

Step-Up Barrier-Protected S&P500 ELN

3035447805		
3035478373		
3035483653		
3035478361		
	3035478373 3035483653	3035478373 3035483653

Group 2

Agenda

Step-Up Barrier-Protected S&P500 ELN

- 1. Economic motivation (Kelly)
- 2. Product design (Simon)
- 3. Pricing (Sam)
- 4. Hedging strategy (Vincent)

Economic Motivation

Opportunities: Post COVID-19 pandemic

- Large fiscal stimulus
- Vaccine rollout
- Economic recovery

Concerns: High uncertainty, volatile stock market

- Rise in US treasury yield
- Resurgence of COVID-19 cases
- Capital gains tax hike
- Geopolitical tensions

Innovative structured product:

- Downside protection
- Gain in bullish market

Target investors:

- Conservative investors who have
- Bullish views on U.S. equity market

3

Product Overview

Basic information

Product type	Equity Linked Fund (ELF)
Underlying	S&P 500 Index
Dividend	No
Tenor	6 months

Product highlights:

- Step-up return
- Large protection in case of market crash
- Effect of dividend payment is considered

Payoff Overview

Payoff at t = T:

X = RF, where R is determined by:

Value of R	Condition	Explanation	
$\frac{S_T}{S_0}$	$\frac{S_T}{S_0} < g_1$	Floating gain/loss	
g_1	$g_1 \le \frac{S_T}{S_0} < g_2$	Fixed gain, 1 st step	
$g_1 + h$	$g_2 \le \frac{S_T}{S_0} < g_3$	Fixed gain, 2 nd step	
$g_1 + 2h$	$\frac{S_T}{S_0} \le g_3$	Fixed gain, 3 rd step	
Additional protection			
l_2	$\inf_{0 \le t \le T} \{S_t/S_0\} < l_1$ $\operatorname{And} S_T/S_0 < l_2$	Fixed loss if barrier is triggered	

Hedging strategy

Variable & Parameter Settings

Variables	Explanation
X	Payoff (Claim) at t = T
R	Product price multiplier = 1 + product return
S_t/S_0	Index price multiplier = 1 + index return
F	Face value:= \$100
P_0	Price:= \$100

Parameter	Value
g_1	$1 + \mu_{S\&P500, 6mo} \approx 1.08$
g_2	$1+2\times\mu_{S\&P500,6mo}\approx1.16$
g_3	$1+3\times\mu_{S\&P500,6mo}\approx1.24$
l_1	0.70
l_2	0.85
h	To be determined later

6

Note: $l_1 < l_2 < 1 < g_1 < g_2 < g_3$; h > 0

Case 1: $S_T < S_0$, barrier option never triggers		
Loss from Index	$S_T - S_0$	

Case 2: $S_T < S_0$, barrier option triggers		
Loss from Index	$S_T - S_0$	
Protection from Barrier	$\max(l_2S_0 - S_T, 0)$	
Total	$S_T - S_0 + \max(l_2 S_0 - S_T, 0)$	

Case 3: $S_T > S_0, S_T < g_1 S_0$		
Gain from Index	$S_T - S_0$	

Case 4: $S_T > S_0$, $g_1 S_0 \le S_T < g_2 S_0$		
Gain from Index	$S_T - S_0$	
Ceiling by short call	$-\max(S_T - g_1 S_0, 0)$	
Total	$S_T - S_0 - \max(S_T - g_1 S_0, 0)$	

Case 5: $S_T > S_0, g_2 S_0 \le S_T < g_3 S_0$		
Gain base on Case 4	$S_T - S_0 - \max(S_T - g_1 S_0, 0)$	
Gain from digital option	hS_0	
Total	$S_T - S_0 - \max(S_T - g_1 S_0, 0) + hS_0$	

Case 6: $S_T > S_0, S_T \ge g_3 S_0$		
Gain base on Case 5 $S_T - S_0 - \max(S_T - g_1 S_0, 0) +$		
Gain from digital option	hS_0	
Total	$S_T - S_0 - \max(S_T - g_1 S_0, 0) + 2hS_0$	

Hedging strategy

9

Pricing Formula

Basic BS Model

Price Dynamics: $dS_t = rS_t dt + \sigma S dB_t$

BS Model with Dividend

Price Dynamics: $dS_t = (r - q)S_t dt + \sigma S_t dB_t$

Assumptions:

- <u>Underlying pays dividend continuously</u>
- Underlying asset return is following a lognormal random walk
- Interest rate and volatility are known and are constant through time
- European style exercise only
- Frictionless trading
- Trading is carried on continuously

10

• Short-selling allowed

Pricing Formula

	Position	Function	Notation	Pricing Formula
Long stock	1	S	S	S_0
Long down-and-in European put	1	$F_{DI}(0, S_0; P(S_0, l_2S_0))$ (Barrier = l_1S_0)	F_{DI}	$ \begin{array}{c} \left(\frac{L}{S}\right)^{\frac{2\left(r-q-\frac{\sigma^2}{Z}\right)}{\sigma^2}} \times \left[C\left(\frac{L^2}{S_0},K\right)-C\left(\frac{L^2}{S_0},L\right)-(L-K)e^{-rT}N\left(d_2(L,S)\right)\right] \times \\ 1\{K>L\} + \left[P(S_0,L\wedge K)-(L\wedge K-K)e^{-rT}N(-d_2(S_0,L\wedge K))\right]; \\ Where \ K = l_1\times S_0,L\wedge K = \min(L,K) \end{array} $
Short European call	-1	$C(S_0, g_1 S_0)$	С	$Se^{-qT}N(d_1(S_0, g_1S_0)) - Ke^{-rT}N(d_2(S_0, g_1S_0))$
(hS₀)×Long 1 st Binary Call	hS_0	$C_{Digital1}(S_0, g_2S_0)$	C_{D1}	$e^{-rT}N(d_1(S_0, g_2S_0))$
(hS₀)×Long 2 nd Binary Call	hS_0	$C_{Digital2}(S_0, g_3S_0)$	C_{D2}	$e^{-rT}N(d_1(S_0, g_3S_0))$
Total Price	Total Price $\Pi_0 = S_0 + F_{DI} - C + hS_0 \times (C_{D1} + C_{D2})$			

