The negatives do not indicate any stars or nebulæ on the orbital course of the comet that might temporarily add to its brightness when in transit over them, but whatever the cause may have been, the reality of the phenomena can scarcely be doubted, for both eye-observations and the photographs confirm each other.

On the Orbit of 2 1785. By J. E. Gore.

Using the measures of this binary pair given by Mr. Burnham in the *Monthly Notices* for 1892 December, I have computed the orbit, and find the following provisional elements—

Elements of ≥ 1785.

P = 125.52 years	& = 137° 1'
T = 1904.84	$\lambda = 220^{\circ} 21'$
e = 0.6377	$a=\mathbf{2''}\cdot\mathbf{j}8$
$i = 34^{\circ} 46'$	$\mu = +2^{\circ .868}$

The following is a comparison between the measures and the positions computed from the above elements:—

		_	_				
Epoch.	Observer.	$\theta_{\mathbf{o}}$	$\theta_{\mathbf{c}}$	$\theta_{\mathbf{o}} - \theta_{\mathbf{c}}$	ρ_{o}	$ ho_{f c}$	$\rho_{\rm o} - \rho_{\rm c}$
1823.40	South	160 · 4	1 57·3	+ 3.1	5 [.] 66	3·25	(+2.41)
1830.13	Struve	164.4	162.7	+ 1.4	3.49	3.33	+0.19
1830.50	Herschel	164 [.] 5	τ62·8	+ 1.7	4.62	3.33	(+, 1.29)
1831.34	$\mathbf{Herschel}$	166.3	163.6	+ 2.7	(7.69)	3.38	(+4.31)
1843.48	Mädler	174 [.] 6	173.0	+ 1.6	3.39	3.30	+ 0.09
1846.40	Philpott	176.2	175.3	+0.9	3.19	3.26	-0.04
1850.44	$\mathbf{M}\ddot{\mathbf{a}}\mathbf{dler}$	178·0	178.7	- 0.7	•••	3.18	•••
1851.58	Mädler	178.7	179 [.] 4	-o.4	3.48	3.19	+0.32
1855.32	Mädler	183.6	182.9	+0.4	3.11	3.08	+0.03
1856.31	Mä dle r	183.1	184·0	-0.9	2.97	3.02	-008-
1856.36	Secchi	186.0	184.0	+ 2.0	3.24	3.02	+0.19
1858.38	${\bf Dembowski}$	185.1	185·8	-0.7	3.13	3.02	+0.13
1859.32	${f Morton}$	185.4	186.7	-1.3	2 ·89	2.97	-0.08
1861.57	$\mathbf{M}\ddot{\mathbf{a}}\mathbf{dler}$	190.0	188.9	+ 1.1	3.21	2.90	+0.91
1863.31	Radcliffe	192.0	190.7	+ 1.3	2.73	283	-0.10
1863.68	${f Dembowski}$	191.1	19 1 1	0.0	2.66	2.82	-o 16
1864.47	Engelmann	193.5	192.0	+ 1.2	2.88	2.80	+008
1865.42	Engelmann	193.8	193.0	+ 0.8	2.87	2.77	+0.10

334	,	, ·	,,,,,,,		, .		
Epoch.	Observer.	θ_{0}	$ heta_{f c}$	$\theta_{\rm o} - \theta_{\rm c}$	ρο	$ ho_{ m c}$	$\rho_{\rm o} - \rho_{\rm c}$
1865.82	Dembowski	193.3 o	• 193 [.] 5	0 -0.5	" 2·59	" 2·75	-0.19 "
1867:40	O. Struve	196.1	195.3	+ 0.8	2.81	2.70	+0.11
1867.83	Dembowski	195.8	195.8	0.0	2.25	2.68	-0.19
1870.19	Dunér	198.6	198.8	-0.3	2 [.] 54	2.27	-0.03
1870.33	O. Struve	199.4	199.0	+0.4	2.79	2 ·57	+0.52
1870.35	Gledhill	200.2	19 9 .0	+ 1.2	2.24	2.24	-0.03
1870.81	Dembowski	199.4	199.6	-0.3	2.43	2.25	-0.13
1871.35	Radcliffe	199.1	200.3	-1.3	2'43	2.23	-0.10
1871.38	\mathbf{K} not \mathbf{t}	199.2	200.3	- I · I	2.21	2.23	-0°02
1871.43	Pierce	199.9	200'4	-0.2	2 ·38	2.23	-0.12
1872.43	Dunér	201.7	201.7	0.0	2.67	2 .49	+0.18
1872:89	$\mathbf{Dembowski}$	201.9	202.3	-0.4	2.32	2 .47	-0.12
1873.42	Linstedt	200'2	203.1	-2.9	2.41	2.45	-0.04
1873.57	Wilson & Seabroke	202.2	203.3	- 1.1	2.45	2'44	+0.01
1874.79	Dembowski	205.2	205.1	+0.1	2.18	2.37	-0.19
1875:24	Dunér	206.4	205.8	+ 0.6	2.47	2.35	+ O'I2
1875.32	Schiaparelli	205 3	205.9	-o.e	2 .34	2.34	0.00
1876.00	Wilson & Seabroke	207.6	20 6 9	+0.7	2.37	2.30	+ 0.07
1876:41	Plummer	208.6	207.5	+ 1.1	2.26	2.28	+0.28
1876.45	Schiaparelli	206.9	207.6	-o.4	2.12	2.28	-0.13
1876•85	Dembowski	208.5	208.2	+0.3	2.14	2.26	-0.13
1877:32	Doberck	208.4	209.1	-o.2	2.31	2.24	-0.03
1877.38	Schiaparelli	208.6	209.2	- 0.6	2.22	2.24	+0.01
1878:34	Dembowski	210.2	210.9	-0.4	2'14	2.51	-0.07
1878.39	Seabroke	210.7	211.0	-o·3	2.22	2.51	+0.34
1879.42	Hall	214.2	212.8	+ 1.7	2.04	2.16	-0'I2
1879:46	Schiaparelli	212.5	212.9	-0.4	2.30	2.16	+0.04
1879.50	Seabroke	214.0	213.0	+1.0	2.07	2.16	-0.09
1880.32	Hall	215 [.] 9	214.5	+ 1.4	1.92	(2.13)	-0.30
1880.32	Bigourdan	213.8	214.6	-o.8	2.13	2'11	+0.02
1880.46	$\mathbf{Jedrzejewicz}$	215.4	214.7	+0.2	2.27	2.11	+0.19
1880.46	${f Seabroke}$	215.2	214.7	+0.2	2.03	2·11	-0.08
1881.33	Bigourdan	21 6·9	216·5	+04	1.98	2.05	-0.04
1881.36	Schiaparelli	217.9	216.6	+1.3	2·11	2.02	+ 0.09
1881.40	Hough	215.7	216.6	-0.9	1.96	2.02	-0.09
1881.40	Hall	217.8	216.6	+ I·2	1.92	2.02	-0.13
1882.42	Hall	219.9	218.8	+ 1.1	1.93	2.00	-0.04
1882:44	Schiaparelli	220'0	218.9	+ 1.1	2.13	2.00	+0.13
1882.45	Seabroke	221.3	218.9	+ 2.4	2.22	2.00	+ 0° 22

