

#### **PROPRIETARY NOTE**

THIS SPECIFICATION IS THE PROPERTY OF BOE DT AND SHALL NOT BE REPRODUCED OR COPIED WITHOUT THE WRITTEN PERMISSION OF BOE DT AND MUST BE RETURNED TO BOE DT UPON ITS REQUEST

TITLE: MV270FHM-N20
Product Specification
Rev. P3

Hefei Xinsheng Optoelectronics Technology Co.,LTD.

| SPEC. NUMBER | PRODUCT GROUP | Rev. P3 | ISSUE DATE | PAGE    |
|--------------|---------------|---------|------------|---------|
| S864-8B016   | TFT-LCD       |         | 2016.12.27 | 1 OF 29 |

R2013-9024-O(1/3) A4(210 X 297)



REV

ISSUE DATE

2016.12.27

**Customer SPEC** 

Rev. P3

### **REVISION HISTORY**

- ( )preliminary specification
- (•)Final specification

|                                          |                        |                                                                                                              |            | <b>r</b> |
|------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------|------------|----------|
| Revision No. Page Description of changes |                        | Date                                                                                                         | Prepared   |          |
| Rev.P0                                   |                        | Preliminary specification                                                                                    | 2015.10.22 | Wang Min |
| Rev.P1                                   | P5<br>P9<br>P14<br>P29 | Update weight Update the Reproduction of color Update the signal timing Update the position of product label | 2016.01.06 | Wang Min |
| Rev.P2                                   | P11<br>P29             | Update the position of product label                                                                         | 2016.12.05 | Wang Min |
| Rev.P3                                   | P19                    | Add Note5                                                                                                    | 2016.12.27 | Wang Min |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |
|                                          |                        |                                                                                                              |            |          |

| SPEC. NUMBER |
|--------------|
| S864-8B016   |

A4(210 X 297)



REV

ISSUE DATE

**Customer SPEC** 

Rev. P3

2016.12.27

### **Contents**

| No.  | Item                                                 | Page |
|------|------------------------------------------------------|------|
| 1.0  | General Description                                  | 4    |
| 2.0  | Absolute Maximum Ratings                             | 6    |
| 3.0  | Electrical Specifications                            | 7    |
| 4.0  | Optical Specifications                               | 9    |
| 5.0  | Interface Connection                                 | 11   |
| 6.0  | Signal Timing Specifications                         | 14   |
| 7.0  | Signal Timing Waveforms of Interface Signal          | 16   |
| 8.0  | Input Signals, Display Colors & Gray Scale of Colors | 18   |
| 9.0  | Power Sequence                                       | 19   |
| 10.0 | Mechanical Characteristics                           | 20   |
| 11.0 | Reliability Test                                     | 21   |
| 12.0 | Handling& Cautions                                   | 22   |
| 13.0 | Product Serial Number                                | 23   |
| 14.0 | Packing                                              | 24   |
| 15.0 | Appendix                                             | 26   |

| SPEC. NUMBER |
|--------------|
| S864-8B016   |



REV

ISSUE DATE

Customer SPEC

Rev. P3

2016.12.27

#### 1.0 GENERAL DESCRIPTION

#### 1.1 Introduction

MV270FHM-N20 is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 27 inch diagonally measured active area with FHD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors. The TFT-LCD panel used for this module is adapted for a low reflection and higher color type.



#### 1.2 Features

- LVDS Interface with 2 pixel / clock 6-bit (Hi-FRC) color depth, display 16.7M B colors
- Compatible with Color Gamut 72% @NTSC(CIE 1931) and 83% @NTSC(CIE 1976)
- High luminance and contrast ratio, low reflection and wide viewing angle
- DE (Data Enable) only
- RoHS/Halogen Free
- TCO 7.0, ES 7.0 compliant
- Gamma Correction
- Reverse type

| SPEC. NUMBER | SPEC. TITLE                                | PAGE    |
|--------------|--------------------------------------------|---------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 4 OF 29 |

| B | DE |
|---|----|
|   |    |

| PRODUCT GROUP | REV     | ISSUE DAT  |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### 1.3 Application

- Desktop Type of PC & Workstation Use
- Slim-Size Display for Stand-alone Monitor
- Display Terminals for Control System
- Monitors for Process Controller

#### 1.4 General Specification

The followings are general specifications at the model MV270FHM-N20.

#### <Table 1. General Specifications>

| Parameter             | Specification                                  | Unit   | Remarks                 |
|-----------------------|------------------------------------------------|--------|-------------------------|
| Active area           | 597.888(H) × 336.312(V)                        | mm     |                         |
| Number of pixels      | 1920(H) ×1080 (V)                              | pixels |                         |
| Pixel pitch           | $0.3114 \text{ (H)} \times 0.3114 \text{ (V)}$ | mm     |                         |
| Pixel arrangement     | RGB Vertical stripe                            |        |                         |
| Display colors        | 16.7M                                          | colors |                         |
| Display mode          | Normally Black                                 |        |                         |
| Dimensional outline   | $611.5(H) \times 355.8(V) \times 13.2(Depth)$  | mm     | Detail refer to drawing |
| Weight                | 3490                                           | g      |                         |
| Bezel width (L/R/U/D) | 4.8/4.8/4.8/10.7                               | mm     |                         |
| Surface Treatment     | Haze 25%, 3H                                   |        |                         |
| Back-light            | Down side, 1-LED Lighting Bar type             |        |                         |

| SPEC. NUMBER | SPEC. TITLE                                | PAGE           |
|--------------|--------------------------------------------|----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 5 <b>OF 29</b> |
| <del></del>  |                                            |                |

