

XL6007

Features

- Wide 3.6V to 24V Input Voltage Range
- Positive or Negative Output Voltage
 Programming with a Single Feedback
 Pin
- Current Mode Control Provides
 Excellent Transient Response
- 1.25V reference adjustable version
- Fixed 400KHz Switching Frequency
- Maximum 2A Switching Current
- SW PIN Built in Over Voltage Protection
- Excellent line and load regulation
- EN PIN TTL shutdown capability
- Internal Optimize Power MOSFET
- High efficiency up to 90%
- Built in Frequency Compensation
- Built in Soft-Start Function
- Built in Thermal Shutdown Function
- Built in Current Limit Function
- Available in SOP8 package

Applications

- Automotive and Industrial Boost / Buck-Boost / Inverting Converters
- Portable Electronic Equipment

General Description

The XL6007 regulator is a wide input range, current mode, DC/DC converter which is capable of generating either positive or negative output voltages. It can be configured as either a boost, flyback, SEPIC or inverting converter. The XL6007 built in N-channel power MOSFET and fixed frequency oscillator, current-mode architecture results in stable operation over a wide range of supply and output voltages. The XL6007 regulator is special design for portable electronic equipment.

Figure 1. Package Type of XL6007

XL6007

Pin Configurations

Figure 2. Pin Configuration of XL6007 (Top View)

Table 1 Pin Description

Pin Number	Pin Name	Description
1	EN	Enable Pin. Drive EN pin low to turn off the device, drive it high
1	EN	to turn it on. Floating is default high.
		Supply Voltage Input Pin. XL6007 operates from a 3.6V to 24V
2	VIN	DC voltage. Bypass Vin to GND with a suitably large capacitor
		to eliminate noise on the input.
3	FB	Feedback Pin (FB). The feedback threshold voltage is 1.25V.
4	NC	No Connected.
5,6	SW	Power Switch Output Pin (SW). Output is the switch node that
3,0		supplies power to the output.
7,8	GND	Ground Pin.

XL6007

Function Block

Figure 3. Function Block Diagram of XL6007

Typical Application Circuit

Figure 4. XL6007 Typical Application Circuit (Boost Converter)

Ordering Information

Order Information	Marking ID	Package Type	Packing Type Supplied As
XL6007E1	XL6007E1	SOP8	2500/4000 Units on Tape & Reel

XLSEMI Pb-free products, as designated with "E1" suffix in the par number, are RoHS compliant.

Absolute Maximum Ratings (Note1)

Parameter	Symbol	Value	Unit
Input Voltage	Vin	-0.3 to 26	V
Feedback Pin Voltage	$V_{\sf FB}$	−0.3 to Vin	V
EN Pin Voltage	V _{EN}	−0.3 to Vin	V
Output Switch Pin Voltage	V_{SW}	-0.3 to 60	V
Power Dissipation	P₀	Internally limited	mW
Thermal Resistance (SOP8) (Junction to Ambient, No Heatsink, Free Air)	RJA	100	°C/W
Operating Junction Temperature	TJ	-40 to 125	°C
Storage Temperature	Тѕтв	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	T _{LEAD}	260	°C
ESD (HBM)		>2000	V

Note1: Stresses greater than those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

XL6007

XL6007 Electrical Characteristics

 $T_a = 25^{\circ}C$; unless otherwise specified.

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
System para	System parameters test circuit figure4						
VFB	Feedback Vin = 12V to 16V, Vout=18V Voltage Iload=0.1A to 0.5A		1.213	1.25	1.287	V	
η	Efficiency Vin=12V ,Vout=18.5V lout=0.5A		_	90	_	%	

Electrical Characteristics (DC Parameters)

Vin = 12V, GND=0V, Vin & GND parallel connect a 220uf/50V capacitor; lout=0.5A, T_a = 25°C; the others floating unless otherwise specified.

Parameters	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input operation voltage	Vin		3.6		24	V
Shutdown Supply Current	ls	V _{EN} =0V		70	100	uA
Quiescent Supply Current	l q	$V_{EN} = 2V$, $V_{FB} = Vin$		2.5	5	mA
Oscillator Frequency	Fosc		320	400	480	Khz
Switch Current Limit	lι	V _{FB} =0V		2		А
Output Power NMOS	Rdson	Vin=12V, I _{sw} =2A		110	120	mohm
EN Pin Threshold	V_{EN}	High (Regulator ON) Low (Regulator OFF)		1.4 0.8		>
EN Pin Input Leakage	Ін	V _{EN} =2V (ON)		3	10	uA
Current	lι	V _{EN} =0V (OFF)		3	10	uA
Max. Duty Cycle	D _{MAX}	V _{FB} =0V		90		%

XL6007

Schottky Diode Selection Table

Current	Surface	Through	VR (The same as system maximum input voltage)						
Current	Mount	Hole	viv(The same as system maximum riput voltage)						
			20V 30V 40V		50V	60V			
1A		✓	1N5817	1N5818	1N5819				
		✓	1N5820	1N5821	1N5822				
		✓	MBR320	MBR330	MBR340	MBR350	MBR360		
3A	√		SK32	SK33	SK34	SK35	SK36		
3A	√			30WQ03	30WQ04	30WQ05			
		✓		31DQ03	31DQ04	31DQ05			
		√	SR302	SR303	SR304	SR305	SR306		

Typical System Application - Boost (Output 18.5V/0.5A)

Figure 5. XL6007 Typical System Application (Boost Converter)

XL6007

Typical System Application - SEPIC Buck-Boost (Input 10V~18V, Output 12V/0.5A)

Figure 6. XL6007 Typical System Application (SEPIC Buck–Boost Converter)

Typical System Application for Inverting Converter–SEPIC Inverting Topology (Input 10V~18V, Output + -12V/0.6A)

Figure 7. XL6007 Typical System Application (SEPIC Inverting Converter)

XL6007

Package Information

SOP8

Symbol	Dimensions In Millimeters			Dimensions In Millimeters			
	Min.	Nom.	Max.	Min.	Nom.	Max.	
А	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.05	_	0.25	0.002	_	0.010	
A2	1.25	1.40	1.65	0.049	0.055	0.065	
A3	0.50	0.60	0.70	0.019	0.024	0.028	
b	0.30	_	0.51	0.012	_	0.020	
b1	0.29	0.41	0.48	0.011	0.016	0.018	
С	0.17	_	0.25	0.007	_	0.010	
c1	0.17	0.20	0.23	0.007	0.008	0.009	
D	4.70	4.90	5.10	0.185	0.193	0.200	
Е	5.80	6.00	6.20	0.228	0.236	0.244	
E1	3.80	3.90	4.00	0.150	0.154	0.157	
е	1.14	1.27	1.40	0.045	0.050	0.055	
h	0.25	_	0.50	0.010	_	0.020	
L	0.45	_	0.80	0.017	_	0.031	
L1	0.82	1.03	1.23	0.032	0.040	0.048	
θ	0	_	8°	0	_	8°	

XL6007

Important Notice

XLSEMI reserve the right to make modifications, enhancements, improvements, corrections or other changes without notice at any time. XLSEMI does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. XLSEMI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using XLSEMI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. XLSEMI warrants performance of its products to the specifications applicable at the time of sale, in accordance with the warranty in XLSEMI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent XLSEMI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

For the latest product information, go to www.xlsemi.com.