Contents

Conditional Probability]
Marginalisation	2
Bayes Rule	2

Conditional Probability

Conditional probability is the probability that event E occurs given that event F has already occured. Call this "conditioning" on F. Writen as $P(E \mid F)$.

- Same meaning as P(E given F already observed)
- Its a probability (satisfies all the axioms, will see this shortly), with:
 - Sample space S resticted to those outcomes consistent with F, i.e. $S\cap F$
 - Event space E restricted to those outcomes consistent with F, i.e. $E\cap F$

With equally likely outcomes

$$P(E \mid F) = \frac{\text{number of outcomes in } E \text{ consistent with } F}{\text{number of outcomes in } S \text{consistent with } F} = \frac{|E \cap F|}{|S \cap F|}$$

Note that $|S \cap F| = |F|$ so

$$P(E \mid F) = \frac{|E \cap F|}{|S \cap F|} = \frac{|E \cap F|}{|F|} = \frac{|E \cap F|}{|S|} \frac{|S|}{|F|} = \frac{\frac{|E \cap F|}{|S|}}{\frac{|F|}{|S|}} = \frac{P(E \cap F)}{P(F)}$$

General definition: $P(E \mid F) = \frac{P(E \cap F)}{P(F)}$ where P(F) > 0.

Implies $P(E \cap F) = P(E \mid F)P(F)$ known as the *chain rule* - it's important! If P(F) = 0?

- $P(E \mid F)$ is undefined
- Can't condition on something that can't happened

P(E|F) is a probability - it satisfies all the properties of ordinary probabilities

- $0 \le P(E \mid F) \le 1$
- P(S | F) = 1
- If E₁, E₂ are mutually exclusive events then $P(E_1 \cup E_2 \mid F) = P(E_1 \mid F) + P(E_2 \mid F)$

Marginalisation

Suppose we have mutually exclusive events F_1 , F_2 , ..., F_n such that $F_1 \cup F_2 \cup \cdots \cup F_n = S$ then

$$P(E) = P(E \cap F_1) + P(E \cap F_2) + \dots + P(E \cap F_n)$$

Marginalisation is very handy, example:

- Roll two coins. What is the probability that the first coin is heads?
- Event E is the first coin heads, F_1 is second coin heads, F_2 is second coin tails
- $P(E) = P(E \cap F_1) + P(E \cap F_2) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$

Bayes Rule

Recall
$$P(E \cap F) = P(E \mid F)P(F)$$

Clearly, and also $P(F \cap E) = P(F \mid E)P(E)$
But $P(E \cap F) = P(F \cap E)$, so $P(E \mid F)P(F) = P(F \mid E)P(E)$
i.e. $P(E \mid F) = \frac{P(F \mid E)P(E)}{P(F)}$