Algèbre linéaire et bilinéaire I – TD₅

Partie 1 : Projecteurs et symétries

Exercice 1:

Soit $f \in \mathcal{L}(\mathbb{R}^3)$ définie par f(x, y, z) = (2x - 2z, y, x - z) pour tout $(x, y, z) \in \mathbb{R}^3$. Montrer que f est un projecteur puis calculer g(x, y, z) pour tout $(x, y, z) \in \mathbb{R}^3$ où g est la symétrie associée à f.

Montrons que $f \circ f = f$. Pour tout $(x, y, z) \in \mathbb{R}^3$ on a

$$f(f(x, y, z)) = f(2x - 2z, y, x - z)$$

$$= (2(2x - 2z) - 2(x - z), y, 2x - 2z - (x - z))$$

$$= (2x - 2z, y, x - z)$$

$$= f(x, y, z)$$

d'où $f \circ f = f$. L'application f est linéaire et vérifie $f \circ f = f$, c'est donc un projecteur sur Im f parallèlement à Ker f. Soit g la symétrie associée. On a $g = 2.f - \mathrm{id}_{\mathbb{R}^3}$ (propriété 1.35) d'où

$$\forall (x, y, z) \in \mathbb{R}^3, \quad g(x, y, z) = 2.f(x, y, z) - (x, y, z) = (3x - 4z, y, 2x - 3z).$$

Exercice 2 (Exercice 1.10 du livre):

On pose $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$. Soit l'application :

$$\phi: E \to E$$

$$f \mapsto (x \mapsto f(-x))$$

Montrer que ϕ est une symétrie. Par rapport à quel espace et parallèlement à quel espace?

- On vérifie aisément que ϕ est linéaire et que $\phi^2 = \mathrm{id}_E$.
- Calculons $\operatorname{Ker}(\phi \operatorname{id}_E)$. Soit $f \in E$:

$$\phi(f) - f = 0_E \Leftrightarrow \forall x \in \mathbb{R}, \ f(-x) - f(x) = 0$$
$$\Leftrightarrow \forall x \in \mathbb{R}, \ f(-x) = f(x)$$
$$\Leftrightarrow f \text{ est paire.}$$

— Calculons $Ker(\phi + id_E)$. Soit $f \in E$:

$$\phi(f) + f = 0_E \Leftrightarrow \forall x \in \mathbb{R}, \ f(-x) + f(x) = 0$$
$$\Leftrightarrow \forall x \in \mathbb{R}, \ f(-x) = -f(x)$$
$$\Leftrightarrow f \text{ est impaire.}$$

Notons $F = \{ f \in E, \text{ paire} \} \text{ et } G = \{ f \in E, \text{ impaire} \}.$

 ϕ est une symétrie par rapport à F et parallèlement à G.

Exercice 3:

Soit p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

1. Montrer que p et q ont même noyau si et seulement si $p \circ q = p$ et $q \circ p = q$.

Supposons Ker(p) = Ker(q). On a

$$p \circ q - p = p \circ (q - \mathrm{id}_E)$$

Or $\operatorname{Im}(q - \mathrm{id}_E) = \operatorname{Ker}(q)$ (propriété 1.29 du livre) donc $\operatorname{Im}(q - \mathrm{id}_E) \subset \operatorname{Ker}(p)$ puis

$$p \circ q - p = 0_{\mathcal{L}(E)}$$

Ainsi $p \circ q = p$ et de même on obtient $q \circ p = q$.

Si $p \circ q = p$ et $q \circ p = q$, alors $\operatorname{Ker}(q) \subset \operatorname{Ker}(p)$ et $\operatorname{Ker}(p) \subset \operatorname{Ker}(q)$ d'où égalité $\operatorname{Ker}(p) = \operatorname{Ker}(q)$.

2. Enoncer une condition nécessaire et suffisante semblable pour que p et q aient même image.

Supposons Im(p) = Im(q). On a $\text{Ker}(p - \text{id}_E) = \text{Im}(q)$ donc $(p - \text{id}_E) \circ q = 0$ d'où $p \circ q = q$. Et de façon semblable, $q \circ p = p$.

Inversement, l'égalité $p \circ q = q$ entraı̂ne $\operatorname{Im}(q) \subset \operatorname{Im}(p)$ et l'égalité $q \circ p = p$ entraı̂ne $\operatorname{Im}(p) \subset \operatorname{Im}(q)$.