R2013-9024-O(3/3) A4(210 X 297)



| PRODUCT GROUP | REV     | ISSUE DATE |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### 2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings>

[VSS=GND=0V]

| Parameter             | Symbol          | Min.    | Max.                 | Unit       | Remarks    |
|-----------------------|-----------------|---------|----------------------|------------|------------|
| Power Supply Voltage  | V <sub>DD</sub> | GND-0.3 | 6                    | V          |            |
| Logic Supply Voltage  | V <sub>IN</sub> | VSS-0.3 | V <sub>DD</sub> +0.3 | V          | Ta = 25 °C |
| Operating Temperature | T <sub>OP</sub> | 0       | +50                  | $^{\circ}$ | 1)         |
| Storage Temperature   | T <sub>ST</sub> | -20     | +60                  | $^{\circ}$ | 1)         |

Note: 1) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 °C max. and no condensation of water.



| SPEC. NUMBER | SPEC. TITLE                                | PAGE           |
|--------------|--------------------------------------------|----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 6 <b>OF 29</b> |
|              |                                            |                |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### 3.0 ELECTRICAL SPECIFICATIONS

#### 3.1 Electrical Specifications

< Table 3. Electrical specifications >

[Ta =  $25 \pm 2 \,^{\circ}\text{C}$ ]

| Parameter                                          |                    | Min.  | Тур.  | Max.  | Unit | Remarks                              |
|----------------------------------------------------|--------------------|-------|-------|-------|------|--------------------------------------|
| Power Supply Voltage                               | $V_{DD}$           | 4.5   | 5     | 5.5   | V    | Note1                                |
| Power Supply Current                               | $I_{DD}$           | 1     | 640   | 960   | mA   | Note1                                |
| In-Rush Current                                    | $I_{RUSH}$         | -     | -     | 4.0   | A    | Note 2                               |
| Permissible Input Ripple Voltage                   | $V_{RF}$           | 1     | -     | 400   | mV   | Note1,3                              |
| High Level Differential Input<br>Threshold Voltage | V <sub>IH</sub>    | +100  | -     | +300  | mV   |                                      |
| Low Level Differential Input<br>Threshold Voltage  | $V_{\mathrm{IL}}$  | -300  | -     | -100  | mV   |                                      |
| Differential input voltage                         | V <sub>ID</sub>    | 200   | -     | 600   | mV   |                                      |
| Differential input common mode voltage             | Vcm                | 1.0   | 1.2   | 1.5   |      | $V_{IH}$ =100mV,<br>$V_{IL}$ =-100mV |
|                                                    | $P_{\mathrm{D}}$   | -     | 3.2   | 5.3   | W    |                                      |
| Power Consumption                                  | $P_{BL}$           | 13.57 | 15.12 | 17.82 | W    |                                      |
|                                                    | P <sub>total</sub> | -     | 18.32 | 23.12 | W    |                                      |

Notes: 1. The supply voltage is measured and specified at the interface connector of LCM.

The current draw and power consumption specified is for VDD=5.0V, Frame rate=60Hz

Clock frequency = 74.3 MHz. Test Pattern of power supply current

a) Typ: Color Test

b) Max : Skip Subpixel255

c) Flicker Pattern







2. Duration of rush current is about 2 ms and rising time of VDD is 520  $\mu s \pm 20 \%$ 

3. Ripple Voltage should be covered by Input voltage Spec.

4. Calculated value for reference (Input pins\*VPIN ×IPIN) excluding inverter loss.

| SPEC. NUMBER |  |
|--------------|--|
| S864-8B016   |  |

| SPEC. HILE                         |         |
|------------------------------------|---------|
| MV270FHM-N20 Product Specification | Rev. P3 |



# PRODUCT GROUP REV

Rev. P3

2016.12.27

**ISSUE DATE** 

#### 3.2 Backlight Unit

< Table 4. LED Backlight Unit >

**Customer SPEC** 

| Parameter                                 |          | Min.   | Тур.  | Max.  | Unit | Remarks   |
|-------------------------------------------|----------|--------|-------|-------|------|-----------|
| LED Light Bar Input Voltage Per Input Pin | VPIN     | 52.2   | 54    | 59.4  | V    | Duty 100% |
| LED Light Bar Input Current Per Input Pin | IPIN     | 65     | 70    | 75    | mA   | Note1,2,  |
| LED Power Consumption                     | $P_{BL}$ | 13.57  | 15.12 | 17.82 | W    | Note 3    |
| LED Life-Time                             | -        | 30,000 | -     | -     | Hrs  | Note 4    |

LED bar consists of 72 LED packages,4 strings(parallel)18packages(serial)

Note1: There are one light bar , and the specified current is input LED chip 100% duty current

