

# Submittal Application Report

# For Grant of Certification

Model: RBSXT5HacD2n-US
5180-5240, and 5745-5825 MHz
Unlicensed National Information Infrastructure (U-NII)
Indoor/Outdoor Operation Device
U-NII-1, U-NII-3 Operation (New Rules)
FCC ID: TV7SXT5HACD2N
IC: 7442A-SXT5HACD2N

**FOR** 

### Mikrotikls SIA

Pernavas 46 Str. Riga LV-1009 Latvia

Test Report Number: 160823 FCC Site Registration: 90910 IC Test Site Registration: 3041A-1

Authorized Signatory: Sot DRogers

Scot D. Rogers

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA
Models: RBSXT5Hac

Models: RBSXT5HacD2n-US Test #: 160823 S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 1 of 81





## ROGERS LABS, INC.

4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053 Phone / Fax (913) 837-3214

# Engineering Test Report for Grant of Certification Application

FOR

Unlicensed National Information Infrastructure (U-NII) Indoor/Outdoor Operation Device

47CFR, Part 15E 15.407 (New Rules) Industry Canada RSS-247 Issue1

License Exempt Intentional Radiator

### Mikrotikls SIA

Pernavas 46 Str. Riga LV-1009 Latvia

Broadband Digital Transmission System U-NII-1 and U-NII-3 operation

Model: RBSXT5HacD2n-US Frequency Range 5180-5240 and 5745-5825 MHz FCC ID#: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Test Date: August 23, 2016

Certifying Engineer: Scot D Rogers

Scot D. Rogers Rogers Labs, Inc.

4405 West 259<sup>th</sup> Terrace Louisburg, KS 66053

Telephone/Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 2 of 81



#### **Table Of Contents**

| TABLE OF CONTENTS                                  | 3  |
|----------------------------------------------------|----|
| REVISIONS                                          | 8  |
| FORWARD                                            | 9  |
| OPINION / INTERPRETATION OF RESULTS                | 9  |
| EQUIPMENT TESTED                                   | 9  |
| EQUIPMENT FUNCTION AND CONFIGURATION               | 10 |
| Equipment Configuration                            | 11 |
| APPLICANT COMPANY INFORMATION                      | 12 |
| Equipment information                              | 12 |
| Product Details                                    | 13 |
| Accessories                                        | 14 |
| Table for Filed Antennas                           | 14 |
| Antenna and Bandwidth                              | 14 |
| IEEE 11a/n Spec                                    | 15 |
| Table for Carrier Frequencies                      | 15 |
| Table for Test Modes                               | 15 |
| Test Result of Occupied Bandwidth                  | 18 |
| APPLICATION FOR CERTIFICATION                      | 19 |
| APPLICABLE STANDARDS & TEST PROCEDURES             | 20 |
| EQUIPMENT TESTING PROCEDURES                       | 20 |
| AC Line Conducted Emission Test Procedure          | 20 |
| Radiated Emission Test Procedure                   | 20 |
| Diagram 1 Test arrangement for Conducted emissions | 21 |

Rogers Labs, Inc.

Mikrotikls SIA

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Test #: 160823

Phone/Fax: (913) 837-3214

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 3 of 81



| Diagram 2 Test arrangement for radiated emissions of tabletop equipment                | 22 |
|----------------------------------------------------------------------------------------|----|
| Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS) | 23 |
| TEST SITE LOCATIONS                                                                    | 23 |
| LIST OF TEST EQUIPMENT                                                                 | 24 |
| UNITS OF MEASUREMENTS                                                                  | 25 |
| ENVIRONMENTAL CONDITIONS                                                               | 25 |
| INTENTIONAL RADIATORS                                                                  | 25 |
| Antenna Requirements                                                                   | 25 |
| Restricted Bands of Operation                                                          | 25 |
| Table 1 Radiated Emissions in Restricted Bands Data (Worst-case)                       | 26 |
| Summary of Results for Radiated Emissions in Restricted Bands                          | 26 |
| AC Line Conducted Emissions Procedure                                                  | 27 |
| Figure 1 AC Line Conducted Emissions Line 1                                            | 28 |
| Figure 2 AC Line Conducted Emissions Line 2                                            | 28 |
| Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1)                   | 29 |
| Table 3 AC Line Conducted Emissions Data (Highest Emissions Line L2)                   | 29 |
| Summary of Results for AC Line Conducted Emissions                                     | 29 |
| General Radiated Emissions Procedure                                                   | 30 |
| Table 4 General Radiated Emissions from EUT Data (Highest Emissions)                   | 31 |
| Summary of Results for General Radiated Emissions                                      | 31 |
| Operation in the 5150-5250 and 5725-5850 MHz Frequency U-NII-1 and U-NII-3 Bands       | 32 |
| Figure 3 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11a, Chain 0)   | 33 |
| Figure 4 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n20, Chain 0) | 33 |
| Figure 5 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n40, Chain 0) | 34 |

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 4 of 81



| Figure 6 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11ac, Chain 0)     | 34 |
|-------------------------------------------------------------------------------------------|----|
| Figure 7 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11a, Chain 0)         | 35 |
| Figure 8 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n20, Chain 0)       | 35 |
| Figure 9 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n40, Chain 0)       | 36 |
| Figure 10 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11ac, Chain 0)       | 36 |
| Figure 11 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11a, Chain 0)       | 37 |
| Figure 12 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n20, Chain 0)     | 37 |
| Figure 13 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n40, Chain 0)     | 38 |
| Figure 14 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11ac, Chain 0)      | 38 |
| Figure 15 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11a, Chain 0, 99% OBW)   | 39 |
| Figure 16 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11n20, Chain 0, 99% OBW) | 39 |
| Figure 17 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11n40, Chain 0, 99% OBW) | 40 |
| Figure 18 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11a, Chain 0)     | 40 |
| Figure 19 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n20, Chain 0)   | 41 |
| Figure 20 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n40, Chain 0)   | 41 |
| Figure 21 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n80, Chain 0)   | 42 |
| Figure 22 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11a, Chain 0)        | 42 |
| Figure 23 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n20, Chain 0)      | 43 |
| Figure 24 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n40, Chain 0)      | 43 |
| Figure 25 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n80, Chain 0)      | 44 |
| Figure 26 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11a, Chain 0)       | 44 |
| Figure 27 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n20, Chain 0)     | 45 |
| Figure 28 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n40, Chain 0)     | 45 |
| Figure 29 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n80, Chain 0)     | 46 |
| Figure 30 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 0, 99% OBW)   | 46 |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 5 of 81



| Figure 31 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 0, 6-dB OBW)   | 47 |
|--------------------------------------------------------------------------------------------|----|
| Figure 32 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 0, 99% OBW)  | 47 |
| Figure 33 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 0, 6-dB OBW) | 48 |
| Figure 34 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 0, 99% OBW)  | 48 |
| Figure 35 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 0, 6-dB OBW) | 49 |
| Figure 36 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 0, 99% OBW)  | 49 |
| Figure 37 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 0, 6-dB OBW) | 50 |
| Figure 38 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11a, Chain 1)      | 50 |
| Figure 39 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n20, Chain 1)    | 51 |
| Figure 40 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n40, Chain 1)    | 51 |
| Figure 41 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n80, Chain 1)    | 52 |
| Figure 42 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11a, Chain 1)         | 52 |
| Figure 43 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n20, Chain 1)       | 53 |
| Figure 44 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n40, Chain 1)       | 53 |
| Figure 45 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n80, Chain 1)       | 54 |
| Figure 46 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11a, Chain 1)        | 54 |
| Figure 47 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n20, Chain 1)      | 55 |
| Figure 48 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n40, Chain 1)      | 55 |
| Figure 49 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n80, Chain 1)      | 56 |
| Figure 50 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11a, Chain 1, 99% OBW)    | 56 |
| Figure 51 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11n20, Chain 1, 99% OBW)  | 57 |
| Figure 52 Plot of Transmitter Emissions (5150-5250 MHz Band, 822.11n40, Chain 1, 99% OBW)  | 57 |
| Figure 53 Plot of Transmitter Emissions (5150-5250 MHz Band, 822.11n80, Chain 1, 99% OBW)  | 58 |
| Figure 54 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11a, Chain 1)      | 58 |
| Figure 55 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n20, Chain 1)    | 59 |

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 6 of 81



| Figure 56 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n40, Chain 1)    | 59 |
|--------------------------------------------------------------------------------------------|----|
| Figure 57 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n80, Chain 1)    | 60 |
| Figure 58 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11a, Chain 1)         | 60 |
| Figure 59 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n20, Chain 1)       | 61 |
| Figure 60 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n40, Chain 1)       | 61 |
| Figure 61 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n80, Chain 1)       | 62 |
| Figure 62 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11a, Chain 1)        | 62 |
| Figure 63 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n20, Chain 1)      | 63 |
| Figure 64 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n40, Chain 1)      | 63 |
| Figure 65 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n80, Chain 1)      | 64 |
| Figure 66 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 1, 99% OBW)    | 64 |
| Figure 67 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 1, 6-dB OBW)   | 65 |
| Figure 68 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 1, 99% OBW)  | 65 |
| Figure 69 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 1, 6-dB OBW) | 66 |
| Figure 70 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 1, 99% OBW)  | 66 |
| Figure 71 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 1, 6-dB OBW) | 67 |
| Figure 72 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 1, 99% OBW)  | 67 |
| Figure 73 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 1, 6-dB OBW) | 68 |
| Fransmitter Emissions Data                                                                 | 69 |
| Table 7 Transmitter Radiated Emission (5150-5250 MHz Band, Worst-case)                     | 69 |
| Table 8 Transmitter Radiated Emission (5725-5850 MHz Band, Worst-case)                     | 70 |
| Table 9 Transmitter Antenna port Conducted Power and Emissions (Chain 0)                   | 71 |
| Table 14 Transmitter Antenna port Conducted Power and Emissions (Chain 1)                  | 72 |
| Table 15 Transmitter all antenna Ports Total Power and PSD U-NII-1 Band                    | 73 |
| Table 16 Transmitter all antenna Ports Total Power and PSD U-NII-3 Band                    | 74 |

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 7 of 81



| Summary of Results for Transmitter Radiated Emissions of Intentional Radiator | 75 |
|-------------------------------------------------------------------------------|----|
| STATEMENT OF MODIFICATIONS AND DEVIATIONS                                     | 75 |
| ANNEX                                                                         | 76 |
| Annex A Measurement Uncertainty Calculations                                  | 77 |
| Annex B Rogers Labs Test Equipment List                                       | 78 |
| Annex C Rogers Qualifications                                                 | 79 |
| Annex D FCC Site Registration Letter                                          | 80 |
| Annex E Industry Canada Site Registration Letter                              | 81 |

#### **Revisions**

Revision 1 Issued October 14, 2016 – added diversity information on page 14 Revision 0 Issued October 10, 2016

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 8 of 81



#### **Forward**

The following information is submitted for consideration in obtaining Grant of Certification for License Exempt, Unlicensed National Information Infrastructure (U-NII) Intentional Radiator operating under 47CFR Paragraph 15E (15.407) [U-NII-1 and U-NII-3 new rules, 5180-5240, and 5745-5825 MHz bands], and Industry Canada RSS-GEN Issue 4, and RSS-247 Issue 1, LE-LAN transmitter operation in 5745-5825 MHz.

