Chapitre 17 - Espaces Vectoriels de Dimension Finie

On note \mathbb{K} pour \mathbb{R} ou \mathbb{C} .

1 Bases en dimension finie

1.1 <u>Dimension finie</u>

Définition 1.1. On dit qu'un \mathbb{K} -espace vectoriel E est de dimension finie si il admet une famille génératrice finie.

Dans le cas contraire, on dit que E est de dimension infinie.

	Exemple:
	* IR 2 est de dimension finic car
γ \	((1,0), (0,1)) est une famille génératrice finic à 2 vecteu
l	* IR ² est de dimension finic car ((1,0), (0,1)) est une famille génératrice finic à 2 vecteu foul (ny) E/R² s'éaut (n,y) = n(1,0)+y(0,1) (Card famille = 2)
	* 1R3 est de dimension s'inie car
	((1,0,0),(0,1,0),(0,2,0),(0,3,0),(0,4,0),(0,0,0),(0,0,1)
	estime samille génératrice à 7 vecteurs (mois elle n'est jos libre)
	J * F (1R, 12) = 1R R (eus des fauctions de R dans 1R) est de dimension infinie
(1 1R [x] l'eus de tous les joly mà mes est de dimension in finie
	Preuve: Supsans que (Pr, Pz,, Pm) est une famille
	géménatrice finie de 12 5 x 7. On note que le plus grand des n degrés deg P1, deg P2, -, deg Pn
	alors X^{g+1} ne jeut jas s'écuire comme cem binaison l'iniaire de P_1, \dots, P_m ce qui contredit le fait que (P_1, \dots, P_m) est génératrice
	de Pr, Pm ce qui contredit le fait que (Pr, Pm) est génératice

* R3 /X3 est de dimension finie cau
(1, X, X², X3) est gene notrice de 123 (X)

* RN cus des sentes vielles est de dimension
infinie.

1.2 Existence de bases en dimension finie

Théorème 1.1 (Théorème de la base incomplète). Soit E un \mathbb{K} -espace vectoriel de dimension finie. Toute famille libre de E peut être complétée en une base de E.

Les vecteurs ajoutés peuvent être choisis parmi les vecteurs d'une famille génératrice donnée.

Corollaire 1.2. Tout \mathbb{K} -espace vectoriel E non nul de dimension finie admet une base.

Corollaire 1.3 (Théorème de la base extraite). *De toute famille génératrice finie d'un espace vectoriel E, on peut extraire une base de E.*

Remarques:
Remarques: aprend E engendré (g1, g2, -, gp) famille génératuée (x1, x2, xx) enve famille libre.
(n1, n2, nx) en famille libre.
on étadie (x, 2ez,, 2ez, g,) -> liée (jas litre)
$g_1 = \underbrace{\mathcal{Z}}_{q_1} \cdot \chi_1$
$(\chi_1, \chi_2, \dots, \chi_n, \chi_{n+1}) \qquad (\chi_1, \chi_2, \dots, \chi_n) \text{ libre}$
et an recommence avec ge
exemple: Dans 124, chon/se
G= Ved ((0,00,0), (-1,-1,0,0), (1,0,0,1), (2,-2,0,0)
(2,0,-1,0),(0,2,-1,0)
Cest un ser donc C'est un er qui a eme
I while ge me nature a 6 vedeur donct out de
Gest un ser donc Gest un en qui a eme avnille générature à 6 vecteur donc Gost de démension finie. Cherchers une base :
on fore $\chi_1 = (1, -1, 0, 0)$ (χ_1) est une amille (ibre carrer +
$\chi_2 = (1,0,0,1)$ (χ_1, η_2) est une famille (the (fas Colinéaires)
$\chi_3 = (2, -2, 0p)$ est combinaison l'nicine de (χ_1, χ_2) $\chi_3 = 2\pi 1$ $\chi_4 = (2, 0, -1, 0)$. Onétudie (χ_1, χ_2, χ_4): on my/ose que
14 = (2,0,-1,0). Ometude (11,12,14): on my/ose que
$4 \times 1 + \beta = 12 + 8 \times 4 = 0$ and $4 \times 3 + 28 = 0$ and $4 \times 3 + 28 = 0$ and $4 \times 3 + 28 = 0$
$ \begin{array}{lll} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
\sim β $= o$

de n_1, n_2, n_4): $n_5 = x_4 - 2 n_1$ $x_0, n_1, n_2, n_3, n_4, n_5$ sont combinaisons linéaires

ole (x_1, x_2, x_4) donc (x_1, x_2, x_4) est une famille générative de Get (x_1, x_2, x_4) est libre alas c'est une lase de G