Ainsi, la condition nécessaire et suffisante cherchée est

$$p \circ q = q$$
 et $q \circ p = p$.

Exercice 4:

Soit E un \mathbb{K} -espace vectoriel et soit $u \in \mathcal{L}(E)$ vérifiant

$$u^2 - 5.u + 6. \operatorname{id}_E = 0_{\mathscr{L}(E)}.$$

On pose $F = \text{Ker}(u - 3. \text{id}_E)$ et $G = \text{Ker}(u - 2. \text{id}_E)$.

- 1. Montrer que F et G sont deux sous-espaces vectoriels de E.
- 2. Montrer que F et G sont supplémentaires.
- 3. Soit p le projecteur sur F parallèlement à G et soit q la symétrie associée. Exprimer p et q en fonction de u.
- 4. Montrer que u est un automorphisme et exprimer u^{-1} en fonction de u.
- 1. Puisque $u \in \mathcal{L}(E)$ et $\mathrm{id}_E \in \mathcal{L}(E)$, on a u-3. id_E (car $\mathcal{L}(E)$ est un \mathbb{K} -espace vectoriel). On en déduit que F est un sous-espace vectoriel de E puisque c'est le noyau d'un endomorphisme de E. On procède de même pour G.
- 2. Attention ici, on ne peut pas utiliser d'arguments basés sur la dimension car on ne sait pas si E, F et G sont de dimension finie.

On procède en deux étapes.

ightharpoonup Montrons que $F \cap G = \{0_E\}$. On a $\{0_E\} \subset F \cap G$, montrons que $F \cap G \subset \{0_E\}$. Soit $x \in F \cap G$. Puisque $x \in F$, on a $u(x) - 3.x = 0_E$ et puisque $x \in G$, on a $u(x) - 2.x = 0_E$. En soustrayant ces deux égalités on obtient $x = 0_E$, donc $F \cap G \subset \{0_E\}$. Par double inclusion, $F \cap G = \{0_E\}$.

- \triangleright Montrons que F+G=E. On a $F+G\subset E$ donc montrons que $E\subset F+G$. Soit $x\in E$.
 - Analyse : supposons que $x=x_F+x_G$ avec $x_F\in F$ et $x_G\in G$, c'est-à-dire $u(x_F)-3.x_F=0_E$ et $u(x_G)-2.x_G=0_E$, d'où

$$u(x) = u(x_F + x_G) = u(x_F) + u(x_G) = 3.x_F + 2.x_G.$$

On a donc

$$\begin{cases} x_F + x_G = x \\ 3.x_F + 2.x_G = u(x) \end{cases} \implies \begin{cases} x_F + x_G = x \\ -x_G = u(x) - 3.x \end{cases}$$

d'où $x_F = u(x) - 2.x$ et $x_G = 3.x - u(x)$.

• Synthèse : écrivons

$$x = \underbrace{\left(u(x) - 2.x\right)}_{=x_F} + \underbrace{\left(3.x - u(x)\right)}_{=x_G}.$$

Montrons que $x_F \in F$. On a

$$u(x_F) - 3.x_F = u(u(x) - 2.x) - 3.(u(x) - 2.x)$$

$$= u^2(x) - 2.u(x) - 3.u(x) + 6.x$$

$$= (u^2 - 5.u + 6. id_E)(x)$$

$$= 0_{\mathcal{L}(E)}$$

$$= 0_E$$

donc $x_F \in \text{Ker}(u - 3 \text{ id}_E) = F$. On a de même

$$u(x_G) - 2.x_G = u(3.x - u(x)) - 2.(3.x - u(x) - 3.x)$$

$$= 3.u(x) - u^2(x) + 2.u(x) - 6.x$$

$$= -(\underbrace{u^2 - 5.u + 6. id_E}_{=0_{\mathscr{L}(E)}})(x)$$

$$= 0_E$$

donc $x_G \in \text{Ker}(u-2.\text{id}_E) = G$. On a donc $x \in F + G$ d'où $E \subset F + G$.

Par double inclusion, on a F + G = E et comme $F \cap G = \{0_E\}$, on a $F \oplus G = E$.

