

CONTRACT NO.: DAMD17-88-Z-8023

BTIC FILE COPY

TITLE: EFFECT OF FOOD, DIET AND NUTRITION ON MILITARY READINESS

AND PREPAREDNESS OF ARMY PERSONNEL AND DEPENDENTS IN A

PEACETIME ENVIRONMENT

PRINCIPAL INVESTIGATOR: Donna H. Ryan

PI ADDRESS: Pennington Biomedical Research Center

6400 Perkins Road

Baton Rouge, Louisiana 70808

REPORT DATE: August 15, 1990

TYPE OF REPORT: Annual

SPILECTE NOV 1 4 1990 D

PREPARED FOR: U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND

FORT DETRICK

FREDERICK, MARYLAND 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;

distribution unlimited

	REPORT DOCUMENTATION					Form Approved OMB No. 0704-018		
Ia. REPORT SECURITY CLASSIFIC	ATION		16. RESTRICTIVE	MARKINGS	<u> </u>			
Unclassified			3 0/577/0/17/0					
28. SECURITY CLASSIFICATION A	LUTHORITY		4	N/AVAILABILITY O	_			
Rb. DECLASSIFICATION/DOWNG	RADING SCHEDU	LÉ		tion unlimit		, ,		
PERFORMING ORGANIZATION	5. MONITORING	ORGANIZATION F	REPORT N	UMBER(S)				
Pennington Biomedic		6b. OFFICE SYMBOL (If applicable)	7a. NAME OF M	ONITORING ORGA	NIZATION			
c ADDRESS (City, State, and ZIII 6400 Perkins Road Baton Rouge, LA 70			7b. ADDRESS (C	ity, State, and ZIP	Code)			
a. NAME OF FUNDING/SPONSO ORGANIZATION U.S. Ar Research & Developm	my Medical		9. PROCUREMEN DAMD17-88	T INSTRUMENT ID	ENTIFICAT	TON NUM	IBER	
c. ADDRESS (City, State, and ZIP	Code)		10 SOURCE OF	FUNDING NUMBER	s			
			PROGRAM ELEMENT NO. 63002A	PROJECT NO. 3M2 – 63002D819	TASK NO.	ľ	WORK UNIT ACCESSION NO 150	
PERSONAL AUTHOR(S) Donna H. Ryan, M.D. Ba. TYPE OF REPORT Annual	13b. TIME CO	OVERED 28/89 TO7/28/90	14. DATE OF REPO	ORT (Year, Month, 6	Oay) 15	PAGE CO	DUNT	
S. SUPPLEMENTARY NOTATION			Çi.	<u>.</u>				
COSATI CODE	ES	18. SUBJECT TERMS (Continue on revers	e if necessary and	identify i	by block r	number)	
CICLD COOLS	SUB-GROUP	RA 3, Nutrita Nutritional	ion, Health E					
FIELD GROUP S 06 01 0 06 05 0 0. ABSTRACT (Continue on reversions) Continue on reversions								

UNCLASSIFIED/UNLIMITED SAME AS RPT

228. NAME OF RESPONSIBLE INDIVIDUAL

☐ OTIC USERS

unclassified

302-663-7325

22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

SGRD-RMi-S

FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 45CFR46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

PI Signature: Work L. Ryan Date: 8/15/90

TABLE OF CONTENTS

Introduc	tior	1	• •	• •	• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	5
Project	#1.	Clini	ical I	Resear	rch	Labo	rato	ory	•	•	•	•	•	•	•	•	•	•	6
Project	#2.	Stab]	le Iso	otope	Lab	orat	ory	•	•	•	•	•	•	•	•	•		.1	.8
Project	#3.	Diet,	Neu	rotrai	nsmi	tter	s ai	nd	Be	ha	vi	or	•	•		•	•	. 2	. 1
Project	Ī	Persor	nel a	and th	neir	Der	ende	ent	s-	th	e	Fc	rt	: F	ol	.k¯			
	ŀ	Ieart	Smart	Proj	ject		•	• •	•	•	•	•	•	•	•	•	•	2	9
Project	#5.	U.S.	Army	Menu	Mod	ific	catio	on	Pr	oj	ec	t	•	•	•	•	•	. 3	6
Appendix																		. 4	1

ANNUAL REPORT US ARMY GRANT AUGUST 1, 1989 - JULY 31, 1990

INTRODUCTION

In July, 1988, Grant #DAMD17-88-G-8023 was awarded to Pennington Biomedical Research Center (PBRC) for \$3,500,000 for a three-year period to fulfill the following research objectives:

- "Establish a Nutritional Health Promotion Research Development Test and Evaluation (RDTE) Center for military personnel and dependents in a peacetime environment to accomplish the following:
 - a. Assess the nutritional adequacy of the diet of military personnel to promote health and military readiness;
 - b. evaluate and develop military dietary programs for dining facilities, commissaries and other food service facilities operated by the military;
 - c. monitor the nutritional status of military personnel and their family members; and
 - d. develop and evaluate military nutrition, education, and health promotion programs.
- Provide nutrition laboratory research support to the army's military nutrition research program at USARIEM to accomplish the following:
 - a. provide biochemical assessment of nutrition status;
 - b. perform food biochemistry analysis; and
 - c. establish and perform stable isotope methodologies for nutritional assessment."

Five projects whose scientific design has been approved by the United States Army are listed below.

- Clinical Research Laboratory, Richard Tulley, Ph.D., Laboratory Manager,
- 2) Stable Isotope Laboratory, James DeLany, Ph.D., Laboratory Manager,
- 3) Diet, Neurotransmitters and Behavior, Chandan Prasad, Ph.D., Principal Investigator,
- 4) Cardiovascular Helth Promotion for Military Personnel and their Dependents-the Fort Polk Heart Smart Project-Principal Investigators, Gerald S. Berenson, M.D., and

David Harsha, Ph.D.,

5) US Army Menu Modification Project, Nena Cross, Ph.D., Principal Investigator.

Discussions of individual projects funded under this grant follow.

I. Clinical Research Laboratory

INTRODUCTION AND BACKGROUND

The Clinical Research Laboratory at Pennington Biomedical Research Center was established on June 1, 1989 with the appointment of Richard Tulley, Ph.D., as manager of the laboratory. The function of this laboratory is to "provide nutrition laboratory research support to the army's military nutrition research program at USARIEM to accomplish the following:

- 1. provide biochemical assessment of nutrition status;
- 2. perform food biochemistry analysis".

General Progress

We have achieved both of the above objectives. We are processing samples from USARIEM to evaluate nutrition status and have instrumentation in place to receive food samples for biochemistry analysis.

To date, the Clinical Research Laboratory has accomplished the following:

- been equipped with general laboratory support equipment such as pH meter, analytical balances, refrigerated centrifuges, an air driven ultracentrifuge, refrigerators, freezers, water baths, microscopes, stirrer/hot plate, pipets, automated pipets, a freeze dryer, a sample digester, and general laboratory glassware;
- 2. been equipped with laboratory instrumentation including the Beckman Synchron CX5 automated clinical chemistry analyzer, the Coulter STKS hematology analyzer, the Hewlett Packard 1090M HPLC with autosampler, diode array and fluorescent detectors, the RIAstar 20 well gamma counter, the Perkin Elmer Z5100 Zeeman Graphite Furnace atomic absorption spectrophotometer, the Perkin Elmer P1000 ICP emission spectrophotometer, the Hewlett Packard UV-Vis diode array spectrophotometer, the Clinitek 2000 urine dip-stick reader, and the Antek Nitrogen analyzer;
- received and accepted a bid of an instrument for catecholamine analysis by HPLC/electrochemical detection (Bio Rad Laboratories);

- 4. employed a student worker, Joe Zaweski, to aid the present workers, Kerrie Munson, MT (ASCP), and Richard Tulley, Ph.D., in work for the army studies.
- 5. did research and development work on methods for the analysis of ammonia, lactate, B-hydroxybutyrate, non esterified fatty acids, glycerol, general chemistry panel tests, HDL Cholesterol, amino acids, ferritin, B12/Folate, insulin, vasopressin, aldosterone, and RBC Folate.
- 6. set up and evaluated the Coulter STKS, the Antek Nitrogen Analyzer, and the Perkin Elmer P1000 ICP emission spectrophotometer.
- 7. performed analyses for USARIEM on the following studies: Carbohydrate Load Bearing Study, West Point Nutritional Assessment, and the Alaska Winter Field Feeding Evaluation.
- 8. received fecal samples from the Sodium Depletion Study for analysis of nitrogen, sodium, potassium, calcium, and magnesium.

Progress on Equipment

The Clinical Research Laboratory is equipped with the following instrumentation, purchased with funds other than those of this grant:

1. Beckman Synchron CX5 automated chemistry analyzer.

An automated chemistry analyzer capable of performing 28 colorimetric/UV analyses plus four electrolytes in a single run on serum, urine, or CSF samples. Computer controlled robotic sampling and mixing ensure precise pipetting and the precision of the analyses (1). Reagents for the colorimetric chemistries are held on-board in a refrigerated reagent compartment. The reagents are contained in three-compartment bar-coded cartridges. A cuvette wheel containing 80 cuvettes is recycled by continuous washing of the cuvettes (2). detection is by a 13 wavelength photodiode array detector. Up to 200 different chemistries may be held in the computer's memory at one time. Reagents for the routine chemistries may be obtained pre-packaged from Beckman Instruments or user defined methods may be developed for other colorimetric chemistries (3). This analyzer has been favorably evaluated in the literature (4,5).

The tests which we are currently performing on the CX5 include the following:

glucose urea creatinine sodium potassium albumin
calcium
phosphorus
magnesium
aspartate transaminase

chloride
carbon dioxide
uric acid
total protein
amylase
total bilirubin
cholesterol (total)
triglyceride
iron binding capacity

alanine transaminase alkaline phosphatase creatine kinase lactate dehydrogenase GGT direct bilirubin HDL cholesterol iron

User defined tests which we have developed include the following (6):

non esterified fatty acids glycerol beta hydroxybutyrate lactic acid ammonia

2. Coulter STKS hematology analyzer.

The Coulter STKS analyzer is a new hematology system which has combined the principle of cell counting by electronic impedance of the Coulter STKR (7) with the three dimensional cell differential counting capabilities of the Coulter VCS instrument (8). This instrument measures volume, conductivity, and light scatter of white blood cells to produce a three dimensional scattergram.

This analyzer produces the following:

red cell counts
white cell counts
platelet counts
hemoglobin
cell indices
hematocrit
five part white cell differential including lymphocytes,
 monocytes, basophils, neutrophils, and eosinophils.

3. Hewlett Packard 1090M HPLC with an autosampler and diode array and fluorescent detectors.

This instrument is capable of performing analyses on practically any substance which has been measured by HPLC using UV/colorimetric or fluorescence detection. We have to date set-up free amino acids in plasma using a modification of the OPA/FMOC precolumn derivatization method (9,10). We also plan to set-up analyses for vitamins A, E, B1 (thiamine),B2 (riboflavin) B6 (pyridoxine), and C.

4. Perkin Elmer Z5100 graphite furnace atomic absorption spectrometer.

This instrument is an atomic absorption spectrometer utilizing a graphite furnace with a stabilized temperature platform and Zeeman background correction (11,12).

We have lamps for the following elements:

copper
iron
chromium
potassium
manganese
calcium
zinc
sodium
selenium
magnesium
aluminum

5. Perkin Elmer P1000 inductively coupled plasma emission spectrometer.

This is a single monochromator ICP emission spectrometer capable of detecting emissions of elements within the full wavelength range UV to visible. The instrument allows for automated or manual background subtraction and the complete analysis can be totally automated. It is an improved version of the Plasma II ICP Emission Spectrometer (13). This instrument will be used for multielement profiles on samples as well as for single or multiple elements in the concentration ranges in which the graphite furnace will be too sensitive.

6. Clinitek 200 urine chemistry analyzer.

This is an automated urine chemistry strip reader. It is based on the principle of reflectance photometry. It is capable of performing the following tests:

glucose ketones blood bilirubin specific gravity pH protein urobilinogen nitrite leukocytes

7. Antek Chemiluminescent Nitrogen Analyzer with autosampler.

Total urinary, fecal, or food nitrogen may be determined by chemiluminescence using our Model 703C Pyrochemiluminescent nitrogen system (Antek Instruments, Inc., Houston, TX 77076) equipped with an automatic sample injector, and a Spectra

Physics computing integrator. The instrument combusts the diluted sample (1:100) at 1100° C and converts any nitrogen to nitric oxide (NO). The NO reacts with ozone, produced by an on-board ozone generator, to form metastable nitrogen dioxide according to the reaction:

$$NO + O_3 ---> NO_2*.$$

This molecule then decays to ground state NO₂ with the emission of light, which is measured by a photomultiplier tube in the instrument. The emission is proportional to the amount of nitrogen present in the sample (14). The method correlates well with the Kjeldahl method for total nitrogen content and has been found to be an effective and reliable monitor of nitrogen balance (15,16,17).

We have encountered certain difficulties in setting up this analyzer, specifically, with the autosampler. The program and that were originally set-up by the representative did not work and several weeks were spent in trying to correct the problems. It was determined that we had a bad interface cable, which was replaced, solving the hardware problem but not the software problem. A program that worked was the instrument now appears to be finally obtained and functional. We have found that because the metering of sample is done by positive air pressure that there is a limit to the number of replicates which can be performed from a sample vial. Since at least three samplings can usually be obtained (sometimes five) this should not be a problem. We will soon be performing actual evaluations of urinary and fecal nitrogen determinations.

8. Packard RIAstar Gamma Counter

This is a 20-well multi-well gamma counter allowing for the counting of 20 samples at one time. It can measure two channels simultaneously. It has computerized software to handle various types of curve fitting, worklists, and quality control. To date we have set-up the following assays using kits:

Serum Vitamin B12/Folic Acid (Bio Rad)
Red Cell Folic Acid (Bio Rad)
Ferritin (Bio Rad)
Aldosterone (Serono)
Arginine Vasopressin (INCSTAR)
insulin

We have plans on eventually performing the following hormone assays:

glucagon
cortisol
DHEA sulfate
others as needed

Progress on General Laboratory Quality Control

The Clinical Research Laboratory is currently involved in interlaboratory quality control monitoring for chemistry and hematology. In the next few months we plan to become part of CAP and/or other laboratory surveys for external laboratory quality control monitoring for chemistry, urinalysis, hematology, and immunoassay. In addition, we intend to apply for and receive lab accreditation by HCFA and CAP within the next year.

Other programs which have been instituted are the performance and logging of routine maintenance checks, temperature checks, reagent logging and verification, and pipet checks for accuracy and precision.

Progress on Methods Development

1. User Defined Chemistries on Beckman Synchron CX5

The first project initiated in the Clinical Research Laboratory at PBRC was the development of methods for the analysis of ammonia, lactate, glycerol, beta-hydroxybutyrate, and non esterified fatty acids on the Synchron CX5 analyzer. Each of these methods are now fully operational. The methods of reagent preparation for each test are listed in Table 1 below. Instrumental parameters for each test are given in Table 2. Studies for linearity, analytical recovery, precision, reagent stability, and calibration frequency have been performed and results are shown in Table 3 below.

 $\underline{\text{Table 1.}}$ Preparation of Reagents for User Defined Chemistry (UDC) Tests on the Beckman Synchron CX5.

Test	<u>Manufacturer</u>	Dilute Rgt with/ (Compartmnt)	<u>D i l u t e Enzyme</u> Compartmnt C
АММО	Sigma	9 ml H ₂ O/ (B)	70 ul + 700 ul 0.1M PO ₄ buffer
GLOL	Sigma	29 ml H ₂ O/ (A)	100 ul + 1.7 ml H ₂ O
LACT	Sigma	working buffer= 4ml H ₂ O + 2ml buffer reconst NAD with 5ml working buffer/ (B)	100 ul + 1ml working buffer
NEFA	Wako	Reag A + 13 ml Dil A/ (A) Reag B + 5 ml Dil B/ (B)	None
внва	Sigma	9 ml H ₂ O/ (B)	200 ul + 800 ul H ₂ O

Table 2. Instrumental Conditions for UDC Analysis on the Beckman Synchron CX5.

Test	R x n Dir	Smpl Vol, ul	1° Inj, ul	2° Inj, ul A d d time	B l k Read, sec	R x n Read, sec	<u>Stds</u>	1 0 / 2 0 nm
AMMO	EP2 POS	25	200	20 624s	5 8 8 - 604	6 0 0 ~ 632	0 uM, 148 uM	340/ 380
GLOL	EP2 NEG	20	280	18 720s	6 8 0 - 712	6 8 8 - 720	101 uM 707 uM	340/ 380
LACT	EP2 POS	5	230/ 50		2 7 2 - 304	6 8 8 ~ 720	4.44mM	340/ 380
NEFA	EP2 POS	5	200	75 624s	5 7 2 - 604	6 0 0 - 632	0 mM 1.00mM	560/ 650
ВНВА	EP2 POS	5	220/ 20		2 7 2 - 304	6 0 0 - 632	1.2 mM	340/ 380

<u>Table 3.</u> Analytical Results for UDC's Developed for the Beckman Synchron CX5.

<u>Test</u>	Linearity	Recovery	<u>CV</u> (level)	Reag Stab	Cal Freq
AMMO	0-300 uM	102.3%	5 . 0 % (174uM)	5 days	daily
GLOL	0-1300 uM	104.1%	2.8% (181 uM)	2 days	daily
LACT	0-5 mM	96.2%	1.6% (2.3 mM)	7+ days	weekly
NEFA	0-5 mM	101.1%	2.8% (1.8 mM)	7+ days	daily
внва	0-4.5 mM	101.9%	2.0% (1.1 mM)	7+ days	weekly

In all cases it was found that the stability of the reagents was maintained best by keeping the reagent components in separate compartments of the analytical reagent cartridges. They are not mixed until the actual time of the assay when they are combined within the reaction cuvette. It was also found that any test using a trigger reagent after taking a blank reading with sample and the first part of the reagent required a two point calibration. This is the case for glycerol (GLOL), ammonia (AMMO), and non esterified fatty acids (NEFA). in which both parts of reagent are mixed prior to sample addition and are triggered by the addition of sample are beta hydroxybutyrate (BHBA), and lactate (LACT). These tests require only a single point calibration. Stability was also increased for the AMMO by making the enzyme dilution in 0.1 M phosphate buffer, pH 7.2.

Correlation studies have been performed for LACT and AMMO with the manual methods. The correlations are good. The scatter for AMMO is higher than one would like, but is believed to be due primarily to problems with reproducibility for the manual method. Correlation studies have recently been performed for LACT versus the Yellow Springs Inc. Lactate Analyzer, the manual method for glycerol, and the extraction method for non esterified fatty acids. This data is forthcoming.

2. Routine Chemistries on the Beckman Synchron CX5

Routine chemistries on the Beckman Synchron CX5 have been monitored by performing quality control on assayed and unassayed chemistry control material (Beckman Synchron Assayed Controls, 3 levels and Bio Rad Unassayed Controls). In addition, our results have been compared with other users in an interlaboratory QC program (Bio Rad Laboratories).

3. HDL Cholesterol

The heparin-Mn precipitation method (Bio Rad Laboratories) for HDL Cholesterol was evaluated. 7 reagent is convenient in that it is a lyophilized reagent within self contained test tubes for each sample. No sample dilution occurs, therefore, no correction factors are necessary. However, it was found that results by this method were not compatible with the Synchron Cholesterol reagent. Results were far too high by these combined methods. Beckman technical representatives indicated that there are interferences with the heparin-Mn method and the buffer used in the Cholesterol reagent. For this reason, we elected to use the phosphotungstic acid method by DMA of Dallas, Results for this test have been reproducible and Texas. correlate well with another laboratory which phosphotungstic acid precipitation.

