Convex-Concave Procedure

Stephen Boyd Max Schaller Daniel Cederberg

March 4, 2025

Overview

the convex-concave procedure (CCP)

- ▶ is a heuristic method for solving a specific type of nonconvex problem
- involves solving a (typically small) sequence of convex problems
- leverages expressiveness and reliability of convex optimization
- ▶ is a good street-fighting trick to know about

Outline

Difference of convex functions

Convex-concave procedure

Example

Difference of convex functions

a difference of convex (DC) function $h: \mathbf{R}^n \to \mathbf{R}$ has the form

$$h(x) = f(x) - g(x)$$

with f and g convex

ightharpoonup any function with continuous second derivative has this form, but most useful when we have explicit expressions for f and g

4

Examples

$$f(x) = x^4 + 0.2x$$
, $g(x) = x^2$

$$f(x) = (x^3)_+, \quad g(x) = (x^3)_-$$

f(x) in black, g(x) in magenta, h(x) = f(x) - g(x) in blue

Quadratic function as DC

- (nonconvex) quadratic function $h(x) = (1/2)x^T P x + q^T x + r$, $P \in \mathbf{S}^n$
- ▶ decompose P into its PSD and NSD parts $P = P_{\mathsf{psd}} P_{\mathsf{nsd}}$, $P_{\mathsf{psd}}, P_{\mathsf{nsd}} \succeq 0$
 - $-P = Q\Lambda Q^T$ is eigenvalue decomposition
 - $P_{\mathsf{psd}} = Q \Lambda_{+} Q^{\mathsf{T}}$, with $\Lambda_{+} = \mathsf{max}\{0,\Lambda\}$ (elementwise)
 - $P_{\mathsf{nsd}} = Q \Lambda_{-} Q^{\mathsf{T}}$, with $\Lambda_{-} = \mathsf{max}\{0, -\Lambda\}$ (elementwise)
- ightharpoonup express h in DC form as h = f g with

$$f(x) = (1/2)x^T P_{psd}x + q^T x + r,$$
 $g(x) = (1/2)x^T P_{nsd}x$

A simple majorizer for a DC function

ightharpoonup if (convex) g is differentiable, then for all x

$$\hat{g}(x;z) = g(z) + \nabla g(z)^T (x-z) \leq g(x)$$

(for nondifferentiable g, replace $\nabla g(x)$ with any subgradient)

▶ for DC function h = f - g, define

$$\hat{h}(x;z) = f(x) - \hat{g}(x;z)$$

- \hat{h} is convex (in x) and satisfies $\hat{h}(x;z) \geq h(x)$ for all x, $\hat{h}(z;z) = h(z)$
- ightharpoonup i.e., $\hat{h}(x;z)$ is a **majorizer** of g, tight at z

Examples

$$h(x) = x^4 + 0.2x - x^2$$
,
majorized at $z = 0.3$

$$h + 0.2x - x^2$$
, $h(x) = (x^3)_+ - (x^3)_- = x^3$, d at $z = 0.3$ majorized at $z = -0.5$

h(x) in blue, $\hat{h}(x;z)$ in gray

Outline

Difference of convex functions

Convex-concave procedure

Example

Minimizing a DC function

- (unconstrained) **DC problem**: minimize DC function h(x) = f(x) g(x)
- convex constraints can be handled as indicator functions added to f
- convex-concave procedure (CCP): iterate

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \hat{h}(x; x^k) = \underset{x}{\operatorname{argmin}} (f(x) - \hat{g}(x; x^k))$$

- \triangleright x^{k+1} can be found via convex optimization
- CCP has no parameters, no line search / trust penalty, . . .

