]

train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)

roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```


In [0]:

Light GBM

```
"num leaves": st.rangint(100, 200),
    "min data in leaf": st.randint(50, 100),
    "max depth": st.randint(5, 10),
    "learning rate": st.uniform(0.001, 0.1),
    "colsample bytree": one to left,
    # "subsample": one to left,
    "reg lambda": st.uniform(0.0001, 0.1),
    "reg alpha": st.uniform(0.0001, 0.01),
    "max bin": st.randint(67, 100),
search = RandomizedSearchCV(lqb.LGBMClassifier(objective='binary', n jobs=-1), params, n iter=20,\
                           scoring='roc auc', n jobs=-1, verbose=10, return train score=True, cv=2, error score='raise')
In [0]:
# with parallel backend('multiprocessing'):
search.fit(X train, y train, eval metric='auc')
Fitting 2 folds for each of 20 candidates, totalling 40 fits
[Parallel (n jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n jobs=-1)]: Done 1 tasks | elapsed: 28.9s
[Parallel(n jobs=-1)]: Done 4 tasks
                                        | elapsed: 56.3s
/usr/local/lib/python3.6/dist-packages/joblib/externals/loky/process executor.py:706: UserWarning: A worker stopped while some jobs were given to
the executor. This can be caused by a too short worker timeout or by a memory leak.
 "timeout or by a memory leak.", UserWarning
[Parallel(n jobs=-1)]: Done 9 tasks | elapsed: 2.2min
[Parallel(n jobs=-1)]: Done 14 tasks | elapsed: 2.9min
[Parallel(n jobs=-1)]: Done 21 tasks | elapsed: 4.6min
[Parallel(n jobs=-1)]: Done 28 tasks | elapsed: 6.1min
[Parallel (n jobs=-1)]: Done 37 tasks | elapsed: 8.6min
[Parallel(n jobs=-1)]: Done 40 out of 40 | elapsed: 9.2min finished
Out[0]:
RandomizedSearchCV(cv=2, error score='raise',
                  estimator=LGBMClassifier(boosting type='gbdt',
                                           class weight=None,
                                           colsample bytree=1.0,
                                           importance type='split',
                                           learning rate=0.1, max depth=-1,
                                           min child samples=20,
                                           min child weight=0.001,
                                           min split gain=0.0,
                                           n estimators=100, n jobs=-1,
                                           num leaves=31, objective='binary',
                                           random state=None, reg alpha=0.0,
                                           reg lambda=...
                                       'min data in leaf': <scipy.stats. distn infrastructure.rv frozen object at 0x7f3329cf7b00>,
                                       'num leaves! . <eciny etate dieth infractructure ry frozen chiect at 0v7f332h800ac8>
```

In [0]:

plotTrainVsCV_AUC(search, (2,1), (20, 10), idx='param_num_leaves', cols='param_max_depth')

In [0]:

y_train_pred = search.best_estimator_.predict_proba(X_train)[:,1]

```
y_test_pred = search.best_estimator_.predict_proba(X_test)[:,1]

train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)

roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```


New Features

Type - 1 | Count Features :

```
A CTAIN CHC[., ] I | I] - PA.DELTED(A).Map(AIC)
        X test cnt[:, j*4 + i] = pd.Series(np.round(X test.iloc[:, j], i+1)).map(lambda p: dic.get(p, missedValue))
    x = X train.iloc[:, j]
    dic = pd.value counts(x)
    missedValue = dic.idxmax() #np.median(dic.index)
    dic = dic.to dict()
    X train cnt[:, j*4] = pd.Series(x).map(dic)
    X test cnt[:, j*4] = pd.Series(X test.iloc[:, j]).map(lambda p: dic.get(p, missedValue))
X train basic feats = X train[['mean', 'std', 'max', 'min', 'median']].copy()
X test basic feats = X test[['mean', 'std', 'max', 'min', 'median']].copy()
X train raw = X train[X train.columns.difference(['mean', 'std', 'max', 'min', 'median'])].copy()
X test raw = X test[X test.columns.difference(['mean', 'std', 'max', 'min', 'median'])].copy()
X train new feats = np.zeros((len(X train raw), total vars * 5))
X test new feats = np.zeros((len(X test raw), total vars * 5))
# raw + count of rounded feature
old cols = X train raw.columns
new cols = list()
for idx in tqdm(range(total vars)):
    X train new feats[:, 5*idx] = X train raw.iloc[:, idx]
    new cols.extend([old cols[idx], '{} count'.format(old cols[idx])])
    X train new feats[:, 5*idx+1:5*idx+5] = X train cnt[:, 4*idx:4*idx+4]
    new cols.extend(['{} roundedTo {}'.format(old cols[idx], rnd) for rnd in range(2, 5)])
    X test new feats[:, 5*idx] = X test raw.iloc[:, idx]
    X test new feats[:, 5*idx+1:5*idx+5] = X test cnt[:, 4*idx:4*idx+4]
X train new feats = pd.DataFrame(X train new feats, columns=new cols)
X test new feats = pd.DataFrame(X test new feats, columns=new cols)
del X train cnt, X test cnt, X train raw, X test raw; gc.collect()
100%|
                 200/200 [01:53<00:00, 2.19it/s]
100%|
               | 200/200 [00:05<00:00, 36.48it/s]
Out[0]:
0
In [0]:
basic feats also = str(input('Do you want to use basic features also (y/n) : ')) == 'y'
```

X tr = pd.concat([X train new feats.reset index(drop=True), X train basic feats.reset index(drop=True)], \

```
axis=1, sort=ralse) if pasic reats also else x train new reats
X te = pd.concat([X test new feats.reset index(drop=True), X test basic feats.reset index(drop=True)],
                 axis=1, sort=False) if basic feats also else X test new feats
Do you want to use basic features also (y/n): n
In [0]:
X tr.shape, X te.shape
Out[0]:
((160000, 1000), (40000, 1000))
In [0]:
y train.shape, y test.shape
Out[0]:
((160000,),(40000,))
Type - 2 | Rounded features :
In [131:
| X tr 2 = X train[X train.columns.difference(['mean', 'std', 'max', 'min', 'median'])].copy()
X te 2 = X test[X test.columns.difference(['mean', 'std', 'max', 'min', 'median'])].copy()
for feature in tqdm(X tr 2.columns):
    X tr 2[feature+' r2'] = np.round(X tr 2[feature], 2)
    X tr 2[feature+' r1'] = np.round(X tr 2[feature], 1)
    X \text{ te 2[feature+' r2']} = np.round(X \text{ te 2[feature], 2})
    X te 2[feature+' r1'] = np.round(X te 2[feature], 1)
100%| 200/200 [00:02<00:00, 69.28it/s]
In [14]:
basic feats also = str(input('Do you want to use basic features also (y/n) : ')) == 'y'
X tr 2 = pd.concat([X tr 2.reset index(drop=True), \
                    X train[['mean', 'std', 'max', 'min', 'median']].copy().reset index(drop=True)],\
                 axis=1, sort=False) if basic feats also else X train new feats
X te 2 = pd.concat([X te 2.reset index(drop=True), \
```

```
X test[['mean', 'std', 'max', 'min', 'median']].copy().reset index(drop=True)],\
                axis=1, sort=False) if basic feats also else X test new feats
Do you want to use basic features also (y/n): y
Modelling [2] - w/ new[, basic] features.
In [0]:
pt 2 = PrettyTable()
pt 2.field names = ['Model', 'Hyper Parameters', 'Train AUC', 'Test AUC']
Logistic Regression:
In [0]:
clf = linear model.LogisticRegression(penalty='elasticnet', n jobs=-1, class weight='balanced', solver='saga', fit intercept=False)
params = dict(C=(.0001, .001, .01, .1), max iter=st.randint(800, 1000), 11 ratio=st.uniform(.15, .5))
search = RandomizedSearchCV(clf, params, scoring='roc auc', n jobs=-1, verbose=10, return train score=True, cv=2, n iter=20)
In [0]:
with parallel backend('multiprocessing'):
  search.fit(scaler.fit transform(X tr), y train)
Fitting 2 folds for each of 20 candidates, totalling 40 fits
[Parallel(n jobs=-1)]: Using backend MultiprocessingBackend with 4 concurrent workers.
[CV] C=0.0001, l1 ratio=0.40540059812874696, max iter=849 ......
[CV] C=0.0001, l1 ratio=0.40540059812874696, max iter=849 ......
[CV] C=0.01, l1 ratio=0.28284730554247794, max iter=902 .....
[CV] C=0.01, l1 ratio=0.28284730554247794, max iter=902 .....
[CV] C=0.0001, l1 ratio=0.40540059812874696, max iter=849, score=(train=0.649, test=0.641), total= 45.6s
[CV] C=0.1, l1 ratio=0.6347826726244412, max iter=841 ......
[CV] C=0.0001, l1 ratio=0.40540059812874696, max iter=849, score=(train=0.639, test=0.639), total= 47.8s
[CV] C=0.1, l1 ratio=0.6347826726244412, max iter=841 .....
[CV] C=0.01, l1 ratio=0.28284730554247794, max iter=902, score=(train=0.893, test=0.877), total= 1.3min
[CV] C=0.001, l1 ratio=0.5839910295748246, max iter=923 .....
[CV] C=0.01, l1 ratio=0.28284730554247794, max iter=902, score=(train=0.891, test=0.879), total= 1.9min
[CV] C=0.001, l1 ratio=0.5839910295748246, max iter=923 .....
[CV] C=0.1, 11 ratio=0.6347826726244412, max iter=841, score=(train=0.892, test=0.878), total= 1.2min
[CV] C=0.0001, l1 ratio=0.5667287045097704, max iter=900 ......
```

