Introdução à Engenharia

Vinicius Mendonça Martins

vinicius mendonca@gec.inatel.br

Inatel

Sinais Digitais e Analógicos

Sinal Analógico

Sinal Digital

Sinal Discretizado no Tempo

Ao amostrar um sinal (ler seu valor), fazemos isso em um dado intervalo de tempo. Desta forma, estamos discretizando este sinal do tempo.

Sinal Analógico Discretizado

Variação da frequência de amostragem na modelagem de um sinal dente de serra.

Com o aumento da frequência do amostragens, o sinal modelado passa cada vez mais a se parecer com com o sinal original, suavizando os "degraus" existentes.

Sinal Discretizado em Amplitude

Entradas Analógicas no Arduino

- Pinos: de A0 a A5
- Resolução do ADC: 10 bits
- Range de tensão: 0 a 5V
- Range de valores: 0 a 1023
- Resolução de 4,88mV
 5V ÷ 2¹⁰ = 4,88mV
 5V ÷ 1024 = 4,88mV

PWM - Pulse Width Modulation

- Técnica para obter resultados analógicos por meios digitais.
- O Duty Cycle é a razão do tempo em que o sinal permanece na tensão máxima (5V no Arduino) sobre o tempo total de oscilação.

PWM no Arduino

PWM no Arduino

- Pinos (digitais): 3, 5, 6, 9, 10 e 11
- Resolução do PWM: 8 bits
- Range (tensão): 0 a 5V
- Range (valores): 0 a 255]
- Resolução de 19,53mV
 5V ÷ 28 = 19,53mV
 5V ÷ 256 = 19,53mV

Serial Monitor

Interface gráfica que facilita a comunicação entre o Arduino e um computador

Funções Importantes

- Serial.begin(9600);
 /*Inicia porta serial e define a velocidade de transmissão (9600bps) */
- Serial.println(x);
 /* imprime o valor de x na porta serial */
- char c = Serial.read();/* c recebe caracter da porta serial */

Funções Importantes

- X = analogRead(A0);// x recebe o valor do pino (de 0 a 1023)
- analogWrite(6,127);
 // aplica PWM no pino 6 (Duty Cycle = 127/255 = 50%)
 // se Duty Cycle = 50%, tensão = 50% de 5V = 2.5V
- novo_valor = map(valor,0,1023,0,200);
 // escala de "valor" = 0 a 1023
 // escala de "novo_valor" = 0 a 200

Material de Apoio

Livros:

https://goo.gl/KLe7p6

Sites:

www.filipeflop.com/blog www.arduinoecia.com.br www.instructables.com, buscar por "arduino"

Canais de YouTube:

All Electronics: https://goo.gl/KQfjsX

WR Kits: https://goo.gl/6v1NNe (Mais de 130 exemplos)

Exercício (parte 1)

Elabore um programa que, de acordo com o valor de tensão lido em um potenciômetro, envie valores específicos de tensão para um LED. Isso deve ser feito de acordo com a tabela a seguir:

Intervalo de V de entrada (potenciômetro)	Valor de V de saída (LED)
0V a 1V (inclusive)	0V
1V a 2V (inclusive)	1 V
2V a 3V (inclusive)	2V
3V a 4V (inclusive)	3V
4V A 4.5V (inclusive)	4V

Exercício (parte 2)

Caso a entrada seja superior a 4.5V, o led deverá ser apagado, um buzzer acionado e o sistema deverá travar. O buzzer só será desligado caso o Arduino receba o caracter '0' pela Serial.

Os valores da tensão de entrada e da tensão de saída devem ser constantemente mostrados no Serial Monitor enquanto o sistema estiver funcionando (não estiver travado).

Extra:

- Mostrar também o valor de Duty Cycle (em %);
- Acionar o buzzer como uma sirene.

Dicas

Cálculo do valor correspondente às tensões especificadas: Lembre-se que a entrada analógica possui uma resolução de 10 bits (valores de 0 ~ 1023) e a saída por PWM possui uma resolução de 8 bits (valores de 0 ~ 255);

Travamento do sistema: utilize um "while" para monitorar o valor lido da porta serial;

Dúvidas? Me mande um e-mail e/ou me procure no horário de atendimento.

Entrega de Exercício

- Entrega por e-mail:
 - Destinatário: viniciusmendonca@gec.inatel.br
 - Assunto: [C201 L#] Entrega 02
 - Subistitua # pelo número da sua turma.
 - Corpo: Deve conter Nome e Matrícula da dupla.
- Data de entrega:
 - A entrega deve ser feita até 25/03/2019, às 23:59.