

Scalable Infomin Learning

Yanzhi Chen¹, Weihao Sun², Yingzhen Li*³, Adrian Weller*^{1,4}

¹Cambridge University, ²Apple Inc., ³Imperial College London, ⁴Alan Turing Institute

Agenda

Background

Method

Results

Conclusion

Background

Infomin representation learning

Applications:

(a) domain adaptation; (b) disentanglement; (c) fairness, ...

Background

Why infomin learning is hard?

$$\min_{f} \underbrace{\mathcal{L}(f(X),Y)}_{\text{utility}} + \beta \underbrace{I(f(X);T)}_{\text{mutual info}}$$
 intractable

estimate MI by a neural net t^*

$$\min_{f} \max_{t} \mathcal{L}(f(X); Y) + \beta \cdot \hat{I}_{t}(f(X); T)$$

*see e.g. DANN, LAFTR, Factor-VAE, CLUB, Learning-not-to-learn...

Background

Why infomin learning is hard?

$$\min_{f} \max_{t} \mathcal{L}(f(X); Y) + \beta \cdot \hat{I}_{t}(f(X); T)$$

$$f(X)$$
 compete $f(X)$ \uparrow $f(X)$

- time consuming
- hard to optimise

Goal:
$$-\min_{f} \max_{t} \mathcal{L}(f(X);Y) + \beta \cdot \hat{I}_{t}(f(X);T)$$

Idea: find a proxy to *I*(Z; T) whose estimate is easy to compute

sliced mutual information (SI)

$$\min_{f} \mathcal{L}(f(X);Y) + \beta \cdot \underline{SI(f(X);T)},$$

$$\min_{f} \mathcal{L}(f(X);Y) + \beta \cdot \underline{SI(f(X);T)},$$

$$\min_{f} \mathcal{L}(f(X); Y) + \beta \cdot \underline{SI(f(X); T)},$$

$$\min_{f} \mathcal{L}(f(X); Y) + \beta \cdot \underline{SI(f(X); T)},$$

Estimate of SI

*can be solved analytically by eigendecomposition

Properties of SI

1.
$$SI(Z;T) = 0 \Leftrightarrow I(Z;T) = 0$$

2.
$$SI(Z;T) \in [0,1]$$

3. approximation has analytic solution

Adversarial infomin learning

$$\min_{f} \max_{t} \mathcal{L}(f(X); Y) + \beta \cdot \hat{I}_{t}(f(X); T)$$

Estimate I by SGD

If Max-step for l_2 in 1 to L_2 do $t \leftarrow t + \eta \nabla_t \hat{I}_t(f(X); T)$ with data in \mathcal{D}' end for

Slice infomin learning

$$\min_{f} \mathcal{L}(f(X); Y) + \beta \cdot SI(f(X); T),$$

Estimate SI analytically

sample S slices $\Theta = \{\theta_i\}_{i=1}^S, \Phi = \{\phi_j\}_{j=1}^S$ solve the parameters w, v in \hat{SI} analytically with $\Theta, \Phi, \mathcal{D}'$ by eigendecomposition

$$\rho^*(Z,T) = \sup_{h,g} \rho(h(Z),g(T))$$

Domain-invariant representation learning

*M: MNIST, MM: MNIST-M, C: CIFAR-10, S: STL-10

Disentangled representation learning

Fair representation learning

Table 4: Algorithmic fairness: US Census

Neural Rényi				Neural TC			
L_2	$\rho^*(Z,Y)$	$\rho^*(Z,T)$	time (sec./max step)	L_2	$\rho^*(Z,Y)$	$\rho^*(Z,T)$	time (sec./max step)
2	0.95 ± 0.02	0.23 ± 0.10	0.092	3	0.95 ± 0.02	0.27 ± 0.03	0.097
10	0.95 ± 0.02	0.19 ± 0.06	0.642	10	0.95 ± 0.02	0.21 ± 0.02	0.362
50	0.95 ± 0.01	0.06 ± 0.02	2.456	20	0.95 ± 0.01	0.08 ± 0.02	2.146
Slice	0.95 ± 0.01	0.07 ± 0.02	0.102	Slice	0.95 ± 0.00	0.07 ± 0.02	0.102

T = sensitive attribute

 L_2 = num of gradient steps for training the adversary

Conclusions

• <u>To minimise MI, we do not need to estimate it</u> only consider random facets of MI in each mini-batch

A method widely applicable to many applications

fairness, disentanglement, domain adaptation, invariance, ...

Thanks!