I. TRANSFORMARI ELEMENTARE

1. I KANSFURWAKI ELEMENTAKE		
1) Care din urmatoarele operatii efectuate asupra unei	2) Numim matrice elementara o matrice:	3) O matrice elementara este obligatoriu:
matrice este transformare elementara:		
	a) cu rangul egal cu 1;	a) patratica;
a) adunarea unei linii la o coloana;	b) care se obtine din matricea unitate prin transformari	b) dreptunghiulara;
b) inmultirea unei linii cu scalarul $\alpha = 0$	elementare;	<u>c)</u> inversabila;
c) schimbarea a doua linii intre ele;	c) cu determinantul nenul;	<u>d</u>) nesingulara.
<u>d</u>) adunarea unei linii la o alta linie.	d) obtinuta din matricea unitate printr-o singura	
	transformare elementara.	
4) Transformarile elementare se pot aplica:	5) Fie B o matrice obtinuta prin transformari elementare	6) Matricele A si B se numesc echivalente daca:
, ,	din matricea A. Atunci:	· · · · · · · · · · · · · · · · · · ·
a) numai matricelor patratice;	$\mathbf{a)} \text{ rang } \mathbf{A} = \text{rang } \mathbf{B};$	a) au acelasi rang;
	1 - 5	
b) oricarei matrice;	b) rang $\mathbf{A} \neq \text{rang } \mathbf{B}$;	b) B se obtine din A prin transformari elementare;
c) numai matricelor inversabile;	c) rang $\mathbf{A} < \text{rang } \mathbf{B}$;	c) sunt ambele patratice si de acelasi ordin;
d) numai matricelor cu rang nenul.	d) rang $\mathbf{A} > \text{rang } \mathbf{B}$.	d) au determinanti nenuli.
7) Daca A,B sunt matrice echivalente (A B) atunci:	8) Fie $\mathbf{A} \in M_n(\mathbf{R})$. Daca rang $\mathbf{A} = \mathbf{r}$, atunci prin	9) Fie $\mathbf{A} \in \mathbf{M}_{n}(\mathbf{R})$ cu det $\mathbf{A} \neq 0$. Atunci:
	transformari elementare se obtine:	
a) A,B sunt matrice patratice;	a) cel putin r coloane ale matricei unitate;	a) rang $A = n$;
$\underline{\mathbf{b}}$ rang $\mathbf{A} = \text{rang } \mathbf{B}$;	b) cel mult r coloane ale matricei unitate;	b) A este echivalenta cu matricea unitate $I_n(A - I_n)$;
c) daca determinantul lui $A = 0$ rezulta, si det $B = 0$;	c) exact r coloane ale matricei unitate;	c) prin transf. elementare putem determina inversa A^{-1} .
	1 -7	
d) daca det $A = 1$ rezulta ca si det $B = 1$.	d) toate coloanele matricei unitate.	d) forma Gaus-Jordan a matricei A este I _{n.}
10) Pentru a afla inversa unei matrice $\mathbf{A} \in M_n(\mathbf{R})$ prin	11) Daca $\mathbf{A} \in M_n(\mathbf{R})$ cu det $\mathbf{A} = 1$ atunci forma Gauss-	12) Metoda de aflare a inversei unei matrice A cu
transformari elementare, acestea se aplica:	Jordan asociata va avea:	transformari elementare se poate aplica:
<u>a)</u> numai liniilor;	a) o singura linie a matricei unitate I_{n} ;	a) oricarei matrice $\mathbf{A} \in M_n(\mathbf{R})$;
b) numai coloanelor;	b) toate liniile si coloanele matricei unitate I_{n} ;	b) numai matricelor patratice;
c) atat liniilor cat si coloanelor;	\overline{c}) o singura coloana a matricei unitate I_{n} ;	c) maricelor patratice cu det $\mathbf{A} \neq 0$;
d) intai liniilor apoi coloanelor.	d) numai o linie si o coloana a maricei unitate I _{n.}	d) tuturor matricelor cu rang $\mathbf{A} \neq 0$.
13) Pentru aflarea inversei unei matrice $\mathbf{A} \in M_n(\mathbf{R})$ prin		
1 / 1	14) Fie $\mathbf{A} \in M_n(\mathbf{R})$ si \mathbf{B} matricea atasata acesteia in	15) Fie $\mathbf{A} \in M_n(\mathbf{R})$ si $\overline{\mathbf{B}}$ matricea atasata lui \mathbf{A} pentru
transformari elementare, acestea se aplica:	metoda aflarii inversei lui A prin transf elementare. Atunci:	determinarea lui A ⁻¹ prin transformari elementare. Daca
		(0.12.3)
a) direct asupra lui A ;	a) $\overline{\mathbf{B}} \in M_n(\mathbf{R});$	$\begin{bmatrix} \overline{B} \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & -4 \end{pmatrix} \text{ atunci:} $
b) asupra matricei transpuse A ^T ;		$\begin{bmatrix} \mathbf{D} & 1 & 0 & 1 & -4 \end{bmatrix}$
$\underline{\mathbf{c}}$) matricei atasate $\overline{\mathbf{B}} = [\mathbf{A} \mathbf{M}_n]$;	$\underline{\mathbf{b}}, \overline{\mathbf{B}} \in M_{n,2n}(\mathbf{R});$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
- "-	c) $\overline{B} \in M_{2n,n}(\mathbf{R});$	$ \frac{1}{\mathbf{a}} \mathbf{A}^{-1} = \begin{pmatrix} 1 & -4 \\ 2 & 3 \end{pmatrix} \text{b) } \mathbf{A}^{-1} = \begin{pmatrix} 2 & 3 \\ 1 & -4 \end{pmatrix}_{\mathbf{c}} \mathbf{A}^{-1} = \begin{pmatrix} 3 & 2 \\ -4 & 1 \end{pmatrix} $
d) matricei atasate $\overline{\mathbf{B}} = [\mathbf{I}_n \mathbf{M}^{\mathrm{T}}]$.		
$D = [I_n I M].$	d) $\overline{\mathbf{B}} \in M_{2n,2n}(\mathbf{R});$	$[\underline{\mathbf{a}}] \mathbf{A}^{-1} = (2 3] b) \mathbf{A}^{-1} = (1] f_{\mathbf{c}}) \mathbf{A}^{-1} = (1] f_{\mathbf{c}}$
		d) A ⁻¹ nu exista.
_	17) A 1 1 4 1 A 1 C C I 1 1 4	
16) Fie $\mathbf{A} \in M_n(\mathbf{R})$ si $\overline{\mathbf{B}}$ matricea atasata lui \mathbf{A} pentru	17) Aducand matricea A la forma Gauss-Jordan obtinem:	18) Daca matricea $A \in M_{2,3}(\mathbf{R})$ este echivalenta cu
determinarea lui A ⁻¹ prin transformari elementare. Daca		$(1 \ 2 \ 0)$
$(1 \ 0 \ 0 \ 1 \ 2 \ 3)$	a) A^{-1} ;	matricea $\mathbf{A}^* = \begin{pmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ atunci:
	b) rang A ;	$\begin{pmatrix} 0 & -1 & 1 \end{pmatrix}$
$\overline{\mathbf{B}}$ 0 0 1 M 2 1 atunci:	c) det A ;	a) rang $A = 2$;
$\begin{bmatrix} - & 0 & 1 & 0 & 2 & 1 & 3 \end{bmatrix}$	$(\mathbf{d}) \mathbf{A}^{\mathrm{T}}$.	b) rang $A = 1$;
	'	c) rang $A = 3$;
$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, ,
a) $\mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix} \mathbf{b}) \mathbf{A}^{-1} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 2 & 1 \\ 3 & 1 & 3 \end{pmatrix} \mathbf{c}) \mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$		$\underline{\mathbf{d}}$) rang $\mathbf{A} = \text{rang } \mathbf{A}$.
$\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$		
d) A ⁻¹ nu exista.		

19) Daca matricea $\mathbf{A} \in M_3(\mathbf{R})$ este echivalenta cu matricea	20)Daca A este echivalenta cu matricea unitate I_3 (A I_3),	21) Pivotul unei transformari elementare este intotdeauna:	
$(-1 \ 1 \ 0)$	atunci:	a) nenul;	
	a) rang $A = 3$;	b) egal cu 0;	
$\begin{bmatrix} \mathbf{A} = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} \text{ at uncirang } \mathbf{A} \text{ este:}$	b) det $A \neq I_3$;	c) egal cu 1;	
	$\begin{array}{c} \underline{\mathbf{b}} \mathbf{f} \operatorname{det} \mathbf{A} \neq \mathbf{I}_3, \\ \mathbf{c}) \mathbf{A} = \mathbf{I}_3; \end{array}$	d) situat pe diagonala matricei.	
a) 2; b) 3; c) 1; d) 0.	$\begin{array}{l} \mathbf{C}(\mathbf{A} - \mathbf{I}_3), \\ \mathbf{d}(\mathbf{A}^{-1} = \mathbf{I}_3). \end{array}$	d) Situat pe diagonala matricei.	
22) Daca matricea A este echivalenta cu A ` = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	23) Daca matricea A este echivalenta cu matricea A ` = $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	24)Daca matricele A si A ` sunt echivalente (AA `) atunci:	
$\begin{pmatrix} 0 & 0 & -1 \end{pmatrix}$	0 1 0 atunci:	a) au acelasi rang;	
atunci:	$\left[\begin{pmatrix} 0 & 0 & \alpha \end{pmatrix} \right]$	b) sunt obligatoriu matrice inversabile;	
$\underline{\mathbf{a}}$) rang $\mathbf{A} = 3$;	a) rang $\mathbf{A} = 0 \iff \alpha = 0$	c) sunt obligatoriu matrice patratice;	
b) rang $A = 1$;	b) rang $A = 1 <=> \alpha = 1$	<u>d</u>) se obtin una din alta prin transformari elementare.	
$\underline{\mathbf{c}}$ det $\mathbf{A} \neq 0$;	$\underline{\mathbf{c}}$ rang $\mathbf{A} \ge 2$, $(\forall) \alpha \in \mathbf{R}$;		
d) A este inversabila.	d) rang $A = 3 \ll \alpha \neq 0$.		
25) Fie A € M_3 (R) cu det A = α . Atunci forma Gauss-Jordan	26) Doua sisteme liniare de ecuatii se numesc echivalente	27) Matricea unui sistem liniar oarecare, in forma explicita	
a lui A:	daca:	are:	
a) are acelasi rang cu matricea \mathbf{A} , (\forall) $\alpha \in \mathbf{R}$;	a) au acelasi numar de ecuatii;	a) forma Gauss-Jordan;	
b) are acelasi rang cu matricea A, numai pt $\alpha = 0$;	b) au acelasi numar de necunoscute;	b) coloanele variabilelor principale, coloanele matricei	
c) coincide cu $I_3 \le \alpha \ne 0$;	c) au aceleasi solutii;	unitate;	
d) are cel mult doua coloane ale matricei unitate I_3 daca $\alpha = 0$	<u>d)</u> matricele lor extinse sunt echivalente.	c) toate elementele de pe liniile variabilelor secundare nule	
		d) elementele corespunzatoare de pe coloanele variabilelor	
		secundare, negative.	
28) Metoda Gauss-Jordan de rezolvare a sistemelor liniare	29) Fie A si A matricea, respectiv matricea largita a unui	30) Pentru a obtine matricea unui sistem liniar sub forma	
prin transformari elementare se aplica:		explicita, se aplica transformari elementare:	
a) numai sistemelor patratice;	sistem liniar. Aplicand metoda Gauss-Jordan de rezolvare,	a) numai coloanelor corespunzatoare variabilelor secundare;	
b) oricarui sistem liniar;	se aplica transformari elementare asupra:	b) numai coloanei termenilor liberi;	
c) numai daca rangul matricei sistemului este egal cu	a) liniilor lui \mathbf{A} si coloanelor lui $\overline{\mathbf{A}}$;	c) tuturor liniilor si coloanelor matricei extinse;	
numarul de ecuatii;	b) liniilor si coloanelor lui \overline{A} ;	d) pentru a face coloanele variabilelor principal alese,	
d) doar sistemele compatibile nedeterminate.		coloanele matricei unitate.	
ry and real real real real real real real real	<u>c)</u> liniilor lui A;		
	d) coloanei termenilor liberi din \overline{A} .		
31) Aplicand metoda Gauss-Jordan unui sistem liniar de	32) Matricea extinsa corespunzatoare unui sistem liniar in	33) Matricea extinsa corespunzatoare unui sistem liniar in	
ecuatii, matricea extinsa \overline{A} este echivalenta cu matricea \overline{A}	$(1 \ 2 \ 0 \ -1 \ 4)$	$\begin{pmatrix} 1 & 0 & -1 & 0 & 1 \end{pmatrix}$	
$(2 \ 1 \ -1 \ 0 \ 3)$	forma explicita este $\overline{\Delta} = \begin{bmatrix} 0 & 1 & 1 & M2 \end{bmatrix}$. Atunci	forma explicita este $\overline{\Delta} = \begin{bmatrix} 0 & 1 & 1 & 0 \text{ M} \end{bmatrix}$. Atunci sistemul	
$= \begin{pmatrix} 2 & 1 & -1 & 0 & 3 \\ 3 & 0 & 2 & 1 & 1 \end{pmatrix}$. Atunci sistemul liniar:	forma explicita este $\overline{A} = \begin{pmatrix} 1 & 2 & 0 & -1 & 4 \\ 0 & 1 & 1 & 1 & M2 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}$. Atunci	forma explicita este $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 0 & \mathbf{M} \\ 0 & 0 & 2 & 1 & 3 \end{pmatrix}$. Atunci sistemul	
	sistemul liniar:	liniar:	
a) este incompatibil;	a) este incompatibil;	a) sistemul este compatibil nedeterminat;	
b) este compatibil nedeterminat;	b) este compatibil determinat;	b) variabilele principale alese sunt x1, x2, x4;	
c) are solutia de baza: x1=4, x2=2, x3=-1, x4=0;	c) are solutia de baza x1=1, x2=2, x3=-1, x4=0;	c) sistemul este incompatibil;	
d) are o infinitate de solutii.	d) are o infinitate de solutii.	d) solutia de baza cores. este $x1=1$, $x2=2$, $x3=0$, $x4=3$.	
34) Un sistem liniar de 2 ecuatii cu 4 necunoscute, cu rangul	35) un sistem liniar cu 2 ecuatii si 3 necunoscute admite	36) Sistemele liniare de ecuatii care admit solutii de baza	
matricei sistemului egal cu 2, are solutia de baza: $X=(2,0,0,-1)$	solutia de baza $\mathbf{X} = (0, -1, 0)^{\mathrm{T}}$. Stiind ca x2, x3 sunt variabile	sunt numai cele:	
1) ^T . Atunci este:	principale, atunci solutia x este:	Sunt human colo.	
1).11tuner este.	principale, audior solutia x este.	a) compatibile nedeterminate;	
a) admisibila si nedegenerata;	a) admisibila;	b) compatibile determinate;	
b) admisibila si degenerata;	b) neadmisibila;	c) incompatibile;	
c) neadmisibila si nedegenerata;	c) degenerata;	d) patratice.	
LI maamisiona si maagamaaa,	U degenerata,	a) patratree.	

