随机微分方程结课作业

滕非凡 202328000206026 AMSS CAS

2025年5月19日

- 一. (1) 谈谈你对停时这个概念的理解;
- (2) 谈谈你对马氏过程的理解;
- (3) 举一个是马氏过程但不是强马氏过程的例子。
- **解答 1.** (1) 首先,停时的定义是:设一个概率空间 $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$,映射 $\sigma: \Omega \to \mathbb{R}^+$ 满足: $\forall t \geq 0, \{\omega: \sigma(\omega) \leq t\} \in \mathcal{F}_t$. 实际上,停时是一个可测的随机变量,停时的决定不需要未来的信息,只依赖于到当前时间 t 为止的信息,这也意味着在任何时刻 t,我们都能根据到 t 为止的信息判断这个事件的信息。
- (2) 马氏过程的定义是:对于任意的有界可测函数 f,以及时间 $t \ge s \ge 0$, $E[f(X_t)|F_s] = E[f(X_t)|X_s]$, $\mathbb{P}_{a.s.}$. 马氏过程是具有无记忆性的随机过程, 其未来的状态只依赖于当前状态, 而不依赖于过去的历史。在给定当前状态的情况下,未来的期望不依赖于更早的信息。
- (3) (难) 给定 $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$, P^x 为 $x + B(\cdot)$ 的分布,B 为一维标准布朗运动, P^x 为一族概率测度满足:
- (1) $x \neq 0$ 时, P^x 为 $x + B(\cdot)$ 的分布
- (2) x=0 时, P^0 为 $w\equiv 0$ 的点测度,其中 $w\in \Omega$ 。

则可验证此时 P^x 诱导的 X(t) 有连续轨道,且有马氏性:对任意有界可测随机变量 Y,

$$E^x(Y \circ \theta_s | \mathcal{F}_s) = E^{X(s)}Y, P_{a.s}^x$$

验证: 若 $x \neq 0$,则由布朗运动的马氏性立得结论; 若 x = 0,两边均为 Y 在 $w \equiv 0$ 处的取值。但 X 不成立强马氏性,因为 $x \neq 0$ 时, $\tau = \inf\{t > 0: X(t) = 0\} \Rightarrow X(\tau) = 0$ a.s 因此,令 $Y_t(w) = f(w(1))$, $x \neq 0$, $E^x(Y_\tau \circ \theta_\tau | \mathcal{F}_\tau) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} f(y) dy$ 。而 $E^{X(\tau)} Y_\tau = f(w(1)) = f(0)$ 显然,对一般 f 不可能成立两者恒等。

- 二. $\Diamond (\Omega, \mathcal{F}, \mathcal{F}_t, P)$ 为满足通常条件的概率空间。
- (1) 叙述一维 \mathcal{F}_t -布朗运动 $(W_t)_{t>0}$ 的定义;
- (2) 证明 W_t 是一个 \mathcal{F}_t -鞅;
- (3) 对于任意停时 τ ,令 $B_t = W_{t+\tau} W_{\tau}$, $\mathcal{G}_t = \mathcal{F}_{t+\tau}$ 。证明 (B_t) 为 \mathcal{G}_t -布朗运动,且和 \mathcal{G}_0 独立。

解答 2. (1) 布朗运动是具有连续时间参数的随机过程,满足以下条件:

- (i) 轨道连续: $(W_t)_{t>0}$ 的轨道关于 t 几乎处处连续;
- (ii) 独立增量: $(W_t)_{t>0}$ 增量独立于 \mathcal{F}_s ;
- (iii) 平稳 Gauss: 对 s < t, 增量 $W_t W_s \sim \mathcal{N}(0, t s)$
- (2) 鞅性证明: 对 s < t,

$$\mathbb{E}[W_t \mid \mathcal{F}_s] = W_s + \mathbb{E}[W_t - W_s \mid \mathcal{F}_s] = W_s,$$

