

Componentes de la informática

Carlos Augusto Arellano Muro

Principales componentes del computador

► Dispositivos de entrada/salida.

- ► Dispositivos de entrada/salida.
- ► Memoria.

Principales componentes del computador

- ► Dispositivos de entrada/salida.
- ► Memoria.

▶ Unidad Central de Procesamiento (PCU).

Principales componentes del computador

- ► Dispositivos de entrada/salida.
- ► Memoria.
 - ► RAM

▶ Unidad Central de Procesamiento (PCU).

- ► Dispositivos de entrada/salida.
- ► Memoria.
 - ► RAM
 - ► ROM
- ▶ Unidad Central de Procesamiento (PCU).

- ► Dispositivos de entrada/salida.
- ► Memoria.
 - RAM
 - ► ROM
 - CACHÉ
- ▶ Unidad Central de Procesamiento (PCU).

- Dispositivos de entrada/salida.
- ► Memoria.
 - RAM
 - ► ROM
 - CACHÉ
- ▶ Unidad Central de Procesamiento (PCU).
 - ► Unidad de control

- ► Dispositivos de entrada/salida.
- ► Memoria.
 - RAM
 - ► ROM
 - CACHÉ
- ▶ Unidad Central de Procesamiento (PCU).
 - Unidad de control
 - ALU

- Dispositivos de entrada/salida.
- ► Memoria.
 - RAM
 - ► ROM
 - CACHÉ
- ▶ Unidad Central de Procesamiento (PCU).
 - Unidad de control
 - ALU
 - Registros

Dispositivos de entrada salida

Es el subsistema de comunicación con el exterior. Se divide en

► Dispositivos de almacenamiento

Dispositivos de entrada salida

- Dispositivos de almacenamiento
 - Dispositivos de almacenamiento magnético.

Dispositivos de entrada salida

- Dispositivos de almacenamiento
 - Dispositivos de almacenamiento magnético.
 - Dispositivos de almacenamiento óptico.

Dispositivos de entrada salida

- Dispositivos de almacenamiento
 - Dispositivos de almacenamiento magnético.
 - Dispositivos de almacenamiento óptico.
- Dispositivos que no son de almacenamiento

Dispositivos de entrada salida

- Dispositivos de almacenamiento
 - Dispositivos de almacenamiento magnético.
 - Dispositivos de almacenamiento óptico.
- Dispositivos que no son de almacenamiento
 - Teclado

Dispositivos de entrada salida

- Dispositivos de almacenamiento
 - Dispositivos de almacenamiento magnético.
 - Dispositivos de almacenamiento óptico.
- ▶ Dispositivos que no son de almacenamiento
 - Teclado
 - Monitor

Dispositivos de entrada salida

- Dispositivos de almacenamiento
 - Dispositivos de almacenamiento magnético.
 - Dispositivos de almacenamiento óptico.
- ▶ Dispositivos que no son de almacenamiento
 - ▶ Teclado
 - Monitor
 - Impresora

Memoria

Es una colección de localidades de almacenamiento, cada una con un identificador único conocido como dirección.

Memoria

Es una colección de localidades de almacenamiento, cada una con un identificador único conocido como dirección.

Memoria

Es una colección de localidades de almacenamiento, cada una con un identificador único conocido como dirección.

Espacio en memoria

1	1	0	1	0	1	1	0
0	1	0	0	1	0	1	1
1	0	1	1	0	1	0	0
1	1	1	0	0	1	1	0

•

0	1	0	1	0	1	1	1
1	0	1	0	1	1	0	1

Memoria

Es una colección de localidades de almacenamiento, cada una con un identificador único conocido como dirección.

Memoria

Es una colección de localidades de almacenamiento, cada una con un identificador único conocido como dirección.

Ejemplos

► Una computadora tiene 32MB de memoria ¿Cuántos bits se necesitan para asignar una dirección a cualquier byte individual en la memoria?

Ejemplos

► Una computadora tiene 32MB de memoria ¿Cuántos bits se necesitan para asignar una dirección a cualquier byte individual en la memoria?

Solución:

$$32=2^5 \ {
m y} \ 1M=2^{20} \mbox{, entonces} \ 32MB=(2^5)(2^{20})=2^{25}.$$

Se necesitan 25 bits.

Ejemplos

► Una computadora tiene 32MB de memoria ¿Cuántos bits se necesitan para asignar una dirección a cualquier byte individual en la memoria?

Solución:

$$32=2^5$$
 y $1M=2^{20}$, entonces $32MB=(2^5)(2^{20})=2^{25}$. Se necesitan 25 bits.

► Una computadora tiene 128MB de memoria. Cada palabra en esta computadora tiene ocho bytes ¿Cuántos bits se necesitan para asignar una dirección a cualquier palabra individual en la memoria?

Ejemplos

► Una computadora tiene 32MB de memoria ¿Cuántos bits se necesitan para asignar una dirección a cualquier byte individual en la memoria?