Epoch.	Observer.	$\theta_{\mathbf{o}}$	$\theta_{\mathbf{c}}$	$\theta_{\rm o} - \theta_{\rm c}$	ρ_{o}	ρ _c	ρ ₀ ρ _c
-00- 6		0	0	0	"	"	" +0.22
1882.46	Rugby	221.9	218.9	+ 3.0	2.55	2.00	
1882.93	Engelmann	221.2	219.9	+ 1.3	2.06	1.97	+0.09
1883.42	Hall	2 21·6	221.0	+ 0.6	1.90	1.94	-0.04
1883 46	Schiaparelli	221.8	221.1	+ 0.4	1.91	1.94	-0.03
1884.39	\mathbf{Hall}	224.8	223.3	+ 1.2	1.86	1.89	-0.03
1884.46	Schiaparelli	224 ·9	223.5	+ 1.4	1.98	1.89	+ 0.09
1884 63	$\operatorname{Rugb}_{\mathbf{y}}$	226.6	223.9	+ 2.7	1.48	1.88	-0.10
1885.35	Perrotin	223.8	225.7	– 1. 9	1.86	1.84	+0.02
1885·36	\mathbf{Hall}	22 6·8	225.7	+ 1.1	1.78	1.84	-0 .06
1885.43	Rugby	227.9	225.9	+ 2.0	1.72	1.84	-0.13
1885.44	Schiaparelli	227.1	225.9	+1.3	1.83	1.84	-0.01
1886.38	Perrotin	228.7	228.4	+0.3	1.68	1.49	-o.11
1886.41	Rugby	231.4	228.5	+ 2.9	1.46	1.4 9	-0.33
1886.41	$_{ m Hall}$	22 8 o	228.5	-o·5	1.83	1.79	+0.04
1887.37	\mathbf{Hall}	232.7	231.3	+ 1.4	1.62	1.73	-0.11
1887.45	Schiaparelli	231.8	231.5	+0.3	1.67	1.73	-0.06
1887.45	Rugby	2 32·8	231.2	+ 1.3	1.08	1.73	- o·65
1887.59	Tarrant	2 28·0	231.9	-3.9	1.80	1.72	+ 0.08
1888.33	\mathbf{Rugby}	236.5	234.1	+2.4	1.13	1.67	-o·55
1888.37	\mathbf{Hall}	233.9	234.2	-o.3	1.61	1.67	-0.06
1889.28	\mathbf{Rugby}	235.3	237.1	- 1 .8	1.60	1.91	-0.01
1889.45	\mathbf{Hall}	237.1	237.7	-o6	1.21	1.61	-0.10
1890.43	Hall	240.7	24I'I	-0.4	1.24	1.24	0.00
1890.47	Hayn	240.2	241.2	-o.4	1.57	1.24	+0.03
1892.37	Burnham	24 8·6	248.6	0.0	1.46	1.43	+0.03

As the great majority of the residuals in position-angle are less than 2°, and many under 1°, the agreement may be considered satisfactory.

Assuming that the mass of the system is equal to the mass of the Sun, the "hypothetical parallax" will be—

$$p = aP^{-\frac{2}{3}} = o'' \cdot o87.$$

On the Orbit of the Binary Star β 416. By J. E. Gore.

This star, which is identical with BAC 5825, was discovered as a wide double star by Sir John Herschel on 1837 June 8, during his residence at the Cape of Good Hope. In 1876 Mr. Burnham found the brighter component to be also double, but only estimated the position-angle and distance. Since its