CS146: Data Structures and Algorithms Lecture 16

DYNAMIC PROGRAMMING
BRUTE FORCE
BACKTRACKING

INSTRUCTOR: KATERINA POTIKA CS SJSU

Algorithmic Paradigms

- Greed. Build up a solution incrementally, myopically optimizing some local criterion.
- Divide-and-conquer. Break up a problem into two subproblems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
- Brute Force: Naïve, try all possible (slow)
- Backtracking: Consider sub-solutions.

Brute Force Algorithm

- 3
- Based on trying all possible solutions
- Approach
 - Generate and evaluate possible solutions until
 - × Solution is found
 - Best solution is found (if can be determined)
 - All possible solutions found
 - Return best solution
 - Return false if no
- Generally the most expensive approach
- Example brute force sorting: try all permutations (n!) and check if any is sorted.

Backtracking Algorithm

- Based on depth-first recursive search of a tree
 - o easy case: consider for each variable take it or not take it
- Intuition: It is often possible to reject a solution by looking at just a small portion of it. Incrementally grow a tree of partial solutions.

Tree of alternatives → search tree

Steps of backtracking

- More abstractly, a backtracking algorithm requires a test that looks at a subproblem and quickly declares one of three outcomes:
 - 1. Failure: the subproblem has no solution.
 - 2. Success: a solution to the subproblem is found.
 - 3. Uncertainty, i.e. expand sub solution

Backtracking example: Sudoku

- 1. Find row, col of an unassigned cell
- 2. If there is none, return true
- 3. For digits from 1 to 9

_	_		l	ı '				
6			1	9	5			
	9	8					6	
8				6				3
8			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

- 4. a) If there is no conflict for digit at row,col assign digit to row,col and recursively try fill in rest of grid
- 5. b) If recursion successful, return true
- 6. c) Else, remove digit and try another
- If all digits have been tried and nothing worked, return false

Dynamic Programming History

7

• Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

- Etymology.
 - Dynamic programming = planning over time.
 - Secretary of Defense was hostile to mathematical research.
 - o Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

8)

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- o Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- o Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming – 3rd technique (Ch 15)

- Fibonacci numbers
- o-1 Knapsack Problem
- Longest Common Subsequence (LCS)
- All pairs shortest paths

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (optimal substructure)
- Algorithm finds solutions to subproblems and stores them in memory (table) for later use
- More efficient than Brute-Force, which solve the same subproblems over and over again

DP: three-step method

- 11
- 1. Define subproblems
- 2. Write down the recurrence that relates subproblems
- 3. Recognize and solve the base cases

Example: Fibonacci numbers

$$F(n) = F(n-1) + F(n-2)$$

 $F(0) = 0$
 $F(1) = 1$

•Computing the n^{th} Fibonacci number recursively (top-down):

• • •

Example: Fibonacci numbers (cont.)

bottom-up iteration and recording results:

$$F(0) = 0$$

 $F(1) = 1$
 $F(2) = 1+0 = 1$

$$F(n-2) =$$
 $F(n-1) =$
 $F(n) = F(n-1) + F(n-2)$

0

F(n-2) F(n-1)

F(n)

Efficiency:

- time

- space

0-1 Knapsack problem (Ch 16.2): a picture

Items

n items with weight & benefit Pack knapsack:

- Holds up to W weight
- Maximum total benefit

Max weight: W = 20

$$W = 20$$

W	e ₁	g	ht

_i b

Benefit value

2

3

4 5

5

9 10

0-1 Knapsack problem

• Problem, in other words, is to find

$$\max \sum_{i \in T} b_i \text{ subject to } \sum_{i \in T} w_i \leq W$$

- The problem is called a "0-1" (or "discrete") problem, because each item must be entirely accepted or rejected.
- Just another version of this problem is the "Fractional Knapsack Problem", where we can take fractions of items.

The Knapsack Problem: Greedy Vs. Dynamic Programming

- ☐ The optimal solution to the fractional knapsack problem can be found with a greedy algorithm
 - oGreedy strategy: take in order of dollars/pound
- □ The optimal solution to the o-1 problem **cannot** be found with the same greedy strategy but by ad dynamic programming

Counter Example of greedy algorithm for

Consider the 0-1 knapsack problem. What is a good example, with 3 items and W=50, that shows that being greedy does not provide the optimum profit Take the ratio b/w and sort take the two highest (only these fit) is it the best you can do? Or can you choose another pair with higher b's?

- a. w=(10,20,30) and b=(40,100,150)
- b. w=(10,20,30) and b=(60,100,120)

The 0-1 Knapsack Problem And Optimal Substructure

- Consider the most valuable load with at most W pounds
 - If we remove item j from the load of the Knapsack, what do we know about the remaining load?
 - A: remainder must be the most valuable load weighing at most W w_i that was packed, excluding item j

0-1 Knapsack problem: brute-force approach

- Let's first solve this problem with a straightforward algorithm
- \square Since there are n items, there are 2^n possible combinations of items (possible subsets).
 - □ 1 BIT for each element: 1 take it or 0 don't take it.
- We go through all combinations and find the one with the most total value and with total weight less or equal to W
- \square Running time will be $O(2^n)$
- Is that fast?

