סיכומי הרצאות - אלגברה לינארית 1

מיכאל פרבר ברודסקי

תוכן עניינים

3		חבורות, חוגים ושדות	מונואידים, I
3			1 הגדרות
3		תכונות של פעולות	1.1
3		מונואיד	1.2
3		חבורה	1.3
3		חוג	1.4
4		שדה	1.5
4			II מרוכבים
4		בסיסיות	2 הגדרות
4		לארית	3 הצגה פו
5			ווו מטריצות III
5		· • • • • • • • • • • • • • • • • • • •	4 הגדרות
5		שונות	4.1
6		פעולות בסיסיות	4.2
6		לפל מטריצה בו ced מטריצה בו	
6	מטריצה	4.2.2 כפל מטריצה בנ	
6	ל מטריצות:	טענות לגבי כפל	
7	יריצה	פעולות אלמנטריות על מט	4.3
7		ירוג קנוני	5 דירוג וד
7		הגדרות	5.1
8		מציאת פתרונות	5.2
8	הפתרונות לפי צורה מדורגת (לא בהכרח		
8	ות עצמם לפי צורה מדורגת קנונית	5.2.2 מציאת הפתרונו	
8			6 תת מרר
8		לינאריים	7 צירופים
8		בת"ל	7.1
9	ם	קבוצת הצירופים הלינאריי	7.2
9		בסיס	7.3
10		הפיכות	8 שחלוף ו

10	:Transpose ⁻ שחלוף 8.1	
10	8.2 הפיכות מטריצה	
11	פונקציית נפח	9
11	הגדרות 9.1	
11	דטרמיגנטה 9.2	
12	טענות 9.3	
12	מטריצה מוצמדת 9.4	
12	תמורות	10
12	הגדרות 10.1	
13	sign 10.2	
13	מרחב וקטורי	11
13	הגדרות 11.1	
14	11.2 למת ההחלפה של ריס	
14	מימד מימד 11.3	
14	11.4 הכללה של משפט 2 מתוך 3 הכללה של משפט	
14	סכום ישר 11.5	
15	מרחב העמודות והשורות	12
15	רוקי rank חוקי	
15	העתקות לינאריות	13
15	הגדרות 13.1	
15	תכונות בסיסיות	
16	הטלה 13.3	
16	איזומורפיזם	
16	הגדרות 13.4.1	
17	קואורדינטות 13.4.2	
17	13.5 מרחב ההעתקות	
17		
18	מטריצה מייצגת מטריצה מייצגת	
18		
18	טענות 13.7.2	
19	אלגוריתמיםאלגוריתמים	14
19		
19	14.1.1 לפי שורות	
19	14.1.2 לפי עמודות	
19	14.2 השלמה של סדרה בת"ל לבסיס	

חלק I

מונואידים, חבורות, חוגים ושדות

1 הגדרות

1.1 תכונות של פעולות

A imes A הוא A imes A הוא A imes A תהא A imes A

- $\forall a, b, c \in A. (a*b)*c = a*(b*c)$ אסוצייטיבית: * .1
 - $. \forall a, b.a * b = b * a$ אילופית: * .2
 - $.*: A \times A \rightarrow A :*$ סגורה לפעולה A סגורה לפעולה

1.2 מונואיד

G כך ש: G כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־G כאשר כלשהי ו־ל

- .* סגורה לפעולה G .1
- 2. * פעולה אסוצייטיבית.
- . האיבר הזה . $\exists e \in G. \forall g \in G. e*g = g*e = g$ האיבר לפעולה, לפעולה, לפעולה, לפעולה. פ e_G האיבר הזה יחיד ומסומן.

1.3 חבורה

מקרה פרטי של מונואיד שמקיימת גם:

4. קיים איבר הופכי, כלומר $g\in G.\exists h\in G.g*h=h*g=e$ ראיבר יחידה. איבר איבר הופכי של g מסומן -g^-1

1.4 חוג

שלשה $\langle R, +, * \rangle$ נקראת חוג אם:

- $. orall a, b \in R.a + b = b + a$ חבורה חילופית, כלומר $\langle R, +
 angle$.1
 - .* סגורה לפעולה R ו־R סגורה לפעולה * .2
 - 3. חוק הפילוג:

$$\forall a, b, c \in R.a * (b+c) = a * b + a * c$$

 $(b+c) * a = b * a + c * a$

a*b=b*a חוג חילופית b*a* אם a*b=b*a* חוג חילופית (כלומר

חוג עם יחידה $^{ au}$ אם $\langle R, * \rangle$ מונואיד.

סיים. 0_R ניטרלי לכפל אם 0_R ניטרלי לכפל אם 0_R

מחלק $a*b=0_R$ כך ש־ $b \neq 0_R$ כך שם "מחלק "מחלק (נקרא "מחלק $b \neq a \in R$ מחלק $b \neq a \in R$ מחלק $a*b=0_R$ מחלק (מחלק $a*b=0_R$

חוג חילופי עם יחידה וללא מחלקי 0 נקרא **תחום שלמות**. הוא מקיים את חוק הצמצום (לכל a=c אז a*b=c*b, אם $a,b,c\in R$

1.5 שדה

גם: מקרה פרטי של חוג שמקיים גם: $\langle F, +, * \rangle$

תבורה חילופית. $\langle F \setminus \{0_F\}, * \rangle$.1

כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. תחומי שלמות סופיים הם כן שדות. כל שדה הוא תחום שלמות, אבל ההפך אינו נכון. חרבה פעמים בהגדרת שדה מוסיפים את הדרישה $0_F \neq 1_F$

חלק II

מרוכבים

2 הגדרות בסיסיות

נסמן הוא המספר המספר היא: $\mathbb{C}=\mathbb{R}^2$, כאשר המספר הראשון הוא . $i=\sqrt{-1}$ נסמן החלק הממשי (שמסומן ($Re\left(c\right)$) והמספר השני הוא החלק הדמיוני (שמסומן , $z\in\mathbb{C}$) עובדות: עבור

- . בירים. z של z מראשית הצירים. $||z||=\sqrt{Re\left(z\right)^{2}+Im\left(z\right)^{2}}$. מראשית הצירים. 1
 - $z=||z||\,e^{i\cdot\arg(z)}$ לכן, $e^{i heta}=\cos\left(heta
 ight)+i\sin\left(heta
 ight)$.2
 - 3. **חיבור:** מחברים את החלק הממשי והדמיוני בנפרד.
 - $.i^2 = -1$ משתמשים בזה ש־ $.(a+ib)\cdot(c+id) = (ac-bd)+i\,(bc+da)$.4
 - 5. כל שורש של פולינום מרוכב הוא מרוכב.
 - .6 נגדיר \overline{z} להיות $\overline{z}=a-ib$ כלומר להפוך את החלק הדמיוני.
 - $\overline{\overline{z}}=z$ (x)
 - $z\cdot \overline{z} = \left|\left|z\right|\right|^2$ (1)
 - $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ (a)
 - $\overline{z_1\cdot z_2}=\overline{z_1}\cdot\overline{z_2}$ (T)
 - $Re\left(z
 ight)=rac{z+\overline{z}}{2},Im\left(z
 ight)=rac{z-\overline{z}}{2i},$ (ה)
- .(כלומר כל שורש של כל פולינום מרוכב הוא מרוכב). שדה סגור אלגברית (כלומר כל שורש של כל פולינום מרוכב הוא מרוכב).
 - .8 איבר הופכי מקבלים (אם מכפילים בהופכי מקבלים 1). $w = \frac{a-ib}{a^2+b^2}$

