

MONASH BUSINESS SCHOOL

# ETC3550/ETC5550 Applied forecasting

Ch10. Dynamic regression models OTexts.org/fpp3/



## **Outline**

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

## **Outline**

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

#### **Regression models**

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t,$$

- $\blacksquare$   $y_t$  modeled as function of k explanatory variables  $x_{1,t}, \ldots, x_{k,t}$ .
- In regression, we assume that  $\varepsilon_t$  is WN.
- Now we want to allow  $\varepsilon_t$  to be autocorrelated.

#### **Regression models**

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- $y_t$  modeled as function of k explanatory variables  $x_{1,t}, \ldots, x_{k,t}$ .
- In regression, we assume that  $\varepsilon_t$  is WN.
- Now we want to allow  $\varepsilon_t$  to be autocorrelated.

#### Example: ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$
  
 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$ 

where  $\varepsilon_t$  is white noise.

## **Residuals and errors**

## Example: $\eta_t$ = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$
  
 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$ 

## **Residuals and errors**

## Example: $\eta_t$ = ARIMA(1,1,1)

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t,$$
  
 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$ 

- Be careful in distinguishing  $\eta_t$  from  $\varepsilon_t$ .
- Only the errors  $\varepsilon_t$  are assumed to be white noise.
- In ordinary regression,  $\eta_t$  is assumed to be white noise and so  $\eta_t = \varepsilon_t$ .

## **Estimation**

If we minimize  $\sum \eta_t^2$  (by using ordinary regression):

- Estimated coefficients  $\hat{\beta}_0, \dots, \hat{\beta}_k$  are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- *p*-values for coefficients usually too small ("spurious regression' ').
- AIC of fitted models misleading.

## **Estimation**

If we minimize  $\sum \eta_t^2$  (by using ordinary regression):

- Estimated coefficients  $\hat{\beta}_0, \dots, \hat{\beta}_k$  are no longer optimal as some information ignored;
- Statistical tests associated with the model (e.g., t-tests on the coefficients) are incorrect.
- *p*-values for coefficients usually too small ("spurious regression' ').
- AIC of fitted models misleading.
  - Minimizing  $\sum \varepsilon_t^2$  avoids these problems.
  - Maximizing likelihood similar to minimizing  $\sum \varepsilon_t^2$ .

## Model with ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$
  
 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$ 

## Model with ARIMA(1,1,1) errors

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$
  
 $(1 - \phi_1 B)(1 - B)\eta_t = (1 + \theta_1 B)\varepsilon_t,$ 

#### Equivalent to model with ARIMA(1,0,1) errors

$$y'_{t} = \beta_{1}x'_{1,t} + \cdots + \beta_{k}x'_{k,t} + \eta'_{t},$$
  
 $(1 - \phi_{1}B)\eta'_{t} = (1 + \theta_{1}B)\varepsilon_{t},$ 

where 
$$y'_t = y_t - y_{t-1}$$
,  $x'_{t,i} = x_{t,i} - x_{t-1,i}$  and  $\eta'_t = \eta_t - \eta_{t-1}$ .

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

## Original data

$$\begin{aligned} \mathbf{y}_t &= \beta_0 + \beta_1 \mathbf{x}_{1,t} + \dots + \beta_k \mathbf{x}_{k,t} + \eta_t \\ \text{where} \quad \phi(\mathbf{B}) (1 - \mathbf{B})^d \eta_t &= \theta(\mathbf{B}) \varepsilon_t \end{aligned}$$

Any regression with an ARIMA error can be rewritten as a regression with an ARMA error by differencing all variables with the same differencing operator as in the ARIMA model.

