COMP 353 Databases

Design Theory for Relational Databases
Functional Dependencies
Schema Refinement (Decomposition)
Normal Forms

.

Functional Dependencies (FDs)

- A functional dependency (FD) is a kind of constraint
- Suppose R is a relation schema and X,Y ⊂ R.

A FD on $\bf R$ is a statement of the form $\bf X \rightarrow \bf Y$, which asserts: "For every "legal/valid" instance $\bf r$ of $\bf R$, and for all pairs of tuples t1 and t2 in $\bf r$, if t1 and t2 agree on the values in $\bf X$, then t1 and t2 agree also on the values in $\bf Y$."

In symbols: \forall t1,t2 \in r: t1[X] = t2[X] \Rightarrow t1[Y] = t2[Y].

- We read X → Y as:
 - X (functionally) determines Y (or Y is determined by X)
- We say that the FD: X → Y is relevant to R if XUY ⊆ R.

Functional Dependencies

- Consider the relation schema:
 Star (<u>name</u>, SIN, street, city, postalCode, phone)
- Since we know the semantics of this relation from the design phase, we can answer the following question:
 - What are the functional dependencies on Star?
- Note that in general, FDs on a relation R may not be determined based on a given instance of R!

3

Functional Dependencies

- Consider the relation:
 - Movie (title, year, length, filmType)
- What are the FD's on the Movie relation?
 We use the semantics of this relation to answer.

4

Keys

- The concept of FD generalizez the concept of key. How?
 - Let $X \subseteq R$. Then X is a key of R iff $X \rightarrow R$
- X is a (candidate) key of R (or a key, for short) if
 - 1. $X \rightarrow R$. That is, attributes in X functionally determine all the attributes of R
 - No proper subset of X is key, i.e., a candidate key must be minimal
- Is {title, year, filmType} a key for relation **Movie**?
- A set of attributes that contains a key is called a superkey (that is, a superset of a key)
 - Note that every key is a superkey, but not vice versa

Functional Dependencies

■ X → Y is called a functional dependency because, in principle, there is a function that takes a list of values, one for each attribute in X, and returns at most one value (i.e., a unique value or no value at all) for the attributes in Y

Functional Dependencies

- Consider the relation:
 - Movie (title, year, length, filmType, studioName, starName)
- What are the functional dependencies?
 - $\{\text{title, year}\} \rightarrow \text{length}$
 - {title, year} → filmType
 - {title, year} → studioName
 - → {title, year} → {length, filmType, studioName}
 - Note: {title, year} → starName does not hold
- What is the key of the Movie relation?

Trivial FD's

- An FD X → Y is said to be trivial if Y ⊆ X.
 - For example: {title, year} → title is a trivial FD
- Otherwise, the FD is called nontrivial
 - For example: {title, year} → length is a nontrivial FD

Functional Dependencies

Why are we interested in functional dependencies?

0

Redundancy Problem

- Redundancy a "piece" of information is unnecessarily repeated in different tuples in a relation
- Recall that *redundancy* is the main source of problems:
 - Storage waste
 - · Some information stored repeatedly
 - Update anomalies
 - If a copy of such information is updated, an inconsistency may arise unless all its copies are updated
 - Insertion anomalies
 - Unless we allow nulls, it may not be possible to store some information unless we have all the information to store
 - Deletion anomalies
 - Deleting some information may results in loosing some other information 10 (which we don't want to loose).

Is this a good design for relation R?

Name	SSN	Phone
Fred	123-321-99	(201) 555-1234
Fred	123-321-99	(201) 572-4312
Joe	909-438-44	(908) 464-0028
Mary	938-401-54	(201) 555-1234

The only FD on R is: $SSN \rightarrow Name$

Therefore, the only key of R is: {SSN, Phone}

What about this design, replacing R with R1 and R2?

R1	SSN	Name	
	123-321-99	Fred	
	909-438-44	Joe	
	938-401-54	Mary	
R2	SSN	Phone	D = {R1(SSN, Name),
1	23-321-99	(201) 555-1234	R2(SSN, Phone)}
1	123-321-99	(201) 572-4312	FD's on R1 and R2?
	909-438-44	(908) 464-0028	
	938-401-54	(201) 555-1234	

Redundancy Problem

What is the role of FDs in detecting redundancy?

