Mediciones Directas:

1) Dadas las siguientes magnitudes con sus errores, escribirlas con el correcto número de cifras significativas. Indicar cuál resulta estar medida con mayor precisión.

$(1,825 \pm 0,126) \text{ mm}$	(4.2 ± 0.012) L	$(0,165 \pm 0,1) \text{ Kg}$	$(2,1\cdot 10^{-2}\pm 0,1\cdot 10^{-3}) \text{ m}$		
$(33,3 \pm 1)$ g	$(3121,1 \pm 102)$ cm	$(5800 \pm 132) \text{ ml}$	$(0.4 \cdot 10^4 \pm 3.1 \cdot 10^2) \text{ mg}$		

- 2) Se quiere realizar un análisis estadístico en base a una serie de 100 datos y que se distribuyen siguiendo una función Gaussiana. Se conoce que la media de estos datos es $\bar{x}=108$ nm y su desviación estándar es s=12 nm.
 - a) ¿Qué porcentajes de los datos se estima que habrá en el rango [96; 120] nm?
 - b) ¿Qué porcentajes de los datos se estima que habrá en el rango [84; 132] nm?
 - c) Suponiendo que el mínimo valor alcanzado es de 70 nm y que el máximo valor alcanzado es de 148 nm ¿Cuál es el número de barras que tendrá un histograma representativo de estos datos si se utiliza el Criterio de Scott?
 - d) La Regla de Sturges es otro método para graficar histogramas. Esta regla indica el número de barras (k) que debe tener un histograma dada una cierta cantidad de datos (N):

$$k = 1 + 3{,}322\log_{10}(N)$$

Indicar qué factor de clase se consigue con este método.

- e) Supongamos que los 100 datos recolectados fueron medidos con un instrumento de medición cuyo error es de 1 nm. Hallar el número de mediciones para el cual el error estadístico coincide con el error instrumental.
- 3) Se quiere medir el diámetro de una moneda. Para ello, se recurre a la estadística utilizando distintos instrumentos de medición:
 - a) Se utiliza una **regla** (cuyo error instrumental es de 1 mm). Los valores obtenidos se muestran en la siguiente tabla (en mm):

13	13	13	12	12	13	13	13	13	13

13	13	13	12	13	13	13	13	13	12

- i. Calcular el diámetro de la moneda.
- ii. Si no se cambia el instrumento de medición ¿Es posible reducir el error calculado?
- b) Se utiliza un **calibre de 50 divisiones** (cuyo error instrumental es de 0,02 mm). Los valores obtenidos se muestran en la siguiente tabla (en mm):

- i. Calcular el diámetro de la moneda
- ii. Si no se cambia el instrumento de medición ¿Es posible reducir el error calculado?
- 4) Se quiere estudiar la oscilación de una onda mecánica mediante el uso de un conversor analógico-digital con una placa de adquisición de 8 bits.
 - a) Si la onda mecánica presenta un período de $(5,0\pm0,1)$ ms, calcular la frecuencia mínima de adquisición que debe seleccionarse para evitar fenómenos de *aliasing* ¿Qué criterio utiliza para esto?
 - b) ¿Qué frecuencia necesitaría utilizar si se quiere que entre dos mediciones consecutivas haya un tiempo de 4×10^{-4} s?
 - c) El rango del sensor utilizado es de ± 10 V. Calcular la sensibilidad del mismo.