#### **Original data**

$$y_t = \beta_0 + \beta_1 x_{1,t} + \dots + \beta_k x_{k,t} + \eta_t$$
where  $\phi(B)(1 - B)^d \eta_t = \theta(B)\varepsilon_t$ 

#### After differencing all variables

$$\begin{aligned} y_t' &= \beta_1 x_{1,t}' + \dots + \beta_k x_{k,t}' + \eta_t'. \\ \text{where } \phi(B) \eta_t' &= \theta(B) \varepsilon_t, \\ y_t' &= (1-B)^d y_t, \quad x_{i,t}' = (1-B)^d x_{i,t}, \quad \text{and } \eta_t' = (1-B)^d \eta_t \end{aligned}$$

- In R, we can specify an ARIMA(p, d, q) for the errors, and d levels of differencing will be applied to all variables ( $y, x_{1,t}, \ldots, x_{k,t}$ ) during estimation.
- Check that  $\varepsilon_t$  series looks like white noise.
- AICc can be calculated for final model.
- Repeat procedure for all subsets of predictors to be considered, and select model with lowest AICc value.



```
fit <- us_change %>% model(ARIMA(Consumption ~ Income))
report(fit)
## Series: Consumption
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
##
          ar1
                 mal ma2 Income intercept
  0.707 -0.617 0.2066 0.1976
##
                                        0.595
## s.e. 0.107 0.122 0.0741 0.0462
                                        0.085
##
## sigma^2 estimated as 0.3113: log likelihood=-163
## AIC=338 AICc=339 BIC=358
```

```
fit <- us_change %>% model(ARIMA(Consumption ~ Income))
report(fit)
## Series: Consumption
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
##
          arl mal ma2 Income intercept
  0.707 - 0.617 0.2066 0.1976
##
                                        0.595
## s.e. 0.107 0.122 0.0741 0.0462
                                        0.085
##
## sigma^2 estimated as 0.3113: log likelihood=-163
## ATC=338 ATCc=339 BTC=358
```

```
residuals(fit, type='regression') %>%
  gg_tsdisplay(.resid, plot_type = 'partial') +
  labs(title = "Regression errors")
```



```
residuals(fit, type='innovation') %>%
  gg_tsdisplay(.resid, plot_type = 'partial') +
  labs(title = "ARIMA errors")
```



## 1 ARIMA(Consumption ~ Income) 5.54

0.595



# **Forecasting**

- To forecast a regression model with ARIMA errors, we need to forecast the regression part of the model and the ARIMA part of the model and combine the results.
- Some predictors are known into the future (e.g., time, dummies).
- Separate forecasting models may be needed for other predictors.
- Forecast intervals ignore the uncertainty in forecasting the predictors.

```
vic_elec_daily %>%
  ggplot(aes(x = Temperature, y = Demand, colour = Day_Type)) +
  geom_point() +
  labs(x = "Maximum temperature", y = "Electricity demand (GW)")
```



```
vic_elec_daily %>%
pivot_longer(c(Demand, Temperature)) %>%
ggplot(aes(x = Date, y = value)) + geom_line() +
facet_grid(name ~ ., scales = "free_y") + ylab("")
```



```
fit <- vic elec daily %>%
  model(ARIMA(Demand ~ Temperature + I(Temperature^2) +
                (Day Type=="Weekday")))
report(fit)
## Series: Demand
## Model: LM w/ ARIMA(2,1,2)(2,0,0)[7] errors
##
## Coefficients:
##
           ar1
               ar2 ma1
                                   ma2 sar1 sar2 Temperature
  -0.1093 0.7226 -0.0182 -0.9381 0.1958 0.417 -7.614
##
## s.e. 0.0779 0.0739 0.0494 0.0493 0.0525 0.057 0.448
       I(Temperature^2) Day Type == "Weekday"TRUE
##
##
                 0.1810
                                          30.40
## s.e.
                 0.0085
                                           1.33
##
  sigma^2 estimated as 44.91: log likelihood=-1206
## ATC=2432 ATCc=2433
                       BTC=2471
```

