CS 6351 DATA COMPRESSION

THIS LECTURE: TRANSFORMS PART I

Instructor: Abdou Youssef

OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

- Explain linear transforms, as a matrix-vector multiplication
- Describe the matrices that specify popular transforms
- Apply popular transforms to 1D input and 2D input
- Derive the time complexity of 1D and 2D transforms, and translate that into real time for real-world situations
- Appreciate the need for speeding up transforms
- Utilize complex numbers, especially as used in the definition of the Discrete Fourier Transform

OUTLINE

- Review of the lossy compression framework, and the role of each of its 3 components
- Review of the desirable properties of transforms for data compression
- Definition of linear transforms in general, both for 1D and 2D input signals
- Algorithm for transforms, and its time complexity
- The matrices that specify each of the transforms to be focused on
- Review of complex numbers
- Revisiting the Discrete Fourier Transform (defined in terms of complex numbers)

GENERAL SCHEME OF LOSSY COMPRESSION

LOSSY COMPRESSION

-- MOTIVATION --

- 1. We saw that lossless compression does not yield high enough compression ratios (or low enough bitrates) needed for demanding applications like in images and videos, especially in increasingly high definition
- 2. Also, lossless compression cannot compress every input stream, while we want to have control in imposing any target bitrate at will or as needed
- 3. Lossless compression has no way of exploiting the characteristics/limitations of the human audio-visual systems
- The top two reasons force us to look for alternatives to lossless compression
- The 3rd reason opens the door for lossy compression which, among other things, affords us the ability to control the bitrate at will (in tradeoff with quality)

QUANTIZATION REVIEW

- Quantization operates on numerical data
- Quantization reduces the precision of the data to save on bits
- Scalar quantization quantizes each number in the input <u>individually</u> and <u>independently</u> of other (nearby/possibly-correlated) input numbers
- Optimal non-uniform quantizers do take advantage of data distributions (e.g., smaller more numerous intervals in denser regions), and thus indirectly exploit redundancy for reducing error of reconstruction while achieving a certain bitrate, but:
 - They pay no attention to correlations w.r.t. preserving audio-visual patterns
- Therefore, if applied directly to audio-visual data, they incur considerable audio-visual error/loss/distortion

TRANFORMS (1/2)

- To prevent the damage of quantization while taking advantage of its benefits (reduced bitrate), we need:
 - a "pre-processing" stage, which we call transforms
- Specifically, the transforms must have the following properties:
 - Decorrelation of data
 - Separation of data into vision-sensitive data and vision-insensitive data
 - Energy compaction: concentrating the important data into a very small subset
 - **Invertability:** since data loss should occur only in quantization, transforms must be lossless
- Advantage of decorrelation of the data
 - Quantizing decorrelated data causes less blurring of contrasts (e.g., edges) than quantizing correlated data
 - In general, quantizing decorrelated data causes less loss of visual/audio patterns than quantizing correlated data

Transforms-Part I

TRANFORMS (2/2)

- Advantages of separation of data into vision-sensitive (i.e., important data) and vision-insensitive (i.e., unimportant data):
 - We can quantize more the less important data (thus achieving a lot of compression)
 - By having a separate quantizer with fewer, larger intervals
 - We can quantize lightly the more important data (thus retaining quality/fidelity)
 - By having a separate quantizer with more, smaller intervals
 - With energy compaction, only a small subset of the data need to be quantized lightly, which enables us to preserve quality while still compressing a lot
 - Vision-sensitivity is a continuum, i.e., the level of importance of data is not just binary but changes progressively
 - We can progressively adjust the harshness (i.e., level) of the quantization based on the level of importance of the data
 - By having a separate quantizer for each level of importance, where the number of intervals is adapted to the level of importance

8

FOCUS OF THIS TOPIC

- We will focus on designing and studying transforms that have those aforementioned desirable properties
- It so happens that many such transforms already exist and were initially designed for other purposes, such as the Fourier Transform, the Haar Transform, the Hadamard Transform, and the Walsh transform
- In addition, some transforms were designed with data compression in mind, most notably the Discrete Cosine Transform (DCT)
- Therefore, we will focus on
 - The Discrete Fourier Transform (DFT)
 - The Discrete Cosine Transform (DCT)
 - The Hadamard Transform
 - The Walsh Transform
 - The Haar Transform

- There is one more worthy transform: the Karhunen-Loeve (KL) Transform
- Optimal w.r.t. data decorrelation and energy compaction
- But it is data-dependent (the transform matrix is different for different inputs)
- Therefore, it is slow and unsuitable for compression b/c the transform matrix has to be computed and stored every time