由独立增量性可证 W_t 是一个 \mathcal{F}_t -鞅。

(3) 对于 $B_t = W_{t+\tau} - W_{\tau}$, $\mathcal{G}_t = \mathcal{F}_{t+\tau}$:

我们首先假设 $\mathbf{P}(\tau < +\infty) = 1$ 。只需证明对于每个 n,每个 $0 < t_1 < \cdots < t_n$ 以及每个连 续有界的 $\Phi : \mathbb{R}^n \to \mathbb{R}$,有

$$\mathbb{E}(\Phi(W_{t_1}^{(\tau)},\cdots,W_{t_n}^{(\tau)})\mathbf{1}_A) = \mathbb{E}(\Phi(B_{t_1},\cdot,B_{t_n}))\mathbf{P}(A)$$

这里我们需要用离散停时来逼近一般停时。对于每个 k, 令

$$\tau_k(\omega) = \frac{j}{k} \not \Xi \tau(\omega) \in (\frac{j-1}{k}, \frac{j}{k}].$$

那么 τ_k 也是一个停时,并且当 $k \to \infty$ 时, $\tau_k \to \tau$ 几乎必然。由有界收敛定理,我们只需 对 $\tau = \tau_k$ 验证。为此,我们有:

$$\mathbb{E}(\Phi(W_{t_1}^{(\tau_k)}, \cdots, W_{t_n}^{(\tau_k)}) \mathbf{1}_A) = \sum_{j \geq 0} \mathbb{E}(\Phi(W_{t_1}^{(\frac{j}{k})}, \cdots, W_{t_n}^{(\frac{j}{k})}) \mathbf{1}_{A \cap \{\frac{j-1}{k} < \tau \leq \frac{j}{k}\}})$$

$$= \sum_{j \geq 0} \mathbb{E}(\Phi(B_{t_1}, \cdots, B_{t_n})) \mathbf{P}(A \cap \{\frac{j-1}{k} < \tau \leq \frac{j}{k}\})$$

$$= \mathbb{E}(\Phi(B)) \mathbf{P}(A) = (4.5) .$$

然后我们在 $\tau < \infty$ 几乎必然的假设下证明该定理。对于一般的 τ ,我们可以按照相同的步骤证明,对于每个 $A \in \mathcal{F}_{\tau}$,有

$$\mathbb{E}(\Phi(W_{t_1}^{(\tau)},\cdots,W_{t_n}^{(\tau)})\mathbf{1}_{A\cap\{\tau<\infty\}}) = \mathbb{E}(\Phi(B_{t_1},\cdots,B_{t_n}))\mathbf{P}(A\cap\{\tau<\infty\})$$

然后我们可以通过两边同时除以 $\mathbf{P}(\tau < +\infty)$ 得到证明。

(i) 适应性:由于 $W_{t+\tau} \in \mathcal{F}_{t+\tau}$,故 $B_t \in \mathcal{F}_{t+\tau}$ -可测,故适应于 \mathcal{G}_t ;

- (ii) 独立增量: 对 s < t, $B_t B_s = W_{t+\tau} W_{s+\tau}$ 独立于 $\mathcal{G}_s = \mathcal{F}_{s+\tau}$;
- (iii) 正态性: 对 s < t, 增量为 $B_t B_s = W_{t+\tau} W_{s+\tau}$, 由于增量 $W_{t+\tau} W_{s+\tau}$ 服从正态分布 $\mathcal{N}(0, t-s)$, 所以 $B_t B_s$ 也服从该正态分布;
- (iv) 独立性: $B_t = W_{t+\tau} W_{\tau}$ 的路径由 W 在 τ 后的增量构成, 独立于 $\mathcal{F}_r = \mathcal{G}_0$ 。
- 三. 令 W_t 为 1-维布朗运动。证明:
- (1) 对任意 $\lambda > 0$, $X_t = e^{\lambda |W_t|}$ 是下鞅;
- (2) 证明