gg\_tsresiduals(fit)



```
# Forecast one day ahead
vic next day <- new data(vic elec daily, 1) %>%
 mutate(Temperature = 26, Day_Type = "Holiday")
forecast(fit, vic_next_day)
## # A fable: 1 x 6 [1D]
  # Key: .model [1]
##
##
     .model
                                  Date
                                                 Demand .mean Tempe~1 Day_T~2
##
    <chr>>
                                  <date>
                                                <dist> <dbl> <dbl> <chr>
## 1 "ARIMA(Demand ~ Temperature ~ 2015-01-01 N(161, 45) 161.
                                                                   26 Holiday
## # ... with abbreviated variable names 1: Temperature, 2: Day_Type
```

```
vic_elec_future <- new_data(vic_elec_daily, 14) %>%
  mutate(
    Temperature = 26,
    Holiday = c(TRUE, rep(FALSE, 13)),
    Day_Type = case_when(
        Holiday ~ "Holiday",
        wday(Date) %in% 2:6 ~ "Weekday",
        TRUE ~ "Weekend"
    )
)
```





## **Outline**

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

## **Stochastic & deterministic trends**

#### **Deterministic trend**

$$\mathbf{y}_t = \beta_0 + \beta_1 t + \eta_t$$

where  $\eta_t$  is ARMA process.

## **Stochastic & deterministic trends**

#### **Deterministic trend**

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where  $\eta_t$  is ARMA process.

#### Stochastic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where  $\eta_t$  is ARIMA process with  $d \geq 1$ .

# Stochastic & deterministic trends

#### **Deterministic trend**

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where  $\eta_t$  is ARMA process.

#### Stochastic trend

$$y_t = \beta_0 + \beta_1 t + \eta_t$$

where  $\eta_t$  is ARIMA process with  $d \geq 1$ .

Difference both sides until  $\eta_t$  is stationary:

$$\mathbf{y}_t' = \beta_1 + \eta_t'$$

where  $\eta'_t$  is ARMA process.

# Air transport passengers Australia

```
aus_airpassengers %>%
autoplot(Passengers) +
labs(y = "Passengers (millions)",
    title = "Total air passengers")
```



#### **Deterministic trend**

##

```
fit_deterministic <- aus_airpassengers %>%
  model(ARIMA(Passengers ~ 1 + trend() + pdq(d = 0)))
report(fit_deterministic)

## Series: Passengers
## Model: LM w/ ARIMA(1,0,0) errors
##
## Coefficients:
## ar1 trend() intercept
## 0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
```

## sigma^2 estimated as 4.343: log likelihood=-101

## ATC=210 ATCc=211 BTC=217

#### **Deterministic trend**

```
fit deterministic <- aus airpassengers %>%
  model(ARIMA(Passengers ~ 1 + trend() + pdq(d = 0)))
report(fit_deterministic)
## Series: Passengers
## Model: LM w/ ARIMA(1,0,0) errors
                                                  y_t = 0.901 + 1.415t + \eta_t
##
## Coefficients:
                                                  \eta_t = 0.956 \eta_{t-1} + \varepsilon_t
##
   ar1 trend() intercept
                                                  \varepsilon_t \sim \text{NID}(0, 4.343).
## 0.9564 1.415 0.901
## s.e. 0.0362 0.197 7.075
##
## sigma^2 estimated as 4.343: log likelihood=-101
## ATC=210 ATCc=211 BTC=217
```

#### Stochastic trend

## ATC=200 ATCc=201 BTC=204

```
fit_stochastic <- aus_airpassengers %>%
 model(ARIMA(Passengers ~ pdq(d = 1)))
report(fit_stochastic)
## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
##
## Coefficients:
##
        constant
##
   1.419
## s.e. 0.301
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
```

