

EXERCISE 15.1

Question 1:

Find the mean and variance for the data 6, 7, 10, 12, 13, 4, 8, 12 Ans:

6, 7, 10, 12, 13, 4, 8, 12

Mean,
$$\bar{x} = \frac{\sum\limits_{i=1}^{8} x_i}{n} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9$$

The following table is obtained.

x _i	$(x_i - \overline{x})$	$(x_i - \overline{x})^2$
6	-3	9
7	-2	4
10	-1	1
12	3	9
13	4	16
4	-5	25
8	-1	1
12	3	9
		74

Variance
$$(\sigma^2) = \frac{1}{n} \sum_{i=1}^{8} (x_i - \overline{x})^2 = \frac{1}{8} \times 74 = 9.25$$

Question 2:

From the data given below state which group is more variable, A or B?

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Ans:

Firstly, the standard deviation of group A is calculated as follows.

Marks	Group A f_i	Mid-point <i>x;</i>	$y_i = \frac{x_i - 45}{10}$	yı²	f _i y _i	f _i y _i ²
10-20	9	15	-3	9	-27	81
20-30	17	25	-2	4	-34	68
30-40	32	35	-1	1	-32	32
40-50	33	45	0	0	0	0
50-60	40	55	1	1	40	40
60-70	10	65	2	4	20	40
70-80	9	75	3	9	27	81
	150				-6	342

Here, h = 10, N = 150, A = 45

Mean = A +
$$\frac{\sum_{i=1}^{7} x_i}{N}$$
 × h = 45 + $\frac{(-6) \times 10}{150}$ = 45 - 0.4 = 44.6

$$\sigma_1^2 = \frac{h^2}{N^2} \left(N \sum_{i=1}^{7} f_i y_i^2 - \left(\sum_{i=1}^{7} f_i y_i \right)^2 \right)$$
= $\frac{100}{22500} \left(150 \times 342 - \left(-6 \right)^2 \right)$
= $\frac{1}{225} \left(51264 \right)$
= 227.84

 \therefore Standard deviation $(\sigma_1) = \sqrt{227.84} = 15.09$

The standard deviation of group B is calculated as follows.

Marks	Group B	Mid-point	v. = -	y _i ²	f _i y _i	$f_i y_i^2$
	f_i	X _i	" 10			
10-20	10	15	-3	9	-30	90
20-30	20	25	-2	4	-40	80
30-40	30	35	-1	1	-30	30
40-50	25	45	0	0	0	0
50-60	43	55	1	1	43	43
60-70	15	65	2	4	30	60
70-80	7	75	3	9	21	63
	150				-6	366

Mean = A +
$$\frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 45 + \frac{(-6) \times 10}{150} = 45 - 0.4 = 44.6$$

$$\sigma_2^2 = \frac{h^2}{N^2} \left[N \sum_{i=1}^{7} f_i y_i^2 - \left(\sum_{i=1}^{7} f_i y_i \right)^2 \right]$$

$$= \frac{100}{22500} \left[150 \times 366 - (-6)^2 \right]$$

$$= \frac{1}{225} \left[54864 \right] = 243.84$$

 \therefore Standard deviation $(\sigma_2) = \sqrt{243.84} = 15.61$

Since the mean of both the groups is same, the group with greater standard deviation will be more variable.

Thus, group B has more variability in the marks.

Question 3:

Find the mean deviation about the mean for the data

Ans

The given data is

Mean of the data,
$$\overline{x} = \frac{4+7+8+9+10+12+13+17}{8} = \frac{80}{8} = 10$$

The deviations of the respective observations from the mean \overline{x} , i.e. $x_i - \overline{x}$, are

The absolute values of the deviations, i.e. $|x_i - \overline{x}|$, are

The required mean deviation about the mean is

M.D.
$$(\overline{x}) = \frac{\sum_{i=1}^{8} |x_i - \overline{x}|}{8} = \frac{6+3+2+1+0+2+3+7}{8} = \frac{24}{8} = 3$$

Question 4:

Find the mean and variance for the first n natural numbers

The mean of first n natural numbers is calculated as follows.