Note2: The sense current of each input pin is 70mA

Note3:  $P_{BL}$ =4Input pins\*VPIN  $\times$  IPIN

Note4: The lifetime is determined as the time at which luminance of LED become 50% of the initial brightness or not normal lighting at IPIN=70mA on condition of continuous operating at 25  $\pm 2$  °C

| SPEC. NUMBER | SPEC. TITLE                                | PAGE           |
|--------------|--------------------------------------------|----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 8 <b>OF 29</b> |



| PRODUCT GROUP | REV     | ISSUE DATE |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### 4.0 OPTICAL SPECIFICATION

#### 4.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance  $\leq 1$  lux and temperature =  $25\pm2^{\circ}$ C) with the equipment of Luminance meter system (Goniometer system and TOPCONE PR730) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of  $\theta$  and  $\Phi$  equal to 0°. We refer to  $\theta_{\emptyset=0}$  (= $\theta_3$ ) as the 3 o'clock direction (the "right"),  $\theta_{\emptyset=90}$  (= $\theta_{12}$ ) as the 12 o'clock direction ("upward"),  $\theta_{\emptyset=180}$  (= $\theta_9$ ) as the 9 o'clock direction ("left") and  $\theta_{\emptyset=270}$  (= $\theta_6$ ) as the 6 o'clock direction ("bottom"). While scanning  $\theta$  and/or  $\emptyset$ , the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be 5.0V +/-10% at 25°C. Optimum viewing angle direction is 6 'clock.

#### 4.2 Optical Specifications

[VDD = 5.0V, Frame rate = 60Hz, Clock = 74.3MHz,  $I_{BL}$  = 280mA, Ta =25  $\pm$  2 °C] < Table 5. Module Optical >

| Parame             | ter        | Symbol                    | Condition                            | Min.                             | Тур.  | Max.    | Unit              | Remark |   |   |
|--------------------|------------|---------------------------|--------------------------------------|----------------------------------|-------|---------|-------------------|--------|---|---|
|                    | Horizontal | $\Theta_3$                |                                      | 85                               | 89    | -       | Deg.              |        |   |   |
| Viewing Angle      | нопиопа    | $\Theta_9$                | CR > 10                              | 85                               | 89    | -       | Deg.              | Note 1 |   |   |
| range              | Vertical   | $\Theta_{12}$             | CR > 10                              | 85                               | 89    | -       | Deg.              | Note 1 |   |   |
|                    | vertical   | $\Theta_6$                |                                      | 85                               | 89    | -       | Deg.              |        |   |   |
| Luminance Contrast | ratio      | CR                        |                                      | 700                              | 1000  |         |                   | Note 2 |   |   |
| Luminance of Whit  | e          | $Y_{w}$                   |                                      | 250                              | 300   |         | cd/m <sup>2</sup> | Note 3 |   |   |
| White luminance un | iformity   | ΔΥ                        |                                      | 75                               | 80    |         | %                 | Note 4 |   |   |
|                    | White      | $\mathbf{W}_{\mathrm{x}}$ |                                      | 0.313<br>0.329<br>0.640<br>0.340 | 0.313 |         | -                 |        |   |   |
|                    |            | $\mathbf{W}_{\mathrm{y}}$ | $\Theta = 0^{\circ}$ (Center) Normal |                                  | 0.329 |         | -                 |        |   |   |
|                    |            | R <sub>x</sub>            |                                      |                                  | 0.640 |         | -                 |        |   |   |
| Reproduction       | Red        | $R_y$                     | Viewing<br>Angle                     |                                  | .0.02 | -       | Note 5            |        |   |   |
| of color           | Green      | $G_x$                     | 0.296<br>0.622<br>0.152              | 0.296 +0.03                      | -     | Note 3  |                   |        |   |   |
|                    | Green      | $G_{y}$                   |                                      |                                  | 0.622 |         | -                 |        |   |   |
|                    | Blue       | $\mathbf{B}_{\mathbf{x}}$ |                                      |                                  |       | $B_{x}$ |                   | 0.152  | 1 | - |
|                    | Blue       | $\mathbf{B}_{\mathrm{y}}$ |                                      |                                  | 0.053 |         | -                 |        |   |   |
| Response<br>Time   | GTG        | $T_{\mathrm{g}}$          |                                      |                                  | 14    | 20      | ms                | Note 6 |   |   |
| Cross T            | alk        | СТ                        |                                      | -                                | -     | 2.0     | %                 | Note 7 |   |   |

| SPEC. NUMBER   SPEC. TITLE                            | _              |
|-------------------------------------------------------|----------------|
| S864-8B016 MV270FHM-N20 Product Specification Rev. P3 | 9 <b>OF 29</b> |



| PRODUCT GROUP | REV     | ISSUE DATE |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### Note:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface.
- 2. Contrast measurements shall be made at viewing angle of  $\theta$ = 0° and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See FIGURE 1 shown in Appendix) Luminance Contrast Ratio (CR) is defined mathematically.

