COMPITO A

Algebra e Geometria, Fisica, (Fioresi)

	20 Dicembre, 2018	
NOME:		

NUMERO DI MATRICOLA:

Non sono permesse calcolatrici, telefonini, libri o appunti.

Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

In tutto il compito siano a e b le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora a=4, b=6.

1	
2	
3	
Totale	

COGNOME:

Esercizio 1 (50 punti)

- a) Sia il sottospazio vettoriale W in \mathbf{R}^4 definito dalle equazioni x + ay + az at = 0, x + by + bz bt = 0, x + (a + b)y + (a + b)z (a + b)t = 0.
- I) Si determini una base ortogonale di W rispetto al prodotto euclideo in \mathbf{R}^4 . II) Si determini W^{\perp} .
- b) Si determini la forma di Jordan e una base di Jordan della matrice:

$$A = \begin{pmatrix} 9 & 4/b \\ -9b & -3 \end{pmatrix}$$

Esercizio 2 (50 punti)

a) Sia A una matrice hermitiana $n \times n$ con due soli autovalori λ e μ . Si dimostri che

$$\mathbf{C}^n = V_{\lambda} \oplus V_{\mu}$$

e che $V_{\mu} = V_{\lambda}^{\perp}$ (ove W^{\perp} e' inteso rispetto al prodotto hermitiano standard in \mathbb{C}^n e V_{λ} denota l'autospazio di autovalore λ).

Se si intende utilizzare uno o piu' risultati li si enuncino chiaramente (max 20 righe).

- b) Sia V spazio vettoriale sul campo k di dimensione n (finita) e \mathcal{B} una sua base. Si dia la definizione di base duale e si dimostri che V e' isomorfo a V^* (max 15 righe).
- c) Si risponda vero o falso motivando la risposta con una dimostrazione oppure con un controesempio.
- I) L'insieme delle matrici simmetriche invertibili in $M_n(\mathbf{R})$ e' un gruppo.
- II) Sia V spazio vettoriale reale finito dimensionale. \langle , \rangle un prodotto scalare non degenere. Allora $W \cap W^{\perp} = \{0\}$.

CREDITO EXTRA. Si dimostri che se A e' una matrice simmetrica definita positiva e invertibile allora esiste N invertibile tale che $A = N^t N$.

Esercizio 3 (50 punti)

Si consideri la matrice complessa:

$$A = \begin{pmatrix} a & k & 0 \\ 0 & 2 & 1+i \\ 0 & 1-i & 3 \end{pmatrix}$$

- a) Si dica per quali valori di k e' diagonalizzabile.
- b) Posto k=0 si determini, se possibile, una matrice P unitaria tale che $P^{\ast}AP$ sia diagonale.
- c) Posto k=0 si scriva il prodotto hermitiano associato ad A e si dica se e' non degenere, definito positivo.