

RECEIVED
APR 10 2001
TECH CENTER 1600/2900

SEQUENCE LISTING

Sent X

<110> Hall, Roderick L
Poll, Christopher T.
Newton, Benjamin B.
Taylor, William J.A.

<120> A Method for Accelerating the Rate of Mucociliary Clearance

<130> 98,736

<140> 09/218,913
<141> 1998-12-22

<160> 71

<170> Microsoft Word 97

<210> 1
<211> 179
<212> PRT
<213> Homo sapien

<400> 1
Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
65 70 75 80

Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
85 90 95

Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
100 105 110

Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
115 120 125

Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
130 135 140

Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
145 150 155 160

Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
165 170 175

Ala Val Ser

<210> 2
<211> 197

<212> PRT

<213> Homo sapien

<220>

<221> sig_peptide

<222> 1..18

<400> 2

Ala Gly Ser Phe Leu Ala Trp Leu Gly Ser Leu Leu Leu Ser Gly Val
1 5 10 15

Leu Ala Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser
20 25 30

Lys Val Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn
35 40 45

Val Thr Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly
50 55 60

Asn Ser Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala
65 70 75 80

Thr Val Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala
85 90 95

Ala Asp Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp
100 105 110

His Ser Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala
115 120 125

Val Thr Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val
130 135 140

Glu Arg Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn
145 150 155 160

Lys Asn Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg
165 170 175

Gln Gln Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu
180 185 190

Ala Gly Ala Val Ser
195

<210> 3

<211> 153

<212> PRT

<213> Homo sapien

<400> 3

Ile His Asp Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg Ala
1 5 10 15

Ser Met Pro Arg Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln Leu
20 25 30

Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr Lys
35 40 45

Glu Glu Cys Leu Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr Gly
 50 55 60

Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser Ala
 65 70 75 80

Pro Arg Arg Gln Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn Tyr
 85 90 95

Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala Ser
 100 105 110

Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn Phe
 115 120 125

Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu Glu
 130 135 140

Ala Cys Met Leu Arg Cys Phe Arg Gln
 145 150

<210> 4
 <211> 58
 <212> PRT
 <213> Homo sapien

<400> 4
 Ile His Asp Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg Ala
 1 5 10 15

Ser Met Pro Arg Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln Leu
 20 25 30

Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr Lys
 35 40 45

Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
 50 55

<210> 5
 <211> 51
 <212> PRT
 <213> Homo sapien

<400> 5
 Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg Ala Ser Met Pro Arg
 1 5 10 15

Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly
 20 25 30

Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu
 35 40 45

Lys Lys Cys
 50

<210> 6
 <211> 58
 <212> PRT
 <213> Homo sapien

<400> 6
 Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala
 1 5 10 15
 Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn
 20 25 30
 Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu
 35 40 45
 Glu Ala Cys Met Leu Arg Cys Phe Arg Gln
 50 55

 <210> 7
 <211> 51
 <212> PRT
 <213> Homo sapien

 <400> 7
 Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala Ser Phe Pro Arg
 1 5 10 15
 Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn Phe Ile Tyr Gly
 20 25 30
 Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu Glu Ala Cys Met
 35 40 45
 Leu Arg Cys
 50

 <210> 8
 <211> 92
 <212> PRT
 <213> Homo sapien

 <400> 8
 Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
 1 5 10 15
 Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
 20 25 30
 Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
 35 40 45
 Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
 50 55 60
 Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
 65 70 75 80
 Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser
 85 90

 <210> 9
 <211> 708
 <212> DNA
 <213> Homo sapien

 <220>
 <221> misc_feature

<222> 679..708
 <223> /note= "n at positions 622, 679, 707 is any nucleic acid"
 <400> 9
 ggccgggtcg tttctcgccct ggctgggatc gctgctcctc tctgggtcc tggcggccga 60
 ccgagaacgc agcatccacg acttctgcct ggtgtcaag gtgggtggca gatgccggc 120
 ctccatgcct aggtggtggt acaatgtcac tgacggatcc tgccagctgt ttgtgtatgg 180
 gggctgtgac ggaaacacgca ataattacct gaccaaggag gagtcctca agaaatgtgc 240
 cactgtcaca gagaatgcca cgggtgacct ggccaccagc aggaatgcag cgattcctc 300
 tgtcccaagt gctcccagaa ggcaggattc tgaagaccac tccagcgata tttcaacta 360
 tgaagaatac tgcaccgcca acgcagtcac tggccttgc cgtgcaccc tccacgctg 420
 gtactttgac gtggagagga actcctgcaa taacttcata tatggaggct gccggggcaa 480
 taagaacacg taccgctctg aggaggcctg catgtccgc tgcttccgccc agcaggagaa 540
 tcctccctg cccctggct caaagggtggt gttctggcc gggctgttt cgtgtggtg 600
 ttgatcctt tcctggggag cncatggt cttactgatt cgggtggca aggaggaacc 660
 aggagcgtgc cctcggnanc gtctggagct tcggagatga caagggnnt 708
 <210> 10
 <211> 235
 <212> PRT
 <213> Homo sapien
 <220>
 <221> peptide
 <222> 1..235
 <223> /note= "Xaa at positions 198, 201, 226, and 233 are unknown amino acids"
 <400> 10
 Ala Gly Ser Phe Leu Ala Trp Leu Gly Ser Leu Leu Leu Ser Gly Val
 1 5 10 15
 Leu Ala Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser
 20 25 30
 Lys Val Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn
 35 40 45
 Val Thr Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly
 50 55 60
 Asn Ser Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala
 65 70 75 80
 Thr Val Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala
 85 90 95
 Ala Asp Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp
 100 105 110
 His Ser Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala

115	120	125
Val Thr Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val		
130	135	140
Glu Arg Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn		
145	150	155
Lys Asn Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg		
165	170	175
Gln Gln Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu		
180	185	190
Ala Gly Ala Val Ser Xaa Trp Cys Xaa Ser Phe Ser Trp Gly Ala Ser		
195	200	205
Met Val Leu Leu Ile Pro Gly Gly Lys Glu Glu Pro Gly Ala Cys Pro		
210	215	220
Ala Xaa Arg Leu Glu Leu Arg Arg Xaa Gln Gly		
225	230	235
<210> 11		
<211> 179		
<212> PRT		
<213> Homo sapien		
<220>		
<221> peptide		
<222> 1..170		
<223> /note= "Xaa at positions 8, 17, 19, 21-26, 40, 42, 45-47, 52, 64, 103, 112, 114, 116-121, 135, 137, 140-142, 147, and 159 is any amino acid residue"		
<400> 11		
Ala Asp Arg Glu Arg Ser Ile Xaa Asp Phe Cys Leu Val Ser Lys Val		
1	5	10
Xaa Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Trp Trp Tyr Asn Val Thr		
20	25	30
Asp Gly Ser Cys Gln Leu Phe Xaa Tyr Xaa Gly Cys Xaa Xaa Xaa Ser		
35	40	45
Asn Asn Tyr Xaa Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Xaa		
50	55	60
Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp		
65	70	75
Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser		
85	90	95
Ser Asp Met Phe Asn Tyr Xaa Glu Tyr Cys Thr Ala Asn Ala Val Xaa		
100	105	110
Gly Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Trp Tyr Phe Asp Val Glu Arg		
115	120	125
Asn Ser Cys Asn Asn Phe Xaa Tyr Xaa Gly Cys Xaa Xaa Xaa Lys Asn		
130	135	140

Ser Tyr Xaa Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Xaa Gln
 145 150 155 160
 Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
 165 170 175
 Ala Val Ser

```

<210> 12
<211> 393
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<222> 390..391
<223> /note= "residue 361 is any nucleic acid"

<220>
<221> misc_feature
<222> 390..391
<223> /note= "residue 367 is any nucleic acid"

<220>
<221> misc_feature
<222> 384..385
<223> /note= "residue 384 is any nucleic acid"

<220>
<221> misc_feature
<222> 367..368
<223> /note= "residue 390 is any nucleic acid"

<400> 12
ggccgggtcg tttctcgctt ggctgggatc gctgctcctc tctgggtcc tggccggccg         60
accgagaacg cagcatccac gacttctgcc tggtgtcgaa ggtgggtggc agattccggg         120
cctccatgcc taggtggtgg tacaatgtca ctgacggatc ctgccagctg tttgtgtatg         180
ggggctgtga cgaaaaacagc aataattacc tgaccaagga ggagtgcctc aagaaaatgtg         240
ccactgtcac agagaatgcc acgggtgacc tggccaccag caggaatgca gcggattccct         300
ctgtcccaag tgctcccaga aggcaggatt cttgaagacc acttcagcga tatgtttcaa         360
ntattgnaag aataattgca ccgncaacgn att                                            393

<210> 13
<211> 130
<212> PRT
<213> Homo sapien

<220>
<221> Region
<222> 1..18
<223> /label= signal peptide

<220>
<221> Peptide
<222> 111..130

```

<223> /note= "Xaa at positions 111, 120, 122, 128, and 130 represents a nonsense or stop codon"

<400> 13
Pro Gly Arg Phe Ser Pro Gly Trp Asp Arg Cys Ser Ser Leu Gly Ser
1 5 10 15

Trp Pro Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser
20 25 30

Lys Val Val Gly Arg Glu Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn
35 40 45

