머신러님 & 딥러님 2

AI 학술돔아리 <MLP>

- Index

- 1. 지도 학습 분류, 회귀
- 2. 정확도, 결정계수
- 3. 평균절대오차
- 4. 과대적합, 과소적합
- 5. 선형 회귀(다함 회귀)
- 6. 다중 회귀
- 7. 특성 공학
- 8. 규제(릿지, 라쏘)

1-1. Supervised Learning(지도 학습) - Classification(분류)

여러 사과(바나나) 데이터 중에 하나의 사과(바나나) 데이터 - sample(샘플)

1-2. Supervised Learning(지도 학습) - Regression(회귀)

2-1. Accuracy(정확도)

사과: 0, 바나나: 1

10개 중 6개만 정답! accuracy: 6/10 = 0.6

2-2. Coefficient of determination (결정계수) = R^2

$$R^2 = I - \frac{(F+) - 예측)^2 의 합}{(F+) - 평균)^2 의 합$$

쉽게 말해

정답값과 예측값의 차이가 적을 수록(비슷하게 맞출수록) 분자는 0에 가까워짐 -> R^2 이 1에 가까워짐 정답값과 예측값의 차이가 클 수록(잘 못맞출수록) 분자는 커짐 -> R^2 이 0에 가까워짐

3. Mean Absolute Error(평균절대오차)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i| \qquad y_i: target, \hat{y}_i: prediction$$

평균적으로 예측값이 정답값과 얼마나 차이가 나는지 알 수 있음

4-1. Overfitting(과대적합)

Train Set Score: 0.96
Test Set Score: 0.88

train set에서 점수가 좋았지만, test set에서 점수가 나쁜 경우 -> overfitting => 새로운 sample에 대한 예측이 잘 맞지 않을 것임

4-2. Underfitting(과소적합)

Train Set Score: 0.96

Test Set Score: 0.99

or

Train Set Score: 0.76

Test Set Score: 0.73

train set보다 test set의 점수가 높거나, 두 점수가 모두 너무 낮은 경우 -> underfitting - 모델이 너무 단순하여 train set에 적절히 훈련되지 않음

과소적합의 또 다른 원인은 train set과 test set의 크기가 매우 작기 때문

k-NN 알고리즘 단점

- · k-NN 알고리즘 : 데이터를 모두 가지고 있는 것이 전부
 - => 데이터가 아주 많은 경우 사용이 어려움
 - => train set 범위 밖의 샘플을 예측할 수 없음

5. Linear Regression(선형 회귀) 알고리즘

feature를 가장 잘 나타낼 수 있는 선을 학습하는 알고리즘

5-1. Polynomial Regression(다항 회귀) 알고리즘

feature를 가장 잘 나타낼 수 있는 곡선을 학습하는 알고리즘

다항 회귀도 보통 Linear Regression으로 표현함

Linear Regression \supset **Polynomial Regression**

Tip! Parameter

· 사람이 정해주는 parameter :

hyperparameter(tholidalitation)

- · 예) k-NN 알고리즘의 k값
- · 모델이 feature에서 학습한 parameter :

model parameter(모델 파라미터)

· 예) Linear Regression 알고리즘의 coef_와 intercept_ 값

Tip! Based Learning(기반 학습)

· Train Set를 저장하는 것이 train의 전부:

Instance-Based Learning(사례 기반 학습)

·예) k-NN 알고리즘(모델 파라미터 X)

· 최적의(optimal) 모델 파라미터를 찾는 것 :

Model-Based Learning(모델 기반 학습)

· 예) Linear Regression 알고리즘에서 적절한 coef_와 intercept_ 값을 찾기

6. Multiple Regression(다중 회귀)

여러 개의 feature를 사용한 Linear Regression
feature가 많은 고차원에서는 Linear Regression이 매우 복잡한 모델을 표현 가능

feature 개수가 늘어날 때마다 학습하는 계수가 하나씩 증가

7. Feature Engineering(특성 공학)

기존 feature를 사용해 새로운 feature를 뽑아내는 작업 <- 복잡한 모델을 표현하기 위함 feature 개수를 크게 늘리면 선형 모델은 train set에 대해 거의 완벽하게 학습할 수 있음하지만, 이런 모델은 train set에 너무 overfitting되어 test set에서 점수가 좋지 않음

길이: 10cm 길이 x 둘레: 25cm 물레: 25cm 물레의 제곱: 625

Tip! transformer, estimator

- · transformer(변환기) 특성을 만들거나 전처리하기 위한 클래스
 - · 예) PolynomialFeatures 클래스
- · estimator(추정기) 모델 클래스
 - · 예) LinearRegression 클래스

8. Regularization(규제)

모델이 train set를 너무 과도하게 학습하지 못하도록 막는 것 = overfitting 되지 않도록 만드는 것 Linear Regression의 경우 feature에 곱해지는 계수(또는 기울기)의 크기를 작게 만듦

중요! feature의 scale은 모두 다르기(쉽게, 단위가 다르기) 때문에 normalization(정규화) 과정을 반드시 거치고 regularization(규제)를 적용해야 함

Normalization -> Regularization

Remind. Normalization

- · Standard Score(표준점수) = Z-Score
 - · 각 feature값이 mean에서 std의 몇 배만큼 떨어져 있는지 나타냄
- $z = \frac{x-\mu}{\sigma}$, μ : mean(평균), σ : std(표준편차)

· 중요! 반드시 train set의 mean과 std를 이용해서 test set를 normalization 해야 함

8-1. Ridge(릿지), Lasso(라쏘)

Linear Regression Model + Regularization

선호됨 -- Ridge : 계수를 제곱한 값을 기준으로 규제

Lasso : 계수의 절댓값을 기준으로 규제

Lasso 모델은 계수 값을 0으로 만들 수 있음 -> 해당 feature가 쓰이지 않은 것과 같음

alpha 매개변수 값으로 regularization의 강도를 조절(alpha값이 클 수록 규제 강도가 세짐)

- alpha값이 크면, 계수 값을 더 줄이고 조금 더 underfitting 되도록 만듦
- alpha값이 작으면, 계수를 줄이는 역할이 줄어들고 Linear Regression 모델과 유사해져 overfitting 가능성이 큼

Tip! scikit-learn 모델 사용법 간단 정리

```
# k-NN 알고리즘 사용 (기본 k값은 5)
from sklearn.neighbors import KNeighborsClassifier
#모델 생성
kn = KNeighborsClassifier()
#모델 training
kn.<mark>fit(train_input, train_target)</mark>
#모델 평가 (0 ~ 1사이의 값을 반환, 1에 가까울수록 모델의 성능이 좋음을 나타냄)
kn.score(test_input, test_target)
# 정답 예측
kn.predict(test_input)
```