d) neadbisibila si degenerata.	d) nedegenerata.	
37) Formei explicite a unui sistem liniar ii corespunde	38) Matricea extinsa corespunzatoare formei explicite a	39) Pentru a se obtine solutia de baza din forma explicita a
matricea $\overline{A} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$. Atunci solutia	unui sistem liniar este $\overline{A} = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 1 & 0 & 2 & 1 \end{pmatrix}$. Atunci	unui sistem liniar de ecuatii: a) variabilele principale se egaleaza cu 0;
corespunzatoare este:	solutia de baza corespunzatoare este:	b) variabilele secundare se egaleaza cu 0;
a) $x1=2+\alpha-\beta$, $x2=-2+\alpha-\beta$, $x3=\alpha$, $x4=\beta$;	N. (1.1.1.0)T	c) toate variabilele se egaleaza cu 0;
b) $x1=2-\alpha+\beta$, $x2=-2-\alpha+\beta$, $x3=\alpha$, $x4=\beta$;	a) $\mathbf{X} = (1 \ 1 \ -1 \ 0)^{\mathrm{T}};$ b) $\mathbf{X} = (1 \ 0 \ 2 \ 1)^{\mathrm{T}};$	d) se atribuie variabilelor secundare valori nenule distincte.
$\underline{\mathbf{c}}$) x1=2+\alpha-\beta, x2=-2-\alpha+\beta, x3=\alpha, x4=\beta;	c) $X = (1 \ 1 \ 0 \ 0)^T$;	
d) $x1=2-\alpha-\beta$, $x2=-2+\alpha+\beta$, $x3=\alpha$, $x4=\beta$.	$\mathbf{\underline{d})} \mathbf{X} = (0 \ 1 \ 0 \ 1)^{\mathrm{T}}.$	
40) Solutia de baza $\mathbf{X} = (\alpha, 0, \beta, 0)^{\mathrm{T}}$ a unui sistem liniar de	41) Solutia de baza $\mathbf{X} = (0,0, \alpha, \beta)^{T}$ corespunzatoare unui	42) Fie n _B si n _E numarul solutiilor de baza distincte,
doua ecuatii este neadmisibila daca:	sistem liniar cu 2 ecuatii principale si 4 necunoscute este	respectiv al formelor explicite, corespunzatoare unui sistem
a) $\alpha > 0$ si $\beta > 0$;	degenerata daca:	liniar compatibil nedeterminat. Atunci:
b) $\alpha < 0$ si $\beta < 0$;	$\underline{\mathbf{a}}$) $\alpha=0, \beta\neq 0;$	a) $n_B \le n_E$;
$c) \alpha > 0 \text{ si } \beta < 0;$	b) $\alpha \neq 0$, $\beta = 0$;	b) $n_B \ge n_E$;
$\underline{\mathbf{d}}$) $\alpha < 0$ si $\beta > 0$.	$\underline{\mathbf{c}}$) $\alpha = 0$, $\beta = 0$;	c) intotdeauna $n_B = n_E$; d) obligatoriu $n_B > n_E$.
	d) $\alpha \neq 0$, $\beta \neq 0$.	u) congatoriu n _B > n _E .
43) Fie solutia de baza $\mathbf{X} = (1, \alpha, 0, \beta)^T$ corespunzatoare	44) Forma explicita a unui sistem liniar are matricea de	45) Forma explicita a unui sistem liniar are matricea de
variabilelor principale x1 si x4. Atunci x este admisibila	forma $\overline{A} = \begin{pmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3M2 \\ 0 & 1 & 0 & 1 & -1 \end{pmatrix}$. Atunci solutia de baza	forma $\overline{\mathbf{A}} = \begin{pmatrix} 2 & 0 & -1 & 1 & \mathbf{M} \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}$. Atunci solutia de baza
degenerata daca:	forma $A = \begin{bmatrix} 0 & 0 & 1 & 3M2 \\ 0 & 1 & 0 & 1 \end{bmatrix}$. Atunci solutia de baza	
\mathbf{a}) $\alpha > 0$, $\beta = 0$;		corespunzatoare X este: a) admisibila;
$\underline{\mathbf{b}}$) $\alpha=0$, $\beta=0$;	corespunzatoare X este: a) $X=(1 \ 2 \ -1 \ 0)^T$;	b) degenerata;
c) $\alpha=0$, $\beta>0$;	$\mathbf{b} \mathbf{X} = (1 - 1 \ 2 \ 0)^{\mathrm{T}};$	c) neadmisibila;
d) $\alpha > 0$, $\beta > 0$.	c) $\mathbf{X} = (1 \ 2 \ 0 \ -1)^{\mathrm{T}}$; d) $\mathbf{X} = (-1 \ 2 \ 1 \ 0)^{\mathrm{T}}$	d) nedegenerata.
46) Fie $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & -1 \text{M} 2 \\ 0 & 0 & 0 & 0 & \alpha \end{pmatrix}$ maricea corespunzatoare	47) Fie $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & -1\mathbf{M}1 \\ 0 & 0 & \alpha & 0 \end{pmatrix}$ matricea corespunzatoare	48) Fie $\overline{\mathbf{A}} = \begin{pmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & -1\mathbf{M}1 \\ 0 & 0 & \alpha & \beta \end{pmatrix}$ matricea corespunzatoare formei
formei explicite a unui sistem liniar. Atunci sistemul este incompatibil daca:	formei explicite a unui sistem liniar. Atunci sistemul este:	explicite a unui sistem liniar. Atunci sistemul este compatibil nedeterminat daca:
a) a=0.	a) compatibil nedeterminat, daca $\alpha = 0$;	a) $\alpha = 0, \beta \neq 0;$
$egin{array}{l} \mathbf{a}) & \alpha = 0; \\ \mathbf{b}) & \alpha = 1; \end{array}$	b) compatibil determinat, daca $\alpha=1$; c) incompatibil, daca $\alpha \neq 0$;	b) $\alpha \neq 0$, $\beta = 0$;
\mathbf{c}) $\alpha = -1$;	d) incompatibil, daca $\alpha \neq 0$, d) incompatibil, daca $\alpha = 0$.	$\mathbf{c} \cdot \alpha = 0, \beta = 0;$
d) α=2.	<i>a</i>)	$(\mathbf{d}) \alpha \neq 0, \beta \neq 0.$
49) Fie $\mathbf{X} = (1, 1\alpha, 0, 0)^{\mathrm{T}}$ solutia de baza a unui sistem liniar de ecuatii corespunzatoare variabilelor principale x1, x2, x3.	50) Un sistem liniar de 2 ecuatii si 4 necunosute are matricea corespunzatoare unei forme explicite de forma:	51) Un sistem de <i>m</i> ecuatii liniate cu <i>n</i> necunoscute, m <n, are="" intodeauna:<="" td=""></n,>
Atunci:	\overline{A} = . Atunci solutia de baza corespunzatoare X este:	a) mi mult de C_n^m forme explicite;
a) X este admisibila, daca $\alpha > 0$; b) X este degenerate daca $\alpha = 0$:	a) admisibila, daca $\alpha=1$, $\beta=0$;	b) cel mult C_n^m forme explicite;
b) X este degenerata, daca α =0; c) X este neadmisibila, daca α = -1;	b) degenerata, daca $\alpha < 0$, $\beta = 0$;	l "
$\underline{\mathbf{d}}$ X este nedegenerata, daca $\alpha = 1$.	c) neadmisibila, daca $\alpha > 0$ si $\beta \ge 0$;	c) exact C_n^m forme explicite;
	e, including and we will prove	d) m+n forme explicite.

d) nedegenerata, daca α <0 si β \leq 0.			
52) Un sistem de <i>m</i> ecuatii liniare cu <i>n</i> necunoscute, m <n,< td=""><td>53) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare</td><td colspan="2">54) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare</td></n,<>	53) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare	54) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare	
are intotdeauna:	cu <i>n</i> encunoscute, m <n, are:<="" daca="" degenerata="" este="" td=""><td>cu <i>n</i> encunoscute, m<n, are:<="" daca="" este="" nedegenerata="" td=""></n,></td></n,>	cu <i>n</i> encunoscute, m <n, are:<="" daca="" este="" nedegenerata="" td=""></n,>	
a) exact C_n^m solutii de baza;		_	
•	a) exact m componente nenule;	a) exact m componente nenule;	
b) cel mult C_n^m solutii de baza;	b) mai mult de m componente nenule;	b) mai mult de m componente nenule;	
a) and marking C^m and that if the horses	<u>c)</u> mai putin de m componente nenule;	c) mai putin de m componente nenule;	
c) cel putin C_n^m solutii de baza;	<u>d</u>) mai mult de n-m componente nenule.	<u>d</u>) n-m componente nenule.	
d) m+n solutii de baza.			
55) Pentru a transforma un sistem liniar de ecuatii intr-unul	56) Metoda grafica se foloseste in rezolvarea sistemelor de	57) O solutie de baza pentru un sistem cu <i>m</i> ecuatii liniare	
echivalent se folosesc transformari elementare asupra:	inecuatii liniare cu:	cu <i>n</i> encunoscute, m <n, admisibila="" are:<="" daca="" este="" td=""></n,>	
) liniilor matricei sistemului;	a) doua necunoscute;	a) majoritatea componentelor pozitive;	
o) coloanelor matricei sistemului;	b) mai mult de 3 necunoscute;	b) mai mult de m componente pozitive:	
e) liniilor si coloanelor matricei sistemului;	c) oricate necunoscute;	c) mai putin de m componente negative;	
d) termenilor liberi ai sistemului.	d) exact 3 necunoscute.	<u>d)</u> toate componentele negative.	
58) Fie A o matrice nenula de tipul (m,n) . Atunci matricea A	59) Pentru a transforma un sistem liniar de ecuatii in unul	60) O solutie de baza a unui sistem liniar se obtine:	
admite inversa daca:	echivalent, se folosesc:	a) dand variabilelor principale valoarea 0;	
a) det $\mathbf{A} \neq 0$;	a) transf. elem. aplicate liniilor matricei atasate sistemului;	b) dand variabilelor secundare valoarea 0;	
\mathbf{p} m=n si det $\mathbf{A} \neq 0$;	b) trans elem aplicate liniilor si coloanelor matr. atasate	c) dand variabilelor principale valori nenule;	
e) det A =0 si m=n;	sist	d) dand variabilelor secundare valori strict pozitive.	
$\mathbf{d}) \det \mathbf{A} = 1 \text{ si m=n.}$	c) operatii de adunare a coloanelor matricei atasate sist;		
	d) toate operatiile care se pot efectua asupra unei matrice.		
II.ELEMENTE DE ALGEBRA LINIARA		<u></u>	
1) Un spatiu liniar X se numeste spatiu liniar real daca:	2) Fie $(P_n(X),+,\cdot)$ spatiul liniar al polinoamelor de grad cel	3) Fie $(P_n(\mathbf{X}),+,\cdot)$ spatiul liniar al polinoamelor de grad cel	
	mult n. Atunci operatiile "+" si ":" reprezinta:	mult n. Atunci dimensiunea sa este:	
a) elementele sale sunt numere reale;	a) adunarea si inmultirea polinoamelor;		
o) corpul peste care este definit coincide cu multimea	b) adunarea polinoamelor si_inmultirea polinoamelor cu	a) n;	
numerelor naturale;	scalari reali;	b) n=1;	
e) multimea X este nevida;	c) adunarea numerelor reale si inmultirea polinoamelor;	$ c n^2;$	
d) operatiile definite pe X sunt operatii cu numere reale.	d) adunarea polinoamelor si inmultirea nr reale.	d) 2n.	
4) Multimea solutiilor unui sistem liniar formeaza un spatiu	5) Fie vectorii x1, x2,, xk $\in \mathbb{R}^n$ a.i. $\alpha 1x1 + \alpha 2x2 + + \alpha kxk$	6) Fie vectorii x1, x2,, xk \in \mathbb{R}^n a.i. $\alpha 1 \times 1 + \alpha 2 \times 2 + + \alpha k \times k$	
iniar daca sistemul este:	=0 _n .Atunci x1,x2,,xk sunt liniar independenti numai daca:	$=0_n$. Atunci x1,x2,,xk sunt liniar dependenti daca:	
a) incomparabil;	a) $(\forall)\alpha_i = 0$, $i = \overline{1, k}$; b) $(\exists)\alpha_i = 0$;	$\frac{1}{k}$	
b) omogen;	$\underline{\mathbf{a}}$) $(\forall)\alpha_i=0, 1=3,7,5$	a) $\alpha_i = 0$, (\forall) $i = \overline{1, k}$	
e) compatibil determinat;	b) $(\exists)\alpha_i=0$;	$\underline{\mathbf{b}}(\exists) \ \alpha_i \neq 0;$	
d) patratic, cu rangul matricei egal cu nr. Necunoscutelor.	c) $\alpha \neq 0$, (\forall) i= $\overline{1,k}$	<u>c)</u> k>n;	
	as a	$\underline{\mathbf{d}}) \alpha_{i} \neq 0, (\forall) \mathbf{i} = \overline{1, k}$	
NEW was and their sines at 11 at 2 and 1	d) k>n.	$\begin{array}{c} \underline{0}, \underline{0}, \underline{0}, \underline{0}, \underline{0}, \underline{0} \\ \underline{0}, \mathbf{$	
7) Fie X un spatiu liniar si vectorii $x_1, x_2, x_3 \in \mathbf{X}$ a.i.	8) Vectorii x1, x2,, xk € R ⁿ sunt liniar independenti.	9) Fie x1, x2,x2 € R³ vectori oarecare a.i. x3=x1-2x2.	
x1+x2+αx3=0x. Atunci vectorii sunt:	Atunci:	Atunci:	
a) liniar dependenti, daca α=0;	<u>a)</u> x1,x2,,xk-1 sunt liniar independenti;	a) coordonatele lui x3 sunt 1 si -2;	
 b) liniar independenti, daca α≠0; 	b) $xi \neq 0n$, $(\forall)i=1, n$;	b) x_1, x_2, x_3 nu formeaza o baza in \mathbb{R}^3	
<u>c</u>) liniar dependenti, daca α≠0;	$\underline{\mathbf{c}}$) $k \leq n$;	c) x1,x2,x3 sunt liniar dependenti;	
d) liniar independenti, daca α=0.	$\frac{d}{d} \times 1 + x^2 + + x^2 = 0$	d) deoarece $x1-2x2-x3=0 \Rightarrow x1,x2,x3$ sunt liniar indep.	

