Single Final State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single final state

Properties of Regular Languages Regular language L_1 Regular language L_2 $L(M_1) = L_1 \qquad L(M_2) = L_2$ $NFA \quad M_1 \qquad NFA \quad M_2$ $Single final state \qquad Single final state$

- 1. Take the **DFA** that accepts $L_{
 m I}$
- 2. Make final states non-final, and vice-versa

Intersection

DeMorgan's Law: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$

 L_1 , L_2 regular

 $\overline{L_1}$, $\overline{L_2}$ regular

 $\overline{L_1} \cup \overline{L_2}$ regular

 $\longrightarrow \overline{L_1} \cup \overline{L_2}$ regular

 \longrightarrow $L_1 \cap L_2$ regular

Example

$$L_1 = \{a^nb\}$$
 regular
$$L_1 \cap L_2 = \{ab\}$$

$$L_2 = \{ab,ba\}$$
 regular regular

Regular Expressions

Regular Expressions

Regular expressions describe regular languages

Example: $(a+b\cdot c)^*$

describes the language

 $\{a,bc\}$ * = $\{\lambda,a,bc,aa,abc,bca,...\}$

24

Recursive Definition

Primitive regular expressions: \varnothing , λ , α

Given regular expressions r_1 and r_2

$$egin{array}{c} r_1 + r_2 \\ r_1 \cdot r_2 \\ r_1 \ ^* \\ (r_1) \end{array}$$
 Are regular expressions

Examples

A regular expression: $(a+b\cdot c)*\cdot(c+\varnothing)$

Not a regular expression: (a+b+)

Languages of Regular Expressions

L(r): language of regular expression r

Example

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = {\lambda}$$

$$L(a) = \{a\}$$

...

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

Example

Regular expression: $(a+b) \cdot a^*$

$$L((a+b) \cdot a^*) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

5

Example

Regular expression r = (a+b)*(a+bb)

$$L(r) = \{a,bb,aa,abb,ba,bbb,...\}$$

Example

Regular expression r = (aa)*(bb)*b

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Example

Regular expression r = (0+1)*00(0+1)*

L(r) = { all strings with at least two consecutive 0 }

Example

Regular expression $r = (1+01)*(0+\lambda)$

 $L(r) = \{ \text{ all strings without} \\ \text{two consecutive } 0 \}$

34

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are equivalent if $L(r_1) = L(r_2)$

Example

 $L = \{ \text{ all strings without} \\ \text{two consecutive 0 } \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$
 are equivalent regular expr.

expi.

Regular Expressions and Regular Languages

Theorem - Part 1

 Languages

 Generated by

 Regular Expressions

 Regular Expressions

1. For any regular expression r the language L(r) is regular

Theorem - Part 2

 Languages

 Generated by

 Regular Expressions

 Regular Languages

2. For any regular language L there is a regular expression r with L(r) = L

Proof - Part 1

1. For any regular expression r the language L(r) is regular

Proof by induction on the size of r

Induction Basis

Primitive Regular Expressions: $\varnothing, \ \lambda, \ \alpha$

NFAs

$$L(M_1) = \emptyset = L(\emptyset)$$

$$L(M_2) = {\lambda} = L(\lambda)$$

 $L(M_3) = \{a\} = L(a)$

regular

languages

Inductive Hypothesis

Assume

for regular expressions r_1 and r_2

 $L(r_1)$ and $L(r_2)$ are regular languages

Inductive Step We will prove: $L(r_1+r_2)$

$$L(r_1 \cdot r_2)$$

 $L(r_1 \cdot r_2)$

 $L(r_1*)$

 $L((r_1))$

Are regular Languages

By definition of regular expressions:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1))*$$

$$L((r_1)) = L(r_1)$$

By inductive hypothesis we know:

 $L(r_1)$ and $L(r_2)$ are regular languages

We also know:

Regular languages are closed under:

 $L(r_1) \cup L(r_2)$ Concatenation $L(r_1)L(r_2)$

 $(L(r_1))*$ Star

Therefore:

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

Are regular languages

$$L(r_1^*) = (L(r_1))^*$$

And trivially:

 $L((r_1))$ is a regular language

Proof - Part 2

2. For any regular language L there is a regular expression r with L(r) = L

Proof by construction of regular expression

Since L is regular take the NFA M that accepts it

Single final state

gie i mai state

From M construct the equivalent Generalized Transition Graph

in which transition labels are regular expressions

Example:

Resulting Regular Expression:

$$bb*a$$

$$bb*(a+b)$$

$$q_0$$

$$bb*(a+b)$$

$$r = (bb*a)*bb*(a+b)b*$$

$$L(r) = L(M) = L$$

9

