Systemprogrammierung

System Dokumentation

Dozent: Prof. Dr. Ammar Memari

vorgelegt von: Anael Ngome 6020606

Frank Williams Nganmo Tchipsse 605321

Nidaa

Cafet Sentürk 6054150

Sara

Abgabetermin: 18-12-2023

Table of Contents

1.	. Systementwurf		3	
	1.1	Systemarchitektur:	3	
		Definition der Datenstrukturen für die Interprozesskommunikation:		
2.		lementierungsdetails		
	-	zung der Interprozesskommunikation		

1. Systementwurf

1.1 Systemarchitektur:

1.2 Definition der Datenstrukturen für die Interprozesskommunikation:

Die zu übertragende Informationen:

- Messwerte vom Sensor
- Steuerbefehle von der Steuerung und
- Aktuatorstatusinformationen

Deren Datenstruktur:

- Messwerte vom Sensor: Ganzzahlen
- Steuerbefehle von der Steuerung: Ganzzahlen
- Aktuatorstatusinformationen: String

(Ganzzahlen, Gleitkommazahlen oder Zeichenketten sein, oder komplexere Datenstrukturen wie Arrays, Strukturen oder sogar benutzerdefinierte Klassen/Objekte.)

Berücksichtigung der IPC-Methode

• Empfangenen Daten aus der Shared Memory: float

Empfangene Daten aus den Pipes: foat

2. Implementierungsdetails

Definition der Protokolle und Schnittstellen

- wie die verschiedenen Prozesse miteinander kommunizieren werden.
- welche Prozesse welche Daten senden und empfangen werden.
- Definieren die Schnittstellenklar.

3. Nutzung der Interprozesskommunikation

a. Pipes:

- Sensorprozess (Temperaturprozess):
 - Verwendet eine Pipe (t.pipe_fd) für die Kommunikation mit dem Steuerungsprozess.
 - Schreibt die simulierten Temperaturdaten in die Pipe (write(t.pipe fd[1], &t.temperature, sizeof(float))).

Steuerungsprozess:

- Erzeugt eine Pipe (sensor_pipe) für die Kommunikation mit dem Sensorprozess und AktuatorProzess.
- Liest die Temperaturdaten aus der Pipe (read(sensor_pipe[0], &temperature, sizeof(float))).
- Sendet Befehle an den Aktuatorprozess durch Schreiben in die Pipe (write(pipe_actuator[1], &schaltung_control, sizeof(int)))

b. Shared Memory:

- Sensorprozess:
 - Erzeugt einen Shared Memory-Bereich (t.shm_id) für die Kommunikation mit dem Steuerungsprozess.
 - Liest Befehle aus dem Shared Memory (a.received_commands = *a.shared_data).

Steuerungsprozess:

 Erzeugt einen Shared Memory-Bereich (shm_id) für die Kommunikation mit dem Aktuatorprozess.

- Schreibt Befehle in den Shared Memory (*shm_data = control_command).
- ließt Befehle in den Shared Memory (*t.shm_data = control_command).

Insgesamt erfolgt die Kommunikation wie folgt:

- 1. Der Sensorprozess generiert Temperaturdaten und schreibt sie in die Pipe und ließt Shared Memory.
- 2. Der Steuerungsprozess liest die Temperaturdaten aus der Pipe und schreibt Shared Memory, bewertet die Temperatur und schreibt Befehle in die Pipe und den Shared Memory.
- 3. Der Aktuatorprozess liest die Befehle aus der Pipe und dem Shared Memory und führt entsprechende Aktionen aus.