

Konzepte der Informatik

Algorithmik Iterative Verfahren

Barbara Pampel

Universität Konstanz, WiSe 2023/2024

Inhalt

- 1 Sortieren
- 2 Iterative Verfahren
- 3 Literatur

1 Sortieren

Inhalt

- 1 Sortieren
- 2 Iterative Verfahren
- 3 Literatur

Sortieren (formal)

- Gegeben
 - Menge von Objekten $\it U$
 - Schlüsselmenge S mit linearer Ordnung ≤
 - Schlüsselfunktion $s: U \rightarrow S$
- Gesucht
 - Permutation $i_1, i_2, ..., i_n$ der Objekte aus U, so dass
 - $\forall 1 \leq j \leq n-1 : s(u_{i_j}) \leq s(u_{i_{j+1}})$
- Für Zahlen ist die Schlüsselfunktion die Identitätsfunktion
- Alternativ binäre Vergleichsfunktion
 - $c: U \times U \to \mathbb{Z}$
 - es soll gelten $\forall 1 \leq j \leq n-1 : c(u_{i_j}, u_{i_{j+1}}) \leq 0$
 - siehe Comparable-Interface in Java

Stabile Sortierverfahren I

- Verschiedene Objekte k\u00f6nnen gleichen Schl\u00fcsselwert haben
 - Studenten, bei denen nur der Vorname verglichen wird
- Auf einer Menge können mehrere Schlüsselfunktion s_i definiert sein
 - Vergleich nur nach Nachname, nur nach Vorname, nach Matrikelnummer, ...
- Stabile Sortierverfahren stellen sicher, dass
 - Objekte, die den gleichen Schlüsselwert für s₁ haben, aber unterschiedliche Werte für s₂,
 - nach der Sortierung basierend auf s_1 immer noch in der gleichen Reihenfolge sind

Stabile Sortierverfahren II

- Beispiel
 - Studenten vorher sortiert nach Matrikelnummer (s2)
 - jetzt Sortieren nach Nachname (s_1)
 - innerhalb des gleichen Nachnamens bleibt die Sortierung nach Matrikelnummer erhalten

123456	Schmidt
234567	Huber
345678	Huber
456789	Degen

456789	Degen				
234567	Huber				
345678	Huber				
123456	Schmidt				
Stabil					

456789	Degen
345678	Huber
234567	Huber
123456	Schmidt

Instabil

Stabile Sortierverfahren III

- Formal
 - $s_1: U \rightarrow S_1 \text{ und } s_2: U \rightarrow S_2$
 - angenommen, eine Eingabe ist nach s_2 vorsortiert (d.h. gegeben eine Eingabereihenfolge)
 - ein Verfahren ist stabil, wenn nach einer Sortierung nach s_1 gilt:
 - bei gleichem Wert für s_1 bleiben die Elemente nach s_2 sortiert.

2 Iterative Verfahren

Inhalt

1 Sortieren

2 Iterative Verfahren

3 Literatur

Iteration

- Charakteristisch ist das Wiederholen eines Prozesses/Anweisungsblocks
- dadurch schrittweise Annäherung an eine Lösung
- meist durch For- oder While-Schleife

Multiplikation
$$s = a * b$$

$$s = 0$$
for $1 \le i \le a$

$$s = s + b$$

Divisions rest $r = a \mod b$

$$r = a$$
while $r \ge b$
 $r = r - b$

Sortieren durch Auswahl

Sortieren durch Auswahl

- Die wohl intuitivste Idee:
 - Extremum suchen ⇒ an ein Anfang oder Ende der Sequenz legen/stellen
 - Extremum im Restbereich suchen ⇒ daneben legen/stellen
 - USW.
- Algorithmisches Vorgehen (wiederholte Minimumssuche)
 - Aufteilen in zwei Bereiche
 - R, den unsortierten Restbereich der Liste
 - L, den bereits sortierten Bereich der Liste
 - Beginn mit $L = \emptyset$
 - Ende wenn |R| = 1
 - Minimum in R suchen und ans Ende von L setzen.