Solución:

$$32 = 2^5$$
 y $1M = 2^{20}$, entonces $32MB = (2^5)(2^{20}) = 2^{25}$. Se necesitan 25 bits.

► Una computadora tiene 128MB de memoria. Cada palabra en esta computadora tiene ocho bytes ¿Cuántos bits se necesitan para asignar una dirección a cualquier palabra individual en la memoria?

Solución:

$$128=2^7$$
 y $1M=2^{20}$, entonces $128MB=(2^7)(2^{20})=2^{27}.$ Pero cada palabra es de 8 bytes (2^3), lo que significa que existen 2^{24} palabras en memoria.

Se necesitan 24 bits.

Memoria

▶ RAM. Random Acces Memory o Memoria principal.

Memoria

- ▶ RAM. Random Acces Memory o Memoria principal.
 - ► Memoria de lectura y escritura

Memoria

- ▶ RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - ► Memoria volátil.

Memoria

- ▶ RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - Memoria volátil.Tecnologías

Memoria

- ► RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - ► Memoria volátil.

Tecnologías

 SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - ► Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - ► Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.
 - No volátil

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - ► Memoria de lectura y escritura
 - ► Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.
 - ▶ No volátil
 - es escrita por el fabricante.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - ► Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.
 - ▶ No volátil
 - es escrita por el fabricante.
 Tecnologías

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - Memoria volátil.

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.
 - ▶ No volátil
 - es escrita por el fabricante.
 Tecnologías
 - ► PROM: ROM programable.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - Memoria volátil.

Tecnologías

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.
 - ▶ No volátil
 - es escrita por el fabricante.

- ▶ PROM: ROM programable.
- EPROM: ROM programable y borrable.

Memoria

- RAM. Random Acces Memory o Memoria principal.
 - Memoria de lectura y escritura
 - Memoria volátil.

Tecnologías

- SRAM: Memoria estática. Usa flip-flops. Es rápida pero costosa.
- DRAM: Memoria dinámica. Usa capacitores. Se necesita refrescar.
- ROM. Read Only Memory.
 - Memoria de solo lectura.
 - No volátil
 - es escrita por el fabricante.

- PROM: ROM programable.
- EPROM: ROM programable y borrable.
- ► EEPROM: ROM programable y borrable eléctricamente.

Memoria

CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.
 Procedimiento:

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.
 Procedimiento:
 - ► El CPU revisa la caché

Memoria

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- ► El CPU revisa la caché
- Si la palabra está ahí, la copia; si no, el CPU accede a la memoria principal y copia un bloque de memoria comenzando con la palabra deseada. El bloque remplaza el contenido en chaché.

Memoria

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- ► El CPU revisa la caché
- Si la palabra está ahí, la copia; si no, el CPU accede a la memoria principal y copia un bloque de memoria comenzando con la palabra deseada. El bloque remplaza el contenido en chaché.
- El CPU accede a la caché y copia la palabra.

Memoria

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- ► El CPU revisa la caché
- Si la palabra está ahí, la copia; si no, el CPU accede a la memoria principal y copia un bloque de memoria comenzando con la palabra deseada. El bloque remplaza el contenido en chaché.
- ► El CPU accede a la caché y copia la palabra.
- ► Jerarquía:

Memoria

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- ► El CPU revisa la caché
- Si la palabra está ahí, la copia; si no, el CPU accede a la memoria principal y copia un bloque de memoria comenzando con la palabra deseada. El bloque remplaza el contenido en chaché.
- ► El CPU accede a la caché y copia la palabra.
- Jerarquía:
 - Velocidad rápida: Memoria principal.

Memoria

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- ► El CPU revisa la caché
- Si la palabra está ahí, la copia; si no, el CPU accede a la memoria principal y copia un bloque de memoria comenzando con la palabra deseada. El bloque remplaza el contenido en chaché.
- ► El CPU accede a la caché y copia la palabra.
- Jerarquía:
 - Velocidad rápida: Memoria principal.
 - Velocidad más rápida: Caché.

Memoria

- CACHÉ. Más rápida que la memoria principal, pero más lenta que los registros del CPU.
 - Contiene en todo momento una copia de una porción de la memoria principal.

- ► El CPU revisa la caché
- Si la palabra está ahí, la copia; si no, el CPU accede a la memoria principal y copia un bloque de memoria comenzando con la palabra deseada. El bloque remplaza el contenido en chaché.
- El CPU accede a la caché y copia la palabra.
- Jerarquía:
 - Velocidad rápida: Memoria principal.
 - Velocidad más rápida: Caché.
 - Velocidad muy rápida: Registros del CPU.

CPU

Organiza y lleva a cabo las instrucciones del usuario o del software.

► Unidad de Control.

CPU

Organiza y lleva a cabo las instrucciones del usuario o del software.

Unidad de Control.

Funciones básicas:

CPU

Organiza y lleva a cabo las instrucciones del usuario o del software.