3. Soit $x \in E$. La question précédente montre que $E = F \oplus G$ et que pour tout $x \in E$,

$$x = \underbrace{\left(u(x) - 2.x\right)}_{\in F} + \underbrace{\left(3.x - u(x)\right)}_{\in G}.$$

On a donc p(x) = u(x) - 2.x et q(x) = 2.(u(x) - 2.x) - x = 2.u(x) - 5.x pour tout $x \in E$.

4. On a

$$id_E = \frac{5}{6} \cdot u - \frac{1}{6} \cdot u^2 = u \circ \left(\frac{5}{6} \cdot id_E - \frac{1}{6} \cdot u\right) = \left(\frac{5}{6} \cdot id_E - \frac{1}{6} \cdot u\right) \circ u$$

ce qui montre que u est bijective, et comme de plus $u \in \mathcal{L}(E)$, u est un automorphisme de E et le calcule précédent montre que

$$u^{-1} = \frac{5}{6} \cdot \mathrm{id}_E - \frac{1}{6} \cdot u.$$

Partie 2: Images et noyaux d'endomorphismes

Exercice 5:

Soit E un \mathbb{K} -espace vectoriel et soit $f \in \mathcal{L}(E)$

1. Montrer que $Ker(f) \subset Ker(f^2)$ et $Im(f^2) \subset Im(f)$.

Soit $x \in \text{Ker}(f)$, alors $f(x) = 0_E$. donc on a

$$f^{2}(x) = f(f(x)) = f(0_{E}) = 0_{E}.$$

Ainsi, $x \in \text{Ker}(f^2)$. Finalement, $\text{Ker}(f) \subset \text{Ker}(f^2)$.

Soit $y \in \text{Im}(f^2)$, alors il existe $z \in E$ tel que

$$y = f^{2}(z) = f(u)$$
 avec $u = f(z)$.

Ainsi, $y \in \text{Im}(f^2)$. Finalement, $\text{Im}(f^2) \subset \text{Im}(f)$.

2. Montrer que $Ker(f) \cap Im(f) = \{0_E\}$ si et seulement si $Ker(f) = Ker(f^2)$

 $\triangleright(\Rightarrow)$

Supposons d'abord que $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0_E\}$, Il suffit de démontrer que $\operatorname{Ker}(f^2) \subset \operatorname{Ker}(f)$ Soit $x \in \operatorname{Ker}(f^2)$, alors $f^2(x) = 0_E$ et posons y = f(x).

Alors $y \in \text{Im}(f)$ et $f(y) = f^2(x) = 0_E$, donc $y \in \text{Ker}(f)$. On en déduit que $y = 0_E$ et que $x \in \text{Ker}(f)$, d'où l'inclusion demandée.

 $\triangleright (\Leftarrow)$

Supposons que $Ker(f) = Ker(f^2)$.

Soit $y \in \text{Ker}(f) \cap \text{Im}(f)$. Alors $f(y) = 0_E$ et il existe $x \in E$ tel que y = f(x). Mais alors

$$f^2(x) = f(y) = 0_E.$$

et donc $x \in \text{Ker}(f^2) \subset \text{Ker}(f)$. Ainsi, $f(x) = 0_E$ donc $y = 0_E$ et on a bien prouvé que

$$\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{0_E\}$$

3. Montrer que Ker(f) + Im(f) = E si et seulement si $Im(f) = Im(f^2)$

 $\triangleright(\Rightarrow)$

Supposons d'abord que $\operatorname{Ker}(f) + \operatorname{Im}(f) = E$ et prouvons que $\operatorname{Im}(f) \subset \operatorname{Im}(f^2)$.

Soit $y \in \text{Im}(f)$, il existe $x \in E$ tel que y = f(x).

On peut écrire x = u + v avec $u \in \text{Ker}(f)$ et vIm(f).

En particulier, il existe $w \in E$ tel que v = f(w).

Mais alors,

$$y = f(x) = f(u) + f^2(w) = f^2(w) \in \text{Im}(f^2)$$

ce qu'il fallait démontrer.

 $\triangleright (\Leftarrow)$

Supposons que $\text{Im}(f) = \text{Im}(f^2)$ et démontrons que Ker(f) + Im(f) = E.

Soit $y \in E$. Alors il existe $z \in E$ tel que $f(y) = f^2(z)$.

Posons u = y - f(z) et v = f(z).

Alors

$$f(u) = f(y) - f^2(z) = 0_E.$$

Donc $u \in \text{Ker}(f)$ et $v \in \text{Im}(f)$, on a montré que Ker(f) + Im(f) = E.

