

 We learned about linear classification (e.g., logistic regression), and nearest neighbors. Any other idea?

- Pick an attribute, do a simple test
- Conditioned on a choice, pick another attribute, do another test
- In the leaves, assign a class with majority vote
- Do other branches as well

Example with Discrete Inputs

• What if the attributes are discrete?

Example		Input Attributes									
2210111710	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
0.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

Goal

WillWait $y_1 = Yes$ $y_2 = No$ $y_3 = Yes$ $y_4 = Yes$ $y_5 = No$ $y_6 = Yes$ $y_7 = No$ $y_8 = Yes$ $y_9 = No$ $y_{10} = No$ $y_{11} = No$ $y_{12} = Yes$

Example with Discrete Inputs

The tree to decide whether to wait (T) or not (F)

Decision Trees

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (class assignments)

Decision Tree Algorithm

- Choose an attribute on which to descend at each level
- Condition on earlier (higher) choices
- Generally, restrict only one dimension at a time
- Declare an output value when you get to the bottom
- In the orange/lemon example, we only split each dimension once, but that is not required

Decision Boundary

- Decision trees divide the feature space into axis- parallel (hyper-) rectangles.
- Each rectangular region is labeled with one label (or a probability distribution over labels).

Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)},t^{(m_1)}),\ldots,(x^{(m_k)},t^{(m_k)})\}$ be the training examples that fall into R_m

Classification tree:

- discrete output
- leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Regression tree:

- continuous output
- ▶ leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

Note: We will only talk about classification

Expressiveness

- Discrete-input, discrete-output case:
 - Decision trees can express any function of the input attributes
 - ightharpoonup E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Continuous-input, continuous-output case:
 - Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w/ one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

Need some kind of regularization to ensure more compact decision trees

How to Specify Test Condition?

Depends on attribute types

- Nominal
- Ordinal
- Continuous

Depends on number of ways to split

- 2-way split
- Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values

Binary split: Divides values into two subsets
 Need to find optimal partitioning

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets
 Need to find optimal partitioning

Large }

What about this split?

{Medium}

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more computation intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Learn a Decision Tree

- The best tree?
 - Occam's Razor: The smallest decision tree that correctly classifies all of the training examples is best.
 - Finding the the smallest (simplest) decision tree is an NP-hard problem [if you are interested, check: Hyafil & Rivest'76].
- How do we construct a useful decision tree?
- Resort to a greedy heuristic:
 - Start from an empty decision tree
 - Split on next best attribute
 - Recurse
- What is best attribute?

We use information theory to guide us

Choosing a Good Attribute

• Which attribute is better to split on, X_1 or X_2 ?

X ₁	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty

Choosing a Good Attribute

- Which attribute is better to split on, X_1 or X_2 ?
 - Deterministic: good (all are true or false; just one class in the leaf)
 - Uniform distribution: bad (all classes in leaf equally probable)
 - What about distributions in between?

Note: Let's take a slight detour and remember concepts from information theory

We Flip Two Different Coins

Quantifying Uncertainty

Entropy *H*:

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

$$-\frac{8}{9}\log_2\frac{8}{9} - \frac{1}{9}\log_2\frac{1}{9} \approx \frac{1}{2}$$

$$-\frac{4}{9}\log_2\frac{4}{9} - \frac{5}{9}\log_2\frac{5}{9} \approx 0.99$$

Quantifying Uncertainty

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

Entropy

"High Entropy":

- Variable has a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable

"Low Entropy"

- Distribution of variable has many peaks and valleys
- Histogram has many lows and highs
- Values sampled from it are more predictable

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$

$$= -\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$$

$$\approx 1.56 \text{bits}$$

Specific Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$
$$= -\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25}$$
$$\approx 0.24 \text{bits}$$

