ЛАБОРАТОРНАЯ РАБОТА

Численное решение ОДУ (задача Коши)

Цель: сформировать практические навыки использования основных естественно научных законов в профессиональной деятельности, применения вычислительных методов и моделирования, теоретического и экспериментального исследования;

Задачи: разработка алгоритмов для реализации вычислений методами Эйлера, Адамса, Рунге-Кутты. Промоделировать движение груза на временном отрезке при заданных значениях параметров задачи. Найти решение жесткой задачи.

Задача 7.1. Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) 1 порядка

$$y'(t) = f(t, y(t)), t \in [t_0, T],$$

 $y(t_0) = y_0$
(1)

и оценить погрешность решения задачи.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Задать исходные данные: функцию f правой части, начальное значение y_0 .
- 2. Разработайте функцию, реализующую явный метод Эйлера. Найдите приближенное решение задачи Коши с шагом h=0.1 по явному методу Эйлера.
- 3. Разработайте функцию реализующую, метод Рунге-Кутты 4 порядка точности. Найдите приближенное решение задачи Коши с шагом h=0.1 по методу Рунге-Кутты 4 порядка точности.
- 4. Найти решение задачи Коши аналитически.
- 5. Построить таблицы значений приближенных и точного решений. На одном чертеже построить графики приближенных и точного решений.
- 6. Оценить погрешность приближенных решений двумя способами:
- $arepsilon = \max_{0 \le i \le N} \mid y(t_i)$ $y_i \mid_{; \text{ здесь}} y(t_i)_{_{\mathbf{H}}} y_{i_{-3}}$ значения точного и приближенного решений в а) по формуле узлах сетки $^{\iota_{i}}$, $_{i=1...N;}$
- b) по правилу Рунге (по правилу двойного пересчета).
- 7. Выяснить, при каком значении шага $h=h^*$ решение, полученное по методу Эйлера, будет иметь такую же погрешность (см. п. 6a), как решение, полученное с помощью метода Рунге-Кутты с шагом h=0.1. УКАЗАНИЕ. В п. 7 рекомендуется провести серию вычислений решения по методу Эйлера, дробя шаг h пополам.

Задача 7.2. Задача Коши для ОДУ 2 порядка
$$mx^{''}+Hx^{'}+kx=f\left(t\right)_{,}\ t\!\in\![0,T],$$

$$x(0)=\!x_0$$

$$x^{'}(0)=\!v_0$$

описывает движение груза массы m, подвешенного к концу пружины. Здесь x(t) – смещение груза от положения равновесия, H – константа, характеризующая силу сопротивления среды, k –коэффициент

упругости пружины, f(t) – внешняя сила. Начальные условия: $^{\chi_0}$ – смещение груза в начальный момент

времени t=0, v_0 – скорость груза в начальный момент времени. Промоделировать движение груза на временном отрезке [0, T] при заданных в индивидуальном варианте трех наборах (I, II, III) значений параметров задачи. Для каждого набора по найденной таблице (или графику) решения задачи определить максимальное и минимальное значения функции x(t) и моменты времени, в которые эти значения достигаются. Предложить свой вариант задания параметров, при которых характер колебаний груза существенно отличается от рассмотренного ранее.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

1. Заменить исходную задачу эквивалентной задачей Коши для системы ОЛУ 1 порядка:

$$x'_{1} = x_{2}$$

$$x'_{2} = \frac{f(t) - Hx_{2} - kx_{1}}{m}$$

$$x_{1}(0) = x_{0}$$

$$x_{2}(0) = v_{0}$$
(2)

- 2. Для каждого варианта выбора параметров решить задачу (2) с помощью метода Рунге-Кутты 4 порядка точности с шагом h=0.1.
- 3. Для каждого варианта выбора параметров построить график найденного решения. Сравнить характер движения груза и дать интерпретацию полученного движения.
- 4. Для каждого варианта выбора параметров определить требуемые в задаче характеристики.

УКАЗАНИЕ. В п. 2 использовать функцию, разработанную в задаче 6.1.

