Оглавление

Bı	веде	ние		5											
1	Ана	литичес	кая часть	. 6											
	1.1	алгоритмов удаления невидимых линий и поверхностей	6												
		1.1.1 A	лгоритм обратной трассировки	. 6											
		1.1.2 A	лгоритм Робертса	. 7											
		1.1.3 A	лгоритм, использующий Z-буфер	S											
	1.2	Анализ м	методов закрашивания	10											
		1.2.1 П	ростая закраска	. 10											
		1.2.2 3	акраска по Гуро	. 11											
		1.2.3 38	акраска по Фонгу	. 12											
2	Конструкторская часть														
	2.1	2.1 Понятие броуновского движения													
	2.2	Моделир	ование броуновского движения	16											
		2.2.1 K	лассическое броуновское движение	16											
		2.2.2 A	лгоритм срединных смещений	. 17											
		2.2.3 Ф	рактальное броуновское движение	18											
	2.3	Формали	изация модели	22											
	2.4	Требован	ния к программному обеспечению	23											
3	Технологическая часть														
	3.1	Средства	а реализации	24											
	3.2	Выбор п	рограммного обеспечения	24											
			wing												
		3.2.2 Ja	avaFX	25											
	3.3	Описани	е используемых типов и структур данных	26											
n				200											

Литература																																		29	9
------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

Введение

С развитием компьютерных технологий компьютерная графика приобрела совершенно новый статус, поэтому сегодня она является основной технологией в цифровой фотографии, кино, видеоиграх, а также во многих специализированных приложениях. Было разработано большое количество алгоритмов отображения. Главными критериями, которые к ним предъявляются, являются реалистичность изображения и скорость отрисовки. Однако зачастую чем выше реалистичность, тем больше времени и памяти требуется для работы алгоритма.

Одним из направлений моделирования является моделирование движения частиц. Имеется огромная потребность в качественной и эффективной отрисовке распространения частиц вируса. Особенно эта тема стала актуальной после начала пандемии короновируса. Пандемия COVID-19 повлияла на жизнь миллионов людей по всему миру. Помимо серьезных последствий для здоровья, пандемия также изменила нашу повседневную жизнь, перевернула рынок вакансий и подорвала экономическую стабильность. В данном курсовом проекте речь пойдет о моделировании распростарнения частиц вирусной инфекции.

Цели данной работы - подготовить всю необходимую базу для реализации программного обеспечения, которое предоставляет возможность моделировать распространение частиц короновирусной инфекции в помещении.

Задачи, которые необходимо выполнить для достижения поставленной цели:

- изучить алгоритмы удаления невидимых линий и поверхностей и методы закраски;
- проанализировать алгоритмы, моделирующие броуновское движение частиц;
- выбрать подходящие для решения поставленной задачи алгоритмы;
- выявить основные требования для программного обеспечения;
- формализовать модель и описать выбранные типы и структуры данных;
- выбрать язык программирования и среду разработки.

1 Аналитическая часть

1.1 Анализ алгоритмов удаления невидимых линий и поверхностей

1.1.1 Алгоритм обратной трассировки

Алгоритм обратной трассировки лучей отслеживает лучи в обратном направлении (от наблюдателя к объекту). Считается, что наблюдатель расположен на положительной полуоси z в бесконечности, поэтому все световые лучи параллельны оси z. В ходе работы испускаются лучи от наблюдателя и ищутся пересечения луча и всех объектов сцены. В результате, пересечение с максимальным значением z является видимой частью поверхности, и атрибуты данного объекта используются для определения характеристик пикселя, через центр которого проходит данный световой луч.

Рисунок 1.1 – Алгоритм обратной трассировки

Эффективность процедуры определения пересечений луча с поверхностью объекта оказывает самое большое влияние на эффективность всего алгоритма. Чтобы избавиться от ненужного поиска пересечений было придумано искать пересечение луча с объемной оболочкой рассматриваемого объекта. Под оболочкой понимается некоторый простой объект, внутрь которого можно поместить рассматриваемый объект, к примеру параллелепипед или сферу.

В дальнейшем при рассмотрении пересечения луча и объемной оболочкой рассматриваемого объекта, если такого пересечения нет, то и соответственно пересечения луча и самого рассматриваемого объекта нет, и наоборот, пересечение найдено, то возможно, есть пересечение луча и рассматриваемого объекта.

