Prof. Eloy Alvarado Narv

[30] Sea X una matriz normal de datos de tamaño $n \times p$ con files $x \sim N(0, \Sigma)$. Sea $Y = X^T C X$ donde X es una matriz simétrica.

- (a) (10 puntos) Mostrar que $Y \sim \sum_{i=1}^{n} \lambda_{i} W_{p}(\Sigma, 1)$ donde $\{\lambda_{i}\}_{i=1}^{n}$ son los autovalores de C.
- (b) (10 puntos) Utilizando el resultado anterior mostrar que $Y \sim W_p(\Sigma, r)$ si C es idempotente. (r = rk(C) = tr(C))
- (c) (10 puntos) Utilizando el resultado anterior mostrar que $nS \sim W_p(\Sigma, n-1)$, donde S es la matriz de varianza-covarianza muestral.

Solución: Por teorema de descomposición espectral (Teo. A.6.4, Mardia), se puede reescribir C como:

$$C = \Gamma \Lambda \Gamma^T = \sum_{i} \lambda_i \gamma_{(i)} \gamma_{(i)}^T$$

donde Λ es una matrix diagonal de autovalores de C Y Γ es una matriz ortogonal con columnas de autovectores estandarizados. Luego,

$$X^{T}CX = X^{T} \sum_{i} \lambda_{i} \gamma_{(i)} \gamma_{(i)}^{T} X$$
$$= \sum_{i} \lambda_{i} X^{T} \gamma_{(i)} \gamma_{(i)}^{T} X$$
$$= \sum_{i} \lambda_{i} y_{i} y_{i}^{T}$$

en donde $Y_i = X^T \gamma_i$. Luego $Y = \Gamma^T X I$, y por teorema (Teo. 3.3.2, Mardia) se tiene que $Y \sim$ $N_p(0,\Sigma)$. Sigue entonces que, por construcción: $YY^T \sim W_p(\Sigma,m)$ en donde en particular m=1ya que los elementos de Y son variables aleatorias i.i.d $N_1(0, \sigma^2)$, por lo que se tiene:

$$\sum \lambda_i y_i y_i^T \sim \sum \lambda_i W_p(\Sigma, 1)$$

por pregunta 1a, sabemos que $YY^T \sim W_p(\Sigma,1)$. Como C es idempotente se tiene que $\lambda_i =$

$$\{0,1\}$$
 y $rk(c)=tr(C)=r$. Luego, $Y\sim\sum_{r=1}^{r}\lambda_{i}W_{p}(\Sigma,1)=\sum_{r=1}^{r}W_{p}(\Sigma,r)$
Por pregunta 1b se tiene: $nS=X^{T}HX\sim W_{p}(\Sigma,r)$ con $r=tr(H)=rk(H)$. Sigue entonces:

$$tr(H) = tr\left(I - \frac{11^T}{n}\right)$$
$$= tr(I) - \frac{tr(11^T)}{n}$$
$$= n - 1$$