11) Fie vectorii x1, x2, ..., xk € Rⁿ .At. ei form o baza daca:

12) Fie $\mathbf{B} = \{x_1, x_2,...,x_k\}$ o baza in spatiul liniar \mathbf{X} . Atunci:

 $\underline{\mathbf{a}}$) dim $\mathbf{X} = \mathbf{k}$;

b) dim X > k;

c) dim X < k;

b) xi≠0n si k=n;

a) sunt liniar independenti si k≠n;

c) sunt liniar independenti si k=n;

schimbarii de baza. Atunci S este:

a) patratica;

b) inversabila;

10) Fie **B** si **B**' doua baze din spatiul liniar **R**³ si **S** matricea

c) dreptunghiulara;	d) k=n si $\alpha i \neq 0$, $(\forall) i = \overline{1, k}$	$\sqrt{\frac{1}{k}}$
<u>d</u>) nesingulara (det $S\neq 0$).		$\underline{\mathbf{d}}) \operatorname{xi} \neq 0 \operatorname{x}, (\forall) \operatorname{i=}^{1,k}$
13) Fie S matricea de trecere de la o baza B la baza B' si $u_{\rm B}$	14) Fie $\mathbf{B} = \{x1, x2,, xk\}$ o baza in \mathbf{R}^n . Atunci:	15) In spatiul liniar R ⁿ exista:
respectib $u_{\rm B}$ coordonatele vectorului u in cele doua baze.		
Atunci au loc relatiile:	a) x1,x2,,xk sunt liniar independenti;	a) cel mult n baze;
a) $u_{\rm B} = S u_{\rm B}$ si $u_{\rm B} = S^{-1} u_{\rm B}$	b) k <n;< td=""><td>b) exact n baze;</td></n;<>	b) exact n baze;
b) $u_{\rm B} = {\bf S}^{\rm T} u_{\rm B} {\rm Si} u_{\rm B} = {\bf S}^{-1} u_{\rm B}$	\mathbf{c} $\mathbf{k} = \mathbf{n}$;	c) o singura baza;
$\underline{\mathbf{c}} \underline{\mathbf{u}}_{\mathrm{B}} = \mathbf{S}^{\mathrm{T}} u_{\mathrm{B}} \mathrm{si} \ u_{\mathrm{B}} = (\mathbf{S}^{\mathrm{T}})^{-1} \ u_{\mathrm{B}}$	d) k>n.	<u>d</u>) o infinitate de baze.
$\overrightarrow{\mathbf{d}}$) $u_{\mathrm{B}} = \mathbf{S}^{-1} u_{\mathrm{B}} \operatorname{si} u_{\mathrm{B}} = \mathbf{S}^{\mathrm{T}} u_{\mathrm{B}}$		
16) Fie operatorul liniar L: $\mathbb{R}^2 \to \mathbb{R}^3$ si $0_2, 0_3$ vectorii nuli ai	17) Daca L: $\mathbb{R}^m \to \mathbb{R}^n$ este un operator liniar, atunci:	18) Fie L: $\mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ un operator liniar si <i>ker</i> L nucleul sau.
celor 2 spatii. Atunci:	Tr) Bucu E. It 7 It este un operator innur, ataner.	Daca x1,x2 € ker L, atunci:
a) $L(02) = 02$;	a) obligatoriu m>n;	a) $x1+x2 \in \ker L$;
b) $L(03) = 03$;	b) obligatoriu m <n;< td=""><td></td></n;<>	
\mathbf{c}) L(02) = 03;	c) m si n unt numere naturale oarecare, nenule;	
d) $L(02) = 03$, d) $L(03) = 03$.	d) obligatoriu m=n.	$\underline{\mathbf{c}}$) $\alpha x 1 + \beta x 2 \in \ker L$, $(\forall) \alpha, \beta \in \mathbf{R}$;
d) L(03) = 03.	d) obligatoriu m–n.	d) $L(x1) = x2$.
19) Fie L: $\mathbb{R}^n \to \mathbb{R}^m$ un operator liniar si ker L nucleul sau.	20) Daca L: $\mathbb{R}^m \to \mathbb{R}^n$ este un operator liniar si A matricea	21) Fie L: $\mathbb{R}^n \to \mathbb{R}^n$ un operator liniar si x un vector propriu
Daca x € ker L, atunci:	sa fata de o pereche de baze B,B ` atunci:	pt. L. Atunci:
\mathbf{a}) $L(\mathbf{x}) = 0_{\text{m}}$;	$\underline{\mathbf{a}}$ $\mathbf{A} \in M$ m, $\mathbf{n}(\mathbf{R})$;	\mathbf{a}) $(\exists !) \lambda \in \mathbf{R}$ a.i. $L(x) = \lambda x$;
$\underline{\mathbf{b}} \ \mathbf{L}(\alpha \mathbf{x}) = 0_{\mathrm{m}}, (\forall) \ \alpha \in \mathbf{B};$	\overrightarrow{b}) $\overrightarrow{A} \in M_{n,m}(\mathbf{R})$;	b) $L(\lambda x)=x$, $(\forall) \lambda \in \mathbf{R}$;
c) $L(\alpha x) = 0_m$, doar pt $\alpha = 0$;	c) B,B sunt baze in R ^m ;	$\begin{array}{c} 0 \mathbf{E}(\mathbf{x}, \mathbf{x}) \times \mathbf{x}, (\mathbf{v}) \times \mathbf{c} \mathbf{K}, \\ \mathbf{c} \mathbf{x} \neq 0 \end{array}$
$\begin{array}{c} \text{d) } L(x, x) = 0, \\ \text{d) } L(x) = 0, \end{array}$	d) B este baza in \mathbb{R}^{n} si B' este baza in \mathbb{R}^{n}	
* * * *		$\underline{\mathbf{d}}) L(\mathbf{x}) = \lambda \ \mathbf{x}, (\forall) \ \lambda \in \mathbf{R}.$
22) Fie L: $\mathbb{R}^n \to \mathbb{R}^n$ un operator liniar si x un vector propriu	23) Matricea atasata unei forme liniare $f: \mathbb{R}^n \to \mathbb{R}$ este o	24) Daca $f: \mathbb{R}^n \to \mathbb{R}$ este o forma liniara, atunci:
corespunzator valorii proprii λ . Atunci:	matrice:	a) $f(x_1+x_2) = x_1 + x_2$; $(\forall) x_1, x_2 \in \mathbb{R}^n$
$\underline{\mathbf{a}}$) $L(\mathbf{x}) = \lambda \mathbf{x}$;	a) patratica:	b) $f(x1+x2) = f(x1) + f(x2); x1,x2 ∈ Rn;$
b) daca $L(x) = 0n$, atunci $x=0n$;	b) coloana;	c) $f(\alpha x) = \alpha x$, $(\forall) \alpha \in \mathbf{R} \text{ si } (\forall) x \in \mathbf{R}^n$;
$\underline{\mathbf{c}}$) $L(\lambda x) = \lambda 2x$;	c) linie;	$\underline{\mathbf{d}} \mathbf{)} f(\alpha \mathbf{x}) = \alpha f(\mathbf{x}), (\forall) \alpha \in \mathbf{R} \text{ si } (\forall) \mathbf{x} \in \mathbf{R}^{n}.$
d) daca $L(x) = 0n$, atunci $\lambda = 0$.	d) inversabila.	
25) Fie L: $\mathbb{R}^n \to \mathbb{R}^m$ un operator liniar. Atunci L devine	26) Fie Q: $\mathbb{R}^n \to \mathbb{R}$ o forma patratice si A matricea asociata	$\bigcap : \mathbb{R}^3 \to \mathbb{R}$
forma liniara daca:	acesteia. Atunci:	27) Fie forma patratica $\begin{cases} Q: R^3 \to R \\ Q(x) = x_1^2 + 2x_2^2 + x_3^3 - 2x_1 x_2 \end{cases}$
a) n = 1;	$\mathbf{a}) \mathbf{A} = \mathbf{A}^{\mathrm{T}}$	$Q(x) = x_1^2 + 2x_2^2 + x_3^2 - 2x_1 x_2$
$\mathbf{b}) \mathbf{m} = 1;$	$(b) \mathbf{A} \in Mn, 1(\mathbf{R});$	$(\forall) x = (x_1, x_2, x_3)^T \in \mathbb{R}^3$. Atunci matricea asociata lui Q este:
c) $n = 1$ si $m = 1$;	$\begin{array}{c} \textbf{o)} \ \mathbf{A} \in \mathcal{M} \mathbf{n}(\mathbf{R}); \\ \textbf{c)} \ \mathbf{A} \in \mathcal{M} \mathbf{n}(\mathbf{R}); \end{array}$	$\begin{pmatrix} 1 & -1 & 0 \end{pmatrix}$
	d) A este inversabila.	$ \mathbf{c} \rangle \mathbf{A} = -1 2 0 $
d) n=m.	d) A este inversabila.	-
28) Forma patratica Q: $\mathbb{R}^2 \to \mathbb{R}$ are matricea asociata \mathbb{A} =	29) Forma patratica Q: $\mathbb{R}^3 \to \mathbb{R}$ are forma canonica asociata	30) Forma patratica Q: $\mathbb{R}^2 \to \mathbb{R}$ are matricea asociata \mathbb{A} =
	$Q(y)=2y_1^2+y_2^2+\alpha y_3^3$. Atunci:	
$\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$. Atunci Q are expresia:	$\langle y \rangle = y_1 + y_2 + \omega y_3$. Example:	$\begin{bmatrix} 1 & 2 \\ 2 & -3 \end{bmatrix}$. Atunci forma canonica asociata este:
	a) O arta manifer de Guita dans a S.O.	
	a) Q este pozitiv definita daca $\alpha > 0$;	Nici una: Q(y)= $-y_1^2 - y_2^2$ sau $-y_1^2 + 3y_2^2$ sau $2y_1^2 - y_2^2$
c) $Q(x) = 2x_1^2 - x_2^2 + 2x_1x_2$	$\underline{\mathbf{c}}$) Q este semipozitiv definita daca $\alpha = 0$;	$\int \sin -3y_1^2 + 7y_2^2$
	d) Q nu pastreaza semn constant daca $\alpha < 0$.	
31) Forma patratica Q: $\mathbb{R}^2 \to \mathbb{R}$ are forma canonica asociata	32) Fie Q(y)= $\frac{1}{\Delta_1} y_1^2 + \frac{\Delta_1}{\Delta_2} y_2^2 + \frac{\Delta_2}{\Delta_3} y_3^2$ forma canonica	33) Fie A matricea asociata formei patratice Q: $\mathbb{R}^n \to \mathbb{R}$ si
$Q(y) = ay_1^2 + by_2^2$. Atunci Q este negativ definita daca:	32) Fie Q(y)= $\frac{1}{\Lambda_1}$ $\frac{1}{\Lambda_2}$ $\frac{1}{\Lambda_2}$ $\frac{1}{\Lambda_2}$ $\frac{1}{\Lambda_3}$ forma canonica	$\Delta_1, \Delta_2,, \Delta_n$ minorii principali ai lui A . Pentru a aplica
(1) ayı ayı ayı atınını ç este negativ derinita dada.		1 . 2 "
	asociata formei patratice Q: $\mathbb{R}^3 \to \mathbb{R}$. Atunci:	metoda lui Jacobi de aducere la forma canonica, trebuie
<u>c)</u> a<0, b<0		obligatoriu ca:
	a) daca $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$, Q este pozitiv definita;	71. ·
		Nici una.

