

# DS0代码解读

龚益群 2019年09月20日

# 数据结构[6]:



Figure 1: Framework of DSO.

# 算法流程[6]:



Figure 2: Pipeline of the frontend.

### addActiveFrame:



2019.10.10

# 一、初始化:

- 提取第0层的特征,取网格内随机方向梯度最大点
- 提取1-5层的特征,取网格内具有dx/dy最大梯度点
- new用于初始化的点,得到每个点同层最近的10 个点(neighbours),和上一层最近的点(parent)
- 当检测到位移足够大时,开始从金字塔顶层向底层使用LM优化位姿,光度参数,逆深度。
- 然后将逆深度由底层向顶层传播逆深度,用于下次优化做初值。
- 优化到满足位移的后5帧,位移小或中间的帧删 除fh。
- 将第一帧插入关键帧,插入能量方程中(后面也会把这个最新帧插入关键帧)
- 使用第0层点的均值作为归一尺度
- 把<mark>第0层</mark>点创建为PointHessian,并插入能量方 程insertPoint()(有先验)
- 设置第一帧和最新帧的FrameShell信息,作为 待估计量



【问题】:初始化一直跟踪第一帧好?还是根据优劣旋转跟踪参考帧好?

# CoarseInitializer.cpp:

### Jacobian

### 初始化中的能量方程

$$E_{\mathbf{p}j} = \sum_{\mathbf{p}_{i} \in \mathcal{N}_{p}} w_{p} \left\| \left( I_{j} \left[ \mathbf{p}_{j} \right] - b_{j} \right) - \frac{t_{j} e^{a_{j}}}{t_{i} e^{a_{i}}} \left( I_{i} \left[ \mathbf{p}_{i} \right] - b_{i} \right) \right\|_{r}$$

$$= \sum_{\mathbf{p}_{i} \in \mathcal{N}_{p}} w_{p} \left\| I_{j} \left[ \mathbf{p}_{j} \right] - \frac{t_{j} e^{a_{j}}}{t_{i} e^{a_{i}}} I_{i} \left[ \mathbf{p}_{i} \right] - \left( b_{j} - \frac{t_{j} e^{a_{j}}}{t_{i} e^{a_{i}}} b_{i} \right) \right\|_{r}$$

$$(1)$$

$$\mathbf{p}_{j} = \Pi_{c} \left( \mathbf{R} \Pi_{c}^{-1} \left( \mathbf{p}_{i}, d_{\mathbf{p}_{i}} \right) + \mathbf{t} \right) \quad ext{ with } \quad \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{bmatrix} := \mathbf{T}_{j} \mathbf{T}_{i}^{-1}$$
 (2)

按照代码中:

$$\mathbf{P}'_{i} = \pi_{c}^{-1} \left( \mathbf{p}_{i} \right) = \mathbf{K}^{-1} \left( \begin{array}{c} \mathbf{p}_{i} \\ 1 \end{array} \right)$$

$$\mathbf{P}'_{j} = \mathbf{R} \mathbf{P}'_{i} + \mathbf{t} d_{\mathbf{p}_{i}}$$

$$\begin{pmatrix} \mathbf{p}_{j} \\ 1 \end{pmatrix} = \pi_{c} \left( \omega \left( \mathbf{P}'_{j} \right) \right)$$
(3)

## 初始化中的光度参数求导

### 光度求导

切始化对目标帧进行求导

$$\mathbf{J}_{\text{photo}} = \frac{\partial r_k}{\partial \delta_{\text{photo}}} \\
= \left(\frac{\partial r_k}{\partial \delta a_j} \quad \frac{\partial r_k}{\partial \delta b_j}\right) \\
= \left(-\frac{t_j e^{a_j}}{t_i e^{a_i}} (I_i \left[\mathbf{p}_i\right] - b_i) - 1\right) \tag{4}$$

# CoarseInitializer.cpp: 位姿求导

### 初始化中的位姿求导

 $\mathbf{J}_{I} = \frac{\partial I_{j}}{\partial \mathbf{p}_{j}} = \left(\frac{\partial I_{j}}{\partial \mathbf{p}_{x}'} \frac{\partial I_{j}}{\partial \mathbf{p}_{y}'}\right) = (d_{x} \ d_{y}) \tag{5}$ 