9

Transforms-Part I

DIFFERENT PERSPECTIVES OF TRANSFORMS

- To effectively utilize and fully understand the workings and effects of transforms, we will study them from several different perspectives
 - The computational, end-user perspective
 - The vector space perspective
 - The frequency perspective
 - The statistical perspective

BUT FIRST: REVIEW OF MATRICES (1/4)

- **Definition**: A *matrix* A is a table of numbers (or a 2D array in programming). The lines of the table are called *rows*, and the columns retain their name as *columns*. If the matrix A has n rows and m columns, we say that the matrix A is an $n \times m$ matrix. n and m are called *dimensions* of A.
- Indexing notation of matrices:
 - The rows are labeled from 1 to n top to bottom (in math and Matlab), but sometimes from 0 to n-1
 - The columns are labeled 1 to m left to right (in math and Matlab), but sometimes from 0 to m-1
 - We denote the entry (number) located at the intersection of row i and column j as a_{ij}
 - We denote $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ or simply $A = (a_{ij})$
- **Definition**: A matrix is called a **square matrix** if n = m

MATRIX OPERATIONS (2/4)

-- MATRIX ADDITION AND SUBTRACTION --

- We can add and subtract two matrices if they have the same dimensions $n \times m$
- The addition and subtraction are defined component-wise, so the sum of two $n \times m$ matrices

$$A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \text{ and } B = (b_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \text{ is a matrix } C = A + B, C = (c_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}}, \text{ where } c_{ij} = a_{ij} + b_{ij}$$

- Similarly, A-B is a new matrix $D=(d_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq m}}$, where $d_{ij}=a_{ij}-b_{ij}$
- Example:

• Let
$$A = \begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 6 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$,

Observe that matrix addition is commutative and associative: $\forall n \times m$ matrices A, B and C, we have

- $\bullet \quad A+B=B+A$
- (A + B) + C = A + (B + C)

• Then
$$C = A + B = \begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 6 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 6 & 5 \\ 6 & 3 \end{bmatrix}$$
 and $D = A - B = \begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix} - \begin{bmatrix} 6 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} -5 & 3 \\ 0 & 3 \\ -2 & -1 \end{bmatrix}$

MATRIX OPERATIONS (3/4)

-- MATRIX MULTIPLICATION --

• Multiplication of a matrix by a number: Let $A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$ be a matrix and x is a number, then

$$xA = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$$
 where $b_{ij} = x \times a_{ij} = xa_{ij}$

Example:

$$\begin{bmatrix}
1 & 5 \\
3 & 4 \\
2 & 1
\end{bmatrix} = \begin{bmatrix}
3 & 15 \\
9 & 12 \\
6 & 3
\end{bmatrix}, - \begin{bmatrix}
1 & 5 \\
3 & 4 \\
2 & 1
\end{bmatrix} = \begin{bmatrix}
-1 & -5 \\
-3 & -4 \\
-2 & -1
\end{bmatrix}$$

 Multiplication of two matrices: You can multiply a matrix A with a matrix B iff the number of columns of A is equal to the number of rows of B

$$\begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 14 & 21 & 28 \\ 10 & 20 & 19 & 29 \\ 5 & 10 & 6 & 11 \end{bmatrix}$$

• Matrix multiplication:

Let
$$A = (a_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}}$$
 be an $n \times m$ matrix, and $B = (b_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le p}}$ an $m \times p$ matrix.

Then the product
$$AB$$
 is an $n \times p$ matrix $C = (c_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$, where $c_{ij} = \sum_{k=1}^m a_{ik} b_{kj}$.

MATRIX OPERATIONS (4/4)

-- MATRIX MULTIPLICATION EXAMPLE --

• Example of matrix multiplication

• Example:
$$\begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix}$$
. $\begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 14 & 21 & 28 \\ 10 & 20 & 19 & 29 \\ 5 & 10 & 6 & 11 \end{bmatrix}$

$$\begin{bmatrix} 1 & 5 \\ 3 & 4 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 4 & 1 & 3 \\ 1 & 2 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 14 & 21 & 28 \\ 10 & 20 & 19 & 29 \\ 5 & 10 & 6 & 11 \end{bmatrix}$$

Since 19 is in row 2 and column 3, we compute it by doing an inner-product of row 2 of matrix A with column 3 of matrix B to get the entry: $3 \times 1 + 4 \times 4 = 3 + 16 = 19$

-- MATRIX FORMULATION OF TRANSFORMS --

- Every transform studied here is specified by a square $N \times N$ matrix A
- The size *N* of the matrix is equal to the length of the input data
- **Definition**: A transform specified by an $N \times N$ matrix A is a mapping that maps any input column vector x (of components $x: x_0, x_1, ..., x_{N-1}$) into another column vector y = Ax. That is, a transform is a matrix multiplication of the transform-matrix A and the input signal x
- Visually, assuming m = N 1 and the indexing starts from 0, y = Ax is