Для расчета эффектов освещения сцены проводятся вторичные лучи от точек пересечения ко всем источникам света. Если на пути этих лучей встречается непрозрачное тело, значит данная точка находится в тени, иначе он влияет на освещение данной точки. Также для получения более реалистичного изображения сцены, нужно учитывать вклады отраженных и преломленных лучей.

Плюсы:

• возможность использования алгоритма в параллельных вычислительных системах.

Минусы:

- требуется большое количество высислений;
- производительность алгоритма.

1.1.2 Алгоритм Робертса

Алгоритм Робертса работает в объектном пространстве, кроме того работает только с выпуклыми телами. Если тело изначально является не выпуклым, то нужно его разбить на выпуклые составляющие.

Данный алгоритм состоит из следующих основных этапов:

- подготовка исходных данных;
- удаление линий, экранируемых самим телом;
- удаление линий, экранируемых другими телами.

Для определения, лежит ли точка в положительном подпространстве, используют проверку знака скалярного произведения (l,n), где l – вектор, направленный к наблюдателю, фактически определяет точку наблюдения; n – вектор внешней нормали грани. Если (l,n)>0, т. е. угол между векторами острый, то грань является лицевой. Если (l,n)<0, т. е. угол между векторами тупой, то грань является нелицевой. В алгоритме Робертса требуется, чтобы все изображаемые тела или объекты были выпуклыми. Невыпуклые тела должны быть разбиты на выпуклые части. В этом алгоритме выпуклое многогранное тело с плоскими гранями должно представиться набором пересекающихся плоскостей. Уравнение произвольной плоскости в трехмерном пространстве имеет вид

$$ax + by + cz + d = 0 \tag{1.1}$$

В матричной форме этот результат выглядит так:

$$[x \ y \ z \ 1][P]^T = 0 \tag{1.2}$$

где $[P]^T = [a\ b\ c\ d]$ представляет собой плоскость. Поэтому любое выпуклюе твердое тело можно выразить матрицей тела, состоящей из коэффициентов уравнений плоскостей, т. е.

$$M = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \\ c_1 & c_2 & \dots & c_n \\ d_1 & d_2 & \dots & d_n \end{bmatrix},$$

$$(1.3)$$

где каждый столбец содержит коэффициенты одной плоскости.

Любая точка пространства представима в однородных координатах вектором $[S] = [x \ y \ z \ 1]$. Более того, если точка [S] лежит на плоскости, то $[S] * [P]^T = 0$. Если же [S] не лежит на плоскости, то знак этого скалярного произведения показывает, по какую сторону от плоскости расположена точка. В алгоритме Робертса предполагается, что точки, лежащие внутри тела, дают отрицательное скалярное произведение, т. е. нормали направлены наружу.

Плюсы алгоритма:

• высокая точность вычислений.

Минусы:

- рост числа трудоемкости алгоритма, как квадрата числа объектов;
- работа только с выпуклыми телами.

1.1.3 Алгоритм, использующий Z-буфер

Алгоритм Z-буфера решает задачу в пространстве изображений.

В данном алгоритме рассматривается два буфера. Буфер кадра (регенерации) используется для заполнения атрибутов (интенсивности) каждого пикселя в пространстве изображения. В Z-буфер (буфер глубины) можно помещать информацию о координате z для каждого пикселя.

Для начала необходимо подготовить буферы. Для этого в Z-буфер заносятся максимально возможные значения z, а буфер кадра заполняется значениями пикселя, который описывает фон. Также нужно каждый многоугольник преобразовать в растровую форму и записать в буфер кадра. Сам процесс работы заключается в сравнении глубины каждого нового пикселя, который нужно занести в буфер кадра, с глубиной того пикселя, который уже занесён в Z-буфер. В зависимости от сравнения принимается решение, нужно ли заносить новый пиксель в буфер кадра и, если нужно, также корректируется Z-буфер (в него нужно занести глубину нового пикселя).

Плюсы:

- элементы сцены заносятся в буфер кадра в произвольном порядке, поэтому в данном алгоритме не тратится время на выполнение сортировок;
- произвольная сложность сцены;
- поскольку размеры изображения ограничены размером экрана дисплея, трудоемкость алгоритма зависит линейно от числа рассматриваемых поверхностей.

Минусы:

- трудоемкость устранения лестничного эффекта;
- трудности реализации эффектов прозрачности;
- большой объем требуемой памяти.

