Autómatas Finitos

Juan Mendivelso

Universidad Nacional de Colombia Facultad de Ciencias Departamento de Matemáticas

Presentación basada en las Notas de Clase del Profesor Rodrigo De Castro.

1/112

AFD

Outline

- 1 Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - ullet Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

AFD

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Autómatas Finitos Deterministas (AFD)

- En 1936, Alan Turing introdujo las Máquinas de Turing.
- En los 1940's y 1950's se introdujeron máquinas de Turing con capacidad restringida.
- Los autómatas finitos son máquinas abstractas que tienen la capacidad de reconocer lenguajes.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 4 / 112

Autómatas Finitos Deterministas (AFD)

- Aceptan o rechazan cadenas de texto.
- Cinta semi-infinita dividida en celdas.
- Unidad de control, cabeza lectora, control finito o unidad de memoria.
- Estados del autómata.
- Estado inicial.

AFD

Estado final.

Autómatas Finitos Deterministas (AFD)

Un Autómata Finito Determinista (AFD) $M = (\Sigma, Q, q_0, F, \delta)$ tiene cinco componentes:

lacktriangle Alfabeto Σ .

AFD

- **2** Estados $Q = \{q_0, q_1, \dots, q_n\}$.
- **3** Estado inicial $q_0 \in Q$.
- **①** Estados finales o de aceptación $F \subseteq Q$. Se tiene que $F \neq \emptyset$.
- **9** Función de transición (o dinámica del autómata): δ .

Un AFD acepta la cadena u si está en un estado de aceptación al leer la primera casilla vacía.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

• Lista de instrucciones de $M = (\Sigma, Q, q_0, F, \delta)$ para procesar toda $u \in \Sigma^*$:

$$\delta: Q \times \Sigma \to Q$$

$$(q,s) \mapsto \delta(q,s)$$

Definiciones Básicas

• La función δ está definida para toda pareja (q, s), $\forall q \in Q$ y $\forall s \in \Sigma$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 7/112

AFD

•

- Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD y $u \in \Sigma^*$.
- La unidad de control apunta al primer caracter *u* inicialmente.
- Cada procesamiento $\delta(q,s)=q'$, para $q,q'\in Q$ y $s\in \Sigma$ es un **paso** computacional.
- Al final de cada paso computacional, la unidad de control se mueve una celda a la derecha.
- *M* acepta la cadena *u* si está en un estado de aceptación al leer la primera casilla vacía.
- La cadena u se procesa de manera única.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 9 / 112

AFD

$$\Sigma = \{a, b\}.$$

$$Q = \{q_0, q_1, q_2\}.$$

 q_0 : estado inicial.

 $F = \{q_0, q_2\}$, estados de aceptación.

Función de transición δ :

δ	\boldsymbol{a}	\boldsymbol{b}
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_1	q_1

$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_2$
 $\delta(q_2, a) = q_1$ $\delta(q_2, b) = q_1$.

1. u = aabab.

Definiciones Básicas

Ejemplo de AFD

AFD

$$\Sigma = \{a, b\}.$$

$$Q = \{q_0, q_1, q_2\}.$$

 q_0 : estado inicial.

 $F = \{q_0, q_2\}$, estados de aceptación.

Función de transición δ :

δ	\boldsymbol{a}	\boldsymbol{b}
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_1	q_1

$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_2$

 $\delta(q_2, a) = q_1 \qquad \delta(q_2, b) = q_1.$

v = aababa

Ejemplo de AFD

AFD

$$\Sigma = \{a, b\}.$$

$$Q = \{q_0, q_1, q_2\}.$$

 q_0 : estado inicial.

 $F = \{q_0, q_2\}$, estados de aceptación.

Función de transición δ :

δ	\boldsymbol{a}	b
q_0	q_0	q_1
q_1	q_1	q_2
q_2	q_1	q_1

$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_2$
 $\delta(q_2, a) = q_1$ $\delta(q_2, b) = q_1$.

3. Caso especial: la cadena λ es la cadena de entrada.

Función de Transición Extendida

- Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD.
- La función de transición δ , $\delta: Q \times \Sigma \to Q$ se extiende a la **función** de transición extendida $\hat{\delta}: Q \times \Sigma^* \to Q$ definida así:

$$\begin{cases} \hat{\delta}(q,\lambda) = q & q \in Q \\ \hat{\delta}(q,a) = \delta(q,a) & q \in Q, a \in \Sigma \\ \hat{\delta}(q,ua) = \delta(\hat{\delta}(q,u),a) & q \in Q, a \in \Sigma, q \in \Sigma^* \end{cases}$$

- $\hat{\delta}(q, u)$: Estado en el que queda la unidad de control después de procesar la cadena $u \in \Sigma^*$ partiendo del estado $q \in Q$.
- $\hat{\delta}(q, u)$ se puede denotar como $\delta(q, u)$ sin lugar a ambigüedad.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 13 / 112

• Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD.

AFD

- La unidad de control apunta al primer caracter *u* inicialmente.
- M acepta o rechaza las cadenas en Σ^* .
- Se puede decir que M clasifica las cadenas de Σ^* en dos clases disyuntas: las aceptadas y las rechazadas.
- El conjunto de las cadenas aceptadas por M se denomina lenguaje aceptado (reconocido) por M:

$$L(M) = \{ u \in \Sigma^* : u \text{ es aceptada por } M \}$$

$$= \{ u \in \Sigma^* : M \text{ termina el procesamiento de } u \text{ en un } q \in F \}$$

$$= \{ u \in \Sigma^* : \hat{\delta}(q_0, u) \in F \}.$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Estados Limbo

AFD

- Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD.
- Un estado $q \in Q$ es **limbo** si no existe ninguna cadena $u \in \Sigma^*$ tal que $\hat{\delta}(q,u) \in F$.
- En otras palabras, un estado $q \in Q$ es **limbo** si una vez se llega a q ya no se puede llegar a un estado de aceptación.
- Se requieren para rechazar cadenas.
- Hacen parte del autómata y deben considerarse en la función de transición.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

- Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD.
- Un estado $q \in Q$ es accesible si existe una cadena de entrada $u \in \Sigma^*$ tal que $\hat{\delta}(q_0, u) = q$.
- Los estados inaccesibles son inútiles ya que no serán accedidos por la unidad de control.
- Los estados inaccesibles se pueden eliminar sin alterar L(M).
- Los estados inaccesibles son diferentes a los estados limbo, pues los primeros son inútiles mientras los últimos son necesarios para rechazar cadenas.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 16 / 112

 $AFN-\lambda$

Grafo de un AFD

Un AFD se puede representar por un grafo dirigido y etiquetado:

Estado $q_0 \in Q$	$\rightarrow q_0$	
Estado $q \in Q - F$	q	
Estado $q \in F$	\overline{q}	
Transición $\delta(q,s)=q'$	q s q'	

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 17 / 112

Bucle $\delta(q,s)=q$	q
Bucle $o(q,s) = q$	s
	$\begin{pmatrix} q \end{pmatrix}$
Transiciones donde $\delta(q,s)=\delta(q,t)=q'$	$\overbrace{q} \xrightarrow{s,t} \overbrace{q'}$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 18 / 112

- Sea M = (Σ, Q, q₀, F, δ) un AFD.
 El grafo de M es útil para hacer seguimiento del procesamiento de
- una cadena $u \in \Sigma^*$.
- Si u es aceptada, existe una trayectoria desde q_0 hasta un estado $q \in F$ etiquetada por los caracteres de u.
- Como δ está definida para toda pareja (q, s), $\forall q \in Q$ y $\forall s \in \Sigma$, desde cada nodo del grafo salen $|\Sigma|$ arcos.
- Un estado $q \in Q$ es **limbo** si desde q no parten trayectorias que conduzcan a estados de aceptación.
- Los estados limbo hacen parte integrante del autómata. Sin embargo, en el grafo a veces se suprimen.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 19 / 112

Ejemplo de Grafo de un AFD

Ejercicio

AFD

Dibuje el grafo para el siguiente autómata:

$$\Sigma = \{a, b\}.$$

$$Q = \{q_0, q_1, q_2\}.$$

 q_0 : estado inicial.

 $F = \{q_0, q_2\}$, estados de aceptación.

Función de transición δ :

$$\delta(q_0, a) = q_0$$
 $\delta(q_0, b) = q_1$
 $\delta(q_1, a) = q_1$ $\delta(q_1, b) = q_2$
 $\delta(q_2, a) = q_1$ $\delta(q_2, b) = q_1$.

Diseño de un AFD

- Se aborda el siguiente problema: Dado un lenguaje L, diseñar un AFD M que acepte L, i.e. L(M) = L.
- Se debe cumplir lo siguiente:

 - $u \in L \Longrightarrow u \in L(M).$

AFD

Ejercicio

Dado el alfabeto $\Sigma = \{a, b\}$ diseñe AFDs que acepten los siguientes lenguajes. Para cada uno muestre el grafo con y sin estados limbo.

- **1** $L = a^*$
- 2 $L = a^+$
- 3 $L = \{u \in \Sigma^* : u \text{ contiene exactamente dos aes} \}$
- $L = \{u \in \Sigma^* : u \text{ tiene un número par de símbolos } \geq 0\}$
- **5** $L = \{u \in \Sigma^* : u \text{ tiene un número par de aes } \geq 0\}$
- **6** $L = (b \cup ab)^*$
- $L = (a \cup b)^*$
- \bullet $L = \emptyset$

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - ullet Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Complemento

24 / 112

Complemento

AFD

- Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD.
- El **complemento** de M es $\bar{M} = (\Sigma, Q, q_0, \bar{F}, \delta)$ donde $\bar{F} = Q F$.
- Se intercambian los estados de aceptación y no aceptación.
- Si L(M) = L, $L(\bar{M}) = \bar{L} = \Sigma^* L$.
- Son útiles cuando el lenguaje está definido por medio de una condición negativa.

Autómatas Finitos U. Nacional de Colombia

Complemento

25 / 112

Ejercicio

AFD

• Sea $\Sigma = \{a, b\}$. Encontrar un AFD que acepte el lenguaje de todas las cadenas que no tienen dos bes consecutivas.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

 $AFN-\lambda$

26 / 112

Ejercicio

AFD

Sea $\Sigma = \{a, b, c\}$. Encontrar un AFD que acepte el lenguaje de todas las cadenas que ...

- No contienen la subcadena bc.
- No terminan en bb.

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

AFD

• Sean $M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$ y $M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$ dos AFDs definidos sobre el alfabeto Σ , tales que $L(M_1) = L_1$ y $L(M_2) = L_2$.

• El **producto cartesiano** de M_1 y M_2 es

$$M_1 \times M_2 = (\Sigma, Q_1 \times Q_2, (q_1, q_2), F, \delta)$$

donde la función de transición δ está dada por $\delta: (Q_1 \times Q_2) \times \Sigma \to Q_1 \times Q_2$, definida por $\delta((q_i,q_j),a) = (\delta_1(q_i,a),\delta_2(q_j,a))$, y el conjunto de estados de aceptación se escoge a conveniencia según el lenguaje a aceptar:

- ① Para $L(M_1 \times M_2) = L_1 \cup L_2$, escoger $F = \{(q_i, q_j) : q_i \in F_1 \lor q_j \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_2)$.
- ② Para $L(M_1 \times M_2) = L_1 \cap L_2$, escoger $F = \{(q_i, q_j) : q_i \in F_1 \land q_j \in F_2\} = F_1 \times F_2$.
- ③ Para $L(M_1 \times M_2) = L_1 L_2$, escoger $F = \{(q_i, q_i) : q_i \in F_1 \land q_i \notin F_2\} = F_1 \times (Q_2 F_2)$.

