miRNA and isomiR annotation

Lorena Pantano HSPH

Agenda

- miRNA and isomiR definition
- miRNA mapping comparison
- isomiR annotation strategy
- isomiR annotation from BAM files
- isomiR analysis in R

miRNA

RNA molecules of 18-36 nts long with regulation function

isomiR

```
hsa-miR-24-1-5p hsa-miR-24-3p

GGUGCCUACUGAGCUGAUAUCAGU

GUGCCUACUGAGCUGAUAUCAGU

GUGCCUACUGAGCUGAUAUCAG

GUGCCUACUGAGCUGAUAUCA

UGCCUACUGAGCUGAUAUCA

UGCCUACUGAGCUGAUAUCA

UGCCUACUGAGCUGAUAUC

CUACUGAGCUGAUAUC

CCUACUGAGCUGAUAUCA

CCUACUGAGCUGAUAUCA

CCUACUGAGCUGAUAUCA

CCUACUGAGCUGAUAUCA

CCUACUGAGCUGAUAUCA

CUACUGAGCUGAUAUCA

CUACUGAGCUGAUAUCA
```

Types of isomiRs

Protocols

Protocol comparison

Paper figure

bcbio pipeline

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4686641/

miRNA mapping

FASTQ collapsed map miRNA PARSING

Benchmark

- simulation of miRNAs/isomiRs (~ 16000)
- mapping with different tools
- compare miRNA detection and accuracy

tools compared

bowtie, bowtie2, blast, GEM, microzer, miraligner, miralignerpython, novoaling, razer3, STAR, megablast

miRNA detection

Cause of missing

miRNA accuracy

Specificity at mature miRNA level

isomiR annotation

miRNA in database isomiR

UPPER CASE: addition

lower cases: deletion

```
mismatch addition trimming 5' trimming 3'
```

miRNA_name:mismatch:addition:t5:t3 hsa-let-7a-5p:0:0:GT:t

tools compared

bowtie, bowtie2, GEM, miraligner, novoaling, razer3, STAR

```
mirtop annotate --sps hsa
--hairpin ../hairpin.hsa.fa
--mirna ../miRNA.str
-o gem_out ../gem/sim.21.hsa.sam
```

You can input multi-bam files at the same time

open project for small RNA annotation and analysis

Updated 3 days ago

mirtop

standard formats naming rules

best-practices

Python # 0 P 0

command lines tool to annotate miRNAs with a standard mirna/isomir naming Updated 3 days ago

miRNAs, tRNAs ...

miRTOP.github.io

CSS #0 PO

project for small RNA standard annotations

Updated on Mar 29

isomiR from BAM file

isomiR comparison

Specificity at miRNA level

miRNA with R

- what to consider as input for the DE tools
- isomiR characterization
- query the data
- Supervised clustering with feature selection

Input

seq	name	freq	mir	start	end	mism	add	t5	t3	s5	s3	DB	precu
AGGT(GACCGTGTT	ATATTCG	seq_100	056_x3	3	rno-miR-	-369-5p	14	34	3GA	0	0	C
TTGAA	AGGCTGTTT	CTTGGTT	seq_100	058_x15	15	rno-miR-	-488-3p	49	68	0	T	0	C
TACTO	CACTCGTCC	CGGCCT	seq_100	063_x3	3	rno-miR-	-92b-3p	52	71	3CT	0	0	CC
TTGAA	AGGCTGTTT	сттеете	seq_100	069_x33	33	rno-miR-	-488-3p	49	68	0	G	0	C
CTACT	TCACAACAC	CAGGGTTA	seq_100	11_x13	13	rno-miR-	-138-1-3p)	64	83	0	TA	cgg
TGAGO	TAGTAGTTT	GTGCTGAT	seq_100	122_x3	3	rno-let-	-7i-5p	6	25	0	AT	0	tt
TCTAC	CAGTGCACGT	GCCTCCA	seq_100	131_x5	5	rno-miR-	-139-5p	7	27	16CT	0	0	g
ACGTO	ATCGTCGTC	ATCGTTA	seq_100	132_x5	5	rno-miR-	-598-3p	49	69	0	0	t	0
TGTGA	CAGATTGAT	AACTGAAAG	seq_100	147_x11	11	rno-miR-	-542-3p	49	71	0	0	0	G
CTGGC	сстстство	CCTTCCGCAT	Г	seq_1001	148_x9	9	rno-miR-	-328a-3p	48	68	0	CAT	0
NGAAT	тстссстсс	ACATCTGT	seq_100	185_x4	4	rno-miR-	-219a-2-3	Вр	62	83	1NA	0	0
GGAAG	GACTAGTGAT	TTTATTGT	seq_100	227_x5	5	rno-miR-	-7a-5p	20	41	18AG	0	t	0
AACAT	TTATTGCT	тссстсст	seq_100	277_x8	8	rno-miR-	-181b-5p	15	37	7TC	0	0	0

Processing annotation

```
<<package-plot-iso,message=FALSE,eval=FALSE>>=¬
ids <- IsomirDataSeqFromFiles(fn_list, design=de)
@-</pre>
```

Order in fn_list should be the same than in the design data.frame

isomeR figures

Higher in figure means different sequences with that isomiR type

Bigger the size of the dot means expression of that isomiR type is higher

DE analysis

- DESeq2 as in RNAseq
- Sometimes filtering miRNA by group can help to increase power.
- limma-voom strategy should work equally

Correcting quantification

PCR amplification and ligase bias correction factors

Clustering

```
ids = isoCounts(ids, iso5=TRUE, minc=10, mins=6)
ids = isoNorm(ids)
pls.ids = isoPLSDA(ids, "condition", nperm = 2)
df = isoPLSDAplot(pls.ids)
```

> head(pls.ids\$vip)

variable VIP
hsa-let-7c-5p.t5:GT hsa-let-7c-5p.t5:GT 1.518223
hsa-let-7d-5p.t5:0 hsa-let-7d-5p.t5:0 1.533554
hsa-let-7f-5p.t5:tg hsa-let-7f-5p.t5:tg 1.421619
hsa-let-7i-5p.t5:0 hsa-let-7i-5p.t5:0 1.356090
hsa-let-7i-5p.t5:t hsa-let-7i-5p.t5:t 1.525162
hsa-miR-1.t5:0 hsa-miR-1.t5:0 1.383350

mRNA-miRNA interaction

Output of target analysis

Conclusion

- mapping to precursor and parsing with mirtop
- participate in the open project for miRNA annotation
- analyze isomiRs as well (isomiRs)
- DESeq2 for differential expression (my experience)
- mRNA-miRNA paired data helps incredible for downstream analysis