PONOVLJENI 1. MEĐUISPIT IZ ELEKTRONIKE 1

6.11.2009.

PRVA SKUPINA ZADATAKA

1. Za mrežu na slici 1 treba odrediti izlazni napon u stacionarnom stanju ako je na ulaz priključen napon na slici 2. Zadano je $R=10k\Omega$, C=1nF (trenutak t=0 ms ne predstavlja trenutak prikljucenja ulaznog napona).

Slika 1. Mreža za 1. zadatak

Slika 2. Ulazni napon

- 2. Ako se u mreži iz prvog zadatka kondenzator zamjeni sa novim iznosa $C=100 \mu F$ kako će onda izgledati izlazni napon?
- 3.. Silicij je dopiran donorima koncentracije N_{DI} i akceptorima koncentracije N_{AI} . Vrijedi da je $N_{DI}=2\cdot N_{AI}>>10\cdot n_i(300 \text{ K})$. O kojem tipu poluvodiča se radi? Ako nakon toga dodamo akceptore koncentracije $N_{A2}=2\cdot N_{AI}$ što se dogodi sa specifičnom vodljivosti na T=300 K nakon drugog dopiranja?
- 4. Za koncentracije primjesa silicijskog pn-spoja sa širokim p i n stranama vrijedi N_D =10 N_A . Skicirati pn spoj, označiti osiromašena područja na p i n strani, skicirati raspodjelu naboja, električnog polja i potencijala u pn spoju. Na osima označiti karakteristične veličine.
- 5. Uzorak silicija je na sobnoj temperaturi, a Fermijeva energija se nalazi 0.2 eV iznad dna zabranjenog pojasa. Ako se temperatura povisi za 100°C koji tip primjesa treba treba dodati da $E_F E_{Fi}$ ostane nepromijenjen? Ako se nakon dodavanja druge primjese temperatura dodatno povisi za 100°C , što se dogodi s Fermijevom energijom.
- 6. Uzorak silicija je na sobnoj temperaturi, a Fermijeva energija se nalazi 0.2 eV iznad sredine zabranjenog pojasa. Koji nosioci dominiraju u driftnoj struji u opisanom uzorku? Što se dogodi sa specifičnom vodljivosti ako se uzorku dodatno dodaju jednake koncentracije donora i akceptora?
- 7. Za silicijski pn-spoj priključen na vanjski napon $U=0,6\,\mathrm{V}$ s koncentracijama primjesa iznosa $N_A=10^{15}\,\mathrm{cm}^{-3}$ i $N_D=10^{17}\,\mathrm{cm}^{-3}$, te širokim stranama, uz pokretljivosti nosilaca $\mu_n=2\mu_p$ i jednakim vremenima života manjinskih nosilaca, odrediti i objasniti da li je struja elektrona ili šupljina veća $(T=300\,\mathrm{K})$.

- 8. Ako na diodu na sobnoj temperaturi (U_T =25 mV) priključimo strujni izvor opisan izrazom i_D =5+0.5sin ω t, mA na diodi se nalazi napon u_D =650+ u_d , mV. Kolika je amplituda izmjeničnog napona na diodi, U_{dm} na sobnoj temperaturi? Što se dogadi sa istosmjernom komponentom napona na diodi ako temperatura poraste, a priključena struja ostane nepromijenjena?
- 9. Na istom grafu nacrtati I-U karakteristiku osvjetljene i neosvjetljene solarne ćelije. Na grafu označiti područje rada solarne ćelije.

DRUGA SKUPINA ZADATAKA

Zadatak 1. Na slici je zadana CR mreža i napon koji je priključen na njezin ulaz.

- 1.1. Izračunati vrijednost izlaznog napona u t = 0ms.
- 1.2. Izračunati vrijednost izlaznog napona u t = 0.5 ms.
- 1.3. Izračunati vrijednost izlaznog napona u t = 2 ms.
- 1.4. Izračunati vrijednost izlaznog napona u t = 3.5 ms.
- 1.5. Izračunati vrijednost izlaznog napona u t = 4.5 ms.
- **2.** Silicij je dopiran akceptorima koncentracije 10¹⁶ cm⁻³. Pokretljivosti nosilaca pri 300 K iznose 900 cm²/Vs i 350 cm²/Vs. Odrediti:
 - 2.1 specifičnu vodljivost pri temperaturi 530 K (porastom temperature na 530 K pokretljivosti se promjene za 30 %),
 - 2.2 iznos otpora silicijske pločice duljine 100 μm i površine presjeka 0,1 mm² pri 300 K,
 - 2.3 širinu zabranjenog pojasa silicija ako se nalazi na temperaturi pri kojoj je širina zabranjenog pojasa germanija 0,64 eV,
 - 2.4 koncentraciju slobodnih nosilaca u siliciju pri temperaturi 400 K i 500 K,
 - 2.5 položaj Fermijeve energije pri temperaturi 300 K, te tip i koncentraciju primjesa koju je potrebno dodati siliciju da se Fermijeva energija pomakne za 0,1 eV prema vrhu valentnog pojasa.
- **3.** Raspodjela manjinskih nosilaca na p i n strani neke silicijske diode prikazana je na slici. Dioda se nalazi na sobnoj temperaturi (T=300 K), površina pn spoja je 1 mm², a pokretljivosti manjinskih nosilaca iznose 850 i 300 cm²/Vs. Potrebno je odrediti:
 - 3.1. Koncentracije primjesa na p i n strani,
 - 3.2. Napon na diodi,
 - 3.3. Struju zasićenja koja protječe kroz diodu,
 - 3.4. Dinamički otpor diode.

