### LECTURE 2:

Algorithm: Definition & Purposes

FACULTY OF COMPUTING & INFORMATICS
MULTIMEDIA UNIVERSITY
CYBERJAYA, MALAYSIA

### Learning Objectives

Towards the end of this lesson, you should be able to:

- define algorithm
- represent algorithm
- name examples of algorithm in real-world

### Definition of Algorithm

An algorithm is an ordered set of unambiguous, executable steps, defining a terminating process

- must have well-defined order
- each step must have unique & complete interpretation
- each step must be "doable"
   e.g.: "make a list of all positive integers" is not doable
- execution of algorithm must lead to an end
   -e.g.: "divide 1.0 by 3.0" is not a terminating process . . .

### Algorithm Representation

- Algorithm representation requires some form of language e.g. natural language: English, Russian, Japanese, ...
   e.g. pictorial form
- Requires well-defined primitives. Primitive is a set of building blocks from which algorithm representations can be constructed
- A collection of primitives constitutes a programming language.

# **Building Blocks**

**Primitives** 

- Building blocks for algorithm construction
  - -called: "primitives"
  - -if well-defined: primitives can remove ambiguity problems
- Set of primitives plus a set of "rules for combining" constitutes a programming language
- Primitives consist of 2 portions:
  - syntax: symbolic representation
  - semantics: meaning

# Algorithm for folding a bird

Example



#### **Primitives**

#### Syntax & Semantics



#### Pseudocode

#### Definition & Primitives

- intuitive/informal notational system
- good starting point for representing algorithms in any high-level programming language

#### **Primitives**

- Assignment
  - $name \leftarrow expression$
- Conditional selection
  - if condition then action

### Pseudocode

#### **Primitives**

- Assignment of values to descriptive names ('variables'):
  - name ← expression
  - e.g.: *Temperature*  $\leftarrow$  18
- Choice between two possible activities:
  - if condition then (activity1) else (activity2)
  - e.g.: if TrafficLight is green then (drive) else (stop)
- One conditional activity:
  - if condition then (stop)
  - e.g.: if TrafficLight is red then (stop)
- Repetition of one or more activities:
  - while (condition) do activity
  - e.g.: while (TrafficLight is green) do hit the pedal

#### Pseudocode

#### Reusable, encapsulated code

```
\begin{array}{l} \text{procedure } \textbf{Greetings} \\ \text{count} \leftarrow 3 \\ \text{while (Count}{>}0) \text{ do} \\ \text{(print the message "Hello" and} \\ \text{count}{\leftarrow} \text{count} + 1) \end{array}
```

To call the procedure, if (ApproachingPerson is Friend) then (**Greetings**)

#### Parameterized procedures

- procedure name(parameter list)
- e.g., procedure Sort(list)

### Use of Indentation

Which one is easier to read?

#### **Algorithm 1** MyAlgo

```
1: if (item is taxable) then
2: if (price>limit) then
3: pay x
4: else
5: pay y
6: end if
7: else
8: pay z
9: end if
```

#### Algorithm 2 MyAlgo

```
1: if (item is taxable) then (if (price > limit) then (pay x)
```

2: else (pay y)) else (pay z)

### Polya's Problem Solving Steps

#### The art of problem solving

- Phase 1: understand the problem
- Phase 2: think of how an algorithmic procedure might solve the problem.
- Phase 3: formulate the algorithm and represent it as a program.
- Phase 4:
   evaluate the program for accuracy and for its potential to use it as a tool for solving other problems.

### Reconsidering the Problem Solving Phases

- The phases are not steps to be followed one after another
   a deeper understanding of the problem often is gained by trial and error
- A good (often used) approach:
   step-wise refinement break the problem into smaller pieces,
   each of which is easier to solve
- However, the art of algorithm discovery can only be mastered over a period of time so: just try ... and don't be afraid to fail initially ...!

### Describing Algorithmic Processes

Several *tools* exist that you will often use in the design of algorithms:

- iterative structures
   repeating a set of instructions in a looping manner
   while (condition) do (activity)
- recursive structures
   repeating a set of instructions as a subtask of itself, e.g.:

```
4!

4 \times (3!) =

4 \times (3 \times (2!)) =

4 \times (3 \times (2 \times (1!))) =

4 \times (3 \times (2 \times (1))) =

4 \times (3 \times (2 \times (1))) =

4 \times (3 \times (2)) =

4 \times (6)
```

### Iterative Structures (sequential search)

 Consider the problem of searching an ordered list for a particular target value:



Page 15

### Sequential Search Pseudo-code

#### **Algorithm 3** Sequential Search

```
procedure SEARCH(List, Target)

if List is empty then failure!

else

TestEntry ← first entry in List

while TargetValue > TestEntry AND entries remaining do

TestEntry ← next entry in List

if TargetValue=TestEntry then Success!

else failure!

end if

end while

end if

end procedure
```

### Loop Control

Repetition by loop structure flexible:

can be used for fixed number of iterations:

```
Number \leftarrow 0
while (Number < 10) do
   Number \leftarrow Number + 1
   doSomethingUseful
end while
```

can be used for unknown number of iterations:

```
roomTemperature = measureTemperature(room)
while (roomTemperature < 18) do
   let heatingSystem run
   roomTemperature = measureTemperature(room)
end while
```

# Components of Loop Control

| Initialize: | Establish an initial state that will be modified to- |  |  |
|-------------|------------------------------------------------------|--|--|
|             | wards the termination condition                      |  |  |
| Test:       | Compare the current state to the termination con-    |  |  |
|             | dition and terminate the repetition if equal         |  |  |
| Modify:     | Change the state in such a way that it moves to-     |  |  |
|             | ward the termination condition                       |  |  |

### Example with wrong Loop

```
What is wrong here...?

Number ← 8

while (Number ≠ 75) do

Number ← Number + 3

doSomethingUseful

end while
```

Loop never terminates because Number never hits "75". The possible numbers are: 8, 11, 14, ..., 68, 71, 74, 77, ...