Properties of CCP

CCP is a descent method:

$$h(x^{k+1}) \le \hat{h}(x^{k+1}; x^k) \le \hat{h}(x^k; x^k) = h(x^k)$$

- ▶ $h(x^k)$ converges, but not necessarily to $h^* = \inf_x h(x)$
- ▶ ultimate value $\lim_{k\to\infty} h(x^k)$ depends on initial point x^0
- standard trick: run CCP for multiple initial points; take best ultimate point found

Example

Example

SAT problem

- ▶ SAT problem: find $x_i \in \{0,1\}$ with $Ax \leq b$
- includes 3-SAT; NP-hard
- encode Boolean constraint using $x_i \in \{0,1\} \iff x_i^2 x_i = 0$
- ▶ SAT problem equivalent to minimizing DC function h = f g with

$$f(x) = \begin{cases} 0 & Ax \leq b, \ 0 \leq x \leq 1 \\ \infty & \text{otherwise} \end{cases} \qquad g(x) = \sum_{i=1}^{n} (x_i^2 - x_i)$$

since $h(x) \ge 0$ for all x and

$$h(x) = 0 \iff Ax \leq b, x_i \in \{0,1\}, i = 1,\ldots,n$$

SAT problem via CCP

ightharpoonup CCP: x^{k+1} is a solution of LP

minimize
$$(\mathbf{1} - 2x^k)^T x$$

subject to $Ax \leq b$, $0 \leq x \leq \mathbf{1}$

example: find $x \in \{0,1\}^4$ that satisfies predicate

$$(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$$

(a feasible 3-SAT instance with n = 4 variables and 3 clauses)

can be represented as

$$A = \left[egin{array}{cccc} -1 & -1 & 1 & 0 \ 1 & 1 & 0 & -1 \ 0 & 1 & -1 & 1 \end{array}
ight], \quad b = \left[egin{array}{ccc} 0 \ 1 \ 1 \end{array}
ight]$$

SAT problem via CCP

```
n = 4
x = Variable(n)
xk = Parameter(n)
obj = Minimize((ones(n) - 2 * xk) @ x)
constr = [A @ x \le b, 0 \le x, x \le 1]
prob = Problem(obj, constr)
xk.value = ones(n) / 2
for _ in range(3):
    prob.solve()
    xk.value = x.value
```


SAT problem via CCP

larger example, (feasible) 3-SAT instance with n = 40, 120 clauses

finds feasible point for 19% of random initializations

Constrained DC problem

▶ **DC problem** with DC inequality constraints has form

minimize
$$f_0(x) - g_0(x)$$

subject to $f_i(x) - g_i(x) \le 0$, $i = 1, ..., m$

 f_i and g_i are convex

ightharpoonup CCP algorithm: x^{k+1} is solution of convex problem

minimize
$$f_0(x) - \hat{g}_0(x; x^k)$$

subject to $f_i(x) - \hat{g}_i(x; x^k) \le 0$, $i = 1, ..., m$

- in words: linearize concave parts; solve; repeat
- ▶ if x^k is feasible, then so is x^{k+1} , and $h(x^{k+1}) \le h(x^k)$
- CCP is a feasible descent method

Convex restrictions

- ▶ if $\hat{h}_i(x; x^k) = f_i(x) \hat{g}_i(x; x^k) \le 0$, then $h_i(x) \le \hat{h}_i(x; x^k) \le 0$
- > so convexified constraint is a **convex restriction** of original constraint
- **example**: f(x) = 0, $g(x) = ||x||_2 1$, $x^k = (3,1)$ (left) and $x^k = (1,2)$ (right)

 $h(x) \le 0$ in white, $\hat{h}(x; x^k) \le 0$ in gray (x^k) as gray dot)

Convex restrictions

example: CCP for simple problem

minimize
$$||x - c||_2$$

subject to $||x||_2 \ge 1$

with variable $x \in \mathbf{R}^2$, data c with $||c||_2 < 1$, $c \neq 0$

- ▶ *i.e.*, find closest point to *c* that is **outside** unit ball
- ▶ solution is $x^* = c/\|c\|_2$
- consider c = (-0.4, 0.6) and $x^0 = (2.5, 1)$

