Answer 10 questions. All questions have equal value. Only approved calculators are allowed.

1. Find all the solutions of the following system of equations

$$2x + 4y - 3z - 2w = -7$$
$$x + 2y - 2z - w = -5$$
$$-2x - 4y + z + w = 3.$$

- 2. Let $v_1 = (1, 2, 0)$, $v_2 = (0, 1, 1)$ and $v_3 = (1, 1, 1)$.
 - a) Show that the vectors v_1 , v_2 and v_3 are linearly independent.
 - b) Write the vector (1, -4, 2) as a linear combination of v_1 , v_2 and v_3 .

3. Let
$$M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}$.

- a) Calculate M^{-1} .
- b) Find the matrix C such that MC = B.
- 4. Let $M = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 3 \end{bmatrix}$. Write M and M^{-1} as products of elementary matrices.

5. a) Consider the following system of equations

$$x + 2z = 6$$
$$2y + z = -3$$
$$x + 2y = 0.$$

Use Cramer's rule to solve for z. No marks if you don't use Cramer's rule.

- b) Calculate the determinant of the matrix $\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 0 & 3 & 1 \\ 1 & 0 & 2 & 1 \\ 2 & 2 & 0 & 1 \end{bmatrix}.$
- 6. a) Find the orthogonal projection of the vector (1, 2, 4) on the vector (1, 2, 2).
 - b) Find the distance from the point (2,5) to the line 3x 4y 6 = 0.

- 7. Let O = (0,0,0), P = (1,0,2), Q = (0,1,2) and R = (1,-1,6).
 - a) Find the volume V of the parallelepiped determined by the vectors \overrightarrow{OP} , \overrightarrow{OQ} , \overrightarrow{OR} .
 - b) Find the area A of the parallelogram determined by the vectors \overrightarrow{OP} , \overrightarrow{OQ} .
 - c) Find the distance h from R to the plane spanned by the vectors \overrightarrow{OP} , \overrightarrow{OQ} . (Hint: use the results of parts (a) and (b).)
- 8. Find a basis for the solution space of the following system of equations

$$\begin{bmatrix} 1 & 5 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

- 9. Let $W = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\}.$
 - a) Show that W is a subspace of \mathbb{R}^3 .
 - b) Find a basis of W.
- 10. Let $A = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & 0 \\ 2 & -2 & 1 \end{bmatrix}$. The characteristic polynomial of A is $(\lambda 3)^2(\lambda + 1)$.

Find an invertible matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

11. For $n \ge 0$, let $X_n = \begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix}$ where a_n , b_n and c_n are real numbers. Let $M = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}$. Suppose that $X_n = MX_{n-1}$ for n > 0.

$$M = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 1 \end{bmatrix}.$$
 Suppose that $X_n = MX_{n-1}$ for $n > 0$.

- a) Write down the entries a_n , b_n , c_n of X_n in terms of a_0 , b_0 , c_0 (and n).

b) Suppose that
$$X_0 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
. What happens to a_n , b_n and c_n as n gets large? (Hint: we have $P^{-1}MP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$, with $P = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ and $P^{-1} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}$.)