29 / 112

- Sean $M_1=(\Sigma,Q_1,q_1,F_1,\delta_1)$ y $M_2=(\Sigma,Q_2,q_2,F_2,\delta_2)$ dos AFDs definidos sobre el alfabeto Σ , tales que $L(M_1)=L_1$ y $L(M_2)=L_2$.
- Sea $M_1 \times M_2 = (\Sigma, Q_1 \times Q_2, (q_1, q_2), F, \delta)$ su producto cartesiano.
- La función de transición δ está dada por

$$\delta: (Q_1 \times Q_2) \times \Sigma \to Q_1 \times Q_2$$

 $\delta((q_i, q_j), a) = (\delta_1(q_i, a), \delta_2(q_j, a))$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Función de Transición Extendida en el Producto Cartesiano

Lema

- Sean $M_1=(\Sigma,Q_1,q_1,F_1,\delta_1)$ y $M_2=(\Sigma,Q_2,q_2,F_2,\delta_2)$ dos AFDs definidos sobre el alfabeto Σ , tales que $L(M_1)=L_1$ y $L(M_2)=L_2$.
- Sea $M_1 \times M_2 = (\Sigma, Q_1 \times Q_2, (q_1, q_2), F, \delta)$ su producto cartesiano donde $\delta((q_i, q_j), a) = (\delta_1(q_i, a), \delta_2(q_j, a))$.
- ullet La función de transición δ se puede extender a cadenas arbitrarias:

$$\hat{\delta}((q_i,q_j),u)=(\hat{\delta_1}(q_i,u),\hat{\delta_2}(q_j,u)), \forall u\in \Sigma^*, q_i\in Q_1, q_j\in Q_2.$$

- Para la demostración (inductiva), recordar que para un AFD $M = (\Sigma, Q, q_0, F, \delta)$, la función de transición extendida se define:

 - 2) $\hat{\delta}(q, a) = \delta(q, a)$ para $q \in Q$ y $a \in \Sigma$.
 - $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a) \text{ para } q \in Q, u \in \Sigma^* \text{ y } a \in \Sigma.$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 30 / 112

Teorema

AFD

- Sean $M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$ y $M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$ dos AFDs definidos sobre el alfabeto Σ , tales que $L(M_1) = L_1$ y $L(M_2) = L_2$.
- Sea $M_1 \times M_2 = (\Sigma, Q_1 \times Q_2, (q_1, q_2), F, \delta)$ el producto cartesiano de estos.
- Entonces.
 - **1** $F = \{(q_i, q_i) : q_i \in F_1 \lor q_i \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_2)$, si y solo si $L(M_1 \times M_2) = L_1 \cup L_2$.
 - ② $F = \{(q_i, q_i) : q_i \in F_1 \land q_i \in F_2\} = F_1 \times F_2$, si y solo si $L(M_1 \times M_2) = L_1 \cap L_2$.
 - **3** $F = \{(q_i, q_i) : q_i \in F_1 \land q_i \notin F_2\} = F_1 \times (Q_2 F_2)$, si y solo si $L(M_1 \times M_2) = L_1 - L_2$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 31 / 112

Ejemplos de Producto Cartesiano de AFDs

Ejercicio

AFD

Construir un AFD que acepte el lenguaje de todas las cadenas sobre $\Sigma = \{a, b\}$ que tienen un número par de aes y un número par de bes.

$$\begin{cases} \delta((q_1,q_2),a) = (\delta_1(q_1,a),\delta_2(q_2,a)) = (q_3,q_2), \\ \delta((q_1,q_2),b) = (\delta_1(q_1,b),\delta_2(q_2,b)) = (q_1,q_4), \\ \delta((q_1,q_4),a) = (\delta_1(q_1,a),\delta_2(q_4,a)) = (q_3,q_4), \\ \delta((q_1,q_4),b) = (\delta_1(q_1,b),\delta_2(q_4,b)) = (q_1,q_2), \\ \delta((q_3,q_2),a) = (\delta_1(q_3,a),\delta_2(q_2,a)) = (q_1,q_2), \\ \delta((q_3,q_2),b) = (\delta_1(q_3,b),\delta_2(q_2,b)) = (q_3,q_4), \\ \delta((q_3,q_4),a) = (\delta_1(q_3,a),\delta_2(q_4,a)) = (q_1,q_4), \\ \delta((q_3,q_4),b) = (\delta_1(q_3,b),\delta_2(q_4,b)) = (q_3,q_2). \end{cases}$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 32 / 112

Ejercicio

AFD

Construir un AFD que acepte el lenguaje de todas las cadenas sobre $\Sigma = \{a, b\}$ que tienen un número par de aes y un número par de bes.

$$\begin{cases} \delta((q_1,q_2),a) = (\delta_1(q_1,a),\delta_2(q_2,a)) = (q_3,q_2), \\ \delta((q_1,q_2),b) = (\delta_1(q_1,b),\delta_2(q_2,b)) = (q_1,q_4), \\ \delta((q_1,q_4),a) = (\delta_1(q_1,a),\delta_2(q_4,a)) = (q_3,q_4), \\ \delta((q_1,q_4),b) = (\delta_1(q_1,b),\delta_2(q_4,b)) = (q_1,q_2), \\ \delta((q_3,q_2),a) = (\delta_1(q_3,a),\delta_2(q_2,a)) = (q_1,q_2), \\ \delta((q_3,q_2),b) = (\delta_1(q_3,b),\delta_2(q_2,b)) = (q_3,q_4), \\ \delta((q_3,q_4),a) = (\delta_1(q_3,a),\delta_2(q_4,a)) = (q_1,q_4), \\ \delta((q_3,q_4),b) = (\delta_1(q_3,b),\delta_2(q_4,b)) = (q_3,q_2). \end{cases}$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Ejemplos de Producto Cartesiano de AFDs

Ejercicio

AFD

Construir un AFD que acepte el lenguaje de todas las cadenas sobre $\Sigma = \{a, b\}$ que tienen un número par de aes y un número par de bes.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 34 / 112

Ejercicio

AFD

Construir un AFD que acepte el lenguaje de todas las cadenas sobre $\Sigma = \{a, b\}$ que ...

- tienen longitud impar y que no contienen dos bes consecutivas.
- 2 tienen longitud impar o que no contienen dos bes consecutivas.

¿Cuándo se pueden omitir los estados limbo?

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - ullet Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

37 / 112

 $AFN-\lambda$

Problema

Dado un AFD M, encontrar un AFD M' con el mínimo número de estados posible tal que L(M') = L(M).

