

Preliminary Design Review

EASE

Electrodynamic Dust Shielding Activated Surface Emitter

INTRODUCTION ROADMAP

INTRODUCTION

- •Meet the Team
- Competition Overview
- •Competition Constraints
- •Lunar Dust
- •Problem Statement

CONCEPT OVERVIEW

- •Quad Chart
- •How it Works
- •Requirements & Success Criteria
- Design Assumptions

MECHATRONICS

- •EDS Overview
- •EDS Layout
- •Controls Diagram
- •Circuit Diagram
- Simulation
- Power Requirements

VERIFICATION & VALIDATION

•Testing Program

MISSION INTEGRATION

- Concept of Operations
- •Risk Assessment

MECHANICAL

- System Overview
- •Material Selection
- •FEA Results
- Manufacturing

LOGISTICS

- •Schedule
- Budget

CONCLUSION

- Outstanding Issues
- •Supplementary Material

INTRODUCTION MEET THE TEAM

Leadership

CEO Luis Pabon MCE & Aero, '22 Houston, TX

CTO
Malcolm Tisdale
MCE & CDS, '22

COO Isabella Dula

Advisor Dr. Soon-Jo Chung

Mechanical

Lead Polina Verkhovodova MCE & Pl, '22 Pasadena, CA

Lead Leah Soldner MCE , '24 S Pasadena, CA

Tanmay Gupta MCE , '24 Ph / Astro Kuala Lumpur, Malaysia

Nathan Ng MCE , '24 Santa Clara, CA

Mechatronics

Lead Isabella Dula

Athena Kolli MCE, '24 Buffalo Grove,

Kemal Pulungan MCE , '24 Troy, NY

Jules Penot MCE & Aero , '24 Valbonne, France

Mission Integration

Lead Calle Junker MCE, '23 Aztec, NM

Kaila Coimbra MCE, '23 San Diego, CA

Rithvik Musuku MCE , '24 Gilbert, AZ

Parul Singh MCE , '24 Tallahasee, FL

INTRODUCTION COMPETITION OVERVIEW

Artemis Missions – Feet on the moon by 2024 & sustainable missions by 2028. NASA BIG Idea Challenge Finalists implemented 2026

- University teams of 5 25 students
- Teams submit proposals (Dec 13th 2020) for funding to develop concepts for technical paper and BIG Idea Forum (Nov 15th 2021)
- Awards from \$50,000 \$180,00

Landing Dust
Prevention &
Mitigation - to preclude
or protect from plume/surface
interactions which may result
in damaged landers and
nearby surface assets

Spacesuit Dust
Tolerance &
Mitigation - to limit
dust adherence to spacesuits
and other damaging effects to
its subsystems

Exterior Dust
Prevention,
Tolerance, &
Mitigation - to protect
lunar surface systems or
preclude dust from entering
habitats and landers

Cabin Dust
Tolerance &
Mitigation - to clean
habitable volumes and their
interior surfaces, which helps
prevent dust from making it
back to Gateway and Orion
when the lander returns to
lunar orbit from the surface

INTRODUCTION **COMPETITION CONSTRAINTS**

Constraints

- Able to manage or mitigate lunar dust (~0.5-100 um)
- Minimal barrier to NASA adoption
 - Cost, power, mass, size ...
- Minimum Technological Readiness Level 4 (->5)
- Lifespan of 15 30 years
- Removes dust "in minutes"
- Lunar environmental conditions
 - South pole temperatures between -232C and -49C
 - Permanently shadowed craters as low as -243C

Lunar Dust Particle

Gene Cernan covered in lunar dust

Considerations

- Aiming for 2026 deployment in lunar missions
- Simplicity of operation and maintenance
- Deployment method from NASA or commercial surface lander
- Effective packaging for launch and Moon landing
- Credible fabrication and material selection

INTRODUCTION LUNAR DUST

Dust Properties

Issues Posed

- Vision obscuration
- False instrument readings
- Dust coating and contamination
- Seal failures
- Abrasion of materials
- Inhalation and irritation risks
- Loss of foot traction

PROPERTY	VALUE	UNITS
Size range	4 – 500	[nm] – [um]
Volume fraction	< 0.2	%
Relative permittivity	3 - 4	
Relative permeability	~ 1	
Specific gravity	~ 3	[g * cm^-3]
Charge	10^11 - 10^13	[C / kg]

- Charged through solar emissions
- Trace magnetic elements
- 90% Silicate/Aluminosilicate minerals by volume
- Highly irregular and sharp
- Charge density increases with particle size