Name of Applicant: Mikrotikls SIA FRN: 0014 43 1100

Pernavas 46 Str. Riga LV-1009 Latvia

Model: RBSXT5HacD2n-US, FCC ID: TV7SXT5HACD2N, IC: 7442A-SXT5HACD2N

Frequency Range: 5180-5240 MHz and 5745-5825 MHz (U-NII-1 and U-NII-3 under new rules

15.407, 802.11a/n 20 MHz, 40 MHz channels), and restricted frequency band

of operation for Canada: 5745-5825 MHz

Maximum Power: U-NII-1 Band, 20 MHz mode, 0.031-watt, 99% OBW 17,400 kHz

U-NII-1 Band, 40 MHz mode, 0.028-watt, 99% OBW 37,275 kHz U-NII-1 Band, 80 MHz mode, 0.028-watt, 99% OBW 77,850 kHz U-NII-3 Band, 20 MHz mode, 0.024-watt, 99% OBW 22,880 kHz U-NII-3 Band, 40 MHz mode, 0.029-watt, 99% OBW 37,200 kHz U-NII-3 Band, 80 MHz mode, 0.026 watt, 99% OBW 77,850 kHz

**Opinion / Interpretation of Results** 

| Tests Performed                                 | Margin (dB) | Results  |
|-------------------------------------------------|-------------|----------|
| Restricted Frequency Bands 15.205, RSS-GEN 8.10 | -11.0       | Complies |
| AC Line Conducted 15.207, RSS-GEN 7.2.4         | -9.5        | Complies |
| Radiated Emissions 15.209, RSS-GEN 7.2.5        | -6.6        | Complies |
| Harmonic Emissions per 15.407, RSS-247          | -24.0       | Complies |
| Power Spectral Density per 15.407, RS-247       | -5.7        | Complies |

#### **Equipment Tested**

Equipment Model FCC I.D.

EUT RBSXT5HacD2n-US TV7SXT5HACD2N

AC Adapter FLD301-240120-U N/A
Power Adapter POE N/A
Dell Studio XPS 921LBN1 N/A

Test results in this report relate only to the items tested.

 Rogers Labs, Inc.
 Mikrotikls SIA
 S/N: 5E7801DDBBE0/522

 4405 W. 259th Terrace
 Models: RBSXT5HacD2n-US
 FCC ID: TV7SXT5HACD2N

 Louisburg, KS 66053
 Test #: 160823
 IC: 7442A-SXT5HACD2N

 Phone/Fax: (913) 837-3214
 Test to: 47CFR, 15.407, RSS-247
 Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 9 of 81



#### **Equipment Function and Configuration**

The EUT is a 2412-2462 MHz (single Tx chain) and 5 GHz (2x2) Dual Chain Digital Transmission System. The design provides operational capabilities in the 2.4 GHz Digital Transmissions System as well as U-NII-1 and U-NII-3 services (5180-5240 and 5745-5825 MHz) and Industry Canada operation as LE-LAN Indoor/Outdoor access point operation in the (5725-5850 MHz band). The EUT offers broadband wireless connectivity to transmit and receive data. The design utilizes internal fixed antenna systems and offers no provision for antenna replacement or modification. The system provides single 2.4 GHz transmitter chain and two 5 GHz transmitter chains, which may operate in a 2x2 MiMo configuration. Two samples were provided for testing, one representative of a production sample, and the other modified to provide antenna port connections for each transmitter chain. For testing purposes, the EUT transceiver was connected to the manufacturer supplied AC/DC supply and communicating to the laptop computer through Ethernet network interface. This configuration provided operational control of the EUT and communications over the network interface between the EUT and supporting computer system. The design offers single network connection point for network interface and Power-Over-Ethernet (POE) interface for use with AC/DC adapter for power. The design provides no other interfacing options. For testing purposes, the RBSXT5HacD2n-US test sample was configured to transmit in available data modes receiving power from the manufacturer provided AC/DC power adapter and POE. The antenna system complies with requirements for unique antenna connection port. The design provides no other interfacing options than those described in this filing. As requested by the manufacturer and required by regulations, the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 10 of 81



#### **Equipment Configuration**



Mikrotikls SIA Rogers Labs, Inc. S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1

Page 11 of 81



#### **Applicant Company information**

| Applicants Company         | MikroTik ("Mikrotīkls, SIA")          |
|----------------------------|---------------------------------------|
| Applicants Address         | Pernavas 46 Str., Riga LV-1009 Latvia |
| FCC Identifier             | TV7SXT5HACD2N                         |
| Industry Canada Identifier | 7442A-SXT5HACD2N                      |
| Manufacturer Company       | MikroTik ("Mikrotīkls, SIA")          |
| Manufacturer Address       | Pernavas 46 Str., Riga LV-1009 Latvia |

Equipment information

| Equipment information                                                                                                                                                                                                                                         |                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Product Marketing Name (PMN): The PMN is the name or model number under which the product will be marketed/offered for sale in Canada. If the product has PMN, it must be provided.                                                                           | RBSXT5HacD2n-US                                |
| Unique Product Number (UPN): The applicant, made up of a maximum of 11 alphanumeric characters (A-Z, 0-9), assigns the UPN.                                                                                                                                   | SXT5HACD2N                                     |
| Hardware Version Identification Number (HVIN): The HVIN identifies hardware specifications of a product version. The HVIN replaces the ISED Model Number in the legacy E- filing System. An HVIN is required for all products for certification applications. | RBSXT5HacD2n-US                                |
| Host Marketing Name (HMN) (if applicable): The HMN is the name or model number of a final product, which contains a certified radio module.                                                                                                                   |                                                |
| Brand Name                                                                                                                                                                                                                                                    |                                                |
| Model Number                                                                                                                                                                                                                                                  | RBSXT5HacD2n-US                                |
| Test Rule Part(s)                                                                                                                                                                                                                                             | 47CFR Parts 15C & 15E, 15.247, 15.407, RSS-247 |
| Test Frequency Range                                                                                                                                                                                                                                          | 2.4-2.4835, 5.15-5.25 and 5.725-5.85 GHz       |
| Project Number                                                                                                                                                                                                                                                | 160823                                         |
| Submission Type                                                                                                                                                                                                                                               | Certification                                  |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 12 of 81



#### **Product Details**

| Items               | Description                                              |  |
|---------------------|----------------------------------------------------------|--|
| Product Type        | WLAN 2.4 GHz and U-NII-1 and U-NII-3                     |  |
|                     | WLAN [2x2MIMO, (2TX, 2RX)] 5 GHz                         |  |
| Radio Type          | Transceiver                                              |  |
| Power Type          | POE adapter with External Power Supply                   |  |
| Modulation          | IEEE 802.11a: OFDM                                       |  |
| Wiodulation         | IEE 802.11a/n: see the below table                       |  |
| Data Modulation     | IEEE 802.11 a/n: OFDM (BPSK/QPSK/16QAM/64QAM)            |  |
| Data Wodulation     | IEEE 802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)       |  |
|                     | IEEE 802.11 g/n: OFDM (BPSK/QPSK/16QAM/64QAM)            |  |
|                     | IEEE 802.11 b: DSSS                                      |  |
| Data Rate (Mbps)    | IEEE 802.11a/g: OFDM (6/9/12/18/24/36/48/54)             |  |
| Data Rate (Mops)    | IEEE 802.11n/ac: see the below table                     |  |
|                     | IEEE 802.11b: (1/21/2s/51/5s/111/11s)                    |  |
| Frequency Range     | 2400-2483.5 MHz / 5150-5250 MHz / 5725-5850 MHz          |  |
| Channel Number      | 802.11b: 11 for 20MHz bandwidth                          |  |
| Chamici Ivanioci    | 802.11g/n: 11 for 20MHz bandwidth; 5 for 40MHz bandwidth |  |
|                     | 802.11a/n: 9 for 20MHz bandwidth; 4 for 40MHz bandwidth  |  |
|                     | 802.11 a/c: 2 for 80 MHz bandwidth                       |  |
| Channel Band Width  | 802.11 b: 13290 kHz                                      |  |
| (99%)               | 802.11 g: 16400 kHz                                      |  |
| (22,0)              | 802.11 n (HT-40): 36150 kHz                              |  |
|                     | U-NII-1:                                                 |  |
|                     | IEEE 802.11a: 17400 kHz                                  |  |
|                     | IEEE 802.11a/n MCS0/Nss1 (VHT20): 17400 kHz              |  |
|                     | IEEE 802.11a/n MCS0/Nss1 (VHT40): 37275 kHz              |  |
|                     | IEEE 802.11a/c (VHT80): 77850 kHz                        |  |
|                     | U-NII-4:                                                 |  |
|                     | IEEE 802.11a: 22320 kHz                                  |  |
|                     | IEEE 802.11a/n MCS0/Nss1 (VHT20): 17400 kHz              |  |
|                     | IEEE 802.11 a/n MCS0/Nss1 (VHT40): 37200 kHz             |  |
|                     | IEEE 802.11 a/c MCS0/Nss1 (VHT80): 77850 kHz             |  |
| Maximum Conducted   | Band 1:                                                  |  |
| Output Power        | IEEE 802.11a: 14.9 dBm                                   |  |
| •                   | IEEE 802.11a/n MCS0/Nss1 (VHT20): 14.9 dBm               |  |
|                     | IEEE 802.11a/n MCS0/Nss1 (VHT40): 14.5 dBm               |  |
|                     | IEEE 802.11ac MCS0/Nss1 (VHT80): 14.4 dBm                |  |
|                     | Band 3:                                                  |  |
|                     | IEEE 802.11a: 13.8 dBm                                   |  |
|                     | IEEE 802.11a/n MCS0/Nss1 (VHT20): 13.8 dBm               |  |
|                     | IEEE 802.11a/n MCS0/Nss1 (VHT40): 14.6 dBm               |  |
|                     | IEEE 802.11ac MCS0/Nss1 (VHT80): 14.1 dBm                |  |
| Carrier Frequencies | Please refer to Table for Carrier Frequencies            |  |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 13 of 81



| Antenna              | Internal antennas include metal stamped Inverted F for 2.4 GHz with 2.7 dBi Gain and 5 GHz dual polarity panel patch antenna providing 16 dBi gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Communication Mode   | Device is operating in a 1x1 2.4 GHz Digital Transmission System and 2x2 5 GHz Spatial Multiplexing MIMO configuration. The design utilizes Multiple-Input-Multiple-Output (MIMO) operational capability. The design may be configured to transmit on both chains or chosen single chain (without automatic switching between chains). The unit may receive on single or all chains and may transmit on single or all chains. 5 GHz transmitter configuration could be (1tx, 1rx); (1tx, 2rx); (2tx, 1rx); (2tx, 2rx) Design provides operational capability to transmit in both frequency bands as well as both chains at same time. The design supports spatial multiplexing/cyclic diversity in MIMO configurations and single stream legacy modes. Signals between chains are correlated. |
| Beamforming Function | Without beamforming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Operating Mode       | 2.4 GHz, 5150-5250 MHz (U-NII-1 band) and 5725-5825 MHz (U-NII-3) and frequency band of 5725-5850 MHz for use in Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### **Accessories**

| AC Power Adapter                  | FLD301-240120-U |
|-----------------------------------|-----------------|
| Power Over Ethernet (POE) adapter | POE             |