Exercice 6:

Soit $E = \mathbb{R}_3[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 3. On définit u l'application de E dans lui-même par : u(P) = P + (1 - X)P'.

1. Donner une base de E.

Montrer que $(1, X, X^2, X^3)$ est une base de E. Soit $(a, b, c, d) \in \mathbb{R}^4$ telle que $0_E = a.1 + b.X + c.X^2 + d.X^3$, on ait a = b = c = d = 0Donc la famille $(1, X, X^2, X^3)$ est libre. On a aussi dim(E) = 4. En conclusion, la famille $(1, X, X^2, X^3)$ est bien une base de E.

2. Montrer que u est un endomorphisme de E.

Remarquons d'abord que si $P \in E$, u(P) est bien un polynôme de degré inférieur ou égal à 3, et donc u envoie bien E dans E.

Pour montrer qu'il s'agit d'un endomorphisme, on doit prouver que u est linéaire. Soit $(P,Q) \in E^2$, $\lambda \in \mathbb{R}$, on a

$$u(P + \lambda Q) = (P + \lambda Q) + (1 - X)(P + \lambda Q)'$$

= $P + \lambda Q + (1 - X)(P' + \lambda Q')$
= $P + (1 - X)P' + \lambda (Q + (1 - X)Q')$
= $u(P) + \lambda u(Q)$.

L'application u est donc bien linéaire, d'où u est un endomorphisme de E.

3. Déterminer l'image de u et donner une base de Im(u).

Puisque $(1, X, X^2, X^3)$ est une base de E, on sait que $(u(1), u(X), u(X^2), u(X^3))$ est une famille génératrice de Im(u). On a :

$$u(1) = 1, \ u(X) = 1, \ u(X^2) = -X^2 + 2X, \ u(X^3) = -2X^3 + 3X^2.$$

On a alors $Im(u) = Vect(1, -X^2 + 2X, -2X^3 + 3X^2)$.

On en déduit que $(u(1), u(X^2), u(X^3))$ est une famille libre (ce sont des polynômes de degrés différents) et que u(X) s'écrit comme combinaison linéaire de ceux-ci (on a même u(X) = u(1)). Ainsi, ceci prouve que $(u(1), u(X^2), u(X^3))$ est une base de Im(u).

4. Déterminer le noyau de u et donner une base de Ker(u).

Ecrivons $P(X) = aX^3 + bX^2 + cX + d$ où $(a, b, c, d) \in \mathbb{R}^4$, et calculons u(P):

$$u(P) = -2aX^{3} + (3a - b)X^{2} + 2bX + c + d.$$

Ainsi, on obtient

$$u(P) = 0_E \iff \begin{cases} -2a &= 0 \\ 3a - b &= 0 \\ 2b &= 0 \\ c + d &= 0 \end{cases} \iff \begin{cases} a &= 0 \\ b &= 0 \\ c &= c \\ d &= -c \end{cases}$$

On a alors Ker(u) = Vect(X - 1).

Une base de Ker(u) est donné par le polynôme X-1.

Soit $E^* = \mathcal{L}(E, \mathbb{R})$ l'espace dual de E. On considère les formes linéaires :

$$\forall i \in [0,3], \ f_i : P \mapsto \int_{-1}^1 t^i P(t) dt$$

5. Montrer que $B^{\star}=(f_0,f_1,f_2,f_3)$ est une base de E^{\star} .

Méthode I :

Ecrivons $P = aX^3 + bX^2 + cX + d$ où $(a, b, c, d) \in \mathbb{R}^4$, on a

$$f_0(P) = \int_{-1}^{1} (at^3 + bt^2 + ct + d)dt = \frac{2}{3}b + 2d,$$

de même, on a

$$f_1(P) = \frac{2}{5}a + \frac{2}{3}c,$$

$$f_2(P) = \frac{2}{5}b + \frac{2}{3}d,$$

$$f_3(P) = \frac{2}{7}a + \frac{2}{5}c.$$

Soit $(\lambda_0, \lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^4$ telle que

$$\lambda_0.f_1 + \lambda_1.f_2 + \lambda_2.f_2 + \lambda_3.f_3 = 0_{E^*}.$$

c'est-à-dire, pour tout $P \in E$,

$$(\lambda_0.f_1 + \lambda_1.f_2 + \lambda_2.f_2 + \lambda_3.f_3)(P) = 0.$$

On a alors $\lambda_0=0,\,\lambda_1=0,\,\lambda_2=0,\,\lambda_3=0$

Donc la famille (f_0, f_1, f_2, f_3) est libre.

