On the algebraic hyperbolicity of projective hypersurfaces

Lucas Mioranci November 14, 2024

Upshot Recall that last week we talked about Kobashi hyperbolicity, which means that Kobayashi pseudo-distance is non-degenerate. We saw that this implies Brody hyperbolicity, which means that X has no non-constant holomorphic maps. If X is compact this is an equivalence.

Today we shall see that this implies algebraic hyperbolicity. Demially's conjecture is that this last implication is actually iff.

Abastract A complex projective manifold X is said to be algebraically hyperbolic if every integral curve C of X satisfies the inequality $2g(C)2 > \varepsilon deg(C)$ for a fixed positive ε and ample divisor on X. This talk aims to review some techniques used to prove the algebraic hyperbolicity of very general hypersurfaces of degree d > 2n2 in \mathbb{P}^n .

Definition A complex projective variety X is *algebraically hyperbolic* if there exists $\varepsilon > 0$ and ample divisor H such that, for every integral curve $C \subset X$ of geometric genus g(C),

$$2g(C) - 2 \ge \varepsilon \deg_H(C)$$

Remark (Vitorio) Definition of degree is H.C.

Remark (Misha) Is there not an associated metric here? Take the metric in all agebraic curves inside X. Perhaps it is equivalent?

Remark In particular, X does not contain any rational or elliptic curves.

In this talk: $X \subset \mathbb{P}^n$ very general projective hypersurface of degree d.

Conjecture (Kobayashi) X is algebraically hyperbolic for d sufficiently large ($d \ge 2n - 2$, $n \ge 4$ or $d \ge 2$, n = 3).

1 $n \geqslant 3$

Theorem (Clemens '86, E. '88) $n \ge 4$, $d \ge 2n$.

Theorem (Voisin, '96, 98) $n \ge 4$, $d \ge 2n - 1$.

Theorem (Pocienza '04, Clemens-Ron '04) $n \ge 6$, $d \ge 2n - 2$.

Theorem (Yeong '22) $n \ge 5$, $d \ge 2n - 2$.

Open: (n, d) = (4, 6).

2 n = 3

Theorem (Xu, '94) $n = 3, d \ge 6$.

Theorem (Coskan-Ried, '99) n = 3, $d \ge 5$.

And n = 3, d = 4 is a K3 so (or is it *because*?) it has rational curves.

3 **Proof for** n = 4, $d \ge 2n - 2$

Proof. Main reference *Algebraic hyperbolicity of the very general quintic surface in* \mathbb{P}^3 , Coskun and Reid '99.

Algebraic hyperbolicity of very general surface, Coker and Reid '22.

Algebraic hyperbolic of very general hypersurface in $\mathbb{P}^n \times \mathbb{P}^n$, Young '22.

Open: $\mathbb{P}^2 \times \mathbb{P}^1$.

Proof. Let $S_d = \mathbb{P}H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d))$ and let

$$\mathcal{X} = \{(\mathfrak{p}, [X]) : \mathfrak{p} \in X\} \subseteq \mathbb{P}^n \times \mathfrak{s}_d$$

which is a universal degree d hypersurface in \mathbb{P}^n .

We can find a generically injective map $h: Y \to X$ over $U \subseteq S_d$ of curves of geometric genus g and degree e. Y is a family of curves Y_t inside each hypersurface X_t for every parameter $t \in U$.

Define the *vertical tangent bundles* are the kernels

$$0 \longrightarrow \mathsf{T}_{\mathsf{X}/\mathbb{P}^{\mathsf{n}}} \longrightarrow \mathsf{T}_{\mathcal{X}} \longrightarrow \pi_2^* \mathsf{T}_{\mathbb{P}^{\mathsf{n}}} \longrightarrow 0$$

$$0 \, \longrightarrow \, T_{Y/\mathbb{P}^n} \, \longrightarrow \, T_Y \, \longrightarrow \, h^*\pi_2^*T_{\mathbb{P}^n} \, \longrightarrow \, 0$$

• Y dominates U under $\pi_1 \circ h$.

• We can assume Y is stable under the GL(n + 1)-action.

So $\pi_2 \circ h$ dominates \mathbb{P}^n and $T_Y \longrightarrow h^*\pi_2^*T_{\mathbb{P}^2}$ is surjective.

Define the normal bundles as cokernels of

$$0 \, \longrightarrow \, T_Y \, \longrightarrow \, h^*T_{\mathcal X} \, \longrightarrow \, N_{h/\mathcal X} \, \longrightarrow \, 0$$

$$0 \longrightarrow T_{Y_t} \longrightarrow h_t^* T_{\mathcal{X}_t} \longrightarrow N_{ht/\mathcal{X}_t} \longrightarrow 0$$

Denote

$$i_t: \mathcal{X}_t \to \mathcal{X}$$

$$j_t: Y_t \longrightarrow Y$$

 $p \longmapsto (p, t)$

(technical) Lemma 1 $N_{h_t/X_t} \equiv j_t^* N_{h/X}$

Proof. Big commutative diagram.

Lemma 2 $N_{h_t/\mathcal{X}_t} \cong j_t^* K$ where $K = \text{coker}(T_{Y/\mathbb{P}^n} \to T_{Y/\mathbb{P}^n})$.

Definition The *Lazarsfeld-Mukai bundle* M_d is the kernel of

$$0 \, \longrightarrow \, M_d \, \longrightarrow \, \mathcal{O}_{\mathbb{P}^n} \otimes H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(d)) \, \stackrel{\text{ev}}{\longrightarrow} \, \mathcal{O}_{\mathbb{P}^n}(d) \, \longrightarrow \, 0$$

Remark The fiber over $p \in \mathbb{P}^n$ is M_d is the space of sections vanishing at p.

Lemma 3 $T_{\mathcal{X}/\mathbb{P}^n} \cong \pi_2^* M_d$

By Lemma 2 and 3:

$$j_s^*h^*T_{\mathcal{X}/\mathbb{P}^n} \longrightarrow j_t^*K \cong N_{ht/\mathfrak{X}_t}$$

So we have a surjection

$$M_d|_{Y_t} \twoheadrightarrow N_{ht/X_t}.$$

Definition Let \mathscr{E} be a vector bundle on \mathbb{P}^n , let L be a globally gen line bundle. We say L is *section-dominating* for \mathscr{E} if $\mathscr{E} \otimes \mathscr{L}^{\vee}$ is globally gen. and

$$H^0(L \otimes I_p) \otimes H^0(\mathcal{E} \otimes \mathcal{L}^{\vee}) \longrightarrow H^0(\mathcal{E} \otimes I_p)$$

is surjective for all $p \in \mathbb{P}^n$.

Example in \mathbb{P}^n , $\mathcal{E} = \mathcal{O}_{\mathbb{P}^n}(d)$, $L = \mathcal{O}_{\mathbb{P}^n}(1)$.

Proposition There is a sujection