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

 $AFN-\lambda$

38 / 112

AFD

• Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD y $p, q \in Q$. Se dice que p y q son **equivalentes**, notado $p \approx q$, si y solo si

$$(\forall u \in \Sigma^*)[\hat{\delta}(p,u) \in F \iff \hat{\delta}(q,u) \in F].$$

- La relación \approx cumple con las siguientes propiedades:
 - Reflexividad: $p \approx p$.
 - Simetría: Si $p \approx q$, entonces $q \approx p$.
 - Transitividad: Si $p \approx q$ y $q \approx r$, entonces $p \approx r$.
- Entonces, \approx es una relación de equivalencia sobre Q.
- La clase de equivalencia de $p \in Q$ es:

$$[p] := \{ q \in Q : p \approx q \}.$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

- Sea $M = (\Sigma, Q, q_0, F, \delta)$ un AFD.
- El autómata cociente de M es $M' = (\Sigma, Q', q'_0, F', \delta')$ donde

•
$$Q' = \{[p] : p \in Q\}$$

- $q_0' = [q_0]$
- $F' = \{[p] : p \in F\}$
- $\delta'([p], a) = [\delta(p, a)]$ para todo $a \in \Sigma$ y para todo $p \in Q$.
- Se requiere verificar que tanto F' como δ' están bien definidos: no dependen del representante escogido de cada clase de equivalencia.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 39 / 112

40 / 112

Proposición

AFD

- **1** δ' está bien definida: si [p] = [q], entonces $\delta(p, a) \approx \delta(q, a)$.
- **2** F' está bien definido: si $q \in F$ y $p \approx q$, entonces $p \in F$.
- $\hat{\delta}'([p], u) = [\hat{\delta}(p, u)]$ para toda cadena $u \in \Sigma^*$.

Algoritmo de Minimización

Algoritmo por llenado de tabla para determinar la equivalencia de estados en un AFD

ENTRADA:

AFD

AFD $M = (\Sigma, Q, q_0, F, \delta)$ completo (incluyendo estados limbo) cuyos estados son todos accesibles y tabla triangular que muestra todos los pares $\{p, q\}$ de estados $p, q \in Q$.

INICIALIZAR:

i := 1. Se marca con \times la casilla $\{p, q\}$ si $p \in F$ y $q \notin F$ (o viceversa).

REPETIR:

i := i + 1. Para cada casilla no marcada $\{p, q\}$ y cada $a \in \Sigma$, hallar $\{\delta(p,a),\delta(q,a)\}$. Si para algún $a\in\Sigma$, la casilla $\{\delta(p,a),\delta(q,a)\}$ ha sido marcada previamente, entonces se marca la casilla $\{p,q\}$ con \times .

HASTA:

No se puedan marcar más casillas en la tabla.

SALIDA:

Si la casilla $\{p,q\}$ está marcada con \times , entonces $p \not\approx q$. Si la casilla $\{p,q\}$ no está marcada, entonces $p \approx q$.

 a_{-}

Algoritmo de Minimización

Ejercicio

AFD

Minimizar el siguiente AFD, donde $\Sigma = \{a\}$.

	40						
	×	$q_{\scriptscriptstyle 1}$					
		X		q_2			
		×			q_3		
	×			×	×	q_4	
		×				×	q_5
	$\{p,q\} \parallel \{\delta(p,a),\delta(q,a)\}$						
7	$\{q_{0},q_{2}\}$			$\{q_1,q_3\}$ ×			
$\overline{\{q_0,q_3\}}$			$\{q_1,q_4\}$				
$\{q_0,q_5\}$				$\{q_1,q_0\}$ ×			
$\{q_1,q_4\}$				$\{q_{\scriptscriptstyle 2},q_{\scriptscriptstyle 5}\}$			
$\{q_{\scriptscriptstyle 2},q_{\scriptscriptstyle 3}\}$			$\{q_3,q_4\}$ ×				
-	$[q_2,q]$	5}		{	q_3, q_0	}	
-	$[q_3,q]$	5}			q_4, q_0		

AFD

Algoritmo de Minimización

Ejercicio

Minimizar el siguiente AFD, donde $\Sigma = \{a, b\}$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 43 / 112

Algoritmo de Minimización

Ejercicio

AFD

Mostrar que el siguiente AFD, donde $\Sigma = \{a, b\}$, no se puede simplificar.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 44 / 112

Outline

- Automatas Finitos Determinista
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 45 / 112

Outline

- Autómatas Finitos Determinista
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones >
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 46 / 112

- (.
- Aceptan o rechazan cadenas de texto.
- Cinta semi-infinita dividida en celdas.
- Unidad de control, cabeza lectora, control finito o unidad de memoria.
- Estados del autómata, incluyendo inicial y final(es).
- Es no determinista porque una cadena se puede procesar de varias formas y puede haber procesamientos abortados.
- La función de transición para determinado estado y símbolo puede conducir a varios estados o a ningún estado.

AFN

Autómatas Finitos No Deterministas (AFN)

Un Autómata Finito No Determinista (AFN) $M = (\Sigma, Q, q_0, F, \Delta)$ tiene cinco componentes:

Definición

- Alfabeto Σ.
- **2** Estados $Q = \{q_0, q_1, \dots, q_n\}$.
- **3** Estado inicial $q_0 \in Q$.
- Estados finales o de aceptación $F \subseteq Q$. Se tiene que $F \neq \emptyset$.
- § Función de transición (o dinámica del autómata): Δ.

Un AFN acepta la cadena u si existe algún procesamiento completo de uque termine en un estado de aceptación.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 48 / 112 • Lista de instrucciones de $M = (\Sigma, Q, q_0, F, \delta)$ para procesar toda $u \in \Sigma^*$:

$$egin{aligned} \Delta: Q imes \Sigma &
ightarrow \mathcal{P}(Q) \ (q,s) &\mapsto \Delta(q,s) = \{q_{i_1},q_{i_2},\ldots,q_{i_k}\} \end{aligned}$$

- Esto quiere decir que estando en el estado q, en presencia del símbolo s, la unidad de control puede pasar aleatoriamente a uno cualquiera de los estados $q_{i_1}, q_{i_2}, \dots, q_{i_k}$, después de lo cual se desplaza a la derecha.
- Puede suceder que $\Delta(q,s) = \emptyset$: si al procesar la cadena u, la cabeza lectora de M ingresa al estado q, leyendo sobre la cinta el símbolo s, el procesamiento se aborta.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 49 / 112

Función de Transición (o Dinámica del Autómata)

