Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Лабораторная работа «ПОЛУЧЕНИЕ БАЗОВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ И ТЕСТОВЫЕ ПРОВЕРКИ ЕГО РАБОТЫ»

Выполнил студент гр. 3530904/00103

Плетнева А. Д.

Руководитель Чуркин В. В.

> Санкт-Петербург 2023

Оглавление

Элементы оглавления не найдены.

Цель работы

- 1. Получение на ЭВМ с помощью программного датчика базовой последовательности псевдослучайных чисел, имеющих равномерное распределение.
- 2. Освоение методов статистической оценки полученного распределения: вычисление эмпирических значений для математического ожидания и дисперсии.
- 3. Освоение методов оценки статистики связи: вычисление значений автокорреляционной функции и построение коррелограммы.
- 4. Освоение методов графического представления законов распределения: построение функции плотности распределения и интегральной функции распределения.

Ход работы

Была получена псевдослучайная последовательность, имеющая равномерный характер на интервале [0,1], с помощью программного датчика случайных чисел - np.random.random(10000)

Следующим шагом было вычисление эмпирических значений математического ожидания и дисперсии полученной последовательности псевдослучайных чисел по формулам:

@M@ =
$$(u[1] + u[2] + ... + u[n])/n$$

@D@= $\{(u[1]-@M@)**2 + (u[2]-@M@)**2 + ... + (u[n]-@M@)**2\}/n$

Сравним полученные результатов с соответствующими теоретическими значениями:

+	++												
1			Оценка распределений		RAND (эксперимент)	Теоретическое значение		Отклонение	1				
+						+			-+				
1	10		М		0.41697303444509926	0.5		0.08302696555490074	1				
1	10) [0.11358929065900594	0.08333		0.03025929065900594	1				
1	100		М		0.515041703133988	0.5		0.015041703133988005	1				
1	100) [0.08341519997046651	0.08333		8.519997046650685e-05	1				
1	100	00	М		0.5118952642236532	0.5		0.011895264223653168	1				
1	100	00			0.08082059371964843	0.08333		0.002509406280351567	1				
1	1000	00	М		0.5002374141144181	0.5		0.00023741411441813298	1				
1	1000	00			0.08298090412052792	0.08333		0.0003490958794720861	1				
+						+			-+				

Видим, что с увеличением размера массива отклонение уменьшается, математическое ожидание и дисперсия стремятся к своим теоретическим значениям.

Для оценки степени связанности псевдослучайных чисел воспользуемся корреляционной (или "автокорреляционной") функцией K(f), которая представляет собой последовательность коэффициентов корреляции, зависящих от величины сдвига f, как от аргумента:

Строим для всех п коррелограммы:

В нуле значение К[0] будет равно единице, не будем это отображать, чтобы улучшить масштаб. При увеличении количества п уменьшаются максимальные значения К.

Графическое представление законов распределения:

Сравнивая полученные графики с соответствующими теоретическими кривыми, можно заметить, что полученное нами распределение очень близко к равномерному.

Вывод

Программный датчик случайных чисел - np.random.random() можно использовать в качестве базового для получения случайных величин с равномерным законом распределения.

Текст программы

```
import numpy as np
from prettytable import PrettyTable
            D += (rand array[i] - M) ** 2
                K[f] += (rand array[i] - M) * (rand array[i + f] - M)
ax.hist(rand array, density=True)
ax.set_title(f'Плотность распределения')
plt.show()
```