```
[Parallel(n jobs=-1)]: Done 5 tasks | elapsed: 2.0min
[CV] C=0.1, 11 ratio=0.6347826726244412, max iter=841, score=(train=0.893, test=0.876), total= 1.3min
[CV] C=0.0001, l1 ratio=0.5667287045097704, max iter=900 ......
[CV] C=0.001, 11 ratio=0.5839910295748246, max iter=923, score=(train=0.873, test=0.869), total= 56.2s
[CV] C=0.01, l1 ratio=0.45957488288800297, max iter=943 .....
[CV] C=0.0001, l1 ratio=0.5667287045097704, max iter=900, score=(train=0.500, test=0.500), total= 24.7s
[CV] C=0.01, l1 ratio=0.45957488288800297, max iter=943 .....
[CV] C=0.0001, 11 ratio=0.5667287045097704, max iter=900, score=(train=0.500, test=0.500), total= 26.5s
[CV] C=0.1, l1 ratio=0.5933255298866175, max iter=863 ......
[CV] C=0.001, 11 ratio=0.5839910295748246, max iter=923, score=(train=0.875, test=0.867), total= 52.3s
[CV] C=0.1, 11 ratio=0.5933255298866175, max iter=863 ......
[Parallel(n jobs=-1)]: Done 10 tasks
                                        | elapsed: 2.8min
[CV] C=0.01, l1 ratio=0.45957488288800297, max iter=943, score=(train=0.890, test=0.880), total= 1.2min
[CV] C=0.001, l1 ratio=0.2894029134510545, max iter=802 .....
[CV] C=0.01, l1 ratio=0.45957488288800297, max iter=943, score=(train=0.892, test=0.877), total= 1.2min
[CV] C=0.001, l1 ratio=0.2894029134510545, max iter=802 .....
[CV] C=0.1, 11 ratio=0.5933255298866175, max iter=863, score=(train=0.892, test=0.878), total= 1.2min
[CV] C=0.1, l1 ratio=0.22196647609466505, max iter=946 ......
[CV] C=0.1, 11 ratio=0.5933255298866175, max iter=863, score=(train=0.893, test=0.876), total= 1.3min
[CV] C=0.1, 11 ratio=0.22196647609466505, max iter=946 ......
[CV] C=0.001, 11 ratio=0.2894029134510545, max iter=802, score=(train=0.883, test=0.877), total= 55.2s
[CV] C=0.0001, l1 ratio=0.4202726590010638, max iter=871 ........
[CV] C=0.001, 11 ratio=0.2894029134510545, max iter=802, score=(train=0.885, test=0.875), total= 55.9s
[CV] C=0.0001, l1 ratio=0.4202726590010638, max iter=871 ........
[CV] C=0.0001, 11 ratio=0.4202726590010638, max iter=871, score=(train=0.624, test=0.625), total= 43.8s
[CV] C=0.001, l1 ratio=0.1545037567823819, max iter=898 .....
[Parallel(n jobs=-1)]: Done 17 tasks
                                        | elapsed: 5.0min
[CV] C=0.1, 11 ratio=0.22196647609466505, max iter=946, score=(train=0.892, test=0.878), total= 1.3min
[CV] C=0.001, l1 ratio=0.1545037567823819, max iter=898 .....
[CV] C=0.0001, 11 ratio=0.4202726590010638, max iter=871, score=(train=0.632, test=0.624), total= 44.0s
[CV] C=0.01, l1 ratio=0.5816246884542369, max iter=883 ......
[CV] C=0.001, 11 ratio=0.1545037567823819, max iter=898, score=(train=0.887, test=0.879), total= 59.0s
[CV] C=0.01, l1 ratio=0.5816246884542369, max iter=883 ......
[CV] C=0.001, 11 ratio=0.1545037567823819, max iter=898, score=(train=0.889, test=0.877), total= 1.1min
[CV] C=0.001, l1 ratio=0.3932018575524343, max iter=921 .....
[CV] C=0.01, 11 ratio=0.5816246884542369, max iter=883, score=(train=0.890, test=0.880), total= 1.1min
[CV] C=0.001, l1 ratio=0.3932018575524343, max iter=921 .....
[CV] C=0.1, 11 ratio=0.22196647609466505, max iter=946, score=(train=0.893, test=0.876), total= 2.2min
[CV] C=0.1, l1 ratio=0.45391957123442916, max iter=983 ......
[CV] C=0.001, l1 ratio=0.3932018575524343, max iter=921, score=(train=0.880, test=0.875), total= 53.0s
[CV] C=0.1, l1 ratio=0.45391957123442916, max iter=983 ......
```

```
[CV] C=0.001, 11 ratio=0.3932018575524343, max iter=921, score=(train=0.882, test=0.873), total= 58.0s
[CV] C=0.001, l1 ratio=0.35302373545693966, max iter=882 ...........
[CV] C=0.01, l1 ratio=0.5816246884542369, max iter=883, score=(train=0.892, test=0.877), total= 1.3min
[CV] C=0.001, 11 ratio=0.35302373545693966, max iter=882 ......
[CV] C=0.1, 11 ratio=0.45391957123442916, max iter=983, score=(train=0.892, test=0.878), total= 1.2min
[CV] C=0.0001, l1 ratio=0.5563723898738865, max iter=974 ......
[CV] C=0.0001, l1 ratio=0.5563723898738865, max iter=974, score=(train=0.500, test=0.500), total= 25.7s
[CV] C=0.0001, l1 ratio=0.5563723898738865, max iter=974 .......
[CV] C=0.001, 11 ratio=0.35302373545693966, max iter=882, score=(train=0.881, test=0.876), total= 55.3s
[CV] C=0.0001, l1 ratio=0.5447952733137348, max iter=862 ......
[CV] C=0.001, 11 ratio=0.35302373545693966, max iter=882, score=(train=0.883, test=0.874), total= 57.3s
[CV] C=0.0001, l1 ratio=0.5447952733137348, max iter=862 ......
[CV] C=0.1, 11 ratio=0.45391957123442916, max iter=983, score=(train=0.893, test=0.876), total= 1.3min
[CV] C=0.001, l1 ratio=0.4740555376479476, max iter=834 .....
[CV] C=0.0001, 11 ratio=0.5563723898738865, max iter=974, score=(train=0.500, test=0.500), total= 23.9s
[CV] C=0.001, l1 ratio=0.4740555376479476, max iter=834 .....
[CV] C=0.0001, 11 ratio=0.5447952733137348, max iter=862, score=(train=0.500, test=0.500), total= 28.5s
[CV] C=0.01, l1 ratio=0.4964518773723896, max iter=951 ......
[Parallel(n jobs=-1)]: Done 33 tasks
                                        | elapsed: 8.8min
[CV] C=0.0001, 11 ratio=0.5447952733137348, max iter=862, score=(train=0.570, test=0.564), total= 49.5s
[CV] C=0.01, l1 ratio=0.4964518773723896, max iter=951 ......
[CV] C=0.001, 11 ratio=0.4740555376479476, max iter=834, score=(train=0.877, test=0.872), total= 54.3s
[CV] C=0.1, l1 ratio=0.5723260976994545, max iter=901 .....
[CV] C=0.001, l1 ratio=0.4740555376479476, max iter=834, score=(train=0.879, test=0.870), total= 55.7s
[CV] C=0.1, l1 ratio=0.5723260976994545, max iter=901 .....
[CV] C=0.01, l1 ratio=0.4964518773723896, max iter=951, score=(train=0.890, test=0.880), total= 1.1min
[CV] C=0.01, 11 ratio=0.4964518773723896, max iter=951, score=(train=0.892, test=0.877), total= 1.1min
[Parallel (n jobs=-1)]: Done 38 out of 40 | elapsed: 10.3min remaining: 32.5s
[CV] C=0.1, 11 ratio=0.5723260976994545, max iter=901, score=(train=0.892, test=0.878), total= 1.1min
[CV] C=0.1, 11 ratio=0.5723260976994545, max iter=901, score=(train=0.893, test=0.876), total= 1.1min
[Parallel(n jobs=-1)]: Done 40 out of 40 | elapsed: 10.5min finished
In [0]:
search.best params
Out[0]:
{'C': 0.01, 'l1 ratio': 0.5816246884542369, 'max iter': 883}
```

```
res = pd.DataFrame(search.cv_results_)
idxs = np.argsort(res.param_C.values.astype('float64'))
auc_plot(res.param_C.values.astype('float64')[idxs], res.mean_train_score.values[idxs], res.mean_test_score.values[idxs], 'C')
```



```
y_train_pred = search.best_estimator_.predict_proba(scaler.transform(X_tr))[:,1]
y_test_pred = search.best_estimator_.predict_proba(scaler.transform(X_te))[:,1]

train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)
roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```


XGBoost:

In [0]:

```
# https://github.com/dmlc/xgboost/blob/master/demo/kaggle-higgs/higgs-numpy.py
weight = (X_train.var_76 * float(X_test.shape[0]) / len(y_train))
sum_wpos = sum( weight.iloc[i] for i in range(len(y_train)) if y_train[i] )
sum_wneg = sum( weight.iloc[i] for i in range(len(y_train)) if not y_train[i] )
```

