FCC SAR Test Report

APPLICANT : Zebra Technologies Corporation

EQUIPMENT : Enterprise Tablet

BRAND NAME : Zebra

MODEL NAME : **ET55BE**

FCC ID : UZ7ET55BE

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Eric Huang / Deputy Manager

Este man?

Approved by: Jones Tsai / Manager

Report No. : FA650305

SPORTON INTERNATIONAL INC.

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: UZ7ET55BE

Issued Date: Jun. 21, 2016 Page 1 of 111

Form version.: 160427

Table of Contents

	Statement of Compliance	
	Administration Data	
	Guidance Standard	
4.	Equipment Under Test (EUT) Information	
	4.1 General Information	6
	4.2 General LTE SAR Test and Reporting Considerations	
	Proximity Sensor Triggering Test	
6.	RF Exposure Limits	10
	6.1 Uncontrolled Environment	
	6.2 Controlled Environment	10
7.	Specific Absorption Rate (SAR)	11
	7.1 Introduction	11
	7.2 SAR Definition	
8.	System Description and Setup	
	8.1 E-Field Probe	13
	8.2 Data Acquisition Electronics (DAE)	13
	8.3 Phantom	14
	8.4 Device Holder	15
9.	Measurement Procedures	16
	9.1 Spatial Peak SAR Evaluation	16
	9.2 Power Reference Measurement	17
	9.3 Area Scan	17
	9.4 Zoom Scan	18
	9.5 Volume Scan Procedures	18
	9.6 Power Drift Monitoring	
10). Test Equipment List	
	10.1 Tissue Verification	20
	10.2 System Performance Check Results	23
11	. RF Exposure Positions	23
	11.1 SAR Testing for Tablet	23
12	. Conducted RF Output Power (Unit: dBm)	24
13	S SAR Test Results	64
	13.1 Body SAR	66
	13.2 Repeated SAR Measurement	71
14	Simultaneous Transmission Analysis	72
	14.1 Body Exposure Conditions	73
	14.2 SPLSR Evaluation and Analysis	
	. Uncertainty Assessment	108
16	6. References	111
Α	ppendix A. Plots of System Performance Check	
	ppendix B. Plots of High SAR Measurement	
Α	opendix C. DASY Calibration Certificate	
Α	ppendix D. Test Setup Photos	

Revision History

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA650305	Rev. 01	Initial issue of report	Jun. 21, 2016

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: UZ7ET55BE

Report No.: FA650305

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Zebra Technologies Corporation, Enterprise Tablet, ET55BE, are as follows.

Report No. : FA650305

	pment ass	Highest SAR Summary Body 1g SAR (W/kg)	Highest Simultaneous Transmission 1g SAR (W/kg)		
	GSM850	1.03			
	GSM1900	0.65			
	WCDMA II	1.18			
	WCDMA IV	0.58			
	WCDMA V	0.61			
	CDMA BC0	0.54			
Linguage	CDMA BC1	1.13	4.50		
Licensed	CDMA BC10	0.60	1.59		
	LTE Band 2	1.27			
	LTE Band 4	0.58			
	LTE Band 5	0.82			
	LTE Band 13	0.76			
	LTE Band 17	0.42			
	LTE Band 25	1.13			
DTS	2.4GHz WLAN	0.87	1.59		
NII	5GHz WLAN	1.15	1.59		
DSS	Bluetooth	0.21	1.48		
Date of	Testing:	2016/5/31	~ 2016/6/8		

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version.: 160427 FCC ID: UZ7ET55BE

2. Administration Data

Testing Laboratory										
Test Site SPORTON INTERNATIONAL INC.										
Test Site Location	No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978									

Report No. : FA650305

Applicant								
Company Name	Zebra Technologies Corporation							
Address	1 Zebra Plaza, Holtsville, NY 11742							

	Manufacturer
Company Name	Zebra Technologies Corporation
Address	1 Zebra Plaza, Holtsville, NY 11742

3. Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	Enterprise Tablet
Brand Name	Zebra
Model Name	ET55BE
FCC ID	UZ7ET55BE
IMEI Code	352233070055141
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz CDMA2000 BC0: 824.7 MHz ~ 848.31 MHz CDMA 2000 BC1: 1851.25 MHz ~ 1908.75 MHz CDMA 2000 BC10: 817.9 MHz ~ 823.1 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 25: 1850 MHz ~ 1915 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA CDMA2000: 1xRTT/1xEv-Do(Rev.0)/1xEv-Do(Rev.A) LTE: QPSK, 16QAM 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth EDR/LE NFC: ASK
HW Version	DV1
SW Version	5.1.1
FW Version	7.35.205.4
MFD	23-Mar-16
	Identical Prototype

Report No. : FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 6 of 111

4.2 General LTE SAR Test and Reporting Considerations

	Summarized necessary items addressed in KDB 941225 D05 v02r05															
FC	C ID				JZ7ET5		omo adare	5000a iii 10			7 5 0 0 102					
	uipment Na	me					lot									
Ор		quency R	ange of eacl	n LTE L	Enterprise Tablet LTE Band 02: 1850 MHz ~ 1910 MHz LTE Band 04: 1710 MHz ~ 1755 MHz LTE Band 05: 824 MHz ~ 849 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 17: 704 MHz ~ 716 MHz LTE Band 25: 1850 MHz ~ 1915 MHz											
Ch	annel Band	dwidth		 L L	LTE Band 02:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 04:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 05:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 13: 5MHz, 10MHz LTE Band 17: 5MHz, 10MHz LTE Band 17: 5MHz, 10MHz LTE Band 25:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz											
up	link modula	tions used	t		QPSK, and 16QAM											
LT	E Voice / D	ata requir	ements		ota on	ly										
					Mo	Tal		Maximum I				nerve called the second			R (dB)	1
LT	E MPR per	manently	built-in by de	esign			1.4	3.0		5	10	15	20	+		
						QPSK	MHz > 5	MHz > 4	_	Hz 8	MHz > 12	MHz > 16	MHz > 18	+	≤ 1	-
						6 QAM		≤ 4		8	≤ 12	≤ 16	≤ 18	_	<u>- ·</u> ≤ 1	1
						16 QAM	>5	> 4 ator configu	_	8	> 12	> 16	> 18		≤ 2]
Po			configuration	r r fv. SAD	neasure ot inclu	erly co ement; uded in	onfigured	base stat spectrum peport.	ion s olots f	imula or ea	itor was ch RB allo	used for ocation and	the Sad offset of	AR a	nd po uration	wer
001	прпапос		Transm	ission (H	, M, L)	chann	el numbe	rs and freq	uenc	ies ir	each LTI	E band				
					LTE Band 2											
	Bandwidth	1.4 MHz	Bandwid	th 3 MHz	Ва	ndwidtl	h 5 MHz	Bandwidth 10 MHz			Bandwi	dth 15 MH	z Ban	dwidt	n 20 M	Hz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)		า. #	Freq. (MHz)	Ch. #	(M	eq. Hz)	Ch. #	Freq. (MHz)		n. #	Fred (MH:	z)
느	18607	1850.7	18615	1851.5	_	625	1852.5	18650		55	18675	1857.5		700	186	
M	18900	1880	18900	1880	_	900	1880	18900		80	18900	1880		900	188	
Н	19193	1909.3	19185	1908.5	19	175	1907.5	19150	19	05	19125	1902.5	19	100	190	0
	Doodwidth	1 4 MHz	Dondwid	th 2 MI I=	Do	الم المراز طفا	LTE Ba		h 10 l	ALI	Dandui	dth 15 MH	- Bon	المارين مادا	- 20 M	LI-
	Bandwidth	Freq.		th 3 MHz Freq.			h 5 MHz Freq.	Bandwidt		viHZ eq.		dth 15 MH Freq.	z Ban	iawiat	n 20 M Fred	
	Ch. #	(MHz)	Ch. #	(MHz)	Cł	า. #	(MHz)	Ch. #		eq. Hz)	Ch. #	(MHz)	Ch	n. #	(MH	
L	19957	1710.7	19965	1711.5	19	975	1712.5	20000		'15	20025	1717.5	5 200	050	172	
М	20175	1732.5	20175	1732.5	20	175	1732.5	20175	173	32.5	20175	1732.5	20°	175	1732	2.5
Н	20393	1754.3	20385	1753.5	203	375	1752.5	20350	17	'50	20325	1747.5	203	300	174	5
							LTE Ba	ind 5								
	Ban	dwidth 1.4	MHz	В	andwid	lth 3 M	Hz	Ва	ndwid	th 5 N	ИHz		andwidt	th 10 MHz		
	Ch. #	Ch.	#	Fred	q. (MHz)	Ch. #	!	Freq. (I		q. (MHz) Ch. ‡		# Fre		req. (MHz)		
L	20407 824.7 2			204	15	8	325.5	2042	5			326.5 20450		50 8		
М	20525		836.5	205	25	8	336.5	20525	5		836.5	205	525		836.5	
Н	20643		848.3	206	35	8	347.5	20625	5		846.5	206	600		844	

Report No. : FA650305

FCC ID : UZ7ET55BE Page 7 of 111 Form version. : 160427

26683

1914.3

26675

1913.5

26665

			Transm	ission (H, I	M, L) chan	nel numbe	rs and freq	uencies in	each LTE	band							
	LTE Band 13																
			Bandwid	th 5 MHz			Bandwidth 10 MHz										
		Channel #			Freq.(MHz))		Channel #			Freq.(MHz))					
L		23205			779.5												
М		23230			782			23230			782						
Н		23255			784.5												
	23233 / 764.5 LTE Band 17																
			Bandwid	th 5 MHz					Bandwidt	h 10 MHz							
		Channel #			Freq.(MHz))		Channel #		Freq. (MHz)							
L		23755			706.5			23780		709							
М		23790			710			23790			710						
Н		23825			713.5			23800			711						
						LTE Bai	nd 25										
	Bandwidt	h 1.4 MHz	Bandwid	th 3 MHz	Bandwid	th 5 MHz	Bandwidt	h 10 MHz	Bandwidt	h 15 MHz	Bandwidt	h 20 MHz					
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)					
L	26047	1850.7	26055	1851.5	26065	1852.5	26090	1855	26115	1857.5	26140	1860					
М	26340	1880	26340	1880	26340	1880	26340	1880	26340	1880	26340	1880					

1912.5

26640

1910

26615

1907.5

26590

1905

Report No. : FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 8 of 111

5. Proximity Sensor Triggering Test

<Power Reduction by Proximity Sensing>

EUT uses capacitive proximity sensing to reduce the power in the cellular mode. The proximity sensor does not effect to WLAN and Bluetooth bands. Refer operation description for antenna schematics.

Report No. : FA650305

<Bottom Face and Side Triggering Distances>

The Proximity sensors are located near the cellular main antenna and trigger on the "Bottom Face (back side)" and on the Edge 1 (Top Edge) of the EUT.

SAR proximity sensor's detection distance was determined as described in FCC KDB 616217 D04 section6.2.

Back side trigger 3mm steps													
40mm	37mm	34mm	31mm	28mm	25mm	22mm	19mm	16mm	13mm	10mm	7mm	4mm	0mm
OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

Back side trigger 1mm steps													
18mm	17mm	16mm	15mm	14mm	13mm	12mm	11mm	10mm	9mm	8mm	7mm	6mm	0mm
OFF	OFF	OFF	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON

Top edge trigger 3mm steps													
40mm	37mm	34mm	31mm	28mm	25mm	22mm	19mm	16mm	13mm	10mm	7mm	4mm	0mm
OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON

Top edge trigger 1mm steps													
15mm	14mm	13mm	12mm	11mm	10mm	9mm	8mm	7mm	6mm	5mm	4mm	3mm	0mm
OFF	OFF	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON

Tilt angle test, distance 13mm													
-50°	-45°	-40°	-30°	-20°	-10°	0°	10°	20°	30°	40°	45°	50°	60°
OFF	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON

The most conservative human proximity detections distances are 13mm for Edge1 and 15mm for bottom face. It is made sure that the tablet can be tilted at least ± 45 degrees along the Edge 1 at 13mm distance without restoring full output power.

<SAR test distances and summary>

Exposure Position		Bottom Face	Edge 1	Edge 2	Edge 3	Edge 4
cellular mode	Full Power	Yes 12mm	Yes 14mm	No > 5cm(**)	No > 5cm(**)	Yes 0mm
	Reduced Power	Yes 0mm	Yes 0mm	No > 5cm(**)	No > 5cm(**)	No
WLAN/BT	Full Power	Yes 0mm	No	Yes 0mm	No	No > 5cm(**)

Remark:

SPORTON INTERNATIONAL INC.

FCC ID : UZ7ET55BE Page 9 of 111 Form version. : 160427

^{**}the distance is 0mm to the flat phantom, and SAR evaluation is required for bottom face and the edges with the antenna within 5cm to the user.

6. RF Exposure Limits

6.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA650305

6.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

7. Specific Absorption Rate (SAR)

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA650305

7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 21, 2016

Form version.: 160427 FCC ID: UZ7ET55BE Page 11 of 111

8. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No. : FA650305

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.

8.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz – 4 GHz; Linearity: ±0.2 dB (30 MHz – 4 GHz)
Discontinuits.	
Directivity	±0.2 dB in TSL (rotation around probe axis)
	±0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	$5 \mu W/g - >100 mW/g$;
	Linearity: ±0.2 dB
Dimensions	Overall length: 337 mm (tip: 20 mm)
	Tip diameter: 3.9 mm (body: 12 mm)
	Distance from probe tip to dipole centers: 3.0 mm

Report No. : FA650305

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)			
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)			
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)			
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)			
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm			

8.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: UZ7ET55BE Page 13 of 111

Issued Date: Jun. 21, 2016 Form version.: 160427

8.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	*
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No. : FA650305

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

SPORTON INTERNATIONAL INC.

8.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No. : FA650305

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version.: 160427 FCC ID: UZ7ET55BE Page 15 of 111

9. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA650305

- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power
- Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band (e)
- Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement (a)
- (b) Area scan
- (c) Zoom scan
- Power drift measurement

SPORTON INTERNATIONAL INC.

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters)
- Generation of a high-resolution mesh within the measured volume (c)
- Interpolation of all measured values form the measurement grid to the high-resolution grid (d)
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e)
- Calculation of the averaged SAR within masses of 1g and 10g

FCC ID: UZ7ET55BE Page 16 of 111

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°		
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$		
Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Form version.: 160427 FCC ID: UZ7ET55BE Page 17 of 111

Issued Date: Jun. 21, 2016

Report No.: FA650305

9.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA650305

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

				> 3 GHz	
Maximum zoom scan s	Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: $\Delta z_{Zoom}(n)$	≤ 5 mm	$3 - 4 \text{ GHz}: \le 4 \text{ mm}$ $4 - 5 \text{ GHz}: \le 3 \text{ mm}$ $5 - 6 \text{ GHz}: \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid $\Delta z_{Zoom}(n>1)$:	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
		between subsequent	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	X V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

FCC ID : UZ7ET55BE Page 18 of 111 Form version. : 160427

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

10. Test Equipment List

Manufacturer	Name of Equipment	Turno /M o del	Carial Number	Calibration		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	750MHz System Validation Kit	D750V3	1012	May. 18, 2016	May. 17, 2017	
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 21, 2016	Mar. 20, 2017	
SPEAG	1750MHz System Validation Kit	D1750V2	1068	Nov. 23, 2015	Nov. 22, 2016	
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Oct. 22, 2015	Oct. 21, 2016	
SPEAG	2450MHz System Validation Kit	D2450V2	736	Aug. 20, 2015	Aug. 19, 2016	
SPEAG	5GHz System Validation Kit	D5GHzV2	1128	Jul. 20, 2015	Jul. 19, 2016	
SPEAG	Data Acquisition Electronics	DAE4	778	May. 12, 2016	May. 11, 2017	
SPEAG	Data Acquisition Electronics	DAE3	577	Sep. 24, 2015	Sep. 23, 2016	
SPEAG	Data Acquisition Electronics	DAE4	1399	Nov. 23, 2015	Nov. 22, 2016	
SPEAG	Dosimetric E-Field Probe	ES3DV3	3270	Sep. 28, 2015	Sep. 27, 2016	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3931	Oct. 01, 2015	Sep. 30, 2016	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3955	Nov. 24, 2015	Nov. 23, 2016	
WonDer	Thermometer	WD-5015	TM281	Oct. 16, 2015	Oct. 15, 2016	
Wisewind	Thermometer	HTC-1	TM560	Oct. 16, 2015	Oct. 15, 2016	
Wisewind	Thermometer	HTC-1	TM225	Oct. 16, 2015	Oct. 15, 2016	
Anritsu	Radio Communication Analyzer	MT8820C	6201341950	Dec. 18, 2015	Dec. 17, 2016	
Anritsu	Radio Communication Analyzer	MT8820C	6201381760	May. 10, 2016	May. 09, 2017	
Agilent	Wireless Communication Test Set	E5515C	MY50266977	May. 17, 2016	May. 16, 2017	
R&S	BT Base Station	CBT	101136	Sep. 17, 2015	Sep. 16, 2016	
SPEAG	Device Holder	N/A	N/A	N/A	N/A	
R&S	Signal Generator	MG3710A	6201502524	Dec. 18, 2015	Dec. 17, 2016	
Agilent	ENA Network Analyzer	E5071C	MY46316648	Jan. 12, 2016	Jan. 11, 2017	
SPEAG	Dielectric Probe Kit	DAK-3.5	1126	Jul. 21, 2015	Jul. 20, 2016	
LINE SEIKI	Digital Thermometer	LKMelectronic	DTM3000SPEZIAL/90900	Aug. 26, 2015	Aug. 25, 2016	
Anritsu	Power Meter	ML2495A	1419002	May. 10, 2016	May. 09, 2017	
Anritsu	Power Sensor	MA2411B	1339124	May. 10, 2016	May. 09, 2017	
Agilent	Spectrum Analyzer	E4408B	MY44211028	Aug. 24, 2015	Aug. 23, 2016	
ATM	Dual Directional Coupler	C122H-10	P610410z-02	Not	te 1	
Woken	Attenuator 1	WK0602-XX	N/A	Not	te 1	
PE	Attenuator 2	PE7005-10	N/A	Not	te 1	
PE	Attenuator 3	PE7005- 3	N/A	Not	te 1	
AR	Power Amplifier	5S1G4M2	0328767	Not	te 1	
Mini-Circuits	Power Amplifier	ZVE-3W	162601250	Not	iο 1	

Report No. : FA650305

General Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and
the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the
network analyzer. The reading of the power meter was offset by the path loss difference between the path to the
power meter and the path to the system check source to monitor the actual power level fed to the system check
source.

FCC ID : UZ7ET55BE Page 19 of 111 Form version. : 160427

System Verification

10.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA650305

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For Head				
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	0	45.1	1.96	39.0
				For Body				
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	68.1	0	0	0.1	0	31.8	2.16	52.5

Simulating Liquid for 5GHz, Manufactured by SPEAG

<u> </u>	
Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
750	MSL	22.4	0.965	55.848	0.96	55.50	0.52	0.63	±5	2016/6/2
835	MSL	22.3	1.011	57.038	0.97	55.20	4.23	3.33	±5	2016/6/1
835	MSL	22.4	0.970	57.239	0.97	55.20	0.00	3.69	±5	2016/6/3
1750	MSL	22.2	1.502	55.061	1.49	53.40	0.81	3.11	±5	2016/5/31
1900	MSL	22.2	1.526	53.842	1.52	53.30	0.39	1.02	±5	2016/5/31
1900	MSL	22.5	1.515	53.915	1.52	53.30	-0.33	1.15	±5	2016/6/1
1900	MSL	22.6	1.524	52.792	1.52	53.30	0.26	-0.95	±5	2016/6/3
1900	MSL	22.4	1.545	54.037	1.52	53.30	1.64	1.38	±5	2016/6/8
2450	MSL	22.6	1.941	53.431	1.95	52.70	-0.46	1.39	±5	2016/6/4
2450	MSL	22.6	1.941	53.431	1.95	52.70	-0.46	1.39	±5	2016/6/4
5250	MSL	22.6	5.520	47.112	5.36	48.95	2.99	-3.75	±5	2016/6/4
5600	MSL	22.6	5.965	46.488	5.77	48.50	3.38	-4.15	±5	2016/6/4
5750	MSL	22.6	6.169	46.200	5.94	48.28	3.86	-4.31	±5	2016/6/4

FCC ID : UZ7ET55BE Page 20 of 111 Form version. : 160427

<Tissue Dielectric Parameter Check for Low / Middle / High Frequencies> General Note:

The tissue measure results for low / middle / high frequencies list below, the results were used in the Dasy SAR system to perform interpolation to determine the dielectric parameters on the SAR test device. The SAR test plots may slightly difference between the tables below due to the digit rounding in the software calculated.

Report No. : FA650305

			Conductivity		Conductivity			Delta (ε _r)		
СН	(MHz)	Туре	(σ)	(ε _r)	Target (σ)	Target (ε _r)	(%)	(%)	Limit (%)	Date
9262	1852.4	Body	1.473	54.025	1.52	53.30	-3.08	1.36	±5	May. 31, 2016
9400	1880	Body	1.503	53.928	1.52	53.30	-1.11	1.18	±5	May. 31, 2016
9538	1907.6	Body	1.534	53.815	1.52	53.30	0.93	0.97	±5	May. 31, 2016
1312	1712.4	Body	1.462	55.167	1.47	53.47	-0.57	3.12	±5	May. 31, 2016
1413	1732.6	Body	1.484	55.109	1.48	53.43	0.24	3.20	±5	May. 31, 2016
1513	1752.6	Body	1.505	55.056	1.49	53.39	0.97	3.10	±5	May. 31, 2016
20050	1720	Body	1.469	55.144	1.47	53.46	-0.05	3.07	±5	May. 31, 2016
20175	1732.5	Body	1.483	55.109	1.48	53.43	0.23	3.20	±5	May. 31, 2016
20300	1745	Body	1.496	55.072	1.49	53.41	0.43	3.13	±5	May. 31, 2016
25	1851.25	Body	1.457	54.060	1.52	53.30	-4.15	1.43	±5	Jun. 01, 2016
600	1880	Body	1.490	53.986	1.52	53.30	-1.97	1.29	±5	Jun. 01, 2016
1175	1908.75	Body	1.525	53.883	1.52	53.30	0.36	1.09	±5	Jun. 01, 2016
23230	782	Body	0.996	55.520	0.96	55.68	3.79	-0.32	±5	Jun. 02, 2016
23780	709	Body	0.925	56.310	0.96	55.66	-3.61	1.09	±5	Jun. 02, 2016
23790	710	Body	0.926	56.298	0.96	55.66	-3.52	1.07	±5	Jun. 02, 2016
23800	711	Body	0.927	56.287	0.96	55.66	-3.42	1.05	±5	Jun. 02, 2016
4132	826.4	Body	1.002	57.107	0.97	55.23	3.32	3.46	±5	Jun. 01, 2016
4182	836.4	Body	1.012	57.026	0.97	55.20	4.33	3.31	±5	Jun. 01, 2016
4233	846.6	Body	1.022	56.929	0.98	55.16	4.31	3.13	±5	Jun. 01, 2016
26140	1860	Body	1.459	53.996	1.52	53.30	-4.03	1.31	±5	May. 31, 2016
26340	1880	Body	1.480	53.928	1.52	53.30	-2.63	1.18	±5	May. 31, 2016
26590	1905	Body	1.508	53.825	1.52	53.30	-0.78	0.99	±5	May. 31, 2016
20450	829	Body	1.005	57.086	0.97	55.22	3.60	3.42	±5	Jun. 01, 2016
20525	836.5	Body	1.012	57.025	0.97	55.20	4.34	3.31	±5	Jun. 01, 2016
20600	844	Body	1.020	56.956	0.98	55.17	4.05	3.18	±5	Jun. 01, 2016
1013	824.7	Body	0.961	57.328	0.97	55.24	-0.94	3.85	±5	Jun. 03, 2016
384	836.52	Body	0.971	57.225	0.97	55.20	0.13	3.67	±5	Jun. 03, 2016
777	848.31	Body	0.982	57.147	0.99	55.16	-0.76	3.53	±5	Jun. 03, 2016
476	817.9	Body	0.955	57.388	0.97	55.26	-1.55	3.78	±5	Jun. 03, 2016
580	820.5	Body	0.957	57.363	0.97	55.25	-1.31	3.73	±5	Jun. 03, 2016
684	823.1	Body	0.959	57.339	0.97	55.24	-1.09	3.88	±5	Jun. 03, 2016
26140	1860	Body	1.478	52.950	1.52	53.3	-2.76	-0.66	±5	Jun. 03, 2016
26340	1880	Body	1.501	52.880	1.52	53.3	-1.25	-0.79	±5	Jun. 03, 2016
26590	1905	Body	1.530	52.770	1.52	53.3	0.66	-0.99	±5	Jun. 03, 2016
512	1850.2	Body	1.466	52.970	1.52	53.3	-3.55	-0.62	±5	Jun. 03, 2016
661	1880	Body	1.501	52.880	1.52	53.3	-1.25	-0.79	±5	Jun. 03, 2016
810	1909.8	Body	1.535	52.750	1.52	53.3	0.99	-1.03	±5	Jun. 03, 2016
128	824.2	Body	0.960	57.331	0.97	55.24	-0.99	3.86	±5	Jun. 03, 2016
189	836.4	Body	0.971	57.226	0.97	55.20	0.12	3.67	±5	Jun. 03, 2016
251	848.8	Body	0.983	57.144	0.99	55.16	-0.71	3.52	±5	Jun. 03, 2016
25	1851.25	Body	1.467	52.971	1.52	53.30	-3.46	-0.62	±5	Jun. 03, 2016
600	1880	Body	1.501	52.883	1.52	53.30	-1.27	-0.78	±5	Jun. 03, 2016
1175	1908.75	Body	1.534	52.752	1.52	53.30	0.93	-1.03	±5	Jun. 03, 2016