Задача 7.3. Решить приближенно задачу Коши для ОДУ 1 порядка вида (1), используя метод Рунге-Кутты 4 порядка точности и метод, указанный в варианте, с шагами h и h/2. Для каждого метода оценить погрешность по правилу Рунге и вычислить уточненное решение (см. *ПРИЛОЖЕНИЕ*). Построить на одном чертеже графики приближенных решений (с шагом h/2) и графики уточненных решений.

Задача 7.4. Решить приближенно задачу Коши для ОДУ 3 порядка

$$a_0y''' + a_1y'' + a_2y' + a_3y = f(t)$$

 $y(A) = b_1, y'(A) = b_2, y''(A) = b_3$

на отрезке [A, B], используя метод Рунге-Кутты 4 с шагами h=0.1 и h=0.05 для систем ОДУ 1 порядка. Оценить погрешность по правилу Рунге. Построить график решения, найденного с шагом h=0.05. УКАЗАНИЕ. Эквивалентная задача Коши для системы ОДУ 1 порядка приведена в Π РИЛОЖЕНИИ 7.C.

Задача 7.5. Дана жесткая задача Коши вида (1). Найти решение задачи с заданной точностью $\varepsilon = 10^{-3}$ ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Используя функцию, разработанную в задаче 6.1, найти приближенное решение задачи Коши явным методом Эйлера с шагом h=0.15.
- 2. Найти решение задачи методом Рунге-Кутты 4 порядка точности с помощью функции, разработанной в задаче 7.1 с шагом h=0.15.
- 3. Построить графики приближенных и точного решений задачи.
- 4. Уменьшая шаг, найти решение задачи с заданной точностью ε каждым из методов. Сравнить значения шагов интегрирования, при которых достигается точность ε .
- 5. Объяснить полученные результаты.

Задача 7.6. Даны две задачи Коши для систем ОДУ 1 порядка с постоянными коэффициентами на отрезке [0,1]

$$Y'(t) = AY(t), Y(0) = Y_{0},$$

 $Z'(t) = BZ(t), Z(0) = Z_{0},$

где A и B – заданные матрицы, Y_0, Z_0 - заданные векторы. Выяснить, какая из задач является жесткой. ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Составить программу-функцию нахождения решения системы ОДУ 1 порядка с постоянными коэффициентами по явному методу Эйлера. Используя составленную программу, решить обе задачи с шагом h=0.01. Определить, для какой из задач явный метод неустойчив при данном шаге h.
- 2. Найти коэффициенты жесткости обеих систем (используя встроенную функцию для нахождения собственных чисел (eigenvalues) матриц *A* и *B*). Какая из задач является жесткой?
- 3. Для жесткой задачи теоретически оценить шаг h^* , при котором явный метод Эйлера будет устойчив (см. ПРИЛОЖЕНИЕ).
- 4. Составить программу-функцию нахождения решения системы ОДУ 1 порядка с постоянными коэффициентами по неявному методу Эйлера. Используя составленную программу, найти решение жесткой задачи с шагом h=0.01. Построить графики компонент полученного решения.
- 5. Для жесткой задачи экспериментально подобрать шаг h, при котором графики компонент решения, полученного по явному методу Эйлера, визуально совпадают с графиками компонент решения, полученного

по неявному методу с шагом h=0.01. Сравнить найденное значение шага с шагом h*. Объяснить различие поведения явного и неявного методов Эйлера при решении жесткой задачи.

Задача 7.7. Решить приближенно задачу Коши для ОДУ 1 порядка вида (1) с помощью метода, указанного в индивидуальном варианте, с точностью $\varepsilon = 10^{-4}$. При нахождении решения использовать алгоритм автоматического выбора шага.

УКАЗАНИЕ. В результате работы программы должен создаваться файл, содержащий вектор значений приближенного решения, а также значение шага h, при котором достигается заданная точность ε . Программа по запросу должна выдавать на экран таблицу значений найденного решения в фиксированной 21 точке

отрезка $[t_0,T]$ и график найденного решения.

