Question 1: 2^4 Design

* Given

A ship-breaking company has to be extremely careful due to high possibilities of running into asbestos during the breaking operations.

Figure 1: U.S. Department of Labor OSHA 2001

Four factors have been identified through a Cause and Effect exercise that may result in increased airborne asbestos release.

- A: Speed of Cutting Blade
- B: Negative Pressure Environmental Vacuum
- C: Method of Initial Shell Penetration
- D: Duty Cycle of Cutting Blade [i.e. thermal heating of blade]

It has been decided that each of these factors will have two levels to be tested in a 2^4 Balanced Full Factorial Design

- A: Speed of Cutting Blade [2000rpm, 5000rpm]
- B: Negative Pressure Environmental Vacuum [-1atm, -2atm]
- C: Method of Initial Shell Penetration [Plasma Weld-cut, Oxy Fuel Torch Weld-cut]
- D: Duty Cycle of Cutting Blade [2 min on 3 min off, 4 min on 1 min off]

* Find

- 1. Create the Design, Planning, and Model Matrices for this Experiment
- 2. How many replicates are needed to allow at least 20 df_{error} in a model that includes all interaction effects?
- 3. From a purely Engineering sense, which 'two-factor' interaction would you mostly give up last?

Std Ord	Run Ord	A	В	С	D	AB	M AC	odel AD	Matr BC	ix BD	CD	ABC	ABD	ACD	BCD	ABCD
1	6	_	_	_	_	+	+	+	+	+	+	_	_	_	_	+
2	12	-	_	_	+	+	+	_	+	_	_	_	+	+	+	_
3	9	_	_	+	_	+	_	+	_	+	_	+	_	_	+	_
4	15	_	_	+	+	+	_	_	_	_	+	+	+	+	_	+
5	10	_	+	_	_	_	+	+	_	_	+	+	+	_	+	_
6	14	_	+	_	+	_	+	_	_	+	_	+	_	+	_	+
7	7	_	+	+	_	_	_	+	+	_	_	_	+	+	_	+
8	2	_	+	+	+	_	_	_	+	+	+	_	_	_	+	_
9	16	+	_	_	_	_	_	_	+	+	+	+	+	+	_	_
10	8	+	_	_	+	_	_	+	+	_	_	+	_	_	+	+
11	5	+	_	+	_	_	+	_	_	+	_	_	+	_	+	+
12	11	+	_	+	+	_	+	+	_	_	+	_	_	+	_	_
13	4	+	+	_	_	+	_	_	_	_	+	_	_	+	+	+
14	3	+	+	_	+	+	_	+	_	+	_	_	+	_	_	_
15	13	+	+	+	_	+	+	_	+	_	_	+	_	_	_	_
16	1	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

For a 24 BFFE

•
$$df_{error} = df_{total} - \sum df_{main} - \sum df_{2way} - \sum df_{3way} - \sum df_{4way}$$

•
$$df_{total} = (2^4)n - 1 = 16n - 1$$

•
$$\sum df_{main} = \binom{k}{1} = \binom{4}{1} = 4$$

•
$$\sum df_{2way} = {k \choose 2} = {4 \choose 2} = 6$$

•
$$\sum df_{3way} = {k \choose 3} = {4 \choose 2} = 4$$

•
$$\sum df_{4way} = \binom{k}{4} = \binom{4}{2} = 1$$

•
$$df_{error} = 16n - 1 - 4 - 6 - 4 - 1 = 16n - 16$$

• $n=(df_{error}+16)/16=(20+16)/16=2.25 \rightarrow 3$ replicates required to get at least 20 df_{error}

The AD one, the duty cycle and blade speed are highly related and likely to be a interaction factor in the release of asbestos. However, other justified answers are acceptable.

Question 2: Saving More Money through Confounding

* Given

Using the last problem information

* Find

- 1. Take your Design Matrix and Change your D factor level pattern to match the current 'three-way' ABC relationship
- 2. Draw up the new Model Matrix where D=ABC
- 3. What is the relationship between the columns that are identical to each other now as that relationship gets propagated?
- 4. Optional: Any ideas on how to use that relationship to cut down the number of runs needed?

* Solution

Design Matrix (D=ABC)											
Std Ord	Run Ord	Α	В	С	D						

	1	6		_	_	_	_
	2	12	2	_	_	_	_
	3	9		_	_	+	+
	4	15		_	_	+	+
	5	10		_	+	_	+
	6	14		_	+	_	+
	7	7		_	+	+	_
	8	2		_	+	+	_
	9	16		+	_	_	+
	10	8		+	_	_	+
	11	5		+	_	+	_
	12	1		+	_	+	_
	13	4		+	+	_	_
	14	3		+	+	_	_
	15	13	3	+	+	+	+
	16	1		+	+	+	+
_							

Question 3: Finish the Example

* Given

Look at the example from the lecture [Week 3], and continue trimming down the model. Show each step and your rationale for why you are continuing. Include the Engineering or Fundamental Principle you are following.

* Find

Also for your final model:

- 1. What is your confidence that this is a useful model?
- 2. What is r_{adj}^2 ?
- 3. What Factor Levels result in the **Lowest** Acoustic Response?
- 4. What are the 90% confidence intervals on the coefficients?

* Solution

- The model confidence is based on the p-value for F
- r_{adj}^2 is returned from the regression run
- Look out for disallowed choices of factor levels, you can only pick the main ones, the interaction effects are driven by your choices of main factor levels.
- Did the student remember to change the conf.level setting?
- Were steps justified?

END OF ASSIGNMENT