A Comprehensive Approach to Design, Implementation, and Insight

Hospital Database & Visualization Dashboard

By

Prajna Ganji, Shiva, Neetika Upadhyay and Maruta Zalane

Project Overview

Project Objective

• To design a normalized hospital database system capable of storing and managing healthcare data effectively.

Scope

• Includes database schema design, synthetic data generation, SQL-based data analysis, and performance insights.

Key Components

- Entity-Relationship Diagram (ERD)
- Table creation with constraints and relationships
- Data population using Python Faker
- SQL queries for operational analysis

Use Case

• Designed to support hospital administration, improve decision-making, and optimize healthcare delivery.

Project Deliverable

• A functional and efficient hospital database and Power BI Dashboard providing insights into hospital performance

Goals & Objectives

Create an ERD that defines core hospital entities and their relationships

Implement tables with appropriate data types, constraints, and relationships

Goal 2: Simulate real-world hospital operations through synthetic data

Generate realistic synthetic data using Chat GPT(Python Faker Library)

Write and execute SQL queries to extract actionable insights

Goal 3: Enable meaningful data-driven insights for hospital management

Designing the dashboard related to appointments, departments, Patients etc.

Create visuals and performance metrics using Power BI

Tools & Technologies

Database	MS SQL Server			
Data Generation	ChatGPT-4 that used Python, Faker Library			
Analysis & Queries Structured Query Language (SQL)				
Visualization	Power BI			
ERD tool	Mermaid			

Methodology

Data Modeling (ER Diagram)

Conceptual Diagram

Physical Diagram

Synthetic Data Generation

Approach Using ChatGPT - 4

- Used GPT-4 to generate synthetic data for all tables in the hospital database.
- Designed structured prompts to simulate realistic records for Patients, Doctors, Appointments, etc.
- Initially received random, disconnected data without consistency across related entities.

Prompt Engineering Process

- Refined and expanded prompts:
 - Started with 12 rules, increased to 20+ rules for better data control
 - Added constraints and formatting rules (e.g., valid dates, department-doctor mapping)
- Repeated prompt iterations across multiple tables to preserve referential integrity.

Iterative Improvements

- Ran multiple iterations, learning from output mismatches.
- Gradually achieved datasets with valid primary-foreign key relationships (e.g., matching PatientID in Appointments, valid Room assignments).

Data Validation

Referential Integrity Check

 Ensured all foreign key relationships are valid.

Data Type Validation

 Confirmed all columns use the correct types

Logical Validations:

- Discharge date ≥ Admission date
- Billing amounts ≥ 0

Uniqueness Checks

Verified no duplicates in primary keys

Null Value Check

 Checked mandatory fields are not null.

Data Transformation – SQL Server to Power BI

- Created and populated normalized hospital tables with synthetic data.
- Created SQL queries & views using Joins to ensure clean, relational data for business questions.

- Connected using Power BI SQL Server connector
- Data imported with minimal transformation in Power BI

- DAX measures added for insights
- Created visuals to explore hospital insights

Dashboard Development

Hospital Performance Dashboard

Target User- Hospital Executives (CEO, Leadership Team, Decision Makers)

Purpose- High-level KPIs, strategic insights, overall performance snapshot.

Patient & Appointment Overview Dashboard Doctor Availability & Workload Dashboard

Financial Overview Dashboard

Prescriptions Overview

Room Utilization Overview Dashboard

Target User

Hospital Administrators

Purpose

 Patient volume, appointment trends, cancellations.

Target User

 Medical Directors & Doctors

Purpose

 Scheduling, workload distribution, availability tracking.

Target User

Finance Department

Purpose

 Revenue, expenses, topearning department, billing efficiency.

Target User

Pharmacy Department

Purpose

 Medication trends, prescribing habits, potential overuse alerts

Target User

Facility Management

Purpose

Room occupancy, usage efficiency, turnover rates.

