Combinational Circuits: Design

Digital Design and Computer Architecture Mohammad Sadrosadati Frank K. Gürkaynak

http://safari.ethz.ch/ddca

What will we learn

- Converting desired functionality into Boolean equations
- Karnaugh Maps (simplification of equations)
- Circuits with more than one output
- Timing of combinational circuits

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (\overline{E})
 - If it is not open $(\overline{\mathbf{0}})$ or
 - If they only serve cabbage (C)
- Write a truth table for determining if you will eat lunch (E):

	only	
open	cabb.	eat
<u> </u>	С	_ <i>E</i>
0	0	
0	1	
1	0	
1	1	

Boolean Equations Example

- You are going to the cafeteria for lunch
 - You won't eat lunch (\overline{E})
 - If it is not open $(\overline{\mathbf{0}})$ or
 - If they only serve cabbage (C)
- Write a truth table for determining if you will eat lunch (E)

	only	
open O	cabb.	eat E
0	0	0
0	1	0
1	0	1
1	1	0

Some Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement A, \overline{A} , B, \overline{B} , C, \overline{C}
- *Implicant:* product (AND) of literals $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot C)$, $(B \cdot \overline{C})$
- *Minterm:* product (AND) that includes all input variables $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot \overline{B} \cdot C)$, $(\overline{A} \cdot B \cdot \overline{C})$
- Maxterm: sum (OR) that includes all input variables $(A + \overline{B} + \overline{C})$, $(\overline{A} + B + \overline{C})$, $(A + B + \overline{C})$

Sum-of-Products (SOP) Form

A	В	Y
0	0	0
0	1	1
1	0	0
1	1	1

$$Y = F(A, B) = ?$$

- All Boolean equations can be written in SOP form
 - Each row in a truth table has a minterm
 - A minterm is a product (AND) of literals
 - Each minterm is TRUE for that row (and only that row)
 - blackboard
- Formed by ORing the minterms for which the output is TRUE

Sum-of-Products (SOP) Form

_A	В	Y	minterm
0	0	0	$\overline{A} \ \overline{B}$
0	1	1	A B
1	0	0	\overline{AB}
1	1	1	A B

$$Y = F(A, B)$$

= $(\overline{A} \cdot B) + (A \cdot B)$

- All Boolean equations can be written in SOP form
 - Each row in a truth table has a minterm
 - A minterm is a product (AND) of literals
 - Each minterm is TRUE for that row (and only that row)
 - blackboard
- Formed by ORing the minterms for which the output is TRUE

The Dual: Product-of-Sums (POS) Form

- All Boolean equations can be written in POS form
 - Each row in a truth table has a maxterm
 - A maxterm is a sum (OR) of literals
 - Each maxterm is FALSE for that row (and only that row)
- Formed by ANDing the maxterms for which the output is FALSE

Α	В	Y	maxterm	
0	0	0	A + B)	
0	1	1	$A + \overline{B}$	
$\overline{1}$	0	0	$\overline{A} + B$	
1	1	1	$\overline{A} + \overline{B}$	

$$Y = F(A, B) = (A + B) \cdot (\overline{A} + B)$$

SOP & POS Form

■ SOP: sum-of-products

0	С	E	minterm
0	0	0	O C
0	1	0	<u> </u>
1	0	1	0 <u>C</u>
1	1	0	ОС

SOP or POS?

