Sistemas Baseados em Microprocessadores

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

The AVR family of microcontrollers

João Paulo de Sousa

AVR Family

Architecture:

- Harvard Separate program and data
- Flash/SRAM/EEPROM
- Reduced instruction set (RISC)
- Most instructions are *single clock*
- But what does AVR stands for anyway?
 - Advanced Virtual RISC?...
 - Alf and Vegard RISC?...
 - Nothing at all?...

AVR Family - different market segments

Tiny AVR

- Program Memory: 512Byte to 8kByte flash
- Footprint: 6 to 32 pins
- Few internal peripherals

Mega AVR

- Program Memory: 4 to 256kByte flash
- Footprint: 28 to 100 pins
- Many internal peripherals

AVR Family - different market segments

- XMega AVR
 - Program Memory: 16 to 384kByte flash
 - Footprint: 32 to 100 pins
 - Many internal peripherals
- Application Specific AVR
 - AVR core
 - Specific application peripherals (USB, CAN,...)

AVR Family - internal architecture

• CPU:

- 32 working registers
- Low power
- RISC
 - 131 instructions
 - Mostly 1cycle
- Harvard
 - Program memory
 - Data memory

AVR Family - internal architecture

Peripherals:

- I/O pins
- Timers, WDT
- ADC 10 bits, 6-8 channels
- Communications:
 - I2C
 - SPI
 - USART

AVR Family - internal architecture

- Registers:
 - R0..R31 (8bits)
 - Z=R31:R30
 - Y=R29:R28
 - X=R27:R26
 - PC (program counter)
 - SP (stack pointer)
 - Many special function registers

Instructions:

A few examples:

Syntax	Operation	Cycles
LDI Rd,k	Rd ← k	1
IN Rd, A	$Rd \leftarrow I/O(A)$	1
OUT A, Rs	I/O(A) ← Rs	1
LD Rd, Z	Rd ← (Z)	2
ST X, Rs	(X) ← Rs	2
EOR Rd,Rs	Rd ← Rd ⊕ Rs	1
RJUMP k	PC ← PC+k+1	2

AVR Family - Assembly language example

```
;; sqr.asm
    A simple square wave generator
    written in assembly language
    Created on: 25/08/2018
         Author: jpsousa@fe.up.pt
#include <avr/io.h> : register definitions
    .section .text
    .global main
main: ldi r18, 0b100000 ; Set bit 5 of R18
      in r19, PORTB; Read port B (1)
lp:
      eor r19, r18 ; XOR in R19 (1) out PORTB, r19 ; Write to port B (1)
      rjmp lp ; Infinite loop (2)
  Total cycles inside the loop:
        1+1+1+2=5
    .end
```

PB5:

- $-F_{XTAL} = 16MHz$
- T = 3,125 uS(5 cycles @ 16MHz)
- f = 1/2T = 1.6MHz

ATmega328P

- Memory (harvard):
 - 32 kB Flash ROM (Program)
 - 2kB SRAM (Data)
 - 1kB EEPROM (NV Data)
- Input/output interfaces:
 - 23 I/O pins,
 - 3 Timers, WDog
 - ADC 10 bits, 6-8 channels
 - Comms: I2C, SPI, USART

ATmega328P

- Voltage: 1.8V to 5.5V
- Frequency:
 - @1.8V: up to 4MHz
 - @2.7V: up to 10MHz
 - @4.5V: up to 20MHz
- Current (1MHz, 1.8V, 25°C):
 - Active: 200uA
 - Power-save: 0,75uA
 - Power-down: 100nA

To further explore...

- The history of the AVR family
- Interview with Vegard Wollan
- The AVR Freaks community
- AVR042: AVR Hardware Design Considerations
 - Providing a robust analog and digital power supply
 - Connecting the reset line