Val Thr Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly
50 55 60

Asn Ser Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala
65 70 75 80

Thr Val Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala
85 90 95

Ala Asp Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Xaa Arg
100 105 110

Pro Leu Gln Arg Tyr Val Ser Xaa Ile Xaa Arg Ile Ile Ala Pro Xaa
115 120 125

Thr Xaa
130

<210> 14

<211> 511

<212> DNA

<213> Homo sapien

<220>

<221> misc_feature

<222> 425..510

<223> /note= "n at positions 425, 482, and 510 is any nucleic acid"

<400> 14

gcaataatta cctgaccaag .gaggagtgcc tcaagaaaatg tgccactgtc acagagaatg 60
ccacgggtga cctggccacc agcaggaatg cagcgattc ctctgtccca agtgctccc 120
gaaggcagga ttctgaagac cactccagcg atatgttcaa ctatgaagaa tactgcaccg 180
ccaacgcagt cactgggcct tgccgtgcat cttccccacg ctggtaactt gacgtggaga 240
ggaactcctg caataacttc atctatggag gctgccgggg caataagaac agtacccgct 300
ctgaggaggc ctgcatgctc cgctgcttcc gccagcagga gaatcctccc ctgccccttg 360
gctcaaaggt ggtggttctg gccggggctg tttcgtatg gtgttgcgttcc ttttcctggg 420
gagcnccat ggtcttactg attccgggtg gcaaggagga accaggagcg tgccctgcgg 480
ancgtctgga gcttcggaga tgacaagggn t 511

<210> 15

<211> 169

<212> PRT
 <213> Homo sapien

 <220>
 <221> peptide
 <222> 1..169
 <223> /note= "Xaa at positions 2, 23, 132, 160, and 167 represent a nonsense or stop codon"

 <400> 15
 Gln Xaa Leu Pro Asp Gln Gly Gly Val Pro Gln Glu Met Cys His Cys
 1 5 10 15

 His Arg Glu Cys His Gly Xaa Pro Gly His Gln Gln Glu Cys Ser Gly
 20 25 30

 Phe Leu Cys Pro Lys Ser Pro Arg Arg Gln Asp Ser Glu Asp His Ser
 35 40 45

 Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
 50 55 60

 Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
 65 70 75 80

 Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
 85 90 95

 Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
 100 105 110

 Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
 115 120 125

 Ala Val Ser Xaa Trp Cys Xaa Ser Phe Ser Trp Gly Ala Ser Met Val
 130 135 140

 Leu Leu Ile Pro Gly Gly Lys Glu Glu Pro Gly Ala Cys Pro Ala Xaa
 145 150 155 160

 Arg Leu Glu Leu Arg Arg Xaa Gln Gly
 165

 <210> 16
 <211> 431
 <212> DNA
 <213> Homo sapien

 <220>
 <221> misc_feature
 <222> 1..430
 <223> /note= "n at positions 3, 11, 12, 17, 51 and 429 represent any nucleic acid"

 <400> 16
 gcngcgcgtt nntcgcntgc tgggatcgct gctgcacctc tctggggtcg nggcggccga 60
 ccgagaacgc agcatccacg acttctgcct ggtgtcgaag gtgggtggca gatgccggc 120
 ctccatgcct aggtggtggt acaatgtcac tgacggatcc tgccagctgt ttgtgtatgg 180
 gggctgtgac ggaaacagca ataattacct gaccaaggag gagtgccctca agaaatgtgc 240

cactgtcaca gagaatgcc a cgggtgaccc ggccaccagg aggaatgcag cgatttcctc 300
 tgtcccaagt gctcccagaa ggcaggattc ttgaagacca cttagcgat atgttcaact 360
 atgaagaata ctggcaccgc caacgcattc actgggcctg cgtgcacgc tcccacgctg 420
 gtactttgnc g 431

<210> 17
 <211> 424
 <212> DNA
 <213> Homo sapien

<220>
 <221> misc_feature
 <222> 1..424
 <223> /note= "n at positions 6, 310 and 408 represent any nucleic acid"

<400> 17
 tgggantcgc tgctcctctc tggggcctg gcggccgacc gagaacgcag catccacgac 60
 ttctgcctgg tgcgaaggt ggtggcaga tgccggcct ccatgcctag gtgggtggta 120
 aatgtcaactg acggatcctg ccagctgtt gtgtatgggg gctgtgacgg aaacagcaat 180
 aattaccta ccaaggagga gtgcctcaag aaatgtgcca ctgtcacaga gaatgccacg 240
 ggtgacctgg ccaccagcag gaatgcagcg gattcctctg tcccaagtgc tcccaagg 300
 caggattctn gaagaccact ccagcgatat gttcaactat gaagaatact gcaccgcaa 360
 cgcagtcaact gggccttgcg tggaaatcctt tcccacgctg gnaatttnga cggtgagaag 420
 gaac 424

