## Summary

#### Minimax

 Opponent acts rationally. Outcome only depends upon skills of minimizing max's advantage

### Expectimax

 Opponent acts randomly (probabilistically). Outcome only depends on chance for opponent

### Expectiminimax

 Opponent acts rationally as well as randomness is also present. So opponent behaves as minimizing agent, however choice of moves is also done based on some random process (skills + chance)

# Pruning - MINIMAX with ALPHA BETA

- Want to visit as many board states as possible
  - Want to avoid whole branches (prune them)
    - Because they can't possibly lead to a good score
  - Example: having your queen taken in chess
    - Queen sacrifices often very good tactic, though)
- Alpha-beta pruning
  - Can be used for entire search or cutoff search
  - Recognize that a branch cannot produce better score
    - Than a node you have already evaluated

# Example of Alpha-Beta Pruning



# Depth first search a good idea here



# Two-Ply Game Tree



# Example of Alpha-Beta Pruning



Depth first search a good idea here

#### **Decision Trees**

- · Conversion of data to TREE format
- · Each Branch of a Tree represent a RULE
- · Problem:
  - Which variable to choose to decide on the split
- · Characteristics to look for:
  - · Depth and Breadth of the Tree
  - Accuracy
- · Concept:
  - Choose variable that reduces NOISE/ENTROPY ie., indecision



#### **Decision Trees**

- · Conversion of data to TREE format
- · Each Branch of a Tree represent a RULE
- · Problem:
  - Which variable to choose to decide on the split
- · Characteristics to look for:
  - · Depth and Breadth of the Tree
  - Accuracy
- · Concept:
  - Choose variable that reduces NOISE/ENTROPY ie., indecision



## How to decide Root/Subsequent Decision Nodes?

### Entropy Based Solution / Gini Index

Choose a variable that reduces entropy



# Data Homogenity

$$H_x = -\sum_{i=1}^{c} p_i log_2 p_i$$
i denotes number of classes



# Data

| Outlook  | Temperature | Humidity | Wind   | Played football(yes/no) |  |
|----------|-------------|----------|--------|-------------------------|--|
| Sunny    | Hot         | High     | Weak   | No                      |  |
| Sunny    | Hot         | High     | Strong | No                      |  |
| Overcast | Hot         | High     | Weak   | Yes                     |  |
| Rain     | Mild        | High     | Weak   | Yes                     |  |
| Rain     | Cool        | Normal   | Weak   | Yes                     |  |
| Rain     | Cool        | Normal   | Strong | No                      |  |
| Overcast | Cool        | Normal   | Strong | Yes                     |  |
| Sunny    | Mild        | High     | Weak   | No                      |  |
| Sunny    | Cool        | Normal   | Weak   | Yes                     |  |
| Rain     | Mild        | Normal   | Weak   | Yes                     |  |
| Sunny    | Mild        | Normal   | Strong | Yes                     |  |
| Overcast | Mild        | High     | Strong | Yes                     |  |
| Overcast | Hot         | Normal   | Weak   | Yes                     |  |
| Rain     | Mild        | High     | Strong | No                      |  |

## Play Football

| No |
|----|
| P5 |
|    |

Entropy(Play Football) = ?

P(Yes) = count where play is yes/ total count of rows = 9/14

$$H_{Play}^{s} = -\frac{9}{14}log_{2}\frac{9}{14} - \frac{5}{14}log_{2}\frac{5}{14}$$

P(No) = 5/14

$$H_{Play} = -log_2 P(Yes) - log_2 P(No)$$

$$H_{Play}=0.94$$

# Outlook

H Play, outlook

- = P(rainy)H(play, given rainy)
- + P(overcast)H(play, given overcast)
- + P(sunny)H(play, given sunny)

\*here given means consider only those rows when calculating entropy

| Outloo<br>k  | Yes | No | Total |
|--------------|-----|----|-------|
| Rainy        | 3   | 2  | 5     |
| Overca<br>st | 4   | 0  | 4     |
| Sunny        | 2   | 3  | 5     |
|              |     |    | 14    |

$$\begin{split} &H_{Play,outlook}\\ &= \left(\frac{5}{14}\right) \left[ -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} \right] \right] \\ &+ \left(\frac{4}{14}\right) \left[ -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} \right] \\ &+ \left(\frac{5}{14}\right) \left[ -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} \right] \end{split}$$

Entropy of homogeneous data (only one class yes) is coming as 0 and it is proved as we discussed in above lines.

$$H_{Play,outlook} = \left(\frac{5}{14}\right)[0.971] + \left(\frac{4}{14}\right) 0 + \left(\frac{5}{14}\right)[0.971] = 0.693$$

## Information Gain

 $Information\ Gain(Target\ T, Independent\ Variable\ X) = Entropy(T) - Entropy(T, X)$ 