- 34) Formei patratice oarecare Q: $\mathbb{R}^n \to \mathbb{R}$ i se poate asocia:
- **b)** msi multe forme canonice, dar cu acelasi nr de coeficienti pozitivi, repectiv negativi.
- c) o matrice patratica si simetrica.
- 37) Forma patratica Q: $\mathbb{R}^3 \to \mathbb{R}$ are forma canonica asociata: $Q(y) = -y_1^2 + y_2^2 y_3^2$. Atunci:
- **c)** (∃)x1,x2 € \mathbb{R}^3 a.i. Q(x1)<0 si Q(x2)>0
- 40) Metoda lui Jacobi de a obtine forma canonica, se poate aplica in cazul formelor patratica:
- a) pozitiv definite;
- **c)** negativ definite.
- 43) Pentru a se determina valorile proprii ale operatorului L: $\mathbf{R}^n \to \mathbf{R}^n$ cu matricea corespunzatoare \mathbf{A} , se rezolva ecuatia:
- $\underline{\mathbf{c}}$) det $(\mathbf{A}^T \lambda I_n) = 0$
- 46) Fie operatorul liniar L: $\mathbb{R}^2 \to \mathbb{R}^2$. Atunci:
- **c)** operatorului nu i se poate atasa ecuatia caracteristica.
- 49)Operat. L: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ are valorile proprii $\lambda_1 = 1, \lambda_2 = 2$. Atunci:
- **c)** daca x1,x2 sunt vectori proprii pentru λ_1 , respectiv λ_2 => x1,x2 sunt liniar independenti.
- **d)** exista o baza fata de care matricea operatoului are forma $\mathbf{A} = \begin{pmatrix} 1 & 0 \end{pmatrix}$

35) Forma patratica $\begin{cases} Q: \mathbf{i}^{n} \to \mathbf{i} \\ Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} \end{cases}$ spunem ca

este pozitiv definita daca:

- **b)** Q(x)>0, $(\forall) x \in \mathbb{R}^n$, $x \neq 0$.
- 38) Forma patratica $\begin{cases} Q: \mathbf{I} \xrightarrow{n} \to \mathbf{I} \\ Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} \end{cases}$ are forma

canonica asociata Q(y)= $\alpha_1 y_1^2 + \alpha_2 y_2^2 + ... + \alpha_n y_n^2$. Atunci Q este degenerata daca:

- $\underline{\mathbf{c}}$ (\exists) α 1=0, pentru i=1, n.
- 41) Fie operatorul liniar $\begin{cases} L: \mathbf{i}^{-3} \to \mathbf{i}^{-2} \\ L(x) = (x_1 + x_3, 2x_1 x_2)^T \end{cases}$

 $(\forall)x=(x1,x2,x3)^T\in\mathbf{R}^3$. Atunci matricea operatorului in bazele canonice ale celor doua spatii are forma:

$$\mathbf{b}) \mathbf{A} = \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

44) Operatorul liniar L: $\mathbf{R}^2 \to \mathbf{R}^2$ are matricea $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$

Atunci ecuatia caracteristica pt obtinerea valorilor proprii are forma:

$$\begin{vmatrix} 1 - \lambda & 3 \\ 2 & -1 - \lambda \end{vmatrix} = 0$$

47) Operatorul liniar L: $\mathbf{R}^2 \to \mathbf{R}^2$ are matricea $\mathbf{A} = \begin{pmatrix} 2 & 0 \\ -1 & -2 \end{pmatrix}$ Atunci, valorile proprii ale lui L sunt:

$$\underline{\mathbf{c}}$$
 $\lambda_1 = 2, \lambda_2 = -2$

36) Forma patratica $\begin{cases} Q: \mathbf{i}^{n} \to \mathbf{i} \\ Q(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_{i} x_{j} \end{cases}$ spunem ca

este seminegativ definita daca:

- **b)** $Q(x) \le 0$, $(\forall) x \in \mathbb{R}^n$, $x \ne 0$.
- 39) Fie Q(y)= $\alpha_1 y_1^2 + \alpha_2 y_2^2 + \alpha_3 y_3^2$ forma canonica asociata formei patratice Q: $\mathbf{R}^3 \to \mathbf{R}$. Atunci Q nu pastreaza semn constant daca:
- **a)** α 1>0, α 2<0, α 3>0; **d)** α 1>0, α 2<0, α 3 \in **R**.
- 42) Matricea operatorului L: $\mathbf{R}^2 \to \mathbf{R}^2$ fata de baza canonica din \mathbf{R}^2 are expresia $\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}$. Atunci operatorul L are expresia:
- **b)** $L(x) = (x_1 + 2x_2 x_1)^T$.
- 45) Fie operatorul liniar L: $\mathbf{R}^2 \to \mathbf{R}^2$ cu matricea $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ Atunci ecuatia caracteristica corecpunzatoare:

$$\mathbf{c}) \ \lambda^2 - 2\lambda + 1 = 0$$

48) Fie $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ matricea atasata operatorului L: $\mathbf{R}^2 \rightarrow \mathbf{R}^2$

Atunci:

- **b)** valorile proprii ale lui L sunt $\lambda_1 = 0, \lambda_2 = 2$;
- **<u>d</u>)** sistemul caracteristic atasat este $\begin{cases} (1-\lambda)x_1 + x_2 = 0 \\ x_1 + (1-\lambda)x_2 = 0 \end{cases}$
- 51) Care din urmatoarele afirmatii sunt adevarate?
- <u>a)</u> orice spatiu liniar este grup abelian;
- b) orice grup abelian este spatiu liniar;
- c) exista spatii liniare care nu sunt grupuri abeliene;

	50) Fie operatorul $\begin{cases} L: \mathbf{i}^{2} \to \mathbf{i}^{2} \\ L(x) = (x_{1} + x_{2}, x_{1})^{T} \end{cases}$ Atunci: a) kerL={(0,0) ^T }	d) exista grupuri abeliene care nu sunt spatii liniare.
52) Fie vectorii x1,x2,,xm € R ^m si A matricea componentelor acestora. Atunci:	53) In spatiul R ⁿ o multime de vectori liniar independenti poate avea:	54) Fie vectorii x1,x2,,xm € R ^m si A matricea componentelor acestora. Atunci sunt liniar dependenti daca:
 a) vectorii sunt liniar independenti daca rang A = m; b) vectorii sunt liniar dependenti daca rang A < m. 	a) cel mult n vectori; c) exact n vectori.	<u>c)</u> rang A < m; <u>d)</u> det A =0.
55) Fie vectorii x1,x2,,xm € R ^m si A matricea componentelor acestora. Atunci sunt liniar independenti daca:	56) Fie vectorii x1,x2,,xm € Rⁿ liniar independenti.Atunci vectorii :	57) Multimea x1,x2,,xm este formata din vectori liniar dependenti. Atunci:
	c) formeaza o baza in R ⁿ , numai daca m=n; d) nu contin vector nul.	 b) cel putin un vector se poate exprima ca o combinatie liniara de ceilalti; d) poate contine vector nul.
58) Fie vectorii x1,x2,,xn € R ⁿ , n>3, liniar independenti. Atunci:	59) Care din urmatoarele afirmatii sunt adevarate: a) orice submultime a unei multimi de vectori liniar independenti este tot liniar independenta;	60) Coordonatele unui vector din R ⁿ : a) sunt unice relativ la o baza fixata;
a) vectorii x1,x2,,xn formeaza o baza in R ⁿ ;	b) o submultime a unei multimi de vectori linair dependenti	b) se schimba la schimbarea bazei;
b) vectorii x1,x2,,xk sunt liniar independenti, (\forall) k= $\overline{1,n}$.	este tot liniar dependenta; <u>c)</u> coordonatele unui vector in baza canonica din R ⁿ coincid cu componentele acestuia. d) daca o multime de vectori nu contine vectorul nul, atunci este liniar independenta.	c) sunt aceleasi in orice baza.
61) Un sistem de n vectori din R ⁿ , care contine vectorul nul:	62) Coordonatele unui vector in 2 baze care difera printr-un singur vector sunt:	63) Dimensiunea unui spatiu vectorial este egala cu:
b) este liniar dependent; c) nu formeaza o baza in \mathbb{R}^n .	a) diferite.	a) numarul vectorilor dintr-o baza;b) numarul maxim de vectori liniar independenti.
 64) Matricea schimbarii de baza este: a) o matrice patratica; b) o matrice inversabila; c) formata din coordonatele vectorilor unei baze descompusi in cealalta baza. 	 65) Fie aplicatia L: R^m → Rⁿ .Atunci L este un operator liniar daca: c) L(x1+x2)=L(x1)+L(x2) si L(αx)=αL(x),(∀)x,x1,x2 ∈ R^m 	66) Aplicatia L: $\mathbf{R}^m \to \mathbf{R}^n$ este un operator liniar. Care din afirmatiile de mai jos sunt adevarate: a) $L(x_1+x_2)=L(x_1)+L(x_2)$, $(\forall)x_1,x_2 \in \mathbf{R}^m$; b) $L(\alpha x)=\alpha L(x)$, $(\forall)x \in \mathbf{R}^m$, $(\forall)\alpha \in \mathbf{R}$;
67) Fie x1 si x2 vectori proprii pt operatorul liniar L: R ⁿ → R ⁿ corespunzatori la 2 valori proprii distincte. Atunci:	68) Fie L: R ^m → R ⁿ un operator liniar si A matricea sa. Atunci:	 d) L(αx1+x2)=αL(x1)+L(x2), (∀)x1,x2 ∈ R^m si (∀) α ∈ R 69) Fie L: R³ → R² un operator liniar. Atunci: c) nu se poate pune problema valorilor proprii pentru L; d) matricea lui L este dreptunghiulara.
a) x1 si x2 sunt liniar independenti.	a) A ∈ Mm,n(R)	72) Harris an antagalization I. Dim. Dir.
70) Operatorul L: $\mathbf{R}^n \to \mathbf{R}^n$ are n valori proprii distincte λ_1 ,	71) Fie operatorul liniar L: $\mathbb{R}^m \rightarrow \mathbb{R}^n$ liniar oarecare. Atunci:	72) Unui operator liniar L: $\mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ i se poate asocia:
λ_2 ,, λ_n carora le corespund vectorii proprii x1,x2,,xn. Atunci: a) x1,x2,,xn formeaza o baza in \mathbf{R}^n ; d) x1,x2,,xn sunt liniar independenti.	 a) ker L ⊂ R^m; d) ker L este subspatiu liniar. 	a) o matrice unica relativ la o pereche de baze fixate;
73) Nucleul unui operator liniar L: R ^m → R ⁿ este: a) un subspatiu liniar; b) o multime de vectori din R ^m	 74) Un operator liniar L: Rⁿ → Rⁿ are: a) cel mult n valori proprii distincte; d) o infinitate de vectori proprii, pt fiecare valoare proprie. 	75) In spatiul R ⁿ o multime de vectori liniar independenti poate fi formata din: a) mai putin de n vectori;

		c) excat n vectori.	
76) Fie vectorii x1,x2,,xm € R , vectorii liniar indep.Atunci	77) Coordonatele unui vector din R ⁿ :	78) Un sistem de m vectori din R ⁿ care contine vectorul r	
c) formeaza o baza in R ⁿ , daca m=n.	a) sunt unice relativ la o baza;	a) este intotdeauna liniar independent;	
<i>-</i>	b) sunt in numar de n;	\mathbf{d}) nu formeaza o baza in \mathbf{R}^{n} .	
	,		
79) Dimensiunea unui spatiu liniar este egala cu:	80) Matricea unei forme patratice oarecare este o matrice:	81) Daca avem relatia x1=αx2 atunci vectorii:	
a) numarul vectorilor dintr-o baza.	b) patratica;	c) x1 si x2 sunt liniar independenti, (\forall) $\alpha \in \mathbf{R}$.	
	c) simetrica.	1 / / /	
82) O forma patratica este pozitiv definita daca forma	83) O solutie de baza a unui sistem se obtine:	84) O forma liniara este pozitiv definita daca:	
canonica atasata acesteia:			
a) are coeficientii pozitivi;	b) dand variabilelor secundare, valoarea 0	d) pozitiva definire se refera numai la formele patratice.	
85) Daca suma a n vectori din R ⁿ este egala cu vectorul nul	86) Daca vectorii x1,x2xn formeaza o baza in spatiul	87) Matricea asociata unui operator liniar oarecare L: R ^m	
atunci:	liniar X, atunci:	→R ⁿ :	
b) vectorii sunt liniar independenti;	b) x1,x2xn sunt liniar independenti;	b) depinde de bazele considerate in cele doua spatii;	
c) cel putin unul se srie ca o combinatie liniara de restul.	$\underline{\mathbf{c}}$) dim $\mathbf{X} = \mathbf{n}$;		
<u>d</u>) nu formeaza o baza in R ⁿ .	<u>d)</u> x1,x2xn-1 sunt liniar independenti.		
88) Nucleul unui operator liniar L: $\mathbb{R}^m \to \mathbb{R}^n$: b) contine to	tdeauna vectorul nul al spatiului R ^m ; c) este subspatiu lin	iar; $\underline{\mathbf{d}}$) nu contine vectorul nul al spatiului \mathbf{R}^{m} .	
III.ELEMENTE DE PROGRAMARE LINIARA			
1) O problema de programare liniara are intotdeauna:	2) In forma vectoriala, o problema de programare liniara	3) In forma standard o problema de prgramare liniara are	
a) functia obiectiv liniara;	are vectorii P1,P2,Pn definiti de:	intotdeauna:	
<u>c)</u> restrictiile liniare.	b) coloanele matricei A corespunzatoare sistemului de	c) restrictiile de tip ecuatie.	
	restrictii.		
4) Intr-o problema de programare liniara conditiile de	5) Pt a aplica algoritmul Simplex de rezolvare a unei probl.	6) Pt a aduce o problema de programare liniara de maxim la	
negativitate cer ca:	de programare liniara, aceasta trebuie sa fie in forma:	una de minim se foloseste realtia:	
<u>d)</u> necunoscutele problemei sa fie negative.	<u>c)</u> standard.	$\underline{\mathbf{c}}) \max(f) = -\min(-f)$	
7) O multime $M \subset \mathbf{R}^n$ se numeste convexa daca:	8) Combinatia liniara " $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3$ " este convexa	9) Daca $M \subset \mathbb{R}^n$ este o multime convexa spunem ca $x \in M$	
$\underline{\mathbf{c}}$ $(\forall) x_1, x_2 \in M$ si $(\forall) \lambda \in [0,1]$ avem	daca:	este varf (punct extrem) al multimii M daca:	
	<u> </u>	Nici una.	
$\lambda x_1 + (1 - \lambda) x_2 \in M .$	b) $\lambda_i \in [0,1], (\forall)i = \overline{1,3} \text{ si } \lambda_1 + \lambda_2 + \lambda_3 = 1$		
10) Fie S _A multimea solutiilor admisibile al unei probleme	11) Fie S _A si S _{AB} multimea solutiilor admisibile, respectiv	12) Fie S _A , S _{AB} , S _O multimile solutiilor admisibile., de baza	
de programare liniara. Atunci:	multimea solutiilor admisibile de baza a unei probleme de	admisibile, respectiv optime pentru o problema de	
<u>a)</u>	programare liniara. Atunci, daca x € S _{AB} rezulta ca:	programare liniara. Atunci:	
$(\forall)x_1, x_2 \in S_A \Rightarrow \lambda x_1 + (1 - \lambda)x_2 \in S_A, (\forall)\lambda \in [0, 1]$	$\underline{\mathbf{b}}$ $(\forall) x_1, x_2 \in S_A, x_1 \neq x_2$ avem	$\underline{\mathbf{d}}$) S_A , S_O sunt multimi convexe.	
	$x_1 \neq \lambda_1 + (1 - \lambda)x_2, (\forall)\lambda \in [0, 1].$		
13) In rezolvarea unei probleme de programare liniara cu	14) Daca x1 si x2 sunt 2 solutii optime distincte (x1,x2€	15) O problema de programare liniara cu cerinte de minim	
algoritmul Simplex se aplica:	S _o) ale unei probleme de programare liniata, atunci:	are urmatorul tabel Simplex:	
a) intai criteriul de intrare in baza, apoi criteriul de iesire	$\mathbf{a}) \ \lambda x_1 + (1 - \lambda) x_2 \in S_O, (\forall) \lambda \in [0, 1];$	P C P 2 -1 -3 0 0	
din baza;	- · · ·	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
<u>d</u>) criteriul de optim la fiecare etapa a algoritmului.	b) So are o infinitate de elemente; c) $f(x1)=f(x2)$, cu $f(x)$ functia objectiv.	P ₁ 2 1 1 0 2 -1 1	
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		$z_j - c_j$ -1 0 0 4 -4 1	
		a) Intra in baza P ₃ ;	
		$\underline{\mathbf{c}}$ iese din baza \mathbf{P}_1 .	