Results on interlaboratory comparison of HDL methods agree well with other methods such as heparin-Mn and dextran sulfate.

4. Coulter STKS

We have evaluated this method for reproducability and comparability using controls.

We are in the process of performing an evaluation of the accuracy and correlation of differentials performed by this instrument with manually performed differentials. This data will be forthcoming.

5. Amino Acids

The Hewlett Packard Amino Quant (R) method for the analysis of amino acids in protein hydrolysates uses o-phthalaldehyde (OPA) for the derivatization of primary amino acids and 9-fluorenylmethylchloroformate (FMOC) for the derivatization of secondary amino acids (proline and hydroxyproline) and separation on a reverse phase C-18 column (9).

The entire procedure is automated from derivatization to sample injection and detection wavelength programming. The method may be used with UV detection or fluorescent detection. We chose to use fluorescent detection for optimal sensitivity. We found early on in our studies that the Amino Quant^(R) method was inadequate for quantitation of amino acids in physiological

fluids because of the large number of amino acids and metabolites present. For this reason we undertook studies to develop the best solvent to achieve the best separation possible using the Amino Quant column and derivatization procedure. The separation indeed proved to be very difficult, however, we found optimal conditions for separation of most of the amino acids found in physiological fluids. One serum sample was prepared by treatment with an equal volume of acetonitrile, centrifuging, and analyzing the supernatant. It appeared that minimal interferences were encountered. Solvent A used was 0.06M sodium acetate, pH 7.2, and Solvent B was composed of the mixture of acetonitrile/0.1 M sodium acetate/methanol (14:4:1). Instrument programming and chromatograms of 41 amino acid standards and calibration curves were performed.

More work needs to be done with this method. Still to be carried out are precision, linearity, and recovery studies. The optimal method of preparation of samples needs to be determined. This research is forthcoming.

6. Ferritin

The Bio Rad IRMA kit for ferritin was evaluated. This kit was easy to perform and gave good results on the standard curve, reproducibility, and accuracy as determined by assayed controls.

7. Vitamin B₁₂/Folic Acid

The Bio Rad dual label RIA for Vitamin $B_{12}/Folate$ was set-up and evaluated and found acceptable.

8. RBC Folate

RBC Folate was also determined using the Bio Rad RIA kit for Vitamin B_{12} /Folate after treatment of the samples with ascorbic acid and a folate diluent. Again, the results were good.

9. Insulin, Vasopressin, and Aldosterone

These RIA procedures were set-up and evaluated in our laboratory with good results.

10. ICP Emission Spectrometer

This instrument will be used for fecal and food sodium, potassium, calcium, and magnesium. These assays are yet to be developed.

Progress on Army Studies

The following studies have been completed for USARIEM:

1. Carbohydrate Load Study

A total of 51 samples were obtained and analyzed for ammonia, B-hydroxybutyrate, glucose, glycerol, lactate, non esterified fatty acids, and triglyceride. In addition, 180 samples were analyzed for plasma lactate. In total, 557 tests were performed. These results are reproduced in the appendix.

2. Alaska Winter Field Feeding Evaluation

T total of 156 samples were obtained for the analysis of Chemistry 22 panels plus HDL. In total, 3588 tests were performed.

3. West Point Nutritional Assessment Study

Approximately 400 samples were obtained for the analysis of serum lipids, iron, TIBC, ferritin, Vitamin B_{12} , and folic acid. Also, 94 samples were analyzed for red blood cell folic acid. In all, 1645 analyses were performed. The report is shown in the appendix.

4. Fecal Samples

Five large bags of human fecal samples have been received from the Sodium Depletion Study. These samples are being stored frozen until methods for total nitrogen, calcium, magnesium, sodium, and potassium are developed.

The total number of tests performed thus far for USARIEM is 5790.

References

- 1. Smith K, Cheng, S, Ray, E, Villa B, Haden B. Estimates of precision of endpoint chemistries on the Beckman Synchron Cx4/Cx5 clinical system. Clin Chem 1988; 34:1168.
- 2. Flores, D. Protocol for determination of cuvette washer efficiency in automated chemistry analyzers as applied to the Beckman Synchron Cx4. Clin Chem 1988; 34: 1168-1169.
- 3. Ishii S, Day K, Newton M, Hall R. evaluation of user defined reagents on the Beckman Synchron Cx4 and Cx5 clinical systems. Clin Chem 1989; 35: 1097.
- 4. Kubasik NP, Cordy P, Jonza J, Mayer T, D'Souza J. Evaluation of the Beckman Synchron Cx5 analyzer. Clin Chem 1989; 35:1108-1109.
- 5. Millsap S, Powers M, Noriyuki I, Ilano V, Aberin C. A clinical evaluation of the Beckman Synchron Cx5 chemistry analyzer. Clin Chem 1989; 35: 1103.
- 6. Tulley, R. Unpublished results.
- 7. Coulter STKR Hematology System. The Instrument Report, Volume 1, Number 7. Applied Technology Associates, Inc. 1989.

- 8. Multidimensional leukocyte differential analysis. Coulter Hematology Analyzer, Volume 11, No.1, Coulter Electronics, Inc., 1989.
- Schuster R. Determination of amino acids in biological, pharmaceutical, plant and food samples by automated precolumn derivatization and high-performance liquid chromatography. J Chromatography 1988; 431: 271-284.
- 10. Tulley R, Munson KR. Unpublished results.
- 11. Fernandez, FJ, Beaty, MM, Barnett WB. Correction for high background levels using the zeeman effect. Atomic Spectroscopy 1981; 2:73-80.
- 12. Slavin W, Carnrick GR, Manning DC, Pruszkowska. Recent experiences with the stabilized temperature platform furnace and zeeman background correction. Atomic Spectroscopy 1983; 4: 69-86.
- 13. Ediger RD, Yates DA, Pruszkowska E, Collins JB, Vollmer JW. An integrated approach to icp spectroscopy. Atomic Absorption 1985; 6:56-59.
- 14. Pyrochemiluminescent nitrogen system: total urinary nitrogen procedure for in vitro diagnostic use. Antek Application Note No. 121, Antek Instruments, Inc., Houston, TX 77076 (1987).
- 15. Konstantinides FN, Boehm KA, Radmer WJ, Storm MC, Adderly JT, Weisdorf SA, and Cerra FB, Pyrochemiluminescence: real-time, cost-effective method for determining total urinary nitrogen in clinical nitrogen-balance studies. Clin Chem 1988; 34:2518-2520.
- 16. Grimble GK, West MFE, Acuti ABC, Rees RG, Hunjan MK, Webster JD, Frost PG, and Silk DBA, Assessment of an automated chemiluminescence nitrogen analyzer for routine use in clinical nutrition. J Parenteral Enteral Nutr 1988; 12:100-106.
- 17. Skogerboe KJ, Labbe RF, Rettmer RL, Sundquist JP, and Gargett AM, Chemiluminescent measurement of total urinary nitrogen for accurate calculation of nitrogen balance. Clin Chem 1990;36:752-755.
- II. Stable Isotope Laboratory

INTRODUCTION

Establishment of a Stable Isotope Laboratory to support the Army's military nutrition research program at USARIEM is a research objective of US Army grant DAMD 17-88-G-8023. The Stable Isotope Laboratory at Pennington Biomedical Research Center was established in September, 1989 with the employment of James P. DeLany, Ph.D., as manager of the laboratory. The laboratory is established and

processing samples to support USARIEM with stable isotope methodologies for nutritional assessment.

PROGRESS

A Finnigan Delta S Isotope Ratio Mass Spectrometer, a water- $\mathrm{CO_2}$ equilibrator, a Breath Carousel for $\mathrm{CO_2}$ Analysis, a Gas Chromatograph/Combustion Interface and a Multiport automatic tube cracker were purchased using USDA funds and have been installed and calibrated. Two water samples have been analyzed for deuterium enrichment after reduction of water to hydrogen gas over zinc at 500 °C. The water samples have been analyzed repeatedly over several days and very good external precision has been obtained: baseline sample (n=23) -31.2 ± 0.96 o/oo_{SMOW} and enriched sample (n=14) 437.8 ± 1.84 o/oo_{SMOW}. A water sample has also been analyzed for $^{18}\mathrm{O}$ using a $\mathrm{CO_2/water}$ equilibrator and good precision has been obtained (n=24) 25.94 ± 0.11 o/oo.

Dr. DeLany is presently involved in two studies in conjunction with military nutrition personnel at USARIEM. Dr. DeLany has collaborated with CPT Robert J. Moore, Ph.D., Research Biochemist, on the Alaska90 Cold Weather Study. Dr. DeLany has also collaborated with Reed Hoyt, Ph.D., Research Physiologist with the Altitude Research Division on the Bolivia High altitude study.

ALASKA90

Energy expenditure of soldiers during their cold weather exercise will be determined using the doubly labeled water technique. Six subjects who did not receive the heavy water were examined to correct for any baseline isotopic shifts in the labeled group. There were initially 15 labeled subjects but one subject dropped out of the study (#109).

The deuterium and ¹⁸O enrichment of 6 urine samples between February 4, and February 14 have been analyzed in the six unlabeled subjects of the Alaska90 Study. The results are presented below. It is encouraging to note that the deuterium and ¹⁸O enrichments changed concomitantly in most subjects.

Baseline Isotope Shift of Unlabeled Group

Subject #

	102	114	117	119	121	122 I	1EAN
			DEUTERI	υM. del	0/00		
04-Feb-90		-106.4	-103.7	- 97.6	-104.1		
05-Feb-90	-133.6	-105.1	-103.4	-98.8	-106.0	-115.2	-110.3
07-Feb-90	-130.1	-101.1				-117.1	-116.1
08-Feb-90	-129.9	-113.0	-110.6	-100.5	-108.1	-115.0	-112.9
12-Feb-90		-119.6	-107.1	-101.3	-113.4	-99.0	-108.1
13-Feb-90	-135.0		-94.8	-106.6	-114.2	-115.6	-113.2
14-Feb-90	-127.1	-112.0 -	-102.2	-98.8 -	115.0 -	108.2 -1	110.6

			<u>0-18</u>	, del	o/oo SMO	<u>W_</u>	
04-Feb-90	-10.49	-8.94	-8.87	-8.06	-9.22		-9.12
05-Feb-90	-10.33	-8.78	-8.65	-7.90	-9.18	- 9.47	-9.05
07-Feb-90	-10.08	-8.49				-9.22	-9.26
08-Feb-90	-9.61	-9.99	-9.26	-7.74	-8.95	-9.05	-9.10
12-Feb-90		-10.69	-8.65	-7.54	-9.16	-6.81	-8.57
13-Feb-90	-10.72		-7.46	-8.33	-9.42	-8.91	-8.97
14-Feb-90	-9.54	-9.37	-7.60	-7.12	-7.89 -	7.37 -	3.15

The ¹⁸O enrichment of 6 urine samples and 6 saliva samples for have been analyzed in the 14 labeled subjects. The ¹⁸O elimination rates were calculated by the two point method, using the initial and final enrichments, as well as a regression method (5 time points). The analyses for one subject (#104) were repeated to determine the analytical precision. Some equipment problems occurred during the analyses of the samples for #116. The samples were analyzed twice, but the precision of these analyses is not typical. The ¹⁸O enrichments have also been determined for the initial and final time points for use in calculating isotope dilution spaces and body composition. The dosing schedule is needed to calculate these items. The isotope abundance shifts from the placebo group were used to correct the isotope enrichment data for the labeled subjects. The results are presented below.

Subject #	¹⁸ O Elimina	tion rates	¹⁸ O Enrichm	ents
	2-point	Regression	<u>Initial</u>	<u>Final</u>
101 104 104Repeat 105 106 107 108 110 111 112 113 116a 116b	0.1189 0.1017 0.1021 0.0958 0.0975 0.1144 0.0975 0.1194 0.1076 0.0976 0.1069 0.1035 0.1056	0.1199 0.1050 0.1058 0.0974 0.0987 0.1144 0.0989 0.1212 0.1076 0.0971 0.1095 0.1113	123.96 118.69 118.18 124.94 116.40 138.69 110.45 121.66 125.62 126.46 118.55 105.29 103.92	43.01 44.15 44.11 48.23 42.65 48.15 41.28 44.04 47.91 43.95 44.74 37.04 37.16
118 123 124	0.1100 0.0981 0.1213	0.1129 0.0997 0.1225	119.89 108.53 115.96	42.53 39.97 42.95

The coefficient of variation for the elimination rate by the 2-pt method was 0.4% while for regression it was 0.8%. The CV for the dilution space was 0.4% and 0.1% for the initial and final time points. The elimination rates calculated by the 2 point method and the regression method were similar in some instances but considerably different in others.

The deuterium analyses are underway. Energy expenditure and

body composition will then be calculated for the 14 labeled soldiers.

BOLIVIA HIGH ALTITUDE STUDY

The protocol for the Bolivia High Altitude Study was completed in collaboration with Dr. Reed Hoyt. The study has been completed and the samples will arrive in August, 1990.

III. Diet, Neurotransmitters and Behavior

A state of the art multidisciplinary approach drawing personnel from different specialities has been established. The scientific staff includes, Jeff Brock, PhD, Shakeel Farooqui, PhD, Anwar Hamdii, MD, PhD, Emmanuel Onaivi, PhD and Masahiro Sakota, MD, under the direction of Chandan Prasad, Ph.D.

A number of student workers have also been added: Joseph LaFleur, Stephanie Talton, Lisa Theriot, Sheela Venugapal, and Shorye Payne.

BACKGROUND

The neuroscience research program focuses on basic and applied research, utilizing a number of techniques in molecular biology, neurochemistry, pharmacology, and neurophysiology. The summary of the basic and applied research, and the application are presented.

1) Applied Research

- * Diet, brain chemistry, and behavior
- * Nutritional factors in drug abuse
- * Higher brain function (cognition and dendritic spine densities)

2) Basic Research

- A) * Regulation of dopaminergic neurons
 - * Neurochemistry
 - * Molecular biology
- B) * Dietary peptides and neuronal function

Application

- * Mental performance, function, and dysfunction,
- * Aging and development,
- * Neurological and mental disorders eg., Parkinsonism and schizophrenia

General progress:

The significant results summarized below have generated a number of publications and presentations at scientific meetings. The areas of major progress include:

1. Behavioral Neurochemistry of Food-derived Peptides:

We have chosen three peptides to be included under this program: i) cyclo(His-Pro), CHP, ii) casein-derived peptides (exorphins), and iii) delta-sleep inducing peptide, DSIP (a peptide known to reduce blood pressure and protect against stress response). The first phase of this study has largely concentrated on i) The relationship between diet and endogenous cyclo (His-Pro) levels, and ii) the mechanism of action of cyclo (His-Pro) in the striatum, an area of the brain actively involved in motor coordination.

CHP has been shown to exist in a variety of tissues and biological fluids such as the brain, GI tract, blood, CSF, and semen, etc. While CHP-like immunoreactivity from such biological specimens has been characterized chromatographically, in no case has the peptide been isolated in enough quantity and purity that its presence can be ascertained by physical methods. We for the first time, have isolated pure CHP from human urine and determined its structure to be histidyl-proline diketopiperazine. These data have been accepted for publication in "Biochemistry International".

Having established the existence of CHP in a biological fluid, we have focused our attention on the question "could dietary proteins serve as cyclo (His-Pro) precursors?". To this end, we have examined the urinary levels of CHP in three species- a carnivore (leopard), an herbivore (rhinoceros), and an omnivore (man). The data from these studies suggest that urinary levels of CHP is higher in animals consuming high levels of dietary proteins. However, in these studies data on exact composition of diet at dietary levels CHP was not available. Therefore, we subjected rats to three different diets (of known chemical composition with undetectable level of CHP): carbohydrate-rich, casein-rich, and whey-rich.

Proteins in casein and whey have 13 and 3 Pro-His or His-Pro sequences. If both of these proteins were to be hydrolyzed in such a way to release all His-Pro of Pro-His sequences, animals on casein-diet should excrete at least 4 times more CHP than those on whey diet. This hypothesis is also consistent with the observation that exogenous CHP rapidly clears from the plasma and accumulates in the urine. However, the results from this study show that the differences in the plasma or urine levels of CHP in rats on these three different diets (carbohydrate, casein, and whey) were insignificant.

In conclusion, it appears that endogenous CHP may not be derived from the metabolism of ingested dietary proteins.

In a related study, we have examined the presence of CHP in 12 common nutritional supplements using partial protein hydrolysates. Nine out of 12 samples contained CHP. Those supplements with the highest CHP levels had undergone more intense thermal manipulation prior to packaging than others. Furthermore, oral administration of one of these supplements (Ensure) to a human volunteer resulted in a rapid rise in plasma levels of CHP.

In conclusion, these data show that while it is unlikely that CHP may be derived from dietary proteins, a diet containing hydrolysed protein (or CHP) may contribute to endogenous levels of CHP.

2. Preparation Characterization and Application of D_2 Dopamine Receptor Antibodies:

Dopamine plays an important key role in brain function. abnormalities in the metabolism of dopamine in specific regions of the brain lead to mental and neurological disorders , which are characterized in schizophrenia and Parkinson's disease. In order to study these molecular disturbances we raised antibodies against dopamine receptor type D, in rabbits. Two corresponding to amino acid sequence predicted from the nucleotide sequence of the dopamine D2 receptor were chemicaly synthesized. Peptide 1 (CGSEGKADRPHYC) and Peptide 2 (NNTDQNECIIY) correspond to 24-36 and 86-98 from the NH2 terminal. The peptides were conjugated with a keyhole limpet hemocyanin using glutraldehyde and the conjugate was injected into rabbits. The polyclonal antiserum was obtained and screened for specific antipeptide 1 or antipeptide 2 antibodies on ELISA. Antibodies against peptide 1 showed high titer for peptide 1 with little or no cross reactivity with the other The antibodies were further characterized on a Western blot. Peptide 1 antibodies reacted with denatured D, receptors from rat striatal membranes, Mr 91 kDa. The preimmune sera or peptide 2 antibodies did not show any band corresponding to 91 kDa. Peptide 1 antibodies were further characterized for immunoinhibition studies using D, specific ligands. Peptide 1 antibodies significantly (40%) inhibit the photoaffinity labeling of D2 receptor by 125I-NAPS. Such an interaction of antibody with native D, receptor was further studied using a D, specific ligand (3H) YM-09151-2. (3H) YM-09151-2 binding was significantly inhibited (35-40%) by the addition of peptide 1 antibodies. The addition of preimmune or pooled rabbit serum did not show an inhibition in the Ym binding. These results suggest the presence of anti D2 receptor antibodies which bind to dopamine receptor either on the ligand binding site or in close proximity, which results in the inhibition of ligand receptor interaction.

3. Diet, Neurotransmitters and Behavior:

A number of project designed to investigate the performance of rodents in a battery of behavioral and biochemical tests were initiated. In the first phase of these experiments groups of rats were subjected to equicaloric diet containing normal (20%), low (8%) and high (50%) casein for 20 weeks.

