

Gradient Boost: Least Mean Square Algorithm

1

B Swaroop Reddy and G V V Sharma*

CONTENTS

1	Convex Functions	1
2	Gradient Descent Method	2
3	Audio Source Files	2
4	Problem Formulation	2
5	LMS Algorithm	3

Abstract—This manual provides an introduction to the LMS algorithm.

1 Convex Functions

A single variable function f is said to be convex if

$$f[\lambda x + (1 - \lambda)y] \le \lambda f(x) + (1 - \lambda)f(y), \quad (1.1)$$

for $0 < \lambda < 1$.

1.1 Download and execute the following python script. Is $\ln x$ convex or concave?

wget https://raw.githubusercontent.com/ gadepall/EE2250/master/manual/codes /1.1.py

1.2 Modify the above python script as follows to plot the parabola $f(x) = x^2$. Is it convex or concave?

wget https://raw.githubusercontent.com/ gadepall/EE2250/master/manual/codes /1.2.py

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.1: $\ln x$ versus x

Fig. 1.2: x^2 versus x

1.3 Execute the following script to obtain Fig. 1.3. Comment.

wget https://raw.githubusercontent.com/gadepall/EE2250/master/manual/codes

/1.3.py

Fig. 1.3: Segments are below the curve

- 1.4 Modify the script in the previous problem for $f(x) = x^2$. What can you conclude?
- 1.5 Let

$$f(\mathbf{x}) = x_1 x_2, \quad \mathbf{x} \in \mathbf{R}^2 \tag{1.2}$$

Sketch $f(\mathbf{x})$ and deduce whether it is convex. Can you theoretically explain your observation using (1.1)?

2 Gradient Descent Method

Consider the problem of finding the square root of a number c. This can be expressed as the equation

$$x^2 - c = 0 (2.1)$$

2.1 Sketch the function for different values of c

$$f(x) = x^3 - 3xc \tag{2.2}$$

and comment upon its convexity.

2.2 Show that (2.1) results from

$$\min_{x} f(x) = x^3 - 3xc \tag{2.3}$$

2.3 Find a numerical solution for (2.1).

Solution: A numerical solution for (2.1) is obtained as

$$x_{n+1} = x_n - \mu f'(x)$$
 (2.4)

$$= x_n - \mu \left(3x_n^2 - 3c \right) \tag{2.5}$$

where x_0 is an inital guess.

2.4 Write a program to implement (2.5).

Solution: Download and execute

wget

https://raw.githubusercontent.com/gadepall/ EE2250/master/manual/codes/square_root .py

3 Audio Source Files

3.1 Get the audio source

svn checkout https://github.com/gadepall/ EE5347/trunk/audio_source cd audio_source

3.2 Play the **signal_noise.wav** and **noise.wav** file. Comment.

Solution: signal_noise.wav contains a human voice along with an instrument sound in the background. This instrument sound is captured in noise.way.

4 Problem Formulation

4.1 See Table 4.1. The goal is to extract the human voice e(n) from d(n) by suppressing the component of $\mathbf{X}(n)$. Formulate an equation for this. **Solution:** The maximum component of $\mathbf{X}(n)$ in

Signal	Label	Type	Filename
17	d(n)	Human+Instrument	signal noise.wav
Known	X(n)	Instrument	noise.wav
TT 1	e(n)	Human estimate	
Unknown	W(n)	Weight Vector	

TABLE 4.1

d(n) can be estimated as

$$\mathbf{W}^{T}(n)\mathbf{X}(n) \tag{4.1}$$

where

$$\mathbf{W}(n) = \begin{bmatrix} w_1(n) \\ w_2(n) \\ w_3(n) \\ \vdots \\ w_{n-M+1}(n) \end{bmatrix}_{MY1}$$
 (4.2)

Intuitively, the human voice e(n) is obtained after removing as much of $\mathbf{X}(n)$ from d(n) as possible. The first step in this direction is to estimate \mathbf{W} in (4.1) using the metric

$$\min_{\mathbf{W}(n)} \|d(n) - \mathbf{W}^{T}(n)\mathbf{X}(n)\|^{2}$$
 (4.3)

The human voice can be then obtained as

$$e(n) = d(n) - \mathbf{W}^{T}(n)\mathbf{X}(n)$$
 (4.4)

5 LMS Algorithm

5.1 Show using (4.4) that

$$\nabla_{\mathbf{W}(n)}e^{2}(n) = \frac{\partial e^{2}(n)}{\partial \mathbf{W}(n)}$$

$$= -2\mathbf{X}(n)d(n) + 2\mathbf{X}(n)X^{T}(n)\mathbf{W}(n)$$
(5.2)

5.2 Use the gradient descent method to obtain an algorithm for solving (4.3)

Solution: The desired algorithm can be expressed as

$$\mathbf{W}(n+1) = \mathbf{W}(n) - \bar{\mu}[\nabla_{\mathbf{W}(n)}e^2(n)]$$
 (5.3)

$$\mathbf{W}(n+1) = \mathbf{W}(n) + \mu \mathbf{X}(n)e(n)$$
 (5.4)

where $\mu = \bar{\mu}$.

5.3 Write a program to suppress X(n) in d(n).

Solution: Execute

wget https://raw.githubusercontent.com/gadepall/EE5347/master/lms/codes/LMS_NC_SPEECH.py