

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 935 003 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
11.08.1999 Bulletin 1999/32

(51) Int. Cl. 6: C12Q 1/68, C12N 15/90

(21) Application number: 98310224.5

(22) Date of filing: 14.12.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 12.12.1997 JP 34331697

(71) Applicant:
MARINE BIOTECHNOLOGY INSTITUTE CO.,
LTD.
Bunkyo-ku, Tokyo 113-0033 (JP)

(72) Inventors:
• Yamamoto, Satoshi,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)

- Kasai, Hiroaki,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)
- Nakamura, Shoko,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)
- Suzuki, Makoto,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)
- Hamada, Tohru,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)

(74) Representative:
Woods, Geoffrey Corlett
J.A. KEMP & CO.
14 South Square
Gray's Inn
London WC1R 5LX (GB)

(54) Method for identification and detection of microorganisms using gyrase gene as an indicator

(57) A method for identifying a microorganism, comprises

(i) amplifying DNA from the microorganism by PCR using two primers, wherein at least one of the said primers comprises sequence which codes for all or part of one of the following amino acid sequences
(a) to (l):

(a) (Pro or Ser)-(Ala or Thr)-(Ala, Val or Leu)-(Glu or Asp)-(Val or Thr)-(Ile or Val)-(Met, Leu or Phe)-Thr-(Val, Gln or Ile)-Leu-His-Ala-Gly-Gly-Lys-Phe-(Asp or Gly)-(Asp, Gly, Asn or Ser)-(Ser, Lys, Gly, Asp or Asn)

(b) Gly-Gly-Thr-His

(c) (Ile or Leu)-Met-Thr-Asp-Ala-Asp-Val-Asp-Gly-(Ala or Ser)-His-Ile-Arg-Thr-Leu

(d) Arg-Lys-Arg-Pro-(Gly or Ala)-Met-Tyr-Ile-Gly-(Ser or Asp)-Thr

(e) Gln-(Thr or Pro)-(Lys or Asn)-(Thr, Asp, Gly, Lys, Ser, Phe or Tyr)-Lys-Leu

(f) (Tyr or Phe)-Lys-Gly-Leu-Gly-Glu-Met-Asn-(Ala or Pro)

(g) Val-Glu-Gly-Asp-Ser-Ala-Gly-Gly-Ser

(h) Lys-(His or Val)-Pro-Asp-Pro-(Gln or Lys)-Phe

(i) Leu-Pro-Gly-Lys-Leu-Ala-Asp-Cys-(Ser or Gln)-(Ser or Glu)-(Lys or Arg)-Asp-Pro-(Ala or Ser)

(j) Gln-Leu-(Trp or Arg)-(Glu or Asp)-Thr-Thr-(Met or Leu)-(Asp or Asn)-Pro

(k) Ala-(Lys or Arg)-(Lys or Arg)-Ala-Arg-Glu

(l) Phe-Thr-Asn-Asn-Ile-(Pro or Asn)-(Thr or Gln)

and which functions as a substantial primer; and

(ii) identifying the microorganism based on the nucleotide sequence of the amplified DNA fragment.

EP 0 935 003 A2

Description

- [0001] The present invention is involved in a method for the identification and detection of organisms using the sequences of their genes encoding the B subunit of the DNA gyrase.
- 5 [0002] This invention is useful in medical fields as well as various industrial fields where the identification/classification or detection/monitoring of specific microorganisms (bacteria, yeasts, fungi, archaea and bacteria), especially bacteria, is necessary.
- 10 [0003] Conventionally, the identification/classification of living organisms has been carried out using the combination of biochemical and morphological tests. However, these tests often did not provide unequivocal answers to the taxonomic positions of tested organisms.
- 15 [0004] Recently, the taxonomy of organisms, in particular of bacteria, using rRNA sequences became fashionable. There are many reasons why rRNA molecules have been selected as standard molecules for the molecular taxonomy. They are constituents of all organisms. They exist in abundance, and therefore, can readily be isolated and characterized. For sequence comparison, many conserved regions of rRNA molecules allowed the alignment between distantly related organisms, while variable regions are useful for the distinction of closely related organisms (van de Peer, Y., S. Chapelles, and R. de Wachter. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. *Nucleic Acids Res.* 24: 3381-3391; and Gutell, R. R., N. Larsen, and C. R. Woese. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. *Microbiol. Rev.* 58: 10-26). Furthermore, there is a few evidence for the horizontal transfer of rRNA genes although many other genes are expected to have frequently been transferred
- 20 from one species to other distantly related species. At present, rRNA sequences are accumulating rapidly and they are accessible via an international database (Ribosomal Database project, <http://rdp.life.uiuc.edu/>).
- 25 [0005] However, as is clear from the fact that the evolution speed of rRNA genes is extremely slow, there is little difference in the rRNA sequences between closely related organisms. Therefore, in many times, species belonging to the same genus could not be discriminated by the analysis using rRNA sequences. For example, it is said that bacteria sharing more than 97 % of identity in their 16S rRNA sequences (bacterial small subunit rRNA) might belong to the same species. However, there are cases of bacteria exhibiting more than 99 % identity in their 16S rRNA sequences, and yet belonging to two distinct species as revealed from DNA hybridization analysis. Evidently, due to the slow speed of divergent evolution of the 16S rRNA gene, the resolution of 16S rRNA-based analysis between closely related organisms is lower than that of DNA hybridization analysis (Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. *Int. J. Syst. Bacteriol.* 37: 463-464).
- 30 [0006] Other problems exist in the rRNA-based phylogenetic analysis. To establish a phylogenetic relationship based on rRNA sequences, these sequences should be aligned. The alignment of rRNA sequences composed from four different constituents (AUCG), however, is not easy, and requires some expertise. The correct sequencing of rRNA genes is also difficult largely due to their highly ordered structure. Furthermore, polymorphism of rRNA was found in some organisms.
- 35 [0007] In contrast, protein-encoding genes have evolved more rapidly than rRNA-encoding genes, since they allow the so-called neutral mutations that do not cause any amino acid substitutions in their gene products. It is then expected that, by using such protein-encoding genes, more precise phylogenetic analysis can be performed than by using rRNA sequences. Thus, the present inventors have developed and applied a method for the identification/classification or detection/monitoring of organisms using the sequences of *gyrB* genes encoding the B subunit of DNA gyrases (Yamamoto, S. and Harayama, S. 1995. PCR Amplification and Direct Sequencing of *gyrB* Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of *Pseudomonas putida* Strains. *Appl. Environ. Microbiol.* 61: 1104-1109; Yamamoto, S. and Harayama, S. 1996. Phylogenetic Analysis of *Acinetobacter* Strains Based on the Nucleotide Sequences of *gyrB* Genes and on the Amino acid Sequences of Their Products. *Int. J. Syst. Bacteriol.* 46: 506-511; Yamamoto, S. and Harayama, S. 1998. Phylogenetic relationships of *Pseudomonas putida* strains deduced from the nucleotide sequences of *gyrB*, *rpoD* and 16S rRNA genes. *Int. J. Syst. Bacteriol.* 48: 813-819; Yamamoto, S., Bouvet, P. J. M. & Harayama, S. 1998. Phylogenetic structures of the genus *Acinetobacter* based on the *gyrB* sequences: Comparison with the grouping by DNA-DNA hybridization. *Int. J. Syst. Bacteriol.* (in press); Harayama, S. and Yamamoto, S. 1996. Phylogenetic Identification of *Pseudomonas* Strains Based on a Comparison of *gyrB* and *rpoD* Sequences. p. 250-258 in Molecular Biology of Pseudomonads, edited by T. Nakazawa, K. Furukawa, D. Haas, S. Silver. ASM Press, Washington, D.C.; and Watanabe, K., Yamamoto, S., Hino, S. and Harayama, S. 1998. Population dynamics of phenol-degrading bacteria in activated sludge determined by *gyrB* -targeted quantitative PCR. *Appl. Environ. Microbiol.* 64: 1203-1209).
- 55 [0008] DNA topoisomerases are essential for the replication, transcription, recombination and repair of DNA and control the level of supercoiling of DNA molecules by cleaving and resealing the phosphodiester bond of DNA. They are classified into type I (EC 5.99. 1.2) and type II (EC 5.99.1.3) according to their enzymatic properties. The DNA gyrase is a type II topoisomerase that is capable of introducing negative supercoiling into a relaxed closed circular DNA mole-

cule. This reaction is coupled with ATP hydrolysis. DNA gyrase can also relax supercoiled DNA without ATP hydrolysis. DNA gyrase consists of two subunit proteins in the quaternary structure of A2B2. The A subunit (GyrA) has a molecular weight of approximately 100 kDa while the B subunit (GyrB) has a molecular weight of either 90 kDa or 70 kDa (Wigley, D. B. 1995. Structure and mechanism of DNA topoisomerases. *Ann. Rev. Biomol. Struct.* 24: 185-208). The genes for

5 DNA gyrase or its isofunctional enzymes should exist in all organisms as they are indispensable for the cell proliferation. [0009] As described above, the present inventors have already developed and applied successfully the method for the identification/classification or detection/monitoring of organisms using *gyrB* sequences. In this method, a *gyrB* gene fragment of an organism of interest is amplified by PCR using primers designed from the two amino acid sequences, His-Ala-Gly-Gly-Lys-Phe-Asp and Met-Thr-Asp-Ala-Asp-Val-Asp-Gly, which are highly conserved among the GyrB 10 sequences of many organisms. Subsequently, the amplified fragments are subjected to direct sequencing. Since the *gyrB* genes code for proteins, they have frequently undergone neutral mutations. Thus, the nucleotide sequence of the *gyrB* genes vary considerable even among related organisms. For this reason, the above method has been shown to be effective for discriminating organisms at a level of species or subspecies. The above-mentioned PCR primers 15 designed from the highly conserved amino acid sequences of GyrB were effective in many but not all bacterial species for the PCR amplification of *gyrB*. From DNA of some bacterial species, no PCR amplification was observed using these primers.

[0010] Besides, there was another problem associated with these primers. The genes for type IV topoisomerase (*parE*) were also amplified from DNA of some bacterial species by using these primers. Topoisomerase IV (ParE) is a 20 bacterial enzyme that appears to be closely related to DNA gyrase. This enzyme involves in the partition of chromosomes into daughter cells. If a *parE* gene but not *gyrB* gene is amplified from a DNA, and if a phylogenetic analysis is carried out without recognizing that the amplified sequence is *parE* but not *gyrB*, it will bring some confusion to the phylogenetic analysis. To avoid such problem associated with the amplification of paralogous genes, primers which do not 25 amplify *parE* should be developed.

[0011] It is an object of the present invention to solve the above-described problems of the primers and to provide a 30 means which enables the identification/classification and detection/monitoring of a wide range of organisms using *gyrB* sequences.

[0012] Comparing the amino acid sequence data of GyrB collected by the inventors with those of ParE, the inventors have found a plurality of the amino acid sequences of GyrB which are appropriate for designing PCR primers capable 35 of specifically amplifying *gyrB* genes. By using the newly designed PCR primers in combination of the primers mentioned in the section of BACKGROUND OF THE INVENTION, it became possible to determine *gyrB* sequences more easily and precisely from a wider range of organisms. The present invention has been achieved based on the above-described findings.

[0013] The present invention relates to a method for the identification and detection of organisms using nucleotide 40 sequences amplified by using two primers, at least one of the primers being an oligonucleotide which codes for all or a part of one of the following amino acid sequences (a) through (l),

- (a) (Pro or Ser)-(Ala or Thr)-(Ala, Val or Leu)-(Glu or Asp)-(Val or Thr)-(Ile or Val)-(Met, Leu or Phe)-Thr-(Val, Gln or Ile)-Leu-His-Ala-Gly-Gly-Lys-Phe-(Asp or Gly)-(Asp, Gly, Asn or Ser)-(Ser, Lys, Gly, Asp or Asn)
- (b) Gly-Gly-Thr-His
- (c) (Ile or Leu)-Met-Thr-Asp-Ala-Asp-Val-Asp-Gly-(Ala or Ser)-His-Ile-Arg-Thr-Leu
- (d) Arg-Lys-Arg-Pro-(Gly or Ala)-Met-Tyr-Ile-Gly-(Ser or Asp)-Thr
- (e) Gln-(Thr or Pro)-(Lys or Asn)-(Thr, Asp, Gly, Lys, Ser, Phe or Tyr)-Lys-Leu
- (f) (Tyr or Phe)-Lys-Gly-Leu-Gly-Glu-Met-Asn-(Ala or Pro)
- (g) Val-Glu-Gly-Asp-Ser-Ala-Gly-Gly-Ser
- (h) Lys-(His or Val)-Pro-Asp-Pro-(Gln or Lys)-Phe
- (i) Leu-Pro-Gly-Lys-Leu-Ala-Asp-Cys-(Ser or Gln)-(Ser or Glu)-(Lys or Arg)-Asp-Pro-(Ala or Ser)
- (j) Gln-Leu-(Trp or Arg)-(Glu or Asp)-Thr-Thr-(Met or Leu)-(Asp or Asn)-Pro
- (k) Ala-(Lys or Arg)-(Lys or Arg)-Ala-Arg-Glu
- (l) Phe-Thr-Asn-Asn-Ile-(Pro or Asn)-(Thr or Gln)

50 and which functions as a substantial primer. The primer which functions as a substantial primer used herein means an oligonucleotide having such a length that allows specific hybridization to a specific site in a template DNA.

[0014] The following drawing illustrates the invention:

55 Fig. 1 shows the locational relationship between the amino acid sequence (a) through (l) and the amino acid sequences of GyrB of several organisms.

[0015] Hereinbelow, the present invention will be described in detail.

EP 0 935 003 A2

[0016] In the present invention, a part of the *gyrB* of an organism of interest is amplified specifically by PCR, and then the nucleotide sequence of the amplified sequences are determined for the taxonomic characterization of the organism.

[0017] As a PCR primer, an oligonucleotide may be used which codes for all or a part of one of the following amino acid sequences (a) through (l):

5 and which functions as a substantial primer. The relationship between the above amino acid sequences (a) through (l) and the amino acid sequences of *GyrB* from *Bacillus subtilis* 168 strain, *Escherichia coli* K-12 strain and *Pseudomonas putida* PRS200 strain are shown in Fig. 1.

[0018] Most of the amino acid sequences listed (a) through (l) are degenerate, and numerous oligonucleotide sequences can be designed from the listed amino acid sequences. The following amino sequences can be enumerated 10 as examples of amino acid sequences to be used for the design of oligonucleotide primers while the following nucleotide sequences can be enumerated as examples of specific primers.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (a):

The amino acid sequence shown in SEQ ID NO: 26, 30, 54, 55, 56 and 57 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

15 The nucleotide sequences shown in SEQ ID NO: 25, 29 and 53 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (b):

20 The amino acid sequence shown in SEQ ID NO: 34, 36 and 37 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 33 and 35 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (c):

25 The amino acid sequence shown in SEQ ID NO: 28, 32 and 42 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 27, 31 and 41 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (d):

30 The amino acid sequence shown in SEQ ID NO: 46 and 47 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 45 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (e):

35 The amino acid sequence shown in SEQ ID NO: 39 and 40 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 38 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (f):

40 The amino acid sequence shown in SEQ ID NO: 44 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 43 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (g):

45 The amino acid sequence shown in SEQ ID NO: 49 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 48 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (h):

50 The amino acid sequence shown in SEQ ID NO: 63 and 64 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 62 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (i):

55 The amino acid sequence shown in SEQ ID NO: 59 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 58 can be given as the sequences of primers for the specific amplification of *gyrB*.

Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (j):

EP 0 935 003 A2

The amino acid sequence shown in SEQ ID NO: 66, 67 and 68 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 65 can be given as the sequences of primers for the specific amplification of *gyrB*.

5 Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (k):

The amino acid sequence shown in SEQ ID NO: 51 and 52 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 50 can be given as the sequences of primers for the specific amplification of *gyrB*.

10 Amino Acid and Oligonucleotides Sequences Corresponding to the Amino Acid Sequence (l):

The amino acid sequence shown in SEQ ID NO: 61 can be given as the amino acid sequences to be used for the design of oligonucleotide primers.

The nucleotide sequences shown in SEQ ID NO: 60 can be given as the sequences of primers for the specific amplification of *gyrB*.

15

[0019] Correspondence of each amino acid and oligonucleotide sequence are shown in Table 1.

Table 1

sequence	amino acid	oligonucleotide
a	SEQ ID NO. 26	SEQ ID NO. 25
	SEQ ID NO. 30	SEQ ID NO. 29
	SEQ ID NO. 54,55,56,57	SEQ ID NO. 53
b	SEQ ID NO. 34	SEQ ID NO. 33
	SEQ ID NO. 36,37	SEQ ID NO. 35
c	SEQ ID NO. 28	SEQ ID NO. 27
	SEQ ID NO. 32	SEQ ID NO. 31
	SEQ ID NO. 42	SEQ ID NO. 41
d	SEQ ID NO. 46,47	SEQ ID NO. 45
e	SEQ ID NO. 39,40	SEQ ID NO. 38
f	SEQ ID NO. 44	SEQ ID NO. 43
g	SEQ ID NO. 49	SEQ ID NO. 48
h	SEQ ID NO. 63,64	SEQ ID NO. 62
i	SEQ ID NO. 59	SEQ ID NO. 58
j	SEQ ID NO. 66,67,68	SEQ ID NO. 65
k	SEQ ID NO. 51,52	SEQ ID NO. 50
l	SEQ ID NO. 61	SEQ ID NO. 60

20

[0020] The amino acid sequences listed (a) through (l) are not necessarily conserved in all GyrB. Therefore, primers allowing the amplification of *gyrB* should be selected appropriately.