- Consider the relation scheme R(A, B, C)
 - Suppose no (nontrivial) FD holds on R
 - There is no redundancy in any instance r of R.
 - Now suppose FD: A → B holds on R
- Presence of some FDs in a relation suggests possibility of redundancy

14

Implications of FDs and Reasoning

- Consider relation R(A, B,C) with the set of FDs:
 F = {A→B, B→C}
- We can deduce from F that A→C also holds on R. How? Apply the definition...
- To detect possible data redundancy, is it necessary to consider "all" the FDs (implicit and explicit)?
 - As shown above, there might be some additional hidden (nontrivial) FDs "implied" by a given set of FD's

15

Implications of FDs

- Defn: If a relation instance r satisfies every FD in a given set F of FD's, then we say that r satisfies F.
 - In this case, we also say that **r** is a *legal/valid instance*.
- Given <R,F>, we say that F implies a FD X → Y, if every instance r of R that satisfies F also satisfies X → Y.
 Formally, we express this as: F ⊨ X → Y.
 We may also say that X → Y follows from F.
- To show F \(\mathbb{F} \times Y \), we may give a counter-example, i.e., an instance r of R that satisfies F but not X → Y.

16

FDs Implication (Cont'd)

■ Consider $\mathbf{R}(A_1, A_2, A_3, A_4, A_5)$ with FDs: $\mathbf{F} = \{A_1 \longrightarrow A_2, A_2 \longrightarrow A_3, A_2A_3 \longrightarrow A_4, A_2A_3A_4 \longrightarrow A_5\}$ Prove that $\mathbf{F} \not\models A_5 \longrightarrow A_1$

Solution method: Provide a counter-example; give a relation instance r of R that satisfies every FD in F but not $A_5 \rightarrow A_1$ A desired instance r of R:

Closure of a set F of FDs

- Defn: The closure of F, denoted by F⁺, is the set of every FD: X→ Y that is implied by F.
- How can we determine F⁺?
 - Clearly, F⁺ includes F and possibly some more FDs
 - To answer the question we need to reason about FDs

Equivalence of two sets of FD's

- Let R be a relation schema, and S, T be sets of FDs on R.
- Defn: we say **S** covers **T** (**S** ⊨**T**) if for every instance **r** of **R**, whenever **r** satisfies (every FD in) **S**, **r** also satisfies **T**.
- Defn: T and S are equivalent (S

 T) iff S

 T and T

 S.
- Note: F and F+ are equivalent.

Example: Suppose $R = \{A,B,C\}$, and

 $S = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$

 $T = \{A \rightarrow B, B \rightarrow C\}$

We can show that $S \equiv T$.

Armstrong's Axioms [1974]

- R is a relation schema, and X, Y, Z are subsets of R.
- Reflexivity
 - If $Y \subseteq X$, then $X \rightarrow Y$ (trivial FDs)
- Augmentation
 - If $X \rightarrow Y$, then $XZ \rightarrow YZ$, for every Z
- Transitivity
 - If $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
- These are **sound** and **complete** inference rules for FDs

Additional rules / axioms

Other useful rules that follow from Armstrong Axioms: Suppose X, Y, Z, and W are sets of attributes.

- Union (Combining) Rule
 - If $X \rightarrow Y$ and $X \rightarrow Z$, then $X \rightarrow YZ$
- Decomposition (Splitting) Rule
 - If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$
- Pseudotransitivity Rule
 - If $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$

Example – Discovering hidden FD's

- Consider R = {A, B, C, G, H, I} with the FDs: $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- Using Armstrong's rules, we can derive more FDs
 - Since $A \rightarrow B$ and $B \rightarrow H$, then $A \rightarrow H$, by transitivity
 - Since $CG \rightarrow H$ and $CG \rightarrow I$, then $CG \rightarrow HI$, by union
 - Since A → C then AG → CG, by augmentation Now, since $AG \rightarrow CG$ and $CG \rightarrow I$, then $AG \rightarrow I$, by transitivity (and in a similar way, we get $F \models AG \rightarrow H$)
 - Many trivial dependencies can be derived(!) by augmentation

Implication Problem

- Given a set F of FDs, does X → Y follow from F?
- In other words: is $X \rightarrow Y$ in the closure of F?