- 3. Center Luminance of white is defined as the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as :  $\Delta Y = ($  Minimum Luminance of 9points / Maximum Luminance of 9points ) \* 100 (See FIGURE 2 shown in Appendix).
- 5. The color chromaticity coordinates specified in Table 5. shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. Response time Tg is the average time required for display transition by switching the input signal as below table and is based on Frame rate fV =60Hz to optimize.

  Each time in below table is defined as appendix Figure 3 and shall be measured by switching the input signal for "any level of gray(bright)" and "any level of gray(dark)"
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance  $(Y_A)$  of a 25mm diameter area, with all display pixels set to a gray level, to the luminance  $(Y_B)$  of that same area when any adjacent area is driven dark. (See FIGURE 4 shown in Appendix).

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 10 <b>OF 29</b> |



# PRODUCT GROUP REV

Customer SPEC Rev. P3

2016.12.27

**ISSUE DATE** 

#### 5.0 INTERFACE CONNECTION.

5.1 LED Light Bar

-LED connector: 3709K-Q06N-00L manufactured by ENTERY, or Equivalent.

< Table 6. LED Light Bar>

| Pin No. | Symbol                         | Description                |
|---------|--------------------------------|----------------------------|
| 1       | FB1                            | Channel 1 Current Feedback |
| 2       | FB2                            | Channel 2 Current Feedback |
| 3       | VLED LED Power Supply          |                            |
| 4       | VLED LED Power Supply          |                            |
| 5       | FB3 Channel 3 Current Feedback |                            |
| 6       | FB4                            | Channel 4 Current Feedback |



SPEC. NUMBER S864-8B016 SPEC. TITLE
MV270FHM-N20 Product Specification Rev. P3

PAGE 11 OF 29



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### **5.2 Electrical Interface Connection**

• CN1 Module Side Connector: MSBKT2407P30HC

| Pin No | Symbol | Function                               | Remark |
|--------|--------|----------------------------------------|--------|
| 1      | RXO0N  | Negative LVDS differential data input  |        |
| 2      | RXO0P  | Positive LVDS differential data input  |        |
| 3      | RXO1N  | Negative LVDS differential data input  |        |
| 4      | RXO1P  | Positive LVDS differential data input  |        |
| 5      | RXO2N  | Negative LVDS differential data input  |        |
| 6      | RXO2P  | Positive LVDS differential data input  |        |
| 7      | BIST   | BIST                                   |        |
| 8      | RXOCN- | Negative LVDS differential clock input |        |
| 9      | RXOCP  | Positive LVDS differential clock input |        |
| 10     | RXO3N  | Negative LVDS differential data input  |        |
| 11     | RXO3P  | Positive LVDS differential data input  |        |
| 12     | RXE0N  | Negative LVDS differential data input  |        |
| 13     | RXE0P  | Positive LVDS differential data input  |        |
| 14     | GND    | Ground                                 |        |
| 15     | RXE1N  | Negative LVDS differential data input  |        |
| 16     | RXE1P  | Positive LVDS differential data input  |        |
| 17     | GND    | Ground                                 |        |
| 18     | RXE2N  | Negative LVDS differential data input  |        |
| 19     | RXE2P  | Positive LVDS differential data input  |        |
| 20     | RXECN  | Negative LVDS differential clock input |        |
| 21     | RXECP  | Positive LVDS differential clock input |        |
| 22     | RXE3N  | Negative LVDS differential data input  |        |
| 23     | RXE3P  | Positive LVDS differential data input  |        |
| 24     | GND    | Ground                                 |        |
| 25     | SDA    | I2C Data (For VCOM tuning )            |        |
| 26     | SCL    | I2C Clock (For VCOM tuning)            |        |
| 27     | NC     | NC                                     |        |
| 28     | VIN    | Power Supply 5V                        |        |
| 29     | VIN    | Power Supply 5V                        |        |
| 30     | VIN    | Power Supply 5V                        |        |

| SPEC. NUMBER |
|--------------|
| S864-8B016   |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### **5.3 LVDS Interface (Tx; THC63LVDF83A or Equivalent)**

