

INSTITUTO SUPERIOR TÉCNICO

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES

Electrónica de Potência

Conversor CA/CC Monofásico Comandado de Onda Completa

Rectificador de onda completa totalmente comandado e semi-comandado

João Bernardo Sequeira de Sá	$\rm n.^o~68254$
Maria Margarida Dias dos Reis	$\rm n.^{o}$ 73099
Rafael Augusto Maleno Charrama Gonçalves	$\rm n.^o$ 73786
Nuno Miguel Rodrigues Machado	n.º 74236

Turno de Segunda-feira das 17h00 - 20h00

${\rm \acute{I}ndice}$

1	1 Introdução			2	
2	Cor	ndução	do Trabalho	3	
2.1 Rectificador de onda completa totalmente comandado					
		2.1.1	Carga resistiva pura (R)	3	
		2.1.2	Carga indutiva RL	5	
2.2 Rectificador de onda completa semi-comandado			icador de onda completa semi-comandado	8	
		2.2.1	Carga indutiva RL	8	
3 Simulações				12	
3.1 Circuitos de Potência usados			tos de Potência usados	12	
		3.1.1	Rectificador de onda completa com comando total e carga resistiva, ${\cal R}~$	13	
		3.1.2	Rectificador de onda completa com comando total e carga RL	14	
		3.1.3	Rectificador de onda completa semi-comandado com carga RL	15	

1 Introdução

Este trabalho laboratorial é uma continuação do trabalho 2A em que se estudou o conversor CA/CC (rectificador) de meia onda comandado e semi-comandado monofásico. Desta vez o objetivo é compreender o funcionamento do rectificador monofásico comandado de onda completa.

Este trabalho está separado em duas partes; na primeira estuda-se o funcionamento do conversor totalmente comandado e na segunda o semi-comandado.

Aquilo que distingue o rectificador de onda completa do de meia onda é a presença de 4 tiristores, tal como pode ser observado na Figura 1, em oposição a apenas 1 tiristor como se tinha no rectificador de meia onda.

Figura 1: Esquema do rectificador de onda completa monofásico comandado.

O funcionamento desta topologia depende de qual o par de tiristores que está a conduzir a uma dada altura. Fazendo uso da nomenclatura da Figura 1 observa-se que T1 e T2 podem ser disparados durante a alternância positiva da tensão de entrada, sendo que T4 e T3 podem ser disparados durante a alternância negativa [1]. Para o primeiro caso tem-se que o ângulo de disparo, α , pode variar entre 0 e π onde para o segundo caso se faz uso de $\alpha + \pi$. Tal como já foi visto no trabalho anterior a altura em que um tiristor entra ao corte depende do momento em que a corrente aos terminais deste passa por zero, pelo que o funcionamento para uma carga puramente resistiva difere do de uma carga indutiva.

Espera-se assim que as formas de onda para a tensão e corrente numa carga indutiva seja tal como se vê na Figura 2.

Figura 2: Formas de onda para carga indutiva.

O resultado é que, ao contrário do rectificador de meia onda, tanto para a alternância positiva da tensão de entrada, como para a negativa, se irá ter corrente na carga; obtém-se um comportamento desta corrente muito mais próximo do continuo e um conteúdo harmónico substancialmente inferior. Observa-se também que devido a isto, o valor médio da corrente na

entrada será zero.

Para a segunda parte do trabalho tem-se um rectificador semi-comandado, onde se substitui dois dos rectificadores por dois díodos. Isto pode ser feito caso a carga não exija inversão da tensão aos seus terminais, sendo neste caso imposição da topologia que a tensão de saída tenha sempre o mesmo sinal, devido à presença dos díodos.

2 Condução do Trabalho

2.1 Rectificador de onda completa totalmente comandado

2.1.1 Carga resistiva pura (R)

De maneira a analisar o funcionamento do circuito com cargas resistivas, foi ligado à saída do rectificador de onda completa controlado um reóstato.