$$P\left(\sup_{0\le s\le t}|W_s|>x\right)\le 2e^{-\frac{x^2}{2t}};$$

(3) 令 $\sigma: [0, \infty) \times \Omega \to \mathbb{R}$ 适应于 W_t 生成的 σ -域流,且 $1/2 \le |\sigma| \le 2$ 。定义 $x_t = \int_0^t \sigma_s dW_s$ 。证明存在常数 c > 0(与 σ 无关),使得

$$P\left(\sup_{0\le s\le t}|x_s|>x\right)\le 2e^{-\frac{cx^2}{t}};$$

- (4) 证明存在 $\mu > 0$ 使得 $\mathbb{E}e^{\mu\tau_1} < \infty$, 其中 $\tau_1 = \inf\{t > 0 : |x_t| > 1\}$;
- (5) 能否将上述结果推广到 d-维? 说明理由。

解答 3. (1) 证明下鞅性:由条件 $|W_t|$ 是下鞅且指数函数的凸性质,由 Jensen 不等式:

$$\mathbb{E}[e^{\lambda|W_t|} \mid \mathcal{F}_s] \ge e^{\lambda \mathbb{E}[|W_t||\mathcal{F}_s]} \ge e^{\lambda|W_s|},$$

故我们得到结论。

(2) 证明:由布朗运动的反射原理以及布朗运动的 Gauss 性质,

$$P\left(\sup_{s \le t} |W_s| > x\right) = 2P(W_t > x) \le 2e^{-x^2/(2t)}.$$

证毕。

(3) 证明: 由随机积分的定义, $x_t = \int_0^t \sigma_s dW_s$ 是连续局部鞅,由二次变差 $[x]_t = \int_0^t \sigma_s^2 ds \geq \frac{t}{4}$,定义时间变换 $\tau(t) = \inf\{s: [x]_s > t\}$,由 Dambis-Dubins-Schwarz 定理可知,连续局部鞅 x_t 可通过时间变换表示为布朗运动,即存在一个布朗运动 B_t ,使得 $x_{\tau(t)} = B_t$ 是布朗运动,应用(2)得

$$P\left(\sup_{s \le t} |x_s| > x\right) \le 2e^{-x^2/(8t)},$$

取 c = 1/8,则 c 为常数,且与 σ 无关,证毕。

(4) 证明:由(3)知,定义停时 $\tau(t) = \inf\{s \ge 0 : [x]_s > t\}$,则存在布朗运动 B_t ,使得:

$$x_{\tau(t)} = B_{[x]_t}.$$

原停时 $\tau_1 = \inf\{t > 0 : |x_t| > 1\}$ 对应布朗运动 B_t 的停时 $\tau_B = \inf\{s > 0 : |B_s| > 1\}$ 。由于 $[x]_t \geq \frac{t}{4}$,当 $x_t = B_{[x]_t} = 1$ 时,有:

$$[x]_{\tau_1} \ge \frac{\tau_1}{4}.$$

因此:

$$\tau_1 \leq 4\tau_B$$
.

对于标准布朗运动的首达时 τ_B 的密度函数是已知的:

$$P^{x}(\tau_{B} < t) = \int_{0}^{t} \frac{|x|}{\sqrt{2\pi z^{3}}} \exp\left(-\frac{x^{2}}{2z}\right) dz.$$

所以期望可以直接计算得到,存在一个正常数 μ :

$$\mathbb{E}[e^{\mu\tau_1}] \le \mathbb{E}[e^{4\mu\tau_B}] < \infty.$$

- (5) 可以进行高维推广:对于 d 维布朗运动由于各分量独立, $\sup_{s \le t} \|x_s\|$ 的概率由各分量的乘积控制,可以得到类似的不等式,常数 c 依赖维度 d。
- **四.** 给定两个概率分布 \mathbb{P}, \mathbb{Q} , 定义:

$$H(\mathbb{P}|\mathbb{Q}) = \mathbf{E}_{\mathbb{P}} \left[\log \frac{d\mathbb{P}}{d\mathbb{Q}} \right]$$