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} & \dots & a_{0m} \\ a_{10} & a_{11} & \dots & a_{1m} \\ a_{20} & a_{21} & \dots & a_{2m} \\ \vdots \\ \vdots \\ a_{m0} & a_{m1} & \dots & a_{mm} \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_m \end{bmatrix}$$

15

-- INVERSE TRANSFORM --

- To ensure invertability of the transform, the matrix A is non-singular, i.e., has an inverse matrix A^{-1} , where $AA^{-1} = A^{-1}A = I_N$ ($N \times N$ identity matrix)
- Inverse transform: it maps y to x: $x = A^{-1}y$, i.e., to get x back, simply multiply y by matrix A^{-1}

- Notes:
 - When the input data stream is $x: x_0, x_1, ..., x_{N-1}$, we express it as a column vector:

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{bmatrix}$$

The transpose of a matrix B, denoted B^T , is derived from B by turning every row of B into a column and every column into a row, so that $B_{ij}^T = B_{ji}$

• To save on writing space, we often write x in its transpose form (i.e., as a row) as:

$$x^T = (x_0, x_1, x_2, ..., x_{N-1})$$

ALGORITHMICS OF TRANSFORMS

- For input $x^T = (x_0, x_1, x_2, ..., x_{N-1}), A_N = (a_{kl}), 0 \le k \le N-1, 0 \le l \le N-1, y = A_N x$
- Let $y^T = (y_0, y_1, y_2, ..., y_{N-1})$
- We have for each k:
 - $y_k = a_{k0}x_0 + a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{k,N-1}x_{N-1}$
 - That is, to get y_k , multiply (inner-product) row k of A_N with column x

```
Procedure transform(input: x[0:N-1], A[0:N-1,0:N-1]; output: y[0:N-1])\{ for k=0 to N-1 do y[k]=0; // initialize y_k for l=0 to N-1 do y[k]=y[k]+A[k,l]*x[l]; // a_{kl}\equiv A[k,l], and x_l\equiv x[l] }
```

-- EXAMPLE --

• Take input of length N=4, and take the matrix A and input x

-- DATA-INDEPENDENCE --

- The matrix A that specifies the transforms that we will study (like DFT and DCT) is data-independent
 - That means that A does not change when the input x changes
 - But when the <u>size</u> of the input changes (from N to M), then the matrix changes to a matrix of size $M \times M$ so that the multiplication Ax makes sense
 - So the matrix A of a transform depends on the input <u>size</u> N but not on the <u>content</u> of the input x
- Thus, when we need to be very precise, we adjust the notation slightly:
 - We denote A by A_N when the input size is N, and
 - by A_M when the input size is M (so for input size 8, for example, A is denoted A_8)
- Note: The matrix of the Karhunen-Loeve Transform changes as the input x changes

-- TRANSFORM IN ROW FORM--

• In column form: y = Ax

$$x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{bmatrix}, \quad y = Ax = \begin{bmatrix} \vdots & \cdots \\ \vdots & \ddots & \vdots \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}$$

• In row form: $y = Ax \Rightarrow y^T = (Ax)^T = x^T A^T \Rightarrow y^T = x^T A^T$

$$(x_0, x_1, x_2, \dots, x_{N-1}) = (y_0, y_1, y_2, \dots, y_{N-1})$$
 $\begin{bmatrix} & \cdots \\ \vdots & \ddots & \vdots \\ & \cdots & & \end{bmatrix}$

-- MATRIX MULTIPLICATION IN BLOCK FORM --

• Let A be an $N \times N$ matrix, and X an $N \times M$ matrix, and Y = AX an $N \times M$ matrix:

$$AX = \begin{bmatrix} a_{11} & \cdots & a_{N1} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix} \begin{bmatrix} X_{11} & \cdots & X_{1M} \\ \vdots & \ddots & \vdots \\ X_{N1} & \cdots & X_{NM} \end{bmatrix} = \begin{bmatrix} AC_1 & \cdots & AC_M \end{bmatrix} = \begin{bmatrix} Y_{11} & \cdots & Y_{1M} \\ \vdots & \ddots & \vdots \\ Y_{1N} & \cdots & Y_{NM} \end{bmatrix}$$