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче:

- 1) постановка задачи;
- 2) необходимый теоретический материал;
- 3) решение поставленной задачи;
- 4) анализ полученных результатов;
- 5) графический материал;
- 6) тексты программ.

Схема вариантов к лабораторной работе 7

			Слеми вирии				
N	Выполн	N	Выполняе	N	Выполня	N	Выполняе
	яемые		мые		емые		мые
	задачи		задачи		задачи		задачи
1	7.1.1	11	7.4.2	21	7.7.3	31	7.3.5
2	7.2.1	12	7.5.2	22	7.1.4	32	7.4.5
3	7.3.1	13	7.6.2	23	7.2.4	33	7.5.5
4	7.4.1	14	7.7.2	24	7.3.4	34	7.6.5
5	7.5.1	15	7.1.3	25	7.4.4	35	7.7.5
6	7.6.1	16	7.2.3	26	7.5.4	36	7.1.6
7	7.7.1	17	7.3.3	27	7.6.4	37	7.2.6
8	7.1.2	18	7.4.3	28	7.7.4	38	7.3.6
9	7.2.2	19	7.5.3	29	7.1.5	39	7.4.6
10	7.3.2	20	7.6.3	30	7.2.5	40	7.5.6

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ

					т иолищи п				
N	<i>f</i> (<i>t</i> , <i>y</i>)	t0	T	y0	N	<i>f</i> (<i>t</i> , <i>y</i>)	t0	T	y0
7.1.1	$y/t + t^2$	1	2	0	7.1.16	-y/t+3t	1	2	1
7.1.2	yctgt + 2t sin t	$\frac{\pi}{2}$	$\frac{\pi}{2}$	0	7.1.17	$\frac{2ty}{1+t^2} + 1 + t^2$	1	2	3
7.1.3	$-y\cos t + \frac{\sin(2t)}{2}$	0	1	0	7.1.18	$\frac{2t-1}{t^2}y+1$	1	2	1
7.1.4	$-ytgt + \cos^2 t$	$\frac{\pi}{4}$	$\frac{\pi}{4}$ +1	0.5	7.1.19	$-\frac{3y}{t} + \frac{2}{t^3}$	1	2	1
7.1.5	$\frac{y}{t+2} + t^2 + 2t$	-1	0	1.5	7.1.20	$-2ty-2t^3$	1	2	e^{-1}
7.1.6	$\frac{y}{t+1} + e^t(t+1)$	0	1	1	7.1.21	$y/t - 2/t^2$	1	1	1
7.1.7	<i>y/t</i> + <i>t</i> sin <i>t</i>	$\frac{\pi}{2}$	$\frac{\pi}{2}$ +1	1	7.1.22	$-ty-t^3$	0	1	3

7.1.8	- <i>y/t</i> + sin <i>t</i>	π	π+1	$\frac{1}{\pi}$	7.1.23	$\frac{2}{t+1}y + e^t(t+1)^2$	0	1	1
7.1.9	$-\frac{y}{2t}+t^2$	1	2	1	7.1.24	$-2ty+te^{-t^2}\sin t$	0	1	1
7.1.10	$-\frac{2t}{1+t^2}y + \frac{2t^2}{1+t^2}$	0	1	$\frac{2}{3}$	7.1.25	$\frac{2y}{t+1} + (t+1)^3$	0	1	0.5
7.1.11	$\frac{2t-5}{t^2}y+5$	2	3	4	7.1.26	$y\cos t - \sin 2t$	0	1	3
7.1.12	$-y/t + \frac{t+1}{t}e^t$	1	2	e	7.1.27	$4ty - 4t^3$	0	1	-0.5
7.1.13	y/t - $2\ln t/t$	1	2	1	7.1.28	$y/t - \ln t/t$	1	2	1
7.1.14	$y/t - 12/t^3$	1	2	4	7.1.29	$3t^2y + t^2(1+t^3)/3$	0	1	0
7.1.15	$-2y/t+t^3$	1	2	<u>5</u> -6	7.1.30	$y\cos t + \sin 2t$	0	1	-1