0-1 Knapsack problem: subproblem

- Can we do better?
- Yes, with an algorithm based on dynamic programming
- We need to carefully identify the subproblems

Let's try this:

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{items\ labeled\ 1,\ 2,\ ...\ k\}$

Defining a Subproblem

If items are labeled 1..n, then a subproblem would be to find an optimal solution for $S_k = \{items\ labeled\ 1, 2, ... k\}$

- This is a valid subproblem definition.
- The question is: can we describe the final solution (S_n) in terms of subproblems (S_k) ?
- Unfortunately, we <u>can't</u> do that. Explanation follows....

Defining a Subproblem

Max weight: W = 20

For S_{Δ} :

Total weight: 14;

total benefit: 20

$W_1 = 2$	w ₂ =4	$w_3 = 5$	$W_4 = 9$
$b_1 = 3$	b ₂ =5	$b_3 = 8$	b ₄ =10

For S_5 :

Total weight: 20

total benefit: 26

Solution for S_4 is not part of the solution for $S_5!!!$

Defining a Subproblem (continued)

- 23
- $lue{}$ As we have seen, the solution for S_4 is not part of the solution for S_5
- So our definition of a subproblem is flawed and we need another one!
- Let's add another parameter: w, which will represent the <u>exact</u> weight for each subset of items
- □ The subproblem then will be to compute B[k,w]

Recursive Formula for subproblems

■ Recursive formula for subproblems:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- It means, that the best subset of S_k that has total weight w is one of the two:
- 1) the best subset of S_{k-1} that has total weight w, or
- 2) the best subset of S_{k-1} that has total weight w- w_k plus the item k

☐ Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- \square The best subset of S_k that has the total weight w, either contains item k or not.
- First case: $w_k > w$. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable
- Second case: $w_k <= w$. Then the item k can be in the solution, and we choose the case with greater value

0-1 Knapsack Algorithm (Exer 16.2-3)

```
for w = o to W
  B[o,w] = o
                     What is the running time of this algorithm?
for i = o to n
                                       O(n*W)
  B[i,o] = o
  for w = o to W
       if w_i \le w // item i can be part of the solution
              if(b_i + B[i-1,w-w_i] > B[i-1,w])
                      B[i,w] = b_i + B[i-1,w-w_i]
               else
                      B[i,w] = B[i-1,w]
       else B[i,w] = B[i-1,w] // w_i > w
```

Constructing the optimal solution

- The previous algorithm does not keep track of which subset of items gives the optimal solution.
- To compute the actual subset
 - o add an auxiliary boolean array **keep[i,w]**
 - o keep[i,w]=1 if we take item i and o if we don't take it

Algorithm becomes...

```
if (b_i + B[i-1,w-w_i] > B[i-1,w])
B[i,w] = b_i + B[i-1,w-w_i]
keep[i,w]=1
else
B[i,w] = B[i-1,w]
keep[i,w]=0
```

Constructing the solution

How to we use keep?

- If keep[n,W]=1 then n-th item is taken and we repeat in keep[n-1, W-w_n] to find the remaining.
- If keep[n,W]=0 the n-th is not taken and we repeat to keep[n-1,W]

```
K=W
for i=n downto 1
if keep[i,K]=1
print i
K=K-w<sub>i</sub>
```

Knapsack Problem by DP (example)

Example: Knapsack of capacity W = 5

item	weight	profit
1	2	\$12
2	1	\$10
3	3	\$20
4	2	\$15

 $w_1 = 2, v_1 = 12$

 $w_2 = 1, V_2 = 10$

 $w_3 = 3$, $v_3 = 20$

 $w_4 = 2, v_4 = 15$

0	U	U	U			
1	0	0	12			
2	0	0 10	12	22	22	22
3	0	10	12	22	30	32

 0
 10
 12
 22
 30
 32

 0
 10
 15
 25
 30
 37

Backtracing finds the actual optimal subset, i.e. solution.

I ot D = [1 4 0] and W/ = |

 Let B = [1, 4, 3] and W = [1, 3, 2] be the array of profits and weights the 3 items respectively. Total Weight of knapsack is 4

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

	0	1	2	3	4
0	0	0	0	0	0
1	0				
2	О				
3	0				

31

- Let B = [1, 4, 3] and W = [1, 3, 2]
- W=4

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

$$B[1,1]=\max\{B[0,1],B[0,0]+1\}=1$$

	O	1	2	3	4
0	0	0	0	0	0
1	0	1	1	1	1
2	0				
3	0				

32

- Let B = [1, 4, 3] and W = [1, 3, 2]
- W=4

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

$$B[2,3]=max\{B[1,3],B[1,3-3]+4\}=4$$

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	1	1	1
2	0	1	1	4	
3	0				

33)

- Let B = [1, 4, 3] and W = [1, 3, 2]
- W=4

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

$$B[2,4]=max\{B[1,4],B[1,4-3]+4\}=5$$

	O	1	2	3	4
0	0	0	0	0	0
1	0	1	1	1	1
2	0	1	1	4	5
3	0				

34

• Let
$$B = [1, 4, 3]$$
 and $W = [1, 3, 2]$

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

$$B[3,2]=max\{B[2,2],B[2,2-2]+3\}=2$$

$$B[3,3]=max\{B[2,3],B[2,3-2]+3\}=max\{4,1+3\}=4$$

$$B[3,4]=max\{B[2,4],B[2,4-3]+3\}=max\{5,1+3\}=5$$

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	1	1	1
2	0	1	1	4	5
3	0	1	3	4	5

(35)

• Let B = [1, 4, 3] and W = [1, 3, 2]

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

Solution tracking how the values changed

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	1	1	1
2	0	1	1	4	5
3	0	1	3	4	5