• If Y is an $N \times M$ matrix and B is an $M \times M$ matrix, and Z = YB is an $N \times M$ matrix, then

$$YB = \begin{bmatrix} Y_{11} & \cdots & Y_{1M} \\ \vdots & \ddots & \vdots \\ Y_{N1} & \cdots & Y_{NM} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{M1} \\ \vdots & \ddots & \vdots \\ b_{M1} & \cdots & b_{MM} \end{bmatrix} = \begin{bmatrix} R_1B \\ \vdots \\ R_NB \end{bmatrix} = \begin{bmatrix} Z_{11} & \cdots & Z_{1M} \\ \vdots & \ddots & \vdots \\ Z_{1N} & \cdots & Z_{NM} \end{bmatrix}$$

-- 2D TRANSFORMS: TRANSFORM OF AN IMAGE --

- To transform of an $N \times M$ image X (into another $N \times M$ matrix Z), do:
 - 1. Transform each column, and then
 - 2. Transform each row
- In matrix form:
 - 1. Transform each column of $X = [C_1 \dots C_M]$, i.e., multiply each column C_i by A on the left:
 - a. Compute $AC_1 \cdots AC_M$
 - b. Place the resulting columns one after another into a matrix $Y = \begin{bmatrix} AC_1 & \cdots & AC_M \end{bmatrix}$
 - c. Using last slide, we see that $Y = AX = A_NX$
 - 2. Transform of each row $Y = \begin{bmatrix} R_1 \\ \vdots \\ R_N \end{bmatrix}$, i. e., multiply each row R_i by A_M^T on the right
 - a. Compute $R_1 A_M^T \cdots R_N A_M^T$
 - b. Place the resulting rows one above the other into a matrix $\begin{bmatrix} R_1 A_M^T \\ \vdots \\ R_N A_M^T \end{bmatrix}$
 - c. Using last slide, we see that $\mathbf{Z} = \mathbf{Y} \mathbf{A}_{\mathbf{M}}^{T}$
- Combining 1c and 2c, we get: $Z = A_N X A_M^T$

LOSSY COMPRESSION USING TRANSFORMS

• Let's recall the framework of lossy compression, and link it with transforms

23

GENERAL SCHEME OF LOSSY COMPRESSION

LOSSY COMPRESSION OF 1D SIGNAL USING **TRANFORMS**

LOSSY COMPRESSION OF 2D SIGNAL USING TRANFORMS

SPEED OF THE TRANSFORM

-- 1D SIGNALS --

- For 1D input signals $x^T = (x_0, x_1, x_2, ..., x_{N-1})$, and taking the notation $A_N = (a_{kl}), 0 \le k \le N-1, 0 \le l \le N-1$, and $y = A_N x$ where $y^T = (y_0, y_1, y_2, ..., y_{N-1})$, we have for each k:
 - $y_k = a_{k0}x_0 + a_{k1}x_1 + a_{k2}x_2 + \cdots + a_{k,N-1}x_{N-1}$
 - Thus, y_k takes N multiplications and N-1 additions, i.e., O(N) time to compute
 - Since y has N components, computing all of y takes $O(N^2)$ time
- For N large (like in the millions in case of sound signals), $O(N^2)$ time is very slow, especially on small devices
 - For example, DFT needs to run on small devices such as radios and digital phones
 - On a device that can do 1MFLOPS, and N=1 million, $O(N^2) = 11.5$ days!!!! (too long)
 - On a device that can do 1GFLOPS, and N=1 million, $O(N^2) = 17$ minutes (still slow)

SPEED OF THE TRANSFORM

-- 2D SIGNALS --

- For 2D input signals, i.e., an $N \times M$ image X
- Recall that $Y = A_N X A_M^T$ (i.e., we transform every column then every row)
- Every column of A takes $O(N^2)$ time to compute, and so the M columns take $O(MN^2)$ time
- Every row takes $O(M^2)$ time to compute, and so the N columns take $O(NM^2)$ time
- Thus, the 2D transform takes $O(MN^2 + NM^2) = O(N^3)$ for N = M
- For N=1000, $O(N^3)=1$ second on a 1GFLOPS device (or 17 mins on a 1MFLOPS)
- But even on a 1GFLOPS device, applying the 2D transform on all the frames of a 2-hour video (with a 30fps rate) takes 2.5 days!

SPEED OF THE TRANSFORM

-- HOW TO HANDLE THE SLOW SPEED --

- From the analysis just done, the transforms are quite slow when applied on real-word data
- Can we do something to speed them up?
- Yes:
 - We will see later that in the case of images, the transforms are applied block-wise, i.e, on individual blocks of size 8×8 , which makes the transforms quite fast
 - Also, in the case of DFT and DCT, there is a divide-and-conquer algorithm which does the 1D transform in $O(N \log N)$ time instead of $O(N^2)$
- **Exercise**: work out the same examples (for N=1 million and N=1,000), to translate $O(N \log N)$ time per column into real time, for 1D and 2D transforms.