2.1.1.1 Formas de onda da tensão e corrente na entrada

Inicialmente, observou-se a forma de onda da tensão e da corrente na entrada do circuito.

Figura 3: Tensão (a amarelo) e corrente (a rosa) na entrada.

Na Figura 3 observam-se quedas de tensão na entrada sempre que tiristores entram à condução.

Como a carga é resistiva, a corrente é proporcional à tensão. Quando a tensão de entrada se anula, a corrente anula-se e os dispositivos que estão a conduzir passam ao corte. Como os tiristores complementares não são imediatamente activados ($\alpha > 0$), a corrente mantém-se a zero até ao disparo.

2.1.1.2 Formas de onda da tensão e corrente na carga

Na carga é possível observar a rectificação da onda completa, e as características resistivas da mesma.

Figura 4: Tensão (a azul) e corrente (a rosa) na carga.

2.1.1.3 Formas de onda da tensão e corrente no tiristor

Cada par de tiristores conduz alternadamente com o par complementar.

Figura 5: Tensão (a amarelo) e corrente (a rosa) no tiristor.

Na Figura 5 observa-se a parte da corrente da carga que corresponde ao tiristores em questão, sendo que durante a condução, o tiristor está em curto-circuito.

Quando o dispositivo passa ao corte, "cai sobre si" toda a tensão de entrada.

2.1.1.4 Característica de comando do conversor

De maneira a calcular uma previsão teórica do valor médio da tensão de saída, foi utilizada a Equação 2.1.

$$\overline{v_O} = \frac{1}{\pi} \int_{\alpha}^{\pi} \sqrt{2}V \sin(\omega t) \, d\omega t = \frac{\sqrt{2}V}{\pi} (1 + \cos(\alpha))$$
 (2.1)

Ângulo de Disparo $[^{\circ}]$	V_O [V] (teórico)	V_O [V] (experimental)
0	45	48
30	42	46.2
60	33.8	37.9
90	22.5	25.6
120	11.25	12.8
150	3.02	1.48

Tabela 1: Valor médio da tensão de saída em função do ângulo de disparo $(V_i = 50 \text{ V})$

Figura 6: Característica de comando do rectificador de onda completa totalmente comandado com carga resistiva - teórica e experimental.

Um dos motivos pelos quais há diferenças entre os valores teóricos e os valores medidos é a deformação do sinal de entrada, que está longe de ser uma sinusóide.

2.1.2 Carga indutiva RL

2.1.2.1 Formas de onda da tensão e corrente na carga para funcionamento lacunar

Quando a carga tem uma componente indutiva substancial (na realidade, qualquer porção de circuito constitui uma espira, e portanto tem uma indutância, sendo que na maioria dos casos esta indutância é desprezável), a corrente passa a ter uma inércia associada, isto é, torna-se numa variável de estado.

Figura 7: Tensão (a azul) e corrente (a rosa) na carga.

Quando a tensão se anula, ainda existe corrente. Assim, a condução do tiristor continua até que esta se anule, quando a tensão já está na arcada negativa.

A tensão média na bobina é necessariamente 0 V (caso contrário, a corrente na bobina dispararia para infinito, queimando-se entretanto), pelo que a tensão média da resistência é igual à tensão média na carga.

2.1.2.2 Formas de onda da tensão e corrente no tiristor

Em cada braço do rectificador vai passar a corrente correspondente a uma das arcadas.

Figura 8: Tensão (a amarelo) e corrente (a rosa) no tiristor.