N		Н	k	m	f(t)	х0	v0	T
7.2.1	I	0.5	1	1	0	10	0	20
	II	-"-	-"-	_"_	\sqrt{t}	0	_"_	-"-
					l <u> </u>			
	III	-"-	-"-	-"-	\sqrt{t}	-10	_"_	-"-
7.2.2	I	1	1	0.5	tsin(t)	0	0	20
	II	-"-	-"-	-"-	0	_"_	-10	-"-
	III	-"-	-"-	_"_	tsin(t)	-"-	-50	-"-
7.2.3	I	1	5	0.75	0	-10	0	5
	II	-"-	-"-	-"-	-"-	0	10	-"-
	III	-"-	_"_	-"-	_"_	-10	10	-"-
7.2.4	I	1	1	1	cos(t)	0	0	20
	II	-"-	-"-	3	-"-	_"_	-"-	-"-
	III	-"-	-"-	6	_"_	_"_	_"_	_"_
7.2.5	I	0.5	5	1	0	20	0	15
	II	-"-	50	-"-	_"_	-"-	-"-	-"-
	III	-"-	0.5	-"-	_"_	-"-	_"_	-"-
7.2.6	I	1	5	1	0	0	1	15
	II	-"-	0.5	-"-	_"_	-"-	_"_	-"-
	III	-"-	50	-"-	_"_	-"-	_"_	_"_
7.2.7	I	1	1	5	-t	15	0	40
	II	0.1	-"-	_"_	_"_	-"-	_"_	-"-
	III	10	-"-	_"_	_"_	-"-	_"_	-"-
7.2.8	I	1	1	0.5	sin(t)	0	0	20
	II	-"-	-"-	5	_"_	-"-	-"-	-"-
	III	-"-	-"-	50	_"_	-"-	_"_	_"_
7.2.9	I	1	1	2	-cos(0.5t)	0	0	20
	II	-"-	-"-	-"-	-cos(2t)	-"-	_"_	-"-
	III	-"-	-"-	_"_	2	_"_	_"_	_"_
7.2.10	I	0.5	1	0.5	$\int_{-}^{\infty} \sqrt{t}$	0	-10	15
					"			
	II	-"-	_"_	-"-		0	10	_"_
	III	_"_	_"_	_"_	\sqrt{t}	0	10	_"_

Таблица к задаче 7.3

N	f(t,y)	t0	T	у0	Метод
7.3.1	$-ty + (1+t)e^{-t}y^2$	0	1	1	Метод Рунге-Кутты 3 порядка I
7.3.2	$-4t^3y + 4(t^3 + 1)e^{-4t}y^2$	0	1	1	Экстраполяционный метод Адамса 2 порядка
7.3.3	$-4t^3y + 4(1-t^3)e^{4t}y^2$	0	1	-1	Модифицир. метод Эйлера 2 порядка
7.3.4	$y + 2ty^2$	0	0.8	0.5	Экстраполяционный метод Адамса 3 порядка
7.3.5	$-2ty + 2t^3y^3$	0	1	$\sqrt{2}$	Метод Рунге-Кутты 3 порядка II
7.3.6	$-ty + (t-1)e^ty^2$	0	1	1	Экстраполяционный метод Адамса 3 порядка
7.3.7	$y + ty^2$	0	0.8	1	Экстраполяционный метод Адамса 4 порядка
7.3.8	$-y+ty^2$	0	1	1	Метод разложения по формуле Тейлора 2 порядка
7.3.9	$-ty + 0.5(t - 1)e^t y^2$	0	1	2	Экстраполяционный метод Адамса 3 порядка
7.3.10	$ytgt - (2/3)y^4 \sin t$	0	1	1	Метод Рунге-Кутты 3 порядка III

