1) [Quiz Review] Let $T \colon V \to W$ be a linear transformation, let Z be a subspace of W, and let

$$U = \{ x \in V \colon T(x) \in Z \}.$$

Show that U is a subspace of V.

2) [4.6 Q16] In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1-3t^2, 2+t-5t^2, l+2t\}$ to the standard basis. Then write t^2 as a linear combination of the polynomials in \mathcal{B} .

3)	$[4.5 \ \Omega]$	3] I	Determine	the	dimensions	of Null	(A)	Col(A)	and Row	(A)	of
U,	,	14.0 QI	. O I	octor minic	UIIC	difficitions	orruni	(∡⊥),	COI(21)	and now	(∡⊥)	OI

4) [4.5 Q42] Show that the space \mathbb{P} of all polynomial functions defined on the real line is an infinite-dimensional vector space.

Let V be a 4-dimensional vector space with basis $\{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}\}$, and S_i be the subspace of vectors in V whose ith coordinate is 0. Then,

$$\forall v \in V, v = a\mathbf{x} + b\mathbf{y} + c\mathbf{z} + d\mathbf{w},$$

and therefore if $v \in S_i$, then

$$v_i = ax_i + by_i + cz_i + dw_i = 0.$$

Writing $v = (a, b, c, d), v \in S_i$ if and only if $(a, b, c, d) \cdot (x_i, y_i, z_i, w_i) = 0$, so S_i is the orthogonal complement of (x_i, y_i, z_i, w_i) . Therefore, if $(x_i, y_i, z_i, w_i) \neq (0, 0, 0, 0)$, then S_i is 3-dimensional.