<210> 18
 <211> 57
 <212> PRT
 <213> Unknown

<220>
 <221>
 <222>
 <223> /note= "Tissue factor pathway inhibitor precursor 1"

<400> 18
 His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro Cys Lys Ala Ile
 1 5 10 15

Met Lys Arg Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Glu Phe
 20 25 30

Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu Glu
 35 40 45

Glu Cys Lys Lys Met Cys Thr Arg Asp
 50 55

<210> 19
 <211> 57
 <212> PRT

<213> Unknown

<220>

<223> /note= "Tissue factor pathway inhibitor precursor 1"

<400> 19
Pro Asp Phe Cys Phe Leu Glu Glu Asp Pro Gly Ile Cys Arg Gly Tyr
1 5 10 15

Ile Thr Arg Tyr Phe Tyr Asn Asn Gln Thr Lys Gln Cys Glu Arg Phe
20 25 30

Lys Tyr Gly Gly Cys Leu Gly Asn Met Asn Asn Phe Glu Thr Leu Glu
35 40 45

Glu Cys Lys Asn Ile Cys Glu Asp Gly
50 55

<210> 20
<211> 57
<212> PRT
<213> Unknown

<220>

<223> /note= "Tissue factor pathway inhibitor precursor"

<400> 20
Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly Leu Cys Arg Ala Asn
1 5 10 15

Glu Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly Lys Cys Arg Pro Phe
20 25 30

Lys Tyr Ser Gly Cys Gly Asn Glu Asn Asn Phe Thr Ser Lys Gln
35 40 45

Glu Cys Leu Arg Ala Cys Lys Lys Gly
50 55

<210> 21
<211> 57
<212> PRT
<213> Unknown

<220>

<223> /note= "Tissue factor pathway inhibitor precursor 2"

<400> 21
Ala Glu Ile Cys Leu Leu Pro Leu Asp Tyr Gly Pro Cys Arg Ala Leu
1 5 10 15

Leu Leu Arg Tyr Tyr Tyr Arg Tyr Arg Thr Gln Ser Cys Arg Gln Phe
20 25 30

Leu Tyr Gly Gly Cys Glu Gly Asn Ala Asn Asn Phe Tyr Thr Trp Glu
35 40 45

Ala Cys Asp Asp Ala Cys Trp Arg Ile
50 55

<210> 22
<211> 57

<212> PRT
<213> Unknown

<220>
<223> /note= "Tissue factor pathway inhibitor precursor 2"

<400> 22
Pro Ser Phe Cys Tyr Ser Pro Lys Asp Glu Gly Leu Cys Ser Ala Asn
1 5 10 15

Val Thr Arg Tyr Tyr Phe Asn Pro Arg Tyr Arg Thr Cys Asp Ala Phe
20 25 30

Thr Tyr Thr Gly Cys Gly Asn Asn Asp Asn Asn Phe Val Ser Arg Glu
35 40 45

Asp Ser Lys Arg Ala Cys Ala Lys Ala
50 55

<210> 23
<211> 57
<212> PRT
<213> Unknown

<220>
<223> /note= "Amyloid Precursor Protein homologue"

<400> 23
Lys Ala Val Cys Ser Gln Glu Ala Met Thr Gly Pro Cys Arg Ala Val
1 5 10 15

Met Pro Arg Thr Thr Phe Asp Leu Ser Lys Gly Lys Cys Val Arg Phe
20 25 30

Ile Thr Gly Gly Cys Gly Asn Arg Asn Asn Phe Glu Ser Glu Asp
35 40 45

Tyr Cys Met Ala Val Cys Lys Ala Met
50 55

<210> 24
<211> 58
<212> PRT
<213> Unknown

<220>
<223> /note= "Aprotinin"

<400> 24
Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala
1 5 10 15

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr
20 25 30

Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala
35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala
50 55

<210> 25

<211> 51
 <212> PRT
 <213> Unknown

<220>
 <223> /note= "Inter alpha-trypsin inhibitor precursor"

<400> 25
 Cys Gln Leu Gly Tyr Ser Ala Gly Pro Cys Met Gly Met Thr Ser Arg
 1 5 10 15

Tyr Phe Tyr Asn Gly Thr Ser Met Ala Cys Glu Thr Phe Gln Tyr Gly
 20 25 30

Gly Cys Met Gly Asn Gly Asn Asn Phe Val Thr Glu Lys Glu Cys Leu
 35 40 45

Gln Thr Cys
 50

<210> 26
 <211> 57
 <212> PRT
 <213> Unknown

<220>
 <223> /note= "Inter alpha-trypsin inhibitor precursor"