16) Fie urmatorul tabel simplex al unei probleme de programare liniara:	17) O problema de programare liniara are urmetorul tabel Simplex:	18) O probl. De programare liniara cu cerinte de minim are urm.tabel Simplex:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c }\hline B & C_B & P_0 & 2 & 1 & 3 & 0\\\hline P_1 & P_1 & P_2 & P_3 & P_4\\\hline P_3 & 3 & 2 & 0 & -1 & 1 & -1\\\hline P_1 & 2 & 1 & 1 & 1 & 0 & 3\\\hline z_i-c_i & f & \alpha & -2 & 0 & 3\\\hline \textbf{c)} \text{ f=8, } \alpha=-1\\\hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Atunci solutia optima a problemei este:	
Atunci: c) f=6 si solutia optima este $x_0 = (1,2,0,0)^T$; d) problema admite solutie optima unica. 22) In urm.tabel Simplex pt o problema de transport cu cerinte de minim: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23) In tab.Simplex de mai jos, cu cerinte de minim pentru functia obiectiv B C _B P ₀ 2 -2 3 0 P ₁ P ₂ P ₃ P ₄ P ₃ 0 3 -1 0 -1 1 P ₁ -2 1 2 1 -2 0 Z _j - C _j -2 -6 0 α 0 c) α=1 si problema admite optim infinit. 26) Functia artificiala din metoda celor doua faze: a) depinde doar de variabilele artificiale introduse;	24) In tabelul simplex de mai jos	

28) Din tabelul Simplex de mai jos pt o problema de programare liniara cu cerinte de minim:	29) Din tabelul Simplex de mai jos pt o problema de programare liniara cu cerinte de minim:	30) In tabelul Simplex de mai jos pt o problema de programare liniara cu cerinte de minim:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c }\hline B & C_B & P_0 & \frac{2}{P_1} & \frac{1}{P_2} & \frac{3}{P_3} & \frac{0}{P_4} & \frac{0}{P_5} \\ \hline P_3 & 3 & 4 & 0 & 1 & 1 & 0 & 1 \\ P_1 & 2 & 1 & 1 & -1 & 0 & 0 & -2 \\ \hline P_1 & 0 & 3 & 0 & 2 & 0 & 1 & 1 \\ \hline z_j - c_j & 14 & 0 & 0 & 0 & 0 & -1 \\ \hline \textbf{a)} & x_0 = (1,0,4,3,0)^T \text{ este solutie optima.} \\ \textbf{c)} & \text{problema are o infinitate de solutii optime.} \\ \hline 34) & & & & & & & & & & & \\ \hline 34) & & & & & & & & & & \\ \hline \textbf{C}) & & & & & & & & & \\ \hline \textbf{c)} & & & & & & & & \\ \hline \textbf{c)} & & & & & & & \\ \hline \textbf{c)} & & & & & & & \\ \hline \textbf{c)} & & & & & & & \\ \hline \textbf{c)} & & & & & & & \\ \hline \textbf{c)} & & & & & & \\ \hline \textbf{c)} & & & & & & \\ \hline \textbf{c)} & & & & & & \\ \hline \textbf{c)} & & & & & & \\ \hline \textbf{c)} & & & & & & \\ \hline \textbf{c)} & & & & \\ \hline \textbf{c} & & & & \\ \hline \textbf{c} & $	$\begin{array}{ c c c c c c c }\hline B & C_B & P_0 & \frac{2}{P_1} & \frac{1}{P_2} & \frac{1}{P_3} & \frac{1}{P_4} & \frac{1}{P_5} \\ \hline P_3 & -1 & 3 & 2 & 0 & 1 & -2 & -2 \\ \hline P_1 & 0 & 1 & 3 & 1 & 0 & 1 & 3 \\ \hline z_i - c_i & & -3 & -4 & 0 & 0 & 2 & 2 \\ \hline \textbf{a)} \ \ poate \ intra \ in \ baza \ P_4 \ sau \ P_5 \ ; \\ \hline \textbf{b)} \ \ va \ iesi \ din \ baza \ numai \ P_2 \ ; \\ \hline \textbf{d)} \ \ solutia \ \ de \ baza \ admisibila \ gasita \ este \ x_0 = (0,1,3,0,0)^T \ . \\ \hline 35) \ \ Intr-o \ problema \ de \ transport \ ciclul \ celulei \ care \ intra \ in \ baza \ este : \\ \hline \end{array}$	
36) Solutia unei probleme de transport este optima daca: $\mathfrak{Q}(\forall) \delta_{ij} \leq 0$. 31) Problema de transport de forma: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	39) O solutie de baza admisibila a unei probleme de transport este degenerata daca: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	a) x_{11} . 41) O solutie de baza admisibila a unei probleme de transport cu 2 depozite si 5 centre de desfacere este degenerata daca are: b) 7 componente egale cu 0; c) cel mult 5 componente nenule. 37) O solutie de baza admisibila a unei probleme de transport este data de tabelul. C1	

liniara formeaza totdeauna o multime.	programare liniara formeaza o multime:	a) nenegative.		
 c) convexa. 62) Pentru aplicarea algoritmului Simplex, solutia de baza initiala a unei probleme de programare liniara trebuie sa fie: a) admisibila. 65) Intr-o problema de transport metoda perturbarii se aplica atunci cand: a) solutia initiala este degenerata; b) pe parcursul rezolvarii se obtine o solutie degenerata. 68) Pentru o problema de programare liniara, multimea S_A a solutiilor admisibile si multimea S_{AB} a solutiilor admisibile de baza satisfac relatiile: 	 a) finita. 63) O solutie de baza admisibila a unei probleme de transport cu m depozite si n centre (m<n) are:<="" li=""> a) cel mult m+n-1 componente nenule. 66) O problema de transport pt care exista δ_{ij} = 0 pt o variabila nebazica a solutiei optime are: b) mai multe solutii optime. 69) O problema de programare liniara poate avea: a) optim (finit sau nu) sau nici o solutie admisibila. </n)>	64) Pentru o problema de transport care din urmatoarele afirmatii sunt adevarate? a) admite totdeauna o solutie de baza admisibila; c) are totdeauna optim finit. 67) Metoda grafica de rezolvare a problemelor de programare liniara se aplica pt probleme: c) cu doua necunoscute. 70) Pentru a aplica algoritmul de rezolvare a unei probleme de transport trebuie ca:		
$\begin{array}{c} \underline{\mathbf{c}}) \ S_A \supset S_{AB} \\ \underline{\mathbf{d}}) \ S_A \cup S_{AB} = S_A \end{array}$		b) problema sa fie echilibrata si sa avem o solutie de baza initiala nedegenerata.		
71) Pt a rezolva o problema de transport neechilibrata: a) se introduce un nou depozit, daca cererea este mai mare decat oferta; b) se introduce un nou centru, daca cererea este mai mica decat oferta.	72) Pentru o problema de programare liniara care din urmatoarele afirmatii sunt adevarate: d) multimea solutiilor admisibile este convexa.	73) Intr-o problema de programare liniara nu se folosesc variabile de compensare cand: c) restrictiile sunt de forma "=" d) sistemul initial de restrictii este in forma standard.		
74) O problema de programare liniara de minim are mai multe sol. optime daca avem satisfacut criteriul de optim si: b) exista vectori Pj care nu fac parte din baza, cu $z_j - c_j = 0$, care au coordonate pozitive.	75) O problema de programare liniara de minim admite optim infinit daca: a) criteriul de optim nu este satisfacut si vectorii din afara bazei au toate coordonatele negative.	76) O problema de programare liniara de minim admite solutie optima unica daca: a) criteriul de optim este satisfacut si toti vectorii din afara bazei au diferentele $z_j - c_j < 0$; c) criteriul de optim este satisfacut si vectorii din afara bazei cu diferentele $z_j - c_j = 0$ au coordonatele negative.		
77) In forma standard, o probl. de programare liniara are: a) numarul restrictiilor cel mult egal cu al necunoscutelor; b) restrictiile de tip ecuatie.	78) Daca matricea unei problema de programare liniara in forma standard are rangul egal cu nr. restrictiilor atunci: b) restrictiile sunt idependente.	79) Pentru a aduce o problema de programare liniara la forma standard se folosesc: b) variabile de compensare.		
80) Solutiile optime ale unei probleme de programare liniara formeaza totdeauna o multime: c) convexa.	81) O solutie de baza admisibila nedegenerata are intotdeauna componentele principale: b) stricti pozitive.	82) O probl. De transport cu 3 centre si 4 depozite, are solutia de baza initiala nedegenerata, daca aceasta are: b) 6 componente pozitive.		
83) O problema de programare liniara poate fi rezolvata cu algoritmul Simplex numai daca: a) este in forma standard.	84) Pentru a rezolva o problema de transport trebuie ca: b) problema sa fie echilibrata.	 85) Metoda celor 2 faze se aplica: b) Pentru determinarea unei solutii de baza admisibile a problemei initiale; d) cu o functie obiectiv diferita de functia initiala. 		
86) O problema de transport: a) are intotdeauna solutie optima finita; c) poate avea mai multe solutii optime.				
 87) Pentru a determina solutia initiala a unei probleme de transport: a) se aplica metoda diagonalei; d) problema trebuie sa fie echilibrata. 	88) Pentru aplicarea algoritmului Simplex este necesar ca: b) sistemul in forma standard sa aiba cel putin o solutie de baza admisibila.	89) Solutia unei probleme de transport este optima daca: b) toate cantitatile $\delta_{ij} \leq 0$		
90) Criteriul de optim al unei probleme de programare de minim este satisfacut daca:	91) O problema de transport are optim infinit:	92) O problema de transport are intotdeauna:		
a) toate differentele $z_j - c_j \le 0$;	b) niciodata.	a) optim finit;b) cel putin o solutie de baza admisibila.		
d) toti vectorii Pj din afara bazei au diferentele $z_j - c_j \le 0$.				

93) Functia obiectiv a problemei artificiale are: a) totdeuna optim finit; d) coeficienti negativi. 96) Intr-o problema de transport vom avea costuri de transport egale cu 0 daca: b) problema initiala este neechilibrata.	 94) Daca functia artificiala are optim strict pozitiv, atunci; a) problema initiala nu are solutii; b) in baza au ramas variabilele artificiale. 97) Intr-o problema de transport va intra in baza variabila corespunzatoare lui: a) δ_{ij} > 0, maxim. 		95) Intr-o problema de transport coeficientii functiei obiectiv reprezinta: c) cheltuieli de transport. 98) Ciclul unei celule nebazice este format: a) din cel putin 4 celule; c) dintr-un numar par de celule.
99) Problemele de transport: a) sunt cazuri particulare de p 100) Intr-o problema de transport criteriul de iesire se aplica:		c) au numai optim finit.	
IV. SERII NUMERICE. SERII DE PUITERI			
1) Fie seria $\sum_{n=1}^{\infty} a_n$ convergenta. Atunci, asociind termenii	2) Care din urmatoarele operati serii divergente:	ii poate modifica natura unei	3) Suma unei serii convergente se modifica at. cand: b) adaugam un nr.finit de termeni;
in grupe finite: b) seria ramane convergenta; d) suma seriei nu se modifica.	a) asocierea termenilor seriei ir	1 grupe finite.	c) suprimam un nr. finit de termeni ai seriei; d) inmultim termenii seriei cu un scalar ennul.
4) Fie seria numerica $\sum_{n=1}^{\infty} a_n, a_n \in \mathbf{i}$. Care din afirmatiile	5) Fie $(S_n)_{n \in Y}$ sirul sumelor partiale atasat seriei $\sum_{n=1}^{\infty} a_n$		6) Fie $(S_n)_{n \in Y}$ sirul sumelor pariale atasat seriei $\sum_{n=1}^{\infty} a_n$ si
de mai jos sunt adevarate:	Daca $\lim_{n\to\infty} S_n = 2$, atunci:		$\lim_{n\to\infty} S_n = S_{\text{. Atunci seria:}}$
a) daca $\sum_{n=1}^{\infty} a_n$ converge, atunci $\lim_{n \to \infty} a_n = 0$;	a) seria converge; d) seria are suma $S=2$		a) converge, daca $S \neq \pm \infty$; d) converge, daca $S=1$.
d) daca $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\sum_{n=1}^{\infty} a_n$ diverge.			
7) Fie seria geometrica $\sum_{n=0}^{\infty} aq^n$ cu a $\neq 0$. Atunci seria: a) converge, pentru q \in (-1,1);	8) Seria armonica generalizata $\sum_{n=1}^{\infty} \frac{1}{n^a}$ este o serie: b) divergenta, daca $\alpha < 0$; c) convergenta, daca $\alpha > 1$; d) divergenta, daca $\alpha = 1$.		9) Fie $(S_n)_{n\in \mathbb{Y}}$ sirul sumeolor partiale atasat unei serii de termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $(a_n \ge 0)$. Atunci sirul $(S_n)_{n\in \mathbb{Y}}$ este intotdeauna: b) monoton crescator.
10) Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ si $\sum_{n=1}^{\infty} b_n$ astfel inca	at $a_n \leq b_n, (\forall) n \in \mathbf{Y}^*$	11) Fie seria cu termeni pozi	itivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si seria armonica $\sum_{n=1}^{\infty} \frac{1}{n}$. Atunci:
Atunci: a) $\sum_{n=1}^{\infty} a_n$ converge daca $\sum_{n=1}^{\infty} b_n$; d) $\sum_{n=1}^{\infty} b_n$ diverge data	ca $\sum_{n=1}^{\infty} a_n$ diverge.	b) $\sum_{n=1}^{\infty} a_n$ diverge daca $a_n \ge$	$\geq \frac{1}{n}$.
12) Fie seriile cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ si $\sum_{n=1}^{\infty} b_n$. Daca	13) Criteriile de comparatie se aplica seriilor: b) cu termeni pozitivi.		15) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$. Daca $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}$, atunci:
$\lim_{n\to\infty} \frac{a_n}{b_n} = 1, \text{ atunci:}$	14) Fie seriile de termeni pozitivi $\sum_{n=1}^{\infty} a_n$ si $\sum_{n=1}^{\infty} b_n$, care		$\underline{\mathbf{a}}) \lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{2}$
a) daca $\sum_{n=1}^{\infty} a_n(C) \Rightarrow \sum_{n=1}^{\infty} b_n(C)$;	satisfac relatia $\lim_{n\to\infty} \frac{a_n}{b_n} = k$. Atunci:		$\underline{\mathbf{b}}) \sum_{n=1}^{\infty} a_n \text{ converge.}$