Table of Low/Middle/High Channel for Liquid Validation

FCC ID : UZ7ET55BE Page 21 of 111 Form version. : 160427

Repor	t No.	: FA6	550305

СН			Conductivity						Limit (%)	Date
	(MHz)	Туре	(σ)	(ε _r)	Target (σ)	Target (ε _r)	(%)	(%)		
1	2412	Body	1.889	53.540	1.914	52.75	-1.10	1.40	±5	Jun. 04, 2016
3	2422	Body	1.903	53.510	1.923	52.74	-0.89	1.54	±5	Jun. 04, 2016
6	2437	Body	1.922	53.480	1.938	52.72	-0.93	1.48	±5	Jun. 04, 2016
9	2452	Body	1.944	53.420	1.953	52.7	-0.31	1.37	±5	Jun. 04, 2016
11	2462	Body	1.957	53.390	1.967	52.68	-0.66	1.31	±5	Jun. 04, 2016
36	5180	Body	5.419	47.204	5.276	49.03	2.64	-3.67	±5	Jun. 04, 2016
38	5190	Body	5.428	47.184	5.288	49.01	2.61	-3.71	±5	Jun. 04, 2016
40	5200	Body	5.439	47.152	5.300	49.00	2.62	-3.77	±5	Jun. 04, 2016
42	5210	Body	5.455	47.116	5.312	48.99	2.73	-3.84	±5	Jun. 04, 2016
44	5220	Body	5.477	47.100	5.323	48.98	2.96	-3.88	±5	Jun. 04, 2016
46	5230	Body	5.494	47.119	5.335	48.97	3.07	-3.84	±5	Jun. 04, 2016
48	5240	Body	5.503	47.126	5.346	48.96	2.87	-3.83	±5	Jun. 04, 2016
52	5260	Body	5.529	47.073	5.370	48.94	2.97	-3.74	±5	Jun. 04, 2016
54	5270	Body	5.538	47.066	5.381	48.93	2.93	-3.75	±5	Jun. 04, 2016
56	5280	Body	5.553	47.038	5.393	48.92	3.02	-3.81	±5	Jun. 04, 2016
58	5290	Body	5.566	47.005	5.404	48.91	3.08	-3.87	±5	Jun. 04, 2016
60	5300	Body	5.577	46.985	5.416	48.90	2.90	-3.92	±5	Jun. 04, 2016
62	5310	Body	5.590	46.959	5.428	48.79	2.95	-3.77	±5	Jun. 04, 2016
64	5320	Body	5.606	46.937	5.439	48.67	3.06	-3.62	±5	Jun. 04, 2016
100	5500	Body	5.827	46.655	5.650	48.60	3.14	-4.00	±5	Jun. 04, 2016
102	5510	Body	5.838	46.622	5.661	48.59	3.15	-4.07	±5	Jun. 04, 2016
104	5520	Body	5.851	46.587	5.673	48.58	3.19	-4.14	±5	Jun. 04, 2016
106	5530	Body	5.871	46.563	5.685	48.57	3.36	-4.19	±5	Jun. 04, 2016
108	5540	Body	5.890	46.545	5.696	48.56	3.33	-4.23	±5	Jun. 04, 2016
110	5550	Body	5.909	46.535	5.708	48.55	3.48	-4.25	±5	Jun. 04, 2016
112	5560	Body	5.923	46.545	5.720	48.54	3.55	-4.03	±5	Jun. 04, 2016
116	5580	Body	5.942	46.528	5.743	48.52	3.52	-4.07	±5	Jun. 04, 2016
132	5660	Body	6.058	46.361	5.837	48.41	3.73	-4.21	±5	Jun. 04, 2016
134	5670	Body	6.070	46.366	5.848	48.40	3.76	-4.20	±5	Jun. 04, 2016
136	5680	Body	6.079	46.365	5.860	48.38	3.73	-4.21	±5	Jun. 04, 2016
138	5690	Body	6.090	46.347	5.872	48.37	3.75	-4.24	±5	Jun. 04, 2016
140	5700	Body	6.101	46.335	5.883	48.35	3.76	-4.27	±5	Jun. 04, 2016
142	5710	Body	6.111	46.314	5.895	48.34	3.75	-4.11	±5	Jun. 04, 2016
144	5720	Body	6.123	46.286	5.907	48.32	3.60	-4.17	±5	Jun. 04, 2016
149	5745	Body	6.159	46.210	5.94	48.28	3.69	-4.33	±5	Jun. 04, 2016
151	5755	Body	6.178	46.192	5.95	48.27	3.83	-4.36	±5	Jun. 04, 2016
153	5765	Body	6.198	46.188	5.96	48.25	4.00	-4.37	±5	Jun. 04, 2016
155	5775	Body	6.212	46.198	5.97	48.24	4.05	-4.15	±5	Jun. 04, 2016
157	5785	Body	6.222	46.196	5.98	48.22	4.04	-4.16	±5	Jun. 04, 2016
159	5795	Body	6.232	46.189	5.99	48.21	4.04	-4.17	±5	Jun. 04, 2016
161	5805	Body	6.243	46.180	6.00	48.20	4.06	-4.19	±5	Jun. 04, 2016
165	5825	Body	6.260	46.137	6.00	48.20	4.34	-4.28	±5	Jun. 04, 2016
0	2402	Body	1.877	53.581	1.90	52.76	-1.20	1.48	±5	Jun. 04, 2016
39	2441	Body	1.927	53.470	1.94	52.71	-0.66	1.46	±5	Jun. 04, 2016
78	2480	Body	1.985	53.331	1.95	52.70	1.80	1.20	±5	Jun. 04, 2016
18700	1860	Body	1.497	54.213	1.52	53.3	-1.50	1.71	±5	Jun. 08, 2016
18900	1880	Body	1.520	54.129	1.52	53.3	0.03	1.56	±5	Jun. 08, 2016
19100	1900	Body	1.545	54.037	1.52	53.3	1.62	1.38	±5	Jun. 08, 2016
			Table of I	ow/Middle	High Chanr	nel for Liqui	id Validat	ion		

Table of Low/Middle/High Channel for Liquid Validation

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 22 of 111

10.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2016/6/2	750	MSL	250	D750V3-1012	EX3DV4 - SN3931	DAE3 Sn577	2.24	8.72	8.96	2.75
2016/6/1	835	MSL	250	D835V2-499	EX3DV4 - SN3931	DAE3 Sn577	2.50	9.52	10.00	5.04
2016/6/3	835	MSL	250	D835V2-499	ES3DV3 - SN3270	DAE4 Sn1399	2.25	9.52	9.00	-5.46
2016/5/31	1750	MSL	250	D1750V2-1068	ES3DV3 - SN3270	DAE4 Sn1399	9.17	35.70	36.68	2.75
2016/5/31	1900	MSL	250	D1900V2-5d041	ES3DV3 - SN3270	DAE4 Sn1399	9.44	40.00	37.76	-5.60
2016/6/1	1900	MSL	250	D1900V2-5d041	ES3DV3 - SN3270	DAE4 Sn1399	9.71	40.00	38.84	-2.90
2016/6/3	1900	MSL	250	D1900V2-5d041	ES3DV3 - SN3270	DAE4 Sn1399	10.10	40.00	40.40	1.00
2016/6/8	1900	MSL	250	D1900V2-5d041	EX3DV4 - SN3955	DAE4 Sn778	10.20	40.00	40.80	2.00
2016/6/4	2450	MSL	250	D2450V2-736	ES3DV3 - SN3270	DAE4 Sn1399	13.00	51.90	52.00	0.19
2016/6/4	2450	MSL	250	D2450V2-736	EX3DV4 - SN3955	DAE4 Sn778	12.20	51.90	48.80	-5.97
2016/6/4	5250	MSL	100	D5GHzV2-1128-5250	EX3DV4 - SN3955	DAE4 Sn778	8.25	76.20	82.50	8.27
2016/6/4	5600	MSL	100	D5GHzV2-1128-5600	EX3DV4 - SN3955	DAE4 Sn778	8.57	79.30	85.70	8.07
2016/6/4	5750	MSL	100	D5GHzV2-1128-5750	EX3DV4 - SN3955	DAE4 Sn778	8.00	75.90	80.00	5.40

Report No. : FA650305

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

11. RF Exposure Positions

11.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version.: 160427 FCC ID: UZ7ET55BE Page 23 of 111

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

General Note:

- Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EDGE (4Tx slots) for GSM850/GSM1900 is considered as the primary mode when the power reduction is active, the GPRS (2Tx slots) for GSM850, the EDGE (4Tx slots) for GSM1900 is considered as the primary mode when the power reduction is inactive.
- 3. Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode

Default Power Mode

Band GSM850	Burst A	verage Powe	er (dBm)	Tune-up	Frame-A	er (dBm)	Tune-up	
TX Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS 1 Tx slot	32.03	31.99	31.92	33.00	23.03	22.99	22.92	24.00
GPRS 2 Tx slots	31.92	31.88	31.84	33.00	25.92	25.88	25.84	27.00
EDGE 1 Tx slot	27.24	27.25	27.25	28.00	18.24	18.25	18.25	19.00
EDGE 2 Tx slots	27.10	27.12	27.15	28.00	21.10	21.12	21.15	22.00
EDGE 3 Tx slots	26.97	26.91	26.93	28.00	22.71	22.65	22.67	23.74
EDGE 4 Tx slots	26.80	26.79	26.81	28.00	23.80	23.79	23.81	25.00

Band GSM1900	Burst Av	Burst Average Power (dBm)			Frame-A	Tune-up		
TX Channel	512	661	810	Tune-up Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS 1 Tx slot	29.79	29.94	29.73	30.00	20.79	20.94	20.73	21.00
GPRS 2 Tx slots	29.70	29.88	29.66	30.00	23.70	23.88	23.66	24.00
EDGE 1 Tx slot	25.73	25.71	25.71	27.00	16.73	16.71	16.71	18.00
EDGE 2 Tx slots	25.64	25.63	25.64	27.00	19.64	19.63	19.64	21.00
EDGE 3 Tx slots	25.57	25.53	25.51	27.00	21.31	21.27	21.25	22.74
EDGE 4 Tx slots	25.50	25.41	25.42	27.00	22.50	22.41	22.42	24.00

Issued Date : Jun. 21, 2016 Form version. : 160427

Report No.: FA650305

Reduced Power Mode

Band GSM850	Burst A	Burst Average Power (dBm)			Frame-A	Average Pow	er (dBm)	Tune-up
TX Channel	128	189	251	Tune-up Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS 1 Tx slot	26.07	25.95	25.97	26.50	17.07	16.95	16.97	17.50
GPRS 2 Tx slots	23.33	23.26	23.24	23.50	17.33	17.26	17.24	17.50
EDGE 1 Tx slot	27.00	26.89	26.95	27.00	18.00	17.89	17.95	18.00
EDGE 2 Tx slots	23.94	23.90	23.87	24.00	17.94	17.90	17.87	18.00
EDGE 3 Tx slots	21.62	21.63	21.61	22.00	17.36	17.37	17.35	17.74
EDGE 4 Tx slots	20.74	20.73	20.70	21.00	17.74	17.73	17.70	18.00

Report No.: FA650305

Band GSM1900	Burst Av	erage Pow	er (dBm)	Tune-up	Frame-A	verage Pow	ver (dBm)	Tune-up
TX Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS 1 Tx slot	23.99	24.08	24.15	25.00	14.99	15.08	15.15	16.00
GPRS 2 Tx slots	21.32	21.40	21.43	22.00	15.32	15.40	15.43	16.00
EDGE 1 Tx slot	23.83	23.85	23.87	25.00	14.83	14.85	14.87	16.00
EDGE 2 Tx slots	21.26	21.25	21.30	22.00	15.26	15.25	15.30	16.00
EDGE 3 Tx slots	19.15	19.11	19.20	20.00	14.89	14.85	14.94	15.74
EDGE 4 Tx slots	17.80	17.76	17.73	19.00	14.80	14.76	14.73	16.00

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 25 of 111

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA650305

3. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement.

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βε	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β_{hs} = 30/15 * β_c , and \triangle CQI = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for $\beta_{\text{e}}/\beta_{\text{d}}$ =12/15, $\beta_{\text{hs}}/\beta_{\text{e}}$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_o/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_o = 11/15 and β_d = 15/15.

Setup Configuration

HSUPA Setup Configuration:

- a. The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA650305

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βα	βa	β _d (SF)	βε/βα	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for $\beta_0/\beta_d = 12/15$, $\beta_{1s}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_d/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by
- setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by
- setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to
- TS25.306 Table 5.1g. Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

FCC ID : UZ7ET55BE Page 27 of 111 Form version. : 160427

DC-HSDPA 3GPP release 8 Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting: C.
 - Set RMC 12.2Kbps + HSDPA mode.
 - ii. Set Cell Power = -25 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii.
 - Select HSDPA Uplink Parameters iv.
 - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121

Report No.: FA650305

- a). Subtest 1: $\beta_c/\beta_d=2/15$ b). Subtest 2: $\beta_c/\beta_d=12/15$
- c). Subtest 3: $\beta_c/\beta_d=15/8$
- d). Subtest 4: $\beta_c/\beta_d=15/4$
- Set Delta ACK, Delta NACK and Delta CQI = 8 vi.
- Set Ack-Nack Repetition Factor to 3 vii.
- Set CQI Feedback Cycle (k) to 4 ms
- Set CQI Repetition Factor to 2 ix.
- Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below:

C.8.1.12 Fixed Reference Channel Definition H-Set 12

Table C.8.1.12: Fixed Reference Channel H-Set 12

	Parameter	Unit	Value					
Nominal A	Avg. Inf. Bit Rate	kbps	60					
Inter-TTI	Distance	TTľs	1					
Number of	of HARQ Processes	Proces	6					
		ses	· ·					
Informatio	on Bit Payload ($N_{\it INF}$)	Bits	120					
Number (Code Blocks	Blocks	1					
Binary Ch	nannel Bits Per TTI	Bits	960					
Total Ava	ilable SML's in UE	SML's	19200					
Number o	of SML's per HARQ Proc.	SML's	3200					
Coding R	ate		0.15					
Number o	of Physical Channel Codes	Codes	1					
Modulatio	n		QPSK					
Note 1:	The RMC is intended to be used for	or DC-HSD	PA					
	mode and both cells shall transmit	with identi	cal					
	parameters as listed in the table.							
Note 2: Maximum number of transmission is limited to 1, i.e.,								
	retransmission is not allowed. The	e redundan	cy and					
	constellation version 0 shall be use	ed.						

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

Setup Configuration

Form version.: 160427 FCC ID: UZ7ET55BE Page 28 of 111

< WCDMA Conducted Power>

General Note:

1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No. : FA650305

2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ 1/4 dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

Default Power Mode

	Band	V	VCDMA \	/		V	VCDMA	II		V	VCDMA I	V	
Т	X Channel	4132	4182	4233	Tune-up Limit	9262	9400	9538	Tune-up Limit	1312	1413	1513	Tune-up Limit
R	x Channel	4357	4407	4458	(dBm)	9662	9800	9938	(dBm)	1537	1638	1738	(dBm)
Fred	quency (MHz)	826.4	836.4	846.6		1852.4	1880	1907.6		1712.4	1732.6	1752.6	
3GPP Rel 99	RMC 12.2Kbps	22.91	22.90	22.80	24.00	22.84	22.92	23.00	24.00	22.96	23.00	22.92	24.00
3GPP Rel 6	HSDPA Subtest-1	22.44	22.30	22.46	24.00	22.68	22.63	22.78	24.00	22.48	22.51	22.45	24.00
3GPP Rel 6	HSDPA Subtest-2	22.52	22.41	22.55	24.00	22.71	22.69	22.81	24.00	22.49	22.53	22.46	24.00
3GPP Rel 6	HSDPA Subtest-3	22.00	21.98	22.02	23.50	22.23	22.20	22.38	23.50	22.03	22.09	22.00	23.50
3GPP Rel 6	HSDPA Subtest-4	22.04	22.03	22.07	23.50	22.27	22.25	22.44	23.50	22.05	22.11	22.04	23.50
3GPP Rel 8	DC-HSDPA Subtest-1	22.35	22.24	22.40	24.00	22.61	22.53	22.75	24.00	22.40	22.43	22.39	24.00
3GPP Rel 8	DC-HSDPA Subtest-2	22.44	22.33	22.50	24.00	22.68	22.63	22.71	24.00	22.45	22.46	22.40	24.00
3GPP Rel 8	DC-HSDPA Subtest-3	21.93	21.89	21.97	23.50	22.16	22.10	22.30	23.50	22.00	22.08	21.95	23.50
3GPP Rel 8	DC-HSDPA Subtest-4	21.97	22.01	21.97	23.50	22.23	22.23	22.36	23.50	21.97	22.06	22.02	23.50
3GPP Rel 6	HSUPA Subtest-1	22.06	22.03	22.00	24.00	22.53	22.62	22.90	24.00	22.06	22.05	22.03	24.00
3GPP Rel 6	HSUPA Subtest-2	20.91	20.96	21.00	22.00	21.34	21.42	21.33	22.00	20.90	21.00	20.89	22.00
3GPP Rel 6	HSUPA Subtest-3	21.06	21.13	21.44	23.00	21.49	21.68	21.91	23.00	21.08	21.55	21.00	23.00
3GPP Rel 6	HSUPA Subtest-4	21.45	21.22	20.99	22.00	21.62	21.25	21.97	22.00	20.98	21.64	20.75	22.00
3GPP Rel 6	HSUPA Subtest-5	22.44	22.46	22.42	24.00	22.66	22.70	22.88	24.00	22.10	22.00	22.45	24.00

Reduced Power Mode

	Band	٧	VCDMA '	V		٧	VCDMA	II		/	NCDMA I	V	
Т	X Channel	4132	4182	4233	Tune-up	9262	9400	9538	Tune-up Limit	1312	1413	1513	Tune-up Limit
R	x Channel	4357	4407	4458	Limit (dBm)	9662	9800	9938	(dBm)	1537	1638	1738	(dBm)
Fred	quency (MHz)	826.4	836.4	846.6		1852.4	1880	1907.6		1712.4	1732.6	1752.6	
3GPP Rel 99	RMC 12.2Kbps	17.78	17.67	17.66	18.00	15.27	15.07	15.58	16.00	14.80	14.38	13.73	15.00
3GPP Rel 6	HSDPA Subtest-1	17.30	17.20	17.15	18.00	14.75	14.35	15.37	16.00	13.44	13.66	13.09	15.00
3GPP Rel 6	HSDPA Subtest-2	17.37	17.25	17.19	18.00	14.81	14.39	15.38	16.00	13.45	13.68	13.08	15.00
3GPP Rel 6	HSDPA Subtest-3	16.84	16.66	16.71	17.50	14.56	13.95	15.03	15.50	13.12	13.29	12.74	14.50
3GPP Rel 6	HSDPA Subtest-4	16.89	16.71	16.73	17.50	14.60	13.98	15.04	15.50	13.13	13.31	12.75	14.50
3GPP Rel 8	DC-HSDPA Subtest-1	17.27	17.18	17.10	18.00	14.76	14.39	15.38	16.00	13.46	13.62	13.05	15.00
3GPP Rel 8	DC-HSDPA Subtest-2	17.36	17.23	17.20	18.00	14.37	14.35	15.32	16.00	13.49	13.64	13.09	15.00
3GPP Rel 8	DC-HSDPA Subtest-3	16.81	16.59	16.64	17.50	14.54	13.97	15.01	15.50	13.15	13.22	12.79	14.50
3GPP Rel 8	DC-HSDPA Subtest-4	16.84	16.65	16.68	17.50	14.52	13.99	15.03	15.50	13.15	13.33	12.71	14.50
3GPP Rel 6	HSUPA Subtest-1	16.98	16.82	16.95	18.00	14.37	14.02	14.90	16.00	13.53	13.09	13.21	15.00
3GPP Rel 6	HSUPA Subtest-2	15.67	15.90	15.58	16.00	13.21	12.61	13.35	14.00	12.18	12.27	12.02	13.00
3GPP Rel 6	HSUPA Subtest-3	16.00	15.81	15.93	17.00	13.90	13.06	13.89	15.00	12.30	12.33	12.09	14.00
3GPP Rel 6	HSUPA Subtest-4	15.86	15.73	15.80	16.00	13.79	13.02	13.85	14.00	12.41	12.52	12.33	13.00
3GPP Rel 6	HSUPA Subtest-5	17.32	17.14	17.25	18.00	15.02	14.40	15.50	16.00	13.51	13.68	13.16	15.00

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 21, 2016

FCC ID : UZ7ET55BE Page 29 of 111 Form version. : 160427

<CDMA2000 Conducted Power>

General Note:

1. Per KDB 941225 D01v03r01, when in body SAR testing, the EUT is treated as data device and SAR is tested with Ev-Do Rev 0 (RTAP 153.6kbps) as the primary mode.

Report No.: FA650305

Default Power Mode

20100111101111000												
Band	CDN	//A2000 B	C10	Tune-up	CE	DMA2000	BC0	Tune-up	CDM	BC1	Tune-up	
TX Channel	476	580	684	Limit	1013	384	777	Limit	25	600	1175	Limit
Frequency (MHz)	817.9	820.5	823.1	(dBm)	824.7	836.52	848.31	(dBm)	1851.25	1880	1908.75	(dBm)
RC1 SO55	23.59	23.61	23.60	24.50	23.63	23.71	23.49	24.50	23.83	23.90	23.94	24.50
RC3 SO55	23.66	23.67	23.63	24.50	23.64	23.73	23.52	24.50	23.89	23.94	23.95	24.50
RTAP 153.6Kbps	23.60	23.67	23.66	24.50	23.46	23.72	23.54	24.50	23.79	23.82	23.91	24.50
RETAP 4096Bits	23.63	23.65	23.63	24.50	23.66	23.71	23.51	24.50	23.77	23.84	23.90	24.50

Reduced Power Mode

Band	CDN	CDMA2000 BC10			CE	MA2000	BC0	Tune-up	CDMA2000 BC1			Tune-up
TX Channel	476	580	684	Tune-up Limit	1013	384	777	Limit	25	600	1175	Limit
Frequency (MHz)	817.9	820.5	823.1	(dBm)	824.7	836.52	848.31	(dBm)	1851.25	1880	1908.75	(dBm)
RC1 SO55	17.15	17.10	17.12	17.50	17.15	17.32	17.27	17.50	14.57	14.55	14.91	15.50
RC3 SO55	17.38	17.31	17.28	17.50	17.18	17.37	17.31	17.50	14.64	14.58	14.96	15.50
RTAP 153.6Kbps	17.25	17.17	17.09	17.50	17.23	17.31	17.27	17.50	14.53	14.54	14.87	15.50
RETAP 4096Bits	17.17	17.21	17.00	17.50	17.10	17.06	17.05	17.50	14.55	14.49	14.86	15.50

FCC ID : UZ7ET55BE Page 30 of 111 Form version. : 160427

<LTE Conducted Power>

General Note:

 Anritsu MT8820C base station simulator was used to setup the connection with EUT; the frequency band, channel bandwidth, RB allocation configuration, modulation type are set in the base station simulator to configure EUT transmitting at maximum power and at different configurations which are requested to be reported to FCC, for conducted power measurement and SAR testing.

Report No.: FA650305

- 2. Per KDB 941225 D05v02r05, when a properly configured base station simulator is used for the SAR and power measurements, spectrum plots for each RB allocation and offset configuration is not required.
- 3. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- 4. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 5. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 6. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 7. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- 8. For LTE B4 / B5 / B17 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID : UZ7ET55BE Page 31 of 111 Form version. : 160427

Default Power Mode

Report No. : FA650305

<LTE Band 2>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		18700	18900	19100	(dBm)	(dB)
	Frequenc	cy (MHz)		1860	1880	1900		
20	QPSK	1	0	23.22	23.15	23.26		
20	QPSK	1	49	22.99	23.08	23.14	24	0
20	QPSK	1	99	23.04	23.03	23.12	-	
20	QPSK	50	0	22.10	22.14	22.20		
20	QPSK	50	24	22.09	22.11	22.18	-	
20	QPSK	50	50	22.01	22.03	22.15	23	1
20	QPSK	100	0	22.03	22.11	22.24		
20	16QAM	1	0	22.25	22.16	22.16		
20	16QAM	1	49	22.00	22.11	22.15	23	1
20	16QAM	1	99	22.05	22.04	22.24		
20	16QAM	50	0	21.12	21.11	21.18		
20	16QAM	50	24	21.02	21.12	21.17	_	
20	16QAM	50	50	21.12	21.02	21.23	22	2
20	16QAM	100	0	21.06	21.10	21.26		
	Cha		J	18675	18900	19125	Tune-up limit	MPR
	Frequence			1857.5	1880	1902.5	(dBm)	(dB)
15	QPSK	1	0	23.23	23.05	23.24		
15	QPSK	1	37	23.00	23.08	23.23	24	0
15	QPSK	1	74	22.89	22.98	23.12	1 -	ŭ
15	QPSK	36	0	22.08	22.10	22.22		
15	QPSK	36	20	22.01	22.09	22.23	_	
15	QPSK	36	39	22.04	22.05	22.24	23	1
15	QPSK	75	0	21.94	22.03	22.12		
15	16QAM	1	0	22.21	22.15	22.30		
15	16QAM	1	37	22.02	22.14	22.21	23	1
15	16QAM	1	74	21.97	22.02	22.11		·
15	16QAM	36	0	21.15	21.19	21.22		
15	16QAM	36	20	21.05	21.17	21.32		
15	16QAM	36	39	21.02	21.11	21.30	22	2
15	16QAM	75	0	20.98	21.04	21.16		
	Cha	-		18650	18900	19150	Tune-up limit	MPR
	Frequence			1855	1880	1905	(dBm)	(dB)
10	QPSK	1	0	23.22	23.10	23.25		<u> </u>
10	QPSK	1	25	23.00	23.07	23.24	24	0
10	QPSK	1	49	22.90	23.02	23.16		_
10	QPSK	25	0	22.20	22.10	22.27		
10	QPSK	25	12	22.02	22.20	22.23		
10	QPSK	25	25	22.07	22.18	22.23	23	1
10	QPSK	50	0	22.00	22.07	22.27		
10	16QAM	1	0	22.22	22.16	22.27		
10	16QAM	1	25	22.01	22.16	22.23	23	1
10	16QAM	1	49	21.90	22.08	22.16		
10	16QAM	25	0	21.16	21.18	21.28		
10	16QAM	25	12	21.09	21.18	21.35		
10	16QAM	25	25	21.03	21.08	21.25	22	2
10	16QAM	50	0	21.01	21.07	21.30	1	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE

MPR	Tune-up limit	19175	18900	18625		nnel	Chan	
(dB)	(dBm)	1907.5	1880	1852.5			Frequenc	
		23.24	23.07	23,23	0	1	QPSK	5
0	24	23.21	23.05	23.12	12	1	QPSK	5
		23.20	23.07	22.97	24	1	QPSK	5
		22.23	22.15	22.25	0	12	QPSK	5
		22.29	22.17	22.24	7	12	QPSK	5
1	23	22.31	22.16	22.18	13	12	QPSK	5
		22.28	22.16	22.13	0	25	QPSK	5
		22.29	22.11	22.18	0	1	16QAM	5
1	23	22.25	22.15	22.13	12	1	16QAM	5
		22.22	22.13	21.97	24	1	16QAM	5
		21.25	21.24	21.31	0	12	16QAM	5
		21.31	21.18	21.31	7	12	16QAM	5
2	22	21.33	21.18	21.28	13	12	16QAM	5
		21.25	21.15	21.21	0	25	16QAM	5
MPR	Tune-up limit	19185	18900	18615		nnel	Char	
(dB)	(dBm)	1908.5	1880	1851.5		y (MHz)	Frequenc	
		23.24	23.09	23.23	0	1	QPSK	3
0	24	23.20	23.05	23.23	8	1	QPSK	3
		23.19	23.08	23.20	14	1	QPSK	3
		22.31	22.20	22.27	0	8	QPSK	3
	00	22.34	22.15	22.23	4	8	QPSK	3
1	23	22.37	22.21	22.29	7	8	QPSK	3
		22.28	22.15	22.22	0	15	QPSK	3
		22.31	22.16	22.18	0	1	16QAM	3
1	23	22.26	22.13	22.20	8	1	16QAM	3
		22.19	22.13	22.14	14	1	16QAM	3
		21.24	21.13	21.28	0	8	16QAM	3
2	22	21.24	21.10	21.26	4	8	16QAM	3
2	22	21.30	21.12	21.26	7	8	16QAM	3
		21.29	21.22	21.31	0	15	16QAM	3
MPR	Tune-up limit	19193	18900	18607		nnel	Char	
(dB)	(dBm)	1909.3	1880	1850.7		y (MHz)	Frequenc	
		23.21	23.10	23.20	0	1	QPSK	1.4
		23.17	23.10	23.16	3	1	QPSK	1.4
0	24	23.18	23.07	23.11	5	1	QPSK	1.4
U	24	23.18	23.07	23.20	0	3	QPSK	1.4
		23.18	23.09	23.16	1	3	QPSK	1.4
		23.13	23.10	23.20	3	3	QPSK	1.4
1	23	22.35	22.17	22.26	0	6	QPSK	1.4
		22.35	22.10	22.12	0	1	16QAM	1.4
		22.26	22.15	22.17	3	1	16QAM	1.4
1	23	22.28	22.13	22.16	5	1	16QAM	1.4
	23	22.33	22.21	22.21	0	3	16QAM	1.4
		22.33	22.13	22.17	1	3	16QAM	1.4
		22.22	22.15	22.22	3	3	16QAM	1.4
2	22	21.44	21.22	21.33	0	6	16QAM	1.4

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID : UZ7ET55BE Page 33 of 111

<LTE Band 4>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High		
· ·				Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20050	20175	20300	(dBm)	(dB)
	Frequen	cy (MHz)		1720	1732.5	1745		
20	QPSK	1	0	23.03	22.93	23.10		
20	QPSK	1	49	22.84	22.92	22.99	24	0
20	QPSK	1	99	22.92	22.92	22.87		
20	QPSK	50	0	22.01	22.08	22.09		
20	QPSK	50	24	21.84	22.01	22.07	22	4
20	QPSK	50	50	21.96	22.00	21.84	23	1
20	QPSK	100	0	21.99	21.92	21.94		
20	16QAM	1	0	22.06	22.00	21.93		
20	16QAM	1	49	21.93	22.00	22.05	23	1
20	16QAM	1	99	21.97	22.00	21.87		
20	16QAM	50	0	21.01	20.98	21.12		
20	16QAM	50	24	20.90	21.01	21.09		_
20	16QAM	50	50	20.94	21.07	20.90	22	2
20	16QAM	100	0	20.99	21.00	20.94		
	Cha	nnel		20025	20175	20325	Tune-up limit	MPR
		cy (MHz)		1717.5	1732.5	1747.5	(dBm)	(dB)
15	QPSK	1	0	23.02	22.97	23.03		
15	QPSK	1	37	22.96	22.93	22.94	24	0
15	QPSK	1	74	22.93	22.93	22.82		
15	QPSK	36	0	22.03	21.95	22.08		
15	QPSK	36	20	21.98	22.01	22.01	-	
15	QPSK	36	39	21.91	22.04	21.77	23	1
15	QPSK	75	0	21.93	21.95	21.85	-	
15	16QAM	1	0	22.05	22.02	22.06		
15	16QAM	1	37	21.90	21.97	21.97	23	1
15	16QAM	1	74	21.94	21.97	21.86		•
15	16QAM	36	0	21.05	20.99	21.12		
15	16QAM	36	20	21.04	21.04	21.05	-	
15	16QAM	36	39	20.95	21.04	20.89	22	2
15	16QAM	75	0	20.89	20.98	20.98		
10	Cha		U	20000	20175	20350	Tune-up limit	MPR
	Frequen			1715	1732.5	1750	(dBm)	(dB)
10	QPSK	1	0	23.02	23.01	23.07	(3.511)	(42)
10	QPSK	1	25	23.02	22.94	22.91	24	0
10	QPSK	1	49	22.90	22.88	22.89		
10	QPSK	25	0	22.90	22.00	22.09		
10	QPSK	25	12	22.09	21.99	21.91		
10	QPSK	25	25	22.09	22.05	21.88	23	1
10	QPSK	50	0	22.08	22.05	21.00	-	
10	16QAM		0	22.03	22.00	21.90		
	16QAM	1					22	4
10		1	25 40	22.01	21.98	21.89	23	1
10	16QAM	1	49	21.92	21.91	21.92		
10	16QAM	25	0	21.05	21.03	21.03		
10	16QAM	25	12	21.06	21.03	20.92	22	2
10	16QAM	25	25	21.06	21.04	20.87		
10	16QAM	50	0	21.01	21.06	20.91		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 34 of 111

ONTON LAB							1100011	
	Cha	innel		19975	20175	20375	Tune-up limit	MPR
	Frequen	cy (MHz)		1712.5	1732.5	1752.5	(dBm)	(dB)
5	QPSK	1	0	23.04	22.92	23.06		
5	QPSK	1	12	23.01	22.91	22.83	24	0
5	QPSK	1	24	22.95	22.96	22.91		
5	QPSK	12	0	22.08	22.03	21.92		
5	QPSK	12	7	22.09	22.02	21.93	-	,
5	QPSK	12	13	22.10	21.99	21.91	23	1
5	QPSK	25	0	22.03	21.98	21.92		
5	16QAM	1	0	22.03	21.99	22.05		
5	16QAM	1	12	22.02	21.98	21.85	23	1
5	16QAM	1	24	21.97	22.01	21.92		
5	16QAM	12	0	21.11	21.05	20.96		
5	16QAM	12	7	21.10	21.06	20.97		
5	16QAM	12	13	21.11	21.10	21.01	22	2
5	16QAM	25	0	21.03	21.01	20.92		
		innel		19965	20175	20385	Tune-up limit	MPR
		cy (MHz)		1711.5	1732.5	1753.5	(dBm)	(dB)
3	QPSK	1	0	23.02	22.92	23.03		
3	QPSK	1	8	23.01	22.95	22.92	24	0
3	QPSK	1	14	23.01	22.96	22.92	_	
3	QPSK	8	0	22.10	22.04	21.85		
3	QPSK	8	4	22.02	22.03	21.89		
3	QPSK	8	7	22.04	21.99	21.96	23	1
3	QPSK	15	0	22.02	22.03	21.90	_	
3	16QAM	1	0	22.03	21.95	22.04		
3	16QAM	1	8	22.03	22.01	22.03	23	1
3	16QAM	1	14	21.98	21.97	21.87	- 20	
3	16QAM	8	0	21.00	21.01	20.88		
3	16QAM	8	4	20.97	21.00	20.91		
3	16QAM	8	7	20.98	21.02	21.00	22	2
3	16QAM	15	0	21.12	21.01	20.91		
<u> </u>		innel	, o	19957	20175	20393	Tune-up limit	MPR
		cy (MHz)		1710.7	1732.5	1754.3	(dBm)	(dB)
1.4	QPSK	1	0	23.03	22.91	23.04		,
1.4	QPSK	1	3	23.02	22.94	22.92		
1.4	QPSK	1	5	23.01	22.91	22.93		
1.4	QPSK	3	0	22.99	22.99	22.93	24	0
1.4	QPSK	3	1	23.03	22.99	22.94		
1.4	QPSK	3	3	23.01	22.98	22.94		
1.4	QPSK	6	0	22.07	22.03	21.97	23	1
1.4	16QAM	1	0	22.07	21.94	22.08	20	•
1.4	16QAM	1	3	22.00	21.94	21.93		
1.4	16QAM	1	5	21.97	21.93	21.93		
1.4	16QAM	3	0	21.97	22.00	22.02	23	1
1.4	16QAM	3	1	22.03	22.00	21.97		
1.4	16QAM	3	3	22.03	22.04	21.97		
1.4	16QAM	6	0	21.13	21.10	21.96	22	2
1.4	TOQAIVI	0	U	21.13	21.10	21.00	22	2

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 35 of 111

<LTE Band 5>

D		55.61	55.0%	Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low	Middle	High	Tune-up limit	MPR
	Cha	nnol		Ch. / Freq. 20450	Ch. / Freq. 20525	Ch. / Freq. 20600	(dBm)	(dB)
	Frequen			829	836.5	844	_ ` ′	
10	QPSK	1	0	22.64	22.61	22.69		
10	QPSK	1	25	22.55	22.57	22.56	24	0
10	QPSK	1	49	22.53	22.52	22.56	24	U
	QPSK	·	0	21.66	21.66	21.72		
10		25						
10 10	QPSK QPSK	25 25	12 25	21.65 21.65	21.59 21.54	21.66 21.66	23	1
10	QPSK	50	0	21.56	21.60	21.62		
10	16QAM	1	0	21.61	21.56	21.66		,
10	16QAM	1	25	21.56	21.63	21.60	23	1
10	16QAM	1	49	21.56	21.58	21.52		
10	16QAM	25	0	20.55	20.53	20.60		
10	16QAM	25	12	20.57	20.59	20.65	22	2
10	16QAM	25	25	20.62	20.58	20.64		
10	16QAM	50	0	20.51	20.53	20.60		
	Cha			20425	20525	20625	Tune-up limit	MPR
	Frequen			826.5	836.5	846.5	(dBm)	(dB)
5	QPSK	1	0	22.56	22.62	22.68		
5	QPSK	1	12	22.53	22.62	22.67	24	0
5	QPSK	1	24	22.62	22.57	22.52		
5	QPSK	12	0	21.61	21.64	21.67		
5	QPSK	12	7	21.59	21.62	21.70	23	1
5	QPSK	12	13	21.67	21.67	21.58		'
5	QPSK	25	0	21.61	21.61	21.67		
5	16QAM	1	0	21.55	21.61	21.67		
5	16QAM	1	12	21.64	21.65	21.65	23	1
5	16QAM	1	24	21.59	21.59	21.53		
5	16QAM	12	0	20.63	20.64	20.66		
5	16QAM	12	7	20.58	20.66	20.69	22	2
5	16QAM	12	13	20.61	20.66	20.58	22	2
5	16QAM	25	0	20.55	20.60	20.58		
	Cha	nnel		20415	20525	20635	Tune-up limit	MPR
	Frequen	cy (MHz)		825.5	836.5	847.5	(dBm)	(dB)
3	QPSK	1	0	22.53	22.62	22.65		
3	QPSK	1	8	22.54	22.60	22.63	24	0
3	QPSK	1	14	22.58	22.64	22.60		
3	QPSK	8	0	21.61	21.66	21.66		
3	QPSK	8	4	21.60	21.67	21.66	00	
3	QPSK	8	7	21.58	21.64	21.61	23	1
3	QPSK	15	0	21.59	21.71	21.64		
3	16QAM	1	0	21.56	21.63	21.66		
3	16QAM	1	8	21.56	21.60	21.58	23	1
3	16QAM	1	14	21.57	21.58	21.56		
3	16QAM	8	0	20.53	20.54	20.61		
3	16QAM	8	4	20.53	20.53	20.57		
			7	20.50	20.56	20.57	- 22	2
3	16QAM	8	_/	70.50	ZU.::)n	70.37		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 36 of 111

ORTON LAB. FO	CC SAR T	est Repor	t				Report	No. : FA650305
	Cha	nnel		20407	20525	20643	Tune-up limit	MPR
	Frequen	cy (MHz)		824.7	836.5	848.3	(dBm)	(dB)
1.4	QPSK	1	0	22.55	22.64	22.68		
1.4	QPSK	1	3	22.57	22.66	22.67		
1.4	QPSK	1	5	22.60	22.61	22.62	24	0
1.4	QPSK	3	0	22.61	22.65	22.66	24	U
1.4	QPSK	3	1	22.61	22.64	22.61		
1.4	QPSK	3	3	22.59	22.64	22.60		
1.4	QPSK	6	0	21.61	21.70	21.66	23	1
1.4	16QAM	1	0	21.54	21.72	21.73		
1.4	16QAM	1	3	21.62	21.64	21.57		
1.4	16QAM	1	5	21.59	21.65	21.56	23	1
1.4	16QAM	3	0	21.59	21.66	21.66	23	'
1.4	16QAM	3	1	21.59	21.70	21.66		
1.4	16QAM	3	3	21.64	21.60	21.59		
1.4	16QAM	6	0	20.65	20.69	20.64	22	2

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID : UZ7ET55BE Page 37 of 111

<LTE Band 13>

Report No.: FA650305

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel			23230		(dBm)	(dB)
	Frequen	cy (MHz)			782			
10	QPSK	1	0		22.76			
10	QPSK	1	25		22.65		24	0
10	QPSK	1	49		22.36			
10	QPSK	25	0		21.74			
10	QPSK	25	12		21.66		23	1
10	QPSK	25	25		21.60		25	'
10	QPSK	50	0		21.69			
10	16QAM	1	0		21.38			
10	16QAM	1	25		21.71		23	1
10	16QAM	1	49		21.67			
10	16QAM	25	0		20.56			
10	16QAM	25	12	20.68		22	2	
10	16QAM	25	25		20.70		22	2
10	16QAM	50	0		20.66			
	Cha	nnel		23205	23230	23255	Tune-up limit	MPR
	Frequen	cy (MHz)		779.5	782	784.5	(dBm)	(dB)
5	QPSK	1	0	22.41	22.75	22.74		
5	QPSK	1	12	22.71	22.72	22.66	24	0
5	QPSK	1	24	22.71	22.66	22.62		
5	QPSK	12	0	21.50	21.70	21.84		
5	QPSK	12	7	21.55	21.74	21.75	23	1
5	QPSK	12	13	21.73	21.87	21.72	23	'
5	QPSK	25	0	21.59	21.70	21.66		
5	16QAM	1	0	21.43	21.74	21.70		
5	16QAM	1	12	21.69	21.73	21.64	23	1
5	16QAM	1	24	21.71	21.64	21.61		
5	16QAM	12	0	20.54	20.72	20.86		
5	16QAM	12	7	20.60	20.79	20.74	22	2
5	16QAM	12	13	20.73	20.82	20.73	22	2
5	16QAM	25	0	20.59	20.68	20.71		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 38 of 111

<LTE Band 17>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		23780	23790	23800	(dBm)	(dB)
	Frequen	cy (MHz)		709	710	711		
10	QPSK	1	0	22.69	22.73	22.69		
10	QPSK	1	25	22.61	22.60	22.55	24	0
10	QPSK	1	49	22.50	22.46	22.46		
10	QPSK	25	0	21.76	21.77	21.74		
10	QPSK	25	12	21.75	21.73	21.69	23	1
10	QPSK	25	25	21.70	21.73	21.66	23	,
10	QPSK	50	0	21.61	21.65	21.62		
10	16QAM	1	0	21.60	21.79	21.59		
10	16QAM	1	25	21.74	21.75	21.78	23	1
10	16QAM	1	49	21.60	21.60	21.46		
10	16QAM	25	0	20.69	20.66	20.64		
10	16QAM	25	12	20.68	20.71	20.71	22	2
10	16QAM	25	25	20.78	20.75	20.66	22	2
10	16QAM	50	0	20.57	20.60	20.64		
	Cha	nnel		23755	23790	23825	Tune-up limit	MPR
	Frequen	cy (MHz)		706.5	710	713.5	(dBm)	(dB)
5	QPSK	1	0	22.50	22.70	22.69		
5	QPSK	1	12	22.62	22.65	22.65	24	0
5	QPSK	1	24	22.69	22.65	22.38		
5	QPSK	12	0	21.61	21.77	21.64		
5	QPSK	12	7	21.68	21.81	21.75	23	1
5	QPSK	12	13	21.79	21.77	21.67	23	1
5	QPSK	25	0	21.76	21.80	21.66		
5	16QAM	1	0	21.53	21.74	21.72		
5	16QAM	1	12	21.63	21.69	21.68	23	1
5	16QAM	1	24	21.72	21.73	21.38		
5	16QAM	12	0	20.60	20.79	20.73		
5	16QAM	12	7	20.70	20.82	20.77	20	0
5	16QAM	12	13	20.78	20.81	20.69	22	2
5	16QAM	25	0	20.75	20.74	20.66		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 39 of 111

<LTE Band 25>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High		
DVV [IVII IZ]	Modulation	ND Size	KD Ollset	Ch. / Freq.	Ch. / Freq.	Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		26140	26340	26590	(dBm)	(dB)
	Frequen	cy (MHz)		1860	1880	1905	1	
20	QPSK	1	0	23.01	23.02	23.14		
20	QPSK	1	49	23.00	22.99	23.05	24	0
20	QPSK	1	99	22.99	22.94	23.04		
20	QPSK	50	0	22.10	22.07	22.17		
20	QPSK	50	24	22.05	22.04	22.09		
20	QPSK	50	50	21.92	21.95	22.08	23	1
20	QPSK	100	0	21.87	22.01	22.12	_	
20	16QAM	1	0	21.98	22.01	22.21		
20	16QAM	1	49	21.91	22.08	22.09	23	1
20	16QAM	1	99	21.86	21.98	22.06		·
20	16QAM	50	0	21.04	21.03	21.10		
20	16QAM	50	24	21.00	20.98	21.10		
20	16QAM	50	50	20.89	20.92	21.11	22	2
20	16QAM	100	0	20.87	20.99	21.15		
	Cha		Ü	26115	26340	26615	Tune-up limit	MPR
	Frequen			1857.5	1880	1907.5	(dBm)	(dB)
15	QPSK	1	0	23.10	22.98	23.20	(- /	(* /
15	QPSK	1	37	22.89	23.00	23.11	24	0
15	QPSK	1	74	22.86	22.87	23.05		O
15	QPSK	36	0	22.00	22.02	22.09		
15	QPSK	36	20	21.99	22.02	22.13	_	
15	QPSK	36	39	21.99	21.96	22.13		1
15	QPSK	75	0	21.92	21.93	22.20	_	
15	16QAM	1	0	22.01	22.00	22.11		
15	16QAM	1	37	21.90	22.00	22.22	23	1
15	16QAM	1	74	21.85	21.97	22.11	23	'
15	16QAM	36	0	20.92	21.97	21.11		
15	16QAM	36	20	20.92	21.03			
15	16QAM	36	39	20.94	20.96	21.13 21.22	22	2
15	16QAM	75	0	20.84	20.96	21.22		
15	Cha		U				- P 1	MDD
				26090 1855	26340	26640	Tune-up limit (dBm)	MPR (dB)
10	Frequen		0		1880	1910	(dBIII)	(ub)
10 10	QPSK QPSK	1	0 25	23.02 22.95	23.03	23.14	24	0
10	QPSK	1	49	22.95	22.99 22.92	23.09 23.08	24	0
10	QPSK	25	0		22.92	23.06		
10	QPSK	25 25	12	21.97 22.02	22.04	22.12		
10	QPSK	25	25	21.97	22.06	22.24	23	1
	QPSK	50	0	21.97	22.04	22.24		
10		1	0	22.02	22.02	22.17		
10	16QAM						- 22	1
10	16QAM 16QAM	1	25 40	21.91	22.03	22.08 22.07	23	1
10		1	49	21.90	21.95	1		
10	16QAM	25	0	20.99	21.03	21.12		
10 10	16QAM 16QAM	25 25	12	20.98	21.04	21.19	22	2
	TOUAN	75	25	20.86	21.02	21.17		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 40 of 111

MPR	Tune-up limit	26665	26340	26065		inel	Char	
(dB)	(dBm)	1912.5	1880	1852.5		y (MHz)	Frequenc	
		23.22	23.02	23.05	0	1	QPSK	5
0	24	23.17	23.01	22.95	12	1	QPSK	5
		23.12	22.99	22.88	24	1	QPSK	5
		22.20	22.12	22.00	0	12	QPSK	5
		22.23	22.07	21.95	7	12	QPSK	5
1	23	22.21	22.08	21.90	13	12	QPSK	5
		22.23	22.02	22.03	0	25	QPSK	5
		22.23	22.01	22.00	0	1	16QAM	5
1	23	22.16	22.05	21.95	12	1	16QAM	5
		22.14	22.03	21.90	24	1	16QAM	5
		21.20	21.12	21.02	0	12	16QAM	5
		21.24	21.09	21.05	7	12	16QAM	5
2	22	21.22	21.08	20.92	13	12	16QAM	5
		21.24	21.04	20.98	0	25	16QAM	5
MPR	Tune-up limit	26675	26340	26055			Char	
(dB)	(dBm)	1913.5	1880	1851.5			Frequenc	
		23.20	23.00	23.02	0	1	QPSK	3
0	24	23.17	23.00	22.95	8	1	QPSK	3
		23.14	22.99	23.00	14	1	QPSK	3
		22.17	22.11	22.06	0	8	QPSK	3
		22.28	22.03	21.94	4	8	QPSK	3
1	23	22.28	22.09	22.01	7	8	QPSK	3
		22.22	22.05	21.94	0	15	QPSK	3
		22.19	22.08	22.00	0	1	16QAM	3
1	23	22.18	22.04	21.92	<u> </u>	1	16QAM	3
·	20	22.14	21.99	21.94	14	1	16QAM	3
		21.12	21.03	20.99	0	8	16QAM	3
		21.19	21.00	20.89	4	8	16QAM	3
2	22	21.22	20.97	20.95	7	8	16QAM	3
		21.21	21.07	20.94	0	15	16QAM	3
MPR	Tune-up limit	26683	26340	26047	<u> </u>		Char	<u> </u>
(dB)	(dBm)	1914.3	1880	1850.7			Frequenc	
(3:2)	(32.11)	23.20	22.96	23.03	0	1	QPSK	1.4
		23.17	23.03	23.00	3	1	QPSK	1.4
		23.12	22.99	22.94	5	1	QPSK	1.4
0	24	23.09	23.01	23.03	0	3	QPSK	1.4
		23.14	23.02	23.05	1	3	QPSK	1.4
		23.08	23.02	23.02	3	3	QPSK	1.4
1	23	22.24	22.10	22.07	0	6	QPSK	1.4
'	23	22.24	22.10	21.94		1	16QAM	
		22.24	22.01	21.94	3	1	16QAM	1.4
					5	1		1.4
1	23	22.13	21.98	21.91			16QAM	1.4
		22.10	22.05	22.05	0	3	16QAM	1.4
		22.18	22.07	22.07	1	3	16QAM	1.4
	22	22.18	22.08 21.09	22.05 21.13	3 0	3 6	16QAM 16QAM	1.4 1.4

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 41 of 111

Reduced Power Mode

Report No. : FA650305

<LTE Band 2>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		18700	18900	19100	(dBm)	(dB)
	Frequenc	cy (MHz)		1860	1880	1900		
20	QPSK	1	0	13.54	13.23	14.34		
20	QPSK	1	49	13.89	13.75	13.02	15	0
20	QPSK	1	99	13.00	14.34	14.47		
20	QPSK	50	0	14.06	13.56	13.98		
20	QPSK	50	24	13.80	13.85	13.30	45	0
20	QPSK	50	50	13.36	14.13	13.24	15	0
20	QPSK	100	0	13.66	13.86	13.64		
20	16QAM	1	0	13.92	13.23	14.64		
20	16QAM	1	49	14.28	13.79	13.30	15	0
20	16QAM	1	99	13.07	14.64	14.58		
20	16QAM	50	0	13.83	13.21	13.74		
20	16QAM	50	24	13.85	13.51	13.27	15	0
20	16QAM	50	50	13.12	13.80	13.26	15	U
20	16QAM	100	0	13.42	13.54	13.60		
	Cha	nnel		18675	18900	19125	Tune-up limit	MPR
	Frequenc	cy (MHz)		1857.5	1880	1902.5	(dBm)	(dB)
15	QPSK	1	0	13.17	13.00	13.71		
15	QPSK	1	37	13.85	13.39	13.00	15	0
15	QPSK	1	74	13.00	14.19	14.29		
15	QPSK	36	0	13.77	13.14	13.21		
15	QPSK	36	20	13.71	13.36	13.01	45	0
15	QPSK	36	39	13.51	14.00	13.40	15	0
15	QPSK	75	0	13.71	13.47	13.42		
15	16QAM	1	0	13.57	13.03	14.01		
15	16QAM	1	37	13.96	13.76	13.12	15	0
15	16QAM	1	74	13.14	14.25	14.32		
15	16QAM	36	0	13.57	13.02	13.00		
15	16QAM	36	20	13.51	13.42	13.03	15	0
15	16QAM	36	39	13.31	13.66	13.17	15	0
15	16QAM	75	0	13.48	13.54	13.12		
	Cha	nnel		18650	18900	19150	Tune-up limit	MPR
	Frequenc	cy (MHz)		1855	1880	1905	(dBm)	(dB)
10	QPSK	1	0	13.59	13.45	13.20		
10	QPSK	1	25	14.02	13.46	13.21	15	0
10	QPSK	1	49	14.21	14.01	14.10		
10	QPSK	25	0	13.91	13.51	13.30		
10	QPSK	25	12	14.14	13.55	13.39	15	0
10	QPSK	25	25	14.15	13.81	14.06	15	U
10	QPSK	50	0	14.20	13.71	13.74		
10	16QAM	1	0	13.96	13.60	13.54		
10	16QAM	1	25	14.14	13.83	13.33	15	0
10	16QAM	1	49	14.28	14.46	14.40		
10	16QAM	25	0	13.95	13.27	13.09		
10	16QAM	25	12	13.90	13.57	13.15	15	0
10	16QAM	25	25	13.93	13.88	13.82	15	0
10	16QAM	50	0	14.00	13.53	13.51		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE

MPR	Tune-up limit	19175	18900	18625		nnel	Char	
(dB)	(dBm)	1907.5	1880	1852.5			Frequenc	
		13.12	13.11	13.09	0	1	QPSK	5
0	15	13.70	13.47	13.74	12	1	QPSK	5
		14.84	13.50	13.74	24	1	QPSK	5
		13.34	13.36	13.50	0	12	QPSK	5
		13.86	13.57	13.66	7	12	QPSK	5
0	15	14.33	13.45	13.87	13	12	QPSK	5
		13.91	13.44	13.72	0	25	QPSK	5
		13.22	13.23	13.50	0	1	16QAM	5
0	15	13.83	13.85	14.16	12	1	16QAM	5
		14.95	13.89	14.19	24	1	16QAM	5
		13.12	13.20	13.57	0	12	16QAM	5
	1	13.64	13.61	13.74	7	12	16QAM	5
0	15	14.11	13.54	13.94	13	12	16QAM	5
		13.69	13.46	13.77	0	25	16QAM	5
MPR	Tune-up limit	19185	18900	18615		nnel	Char	
(dB)	(dBm)	1908.5	1880	1851.5		y (MHz)	Frequenc	
		13.60	13.33	13.13	0	1	QPSK	3
0	15	14.29	13.55	13.66	8	1	QPSK	3
		14.90	13.43	13.73	14	1	QPSK	3
		13.87	13.44	13.39	0	8	QPSK	3
	i	14.32	13.60	13.71	4	8	QPSK	3
0	15	14.55	13.45	13.80	7	8	QPSK	3
		14.24	13.51	13.61	0	15	QPSK	3
		13.69	13.43	13.50	0	1	16QAM	3
0	15	14.39	13.92	14.04	8	1	16QAM	3
		14.99	13.78	14.09	14	1	16QAM	3
		13.70	13.52	13.49	0	8	16QAM	3
	i	14.15	13.68	13.81	4	8	16QAM	3
0	15	14.38	13.58	13.89	7	8	16QAM	3
		14.02	13.56	13.66	0	15	16QAM	3
MPR	Tune-up limit	19193	18900	18607		nnel	Char	
(dB)	(dBm)	1909.3	1880	1850.7		y (MHz)	Frequenc	
		14.35	13.54	13.42	0	1	QPSK	1.4
		14.78	13.67	13.66	3	1	QPSK	1.4
0	1 45	14.92	13.48	13.65	5	1	QPSK	1.4
0	15	14.57	13.64	13.54	0	3	QPSK	1.4
		14.70	13.67	13.60	1	3	QPSK	1.4
		14.93	13.70	13.69	3	3	QPSK	1.4
0	15	14.75	13.66	13.59	0	6	QPSK	1.4
		14.43	13.91	13.68	0	1	16QAM	1.4
		14.88	14.00	13.93	3	1	16QAM	1.4
	1 45	14.99	13.86	13.92	5	1	16QAM	1.4
0	15	14.35	13.66	13.53	0	3	16QAM	1.4
		14.49	13.70	13.60	1	3	16QAM	1.4
		14.69	13.69	13.66	3	3	16QAM	1.4
0	15	14.59	13.75	13.65	0	6	16QAM	1.4

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 43 of 111

<LTE Band 4>

Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High			
			Ch. / Freq.	Ch. / Freq.	Ch. / Freq.		MPR	
Cha	nnel		20050	20175	20300	(aBM)	(dB)	
Frequenc	cy (MHz)		1720	1732.5	1745			
QPSK	1	0	13.24	13.94	13.74			
QPSK	1	49	13.54	13.58	13.24	14.5	0	
QPSK	1	99	13.45	12.63	13.43			
QPSK	50	0	13.52	13.79	13.53			
QPSK	50	24	13.52	13.64	13.32	145	0	
QPSK	50	50	13.69	13.38	13.29	14.5	0	
QPSK	100	0	13.54	13.47	13.41			
16QAM	1	0	13.12	14.01	14.11			
16QAM	1	49	13.66	13.67	13.65	14.5	0	
16QAM	1	99	13.76	13.40	13.27			
16QAM	50	0	13.28	13.53	13.57			
16QAM	50	24	13.30	13.41	13.39	1	_	
	50	50	13.43	12.81	13.30	14.5	0	
16QAM	100	0	13.32	13.47	13.46			
	nnel		20025		20325	Tune-up limit	MPR	
				1732.5		(dBm)	(dB)	
QPSK	1	0		13.81			· · ·	
QPSK	1					14.5	0	
	1					1		
	36							
						1		
						14.5	0	
						1		
						14.5	0	
						14.5	14.5	ŭ
	· ·							
						1		
						14.5	0	
						-		
		, , ,				Tuno un limit	MPR	
							(dB)	
	, ,	0				(- /	(- /	
						14.5	0	
						14.0	Ü	
						_		
						14.5	0	
				1				
					1	14.5	0	
						14.5	0	
					-			
16QAM	25	12	13.25	13.48	13.00	14.5	0	
16QAM	25	25	13.37	12.95	13.54	14.0	U	
	Cha Frequence QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	Channel Frequency (MHz) QPSK 1 QPSK 1 QPSK 50 QPSK 50 QPSK 50 QPSK 50 QPSK 50 QPSK 100 16QAM 1 16QAM 1 16QAM 50 16QAM 100 Channel Frequency (MHz) QPSK 36 16QAM 1 16QAM 1 16QAM 36 16Q	Channel Frequency (MHz) QPSK 1 0 QPSK 1 49 QPSK 1 99 QPSK 50 0 QPSK 50 24 QPSK 50 50 QPSK 100 0 16QAM 1 0 16QAM 1 0 16QAM 1 99 16QAM 1 0 16QAM 1 99 16QAM 50 0 16QAM 50 0 16QAM 50 50 16QAM 50 50 16QAM 100 0 Channel Frequency (MHz) QPSK 1 0 QPSK 36 20 QPSK 36 39 16QAM 1 74 16QAM 1 74 16QAM </td <td>Modulation RB Size RB Offset Low Ch. / Freq. Channel 20050 Frequency (MHz) 1720 QPSK 1 0 13.24 QPSK 1 49 13.54 QPSK 1 99 13.45 QPSK 50 0 13.52 QPSK 50 24 13.52 QPSK 50 50 13.69 QPSK 100 0 13.54 QPSK 50 50 13.69 QPSK 100 0 13.52 QPSK 100 0 13.12 16QAM 1 49 13.66 16QAM 1 49 13.66 16QAM 50 0 13.28 16QAM 50 50 13.43 16QAM 50 50 13.43 16QAM 100 0 13.32 Channel 20025 7717.5</td> <td>Modulation RB Size RB Offset Low Ch. / Freq. Ch. / Freq. Ch. / Freq. 20050 Middle Ch. / Freq. Ch. / Freq. 20050 Ch. / Freq. 20050 Ch. / Freq. 20050 20175 Frequency (MHz) 1720 1732.5 1732.5 1720 1732.5 173.94 QPSK 1 49 13.54 13.94 19.94 13.54 13.94 13.94 19.94 13.54 13.94 13.94 19.94 13.54 13.94 13.94 19.94 13.54 13.94 13.94 19.94 13.52 13.94 13.64 13.94 13.64 13.67 13.64 13.67 13.64 13.67 13.64 13.67 13.64 13.67 13.64 13.37 13.38 13.38 13.38 13.37 13.64 13.47 13.64 13.47 13.66 13.67 13.40 14.91 13.66 13.67 13.40 14.91 13.66 13.67 13.40 14.93 13.64 13.67 13.40 14.94 13.69 13.34 12.84 13.53 16.94</td> <td>Modulation RB Size RB Offset Low Middle Ch. / Freq. Ch. / Freq. Ch. / Freq. 20300 PSK 1 0 13.24 13.94 13.75 QPSK 1 99 13.45 12.63 13.43 QPSK 50 0 13.52 13.79 13.53 QPSK 50 24 13.52 13.64 13.32 QPSK 50 50 13.69 13.38 13.29 QPSK 100 0 13.54 13.47 13.41 16QAM 1 0 13.12 14.01 14.11 16QAM 1 99 13.76 13.40 13.27 16QAM 50 0 13.28 13.53 13.57 16QAM 50 24 13.30 13.41 13.39 16QAM <</td> <td> Modulation</td>	Modulation RB Size RB Offset Low Ch. / Freq. Channel 20050 Frequency (MHz) 1720 QPSK 1 0 13.24 QPSK 1 49 13.54 QPSK 1 99 13.45 QPSK 50 0 13.52 QPSK 50 24 13.52 QPSK 50 50 13.69 QPSK 100 0 13.54 QPSK 50 50 13.69 QPSK 100 0 13.52 QPSK 100 0 13.12 16QAM 1 49 13.66 16QAM 1 49 13.66 16QAM 50 0 13.28 16QAM 50 50 13.43 16QAM 50 50 13.43 16QAM 100 0 13.32 Channel 20025 7717.5	Modulation RB Size RB Offset Low Ch. / Freq. Ch. / Freq. Ch. / Freq. 20050 Middle Ch. / Freq. Ch. / Freq. 20050 Ch. / Freq. 20050 Ch. / Freq. 20050 20175 Frequency (MHz) 1720 1732.5 1732.5 1720 1732.5 173.94 QPSK 1 49 13.54 13.94 19.94 13.54 13.94 13.94 19.94 13.54 13.94 13.94 19.94 13.54 13.94 13.94 19.94 13.54 13.94 13.94 19.94 13.52 13.94 13.64 13.94 13.64 13.67 13.64 13.67 13.64 13.67 13.64 13.67 13.64 13.67 13.64 13.37 13.38 13.38 13.38 13.37 13.64 13.47 13.64 13.47 13.66 13.67 13.40 14.91 13.66 13.67 13.40 14.91 13.66 13.67 13.40 14.93 13.64 13.67 13.40 14.94 13.69 13.34 12.84 13.53 16.94	Modulation RB Size RB Offset Low Middle Ch. / Freq. Ch. / Freq. Ch. / Freq. 20300 PSK 1 0 13.24 13.94 13.75 QPSK 1 99 13.45 12.63 13.43 QPSK 50 0 13.52 13.79 13.53 QPSK 50 24 13.52 13.64 13.32 QPSK 50 50 13.69 13.38 13.29 QPSK 100 0 13.54 13.47 13.41 16QAM 1 0 13.12 14.01 14.11 16QAM 1 99 13.76 13.40 13.27 16QAM 50 0 13.28 13.53 13.57 16QAM 50 24 13.30 13.41 13.39 16QAM <	Modulation	

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 44 of 111

MPR	Tune-up limit	20375	20175	19975		nnel	Char	
(dB)	(dBm)	1752.5	1732.5	1712.5			Frequenc	
		13.50	13.73	12.95	0	1	QPSK	5
0	14.5	13.38	13.71	13.28	12	1	QPSK	5
		13.36	13.33	13.33	24	1	QPSK	5
		13.51	13.79	13.29	0	12	QPSK	5
		13.40	13.78	13.28	7	12	QPSK	5
0	14.5	13.42	13.43	13.27	13	12	QPSK	5
		13.34	13.48	13.36	0	25	QPSK	5
		13.26	13.82	12.82	0	1	16QAM	5
0	14.5	13.80	13.80	13.43	12	1	16QAM	5
		13.78	13.11	13.45	24	1	16QAM	5
		13.53	13.54	13.08	0	12	16QAM	5
		13.46	13.57	13.06	7	12	16QAM	5
0	14.5	13.51	12.90	13.05	13	12	16QAM	5
		13.42	13.54	13.13	0	25	16QAM	5
MPR	Tune-up limit	20385	20175	19965			Char	
(dB)	(dBm)	1753.5	1732.5	1711.5			Frequenc	
		13.39	13.69	12.99	0	1	QPSK	3
0	14.5	13.47	13.71	13.33	8	1	QPSK	3
		13.36	13.34	13.29	14	1	QPSK	3
		13.35	13.85	13.30	0	8	QPSK	3
		13.51	13.81	13.38	4	8	QPSK	3
0	14.5	13.47	13.44	13.39	7	8	QPSK	3
		13.41	13.57	13.42	0	15	QPSK	3
		13.70	13.76	13.39	0	1	16QAM	3
0	14.5	13.87	13.82	13.47	8	1	16QAM	3
		13.77	13.11	13.41	14	1	16QAM	3
		13.44	13.69	13.15	0	8	16QAM	3
		13.61	13.64	13.22	4	8	16QAM	3
0	14.5	13.57	13.56	13.22	7	8	16QAM	3
		13.48	13.65	13.21	0	15	16QAM	3
MPR	Tune-up limit	20393	20175	19957	<u> </u>		Char	
(dB)	(dBm)	1754.3	1732.5	1710.7			Frequenc	
		13.97	13.72	13.33	0	1	QPSK	1.4
		13.99	13.79	13.35	3	1	QPSK	1.4
		13.97	13.74	13.26	5	1	QPSK	1.4
0	14.5	13.42	13.88	13.36	0	3	QPSK	1.4
		14.00	13.87	13.39	1	3	QPSK	1.4
		13.94	13.79	13.38	3	3	QPSK	1.4
0	14.5	13.91	13.85	13.39	0	6	QPSK	1.4
J		13.67	13.75	13.44	0	1	16QAM	1.4
		13.72	13.87	13.48	3	1	16QAM	1.4
		13.63	13.82	13.36	5	1	16QAM	1.4
0	14.5	13.51	13.68	13.17	0	3	16QAM	1.4
		13.42	13.66	13.17	1	3	16QAM	1.4
		10.72	10.00	10.10			100/11/1	7.7
		13.31	13.57	13.15	3	3	16QAM	1.4

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID : UZ7ET55BE Page 45 of 111

<LTE Band 5>

514/5411.3		DD 0:	55.0%	Power	Power	Power		
BW [MHz]	Modulation	RB Size	RB Offset	Low Ch. / Freq.	Middle Ch. / Freq.	High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		20450	20525	20600	(dBm)	(dB)
	Frequenc	cy (MHz)		829	836.5	844		
10	QPSK	1	0	15.68	15.67	16.23		
10	QPSK	1	25	15.68	15.83	15.55	17	0
10	QPSK	1	49	15.79	15.79	15.73		
10	QPSK	25	0	15.74	15.92	16.43		
10	QPSK	25	12	15.79	15.93	15.65	47	0
10	QPSK	25	25	15.89	15.99	15.63	17	0
10	QPSK	50	0	15.75	15.92	15.61		
10	16QAM	1	0	16.01	15.28	15.80		
10	16QAM	1	25	16.06	16.20	15.94	17	0
10	16QAM	1	49	15.37	15.42	15.85		
10	16QAM	25	0	15.80	15.13	15.62		
10	16QAM	25	12	15.80	15.18	15.70	1	•
10	16QAM	25	25	15.13	15.25	15.41	17	0
10	16QAM	50	0	15.00	15.13	15.69		
	Cha	nnel		20425	20525	20625	Tune-up limit	MPR
	Frequenc			826.5	836.5	846.5	(dBm)	(dB)
5	QPSK	1	0	15.46	15.52	15.30		
5	QPSK	1	12	15.70	15.93	15.71	17	0
5	QPSK	1	24	15.43	15.57	15.47		
5	QPSK	12	0	15.59	15.77	15.55		
5	QPSK	12	7	15.74	16.00	15.67	-	
5	QPSK	12	13	15.67	15.83	15.69	17	0
5	QPSK	25	0	15.64	15.81	15.66	-	
5	16QAM	1	0	15.84	15.13	15.42		
5	16QAM	1	12	16.12	16.30	15.86	17	0
5	16QAM	1	24	15.02	15.17	15.58		
5	16QAM	12	0	15.65	15.03	15.57		
5	16QAM	12	7	15.83	16.05	15.69		
5	16QAM	12	13	15.76	15.09	15.45	17	0
5	16QAM	25	0	15.70	15.06	15.46		
	Cha			20415	20525	20635	Tune-up limit	MPR
	Frequenc			825.5	836.5	847.5	(dBm)	(dB)
3	QPSK	1	0	15.81	15.70	15.60		
3	QPSK	1	8	15.85	15.95	15.80	17	0
3	QPSK	1	14	15.72	15.78	15.68		
3	QPSK	8	0	15.84	15.89	15.78		
3	QPSK	8	4	15.92	16.03	15.86		
3	QPSK	8	7	15.84	15.93	15.72	17	0
3	QPSK	15	0	15.82	15.92	15.75		
3	16QAM	1	0	16.18	15.28	15.67		
3	16QAM	1	8	16.28	16.35	15.94	17	0
3	16QAM	1	14	16.06	15.37	15.82		
3	16QAM	8	0	15.94	15.97	15.63		
3	16QAM	8	4	16.05	16.12	15.71		
3	16QAM	8	7	15.96	16.01	15.58	17	0
3	16QAM	15	0	15.91	15.95	15.57		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 46 of 111

PORTON LAB.	FCC SAR T	est Repor	t				Report	No. : FA650305
	Cha	ınnel		20407	20525	20643	Tune-up limit	MPR
	Frequen	cy (MHz)		824.7	836.5	848.3	(dBm)	(dB)
1.4	QPSK	1	0	15.81	15.85	15.84		
1.4	QPSK	1	3	15.81	15.98	15.93		
1.4	QPSK	1	5	15.67	15.88	15.80	17	0
1.4	QPSK	3	0	15.88	15.99	15.82	17	0
1.4	QPSK	3	1	15.87	16.01	15.97		
1.4	QPSK	3	3	15.80	16.01	15.82		
1.4	QPSK	6	0	15.85	16.01	15.83	17	0
1.4	16QAM	1	0	16.19	16.26	15.98		
1.4	16QAM	1	3	16.21	16.35	16.04		
1.4	16QAM	1	5	16.05	16.30	15.94	17	0
1.4	16QAM	3	0	15.95	16.05	15.66	17	U
1.4	16QAM	3	1	15.94	16.06	15.76		
1.4	16QAM	3	3	15.85	16.05	15.63		
1.4	16QAM	6	0	15.98	16.11	15.72	17	0

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 47 of 111

Report No.: FA650305

<LTE Band 13>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha				23230		(dBm)	(dB)
	Frequen	cy (MHz)			782			
10	QPSK	1	0		17.20			
10	QPSK	1	25		17.30		18	0
10	QPSK	1	49		17.19			
10	QPSK	25	0		17.21			
10	QPSK	25	12		17.36		18	0
10	QPSK	25	25		17.33		10	U
10	QPSK	50	0		17.34			
10	16QAM	1	0		17.16			
10	16QAM	1	25		17.37		18	0
10	16QAM	1	49		17.11			
10	16QAM	25	0		17.18			
10	16QAM	25	12	17.27			40	0
10	16QAM	25	25		17.27 17.28		18	0
10	16QAM	50	0		17.28			
	Cha	nnel		23205	23230	23255	Tune-up limit	MPR
	Frequen	cy (MHz)		779.5	782	784.5	(dBm)	(dB)
5	QPSK	1	0	17.24	17.17	17.35		
5	QPSK	1	12	17.18	17.34	17.32	18	0
5	QPSK	1	24	17.47	17.40	17.17		
5	QPSK	12	0	17.17	17.31	17.36		
5	QPSK	12	7	17.21	17.35	17.39	40	
5	QPSK	12	13	17.32	17.34	17.32	18	0
5	QPSK	25	0	17.25	17.29	17.32		
5	16QAM	1	0	17.16	17.13	17.32		
5	16QAM	1	12	17.18	17.34	17.26	18	0
5	16QAM	1	24	17.44	17.39	17.17		
5	16QAM	12	0	17.27	17.29	17.39		
5	16QAM	12	7	17.25	17.38	17.37		
5	16QAM	12	13	17.40	17.34	17.31	18	0
5	16QAM	25	0	17.23	17.28	17.29		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 48 of 111

<LTE Band 17>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit	MPR
	Cha	nnel		23780	23790	23800	(dBm)	(dB)
	Frequen	cy (MHz)		709	710	711		
10	QPSK	1	0	14.18	14.17	14.09		
10	QPSK	1	25	14.65	14.65	14.39	15.5	0
10	QPSK	1	49	13.95	14.14	13.68		
10	QPSK	25	0	14.33	14.41	14.45		
10	QPSK	25	12	14.52	14.58	14.51	15.5	_
10	QPSK	25	25	14.49	14.34	14.04	15.5	0
10	QPSK	50	0	14.42	14.48	14.36		
10	16QAM	1	0	14.56	14.55	14.43		
10	16QAM	1	25	14.88	14.90	14.65	15.5	0
10	16QAM	1	49	14.37	14.54	14.09		
10	16QAM	25	0	14.30	14.40	14.38		0
10	16QAM	25	12	14.44	14.49	14.41	45.5	
10	16QAM	25	25	14.39	14.38	14.08	15.5	
10	16QAM	50	0	14.36	14.43	14.30		
	Cha	nnel		23755	23790	23825	Tune-up limit	MPR
	Frequen	cy (MHz)		706.5	710	713.5	(dBm)	(dB)
5	QPSK	1	0	13.99	14.52	14.55		
5	QPSK	1	12	13.97	14.81	14.20	15.5	0
5	QPSK	1	24	14.39	14.32	13.71		
5	QPSK	12	0	14.05	14.71	14.37		
5	QPSK	12	7	14.15	14.81	14.20	15.5	0
5	QPSK	12	13	14.29	14.67	14.14	15.5	U
5	QPSK	25	0	14.24	14.70	14.18		
5	16QAM	1	0	14.37	14.83	14.76		
5	16QAM	1	12	14.36	15.03	14.59	15.5	0
5	16QAM	1	24	14.84	14.64	14.09		
5	16QAM	12	0	14.10	14.65	14.41		
5	16QAM	12	7	14.15	14.72	14.24	15.5	0
5	16QAM	12	13	14.42	14.59	14.19	15.5	0
5	16QAM	25	0	14.22	14.61	14.21		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 49 of 111

Report No.: FA650305

BW [MHz]	Modulation	RB Size	RB Offset	Power Low	Power Middle	Power High	Tune-up limit	MPR
	Cha	l ınnel		Ch. / Freq. 26140	Ch. / Freq. 26340	Ch. / Freq. 26590	(dBm)	(dB)
							- '	
20	QPSK	cy (MHz) 1	0	1860	1880	1905		
20	QPSK	1		13.34	13.01	13.38	44.5	0
20		1	49 99	13.97	13.40	12.99	14.5	0
20	QPSK	50	0	12.60	14.31	14.16		
20	QPSK			13.75	13.37	13.10	4	
20	QPSK	50	24	13.85	13.62	13.39	14.5	0
20	QPSK	50	50	13.04	13.82	13.88	_	
20	QPSK	100	0	13.35	13.71	13.50		
20	16QAM	1	0	13.73	13.01	13.75	445	0
20	16QAM	1	49	13.92	13.45	13.06	14.5	0
20	16QAM	1 50	99	12.65	14.36	14.11		
20	16QAM	50	0	13.54	13.06	13.06		
20	16QAM	50	24	13.53	13.30	13.06	14.5	0
20	16QAM	50	50	12.77	13.80	13.56		
20	16QAM	100	0	13.12	13.68	13.17		
		innel		26115	26340	26615	Tune-up limit	MPR
		cy (MHz)		1857.5	1880	1907.5	(dBm)	(dB)
15	QPSK	1	0	13.26	12.76	12.53		0
15	QPSK	1	37	13.72	13.42	13.08	14.5	
15	QPSK	1	74	12.73	13.96	14.06		
15	QPSK	36	0	13.70	12.96	12.91		0
15	QPSK	36	20	13.59	13.53	13.36	14.5	
15	QPSK	36	39	13.43	13.79	14.10	14.0	
15	QPSK	75	0	13.48	13.61	13.38		
15	16QAM	1	0	13.66	12.87	12.94		
15	16QAM	1	37	13.82	13.49	13.23	14.5	0
15	16QAM	1	74	13.08	14.28	13.99		
15	16QAM	36	0	13.46	13.02	12.66		
15	16QAM	36	20	13.37	13.23	13.36	14.5	0
15	16QAM	36	39	13.17	13.76	13.77	14.5	0
15	16QAM	75	0	13.27	13.32	13.46		
	Cha	innel		26090	26340	26640	Tune-up limit	MPR
	Frequen	cy (MHz)		1855	1880	1910	(dBm)	(dB)
10	QPSK	1	0	13.42	13.00	13.11		
10	QPSK	1	25	13.62	13.39	13.64	14.5	0
10	QPSK	1	49	13.79	13.99	13.81		
10	QPSK	25	0	13.45	13.20	13.11		
10	QPSK	25	12	13.77	13.57	13.75	14.5	0
10	QPSK	25	25	13.80	13.85	14.00	14.5	0
10	QPSK	50	0	13.76	13.78	13.84		
10	16QAM	1	0	13.86	13.14	13.23		
10	16QAM	1	25	13.80	13.45	13.68	14.5	0
10	16QAM	1	49	13.92	14.00	13.77		
10	16QAM	25	0	13.50	13.27	13.14		
10	16QAM	25	12	13.55	13.24	13.45		
10	16QAM	25	25	13.56	13.54	13.94	14.5	0
10	16QAM	50	0	13.53	13.44	13.49		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 50 of 111

	Cha	nnel		26065	26340	26665	Tune-up limit	MPR
	Frequen	cy (MHz)		1852.5	1880	1912.5	(dBm)	(dB)
5	QPSK	1	0	13.18	13.00	13.75		
5	QPSK	1	12	13.36	13.45	14.39	14.5	0
5	QPSK	1	24	13.68	13.59	13.41		
5	QPSK	12	0	13.26	13.43	14.25		
5	QPSK	12	7	13.67	13.57	14.40		
5	QPSK	12	13	13.80	13.61	14.14	14.5	0
5	QPSK	25	0	13.35	13.54	14.16	1	
5	16QAM	1	0	13.61	13.37	13.79		
5	16QAM	1	12	13.86	13.51	14.37	14.5	0
5	16QAM	1	24	13.82	13.65	13.39	1	
5	16QAM	12	0	13.33	13.13	13.94		
5	16QAM	12	7	13.51	13.30	14.07	-	
5	16QAM	12	13	13.60	13.34	13.81	14.5	0
5	16QAM	25	0	13.46	13.22	13.84	-	
		nnel		26055	26340	26675	Tune-up limit	MDD
	Frequen			1851.5	1880	1913.5	(dBm)	MPR (dB)
3	QPSK	1	0	13.03	13.28	14.44	(dBIII)	(dB)
3	QPSK	1	8	13.03	13.52	14.44	14.5	0
		1	14			_	14.5	U
3	QPSK			13.19	13.59	13.46		
3	QPSK	8	0	13.19	13.40	14.48	_	
3	QPSK	8	4	13.17	13.57	14.38	14.5	0
3	QPSK	8	7	13.26	13.54	13.92		
3	QPSK	15	0	13.21	13.49	14.26		
3	16QAM	1	0	13.45	13.34	14.40		
3	16QAM	1	8	13.67	13.61	14.24	14.5	0
3	16QAM	1	14	13.64	13.64	13.42		
3	16QAM	8	0	13.31	13.15	14.19		
3	16QAM	8	4	13.34	13.35	14.09	14.5	0
3	16QAM	8	7	13.44	13.31	13.63		Ü
3	16QAM	15	0	13.28	13.22	13.95		
	Cha	nnel		26047	26340	26683	Tune-up limit	MPR
		cy (MHz)		1850.7	1880	1914.3	(dBm)	(dB)
1.4	QPSK	1	0	13.03	13.39	14.06		
1.4	QPSK	1	3	13.18	13.52	13.81		
1.4	QPSK	1	5	13.11	13.42	13.50	14.5	0
1.4	QPSK	3	0	13.23	13.44	14.05	14.5	U
1.4	QPSK	3	1	13.18	13.50	13.97		
1.4	QPSK	3	3	13.29	13.49	13.72		
1.4	QPSK	6	0	13.21	13.41	13.91	14.5	0
1.4	16QAM	1	0	13.46	13.44	14.28		
1.4	16QAM	1	3	13.61	13.59	14.05		
1.4	16QAM	1	5	13.52	13.44	13.72	44.5	0
1.4	16QAM	3	0	13.33	13.20	14.00	14.5	0
1.4	16QAM	3	1	13.27	13.25	13.93		
1.4	16QAM	3	3	13.35	13.22	13.66		
1.4	16QAM	6	0	13.35	13.21	13.92	14.5	0
								· ·

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 51 of 111

<WLAN Conducted Power>

General Note:

For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single
antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission
exclusion analysis was performed with SAR test results of each antenna in SISO mode.

