I. Production d'une tension variable

ACTIVITE 1 PAGE 168

- 1 Lorsque l'aimant et la bobine sont immobiles, le voltmètre indique 0 V.
- 2 Lorsque l'on approche l'aimant de la bobine, le voltmètre indique 20,58 V.
- 3 Lorsque l'on éloigne l'aimant de la bobine, le voltmètre indique $-9,02\ V$.
- 4 Une tension apparaît aux bornes de la bobine lorsqu'un aimant approche ou s'éloigne de la bobine.
- 5 La signe de la tension produite dépend du sens du mouvement de l'aimant par rapport à la bobine.
- 6 Si l'on répète régulièrement ces deux mouvements devant la bobine, une tension variable est produite.

Á RETENIR

- Lorsque l'on déplace un aimant au voisinage d'une bobine (ou une bobine au voisinage d'un aimant), on produit une tension qui est positive ou négative selon le sens du mouvement.
- Si l'on enchaîne les deux mouvements, on obtient une tension variable aux bornes de la bobine.

EXERCICES

- exercice 6 page 176
- exercice 16 page 178

II. L'alternateur de bicyclette

ACTIVITE 2 PAGE 169

- 1 Les deux éléments principaux de l'alternateur de bicyclette sont un aimant et une bobine. La bobine est fixe, et l'aimant mobile.
- 2 Pour faire fonctionner l'alternateur, l'élève actionne une manivelle.
- 3 Lorsque l'on ferme l'interrupteur on observe que l'ampoule est allumée en faisant tourner le galet. Elle est éteinte si il ne tourne pas.
- 4 Le galet fait tourner l'aimant de l'alternateur devant la bobine.
- 5 En observant l'ampoule on peut conclure qu'actionner le galet produit une tension électrique.
- 6 L'énergie mécanique fait tourner l'alternateur qui produit de l'énergie électrique.

Á RETENIR

- Un alternateur de bicyclette se compose d'une bobine et d'un aimant relié à un galet qui permet de le faire tourner.
- L'alternateur reçoit de l'énergie mécanique lorsque l'on fait tourner le galet. Il convertit cette énergie mécanique en énergie électrique lorsque l'aimant tourne devant la bobine.
- On traduit les conversions énergétiques par un diagramme d'énergie.

EXERCICES

- exercice 7 page 176
- exercice 9 page 176

• exercice 12 page 177

III. Centrale hydraulique et centrale éolienne

ACTIVITE 3 PAGE 170

- 1 L'eau qui s'écoule du barrage transfère de l'énergie hydraulique à la turbine.
- 2 Le vent produit de l'énergie éolienne qui est transférée aux pales de l'éolienne.
- 3 L'alternateur est l'élément commun aux deux centrales. Il reçoit de l'énergie mécanique. :
- 4 Le rôle de l'alternateur est de convertir l'énergie mécanique qu'il reçoit en énergie électrique.
- 5 Ces sources d'énergies sont renouvelées rapidement et naturellement (à la différence du pétrole par exemple). Elles sont dites renouvelables.

Á RETENIR

- C'est le mouvement de l'eau ou du vent qui fournit de l'énergie mécanique à la turbine d'une centrale hydraulique ou aux pales d'une éolienne. L'eau et le vent sont des sources d'énergies renouvelables.
- L'alternateur relié à la turbine ou aux pales est l'élément commun aux deux centrales électriques, il transforme l'énergie mécanique qu'il reçoit en énergie électrique fournie au réseau électrique.
- Une partie de l'énergie mécanique est «perdue» car elle n'est pas convertie en énergie électrique.
- On peut traduire la conversion d'énergie par un diagramme d'énergie.

EXERCICES

• exercice 3 page 1752

• exercice 8 page 176

IV. Centrale thermique

ACTIVITE 4 PAGE 171

- a) La vapeur est produite par la combustion de charbon ou de gaz naturel, c'est de l'énergie thermique.
- b) A la sortie du générateur de vapeur la vapeur d'eau a acquis de l'énergie thermique et mécanique.
- c) LA vapeur fournit de l'énergie mécanique à la turbine, pour la faire tourner.
- d) Toutes les centrales électriques utilisent un alternateur. Ici l'énergie thermique est convertie en énergie électrique.
- e) L'alternateur produit l'énergie électrique fournie au réseau. Après la turbine, la vapeur est toujours en mouvement donc toute l'énergie mécanique n'est pas convertie.
- f) Les combustibles utilisés sont présents sur Terre en quantité limitée. Se sont des énergies fossiles, elle ne se renouvellent pas, elles s'épuisent.