	-) 11-0(01)	
$\underline{\mathbf{b}}) \operatorname{daca} \sum_{n=1}^{\infty} b_n(D) \Rightarrow \sum_{n=1}^{\infty} a_n(D).$	a) daca $k \in (0,1)$ seriile au aceeasi natura. b) $k=2$ si $\sum_{n=1}^{\infty} a_n(C) \Rightarrow \sum_{n=1}^{\infty} b_n(C)$.	17) Pentru seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ avem $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$.
∞		Atunci:
16) Fie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, si notam cu	$\underline{\mathbf{c}} = 1 \text{ si } \sum_{n=1}^{\infty} b_n(D) \Rightarrow \sum_{n=1}^{\infty} a_n(D).$	$\underline{\mathbf{c}}$) daca $\lambda \ge 2 \Rightarrow \sum_{n=1}^{\infty} a_n$, diverge.
$\lambda_1 = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ si $\lambda_2 = \lim_{n \to \infty} \sqrt[n]{a_n}$. Atunci:	n=1	$\underline{\mathbf{d}} \text{ daca } \lambda \in \left(0, \frac{1}{2}\right) \Rightarrow \sum_{n=1}^{\infty} a_n \text{ converge.}$
c) $\lambda_1 = \lambda_2$; d) daca $\lambda_2 = \sqrt{2} \Rightarrow \lambda_1 = \sqrt{2}$.		(2) n=1
18) Pentru seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ avem	19) Fie $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ astfel incat $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) = 2$.	20) Fie $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ astfel incat $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$.
$\lim_{n\to\infty} \sqrt[n]{a_n} = \sqrt{2}$. Atunci:	Atunci:	Atunci:
$\underline{\mathbf{c}}) \sum_{n=1}^{\infty} a_n \text{ diverge;} \underline{\mathbf{d}}) \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \sqrt{2}$	$\mathbf{a)} \sum_{n=1}^{\infty} a_n \text{ converge.}$	d) daca $\mu \in (1,2) \Rightarrow \sum_{n=1}^{\infty} a_n(C)$
21) Seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ are sirul sumelor	22) In aplicarea criteriului lui Raabe-Duhamel seriei $\sum_{n=1}^{\infty} a_n$	23) Fie seria alternata $\sum_{n=1}^{\infty} (-1)^n a_n$ cu $a_n \ge 0$. Criteriul lui
partiale $(S_n)_{n \in Y}$ marginit. Atunci:	$a_n \ge 0$ se cere calculul limitei:	Leibniz afirma ca seria:
a) $\sum_{n=1}^{\infty} a_n$ converge;	$ \underline{\mathbf{c}} \lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right). $	a) converge, daca $a_n \rightarrow 0$ monoton descrescator.
b) sirul $(S_n)_{n \in Y}$ converge.		
24) Fie seria $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$, $a_n \ge 0$ astfel incat $\lim_{n \to \infty} a_n = 0$.	25) Seria $\sum_{n=1}^{\infty} u_n$ este o serie alternata daca :	26) Fie seria de termeni oarecare $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbf{i}$. Care din
Atunci seria converge daca:	$\mathbf{\underline{b}}) \ u_n \mathbf{g} u_{+1} \le 0, (\forall) n \in \mathbf{Y} \ ;$	urmatoarele afirmatii sunt adevarate?
b) $(a_n)_{n \in Y}$ este monoton descrescator.	$\underline{\mathbf{d}} \ u_n = (-1)^{n+1} a_n, a_n \ge 0.$	$\oint \underline{\mathbf{b}} \operatorname{daca} \sum_{n=1}^{\infty} a_n (C) \Rightarrow \sum_{n=1}^{\infty} a_n(C);$
27) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbf{i}$ astfel incat $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$. A	atunci:	$\underbrace{\mathbf{c}}_{n=1} \operatorname{daca} \sum_{n=1}^{\infty} a_n(D) \Rightarrow \sum_{n=1}^{\infty} a_n (C).$
a) seria $\sum_{n=1}^{\infty} a_n $ converge; b) seria $\sum_{n=1}^{\infty} a_n$ converge;	$\lim_{n\to\infty} \sqrt[n]{ a_n } = \frac{1}{2}$	
28) O serie cu termeni oarecare $\sum_{n=1}^{\infty} a_n$, $a_n \in \mathbf{i}$ se	29) Fie seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$. Atunci:	30) Seria cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$ are limita
numeste semiconvergenta daca:	$\mathbf{\underline{a}}) \operatorname{daca} \sum_{n=1}^{\infty} a_n(C) \operatorname{rezulta} \sum_{n=1}^{\infty} a_n (C);$	$\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu \text{ Atunci daca:}$
$\underline{\mathbf{b}}) \sum_{n=1}^{\infty} a_n(C) \text{ si } \sum_{n=1}^{\infty} a_n (D)$	$\sum_{n=1}^{\infty} a_n(x) \sum_{n=1}^{\infty} a_n(x),$	$\left \begin{array}{c} \prod_{n \to \infty} n \\ a_{n+1} \end{array} \right = \mu$. Attilled data.

31) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$, $a_n \in \mathbf{i}$ are $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = 1$. Atunci: b) daca $\sum_{n=1}^{\infty} a_n (D)$ rezulta $\sum_{n=1}^{\infty} a_n (D)$; c) $\mu = 0$ rezulta $\sum_{n=1}^{\infty} a_n$ diverge; d) $\mu = 3$ rezulta $\sum_{n=1}^{\infty} a_n$ converge. 32) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta r=1. Atunci seria: c) converge, pentru $\mathbf{x} \in (-2,0)$; d) diverge, daca $\mathbf{x} \in (3,\infty)$ 32) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta r=0; d) converge, pentru $\mathbf{x} \in (-2,0)$; d) $\lim_{n\to\infty} \frac{ a_{n+1} }{ a_n } = 0$. 33) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$ 34) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta r=0; d) converge, daca $\mathbf{x} \in (3,\infty)$ 35) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$ 36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are raza de convergenta r=0; d) converge, $(\forall) \mathbf{x} \in \mathbf{R}$. 37) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n\to\infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$ Convergenta r>0. Atunci teorema lui Abel afirma ca seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n\to\infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$ D) raza de convergenta este r=2; d) converge, $(\forall) \mathbf{x} \in \mathbf{R}$. 38) Fie seria de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$. Atunci coeficientii 39) Fie r raza de convergenta a seriei de puteri $\sum_{n=1}^{\infty} a_n x^n$. 40) Seria de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ are raza de convergenta a seriei de puteri $\sum_{n=1}^{\infty} a_n x^n$.	. Atunci
b) $\lim_{n\to\infty} \sqrt[q]{a_n} = 1$; c) seria converge pentru $\mathbf{x} \in (-1,1)$ 34) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta r=1. Atunci seria: c) converge, pentru $\mathbf{x} \in (-2,0)$; d) diverge, daca $\mathbf{x} \in (3,\infty)$ 35) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are $\lim_{n\to\infty} \sqrt[q]{a_n} = 0$. 36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 37) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 38) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 39) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 31) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 32) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 33) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ cu $a_n \in \mathbf{i}$ are limita 31) $\lim_{n\to\infty} \frac{ a_{n+1} }{ a_n } = +\infty$. Atunci seria: and converge numai in/pentru $\mathbf{x} = \mathbf{x} = 0$. 32) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are raza de convergenta $\mathbf{r} = 0$. Atunci seria: and converge numai in/pentru $\mathbf{x} = \mathbf{x} = 0$. 35) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are raza de convergenta $\mathbf{r} = 0$. Atunci seria: and converge numai in/pentru $\mathbf{x} = \mathbf{x} = 0$. 36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are raza de convergenta $\mathbf{r} = 0$. Atunci seria: and converge numai in/pentru $\mathbf{x} = \mathbf{x} = 0$. 37) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n\to\infty} \frac{ a_n }{ a_n } = \frac{1}{2}$. and $\lim_{n\to\infty} \frac{ a_n }{ a_n } = \frac{1}{2}$. b) raza de convergenta este $\mathbf{r} = 2$; and $\lim_{n\to\infty} \frac{ a_n }{ a_n } = \frac{1}{2}$. b) raza de convergenta este $\mathbf{r} = 2$; and $\lim_{n\to\infty} \frac{ a_n }{ a_n } = \frac{1}{2}$. b) raza de convergenta este $\mathbf{r} = 2$; and $\lim_{n\to\infty} \frac{ a_n }{ a_n } = \frac{1}{2}$. b) raza de convergenta este $\mathbf{r} = 2$; and $\lim_{n\to\infty} \frac{ a_n }{ a_n } = \frac{1}{2}$. b) raza de convergenta este $\mathbf{r} = 2$; b) raza de convergenta este $\mathbf{r} = 2$; c) raza de convergenta este $\mathbf{r} = 2$; c) raza de convergenta este $\mathbf{r} = 2$; c) raza de convergenta este $\mathbf{r} = 2$;	. Atunci
32) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta $\lim_{n\to\infty} \sqrt[n]{ a_n } = 0$. Atunci seria: $\underbrace{\mathbf{c}}_{\mathbf{c}}$ converge, pentru $\mathbf{x} \in (-2,0)$; $\underbrace{\mathbf{d}}_{\mathbf{d}}$ diverge, daca $\mathbf{x} \in (3,\infty)$ 32) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n, a_n \in \mathbf{i}$ are limita $\lim_{n\to\infty} \sqrt[n]{ a_n } = 0$. Atunci seria: $\underbrace{\mathbf{b}}_{\mathbf{d}}$ seria converge, pentru $(\forall)x \in \mathbf{i}$; $\underbrace{\mathbf{c}}_{\mathbf{d}}$ converge, pentru $(\forall)x \in \mathbf{i}$; $\underbrace{\mathbf{c}}_{\mathbf{d}}$ converge numai in/pentru $(\forall)x \in \mathbf{i}$; $\underbrace{\mathbf{d}}_{\mathbf{d}}$ converge numai in/pentru $(\forall)x \in \mathbf{i}$; $\underbrace{\mathbf{c}}_{\mathbf{d}}$ converge numai in/pentru $(\forall)x \in \mathbf{i}$; $\underbrace{\mathbf{d}}_{\mathbf{d}}$ converge, $(\forall)x \in \mathbf{R}$. 33) Seria de puteri $\underbrace{\sum_{n=1}^{\infty} a_n (x-x_0)^n}_{a_n}$ cu $\underbrace{a_n \in \mathbf{i}}_{\mathbf{d}}$ are limita $\underbrace{\lim_{n\to\infty} \sqrt[n]{ a_n }}_{\mathbf{d}} = +\infty$. Atunci seria: $\underbrace{\lim_{n\to\infty} a_n }_{\mathbf{d}} = +\infty$. Atunci seria: $\underbrace{\lim_{n\to\infty} a_n }_{$. Atunci
34) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$ are raza de convergenta $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$. Atunci: $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$. Atunci seria: $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$. 35) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$ 36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x-x_0)^n$ are raza de convergenta r > 0. Atunci teorema lui Abel afirma ca seria $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de convergenta este r=2; $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 38) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 39) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 31) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 32) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 33) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 36) Seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 38) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 39) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 39) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 31) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 32) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 33) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 34) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 35) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 36) Fie seria de puteri $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$ 37)	. Atunci
r=1. Atunci seria: c) converge, pentru $x \in (-2,0)$; d) diverge, daca $x \in (3,\infty)$ b) seria converge, pentru $(\forall)x \in \mathbf{i}$; d) $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = 0$. 36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are $\lim_{n \to \infty} \sqrt[n]{ a_n } = 0$ Atunci seria: d) converge, pentru $(\forall)x \in \mathbf{i}$; e) are raza de convergenta r=0; d) converge numai in/pentru $x = x = 0$. 37) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$ convergenta r >0. Atunci teorema lui Abel afirma ca seria convergenta este r=2; d) converge, $(\forall)x \in \mathbf{R}$. b) raza de convergenta este r=2; d) seria diverge $(\forall)x \in (-\infty, -2) \cup (2, +\infty)$	
d) diverge, daca $\mathbf{x} \in (3,\infty)$ d) $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = 0$. 36) Seria de puteri $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are $\lim_{n \to \infty} \sqrt[n]{ a_n } = 0$ Atunci seria: d) converge, $(\forall) \mathbf{x} \in \mathbf{R}$. 37) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ cu $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \frac{1}{2}$ convergenta $\mathbf{r} > 0$. Atunci teorema lui Abel afirma ca seria convergenta este $\mathbf{r} = 2$; d) seria diverge $(\forall) \mathbf{x} \in (-\infty, -2) \cup (2, +\infty)$	
Atunci seria: Atunci seria: and convergent $r > 0$. Atunci teorema lui Abel afirma ca seria convergent a este $r = 2$; and converge, $(\forall) \ x \in \mathbb{R}$. b) raza de convergenta este $r = 2$; and convergent a este $r = 2$; b) raza de convergenta este $r = 2$; converge pe intervalul: b) seria diverge $(\forall) x \in (-\infty, -2) \cup (2, +\infty)$	
d) converge, (\forall) x∈ R. converge pe intervalul: b) (x0-r,x0+r) d) seria diverge (\forall) x∈ (-∞,-2)∪(2,+∞)	
b) (x0-r,x0+r)	
38) Fie seria de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$. Atunci coeficientii 39) Fie r raza de convergenta a seriei de puteri $\sum_{n=1}^{\infty} a_n x^n$. 40) Seria de puteri $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ are raza de convergenta.	l
n=1 $n=1$ $n=1$ $n=1$ $n=1$ $n=1$ $n=1$	genta
seriei sunt dati de relatia: r=1. Atunci domeniul maxim de convergenta a seri	i este:
41) Fie seria de puteri $\sum_{n=1}^{\infty} a_n x^n$, a carei raza de 42) Seria Taylor atasata unei functii $f(x)$ in punctul $x0$: 44) Fie $f: I \subseteq i \to i$ o functie oarecare. Care of conditiile de mai jos sunt necesare pt a-i atasa acest	
convergenta este $r > 0$ finita. Atunci: a) seria converge, $(\forall) x \in (-r, r)$ d) are coefficientii de forma $a_n = \frac{f^{(n)}(x_0)}{n!}$. serie Taylor in punctul $x \in [-r, r)$ a) obligatoriu $x \in [-r, r)$ b) $f(x)$ admite derivate de orice ordin in $x \in [-r, r)$	
c) $\lim_{n\to\infty} \sqrt[n]{ a_n } = \frac{1}{r}$; 45) Coeficientii numerici ai unei serii MacLaurin atasata unei functii $f(x)$: unei functii $f(x)$ au forma:	isate
$\underline{\mathbf{d}} \lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \lim_{n \to \infty} \sqrt[n]{ a_n }.$ $\underline{\mathbf{c}} \text{ este o serie de puteri centrata in 0;}$ $\underline{\mathbf{d}} \text{ este un caz particular de serie Taylor.}$ $\underline{\mathbf{b}} a_n = \frac{f^{(n)}(0)}{n!}$	
46) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ satisface proprietatea $\lim_{n\to\infty} a_n = 1$. Atunci seria: c) converge, (\forall) x \in (-1,1)	
47) Seria de puteri $\sum_{n=1}^{\infty} (-1)^n x^n$: 48) Pentru a studia convergenta unei serii alternate se aplica: 49) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ este convergenta pe F	numai
c) are raza de convergenta $r = 1$; d) converge, $(\forall) x \in (-1,1)$ b) raza de convergenta $r = +\infty$;	

