Algorithm 1: Multi-category Classification using HOG + PCA

Input: K, Number of principle components to retained

Data: $X_{Train}^{(j)}, X_{Test}, Y_{Train}$, where j = 0, 1, ..., #Class

Result: Classification prediction for X_{Test} , $\hat{Y_{Test}}$

for each j do

Step 1: HOG feature

Transform the raw data $X_{Train}^{(j)}$ into HOG feature matrix $H^{(j)} = \left[h_1^{(j)} h_2^{(j)} \cdots h_{n_j}^{(j)} \right]$

Step 2: Apply PCA

Compute following: (Standardization procedure)

•
$$\bar{h_j} = \frac{1}{n_j} \sum_{i=1}^{n_j} h_i^{(j)}$$

•
$$C_j = \frac{1}{n_j - 1} \sum_{i=1}^{n_j} (h_i^{(j)} - \bar{h_j}) (h_i^{(j)} - \bar{h_j})^T$$

Compute
$$K$$
 eigenvectors
$$\longrightarrow T_K^{(j)} = \left[t_1^{(j)} t_2^{(j)} \cdots t_K^{(j)}\right]$$

Step 3: Test data classification

for each $x \in X_{Test}$ do

Compute HOG feature h of x

for each j do

Compute

- projection $z_j = T_K^{(j)} (h \bar{h_j})$
- approximation $\hat{h_j} = T_K^{(j)} z_j + \bar{h_j}$
- Euclidean distance $E_j = ||h \hat{h_j}||_2$

Find $c \in j$ s.t. $E_c = \operatorname{argmin} E_j$ Append c to $\hat{Y_{Test}}$

return $\hat{Y_{Test}}$