סיבוכיות- תרגול 6

אם: PH שלמה אם-PH היא

- $.S \in PH$ (1
- $S' \leq_m^p S$ מתקיים $S' \in PH$ לכל (2

 $.PH \subseteq \Sigma_k$ הוכיחו כי אם קיימת שפה PHשלמה, אזי קיים k

p ואלגוריתם אולקן, קיים אולק, לפי הגדרה, קיים אולכן, לפי הגדרה, קיים אולקן, לפי האדרה, קיים אולקן, לפי האדרה, קיים אולקן, לפי האדרה, קיים אולקן, לפי האקיימים: $S\in PH$ אולקן, לפי האקיימים:

$$x \in S \Leftrightarrow \exists y_1 \forall y_2 \dots Q y_k, \forall i \ |y_i| \leq p(|x|), V(x,y_1,y_2,\dots,y_k) = 1$$

תהי $S'\in S'\Leftrightarrow f(x)\in S$. נגדיר את הפולינום $x\in S'\Leftrightarrow f(x)\in S$. נגדיר את הפולינום $S'\in PH$ תהי $V'(x,y_1,...,y_k)=p'$ הפולינום החוסם את זמן ריצת המכונה המחשבת את f, ונגדיר f הפולינום החוסם את זמן ריצת המכונה f הוא אלגוריתם דטר' פולינומי, ומתקיים: $V(f(x),y_1,...,y_k)$

$$x \in S' \Leftrightarrow f(x) \in S \Leftrightarrow \exists y_1 \forall y_2 \dots Q y_k, \forall i \ |y_i| \leq p(|f(x)|) \leq q(|x|), V'(x,y_1,y_2,\dots,y_k) = 1$$
 .
$$S' \in \Sigma_k$$
 לכן

 $.NP^{PH} \subseteq PH$ תרגיל: הוכיחו כי

S את מ"ט ל"ד פולונימות M^A עם גישת אורקל ל- $S\in NP^{PH}$ המכריעה את $S\in NP^{PH}$ פתרון: תהי $S\in PH$ לכן, קיימת $A\in \Sigma_k$ כלומר, $S\in NP^{\Sigma_k}$. לפי משפט $A\in PH$ ולכן קיים $A\in \Sigma_k$ כלומר, $S\in NP^{\Sigma_k}$

 $\mathrm{NP^{NP}} = \mathrm{NP}$ אזי אור NP = coNP תרגיל: הוכיחו בעזרת מכונות אורקל ל"ד כי אם

עם M^A עם איימת מ"ט ל"ד פולינומית $S\in \mathsf{NP^{NP}}$ עם ברורה. נוכיח את הכיוון השני. תהי $S\in \mathsf{NP^{NP}}$. קיימת מ"ט ל"ד פולינומית $A\in \mathit{NP}$ עם גישת אורקל לבעית הכרעה $A\in \mathit{NP}$ המכריעה את

 $.ar{A}\in NP$ ולכן קיימת מ"ט ל"ד פולינומית M' המכריעה את A. בנוסף, הנחנו כי NP=coNP, ולכן גם $A\in NP$ כלומר, קיימת מ"ט ל"ד פולינומית M' המכריעה את A.

נראה מ"ט ל"ד פולינומית M המכריעה את S את תפעל בדיוק כמו M, פרט למקומות בהם M מבצעת שאילתא M^A לאורקל שלה. עבור כל שאילתא מהצורה " $A \in M$ ", $A \in M$ תסמלץ את $A \in M'(a)$, אם החזירה 1, $A \in M'$ תמשיך כמו ש- $A \in M'(a)$ אייתה ממשיכה אילו האורקל היה מחזיר 1. אחרת, $A \in M$ תחזיר $A \in M''(a)$ ותסיים.

הוכחת נכונות: ראשית, נשים לב כי בכל מקום ש- M^A שואלת את האורקל שאילתא מהצורה " $a\in A$ " וממשיכה M'(a) לפי תשובת האורקל, קיים חישוב של M בו היא ממשיכה באותו אופן (כי אם $A\in A$, קיים חישוב של M''(a) שמחזיר 1 ואז M תמשיך כפי ש- M^A הייתה ממשיכה, ואם $M\notin A$ בהכרח M''(a)=0 וקיים חישוב של M^A שמחזיר 1, ובמקרה זה M תמשיך כפי ש- M^A הייתה ממשיכה).

עבור S, קיים חישוב של $M^A(x)$ שמסתיים במצב מקבל. נתבונן בחישוב של M(x) בו היא בוחרת את אותן $x \in S$ בחירות ל"ד של M^A , ובנוסף בכל מקום ש- M^A שואלת שאילתא לאורקל, M בוחרת בחישוב בו היא ממשיכה באותו אופן. במקרה זה M פועלת בדיוק כמו M^A ולכן מגיעה למצב מקבל.

M(x) שני מקרים בחישוב של $M^A(x)$ מחזיר 0. נבחין בין שני מקרים של $x \notin S$

- .0 א. קיימת שאילתת אורקל של M^A , עבורה כש M מסמלצת את המכונות M' ו-M', שתיהן מחזירות במקרה זה M מחזירה M ומסיימת.
- ב. לכל שאילתת אורקל של M^A , בסימולציה ש-M מבצעת, אחת מהמכונות M' או M' החזירו 1. במקרה זה, M פועלת בדיוק כפי ש- M^A הייתה פועלת ולכן תחזיר 0.

.0 היא מחזירה M(x) שבכל חישוב של

 $S \in \mathit{NP}$ היא מ"ט ל"ד פולינומית המכריעה את S ולכן M

מחלקת כל בעיות ההכרעה S כך שקיימת מ"ט דטר' המכריעה את S ועובדת בסיבוכיות זמן EXP תהי תהי $PH \subseteq EXP$ כלשהו. הוכיחו כי $p(\cdot)$ עבור פולינום $O\left(2^{p(n)}\right)$

פתרון: תהי $S\in PH$. כלומר, קיים $S\in \Sigma_k$ כך ש- $S\in \Sigma_k$. נסמן ב-S את הפולינום והמוודא המובטחים מהגדרת . $S\in PH$ מגדיר מ"ט $S\in PH$ המכריעה את S באופן הבא: $S\in PH$ תעבור על כל האפשרויות עבור S באופן הבא: S באופן הבא: S ותחזיר 1 אמ"ם S ותחזיר 1 אמ"ם S ותחזיר 1 אמ"ם S ברור ש-S וזמן הריצה שלה הינו S וזמן הריצה שלה הינו

$$\underbrace{2^{p(|x|)}\cdots 2^{p(|x|)}}_{k \ times} p'(|x|) \leq 2^{kp(|x|)p'(|x|)}$$

 $S \in \mathit{EXP}$ כאשר p' הינו הפולינום החוסם את זמן הריצה של I. זהו זמן אקספוננציאלי ולכן