

CS4223 – Multi-core Architectures

Trevor E. Carlson
tcarlson@comp.nus.edu.sg
Assistant Professor – School of Computing
(Slides originally based on those from Tulika Mitra)

© Copyright National University of Singapore. All Rights Reserved.

- 1

Who Am I?

- Assistant Professor here at NUS
 - Looking to move computer architecture forward with new processors and accelerators
 - Deliver more capabilities, accomplish more in a given area, energy or power budget

My Background

- IBM, USA
 - Global team leader, architecture validation
 - 4 patents: DRAM scrubbing, processor simulation
- IMEC, Belgium
 - Compiler/HW co-design
 - High-level hardware pathfinding
 - 3D-DRAM optimization
- Startups, Belgium & USA
 - University funding for computer architecture startup
 - loT startup

My Background

- Ghent University, Belgium
 - PhD: Simulation and sampling methodologies

- Intel, MA, USA
 - PhD Internship to Speed up industry simulators

- Uppsala University, Sweden
 - Postdoc: Efficient architectures, simulation, modeling

Question – Who Are You?

How many years have you been learning Computer Architecture?

Question – Who Are You?

What do you find most interesting about Computer Architecture?

Why did you sign up for this class?

Question – Who Are You?

• What experience do you have with Computer Architecture software / simulators?

Definition: Parallel Computer

 A parallel computer is a collection of processing elements that communicate and cooperate to solve a large problem fast

-- Almasi and Gottlieb 1989

- Collection of processing elements
 - A processing element can be a functional unit, a thread context on a processor, a processor core, a processor chip, or an entire node (processors + memory + disk)
 - The de-factor processing elements are processors --- so parallel computers are also called multi-processors
 - When the processor cores are on a single chip, the system is referred to as multi-core

Communicate

- Processing elements sending data to each other
- Shared memory: parallel tasks running on processing elements communicate by reading and writing to common memory locations
- Message passing: all data is local and parallel tasks must send explicit messages to each other to pass data
- Communication medium and its structure determines
 communication latency, throughput, scalability, and fault tolerance

- Cooperate
 - Synchronization of the progress of execution of a parallel task relative to other tasks
 - Synchronization allows sequencing of operations to ensure correctness
 - Synchronization granularity affects scalability and load balancing

- Solve a large problem fast
 - Performance is a critical concern in parallel computing
 - Parallel computing attempts to solve challenging problems that cannot be handled by single processing elements

Why Multi-Core?

- Application demands
 - Scientific computing: CFD, Biology, Chemistry, Physics, ...
 - General-purpose computing: Video, Graphics, CAD, Databases, TP...
- Technology Trends
 - Number of transistors on chip growing rapidly
 - Clock rates expected to go up only slowly
- Architecture Trends
 - Instruction-level parallelism valuable but limited
 - Coarser-level parallelism, as in MPs, the most viable approach

Moore's Law

- Intel co-founder Gordon Moore predicted in 1965 that Transistor density will double every 18 months => Increase in clock frequency
- Moore's Law 50th Anniversary

Visualizing the Scale of Moore's Law

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore's Law.

Growth in Processor Performance

Roadblock: Power density

Got Heat?

Why worry about power?

Environment

Thermal issues: cooling, packaging, reliability, timing

Power challenge for everybody

- Mobile/Portable (cell phone, laptop, PDA)
 - Battery life is critical
- Desktop
 - 400 million computers in the world
 - 0.16PW (PetaWatt = 10¹⁵ Watt) of power dissipation
 - Equivalent to 26 nuclear power plants
- Data centers
 - 1 single server rack is between 5 and 20 kW
 - 100s of those racks in a single room
 - 10 largest data centers in Singapore consume energy equivalent to 130,000 households
 - Contributes to 2% of world's total carbon emission more than airline industry by 2020

Parallelism saves Power

- Power = $C \times V^2 \times f$
- Performance = cores x f
- Exploit explicit parallelism for reducing power using additional cores
 - Can increase cores (2x) and performance (2x)
 - Or increase cores (2x) but decrease frequency (f/2)
 - decrease in frequency by half decreases voltage by half
 - same performance at ¼ power

Multi-core Revolution

- Chip density is continuing to increase ~2x every 2 years
 - Clock speed is not
 - Number of processor cores may double instead

100+ Cores?