512	87	503	61	908	170	897
			\uparrow			
61	512	87	503	908	170	897
		\uparrow				
61	87	512	503	908	170	897

512	87	503	61	908	170	897
61	512	87	↑ 503	908	170	897
61	87	↑ 512	503	908	170 ↑	897

512	87	503	61	908	170	897
61	512	87	↑ 503	908	170	897
61	87	↑ 512	503	908	170	897
61	87	170	512	503	↑ 908	897

512	87	503	61	908	170	897
61	512	87	↑ 503	908	170	897
61	87	↑ 512	503	908	170	897
61	87	170	512	503	† 908	897
				\uparrow		

512	87	503	61	908	170	897
61	512	87	↑ 503	908	170	897
		\uparrow				
61	87	512	503	908	170 ↑	897
61	87	170	512	503	908	897
61	87	170	503	512	908	897

512	87	503	61	908	170	897
64	540	07	†	000	470	007
61	512	87 ↑	503	908	170	897
61	87	512	503	908	170	897
					\uparrow	
61	87	170	512	503	908	897
61	07	170	E02	↑ 512	000	907
01	01	170	503	51∠	900	097

512	87	503	61 ↑	908	170	897
61	512	87	503	908	170	897
61	87	512	503	908	170	897
61	87	170	512	503 ^	908	897
61	87	170	503	512	908	897
61	87	170	503	512	908	897

87	503	61	908	170	897
512	87	↑ 503	908	170	897
87	512	503	908	170 ↑	897
87	170	512	503	908	897
87	170	503	512 ⁺	908	897
87	170	503	512	908	897 ↑
	512 87 87 87	512 87 ↑ 87 512 87 170 87 170	512 87 503	512 87 503 908 67 512 503 908 67 170 512 503 67 170 503 512 ↑	87 503 61 908 170

512	87	503	61 ↑	908	170	897
61	512	87 ↑		908	170	897
61	87	512	503	908	170 ↑	897
61	87	170	512	503 ↑	908	897
61	87	170	503	512 ↑	908	897
61	87	170	503	512	908	897 ↑
61	87	170	503	512	897	

512	87	503	61 ↑	908	170	897
61	512	87	•	908	170	897
61	87	↑ 512	503	908	170	897
61	87	170	512	503	908	897
61	87	170	503		908	897
61	87	170	503	↑ 512	908	897
61	87	170	503	512	897	↑ 908
		170				

Sortieren durch Minimumauswahl

Algorithm 1: Sortieren durch Auswahl

Input: Array A[1, n]

begin

```
for i = 1, ..., n - 1 do
  m \leftarrow i
  for j = i + 1, \ldots, n do
   | if A[j] < A[m] then m \leftarrow j
  füge A[m] am Beginn des Restbereichs ein und verschiebe alle folgenden
```

Elemente in die entstehende Lücke

Selection Sort

- Verschieben der Elemente ist in der Praxis zu aufwändig
 - ⇒ erstes Element mit Minimum vertauschen

Algorithm 2: SelectionSort

Input: Array A[1, n]

begin

```
for i=1,\ldots,n-1 do m \leftarrow i for j=i+1,\ldots,n do \lfloor if A[j] < A[m] then m \leftarrow j vertausche A[i] und A[m]
```


512	87	503	61	908	170	897
\uparrow			\uparrow			
61	87	503	512	908	170	897
	$\uparrow \uparrow$					
61	87	503	512	908	170	897

512	87	503	61	908	170	897
\uparrow			\uparrow			
61	87	503	512	908	170	897
	$\uparrow \uparrow$					
61	87	503	512	908	170	897
		\uparrow			\uparrow	
61	87	170	512	908	503	897

512	87	503	61	908	170	897
\uparrow			\uparrow			
61	87	503	512	908	170	897
	$\uparrow \uparrow$					
61	87	503	512	908	170	897
		↑ 			<u> </u>	
61	87	170	512	908	503	897
			\uparrow		\uparrow	
61	87	170	503	908	512	897

512	87	503	61	908	170	897
\uparrow			\uparrow			
61	87	503	512	908	170	897
	$\uparrow \uparrow$					
61	87	503	512	908	170	897
		\uparrow			\uparrow	
61	87	170	512	908	503	897
			\uparrow		\uparrow	
61	87	170	503	908	512	897
				\uparrow	\uparrow	

87	503	61	908	170	897
		\uparrow			
87	503	512	908	170	897
$\uparrow \uparrow$					
87	503	512	908	170	897
	\uparrow			\uparrow	
87	170	512	908	503	897
		\uparrow		\uparrow	
87	170	503	908	512	897
			\uparrow	\uparrow	
87	170	503	512	908	897
	87 ↑↑ 87 87	87 503 ↑↑ 87 503 ↑ 87 170 87 170	87 503 512 ↑↑ 87 503 512 ↑ 87 170 512 ↑ 87 170 503	87 503 512 908 ↑↑ 503 512 908 ↑↑ 503 512 908 ↑ 512 908 ↑ 70 512 908 ↑ 70 503 908 ↑ ↑	87 503 61 908 170