设

$$X_t = W_t + h_t,$$

其中 W_t 是 1 - 维标准布朗运动, $h_0=0$ 且 $\dot{h}_t=\frac{d}{dt}h_t\in L^2(\mathbb{R}_{\geq 0};\mathbb{R})$ 。求 X_t 的路径分布 \mathbb{Q} 相对于 Wiener 测度 $\mathbb{P}(W_t$ 的分布) 的相对熵 $H(\mathbb{Q}|\mathbb{P})$ 。

解答 4. 由 $X_t = W_t + h_t$, 其中, W_t 为一维标准布朗运动, \mathbb{Q} 为 X_t 的路径分布; $\dot{h}_t = \frac{d}{dt}h_t \in L^2(\mathbb{R}_{\geq 0})$ 根据 Girsanov 定理,Radon-Nikodym 导数为:

$$\frac{d\mathbb{Q}}{d\mathbb{P}} = \exp\left(-\int_0^t \dot{h}_s dW_s - \frac{1}{2} \int_0^t |\dot{h}_s|^2 ds\right).$$

相对熵 $H(\mathbb{Q}|\mathbb{P})$ 定义为:

$$H(\mathbb{Q}|\mathbb{P}) = \mathbb{E}_{\mathbb{Q}} \left[\log \frac{d\mathbb{Q}}{d\mathbb{P}} \right].$$

将 Girsanov 密度代入, 得:

$$\log \frac{d\mathbb{Q}}{d\mathbb{P}} = -\int_0^t \dot{h}_t dW_s - \frac{1}{2} \int_0^t |\dot{h}_s|^2 ds.$$

在 \mathbb{Q} 下, $W_s = X_s - h_s$,则

$$dW_s = dX_s - \dot{h}_s dt,$$
$$\log \frac{d\mathbb{Q}}{d\mathbb{P}} = -\int_0^t \dot{h}_s (dX_s - \dot{h}_s ds) - \frac{1}{2} \int_0^t |\dot{h}_s|^2 ds.$$

化简得:

$$\log \frac{d\mathbb{Q}}{d\mathbb{P}} = -\int_0^t \dot{h}_s dX_s + \frac{1}{2} \int_0^t |\dot{h}_s|^2 ds.$$

在 \mathbb{Q} 下,伊藤积分 $\int_0^t \dot{h}_s dX_s$ 的期望为 0,因此:

$$H(\mathbb{Q}|\mathbb{P}) = \mathbb{E}_{\mathbb{Q}} \left[\log \frac{d\mathbb{Q}}{d\mathbb{P}} \right] = 0 + \frac{1}{2} \int_{0}^{\infty} |\dot{h}_{t}|^{2} dt.$$

因此相对熵为: $H(\mathbb{Q}|\mathbb{P}) = \frac{1}{2} \int_0^\infty |\dot{h}_t|^2 dt$.

五. 令 $d \ge 2$, $D = \{x \in \mathbb{R}^d : |x| < 1, x \ne 0\}$ 。利用概率方法证明不存在 $u \in C^2(D) \cap C(\overline{D})$ 满足如下方程:

$$\begin{cases} \Delta u(x) = 0, & x \in D \\ u(x) = 0, & \text{mmax} = 1 \\ u(x) = 1, & \text{mmax} = 0 \end{cases}$$

解答 5. 我们用反证法来证明结论。假设存在 $u \in C^2(D) \cap C(\overline{D})$ 满足上述方程。根据 Dirichlet 问题的概率解公式,对任意 $x \in D$,有:

$$u(x) = \mathbb{E}_x \left[u(B_{\tau_D}) \right],$$

其中 B_t 是 d-维布朗运动, $\tau_D = \inf\{t \geq 0 : B_t \notin D\}$ 为首离时; 边界条件定义为:

$$u(z) = \begin{cases} 0, & |z| = 1 \\ 1, & z = 0 \end{cases}.$$

当 $d \ge 2$ 时,布朗运动在 d = 2 常返,在 $d \ge 3$ 暂留,从而有:

$$\mathbb{P}_x(\omega: \exists t > 0, B_t = 0) = 0 \quad (\forall x \neq 0).$$

因此,它是区域常返不是点常返。对任意 $x \in D \setminus \{0\}$,

$$u(x) = \mathbb{E}_x \left[0 \cdot 1_{\{B_{\tau_D} \in \partial D \setminus \{0\}\}} + 1 \cdot 1_{\{B_{\tau_D} = 0\}} \right] = 0.$$