3 הצגה פולארית

נגדיר מרוכב בתור אוג $\langle r, \theta \rangle$ כאשר r המרחק מראשית הצירים ו־ θ הארגומנט.

$$z = r\cos\theta + ir\sin\theta = r \cdot e^{i\theta}$$

עובדות:

1. הארגומנט של z: נסמן $\arg(z)$ להיות הזווית שהמספר יוצר עם ציר הממשיים (לרוב נסמן .1 $\arg(z) = \arctan\left(\frac{b}{a}\right)$ בעזרת לחשב אותו בעזרת $\gcd(z) = \arctan\left(\frac{b}{a}\right)$

$$\overline{z}=r\cdot e^{-i\theta}, z^{-1}=rac{1}{r}e^{-i\theta}$$
 .2

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
.3

4. להכפיל מספרים מרוכבים על הגרף נראה כמו להכפיל את האורכים זה בזה ולחבר את הזוויות.

 $e^{i\theta}=e^{i(\theta+2\pi k)}$ - פתרון משוואה $z^n=re^{i\theta}$. נמצא הצגה פולארית $z^n=a+ib$ נשתמש בעובדה שי $z^n=a+ib$ אזי:

$$z = \sqrt[n]{r}e^{i\left(\frac{\theta}{n} + 2\pi\frac{k}{n}\right)}$$

עבור שונים. $k \in \{0, \dots, n-1\}$ ולכל ולכל . $k \in \mathbb{Z}$

חלק III

מטריצות

4 הגדרות

וקטור הוא mיה של איברים ב־ \mathbb{F} . מטריצה היא mיה של וקטורים. מטריצה מסדר \mathbb{F} 1 מטריצה עם m שורות ו־n עמודות (קודם y ואז y).

נגדיר מערכת משוואות כמטריצה באופן הבא:

$$\begin{cases} \alpha_{1,1}x_1 + \dots + \alpha_{1,n}x_n &= b_1 \\ \vdots &= \vdots \\ \alpha_{m,1}x_1 + \dots + \alpha_{m,n}x_n &= b_m \end{cases} \equiv \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ \alpha_{m,1} & \dots & \alpha_{m,n} & b_m \end{pmatrix}$$

4.1 שונות

מטריצה ריבועית: מטריצה שכמות העמודות בה שווה לכמות השורות.

מטריצת היחידה: מסומנת $i\neq j$ ואם $i\neq j$ אם $a_{i,j}=1$ אם מטריצה ריבועית מטריצה . I_n ואם מטריצה: מסומנת $a_{i,j}=0$

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $:e_i$ וקטור

$$(e_i)_i = \begin{cases} 0 & x \neq i \\ 1 & x = i \end{cases}$$

iה בעצם 0 בכל מקום חוץ מהמקום i

מטריצת הסיבוב:

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

אם מכפילים וקטור במטריצת הסיבוב, זה מסובב את הוקטור heta מעלות.

4.2 פעולות בסיסיות

חיבור וקטורים:

$$\begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_n \end{pmatrix} + \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \alpha_0 + \beta_0 \\ \vdots \\ \alpha_n + \beta_n \end{pmatrix}$$

4.2.1 כפל מטריצה בוקטור

כמו להציב את הוקטור בעמודות המטריצה.

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \begin{pmatrix} \beta_1 a_{1,1} + \dots + \beta_n a_{1,n} \\ \dots + \dots + \beta_n a_{m,n} \end{pmatrix}$$

 $A\overline{x}=\overline{b}$ שקולים ל־ $\overline{x}\in\mathrm{Sols}\left(A\mid b
ight)$ בנוסף, הפתרונות

את פתרונות המטריצה נסמן ב־Sols. מטריצות נקראות שקולות אם הפתרונות שלהן זהים. משפטים לגבי כפל מטריצה בוקטור:

- $A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y} \bullet$
- $A(\alpha \cdot \overline{x}) = \alpha \cdot (A \cdot \overline{x}) \bullet$
- $0\cdot b=0$, מרטיצת ה־0, עבור 0 מטריצת ה־1, עבור $ar{b}=ar{b}$ מרטיצת היחידה, I_n

4.2.2 כפל מטריצה במטריצה

הגדרה 1.4 יהא R חוג ויהיו (R חוג ויהיו R מטריצות. מטריצות $A\in M_{n\times m}\left(R\right), B\in M_{m\times p}\left(R\right)$ בצורה הבאה:

$$(A \cdot B)_{i,j} = \sum_{k=1}^{n} a_{i,k} \cdot b_{k,j}$$

$$A\cdot B=\left(egin{array}{cccc}A\cdot C_1(B)‐&A\cdot C_n(B)\\dash‐‐\end{array}
ight)$$
 2.4 משפט

$$A\cdot B=\left(egin{array}{cccc} -&R_1(A)\cdot B&-\ &dots\ -&R_n(A)\cdot B&- \end{array}
ight)$$
 3.4 משפט

A כלומר כפל מטריצות הוא כפל וקטורים של העמודות של B ב־A, או כפל וקטורים של השורות של ב־B.

:טענות לגבי כפל מטריצות

- $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes t}(\mathbb{F}), C\in \mathcal{A}$ עבור עבור $A\cdot B\cdot C=A\cdot (B\cdot C)$.1 . $M_{t imes n}(\mathbb{F})$
 - 2. חוק הפילוג:

$$A_1,A_2\in M_{m imes k}(\mathbb{F}),B\in M_{k imes n}(\mathbb{F})$$
 עבור $(A_1+A_2)\cdot B=A_1\cdot B+A_2\cdot B$ (ב)

$$A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(\mathbb{F}), \alpha \in \mathbb{F}$$
 עבור $A \cdot (\alpha \cdot B) = \alpha \cdot (A \cdot B)$.3

$$A\cdot I_n=A$$
 נוסף לכך . $A\cdot 0=0\cdot A=0$, $A\in M_{m imes n}(\mathbb{F})$ לכל מטריצה . $I_m\cdot A=A$

$$.igg(egin{array}{ccc} 1 & 1 \ 1 & 1 \end{array}igg)\cdotigg(egin{array}{ccc} 1 & 1 \ -1 & -1 \end{array}igg)=igg(egin{array}{ccc} 0 & 0 \ 0 & 0 \end{array}igg)$$
 הערה: יש מחלקי אפס, לדוגמה

4.3 פעולות אלמנטריות על מטריצה

הפעולות האלה הן:

- $R_i \leftrightarrow R_i$. להחליף סדר בין משוואות.
- $R_i \rightarrow \alpha \cdot R_i$.2. להכפיל משוואה בקבוע.
 - $R_i \rightarrow R_i + R_i$.3. לחבר משוואות.

כולן משמרות את הפתרונות של המטריצה.

מטריצות ששקולות באמצעות סדרת פעולות אלמנטריות נקראות <u>שקולות שורה</u>.