对目标帧位姿求导有

$$\frac{\partial r_{k}}{\partial \delta \xi} = \mathbf{J}_{I} \cdot \frac{\partial \mathbf{p}_{j}}{\partial \mathbf{P}'_{j}} \cdot \frac{\partial \mathbf{P}'_{j}}{\partial \delta \xi} 
= (d_{x} f_{x} \quad d_{y} f_{y}) \begin{pmatrix} \frac{1}{P'_{z}} & 0 & -\frac{P'_{z}}{P'_{z}} \\ 0 & \frac{1}{P'_{z}} & -\frac{P'_{y}}{P'_{z}} \end{pmatrix} d_{\mathbf{p}_{i}} \begin{pmatrix} \mathbf{I} & -\frac{1}{d_{\mathbf{p}_{i}}} \left[ \mathbf{P}'_{j} \right]_{x} \end{pmatrix} 
= (d_{x} f_{x} \quad d_{y} f_{y}) \begin{pmatrix} \frac{1}{P'_{z}} & 0 & -\frac{P'_{x}}{P'_{z}} \\ 0 & \frac{1}{P'_{z}} & -\frac{P'_{y}}{P'_{z}} \end{pmatrix} \begin{pmatrix} d_{\mathbf{p}_{i}} & 0 & 0 & 0 & P'_{z} & -P'_{y} \\ 0 & d_{\mathbf{p}_{i}} & 0 & -P'_{z} & 0 & P'_{x} \\ 0 & 0 & d_{\mathbf{p}_{i}} & P'_{y} & -P'_{x} & 0 \end{pmatrix} 
= (d_{x} f_{x} \quad d_{y} f_{y}) \begin{pmatrix} \frac{d_{\mathbf{p}_{i}}}{P'_{z}} & 0 & -\frac{d_{\mathbf{p}_{i}}}{P'_{z}} & \frac{P'_{x}}{P'_{z}} & -\frac{P'_{x}P'_{y}}{P'_{z}} & 1 + \frac{P'_{x}^{2}}{P'_{z}^{2}} & -\frac{P'_{y}}{P'_{z}} \\ 0 & \frac{d_{\mathbf{p}_{i}}}{P'_{z}} & -\frac{d_{\mathbf{p}_{i}}}{P'_{z}} & P'_{z} & -\frac{P'_{x}P'_{y}}{P'_{z}} & \frac{P'_{x}P'_{y}}{P'_{z}} & \frac{P'_{y}}{P'_{z}} \end{pmatrix}$$

### 初始化中的逆深度求导

### 逆深度求导

$$\frac{\partial r_k}{\partial \delta d_{\mathbf{p}_i}} = \mathbf{J}_I \cdot \frac{\partial \mathbf{p}_j}{\partial \mathbf{P}_j'} \cdot \frac{\partial \mathbf{P}_j'}{\partial \delta d_{\mathbf{p}_i}}$$

$$= (d_x \quad d_y) \begin{pmatrix} f_x & 0 \\ 0 & f_y \end{pmatrix} \begin{pmatrix} \frac{1}{P_z'} & 0 & -\frac{P_x'}{P_z'^2} \\ 0 & \frac{1}{P_z'} & -\frac{P_y'}{P_z'^2} \end{pmatrix} \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$

$$= (d_x f_x \quad d_y f_y) \frac{1}{P_z'} \begin{pmatrix} t_x - \frac{P_z'}{P_z'} t_z \\ t_y - \frac{P_y'}{P_z'} t_z \end{pmatrix}$$

$$= \frac{1}{P_z'} d_x f_x \left( t_x - \frac{P_x'}{P_z'} t_z \right) + \frac{1}{P_z'} d_y f_y \left( t_y - \frac{P_y'}{P_z'} t_z \right)$$

$$= \frac{1}{P_z'} d_x f_x \left( t_x - \frac{P_x'}{P_z'} t_z \right) + \frac{1}{P_z'} d_y f_y \left( t_y - \frac{P_y'}{P_z'} t_z \right)$$

2019.10.10

# CoarseInitializer.cpp:

### DSO中**正规方程**维护、

分舒尔消元之后的矩阵,因 此分别计算H/b, HSC/bSC.



$$H = J^T \Sigma^{-1} J = \left[ egin{array}{c|c} A^T \Sigma^{-1} A & A^T \Sigma^{-1} B \ \hline B^T \Sigma^{-1} A & B^T \Sigma^{-1} B \end{array} 
ight] = \left[ egin{array}{c|c} U & W \ W^T & V \end{array} 
ight]$$

这样公式可以表示为

$$\begin{bmatrix} U & W \\ W^T & V \end{bmatrix} \begin{bmatrix} \Delta x_c \\ \Delta x_p \end{bmatrix} = \begin{bmatrix} b_A \\ b_B \end{bmatrix}$$
 (8)

计算7的舒尔补进行分块消元:

$$(U - WV^{-1}W^{T})\Delta x_{c} = b_{A} - WV^{-1}b_{B}$$
(9)

