Machine Learning HW7 Report

學號:B05901111 系級:電機三 姓名:陳建

成

1. PCA of color faces:

- a. 請畫出所有臉的平均。
- b. 請畫出前五個 Eigenfaces, 也就是對應到前五大 Eigenvalues 的 Eigenvectors。
- c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。
- d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入 到小數點後一位。

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

因為感覺用VAE去reconstruct比較困難,而cluster或是PCA似乎比較準確, 因此我是都用上傳Kaggle的VAE去做encoding,然後latent的96維向量中, 使用不同的方法做降維 / cluster。

I. 96維 — [PCA] \rightarrow 48維 — — [K-Means] — \rightarrow 2個cluster的label II. 96維 — [PCA] \rightarrow 2維 — [比較第一維與第二維的值] \rightarrow 2個cluster的label

reconstruction loss: 578,9316

其算法是以VAE的loss,除了本身每個pixel的BCE loss之外還加上KL divergence的loss。因為兩個方法是用同樣的AE因此loss相同。

```
xent_loss = 32 * 32 * metrics.binary_crossentropy(
    K.flatten(input_img), K.flatten(output_img))
kl_loss = - 0.5 * K.sum(1 + z_log_var -
K.square(z_mean) - K.exp(z_log_var), axis=-1)
vae_loss = K.mean(xent_loss + kl_loss)
```

accuracy (private, public):

I. 0.95375, 0.95377 (Kaggle上面)

II. 0.50087, 0.49944

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維2的 feature)

其中visualization.npy 中前 2500 個 images 來自 dataset A, 後 2500 個 images 來自 dataset B, 比較和自己預測的 label 之間有何不同。

把visualization的結果放入encoder進行label prediction之後,可以得到一個預測的結果,跟ground truth比較後發現其正確率為 97.22%。另外,dataset A被預測有2539張而 dataset B有2461張,看來整套cluster方法比較偏好預測為dataset A。

下面兩張視覺化分別是根據ground truth和predicted label,直接經過PCA去降維的結果。紅色/皮膚色的是dataset A,綠色/亮綠色的是dataset B。

Ground truth label:

Predicted label:

c. 請介紹你的model架構(encoder, decoder, loss function...), 並選出任意 32張圖片, 比較原圖片以及用decoder reconstruct的結果。

以下是 VAE model架構,其中到 lambda層是encoder,後面是decoder,整個model是jointly trained。Loss function採用 VAE的式子實作(code前面有附在a. 小題,變數與GitHub裡的code稍有不同)。

Layer (type)	Output		Param #	Connected to
input_1 (InputLayer)		32, 32, 3)	0 1000	ELVOOR FEEDERS FEEDERS FEEDERS
conv2d (Conv2D)	(None,	32, 32, 3)	39	input_1[0][0]
conv2d_1 (Conv2D)	(None,	16, 16, 64)	832	conv2d[0][0]
max_pooling2d (MaxPooling2D)	(None,	8, 8, 64)	0	conv2d_1[0][0]
conv2d_2 (Conv2D) 🧢 🖶 🦠	(None,	8, 8, 48)	27696	max_pooling2d[0][0]
conv2d_3 (Conv2D)	(None,	8, 8, 16)	6928	conv2d_2[0][0]
max_pooling2d_1 (MaxPooling2D)	(None,	4, 4, 16)	θ up samp	conv2d_3[0][0]
flatten (Flatten)	(None,	256)	0	max_pooling2d_1[0][0]
dense (Dense)	(None,	300)	77100	flatten[0][0]
dense_1 (Dense)	(None,	125)	37625	dense[0][0]
dense_2 (Dense)	(None,	96)	12096	dense_1[0][0]
dense_3 (Dense)	(None,	96)	12096	dense_1[0][0]
lambda (Lambda)	(None,	96)	Total par Trainable	dense_2[0][0] dense_3[0][0]
dense_4 (Dense)	(None,	125)	12125	lambda[0][0]
dense_5 (Dense)	(None,	300)	37800	dense_4[0][0]
dense_6 (Dense)	(None,	256)	77056	dense_5[0][0]~~~~~
reshape (Reshape)	(None;	4, 4, 16)	Θ	dense_6[0][0]
up_sampling2d (UpSampling2D)	(None,	8, 8, 16)	θ	reshape[0][0]
conv2d_transpose (Conv2DTranspo	(None,	8, 8, 48)	6960	up_sampling2d[0][0]
conv2d_transpose_1 (Conv2DTrans	(None,	8, 8, 64)	27712	conv2d_transpose[0][0]
up_sampling2d_1 (UpSampling2D)	(None,	16, 16, 64)	Θ	conv2d_transpose_1[0][0]
conv2d_transpose_2 (Conv2DTrans	(None,	32, 32, 3)	771	up_sampling2d_1[0][0]
conv2d_transpose_3 (Conv2DTrans Total params: 336,875 Trainable params: 336,875 Non-trainable params: θ			39	conv2d_transpose_2[0][0]

總之就是怎麼把維度縮下去的就怎麼長回來,幾乎都是對稱的,然後 padding都用'same'處理。Lambda層則是分成mean跟variance處理。

再來是原圖和reconstructed的圖片比較,因為隨機選取容易只選到Celeb A的圖,因此直接以前32張進行比較。

感覺是人臉的感覺比較有reconstruct回來,但東西的部分反而幾乎都明顯模糊掉了。不過感覺大概還足以看得出dataset的差異。