 φ משפט 4.4 יהיו A,B מטריצות כך ש־A מוגדר, ותהא φ פעולה אלמנטרית. אזי:

$$\varphi(A \cdot B) = \varphi(A) \cdot B$$

הגדרה 5.4 המטריצה האלמנטרית: לכל פעולה אלמנטרית עם m שורות, נגדיר הגדרה בעולה האלמנטרית: לכל פעולה אלמנטרית על ידי האלמנטרית על ידי וווער בער אלמנטרית אלמנטרית של אלמנטרית בער ידי וווער בער האלמנטרית של אלמנטרית בער ידי וווער בער האלמנטרית של אלמנטרית בער האלמנטרית בער האלמנטרית ווווער בער האלמנטרית בער ה

 $.arphi\left(A
ight)=E_{arphi}\cdot A$ לכל מטריצה .arphi, ופעולה אלמנטרית אלמנטרית $.(E_{arphi})^{-1}$, ופעולה הפכית של $.(E_{arphi})^{-1}$ היא אלמנטריות הפיכות, והמטריצה של הפעולה ההופכית של $.(E_{arphi})^{-1}$

5 דירוג ודירוג קנוני

5.1 הגדרות

בצורה מדורגת:

- .1 משוואות 0 (מהצורה b (מהצורה למטה.
- 2. המשתנה הפותח בכל משוואה נמצא מימין ממש למשתנים הפותחים במשוואות מעליו.

משתנה חופשי הוא משתנה שלא מקדם פותח של אף שורה.

בנוסף, בצורה מדורגת קנונית:

- 1 המקדם של כל משתנה פותח הוא
- 4. לכל משתנה פותח של משוואה, המקדם של המשתנה בשאר המשוואות הוא 0.

לכל מטריצה קיימת צורה מדורגת קנונית יחידה ששקולה לה.

5.2 מציאת פתרונות

5.2.1 מציאת מספר הפתרונות לפי צורה מדורגת (לא בהכרח קנונית)

עבור ($A\mid b$) מטריצה מדורגת:

- .1 אין פתרון. אין ($b \neq 0$ כאשר ($b \neq 0$ כאשר שורת סתירה ($a \mid b$) אין פתרון.
 - . אחרת, יש $\left\|\mathbb{F}\right|^k$ פתרונות כאשר k מספר המשתנים פתרונות 2

5.2.2 מציאת הפתרונות עצמם לפי צורה מדורגת קנונית

אז: $(A\mid b)$ מטריצה מדורגת קנונית מסדר $m\times n$ ששקולה ל־ $(A'\mid b')$

- . $\operatorname{Sols}\left((A'\mid b')\right)=\emptyset$ אם ב־ $(A'\mid b')$ יש שורת סתירה אז
- 2. אחרת: נעשה החלפה על המשתנים החופשיים (אלה שאינם מקדם פותח של אף שורה). כל משתנה שאינו חופשי יוגדר לפי משוואה מסוימת. דוגמה:

$$\left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 4 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 & 3 \end{array}\right)$$

המקדמים החופשיים הם 1,4,6. הפתרון הוא:

$$\left\{ \begin{pmatrix} x_1 \\ 1 \\ 2 - 4x_4 \\ x_4 \\ 3 - 3x_6 \\ x_6 \end{pmatrix} \mid x_1, x_4, x_6 \in \mathbb{R} \right\}$$

6 תת מרחב

טענה (בוחן תת מרחב): $U\subseteq F^n$ מרחב אמ"מ:

- .1 סגורה לחיבור. U
- .2 סגורה לכפל בסקלר. U
- $.U
 eq \emptyset$ ניתן החליף את התנאי ב $.\overline{0} \in U$.3

נובע מכאן גם שחיתוך של תתי מרחבים הוא תת מרחב.

7 צירופים לינאריים

7.1 בת"ל

נקראת
$$\dfrac{(lpha_1)}{(a_k)}\in\mathbb{F}^k$$
 נקראת מקדמים ($\overline{v_1},\ldots,\overline{v_k}$) $\in(\mathbb{F}^n)^k$ נקראת $\alpha_1\overline{v_1}+\cdots+\alpha_k\overline{v_k}=0$ אם $\alpha_1\overline{v_1}+\cdots+\alpha_k\overline{v_k}=0$

(גדיר את מרחב התלויות של $(\overline{v_1},\ldots,\overline{v_k})$ להיות:

$$LD\left((\overline{v_1},\dots,\overline{v_k})\right) = \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in \mathbb{F}^n \mid \alpha_1 \overline{v_1} + \dots + \alpha_k \overline{v_k} = 0 \right\}$$

 $LD((\overline{v_1},\ldots,\overline{v_k})) = Sols((\overline{v_1},\ldots,\overline{v_k}\mid 0))$

 $LD\left(\overline{v_1},\ldots,\overline{v_k}
ight)=\{0\}\iff \overline{v_1},\ldots,\overline{v_k}$ בת"ל מסקנה 2.7

 $ar b\in\mathbb F^m$ סדרת mיות (בת"ל) אם לכל בלתי תלויה לינארית תקרא בלתי ($\overline{v_1},\dots,\overline{v_k})\in(\mathbb F^m)^k$ סדרת חיות היותר פתרון אחד למשוואה בין $\sum_{i=1}^k x_i\overline{v_i}=ar b$

- . תהי $S\subseteq \mathbb{F}^n$ אז אם $S\subseteq \mathbb{F}^n$ אז מתהי $S\subseteq \mathbb{F}^n$.1
- .2 עד ש־ $S\subseteq \mathbb{F}^n$ ברופורציונים S=(x,y) אז א מלויה לינארית און מרים פרופורציונים.

קבוצת הצירופים הלינאריים

 $(\overline{v_1},\ldots,\overline{v_k})\in (\mathbb{F}^n)^k$,איות, סדרת עבור סדרת **4.7**

$$\operatorname{sp}(v_1, \dots, v_k) = \left\{ \sum_{i=1}^k \alpha_i \overline{v_i} \mid \alpha_1, \dots, \alpha_k \in \mathbb{F} \right\}$$

יא: $K\subseteq \mathbb{F}^n$ היא: המרחב הנפרש על ידי v_1,\ldots,v_k היא:

$$\operatorname{sp}(k) = \left\{ b \in \mathbb{F}^n \mid \exists k \in \mathbb{N}. \exists \alpha_1, \dots, \alpha_k \in \mathbb{F}. \exists t_1, \dots, t_k \in K. b = \sum_{i=1}^k \alpha_i t_i \right\}$$

 $\operatorname{span}(A) = b$ אם B אם פורשת A

7.3 בסיס

הגדרה 5.7 יהי $\mathbb F$ שדה, B תת קבוצה של $\mathbb F^n$. אז B נקראת בסיס של $\mathbb F^n$ אם שניים מהתנאים הבאים מתקיימים:

- .1. B בת"ל.
- \mathbb{F}^n את פורשת B .2
 - .m = n .3

כל שניים מוכיחים גם את השלישי.