通过(9)式解出 $\Delta x_c$ 代入公式(10)可以解出 $\Delta x_p$ 

$$V\Delta x_p = b_B - W^T \Delta x_c \tag{10}$$

公式 (8) 变为: 
$$\begin{bmatrix} U - WV^{-1}W^T & 0 \\ W^T & V \end{bmatrix} \begin{bmatrix} \Delta x_c \\ \Delta x_p \end{bmatrix} = \begin{bmatrix} b_A - WV^{-1}b_B \\ b_B \end{bmatrix}$$
 (11)

# PixelSelector2.cpp:

### PixelSelector::makeMaps( )

- makeHists(fh)计算直方图, 以及选点的阈值
- select()当前帧上选择符合条件的像素, densities[] = {0.03,0.05,0.15,0.5,1}
- 计算当前得到的点和需要的点数目比,据此来动态调节网格大小

```
// 相当于覆盖的面积, 每一个像素对应一个pot*pot
K = numHave * (currentPotential+1) * (currentPotential+1);
// 除以目标点数,得到应该设置的pot大小
idealPotential = sqrtf(K/numWant)-1;
```

- 比例超过或小于0.25就会递归重新计算
- 如果点还是多,就随机删除一些点

# PixelSelector2.cpp:

### PixelSelector::makeHists()

- 每个格32\*32大小
- 在格内创建直方图hist0
- 统计直方图中的像素点占50% 位置的梯度作为阈值**ths**
- 对阈值进行3\*3的均值滤波 thsSmoothed



| _ |                 |                 |                         |                 |
|---|-----------------|-----------------|-------------------------|-----------------|
|   | hist0           | hist0           | hist0                   | hist0           |
|   | / ths           | ths             | ths                     | ths             |
|   | thsSmoo         | thsSmoo         | thsSmoo                 | thsSmoo         |
|   | thed            | thed            | thed                    | thed            |
|   | hist0           | hist0           | hist0                   | hist0           |
|   | ths             | ths             | ths                     | ths             |
|   | thsSmoo         | thsSmoo         | thsSmoo                 | thsSmoo         |
|   | thed            | thed            | thed                    | thed            |
|   | hist0           | hist0           | hist0                   | hist0           |
|   | ths             | ths             | ths                     | ths             |
|   | thsSmoo         | thsSmoo         | thsSmoo                 | thsSmoo         |
|   | thed            | thed            | thed                    | thed            |
|   | hist0<br>ths    | hist0<br>ths    | hist0<br>ths<br>thsSmoo | hist0<br>ths    |
|   | thsSmoo<br>thed | thsSmoo<br>thed | thed                    | thsSmoo<br>thed |

# PixelSelector2.cpp:

### PixelSelector::select()

### 对于第0层的金字塔图像

- 遍历每一个像素,取大于所求阈值,且在pot内最大的
- 红pot对应4个像素,绿pot对应4个红pot,蓝pot对应4个绿pot
- 红色的使用金字塔0层上的梯度,阈值为thsSmoothed
- 绿色的使用金字塔1层上的梯度,阈值为红色的0.75倍
- 蓝色的使用金字塔2层上的梯度,阈值为绿色的0.75倍
- 比较大小都使用零层*随机方向*上的梯度
- 优先级红 > 绿 > 蓝,优先级高的找到了就不在低的里面找







### PixelSelector.h:

makePixelStatus()

template<int pot> inline int gridMaxSelection()

### 对于1-5层的金字塔图像

- 同样动态调节pot的大小,来保证提取合适的数目
- 每个pot内梯度大于阈值,且gradx/grady/gradx-grady/gradx+grady中有最大值的则被选中

# #

4\*pot

# CoarseInitializer.cpp:

### calcResAndGS()

DSO在初始化时为了使得 尺度收敛增加两个能量项 当位移不足够大(snapped=false):

$$E_{\mathbf{p}j} := E_{\mathbf{p}j} + \alpha_w \left[ (d_{\mathbf{p}_i} - 1)^2 + ||t||_2 \cdot N \right]$$
 (12)

因此有代码:

```
JbBuffer_new[i][8] += alphaOpt*(point->idepth_new - 1); // r*dd

JbBuffer_new[i][9] += alphaOpt; // 对逆深度导数为1 // dd*dd

// t*t*ntps

// 给 t 对应的Hessian, 对角线加上一个数, b也加上

H_out(0,0) += alphaOpt*npts;

H_out(1,1) += alphaOpt*npts;

H_out(2,2) += alphaOpt*npts;

// 李代数, 平移部分 (上一次的位姿值)

Vec3f tlog = refToNew.log().head<3>().cast<float>();

b_out[0] += tlog[0]*alphaOpt*npts;

b_out[1] += tlog[1]*alphaOpt*npts;

b_out[2] += tlog[2]*alphaOpt*npts;
```