1.3 Cardinal des familles libres

Lemme 1.4. Si $(x_1, x_2, ..., x_n)$ est une famille libre et la famille $(x_1, x_2, ..., x_n, x_{n+1})$ est liée, alors x_{n+1} est combinaison linéaire de $(x_1, x_2, ..., x_n)$ i.e. $x_{n+1} \in \text{Vect}(x_1, x_2, ..., x_n)$.

Démonstration.

Il existe des scalaires $(\alpha_i)_{i=1,...,n+1}$ non tous nuls tels que $\sum_{i=1}^{n+1} \alpha_i x_i = \overrightarrow{0}$ car la famille $(x_1, x_2, ..., x_n, x_{n+1})$ est liée.

Si $\alpha_{n+1}=0$, alors on a la relation $\sum_{i=1}^n \alpha_i x_i = \overrightarrow{0}$. Comme la famille $(x_1,x_2,...,x_n)$ est libre, on obtient $\forall i \in [\![1,n]\!], \quad \alpha_i=0$. C'est une contradiction avec l'hypothèse que les scalaires $(\alpha_i)_{i=1,...,n+1}$ sont non tous nuls.

Donc,
$$\alpha_{n+1} \neq 0$$
, alors on peut écrire $x_{n+1} = \sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} x_i$.

Proposition 1.5. Si E est un espace vectoriel admettant une famille génératrice à n vecteurs avec n entier non nul, alors toute famille de n+1 vecteurs est liée.

Corollaire 1.6. Dans un espace de dimension finie, toute famille libre a moins d'éléments qu'une famille génératrice.

1.4 Dimension

Théorème 1.7. Si E est un espace vectoriel de dimension finie, alors toutes les bases de E ont le même nombre d'éléments $n \in \mathbb{N}^*$.

Définition 1.2. Ce nombre n s'appelle la dimension de E sur \mathbb{K} noté $n = \dim_{\mathbb{K}} E = \dim E$. Par convention, $\dim\{\vec{0}\} = 0$.

Exemple 1.1. On a $\dim_{\mathbb{K}} \mathbb{K}^n = n$, $\dim_{\mathbb{K}} \mathbb{K}_n[X] = n + 1$ et $\dim_{\mathbb{K}} \mathcal{M}_{n,p}(\mathbb{K}) = n \times p$.

1.5 Familles en dimension finie

Théorème 1.8. Si E est un espace vectoriel de dimension FINIE n et $\mathscr F$ une famille de n vecteurs de E, alors $\mathscr F$ est une base de E si et seulement si $\mathscr F$ est libre si et seulement si $\mathscr F$ est génératrice de E.

2 Relations entre les dimensions

2.1 Rappel : Image d'une base par une application linéaire

Théorème 2.1. Soit $u: E \longrightarrow F$ une application linéaire et $(e_i)_{i=1,\dots,n}$ une base de E.

- • La famille $(u(e_i))_{i=1,\dots,n}$ est une famille génératrice de ${\rm Im}\,u$.
- u est surjective $\iff (u(e_i))_{i=1,\dots,n}$ est génératrice de F.
- u est injective $\iff (u(e_i))_{i=1,\dots,n}$ est libre dans F.
- u est bijective $\iff (u(e_i))_{i=1,\dots,n}^{n}$ est une base de F.

Corollaire 2.2. *Soit* $u : E \longrightarrow F$ *une application linéaire.*

u est un isomorphisme de E dans F si et seulement si l'image d'une base de E par u est une base de F.

