Learning Theory - Homework 2

Alexandru Mocanu, SCIPER 295172

9 April 2019

Exercise 1 1

Along the entire exercise, we consider $\|\cdot\|$ to be the spectral norm when applied to matrices.

a) We start by noting that S_n^+ is a convex set. Consider $A,B\in S_n^+$ and $\eta \in (0,1)$. Then, $\forall x \in \mathbb{R}^n$, we have that:

$$x^{T}[\eta A + (1 - \eta)B]x = \eta x^{T} A x + (1 - \eta)x^{T} B x \ge 0$$
 (1)

Therefore, $\eta A + (1 - \eta)B \in S_n^+$, so S_n^+ is a convex set. Now, consider $A, B \in S_n^+$ and $\eta \in (0, 1)$. We know that $\lambda_{max}(A)$ is the spectral norm of matrix A. In other words, $\lambda_{max}(A) = \max_{x} \frac{\|Ax\|}{\|x\|} =$ $\max_{x:||x||=1} \sqrt{x^T A^T A x}$. As the spectral norm is a norm, we have that

$$\|\eta A + (1 - \eta)B\| \le \|\eta A\| + \|(1 - \eta)B\| = \eta \lambda_{max}(A) + (1 - \eta)\lambda_{max}(B)$$
 (2)

which is equivalent to $f(\eta A + (1-\eta)B) \le \eta f(A) + (1-\eta)f(B)$, so f is convex.

b) Consider $v \in \mathbb{R}^n$ such that $\sum_{i=1}^n v_i = 1$ and $A^T v = \lambda_{max}(A)v$. We construct matrix V = [v, v, ..., v] and prove that it is a subgradient of f at A.

We see that
$$tr(A^TV) = tr([A^Tv, A^Tv, ..., A^Tv]) = \lambda_{max}(A)tr(V) = \lambda_{max}\sum_{i=1}^n v_i = \lambda_{max}(A)$$
. We also note that $B^TV = [B^Tv, B^Tv, ..., B^Tv]$, so matrix B^TV is 1-rank, having only one nonzero eigenvalue. $Vv = v$, so the only nonzero eigenvalue of V is 1.

Consider two $n \times n$ matrices A and B. Considering $x = \arg \max ||ABy||$, we have that:

$$||AB|| = ||ABx|| \le \max_{y:||y||=1} ||Ay|| ||Bx|| = ||A|| ||Bx|| \le ||A|| ||B|| ||x|| = ||A|| ||B||$$

Using the above fact for B and V, we have that $||B^TV|| \leq ||B^T|| ||V|| =$ $\lambda_{max}(B)$. This result along with the fact that the trace of a matrix is equal to the sum of its eigenvalues, leads us to:

$$f(A) + tr((B - A)^T V) \le \lambda_{max}(A) + \lambda_{max}(B) - \lambda_{max}(A) = \lambda_{max}(B) = f(B),$$

so V is a subgradient of f at A .

2 Exercise 2

a) For w with the property presented in the statement, $1-y_ix_i^Tw \leq 0, \forall i \in [m]$, so $\max_i(1-y_ix_i^Tw) \leq 0$. Assume that $\max_i(1-y_ix_i^Tw^*) < 0$. Then $1 < y_ix_i^Tw^*, \forall i \in [m]$, but then we can choose $w = \frac{w^*}{y_jx_j^Tw^*}$, where $j = \arg\max_i(1-y_ix_i^Tw^*) = \arg\min_i y_ix_i^Tw^*$ and this leads us to $y_jx_j^Tw = 1$ and $y_ix_i^Tw \geq 1, \forall i \neq j$, as $y_jx_j^Tw^* \leq y_ix_i^Tw^*, \forall i \in [m]$. This means that w^* is not the minimal norm solution which gives a contradiction.

Therefore, $\max_i (1 - y_i x_i^T w^*) = 1$, so $f(w^*) = 0$. Any other w with $||w|| = ||w^*||$ that has the property from the statement, also satisfies f(w) = 0. All other w with $||w|| \le ||w^*||$ do not satisfy the property from the statement, so $\exists i \in [m]$ such that $y_i x_i^T w < 1$, so f(w) > 0.

In conclusion, $\min_{w:||w|| \le ||w^*||} f(w) = 0$ with the minimum achieved at w^* .

