Introduction to NLP

Data Preparation, Preprocessing, & Modeling

Samuel Cahyawijaya

Who Am I

Area of Interest

Outline

1. Basic Concepts of NLP

- 2. Preprocessing
- 3. Modeling
- 4. Current State of NLP Research
- 5. Hands-on: Sentiment Analysis
- 6. Applying Better Learning Strategies

Goals

Understanding human languages and applying them to enable a more robust human-computer interaction

Goals

Understanding human languages and applying them to enable a more robust human-computer interaction

- Any unit of language can be mapped into a discrete space
 - Can be character, subword, word, phrase, sentence, etc.
 - It is not sampled from a continuous signal

Goals

Understanding human languages and applying them to enable a more robust human-computer interaction

- Any unit of language can be mapped into a discrete space
 - o Can be character, subword, word, phrase, sentence, etc
 - o It is not sampled from a continuous signal

Goals

Understanding human languages and applying them to enable a more robust human-computer interaction

- Any unit of language can be mapped into a discrete space
 - o Can be character, subword, word, phrase, sentence, etc.
 - It is not sampled from a continuous signal
- Every language has rules to organize the higher level structure \rightarrow **Syntax**
 - Order is important!!!
 - Because of this NLP data is commonly constructed in form of a sequence
 - What is sequence?

"This is a sequence!! This is also a sequence!!!"

What is it like to have a non-sequential language?

(2016)

How to Prepare Data in NLP?

- Collect the **sequence**
 - Sentence
 - Paragraph
 - Document
- Collect the label of the sequence
 - Sequence classification (sentiment analysis, spam filtering, etc)
 - Sequence labeling (POS tag, named entity recognition, span extraction, etc)
 - Pair-sequence classification (document similarity, entailment, etc)
 - Translation
 - Abstractive summarization
 - o etc

Preprocessing

Language Structure

- **Grapheme**: "A", "B", "C", "?", "!", "\$", "~", etc
- **Morphology**: The smallest units with meaning, it is **not necessarily a word**
 - **English**: untouchable → "un", "touch", "able"
 - **Indonesian**: memelihara → "mem", "pelihara"
- **Syntax**: Budi memakan nasi

memakan Budi nasi 🤅

- **Semantic**: Understanding the meaning of word
- **Pragmatic**: Understanding the meaning of word in the underlying context
 - <u>Budi</u> menyantap <u>internet</u> di warung kopi
 - <u>Budi</u> baikmu akan selalu kukenang
 - <u>Internet</u> memegang peranan penting bagi pertumbuhan ekonomi

Why is language structure important?

- Representation of the **token** (smallest unit of a sequence)
- Let say we have a pretty simple language called "BABABA" consisting of only A and
 B characters. From these 2 characters, we construct the following rules:
 - The language consists of 100 base words: "BA", "BABA", "BABABA", ...
 - The language consists of 10 **prefixes**: "AB", "ABABA", "ABABAB", ...
 - The language consists of 10 **suffices**: "ABB", "ABBABB", "ABBABBABB", ...
 - Any word can have any prefix and suffix
 - Any combination of two words can construct a phrase
- Let's define our **tokenization** approach
 - If we consider token to be grapheme / character, our vocabulary size will be only 2
 - If we consider token to be **morpheme**, our **vocabulary** size will be **120**
 - If we consider token to be **word**, our **vocabulary** size will be **10,000**
 - If we consider token to be phrase, our vocabulary size will be 100,000,000

Why is language structure important?

- Representation of the **token** (smallest unit of a sequence)
- Let say we have a pretty simple language called "BABABA" consisting of only A and
 B characters. From this 2 characters, we construct several concepts as follow
 - The language consists of 100 base words: "BA", "BABA", "BABABA", ...
 - The language consists of 10 **prefixes**: "AB", "ABABA", "ABABAB", ...
 - The language consists of 10 **suffices**: "ABB", "ABBABB", "ABBABBABB", ...
 - Any word can have any prefix and suffix
 - Any combination of two words can construct a phrase

Vocabulary Size Increase dramatically

- Let's define our tokenization approach
 - o If we consider token to be **grapheme / character**, our **vocabulary** size will be only **2**
 - If we consider token to be **morpheme**, our **vocabulary** size will be **120**
 - If we consider token to be word, our vocabulary size will be 10,000
 - If we consider token to be phrase, our vocabulary size will be 100,000,000