Note:
$$d_1(S,K) = \frac{\log(\frac{S}{K}) + \left(r - q + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}, d_2(S,K) = d_1(S,K) - \sigma\sqrt{T}$$

$$\Pi_0 = 0.98S_0 \ (2\% \ commission) \rightarrow h = \frac{C - F_{DI} - 0.02S_0}{S_0 (C_{D1} + C_{D2})}$$

11

Hedging strategy

Breakdown of product's profit into stocks and options (Triggered / Not triggered)

12

Hedging Strategy

General Approach				
Delta Hedging	 Theoretically applicable Replicated by down-and-in barrier put option, call option and digital call option Calculate delta by first order derivative of the pricing equation with respect to the stock price, i.e. Δ= ∂P/∂S Problems: Frequent re-adjustment Sensitive for barrier option Large delta for binary call if price approaches the strike price 			

>>>Alternative Approach<<<			
Long stock	Long $(S_0/S_{0,ETF})$ units of SPY		
Long DI European put	If signal of market crash appears / really triggered, buy European put $P(S_0, l_2S_0)$. Advantage: no position required at the beginning Problem: put may be expensive at that time		
Short call	Short corresponding call $C(S_0, g_1S_0)$		
Long binary call	Long bullish spread Problem: the hedging position is too large		

13

Hedging Strategy

High sensitivity of Delta (Δ) to underlying price and time to maturity

Total Delta at Different Time to Maturity -3 colour 1 Day Delta 1 Week 1 Month 3 Month 6 Month -9 **-**-12 -3000 4000 5000 6000 2000 **Underlying Price**

Sensitivity to underlying price & time to maturity

14

Note: the long-stock position (1) is excluded from total delta here.

Step-Up Barrier-Protected S&P500 ELN

Thank you!

Appendix: Hedging strategy - Delta calculation

	Price (at t=0), single	Delta (at t=0)
Long stock	S_0	1
Long down-and-in European put	$ \left(\frac{L}{S}\right)^{\frac{2\left(r-q-\frac{\sigma^{2}}{2}\right)}{\sigma^{2}}} \times \left[C\left(\frac{L^{2}}{S_{0}},K\right) - C\left(\frac{L^{2}}{S_{0}},L\right) - (L-K)e^{-rT}N\left(d_{2}(L,S)\right)\right] \times 1\{K > L\} + \left[P(S_{0},L \wedge K) - (L \wedge K - K)e^{-rT}N(-d_{2}(S_{0},L \wedge K))\right]; $ $ Where K = l_{1} \times S_{0} $ $ L \wedge K = \min(L,K) $	$ = \left(\frac{L}{S}\right)^{\frac{2v}{\sigma^2}} \left(-\left(\frac{L^2}{S^2}\right) e^{-q\tau} N\left(d_1\left(\frac{L^2}{S},K\right)\right) + \left(\frac{L^2}{S^2}\right) e^{-q\tau} N\left(d_1\left(\frac{L^2}{S},L\right)\right) \right) $ $ + \frac{(L-K)e^{-r\tau} n(d_2(L,S))}{-S\sigma\sqrt{\tau}} $ $ + L^{\frac{2v}{\sigma^2}} \left(-\frac{2v}{\sigma^2}\right) S^{-\frac{2v}{\sigma^2}-1} $ $ \times \left(C\left(\frac{L^2}{S},K\right) - C\left(\frac{L^2}{S},L\right) - (L-K)e^{-r\tau} N(d_2(L,S))\right) $ $ + e^{-q\tau} N(d_1(S,L)) + \frac{\left((L-K)e^{-r\tau} n(-d_2(S,L))\right)}{S\sigma\sqrt{\tau}} $
Short European call	$Se^{-qT}N(d_1(S_0, g_1S_0)) - Ke^{-rT}N(d_2(S_0, g_1S_0))$	$e^{-qT}N(d_1(S_0,g_1K))$
(hS_0) ×Long First Binary Call	$e^{-rT}N(d_1(S_0, g_2S_0))$	$\frac{e^{-rT}}{\sigma ST}N(d_2(S_0, g_2S_0))$
$(hS_0)\times$ Long Second Binary Call	$e^{-rT}N(d_1(S_0, g_3S_0))$	$\frac{e^{-rT}}{\sigma ST}N(d_2(S_0, g_3S_0))$
Total	$ \begin{split} &\Pi_0 \\ &= S_0 + F_{DI}(0, S_0; P(S_0, l_2 S_0)) - C(S_0, g_1 S_0) \\ &+ h S_0 C_{Digital}(S_0, g_2 S_0) + h S_0(S_0, g_3 S_0) \end{split} $	

Reference

Bruce H. (2015). A Study on the Pricing of Digital Options. Numerical Methods For The Valuation Of
Digital Call Options. https://www.scribd.com/document/335163755/A-Study-Pricing-Digital-Call-Options-Using-Numerical-Methods

Dolgova, N. (2006). Hedging of barrier options. http://janroman.dhis.org/finance/Exotics/Thesis2005_DolgovaNatalia%20BarrierOptions.pdf

Zhang, Peter Guangping. (1998). Exotic Options. Singapore: World Scientific Publishing Company.