Vigourt Corentin Note: 8/20 (score total: 8/20)

2/2

2/2

-1/2

2/2

2/2

-1/2

fini

 \square {aa,bb}

Q.6 Que vaut $\{\varepsilon, a, b\} \cdot \{\varepsilon, a, b\}$?

{a, b, aa, ab, ba, bb}

□ vide

 \square {aa, ab, ba, bb}

QCM THLR 1	
Nom et prénom, lisibles :	Identifiant (de haut en bas) :
Vigaint	□0 □1 m 2 □3 □4 □5 □6 □7 □8 □9
Coentin	1 0 1 2 3 4 5 6 7 8 9
	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9
	□0 第 1 □2 □3 □4 □5 □6 □7 □8 □9
	□0 □1 ■2 □3 □4 □5 □6 □7 □8 □9
incorrectes pénalisent; les blanches et réponses multi J'ai lu les instructions et mon sujet est comple	-
Q.2 Un langage est :	Q.7 Que vaut $L \cdot \emptyset$?
☐ un ensemble fini ☐ un ensemble ☐ un ensemble ☐ une suite finie	
Q.3 Soit L_1 et L_2 deux langages sur l'alphabet Σ. Si $L_1 \cap \overline{L_2} = \emptyset$ alors	Q.8 Que vaut $Fact(\{ab,c\})$ (l'ensemble des facteurs):
$ \Box L_1 = L_2 \qquad \Box L_1 \cap L_2 = \emptyset \qquad \textcircled{1} L_1 \supseteq L_2 $ $ \boxtimes L_1 \subseteq L_2 $	
Q.4 Que vaut $L \cdot \{\varepsilon\}$?	Q.9 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$
□ {ε} □ ε 2 L □ Ø	(a) $\{b\}\{a\}^* \cup \{b\}^*$
Q.5 Le langage $\{ \stackrel{\text{\tiny w}}{=}^n \stackrel{\text{\tiny w}}{=}^n \mid \forall n \text{ premier, codable en binaire sur 64 bits} \}$ est	

+252/1/47+

Q.10 Un langage préfixe est un langage L tel que...

 $\forall u, v \in L, u \neq v \Rightarrow u \notin Pref(v)$

2/2

Fin de l'épreuve.

 \square $L \not\subseteq Pref(L)$

 \square $L \neq Pref(L)$

 \square $L \subseteq Pref(L)$

☐ infini

 \square {aa, ab, bb}

 \boxtimes { ε , a, b, aa, ab, ba, bb}