实验二:矩阵分解

(大数据分析课程报告)

姓 名: 肖文韬

学 号: 2020214245

二〇二〇年十二月十五日

目 录

目录	I
第1章 数据整理	
第2章 任务一:协同过滤算法	3
第3章 任务二:矩阵分解算法	6
3.1 迭代过程	7
3.2 寻找最优超参	8
第 4 章 总结:	9
参考文献	10

第1章 数据整理

数据集每一行为 <user id> <movie id> <rate> 的格式:

- 1. user_id: 用户唯一 id, 用户数量为 10000, 不过用户 id 并不在 [0,10000] 内, 需要自己创建一个 user2id 的映射。
- 2. movie_id: 电影唯一 id, 电影数量为 10000, 并且电影 id ∈ [1,10001]。
- 3. rate: 电影打分,为[0,5]的整数,其中0表示未打分。 观察分析数据后,有以下结论:
- 1. 训练集和测试集中的数据并不是规整的按电影来划分的,也就是说对于某个电影,训练集和测试集都只有一部分用户打分。并且打分是不重叠的,也就是说如果用户在训练集中打了分,在测试集中就是没打分的,反之亦然。
- 2. 因为数据规模不是很大,矩阵虽然是 10000×10000 大小的,不过比较稀疏 (训练集稀疏度 6.89%,测试集 1.72%),所以可以使用稀疏矩阵来加快速度。 总之,该数据集不算很大,合理使用稀疏矩阵,使用矩阵运算(并行)来代替 循环,在显卡上进行矩阵运算,都可以大大的提高处理速度。

故在实验中,采用全量数据。

数据读取部分的代码实现:

```
def read data(filename):
 user2id = {}
  st = time()
  X = np.zeros((10000, 10000))
  with open (filename) as f:
    for l in f.readlines():
      user, movie, rate, _ = l.split()
      movie = int(movie) - 1
      rate = int(rate)
      if user not in user2id:
        user2id[user] = len(user2id)
      user = user2id[user]
      X[user, movie] = rate
  print(f'Done in {time() - st}s.')
  return X
X train = read data('netflix train.txt')
X test = read data('netflix test.txt')')
```

第2章 任务一:协同过滤算法

协同过滤(Collaborative Filtering)是一种经典的且被工业界广泛使用推荐算法。 狭义的协同过滤定义为:通过收集大量其他相似用户的偏好或品味信息(**协同**)来 自动地对预测(**过滤**)当前用户的兴趣。广义的协同过滤则定义为:使用多个主 体,观点,数据源进行合作来过滤信息或者模式的过程。

协同过滤算法分为两类:

- 1. 基于用户的协同过滤:构建一个 user-item 矩阵,然后寻找该用户的相似用户 在 user-item 矩阵中的信息来预测该用户的偏好结果。
- 2. 基于目标项目(item)的协同过滤:构建一个 item-item 矩阵来衡量不同项目 之间的关联度,然后使用该矩阵来推导用户的偏好。

这里主要是实现一个基于用户的协同过滤算法,基于用户的协同过滤算法的一般定义为(用户i对项目m的打分):

$$score(i, m) = agg_{i \in N}(score(j, m))$$
 (2-1)

其中 N 表示 i 的某个邻域(一般以相似度作为度量),agg 用户对该邻域内所有打分结果进行聚合运算(i.e., 加权平均),包括一些预处理(归一化,收缩,等)。本节将要实现的算法的核心公式为(以预测用户 i 对电影 m 的偏好度为例):

$$score(i, m) = \frac{\sum_{k \in N(i, m)} sim(X(i), X(k)) \times score(k, m)}{\sum_{k \in N(i, m)} sim(X(i), X(k))}$$
(2-2)

其中 X(i) 代表用户 i 对所有电影的打分(当然要预测的电影的打分是为 0 的)向量,N(i,m) 在本例中简单选用为所有给电影 m 打了分的用户,相似度量采用**余 弦距离(cosine distance)**:

$$sim(X(i), X(k)) = \frac{\langle X(i), X(k) \rangle}{\|X(i)\| \|X(k)\|}$$
 (2-3)