$$Mean = \frac{Sum of all observations}{Number of observations}$$

$$\therefore \text{Mean} = \frac{\frac{n(n+1)}{2}}{n} = \frac{n+1}{2}$$

$$\text{Variance}(\sigma^2) = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[x_i - \left(\frac{n+1}{2} \right) \right]^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \sum_{i=1}^{n} 2 \left(\frac{n+1}{2} \right) x_i + \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n+1}{2} \right)^2$$

$$= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \left(\frac{n+1}{n} \right) \left[\frac{n(n+1)}{2} \right] + \frac{(n+1)^2}{4n} \times n$$

$$= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{2} + \frac{(n+1)^2}{4}$$

$$= \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4}$$

$$= (n+1) \left[\frac{4n+2-3n-3}{12} \right]$$

$$= \frac{(n+1)(n-1)}{12}$$

$$= \frac{n^2-1}{12}$$

Question 5:

From the prices of shares X and Y below, find out which is more stable in value:

×	35	54	52	53	56	58	52	50	51	49
Υ	108	107	105	105	106	107	104	103	104	101

The prices of the shares X are

Here, the number of observations, N = 10

$$\therefore$$
 Mean, $\bar{x} = \frac{1}{N} \sum_{i=1}^{10} x_i = \frac{1}{10} \times 510 = 51$

The following table is obtained corresponding to shares X.

Xį	$(x_i - \overline{x})$	$\left(x_i - \overline{x}\right)^2$	
35	-16	256	
54	з	9	
52	1	1	
53	2	4	
56	5	25	
58	7	49	
52	1	1	
50	-1	1	
51	0	0	
49	-2	4	
		350	

Variance
$$\left(\sigma_{1}^{2}\right) = \frac{1}{N} \sum_{i=1}^{10} (xi - \overline{x})^{2} = \frac{1}{10} \times 350 = 35$$

$$\therefore$$
 S tan dard deviation $(\sigma_1) = \sqrt{35} = 5.91$

C.V.(Shares X) =
$$\frac{\sigma_1}{x} \times 100 = \frac{5.91}{51} \times 100 = 11.58$$

The prices of share Y are

108, 107, 105, 105, 106, 107, 104, 103, 104, 101

$$\therefore$$
 Mean, $y = \frac{1}{N} \sum_{i=1}^{10} y_i = \frac{1}{10} \times 1050 = 105$

The following table is obtained corresponding to shares Y.

Уi	$(y_i - \overline{y})$	$(y_i - \overline{y})^2$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-1	1
101	-4	16
		40

Variance
$$\left(\sigma_{2}^{2}\right) = \frac{1}{N} \sum_{i=1}^{10} (y_{i} - y)^{2} = \frac{1}{10} \times 40 = 4$$

$$\therefore$$
 Standard deviation $(\sigma_2) = \sqrt{4} = 2$

:. C.V.(Shares Y) =
$$\frac{\sigma_2}{\overline{y}} \times 100 = \frac{2}{105} \times 100 = 1.9 = 11.58$$

C.V. of prices of shares X is greater than the C.V. of prices of shares Y.

Thus, the prices of shares Y are more stable than the prices of shares \times . Question 6:

Find the mean deviation about the mean for the data

The given data is

Mean of the given data,

$$\overline{x} = \frac{38 + 70 + 48 + 40 + 42 + 55 + 63 + 46 + 54 + 44}{10} = \frac{500}{10} = 50$$

The deviations of the respective observations from the mean \overline{x} , i.e. $x_i - \overline{x}$, are

The absolute values of the deviations, i.e. $\left|x_{i}-\overline{x}\right|$, are

The required mean deviation about the mean is

M.D.
$$(\overline{x}) = \frac{\sum_{i=1}^{10} |x_i - \overline{x}|}{10}$$

$$= \frac{12 + 20 + 2 + 10 + 8 + 5 + 13 + 4 + 4 + 6}{10}$$

$$= \frac{84}{10}$$

$$= 8.4$$

Question 7:

Find the mean deviation about the median for the data.

The given data is

Here, the numbers of observations are 12, which is even.