Unidad de Control.

Funciones básicas:

Leer e interpretar las instrucciones de los programas.

CPU

Organiza y lleva a cabo las instrucciones del usuario o del software.

Unidad de Control.

Funciones básicas:

- Leer e interpretar las instrucciones de los programas.
- Dirigir la operación de los componentes internos del procesador.

CPU

Organiza y lleva a cabo las instrucciones del usuario o del software.

Unidad de Control.

Funciones básicas:

- Leer e interpretar las instrucciones de los programas.
- Dirigir la operación de los componentes internos del procesador.
- Controlar el flujo de entrada y salida de programas y datos en RAM.

CPU

Unidad Aritmético Lógica (ALU).

CPU

Unidad Aritmético Lógica (ALU). Funciones:

CPU

Unidad Aritmético Lógica (ALU). Funciones:

Operaciones aritméticas.

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación
 - División

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación
 - División
- Operaciones lógicas.

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación
 - División
- Operaciones lógicas.
 - Comparativas

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación
 - División
- Operaciones lógicas.
 - Comparativas
 - Conjunción (AND)

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación
 - División
- Operaciones lógicas.
 - Comparativas
 - Conjunción (AND)
 - Disyunción (OR)

CPU

Unidad Aritmético Lógica (ALU).

- Operaciones aritméticas.
 - Suma
 - Resta
 - Multiplicación
 - División
- Operaciones lógicas.
 - Comparativas
 - ► Conjunción (AND)
 - Disyunción (OR)
 - ► Negación (NOT)

CPU

► Registros. Son localidades de almacenamiento independientes que guardan los datos temporalmente

CPU

- ► Registros. Son localidades de almacenamiento independientes que guardan los datos temporalmente
 - Registros de datos.

CPU

- ► Registros. Son localidades de almacenamiento independientes que guardan los datos temporalmente
 - Registros de datos.
 - Entrada

CPU

- ► Registros. Son localidades de almacenamiento independientes que guardan los datos temporalmente
 - ► Registros de datos.
 - Entrada
 - Salida

CPU

- ► Registros. Son localidades de almacenamiento independientes que guardan los datos temporalmente
 - ► Registros de datos.
 - Entrada
 - Salida
 - Registros de instrucción (IR). Lugar donde se guarda la instrucción que se está usando.

CPU

- ► Registros. Son localidades de almacenamiento independientes que guardan los datos temporalmente
 - ► Registros de datos.
 - Entrada
 - Salida
 - Registros de instrucción (IR). Lugar donde se guarda la instrucción que se está usando.
 - Contador de programa (PC). Apunta a la dirección de programa que se va a ejecutar.

Operaciones aritméticas

► Suma binaria:

- Suma binaria:
 - Operaciones elementales de la suma:

- ► Suma binaria:
 - ▶ Operaciones elementales de la suma:

$$0 + 0 =$$

- Suma binaria:
 - ▶ Operaciones elementales de la suma:

$$0 + 0 = 0$$

- ► Suma binaria:
 - Operaciones elementales de la suma:

$$0 + 0 = 0$$

$$0 + 1 =$$

- Suma binaria:
 - Operaciones elementales de la suma:

$$0 + 0 = 0$$

$$0+1=1$$

- ► Suma binaria:
 - Operaciones elementales de la suma:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 =$$

- ► Suma binaria:
 - Operaciones elementales de la suma:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

- ► Suma binaria:
 - Operaciones elementales de la suma:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 0$

- ► Suma binaria:
 - Operaciones elementales de la suma:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$

- ► Suma binaria:
 - Operaciones elementales de la suma:

$$\begin{array}{l} 0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0 \text{, acarreo: } 1 \end{array}$$

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

```
0+0=0

0+1=1

1+0=1

1+1=0, acarreo: 1
```

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$0+0=0$$

 $0+1=1$
 $1+0=1$
 $1+1=0$, acarreo: 1

$$\begin{array}{cc} 11010 & + \\ \underline{01011} \end{array}$$

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0, \text{ acarreo: } 1$$

$$\begin{array}{rrr}
11010 & + \\
\underline{01011} & \\
1
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$\begin{aligned} 0+0 &= 0 \\ 0+1 &= 1 \\ 1+0 &= 1 \\ 1+1 &= 0 \text{, acarreo: } 1 \end{aligned}$$

$$\begin{array}{c} 1 \\ 11010 \\ \underline{01011} \\ 01 \end{array} +$$

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0, \text{ acarreo: } 1$$

$$\begin{array}{c} 1 \\ 11010 \\ \underline{01011} \\ 101 \end{array} +$$

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0, \text{ acarreo: } 1$$

```
\begin{array}{ccc} 1 & 1 \\ 11010 & + \\ \underline{01011} \\ 0101 \end{array}
```

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0, \text{ acarreo: } 1$$

```
\begin{array}{c} 11 & 1 \\ 11010 & + \\ \underline{01011} \\ 00101 \end{array}
```