当位移足够大(snapped=true)时:

$$E_{\mathbf{p}j} := E_{\mathbf{p}j} + (d_{\mathbf{p}_i} - d_{iR})^2$$
 (13)

因此有代码:

```
JbBuffer_new[i][8] += couplingWeight*(point->idepth_new - point->iR);
JbBuffer_new[i][9] += couplingWeight;
```

# CoarseInitializer.cpp:

### propagateDown()

propagateUp()

逆深度在不同层之间传递使用parent点来作为关联,融合策略采用高斯归一化积

$$oldsymbol{\Sigma}^{-1} = \sum_{k=1}^K oldsymbol{\Sigma}_k^{-1}, \ oldsymbol{\Sigma}^{-1} oldsymbol{\mu} = \sum_{k=1}^N oldsymbol{\Sigma}_k^{-1} oldsymbol{\mu}_k,$$

$$\mathbf{\Sigma}^{-1} \boldsymbol{\mu} = \sum_{k=1}^{N} \mathbf{\Sigma}_k^{-1} \boldsymbol{\mu}_k,$$



$$\begin{split} \frac{1}{\sigma^2} &= \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2} \\ \frac{\mu}{\sigma^2} &= \frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2} \end{split}$$

### optReg()

函数使用同金字塔层之间的neighbours点的中位值对iR进行平滑处理

# 二、跟踪:

- 分别假设5种:匀速、半速、倍速、零速、 以及从参考帧就没动。
- 另假设匀速基础上有26种旋转运动。例: Quaterniond(1,rotDelta,0,0)
- 由粗到精迭代优化,如果大于能量阈值的 点超过60%,则<mark>放大阈值</mark>,且该层<mark>多优化</mark> 一遍。
- 如果<mark>某一层的能量值</mark>大于1.5倍最小值,直 接判断为失败,结束节省时间。
- 如果跟踪成功且第0层好于当前,则保留 结果,并更新每一层的最小能量值。
- 第0层最小值小于阈值则停止,把目前最好的值作为下次跟踪的阈值。
- 可以设置定时插入
- 通过像素移动的大小判断,位移较大、平移+旋转较大、曝光变化大、跟踪得到的能量变化大,则插入(论文中说只考虑位移,有效处理遮挡/去遮挡)



【问题】: 如何理解这个判断关键帧策略有效处理遮挡?

# CoarseTracker.cpp:

- 没用pattern,只使用投影过来的中心点像素误差
- 优化的变量只有相机位姿和光度参数,没有逆深度
- 其中用到Huber函数

$$ho_{
m H}(e) = egin{cases} rac{1}{2}e^2 & ext{ for } |e| \leq k \ k|e| - rac{1}{2}k^2 & ext{ for } |e| > k \end{cases}$$

$$w_{
m H}(e) = egin{cases} 1 & ext{ for } |e| \leq k \ k/|e| & ext{ for } |e| > k \end{cases}$$

$$w_H(e) imes (2-w_H(e)) imes e^2 = 2 imes 
ho_H(e)$$

# 三、优化:

- 更新未成熟点ImmaturePoint的逆深度 范围后,删除fh,只保留FrameShell。
- 根据逆深度范围得到极线搜索的范围
- 计算图像梯度和极线夹角的大小,如果 太大则误差会很大
- 在极线上按照一定步长进行搜索能量最小的位置,和大于设置半径(2)的第二小的位置,后/前作为质量,越大越好
- 沿着极线进行GN优化,直到增量足够小
- 根据搜索得到的投影位置计算新的逆深度范围



# ImmaturePoint.cpp:

traceOn()

公式(14)可知极线方向和 梯度方向**夹角过大**误差会变大





$$l_0 + \lambda^* \begin{pmatrix} l_x \\ l_y \end{pmatrix} \stackrel{!}{=} g_0 + \gamma \begin{pmatrix} -g_y \\ g_x \end{pmatrix}, \quad \gamma \in \mathbb{R}$$
 (14)

$$\begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = \Pi_c \left( KR \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} + Kt \cdot d_p \right) 
= \Pi_c \left( \begin{bmatrix} pr_x \\ pr_y \\ pr_z \end{bmatrix} + d_p \cdot \begin{bmatrix} kt_x \\ kt_y \\ kt_z \end{bmatrix} \right)$$
(15)

$$u' = \frac{pr_x + d_p \cdot kt_x}{pr_z + d_p \cdot kt_z}$$

$$v' = \frac{pr_y + d_p \cdot kt_y}{pr_z + d_p \cdot kt_z}$$

$$d_p = \frac{u' \cdot pr_z - pr_x}{kt_x - u' \cdot kt_z}$$

$$d_p = \frac{v' \cdot pr_z - pr_y}{kt_y - v' \cdot kt_z}$$

$$(16)$$

已知匹配点计算**逆深度范围**、 (会在公式 (16) 点上再加 误差)

2019.10.10 【问题】: 坐标加0.5的作用?

