Matemática 4- 2024

TP 5 (Continuación 2) - Morfismos

- 1. Analizar si las siguientes funciones son homomorfismos entre las estructuras algebraicas indicadas y en caso afirmativo hallar núcleo e imagen.
 - (a) $f: G \to F$ dada por $f(x) = 2^x$ y siendo los grupos G = (R, +) los reales con la suma usual, $F = (R_0, \cdot)$ los reales sin el 0 con el producto usual
 - (b) $f: G \to F$ dada por f(x) = -x y siendo los grupos G = (Z, *) los enteros con la operación a*b = a+b+ab, $F = (Z, \circ)$ los enteros con la operación $a \circ b = a+b-ab$
 - (c) $f:(P(A), \cup) \to (P(A), \cap)$ dada por $f(X) = X^c$ (siendo A cualquier conjunto, P(A) indica el conjunto de partes de A y X^c el complemento de un conjunto)
- 2. Sea $f:G\longrightarrow H$ un homomorfismo de grupos. Demostrar que el núcleo y la imagen de f son subgrupos de G y H respectivamente.
- 3. Sea (G,*) un grupo. Demostrar que la función $f:G\longrightarrow G$ definida por $f(a)=a^2$ es un homomorfismo si y sólo si G es abeliano (recordar un ejercicio de grupos abelianos de la primera parte del TP 5)
- 4. Si H_1 , H_2 son dos subgrupos de un grupo conmutativo G, probar que la aplicación $f: H_1 \times H_2 \to G$ dada por f(a,b) = ab, es un morfismo de grupos.
- 5. Si $f:G_1\to G_2$ es un morfismo de grupos entonces es monomorfismo si y sólo si $Nu(f)=\{e_1\}$.
- 6. Sea (G, *) un grupo. Demostrar que la función $f: G \longrightarrow G$ definida por $f(a) = a^{-1}$ es un isomorfismo si y sólo si G es abeliano
- 7. Sea R una relación de congruencia sobre un semigrupo (S,*) y (S/R,) el semigrupo cociente correspondiente. Demostrar que la función $f_R: S \longrightarrow S/R$ definida por $f_R(a) = \overline{a}$ es un homomorfismo.
- 8. Sea z un número complejo. ¿Cuándo será un isomorfismo de grupos la aplicación $f: C \to C$ siendo C el conjunto de los números complejos, dada por f(x) = z.x?
- 9. Probar que hay un isomorfismo entre en grupo de las matrices 2x2 con la suma habitual de matrices y el grupo de cuaternas reales R^4 con la suma usual
- 10. Probar que todo grupo cíclico de orden m es isomorfo a $(Z_m, +)$