

Extensive characterization and modeling of bicycle-to-bicycle link quality

Luis R. Pinto^{1,2} Pedro Santos¹ José Pintor¹ Miguel Rosa¹ João Mesquita¹
Luis Almeida^{1,2} Ana Aguiar^{1,2}

Faculdade de Engenharia da Universidade do Porto ¹ Instituto de Telecomunicações²

Overview

Vision – Bicycles communicating with other bicycles

Devices/things are getting increasingly inter-connected. Bicycles are no exception. Wireless on bicycles allows users on the street to communicate with other bikers. Whether they are:

1) unknown users passing by

or 2) known bikers moving in platoon formation.

Problem

[WANT] Allow audio communication/announcements between commuters, and for recreational/performance purposes within a platoon/group of athletes – mainly applications based on VoIP.

[HOW] Exchange data with no need for infrastructure:

- Cellular is expensive and too power-hungry.
- Neighboring WiFi access points are to unreliable/unstable due to mobility.

[GOAL] We intend to create a reliable ad-hoc network – communicate directly between devices.

System Challenges

To build such network, we need to characterize the communication link between two bicycles. These vary dramatically under different:

- Relative orientation
- Antenna placement
- Bike material
- Distance

Final remarks

- ☑ Handle-bar and back-rack are the most isotropic locations.
- $\ \ \, \square$ These also have the highest average RSSI.
- ☐ The radiation patterns for a given antenna position are quite similar among different bikes.
- ☐ The difference between iron and aluminum is mostly visible at the inner-triangle position.

Results - Radiation pattern of a bicycle.

Methodoloy

Location: anechoic chamber.

- A) Install NIC+antennas in six locations:
- B) Rotate six bikes 360° over their middle axis
- C) Measure beacon's RSSI transmitted by an antenna at 4.5m.

Future work

- □ Develop a model based on the collected data.
- ☐ Model will allow simulating the link performance under different bike trajectories.
- $\hfill \Box$ We will measure throughput and PDR given RSSI to further extend the model.