512	87	503	61	908	170	897
\uparrow			\uparrow			
61	87	503	512	908	170	897
	$\uparrow \uparrow$					
61	87	503	512	908	170	897
		\uparrow			\uparrow	
61	87	170	512	908	503	897
			\uparrow		\uparrow	
61	87	170	503	908	512	897
				\uparrow		
61	87	170	503	512	908	897
					\uparrow	\uparrow

	87	503	61	908	170	897
↑ 61	87	503	↑ 512	908	170	897
61	↑↑ 87	503	512	908	170	897
61	87	170	512 ↑	908	503 ↑	897
61	87	170	'	908 ↑	512 ↑	897
61	87	170	503	,	908	
61	87	170	503	512	897	↑ 908

512	87	503	61	908	170	897
\uparrow			†			
61		503	512	908	170	897
64	^	500	540	000	470	007
61	87			908	170	897
61	87	↑ 170		908	- 503	897
0.	O1	170		500		001
61	87	170		908	•	897
				\uparrow	\uparrow	
61	87	170	503	512	908	897
					\uparrow	\uparrow
61	87	170	503	512	897	908
61	87	170	503	512	897	908

2 Iterative Verfahren - 2.2 Sortieren durch Minimumauswahl - Selection Sort

- Auf jeden Fall n-mal Suche nach dem Minimum
- Dazu muss der Restbereich komplett durchsucht werden, um das Minimum zu finden
 - vor erster Vertauschung: n-1 Vergleiche
 - vor zweiter Vertauschung: n-2 Vergleiche
 - vor dritter Vertauschung: n-3 Vergleiche

$$\Rightarrow \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \approx \frac{1}{2}n^2$$

- Auf jeden Fall n-mal Suche nach dem Minimum
- Dazu muss der Restbereich komplett durchsucht werden, um das Minimum zu finden
 - vor erster Vertauschung: n-1 Vergleiche
 - vor zweiter Vertauschung: n − 2 Vergleiche
 - vor dritter Vertauschung: n-3 Vergleiche

$$\Rightarrow \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \approx \frac{1}{2}n^2$$

- Sortieren einer doppelt so großen Reihung dauert viermal so lang
 - $\frac{1}{2}(2n)^2 = 4 \cdot \frac{1}{2}n^2$
- Sortieren von 10-mal so vielen Elementen dauert 100-mal so lang!

2 Iterative Verfahren - 2.2 Sortieren durch Minimumauswahl - Selection Sort

Überlegungen zur Korrektheit

Überlegungen zur Korrektheit

- Partielle Korrektheit
 - Zu Beginn ist das komplette Array der Restbereich.
 - Zu jedem Zeitpunk wird ein Minimum des Restbereichs an dessen Anfang gestellt.
 - Dieses Minimum ist grösser oder gleich aller Elemente, die weiter nach vorn gestellt wurden.
 - Die Reihenfolge der weiter vorn stehenden wird nicht mehr verändert
 - Damit ist jedes Element des Restbereichs grösser oder gleich aller, im sortierten Bereich.
 - \Rightarrow sortiert
- Terminiert der Algorithmus?
 - Ja, denn der Restbereich verkleinert sich in jedem Schritt, ist irgendwann leer und alles ist im sortierten Bereich.

2 Iterative Verfahren - 2.2 Sortieren durch Minimumauswahl - Selection Sort

Stabilität

Stabilität

Sortieren durch Auswahl

- Algorithmus ist stabil
 - existieren Elemente e und e' mit s(e) = s(e'), bleibt das Minimum das vorderste und wir auch in der sortierten Teilliste am weitesten vorn bleiben, dann neue Minima hinter den alten eingefügt werden
 - die geschieht auch, falls noch ein weiteres Element mit gleichem Wert existiert

Selection Sort

- Algorithmus ist nicht stabil!
 - durch das Vertauschen wird in der Restliste evtl. ein Element hinter ein anderes mit gleichem Wert gelegt

Einsortieren

- Beispiel Spielkarten sortieren

Einsortieren

- Beispiel Spielkarten sortieren
 - Karte aufnehmen und von links nach rechts mit den Karten auf der Hand vergleichen
 - neue Karte kommt links neben die erste Karte auf der Hand, die grösser als die neue Karte ist

Einsortieren

- Beispiel Spielkarten sortieren
 - Karte aufnehmen und von links nach rechts mit den Karten auf der Hand vergleichen
 - neue Karte kommt links neben die erste Karte auf der Hand, die grösser als die neue Karte ist
- Algorithmisches Vorgehen
 - Aufteilen in zwei Bereiche
 - R, den unsortierten Restbereich der Liste
 - L, den bereits sortierten Bereich der Liste
 - Beginn mit $L = \emptyset$ (auf der Hand)
 - Ende wenn |R| = 0 (auf dem Stapel)
 - erstes Element e aus R mit den Elementen in L vergleichen (von links nach rechts)
 - vor dem ersten Element einfügen, welches grösser *e* ist