Operaciones aritméticas

- Suma binaria:
 - Operaciones elementales de la suma:

$$0+0=0 \\ 0+1=1 \\ 1+0=1 \\ 1+1=0, \text{ acarreo: } 1$$

```
\begin{array}{ccc} 11 & 1 \\ & 11010 & + \\ & \underline{01011} \\ & 100101 \end{array}
```

- Suma binaria:
 - ightharpoonup Más ejemplos: 10110111 + 10101

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{rr} 10110111 & + \\ \underline{10101} \end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
1\\
10110111\\
\underline{10101}\\
0
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \\
10110111 + \\
\underline{10101} \\
00
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
111 \\
10110111 + \\
\underline{10101} \\
00
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
111 \\
10110111 + \\
\underline{10101} \\
100
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
111 \\
10110111 + \\
\underline{10101} \\
1100
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
1 \ 111 \\
10110111 + \\
\underline{10101} \\
01100
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
001100
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 \\
\underline{10101} \\
1001100
\end{array}$$

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 \\
\underline{10101} \\
11001100
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 \\
\underline{10101} \\
11001100
\end{array}$$

► Sumar 10110011101 + 1001011

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

► Sumar 10110011101 + 1001011

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

ightharpoonup Sumar 10110011101 + 1001011

$$\begin{array}{r}
1\\
10110011101\\
\underline{1001011}\\
0
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

► Sumar 10110011101 + 1001011

$$\begin{array}{r}
11\\
10110011101 + \\
\underline{1001011}\\00
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

$$\begin{array}{r}
111 \\
10110011101 + \\
\underline{1001011} \\
000
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

$$\begin{array}{r}
1111 \\
10110011101 + \\
\underline{1001011} \\
1000
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

$$\begin{array}{r}
11111\\
10110011101 +\\
\underline{1001011}\\
01000
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

$$\begin{array}{r}
11111\\
10110011101 +\\
\underline{1001011}\\
101000
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

$$\begin{array}{r}
11111\\
10110011101\\
\underline{1001011}\\
1101000
\end{array}$$

Operaciones aritméticas

- Suma binaria:
 - ► Más ejemplos: 10110111 + 10101

$$\begin{array}{r}
11 \ 111 \\
10110111 + \\
\underline{10101} \\
11001100
\end{array}$$

$$\begin{array}{r}
11111\\
10110011101\\
\underline{1001011}\\
10111101000
\end{array}$$

- Suma binaria:
 - ▶ Uno más: 1010111 + 1101 + 101100 + 11011

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
1010111 \\
1101 \\
101100 \\
\underline{11011}
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
1\\
1010111\\
1101\\
101100\\
\underline{11011}\\
1
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
11\\
1010111\\
1101\\
101100\\
\underline{11011}\\
11
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
111 \\
1010111 + \\
1101 \\
101100 \\
\underline{11011} \\
11
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
1\\
111\\
1010111\\
1101\\
101100\\
\underline{11011}\\
11
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
1\\
111\\
1010111\\
1101\\
101100\\
\underline{11011}\\
011
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
1\\
1111\\
1010111\\
1101\\
101100\\
\underline{11011}\\
011
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
11 \\
1111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
011
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
11 \\
1111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
1011
\end{array}
```

- ► Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
11 \\
11111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
1011
\end{array}
```

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
11 \\
11111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
01011
\end{array}
```

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
111 \\
11111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
01011
\end{array}
```

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
111 \\
111111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
101011
\end{array}
```

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
111 \\
111111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
0101011
\end{array}
```

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
111 \\
111111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
10101011
\end{array}
```

Operaciones aritméticas

- Suma binaria:
 - ightharpoonup Uno más: 1010111 + 1101 + 101100 + 11011