Á RETENIR

- Dans une centrale thermique, les combustibles fournissent une énergie thermique qui produit la vaporisation de l'eau. La vapeur d'eau en mouvement fournit de l'énergie mécanique à la turbine et l'alternateur la transforme en énergie électrique.
- Les centrales thermiques sont alimentées par des sources d'énergie fossiles, non renouvelables.

EXERCICES

- exercice 4 page 175
- exercice 11 page 177

• exercice 15 page 178

Correction des exercices

Exercice 4 page 175

- 1. Une tension variable peut être obtenue par **déplacement** d'un aimant au voisinage d'une **bobine**.
- 2. Un alternateur transforme l'énergie mécanique en énergie électrique.
- 3. L'alternateur est la partie commune à toutes les centrales électriques.
- **4.** Une **partie** de l'énergie reçue ar une centrale électrique n'est pas transformée, on dit qu'elle est **«perdue»**.
- 5. Les combustibles qui alimentent les centrales thermiques sont des sources d'énergie non renouvelables.
- **6.** L'eau en mouvement qui alimente les centrales **hydrauliques** est une source d'énergie renouvelable.
- 7. Le vent qui alimente les centrales éoliennes est une source d'énergie renouvelable.

Exercice 6 page 176

Ordre des	Opérations	Tension
opérations	C P STATESTIC	
1	approcher l'aimant de la bobine	positive
2	éloigner l'aimant de la bobine	négative
3	inverser les bornes du voltmètre	aucune
4	éloigner la bobine de l'aimant	négative
5	approcher la bobine de l'aimant	positive
6	déplacer solidairement l'aimant et la bobine	aucune

Exercice 7 page 176

lampe allumée : énergie électrique.

turbine en rotation, jet de vapeur, jet d'eau, vent, pales d'une éolienne en rotation : énergie mécanique.

exercice 8 page 176

- 1. Dans une centrale hydraulique, 20% (100-80=20) de l'énergie n'est pas convertie, elle est «perdue» sous forme d'énergie mécanique.
- 2. Dans une centrale éolienne, 40 % (100 60 = 40) de l'énergie n'est pas convertie, elle est «perdue» sous forme d'énergie mécanique.

3.

exercice 9 page 176

exercice 11 page 177

source d'énergie	source d'énergie renouvelable ou non	nom de la centrale	nom du jet
charbon	non	thermique	vapeur d'eau
gaz	non	thermique	vapeur d'eau
fioul	non	thermique	vapeur d'eau
plutonium	non mais durée de vie très longue	nucléaire (thermique)	vapeur d'eau
marée	oui	marémotrice (hydraulique)	eau
vague	oui	à vagues (éolienne)	air
eau (barrage)	oui	hydraulique	eau
vent	oui	éolienne	air
magma	oui	géothermique	vapeur d'eau
uranium	non	thermique	vapeur d'eau

exercice 12 page 177

1. Quand les feux sont allumés, une partie de l'énergie mécanique qu'il fournit est convertie en énergie électrique donc il doit fournir plus d'énergie musculaire.

- 2. En modifiant la position du levier de vitesse, il doit fournir une quantité d'énergie différente pour faire tourner les roues à la même vitesse.
- 3. Si une lampe s'éteint il y aura besoin de moins d'énergie électrique donc il aura besoin de faire moins d'efforts pour conserver une vitesse constante.

exercice 15 page 178

- 1. L'essence fourni de l'énergie thermique au moteur.
- 2. Non toute l'énergie thermique fournie par l'essence n'est pas convertie, elle est perdue dans le circuit de refroidissement.

3.

énergie thermique « perdue »

exercice 16 page 178

- 1. La tension change de sens chaque fois qu'une dent passe devant la bobine car quand une dent arrive devant la bobine l'aimant s'approche, puis lorsqu'elle continue son parcours, il s'éloigne.
- 2. Il y a 12 dents sur le disque, donc quand la roue fait un tour la tension prend 12 fois le même signe.
- 3. $240 \div 12 = 20$, donc si la tension prend 240 fois le même signe pendant une seconde, la roue fait 20 tours.
- **4.** $20 \times 0.8 = 16$, donc en 1 seconde, le véhicule parcourt 16 m sa vitesse est donc 16 m/s soit $57\,600~km/h~(16 \times 3600 = 57\,600)$.