GRAPH-BASED POSTERIOR REGULARIZATION **FOR** SEMI-SUPERVISED STRUCTURED PREDICTION

Luheng He Jennifer Gillenwater University of Pennsylvania University of Washington

Ben Taskar

$$||\mathbf{q}_a - \mathbf{q}_b||_2^2$$

$$Lap(q) = w_{ab}||\mathbf{q}_a - \mathbf{q}_b||_2^2$$

$$\operatorname{Lap}(q) = \sum_{a=1}^{N} \sum_{b=L+1}^{N} w_{ab} ||\mathbf{q}_a - \mathbf{q}_b||_2^2$$

ninth run for

ninth run for

The soldiers of the ninth run for cover

$$\mathbf{f}(y_t, y_{t-1})$$

$$\mathbf{f}(y_t, y_{t-1}, \mathbf{x})$$

$$f(y_t, y_{t-1}, \mathbf{x})$$
p-factor

x =The soldiers of the ninth run for cover

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z_{\theta}(\mathbf{x})} \exp \left[\sum_{t=1}^{T} \theta^{\top} \mathbf{f}(y_t, y_{t-1}, \mathbf{x}) \right]$$
 $p_{\text{-factor}}$

x =The soldiers of the ninth run for cover

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z_{\theta}(\mathbf{x})} \exp \left[\sum_{t=1}^{T} \theta^{\top} \mathbf{f}(y_t, y_{t-1}, \mathbf{x}) \right]$$
 $p_{\text{-factor}}$

$$NLik(p_{\theta}) = -\sum_{i=1}^{\ell} \log p_{\theta}(\mathbf{y}^i \mid \mathbf{x}^i)$$

 $\operatorname{Lap}(q)$ graph-propagation

 $\mathrm{Lap}(q)$ graph-propagation + CRF estimation $\mathrm{NLik}(p_{\theta})$

Subramanya et al. (EMNLP 2010)

Subramanya et al. (EMNLP 2010)

Subramanya et al. (EMNLP 2010)

This work: retains <u>efficiency</u> while optimizing an <u>extendible</u>, joint objective.

JOINT OBJECTIVE

Lap(q)

$$\mathcal{J}(q, p_{\theta}) = \text{Lap}(q) + \text{NLik}(p_{\theta})$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

The soldiers of the ninth run for cover

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

q	$p_{ heta}$	The	soldiers	of	the	ninth	run	for	cover	
		N	N	N	N	N	N	N	N	
		N	N	N	N	N	N	N	V	
		• • •								

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

			soldiers						
7e-5	2e-5	N	N N	N	N	N	N	N	N
3e-6	8e-6	N	N	N	N	N	N	N	V
•••	•••	• • •							

$$\min_{q, oldsymbol{ heta}} \mathcal{J}(q, oldsymbol{p_{ heta}})$$

$$\min_{q,\theta} \mathcal{J}(q,p_{ heta})$$
unconstrained

p update:

$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

p update:

$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

Next 3 slides: Why several common techniques don't work for updating q

$$\min_{q,oldsymbol{ heta}} \mathcal{J}(q,oldsymbol{p_{ heta}})$$

$$\min_{q,oldsymbol{ heta}} \mathcal{J}(q,oldsymbol{p_{ heta}})$$

q update:

$$q_{\mathbf{y}}^{i}' = q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}$$

$$\min_{q,oldsymbol{ heta}} \mathcal{J}(q,oldsymbol{p_{ heta}})$$

q update:

$$q_{\mathbf{y}}^{i}' = \operatorname{proj}_{\Delta} \left(q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right)$$

$$\min_{q,oldsymbol{ heta}} \mathcal{J}(q,oldsymbol{p_{ heta}})$$

q update:

$$q_{\mathbf{y}}^{i}' = \operatorname{proj}_{\Delta} \left(q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right)$$

 $q^i \in \Delta$ of dimension $(\# \text{ tags})^{(i\text{'s length})}$

$$\min_{q, oldsymbol{ heta}} \mathcal{J}(q, p_{oldsymbol{ heta}})$$

q update:

$$q_{\mathbf{y}}^{i}' = \operatorname{proj}_{\Delta} \left(q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right)$$

 $q^i \in \Delta$ of dimension $(\# \text{ tags})^{(i\text{'s length})}$

-Problem 1: projection is hard $q^i \notin \Delta$

$$\min_{q,oldsymbol{ heta}} \mathcal{J}(q,oldsymbol{p_{ heta}})$$

q update:

$$q_{\mathbf{y}}^{i}' = \operatorname{proj}_{\Delta} \left(q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right)$$

 $q^i \in \Delta$ of dimension $(\# \text{ tags})^{(i\text{'s length})}$

- -Problem 1: projection is hard $q^i \notin \Delta$
- -Problem 2: no compact form $(\# \text{ tags})^{(i\text{'s length})}$ values

$$\min_{q,oldsymbol{ heta}} \mathcal{J}(q,oldsymbol{p_{ heta}})$$

$$q$$
 update:
$$q_{\mathbf{y}}^{i}{}' = \text{proj}_{\mathbb{A}} \left(q_{\mathbf{y}}^{i} - \eta \frac{\partial \mathcal{J}(q,p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right)$$

 $q^i \in \Delta$ of dimension (# tags)^(i's length)

- -Problem 1: projection is hard $q^i \notin \Delta$
- -Problem 2: no compact form $(\# \text{ tags})^{(i\text{'s length})}$ values

 $\mathcal{J}(q, p_{\theta})$

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: Lap(q)