Вывод

Для удаления невидимых линий и поверхностей выбран алгоритм Z-буфера, так как обладает важными преимуществами - высокой скоростью работы и произвольной сложностью сцены.

1.2 Анализ методов закрашивания

Методы закрашивания используются для затенения полигонов (или поверхностей, аппроксимированных полигонами) в условиях некоторой сцены, имеющей источники освещения.

Существует несколько основных методов закраски:

- простая закраска;
- закраска по Гуро, основанная на интерполяции значений интенсивности освещенности поверхности;
- закраска по Фонгу, основанная на интерполяции векторов нормалей к граням многогранника.

1.2.1 Простая закраска

Одной из самых простых моделей освещения является модель Ламберта. Она учитывает только идеальное диффузное отражение света от тела. Считается, что свет падающий в точку, одинаково рассеивается по всем направлениям полупространства. Таким образом, освещенность в точке определяется

только плотностью света в точке поверхности, а она линейно зависит от косинуса угла падения. При этом положение наблюдателя не имеет значение, т.к. диффузно отраженный свет рассеивается равномерно по всем направлениям.

Простая закраска используется при выполнении трех условий:

- предполагается, что источник находится в бесконечности;
- предполагается, что наблюдатель находится в бесконечности;
- закрашиваемая грань является реально существующей, а не полученной в результате аппроксимации поверхности.

Большим недостатком данной модели является то, что все точки грани будут иметь одинаковую интенсивность.

Рисунок 1.2 – Пример простой закраски

1.2.2 Закраска по Гуро

Данный алгоритм предполагает следующие шаги:

- вычисление векторов нормалей к каждой грани;
- вычисление векторов нормали к каждой вершине грани путем усреднения нормалей к граням;
- вычисление интенсивности в вершинах грани;
- интерполяция интенсивности вдоль ребер грани;

• линейная интерполяция интенсивности вдоль сканирующей строки.

Плюсы:

- хорошо сочетается с диффузным отражением;
- изображение получается более реалистичным, чем при простой закраске.

Минусы:

• данный метод интерполяции обеспечивает лишь непрерывность значений интенсивности вдоль границ многоугольников, но не обеспечивает непрерывность изменения интенсивности.

Рисунок 1.3 – Пример закраски по Гуро

1.2.3 Закраска по Фонгу

При такой закраске, в отличие от метода Гуро, вдоль сканирующей строки интерполируется значение вектора нормали, а не интенсивности.

Шаги алгоритма:

- вычисление векторов нормалей в каждой грани.
- вычисление векторов нормали к каждой вершине грани.
- интерполяция векторов нормалей вдоль ребер грани.

- линейная интерполяция векторов нормалей вдоль сканирующей строки.
- вычисление интенсивности в очередной точке сканирующей строки.

Плюсы:

• можно достичь лучшей локальной аппроксимации кривизны поверхности.

Минусы:

- ресурсоемкость;
- вычислительная сложность.

Рисунок 1.4 – Пример закраски по Фонгу

Вывод

Для закрашивания выбран алгоритм Фонга, так как данный алгоритм обладает важным преимуществом - высокой реалистичностью изображения.

Вывод

В данном разделе были формально описаны алгоритмы удаления невидимых линий и поверхностей, методы закрашивания поверхностей. В качестве

алгоритма удаления невидимых линий и поверхностей был выбран алгоритм Z-буфера, в качестве метода закрашивания был выбран алгоритм закраски Фонга.

2 Конструкторская часть

2.1 Понятие броуновского движения

Броуновское движение (иногда называют Брауновское движение) – беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием молекул окружающей среды.

Рисунок 2.1 – Броуновское движение

Броуновское движение представляет собой пример естественного фрактала с фрактальной размерностью d=1.5 (Мандельброт и Ван Несс, 1968). Впервые его наблюдал шотландский ботаник Роберт Броун в 1827 году: он заметил непрерывное беспорядочное движение взвешенных в жидкости маленьких частиц (пыльцы), но ошибочно приписал причину движения самим частицам. Только в 1905 году Альберт Эйнштейн и вслед за ним в 1906 году Мариан Смолуховский объяснили это движение хаотическими соударениями с молекулами окружающей среды. В 1908—1913 годах Жан Батист Перрен поставил ряд опытов, подтвердивших выводы Эйнштейна и Смолуховского. И, наконец, в 1923 год Норберт Винер построил первую математическую модель броуновского движения. Альтернативные подходы были предложены Андреем Николаевичем Колмогоровым в 1933 году и Полем Леви в 1948 году.