Handling Vocabulary Size

- What is the problem?
 - Larger vocabulary means more model parameters
 - \circ The occurrences of each token can be very skewed \rightarrow some tokens are barely learnt
 - If token of the vocabulary is too low-level, it is hard for model to learn higher semantic
- How do we reduce vocabulary size?
 - Limit number of vocab (uncovered token will be replaced as **unknown token**)
 - Stemming & Lemmatization
 - Word normalization
 - Stop word removal
 - Standardize case
- How to increase vocabulary size?
 - \circ n-gram \rightarrow another representation of token made by combining nearby tokens
 - e.g: "aku suka makan pisang" → ["aku suka", "suka makan", "makan pisang"]

Some details on Preprocessing

Text Normalization

Raw	Normalized				
2moro 2mrrw 2morrow 2mrw tomrw	tomorrow				
b4	before				
otw	on the way				
:) :-) ;-)	smile				

Stemming & Lemmatization

Stopwords

Some details on Preprocessing

n-gram

Can greatly increase the vocabulary size!!!

Out of Vocabulary (OOV)

Let's define our **tokenization** approach

- If we consider token to be grapheme / character, our vocabulary size will be only 2
- If we consider token to be morpheme, our vocabulary size will be 120
- If we consider token to be word, our vocabulary size will be 10,000
- If we consider token to be **phrase**, our **vocabulary** size will be **100,000,000**
- In real case, given a training corpus for each language we might be able to list most of the graphemes
- But, can we capture most of the possible words?
- What about phrases, n-gram, or even sentences? Can we capture all combinations of them to cover all of the possibilities?

Modeling Representation

Bag-of-words

Bag-of-words

This is the representation for the whole sentence!!

Missing sequence information!!

One-hot-encoding

[0, 0, 0, 0, 0, 1]

One-hot-encoding

Dense Vector

Why Preprocessing is Important?

- Controlling the number of vocabulary
- Generating vocabulary that are meaningful and can be well-trained
 - Has more uniform token's occurrences
 - Can cover most of the tokens in any possible sequence
- Generate better vocabulary with minimal information loss
 - Loss of context information
 - Loss of sequence information
 - Distorted meaning

The current trend of NLP preprocessing

- (Optional) case standardization
- Subword level tokenization (SentencePiece & BPE)
- Considering **<space>** character
- Use unknown token to replace missing subwords
- Use **dense vector** representation as the input

Let's go for modeling

- Bag-of-word-based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc.
 - Problem? No sequence information!!
 - aku mau kamu pergi bersama dia
 - aku mau dia pergi bersama kamu
 - kamu mau aku pergi bersama dia
 - kamu mau dia pergi bersama aku
 - dia mau aku pergi bersama kamu
 - dia mau kamu pergi bersama aku

aku	mau	pergi	kamu	bersama	dia
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1 1 1		1	
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	1	1	1

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc
- Bayesian-network based model (1960) → HMM and DBN
 - Problem? Markovian assumption, one-hot-encoding is inefficient

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc.
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling
- LSTM (1997) → Well-known RNN-based model

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc.
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling
- LSTM (1997) → Well-known RNN-based model
- Word Embedding (2000)

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling
- LSTM (1997) → Well-known RNN-based model
- Word Embedding (2000)
- Word2vec (2013) → Faster training for word embedding (Google)
- GRU (2014) → Another well-known RNN-based model
- FastText (2015) → Subword based word embedding (Facebook)

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling
- Word Embedding (2000)
- Word2vec (2013) → Faster training for word embedding (**Google**)
- GRU (2014) → Another well-known RNN-based model
- FastText (2015) → Subword based word embedding (Facebook)
- Transformer (2017) → Attention-based sequence processor (Google)
 - \circ Transformer can process sequence in parallel \rightarrow **Faster training and inference time**
 - A token in Transformer model can attend to any token in the sequence (No markovian assumption)

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling
- Word Embedding (2000)
- Word2vec (2013) \rightarrow Faster training for word embedding (**Google**)
- GRU (2014) → Another well-known RNN-based model
- FastText (2015) → Subword based word embedding (Facebook)
- Transformer (2017) → Attention-based sequence processor (**Google**)
- ELMo (2018) → First contextualized embedding model
 - Bidirectional LSTM based model
 - Trained with **1B words** benchmark corpus
 - Developed by: Allennip

