What is claimed is:

1. A compound of Formula I or a pharmaceutically acceptable salt thereof:

Ī

wherein

5

25

R¹ is selected from C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, R⁵R⁶N-C₁₋₆alkyl, R^5O-C_{1-6} alkyl, $R^5C(=O)N(-R^6)-C_{1-6}$ alkyl, $R^5R^6NS(=O)_2-C_{1-6}$ alkyl, $R^5CS(=O)_2N(-R^6)-C_{1-6}$ C_{1-6} alkyl, $R^5R^6NC(=O)N(-R^7)-C_{1-6}$ alkyl, $R^5R^6NS(=O)_2N(R^7)-C_{1-6}$ alkyl, C_{6-10} aryl- C_{1-6} alkyl, C_{6-10} aryl-C(=O)- C_{1-6} alkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl-10 C_{1-6} alkyl, C_{3-6} heterocyclyl- C_{1-6} alkyl, C_{3-6} heterocyclyl-C(=O)- C_{1-6} alkyl, C_{1-10} hydrocarbylamino, R^5R^6N -, R^5O -, R^5C (=O)N(- R^6)-, R^5R^6NS (=O)₂-, $R^5CS(=O)_2N(-R^6)$ -, $R^5R^6NC(=O)N(-R^7)$ -, $R^5R^6NS(=O)_2N(R^7)$ -, C_{6-10} aryl, C_{6-10} aryl-C(=O)-, C₃₋₁₀cycloalkyl, C₄₋₈cycloalkenyl, C₃₋₆heterocyclyl and C₃₋₆heterocyclyl-C(=0)-; wherein said C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{6-10} aryl- C_{1-6} alkyl, 15 $C_{6\text{--}10} aryl-C(=O)-C_{1\text{--}6} alkyl, \ C_{3\text{--}10} cycloalkyl-C_{1\text{--}6} alkyl, \ C_{4\text{--}8} cycloalkenyl-C_{1\text{--}6} alkyl, \ C_{4\text{--}8} cycloalken$ C₃₋₆heterocyclyl-C₁₋₆alkyl, C₃₋₆heterocyclyl-C(=O)-C₁₋₆alkyl, C₁₋₁₀hydrocarbylamino, C_{6-10} aryl, C_{6-10} aryl-C(=O)-, C_{3-10} cycloalkyl, C_{4-8} cycloalkenyl, C_{3-6} heterocyclyl or C₃₋₆heterocyclyl-C(=O)- used in defining R¹ is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, 20 and –NR⁵R⁶;

 R^2 is selected from C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl- C_{1-6} alkyl, C_{3-6} heterocycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl, R^5R^6N -, C_{3-5} heteroaryl, C_{6-10} aryl and C_{3-6} heterocycloalkyl, wherein said C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl- C_{1-6} alkyl, C_{3-6} heterocycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl, C_{3-6} heterocycloalkyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and $-NR^5R^6$;

wherein R^5 , R^6 and R^7 are independently selected from –H, C_{1-6} alkyl, C_{2-6} 6alkenyl, C_{2-6} alkynyl, and a divalent C_{1-6} group that together with another divalent R^5 , R^6 or R^7 forms a portion of a ring;

 R^3 is selected from –H, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl, C_{3-6} heterocycloalkyl, C_{3-6} heterocycloalkyl,

5

10

15

30

optionally substituted with one or more

groups selected from C₁₋₆alkyl, halogen, amino and C₁₋₆alkoxy;

each of R⁸ and R⁹ is independently selected from –H, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₃₋₆heterocyclyl, C₆₋₁₀aryl, C₃₋₆heterocylcyl-C₁₋₆alkyl, C₆₋₁₀aryl-C₁₋₆alkyl, and a divalent C₁₋₆group that together with another divalent group selected from R⁸ and R⁹ forms a portion of a ring, wherein said C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkyl-C₁₋₆alkyl, C₃₋₆heterocyclyl, C₆₋₁₀aryl, C₃₋₆heterocylcyl-C₁₋₆alkyl, C₆₋₁₀aryl-C₁₋₆alkyl, or divalent C₁₋₆group is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and –NR⁵R⁶; and

 R^4 is selected from –H, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, and C_{4-8} cycloalkenyl- C_{1-6} alkyl.

