Problem A. 排水系统

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

对于一个城市来说,排水系统是极其重要的一个部分。

有一天,小 C 拿到了某座城市排水系统的设计图。排水系统由 n 个排水结点(它们从 $1 \sim n$ 编号)和若干个单向排水管道构成。每一个排水结点有若干个管道用于汇集其他排水结点的污水(简称为该结点的汇集管道),也有若干个管道向其他的排水结点排出污水(简称为该结点的排出管道)。

排水系统的结点中有 m 个污水接收口,它们的编号分别为 $1,2,\ldots,m$,污水只能从这些接收口流入排水系统,并且这些结点没有汇集管道。排水系统中还有若干个最终排水口,它们将污水运送到污水处理厂,没有排出管道的结点便可视为一个最终排水口。现在各个污水接收口分别都接收了 1 吨污水,污水进入每个结点后,会均等地从当前结点的每一个排出管道流向其他排水结点,而最终排水口将把污水排出系统。

现在小 C 想知道,在该城市的排水系统中,每个最终排水口会排出多少污水。该城市的排水系统设计科学,管道不会形成回路,即不会发生污水形成环流的情况。

输入格式

从文件 water.in 中读入数据。

第一个两个用单个空格分隔的整数 n , m 。分别表示排水结点数与接收口数量。接下来 n 行,第 i 行用于描述结点 i 的所有排出管道。其中每行第一个整数 d_i 表示其排出管道的数量,接下来 d_i 个用单个空格分隔的整数 $a_1, a_2, \ldots, a_{d_i}$ 依次表示管道的目标排水结点。

保证不会出现两条起始结点与目标结点均相同的管道。

输出格式

输出到文件 water.out 中。

输出若干行,按照编号从小到大的顺序,给出每个最终排水口排出的污水体积。其中体积使用分数形式进行输出,即每行输出两个用单个空格分隔的整数 p , q ,表示排出的污水体积为 $\frac{p}{q}$ 。要求 p 与 q 互 素,q=1 时也需要输出 q 。

样例1

Input	Output
5 1 3 2 3 5 2 4 5 2 5 4 0	1 3 2 3

- 1号结点是接收口,4、5号结点没有排出管道,因此是最终排水口。
- 1吨污水流入1号结点后,均等地流向 2、3、5号结点,三个结点各流入 $\frac{1}{3}$ 吨污水。
- 2 号结点流入的 $\frac{1}{3}$ 吨污水将均等地流向 4、5 号结点,两结点各流入 $\frac{1}{6}$ 吨污水。
- 3号结点流入的 $\frac{1}{3}$ 吨污水将均等地流向 4、5号结点,两结点各流入 $\frac{1}{6}$ 吨污水。
- 最终,4号结点排出 $\frac{1}{6}+\frac{1}{6}=\frac{1}{3}$ 吨污水,5号结点排出 $\frac{1}{3}+\frac{1}{6}+\frac{1}{6}=\frac{2}{3}$ 吨污水

样例 2

见附加文件中的[water2.in](file:water2.in)与[water2.ans](file:water2.ans)。

样例3

见附加文件中的 [water3.in](file:water3.in) 与 [water3.ans](file:water3.ans)。

测试点编号	$n \le$	$m \leq$
$1\sim 3$	10	1
$4\sim 6$	1000	1
$7\sim 8$	10^5	1
$9\sim 10$	10^5	10

对于所有测试点,保证 $1 \leq n \leq 10^5$, $1 \leq m \leq 10$, $0 \leq d_i \leq 5$ 。

数据保证,污水在从一个接收口流向一个最终排水口的过程中,不会经过超过 10 个中间排水结点(即接收口和最终排水口不算在内)。

Problem B. 字符串匹配

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

小C学习完了字符串匹配的相关内容,现在他正在做一道习题。

对于一个字符串 S, 题目要求他找到 S 的所有具有下列形式的拆分方案数:

S=ABC, S=ABABC, $S=ABAB\cdots ABC$,其中 A ,B ,C 均是非空字符串,且 A 中出现奇数次的字符数量不超过 C 中出现奇数次的字符数量。

更具体地,我们可以定义 AB 表示两个字符串 A,B 相连接,例如 $A=\mathrm{aab}$, $B=\mathrm{ab}$,则 $AB=\mathrm{aabab}$ 。

并递归地定义 $A^1=A$, $A^n=A^{n-1}A$ $(n\geq 2$ 且为正整数)。例如 $A={\rm abb}$,则 $A^3={\rm abbabbabb}$ 。

则小 C 的习题是求 $S=(AB)^iC$ 的方案数,其中 $F(A)\leq F(C)$,F(S) 表示字符串 S 中出现奇数 次的字符的数量。两种方案不同当且仅当拆分出的 A、B、C 中有至少一个字符串不同。