Bבסיס: Bבסיס בסיס התנאים הבאים שקולים

- .. בת"ל מקסימלית B בת"ל וכל קבוצה המכילה ממש את B הינה תלויה לינארית.
 - . פורשת מינימלית B פורשת וכל קבוצה שמוכלת ממש בB אינה פורשת.
 - B. לכל $v \in \mathbb{F}^n$ יש הצגה יחידה כצירוף של וקטורים מ־ $v \in \mathbb{F}^n$.3

:Transpose מחלוף 8.1

את (A^t מטריצה מסומן (לפעמים לא הגדרה את נגדיר לאת) את נגדיר את נגדיר מטריצה את מטריצה את נגדיר את נגדיר את נגדיר את ואת את בהינתן מטריצה את לאת לאת האחלוף של את בהינתן מטריצה את לאת האחלוף את האחלוף של את האחלוף של את האחלוף של את האחלוף את

$$\boldsymbol{.} \big(A^T\big)_{i,j} = (A)_{j,i}$$

 $.\left(egin{array}{ccc} 1 & 2 \\ 4 & 8 \\ 16 & 32 \end{array}
ight)^T = \left(egin{array}{ccc} 1 & 4 & 16 \\ 2 & 8 & 32 \end{array}
ight)$: באופן אינטואטיבי, הפעולה מחליפה בין השורות לעמודות. לדוגמה:

משפט 2.8 חוקי Transpose:

- . מאותו הסדר) (A+B) אם החיבור מוגדר, כלומר (A+B) (אם הסדר) (A+B) אם הסדר).
 - $.lpha\in\mathbb{F}$ עבור עבור $\left(lpha A
 ight)^{T}=lpha\left(A^{T}
 ight)$.
 - $A \in M_{m \times k}(\mathbb{F}), B \in M_{k \times n}(F)$ עבור $(A \cdot B)^T = B^T \cdot A^T$
 - $.(A^T)^T = A \bullet$

8.2 הפיכות מטריצה

:תיקרא $A\in M_{m imes n}(\mathbb{F})$ מטריצה 3.8 מטריצה

- $B\cdot A=I_n$ כך ש $B\in M_{n imes m}(\mathbb{F})$ כל שח קיימת מטריצה 1. הפיכה משמאל:
 - $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ ביימת מטריצה קיימת מימין: אם קיימת 2.
- $B\cdot A=I_n$ כך ש $A\cdot B=I_m$ כך ש $B\in M_{n imes m}(\mathbb{F})$ גם קיימת מטריצה . . $(A^{-1})^{-1}=A$ ומסיימת המטריצה B היא יחידה ומסומנת A^{-1} , ומקיימת

 $A\in M_{m imes n}(\mathbb{F})$ משפט 4.8 משפט

- A של העמודות סדרת יחיד (כלומר יחיד ' $A\cdot \overline{x}=0$ למערכת למערכת העמודות הפיכה A .1 בת"ל, ולכן $(m\geq n$ לכן ולכן בת"ל,
- העמודות סדרת מימין לכל $\bar{b}\in\mathbb{F}^m$ יש פתרון לכל איש למערכת למערכת למערכת להעמודות איש פתרון לכל להערכת להעמין להערכת להעמודות להערכת להער
- עם העמודות סדרת לכל הפיכה לכל יחיד לכל יש פתרון איש א $A\cdot \overline{x}=\overline{b}$ למערכת למערכת הפיכה בסיס, ולכן הפיס, ולכן הש $A\cdot \overline{x}=\overline{b}$ (כלומר סדרת העמודות של בסיס, ולכן A

בפרט מטריצה הפיכה היא ריבועית.

הערה: המטריצה 0 אינה הפיכה, מימין או משמאל.

:טענות

- . עש הפיכה אז A לא אפסים שורת אפסים אז $A\in M_{m imes n}(\mathbb{F})$. 1. אם במטריצה
 - A^T הפיכה A הפיכה.
 - $(A^T)^{-1} = (A^{-1})^T$.3
- $A\cdot B$ הפיכות, אז $A\cdot B$ הפיכות, אז $A\in M_{m imes k}(\mathbb{F}), B\in M_{k imes n}(\mathbb{F})$.4

(מטריצה ריבועית) $A \in M_n\left(\mathbb{F}
ight)$ משפט שקולים עבור מטריצה (מטריצה הבאים הבאים

- A .1
- I_n שקולת שורות ל-A .2
- . לכל $\overline{b}\in\mathbb{F}^n$ יש פתרון יחיד. $\overline{b}\in\mathbb{F}^n$ למערכת.
 - . למערכת $\overline{a}=\overline{0}$ יש פתרון יחיד.
- . יש פתרון יחיד. $A\overline{x}=\overline{b}$ כך שלמערכת $b\in\mathbb{F}^n$ יש פתרון
- A בת"ל. אפשר גם שורות לפי A הפיכה משמאל כלומר עמודות A בת"ל.
- A פורשות. אפשר גם שורות לפי A כלומר עמודות לפי A הפיכה מימין כלומר עמודות A
 - .8 הפיכה A^T

ובנוסף $A \cdot B \iff$ והפיכות היבועיות A, B הפיכה.

9 פונקציית נפח

9.1 הגדרות

נפח אם: $N:M_{n}\left(\mathbb{F}
ight)
ightarrow\mathbb{F}$ פונקציית נפח אם:

 $A \in M_n\left(\mathbb{F}\right)$ עבור עבור לפי שורה.

$$N\left(\begin{pmatrix} -A_1 - \\ \vdots \\ -\alpha \cdot B + \beta \cdot C - \\ \vdots \\ -A_n - \end{pmatrix}\right) = \alpha \cdot N\left(\begin{pmatrix} -A_1 - \\ \vdots \\ -B - \\ \vdots \\ -A_n - \end{pmatrix}\right) + \beta \cdot N\left(\begin{pmatrix} -A_1 - \\ \vdots \\ -C - \\ \vdots \\ -A_n - \end{pmatrix}\right)$$

- N(A) = 0 אם יש $i \neq j$ כך ש־ $R_i(A) = R_i(A) = R_i(A)$ (יש שתי שורות שוות), אז $i \neq j$ אם יש
 - N(I) = 1 נרמול: 3.

9.2 דטרמיננטה

 $A_{(ij)}=M_{m-1 imes n-1}\left(\mathbb{F}
ight)$ יסומן A יסומן איסומן המינור העורה $A\in M_{m imes n}\left(\mathbb{F}
ight)$ מטריצה. המינור היj והעמודה היj למשל:

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}_{(2,3)} = \begin{pmatrix} 1 & 2 \\ 7 & 8 \end{pmatrix}$$

הגדרה: פיתוח דטרמיננטה לפי עמודה : זו הגדרה רקורסיבית.

$$\det_{j}^{(n)}(A) = \sum_{k=1}^{n} (A)_{k,j} \cdot (-1)^{k+j} \cdot \det^{(n-1)}(A_{(k j)})$$

|A| דטרמיננטה מסומנת גם

9.3 טענות

 $x_{\varphi}=-1$ אם φ פעולה אלמנטרית אז $\det\left(\varphi\left(A
ight)\right)=x_{\varphi}\cdot\det\left(A
ight)$ אז אם φ פעולה אלמנטרית אז $x_{\varphi}=\lambda$ ואם φ הוספת שורה אז $x_{\varphi}=\lambda$ אם φ כפל בסקלר x

$$\det(A \cdot B) = \det(A) \cdot \det(B) . 3$$

 $\det\left(A\right)=x_{arphi_{1}}\cdot\dots\cdot x_{arphi_{n}}$ לא הפיכה אז $\det\left(A\right)=0$. ואם $\det\left(A\right)=0$ וואם לא הפיכה אז $\det\left(A\right)=0$ לא הפיכה אז $\det\left(A\right)=0$ פאר $\varphi_{1},\dots,\varphi_{n}$ פעולות הדירוג.