2. A compound as claimed in claim 1, wherein

R¹ is selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, phenyl-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₁₀heterocyclyl-C₁₋₄alkyl, C₆₋₁₀aryl, C₃₋₁₀cycloalkyl, C₃₋₁₀heterocyclyl and C₄₋₆cycloalkenyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, phenyl-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₁₀heterocyclyl-C₁₋₄alkyl, C₆₋₁₀aryl, C₃₋₁₀cycloalkyl, C₃₋₁₀heterocyclyl and C₄₋₆cycloalkenyl used in defining R¹ is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and -NR⁵R⁶;

R² is selected from C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl, C₃₋₅heteroaryl, R⁵R⁶N-, and phenyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl,

 C_{3-6} heterocycloalkyl- C_{1-4} alkyl, C_{4-6} cycloalkenyl, C_{3-5} heteroaryl, R^5R^6N -, and phenyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and -NR $^5R^6$;

R³ is selected from -H, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋

6heterocycloalkyl, R^{9} and R^{8} optionally substituted with one or more groups selected from C_{1-6} alkyl and halogen;

each of R⁸ and R⁹ is independently selected from –H, C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₆alkyl, C₃₋₆heterocyclyl and C₃₋₆heterocylcyl-C₁₋₆alkyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₆alkyl, C₃₋₆heterocyclyl, C₃₋₆heterocylcyl-C₁₋₆alkyl and a divalent C₁₋₆group that together with another divalent group selected from R⁸ and R⁹ forms a portion of a ring, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋₆cycloalkyl-C₁₋₆alkyl, C₃₋₆heterocyclyl and C₃₋₆heterocylcyl-C₁₋₆alkyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, C₃₋₆cycloalkyl, C₃₋₆heterocyclyl, C₃₋₆heterocylcyl-C₁₋₆alkyl or divalent C₁₋₆group are optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy and –NR⁵R⁶; and R⁴, R⁵ and R⁶ are independently selected from –H and C₁₋₃alkyl.

3. A compound as claimed claim 1,

5

10

15

20

25

30

wherein R¹ is selected from C₁₋₆alkyl, C₂₋₆alkenyl, phenyl-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₆₋₁₀aryl, C₃₋₁₀cycloalkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, and C₄₋₆cycloalkenyl, wherein said C₁₋₆alkyl, C₂₋₆alkenyl, phenyl-C₁₋₄alkyl, C₃₋₁₀cycloalkyl-C₁₋₄alkyl, C₄₋₆cycloalkenyl-C₁₋₄alkyl, C₆₋₁₀aryl, C₃₋₁₀cycloalkyl, C₃₋₆heterocycloalkyl-C₁₋₄alkyl, and C₄₋₆cycloalkenyl used in defining R¹ is optionally substituted by one or more groups selected from halogen, methoxy, ethoxy, methyl, ethyl, hydroxy, and –NR⁵R⁶;

 R^2 is selected from C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl and C_{3-6} cycloalkyl- C_{1-4} alkyl, wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{3-6} cycloalkyl and C_{3-6} cycloalkyl- C_{1-4} alkyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, methoxy, ethoxy, methyl, ethyl, hydroxy and $-NR^5R^6$;

5

10.

15

20

 R^3 is selected from C_{2-6} alkyl, C_{3-6} heterocycloalkyl and R^9 optionally substituted with one or more C_{1-6} alkyl, and;

wherein said C₃₋₆heterocycloalkyl contain at least one nitrogen ring atom and the radical of C₃₋₆heterocycloalkyl is located on the at least one nitrogen ring atom, and wherein each of R⁸ and R⁹ is independently selected from –H, C₁₋₆alkyl, morpholinyl- C₁₋₃alkyl, pyrrolidinyl-C₁₋₃alkyl, and piperidinyl-C₁₋₃alkyl, wherein said C₁₋₆alkyl, morpholinyl-C₁₋₃alkyl, pyrrolidinyl-C₁₋₃alkyl, and piperidinyl-C₁₋₃alkyl are optionally substituted by one or more groups selected from halogen, methoxy, ethoxy, methyl, ethyl, hydroxy and –NR⁵R⁶; and

R⁴, R⁵ and R⁶ are independently selected from -H and C₁₋₃alkyl.

