Fundamentos de Redes de Computadores

Paulo Sena

Roteiro

- Introdução
 - Uso das Redes de Computadores
 - Hardware de Rede
 - Software de Rede
 - Modelos de Referência
 - Exemplos de Rede

Uso das Redes de Computadores

Roteiro

- Uso das Redes de Computadores
- Hardware de Rede
- Software de Rede
- Modelos de Referência
- Exemplos de Rede

Definições

 Uma rede de computadores é formada por um conjunto de módulos processadores capazes de trocar informações e compartilhar recursos, interligados por um sistema de comunicação (meios de transmissão e protocolos).

Usos das Redes de Computadores

- As redes de computadores possuem diversas aplicações comerciais e domésticas
- As aplicações comerciais proporcionam Compartilhamento de recursos: impressoras, licenças de software, etc.
 - Maior confiabilidade por meio de replicação de fontes de dados
 - Economia de dinheiro: telefonia IP (VoIP), vídeo conferência, etc.
 - Meio de comunicação eficiente entre os empregados da empresa: e-mail, redes sociais, etc.
 - Comércio eletrônico

Modelo Cliente-Servidor

- Uma configuração muito comum em redes de computadores emprega o modelo cliente-servidor
 - O cliente solicita o recurso ao servidor

Modelo Cliente-Servidor

- No modelo cliente-servidor, um processo cliente em uma máquina se comunica com um processo servidor na outra máquina
 - O termo processo se refere a um programa em execução
 - Uma máquina pode rodar vários processos clientes e servidores simultaneamente

Modelo Cliente-Servidor

 P2P (do inglês peer-to-peer, que significa par-a-par) é um formato de rede de computadores em que a principal característica é descentralização das funções convencionais de rede, onde o computador de cada usuário conectado acaba por realizar funções de servidor e de cliente ao mesmo tempo

Roteiro

- Uso das Redes de Computadores
- Hardware de Rede
- Software de Rede
- Modelos de Referência
- Exemplos de Rede

- O hardware de rede varia bastante de acordo com o tipo de rede
- Dentre os muitos critérios para classificar uma rede, destacam-se: a tecnologia de transmissão e a escala
- Segundo a tecnologia de transmissão, as redes são classificadas em
 - Redes de difusão (broadcast)
 - Redes ponto-a-ponto
- Segundo a escala
 - Redes pessoais
 - Redes locais
 - Redes metropolitanas
 - Redes a longas distâncias
 - Redes interligadas

Tecnologia de Transmissão

- Redes de difusão
 - Todas as máquinas compartilham um único canal
 - Comunicação por meio de pacotes endereçados
 - O enderecamento pode ser
 - Para uma máquina específica (unicast)
 - Para todas as máguinas da rede (broadcast)
 - Para um subconjunto de máguinas da rede (multicast)
- Redes ponto-a-ponto
 - Conexões entre pares de máquinas
 - Ocorre o roteamento dos dados

Escala

 Em relação a escala, as redes são classificadas de acordo com a tabela abaixo

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country]]
1000 km	Continent	> Wide area network
10,000 km	Planet	The Internet

Redes Pessoais

- As redes pessoais (PAN Personal Area Networks) permitem que dispositivos se comuniquem pelo alcance de uma pessoa
- São exemplos de redes pessoais
 - Computador ligado aos seus periféricos
 - Fone ligado ao celular via Bluetooth

Redes Locais

- As redes locais (LAN Local Area Networks) são normalmente redes privativas que permitem a interconexão de equipamentos presentes em uma pequena região (um prédio ou uma universidade ou que tenha poucos quilômetros de extensão)
- As LANs podem ser cabeadas, sem fio ou mistas
- Atualmente as LANs cabeadas mais usadas usam o padrão IEEE 802.3
 - Para melhorar a eficiência, cada computador é ligado por um cabo a uma porta de um comutador (switch)
 - Dependendo do cabeamento e tecnologia usados, essas redes atingem velocidades de 100Mbps, 1Gbps ou até 10Gbps
 - Hoje em dia, hubs raramente são usados

Redes Locais

- Com a preferência do consumidor por notebooks, as LANs sem fio (WLAN) ficaram bastante populares
- O padrão mais utilizado é o IEEE 802.11 conhecido como WiFi
- A versão mais recente, o 802.11n, permite alcançar velocidades da ordem de 300Mbps
- LANs sem fio são geralmente interligadas à rede cabeada através de um ponto de acesso

