	COMP2054 2023-24 ADE Coursework TWO (12.5%)
Α	Mon. 18-MAR-2024
В	Time: 30 minutes. Do not turn over page until instructed.
С	Answer ALL questions for a potential total of 25 marks. Calculators are not permitted.
D	Write your answers on these sheets within the spaces provided. Please write clearly.
Е	Write your name & ID in the box below CLEARLY AND IN UPPER CASE LETTERS.
F	Circle the first initial of your family name in the column on the left.
G	FAMILY NAME: ANSWERS
Н	
I	FIRST NAME(S):
J	Student ID number:
K	Signature:
L	Information that might, or might not, be helpful:
М	
N	Geometric series: $1 + 2 + 2^2 + 2^3 + + 2^p = 2^{p+1} - 1$
0	Powers of 2: 1 2 3 4 5 6 16 32 64
Р	Reminders of properties of logs:
Q	$a^{0} = 1$ $log_{2} (2^{a}) = a$ $log_{b} (a) = log_{2} (a) / log_{2} (b)$ $log_{b} (a) = 1 / log_{a} (b)$
R	Master theorem : Given $T(n) = a T(n/b) + f(n)$ and $T(1)=1$.
S	Case 1: If f(n) is O(n ^c) for some c, with c < log_b(a)
Т	then $T(n)$ is $\Theta(n^{\log_{b(a)}})$
U	Case 2: If $f(n)$ is $\Theta(n^c (\log n)^k)$ for some $k \ge 0$, and with $c = \log_b (a)$
V	then $T(n)$ is $\Theta(n^c (\log n)^{k+1})$
W	Case 3: If $f(n)$ is $\Omega(n^c)$ for some c, with $c > \log_b(a)$ then $T(n)$ is $\Theta(f(n))$
Х	(strictly, we need f to satisfy a "regularity condition", which you can ignore here)
Υ	For completion by markers: Total mark (out of 25):
Z	
_	

Question 1. "Vectors and Amortised complexity"

[4 marks]

An empirical study of the amortised complexity of insertions into the Vector data structure is considered. The study consists of starting from a Vector data structure with just a small array and then inserting n extra elements one at a time – using a 'push' operation. An estimate of the total number of primitive operations is maintained:

count(n) = estimate of the number of primitive operations (i.e. an estimate of the runtime) needed to push n elements starting from a small fixed size (a measure of the T(n) used in lectures)

The amortised cost is then the function: count(n) / n

Two "resizing strategies" are studied for resizing the array when it is full:

- "Incremental" increase the size by some constant number
- "Doubling" double the size of the array each time

Two graphs below are obtained from plotting count(n)/n (y-axis) as a function of n (x-axis). You only have to identify which is which:

Graph A: Circle one: "Incremental" or "Doubling" ?

"Incremental"

or

"Doubling"

Graph B: Circle one:

These are directly from the labs. And the scaling matches the lecture.

Question 2. Recurrence – Master Theorem (MT) [9 marks]

Using the Master Theorem, state the value of $log_b(a)$, identify the MT case, and solve for the Big-Theta behaviour of T(n) for the following three recurrence relations. In all three problems, you can assume T(1)=1. If using "Case 3" then you can assume that the regularity condition is satisfied. There is no need (or point) to justify your answers.

Q2.a
$$T(n) = 2 T(n/16) + n^2$$

Give the value of $\log_b (a)$: $\log_1 (a) = 1 / \log_2 (16) = 1 / 4$

Circle the case: Case 1 Case 2 Case 3

Circle the correct Theta behaviour of T(n):

B.
$$\Theta$$
 ($n^2 \log(n)$)

C.
$$\Theta$$
 (n^3)

D.
$$\Theta$$
 ($n^3 \log(n)$)

E.
$$\Theta$$
 (n^4)

Q2.b
$$T(n) = 8 T(n/2) + n^3 \log n$$

Give the value of $log_b (a)$: $log_2 (8) = 3$

Circle the case: Case 1 Case 2 Case 3

Circle the correct Theta behaviour of T(n):

A.
$$\Theta$$
 ($n^2 \log(n)$)

B.
$$\Theta$$
 (n^3)

C.
$$\Theta$$
 ($n^3 \log(n)$)

D.
$$\Theta$$
 ($n^3 \log(n^2)$)

E.
$$\Theta$$
 (n^3 (log(n))²)

Q2.c T(n) = 16 T(n/4) + n

Give the value of $log_b (a)$: $log_4 (16) = 2$

Circle the case: Case 1 Case 2 Case 3

Circle the correct Theta behaviour of T(n):

- A. Θ (n)
- B. Θ (n log(n))
- С. Ө (n²)
 - D. Θ ($n^2 \log(n)$)
 - E. Θ (n^3)

The above are just direct applications of the Master Theorem.

NAME:

Page 5

Question 3. Recurrence relations – induction proof

[6 marks]

Consider the following recurrence relation:

$$T(n) = 3 T(n/3) + 2$$
 $T(1) = 1$

The exact solution is claimed to be $T(3^k) = 2 * 3^k - 1$

Use induction to prove that this solution is correct, and show your working.

Base case: Complete the following with the value of k that is used:

Proof: The exact solution gives $T(3^0) = 2 * 3^0 - 1$ which is T(1) = 2 * 1 - 1 = 1 as required.

Step case: Complete the following using the exact solution above as the induction hypothesis. For each step of your proof state whether the step follows from:

- A. the recurrence relation, or
- B. the induction hypothesis; or
- C. simplifying or rearranging

Proof:

$$T(3^{k+1}) =$$

 $3 * T (3^{k+1} / 3) + 2$ A. using the recurrence relation

$$= 3 * T (3^k) + 2$$
 C. simplifying

 $= 3 * (2 * 3^k - 1) + 2$.B. using the induction hypothesis

=
$$2 * 3^{(k+1)} - 3 + 2$$
 C. simplifying
= $2 * 3^{(k+1)} - 1$ C. simplying.

This matches the exact solution at k+1.

Question 4. Recurrence relations – find solution

[6 marks]

Consider the following recurrence relation:

$$T(n) = 2 T(n/3) + 1$$
 $T(1) = 1$

Compute the exact solution for T(3^k) as some function of k. Note that you are not required to prove it correct. Hint: compute values of T(3^k) + 1 for some small values of k.

Hint: compute values of T(3^{K}) + 1 for some small values of k. Show your answer by completing the following:

$$T(3^k) = 2^{(k+1)} - 1$$

Show your working below:

$$T(3^0) = T(1) = 1$$
 $T(3^0) + 1 = 2 = 2^1$ $T(3^1) = T(3) = 2 T(1) + 1 = 3$ $T(3^1) + 1 = 4 = 2^2$ $T(3^2) = T(9) = 2 T(3) + 1 = 7$ $T(3^2) + 1 = 8 = 2^3$ $T(3^3) = T(2^7) = 2 T(9) + 1 = 15$ $T(3^3) + 1 = 16 = 2^4$

So the pattern is $T(3^k) + 1 = 2^{(k+1)}$