Homework 2 Solutions

CS 511 Formal Methods

October 7, 2024

Exercise 1: Lecture Slides 06, Page 9. For all strings $s, t \in A^*$, it holds that

$$reverse(s \cdot t) = reverse(t) \cdot reverse(s)$$

Proof. Suppose $s \in A^*$ is an arbitrary string. We prove by structural induction on $t \in A^*$. First assume that $t = \varepsilon$, that is, t is the empty string. Then

```
\begin{aligned} \mathbf{reverse}(s \cdot t) &= \mathbf{reverse}(s \cdot \varepsilon) \\ &= \mathbf{reverse}(s) \\ &= \varepsilon \cdot \mathbf{reverse}(s) \\ &= \mathbf{reverse}(\varepsilon) \cdot \mathbf{reverse}(s) \\ &= \mathbf{reverse}(t) \cdot \mathbf{reverse}(s) \end{aligned}
```

Next, assume $t = t' \cdot x$ where $t', s \in A^*$, $x \in A$, and $\mathbf{reverse}(s \cdot t') = \mathbf{reverse}(t') \cdot \mathbf{reverse}(s)$. Then

```
\begin{aligned} \mathbf{reverse}(s \cdot t) &= \mathbf{reverse}(s \cdot (t' \cdot x)) \\ &= \mathbf{reverse}((s \cdot t') \cdot x) \\ &= x \cdot \mathbf{reverse}(s \cdot t') \\ &= x \cdot \mathbf{reverse}(t') \cdot \mathbf{reverse}(s) \\ &= \mathbf{reverse}(t' \cdot x) \cdot \mathbf{reverse}(s) \\ &= \mathbf{reverse}(t) \cdot \mathbf{reverse}(s) \end{aligned}
```

By the principle of structural induction, we have that $\mathbf{reverse}(s \cdot t) = \mathbf{reverse}(t) \cdot \mathbf{reverse}(s)$ for all $s, t \in A^*$.

Exercise 2: LCS Exercise 1.4.15. Use mathematical induction on n to prove the theorem

$$(\varphi_1 \land (\varphi_2 \land \cdots (\varphi_{n-1} \land \varphi_n) \cdots)) \rightarrow \psi \vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow \cdots (\varphi_{n-1} \rightarrow (\varphi_n \rightarrow \psi)))$$

Proof. We prove directly instead.

Problem 1. Show that any of the three rules $\{(LEM), (PBC), (\neg \neg E)\}$ are interderivable.

Proof. First, we assume $(\neg \neg E)$ and wish to show (PBC).

1.
$$\neg \varphi \rightarrow \bot$$
 premise
2. $\neg \varphi$ assumption
3. $\bot \rightarrow E 1,2$
4. $\neg \neg \varphi$ $\neg I 2-3$
5. φ $\neg \neg E 4$

We prove one of De Morgan's laws as a lemma before continuing. Specifically we show:

$$\neg(p \lor q) \vdash \neg p \land \neg q$$

1.

$$\neg (p \lor q)$$
 premise

 2.
 p
 assumption

 3.
 $p \lor q$
 $\lor I_1 2$

 4.
 \bot
 $\neg E 1,3$

 5.
 $\neg p$
 $\neg I 2-4$

 6.
 q
 assumption

 7.
 $p \lor q$
 $\lor I_2 6$

 8.
 \bot
 $\neg E 1,7$

 9.
 $\neg q$
 $\neg I 6-8$

 10.
 $\neg p \land \neg q$
 $\land I 5,9$

Next, we assume (PBC) and show (LEM).

1.
$$\neg(\varphi \lor \neg \varphi) \quad \text{assumption}$$
2.
$$\neg \varphi \land \neg \neg \varphi \quad \text{De Morgan}$$
3.
$$\neg \varphi \quad \land E_1 \ 2$$
4.
$$\neg \neg \varphi \quad \land E_2 \ 2$$
5.
$$\bot \quad \neg E \ 3,4$$
6.
$$\varphi \lor \neg \varphi \quad \text{PBC}$$

Finally, we assume (LEM) and show $(\neg \neg E)$.

1.	$\neg \neg \varphi$	premise
2.	$\varphi \vee \neg \varphi$	LEM
3.	φ	assumption
4.	$\neg \varphi$	assumption
5.		$\neg E 1,4$
6.	φ	$\perp E 5$
7.	φ	$\vee E 2,3,4-6$