2.2 Моделирование броуновского движения

2.2.1 Классическое броуновское движение

Рассмотрим случайный процесс (случайную величину) X(t), заданную на отрезке [0,T].

Случайный процесс X(t) называется одномерным броуновским движением (или винеровским процессом) на интервале [0,T], если он обладает следущими свойствами:

- X(0)=0 почти наверное и X(t) почти наверное непрерывная функция на [0,T]
- \bullet X(t) процесс с независимыми приращениями
- \bullet X(t) процесс с приращениями, распределёнными нормально.

Отметим следующие свойства броуновского движения:

- ullet X(t) почти наверное нигде не дифференцируем
- X(t) марковский процесс (не обладает памятью), т.е. если известна величина X(t), то при $t_1 < t < t_2$ величины $X(t_1)$ и $X(t_2)$ независимы.
- \bullet Фрактальная размерность графика X(t) равна 1.5
- Приращение X(t) обладает свойством статистического самоподобия: для любого r>0

$$X(t + \Delta t) = \frac{1}{\sqrt{r}}(X(t + r \Delta t) - X(t))$$
 (2.1)

• Стационарность приращений: дисперсия приращения зависит только от разности моментов времени

$$D(X(t_2) - X(t_1)) = \sigma^2 |t_2 - t_1|$$
(2.2)

• Математическое ожидание приращения равно

$$E(|X(t_2) - X(t_1)|) = \sqrt{\frac{2}{\pi}} \sigma \sqrt{|t_2 - t_1|}$$
 (2.3)

Для моделрования броуновского движения можно воспользоваться разными алгоритмами. Рассмотрим 3 из них.

Проще всего реализовать дискретную реализацию броуновского движения, рассмотрев последовательность $x_0 = 0$, $x_{n+1} = x_n + g_n$, где g_n - случайная величина, имеющая нормальное распределение (например, N(0,1)).

```
1: array[N]

2: array[0] \leftarrow 0

3: for i = 1,..., N do

4: array[i + 1] \leftarrow array[i] + randomNormal(0, 1)

5: end for
```

2.2.2 Алгоритм срединных смещений

Метод случайного срединного смещения основан на работах Н.Виннера, он более сложен, чем метод из предыдущего параграфа, однако используется для конструктивного доказательства существования броуновского движения, а также для построения фрактальной интерполяции (когда необходимо чтобы кривая проходила через заданные точки интерполяции). Метод также может быть обобщен на случай *п*-мерных броуновских движений.

Алгоритм случайного срединного смещения вычисляет значения X(t) в диадических рациональных точках вида $\frac{k}{2^n} \in [0,1]$. Последовательно вычисляются значения в середине отрезка [0,1], а затем в серединах отрезков $[0,\frac{1}{2}]$ и $[\frac{1}{2},1]$ и т.д. На каждом шаге итерации должен выполнятьяс закон дисперсии для приращения в вычисленных точках. Параметр σ определяет масщтаб по вертикальной оси, не влияя на фрактальную размерность графика.

Броуновское движение методом срединнго смещения

Вход: $N,\,\sigma\,//\,N$ - число шагов алгоритма, при этом всего 2^N+1 точек интерполяции, σ - параметр вертикального масштаба, коэффициент диспер-

СИИ

Выход: массив значений $\{X(\frac{k}{2^N})\}_{k=0}^{2^N}$ // реализация броуновского движения X(t) на дискретном множестве точек вида $t_k=\frac{k}{2^N},$ $\mathbf{k}\in[0,2^N]$

- 1: $X(0) \leftarrow 0$
- 2: $X(1) \leftarrow \sigma g \; / / \; {\rm g}$ случайная величина, распределенная нормально с параметрами N(0,1)
- 3: **for** j = 1,..., N **do**
- 4: **for** $i = 1,..., 2^{N-1}$ **do**

5:
$$X((2i-1)2^{N-j}) \leftarrow X((i-1)2^{N-j+1}) + X(i2^{N-j+1}) + \frac{1}{2^{(j+1)/2}}\sigma g$$

- 6: end for
- 7: end for

2.2.3 Фрактальное броуновское движение

Фрактальное броуновское движение (ФБД) уже не является марковским процессом, а обладает некорой "памятью". Кроме того, вводя параметр 0 < H < 1 можно получитьодномерное ФБД размерности d = 2 - H и двумерное ФБД размерности d = 3 - H. Заметим, что классическое броуновское движение получается как частный случай при H = 0.5. Для апроксимации ФБД нет простого метода, вроде суммирования нормальных случайных величин, как в случае классического броуновского движения. Для апроксимации ФБД наиболее удобно использовать преобразования Фурье.