- b) If f(w) < 1, this means that $y_i x_i^T w > 0$, $\forall i \in [m]$. This implies that for for $y_i = 1$ we get $x_i^T w$ positive and for $y_i = -1$ we get $x_i^T w$ negative, so $sign(x_i^T w) = y_i, \forall i \in [m]$ and therefore w indeed separates all the examples in S.
- c) In order for $g_1 \in \mathbb{R}^d$ to be a subgradient at w_1 , we need

$$f(w_2) \ge f(w_1) + g_1^T(w_2 - w_1) \iff g_1^T(w_1 - w_2) \ge f(w_1) - f(w_2), \forall w_1, w_2 \in \mathbb{R}^d$$
(5)

We also have that

$$f(w_1) - f(w_2) = \max_{i} (1 - y_i x_i^T w_1) - \max_{i} (1 - y_i x_i^T w_2) = \min_{i} y_i x_i^T w_2 - \min_{i} y_i x_i^T w_1$$
(6)

But we know that $\min_{i} y_i x_i^T w_2 - \min_{i} y_i x_i^T w_1 < y_j x_j^T (w_2 - w_1)$, where $j = \arg\min y_i x_i^T w_1$.

Therefore, choosing $g_1 = -y_j x_j$ with $j = \arg\min_i y_i x_i^T w_1$ leads to

$$g_1^T(w_1 - w_2) = y_j x_j^T(w_2 - w_1) \ge f(w_1) - f(w_2),$$
(7)

so g_1 is a subgradient of f at w.

d) As we have seen, $g = -y_j x_j$ with $j = \arg\min_i y_i x_i^T w$ gives a subgradient of f at w. The objective is to approach w^* that achieves perfect separation. We therefore propose algorithm 1 as a subgradient descent algorithm.

What remains is to prove that the number of iterations until convergence of the algorithm in case of linearly separable samples is $T \leq R^2 ||w^*||^2$. We will proceed as for the Batch Perceptron algorithm in section 9.1.2 of Understanding Machine Learning.

```
\begin{array}{l} \textbf{Data: A training set } (x_1,y_1),...,(x_m,y_m) \\ \textbf{Initialize: } w^{(1)} = (0,0,...,0) \\ \textbf{for } t = 1,2,... \ \textbf{do} \\ & | \ \textbf{if } \exists i \ s.t. \ y_i x_i^T w^{(t)} \leq 0 \ \textbf{then} \\ & | \ j = \mathop{\arg\min}_{i} y_i x_i^T w^{(t)}; \\ & | \ g = -y_j x_j; \\ & | \ w^{(t+1)} = w^{(t)} - g; \\ \textbf{end} \\ & \textbf{else} \\ & | \ \textbf{output } w^{(t)} \\ & \textbf{end} \\ \textbf{end} \\ & \textbf{end} \\ \end{array}
```

Algorithm 1: Subgradient descent

We have w^* as defined in the statement. We will prove that after performing T iterations, the cosine of the angle between w^* and $w^{(T+1)}$ is at least $\frac{\sqrt{T}}{R\|w^*\|}$, or equivalently

$$\frac{\langle w^*, w^{(T+1)} \rangle}{\|w^*\| \|w^{(T+1)}\|} \ge \frac{\sqrt{T}}{R \|w^*\|} \tag{8}$$

Using the Cauchy-Schwarz inequality along with the inequality above, we get that $1 \ge \frac{\sqrt{T}}{R||w^*||}$, so $T \le R^2 ||w^*||^2$. To prove that inequality 8 holds, we start by noting that $\langle w^*, w^{(T+1)} \rangle \ge T$. At the first iteration we have $w^{(1)} = (0, 0, ..., 0)$, so $\langle w^*, w^{(1)} \rangle = 0$, while at iteration t, if we update using sample (x_i, y_i) , we get

$$\langle w^*, w^{(t+1)} \rangle - \langle w^*, w^{(t)} \rangle = \langle w^*, w^{(t+1)} - w^{(t)} \rangle = \langle w^*, y_i x_i \rangle = y_i \langle w^*, x_i \rangle \ge 1$$
 (9)

After T iterations, we therefore get

$$\langle w^*, w^{(T+1)} \rangle = \sum_{t=1}^{T} \left(\langle w^*, w^{(t+1)} \rangle - \langle w^*, w^{(t)} \rangle \right) \ge T \tag{10}$$

just like we wanted to prove. We now upper-bound $||w^{(T+1)}||$:

$$||w^{(t+1)}||^2 = ||w^{(t)} + y_i x_i||^2 = ||w^{(t)}||^2 + y_i^2 ||x_i||^2 + 2y_i \langle w^{(t)}, x_i \rangle \le ||w^{(t)}||^2 + R^2$$
(11)