25

[0021] It is possible to directly determine the nucleotide sequence of the amplified PCR product without subcloning by using primers complementary to either the 5-end or the 3-end of the product.

30

Examples:

35

EXAMPLE 1

40

[0022] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 25 and 27 (corresponding to the amino acid sequences of SEQ ID NOS: 26 and 28, respectively) as primers and

EP 0 935 003 A2

DNA from *Bacteroides vulgatus* IFO 14291 strain as a template. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 1 and 2, respectively. The PCR amplification conditions were as described below.

5

10

PCR amplification conditions:	
96 °C 1 min; 48°C 1 min; 72°C 2 min:	3 cycles
96 °C 1 min; 48°C 1 min; 72°C 2 min:	3 cycles
96 °C 1 min; 48°C 1 min; 72°C 2 min:	30 cycles
Total:	36 cycles

15

Primer concentration 1 µ M each
dATP 200 µ M each
20 Template DNA < 1 µ g/100 µ l

[0023] AmpliTaq™ and the supplied PCR Buffer (Perkin Elmer) were used.

EXAMPLE 2

25

[0024] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 29 and 31 (corresponding to the amino acid sequences of SEQ ID NOS: 30 and 32, respectively) as primers and DNA from *Mycobacterium simiae* KPM 1403 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 3 and 4, respectively.

EXAMPLE 3

35

[0025] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 33 and 27 (corresponding to the amino acid sequences of SEQ ID NOS: 34 and 28, respectively) as primers and DNA from *Chitinophaga pinensis* DSM 2588 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 5 and 6, respectively.

40 EXAMPLE 4

45

[0026] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 25 and 35 (corresponding to the amino acid sequences of SEQ ID NO: 26 and SEQ ID NO: 36 or 37, respectively) as primers and DNA from *Flavobacterium aquatile* IAM 12316 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 7 and 8, respectively.

EXAMPLE 5

50

[0027] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 29 and 38 (corresponding to the amino acid sequences of SEQ ID NO: 30 and SEQ ID NO: 39 or 40, respectively) as primers and DNA from *Mycobacterium asiaticum* ATCC 25274 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 9 and 10, respectively.

55

EXAMPLE 6

[0028] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID

NOS: 41 and 43 (corresponding to the amino acid sequences of SEQ ID NOS: 42 and 44, respectively) as primers and DNA from *Cytophaga lytica* IFO 16020 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 11 and 12, respectively.

5

EXAMPLE 7

[0029] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 45 and 48 (corresponding to the amino acid sequences of SEQ ID NO: 46 or 47 and SEQ ID NO: 49, respectively) 10 as primers and DNA from *Synechococcus* sp. PCC 6301 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 13 and 14, respectively.

EXAMPLE 8

15

[0030] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 53 and 62 (corresponding to the amino acid sequences of SEQ ID NO: 54, 55, 56 or 57 and SEQ ID NO: 63 or 64, respectively) as primers and DNA from *Caulobacter crescentus* ATCC 15252 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 15 and 16, respectively.

EXAMPLE 9

25

[0031] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 53 and 58 (corresponding to the amino acid sequences of SEQ ID NO: 54, 55, 56 or 57 and SEQ ID NO: 59, respectively) as primers and DNA from *Pseudomonas putida* ATCC 17484 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 17 and 18, respectively.

30

EXAMPLE 10

35

[0032] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 65 and 50 (corresponding to the amino acid sequences of SEQ ID NO: 66, 67 or 68 and SEQ ID NO: 51 or 52, respectively) as primers and DNA from *Synechococcus* sp. PCC 6301 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 19 and 20, respectively.

EXAMPLE 11

40

[0033] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 60 and 31 (corresponding to the amino acid sequences of SEQ ID NOS: 61 and 32, respectively) as primers and DNA from *Caulobacter crescentus* ATCC 15252 strain as a template. The PCR amplification conditions were the same as in Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 21 and 22, respectively.

45

EXAMPLE 12

50

[0034] A PCR was performed using oligonucleotides represented by the nucleotide sequences shown in SEQ ID NOS: 25 and 43 (corresponding to the amino acid sequences of SEQ ID NOS: 26 and 44, respectively) as primers and DNA from an unidentified strain MBIC 1544 as a template. The PCR amplification conditions were the same as Example 1. The nucleotide sequence of the amplified DNA fragment and the amino acid sequence deduced therefrom are shown in SEQ ID NOS: 23 and 24, respectively.

55

[0035] This nucleotide sequence was compared with the nucleotide sequence database possessed by the applicant. As a result, the unidentified strain MBIC 1544 was identified as *Cytophaga lytica*.
[0036] With the nucleotide sequence of *gyrB* determined by the present invention, it is possible to classify or identify an unidentified microorganism strain quickly and accurately. Besides, according to the present invention, PCR primers for monitoring a specific microorganism which are needed in risk assessment in various bioprocesses can be designed easily. Also, the present invention enables highly accurate monitoring of changes in mycelial tufts.

EP 0 935 003 A2

[0037] The invention thus allows the determination of the presence or amount of a microorganism in a sample. The invention may be applicable in medical and industrial contexts. For example, in a medical context a sample can be tested for the presence of a microorganism, which may be useful in assessing infection. Therefore, the sample could be serum, blood plasma, or a swab from the eye, ear, mouth, throat, urethra, cervix, vagina, penis or rectum. Alternatively the sample could be a sweep from a culture of bacteria grown on solid or in a liquid media.

5 [0038] In an industrial context, a sample could be tested to determine the amount of a microorganism in a fermentation process. Alternatively a sample could be tested to assess contamination of fermentation broths by unwanted microorganisms. Thus, the sample can be a sample from any bioprocess or fermentation process, where the amount of or presence of a microorganism needs to be ascertained.

10

15

20

25

30

35

40

45

50

55

EP 0 935 003 A2

SEQUENCE LISTING

5 SEQ ID NO: 1

SEQUENCE LENGTH: 1212

10 SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double

TOPOLOGY: linear

15 MOLECULE TYPE: genomic DNA
ORIGINAL SOURCE

ORGANISM: *Bacteroides vulgatus*

20 STRAIN: IFO 14291

SEQUENCE DESCRIPTION

GAC AAA GGT TCT TAC AAG GTT TCA GGC GGT CTG CAC GGT GTA GGT GTT 48

25 Asp Lys Gly Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val
1 5 10 15

TCT TGT GTG AAC GCC TTG TCT ACT CAC ATG ACC ACA CAG GTA TTC CGC 96

30 Ser Cys Val Asn Ala Leu Ser Thr His Met Thr Thr Gln Val Phe Arg
20 25 30

GGT GGC AAG ATC TAC CAG CAG GAA TAC AGC TGC GGA CAT CCT TTG TAT 144

35 Gly Gly Lys Ile Tyr Gln Gln Glu Tyr Ser Cys Gly His Pro Leu Tyr
35 40 45

TCT GTA AAA GAA GTA GGA ACA GCT GAT ATT ACC GGA ACA AAA CAG ACT 192

40 Ser Val Lys Glu Val Gly Thr Ala Asp Ile Thr Gly Thr Lys Gln Thr

50 55 60

45 TTC TGG CCG GAT GAT ACC ATC TTC ACT GTT ACC GAA TAT AAG TTT GAC 240

Phe Trp Pro Asp Asp Thr Ile Phe Thr Val Thr Glu Tyr Lys Phe Asp

65 70 75 80

50 ATT CTA CAG GCA CGT ATG CGT GAA TTG GCC TAC TTG AAC AAA GGT ATC 288

Ile Leu Gln Ala Arg Met Arg Glu Leu Ala Tyr Leu Asn Lys Gly Ile

55

EP 0 935 003 A2

	85	90	95	
5	ACC ATT TCA CTG ACC GAC CGC CGG ATC AAA GAA GAA GAT GGC AGC TTC			336
	Thr Ile Ser Leu Thr Asp Arg Arg Ile Lys Glu Glu Asp Gly Ser Phe			
	100	105	110	
10	AAG AAA GAA ATA TTC CAT TCG GAC GAA GGA GTG AAA GAG TTT GTA CGT			384
	Lys Lys Glu Ile Phe His Ser Asp Glu Gly Val Lys Glu Phe Val Arg			
	115	120	125	
15	TTC CTG AAC CGT AAC AAC GAA GCG CTG ATT AAT GAT GTC ATT TAT CTG			432
	Phe Leu Asn Arg Asn Asn Glu Ala Leu Ile Asn Asp Val Ile Tyr Leu			
	130	135	140	
20	AAT ACC GAA AAA AAC AAT ACC CCC ATT GAA TGT GCC ATC ATG TAC AAT			480
	Asn Thr Glu Lys Asn Asn Thr Pro Ile Glu Cys Ala Ile Met Tyr Asn			
25	145	150	155	160
	ACA GGC TAT CGT GAA AGC CTG CAT TCG TAT GTA AAC AAT ATC AAT ACA			528
	Thr Gly Tyr Arg Glu Ser Leu His Ser Tyr Val Asn Asn Ile Asn Thr			
30	165	170	175	
	ATA GAA GGC GGT ACA CAC GAG GCC GGT TTC CGC AGC GCA TTA ACC CGT			576
	Ile Glu Gly Thr His Glu Ala Gly Phe Arg Ser Ala Leu Thr Arg			
35	180	185	190	
	GTA CTG AAG AAA TAT GCG GAA GAT ACC AAA GCA CTG GAA AAA GCA AAA			624
	Val Leu Lys Lys Tyr Ala Glu Asp Thr Lys Ala Leu Glu Lys Ala Lys			
40	195	200	205	
	GTC GAG ATT TCG GGA GAG GAC TTC CGC GAA GGC TTG ATT GCC GTC ATT			672
	Val Glu Ile Ser Gly Glu Asp Phe Arg Glu Gly Leu Ile Ala Val Ile			
45	210	215	220	
	TCA GTG AAA GTA GCC GAG CCG CAG TTC GAA GGA CAG ACC AAG ACC AAG			720
50	Ser Val Lys Val Ala Glu Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys			
	225	230	235	240

55

EP 0 935 003 A2

CTG GGC AAC AGC GAA GTG AGT GGT GCC GTG AAC CAA GCT GTA GGC GAA 768
 Leu Gly Asn Ser Glu Val Ser Gly Ala Val Asn Gln Ala Val Gly Glu
 5 245 250 255
 GCG CTT ACA TAT TAT CTG GAA GAA CAT CCG AAA GAA GCA AAA CAG ATT 816
 Ala Leu Thr Tyr Tyr Leu Glu Glu His Pro Lys Glu Ala Lys Gln Ile
 10 260 265 270
 GTT GAC AAA GTG ATC CTG GCT GCA ACA GCG CGT ATC GCC GCA CGC AAG 864
 Val Asp Lys Val Ile Leu Ala Ala Thr Ala Arg Ile Ala Ala Arg Lys
 15 275 280 285
 GCA CGT GAA TCT GTT CAA AGA AAG AGT CCG ATG GGC GGT GGC GGA CTG 912
 Ala Arg Glu Ser Val Gln Arg Lys Ser Pro Met Gly Gly Gly Leu
 20 290 295 300
 CCG GGC AAA CTG GCC GAC TGC TCG AGC CGT AAT CCG GAG GAA TGT GAA 960
 Pro Gly Lys Leu Ala Asp Cys Ser Ser Arg Asn Pro Glu Glu Cys Glu
 25 305 310 315 320
 CTA TTC CTG GTC GAG GGT GAC TCG GCA GGT GGT TCT GCC AAG CAA GGA 1008
 Leu Phe Leu Val Glu Gly Asp Ser Ala Gly Gly Ser Ala Lys Gln Gly
 30 325 330 335
 CGT AGC CGT GCC TTC CAG GCA ATT CTA CCT TTG AGG GGT AAA ATC CTG 1056
 Arg Ser Arg Ala Phe Gln Ala Ile Leu Pro Leu Arg Gly Lys Ile Leu
 35 340 345 350
 AAT GTG GAA AAA GCG ATG TGG CAC AAG GCT TTT GAA AGC GAT GAG GTC 1104
 Asn Val Glu Lys Ala Met Trp His Lys Ala Phe Glu Ser Asp Glu Val
 40 355 360 365
 AAT AAT ATC ATC ACC GCC CTG GGT GTC CGT TTC GGT GTG GAC GGA AAT 1152
 Asn Asn Ile Ile Thr Ala Leu Gly Val Arg Phe Gly Val Asp Gly Asn
 45 370 375 380
 GAT GAC AGC AAA AAA GCG AAC ATC GAC AAG CTG CGT TAT CAC AAA GTG 1200
 Asp Asp Ser Lys Lys Ala Asn Ile Asp Lys Leu Arg Tyr His Lys Val
 50
 55

EP 0 935 003 A2

385

390

395

400

5 GTG ATC ATG ACC

Val Ile Met Thr

10 SEQ ID NO: 2

SEQUENCE LENGTH: 404

SEQUENCE TYPE: amino acid

15 TOPOLOGY: unknown

MOLECULE TYPE: protein

ORIGINAL SOURCE

20 ORGANISM: *Bacteroides vulgaris*

STRAIN: IFO 14291

SEQUENCE DESCRIPTION

25 Asp Lys Gly Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val

1 5 10 15

30 Ser Cys Val Asn Ala Leu Ser Thr His Met Thr Thr Gln Val Phe Arg

20 25 30

Gly Gly Lys Ile Tyr Gln Gln Glu Tyr Ser Cys Gly His Pro Leu Tyr

35 40 45

Ser Val Lys Glu Val Gly Thr Ala Asp Ile Thr Gly Thr Lys Gln Thr

50 55 60

40 Phe Trp Pro Asp Asp Thr Ile Phe Thr Val Thr Glu Tyr Lys Phe Asp

65 70 75 80

Ile Leu Gln Ala Arg Met Arg Glu Leu Ala Tyr Leu Asn Lys Gly Ile

45 85 90 95

Thr Ile Ser Leu Thr Asp Arg Arg Ile Lys Glu Glu Asp Gly Ser Phe

100 105 110

50 Lys Lys Glu Ile Phe His Ser Asp Glu Gly Val Lys Glu Phe Val Arg

115 120 125

55

EP 0935 003 A2

Phe Leu Asn Arg Asn Asn Glu Ala Leu Ile Asn Asp Val Ile Tyr Leu
130 135 140
5 Asn Thr Glu Lys Asn Asn Thr Pro Ile Glu Cys Ala Ile Met Tyr Asn
145 150 155 160
10 Thr Gly Tyr Arg Glu Ser Leu His Ser Tyr Val Asn Asn Ile Asn Thr
165 170 175
Ile Glu Gly Gly Thr His Glu Ala Gly Phe Arg Ser Ala Leu Thr Arg
180 185 190
15 Val Leu Lys Lys Tyr Ala Glu Asp Thr Lys Ala Leu Glu Lys Ala Lys
195 200 205
20 Val Glu Ile Ser Gly Glu Asp Phe Arg Glu Gly Leu Ile Ala Val Ile
210 215 220
Ser Val Lys Val Ala Glu Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys
225 230 235 240
25 Leu Gly Asn Ser Glu Val Ser Gly Ala Val Asn Gln Ala Val Gly Glu
245 250 255
30 Ala Leu Thr Tyr Tyr Leu Glu Glu His Pro Lys Glu Ala Lys Gln Ile
260 265 270
Val Asp Lys Val Ile Leu Ala Ala Thr Ala Arg Ile Ala Ala Arg Lys
275 280 285
35 Ala Arg Glu Ser Val Gln Arg Lys Ser Pro Met Gly Gly Gly Leu
290 295 300
40 Pro Gly Lys Leu Ala Asp Cys Ser Ser Arg Asn Pro Glu Glu Cys Glu
305 310 315 320
45 Leu Phe Leu Val Glu Gly Asp Ser Ala Gly Gly Ser Ala Lys Gln Gly
325 330 335
Arg Ser Arg Ala Phe Gln Ala Ile Leu Pro Leu Arg Gly Lys Ile Leu
50 340 345 350
Asn Val Glu Lys Ala Met Trp His Lys Ala Phe Glu Ser Asp Glu Val
55

EP 0 935 003 A2

355 360 365
5 Asn Asn Ile Ile Thr Ala Leu Gly Val Arg Phe Gly Val Asp Gly Asn
370 375 380
Asp Asp Ser Lys Lys Ala Asn Ile Asp Lys Leu Arg Tyr His Lys Val
10 385 390 395 400
Val Ile Met Thr

15 SEQ ID NO: 3
SEQUENCE LENGTH: 1263
SEQUENCE TYPE: nucleic acid
20 STRANDEDNESS: double
TOPOLOGY: linear
MOLECULE TYPE: genomic DNA
25 ORIGINAL SOURCE