<400> 26
 Val Ala Ala Cys Asn Leu Pro Ile Val Arg Gly Pro Cys Arg Ala Phe
 1 5 10 15

Ile Gln Leu Trp Ala Phe Asp Ala Val Lys Gly Lys Cys Val Leu Phe
 20 25 30

Pro Tyr Gly Gly Cys Gln Gly Asn Gly Asn Lys Phe Tyr Ser Glu Lys
 35 40 45

Glu Cys Arg Glu Tyr Cys Gly Val Pro
 50 55

<210> 27
 <211> 57
 <212> PRT
 <213> Unknown

<220>
 <223> /note= "Amyloid precursor protein"

<400> 27
 Glu Val Cys Cys Ser Glu Gln Ala Glu Thr Gly Pro Cys Arg Ala Met
 1 5 10 15

Ile Ser Arg Trp Tyr Phe Asp Val Thr Glu Gly Lys Cys Ala Pro Phe
 20 25 30

Phe Tyr Gly Gly Cys Gly Asn Arg Asn Asn Phe Asp Thr Glu Glu
 35 40 45

Tyr Cys Met Ala Val Cys Gly Ser Ala
 50 55

<210> 28
 <211> 51
 <212> PRT
 <213> Unknown

<220>
 <223> /note= "Collagen alpha-3 (VI) precursor"

<400> 28
 Cys Lys Leu Pro Lys Asp Glu Gly Thr Cys Arg Asp Phe Ile Leu Lys
 1 5 10 15

Trp Tyr Tyr Asp Pro Asn Thr Lys Ser Cys Ala Arg Phe Trp Tyr Gly
 20 25 30

Gly Cys Gly Gly Asn Glu Asn Lys Phe Gly Ser Gln Lys Glu Cys Glu
 35 40 45

Lys Val Cys
 50

<210> 29
 <211> 57
 <212> PRT
 <213> Unknown

<220>
 <223> /note= "HKI-B9"

<400> 29
 Pro Asn Val Cys Ala Phe Pro Met Glu Lys Gly Pro Cys Gln Thr Tyr
 1 5 10 15

Met Thr Arg Trp Phe Phe Asn Phe Glu Thr Gly Glu Cys Glu Leu Phe
 20 25 30

Ala Tyr Gly Gly Cys Gly Gly Asn Ser Asn Asn Phe Leu Arg Lys Glu
 35 40 45

Lys Cys Glu Lys Phe Cys Lys Phe Thr
 50 55

<210> 30
 <211> 46
 <212> DNA
 <213> S. cerevisiae

<400> 30
 gccaaacctg gataaaagat atgaagaata ctgcaccgcc aacgca 46

<210> 31
 <211> 35
 <212> DNA
 <213> S. cerevisiae

<400> 31
 ggggatcctc actgctggcg gaagcagcgg agcat 35

<210> 32
 <211> 206
 <212> DNA
 <213> Homo sapien

```

<220>
<223> /note= "cDNA of human Bikunin protein fragment"

<400> 32
ccaagcttgg ataaaagata tgaagaatac tgcaccgcca acgcagtcac tgggccttgc      60
cgtgcacccct tcccacgctg gtactttgac gtggagagga actcctgcaa taacttcatc      120
tatggaggct gccggggcaa taagaacagc taccgctctg aggaggcctg catgctccgc      180
tgcttccgcc agcagtgagg atcccc                           206

<210> 33
<211> 28
<212> DNA
<213> Homo sapien

<400> 33
cgaagcttca tctccgaagc tccagacg                           28

<210> 34
<211> 31
<212> DNA
<213> Homo sapien

<400> 34
aggatctaga caataattac ctgaccaagg a                           31
<210> 35
<211> 36
<212> DNA
<213> Homo sapien

<400> 35
ggtagttaggg ccgggtcggt tctcgctgg ctggga                           36
<210> 36
<211> 19
<212> DNA
<213> Homo sapien

<400> 36
cacctgatcg cgagacccc                           19
<210> 37
<211> 19
<212> DNA
<213> Homo sapien

<400> 37
gattttaggtg acactatag                           19
<210> 38
<211> 20
<212> DNA
<213> Homo sapien

<400> 38
taatacgact cactataggg                           20
<210> 39

