

Applied Cryptography CPEG 472/672 Lecture 4B

Instructor: Nektarios Tsoutsos

Stream Ciphers (SC)

- Similar to DRNGs
- Generate pseudorandom bits (keystream) and XOR it with plaintext
 - Uses a key K and a nonce N
 - \odot C = P XOR KS P=C XOR KS
 - New nonce per message when K is the same

SC Types

Stateful

Counter-based

Hardware Oriented SCs

- Lower cost in HW vs. block ciphers
 - Less memory, smaller area on chip
 - Cheap fabrication costs
- Basic mechanism: FSRs
 - Feedback Shift Register
- FSR components
 - State R (i.e., an array of bits, a register)
 - Feedback function f
 - Update: change the state, return 1 bit

Basic FSR operation

FSR period

- After P updates, we get the initial state
 - The period depends on the initial state and the feedback function
 - The output bits are repeated

• What is the period for R=0000?

Linear FSRs

- Feedback function XORs some state bits
 - Linear operation
 - ⊙ Period can be up to 2^N-1
 - Why the period is not 2^N?
- Example 1

- \odot 0001, 0011, 0111, 1110, 1100, 0001
- Example 2

Is this secure?

Filtered LFSRs

Use a non-linear function

- Attacks
 - Solve non-linear equations, compute derivatives, approximate G linearly

Nonlinear FSRs (NFSRs)

- Use AND and OR along with XORs
- Example
 - ⊙ State=R1, R2, R3, R4
 - Output=R1+R2+R1*R2+R3*R4
 - Feedback=replace R1 with output bit above
- Example (Grain-128a)
 - ⊙ Filter h
 - Nonlinear g
 - o Linear f
 - Max period

Broken SCs

- A5/1
 - ⊙ Three LFSRs
 - Update LFSR state based on clocking conditions
- Attacks
 - Subtle attacks
 - Guess state
 - Brutal attacks
 - Time/memory trade-off
 - Codebook attack

Reading for next lecture

Aumasson: Chapter 5

Hands-on exercises

- Implement left shift register
- Implement a 4-bit LFSR
- Implement a 4-bit NFSR