ORGANISM: *Mycobacterium simiae*
30 STRAIN: KPM 1403
SEQUENCE DESCRIPTION
GGG GAG AAC AGT GGC TAC ACC GTC AGC GGC GGG TTG CAC GGG GTC GGA 48
35 Gly Glu Asn Ser Gly Tyr Thr Val Ser Gly Gly Leu His Gly Val Gly
1 5 10 15
GTG TCG GTG GTC AAC GCC CTG TCC ACC CGC CTG GAA GTC AAC GTC AAG 96
40 Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asn Val Lys
20 25 30
CGT GAC GGC TAT GAG TGG TTC CAG TAC TAC GAC CCG GCG GTG CCC GGC 144
45 Arg Asp Gly Tyr Glu Trp Phe Gln Tyr Tyr Asp Arg Ala Val Pro Gly
35 40 45
ACC CTC AAG CAA GGC GAG GCG ACC AAG AAG ACC GGC ACC ACG ATC CGG 192
50 Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg
50 55 60

EP 0 935 003 A2

	TTC TGG GCC GAT CCT GAG ATC TTC GAA ACC ACC CAG TAC GAC TTC GAG	240		
5	Phe Trp Ala Asp Pro Glu Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu			
	65	70	75	80
	ACG GTG GCG CGC CGG TTG CAG GAA ATG GCG TTC CTC AAC AAG GGC CTG	288		
10	Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu			
	85	90	95	
	ACC ATC AAC CTC ACC GAC GAA CGT GTC GAG CAG GAC GAG GTG GTC GAT	336		
15	Thr Ile Asn Leu Thr Asp Glu Arg Val Glu Gln Asp Glu Val Val Asp			
	100	105	110	
	GAG GTG GTT AGC GAC ACC GCC GAG GCG CCG AAG TCA GCC GAG GAG CAG	384		
20	Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Gln			
	115	120	125	
	GCG GCC GAA TCG GCC AAG CCG CAC AAG GTC AAG CAC CGC ACG TTC CAC	432		
25	Ala Ala Glu Ser Ala Lys Pro His Lys Val Lys His Arg Thr Phe His			
	130	135	140	
	TAC CCG GGT GGG TTG GTG GAT TTC GTC AAG CAC ATC AAT CGC ACC AAA	480		
30	Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys			
	145	150	155	160
	AAC CCG ATC CAG CAG AGC GTC ATC GAC TTC GAC GGC AAA GGA ACC GGG	528		
35	Asn Pro Ile Gln Gln Ser Val Ile Asp Phe Asp Gly Lys Gly Thr Gly			
	165	170	175	
	CAC GAA GTC GAG ATC GCG ATG CAG TGG AAC GGT GGT TAT TCG GAG TCG	576		
40	His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser			
	180	185	190	
	G TG CAC ACC TTC GCC AAC ACC ATC AAC ACC CAT GAG GGC GGC ACC CAC	624		
45	Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His			
	195	200	205	
	GAG GAG GGC TTC CGC AGC GCG CTG ACC TCG GTG GTG AAC AAG TAC GCC	672		
50	Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala			

EP 0 935 003 A2

	210	215	220	
5	AAA GAC AAG AAG CTG CTC AAG GAC AAG GAT CCC AAC CTC ACC GGC GAC			720
	Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp			
	225	230	235	240
10	GAC ATC CGA GAA GGG CTG GCC GCG GTG ATC TCC GTG AAG GTC GCC GAG			768
	Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu			
	245	250	255	
15	CCG CAG TTC GAG GGC CAG ACT AAG ACG AAA CTC GGC AAC ACC GAG GTC			816
	Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val			
	260	265	270	
20	AAG TCG TTT GTC CAG AAA GTC TGT AAC GAA CAA CTC ACT CAC TGG TTC			864
	Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe			
	275	280	285	
25	GAG GCG AAC CCG TCG GAA GCT AAA ACC GTT GTA AAC AAG GCG GTT TCG			912
	Glu Ala Asn Pro Ser Glu Ala Lys Thr Val Val Asn Lys Ala Val Ser			
	290	295	300	
30	TCG GCC CAG GCC CGC ATT GCG GCG CGT AAG GCG CGG GAG TTG GTG CGG			960
	Ser Ala Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg			
	305	310	315	320
35	CGT AAG AGT GCT ACG GAT TTG GGT GGG TTG CCG GGC AAG TTG GCT GAT			1008
	Arg Lys Ser Ala Thr Asp Leu Gly Leu Pro Gly Lys Leu Ala Asp			
	325	330	335	
40	TGC CGC TCG ACG GAT CCG CGG AAG TCT GAG CTG TAT GTG GTG GAA GGT			1056
	Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly			
	340	345	350	
45	GAT TCC GCG GGT GGG TCG GCG AAA AGT GGG CGT GAT TCG ATG TTC CAG			1104
	Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln			
50	355	360	365	
	GCG ATC TTG CCG CTG CGC GGC AAG ATC ATC AAC GTC GAA AAG GCC CGC			1152

EP 0 935 003 A2

Ala Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg
370 375 380
5 ATC GAT CGG GTG CTG AAA AAC ACC GAA GTC CAG GCC ATC ATC ACC GCG 1200
Ile Asp Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala
10 385 390 395 400
CTG GGC ACC GGC ATC CAC GAC GAA TTC GAC ATC ACC AAA CTG CGT TAC 1248
Leu Gly Thr Gly Ile His Asp Glu Phe Asp Ile Thr Lys Leu Arg Tyr
15 405 410 415
CAC AAG ATC GTG TTG 1263
His Lys Ile Val Leu
20 420

SEQ ID NO: 4

25 SEQUENCE LENGTH: 421

SEQUENCE TYPE: amino acid

30 TOPOLOGY: unknown

MOLECULE TYPE: protein

ORIGINAL SOURCE

35 ORGANISM: *Mycobacterium simiae*

STRAIN: KPM 1403

SEQUENCE DESCRIPTION

40 Gly Glu Asn Ser Gly Tyr Thr Val Ser Gly Gly Leu His Gly Val Gly
1 5 10 15

Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Asn Val Lys
45 20 25 30

Arg Asp Gly Tyr Glu Trp Phe Gln Tyr Tyr Asp Arg Ala Val Pro Gly

35 40 45

50 Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg
50 55 60

55

EP 0 935 003 A2

Phe Trp Ala Asp Pro Glu Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu
65 70 75 80
5 Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu
85 90 95
10 Thr Ile Asn Leu Thr Asp Glu Arg Val Glu Gln Asp Glu Val Val Asp
100 105 110
Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Gln
15 115 120 125
Ala Ala Glu Ser Ala Lys Pro His Lys Val Lys His Arg Thr Phe His
130 135 140
20 Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys
145 150 155 160
Asn Pro Ile Gln Gln Ser Val Ile Asp Phe Asp Gly Lys Thr Gly
25 165 170 175
His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser
180 185 190
30 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His
195 200 205
Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala
35 210 215 220
Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp
40 225 230 235 240
Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu
245 250 255
45 Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Thr Glu Val
260 265 270
Lys Ser Phe Val Gln Lys Val Cys Asn Glu Gln Leu Thr His Trp Phe
50 275 280 285
Glu Ala Asn Pro Ser Glu Ala Lys Thr Val Val Asn Lys Ala Val Ser

55

EP 0 935 003 A2

290 295 300
Ser Ala Gln Ala Arg Ile Ala Ala Arg Lys Ala Arg Glu Leu Val Arg
5 305 310 315 320
Arg Lys Ser Ala Thr Asp Leu Gly Gly Leu Pro Gly Lys Leu Ala Asp
10 325 330 335
Cys Arg Ser Thr Asp Pro Arg Lys Ser Glu Leu Tyr Val Val Glu Gly
15 340 345 350
Asp Ser Ala Gly Gly Ser Ala Lys Ser Gly Arg Asp Ser Met Phe Gln
355 360 365
Ala Ile Leu Pro Leu Arg Gly Lys Ile Ile Asn Val Glu Lys Ala Arg
20 370 375 380
Ile Asp Arg Val Leu Lys Asn Thr Glu Val Gln Ala Ile Ile Thr Ala
385 390 395 400
25 Leu Gly Thr Gly Ile His Asp Glu Phe Asp Ile Thr Lys Leu Arg Tyr
405 410 415
His Lys Ile Val Leu
30 420
35 SEQ ID NO: 5
SEQUENCE LENGTH: 660
SEQUENCE TYPE: nucleic acid
40 STRANDEDNESS: double
TOPOLOGY: linear
MOLECULE TYPE: genomic DNA
45 ORIGINAL SOURCE
ORGANISM: Chitinophaga pinensis
STRAIN: DSM 2588
50 SEQUENCE DESCRIPTION
GTA GCA GGC TTC CGC CGT GCG ATA ACC CGT ATC TTC AAG AGC TAT GGT 48

55

EP 0 935 003 A2

	Val Ala Gly Phe Arg Arg Ala Ile Thr Arg Ile Phe Lys Ser Tyr Gly		
1	5	10	15
5	GAT AAG AAC AAA ATG TTC GAA AAA ACC AAG ATC GAA GTA ACA GGT GAT		96
	Asp Lys Asn Lys Met Phe Glu Lys Thr Lys Ile Glu Val Thr Gly Asp		
10	20	25	30
	GAC TTC CGT GAA GGT CTG AGC GCT ATC ATC AGC GTA AAA GTA CCT GAA		144
	Asp Phe Arg Glu Gly Leu Ser Ala Ile Ile Ser Val Lys Val Pro Glu		
15	35	40	45
	CCA CAG TTC GAA GGC CAG ACC AAA ACC AAA CTC GGT AAC TCC GAT GTA		192
	Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Ser Asp Val		
20	50	55	60
	ATG GGG GTT GTG GAC AGT TCC GTA GCA GCC GTA CTG GAT GCC TAC CTG		240
	Met Gly Val Val Asp Ser Ser Val Ala Ala Val Leu Asp Ala Tyr Leu		
25	65	70	75
	GAA GAA CAT CCC CGC GAA GCC AAG ATC ATT ATC AAT AAA GTG GTA CTG		288
	Glu Glu His Pro Arg Glu Ala Lys Ile Ile Ile Asn Lys Val Val Leu		
30	85	90	95
	GCA GCA CAG GCG CGT GAA GCA GCC CGT AAA GCA CGC CAG ATG GTA CAG		336
	Ala Ala Gln Ala Arg Glu Ala Ala Arg Lys Ala Arg Gln Met Val Gln		
	100	105	110
35	CGT AAG AGC GTA CTG AGT GGA AGC GGC TTG CCT GGT AAA CTG GCT GAC		384
	Arg Lys Ser Val Leu Ser Gly Ser Gly Leu Pro Gly Lys Leu Ala Asp		
40	115	120	125
	TGC TCT GAA AAT GAT CCT GAA AAA TGT GAA CTG TAC CTG GTA GAG GGT		432
45	Cys Ser Glu Asn Asp Pro Glu Lys Cys Glu Leu Tyr Leu Val Glu Gly		
	130	135	140
50	GAC TCC GCA GGT GGT ACG GCT AAA CAA GGA CGT AAC CGT AGC TTC CAG		480
	Asp Ser Ala Gly Gly Thr Ala Lys Gln Gly Arg Asn Arg Ser Phe Gln		
	145	150	155
			160

EP 0 935 003 A2

GCG ATC CTG CCG CTC AGG GGT AAA ATC CTG AAC GTG GAG AAA GCC ATG 528
Ala Ile Leu Pro Leu Arg Gly Lys Ile Leu Asn Val Glu Lys Ala Met
5 165 170 175
GAG CAT AAG ATA TAT GAG AAT GAG GAG ATT AAA AAC ATC TTC ACC GCA 576
Glu His Lys Ile Tyr Glu Asn Glu Glu Ile Lys Asn Ile Phe Thr Ala
10 180 185 190
CTT GGT GTA ACC ATC GGT ACG GAA GAA GAT GAC AAA GCC CTC AAC CTC 624
Leu Gly Val Thr Ile Gly Thr Glu Glu Asp Asp Lys Ala Leu Asn Leu
15 195 200 205
TCC AAA CTG CGC TAT CAC AAA CTG ATC ATC ATG ACG 660
Ser Lys Leu Arg Tyr His Lys Leu Ile Ile Met Thr
20 210 215 220

25 SEQ ID NO: 6

SEQUENCE LENGTH: 220

SEQUENCE TYPE: amino acid

30 TOPOLOGY: unknown

MOLECULE TYPE: protein

ORIGINAL SOURCE

35 ORGANISM: Chitinophaga pinensis

STRAIN: DSM 2588

SEQUENCE DESCRIPTION

40 Val Ala Gly Phe Arg Arg Ala Ile Thr Arg Ile Phe Lys Ser Tyr Gly

1 5 10 15

45 Asp Lys Asn Lys Met Phe Glu Lys Thr Lys Ile Glu Val Thr Gly Asp

20 25 30

Asp Phe Arg Glu Gly Leu Ser Ala Ile Ile Ser Val Lys Val Pro Glu

50 35 40 45

Pro Gln Phe Glu Gly Gln Thr Lys Thr Lys Leu Gly Asn Ser Asp Val

55

EP 0 935 003 A2

	50	55	60
5	Met Gly Val Val Asp Ser Ser Val Ala Ala Val Leu Asp Ala Tyr Leu		
	65	70	75
	Glu Glu His Pro Arg Glu Ala Lys Ile Ile Ile Asn Lys Val Val Leu		80
10			
	85	90	95
	Ala Ala Gln Ala Arg Glu Ala Ala Arg Lys Ala Arg Gln Met Val Gln		
	100	105	110
15	Arg Lys Ser Val Leu Ser Gly Ser Gly Leu Pro Gly Lys Leu Ala Asp		
	115	120	125
	Cys Ser Glu Asn Asp Pro Glu Lys Cys Glu Leu Tyr Leu Val Glu Gly		
20	130	135	140
	Asp Ser Ala Gly Gly Thr Ala Lys Gln Gly Arg Asn Arg Ser Phe Gln		
	145	150	155
25	Ala Ile Leu Pro Leu Arg Gly Lys Ile Leu Asn Val Glu Lys Ala Met		160
	165	170	175
	Glu His Lys Ile Tyr Glu Asn Glu Glu Ile Lys Asn Ile Phe Thr Ala		
30	180	185	190
	Leu Gly Val Thr Ile Gly Thr Glu Glu Asp Asp Lys Ala Leu Asn Leu		
35	195	200	205
	Ser Lys Leu Arg Tyr His Lys Leu Ile Ile Met Thr		
	210	215	220
40			

SEQ ID NO: 7

SEQUENCE LENGTH: 537

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: genomic DNA

ORIGINAL SOURCE

EP 0 935 003 A2

ORGANISM: *Flavobacterium aquatile*

STRAIN: IAM 12316

5

SEQUENCE DESCRIPTION

10

GAT AAA GAT TCT TAT AAA GTT TCG GGT GGA CTT CAC GGA GTT GGT GTT 48

15

Asp Lys Asp Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val

1 5 10 15

20

TCT TGC GTT AAT GCA CTT TCT GAT AAC CTA AAA GCA ACC GTT TTT AGA 96

25

Ser Cys Val Asn Ala Leu Ser Asp Asn Leu Lys Ala Thr Val Phe Arg

20 25 30

30

GAC GGA AAA GTG TAC GAG CAA GAA TAT GAA AAA GGT AAA GCA ATG TAT 144

Asp Gly Lys Val Tyr Glu Gln Glu Tyr Glu Lys Gly Lys Ala Met Tyr

35 40 45

35

CCG GTT AAG CAA GAA GTT GGT GAA ACA ACA AAG CGA GGA ACA ATG GTT ACT 192

Pro Val Lys Gln Val Gly Glu Thr Thr Lys Arg Gly Thr Met Val Thr

50 55 60

40

TTT CAT CCT GAT AAA ACC ATT TTT ACT CAA ACA ATT GAG TAT TCT TAT 240

Phe His Pro Asp Lys Thr Ile Phe Thr Gln Thr Ile Glu Tyr Ser Tyr

65 70 75 80

35

GAT ACA CTT GCA GCA CGT ATG CGT GAA TTA TCT TTC CTG AAT AAA GGA 288

Asp Thr Leu Ala Ala Arg Met Arg Glu Leu Ser Phe Leu Asn Lys Gly

85 90 95

40

ATT ACA ATC ACA CTT ACA GAT AAA AGA CAT ACT AAA GAC AAC GGC GAT 336

Ile Thr Ile Thr Leu Thr Asp Lys Arg His Thr Lys Asp Asn Gly Asp

100 105 110

45

TTT GAA GGT GAA GTT TTT CAT TCT AAA GAA GGG CTT AAA GAA TTC GTT 384

Phe Glu Gly Glu Val Phe His Ser Lys Glu Gly Leu Lys Glu Phe Val

115 120 125

50

CGA TTT TTA GAT GCT GGT AGA GAA CCA ATT ATT TCT CAC GTA ATA AGC 432

Arg Phe Leu Asp Ala Gly Arg Glu Pro Ile Ile Ser His Val Ile Ser

55

EP 0 935 003 A2

5	ATG GAG CAC GAA AAA GGA GAA GTT CCT GTT GAG GTT GCT CTT GTT TAC	130	135	140	480
	Met Glu His Glu Lys Gly Glu Val Pro Val Glu Val Ala Leu Val Tyr				
10	145	150	155	160	
	AAT ACA AGT TAC TCC GAA AAT ATT TTC TCT TAC GTA AAT AAT ATT AAC				528
	Asn Thr Ser Tyr Ser Glu Asn Ile Phe Ser Tyr Val Asn Asn Ile Asn				
	165	170	175		
15	ACG CAC GAA				537
	Thr His Glu				
20	SEQ ID NO: 8				
	SEQUENCE LENGTH: 179				
25	SEQUENCE TYPE: amino acid				
	TOPOLOGY: unknown				
	MOLECULE TYPE: protein				
30	ORIGINAL SOURCE				
	ORGANISM: <i>Flavobacterium aquatile</i>				
	STRAIN: IAM 12316				
35	SEQUENCE DESCRIPTION				
	Asp Lys Asp Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val				
	1	5	10	15	
40	Ser Cys Val Asn Ala Leu Ser Asp Asn Leu Lys Ala Thr Val Phe Arg				
	20	25	30		
	Asp Gly Lys Val Tyr Glu Gln Glu Tyr Glu Lys Gly Lys Ala Met Tyr				
45	35	40	45		
	Pro Val Lys Gln Val Gly Glu Thr Thr Lys Arg Gly Thr Met Val Thr				
	50	55	60		
50	Phe His Pro Asp Lys Thr Ile Phe Thr Gln Thr Ile Glu Tyr Ser Tyr				
	65	70	75	80	