|        | Input  | Trans   | mitter   | Inter                | rface                | HR230WU-400<br>(CN11) | Remark |
|--------|--------|---------|----------|----------------------|----------------------|-----------------------|--------|
|        | Signal | Pin No. | Pin No.  | System (Tx)          | TFT-LCD<br>(Rx)      | Pin No.               |        |
|        | OR0    | 51      |          |                      |                      |                       |        |
|        | OR1    | 52      |          |                      |                      |                       |        |
|        | OR2    | 54      | 40       | OUT0-                | DVO                  | 4                     |        |
|        | OR3    | 55      | 48<br>47 | OUT0+                | RXO0-<br>RXO0+       | 1<br>2                |        |
|        | OR4    | 56      | ] ''     | 00101                | Turio i              | 2                     |        |
|        | OR5    | 3       |          |                      |                      |                       |        |
|        | OG0    | 4       |          |                      |                      |                       |        |
|        | OG1    | 6       |          |                      |                      |                       |        |
|        | OG2    | 7       |          |                      |                      |                       |        |
|        | OG3    | 11      | 16       | OUT1-                | DVO                  | 2                     |        |
|        | OG4    | 12      | 46<br>45 | OUT1-<br>OUT1+       | RXO1-<br>RXO1+       | 3<br>4                |        |
|        | OG5    | 14      |          | 00111                | Turo1                |                       |        |
|        | OB0    | 15      |          |                      |                      |                       |        |
| т .    | OB1    | 19      |          |                      |                      |                       |        |
| L<br>V | OB2    | 20      |          |                      |                      |                       |        |
| D      | OB3    | 22      |          |                      |                      |                       |        |
| S      | OB4    | 23      | 10       | O.V.VIII.2           | DVO                  | ~                     |        |
|        | OB5    | 24      | 42<br>41 | OUT2-<br>OUT2+       | RXO2-<br>RXO2+       | 5<br>6                |        |
|        | Hsync  | 27      | ] ''     | 00121                | 101021               | Ü                     |        |
|        | Vsync  | 28      |          |                      |                      |                       |        |
|        | DE     | 30      |          |                      |                      |                       |        |
|        | MCLK   | 31      | 40<br>39 | CLK OUT-<br>CLK OUT+ | RXO CLK-<br>RXO CLK+ | 8<br>9                |        |
|        | OR6    | 50      |          |                      |                      |                       |        |
|        | OR7    | 2       |          |                      |                      |                       |        |
|        | OG6    | 8       | ]        | OLUTTO               | RXO3-                | 10                    |        |
|        | OG7    | 10      | 38<br>37 | OUT3-<br>OUT3+       | RXO3+                | 10<br>11              |        |
|        | OB6    | 16      | ] 3/     | 0015+                |                      | 11                    |        |
|        | OB7    | 18      |          |                      |                      |                       |        |
|        | RSVD   | 25      |          |                      |                      |                       |        |

Note: The order of even data is same with old data.

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 13 <b>OF 29</b> |



REV

ISSUE DATE

**Customer SPEC** 

Rev. P3

2016.12.27

#### 6.0 SIGNAL TIMING SPECIFICATION

6.1 The MV270FHM-N20 is operated by the DE only.

| Item                       | Symbols                     | Min  | Тур  | Max   | Unit  | Note |               |
|----------------------------|-----------------------------|------|------|-------|-------|------|---------------|
|                            | Period                      | tCLK | 10   | 13.45 | 25    | ns   |               |
| DCLK                       | Frequency                   | fCLK | 40   | 74.3  | 100   | MHz  |               |
|                            | Period                      | tHP  | 1050 | 1100  | 1120  | tCLK |               |
| Hsync                      | Horizontal Valid            | tHV  | 960  | 960   | 960   | tCLK |               |
|                            | Horizontal Blank            | tHB  | 90   | 140   | 192   | tCLK | tWH+tHBP+tHFP |
|                            | Frequency                   | fH   | 38   | 67.5  | 89.29 | KHz  |               |
|                            | Width                       | tWH  | 16   | 32    | 48    |      |               |
|                            | Horizontal Back<br>Porch    | tHBP | 32   | 48    | 64    | tCLK |               |
|                            | Horizontal Front<br>Porch   | tHFP | 42   | 60    | 80    |      |               |
|                            | Period                      | tVP  | 1110 | 1126  | 1251  | tHP  |               |
|                            | Vertical Valid              | tVV  | 1080 | 1080  | 1080  | tHP  |               |
|                            | Vertical Blank              | tVB  | 30   | 45    | 171   | tHP  | tWV+tVBP+tVFP |
| Vsync                      | Frequency                   | fV   | 50   | 60    | 75    | Hz   |               |
|                            | Width                       | tWV  | 2    | 4     | 16    | tHP  |               |
|                            | Vertical Back Porch         | tVBP | 5    | 8     | 32    | tHP  |               |
|                            | Vertical Front Porch        | tVFP | 23   | 33    | 123   | tHP  |               |
| LVDS<br>Receiv<br>er clock | Input spread spectrum ratio | SSr  | -3%  | -     | +3%   | %    |               |

| SPEC. NUMBER |
|--------------|
| S864-8B016   |

SPEC. TITLE



| PRODUCT GROUP | REV     | ISSUE DATE |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### **6.2 LVDS Rx Interface Timing Parameter**

The specification of the LVDS Rx interface timing parameter is shown in Table 7.

<Table 7. LVDS Rx Interface Timing Specification>

| Item         | Symbol | Min            | Тур        | Max                      | Unit | Remark |
|--------------|--------|----------------|------------|--------------------------|------|--------|
| CLKIN Period | tRCIP  | 11.9           | 12.9       | 15.6                     | nsec |        |
| Input Data 0 | tRIP1  | -0.4           | 0.0        | +0.4                     | nsec |        |
| Input Data 1 | tRIP0  | tRCIP/7-0.4    | tRCIP/7    | tRCIP/7+0.4              | nsec |        |
| Input Data 2 | tRIP6  | 2 ×tRCIP/7-0.4 | 2 ×tRCIP/7 | $2 \times tRCIP/7 + 0.4$ | nsec |        |
| Input Data 3 | tRIP5  | 3 ×tRCIP/7-0.4 | 3 ×tRCIP/7 | $3 \times tRCIP/7 + 0.4$ | nsec |        |
| Input Data 4 | tRIP4  | 4 ×tRCIP/7-0.4 | 4 ×tRCIP/7 | $4 \times tRCIP/7 + 0.4$ | nsec |        |
| Input Data 5 | tRIP3  | 5 ×tRCIP/7-0.4 | 5 ×tRCIP/7 | 5 ×tRCIP/7+0.4           | nsec |        |
| Input Data 6 | tRIP2  | 6 ×tRCIP/7-0.4 | 6 ×tRCIP/7 | 6 ×tRCIP/7+0.4           | nsec |        |



