EE368 Robotic Motion and Control

Spring 2024

Project: Kinematics (5%)

Date: 4.14 24:00

Task:

- 1. Number the links and joint axes from the Base frame to Tool frame, attach link frames to each link (You may refer to page 135 of Gen3_lite_USER_GUIDE_R03.pdf).
- 2. Give the D-H table.
- 3. Write a kinematics program (python or C++) to calculate it.
 - Input form: $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6$
 - Outputform: $_{Tool}^{Base}T$ or $\{p_x,p_y,p_z,\alpha,\beta,\gamma\}$

- Hint: it is encouraged to check your program and result on Kinova Gen3 Lite Robort arm.
- Hint: you can use some third-part packages or libraries like numpy and Eigen.
- Attention: The definition and formula of DH model given in user guide which is different from them in textbook. Please refer to the textbook for the exam.
- Attention: The Tool frame on page 135 is different from which in actual use (on page 133).

Samples:

Input:

name	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
НОМЕ	0	345	75	0	300	0
ZERO	0	0	0	0	0	0
RETRACT	357	21	150	272	320	273
PACKAGING	270	148	148	270	140	0
PICK	20.5	313.5	100	265.5	327	57

Output:

name	p_x	p_y	p_z	θ_x	θ_y	θ_z
НОМЕ	435	194	457	90	0	150
ZERO	57	-10	1003	0	0	90
RETRACT	130	-69	118	11	178	83
PACKAGING	-67	299	71	-180	-40	90
PICK	349.6	48.6	-0.6	-179.0	2.3	147.3

or:

name	$_{Tool}^{Base}T$
НОМЕ	$\begin{bmatrix} -0.866 & 0 & 0.5 & 434.969 \end{bmatrix}$
	0.5 0 0.866 193.516
	0 1 0 456.759
	$\begin{bmatrix} 0 & -1 & 0 & 57 \end{bmatrix}$
ZERO	1 0 0 -10
ZENO	0 0 1 1003.3
RETRACT	$\begin{bmatrix} -0.125 & -0.973 & 0.192 & 130.292 \end{bmatrix}$
	$\begin{bmatrix} -0.991 & 0.13 & 0.012 & -68.607 \end{bmatrix}$
	$\begin{bmatrix} -0.037 & -0.189 & -0.981 & 118.362 \end{bmatrix}$
	$\begin{bmatrix} 0 & 1 & 0 & -67 \end{bmatrix}$
PACKAGING	$\begin{bmatrix} 0.766 & 0 & 0.643 & 299.432 \end{bmatrix}$
TACIVIONI	$\begin{bmatrix} 0.643 & 0 & -0.766 & 70.826 \end{bmatrix}$
	$\begin{bmatrix} -0.841 & 0.541 & 0.024 & 349.545 \end{bmatrix}$
PICK	$\begin{bmatrix} 0.54 & 0.841 & -0.036 & 48.626 \end{bmatrix}$
	$\begin{bmatrix} -0.04 & -0.017 & -0.999 & -0.568 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$

- $\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_x, \theta_y, \theta_z$ are in deg.
- p_x, p_y, p_z are in mm.

Submission:

Submit your program code on Blackboard system.