EP 0 935 003 A2

Asp Thr Leu Ala Ala Arg Met Arg Glu Leu Ser Phe Leu Asn Lys Gly
85 90 95
5 Ile Thr Ile Thr Leu Thr Asp Lys Arg His Thr Lys Asp Asn Gly Asp
100 105 110
10 Phe Glu Gly Glu Val Phe His Ser Lys Glu Gly Leu Lys Glu Phe Val
115 120 125
Arg Phe Leu Asp Ala Gly Arg Glu Pro Ile Ile Ser His Val Ile Ser
15 130 135 140
Met Glu His Glu Lys Gly Glu Val Pro Val Glu Val Ala Leu Val Tyr
145 150 155 160
20 Asn Thr Ser Tyr Ser Glu Asn Ile Phe Ser Tyr Val Asn Asn Ile Asn
165 170 175
25 Thr His Glu

SEQ ID NO: 9
30 SEQUENCE LENGTH: 783
SEQUENCE TYPE: nucleic acid
STRANDEDNESS: double
35 TOPOLOGY: linear
MOLECULE TYPE: genomic DNA
ORIGINAL SOURCE
40 ORGANISM: *Mycobacterium asiaticum*
STRAIN: ATCC 25274
SEQUENCE DESCRIPTION
45 GGC GAG AAC AGC GGC TAC ACC GTC AGC GGT GGG TTG CAC GGA GTG GGC 48
Gly Glu Asn Ser Gly Tyr Thr Val Ser Gly Gly Leu His Gly Val Gly
50 1 5 10 15
GTG TCG GTG GTC AAC GCG CTG TCC ACC CGC CTG GAG GTC ACC ATC AAG 96
55

EP 0 935 003 A2

	Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Thr Ile Lys			
	20	25	30	
5	CGC GAC GGG CAC GAG TGG TTT CAG TAC TAC GAC CGC GCC GTG CCC GGA			144
	Arg Asp Gly His Glu Trp Phe Gln Tyr Tyr Asp Arg Ala Val Pro Gly			
	35	40	45	
10	ACC CTC AAG CAG GGC GAG GCC ACC AAG AAG ACC GGA ACC ACG ATC AGG			192
	Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg			
	50	55	60	
15	TTC TGG GCG GAC CCC GAA ATC TTC GAA ACC ACA CAG TAC GAC TTC GAG			240
	Phe Trp Ala Asp Pro Glu Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu			
20	65	70	75	80
	ACC GTG GCG CGG CGG CTG CAG GAG ATG GCC TTC CTC AAC AAG GGC CTC			288
	Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu			
	85	90	95	
	ACC ATC AAC CTC ACC GAC GAA CGA GTG GAG CAG GAC GAG GTC GTC GAC			336
	Thr Ile Asn Leu Thr Asp Glu Arg Val Glu Gln Asp Glu Val Val Asp			
30	100	105	110	
	GAG GTC GTC AGC GAC ACC GCC GAG GCA CCG AAG TCC GCC GAA GAG AAG			384
	Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Lys			
	115	120	125	
	GCC GCG GAA TCG ACT GCG CCA CAC AAG GTC AAG CAC CGC ACC TTC CAC			432
	Ala Ala Glu Ser Thr Ala Pro His Lys Val Lys His Arg Thr Phe His			
40	130	135	140	
	TAC CCC GGC GGT CTG GTC GAC TTC GTC AAG CAC ATC AAC CGC ACC AAG			480
	Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys			
	145	150	155	160
	AGC CCG ATC CAG CAG AGC GTC ATC GAT TTC GAC GCC AAG GGC ACC GGC			528
50	Ser Pro Ile Gln Gln Ser Val Ile Asp Phe Asp Gly Lys Gly Thr Gly			
	165	170	175	

EP 0 935 003 A2

CAC GAG GTC GAG ATC GCC ATG CAG TGG AAC GGC GGC TAC TCG GAG TCC 576
5 His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser
180 185 190

GTC CAC ACC TTC GCC AAC ACC ATC AAC ACG CAC GAG GGC GGC ACC CAC 624
10 Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His
195 200 205

GAG GAG GGC TTC CGC AGC GCG CTG ACG TCG GTG GTG AAC AAG TAC GCC 672
15 Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala
210 215 220

AAA GAC AAG AAA CTG CTG AAG GAC AAA GAT CCC AAC CTC ACC GGT GAC 720
20 Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp
225 230 235 240

GAC ATC CGT GAG GGC TTG GCC GCG GTC ATC TCG GTG AAG GTC GCC GAG 768
25 Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu
245 250 255

CCA CAG TTC GAA GGC 783
30 Pro Gln Phe Glu Gly
260

35 SEQ ID NO: 10

SEQUENCE LENGTH: 261

40 SEQUENCE TYPE: amino acid

TOPOLOGY: unknown

MOLECULE TYPE: protein

45 ORIGINAL SOURCE

ORGANISM: *Mycobacterium asiaticum*

STRAIN: ATCC 25274

50 SEQUENCE DESCRIPTION

Gly Glu Asn Ser Gly Tyr Thr Val Ser Gly Gly Leu His Gly Val Gly

55

EP 0 935 003 A2

1	5	10	15
	Val Ser Val Val Asn Ala Leu Ser Thr Arg Leu Glu Val Thr Ile Lys		
5	20	25	30
	Arg Asp Gly His Glu Trp Phe Gln Tyr Tyr Asp Arg Ala Val Pro Gly		
	35	40	45
10	Thr Leu Lys Gln Gly Glu Ala Thr Lys Lys Thr Gly Thr Thr Ile Arg		
	50	55	60
	Phe Trp Ala Asp Pro Glu Ile Phe Glu Thr Thr Gln Tyr Asp Phe Glu		
15	65	70	75
	60	75	80
	Thr Val Ala Arg Arg Leu Gln Glu Met Ala Phe Leu Asn Lys Gly Leu		
20	85	90	95
	Thr Ile Asn Leu Thr Asp Glu Arg Val Glu Gln Asp Glu Val Val Asp		
	100	105	110
25	Glu Val Val Ser Asp Thr Ala Glu Ala Pro Lys Ser Ala Glu Glu Lys		
	115	120	125
	Ala Ala Glu Ser Thr Ala Pro His Lys Val Lys His Arg Thr Phe His		
30	130	135	140
	Tyr Pro Gly Gly Leu Val Asp Phe Val Lys His Ile Asn Arg Thr Lys		
35	145	150	155
	140	155	160
	Ser Pro Ile Gln Gln Ser Val Ile Asp Phe Asp Gly Lys Gly Thr Gly		
	165	170	175
40	His Glu Val Glu Ile Ala Met Gln Trp Asn Gly Gly Tyr Ser Glu Ser		
	180	185	190
	Val His Thr Phe Ala Asn Thr Ile Asn Thr His Glu Gly Gly Thr His		
45	195	200	205
	190	200	205
	Glu Glu Gly Phe Arg Ser Ala Leu Thr Ser Val Val Asn Lys Tyr Ala		
50	210	215	220
	Lys Asp Lys Lys Leu Leu Lys Asp Lys Asp Pro Asn Leu Thr Gly Asp		
	225	230	235
	220	235	240

55

EP 0 935 003 A2

Asp Ile Arg Glu Gly Leu Ala Ala Val Ile Ser Val Lys Val Ala Glu
245 250 255

5 Pro Gln Phe Glu Gly
260

10 SEQ ID NO: 11
SEQUENCE LENGTH: 195

15 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

TOPOLOGY: linear

20 MOLECULE TYPE: genomic DNA

ORIGINAL SOURCE

25 ORGANISM: *Cytophaga lytica*

STRAIN: IPO 16020

SEQUENCE DESCRIPTION

30 AGC CAC ATT GAA ACT TTA ATT CTT ACA TTC TTC CGT TTT ATG CGA 48
Ser His Ile Glu Thr Leu Ile Leu Thr Phe Phe Phe Arg Phe Met Arg

1 5 10 15

35 GAA CTA ATA GAA GGC GGA CAC GTT TAC ATA GCA ACA CCA CCT TTA TAT 96
Glu Leu Ile Glu Gly Gly His Val Tyr Ile Ala Thr Pro Pro Leu Tyr

20 25 30

40 TTA GTT AAA AAA GGA ACT AAA AAG CGT TAT GCT TGG AAT GAT AAA GAA 144
Leu Val Lys Lys Gly Thr Lys Lys Arg Tyr Ala Trp Asn Asp Lys Glu

35 40 45

45 CGA GAT GAA ATA GCA GAT AGC TTT AAT GGT AGT GTA GGT ATC CAA AGA 192
Arg Asp Glu Ile Ala Asp Ser Phe Asn Gly Ser Val Gly Ile Gln Arg

50 55 60

55 TAT 195
Tyr

55

65

5 SEQ ID NO: 12

SEQUENCE LENGTH: 65

10 SEQUENCE TYPE: amino acid

TOPOLOGY: unknown

MOLECULE TYPE: protein

15 ORIGINAL SOURCE

ORGANISM: *Cytophaga lytica*

STRAIN: IFO 16020

20 SEQUENCE DESCRIPTION

Ser His Ile Glu Thr Leu Ile Leu Thr Phe Phe Phe Arg Phe Met Arg

1 5 10 15

25 Glu Leu Ile Glu Gly Gly His Val Tyr Ile Ala Thr Pro Pro Leu Tyr

20 25 30

30 Leu Val Lys Lys Gly Thr Lys Lys Arg Tyr Ala Trp Asn Asp Lys Glu

35 40 45

Arg Asp Glu Ile Ala Asp Ser Phe Asn Gly Ser Val Gly Ile Gln Arg

35 50 55 60

Tyr

65

40

45 SEQ ID NO: 13

SEQUENCE LENGTH: 1170

SEQUENCE TYPE: nucleic acid

50 STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: genomic DNA

55

EP 0 935 003 A2

ORIGINAL SOURCE

ORGANISM: *Synechococcus* sp.

5

STRAIN: PPC 6301

SEQUENCE DESCRIPTION

GTG GTG GAC AAC GCC GTC GAC AAA GCC TTG GCG GGC TAC TGC AAT ACC 48
Val Val Asp Asn Ala Val Asp Lys Ala Leu Ala Gly Tyr Cys Asn Thr
1 5 10 15
ATT GAT GTT CGT CTG CTC AAA GAC GGC TCC TGC CAA GTC ACC GAT AAC 96
Ile Asp Val Arg Leu Leu Lys Asp Gly Ser Cys Gln Val Thr Asp Asn
15 20 25 30
GGT CGC GGC ATT CCC ACA GAT ATT CAC CCC CAA ACC GGG AAG TCT GCT 144
Gly Arg Gly Ile Pro Thr Asp Ile His Pro Gln Thr Gly Lys Ser Ala
20 35 40 45
CTC GAA ACC GTG CTG ACG ATT CTG CAC GCG GGC GGC AAG TTT GGC GGT 192
Leu Glu Thr Val Leu Thr Ile Leu His Ala Gly Gly Lys Phe Gly Gly
25 50 55 60
GGC GGT TAT AAG GTG TCG GGG GGT CTG CAC GGC GTC GGT GTG TCT GTC 240
Gly Gly Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val Ser Val
30 65 70 75 80
GTC AAC GCC CTC TCA GAA TAT GTC GAA GTC ACC GTG TGG CGG GAA GGC 288
Val Asn Ala Leu Ser Glu Tyr Val Glu Val Thr Val Trp Arg Glu Gly
35 85 90 95
AAA ACC CAC CAA CAG CGC TTT GAA CAG GGC AAC CCG ATC GGG GAG TTG 336
Lys Thr His Gln Gln Arg Phe Glu Gln Gly Asn Pro Ile Gly Glu Leu
40 100 105 110
CAA GTT GCC CCG GAT GCC GAC GAT CGC CGC GGG ACA CAA GTT CGT TTC 384
Gln Val Ala Pro Asp Ala Asp Asp Arg Arg Gly Thr Gln Val Arg Phe
45 115 120 125
AAA CCA GAC GCC ACG ATC TTT TCT GAA ACA ACC GAG TTC GAT TAC GGC 432

55

EP 0 935 003 A2

	Lys Pro Asp Ala Thr Ile Phe Ser Glu Thr Thr Glu Phe Asp Tyr Gly			
5	130	135	140	
	ACC CTA GCA AGC CGA TTG AAG GAG CTA GCC TAT CTG AAT GCG GGC GTC			480
	Thr Leu Ala Ser Arg Leu Lys Glu Leu Ala Tyr Leu Asn Ala Gly Val			
10	145	150	155	160
	CGC ATC GAC TTT ACC GAT GAG CGG CTG CAG CTC ACC AAG AAT CAC GAG			528
	Arg Ile Asp Phe Thr Asp Glu Arg Leu Gln Leu Thr Lys Asn His Glu			
15	165	170	175	
	CCC CAT CAA GAA ACC TAT TAC TTT GAA GGC GGT ATT CGC GAA TAC GTC			576
	Pro His Gln Glu Thr Tyr Tyr Phe Glu Gly Gly Ile Arg Glu Tyr Val			
20	180	185	190	
	GCC TAC ATG AAT ACC GAT AAA CAG GCG CTG CAC TCA GAG ATT ATC TTT			624
	Ala Tyr Met Asn Thr Asp Lys Gln Ala Leu His Ser Glu Ile Ile Phe			
25	195	200	205	
	GTG CAA TCC GAA AAA GAT GGC GTC CAA GTT GAA GCT GCA TTG CAA TGG			672
	Val Gln Ser Glu Lys Asp Gly Val Gln Val Glu Ala Ala Leu Gln Trp			
30	210	215	220	
	TGC GTT GAC GCC TAC AGC GAC AAC ATT CTG GGC TTT GCC AAC AAC ATC			720
	Cys Val Asp Ala Tyr Ser Asp Asn Ile Leu Gly Phe Ala Asn Asn Ile			
35	225	230	235	240
	CGC ACG ATT GAC GGC GGC ACC CAT ATT GAG GGG CTC AAA ACT GTT CTG			768
	Arg Thr Ile Asp Gly Gly Thr His Ile Glu Gly Leu Lys Thr Val Leu			
40	245	250	255	
	ACG CGG ACG ATG AAC ACG ATC GCC CGC AAA CGG AAT AAA CGC AAG GAT			816
	Thr Arg Thr Met Asn Thr Ile Ala Arg Lys Arg Asn Lys Arg Lys Asp			
45	260	265	270	
	GCC GAC AAT AAC CTG TCG GGC GAG AAT ATT CGC GAA GGG TTA ACA GCG			864
	Ala Asp Asn Asn Leu Ser Gly Glu Asn Ile Arg Glu Gly Leu Thr Ala			
50	275	280	285	

EP 0 935 003 A2

ATC GTT TCG GTC AAA GTT CCG GAT CCG GAA TTT GAA GGG CAA ACC AAA 912
Ile Val Ser Val Lys Val Pro Asp Pro Glu Phe Gly Gln Thr Lys
5 290 295 300
ACA AAG CTC GGC AAT ACC GAA GTT CGC GGC ATC GTC GAT ACG CTC GTG 960
Thr Lys Leu Gly Asn Thr Glu Val Arg Gly Ile Val Asp Thr Leu Val
10 305 310 315 320
GGC GAA ACG TTG ACG GAA TAT CTG GAA TTC CAT CCC AGC GTT GCC GAT 1008
15 Gly Glu Thr Leu Thr Glu Tyr Leu Glu Phe His Pro Ser Val Ala Asp
325 330 335
TTG ATC CTC GAA AAA GCG ATT CAA GCC TTT AAT GCG GCT GAG GCA GCG 1056
20 Leu Ile Leu Glu Lys Ala Ile Gln Ala Phe Asn Ala Ala Glu Ala Ala
340 345 350
CGA CGG GCA CGG GAA TTG GTG CGT CGC AAA TCA GTG CTG GAA TCT TCG 1104
25 Arg Arg Ala Arg Glu Leu Val Arg Arg Lys Ser Val Leu Glu Ser Ser
355 360 365
ACA TTG CCC GGT AAA TTA GCA GAC TGT TCC AGT CGC GAT CCC GGT GAA 1152
30 Thr Leu Pro Gly Lys Leu Ala Asp Cys Ser Ser Arg Asp Pro Gly Glu
370 375 380
TCT GAA ATC TTC ATC GTG 1170
35 Ser Glu Ile Phe Ile Val
385 390
40

SEQ ID NO: 14

SEQUENCE LENGTH: 390

45 SEQUENCE TYPE: amino acid

TOPOLOGY: unknown

50 MOLECULE TYPE: protein

ORIGINAL SOURCE

ORGANISM: *Synechococcus* sp.