Hospital Performance Overview Dashboard

Patient and Appointment Overview Dashboard

Doctor Availability and Workload Dashboard

Financial Overview Dashboard

Prescriptions Overview Dashboard

Room Utilization Overview Dashboard

Challenges & Limitations

Data Generation & Referential Integrity Challenges

- Generating large volumes of realistic yet relational synthetic data was time-consuming.
- Early GPT-4 outputs had random, disconnected values, breaking referential integrity.
- Required multiple prompt refinements and iterations to generate consistent, rule-based data.

SQL-to-Power BI Integration

- Needed to write custom SQL queries and views to pre-aggregate and clean data before import.
- Power BI sometimes inferred incorrect relationships requiring manual adjustment.

Learnings & Takeaways

This project strengthened our end-to-end understanding of data systems—from database design and synthetic data creation to real-time analytics and reporting.

1. Technical Learnings

- Gained hands-on experience in designing Entity-Relationship (ER) diagrams.
- Improved SQL skills for data generation, validation, and analytical querying.
- Learned to use prompt engineering with GPT-4 to generate high-quality synthetic data.
- Developed data transformation workflows connecting SQL Server with Power BI.

2. Analytical & Modeling Skills

- Built a relational data model with real-world hospital operations in mind.
- Understood the importance of referential integrity and data consistency for meaningful analysis.
- Created and optimized DAX measures and visualizations in Power BI.

3. Problem Solving & Iteration

- Discovered how iterative refinement (in prompts and design) leads to better outcomes.
- Adapted quickly to challenges in data inconsistencies and modeling logic.

Conclusion

This project demonstrates how integrated data systems and thoughtful design can drive better healthcare management, resource planning, and patient experience analysis.

Project Summary

- Successfully designed and implemented a relational hospital database with normalized tables and strong referential integrity.
- Used GPT-4 and prompt engineering to generate realistic synthetic data across multiple hospital operations.
- Connected the SQL Server database to Power BI, transforming and modeling data to build insightful reports.
- Extracted valuable insights using SQL queries and Power BI dashboards, helping simulate real-world healthcare decision-making.

Appendix (1)

Database Schema

Table Name	Primary Key	Foreign Keys	Purpose	
Patients	PatientID		Holds patient demographic information	
Doctors	DoctorID	DepartmentID	Contains doctor information and department link	
Departments	DepartmentID		Stores hospital department details	
Appointments	AppointmentID	PatientID, DoctorID, DepartmentID	Records patient-doctor appointments	
MedicalRecords	RecordID	PatientID, DoctorID, AppointmentID	Stores diagnosis and treatment plans	
Prescriptions	PrescriptionID	RecordID, MedicineID	Links medicines to medical records	
Medicines	MedicineID		Contains medicine details and stock information	
Billing	BillingID	PatientID	Manages billing and payment status	
Staff	StaffID	DepartmentID	Stores non-doctor hospital staff details	
Rooms	RoomID	DepartmentID	Manages room details and availability	
Rooms Assignment	AssignmentID	PatientID, RoomID	Tracks patient room assignments and date	

Appendix (2)

Sample Snippets of Data Generated

Patient Table

PatientID I	FirstName	LastName	DateOfBirth	Gender	Address	PhoneNumber	Email	EmergencyContactName	EmergencyContactPhone
1 B	Benjamin	Ferguson	1965-04-02	Female	7619 Jeff Light, Josephland, BC P1A3G1	15749615235	jeremyholmes@hernandez.com	Miss Tina Roberts	13301267477
2 D	Oouglas	Marsh	1989-11-01	Female	00272 Stanley Lodge, South Carlosside, MB V4X6N3	13882060237	zvargas@phillips.com	Shannon Hall	13732294132

Staff Table

StaffID	FirstName	LastName	Role	DepartmentID	PhoneNumber	Email	ShiftHours
1	Tracy	Day	Technician	15	19415719327	jessicatran@harrison.com	07:00 - 15:00
2	Jennifer	Hanna	Lab Technician	14	12021968007	dgomez@gonzalez-hernandez.com	09:00 - 17:00

Doctor Table

DoctorID	FirstName	LastName	Specialization	PhoneNumber	Email	DepartmentID	Availability
1	Joseph	Vasquez	Neurology	13176361831	matajustin@hanson.net	10	13:00 - 21:00
2	Katherine	Smith	Radiology	12844467190	houstonsarah@nelson.com	14	11:00 - 19:00