Рассмотрим случайный процесс (случайную величину) X(t), заданную на отрезке [0,T].

Cлучайный $npouecc\ X(t)$ называется одномерным фрактальным броуновским движением на интервале [0,T], если он обладает следущими свойствами:

- X(0)=0 почти наверное и X(t) почти наверне непрерывная функция на [0,T]
- ullet X(t) процесс с приращениями, распределенными нормально

Отметим следующие свойства фрактального броуновского движения:

 \bullet X(t) почти наверное нигде не дифференцируем

- ullet Фрактальная размерность графика X(t) равна 2-H
- Процесс x(t) не обладает свойством независимости приращений
- Приращение X(t) обладает свойством статистического самоподобия: для любого r>0

$$X(t + \Delta t) = \frac{1}{\sqrt{r}}(X(t + r \Delta t) - X(t))$$
 (2.4)

 Стационарность приращений: дисперсия приращения зависит только от разности моментов времени

$$D(X(t_2) - X(t_1)) = \sigma^2 |t_2 - t_1|^{2H}$$
(2.5)

• Математическое ожидание приращения равно

$$E(|X(t_2) - X(t_1)|) = \sqrt{\frac{2}{\pi}}\sigma |t_2 - t_1|^H$$
 (2.6)

Метод Фурье-фильтрации для построения ФБД

Теорема 1. Если X(t) - $\Phi B \mathcal{A}$ с параметром H, то его спектральная плотность

$$S(f) \propto \frac{1}{f^{2H+1}} \tag{2.7}$$

Идея метода состоит в следующем. Строится преобразование Фурье для искомого ФБД в частной области, задавая случайные фазы и подбирая амплитуды, удовлетворяющие свойству из Теоремы 1. Затем получаем ФБД во временной области с помощью обратного преобразования Фурье.

Будем моделировать дискретный аналог $\Phi B Д$, то есть наша цель- получить величины $\{X_n\}_{n=0}^{N-1}$, апроксимирующие $\Phi B Д$ в точках n. Воспользуемся формулой дискретного преобразования Φ урье

$$\hat{X}_n = \sum_{k=0}^{N-1} X_k e^{-2\pi kn/N} \tag{2.8}$$

и обратного дискретного преобразования Фурье

$$X_n = \sum_{k=0}^{N-1} \hat{X}_k e^{2\pi kn/N}$$
 (2.9)

Далее будем рассматривать только четные значения N, а для применения метода быстрого дискретного преобразования Фурье нужно, чтобы $N=2^M$, $M\in\mathbb{N}$. Метод быстрого дискретного преобразования Фурье реализован во многих системах компьютерной алгебры. Он позволяет сократить вычисления в $\frac{2N}{\log_2 N}$ раз.

Для того, чтобы получающиеся величины X_n были вещественными мы наложим условие сопряженной симметрии:

$$\hat{X}_0, \hat{X}_{N/2} \in \mathbb{R}, \hat{X}_n = \hat{X}_{N-n}, n = 1, ..., N/2 - 1$$
 (2.10)

Фильтрация относится к той части моделирования, когда мы заставляем коэффициенты преобразования Фурье удовлетворять степенному закону из Теоремы 1:

$$|\hat{X}_n|^2 \propto \frac{1}{n^{2H+1}}, n = 1, ..., N/2$$
 (2.11)

Для этого возьмем

$$\hat{X}_n = \frac{ge^{2\pi iu}}{n^{H+0.5}} \tag{2.12}$$

где g - независимые значения нормально распределенной случайной величины с параметрами N(0,1), а u - независимые значения равномерно распределенной на отрезке [0,1] случайной величины. Оставшиеся коэффициенты вечислим из сотношений 1.15.

Для вычисления искомой аппроксимации ФБД $\{X_n\}_{n=0}^{N-1}$ применим обратное дискретное преобразование Фурье к набору $\left\{\hat{X}_n\right\}_{n=0}^{N-1}$.