STRAIN: PCC 6301

SEQUENCE DESCRIPTION

5 Val Val Asp Asn Ala Val Asp Lys Ala Leu Ala Gly Tyr Cys Asn Thr
 1 5 10 15
 10 Ile Asp Val Arg Leu Leu Lys Asp Gly Ser Cys Gln Val Thr Asp Asn
 10 20 25 30
 15 Gly Arg Gly Ile Pro Thr Asp Ile His Pro Gln Thr Gly Lys Ser Ala
 15 35 40 45
 20 Leu Glu Thr Val Leu Thr Ile Leu His Ala Gly Gly Lys Phe Gly Gly
 20 50 55 60
 25 Gly Gly Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val Ser Val
 25 65 70 75 80
 30 Val Asn Ala Leu Ser Glu Tyr Val Glu Val Thr Val Trp Arg Glu Gly
 30 85 90 95
 35 Lys Thr His Gln Gln Arg Phe Glu Gln Gly Asn Pro Ile Gly Glu Leu
 35 100 105 110
 40 Gln Val Ala Pro Asp Ala Asp Asp Arg Arg Gly Thr Gln Val Arg Phe
 40 115 120 125
 45 Lys Pro Asp Ala Thr Ile Phe Ser Glu Thr Thr Glu Phe Asp Tyr Gly
 45 130 135 140
 50 Thr Leu Ala Ser Arg Leu Lys Glu Leu Ala Tyr Leu Asn Ala Gly Val
 50 145 150 155 160
 55 Arg Ile Asp Phe Thr Asp Glu Arg Leu Gln Leu Thr Lys Asn His Glu
 55 165 170 175
 60 Pro His Gln Glu Thr Tyr Phe Glu Gly Gly Ile Arg Glu Tyr Val
 60 180 185 190
 65 Ala Tyr Met Asn Thr Asp Lys Gln Ala Leu His Ser Glu Ile Ile Phe
 65 195 200 205
 70 Val Gln Ser Glu Lys Asp Gly Val Gln Val Glu Ala Ala Leu Gln Trp

EP 0 935 003 A2

	210	215	220
5	Cys Val Asp Ala Tyr Ser Asp Asn Ile Leu Gly Phe Ala Asn Asn Ile		
	225	230	235
10	Arg Thr Ile Asp Gly Gly Thr His Ile Glu Gly Leu Lys Thr Val Leu		240
	245	250	255
15	Thr Arg Thr Met Asn Thr Ile Ala Arg Lys Arg Asn Lys Arg Lys Asp		
	260	265	270
20	Ala Asp Asn Asn Leu Ser Gly Glu Asn Ile Arg Glu Gly Leu Thr Ala		
	275	280	285
25	Ile Val Ser Val Lys Val Pro Asp Pro Glu Phe Glu Gly Gln Thr Lys		
	290	295	300
30	Thr Lys Leu Gly Asn Thr Glu Val Arg Gly Ile Val Asp Thr Leu Val		
	305	310	315
35	Gly Glu Thr Leu Thr Glu Tyr Leu Glu Phe His Pro Ser Val Ala Asp		320
	325	330	335
40	Leu Ile Leu Glu Lys Ala Ile Gln Ala Phe Asn Ala Ala Glu Ala Ala		
	340	345	350
45	Arg Arg Ala Arg Glu Leu Val Arg Arg Lys Ser Val Leu Glu Ser Ser		
	355	360	365
50	Thr Leu Pro Gly Lys Leu Ala Asp Cys Ser Ser Arg Asp Pro Gly Glu		
	370	375	380
55	Ser Glu Ile Phe Ile Val		
	385	390	
60	SEQ ID NO: 15		
	SEQUENCE LENGTH: 696		
65	SEQUENCE TYPE: nucleic acid		
	STRANDEDNESS: double		
70	TOPOLOGY: linear		

55

EP 0 935 003 A2

MOLECULE TYPE: genomic DNA

ORIGINAL SOURCE

5 ORGANISM: *Caulobacter crescentus*

STRAIN: ATCC 15252

10 SEQUENCE DESCRIPTION

	CAG AAC AGC TAC AAG GTC TCG GGC GGT CTG CAC GGC GTG GGC GTC TCG	48
	Gln Asn Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val Ser	
15	1 5 10 15	
	GTC GTG AAC GCC CTG TCG GAT TGG CTG GAG CTG CTG ATC CAC CGC AAC	96
	Val Val Asn Ala Leu Ser Asp Trp Leu Glu Leu Leu Ile His Arg Asn	
20	20 25 30	
	GGC AAG GTC CAC CAG ATG CGC TTC GAG CGC GGC GAC GCG GTC ACC TCG	144
	Gly Lys Val His Gln Met Arg Phe Glu Arg Gly Asp Ala Val Thr Ser	
25	35 40 45	
	CTG AAG GTC ACC GGC GAC TCG CCC GTG CGG ACC GAG GGC CCC AAG GCC	192
	Leu Lys Val Thr Gly Asp Ser Pro Val Arg Thr Glu Gly Pro Lys Ala	
30	50 55 60	
	GGC GAG ACC CTG ACC GGT ACG GAA GTT ACG TTC TTT CCG TCG AAG GAC	240
	Gly Glu Thr Leu Thr Gly Thr Glu Val Thr Phe Phe Pro Ser Lys Asp	
35	65 70 75 80	
	ACC TTC GCC TTC ATC GAA TTC GAC CGG AAG ACG CTG GAG CAC CGC CTG	288
	Thr Phe Ala Phe Ile Glu Phe Asp Arg Lys Thr Leu Glu His Arg Leu	
40	85 90 95	
	CGC GAG CTG GCC TTC CTG AAC TCG GGC GTG ACG ATC TGG TTC AAG GAC	336
	Arg Glu Leu Ala Phe Leu Asn Ser Gly Val Thr Ile Trp Phe Lys Asp	
45	100 105 110	
	CAT CGC GAC GTC GAG CCG TGG GAA GAG AAG CTG TTC TAC GAG GGC GGC	384
	His Arg Asp Val Glu Pro Trp Glu Glu Lys Leu Phe Tyr Glu Gly Gly	
50	115 120 125	

55

EP 0 935 003 A2

ATC GAG GCC TTC GTG CGC CAC CTC GAC AAG GCC AAG ACG CCG CTG CTG 432
Ile Glu Ala Phe Val Arg His Leu Asp Lys Ala Lys Thr Pro Leu Leu
5 130 135 140
AAG GCC CCG ATC GCC GTC AAG GGC GTC AAG GAC AAG GTC GAG ATC GAC 480
Lys Ala Pro Ile Ala Val Lys Gly Val Lys Asp Lys Val Glu Ile Asp
10 145 150 155 160
CTG GCC CTG TGG TGG AAC GAC AGC TAC CAC GAG CAG ATG CTG TGC TTC 528
Leu Ala Leu Trp Trp Asn Asp Ser Tyr His Glu Gln Met Leu Cys Phe
15 165 170 175
ACC AAC AAC ATC CCG CAG CGG GAT GGC GGC ACG CAC CTG TCG GCC TTT 576
Thr Asn Asn Ile Pro Gln Arg Asp Gly Gly Thr His Leu Ser Ala Phe
20 180 185 190
CGC GCG GCC CTG ACC CGG ATC ATC ACC AGC TAC GCC GAG AGC TCC GGC 624
Arg Ala Ala Leu Thr Arg Ile Ile Thr Ser Tyr Ala Glu Ser Ser Gly
25 195 200 205
ATC CTG AAG AAG GAA AAG GTC AGC CTG GGC GGC GAA GAC AGC CGC GAG 672
Ile Leu Lys Lys Glu Lys Val Ser Leu Gly Gly Glu Asp Ser Arg Glu
30 210 215 220
GGC CTG ACC TGC GTG CTG TCG GTC 696
Gly Leu Thr Cys Val Leu Ser Val
35 225 230

40 SEQ ID NO: 16
SEQUENCE LENGTH: 232
45 SEQUENCE TYPE: amino acid
TOPOLOGY: unknown
MOLECULE TYPE: protein
50 ORIGINAL SOURCE
ORGANISM: *Caulobacter crescentus*

EP 0935 003 A2

STRAIN: ATCC 15252

SEQUENCE DESCRIPTION

5 Gln Asn Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val Ser
1 5 10 15
Val Val Asn Ala Leu Ser Asp Trp Leu Glu Leu Leu Ile His Arg Asn
10 20 25 30
Gly Lys Val His Gln Met Arg Phe Glu Arg Gly Asp Ala Val Thr Ser
15 35 40 45
Leu Lys Val Thr Gly Asp Ser Pro Val Arg Thr Glu Gly Pro Lys Ala
50 55 60
20 Gly Glu Thr Leu Thr Gly Thr Glu Val Thr Phe Phe Pro Ser Lys Asp
65 70 75 80
25 Thr Phe Ala Phe Ile Glu Phe Asp Arg Lys Thr Leu Glu His Arg Leu
85 90 95
Arg Glu Leu Ala Phe Leu Asn Ser Gly Val Thr Ile Trp Phe Lys Asp
30 100 105 110
His Arg Asp Val Glu Pro Trp Glu Glu Lys Leu Phe Tyr Glu Gly Gly
115 120 125
35 Ile Glu Ala Phe Val Arg His Leu Asp Lys Ala Lys Thr Pro Leu Leu
130 135 140
Lys Ala Pro Ile Ala Val Lys Gly Val Lys Asp Lys Val Glu Ile Asp
40 145 150 155 160
Leu Ala Leu Trp Trp Asn Asp Ser Tyr His Glu Gln Met Leu Cys Phe
165 170 175
45 Thr Asn Asn Ile Pro Gln Arg Asp Gly Gly Thr His Leu Ser Ala Phe
180 185 190
Arg Ala Ala Leu Thr Arg Ile Ile Thr Ser Tyr Ala Glu Ser Ser Gly
50 195 200 205
Ile Leu Lys Lys Glu Lys Val Ser Leu Gly Gly Glu Asp Ser Arg Glu

EP 0 935 003 A2

210 215 220

5 Gly Leu Thr Cys Val Leu Ser Val
225 230

10 SEQ ID NO: 17
SEQUENCE LENGTH: 888
SEQUENCE TYPE: nucleic acid
15 STRANDEDNESS: double
TOPOLOGY: linear
MOLECULE TYPE: genomic DNA
20 ORIGINAL SOURCE

ORGANISM: *Pseudomonas putida*

STRAIN: ATCC 17484

25 SEQUENCE DESCRIPTION

GGC GGC CTG CAC GGT GTA GGC GTG TCG GTA GTG AAC GCA CTG TCT GAA 48
Gly Gly Leu His Gly Val Gly Val Ser Val Val Asn Ala Leu Ser Glu
30 1 5 10 15
GAG CTC GTC CTC ACC GTT CGC CGT AGC GGC AAG ATC TGG GAA CAG ACC 96
Glu Leu Val Leu Thr Val Arg Arg Ser Gly Lys Ile Trp Glu Gln Thr
35 20 25 30
TAC GTC CAT GGT GTT CCG CAG GAA CCG ATG AAG ATC GTT GGC GAC AGC 144
Tyr Val His Gly Val Pro Gln Glu Pro Met Lys Ile Val Gly Asp Ser
40 35 40 45
GAA ACC ACC GGC ACC CAG ATC CAC TTC AAG GCT TCC AGC GAA ACC TTC 192
Glu Thr Thr Gly Thr Gln Ile His Phe Lys Ala Ser Ser Glu Thr Phe
45 50 55 60
AAG AAC ATC CAC TTC AGC TGG GAC ATC CTG GCC AAG CGG ATT CGT GAA 240
Lys Asn Ile His Phe Ser Trp Asp Ile Leu Ala Lys Arg Ile Arg Glu
50 65 70 75 80

55

EP 0 935 003 A2

	CTG TCC TTC CTC AAC TCC GGT GTC GGC ATC GTC CTC AAG GAT GAG CGC	288		
5	Leu Ser Phe Leu Asn Ser Gly Val Gly Ile Val Leu Lys Asp Glu Arg			
	85	90	95	
	AGC GGC AAG GAA GAA CTG TTC AAG TAC GAA GGC GGC TTG CGC GCG TTC	336		
10	Ser Gly Lys Glu Glu Leu Phe Lys Tyr Glu Gly Gly Leu Arg Ala Phe			
	100	105	110	
	GTT GAA TAC CTG AAC ACC AAC AAG ACC CCG GTC AAC CAG GTG TTC CAT	384		
15	Val Glu Tyr Leu Asn Thr Asn Lys Thr Pro Val Asn Gln Val Phe His			
	115	120	125	
	TTC AAC ATC CAG CGC GAA GAC GGC ATC GGC GTA GAA ATC GCC CTG CAG	432		
20	Phe Asn Ile Gln Arg Glu Asp Gly Ile Gly Val Glu Ile Ala Leu Gln			
	130	135	140	
	TGG AAC GAC AGC TTC AAC GAG AAC CTG TTG TGC TTC ACC AAC AAC ATT	480		
25	Trp Asn Asp Ser Phe Asn Glu Asn Leu Leu Cys Phe Thr Asn Asn Ile			
	145	150	155	160
	CCG CAG CGC GAT GGC GGT ACT CAC CTG GTG GGT TTC CGT TCC GCC CTG	528		
30	Pro Gln Arg Asp Gly Gly Thr His Leu Val Gly Phe Arg Ser Ala Leu			
	165	170	175	
	ACG CGT AAC CTC AAT ACG TAT ATC GAA GCA GCC GAA GGC CTG GCG AAG AAG	576		
35	Thr Arg Asn Leu Asn Thr Tyr Ile Glu Ala Glu Gly Leu Ala Lys Lys			
	180	185	190	
	CAC AAG GTC GCG ACC ACC GGT GAC GAT GCC CGT GAA GGC CTG GCC GCG	624		
40	His Lys Val Ala Thr Thr Gly Asp Asp Ala Arg Glu Gly Leu Ala Ala			
	195	200	205	
	ATC ATT TCG GTA AAA GTG CCG GAT CCG AAG TTC AGC TCC CAG ACC AAG	672		
45	Ile Ile Ser Val Lys Val Pro Asp Pro Lys Phe Ser Ser Gln Thr Lys			
	210	215	220	
	GAC AAG CTG GTT TCT TCC GAA GTG AAG ACC GCG GTC GAA CAG GAA ATG	720		
50	Asp Lys Leu Val Ser Ser Glu Val Lys Thr Ala Val Glu Gln Glu Met			

EP 0 935 003 A2

225 230 235 240
5 GGC AAG TAC TTC TCC GAC TTC CTG CTG GAA AAC CCG AAC GAA GCC AAG 768
Gly Lys Tyr Phe Ser Asp Phe Leu Leu Glu Asn Pro Asn Glu Ala Lys
10 245 250 255
10 CTG GTT GTC GGC AAG ATG ATC GAC GCG GCA CGT GCT CGT GAA GCG GCG 816
Leu Val Val Gly Lys Met Ile Asp Ala Ala Arg Ala Arg Glu Ala Ala
15 260 265 270
15 CGC AAG ACC CGT GAG ATG ACC CGC CGC AAA GGC GCG CTG GAC ATC GCC 864
Arg Lys Thr Arg Glu Met Thr Arg Arg Lys Gly Ala Leu Asp Ile Ala
20 275 280 285
20 GGC CTG CCG GGC AAA CTG GCT GAC 888
Gly Leu Pro Gly Lys Leu Ala Asp
25 290 295
25
SEQ ID NO: 18
SEQUENCE LENGTH: 296
30 SEQUENCE TYPE: amino acid
TOPOLOGY: unknown
35 MOLECULE TYPE: protein
ORIGINAL SOURCE
ORGANISM: *Pseudomonas putida*
40 STRAIN: ATCC 17484
SEQUENCE DESCRIPTION
Gly Gly Leu His Gly Val Gly Val Ser Val Val Val Asn Ala Leu Ser Glu
45 1 5 10 15
Glu Leu Val Leu Thr Val Arg Arg Ser Gly Lys Ile Trp Glu Gln Thr
50 20 25 30
50 Tyr Val His Gly Val Pro Gln Glu Pro Met Lys Ile Val Gly Asp Ser
35 40 45

55

EP 0 935 003 A2

Glu Thr Thr Gly Thr Gln Ile His Phe Lys Ala Ser Ser Glu Thr Phe
5 50 55 60
Lys Asn Ile His Phe Ser Trp Asp Ile Leu Ala Lys Arg Ile Arg Glu
65 65 70 75 80
Leu Ser Phe Leu Asn Ser Gly Val Gly Ile Val Leu Lys Asp Glu Arg
10 85 90 95
Ser Gly Lys Glu Glu Leu Phe Lys Tyr Glu Gly Gly Leu Arg Ala Phe
15 100 105 110
Val Glu Tyr Leu Asn Thr Asn Lys Thr Pro Val Asn Gln Val Phe His
115 115 120 125
Phe Asn Ile Gln Arg Glu Asp Gly Ile Gly Val Glu Ile Ala Leu Gln
20 130 135 140
Trp Asn Asp Ser Phe Asn Glu Asn Leu Leu Cys Phe Thr Asn Asn Ile
25 145 150 155 160
Pro Gln Arg Asp Gly Gly Thr His Leu Val Gly Phe Arg Ser Ala Leu
165 170 175
30 Thr Arg Asn Leu Asn Thr Tyr Ile Glu Ala Glu Gly Leu Ala Lys Lys
180 185 190
His Lys Val Ala Thr Thr Gly Asp Asp Ala Arg Glu Gly Leu Ala Ala
35 195 200 205
Ile Ile Ser Val Lys Val Pro Asp Pro Lys Phe Ser Ser Gln Thr Lys
40 210 215 220
Asp Lys Leu Val Ser Ser Glu Val Lys Thr Ala Val Glu Gin Glu Met
225 225 230 235 240
45 Gly Lys Tyr Phe Ser Asp Phe Leu Leu Glu Asn Pro Asn Glu Ala Lys
245 250 255
Leu Val Val Gly Lys Met Ile Asp Ala Ala Arg Ala Arg Glu Ala Ala
50 260 265 270
Arg Lys Thr Arg Glu Met Thr Arg Arg Lys Gly Ala Leu Asp Ile Ala

EP 0 935 003 A2

275 280

285

Gly Leu Pro Gly Lys Leu Ala Asp

5 290 295

10 SEQ ID NO: 19

SEQUENCE LENGTH: 531

SEQUENCE TYPE: nucleic acid

15 STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: genomic DNA

20 ORIGINAL SOURCE

ORGANISM: *Synechococcus* sp.