NEUROCHEMICAL ANALYSES

In the different groups the effect of the different dietary alterations on catecholamine and indolamine and their metabolites in at least 36 rat brain nuclei was determined. Using the punch dissecting procedure of Palkovits(1973) the different nuclei were

obtained and prepared for neurochemistry. The HPLC with Colormetric detection was utilized in the determinations. This study when completed and analyzed represents a most comprehensive analysis of the effect of dietary macronutrient (protein and carbohydrate) manipulation on neurotransmitter distribution in the rat brain. Previous studies have analyzed limited brain areas with conflicting data of increase, decrease or no change in neurotransmitter and metabolite distributions.

BEHAVIORAL ANALYSES

In assessing the performance of rats in the battery of behavioral test systems, the animals on the high protein diet were more responsive in sensorimotor function, negative geotaxis and spontaneous locomotor activities when compared to normal and the low protein groups. These rats showed a reduced aversion in the elevated plu - maze test which has been extensively used to study anxiolytics and anxiogenic drugs. In the tail flick reaction time to a heat stimulus, analgesia was produced in animals fed the low protein diet while hyperalgesia was induced in animals on the high protein diet. It was concluded that the high - protein diet may modulate not only the central dopaminergic function but also the benzodiazepine supra molecular complex and nociceptive processing systems.

DIETARY PROTEIN AND PREPARATORY AROUSAL IN RATS.

Previous investigators have observed that rats fed high-protein diets (50-80% casein) are easily frightened and demonstrate more violent behavior than rats on control diets. Data from our laboratory has shown that rats fed a chronic, high protein diet (50% casein) are more reactive to nociceptive stimuli than those fed either normal or low protein diets (20 and 8% casein respectively). The mechanisms underlying these changes are unknown. However, it is known that high-protein diets cause an increase in the excetion of calcium and magnesium. In humans, hypomagnesemia causes irritability, disorientation, and neuroses.

Hyper-responsiveness to stimuli, fear and combativeness are expressions of two very similar behavioral subroutine, known as the Alerting Reaction and the Defense Reaction. It is well known that the cerebral component of the alerting reaction involves the processing of auditory, visual and somatosensory information. both humans and animals, the frontal cortex participates preparatory arousal in response to stimuli. The cerebral cortex activates or inhibits specific motor subroutines, such as the defense reaction, in accordance to the demands of the stimuli. Electrical activity recorded from the cerebral cortex (EEG) always reflects the subject's general state of alertness. The degree of a subject's arousal or attention is more markedly expressed in the magnitude of the negative shift in the EEG recording when the subject is presented with an alerting stimulus. In humans, this is called the Contingent Negative Variation (CNV). Rats demonstrate cortical negativity responses that are similar to the CNV in humans

and they are measurable even under urethane/chloralose anesthesia.

In humans, low-amplitude and prolonged CNVs are associated with conditions of schizophrenia, depression and injury-related dementias. High-amplitude CNVs are seen in neurotic patients and in cases of psychosomatic illness, such as asthma. Normally, the frontal component of the CNV can be conditioned with training. It is interesting and relevant that hyperactive subjects present with a short-latency, but rapidly deteriorating, frontal component in their CNVs. It has been suggested that these individuals suffer from an attention deficit, perhaps due to an impaired communication between the frontal cortex and thalamus. The present study is based upon the concept that the rats which are fed a chronic, high protein diet develop a deficit in information processing in the frontal cortex which resembles a condition of hyperactivity in humans, as an explanation for their abnormal psychomotor behavior.

Recording cortical negativity responses is a method the effects of diet on behavior at the investigating neurophysiological level. This study will yield valuable data even if the cortical negativity responses in the high protein group are not different from controls. Such data would suggest that the highprotein diet causes changes in a more discrete area of the brain Also, the observation would direct than otherwise is expected. future studies to look for a more subthalamic circuit as mediating the behavioral effects of high-protein diets.

Thirty rats were purchased from commercial breeders. They were housed in separate cages and labelled as 3 groups (10 per group). One group is being fed a high-protein diet (50% casein), one group is being fed a normal-protein diet (18% casein), and the third group will be fed a low-protein diet (8% casein). All animals will be on their respective diets for at least 120 days, then each will be prepared for terminal experimentation. All animals will be acutely anesthetized with a combination of urethane and alpha-chloralose (780 and 50 mg/kg, i.p., respectively). Surgery will be performed for the placement of an endotracheal tube and an intra-arterial catheter for monitoring heart rate and blood pressure. The frontal will for direct recording cortex be exposed electroencephalogram. The negative shift in slow potentials will be recorded in response to electrical stimulation of the tail. the end of all experiments, animals will be sacrificed by an overdose of euthanasia solution.

LEVELS OF PROTEIN IN DIET AND MODIFICATION OF BEHAVIORAL RESPONSES TO CNS ACTING DRUGS.

An elaborate study was undertaken to determine the effects of long term dietary protein manipulation on the behavioral effects of some centrally acting drugs. In this study, mice were used and placed on one of the three equicaloric diets for 35 weeks: High Protein (HP), Medium Protein (MP), Low Protein (LP). The diets consisted of 50, 20, and 8% caesin, respectively. The rest of the calories in the diet were made up with constarch and sucrose. All

three diets were supplemented with a salt and vitamin mixture and choline bitartrate. At the end of the treatment period, the final weight was not significantly different in the three groups. Locomotor activity and stereotypy following the administration of the vehichle or amphetamine (0.1 and 1.0 mg/ml) was measured using the opto-varimex mini system obtained from Columbus Instruments and data was analyzed using one-way ANOVA followed by Dunnett's t-test.

Both spontaneous locomotion and stereotypy increased as the level of protein in the diet increased (p<0.05, N=6 per group).

The MP fed animals exhibited a slight decrease in locomotion at low amphetamine but significantly increased at the higher dose of amphetamine. In contrast, LP animals showed significant increase in locomotion at both amphetamine doses.

The stereotypic response after amphetamine in the LP or MP animals exhibited similar pattern as the locomotor activity.

These results suggest that central dopamine receptors were altered by the long-term dietary protein manipulation and consequently modified the amphetamine induced behavior.

THE EFFECTS OF FLUPHENAZINE AND DELTA-NINE-THC ON THE BEHAVIOR OF MICE FED DIFFERENT PROTEIN DIETS

The next series of experiments were designed to further assess the influence of the long-term dietary protein manipulation and the consequences on the behavioral performance following the administration of a neuroleptic, fluphenazine, and the psychoactive constituent of marijuana, delta-9-THC. In this experiment male ICR mice weighing 20-25 grams were housed in a temperature controlled room with reversed 12:12 hr light/dark cycle. The animals in the following groups were fed equicaloric diets, A: Low Protein, B: High Protein, and C: Mixed meal for 35 weeks.

<u>Injection procedure:</u> Animals in the different groups were injected intraperitoneally (ip) with the vehicle, delta-9-THC, or fluphenazine.

The performance of the animals in a number of behavioral test systems was evaluated following the administration of the vehicle or drug regimen: fluphenazine (0.01-0.5 mg/kg), delta-9-THC (1-30 mg/kg). The vehicle or drug were administered for 40 minutes prior to behavioral analysis.

Behavioral Assessment

Spontaneous Locomotor Activity: The spontaneous locomotor activity of mice was monitored in individual activity cages following vehicle or drug treatment. The computer-controlled system is designed to monitor the total as well as ambulatory counts. The stereotype response was deduced from the difference between the total and ambulatory counts.

The dietary protein manipulation modulated mouse motor behavior with the spontaneous locomotor activity of the animals on the high protein diet increased by about 50% (p<0.05).

In naive animals delta-9-THC or fluphenazine produced a dose dependent inhibition of mouse spontaneous locomotor activity. The high-protein diet increased the mouse sensitivity to the locomotor inhibitory effects of fluphenazine or delta-9-THC.

Catalepsy: The Pertwee ring test was utilized to assess catalepsy and data expressed as an immobility index. All animal were assessed for a total of five minutes and the time each animal remained motionless on the ring was recorded.

In naive mice, fluphenazine or delta-nine THC induced a dose dependent state of immobility. It was observed that the dietary protein manipulation modified the catalepsy induced by fluphenazine or delta-9-THC. The high protein diet influenced the cataleptogenic sensitivity to fluphenazine or delta-9-THC as compared to the low or medium protein fed animals.

Tail-flick: The tailflick reaction time to a heat stimulus was determined after vehicle or delta-9-THC administration. A ten second maximum latency was set to prevent tissue damage. The change in latency for each animal was computed and expressed as % MPE (% possible effect) where % MPE was determined using the following method: {(test latency-control latency)/ (10 seconds-control latency)} x 100.

The long term high protein dietary manipulation increased the mouse sensitivity to the effects of delta-nine-THC.

Stress and Anxiety Index: The computer controlled two compartment black and white box, as well as the elevated plus maze were used to determine the stress/anxiety index following different diets. The exploratory activity in the black and white chambers as well as the number of transitions were recorded in a 5 minute test session.

The feeding of the high and low protein diets reduced and increased mouse aversion in the test known to be sensitive to antianxiety drugs.

Fluphenazine, a dopamine antagonist, induced catalepsy, inhibited stereotypy, and reduced mouse spontaneous locomotor activities. A similar pattern was recorded with delta-9-THC where modified by the dietary protein manipulation.

The results taken together suggest that CNS function can be influenced by long term dietary protein alteration, and diet may modify those receptors that are sensitive to the effects of delta-9-THC. Furthermore, the central dopamine receptor function may be altered by the dietary protein manipulation. It is unlikely that the mechanism of action underlying the behavioral modification

induced by delta-9-THC or fluphenazine following the dietary manipulation are the same.

Reprints and abstracts (see appendix)

- 1. Prasad C, Ragan FA, Hilton CW: Isolation of CYCLO(HIS-PRO)-like immunoreactivity from human urine and demonstration of its immunologic, pharmacologic, and physico-chemical identity with the synthetic peptide. Biochemistry international (in press).
- 2. Prasad C and Spahn SA: One-year continuous low-dose Nicotine intake does not alter body weight of rats. Int. j. Vit., Nutr. Res. 59: 413-416, 1989
- 3. Farooqui SM, Brock JW, Hamdi A and Prasad C: Synthetic peptides predicted from the amino acid sequence of D2 dopamine receptor exhibit antibodies reactive with native dopamine receptor protein in rat brain. Prepared manuscript. (not included in appendix)
- 4. Onaivi ES, Brock JW and Prasad C: High-Protein diet modulates dopamine-and non-dopamine mediated behaviors. Prepared manuscript. (not included in appendix)
- 5. Onaivi ES, Brock JW, Hamdi A and Prasad C: High-protein diet modulates dopamine and non-dopamine mediated behaviors in rats. To be presented at the Society for Neuroscience meeting, 1990.
- 6. Brock JW, Farooqui SM and Prasad C: Dopamine type D2 receptor-specific antibodies. To be presented at the Society for Neuroscience meeting, 1990.
- 7. Chuang CZ, Ragan FA and Prasad C: Optimization of conditions for seperation of ten tryptophan metabolites by RP-HPLC. To be presented at the Society for Neuroscience meeting, 1990.
- 8. Prasad C: Cyclic dipeptides and neuronal function. To be presented at the symposium on Endocrine and Nutritional control of basic biological functions, 1990.
- 9. Onaivi ES, Talton S and Prasad C: Level of protein in diet modulates the behavioral effects of amphetamine. To be presented at the symposium on Endocrine and Nutritional control of basic biological functions, 1990.
- 10. Hilton CW, Prasad C and Reddy S: Identification of a potentially bioactive peptide, [CYCL(HIS-PRO)], in some nutritional supplements. A Clinical research abstract, 1990.
- 11. Hilton CW, Prasad C and Wilber JF: Acute alterations of CYCL(HIS-PRO) levels after oral ingestion of glucose. Neuropeptides, 15:55-59, 1990.
- 12. Ikegami H, Spahn SA and Prasad C: Effect of chronic nicotine consumption on body weight, food intake, and striatal dopaminergic

neurons in rats. Nutrition Research, 9: 635-643, 1990

- 13. Ikegami H and Prasad C: Neuropeptide-dopamine interactions. V. CYCL(HIS-PRO) regulation of striatal dopamine transporter complex. Peptides, 11: 145-148, 1990.
- 14. Chuang CZ, Ragan FA and Prasad C: Optimization of condions for the simultaneous seperation of ten tryptophan metabolites using reversed phase high performance liquid chromatography. J. Chromatography. Biomedical Applications (In press).
- IV. Fort Polk Heart Smart Project

Introduction and Background

Initiated in December, 1988, the Fort Polk Heart Smart Project is an effort aimed at evaluating and addressing cardiovascular (CV) and nutritional health status in military families. During the past two decades considerable advances have been made to improve health promotion for children and young adults with marked potential for decreasing CV risk later in life.

Cardiovascular disease is a major cause of death in the United States and in Western industrialized countries, e.g., Great Britain, West Germany, and Russia. Despite the slight decrease in prevalence of CV diseases that has occurred over the past two decades, heart disease is still the major killer in the U.S. population. Approximately one and one/half million individuals have a myocardia infarction annually, and two to three hundred thousand cases of sudden death occur each year due to coronary artery disease. The two major adult CV diseases that account for such cardiac events are coronary atherosclerosis and essential hypertension. Coronary artery disease in general is more prevalent in young white men, while primary hypertension is more prevalent in blacks.

The morbid events due to atherosclerosis and hypertension include congestive heart failure, cerebrovascular accidents, myocardial infarction, and sudden death. The concept of CV risk factor profiles generated from the Framingham Study and other adult epidemiology programs has helped considerably in identifying individuals with a high probability of being at risk for these CV disease events.

In addition, advances have been made in understanding cardiovascular risk beginning in young adulthood. The development of heart disease depends upon genetic and environmental factors and their interaction. Research over the past three decades has helped understand both the genetic and environmental impact on the development of heart disease in adults. Observations have now provided us with basic understanding of the development of cardiovascular risk beginning in early life. Also, much information is now available about dietary intake and its interrelationship to the development of CV and other diseases, such as cancer. Methods to obtain information with regard to CV risk factors, dietary

studies, and beginning health promotion have now been developed by the Specialized Center of Research - Arteriosclerosis at LSU through its work in the Bogalusa Heart Study and more recently as the National Research and Demonstration Center - Arteriosclerosis by the Heart Smart program for the Jefferson Parish School System.

Over the past two decades, significant studies have been conducted exploring the early natural history of coronary artery disease. Multidisciplinary epidemiologic studies conducted at LSU National Research and Demonstration Center through the Specialized Center of Research Arteriosclerosis and the Arteriosclerosis have provided both epidemiologic and experimental observations that clearly indicate the evolution of coronary artery disease beginning in youth. The major ongoing program is the Bogalusa Heart Study, an epidemiologic investigation of CV risk factors in a total pediatric population of approximately 5,000 The study has several advantages over previous adult programs, such as Framingham, Evans County and others. It observes (black-white) contrasts, changes over time, racial differences, and changes that occur with growth phases of infancy, childhood, adolescence, and young adulthood. These findings apply directly to Army personnel and their health maintenance in peace and under crisis situations. Extensive demographic, anthropometric, blood pressure, serum lipid and lipoprotein, nutritional, lifestyle, and behavioral data have been collected and are applicable to young These studies have served in the past to stimulate adults. observations by others and currently to call attention in clinical practice to the need for identifying CV risk factors measured at an early age as a basis for prevention of CV disease later in life. Identification of Army personnel with high CV risk has major implications for performance and for future efficiency and cost effectiveness for health-related problems.

One important finding in the Bogalusa Heart Study arises from autopsies of children and young adults who meet unexpected death in A high correlation of antecedent CV risk factors the community. with anatomic changes has been noted. This relationship helps validate and give credence to the clinical CV risk factors. studies in Bogalusa are in concert with other autopsy findings made in Army personnel; i.e., a high prevalence of atherosclerotic disease and significant coronary artery disease was noted in young In both the Korean War and later in the men in our military. <u>Vietnamese</u> <u>War</u>, significant coronary artery lesions already were present in approximately 70% of the young men autopsied after field death (1,2). This is an impressive finding that has relevance to the clinical epidemiology studies on Bogalusa children and young adults.

Another area of concern is the role of nutrition in relation to CV risk. Diet obviously plays a major role in contributing to hypertension, hyperlipidemia, and obesity. The Bogalusa Heart Study data show that children are consuming a high-fat diet with low P/S ratio which is shown to be associated with an adverse lipoprotein profile. Further high sodium, low potassium, and low calcium

intakes provide a condition that predisposes certain individuals to hypertension. Obesity with high energy intake and less energy expenditure is another common finding. Our experience suggests that these dietary patterns will continue through young adulthood and beyond unless preventive measures are instituted. The current health and fitness seen in young soldiers should not be misleading.

With this background, we proposed studies in collaboration with U.S. Army Nutritional and Health Promotion Teams and with programs that relate to the high prevalence of atherosclerotic disease occurring in presumably "healthy" and "normal" military personnel and their families.

From discussions with staff of the U.S. Army Research Institute for Environmental Medicine in Natick, Massachusetts, at the Pennington Biomedical Research Center in Baton Rouge, Louisiana, and the Louisiana State University Medical Center in New Orleans, Louisiana, specific goals and project descriptions were developed.

Goals

The overall goal of this study is to reduce CV risk in military personnel and their families.

- 1) Are CV risk factors found in Army personnel comparable to those present in young adults in the Bogalusa Heart Study and other national programs, i.e., Lipid Research Clinics, HANES, Muscatine, CARDIA?
- 2) Is there an interrelationship of environmental factors, especially dietary intake, with CV risk factors in military personnel?
- 3) Can environmental factors, especially nutrition, be altered to improve CV risk in military personnel, their families, and their children?
- 4) Can health promotion and education be effective in reducing CV risk in military personnel? (As a byproduct, can health promotion affect bad lifestyles and behaviors, that is <u>cigarette smoking</u>, <u>alcohol excess</u>, <u>drug abuse</u>?).

Sample

Due to a combination of large size and proximity to both Baton Rouge and New Orleans, Fort Polk, Louisiana was selected as the site of delivery of our health promotion efforts. Fort Polk is the home of the 5th Mechanized Division; comprising infantry, light armor and artillery, and all support activities. Basic data on the Fort Polk population are contained in Table 1 (Appendix III). The post employs approximately 15,000 active-duty personnel and oversees the health and well-being of between 10,000 and 12,000 dependents as well as nearly 25,000 military retirees (3). We estimate approximately 5,000 in-tact families with serviceman husband, non-

military wife, and at least one child living at home. It is this group which serves as our primary, though not sole focus.

Sub-studies

Three sub-studies were proposed and accepted by the U.S. Army. These will be described separately. Since each has a somewhat different set of purposes, measures and evaluations will be included in each presentation. Protocols and sample questionnaires used have already been supplied to the U.S. Army.

Project I - Baseline Assessment of Dietary Intake and Physical Activity in Military Dependents

The purpose of this project was to quantify dietary intakes and describe usual physical activity patterns in military dependents living on or near Fort Polk, Louisiana. Specifically, we surveyed a sample of young women (spouses) to quantify nutrient intake, food purchasing patterns and pantry reserves to obtain measures of food purchasing and consumption. Several food sources are available to military dependents and the frequency of use of each was to be described. In addition, we obtained a measure of usual physical activity to assess availability and use of military and non-military exercise facilities. Subjects also underwent a CV risk factor screening. A synopsis of this sub-study is found in Table 2 (Appendix III).

ELIGIBILITY:

This program studied spouses of enlisted personnel and officers stationed at Fort Polk, Louisiana. Subjects 18-40 years old who have resided at Fort Polk for at least 3 months but less than 18 months were eligible for inclusion. This sample included dependents who had time to acclimate to the post and who were likely to remain at least two years should a follow-up survey be conducted. We proposed to study 200 subjects.