MATRICES OF THE TRANSFORMS OF INTEREST

- We will next present the matrices of the transforms of interest
- That is, we will give the matrices A_N of the following transforms
 - The Discrete Fourier Transform (DFT)
 - The Discrete Cosine Transform (DCT)
 - The Hadamard Transform
 - The Walsh Transform
 - The Haar Transform
- The definitions will be given in the form of a_{kl} , where
 - a_{kl} is the generic term in the k^{th} row and l^{th} column position of A_N
 - for all k = 0, 1, ..., N 1 and all l = 0, 1, ..., N 1
 - a_{kl} is a function of k, l, and N, but otherwise does not depend on the input data

THE MATRIX OF THE FOURIER TRANSFORM

•
$$a_{kl} = \sqrt{\frac{1}{N}} e^{-\frac{2\pi i}{N}kl}$$
, where i is the complex (imaginary) number $\sqrt{-1}$

- To understand this better, we'll need to review complex numbers
- We'll do that later, after we present the matrices of the other transforms

31

THE MATRIX OF THE DISCRETE COSINE TRANSFORM

•
$$a_{0l} = \sqrt{\frac{1}{N}}$$
 for all $l = 0, 1, ..., N - 1$;

•
$$a_{kl} = \sqrt{\frac{2}{N}} \cos \frac{\left(l + \frac{1}{2}\right)k\pi}{N} \ \forall \ k = 1, 2, ..., N-1, \text{ and } l = 0, 1, ..., N-1$$

- $A_N^{-1} = A_N^T$
- Illustrations of the DCT matrix :

$$A_2 = \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, A_4 = \frac{1}{2}$$

Illustrations of the DCT matrix :
$$A_2 = \sqrt{\frac{1}{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, A_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ \sqrt{1 + \frac{\sqrt{2}}{2}} & \sqrt{1 - \frac{\sqrt{2}}{2}} & -\sqrt{1 - \frac{\sqrt{2}}{2}} & -\sqrt{1 + \frac{\sqrt{2}}{2}} \\ 1 & -1 & -1 & 1 \\ \sqrt{1 - \frac{\sqrt{2}}{2}} & -\sqrt{1 + \frac{\sqrt{2}}{2}} & \sqrt{1 + \frac{\sqrt{2}}{2}} & -\sqrt{1 - \frac{\sqrt{2}}{2}} \end{bmatrix}$$

THE MATRIX OF THE HADAMARD TRANSFORM

• To express a_{kl} , we need to express k and l in binary (using $n = \log N$ bits)

•
$$k = k_{n-1}k_{n-2} \dots k_1k_0$$
, $l = l_{n-1}l_{n-2} \dots l_1l_0$

•
$$a_{kl} = \sqrt{\frac{1}{N}} (-1)^{k_{n-1}l_{n-1}+k_{n-2}l_{n-2}+\cdots+k_1l_1+k_0l_0}$$

$$\bullet \ A_N^{-1} = A_N^T = A_N$$

• Illustrations:

$$A_2 = \sqrt{\frac{1}{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

AN ALTERNATIVE DEFINITION OF THE MATRIX OF THE HADAMARD TRANSFORM

• The Hadamard matrix can be defined recursively (where N is a power of 2, i.e., $N=2^n$ for some positive integer n)

•
$$A_1 = (1)$$
 and $\forall N > 1, A_N = \sqrt{\frac{1}{2}} \begin{pmatrix} A_N & A_N \\ \frac{N}{2} & \frac{N}{2} \\ A_N & -A_N \\ \frac{N}{2} \end{pmatrix}$

- **Exercise**: Derive A_2 , A_4 and A_8 using this recursive definition
- Exercise: Compare the values A_2 , A_4 and A_8 with their values on the previous slide to verify that the two definitions are equivalent
- **Exercise**: Using the recursive definition of A_N , prove by induction on n that A_N is a symmetric matrix, and that $A_N A_N = I_N$, i.e., $A_N^{-1} = A_N$.
- Note: In Matlab, if you call hadamard(N), it returns to you the Hadamard matrix A_N but without the constant multiplier $\sqrt{\frac{1}{N}}$

THE MATRIX OF THE WALSH TRANSFORM

• Like in Hadamard, we need to express k and l in binary (using $n = \log N$ bits)

•
$$k = k_{n-1}k_{n-2} \dots k_1k_0$$
, $l = l_{n-1}l_{n-2} \dots l_1l_0$

•
$$a_{kl} = \sqrt{\frac{1}{N}} (-1)^{k_{n-1}l_0 + k_{n-2}l_1 + \dots + k_1 l_{n-2} + k_0 l_{n-1}}$$

$$\bullet \ A_N^{-1} = A_N^T = A_N$$

• Illustrations:

$$A_2 = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad A_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & 1 \end{pmatrix}$$

