Dirichlet Process Mixture of Gaussians

August 25, 2016

Variation of the DP hyperparameter

The α parameter is the concentration parameter for the stick-breaking process. In the stick-breaking process, increasing α means the draws become more spread out. In our case, increasing α means more clusters are generated by the Dirichlet process. Figure 1 shows the results of varying α from 0 to 2. Each plot has the number of clusters listed in the title. As α increases, so does the number of clusters.

Figure 1: Results of varying α from 0 to 2.

Variation of the Normal-Inverse Wishart Parameters

The Normal-Inverse Wishart distribution is parameterized by four variables:

$$f(\boldsymbol{\mu},\boldsymbol{\Sigma}|\boldsymbol{\mu}_0,\boldsymbol{\lambda},\boldsymbol{\Psi},\boldsymbol{\nu}) = \mathcal{N}(\boldsymbol{\mu}|\boldsymbol{\mu}_0,\tfrac{1}{\boldsymbol{\lambda}}\boldsymbol{\Sigma})\mathcal{W}^{-1}(\boldsymbol{\Sigma}|\boldsymbol{\Psi},\boldsymbol{\nu})$$

where W^{-1} is an inverse Wishart and N is a multivariate normal. Here we show how each parameter changes the generated data from the Dirichlet process.

μ_0 :

Changing μ_0 changes where the generated points are centered. This can be seen from the pdf of the distribution, as μ_0 is a parameter of the multivariate normal. To illustrate this, I generated 6 different plots with varying μ_0 and with all other variables fixed. The center of the clusters correspond to the value of μ_0 .

Figure 2: Results of varying μ_0 from [2,2] to [10,10].

λ :

Changing λ changes how separable the generated clusters are. Larger values of λ mean the clusters are grouped together tightly. This makes sense, since λ is a scaling parameter for the covariance matrix of the multivariate normal.

Figure 3: Results of varying λ from 0.01 to 1.

Ψ :

Changing the Ψ parameter changes how the data is dispersed. Because Ψ must be a positive semidefinite matrix, it's a little harder to sweep over all possible entries for Ψ . To remedy this, I parameterize Ψ as a mixture of an identity matrix and a matrix of all ones:

$$\mathbf{\Psi} = \gamma \mathbf{I} + (1 - \gamma) \mathbf{J}$$

where **I** is an appropriately sized identity matrix and **J** is an appropriately sized matrix of all ones. With this formulation, I can sweep over two extremes of positive semidefinite matrices by sweeping over a scalar parameter γ .

The results in Figure 4 show that changing Ψ changes whether the data lies on a diagonal, or if the data points are distributed more roundly.

Figure 4: Results of varying γ from 0.001 to 1.

u :

Changing ν changes the domain and range of the data. This term is the "degree of freedom" parameter for the inverse Wishart distribution. As ν increases, the range and magnitude of the data points decreases.

Figure 5: Results of varying ν from 2 to 10.