```

<211> 22		
<212> DNA		
<213> Homo sapien		
<400> 39		
ttacctgacc aaggaggagt gc		22
<210> 40		
<211> 23		
<212> DNA		
<213> Homo sapien		
<400> 40		
aatccgctgc attcctgctg gtg		23
<210> 41		
<211> 20		
<212> DNA		
<213> Homo sapien		
<400> 41		
cagtcactgg gccttgcgt		20
<210> 42		
<211> 105		
<212> DNA		
<213> Homo sapien		
<400> 42		
gaaggggataa gcttgataa aagatataaa gaataactgca ccgccaacgc agtcactgg		60
ccttgcgtg catccttccc acgctggta tttgacgtgg agagg		105
<210> 43		
<211> 129		
<212> DNA		
<213> Homo sapien		
<400> 43		
cgcggatccc tactggcgga agcagcggag catgcaggcc tcctcagagc ggttagctgtt		60
cattattgccc cggcagcctc catagatgaa gttattgcag gagttcctct ccacgtaaa		120
gtaccagcg		129
<210> 44		
<211> 207		
<212> DNA		
<213> Homo sapien		
<400> 44		
gaaggggataa gcttgataa aagatataaa gaataactgca ccgccaacgc agtcactgg		60
ccttgcgtg catccttccc acgctggta tttgacgtgg agaggaactc ctgcaataac		120
ttcatctatg gaggctgccg gggcaataag aacagctacc gctctgagga ggcctgcatg		180
ctccgctgct tccgccagta gggatcc		207
<210> 45		
<211> 248		
<212> PRT		

<213> Homo sapien

<220>

<221> Region

<222> 1..18

<223> /label= signal peptide

<400> 45

Met Leu Arg Ala Glu Ala Asp Gly Val Ser Arg Leu Leu Gly Ser Leu
1 5 10 15

Leu Leu Ser Gly Val Leu Ala Ala Asp Arg Glu Arg Ser Ile His Asp
20 25 30

Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg Ala Ser Met Pro
35 40 45

Arg Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln Leu Phe Val Tyr
50 55 60

Gly Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr Lys Glu Glu Cys
65 70 75 80

Leu Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr Gly Asp Leu Ala
85 90 95

Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser Ala Pro Arg Arg
100 105 110

Gln Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn Tyr Glu Glu Tyr
115 120 125

Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala Ser Phe Pro Arg
130 135 140

Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn Phe Ile Tyr Gly
145 150 155 160

Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu Glu Ala Cys Met
165 170 175

Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Leu Pro Leu Gly Ser
180 185 190

Lys Val Val Val Leu Ala Gly Leu Phe Val Met Val Leu Ile Leu Phe
195 200 205

Leu Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala Arg Arg Asn Gln
210 215 220

Glu Arg Ala Leu Arg Thr Val Trp Ser Ser Gly Asp Asp Lys Glu Gln
225 230 235 240

Leu Val Lys Asn Thr Tyr Val Leu
245

<210> 46

<211> 213

<212> PRT

<213> Homo sapien

<400> 46

Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
 1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
 20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
 35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
 50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
 65 70 75 80

Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
 85 90 95

Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
 100 105 110

Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
 115 120 125

Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
 130 135 140

Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
 145 150 155 160

Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
 165 170 175

Leu Phe Val Met Val Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr
 180 185 190

Leu Ile Arg Val Ala Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val
 195 200 205

Trp Ser Phe Gly Asp
 210

<210> 47
 <211> 240
 <212> PRT
 <213> Homo sapien

<220>
 <221> Region
 <222> 1..18
 <223> /label= signal peptide

<400> 47
 Met Ala Gln Leu Cys Gly Leu Arg Arg Ser Arg Ala Phe Leu Ala Leu
 1 5 10 15

Leu Gly Ser Leu Leu Leu Ser Gly Val Leu Ala Ala Asp Arg Glu Arg
 20 25 30

Ser Ile His Asp Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg
 35 40 45

Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln
 50 55 60

Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr
 65 70 75 80

Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr
 85 90 95

Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser
 100 105 110

Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn
 115 120 125

Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala
 130 135 140

Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn
 145 150 155 160

Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu
 165 170 175

Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Leu
 180 185 190

Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly Leu Phe Val Met Val
 195 200 205

Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala
 210 215 220

Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val Trp Ser Phe Gly Asp
 225 230 235 240

<210> 48
 <211> 225
 <212> PRT
 <213> Homo sapiens

<400> 48
 Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
 1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
 20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
 35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
 50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
 65 70 75 80

Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
 85 90 95

Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
 100 105 110

Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
 115 120 125
 Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
 130 135 140
 Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
 145 150 155 160
 Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
 165 170 175
 Leu Phe Val Met Val Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr
 180 185 190
 Leu Ile Arg Val Ala Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val
 195 200 205
 Trp Ser Ser Gly Asp Asp Lys Glu Gln Leu Val Lys Asn Thr Tyr Val
 210 215 220
 Leu
 225
 <210> 49
 <211> 252
 <212> PRT
 <213> Homo sapien
 <220>
 <221> Region
 <222> 1..18
 <223> /label= signal peptide
 <400> 49
 Met Ala Gln Leu Cys Gly Leu Arg Arg Ser Arg Ala Phe Leu Ala Leu
 1 5 10 15
 Leu Gly Ser Leu Leu Leu Ser Gly Val Leu Ala Ala Asp Arg Glu Arg
 20 25 30
 Ser Ile His Asp Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg
 35 40 45
 Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln
 50 55 60 65
 Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr
 65 70 75 80
 Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr
 85 90 95
 Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser
 100 105 110
 Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn
 115 120 125
 Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala
 130 135 140

Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn
 145 150 155 160
 Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu
 165 170 175
 Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Leu
 180 185 190
 Pro Leu Gly Ser Lys Val Val Leu Ala Gly Leu Phe Val Met Val
 195 200 205
 Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala
 210 215 220
 Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val Trp Ser Ser Gly Asp
 225 230 235 240
 Asp Lys Glu Gln Leu Val Lys Asn Thr Tyr Val Leu
 245 250
 <210> 50
 <211> 146
 <212> PRT
 <213> Homo sapien
 <220>
 <223> /note= "Human Bikunin protein fragment"
 <400> 50
 Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg Ala Ser Met Pro Arg
 1 5 10 15
 Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly
 20 25 30
 Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu
 35 40 45
 Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr
 50 55 60
 Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser Ala Pro Arg Arg Gln
 65 70 75 80
 Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys
 85 90 95
 Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp
 100 105 110
 Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly
 115 120 125
 Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu
 130 135 140
 Arg Cys
 145
 <210> 51

<211> 170

<212> PRT

<213> Homo sapien

<220>

<223> /note= "Human Bikunin protein fragment"

<400> 51

Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
65 70 75 80

Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
85 90 95

Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
100 105 110

Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
115 120 125

Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
130 135 140

Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
145 150 155 160

Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys
165 170

<210> 52

<211> 170

<212> PRT

<213> Homo sapien

<220>

<223> /note= "Human Bikunin protein fragment"

<400> 52

Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
 65 70 75 80
 Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
 85 90 95
 Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
 100 105 110
 Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
 115 120 125
 Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
 130 135 140
 Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
 145 150 155 160
 Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys
 165 170
 <210> 53
 <211> 27
 <212> PRT
 <213> Homo sapien
 <220>
 <223> /note= "Signal peptide of Human Bikunin protein"
 <400> 53
 Met Ala Gln Leu Cys Gly Leu Arg Arg Ser Arg Ala Phe Leu Ala Leu
 1 5 10 15
 Leu Gly Ser Leu Leu Leu Ser Gly Val Leu Ala
 20 25
 <210> 54
 <211> 23
 <212> PRT
 <213> Homo sapien
 <220>
 <223> Human Bikunin protein fragment
 <400> 54
 Met Leu Arg Ala Glu Ala Asp Gly Asn Ser Arg Leu Leu Gly Ser Leu
 1 5 10 15
 Leu Leu Ser Gly Val Leu Ala
 20
 <210> 55
 <211> 102
 <212> DNA
 <213> Artificial sequence
 <220>
 <223> /note= "Oligomer for preparing expression construct"
 <400> 55
 gaaggggataa gcttggataa aagagaagaa tactgtactg ctaatgctgt tactggtcca 60

tgttagagctt cttttccaag atggtaacttt gatgttggaaa ga	102
<210> 56	
<211> 129	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Oligomer for preparing expression construct	
<400> 56	
actggatcct cattggcgaa aacatctcaa catacaggct tcttcagatc tgtaagaatt	60
tttattacct ctacaaccac cgtaaaataaaa attattacaa gaatttcttt caacatcaaa	120
gtaccatct	129
<210> 57	
<211> 108	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> /note= "Oligomer for preparing expression construct"	
<400> 57	
gaaggggataa gcttggataa aagaaattac gaagaatact gtactgctaa tgctgttact	60
ggtccatgta gagttcttt tccaagatgg tacttgatg ttgaaaga	108
<210> 58	
<211> 117	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> /note= "Oligomer for preparing expression construct"	
<400> 58	
gaaggggataa gcttggataa aagagatatg tttaattacg aagaataactg tactgctaatt	60
gctgttactg gtccatgtag agttctttt ccaagatgg actttgatgt tgaaaga	117
<210> 59	
<211> 20	
<212> DNA	
<213> Homo sapiens	
<400> 59	
cacctgatcg cgaagacccc	20
<210> 60	
<211> 23	
<212> DNA	
<213> Homo sapiens	
<400> 60	
ctggcgaaag cagcggagca tgc	23
<210> 61	
<211> 45	
<212> DNA	

