Introdução ao PERF

Filipe Oliveira

Departamento de Informática Universidade do Minho Email: a57816@alunos.uminho.pt

1. Introdução - Contextualização do PERF

2. Contextualização das métricas de performance em estudo

3. Caracterização do Hardware do ambiente de testes

Especificadas as métricas de performance em estudo, resta-nos especificar os ambientes de teste nos quais pretendemos realizar as benchmarks.

Através da análise do hardware disponível no Search6 ¹, uma das nossas plataformas de teste, foram seleccionados nós do tipo compute-431, e compute 651, sendo a disponibilidade global dos mesmos o principal factor. Nas tabelas ?? e ?? encontram-se especificadas as principais características dos sistemas em teste.

TABLE 1. CARACTERÍSTICAS DE HARDWARE DO NÓ 431

Sistema	compute-431
# CPUs	2
CPU	Intel® Xeon® X5650
Arquitectura de Processador	Nehalem
# Cores por CPU	6
# Threads por CPU	12
Freq. Clock	2.66 GHz
Cache L1	192KB (32KB por Core)
Cache L2	1536KB (256KB por Core)
Cache L3	12288KB (partilhada)
Ext. Inst. Set	SSE4.2
#Memory Channels	3
Memória Ram Disponível	48GB
Peak Memory BW Fab. CPU	32 GB/s

4. Determinação do tamanho dos datasets

sqrt((12288KB / 4 bytes) / 3) = 1011

5. Determinação do tempo médio necessário para criar e terminar um fio de execução

5.1. Nós compute-431

Por forma a calcular o tempo médio necessário para criar e terminar um fio de execução foi criado um kernel,

1. Services and Advanced Research Computing with HTC/HPC clusters

que apenas realizava essas mesmas operações e registados os valores para os diferentes número de threads. A tabela ?? apresenta a relação entre média e desvio padrão de criação/terminação para um diferente número de POSIX Threads para os nós do tipo compute-431.

6. Parte I

7. Parte 2

TABLE 2. Performance events (naive vs. interchange) para o nó compute-431

# EVENT NAME	NAIVE	INTERCHANGE
cpu-cycles	535187277	399561216
instructions	1044692763	1152237507
cache-references	8196140	429971
cache-misses	36522	43034
branch-instructions	126101720	132065934
branch-misses	258384	249858
bus-cycles	0	0
L1-dcache-loads	246027409	253077242
L1-dcache-load-misses	56436199	7577858
L1-dcache-stores	9973628	128034804
L1-dcache-store-misses	322982	106020
LLC-loads	7391770	262810
LLC-load-misses	2671	1001
LLC-stores	218407	69369
LLC-store-misses	18512	0
dTLB-load-misses	2239	950
dTLB-store-misses	446	9
iTLB-load-misses	0	0
branch-loads	129163483	129898962
branch-load-misses	5688441	5560030

TABLE 3. PERFORMANCE EVENTS (NAIVE VS. INTERCHANGE) PARA O NÓ COMPUTE-431

RATIO OR RATE	NAIVE	INTERCHANGE
Elapsed time (seconds)	0.2041	0.1597
Instructions per cycle	1.95 IPC	2.88 IPC
L1 cache miss ratio	22,9389 %	2,9942 %
L1 cache miss rate PTI	54,0218	6,5766
L3 cache miss ratio	0,0361 %	0,3808 %
Data TLB miss ratio	0,00027	0,0022
Data TLB miss rate PTI	0,0021	0,0008
Branch mispredict ratio	0,002	0,0019
Branch mispredict rate PTI	0,2473	0,2168

8. Parte 3

TABLE 4. Performance events (naive vs. interchange) para o nó compute-431

# EVENT NAME	NAIVE	INTERCHANGE
Elapsed time		
instructions	38376000000	3704300000
cycles	78390700000	1332700000
cache-references	4744200000	1200000
cache-misses	4008300000	200000
LLC-loads	4815000000	1000000
LLC-load-misses	4073600000	0
dTLB-load-misses	1100000	0
branches	3923900000	471800000
branch-misses	2200000	400000

8.1. Análise comparativa do número de amostras por evento de hardware para as versões large_naive e large_interchange

Da análise de execução para as versões large_naive e large_interchange,

 ${\tt large}_n a ive and large_interchange, and collected events ample data for the most relevant hardware events. A comparative summary is shown in the contraction of the most relevant hardware events. A comparative summary is shown in the contraction of the c$

TABLE 5. Sampling mode: Large_naive vs. Large_interchange para o nó compute-431

# EVENT NAME	NAIVE	INTERCHANGE
Elapsed time		
instructions	383K samples	37K samples
cycles	783K samples	13K samples
cache-references	47K samples	40K samples
cache-misses	40K samples	2 samples
LLC-loads	48K samples	10 samples
LLC-load-misses	40K samples	0 samples
dTLB-load-misses	11 samples	0 samples
branches	39K samples	4K samples
branch-misses	22 samples	4 samples

9. Conclusão