\* Vdiff = (RXz+)-(RXz-),...,(RXCLK+)-(RXCLK-)

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 15 <b>OF 29</b> |
| <del></del>  |                                            |                 |



REV

ISSUE DATE

**Customer SPEC** 

Rev. P3

2016.12.27

#### 7.0 SIGNAL TIMING WAVEFORMS OF INTERFACE SIGNAL

**7.1 Sync Timing Waveforms** 



- 1) Need over 3 H-sync during V-Sync Low
- 2) Fix H-Sync width from V-Sync falling edge to first rising edge

#### 7.2 Vertical Timing Waveforms



| SPEC. NUMBER |
|--------------|
| S864-8B016   |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### 7.3 Horizontal Timing Waveforms





| SPEC. NUMBER |
|--------------|
| S864-8B016   |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

### 8.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

|              |                                         |          |    |   |     | DAT      |   |   |   | GREEN DATA |   |    |     |              |    |   |   | BLUE DATA |   |    |   |              |   |   |    |  |
|--------------|-----------------------------------------|----------|----|---|-----|----------|---|---|---|------------|---|----|-----|--------------|----|---|---|-----------|---|----|---|--------------|---|---|----|--|
|              |                                         | R7       | R6 |   |     | R3       |   |   |   |            |   | G5 |     |              | G2 |   |   |           | _ | B5 | _ | В3           | _ | _ | B0 |  |
| Basic Colors | Black                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Blue                                    | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 1  |  |
|              | Green                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 1 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Cyan                                    | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 1 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 1  |  |
|              | Red                                     | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 1 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Magenta                                 | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 1 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 1  |  |
|              | Yellow                                  | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 1 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 1 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | White                                   | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 1 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 1 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 1  |  |
|              | Black                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | $\triangle$                             | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 1 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Darker                                  | 0        | 0  | 0 | 0   | 0        | 0 | 1 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
| Gray Scale   | $\triangle$                             |          |    |   | •   |          |   |   |   |            |   |    | •   | 1            |    |   |   |           |   |    |   | 1            |   |   |    |  |
| of RED       | $\nabla$                                |          |    |   |     | l        |   |   |   |            |   |    |     | $\downarrow$ |    |   |   |           |   |    |   | ļ            |   |   |    |  |
|              | Brighter                                | 1        | 1  | 1 | 1   | 1        | 1 | 0 | 1 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | $\nabla$                                | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Red                                     | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 1 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Black                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | $\triangle$                             | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 1 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
| Gray Scale   | Darker                                  | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 1 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
| of GREEN     | $\triangle$                             | <u> </u> |    |   |     |          |   |   |   |            |   |    |     |              |    |   |   | <b>†</b>  |   |    |   |              |   |   |    |  |
| OI GREEN     | $\nabla$                                |          |    |   | . ` | ļ        |   |   |   |            |   |    | . , | $\downarrow$ |    |   |   |           |   |    |   | ļ            |   |   |    |  |
|              | Brighter                                | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 1          | 1 | 1  | 1   | 1            | 1  | 0 | 1 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | $\nabla$                                | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Green                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 1 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | Black                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | $\triangle$                             | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 1  |  |
| Gray Scale   | Darker                                  | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 1 | 0  |  |
| ·            | $\triangle$                             |          |    |   | ,   |          |   |   |   | <u> </u>   |   |    |     |              |    |   |   | <u> </u>  |   |    |   |              |   |   |    |  |
| of BLUE      | $\nabla$                                |          |    |   |     | ļ        |   |   |   |            |   |    | . , | $\downarrow$ |    |   |   |           |   |    |   | $\downarrow$ |   |   |    |  |
|              | Brighter                                | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 1         | 1 | 1  | 1 | 1            | 1 | 0 | 1  |  |
|              | $\nabla$                                | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 0  |  |
|              | Blue                                    | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 1  |  |
|              | Black                                   | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 0  |  |
|              | $\triangle$                             | 0        | 0  | 0 | 0   | 0        | 0 | 0 | 1 | 0          | 0 | 0  | 0   | 0            | 0  | 0 | 1 | 0         | 0 | 0  | 0 | 0            | 0 | 0 | 1  |  |
| Cross Cools  | Darker                                  | 0        | 0  | 0 | 0   | 0        | 0 | 1 | 0 | 0          | 0 | 0  | 0   | 0            | 0  | 1 | 0 | 0         | 0 | 0  | 0 | 0            | 0 | 1 | 0  |  |
| Gray Scale   | $\triangle$                             |          |    |   |     | <u> </u> |   |   |   | <u> </u>   |   |    |     |              |    |   |   | <u> </u>  |   |    |   |              |   |   |    |  |
| of WHITE     | $\nabla$                                |          |    |   |     | l        |   |   |   |            |   |    | ,   | ļ            |    |   |   |           |   |    |   | Ī            |   |   |    |  |
|              | Brighter                                | 1        | 1  | 1 | 1   | 1        | 1 | 0 | 1 | 1          | 1 | 1  | 1   | 1            | 1  | 0 | 1 | 1         | 1 | 1  | 1 | 1            | 1 | 0 | 1  |  |
|              | $\nabla$                                | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 0 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 0 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 0  |  |
|              | White                                   | 1        | 1  | 1 | 1   | 1        | 1 | 1 | 1 | 1          | 1 | 1  | 1   | 1            | 1  | 1 | 1 | 1         | 1 | 1  | 1 | 1            | 1 | 1 | 1  |  |
|              | *************************************** | 1 .      |    |   | 1   |          | _ |   |   |            | • |    |     | <u> </u>     |    | • |   | •         |   | •  |   |              |   |   |    |  |