STRAIN: PCC 6301

25 SEQUENCE DESCRIPTION

TTG GTG CGT CGC AAA TCA GTG CTG GAA TCT TCG ACA TTG CCC GGT AAA 48

Leu Val Arg Arg Lys Ser Val Leu Glu Ser Ser Thr Leu Pro Gly Lys
30 1 5 10 15

TTA GCA GAC TGT TCC AGT CGC GAT CCC GGT GAA TCT GAA ATC TTC ATC 96

Leu Ala Asp Cys Ser Ser Arg Asp Pro Gly Glu Ser Glu Ile Phe Ile
35 20 25 30

GTG GAA GGG GAT TCG GCA GGT GGC AGT GCT AAA CAG GGG CGC GAT CGC 144

Val Glu Gly Asp Ser Ala Gly Ser Ala Lys Gln Gly Arg Asp Arg
40 35 40 45

CGC TTC CAA GCC ATC CTG CCT CTG CGC GGC AAA ATC CTC AAC ATC GAG 192

Arg Phe Gln Ala Ile Leu Pro Leu Arg Gly Lys Ile Leu Asn Ile Glu
45 50 55 60

AAA ACG GAC GAT GCC AAA ATC TAC AAA AAC ACT GAG ATC CAA GCC CTG 240

Lys Thr Asp Asp Ala Lys Ile Tyr Lys Asn Thr Glu Ile Gln Ala Leu
50 65 70 75 80

EP 0 935 003 A2

ATT ACA GCG CTG GGC CTC GGA ATT AAA GGG GAG GAA TTT GAT GCT TCC 288
Ile Thr Ala Leu Gly Leu Gly Ile Lys Gly Glu Glu Phe Asp Ala Ser
5 85 90 95

CAA CTG CGC TAC CAC CGT ATT GTG ATC ATG ACT GAC GCG GAC GTC GAT 336
10 Gln Leu Arg Tyr His Arg Ile Val Ile Met Thr Asp Ala Asp Val Asp
100 105 110

GGT GCG CAC ATC CGT ACC CTC TTG CTC ACC TTC TTC TAT CGC TAT CAG 384
15 Gly Ala His Ile Arg Thr Leu Leu Leu Thr Phe Phe Tyr Arg Tyr Gln
115 120 125

CGA TCG CTG CTG GAG CAG GGC TAC ATG TAC ATT GCC TGC CCG CCG CTG 432
20 Arg Ser Leu Leu Glu Gln Gly Tyr Met Tyr Ile Ala Cys Pro Pro Leu
130 135 140

TAC AAG TTG GAG CGG GGA CGT AAT CAC TAC TAT TGC TAC AAC GAA CGC 480
25 Tyr Lys Leu Glu Arg Gly Arg Asn His Tyr Tyr Cys Tyr Asn Glu Arg
145 150 155 160

GAA CTG CAG GAA CGG ATT GCG ACG TTC CCT GAA AAC GCC AAC TAT ACG 528
30 Glu Leu Gln Glu Arg Ile Ala Thr Phe Pro Glu Asn Ala Asn Tyr Thr
165 170 175

35 ATT 531
Ile

40 SEQ ID NO: 20
SEQUENCE LENGTH: 177
SEQUENCE TYPE: amino acid
45 TOPOLOGY: unknown
MOLECULE TYPE: protein
ORIGINAL SOURCE
50 ORGANISM: *Synechococcus* sp.
STRAIN: PCC 6301

55

SEQUENCE DESCRIPTION

5 Leu Val Arg Arg Lys Ser Val Leu Glu Ser Ser Thr Leu Pro Gly Lys
 1 5 10 15
 10 Leu Ala Asp Cys Ser Ser Arg Asp Pro Gly Glu Ser Glu Ile Phe Ile
 20 25 30
 15 Val Glu Gly Asp Ser Ala Gly Gly Ser Ala Lys Gln Gly Arg Asp Arg
 35 40 45
 20 Arg Phe Gln Ala Ile Leu Pro Leu Arg Gly Lys Ile Leu Asn Ile Glu
 50 55 60
 25 Lys Thr Asp Asp Ala Lys Ile Tyr Lys Asn Thr Glu Ile Gln Ala Leu
 65 70 75 80
 30 Ile Thr Ala Leu Gly Leu Gly Ile Lys Gly Glu Glu Phe Asp Ala Ser
 85 90 95
 35 Gln Leu Arg Tyr His Arg Ile Val Ile Met Thr Asp Ala Asp Val Asp
 100 105 110
 40 Gly Ala His Ile Arg Thr Leu Leu Leu Thr Phe Phe Tyr Arg Tyr Gln
 115 120 125
 45 Arg Ser Leu Leu Glu Gln Gly Tyr Met Tyr Ile Ala Cys Pro Pro Leu
 130 135 140
 50 Tyr Lys Leu Glu Arg Gly Arg Asn His Tyr Tyr Cys Tyr Asn Glu Arg
 145 150 155 160
 45 Glu Leu Gln Glu Arg Ile Ala Thr Phe Pro Glu Asn Ala Asn Tyr Thr
 165 170 175
 50 Ile

EP 0 935 003 A2

SEQ ID NO: 21

SEQUENCE LENGTH: 660

5 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: double

10 TOPOLOGY: linear

MOLECULE TYPE: genomic DNA

ORIGINAL SOURCE

15 ORGANISM: *Caulobacter crescentus*

STRAIN: ATCC 15252

SEQUENCE DESCRIPTION

20	CGG GAT GGC GGC ACG CAC CTG TCG GCC TTT CGC GCG GCC CTG ACC CGG	48
	Arg Asp Gly Gly Thr His Leu Ser Ala Phe Arg Ala Ala Leu Thr Arg	
	1 5 10 15	
25	ATC ATC ACC AGC TAC GCC GAG AGC TCC GGC ATC CTG AAG AAG GAA AAG	96
	Ile Ile Thr Ser Tyr Ala Glu Ser Ser Gly Ile Leu Lys Lys Glu Lys	
	20 25 30	
30	GTC AGC CTG GGC GGC GAA GAC AGC CGC GAG GGC CTG ACC TGC GTG CTG	144
	Val Ser Leu Gly Gly Glu Asp Ser Arg Glu Gly Leu Thr Cys Val Leu	
	35 40 45	
35	TCG GTC AAG GTC CCG GAT CCG AAG TTC AGC TCG CAG ACC AAG GAC AAG	192
	Ser Val Lys Val Pro Asp Pro Lys Phe Ser Ser Gln Thr Lys Asp Lys	
40	50 55 60	
	CTG GTC TCG TCC GAA GTG CGC CCC GCC GTT GAG GGC CTG GTG TCG GAA	240
	Leu Val Ser Ser Glu Val Arg Pro Ala Val Glu Gly Leu Val Ser Glu	
45	65 70 75 80	
	GGT CTC TCG ACC TGG TTC GAG GAA CAT CCG AAC GAG GGC AAG GCG ATC	288
	Gly Leu Ser Thr Trp Phe Glu Glu His Pro Asn Glu Ala Lys Ala Ile	
50	85 90 95	
	GTG ACC AAG ATC GCC GAG GCC GCC CGC GAG GCC GCC CGC AAG	336

EP 0 935 003 A2

Val Thr Lys Ile Ala Glu Ala Ala Ala Arg Glu Ala Ala Arg Lys
100 105 110
5 GCG CGA GAG CTG ACC CGC CGC AAG AGC GCG CTC GAC ATC ACC AGC CTG 384
Ala Arg Glu Leu Thr Arg Arg Lys Ser Ala Leu Asp Ile Thr Ser Leu
115 120 125
10 CCC GGC AAG CTC GCC GAC TGC TCG GAA CGC GAT CCG GCC AAG TCC GAG 432
Pro Gly Lys Leu Ala Asp Cys Ser Glu Arg Asp Pro Ala Lys Ser Glu
130 135 140
15 ATC TTC ATC GTC GAG GGC GAC TCG GCG GGC GGC TCG GCC AAG CAG GCC 480
Ile Phe Ile Val Glu Gly Asp Ser Ala Gly Gly Ser Ala Lys Gln Ala
20 145 150 155 160
CGC AAC CGC GAC AAC CAG GCC GTT CTG CCC CTG CGC GGC AAG ATC CTG 528
Arg Asn Arg Asp Asn Gln Ala Val Leu Pro Leu Arg Gly Lys Ile Leu
25 165 170 175
AAC GTC GAG CGG GCC CGC TTC GAC AAG ATG CTG TCG TCC GAC CAG ATC 576
Asn Val Glu Arg Ala Arg Phe Asp Lys Met Leu Ser Ser Asp Gln Ile
30 180 185 190
GGC ACG CTG ATC ACC GCC CTG GGC GCG GGG ATC GGC CGC GAC GAC TTC 624
Gly Thr Leu Ile Thr Ala Leu Gly Ala Gly Ile Gly Arg Asp Asp Phe
35 195 200 205
AAC CCG GAC AAG GTG CGC TAC CAC AAG ATC GTG CTG 660
Asn Pro Asp Lys Val Arg Tyr His Lys Ile Val Leu
40 210 215 220
45 SEQ ID NO: 22
SEQUENCE LENGTH: 220
SEQUENCE TYPE: amino acid
50 TOPOLOGY: unknown
MOLECULE TYPE: protein

55

EP 0 935 003 A2

ORIGINAL SOURCE

5 ORGANISM: *Caulobacter crescentus*

STRAIN: ATCC 15252

SEQUENCE DESCRIPTION

10 Arg Asp Gly Gly Thr His Leu Ser Ala Phe Arg Ala Ala Leu Thr Arg
1 5 10 15

15 Ile Ile Thr Ser Tyr Ala Glu Ser Ser Gly Ile Leu Lys Lys Glu Lys
15 20 25 30

Val Ser Leu Gly Gly Glu Asp Ser Arg Glu Gly Leu Thr Cys Val Leu
35 40 45

20 Ser Val Lys Val Pro Asp Pro Lys Phe Ser Ser Gln Thr Lys Asp Lys
50 55 60

25 Leu Val Ser Ser Glu Val Arg Pro Ala Val Glu Gly Leu Val Ser Glu
65 70 75 80

Gly Leu Ser Thr Trp Phe Glu Glu His Pro Asn Glu Ala Lys Ala Ile
30 85 90 95

Val Thr Lys Ile Ala Glu Ala Ala Ala Arg Glu Ala Ala Arg Lys
100 105 110

35 Ala Arg Glu Leu Thr Arg Arg Lys Ser Ala Leu Asp Ile Thr Ser Leu
115 120 125

40 Pro Gly Lys Leu Ala Asp Cys Ser Glu Arg Asp Pro Ala Lys Ser Glu
130 135 140

Ile Phe Ile Val Glu Gly Asp Ser Ala Gly Gly Ser Ala Lys Gln Ala
45 145 150 155 160

Arg Asn Arg Asp Asn Gln Ala Val Leu Pro Leu Arg Gly Lys Ile Leu
165 170 175

50 Asn Val Glu Arg Ala Arg Phe Asp Lys Met Leu Ser Ser Asp Gln Ile
180 185 190

Gly Thr Leu Ile Thr Ala Leu Gly Ala Gly Ile Gly Arg Asp Asp Phe

55

EP 0 935 003 A2

195 200 205

Asn Pro Asp Lys Val Arg Tyr His Lys Ile Val Leu

5 210 215 220

10 SEQ ID NO: 23

SEQUENCE LENGTH: 1422

SEQUENCE TYPE: nucleic acid

15 STRANDEDNESS: double

TOPOLOGY: linear

MOLECULE TYPE: genomic DNA

20 ORIGINAL SOURCE

ORGANISM: *Cytophaga lytica*

STRAIN: MBIC 1544

25 SEQUENCE DESCRIPTION

GAT AAA GAT TCA TAC AAA GTA TCT GGT TTA CAC GGT GTA GGT GTA 48

Asp Lys Asp Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val

30 1 5 10 15

TCT TGT GTA AAC GCA TTA TCT AAT AAT TTA AAA GCT ACT GTT TAC AGA 96

Ser Cys Val Asn Ala Leu Ser Asn Asn Leu Lys Ala Thr Val Tyr Arg

35 20 25 30

GAA GGT AAA ATA TGG GAG CAA GAG TAT GAA AGA GGT AAG GCT TTA TAT 144

40 Glu Gly Lys Ile Trp Glu Gln Glu Tyr Glu Arg Gly Lys Ala Leu Tyr

35 40 45

CCG GTA AAA AGT ATT GGA GAA ACA GAG GAA ACA GGT ACT ATA GTT ACT 192

45 Pro Val Lys Ser Ile Gly Glu Thr Glu Glu Thr Gly Thr Ile Val Thr

50 55 60

TTT TAC CCA GAT GAT ACT ATA TTT ACA CAA ACT ACA GAG TAT AAT TAT 240

55 Phe Tyr Pro Asp Asp Thr Ile Phe Thr Gln Thr Thr Glu Tyr Asn Tyr

65 70 75 80

55

EP 0 935 003 A2

	GAA ACG CTT TCT AAC AGA ATG CGA GAG TTG GCT TAC CTT AAT AAG GGA	288
5	Glu Thr Leu Ser Asn Arg Met Arg Glu Leu Ala Tyr Leu Asn Lys Gly	
	85 90 95	
	GTT ACA ATT AGC ATT ACA GAT AAG AGA GTT AAA GAT GAA AAG GGA GAG	336
10	Val Thr Ile Ser Ile Thr Asp Lys Arg Val Lys Asp Glu Lys Gly Glu	
	100 105 110	
	TTT TTA TCT GAA GTT TTT TAC TCT GAA GAA GGA CTA AAA GAA TTT ATT	384
15	Phe Leu Ser Glu Val Phe Tyr Ser Glu Glu Gly Leu Lys Glu Phe Ile	
	115 120 125	
	AAG TTT TTA GAC GGT AAC AGA GAA CAA CTA ATA CGT GAT GTT GTT TCA	432
20	Lys Phe Leu Asp Gly Asn Arg Glu Gln Leu Ile Arg Asp Val Val Ser	
	130 135 140	
	ATG GAA GGT GAA AAA AAC GGA ATT CCT GTT GAG GTT GCA ATG GTG TAC	480
25	Met Glu Gly Glu Lys Asn Gly Ile Pro Val Glu Val Ala Met Val Tyr	
	145 150 155 160	
	AAT ACA TCA TAT TCA GAA AAT CTT CAC TCT TAC GTA AAT AAT ATT AAT	528
30	Asn Thr Ser Tyr Ser Glu Asn Leu His Ser Tyr Val Asn Asn Ile Asn	
	165 170 175	
	ACA CAT GAA GGT GGT ACA CAC CTT TCA GGT TTT AGA AGA GGT TTA ACA	576
35	Thr His Glu Gly Gly Thr His Leu Ser Gly Phe Arg Arg Gly Leu Thr	
	180 185 190	
	TCA ACC TTA AAA AAG TAT GCA GAT GCA TCT GGA ATG TTA GAC AAA TTA	624
40	Ser Thr Leu Lys Lys Tyr Ala Asp Ala Ser Gly Met Leu Asp Lys Leu	
	195 200 205	
	AAG TTT GAG ATT CAG GGA GAT GAT TTT AGA GAA GGT TTA ACG GCT ATT	672
45	Lys Phe Glu Ile Gln Gly Asp Asp Phe Arg Glu Gly Leu Thr Ala Ile	
	210 215 220	
50	GTG TCT GTT AAA GTT GCA GAA CCT CAG TTT GAA GGG CAA ACA AAA ACT	720
	Val Ser Val Lys Val Ala Glu Pro Gln Phe Glu Gly Gln Thr Lys Thr	

