Exam.Code:0013 Sub. Code: 0820

2041 Bachelor of Commerce Third Semester

BCM-304: Business Mathematics and Statistics

Time allowed: 3 Hours

Max. Marks: 80

NOTE: Attempt <u>four</u> short answer type questions from Section—A. Attempt <u>two</u> questions each from Section B and C respectively.

x-x-x

SECTION - A

1. Find x such that
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0.$$

2. Without expanding the following determinants, show that:

but expanding the following determinants, so
$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2.$$

3. If
$$y = \sqrt{2^x + \sqrt{2^x + \sqrt{2^x + \dots + \infty}}}$$
, then prove that $(2y - 1)\frac{dy}{dx} = 2^x \log 2$.

- 4. Explain the difference between skewness and kurtosis.
- 5. The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations were incorrect, which were recorded as 21, 21 and 18. Find the mean and standard deviation if the incorrect observations are omitted.
- 6. Explain the mathematical properties of arithmetic mean. What is the relationship between mean, median and mode?

(4x5)

SECTION . B

7. If
$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$
, then compute the inverse of A and verify that $A^{-1}A = I$.

8. Show that
$$\begin{vmatrix} b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix} = 2 \begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}.$$

9. (a) Differentiate $(\log x)^{\log x}$ w.r.t. x.

(b) Find
$$\frac{dy}{dx}$$
, when $x = a\left(\frac{1-t^2}{1+t^2}\right)$, $y = \frac{2bt}{1+t^2}$.

10. Show that maximum value of $\left(\frac{1}{x}\right)^x$, x > 0 is $e^{\frac{1}{e}}$.

SECTION - C

11. Comment on the performance of the students of three universities given below using

(i) simple arithmetic mean and (ii) weighted arithmetic mean:

	P.U.			Pbi. U.	G.N.D.U.		
Courses of Study	Pass %	No. of Students (in hundreds)	Pass %	No. of Students (in hundreds)	Pass %	No. of Students (in hundreds)	
M.A.	71	3	82	2	81	2	
M.Com.	83	4	76	3	76	3.5	
B.A.	73	5	73 ·	6	. 74	4.5	
B.Com.	74	2	76	7	- 58	2	
B.Sc.	65	3	65	3	70	- 7	
M.Sc.	66	3	60	7	73	2	

12. Following are the records of two players regarding their performance in a cricket matches series:

Score (X ₁):	of	player	A	48	52	55	60	65	45	63	70
Score (X ₂):	of	player	В	33	35	80	' 70	100	15	41	25

- (i) Which player has scored more on average?
- (ii) Which player is more consistent in his performance?
- 13. Explain the different components into which a time series may be analyzed. Explain the least square method of fitting trend in a time series.
- 14. Calculate index number of price from the data given below by using following methods:
 - (i) Laspeyres Method

(ii) Paasche's Method

(iii) Bowley's Method

(iv) Fisher's Ideal Method

(v) Marshall Edgeworth Method

Commodity	20	009	2010			
	Price	Quantity	Price	Quantity		
K	2	8	4	6		
L	5	10	6	5		
M	4	14	5	10		
N	2	19	2	13		

(15x4)

			, f