公式 2-2 可以转换为矩阵运算的形式:

$$\hat{X} = \frac{S \cdot X}{S \cdot A} \tag{2-4}$$

其中 A 为 X 的指示矩阵,有 $A_{ij} = \operatorname{sgn}(X_{ij})$,S 是相似度矩阵。

在 Python 上使用 numpy 实现的代码为:

```
def pairwise_cos_distance(X):
    X = X.T / X.sum(axis=1)
    return X.T @ X

def coll_filter_sp(train: np.ndarray):
    sim = pairwise_cos_distance(train)
    score = sim @ train
    train = train.astype(np.bool)
    Z = sim @ train
    return score_pred
```

虽然转换成矩阵运算之后,相对于简单粗暴的 for 循环实现,速度上已经有了很明显的提升。不过既然是矩阵运算,理说应当更加适合在显卡上进行运算。以下是使用 $\operatorname{cupy}^{(1)}$ 实现的版本(是的,基本上就是把 np 改成了 cp)。

```
def coll_filter_cuda(train: cp.ndarray):
    cp.cuda.Device(3).use()
    X_train_cuda = cp.array(train)
    X_test_cuda = cp.array(test)
    sim = pairwise_cos_distance(X_train_cuda)
    score = sim @ X_train_cuda
    Z = sim @ X_train_cuda.astype(np.bool)
    score_pred = score / Z
    return score_pred
```

RMSE 因为测试样本数不是 10000 * 10000 而是 170 多万,所以最好不要使用 numpy 提供的 RMSE,我们可以自己简单实现一下:

① 一个类似于 numpy 的矩阵运算库,不过所有运算都是在 GPU 上进行的。

```
def rmse(X, X_hat):
   test_point = X.astype(np.bool)
   loss = np.sqrt(np.power(
        X_hat[test_point] - X[test_point], 2
   ).mean())
   return loss
```

表 2.1 协同过滤算法不同实现对比

实现	RMSE	速度(s)
CPU	1.02821	12.94
CPU (k 取所有)	2.60669	7.94
GPU	1.02821	11.79
GPU (k 取所有)	2.60669	7.88

最终计算速度和最终的 RMSE 对比如表 2.1所示。可以看出,GPU 竟然只比 CPU 快一点点,这样不行呀,至于原因我认为还是因为这里面涉及到一些对 GPU 不太友好的运算(例如归一化用到的两次逐位除法),并且 numpy 优化得比较好了,=,= 总之,在第二个任务,矩阵分解任务,我们就能看到 GPU 运算的魅力啦

备注: 开头说了数据集比较稀疏,可是为什么我最终没有使用稀疏矩阵运算呢? 因为我发现,这个矩阵还是不够大,也不够稀疏,还不如全量矩阵直接用显卡或者 Intel CPU 提供的 AVX 指令集优化地并行加速高效。使用 scipy 提供的 csr 模式的稀疏矩阵运算大概需要耗时 120s。

第3章 任务二:矩阵分解算法

因为给定特征矩阵是一个稀疏矩阵,基于低秩假设,特征维度为 10000 的矩阵的特征值也很稀疏(或者很小),于是我们可以将矩阵分解为两个特征维度很小的隐空间特征表达:

$$X_{m \times n} \approx U_{m \times k} V_{n \times k}^{T} \tag{3-1}$$

其中 $k \ll n$ 。

特别的,我们在电影推荐任务中,使用 X_{train} 构建出矩阵分解后,使用它们的乘积来预测 X_{test} 中的那部分结果。

这里我们采用梯度下降算法来求解上述分解,目标函数为:

$$J = \frac{1}{2} ||A \odot (X - UV^T)||_F^2 + \lambda ||U||_F^2 + \lambda ||V||_F^2)$$
 (3-2)

其中 \odot 表示 Hadamard 乘积(逐位乘),A 为指示矩阵, $A_{ij}=1$ 表示 X_{ij} 的值已知, $\|A\|_F^2=\sqrt{\sum_i\sum_j A_{ij}}$ 表示矩阵 Frobenius 范数, λ 为正则化系数,用于防止过拟合。对目标函数求偏导,得到:

$$\frac{\partial J}{\partial U} = (A \odot (UV^T - X))V + 2\lambda U \tag{3-3}$$

$$\frac{\partial J}{\partial V} = (A \odot (UV^T - X))^T U + 2\lambda V \tag{3-4}$$

所以整个算法的流程为:

- 初始化 U,V 为较小的随机值
- 不断循环 $U = U \alpha \frac{\partial J}{\partial U}$, $V = V \alpha \frac{\partial J}{\partial V}$, 直到收敛 代码实现(CuPy 版本):

```
def init matrix(X, k, n features=10000,
                n samples=10000, seed=1234):
  avg = np.sqrt(X.mean() / k)
  rng = np.random.RandomState(seed)
  V = avg * rng.randn(k, n features).astype(X.dtype, copy=False)
  U = avg * rng.randn(n_samples, k).astype(X.dtype, copy=False)
  np.abs(U, out=U)
  np.abs(V, out=V)
  return cp.array(U), cp.array(V)
def frob norm sq(X):
  norm = cp.sum(cp.power(X, 2))
  return norm
def objective(diff, U, V, lamb):
  loss = frob_norm_sq(diff)
  loss = 0.5 * loss + (frob norm sq(U) + frob norm sq(V)) * lamb
  return loss.item()
def fit(X, k, lamb, alpha=1e-3, tol=1e-4, max_iter=500):
  st fit = time()
  U, V = init matrix(X, k)
  A = X.copy()
  A = A.astype(np.bool)
  A = cp.array(A)
  X = cp.array(X)
  prev error = 0.
  for n iter in range(1, max iter + 1):
    diff = A * (U @ V - X)
    update U = diff @ V.T + 2 * lamb * U
    update V = U.T @ diff + 2 * lamb * V
    error = objective(-diff, U, V, lamb)
    if n iter \ 10 == 0:
      print(f'Iter: {n iter}, loss={error:.4f}, ' +
            f'{(time() - st fit) / n iter:.1f}s/epoch.')
    if prev_error != 0 and (prev_error - error) / prev_error <= tol:</pre>
     break
    prev_error = error
    U = U - alpha * update U
    V = V - alpha * update_V
  return U @ V
```

3.1 迭代过程

如图 3.1 所示,训练损失值和测试误差(RMSE)变化都是稳定下降的,并且下降幅度随着训练代数的增加逐渐减小。因为训练和测试用的损失值公式不一样,

(b) 测试集 RMSE

60

100

图 3.1 迭代过程中的训练和测试误差

所以可以看出,训练的时候,损失值都很大,不过到了测试的时候,损失值是比较小的。采用 EarlyStop 技巧,超参数设置为 $\alpha=0.0001$, $\lambda=0.01$, k=50,最终训练了 111 代后的测试结果 RMSE 为 1.12452,总共耗时 31.86s。

3.2 寻找最优超参

k 选择 $\{10,20,30,50\}$, λ 选择 $\{0.001,0.1,0,10\}$, 学习率 α 使用 0.0001, 最大 训练代数为 400, 采用 EarlyStop。进行 GridSearch 最优的超参数配置,不同参数 的训练损失值曲线如图所示,最终的测试 RMSE 结果如表所示。

从实验结果可以看出,

第4章 总结:

协同过滤:

- 1. **可解释性好**: 因为公式简单明了,算法的思路就是从当前用户行为特征(例如打分向量)相似(通过某种相似度衡量)的其他用户的打分分数来预测该用户对指定电影的打分情况。
- 2. 算法稳定:对于给定的输入,不管运行多少次,都能得到相同的结果。
- 3. 优化空间小: 因为这是一种无参方法,只能通过使用不同的相似度量,不同的邻域函数(例如 kNN),不用的聚合函数来实现,这些选择与具体任务相关,都需要专家经验。

矩阵分解:

- 1. 灵活性强:可以配合使用各种不同的目标函数。
- 2. **适合显卡并行运算:** 使用 CuPy 等显卡加速矩形计算工具的计算速度提升明显。
- 3. 泛化性好:因为可以通过梯度优化以及调整超参数,所以对于不同任务,不用做额外的修改。
- 4. 可解释性不好:因为基于低秩假设,且隐特征的解释性不好,算法通过梯度 下降寻找在给定目标函数下的局部最优解。
- 5. 超参数调整费时:因为可解释性不好,所以对于超参数 λ, α, k 的调整都只能结合一点调参经验,遍历搜索,比较费时,而且不同任务适合的超参数也不一样。

注: 矩阵分解其实是一种协同过滤算法,(广义的)协同过滤是一种思想而不是特定的某个算法。

参考文献