- Bag-of-word based model (1954) → kNN, Bayesian, Tree, Forest, SVM, etc
- Bayesian-network based model (1960) → HMM and DBN
- Latent Semantic Analysis (1980) → Commonly use for topic modeling
- Word Embedding (2000)
- Word2vec (2013) \rightarrow Faster training for word embedding (**Google**)
- GRU (2014) → Another well-known RNN-based model
- FastText (2015) → Subword based word embedding (Facebook)
- Transformer (2017) → Attention-based sequence processor (**Google**)
- ELMo (2018) → First contextualized embedding model (Bidirectional)
- BERT (2019) → Transformer based contextualized embedding model (Google)
 - Transformer-encoder only models
 - Pre-trained on Wikipedia (2,500M words) and Book Corpus (800M words) [~30GB]
- GPT-2 (2019) \rightarrow Transformer based language generation model (OpenAI)
 - Transformer-decoder only models
 - Pre-trained on 8M web pages (~40GB)

Beyond BERT & GPT-2

• Encoder-only models

- BERT → Transformer based contextualized embedding model (Google)
- RoBERTa → Robustly trained BERT (Facebook)
- ALBERT → Factorized BERT (Google)
- DistilBERT → Smaller BERT model trained from **Distillation**
- \circ MBERT \rightarrow BERT model trained on **multilingual** data (Google)
- XLM → Similar to MBERT but different tokenization and pre-training (Facebook)
- \circ XLM-R \rightarrow Similar to XLM but with **Roberta** model and larger training corpus (Facebook)

Decoder-only models

- GPT-2 → Transformer based language generation model (Open AI)
- \circ UniLM \rightarrow Transformer based language generation model (Microsoft
- XNLG → Multilingual model for language generation (Microsoft)
- GPT-3 → Extremely large language generation model (OpenAl & Microsoft)

Encoder-decoder models

- \circ T5 \rightarrow Encoder-decoder based transformer model (Google)
- BART → Encoder-decoder based transformer model (Facebook)
- MASS → Encoder-decoder based transformer model (Microsoft)

And many more....

Why so many models in recent years?

BERT model for Indonesian Natural Language Understanding

IndoBERT Models

IndoBERT

IndoBERT-lite

Base

124.5M parameters

Large

335.1M parameters

Base

11.7M parameters

Large

17.7M parameters

Indo4B Dataset

23GB+ of Indonesian data

3.5+ billion words

15 sources

Colloquial and Formal

Our models are hosted in HuggingFace!

https://huggingface.co/indobenchmark

Our models are hosted in HuggingFace!

```
from transformers import BertTokenizer, AutoModel
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p1")
model = AutoModel.from_pretrained("indobenchmark/indobert-base-p1")
```

Models	Size	Phase1	Phase2				
IndoBERT _{BASE}	124.5M	indobenchmark/indobert-base-p1	indobenchmark/indobert-base-p2				
IndoBERT	335.2M	indobenchmark/indobert-large-p1	indobenchmark/indobert-large-p2				
IndoBERT-lite _{BASE}	11.7M	indobenchmark/indobert-lite-base-p1	indobenchmark/indobert-lite-base-p2				
IndoBERT-lite _{LARGE}	17.7M	indobenchmark/indobert-lite-large-p1	indobenchmark/indobert-lite-large-p2				

12 Tasks IndoNLU Benchmark

Dataset	Train	Valid	Test	Task Description	#Label	#Class	Domain	Style
Single-Sentence Classification Tasks								
EmoT [†]	3,521	440	442	emotion classification	1	5	tweets	colloquial
SmSA	11,000	1,260	500	sentiment analysis	1	3	general	colloquial
CASA	810	90	180	aspect-based sentiment analysis	6	3	automobile	colloquial
$HoASA^{\dagger}$	2,283	285	286	aspect-based sentiment analysis	10	4	hotel	colloquial
Sentence-Pair Classification Tasks								
WReTE [†]	300	50	100	textual entailment	1	2	wiki	formal
Single-Sentence Sequence Labeling Tasks								
POSP [†]	6,720	840	840	part-of-speech tagging	1	26	news	formal
BaPOS	8,000	1,000	1,029	part-of-speech tagging	1	41	news	formal
TermA	3,000	1,000	1,000	span extraction	1	5	hotel	colloquial
KEPS	800	200	247	span extraction	1	3	banking	colloquial
NERGrit [†]	1,672	209	209	named entity recognition	1	7	wiki	formal
$NERP^{\dagger}$	6,720	840	840	named entity recognition	1	11	news	formal
			Senter	nce-Pair Sequence Labeling Tasks				
FacQA	2,495	311	311	span extraction	1	3	news	formal

