PROF. EN MATEMÁTICA - PROF. EN FÍSICA

Prof. Manzur J. - Prof. Moreno A.

Análisis Matemático II

Trabajo Práctico Nº1

Sucesiones y Series Numéricas

- 1. Indicar si el enunciado es verdadero (V) o falso (F). Justificar.
 - (a) Toda sucesión acotada converge.
 - (b) Si una sucesión es no monótona, es no convergente.
 - (c) $\lim_{n\to\infty} \frac{|x|^n}{n!} = 0$ para todo valor de x.
 - (d) Si $\{a_n\}$ es una sucesión convergente, entonces $\sum a_n$ siempre converge.
 - (e) Si $\sum a_n = \frac{3}{2}$, entonces $a_n \to 0$ cuando $n \to \infty$.
 - (f) Si $a_n \to 0$ cuando $n \to \infty$, entonces $\sum a_n$ converge.
- 2. Determinar el término general de la sucesión dada en cada caso, comenzando en n=1 y analice su convergencia.

(a)
$$\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \cdots$$

(d)
$$\left(1 - \frac{1}{2}\right), \left(\frac{1}{3} - \frac{1}{2}\right), \left(\frac{1}{3} - \frac{1}{4}\right), \left(\frac{1}{5} - \frac{1}{4}\right), \dots$$

(b)
$$0, \frac{1}{2^2}, \frac{2}{3^2}, \frac{3}{4^2}, \cdots$$

(e)
$$3, \frac{3}{2}, \frac{3}{2^2}, \frac{3}{2^3}, \cdots$$

(c)
$$\frac{1}{3}$$
, $-\frac{1}{9}$, $\frac{1}{27}$, $-\frac{1}{81}$, ...

3. Estudiar la convergencia de las sucesiones siguientes:

(a)
$$a_n = \frac{2n}{n+1}$$

(f)
$$a_n = n^2 \left(\frac{1+n}{3n}\right)^n$$

(b)
$$a_n = 3 + (-1)^n$$

(g)
$$a_n = \sqrt{n^2 + 3n + 2}$$

(c)
$$a_n = \frac{n^2}{2^n - 1}$$

(h)
$$a_n = \frac{x^n}{n!}$$

(d)
$$a_n = \frac{n^2}{n+1}$$

(i)
$$a_n = (\sqrt{n^2 + \sqrt{n}} - n)(\sqrt{n+1} + \sqrt{2n})$$

(e)
$$a_n = \frac{2n + (-1)^n(n+2)}{7n+1}$$

(j)
$$a_n = n \left(\frac{1 + (-1)^n}{3} \right)^n$$

- 4. Resuelve las siguientes situaciones problemáticas:
 - (a) En una progresión aritmética, el término 9 es 31 y la diferencia es 4. Halla el término general.

1

(b) Halla término general de la progresión aritmética: 12, 4, -4, -12, ...

- (c) En una progresión geométrica, el término 3 es 28 y la razón es -2. Halla el término general.
- (d) En una progresión geométrica creciente, el término 5 es 112 y el término 6 es 224. Halla el término general.
- (e) En una progresión geométrica decreciente, el término 4 es -40 y el término 5 es -80. Halla el término general.
- 5. La enésima suma parcial de la serie $\sum_{n=0}^{\infty} a_n$ está dada por $S_n = \frac{n^2+1}{n+1}$. Encontrar una regla para a_7 .
- 6. La enésima suma parcial de la serie $\sum_{n=0}^{\infty} a_n$ está dada por $S_n = \frac{n+1}{n+10}$.
 - (a) Encontrar una regla para a_n .
 - (b) ¿Es convergente la serie?¿A qué valor converge?
- 7. Escribir los primeros 10 términos de la serie y determinar si es convergente o divergente:

(a)
$$\sum_{n=1}^{\infty} \frac{(n+2)!}{4!n!2^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

(i)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}, \forall x \in \mathbb{R}$$

(f)
$$\sum_{n=1}^{\infty} \left(\frac{n+2}{2n-3}\right)^n$$
 (j) $\sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2}$

(j)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{n} \right)^{n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$

(g)
$$\sum_{n=1}^{\infty} \left(\frac{3n}{2n+1} \right)^n$$

(k)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$

(d)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

$$(h) \sum_{n=1}^{\infty} \frac{\cos^2 n}{2^n}$$

(1)
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2}\right)$$

8. En los siguientes ejercicios determine si la serie alternante es convergente (absoluta o condicionalmente) o divergente:

(a)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2^n}$$

(g)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4}{3n-2}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{n^2 + 1}$$

2

(h)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2}{3^n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$$

(f)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(\ln n)^2}$$

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n}$$