- Sea $M = (\Sigma, Q, q_0, F, \Delta)$ un AFN con función de transición $\Delta: Q \times \Sigma \to \mathcal{P}(Q)$, donde $(q, s) \mapsto \Delta(q, s) = \{q_{i_1}, q_{i_2}, \dots, q_{i_k}\}$.
- La representación del AFN como digrafo es similar a la de AFD.
- Si $\Delta(q, s) = \{q_{i_1}, q_{i_2}, q_{i_3}\}$, esto se puede representar en el autómata de la siguiente manera.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 50 / 112

Definición

Ejemplo de AFN

 $AFN-\lambda$

Δ	a	b
q_0	$\{q_0,q_1,q_3\}$	Ø
q_1	$\{q_1\}$	$\{q_2\}$
q_2	Ø	$\{q_1,q_2\}$
q_3	Ø	$\{q_3\}$

Procesamiento de rechazo:

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 51 / 112

Definición

AFN

Ejemplo de AFN

Δ	a	b
q_0	$\{q_0,q_1,q_3\}$	Ø
q_1	$\{q_1\}$	$\{q_2\}$
q_2	Ø	$\{q_1,q_2\}$
q_3	Ø	$\{q_3\}$

Procesamiento de aceptación:

Definición

Ejemplo de AFN

Δ	a	b
q_0	$\{q_0,q_1,q_3\}$	Ø
q_1	$\{q_1\}$	$\{q_2\}$
q_2	Ø	$\{q_1,q_2\}$
q_3	Ø	$\{q_3\}$
q_3	Ø	$\{q_3\}$

Otro procesamiento de aceptación:

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 53 / 112

Ejemplo de AFN

Δ	a	b
q_0	$\{q_0,q_1,q_3\}$	Ø
q_1	$\{q_1\}$	$\{q_2\}$
q_2	Ø	$\{q_1,q_2\}$
q_3	Ø	$\{q_3\}$

Procesamiento abortado:

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 54 / 112

AFN

Ejemplo de AFN

Δ	a	b
q_0	$\{q_0,q_1,q_3\}$	Ø
q_1	$\{q_1\}$	$\{q_2\}$
q_2	Ø	$\{q_1,q_2\}$
q_3	Ø	$\{q_3\}$

Procesamiento abortado:

Las cadenas que empiezan por b no pueden ser aceptadas. Tampoco aba.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 55 / 112

Función de Transición para Conjuntos de Estados

• Sea $M = (\Sigma, Q, q_0, F, \Delta)$ un AFN con función de transición $\Delta: Q \times \Sigma \to \mathcal{P}(Q)$, donde $(q, s) \mapsto \Delta(q, s) = \{q_{i_1}, q_{i_2}, \dots, q_{i_k}\}$.

Definición

 La función de transición Δ se extiende a la función de transición para conjuntos de estados $\Delta : \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ definida así: Para $a \in \Sigma$ y $S \subseteq Q$,

$$\Delta(S,a) := \bigcup_{q \in S} \Delta(q,a).$$

- $\Delta(S, a)$ es el conjunto de estados a los que se puede llegar al procesar a partiendo de alguno de los estados en S.
- $\Delta(S, a) = \emptyset$ si $\Delta(q, a) = \emptyset$ para todo $q \in S$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 56 / 112

Función de Transición Extendida

• Sea $M = (\Sigma, Q, q_0, F, \Delta)$ un AFN con función de transición $\Delta: Q \times \Sigma \to \mathcal{P}(Q)$, donde $(q, s) \mapsto \Delta(q, s) = \{q_{i_1}, q_{i_2}, \dots, q_{i_k}\}$.

Definición

- La función de transición Δ se extiende a conjuntos de estados definida así: Para $a \in \Sigma$ y $S \subseteq Q$, $\Delta(S, a) := \bigcup_{a \in S} \Delta(q, a)$.
- La función de transición Δ se extiende a la función de transición **extendida** $\hat{\Delta}: Q \times \Sigma^* \to Q$ definida así:

$$\begin{cases} \hat{\Delta}(q,\lambda) = q & q \in Q \\ \hat{\Delta}(q,a) = \Delta(q,a) & q \in Q, a \in \Sigma \\ \hat{\Delta}(q,ua) = \Delta(\hat{\Delta}(q,u),a) & q \in Q, a \in \Sigma, q \in \Sigma^*. \end{cases}$$

- $\delta(q, u)$: Estados a los que puede llegar la unidad de control con procesamientos completos de la cadena $u \in \Sigma^*$ partiendo de $q \in Q$.
- $\hat{\Delta}(q, u)$ se puede denotar como $\Delta(q, u)$ sin lugar a ambigüedad.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 57 / 112

- Sea $M = (\Sigma, Q, q_0, F, \Delta)$ un AFN.
- La unidad de control apunta al primer caracter u inicialmente.
- M acepta o rechaza las cadenas en Σ^* , i.e. M clasifica las cadenas de Σ^* en dos clases disyuntas: las aceptadas y las rechazadas.
- El conjunto de las cadenas aceptadas por M se denomina **lenguaje** aceptado (reconocido) por M:

```
\begin{split} L(M) &= \{u \in \Sigma^* : u \text{ es aceptada por } M\} \\ &= \{u \in \Sigma^* : M \text{ tiene al menos un procesamiento completo de} \\ &\quad u \text{ que parte de } q_0 \text{ y termina en } q \in F\} \\ &\quad \{u \in \Sigma^* : \hat{\Delta}(q_0, u) \text{ contiene algún estado } q \in F\} \\ &= \{u \in \Sigma^* : \hat{\Delta}(q_0, u) \cap F \neq \emptyset\}. \end{split}
```

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 58 / 112

59 / 112

Diseño de un AFN

- Se aborda el siguiente problema: Dado un lenguaje L, diseñar un AFN M que acepte L, i.e. L(M) = L.
- Se debe cumplir lo siguiente:

 - $u \in L \Longrightarrow u \in L(M).$

60 / 112

Ejercicio

Dado el alfabeto $\Sigma = \{a, b\}$ diseñe AFNs que acepten los siguientes lenguajes. Dibuje AFDs completos que acepten los mismos lenguajes.