RELATION BETWEEN HADAMARD AND WALSH

- By comparing the Walsh matrix with the Hadamard matrix, we can quickly see that by permuting the rows and columns of the Walsh matrix we get the Hadamard matrix
- Actually, from the mathematical definition of a_{kl} in each case:
 - Hadamard: $a_{kl} = \sqrt{\frac{1}{N}} (-1)^{k_{n-1}l_{n-1}+k_{n-2}l_{n-2}+\cdots+k_1l_1+k_0l_0}$
 - Walsh: $a_{kl} = \sqrt{\frac{1}{N}} (-1)^{k_{n-1}l_0 + k_{n-2}l_1 + \dots + k_1l_{n-2} + k_0l_{n-1}}$
 - We can see that for $\forall l$ and k:
 - (column l of Hadamard)=(column l^R of Walsh), where l^R is the reverse binary string of l
 - (row k of Hadamard)=(row k^R of Walsh)
- Verify: column $3(=(011)_2)$ of Hadamard = column $6(=(110)_2)$ of Walsh

- In all the transforms, the columns are indexed from 0 to N-1
- Also the rows are indexed from 0 to N-1

EFFECT OF HADAMARD ~ WALSH

- Since the Walsh matrix is a "permutation" of the Hadamard matrix
 - The two transforms have equivalent effects on the input data, as far as compression is concerned
 - That is, if you transform the same input x by the two transforms, the outputs are re-arrangements of each other (Why?)
 - For that reason, scientists don't study the two transforms separately
 - Instead, they "squash" the two transforms into one transform, called the Walsh-Hadamard Transform, and take the Hadamard matrix to be its matrix
 - In fact, Matlab implements Hadamard but not Walsh

THE MATRIX OF THE HAAR TRANSFORM

 Like in the case of Hadamard and Walsh, the Haar matrix is defined only for N being a power of 2 ($N=2^n$)

- $a_{0l} = \sqrt{\frac{1}{N}}$ for all l = 0, 1, ..., N 1;
- $for \ k \ge 1, k = 2^p + q, 0 \le q \le 2^p 1, 0 \le p \le n 1$:

How to get p and q for k where $1 \le k \le N-1$:

- Take the largest 2-power $\leq k$
- Call it 2^p (note that $2^p \le k < 2^{p+1}$
- $2^p \le k < 2^{p+1} \Rightarrow 0 \le k 2^p < 2^{p+1} 2^p = 2^p$

$$a_{kl} = \sqrt{\frac{1}{N}} \begin{cases} 2^{\frac{p}{2}}, & \text{if } q2^{n-p} \le l < \left(q + \frac{1}{2}\right)2^{n-p} \\ -2^{\frac{p}{2}}, & \text{if } \left(q + \frac{1}{2}\right)2^{n-p} \le l < (q+1)2^{n-p} \\ 0, & \text{otherwise} \end{cases}$$

• Ex:, for $N = 2^3 = 8$, n = 3, and for k=3, $k = 2^1 + 1$, so p = 1, q = 1,

THE MATRIX OF THE HAAR TRANSFO

-- EXAMPLE --

$$a_{kl} = \sqrt{\frac{1}{N}} \begin{cases} 2^{\frac{p}{2}}, & \text{if } q2^{n-p} \le l < \left(q + \frac{1}{2}\right)2^{n-p} \\ -2^{\frac{p}{2}}, & \text{if } \left(q + \frac{1}{2}\right)2^{n-p} \end{cases}$$

$$= \sqrt{\frac{1}{N}} \begin{cases} 2^{\frac{p}{2}}, & \text{if } \left(q + \frac{1}{2}\right)2^{n-p} \le l < \left(q + \frac{1}{2}\right)2^{n-p} \\ 0, & \text{otherwise} \end{cases}$$

$$= \sqrt{\frac{1}{N}} \begin{cases} 2^{\frac{p}{2}}, & \text{if } \left(q + \frac{1}{2}\right)2^{n-p} \le l < \left(q + 1\right)2^{n-p} \\ 0, & \text{otherwise} \end{cases}$$

How to get p and q for k where $1 \le k \le N-1$:

• Ex:, for $N = 2^3 = 8$, n = 3, and for k = 3, $k = 2^1 + 1$, so p = 1, q = 1:

•
$$q2^{n-p} \le l < (q + \frac{1}{2})2^{n-p} \Rightarrow 4 \le l < 6 \Rightarrow a_{34} = a_{35} = \sqrt{\frac{1}{8}}2^{\frac{p}{2}} = \sqrt{\frac{1}{8}}\sqrt{2}$$