# 三、优化:

- 留下的点(去除边缘化+删除)占所有点小于5%
- 和参考帧比曝光变化较大
- 保证滑窗内有5个关键帧
- 如果还大于7个关键帧,则边缘化掉到最新关键 帧的距离占所有距离比最大的。保证良好的空间 结构
- 加入关键帧,能量函数中insertFrame(),设置相 对位姿和线性化点
- 构建新关键帧和之前关键帧之间的残差 PointFrameResidual,并插入能量函数 insertResidual(),DSO选择先全部构建,之后再 删除
- 在最新关键帧上生成<mark>距离地图(点</mark>附近第一层是1, 第二层2,.....)
- 满足搜索范围小于8,质量好,逆深度为正,删 除外点和边缘化帧上的点
- 将点投影到<mark>距离地图</mark>上,大于阈值(阈值根据当前 点数量调节)激活
- 使用LM优化选出来点的<mark>逆深度</mark>,将内点构建 PointHessian和残差一起加入能量函数
- 删除未收敛的点



## 三、优化:

- 使用GN法对位姿、光度参数、逆深度、相机内参进行优化,由于边缘化需要维护两个H矩阵和b向量
- 其中位姿和相机内参使用FEJ,除了最新一帧,相 关H矩阵固定在上一次优化,残差仍然使用更新后 的状态求
- · 被边缘化部分残差更新: b=b-H\*delta
- 其中第一帧位姿和其上点逆深度,由于初始化具有 先验,光度参数有先验
- 使用伴随性质将相对位姿变为世界系下的(local -> global)
- 减去求解出的增量零空间部分,防止在零空间乱飘

将最新帧设置为参考帧,并将所有的点向最新帧投影,并且在金字塔从下向上使用协方差加权生成逆深度,然后对于每一层使用周围点来尽可能生成像素逆深度,这样保证有足够多得点来跟踪,鲁棒。



- 该文件主要求对各个状态相对量的Jacobian,因此对光度参数的Jacobian结果有变化, 其它的和对Target帧的结果相同。
- 在得到针对相对量的Jacobian之后,使用伴随性质将相对的变为绝对的,其中使用FEJ的部分,伴随也需要使用固定的线性化点位置来求。

### 滑窗中的光度参数求导

$$abla \delta a = rac{t_j e^{a_j}}{t_i e^{a_i}}, \quad \delta b = b_j - rac{t_j e^{a_j}}{t_i e^{a_i}} b_i$$
看成整体,分别对增量a, b求导:
$$\mathbf{J}_{\mathrm{photo}} = rac{\partial r_k}{\partial \delta_{\mathrm{photo}}} \\
= \left( rac{\partial r_k}{\partial \delta a} \quad rac{\partial r_k}{\partial \delta b} \right) \\
= \left( - \left( I_i[\mathbf{p}] - b_i \right) \quad -1 \right)$$

### 滑窗中相机内参求导

### 相机内参部分

设:

$$\omega\left(\mathbf{P}_{j}^{\prime}\right) = \begin{bmatrix} \frac{P_{jx}^{\prime}}{P_{jz}^{\prime}} \\ \frac{P_{jy}^{\prime}}{P_{jz}^{\prime}} \\ 1 \end{bmatrix} = \begin{bmatrix} u_{j} \\ v_{j} \\ 1 \end{bmatrix}$$

$$(17)$$

根据公式(3)对相机内参求导,包括两部分 $\pi_c$ , $\pi_c^{-1}$ ,分别求偏导有

$$\frac{\partial \mathbf{p}_{j}}{\partial \delta \mathbf{c}} = \begin{pmatrix} u_{j} & 0 & 1 & 0 \\ 0 & v_{j} & 0 & 1 \end{pmatrix} + \begin{pmatrix} f_{x} & 0 \\ 0 & f_{y} \end{pmatrix} \begin{pmatrix} \frac{\partial u_{j}}{\partial \delta \mathbf{c}} \\ \frac{\partial v_{j}}{\partial \delta \mathbf{c}} \end{pmatrix}$$
(18)