In [0]:

```
xgb.XGBClassifier?
```

```
# https://xgboost.readthedocs.io/en/latest/tutorials/param_tuning.html

one_to_left = st.beta(5, 1)
from_zero_positive = st.expon(0, 50)

params = {
    "n_estimators": st.randint(100, 123),
    "max_depth": st.randint(2, 5),
    "colsample_bytree": one_to_left,
    "subsample": one_to_left,
    "gamma": st.uniform(0, 10),
    "reg_lambda": (.001, .01, .1),
    "reg_alpha": (.001, .01, .1),
    "reg_alpha": (.001, .01, .1),
    "min_child_weight": from_zero_positive,
    "learning_rate": (.01, .1)
}

search = RandomizedSearchCV(xgb.XGBClassifier(max_delta_step=10, eval_metric='auc', objective='binary:logistic',\
    p_iobe=1_scale_pos_weight=sum_wpag(sum_wpas_num_boost_round=100000) }
```

```
II JODS- I, SCATE DOS WEIGHT-SAM WHEG/SAM WPOS, HAM DOOST TOWHATTOOOOG,
                            params, scoring='roc auc', n jobs=-1, verbose=23, return train score=True, cv=2)
In [19]:
with parallel backend('threading'):
  search.fit(X tr 2, y train)
Fitting 2 folds for each of 10 candidates, totalling 20 fits
[CV] colsample bytree=0.9795385580301809, gamma=7.48368178462424, learning rate=0.1, max depth=3, min child weight=26.306065256124405, n estimators=
116, reg alpha=0.01, reg lambda=0.01, subsample=0.8693109798363479 [CV] colsample bytree=0.9795385580301809, gamma=7.48368178462424,
learning rate=0.1, max depth=3, min child weight=26.306065256124405, n estimators=116, reg alpha=0.01, reg lambda=0.01,
subsample=0.8693109798363479 [CV] colsample bytree=0.981991935471296, gamma=3.133728648190235, learning rate=0.01, max depth=2,
min child weight=6.56542037919276, n estimators=122, reg alpha=0.01, reg lambda=0.01, subsample=0.9185191139938026 [CV]
colsample bytree=0.981991935471296, gamma=3.133728648190235, learning rate=0.01, max depth=2, min child weight=6.56542037919276, n estimators=122,
reg alpha=0.01, reg lambda=0.01, subsample=0.9185191139938026
[Parallel(n jobs=-1)]: Using backend ThreadingBackend with 4 concurrent workers.
[CV] colsample bytree=0.981991935471296, gamma=3.133728648190235, learning rate=0.01, max depth=2, min child weight=6.56542037919276,
n estimators=122, reg alpha=0.01, reg lambda=0.01, subsample=0.9185191139938026, score=(train=0.702, test=0.690), total= 6.4min
[CV] colsample bytree=0.7306922599120634, gamma=8.954793152617174, learning rate=0.1, max depth=3, min child weight=86.38868548503523,
n estimators=122, reg alpha=0.1, reg lambda=0.001, subsample=0.5839620442647151
[Parallel(n jobs=-1)]: Done 1 tasks
                                          | elapsed: 6.5min
[CV] colsample bytree=0.981991935471296, gamma=3.133728648190235, learning rate=0.01, max depth=2, min child weight=6.56542037919276,
n estimators=122, reg alpha=0.01, reg lambda=0.01, subsample=0.9185191139938026, score=(train=0.712, test=0.696), total= 6.4min
[CV] colsample bytree=0.7306922599120634, gamma=8.954793152617174, learning rate=0.1, max depth=3, min child weight=86.38868548503523,
n estimators=122, reg alpha=0.1, reg lambda=0.001, subsample=0.5839620442647151
[Parallel(n jobs=-1)]: Done 2 tasks
                                           | elapsed: 6.5min
[CV] colsample bytree=0.9795385580301809, gamma=7.48368178462424, learning rate=0.1, max depth=3, min child weight=26.306065256124405, n estimators
=116, reg alpha=0.01, reg lambda=0.01, subsample=0.8693109798363479, score=(train=0.885, test=0.840), total= 8.8min
[CV] colsample bytree=0.97312978438908, gamma=5.242335416132442, learning rate=0.1, max depth=2, min child weight=104.78643562746936,
n estimators=116, reg alpha=0.01, reg lambda=0.001, subsample=0.9904962826855939
[Parallel(n jobs=-1)]: Done 3 tasks
                                           | elapsed: 8.8min
[CV] colsample bytree=0.9795385580301809, gamma=7.48368178462424, learning rate=0.1, max depth=3, min child weight=26.306065256124405, n estimators
=116, reg alpha=0.01, reg lambda=0.01, subsample=0.8693109798363479, score=(train=0.885, test=0.838), total= 8.8min
[CV] colsample bytree=0.97312978438908, gamma=5.242335416132442, learning rate=0.1, max depth=2, min child weight=104.78643562746936,
```

```
[Parallel(n jobs=-1)]: Done 4 tasks | elapsed: 8.9min
```

[CV] colsample_bytree=0.7306922599120634, gamma=8.954793152617174, learning_rate=0.1, max_depth=3, min_child_weight=86.38868548503523, n_estimators=122, reg_alpha=0.1, reg_lambda=0.001, subsample=0.5839620442647151, score=(train=0.885, test=0.845), total= 6.6min [CV] colsample_bytree=0.964207487966292, gamma=0.7612741260974909, learning_rate=0.1, max_depth=3, min_child_weight=81.85692285482902, n estimators=103, reg_alpha=0.001, reg_lambda=0.001, subsample=0.7881643463534637

```
[Parallel(n_jobs=-1)]: Done 5 tasks | elapsed: 13.1min
```

[CV] colsample_bytree=0.7306922599120634, gamma=8.954793152617174, learning_rate=0.1, max_depth=3, min_child_weight=86.38868548503523, n_estimators=122, reg_alpha=0.1, reg_lambda=0.001, subsample=0.5839620442647151, score=(train=0.885, test=0.843), total= 6.6min [CV] colsample_bytree=0.964207487966292, gamma=0.7612741260974909, learning_rate=0.1, max_depth=3, min_child_weight=81.85692285482902, n estimators=103, reg_alpha=0.001, reg_lambda=0.001, subsample=0.7881643463534637

```
[Parallel(n jobs=-1)]: Done 6 tasks | elapsed: 13.2min
```

[CV] colsample_bytree=0.97312978438908, gamma=5.242335416132442, learning_rate=0.1, max_depth=2, min_child_weight=104.78643562746936, n_estimators=116, reg_alpha=0.01, reg_lambda=0.001, subsample=0.9904962826855939, score=(train=0.851, test=0.825), total= 6.1min [CV] colsample_bytree=0.7768314957295858, gamma=2.246418634135564, learning_rate=0.1, max_depth=4, min_child_weight=19.924485703424306, n estimators=105, reg_alpha=0.1, reg_lambda=0.01, subsample=0.7651510127958602

```
[Parallel(n jobs=-1)]: Done 7 tasks | elapsed: 14.9min
```

[CV] colsample_bytree=0.97312978438908, gamma=5.242335416132442, learning_rate=0.1, max_depth=2, min_child_weight=104.78643562746936, n_estimators=116, reg_alpha=0.01, reg_lambda=0.001, subsample=0.9904962826855939, score=(train=0.850, test=0.820), total= 6.0min [CV] colsample_bytree=0.7768314957295858, gamma=2.246418634135564, learning_rate=0.1, max_depth=4, min_child_weight=19.924485703424306, n estimators=105, reg_alpha=0.1, reg_lambda=0.01, subsample=0.7651510127958602

```
[Parallel(n jobs=-1)]: Done 8 tasks | elapsed: 15.0min
```

[CV] colsample_bytree=0.964207487966292, gamma=0.7612741260974909, learning_rate=0.1, max_depth=3, min_child_weight=81.85692285482902, n_estimators=103, reg_alpha=0.001, reg_lambda=0.001, subsample=0.7881643463534637, score=(train=0.878, test=0.837), total= 7.5min [CV] colsample_bytree=0.8619262389413318, gamma=4.074731259525173, learning_rate=0.01, max_depth=4, min_child_weight=50.30903142680757, n estimators=117, reg_alpha=0.01, reg_lambda=0.1, subsample=0.9138171108843222

```
[Parallel(n jobs=-1)]: Done 9 tasks | elapsed: 20.7min
```

[CV] colsample_bytree=0.964207487966292, gamma=0.7612741260974909, learning_rate=0.1, max_depth=3, min_child_weight=81.85692285482902, n_estimators=103, reg_alpha=0.001, reg_lambda=0.001, subsample=0.7881643463534637, score=(train=0.878, test=0.835), total= 7.5min [CV] colsample_bytree=0.8619262389413318, gamma=4.074731259525173, learning_rate=0.01, max_depth=4, min_child_weight=50.30903142680757, n_estimators=117, reg_alpha=0.01, reg_lambda=0.1, subsample=0.9138171108843222

```
[Parallel(n iobs=-1)]: Done 10 tasks | elapsed: 20.7min
```

[CV] colsample_bytree=0.7768314957295858, gamma=2.246418634135564, learning_rate=0.1, max_depth=4, min_child_weight=19.924485703424306, n_estimators=105, reg_alpha=0.1, reg_lambda=0.01, subsample=0.7651510127958602, score=(train=0.912, test=0.845), total= 8.4min [CV] colsample_bytree=0.6594019736141953, gamma=2.6035533500979504, learning_rate=0.01, max_depth=4, min_child_weight=61.193191400991445, n_estimators=116, reg_alpha=0.001, reg_lambda=0.1, subsample=0.6278599077588631

```
[Parallel(n jobs=-1)]: Done 11 tasks | elapsed: 23.4min
```