2.1.2.3 Característica de comando do conversor

As previsões teóricas foram feitas com recurso às Equações 2.2 a 2.5.

$$\Phi = \arctan\left(\frac{\omega L}{R}\right) \tag{2.2}$$

$$0 = \sin(\Phi - \alpha) e^{-\frac{R}{L}\frac{\gamma}{\omega}} + \sin(\alpha + \gamma - \phi)$$
 (2.3)

$$\overline{v_O} = \frac{1}{\pi} \int_{\alpha}^{\alpha + \gamma} \sqrt{2} V \sin(\omega t) d\omega t$$
 (2.4)

$$\overline{v_O} = \frac{\sqrt{2}V}{\pi} \left(-\cos\left(\alpha + \gamma\right) + \cos\left(\alpha\right) \right) \tag{2.5}$$

Uma vez calculados os valores de γ através da Equação 2.3, foram calculados os valores médios da tensão graças à Equação 2.4, para todos os valores de α excepto $\alpha = 0^{\circ}$.

Para $\alpha=0^\circ$, como $\alpha<\Phi$, o circuito funciona em regime não lacunar, pelo que o valor teórico foi calculado com recurso à Equação 2.1.

Ângulo de Disparo $[^{\circ}]$	V_O [V] (teórico)	V_O [V] (experimental)
0	31.5	31.9
30	29.1	26.5
60	23.4	19
90	15.5	11.2
120	7.6	4.7
150	1.87	0.6

Tabela 2: Valor médio da tensão de saída em função do ângulo de disparo $(V_i = 35 \text{ V})$

Figura 9: Característica de comando do rectificador de onda completa totalmente comandado com carga indutiva RL - teórica e experimental.

Na Figura 9 pode observar-se a previsão teórica da característica face aos valores obtidos. A diferença pode dever-se a diversos factores, como a dificuldade de colocação do reóstato no valor pretendido, bem como diversas outras imperfeições nos dispositivos.

Uma vez mais, o sinal de entrada não é uma sinusóide perfeita (longe disso), pelo que esse factor também interfere com a característica.

2.2 Rectificador de onda completa semi-comandado

Figura 10: Esquema do rectificador de onda completa monofásico semi-comandado

De maneira a observar o funcionamento do rectificador semi-comandado, os tiristores T2 e T4, isto é, os correspondentes ao troço inferior de cada braço do rectificador, foram substituídos por díodos.

2.2.1 Carga indutiva RL

2.2.1.1 Formas de onda da tensão e corrente na entrada

Figura 11: Tensão (a amarelo) e corrente (a rosa) na entrada.

Na entrada do circuito, é possível observar pequenos picos na tensão sempre que um dispositivo (tiristor ou díodo) passam da condução ao corte, e vice versa.

2.2.1.2 Formas de onda da tensão e corrente na carga

Figura 12: Tensão (a azul) e corrente (a rosa) na carga.

Na carga verifica-se que a tensão é sempre positiva, ao contrário da situação anterior. Uma vez que continua a haver a mesma inércia da corrente (causada pela bobina), a justificação pela qual a tensão deixa de tomar valores negativos só se pode dever à substituição dos dois tiristores por díodos.

Após constatar esse facto, é fácil perceber que os tiristores necessitam impulso de *gate* para conduzir, que os díodos, evidentemente, não precisam.

Assim, quando a tensão de alimentação passa à arcada negativa, a continuidade da corrente da carga é assegurada pelos díodos (na situação anterior, como os tiristores não tinham impulso de *gate* nesse instante, o mesmo não se verificava).

2.2.1.3 Formas de onda da tensão e corrente nos díodos

Figura 13: Tensão de saída (a azul), corrente em um dos díodos (a rosa), e corrente no díodo complementar (a verde)

É possível observar a continuidade da corrente garantida pelos díodos complementares entre si, sendo que a soma das correntes dos dois díodos corresponde à corrente da carga.

2.2.1.4 Característica de comando do conversor

De maneira a calcular o valor médio da tensão na carga, foi utilizada uma expressão semelhante à Equação 2.4 da questão anterior, mas uma vez que independentemente do ângulo de condução γ , a tensão é cortada para $\omega t = \pi$, o limite superior de integração da tensão é π .

A expressão resultante é portanto idêntica à da tensão média para o rectificador de onda completa totalmente controlado, Equação 2.1.