EP 0 935 003 A2

	225	230	235	240	
5	AAA TTA GGT AAC AGA GAA GTT TCT TCT GCA GTG AGC CAA GCT GTA TCA				768
	Lys Leu Gly Asn Arg Glu Val Ser Ser Ala Val Ser Gln Ala Val Ser				
	245	250	255		
10	GAA ATG CTT ACC AAC TAT TTA GAA GAA AAC CCA GAT GAT GCT AAG GTA				816
	Glu Met Leu Thr Asn Tyr Leu Glu Glu Asn Pro Asp Asp Ala Lys Val				
	260	265	270		
15	ATT GTA CAA AAA GTC ATT TTG GCA GCG CAA GCA CGT CAT GCG GCT ACA				864
	Ile Val Gln Lys Val Ile Leu Ala Ala Gln Ala Arg His Ala Ala Thr				
	275	280	285		
20	AAA GCC CGT GAA ATG GTA CAG CGT AAA ACG GTA ATG AGT ATA GGT GGT				912
	Lys Ala Arg Glu Met Val Gln Arg Lys Thr Val Met Ser Ile Gly Gly				
	290	295	300		
25	TTA CCA GGG AAA TTA TCA GAC TGT TCT GAG CAA GAT GCT ACA AAA TGC				960
	Leu Pro Gly Lys Leu Ser Asp Cys Ser Glu Gln Asp Ala Thr Lys Cys				
	305	310	315	320	
30	GAA GTA TTC CTT GTA GAG GGA GAT TCG GCG GGT ACT GCT AAA CAA				1008
	Glu Val Phe Leu Val Glu Gly Asp Ser Ala Gly Gly Thr Ala Lys Gln				
	325	330	335		
35	GGT AGG GAC AGA AAC TTT CAG GCA ATA TTA CCG CTT CGT GGT AAA ATC				1056
	Gly Arg Asp Arg Asn Phe Gln Ala Ile Leu Pro Leu Arg Gly Lys Ile				
	340	345	350		
40	TTA AAT GTT GAA AAA GCA ATG CAA CAT AAG GTT TTT GAA AAC GAA GAA				1104
	Leu Asn Val Glu Lys Ala Met Gln His Lys Val Phe Glu Asn Glu Glu				
	355	360	365		
45	ATA AAA AAT ATT TAC ACA GCT TTA GGT GTT ACT ATT GGT ACA GAA GAA				1152
	Ile Lys Asn Ile Tyr Thr Ala Leu Gly Val Thr Ile Gly Thr Glu Glu				
	370	375	380		
50	GAT AGT AAA GCC TTA AAC TTA GAA AAA TTA AGA TAC CAT AAA GTA GTT				1200

EP 0 935 003 A2

Asp Ser Lys Ala Leu Asn Leu Glu Lys Leu Arg Tyr His Lys Val Val
5 385 390 395 400
ATT ATG TGT GAT GCC GAT GTA GAT GGT AGC CAC ATT GAA ACT TTA ATC 1248
Ile Met Cys Asp Ala Asp Val Asp Gly Ser His Ile Glu Thr Leu Ile
10 405 410 415
CTT ACA TTC TTC CGT TTT ATG AGG GAG TTA ATA GAA GGC GGT CAC 1296
Leu Thr Phe Phe Phe Arg Phe Met Arg Glu Leu Ile Glu Gly Gly His
15 420 425 430
GTT TAT ATA GCA ACC CCA CCT TTA TAC TTG GTA AAA AAG GGA ACA AAA 1344
Val Tyr Ile Ala Thr Pro Pro Leu Tyr Leu Val Lys Lys Gly Thr Lys
20 435 440 445
AAA CGT TAT GCT TGG AAT GAT AAA GAA CGA GAT GAG ATA GCA GAA AGC 1392
Lys Arg Tyr Ala Trp Asn Asp Lys Glu Arg Asp Glu Ile Ala Glu Ser
25 450 455 460
TTT AAT GGT AGT GTT GGT ATA CAA AGA TAT 1422
Phe Asn Gly Ser Val Gly Ile Gln Arg Tyr
30 465 470

35 SEQ ID NO: 24
SEQUENCE LENGTH: 474
SEQUENCE TYPE: amino acid
40 TOPOLOGY: unknown
MOLECULE TYPE: protein
ORIGINAL SOURCE
45 ORGANISM: *Cytophaga lytica*
STRAIN: MBIC 1544
SEQUENCE DESCRIPTION
50 Asp Lys Asp Ser Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Val
1 5 10 15

55

EP 0935 003 A2

Ser Cys Val Asn Ala Leu Ser Asn Asn Leu Lys Ala Thr Val Tyr Arg
20 25 30
5 Glu Gly Lys Ile Trp Glu Gln Glu Tyr Glu Arg Gly Lys Ala Leu Tyr
35 40 45
10 Pro Val Lys Ser Ile Gly Glu Thr Glu Glu Thr Gly Thr Ile Val Thr
50 55 60
15 Phe Tyr Pro Asp Asp Thr Ile Phe Thr Gln Thr Glu Tyr Asn Tyr
65 70 75 80
Glu Thr Leu Ser Asn Arg Met Arg Glu Leu Ala Tyr Leu Asn Lys Gly
85 90 95
20 Val Thr Ile Ser Ile Thr Asp Lys Arg Val Lys Asp Glu Lys Gly Glu
100 105 110
Phe Leu Ser Glu Val Phe Tyr Ser Glu Glu Gly Leu Lys Glu Phe Ile
25 115 120 125
Lys Phe Leu Asp Gly Asn Arg Glu Gln Leu Ile Arg Asp Val Val Ser
130 135 140
30 Met Glu Gly Glu Lys Asn Gly Ile Pro Val Glu Val Ala Met Val Tyr
145 150 155 160
Asn Thr Ser Tyr Ser Glu Asn Leu His Ser Tyr Val Asn Asn Ile Asn
35 165 170 175
Thr His Glu Gly Gly Thr His Leu Ser Gly Phe Arg Arg Gly Leu Thr
40 180 185 190
Ser Thr Leu Lys Lys Tyr Ala Asp Ala Ser Gly Met Leu Asp Lys Leu
195 200 205
45 Lys Phe Glu Ile Gln Gly Asp Asp Phe Arg Glu Gly Leu Thr Ala Ile
210 215 220
50 Val Ser Val Lys Val Ala Glu Pro Gln Phe Glu Gly Gln Thr Lys Thr
225 230 235 240
Lys Leu Gly Asn Arg Glu Val Ser Ser Ala Val Ser Gln Ala Val Ser

EP 0 935 003 A2

	245	250	255
5	Glu Met Leu Thr Asn Tyr Leu Glu Glu Asn Pro Asp Asp Ala Lys Val		
	260	265	270
	Ile Val Gln Lys Val Ile Leu Ala Ala Gln Ala Arg His Ala Ala Thr		
10	275	280	285
	Lys Ala Arg Glu Met Val Gln Arg Lys Thr Val Met Ser Ile Gly Gly		
	290	295	300
15	Leu Pro Gly Lys Leu Ser Asp Cys Ser Glu Gln Asp Ala Thr Lys Cys		
	305	310	315
	Glu Val Phe Leu Val Glu Gly Asp Ser Ala Gly Gly Thr Ala Lys Gln		
20	325	330	335
	Gly Arg Asp Arg Asn Phe Gln Ala Ile Leu Pro Leu Arg Gly Lys Ile		
	340	345	350
25	Leu Asn Val Glu Lys Ala Met Gln His Lys Val Phe Glu Asn Glu Glu		
	355	360	365
	Ile Lys Asn Ile Tyr Thr Ala Leu Gly Val Thr Ile Gly Thr Glu Glu		
30	370	375	380
	Asp Ser Lys Ala Leu Asn Leu Glu Lys Leu Arg Tyr His Lys Val Val		
35	385	390	395
	Ile Met Cys Asp Ala Asp Val Asp Gly Ser His Ile Glu Thr Leu Ile		
	405	410	415
40	Leu Thr Phe Phe Arg Phe Met Arg Glu Leu Ile Glu Gly Gly His		
	420	425	430
	Val Tyr Ile Ala Thr Pro Pro Leu Tyr Leu Val Lys Lys Gly Thr Lys		
45	435	440	445
	Lys Arg Tyr Ala Trp Asn Asp Lys Glu Arg Asp Glu Ile Ala Glu Ser		
	450	455	460
50	Phe Asn Gly Ser Val Gly Ile Gln Arg Tyr		
	465	470	

EP 0 935 003 A2

SEQ ID NO: 25

SEQUENCE LENGTH: 38

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

TGTAAAACGA CGGCCAGTCA YGCNGGGNN AARTTYGA

38

SEQ ID NO: 26

SEQUENCE LENGTH: 7

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

His Ala Gly Gly Lys Phe Asp

1

5

SEQ ID NO: 27

SEQUENCE LENGTH: 36

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

CTGCGTTCGT ATATGAGCNC CRTCNACRTC NGCRTC

36

SEQ ID NO: 28

55

EP 0 935 003 A2

SEQUENCE LENGTH: 12

5 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

10 SEQUENCE DESCRIPTION

Asp Ala Asp Val Asp Gly Ala His Ile Arg Thr Leu

1 5 10

15

SEQ ID NO: 29

SEQUENCE LENGTH: 41

20 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

25 MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

GAAGTCATCA TGACCGTTCT GCAYGSNGGN GGNAARTTYG G

41

30

SEQ ID NO: 30

SEQUENCE LENGTH: 14

35 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

40 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Glu Val Leu Met Thr Val Leu His Ala Gly Gly Lys Phe Gly

45 1 5 10

SEQ ID NO: 31

50 SEQUENCE LENGTH: 44

SEQUENCE TYPE: nucleic acid

55

EP 0 935 003 A2

STRANDEDNESS: single

5 TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

10 AGCAGGGTAC GGATGTGCGA GCCRTCNACR TCNGCRTNCNG TGAT

44

SEQ ID NO: 32

15 SEQUENCE LENGTH: 15

SEQUENCE TYPE: amino acid

20 TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Met Thr Asp Ala Asp Val Asp Gly Ser His Ile Arg Thr Leu Leu

25 1 5 10 15

SEQ ID NO: 33

30 SEQUENCE LENGTH: 32

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

40 SEQUENCE DESCRIPTION

CAGGAAACAG CTATGACCAR RTGNGTNCCN CC

32

45 SEQ ID NO: 34

SEQUENCE LENGTH: 5

SEQUENCE TYPE: amino acid

50 TOPOLOGY: linear

MOLECULE TYPE: peptide

55

EP 0 935 003 A2

SEQUENCE DESCRIPTION

Gly Gly Thr His Leu

5
1 5

SEQ ID NO: 35

10
SEQUENCE LENGTH: 34

SEQUENCE TYPE: nucleic acid

15
STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

20
SEQUENCE DESCRIPTION

GCAACGAGAT CAAACACTCMN GARGGNGGNA CNCA

34

25
SEQ ID NO: 36

SEQUENCE LENGTH: 11

30
SEQUENCE TYPE: amino acid

TOPOGOLOGY: linear

MOLECULE TYPE: peptide

35
SEQUENCE DESCRIPTION

Asn Asn Ile Asn Thr His Glu Gly Gly Thr His

1 5 10

40
SEQ ID NO: 37

SEQUENCE LENGTH: 11

45
SEQUENCE TYPE: amino acid

TOPOGOLOGY: linear

MOLECULE TYPE: peptide

50
SEQUENCE DESCRIPTION

Asn Asn Ile Asn Thr Pro Glu Gly Gly Thr His

55

EP 0 935 003 A2

1 5 10

5

SEQ ID NO: 38

SEQUENCE LENGTH: 35

10

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

15

MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

TGTAAAACGA CGGCCAGTAR YTTNKYYTTN GTYTG

35

20

SEQ ID NO: 39

SEQUENCE LENGTH: 6

25

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

30

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Gln Thr Lys Thr Lys Leu

35

1 5

40

SEQ ID NO: 40

SEQUENCE LENGTH: 6

SEQUENCE TYPE: amino acid

45

TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

50

Gln Thr Lys Asp Lys Leu

1 5

55

EP 0 935 003 A2

SEQ ID NO: 41

SEQUENCE LENGTH: 35

5 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

10 TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

15 TAGGCTAGCT GACCGTAAGA YGCNGAYRTN GAYGG

35

SEQ ID NO: 42

20 SEQUENCE LENGTH: 6

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

25 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Asp Ala Asp Val Asp Gly

30 1 5

SEQ ID NO: 43

35 SEQUENCE LENGTH: 36

SEQUENCE TYPE: nucleic acid

40 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

45 SEQUENCE DESCRIPTION

CCATAGCTGC GTAGCATTCA TYTCNCCNAR NCCYTT

36

50

SEQ ID NO: 44

SEQUENCE LENGTH: 12

55

SEQUENCE TYPE: amino acid

5 TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

10 Lys Gly Leu Gly Glu Met Asn Ala Thr Gln Leu Trp
1 5 10

15 SEQ ID NO: 45

SEQUENCE LENGTH: 41

SEQUENCE TYPE: nucleic acid

20 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

25 SEQUENCE DESCRIPTION

CAGGAAACAG CTATGACCAA RMGNCCNGSN ATGTAYATHG G 41

30 SEQ ID NO: 46

SEQUENCE LENGTH: 8

35 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

40 SEQUENCE DESCRIPTION

Lys Arg Pro Ala Met Tyr Ile Gly

1 5

45

SEQ ID NO: 47

SEQUENCE LENGTH: 8

50 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

55

EP 0 935 003 A2

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

5 Lys Arg Pro Gly Met Tyr Ile Gly

1 5

10

SEQ ID NO: 48

SEQUENCE LENGTH: 38

15 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

20 MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

TGTAAAACGA CGGCCAGTCC NCCNGCNSWR TCNCCYTC

38

25

SEQ ID NO: 49

SEQUENCE LENGTH: 7

30 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

35 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Glu Gly Asp Ser Ala Gly Gly

40

1 5

SEQ ID NO: 50

45 SEQUENCE LENGTH: 39

SEQUENCE TYPE: nucleic acid

50 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

55

SEQUENCE DESCRIPTION

5 TGTAACCGA CGGCCAGTCA TNGTNGTNTC CCANARYTG

39

SEQ ID NO: 51

10 SEQUENCE LENGTH: 7

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

15 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Gln Leu Trp Glu Thr Thr Met

20 1 5

SEQ ID NO: 52

25 SEQUENCE LENGTH: 7

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

30 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Gln Leu Trp Asp Thr Thr Met

35 1 5

SEQ ID NO: 53

40 SEQUENCE LENGTH: 41

SEQUENCE TYPE: nucleic acid

45 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

50 SEQUENCE DESCRIPTION

GAAGTCATCA TGACCGTTCT GCAYGCNGGN GGNAARTTYG A

41

55

EP 0 935 003 A2

SEQ ID NO: 54

5 SEQUENCE LENGTH: 14

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

10 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Glu Val Ile Met Thr Val Leu His Ala Gly Gly Lys Phe Asp

15 1 5 10

SEQ ID NO: 55

20 SEQUENCE LENGTH: 14

SEQUENCE TYPE: amino acid

25 TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Glu Val Ile Met Thr Val Leu His Ala Gly Gly Lys Phe Asn

50 1 5 10

35 SEQ ID NO: 56

SEQUENCE LENGTH: 14

40 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

45 SEQUENCE DESCRIPTION

Glu Val Ile Met Thr Val Leu His Ala Gly Gly Lys Phe Glu

50 1 5 10

SEQ ID NO: 57

55

EP 0 935 003 A2

SEQUENCE LENGTH: 14

SEQUENCE TYPE: amino acid

5

TOPOLOGY: linear

MOLECULE TYPE: peptide

10

SEQUENCE DESCRIPTION
Glu Val Ile Met Thr Val Leu His Ala Gly Gly Lys Phe Lys

1 5 10

15

SEQ ID NO: 58

SEQUENCE LENGTH: 38

20

SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

25

MOLECULE TYPE: other nucleic acid synthetic DNA

30

SEQUENCE DESCRIPTION
TGTAAAACGA CGGCCAGTGC NGGRTCYTTY TCYTGRCA

38

SEQ ID NO: 59

35

SEQUENCE LENGTH: 7

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

40

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Cys Gln Glu Lys Asp Pro Ala

45

1 5

SEQ ID NO: 60

50

SEQUENCE LENGTH: 40

SEQUENCE TYPE: nucleic acid

55

STRANDEDNESS: single

5 TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

10 GAAAGTCATCA TGACCCGTTCT GCAACNAAYA AYATHCCNCA 40

SEQ ID NO: 61

15 SEQUENCE LENGTH: 6

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

20 MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Thr Asn Asn Ile Pro Gln

25 1 5

SEQ ID NO: 62

30 SEQUENCE LENGTH: 38

SEQUENCE TYPE: nucleic acid

35 STRANDEDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: other nucleic acid synthetic DNA

40 SEQUENCE DESCRIPTION

TGTAAAACGA CGGCCAGTAA YTTNGGNTCN GGNACYTT

38

45 SEQ ID NO: 63

SEQUENCE LENGTH: 7

SEQUENCE TYPE: amino acid

50 TOPOLOGY: linear

MOLECULE TYPE: peptide

55

SEQUENCE DESCRIPTION

Lys Val Pro Asp Pro Lys Phe

5
1 5

10 SEQ ID NO: 64

SEQUENCE LENGTH: 7

SEQUENCE TYPE: amino acid

15 TOPOLOGY: linear

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

20 Lys Val Pro Glu Pro Lys Phe

1 5

25 SEQ ID NO: 65

SEQUENCE LENGTH: 35

30 SEQUENCE TYPE: nucleic acid

STRANDEDNESS: single

TOPOLOGY: linear

35 MOLECULE TYPE: other nucleic acid synthetic DNA

SEQUENCE DESCRIPTION

CAGGAAACAG CTATGACCCG NMRNMRNGCN MGNGA

35

40

SEQ ID NO: 66

SEQUENCE LENGTH: 6

45 SEQUENCE TYPE: amino acid

TOPOLOGY: linear

MOLECULE TYPE: peptide

50 SEQUENCE DESCRIPTION

Ala Arg Arg Ala Arg Glu

55

1

5

5

SEQ ID NO: 67

SEQUENCE LENGTH: 6

10

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

15

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Ala Arg Lys Ala Arg Glu

20

1

5

25

SEQ ID NO: 68

SEQUENCE LENGTH: 6

30

SEQUENCE TYPE: amino acid

TOPOLOGY: linear

35

MOLECULE TYPE: peptide

SEQUENCE DESCRIPTION

Ala Lys Lys Ala Arg Glu

40

1

5

45 Claims

1. A method for identifying a microorganism comprising

(i) amplifying DNA from the microorganism by PCR using two primers, wherein at least one of the said primers comprises sequence which codes for all or part of one of the following amino acid sequences (a) to (l):