[CV] colsample_bytree=0.7768314957295858, gamma=2.246418634135564, learning_rate=0.1, max_depth=4, min_child_weight=19.924485703424306, n_estimators=105, reg_alpha=0.1, reg_lambda=0.01, subsample=0.7651510127958602, score=(train=0.911, test=0.843), total= 8.4min [CV] colsample_bytree=0.6594019736141953, gamma=2.6035533500979504, learning_rate=0.01, max_depth=4, min_child_weight=61.193191400991445, n_estimators=116, reg_alpha=0.001, reg_lambda=0.1, subsample=0.6278599077588631

```
[Parallel(n jobs=-1)]: Done 12 tasks | elapsed: 23.4min
```

[CV] colsample_bytree=0.6594019736141953, gamma=2.6035533500979504, learning_rate=0.01, max_depth=4, min_child_weight=61.193191400991445, n_estimators=116, reg_alpha=0.001, reg_lambda=0.1, subsample=0.6278599077588631, score=(train=0.773, test=0.743), total= 7.6min
[CV] colsample_bytree=0.9074312279518009, gamma=8.441913379007856, learning_rate=0.01, max_depth=2, min_child_weight=22.495303701236598, n estimators=118, reg_alpha=0.01, reg_lambda=0.01, subsample=0.955217118357863

```
[Parallel(n jobs=-1)]: Done 13 tasks | elapsed: 31.1min
```

[CV] colsample_bytree=0.6594019736141953, gamma=2.6035533500979504, learning_rate=0.01, max_depth=4, min_child_weight=61.193191400991445, n_estimators=116, reg_alpha=0.001, reg_lambda=0.1, subsample=0.6278599077588631, score=(train=0.778, test=0.744), total= 7.7min [CV] colsample_bytree=0.9074312279518009, gamma=8.441913379007856, learning_rate=0.01, max_depth=2, min_child_weight=22.495303701236598, n estimators=118, reg_alpha=0.01, reg_lambda=0.01, subsample=0.955217118357863

```
[Parallel(n jobs=-1)]: Done 14 out of 20 | elapsed: 31.2min remaining: 13.4min
```

[CV] colsample_bytree=0.8619262389413318, gamma=4.074731259525173, learning_rate=0.01, max_depth=4, min_child_weight=50.30903142680757, n_estimators=117, reg_alpha=0.01, reg_lambda=0.1, subsample=0.9138171108843222, score=(train=0.769, test=0.737), total=10.5min [CV] colsample_bytree=0.8705828787827952, gamma=6.169139480861725, learning_rate=0.01, max_depth=4, min_child_weight=74.85042440808952, n estimators=112, reg_alpha=0.1, reg_lambda=0.01, subsample=0.48538140978171307

```
[Parallel (n jobs=-1)]: Done 15 out of 20 | elapsed: 31.3min remaining: 10.4min
```

[CV] colsample_bytree=0.8619262389413318, gamma=4.074731259525173, learning_rate=0.01, max_depth=4, min_child_weight=50.30903142680757, n_estimators=117, reg_alpha=0.01, reg_lambda=0.1, subsample=0.9138171108843222, score=(train=0.774, test=0.737), total=10.5min [CV] colsample_bytree=0.8705828787827952, gamma=6.169139480861725, learning_rate=0.01, max_depth=4, min_child_weight=74.85042440808952, n_estimators=112, reg_alpha=0.1, reg_lambda=0.01, subsample=0.48538140978171307

```
[Parallel(n jobs=-1)]: Done 16 out of 20 | elapsed: 31.3min remaining: 7.8min
```

[CV] colsample bytree=0.9074312279518009, gamma=8.441913379007856, learning rate=0.01, max depth=2, min child weight=22.495303701236598,

```
n estimators=118, reg alpha=0.01, reg lambda=0.01, subsample=0.955217118357863, score=(train=0.700, test=0.689), total= 5.8min
```

```
[Parallel(n jobs=-1)]: Done 17 out of 20 | elapsed: 36.9min remaining: 6.5min
```

[CV] colsample_bytree=0.9074312279518009, gamma=8.441913379007856, learning_rate=0.01, max_depth=2, min_child_weight=22.495303701236598, n estimators=118, reg alpha=0.01, reg lambda=0.01, subsample=0.955217118357863, score=(train=0.708, test=0.692), total= 5.8min

```
[Parallel(n_jobs=-1)]: Done 18 out of 20 | elapsed: 37.0min remaining: 4.1min
```

[CV] colsample_bytree=0.8705828787827952, gamma=6.169139480861725, learning_rate=0.01, max_depth=4, min_child_weight=74.85042440808952, n_estimators=112, reg_alpha=0.1, reg_lambda=0.01, subsample=0.48538140978171307, score=(train=0.776, test=0.748), total= 7.3min [CV] colsample_bytree=0.8705828787827952, gamma=6.169139480861725, learning_rate=0.01, max_depth=4, min_child_weight=74.85042440808952, n_estimators=112, reg_alpha=0.1, reg_lambda=0.01, subsample=0.48538140978171307, score=(train=0.779, test=0.745), total= 7.3min

```
[Parallel(n_jobs=-1)]: Done 20 out of 20 | elapsed: 38.6min remaining: 0.0s [Parallel(n_jobs=-1)]: Done 20 out of 20 | elapsed: 38.6min finished
```

In [20]:

plotTrainVsCV_AUC(search, subplots=(2, 1), figsize=(23, 10), idx='param_n_estimators', cols='param_max_depth')

In [23]:

search.best_params

Out[23]:

```
{'colsample_bytree': 0.7306922599120634,
  'gamma': 8.954793152617174,
  'learning_rate': 0.1,
  'max_depth': 3,
  'min_child_weight': 86.38868548503523,
  'n_estimators': 122,
  'reg_alpha': 0.1,
  'reg_lambda': 0.001,
  'subsample': 0.5839620442647151}
```

In [21]:

```
y_train_pred = search.best_estimator_.predict_proba(X_tr_2)[:,1]
y_test_pred = search.best_estimator_.predict_proba(X_te_2)[:,1]

train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)

roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```



```
0.0 0.2 0.4 0.6 0.8 1.0
```

```
pt_2.add_row(['', '', '', ''])
pt_2.add_row(['XGBoost', 'Max_depth = 3, n_estimators = 122', np.round(.86934577, 3), np.round(.84592169, 3)])
```

In [22]:

```
printConfusionMatrix(y_train, y_test, y_train_pred, y_test_pred, tr_thresholds, te_thresholds, train_fpr, train_tpr, test_fpr, test_tpr)
```

The maximum value of Train tpr*(1-fpr) is 0.6195002830787604 for threshold 0.546999990940094

The maximum value of Test tpr*(1-fpr) is 0.5892037865148962 for threshold 0.5440000295639038

Light GBM

```
"Learning rate": (.Ul, .1),
    "reg lambda": (.001, .01, .1),
    "reg alpha": (.001, .01, .1),
    "max bin": st.randint(67, 100),
    "min gain to split": st.uniform(0, 10)
search = RandomizedSearchCV(lgb.LGBMClassifier(objective='binary', n jobs=-1, min sum hessian in leaf=10., bagging freq=5, bagging fraction=.4, boos
t from average=False, \
                                               feature fraction=.05, num round=100000),
                           params, n iter=10, scoring='roc auc', verbose=10, return train score=True, cv=2, error score='raise')
In [26]:
# with parallel backend('multiprocessing'):
search.fit(X tr 2, y train, eval metric='auc')
Fitting 2 folds for each of 10 candidates, totalling 20 fits
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=80, min gain to split=5.756727905110919, num leaves=45, req alpha=0.1,
reg lambda=0.01
[Parallel (n jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=80, min gain to split=5.756727905110919, num leaves=45, reg alpha=0.1,
reg lambda=0.01, score=(train=0.946, test=0.890), total= 3.6min
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=80, min gain to split=5.756727905110919, num leaves=45, reg alpha=0.1,
reg lambda=0.01
[Parallel (n jobs=1)]: Done 1 out of 1 | elapsed: 3.6min remaining:
                                                                           0.0s
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=80, min gain to split=5.756727905110919, num leaves=45, reg alpha=0.1,
reg lambda=0.01, score=(train=0.949, test=0.888), total= 3.6min
[CV] learning rate=0.1, max bin=79, max depth=6, min data in leaf=91, min gain to split=2.15719108068663, num leaves=43, reg alpha=0.01,
reg lambda=0.001
[Parallel(n jobs=1)]: Done 2 out of 2 | elapsed: 7.3min remaining:
                                                                           0.0s
[CV] learning rate=0.1, max bin=79, max depth=6, min data in leaf=91, min gain to split=2.15719108068663, num leaves=43, reg alpha=0.01,
reg lambda=0.001, score=(train=0.999, test=0.873), total= 4.3min
[CV] learning rate=0.1, max bin=79, max_depth=6, min_data_in_leaf=91, min_gain_to_split=2.15719108068663, num_leaves=43, reg_alpha=0.01,
reg lambda=0.001
[Parallel(n jobs=1)]: Done 3 out of 3 | elapsed: 11.9min remaining:
                                                                           0.0s
[CV] learning rate=0.1, max bin=79, max depth=6, min data in leaf=91, min gain to split=2.15719108068663, num leaves=43, reg alpha=0.01,
reg lambda=0.001, score=(train=0.999, test=0.872), total= 4.3min
```