Ângulo de Disparo [°]	$V_O[V]$ (teórico)	$V_O[V]$ (experimental)
0	72.03	72.7
30	67.2	69.8
60	54.02	53.2
90	36.01	39.5
120	18.01	18.3
150	4.82	4.73

Tabela 3: Valor médio da tensão de saída em função do ângulo de disparo $(V_i = 80V)$

Figura 14: Característica de comando do rectificador de onda completa semi-comandado com carga indutiva RL - teórica e experimental.

Na Figura 14 verifica-se uma melhor correspondência entre a previsão teórica e os resultados experimentais.

2.2.1.5 Conclusões

A corrente na carga nunca é negativa, uma vez que isso exigiria que pelo menos um dos dois

díodos (ou, no caso anterior, pelo menos um dos dois tiristores) conduzisse enquanto inversamente polarizados. Isso levaria à destruição do dispositivo.

Como tal, seria impossível controlar um motor com travagem regenerativa, uma vez que o processo de devolução de potência à fonte exigiria correntes negativas na carga.

Um filtro de saída teria de ser um filtro de 1ª ordem na forma de uma bobina em série com a carga. Ao colocar um condensador, o valor mínimo da tensão de saída deixaria de ser 0, pelo que os tiristores deixariam de conduzir em todos os ângulos de disparo $0 \le \alpha \le \pi$. Para além dessa diminuição da margem de controlo sobre o circuito, a potência entregue pelo rectificador à carga também se reduz, o que é indesejável.

3 Simulações

3.1 Circuitos de Potência usados

Neste projeto foram utilizados três circuitos de potência: um rectificador de onda completa totalmente comandado, quer com carga resistiva, quer com carga RL, e um rectificador de onda completa semi-comandado com carga RL.

Figura 15: Rectificador de onda completa com comando total e carga resistiva R.

Figura 16: Rectificador de onda completa com comando total e carga RL.

Figura 17: Rectificador onda completa semi-comandado e carga RL.

É importante referir que, para a simulação do circuito de disparos, se definiu que iria ser utilizado um *drive* que impulsos com uma frequência de 50 Hz. Pode-se controlar o ângulo de disparo com uma fonte DC interactiva. Na Figura 18 está representado o sinal do gerador de impulsos com a tensão de entrada.

Figura 18: Tensão de entrada (a vermelho) e sinal da *gate* do tiristor (a azul), bem como o seu complementar (a verde).

3.1.1 Rectificador de onda completa com comando total e carga resistiva, R

A Figura 19 tem representadas as formas de onda para a tensão e corrente de entrada.

Figura 19: Tensão (a vermelho) e corrente (a azul) de entrada.

As formas de onda referentes à saída, isto é, à carga, podem ser visualizadas na Figura 20.

Figura 20: Tensão (a vermelho) e corrente (a azul) de saída.

Já as formas de onda da tensão e da corrente de um dos tiristores podem ser visualizadas na Figura 21

Figura 21: Tensão (a vermelho) e corrente (a azul) do tiristor.

3.1.2 Rectificador de onda completa com comando total e carga ${\it RL}$

De igual forma é importante visualizar o comportamento da tensão e da corrente no circuito com uma carga RL. Os sinais à saída estão representados na Figura 22, e para o tiristor estão representados na Figura 23.

Figura 22: Tensão (a vermelho) e corrente (a azul) de saída.

Figura 23: Tensão (a vermelho) e corrente (a azul) do tiristor.

3.1.3 Rectificador de onda completa semi-comandado com carga ${\it RL}$

De igual forma é importante visualizar o comportamento da tensão e da corrente no rectificador com uma carga RL e díodos de roda livre. Os sinais à saída estão representados na Figura 24, e no tiristor estão representados na Figura 25.

Figura 24: Tensão (a vermelho) e corrente (a azul) de saída.

Figura 25: Tensão (a vermelho) e corrente (a azul) do tiristor.

Referências

 $\left[1\right]$ Silva, Fernando (1998), Eletrónica Industrial, Fundação Calouste Gulbenkian