#### Table for Filed Antennas

| Ant. | Brand      | Model Name         | P/N | Antenna Type  | Connector | Gain (dBi) |      |
|------|------------|--------------------|-----|---------------|-----------|------------|------|
|      |            |                    |     |               |           | 2.4GHZ     | 5GHZ |
| 1    | Mikrotikls | Stamped inverted F | N/A | Inverted F    | N/A       | 2.7        |      |
| 2    | Mikrotikls | SXT panel          | N/A | Dual Polarity | N/A       |            | 16   |
|      |            |                    |     | Patch Panel   |           |            |      |

#### Antenna and Bandwidth

| Antenna             | TX chains         |                   |                   |  |  |  |
|---------------------|-------------------|-------------------|-------------------|--|--|--|
| Bandwidth Mode      | 20 MHz            | 40 MHz            | 80 MHz            |  |  |  |
| IEEE 802.11b        | 1 from above list |                   |                   |  |  |  |
| IEEE 802.11g        | 1 from above list |                   |                   |  |  |  |
| IEEE 802.11n (HT20) | 1 from above list |                   |                   |  |  |  |
| IEEE 802.11n (HT40) |                   | 1 from above list |                   |  |  |  |
| IEEE 802.11a        | 2 from above list |                   |                   |  |  |  |
| IEEE 802.11n        |                   | 2 from above list |                   |  |  |  |
| IEEE 802.11ac       |                   |                   | 2 from above list |  |  |  |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 14 of 81



IEEE 11a/n Spec.

| Protocol          | Number of Transmit Chains (NTX) | Data Rate/MCS  |
|-------------------|---------------------------------|----------------|
| 802.11a (HT20)    | 1, 2, or none                   | MCS 0-23       |
| 802.11n (HT40)    | 1, 2, or none                   | MCS 0-23       |
| 802.11a/n (VHT20) | 1, 2, or none                   | MCS 0-9/Nss1-3 |
| 802.11a/n (VHT40) | 1, 2, or none                   | MCS 0-9/Nss1-3 |
| 802.11a/n (VHT80) |                                 |                |

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). The EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80, and VHT160 (VHT: Very High Throughput). The EUT does not support 802.11ac.

Note 3: Modulation modes consist of below configuration:

IEEE 802.11a/n: HT20/HT40; IEEE 802.11a/n: VHT20/VHT40, IEEE 802.11a/c: VHT80

#### **Table for Carrier Frequencies**

For 20MHz bandwidth systems, use Channel 1,6,11, 36, 40, 44, 48, 149, 153, 157, 161, 165. For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

| Frequency Band   | Channel No. | Frequency | Channel No. | Frequency |
|------------------|-------------|-----------|-------------|-----------|
| 2400-2483.5MHz   | 1           | 2412      | 2           | 2422      |
| 2400-2463.3WIIIZ | 6           | 2437      | 7           | 2447      |
|                  | 11          | 2462      | 10          | 2452      |
| 5150-5250MHz     | 36          | 5180MHz   | 44          | 5220MHz   |
|                  | 38          | 5190MHz   | 46          | 5230MHz   |
| U-NII-1          | 40          | 5200MHz   | 48          | 5240MHz   |
|                  | 42          | 5210MHz   | -           | -         |
| 5725-5850MHz     | 149         | 5745MHz   | 157         | 5785MHz   |
|                  | 151         | 5755MHz   | 159         | 5795MHz   |
| U-NII-3          | 153         | 5765MHZ   | 161         | 5805MHz   |
|                  | 155         | 5775MHZ   | 165         | 5825MHz   |

#### Table for Test Modes

Preliminary tests were performed in different data rates to define the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all possible configurations while searching the worst cases. The following table is a list of the test modes investigated for this report.

| Test Items                  | Mode         |  | Data Rate | Channel | Chain |
|-----------------------------|--------------|--|-----------|---------|-------|
| Mary Conducted              | 802.11b      |  | 11        | 1,6,11  | 1     |
| Max. Conducted Output Power | 802.11g      |  | 54        | 1,6,11  | 1     |
|                             | 802.11n HT20 |  | 65        | 1,6,11  | 1     |
|                             | 802.11n HT40 |  | 135       | 2,7,10  | 1     |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 15 of 81



|                                    | •               |          |           |                       |      |
|------------------------------------|-----------------|----------|-----------|-----------------------|------|
|                                    | 11 a BPSK       | Band 1&3 | 6Mbps     | 36/40/48/149/157/165  | 2, 3 |
|                                    | 11a/n VHT20     | Band 1&3 | MCS0/Nss1 | 36/40/48/149/157/165  | 2, 3 |
|                                    | 11a/n VHT40     | Band 1&3 | MCS0/Nss1 | 38/46/151/159         | 2, 3 |
|                                    | 11a/n VHT80     | Band 1&3 | MCS0/Nss1 | 42,155                | 2, 3 |
| Power Spectral                     | 802.11b         |          |           | 1,6,11                | 1    |
| Density                            | 802.11g         |          |           | 1,6,11                | 1    |
|                                    | 802.11n HT20    |          |           | 1,6,11                | 1    |
|                                    | 802.11n HT40    |          |           | 2,7,10                | 1    |
|                                    | 11a BPSK        | Band 1&3 | 6Mbps     | 36//40/48/149/157/165 | 2, 3 |
|                                    | 11a/n VHT20     | Band 1&3 | MCS0/Nss1 | 36/40/48/149/157/165  | 2, 3 |
|                                    | 11a/n VHT40     | Band 1&3 | MCS0/Nss1 | 38/46/151/159         | 2, 3 |
|                                    | 11a/n VHT80     | Band 1&3 | MCS0/Nss1 | 42,155                | 2, 3 |
| 26dB, 99%                          | 802.11b         |          |           | 1,6,11                | 1    |
| Occupied Bandwidth                 | 802.11g         |          | 1,6,11    |                       | 1    |
| Measurement                        | 802.11n HT20    |          |           | 1,6,11                | 1    |
|                                    | 802.11n HT40    |          |           | 2,7,10                | 1    |
|                                    | 11a BPSK        | Band 1&3 | 6Mbps     | 36/40/48/149/157/165  | 2, 3 |
|                                    | 11a/n VHT20     | Band 1&3 | MCS0/Nss1 | 36/40/48/149/157/165  | 2, 3 |
|                                    | 11a/n VHT40     | Band 1&3 | MCS0/Nss1 | 38/46/151/159         | 2, 3 |
|                                    | 11a/n VHT80     | Band 1&3 | MCS0/Nss1 | 42,155                | 2, 3 |
| 6dB Spectrum                       | 802.11b         |          |           | 1,6,11                | 1    |
| Bandwidth<br>Measurement           | 802.11g         |          |           | 1,6,11                | 1    |
|                                    | 802.11n HT20    |          |           | 1,6,11                | 1    |
|                                    | 802.11n HT40    |          |           | 2,7,10                | 1    |
|                                    | 802.11a BPSK    | Band 3   | 6Mbps     | 149/157/165           | 2, 3 |
|                                    | 802.11a/n VHT20 | Band 3   | MCS0/Nss1 | 149/157/165           | 2, 3 |
|                                    | 802.11a/n VHT40 | Band 3   | MCS0/Nss1 | 151/159               | 2, 3 |
|                                    | 802.11a/n VHT80 | Band 3   | MCS0/Nss1 | 42,155                | 2, 3 |
| Radiated<br>Emission Below<br>1GHz |                 |          | -         | -                     |      |
|                                    | 802.11b         |          |           | 1,6,11                | 1    |

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US Test #: 160823

Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 16 of 81



| Radiated               | 802.11g         |          |           | 1,6,11               | 1    |
|------------------------|-----------------|----------|-----------|----------------------|------|
| Emission Above 1GHz    | 802.11n HT20    |          |           | 1,6,11               | 1    |
|                        | 802.11n HT40    |          |           | 2,7,10               | 1    |
|                        | 11a BPSK        | Band 1&3 | 6Mbps     | 36/40/48/149/157/165 | 2, 3 |
|                        | 802.11a/n VHT20 | Band 1&3 | MCS0/Nss1 | 36/40/48/149/157/165 | 2, 3 |
|                        | 802.11a/n VHT40 | Band 1&3 | MCS0/Nss1 | 38/46/151/159        | 2, 3 |
|                        | 802.11a/n VHT80 | Band 1&3 | MCS0/Nss1 | 42,155               | 2, 3 |
| Dand Edge              | 802.11b         |          |           | 1,6,11               | 1    |
| Band Edge<br>Emission  | 802.11g         |          |           | 1,6,11               | 1    |
|                        | 802.11n HT20    |          |           | 1,6,11               | 1    |
|                        | 802.11n HT40    |          |           | 2,7,10               | 1    |
|                        | 11a BPSK        | Band 1&3 | 6Mbps     | 36/40/48/149/157/165 | 2, 3 |
|                        | 802.11a/n VHT20 | Band 1&3 | MCS0/Nss1 | 36/40/48/149/157/165 | 2, 3 |
|                        | 802.11a/n VHT40 | Band 1&3 | MCS0/Nss1 | 38/46/151/159        | 2, 3 |
|                        | 802.11a/n VHT80 | Band 1&3 | MCS0/Nss1 | 42,155               | 2, 3 |
| Eraguanay              | 20MHz           | Band 1&3 | -         | 40/157               | 2, 3 |
| Frequency<br>Stability | 40MHz           | Band 1&3 | -         | 38/151               | 2, 3 |
|                        | 80MHz           | Band 1&3 | -         |                      | 2, 3 |

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E780

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV

Louisburg, KS 66053

Test #: 160823

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Revision 1

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016 pt 160823 r1 Page 17 of 81



