Balgarne 1.

-	-	,			1
1	Xi	-3	-1	i	4
	Pi	P	3 P	5 p	3 P

$$P = 1$$

$$P = \frac{1}{8}$$

$$P = \frac{1}{8}$$

×;\	- 3	-1	1	4
Pi	18	3	5	3

$$F(x) = \begin{cases} 0, & x \le -3 \\ \frac{1}{8}, & -3 < x \le -1 \\ \frac{5}{16}, & -1 < x \le 1 \\ \frac{10}{16}, & 1 < x \le 4 \end{cases}$$
Consolid

pa pin:

$$D(x) = M(x^2) - M^2(x) = 7,625 - 1,25^2 = 6,0625^2$$

 $P(x < 2) = F(2) - F(-\infty) = \frac{5}{8} = 0,625$

$$f(x) = \frac{a}{1 + 9x^2}, \quad x \in (0; \infty)$$

$$1 + 9x^2 = 1 + (3x)^2$$

$$I = \frac{9}{3} \operatorname{autan(3x)} = \frac{1}{3} \int_{0}^{\infty} \frac{\operatorname{ad(3x)}}{1 + 9x^{2}} dx = \frac{9}{3} \operatorname{auctan(3x)}$$

$$I = \frac{9}{3} \operatorname{autan(3x)} \log \frac{1}{3} \int_{0}^{\infty} \frac{\operatorname{ad(3x)}}{1 + 9x^{2}} dx = \frac{9}{3} \operatorname{auctan(3x)} dx$$

$$I = \frac{9}{3} \arctan(3x) | \infty = \frac{9}{3} \cdot \frac{\pi}{2} = 1 \implies \alpha = \frac{6}{\pi}$$

$$f(x) = \frac{6}{\pi} \cdot \frac{1}{1 + 9x^2} \times \epsilon(0, \infty)$$

3 abganne 3.

$$n = 5$$
, $\rho = 0,4$, $q = 0,6$

$$P_n^{m} = C_n^{m} P_q^{m} q^{n-m}, \quad n > m \in \mathbb{N}$$

X	0	t	2	3	4	5
Pi	P	Pz	P3	P4	P5	PG

$$P_2 = P_5' = C_5'0,4'.0,6' = 0,2592;$$

$$\rho_3 = \rho_5^2 = (\frac{2}{5}0, 4^2, 0, 6^3 = 0,3456)$$

$$P_4 = 0,2304$$
; $P_5 = 0,0768$; $P_6 = 0,01024$

X	0	1	2	3	4	5	5
Pi	0,07776	0,2592	0,3456	0,2304	0,0768	0,01024	-

3abgarna 4

$$f(x) = \begin{cases} 0, & x \notin (0; 1] \\ 0, & x \notin (0; 1] \end{cases}$$

$$q = \left(\int_{0}^{1} x^{\frac{1}{3}} dx \right)^{-1} = \left(\frac{3}{4} x^{\frac{1}{3}} \right)^{-1} = \frac{4}{3}$$

ocxivery
$$\int_{0}^{1} f(x) dx = 1$$

$$\psi(y) = \frac{\sqrt{y}}{\sqrt{3}}, \quad g(y) = f(\psi(y)) \cdot |\psi'(y)|$$

$$\psi'(y) = \frac{\sqrt{y}}{\sqrt{3}}, \quad g(y) = f(\psi(y)) \cdot |\psi'(y)|$$

$$\vdots \quad g(y) = \begin{cases} 0, & y \notin (0; 3] \\ \frac{4}{3} \cdot \left(\frac{y}{3} \right)^{\frac{1}{6}} \cdot \frac{1}{2\sqrt{3}} \cdot \frac{1}{\sqrt{y}}, \quad y \in (0; 3] \end{cases}$$

$$g(y) = \begin{cases} 0, & y \notin (0; 3] \\ \frac{1}{3} \cdot 1 + \frac{1}{2} = \frac{7}{3} + \frac{3}{6} = \frac{5}{3} \end{cases}$$
The pernumenus:
$$g(y) = \begin{cases} 0, & y \notin (0; 3] \\ 2 \cdot 3^{-\frac{5}{3}}, & \frac{1}{3}, \quad y \in (0; 3] \end{cases}$$

3abgarna 5.

YiXi	1	3	4
2	0,2	0,2	0,15
5	0,25	0,1	P

$$\begin{array}{c|c}
7 & 1 - \overline{\sum_{i,j}} & P_{ij} \\
i,j & \downarrow \\
\vdots & P = 0,1
\end{array}$$

Xi	1	3	1 4
Pi	0,45	0,3	0,25

$$M(x) = \sum_{j} x_{j} p_{j} = 2,35$$
 $M(y) = \sum_{j} Y_{j} p_{j} = 3,35$
 $D(x) = M(x) = M(x)$

$$M(Y) = \sum_{i} Y_{i} P_{i} = 3,35$$

$$D(x) = M(x^2) - M^2(x) \qquad D(Y) = M(Y^2) - M^2(Y)$$

$$\therefore D(x) = 1,6275 \qquad \therefore D(Y) = 2,2275$$

Ochinbry
$$V_{xy} = \frac{M(xy) - M(x)M(y)}{\sqrt{D(x)D(y)}}$$
36igen machine

36 ègen mae ms:
$$V_{XY} = \frac{7,55-2,35\cdot3,35}{\sqrt{1,6275\cdot2,2275}} 2-0,17$$