#### Stochastic trend

```
fit_stochastic <- aus_airpassengers %>%
  model(ARIMA(Passengers ~ pdq(d = 1)))
report(fit_stochastic)
```

```
## Series: Passengers
## Model: ARIMA(0,1,0) w/ drift
                                                        y_t - y_{t-1} = 1.419 + \varepsilon_t
##
## Coefficients:
                                                                y_t = y_0 + 1.419t + \eta_t
##
          constant
                                                                \eta_t = \eta_{t-1} + \varepsilon_t
##
    1.419
## s.e. 0.301
                                                                \varepsilon_t \sim \text{NID}(0, 4.271).
##
## sigma^2 estimated as 4.271: log likelihood=-98.2
## ATC=200 ATCc=201 BTC=204
```

```
aus_airpassengers %>%
  autoplot(Passengers) +
  autolayer(fit_stochastic %>% forecast(h = 20),
    colour = "#0072B2", level = 95) +
  autolayer(fit_deterministic %>% forecast(h = 20),
    colour = "#D55E00", alpha = 0.65, level = 95) +
  labs(y = "Air passengers (millions)",
    title = "Forecasts from trend models")
```



### Forecasting with trend

- Point forecasts are almost identical, but prediction intervals differ.
- Stochastic trends have much wider prediction intervals because the errors are non-stationary.
- Be careful of forecasting with deterministic trends too far ahead.

### **Outline**

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

### Dynamic harmonic regression

#### **Combine Fourier terms with ARIMA errors**

#### **Advantages**

- it allows any length seasonality;
- for data with more than one seasonal period, you can include Fourier terms of different frequencies;
- the seasonal pattern is smooth for small values of K (but more wiggly seasonality can be handled by increasing K);
- the short-term dynamics are easily handled with a simple ARMA error.

### Disadvantages

seasonality is assumed to be fixed

```
aus_cafe <- aus_retail %>% filter(
    Industry == "Cafes, restaurants and takeaway food services",
    year(Month) %in% 2004:2018
) %>% summarise(Turnover = sum(Turnover))
aus_cafe %>% autoplot(Turnover)
```



```
fit <- aus_cafe %>% model(
    `K = 1` = ARIMA(log(Turnover) ~ fourier(K = 1) + PDQ(0,0,0)),
    `K = 2` = ARIMA(log(Turnover) ~ fourier(K = 2) + PDQ(0,0,0)),
    `K = 3` = ARIMA(log(Turnover) ~ fourier(K = 3) + PDQ(0,0,0)),
    `K = 4` = ARIMA(log(Turnover) ~ fourier(K = 4) + PDQ(0,0,0)),
    `K = 5` = ARIMA(log(Turnover) ~ fourier(K = 5) + PDQ(0,0,0)),
    `K = 6` = ARIMA(log(Turnover) ~ fourier(K = 6) + PDQ(0,0,0)))
glance(fit)
```

| .model | sigma2 | log_lik | AIC  | AICc | BIC  |
|--------|--------|---------|------|------|------|
| K = 1  | 0.002  | 317     | -616 | -615 | -588 |
| K = 2  | 0.001  | 362     | -700 | -698 | -661 |
| K = 3  | 0.001  | 394     | -763 | -761 | -725 |
| K = 4  | 0.001  | 427     | -822 | -818 | -771 |
| K = 5  | 0.000  | 474     | -919 | -917 | -875 |
| K = 6  | 0.000  | 474     | -920 | -918 | -875 |













### **Example: weekly gasoline products**

```
fit <- us gasoline %>%
  model(ARIMA(Barrels \sim fourier(K = 13) + PDQ(0,0,0)))
report(fit)
## Series: Barrels
## Model: LM w/ ARIMA(0,1,1) errors
##
## Coefficients:
##
           ma1 fourier(K = 13)C1 52 fourier(K = 13)S1 52
##
   -0.8934 -0.1121 -0.2300
## s.e. 0.0132
                        0.0123
                                               0.0122
##
   fourier(K = 13)C2 52  fourier(K = 13)S2 52
##
                    0.0420
                                       0.0317
                    0.0099
                                       0.0099
## s.e.
       fourier(K = 13)C3_52 fourier(K = 13)S3_52
##
##
                    0.0832
                                       0.0346
## s.e.
                    0.0094
                                       0.0094
      fourier(K = 13)C4_52 fourier(K = 13)S4_52
##
##
                    0.0185
                                       0.0398
## s.e.
                    0.0092
                                       0.0092
      fourier(K = 13)C5 52 fourier(K = 13)S5 52
##
```