Redes Metropolitanas

- Uma rede metropolitana (MAN Metropolitan Area Network)
 é basicamente uma grande versão de uma LAN onde a distância entre os equipamentos ligados à rede começa a atingir distâncias metropolitanas (uma cidade: metrobel)
- Exemplos de MANs são as redes de TV a cabo e as redes IEEE 802.16 (WiMAX)

Redes a Longas Distâncias

- Uma rede a longas distâncias (WAN Wide Area Network) é uma rede que cobre uma área geográfica grande, usualmente um país ou continente. Os hospedeiros da rede são conectados por uma sub-rede de comunicação (Exemplo: RNP)
 - A sub-rede é composta de dois elementos: linhas de transmissão e elementos de comutação (roteadores)

Redes a Longas Distâncias

- Nos enlaces de longa distância em redes WAN são usadas tecnologias que permitem o tráfego de grandes volumes de dados: SONET, SDH, etc.
- Quando não há cabos, satélites podem ser utilizados em parte dos enlaces
- A sub-rede é em geral operada por uma grande empresa de telecomunicações conhecida como provedor de serviço de Internet (ISP - Internet Service Provider)

Roteiro

- Uso das Redes de Computadores
- Hardware de Rede
- Software de Rede
- Modelos de Referência
- Exemplos de Rede

'Protocolos:

...é a padronização de leis e procedimentos que são dispostos a execução de uma determinada tarefa...

Protocolos:

Tudo que trafega em uma rede de computadores executam protocolos.

A IETF (Internet Engineering Task Force) padroniza esses protocolos através de documentos chamados RFCs (Request For Comments)

- Protocolos que devem ser executados em um host (RFC 112 e RFC 1123).
- Protocolos que devem ser executados em um roteador (RFC 1812).

- A maioria das redes é organizada como uma pilha de camadas (níveis) colocadas umas sobre as outras
- Cada camada oferece alguns serviços para as camadas superiores escondendo os detalhes de implementação desses serviços
- A camada n de uma máquina se comunica com a camada n de outra máquina
- As regras e convenções usadas na comunicação entre camadas de mesmo nível são conhecidas como um protocolo da camada n
- As entidades que ocupam as mesmas camadas em diferentes máquinas são chamadas de pares

Camadas, protocolos e interfaces

- A transmissão de dados ocorre realmente de uma camada para a camada imediatamente inferior ou superior
- Entre camadas adjacentes existe uma interface
- Uma interface define um conjunto de operações e serviços que a camada inferior tem a oferecer à camada superior
- As interfaces devem ser claras de modo a reduzir o fluxo de dados e simplificar a substituição da implementação da camada
- As implementações dos protocolos podem ser diferentes, contanto que os serviços sejam oferecidos

- Um conjunto de camadas e protocolos é chamado de arquitetura de rede
 - Os detalhes da implementação nem a especificação das interfaces pertencem à arquitetura
- Uma lista com os protocolos usados em um determinado sistema é chamada de pilha de protocolos (um protocolo por camada)

- Cada camada acrescenta o seu cabeçalho a fim de permitir que a mensagem seja entregue corretamente
- Cabeçalhos podem conter endereços, números de seqüência, tamanhos, etc.

Questões de Projeto

- Existem algumas questões fundamentais de projeto de redes de computadores que estão presentes em diversas camadas
 - Detecção e correção de erros para aumentar a confiabilidade
 - Necessidade de mecanismos de endereçamento
 - Escalabilidade para lidar com o crescimento das redes
 - Escolha de rotas (roteamento)
 - Lidar com os problemas de interligação de redes (fragmentação, ordenação, etc.)
 - Controle de fluxo quando o transmissor e o receptor operam em velocidades diferentes
 - Qualidade de serviço
 - Acesso ao meio compartilhado
 - Confidencialidade

Serviços Orientados e não Orientados a Conexões

- As camadas podem oferecer dois tipos diferentes de serviços às camadas superiores
 - Serviços orientados a conexões
 - Serviços não orientados a conexões
- Um serviço orientado a conexões segue a mesma idéia do sistema telefônico
 - Uma conexão deve ser estabelecida antes de se iniciar a comunicação
 - Depois de utilizada, a conexão é liberada
 - Uma conexão funciona como um tubo ligando as duas extremidades
 - As partes podem negociar os parâmetros da conexão