INTRODUCTION PROBLEM STATEMENT

Problems Caused By Spacesuit Dust Ingress Into Habitable Volumes

- Increased loads on in-cabin dust mitigation technologies
- Incorrect readings during incabin experiments
- Performance reduction and possible failure of in-cabin equipment
- Astronaut health risks
- Dust brought to Gateway and Orion when lander returns to lunar orbit

Existing Solutions

FIGURE 3–1. SIMULANT DUST REMOVAL WITH NASA KENNEDY SPACE CENTER'S EDS AT 10-6 KPA (CALLE ET AL. ACTA ASTRONAUT. 69, 2011: 1082-1088).

FIGURE 3-4. WASEDA UNIVERSITY'S MAGNETIC CLEANING DEVICE (KAWAMOTO, H. AND H. INOUE, J. AEROSP. ENG. 2012, 25: 139-142).

AIAA Caltech Student Branch – 11/18/20 Preliminary Design Review – E.A.S.E.

Objective:

- Minimize dust ingress into lunar habitat module on astronaut boots
- Increases traction of astronaut boots
- EASE is portable, durable, low SWaPs device
- Clears lunar dust from astronaut boots in < 2 mins and self cleaning
- Increases the state-of-the-art:
 - Largest, most compact, and durable implementation of electrodynamic shielding technology
- Develop and validate to TRL 5

Render of EASE

Approach:

Leverages 50-year-old dust mitigation technology currently being tested on ISS

- 3-Phase traveling square wave pushes dust particles off astronaut boots and EASE
- Touch-free operation using piezoelectric pressure sensors in mat
- Extensive validation and verification program though

Mass Estimate: 1.2 kg Power Estimate: 10 W max

Key Milestones:

Description	TRL	Deadline
Preliminary Design Review	2	11/18/20
Proposal	3	12/13/20
Functional Prototype	3	4/1/21
Midpoint Report	4	5/20/21
Technical Paper & Verification Demonstration	5	10/27/21

CONCEPT OVERVIEW REQUIREMENTS

AIAA Caltech Student Branch - 18/11/20 Preliminary Design Review - H.O.M.E.S.

Functional Requirements	Description
FR 1.0	Remove 50% of dust from astronaut boots during cleaning period
FR 2.0	Self-cleaning after astronaut departure
FR 3.0	Minimum 15-year lifetime on lunar surface
FR 4.0	Capable of enduring forces involved in launch and landing
FR 5.0	Capable of enduring repeated impacts without loss in performance

CONCEPT OVERVIEW DESIGN ASSUMPTIONS

Design Assumption	Description
DA 1.0	EASE placed on 1 m x 1 m cleared and leveled area of regolith
DA 2.0	28 V DC power supplied by lunar habitats and landers
DA 3.0	Lunar regolith compresses under load of mat and astronaut
DA 4.0	Disregard off nominal solar activity
DA 5.0	No more than one astronaut at a time maximum load

EDS OVERVIEW DESIGN HERITAGE

Electrodynamic Dust Shielding

- Parent technology developed in 1970s
- Lifts and transports charged and uncharged particles using electrostatic and dielectrophoretic forces
- Works best for particle size regimes of 5-300 µm (encompasses size regime for lunar dust particles)
- Technology currently being used in:
 - Solar panel maintenance (dust removal efficiency of **90%**)
 - Tested in mock lunar environments
 - In-Situ Experiments on ISS on thermal radiators and solar panels
 - Ongoing; showed that **EDS works in vacuum**
 - Solar panel effectiveness 22.5%→98.4% after EDS implementation with lunar simulant

Demonstration of EDS on a glass plate; particle size < 20 µm (Guo, 2018)

EDS System mounted on sim. Lunar habitat

EDS OVERVIEW INTERDIGATED CAPACITOR

Fringing electric field exerts force on

charged dust particles

3 phased EDS Systems transport dust particles

dust particle

1

2

3

EDS OVERVIEW FORCES INVOLVED

Variables:

E = electric field strength

q = particle charge

 ε_m = dielectric permittivity of medium

 ε_o = dielectric permittivity of vacuum

R = particle diameter

 γ = surface energy of adhering surface

Forces exerted by EDS:

FE: Electrostatic force

$$F_E = qE$$

FD : Dielectrophoretic force

$$F_D = 2\pi\varepsilon_o \frac{\varepsilon_m - 1}{\varepsilon_m + 2} R^3 \nabla E^2$$

Forces adhering particles to astronaut:

FE + FD

V: Van der Waals force

$$V = 4\pi R \gamma$$

S : Image-charge static force

$$S = \frac{q}{4\varepsilon_0 (2R)^2}$$

Feasible by analysis and prior implementations

MECHATRONICS LAYOUT AND PHASING

Side View:

Top View:

- Electronics box made of aluminum and Multi-Layer Insulation (MLI) to protect against thermal and radiative environment
- Kapton dielectric rated for -268°C to 399°C

MECHATRONICS CONTROLS & MODES

Operational Modes

Standby Mode: awaiting use, sensors are active

Cleaning Mode: capacitors are charged, suit is cleaned,

dust removed from mat

MECHATRONICS CIRCUIT DIAGRAM

Sensors and components to be selected/designed from existing NASA satellite and spacecraft payloads.

- Estimates based on finite difference time domain electrostatic simulation
 - Obtained mesh grid of electric field strength given electrode lay-out and voltage supply
 - Determined electromagnetic field strength necessary to overcome adhesive forces

Operational Mode	Time Estimate	Voltage (DC)	Power Requirements (W)
ASTRONAUT	3 min/astronaut	28 V	10 W
STANDBY	VARIABLE	28 V	<100 mW

Current estimates predict EASE will have low power requirements

Feasible by analysis and prior implementations

Objectives:

- Strong enough to sustain weight
- Easy to transport and use
- Large enough size to comfortably use
- Optimized for weight and volume
- Electronics are secured and protected
- Cost-effective solution
- Protected from the harsh lunar environment
- Use for 15-30 years.

Metric	Weight	Single Panel	Single Fold Accordion
Use with EDS	10	9	5
Robustness	30	25	20
Weight and Volume	20	20	12
Storage, transportation, deployment	20	20	12
Life Cycle	20	20	16
Total	100	94	65

Spikes for security

EDS System

Mass estimate: 1.4 kg

MECHANICAL **MATERIAL SELECTION**

	Alumina Ceramic	Bolt	Beta-cloth	Kapton	
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	2.71 (10 ⁻³ g/cm ²)	1.41 (g/cm ³)	
Tensile Strength	260 (MPa)	482 (MPa)	3,450 (MPa)	230 (MPa)	
Flexural Strength	379 (MPa)	290 (MPa)	13.4 (MPa)	120 (MPa)	Feasi
Compressive Strength	2,600 (MPa)	170 (MPa)	758 (MPa)	172 (MPa)	analy and p
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	9.3 (10 ⁻⁵ /°C)	8.1 (10 ⁻⁵ /°C)	imple
Dielectric Constant	9.1 (at 1 MHz)	-	-	5.42 (at MHz)	
Dielectric Strength	16.7 (kV/mm)	-	-	217 (kV/mm)	
Temperature Range	-273.15 - 1,750 (°C)	-252 - 871 (°C)	-73 - 260 (°C)	-267 - 398 (°C)	

Note: we will also put LOTUS coating on the top layer of the alumina sheet and use Cicoil wires

MECHANICAL MATERIAL SELECTION

	Alumina Ceramic	Bolt	Beta-cloth	Kapton
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	2.71 (10 ⁻³ g/cm ²)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	3,450 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	13.4 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	758 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	9.3 (10 ⁻⁵ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	-	217 (kV/mm)
Temperature Range	-273.15 - 1,750 (°C)	-252 - 871 (°C)	-73 - 260 (°C)	-267 - 398 (°C)

MECHANICAL MATERIAL SELECTION

	Alumina Ceramic	Bolt	Beta-cloth	Kapton
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	2.71 (10 ⁻³ g/cm ²)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	3,450 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	13.4 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	758 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	9.3 (10 ⁻⁵ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	-	217 (kV/mm)
Temperature Range	-273.15 - 1,750 (°C)	-252 - 871 (°C)	-73 - 260 (°C)	-267 - 398 (°C)

MECHANICAL MATERIAL SELECTION

	Alumina Ceramic	Bolt	Beta-cloth	Kapton
Density	3.9 (g/cm ³)	8.0 (g/cm ³)	2.71 (10 ⁻³ g/cm ²)	1.41 (g/cm ³)
Tensile Strength	260 (MPa)	482 (MPa)	3,450 (MPa)	230 (MPa)
Flexural Strength	379 (MPa)	290 (MPa)	13.4 (MPa)	120 (MPa)
Compressive Strength	2,600 (MPa)	170 (MPa)	758 (MPa)	172 (MPa)
Coefficient of Thermal Expansion	8.6 (10 ⁻⁶ /°C)	10.3 (10 ⁻⁶ /°C)	9.3 (10 ⁻⁵ /°C)	8.1 (10 ⁻⁵ /°C)
Dielectric Constant	9.1 (at 1 MHz)	-	-	5.42 (at MHz)
Dielectric Strength	16.7 (kV/mm)	-	-	217 (kV/mm)
Temperature Range	-273.15 - 1,750 (°C)	-252 - 871 (°C)	-73 - 260 (°C)	-267 - 398 (°C)