. אפשר על השחלות שורה, שהן פעולות להפעיל השחלוף. לכן אפשר לכן לכן . $\det\left(A^{T}\right)$

,($\forall i < j.\,(A)_{i,j} = 0$ או $\forall j < i.\,(A)_{i,j} = 0$ או תחתונה או תחתונה או הדטריצה משולשית עליונה או תחתונה הוא האלכסון, $\prod_{i=1}^n (A)_{j\,i}$ או מכפלת האלכסון,

לכל קרמר: תהא יש פתרון יחיד והפתרון לכל $\overline{b}\in\mathbb{F}^n$ לכל לכל הפיכה, אז לכל הפיכה, אז לכל המערכת לתאר אותו) הינו: (שתי דרכים לתאר אותו)

$$.c = A^{-1} \cdot \overline{b}$$
 .1

$$.B_{j}\left(C_{1}\left(A
ight),\ldots,C_{j-1}\left(A
ight),ar{b},\ldots,C_{n}\left(A
ight)
ight)$$
 כאשר $c_{j}=rac{|B_{j}|}{|A|}$.2

9.4 מטריצה מוצמדת

. $(\operatorname{adj}\left(A\right))_{i,j}=\left(-1\right)^{j+i}\cdot\det\left(A_{\left(j\,i\right)}\right)$ בגדיר: מתקיים:

$$.(\operatorname{adj}(A))^{T} = \operatorname{adj}(A^{T}) .1$$

$$A \cdot \operatorname{adj}(A) = I \cdot \operatorname{det}(A)$$
 .2

 $A\cdot\operatorname{adj}\left(A
ight)=\operatorname{adj}\left(A
ight)\cdot A=$ אם א מטריצת מטריצת מטריצת אז: מטריצת לא הפיכה אז

$$A^{-1} = rac{1}{|A|} \cdot \operatorname{adj}(A)$$
 אם A הפיכה אז

10 תמורות

10.1 הגדרות

 $J_n=\{1,\ldots,n\}$ זה קבוצת הפונקציות החח"ע ועל ב־ $J_n o J_n$ כאשר S_n זה קבוצת פורמלית.

ע ועל.
$$\sigma:J_n o J_n$$
 .1

.
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ \sigma\left(1\right) & \sigma\left(2\right) & \sigma\left(3\right) & \sigma\left(4\right) \end{pmatrix}$$
 : רישום ישיר: .2

הגדרה מטריצת תמורה אם קיימת מטריצה (\mathbb{F}) מטריצה מטריצה מטריצה מטריצה מטריצה מטריצה מטריצה הגדרה 1.10 מטריצה מטריעה מטריעה מטריעה מטריעה מטריעה מטריעה מטריעה מ

$$P\left(\sigma
ight)=A=egin{pmatrix} |&&&|\ e_{\sigma\left(1
ight)}&\dots&e_{\sigma\left(n
ight)}\ |&&&|\ \end{pmatrix}$$
בך שי $\sigma\in S_n$

$$P\left(\sigma
ight)=egin{pmatrix} 0&1&0&0\\0&0&1&0\\1&0&0&0\\0&0&0&1 \end{pmatrix}$$
 התמורה תהיה $\sigma=egin{pmatrix} 1&2&3&4\\3&1&2&4 \end{pmatrix}$ למשל עבור

0,1 הגדרה שקולה: בכל שורה יש 1 יחיד, בכל עמודה יש 1 יחיד, וכל האיברים במטריצה הם 0,1 טענות:

- $A_{i,j}=1\iff$ המינור ה־(ij) של מטריצת תמורה הוא מטריצת וורה .1
 - $P(\sigma\tau) = P(\sigma) \cdot P(\tau)$.2

sign **10.2**

 $\operatorname{sign}(\sigma) = |P(\sigma)|$ מוגדרת כ־ σ מוגדרת (הסיגנטורה של sign (σ), $\sigma \in S_n$ עבור

 $N\left(\sigma
ight)=|\{(i,j)\mid j>i \land \sigma\left(j
ight)<\sigma\left(i
ight)\}|$ את נגדיר את לכל $1\leq i\leq n$ תמורה. לכל $\sigma\in S_n$ תמורה sign $(\sigma)=$ נגדיר את sign להיות: $z_{\sigma}\left(i
ight)=$ ($z_{\sigma}\left(i
ight)=$ $z_{\sigma}\left(i
ight)=$ ($z_{\sigma}\left($

הגדרה $\sin{(\sigma)}=1\iff$ זוגית תמורה לקראת מסמנים ב $\sigma\in S_n$ נקראת מסמנים ב $\sigma\in S_n$ אוגית מסמנים ב $A_n=\{\sigma\in S_n\mid \mathrm{sign}\,(\sigma)=1\}$

הערה: התמורות האי זוגיות אינן חבורה, כי אין תמורה ניטרלית באי זוגיות.

 $\operatorname{sign}\left(\sigma au
ight)=\operatorname{sign}\left(\sigma
ight)\cdot\operatorname{sign}\left(au
ight)$ 4.10 מסקנה

:משפט 5.10 משפט 5.10 משפט 5.10 משפט

$$|A| = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \cdot \prod_{i=1}^n (A)_{i,\sigma(i)}$$

11 מרחב וקטורי

11.1 הגדרות

 $(V,+,\cdot)$ כך ש: $\mathbb F$ הגדרה 1.11 (מרחב וקטורי): מרחב וקטורי מעל שדה

- .1 חבורה חילופית $\langle V, + \rangle$
- :כפל בסקלר, פעולה שמקיימת $\cdot: \mathbb{F} \times V \to V$.2
- $. orall lpha, eta \in \mathbb{F}. orall \overline{v} \in V. eta \cdot (lpha \cdot \overline{v}) = (eta \cdot lpha) \cdot v$ אסוצייטיביות. (א)
 - $. orall \overline{v} \in V.1_{\mathbb{F}} \cdot \overline{v} = \overline{v}$ (コ)
 - 3. חוק הפילוג:
 - $. \forall \alpha, \beta \in \mathbb{F}. \forall \overline{v} \in V. (\alpha + \beta) \cdot \overline{v} = \alpha \cdot \overline{v} + \beta \cdot \overline{v}$ (x)
 - $. \forall a \in \mathbb{F}. \forall \overline{v_1}, \overline{v_2} \in V. \alpha \cdot (\overline{v_1} + \overline{v_2}) = \alpha \cdot \overline{v_1} + \alpha \cdot \overline{v_2}$ (1)

וקטור הוא איבר במרחב וקטורי. כל nיה היא וקטור, אבל לא כל וקטור הוא nיה. הגדרות לבת"ל ופורשת:

- תת קבוצה V_1,\dots,v_n בת"ל אם לכל V_1,\dots,v_n בת"ל. כלומר אין איברים מ"ל. כלומר אין איברים מ"ל שיוצא V_1,\dots,V_n בת"ל. כלומר אין צירוף לינארי לא טריויאלי של איברים מ"ל שיוצא ס.
 - $\operatorname{sp}\left(X
 ight)=V$ נקראת פורשת אם $X\subseteq V$ מת ullet
 - .האמל אם היא בסיס נקראת בסיס $X\subseteq V$ נקראת בסיס $X\subseteq V$

11.2 למת ההחלפה של ריס

הגדרה 2.11 (למת ההחלפה של ריס): גיהי V מ"ו, ותהא (v_1,\ldots,v_n) סדרה פורשת ב־V, ו־ v_1,\ldots,v_n סדרה בת"ל. אזי:

- $.m \le n$.1
- בורשת. $(u_1, \ldots, u_m) \frown (v_j \mid j \notin \{i_1, \ldots, i_m\})$ בד בד $1 \leq i_1 < i_2 < \cdots < i_m \leq n$ פורשת.