#### Test Result of Occupied Bandwidth

| Mode                | Frequency | 26dB Bandwidth (kHz) | 6dB Bandwidth (kHz) | 99% Occupied<br>Bandwidth (kHz) |
|---------------------|-----------|----------------------|---------------------|---------------------------------|
| 802.11b             | 2412 MHz  | N/A                  | 10220 kHz           | 13230 kHz                       |
|                     | 2437 MHz  | N/A                  | 10100 kHz           | 13260 kHz                       |
|                     | 2462 MHz  | N/A                  | 10120 kHz           | 13290 kHz                       |
| 802.11g             | 2412 MHz  | N/A                  | 15150 kHz           | 16400 kHz                       |
|                     | 2437 MHz  | N/A                  | 15150 kHz           | 16360 kHz                       |
|                     | 2462 MHz  | N/A                  | 15150 kHz           | 16360 kHz                       |
| 802.11n (HT20)      | 2412 MHz  | N/A                  | 15150 kHz           | 16400 kHz                       |
|                     | 2437 MHz  | N/A                  | 15150 kHz           | 16360 kHz                       |
|                     | 2462 MHz  | N/A                  | 15150 kHz           | 16360 kHz                       |
| 802.11n (HT40)      | 2422 MHz  | N/A                  | 34125 kHz           | 36000 kHz                       |
|                     | 2447 MHz  | N/A                  | 34500 kHz           | 36075 kHz                       |
|                     | 2452 MHz  | N/A                  | 33825 kHz           | 36150 kHz                       |
|                     | 5180 MHz  | 21880 kHz            | N/A                 | 17400 kHz                       |
| 802.11a             | 5200 MHz  | 22040 kHz            | N/A                 | 17360 kHz                       |
| 002.11a             | 5240 MHz  | 22480 kHz            | N/A                 | 17400 kHz                       |
|                     | 5745 MHz  | N/A                  | 16400 kHz           | 17360 kHz                       |
|                     | 5785 MHz  | N/A                  | 16400 kHz           | 17360 kHz                       |
|                     | 5825 MHz  | N/A                  | 16400 kHz           | 17400 kHz                       |
| 802.11n (ht20)      | 5180 MHz  | 22080 kHz            | N/A                 | 17360 kHz                       |
|                     | 5200 MHz  | 22120 kHz            | N/A                 | 17400 kHz                       |
|                     | 5240 MHz  | 21800 kHz            | N/A                 | 17400 kHz                       |
|                     | 5745 MHz  | N/A                  | 16400 kHz           | 22320 kHz                       |
|                     | 5785 MHz  | N/A                  | 16400 kHz           | 22280 kHz                       |
|                     | 5825 MHz  | N/A                  | 16400 kHz           | 22880 kHz                       |
| 802.11a/n MCS0/Nss1 | 5190 MHz  | 45225 kHz            | N/A                 | 37275 kHz                       |
| VHT40               | 5230 MHz  | 46950 kHz            | N/A                 | 37275 kHz                       |
|                     | 5755 MHz  | N/A                  | 36375 kHz           | 37200 kHz                       |
|                     | 5795 MHz  | N/A                  | 36375 kHz           | 37200 kHz                       |
| 802.11ac VHT80      | 5210 MHz  | 90300 kHz            | N/A                 | 77850 kHz                       |
| 802.11ac VHT80      | 5775 MHz  | N/A                  | 76350 kHz           | 77850 kHz                       |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 18 of 81



#### **Application for Certification**

(1) Manufacturer: Mikrotikls SIA

Pernavas 46 Str.

Riga LV-1009 Latvia

(2) Identification: Model: RBSXT5HacD2n-US

FCC I.D.: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

(3) Instruction Book:

Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:

Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:

Refer to Exhibit of Operational Description.

(6) Report of Measurements:

Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:

Refer to Exhibit for photographs of equipment.

- (8) List of Peripheral Equipment Necessary for operation. The equipment requires power and communications provided through the network interface. The design provides single interface port for communications and power with AC/DC adapter and POE.
- (9) Transition Provisions of 47CFR 15.37 are not requested
- (10) Not Applicable. The unit is not a scanning receiver.
- (11) Not Applicable. The EUT does not operate in the 59 64 GHz frequency band.
- (12) The equipment is not software defined and this section is not applicable.
- (13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. The required information has been provided in Operational Description Exhibit filed with the application.
- (14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provide in this report and Test Setup Exhibits provided with the application filing.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 19 of 81



#### **Applicable Standards & Test Procedures**

The following information is submitted in accordance with e-CFR dated August 23, 2016, Part 2, Subpart J, Part 15, Subpart 15E, Industry Canada RSS-GEN issue 4, and RSS-247 issue 1. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013, KDB 789033 D02 v01r02, KDB 412172 D01 v01r01, KDB 662911 D01 v02r01, KDB 926956 D01 v01r06, RSS-247 Issue 1, and RSS-GEN Issue 4. The following information is submitted for processing applications for Certification.

#### **Equipment Testing Procedures**

#### AC Line Conducted Emission Test Procedure

Testing for the AC line-conducted emissions was performed as defined in ANSI C63.10-2013. The test setup, including the EUT, was arranged in the test configurations as presented during testing. The test configuration was placed on a 1 x 1.5-meter wooden bench, 0.8 meters high located in a screen room. The power lines of the system were isolated from the power source using a standard LISN with a 50- $\mu$ Hy choke. EMI was coupled to the spectrum analyzer through a 0.1  $\mu$ F capacitor internal to the LISN. The LISN was positioned on the floor beneath the wooden bench supporting the EUT. The power lines and cables were draped over the back edge of the table. Refer to diagram one showing typical test arrangement and photographs in exhibits for EUT placement used during testing.

#### Radiated Emission Test Procedure

Radiated emission testing was performed as required and specified in ANSI C63.10-2013 and applicable KDB documents. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. The table permitted orientation of the EUT in each of three orthogonal axis positions if necessary. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. The frequency spectrum from 9 kHz to 50,000 MHz was searched for during preliminary investigation. Refer to diagrams two and three showing typical test arrangement and photographs in the test setup exhibits for specific EUT placement during testing.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 20 of 81





- 1. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long see (see 6.2.3.2).
- 2. The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m (see 6.2.2).
- 3. EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50  $\Omega$  loads. LISN may be placed on top of, or immediately beneath, reference ground plane (see 6.2.2 and 6.2.3).
  - 3.1 All other equipment powered from additional LISN(s).
  - 3.2 Multiple-outlet strip can be used for multiple power cords of non-EUT equipment.
  - 3.3 LISN at least 80 cm from nearest part of EUT chassis
- 4. Non-EUT components of EUT system being tested
- 5. Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop (see 6.2.3.2).
- 6. Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane (see 6.2.2 for options).
- 7. Antenna may be integral or detachable. If detachable, the antenna shall be attached for this test.

#### Diagram 1 Test arrangement for Conducted emissions

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 21 of 81





- 1. A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in 50  $\Omega$  loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).
  - 1.1 LISN spaced at least 80 cm from nearest part of EUT chassis.
- 2. Antenna can be integral or detachable, depending on the EUT (see 6.3.1).
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).
- 4. For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

#### Diagram 2 Test arrangement for radiated emissions of tabletop equipment

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 22 of 81





| Frequency: 9 kHz-30 MHz | Frequency: 30 MHz- 1 GHZ | Frequency: Above 1 GHz |
|-------------------------|--------------------------|------------------------|
| Loop Antenna            | Broadband Biconilog      | Horn                   |
| RBW = 9  kHz            | RBW = 120  kHz           | RBW = 1 MHz            |
| VBW = 30  kHz           | VBW = 120  kHz           | VBW = 1 MHz            |
| Sweep time = Auto       | Sweep time = Auto        | Sweep time = Auto      |
| Detector = PK, QP       | Detector = PK, QP        | Detector = PK, AV      |
| Antenna Height 1m       | Antenna Height 1-4m      | Antenna Height 1-4m    |

Diagram 3 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

#### **Test Site Locations**

Conducted EMI The AC power line conducted emissions testing performed in a shielded

screen room located at Rogers Labs, Inc., 4405 West 259th Terrace,

Louisburg, KS

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test

Site (OATS) located at Rogers Labs, Inc., 4405 West 259th Terrace,

Louisburg, KS

Site Registration Refer to Annex for Site Registration Letters

NVLAP Accreditation Lab code 200087-0

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 23 of 81



Revision 1

#### **List of Test Equipment**

A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

| AC Line Conducted Emissions (0.150 -30 MHz) |                            |                   |  |  |  |
|---------------------------------------------|----------------------------|-------------------|--|--|--|
| RBW                                         | AVG. BW                    | Detector Function |  |  |  |
| 9 kHz                                       | 30 kHz Peak / Quasi Peak   |                   |  |  |  |
| Emissions (30-1000 MHz)                     |                            |                   |  |  |  |
| RBW                                         | AVG. BW                    | Detector Function |  |  |  |
| 120 kHz                                     | 300 kHz                    | Peak / Quasi Peak |  |  |  |
|                                             | Emissions (Above 1000 MHz) |                   |  |  |  |
| RBW                                         | Video BW                   | Detector Function |  |  |  |
| 100 kHz                                     | 100 kHz                    | Peak              |  |  |  |
| 1 MHz                                       | 1 MHz                      | Peak / Average    |  |  |  |

| Equipment         | Manufacturer      | Model (SN)               | Band        | Cal Date | Due   |
|-------------------|-------------------|--------------------------|-------------|----------|-------|
| $\boxtimes$ LISN  | FCC FCC-LIS       | SN-50-2-10(1PA) (160611) | .15-30MHz   | 5/16     | 5/17  |
| ⊠ Cable           | Time Microwave    | 750HF290-750 (L10M)      | 9kHz-40 GHz | 10/15    | 10/16 |
| ⊠ Cable           | Belden            | RG-58 (L1-CAT3-11509)    | 9kHz-30 MHz | 10/15    | 10/16 |
| ⊠ Cable           | Belden            | RG-58 (L2-CAT3-11509)    | 9kHz-30 MHz | 10/15    | 10/16 |
| Antenna           | ARA               | BCD-235-B (169)          | 20-350MHz   | 10/15    | 10/16 |
| Antenna           | EMCO              | 3147 (40582)             | 200-1000MHz | 10/15    | 10/16 |
| Antenna           | ETS-Lindgren      | 3117 (200389)            | 1-18 GHz    | 5/16     | 5/18  |
| Antenna           | Com Power         | AH-118 (10110)           | 1-18 GHz    | 10/15    | 10/16 |
| Antenna           | Com Power         | AH-840 (101046)          | 18-40 GHz   | 5/16     | 5/18  |
| Antenna           | EMCO              | 6509 (9502-1374)         | .001-30 MHz | 10/15    | 10/16 |
| Antenna           | Sunol             | JB-6 (A100709)           | 30-1000 MHz | 10/15    | 10/16 |
| Antenna           | EMCO              | 3143 (9607-1277)         | 20-1200 MHz | 5/16     | 5/17  |
| Analyzer          | HP                | 8591EM (3628A00871)      | 9kHz-1.8GHz | 5/16     | 5/17  |
| Malyzer 🖂         | HP                | 8562A (3051A05950)       | 9kHz-110GHz | 5/16     | 5/17  |
| Malyzer 🖂         | HP External Mixer | s11571, 11970            | 40GHz-110GH | z5/16    | 5/17  |
| Malyzer 🖂         | Rohde & Schwarz   | ESU40 (100108)           | 20Hz-40GHz  | 5/16     | 5/17  |
|                   | Com-Power         | PA-010 (171003)          | 100Hz-30MHz | 10/15    | 10/16 |
|                   | Com-Power         | CPPA-102 (01254)         | 1-1000 MHz  | 10/15    | 10/16 |
| Marghan Amplifier | Com-Power         | PAM-118A (551014)        | 0.5-18 GHz  | 10/15    | 10/16 |