小C并不会做这道题,只好向你求助,请你帮帮他。

输入格式

从文件 string.in 中读入数据。

本题有多组数据,输入文件第一行一个正整数 T 表示数据组数。

每组数据仅一行一个字符串 S,意义见题目描述。S 仅由英文小写字母构成。

输出格式

输出到文件 string.out 中。

对于每组数据输出一行一个整数表示答案。

样例1

Input	Output
3 nnrnnr	8 9
zzzaab mmlmmlo	16

对于第一组数据,所有的方案为:

1.
$$A = \mathbf{n}$$
 , $B = \mathbf{nr}$, $C = \mathbf{nnr}_{\circ}$

2.
$$A = \mathbf{n}$$
 , $B = \mathbf{nrn}$, $C = \mathbf{nr}_{\circ}$

3.
$$A=\mathtt{n}$$
 , $B=\mathtt{nrnn}$, $C=\mathtt{r}_{\circ}$

4.
$$A=\mathtt{nn}$$
 , $B=\mathtt{r}$, $C=\mathtt{nnr}_{\circ}$

5.
$$A={
m nn}$$
 , $B={
m rn}$, $C={
m nr}_\circ$

6.
$$A = \mathbf{nn}$$
 , $B = \mathbf{rnn}$, $C = \mathbf{r}_{\circ}$

7.
$$A = \mathtt{nnr}$$
 , $B = \mathtt{n}$, $C = \mathtt{nr}_{\circ}$

8.
$$A = \mathtt{nnr}$$
 , $B = \mathtt{nn}$, $C = \mathtt{r}_{\circ}$

样例2

Input	Output	
5 kkkkkkkkkkkkkkkkkkk lllllllllllrrlllrr	156 138 138 147 194	

样例3

见附加文件中的[string3.in](file:string3.in)与[string3.ans](file:string3.ans)。

样例4

见附加文件中的[string4.in](file:string4.in)与[string4.ans](file:string4.ans)。

测试点编号	$ S \leq$	特殊限制
$1\sim 4$	10	无
$5\sim 8$	100	无

测试点编号	$ S \leq$	特殊限制	
$9\sim12$	1000	无	
$13\sim14$	2^{15}	S中只包含一种字符	
$15\sim17$	2^{16}	S 中只包含两种字符	
$18\sim21$	2^{17}	无	
$22\sim25$	2^{20}	无	

对于所有测试点,保证 $1 \leq T \leq 5$, $1 \leq |S| \leq 2^{20}$ 。

Problem C. 移球游戏

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

小 C 正在玩一个移球游戏,他面前有 n+1 根柱子,柱子从 $1\sim n+1$ 编号,其中 1 号柱子、2 号柱子、 \dots 、n 号柱子上各有 m 个球,它们自底向上放置在柱子上,n+1 号柱子上初始时没有球。这 $n\times m$ 个球共有 n 种颜色,每种颜色的球各 m 个。

初始时一根柱子上的球可能是五颜六色的,而小 C 的任务是将所有同种颜色的球移到同一根柱子上,这是唯一的目标,而每种颜色的球最后放置在哪根柱子则没有限制。

小 C 可以通过若干次操作完成这个目标,一次操作能将一个球从一根柱子移到另一根柱子上。更具体 地,将 x 号柱子上的球移动到 y 号柱子上的要求为:

- 1.x 号柱子上至少有一个球;
- 2. y 号柱子上至多有 m-1 个球;
- 3. 只能将 x 号柱子最上方的球移到 y 号柱子的最上方。

小 C 的目标并不难完成,因此他决定给自己加加难度:在完成目标的基础上,使用的操作次数不能超过820000。换句话说,小 C 需要使用至多820000 次操作完成目标。

小 C 被难住了,但他相信难不倒你,请你给出一个操作方案完成小 C 的目标。合法的方案可能有多种,你只需要给出任意一种,题目保证一定存在一个合法方案。

输入格式

从文件 ball.in 中读入数据。

第一行两个用空格分隔的整数 n ,m。分别表示球的颜色数、每种颜色球的个数。

接下来 n 行每行 m 个用单个空格分隔的整数,第 i 行的整数按自底向上的顺序依次给出了 i 号柱子上的球的颜色。

输出格式

输出到文件 ball.out 中。

本题采用自定义校验器 (Special Judge) 评测。

你的输出的第一行应该仅包含单个整数 k , 表示你的方案的操作次数。你应保证 $0 \le k \le 820000$ 。

接下来 k 行每行你应输出两个用单个空格分隔的正整数 x,y,表示这次操作将 x 号柱子最上方的球移动到 y 号柱子最上方。你应保证 $1 \le x,y \le n+1$ 且 $x \ne y$ 。

样例1

Output
6
1 3
2 3
2 3
3 1
3 2
3 2

柱子中的内容为:按自底向上的顺序依次给出柱子上每个球的颜色。

操作	1 号柱子	2 号柱子	3号柱子
初始	112	2 1 2	
1 3	11	2 1 2	2
2 3	11	2 1	2 2
2 3	11	2	2 2 1
3 1	111	2	2 2
3 2	111	2 2	2
3 2	111	2 2 2	