2.2 Dimension et isomorphisme

Proposition 2.3. Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Un espace vectoriel F est isomorphe à E si et seulement si F est de dimension finie et $\dim F = \dim E$.

Corollaire 2.4. Tout \mathbb{K} -espace vectoriel de dimension n est isomorphe à \mathbb{K}^n .

2.3 Dimension d'un produit d'espaces vectoriels

2.4 Dimension des sous-espaces vectoriels

Théorème 2.5. Si E est un espace vectoriel de dimension finie n, alors tout sous-espace vectoriel F de E est de dimension finie et $\dim F \leq \dim E$.

De plus, F est égal à E si et seulement si dim F = dim E.

2.5 Dimension de sous-espaces vectoriels supplémentaires

Théorème 2.6. Soit E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E.

$$F \ et \ G \ sont \ supplémentaires \ dans \ E \iff \left\{ \begin{array}{l} \dim F + \dim G = \dim E \\ F \cap G = \{\vec{0}\} \end{array} \right. \iff \left\{ \begin{array}{l} \dim F + \dim G = \dim E \\ E = F + G \end{array} \right.$$

Théorème 2.7. Soit E un \mathbb{K} -espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E.

Si
$$(f_1, f_2, ..., f_p)$$
 est une base de F et $(g_{p+1}, ..., g_n)$ est une base de G , alors $E = F \oplus G \iff (f_1, f_2, ..., f_p, g_{p+1}, g_{p+2}, ..., g_n)$ est une base de E .

On dit que cette base est adaptée à la décomposition en sous-espaces supplémentaires.

Théorème 2.8.

Tout sous-espace vectoriel d'un espace vectoriel de dimension finie admet au moins un supplémentaire.

2.6 Dimension d'une somme

Proposition 2.9 (Formule de Grassmann).

Soit F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie.

Alors $\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$

3 Rang

3.1 Rang d'une famille de vecteurs

Définition 3.1. On appelle rang d'une famille finie de vecteurs $(x_1, x_2, ..., x_p)$ d'un espace vectoriel E, la dimension du sous espace vectoriel engendré par ces vecteurs et on le note $rg(x_1, x_2, ..., x_p)$:

$$rg(x_1, x_2, ..., x_p) = dim(Vect(x_1, x_2, ..., x_p))$$
.

Lemme 3.1. Pour une famille finie de vecteurs $(x_1, x_2, ..., x_p)$ d'un espace vectoriel E de dimension finie $n = \dim E$, on a

$$\operatorname{rg}(x_1, x_2, \dots, x_p) \leq p$$
 et $\operatorname{rg}(x_1, x_2, \dots, x_p) \leq n$

Théorème 3.2. Une famille est libre si et seulement si elle de rang maximal, c'est à dire si son rang est égal à son nombre de vecteurs.

Lemme 3.3. Soit $(x_1, x_2, ..., x_p)$ une famille finie de vecteurs d'un espace vectoriel E et $\lambda \in \mathbb{K}$, on a pour tous indices i, j:

$$rg(x_1, x_2, ..., x_i, ..., x_j, ..., x_p) = rg(x_1, x_2, ..., x_i + \lambda x_j, ..., x_j, ..., x_p)$$

3.2 Rang d'une application linéaire

Définition 3.2. Soient E et F deux espaces vectoriels et $u: E \longrightarrow F$ une application linéaire. On appelle rang de l'application linéaire u, la dimension de l'image de u dans F.

On note rg(u) = dim(Im u) lorsque cette dimension est finie et on dit que u est de rang fini.

Remarque 3.1. Si $(e_i)_{i=1,..,n}$ est une base d'un espace vectoriel E de dimension finie, alors $\text{Im } u = \text{Vect}(u(e_1), u(e_2), \dots, u(e_n))$.

Il s'ensuit que $rg(u) = rg(u(e_1), u(e_2), \dots, u(e_n)).$

Lemme 3.4. Soient E et F deux espaces vectoriels de dimension finie $n = \dim E$ et $p = \dim F$, et $u : E \longrightarrow F$ une application linéaire. Alors $rg(u) \le n$ et $rg(u) \le p$.