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1

Page 24 of 81



#### **Units of Measurements**

Conducted EMI Data is in dBµV; dB referenced to one microvolt

Radiated EMI Data is in  $dB\mu V/m$ ; dB/m referenced to one microvolt per meter

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Gain = amplification gains and/or cable losses

RFS  $(dB\mu V/m @ 3m) = FSM (dB\mu V) + A.F. (dB) - Gain (dB)$ 

#### **Environmental Conditions**

Ambient Temperature 23.6° C

Relative Humidity 35%

Atmospheric Pressure 1001.1 mb

#### **Intentional Radiators**

As per 47CFR part 15 subpart E and Industry Canada RSS-247, Issue 1, the following information is submitted for consideration and demonstration of compliance with regulation and standards.

#### Antenna Requirements

The EUT incorporates integral antenna systems inside the enclosure and offers no provision for antenna replacement. The requirements of 15.203 are fulfilled there are no deviations or exceptions to the specification.

#### Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured on the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in restricted bands. Emissions were investigated while the EUT was located on the OATS using appropriate antennas or pyramidal horns, amplification stages, and spectrum analyzer receiver. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed radiated emission values take into account the measured radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 25 of 81



Table 1 Radiated Emissions in Restricted Bands Data (Worst-case)

| Frequency in MHz | Horizontal<br>Peak<br>(dBµV/m) | Horizontal<br>Quasi-Peak<br>(dBµV/m) | Horizontal<br>Average<br>(dBµV/m) | Vertical<br>Peak<br>(dBµV/m) | Vertical<br>Quasi-Peak<br>(dBµV/m) | Vertical<br>Average<br>(dBµV/m) | Limit @ 3m<br>(dBµV/m) |  |  |
|------------------|--------------------------------|--------------------------------------|-----------------------------------|------------------------------|------------------------------------|---------------------------------|------------------------|--|--|
|                  | U-NII-1 Operation Worst-case   |                                      |                                   |                              |                                    |                                 |                        |  |  |
| 5150.0           | 44.9                           | N/A                                  | 31.6                              | 63.6                         | N/A                                | 43.0                            | 54.0                   |  |  |
| 5350.0           | 45.8                           | N/A                                  | 32.4                              | 52.2                         | N/A                                | 39.2                            | 54.0                   |  |  |
| 15540.0          | 54.2                           | N/A                                  | 41.2                              | 54.5                         | N/A                                | 41.3                            | 54.0                   |  |  |
| 15660.0          | 54.3                           | N/A                                  | 41.7                              | 55.3                         | N/A                                | 41.6                            | 54.0                   |  |  |
| 15720.0          | 55.0                           | N/A                                  | 41.9                              | 55.2                         | N/A                                | 41.7                            | 54.0                   |  |  |
| 20720.0          | 52.3                           | N/A                                  | 36.8                              | 47.2                         | N/A                                | 33.7                            | 54.0                   |  |  |
| 20880.0          | 46.1                           | N/A                                  | 32.8                              | 46.2                         | N/A                                | 32.7                            | 54.0                   |  |  |
| 20960.0          | 46.2                           | N/A                                  | 32.4                              | 45.4                         | N/A                                | 32.4                            | 54.0                   |  |  |
|                  | U-NII-3 Operation 802.11a      |                                      |                                   |                              |                                    |                                 |                        |  |  |
| 11490.0          | 50.7                           | N/A                                  | 37.3                              | 50.8                         | N/A                                | 37.3                            | 54.0                   |  |  |
| 11570.0          | 50.2                           | N/A                                  | 37.1                              | 50.0                         | N/A                                | 36.7                            | 54.0                   |  |  |
| 11650.0          | 50.3                           | N/A                                  | 37.1                              | 50.2                         | N/A                                | 37.0                            | 54.0                   |  |  |
| 22980.0          | 49.1                           | N/A                                  | 36.1                              | 49.1                         | N/A                                | 36.1                            | 54.0                   |  |  |

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

#### Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the emissions requirements of 47CFR 15.205, RSS-GEN and RSS-247, Issue 1 Intentional Radiators. The EUT provided a worst-case minimum margin of -11.0 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 26 of 81



#### AC Line Conducted Emissions Procedure

The EUT was arranged in a typical equipment configuration and placed on a 1 x 1.5-meter wooden bench 80 cm above the conducting ground plane, floor of a screen room. The bench was positioned 40 cm away from the wall of the screen room. The LISN was positioned on the floor of the screen room 80-cm from the rear of the EUT. The manufacturer supplied supporting equipment AC/DC adapter provided direct current power to the POE, which routed power to the EUT, was connected to the LISN. A second LISN was positioned on the floor of the screen room 80-cm from the rear of the supporting equipment of the EUT. All power cords except the EUT were then powered from the second LISN. EMI was coupled to the spectrum analyzer through a 0.1 µF capacitor, internal to the LISN. Power line conducted emissions testing were carried out individually for each current carrying conductor of the EUT. The excess length of lead between the system and the LISN receptacle was folded back and forth to form a bundle not exceeding 40 cm in length. The screen room, conducting ground plane, analyzer, and LISN were bonded together to the protective earth ground. Preliminary testing was performed to identify the frequency of each emission displaying the highest amplitude. The cables were repositioned to obtain maximum amplitude of measured EMI level. Once the worst-case configuration was identified, plots were made of the EMI from 0.15 MHz to 30 MHz then the data was recorded with maximum conducted emissions levels. Refer to figures one and two for plots of the EUT AC Line Conducted emissions.

Rogers Labs, Inc.

Mikrotikls SIA

Models: RBSXT5HacD2n-US

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Mikrotikls SIA

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 27 of 81





Figure 1 AC Line Conducted Emissions Line 1



Figure 2 AC Line Conducted Emissions Line 2

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR, 15.407, RSS-247 S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 28 of 81



**Table 2 AC Line Conducted Emissions Data (Highest Emissions Line L1)** 

| Trace | Frequency     |     | Level (dBµV) | Detector   | Delta Limit/dB |
|-------|---------------|-----|--------------|------------|----------------|
| 2     | 202.000000000 | kHz | 39.22        | Average    | -14.31         |
| 2     | 270.000000000 | kHz | 32.58        | Average    | -18.54         |
| 1     | 330.000000000 | kHz | 45.73        | Quasi Peak | -13.72         |
| 2     | 342.000000000 | kHz | 37.26        | Average    | -11.89         |
| 2     | 406.000000000 | kHz | 33.43        | Average    | -14.30         |
| 2     | 414.000000000 | kHz | 33.49        | Average    | -14.08         |
| 1     | 418.000000000 | kHz | 45.09        | Quasi Peak | -12.39         |
| 2     | 466.000000000 | kHz | 30.84        | Average    | -15.74         |
| 1     | 594.000000000 | kHz | 41.42        | Quasi Peak | -14.58         |
| 1     | 758.000000000 | kHz | 44.65        | Quasi Peak | -11.35         |
| 1     | 1.046000000   | MHz | 43.52        | Quasi Peak | -12.48         |
| 1     | 1.394000000   | MHz | 42.46        | Quasi Peak | -13.54         |

Other emissions present had amplitudes at least 20 dB below the limit.

**Table 3 AC Line Conducted Emissions Data (Highest Emissions Line L2)** 

| Trace | Frequenc      | у   | Level (dBμV) | Detector | Delta Limit/dB |
|-------|---------------|-----|--------------|----------|----------------|
| 2     | 202.000000000 | kHz | 41.90        | Average  | -11.62         |
| 1     | 330.000000000 | kHz | 46.24        | Quasi P  | eak -13.21     |
| 2     | 330.000000000 | kHz | 36.80        | Average  | -12.65         |
| 2     | 338.000000000 | kHz | 39.70        | Average  | -9.55          |
| 2     | 414.000000000 | kHz | 35.85        | Average  | -11.72         |
| 1     | 418.000000000 | kHz | 46.09        | Quasi P  | eak -11.40     |
| 2     | 470.000000000 | kHz | 32.44        | Average  | -14.08         |
| 2     | 686.000000000 | kHz | 32.27        | Average  | -13.73         |
| 1     | 958.000000000 | kHz | 43.92        | Quasi P  | eak -12.08     |
| 1     | 1.038000000   | MHz | 45.23        | Quasi P  | eak -10.77     |
| 1     | 1.306000000   | MHz | 43.71        | Quasi P  | eak -12.29     |
| 1     | 1.938000000   | MHz | 42.92        | Quasi P  | eak -13.08     |

Other emissions present had amplitudes at least 20 dB below the limit.

#### Summary of Results for AC Line Conducted Emissions

The EUT test system demonstrated compliance to the conducted emissions requirements of 47CFR 15.207, RSS-247 Issue 1 and RSS-GEN. The EUT demonstrated minimum margin of -9.5 dB below the limit. Measurements were taken using the peak, quasi peak, and average, measurement function for each emissions amplitude and were below the limits stated in the specification. Other emissions were present with recorded data representing worst-case amplitudes.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 29 of 81



#### General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available modes with worst-case data recorded. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 60,000 MHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or Double Ridge or pyramidal horns and mixers above 1 GHz, notch filters, and appropriate amplifiers and external mixers were utilized.