PROGRESS:

Data collection for this project began with a pilot screening in August, 1989 and continued into the main study in September, 1989. Evaluations occurred in two phases for each subject. First, a set of nutritional and activity questionnaires was delivered by trained interviewers. Second, about 2-3 weeks later a CV risk factor screening for blood pressure, blood lipids, body composition, and evaluation of health-related behaviors (smoking, alcohol consumption, etc.) was delivered. In addition, socio-demographic information (race, occupation, rank, etc.) was collected. The bulk of Project 1 screenings occurred from September through November, 1990. Clean-up screenings of eligible wives continued into May, 1990. Overall 200 subjects underwent the nutritional evaluation and 184 the risk factor screening.

Data editing and keypunching are complete for this project with the exception of about 10 dietary recalls. These latter

require some additional product and recipe research. We anticipate this process to be complete shortly.

FINDINGS:

Initial results are available for a number of parameters for the Project 1 sample. A demographic profile of the families of these women is presented in Figures 1-6 (Appendix IV). In this we can see husbands' ranks, educational achievement, family sizes, and other sociological characteristics. Overall, this sample is drawn primarily from enlisted ranks, E-5 and lower, about 55%. Officers' families account for approximately 18% of the sample. E-6 through E-9 ranks account for about 27% of total. Forty-three percent of the sample wives are high school graduates; 39% have some college; and 11% are college graduates. About half of the total consists of two-children families.

Data on eating behavior is included in Figures 7 and 8 and tables 3 and 4 (Appendix III). Here we see that about 10% of these families use Woman, Infant, Child (WIC) vouchers to supplement diets. In addition, 1.5% purchase food stamps. Military families overwhelmingly use the post commissary for food purchasing, nearly 80% listing it as their first choice. Fast food restaurants are frequented by Project 1 families with most having made at least one visit within the last month.

CV risk factor data are available for analysis on about 140 military wives. Their results are presented in Table 5. This table updates data presented in the May - July, 1990 quarterly report. Once again most results are similar with white females having the highest systolic blood pressures and lowest body mass indices. Hispanic women manifest low levels of high-density lipoprotein. Overall, results are similar to those found in the young adult population.

The percentages of military wives exceeding guidelines for lipid levels is presented in Table 7. Nine percent (n=17) demonstrated high levels of low-density lipoprotein. Three percent (n=5) showed elevated levels of very-low-density lipoprotein. And, 9% (n=5) exhibited high levels of triglycerides.

Propensity for regular physical activity is presented in Table 7 (Appendix III). Overall, about a third of these women undertake some weekly volitional exercise. Black wives exhibited a preference for aerobics and aerobic dance and a disinclination toward swimming. Hispanic women chose cycling, swimming, and aerobics. White women were intermediate in most categories but showed relatively low rates of jogging.

Project II - Cardiovascular Risk Assessment of Families At Fort Polk

The purpose of this project is to assess the traditional

cardiovascular risk factors on family units at Fort Polk. The program is directed toward the soldier, his spouse and all children at or above the age of two years. Specifically, we measure serum lipids and lipoproteins, blood pressure, body size parameters, medical and family history of disease. This provides baseline measurements before entering general health promotion programs available at Fort Polk. In addition, high risk adults and children will be identified so that individual high cardiovascular risk counseling programs can be established. A synoposis of this project may be found in Table 8 (attached).

ELIGIBILITY:

All families at entry (within 3 months of arrival at Fort Polk) are eligible for examination. A family consists of the military person (male or female) spouse and at least one child at or above the age of two years. We propose to examine at least 200 families beginning September, 1990.

PROGRESS:

Data collection for Project II began in November, 1989. By the end of July, 1990, 435 individuals have received a CV risk factor screening. This comprises the members of about 140 families. Data editing and entry is underway. Initial analysis will be available shortly.

FINDINGS:

Data on rates of elevated lipid levels are available for the first 200 adults undergoing screening. These are presented in Table 9 (Appendix III). As is the case for Project 1 women, Project 2 saw 10% exceed guidelines for low-density lipoproteins, 2.5% for very-low-density lipoproteins, and 6% for triglycerides.

Project III - Health Promotion

The purpose of this intervention is to change eating and exercise behaviors and to enhance positive psychosocial factors in servicemen (women) and their dependents. The intervention is a five-step process which includes (1) awareness development, (2) information transfer, (3) skills training, (4) psychosocial enhancement and (5) maintenance. Awareness will begin with a rationale for the intervention, an assessment of health knowledge, attitudes and beliefs and psychosocial factors, e.g., efficacy, social support, and positive reinforcement. An assessment of cardiovascular risk with feedback will be made. The format of each session will include subject matter presentations, cooking demonstrations, modeling and mastery experience, role playing and skits. Hands-on practice sessions will involve, for example, menu planning, food selection, label-reading, recipe modification, and exercise activities. To maintain new behaviors, participants will be taught skills to observe and assess their own behavior and stimulus control.

The long-term goal is to develop the Family Health Promotion model so that it might be utilized on military bases when applicable. A synoposis of this project may be found in Table 10 (Appendix III).

ELIGIBILITY:

The study will consist of 60 families consisting of the serviceman(woman), spouse and at least one child 5 to 10 years of age.

PROGRESS:

The first series of 12-week health education modules began on 6 military families in June, 1990. Each family member (N=35) underwent an initial risk factor evaluation, dietary examination, and psychosocial assessment. A calendar of lesson topics and activities is presented in Table 11 (Appendix III).

Future Directions

Project 1

Data entry will be completed for all aspects of Project 1 shortly. At that time correlational and multivariate analyses relating to CV risk factor levels and dietary intake can be undertaken.

Project 2

Recruitment and screening of additional Project 2 families will continue for the foreseeable future at the rate of about 40 subjects per month. Data editing and entry of screened subjects will keep pace with preliminary analysis of the first 300-350 to start shortly.

Project 3

The first phase of Project 3 family health promotion will conclude in August, 1990. Recruitment of new families for the Fall and Winter sets of sessions is underway with an anticipated start for the Fall phase in mid-September.

Discussion

The three projects outlined above continue to give a picture of health status, health-related behaviors, and potential health promotion directions for military families. Data from Projects 1 and 2 assist in guiding our Project 3 health promotion efforts. For instance, knowledge of food purchasing patterns, fast food preference, and physical activity inclinations give us guidance in the design of health promotion efforts.

From our experience at Fort Polk, we hope to develop a health

education and promotion package which can be transferred to other military installations. Such a program must easily fit into existing health promotion efforts, must be effective in inducing health promoting behaviors, and, above all, must be attractive to military families. We believe we are developing such a package.

We hope to be able to improve the health and well-being of families, and therefore, to enhance the performance of the serviceman. The U.S. Army places a large investment in each soldier. If our efforts succeed, a small investment in health promotion will yield a large dividend in health.

References

- 1. Enos, W.F., Holmes, R.H., and Beyer, J. 1953. Coronary disease among United States soldiers killed in action in Korea: Preliminary report. JAMA 152:1090-1093.
- 2. McNamara, J.J., Molot, M.A., Stremple, J.F. and Catting, R.T. 1971. Coronary artery disease in combat casualties in Vietnam. JAMA 216:1185-1187.
- 3. U.S. Army N.D. Fort Polk Army Community Service Information Brochure.
- V. "U S Army Menu Modification Project"

INTRODUCTION AND BACKGROUND

Since 1985, nutrition initiatives have been introduced into the Armed Forces Recipe Service, the Army Master menu and the Army Food Service Program to provide soldiers with diets lower in sodium, fat, and cholesterol. The Military Nutrition Division of the United States Army Research Institute of Environmental Medicine (USARIEM) has conducted assessments of soldiers' nutrient intakes. These studies resulted in the following nutrition related recommendations: continue revision of the Armed Forces Recipe File to reduce sodium in recipes, continue to decrease the percentage of calories obtained from fat to 35% or less of total calories, and provide soldiers low cholesterol, low fat alternatives to eggs, and evaluate the acceptability and impact of using this approach to moderate soldiers' cholesterol intakes.

The Menu Modification Project incorporates modification of two weeks of Army garrison menus to meet the nutrition targets specified by the Army. The purpose of the menu modification project is to provide healthful, nutritious menu selections which moderate soldiers' sodium, fat, and cholesterol intakes.

PROGRESS

The Army Menu Modification Project began in January, 1990. Human subjects review approval was obtained from the Louisiana State University, Baton Rouge campus (LSU) Committee on the Use of Humans

and Animals as Research Subjects, the Human Use Review and Regulatory Affairs Office of the Surgeon General, U.S. Army, and the LSU Medical Center Institutional Review Board. Three part-time student workers were hired and trained to prepare menu items for taste panel testing. Recruitment, selection, orientation and training of nine volunteer taste panel participants was completed. A graduate assistant was hired to monitor preparation, service, and evaluation of approved modified menu items in the LSU athletes' dining facility. A total of 69 items were prepared and evaluated by the taste panel (Appendix V). Eighteen food formulations were prepared in quantity, served and evaluated for acceptability by the athletes in Broussard Cafeteria. These scores are attached in Appendix V.

The Extended Table of Nutrient Values (ETNV) is being used to analyze Army recipes and the corresponding modified recipes. Five separate modified recipes have been processed using the ETNV: gumbo, lasagna, corn chowder, meat loaf and Swedish meat balls. The results of these analyses are presented below in Table 1.

Table 1. Selected nutrient content of currently used <u>vs.</u> modified Army recipes

Regular Modified	% Change		
GUMBO	per 100 gm	<u>n</u>	
kCal	66	64	3
Total Protein, gm	4.2	9.2	219
Total CHO, gm	6.0	3.2	47
Total Fat, gm	2.8	1.6	43
SFA, gm	.6	. 4	33
Cholesterol, mg	10	40	400
Sodium, mg	572	183	68
LASAGNA			
kCal	177	135	24
Total Protein, gm	11.6	11.3	3
Total CHO, gm	11.4	11.6	2
Total Fat, gm	9.3	4.9	47
SFA, gm	4.4	2.3	48
Cholesterol, mg	61	30	51
Sodium, mg	323	325	1
CORN CHOWDER			
kCal	78	66	15
Total Protein, gm	3.0	2.9	3
Total CHO, gm	11.4	11.2	2
Total Fat, gm	2.8	1.5	46
SFA, gm	.7	.3	57

Cholesterol, mg Sodium, mg	2 351	1 143	50 59
MEAT LOAF			
kCal Total Protein, gm Total CHO, gm Total Fat, gm SFA, gm Cholesterol, mg Sodium, mg	244 12.6 7.3 18.0 7.2 84 468	217 13.7 11.0 13.0 4.9 56 458	11 8 34 28 32 33 2
SWEDISH MEAT BALLS			
kCal Total Protein, gm Total CHO, gm Total Fat, gm SFA, gm Cholesterol, mg Sodium, mg	185 8.2 5.4 14.3 5.0 45	172 9.2 6.3 12.1 3.8 39 168	7 11 14 15 24 13

As can be seen in Table 1, fat generally decreased by 15-47% (mean = 36%), with saturated fatty acids (SFA) decreasing by 24-57% (mean=39%). Total calories were somewhat reduced (range = 3-24%, mean = 11%. Total carbohydrate did not show a specific trend, but rather increased in some cases and decreased in others. Cholesterol generally decreased but was not higher than 56 mg/100 gm in any of the modified recipes. A specific instance of increased cholesterol was in the gumbo which was modified to contain more protein, as well as more cholesterol; the intention was that this item be a main dish item rather than a soup as 11 appeared to be for the Army. Thus, the cholesterol increased, but only a total of 40 mg/100 gm. Four of the five recipes had sodium levels of 325 mg/100 gm or lower, while the modified Army meat loaf had a sodium content of 458 gm/100 gm which was 10 mg less than the original Army recipe.

One full day's menu as served by the Army has been analyzed for nutrient content using the ETNV as well as the corresponding modified menu.

Table 2 contains the day's menu with the modification for that meal indicated.

Table 2. Regular and modified Army menu for one day

Reqular	Modified	
Regular	110411104	

BREAKFAST

Orange Juice Same

Fried Eggs No Bacon No

2% Milk Same Coffee, sugar Same

Coffee Cake Breakfast Casserole

LUNCH

French Bread Same
Margarine Same
2% Milk Same

Swedish Meatballs (Modified)

Steamed RiceSameWaldorf SaladSameVegetable CombinationSameSugar CookiesSame

DINNER

ColaSameBreadSameMargarineSameSeasoned PeasSameBeef Barley SoupSame

Roast Beef Lemon Barbequed Catfish

Dutchess Potatoes Same
Relish Plate, Croutons Same
Almond Pound Cake Same

While both the regular and modified Army menu met the Recommended Dietary Allowances (RDA) for most nutrients, some differences were noted. Kilocalories for the regular menu was 3168 which was 109% of the suggested level for kcalories in this age group. The modified menu contained 2759 kcal, 95% of the suggested RDA level. Table 3 contains nutrient information on the menus described in Table 2.

While in one day's menu striking differences were not seen, when interpreted as percentage of calories, some trends were noted. Fat was somewhat lowered from 42.5 to 39% of calories. Protein and carbohydrate, as a percentage of calories, increased which allowed for the beneficial lowering of fat in the day's diet.

Reduction of some of the eggs consumed resulted in the decrease from 814 mg to 450 mg of cholesterol. However, the dutchess potatoes dish contained a large amount of egg and was not eliminated from the modified menu. A creamed potato dish, if

included in the modification, would further decrease the cholesterol content of the day's menu.

Table 3. Content of selected nutrients in the current regular and modified Army menu

				<u>N</u>
<u>utrient</u>	Regular [as	% of kCal]	Modified [as 8	of kCall
kCal	3168		2759	
Protein, gm	122.0	[15.0]	117.8	[17.1]
Fat, gm	149.5	[42.5]	119.6	[39.0]
SFA, gm	45.6	[13.0]	36.9	[12.0]
CHO, gm	331.5	[41.9]	305.6	[44.3]
Cholesterol, mg	814		450	
Sodium, mg	4328		4444	
_				

Unfortunately, sodium content of the modified menu was almost 100 mg higher than that of the current menu. This was due in part to the inclusion of ground turkey in the modified Swedish meat balls dish. The content of sodium in ground turkey is higher than that of ground meat. Eliminating salt in the preparation of modified recipes could lower the sodium content of the recipes used in the menu modification program.

Comprehensive analyses of the current and modified Army menus described in Table 2 are included in Appendix VI.

Pennington Biomedical Research Center LOUISIANA STATE UNIVERSITY

December 8, 1989

CPT Robert J. Moore
US Army Research Institute of Environmental Medicine
ATTN: SGRD-UE-NR (CPT Moore)
Natick. MA 01760-5007

Dear Captain Moore:

Enclosed are plasma lactate results from the HURC# 372 study. I will send more details on the method at a later date for your files, but briefly the method is linear from 0-5 mmol/L (all samples over 5 mmol/L were diluted and re-run), has a mean recovery of 96.2% (range: 93.6-100.0%) for added levels of lactate from 0.89-3.27 mmol/L, and has a day to day coefficient of variation of 1.6% at 2.3 mmol/L. I have listed the results by subject number and sampling time; please let me know if you would prefer a different report format for future results.

I am planning on running the carbohydrate load study samples next week for glucose, triglyceride, la tate, beta hydroxybutyrate, free fatty acids, ammonia, and glycerol. We have just received the amino acid reagents and have begun working on this method. It may take a little time for us to get it working so I'll send the other results when I get them.

Sincerely,

Richard Tulley, Ph.D.

Clinical Research Laboratory

Page No. 1 Hurc #372 12/08/89

SUBJ	#	DATE	SAMPLE ID	LACTATE,	mmol/L
SUBJ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/30/89	1C-L-PRE 1C-L-1" 1C-L-2.5 1C-L-4" 1C-L-5.5" 1C-L-7" 1C-L-8.5 1C-L-10 1C-L-11.5 1C-L-13" 1C-L-14.5 1C-N-PRE 1C-N-1" 1C-N-5.5" 1C-N-7" 1C-N-8.5" 1C-N-10" 1C-N-13" 1C-N-13" 1C-N-13" 1C-N-14.5 1C-N-13" 1C-N-14.5 1C-H-PRE 1C-H-1 1C-H-2.5" 1C-H-8.5"	1.49 1.63 1.55 1.47 1.65 1.82 2.45 2.91 4.71 6.00 8.26 1.21 1.16 1.17 1.31 1.64 1.96 2.59 3.68 8.32 1.15 1.15 1.12 1.21 1.21 1.73 2.20	mmol/L
1 1 1 2 2		08/13/89 08/13/89 08/13/89 08/13/89 08/16/89	1C-H-8.5" 1C-H-10" 1C-H-11.5 1C-H-13" 2C-L-PRE 2C-L-2.5"	2.20 2.89 3.73 5.24 0.86 1.01	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/16/89 08/30/89	2C-L-1" 2C-L-4" 2C-L-5.5" 2C-L-7" 2C-L-8.5" 2C-L-10" 2C-L-11.5 2C-L-13" 2C-L-14.5 2C-N-PRE 2C-N-1"	0.93 1.01 1.02 1.31 1.88 2.67 4.05 6.52 8.28 1.59 1.56	
2 2 2 2 2		08/30/89 08/30/89 08/30/89 08/30/89 08/30/89	2C-N-2.5" 2C-N-4" 2C-N-5.5"	1.64 1.50 1.95 2.43	

Page No. 2 12/08/89

PENNINGTON BIOMEDICAL RESEARCH CENTER Clinical Research Laboratory Baton Rouge, Louisiana 70808-4124

Page No. 12/08/89

SUBJ #	DATE	SAMPLE ID	LACTATE, mmol/L
4	08/30/89 08/30/89	4C-N-1"	1.67 1.66
4	08/30/89	4C-N-2.5"	1.62
4	08/30/89		1.64
4	08/30/89	4C-N-5.5"	1.82
4	08/30/89 08/30/89	4C-N-7" 4C-N-8.5"	2.14 2.78
4 4	08/30/89	4C-N-10"	3.49
4	08/30/89	4C-N-11.5	
4	08/30/89		6.34
4	08/30/89		
4	08/14/89	4C-H-PRE	1.93
4	00/14/00	40-W 18	1.91
4	08/14/89	4C-H-2.5"	1.68
4	00/14/09	40-11-4	1.83
4	08/14/89	4C-H-5.5"	
4	08/14/89	4C-H-7"	2.51
4 4	08/14/89	4C-H-8.5"	3.09 4.09
4	08/14/89 08/14/89	4C-H-10" 4C-H-11.5	5.56
4	08/14/89	4C-H-13"	7.64
4	08/14/89	4C-H-14.5	10.40
7	08/17/89	7D-PRE	1.46
7	08/17/89	7D-1"	1.20
7	08/17/89	7D-2.5"	1.00
7	08/17/89		1.11
7	08/17/89	7D-5.5"	1.23
7	08/17/89	7D-7"	1.59
7	08/17/89		1.70
7 7	08/17/89		2.54
7	08/17/89	7D-11.5" 7D-13"	3.59 5.68
8	08/17/89 08/17/89	8D-PRE	1.50
8	08/17/89	8D-1"	1.48
8	08/17/89 08/17/89 08/17/89	8D-2.5"	1.60
8	08/17/89	8D-4"	1.67
8	08/17/89	8D-5.5"	1.88
8	08/17/89	8D-7"	2.33
8	08/17/89	8D-8.5"	2.94
8	08/17/89	8D-10"	3.49
8	08/17/89	8D-11.5"	3.88
8	08/17/89	8D-13"	5.22
8	08/17/89	8D-14.5"	6.80
8 8	08/17/89 08/31/89	8D-16" 8D-PRE	9.50 1.12
8		8D-PRE 8D-1"	1.12
8	08/31/89 08/31/89	8D-2.5"	1.16
8	08/31/89	8D-4"	1.17
8	08/31/89	8D-5.5"	1.28
	•		