Serviços Orientados e não Orientados a Conexões

- Um serviço não orientado a conexões segue a mesma idéia do sistema postal
 - Cada mensagem carrega o endereço de origem e o de destino
 - Cada mensagem (pacote) é independente e dessa forma, pode seguir rotas diferentes
- Esses dois tipos de serviços podem ainda ser confiáveis ou não confiáveis
 - Em um serviço confiável, a mensagem sempre é entregue
 - A confiabilidade requer a confirmação do recebimento

Serviços Orientados e não Orientados a Conexões

Seis diferentes tipos de serviço

Connectionoriented

Connectionless

Service	Example
Reliable message stream	Sequence of pages
Reliable byte stream	Movie download
Unreliable connection	Voice over IP
Unreliable datagram	Electronic junk mail
Acknowledged datagram	Text messaging
Request-reply	Database query

Relacionamento entre Serviços e Protocolos

- Serviços e protocolos s\u00e3o conceitos distintos
 - Um serviço é um conjunto de primitivas (operações básicas) que uma camada oferece à camada situada acima
 - Um protocolo é um conjunto de regras que controla o formato e o significado dos pacotes ou mensagens que são trocadas pelas entidades pares em um camada
 - O protocolo pode ser alterado, desde que os serviços não sejam alterados

Modelos de Referência

Roteiro

- Uso das Redes de Computadores
- Hardware de Rede
- Software de Rede
- Modelos de Referência
- Exemplos de Rede

Modelos de Referência

- Dois modelos de referência para arquiteturas de redes merecem destaque: OSI e TCP/IP
- Modelo de referência ISO OSI (Open Systems Interconnection)
 - Modelo destinado à interconexão de sistemas abertos.
 - Possui 7 camadas: física, enlace de dados, rede, transporte, sessão, apresentação e aplicação

Modelo OSI com as suas sete camadas

- Para se chegar nas sete camadas do modelo OSI, foram aplicados os seguintes princípios
 - Uma camada deve ser criada onde houver necessidade de outro grau de abstração
 - Cada camada deve executar uma função bem definida
 - A função de uma camada deve ser escolhida tendo em vista a definição de protocolos padronizados internacionalmente
 - Os limites das camadas devem ser escolhidos para minimizar o fluxo de informações pelas interfaces
 - O número de camadas deve ser grande o bastante para que funções distintas não precisem ser desnecessariamente colocadas na mesma camada e pequeno o suficiente para que a arquitetura não se torne difícil de controlar

- O modelo OSI não é uma arquitetura de rede, pois não especifica os serviços e protocolos que devem ser usados em cada camada
- O modelo OSI informa apenas o que cada camada deve fazer
- Camada física
 - A sua função é assegurar o transporte de bits através de um meio de transmissão
 - Dessa forma, as questões de projeto dessa camada estão ligadas a níveis de tensão, tempo de bit, interfaces elétricas e mecânicas, quantidade de pinos, sentidos da comunicação, etc.

- Camada de enlace de dados
 - A sua principal função é transmitir quadros entre duas máguinas ligadas diretamente, transformando o canal em um enlace de dados confiável.
 - Divide os dados em quadros e os envia següencialmente
 - Regula o tráfego
 - Detecta a ocorrência de erros ocorridos na camada física.
 - Em redes de difusão, uma subcamada de controle de acesso ao meio é inserida para controlar o acesso ao canal compartilhado

- Camada de rede
 - A sua função é encaminhar pacotes entre a máquina de origem e a máquina de destino
 - O roteamento pode ser estático ou dinâmico
 - Realiza o controle de congestionamento
 - Responsável pela qualidade de serviço
 - Tem que permitir que redes heterogêneas se comuniquem, sendo assim, deve lidar com questões como endereçamento, tamanho dos pacotes e protocolos heterogêneos

- Camada de transporte
 - A sua função básica é efetuar a comunicação fim-a-fim entre processos, normalmente adicionando novas funcionalidades ao serviço já oferecido pela camada de rede
 - Pode oferecer um canal ponto a ponto livre de erros com entrega de mensagens na ordem correta
- Camada de sessão
 - A sua função é controlar quem fala e quando, entre a origem e o destino (analogia com operações críticas em bancos de dados)

- Camada de apresentação
 - A sua função básica é transformar a sintaxe dos dados (forma de representação) sem afetar a semântica
 - Gerencia estruturas de dados abstratas.
- Camada de aplicação
 - Contém uma série de protocolos necessários para os usuários
 - É nessa camada que o usuário interage

Arquitetura TCP/IP - *Transmission Control Protocol* (Protocolo de Controle de Transmissão) - e o IP - *Internet Protocol* (Protocolo Internet).