```
\begin{array}{r}
111 \\
111111 \\
1010111 \\
1101 \\
101100 \\
\underline{11011} \\
10101011
\end{array}
```

Ejercicios...

Operaciones aritméticas

► Resta binaria:

- ► Resta binaria:
 - ► Operaciones elementales de la resta:

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 =$$

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

$$1-0=$$

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

- ► Resta binaria:
 - ▶ Operaciones elementales de la resta:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 =$$

- ► Resta binaria:
 - ▶ Operaciones elementales de la resta:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

- ► Resta binaria:
 - Operaciones elementales de la resta:
 - 0 0 = 0
 - 1 0 = 1
 - 1 1 = 0
 - 0 1 =

- ► Resta binaria:
 - Operaciones elementales de la resta:
 - 0 0 = 0
 - 1 0 = 1
 - 1 1 = 0
 - 0 1 = ?

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

$$1 - 0 = 1$$

$$1 - 1 = 0$$

$$0 - 1 = ?$$

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0-0=0$$

 $1-0=1$
 $1-1=0$
 $0-1=?$

$$\begin{array}{c}
 2 \\
 00 \\
 \hline
 01
 \end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0-0=0$$

 $1-0=1$
 $1-1=0$
 $0-1=?$

$$\begin{array}{c}
 2 \\
 00 \\
 \hline
 1 \\
 \hline
 01
 \end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\begin{array}{c}
 2 \\
 00 \\
 \hline
 01
 \end{array}$$

$$\begin{array}{rr}
11010 & - \\
\underline{01011}
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\frac{2}{00}$$
 $\frac{1}{01}$

$$\begin{array}{r}
 2 \\
 11000 \\
 \underline{01011} \\
 1
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\frac{2}{00}$$
 $\frac{1}{01}$

$$\begin{array}{ccc}
 & 2 \\
 & 10000 \\
 & \underline{01011} \\
 & 1
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\frac{2}{00}$$
 $\frac{1}{01}$

$$\begin{array}{r}
 22 \\
 10100 \\
 \underline{01011} \\
 1
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\frac{2}{00}$$
 $\frac{1}{01}$

$$\begin{array}{r}
 22 \\
 10100 \\
 01011 \\
 11
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\frac{2}{00}$$
 $\frac{1}{01}$

$$\begin{array}{r}
 22 \\
 10100 \\
 01011 \\
 111
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - Operaciones elementales de la resta:

$$0 - 0 = 0$$

 $1 - 0 = 1$
 $1 - 1 = 0$
 $0 - 1 = ?$

$$\frac{2}{00}$$
 $\frac{1}{01}$

$$\begin{array}{r} 22 \\ 10100 \\ -01011 \\ 01111 \end{array}$$

- ► Resta binaria:
 - ▶ Más ejemplos: 10110111 10101

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101
 - $\begin{array}{rr}
 10110111 & \\
 \underline{10101}
 \end{array}$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rr}
10110111 & - \\
\underline{10101} \\
0
\end{array}$$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rr}
10110111 & - \\
\underline{10101} \\
10
\end{array}$$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rr}
10110111 & - \\
\underline{10101} \\
010
\end{array}$$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rr}
10110111 & - \\
\underline{10101} \\
0010
\end{array}$$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rr}
10110111 & - \\
\underline{10101} \\
00010
\end{array}$$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101
 - $\begin{array}{rr}
 10110111 & \\
 \underline{10101} \\
 100010
 \end{array}$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

 $\begin{array}{rr}
10110111 & -\\
\underline{10101} \\
0100010
\end{array}$

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101
 - $\begin{array}{rr}
 10110111 & -\\
 \underline{10101} \\
 10100010
 \end{array}$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

 $\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$

Operaciones aritméticas

- ► Resta binaria:
 - ▶ Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{c} 10100011101 & - \\ \underline{1101011} \\ 0 \end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{r}
 2 \\
 10100011001 \\
 \underline{1101011} \\
 0
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{r}
 2 \\
 10100011001 \\
 \underline{1101011} \\
 10
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{r}
 2 \\
 10100011001 \\
 \underline{1101011} \\
 10010
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