 $\begin{aligned} & \textit{Information Gain}(\textit{Play},\textit{Outlook}) = \textit{Entropy}(\textit{Play}) - \textit{Entropy}(\textit{Play},\textit{Outlook}) \\ &= 0.940 - 0.693 = 0.247 \end{aligned}$ 



### Information Gain - IG

- Repeat the steps for calculating IG for all other variables
- · Choose the one with highest IG
- IG(S, outlook) = 0.94 0.693 = 0.247
- IG(S, Temperature) = 0.940 0.911 = 0.029
- IG(S, Humidity) = 0.940 0.788 = 0.152
- IG(S, Windy) = 0.940 0.8932 = 0.048

So outlook is taken as Root Node

## Next Steps ...



#### Repeat the Above process for each sub table



| Outlook | Temperature | Humidity | Wind   | Played football(yes/no) |
|---------|-------------|----------|--------|-------------------------|
| Sunny   | Hot         | High     | Weak   | No                      |
| Sunny   | Hot         | High     | Strong | No                      |
| Sunny   | Mild        | High     | Weak   | No                      |
| Sunny   | Cool        | Normal   | Weak   | Yes                     |
| Sunny   | Mild        | Normal   | Strong | Yes                     |

- Find IG for Temperature given Sunny
- Repeat it for humidity
   and wind
- Choose one with highest IG.

Gain(outlook = sunny | Temp.) = 0.570 Gain(outlook = sunny | Humidity) = 0.970 Gain(outlook = sunny | Wind) = 0.019



## DT under Outlook=Sunny

 Similarily find important variable under Overcast and Rain



# **Final Decision Tree**



## Decision Tree for Regression Output: Numeric Value

$$\label{eq:Variance} \begin{split} & \text{Variance} = \sum_{t=1}^n (x_t \sim \mu)^2/n \\ & \text{Standard Deviation} = \sqrt{\sum_{t=1}^n (x_t - \mu)^2/n} \ \ , \mu \text{ is mean} \\ & \text{Mean} = \sum_{t=1}^n x_t / \sum_{t=1}^n f_t \ \text{ (term of all source} / \text{ sum of Department)} \end{split}$$

| Outlook  | Temperatur<br>e | Humidity | Windy | Hours<br>Played |
|----------|-----------------|----------|-------|-----------------|
| Sunny    | Hot             | High     | FALSE | 25              |
| Sunny    | Hot             | High     | TRUE  | 30              |
| Overcast | Hot             | High     | FALSE | 46              |
| Rainy    | Mild            | High     | FALSE | 45              |
| Rainy    | Coal            | Normal   | FALSE | 52              |
| Rainy    | Cool            | Normal   | TRUE  | 23              |
| Overcast | Cool            | Normal   | TRUE  | 43              |
| Sunny    | Mild            | High     | FALSE | 35              |
| Sunny    | Cool            | Normal   | FALSE | 38              |
| Rainy    | Mild            | Normal   | FALSE | 46              |
| Sunny    | Mild            | Normal   | TRUE  | 48              |
| Overcast | Mild            | High     | TRUE  | 52              |
| Rainy    | Mild            | High     | TRUE  | 30              |

Output Variable

| Hours |
|-------|
| Playe |
| 25    |
| 30    |
| 46    |
| 45    |
| 52    |
| 23    |
| 43    |
| 35    |
| 38    |
| 46    |
| 48    |
| 52    |
| 44    |
| 30    |

Average = 
$$\bar{x} = \frac{\sum x}{n} = 39.8$$

Standard Deviation = 
$$S = \sqrt{\frac{\sum (x - \overline{x}^*)^2}{\pi}} = 9.32$$

Coeffeitient of Variation =  $CV = \frac{S}{T} \circ 100\% = 23\%$ 

#### Standard Deviation Reduction if we make Outlook as Root Node = 1.66

| Outlook column values | Hours Played                                        | Count |
|-----------------------|-----------------------------------------------------|-------|
|                       | Standard Deviation for respective outlook condition |       |
| rainy                 | 10.87                                               | 5     |
| overcast              | 3.49                                                | 4     |
| sunny                 | 7.78                                                | 5     |

 $Weighted SD_{Hours,Outlook} = P(rainy) \circ SD_{Hours,Rainy} + P(Overcast) \circ SD_{Hours,Overcast} + P(Sunny) \circ SD_{Hours,Sunny}$   $SD:Standard \ Deviation$   $Weighted SD_{Hours,Outlook} = \left(\frac{5}{14}\right) \circ 10.87 + \left(\frac{4}{14}\right) \circ 3.49 + \left(\frac{5}{14}\right) \circ 7.78 = 7.66$ 

SDR = SD(Hours) - SD(Hours, Outlook)

## SDR for All Input Variables

SDR (Hours, Outlook) = 1.66

Root node

SDR (Hours, Temperature) = 0.39

SDR (Hours, Humidity) = 0.09

SDR (Hours, Windy) = 0.39