		$\underline{\mathbf{c}} \lim_{n \to \infty} \sqrt[n]{ a_n } = 0.$
50) Seria de puteri $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converge numai in x0,	51) Fie seria numerica $\sum_{n=0}^{\infty} a_n$ pentru care $\lim_{n\to\infty} a_n = 0$.	52) Daca pentru sirul numerelor partiale $\lim_{n\to\infty} S_n = 1$ atunci
daca si numai daca: a) raza de convergenta r=0;	Atunci seria: d) nu se poate preciza natura seriei.	seria $\sum_{n=1}^{\infty} a_n$: a) este convergenta si are suma S=1.
$\underline{\mathbf{c}} \lim_{n \to \infty} \sqrt[n]{ a_n } = +\infty.$		a) este convergenta si are suma 3-1.
53) Daca pentru seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ sirul sumelor partiale	54) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \lambda$. Atunci seria	55) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} - 1 \right) = \mu$.
este marginit, atunci seria: a) este convergenta.	b) converge daca $\lambda < 1$; c) converge, daca $\lambda = 0$	Atunci seria: a) este divergenta, daca $\mu = 0$; d) este convergenta, daca $\mu = +\infty$.
56) Fie seria $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} a_n = 0$. Atunci	57) Fie seria $\sum_{n=1}^{\infty} a_n$, si $\lim_{n\to\infty} a_n = 1$. Atunci seria:	58) Seria $\sum_{n=1}^{\infty} a_n$ este divergenta daca:
seria: $\underline{\mathbf{c}}$) este convergenta, daca $a_n \ge a_{n+1}$ pentru price $n \in \mathbf{Y}^*$.	d) nu se poate preciza natura seriei; se aplica criteriul lui Raabe-Duhamel.	b) $\lim_{n\to\infty} a_n = 1$ c) $\lim_{n\to\infty} a_n = +\infty$.
59) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \sqrt[n]{a_n} = \lambda$. Atunci seria:	60) Fie seria $\sum_{n=1}^{\infty} a_n$, cu $\lim_{n\to\infty} \left(\frac{a_n}{a_{n+1}} - 1\right) = 0$. Atunci seria:	61) Fie seria $\sum_{n=1}^{\infty} a_n x^n$ si $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 0$. Atunci seria:
b) este divergenta, pentru $\lambda > 1$. c) este convergenta, pentru $\lambda = \frac{1}{\sqrt{2}}$.	b) este divergenta, pentru $a_n \ge 0$.	a) este convergenta, (\forall) x \in R .
d) este divergenta, daca $\lambda = +\infty$.		
62) Pentru seria $\sum_{n=1}^{\infty} a_n x^n$ avem $\lim_{n\to\infty} \sqrt[n]{a_n} = \lambda = \rho$. Atunci	63) Seria $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergenta r=0. Atunci	64) Daca seria $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are raza de convergenta r=0,
raza de convergenta r este: a) $r = \frac{1}{\rho}$; c) $r = 0$, daca $\rho = +\infty$; d) $r = 1$, daca $\rho = 1$.	seria: a) este convergenta, numai in x=0.	atunci seria: b) este divergenta, $(\forall) x \in \mathbb{R} \setminus \{x0\}$; c) este convergenta, numai in $x=x0$.
65) Seria $\sum_{n=1}^{\infty} a_n (x - x_0)^n$ are $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = 0$. Atunci seria:	66) Fie seria numerica $\sum_{n=1}^{\infty} a_n$. Atunci seria:	67) O serie cu termeni pozitivi:b) este divergenta, daca termenul general nu tinde la 0;
a) este convergenta, (\forall) $x \in \mathbb{R}$	c) diverge, daca $\lim_{n\to\infty} a_n \neq 0$.	c) are totdeauna sirul numerelor partiale crescator.

68) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lambda$. Atunci seria	69) Fie seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ si $\lim_{n \to \infty} \left(\frac{a_n}{a_{n+1}} - 1 \right) = \mu$.	70) O serie cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$:
a) diverge, daca $\lambda > 2$; b) converge, daca $\lambda < 1$.	Atunci seria este divergenta, daca: b) $\mu = \frac{1}{2}$;	a) converge, daca $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 0$;
71) Seria $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$ este:	$\frac{2}{\mathbf{d}} \mu = -\infty$	b) diverge, daca $\lim_{n\to\infty} a_n = 1$; c) diverge, daca $\lim_{n\to\infty} a_n = +\infty$.
a) convergenta, daca $\lim_{n\to\infty} \sqrt[n]{a_n} = 0$; b) divergenta, daca $\lim_{n\to\infty} \sqrt[n]{a_n} = 2$;	72) Fie seria $\sum_{n=1}^{\infty} a_n$ cu $\lim_{n\to\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = 0$. Atunci seria	73) O serie de puteri $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergenta r=2.
c) convergenta, daca $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$.	b) este divergenta, daca $a_n \ge 0$.	Atunci seria: a) converge pt $x \in (-2,2)$ d) diverge, daca $x > 2$.
74) O serie de termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$:	75) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ are $\lim_{n\to\infty} \sqrt[n]{ a_n } = +\infty$. Atunci	76) Fie o seria oarecare cu termeni pozitivi $\sum_{n=1}^{\infty} a_n$, $a_n \ge 0$
b) diverge, daca $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \sqrt{2}$;	seria: b) converge, numai pentru x=0;	si $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$. Atunci:
<u>d</u>) diverge, daca $\lim_{n\to\infty} \sqrt[n]{a_n} = 2$.	d) diverge, pentru $x \neq 0$.	a) $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$; c) Raabe-Duhamel pt a det. natura seriei
77) Seria armonica generalizata $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ cu $\alpha \in \mathbb{R}$:	78) Fie seria cu termeni alternanti $\sum_{n=1}^{\infty} (-1)^n a_n$, $a_n \ge 0$.	79) Seria de puteri $\sum_{n=1}^{\infty} a_n (x+1)^n$, are raza de convergenta
b) diverge, daca $\alpha < 1$; d) converge, daca $\alpha = 2$.	Daca $\lim_{n\to\infty} a_n = 1$, atunci: b) seria diverge conform criteriului general de divergenta.	r=1. Atunci seria: b) diverge, pentru $x \in (-\infty, -2) \cup (0, +\infty)$; d) converge, pentru $x \in (-2,0)$.
80) Seria de puteri $\sum_{n=1}^{\infty} a_n(x+1)^n$ are raza de convergenta	81) Seria de puteri $\sum_{n=1}^{\infty} a_n(x+1)^n$, are raza de convergenta	82) Seria de puteri $\sum_{n=1}^{\infty} a_n x^n$ are raza de convergenta r =0.
r=1. Atunci seria: b) diverge, pentru $x \in (-\infty, 0) \cup (2, +\infty)$; c) converge, pentru $x \in (0,2)$.	r= ∞ . Atunci seria: c) converge, pentru $x \in \mathbb{R}$.	Atunci seria: b) converge, numai pentru x=0; d) diverge, (\forall) x \in R.
V. FUNCTII REALE DE <i>N</i> VARIABILE 1) Fie punctele $P_1(1,1)$, $P_2(2,2) \in \mathbb{R}^2$. Atunci distanta dintre	2) Fie punctele $P1(x1,x2)$ si $P2(y1,y2) \in \mathbb{R}^2$. Atunci distanta	3) Fie $P(x1,x2) \in \mathbb{R}^2$; Atunci distanta de la $O(0,0)$ la P este:
ele este egala cu: \mathbf{c}) d(P ₁ ,P ₂) = $\sqrt{2}$.	b) d(P1,P2)= $\sqrt{(x_1-x_2)^2} + \sqrt{(y_1-y_2)^2}$.	b) $d(O,P) = \sqrt{x_1^2 + x_2^2}$.
4) Fie sirul $(x_n)_{n \in Y} \in \mathbf{i}^{-2}$ cu termenul general de forma	5) Fie sirul $(x_n)_{n \in Y} \in \mathbf{i}^{-2}$ cu termenul general	6) Fie sirul de puncte $(x_n)_{n \in Y} \in \mathbf{i}^n$. Atunci sirul:
$x_n = \left(\frac{1}{n}, \frac{n}{n+1}\right). \text{ Atunci}$ b) limita sirului este x0=(0,1)	$x_n = \left(\frac{(-1)^n}{n}, \frac{n}{n+1}\right).\text{At.: } \mathbf{b})\text{sirul diverge/limita x0} = (0, \infty)$	 b) converge, daca toate sirurile coordonatelor converg; d) diverge, numai daca toate sirurile de coordonte diverg.
7) Fie $f(x,y)$ o functie de 2 variabile si notam cu lg limita globala, respectiv 11,12 limitele partiale ale acesteia intr-un puct $(x0,y0)$. Care din urmatoarele afirmatii sunt adevarate: a) daca (\exists) lg atunci (\exists) 11,12 si 11=12=lg; c) daca (\exists) 11,12 si 11≠12 atunci nu exista lg.		