Théorème 3.5. Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$ sont deux applications linéaires de rang fini, alors $v \circ u$ est de rang fini et $\operatorname{rg}(v \circ u) \leq \min(\operatorname{rg}(u), \operatorname{rg}(v))$.

Démonstration. On a toujours $\underline{\operatorname{Im}(v \circ u)} \subset \underline{\operatorname{Im} v}$: pour toute image $y \in \operatorname{Im}(v \circ u)$, il existe $x \in E$ tel que y = v(u(x)) donc $y \in \operatorname{Im} v$ ce qui prouve l'inclusion.

On en déduit $\dim(\operatorname{Im}(v \circ u)) \leq \dim(\operatorname{Im} v)$ soit $\operatorname{rg}(v \circ u) \leq \operatorname{rg}(v)$.

Par ailleurs, soit $(f_1, f_2, ..., f_p)$ une base de $\operatorname{Im} u$ avec $p = \operatorname{rg}(u)$. Soit $z \in \operatorname{Im}(v \circ u)$ alors il existe $x \in E$ tel que z = v(u(x)). On a $u(x) \in \operatorname{Im} u$ donc u(x) s'écrit $u(x) = \sum_{k=1}^p \lambda_k f_k$ avec $(\lambda_k)_{k \in [\![1,p]\!]}$ des

scalaires. On peut donc écrire $z = \sum_{k=1}^{p} \lambda_k v(f_k)$.

On en déduit que $(v(f_k))_{k \in [\![1,p]\!]}$ est une famille génératrice de $\mathrm{Im}(v \circ u)$. Il s'ensuit que $\mathrm{dim}(\mathrm{Im}(v \circ u)) \leq p$ ce qui donne $\mathrm{rg}(v \circ u) \leq \mathrm{rg}(u)$.

3.3 Théorème du rang

Proposition 3.6. Soit E et F deux espaces vectoriels et $u: E \longrightarrow F$ une application linéaire de E dans F.

Si E_0 est un supplémentaire de Keru dans E, alors l'application u induit un isomorphisme de E_0 sur ${\rm Im}\, u$.

$$v: \begin{array}{ccc} E_0 & \longrightarrow & \operatorname{Im} u \\ x & \longmapsto & u(x) \end{array}$$
 est un isomorphisme.

Théorème 3.7 (Théorème du rang). *Si E est un espace vectoriel de dimension finie et u une application linéaire de E dans un espace vectoriel F, alors u est de rang fini et*

$$\dim E = \operatorname{rg} u + \dim(\operatorname{Ker} u) = \dim(\operatorname{Im} u) + \dim(\operatorname{Ker} u)$$

3.4 Caractérisation des isomorphismes

Théorème 3.8. Si E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension finie</u> $n = \dim E = \dim F$ et $u \in \mathcal{L}(E, F)$, alors

u est injective \iff Ker $u=\{\overrightarrow{0}\}$ \iff u est surjective \iff dim Ker u=0 \iff u est bijective \iff rg(u)=n.

Corollaire 3.9. Si $u \in \mathcal{L}(E)$ avec E de dimension finie, alors u est injective $\iff u$ est surjective $\iff u$ est bijective.

Lemme 3.10. Soit f une application d'un ensemble E dans un ensemble F. Si il existe $g: F \to E$ telle que $g \circ f = id_E$, alors f est injective.

Démonstration. Soit g telle que $g \circ f = id_E$. Soit $a, b \in E$. Si f(a) = f(b) alors g(f(a)) = g(f(b)) donc id(a) = id(b) soit a = b. Deux éléments de l'ensemble de départ ne peuvent avoir la même image donc f est injective. □

Lemme 3.11. Soit f une application d'un ensemble E dans un ensemble F. Si il existe $h: F \to E$ telle que $f \circ h = id_F$, alors f est surjective.

Démonstration. Soit h telle que $f \circ h = id_F$. Soit $a \in F$. On a f(h(a)) = a donc a a un antécédent. Tout élément de F a un antécédent donc f est surjective.