```
10000011001 -
1101011
10010
```

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{r} 2 & 2 \\ 10011011001 & - \\ \underline{1101011} \\ 10010 \end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{rrr} 2 & 2 \\ 10011011001 & - \\ \underline{1101011} \\ 110010 \end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ▶ Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{c|c} 2 & 2 \\ 10011011001 & - \\ \hline 1101011 \\ \hline 0110010 \end{array}$$

Operaciones aritméticas

- ► Resta binaria:
 - ► Más ejemplos: 10110111 − 10101

$$\begin{array}{rrr}
10110111 & - \\
\underline{10101} \\
10100010
\end{array}$$

$$\begin{array}{r} 2 & 2 \\ 10011011001 & - \\ \underline{1101011} \\ 10010110010 \end{array}$$

Operaciones aritméticas

Números con signo:

- ► Números con signo:
 - ► Representación signo-magnitud: Características

- ► Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

Operaciones aritméticas

- Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

Existen dos representaciones para el cero.

- Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

- Existen dos representaciones para el cero.
- Procedimiento

- Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - ightharpoonup Se convierte el número a binario ignorando el signo. Si son menos de n-1 bits, se rellena con ceros a la izquierda.

- Números con signo:
 - Representación signo-magnitud: Características
 - El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Si son menos de n-1 bits, se rellena con ceros a la izquierda.
 - Si el número es negativo el bit más significativo será 1; de lo contrario, 0.

- Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Si son menos de n-1 bits, se rellena con ceros a la izquierda.
 - Si el número es negativo el bit más significativo será 1; de lo contrario. 0.
 - ► Ejemplo: convertir -22 para un registro de 8 bits.

- ► Números con signo:
 - Representación signo-magnitud: Características
 - El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Si son menos de n-1 bits, se rellena con ceros a la izquierda.
 - Si el número es negativo el bit más significativo será 1; de lo contrario. 0.
 - ► Ejemplo: convertir -22 para un registro de 8 bits. Se convierte el 22 a binario: 22=10110

- Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Si son menos de n-1 bits, se rellena con ceros a la izquierda.
 - Si el número es negativo el bit más significativo será 1; de lo contrario. 0.
 - ► Ejemplo: convertir -22 para un registro de 8 bits. Se convierte el 22 a binario: 22=10110 Se rellena con ceros hasta completar 7 bits: 0010110

- Números con signo:
 - Representación signo-magnitud: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Si son menos de n-1 bits, se rellena con ceros a la izquierda.
 - Si el número es negativo el bit más significativo será 1; de lo contrario. 0.
 - ► Ejemplo: convertir -22 para un registro de 8 bits. Se convierte el 22 a binario: 22=10110 Se rellena con ceros hasta completar 7 bits: 0010110 El octavo bit representa el signo. -22=10010110

Operaciones aritméticas

Números con signo:

- Números con signo:
 - ► Representación complemento a 1: Características

- Números con signo:
 - ► Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

Operaciones aritméticas

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1} - 1 \ a \ 2^{n-1} - 1$$

Existen dos representaciones para el cero.

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.

- Números con signo:
 - ► Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - Si el número es negativo, se invierten todos los bits (0 \rightarrow 1 y 1 \rightarrow 0).

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - Si el número es negativo, se invierten todos los bits ($0 \rightarrow 1$ y $1 \rightarrow 0$).
 - ► Ejemplo: convertir -22 para un registro de 8 bits.

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - Si el número es negativo, se invierten todos los bits (0 \rightarrow 1 y 1 \rightarrow 0).
 - ► Ejemplo: convertir -22 para un registro de 8 bits. Se convierte el 22 a binario: 22=10110

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - Si el número es negativo, se invierten todos los bits $(0 \to 1 \text{ y} 1 \to 0)$.
 - Ejemplo: convertir -22 para un registro de 8 bits.
 Se convierte el 22 a binario: 22=10110
 Se rellena con ceros hasta completar 8 bits: 00010110

- Números con signo:
 - Representación complemento a 1: Características
 - ► El intervalo va de

$$-2^{n-1}-1 \ a \ 2^{n-1}-1$$

- Existen dos representaciones para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - Si el número es negativo, se invierten todos los bits ($0 \rightarrow 1$ y $1 \rightarrow 0$).
 - ► Ejemplo: convertir -22 para un registro de 8 bits. Se convierte el 22 a binario: 22=10110 Se rellena con ceros hasta completar 8 bits: 00010110 Se invierten los bits. -22=11101001

Operaciones aritméticas

Números con signo:

- Números con signo:
 - ► Representación complemento a 2: Características

- Números con signo:
 - ► Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

Operaciones aritméticas

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

Existen solo una representación para el cero.

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - ▶ Si el número es negativo, se invierten todos los bits $(0 \to 1 \text{ y} 1 \to 0)$ y se suma 1.

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - ▶ Si el número es negativo, se invierten todos los bits ($0 \to 1$ y $1 \to 0$) y se suma 1.
 - ► Ejemplo: convertir -20 para un registro de 8 bits.

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - Si el número es negativo, se invierten todos los bits $(0 \to 1 \text{ y} 1 \to 0)$ y se suma 1.
 - ► Ejemplo: convertir -20 para un registro de 8 bits. Se convierte el 20 a binario: 22=10100

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - ▶ Si el número es negativo, se invierten todos los bits $(0 \to 1 \text{ y} 1 \to 0)$ y se suma 1.
 - ► Ejemplo: convertir -20 para un registro de 8 bits. Se convierte el 20 a binario: 22=10100 Se rellena con ceros hasta completar 8 bits: 00010100

- Números con signo:
 - Representación complemento a 2: Características
 - ► El intervalo va de

$$-2^{n-1} a 2^{n-1} - 1$$

- Existen solo una representación para el cero.
- Procedimiento
 - Se convierte el número a binario ignorando el signo. Se rellena con ceros a la izquierda.
 - ▶ Si el número es negativo, se invierten todos los bits $(0 \to 1 \text{ y} 1 \to 0)$ y se suma 1.
 - ► Ejemplo: convertir -20 para un registro de 8 bits.

 Se convierte el 20 a binario: 22=10100

 Se rellena con ceros hasta completar 8 bits: 00010100

 Permanecen los ceros de la derecha y el primer 1, el resto se invierte. -20=11101100

Operaciones aritméticas

► Multiplicación binaria:

- ► Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:

$$0 \times 0 =$$

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$
$$1 \times 0 =$$

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

$$1 \times 0 = 0$$

- ► Multiplicación binaria:
 - Operaciones elementales de la multiplicación:
 - $0 \times 0 = 0$
 - $1 \times 0 = 0$
 - $0\times 1 =$

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:
 - $0 \times 0 = 0$
 - $1 \times 0 = 0$
 - $0 \times 1 = 0$

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:
 - $0 \times 0 = 0$
 - $1 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1\times 1 =$

- ► Multiplicación binaria:
 - ▶ Operaciones elementales de la multiplicación:
 - $0 \times 0 = 0$
 - $1 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1 \times 1 = 1$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