- Multi-core: 2X / 2 yrs $\Rightarrow \approx 64$ cores in 8 years
- Many-core: 8X to 16X multi-core

Multi-core Revolution

Intel® Xeon® Processor E5 v4 Product Family HCC

- 24 cores (22 activated), 22x256KB L2, 55MB L3-cache
- 2.2 GHz, 145 Watt TDP (Thermal Design Power)

Knights Landing Overview

- 1.5 GHz, 72 cores, 4 thread per core, 288 threads
- 3.46 TeraFlops performance at 245 Watts power

AMD Multi-cores

- 12-core Opteron Magny Cours
 32-core Ryzen Threadripper 2
 - 12 cores at 2.2 GHz
 - Four channel DDR3

- - 32 cores at 3.0 4.2 GHz
 - Four channel DDR4

SPARC T5

- 16 CPU cores, 8 hardware threads per core →
 128 threads per chip
- 8 MB Level 3 cache
- 3.6 GHz frequency
- 200-300 Watt TDP

nVidia Pascal

- 15.3 billion transistors
- 5.3 TFlop double-precision throughput, 300W TDP
- 56 SM units each with 64 FP32 and 32 FP64 CUDA cores
- 18 MB on-chip memory

One of the fastest supercomputers

- Sunway TaihuLight from China's National Research Center of Parallel Computer Engineering & Technology (NRCPC)
- Exclusively uses processor designed and made in China (not Intel)
- 40,960 compute nodes for a total of 10,649,600 computing cores
- 93 Petaflops performance
- Peak power consumption of 15.37 megawatts (6 Gflops/Watt) top spot in Green500 in terms of Performance/Power metric

How does it compare to Human Brain?

- Supercomputer Sunway TaihuLight consumes 15,370,000 Watt power
- Human brain, which is at least several hundred times more complex, consumes 20 Watts of power
- Using 80,000 processors in a supercomputer, we could only mimic 1% of 1 sec worth of human brain activity
 - and even that took 40 minutes

Accelerators: IBM True North

- Brain-inspired chip
- 1 million programmable neurons, 256 million programmable synapses, 4096 neurosynaptic cores
- 70mW powers chip; 1 trillion synapses need 4kW

nVidia Volta

- 84 Volta Streaming
 Multiprocessor (SM) each with
 - 64 FP32 cores, 64 INT32 cores, 32
 FP64 cores
 - 8 Tensor cores
- 21.1 billion transistors, 300
 Watts, 815 mm² die size

Accelerators: Google TPU

- Tensor Processing Unit (TPU): A programmable architecture for neural networks
- Use matrix as a primitive

Architecture Outlook

- Expect modestly pipelined processors
 - Reduce complexity for performance per watt
- Parallel is energy efficient path to performance
 - Lower threshold and supply voltages lowers energy per operation
- Redundant processors can improve chip yield
 - Cisco Metro 188 CPUs + 4 spares; Cell 8 out of 9 cores
- Small, regular processing elements easier to verify
- Compiler-controlled scratchpad memory rather than cache
- One size fits all?
 - Amdahl's Law ⇒ Heterogeneous processors
 - Special function units to accelerate popular functions

Silicon Generations: Shrink and Add

Expectation: shrink and add new functionality in about same area

The Creation of Dark Silicon

37

Source: Jem Davies, ARM

Dark Silicon

We can have more transistors and cores

 We just cannot power them all at the same time

CS4223 © Mitra 2017

So what can we do?

- Need heterogeneous cores
- Power on only the most appropriate cores
- Power-efficient computation

CS4223 © Mitra 2017

ARM big.LITTLE asymmetric multi-core

AMD Trinity APU

What is Parallelism?