Кривая ФБД методом Фурье-фильтрации

Вход: $H \in (0,1), N = 2^M, M \in \mathbb{N} // H$ - параметр ФБД, размерность графика равна d = 2 - H, N - параметр, определяющий количество точек дискретизации ФБД.

Выход: массив значений $\{X_n\}_{n=0}^{N-1}$ // дискретная апроксимация Φ БД в

последовательные моменты времени n.

1:
$$\hat{X}_0 \leftarrow g$$

2: **for**
$$j = 1,..., N/2-1$$
 do

2: for
$$j=1,...,N/2$$
-1 do
3: $\hat{X}_j \leftarrow \frac{ge^{2\pi iu}}{j^{H+0.5}}$

4: end for

5: $\hat{X}_{N/2} \leftarrow \frac{g\cos(2\pi iu)}{(N/2)^{H+0.5}}$ // Здесь \cos — вещественная часть комплексной экспо-

6:
$${f for} \; j = N/2 + 1, ..., \; N - 1 \; {f do}$$

7:
$$\hat{X}_j \leftarrow \overline{\hat{X}_{N-j}}$$

8: end for

9: $X \leftarrow convert(\hat{X})$ // Вектор $X = \{X_0,...,X_{N-1}\}$ получается обратным дискретным преобразованием Фурье из вектора $\hat{X} = \{\hat{X}_0, ..., \hat{X}_{N-1}\}.$

Для построения апроксимации двумерного фрактального броуновского движения методом Фурье-фильтрации используются те же идеи, что и в одномерном случае. Вместо \hat{X}_n используется $\hat{X}_{k,j}, \ k,j = \overline{0,N-1},$ условие Теоремы 1 примет вид:

$$|\hat{X}_{k,j}|^2 \propto \frac{1}{(k^2 + j^2)^{H+1}}, n, k = 1, ..., N/2$$
 (2.13)

мы возьмем

$$\hat{X}_{k,j} = \frac{ge^{2\pi iu}}{(k^2 + j^2)^{H/2 + 0.5}}, n, k = 1, ..., N/2$$
(2.14)

Запишем обратное дискретное преобразование Фурье: для $m,n=\overline{0,N-1}$

$$\hat{X}_{m,n} = \sum_{k=0}^{N-1} \sum_{j=0}^{N-1} \hat{X}_{k,j} e^{-2\pi i \frac{kn+jm}{N}} = \hat{X}_{0,0} + \sum_{k=1}^{N-1} \hat{X}_{k,0} e^{-2\pi i \frac{kn}{N}} + \sum_{j+1}^{N-1} \hat{X}_{0,j} e^{-2\pi i \frac{jm}{N}} + \sum_{k=1}^{N-1} \sum_{j=1}^{N/2} \hat{X}_{k,j} e^{-2\pi i \frac{kn+jm}{N}} + \sum_{k=\frac{N}{2}+1}^{N-1} \sum_{j=\frac{N}{2}+1}^{N-1} (\dots) + \sum_{k=1}^{N/2} \sum_{j=\frac{N}{2}+1}^{N-1} (\dots) + \sum_{k=\frac{N}{2}+1}^{N-1} \sum_{j=1}^{N/2} (\dots)$$

$$(2.15)$$

Из формулы (1.19) следует, что для вещественности всех величин $X_{m,n}$ достаточно выполнения следующих условий сопряженной симметрии:

$$\hat{X}_{N-k,N-j} = \overline{\hat{X}_{k,j}} \qquad k, j = \overline{1, N/2} \qquad \hat{X}_{N/2,N/2} \in \mathbb{R} \qquad (2.16)$$

$$\hat{X}_{k,N-j} = \overline{\hat{X}_{N-k,j}} \qquad k, j = \overline{1, N/2 - 1} \qquad \hat{X}_{0,0} \in \mathbb{R} \qquad (2.17)$$

$$\hat{X}_{0,N-j} = \overline{\hat{X}_{0,j}} \qquad j = \overline{1, N/2} \qquad \hat{X}_{0,N/2} \in \mathbb{R} \qquad (2.18)$$

$$\hat{X}_{N-k,0} = \overline{\hat{X}_{k,0}} \qquad k = \overline{1, N/2} \qquad \hat{X}_{N/2,0} \in \mathbb{R} \qquad (2.19)$$

$$\hat{X}_{k,N-j} = \overline{\hat{X}_{N-k,j}} \qquad k, j = \overline{1, N/2 - 1} \qquad \hat{X}_{0,0} \in \mathbb{R}$$
 (2.17)

$$\hat{X}_{0,N-j} = \overline{\hat{X}_{0,j}} \qquad j = \overline{1, N/2} \qquad \hat{X}_{0,N/2} \in \mathbb{R} \qquad (2.18)$$

$$\hat{X}_{N-k,0} = \overline{\hat{X}_{k,0}}$$
 $k = \overline{1, N/2}$ $\hat{X}_{N/2,0} \in \mathbb{R}$ (2.19)

