Exercice 1 - Un calcul de somme

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(X+1)(X+2)}$.
- 2. En déduire la limite de la suite (S_n) suivante : $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$.

Exercice 2 - Un calcul de somme

Soit $P \in \mathbb{R}[X]$ un polynôme de degré $n \geq 1$ possédant n racines distinctes x_1, \ldots, x_n non-nulles.

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{XP(X)}$.
- 2. En déduire que $\sum_{k=1}^{n} \frac{1}{x_k P'(x_k)} = \frac{-1}{P(0)}$.

Exercice 3 - Enveloppe convexe des zéros

Soit $P \in \mathbb{C}_n[X]$ admettant n racines simples $\alpha_1, \ldots, \alpha_n$. Soient A_1, \ldots, A_n les points du plan complexe d'affixe respectives $\alpha_1, \ldots, \alpha_n$.

- 1. Décomposer la fraction rationnelle P'/P en éléments simples.
- 2. Soit β une racine de P', et soit B son image dans le plan complexe. Déduire de la question précédente que

$$\sum_{j=1}^{n} \frac{1}{\beta - \alpha_j} = 0.$$

3. En déduire que B est un barycentre de la famille de points (A_1, \ldots, A_n) , avec des coefficients positifs. Interpréter géométriquement cette propriété.

Exercice 4 - Tout polynôme positif est somme de deux carrés

Soit $P \in \mathbb{R}[X]$ non constant tel que $P(x) \geq 0$ pour tout réel x.

- 1. Montrer que le coefficient dominant de P est positif et que les racines réelles de P sont de multiplicité paire.
- 2. Montrer qu'il existe un polynôme $C \in \mathbb{C}[X]$ tel que $P = C\overline{C}$.
- 3. En déduire qu'il existe A et B dans $\mathbb{R}[X]$ tels que $P = A^2 + B^2$.

Exercice 5 - Racines rationnelles

Soit $P(X) = a_n X^n + \cdots + a_0$ un polynôme à coefficients dans \mathbb{Z} , avec $a_n \neq 0$ et $a_0 \neq 0$. On suppose que P admet une racine rationnelle p/q avec $p \wedge q = 1$. Démontrer que $p|a_0$ et que $q|a_n$. Le polynôme $P(X) = X^5 - X^2 + 1$ admet-il des racines dans \mathbb{Q} ?

Exercice 6 - Somme des racines

Soit $P \in \mathbb{C}[X]$. On note, pour p < n, u_p la somme des racines de $P^{(p)}$. Démontrer que u_0, \ldots, u_{n-1} forme une progression arithmétique.

Cette feuille d'exercices a été conçue à l'aide du site https://www.bibmath.net