```
[CV] learning rate=0.1, max bin=81, max depth=6, min data in leaf=86, min gain to split=6.340819585601512, num leaves=62, reg alpha=0.001,
reg lambda=0.01
[Parallel(n jobs=1)]: Done 4 out of 4 | elapsed: 16.5min remaining:
                                                                          0.0s
[CV] learning rate=0.1, max bin=81, max depth=6, min data in leaf=86, min gain to split=6.340819585601512, num leaves=62, reg alpha=0.001,
reg lambda=0.01, score=(train=0.942, test=0.891), total= 3.5min
[CV] learning rate=0.1, max bin=81, max depth=6, min data in leaf=86, min gain to split=6.340819585601512, num leaves=62, reg alpha=0.001,
reg lambda=0.01
[Parallel(n jobs=1)]: Done 5 out of 5 | elapsed: 20.1min remaining:
                                                                          0.0s
[CV] learning rate=0.1, max bin=81, max depth=6, min data in leaf=86, min gain to split=6.340819585601512, num leaves=62, reg alpha=0.001,
reg lambda=0.01, score=(train=0.944, test=0.890), total= 3.5min
[CV] learning rate=0.01, max bin=96, max depth=2, min data in leaf=88, min gain to split=4.431550819941017, num leaves=73, reg alpha=0.001,
reg lambda=0.01
[Parallel(n jobs=1)]: Done 6 out of 6 | elapsed: 23.7min remaining:
                                                                          0.0s
[CV] learning rate=0.01, max bin=96, max depth=2, min data in leaf=88, min gain to split=4.431550819941017, num leaves=73, reg alpha=0.001,
reg lambda=0.01, score=(train=0.964, test=0.891), total=10.0min
[CV] learning rate=0.01, max bin=96, max depth=2, min data in leaf=88, min gain to split=4.431550819941017, num leaves=73, reg alpha=0.001,
reg lambda=0.01
[Parallel(n jobs=1)]: Done 7 out of 7 | elapsed: 35.7min remaining:
                                                                          0.0s
[CV] learning rate=0.01, max bin=96, max depth=2, min data in leaf=88, min gain to split=4.431550819941017, num leaves=73, reg alpha=0.001,
reg lambda=0.01, score=(train=0.965, test=0.888), total= 9.6min
[CV] learning rate=0.1, max bin=96, max depth=6, min data in leaf=89, min gain to split=2.1284522761940607, num leaves=31, reg alpha=0.001,
reg lambda=0.01
[Parallel(n jobs=1)]: Done 8 out of 8 | elapsed: 47.5min remaining:
                                                                          0.0s
[CV] learning rate=0.1, max bin=96, max depth=6, min data in leaf=89, min gain to split=2.1284522761940607, num leaves=31, reg alpha=0.001,
reg lambda=0.01, score=(train=0.999, test=0.874), total= 4.1min
[CV] learning rate=0.1, max bin=96, max depth=6, min data in leaf=89, min gain to split=2.1284522761940607, num leaves=31, reg alpha=0.001,
reg lambda=0.01
[Parallel(n jobs=1)]: Done 9 out of 9 | elapsed: 51.8min remaining:
                                                                          0.0s
[CV] learning rate=0.1, max bin=96, max depth=6, min data in leaf=89, min gain to split=2.1284522761940607, num leaves=31, reg alpha=0.001,
reg lambda=0.01, score=(train=0.999, test=0.872), total= 4.4min
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=84, min gain to split=6.486166274120549, num leaves=57, reg alpha=0.1,
reg lambda=0.01
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=84, min gain to split=6.486166274120549, num leaves=57, reg alpha=0.1,
```

```
reg lambda=0.01, score=(train=0.939, test=0.891), total= 3.5min
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=84, min gain to split=6.486166274120549, num leaves=57, reg alpha=0.1,
reg lambda=0.01
[CV] learning rate=0.1, max bin=79, max depth=5, min data in leaf=84, min gain to split=6.486166274120549, num leaves=57, reg alpha=0.1,
reg lambda=0.01, score=(train=0.940, test=0.890), total= 3.5min
[CV] learning rate=0.1, max bin=96, max depth=2, min data in leaf=97, min gain to split=9.293773454804837, num leaves=32, reg alpha=0.001,
reg lambda=0.01
[CV] learning rate=0.1, max bin=96, max depth=2, min data in leaf=97, min gain to split=9.293773454804837, num leaves=32, reg alpha=0.001,
reg lambda=0.01, score=(train=0.919, test=0.894), total= 3.4min
[CV] learning rate=0.1, max bin=96, max depth=2, min data in leaf=97, min gain to split=9.293773454804837, num leaves=32, reg alpha=0.001,
reg lambda=0.01
[CV] learning rate=0.1, max bin=96, max depth=2, min data in leaf=97, min gain to split=9.293773454804837, num leaves=32, reg alpha=0.001,
reg lambda=0.01, score=(train=0.921, test=0.893), total= 3.4min
[CV] learning rate=0.01, max bin=84, max depth=6, min data in leaf=90, min gain to split=1.172521298504613, num leaves=34, reg alpha=0.1,
reg lambda=0.01
[CV] learning rate=0.01, max bin=84, max depth=6, min data in leaf=90, min gain to split=1.172521298504613, num leaves=34, reg alpha=0.1,
reg lambda=0.01, score=(train=1.000, test=0.890), total=13.3min
[CV] learning rate=0.01, max bin=84, max depth=6, min data in leaf=90, min gain to split=1.172521298504613, num leaves=34, reg alpha=0.1,
reg lambda=0.01
[CV] learning rate=0.01, max bin=84, max depth=6, min data in leaf=90, min gain to split=1.172521298504613, num leaves=34, reg alpha=0.1,
reg lambda=0.01, score=(train=1.000, test=0.887), total=12.7min
[CV] learning rate=0.1, max bin=75, max depth=2, min data in leaf=87, min gain to split=0.3018309256258689, num leaves=70, reg alpha=0.1,
reg lambda=0.001
[CV] learning rate=0.1, max bin=75, max depth=2, min data in leaf=87, min gain to split=0.3018309256258689, num leaves=70, reg alpha=0.1,
reg lambda=0.001, score=(train=1.000, test=0.871), total= 7.7min
[CV] learning rate=0.1, max bin=75, max depth=2, min data in leaf=87, min gain to split=0.3018309256258689, num leaves=70, reg alpha=0.1,
reg lambda=0.001
[CV] learning rate=0.1, max bin=75, max depth=2, min data in leaf=87, min gain to split=0.3018309256258689, num leaves=70, reg alpha=0.1,
reg lambda=0.001, score=(train=1.000, test=0.870), total= 7.4min
[CV] learning rate=0.01, max bin=80, max depth=3, min data in leaf=93, min gain to split=3.4441851833627535, num leaves=41, reg alpha=0.001,
reg lambda=0.001
[CV] learning rate=0.01, max bin=80, max depth=3, min data in leaf=93, min gain to split=3.4441851833627535, num leaves=41, reg alpha=0.001,
reg lambda=0.001, score=(train=0.984, test=0.889), total=10.4min
[CV] learning rate=0.01, max bin=80, max depth=3, min data in leaf=93, min gain to split=3.4441851833627535, num leaves=41, reg alpha=0.001,
reg lambda=0.001
[CV] learning rate=0.01, max bin=80, max depth=3, min data in leaf=93, min gain to split=3.4441851833627535, num leaves=41, reg alpha=0.001,
reg lambda=0.001, score=(train=0.985, test=0.887), total=10.5min
```

