Les suites: rappel+ récurrence.

I. Souvenons nous.

1. Notions de suite.

Définition: Une suite réelle est une fonction définie sur Nou sur une partie de Nà valeurs dans R

Une suite peut être définie:

- par la donnée explicite du terme général:

Exemple 1: Soit la suite (u_n) définie sur \mathbb{N} par $u_n = n^2 - 3n + 5$.

Déterminer u_{100} .

- par une relation de récurrence ainsi que par le terme initial. Exemple 2: Soit la suite (u_n) définie sur \mathbb{N} par $u_0 = 1$ et $u_{n+1} = 2u_n 5$. Déterminer les quatre premiers termes de cette suite.
- 2. Sens de variation.

Définition:

- Dire qu'une suite (u_n) est croissante signifie que pour tout n, $u_n \le u_{n+1}$.
- Dire qu'une suite (u_n) est décroissante signifie que pour tout n, $u_n \ge u_{n+1}$
- Dire qu'une suite (u_n) est constante signifie que pour tout n, $u_n = u_{n+1}$.

Pour étudier le sens de variation d'une suite:

méthode 1: Etude du signe de $u_{n+1}-u_n$ pour tout $n \ge 0$

- si $u_{n+1}-u_n \ge 0$ alors la suite (u_n) est croissante.
- Si $u_{n+1}-u_n \le 0$, alors la suite (u_n) est décroissante.

Exemple 3: Soit la suite (u_n) définie par $u_0=2$ et $u_{n+1}=u_n+4n+3$ pour tout $n \ge 0$. Démontrer que (u_n) est croissante.

méthode 2:Pour les suites à termes positifs, comparaison de $\frac{u_{n+1}}{u_n}$ avec 1 pour tout $n \ge 0$.

- Si $\frac{u_{n+1}}{u_n} \ge 1$, alors la suite (u_n) est croissante.
- Si $\frac{u_{n+1}}{u_n} \le 1$, alors la suite (u_n) est décroissante.

Exemple 4: Soit la suite (w_n) définie par $w_n = \frac{2^n}{n}$ pour tout $n \ge 1$. Démontrer que (w_n) est croissante.

méthode 3:Pour les suites définies par $u_n = f(n)$ où f est une fonction, étude du sens de variation de la fonction f sur $[0; +\infty[$.

- si f est croissante sur $[0; +\infty[$, alors (u_n) est croissante sur \mathbb{N}
 - Si f est décroissante sur $[0; +\infty[$, alors (u_n) est décroissante sur \mathbb{N} étude du sens de variation de f.

Exemple 5:

Soit la suite (v_n) définie par $v_n = n^3 - 3n^2 + 6n - 4$ pour n > 0. Démontrer que (v_n) est croissante sur \mathbb{N}

3. Suites arithmétiques.

Définition: Dire que la suite (u_n) est une suite arithmétique signifie qu'il existe un réel r tel que pour tout n, $u_{n+1} = u_n + r$.

Le réel r est appelé la raison de la suite.

Propriété: Soit (u_n) une suite arithmétique de raison r. Pour tout entier m et p, m > p on a $u_m = u_p + (m-p)r$.

En particulier, cette propriété nous donne:

$$u_n = u_0 + nr$$
 avec $m = n$ et $p = 0$
 $u_n = u_1 + (n-1)r$ avec $m = n$ et $p = 1$.

Somme de termes consécutifs:

Soit (u_n) une suite arithmétique de raison r,

$$u_m + ... + u_p = (p - m + 1) \frac{u_m + u_p}{2}$$

On peut encore dire que la somme S de n termes consécutifs d'une suite arithmétique est égale à : $S = nombre de termes \times \frac{premier terme + dernier terme}{2}$.

Exemple 6: Soit (u_n) la suite arithmétique de raison 2 et de premier terme $u_0 = -17$.

- 1. Exprimer u_n en fonction de n.
- 2. Déterminer u_{20} et u_{80} .
- 3. Déterminer $u_{20} + ... + u_{80}$.
- 4. Suites géométriques.

Définition: Dire que la suite (u_n) est une suite géométrique signifie qu'il existe un réel q tel que pour tout n, $u_{n+1} = q \times u_n$.

Le réel q est appelé la raison de la suite. 1

Propriété: Soit (u_n) une suite géométrique de raison q. Pour tout entier m et p, m > p on a $u_m = u_p \times q^{m-p}$.

En particulier, cette propriété nous donne:

$$u_n = u_0 \times q^n$$
 avec $m = n$ et $p = 0$
 $u_n = u_1 \times q^{n-1}$ avec $m = n$ et $p = 1$.

Somme de termes consécutifs:

Soit (u_n) une suite géométrique de raison $q \neq 1$,

$$u_m + \ldots + u_p = u_m \times \frac{1 - q^{p-m+1}}{1 - q}$$
.

On peut encore dire que la somme S de n termes consécutifs d'une suite arithmétique est égale à : $S = premier terme \times \frac{1-q^{nombre de termes}}{1-q}$

Exemple 7: Soit (u_n) la suite géométrique de raison 10 et de premier terme $u_0=2$.

1. Exprimer u_n en fonction de n.

- 2. Déterminer u_{10}
- 3. Déterminer $u_{10}+...+u_{30}$.

II. Le raisonnement par récurrence.

Cette démonstration s'applique lorsque l'on cherche à démontrer qu'une propriété dépendant d'un entier naturel n est vraie pour tout entier $n \ge n_0$, n_0 étant un entier naturel donné.

On procéde en trois étapes:

Etape 1: initialisation

On montrer que la propriété est vraie pour $n=n_0$.

Etape 2: Hérédité

On démontre que:

si la propriété est supposée vraie pour un entier naturel k supérieur ou égale à n_0 (hypothése de récurrence), alors elle est vraie pour l'entier suivant k+1.

On dit alors que la propriété est héréditaire à partir du rang n_0

Etape 3: conclusion:

La propriété est vraie au rang n_0 et elle est héréditaire à partir du rang n_0 , elle est donc vraie pour n'importe quel entieer $n \ge n_0$.

Exemple 8:

Soit la suite (u_n) définie par $u_0=2$ et pour tout n de \mathbb{N} , $u_{n+1}=3u_n-2$.

Démontrer par récurrence que pour tout entier n, $u_n=3^n+1$