Arranging the data in ascending order, we obtain

Median, M =
$$\frac{\left(\frac{12}{2}\right)^{th} \text{ observation} + \left(\frac{12}{2} + 1\right)^{th} \text{ observation}}{2}$$
$$= \frac{6^{th} \text{ observation} + 7^{th} \text{ observation}}{2}$$
$$= \frac{13 + 14}{2} = \frac{27}{2} = 13.5$$

The deviations of the respective observations from the median, i.e. $x_i - M$, are

The absolute values of the deviations, $|x_i - M|$, are

The required mean deviation about the median is

M.D.(M) =
$$\frac{\sum_{i=1}^{12} |x_i - M|}{12}$$
=
$$\frac{3.5 + 2.5 + 2.5 + 1.5 + 0.5 + 0.5 + 0.5 + 2.5 + 2.5 + 3.5 + 3.5 + 4.5}{12}$$
=
$$\frac{28}{12} = 2.33$$

Question 8:

Find the mean and variance for the first 10 multiples of 3 Ans:

The first 10 multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 Here, number of observations, n = 10

Mean,
$$\bar{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{165}{10} = 16.5$$

The following table is obtained.

niowing table is obtaine						
X _i	$(x_i - \overline{x})$	$\left(x_i - \overline{x}\right)^2$				
3	-13.5	182.25				
6	-10.5	110.25				
9	-7.5	56.25				
12	-4.5	20.25				
15	-1.5	2.25				
18	1.5	2.25				
21	4.5	20.25				
24	7.5	56.25				
27	10.5	110.25				
30	13.5	182.25				
	_	742.5				

Variance
$$(\sigma^2) = \frac{1}{n} \sum_{i=1}^{10} (x_i - \overline{x})^2 = \frac{1}{10} \times 742.5 = 74.25$$

Question 9:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wage earners	586	648
Mean of monthly wages	Rs 5253	Rs 5253
Variance of the distribution of wages	100	121

- (i) Which firm A or B pays larger amount as monthly wages?
- (ii) Which firm, A or B, shows greater variability in individual wages?

(i) Monthly wages of firm A = Rs 5253

Number of wage earners in firm A = 586

Total amount paid = Rs 5253×586

Monthly wages of firm B = Rs 5253

Number of wage earners in firm B = 648

 \Box Total amount paid = Rs 5253 imes 648

Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.

(ii) Variance of the distribution of wages in firm A $\left(\sigma_{i}^{2}\right)$ = 100

Standard deviation of the distribution of wages in firm

A ((
$$\sigma_1$$
) = $\sqrt{100}$ = 10

Variance of the distribution of wages in firm $B(\sigma_2^2)$ = 121

Standard deviation of the distribution of wages in firm $~B\left(\sigma_{2}^{2}\right)=\sqrt{121}=11$

The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm with greater standard deviation will have more variability.

Thus, firm B has greater variability in the individual wages.

Question 10:

Find the mean and variance for the data

хi	6	10	14	18	24	28	30
fi	2	4	7	12	80	4	з

The data is obtained in tabular form as follows.

X _i	fi	$f_{i}x_{i}$	$\mathbf{x}_i - \overline{\mathbf{x}}$	$\left(x_i - \overline{x}\right)^2$	$f_i(x_i - \overline{x})^2$
6	2	12	-13	169	338
10	4	40	-9	81	324
14	7	98 -5 25		175	
18	12	216	5 -1 1		12
24	ω	192	5	25	200
28	4	112	9	81	324
30	З	90	11	121	363
	40	760			1736

Here, N = 40,
$$\sum_{i=1}^{7} f_i x_i = 760$$

$$\therefore \overline{x} = \frac{\sum_{i=1}^{7} f_i x_i}{N} = \frac{760}{40} = 19$$

Variance
$$= (\sigma^2) = \frac{1}{N} \sum_{i=1}^{7} f_i (x_i - \overline{x})^2 = \frac{1}{40} \times 1736 = 43.4$$

Question 11:

The following is the record of goals scored by team A in a football session:

No. of goals scored		1	2	Э	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?