CCP iterations

 x^k as a square, x^{k+1} as a circle, c as a cross

CCP iterations

 $\|x^k-c\|_2$ in blue, $\|x^\star-c\|_2=1-\|c\|_2$ as dashed black line

DC equality constraints

- ▶ linear equality constraints can just be added as indicator function to *f*
- ▶ DC equality constraints of the form $p_i(x) = q_i(x)$, with p_i and q_i convex, can be expressed as the pair of DC inequalities

$$p_i(x)-q_i(x)\leq 0, \qquad q_i(x)-p_i(x)\leq 0$$

Ensuring feasibility of convex subproblems

- convex subproblems can be infeasible, even if original problem is feasible
- ▶ introduce **slack variable** $s_i \ge 0$ for constraint i
- **penalty CCP** algorithm: x^{k+1} is solution of convex problem

minimize
$$f_0(x) - \hat{g}_0(x; x^k) + \tau_k \sum_{i=1}^m s_i$$

subject to $f_i(x) - \hat{g}_i(x; x^k) \leq s_i, \quad i = 1, \dots, m$
 $s_i \geq 0, \quad i = 1, \dots, m$

where $\tau_k > 0$ is increased between iterations

Disciplined convex-concave programming (DCCP)

disciplined convex-concave program (DCCP) has form

minimize/maximize
$$o(x)$$
 subject to $l_i(x) \sim r_i(x), \quad i=1,\ldots,m,$

- \triangleright o, l_i , r_i are DCP convex or concave expressions
- ightharpoonup \sim can be \leq , \geq , or =
- ightharpoonup to minimize DC objective $f_0 g_0$
 - introduce epigraph variable t and DCCP constraint $f_0(x) g_0(x) \le t$
 - minimize t
- implemented in DCCP package

Disciplined convex-concave programming (DCCP)

example (revisited):

```
minimize ||x - c||_2
subject to ||x||_2 \ge 1
```

with variable $x \in \mathbf{R}^2$, data c

```
x = Variable(2)
obj = Minimize(norm(x - c))
constr = [norm(x) >= 1]
prob = Problem(obj, constr)

x.value = [2.5, 1]
prob.solve(method='dccp')
print(x.value)
```

Outline

Difference of convex functions

Convex-concave procedure

Examples

Path planning with obstacles

- \triangleright find shortest path connecting points a and b in \mathbf{R}^d , avoiding m disks
- ightharpoonup disk j has center c_j , radius r_j
- ightharpoonup discretize path as points x_0, \ldots, x_n and solve

minimize
$$L$$
 subject to $x_0=a, \quad x_n=b$
$$\|x_i-x_{i-1}\|_2 \leq L/n, \quad i=1,\ldots,n$$

$$\|x_i-c_j\|_2 \geq r_j, \quad i=1,\ldots,n, \quad j=1,\ldots,m$$

with variables L and x

useful initialization: straight line connecting a and b

Path planning with obstacles

```
L = Variable()
x = Variable((n+1, d))
L.value, x.value = ... # initialize to straight line
constr = [x[0] == a, x[n] == b]
for i in range(1, n+1):
    constr += [norm(x[i] - x[i-1]) \le L/n]
for j in range(m):
    constr += [norm(x[i] - c[j]) >= r[j]]
prob = Problem(Minimize(L), constr)
prob.solve(method = 'dccp')
```

Path planning with obstacles

Floor planning

- ightharpoonup n rectangles with lower left corner (x_i, y_i) , i = 1, ..., n (variables)
- rectangle i has width w_i , height h_i (given)
- centers are $c_i = (x_i + w_i/2, y_i + h_i/2)$
- edge set $\mathcal{E} \subset \{1, \dots, n\}^2$ contains pairs of rectangles we want to be close
- ightharpoonup minimize $\sum_{(i,j)\in\mathcal{E}}\|c_i-c_j\|_2^2$
- without loss of generality, we can require $(1/n)\sum_{i=1}^{n} c_i = 0$
- these constraints and objective are convex; non-overlapping constraint is not

Non-overlapping constraint

rectangles i and j don't overlap if

$$x_i + w_i \le x_j \quad \lor \quad x_j + w_j \le x_i \quad \lor \quad y_i + h_i \le y_j \quad \lor \quad y_j + h_j \le y_i, \quad i < j$$

i.e., rectangle i is left of, right of, below, or above rectangle j

express as inequality

$$\min \{x_i + w_i - x_j, x_j + w_j - x_i, y_i + h_i - y_j, y_j + h_j - y_i\} \le 0$$