```
0 \times 0 = 0

1 \times 0 = 0

0 \times 1 = 0

1 \times 1 = 1
```

► Ejemplo: 11010 × 101

Operaciones aritméticas

- ► Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

► Ejemplo: 11010 × 101

Operaciones aritméticas

- ► Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

► Ejemplo: 11010 × 101

$$\begin{array}{rr}
11010 & \times \\
 \hline
 101 \\
 \hline
 11010
\end{array}$$

Operaciones aritméticas

- ► Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

$$\begin{array}{cc} 11010 & \times \\ \underline{101} \\ 11010 \\ 00000 \\ \end{array}$$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

$$\begin{array}{cc} 11010 & \times \\ \underline{101} \\ 11010 \\ 00000 \\ 11010 \\ \end{array}$$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

$$\begin{array}{ccc} 11010 & \times \\ \underline{101} \\ 11010 & + \\ 00000 \\ \underline{11010} \end{array}$$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

$$\begin{array}{ccc} 11010 & \times & \\ \underline{} \\ 11010 & + \\ 00000 \\ \underline{11010} \\ 0010 & \end{array}$$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

Operaciones aritméticas

- Multiplicación binaria:
 - Operaciones elementales de la multiplicación:

$$0 \times 0 = 0$$

 $1 \times 0 = 0$
 $0 \times 1 = 0$
 $1 \times 1 = 1$

$$\begin{array}{ccc} 11010 & \times \\ \underline{101} \\ 11010 & + \\ 00000 \\ \underline{11010} \\ 10000010 \end{array}$$

- Multiplicación binaria:
 - $\red{\textbf{Más ejemplos:}} \ 101101111 \times 10101$

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

$$10110111 \times 10101$$

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

$$\begin{array}{cc} 10110111 & \times \\ \underline{10101} \\ 10110111 & \end{array}$$

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

$$\begin{array}{c} 10110111 \\ \underline{10101} \\ 10110111 \\ 00000000 \end{array}$$

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

```
\begin{array}{cc} 10110111 & \times \\ \underline{10101} \\ 10110111 \\ 00000000 \\ 10110111 \end{array}
```

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & \\ 00000000 & \\ 10110111 & \\ 00000000 & \\ 10110111 & \\ \end{array}
```

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

```
\begin{array}{ccc} 10110111 & \times & \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \end{array}
```

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ & 11 \end{array}
```

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

$$\begin{array}{rrr} 10110111 & \times \\ \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 011 \end{array}$$

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

- Multiplicación binaria:
 - Más ejemplos: 10110111×10101

$$\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 00011 \end{array}$$

- Multiplicación binaria:
 - Más ejemplos: 10110111×10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 000011 \end{array}
```

- Multiplicación binaria:
 - Más ejemplos: 10110111×10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 0000011 \end{array}
```

- Multiplicación binaria:
 - Más ejemplos: 10110111×10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 00000011 \end{array}
```

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

$$\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 100000011 \end{array}$$

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 1100000011 \end{array}
```

- Multiplicación binaria:
 - Más ejemplos: 10110111×10101

```
\begin{array}{c} 10110111 & \times \\ \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 11100000011 \end{array}
```

- Multiplicación binaria:
 - ► Más ejemplos: 10110111 × 10101

```
\begin{array}{rrr} 10110111 & \times \\ & \underline{10101} \\ 10110111 & + \\ 00000000 \\ 10110111 \\ 00000000 \\ \underline{10110111} \\ 111100000011 \end{array}
```

Compuertas lógicas básicas

► AND

Compuertas lógicas básicas

- ► AND
- ► OR

Compuertas lógicas básicas

- ► AND
- ► OR
- ► NOT

Compuertas lógicas básicas

AND:

Entrada		Salida
1	1	1
1	0	0
0	1	0
0	0	0

- ► OR
- ► NOT

Compuertas lógicas básicas

► AND:

	Ent	rada	Salida	
	1	1	1	
	1	0	0	
	0	1	0	
	0	0	0	
_)—	_

- ► OR
- ► NOT

Compuertas lógicas básicas

- ► AND
- OR:

Entrada		Salida
1	1	1
1	0	1
0	1	1
0	0	0

► NOT

Compuertas lógicas básicas

- ► AND
- OR:

	En	trada	Salida	
	1	1	1	
	1	0	1	
	0	1	1	
	0	0	0	

► NOT

Compuertas lógicas básicas

- ► AND
- ► OR
- ► NOT:

Entrada	Salida
1	0
0	1

Compuertas lógicas básicas

- ► AND
- ► OR
- ► NOT:

Entrada	Salida
1	0
0	1

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} & \end{array}$