Page No. 4 12/08/89

SUBJ	#	DATE	SAMPLE ID	LACTATE,	mmol/L
88888888888888999999999	#	08/31/89 08/31/89 08/31/89 08/31/89 08/31/89 08/31/89 08/14/89 08/14/89 08/14/89 08/14/89 08/14/89 08/14/89 08/14/89 08/14/89 08/14/89 08/17/89 08/17/89 08/17/89 08/17/89 08/17/89 08/17/89 08/17/89 08/17/89 08/17/89	8D-7" 8D-8.5" 8D-10" 8D-11.5" 8D-13" 8D-14.5" 8D-14.5" 8D-2.5" 8D-2.5" 8D-4" 8D-5.5" 8D-7" 8D-10" 8D-11.5" 8D-13" 8D-14.5" 9C-L-PRE 9C-L-1" 9C-L-2.5" 9C-L-4" 9C-L-5.5"	1.47 1.84 2.50 3.34 4.77 7.38 0.72 0.72 0.72 0.71 0.81 1.03 1.32 1.75 2.68 4.13 6.84 0.94 0.90 0.83 1.00 1.31 2.91 3.87 4.99 7.28	
9 9 9 9		08/17/89 08/17/89 08/31/89 08/31/89 08/31/89	9C-L-16" 9C-N-PRE 9C-N-1" 9C-N-2.5"	9.04 1.96 1.73 1.61	
9 9 9 9 9 9 9		08/31/89 08/31/89 08/31/89 08/31/89 08/31/89	9C-N-4" 9C-N-5.5" 9C-N-7" 9C-N-8.5" 9C-N-10" 9C-N-11.5	1.55 1.53 1.88 2.53 3.22 4.59	
999999999		08/31/89 08/31/89 08/31/89 08/13/89 08/13/89 08/13/89 08/13/89	9C-N-13" 9C-N-14.5 9C-N-16" 9C-H-PRE 9C-H-1" 9C-H-2.5" 9C-H-4" 9C-H-5.5" 9C-H-7"	6.32 8.98 12.60 1.50 1.37 1.31 1.40 1.30 1.69	
9 9 9		08/13/89 08/13/89 08/13/89	9C-H-7" 9C-H-8.5 9C-H-10"	2.27 3.09	

Page No. 5

SUBJ	#	DATE	SAMPLE ID	LACTATE,	mmol/L
9 9 9		08/13/89 08/13/89 08/13/89 08/13/89	9C-H-11.5 9C-H-13" 9C-H-14.5 9C-H-16"	4.63 6.60 9.36 12.84	

Pennington Biomedical Research Center LOUISIANA STATE UNIVERSITY

January 3, 1990

CPT Robert J. Moore
US Army Research Institute of Environmental Medicine
ATTN: SGRD-UE-NR (CPT Moore)
Natick, MA 01760-5007

Dear Captain Moore:

Enclosed are the results from the Carbohydrate/Load Bearing Study. The abbreviations are as follows:

GLOL=glycerol
NEFA=non esterified fatty acids (free fatty acids)
LACT=lactate
BHBA=beta hydroxybutyric acid
GLU=glucose
TRIG=triglyceride (this is reported in mg/dl and converted to mmol/l in the next column.
TRIG-GLOL=true triglyceride. Our TRIG method does not blank for glycerol, so subtracting glycerol will result in the "true" triglyceride value.
AMMO=plasma ammonia

All results, except for ammonia and for specimen 1-2-2, were obtained using serum samples. There was no serum sample on specimen 1-2-2 so all analyses were done using plasma. No plasma was sent for specimen 4-2-2, so an accurate ammonia could not be determined.

The ammonia on specimen 7-3-3 is real. I checked it several times. Perhaps the specimen was contaminated or was not put on ice immediately.(?) The sample was slightly hemolyzed, however, specimen 5-1-2 was more hemolyzed and didn't have too high a level.

Please let me know if you want the amino acid analyses. There is enough of each sample left over for these and other tests, if you want.

Did you get the lactate results? How do they look?

Happy new year to you and best of luck with the studies.

Sincerely,

Richard T. Tulley, Ph.D.

Richard Tulley

Clinical Research Lab Manager

PENNINGTON BIOMEDICAL RESEARCH CENTER

Clinical Research Laboratory

USARIEM Carbohydrate/Load Bearing Study

4	8	

i i		**						TRIG-	1 1
SAMPLE	GLOL	NEFA	LACT	внва	GLU	TRIG	TRIG	GLOL	AMMO
i . H	umol/l	mmol/l	mmol/l	mmol/l	mg/dl	mg/dl	mmol/l	mmol/l	umol/l
1-1-1	61	0.04	1.68	0.01	70	119	1.34	1.28	15.6
1-1-3	738	2.24	2.34	0.33	90	122	1.38	0.64	38.9
1-2-1	55	0.07	1.89	0.01	75	111	1.25	1.20	20.2
*1-2-2	417	1.70	1.46	0.21	90	121	1.37	0.95	18.7
1-2-3	671	1.45	2.37	0.25	86	109	1.23	0.56	17.2
1-3-1	88	0.12	1.55	10.0	71	93	1.05	0.96	34.4
1-3-3	694	2.03	1.90	0.51	81	99	1.12	0.42	13.9
									1
2-1-1	48	0.10	1.93	0.01	108	77	0.87	0.82	21.9
2-1-3	299	1.45	2.06	0.39	85	81	0.92	0.62	29.1
2-2-1	35	0.05	2.29	0.02	110	104	1.18	1.14	27.8
2-2-3	162	0.51	2.50	0.02	82	181	2.05	1.88	65.4
3-1-1	56	0.09	1.74	0.00	81	59	0.67	0.61	33.1
3-1-2	489	1.62	1.98	0.20	106	79	0.89	0.40	42.1
3-1-3	457	1.39	2.29	0.30	91	91	1.03	0.57	70.6
3-2-1	138	0.92	1.19	0.47	93	52	0.59	0.45	26.2
3-2-3	595	2.11	1.60	0.57	96	92	1.04	0.44	18.8
3-3-1	95	0.45	1.18	0.04	93	76	0.86	0.76	18.0
3-3-3	500	1.65	1.80	0.36	102	102	1.15	0.65	60.3
4-1-1	57	0.10	1.28	0.20	136	62	0.70	0.64	31.2
4-1-3	530	1.62	3.14	0.32	90	105	1.19	0.66	53.4
4-2-1	97	0.70	1.41	0.16	118	53	0.60	0.50	9.9
4-2-2	511	2.37	1.91	0.38	98	76	0.86	0.35	no plasma
4-2-3	508	2.36	1.89	0.37	96	77	0.87	0.36	36.8
4-3-1	56	0.31	1.38	0.03	93	54	0.61	0.55	11.3
4-3-3	435	1.86	2.19	0.33	88	75	0.85	0.41	27.4
5-1-1	108	0.20	1.51	0.02	112	68	0.77	0.66	13.0
5-1-2	546	1.30	3.22	0.19	93	71	0.80	0.26	15.8
5-1-3	616	1.80	3.00	0.38	87	80	0.90	0.29	7.8
7-1-1	49	0.05	2.14	0.01	108	117	1.32	1.27	47.8
7-1-2	373	1.08	2.08	0.07	111	119	1.34	0.97	40.2
7-1-3	567	2.30	2.29	0.29	111	110	1.24	0.68	17.4
7-2-1	77	0.15	1.58	0.02	90	123	1.39	1.31	23.2
7-2-3	573	0.85	2.46	0.12	105	115	1.30	0.73	26.3
7-3-1	40	0.04	1.86	0.01	91	136	1.54	1.50	21.6
7-3-2	411	0.97	2.20	0.04	117	158	1.79	1.37	36.5
7-3-3	645	1.45	3.27	0.11	108	145	1.64	0.99	607.2
									

	1 in 1 in 1				<u> </u>			TRIG-	
SAMPLE	GLOL	NEFA :	LACT	BHBA	GLU	TRIG	TRIG	GLOL	AMMO
	umol/l	mmol/l	mmol/l	mmol/l	mg/dl	mg/dl	mmol/I	mmol/l	umol/l
8-1-1	70	0.07	1.76	0.00	79	76	0.86	0.79	47.3
8-1-2	467	0.86	2.49	0.11	98	77	0.87	0.40	35.1
8-1-3	653	1.37	2.05	0.29	72	88	0.99	0.34	23.0
8-2-1	73	0.15	1.75	0.01	76	62	0.70	0.63	9.7
8-2-3	304	0.59	1.48	0.09	90	62	0.70	0.40	16.8
8-3-1	116	0.36	1.05	0.06	66	47	0.53	0.42	18.3
8-3-2	819	2.38	1.74	0.44	87	91	1.03	0.21	5.1
8-3-3	972	2.04	2.72	0.48	77	103	1.16	0.19	8.5
9-1-1	83	0.47	2.14	0.34	92	49	0.55	0.47	7.7
9-1-3	583	1.40	2.56	0.32	89	89	1.01	0.42	38.0
9-2-1	76	0.21	1.57	0.03	95	70	0.79	0.72	12.2
9-2-3	572	1.35	2.95	0.22	98	101	1.14	0.57	46.6
9-3-1	37	0.05	1.26	0.00	61	79	0.89	0.86	22.6
9-3-2	311	0.90	2.36	0.08	88	111	1.25	0.94	49.8
9-3-3	466	1.62	2.89	0.25	95	107	1.21	0.74	38.0

^{*} all results for specimen 1-2-2 were obtained using plasma-no serum available.

Pennington Biomedical Research Center LOUISIANA STATE UNIVERSITY

May 23, 1990

Captain Carl Friedl
Department of the Army
US Army Research Institute of Environmental Medicine
Natick Massachusetts 01780-5007

Dear Captain Friedl:

Enclosed please find the chemistry results for the West Point Study. These include cholesterol, triglyceride, HDL, LDL, iron, TIBC, UIBC, and Percent Iron Saturation. The B12/Folate and Ferritin results are still pending and will be forwarded to you as soon as we are finished with them.

I have also included a disk with a Lotus 123 file of these results for your convenience. If you have any questions please feel free to phone me.

Sincerely,

Richard Tulley, Ph.D. Clin. Res. Lab Director

PENNINGTON BIOMEDICAL RESEARCH CENTER Clinical Research Laboratory Baton Rouge, LA 70808-4124

West Point Study-Chemistries

TEST	CHOL	TRIG	HDL	LDL	IRON	TIBC	UIBC	IRON SAT	SAMPLE COMMENTS
units	mg/dl	mg/dl	mg/dl	mg/dl	ug/dl	ug/dl	ug/dl	%	
NORMALS				65-175		 	200-240	20-55	
SAMPLE#				1188		<u> </u>			
101	122	44	37	76	64	442	378	14.5	
102	186	63	49	124	59	284	225	20.8	
103	171	93	39	113	60	292	232	20.5	
104	163	56	48	104	60	367	307	16.3	
105	187	74	54	118	31	314	283	9.9	
106	138	86	38	83	71	286	215	24.8	
107	125	90	41	66	136	271	135	50.2	
108	163	87	36	110	97	313	216	31.0	
109	153	47	55	89	37	321	284		SLIGHLTLY HEMOLYZED
		46	50	64	71	306		 	SLIGHLILI HEWOLTZED
110	123	<u> </u>					235	23.2	
111	121	64	69	39	47	296	249	15.9	
112	183	75	72	96	79	327	248	24.2	
113	177	134	53	97	10	383	373	2.6	
114	125	108	32	71	120	329	209	36.5	
115	164	97	36	109	36	332	296	10.8	
116	141	109	45	74	47	292	245	16.1	
117	141	85	42	82	43	344	301	12.5	
118_	165	89	48	99	84	290	206	29.0	
119	200	116	38	139	33	411	378	8.0	
120	123	51	42	71	59	354	295	16.7	
121	167	60	57	98	39	387	348	10.1	
122	161	251	34	77	48	313	265	15.3	LIPEMIC
123	162	86	50	95	142	280	138	50.7	SLIGHTLY HEMOLYZED
124	165	67	79	73	81	344	263	23.5	
125	168	92	33	117	48	309	261	15.5	
126	153	186	34	82	48	336	288		LIPEMIC
127	121	73	36	70	65	283	218	23.0	
128	140	50	45	85	169	294	125	57.5	
129	114	54	47	56	80	328	248	24.4	
	176	62	60	104	102	282	180	36.2	
130						 		 	
131	118	82	40	62	73	305	232	23.9	
132	155	-99	46	89	34	295	237	12.5	
133	74	69	23	37	49	271	222	18.1	
134	128	55	54	63	49	290	241	16.9	
201	104	42	45	51	31	297	266	10.4	
202	159	110	47	90	108	399	291	27.1	
203	175	78	59	100	96	328	232	29.3	
204	173	51	54	109	42	329	287	12.8	
205	183	86	44	122	91	326	235	27.9	
206	151	92	34	99	46	401	355	11.5	
207	156	63	67	76	35	349	314	10.0	
208	187	59	72	103	50	363	313	13.8	HEMOLYZED
209	152	64	45	94	37	359	322	10.3	ļ

TEST	CHOL	TRIG	HDL	LDL	IRON	TIBC	UIBC	IRON SAT	SAMPLE COMMENTS
units	mg/dl	mg/dl	mg/dl	mg/dl	ug/dl	ug/dl	ug/dl	%	***************************************
NORMALS	140-200		27-67	65-175			200-240	20-55	
SAMPLE #	1								
210	172	51	76	86	62	296	234	20.9	
210R	185	122	46	115	75	298	223	25.2	
211	158	92	39	101	55	327	272	16.8	
212	142	46	52	81	135	319	184	42.3	
213	209	148	49	130	85	325	240	26.2	
214	114	57	44	59	37	356	319	10.4	
215	171	116	46	102	41	307	266	13.4	
216	211	186	40	134	110	309	199	35.6	
217	164	63	48	103	46	337	291	13.6	
218	147	88	54	75	35	301	266	11.6	
219	141	80	40	85	121	318	197	38.1	
220	198	142	53	117	86	311	225	27.7	
221	·		33		54		295	15.5	
	193	161		128		349		 	
222	122	63	50	59	32	274	242	11.7	
223	155	62	37	106	33	359	326	9.2	
224	123	86	48	58	77	322	245	23.9	
225	176	90	51	107	72	343	271	21.0	
226	202	125	56	121	105	299	194	35.1	
227	136	81	36	84	62	318	256	19.5	
228	182	56	59	112	95	329	234	28.9	
229	123	75	37	71	27	349	322	7.7	
230	136	98	37	79	94	391	297	24.0	
231	183	111	38	123	99	317	218	31.2	
232	162	67	44	105	112	326	214	34.4	
233	143	68	35	94	80	314	234	25.5	
234	206	55	93	102	42	332	290	12.7	
235	196	121	43	129	81	367	286	22.1	
301	211	115	46	142	89	356	267	25.0	
302	130	44	50	71	62	303	241	20.5	
303	176	115	45	108	100	369	269	27.1	
304	150	79	51	83	98	278	180	35.3	
305	178	45	72	97	52	320	268	16.3	
306	141	58	64	65	54	323	269	16.7	
307	134	53	53	70	27	299	272	9.0	
308	172	62	72	88	38	362	324	10.5	
309	145	52	40	95	71	348	277	20.4	
		91	44	94	45	351	306	12.8	
310	156				78	222	144	35.1	
311	99	55	41	47	 				
312	120	47	56	55	81	309	228	26.2	
313	183	109	32	129	48	309	261	15.5	OL LIENGLYSES LISSUES
314	192	99	46	126	54	336	282	16.1	SL. HEMOLYZED,LIPEMIC
315	106	50	58	38	54	361	307	15.0	
316	148	56	56	81	33	279	246	11.8	, .

TEST	CHOL	TRIG	HDL	LDL .	IRON	TIBÇ	UIBC	IRON SAT	SAMPLE COMMENTS
units	mg/dl	mg/dl	mg/dl	mg/dl	ug/dl	ug/dl	ug/dl	%	
NORMALS	140-200	35-160	27-67	<u> </u>	50-160		200-240	20-55	
SAMPLE #		<u> </u>					<u> </u>		
317	161	55	52	98	68	257	189	26.5	
318	135	129	42	67	54	352	298	15.3	
319	170	66	52	105	46	341	295	13.5	
320	160	56	53	96	35	407	372	8.6	
321	168	57	44	113	54	296	242	18.2	
322	161	94	60	82	49	314	265	15.6	
323	134	54	56	67	90	371	281	24.3	
324	244	83	46	181	153	328	175	46.6	
325	129	67	41	75	74	314	240	23.6	
326	154	97	12	93	36	285	249	12.6	
327	178	75	47	116	82	267	185	30.7	
328	174	82	64	94	68	366	298	18.6	
330	145	59	63	70	33	260	227	12.7	
332	163	112	48	93	48	337	289	14.2	
333	150	81	42	92	112	253	141	44.3	
335	142	83	40	85	36	305	269	11.8	
336	124	65	44	67	47	247	200	19.0	
. 337	165	94	44	102	26	277	251	9.4	
343	153	40	51	94	113	338	225	33.4	
346	236	136	47	162	114	326	212	35.0	
347	181	68	47	120	25	294	269	8.5	
348	140	51	47	83	89	322	233	27.6	
349	144	181	34	74	65	276	211	 	SLIGHTLY LIPEMIC
351	165	119	44	97	173	294	121	58.8	OCIGITIE! EII EIIIO
358	147	51	54	83	120	400	280	30.0	
359	147	50	53	84	45	382	337		SLIGHTLY HEMOLYZED
360	200	115	56	121	68	356	288	19.1	JEIGHTET HEMOETZED
	 			 		 	 	 	
363	127	46	56	62	65	294	229	22.1	
365	107	59	59	36	87	295	208	29.5	
366	154	61	51	91	23	516	493	4.5	
369	148	65	58	77	27	440	413	6.1	
371	. 140	46	48	83	22	286	264	7.7	
372	137	56	41	85	35	459	424	7.6	
375	187	92	63	106	98	342	244	28.7	
380	121	49	48	63	84	353	269	23.8	
381	176	71	56	106	61	289	228	21.1	
382	173	82	50	107	100	275	175	36.4	
383	134	36	58	69	66	310	244	21.3	
384	202	126	44	133	51	312	261	 	SLIGHTLY LIPEMIC
389	138	136	54	57	53	335	282	15.8	
401	140	95	44	77	19	369	350	5.1	
402	177	60	62	103	50	301	251	16.6	
403	142	58	48	82	94	375	281	25.1	