## **Example: weekly gasoline products**





```
(calls <- readr::read_tsv("http://robjhyndman.com/data/callcenter.txt") %>%
  rename(time = `...1`) %>%
  pivot_longer(-time, names_to = "date", values_to = "volume") %>%
  mutate(
    date = as.Date(date, format = "%d/%m/%Y"),
    datetime = as_datetime(date) + time
) %>%
  as_tsibble(index = datetime))
```

44

calls %>% fill\_gaps() %>% autoplot(volume)



```
calls %>% fill_gaps() %>%
  gg_season(volume, period = "day", alpha = 0.1) +
  guides(colour = FALSE)
```



calls mdl <- calls %>%

```
mutate(idx = row_number()) %>%
 update tsibble(index = idx)
fit <- calls mdl %>%
 model(ARIMA(volume \sim fourier(169, K = 10) + pdq(d=0) + PDQ(0,0,0)))
report(fit)
## Series: volume
## Model: LM w/ ARIMA(1.0.3) errors
##
## Coefficients:
                   ma1 ma2 ma3 fourier(169, K = 10)C1 169
##
          ar1
## 0.989 -0.7383 -0.0333 -0.0282
                                                              -79.1
## s.e. 0.001 0.0061 0.0075 0.0060
                                                                0.7
        fourier(169, K = 10)S1_169 fourier(169, K = 10)C2_169
##
##
                            55.298
                                                      -32.361
                                                        0.378
## s.e.
                             0.701
        fourier(169, K = 10)S2 169 fourier(169, K = 10)C3 169
##
```

47



```
fit %>% forecast(h = 1690) %>%
  autoplot(calls_mdl)
```



```
fit %>% forecast(h = 1690) %>%
  autoplot(filter(calls_mdl, idx > 25000))
```



### Outline

- 1 Regression with ARIMA errors
- 2 Stochastic and deterministic trends
- 3 Dynamic harmonic regression
- 4 Lagged predictors

Sometimes a change in  $x_t$  does not affect  $y_t$  instantaneously

### Sometimes a change in $x_t$ does not affect $y_t$ instantaneously

- $y_t$  = sales,  $x_t$  = advertising.
- $y_t$  = stream flow,  $x_t$  = rainfall.
- $y_t$  = size of herd,  $x_t$  = breeding stock.

### Sometimes a change in $x_t$ does not affect $y_t$ instantaneously

- $y_t$  = sales,  $x_t$  = advertising.
- $y_t$  = stream flow,  $x_t$  = rainfall.
- $y_t$  = size of herd,  $x_t$  = breeding stock.
- These are dynamic systems with input  $(x_t)$  and output  $(y_t)$ .
- $\mathbf{x}_t$  is often a leading indicator.
- There can be multiple predictors.

The model include present and past values of predictor:

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where  $\eta_t$  is an ARIMA process.

The model include present and past values of predictor:

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where  $\eta_t$  is an ARIMA process.

#### Rewrite model as

$$y_t = a + (\gamma_0 + \gamma_1 B + \gamma_2 B^2 + \dots + \gamma_k B^k) x_t + \eta_t$$
  
=  $a + \gamma(B) x_t + \eta_t$ .

The model include present and past values of predictor:

$$y_t = a + \gamma_0 x_t + \gamma_1 x_{t-1} + \cdots + \gamma_k x_{t-k} + \eta_t$$

where  $\eta_t$  is an ARIMA process.