样例 2

见附加文件中的 [ball2.in](file:ball2.in) 与 [ball2.ans](file:ball2.ans)。

样例3

见附加文件中的 [ball3.in](file:ball3.in) 与 [ball3.ans](file:ball3.ans)。

测试点编号	$n \le$	$m \leq$
$1\sim 2$	2	20
$3\sim 5$	10	20
$6\sim 8$	50	85
$9\sim14$	50	300
$15\sim 20$	50	400

对于所有测试点,保证 $2 \le n \le 50$, $2 \le m \le 400$ 。

校验器

为了方便选手测试,在下发文件中我们下发了 checker.cpp 文件,选手可以编译该程序,并使用它校验自己的输出文件。但请注意它与最终评测时所使用的校验器并不完全一致。你也不需要关心其代码的具体内容。

编译命令为:g++ checker.cpp -o checker -std=c++11。

checker 的使用方式为: checker <inputfile> <outputfile> ,参数依次表示输入文件与你的输出文件。

若你输出的数字大小范围不合法,则校验器会给出相应提示。若你的输出数字大小范围正确,但方案错误,则校验器会给出简要的错误信息:

- 1. $A \times$, 表示进行到第 x 个操作时不合法。
- 2. $\mathbf{B} \times$,表示操作执行完毕后第 x 个柱子上的球不合法。

若你的方案正确,校验器会给出 OK。

Problem D. 微信步数

Time limit 1000 ms **Mem limit** 524288 kB

颞目描述

小C喜欢跑步,并且非常喜欢在微信步数排行榜上刷榜,为此他制定了一个刷微信步数的计划。

他来到了一处空旷的场地,处于该场地中的人可以用 k 维整数坐标 (a_1,a_2,\ldots,a_k) 来表示其位置。场地有大小限制,第 i 维的大小为 w_i ,因此处于场地中的人其坐标应满足 $1 \leq a_i \leq w_i$ $(1 \leq i \leq k)$ 。

小 C 打算在接下来的 $P=w_1\times w_2\times \ldots \times w_k$ 天中,每天从场地中一个新的位置出发,开始他的刷步数计划(话句话说,他将会从场地中每个位置都出发一次进行计划)。

他的计划非常简单,每天按照事先规定好的路线行进,每天的路线由 n 步移动构成,每一步可以用 c_i 与 d_i 表示:若他当前位于 $(a_1,a_2,\ldots,a_{c_i},\ldots,a_k)$,则这一步他将会走到 $(a_1,a_2,\ldots,a_{c_i}+d_i,\ldots,a_k)$,其中 $1\leq c_i\leq k$, $d_i\in\{-1,1\}$ 。小 C 将会不断重复这个路线,直到他走出了场地的范围才结束一天的计划。(即走完第 n 步后,若小 C 还在场内,他将回到第 1 步从头再走一遍)。

小 C 对自己的速度非常有自信,所以他并不在意具体耗费的时间,他只想知道 P 天之后,他一共刷出了多少步微信步数。请你帮他算一算。

输入格式

从文件 walk.in 中读入数据。

第一行两个用单个空格分隔的整数 n, k。分别表示路线步数与场地维数。

接下来一行 k 个用单个空格分隔的整数 w_i ,表示场地大小。

接下来 n 行每行两个用单个空格分隔的整数 c_i , d_i , 依次表示每一步的方向,具体意义见题目描述。

输出格式

输出到文件 walk.out 中。

仅一行一个整数表示答案。答案可能很大,你只需要输出其对 10^9+7 取模后的值。

若小C的计划会使得他在某一天在场地中永远走不出来,则输出一行一个整数-1。

样例1

Input	Output
3 2 3 3 1 1	21
2 -1 1 1	

从 (1,1) 出发将走 2 步,从 (1,2) 出发将走 4 步,从 (1,3) 出发将走 4 步。从 (2,1) 出发将走 2 步,从 (2,2) 出发将走 3 步,从 (2,3) 出发将走 3 步。从 (3,1) 出发将走 1 步,从 (3,2) 出发将走 1 步,从 (3,3) 出发将走 1 步。共计 21 步。

样例 2

Input	Output
5 4 6 8 6 5 3 1 2 1 1 1 2 1 2 -1	10265

样例3

见附加文件中的 [walk3.in] (file:walk3.in) 与 [walk3.ans] (file:walk3.ans)

样例4

见附加文件中的 [walk4.in](file:walk4.in) 与 [walk4.ans](file:walk4.ans)

测试点编号	$n \leq$	$k \leq$	$w_i \leq$
$1\sim 3$	5	5	3
$4\sim 6$	100	3	10
$7\sim 8$	10^5	1	10^5
$9\sim12$	10^5	2	10^6
$13\sim16$	$5 imes10^5$	10	10^{6}

测试点编号	$n \leq$	$k \leq$	$w_i \leq$
$17\sim 20$	$5 imes 10^5$	3	10^{9}

对于所有测试点,保证 $1 \leq n \leq 5 imes 10^5$, $1 \leq k \leq 10$, $1 \leq w_i \leq 10^9$, $d_i \in \{-1,1\}$ 。