■ POS: product-of-sums

0	С	Ε	maxterm
0	0	0	O + C
0	1	0	$O + \overline{C}$
1	0	1	O + C
1	1	0	$\overline{O} + \overline{C}$

SOP & POS Form

■ SOP: sum-of-products

0	С	Ε	minterm	
0	0	0	O C	
0	1	0	O C	
1	0	1	O C	
1	1	0	ОС	

$$E = O \cdot \overline{C}$$

SOP shorter if the output is TRUE in only a few cases

■ POS: product-of-sums

$$E = (O + C) \cdot (O + \overline{C}) \cdot (\overline{O} + \overline{C})$$

POS is shorter if the output is FALSE in only a few cases

Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations graphically

Α	В	С	Y
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

YA	В			
C	00	01	11	10
0	1	0	0	0
1	1	0	0	0

Y AB						
C	00	01	11	10		
0	ĀĒĈ	ĀBĒ	ABĈ	AĒĈ		
1	ĀĒC	ĀBC	ABC	AĒC		

- Blackboard
- Works well for up to four variables

Karnaugh Map Rules

- Special order for bit combinations: 00, 01, 11, 10
 (only one bit changes from one to next)
- Every 1 in a K-map must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges of the K-map
- A "don't care" (X) is circled only if it helps minimize the equation

Karnaugh Map Example

Blackboard

Karnaugh maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0	0	1	1 0	1
0	0	1		1
0	1	0	0	0
0	1	1 0 0 1 1 0	1 0 1 0 1 0 1 0	Х
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0 0 0	0	1	1
1	0	1	0	Х
1	0	1 1 0	1	Х
1	1	0	0	Х
1	1	0	1 0	Х
0 0 0 0 0 0 0 1 1 1 1 1 1	1	1	0	1 0 1 1 0 X 1 1 1 X X X X X X X
1	1	1	1	X

Karnaugh maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	0
0 0 0 0 0 0 0	0	1	1 0	1
0	0	1		1
0	1	0	1 0	0
0	1	0 0 1 1 0	1	Х
0	1	1	1 0	1
0	1	1		1
1		0	0	1
1	0 0 0	0	1 0 1 0 1 0	1
1	0		0	Х
1 1 1 1	0	1 1	1	Х
1	1	0	0	Х
1	1	0	1 0	Х
1	1	1	0	1 0 1 1 0 X 1 1 1 X X X X X X X X
1	1	1	1	X

Karnaugh maps with Don't Cares

Α	В	С	D	Y
0	0	0	0	1
0	0	0	1	1 0
0	0	1	0	
0	0	1		1
0	1	1 0	0	0
0	1	0	1 0 1	X
0	1	1	0 1 0	1
0	1	1 1 0	1	1
1	1 0	0	0	1
1	0	0		1
1	0	1	1 0	Х
1	0 0	1	1	X
1	1	1 0	0	X
1	1	0	0 1 0	X
0 0 0 0 0 0 1 1 1 1 1 1	1	1	0	1 0 X 1 1 1 X X X X
1	1	1	1	X

Is this useful?

- In modern engineering practice, computer programs called logic synthesizers produce simplified circuits from a description of the logic function (later in chap 4)
- For large problems, logic synthesizers are much more efficient than humans. For small problems, a human with a bit of experience can find a good solution by inspection.

Yes: you understand the basic concepts.

From Logic to Gates

- SOP (sum-of-products) leads to two-level logic
- Example: $Y = (\overline{A} \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot \overline{B} \cdot C)$

Circuit Schematics

- Inputs: left (or top) side of a schematic
- Outputs: right (or bottom) side of a schematic
- Circuits should flow from left to right
- Straight wires are better than wires with multiple corners

Circuit Schematic (cont.)

- Wires always connect at a T junction
- A dot where wires cross indicates a connection between the wires
- Wires crossing without a dot make no connection

Multiple Output Circuits: Priority Circuit

Output is the most significant TRUE input

A_3	A_2	A_1	A_{o}	Y_3	Y_2	Y_1	Y_0
0	0	0	0				
0 0 0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Multiple Output Circuits: Priority Circuit

Output is the most significant TRUE input

A_3	A_2	A_1	A_{o}	Y ₃	Y ₂ 0 0 0 1 1 1 0 0 0 0 0	Y ₁	\mathbf{Y}_{o}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 1 1 1 1	A_2 0 0 0 1 1 0 0 1 1 1 1	A_1 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1	01010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0	Y _o 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1	1	1	1	1	0	0	0