| SPEC. NUMBER |
|--------------|
| S864-8B016   |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### 9.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below



- $\bullet$  0.5 ms  $\leq$  T1  $\leq$  10 ms
- $\bullet$  0  $\leq$  T2  $\leq$  50 ms
- $\bullet$  0  $\leq$  T3  $\leq$  50 ms
- $1 \sec \le T4$
- $\bullet$  200 ms  $\leq$  T5
- $\bullet$  200 ms  $\leq$  T6

#### Notes:

- 1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance.
- 2. Do not keep the interface signal high impedance when power is on.
- 3. Back Light must be turn on after power for logic and interface signal are valid.
- 4. T7 decreases smoothly, there is none re-bouncing voltage.
- 5. During Mode change (Resolution, frequency, timing, sleep mode, Color depth change, etc.) the logic power/back- light/interface signal should be turned off as shown above; after the changing, power on as shown above.

| S864-8B016 MV270FHM-N20 Product Specification Rev. P3 | 19 <b>OF 29</b> |
|-------------------------------------------------------|-----------------|



| PRODUCT GROUP | REV     | ISSUE DATE |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### 10.0 MECHANICAL CHARACTERISTICS

#### **10.1 Dimensional Requirements**

FIGURE 6 (located in Appendix) shows mechanical outlines for the model MV270FHM-N20. Other parameters are shown in Table 8.

<Table 8. Dimensional Parameters>

| Parameter           | Specification                                                        | Unit   |
|---------------------|----------------------------------------------------------------------|--------|
| Dimensional outline | $611.5(H) \times 355.8(V) \times 13.2(Depth)$                        | mm     |
| Weight              | 3490                                                                 | gram   |
| Active area         | 597.888(H) × 336.312(V)                                              | mm     |
| Pixel pitch         | $0.3114  (\mathrm{H}) \times 0.3114 (\mathrm{V})$                    | mm     |
| Number of pixels    | $1920(H) \times 1080 (V) (1 \text{ pixel} = R + G + B \text{ dots})$ | pixels |
| Back-light          | Down side, 1-LED Lighting Bar type                                   |        |

#### 10.2 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an anti-glare coating to minimize reflection and a coating to reduce scratching.

#### 10.3 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 350lux.

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 20 <b>OF 29</b> |



#### PRODUCT GROUP **ISSUE DATE** REV Rev. P3

#### 11.0 RELIABLITY TEST

The Reliability test items and its conditions are shown in below. <Table 9 Reliability Test Parameters >

**Customer SPEC** 

| No | Test Items                                      | Conditions                                                |                                                                  |  |  |
|----|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|--|--|
| 1  | High temperature storage test                   | $Ta = 60  ^{\circ}\text{C}, 240  \text{h}$                | nrs                                                              |  |  |
| 2  | Low temperature storage test                    | $Ta = -20  ^{\circ}\text{C}, 240  ^{\circ}$               | hrs                                                              |  |  |
| 3  | High temperature & high humidity operation test | Ta = 50 °C, 80%RH, 240hrs                                 |                                                                  |  |  |
| 4  | High temperature operation test                 | Ta = 50 °C, 240h                                          | rs                                                               |  |  |
| 5  | Low temperature operation test                  | Ta = $0^{\circ}$ C, 240hrs                                |                                                                  |  |  |
| 6  | Thermal shock                                   | $Ta = -20  ^{\circ}\text{C} \leftrightarrow 60$           | ) °C (0.5 hr), 100 cycle                                         |  |  |
| 7  | Vibration test<br>(non-operating)               | Frequency Gravity / AMP Period                            | Random,10 ~ 300 Hz,<br>30 min/Axis<br>1.5 Grms<br>X, Y, Z 30 min |  |  |
|    |                                                 | Gravity                                                   | 50G                                                              |  |  |
| 8  | Shock test<br>(non-operating)                   | Pulse width                                               | 11msec, Half sine wave                                           |  |  |
|    |                                                 | Direction                                                 | $\pm X$ , $\pm Y$ , $\pm Z$ Once for each                        |  |  |
| 9  | Electro-static discharge test                   | Air : 150 pF, 330Ω, 15 KV<br>Contact : 150 pF, 330Ω, 8 KV |                                                                  |  |  |