Ans:

The mean and the standard deviation of goals scored by team A are calculated as follows:

No. of goals scored	No. of matches	$f_i x_i$	x,2	$f_i x_i^2$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean =
$$\frac{\sum_{i=1}^{5} f_i x_i}{\sum_{i=1}^{5} f_i} = \frac{50}{25} = 2$$

Thus, the mean of both the teams is same.

$$\sigma = \frac{1}{N} \sqrt{N \sum_{i} f_{i} x_{i}^{2} - \left(\sum_{i} f_{i} x_{i}\right)^{2}}$$

$$= \frac{1}{25} \sqrt{25 \times 130 - \left(50\right)^{2}}$$

$$= \frac{1}{25} \sqrt{750}$$

$$= \frac{1}{25} \times 27.38$$

$$= 1.09$$

The standard deviation of team B is 1.25 goals.

The average number of goals scored by both the teams is same i.e., 2. Therefore, the team with lower standard deviation will be more consistent.

Thus, team A is more consistent than team B.

Question 12:

Find the mean deviation about the median for the data

The given data is

36, 72, 46, 42, 60, 45, 53, 46, 51, 49

Here, the number of observations is 10, which is even.

Arranging the data in ascending order, we obtain

Median M =
$$\frac{\left(\frac{10}{2}\right)^{th} \text{ observation} + \left(\frac{10}{2} + 1\right)^{th} \text{ observation}}{2}$$
$$= \frac{5^{th} \text{ observation} + 6^{th} \text{ observation}}{2}$$
$$= \frac{46 + 49}{2} = \frac{95}{2} = 47.5$$

The deviations of the respective observations from the median, i.e. $x_i - M$, are

The absolute values of the deviations, $|x_i - \mathbf{M}|$, are

Thus, the required mean deviation about the median is

M.D.(M) =
$$\frac{\sum_{i=1}^{10} |x_i - M|}{10} = \frac{11.5 + 5.5 + 2.5 + 1.5 + 1.5 + 1.5 + 3.5 + 5.5 + 12.5 + 24.5}{10}$$
$$= \frac{70}{10} = 7$$

Question 13:

Find the mean and variance for the data

хi	92	93	97	98	102	104	109
fi	з	2	ю	2	6	ω	ω

The data is obtained in tabular form as follows.

×i	fi	f _i x _i	$X_i - X$	$\left(x_i - \overline{x}\right)^2$	$f_i(x_i - \overline{x})^2$
92	3	276	-8	64	192
93	2	186	-7	49	98
97	3	291	-3	9	27
98	2	196	-2	4	8
102	6	612	2	4	24
104	3	312	4	16	48
109	3	327	9	81	243
	22	2200			640

Here, N = 22,
$$\sum_{i=1}^{7} f_i x_i = 2200$$

$$\therefore \bar{x} = \frac{1}{N} \sum_{i=1}^{7} f_i x_i = \frac{1}{22} \times 2200 = 100$$

Variance
$$(\sigma^2) = \frac{1}{N} \sum_{i=1}^{7} f_i (x_i - \bar{x})^2 = \frac{1}{22} \times 640 = 29.09$$

Question 14:

The sum and sum of squares corresponding to length x (in cm) and weight y

(in gm) of 50 plant products are given below:

$$\sum_{i=1}^{50} x_i = 212, \quad \sum_{i=1}^{50} x_i^2 = 902.8, \quad \sum_{i=1}^{50} y_i = 261, \quad \sum_{i=1}^{50} y_i^2 = 1457.6$$

Which is more varying, the length or weight?