Priority Encoder Hardware "by inspection"

Λ	Λ	Λ	Λ	\ \ \	V	V	V
A_3	A_2	A_1	A_0	<i>r</i> ₃	r ₂	Y ₁	7 ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
A_3 0 0 0 0 0 0 1 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1 1	0 1 1 0 0 1 1 0 0 1 1	01010101010101	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 0 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	0
1	1	1	1	1	0	0	Y _o 0 1 0 0 0 0 0 0 0 0 0

- We could write sum-of-products form and reduce the equations. From the functional description :
 - Y_3 is TRUE whenever A_3 is asserted, so $Y_3 = A_3$.
 - Y_2 is TRUE if A_2 is asserted and A_3 is not asserted, so $Y_3 = \overline{A_3}A_2$

Compressing the Truth Table: Don't Cares

Truth Table

A_3	A_2	A_1	A_{o}	Y_3	Y_2	Y_1	\mathbf{Y}_{o}
A_3 0 0 0 0 0 1 1 1 1	0 0 0 1 1 1 0 0 0 1 1 1	0 1 1 0 0 1 1 0 0 1 1	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Y ₃ 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y ₂ 0 0 0 1 1 1 0 0 0 0	Y ₁ 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	Y ₀ 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

Compressed with don't cares

A_3	A_2	A_{1}	A_o	Y ₃	Y_2	Y ₁	Y_o
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	Χ	0	0	1	0
0	1	X	Χ	0	1	0	0
1	X	X	X	0 0 0 0 1	0	0	0

Additional logic levels: X and Z

So far we used only 1s and 0s for our circuits.

- For some cases we need several more, slightly strange, signals
- These do not encode information, but represent different levels or cases where the output is neither 1 or 0

Contention: X

- When a signal is being driven to 1 and 0 simultaneously
- Not a real level, could be any value (1, 0 or something in between)

High-impedance or tri-state: Z

- When an output is not driving to any specific value
- Means the output is disconnected
- Not a real level, some other output is able to determine the level

Contention: X

Usually a problem

- Two outputs drive one node to opposite values
- Normally there should only be one driver for every connection.

Warning: "don't care" and "contention" are both called X

- These are not the same
- Verilog (we will see later) uses X for both,
 VHDL uses '-' for don't care, and 'X' for contention
- Don't care: degree of freedom that is fixed at implementation time
- Contention: a bug really, undetermined behaviour

Floating: Z

- Output is called: Floating, high impedance, tri-stated, high-Z
- Floating output might be 0, 1, or somewhere in between
- Example: tri-state buffer

Ε	Α	Y
0	0	Z
0	1	Z
1	0	0
1	1	1

Tristate Busses

- Floating nodes are used in tri-state busses
 - Many different drivers share one common connection
 - Exactly one driver is active at any time
 - All the other drivers are "disconnected"
 - The disconnected drivers are said to be *floating*, allowing exactly one node to drive.
 - More than one input can listen to the shared bus without problems

Combinational Building Blocks

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hide the unnecessary gate-level details to emphasize the function of the building block
- We have already studied some building blocks
 - full adders
 - priority circuits

We now look at:

- multiplexers
- decoders

Multiplexer (Mux)

- Selects between one of N inputs to connect to the output.
- Needs log₂*N*-bit control input
- 2:1 Mux Example:

S	D_1	D_0	Y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Multiplexer (Mux)

- Selects between one of N inputs to connect to the output.
- Needs log₂*N*-bit control input
- 2:1 Mux Example:

		I				
Y	S	Y	D_0	D_1	S	
$\overline{D_0}$	0	0	0	0	0	-
D_1°	1	1	1	0	0	
anroccad	Con	0	0	1	0	
npressed	vers	1	1	1	0	
ololi	vers	0	0	0	1	
		0	1	0	1	
		1	0	1	1	
		1	1	1	1	

4:1 Multiplexer Implementations

using tristate buffers

using tree of 2:1 muxes

Logic Using Multiplexers

■ Implement Y = AB using a multiplexer; use A as a control

Logic Using Multiplexers

(a)

(b)

Logic Using Multiplexers

We start with an ordinary truth table, and then combine pairs of rows to eliminate the rightmost input variable by expressing the output in terms of this variable.