<213> Artificial sequence

<220>

<223> /note= "Oligomer for preparing Bikunin expression construct"

<400> 61

cgcgtctcg ctgacctggc cctgcagatg ggcacgtgt gcgaa

45

<210> 62

<211> 60

<212> DNA

<213> Artificial sequence

<220>

<223> /note= "Oligomer for preparing Bikunin construct"

<400> 62

ctgccccttg gctcaaaggta ggaagatctt ccccccgggg gggtggttct ggccgggctg

60

<210> 63

<211> 14

<212> PRT

<213> Homo sapien

<220>

<223> /note= "Human Bikunin protein fragment"

<400> 63

Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Pro Leu Gly

1 5 10

<210> 64

<211> 20

<212> PRT

<213> Homo sapien

<220>

<223> /note= "Human Bikunin protein fragment"

<400> 64

Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val

1 5 10 15

Val Gly Arg Cys
20

<210> 65

<211> 20

<212> PRT

<213> Homo sapien

<220>

<223> /note= "Human Bikunin protein fragment"

<400> 65

Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys

1 5 10 15

Arg Ala Ser Phe
20

<210> 66

<211> 10

<212> PRT
<213> Homo sapien

<220>
<223> /note= "Human Bikunin protein fragment"

<400> 66
Pro Tyr Val Asp Gly Ser Gln Phe Tyr Gly
1 5 10

<210> 67
<211> 55
<212> PRT
<213> Homo sapien

<220>
<223> /note= "Human Bikunin protein fragment"

<400> 67
Val Val Val Leu Ala Gly Leu Phe Val Met Val Leu Ile Leu Phe Leu
1 5 10 15

Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala Arg Arg Asn Gln Glu
20 25 30

Arg Ala Leu Arg Thr Val Trp Ser Ser Gly Asp Asp Lys Glu Gln Leu
35 40 45

Val Lys Asn Thr Tyr Val Leu
50 55

<210> 68
<211> 43
<212> PRT
<213> Homo sapien

<220>
<223> /note= "Human Bikunin protein fragment"

<400> 68
Val Val Val Leu Ala Gly Leu Phe Val Met Val Leu Ile Leu Phe Leu
1 5 10 15

Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala Arg Arg Asn Gln Glu
20 25 30

Arg Ala Leu Arg Thr Val Trp Ser Phe Gly Asp
35 40

<210> 69
<211> 55
<212> PRT
<213> Homo sapien

<220>
<223> /note= "Human Bikunin protein fragment"

<400> 69
Val Val Val Leu Ala Gly Leu Phe Val Met Val Leu Ile Leu Phe Leu
1 5 10 15

Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala Arg Arg Asn Gln Glu

20

25

30

Arg Ala Leu Arg Thr Val Trp Ser Ser Gly Asp Asp Lys Glu Gln Leu
 35 40 45

Val Lys Asn Thr Tyr Val Leu
 50 55

<210> 70
 <211> 213
 <212> PRT
 <213> Homo sapien

<220>
 <223> /note= "Human Bikunin protein fragment"

<400> 70
 Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
 1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
 20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
 35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
 50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
 65 70 75 80

Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
 85 90 95

Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
 100 105 110

Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
 115 120 125

Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
 130 135 140

Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
 145 150 155 160

Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
 165 170 175

Leu Phe Val Met Val Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr
 180 185 190

Leu Ile Arg Val Ala Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val
 195 200 205

Trp Ser Phe Gly Asp
 210

<210> 71
 <211> 225
 <212> PRT

<213> Homo sapien

<220>

<223> /note= "Human Bikunin protein fragment"

<400> 71

Ala Asp Arg Glu Arg Ser Ile His Asp Phe Cys Leu Val Ser Lys Val
1 5 10 15

Val Gly Arg Cys Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr
20 25 30

Asp Gly Ser Cys Gln Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser
35 40 45

Asn Asn Tyr Leu Thr Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val
50 55 60

Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp
65 70 75 80

Ser Ser Val Pro Ser Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser
85 90 95

Ser Asp Met Phe Asn Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr
100 105 110

Gly Pro Cys Arg Ala Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg
115 120 125

Asn Ser Cys Asn Asn Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn
130 135 140

Ser Tyr Arg Ser Glu Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln
145 150 155 160

Glu Asn Pro Pro Leu Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly
165 170 175

Leu Phe Val Met Val Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr
180 185 190

Leu Ile Arg Val Ala Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val
195 200 205

Trp Ser Ser Gly Asp Asp Lys Glu Gln Leu Val Lys Asn Thr Tyr Val
210 215 220

Leu
225