Théorème 3.12. Soit E et F deux \mathbb{K} -espaces vectoriels de même dimension finie et $f \in \mathcal{L}(E, F)$.

Si il existe $g: F \longrightarrow E$ telle que $g \circ f = id_E$ alors f est bijective et $f \circ g = id_F$.

Si il existe $h: F \longrightarrow E$ telle que $f \circ h = id_F$ alors f est bijective et $h \circ f = id_F$.

Théorème 3.13. Si u est une application linéaire de rang fini et si φ est un isomorphisme d'espaces vectoriels, alors, dans les cas où cela a un sens,

$$rg(u \circ \varphi) = rg u \text{ ou } rg(\varphi \circ u) = rg(u).$$

On ne change pas le rang d'une application linéaire en la composant par un isomorphisme.

Démonstration. Soit E, F, G trois espaces vectoriels sur le corps \mathbb{K} .

- Soit φ un isomorphisme de F dans G et $u \in \mathcal{L}(E,F)$ de rang fini. Soit B une base de $\operatorname{Im} u$ (qui est de dimension finie). Alors $\varphi(B)$ est une base de $\varphi(\operatorname{Im} u)$ car φ induit un isomorphisme de $\operatorname{Im} u$ dans $\varphi(\operatorname{Im}(u))$. De plus, on a l'égalité triviale : $\varphi(\operatorname{Im} u) = \operatorname{Im}(\varphi \circ u)$. Alors, $\dim(\operatorname{Im}(\varphi \circ u)) = \dim(\operatorname{Im} u)$ soit $\operatorname{rg}(\varphi \circ u) = \operatorname{rg}(u)$.
- Soit φ un isomorphisme de E dans F et $u \in \mathcal{L}(F,G)$ de rang fini. On a toujours $\underline{\operatorname{Im}(u \circ \varphi) \subset \operatorname{Im} u}$ car toute image par $u \circ \varphi$ est une image par u. Réciproquement, soit $z \in \operatorname{Im} u$, alors il existe $y \in F$ tel que z = u(y). Comme φ est une bijection de E dans F, il existe un unique $x \in E$ tel que $y = \varphi(x)$. Alors, $z = u \circ \varphi(x)$ et $z \in \operatorname{Im}(u \circ \varphi)$ ce qui prouve $\operatorname{Im} u \subset \operatorname{Im}(u \circ \varphi)$.

On a montré $\operatorname{Im}(u \circ \varphi) = \operatorname{Im}(u)$ donc $\operatorname{dim}(\operatorname{Im}(u \circ \varphi)) = \operatorname{dim}(\operatorname{Im} u)$ soit $\operatorname{rg}(u \circ \varphi) = \operatorname{rg}(u)$

3.5 Équations linéaires

Définition 3.3. Une équation linéaire est une équation du type u(x) = b où

- u est une application linéaire d'un espace vectoriel E dans un espace vectoriel F,
- x est un vecteur inconnu dans E,
- *b* est un vecteur de *F* appelé second membre de l'équation.

Théorème 3.14 (Structure de l'ensemble des solutions).

Soit $u: E \longrightarrow F$ une application linéaire d'un espace vectoriel E dans un espace vectoriel F, soit $b \in F$. On note S_0 l'ensemble des solutions de l'équation linéaire $u(x) = \overrightarrow{0_F}$ et $\mathscr S$ l'ensemble des solutions de l'équation u(x) = b.

- S_0 est un sous-espace vectoriel de E. En particulier, il est donc non vide : il contient $\overrightarrow{O_E}$.
- Soit \mathscr{S} est vide, soit $\mathscr{S} = x_0 + S_0 = \{x_0 + h | h \in S_0\}$ où x_0 est une solution de l'équation avec second membre.

Remarque 3.2. Si *E* est de dimension finie n (n inconnues) et si u est de rang fini r (r pivots), alors l'ensemble des solutions \mathcal{S}_0 est de dimension n-r= nombre d'inconnues - nombre de pivots.

