Laplace Transform

Convolution

Theorem: Let $F(s) = \mathcal{L}\{f(t)\}, G(s) = \mathcal{L}\{g(t)\}\$ exist then

$$\mathcal{L}\{f \star g\} := \mathcal{L}\{\int_0^t f(\tau)g(t-\tau)d\tau\} = F(s)G(s)$$

$$h = f \star g \qquad \qquad \text{H(s)} = F(s)G(s)$$

Thus solution to an ODE with any function u(t) can be determined by

Initial / Final Value Theorem

Initial Value Theorem: Let $\mathcal{L}\{f(t)\}$, $\mathcal{L}\{\dot{f}(t)\}$ and $\lim_{s\to\infty} sF(s)$ exist then

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$$

Final Value Theorem: Let $\mathcal{L}\{f(t)\}$, $\mathcal{L}\{\dot{f}(t)\}$ exist and real parts of poles of sF(s) are negative then

$$f(\infty) := \lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

In the left half plane / at most one zero

2nd - Order System

m [19] k [kg/s] b(c) [19/s]

Bode-plots of 2nd order systems ($\zeta < 1$

$$G(s) = \frac{k}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

This implies that at *resonance* (where $M(\omega)$ is maximum):

- * resonance frequency ω_r is given by $\omega_r = \omega_n \sqrt{1 2\zeta^2}$
- * peak value is given by $M_r = M(\omega_r) = \frac{\omega_n^2}{2(\sqrt{1-c^2})}$
 - when $\zeta \leq \frac{1}{\sqrt{2}} \approx 0.707$
 - no peak when $\zeta > \frac{1}{\sqrt{2}}$
- \star note M_r goes to infinity as ζ goes to zero

Stability of System

The system is stabe iff Re (hi) < 0

- 1) Roots of characteristic Equation of ODE
- 2 Poles of Trunsfer function als)
- 3 Eigenvalues of Matrix A in State-Space

Bode Plots

- Forced response: when initial conditions are zero $\mathbf{T} \mathbf{c} = \mathbf{c}$
- Therefore transfer function tells us about the forced resp

Frequency Kesponse

Transient Xtr: lim Xtr = 0

Steady State Xss: lim Xct) = Xss

$$G(s) = \frac{A}{B} \frac{(s-\alpha_1)(s-\alpha_2)\cdots}{(s-b_1)(s-b_2)\cdots}$$

Poles: bi, ba,... Zeros: ai, az

Freq Resp Func: acjw)

Stable Linear System, Sinusoidal

Condition (Gis) stuble (Urt = Asin (wt)

$$\phi = LG(GG)$$
, $M = |GGG)$

Transjent - 律忽略 be e-at, su) 常益-律为Asin(ot+星

M is amp maglitude : Ø is phase shift

Draw Bode Plots

dB/dec (slope): 白本の他 20 1g Mcw) 加多ケ

20 (g May) [48] Vs W [rad/s]

Initial Value = 201g (Goo) (m 为生根故)

经过m/1zerol k+20m dB/dec

m/ pole K-20 m dB/dec

(cu) [rad] VS W [rad/s]

Initial Value = O (m为生根故)

经过mf(zero) k+90m(degree)

m/ pole | K - 90 m (degree)

过渡大致由前一个10倍到后一个10倍

Superposition Method

$$Q(s) = -\frac{10s^2}{(so)(s+100)}$$

zo la Miw) = Zo la la Giw, l

(low2) | 1000| + wil | 1000 |

= 20 lg (0 + 40 lg W - 20 lg [jet 100] - 20 lg 1jw+10001

φ(w) = ~ ((i)w) = ~ [[w] _ ~(60+1W) - ~ (600+jW)

@ = ((((() + j w) = 90) 20 19M/dB 05

Analysis: Same for 1000tju

w < 100. L(100+10) = 0.

Fis) = $L\{f(t)\} = \int_0^{\infty}$ Existence: $\exists M, Q, \forall t$	fit) e-st dt	$m \ddot{\mathbf{x}} + \mathbf{C} \dot{\mathbf{x}}$ $\ddot{x} + 2\zeta \omega_n \dot{x} +$	$\mathbf{+} \mathbf{k} \mathbf{x} = \omega_n^2 x = u(t)$	
FUNCTIONS Usit	$\rho = \begin{cases} 1, & f \ge 0, &, &, \\ 0, & f < 0, &, &, \end{cases}$	Natual Freq Wa	= J k/m	•
Pulse func Up				Oscillating
Unit pulse 8 ct) = lim Up (+)			Transient to SS
fiti	fith Fig.			
Us(t) 1.	Sin(at) Us(t) S2+ 02	Inhomo . step	lerbonse.	underdamped
Us(t-C) e-cs 1	as (at) (s(t) = 52+ 92			
Lusiti) 1/52	eatsin(bt) uset) = b	Inpu: Busct). Xss. =	B/W_{m}^{2} $T = \frac{2\pi}{W_{d}}$
t2 Us (t) 2/53	eat (6t) Usit) 3-a (5-a)2+ 62			rise time tr
t"us(t) n!/S"+1	e-at us(t) S+a		Ks	. 2% setting its
8(t) · · · (one)	1 HPCF)			(Aud Oles 2000 C. Lish
fith Fig.	·f(t) · · · F(c)· · ·		• • • •	5 dampiy rectio
Us(t-c)fet-c) e-csF(s)	fit) SF(s) - F(o)			
ect fit) Fis-c)	f(+) s+F(s) - Sf(o) - f(o)		• • • •	
t fct) (-1) F'(s)	tfit) \int_s Fies ds			
fu titi) (-1), Ecu) cs)	ficts & F(s)			