En plus, $\dim(E) = \dim(E^*) = 4$. (proposition 1.8 du livre).

Donc, $B^* = (f_0, f_1, f_2, f_3)$ une base de E^* .

Méthode II:

Soit $(\lambda_0, \ldots, \lambda_3) \in \mathbb{R}^4$ tel que

$$f = \lambda_0.f_0 + \dots + \lambda_3.f_3 = 0_{E^*}$$

Posons $P = \sum_{k=0}^{3} \lambda_k X^k \in E$. On a :

$$0 = f(P) = \int_{-1}^{1} \left(\sum_{k=0}^{3} \lambda_k t^k \right)^2 dt$$

La fonction $t \mapsto \left(\sum_{k=0}^{3} \lambda_k t^k\right)^2$ est positive (car c'est un carré), continue (car polynomiale) et d'intégrale nulle, donc elle est nulle, donc

$$(\lambda_0,\ldots,\lambda_3)=(0,\ldots,0)$$

La famille B^* est donc libre. Comme E^* est de dimension 4, B^* est une base de E^* .

Exercice 7:

On considère un \mathbb{K} -espace vectoriel noté E, et l'on note :

$$\mathscr{S}(E) = \left\{ u \in \mathscr{L}(E), \ u^3 = u^2 \ \right\}$$

1. Soit l'endomorphisme f de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = (0, x, z).$$

— Montrer que $f \in \mathscr{S}(\mathbb{R}^3)$.

— On a

$$f^{2} = f \circ f : \begin{cases} \mathbb{R}^{3} & \to \mathbb{R}^{3} \\ (x, y, z) & \mapsto (0, 0, z) \end{cases}$$

c'est-à-dire

$$\forall (x, y, z) \in \mathbb{R}^3, f \circ f((x, y, z)) = f((0, x, z)) = (0, 0, z).$$

En plus

$$\forall (x, y, z) \in \mathbb{R}^3, f^3((x, y, z)) = f((0, 0, z)) = (0, 0, z)$$

Donc

$$f^3: \begin{cases} \mathbb{R}^3 & \to \mathbb{R}^3 \\ (x, y, z) & \mapsto (0, 0, z) \end{cases}$$

Donc $f^3 = f^2$. Alors on a $f \in \mathscr{S}(\mathbb{R}^3)$.

— Déterminer Ker(f).

On calcul

$$\operatorname{Ker}(f) = \left\{ (x, y, z) \in \mathbb{R}^3, f((x, y, z)) = (0, x, z) = (0, 0, 0) \right\}$$
$$= \left\{ (x, y, z) \in \mathbb{R}^3, x = z = 0 \right\}$$
$$= \left\{ (0, y, 0), y \in \mathbb{R} \right\}$$
$$= \operatorname{Vect}(\{(0, 1, 0)\})$$

— Déterminer $\operatorname{Im}(f)$.

On calcul

$$\operatorname{Im}(f) = \left\{ (0, x, z), (x, y) \in \mathbb{R}^2 \right\}$$
$$= \left\{ x.(0, 1, 0) + z.(0, 0, 1), (x, z) \in \mathbb{R}^2 \right\}$$
$$= \operatorname{Vect}(\left\{ (0, 1, 0), (0, 0, 1) \right\})$$

2. On suppose dans cette question que $Ker(u) = \{0_E\}$. Montrer que $u = id_E$.

Soit $x \in E$

Comme
$$(u^3 - u^2)(x) = 0$$
, on a $u(u^2(x) - u(x)) = 0$, ainsi le vecteur $u^2(x) - u(x) \in \text{Ker}(u) = \{0_E\}$.

Donc on a $u^2(x) - u(x) = 0_E$ ce qui implique u(u(x) - x) = 0. Ainsi le vecteur $u(x) - x \in \text{Ker}(u) = \{0_E\}$, d'où u(x) = x. On a bien $u = \text{id}_E$.