 Anos 60 - Agência de Projetos de Pesquisa Avançada de Defesa(DARPA) – Orgãos do Governo e universidades em caso de guerra ou catástrofe. >> ARPANET

Histórico: (continuação)

Arquitetura TCP/IP - *Transmission Control Protocol* (Protocolo de Controle de Transmissão) - e o IP - *Internet Protocol* (Protocolo Internet).

- ARPANET inicialmente apenas quatro nós, comunicação comutada
- Anos 70 Sentiu-se a necessidade de:
 - Roteamento entre redes diferentes
 - Independência de tecnologia de rede
 - Independência do hardware
 - Recobrar falhas
- NCP(Network Control Program) >>> TCP/IP

Histórico: (continuação)

Arquitetura TCP/IP - *Transmission Control Protocol* (Protocolo de Controle de Transmissão) - e o IP - *Internet Protocol* (Protocolo Internet).

- Anos 80 DARPA implementa TCP/IP na ARPANET dando origem a INTERNET
- TCP/IP torna-se o protocolo padrão para comunicação de redes, Internet ou não.
- RFC's (Request for Comments)

- Arquitetura voltada para a interconexão de redes heterogêneas (ARPANET)
- Posteriormente, essa arquitetura ficou conhecida como modelo TCP/IP graças aos seus principais protocolos O
- modelo TCP/IP é composto por quatro camadas: enlace, internet, transporte e aplicação

The TCP/IP reference model

- Camada de enlace
 - Não é uma camada propriamente dita, mas uma interface entre os hospedeiros e os enlaces de transmissão
- Camada internet (camada de rede)
 - Integra toda a arquitetura, mantendo-a unida
 - Faz a interligação de redes não orientadas a conexão
 - Tem o objetivo de rotear as mensagens entre hospedeiros, ocultando os problemas inerentes aos protocolos utilizados e aos tamanhos dos pacotes
 - Tem a mesma função da camada de rede do modelo OSI
 - O protocolo principal dessa camada é o IP

- Camada de transporte
 - Permite que entidades pares (processos) mantenham uma comunicação
 - Foram definidos dois protocolos para essa camada: TCP (Transmission Control Protocol) e UDP (User Datagram Protocol)
 - O TCP é um protocolo orientado a conexões confiável que permite a entrega sem erros de um fluxo de bytes
 - O UDP é um protocolo não orientado a conexões, não confiável e bem mais simples que o TCP
- Camada de aplicação
 - Contém todos os protocolos de nível mais alto

Modelo TCP/IP

Modelo TCP/IP e seus protocolos

Modelo TCP/IP

Camada Aplicação:

Modelo TCP/IP

Camada Transporte:

 O modelo de referência usado no livro do Tanenbaum e do Kurose é um modelo em cinco camadas: física, enlace, rede, transporte e aplicação

5	Application
4	Transport
3	Network
2	Link
1	Physical

OSI versus TCP/IP

O modelo OSI

- O modelo foi concebido antes dos protocolos
- O modelo explicita a distinção entre serviços, interfaces e protocolos
- Possui 7 camadas
- Na camada de rede podem existir serviços orientados à conexão e não orientados à conexão
- Na camada de transporte só existem serviços orientados à conexão

Modelos de Referência

OSI versus TCP/IP

O modelo TCP/IP

- Os modelo protocolos foram concebidos antes do modelo
- Possui 4 camadas
- Na camada de rede só existe serviço não orientado à conexão
- Na camada de transporte podem existir serviços orientados à conexão e não orientados à conexão