1 L =
$$ab^* \cup a^+$$

2
$$L = (ab \cup aba)^*$$

3
$$L = a(a \cup ab)^*$$

4
$$L = a^+ b^* a$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Outline

- Automatas Finitos Determinista
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones ?
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Equivalencia Computacional entre los AFD y los AFN

- Los modelos AFD Y AFN son computacionalmente equivalentes: aceptan los mismos lenguajes.
- Un AFD $M = (\Sigma, Q, q_0, F, \delta)$ puede ser considerado como un AFN $M' = (\Sigma, Q, q_0, F, \Delta)$ definiendo $\Delta(q, a) = \{\delta(q, a)\}$ para cada $g \in Q$ y cada $a \in \Sigma$.
- La afirmación recíproca también es correcta.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 62 / 112

Equivalencia Computacional entre los AFD y los AFN

Teorema

Dado un AFN $M = (\Sigma, Q, q_0, F, \Delta)$, se puede construir un AFD $M' = (\Sigma, \mathcal{P}(Q), \{q_0\}, F', \delta\})$ equivalente a M, i.e. tal que L(M) = L(M'), donde

$$\delta: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$$
$$(S, a) \mapsto \delta(S, a) := \Delta(S, a)$$
$$F' = \{S \subseteq Q : S \cap F \neq \emptyset\}.$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 63 / 112

Algoritmo para encontrar un AFD equivalente a un AFN

Dado un AFN $M = (\Sigma, Q, q_0, F, \Delta)$, encontrar un AFD $M' = (\Sigma, Q', q_0, F', \delta)$ tal que L(M) = L(M'):

- **1** Para cada estado $q \in Q$, incluir el estado $\{q\}$ en Q'.
- 2 Establecer como estado inicial a $\{q_0\}$.
- **3** Para cada $q \in Q$ y cada $a \in \Sigma$, incluir el conjunto de estados $\Delta(q, a) = \{q_{i_1}, q_{i_2}, \dots, q_{i_k}\} = S$ como un único estado en Q'. Incluir $\delta(\{q\}, a) = \Delta(q, a)$ en la función δ .
- Para cada estado nuevo $S \in Q'$ y para cada $a \in \Sigma$, hallar $\delta(S,a) = \Delta(S,a) = S'$ y, si $S' \notin Q'$, incluir S' en Q' como un único estado.
- **3** Repetir el Paso 4 hasta que no se puedan añadir más estados a Q'.
- **1** Eliminar de Q' los estados inalcanzables.
- Incluir en F' aquellos elementos de $S \in Q'$ tales que $S \cap F \neq \emptyset$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 64 / 112 $AFN-\lambda$

Ejemplo

AFN

Ejercicio

Hallar un AFD que acepte el lenguaje $L=(01\cup 010)^*$ sobre $\Sigma=\{0,1\}.$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 65 / 112

AFN

Ejercicio

Hallar un AFD que acepte el lenguaje $L=(01\cup 010)^*$ sobre $\Sigma=\{0,1\}.$

δ	0	1
$\{q_0\}$	$\{q_1\}$	Ø
$\{q_1\}$	Ø	$\{q_0,q_2\}$
$\{q_2\}$	$\{q_0\}$	Ø
$\{q_0, q_2\}$	$\{q_0,q_1\}$	Ø
$\{q_0,q_1\}$	$\{q_1\}$	$\{q_0,q_2\}$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 66 / 112 $AFN-\lambda$

Ejemplo

Ejercicio

Hallar un AFD que acepte el lenguaje $L = (01 \cup 010)^*$ sobre $\Sigma = \{0, 1\}$.

δ	0	1
$\{q_0\}$	$\{q_1\}$	Ø
$\{q_1\}$	Ø	$\{q_0,q_2\}$
$\{q_2\}$	$\{q_0\}$	Ø
$\{q_0, q_2\}$	$\{q_0,q_1\}$	Ø
$\{q_0,q_1\}$	$\{q_1\}$	$\{q_0,q_2\}$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 67 / 112 AFN

Ejercicio

Ejercicio

Hallar un AFD que acepte el lenguaje de todas las cadenas de longitud ≥ 2 en las que el penúltimo símbolo es uno, sobre $\Sigma = \{0,1\}.$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 68 / 112

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- $oldsymbol{3}$ Autómatas con Transiciones λ
 - Definición y Representación
 - ullet Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- lacksquare Autómatas con Transiciones λ
 - Definición y Representación
 - ullet Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Autómatas con Transiciones λ (AFN- λ)

 $AFN-\lambda$

• Un autómata finito con transiciones λ (AFN- λ) es un autómata finito no determinista $M = (\Sigma, Q, q_0, F, \Delta)$ en el que la función de transición está definida como:

$$\Delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}(Q)$$

 Además de las transiciones no deterministas usuales, permite hacer transiciones nulas o transiciones espontáneas:

$$\Delta(q,\lambda)=\{q_{i_1},q_{i_2},\ldots,q_{i_k}\}.$$

• Esta transición significa: estando en el estado q, el autómata puede cambiar aleatoriamente a cualquiera de los estados $q_{i_1}, q_{i_2}, \ldots, q_{i_k}$, independientemente del símbolo leído y sin mover la unidad de control a la derecha.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 71 / 112

Autómatas con Transiciones λ (AFN- λ)

- Un AFN- λ $M = (\Sigma, Q, q_0, F, \Delta)$ puede cambiar de estado sin consumir ningún símbolo de la cinta.
- En el grafo las transiciones pueden tener la etiqueta λ .
- Puede tener múltiples procesamientos de una cadena incluyendo procesamientos abortados, de aceptación y de rechazo.
- Una cadena $u \in \Sigma^*$ es aceptada si existe por lo menos un procesamiento completo de u, desde q_0 , que termina en un estado de aceptación, i.e. $\hat{\Delta}(q_0, u) \cap F \neq \emptyset$.
- En el grafo, se dice que $u \in \Sigma^*$ es aceptada si existe por lo menos una trayectoria desde q_0 hasta un estado de aceptación, cuyas etiquetas son los símbolos de u intecalados con cero, uno o más λ s.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 72 / 112

Ejemplo

AFD AFN

Ejemplo

AFD AFN

75 / 112

Ejercicio

Dado $\Sigma = \{a, b\}$, diseñar AFN- λ , diseñar autómatas que acepten los siguientes lenguajes:

