Chapter 8

Definition: Let a, b, m be integers. We say that a is congruent to b modulo m if: m | (a-b)

Write: $a \equiv b \pmod{m}$

The number m is called the modulous of the congruence.

 $7 \equiv 2 \pmod{5}$ 5 | (フーン) => Example: 47= 35 (mod 6) 6 | (47-35) =>

Observation: Let a, m be two integers, by Euclidean algorithm, we can find q, r such that $\alpha = qm + r$ with 0 < r < m.

This implis: m (a-r)

In other words: $\alpha \equiv r \pmod{m}$.

This means: every integer is congruent, modulo m, to a nuber between 0 and m-1.

Congruences with same modulus behave in many ways like numbers: Proposition: Suppose that $A \equiv b \pmod{m}$ $b \equiv c \pmod{m}$ Then: (1) $\alpha \equiv \alpha \pmod{m}$ (reflexive) (2) $b \equiv a \pmod{m}$ (symmetric) (3) $A = C \pmod{m}$ (transitive) Proof: 11, $m \mid 0 = (a-a) \Rightarrow \alpha \equiv a \pmod{m}$ (2) $\alpha \equiv b \pmod{m} \Rightarrow m \pmod{a-b}$ \Rightarrow $a-b=rm \Rightarrow b-a=-rm$ $\Rightarrow m(b-a) \Rightarrow b \equiv a \pmod{m}$ (3) $a \equiv b \pmod{m}$ a - b = rm $b \equiv c \pmod{m}$ b - c = sm $\alpha - c = \alpha + (-b+b) - c = (\alpha - b) + (b-c)$

 Π

Proposition: Suppose that

$$a_1 \equiv b_1 \pmod{m}$$
 $a_2 \equiv b_2 \pmod{m}$

Then: 11, $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$
 $a_1 - a_2 \equiv b_1 - b_2 \pmod{m}$
 $a_1 - a_2 \equiv b_1 - b_2 \pmod{m}$
 $a_1 - a_2 \equiv b_1 b_2 \pmod{m}$
 $a_1 - a_2 \equiv b_1 b_2 \pmod{m}$
 $a_1 - a_2 \equiv b_1 b_2 \pmod{m}$

Proof: $a_1 \equiv b_1 \pmod{m}$
 $a_1 - b_2 \equiv b_1 \pmod{m}$
 $a_2 - b_2 = r_2 \pmod{m}$
 $a_1 - b_1 + a_2 - b_1 - b_2 = a_1 + a_2 - b_1 - b_2 - a_1 + a_2 - b_1 - b_2 = a_1 + a_2 - a_2 - a_2 - a_2 - a_2 - a_$

(3)
$$a_1b_1 - a_2b_2 = a_1b_1 + (-a_1b_1 + a_1b_2) - a_2b_2$$

 $= a_1b_1 - a_1b_2 + a_1b_2 - a_2b_2$
 $= a_1(b_1-b_2) + (a_1-a_2)b_2$
 $= a_1r_2m + r_1mb_2$
 $= (a_1r_2 + a_2r_1)m$
 $\Rightarrow m | (a_1a_2 - b_1b_2) \Rightarrow a_1a_2 \equiv b_1b_2 \pmod{m} = 0$
 $\Rightarrow a_1a_2$

Congruent Equations:

A congruent equation (with one unknown) is of the form: $P(x) \equiv O \pmod{m}.$ P(x) is a poly nomial.

A linear congruent equation (with one unknown) $\alpha x + b \equiv 0 \pmod{m}.$

We will study how to solve linear argement equation.

Example: $X+12 \equiv 5 \pmod{8}$

Solution: X+12-12 = 5-12 (mod 8)

 $X \equiv -7 \pmod{8}$

(This is okay for the solution, but we prefer a number between 0 and 8-1=7)

Moreover, $8 | 8 = 1 - (-7) = 7 = 1 \pmod{8}$

Therefore: $X = 1 \pmod{\xi}$.