Appointment Table

AppointmentID	PatientID	DoctorID	DepartmentID	AppointmentDate	AppointmentTime	Status
1	424	7	7	2024-04-16	15:00	Completed
2	326	31	6	2024-05-05	16:00	Scheduled

Department Table

DepartmentID	DepartmentName	Location	PhoneExtension
1	Admin	A-203	2000
2	Finance	B-259	2001

Appendix (3)

DDL

-- PATIENT TABLE GREATE TABLE Patient PatientID INT PRIMARY KEY. FirstName VARCHAR(50) NOT NULL. LastName VARCHAR(50) NOT NULL. DateOfBirth DATE NOT NULL. Gender VARCHAR(10) Address VARCHAR(255). PhoneNumber VARCHAR(15) UNIQUE NOT NULL, Email VARCHAR(100) UNIQUE EmergencyContactName VARCHAR(100) EmergencyContactPhone VARCHAR(15) -- DOCTOR TABLE CREATE TABLE Doctor DoctorID INT PRIMARY KEY, FirstName VARCHAR(50) NOT NULL, LastName VARCHAR(50) NOT NULL, Specialization VARCHAR(100) NOT NULL, PhoneNumber VARCHAR(15) UNIQUE NOT NULL, Email VARCHAR(100) UNIQUE, DepartmentID INT NOT NULL, Availability VARCHAR(50), FOREIGN KEY (DepartmentID) REFERENCES Department(DepartmentID) -- DEPARTMENT TABLE **⊟CREATE TABLE Department** DepartmentID INT PRIMARY KEY,

DepartmentName VARCHAR(100) NOT NULL,

Location VARCHAR(10) UNIQUE

PhoneExtension VARCHAR(10)

DML

```
--Bulk CSV Import Using T-SQL
BULK INSERT appointment
FROM 'E:\Neeti\BISI\Data Analytics\Project\Appointment.csv'
with (
   FIELDTERMINATOR = ',',
    ROWTERMINATOR = '\n'
    FIRSTROW = 2.
    TABLOCK
BULK INSERT Billing
FROM 'E:\Neeti\BISI\Data Analytics\Project\Billing.csv'
with (
    FIELDTERMINATOR = ',',
    ROWTERMINATOR = '\n'
    FIRSTROW = 2
     TABLOCK
BULK INSERT Department
FROM 'E:\Neeti\BISI\Data Analytics\Project\Departments.csv'
    FIELDTERMINATOR = ',',
    ROWTERMINATOR = '\n',
    FIRSTROW = 2
     TABLOCK
```

User Roles and Access Control

```
-Admin Login
Create Login Admin_1
with Password = '123';
use hospital database fp;
Create user admin_1 for login admin_1;
--User Login
Create Login user_1
with Password = '1234';
use hospital_database_fp;
Create user user_1 for login user_1;
Create Login user_2
with Password = '1234':
use hospital database fp;
Create user user 2 for login user 2;
Create Login user_3
with Password = '1234';
use hospital_database_fp;
Create user user 3 for login user 3;
Create Login user_4
with Password = '1234';
use hospital_database_fp;
Create user user 4 for login user 4;
Create Login user_5
with Password = '1234';
use hospital_database_fp;
Create user user_5 for login user_5;
```

Views for Business Question

```
-- 7. View: Room Availability Summary
CREATE VIEW vw RoomAvailability AS
    COUNT(*) AS TotalRooms
    SUM(CASE WHEN AvailabilityStatus = 'Available' THEN 1 ELSE 0 END) AS AvailableRooms
    SUM(CASE WHEN AvailabilityStatus = 'Occupied' THEN 1 ELSE 0 END) AS OccupiedRooms
FROM Room
GROUP BY ROOMType:
-- 8. View: Staff Count by Department
CREATE VIEW vw StaffByDepartment AS
    d.DepartmentName.
    COUNT(s.StaffID) AS TotalStaff
FROM Department d
JOIN Staff s ON d.DepartmentID = s.DepartmentID
GROUP BY d.DepartmentName;
```

Any questions?

Thank you for your attention!