$$\sum_{i=1}^{50} x_i = 212, \sum_{i=1}^{50} x_i^2 = 902.8$$

Here, N = 50

$$\bar{x} = \frac{\sum_{i=1}^{50} y_i}{N} = \frac{212}{50} = 4.24$$
 Mean,

Variance
$$(\sigma_1^2) = \frac{1}{N} \sum_{i=1}^{50} (x_i - \bar{x})^2$$

$$= \frac{1}{50} \sum_{i=1}^{50} (x_i - 4.24)^2$$

$$= \frac{1}{50} \sum_{i=1}^{50} \left[x_i^2 - 8.48 x_i + 17.97 \right]$$

$$= \frac{1}{50} \left[\sum_{i=1}^{50} x_i^2 - 8.48 \sum_{i=1}^{50} x_i + 17.97 \times 50 \right]$$

$$= \frac{1}{50} [902.8 - 8.48 \times (212) + 898.5]$$

$$= \frac{1}{50} [1801.3 - 1797.76]$$

$$= \frac{1}{50} \times 3.54$$

$$= 0.07$$

$$\sum_{i=1}^{50} \mathbf{y}_i = 261, \ \sum_{i=1}^{50} \mathbf{y}_i^2 = 1457.6$$

Variance
$$\left(\sigma_{2}^{2}\right) = \frac{1}{N} \sum_{i=1}^{50} (y_{i} - \overline{y})^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} (y_{i} - 5.22)^{2}$$

$$= \frac{1}{50} \sum_{i=1}^{50} \left[y_{i}^{2} - 10.44 y_{i} + 27.24 \right]$$

$$= \frac{1}{50} \left[\sum_{i=1}^{50} y_{i}^{2} - 10.44 \sum_{i=1}^{50} y_{i} + 27.24 \times 50 \right]$$

$$= \frac{1}{50} \left[1457.6 - 10.44 \times (261) + 1362 \right]$$

$$= \frac{1}{50} \left[2819.6 - 2724.84 \right]$$

$$= \frac{1}{50} \times 94.76$$

$$= 1.89$$

 \therefore Stan dard deviation, σ_2 (Weight) = $\sqrt{1.89}$ = 1.37

$$\therefore \text{C.V.(Weight)} = \frac{\text{Stan dard deviation}}{\text{Mean}} \times 100 = \frac{1.37}{5.22} \times 100 = 26.24$$

Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths.

Question 15:

Find the mean deviation about the mean for the data.

Xį	5	10	15	20	25
f_i	7	4	6	ω	5

X _i	fi	$f_i x_i$	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

$$N = \sum_{i=1}^{5} f_i = 25$$

$$\sum_{i=1}^{5} f_i x_i = 350$$

$$\therefore \overline{x} = \frac{1}{N} \sum_{i=1}^{5} f_i x_i = \frac{1}{25} \times 350 = 14$$

: MD(
$$\overline{x}$$
) = $\frac{1}{N} \sum_{i=1}^{5} f_i |x_i - \overline{x}| = \frac{1}{25} \times 158 = 6.32$

Question 16:

Find the mean and standard deviation using short-cut method.

Xį	60	61	62	63	64	65	66	67	68
fį	2	1	12	29	25	12	10	4	5

The data is obtained in tabular form as follows.

x _i	f_i	$f_i = \frac{x_i - 64}{1}$	yi ²	f _i y _i	f _i y _i ²
60	2	-4	16	-8	32
61	1	-3	9	γ	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	з	9	12	36
68	5	4	16	20	80
	100	220		0	286

Mean,
$$x = A \frac{\sum\limits_{i=1}^{9} f_i y_i}{N} \times h = 64 + \frac{0}{100} \times 1 = 64 + 0 = 64$$

Variance,
$$\sigma^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{9} f_{i} y_{i}^{2} - (\sum_{i=1}^{9} f_{i} y_{i})^{2} \right]$$
$$= \frac{1}{100^{2}} \left[100 \times 286 - 0 \right]$$
$$= 2.86$$

$$\therefore$$
 S tan dard deviation $(\sigma) = \sqrt{2.86} = 1.69$

Question 17:

Find the mean deviation about the mean for the data

Χį	10	30	50	70	90
f_i	4	24	28	16	00

Xį	fi	$f_i x_i$	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
10	4	40	40	160
30	24 720 20		480	
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

$$\begin{split} N &= \sum_{i=1}^{5} f_{i} = 80, \ \sum_{i=1}^{5} f_{i} x_{i} = 4000 \\ &\therefore \ \overline{x} = \frac{1}{N} \sum_{i=1}^{5} f_{i} x_{i} = \frac{1}{80} \times 4000 = 50 \\ MD(\overline{x}) \frac{1}{N} \sum_{i=1}^{5} f_{i} \left| x_{i} - \overline{x} \right| = \frac{1}{80} \times 1280 = 16 \end{split}$$

Question 18:

Find the mean and variance for the following frequency distribution.

