DECISION TREES

- supervised ML algo
- do NOT make any assumption about the structure of data

 OR relationship b/w

 input & output
- non-parametric model; this is more flescible in modelling
- _ model can't be represented by some numbers

- Why?

 lin R & log R assume linearity

 bolow X & some form of y.
 - assume some structure of data that is linear
 - assume some distribution of the parameters w.

w~ t_N-1

- assumes some (usually Norm)
dist " of rusiduals

more mixed.

Decision Trees for classification
involve moving from
i. dataset that is
more mixed
(has higher entropy)

ii. several datasets that
are lesser mixed.

(have lower entropy)

Measuring homogenity.

Entropy: how uniform a facticular collection of objects is $En = -\sum_{i=1}^{n} \log_2 p_i \qquad p_i = -1$ $En = -\sum_{i=1}^{n} \log_2 p_i \qquad p_i = -1$ $En = -\left(p_i \log_2 p_i\right) \qquad En = -\left(p_i \log_2 p_i\right) \qquad En = -1$

2. : $b_8 = \frac{6}{8} = \frac{3}{4}$ $b_8 = \frac{1}{4}$ $E_{n} = -\left(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}\right)$

 $En = -(1 \times log_2 1) = 0$

More homogeneous a sample; lesser is the

Choosing best decision

OD
$$15C | 15D$$
 $En = 1$
 $2C | 8D$ $13C | 7D$ $En_g = 0.2598$ $\Delta = |G|gen$
 $En_{g,F}$ $En_{g,M} = 0.28||$
 $En_{g,F} = -\left(\frac{2}{10}\log_2\frac{2}{10} + \frac{8}{10}\log_2\frac{8}{10}\right)$ $En_g = \frac{10}{n_F \times Eng,F} + \frac{20}{n_M \times Eng,M}$
 $= 0.2173$ $En_{g,F} = 0.2598$

Choosing best decision.

Information Gain $IG_f = En(X) - En(X,f)$ 1D3 Algorithm -> (used only for classification DT) - Find voot node by calculating 19 for all features. masc (199): I pecomes voot node

— Find subsequent features based on masc 19 to grow the tree - Until stopping criteria.

CART Algorithm (Regression Example)

MSEOD > MSEDS, + MSEDS2 obsv. 100 Decision trees move △= MSE initial MSE final, fi * 70 DS2 $MSE_{OD} = \frac{1}{6} \left[\sum (y_i - 52)^2 \right]$ 1, 2, 3, 101, 102, 103 = 2500.66 $MSE_{DS_1} = \frac{1}{3}II(y_i - 2)^2J = \frac{2}{3}$ | $MSE_{DS_2} = \frac{2}{3}$

Measwing Homogenity II

Gini Index:
$$1 - \sum_{i}^{2} p_{i}^{2}$$

$$1 - \sum_{i} p_{i}^{2}$$

$$bg = \frac{1}{2} \qquad bg = \frac{1}{2}$$

$$GI = I - \left(\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{1}{2} = \frac{4}{8}$$

$$b_{\mathcal{B}} = \frac{3}{4} \quad b_{\mathcal{B}} = \frac{1}{4}$$

$$b_{8} = \frac{3}{4}$$
 $b_{8} = \frac{1}{4}$ $G_{1} = 1 - \frac{9}{16} - \frac{1}{16} = \frac{6}{16} = \frac{3}{8}$

$$p_{B} = 0$$
 $p_{B} = 1$ $q_{I} = 1 - (1)^{2} = 0$

Easier to calculate than entropy.