Report No.: FA650305

- Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to
 determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain
 SAR measurements is < 1.6W/kg and SAR peak to location ratio < 0.04, no additional SAR measurements for
 MIMO.
- 3. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 4. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 5. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 6. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

FCC ID : UZ7ET55BE Page 52 of 111 Form version. : 160427

<2.4GHz WLAN ANT 1>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 1	2412		15.42	15.50	
	802.11b	CH 6	2437	1Mbps	15.46	15.50	98.62
		CH 11	2462		15.38	15.50	
		CH 1	2412		15.38	15.50	
	802.11g	CH 6	2437	6Mbps	15.32	15.50	92.56
		CH 11	2462		15.37	15.50	
		CH 1	2412	MCS0	15.26	15.50	
2.4GHz WLAN ANT 1	802.11n-HT20	CH 6	2437		15.29	15.50	92.41
7		CH 11	2462		15.27	15.50	
		CH 1	2412		15.22	15.50	92.47
	802.11ac-VHT20	CH 6	2437	MCS0	15.39	15.50	
		CH 11	2462		15.35	15.50	
		CH 3	2422		15.21	15.50	
	802.11n-HT40	CH 6	2437	MCS0	15.33	15.50	86.61
		CH 9	2452		15.23	15.50	
		CH 3	2422		15.35	15.50	
	802.11ac-VHT40	CH 6	2437	MCS0	15.34	15.50	85.71
		CH 9	2452		15.23	15.50	

Report No. : FA650305

<2.4GHz WLAN ANT 2>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 1	2412		15.44	15.50	
	802.11b	CH 6	2437	1Mbps	15.44	15.50	98.62
		CH 11	2462		15.39	15.50	
		CH 1	2412		15.30	15.50	
	802.11g	CH 6	2437	6Mbps	15.25	15.50	92.86
		CH 11	2462		15.35	15.50	
	802.11n-HT20	CH 1	2412	MCS0	15.36	15.50	
2.4GHz WLAN ANT 2		CH 6	2437		15.33	15.50	93.06
70012		CH 11	2462		15.21	15.50	
		CH 1	2412		15.23	15.50	93.10
	802.11ac-VHT20	CH 6	2437	MCS0	15.33	15.50	
		CH 11	2462		15.31	15.50	
		CH 3	2422		15.26	15.50	
	802.11n-HT40	CH 6	2437	MCS0	15.32	15.50	86.28
		CH 9	2452		15.27	15.50	
		CH 3	2422		15.29	15.50	
	802.11ac-VHT40	CH 6	2437	MCS0	15.34	15.50	85.71
		CH 9	2452		15.37	15.50	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 53 of 111

<2.4GHz WLAN ANT 1+2>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 1	2412		18.48	18.50	
	802.11b	CH 6	2437	1Mbps	18.49	18.50	98.85
		CH 11	2462		18.43	18.50	
		CH 1	2412		18.42	18.50	
	802.11g	CH 6	2437	6Mbps	18.34	18.50	92.86
		CH 11	2462		18.39	18.50	
	802.11n-HT20	CH 1	2412	MCS0	18.45	18.50	
2.4GHz WLAN ANT 1+2		CH 6	2437		18.39	18.50	92.36
7		CH 11	2462		18.40	18.50	
		CH 1	2412		18.35	18.50	87.50
	802.11ac-VHT20	CH 6	2437	MCS0	18.41	18.50	
		CH 11	2462		18.38	18.50	
		CH 3	2422		18.30	18.50	
	802.11n-HT40	CH 6	2437	MCS0	18.40	18.50	85.94
		CH 9	2452		18.32	18.50	
		CH 3	2422		18.37	18.50	
	802.11ac-VHT40	CH 6	2437	MCS0	18.41	18.50	85.94
		CH 9	2452		18.39	18.50	

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 54 of 111

<5GHz WLAN ANT1>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 36	5180		11.45	11.50	
	802.11a	CH 40	5200	6Mbpc	11.32	11.50	02.50
	602.11a	CH 44	5220	6Mbps	11.38	11.50	93.58
		CH 48	5240		11.48	11.50	
		CH 36	5180		11.46	11.50	
	802.11n-HT20	CH 40	5200	MCS0	11.42	11.50	93.20
5.2GHz WLAN		CH 44	5220		11.45	11.50	93.20
ANT 1		CH 48	5240		11.37	11.50	
	802.11n-HT40	CH 38	5190	MCS0	11.32	11.50	96.94
		CH 46	5230		11.46	11.50	86.84
		CH 36	5180		11.47	11.50	
	802.11ac-VHT20	CH 40	5200	MCS0	11.42	11.50	92.31
	602.11ac-vn120	CH 44	5220	IVICSU	11.44	11.50	92.31
		CH 48	5240		11.38	11.50	
	802.11ac-VHT40	CH 38	5190	MCCO	11.46	11.50	07.04
		CH 46	5230	MCS0	11.41	11.50	87.01
	802.11ac-VHT80	CH 42	5210	MCS0	10.85	11.00	75.93

Report No.: FA650305

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 52	5260		11.38	11.50	
	802.11a	CH 56	5280	6Mbps	11.35	11.50	93.58
	602.11a	CH 60	5300	GIVIDPS	11.32	11.50	93.36
		CH 64	5320		11.47	11.50	
		CH 52	5260		11.44	11.50	
	802.11n-HT20	CH 56	5280	MCS0	11.42	11.50	93.20
5.3GHz WLAN		CH 60	5300		11.45	11.50	
ANT 1		CH 64	5320		11.43	11.50	
	802.11n-HT40	CH 54	5270	MCS0	11.35	11.50	86.84
		CH 62	5310	MCSU	11.32	11.50	00.84
		CH 52	5260		11.44	11.50	
	802.11ac-VHT20	CH 56	5280	MCS0	11.45	11.50	92.31
	602.11ac-vn120	CH 60	5300	MCSU	11.46	11.50	92.31
		CH 64	5320		11.38	11.50	
	902 44 co \/LIT40	CH 54	5270	MCS0	11.34	11.50	07.04
	802.11ac-VHT40	CH 62	5310	IVICSU	11.39	11.50	87.01
	802.11ac-VHT80	CH 58	5290	MCS0	10.91	11.00	75.93

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE

Report No. : FA650305

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 100	5500		11.86	12.00	
	802.11a	CH 116	5580	CMbpa	11.84	12.00	93.58
	002.11a	CH 132	5660	- 6Mbps	11.89	12.00	93.36
		CH 144	5720		11.82	12.00	
		CH 100	5500		11.83	12.00	
	802.11n-HT20	CH 116	5580	MCS0	11.79	12.00	93.20
	002.11II-H120	CH 132	5660	MCSU	11.88	12.00	93.20
		CH 144	5720		11.79	12.00	
	802.11n-HT40	CH 102	5510	MCS0	11.94	12.00	
5.5GHz WLAN ANT 1		CH 110	5550		11.83	12.00	86.84
7		CH 134	5670		11.76	12.00	00.04
		CH 142	5710		11.76	12.00	
		CH 100	5500		11.93	12.00	92.31
	802.11ac-VHT20	CH 116	5580	MCS0	11.86	12.00	
	002.11ac-vH120	CH 132	5660	IVICSU	11.78	12.00	
		CH 144	5720		11.92	12.00	
		CH 102	5510		11.93	12.00	
	802.11ac-VHT40	CH 110	5550	MCS0	11.95	12.00	07.04
	002.11ac-vn140	CH 134	5670	IVICSU	11.77	12.00	87.01
		CH 142	5710		11.83	12.00	
	802.11ac-VHT80	CH 106	5530	MCS0	11.46	11.50	75.00
	002.11ac-vn180	CH 138	5690	IVICSU	11.44	11.50	75.93

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 149	5745		11.75	12.00	
	802.11a	CH 157	5785	MCS0	11.96	12.00	93.58
		CH 165	5825		11.90	12.00	
		CH 149	5745		11.90	12.00	
	802.11n-HT20	CH 157	5785	MCS0	11.65	12.00	93.20
5.8GHz WLAN ANT 1		CH 165	5825		11.81	12.00	
7	802.11n-HT40	CH 151	5755	MCS0	11.90	12.00	86.84
		CH 159	5795	IVICSU	11.92	12.00	
		CH 149	5745		11.91	12.00	
	802.11ac-VHT20	CH 157	5785	MCS0	11.73	12.00	92.31
		CH 165	5825		11.76	12.00	
	902 1100 V/HT40	CH 151	5755	MCS0	11.94	12.00	87.01
	802.11ac-VHT40	CH 159	5795	IVICSU	11.91	12.00	67.01
	802.11ac-VHT80	CH 155	5775	MCS0	11.44	11.50	75.93

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID : UZ7ET55BE Page 56 of 111

<5GHz WLAN ANT2>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 36	5180		14.85	15.00	
	802.11a	CH 40	5200	6Mbps	14.84	15.00	92.73
	602.11a	CH 44	5220	6Mbps	14.85	15.00	92.73
		CH 48	5240		14.86	15.00	
		CH 36	5180		14.96	15.00	
	802.11n-HT20	CH 40	5200	MCS0	14.87	15.00	93.20
5.2GHz WLAN		CH 44	5220		14.93	15.00	93.20
ANT 2		CH 48	5240		14.92	15.00	
	000 44 - 11740	CH 38	5190	MCCO	13.58	14.00	07.04
	802.11n-HT40	CH 46	5230	MCS0	14.94	15.00	87.01
		CH 36	5180		14.94	15.00	
	000 44 \// ITOO	CH 40	5200	MCCO	14.90	15.00	02.00
	802.11ac-VHT20	CH 44	5220	MCS0	14.97	15.00	93.20
		CH 48	5240		14.93	15.00	
	000 44 \\	CH 38	5190	MCCO	13.63	14.00	07.04
	802.11ac-VHT40	CH 46	5230	MCS0	14.94	15.00	87.01
	802.11ac-VHT80	CH 42	5210	MCS0	12.96	13.00	76.85

Report No.: FA650305

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		CH 52	5260		14.97	15.00		
	902.446	CH 56	5280	GMbss	14.87	15.00	92.73	
	802.11a	CH 60	5300	6Mbps	14.91	15.00		
		CH 64	5320		14.98	15.00		
		CH 52	5260		14.86	15.00		
	000 44 = 1.1700	CH 56	5280	MCS0	14.84	15.00	93.20	
5.3GHz WLAN	802.11n-HT20	CH 60	5300	MCSU	14.98	15.00		
ANT 2		CH 64	5320		14.93	15.00		
	902 44 n LIT40	CH 54	5270	MCS0	14.99	15.00	87.01	
	802.11n-HT40	CH 62	5310	MCSU	13.90	14.00	67.01	
		CH 52	5260		14.96	15.00		
	000 44 \// IT00	CH 56	5280	MCCO	14.84	15.00	02.00	
	802.11ac-VHT20	CH 60	5300	MCS0	14.92	15.00	93.20	
		CH 64	5320		14.99	15.00		
	902 44 co \/LIT40	CH 54	5270	MCS0	14.99	15.00	07.04	
	802.11ac-VHT40	CH 62	5310	IVICSU	13.98	14.00	87.01	
	802.11ac-VHT80	CH 58	5290	MCS0	13.08	13.50	76.85	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 57 of 111

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 100	5500		13.99	14.00	
	802.11a	CH 116	5580	GMbba	13.95	14.00	92.73
	002.11a	CH 132	5660	6Mbps	13.71	14.00	92.73
		CH 144	5720		13.79	14.00	
		CH 100	5500		13.84	14.00	
	802.11n-HT20	CH 116	5580	MCS0	13.91	14.00	93.20
	002.11II-H120	CH 132	5660	IVICSU	13.89	14.00	93.20
		CH 144	5720		13.87	14.00	
	802.11n-HT40	CH 102	5510	MCS0	13.69	14.00	
5.5GHz WLAN ANT 2		CH 110	5550		13.82	14.00	87.01
72		CH 134	5670		13.93	14.00	67.01
		CH 142	5710		13.73	14.00	
		CH 100	5500		13.92	14.00	
	802.11ac-VHT20	CH 116	5580	MCS0	13.88	14.00	93.20
	602.11ac-vn120	CH 132	5660	IVICSU	13.90	14.00	93.20
		CH 144	5720		13.89	14.00	
		CH 102	5510		13.94	14.00	
	000 44 \ // 17 40	CH 110	5550	MCS0	13.77	14.00	87.01
	802.11ac-VHT40	CH 134	5670	IVICSU	13.67	14.00	67.01
		CH 142	5710		13.70	14.00	
	902 44cc \/LIT00	CH 106	5530	MCCO	13.43	13.50	76.05
	802.11ac-VHT80	CH 138	5690	MCS0	13 33	13 50	76.85

Report No.: FA650305

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		CH 149	5745		12.73	13.00		
	802.11a	CH 157	5785	MCS0	12.90	13.00	92.73	
		CH 165	5825		12.92	13.00		
	802.11n-HT20	CH 149	5745		12.93	13.00		
		CH 157	5785	MCS0	12.92	13.00	93.20	
5.8GHz WLAN ANT 2		CH 165	5825		12.94	13.00		
/ · _	802.11n-HT40	CH 151	5755	MCS0	12.86	13.00	87.01	
		CH 159	5795	IVICSO	12.95	13.00		
		CH 149	5745		12.88	13.00		
	802.11ac-VHT20	CH 157	5785	MCS0	12.92	13.00	93.20	
		CH 165	5825		12.94	13.00		
	802.11ac-VHT40	CH 151	5755	MCS0	12.86	13.00	87.01	
	002.11a0-VH140	CH 159	5795	IVICSU	12.96	13.00	67.01	
	802.11ac-VHT80	CH 155	5775	MCS0	12.30	12.50	76.85	

5690

13.33

13.50

CH 138

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 58 of 111

<5GHz WLAN ANT1+2>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 36	5180		14.41	14.50	
	802.11a	CH 40	5200	CN Albana	14.22	14.50	93.58
	002.11a	CH 44	5220	6Mbps	14.20	14.50	93.56
		CH 48	5240		14.32	14.50	
		CH 36	5180		14.30	14.50	
	802.11n-HT20	CH 40	5200	MCS0	14.23	14.50	93.20
5.2GHz WLAN	602.11II-F1120	CH 44	5220	IVICSU	14.21	14.50	
ANT 1+2		CH 48	5240		14.23	14.50	
	802.11n-HT40	CH 38	5190	MCS0	14.20	14.50	85.62
	602.11II-H140	CH 46	5230	IVICSU	14.15	14.50	
		CH 36	5180		14.25	14.50	
	802.11ac-VHT20	CH 40	5200	MCS0	14.30	14.50	92.23
	002.11ac-v1120	CH 44	5220	IVICSU	14.27	14.50	92.23
		CH 48	5240		14.34	14.50	
	802.11ac-VHT40	CH 38	5190	MCS0	14.30	14.50	87.01
	002.11a0-VH140	CH 46	5230	IVICSU	14.07	14.50	67.01
	802.11ac-VHT80	CH 42	5210	MCS0	13.80	14.00	75.93

Report No. : FA650305

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		CH 52	5260		14.39	14.50		
	802.11a	CH 56	5280	6Mbps	14.23	14.50	93.58	
	002.11a	CH 60	5300	Olvibps	14.45	14.50	93.36	
		CH 64	5320		14.34	14.50		
		CH 52	5260		14.23	14.50		
	802.11n-HT20	CH 56	5280	MCS0	14.23	14.50	93.20	
5.3GHz WLAN	602.11II-H120	CH 60	5300	IVICSU	14.34	14.50		
ANT 1+2		CH 64	5320		14.34	14.50		
	902 44 n LIT40	CH 54	5270	MCS0	14.29	14.50	85.62	
	802.11n-HT40	CH 62	5310	IVICSU	14.24	14.50	85.6∠	
		CH 52	5260		14.43	14.50		
	802.11ac-VHT20	CH 56	5280	MCS0	14.36	14.50	02.22	
	602.11ac-vn120	CH 60	5300	IVICSU	14.31	14.50	92.23	
		CH 64	5320		14.35	14.50		
	902 1100 V/UT40	CH 54	5270	MCS0	14.38	14.50	87.01	
	802.11ac-VHT40	CH 62	5310	IVICSU	14.31	14.50	67.01	
	802.11ac-VHT80	CH 58	5290	MCS0	13.91	14.00	75.93	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 59 of 111

Report	No.	:	FA650305

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
	802.11a	CH 100	5500		14.71	15.00	
		CH 116	5580	GMbss	14.69	15.00	93.58
	602.11a	CH 132	5660	6Mbps	14.66	15.00	93.36
		CH 144	5720		14.68	15.00	
		CH 100	5500		14.60	15.00	
	802.11n-HT20	CH 116	5580	MCS0	14.53	15.00	02.20
	602.11II - H120	CH 132	5660	IVICSU	14.66	15.00	93.20
		CH 144	5720		14.66	15.00	
		CH 102	5510	MCS0	14.66	15.00	
5.5GHz WLAN ANT 1+2	802.11n-HT40	CH 110	5550		14.31	15.00	85.62
7((1) 1)2	602.11II-H140	CH 134	5670		14.54	15.00	65.62
		CH 142	5710		14.61	15.00	
		CH 100	5500		14.44	15.00	
	802.11ac-VHT20	CH 116	5580	MCS0	14.60	15.00	92.23
	002.11ac-v1120	CH 132	5660	IVICSU	14.57	15.00	92.23
		CH 144	5720		14.62	15.00	
		CH 102	5510		14.57	15.00	
	902 44 co V/LIT40	CH 110	5550	MCS0	14.67	15.00	87.01
	802.11ac-VHT40	CH 134	5670	IVICSU	14.57	15.00	67.01
		CH 142	5710		14.65	15.00	
	802.11ac-VHT80	CH 106	5530	MCS0	14.09	14.50	75.93
	002.11ac-v=160	CH 138	5690	IVICSU	14.14	14.50	75.85

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		CH 149	5745		14.78	15.00		
	802.11a	CH 157	5785	MCS0	14.93	15.00	93.58	
		CH 165	5825		14.82	15.00		
		CH 149	5745		14.66	15.00		
	802.11n-HT20	CH 157	5785	MCS0	14.66	15.00	93.20	
5.8GHz WLAN ANT 1+2		CH 165	5825		14.84	15.00		
7	802.11n-HT40	CH 151	5755	MCS0	14.86	15.00	86.84	
		CH 159	5795	IVICSO	14.65	15.00		
		CH 149	5745		14.68	15.00		
	802.11ac-VHT20	CH 157	5785	MCS0	14.66	15.00	93.20	
		CH 165	5825		14.85	15.00		
	802.11ac-VHT40	CH 151	5755	MCS0	14.83	15.00	87.01	
80	002.11ac-VH140	CH 159	5795	IVICOU	14.86	15.00	67.01	
	802.11ac-VHT80	CH 155	5775	MCS0	14.41	14.50	75.93	

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 60 of 111

<2.4GHz Bluetooth>

General Note:

- For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. 1.
- The duty factor is selected theoretical 83.3% perform Bluetooth SAR testing. 2.

Mode	Channel	Frequency	Average power (dBm)				
Wode	Chame	(MHz)	1Mbps	2Mbps	3Mbps		
	CH 00	2402	7.16	6.33	6.45		
EDR	CH 39	2441	8.99	7.98	8.00		
	CH 78	2480	8.31	7.65	7.65		
	Tune-up Limit		9	8	8		

Report No. : FA650305

Mode	Channel	Frequency	Average power (dBm)		
iviode	Chainei	(MHz)	GFSK		
	CH 00	2402	1.89		
LE	CH 19	2440	4.18		
	CH 39	2480	3.92		
	Tune-up Limit		4.5		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 61 of 111

<SAR test exclusion able>

General Note:

1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW"

Report No.: FA650305

- 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold.
- 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)-(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) ·10] mW at > 1500 MHz and ≤ 6 GHz

	Wireless Interface	GSM 850	GSM 1900	WCDMA Band V	WCDMA Band IV	WCDMA Band II	CDMA BC10	CDMA BC0	CDMA BC1	LTE Band 17	LTE Band 13	LTE Band 5	LTE Band 4	LTE Band 2	LTE Band 25
Exposure Position	Calculated Frequency	848MHz	1909MHz	846MHz	1750MHz	1907MHz	846MHz	848MHz	1907MHz	713MHz	784MHz	848MHz	1754MHz	1909MHz	1914MHz
Position	Maximum power (dBm)	27.0	24.0	24.0	24.0	24.0	24.5	24.5	24.5	24.0	24.0	24.0	24.0	24.0	24.0
	Maximum rated power(mW)	501.0	251.0	251.0	251.0	251.0	282.0	282.0	282.0	251.0	251.0	251.0	251.0	251.0	251.0
Bottom	Separation distance(mm)							5	.0						
Face	exclusion threshold	92.3	69.4	46.2	66.4	69.3	51.9	51.9	77.9	42.4	44.5	46.2	66.5	69.4	69.5
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Separation distance(mm)							5	.0						
Edge 1	exclusion threshold	92.3	69.4	46.2	66.4	69.3	51.9	51.9	77.9	42.4	44.5	46.2	66.5	69.4	69.5
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	Separation distance(mm)							13	2.0						
Edge 2	exclusion threshold	626.0	929.0	626.0	933.0	929.0	626.0	626.0	929.0	567.0	598.0	626.0	933.0	929.0	928.0
	Testing required?	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	Separation distance(mm)							13	5.0						
Edge 3	exclusion threshold	643.0	959.0	642.0	963.0	959.0	642.0	643.0	959.0	582.0	614.0	643.0	963.0	959.0	958.0
	Testing required?	No	No	No	No	No	No	No	No	No	No	No	No	No	No
	Separation distance(mm)							42	2.0						
Edge 4	exclusion threshold	11.0	8.3	5.5	7.9	8.3	6.2	6.2	9.3	5.1	5.3	5.5	7.9	8.3	8.3
	Testing required?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
		-							•						

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 21, 2016 Form version.: 160427 FCC ID: UZ7ET55BE Page 62 of 111

Report No.: FA650305

	Wireless Interface	2.4GHz WLAN ANT 1	2.4GHz WLAN ANT 2	5GHz WLAN ANT 1	5GHz WLAN ANT 2
Exposure Position	Calculated Frequency	2462MHz	2462MHz	5825MHz	5825MHz
Exposure r osition	Maximum power (dBm)	15.5	15.5	12.0	15.0
	Maximum rated power(mW)	35.0	35.0	16.0	32.0
	Separation distance(mm)	5.0	5.0	5.0	5.0
Bottom Face	exclusion threshold	11.0	11.0	7.7	15.5
	Testing required?	Yes	Yes	Yes	Yes
	Separation distance(mm)	19.0	101.0	19.0	101.0
Edge 1	exclusion threshold	2.9	606.0	2.0	572.0
	Testing required?	No	No	No	No
	Separation distance(mm)	5.0	5.0	5.0	5.0
Edge 2	exclusion threshold	11.0	11.0	7.7	15.5
	Testing required?	Yes	Yes	Yes	Yes
	Separation distance(mm)	120.0	38.0	120.0	38.0
Edge 3	exclusion threshold	796.0	1.5	762.0	2.0
	Testing required?	No	No	No	No
	Separation distance(mm)	222.0	222.0	222.0	222.0
Edge 4	exclusion threshold	1816.0	1816.0	1782.0	1782.0
	Testing required?	No	No	No	No

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE

13. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA650305

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 4. For the exposure positions that proximity sensor power reduction is applied for SAR compliance, additional SAR testing with EUT transmitting full power in normal mode was performed; 12mm for bottom face, 14mm for edge1

GSM Note:

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EDGE (4Tx slots) for GSM850/GSM1900 is considered as the primary mode when the power reduction is active, the GPRS (2Tx slots) for GSM850, the EDGE (4Tx slots) for GSM1900 is considered as the primary mode when the power reduction is inactive.
- Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode

UMTS Note:

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA.

CMDA Note:

 Per KDB 941225 D01v03r01, when in Body SAR testing, the EUT is treated as data device and SAR is tested with Ev-Do Rev 0 (RTAP 153.6kbps) as the primary mode.