Logic using Multiplexers

Α	В	C	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$Y = A\overline{B} + \overline{B}\overline{C} + \overline{A}BC$$
 (a)

Logic using Multiplexers

■ In general, a 2^N-input multiplexer can be programmed to perform any N-input logic function by applying 0's and 1's to the appropriate data inputs: *it's a lookup table!*

Decoders

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at once

					Y_0
0	0	0	0	0	
0	0 1 0	0	0	1	0
1	0	0	1	0	0
1	1	1	\cap	\cap	0

Decoder Implementation

A_1	A_0	Y_3	Y_2	Y ₁	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0 0	1	0	0
1	1	1	0	0	0

Logic using Decoders

Timing

- Until now, we investigated mainly functionality
- What determines how fast a circuit is and how can we make faster circuits?

Propagation and Contamination Delay

- Propagation delay: t_{pd} = max delay from input to output
- Contamination delay: t_{cd} = min delay from input to output

Propagation & Contamination Delay

Delay is caused by

- Capacitance and resistance in a circuit
- Speed of light limitation (not as fast as you think!)

Reasons why t_{pd} and t_{cd} may be different:

- Different rising and falling delays
- Multiple inputs and outputs, some of which are faster than others
- Circuits slow down when hot and speed up when cold

Critical (Long) and Short Paths

Critical (Long) Path:

 $t_{pd} = 2 t_{pd_AND} + t_{pd_OR}$

Short Path:

 $t_{cd} = t_{cd_AND}$

Propagation times

Table 2.7 Timing specifications for multiplexer circuit elements

Gate	t_{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

Propagation times

$$t_{pd_sy} = t_{pd_INV} + t_{pd_AND3} + t_{pd_OR4}$$

= 30 ps + 80 ps + 90 ps
= 200 ps
 $t_{pd_dy} = t_{pd_AND3} + t_{pd_OR4}$
= 170 ps

 $t_{pd_sy} = t_{pd_INV} + t_{pd_AND2} + t_{pd_TRI_SY}$ = 30 ps + 60 ps + 35 ps (b) = 125 ps $t_{pd_dy} = t_{pd_TRI_AY}$ = 50 ps

Figure 2.73 4:1 multiplexer propagation delays:

- (a) two-level logic,
- (b) tristate

Glitches

- Glitch: when a single input change causes multiple output changes
- Glitches don't cause problems because of synchronous design conventions (which we'll talk about in a bit)
- But it's important to recognize a glitch when you see one in timing diagrams

Glitch Example

■ What happens when A = 0, C = 1, B falls (1->0) ?

Glitch Example (cont.)

Noticing a Glitch

- In general, a glitch can occur when a change in a single variable crosses the boundary between two prime implicants in a Kmap.
 - Transition on B (ABC=001 to ABC 011) moves from one prime implicant to the other.
 - We can eliminate the glitch by adding redundant implicants to the K-map to cover these boundaries.

Fixing the Glitch

Why Understand Glitches?

- Glitches don't cause problems because of synchronous design conventions (which we'll talk about later)
- But it's important to recognize a glitch when you see one in simulations or on an oscilloscope
- Can't get rid of all glitches simultaneous transitions on multiple inputs can also cause glitches

What have we learned?

- How to construct truth tables
- Converting truth tables into SOP and POS form
- Using Karnaugh maps to simplify Boolean Equations
- Timing of combinational circuits
 - Propagation delay: longest time through the circuit
 - Contamination delay: shortest time in which the output reacts