Classes	0-30	30-60	60-90	90-120	120-150	150-180	180-210
Frequencies	2	з	5	10	з	5	2

Class	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 105}{30}$	y,²	f _i y _i	f _i y _i ²
0-30	2	15	-3	9	-6	18
30-60	3	45	-2	4	-6	12
60-90	5	75	-1	1	-5	5
90-120	10	105	0	0	0	0
120-150	3	135	1	1	3	3
150-180	5	165	2	4	10	20
180-210	2	195	3	9	6	18
	30				2	76

Mean,
$$\bar{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 105 + \frac{2}{30} \times 30 = 105 + 2 = 107$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^7 f_i y_i^2 - \left(\sum_{i=1}^7 f_i y_i \right)^2 \right]$$

$$= \frac{(30)^2}{(30)^2} \left[30 \times 76 - (2)^2 \right]$$

$$= 2280 - 4$$

$$= 2276$$

Question 19:

Find the mean deviation about the median for the data.

Χį	5	7	9	10	12	15
f_i	8	6	2	2	2	6

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

Xį	f_i	c.f.
5	00	00
7	6	14
9	2	16
10	2	18
12	2	20
15	6	26

Here, N = 26, which is even.

Median is the mean of 13th and 14th observations. Both of these observations lie in the cumulative frequency 14, for which the corresponding observation is 7.

$$\therefore Median = \frac{13^{th} observation + 14^{th} observation}{2} = \frac{7+7}{2} = 7$$

The absolute values of the deviations from median, i.e. $|x_i - \mathbf{M}|$, are

+							
	$ x_i - M $	2	0	2	m	5	ω
	f_{ℓ}	8	6	2	2	2	6
		16	0	4	6	10	48
	$f_i x_i - M $						

$$\sum_{i=1}^{6} f_i = 26 \sum_{\text{and } i=1}^{6} f_i |x_i - \mathbf{M}| = 84$$

M.D.(M) =
$$\frac{1}{N} \sum_{i=1}^{6} f_i |x_i - M| = \frac{1}{26} \times 84 = 3.23$$

Question 20:

Find the mean and variance for the following frequency distribution.

Classes	0-10	10-20	20-30	30-40	40-50
Frequencies	5	œ	15	16	6

Class	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 25}{10}$	yr²	f _i y _i	f _i y _i ²
0-10	5	5	-2	4	-10	20
10-20	8	15	-1	1	-8	8
20-30	15	25	0	0	0	0
30-40	16	35	1	1	16	16
40-50	6	45	2	4	12	24
	50				10	68

Mean,
$$\bar{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h = 25 + \frac{10}{50} \times 10 = 25 + 2 = 27$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^5 f_i y_i^2 - \left(\sum_{i=1}^5 f_i y_i \right)^2 \right]$$

 $= \frac{(10)^2}{(50)^2} \left[50 \times 68 - (10)^2 \right]$
 $= \frac{1}{25} \left[3400 - 100 \right] = \frac{3300}{25}$
 $= 132$

Question 21:

Find the mean deviation about the median for the data

Χį	15	21	27	30	35
f_i	ω	5	6	7	8

The given observations are already in ascending order.

Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

Xį	f_i	c.f.
15	m	з
21	5	8
27	6	14
30	7	21
35	8	29

Here, N = 29, which is odd.

$$\therefore Median = \left(\frac{29+1}{2}\right)^{th} \text{observation} = 15^{th} \text{ observation}$$

This observation lies in the cumulative frequency 21, for which the corresponding observation is 30.