OSI versus TCP/IP

- Nem o OSI nem o TCP/IP são modelos perfeitos, sendo cada um alvo de críticas
- O modelo OSI não se tornou popular por algumas razões O modelo OSI foi lançado em um momento ruim em que os
 - protocolos TCP/IP já estavam sendo bastante utilizados
 - Tecnologia ruim: a escolha das sete camadas foi uma falha grave no modelo, além do fato dele ser bastante difícil de implementar
 - Implementações ruins: os protocolos do OSI eram bastante lentos e pesados se comparados com os protocolos do TCP/IP
 - Política ruim: o TCP/IP era implementado no UNIX, além de ser considerado uma criação de burocratas europeus

OSI versus TCP/IP

- O modelo TCP/IP apesar de ser bastante popular enfrenta alguns problemas
 - Ele falha em ser geral, ou seja, é complicado utilizá-lo para o projeto de novas redes
 - Ele n\u00e3o diferencia claramente os conceitos de servi\u00fcos, interfaces e protocolos
 - Ele não faz distinção entre as camadas física e de enlace de dados

Roteiro

- Uso das Redes de Computadores
- Hardware de Rede
- Software de Rede
- Modelos de Referência
- Exemplos de Rede

Topologias:

Estrela

Anel

Barramento

- A Internet n\u00e3o \u00e9 uma rede propriamente dita, mas sim um vasto conjunto de redes diferentes com protocolos e servi\u00f3os comuns
- A Internet teve suas origens no final da década de 1950 ,derivada da telefonia, e vem passando por diversas transformações
 - A Arpanet foi a precursora da Internet
 - Rede criada pela ARPA (Advanced Research Projects Agency) ligada ao departamento de defesa dos Estados Unidos
 - Rede com comutação de pacotes com tolerância a falhas Universidades americanas que tinham contratos com o departamento de defesa atuavam no seu desenvolvimento

Exemplos de Rede

A Internet

A idéia era que a Arpanet pudesse resistir a guerras

 A sub-rede da Arpanet consistia de minicomputadores (os IMPs) conectados por linhas de 56 kbps (as melhores que o dinheiro podia comprar naquela época)

- Testes de comunicação entre hospedeiros situados em diferentes universidades mostraram a necessidade de desenvolver protocolos adequados
- O TCP/IP foi implementado em diferentes plataformas
- A versão 4.2BSB do Unix desenvolvido pela universidade de Berkeley vinha com o TCP/IP com uma interface de soquetes
- A medida que a rede cresceu, foi necessário desenvolver o sistema de nomes de domínio DNS (Domain Name System)

O crescimento da Arpanet (1969, 1970, 1971 e 1972)

- A Arpanet teve um impacto considerável nas pesquisas nos Estados Unidos, mas estava restrito às universidades com contratos militares
- A NSF (National Science Foundation) desenvolveu um rede que se integrou a Arpanet e depois decidiu desenvolver uma rede sucessora da Arpanet
- A NSF desenvolveu um backbone que permitia ligar várias universidades, laboratórios de pesquisa e museus
- A rede da NSF era chamada de NSFNET
- Com a entrada de grandes empresas privadas, a rede se ampliou formando a ANSNET
 - A partir daí, os serviços de rede passaram a ser oferecidos comercialmente
 - A partir de 1990, com o surgimento da World Wide Web, a
- Internet explodiu

O backbone da NSFNET em 1988

Arquitetura da Internet

 Atualmente, a Internet possui uma arquitetura similar à figura abaixo

Arquitetura da Internet

- Para entrar na Internet, um usuário precisa se conectar a um ISP (Internet Service Provider)
- A forma como o usuário se conecta ao ISP varia
 - DSL (Digital Subscriber Line)
 - Conexão discada (dial-up)
 - Cabo
 - FTTH (Fiber to the home)
- Os ISPs conectam suas redes nos IXPs (Internet eXchange Points)
 - Sala cheia de roteadores conectados por uma LAN de alta velocidade
- No topo estão os ISPs da camada 1 que formam o backbone principal da Internet

Redes de Telefonia Móvel 3G

- O número de usuários de telefonia móvel supera com folga o número de computadores e de linhas de telefone fixos
- A evolução do sistema de telefonia móvel passou por 3 gerações
 - 1ª geração: AMPS (Advanced Mobile Phone System) 2ª
 - geração: D-AMPS, CDMA e GSM (Global System for Mobile Communications)
 - 3ª geração: UMTS (Universal Telecommunications System) também chamado de WCDMA (Wideband Code Division Multiple Access)