- **1** $a^* \cup (ab \cup ba)^* \cup b^+$
- **2** $a^*(ab \cup ba)^*b^+$

- Un autómata cualquiera M se puede modificar, sin alterar el lenguaje aceptado, de manera que tenga un único estado de aceptación.
- Se agrega un estado q_a que será el único estado de aceptación.
- Se trazan transiciones λ desde los estados de aceptación originales hasta q_a .
- El resto de transiciones se dejan iguales.
- Los estados de aceptación originales se convierten en estados de no aceptación.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 76 / 112

Estado de Aceptación Único

 $AFN-\lambda$

Tres estados de aceptación

Único estado de aceptación q_a

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 77 / 112

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- $oldsymbol{3}$ Autómatas con Transiciones λ
 - Definición y Representación
 - ullet Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Equivalencia Computacional entre los AFN y los AFN- λ

- Los modelos AFN Y AFN- λ son computacionalmente equivalentes: aceptan los mismos lenguajes.
- Un AFN puede ser considerado como un AFN- λ en el que simplemente hay cero transiciones λ .
- Dado un AFN-λ, también se puede construir un AFN que acepte el mismo lenguaje.
- ullet Este proceso se basa en añadir transiciones que simulen las transiciones λ .
- Dichas simulaciones están basadas en el concepto de λ -clausura.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 79 / 112

λ -Clausura

- Sea $M = (\Sigma, Q, q_0, F, \Delta)$ un AFN- λ .
- La λ -clausura de un estado $q \in Q$, denotada como $\lambda[q]$ es el conjunto de estados de Q a los que se puede llegar desde q mediante 0, 1 o más transiciones λ .
- La λ -clausura de un conjunto de estados $\{q_1, \ldots, q_k\}$, donde $q_i \in Q$ para $i \in \{1, 2, \ldots, k\}$, es:

$$\lambda[\{q_1,\ldots,q_k\}] = \lambda[q_1] \cup \lambda[q_2] \cup \cdots \cup \lambda[q_k].$$

• $\lambda[\emptyset] := \emptyset$.

Juan Mendivelso Autómatas Finitos U. Nacio

80 / 112

Equivalencia Computacional entre los AFN y los AFN- λ

Teorema

Dado un AFN- λ $M=(\Sigma,Q,q_0,F,\Delta)$, se puede construir un AFN $M'=(\Sigma,Q,q_0,F',\Delta')$ sin transiciones λ equivalente a M, i.e. tal que L(M)=L(M'), donde

$$egin{aligned} \Delta': Q imes \Sigma &
ightarrow \mathcal{P}(Q) \ (q, a) &\mapsto \Delta'(q, a) := \lambda[\Delta(\lambda[q], a)] \ F' &= \{q \in Q: \lambda[q] \cap F
eq \emptyset\}. \end{aligned}$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 81/112

Equivalencia entre AFN y AFN-

Función de Transición Δ'

- Una vez procesada a, el autómata puede pasar desde el estado q a cualquierar de {q₁, q₂, q₃, q₆, q₇}.
- Se tienen en cuenta todas las transiciones λ que preceden o prosiguen el procesamiento del símbolo a desde el estado q.

Función de Transición Δ'

$$\Delta'(q, a) = \lambda[\Delta(\lambda[q], a)]$$

$$= \lambda[\Delta(\{q, q_4, q_5\}, a)]$$

$$= \lambda[\{q_1, q_2, q_6\}]$$

$$= \lambda[q_1] \cup \lambda[q_2] \cup \lambda[q_6]$$

$$= \{q_1\} \cup \{q_2, q_3\} \cup \{q_6, q_7\}$$

$$= \{q_1, q_2, q_3, q_6, q_7\}$$

Función de Transición Δ'

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 84/112

Ejercicio

Ejercicio

Encontrar un AFN equivalente al siguiente AFN- λ .

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 85 / 112

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Teorema de Kleene

- ullet Se ha mostrado la equivalencia computacional entre los modelos AFD, AFN y AFN- λ
- Es decir, aceptan la misma colección de lenguajes.
- El Teorema de Kleene establece que dicha colección corresponde a los lenguajes regulares.

Teorema de Kleene

Sea Σ un alfabeto dado. Un lenguaje sobre Σ es regular si y sólo si es aceptado por un autómata finito (AFD, AFN o AFN- λ) con alfabeto de entrada Σ .

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 88 / 112

Teorema de Kleene

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 89 / 112

Para un lenguaje regular, representado por una expresión regular R dada, se puede construir un AFN- λ M tal que L(M) = R.

Se prueba para los lenguajes regulares básicos: \emptyset , $\{\lambda\}$, $a \in \Sigma$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 90 / 112

Para un lenguaje regular, representado por una expresión regular R dada, se puede construir un AFN- λ M tal que L(M) = R.

- Razonando recursivamente, supóngase que para las expresiones regulares R_1 y R_2 se tienen autómatas AFN- λ M_1 y M_2 tales que $L(M_1) = R_1$ y $L(M_2) = R_2$.
- Probar que también se pueden construir autómatas AFN- λ para aceptar $R_1 \cup R_2$ y R_1R_2 .

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 91/112

Para aceptar $R_1 \cup R_2$, se realiza una **conexión en paralelo** a M_1 y M_2 . Se agrega un estado inicial y se mantienen estados de aceptación.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 92 / 112

Para aceptar R_1R_2 , se realiza una **conexión en serie** a M_1 y M_2 . Se mantiene el estado de inicial de M_1 y los estados de aceptación de M_2 .

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 93 / 112

Para un lenguaje regular, representado por una expresión regular R dada, se puede construir un AFN- λ M tal que L(M) = R.

- Razonando recursivamente, supóngase que para la expresión regular R se tiene un autómata AFN- λ M tal que L(M) = R.
- Probar que también se pueden construir un autómata AFN- λ para aceptar R^* .

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 94/112

Para un lenguaje regular, representado por una expresión regular R dada, se puede construir un AFN- λ M tal que L(M) = R.

- Se podría pensar que el siguiente autómata acepta R^* , pero no es así.
- En la siguiente diapositiva, se muestra un contraejemplo.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 95 / 112

M:

M'':

M':

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 96 / 112

 $AFN-\lambda$

Simplificaciones

Según el procedimiento:

Simplificación:

Para aceptar ab:

Para aceptar a^* :

97 / 112

98 / 112

Ejercicio

Ejercicio

Construir un AFN- λ que acepte el lenguaje $(bc \cup cb)^*a^*b \cup (b^*ca)^*c^+$.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Teorema de Kleene - Parte II

Dado un autómata M, ya sea un AFD, AFN o AFN- λ , se puede encontrar una expresión regular R tal que L(M) = R.