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: $Lap(q) \longrightarrow Standard PR: simpler$

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: $Lap(q) \longrightarrow Standard PR: simpler$

$$p$$
-factors y_t, y_{t-1}, \mathbf{x}

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: Lap $(q) \longrightarrow$ Standard PR: Linear(m)

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: Lap $(q) \longrightarrow$ Standard PR: Linear(m)

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: Lap $(q) \longrightarrow$ Standard PR: Linear(m)

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: $\operatorname{Lap}(q) \longrightarrow \operatorname{Standard} \operatorname{PR}: \operatorname{Linear}(m)$ $\operatorname{Lap}(m)$

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: $\operatorname{Lap}(q) \longrightarrow \operatorname{Standard} \operatorname{PR: Linear}(m)$

Lap(m), a quadratic function

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: $\operatorname{Lap}(q) \longrightarrow \operatorname{Standard} \operatorname{PR: Linear}(m)$

Lap(m), a quadratic function 2 Dual of quadratic requires: \vdots

$$\begin{pmatrix} 1 & 2 & \cdots & N \\ 1 & & & \\ 2 & & \\ \vdots & & & \\ N & & & \end{pmatrix} -1$$

$$\mathcal{J}(q, p_{\theta}) + \gamma \left(\sum_{\mathbf{y}} q_{\mathbf{y}}^{i} - 1\right)$$

Posterior Regularization (PR) uses dual Ganchev et al. (JMLR 2010)

This work: Lap $(q) \longrightarrow$ Standard PR: Linear(m)

 $\mathrm{Lap}(m)$, a quadratic function Dual of quadratic requires:

$$\begin{pmatrix}
1 & 2 & \cdots & N \\
1 & 2 & \cdots & N \\
\vdots & \vdots & \ddots & \ddots \\
N & & & & & & & \\
\end{pmatrix}$$

EXPONENTIATED GRADIENT

EXPONENTIATED GRADIENT

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

EXPONENTIATED GRADIENT

$$q_{\mathbf{y}}^{i} \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

Collins et al. (JMLR 2008): Exponentiated gradient for CRFs

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$q_{\mathbf{y}}^{i\prime} \propto q_{\mathbf{y}}^{i} \exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right]$$

$$q_{\mathbf{y}}^{i\prime} \propto q_{\mathbf{y}}^{i} \exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \text{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right]$$

product of p-factors

$$q_{\mathbf{y}}^{i} \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right] p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e$$

product of p-factors

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q,p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\frac{\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right] p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e}{\operatorname{product of p-factors}}$$

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right] p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e$$
product of p-factors

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q,p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right] p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e$$
product of p-factors

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right] p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e$$
product of p-factors

$$\operatorname{proj}_{\Delta} \longrightarrow Z_q(\mathbf{x}^i)$$

$$q_{\mathbf{y}}^{i}' \propto q_{\mathbf{y}}^{i} \exp \left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^{i}} \right]$$

$$\exp\left[-\eta \frac{\partial \mathcal{J}(q,p_{\theta})}{\partial q_{\mathbf{y}}^{i}}\right] =$$

$$\exp\left[-\eta \sum_{t=1}^{T} \frac{\partial \operatorname{Lap}(m_{\mathbf{y}}^{i})}{\partial m_{t,y_{t},y_{t-1}}^{i}}\right] p_{\theta}(\mathbf{y} \mid \mathbf{x}^{i})^{\eta} (q_{\mathbf{y}}^{i})^{-\eta} e$$
product of p-factors

 $\operatorname{proj}_{\Delta} \longrightarrow Z_q(\mathbf{x}^i)$, computable via forward-backward

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

$$q_{\mathbf{y}}^{i\prime} = \frac{1}{Z_q(\mathbf{x}^i)} q_{\mathbf{y}}^i \exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^i}\right]$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

M-step:
$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

E-step:
$$q_{\mathbf{y}}^{i\prime} = \frac{1}{Z_q(\mathbf{x}^i)} q_{\mathbf{y}}^i \exp\left[-\eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial q_{\mathbf{y}}^i}\right]$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

M-step:
$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

$$\text{E-step: } q_{\mathbf{y}}^{i\,\prime} = \tfrac{1}{Z_q(\mathbf{x}^i)} q_{\mathbf{y}}^i \exp\left[-\eta \tfrac{\partial \mathcal{J}(q,p_{\theta})}{\partial q_{\mathbf{y}}^i}\right]$$

Theorem:

Converges to a local optimum of

$$\mathcal{J}(q, p_{\theta})$$

$$\mathcal{J}(q, p_{\theta}) = \operatorname{Lap}(q) + \operatorname{NLik}(p_{\theta}) + \operatorname{KL}(q \parallel p_{\theta})$$

any convex, differentiable g(m)

M-step:
$$\theta' = \theta - \eta \frac{\partial \mathcal{J}(q, p_{\theta})}{\partial \theta}$$

E-step:
$$q_{\mathbf{y}}^{i\,\prime} = \frac{1}{Z_q(\mathbf{x}^i)} q_{\mathbf{y}}^i \exp\left[-\eta \frac{\partial \mathcal{J}(q,p_{\theta})}{\partial q_{\mathbf{y}}^i}\right]$$

Theorem:

Converges to a local optimum of

$$\mathcal{J}(q, p_{\theta})$$

graph-propagation

graph-propagation

graph-propagation

100 labeled sentences

GP

CRF

GP

CRF

CRF

QUESTIONS?

QUESTIONS?

Code: https://code.google.com/p/pr-graph/