כלומר אפשר להחליף איברים כלשהם של סדרה פורשת באיבריה של כל סדרה בת"ל.

מסקנה 3.11 אם V מ"ו בעל בסיס, אז בכל בסיס של V יש את אותו מספר איברים.

11.3 מימד

הגדרה 4.11 (מימד): יהי V מ"ו מעל $\mathbb F$ בעל בסיס, המימד של V הינו עוצמת בסיס כלשהו (והמימד יחיד). מסמנים כ־ $\dim_{\mathbb F}(V)$.

מרחב וקטורי V מעל \mathbb{F} נקרא נוצר סופית אם קיימת סדרה סופית נוצר ענוצר או באופן \mathbb{F} או באופן שקול אם על אם שקול אם $\dim_{\mathbb{F}}(V)\in\mathbb{N}$

 $U_1,U_2\subseteq V$ משפט המימדים הראשון: יהי V מ"ו, ו־ $U_1,U_2\subseteq V$ תמ"ו של

$$\dim (U_1 + U_2) = \dim (U_1) + \dim (U_2) - \dim (U_1 \cap U_2)$$

U=V אז $\dim U=\dim V$ ור וווע אז $U\subseteq V$

11.4 הכללה של משפט 2 מתוך 3

ים: שקולים: הבאים הבאים ממימד ה
 $(v_1,\dots,v_m)\in V^m$ ותהא סופית, בפרט נוצר בפרט מ"ו ממימד הבאים עוצר מ"ו ממימד הבאים איז מ

- .בסיס. B .1
- m = n + 3בת"ל B .2
- m=n + פורשת B .3
- B בת"ל מקסימלית.
- .5 B פורשת מינימלית
- B יש הצגה יחידה כצירוף לינארי של $v \in V$.6

11.5 סכום ישר

הגדרה: נאמר כי $\overline{v}\in U_1+\dots+U_n$ הוא סכום ישר $U_1\oplus\dots\oplus U_n$ אם לכל $\overline{v}\in U_1+\dots+U_n$ קיימת ויחידה סדרה עד כך ש $\overline{u_1},\dots,\overline{u_n}\in U_i$ כך ש $\overline{v}=\sum_{i=1}^n\overline{u_i}$ כך ש $\overline{u_1},\dots,\overline{u_n}\in U_i$ משפט האיפיון: יהיו $U_1,\dots,U_n\subseteq U$ תמ"ו, הבאים שקולים:

- $.U_1\oplus\cdots\oplus U_n$.1
- .2 בת"ל. $B_1 \frown B_2 \frown \cdots \frown B_n$ השרשור בת"ל ב־ B_i בת"ל.
 - $.U_i\cap\left(\sum_{j=1,j
 eq i}^nU_j
 ight)=\left\{\overline{0}
 ight\}$, $1\leq i\leq n$.3 .3 בפרט אם $.U_1\cap U_2=\left\{\overline{0}
 ight\}$,n=2

12 מרחב העמודות והשורות

:תהא (\mathbb{F}) נגדיר, $A\in M_{m imes n}$ (\mathbb{F}) נגדיר

Sols
$$(A)=\left\{x\in\mathbb{F}^n\mid Ax=\overline{0}
ight\}$$
 .1. מרחב הפתרונות:

$$.C(A) = \mathrm{sp}(C_1(A), ..., C_n(A))$$
 :מרחב העמודות:

$$R(A) = \text{sp}(R_1(A), \dots, R_m(A))$$
 מרחב השורות: 3.

$$\operatorname{Rank}\left(A
ight)$$
. כ־ $\operatorname{dim}\left(R\left(A
ight)
ight)=\operatorname{dim}\left(C\left(A
ight)
ight)$ משפט:

$$\mathcal{N}(A) = \dim(\operatorname{Sols}(A))$$
 בנוסף נסמן

$$\operatorname{Rank}\left(A
ight)+\mathcal{N}\left(A
ight)=n$$
 משפט הדרגה והאפסות:

$$\operatorname{Rank}\left(A
ight)=n\iff$$
 הפיכה A

rank חוקי 12.1

 $A\in M_{m imes n}\left(\mathbb{R}
ight)$ לכל

.Rank
$$(A) \leq \min(n, m)$$
 .1

$$\operatorname{Rank}(A \cdot B) \leq \min(\operatorname{Rank}(A), \operatorname{Rank}(B))$$
.2

$$\operatorname{Rank}(A+B) \leq \operatorname{Rank}(A) + \operatorname{Rank}(B)$$
 .3

. (אם מוגדר)
$$\operatorname{Rank}(A \cdot B) = \operatorname{Rank}(B)$$
 , $\operatorname{Rank}(B \cdot A) = \operatorname{Rank}(B)$ אם A הפיכה אז

 $R\left(A\right)=R\left(B\right)$ אזי (משפט הדרגה): תהא ($A\in M_{m\times n}\left(\mathbb{F}\right)$ מטריצה, ו־B שקולת שורות ל- $A\in M_{m\times n}\left(\mathbb{F}\right)$ תהא ($A=\operatorname{Rank}\left(A\right)=\operatorname{Rank}\left(B\right)$ לא נשמר.

13 העתקות לינאריות

13.1 הגדרות

ינארית אם: $T:V \to U$ מ"ו מעל \mathbb{F} , נאמר מ"ו מעל דינארית הגדרה: יהיו

$$\forall v_1, v_2 \in V.T(v_1 + v_2) = T(v_1) + T(v_2)$$
 .1

.
$$\forall \alpha \in \mathbb{F}. \forall v \in V.T (\alpha \cdot v) = \alpha \cdot T (v)$$
 הומוגניות.

הגדרות נוספות:

.kernel ,
$$T$$
 הגרעין של $\ker\left(T\right)=T^{-1}\left[\left\{ 0\right\}
ight]=\left\{ \overline{v}\in V\mid T\left(\overline{v}\right)=0\right\}$.1

$$T$$
 של T התמונה של T התמונה של T התמונה של T התמונה של T

T בנוסף $\ker\left(T\right),Im\left(T\right)$ ממ"ו של

13.2 תכונות בסיסיות

תהא T:V o U לינארית,

.1 בל צירוף לינארי נשמר.
$$T\left(\sum_{i=1}^{n}\alpha_{i}v_{i}\right)=\sum_{i=1}^{n}\alpha_{i}T\left(v_{i}\right)$$