TEST	CHOL	TRIG	HDL	LOL	IRON	TIBC	UIBC	IRON SAT	SAMPLE COMMENTS
units	mg/dl	mg/dl	mg/dl	mg/dl	ug/dl	ug/dl	ug/dl	%	
NORMALS	140-200	35-160	27-67	65-175	50-160	250-400	200-240	20-55	
SAMPLE #	1.10		-						
404	134	70	38	82	59	340	281	17.4	
405	200	90	57	125	44	382	338	11.5	
406	172	87	54	101	96	327	231	29.4	
407	178	73	68	95	184	315	131	58.4	
408	161	73	45	101	37	293	256	12.6	
409	186	71	54	118	66	338	272	19.5	
411	200	78	67	117	69	354	285	19.5	HEMOLYZED
412	144	72	56	61	77	285	208	27.0	TIEMOETZED
413	191	52	75	106	53	344	291	15.4	
414	118	74	40	63	78	333	255	23.4	
415	165	67	56	96	9	390	381	2.3	
416	185	79	87	82	10	347	337	2.9	
410	170	68	62	94	23	390	367	5.9	
417	149	66	52	84	18	401	383	4.5	
418	212	71	65	133	30	317	287	9.5	
	143	55	56	76	70	354	284	19.8	
420	 	 -	l		 			 	
421	208	87	72	119	34	396	362	8.6	
422	129	52	46	73	41	305	264	13.4	
423	127	48	57	60	95	361	266	26.3	
424	168	94	40	109	43	359	316	12.0	
425	162	68	51	97	25	357	332	7.0	
426	138	75	54	69	52	350	298	14.9	
427	176	58	61	103	62	376	314	16.5	
428	149	69	74	61	20	282	262	7.1	
429	219	125	65	129	83	308	225	26.9	
430	195	169	45	116	54	299	245	18.1	
431	158	74	94	49	58	420	362	13.8	
432	191	77	69	107	28	557	529	5.0	
433	184	70	62	108	37	335	298	11.0	
435	143	68	73	56	113	328	215	34.5	
436	177	60	65	100	42	390	348	10.8	
438	. 174	82	53	105	102	322	220	31.7	
439	160	65	41	106	92	266	174	34.6	
440	193	71	63	116	32	441	409	7.3	
446	150	96	47	84	90	386	296	23.3	
450	157	61	74	71	34	317	283	10.7	
501	173	87	50	106	94	324	230	29.0	
504	184	83	85	82	29	374	345	7.8	
505	160	48	53	97	24	393	369	6.1	
506	188	58	70	106	161	340	179	47.4	
507	171	43	79	83	72	523	451	13.8	
		 	ļ———	 		 			
508	166	57	66	89	97	365	268	26.6	· · · · · · · · · · · · · · · · · · ·
509	175	76	75	85	31	407	376	7.6	<u> </u>

TEST	CHOL	TRIG	HDL	LDL	IRON	TIBC	UIBC	IRON SAT	SAMPLE COMMENTS
units	mg/dl	mg/dl	mg/dl	mg/dl	ug/dl	ug/dl	ug/dl	%	
NORMALS	140-200			65-175		 	200-240		
SAMPLE#									
510	184	53	49	124	129	321	192	40.2	
511	129	63	52	64	65	374	309	17.4	
512	132	47	61	62	44	308	264	14.3	
513	128	206	52	35	40	353	313	11.3	
514	140	44	68	63	239	358	119	66.8	
515	158	60	51	95	128	289	161	44.3	
516	113	36	48	58	57	245	188	23.3	
517	162	76	47	100	78	435	357	17.9	
518	151	41	54	89	25	416	391	6.0	
519	143	71	42	87	93	255	162	36.5	
527	154	60	50	92	107	271	164	39.5	
533	187	62	70	105	35	318	283	11.0	
533 571	153	69	54	85	61	265	204	23.0	
		·—	 	 					
601	190	106	46	123	62	291	229	21.3	
602	201	43	65	127	34	375	341	9.1	
603	221	85	61	143	97	329	232	29.5	ļ
604	185	71	53	118	37	359	322	10.3	
.605	167	56	55	101	117	263	146	44.5	
606	150	74	44	91	25	391	366	6.4	
607	152	84	52	83	62	342	280	18.1	
608	191	65	58	120	19	406	387	4.7	
609	163	79	57	90	35	359	324	9.7	
610	152	61	42	98	41	322	281	12.7	
611	148	52	50	88	71	400	329	17.8	
612	153	77	46	92	16	443	427	3.6	
613	124	39	44	72	118	264	146	44.7	HEMOLYZED
614	179	50	80	89	80	319	239	25.1	
615	153	61	54	87	21	343	322	6.1	
616	139	52	52	77	95	352	257	27.0	
617	181	58	86	83	201	349	148	57.6	
618	191	60	78	101	98	353	255	27.8	
619	172	67	91	68	60	275	215	21.8	
620	139	48	60	69	61	311	250	19.6	
621	141	35	59	75	28	337	309	8.3	
622	150	87	42	91	158	311	153	50.8	
623	178	67	54	111	101	353	252	28.6	
	138	75	66	57	29	382	353	7.6	
624	 	 	55	82	29	344	323	6.1	
625	158	105							
626	138	111	64	52	40	349	309	11.5	
627	214	82	47	151	21	428	407	4.9	
628	121	44	56	56	44	275	231	16.0	
629	127	44	61	57	19	445	426	4.3	
630	137	52	68	59	39	322	283	12.1	

TEST	CHOL	TRIG	HDL	LDL	IRON	TIBC	UIBC	IRON SAT	SAMPLE COMMENTS
units	mg/dl	mg/dl	mg/dl	mg/dl	ug/dl	ug/dl	ug/di	%	
NORMALS	140-200	35-160	27-67	65-175	50-160	250-400	200-240	20-55	
SAMPLE#									
631	149	131	40	83	36	403	367	8.9	
632	132	70	51	67	74	250	176	29.6	
633	168	96	56	93	46	394	348	11.7	
634	202	57	60	131	33	340	307	9.7	
701	167	77	55	97	80	268	188	29.9	
801	170	73	60	95	58	319	261	18.2	

July 16, 1990

Captain Carl Friedl
Department of the Army
US Army Research Institute of Environmental Medicine
Natick, MA 01780-5007

Dear Captain Friedl:

Enclosed are the completed results for the West Point Study. Also included is a Lotus 123 data disk with all of the files.

As I mentioned to you on the phone, many of the samples were not received, especially for the red cell folates. Apparently some of these samples were processed incorrectly prior to shipment to us, because we received many concentrated red cell samples rather than the appropriate dilutions with ascorbic acid. Samples for which there are no specimens for red cell folates are as follows:

101	103	104-106	108-109	111-115
117	119-123	126	128	130-131
133-201	203-204	206	209	211-212
217	223-225	227-230	233-234	302-303
305-306	308	311-312	314-317	319-320
323-325	327	330-333	335	337
346	348	351	358-360	363
365-366	368	371-372	380-381	383-384
389	402-409	414-415	417-418	421-429
431-433	436-439	501	505	507-508
510	512	514-515	519-604	607-608
610-611	613	615-622	624-625	627
631-634	702-801	(146 samp	oles)	

Some samples were received for only RBC folate and nothing else. These include the following:

334	339-340	357	362	364
367	370	373	376-378	386
443-445	447-449	635	(17 samp)	les)

No hematocrits were received for the following specimens:

108	334	339-342	347	357
362	365	367	370	373

376-378	386	414	431	443-445
447-448	619	621	635	(24 samples)

You may calculate the RBC Folate results when you obtain the missing hematocrits by simply dividing the Whole Blood Folate by the hematocrit/100 (example: if hct=43%, divide by 0.43). The Whole Blood Folate results have already been corrected for the dilution factors.

Finally, there are two other samples which I cannot account for. Sample 342 has only a ferritin result; sample 252 has only ferritin, B12/Fol, Whole Blood Folate. We have been unable to locate these samples after the analyses to verify their identities. It is possible that they were samples which were misnumbered by us in recording the results or misread from the tubes when performing the assays. In any event I apologize for these mix-ups.

My suggestions for avoiding future problems include sending the tubes in a rack arranged in numerical order along with a coded list of the specimens and the tests to be done on each. In addition, the use of a specimen ID system which would not rub off easily when wet would help us identify the samples better.

In spite of these mix-ups, complete results were obtained on 72 samples; lipids, iron/TIBC were obtained on 221 samples; serum ferritin, B12/Folate results on 222 samples; complete results on serum in 221 samples; and whole blood folates were completed on 94 samples.

Please feel free to contact me about any of these results.

Best regards,

Richard Tulley, Ph.D. Clin. Res. Lab Manager

Richard Tulley

RON SA FERRITI VIT BIZ SER FOLAT WHOLE BL HCT REC FOLATE SAMPLE COMMENTS												SLIGHLTLY HEMOLYZED														SLIGHTLY HEMOLYZED																			ZED	
SAMPLE										<u> </u>		SLIGHLT													LIPEMIC	SLIGHTL			LIPEMIC																275.4 HEMOLYZED	
RBC FOLATE					361.7					0.661			339.2						1.722	•	195.2						333.2	230.9		195.4		473.4			227.1				297.0			293.1		230.5	275.4	
нст	ъя.			33.2	42.8	44.7	41.4	46.8	45.4	49.5		41.1	4.1	47.5	45.5	33.6	44.3	38.0	42.1	47.2	49.5	41.1	38.8	39.8	47.0	45.3	40.1	44.4	42.2	38.8	42.6	42.9	44.0	39.8	41.7	39.8	45.9	37.8	46.4	45.5	43.8	44.5	41.1	38.0	47.6	41.6
WHOLE BL	FOLATE, N	103-707			154.8					98.5			149.6						8.66		9.96						133.6	102.5		75.8		203.1			94.7				137.8			130.5		87.6	131.1	
SER FOLAT	ng/ml	2.2-17.3		10.85	12.83	8.86	5.27	5.19	7.12	7.14	5.62	9.84	11.42	4.52	5.88	9.46	16.7	3.09	4.27	6.92	8.23	8.21	11.60	4.38	2.80	4.15	5.30	4.06	7.70	4.03	10.59	19.84	70.6	10.02	8.76	5.02	8.64	11.10	12.27	7.46	15.76	11.18	12.91	6.05	7.15	5.17
VIT B12	P8/ml	27-1138		536	809	411	427	389	329	287	587	865	470	393	408	386	263	587	208	322	582	451	406	304	307	520	409	223	416	406	413	710	611	369	303	344	311	547	369	429	541	333	338	382	371	503
FERRET	lar/ga	14-17		14.4	34.4	25.4	6.7	17.7	16.5	8.03	175.8	43.2	24.9	60.3	16.3	3.9	43.5	8.9	67.1	21.7	97.1	7.0	19.3	6.5	130.5	19.2	13.9	49.3	8.9	59.2	88.3	23.2	78.0	81.1	82.5	19.3	16.4	8.0	26.1	25.0	14.0	28.8	14.9	29.8	42.8	15.7
IRON SA	*	5		14.5	20.8	20.5	16.3	6.6	24.8	50.5	31.0	11.5	23.2	15.9	24.2	2.6	36.5	10.8	1.91	12.5	29.0	8.0	16.7	10.1	15.3	20.7	23.5	5.21	14.3	23.0	5.72	24.4	36.2	6.62	12.5	18.1	16.9	10.4	27.1	29.3	12.8	6.12	11.5	10.0	13.8	10.3
UBC	% lp/sn lp/sn	200-240		378	225	232	307	283	215	135	216	284	235		248	L	202	296	245	301			295		265	138				218	125	L							_	232		_	355		_	322
TIBC	lp/sm	22		7	284	292	367	314	286	211	313	321		58				332					354		313					283				305				297	388	328	329	326	401	349	363	359
RON	10/g	251-75		उ	59	60	9	31	11	136	16	37	71	47	79	10	120	36	14	43	2	33	59	39	48	142	81	48	4	65	169	8	102	73	*	49	49	31	108	96	42	91	46	35	8	37
TOT	10/di	51-3		26	124	113	ठ्	118	83	8	110	68	3	39	8	8	11	8	7.4	82	8	139	11	86	11	95	73	117	82	02	85	99	104	62	89	37	63	15	8	100	109	122	66	76	103	¥
НОГ	10/gm	70-17		37	49	39	48	*	38	14	36	55	द्र	69	72	53	32	36	45	42	48	38	42	57	¥	8	19	33	¥	36	45	. 47	09	Q †	46	23	¥	45	47	89	X	4	34	67	72	45
TRIG HDL LDL	mg/dl	3		4	63	93	98	74	8	8	8	47	4	ढ	75	돐	108	ج	8	85	68	116	51	9	152	98	29	92	186	73	જ	X	62	82	8	69	55	42	110	78	51	86	92	63	59	2
GHO!	lb/gm	4		122	186	171	163	187	138	125	163	153	123	121	183	171	125	3	141	17	165	8	123	167	191	162	165	168	153	121	140	114	176	118	155	74	128	102	159	175	173	183	151	156	187	152
TEST	spirit.	NOKMALS	SAMPLE	101	102	103	194	105	901	107	108	109	110	1111	112	113	114	115	116	117	118	119	120	121	122	123	12.1	125	126	121	128	129	130	131	132	133	134	201	202	203	204	205	206	702	208	502

TIBC UIBC RON'SA FERRITI VIT BI2' SEFFOLAT WHOLE BL RCT RECFOLATE SAMPLE COMMENTS																																											-	SL. HEMOLYZED, LIPEMIC	
RBC FOLATE			422.3				251.4	376.6	478.2	255.5		296.4	173.0	2.702	274.7	227.5		٠		222.6					216.0	330.1			222.6		202.0			216.7			254.6		314.6	7.732			313.8		
F ACT		<u> </u>	48.4		38.6	42.6	46.3	41.5	44.5	46.3	41.7	41.3	48.6	44.0	43.0	46.5	44.6	39.2	41.6	46.5	45.9	43.9	41.8	44.9	47.5	43.9	44.6	37.3	49.1		48.8	41.2	46.9	44.2	43.9	38.5	41.4	38.6	45.9	43.9	43.8	45.0	45.7	42.8	43.4
WHOLE BL	169-707		204.4				116.4	156.3	212.8	118.3		122.4	84.1	91.3	118.1	105.8				103.5					102.6	144.9			109.3	109.3	9.86			95.8			105.4		144.4	117.5			143.4		
SER FOLAT	2.2-17.3		7.50	7.63	13.02	10.39	9.78	15.58	16.11	5.11	12.90	9.10	3.80	7.49	5.88	86.6	11.73	7.83	8.00	7.81	7.26	5.81	5.23	9.78	8.47	13.06	7.16	8.18	4.38	8.96	8.46	13.31	12.05	5.48	4.54	11.82	8.23	17.15	9.33	6L'L	60.9	8.17	10.69	10.41	8.39
VIT B12	232-1138		247	459	407	356	384	405	575	332	503	89,	436	326	391	284	808	¥	220	371	1100	421	450	359	451	510	509	561	419	246	419	732	489	382	539	556	₹	88	392	\$25	382	415	378	490	483
FERRITI	22-447		9.6	56.3	23.0	38.6	6.98	6.3	25.2	19.9	11.4	17.8	19.4	24.6	26.1	12.4	51.0	35.0	31.6	77.1	44.7	16.4	8.6	1.9	32.5	10.7	101.1	11.7	15.2	18.5	14.3	39.6	46.4	27.4	75.6	21.7	19.2	10.7	46.0	13.8	100.1	20.4	33.6	14.8	9.4
RON SA	20-55		20.9	25.2	16.8	42.3	26.2	10.4	13.4	35.6	13.6	11.6	38.1	27.7	15.5	11.7	9.2	23.9	21.0	35.1	19.5	28.9	7.7	24.0	31.2	¥.4	25.5	12.7	22.1		25.0	5.02	77.1	35.3	16.3	16.7	0.6	10.5	20.4	12.8	35.1	26.2	15.5	1.91	15.0
UIBC	200-240			223	272	184	240		266	661	291	266	197	225	295	242	326	245	172				322	297			234	290	286			241					_	_	777					282	
TIBC	250-400		296	298					307	8	337	8	318	311	349	274	359	322	343	589	318	329	349	391	317	326	314	332	367			303					299	362		i	•				361
NON!	S0-168		62	75	55	135	85	37	41	110	46	35	121	86	¥	32	33	7	72	105	62	56	27	\$	8	112	8	42	81		89	62	100	98	52	¥	7.7	38	71	45	78	18	48	\$	¥
LDI.	65-175		86	115	101	81	130	59	102	<u>13</u>	103	75	85	117	128	65	106	88	107	121	84	112	71	79	123	105	z	102	129		142	71	108	83	97	9	0/	88	95	*	47	55	129	126	38
HDL.	79-12		2/2	46			49	4	46			_	\$		L	_			_	_				37	_			66	43			SS	_		72		_	_	3	_		_		46	
TRIG	35-160		15	122	દ્વ	46	148	57	116	28.	63	88	8	142	191	63	62	86	8	125	81	26	75	86	111	19	89	55	121		115	4	115	79	45	58	53	62	52	_	\$5	_		\$	જ્ઞ
CHOL TRIG HDL LDL	140-200		172	185	158	142	60 2	114	171	211	<u>1</u>	147	171	861	193	122	155	123	176	202	136	182	123	136	183	162	143	306	196		211	130	176	150	178	141	7.	172	145	156	&	120	183	192	<u>ड</u>
TEST	NORMALS	SAMPLE	210	210R	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	252	301	302	303	₹ 200	305	306	307	80 80 80 80 80 80 80 80 80 80 80 80 80 8	308	310	311	312	313	314	315

AENTS																							,								EMIC				AOLYZED											
SAMPLE COMS																															468.8 SLIGHTLY LIPEMIC				SLIGHTLY HEMOLYZED										į	
TEC. UBC RONSA FERRITI VIT BIZ SER FOLAT WHOLE BL HCT REC FOLATE SAMPLE COMMENTS						316.8			240.1	193.3				231.0		370.2			•			287.0					315.3				468.8								221.0							
HCT R	 %	-		45.4	43.1	45.2	40.5	40.0	44.6	46.4	47.8	41.2	4	43.2	39.3	43.3	33.1	41.4	43.9	-	40.2	42.4	6.4	_			42.6	47.7		43.4	45.2	48.4	_	35.0	41.9	46.1	-	43.2	49.0		33.1	_	36.2		38.2	38.8
WHOLE BL	FOLATE, N	169-707				143.2			107.1	89.7				8.68		160.3				100.2		121.7		128.1	1.99.7		134.3		101.8		211.9		106.4				0.4		108.3			139.9		140.6		
ER FOLAT	ia/s	2.2-17.3		20.58	10.42	10.29	5.66	9.50	5.50	7.19	16.5	22.05	4.82	8.78	7.5	12.43	13.09	09.9	6.11		4.39	10.14	4.78				5.32	5.57	8.92	10.39	20.02	9.30		8.39	8.10	8.46		17.6		11.30	86.8	_	9:36		10.13	10.30
VIT B12	18/日	232-1138		<u>\$</u>	8	483	267	929	217	505	969	613	35.	169	242	739	351	386	287	-	422	572	385				352	202	820	286	485	605		210	415	305		368	-	479	88		380		434	8
FERRITI	ng/m	22-447		10.3	72.0	56.9	7.9	6.3	87.8	19.9	45.7	17.0	38.7	125.1	20.2	13.8	8.9	19.5	₹. 8.		11.9	26.0	51.9			14.4	18.2	33.2	1.9	21.4	20.0	58.6		7.3	10.7	44.2		15.0		17.0	7.8		6.3		16.7	6.7
IRON SA	*	20-55		11.8	26.5	15.3	13.5	9.8	18.2	15.6	24.3	46.6	23.6	12.6	30.7	18.6	12.7	14.2	4.3		11.8	19.0	9.4				33.4	35.0	8.5	97.2	23.6	58.8		30.0	11.8	1.61		22.1		29.5	4.5		6.1		7.7	7.6
UBC	lp/5n	200-240		246	189	298	295	372	242	265	281	175	240	249	185	298	227	289	141		269	8	152				225	212	269	233	211	121		280	337	288		229		208	493		413			424
11BC	ng/di	87-95	ļ	279	727	352	<u>x</u>	407	586	314	371	328	314	285	267	366	260	337	253		305	247	TT				338	326	294	322	912	294		400	382	356		2		295	916		0117		286	459
RON				33	68	¥	46	35	ス	49	8	153	74	36	82	89	33	48	112		36	47	26				113	114	22	68	9	173		120	45	89		65		87	ដ		22		22	35
IDI.	mg/di	65-175		25	88	67	105	8	113	82	19	181	75	93	116	z	9	93	92		85	19	102				Z	162	120	83	74	1.6		83	ಸ	121		29		36	16		μ		83	85
пан	mg/df	19-12		26	22	42	52	53	4	8	98	46	41	42	47	2	63	84	42		4	4	4				15	47	47	47	34	4		72	53	95		56		65	15		58		48	
TRIG	mg/dl	35-160		8	55	129	8	98	57	ま	X	83	67	16	75	82	59	112	81		83	65	ま		-		3	136	89	51	181	119		15	જ	115		\$		89	19		65		46	\$6
CHOL	mg/di mg/di mg/di mg/di	82	Ì	87	191	135	170	091	168	191	포	77.	129	7.7	178	174	145	163	3	,	142	124	165				153	236	181	5	144	165		147	147	200		121		101	7.		148		140	137
	units	NORMALS	SAMPLE	316	317	318	319	320	321	322	323	324	325	326	327	328	330	332	333	334	335	336	337	339	3+0	342	343	346	742	348	349	351	357	358	359	360	362	363	364	365	366	367	368	370	371	372