SPORTON INTERNATIONAL INC.TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC SAR Test Report

LTE Note:

1. Per KDB 941225 D05v02r05, start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.

Report No.: FA650305

- 2. Per KDB 941225 D05v02r05, 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure.
- 3. Per KDB 941225 D05v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB 941225 D05v02r05, 16QAM output power for each RB allocation configuration is > not ½ dB higher than the same configuration in QPSK and the reported SAR for the QPSK configuration is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, 16QAM SAR testing is not required.
- 5. Per KDB 941225 D05v02r05, Smaller bandwidth output power for each RB allocation configuration is > not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg; Per KDB 941225 D05v02r05, smaller bandwidth SAR testing is not required.
- For LTE B4 / B5 / B17 the maximum bandwidth does not support three non-overlapping channels, per KDB 941225
 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

WLAN Note:

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. Per KDB 248227 D01v02r02, for U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.
- 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 5. For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 6. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio < 0.04, no additional SAR measurements for MIMO.</p>
- 7. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

13.1 Body SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	GSM850	EDGE (4 Tx slots)	Bottom Face	0mm	ON	128	824.2	20.74	21.00	1.062	-0.15	0.404	0.429
	GSM850	EDGE (4 Tx slots)	Edge 1	0mm	ON	128	824.2	20.74	21.00	1.062	-0.18	0.309	0.328
	GSM850	GPRS (2 Tx slots)	Bottom Face	12mm	OFF	128	824.2	31.92	33.00	1.282	-0.19	0.744	0.954
	GSM850	GPRS (2 Tx slots)	Bottom Face	12mm	OFF	189	836.4	31.88	33.00	1.294	-0.15	0.770	0.997
01	GSM850	GPRS (2 Tx slots)	Bottom Face	12mm	OFF	251	848.8	31.84	33.00	1.306	-0.16	0.788	1.029
	GSM850	GPRS (2 Tx slots)	Edge 1	14mm	OFF	128	824.2	31.92	33.00	1.282	-0.03	0.374	0.480
	GSM850	GPRS (2 Tx slots)	Edge 4	0mm	OFF	128	824.2	31.92	33.00	1.282	0.01	0.606	0.777
	GSM1900	EDGE (4 Tx slots)	Bottom Face	0mm	ON	512	1850.2	17.80	19.00	1.318	-0.1	0.456	0.601
02	GSM1900	EDGE (4 Tx slots)	Bottom Face	0mm	ON	661	1880	17.76	19.00	1.330	-0.11	0.489	0.651
	GSM1900	EDGE (4 Tx slots)	Bottom Face	0mm	ON	810	1909.8	17.73	19.00	1.340	-0.14	0.458	0.614
	GSM1900	EDGE (4 Tx slots)	Edge 1	0mm	ON	512	1850.2	17.80	19.00	1.318	-0.15	0.438	0.577
	GSM1900	EDGE (4 Tx slots)	Bottom Face	12mm	OFF	512	1850.2	25.50	27.00	1.413	-0.18	0.425	0.600
	GSM1900	EDGE (4 Tx slots)	Edge 1	14mm	OFF	512	1850.2	25.50	27.00	1.413	0.1	0.246	0.347
	GSM1900	EDGE (4 Tx slots)	Edge 4	0mm	OFF	512	1850.2	25.50	27.00	1.413	0.04	0.094	0.133

Report No. : FA650305

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WCDMA II	RMC 12.2Kbps	Bottom Face	0mm	ON	9538	1907.6	15.58	16.00	1.102	-0.16	1.010	1.113
	WCDMA II	RMC 12.2Kbps	Bottom Face	0mm	ON	9262	1852.4	15.27	16.00	1.183	-0.14	0.821	0.971
03	WCDMA II	RMC 12.2Kbps	Bottom Face	0mm	ON	9400	1880	15.07	16.00	1.239	-0.16	0.950	1.177
	WCDMA II	RMC 12.2Kbps	Edge 1	0mm	ON	9538	1907.6	15.58	16.00	1.102	0.17	0.699	0.770
	WCDMA II	RMC 12.2Kbps	Bottom Face	12mm	OFF	9538	1907.6	23.00	24.00	1.259	-0.12	0.726	0.914
	WCDMA II	RMC 12.2Kbps	Bottom Face	12mm	OFF	9262	1852.4	22.84	24.00	1.306	-0.1	0.670	0.875
	WCDMA II	RMC 12.2Kbps	Bottom Face	12mm	OFF	9400	1880	22.92	24.00	1.282	-0.01	0.704	0.903
	WCDMA II	RMC 12.2Kbps	Edge 1	14mm	OFF	9538	1907.6	23.00	24.00	1.259	0.11	0.572	0.720
	WCDMA II	RMC 12.2Kbps	Edge 4	0mm	OFF	9538	1907.6	23.00	24.00	1.259	-0.01	0.228	0.287
	WCDMA IV	RMC 12.2Kbps	Bottom Face	0mm	ON	1312	1712.4	14.80	15.00	1.047	-0.1	0.350	0.366
	WCDMA IV	RMC 12.2Kbps	Edge 1	0mm	ON	1312	1712.4	14.80	15.00	1.047	-0.17	0.347	0.363
	WCDMA IV	RMC 12.2Kbps	Bottom Face	12mm	OFF	1413	1732.6	23.00	24.00	1.259	-0.08	0.384	0.483
	WCDMA IV	RMC 12.2Kbps	Bottom Face	12mm	OFF	1312	1712.4	22.96	24.00	1.271	-0.06	0.388	0.493
04	WCDMA IV	RMC 12.2Kbps	Bottom Face	12mm	OFF	1513	1752.6	22.92	24.00	1.282	-0.15	0.449	0.576
	WCDMA IV	RMC 12.2Kbps	Edge 1	14mm	OFF	1413	1732.6	23.00	24.00	1.259	0	0.294	0.370
	WCDMA IV	RMC 12.2Kbps	Edge 4	0mm	OFF	1413	1732.6	23.00	24.00	1.259	0.09	0.138	0.174
05	WCDMA V	RMC 12.2Kbps	Bottom Face	0mm	ON	4132	826.4	17.78	18.00	1.052	-0.16	0.580	0.610
	WCDMA V	RMC 12.2Kbps	Bottom Face	0mm	ON	4182	836.4	17.67	18.00	1.079	-0.1	0.551	0.594
	WCDMA V	RMC 12.2Kbps	Bottom Face	0mm	ON	4233	846.6	17.66	18.00	1.081	-0.11	0.541	0.585
	WCDMA V	RMC 12.2Kbps	Edge 1	0mm	ON	4132	826.4	17.78	18.00	1.052	0.03	0.485	0.510
	WCDMA V	RMC 12.2Kbps	Bottom Face	12mm	OFF	4132	826.4	22.91	24.00	1.285	-0.17	0.360	0.463
	WCDMA V	RMC 12.2Kbps	Edge 1	14mm	OFF	4132	826.4	22.91	24.00	1.285	0.01	0.206	0.265
	WCDMA V	RMC 12.2Kbps	Edge 4	0mm	OFF	4132	826.4	22.91	24.00	1.285	0.01	0.333	0.428

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 66 of 111

<CDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	CDMA BC0	RTAP 153.6Kbps	Bottom Face	0mm	ON	384	836.52	17.31	17.50	1.045	-0.11	0.514	0.537
	CDMA BC0	RTAP 153.6Kbps	Bottom Face	0mm	ON	1013	824.7	17.23	17.50	1.064	-0.02	0.448	0.477
06	CDMA BC0	RTAP 153.6Kbps	Bottom Face	0mm	ON	777	848.31	17.27	17.50	1.054	-0.18	0.513	0.541
	CDMA BC0	RTAP 153.6Kbps	Edge 1	0mm	ON	384	836.52	17.31	17.50	1.045	0.03	0.451	0.471
	CDMA BC0	RTAP 153.6Kbps	Bottom Face	12mm	OFF	384	836.52	23.72	24.50	1.197	-0.1	0.397	0.475
	CDMA BC0	RTAP 153.6Kbps	Edge 1	14mm	OFF	384	836.52	23.72	24.50	1.197	0.07	0.267	0.320
	CDMA BC0	RTAP 153.6Kbps	Edge 4	0mm	OFF	384	836.52	23.72	24.50	1.197	-0.1	0.338	0.404
	CDMA BC1	RTAP 153.6Kbps	Bottom Face	0mm	ON	1175	1908.75	14.87	15.50	1.156	-0.12	0.660	0.763
	CDMA BC1	RTAP 153.6Kbps	Edge 1	0mm	ON	1175	1908.75	14.87	15.50	1.156	-0.09	0.575	0.665
	CDMA BC1	RTAP 153.6Kbps	Bottom Face	12mm	OFF	1175	1908.75	23.91	24.50	1.146	-0.06	0.956	1.095
	CDMA BC1	RTAP 153.6Kbps	Bottom Face	12mm	OFF	25	1851.25	23.79	24.50	1.178	-0.09	0.903	1.063
07	CDMA BC1	RTAP 153.6Kbps	Bottom Face	12mm	OFF	600	1880	23.82	24.50	1.169	-0.06	0.962	1.125
	CDMA BC1	RTAP 153.6Kbps	Edge 1	14mm	OFF	1175	1908.75	23.91	24.50	1.146	-0.05	0.622	0.713
	CDMA BC1	RTAP 153.6Kbps	Edge 4	0mm	OFF	1175	1908.75	23.91	24.50	1.146	-0.01	0.253	0.290
08	CDMA BC10	RTAP 153.6Kbps	Bottom Face	0mm	ON	476	817.9	17.25	17.50	1.059	-0.15	0.568	0.602
	CDMA BC10	RTAP 153.6Kbps	Edge 1	0mm	ON	476	817.9	17.25	17.50	1.059	0.04	0.405	0.429
	CDMA BC10	RTAP 153.6Kbps	Bottom Face	12mm	OFF	580	820.5	23.67	24.50	1.211	-0.09	0.419	0.507
	CDMA BC10	RTAP 153.6Kbps	Edge 1	14mm	OFF	580	820.5	23.67	24.50	1.211	0.03	0.241	0.292
	CDMA BC10	RTAP 153.6Kbps	Edge 4	0mm	OFF	580	820.5	23.67	24.50	1.211	-0.07	0.385	0.466

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 67 of 111

<LTE SAR>

_	TELE ONITY											_	_			
Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 2	20M	QPSK	1	99	Bottom Face	0mm	ON	19100	1900	14.47	15.00	1.130	-0.19	1.090	1.231
	LTE Band 2	20M	QPSK	1	49	Bottom Face	0mm	ON	18700	1860	13.89	15.00	1.291	-0.11	0.564	0.728
	LTE Band 2	20M	QPSK	1	99	Bottom Face	0mm	ON	18900	1880	14.34	15.00	1.164	-0.1	0.839	0.977
	LTE Band 2	20M	QPSK	50	50	Bottom Face	0mm	ON	18900	1880	14.13	15.00	1.222	-0.1	1.010	1.234
	LTE Band 2	20M	QPSK	50	0	Bottom Face	0mm	ON	18700	1860	14.06	15.00	1.242	-0.1	0.719	0.893
	LTE Band 2	20M	QPSK	50	0	Bottom Face	0mm	ON	19100	1900	13.98	15.00	1.265	-0.14	0.707	0.894
09	LTE Band 2	20M	QPSK	100	0	Bottom Face	0mm	ON	18900	1880	13.86	15.00	1.300	-0.16	0.979	1.273
	LTE Band 2	20M	QPSK	1	99	Edge 1	0mm	ON	19100	1900	14.47	15.00	1.130	0.07	0.760	0.859
	LTE Band 2	20M	QPSK	1	49	Edge 1	0mm	ON	18700	1860	13.89	15.00	1.291	0.12	0.476	0.615
	LTE Band 2	20M	QPSK	1	99	Edge 1	0mm	ON	18900	1880	14.34	15.00	1.164	0.08	0.621	0.723
	LTE Band 2	20M	QPSK	50	50	Edge 1	0mm	ON	18900	1880	14.13	15.00	1.222	0.13	0.628	0.767
	LTE Band 2	20M	QPSK	100	0	Edge 1	0mm	ON	18900	1880	13.86	15.00	1.300	-0.08	0.596	0.775
	LTE Band 2	20M	QPSK	1	0	Bottom Face	12mm	OFF	19100	1900	23.26	24.00	1.186	-0.15	0.890	1.055
	LTE Band 2	20M	QPSK	1	0	Bottom Face	12mm	OFF	18700	1860	23.22	24.00	1.197	-0.13	0.849	1.016
	LTE Band 2	20M	QPSK	1	0	Bottom Face	12mm	OFF	18900	1880	23.15	24.00	1.216	0.15	0.924	1.124
	LTE Band 2	20M	QPSK	50	0	Bottom Face	12mm	OFF	19100	1900	22.20	23.00	1.202	-0.16	0.680	0.818
	LTE Band 2	20M	QPSK	50	0	Bottom Face	12mm	OFF	18700	1860	22.10	23.00	1.230	-0.16	0.697	0.857
	LTE Band 2	20M	QPSK	50	0	Bottom Face	12mm	OFF	18900	1880	22.14	23.00	1.219	-0.19	0.693	0.845
	LTE Band 2	20M	QPSK	100	0	Bottom Face	12mm	OFF	19100	1900	22.24	23.00	1.191	-0.18	0.688	0.820
	LTE Band 2	20M	QPSK	1	0	Edge 1	14mm	OFF	19100	1900	23.26	24.00	1.186	0.08	0.713	0.845
	LTE Band 2	20M	QPSK	1	0	Edge 1	14mm	OFF	18700	1860	23.22	24.00	1.197	0.11	0.619	0.741
	LTE Band 2	20M	QPSK	1	0	Edge 1	14mm	OFF	18900	1880	23.15	24.00	1.216	0.08	0.690	0.839
	LTE Band 2	20M	QPSK	50	0	Edge 1	14mm	OFF	19100	1900	22.20	23.00	1.202	0.1	0.548	0.659
	LTE Band 2	20M	QPSK	100	0	Edge 1	14mm	OFF	19100	1900	22.24	23.00	1.191	0.14	0.546	0.650
	LTE Band 2	20M	QPSK	1	0	Edge 4	0mm	OFF	19100	1900	23.26	24.00	1.186	-0.07	0.282	0.334
	LTE Band 2	20M	QPSK	50	0	Edge 4	0mm	OFF	19100	1900	22.20	23.00	1.202	0	0.219	0.263
10	LTE Band 4	20M	QPSK	1	0	Bottom Face	0mm	ON	20175	1732.5	13.94	14.50	1.138	-0.17	0.509	0.579
	LTE Band 4	20M	QPSK	50	0	Bottom Face	0mm	ON	20175	1732.5	13.79	14.50	1.178	-0.15	0.426	0.502
	LTE Band 4	20M	QPSK	1	0	Edge 1	0mm	ON	20175	1732.5	13.94	14.50	1.138	0.07	0.474	0.539
	LTE Band 4	20M	QPSK	50	0	Edge 1	0mm	ON	20175	1732.5	13.79	14.50	1.178	-0.04	0.410	0.483
	LTE Band 4	20M	QPSK	1	0	Bottom Face	12mm	OFF	20175	1732.5	22.93	24.00	1.279	-0.07	0.371	0.475
	LTE Band 4	20M	QPSK	50	0	Bottom Face	12mm	OFF	20175	1732.5	22.08	23.00	1.236	-0.11	0.382	0.472
	LTE Band 4	20M	QPSK	1	0	Edge 1	14mm	OFF	20175	1732.5	22.93	24.00	1.279	0.17	0.306	0.391
	LTE Band 4	20M	QPSK	50	0	Edge 1	14mm	OFF	20175	1732.5	22.08	23.00	1.236	-0.01	0.304	0.376
	LTE Band 4	20M	QPSK	1	0	Edge 4	0mm	OFF	20175	1732.5	22.93	24.00	1.279	-0.12	0.169	0.216
	LTE Band 4	20M	QPSK	50	0	Edge 4	0mm	OFF	20175	1732.5	22.08	23.00	1.236	-0.08	0.136	0.168
11	LTE Band 5	10M	QPSK	1	25	Bottom Face	0mm	ON	20525	836.5	15.83	17.00	1.309	-0.11	0.623	0.816
	LTE Band 5	10M	QPSK	25	25	Bottom Face	0mm	ON	20525	836.5	15.99	17.00	1.262	-0.15	0.612	0.772
	LTE Band 5	10M	QPSK	50	0	Bottom Face	0mm	ON	20525	836.5	15.92	17.00	1.282	-0.15	0.601	0.771
	LTE Band 5	10M	QPSK	1	25	Edge 1	0mm	ON	20525	836.5	15.83	17.00	1.309	0.04	0.580	0.759
	LTE Band 5	10M	QPSK	25	25	Edge 1	0mm	ON	20525	836.5	15.99	17.00	1.262	-0.17	0.450	0.568
	LTE Band 5	10M	QPSK	1	0		12mm	OFF	20525	836.5	22.61	24.00	1.377	-0.13	0.442	0.609
	LTE Band 5	10M	QPSK	25	0	Bottom Face	12mm	OFF	20525	836.5	21.66	23.00	1.361	-0.15	0.346	0.471
	LTE Band 5	10M	QPSK	1	0	Edge 1	14mm	OFF	20525	836.5	22.61	24.00	1.377	0.08	0.263	0.362
	LTE Band 5	10M	QPSK	25	0	Edge 1	14mm	OFF	20525		21.66	23.00	1.361	0.11	0.209	0.285
	LTE Band 5	10M	QPSK	1	0	Edge 4	0mm	OFF	20525	836.5	22.61	24.00	1.377	-0.08	0.389	0.536
	LTE Band 5	10M	QPSK	25	0	Edge 4	0mm	OFF	20525		21.66	23.00	1.361	-0.01	0.308	0.419
						. 3										

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 68 of 111

						_					Average	Tune-Up	Tune-up	Power	Measured	Reported
Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Power	Limit	Scaling	Drift	1g SAR	1g SAR
12	LTE Band 13	` '	QPSK				, ,		23230	, ,	(dBm)	(dBm)	Factor	(dB)	(W/kg)	(W/kg)
12	LTE Band 13	10M 10M	QPSK	1 25	25 12	Bottom Face	0mm	ON ON	23230	782 782	17.30 17.36	18.00	1.175	-0.1 -0.11	0.645 0.643	0.758 0.745
			QPSK		25		0mm	ON	23230	782	17.30				0.043	
-	LTE Band 13 LTE Band 13	10M 10M	QPSK	1 25	12	Edge 1 Edge 1	0mm 0mm	ON	23230	782	17.36	18.00 18.00	1.175 1.159	-0.11 -0.14	0.352	0.414
-	LTE Band 13	10M	QPSK	1	0	Bottom Face	12mm	OFF	23230	782	22.76	24.00	1.330	-0.14	0.392	0.409
-	LTE Band 13	10M	QPSK	25	0	Bottom Face	12mm	OFF	23230	782	21.74	23.00	1.337	-0.07	0.392	0.522
-	LTE Band 13	10M	QPSK	1	0			OFF	23230	782	22.76	24.00	1.330	0.03	0.414	0.333
-	LTE Band 13	10M	QPSK	25	0	Edge 1	14mm	OFF	23230	782	21.74	23.00	1.337	-0.03	0.130	0.173
-	LTE Band 13	10M	QPSK	1	0	Edge 1 Edge 4	14mm 0mm	OFF	23230	782	22.76	24.00	1.330	-0.03	0.119	0.139
	LTE Band 13	10M	QPSK	25	0	Edge 4	0mm	OFF	23230	782	21.74	23.00	1.337	-0.09	0.313	0.418
12																
13	LTE Band 17	10M	QPSK	1	25	Bottom Face	0mm	ON	23790	710	14.65	15.50	1.216	0	0.341	0.415
	LTE Band 17	10M	QPSK	25	12	Bottom Face	0mm	ON	23790	710 710	14.58	15.50	1.236	-0.13	0.335	0.414
-	LTE Band 17	10M	QPSK	1	25	Edge 1	0mm	ON	23790		14.65	15.50	1.216	-0.19	0.183	0.223
	LTE Band 17	10M	QPSK	25	12 0	Edge 1	0mm	ON	23790	710	14.58	15.50	1.236	-0.12	0.180	0.222
	LTE Band 17	10M	QPSK	1	0	Bottom Face	12mm	OFF	23790	710	22.73	24.00	1.340	-0.14	0.292	0.391
	LTE Band 17	10M	QPSK	25	_	Bottom Face	12mm	OFF	23790	710	21.77	23.00	1.327	-0.15	0.238	0.316
	LTE Band 17	10M	QPSK QPSK	1	0	Edge 1	14mm	OFF OFF	23790	710 710	22.73	24.00	1.340	-0.11	0.084	0.113
	LTE Band 17	10M		25		Edge 1	14mm		23790		21.77	23.00	1.327	-0.06	0.068	0.090
	LTE Band 17	10M	QPSK	1	0	Edge 4	0mm	OFF	23790	710	22.73	24.00	1.340	0.05	0.296	0.397
	LTE Band 17	10M	QPSK	25	0	Edge 4	0mm	OFF	23790	710	21.77	23.00	1.327	0.01	0.246	0.327
	LTE Band 25	20M	QPSK	1	99	Bottom Face	0mm	ON	26340	1880	14.31	14.50	1.045	-0.11	0.701	0.732
	LTE Band 25	20M	QPSK	50	50	Bottom Face	0mm	ON	26590	1905	13.88	14.50	1.153	-0.13	0.865	0.998
	LTE Band 25	20M	QPSK	50	24	Bottom Face	0mm	ON	26140	1860	13.85	14.50	1.161	-0.13	0.588	0.683
	LTE Band 25	20M	QPSK	50	50	Bottom Face	0mm	ON	26340	1880	13.82	14.50	1.169	-0.04	0.959	1.122
	LTE Band 25	20M	QPSK	100	0	Bottom Face	0mm	ON	26340	1880	13.71	14.50	1.199	-0.12	0.887	1.064
	LTE Band 25	20M	QPSK	1	99	Edge 1	0mm	ON	26340	1880	14.31	14.50	1.045	0.09	0.607	0.634
	LTE Band 25	20M	QPSK	50	50	Edge 1	0mm	ON	26590	1905	13.88	14.50	1.153	0.12	0.667	0.769
	LTE Band 25	20M	QPSK	1	0	Bottom Face	12mm	OFF	26590	1905	23.14	24.00	1.219	-0.11	0.917	1.118
<u></u>	LTE Band 25	20M	QPSK	1	0	Bottom Face	12mm	OFF	26140	1860	23.01	24.00	1.256	-0.12	0.835	1.049
14	LTE Band 25	20M	QPSK	1	0	Bottom Face	12mm	OFF	26340	1880	23.02	24.00	1.253	-0.18	0.898	1.125
	LTE Band 25	20M	QPSK	50	0	Bottom Face	12mm	OFF	26590	1905	22.17	23.00	1.211	-0.12	0.692	0.838
	LTE Band 25	20M	QPSK	50	0	Bottom Face	12mm	OFF	26140	1860	22.10	23.00	1.230	-0.16	0.676	0.832
-	LTE Band 25	20M	QPSK	50	0	Bottom Face	12mm	OFF	26340	1880	22.07	23.00	1.239	-0.1	0.689	0.854
	LTE Band 25	20M	QPSK	100	0	Bottom Face	12mm	OFF	26590	1905	22.12	23.00	1.225	-0.14	0.703	0.861
	LTE Band 25	20M	QPSK	1	0	Edge 1	14mm	OFF	26590		23.14	24.00	1.219	0.02	0.697	0.850
	LTE Band 25		QPSK	1	0	Edge 1	14mm		26140		23.01	24.00	1.256	0.07	0.547	0.687
	LTE Band 25	20M	QPSK	1	0	Edge 1	14mm	OFF	26340		23.02	24.00	1.253	0	0.647	0.811
	LTE Band 25	20M	QPSK	50	0	Edge 1	14mm	OFF	26590		22.17	23.00	1.211	0.04	0.540	0.654
	LTE Band 25	20M	QPSK	100	0	Edge 1	14mm	OFF	26590		22.12	23.00	1.225	0.09	0.538	0.659
	LTE Band 25	20M	QPSK	1	0	Edge 4	0mm	OFF	26590	1905	23.14	24.00	1.219	-0.04	0.201	0.245
	LTE Band 25	20M	QPSK	50	0	Edge 4	0mm	OFF	26590	1905	22.17	23.00	1.211	-0.05	0.156	0.189

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 69 of 111

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Antenna	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cuala	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	6	Ant 1	2437	15.46	15.50	1.009	98.62	1.014	0.09	0.663	0.679
	WLAN2.4GHz	802.11b 1Mbps	Edge 2	0mm	6	Ant 1	2437	15.46	15.50	1.009	98.62	1.014	-0.09	0.527	0.539
15	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	6	Ant 2	2437	15.44	15.50	1.014	98.62	1.014	0.12	0.843	0.867
	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	1	Ant 2	2412	15.44	15.50	1.014	98.62	1.014	0.13	0.657	0.675
	WLAN2.4GHz	802.11b 1Mbps	Edge 2	0mm	6	Ant 2	2437	15.44	15.50	1.014	98.62	1.014	0.16	0.496	0.510
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	54	Ant 1	5270	11.35	11.50	1.034	86.84	1.152	0.01	0.542	0.646
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	54	Ant 1	5270	11.35	11.50	1.034	86.84	1.152	0.1	0.963	1.148
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	62	Ant 1	5310	11.32	11.50	1.042	86.84	1.152	0.03	0.955	1.146
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	54	Ant 2	5270	14.99	15.00	1.001	87.01	1.149	-0.16	0.851	0.979
	WLAN5GHz	802.11a 6Mbps	Bottom Face	0mm	64	Ant 2	5320	14.98	15.00	1.005	92.73	1.078	0.13	0.808	0.875
16	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	54	Ant 2	5270	14.99	15.00	1.001	87.01	1.149	-0.08	1.000	1.151
	WLAN5GHz	802.11a 6Mbps	Edge 2	0mm	64	Ant 2	5320	14.98	15.00	1.005	92.73	1.078	0.07	0.955	1.035
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	102	Ant 1	5510	11.94	12.00	1.014	86.84	1.152	0.07	0.515	0.602
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	102	Ant 1	5510	11.94	12.00	1.014	86.84	1.152	0.09	0.935	1.092
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	110	Ant 1	5550	11.83	12.00	1.040	86.84	1.152	-0.07	0.847	1.015
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	134	Ant 2	5670	13.93	14.00	1.016	87.01	1.149	0.04	0.563	0.657
17	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	134	Ant 2	5670	13.93	14.00	1.016	87.01	1.149	0.13	0.981	1.145
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	110	Ant 2	5550	13.82	14.00	1.042	87.01	1.149	0.14	0.755	0.904
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	159	Ant 1	5795	11.92	12.00	1.018	86.84	1.152	0.04	0.331	0.388
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	159	Ant 1	5795	11.92	12.00	1.018	86.84	1.152	0	0.832	0.976
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	151	Ant 1	5755	11.90	12.00	1.023	86.84	1.152	-0.01	0.971	1.144
	WLAN5GHz	802.11n-HT40 MCS0	Bottom Face	0mm	159	Ant 2	5795	12.95	13.00	1.011	87.01	1.149	-0.01	0.559	0.649
18	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	159	Ant 2	5795	12.95	13.00	1.011	87.01	1.149	-0.18	0.988	1.147
	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	151	Ant 2	5755	12.86	13.00	1.032	87.01	1.149	0.01	0.838	0.993

Report No.: FA650305

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
19	Bluetooth	1Mbps	Bottom Face	0mm	39	2441	8.99	9.00	1.002	-0.14	0.209	0.209
	Bluetooth	1Mbps	Bottom Face	0mm	0	2402	7.16	9.00	1.528	-0.11	0.131	0.200
	Bluetooth	1Mbps	Bottom Face	0mm	78	2480	8.31	9.00	1.172	-0.1	0.168	0.197
	Bluetooth	1Mbps	Edge 2	0mm	39	2441	8.99	9.00	1.002	-0.11	0.133	0.133

FCC ID : UZ7ET55BE Page 70 of 111 Form version. : 160427

13.2 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Power Reduction	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle		Drift	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WCDMA II	RMC 12.2Kbps	Bottom Face	0mm	ON	9538	1907.6	15.58	16.00	1.102	-	1	-0.16	1.010	-	1.113
2nd	WCDMA II	RMC 12.2Kbps	Bottom Face	0mm	ON	9538	1907.6	15.58	16.00	1.102	-	-	-0.16	0.979	1.03	1.078
1st	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	-	6	2437	15.44	15.50	1.014	98.62	1.014	0.12	0.843	-	0.867
2nd	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	-	6	2437	15.44	15.50	1.014	98.62	1.014	0.01	0.828	1.02	0.851
1st	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	-	54	5270	14.99	15.00	1.001	87.01	1.149	-0.08	1.000	-	1.151
2nd	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	-	54	5270	14.99	15.00	1.001	87.01	1.149	-0.19	0.995	1.01	1.145
1st	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	-	134	5670	13.93	14.00	1.016	87.01	1.149	0.13	0.981	-	1.145
2nd	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	-	134	5670	13.93	14.00	1.016	87.01	1.149	0.04	0.967	1.01	1.129
1st	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	-	159	5795	12.95	13.00	1.011	87.01	1.149	-0.18	0.988	-	1.147
2nd	WLAN5GHz	802.11n-HT40 MCS0	Edge 2	0mm	-	159	5795	12.95	13.00	1.011	87.01	1.149	0.03	0.982	1.01	1.140

Report No. : FA650305

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.
- 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Jun. 21, 2016 FCC ID: UZ7ET55BE Form version.: 160427 Page 71 of 111

14. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission	Tablet
NO.	Configurations	Body
1.	GPRS/EDGE + WLAN2.4GHz	Yes
2.	WCDMA + WLAN2.4GHz	Yes
3.	LTE + WLAN2.4GHz	Yes
4.	GPRS/EDGE + Bluetooth	Yes
5.	WCDMA+ Bluetooth	Yes
6.	LTE + Bluetooth	Yes
7.	GPRS/EDGE + WLAN5GHz	Yes
8.	WCDMA + WLAN5GHz	Yes
9.	LTE + WLAN5GHz	Yes

General Note:

 The worst case WLAN reported SAR for each configuration was used for SAR summation; therefore, the following summations represent the absolute worst cases for simultaneous transmission with WLAN.

