Inspirado por Dr. Zeferino Parada.

REGIÓN DE CONFIANZA (UN EJEMPLO SIMPLE)

Sea $f(\mathbf{x}) = 2x_1^2 + x_2^2$, entonces

$$\nabla f(\boldsymbol{x}) = \begin{pmatrix} 4x_1 \\ 2x_2 \end{pmatrix}$$
 \mathbf{y} $\nabla^2 f(\boldsymbol{x}) = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$.

Para las siguientes tareas considere el punto $x_0 = (2, 1)^T$.

1. Escriba explícitamente el modelo cuadrático de f en x_0 , es decir,

$$m_c(\boldsymbol{p}) \stackrel{\text{def}}{=\!\!\!=} f(\boldsymbol{x}_0) + \boldsymbol{g}^T \boldsymbol{p} + \frac{1}{2} \boldsymbol{p}^T B \boldsymbol{p},$$

donde $\mathbf{g} = \nabla f(\mathbf{x}_0)$ y $B = \nabla^2 f(\mathbf{x}_0)$.

- **2.** Calcule la dirección de Newton p_N y su norma $||p_N||_2$.
- 3. Escriba explícitamente el (SPRC) con radio $\Delta > 0$, es decir,

Minimizar $m_c(\mathbf{p})$

(1) Sujeto a $\|\boldsymbol{p}\|_2 \leq \Delta$.

4. Del Teorema (SPRC) sabemos que el subproblema (1) con $\Delta < \|\boldsymbol{p}_N\|_2$ tiene la solución única $\boldsymbol{p}_{\star}(s)$ para un $s = s(\Delta) \geq 0$ tal que

$$(B+sI)\boldsymbol{p}_{\star}(s) = -\boldsymbol{q}$$

$$\left\|\boldsymbol{p}_{\star}(s)\right\|_{2}^{2} = \Delta^{2}$$

Encuentre p_{\star} en términos de s y evalué

$$\eta(s) \stackrel{\text{def}}{=\!\!\!=} \|\boldsymbol{p}_{\star}(s)\|_{2}^{2}.$$

Ayuda: El resultado es

$$\eta(s) = \frac{64}{(4+s)^2} + \frac{4}{(2+s)^2}.$$

- 5. Demuestre que $\eta'(s) < 0$ para s > -2, es decir, la función es estrictamente decreciente para s > -2.
- 6. Haz un plot en Mat Lab u Octave de $\eta(s)$ para $s \in [-1,5]$. Además, concluya que la ecuación $\eta(s) = \Delta^2$ tiene una única solución para s > -2 y $0 < \Delta < \|\boldsymbol{p}_N\|_2$.

1