Median = 30

The absolute values of the deviations from median, i.e. $|x_i - \mathbf{M}|$, are

$ x_i - M $	15	9	3	0	5
f_i	3	5	6	7	8
$f_i x_i - M $	45	45	18	0	40

$$\sum_{i=1}^{5} f_i = 29, \ \sum_{i=1}^{5} f_i |x_i - \mathbf{M}| = 148$$

M.D.(M) =
$$\frac{1}{N} \sum_{i=1}^{5} f_i |x_i - M| = \frac{1}{29} \times 148 = 5.1$$

Question 22:

Find the mean, variance and standard deviation using short-cut method

Height	No. of children
in cms	
70-75	3
75-80	4
80-85	7
85-90	7
90-95	15
95-100	9
100-105	6
105-110	6
110-115	3

Class Interval	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 92.5}{5}$	y;²	f _i y _i	f _i y _i ²
70-75	3	72.5	-4	16	-12	48
75-80	4	77.5	-3	9	-12	36
80-85	7	82.5	-2	4	-14	28
85-90	7	87.5	-1	1	-7	7
90-95	15	92.5	0	0	0	0
95-100	9	97.5	1	1	9	9
100-105	6	102.5	2	4	12	24
105-110	6	107.5	3	9	18	54
110-115	3	112.5	4	16	12	48
	60				6	254

Mean,
$$\bar{x} = A + \frac{\sum_{i=1}^{9} f_i y_i}{N} \times h = 92.5 + \frac{6}{60} \times 5 = 92.5 + 0.5 = 93$$

Variance
$$(\sigma^2) = \frac{h^2}{N^2} \left[N \sum_{i=1}^9 f_i y_i^2 - \left(\sum_{i=1}^9 f_i y_i \right)^2 \right]$$

$$= \frac{(5)^2}{(60)^2} \left[60 \times 254 - (6)^2 \right]$$

$$= \frac{25}{3600} (15204) = 105.58$$

 \therefore Standard deviation (σ) = $\sqrt{105.58}$ = 10.27

Question 23:

Find the mean deviation about the mean for the data.

Income per day	Number of persons
0-100	4
100-200	8
200-300	9
300-400	10
400-500	7
500-600	5
600-700	4
700-800	3

The following table is formed.

Income per day	Number of persons f_i	Mid-point	$f_i x_i$	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
0 - 100	4	50	200	308	1232
100 - 200	8	150	1200	208	1664
200 - 300	9	250	2250	108	972
300 - 400	10	350	3500	8	80
400 - 500	7	450	3150	92	644
500 - 600	5	550	2750	192	960
600 - 700	4	650	2600	292	1168
700 - 800	3	750	2250	392	1176
	50		17900		7896

Here,
$$N = \sum_{i=1}^{8} f_i = 50$$
, $\sum_{i=1}^{8} f_i x_i = 17900$

$$\therefore \overline{x} = \frac{1}{N} \sum_{i=1}^{8} f_{i} x_{i} = \frac{1}{50} \times 17900 = 358$$

$$M.D.(\overline{x}) = \frac{1}{N} \sum_{i=1}^{8} f_i |x_i - \overline{x}| = \frac{1}{50} \times 7896 = 157.92$$

Question 24:

The diameters of circles (in mm) drawn in a design are given below:

Diameters	No. of children
33-36	15
37-40	17
41-44	21
45-48	22
49-52	25

Class Interval	Frequency f_i	Mid-point x_i	$y_i = \frac{x_i - 42.5}{4}$	f _i 2	f _i y _i	f _i y;²
32.5-36.5	15	34.5	-2	4	-30	60
36.5-40.5	17	38.5	-1	1	-17	17
40.5-44.5	21	42.5	0	0	0	0
44.5-48.5	22	46.5	1	1	22	22
48.5-52.5	25	50.5	2	4	50	100
	100				25	199

Here, N = 100, h = 4

Let the assumed mean, A, be 42.5.