```
[Parallel(n jobs=1)]: Done 20 out of 20 | elapsed: 148.5min finished
```

Out[26]:

In [27]:

plotTrainVsCV_AUC(search, (2,1), (20, 12), idx='param_num_leaves', cols='param_max_depth')

var 94 r2 +	556.9637405872345
var=26=r2 var=40=r2	——————————————————————————————————————
var 40 12 var 166 var 53	533.8835045099258
	-526.0109502077103 -524.9135451316833
var I39 var 108 r2	512.5582256615162
var 80 r2 -	509.85350036621094
var=26=r1 var=78=r2	503.56735467910767 502.8131255507469
var=80=r1 +	500.59571611881256
var_166=r2 var=190=r1	481.1874795258045 477.37646222114563
var 0 r1 +	475.90139269828796
var 76 r2	——————————————————————————————————————
var I64 ⁻ r2 Var I08	463.10081082582474
vaī 12 🛨	454.4277993738651 436.1697564125061
var I10 var 94	435.52111491560936
var 92 r2 🛨	432.9482145309448 431.17621541023254
var I46-r1 var 53-r1	431.17621341023234
vaīr 6 r2 🛨	429.17968702316284
var 166-r1 Var 109	426.9596860408783 422.42173290252686
var_174_r1 -	420.2967780828476
⊽ar_I33 -	418.07808381319046 408.4020302295685
var 165 r1 Var 169	404.12203991413116
vair 44 🛨	402.6453881263733 400.31897170841694
var 190 var 78 r1	392.4868114590645
var I46 ⁻ r2 -	389.51567965745926 388.27435398101807
vaīr 18 r1 var 89 r2	382.467188000679
var=33=r2 🛨	373.45688462257385
Var_80 var 121 r2	372.76819448452443 369.39714354276657
_var_34 _	369.15735456347466
var 177 r2 var 1 r1	368.73451709747314 368.2355651855469
var 22 r2 🛨	365.165301322937
var 9 r2 var 149	363.3715465068817 362.67470014095306
var 169 r1	359.0918762087822
var 67 r2	355.5495710968971 355.01714277267456
var 170-r1 var 184-r1	353.5151402950287
var 33 r1 var 107 r2	353.4653008580208 351.2331585884094
var 184	351.2331585884094 351.20506793260574
var 91 r2 🛨	350.3860149383545 340.9974008798599
var I10 r2 var 198 r2	338.53313010931015
_ var 9 🛨	336.598849773407
var 188 71 var 177 71	335.5065517425537 335.33237540721893 332.695752561.0924
var=179=r2 🛨	332.6957525610924
- var 2 var 170 72 -	329.00223183631897 326.57808113098145
var=123=r2 ==	323.91275453567505
var 119 var 147 r1 →	318.5421048104763 318.19001841545105
var=198=r1 💳	318.19001841545105 313.2654882669449
var=115=r1 Var I54	312.3299674987793 311.9235579967499
var 127 r1 🛨	304.8484605550766
var 13 rl	======================================
vār 115 var 95 r2	295.6078462600708 294.4336233139038
⊽ar 792 var 164	294.4336233139038 293.0517385005951
var 1 r2 🛨	290.8819988965988
⊽ar 1 🛨	290.6616052389145 289.8452498316765
var 154 71 var 2 71	289.62840712070465 289.4562611579895
var 2 r1 var 78 var 86 var 109 r2	289.4562611579895 287.6656322479248
var 86 7	285.28543615341187
var 1/9	283.5749843120575 282.71763394773006
var 92 r1 +	280.3788344860077
var 180 r2 var 145 r1	273.1136820614338 263.2487154006958
var=148=r1 var=192=r1	254.6277039051056
-var 75 +	253.5707504749298 253.5676367878914
var 40 var 190 r2	252.46839714050293
var 130 12 var 122 r1	251.89576768875122 250.9215407371521
var Δ0⊤r1 +	Z3V.3Z134V13/13Z1

ār 170 -	249.1699564754963 248.7193412780761
ar=163 ar=172	247.0178783535957
75 r1 +	247.0178783535957 244.8313821852207
3-r2 3-r2	242.1728804111480
r2	241 9368682652712 240 36931574344635
r2 -	240.278635263443
r2	240.20376658439636 239.24360489845276
_r2 _r2	237.5154384970665
21	236.90656512975693
r2 r1	235.32168233394623 233.96670268848538
72	229.8/63/102603912
r1 r2 r1	229.80555486679077 229.78149420022964
r2 -	229.76149420022964
41	220.27092278003693 219.4546645283699
r1 -	219.454645283699
r2 r2	213.46256923675537
r1	212.9328215122223
21	211.65391474962234 211.19714605808258
	208.17970514297485
173	204.08771362900734
r1 -	202.07119172811508 201.89045271277428
·33	201.83771687746048
5 rl +	201.83531045913696
5 r2	200.660742521286 200.4347062110901 200.27512443065643
3 r2	200.27512443065643
r2 -	197.79110193252563 197.6023581624031
r1	197.55503034591675
rl	195.87259481847286
71 5 r1	194.33429998159409 191.89724814891815
[47]	188.8607755303383
-r2 -r2	188.34573698043823 187.1928609609604
5 r2	186.06934189796448
	184.8076102733612 183.7007876811549
Fr2 -	181.15560901165009
Tr2 1	180.64578771591187 179.42154741287231
r2	178.7367537021637
186 r1	178.46141577512026 177.1163814663887
92	174.2059714794159
128	173.0475020557642
67 r2	170.94679355621338 170.11635875701904
188	169.7858486175537
-18 -r2	169.2144787311554 167.85162490606308
?_r2 +	162.4272165298462
r 91 +	161.6324992775917 160.72012740373611
□ r2 □ r1	160.61209350824356
T30	159.7265629172325
-rl	158.77294224500656 156.60370922088623
П1	155.22294/6/20094/
r1	153.13075184822083 153.1016821116209
7 0 T	149.85442996025085
T91 +	1/10 62077808380127
7 r2 -	147.90847897529622 147.26486015319824 147.1840961277485 146.19964241981506
l⁻r1 -	147.1840961277485
.Tr1	146.19964241981506 146.0626624301076
174	145.52548962831497
9 r2	144.6094029545784 144.5985494852066
6-r2 9-r1	141.38901031017303
125	138 6440184339881
T25 131	137.73805034160614 137.00462439656258
7 56 123	136 33691024780273
123 ? r1 8 r2	135.3073811531067 134.25062208948657
106 T	133.9901626110077
4 r1 +	133.32749950885773
9-r1 +	131.09998161811382
T51	129.8420181274414

Var 1	528844 3718296 719101 3036644 335876 335876 335876 335876 335876 336719 96833 815527 42542 93085 33948 37048 33174 53174 33145 33145 33145 33145 33174 33145
var 32 72 127.48407729 var 55 71 127.03726105 var 48 72 125.14178228 var 51 72 124.91010937 var 93 72 124.87282931 var 82 71 124.3970770 var 177 124.3970770 var 67 71 123.53988367 var 67 71 123.32832348 var 111 72 120.70930315 var 186 72 118.976152732 var 99 71 118.335716962 var 191 72 117.72039920 var 114 115.767339944 var 107 71 115.127850532 var 105 72 114.959129273 var 105 72 114.959129273 var 107 71 113.39189237 var 107 71 113.99189237 var 107 71 110.824295377 var 151 71 110.8224295377 var 196 71 110.8224295377 var 189 9109.4233306480 var 197 11 110.824273187 var 189 109.4233306480 var 198 109.4233306480 var 198 109.4233306480 var 24 71	528844 3718296 719101 3036644 335876 335876 335876 335876 335876 336719 96833 815527 42542 93085 33948 37048 33174 53174 33145 33145 33145 33145 33174 33145
Var Sr 1	391979 378296 378296 379101 304657 336674 335876 333173 14671 36719 96833 81433 15527 42542 93948 33978 339788 33978 33978 33978 33978 33978 33978 33978 33978 339788 33978 33978 33978 33978 33978 33978 33978 33978 339788 33978 33978 33978 33978 33978 33978 33978 33978 339788 33978 33978 33978 33978 33978 33978 33978 33978 3397
var 48-72 125.14178228 var 51-72 124.91010993 var 93-72 124.87282931 var 82-71 124.75474577 vār 177 124.23970770 var 155 123.67181765 var 67 rl 123.53988367 var 141-72 123.328323483 var 111-72 120.709030151 var 186 r2 118.976152732 var 99-71 118.335716962 var 191-72 117.810400009 var 167-72 117.272939920 var 107-71 115.646593934486 var 107-71 115.17850532 var 105-72 114.959129273 var 105-72 114.959129273 var 105-72 114.959129273 var 151-71 113.394608492 var 151-71 110.8883104920 var 185-72 110.0612123310 var 188-72 110.0612123310 var 189 109.4232306480 var 24-71 106.1848204135 var 24-71 106.1848204135 var 24-71 106.1848204135	778296 779101 779101 779101 779104657 779104644 779107 779107 779107 779107 779107 779104
var 51 - 72	304657 136644 1335876 1335173 119107 14671 36719 96833 81433 15527 42542 93085 33948 337048 337048 33174 19145 136025 13873 13873
var 33 72	136644 1335876 1335876 133173 119107 14671 36719 96833 81433 15527 42542 93085 337048 337048 337048 337048 337048 337048 337048
vār 177 124,239707708 var 155 123,67181766 var 67 r 1 123,539883677 var 141 r 2 123,3282348 var 111 r 2 120,709030151 var 186 r 2 118,976152732 var 99 r 1 118,335716962 var 191 r 2 117,810400009 var 167 r 2 117,27293992 var 114 115,767339944 var 107 r 1 115,64649395 var 107 r 2 114,959129273 var 107 r 3 113,391899237 var 167 r 1 113,391899237 var 167 r 1 110,8883104920 var 151 r 1 110,8883104920 var 186 r 1 110,0612123310 var 187 r 1 110,0612123310 var 188 r 1 107,1209794282 var 58 r 1 107,1209794282 var 24 r 1 106,18482041387 var 24 r 1 106,18482041387 var 132 r 1 106,18482041387 var 138 r 2 105,86531090736	033173 819107 84671 36719 96833 81433 15527 42542 93085 333948 337048 53174 53174 8025 38025 3873
var 155 123.67181768 var 67 r1 123.53988367 var 141-r2 123.53988367 var 141-r2 120.709030151 var 186 r2 118.976152732 var 99-r1 118.335716962 var 191-r2 117.810400009 var 167-r2 117.272939920 var 43 116.675341486 var 107-r1 115.646499394 var 105-r2 114.959129273 var 105-r2 114.959129273 var 105-r2 113.39189237 var 167-r1 113.39189237 var 151-r1 110.8883104920 var 196-r1 110.8224295377 var 185-r2 110.0612123310 var 89 109.4232306480 var 58 r1 107.1209794282 var 24-r1 106.1842041387 var 24-r1 106.1842041387 var 188-r2 105.86531090736	033173 819107 84671 36719 96833 81433 15527 42542 93085 333948 337048 53174 53174 8025 38025 3873
Var 141-r2 123.328323463 Var 141-r2 120.709030151 Var 186 r2 118.976152732 Var 99-r1 118.335716962 Var 191-r2 117.81040009 Var-167-r2 117.272939920 Var-167-r2 117.272939920 Var 107 r1 115.6753399444 Var 107 r1 115.127850532 Var 105 r2 114.959129273 Var 105 r2 114.959129273 Var 151-r1 113.3976018428 Var 151-r1 110.8224295377 Var 185 r2 110.0612123310 Var 196-r1 110.824295377 Var 85 r2 110.0612123310 Var 87 9 109.4232306480 Var 58 r1 107.12037942824 Var 132-r1 106.46422731876 Var 24-r1 106.184820413371 Var 24-r1 106.184820413876	319107 34671 36719 96833 81433 15527 42542 93085 33948 37048 53174 53174 53174 53174 53174 53174
var I41-72 123.32832348: var I11-72 120.709030151 var 186-72 118.976152732 var 99-71 118.335716962 var 191-72 117.81040009 var 167-72 117.272939920 var 167-72 116.675341486 var I14 115.767339944 var 107-71 115.646499395: -var 71 115.127850532! var 105-72 114.9591292737 var 105-72 114.9591292737 var 167-71 113.391899237 var 167-71 110.88831304920 var 185-72 110.0612123310 var 196-71 110.8224295377 var 185-72 110.0612123310 var 89 109.4232306480 var 58 r1 10.7120974282 var 127-71 106.4842041375 var 24-71 106.18482041375 var 24-71 106.18482041375 var 24-71 106.18482041375 var 24-71 105.8851309736	34671 36719 96833 81433 15527 42542 93085 33948 37048 53174 39145 0367 8025 3873
var 111 72 120.709030151 var 186 r2 118.976152732 var 99 r1 118.9376152732 var 99 r1 118.9376152732 var 191 r2 117.810400009 var 167 r2 117.272939920 var 167 r2 115.767339944 var 107 r1 115.676339944 var 107 r1 115.127895952 var 114.9512973 var 105 r2 114.959129273 var 167 r1 113.3976018428 var 151 r1 110.824295377 var 167 r1 110.824295377 var 167 r2 110.2027873992 var 196 r1 110.824295377 var 85 r2 110.2027873939 var 58 r1 10.72278739618428 var 58 r1 10.7227873974282 var 132 r1 106.46422731876 var 24 r1 106.8482041352 r1 var 132 r1 106.18482041357 var 24 r1 106.18482041357 var 24 r1 106.18482041357 var 24 r1 106.18482041357 var 24 r1 106.18482041357 var 188 r2 105.86531090736	36719 96833 81433 15527 42542 93085 837048 63174 639145 0367 68025 3873
