INTRODUCTION

The aviation industry in India has experienced rapid growth over the decades, but with expansion comes increasing safety challenges. This project, "Airplane Crash and Fatalities in India", aims to analyze historical airplane crash data in India from a safety and policy perspective. Using Power BI, we visualize and examine trends in crash frequency, passenger fatalities, aircraft types, and geographical patterns. The objective is to provide data-driven insights into the causes and impacts of aviation accidents. This analysis not only sheds light on critical risk factors but also helps stakeholders understand where improvements in aviation safety, maintenance, and operational protocols are most needed.

\rightarrow

Airplane crash and Fatalities in India

Count of AIRCRAFT TYPE by ENGINE TYPE

Count of WIND by SPEED OF THE AIRCRAFT

Count of CRASH TYPE by LOSSES

2370
Sum of FATALITIES

1372

Sum of SURVIVORS

Count of LOSSES

Count of SPEED OF THE AIRCRAFT by WEATHER CONDITION

Count of FLIGHT DISTANCE by WIND

Sum of SURVIVORS by LOCATION

CRASH TYPE

All

\Box	\cap \wedge \top	ION
LU	CAL	IUN

All

LOCATION	Sum of FATALITIES	Sum of SURVIVORS
Ahmedabad	409	1
Amtritsar	0	117
Aurangabad	55	63
Bangloore	92	0
Bengaluru	92	54
Bombay	291	94
Chennai	34	0
Delhi	349	128
Hyderabad	329	0
Imphal	69	0
Jhodhpoor	1	68
Kandahar	1	192
Kozhikode	18	172
Lucknow	0	59
Maahia	0	78
Madhya pradesh	7	0
Madras	0	203
Maharashtra	6	0
Mangalore	158	8
Mumbai	135	0
Patna	60	3
Sreenagar	264	0
U.P	0	132
Total	2370	1372

AIRCRAFT TYPE	Sum of YEAR BUILD
AIC171	1934
AIC810	1962
Airbus A300	1972
Airbus A300B2-101	1977
Airbus A320-200	1988
Airbus A320-231	1989
Airbus A320neo	1960
AirbusA321	1970
Boeing 707	1957
Boeing 737	3920
Boeing 737-200	5893
Boeing 7372A8	1960
Boeing 737-2A8	5901
Boeing 737-800	1977
Boeing 737-8HG	4022
Boeing 747-100B	1979
Boeing 747-200B	1978
Boeing 787 Dreamliner	2011
Boeng 747-237D	1971
Fokker F27	1972
High-wing mono plane	1935
Propellar driven	1943
Trimotor monoplane	1926
Total	57097

AIRCRAFT TYPE	CRASH TYPE	ALTITUDE
Propellar driven	Controlled flight into terrain	200 ft
AIC171	Electrical failure	300 ft
High-wing mono plane	Fuel leak	NA
AIC810	Hijack	30,000 ft
Airbus A300	Hijack	30,000 ft
Airbus A300B2-101	Hijack	30,000 ft
Airbus A320neo	Hijack	30,000 ft
Boeing 707	Hijack	30,000 ft
Boeing 737	Hijack	30,000 ft
Boeing 737-200	Hijack	30,000 ft
Boeing 737-2A8	Hijack	30,000 ft
Boeing 737-200	Loss of control	30,000 ft
Boeing 737-8HG	Loss of control	110 ft
Boeing 787 Dreamliner	Loss of control	625 ft
Fokker F27	Loss of control	500 ft
Boeing 747-100B	Mid-air collision	14000 ft
Trimotor monoplane	Mountain collision	25,000 ft
Airbus A320-200	Pilot Error	90 ft
Airbus A320-231	Pilot Error	300 ft
AirbusA321	Pilot Error	1300 ft
Boeing 737-200	Pilot Error	500 ft
Boeing 7372A8	Pilot Error	4,900 ft
Boeng 747-237D	Pilot Error	8000 ft
Boeing 737-2A8	Pilot failure	100 ft
Boeing 737-800	Pilot failure	450 ft
Boeing 737-8HG	Pilot failure	200 ft
D: 747 000D	Dilat fallons	2000 #

Conclusion

The analysis reveals significant patterns in aviation accidents across India, highlighting common causes such as technical failures, weather conditions, and human error. By exploring the number of crashes over time and their associated fatalities, we gain a better understanding of the evolving nature of air safety in the region. The insights derived from this dashboard emphasize the importance of continuous safety audits, stringent maintenance protocols, and improvements in pilot training and air traffic control. Ultimately, this project underscores the need for a data-informed approach to aviation safety to reduce future accidents and safeguard lives.