- left-hand side is concave function of (x, y)
- ▶ so non-overlapping can be expressed as a DC inequality constraint

Floor planning as DC problem

DC formulation of floor planning problem:

```
minimize \sum_{(i,j)\in\mathcal{E}} \|c_i - c_j\|_2^2

subject to \sum_{i=1}^n c_i = 0, c_i = (x_i + w_i/2, y_i + h_i/2), i = 1, \dots, n, \min\{x_i + w_i - x_j, x_j + w_j - x_i, y_i + h_i - y_j, y_j + h_j - y_i\} \le 0, i < j
```

 \triangleright x_i , y_i , and c_i are variables; w_i , h_i , and \mathcal{E} are given

n=6 rectangles; initial centers drawn uniformly from $[-2,2]^2$

Collision avoidance

- \triangleright N vehicles moving simultaneously along (discretized) time t = 0, ..., T
- vehicle i aims to travel from initial position x_i^{init} to final position x_i^{final}
- trajectories described as

$$x_{i,t}, \quad i=1,\ldots,N, \quad t=0,\ldots,T$$

vehicles must keep minimum distance d from each other at all times

Collision avoidance

minimize total length of travel while avoiding collisions as

```
minimize \sum_{i=1}^{N} L_i

subject to x_{i,0} = x_i^{\text{init}}, \quad x_{i,T} = x_i^{\text{final}}, \quad i = 1, \dots, N,

\|x_{i,t} - x_{i,t-1}\|_2 \le L_i/T, \quad i = 1, \dots, N, \quad t = 1, \dots, T,

\|x_{i,t} - x_{j,t}\|_2 \ge d, \quad i < j, \quad t = 0, \dots, T
```

- \triangleright $x_{i,j}$ and L_i are variables
- \triangleright x_i^{init} , x_i^{final} , and d are given

Collision avoidance example

- N = 10 vehicles with starting points x_i^{init} uniformly on a circle around zero
- each vehicle aims to travel to opposite side of circle, $x_i^{\text{final}} = -x_i^{\text{init}}$
- ightharpoonup minimum distance is d=1

Collision avoidance example

$\ell_{1/2}$ regularized regression

- ▶ minimizing $||Ax b||_2^2 + \lambda ||x||_1$ where $A \in \mathbf{R}^{m \times n}$ tends to yield sparse x
- (approximately) minimizing $||Ax b||_2^2 + \lambda \sum_i |x_i|^{1/2}$ can yield sparser x
- lacktriangle sometimes called $\ell_{1/2}$ regularization (but it's not a norm)
- not a convex problem

DC formulation

▶ DC problem

minimize
$$||Ax - b||_2^2 + \lambda \mathbf{1}^T t$$

subject to $t \succeq 0$, $|x_i| \le t_i^2$, $i = 1, ..., n$

ightharpoonup CCP: x^{k+1} is solution of

minimize
$$||Ax - b||_2^2 + \lambda \mathbf{1}^T t$$

subject to $t \succeq 0$, $|x_i| \le (t_i^k)^2 + 2t_i^k (t_i - t_i^k)$, $i = 1, \ldots, n$

ightharpoonup so x^{k+1} is solution of weighted ℓ_1 regularized problem

minimize
$$||Ax - b||_2^2 + \lambda \sum_{i=1}^n \frac{1}{2t_i^k} |x_i|$$

with $t_i^{k+1} = \frac{1}{2t_i^k} |x_i^{k+1}| + \frac{1}{2}t_i^k$ (we can impose a small minimum value for t_i^k)

Example

- ightharpoonup example with n = 20, m = 40
- lacktriangle regularization paths for ℓ_1 (left) and $\ell_{1/2}$ (right) regularization

Example

optimal trade off curves for ℓ_1 (blue) and $\ell_{1/2}$ (red) regularization