《机器学习》大作业——强化学习

1. 分工

组员姓名	工作内容
林浩然	编写代码
孙立帆	撰写报告
徐王子	撰写报告

2. 环境安装

2.1 OpenAl Gym 环境的安装

通过 pip 来安装 OpenAI 的 Gym 环境,需要注意的是安装的版本应该是 0.1, 而不是新的 0.2 版本,否则会由于新版本的 API 变动带来一些接口变更导致代码无法运行的问题。

2.2 其他环境配置(非重要部分省略)

torch==2.0.1

pyglet==1.5.27

3. 任务环境

我们参考了 OpenAl Gym 的官方文档中对于 Mountain Car 环境的介绍,可以从这个任务的状态,动作,回报函数设计来刻画这个环境:

3.1 状态空间

Mountain car 任务中的状态是两维的,具体来说在 gym 的实现中是一个大小为 (2,) 的 numpy array, 两维分别表示小车在 x 轴上的坐标以及小车的速度。

3.2 动作空间

动作空间是一个大小为 3 的离散空间, 分别是:

- 0. 向左加速
- 1. 不加速
- 2. 向右加速

3.3 状态转移

用 pos_t, v_t 表示第 t 个时间步的时候小车的位置和速度,小车的状态转移可以由以下动力学方程描述:

$$egin{aligned} v_{t+1} &= v_t + (action-1)*f - cos(3*pos_t)*g \ pos_{t+1} &= pos_t + v_{t+1} \end{aligned}$$

其中 f = 0.001, g = 0.0025

3.4 奖励函数

任务的目标是到达山顶,奖励为负数,在每个时间步都会作出一个 -1 的惩罚

3.5 理解和思考

Mountain Car 环境是 OpenAl Gym 中的一种强化学习环境,目标是让一个小车从山谷底部到山顶。这个任务相对简单,但是需要克服的难度在于小车的引擎功率不足,无法直接从低谷爬到高峰,必须先向另一侧移动,获得足够的动能再返回低谷,通过反复振荡来逐渐爬升。这个任务具有连续的状态和离散的动作空间,并且奖励信号非常稀疏,因此这个环境是一个典型的强化学习控制任务。需要通过大量的探索和学习来解决。

4. DQN

4.1 DQN 算法伪代码

初始化:

Q network : 评估网络,用于计算状态-动作值函数

target_Q_network: 目标网络,定期从Q_network复制参数

replay buffer: 经验回放池,存储状态转移

batch_size: 随机采样小批量大小gamma: 衰减系数,折扣未来奖励

learning rate: Q network的学习率

开始训练:

- 1. 初始化环境,获得初始状态state
- 2. 根据state查询Q_network获得所有Q值,使用 epsilon-greedy 策略选择 action.
- 3. 执行action,获得奖励reward和新状态new_state
- 4. 存储转移(state, action, reward, new_state)到经验回放池replay_buffer
- 5. 从replay buffer随机抽取小批量batch size个转移
- 6. 计算这些转移的Q值:Q_target = reward + gamma * max_a(target_Q_network(new_state, a))
- 7. 计算这些转移的预测Q值:Q_predict = Q_network(state, action)
- 8. 计算Q_network的损失:loss = (Q_target Q_predict) ^ 2
- 9. 梯度下降,更新Q_network参数,降低loss
- 10. 每隔一段时间,替换target Q network的参数为Q network的参数
- 11. 重复步骤2-10,不断训练,直到达到最大回合数

4.2 代码补全方案

4.2.1 epsilon-greedy policy

```
def select_action(self, states, epsilon):
    # TODO: 补全epsilon_greedy代码实现
    if np.random.uniform() < epsilon:
        action = np.random.choice(np.arange(self.args.n_actions))
    else:
        inputs = torch.tensor(states, dtype=torch.float32).unsqueeze(0)
        if self.args.cuda:
            inputs = inputs.cuda()
        q_value = self.policy.q_network(inputs).detach()
        action = torch.argmax(q_value)
        action = action.cpu().numpy()
    return action.copy()</pre>
```

当 sample 到小于 epsilon 的时候,就等概率地随机选择一个动作,否则选择 q 值最大的动作。epsilon greedy policy 体现了强化学习中 exploration 和 exploitation 的平衡。

4.2.2 target-q calculation

```
# calculate the target Q value function
with torch.no_grad():
    q_next_all = self.target_q_network(next_states)
    q_next = torch.max(q_next_all, dim=1, keepdim=True)[0]
    # TODO: 补全target_q的计算相关代码实现
    target_q = (rewards.unsqueeze(1) + self.args.gamma * q_next *
done_multiplier).detach()
```

根据公式: $y=r_{t+1}+\gamma max_{a_{t+1}}\overline{Q}(s_{t+1},a_{t+1}; heta^-)*(1-done)$ 计算 target_q

4.3 理解和思考

DQN 代码实现的核心是 DQN 算法,这个算法的基本思想是使用深度神经网络来逼近 Q 值函数。具体来说,算法通过不断更新神经网络参数,使得网络的 Q 值函数逼近最优的 Q 值函数,从而可以实现智能体在 Mountain Car 环境下的控制。DQN 代码中的重点在于神经网络的实现和训练,其中包括输入状态和输出动作的处理、目标 Q 值的计算、误差的计算和反向传播等步骤。

5. 实验结果

5.1 实验参数设置

为了取得示例中的效果,我们修改了默认的实验参数配置,修改的部分如下:

1. epsilon: 0.8

2. epsilon min: 0.01

3. epsilon anneal time: 500000

4. buffer size: 10000

5. max episodes: 10000

这些参数修改的方向都是使得训练过程更长和精细,以取得更好的效果。

5.2 实验结果展示

5.2.1 训练过程中的 average returns

5.2.2 演示结果

演示视频见同文件夹下的视频文件

5.3 理解和思考

本实验中,Mountain Car 环境和 DQN 代码相辅相成。通过使用 DQN 代码,我们训练了一个 DQN 智能体,使其在 Mountain Car 环境中学习并表现出优秀的控制能力。同时,DQN 代码 会将智能体的状态、动作和奖励等信息传递给 Mountain Car 环境,然后根据环境的反馈进行 训练,直到智能体能够学会在 Mountain Car 环境中达到目标位置为止。二者共同构成了一个 强化学习的系统,实现了从环境到智能体的信息传递和学习过程。

Mountain Car 环境和 DQN 代码在强化学习中是举足轻重的。通过学习这些内容,可以更好地理解强化学习的基本思想和方法,并且可以掌握如何使用神经网络来逼近 Q 值函数,解决高维状态和连续动作空间等问题。

6. 参考资料来源

- [1] Mountain Car Gym Documentation
- [2] RL DON Deep Q-network