		T			1														,																										1	
TIBC UIBC IRON SA FERRITI VIT BIZ SER FOLAT WHOLE BE HCT REC FOLATE SAMPLE COMMENTS												SLIGHTLY LIPEMIC												HEMOLYZED																						
BC FOLATE					356.8					286.5					0.612									358.4	300.0	346.4			318.3			146.5	248.1										388.9			
HCT	 R	+	7	-	43.3			43.7	4.4	42.3	36.9	43.1		37.7	39.0	37.4	36.1	34.4	34.2	36.6	38.6	36.1	36.5	38.9	38.9	32.1		30.2	32.8	32.9	36.7	36.8	39.3	36.2	37.1	37.7	41.2	36.1	38.4	31.9	41.5	38.7	38.6		37.3	35.8
WHOLE BL	FOLATE, N	10/40	1	167.2	154.5	133.8	124.6			121.2			104.1		8.801									139.4	116.7	111.2			104.4			53.9	97.5										150.1			
ER FOLAT	1g/m	2-17.3			12.10			7.56	13.67	10.31	11.48	8.47		19.81	11.91	17.45	12.52	5.22	17.17	4.55	7.31	4.78	16.5	15.58	8.50	12.33	5.24	9.06	7.89	10.08	10.63	3.77	47.8	14.97	17.19	19.42	11.61	14.77	8.88	12.71	7.61	20.68	22.73	11.32	6.65	10.90
VIT BEZ	Pg/ml	232-1138			33			361	468	84	512	252	 	352	639	528	358	317	521	240	175	380	61.2	518	280	390	356	193	325	296	432	260	692				587	343	289	915	466	589	811	296		425
FERRITI	Tan/Sa	22-44/			× ×			15.2	25.9	41.3	29.0	16.5		29.8	5.0	10.6	7.1	6.3	25.1	24.7	19.8	16.0	40.0	26.1	7.0%	7.2	32.3	2.6	6.7	3.8	5.3	6.7	15.1	8.9	14.8	. 20.2	10.1	5.5	12.1	18.5	8.3	9.61	32.5	5.8	3.7	7.3
IRON SA	8	55-52			28.7			23.8	21.1	36.4	21.3	16.3		15.8	5.1	16.6	25.1	17.4	11.5	29.4	58.4	12.6	19.5	19.5	0.72	15.4	23.4	2.3	2.9	5.9	4.5	9.5	19.8	8.6	13.4	26.3	12.0	7.0	14.9	16.5	7.1	26.9	18.1	13.8	5.0	11.0
UBC	ng/dl	200-240			244			569	228	175	244	261		282	350	152	281	281	338	231	131	256	272	285	208	167	255	381	337	367	383	287	787	362	264	266	316	332	298	314	262	225	245	362	825	298
11BC	lb/sn	250-400			342			353	289	275	310	312		335		32							338	l	285				77					396		361		357	350	1			582	420		335
RON					86			Z	19	8	8	51		53	19	જ	¥	59	4	8	125	1		1	l		1			l	l		'				l	l	52	62	8	83	2	85	28	37
9	क्ष्र/वा	65-175			10%			63	28	107	69	133		57	F	103	82	82	125	101	95	101	118	117	2	8	63	96	82	ま	ಸ	133	9/	119	73	8	108	8	69	103	19	129	116	46	107	108
HDL	mg/dl	27-67		_	63			80 7			Ĺ	7	l	¥	ľ	62					1												L	L		L	L	L	L	L	L	_	_		69	
TRIG	म्द्र/वा	35-160			65			49	11	22	36	126		136														_		<u> </u>	_	L				L	L	L	75	58	69	125	169	7.7	11	2
CHOL TRIG HDL LDL	mg/dl	45-20			187			121	176	17	표	202		138	9	17.1	142	134	8	172	178	161	186	ğ	4	161	118	165	185	170	149	212	143	208	129	121	168	162	138	176	149	219	195	158	161	184
TEST			SAMPLE	373	375	376	378	380	381	382	383	384	386	389	104	405	403	\$	405	907	407	408	409	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433

WENTS																																													
SAMPLE COM									_																																				
IRON SA FERRITI VIT BIZ SER FOLAT WHOLE BL HCT REC FOLATE SAMPLE COMMENTS			372.3				377.6			\$42.2			267.2	385.5		296.9		254.7			221.0		235.6		309.7			285.8	385.4	156.9									428.7	226.0			293.8		
HGI.	P.		38.6	32.6	36.1	36.1	34.8			40.3			39.3	33.1	46.0	35.9	30.0	40.8	29.9	35.0	35.2	43.5	37.4	34.5	35.9	37.1	36.0	38.0	39.0	34.6	37.3	9.04	37.6	40.2	34.8	42.2	34.7	34.5	32.4	35.0	36.9	2.5	38.6	43.2	41.0
WHOLE BL	169-707		143.7				9.96	123.0	163.1	218.5	150.1	152.3	105.0	127.6		106.6		103.9			77.8		88.1		111.2			108.6	150.3	54.3									138.9	79.1			113.4		
SER FOLAT	ng/mi 2.2−17.3		24.28	14.28	11.09	10.62	5.83			24.66				12.89	8.91	9.59	9.58	12.03	33.48	7.38	5.63	7.52	5.39	17.72	4.30	29.10	12.56	4.17	9.48	5.50	3.81	60.9	15.74	15.51	5.18	7.8	13.43	8.21	18.99	5.17	8.38	8.6	8.67	7.04	11.43
VIT B12	72/ml 232-1138		663	185	447	340	261			48				385	396	358	493	365	565	226	374	413	373	\$48	401	448	1 07	274	288	337	658			į	248	164	373	240	514	32	784	431	547	\$26	908
FERRITI	247		18.0	10.2	25.7	8.7	4.8			10.3				8.7	18.1	5.5	2.3	21.8	6.4	13.0			16.5		33.9	15.8	21.1	10.0	8.4	5.2	19.5	33.8	11.6	35.6	14.4	5.7	21.8	7.4	23.1	1.7	11.2	6.7	5.0		5.4
IRON SA	20-55	1	34.5	10.8	31.7	34.6	7.3			23.3				10.7	29.0	7.8	6.1	47.4	13.8	26.6	7.6	40.2	17.4	14.3	11.3	8.8	44.3	23.3	17.9	0.9	36.5	39.5	11.0	23.0	21.3	9.1	29.5	10.3	44.5	6.4	18.1	4.7	9.7	12.7	17.8
	250-400 200-240		215	348	220	174	409			296				283	230	345	369	179	451	268	376	192	309	264	313	119	161	188	357	391	162	164	283	204	229	3	232	322	146	366	280	387	324	281	329
			328		322		L			386				317	324		393	340	523	365	407	321	374	308	353	358	289	245	435	416		271				_		359	-		342	_	359		- 6
BON	5-16S		113	45	102	25	32			8				¥	¥	59	24	191	72	16	31	129	9	44	4	239	128	57	78	25	93	107	35	19	62	፠	77	37	117	25	62	19	35	4	7
HDL LDL IRON	Z7-67 65-175		56	100	105	106	116			ಪ				17	18	82	16	106	83	68	85	124	\$	62	35	63	95	58	100	89	87	92	105	85	123	127	143	118	101	16	83	120	8	86	88
HDL	19-12		73	99	53	41	63			47				74	প্ত	88	53	20	79	8	75	49	52	19	52	89	51	48	47	72	42	90	70	72	46	9	19	53	55	4	52	58	57	42	श्र
	35-160		6,8	98	82	65	11			96				61	87	83	48	58	43	57	76	53	63	47	908	4	9	36	192	41	71	9	62	69	106	43	85	11	95	7.4	ま	65	61	19	52
	140-200 35-160		143	177	174	160	193			150				157	173	쿒	160	188	171	166	175	181	129	132	128	3	158	113	162	151	143	154	187	153	130	201	221	185	167	150	152	161	163	152	148
	NORMALS	SAMPLEX	435	436	433	439	440	443	445	446	147	448	449	450	105	ğ	505	905	507	80%	60 <u>5</u>	510	511	512	513	514	515	516	517	815	519	527	533	172	109	602	603	109	509	909	209	809	609	910	1119

			r -	Г			ı —	_	_	_	_	Γ-	_				Γ-									_			Г
SAMPLE COMMENTS					HEMOLYZED						-																		
RBCFOLATE				226.3		225.6									537.0			364.3	•	244.8	274.1	195.6							
HCT	ъя	_		33.1	38.9	38.7	32.9	35.8	37.2	41.1		36.8		42.5	35.4	36.5	38.7	37.0	40.0	36.2	35.1	38.7	42.6	33.4	35.5	37.5		39.9	45.5
WHOLE BL	FOLATE, N	169-707		74.9		87.3									190.1			134.8		88.6	96.2	7.5.7					142.8		
SER FOLAT WHOLE BL HCT REC FOLATE	ng/sal			7.19	8.58	8.00	60.6	11.14	16.39	9.03	9.83	9.15	10.16	6.62	13.09	11.50	12.63	13.37	4.16	5.95	8.78	7.17	7.70	5.97	10.10	6.04		6.10	8.91
1.00	18/2E	232-1138 2.2-17.3		366	551	252	241	392	376	450	365	84	320	411	74	176	999	276	374	297	379	378	399	368	202	472		570	745
FERRIT	ng/mj	22-447		3.7	22.6	7.6	7.4	31.7	16.8	11.7	24.2	3.2	13.3	35.1	5.8	4.3	12.7	7.2	4.3	56.0	6.5	5.5	12.2	36.5	5.4	9.9		11.3	70.0
RON SA FERRITI VIT B12	%	250-400 200-240 20-55		3.6	44.7	25.1	6.1	27.0	57.6	27.8	21.8	19.6	8.3	8.08	28.6	7.6	6.1	11.5	4.9	16.0	4.3	12.1	8.9	29.6	11.7	6.7		29.9	18.2
UBC	lp/Sn	200-240		427	146	239	322	257	148	255	215	952	Š	153	252	353	323	338	407	123	426	283	367	176	348	307		188	197
11BC	8	250-400		443	264	319	343	352	349	353	275	311	337	311	353	382	¥	349	428	275	445	322	403	250	394	340		268	319
RON	্যচ/ইয়	SO-160		16	118	80	21	95	201	86	8	19	28	158	101	29	21	4	21	4	19	39	36	74	46	33		8	58
	ाप्ट/बेंग ाप्ट/बेंच	65-175 50-160		92	72	68	87	\mathcal{L}	83	101	89	69	75	16	111	S7	82	52	151	98	57	65	83	29	93	131		1.6	95
HDL	mg/dt	19-12		4	4	08	¥	52	98	28	16	8	59	42	X	8	55	3	15	99	19	89	40	51	95	09		55	8
TRIG	∏p/ā⊞			11	39	8	61	52	58	8	67	48	35	87	19	75	105	111	82	4	4	52	131	70	8	57		μ	E
CHOL TRIG HDL LDL	lp/su	140-200 35-160		153	124	179	153	139	181	161	172	621	141	150	178	138	158	138	214	121	121	137	149	132	168	202		167	170
TEST	wits -	NORMALS	SAMPLE #	612	613	614	615	919	617	819	619	620	621	622	623	624	625	979	627	829	629	0630	169	632	633	634	635	702	108

APPENDIX II

ANNUAL REPORT

AUGUST 1990

ATTACHMENT

REPRINTS AND ABSTRACTS

. .

- 1. Prasad C, Ragan FA, Hilton CW: Isolation of CYCLO(HIS-PRO)-like immunoreactivity from human urine and demonstration of its immunologic, pharmacologic, and physico-chemical identity with the synthetic peptide. Biochemistry international (in press).
- 2. Prasad C and Spahn SA: One-year continuous low-dose Nicotine intake does not alter body weight of rats. Int. j. Vit., Nutr. Res. 59: 413-416, 1989
- 3. Farooqui SM, Brock JW, Hamdi A and Prasad C: Synthetic peptides predicted from the amino acid sequence of D2 dopamine receptor exhibit antibodies reactive with native dopamine receptor protein in rat brain. Prepared manuscript. (not included in appendix)
- 4. Onaivi ES, Brock JW and Prasad C: High-Protein diet modulates dopamine-and non-dopamine mediated behaviors. Prepared manuscript. (not included in appendix)
- 5. Onaivi ES, Brock JW, Hamdi A and Prasad C: High-protein diet modulates dopamine and non-dopamine mediated behaviors in rats. To be presented at the Society for Neuroscience meeting, 1990.
- 6. Brock JW, Farooqui SM and Prasad C: Dopamine type D2 receptor-specific antibodies. To be presented at the Society for Neuroscience meeting, 1990.
- 7. Chuang CZ, Ragan FA and Prasad C: Optimization of conditions for seperation of ten tryptophan metabolites by RP-HPLC. To be presented at the Society for Neuroscience meeting, 1990.
- 8. Prasad C: Cyclic dipeptides and neuronal function. To be presented at the symposium on Endocrine and Nutritional control of basic biological functions, 1990.
- 9. Onaivi ES, Talton S and Prasad C: Level of protein in diet modulates the behavioral effects of amphetamine. To be presented at the symposium on Endocrine and Nutritional control of basic biological functions, 1990.
- 10. Hilton CW, Prasad C and Reddy S: Identification of a potentially bioactive peptide, [CYCL(HIS-PRO)], in some nutritional supplements. A Clinical research abstract, 1990.
- 11. Hilton CW, Prasad C and Wilber JF: Acute alterations of CYCL(HIS-PRO) levels after oral ingestion of glucose. Neuropeptides, 15:55-59, 1990.
- 12. Ikegami H, Spahn SA and Prasad C: Effect of chronic nicotine consumption on body weight, food intake, and striatal dopaminergic neurons in rats. Nutrition Research, 9: 635-643, 1990
- 13. Ikegami H and Prasad C: Neuropeptide-dopamine interactions. V. CYCL(HIS-PRO) regulation of striatal dopamine transporter complex. Peptides, 11: 145-148, 1990.
- 14. Chuang CZ, Ragan FA and Prasad C: Optimization of condions for the simultaneous seperation of ten tryptophan metabolites using reversed phase high performance liquid chromatography. J. Chromatography. Biomedical Applications (In press).

Fort Polk Heart Smart Project

Annual Report

August, 1990

Attachment

Tables 1-11

FORT POLK HEART STUDY

FORT POLK, LOUISIANA
5TH MECHANIZED DIVISION

15,000 Active Duty Personnel 10,000 Personnel With Depdenents 6,000 Child Dependents

FORT POLK HEART STUDY

- Project 1 Baseline Assessment of Dietary Intake and Physical Activity in Military Dependents
- Sample 200 Wives of Military Personnel With At Least 1 Child
- Goals Characterize Eating, Food Purchasing, and Physical Activity Patterns

Measures

- 1. 24-Hour Dietary Recall
- 2. Food Purchasing Questionnaire
- 3. Pantry Survey
- 4. Physical Activity Recall
- 5. Health Habits Questionnaire
- 6. CVD Risk Factor Screening

Places Where Families Usually Purchase Most of Its Groceries

Places	1st Choice	2nd Choice	3rd Choice
Commissary	79	14	4
Discount Food Mart	23	61	10
Supermarket	5	29	40
Shopette	2	26	32
Other	11	27	32

Restaurants Families Go To Most Often (n=175)

	n	(%)
Bonanza	86	(49)
McDonald's	57	(33)
Burger King	42	(24)
Pizza Hut	24	(14)
Popeye's	24	(14)

MEAN LEVELS OF CARDIOVASCULAR DISEASE RISK FACTOR LEVELS IN WIVES OF U.S. ARMY SERVICEMEN BY RACE

	Whi (n=	White (n=95)	B1a (n°	Black (n=26)	Hisp ⊓=	Hispanic (n=15)	Asian (n=6)	an 6)
Variable	١×	(+S.D.)	I×	(+S.D.)	I×	(+S.D.)	۱×	(±S.D.)
Height (cm)	163.6	(6.0)	163.6	(4.8)	158.3	(4.8)	161.2	(2.7)
Weight (kg)	68.8	(15.8)	72.1	(15.4)	8.99	(13.1)	67.4	(12.9)
* Body Mass Index	75.1	(5.8)	26.9	(5.6)	26.6	(4.8)	27.0	(4.3)
Systolic Blood Pressure (mm Hg)	106.7	(25.7)	104.6	(8.6)	105.0	(6.0)	102.6	(7.8)
Diastolic Blood Pressure (mm Hg)	69.8	(12.5)	73.3	(26.0)	68.1	(6.0)	68.7	(2.3)
Cholesterol (mg/dl)	179.4	(31.6)	175.8	(33.5)	173.5	(37.7)	185.1	(70.1)
High Density Lipoprotein (mg/dl)	50.6	(10.8)	56.4	(10.9)	46.5	(12.5)	56.4	(7.3)
-								

*Wt/Ht²

Data as of 8/90

Occurence of Elevated Lipid Values In Wives of U.S. Army Servicemen Undergoing CV Risk Factor Screening At Fort Polk, Louisiana (N=187)

m1 1		N	(%)
Elevated	Low Density Lipoprotein >160 mg/dl >130 mg/dl	17 38	(9) (20)
Elevated	Very Low Density Lipoprotein flag note)	(as indicated	by physician's
	,	5	(3)
Elevated	Triglyceride >190 mg/dl	9	(5)

PHYSICAL ACTIVITY PATTERNS OF WIVES OF U.S. ARMY SERVICEMEN BY RACE,

WEEKLY FREQUENCIES, BY ACTIVITY TYPE

	Whites (n=133)	4 🙃	Blacks (n=37)		Hispanic (n=22)	U _	Asian (n=9)	
Activity Type	Frequency	(%)	Frequency	(%)	Frequency	(%)	Frequency	(%)
Jogging	20	(15)	б	(24.3)	2	(7.22)	-1	(11.1)
Cycling	31	(23.5)	ω	(21.6)	7	(31.8)		(11.1)
Swimming	28	(50.9)	2	(5.4)	თ	(40.9)	2	(22.2)
Aerobics	33	(25.0)	16	(43.2)	7	(31.8)	1	(11.1)
Aerobic Dance	56	(19.5)	14	(37.8)	9	(27.3)	3	(33.3)
Calisthenics	23	(17.6)	80	(22.2)	က	(13.6)	1	(33.3)

FORT POLK HEART STUDY

Project 2 - Cardiovascular Risk Assessment of Families at Fort Polk

Sample - 100+ Complete Families of Fort Polk Personnel Goals - Establish Norms for CVD Risk Factors Measures

- 1. Blood Pressure
- 2. Blood Lipids
- 3. Anthropometry
- 4. Medical History Questionnaire
- 5. Health Habits Questionnaire

Occurence of Elevated Lipid Values In Members of Military Families Undergoing CV Risk Factor Screening At Fort Polk, Louisiana (N=200)

	• •	N	(%)
Elevated	Low Density Lipoprotein		
	>160 mg/dl	20	(10)
	>130 mg/dl	48	(24)
Elevated	Very Low Density Lipoprotein flag note)	(as indicated by	y physician's
		5	(2.5)
Elevated	Triglyceride		
	>190 mg/dl	12	(6)

FORT POLK HEART STUDY

Project 3 - Family Health Promotion

Sample - 60 Complete Families of Fort Polk Personnel

Goals - Develop a Heart Health Education Model For Military Families

Measures and Procedures

- 1. CVD Risk Factor Screening
- Eating, Physical Activity, and Behavior
 Modification Counseling
- 3. Health Habits Questionnaire

Sunday	Monday	Tuesday	Vednesday	Thursday	Friday	Saturday
					1	2
3	4	5:30-8:30 pm Orientation Exercise	6	7	8	9
0	£1	12 Hask of CV Risk Factor Screening By Appointment	13	14	15	16
7	18	Counseling: CV Screening Feedback Distary Assessment	20	21	22	23
4	25	26 6:30-8:00 pm Why Diet & Exercise? Smacking Exercise Refaxation	27	28 Walking Aerobics Seimming	29	30 Halking Aerobics Suinning

YOU AND YOUR FAMILY ARE ON THE WAY TO A MORE

HEALTHFUL WAY OF LIVING.. CONGRATULATIONS!