By progressively applying this inequality and by the fact that $||w^{(1)}|| = 0$, we get that

$$||w^{(T+1)}||^2 \le TR^2 \Rightarrow ||w^{(T+1)}|| \le R\sqrt{T}$$
 (12)

Combining equations 10 and 12, we get that

$$\frac{\langle w^*, w^{(T+1)} \rangle}{\|w^*\| \|w^{(T+1)}\|} \ge \frac{T}{\|w^*\| R\sqrt{T}} = \frac{\sqrt{T}}{R\|w^*\|}$$
(13)

This concludes our proof.

e) Unlike in the Batch Perceptron algorithm, at each step we choose the worst classified datapoint to update the weights.

3 Exercise 3

We need some preliminary statements before we venture with the actual proof. We first show that $\|w^{(t+\frac{1}{2})}-w^*\|^2 \geq \|w^{(t+1)}-w^*\|^2$. In case $\|w^{(t+\frac{1}{2})}\| \leq B$, we have that $w^{(t+\frac{1}{2})}=w^{(t+1)}$, so we actually get equality. For $\|w^{(t+\frac{1}{2})}\| > B$, we get $w^{(t+1)}=w^{(t+\frac{1}{2})}\frac{B}{\|w^{(t+\frac{1}{2})}\|}$ such that $\|w^{(t+1)}\|=B$, so we proceed:

$$||w^{(t+1)} - w^*||^2 = B^2 + ||w^*||^2 - 2\frac{B}{||w^{(t+\frac{1}{2})}||} (w^{(t+\frac{1}{2})})^T w^*$$

$$||w^{(t+\frac{1}{2})} - w^*||^2 = ||w^{(t+\frac{1}{2})}||^2 + ||w^*||^2 - 2(w^{(t+\frac{1}{2})})^T w^*$$

$$||w^{(t+1)} - w^*||^2 \le ||w^{(t+\frac{1}{2})} - w^*||^2 \iff B^2 + 2\left(1 - \frac{B}{||w^{(t+\frac{1}{2})}||}\right) (w^{(t+\frac{1}{2})})^T w^* \le ||w^{(t+\frac{1}{2})}||^2$$

$$(14)$$

But, we have that $(w^{(t+\frac{1}{2})})^T w^* \leq B \|w^{(t+\frac{1}{2})}\|$, with equality for $\angle (w^{(t+\frac{1}{2})}, w^*) = 0$. Therefore:

$$B^{2}+2\left(1-\frac{B}{\|w^{(t+\frac{1}{2})}\|}\right)(w^{(t+\frac{1}{2})})^{T}w^{*} \leq B^{2}+2\|w^{(t+\frac{1}{2})}\|B-2B^{2}=2B\|w^{(t+\frac{1}{2})}\|-B^{2}\leq \|w^{(t+\frac{1}{2})}\|^{2} \iff 0 < (\|w^{(t+\frac{1}{2})}\|-B)^{2} \quad (15)$$

The last inequality is obviously true, so we have that:

$$\|w^{(t+\frac{1}{2})} - w^*\|^2 \ge \|w^{(t+1)} - w^*\|^2 \tag{16}$$

Secondly, we prove that $||w^{(t)} - w^*||^2 < 4B^2$.

$$\|w^{(t)} - w^*\|^2 = \|w^{(t)}\|^2 + \|w^*\|^2 - 2(w^{(t)})^T w^* \le 4B^2$$
(17)

with equality for $||w^{(t)}|| = ||w^*|| = B$ and $\angle(w^{(t)}, w^*) = \pi$. So, we indeed get

$$||w^{(t)} - w^*||^2 \le 4B^2 \tag{18}$$

Thirdly, we prove by induction that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T}$. For the base case we simply have that $\frac{1}{\sqrt{1}} \leq 2\sqrt{1}$, which is clearly true. We assume the statement to

be true for T and prove it for T+1:

$$\sum_{t=1}^{T+1} \frac{1}{\sqrt{t}} \le 2\sqrt{T} + \frac{1}{\sqrt{T+1}} \le 2\sqrt{T+1} \iff \frac{1}{\sqrt{T+1}} \le 2(\sqrt{T+1} - \sqrt{T}) = \frac{2}{\sqrt{T} + \sqrt{T+1}}$$
(19)