•
$$\left(q + \frac{1}{2}\right) 2^{n-p} \le l < (q+1)2^{n-p} \Rightarrow 6 \le l < 8 \Rightarrow a_{36} = a_{37} = -\sqrt{\frac{1}{8}} 2^{\frac{p}{2}} = -\sqrt{\frac{1}{8}} \sqrt{2}$$

THE MATRIX OF THE HAAR TRANSFORM

-- ILLUSTRATIONS: A₂, A₄, A₈ --

$$A_2 = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad A_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix}$$

THE MATRIX OF THE FOURIER TRANSFORM

- $a_{kl} = \sqrt{\frac{1}{N}} e^{-\frac{2\pi i}{N}kl}$, where i is the complex (imaginary) number $\sqrt{-1}$
- To understand this better, we'll need to review complex numbers next

-- DEFINITION AND OPERATIONS --

- Recall that every $\underline{\text{real}}$ number a is a $\underline{\text{point}}$ on the $\underline{\text{real}}$ axis $\underline{\text{line}}$
- Complex numbers are a generalization of real numbers:

h

- Each <u>complex</u> number is a <u>point</u> on the <u>plane</u> (in the x-y coordinate system)
- Therefore, a complex number is a pair of real number coordinates
- Notation: a complex number z = (a, b)

- Addition (+): $(a, b) + (a', b') \stackrel{\text{def}}{=} (a + a', b + b')$, like vector addition
- Multiplication (.): (a,b). $(a',b') \stackrel{\text{def}}{=} (aa'-bb',ab'+a'b)$
- Multiplication by a real number: $c.(a,b) \stackrel{\text{def}}{=} (c.a,c.b)$
- Geometrically, every complex number (a, 0) falls on the x-axis (i.e., the real axis), and therefore coincides with the real number a
- So, we can identify the two: $(a, 0) \equiv a$ (we will use that later)

-- PROPERTIES OF OPERATIONS --

•
$$(a,b) + (a',b') \stackrel{\text{def}}{=} (a+a',b+b'); (a,b).(a',b') \stackrel{\text{def}}{=} (aa'-bb',ab'+a'b); \text{ c. } (a,b) = (ca,cb)$$

• It can be shown that the following properties hold:

1.
$$(a,b) + (a',b') = (a',b') + (a,b)$$
 // + is commutative

2.
$$((a,b)+(a',b'))+(a'',b'')=(a,b)+((a',b')+(a'',b''))$$
 // + is associative

3.
$$(a,b) + (0,0) = (a,b)$$
 // so (0,0) is like 0

4.
$$(a,b).(a',b')=(a',b').(a,b)$$
 // mult is commutative

5.
$$((a,b),(a',b')),(a'',b'') = (a,b),((a',b'),(a'',b''))$$
 // mult is is associative

6.
$$(a,b).(1,0)=(a,b)$$
 // so (1,0) is like 1

7.
$$(a,b).[(a',b')+(a'',b'')]=(a,b).(a',b')+(a,b).(a'',b'')$$
 // (.) is distributive over +

8. If
$$(a,b) \neq (0,0)$$
, then $(a,b) \cdot \left(\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}\right) = (1,0) / \left(\frac{a}{a^2+b^2}, -\frac{b}{a^2+b^2}\right)$ is inverse of (a,b)

9.
$$c.[(a,b)+(a',b')] = c.(a',b')+c.(a,b), (c+d).(a,b) = c.(a,b)+d.(a,b),$$

 $c.(d.(a,b)) = (cd).(a,b) = (cda,cdb)$

-- ALTERNATIVE NOTATION --

- $(a,b) + (a',b') \stackrel{\text{def}}{=} (a+a',b+b'); (a,b).(a',b') \stackrel{\text{def}}{=} (aa'-bb',ab'+a'b); \text{ c.(a,b)=(ca,cb)}$
- $(0,1).(0,1)=(0*0-1*1,0*1+1*0)=(-1,0)\equiv -1$, thus $(\mathbf{0},\mathbf{1})^2=-\mathbf{1}$, i.e., $(\mathbf{0},\mathbf{1})=\sqrt{-\mathbf{1}}$
- Denote by i = (0, 1); // that is a standard notation $i^2 = -1$
- Every complex $z = (a, b) = (a, 0) + (0, b) = a(1, 0) + (0, 1)b = a \cdot 1 + ib = a + ib -1 i = 1$
- Therefore, we have an alternative notation that is more commonly used than pairs:

• It is instructive to restate all the 9 properties of the operations using this new notation, especially multiplication:

$$(a+ib).(a'+ib') = aa' - bb' + i(ab' + a'b)$$

• The multiplication rule can be recreated using distributivity and $i^2 = -1$

-- POLAR NOTATION --

- Let's define $re^{i\theta} \stackrel{\text{def}}{=} r \cos \theta + ir \sin \theta$
- What would r and θ be for a given complex number z = a + ib?
 - r and θ must satisfy: $a = r \cos \theta$, $b = r \sin \theta$.
 - Therefore, $a^2 + b^2 = r^2(\cos^2\theta + \sin^2\theta) = r^2$. $1 = r^2$. Thus, $r = \sqrt{a^2 + b^2}$

•
$$\frac{b}{a} = \frac{r \sin \theta}{r \cos \theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta$$
. Thus, $\theta = \arctan \frac{b}{a}$ (for $a \neq 0$)

- Therefore, we call
 - r the **magnitude** of z, and denote it r = |z|
 - θ the **angle** (or **phase**) of z, and denote it $\theta = Ph(z)$
- By the way, if a=0, then $\theta=\frac{\pi}{2}$ if b>0, and $\theta=-\frac{\pi}{2}$ if b<0,

-- POLAR NOTATION: WHY EXPONENTIAL? --

- Let's define $re^{i\theta} \stackrel{\text{def}}{=} r \cos \theta + ir \sin \theta$
- Let $z = re^{i\theta} \stackrel{\text{def}}{=} r\cos\theta + ir\sin\theta$ and $z' = r'e^{i\theta'} \stackrel{\text{def}}{=} r'\cos\theta' + ir\sin\theta'$
- $z \cdot z' = rr' [\cos \theta \cos \theta' \sin \theta \sin \theta' + i(\cos \theta \sin \theta' + \sin \theta \cos \theta')]$
- $z \cdot z' = rr' \left[\cos(\theta + \theta') + i \sin(\theta + \theta') \right]$ $\cos(\theta + \theta') = \cos\theta \cos\theta' \sin\theta \sin\theta'$

From trigonometry:

- $\sin(\theta + \theta') = \cos\theta \sin\theta' + \sin\theta \cos\theta'$

- Therefore: $re^{i\theta}$, $r'e^{i\theta'} = rr'e^{i(\theta+\theta')}$
- The above formula justifies the exponential notation
- Geometric explanation of complex multiplication:
 - you add the angles: $\theta + \theta'$
 - you multiply the magnitudes: rr'

Transforms-Part I

-- CONJUGATE AND INVERSE --

•
$$a + ib + a' + ib' = a + a' + i(b + b')$$
; $(a + ib) \cdot (a' + ib') = aa' - bb' + i(ab' + a'b)$;

- c. (a + ib) = ca + icb; $re^{i\theta} \stackrel{\text{def}}{=} r\cos\theta + ir\sin\theta$; $re^{i\theta}$. $r'e^{i\theta'} = rr'e^{i(\theta + \theta')}$
- Definition: The *conjugate* of z = a + ib is $\bar{z} = a ib$

•
$$z.\bar{z} = a^2 + b^2 = |z|^2 \Rightarrow \frac{1}{z} = \frac{1}{|z|^2}\bar{z} = \frac{a}{a^2 + b^2} - i\frac{b}{a^2 + b^2}$$

- Also, if $z = re^{i\theta}$, then $\frac{1}{z} = \frac{1}{r}e^{-i\theta} = \frac{1}{r}\cos\theta \frac{1}{r}\sin\theta$
- So, we can do complex division easily as well

THE MATRIX OF THE FOURIER TRANSFORM

•
$$a_{kl} = \sqrt{\frac{1}{N}} e^{-\frac{2\pi i}{N}kl} = \sqrt{\frac{1}{N}} \left(\cos\frac{2\pi}{N}kl - i\sin\frac{2\pi}{N}kl\right) \ \forall k, l = 0, 1, 2, ..., N - 1$$

- A_N^{-1} = conjugate of A_N , that is, conjugate of every entry in A_N
- Illustrations of the DFT matrix (where $a = \frac{\sqrt{2}}{2}(1+i)$ and $\bar{a} = \frac{\sqrt{2}}{2}(1-i)$)

$$A_{2} = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$A_{4} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix} A_{8} = \sqrt{\frac{1}{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \bar{a} & -i & -a & -1 & -\bar{a} & i & a \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & -a & i & \bar{a} & -1 & a & -i & -\bar{a} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\bar{a} & -i & a & -1 & \bar{a} & i & -a \\ 1 & i & -1 & -i & 1 & i & -1 & -i \\ 1 & a & i & -\bar{a} & -1 & -a & -i & \bar{a} \end{bmatrix}_{48}$$

CS6351 Data Compression

NEXT LECTURE

- Vector spaces
- Vector space perspective of transforms