Таблица к задаче 7.4

N	A	В	b_1	b_2	b_3	a_0	a_1	a_2	a_3	f(t)
7.4.1	0	1.5	1	2.5	6	1	-2	0.25	45.75	$e^{-2t} + 3t + 1$
7.4.2	0	1.5	1	2.0	4	1	-1.8	0.36	44.28	e^{-2t} - 1.5t +1
7.4.3	0	1.5	1	2.5	6	1	-1.4	0.64	41.52	$\cos(2t) + 3t + 1$
7.4.4	0	2.0	1	1.5	2	1	-1.4	1.88	45.24	$\sin(2t) + 2t - 1$
7.4.5	0	1.5	1	3.0	10	1	-2.4	0.09	48.87	$\sin(t) - 7t + 2$
7.4.6	0	1.0	1	3.5	9	1	-1	8.8	29.00	$\cos(t) + 5t + 3$
7.4.7	0	1.5	1	2.8	5	1	-1.5	-1.25	53.375	$e^{-t} + \cos(2t)$
7.4.8	0	1.5	1.5	4.0	10	1	-4.6	3.94	34.28	$e^{-1.5t} + 2\sin(3t)$
7.4.9	0	1.5	0	2.5	8	1	-4.1	0.64	42.85	$e^{-2t} + 3\sin(2.5t)$
7.4.10	0	1.5	0	3.1	9	1	-3.9	9.43	26.295	$\sin(2t) + 2\cos(3t)$

N	f(t,y)	t0	T	у0	точное решение
7.5.1	-20y + 2t - 19.9	0	1.5	0	$-1+0.1t+e^{-20t}$
7.5.2	$-30y + 30\cos(\pi t) - \pi\sin(\pi t)$	0	1.5	0	$\cos(\pi t) - e^{-30t}$
7.5.3	- 25 <i>y</i> +1.25 <i>t</i> - 49.95	0	1.5	0	$-2 + 0.05t + 2e^{-25t}$
7.5.4	$-20y + 20 - 19e^{-t}$	0	1.5	1	$1 - e^{-t} + e^{-20t}$

7.5.5	$-30y + \sin(2t) + 30\sin^2(t)$	0	1.5	1	$\sin^2(t) + e^{-30t}$
7.5.6	$-25y - \sin(2t) + 25\cos^2(t)$	0	1.5	0	$\cos^2(t) - e^{-25t}$

Таблица к задаче 7.6

N		A	Y_0		В	Z_0
7.6.1	-1.999	-0.019	0	-10.850	9.787	1
	-0.063	-1.051	1	32.515	-499.55	0
7.6.2	-13.237	15.299	2	-6.905	0.03	1
	33.885	522.183	0	-0.145	-6.095	5
7.6.3	-0.717	-23.827	1	-1.905	-0.015	1
	114.483	-640.393	2	-0.13	-2.295	0
7.6.4	-17.359	-0.573	2	-64.712	-85.344	1
	5.366	-21.351	1	-128.964	-170.918	0
7.6.5	-229.934	301.266	1	-2.018	-0.818	1
	227.624	-303.576	1	-0.082	-1.282	1

			1 4071111	<u>ια κ </u>	u 10 7 17
N	<i>f</i> (<i>t</i> , <i>y</i>)	t0	T	y0	Метод
7.7.1	$-\frac{2}{3}ty^2 + \frac{1}{3}y(\cos(\frac{t}{2}))^2$	0	5	3.4	Метод разложения по формуле Тейлора 2 порядка
7.7.2	$\frac{3}{2}e^{\frac{t}{2}}\sin(y)-\frac{1}{4}t^2$	-2	4	1.4	Модифицированный метод Эйлера 2 порядка
7.7.3	$-\frac{1}{3}y\sqrt{t} + \frac{2}{3}y^2\sin(t)$	2	10	2.2	Метод Рунге-Кутты 3 порядка I
7.7.4	$\frac{1}{2}t^{2}\cos(y) - \frac{1}{2}ye^{-\frac{t}{6}}$	0	6	1.1	Метод Рунге-Кутты 3 порядка II
7.7.5	$\frac{1}{3}t^{3}\sin(2y) - y^{2}e^{-\frac{t}{2}}$	-1	6	1.1	Метод Рунге-Кутты 3 порядка III
7.7.6	$-\frac{1}{3}y\sqrt{t} + \frac{2}{3}y^2\sin(t)$	2	10	2.2	Модифицированный метод Эйлера 2 порядка

Правило Рунге практической оценки погрешности (правило двойного пересчета):

$$y(t_i)$$
 - $y_i^{h/2} pprox arepsilon_i^h$, где $\varepsilon_i^h = rac{y_i^{h/2} - y_i^h}{2^p - 1}$, $i=1,\dots,N,\ p$ - порядок метода, а вычисления ведутся в узлах сетки t_i .