4. A compound as claimed in claim 1, wherein

R¹ is selected from cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl, 4,4-difluorocyclohexanemethyl, cyclohexylethyl, cyclohexylethyl, cyclopentylethyl, tetrahydropyranylmethyl, tetrahydrofuranylmethyl, 1-piperidinylethyl, N-methyl-2-piperidinyl-methyl and benzyl;

R² is selected from t-butyl, n-butyl, 2-methyl-2-butyl, isopentyl, 2-methoxy-2-propyl, 2-hydroxy-propyl, trifluoromethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1-cyclopropyl-ethyl, 1-methyl-propyl, 1,1-dimethyl-propyl, 1,1-dimethyl-3-buten-1-yl, ethyl, and 2-propyl;

 R^3 is $C_{2\text{-}5}alkyl$ and $R^8R^9N\text{-},$ wherein R^8 and R^9 are independently selected from –H, and $C_{1\text{-}3}alkyl$.

5. A compound selected from:

25 N-[2-tert-Butyl-1-(cyclohexylmethyl)-1H-benzimidazol-5-yl]-N,N',N'-trimethylsulfamide;

N-[2-tert-Butyl-1-(cyclohexylmethyl)-1H-benzimidazol-5-yl]-N',N'-diethyl-N-methylsulfamide;

30

5

15

20

30

N-[1-(cyclohexylmethyl)-2-(1,1-dimethylpropyl)-1 H -benzimidazol-5-yl]- N , N
dimethyl-sulfamide;

N-[2-tert-Butyl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-benzimidazol-5-yl]-N-methylbutane-1-sulfonamide;

N-[2-tert-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-N-methyl-2-pyrrolidin-1-ylethanesulfonamide;

N-[2-tert-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]N-methyl-2-morpholin-4-ylethanesulfonamide;

N-[2-tert-Butyl-1-(tetrahydro-2*H*-pyran-4-ylmethyl)-1*H*-benzimidazol-5-yl]-N-methyl-2-piperidin-1-ylethanes-ulfonamide;

N-[2-tert-Butyl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-benzimidazol-5-yl]-2-methoxy-N-methylethanesulfon amide;

N-[2-tert-Butyl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-benzimidazol-5-yl]-2-[(2-hydroxyethyl)amino]-N-methylethanesulfonamide;

2-(2-Aminoethoxy)-N-[2-tert-butyl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-benzimidazol-5-yl]-N-methylethamesulfonamide;

25 N-[2-tert-Butyl-1-(tetrahydro-2H-pyran-4-ylmethyl)-1H-benzimidazol-5-yl]N-methylethylenesulfonamide;

N-{2-tert-Butyl-1-[(4,4-difluorocyclohexyl)methyl]-1H-benzimidazol-5-yl}-N-methylbutane-1-sulfonamide;

N-{2-tert-Butyl-1-[(4,4-difluorocyclohexyl)methyl]-1H-benzimidazol-5-yl}-N-methyl-2-piperidin-1-ylethanesulfonamide and pharmaceutically acceptable salts thereof.

6. A compound according to any one of claims 1-5 for use as a medicament.

- 7. The use of a compound according to any one of claims 1-5 in the manufacture
 5 of a medicament for the therapy of pain.
 - 8. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the treatment of anxiety disorders.
- 9. The use of a compound according to any one of claims 1-5 in the manufacture of a medicament for the treatment of cancer, multiple sclerosis, Parkinson's disease, Huntington's chorea, Alzheimer's disease, gastrointestinal disorders and cardiovascular disorders.
- 15 10. A pharmaceutical composition comprising a compound according to any one of claims 1-5 and a pharmaceutically acceptable carrier.
 - 11. A method for the therapy of pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to any one of claims 1-5.
 - 12. A method for preparing a compound of Formula I,

20

$$R^{3} = \overset{O}{\overset{R^{4}}{\overset{1}{\circ}}} \times \overset{N}{\overset{N}{\overset{N}{\overset{N}{\overset{N}{\circ}}}}} = R^{2}$$

Ī

25 comprising the step of reacting a compound of Formula II,

5

10.