Table 1: Task statistics and descriptions. †We create new splits for the dataset.

12 Tasks IndoNLU Benchmark

Dataset	Train	Valid	Test	Task Description	#Label	#Class	Domain	Style	
Single-Sentence Classification Tasks									
EmoT [†]	3,521	440	442	emotion classification	1	5	tweets	colloquial	
SmSA	11,000	1,260	500	sentiment analysis	1	3	general	colloquial	
CASA	810	90	180	aspect-based sentiment analysis	6	3	automobile	colloquial	> Classification
$HoASA^{\dagger}$	2,283	285	286	aspect-based sentiment analysis	10	4	hotel	colloquial	
			Sen	tence-Pair Classification Tasks					
WReTE [†]	300	50	100	textual entailment	1	2	wiki	formal	J
			Single-	Sentence Sequence Labeling Tasks	S				
$POSP^{\dagger}$	6,720	840	840	part-of-speech tagging	1	26	news	formal	
BaPOS	8,000	1,000	1,029	part-of-speech tagging	1	41	news	formal	
TermA	3,000	1,000	1,000	span extraction	1	5	hotel	colloquial	
KEPS	800	200	247	span extraction	1	3	banking	colloquial	Sequence
$NERGrit^\dagger$	1,672	209	209	named entity recognition	1	7	wiki	formal	Labeling
$NERP^{\dagger}$	6,720	840	840	named entity recognition	1	11	news	formal	
Sentence-Pair Sequence Labeling Tasks Pair									
FacQA	2,495	311	311	span extraction	1	3	news	formal	J
	EmoT [†] SmSA CASA HoASA [†] WReTE [†] POSP [†] BaPOS TermA KEPS NERGrit [†] NERP [†]	EmoT [†] 3,521 SmSA 11,000 CASA 810 HoASA [†] 2,283 WReTE [†] 300 POSP [†] 6,720 BaPOS 8,000 TermA 3,000 KEPS 800 NERGrit [†] 1,672 NERP [†] 6,720	EmoT [†] 3,521 440 SmSA 11,000 1,260 CASA 810 90 HoASA [†] 2,283 285 WReTE [†] 300 50 POSP [†] 6,720 840 BaPOS 8,000 1,000 TermA 3,000 1,000 KEPS 800 200 NERGrit [†] 1,672 209 NERP [†] 6,720 840	Sing EmoT [†] 3,521 440 442 SmSA 11,000 1,260 500 CASA 810 90 180 HoASA [†] 2,283 285 286 WReTE [†] 300 50 100 Single- POSP [†] 6,720 840 840 BaPOS 8,000 1,000 1,029 TermA 3,000 1,000 1,029 TermA 3,000 1,000 1,000 KEPS 800 200 247 NERGrit [†] 1,672 209 209 NERP [†] 6,720 840 840 Senter	Single-Sentence Classification Tasks				

Table 1: Task statistics and descriptions. †We create new splits for the dataset.

Tutorial

https://github.com/indobenchmark/indonlu

SmSA WreTe

Sequence Classification Pair-Sequence Classification

NERGrit CASA

Sequence Labeling Multilabel Seq. Classification

Visit our homepage https://indobenchmark.com

https://github.com/indobenchmark

```
@inproceedings{wilie2020indonlu,
    title={IndoNLU: Benchmark and Resources for
        Evaluating Indonesian Natural Language Understanding},
    author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata
        and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim
        and S. Soleman and R. Mahendra and Pascale Fung
        and Syafri Bahar and A. Purwarianti},
    booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter
        of the Association for Computational Linguistics and
        the 10th International Joint Conference on Natural Language Processing},
    year={2020}
}
```