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 30 of 81



**Table 4 General Radiated Emissions from EUT Data (Highest Emissions)** 

| Frequency in MHz | Horizontal<br>Peak<br>(dBµV/m) | Horizontal<br>Quasi-Peak<br>(dBµV/m) | Horizontal<br>Average<br>(dBµV/m) | Vertical<br>Peak<br>(dBµV/m) | Vertical<br>Quasi-Peak<br>(dBµV/m) | Vertical<br>Average<br>(dBµV/m) | Limit @ 3m<br>(dBμV/m) |
|------------------|--------------------------------|--------------------------------------|-----------------------------------|------------------------------|------------------------------------|---------------------------------|------------------------|
| 47.8             | 34.2                           | 29.4                                 | N/A                               | 40.2                         | 32.2                               | N/A                             | 40.0                   |
| 50.4             | 36.3                           | 33.4                                 | N/A                               | 35.8                         | 30.4                               | N/A                             | 40.0                   |
| 51.1             | 38.1                           | 32.9                                 | N/A                               | 39.8                         | 28.8                               | N/A                             | 40.0                   |
| 63.4             | 36.7                           | 25.5                                 | N/A                               | 33.6                         | 25.9                               | N/A                             | 40.0                   |
| 70.8             | 36.5                           | 26.4                                 | N/A                               | 34.5                         | 23.9                               | N/A                             | 40.0                   |
| 76.5             | 39.7                           | 27.2                                 | N/A                               | 31.1                         | 23.2                               | N/A                             | 40.0                   |
| 108.8            | 38.2                           | 31.2                                 | N/A                               | 33.0                         | 26.1                               | N/A                             | 43.5                   |
| 113.1            | 33.7                           | 24.3                                 | N/A                               | 30.8                         | 23.3                               | N/A                             | 43.5                   |
| 143.4            | 39.7                           | 27.2                                 | N/A                               | 27.2                         | 21.3                               | N/A                             | 43.5                   |
| 155.7            | 36.5                           | 24.6                                 | N/A                               | 30.1                         | 26.2                               | N/A                             | 43.5                   |
| 179.2            | 33.8                           | 23.3                                 | N/A                               | 23.1                         | 17.4                               | N/A                             | 43.5                   |
| 183.0            | 33.5                           | 19.1                                 | N/A                               | 23.0                         | 14.9                               | N/A                             | 43.5                   |
| 222.7            | 34.1                           | 21.3                                 | N/A                               | 32.2                         | 17.9                               | N/A                             | 46.0                   |
| 230.9            | 35.2                           | 20.9                                 | N/A                               | 26.9                         | 21.0                               | N/A                             | 46.0                   |
| 252.8            | 45.2                           | 31.3                                 | N/A                               | 33.0                         | 22.3                               | N/A                             | 46.0                   |
| 258.2            | 46.6                           | 33.2                                 | N/A                               | 29.4                         | 23.2                               | N/A                             | 46.0                   |

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

#### Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR part 15 and Industry Canada RSS-247 Issue 1 Intentional Radiators. The EUT demonstrated a minimum margin of -6.6 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 31 of 81



#### Operation in the 5150-5250 and 5725-5850 MHz Frequency U-NII-1 and U-NII-3 Bands

Testing followed FCC KDB 789033 D02 General U-NII Test Procedures New Rules v01r02. The second test sample provided direct connection to the antenna port. This sample was used for testing antenna port conducted emissions. A power meter was used to measure fundamental transmitter output power. A spectrum analyzer was used to produce plots and make other antenna port conducted measurements for compliance testing. Test software (Winbox version 3.1) was used to operate the transmitter. This software provided ability to set test channel, operational mode, and modulation scheme. The test sample, which was modified, replacing the integral antennas with antenna port connectors, was used during antenna port conducted emissions testing. The antenna port was connected to coaxial cable with 50-ohm attenuator and spectrum analyzer or power meter during testing. The production design with integral antenna systems was used during radiated emissions testing. The radiated emissions test sample was placed on a turntable elevated as required above the ground plane as required at a distance of 3 meters from the FSM antenna located on the OATS. The peak and quasi-peak amplitude of the frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz were measured using a spectrum analyzer. Emissions data was recorded from the measurement results. Data presented reflects measurement result corrected to account for measurement system gains and losses. Plots were made of transmitter performance for reference purposes.

In addition, all Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual. This equipment operates within the required frequency spectrum under normal operational conditions.

The design provides 2 transmitter chains connected to internal panel antenna which may be correlated and thus summing the gain of the highest gain antenna system would provide for 16 dBi gain (Directional gain = GANT +  $10 \log (NANT) dBi$ ) =  $16 + 10 \log (2)$ ) = 19 dBi

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 32 of 81





Figure 3 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11a, Chain 0)



Figure 4 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n20, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US Louisburg, KS 66053 Test #: 160823 Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247

FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 33 of 81





Figure 5 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n40, Chain 0)



Figure 6 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11ac, Chain 0)

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 34 of 81





Figure 7 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11a, Chain 0)



Figure 8 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n20, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 35 of 81





Figure 9 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n40, Chain 0)



Figure 10 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11ac, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 36 of 81





Figure 11 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11a, Chain 0)



Figure 12 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n20, Chain 0)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US Test #: 160823

S/N: 5E7801DDBBE0/522 cD2n-US FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N 07, RSS-247 Date: October 14, 2016

4 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 37 of 81





Figure 13 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n40, Chain 0)



Figure 14 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11ac, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 38 of 81





Figure 15 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11a, Chain 0, 99% OBW)



Figure 16 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11n20, Chain 0, 99% OBW)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 39 of 81





Figure 17 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11n40, Chain 0, 99% OBW)



Figure 18 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11a, Chain 0)

Page 40 of 81

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Revision 1





Figure 19 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n20, Chain 0)



Figure 20 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n40, Chain 0)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA
Models: RBSXT5HacD2n-US

Models: RBSXT5HacD2n-US
Test #: 160823
Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 41 of 81





Figure 21 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n80, Chain 0)



Figure 22 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11a, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Revision 1

IC: 7442A-SXT5HACD2N Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 42 of 81





Figure 23 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n20, Chain 0)



Figure 24 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n40, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 43 of 81





Figure 25 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n80, Chain 0)



Figure 26 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11a, Chain 0)

Rogers Labs, Inc. Mikrotikls SIA 4405 W. 259th Terrace Models: RBSXT5HacD2n-US Louisburg, KS 66053 Test #: 160823 Phone/Fax: (913) 837-3214 Revision 1

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 44 of 81





Figure 27 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n20, Chain 0)



Figure 28 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n40, Chain 0)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N Test #: 160823 IC: 7442A-SXT5HACD2N Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016

S/N: 5E7801DDBBE0/522

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 45 of 81





Figure 29 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n80, Chain 0)



Figure 30 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 0, 99% OBW)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US Test #: 160823 S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

4 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 46 of 81



Revision 1



Figure 31 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 0, 6-dB OBW)



Figure 32 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 0, 99% OBW)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Test #: 160823 Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247

IC: 7442A-SXT5HACD2N Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 47 of 81





Figure 33 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 0, 6-dB OBW)



Figure 34 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 0, 99% OBW)

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 48 of 81





Figure 35 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 0, 6-dB OBW)



Figure 36 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 0, 99% OBW)

Rogers Labs, Inc.

4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214

Mikrotikls SIA
Models: RBSXT5HacD2n-US
Test #: 160823
Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 49 of 81





Figure 37 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 0, 6-dB OBW)



Figure 38 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11a, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 50 of 81





Figure 39 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n20, Chain 1)



Figure 40 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n40, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 51 of 81





Figure 41 Plot of Transmitter Emissions (Across 5150-5250 MHz Band, 802.11n80, Chain 1)



Figure 42 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11a, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 52 of 81





Figure 43 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n20, Chain 1)



Figure 44 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n40, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 53 of 81





Figure 45 Plot of Transmitter Low Band Edge (5150-5250 MHz Band, 802.11n80, Chain 1)



Figure 46 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11a, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 54 of 81





Figure 47 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n20, Chain 1)



Figure 48 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n40, Chain 1)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US Test #: 160823 S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

4 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 55 of 81





Figure 49 Plot of Transmitter High Band Edge (5150-5250 MHz Band, 802.11n80, Chain 1)



Figure 50 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11a, Chain 1, 99% OBW)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 56 of 81





Figure 51 Plot of Transmitter Emissions (5150-5250 MHz Band, 802.11n20, Chain 1, 99% OBW)



Figure 52 Plot of Transmitter Emissions (5150-5250 MHz Band, 822.11n40, Chain 1, 99% OBW)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 57 of 81





Figure 53 Plot of Transmitter Emissions (5150-5250 MHz Band, 822.11n80, Chain 1, 99% OBW)



Figure 54 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11a, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Test #: 160823 Louisburg, KS 66053 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Revision 1

Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 58 of 81





Figure 55 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n20, Chain 1)



Figure 56 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n40, Chain 1)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N

Date: October 14, 2016 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 59 of 81





Figure 57 Plot of Transmitter Emissions (Across 5725-5850 MHz Band, 802.11n80, Chain 1)



Figure 58 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11a, Chain 1)

Page 60 of 81

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1





Figure 59 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n20, Chain 1)



Figure 60 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n40, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 61 of 81





Figure 61 Plot of Transmitter Low Band Edge (5725-5850 MHz Band, 802.11n80, Chain 1)



Figure 62 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11a, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 62 of 81





Figure 63 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n20, Chain 1)



Figure 64 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n40, Chain 1)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 63 of 81





Figure 65 Plot of Transmitter High Band Edge (5725-5850 MHz Band, 802.11n80, Chain 1)



Figure 66 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 1, 99% OBW)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N Test #: 160823 IC: 7442A-SXT5HACD2N Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 64 of 81





Figure 67 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11a, Chain 1, 6-dB OBW)



Figure 68 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 1, 99% OBW)

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

Fone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 65 of 81





Figure 69 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n20, Chain 1, 6-dB OBW)



Figure 70 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 1, 99% OBW)

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 66 of 81





Figure 71 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n40, Chain 1, 6-dB OBW)



Figure 72 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 1, 99% OBW)

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

Fone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 67 of 81





Figure 73 Plot of Transmitter Emissions (5725-5850 MHz Band, 802.11n80, Chain 1, 6-dB OBW)

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA Models: RBSXT5HacD2n-US Test #: 160823

Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 68 of 81



### Transmitter Emissions Data

Table 7 Transmitter Radiated Emission (5150-5250 MHz Band, Worst-case)

| Frequency in MHz | Horizontal<br>Peak (dBµV/m) | Horizontal<br>Average (dBµV/m) | Vertical Peak<br>(dBμV/m) | Vertical Average (dBµV/m) | Limit @ 3m<br>(dBµV/m) |
|------------------|-----------------------------|--------------------------------|---------------------------|---------------------------|------------------------|
| 20 MHz Channel   |                             |                                |                           |                           |                        |
| 5180.0           |                             |                                |                           |                           |                        |
| 10360.0          | 47.7                        | 35.1                           | 68.2                      | 35.0                      | 68.3                   |
| 15540.0          | 54.2                        | 41.2                           | 54.5                      | 41.3                      | 68.3                   |
| 20720.0          | 52.3                        | 36.8                           | 47.2                      | 33.7                      | 68.3                   |
| 25900.0          | 50.2                        | 37.2                           | 50.2                      | 37.1                      | 68.3                   |
| 5220.0           |                             |                                |                           |                           |                        |
| 10440.0          | 48.8                        | 35.2                           | 49.3                      | 36.1                      | 68.3                   |
| 15660.0          | 54.3                        | 41.7                           | 55.3                      | 41.6                      | 68.3                   |
| 20880.0          | 46.1                        | 32.8                           | 46.2                      | 32.7                      | 68.3                   |
| 26100.0          | 51.1                        | 37.9                           | 51.0                      | 37.9                      | 68.3                   |
| 5240.0           |                             |                                |                           |                           |                        |
| 10480.0          | 54.4                        | 40.3                           | 51.8                      | 37.7                      | 68.3                   |
| 15720.0          | 55.0                        | 41.9                           | 55.2                      | 41.7                      | 68.3                   |
| 20960.0          | 46.2                        | 32.4                           | 45.4                      | 32.4                      | 68.3                   |
| 26200.0          | 52.2                        | 39.2                           | 52.2                      | 39.2                      | 68.3                   |
|                  | Band Edges                  |                                |                           |                           |                        |
| 5150.0           | 44.9                        | 31.6                           | 63.6                      | 43.0                      | 54.0                   |
| 5350.0           | 45.8                        | 32.4                           | 52.2                      | 39.2                      | 54.0                   |

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc.