Report No.: FA650305

- 2. For SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode.
- 3. WLAN RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. Therefore SPLSR calculation was choose worst case with SAR test results of each antenna in SISO mode perform evaluation.
- 4. For simultaneous transmission analysis for exposure position of edge1 14mm and bottom face12mm, WLAN SAR tested at 0mm separation is worse and the test data is used for conservative SAR summation.
- 5. WLAN and Bluetooth cannot transmit simultaneously.
- 6. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment.
- 7. The Scaled SAR summation is calculated based on the same configuration and test position.
- 8. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
 - v) The SPLSR calculated results please refer to section 14.2.

14.1 Body Exposure Conditions

			1	2	3	1+2	1+3	2+3	1+2+3		
١٨/١٨/Δ	N Band	Exposure Position	WWAN	2.4GHz WLAN	2.4GHz WLAN	Summed	Summed	Summed	Summed	SPLSR	Case No
***************************************	IV Dana	Exposure r osition	4 045	Ant 1	Ant 2	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	OI LOIK	0430 140
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(**************************************	(**************************************	(**************************************	(may		
		Bottom Face at 0mm	0.429	0.679	0.867	1.108	1.296	1.546	1.975	0.02	Case 1
		Edge 1 at 0mm	0.328			0.328	0.328	0.000	0.328		
	GSM850	Bottom Face at 12mm	1.029	0.679	0.867	1.708	1.896	1.546	2.575	0.02	Case 2
		Edge 1 at 14mm	0.480			0.480	0.480	0.000	0.480		
GSM		Edge 4 at 0mm	0.777			0.777	0.777	0.000	0.777		
GSIVI		Bottom Face at 0mm	0.651	0.679	0.867	1.330	1.518	1.546	2.197	0.02	Case 3
		Edge 1 at 0mm	0.577			0.577	0.577	0.000	0.577		
	GSM1900	Bottom Face at 12mm	0.600	0.679	0.867	1.279	1.467	1.546	2.146	0.02	Case 4
		Edge 1 at 14mm	0.347			0.347	0.347	0.000	0.347		
		Edge 4 at 0mm	0.133			0.133	0.133	0.000	0.133		
		Bottom Face at 0mm	1.177	0.679	0.867	1.856	2.044	1.546	2.723	0.02	Case 5
		Edge 1 at 0mm	0.770			0.770	0.770	0.000	0.770		
	WCDMA II	Bottom Face at 12mm	0.914	0.679	0.867	1.593	1.781	1.546	2.460	0.02	Case 6
		Edge 1 at 14mm	0.720			0.720	0.720	0.000	0.720		
		Edge 4 at 0mm	0.287			0.287	0.287	0.000	0.287		
		Bottom Face at 0mm	0.366	0.679	0.867	1.045	1.233	1.546	1.912	0.02	Case 7
		Edge 1 at 0mm	0.363			0.363	0.363	0.000	0.363		
WCDMA	WCDMA IV	Bottom Face at 12mm	0.576	0.679	0.867	1.255	1.443	1.546	2.122	0.02	Case 8
	10	Edge 1 at 14mm	0.370			0.370	0.370	0.000	0.370		
		Edge 4 at 0mm	0.174			0.174	0.174	0.000	0.174		
		Bottom Face at 0mm	0.610	0.679	0.867	1.289	1.477	1.546	2.156	0.02	Case 9
		Edge 1 at 0mm	0.510			0.510	0.510	0.000	0.510		
	WCDMA V	Bottom Face at 12mm	0.463	0.679	0.867	1.142	1.330	1.546	2.009	0.02	Case 10
		Edge 1 at 14mm	0.265			0.265	0.265	0.000	0.265		
		Edge 4 at 0mm	0.428			0.428	0.428	0.000	0.428		
		Bottom Face at 0mm	0.541	0.679	0.867	1.220	1.408	1.546	2.087	0.02	Case 11
		Edge 1 at 0mm	0.471			0.471	0.471	0.000	0.471		
	CDMA BC0	Bottom Face at 12mm	0.475	0.679	0.867	1.154	1.342	1.546	2.021	0.02	Case 12
	BCU	Edge 1 at 14mm	0.320			0.320	0.320	0.000	0.320		
		Edge 4 at 0mm	0.404			0.404	0.404	0.000	0.404		
		Bottom Face at 0mm	0.763	0.679	0.867	1.442	1.630	1.546	2.309	0.02	Case 13
		Edge 1 at 0mm	0.665			0.665	0.665	0.000	0.665		
CDMA	CDMA	Bottom Face at 12mm	1.125	0.679	0.867	1.804	1.992	1.546	2.671	0.02	Case 14
	BC1	Edge 1 at 14mm	0.713			0.713	0.713	0.000	0.713		
		Edge 4 at 0mm	0.290			0.290	0.290	0.000	0.290		
		Bottom Face at 0mm	0.602	0.679	0.867	1.281	1.469	1.546	2.148	0.02	Case 15
		Edge 1 at 0mm	0.429			0.429	0.429	0.000	0.429		
	CDMA	Bottom Face at 12mm	0.507	0.679	0.867	1.186	1.374	1.546	2.053	0.02	Case 16
	BC10	Edge 1 at 14mm	0.292			0.292	0.292	0.000	0.292		
		Edge 4 at 0mm	0.466			0.466	0.466	0.000	0.466		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 73 of 111

			1	2	3						
WWA	N Band	Exposure Position	WWAN 1g SAR	2.4GHz WLAN Ant 1 1g SAR	2.4GHz WLAN Ant 2 1g SAR	1+2 Summed 1g SAR (W/kg)	1+3 Summed 1g SAR (W/kg)	2+3 Summed 1g SAR (W/kg)	1+2+3 Summed 1g SAR (W/kg)	SPLSR	Case No
			(W/kg)	(W/kg)	(W/kg)						
		Bottom Face at 0mm	1.273	0.679	0.867	1.952	2.140	1.546	2.819	0.02	Case 17
	LTE Band	Edge 1 at 0mm	0.859			0.859	0.859	0.000	0.859		
	2	Bottom Face at 12mm	1.124	0.679	0.867	1.803	1.991	1.546	2.670	0.02	Case 18
		Edge 1 at 14mm	0.845			0.845	0.845	0.000	0.845		
		Edge 4 at 0mm	0.334			0.334	0.334	0.000	0.334		
		Bottom Face at 0mm	0.579	0.679	0.867	1.258	1.446	1.546	2.125	0.02	Case 19
	LTE David	Edge 1 at 0mm	0.539			0.539	0.539	0.000	0.539		
	LTE Band 4	Bottom Face at 12mm	0.475	0.679	0.867	1.154	1.342	1.546	2.021	0.02	Case 20
		Edge 1 at 14mm	0.391			0.391	0.391	0.000	0.391		
		Edge 4 at 0mm	0.216			0.216	0.216	0.000	0.216		
		Bottom Face at 0mm	0.816	0.679	0.867	1.495	1.683	1.546	2.362	0.02	Case 21
		Edge 1 at 0mm	0.759			0.759	0.759	0.000	0.759		
	LTE Band 5	Bottom Face at 12mm	0.609	0.679	0.867	1.288	1.476	1.546	2.155	0.02	Case 22
		Edge 1 at 14mm	0.362			0.362	0.362	0.000	0.362		
		Edge 4 at 0mm	0.536			0.536	0.536	0.000	0.536		
LTE		Bottom Face at 0mm	0.758	0.679	0.867	1.437	1.625	1.546	2.304	0.02	Case 23
		Edge 1 at 0mm	0.414			0.414	0.414	0.000	0.414		
	LTE Band 13	Bottom Face at 12mm	0.553	0.679	0.867	1.232	1.420	1.546	2.099	0.02	Case 24
	10	Edge 1 at 14mm	0.173			0.173	0.173	0.000	0.173		
		Edge 4 at 0mm	0.474			0.474	0.474	0.000	0.474		
		Bottom Face at 0mm	0.415	0.679	0.867	1.094	1.282	1.546	1.961	0.02	Case 25
		Edge 1 at 0mm	0.223			0.223	0.223	0.000	0.223		
	LTE Band 17	Bottom Face at 12mm	0.391	0.679	0.867	1.070	1.258	1.546	1.937	0.02	Case 26
	17	Edge 1 at 14mm	0.113			0.113	0.113	0.000	0.113		
		Edge 4 at 0mm	0.397			0.397	0.397	0.000	0.397		
		Bottom Face at 0mm	1.122	0.679	0.867	1.801	1.989	1.546	2.668	0.02	Case 27
		Edge 1 at 0mm	0.769			0.769	0.769	0.000	0.769		
	LTE Band 25	Bottom Face at 12mm	1.125	0.679	0.867	1.804	1.992	1.546	2.671	0.02	Case 28
	20	Edge 1 at 14mm	0.850			0.850	0.850	0.000	0.850		
		Edge 4 at 0mm	0.245			0.245	0.245	0.000	0.245		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 74 of 111

			1	4	5						
WWA	N Band	Exposure Position	WWAN	5GHz WLAN Ant 1	5GHz WLAN Ant 2	1+4 Summed 1g SAR	1+5 Summed 1g SAR	4+5 Summed 1g SAR	1+4+5 Summed 1g SAR	SPLSR	Case No
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)		
		Bottom Face at 0mm	0.429	0.646	0.979	1.075	1.408	1.625	2.054	0.02	Case 29
	•	Edge 1 at 0mm	0.328			0.328	0.328	0.000	0.328		
	GSM850	Bottom Face at 12mm	1.029	0.646	0.979	1.675	2.008	1.625	2.654	0.02	Case 30
	•	Edge 1 at 14mm	0.480			0.480	0.480	0.000	0.480		
0014		Edge 4 at 0mm	0.777			0.777	0.777	0.000	0.777		
GSM		Bottom Face at 0mm	0.651	0.646	0.979	1.297	1.630	1.625	2.276	0.02	Case 31
	•	Edge 1 at 0mm	0.577			0.577	0.577	0.000	0.577		
	GSM1900	Bottom Face at 12mm	0.600	0.646	0.979	1.246	1.579	1.625	2.225	0.02	Case 32
	•	Edge 1 at 14mm	0.347			0.347	0.347	0.000	0.347		
		Edge 4 at 0mm	0.133			0.133	0.133	0.000	0.133		
		Bottom Face at 0mm	1.177	0.646	0.979	1.823	2.156	1.625	2.802	0.02	Case 33
	•	Edge 1 at 0mm	0.770			0.770	0.770	0.000	0.770		
	WCDMA II	Bottom Face at 12mm	0.914	0.646	0.979	1.560	1.893	1.625	2.539	0.02	Case 34
	•	Edge 1 at 14mm	0.720			0.720	0.720	0.000	0.720		
	•	Edge 4 at 0mm	0.287			0.287	0.287	0.000	0.287		
		Bottom Face at 0mm	0.366	0.646	0.979	1.012	1.345	1.625	1.991	0.02	Case 35
	•	Edge 1 at 0mm	0.363			0.363	0.363	0.000	0.363		
WCDMA	WCDMA IV	Bottom Face at 12mm	0.576	0.646	0.979	1.222	1.555	1.625	2.201	0.02	Case 36
	•	Edge 1 at 14mm	0.370			0.370	0.370	0.000	0.370		
		Edge 4 at 0mm	0.174			0.174	0.174	0.000	0.174		
		Bottom Face at 0mm	0.610	0.646	0.979	1.256	1.589	1.625	2.235	0.02	Case 37
	•	Edge 1 at 0mm	0.510			0.510	0.510	0.000	0.510		
	WCDMA V	Bottom Face at 12mm	0.463	0.646	0.979	1.109	1.442	1.625	2.088	0.02	Case 38
	•	Edge 1 at 14mm	0.265			0.265	0.265	0.000	0.265		
	•	Edge 4 at 0mm	0.428			0.428	0.428	0.000	0.428		
		Bottom Face at 0mm	0.541	0.646	0.979	1.187	1.520	1.625	2.166	0.02	Case 39
	•	Edge 1 at 0mm	0.471			0.471	0.471	0.000	0.471		
	CDMA BC0	Bottom Face at 12mm	0.475	0.646	0.979	1.121	1.454	1.625	2.100	0.02	Case 40
	•	Edge 1 at 14mm	0.320			0.320	0.320	0.000	0.320		
	•	Edge 4 at 0mm	0.404			0.404	0.404	0.000	0.404		
		Bottom Face at 0mm	0.763	0.646	0.979	1.409	1.742	1.625	2.388	0.02	Case 41
	•	Edge 1 at 0mm	0.665			0.665	0.665	0.000	0.665		
CDMA	CDMA BC1	Bottom Face at 12mm	1.125	0.646	0.979	1.771	2.104	1.625	2.750	0.02	Case 42
		Edge 1 at 14mm	0.713			0.713	0.713	0.000	0.713		
		Edge 4 at 0mm	0.290			0.290	0.290	0.000	0.290		
		Bottom Face at 0mm	0.602	0.646	0.979	1.248	1.581	1.625	2.227	0.02	Case 43
		Edge 1 at 0mm	0.429			0.429	0.429	0.000	0.429		
	CDMA BC10	Bottom Face at 12mm	0.507	0.646	0.979	1.153	1.486	1.625	2.132	0.02	Case 44
	5010	Edge 1 at 14mm	0.292			0.292	0.292	0.000	0.292		
		Edge 4 at 0mm	0.466			0.466	0.466	0.000	0.466		

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 75 of 111

FCC SAR Test Report

4 1+4 1+5 4+5 1+4+5 5GHz 5GHz Summed 1g SAR (W/kg) Summed 1g SAR (W/kg) Summed 1g SAR (W/kg) Summed 1g SAR (W/kg) WWAN WLAN WLAN **WWAN Band Exposure Position SPLSR** Case No Ant 1 1g SAR 1g SAR 1g SAR (W/kg) (W/kg) Bottom Face at 0mm 1.273 0.646 0.979 1.919 2.252 1.625 2.898 0.02 Case 45 Edge 1 at 0mm 0.859 0.859 0.859 0.000 0.859 LTE Band 2 Bottom Face at 12mm 1.124 0.979 1.770 2.103 2.749 0.02 Case 46 Edge 1 at 14mm 0.845 0.845 0.845 0.000 0.845 0.334 0.334 0.000 0.334 0.334 Edge 4 at 0mm 1.558 0.579 1.225 0.02 Case 47 Bottom Face at 0mm 0.646 0.979 1.625 2.204 Edge 1 at 0mm 0.539 0.539 0.539 0.000 0.539 LTE Band 4 0.475 0.646 1.121 1.454 1.625 2.100 0.02 Case 48 Bottom Face at 12mm 0.979 Edge 1 at 14mm 0.391 0.391 0.391 0.000 0.391 0.216 0.216 0.216 0.000 0.216 Edge 4 at 0mm Bottom Face at 0mm 0.816 0.646 0.979 1.462 1.795 1.625 2.441 0.02 Case 49 0.759 0.759 0.759 0.000 0.759 Edge 1 at 0mm LTE Band 5 Bottom Face at 12mm 0.609 0.646 0.979 1.255 1.588 1.625 2.234 0.02 Case 50 Edge 1 at 14mm 0.362 0.362 0.362 0.000 0.362 Edge 4 at 0mm 0.536 0.536 0.536 0.000 0.536 LTE Bottom Face at 0mm 0.758 0.646 0.979 1.404 1.737 1.625 2.383 0.02 Case 51 0.414 0.414 Edge 1 at 0mm 0.414 0.000 0.414 LTE Band Bottom Face at 12mm 0.553 0.646 0.979 1.199 1.532 1.625 2.178 0.02 Case 52 13 Edge 1 at 14mm 0.173 0.173 0.173 0.000 0.173 Edge 4 at 0mm 0.474 0.474 0.474 0.000 0.474 Bottom Face at 0mm 0.415 0.646 0.979 1.061 1.394 1.625 2.040 0.02 Case 53 Edge 1 at 0mm 0.223 0.223 0.223 0.000 0.223 LTE Band 1.037 1.370 1.625 0.02 Case 54 0.391 2.016 Bottom Face at 12mm 0.646 0.979 17 Edge 1 at 14mm 0.113 0.113 0.113 0.000 0.113 Edge 4 at 0mm 0.397 0.397 0.397 0.000 0.397 Bottom Face at 0mm 1.122 0.646 0.979 1.768 2.101 1.625 2.747 0.02 Case 55 0.769 0.769 0.769 0.000 0.769 Edge 1 at 0mm LTE Band 0.02 1.125 0.646 0.979 1.771 2.104 1.625 2.750 Case 56 Bottom Face at 12mm 25 Edge 1 at 14mm 0.850 0.850 0.850 0.000 0.850 Edge 4 at 0mm 0.245 0.245 0.245 0.000 0.245

Report No.: FA650305

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version.: 160427 FCC ID: UZ7ET55BE Page 76 of 111

Report No.: FA650305

			1	6			
\\\\\	N Band	Exposure Position	WWAN	Bluetooth	1+6 Summed	SPLSR	Case No
VV VVI	V Daliu	Exposure i osition	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)R	OI LOIK	Case No
		Bottom Face at 0mm	0.429	0.209	0.638		
		Edge 1 at 0mm	0.328		0.328		
	GSM850	Bottom Face at 12mm	1.029	0.209	1.238		
		Edge 1 at 14mm	0.480		0.480		
0014		Edge 4 at 0mm	0.777		0.777		
GSM		Bottom Face at 0mm	0.651	0.209	0.860		
		Edge 1 at 0mm	0.577		0.577		
	GSM1900	Bottom Face at 12mm	0.600	0.209	0.809		
		Edge 1 at 14mm	0.347		0.347		
		Edge 4 at 0mm	0.133		0.133		
		Bottom Face at 0mm	1.177	0.209	1.386		
		Edge 1 at 0mm	0.770		0.770		
	WCDMA II	Bottom Face at 12mm	0.914	0.209	1.123		
		Edge 1 at 14mm	0.720		0.720		
		Edge 4 at 0mm	0.287		0.287		
		Bottom Face at 0mm	0.366	0.209	0.575		
		Edge 1 at 0mm	0.363		0.363		
WCDMA	WCDMA IV	Bottom Face at 12mm	0.576	0.209	0.785		
		Edge 1 at 14mm	0.370		0.370		
		Edge 4 at 0mm	0.174		0.174		
		Bottom Face at 0mm	0.610	0.209	0.819		
		Edge 1 at 0mm	0.510		0.510		
	WCDMA V	Bottom Face at 12mm	0.463	0.209	0.672		
		Edge 1 at 14mm	0.265		0.265		
		Edge 4 at 0mm	0.428		0.428		
		Bottom Face at 0mm	0.541	0.209	0.750		
		Edge 1 at 0mm	0.471		0.471		
	CDMA BC0	Bottom Face at 12mm	0.475	0.209	0.684		
		Edge 1 at 14mm	0.320		0.320		
		Edge 4 at 0mm	0.404		0.404		
		Bottom Face at 0mm	0.763	0.209	0.972		
		Edge 1 at 0mm	0.665		0.665		
CDMA	CDMA BC1	Bottom Face at 12mm	1.125	0.209	1.334		
		Edge 1 at 14mm	0.713		0.713		
		Edge 4 at 0mm	0.290		0.290		
		Bottom Face at 0mm	0.602	0.209	0.811		
		Edge 1 at 0mm	0.429		0.429		
	CDMA BC10	Bottom Face at 12mm	0.507	0.209	0.716		
		Edge 1 at 14mm	0.292		0.292		
		Edge 4 at 0mm	0.466		0.466		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 77 of 111

			1	6			
١٨/١٨/ ۵١	N Band	Exposure Position	WWAN	Bluetooth	1+6 Summed	SPLSR	Case No
VV VV AI	V Dariu	Exposure i osition	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)R	OI LOIX	Case No
		Bottom Face at 0mm	1.273	0.209	1.482		
		Edge 1 at 0mm	0.859		0.859		
	LTE Band 2	Bottom Face at 12mm	1.124	0.209	1.333		
		Edge 1 at 14mm	0.845		0.845		
		Edge 4 at 0mm	0.334		0.334		
		Bottom Face at 0mm	0.579	0.209	0.788		
		Edge 1 at 0mm	0.539		0.539		
	LTE Band 4	Bottom Face at 12mm	0.475	0.209	0.684		
		Edge 1 at 14mm	0.391		0.391		
		Edge 4 at 0mm	0.216		0.216		
		Bottom Face at 0mm	0.816	0.209	1.025		
		Edge 1 at 0mm	0.759		0.759		
	LTE Band 5	Bottom Face at 12mm	0.609	0.209	0.818		
		Edge 1 at 14mm	0.362		0.362		
LTE		Edge 4 at 0mm	0.536		0.536		
LIE		Bottom Face at 0mm	0.758	0.209	0.967		
		Edge 1 at 0mm	0.414		0.414		
	LTE Band 13	Bottom Face at 12mm	0.553	0.209	0.762		
		Edge 1 at 14mm	0.173		0.173		
		Edge 4 at 0mm	0.474		0.474		
		Bottom Face at 0mm	0.415	0.209	0.624		
		Edge 1 at 0mm	0.223		0.223		
	LTE Band 17	Bottom Face at 12mm	0.391	0.209	0.600		
		Edge 1 at 14mm	0.113		0.113		
		Edge 4 at 0mm	0.397		0.397		
		Bottom Face at 0mm	1.122	0.209	1.331		
		Edge 1 at 0mm	0.769		0.769		
	LTE Band 25	Bottom Face at 12mm	1.125	0.209	1.334		
		Edge 1 at 14mm	0.850		0.850		
		Edge 4 at 0mm	0.245		0.245		

Report No.: FA650305

	2	3	4	5	2+3	4+5		
Exposure Position	2.4GHz WLAN Ant 1	2.4GHz WLAN Ant 2	5GHz WLAN Ant 1	5GHz WLAN Ant 2	Summed 1g SAR	Summed 1g SAR	SPLSR	Case No
	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)		
Bottom Face at 0mm	0.679	0.867	0.646	0.979	1.546	1.625	0.02	Case 57
Edge 2 at 0mm	0.539	0.510	1.148	1.151	1.049	2.299	0.04	Case 58

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 78 of 111

14.2 SPLSR Evaluation and Analysis

General Note:

SPLSR = (SAR₁ + SAR₂)^{1.5} / (min. separation distance, mm). If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	n (cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	GSM850		0.429	0mm	6.95	-5.05	-0.12	164.0	1.108	0.01	Not required
Case 1	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	164.2	1.106	0.01	Not required
Case I	GSM850	Bottom Face	0.429	0mm	6.95	-5.05	-0.12	191.9	1.296	0.01	Not required
	2.4GHz ANT 2	Bollom Face	0.867	0mm	-2.86	11.44	-0.01	191.9	1.290	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
			ı				-	WLAN ANT	2		
			Ш		WWAN			WLAN ANT 1			

		B	SAR	Gap	SAR	peak locatior	ı (cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	GSM850		1.029	12mm	7.1	-5.98	-0.19	173.6	1.708	0.01	Not required
Case 2	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	173.0	1.708	0.01	Not required
Case 2	GSM850	Bottom Face	1.029	12mm	7.1	-5.98	-0.19	200.7	1.896	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	200.7	1.090	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
				Q	WWAN			WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Page 79 of 111 Form version. : 160427 FCC ID: UZ7ET55BE

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	band	Position	(W/kg)	(mm)	Х	Υ	Z	(mm)	(W/kg)	Results	SAR
	GSM1900		0.651	0mm	7.19	-5.56	-0.03	169.5	1.330	0.01	Not required
Case 3	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	109.5	1.330	0.01	Not required
Case 3	GSM1900	Bottom Face	0.651	0mm	7.19	-5.56	-0.03	197.5	1.518	0.01	Not required
	2.4GHz ANT 2	BOILOIII Face	0.867	0mm	-2.86	11.44	-0.01	197.5	1.516	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	90.9	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
							-	WLAN ANT 2	2		
				ww	VAN.			WLAN ANT 1			

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dallu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	GSM1900		0.6	12mm	6.86	-6.19	-0.16	175.5	1.279	0.01	Not required
Case 4	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	175.5	1.279	0.01	Not required
Case 4	GSM1900	Bottom Face	0.6	12mm	6.86	-6.19	-0.16	201.3	1.467	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	201.3	1.407	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.540	0.02	Not required

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 80 of 111

Report No.: FA650305

	Daniel	Desition	SAR	Gap	SAR	peak locatior	ı (cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	(W/kg)	Results	SAR
	WCDMA II		1.177	0mm	7.29	-5.5	0.18	100.1	4.050	0.01	Not required
0 5	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	169.1	1.856	0.01	Not required
Case 5	WCDMA II	Bottom Face	1.177	0mm	7.29	-5.5	0.18	197.5	2.044	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	197.5	2.044	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
			ı				-	WLAN ANT	2		

WWAN

	Donal	Desition.	SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	WCDMA II		0.914	12mm	7.31	-6.08	0.08	174.9	1.593	0.01	Not required
Case 6	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	174.9	1.595	0.01	Not required
Case 0	WCDMA II	Bottom Face	0.914	12mm	7.31	-6.08	0.08	202.6	1.781	0.01	Not required
	2.4GHz ANT 2	Dollom race	0.867	0mm	-2.86	11.44	-0.01	202.0	1.701	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required
				C W	WAN		>	WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 81 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	band	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	WCDMA IV		0.366	0mm	7.15	-6.1	0.17	174.9	1.045	0.01	Not required
Case 7	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	174.5	1.043	0.01	Not required
Case I	WCDMA IV	Bottom Face	0.366	0mm	7.15	-6.1	0.17	202.0	1.233	0.01	Not required
	2.4GHz ANT 2	DOLLOIII FACE	0.867	0mm	-2.86	11.44	-0.01	202.0	1.233	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
					VAN.		>	WLAN ANT 1			

	Donal	Desition.	SAR	Gap	SAR	peak location	n (cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	WCDMA IV		0.576	12mm	6.86	-6.54	-0.13	179.0	1.255	0.01	Not required
Case 8	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	179.0	1.255	0.01	Not required
Case o	WCDMA IV	Bottom Face	0.576	12mm	6.86	-6.54	-0.13	204.4	1.443	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	204.4	1.443	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required
				ww.	JAN JAN		-	WLAN ANT			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 82 of 111