#### Rewrite model as

$$y_t = a + (\gamma_0 + \gamma_1 B + \gamma_2 B^2 + \dots + \gamma_k B^k) x_t + \eta_t$$
  
=  $a + \gamma(B) x_t + \eta_t$ .

- $\gamma(B)$  is called a *transfer function* since it describes how change in  $x_t$  is transferred to  $y_t$ .
- x can influence y, but y is not allowed to influence x.

```
insurance %>%
  pivot_longer(Quotes:TVadverts) %>%
  ggplot(aes(x = Month, y = value)) + geom_line() +
  facet_grid(vars(name), scales = "free_y") +
  labs(y = NULL, title = "Insurance advertising and quotations")
```

#### Insurance advertising and quotations





```
fit <- insurance %>%
  # Restrict data so models use same fitting period
  mutate(Quotes = c(NA,NA,NA,Quotes[4:40])) %>%
  # Fstimate models
 model(
    ARIMA(Ouotes ~ pdq(d = 0) + TVadverts).
    ARIMA(Quotes \sim pdq(d = 0) + TVadverts + lag(TVadverts)),
    ARIMA(Quotes \sim pdq(d = 0) + TVadverts + lag(TVadverts) +
            lag(TVadverts, 2)),
    ARIMA(Quotes \sim pdg(d = 0) + TVadverts + lag(TVadverts) +
            lag(TVadverts, 2) + lag(TVadverts, 3))
```

glance(fit)

| Lag order | sigma2 | log_lik | AIC  | AICc | BIC  |
|-----------|--------|---------|------|------|------|
| 0         | 0.265  | -28.3   | 66.6 | 68.3 | 75.0 |
| 1         | 0.209  | -24.0   | 58.1 | 59.9 | 66.5 |
| 2         | 0.215  | -24.0   | 60.0 | 62.6 | 70.2 |
| 3         | 0.206  | -22.2   | 60.3 | 65.0 | 73.8 |

```
fit best <- insurance %>%
 model(ARIMA(Quotes ~ pdq(d=0) + TVadverts + lag(TVadverts)))
report(fit best)
## Series: Ouotes
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
         ar1 ma1 ma2 TVadverts lag(TVadverts) intercept
##
## 0.512 0.917 0.459
                            1.2527 0.1464 2.16
## s.e. 0.185 0.205 0.190 0.0588 0.0531 0.86
##
## sigma^2 estimated as 0.2166: log likelihood=-23.9
## AIC=61.9 AICc=65.4 BIC=73.7
```

```
fit best <- insurance %>%
 model(ARIMA(Quotes ~ pdq(d=0) + TVadverts + lag(TVadverts)))
report(fit best)
## Series: Ouotes
## Model: LM w/ ARIMA(1,0,2) errors
##
## Coefficients:
       ar1 ma1 ma2 TVadverts lag(TVadverts) intercept
##
## 0.512 0.917 0.459 1.2527 0.1464 2.16
## s.e. 0.185 0.205 0.190 0.0588 0.0531 0.86
##
## sigma^2 estimated as 0.2166: log likelihood=-23.9
## AIC=61.9 AICc=65.4 BIC=73.7
                   v_t = 2.155 + 1.253x_t + 0.146x_{t-1} + n_t
```

 $\eta_t = 0.512 \eta_{t-1} + \varepsilon_t + 0.917 \varepsilon_{t-1} + 0.459 \varepsilon_{t-2}$ 

```
advert_a <- new_data(insurance, 20) %>%
  mutate(TVadverts = 10)
forecast(fit_best, advert_a) %>% autoplot(insurance)
```



```
advert_b <- new_data(insurance, 20) %>%
  mutate(TVadverts = 8)
forecast(fit_best, advert_b) %>% autoplot(insurance)
```



```
advert_c <- new_data(insurance, 20) %>%
  mutate(TVadverts = 6)
forecast(fit_best, advert_c) %>% autoplot(insurance)
```