Note: we will also put LOTUS coating on the top layer of the alumina sheet and use Cicoil wires

MECHANICAL MANUFACTURING

Top Plate:

- 3-axis CNC milling
 - Outsource
 - Order: grooves for EDS, screw holes, outer edge, countersink screw holes
 - Design considerations: 0.5 mm tolerance, space for Kapton, large external fillets

Bottom Plate:

- 3-axis CNC milling
 - Order: grooves for EDS, screw holes, tapping screw holes, outer edge
 - Design considerations: 0.5 mm tolerance, space for Kapton, large external fillets

MECHANICAL MANUFACTURING

Electronics Box:

- Tungsten inert gas welding:
 - Weld the sidewalls of the electronics box together
- 3-axis CNC milling:
 - Order: drill holes for mounting electronics on box, drill holes for mounting lid to box
- Manually tap holds
- Design considerations: 0.5 mm tolerance, large external and internal fillets

MISSION INTEGRATION CONCEPT OF OPERATIONS

AIAA Caltech Student Branch - 11/18/20 Preliminary Design Review - E.A.S.E.

Astronaut should ensure the surface is relatively flat and cleared

After moonwalk and sample collection, astronaut returns to stand on E.A.S.E, which senses the weight and begins attracting dust off the astronauts' boots and repelling it off itself, cleaning the astronaut and itself

Astronaut leaves and E.A.S.E enters rest mode until the pressure sensor is activated by the weight of the astronaut again.

MISSION INTEGRATION

RISK ASSESEMENT

AIAA Caltech Student Branch - 11/18/20 Preliminary Design Review - E.A.S.E.

	Negligible	Minor	Moderate	Significant	Severe
Very Likely					
Likely				-Abrasion of surface, materials, or electrodes due to long- term use -Wear on bottom of panels	
Likely					
Possible		-Dust penetration between layers			-Concentrated force application onto panels/hinges by rocks, etc on surface
Unlikely		-Impact of radiation and cold temperatures on panel materials	-Moves out of correct positon - Stress created by differing thermal expansion coefficients -Impact of EDS system on suit electronics	-Impact of radiation and cold temperatures on electronics	
·				-Power supply integration with habitat	-Micrometeorite impact
Very Unlikely					

Goal: Validate to TLR4

- -All tests under thermal and vacuum conditions
- -Implement safety factor of 1.2 1.5

Vibration Test for Deployment

EMI Test for EDS
System

Miscellaneous

Abrasion Test

Operational Test

Dust Exposure Test

VERIFICATION **EQUIPMENT**

Three-Body Abrasive Wear Test Rig

- We will construct a vacuum chamber for our verification tests
- Looking for resources for cryochamber
- Lunar Simulant JSC-1A will be used for all verification tests
 - Similar compositional and mineralogical features to actual lunar regolith

(Roy, 2008)

[Logistics] [Budgeting and Limitations]

INDIVIDUAL COST	QTY	SUBTOTAL
\$657.00	5	\$3,285.00
\$8.27	5	\$41.35
\$28.66	5	\$143.30
\$44.99	5	\$224.95
	5	\$0.00
	5	\$0.00
\$42.72	5	\$213.60
\$1.50	5	\$7.50
\$19.95	5	\$99.75
\$87.27	1	\$87.27
		\$4,102.72
	\$657.00 \$8.27 \$28.66 \$44.99 \$42.72 \$1.50 \$19.95	\$657.00 5 \$8.27 5 \$28.66 5 \$44.99 5 5 5 \$42.72 5 \$1.50 5 \$19.95 5

Note: Does not include machining or circuit component costs

Raw Material Costs Est.

- 4 prototypes without EDS System
- 1 complete prototype
 - Costs will increase if a need for iteration arises

Function / Characteristic	Solution	Feasible?
Transport dust	EDS	YES
Touch-free operation	Piezoelectric transducer	YES
Rugged housing	Ceramic & Beta-cloth	YES