Условия (1.22)-(1.23) обеспечивают вещественность первых двух сумм, а условия (1.20)-(1.21) - оставшихся четырех сумм.

Вывод

Алгоритм Фурье-фильтрации содержит большое количество сложных вычислений, которые отрицательно влияют на скорость работы программы. Однако он позволяет наиболее реалистично изобразить броуновское движение, а также легко обобщается для случая n-мерных движений. Поэтому для реализации поставленной задачи был выбран именно этот алгоритм.

Формализация модели 2.3

Модель броуновского движения частиц будет задаваться такими характеристиками, как:

- скорость распространения число типа int;
- количество частиц число типа int.

Также на сцене будет изображено пустое помещение и абстрактная фигура человека в его центре. Пользователь должен уметь задавать материал покрытия стен:

- дерево
- бумага (обои)

и пола:

- дерево (паркет)
- керамика (плитка).

2.4 Требования к программному обеспечению

Программа должна предоставлять доступ к функционалу:

- возможность выбора материала покрытия пола и стен из предложенных вариантов (дерево, бумага(обои), керамика(плитка));
- изменение скорости движения;
- изменение количества частиц инфекции;
- включение и выключение работы модели распространения частиц;
- вращение, перемещение и масштабирование модели.

Требования, которые предъявляются к программе:

- время отклика программы должно быть менее 1 секунды для корректной работы в интерактивном режиме;
- программа должна корректно реагировать на любое действие пользователя.

Вывод

В данном разделе были рассмотрены основные алгоритмы для реализации поставленной задачи, т.е. моделирования броуновског движения частиц. В качестве основного алгоритма был выбран метод Фурье-фильтрации. Также была формализована модель и определены требования, которые выдвигаются к программному продукту.

3 Технологическая часть

3.1 Средства реализации

При написании программного продукта был выбран язык *Java*. Это обусловлено следующими факторами:

- объектно-ориентированный язык, что позволяет использовать структуру классов;
- имеются необходимые библиотеки для реализации поставленной задачи;
- существует много учебной литературы.

В качестве среды разработки была выбрана *IntelliJ IDEA*. *IntelliJ IDEA* – это интеллектуальная IDE, учитывающая контекст. Она предназначена для разработки разнообразных приложений на Java и других языках JVM, например Kotlin, Scala и Groovy. Также она поддерживает Git.

3.2 Выбор программного обеспечения

В языке Java есть несколько основных инструментов для создания пользовательских изображений. Самыми популярными из них являются JavaFX и Swing.

3.2.1 Swing

Swing — библиотека для создания графического интерфейса для программ на языке Java. Swing был разработан компанией SunMicrosystems. Он содержит ряд графических компонентов, таких как кнопки, поля ввода, таблицы и т. д.

Преимущества:

• Кроссплатформенность;

- Компоненты Swing следуют парадигме Model-View-Controller (MVC) и, таким образом, могут обеспечить гораздо более гибкий пользовательский интерфейс;
- Swing обеспечивает встроенную двойную буферизацию.

Недостатки:

- достаточно узкий спектр возможностей при работе с ці.
- считается устаревшей библиотекой.

3.2.2 JavaFX

JavaFX — платформа на основе Java для создания приложений с насыщенным графическим интерфейсом. Может использоваться как для создания настольных приложений, запускаемых непосредственно из-под операционных систем, так и для интернет-приложений, работающих в браузерах, и для приложений на мобильных устройствах.

JavaFX предназначен для предоставления приложениям таких сложных функций графического интерфейса, как плавная анимация, просмотр вебстраниц, воспроизведение аудио и видео, а также использование CSS стилей.

Преимущества:

- кроссплатформенность;
- больше встроенных возможностей.

Недостатки:

• в значительной степени зависит от огромной инфраструктуры, которая окружает Java.