The last inequality is true, so the assumption holds and we get:

$$\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \le 2\sqrt{T} \tag{20}$$

We now proceed with the proof. By convexity, we have that

$$\mathbb{E}[f(\bar{w})] = \mathbb{E}\left[f\left(\frac{1}{T}\sum_{t=1}^{T}w^{(t)}\right)\right] \leq \frac{1}{T}\sum_{t=1}^{T}\mathbb{E}[f(w^{(t)})] \Rightarrow \mathbb{E}[f(\bar{w})] - f(w^*) \leq \frac{1}{T}\sum_{t=1}^{T}\mathbb{E}[f(w^{(t)}) - f(w^*)]$$

As $\mathbb{E}[v_t]$ is a subgradient of f at $w^{(t)}$, convexity also implies that

$$f(w^*) \ge f(w^{(t)}) + \mathbb{E}[v_t]^T(w^* - w^{(t)}) \Rightarrow f(w^{(t)}) - f(w^*) \le \mathbb{E}[v_t]^T(w^{(t)} - w^*) \tag{22}$$

But we have that

$$\mathbb{E}[v_t]^T(w^{(t)} - w^*) = \mathbb{E}[v_t^T(w^{(t)} - w^*)] = \mathbb{E}\left[\frac{1}{\eta_t}(w^{(t)} - w^{(t+\frac{1}{2})})^T(w^{(t)} - w^*)\right] = \frac{1}{2\eta_t}\mathbb{E}[\|w^{(t)} - w^{(t+\frac{1}{2})}\|^2 + \|w^{(t)} - w^*\|^2 - \|w^{(t+\frac{1}{2})} - w^*\|^2]$$
(23)

Using now inequality 16, we get

$$\mathbb{E}[v_t]^T(w^{(t)} - w^*) \le \frac{1}{2}\eta_t \mathbb{E}[\|v_t\|^2] + \frac{1}{2\eta_t} \mathbb{E}[\|w^{(t)} - w^*\|^2 - \|w^{(t+1)} - w^*\|^2]$$
 (24)

Summing over t, this leads to

$$\sum_{t=1}^{T} \mathbb{E}[f(w^{(t)}) - f(w^*)] \le \frac{B}{2\rho} \sum_{t=1}^{T} \frac{1}{\sqrt{t}} \mathbb{E}[\|v_t\|^2] + \frac{\rho}{2B} \sum_{t=1}^{T} \sqrt{t} (\|w^{(t)} - w^*\|^2 - \|w^{(t+1)} - w^*\|^2)$$
(25)

We note that

$$\sum_{t=1}^{T} \sqrt{t} (\|w^{(t)} - w^*\|^2 - \|w^{(t+1)} - w^*\|^2) = \sum_{t=1}^{T} (\sqrt{t} - \sqrt{t-1}) \|w^{(t)} - w^*\|^2 \le 4B^2 \sum_{t=1}^{T} (\sqrt{t} - \sqrt{t-1}) = 4B^2 \sqrt{T}$$
(26)

where we used inequality 18.

From 21, 25, 26, 20 and using the fact that $\mathbb{E}[\|v_t\|^2] \leq \rho^2$, we get that

$$\mathbb{E}[f(\bar{w})] - f(w^*) \le \frac{1}{T} \left(\frac{1}{2} 2\rho B\sqrt{T} + \frac{\rho}{2B} 4B^2 \sqrt{T} \right) = 3\frac{\rho B}{\sqrt{T}}$$
 (27)

so we satisfy the theorem with $\alpha = 3$.

4 Exercise 4

We notice that $|\mathcal{H}_{n-parity}| = 2^n - 1$, so we have $VCdim(\mathcal{H}_{n-parity}) < n$, as for a set of n points from \mathcal{X} we would have 2^n different classifications to make.

Consider the ordered subset S=(0,0,0,...,0,1), (0,0,0,...,1,0),..., (0,1,0,...,0) for which element i contains only one 1 at the i-th least significant bit. Consider now a classification of the elements in S that contains 1 bits at positions $i_1 < i_2 < ... < i_m$. Choosing the subset $I = \{n+1-i_1, n+1-i_2, ..., n+1-i_m\}$ gives us the hypothesis function h_I which makes the desired classification, as element i_j from S contributes to the classification with its 1 from position $n+1-i_j$. For example, for n=4 we have:

S	classification	1
0001	000	{1}
0010	001	{2}
0100	010	{3}
	011	{2, 3}
	100	{4}
	101	$\{2, 4\}$
	110	{3, 4}
	111	$\{2, 3, 4\}$

We have therefore found a subset of size n-1 that is shattered by $\mathcal{H}_{n-parity}$, so $VCdim(\mathcal{H}_{n-parity}) = n-1$.