```
\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 1 & \end{array}
```

$$\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 10 & \end{array}$$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 100 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 1000 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 10001 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 100010 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 1000100 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 10001000 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 100010000 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000 & \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 10001000000 & \\ \end{array}$

Operaciones lógicas

 $\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \end{array}$

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 1001101010101 & OR \\ \underline{111011010100} & \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 11 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 11111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 111111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 11111111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 111111111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 1001101010101 & OR \\ \underline{111011010100} \\ 1111111111 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 111111111110 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111111111101 & \\ \end{array}
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111111111101 & \\ \end{array}
```

$$(a\mathbf{AND}\overline{b})\mathbf{OR}(\overline{a}\mathbf{AND}b)$$

 $a = 1100, \ b = 1010$

```
\begin{array}{ccc} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & & \\ \\ 1001101010101 & OR \\ \underline{111011010100} \\ 1111111111101 & & \\ \end{array}
```

```
(a\mathbf{AND}\overline{b})\mathbf{OR}(\overline{a}\mathbf{AND}b)

a = 1100, \ b = 1010

1100 \ AND

0101
```

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 1000100000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111111111101 & \\ \end{array}
```

```
(a\mathbf{AND}\overline{b})\mathbf{OR}(\overline{a}\mathbf{AND}b)
a = 1100, \ b = 1010
1100 \quad AND
\underline{0101}
0100
```

Operaciones lógicas

 $1100 \quad AND$

0101

0100

```
\begin{array}{c} 100110101001 \quad AND \\ \underline{11101101000} \\ 100010000000 \\ \\ 100110101001 \quad OR \\ \underline{111011010100} \\ 1111111111101 \\ \\ (a\mathbf{AND}\overline{b})\mathbf{OR}(\overline{a}\mathbf{AND}b) \\ a = 1100, \ b = 1010 \\ \end{array}
```

 $0011 \quad AND$

1010

Operaciones lógicas

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 1001101010101 & OR \\ \underline{111011010100} \\ 1111111111101 & \\ \end{array}
```

```
(a{\bf AND}\bar{b}){\bf OR}(\bar{a}{\bf AND}b)

a=1100,\ b=1010

1100\ AND\ 0011\ AND

0101\ 0100\ 0010
```

Operaciones lógicas

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111111111101 & \\ \end{array}
```

```
(a\mathbf{AND}\overline{b})\mathbf{OR}(\overline{a}\mathbf{AND}b)

a = 1100, \ b = 1010

1100 \ AND \ 0011 \ AND \ 0100 \ OR

0101 \ 0100 \ 0010
```

Operaciones lógicas

```
\begin{array}{c} 100110101001 & AND \\ \underline{111011010100} \\ 100010000000 & \\ \\ 100110101001 & OR \\ \underline{111011010100} \\ 1111111111101 & \\ \end{array}
```

```
(a\mathbf{AND}\overline{b})\mathbf{OR}(\overline{a}\mathbf{AND}b)

a = 1100, \ b = 1010

1100 \ AND \ 0011 \ AND \ 0100 \ OR

0101 \ 0100 \ 0010 0110
```

Circuito operacional

Actividad: Implementar un circuito operacional de la suma con un bit.

Circuito operacional

Actividad: Implementar un circuito operacional de la suma con un bit.

Para ello ver la compuerta XOR

Circuito operacional

Actividad: Implementar un circuito operacional de la suma con un bit.

Para ello ver la compuerta XOR

Entarda		Salida
1	1	0
1	0	1
0	1	1
0	0	0

Circuito operacional

Actividad: Implementar un circuito operacional de la suma con un bit.

Para ello ver la compuerta XOR

Entarda		Salida
1	1	0
1	0	1
0	1	1
0	0	0

La operación $a\mathbf{XOR}b$ es equivalente a escribir $(a\mathbf{AND}\bar{b})\mathbf{OR}(\bar{a}\mathbf{AND}b)$

Circuito operacional

Actividad: Implementar un circuito operacional de la suma con un bit.

Para ello ver la compuerta XOR

Entarda		Salida
1	1	0
1	0	1
0	1	1
0	0	0

La operación $a\mathbf{XOR}b$ es equivalente a escribir $(a\mathbf{AND}\bar{b})\mathbf{OR}(\bar{a}\mathbf{AND}b)$

Note que es el mismo resultado del primer bit de la suma

Circuito operacional

La compuerta XOR se representa como:

Circuito operacional

El circuito operacional para la suma de un bit es

Circuito operacional

Análogamente el circuito operacional para la multiplicación de un

Circuito operacional

Análogamente el circuito operacional para la multiplicación de un

¿Cómo sería el circuito operacional de $a \times b + c$?

Circuito operacional

Análogamente el circuito operacional para la multiplicación de un

¿Cómo sería el circuito operacional de $a \times b + c$?

¿Cómo sería el circuito operacional de $a+b+\bar{c}$?

Unidad de Control

Programática

Sistemas operativos