

Home

♀ Competitions

Datasets

& Models

<> Code

Discussions

🛇 Learn

More

Q Search

Sign In

Register

FINE-GRAINED VISUAL CATEGORIZATION · COMMUNITY PREDICTION COMPETITION · 22 DAYS AGO

Late Submission

FungiCLEF25 @ CVPR-FGVC & LifeCLEF

Few shot classification with rare fungi species.

Overview Data Code Models Discussion Leaderboard Rules

Leaderboard

♂ Refresh

Q Search leaderboard

Public Private

The private leaderboard is calculated with approximately 77% of the test data. This competition has completed. This leaderboard reflects the final standings.

#	Δ	Team	Members	Score	Entries	Last	Solution
1	_	Jack Etheredge	•	0.78913	39	22d	
2	<u>*</u> 1	hard_work	9 9	0.78137	95	22d	
3	^ 7	aixiaodeyanjing	9	0.76584	3	22d	
4	- 3	hahahahal	9	0.76196	5	22d	
5	^ 1	skhhhh	9	0.75291	39	22d	
6	- 5	hahahalll	4	0.75161	5	22d	
7	^ 2	aurora_aur_	9	0.74385	5	22d	
8	- 4	zhangchao111	9	0.73868	15	22d	
9	- 7	Hasan Oetken	999	0.73868	31	22d	
10	▼ 5	team	3	0.73350	32	22d	
11	+ 3	pppaaal	9	0.69469	76	22d	
12	- 6	first_fir	4	0.66235	38	22d	
13	+ 1	Carson Cheng	9	0.64941	38	22d	
14	^ 3	Bodhisatta Maiti	9	0.61707	66	22d	
15	~ 2	giligili_ai	9	0.61190	34	22d	
16	. 6	Character CLID Destation	26)	0.00542		2	

Q

Home

 $oldsymbol{\Phi}$ Competitions

Datasets

& Models

<> Code

Discussions

🛇 Learn

✓ More

0.60	025 25	22d
0.58	861 42	2mo
0.58	732 10	22d
0.57	956 41	1mo
0.57	438 64	22d
0.56	662 8	23d
0.56	274 5	22d
0.55	627 35	23d
0.55	198 38	23d
0.53	128 4	24d
0.52	781 81	24d
0.52	134 14	2mo
0.49	935 5	2mo
0.49	417 13	23d
0.49	288 14	2mo
0.49		2mo 22d
	506 5	
0.47	506 5 959 35	22d
0.47	506 5 959 35 407 31	22d 24d
0.47	35 35 407 31 019 7	22d 24d 22d
0.47 0.46 0.45	35 35 407 31 019 7	22d 24d 22d 2mo
0.470 0.460 0.450 0.4440	506 5 959 35 407 31 019 7 390 14	22d 24d 22d 2mo 1mo
0.47 0.46 0.45 0.45 0.44 0.43	35959 35 3607 31 37 390 14 390 14 3955 1	22d 24d 22d 2mo 1mo 25d
0.47 0.46 0.45 0.45 0.44 0.43	35 407 31 019 7 390 14 355 1 208 6	22d 24d 22d 2mo 1mo 25d 2mo
0.47 0.46 0.45 0.45 0.44 0.43 0.43	35959 35 407 31 019 7 390 14 355 1 208 6 949 21	22d 24d 22d 2mo 1mo 25d 2mo 23d
	0.574 0.566 0.566 0.556 0.556 0.556 0.556	0.57956 41 0.57438 64 0.56662 8 0.56274 5 0.55627 35 0.55498 38 0.53428 4 0.52781 81 0.52134 14 0.49935 5

Home

 $oldsymbol{\Phi}$ Competitions

Datasets

& Models

<> Code

Discussions

🛇 Learn

✓ More

٩						
45	^ 2	few-shot-hbace	9 9 9	0.39715	48	1mo
46	+ 3	Becky Hodge		0.39586	34	24d
47	- 2	QueenBoletes		0.36351	8	2mo
48	_	htamlive	•	0.34799	1	1mo
49	^ 1	Ares77		0.34670	3	1mo
50 - 76		≎ See 27 More				

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More

- Home
- $oldsymbol{\Phi}$ Competitions
- Datasets
- & Models
- <> Code
- Discussions
- 🛇 Learn
- ✓ More