设备发送数据格式:

参数说明	长度(Byte)	数据(HEX)
帧头	2	01 0C
设备序列号	4	M_L , M_1 , M_2 , M_H
解调数据字节数	2	T_L, T_H
0 通道数据: 通道号	1	00
0 通道数据: 光栅数	1	B_0
0 通道数据:波长数据	n_0	$O(Data_L, Data_H) * (n_0 / 2)$
1 通道数据: 通道号	1	01
1 通道数据: 光栅数	1	B_1
1 通道数据:波长数据	n_1	$O(Data_L, Data_H) * (n_1 / 2)$
2 通道数据: 通道号	1	02
2 通道数据: 光栅数	1	B_2
2 通道数据:波长数据	n_2	$(Data_L, Data_H) * (n_2 / 2)$
3 通道数据: 通道号	1	03
3 通道数据: 光栅数	1	B_{β}
3 通道数据:波长数据	n_3	$O(Data_L, Data_H) * (n_3 / 2)$
CRC16/CCITT 校验和	2	V_L, V_H

设备序列号与机内激光组件的编号关联,以 4 字节的无符号整数表示,低字节在前,高字节在后。每台设备有且仅有一个序列号,以 4-State 格式条码+数字的形式刻写在设备右侧面,形式如下。

解调数据字节数从 T_L , T_H 后(即第0通道的通道号)开始,直到校验和的最后一字节计算。

光栅波长数据格式: 1 字节通道号, 1 字节光栅数, n 字节波长数据, n=光栅数*2 每个波长值包含 2 字节波长数据, 低字节在前, 实际波长值为

$$(Data_L + (Data_H * 256)) / 1000 + 1527$$

校验和为从帧头开始,直到 3 通道波长数据的最后一字节(即校验和的前一字节)计算,使用 CRC16-CCITT 标准。

使用示例:

接收端收到一个数据帧,内容为:

01 0c da 94 8e 01 10 00 00 02 93 2e 21 3a 01 00 02 01 74 8c 03 00 <mark>24 4d</mark>

01 0c 为帧头。

da 94 8e 01 为设备序列号,低字节在前,高字节在后。计算出的十进制序列号为

 $(0x018e94da)_{16} = (26121434)_{10}$

10 00 为从 00 02 到 24 4d 的数据总长度(共 16 字节),低字节在前,高字节在后。

00 02 93 2e 21 3a 为第 0 通道数据。表示 0 通道(00)接有 2 个(02)传感器。 第 1 个传感器的波长(93 2e)为

> $(0x2E93)_{16} / 1000 + 1527$ = 11923 / 1000 + 1527= 1538.923

第2个传感器的波长(21 3a)为

 $(0x3a21)_{16} / 1000 + 1527$ = 14881 / 1000 + 1527 = 1541.881

01 00 为第 1 通道数据,第 1 通道(<mark>01</mark>)上没有连接可读取的传感器(<mark>00</mark>)。

02 01 74 8c 为第 2 通道数据(1 个传感器), 03 00 为第 3 通道数据(无传感器)。波长的计算方法与 0, 1 通道相同,故不再重复列出。

24 4d 为 CRC16/CCITT 校验和,低字节在前,高字节在后。参与计算的数据字节包括:

01 0c da 94 8e 01 10 00 00 02 93 2e 21 3a 01 00 02 01 74 8c 03 00