8) Fie $f:D\subseteq \mathbf{i}^2\to \mathbf{i}$ si $(x0,y0)\in D$. Atunci derivata	9) Fie functia $f(x,y) = \frac{x^2}{y}$. Atunci: a) $\frac{\partial f}{\partial x} = \frac{2x}{y}$; d) $\frac{\partial f}{\partial x} = \frac{x^2}{y^2}$.	10) Derivatele partiale ale functiei $f(x,y)=\ln(xy)$ sunt:
partiala a lui $f(x,y)$ in raport cu variabila x in punctul $(x0,y0)$ se calculeaza cu relatia:	<i>y</i>	$\left \underline{\mathbf{b}} \right \frac{\partial \mathbf{y}}{\partial x} = \frac{1}{x};$
$ \underline{\mathbf{b}} \frac{\partial f}{\partial x}(x_0, y_0) = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}. $	a) $\frac{\partial f}{\partial x} = \frac{2x}{3}$; d) $\frac{\partial f}{\partial x} = \frac{x^2}{3}$.	$\begin{array}{l} \mathbf{b}) \ \frac{\partial f}{\partial x} = \frac{1}{x} ; \\ \mathbf{d}) \ \frac{\partial f}{\partial x} = \frac{1}{y} . \end{array}$
11) Fie functia f(x,y)=xy2, care din urmatoarele egalitati sunt corecte?	12) Diferentiala de ordin I a functiei $f(x,y)=xy2$ calculata in punctul $P0(1,2)$ are expresia:	13) Diferentiala de ordin I a functiei f(x,y)=xy2+2x3y in punctul P0(1,1) are expresia:
b) $\frac{\partial f}{\partial x} = y^2$; d) $\frac{\partial^2 f}{\partial x^2} = 0$.		$\mathbf{b)} df(P0) = 7dx + 4dy.$
14)Diferentiala de ordin I a functiei $f(x,y) = xe^y$ are expresia c) $df(x,y) = e^y dx + xe^y dy$;	15) Fie (x,y) oo functie care satisface criteriul lui Schwartz	16) Fie H(x,y)= $\begin{pmatrix} 6x & -2 \\ -2 & 6y \end{pmatrix}$ hessiana atasata functiei f(x,y).
\mathcal{L} $\mathrm{di}(x,y) = e \mathrm{d}x + x e \mathrm{d}y,$	si care are $\frac{\partial^2 f}{\partial x \partial y} = xy^2$. Atunci:	$\begin{bmatrix} 160 \end{bmatrix}$ File $H(x,y) = \begin{bmatrix} -2 & 6y \end{bmatrix}$ hierarchia atasata functiei $I(x,y)$.
		Daca P1(2,-1) si P2(-2,-1) sunt puncte critice ale lui f,atunci c) P1 nu este punct de extrem, iar P2 este punct de maxim;
	$\mathbf{b)} \cdot \frac{\partial^2 f}{\partial y \partial x} = xy^2$	G11 nu este punet de extrem, fai 12 este punet de maxim,
17) Punctele critice ale functiei $f(x,y) \in C2(\mathbf{R}2)$ se obtin:	18) Functia f(x,y) are derivatele partiale ordinul I de forma:	$f: \mathbf{i}^2 \to \mathbf{i}$
$\left \frac{\partial f}{\partial x} \right = 0$	$\partial^2 f \partial^2 f$ $\left(2 \ln y 2y + \frac{2x}{y} \right)$	f(x,y) = xy + 1 are.
$\frac{\mathbf{c}}{\partial x} \text{ rezolvand sistemul} \begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial x} = 0 \end{cases}$	$ \frac{\mathbf{b}}{\partial x \partial y} = \frac{\partial}{\partial y \partial x}; \underline{\mathbf{d}} \mathbf{H}(x, y) = \begin{vmatrix} 2 & x \\ y + \frac{x}{x} \end{vmatrix} = \frac{x^2}{2x - \frac{x^2}{x^2}} $	c) un singur punct critic;
$\left \frac{\partial}{\partial y}\right = 0$	18) Functia $f(x,y)$ are derivatele partiale ordinul I de forma: b) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$; d) $H(x,y) = \begin{pmatrix} 2 \ln y & 2y + \frac{2x}{y} \\ 2\left(y + \frac{x}{y}\right) & 2x - \frac{x^2}{y^2} \end{pmatrix}$	d) hessiana de forma $H(x,y) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
	c) $\frac{\partial^2 f}{\partial y^2} = 2x - \frac{x^2}{y^2}$ 21) Fie H(P0)= $\begin{pmatrix} 2\alpha & \beta \\ \beta & 1 \end{pmatrix}$ hessiana atasata functiei f(x,y) in	(1 0)
20) Functia $\begin{cases} f: i^2 \to i \\ f(x, y) = x + y + 1 \end{cases}$ are:	21) Fig. H(P0)= $\begin{pmatrix} 2\alpha & \beta \\ \end{pmatrix}$ hessiana atasata functiei f(x y) in	22) Fie P0 un punct critic al functiei f(x,y) si hessiana
$\begin{cases} f(x,y) = x + y + 1 \end{cases}$ are:	punctul critic P0. Atunci P0:	corespunzatoare acestuia de forma: $H(P0) = \begin{pmatrix} 3 & 2\alpha \\ 2\alpha & 1 \end{pmatrix}$.
b) nici un punct critic.	a) este punct de minim local, daca $\alpha = \beta = 1$;	Atunci P0 va fi punct de minim pt functia f daca:
	c) nu este punct de extrem local, daca $\alpha=1$ si $\beta=2$.	\mathbf{c}) $\alpha = \frac{\sqrt{3}}{2}$; \mathbf{d}) $\alpha = \frac{1}{2}$.
23) Hessiana functiei $f(x,y)$ in punctul critic P0, este de	24) Hessiana functiei $f(x,y)$ in punctul critic P0 are forma:	25) Daca functia $f(x,y)$ are derivatele partiale de ordin I de $\begin{cases} \frac{\partial f}{\partial x} = x(x+2y-1) \\ \frac{\partial f}{\partial y} = y(2x+y-1) \end{cases}$, atunci f are:
forma H(P0)= $\begin{pmatrix} \alpha & -\beta \\ -\beta & -1 \end{pmatrix}$. Atunci P0 este punct de maxim	$H(P0) = \begin{pmatrix} \alpha + 2 & -\sqrt{2}\alpha \\ -\sqrt{2}\alpha & \alpha^2 \end{pmatrix}. P0 \text{ de minim local pt f daca:}$	forma $\begin{cases} \frac{\partial}{\partial x} = x(x+2y-1) \\ \frac{\partial}{\partial x} = x(x+2y-1) \end{cases}$
local pentru f daca: Nici una		$\left \frac{\partial f}{\partial y} = y(2x + y - 1) \right $
- THE UNIT		<u>a)</u> patru puncte critice.
26) Fie H(P0)= $\begin{pmatrix} \alpha & 2-\alpha \\ 2 & 1 \end{pmatrix}$ hessiana functiei f(x,y) in	27) Hessiana atasata functiei $f(x,y)$ are forma $H(x,y)=$	28) Diferentiala de ordin I a functiei $f(x,y)$ are forma $df(x,y)=(x+y)dx+(x+2)dy$. Atunci functia $f(x,y)$;
punctul critic P0. Atunci pentru :	$\begin{pmatrix} 2y^3 & 6xy^2 \\ 6xy^2 & 6x^2y^2 \end{pmatrix}$; Atunci diferentiala de ordin II a funtiei	c) are punctul critic unic P(-2,2)
b) $\alpha=4\Rightarrow$ nu se poate preciza natura lui P0;	are forma:	29) Fie H(x,y)= $\begin{pmatrix} 2y & 2x \\ 2x & 0 \end{pmatrix}$ hessiana atasata functiei f(x,y).
$\underline{\mathbf{c}}$) $\alpha = \frac{1}{2} \Rightarrow P0$ nu este punct de extrem local;	c) $d^2 f(x, y) = 2y^3 dx^2 + 12xy^2 dx dy + 6x^2 y^2 dy^2$	Atunci diferentiala de ordin II a functiei f are forma:
		$\mathbf{d}) d^2 f(x, y) = 2ydx^2 + 4xdxdy$
<u>d</u>) α =3⇒P0 este puct de minim local.		

30) Fie H(x,y)= $\begin{pmatrix} 2y & 2x \\ 2x & 0 \end{pmatrix}$ hessiana atasata functiei f(x,y).	31) Fie H(P0)= $\begin{pmatrix} \alpha-1 & 0 & 0 \\ 0 & \alpha & 0 \end{pmatrix}$ hessiana corespunzatoare	32) Fie P0 punct critic al functiei $f(x,y)$ si $d^2 f(P_0) = -2dx^2 + dy^2$. Atunci:
Daca P1(1,-1), P2(-1,1) sunt punctele critice ale lui f, atunci	$\begin{pmatrix} 0 & 0 & \alpha + 1 \end{pmatrix}$ nessama corespondente	$(C_1) = (C_1)^2 - (C_2)^2 + (C_1)^2 - (C_1)^2 + (C_2)^2 + (C_2)^2 + (C_1)^2 - (C_1)^2 + (C_2)^2 + (C_2)^2 + (C_2)^2 + (C_1)^2 + (C_2)^2 + (C_2)^$
c) P1,P2 nu sunt puncte de extrem local.	functiei f(x,y,z) in punctul critic P0. Atunci:	34)) Fie P0 un punct critic al functiei f(x,y,z) si
33) Fie P0 un punct critic al functiei f(x,y) si	<u>a)</u> P0 este punct de minim local, daca α>1;	$d^2 f(P_0) = dx^2 + 4dy^2 + d^2 z$. Atunci:
$d^2 f(P_0) = 4dx^2 - dxdy + dy^2$. Atunci:	<u>c</u>) P0 nu este punct de extrem local, daca $\alpha = \frac{1}{2}$;	a) P0 este punct de minim local.
<u>a)</u> P0 este punct de minim local.	<u>d</u>) P0 este punct de minim local, daca α=-2.	-
35) Functia $f(x,y)$ are derivatele partiale de ordin I de forma	36) Diferentiala de ordin I a functiei $f(x,y,z)=xy+y^2z$ are	37) Diferentiala de ordin I a functiei f(x,y,z)=xyz are forma:
$\frac{\partial f}{\partial x} = x^2 - 3x + 2 \text{ respectiv } \frac{\partial f}{\partial y} = y^2 - 1. \text{ Atunci numarul}$	forma: b) $df(x,y,z)=ydx+(x+2yz)dy+y^22z;$	$\underline{\mathbf{c}}$) df(x,y,z)=yzdx+xzdy+xydz;
punctelor critice ale lui f este: <u>d)</u> 4. 38) Functia oarecare f(x,y,z) satisface conditiile din criteriul	2 . 2 .	40) Fie functia f(x,y)=e ^{xy} .Atunci:
lui Schwarz. Atunci au loc egalitatile:	39) Fie functia $f(x,y) = \frac{x^2 + y^2 + x - y}{x + y}$ si	
$\partial^2 f \partial^2 f \partial^2 f \partial^2 f$		$\mathbf{c} \cdot \frac{\partial f}{\partial x} = ye^{xy}$.
b) $\frac{\partial^2 f}{\partial x \partial z} = \frac{\partial^2 f}{\partial z \partial x}$; d) $\frac{\partial^2 f}{\partial y \partial z} = \frac{\partial^2 f}{\partial z \partial y}$.	$l_1 = \lim_{x \to 0} \left(\lim_{y \to 0} f(x, y) \right), \ l_2 = \lim_{y \to 0} \left(\lim_{x \to 0} f(x, y) \right) \text{ limitele}$	
	iterate ale functiei in O(0,0). Atunci: d) 11=1, 12=-1.	$\begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$ hessiana atasata functiai
41) Fie functia $f(x,y) = e^{x+y}$. Atunci:	43) Fie functia $f(x,y,z)=x+y+z$. Atunci:	42) Fie H(P0)= $\begin{bmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ hessiana atasata functiei
	b) functia f nu are puncte critice;	f(x,y,z) in punctul critic P0. Atunci:
027	c) functia f nu are puncte de extrem local.	c) P0 nu este punct de extrem local.
44) Daca $P0(x0,y0)$ este punct critic pentru functia $f(x,y)$	$\begin{pmatrix} \alpha & \beta \end{pmatrix}$	48) Metoda multiplicarilor lui Lagrange se foloseste la
atunci:	45) Fie H(P0)= $\begin{pmatrix} \alpha & \beta \\ \beta & 0 \end{pmatrix}$ hessiana atasata functiei f(x,y) in	determinarea punctelor de extrem local, in cazul functiilor: d) ale caror variabile sunt supuse la o serie de legaturi.
b) $\frac{\partial f}{\partial x}(P_0) = 0$ si $\frac{\partial f}{\partial y}(P_0) = 0$; c) df(P0)=0	punctul critic P0. Atunci, daca: Nici una	
46) Fie H(x,y)= $\begin{pmatrix} 2y^3 & 6xy^{\alpha} \\ \beta xy^2 & 6x^2y \end{pmatrix}$ matricea hessiana atasata	$(2y 2x \alpha)$	49) Fie functia f(x,y)=x2+y2 cu variabilele satisfacand
$\beta xy^2 = 6x^2y$ matricea nessiana atasata	47) Fie H(x,y,z)= $ \begin{pmatrix} 2y & 2x & \alpha \\ \beta x & 0 & 3z^2 \\ 0 & \gamma z^2 & 6yz \end{pmatrix}$ hessiana atasata	legatura x+y=1. Atunci functia lui Lagrange atasata are expresia:
functiei $f(x,y)$. Atunci, daca functia $f(x,y)$ satisface criteriul	$\left(\begin{array}{cc} 0 & \gamma z^2 & 6yz \end{array}\right)$	
lui Schwarz avem: a) $\alpha = 3$, $\beta = 6$;	functiei $f(x,y,z)=x^2y+yz^3$. Deoarece f satisface criteriul	<u>c)</u> $L(x,y)=x2+y2+\lambda (x+y-1)$
	lui Schwarz avem: $\underline{\mathbf{c}}$) $\alpha=0$, $\beta=2$, $\gamma=3$.	
50) Criteriul lui Schwarz afirma ca functia f(x,y) are:	51) Care din urmatoarele afirmatii sunt adevarate:	53) O functie $f: \mathbf{i}^n \to \mathbf{i}$ are intot deauna:
c) derivatele partiale mixte de ordinul 2 egale.	b) orice punct de extrem local este punct critic; c) in un punct critic derivatele partiale de ordinul I sunt nule	d) numarul punctelor critice si de extrem nu depinde de n.
	<u>d</u>) punctele de ectrem local se gasesc printre pct. critice.	
52) O functie $f: \mathbf{i}^n \to \mathbf{i}$ are intotdeauna:	54) Hessiana atasata functiei oarecare $f: \mathbf{i}^n \to \mathbf{i}$:	55) Punctul P0∈ R ⁿ este punct critic pentru functia
a) n derivate partiale de ordinul I;	a) este o matrice patratica de ordinul n;	$f: \mathbf{i} \to \mathbf{i}$ daca derivatele partiale:
d) n2 derivate partiale de ordinul II.	d) este formata cu derivatele partiale de ordin II ale functiei 57) Criteriul luii Schwarz implica faptul ca functia	c) de ordin I se anuleaza in P0.
56) Fie $f: \mathbf{i}^{-2} \to \mathbf{i}^{-}$. Criteriul lui Schwarz afirma ca:	$f: \mathbf{i}^n \to \mathbf{i}$ are:	58) O functie oarecare $f: \mathbf{i}^n \to \mathbf{i}$ are:
	a) matricea hessiana simetrica;	d) numarul punctelor critice si de extrem nu depinde de n.
	mj manioon neodiana dimenioa,	

a) $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$; d) deriv. part.de ordin II - continue	b) derivatele partiale de ordinul II mixte, egale.	
 59) Daca punctul P0 este punct de maxim pentru functia f, atunci: b) d2f(P0) este negativ definita d) P0 este punct critic pentru f. 	60) Daca punctul P0 este punct de minim pentru functia f, atunci: a) d2f(P0) este pozitiv definita; d) P0 este punct critic pentru functia f.	61) Daca Δ_1, Δ_2 sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0) este punct de minim daca: a) $\Delta_1 > 0, \Delta_2 > 0$.
62) Daca Δ_1, Δ_2 sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0) este punct de maxim daca: d) $\Delta_1 < 0, \Delta_2 > 0$;	63) Daca $\Delta_1, \Delta_2, \Delta_3$ sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0,z0) este punct de maxim daca: b) $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0$.	64)Daca $\Delta_1, \Delta_2, \Delta_3$ sunt minorii diagonali ai hessienei H(P0), atunci punctul critic P0(x0,y0,z0) este punct de minim daca: a) $\Delta_1 > 0, \Delta_2 > 0, \Delta_3 > 0$
 65) O functie oarecare f(x,y) are: b) 2 derivate partiale de ordinul I si 4 derivate partiale de ordinul II; d) 2 derivate partiale de ordinul II mixte (dreptunghiulare). 	66) O functie oarecare f(x,y,z) are: (a) 3 derivate partiale de ordinul I si 9 derivate partiale de ordinul II; (b) 6 derivate partiale de ordinul 2 mixte (dreptunghiulare).	67) Punctele critice ale functiei $f(x,y)$; $ \frac{\partial f}{\partial y} = 0 $ $ \frac{\partial f}{\partial y} = 0 $ $ \frac{\partial f}{\partial y} = 0 $