对于第二部分

$$\frac{\partial \omega \left(\mathbf{P}'_{j}\right)}{\partial \mathbf{P}'_{i}} = \frac{\partial \omega \left(\mathbf{P}'_{j}\right)}{\partial \mathbf{P}'_{j}} \frac{\partial \mathbf{P}'_{j}}{\partial \mathbf{P}'_{i}} 
= \frac{1}{P'_{jz}} \begin{pmatrix} 1 & 0 & -u_{j} \\ 0 & 1 & -v_{j} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} r_{00} & r_{01} & r_{02} \\ r_{10} & r_{11} & r_{12} \\ r_{20} & r_{21} & r_{22} \end{pmatrix}$$
(19)

$$\frac{\partial \mathbf{P}_{i}'}{\partial \delta \mathbf{c}} = \frac{\partial \mathbf{K}^{-1} \mathbf{p}_{i}}{\partial \delta \mathbf{c}} 
= \begin{pmatrix} -f_{x}^{-2} (p_{ix} - c_{x}) & 0 & -f_{x}^{-1} & 0 \\ 0 & -f_{y}^{-2} (p_{iy} - c_{y}) & 0 & -f_{y}^{-1} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} 
= \begin{pmatrix} -f_{x}^{-1} P_{ix}' & 0 & -f_{x}^{-1} & 0 \\ 0 & -f_{y}^{-1} P_{iy}' & 0 & -f_{y}^{-1} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
(20)

2019.10.10

结合公式 (17) (19) (20) 得到

$$\frac{\partial u_{j}}{\partial \delta \mathbf{c}} = \frac{\partial u_{j}}{\partial \mathbf{P}'_{i}} \frac{\partial \mathbf{P}'_{i}}{\partial \delta \mathbf{c}}$$

$$= \frac{1}{P'_{z}} \begin{pmatrix} 1 & 0 & -u_{j} \end{pmatrix} \mathbf{R} \begin{pmatrix} -f_{x}^{-1} P_{x} & 0 & -f_{x}^{-1} & 0 \\ 0 & -f_{y}^{-1} P_{y} & 0 & -f_{y}^{-1} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= \frac{1}{P'_{z}} \begin{pmatrix} P_{x} f_{x}^{-1} \left( r_{20} u_{j} - r_{00} \right) \\ P_{y} f_{y}^{-1} \left( r_{21} u_{j} - r_{00} \right) \\ f_{y}^{-1} \left( r_{21} u_{j} - r_{01} \right) \end{pmatrix}^{T}$$

$$(21)$$

$$\frac{\partial v_{j}}{\partial \delta \mathbf{c}} = \frac{\partial v_{j}}{\partial \mathbf{P}'_{i}} \frac{\partial \mathbf{P}'_{i}}{\partial \delta \mathbf{c}} 
= \frac{1}{P'_{z}} \begin{pmatrix} P_{x} f_{x}^{-1} \left( r_{20} v_{j} - r_{10} \right) \\ P_{y} f_{y}^{-1} \left( r_{21} v_{j} - r_{11} \right) \\ f_{x}^{-1} \left( r_{20} v_{j} - r_{10} \right) \\ f_{y}^{-1} \left( r_{21} v_{j} - r_{11} \right) \end{pmatrix}^{T}$$
(22)

结合公式 (18) (21) (22) 得到结果:

$$\frac{\partial \mathbf{p}_{j}}{\partial \delta \mathbf{c}} = \begin{pmatrix} u_{j} & 0 & 1 & 0 \\ 0 & v_{j} & 0 & 1 \end{pmatrix} + \begin{pmatrix} f_{x} & 0 \\ 0 & f_{y} \end{pmatrix} \begin{pmatrix} \frac{\partial u_{j}}{\partial \delta \mathbf{c}} \\ \frac{\partial v_{j}}{\partial \delta \mathbf{c}} \end{pmatrix}$$

$$= \begin{pmatrix} u_{j} & 0 & 1 & 0 \\ 0 & v_{j} & 0 & 1 \end{pmatrix}$$

$$+ \frac{1}{P'_{z}} \begin{pmatrix} P_{x} (r_{20}u - r_{00}) & P_{y} \frac{f_{z}}{f_{y}} (r_{21}u - r_{01}) & (r_{20}u - r_{00}) & \frac{f_{x}}{f_{y}} (r_{21}u - r_{01}) \\ P_{x} \frac{f_{y}}{f_{z}} (r_{20}v - r_{10}) & P_{y} (r_{21}v - r_{11}) & \frac{f_{y}}{f_{z}} (r_{20}v - r_{10}) & (r_{21}v - r_{11}) \end{pmatrix}$$
(23)

滑窗中相机内参求导

2019.10.10

2019.10.10

### FrameFramePrecalc::set()

该函数设置关键帧间相对 (host 到 target) 的状态变量。

- 因为DSO部分状态使用FEJ,所以需要保存不同状态的值。
- 其中<mark>位姿 / 光度</mark>参数使用固定线性化点,逆深度 / 内参 / 图像导数都没有固定线性化点。
- 其中逆深度、内参、位姿这些几何参数使用中心点的值代替pattern内的。

FrameFramePrecalc::PRE\_RTII\_0 / PRE\_tTII\_0 该变量是固定的线性化点位置的状态增量。

FrameFramePrecalc::PRE\_RTII / PRE\_tTII

该变量是优化更新状态后的状态增量。

注: 逆深度每次都会重新设置线性化点, 相当于没有固定, 虽然代码写的很像。

【问题】:如何选择FEJ的变量?NOFEJ只影响不可观的?会不会把可观的变不可观的?