3. On suppose dans cette question que $Ker(u) = Ker(u^2)$. Montrer que u est un projecteur.

Soit $x \in E$. Comme $u^3(x) = u^2(x)$, on a $u^2(u(x) - x) = 0$ et donc le vecteur $u(x) - x \in \text{Ker}(u^2)$. En plus, $\text{Ker}(u^2) = \text{Ker}(u)$, on a $u(x) - x \in \text{Ker}(u)$ et donc $u(u(x) - x) = 0_E$, c'est-à-dire, $u^2(x) = u(x)$.

Comme x est arbitraire, on a $u^2 = u$. En conclusion, u est un projecteur.

Dans la suite, on suppose que $Ker(u) \neq \{0_E\}$ et que $Ker(u) \neq Ker(u^2)$.

4. Déterminer pour $n \geq 3$, u^n .

En déduire que : $E = \text{Ker}(u^2) \bigoplus \text{Im}(u^2)$.

Comme $u^3 = u^2$, par récurrence on montre que $\forall n \geq 3, \ u^n = u^2$.

Puisque. $u^4=u^2,$ on en déduit que u^2 est un projecteur de E .

D'après le cours, $E = \text{Ker}(u^2) \bigoplus \text{Im}(u^2)$.

5. Montrer que : $Ker(u^2)$ est stable par u.

Soit $x \in \text{Ker}(u^2)$, montrons que $u(x) \in \text{Ker}(u^2)$.

Comme $u^2(u(x)) = u^3(x) = u^2(x) = 0$, par conséquent, $u(x) \in \text{Ker}(u^2)$.

Exercice 8:

Soit E un \mathbb{K} -espace vectoriel et soit $u \in \mathcal{L}(E)$.

- 1. Soit $v \in \mathcal{L}(E)$ qui commute avec u (c'est-à-dire que $u \circ v = v \circ u$). Montrer que $\operatorname{Im}(v)$ et $\operatorname{Ker}(v)$ sont stables par u (c'est-à-dire $u(\operatorname{Im}(v)) \subset \operatorname{Im}(v)$ et $u(\operatorname{Ker}(v)) \subset \operatorname{Ker}(v)$).
- 2. Soit p un projecteur de E tel que Im(p) et Ker(p) sont stables par u. Montrer que u commute avec p.
- 1. \triangleright Soit $x \in \text{Ker}(v)$, montrons que $u(x) \in \text{Ker}(v)$. On a

$$v(u(x)) = u(v(x)) = u(0_E) = 0_E$$

donc $u(x) \in \text{Ker}(v)$, ce qui montre que Ker(v) est stable par u.

 \triangleright Soit $y \in \text{Im}(v)$, montrons que $u(y) \in \text{Im}(v)$. Il existe $x \in E$ tel que y = v(x), d'où

$$u(y) = u(v(x)) = v(u(x)) \in \operatorname{Im}(v)$$

donc $\operatorname{Im} v$ est stable par u.

2. Soit $x \in E$. Il existe $y \in \text{Ker}(p)$ et $z \in \text{Im}(p)$ tels que x = y + z. On a en particulier $p(y) = 0_E$ et comme p restreint à Im(p) est l'identité, p(z) = z. On a donc

$$u(p(x)) = u(p(y) + p(z)) = u(0_E + z) = u(0_E) + u(z) = u(z).$$

On a également

$$p(u(x)) = p(u(y) + u(z)) = p(u(y)) + p(u(z)) = 0_E + u(z) = u(z)$$

car $u(y) \in u(\text{Ker}(p)) \subset \text{Ker}(p)$ et $u(z) \in u(\text{Im}(p)) \subset \text{Im}(p)$. On a donc u(p(x)) = p(u(x)) pour tout $x \in E$, c'est-à-dire que u et p commutent.

Partie 3 : Résultats importants

Exercice 9:

Le but de cet exercice est de redémontrer le théorème du rang différent de la méthode en classe .

Soient E et E' deux \mathbb{K} -espaces vectoriels tels que E soit de dimension finie et soit $u \in \mathcal{L}(E, E')$.

- 1. Soit H un supplémentaire de Ker(u) dans E. Montrer que u induit une bijection entre H et Im(u).
- 2. En déduire le théorème du rang :

$$rang(u) + dim(Ker(u)) = dim E.$$

1. Il est demandé de montrer que

$$\phi \colon H \longrightarrow \operatorname{Im}(u)$$

$$x \longmapsto u(x)$$

est un isomorphisme. Il est immédiat que ϕ est linéaire, car u l'est.