4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214

Mikrotikls SIA
Models: RBSXT5HacD2n-US
Test #: 160823
Test to: 47CFR, 15.407, RSS-247

Revision 1

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 69 of 81



Table 8 Transmitter Radiated Emission (5725-5850 MHz Band, Worst-case)

| Frequency in MHz | Horizontal<br>Peak (dBµV/m) | Horizontal<br>Average (dBµV/m) | Vertical Peak<br>(dBμV/m) | Vertical Average (dBµV/m) | Limit @ 3m<br>(dBµV/m) |  |
|------------------|-----------------------------|--------------------------------|---------------------------|---------------------------|------------------------|--|
|                  | 20 MHz Channel              |                                |                           |                           |                        |  |
| 5745.0           |                             |                                |                           |                           |                        |  |
| 11490.0          | 50.7                        | 37.3                           | 50.8                      | 37.3                      | 68.3                   |  |
| 17235.0          | 56.1                        | 43.5                           | 56.2                      | 43.5                      | 68.3                   |  |
| 22980.0          | 49.1                        | 36.1                           | 49.1                      | 36.1                      | 68.3                   |  |
| 28725.0          | 52.3                        | 39.5                           | 52.1                      | 39.5                      | 68.3                   |  |
| 5785.0           |                             |                                |                           |                           |                        |  |
| 11570.0          | 50.2                        | 37.1                           | 50.0                      | 36.7                      | 68.3                   |  |
| 17355.0          | 57.2                        | 44.3                           | 57.3                      | 44.3                      | 68.3                   |  |
| 23140.0          | 49.3                        | 36.0                           | 49.1                      | 36.1                      | 68.3                   |  |
| 28925.0          | 52.8                        | 40.2                           | 53.2                      | 40.2                      | 68.3                   |  |
| 5825.0           |                             |                                |                           |                           |                        |  |
| 11650.0          | 50.3                        | 37.1                           | 50.2                      | 37.0                      | 68.3                   |  |
| 17475.0          | 57.5                        | 44.0                           | 57.1                      | 44.0                      | 68.3                   |  |
| 23300.0          | 49.0                        | 35.9                           | 48.9                      | 35.9                      | 68.3                   |  |
| 29125.0          | 53.1                        | 40.1                           | 53.1                      | 40.1                      | 68.3                   |  |
|                  | Band Edges                  |                                |                           |                           |                        |  |
| 5725.0           | 47.4                        | 32.6                           | 62.9                      | 44.5                      | 78.2                   |  |
| 5850.0           | 46.0                        | 33.0                           | 50.2                      | 36.7                      | 78.2                   |  |

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA
Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 70 of 81



Table 9 Transmitter Antenna port Conducted Power and Emissions (Chain 0)

| Frequency MHz       | Conducted Antenna Port<br>Output Power (Watts) | 99% Occupied<br>Bandwidth kHz | Power Spectral<br>Density dBm |  |
|---------------------|------------------------------------------------|-------------------------------|-------------------------------|--|
| 20 MHz Mode 802.11a |                                                |                               |                               |  |
| 5180                | 0.016                                          | 17400                         | 7.84 dBm/1MHz                 |  |
| 5200                | 0.016                                          | 17360                         | 7.88 dBm/1MHz                 |  |
| 5240                | 0.016                                          | 17400                         | 8.23 dBm/1MHz                 |  |
|                     | 20 MHz Mode                                    | 802.11n                       |                               |  |
| 5180                | 0.016                                          | 17320                         | 7.75 dBm/1MHz                 |  |
| 5200                | 0.016                                          | 17400                         | 7.94 dBm/1MHz                 |  |
| 5240                | 0.016                                          | 17360                         | 7.82 dBm/1MHz                 |  |
|                     | 40 MHz Mode                                    | 802.11n                       |                               |  |
| 5190                | 0.013                                          | 37125                         | 4.77 dBm/1MHz                 |  |
| 5230                | 0.014                                          | 37275                         | 5.04 dBm/1MHz                 |  |
|                     | 80 MHz Mode                                    | 802.11ac                      |                               |  |
| 5210                | 0.013                                          | 77850                         | 1.52 dBm/1MHz                 |  |
|                     | 20 MHz Mode                                    | 802.11a                       |                               |  |
| 5745                | 0.012                                          | 17360                         | 3.26 dBm/500kHz               |  |
| 5785                | 0.011                                          | 17360                         | 3.90 dBm/500kHz               |  |
| 5825                | 0.011                                          | 17360                         | 3.52 dBm/500kHz               |  |
|                     | 20 MHz Mode                                    | 802.11n                       |                               |  |
| 5745                | 0.011                                          | 22230                         | 2.99 dBm/500kHz               |  |
| 5785                | 0.011                                          | 22280                         | 2.76 dBm/500kHz               |  |
| 5825                | 0.011                                          | 21600                         | 3.33 dBm/500kHz               |  |
| 40 MHz Mode 802.11n |                                                |                               |                               |  |
| 5755                | 0.016                                          | 45975                         | -3.40 dBm/500kHz              |  |
| 5795                | 0.015                                          | 44775                         | -0.29 dBm/500kHz              |  |
|                     | 80 MHz Mode                                    | 802.11ac                      |                               |  |
| 5775                | 0.014                                          | 77400                         | -3.07 dBm/1MHz                |  |

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214

Revision 1

Mikrotikls SIA
Models: RBSXT5HacD2n-US

Test #: 160823 Test to: 47CFR, 15.407, RSS-247

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

Page 71 of 81



Table 14 Transmitter Antenna port Conducted Power and Emissions (Chain 1)

| 1                    |                                                |                               |                               |  |
|----------------------|------------------------------------------------|-------------------------------|-------------------------------|--|
| Frequency MHz        | Conducted Antenna Port<br>Output Power (Watts) | 99% Occupied<br>Bandwidth kHz | Power Spectral<br>Density dBm |  |
| 20 MHz Mode 802.11a  |                                                |                               |                               |  |
| 5180                 | 0.015                                          | 17320                         | 7.79 dBm/1MHz                 |  |
| 5200                 | 0.014                                          | 17360                         | 8.35 dBm/1MHz                 |  |
| 5240                 | 0.015                                          | 17.320                        | 7.92 dBm/1MHz                 |  |
|                      | 20 MHz Mode                                    | 802.11n                       |                               |  |
| 5180                 | 0.014                                          | 17360                         | 8.02 dBm/1MHz                 |  |
| 5200                 | 0.015                                          | 17400                         | 8.59 dBm/1MHz                 |  |
| 5240                 | 0.015                                          | 17400                         | 8.52 dBm/1MHz                 |  |
|                      | 40 MHz Mode                                    | 802.11n                       |                               |  |
| 5190                 | 0.015                                          | 37275                         | 5.36 dBm/1MHz                 |  |
| 5230                 | 0.014                                          | 37275                         | 5.02 dBm/1MHz                 |  |
|                      | 80 MHz Mode                                    | 802.11ac                      |                               |  |
| 5210                 | 0.015                                          | 77550                         | 2.58 dBm/1MHz                 |  |
|                      | 20 MHz Mode                                    | 802.11a                       |                               |  |
| 5745                 | 0.012                                          | 21720                         | 4.40 dBm/500kHz               |  |
| 5785                 | 0.011                                          | 22160                         | 4.21 dBm/500kHz               |  |
| 5825                 | 0.011                                          | 22160                         | 4.23 dBm/500kHz               |  |
|                      | 20 MHz Mode                                    | 802.11n                       |                               |  |
| 5745                 | 0.013                                          | 17360                         | 4.16 dBm/500kHz               |  |
| 5785                 | 0.011                                          | 17360                         | 4.37 dBm/500kHz               |  |
| 5825                 | 0.012                                          | 17320                         | 4.66 dBm/500kHz               |  |
| 40 MHz Mode 802.11n  |                                                |                               |                               |  |
| 5755                 | 0.014                                          | 37200                         | 0.31 dBm/500kHz               |  |
| 5795                 | 0.013                                          | 37200                         | 0.34 dBm/500kHz               |  |
| 80 MHz Mode 802.11ac |                                                |                               |                               |  |
| 5775                 | 0.012                                          | 77850                         | -1.45 dBm/500kHz              |  |
|                      |                                                |                               |                               |  |

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID

Louisburg, KS 66053

Test #: 160823

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: O

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Date: October 14, 2016

Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 72 of 81



Table 15 Transmitter all antenna Ports Total Power and PSD U-NII-1 Band

| Frequency<br>MHz    | Antenna Port Output Total<br>(Watts) | Total Power Spectral<br>Density dBm |  |  |
|---------------------|--------------------------------------|-------------------------------------|--|--|
|                     | 20 MHz Mode 802.11a                  |                                     |  |  |
| 5180                | 0.031                                | 10.8 dBm/1MHz                       |  |  |
| 5200                | 0.030                                | 15.4 dBm/1MHz                       |  |  |
| 5240                | 0.031                                | 11.1 dBm/1MHz                       |  |  |
| 20 MHz Mode 802.11n |                                      |                                     |  |  |
| 5180                | 0.030                                | 10.9 dBm/1MHz                       |  |  |
| 5200                | 0.031                                | 11.3 dBm/1MHz                       |  |  |
| 5240                | 0.031                                | 11.2 dBm/1MHz                       |  |  |
| 40 MHz Mode 802.11n |                                      |                                     |  |  |
| 5190                | 0.029                                | 8.1 dBm/1MHz                        |  |  |
| 5230                | 0.028                                | 8.0 dBm/1MHz                        |  |  |
|                     | 80 MHz Mode 802.11ac                 |                                     |  |  |
| 5210                | 0.028                                | 5.1 dBm/1MHz                        |  |  |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 73 of 81