(In symbols, does $F \models X \rightarrow Y$ hold, or is

 $X \rightarrow Y \in F^+ \text{ true?}$

- How to answer this question?
 - Compute the closure of F & check if it includes X→Y
- What is the problem with this approach?
 - Computing F⁺ is expensive! Is there a better solution?

Closure of a Set of Attributes

■ Given <R, F>; Let X ⊂ R.

The closure of X under F is the set of all attributes Y in R that are determined by **X**. This yields $X \rightarrow Y$, i.e., every valid instance of R (that satisfies F) also satisfies $X \rightarrow Y$

- We denote the closure of a set of attributes X under F by X+_E
 - When F is known , we simply write X+ (and omit F)
 - Closure of {A1, A2, ..., A_n} is denoted {A1, A2, ..., A_n}*
- Note that $X \subseteq X^+$, for any set X of attributes (because $X \to X$)

Computing the Closure of Attributes

- Given a set F of FD's and a set X of attributes, how to compute the closure of X w r t F?
 - Starting with set X⁺=X, we repeatedly expand X⁺ by adding the RHS Z for every FD: W→Z in F, if the LHD W is already in X⁺.
 - This process terminates when X⁺ could not be expanded further.
 - This process is expressed as an algorithm in the next slide.

25

An Algorithm to Compute X⁺ under F

 $X^+ \leftarrow X$ (initialization step)

repeat

for each FD $W \rightarrow Z$ in F do:

if $W \subseteq X^+$ then

 $X^+ \leftarrow X^+ \cup Z$ // add Z to the result

until X+ does not change

Complexity? In the worst case, how many times the "repeat" statement may be executed?

26

Examples

- Consider a relation schema R = { A, B, C, D, E, H } with the FD's F = { AB → C, BC → AD, D → E, CH → B }
- Suppose X={A,B}. Compute X+
- Execution result at each iteration:
 - Initially, X+ = {A, B}
 - Using AB → C, we get X+ = {A, B, C}
 - Using BC → AD, we get X⁺ = {A, B, C, D}
 - Using $D \rightarrow E$, we get $X^+ = \{A, B, C, D, E\}$
 - No more change to X^+ is possible. $X^+ = \{A, B\}^+ = \{A, B, C, D, E\}$
- Does the order in which FD's appear in F affects the computation?

Implication Problem Revisited

- Given a set of FD's F, does an FD: X → Y follow from F?
 - That is, is FD X → Y in F⁺?
- To answer this, we can compute X⁺ under F, and check if Y is in X⁺ or not
 - If yes, then the answer is positive! (F ⊨ X → Y ☺)
 - Otherwise, it is negative (F \(\mathbf{F} \) X → Y (a)

Example

- Consider $\langle R,F \rangle$ where $R = \{A, B, C, D, E, H\}$ and $F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CH \rightarrow B\}$
- Does AB → D follow from F?
- Two steps:
 - 1. Compute {A, B}+ = {A, B, C, D, E}
 - Check if D ∈ {A,B}⁺
 - So, here we conclude that AB → D is implied by F

Example

- Consider a relation schema R = { A, B, C, D, E, H } with FDs: F = { AB → C, BC → AD, D → E, CH → B }
- True/False: Does D → A follow from F?
- Two steps:
 - 1. Compute X+ = {D}+ = {D, E}
 - 2. Check if A ∈ X⁺
 - Since A € {D, E}, the answer is NO, i.e., F ≠ D → A

Closures and Keys

- Consider a case where X⁺ includes all the attributes of a relation R
 - → Clearly, X is a (super) key of R
- → To check if X is a candidate key of R, we should check 2 things:
 - 1. If X^+ is a superkey R, i.e., when $X^+ = R$, and
 - 2. If no proper subset of **X** is a key, i.e., $\forall A \in X: (X-\{A\})^+ \neq R$
- To find the keys of a relation, we can use the algorithm on slide 26
- This would be exponential in the number of attributes! Can do better?
- Knowledge about keys is essential to understand "Normal forms."