15

20

25

30

and -NR⁵R⁶;

П

with a compound of R²C(=O)X, in the presence of a base and optionally a coupling reagent, followed by treatment by an acid; wherein

X is selected from Cl, Br, F and OH;

 $R^1 \text{ is selected from } C_{1-10} \text{alkyl}, \ C_{2-10} \text{alkenyl}, \ C_{2-10} \text{alkynyl}, \ R^5 R^6 N - C_{1-6} \text{alkyl}, \ R^5 C (=O) N (-R^6) - C_{1-6} \text{alkyl}, \ R^5 R^6 N S (=O)_2 - C_{1-6} \text{alkyl}, \ R^5 C S (=O)_2 N (-R^6) - C_{1-6} \text{alkyl}, \ R^5 R^6 N S (=O)_2 N (R^7) - C_{1-6} \text{alkyl}, \ C_{6-10} \text{aryl} - C_{1-6} \text{alkyl}, \ R^5 R^6 N S (=O)_2 N (R^7) - C_{1-6} \text{alkyl}, \ C_{6-10} \text{aryl} - C_{1-6} \text{alkyl}, \ C_{3-10} \text{cycloalkyl} - C_{1-6} \text{alkyl}, \ C_{4-8} \text{cycloalkenyl} - C_{1-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{1-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{1-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{1-6} \text{alkyl}, \ C_{1-10} \text{hydrocarbylamino}, \ R^5 R^6 N - R^5 O - R^5 C (=O) N (-R^6) - R^5 R^6 N S (=O)_2 - R^5 C S (=O)_2 N (-R^6) - R^5 R^6 N C (=O) N (-R^7) - R^5 R^6 N S (=O)_2 N (R^7) - C_{6-10} \text{aryl} - C (=O) - C_{3-10} \text{cycloalkyl}, \ C_{4-8} \text{cycloalkenyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{1-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{1-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{1-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{alkyl}, \ C_{3-6} \text{heterocyclyl} - C (=O) - C_{3-6} \text{heterocyclyl} - C (=O) -$

 R^2 is selected from C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl- C_{1-6} alkyl, C_{3-6} heterocycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl, R^5R^6N -, C_{3-5} heteroaryl, C_{6-10} aryl and C_{3-6} heterocycloalkyl, wherein said C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-8} cycloalkyl, C_{3-8} cycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl- C_{1-6} alkyl, C_{3-6} heterocycloalkyl- C_{1-6} alkyl, C_{4-8} cycloalkenyl, C_{3-5} heteroaryl, C_{6-10} aryl or C_{3-6} heterocycloalkyl used in defining R^2 is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and $-NR^5R^6$;

wherein R^5 , R^6 and R^7 are independently selected from –H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and a divalent C_{1-6} group that together with another divalent R^5 , R^6 or R^7 forms a portion of a ring;

 $R^3 \ is \ selected \ from -H, \ C_{1\text{--}10} alkyl, \ C_{2\text{--}10} alkenyl, \ C_{2\text{--}10} alkynyl, \ C_{3\text{--}10} cycloalkyl, \ C_{3\text{--10}} cycloalkyl,$

$$R^8$$
, R^8 , R^8 , R^8 , R^8 , and R^8 , optionally substituted with one or more groups selected from C_{1-6} alkyl, halogen, amino and C_{1-6} alkoxy;

each of R^8 and R^9 is independently selected from –H, $C_{1\text{-}10}$ alkyl, $C_{2\text{-}10}$ alkenyl, $C_{2\text{-}10}$ alkynyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ heterocyclyl, $C_{6\text{-}10}$ aryl, $C_{3\text{-}6}$ heterocylcyl- $C_{1\text{-}6}$ alkyl, $C_{6\text{-}10}$ aryl- $C_{1\text{-}6}$ alkyl, and a divalent $C_{1\text{-}6}$ group that together with another divalent group selected from R^8 and R^9 forms a portion of a ring, wherein said $C_{1\text{-}10}$ alkyl, $C_{2\text{-}10}$ alkenyl, $C_{2\text{-}10}$ alkynyl, $C_{3\text{-}10}$ cycloalkyl, $C_{3\text{-}10}$ cycloalkyl- $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ heterocyclyl, $C_{6\text{-}10}$ aryl, $C_{3\text{-}6}$ heterocylcyl- $C_{1\text{-}6}$ alkyl, $C_{6\text{-}10}$ aryl- $C_{1\text{-}6}$ alkyl, or divalent $C_{1\text{-}6}$ group is optionally substituted by one or more groups selected from halogen, cyano, nitro, methoxy, ethoxy, methyl, ethyl, hydroxy, and –NR 5 R 6 ; and

5

10

 R^4 is selected from –H, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-6} alkyl, and C_{4-8} cycloalkenyl- C_{1-6} alkyl.