July, 1990 Ft. Polk Heart Smart Family Health Promotion

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2 Valking Aerobics Saimming	3	4	5 Walking Aerobics Solweing	6	7
8	9 Valking Aerobics Snimming	10:30-12:00 N Label Reading Intro. to Valking Program	18	12 Walking Aerobics Soluting	13	14
15	I6 Valking Aerobics Saimming	6:30-8:00 pm Label Reading/ Phys. Act. & Heart Dis.	18	19 Walking Aerobics Suiwving	20	21
22	23 Valking Aerobics Saimaing	24 10:30-12:00 N Food Purchasing Exercise/ Relaxation	25	26 Walking Aerobics Swimming	27	28
29	30	31 6:30-8:00 pm Going up in SMOKE! Enpowerment Exercise/ Relaxation			•	

YOU'RE ON YOUR WAY.

KEEP UP THE GOOD WORK!

កព្នកនុវ នេះ

Ft. Polk Heart Smart Family Health Promotion Program

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				2 Walking Aerobics Seimming	3	4
5	6 Valking Aerobics Saimaing	7 10:30-12:00 N Food Preparation/ Recipe Modification Exercise/ Relaxation	8	Q Walking Aerobics Suimming	10	11
12	Valking Aerobics Suimming	6:30-8:00 pm Recipe Hodification Exercise/ Relaxation	15	16 Walking Aerobics Swimming	17	18
19	20 Valking Aerobics Spinning	21 10:30-12:00 N Dining Out Exercise/ Relaxation	22	23 Walking Aerobics Soluting	24	25
26	27 Valking Aerobics Snimming	28 6:30-8:00 pm Dining Out Exercise/ Relaxation	29	30 Walking Aerobics Suimming	31	

HEART SMART TEAM IS REALLY GREAT!

GET THAT FAT RIGHT OFF YOUR PLATE.

Fort Polk Heart Smart Project

Annual Report

August, 1990

Attachment

Figures 1-8

THE FORT POLK HEART SMART PROJECT RANKS OF HUSBANDS

NUMBER OF CHILDREN PER FAMILY THE FORT POLK HEART SMART PROJECT

5 CHILDREN 2.5% NO CHILD 1% 4 CHILDREN 6% 3 CHILDREN 14.9% 1 CHILD 26.4%

2 CHILDREN 49.3%

THE FORT POLK HEART SMART PROJECT EDUCATIONAL STATUS OF SPOUSES

SOME COLLEGE

TRADE SCHIOOL

NUMBER OF CARS PER HOUSEHOLD THE FORT POLK HEART SMART PROJECT

1 CAR 50.2%

2 CARS 45.3%

THE FORT POLK HEART SMART PROJECT EMPLOYMENT STATUS OF SPOUSES

EMPLOYED 38.2%

WORK IN HOME 35.2%

NUMBER OF TV SETS PER HOUSEHOLD THE FORT POLK HEART SMART PROJECT

1 SET 34.3%

3 SETS 20.9%

NO SET 2% 4+ SETS 4.5%

2 SETS 38.3%

FAMILIES DEPENDENT ON WIC VOUCHERS THE FORT POLK HEART SMART PROJECT

FAMILIES DEPENDENT ON FOOD STAMPS THE FORT POLK HEART SMART PROJECT

FNTREES

ENTRE	EES		TASTE PA	NEL SCORE	2	
MENU	ITEM	APPEARANCE	FLAVOR	TEXTURE	AROMA	OVERALL
1.	Chicken Divan Casserole	7.13	7.50	7.38	6.86	7.22
2.	Italian Beef Sandwich Italian Beef Pie	8.33 7.50	8.33 8.50	8.00 7.83	7.56 7.67	8.06 7.88
3.	Seafood Risotto	7.00	7.17	6.17	6.67	6.75
4.	Pork and Rice Casserole	6.25	6.00	7.00	6.00	6.31
5.	Stuffed Green Peppers	8.13	7.50	8.00	7.86	7.87
6.	Stir Fried Pork	7.88	7.75	7.63	7.38	7.66
7.	Catfish Parmesan	7.67	7.17	6.33	6.50	6.92
8.	Turkey Creole/Mushrooms	6.63	7.50	7.00	7.00	7.01
9.	Puffy Broiled Fish	6.86	7.00	6.43	7.33	6.91
10.	Hawaiian Ham	7.13	7.63	7.63	7.13	7.38
11.	Spiced Mustard Fish	8.00	7.63	7.50	7.25	7.60
12.	Beef Porcupines	7.83	8.17	8.00	7.17	7.79
13.	Texas Chicken/Dumplings #2	6.89 7.29	7.78 8.14	6.89 7.43	7.67 7.57	7.31 7.61
14.	Scalloped Ham/Potatoes	8.14	8.71	8.00	7.71	8.14
15.	Fish Provencal	7.75	7.13	8.00	6.50	7.35
16.	Enchilada Casserole	8.25	8.13	7.88	8.00	8.07
17.	Turkey Chili	8.13	8.00	8.25	7.86	8.06
18.	Spicy Almond Chicken	7.00	7.75	8.00	7.86	7.53
19.	Turkey Meat Loaf	7.00	7.00	7.11	7.00	7.03
20.	Turkey Lasagna	8.33	7.83	7.50	8.00	7.92
21.	Chicken Tarragon	8.00	7.63	7.29	8.00	7.93
22.	Swedish MEatballs	7.50	7.50	7.75	7.75	7.63
23.	Beef Stroganoff	7.25	8.13	6.86	8.13	7.59 .
24.	Creamy Baked Fish	7.86	6.57	8.00	6.29	7.18

25.	Turkey Spaghetti	8.13	8.00	7.75	8.13	8.00
26.	Lemon BBQ Fish	7.88	7.50	7.63	7.25	7.57
27.	Chicken Valencia #2	6.88 7.33	7.25 7.17	7.00 7.00	6.88 6.50	7.00 7.00
28.	Chicken Pot Pie #2	7.13 7.50	5.88 7.25	6.63 6.88	5.75 6.25	6.35 6.97
29.	Marinated Broiled Fish #2	7.57 7.50	6.00 7.25	5.29 6.88	6.29 6.25	6.29 6.97
30.	Onion Topped Fish	7.63	5.00	6.13	6.38	6.29
31.	Burrito Pie	7.13	7.00	6.75	6.63	6.88
32.	Hot and Honeyed Chicken	8.33	8.00	8.00	7.67	8.00
33.	Tartar Sauced Fish	7.43	7.71	7.71	6.86	7.43
34.	Glazed Ham/Raisin Balls	7.29	7.29	7.57	7.43	7.40
35.	Crab.Au Gratin	8.14	7.29	7.86	7.14	7.61
36.	Braised Fish	7.50	8.00	7.50	7.50	7.63
37.	Yogurt Sauced Chicken	7.00	8.00	7.50	7.33	7.46

BREAKFAST ENTREES

			TASTE PA	NEL SCORE	S	
MENU	ITEM	APPEARANCE	FLAVOR	TEXTURE	AROMA	OVERALL
1.	Handwarmer Hash	7.63	7.88	7.50	7.25	7.57
2.	Tortilla Rollups	6.33	7.50	7.17	6.17	7.57
3.	Potato Fritatta	7.57	7.57	7.43	7.71	7.57
4.	Breakfast Tostados	8.56	8.11	8.11	7.44	8.16
5.	Eggs Benedict	7.57	7.43	7.14	7.14	7.32
6.	Mexican Scrambled Eggs	8.00	7.71	7.57	7.00	7.57
7.	Cheesy Egg Sandwich	7.11	7.78	7.56	7.56	7.50
8.	Grits and Ham Pie	8.00	8.11	7.33	7.44	7.22
9.	Apple Egg Casserole	7.50	5.67	7.00	6.33	6.63
10.	Omelet Sandwich	8.29	7.71	7.57	7.86	7.86
11.	Ham and Eggs a la Swiss	7.43	8.33	7.86	7.71	7.83
12.	Slender French Toast	7.86	7.43	7.43	7.14	7.4/
13.	Potato Scramble	7.67	7.17	7.50	6.50	7.21
14.	Breakfast Pita Pockets	7.57	8.00	8.00	6.86	7.61
15.	Chilies Rellenos Casserole #2	7.50 8.17	8.17 7.17	7.67 7.50	6.80 7.00	7.54 7.46
16.	Breakfast Casserole	8.00	8.17	8.50	8.17	8.21
17.	Bedeviled Eggs	6.29	6.71	7.57	6.71	6.82
18.	Angelled Eggs	6.29	7.43	7.29	6.17	6.80

OTHER ITEMS

			TASTE PA	NEL SCORE	S	
<u>MENU</u>	ITEM	APPEARANCE	FLAVOR	TEXTURE	AROMA	OVERALL
1.	Stuffed Potato	7.14	8.14	7.71	7.43	7.61
2.	Corn Chowder	7.75	6.88	8.00	8.00	7.66
3.	Southern Caviar (Black Eyed Pea Salad)	7.71	7.57	8.00	7.00	7.57
4.	Light Potato Salad	7.57	8.14	7.29	6.57	7.39
5.	Marinated Carrots	8.20	7.00	7.00	5.80	7.00
6.	Turkey Waldorf Salad	7.43	7.29	7.86	6.71	7.32
7.	Madras Salad	8.00	7.17	7.83	6.67	7.42
8.	Oriental Rice	6.00	6.00	7.00	6.50	6.38
9.	Fruit Filled Meringues	7.50	6.83	6.00	6.50	6.70
10.	Light Seafood Gumbo	8.14	8.43	8.14	7.71	8.11
11.	Chicken Spinach Salad	8.00	8.17	8.33	7.00	7.88
12.	Beef/Spinach Pita Pockets	8.00	8.14	8.00	7.71	7.96
13.	Italian Vegetable Bake #2	8.43 8.17	7.00 8.00	7.57 2.00	7.71 7.50	7.68 7.92
14.	Sweet and Sour Seashells	6.83	6.33	7.33	6.33	6.71

STUDENT ATHLETE RATINGS

MENU	ITEM	NO.	SCORE
1.	Chicken Divan Casserole	20	5.95
2.	Spiced Mustard Fish	13	7.15
3.	Fish Provencal	8	6.75
4.	Enchilada Casserole	9	5.73
5.	Turkey Chili	27	7.50
6.	Spicy Almond Chicken	37	5.70
7.	Chicken Tarragon	22	7.00
8.	Beef Stroganoff	7	7.00
9.	Light Potato Salad	8	6.13
10.	Hot and Honeyed Chicken	13	7.92
11.	Italian Meat Sandwich	34	7.41
12.	Meat Loaf	26	8.03
13.	Lemon BBQ Catfish	28	5.90
14.	Hawaiian Ham	3	5.00
15.	Stuffed Potato	32	7.06
16.	Texas Chicken and Dumplings	16	6.31
17.	Tartar Sauced Fish	7	7.14
18.	Yogurt Sauced Chicken	20	6.75

⋖

- Menu Not Modified

*Menu Modification Project

_
101
OF
(PROPERTY
ANALYSIS
HECALL
INV DIETARY
ETA

08/03/90

	,	0000000000000 000000000000 PP P P P P P
	NUTR:KCAL	22
	%RDA N	26.28 27.24 27.36 27.36 27.37 27.37 27.37 28.36 28.36 29.20 20
	RDA	000.000 000.0000 000.000 000.000 000.000 000.000 000.000 000.000 000.0000 000.000 000.000 000.000 000.000 000.000 000.000 000.0000 000.000 000.000 000.000 000.000 000.000 000.000 000.0000 000.000 000.000 000.000 000.000 000.000 000.000 000.00000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.0000 000.00000 000.0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000
ALS	INTAKE	331.5 1339.45 1000.88 1000.
ALL FOODS DURING ALL MEALS	NUTRIENT	TOTAL CHO TOTAL SUGARS TOTAL STARCH KNOWN CHO NOT LISTED UNKNOWN CHO FIBER FRUCTOSE GLUCOSE I ACTOSE SUCROSE NATURAL SUCROSE N
CONSUMPTION OF	NUTR:KCAL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DAILY	%RDA	2 10.30
AVERAGE	RDA	58.0000
CASE 'NM011'	INTAKE	33 33 34 34 34 34 34 34 34 34 34 34 34 3
* STUDY 'MM01'	NUTRIENT	KILDCALORIES MOISTURE CHOLESTEROL ALCOHOL CAFFEINE TOTAL PROTEIN ANIMAL PROTEIN UNKNOWN PROTEIN WEGGTABLE PROTEIN UNKNOWN PROTEIN UNKNOWN PROTEIN LYSINE CYSTINE FOLINE ASPARTIC ACID CLYZNIE ANIMAL FAT FISH FAT FISH FAT FISH FAT VEGETABLE FAT ONKNOWN FAT SFA UNKNOWN FAT SFA UNKNOWN FAT SFA UNKNOWN NOT LISTED USFA

AA m

STARCH TO TOTAL SUCROSE RATIO	SFA RATIO	OTTO OTTO OTTO
STARCH TO TO	PUFA TO SFA	CF 3111 C 14 C

1.79370 0.60014 0.71415 0.91557

CALCIUM TO PHOSPHORUS NIACIN EQUIVALENT

VITAMIN B12, RETINOL, BETA CAROTENE, TOTAL FOLACIN, BIOTIN, VITAMIN K, COPPER, COBALT, MOLYBDENUM, SELENIUM, CHROMIUM, FLUORINE, AND IODINE ARE EXPRESSED IN I.U.'S AND RETINOL EQUIVALENT IS EXPRESSED IN R.E.'S. ALL OTHER INTAKES ARE EXPRESSED IN GRAMS.

NUTRIENT TO CALORIE RATIO IS EXPRESSED AS A PERCENTAGE OF CALORIES FROM THE REFERENCED SOURCE EXCEPT WHERE INDICATED BY THE FOLLOWING CODES:

A - GRAMS PER 1000 KILOCALORIES

A - GRAMS PER 1000 KILOCALORIES

C - MILLIGRAMS PER 1000 KILOCALORIES

D - MICROGRAMS PER 1000 KILOCALORIES

ADA GIVEN FOR MALE, 19 THROUGH 24 YEARS OLD.

	NUTR: KCAL	20000000000000000000000000000000000000
	%RDA	550.72 368.73 3388.70 5612.40 5612.40 387.223 387.223 387.223 115.15 6 . 24 137.95 83.18 68.08 68.08
AVERAGE DAILY CONSUMPTION OF ALL FOODS DURING ALL MEALS	RDA	1000.0000 400.0000 0.0100 0
	INTAKE	292.7.56 27.06 27.
	NUTRIENT	TOTAL CHO TOTAL SUGARS TOTAL STARCH KNOWN CHO NOT LISTEC UNKNOWN CHO NOT LISTEC UNKNOWN CHO FIBER FRUCTOSE GLUCOSE LACTOSE GLUCOSE LACTOSE SUCROSE NATURAL SUCROSE TOTAL DIETARY FIBER 1 NSCL SUBSTANCES VITAMIN B 12 ALPHA TOCOPHEROL THIAMINE NIACIN, PREFORMED VITAMIN B 12 ASCORBIC ACID PANTOTHENIC ACID TOTAL FOLACIN NIACIN, PREFORMED VITAMIN K ASH CALCIUM PHOSPHORUS 1 NO SODIUM POTASSIUM MAGGARE COPPER COPPER COPPER COPPER CORPLIN SELENIUM FLUORINE 1 DOINE
		0.000000000000000000000000000000000000
		203.10
	RDA	58.0000
CASE 'MM011'	INTAKE	12759 19428 11759 11779
STUDY 'MMO1'	NUTRIENT	MCISTURE CHOLESTEROL CHOLESTEROL CACETONIC CAFELINE TOTAL PROTEIN VEGTABLE PROTEIN VEGTABLE PROTEIN NIXOWN PROTEIN UNKNOWN PROTEIN LYSINE METHONINE CYSTINE PHENYLALANINE ISOLEUCINE TYROSINE TY

*Menu Modification Project - Modified Menu

STARCH TO TOTAL SUCROSE RATIO PUFA TO SFA RATIO CALCIUM TO PHOSPHORUS NIACIN EQUIVALENT

2.12108 0.68757 0.83274 0.64049

VITAMIN BIZ, RETINOL, BETA CAROTENE, TOTAL FOLACIN, BIOTIN, VITAMIN K, COPPER, COEALT, MOLYBDENUM, SELENIUM, CHROMIUM, FLUORINE, AND IODINE ARE EXPRESSED IN I.U.'S AND RETINOL EQUIVALENT IS EXPRESSES IN I.U.'S AND RETINOL EQUIVALENT IS EXPRESSES IN R.E.'S. ALL OTHER INTAKES ARE EXPRESSED IN GRAMS.

NUTRIENT TO CALORIE RATIO IS EXPRESSED AS A PERCENTAGE OF CALORIES FROM THE REFERENCED SOURCE EXCEPT WHERE INDICATED BY CODES:

A - GRAMS PER 1000 KILOCALORIES
B - INTERNATIONAL UNITS PER 1000 KILOCALORIES
C - MILLIGRAMS PER 1000 KILOCALORIES
D - MICROGRAMS PER 1000 KILOCALORIES

THE

RDA GIVEN FOR MALE, 19 THROUGH 24 YEARS OLD.

Menu - Modified *Menu_Modification_Project