

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (ДГТУ)

Факультет «Информатика и вычислительная техника» Кафедра «Кибербезопасность информационных систем»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА НА ТЕМУ:

«Программное средство обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети»

Научный руководитель Доцент каф. КБИС, к.т.н. Болдырихин Н.В. Выполнил студент группы ВКБ62 Андрющенко А.А. Объектом исследования является оптоволоконная сеть.

Предметом исследования является процесс обнаружения прослушивающего устройства в оптоволоконной сети при помощи рефлектограмм.

Целью выпускной квалификационной работы является разработка программного средства обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети.

Для достижения поставленной цели необходимо решить следующие задачи:

- провести анализ существующих программно-аппаратных решений обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети;
- разработать алгоритмическое обеспечение программного средства обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети;
- о провести программную реализацию средства обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети.

Актуальность

МЕТОДЫ ПОДСОЕДИНЕНИЯ К ВОЛОКНУ

- 1)Сгибание волокна:
 - а) Микросгиб;
 - b) Макросгиб;
- 2)Оптическое расщепление;
- 3) Использование неоднородных волн;
- 4) V-образный вырез;
- 5) Рассеяние.

Макросгиб

Защита от подключений

- 1)Оптические рефлектометры;
- 2)Электрические проводники;
- 3) Мониторинг мощности мод;
- 4) Измерение оптически значимой мощности;
- 5) Методы с использованием пилотного тона;
- 6) Сильно гнущееся волокно;
- 7) Шифрование.

EXFO FTB - 200

Рефлектограмма

Рефлектограмма —

исчерпывающая информация о соединителях, сращиваниях и разрывах по всей длине оптической линии.

Фактически **это** графическое изображение результатов измерения оптических потерь в линии.

Классификация событий

Значения затухания, дБ	Возможные причины
от ~ -0.1 до ~ -0.5	Фантомное усиление или погрешность прибора
от ~ -0.8 и далее	установлен усилитель сигнала или возможно фантомное усиление из-за различий во врезанном кабеле
от ~0.01 до ~0.1	незначительное затухание
от ~0.1 до ~1.5	Затухание, причиной может быть незначительный изгиб кабеля или сварка плохого качества
от ~1.5 до ~2	Значительное затухание, причина в значительном загибе кабеля или плохой сварке соединений
от ~2 до ~6	Критическое затухание, причина может быть в плохой сварке или критическим изгибом. Возможна установка прослушивающего устройства

Алгоритм работы с программным средством Алгоритм работы при монтаже оптоволоконной линии

Алгоритм работы с программным средством

Алгоритм при повторных проверках оптоволоконных линий

Основной функционал программы

- 1) Считывание данных из файла формата «SOR»;
- 2)Построение графика рефлектограммы;
- 3)Вывод событий затухания;
- 4)Сравнение событий двух рефлектограмм.

Интерфейс программного средства

Вывод данных о рефлектограмме

Параметр	Значение
filename	C:\Users\miggi\Desktop\tagan.SOR
General params:	
cable ID	
fiber ID	Fiber0053
fiber type	G.652 (standard SMF)
wavelength	1310
location A	
location B	
cable code	
build condition	BC (as-built)
operator	
comments	
Supplier params:	
supplier name	
OTDR name	
OTDR serial number	
module name	FTB-7200D-023B-EI
module serial number	401473
software version	1.4.38.138
other	

Параметр	Значение
Fixed params:	
timestamp	946674309
datetime	Sat Jan 1 00:05:09 2000
unit	(m) meter
wavelenght	1320,1
acquisistion offset	0
acquisistion offset distance	0
number of pulse width entries	1
pulse width	275
sample spacing	0,00625
dpnt count	15670
index of refraction	1,4677
backscattering coefficient	-79,4
number of averaging	43242
averaging time	3
range	19,5825
acquisition range distance	0
front panel offset	0
noise floor level	44351

Интерфейс программного средства

Вывод информации о событиях

#	unajasted distance	distance (km)	slope (dB/km)	splice loss (dB)
1	0	0,000	0	0
2	15000	0,306	0,25	-0,659
3	131125	2,678	0,321	1,633
4	200813	4,102	0.309	-1,111
5	266250	5,438	0,369	0.093
6	330813	6,757	0,346	0.07
7	347188	7,092	0,355	0,032
8	425750	8,696	0.344	0,078
9	436750	8,921	0,327	1.41
10	440188	8,991	0.25	-0,888
11	444625	9,082	0,304	-0,14
12	538875	11,007	0,375	0,338
13	542688	11,085	0,328	-0,107
14	561750	11,474	0,25	0,046
15	655938	13,398	0,35	0,049
16	683063	13,952	0.366	-0,075
17	693000	14,155	0,405	2,739

Интерфейс программного средства

Вывод данных о сравнении

ıA 🟭	₩ Analyze tagan.SOR & tagan_zoa_1_1310.SOR						
	#	distance (km)	splice loss 1 (dB)	splice loss 2 (dB)	delta (dB)	comment	
•						замечаний нет	

Вывод данных без различий в событиях

	#	distance (km)	splice loss 1 (dB)	splice loss 2 (dB)	delta (dB)	comment
Þ	1	11,007	0	0,338	0,338	Затухание, прич
	2	14,155	0	2,739	2,739	Критическое за
	3	14,273	0	-1,158	-1,158	установлен уси

Вывод данных с обнаруженными несовпадениями

Заключение

- ✓ проведен анализ существующих программно-аппаратных решений обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети;
- ✓ разработано алгоритмическое обеспечение программного средства обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети;
- ✓ проведена программная реализация средства обнаружения устройств прослушивания сетевого трафика в оптоволоконной сети.

СПАСИБО ЗА ВНИМАНИЕ