另一方面, 由 $u \in C(\overline{D})$, 应有:

$$\lim_{x \to 0} u(x) = u(0) = 1,$$

但根据上述结论, 当 $x \neq 0$ 时 u(x) = 0,

$$\lim_{x \to 0} u(x) = 0 \neq 1.$$

矛盾。

六. $\Diamond D$ 为 \mathbb{R}^d 中的有界区域,考虑二阶线性椭圆型算子:

$$Lu(x) := a_{ij}(x)\partial_{ij}u(x) + b_i(x)\partial_i u(x), \quad x \in D.$$

假设系数 $a_{ij}, b_i \in C^{\infty}(D), \ a_{ij} \in S_d^+$ 。设 $u \in C^2(D) \cap C^0(\overline{D})$ 满足

$$Lu(x) \ge 0, \quad x \in D,$$

且 u 在 D 内部某点 x_0 处取得最大值。用 support 定理证明:要么 u 在 D 上恒等于常数,要么最大值只能出现在边界上(强极值原理)。

解答 6. 考虑二阶椭圆算子 L 生成的扩散过程 X_t ,满足下面的 SDE:

$$dX_t = b(X_t)dt + \sigma(X_t)dW_t, \quad \sigma\sigma^{\top} = a_{ij},$$

其中 W_t 为布朗运动, σ 为 a_{ij} 的分解。对 $u(X_t)$ 应用 Itô 公式:

$$du(X_t) = Lu(X_t)dt + \nabla u(X_t) \cdot \sigma(X_t)dW_t.$$

由于 $Lu \ge 0$,则 $u(X_t)$ 是一个局部下鞅。设 $x_0 \in D$ 是 u 的内部最大值点,且 $u(x_0) = M$ 。取 r > 0 使得闭球 $B_r(x_0) \subset D$,定义停时:

$$\tau_r = \inf\{t \ge 0 : X_t \notin B_r(x_0)\}.$$

根据下鞅性质,对 $t < \tau_r$:

$$u(x_0) \ge \mathbb{E}_{x_0}[u(X_{t \wedge \tau_r})].$$

令 t → ∞, 由有界收敛定理:

$$u(x_0) \ge \mathbb{E}_{x_0}[u(X_{\tau_r})].$$

若 u 在 $B_r(x_0)$ 内不恒为 M,则存在 $y \in \partial B_r(x_0)$ 使得 u(y) < M。由连续性,存在邻域 $U \subset \partial B_r(x_0)$ 使得 $u(z) < M - \epsilon$ 对 $z \in U$ 。根据 support 定理,路径 X_t 以正概率到达 U,故:

$$\mathbb{E}_{x_0}[u(X_{\tau_r})] < M.$$

这与 $u(x_0) \geq \mathbb{E}_{x_0}[u(X_{\tau_r})]$ 矛盾。所以 u 在 $B_r(x_0)$ 内恒为常数 M。由 D 的连通性和 $u \in C^0(\overline{D})$,u 在整个 D 上恒为常数。否则,若 u 非常数,则其最大值必在边界 ∂D 上,由此我们得到了强极值定理。