Can you see now algorithm has an objective to meet?

### While loop structure vs. Repeat loop structure





#### **Iterative Structures**

#### Pretest Loop

while (condition) do (loop body)

#### Posttest Loop

repeat (loop body) until (condition)









high-level pseudocode

```
Move the pivot entry to a temporary location leaving a hole in List;

while (there is a name above the hole and that name is greater than the pivot) do

(move the name above the hole down into the hole leaving a hole above the name)

Move the pivot entry into the hole in List.
```

Detailed-level pseudocode

```
procedure Sort (List) N ← 2; while (the value of N does not exceed the length of List) do (Select the Nth entry in List as the pivot entry; Move the pivot entry to a temporary location leaving a hole in List; while (there is a name above the hole and that name is greater than the pivot) do (move the name above the hole down into the hole leaving a hole above the name) Move the pivot entry into the hole in List; N \leftarrow N + 1
```

#### Worst case situation

|                 | Comparisons made for each pivot               |                                               |                                               |                                     |                                   |                                               |  |
|-----------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------------|--|
| Initial<br>list |                                               | 1st pivot                                     | 2nd pivot                                     | 3rd pivot                           | 4th pivot                         | Sorted<br>list                                |  |
|                 | Elaine<br>David<br>Carol<br>Barbara<br>Alfred | Elaine<br>David<br>Carol<br>Barbara<br>Alfred | David<br>Elaine<br>Carol<br>Barbara<br>Alfred | 6 Carol David Elaine Barbara Alfred | Barbara Carol David Elaine Alfred | Alfred<br>Barbara<br>Carol<br>David<br>Elaine |  |

#### Worst case scenario

The total number of comparisons when sorting a list of n entries is  $1+2+3+4+\ldots+(n-1)$ , which is equivalent to  $\frac{1}{2}(n^2-n)$ .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

### Comparing 2 algorithms

#### Worst Case Analysis

#### Insertion Sort



#### Binary Search



How do you evaluate the performance?

- The shape of the graph is obtained by comparing the time required for an algorithm to perform its task to the size of the input data.
- Classify algorithms according to the shapes of these graphs, based on worst-case analysis.

**Growth Rate** 

| Growth Rate | Name         |
|-------------|--------------|
| 1           | Constant     |
| log(n)      | Logarithmic  |
| n           | Linear       |
| n log(n)    | Linearithmic |
| n^2         | Quadratic    |
| n^3         | Cubic        |
| 2^n         | Exponential  |

#### Growth Rate

| Growth<br>Rate                        | Name        | Code Example                                                                                           | description                       |
|---------------------------------------|-------------|--------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1                                     | Constant    | a= b + 1;                                                                                              | statement (one<br>line of code)   |
| log(n)                                | Logarithmic | while(n>1){                                                                                            | Divide in half<br>(binary search) |
| n                                     | Linear      | for(c=0; c <n; c++){<br="">a+=1;<br/>}</n;>                                                            | Loop                              |
| n*log(n) Linearithmic Mergesort, Quic |             | Mergesort, Quicksort,                                                                                  | Effective sorting<br>algorithms   |
| n^2                                   | Quadratic   | <pre>for(c=0; c<n; a+="1;" c++){="" for(i="0;" i++){="" i<n;="" pre="" }="" }<=""></n;></pre>          | Double loop                       |
| n^3                                   | Cubic       | <pre>for(c=0; ccn; c++){   for(i=0; icn; i++){     for(x=0; xcn; x++){         a*=1;     }   } }</pre> | Triple loop                       |
| 2^n                                   | Exponential | Trying to braeak a password generating all possible combinations                                       | Exhaustive search                 |

Complexity Classes

$$1 < log_n < \sqrt(n) < n < nlog_n < n^2 < n^3 ... < 2^n < 3^n < 4^n ...$$



Complexity Classes

**Big-O Complexity Chart** 



#### Complexity Classes

| Sorting Algorithm | Time Complexity |                    |                    | Space Complexity |
|-------------------|-----------------|--------------------|--------------------|------------------|
|                   | Best Case       | Average Case       | Worst Case         | Worst Case       |
| Bubble Sort       | Ω(N)            | Θ(N <sup>2</sup> ) | 0(N <sup>2</sup> ) | 0(1)             |
| Selection Sort    | $\Omega(N^2)$   | Θ(N <sup>2</sup> ) | 0(N <sup>2</sup> ) | 0(1)             |
| Insertion Sort    | Ω(N)            | Θ(N <sup>2</sup> ) | 0(N <sup>2</sup> ) | 0(1)             |
| Merge Sort        | Ω(N log N)      | ⊖(N log N)         | O(N log N)         | 0(N)             |
| Heap Sort         | Ω(N log N)      | ⊖(N log N)         | O(N log N)         | 0(1)             |
| Quick Sort        | Ω(N log N)      | ⊖(N log N)         | 0(N <sup>2</sup> ) | O(log N)         |
| Radix Sort        | Ω(N k)          | ⊖(N k)             | 0 (N k)            | 0 (N + k)        |
| Count Sort        | Ω(N + k)        | ⊖(N+k)             | O(N+k)             | 0(k)             |
| Bucket Sort       | Ω(N + k)        | Θ(N + k)           | 0(N <sup>2</sup> ) | 0(N)             |

### Declaration & Acknowledgment

The contents presented in this slide are meant for teaching purpose only. No commercialized component exist. The texts are partially copied from the textbooks and images are downloaded from the internet.