512 87 503 61 908 170 897

|--|

	87	503	61	908	170	897
↑ 512	87	503	61	908	170	897
87	512	503 ^	61	908	170	897
87	503	512	61	908	170	897

Beisp	iel
-------	-----

512	87	503	61	908	170	897
512	87	503	61	908	170	897
87	512	503	61	908	170	897
87	503	512	61	908	170	897
61	87	503	↑ 512	908	170	897

512 ↑	87	503	61	908	170	897
512	87 ↑	503	61	908	170	897
87	512	503 ↑	61	908	170	897
87	503	512	61 ↑	908	170	897
61	87	503	512	908	170	897
61	87	503	512	908	170	897

512 ↑	87	503	61	908	170	897
	87 ↑	503	61	908	170	897
87	512	503 ↑	61	908	170	897
87	503	512	61 ↑	908	170	897
61	87	503	512	908	170	897
61	87	503	512	908	170 ↑	897

512 ↑	87	503	61	908	170	897
	87 ↑	503	61	908	170	897
87	512	503 ↑	61	908	170	897
87	503		61 ↑	908	170	897
61	87	503	•	908 ↑	170	897
61	87	503	512	908	170 ↑	897
61	87	170	503	512	908	897

	87	503	61	908	170	897
↑ 512		503	61	908	170	897
87	↑ 512		61	908	170	897
87	503	↑ 512		908	170	897
61	87	503	↑ 512	908	170	897
61	87	503	512	↑ 908		897
61	87	170	503	512	↑ 908	
						\uparrow

512	87	503	61	908	170	897
512		503	61	908	170	897
87	↑ 512		61	908	170	897
87	503	↑ 512	61	908	170	897
61	87	503	↑ 512		170	897
61	87	503	512	↑ 908	170	897
61	87	170	503	512	↑ 908	897
61	87	170	503	512	897	↑ 908
			503			

InsertionSort

Restliste ist ganzes Liste
Restliste ist nicht leer
Entnehme e als erstes Element der Restliste
Setze u_k auf das erste Element der sortierten Liste
Solange $u_k \neq null$ und $s(e) \geq s(u_k)$
$u_k = u_k.next$
Füge e vor u_k in die sortierten Liste ein

Hinweis: Einfügeoperation muss so implementiert werden, dass ein Einfügen "vor"dem Null-Element ein Einfügen am Ende ist bzw. bzw. ggf. ein Einfügen in eine leere Liste.

- Auf jeden Fall n-mal Suche nach der richtigen Stelle in der sortierten Liste
- Dazu muss man evtl. durch die komplette sortierte Liste
 - beim ersten Einsortieren: höchstens 0 Vergleich
 - beim zweiten Einsortieren: höchstens 1 Vergleich
 - beim dritten Einsortieren: höchstens 2 Vergleiche

$$\Rightarrow \sum_{i=0}^{n-1} i = \frac{n(n-1)}{2} \approx \frac{1}{2}n^2$$

Überlegungen zur Korrektheit

- Partielle Korrektheit
 - Vor dem Einfügen des ersten Elements, ist die sortierte Liste leer und damit soritiert
 - Jedes Element wird so eingefügt, dass die Liste hinterher auch noch sortiert ist.
- Terminiert der Algorithmus?
 - Der Restbereich wird bei jedem Schritt kleiner und ist irgendwann leer.

Stabilität

- Algorithmus ist stabil
- ein Element e' in der Ausgangsliste rechts eines e mit s(e) = s(e') wird beim Einügen in die sortierte Liste auch am vorher eingefügten e vorbeigeführt
- die geschieht auch, falls noch ein weiteres Element mit gleichem Wert existiert

Literatur

T. Ottmann und P. Widmayer.

Algorithmen und Datenstrukturen — Kapitel 2.

Spektrum Akademischer Verlag, 4. Ausgabe, 2002, ISBN 978-3-8274-1029-0.

Robert Sedgewick.

Algorithms in Java – Parts 1-4 – Kapitel 6–9.

Addison-Wesley Longman, Amsterdam, 3. Auflage, 2003, ISBN 0-210-36120-5.

H. P. Gumm und M. Sommer.

Einführung in die Informatik — Kapitel 4.2, 4.3.

Oldenburg Verlag, 7. Ausgabe, 2006, ISBN 978-3-486-58115-7.