• Independent units of work that can execute concurrently if sufficient resources exist

Where to find parallelism?

- Parallelism can be found/exists at different granularities
 - Instruction Level
 - Data Level
 - Thread Level
 - Task Level

Instruction-Level Parallelism (ILP)

 A measure of how many operations in a sequential program can be performed simultaneously

$$A = B + C$$

$$D + E + F$$

$$G = A + H$$

- Micro-architectural and compiler techniques are employed to extract ILP
 - Instruction pipelining, superscalar execution, out-of-order execution, VLIW, dataflow architecture

Data Level Parallelism (DLP)

- DLP is parallelism inherent in program loops where similar operation sequences are performed on elements of a large data structure
- Need compiler and programmer's help in extracting DLP

```
for (i=0; i<N; i++)
A[i] = C x B[i];
```

Thread Level Parallelism (TLP)

- Higher level of parallelism available as multiple threads of control within a process
- Need compiler and programmer's help in extracting
 TLP

```
for (i=0; i<200; i++)
for (j=1; j<20000; j++)
val [i,j] = val[i,j-1] +1;
```

Task Level Parallelism

- Higher level of parallelism where different processes execute on the same or different data
- Need user and programmer's help in indentifying task parallelism

Flynn's Taxonomy of Parallel Computers

		Number of Data Streams	
		Single	Multiple
Number of instruction streams	Single	SISD	SIMD
	Multiple	MISD	MIMD

SISD: Single Instruction Single Data

- SISD is not considered as a parallel architecture
- SISD exploits parallelism at the instruction level
- Pipelined, Superscalar, and VLIW architectures are examples of SISD architecture

SIMD: Single Instruction Multiple Data

- A single instruction operates on multiple data to exploit data parallelism
- Vector processors and GPUs are excellent examples of SIMD architecture
- More efficient in terms of instruction count and loop control overhead

MISD: Multiple Instruction Single Data

- Multiple processing elements execute from different instruction streams and data is passed from one processing element to the next
- Example: Systolic array such as CMU iWrap
- Data passing restriction is quite severe --- hard to generalize

MIMD: Multiple Instruction Multiple Data

- Most flexible architecture
- Used in most parallel computers today

Syllabus

- ILP exploitation via superscalar and VLIW
- DLP exploitation via vector processors (GPU)
- TLP exploitation via multi-core
 - Cache Coherence
 - Memory Consistency
 - Synchronization
- Power/Energy issues

Know your lecturer

Trevor E. Carlson (you can call me Trevor)

Office: COM3-02-10

Extension: x7997

• Email: tcarlson@comp.nus.edu.sg

Please note that this is my primary email account

- I will only respond to your email if it is sent from SoC or NUSNET account (i.e., do not use yahoo, gmail etc.)
- Consultation: By appointment through email

Textbooks

Helpful textbook

- Multiple reference books
 - Relevant chapters will be distributed
- Multiple eBooks

Resources

- Primary information source is Luminus
- Files: Lecture notes, assignments, lab exercises
- Lesson Plan: Very important; describes in detail the schedule for each week
- Forum: Ask course-related technical questions in the forum. Email is only for your personal concerns.

Other useful resources

- Subscribe to Canvas Announcements for SMS/email notification
- Anonymous feedback: Let me have your feedback during the semester without disclosing your identity. We do listen to your feedback ☺

Assessment

 Final exam 	-40%
 Tests and Midterm (tentative) 	55%*
Project/Assignment	40%
 In-class Quizzes 	5%

^{*}Tentative breakdown

Quizzes and Paper Reviews

- Short in-class quizzes to review recent topics
- Papers / Supplemental Material
 - Allows us to connect fundamentals to modern research.
 - Answer a number of questions
 - What are the key novel components? Which is the most important? Why?
 - How does work relate to the foundational work from the textbook?
 - Why does this work matter? Why is it important? (Justification)
 - More details to be posted on Luminus