Cene: An Image Organisation App

By Leana Critchell

What is Cene?

Exploratory DataAnalysis

The Data

Data provided by Intel

Collected from Kaggle

24k images of 6 scenes

14k Color training images

Images of size 150 x 150

Even Class Distribution

Forest

Glacier

Mountain

Sea

Street

Potential Problem? Class Similarities

Building or Street?

Street

Building

Glacier or Mountain?

Glacier

Mountain

Metrics

PRIORITY:

MINIMIZE MISCLASSIFICATION

FALSE POSITIVE

(Optimize Precision)

FALSE NEGATIVE

(Optimize Recall)

MISCLASSIFICATION

METRIC TO OPTIMIZE:

ACCURACY

Modelling: First Simple Model

First Simple Model Architecture

Input Layer Flattern: 196,608

Train vs. Validation Accuracy Score

LIME Visualizations: FSM

Top 5 Superpixels of Building Image

"Pros and Cons"

Modelling: Final Model

Final Model (CNN) Architecture

Hidden layer 4 Conv2D: 128 MaxPooling: 128

Hidden layer 5

Flattern: 4608

Input Layer Conv2D: (254, 254, 64) MaxPooling: (127, 127, 64)

Train vs. Validation Accuracy Score

Confusion Matrix: Final Model

Deployment: Flask App

Next Steps

Allow users to upload photos

Combine classes or create subgroups (e.g. mountain & glacier)

Train model on more classes

(Image from pexel)

Contact Info

Leana Critchell

Email: leana.critchell@hotmail.com

LinkedIn: https://www.linkedin.com/in/leana-critchell/

Medium: https://medium.com/@leana.m.critchell

GitHub: @lecritch

Graveyard Slides old slides not part of the presentation that I wanted to keep track of:

Introduction - Aims of Cene

Optimize Photo organisation

Categorize images from 6 classes

Help user organization

Employ machine learning

EDA

14k Color training images

256 pixels

Even Class Distribution

Number of Images per Scene (Training Data)

SORT PHOTOS

The Process

FSM: Basic Neural Network

FSM Loss Train vs. Validation

FSM Accuracy Train vs. Validation

Final Model: Convolutional Neural Network

Final Model Loss Train vs. Validation Final Model Accuracy
Train vs. Validation

LIME Visualizations: Final Model

Top 5 Superpixels of Building Image

"Pros and Cons"

Final Model: Deep Neural Network

Final Model Loss Train vs. Validation