Report No.: FA650305

	David	Desition	SAR	Gap	SAR	peak location	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	WCDMA V		0.61	0mm	7.02	-5.05	-0.09	164.3	1.289	0.01	Not required
Case 9	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	104.3	1.209	0.01	Not required
Case 9	WCDMA V	Bottom Face	0.61	0mm	7.02	-5.05	-0.09	192.2	1.477	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	192.2	1.477	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required
					WWAN		-	WLAN ANT 1			

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Position	(W/kg)	(mm)	X	Y	Z	(mm)	(W/kg)	Results	SAR
	WCDMA V		0.463	12mm	3.14	-8.07	-0.23	194.6	1.142	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	194.0	1.142	0.01	Not required
10	WCDMA V	Bottom Face	0.463	12mm	3.14	-8.07	-0.23	204.1	1.330	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	204.1	1.330	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.540	0.02	Not required

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 83 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	CDMA BC0		0.541	0mm	6.94	-5.2	-0.07	165.7	1.220	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	165.7	1.220	0.01	Not required
11	CDMA BC0	Bottom Face	0.541	0mm	6.94	-5.2	-0.07	193.1	1.408	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	193.1	1.400	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	60.6	1.546	0.02	Not required
								_			
								WLAN ANT			

WLAN ANT 1

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	(W/kg)	Results	SAR
	CDMA BC0		0.475	12mm	3.37	-7.77	-0.24	191.4	1.154	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	191.4	1.134	0.01	Not required
12	CDMA BC0	Bottom Face	0.475	12mm	3.37	-7.77	-0.24	202.0	1.342	0.01	Not required
	2.4GHz ANT 2	Dollom race	0.867	0mm	-2.86	11.44	-0.01	202.0	1.342	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	60.6	1.546	0.02	Not required
			I			•	_	WLAN ANT	2		
				WWAI		·		WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 84 of 111

Report No.: FA650305

	Donal	Position	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	CDMA BC1		0.763	0mm	7.3	-5.79	0.18	172.0	1.442	0.04	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	172.0	1.442	0.01	Not required
13	CDMA BC1	Bottom Face	0.763	0mm	7.3	-5.79	0.18	000.0	1.630	0.04	Net as assissed
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	200.0	1.030	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
								_			
l								WLAN ANT	2		

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Fosition	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	CDMA BC1		1.125	12mm	6.96	-6.08	-0.16	174.5	1.804	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	174.5	1.004	0.01	Not required
14	CDMA BC1	Bottom Face	1.125	12mm	6.96	-6.08	-0.16	200.8	1.992	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	200.6	1.992	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.8	1.046	0.02	Not required

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 85 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	CDMA BC10		0.602	0mm	6.94	-5.05	-0.06	164.2	1.281	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	104.2	1.201	0.01	Not required
15	CDMA BC10	Bottom Face	0.602	0mm	6.94	-5.05	-0.06	191.8	1.469	0.01	Not required
	2.4GHz ANT 2	Dolloin race	0.867	0mm	-2.86	11.44	-0.01	191.0	1.409	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required
				C	WWAN		->	WLAN ANT 1			

	5	Position	SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	CDMA BC10		0.507	12mm	3.37	-7.77	-0.24	191.4	1.186	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	191.4	1.100	0.01	Not required
16	CDMA BC10	Bottom Face	0.507	12mm	3.37	-7.77	-0.24	202.0	1.374	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	202.0	1.374	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 86 of 111

Rep	ort	No.	:	FA650305

	Band	Desition	SAR	Gap	SAR	peak locatior	n (cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 2		1.273	0mm	7.2	-5.91	-0.06	173.0	1.952	0.02	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	173.0	1.952	0.02	Not required
17	LTE Band 2	Bottom Face	1.273	0mm	7.2	-5.91	-0.06	200.6	2.140	0.02	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	200.6	2.140	0.02	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required
								MI AN ANT			
								WLAN ANT			

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 2		1.124	12mm	7.16	-6.84	-0.13	182.2	1.803	0.01	Not required
Case	2.4GHz ANT 1	Bottom Face	0.679	0mm	5.22	11.28	-0.01	102.2	1.003	0.01	Not required
18	LTE Band 2		1.124	12mm	7.16	-6.84	-0.13	208.5	1.991	0.01	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01		1.991	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01		1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01		1.540	0.02	Not required

WLAN ANT 1

WWAN

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 87 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	band	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 4		0.579	0mm	7.19	-5.92	0.2	173.1	1.258	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	173.1	1.236	0.01	Not required
19	LTE Band 4	Bottom Face	0.579	0mm	7.19	-5.92	0.2	200.6	1.446	0.01	Not required
	2.4GHz ANT 2	DOLLOIII FACE	0.867	0mm	-2.86	11.44	-0.01	200.0	1.440	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	90.9	1 546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
								_			
								MI ANI ANIT			
								WLAN ANT	2		
						•	- 1/4				

WLAN ANT 1

		B. Miller	SAR	Gap	SAR	peak locatior	ı (cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 4		0.475	12mm	7.31	-6.23	0.08	176.3	1.154	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	176.3	1.154	0.01	Not required
20	LTE Band 4	Bottom Face	0.475	12mm	7.31	-6.23	0.08	203.9	1.342	0.01	Not required
	2.4GHz ANT 2	Dollom race	0.867	0mm	-2.86	11.44	-0.01	203.9	1.542	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.540	0.02	Not required
				ww	VAN		-	WLAN ANT			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 88 of 111

Report No.: FA650305

	Band	Desition	SAR	Gap	SAR	peak location	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	LTE Band 5		0.816	0mm	6.95	-5.05	0	164.2	1.495	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	104.2	1.495	0.01	Not required
21	LTE Band 5	Bottom Face	0.816	0mm	6.95	-5.05	0	191.9	1.683	0.01	Not required
	2.4GHz ANT 2	Dottom race	0.867	0mm	-2.86	11.44	-0.01	131.3	1.003	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.540	0.02	Not required
				W	WAN		-	WLAN ANT 1			

		Danielan.	SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 5		0.609	12mm	7.1	-5.51	-0.19	160.0	4.000	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	169.0	1.288	0.01	Not required
22	LTE Band 5	Bottom Face	0.609	12mm	7.1	-5.51	-0.19	196.6	1.476	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	190.0	1.476	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	90.0	4.546	0.00	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
								WLAN ANT	2		
							-				
						•					
						Y					

WLAN ANT 1

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 89 of 111

WWAN

Report No.: FA650305

	Pand	Position	SAR	Gap	SAR	peak location	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	LTE Band 13		0.758	0mm	6.79	-5.05	0	164.1	1.437	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	104.1	1.437	0.01	Not required
23	LTE Band 13	Bottom Face	0.758	0mm	6.79	-5.05	0	191.1	1.625	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	191.1	1.025	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	90.0	4.546	0.00	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
WLAN ANT 2											
			ш								

WWAN

WLAN ANT 1

		B. Miller	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 13		0.553	12mm	4.26	-7.62	-0.23	189.3	1.232	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	109.5	1.232	0.01	Not required
24	LTE Band 13	Bottom Face	0.553	12mm	4.26	-7.62	-0.23	203.5	1.420	0.01	Not required
	2.4GHz ANT 2	Dollom race	0.867	0mm	-2.86	11.44	-0.01	203.3	1.420	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
								WLAN ANT	2		
				WWA	N		L	WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 90 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 17		0.415	0mm	6.79	-4.9	0	162.6	1.094	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	102.0	1.094	0.01	Not required
25	LTE Band 17	Bottom Face	0.415	0mm	6.79	-4.9	0	189.8	1.282	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	109.0	1.202	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	90.0	4.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	80.8	1.546	0.02	Not required
	WLAN ANT 2 WLAN ANT 1										

			SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 17		0.391	12mm	6.79	-6.25	-0.19	470.0	1.070	0.01	Not required
Case	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	176.0	1.070	0.01	Not required
26	LTE Band 17	Bottom Face	0.391	12mm	6.79	-6.25	-0.19	201.5	1.258	0.01	Not required
	2.4GHz ANT 2	bollom race	0.867	0mm	-2.86	11.44	-0.01	201.5	1.236	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	00.0	1.546	0.02	Not required
WLAN ANT 2 WLAN ANT 1											

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 91 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 25		1.122	0mm	7.03	-5.63	0	170.1	1.801	0.01	Not required
Case	2.4GHz ANT 1	Bottom Face	0.679	0mm	5.22	11.28	-0.01	170.1	1.001	0.01	Not required
27	LTE Band 25		1.122	0mm	7.03	-5.63	0	107.2	1.989	0.01	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	197.3	1.909	0.01	Not required
	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01		1.546	0.02	Not required
	•										

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Ballu	Position	(W/kg)	(mm)	Х	Υ	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 25		1.125	12mm	7.31	-6.08	0.08	174.9	1.804	0.01	Not required
Case 28	2.4GHz ANT 1	Bottom Face	0.679	0mm	5.22	11.28	-0.01	174.9	1.004	0.01	Not required
	LTE Band 25		1.125	12mm	7.31	-6.08	0.08	202.6	1.992	0.01	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01	202.6	1.992	0.01	Not required
_	2.4GHz ANT 1		0.679	0mm	5.22	11.28	-0.01	80.8	1.546	0.02	Not required
	2.4GHz ANT 2		0.867	0mm	-2.86	11.44	-0.01		1.346	0.02	Not required

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 92 of 111

	Donal	Danisia	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	GSM850		0.429	0mm	6.95	-5.05	-0.12	163.0	1.075	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	103.0	1.075	0.01	Not required
29	GSM850	Bottom Face	0.429	0mm	6.95	-5.05	-0.12	186.7	1.408	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	100.7	1.406	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	03.4	1.023	0.02	Not required
WLAN ANT 2 WLAN ANT 1											

	Donal	Danisian.	SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	GSM850		1.029	12mm	7.1	-5.98	-0.19	172.4	1.675	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	172.4	1.073	0.01	Not required
30	GSM850	Bottom Face	1.029	12mm	7.1	-5.98	-0.19	195.5	2.008	0.01	Not required
	5GHz ANT 2	Dolloin race	0.979	0mm	-2.56	11.02	0.04	195.5	2.000	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.023	0.02	Not required
				wv	VAN			WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 93 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	GSM1900		0.651	0mm	7.19	-5.56	-0.03	168.2	1.297	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	100.2	1.291	0.01	Not required
31	GSM1900	Bottom Face	0.651	0mm	7.19	-5.56	-0.03	192.3	1.630	0.01	Not required
	5GHz ANT 2	DOLLOIII FACE	0.979	0mm	-2.56	11.02	0.04	192.3	1.630	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	00.4	1.023	0.02	Not required
				L WW	JAN JAN			WLAN ANT 1			

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Danu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	GSM1900		0.6	12mm	6.86	-6.19	-0.16	174.3	1.246	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	174.3	1.240	0.01	Not required
32	GSM1900	Dottom Food	0.6	12mm	6.86	-6.19	-0.16	100.0	4.570	0.01	Not required
	5GHz ANT 2	Bottom Face	0.979	0mm	-2.56	11.02	0.04	196.2	1.579	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	05.4	1 625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4 1.625	1.625		
WLAN ANT 2											
									ľ		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 94 of 111

Report No.: FA650305

	Donal	Position	SAR	Gap	SAR	peak location	ı (cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	WCDMA II		1.177	0mm	7.29	-5.5	0.18	167.7	1.823	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	107.7	1.023	0.01	Not required
33	WCDMA II	Bottom Face	1.177	0mm	7.29	-5.5	0.18	192.3	2.156	0.02	Not required
	5GHz ANT 2	Dollom race	0.979	0mm	-2.56	11.02	0.04	192.5	2.130	0.02	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	00.4	1.625	0.02	Not required
					/WAN			WLAN A			

	Daniel	Desition	SAR	Gap	SAR	peak locatior	ı (cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	WCDMA II		0.914	12mm	7.31	-6.08	0.08	173.5	1.560	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	1/3.5	1.560	0.01	Not required
34	WCDMA II	Dottom Food	0.914	12mm	7.31	-6.08	0.08	197.4	1.893	0.01	Not required
	5GHz ANT 2	Bottom Face	0.979	0mm	-2.56	11.02	0.04	197.4	1.693	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.025	0.02	
						•		WLAN AN	T 2		

WLAN ANT 1

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 95 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	WCDMA IV		0.366	0mm	7.15	-6.1	0.17	173.6	1.012	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	173.0	1.012	0.01	Not required
35	WCDMA IV	Bottom Face	0.366	0mm	7.15	-6.1	0.17	196.8	1.345	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	190.0	1.343	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	00.4	1.025	0.02	Not required
								WLAN ANT	2		
				ww		/	-	WLAN ANT 1			

	David	Decition	SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	SAR (W/kg)	Results	SAR
	WCDMA IV		0.576	12mm	6.86	-6.54	-0.13	177.8	1.222	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	177.0	1.222	0.01	Not required
36	WCDMA IV	Bottom Face	0.576	12mm	6.86	-6.54	-0.13	199.3	1.555	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	199.3	1.555	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.025	0.02	Not required
				WWA				WLAN AN			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 96 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	WCDMA V		0.61	0mm	7.02	-5.05	-0.09	163.0	1.256	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	103.0	1.236	0.01	Not required
37	WCDMA V	Bottom Face	0.61	0mm	7.02	-5.05	-0.09	187.1	1.589	0.01	Not required
	5GHz ANT 2	Bollom Face	0.979	0mm	-2.56	11.02	0.04	107.1	1.569	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.023	0.02	Not required
						•	-	WLAN ANT	2		
				W	WAN		9	WLAN AN	T 1		

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	WCDMA V		0.463	12mm	3.14	-8.07	-0.23	195.0	1.109	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	195.0	1.109	0.01	Not required
38	WCDMA V	Bottom Face	0.463	12mm	3.14	-8.07	-0.23	199.2	1.442	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	199.2	1.442	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.025	0.02	Not required
				wwan				WLAN AN			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 97 of 111

Report No.: FA650305

	David	Decition	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	CDMA BC0		0.541	0mm	6.94	-5.2	-0.07	164.5	1.187	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	164.5	1.107	0.01	Not required
39	CDMA BC0	Bottom Face	0.541	0mm	6.94	-5.2	-0.07	100.0	4.500	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	188.0	1.520	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.025	0.02	Not required
					VWAN			WLAN AN	T 2		

		B. Miller	SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	CDMA BC0		0.475	12mm	3.37	-7.77	-0.24	191.7	1.121	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	191.7	1.121	0.01	Not required
40	CDMA BC0	Bottom Face	0.475	12mm	3.37	-7.77	-0.24	197.1	1.454	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	197.1	1.454	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.025	0.02	Not required
				WWAN				WLAN AN			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 98 of 111

Re	port	No.	:	FA	65	03	05
	P		•			-	~

	Donal	Desition.	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	CDMA BC1		0.763	0mm	7.3	-5.79	0.18	170.6	1.409	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	170.6	1.409	0.01	Not required
41	CDMA BC1	Bottom Face	0.763	0mm	7.3	-5.79	0.18	194.9	1.742	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	194.9	1.742	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.023	0.02	Not required
					WAN			WLAN AN			

				Gap	SAD	peak locatior	(om)	3D	Summed		
	Band	Position	SAR (W/kg)	(mm)	X	Y	Z	distance (mm)	SAR (W/kg)	SPLSR Results	Simultaneous SAR
	CDMA BC1		1.125	12mm	6.96	-6.08	-0.16		, ,,		
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	173.3	1.771	0.01	Not required
42	CDMA BC1		1.125	12mm	6.96	-6.08	-0.16				
	5GHz ANT 2	Bottom Face	0.979	0mm	-2.56	11.02	0.04	195.7	2.104	0.02	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01				
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
				WWA				WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 99 of 111

Re	port	No.	:	FA	۱65	503	05
	~		-				

	David	Desition	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	CDMA BC10		0.602	0mm	6.94	-5.05	-0.06	163.0	1.248	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	103.0	1.240	0.01	Not required
43	CDMA BC10	Bottom Face	0.602	0mm	6.94	-5.05	-0.06	186.7	1.581	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	100.7	1.561	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.025	0.02	Not required
				N. C.	VWAN			WLAN AN			

	Don't	Desiries.	SAR	Gap	SAR	peak locatior	ı (cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	CDMA BC10		0.507	12mm	3.37	-7.77	-0.24	191.7	1.153	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	191.7	1.153	0.01	Not required
44	CDMA BC10	Bottom Face	0.507	12mm	3.37	-7.77	-0.24	107.1	1.486	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	197.1	1.400	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	05.4	4.605	0.00	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
								WLAN ANT	2		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 100 of 111

Report	No.	: F	A650305	
11CPOIL			~~~~~	•

	David.	Desiries	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 2		1.273	0mm	7.2	-5.91	-0.06	474.7	4.040	0.00	Nat as assissed
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	171.7	1.919	0.02	Not required
45	LTE Band 2	D-#	1.273	0mm	7.2	-5.91	-0.06	405.4	0.050	0.00	Nat as assissed
	5GHz ANT 2	Bottom Face	0.979	0mm	-2.56	11.02	0.04	195.4	2.252	0.02	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	05.4	4.605	0.00	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
							>	WLAN AN	IT 2		

	Band	Desition	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 2		1.124	12mm	7.16	-6.84	-0.13	181.0	1.770	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	101.0	1.770	0.01	Not required
46	LTE Band 2	Bottom Face	1.124	12mm	7.16	-6.84	-0.13	203.3	2.103	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	203.3	2.103	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	03.4	1.025	0.02	Not required
								WLAN A	NT 2		

WWAN

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date: Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 101 of 111

Re	port	No.	: 1	FA6	50305

	Down	Desition	SAR	Gap	SAR	peak location	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	LTE Band 4		0.579	0mm	7.19	-5.92	0.2	171.8	1.225	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	171.0	1.225	0.01	Not required
47	LTE Band 4	Bottom Face	0.579	0mm	7.19	-5.92	0.2	195.5	1.558	0.01	Not required
	5GHz ANT 2	DOLLOIII FACE	0.979	0mm	-2.56	11.02	0.04	195.5	1.556	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	03.4	1.023	0.02	Not required
				C WV	VAN			WLAN AN			

			SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Υ	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 4		0.475	12mm	7.31	-6.23	0.08	175.0	1.121	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	175.0	1.121	0.01	Not required
48	LTE Band 4	Bottom Face	0.475	12mm	7.31	-6.23	0.08	198.7	1.454	0.01	Not required
	5GHz ANT 2	Bollom Face	0.979	0mm	-2.56	11.02	0.04	196.7	1.454	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.025	0.02	Not required
				ww	an an			WLAN A			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID : UZ7ET55BE Page 102 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Υ	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 5		0.816	0mm	6.95	-5.05	0	163.0	1.462	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	163.0	1.462	0.01	Not required
49	LTE Band 5	Dottom Food	0.816	0mm	6.95	-5.05	0	186.7	1.795	0.01	Not required
	5GHz ANT 2	Bottom Face	0.979	0mm	-2.56	11.02	0.04	100.7	1.795	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	05.4	4 605	0.00	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
								WLAN ANT	2		
					WWAN			WLAN ANT 1			

	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
	Danu	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 5		0.609	12mm	7.1	-5.51	-0.19	167.7	1.255	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	107.7	1.255	0.01	Not required
50	LTE Band 5	Bottom Face	0.609	12mm	7.1	-5.51	-0.19	191.5	1.588	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	191.5	1.566	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.625	0.02	Not required
								WLAN AN	T 2		
				ww	/AN			WLAN AN	T 1		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 103 of 111

Report No.: FA650305

	Band	Position	SAR	Gap	SAR	peak location	(cm)	3D S distance	Summed SAR	SPLSR	Simultaneous
	Dano	Position	(W/kg)	(mm)	Х	Y	Z	(mm)	(W/kg)	Results	SAR
	LTE Band 13		0.758	0mm	6.79	-5.05	0	162.9	1.404	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	102.9	1.404	0.01	Not required
51	LTE Band 13	Bottom Face	0.758	0mm	6.79	-5.05	0	185.9	1.737	0.01	Not required
	5GHz ANT 2	BOILOIII Face	0.979	0mm	-2.56	11.02	0.04	100.9	1.737	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.625	0.02	Not required
				W	/WAN			WLAN AN			

		B. Miller	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 13		0.553	12mm	4.26	-7.62	-0.23	189.2	1.199	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	109.2	1.199	0.01	Not required
52	LTE Band 13	Bottom Face	0.553	12mm	4.26	-7.62	-0.23	100 5	1 522	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	198.5	1.532	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	05.4	1.625	0.00	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
			U	WWAN				WLAN AN			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 104 of 111

	Donal	Danition.	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 17		0.415	0mm	6.79	-4.9	0	161.4	1.061	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	101.4	1.001	0.01	Not required
53	LTE Band 17	Bottom Face	0.415	0mm	6.79	-4.9	0	184.6	1.394	0.01	Not required
	5GHz ANT 2	Dollom race	0.979	0mm	-2.56	11.02	0.04	104.0	1.554	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.023	0.02	Not required
					WWAN			WLAN AN			

			SAR	Gap	SAR	peak location	(cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 17		0.391	12mm	6.79	-6.25	-0.19	174.9	1.037	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	174.9	1.037	0.01	Not required
54	LTE Band 17	Bottom Face	0.391	12mm	6.79	-6.25	-0.19	196.4	1.370	0.01	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	190.4	1.370	0.01	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.025	0.02	Not required
				WWA	NN]			WLAN ANT 1			

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 105 of 111

Report	No.	: F	A650	305
INCPOIL	. 10.		~~~	,000

	Donal	Desition.	SAR	Gap	SAR	peak locatior	(cm)	3D	Summed SAR	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	(W/kg)	Results	SAR
	LTE Band 25		1.122	0mm	7.03	-5.63	0	168.8	1.768	0.01	Not required
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	100.0	1.700	0.01	Not required
55	LTE Band 25	Bottom Face	1.122	0mm	7.03	-5.63	0	192.1	2.101	0.02	Not required
	5GHz ANT 2	bollom race	0.979	0mm	-2.56	11.02	0.04	192.1	2.101	0.02	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	85.4	1.625	0.02	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	05.4	1.025	0.02	Not required
				[[VAN			WLAN AN			

		B	SAR	Gap	SAR	peak locatior	ı (cm)	3D	Summed	SPLSR	Simultaneous
	Band	Position	(W/kg)	(mm)	Х	Y	Z	distance (mm)	SAR (W/kg)	Results	SAR
	LTE Band 25		1.125	12mm	7.31	-6.08	0.08	470 F	4 774	0.01	Notroguired
Case	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	173.5	1.771	0.01	Not required
56	LTE Band 25	Bottom Face	1.125	12mm	7.31	-6.08	0.08	197.4	2.104	0.02	Not required
	5GHz ANT 2	Bollom Face	0.979	0mm	-2.56	11.02	0.04	197.4	2.104	0.02	Not required
	5GHz ANT 1		0.646	0mm	5.98	11.22	0.01	05.4	4.605	0.00	Not required
	5GHz ANT 2		0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
								WLAN AN	Т2		

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 106 of 111

WWAN

RTON LA	E FCC SA	AR Test F	Repor	t						Repor	t No. : FA65
	Band	Position	SAR	Gap	SAR	peak locatior	(cm)	3D distance	Summed SAR	SPLSR	Simultaneous
Case	Ballu	Fosition	(W/kg)	(mm)	Х	Υ	Z	(mm)	(W/kg)	Results	SAR
57	5GHz ANT 1	Pottom Food	0.646	0mm	5.98	11.22	0.01	9E 4	1 605	0.02	Not required
	5GHz ANT 2	Bottom Face	0.979	0mm	-2.56	11.02	0.04	85.4	1.625	0.02	Not required
						Į.		WLAN AN	Τ1		

Test Engineer: Galen Chang, Bevis Chang, Tom Jun, Thomas Chen, Kurt Lu, and San Lin

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 107 of 111

15. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA650305

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 15.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)			
Measurement System										
Probe Calibration	6.0	N	1	1	1	6.0	6.0			
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9			
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9			
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6			
Linearity	4.7	R	1.732	1	1	2.7	2.7			
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6			
Modulation Response	3.2	R	1.732	1	1	1.8	1.8			
Readout Electronics	0.3	N	1	1	1	0.3	0.3			
Response Time	0.0	R	1.732	1	1	0.0	0.0			
Integration Time	2.6	R	1.732	1	1	1.5	1.5			
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7			
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7			
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2			
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7			
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2			
Test Sample Related										
Device Positioning	3.0	N	1	1	1	3.0	3.0			
Device Holder	3.6	N	1	1	1	3.6	3.6			
Power Drift	5.0	R	1.732	1	1	2.9	2.9			
Power Scaling	0.0	R	1.732	1	1	0.0	0.0			
Phantom and Setup										
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5			
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0			
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1			
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0			
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0			
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4			
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0			
Liquid Permittivity (target)	0.26	0.7	0.8							
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4			
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1			
Cor	nbined Std. Un	certainty				11.4%	11.4%			
Co	verage Factor	for 95 %				K=2	K=2			
Exp	Expanded STD Uncertainty									

Report No. : FA650305

Table 15.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

Issued Date : Jun. 21, 2016 Form version. : 160427 FCC ID: UZ7ET55BE Page 109 of 111

Report No.: FA650305

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)
Measurement System							
Probe Calibration	7.0	N	1	1	1	7.0	7.0
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9
Boundary Effects	2.0	R	1.732	1	1	1.2	1.2
Linearity	4.7	R	1.732	1	1	2.7	2.7
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6
Modulation Response	3.2	R	1.732	1	1	1.8	1.8
Readout Electronics	0.3	N	1	1	1	0.3	0.3
Response Time	0.0	R	1.732	1	1	0.0	0.0
Integration Time	2.6	R	1.732	1	1	1.5	1.5
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2
Probe Positioning	6.7	R	1.732	1	1	3.9	3.9
Max. SAR Eval.	4.0	R	1.732	1	1	2.3	2.3
Test Sample Related							
Device Positioning	3.0	Ν	1	1	1	3.0	3.0
Device Holder	3.6	N	1	1	1	3.6	3.6
Power Drift	5.0	R	1.732	1	1	2.9	2.9
Power Scaling	0.0	R	1.732	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty	6.6	R	1.732	1	1	3.8	3.8
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0
Liquid Conductivity Repeatability	0.2	Ν	1	0.78	0.71	0.1	0.1
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1
Cor	mbined Std. Un	certainty				12.8%	12.7%
Co	verage Factor	for 95 %				K=2	K=2
Exp	anded STD Ur	certainty				25.5%	25.4%

Table 15.3. Uncertainty Budget for frequency range 3 GHz to 6 GHz

TEL: 886-3-327-3456 / FAX: 886-3-328-4978

FCC ID: UZ7ET55BE

16. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA650305

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015
- [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.