50

- (a) (Pro or Ser)-(Ala or Thr)-(Ala, Val or Leu)-(Glu or Asp)-(Val or Thr)-(Ile or Val)-(Met, Leu or Phe)-Thr-(Val, Gln or Ile)-Leu-His-Ala-Gly-Gly-Lys-Phe-(Asp or Gly)-(Asp, Gly, Asn or Ser)-(Ser, Lys, Gly, Asp or Asn)
- (b) Gly-Gly-Thr-His
- (c) (Ile or Leu)-Met-Thr-Asp-Ala-Asp-Val-Asp-Gly-(Ala or Ser)-His-Ile-Arg-Thr-Leu
- (d) Arg-Lys-Arg-Pro-(Gly or Ala)-Met-Tyr-Ile-Gly-(Ser or Asp)-Thr
- (e) Gln-(Thr or Pro)-(Lys or Asn)-(Thr, Asp, Gly, Lys, Ser, Phe or Tyr)-Lys-Leu

- (f) (Tyr or Phe)-Lys-Gly-Leu-Gly-Glu-Met-Asn-(Ala or Pro)
- (g) Val-Glu-Gly-Asp-Ser-Ala-Gly-Gly-Ser
- (h) Lys-(His or Val)-Pro-Asp-Pro-(Gln or Lys)-Phe
- (i) Leu-Pro-Gly-Lys-Leu-Ala-Asp-Cys-(Ser or Gln)-(Ser or Glu)-(Lys or Arg)-Asp-Pro-(Ala or Ser)
- (j) Gln-Leu-(Trp or Arg)-(Glu or Asp)-Thr-Thr-(Met or Leu)-(Asp or Asn)-Pro
- (k) Ala-(Lys or Arg)-(Lys or Arg)-Ala-Arg-Glu
- (l) Phe-Thr-Asn-Asn-Ile-(Pro or Asn)-(Thr or Gln)

and which functions as a substantial primer; and
10 (ii) identifying the microorganism based on the nucleotide sequence of the amplified DNA fragment.

2. A method for detecting a microorganism comprising

15 (i) amplifying DNA from a sample by PCR using two primers, wherein at least one of the said primers comprises sequence which codes for all or a part of one of the following amino acid sequences (a) to (l):

- (a) (Pro or Ser)-(Ala or Thr)-(Ala, Val or Leu)-(Glu or Asp)-(Val or Thr)-(Ile or Val)-(Met, Leu or Phe)-Thr-(Val, Gln or Ile)-Leu-His-Ala-Gly-Gly-Lys-Phe-(Asp or Gly)-(Asp, Gly, Asn or Ser)-(Ser, Lys, Gly, Asp or Asn)
- (b) Gly-Gly-Thr-His
- (c) (Ile or Leu)-Met-Thr-Asp-Ala-Asp-Val-Asp-Gly-(Ala or Ser)-His-Ile-Arg-Thr-Leu
- (d) Arg-Lys-Arg-Pro-(Gly or Ala)-Met-Tyr-Ile-Gly-(Ser or Asp)-Thr
- (e) Gln-(Thr or Pro)-(Lys or Asn)-(Thr, Asp, Gly, Lys, Ser, Phe or Tyr)-Lys-Leu
- (f) (Tyr or Phe)-Lys-Gly-Leu-Gly-Glu-Met-Asn-(Ala or Pro)
- (g) Val-Glu-Gly-Asp-Ser-Ala-Gly-Gly-Ser
- (h) Lys-(His or Val)-Pro-Asp-Pro-(Gln or Lys)-Phe
- (i) Leu-Pro-Gly-Lys-Leu-Ala-Asp-Cys-(Ser or Gln)-(Ser or Glu)-(Lys or Arg)-Asp-Pro-(Ala or Ser)
- (j) Gln-Leu-(Trp or Arg)-(Glu or Asp)-Thr-Thr-(Met or Leu)-(Asp or Asn)-Pro
- (k) Ala-(Lys or Arg)-(Lys or Arg)-Ala-Arg-Glu
- (l) Phe-Thr-Asn-Asn-Ile-(Pro or Asn)-(Thr or Gln)

30 and which functions as a substantial primer; and
(ii) identifying whether the sample comprises a microorganism based on the nucleotide sequence of any amplified DNA fragments.

35 3. A method according to claims 1 or 2, wherein step (i) comprises: amplifying DNA from the microorganism or sample by PCR using two primers, wherein:

40 the first of the said primers comprises sequence which codes for all or part of one of the amino acid sequences (a) to (l); and
the second of the said primers comprises sequence which is the reverse complement of sequence which codes for all or part of a different one of amino acid sequences (a) to (l).

45 4. A method according to claim 3, wherein the first primer comprises sequence which codes for all or part of amino acid sequence (a) and the second primer comprises sequence which is the reverse complement of sequence which codes for all or part of amino acid sequence (b), (c), (e), (h), or (l).

FIG. 1

(d)

GYRB BACSU	MEQQQNSYDENQIQVLEGLEAVRKRPGMYISTNS-KGLHHLVWEIVDNSIDEALAGYCT
GYRB ECOLI	----SNSYDSSSIKVLKGLDAVRKRPGMYIGDTDDGTGLHHMVFEVVDNAIDEALAGHCK
GYRB PSEPU	-MSENQTYDSSSIKVLKGLDAVRKRPGMYIGDTDDGSGLHHMVFEVVDNAIDEALAGHCD

(a)

GYRB BACSU	DINIQIEKDNSITVVDNGRGI PGVIHEKMRPAVEVIMTVLHAGGKF DGS GYKVSGGLHG
GYRB ECOLI	EIIVTIHADNSVSQDDGRGI PTGIHPEEGVSAAEVIMTVLHAGGKF DDDNSYKVSGGLHG
GYRB PSEPU	DITVIIHTDESISVRDNGRGI PVDVHKEGVSAAEVIMTVLHAGGKF DDDNSYKVSGGLHG

(b)

GYRB BACSU	VGASVVNALSTELDVHDKIHRQTYKRGVPVTDLIEIIGETDHTGTTTHFVPDPEIFS
GYRB ECOLI	VGVSVVNALSOQKLELVIQREGKIHRQIYEHGPQAPLAUTGETKTGTMVRFWPSLETFT
GYRB PSEPU	VGVSVVNALSEKVLTVRRSGKIEWQTIVHGPQAPMAVGESETTGTHIHFKPSAETFK

(c)

GYRB BACSU	ETTEYDYLLANRVRELAFLTKGVNITIEDKREGQERKNEYHYEGGIKSYVEYLNRSKEV
GYRB ECOLI	NVTEFEYIELAKRLRELSFLNSGVSIRLRDKRDGKE--DHFHYEGGIKAFVEYLNRKNKTP
GYRB PSEPU	N-IHFSWDLAKRIRELSFLNSGVGILLKDERSGKE--EFFKYEGGLRAFVEYLNTNKTP

(1) (b)

GYRB BACSU	VHEEPIXYIEGEK-DGITVEVALOYNDTSNISFTNNINTYEGGTHEAGFKTGLTRVIN
GYRB ECOLI	IHPNIFYFSTEK-DGIGVEVALQWNDFQENIYCFTNNIPQRDGHTHLAGFRAAMRTLN
GYRB PSEPU	VNSQVFHFSVQREDGVGVEVALQWNDSFNENLLCFTNNIPQRDGHTHLVGP RSSL TRSLN

(h) (e)

GYRB BACSU	DYARKKGLIKEENDPNLSGGDVREGLTAIISIKHPDPQFEGQTKTKLGNSEARTITIDTLFS
GYRB ECOLI	AYMDKEYSKKAKVSATGDDAREGLIAVSVKVPDPKFSSQTKDKLVSSEVKSAVEQOMN
GYRB PSEPU	SYIEQEGLAKKNVATTGDDAREGLTAISVKVPDPKFSSQTKDKLVSSEVKAVEQEMN

(k) (i)

GYRB BACSU	TAMETFMLENPDAAKIVDKGLMAARARMAAKKARELTRRKSALEISNLPGKLADCSSKD
GYRB ECOLI	ELLAEYLLNPTDAKIVVGKIIDAARAREARRAREMTRRKGALDLAGLPGKLADCQERD
GYRB PSEPU	KYFSDFLLENPNEAKAVVGKMDAACRAREAAKAREMTRRKGALDIAGLPGKLADCQEKD

(g)

GYRB BACSU	PSISELYTVEGDSAGGSQGRDRHFQAILPLRGKILNVEKARLDKILSNNEVRSMITAL
GYRB ECOLI	PALSELYTVEGDSAGGSQGRNRKNQAILPLKGKILNVEKARFDKMLSSQEVTLITAL
GYRB PSEPU	PALSELYTVEGDSAGGSQGRNRRTQAILPLKGKILNVEKARFDKMLSSQEVTLITAL

(c)

GYRB BACSU	GTGIGED-FNLEKARYHKVVIMTDADVDGAHIRTLLLTFYRQMRQIIENGVYIAQPPL
GYRB ECOLI	GCGIGRDEYNPDKLRYHSIIIMTDADVDGSHIRTLLLTFYRQMPVERGHVYIAQPPL
GYRB PSEPU	GCGIGREEYNIDKLRYHNIIIMTDADVDGSHIRTLLLTFFRQLPELVERGYIYIAQPPL

(f) (j)

GYRB BACSU	YKVQQKG-----
GYRB ECOLI	YKVKKGKOBQYIKDDEAMDOYQISIALDGTHTNASAPALAGEALEKLVSEYNATQKMI
GYRB PSEPU	YKVKKGKQEQYIKDDEAMEEYMTQSALEDASLHLDSEPAVSGVQLESVLNEFRSVMKTL

(d)

GYRB BACSU	-RVEYAY-----NDKE-----
GYRB ECOLI	NRMERRYPKAMLKELIYQPTLTEADLSDEQTVTRWVNALVSELNDKEQHGSQWKF DVHTN
GYRB PSEPU	KRLSLRYPEELTEHFVLPETVLEQLGDHVMQAWLAKLQERLNSSQKSLAYNASLRED

(e)

GYRB BACSU	AEQNLFPIVVRVRTHGVDTDYPPLDHEFITGGEYRRICTLGEKLRLGLEEDAFIERGERRQ
GYRB ECOLI	KERNWLPEVEITSQHGLASYITFNRDFFGSNDYRTVVNIQAKLSSLGEGAYVQRGERRQ
GYRB PSEPU	

(f) (j)

GYRB BACSU	---LEELLKTLPPQTPKP--GLORYKGLGEMNATQLWETTMDPSSRTLLQVTLEDAMDAD
GYRB ECOLI	PVASPEQALDWLVKESRRGLSIQRYKGLGEMNPEQLWETTMDPESRMLRVTVKDAIAAD
GYRB PSEPU	AIVEFKEGLDWLMNETTKRHTIQRYKGLGEMNPDQLWETTMDPVRMLKVTIEDAIAAD

(g)

GYRB BACSU	ETFEMLMDKVEPRRNFIIEANARYVKNLDI
GYRB ECOLI	QIFTTLMGDAVEPRRAFIEENALKAAANDI
GYRB PSEPU	QIFNTLMGDAVEPRREFIESNALS VSNLDF

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 935 003 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
27.10.1999 Bulletin 1999/43

(51) Int. Cl.⁶: C12Q 1/68, C12N 15/90

(43) Date of publication A2:
11.08.1999 Bulletin 1999/32

(21) Application number: 98310224.5

(22) Date of filing: 14.12.1998

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 12.12.1997 JP 34331697

(71) Applicant:
MARINE BIOTECHNOLOGY INSTITUTE CO.,
LTD.
Bunkyo-ku, Tokyo 113-0033 (JP)

(72) Inventors:
• Yamamoto, Satoshi,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)

- Kasai, Hiroaki,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)
- Nakamura, Shoko,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)
- Suzuki, Makoto,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)
- Hamada, Tohru,
Kamaishi Laboratory
Kamaishi-shi, Iwate 026-0001 (JP)

(74) Representative:
Woods, Geoffrey Corlett
J.A. KEMP & CO.
Gray's Inn
14 South Square
London WC1R 5LX (GB)

(54) Method for identification and detection of microorganisms using gyrase gene as an indicator

(57) A method for identifying a microorganism, comprises

(i) amplifying DNA from the microorganism by PCR using two primers, wherein at least one of the said primers comprises sequence which codes for all or part of one of the following amino acid sequences (a) to (l):

(a) (Pro or Ser)-(Ala or Thr)-(Ala, Val or Leu)-(Glu or Asp)-(Val or Thr)-(Ile or Val)-(Met, Leu or Phe)-Thr-(Val, Glu or Ile)-Leu-His-Ala-Gly-Gly-Lys-Phe-(Asp or Gly)-(Asp, Gly, Asn or Ser)-(Ser, Lys, Gly, Asp or Asn)
(b) Gly-Gly-Thr-His
(c) (Ile or Leu)-Met-Thr-Asp-Ala-Asp-Val-Asp-Gly-(Ala or Ser)-His-Ile-Arg-Thr-Leu
(d) Arg-Lys-Arg-Pro-(Gly or Ala)-Met-Tyr-Ile-Gly-(Ser or Asp)-Thr
(e) Gln-(Thr or Pro)-(Lys or Asn)-(Thr, Asp, Gly, Lys, Ser, Phe or Tyr)-Lys-Leu

(f) (Tyr or Phe)-Lys-Gly-Leu-Gly-Glu-Met-Asn-(Ala or Pro)

(g) Val-Glu-Gly-Asp-Ser-Ala-Gly-Gly-Ser

(h) Lys-(His or Val)-Pro-Asp-Pro-(Gln or Lys)-Phe

(i) Leu-Pro-Gly-Lys-Leu-Ala-Asp-Cys-(Ser or Gln)-(Ser or Glu)-(Lys or Arg)-Asp-Pro-(Ala or Ser)

(j) Gln-Leu-(Trp or Arg)-(Glu or Asp)-Thr-Thr-(Met or Leu)-(Asp or Asn)-Pro

(k) Ala-(Lys or Arg)-(Lys or Arg)-Ala-Arg-Glu

(l) Phe-Thr-Asn-Asn-Ile-(Pro or Asn)-(Thr or Gln)

and which functions as a substantial primer; and

(ii) identifying the microorganism based on the nucleotide sequence of the amplified DNA fragment.

EP 0 935 003 A3

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 98 31 0224

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.)						
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim							
X	<p>DATABASE WPI Week 9541 Derwent Publications Ltd., London, GB; AN 95-315932 XP002113794 "Identify detect microbe DNA gene sequence allow more accuracy define microbe strain species" & JP 07 213299 A (KAIYO BIOTECHNOLOGY KENKYUSHO KK), 15 August 1995 (1995-08-15) * abstract *</p> <p>US 5 645 994 A (HUANG WAI MUN) 8 July 1997 (1997-07-08) see Seq ID 101 of citation with respect to sequence (d) of claim 1.</p> <p>WO 97 35970 A (DOUMOTO NOBUHIKO ;KASTHURI VENKATESWARAN (JP); NIPPON SUISAN KAISH) 2 October 1997 (1997-10-02)</p>	1-4	C12Q1/68 C12N15/90						
A			<p>TECHNICAL FIELDS SEARCHED (Int.Cl.)</p> <p>C12Q</p>						
<p>The present search report has been drawn up for all claims</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%;">Place of search</td> <td style="width: 33%;">Date of completion of the search</td> <td style="width: 34%;">Examiner</td> </tr> <tr> <td>THE HAGUE</td> <td>31 August 1999</td> <td>Osborne, H</td> </tr> </table>				Place of search	Date of completion of the search	Examiner	THE HAGUE	31 August 1999	Osborne, H
Place of search	Date of completion of the search	Examiner							
THE HAGUE	31 August 1999	Osborne, H							
<p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>									

EP 0 935 003 A3

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 98 31 0224

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-08-1999

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
JP 7213299 A	15-08-1995	NONE	
US 5645994 A	08-07-1997	NONE	
WO 9735970 A	02-10-1997	JP 9252783 A CA 2249183 A	30-09-1997 02-10-1997

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82