- La demostración también es constructiva.
- Se basa en la noción de Grafo Etiquetado Generalizado.

Grafo Etiquetado Generalizado (GEG)

Un **Grafo Etiquetado Generalizado (GEG)** es un grafo como el del autómata excepto que las etiquetas de los arcos entre estados pueden ser expresiones regulares y no simplmente símbolos de un alfabeto.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 99 / 112

La parte II del Teorema de Kleene se puede demostrar constructivamente mediante el siguiente procedimiento:

- Eliminar uno a uno los estados del autómata original M, obteniendo en cada paso un GEG cuyo lenguaje aceptado es L(M).
- Cuando el grafo se reduce a dos estados (uno de ellos debe ser el estado inicial), el lenguaje aceptado se puede obtener por simple inspección.

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 100 / 112

Procedimiento para encontrar una R tal que L(M) = R

Reemplazar múltiples arcos entre dos estados por uno:

Teorema de Kleene

2 Modificar el GEG G para que tenga un único estado de aceptación.

Tres estados de aceptación

Único estado de aceptación q_a

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 101 / 112

Procedimiento para encontrar una R tal que L(M) = R

Ciclo iterativo por medio del cual se van eliminando uno a uno los estados de G hasta que permanezcan únicamente dos estados (uno de ellos debe ser q_0 y uno de ellos debe ser el estado de aceptación).

Teorema de Kleene

- R_{ii} : etiqueta entre q_i y q_i .
- $R_{ii} = \emptyset$ si no existe arco entre q_i y q_i .
- Escoger un estado cualquiera q_k diferente de q_0 y que no sea de aceptación.
- Eliminar q_k añadiendo transiciones entre los estados restantes de manera que el lenguaje aceptado no se altere.
- Para q_i y q_i diferentes de q_k , q_k sirve de puente entre q_i y q_i y entre q_i $y q_i$.
- También q_k sirve de puente tanto para q_i como para q_i para conectarse consigo mismo.
- Al eliminar q_k se deben tener en cuenta todas estas trayectorias en los arcos que queden.
- Realizar esto para todas las parejas de q_i y q_i diferentes a q_k .

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 102 / 112

Procedimiento para encontrar una R tal que L(M) = R

Teorema de Kleene

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 103 / 112 Quando haya solo dos estados, obtener la expresión regular de acuerdo a los siguientes casos:

$$L(M) = (R_1 \cup R_3 R_2^* R_4)^*.$$

$$L(M) = R_1^* R_3 (R_2 \cup R_4 R_1^* R_3)^*.$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 104 / 112

105 / 112

Procedimiento para encontrar una R tal que L(M) = R

Teorema de Kleene

Observaciones

- El procedimiento es flexible. Por ejemplo se puede dejar un estado de aceptación único después de haber eliminado algunos estados.
- No se pueden eliminar estados de aceptación ni el estado inicial.
- No es necesario memorizar las expresiones de los Pasos 3 y 4. Se pueden deducir por simple inspección.

Autómatas Finitos U. Nacional de Colombia

 ba^+

 q_1

106 / 112

Ejemplo

Eliminación del estado q_1 :

Eliminación del estado q_2 :

 $a \cup ba^+$

ba*b

$$L(M) = [(b \cup ab)(a \cup ab)^*b]^*. \qquad L(M) = [ba^*b \cup (a \cup ba^+)(ba^+)^*ba^*b]^*.$$

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia

Ejercicio

Ejercicio

Encontrar una expresión regular para representar los lenguajes aceptados por los siguientes autómatas.

Juan MendivelsoAutómatas FinitosU. Nacional de Colombia107/112

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- 2 Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 108 / 112

Propiedades de Clausura de los Lenguajes Regulares

- La regularidad es preservada por ciertas operaciones.
- Los lenguajes regulares son cerrados bajo dichas operaciones.

Teorema

Sean M, M_1 y M_2 autómatas finitos defidos sobre el alfabeto Σ tales que L(M) = L, $L(M_1) = L_1$ y $L(M_2) = L_2$. Se pueden construir autómatas finitos que acepten:

- 0 $L_1 \cup L_2$
- 2 L₁L₂
- 6 L*
- Δ⁺

- $\bar{l} = \Sigma^* l$
- $OL_1 \cap L_2$

Propiedades de Clausura

- $0 L_1 L_2$
- \bullet $L_1 \triangle L_2$

Propiedades de Clausura de los Lenguajes Regulares

 Por el Teorema de Kleene, los lenguajes aceptados por los autómatas finitos son los regulares.

Teorema

Si L, L_1 y L_2 son lenguajes regulares definidos sobre el alfabeto Σ , también son regulares los siguientes lenguajes:

Autómatas Finitos

- \bullet $L_1 \cup L_2$
- $2 L_1 L_2$
- 6 /*
- 4 L+

- $\bar{L} = \Sigma^* L$
- \bullet $L_1 \cap L_2$

Propiedades de Clausura

- $Q L_1 L_2$
- \bullet $L_1 \triangle L_2$

Outline

- Autómatas Finitos Deterministas
 - Definiciones Básicas
 - Complemento
 - Producto Cartesiano
 - Minimización
- Autómatas Finitos No Deterministas
 - Definición y Representación
 - Equivalencia Computacional entre los AFD y los AFN
- 3 Autómatas con Transiciones λ
 - Definición y Representación
 - Equivalencia Computacional entre los AFN y los AFN- λ
- 4 Lenguajes Regulares & Autómatas Finitos
 - Teorema de Kleene
 - Propiedades de Clausura de los Lenguajes Regulares
 - Teorema de Myhill-Nerode

Juan Mendivelso Autómatas Finitos U. Nacional de Colombia 111 / 112

Bibliografía

- O Rodrigo De Castro Korgi. Notas de Clase de Introducción a la **Teoría de la Computación**. 2023. Contenidos e imágenes de estas notas fueron incluidas en esta presentación.
- Harry R. Lewis, Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall. 1998.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation, Third **Edition**. Pearson, 2006.