Var 186 r2	96833 81433 15527 42542 93085 33948 37048 53174 39145 0367 8025 3873
Var 39 71	81433 15527 42542 93085 33948 37048 53174 89145 0367 8025 3873
var 191-72	15527 42542 93085 33948 37048 53174 39145 9367 88025 3873
var 167-72	93085 93085 83948 87048 53174 89145 9367 88025 3873
var II4	83948 87048 53174 89145 9367 88025 3873
var 107 ri 115 646499395; var 105 r2 114 959129273; var 105 r2 114 959129273; var 137 113.9976018428 var 151 r1 110.88831049237 var 167 r1 110.8824295377 var 85 r2 110.2027873992 var 125 r2 110.0612123310 var 89 109 4232306480 var 58 r1 107 1203794282; var 125 r2 110.64642273187; var 127 r1 106 1848204132; var 24 r1 106 1848204132; var 24 r1 105 86531090733	37048 53174 39145 0367 88025 3873
var 151 r1 110.8234295377 var 156 r1 110.8224295377 var 85 r2 110.2027873937 var 125 r2 110.0612123310 var 89 109.4232306480 var 58 r1 107.1209794282 var 132 r1 106.46422731876 var 24 r1 106.18482041332 var 188 r2 105.86531090736	30/3 7212
var 151 r1 110.8234295377 var 156 r1 110.8224295377 var 85 r2 110.2027873937 var 125 r2 110.0612123310 var 89 109.4232306480 var 58 r1 107.1209794282 var 132 r1 106.46422731876 var 24 r1 106.18482041332 var 188 r2 105.86531090736	30/3 7212
var 151 r1 110.8234295377 var 156 r1 110.8224295377 var 85 r2 110.2027873937 var 125 r2 110.0612123310 var 89 109.4232306480 var 58 r1 107.1209794282 var 132 r1 106.46422731876 var 24 r1 106.18482041332 var 188 r2 105.86531090736	30/3 7212
var 151 r1 110.8234295377 var 156 r1 110.8224295377 var 85 r2 110.2027873937 var 125 r2 110.0612123310 var 89 109.4232306480 var 58 r1 107.1209794282 var 132 r1 106.46422731876 var 24 r1 106.18482041332 var 188 r2 105.86531090736	30/3 7212
var 151 r1 110.8234295377 var 156 r1 110.8224295377 var 85 r2 110.2027873937 var 125 r2 110.0612123310 var 89 109.4232306480 var 58 r1 107.1209794282 var 132 r1 106.46422731876 var 24 r1 106.18482041332 var 188 r2 105.86531090736	30/3 7212
var 85"2 110.2027873992 var 125"72 1110.0612123310 var 89 109.4232306480 var 58 r 1 107.1209794282 var 132"71 106.4642273187 var 24"71 106.18482041358 var 188"72 105.86531090736	7313
var 85"2 110.2027873992 var 125"72 1110.0612123310 var 89 109.4232306480 var 58 r 1 107.1209794282 var 132"71 106.4642273187 var 24"71 106.18482041358 var 188"72 105.86531090736	
var 58 r1	2133
var 58 r1	566
var 132"r1	40//
var 24-r1 106.18482041358 var 188-r2 105.86531090736	9132 5373
var 188 r2 105.86531090736	948
Val 100 [2	389
Type 748 - 105 39659965038	33
var 48 105.39659965038 var 197 103.64380133152	008
var 195 r2	335
var 52 r1 - 100.19020891189	575
var⊃3 → 99.998057097196	58
var 14T r1 - 99 832148261368	27
var 163 r2 99.605521440505 var 194 r1 98.559369087219 var 150 r2 97.359400153160	98
var=194=r1 98.559369087219 var=150=r2 97.359400153160	24 1
	13
var 114 r2 - 95.5390524266150 var 116 r1 - 95.0924906730651	
04 3465805053711	
var T12 - 92.8546267151832	6
var 9 r1 -92.0396013259887	7
var Z0Tr1 91.3859877586364	7
var 28 91.0864369869232	2
var I18 89.8343816101551	-
var 112 r1 89.23413014411920	7
vār 70-r2	<u>′</u>
var 145 var 75 r2 86.9611103534698	?
var 70 r1 86.30511206388474	į.
var ≒1 → 85.75560212135315	,
var 167	1
var 24 85.55473899841309)
var 175 r1 + 85 120908/3/18262	
var_102_r1 + 85.00720989704132	
84.50357937812805	
8/ 008850/5528/12	
var 28 r1 84.00885045528412 var 58 r2 82.8863000869751	
var T25 - 82.8863000869/51 var T25 - 82.82683789730072	
### Var 28 1 9.300479329751	
var 23 r2 81.50030052661896	
var 55 r1 - 00.34230102040/1	
var 55 r1 var 132 80.30776888132095	
var 55 r1 - 80.3423816204071 var 132 - 80.30776888132095 var 199 - 80.20202112197876	
var 55 r1 80.9423616204071 var I32 80.30776888132095 var 199 80.20202112197876	
var 55 r1 80.9423616204071 var I32 80.30776888132095 var 199 80.20202112197876	
var 55 r1 00.9425016204071 vār 132 80.30776888132095 var 199 80.20202112197876 var 162 r1 80.09373092651367 vār 49 r2 79.51211071014404 var 90 r1 79.17926144599915	
Var 55 r1 00.9425016204071 Vār 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 80.09373092651367 Vār 49 r2 79.51211071014404 Var 90 r1 79.1792614459991 Var 137 r1 78.8737211227417	
Var 55 r1 00.9425016204071 Vār 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 90.09373092651367 Vār 49 r2 79.51211071014404 Var 90 r1 79.1792614459991 Var 137 r1 78.81406655907631 Var 150 78.81406655907631 Var 150 77.52337944507599	
Var 55 r1	
Var 55 r1 00.9425016204071 Vār 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 90.09373092651367 Vār 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.81306555907631 Vār 52 77.52337944507599 Var 49 77.24759984016418	
Var 55 r1 00.9425016204071 Vār 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 80.09373092651367 Vār 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.8737211227417 Var 150 77.52337944507599 Var 137 r2 76.76957893371582 Var 117 r2 76.76957893371582	
Var 55 r1 00.9425016204071 Vār 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 80.09373092651367 Vār 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.8737211227417 Var 150 77.52337944507599 Var 137 r2 76.76957893371582 Var 117 r2 76.76957893371582	
Var 55 r1 00.9423016204071 Var 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 90.99373092651367 Var 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.81306655907631 Var 52 77.52337944507599 Var 49 77.24759984016418 Var 117 r2 76.76957893371582 Var 104 r1 76.50659905056 Var 36 76.3992193019867 Var 157 75.39267086982727	
Var 55 r1	
Var 55 r1 00.9423016204971 Var 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 80.09373092651367 Var 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.81406655907637 Var 52 77.5237944507599 Var 49 77.24759984016418 Var 117 r2 76.76957893371582 Var 104 r1 76.50605905056 Var 157 75.3268799781799 Var 132 r2 75.3268799781799 Var 132 r2 75.3268799781799	
Var 55 r1 00.9423016204071 Var 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 80.09373092651367 Var 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.81406655907631 Var 52 77.5237944507599 Var 49 77.24759984016418 Var 117 r2 76.76957893371582 Var 104 r1 76.506059905056 Var 137 r2 75.3268799781799 Var 137 r2 75.3268799781799 Var 137 r2 75.3268799781799 Var 137 r3 74.33635950088501 Var 43 74 77.4363659080822906	
Var 55 r1 00.9423016204071 Var 132 80.30776888132095 Var 199 80.20202112197876 Var 162 r1 80.09373092651367 Var 49 r2 79.51211071014404 Var 90 r1 79.17926144599915 Var 137 r1 78.81406655907631 Var 52 77.5237944507599 Var 49 77.24759984016418 Var 117 r2 76.76957893371582 Var 104 r1 76.506059905056 Var 137 r2 75.3268799781799 Var 137 r2 75.3268799781799 Var 137 r2 75.3268799781799 Var 137 r3 74.33635950088501 Var 43 74 77.4363659080822906	
Var 55 r1	

Agi 31 15	60.40002076211540
var_T56_r2 : _var_45 :	68.48893976211548 67.7740170955658 66.43888926506042
- var 745 · var 52 r2 ·	66 43888926506042
var 24 r2	66.34191083908081
var 31 r1 ·	65.64849676191807
var I51 r2	64.67239189147949
Tar TOS -	65.64849676191807 64.67239189147949 63.42201268672943 63.22908961772919 63.06106925010681 63.072488534450531 62.72488534450531 62.59964013099670 62.37479323148727 62.06243419647217 61.84449447631831 61.27382040023804 60.80415246449411 60.80415246449411
var 97 r2 -	63.22908961772919
vār I56 -	63.06106925010681
var_163_r1 ·	63.0099983215332
var_93_r1 ·	62.72400334430331
vār_104 ·	62.33304013033070
var 74 r2 · vār 175 ·	62 06243419647217
vār 175 · var 45 rl ·	61.845449447631836
var I93 r2 ·	61.27382040023804
var 795 -	60.80415246449411
var=35 -	60.431740045547485
var_135_r1 ·	60.24540042877197 59.94133960455656
var=145=r2 var=32=r1	59.94133960455656 59.26669979095459
var 327r1 · var I047r2 ·	59.26669979095459 59.17906045913696
var I04-r2 - var 116-r2 -	59.13499999046326
var=110=r2 -	58 90983986854553
var_144_r1	58 38493895530701
var 83 rl -	57.85086005926132
vār 196 -	57 441699504852295
var /13 r2 -	57.11380345374346 55.73171067237854
var_I37_r2	55.30083155632019
var_128_r1	54.824020862579346
var 62 r1 · var T99 r1 ·	53.87110295891762
var I997r1 · Var I05 ·	
yar 20	52.59596449136734
var 196 r2 -	51.61511039733887
_var 58 -	51.122278571128845
var_23 rl ·	50.68263077735901
var_I78_r1 -	50.0735097004209
_var_88	50.40273023033271
var 50 var 127	49 271270513534546
var 119 r1 -	48.21622025966644
var 180 -	53.10415029525757 52.59596449136734 51.61511039733887 51.12278571128845 50.68263077735901 50.68263077735901 50.48275029659271 50.41913056373596 49.271270513534546 48.21622025966644 47.67727613449097 47.6622595787704834
var 87 r1 ·	47.662259578704834
var=11=r1 -	47.63144016265869
var_I68_r1 -	47.6522595/87/4834 47.63144016265869 46.762839794158936 45.547319531440735 45.252320289611816 44.50764870643616
	45.252320289611816
var 11 r2 · var I38 r2 ·	44 50764870643616
var I38-r2 - Var I35 -	44.40985918045044 44.40985918045047 43.35316555202007 43.39235019683838 43.12946057319641 42.96828031539917 42.690850615501404
var 8 -	44.35316555202007
var 85	43.39235019683838
var=11 -	43.12946057319641
	42.96828031539917
vai izo iz	42.690850615501404 42.61226975917816
var=131=r1 ·	42.61226975917616
Val 142	42.243149638175964
var 142 r2 · Var 168 ·	41.511550426483154
	40 50505005550005
var T5 r2 · var 66 r2 ·	40.429009675979614
vār ∏6 -	40.24562072753906
va <u>r_</u> 31 ·	40.183701038360596 39.37689971923828
var 77 r1 · vār 194 ·	38.98450970649719
	38 72412967681885
var_88_r2 : _var 3 :	37.47800821065903
var 68 -	37.1693696975708
var 8 r1 -	36.88407039642334 36.87950223684311
var 199 ⁻ r2 ·	
var_108_r1 ·	36.83099031448364
var_102_r2	36 223960280418396
var 181 ·	35 17061126232147
var_138_r1 ·	34.19751000404358
var 77 -	34.10675758123398
VDF 97 F2 -	33.49901008605957
vār 178 -	32.815470576286316
var_175_r2 ·	32./9961621/61322
var 178 - var 178 - var 175 - r2 - var 140 - r1 - var 171 - r1 - var 152 - r2 - std -	36.83099031448364 36.37936043739319 36.223960280418396 35.17061126232147 34.19751000404358 34.19675758123398 33.49901008605957 32.815470576286316 32.79961621761322 32.31449073553085 32.24362726509571 31.68263006210327
var 1/1 f1 .	31.68263006210327
vai_152_12	31.27275061607361
var 66 r1 -	30.534739792346954
var=74=r1 ·	30.006699085235596
median -	29.445277214050293
var 54 - var 105 r1 - var 193 -	32.24362726509571 33.68263006210327 31.27275061607361 30.534739792346954 30.006699085235596 29.445277214050293 29.407612144947052 29.054514199495316
var 105 r1 ·	28 562979698181152
var 193 ·	27 79826021194458
var 77 r2	27 624730110168457

In [28]:

