Einzelprüfung "Theoretische Informatik / Algorithmen (vertieft)"

Einzelprüfungsnummer 66115 / 2017 / Herbst

Thema 1 / Aufgabe 8

(Greedy-Färben von Intervallen)

Stichwörter: Greedy-Algorithmus

Sei X = (Ji,/2,..., eine Menge von n (geschlossenen) Intervallen über den reellen Zahlen R. Das Intervall Ij sei dabei gegeben dnrch seine linke Intervallgrenze Ij E R sowie seine rechte Intervallgrenze rj E R mit rj > Ij, d. h. Ij = [lj,rj].

Wir nehmen in dieser Aufgabe der Einfachheit halber an, dass die Zahlen alle paarweise verschieden sind.

Zwei Intervalle Ij, 1 überlappen sich gdw. sie mindestens einen Punkt gemeinsam haben, d.h. gdw. falls für (o.B.d.A.) Ij < 4, auch 1 < Vj gilt. Eine gültige Färbung von X mit c e N Farben ist eine Funktion F: X (1,2,...,c) mit der Eigenschaft, dass für jedes Paar Ij,Ik von überlappenden Intervallen F(Ij) F(Ik) gilt.

Abbildung 1: Eine gültige Färbung von X

Eine minimale gültige Färbung von X ist eine gültige Färbung mit einer minimalen Anzahl an Farben. Die Anzahl von Farben in einer minimalen gültigen Färbung von X bezeichnen wir mit X(X). Wir gehen im Folgenden davon aus, dass für X eine minimale gültige Färbung X0 gefunden wurde.

- (a) Nehmen wir an, dass aus X alle Intervalle einer bestimmten Farbe von F* gelöscht werden. Ist die so aus F* entstandene Färbung der übrigen Intervalle in jedem Fall immer noch eine minimale gültige Färbung? Begründen Sie Ihre Antwort.
- (b) Nehmen wir an, deiss aus X ein beliebiges Intervall gelöscht wird. Ist die so aus F* entstehende Färbung der übrigen Intervalle in jedem Fall immer noch eine minimale gültige Färbung? Begründen Sie Ihre Antwort.
- (c) Mit uj(X) bezeichnen wir die maximale Anzahl von Intervallen in X, die sich paarweise überlappen. Zeigen Sie, dass x(A) > uj(X) ist. Wir betrachten nun folgenden Algorithmus, der die Menge $X = (F, F \blacksquare ..., In)$ von n Intervallen einfärbt:
 - Zunächst sortieren wir die Intervalle von X aufsteigend nach ihren linken Intervallgrenzen. Die Intervalle werden jetzt in dieser Reihenfolge nacheinander eingefärbt; ist ein Intervall dabei erst einmal eingefärbt, ändert sich seine Farbe nie wieder. Angenommen die sortierte Reihenfolge der Intervalle sei Ia(i), $\blacksquare \blacksquare$, F(n)-
 - Das erste Intervall F(i) erhält die Farbe 1. Für 1 < i < n verfahren wir im Aten Schritt zum Färben des Aten Intervalls wie folgt:
 Bestimme die Menge Cj aller Farben der bisher schon eingefärbten Intervalle die /"(p überlappen. Färbe /"-(j) dann mit der Farbe c, = min((l,2,..., n) Cj). Fortsetzung nächste Seite!
- (d) Begründen Sie, warum der Algorithmus immer eine gültige Färbung von X findet (Hinweis: Induktion).

- (e) Zeigen Sie, dass die Anzahl an Farben, die der Algorithmus für das Einfärben benötigt, mindestens cü(X) ist.
- (f) Zeigen Sie, dass die Anzahl an Farben, die der Algorithmus für das Einfärben benötigt, höchstens uj(X) ist.
- (g) Begründen Sie mit Hilfe der o.g. Eigenschaften, warum der Algorithmus korrekt ist, d. h. immer eine minimale gültige Färbung von X findet.
- (h) Wir betrachten folgenden Implementierung des Algorithmus in Pseudocode: Was ist die asymptotische Laufzeit dieses Algorithmus? Was ist der asymptotische Speicher bedarf dieses Algorithmus? Begründen Sie Ihre Antworten.

Die Bschlangaul-Sammlung Hermine Bschlangaul and Friends

Eine freie Aufgabensammlung mit Lösungen von Studierenden für Studierende zur Vorbereitung auf die 1. Staatsexamensprüfungen des Lehramts Informatik in Bayern.

Diese Materialsammlung unterliegt den Bestimmungen der Creative Commons Namensnennung-Nicht kommerziell-Share Alike 4.0 International-Lizenz.

Hilf mit! Die Hermine schafft das nicht allein! Das ist ein Community-Projekt! Verbesserungsvorschläge, Fehlerkorrekturen, weitere Lösungen sind herzlich willkommen - egal wie - per Pull-Request oder per E-Mail an hermine.bschlangaul@gmx.net.Der TEX-Quelltext dieses Dokuments kann unter folgender URL aufgerufen werden: https://github.com/bschlangaul-sammlung/examens-aufgaben/blob/main/Staatsexamen/66115/2017/09/Thema-1/Aufgabe-8.tex