无穷级数

Didnelpsun

目录

1	求和	求和函数															1						
	1.1	先导后积																					1
	1.2	先积后导																					1

1 求和函数

可以利用展开式求和函数,但是很多展开式的通项都不是公式中的,就需要对通项进行变形。

1.1 先导后积

n 在分母上,先导后积。使用变限积分: $\int_{x_0}^x S'(t) dt = S(x) - S(x_0)$,即 $S(x) = S(x_0) + \int_{x_0}^x S'(t) dt$ 。一般选择 x_0 为展开点。

例题: 求级数 $\sum_{n=1}^{\infty} \frac{x^n}{n}$ 的和函数。

解: 已知 $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$,而这里求和是 $\frac{x^n}{n}$,所以需要对其进行转换。

对 $\frac{x^n}{n}$ 求导就得到了 x^{n-1} 消去了分母的 n,所以使用先导后积的方法。

记
$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
,则 $x^n = (x-0)^n$,取 $x_0 = 0$ 。

$$\therefore S(x) = S(0) + \int_0^x \left(\sum_{n=1}^\infty \frac{t^n}{n}\right)_t' dt = 0 + \int_0^x \left(\sum_{n=1}^\infty t^{n-1}\right) dt = \int_0^x \frac{1}{1-t} dt = -\ln(1-x)$$
。收敛域为 $(-1,1)$ 。

1.2 先积后导

n 在分子上, 先积后导。 $(\int S(x) dx)' = S(x)$ 。

例题:求级数 $\sum_{n=1}^{\infty} nx^n$ 的和函数。

解: 记
$$S(x) = \sum_{n=1}^{\infty} nx^n = x \sum_{n=1}^{\infty} x^{n-1} = x(\int \sum_{n=1}^{\infty} nx^{n-1} \, dx)' = x(\sum_{n=1}^{\infty} x^n)' = x\left(\frac{x}{1-x}\right)' = \frac{x}{(1-x)^2}$$
。收敛域为 $[-1,1]$ 。