- $ightharpoonup \operatorname{Soit} x \in \operatorname{Ker}(\phi)$. On a en particulier $x \in H$ car $\operatorname{Ker}(\phi) \subset H$ et $0_{E'} = \phi(x) = u(x)$ donc $x \in \operatorname{Ker}(u)$. On a donc $x \in \operatorname{Ker}(u) \cap H = \{0_E\}$ d'où $x = 0_E$. On a donc $\operatorname{Ker}(\phi) \subset \{0_E\}$ et comme $\{0_E\} \subset \operatorname{Ker} \phi$, on a $\operatorname{Ker} \phi = \{0_E\}$ ce qui montre que ϕ est injective.
- \triangleright Soit $y \in \text{Im}(u)$. Il existe donc $x \in E$ tel que y = u(x). Or puisque $E = \text{Ker}(u) \oplus H$, on peut écrire $x = x_K + x_H$ avec $x_K \in \text{Ker}(u)$ et $x_H \in H$, d'où

$$y = u(x) = u(x_K + x_H) = u(x_K) + u(x_H) = 0_E + u(x_H) = \phi(x_H)$$

ce qui montre que $y \in \text{Im}(\phi)$. On a donc $\text{Im}(u) \subset \text{Im}(\phi)$ et comme $\text{Im}(\phi) \subset \text{Im}(u)$, on en déduit $\text{Im}(\phi) = \text{Im}(u)$, ce qui montre que ϕ est surjective.

Finalement, ϕ est un isomorphisme entre H et Im(u).

2. Puisque $E = \text{Ker}(u) \oplus H$ et que E est de dimension finie, on a $\dim E = \dim \text{Ker}(u) + \dim H$. Or H et Im(u) sont isomorphes donc Im(u) est de dimension finie et $\dim H = \dim \text{Im}(u) = \text{rang}(u)$. On a donc

$$\operatorname{rang}(u) + \dim(\operatorname{Ker}(u)) = \dim E.$$

Exercice 10:

Le but de cet exercice est de redémontrer la formule de Grassman à partir du théorème du rang.

Soit E un \mathbb{K} -espace vectoriel, soient F et G deux sous-espaces vectoriels de E de dimension finie et soit $\phi \colon F \times G \to F + G$ définie par

$$\forall (f, g) \in F \times G, \quad \phi(f, g) = f + g.$$

- 1. Montrer que rang $(\phi) = \dim(F + G)$.
- 2. Montrer que $Ker(\phi)$ est isomorphe à $F \cap G$.
- 3. En déduire la formule de Grassman:

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$

- 1. Par construction, ϕ est surjective donc $\text{Im}(\phi) = F + G$. On a donc $\text{rang}(\phi) = \text{dim}(\text{Im}(\phi)) = \text{dim}(F + G)$.
- 2. Soient $(f, g) \in F \times G$. On a

$$(f, g) \in \operatorname{Ker}(\phi) \iff f + g = 0_E \iff g = -f$$

donc $\operatorname{Ker}(\phi)=\{(f,\,-f)\colon f\in F\}.$ Considérons l'application

$$\psi \colon F \cap G \longrightarrow \operatorname{Ker}(\phi) \\ f \longmapsto (f, -f) .$$

Il est clair que ψ est linéaire. Si $f \in \text{Ker}(\psi)$, on a $(f, -f) = (0_E, 0_E)$ d'où $f = 0_E$ et donc $\text{Ker}(\psi) = \{0_E\}$, ce qui montre que ψ est injective. De plus $\text{Im}(\psi) = \{(f, -f) : f \in F\} = \text{Ker}(\phi)$ d'après ce qui précède, donc ψ est surjective. Finalement, ψ est un isomorphisme entre $\text{Ker}(\phi)$ et $F \cap G$.

3. Appliquons le théorème du rang à ϕ :

$$\operatorname{rang} \phi + \dim \operatorname{Ker}(\phi) = \dim(F \times G).$$

Or $\dim(F \times G) = \dim F + \dim G$ (propriété 1.21. de notre livre) et comme $\operatorname{Ker}(\phi)$ et $F \cap G$ sont isomorphes, on a $\dim(\operatorname{Ker}(\phi)) = \dim(F \cap G)$. On a donc

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G).$$