Exemplos de Rede

Redes de Telefonia Móvel 3G

 O ponto de destaque de uma rede de telefonia móvel é a reutilização do espectro

- As redes 802.11 (WiFi) operam em uma faixa de freqüências do espectro não licenciada (2,4 - 2,5 GHz ou 5,725 - 5,825 GHz)
 - A potência de transmissão deve ser limitada a fim de que os dispositivos possam coexistir
- A estrutura da rede pode incluir pontos de acesso (APs) ou não (redes ad hoc)
- Dependendo da versão, o esquema de modulação usado varia
 - OFDM (Orthogonal Frequency Division Multiplexing) é usado no 802.11g
- O 802.11n utiliza até quatro antenas a fim de alcançar velocidades maiores

Configurações de redes sem fio

- A transmissão sem fio enfrenta mais desafios que a transmissão guiada
 - Atenuação e desvanecimento de multipercursos
 - Terminais ocultos
 - Necessidade de mobilidade
- Outro fator que merece destaque é a segurança, já que o meio físico é a princípio acessível a todos
 - Técnicas de criptografia como WEP (Wired Equivalent Privacy) e WPAWPA2 (WiFi Protected Access) são utilizadas

Desvanecimento de multipercurso

Multipath fading

Exemplos de Rede

LANs sem Fios: 802.11

Problema do terminal oculto

RFID e Redes de Sensores

- A identificação por radiofrequência (RFID Radio Frequency IDentification) permite que objetos comuns façam parte de uma rede de computadores
- Uma etiqueta RFID contém um pequeno microchip com um identificador exclusivo e uma antena que recebe transmissões de rádio
- A tecnologia RFID pode ser passiva ou ativa (precisa de uma fonte de energia)
- Tipos de RFID
 - UHF RFID carteiras de habilitação
 - HF RFID passaportes, cartões de crédito, livros e sistemas de pagamento sem contato
 - LF RFID rastreamento de animais

RFID e Redes de Sensores

RFID em objetos

Exemplos de Rede

RFID e Redes de Sensores

Uma extensão das redes RFID são as redes de sensores

Padronização de Redes

- Várias organizações mundiais operam na padronização de redes e da Internet
 - ITU (International Telecommunication Union)
 - ISO (International Standards Organization)
 - IEEE (Institute of Electrical and Electronics Engineers)
 - IETF (Internet Engineering Task Force)
 - IAB (Internet Architecture Board)
- Protocolos da Internet s\u00e3o descritos nos RFCs (Request for Comments)

Grupos IEEE

Number	Topic
802.1	Overview and architecture of LANs
802.2 ↓	Logical link control
802.3 *	Ethernet
802.4 ↓	Token bus (was briefly used in manufacturing plants)
802.5	Token ring (IBM's entry into the LAN world)
802.6 ↓	Dual queue dual bus (early metropolitan area network)
802.7 ↓	Technical advisory group on broadband technologies
802.8 †	Technical advisory group on fiber optic technologies
802.9 ↓	Isochronous LANs (for real-time applications)
802.10 ↓	Virtual LANs and security
802.11 *	Wireless LANs (WiFi)
802.12 ↓	Demand priority (Hewlett-Packard's AnyLAN)

The 802 working groups. The important ones are marked with *. The ones marked with ↓ are hibernating. The one marked with † gave up and disbanded itself.

Grupos IEEE

802.13	Unlucky number; nobody wanted it	
802.14 ↓	Cable modems (defunct: an industry consortium got there first	
802.15 *	Personal area networks (Bluetooth, Zigbee)	
802.16 *	Broadband wireless (WiMAX)	
802.17	Resilient packet ring	
802.18	Technical advisory group on radio regulatory issues	
802.19	Technical advisory group on coexistence of all these standard	
802.20	Mobile broadband wireless (similar to 802.16e)	
802.21	Media independent handoff (for roaming over technologies)	
802.22	Wireless regional area network	

The 802 working groups. The important ones are marked with *. The ones marked with \downarrow are hibernating. The one marked with \uparrow gave up and disbanded itself.

Exemplos de Rede

Referências

Prof. Dr. Marcos Seruffo UFPA/ITEC – Curso Bacharelado em Engenharia da Computação. https://sigaa.ufpa.br/sigaa/public/docente/portal.jsf?siape=176861