```
y_train_pred = search.best_estimator_.predict_proba(X_tr_2)[:,1]
y_test_pred = search.best_estimator_.predict_proba(X_te_2)[:,1]

train_fpr, train_tpr, tr_thresholds = metrics.roc_curve(y_train, y_train_pred)
test_fpr, test_tpr, te_thresholds = metrics.roc_curve(y_test, y_test_pred)

roc_plot(train_fpr, train_tpr, test_fpr, test_tpr)
```



```
pt_2.add_row(['', '', '', ''])
pt_2.add_row(['Light GBM', 'Max_depth = 2, num_leaves = 32', np.round(.9155933, 2), np.round(.89903198, 2)])
```

In [31]:

printConfusionMatrix(y_train, y_test, y_train_pred, y_test_pred, tr_thresholds, te_thresholds, train_fpr, train_tpr, test_fpr, test_tpr)

The maximum value of Train tpr*(1-fpr) is 0.69762117902598 for threshold 0.116

The maximum value of Test tpr*(1-fpr) is 0.6692384381593975 for threshold 0.128

Predicted Value Predicted Value

Comparision of Models:

```
In [80]:
```

```
print('Modelling With the basic features (mean, std, median, min, max) :')
print(pt 1)
```

Modelling With the basic features (mean, std, median, min, max) :

Model	Hyper Parameters	Train AUC	Test AUC
Logistic Regression	alpha = 0.01	0.859	0.857
Random Forest	Max_depth = 8, n_estimators = 100	0.898	0.807
XGBoost	Max_depth = 9, n_estimators = 181	0.963	0.88
Light GBM	Max_depth = 6, num_leaves = 181	0.945	0.866

In [78]:

```
print('Modelling With the new features(rounding floats) :')
print(pt 2)
```

Modelling With the new features (rounding floats) :

Model	Hyper Parameters	Train AUC	Test AUC
Logistic Regression	C = 0.01, l1_ratio = 0.5816246884542369, max_iter = 883	0.888	0.857
XGBoost	Max_depth = 3, n_estimators = 122	0.869	0.846
Light GBM	Max_depth = 2, num_leaves = 32	0.92	0.9

References:

- [1] https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/89034#latest-548982
- [2] https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/89003#latest-638601
- [3] https://www.kaggle.com/c/santander-customer-transaction-prediction/discussion/88939#latest-637010

Light GBM:

- [1] https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost/
- [2] https://lightgbm.readthedocs.io/en/latest/Python-API.html#
- [3] https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html
- [4] https://www.kaggle.com/roydatascience/eda-pca-simple-lgbm-on-kfold-technique

Steps followed:

- Collected the data from the kaggle website of the competition Santander customer transaction prediction (classification) dataset. The performance metric used for the classification task is Area Under ROC.
- 2. Performed the data cleaning, processing checking for unknown values, filling the missing values. But found that dataset is complete without any missing values, that made the preprocessing simple
- 3. Then performed the high level analysis of the dataset like.
 - · No. of Datapoints,
 - No. of unique class labels and
 - No. of datapoints per unique class label.
- 4. Found that the dataset is highly imbalanced with no. of datapoints per class,
 - Class 1 (Customers who made txn): 10%
 - Class 0 (Customers who didn't made txn): 90%
- 5. Performed the EDA on the raw features associated with the dataset and found that features are independent of each other. Written some of my observations inline in the EDA.
- 6. Applied the dimensionality reduction using the PCA to 2 dimnesions and plotted the same. It's hard in separating the classes using linear models as both were completely overlapping.
- 7. Then I've added the basic features such as mean, standard deviaiton, median, minimum, maximum of 200 numerical features per data point.
- 8. Made the train and test split of ratio 80: 20. Used the train data with the basic features for modelling I.
- 9. The basic features gave a reasonable **AUROC** of around **0.85** using the Logistic Regression, Random Forest, XGBoost and Light GBM with hyperparameter tuning. Performed hyperparameter tuning for all the models using RandomizedSearch Cross-Validaiton.
- 10. Referring to some of the kaggle discussions I've came across and learnt a new boosting algorithm <u>Light Gradient boosted Machines(LGBM)</u> which does splitting leaf-wise instead of depth-wise and gave better predictions than XGBoost.
- 11. Now I wanted to increase **AUROC** a bit further and gone through some of the kaggle discussions that I referred above. Added some of the count and rounding features for each raw feature as per the discussions.
- 12. Did the modelling II with these new count, round features and performed the hyperparameter tuning with previous LR, XGBoost, LGBM.
- 13. The overfitting problem seems to be reduced for all the models with the new count, rounf features.
- 14. LGBM seems to be outperform the other models without overfitting to the training data with the new count, round features which gave an AUROC of,
 - Train data -> 0.92.
 - Test data -> 0.9.
- 15. plotted the feature importance for the LGBM and found that the round features contributed most at each split.
- 16. Finally compared the all the models for basic and the round features in a table with their train and test AUROC and hyperparameters.