

Basınç Algılayıcılarına Giriş

Bu sunumda, basınç algılayıcıların temel düzeyde bilmeniz gereken her şeyi öğrenmeye başlayacağız.

Öğr. Gör. Erhan Akagündüz

Çalışma Prensibi

Basınç ve Gerinim

Basınç algılayıcıları, uygulanan basıncın gerinim oluşturması prensibiyle çalışır. Bu gerinim, elektrik sinyaline dönüştürülür.

Dönüştürme Yöntemleri

Piezoelektrik, kapasitif ve dirençsel gibi farklı dönüştürme yöntemleri kullanılır. Her yöntem, farklı hassasiyet ve doğruluk sunar.

Temel Elemanlar

Basıncı algılayan ve gerinim oluşturan temel parçadır.
Silikon veya metal gibi

malzemelerden yapılır.

Hassas Eleman

2 Elektronik Devre

Gerinimi elektrik sinyaline dönüştüren ve işleyen devredir. Amplifikatörler ve filtreler içerir.

3 Kasa ve Bağlantılar

Algılayıcıyı çevresel etkilerden korur ve bağlantı sağlar. Dayanıklı malzemelerden üretilir.

Farklı Tipler

Diyafram Tipi

Esnek bir diyafram kullanır. Basınç, diyaframda gerinim oluşturur.

Piezoelektrik

Piezoelektrik kristaller kullanır. Basınç, elektrik yükü oluşturur.

Kapasitif

Kapasitans değişimini ölçer. Basınç, kapasitansı etkiler.

Basınç Birimleri

Pa

psi

Pascal (Pa)

PSI

SI birim sisteminde basınç birimidir. 1 N/m²'ye eşittir. Pound per square inch, İngiliz birim sisteminde kullanılır.

bar

Bar

100,000 Pascal'a eşittir. Genellikle endüstriyel uygulamalarda kullanılır.

Zorluklar

1

Sıcaklık Etkisi

Sıcaklık değişimleri, algılayıcının hassasiyetini etkileyebilir. Kalibrasyon önemlidir.

2

Doğrusallık

Basınç ve çıkış sinyali arasındaki doğrusal ilişki sağlanmalıdır.

3

Histerezis

Basınç artışı ve azalışı arasındaki fark, ölçümü etkileyebilir.

Kullanım Alanları

Otomotiv

Motor kontrolü, lastik basıncı izleme sistemleri (TPMS) vb.

Tıp

Kan basıncı ölçümü, solunum cihazları, infüzyon pompaları.

Endüstri

Proses kontrolü, akış ölçümü, basınçlı kaplar.

Avantajları

Hassasiyet

Küçük basınç değişimlerini algılayabilirler.

Doğruluk

Güvenilir ve tekrarlanabilir ölçümler sağlarlar.

Kompakt

Küçük boyutları sayesinde kolayca entegre edilebilirler.

Dayanıklılık

Zorlu çevresel koşullara dayanıklıdırlar.

Güncel Trendler

Kablosuz algılayıcılar, veri toplama ve iletimini kolaylaştırıyor. MEMS teknolojisi, algılayıcıların boyutunu küçültüyor ve performansını artırıyor. Yapay zeka, ölçüm verilerini analiz ederek daha akıllı çözümler sunuyor.

Sonuç ve Öneriler

- ✓ Basınç algılayıcılar, modern teknolojinin vazgeçilmez bir parçasıdır.
- ✓ Otomasyon, güvenlik ve verimlilik için kritik öneme sahiptirler.
- ✓ Doğru algılayıcı seçimi, uygulamanın başarısı için hayati önem taşır.

Kaynakça

☐ İnternet üzerinde konu ile alakalı erişime açık tüm veriler