Уточненное решение вычисляется по формуле: $y_{i,ymovh} = y_i^{h/2} + \varepsilon_i^h$, i=1,...,N. Расчетные формулы методов решения задачи Коши для ОДУ 1 порядка:

Метод разложения по формуле Тейлора 2 порядка:

$$y_{i+1} = y_i + h(f(t_i, y_i) + \frac{h}{2} \left[\frac{\partial f(t_i, y_i)}{\partial t} + \frac{\partial f(t_i, y_i)}{\partial y} \right])$$

Модифицированный метод Эйлера 2 порядка:

$$\overline{y}_{i+1} = y_i + hf(t_i, y_i), \quad y_{i+1} = y_i + \frac{h}{2}(f(t_i, y_i) + f(t_{i+1}, \overline{y}_{i+1}))$$

Метод Рунге-Кутты 3 порядка I:

$$k1 = hf(t_i, y_i)$$

$$k2 = hf(t_i + \frac{h}{2}, y_i + \frac{k1}{2})$$
 $k3 = hf(t_i + h, y_i - k1 + 2k2)$

$$y_{i+1} = y_i + \frac{1}{6}(k1 + 4k2 + k3)$$

Метод Рунге-Кутты 3 порядка II:

$$k1 = hf(t_i, y_i)$$

$$k2 = hf(t_i + \frac{h}{3}, y_i + \frac{k1}{3})$$
 $k3 = hf(t_i + \frac{2}{3}h, y_i + \frac{2}{3}k2)$

$$y_{i+1} = y_i + \frac{1}{4}(k1 + 3k3)$$

Метод Рунге-Кутты 3 порядка III:

$$k1 = hf(t_i, y_i)$$

$$k2 = hf(t_i + \frac{h}{2}, y_i + \frac{k1}{2})$$
 $k3 = hf(t_i + \frac{3}{4}h, y_i + \frac{3}{4}k2)$

$$y_{i+1} = y_i + \frac{1}{9}(2k1 + 3k2 + 4k3)$$

Экстраполяционный метод Адамса 2 порядка:

$$y_{i+1} = y_i + \frac{h}{2}(3f(t_i, y_i) - f(t_{i-1}, y_{i-1}))$$

Экстраполяционный метод Адамса 3 порядка:

$$y_{i+1} = y_i + \frac{h}{12} (23f(t_i, y_i) - 16f(t_{i-1}, y_{i-1}) + 5f(t_{i-2}, y_{i-2}))$$

Экстраполяционный метод Адамса 4 порядка:

$$y_{i+1} = y_i + \frac{h}{24} \left[55 f(t_i, y_i) - 59 f(t_{i-1}, y_{i-1}) + 37 f(t_{i-2}, y_{i-2}) - 9 f(t_{i-3}, y_{i-3}) \right]$$

Сведение ОДУ 3 порядка к системе ОДУ 1 порядка (для задачи 6.4):

$$y_{1} = y_{2}$$

$$y_{2} = y_{3}$$

$$y_{3} = \frac{f(t) - a_{1}y_{3} - a_{2}y_{2} - a_{3}y_{1}}{a_{0}}$$

$$y_{1}(A) = b_{1}, \quad y_{2}(A) = b_{2}, \quad y_{3}(A) = b_{3}.$$

Условие устойчивости явного метода Эйлера для системы ОДУ 1 порядка с постоянными коэффициентами $Y'(t)=MY(t),\ Y(t_0)=Y_0$:

$$h \leq 2/\max_i |\operatorname{Re} \lambda_i|$$
 , где λ_i , $i=1,...,n$, — собственные числа матрицы M порядка n .