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

$$= \frac{1}{4}H(\text{cloudy}|\text{is raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining})$$

$$\approx 0.75 \text{ bits}$$

Conditional Entropy

- Some useful properties:
 - H is always non-negative
 - ► Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - If X and Y independent, then X doesn't tell us anything about Y: H(Y|X) = H(Y)
 - ▶ But Y tells us everything about Y: H(Y|Y) = 0
 - ▶ By knowing X, we can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

Information Gain

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• How much information about cloudiness do we get by discovering whether it is raining?

$$IG(Y|X) = H(Y) - H(Y|X)$$

 $\approx 0.25 \text{ bits}$

- Also called information gain in Y due to X
- If X is completely uninformative about Y: IG(Y|X) = 0
- If X is completely informative about Y: IG(Y|X) = H(Y)
- How can we use this to construct our decision tree?

Back to the Previous Sample

• Which attribute is better to split on, X_1 or X_2 ?

X ₁	X_2	Υ
Т	Т	Τ
Т	F	Т
Т	Т	Т
Т	F	Т
H	Т	Η
F	F	Ш
F	Т	Ш
H	F	Ш

Constructing Decision Trees

- I made the fruit data partitioning just by eyeballing it.
- We can use the information gain to automate the process.
- At each level, one must choose:
 - 1. Which variable to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
- 1. pick an attribute to split at a non-terminal node
- 2. split examples into groups based on attribute value
- 3. for each group:
 - ▶ if no examples return majority from parent
 - else if all examples in same class return class
 - else loop to step 1

Back to Our Example

Example		Input Attributes									
Zampio	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	<i>30–60</i>	
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	

Goa	al
WillV	Vait
$y_1 =$	Yes
$y_2 =$	No
$y_3 =$	Yes
$y_4 =$	Yes
$y_5 =$	No
$y_6 =$	Yes
$y_7 =$	No
$y_8 =$	Yes
$y_9 =$	No
$y_{10} =$	No
$y_{11} =$	No
$y_{12} =$	Yes

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
0.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Attributes:

Attribute Selection

$$IG(Y) = H(Y) - H(Y|X)$$

$$IG(type) = 1 - \left[\frac{2}{12}H(Y|\text{Fr.}) + \frac{2}{12}H(Y|\text{It.}) + \frac{4}{12}H(Y|\text{Thai}) + \frac{4}{12}H(Y|\text{Bur.})\right] = 0$$

$$IG(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6},\frac{4}{6})\right] \approx 0.541$$

How to determine the Best Split: Impurity

Before Splitting: 10 records of class 0, 10 records of class 1

How to determine the Best Split: Impurity

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most useful information

C1	0
C2	6
Gini=0.000	

C1	1
C2	5
Gini=0.278	

C1	2	
C2	4	
Gini=0.444		

C1	3
C2	3
Gini=0.500	

Measure of Impurity: GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
- Occam's Razor: find the simplest hypothesis (smallest tree) that fits the observations
- Inductive bias: small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
 - You have exponentially less data at lower levels
 - Too big of a tree can overfit the data
 - Greedy algorithms don't necessarily yield the global optimum
- In practice, one often regularizes the construction process to try to get small but highly-informative trees
- Decision trees can also be used for regression on real-valued outputs, but it requires a different formalism

Comparison to k-NN

K-Nearest Neighbors

- Decision boundaries: piece-wise linear
- Test complexity: non-parametric, few parameters besides (all?) training examples

Decision Trees

- Decision boundaries: axis-aligned, tree structured
- Test complexity: attributes and splits

Decision trees are in XBox

Decision trees are in XBox: Classifying body parts

Trained on million(s) of examples

Trained on million(s) of examples

Results:

Applications of Decision Trees

- Can express any Boolean function, but most useful when function depends critically on few attributes
- Bad on: parity, majority functions; also not well-suited to continuous attributes
- Practical Applications:
 - Flight simulator: 20 state variables; 90K examples based on expert pilot's actions; auto-pilot tree
 - Yahoo Ranking Challenge
 - Random Forests: Microsoft Kinect Pose Estimation

Questions?