Table 16 Transmitter all antenna Ports Total Power and PSD U-NII-3 Band

| Frequency<br>MHz    | Antenna Port Output Total<br>(Watts) | Total Power Spectral<br>Density dBm |  |  |
|---------------------|--------------------------------------|-------------------------------------|--|--|
|                     | 20 MHz Mode 802.11a                  |                                     |  |  |
| 5745                | 0.024                                | 6.9 dBm/500 kHz                     |  |  |
| 5785                | 0.022                                | 7.1 dBm/500 kHz                     |  |  |
| 5825                | 0.022                                | 6.9 dBm/500 kHz                     |  |  |
| 20 MHz Mode 802.11n |                                      |                                     |  |  |
| 5745                | 0.024                                | 6.6 dBm/500 kHz                     |  |  |
| 5785                | 0.022                                | 6.6 dBm/500 kHz                     |  |  |
| 5825                | 0.023                                | 7.1 dBm/500 kHz                     |  |  |
|                     | 40 MHz Mode 802.11n                  |                                     |  |  |
| 5755                | 0.029                                | 3.0 dBm/500 kHz                     |  |  |
| 5795                | 0.028                                | 3.4 dBm/500 kHz                     |  |  |
|                     | 80 MHz Mode 802.11ac                 |                                     |  |  |
| 5775                | 0.026                                | 0.8 dBm/500 kHz                     |  |  |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 74 of 81



Revision 1

## Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15.407 and Industry Canada RSS-247. The maximum conducted output power delivered into an antenna port was 0.016-Watt power (0.031-Watts total power). The minimum harmonic radiated emission margin provided -24.0 dB margin below requirements. General radiated emissions of EUT and supporting equipment provided -6.6 dB margin. There were no other significantly measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the requirements. There were no other deviations or exceptions to the requirements.

### Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to demonstrate compliance with the 47CFR Part 15C and Industry Canada RSS-247 emissions requirements. There were no deviations or modifications to the specifications.

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1

Page 75 of 81



## **Annex**

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 76 of 81



# Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

| Measurement Uncertainty                       | U <sub>(E)</sub> | U <sub>(lab)</sub> |
|-----------------------------------------------|------------------|--------------------|
| 3 Meter Horizontal 30-200 MHz Measurements    | 2.08             | 4.16               |
| 3 Meter Vertical 30-200 MHz Measurements      | 2.16             | 4.33               |
| 3 Meter Vertical Measurements 200-1000 MHz    | 2.99             | 5.97               |
| 10 Meter Horizontal Measurements 30-200 MHz   | 2.07             | 4.15               |
| 10 Meter Vertical Measurements 30-200 MHz     | 2.06             | 4.13               |
| 10 Meter Horizontal Measurements 200-1000 MHz | 2.32             | 4.64               |
| 10 Meter Vertical Measurements 200-1000 MHz   | 2.33             | 4.66               |
| 3 Meter Measurements 1-6 GHz                  | 2.57             | 5.14               |
| 3 Meter Measurements 6-18 GHz                 | 2.58             | 5.16               |
| AC Line Conducted                             | 1.72             | 3.43               |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 77 of 81



# Annex B Rogers Labs Test Equipment List

| Annex B Rogers Labs Test Equipment List                                              | ~              | _             | _              |
|--------------------------------------------------------------------------------------|----------------|---------------|----------------|
| List of Test Equipment                                                               | Calibration    | <u>Date</u>   | <u>Due</u>     |
| Spectrum Analyzer: Rohde & Schwarz ESU40                                             | 11500          | 5/16          | 5/17           |
| Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and                          |                | 5/16          | 5/17           |
| Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 119                                  | 9/0W           | 5 /1 C        | E /17          |
| Spectrum Analyzer: HP 8591EM                                                         |                | 5/16          | 5/17           |
| Antenna: EMCO Biconilog Model: 3143                                                  |                | 5/16          | 5/17           |
| Antenna: Sunol Biconilog Model: JB6                                                  |                |               | 10/16          |
| Antenna: EMCO Log Periodic Model: 3147                                               |                |               | 10/16          |
| Antenna: Com Power Model: AH-118                                                     |                | 10/15         | 10/16          |
| Antenna: Com Power Model: AH-840                                                     |                | 5/16          | 5/18           |
| Antenna: Antenna Research Biconical Model: BCD 235                                   |                | 10/15         | 10/16          |
| Antenna: EMCO 6509                                                                   | /50 -1/0 1     | 10/15         | 10/16          |
| LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy                             | /30 onm/0.1 μ1 | 10/15         | 10/16          |
| R.F. Preamp CPPA-102                                                                 |                |               | 10/16          |
| Attenuator: HP Model: HP11509A                                                       |                | 10/15         | 10/16          |
| Attenuator: Mini Circuits Model: CAT-3                                               |                | 10/15         | 10/16          |
| Attenuator: Mini Circuits Model: CAT-3                                               |                |               | 10/16          |
| Cable: Belden RG-58 (L1)                                                             |                |               | 10/16          |
| Cable: Belden RG-58 (L2)                                                             |                |               | 10/16<br>10/16 |
| Cable: Belden 8268 (L3)<br>Cable: Time Microwave: 4M-750HF290-750                    |                |               |                |
|                                                                                      |                |               | 10/16          |
| Cable: Time Microwave: 10M-750HF290-750                                              |                | 10/15<br>2/16 | 10/16<br>2/17  |
| Frequency Counter: Leader LDC825                                                     |                | 2/16          | 2/17           |
| Oscilloscope Scope: Tektronix 2230 Wattmeter: Bird 43 with Load Bird 8085            |                | 2/16          | 2/17           |
| Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DC                           | D 140          | 2/16          | 2/17           |
| = =                                                                                  | K 140          | 2/16          | 2/17           |
| R.F. Generators: HP 606A, HP 8614A, HP 8640B<br>R.F. Power Amp 65W Model: 470-A-1010 |                | 2/16          | 2/17           |
| R.F. Power Amp 50W M185- 10-501                                                      |                | 2/16          | 2/17           |
|                                                                                      |                | 2/16          | 2/17           |
| R.F. Power Amp A.R. Model: 10W 1010M7<br>R.F. Power Amp EIN Model: A301              |                | 2/16          | 2/17           |
| LISN: Compliance Eng. Model 240/20                                                   |                | 2/16          | 2/17           |
| LISN: Fischer Custom Communications Model: FCC-LISN-50-1                             | 6 2 08         | 2/16          | 2/17           |
|                                                                                      | 0-2-08         | 2/16          | 2/17           |
| Antenna: EMCO Dipole Set 3121C<br>Antenna: C.D. B-101                                |                | 2/16          | 2/17           |
| Antenna: Solar 9229-1 & 9230-1                                                       |                | 2/16          | 2/17           |
| Audio Oscillator: H.P. 201CD                                                         |                | 2/16          | 2/17           |
| ELGAR Model: 1751                                                                    |                | 2/16          | 2/17           |
| ELGAR Model: TG 704A-3D                                                              |                | 2/16          | 2/17           |
| ESD Test Set 2010i                                                                   |                | 2/16          | 2/17           |
|                                                                                      |                |               | 2/17           |
| Fast Transient Burst Generator Model: EFT/B-101                                      |                | 2/16<br>2/16  | 2/17           |
| Field Intensity Meter: EFM-018                                                       |                | 2/16          | 2/17           |
| KEYTEK Ecat Surge Generator Shielded Room 5 M v 3 M v 3 0 M                          |                | <i>2/</i> 10  | ∠/ 1 <i> </i>  |
| Shielded Room 5 M x 3 M x 3.0 M                                                      |                |               |                |

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522
4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N
Louisburg, KS 66053 Test #: 160823 IC: 7442A-SXT5HACD2N
Phone/Fax: (913) 837-3214 Test to: 47CFR, 15.407, RSS-247 Date: October 14, 2016
Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 78 of 81



# Annex C Rogers Qualifications

Scot D. Rogers, Engineer

## Rogers Labs, Inc.

Mr. Rogers has approximately 17 years' experience in the field of electronics. Engineering experience includes six years in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

#### Positions Held

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

### **Educational Background**

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- Several Specialized Training courses and seminars pertaining to Microprocessors and 3) Software programming.

Scot DRogers

Scot D. Rogers

Rogers Labs, Inc. Mikrotikls SIA S/N: 5E7801DDBBE0/522 4405 W. 259th Terrace Models: RBSXT5HacD2n-US FCC ID: TV7SXT5HACD2N IC: 7442A-SXT5HACD2N Louisburg, KS 66053 Test #: 160823 Phone/Fax: (913) 837-3214 Date: October 14, 2016 Test to: 47CFR, 15.407, RSS-247 Page 79 of 81 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1



## Annex D FCC Site Registration Letter

# FEDERAL COMMUNICATIONS COMMISSION

**Laboratory Division** 7435 Oakland Mills Road Columbia, MD 21046

April 16, 2015

Registration Number: 90910

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053

Attention:

Scot Rogers,

Measurement facility located at Louisburg

3 & 10 meter site

Date of Renewal: April 16, 2015

#### Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

**Industry Analyst** 

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053

Mikrotikls SIA

Models: RBSXT5HacD2n-US

Test #: 160823

Test to: 47CFR, 15.407, RSS-247

S/N: 5E7801DDBBE0/522 FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Date: October 14, 2016

Phone/Fax: (913) 837-3214 Revision 1 File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1 Page 80 of 81



# Annex E Industry Canada Site Registration Letter



Industry

Industrie

June 08, 2015

OUR FILE: 46405-3041 Authorization No: 010277847-001

Rogers Labs Inc. 4405 West 259th Terrace Louisburg, KS USA 66053

Attention: Mr. Scot D. Rogers

Dear Sir:

The Bureau has received your application for the renewal of 3m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (Site# 3041A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: 3041A

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2009 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2009 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2009 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed three years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h\_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at <u>certification.bureau@ic.gc.ca</u> Please reference our file and submission number above for all correspondence.

Yours sincerely,

Bill Payn

Revision 1

For: Wireless Laboratory Manager Certification and Engineering Bureau 3701 Carling Ave., Building 94 P.O. Box 11490, Station AH@

Ottawa, Ontario K2H 8S2 Email: certification.bureau@ic.gc.ca

Rogers Labs, Inc.

Mikrotikls SIA

S/N: 5E7801DDBBE0/522

4405 W. 259th Terrace

Models: RBSXT5HacD2n-US

FCC ID: TV7SXT5HACD2N

IC: 7442A-SXT5HACD2N

Phone/Fax: (913) 837-3214

Test to: 47CFR, 15.407, RSS-247

Date: October 14, 2016

File: Mikrotikls RBSXT5HacD2n NII TstRpt 160823 r1

Page 81 of 81