.2 מכפליות.
$$T\left(-\overline{v}
ight)=-T\left(\overline{v}
ight)$$

$$T(\overline{0}_V) = \overline{0}_U$$
 .3

- $\ker(T) = \{\overline{0}\} \iff \mathsf{V}^\mathsf{m} T . 4$
- (טריויאלי). Im $(T) = U \iff T$.5
- Im(T) סדרה פורשת של $(T(u_1), \ldots, T(u_k))$ אז ע אז פורשת של (u_1, \ldots, u_n) סדרה פורשת של .6
 - לכן: $LD\left(v_{1},\ldots,v_{n}\right)\subseteq LD\left(T\left(v_{1}\right),\ldots,T\left(v_{n}\right)\right)$, $\left(v_{1},\ldots,v_{n}\right)$.7
 - בת"ל. (v_1, \ldots, v_n) בת"ל אז $(T(v_1), \ldots, T(v_n))$ בת"ל.
- $T\left(v_{i}
 ight)\in\operatorname{sp}\left(T\left(v_{1}
 ight),\ldots,T\left(v_{i-1}
 ight),T\left(v_{i+1}
 ight),\ldots,T\left(v_{n}
 ight)
 ight)$ אם $V_{i}\in\operatorname{sp}\left(v_{1},\ldots,v_{i-1},v_{i+1},\ldots,v_{n}
 ight)$ אם T חח"ע, אז T מעבירה סדרה פורשת של V לסדרה פורשת של V לסדרה פורשת של V
- .8 יהיו $u_1,\dots,u_n\in U$ יהיו U בסיס של $B=(b_1,\dots,b_n)$ וקטורים כלשהם. 8 אז קיימת ויחידה העתקה לינארית $T:V\to U$ כל $T:V\to U$ כלומר $T:V\to U$ מ"ו. כלומר לינארית נקבעת ביחידות לפי לווות לפי לינארית נקבעת ביחידות לפי לינארית נקבעת ביחידות לפי לווות לפי לינארית נקבעת ביחידות לפי לווות לפי לינארית נקבעת ביחידות לפי לווות לפי לווות לפי לינארית נקבעת ביחידות לפי לווות לפי לינארית נקבעת ביחידות לפי לווות לפי לווות לפי לינארית נקבעת ביחידות לפי לווות לווות לפי לווות לפי לווות לוווות לווות לווות לוווות לווות לוווות לוווות לווות לווות לווות לווות לווות לווות לווות לווות לוווות לוווות לווות לווות לוווות לוווות לווות לוווות לוווות לוווות לוווות לוווות לוווות לוווות לוווות לווות לוווות לווות לוווות לווווות לווווות לווווות לוווות לווווות לוווווות לווווות לוווות לווווות לווווות לווווות לווווות לוווווות לווווות לוווווות לווווות לווווות לווווות לוווווות לווווות לווווות לוווווות לווווות לוווווות לווווות לווווות לוווווות לווווות לווווו

 $\dim\left(V
ight)=\dim\left(\ker\left(T
ight)
ight)+\dim\left(Im\left(T
ight)
ight)$ משפט המימדים השני:

13.3 הטלה

יהי $v\in V$ מ"ו, ו־ $v\in V$ תמ"ו כך ש־ $v\in V$ תמ"ו כי כל וקטור אינו כי כל ניתן להציג באופן עוד:

$$\overline{v} = \overline{u} + \overline{w}, \overline{u} \in U, \overline{w} \in W$$

:U על V על את ההטלה של

$$\begin{split} P_{(U,W)}: V &\to U \\ P_{(W,U)}: V &\to W \\ P_{(U,W)}\left(\overline{v}\right) &= \iota x \in U. \exists y \in W. \overline{v} = x + y \end{split}$$

כלומר זה ייצוג לאחד מהאיברים בהצגה היחידה של וקטור.

:טענות

- .1 הטלה $P_{(U,W)}$ היא העתקה לינארית.
- $.P_{(U,W)} + P_{(W,U)} = Id_V$, $P_{(U,W)} \circ P_{(U,W)} = P$.2
 - $.P_{(U,W)}^{-1}\left[\left\{ 0
 ight\}
 ight] =W$, $\mathrm{Im}\left(P_{(U,W)}
 ight) =U$.3

13.4 איזומורפיזם

13.4.1 הגדרות

"היא איזומורפיזם של מ"ו אם: F:V o U מ"ו מעל F, נאמר כי F:V o U היא איזומורפיזם של מ"ו אם:

- .1 חח"ע ועל.f
- .2 העתקה לינארית (חיבורית והומוגנית).

 $v,\overline{u_1},\dots,\overline{u_n}\in V$ כאשר $v=\sum_{i=1}^nx_i\overline{u_i}$ איזומורפיזם משמר את הפתרונות של $v=\sum_{i=1}^nx_i\overline{u_i}$ מ"ו נוצרים סופית, אז $v=\lim_i(U)=\lim_i(U)$ מ"ו נוצרים סופית, אז $v=\lim_i(U)=\lim_i(U)$

משפט 2 מתוך 3 להעתקות לינאריות: כל 2 מתוך 3 הבאים שקולים לכך ש־T איזומורפיזם.

- $\dim(V) = \dim(U)$.1
 - ע. T .2
 - 3. T על.

שני מרחבים וקטוריים מעל אותו שדה נקראים איזומורפיים ומסומנים ע $V \simeq U$ מעל מרחבים ומסומנים שדה נקראים "דו מעל אותו איזומורפיזם ער יוחס שקילות". איזומורפיזם $T:V \to U$ איזומורפיזם איזומורפיזם שקילות "דו איזומורפיזם שקילות".

13.4.2 קואורדינטות

יהי V מ"ו מעל \mathbb{F} , B בסיס. על פי משפט, ויהי $dim\,V=n$ ויהי U בסיס. על פי משפט, \overline{v} לכל \overline{v} קיימים ויחידים \overline{v} בסיס של C בסיס. על פי משפט, \overline{v} כך ש־C בסיס של \overline{v} בסיס. על פי \overline{v} לכל לבי \overline{v} להיות:

$$\left[\overline{v}\right]_{B} = \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in \mathbb{F}^{n}$$

 $[\cdot]_B:V o \mathbb{F}^n$ גם בתור הקואורדינטות הקואורדינטות ל- \mathbb{F}^n . העתקת היאומורפיזם מ־

13.5 מרחב ההעתקות

 $.\langle U^V,+,\cdot
angle$ של מרחב ההעתקות. זה תת מרחב של $\mathrm{Hom}\,(V,U)=\big\{T\in U^V\mid \mathrm{T\ is\ linear}\big\}$ הגדרה: $\mathrm{dim}\,(\mathrm{Hom}\,(V,U))=\mathrm{dim}\,(V)\cdot\mathrm{dim}\,(U)$ משפט: $\mathrm{dim}\,(U)\cdot\mathrm{dim}\,(U)$

13.6 מטריציונית

 $T_A:$, $A\in M_{m imes n}$ לכל מטריציונית המתאימה את גדיר את גדיר את ההעתקה $A\in M_{m imes n}(\mathbb{F})$ מטריצה לכל $\mathbb{F}^n\to\mathbb{F}^m$

$$T_A(\overline{v}) = A\overline{x}$$

A=[f] ונסמן, $f=T_A$ כך ש־ $A\in M_{m imes n}\left(\mathbb{F}
ight)$ פונקציה ל נקראת מטריציונית אם קיימת מטריצה (T) היא:

$$[T] = \left(T \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad T \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \quad \dots \quad T \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \right)$$

משפט: תהא $T\iff T$ מטריציונית. העתקה לינארית אזי $T:\mathbb{F}^n\to\mathbb{F}^m$ מטריציונית. טענות:

- .Sols $(A) = T_A^{-1} [\{\overline{0}\}] = \ker (T_A)$.1
 - $.C(A) = Im(T_A)$.2
- .3 על אז גם הפיכה פורשות. אם היא ריבועית אז גם הפיכה. T_A
- . בת"ל. כי אין שתי דרכים להגיע לאותו הדבר. בת"ל. בת"ל. \Leftrightarrow עמודות לאותו הדבר.
 - . הפיכה $A\iff$ בסיס A בסיס \Leftrightarrow הפיכה T_A .5
- [T+S]= מטריציונית. יתר על כן ד $T+S:\mathbb{F}^n o\mathbb{F}^m$ מטריציונית אז מטריציונית ל $T,S:\mathbb{F}^n o\mathbb{F}^m$.6. אם ה
- על כן מטריציונית. יתר $lpha\cdot T:\mathbb F^n o\mathbb F^>$ אז $lpha\in\mathbb F^n$ מטריציונית. יתר על כן . $[lpha\cdot T]=lpha\cdot [T]$
- 8. אם $S\circ T:\mathbb{F}^n\to\mathbb{F}^k$ מטריציונית, מטריציונית, $S:\mathbb{F}^m\to\mathbb{F}^k, T:\mathbb{F}^n\to\mathbb{F}^m$ מטריציונית, ו
 .8 (כפל המטריצות הוא ההרכבה). מטריצות הוא ההרכבה).

מטריצה מייצגת 13.7

13.7.1 הגדרות

נגדיר U בסיס של U, ו־U בסיס של U, ווער סופית. נוצר סופית. ענצר U צ"ל איי בסיס של $T:V\to U$ נגדיר את ההעתקה המייצגת ב $T_C^B:\mathbb{F}^{\dim(V)}\to\mathbb{F}^{\dim(U)}$

$$T_C^B = Q_C \circ T \circ Q_B$$
$$[T]_C^B = [T_C^B]$$

בעצם מעבירים לnיות כדי לעבוד עם מטריציוניות.

טענות 13.7.2

$$.[T]_C^B = \left(egin{bmatrix} |&&&&|\ |T(b_1)|_C & \dots & [T(b_n)]_C \end{matrix}
ight)$$
 כלומר $.C_i\left(egin{bmatrix} T_C^B \ \end{pmatrix} = T_C^B\left(e_i
ight)$.1

$$[T]_{C}^{B} \cdot [v]_{B} = [T(v)]_{C}$$
 .2

$$.[\overline{v}]_B \in \mathrm{Sols}\left([T]_C^B
ight) \iff \overline{v} \in \ker\left(T
ight)$$
 , $\overline{v} \in V$.3

.4 לכל
$$[\overline{u}]_C \in \operatorname{Cols}\left([T]_C^B\right) \iff \overline{u} \in \operatorname{Im}\left(T\right)$$
 , $\overline{u} \in U$ לכל $\mathcal{N}\left([T]_C^B\right) = \dim\left(\ker\left(T\right)\right)$, Rank $\left([T]_C^B\right) = \dim\left(\operatorname{Im}\left(T\right)\right)$

$$.ig([T]_C^Big)^{-1}=ig[T^{-1}]_B^C$$
 הפיכה, בנוסף $T_C^B\iff T_C^B\iff T$.5

$$[S \circ T]_D^B = [S]_D^C \cdot [T]_C^B$$
 .6

של $B=(b_1,\dots,b_n)$ בסיסים קT:V o U בחנתה מתונה העתקה ממטריצה המייצגת: נתונה העתקה עול. בסיסים $C=(c_1,\dots,c_n)$ ו־ $C=(c_1,\dots,c_n)$ ו־ $C=(c_1,\dots,c_n)$

 $W = \$ רסטנדרטי. בסיס שנוח בסיס בדרך כלל בUב קואורדינטות בו קואור לחשב בו בחר בסיס ביס ברר ביסיס (w_1, \dots, w_n)

באופן דומה לאיך שמחשבים מטריצה הופכית.

מטריצת שינוי הקואורדינטות: יהיו B,C שני בסיסים של מ"ו V. אז נגדיר את מטריצת שינוי הקואורדינטות מ־ $[Id_V]_C^B$ על ידי: $[Id_V]_C^B$

.
$$[Id_V]_C^B\cdot [\overline{v}]_B=[\overline{v}]_C$$
 , $\overline{v}\in V$.1

$$.[T]_C^B = [Id]_C^{C'} \cdot [T]_{C'}^{B'} \cdot [Id_V]_{B'}^B$$
 .2

הגדרה: יהיו מטריצה הפיכה P נאמר כי $A,B\in M_n\left(\mathbb{F}\right)$ יהיו אם הגדרה: אמר כי $A,B\in M_n\left(\mathbb{F}\right)$ הגדרה: יהיו $A=P^{-1}\cdot B\cdot P$

משפט: נתון $A,B\in M_{n}\left(\mathbb{F}
ight)$ ריבועיות, הבאים שקולים:

.1 A, B דומות

 $[T]_C=A,[T]_{C'}=B$ של כך ש־ל כך ובסיסים וT:V o V ובסיסית העתקה לינארית.

כל העתקה לינארית , $[T]_C=A$ של כך של בסיס בסיס ליים בסיס , $T:V\to V$ אז קיים בסיס .3 . $[T]_{C'}=B$ של V כך של C'

A,B אם

- .Rank (A) =Rank (B) .1
 - $\mathcal{N}(A) = \mathcal{N}(B)$.2
- ${
 m tr}\,(A) = \sum_{i=1}^n {(A)}_{i,i}$ כאשר ${
 m tr}\,(A) = {
 m tr}\,(B)$.3
 - .det $(A) = \det(B)$.4
 - .1. נראה עוד בלינארית 2.5

14 אלגוריתמים

14.1 צמצום סדרה לבת"ל

14.1.1 לפי שורות

יהיו
$$B=egin{pmatrix} v_1^t \ \vdots \ v_n^t \end{pmatrix}\in M_{n imes m}\left(\mathbb{F}\right)$$
 כשורות, v_1,\dots,v_n נשים את $v_1,\dots,v_n\in\mathbb{F}^m$ יהיו

שורות (כלומר, בעמודה של מקדם הפותח יש רק 1 במקום אחד והשאר אפסים, אבל המקדמים הפותחים לא ממוינים). השורות שהתאפסו מתאימות לוקטורים שהיו תלוים לינארית באחרים, וסדרת השורות שלא התאפסו הן סדרה בת"ל.

14.1.2 לפי עמודות

נשים את פתרון טריויאלי למערכת , $A=(v_1\dots v_n)$ כעמודות, כעמודות, נשים את את הרוע טריויאלי למערכת אין אף משתנה חופשי.

14.2 השלמה של סדרה בת"ל לבסיס

: שעמודותיה מטריצה מטריצה פורשת. נבנה מיל, ו־ (u_1,\ldots,u_m) סדרה בת"ל, ו־ (v_1,\ldots,v_k)

$$(v_1,\ldots,v_k,u_1,\ldots,u_m)$$

נדרג את המטריצה, ונסתכל על העמודות מ־u שנפתחה בהן מדרגה. את ה־uים המתאימים נוסיף לסדרת ה־vים, ונקבל בסיס.