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 21 <b>OF 29</b> |

R2013-9024-O(3/3)

2016.12.27



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### 12.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
  - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
  - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
  - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
  - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
  - Do not pull the interface connector in or out while the LCD module is operating.
  - Put the module display side down on a flat horizontal plane.
  - Handle connectors and cables with care.
- (3) Cautions for the operation
  - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
  - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (4) Cautions for the atmosphere
  - Dew drop atmosphere should be avoided.
  - Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
  - Do not apply fixed pattern data signal to the LCD module at product aging.
  - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
  - Do not disassemble and/or re-assemble LCD module.
  - Do not re-adjust variable resistor or switch etc.
  - •When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.

| S864-8B016 MV270FHM-N20 Product Specification Rev. P3 22 OF 29 | SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|----------------------------------------------------------------|--------------|--------------------------------------------|-----------------|
|                                                                | S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 22 <b>OF 29</b> |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### 13.0 PRODUCT SERIAL NUMBER





DP/N XXXXXX





MADE IN CHINA

#### **MDL ID Naming Rule:**

| Digit<br>Code | 1 | 2            | 3         | 4    | 5 | 6   | 7         | 8 | 9                   | 10 | 11            | 12 | 13 | 14              | 15              | 16 | 17 |
|---------------|---|--------------|-----------|------|---|-----|-----------|---|---------------------|----|---------------|----|----|-----------------|-----------------|----|----|
| Code          | s | L            | s         | 5    | 1 | 2   | 3         | 5 | 9                   | 4  | 2             | 0  | 0  | 0               | 1               | D  | В  |
| Description   |   | l Code<br>BN | Grad<br>e | Line | Y | ear | Mont<br>h |   | del Ext<br>t 4 Digi |    | Code<br>GCOD) |    |    | Seria<br>00001- | al No<br>ZZZZZZ | Z  |    |

| SPEC. NUMBER |
|--------------|
| S864-8B016   |

A4(210 X 297)



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

14.0 Packing14.1 Packing Order

Put pad into the box

Place the modules bundled by packing bag into the box, 6pcs module per box, put a cover on the top of the box

















12ea box per pallet

After sealing the box, put the box on the pallet

SPEC. NUMBER S864-8B016 SPEC. TITLE

MV270FHM-N20 Product Specification Rev. P3

PAGE 24 OF 29

R2013-9024-O(3/3)

A4(210 X 297)



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

#### 14.2 Packing Note

• Box Dimension: TBD

• Package Quantity in one Box : 6pcs

#### 14.3 Box label

• Label Size : 110 mm (L)  $\times$  55mm (W)

Contents

Model: MV270FHM-N20

Q'ty: Module \* Q'ty in one box

Serial No.: Box Serial No.

Date: Packing Date



#### The printed part follow as:

1. FG-CODE

2. Quantity

3. Box ID

4. Packing Date

- 4. Customer Code
- 8. FG-CODE(the last four number)
- 7. Vendor Code

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 25 <b>OF 29</b> |



| PRODUCT GROUP | REV     | ISSUE DATE |
|---------------|---------|------------|
| Customer SPEC | Rev. P3 | 2016.12.27 |

#### 15.0 APPENDIX

Figure 1. Measurement Set Up



Figure 2. White Luminance and Uniformity Measurement Locations (9 points)



| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 26 <b>OF 29</b> |



| PRODUCT GROUP |  |
|---------------|--|
|---------------|--|

Rev. P3

**REV** 

2016.12.27

**ISSUE DATE** 

Figure 3. Response Time Testing

**Customer SPEC** 



Figure 4. Cross Modulation Test Description



Where:  $Y_A = Initial luminance of measured area (cd/m<sup>2</sup>)$ 

 $Y_B =$ Subsequent luminance of measured area (cd/m<sup>2</sup>)

The location measured will be exactly the same in both patterns

| SPEC. NUMBER | SPEC. TITLE                                | PAGE            |
|--------------|--------------------------------------------|-----------------|
| S864-8B016   | MV270FHM-N20 Product Specification Rev. P3 | 27 <b>OF 29</b> |

R2013-9024-O(3/3) A4(210 X 297)



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

**Figure 5. TFT-LCD Module Outline Dimensions (Front view)** 



| SPEC. NUMBER |
|--------------|
| S864-8B016   |



REV

**ISSUE DATE** 

**Customer SPEC** 

Rev. P3

2016.12.27

Figure 6. TFT-LCD Module Outline Dimensions (Rear view)



#### NOTE:

- 1. I/F CONNECTOR SPECIFICATION
  FI-XB30SSL-HF15 (JAE) or IS100-L300-C23 (UJU)
- 2. LED CONNECTOR SPECIFICATION: 3709K-Q06N-00L or Equivalent
- 3. Tilt and portial disposition tolerance of display area as followling
  - (1)Y-direction: 佛A-B佛≤1.4 (2)X-direction: 佛C-D佛≤1.4
  - Bezel Open

    Active Area

| SPEC. NUMBER |
|--------------|
| S864-8B016   |