### 伴随

定义:

$$\operatorname{Exp}(\operatorname{Ad}_{\mathbf{T}} \cdot \xi) \doteq \mathbf{T} \operatorname{Exp}(\xi) \mathbf{T}^{-1} \tag{24}$$

线性化点相对位姿和绝对位姿的关系:

$$\mathbf{T}_{th} = \mathbf{T}_{tw} \mathbf{T}_{hw}^{-1} \tag{25}$$

### 伴随得到**相对量**对**绝对量**导数

第一部分相对位姿se3对host se3导数:

对姿态进行左乘更新:

$$\operatorname{Exp}(\delta \boldsymbol{\xi}_{th}) \mathbf{T}_{th} = \mathbf{T}_{tw} (\operatorname{Exp}(\delta \boldsymbol{\xi}_{h}) \mathbf{T}_{hw})^{-1}$$
(26)

$$\operatorname{Exp}(\delta \boldsymbol{\xi}_{th}) = \mathbf{T}_{tw} \mathbf{T}_{hw}^{-1} \operatorname{Exp}(-\delta \boldsymbol{\xi}_h) \mathbf{T}_{th}^{-1}$$

$$= \mathbf{T}_{th} \operatorname{Exp}(-\delta \boldsymbol{\xi}_h) \mathbf{T}_{th}^{-1}$$

$$= \operatorname{Exp}(-\operatorname{Ad}_{\mathbf{T}_{th}}(\delta \boldsymbol{\xi}_h))$$
(27)

$$\delta \boldsymbol{\xi}_{th} = -\mathrm{Ad}_{\mathbf{T}_{th}} \delta \boldsymbol{\xi}_{h} \tag{28}$$

所以:

$$\frac{\partial \boldsymbol{\xi}_{th}}{\partial \boldsymbol{\xi}_h} = -\mathrm{Ad}_{\mathbf{T}_{th}} \tag{29}$$

### 第二部分相对位姿se3对target se3求导:

同样类似公式(21) - (24)的过程:

$$\operatorname{Exp}(\delta \boldsymbol{\xi}_{th}) \mathbf{T}_{th} = \operatorname{Exp}(\delta \boldsymbol{\xi}_{t}) \mathbf{T}_{tw} \mathbf{T}_{hw}^{-1}$$
(30)

$$\begin{aligned}
&\operatorname{Exp}(\delta \boldsymbol{\xi}_{th}) = \operatorname{Exp}(\delta \boldsymbol{\xi}_{t}) \mathbf{T}_{tw} \mathbf{T}_{hw}^{-1} \mathbf{T}_{th}^{-1} \\
&= \operatorname{Exp}(\delta \boldsymbol{\xi}_{t})
\end{aligned} \tag{31}$$

$$\delta \boldsymbol{\xi}_{th} = \delta \boldsymbol{\xi}_t \tag{32}$$

最终有:

### 伴随得到相对量对绝对量导数

 $\frac{\partial \boldsymbol{\xi}_{th}}{\partial \boldsymbol{\xi}_t} = \mathbf{I} \tag{33}$ 

### 第三部分相对光度参数对host和target求导

host和target之间的相对光度参数为

$$\delta a = -\frac{t_j e^{a_j}}{t_i e^{a_i}}, \quad \delta b = -b_j + \frac{t_j e^{a_j}}{t_i e^{a_i}} b_i$$
 (34)

相对量对绝对量求导:

$$\frac{\partial \delta a}{\partial a_i} = \frac{t_j e^{a_j}}{t_i e^{a_i}} = e^{\delta a}$$

$$\frac{\partial \delta b}{\partial b_i} = \frac{t_j e^{a_j}}{t_i e^{a_i}} = e^{\delta a}$$

$$\frac{\partial \delta a}{\partial a_j} = -\frac{t_j e^{a_j}}{t_i e^{a_i}} = -e^{\delta a}$$

$$\frac{\partial \delta b}{\partial b_i} = \frac{t_j e^{a_j}}{t_i e^{a_i}} = -1$$
(35)