Mean,
$$\overline{x} = A + \frac{\sum\limits_{i=1}^{5} f_i y_i}{N} \times h = 42.5 + \frac{25}{100} \times 4 = 43.5$$

$$\begin{aligned} \text{Variance} \left(\sigma^{2}\right) &= \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{5} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{5} f_{i} y_{i} \right)^{2} \right] \\ &= \frac{16}{10000} \left[100 \times 199 - \left(25\right)^{2} \right] \\ &= \frac{16}{10000} \left[19900 - 625 \right] \\ &= \frac{16}{10000} \times 19275 \\ &= 30.84 \end{aligned}$$

 \therefore S tan dard deviation (σ) = 5.55

Question 25:

Find the mean deviation about the mean for the data

Height in cms	Number of boys	
95-105	9	
105-115	13	
115-125	26	
125-135	30	
135-145	12	
145-155	10	

The following table is formed.

Height in cms	Number of boys f_i	Mid-point <i>x_i</i>	$f_i x_i$	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i - \overline{x} $
95-105	9	100	900	25.3	227.7
105-115	13	110	1430	15.3	198.9
115-125	26	120	3120	5.3	137.8
125-135	30	130	3900	4.7	141
135-145	12	140	1680	14.7	176.4
145-155	10	150	1500	24.7	247

$$N = \sum_{i=1}^6 f_i = 100, \sum_{i=1}^6 f_i x_i = 12530$$
 Here,

$$\therefore \overline{x} = \frac{1}{N} \sum_{i=1}^{6} f_i x_i = \frac{1}{100} \times 12530 = 125.3$$

M.D.
$$(\overline{x}) = \frac{1}{N} \sum_{i=1}^{6} f_i |x_i - \overline{x}| = \frac{1}{100} \times 1128.8 = 11.28$$

Question 26:

Find the mean deviation about median for the following data:

Marks	Number of girls	
0-10	6	
10-20	8	
20-30	14	
30-40	16	
40-50	4	
50-60	2	

The following table is formed.

Marks	Number of boys f_i	Cumulative frequency (c.f.)	Mid- point <i>x;</i>	x; - Med.	$f_i x_i -$ Med.
0-10	6	6	5	22.85	137.1
10-20	8	14	15	12.85	102.8
20-30	14	28	25	2.85	39.9
30-40	16	44	35	7.15	114.4
40-50	4	48	45	17.15	68.6
50-60	2	50	55	27.15	54.3
	50				517.1

Therefore, 20 - 30 is the median class.

It is known that,

$$Median = l + \frac{\frac{N}{2} - C}{f} \times h$$

Here, l = 20, C = 14, f = 14, h = 10, and N = 50

$$\square \text{ Median } = 20 + \frac{25 - 14}{14} \times 10 = 20 + \frac{110}{14} = 20 + 7.85 = 27.85$$

Thus, mean deviation about the median is given by,

M.D.(M) =
$$\frac{1}{N} \sum_{i=1}^{6} f_i |x_i - M| = \frac{1}{50} \times 517.1 = 10.34$$

Question 27:

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	Number
16-20	5
21-25	6
26-30	12
31-35	14
36-40	26
41-45	12
46-50	16
51-55	9

The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.

The table is formed as follows.

Age	Number f _i	Cumulative frequency (c.f.)	Mid- point <i>x_i</i>	x; - Med.	$f_i x_i -$ Med.
15.5- 20.5	5	5	18	20	100
20.5- 25.5	6	11	23	15	90
25.5- 30.5	12	23	28	10	120
30.5- 35.5	14	37	33	5	70
35.5- 40.5	26	63	38	0	0
40.5- 45.5	12	75	43	5	60
45.5- 50.5	16	91	48	10	160
50.5- 55.5	9	100	53	15	135
	100				735

The class interval containing the $\frac{N}{2}^{\prime h}$ or 50th item is 35.5 - 40.5.

Therefore, 35.5 - 40.5 is the median class.

It is known that,

$$Median = l + \frac{\frac{N}{2} - C}{f} \times h$$

Here, I = 35.5, C = 37, f = 26, h = 5, and N = 100

:. Median =
$$35.5 + \frac{50 - 37}{26} \times 5 = 35.5 + \frac{13 \times 5}{26} = 35.5 + 2.5 = 38$$

Thus, mean deviation about the median is given by,

M.D.(M) =
$$\frac{1}{N} \sum_{i=1}^{8} f_i |x_i - M| = \frac{1}{100} \times 735 = 7.35$$

******* END *******