Вывод

Уже более 10 лет разработчики приложений считают Swing высокоэффективным инструментарием для создания графических пользовательских интерфейсов (GUI) и добавления интерактивности в Java-приложения. Однако некоторые из самых популярных на сегодняшний день функций графического интерфейса не могут быть легко реализованы с помощью Swing в отличии от JavaFX.

Также можно писать программы на JavaFX, используя гораздо меньше кода, потому что JavaFX выполняет за нас всю работу. Не нужно регистрировать event listeners, и это делает тело функций более кратким. Кроме того, с помощью механизма привязки JavaFX легко интегрировать компоненты графического интерфейса с базовой моделью. Основываясь на вышесказанном в качестве библиотеки для работы с GUI была выбрана JavaFX.

3.3 Описание используемых типов и структур данных

Для реализации частиц используются следующие типы и структуры данных:

• VirusParticle – класс, хранящий всю информацию о частице.

Point – класс для работы с координатами частицы;

Environment Type — перечисление сред, в которых может находится частица в данный момент (для отслеживания времени жизни вирусной частицы).

Листинг 3.1 – Структуры данных для хранени информации о частицах вируса

```
class VirusParticle {
    Point[] arrayName;
    EnvironmentType environmentType;
    int intensity;
}

enum EnvironmentType {
    WOOD, PAPER, PLASTIC, AIR
}
```

```
11 class Point {
12    int x;
13    int y;
14    int z;
15 }
```

Для реализации объектов сцены используются следующие типы и структуры данных:

- Вох отображение стен и пола в помещении;
- Person отображение абстрактной фигуры человека;
- *Texture* обеспечивает загрузку из файла текстуры, ее интерпретацию на простую поверхность;
- Scene характеризует набор объектов и их свойств

Вывод

В данном разделе были рассмотрены технологии, которые будут использованы при реализации ПО. В качестве языка была выбрана Java. Для реализации пользовательского интерефейса выбрана библиотека JavaFX. Среда разработки - $IntelliJ\ IDEA$. Также были описаны используемые типы и структуры данных.

Заключение

Проделанная работа помогла закрепить полученные навыки в области компьютерной графики и проектирования программного обеспечения.

В процессе выполнения данной работы были выполнены следующие задачи:

- анализ алгоритмов удаления невидимых линий и поверхностей;
- анализ методов закрашивания;
- анализ алгоритмов моделирования броуновского движения;
- выбор подходящих для решения поставленной задачи алгоритмов;
- выявление основных требований для программного обеспечения;
- формализация модели и описание выбранных типов и структур данных;
- погружение в возможности языка Java;
- ullet знакомство с библиотекой JavaFX и ее изучение.

Литература

- [1] Авдеева С.М., Куров А.В. Алгоритмы трехмерной машинной графики: учебное пособие. М.: Издательство МГТУ им. Н.Э. Баумана, 1996. 60 с., ил.
- [2] Давыдов А.В., Ерофеева Е.А. Графический пользовательский интерфейс на Java / А. В. Давыдов, Е. А. Ерофеева. – Евразийский научный журнал. 2016. № 6. 265-267 с.
- [3] Дёмин А.Ю., Основы компьютерной графики: учебное пособие Томск: Изд-во Томского политехнического университета, 2011. 191 с.
- [4] Кроновер, Р. М. Фракталы и хаос в динамических системах. Основы теории / Р. М. Кроновер. М.: Постмаркет, 2000. 352 с.
- [5] Сухов К. JavaFX Reach internet application от Sun прощай, унылый Swing? / К. Сухов. Системный администратор. 2009. № 4 (77). 67-73 с.
- [6] Barnsley, M. F. Superfractals / M. F. Barnsley. Cambridge : Cambridge University Press, 2006. 453 p.
- [7] Jackson, E. A. Perspectives of Nonlinear Dynamics / E. A. Jackson. New York: Cam-bridge University Press, 2008. 496 p.
- [8] Karatzas, I. Brownian Motion and Stochastic Calculus (secon edition) / I. Karatzas, S. E. Shreve. New York; Berlin: Springer-Verlag, 1991. 493 p.
- [9] Mandelbrot, B. B. Fractional brownian motions, fractional noises and applications / B. B. Mandelbrot, J. W. V. Ness // SIAM Review. 1968.
 October. Vol. 10, no. 4. 422-437 p.