### accumulateAF MT()

函数利用AccumulatedTopHessian.cpp中AccumulatedTopHessianSSE(mode=0)类对滑窗内的点计算正规方程,计算H和b,然后使用Adj转为绝对量。这里不包括逆深度相关量,因为被舒尔消元掉了。

### accumulateLF MT()

同样调用AccumulatedTopHessianSSE类只不过是mode=1,实际该函数中加入的点 (isLinearized=true)是<mark>不存在</mark>的,因为被这样的点在边缘化时都别删除了。<mark>剩下的作用</mark>包括:添加先验信息和把p->\*LF相关的量置零。

### accumulateSCF MT()

调用AccumulatedSCHessian.cpp中AccumulatedSCHessianSSE类对滑窗内点<mark>逆深度</mark>相关的量进行计算,来完成<mark>Schur消元</mark>过程,同样使用Adj转为绝对量。



2019.10.10

### bM\_top = (bM+ HM \* getStitchedDeltaF()

这是对于被<mark>边缘化部分的残差像更新</mark>,HM和bM是边缘化得到的,后面详细说明。因为被边缘化后 没办法project计算新的残差,因此使用一阶泰勒方式更新。注意,其中delta应该是<mark>绝对量。</mark>

### EF->cPrior EF->cDeltaF

相机参数的先验信息: Hessian是很大的常数; delta估计值与设置的初值的差;

### **EF->frames->prior EF->frames->delta\_prior**

**位姿光度的先验信息:**第一帧位姿Hessian常数,光度Hessian常数(1e14);其它帧位姿Hessian为零,光度Hessian常数(1e12/1e8);delta估计值与固定线性化点的差

### p->priorF; p->deltaF

点逆深度的先验信息: 第一帧上的有(2500), 其它帧上的为0; delta值为0(因为线性化点被更新了)

2019.10.10 【问题】: 如何设置先验值?

# FullSystemOptimize.cpp:

### optimize()

- 在完成一次滑窗优化后,对于最新关键帧会设置当前的状态为FEJ状态,更新当前的待估计量,并且重新线性化一次,因为创建residual时是全部创建,这里删除不好的值。
- 对于其它的关键帧,将优化的状态更新到FrameShell,线性化点不变。
- 每次变动关键帧都会调用setPrecalcValues(), 更新关键帧之间的相对状态。

### **EnergyFunctional::orthogonalize()**

零空间:求的方法是对状态进行数值求导,即(正扰动-逆扰动)/(2\*扰动)。我理解这部分就相当于观测方程y=cx中的c,然后[c]就是能观性方程,因此c应该是秩为0的,多出来的都是,因为零空间,从正规方程中减去零空间,即可抑制零空间漂移。

# 三、优化:

• 在最新帧第0层提取<mark>随机方向梯度最大</mark>的 像素,并且构造成ImmaturePoint

- 将被边缘化的帧的8个状态挪到右下 角,然后计算Schur Complement, 将其消掉
- 删除在被边缘化帧上的残差
- DSO里面操作的都是PoseGraph



### marginalizePointsF()

函数调用AccumulatedTopHessianSSE(mode=2)和AccumulatedSCHessianSSE类分别针对被边缘化的点残差计算H/b和HSC/bSC,然后<mark>舒尔消元</mark>后,加权加在HM和bM上。

### marginalizeFrame()

对于HM和bM进行边缘化(消掉边缘化的帧)操作。

### fixLinearizationF()

因为状态需要固定在线性化点位置,边缘化一个点前会重新线性化一次,这时得到的resF是使用<mark>最新状态</mark>线性化的,使用该函数<mark>减去J×delta</mark>得到在<mark>线性化点</mark>状态的residual。

f3为新加入的帧, 完成优化后得到状态F12/R12, 态F12/R21, F30/R30, F21/R21, F30/R30, 将F30/R30设置为 线性化点



# 使用Hessian来表示上述过程



# x1、x2、x4边缘化掉,x3丢掉,构造边缘化先验HM,bM

### 边缘化:



边缘化的时候加上先验

边缘化之后会得到边缘化的先验矩阵,然后求解得状态: F22/R22,F31/R31



# 使用Hessian来表示上述过程

### 边缘化后:



### Reference:

- [1] Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(3): 611-625.
- [2] https://blog.csdn.net/xxxlinttp/article/details/90640350
- [3] https://www.cnblogs.com/JingeTU/
- [4] https://zhuanlan.zhihu.com/p/29177540
- [5] https://zhuanlan.zhihu.com/p/74709586
- [6] Xiang Gao. Notes on DSO. October 4, 2018

DSO注释: <a href="https://github.com/alalagong/DSO">https://github.com/alalagong/DSO</a>

在线光度标定注释: https://github.com/alalagong/online photometric calibration

# 谢谢聆听