七. 考虑一个被控制的扩散过程:

$$dX_t^{\alpha} = \sigma(X_t^{\alpha}, \alpha_t) dW_t,$$

其中 X_t 是状态过程,A 是一个控制集合, (α_t) 是一个取值为 A 的循序可测的控制过程,该类过程全体记为 A。控制目标是最小化代价:

$$J(t, x; \alpha) = \mathbb{E}_{t,x}[g(X_T^{\alpha})], \quad t \in [0, T]$$

定义最优值函数:

$$u(t,x) = \inf_{\alpha \in \mathcal{A}} J(t,x;\alpha), \quad t \in [0,T], x \in \mathbb{R}^d.$$

证明这个函数 u(t,x) 满足 Hamilton - Jacobi - Bellman 方程:

$$\begin{cases} \partial_t u + \frac{1}{2} \inf_{\alpha \in A} \{ \operatorname{tr}[\sigma \sigma^{\top}(x, \alpha) \partial_{ij} u] \} = 0, \\ u(T) = g. \end{cases}$$

(可先考虑 A 只有一个元素或者有限个元素的情况)

解答 7. 对任意 $t \in [0,T]$ 和 h > 0,假设在时间段 [t,t+h] 使用控制 α ,然后在 t+h 时根据新的状态使用最优控制,右边的期望代表在时间 t+h 的最优代价的期望,而左边是最优的从 t 开始的代价,运用动态规划原理得到:

$$u(t,x) = \inf_{\alpha \in \mathcal{A}} \mathbb{E}_{t,x} \left[u(t+h, X_{t+h}^{\alpha}) \right].$$

不妨设 $u \in C^{1,2}([0,T] \times \mathbb{R}^d)$,对 $u(t+h, X_{t+h}^{\alpha})$ 应用 Itô 公式:

$$du = \partial_t u \, dt + \nabla_x u \cdot dX_t^{\alpha} + \frac{1}{2} \text{tr} \left[\sigma \sigma^{\top} \partial_{xx} u \right] dt.$$

代入 $dX_t^{\alpha} = \sigma(X_t^{\alpha}, \alpha_t)dW_t$, 得:

$$u(t+h, X_{t+h}^{\alpha}) = u(t, x) + \int_{t}^{t+h} \left(\partial_{t} u + \frac{1}{2} \operatorname{tr}[\sigma \sigma^{\top} \partial_{xx} u] \right) ds + \int_{t}^{t+h} \nabla_{x} u \cdot \sigma dW_{s}.$$

由于 $\int_t^{t+h} \nabla_x u \cdot \sigma dW_s$ 是随机积分,则它的期望为 0,取期望得到:

$$u(t,x) = \inf_{\alpha} \mathbb{E}_{t,x} \left[u(t,x) + \int_{t}^{t+h} \left(\partial_{t} u + \frac{1}{2} \operatorname{tr} [\sigma \sigma^{\top} \partial_{xx} u] \right) ds \right].$$

两边化简得:

$$0 = \inf_{\alpha} \mathbb{E}_{t,x} \left[\int_{t}^{t+h} \left(\partial_{t} u + \frac{1}{2} \operatorname{tr} [\sigma \sigma^{\top} \partial_{xx} u] \right) ds \right].$$

两边除以 h 并令 $h \rightarrow 0$, 得方程:

$$0 = \inf_{\alpha} \left[\partial_t u + \frac{1}{2} \text{tr}[\sigma \sigma^{\top} \partial_{xx} u] \right].$$

因此:

$$\partial_t u + \frac{1}{2} \inf_{\alpha} \left\{ \operatorname{tr}[\sigma \sigma^{\top} \partial_{xx} u] \right\} = 0.$$

当 t=T 时, $u(T,x)=\inf_{\alpha}\mathbb{E}_{T,x}[g(X_T^{\alpha})]=g(x)$,满足方程。因此,u(t,x) 满足 Hamilton - Jacobi - Bellman 方程:

$$\begin{cases} \partial_t u + \frac{1}{2} \inf_{\alpha \in A} \{ \operatorname{tr}[\sigma \sigma^\top(x, \alpha) \partial_{ij} u] \} = 0, \\ u(T) = g. \end{cases}$$

证毕。