Deep Generative Models Probabilistic PCA

Fall Semester 2025

René Vidal

Director of the Center for Innovation in Data Engineering and Science (IDEAS),
Rachleff University Professor, University of Pennsylvania
Amazon Scholar & Chief Scientist at NORCE

Taxonomy of Generative Models

Latent Variable Models

- X = observed variable
- Z = latent variable

- $\mathbf{z} \sim p(\mathbf{z})$
- $x \sim p(x \mid z)$

A latent variable model and a generative process. Note the low-dimensional manifold (here 2D) embedded in the high-dimensional space (here 3D)

Factorization of the joint model

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})$$

Marginalization of the model

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

Probabilistic Principal Component Analysis: Model

• We consider continuous random variables only, i.e.,

$$z \in \mathbb{R}^d$$
 and $x \in \mathbb{R}^D$ with $d \ll D$

ullet The distribution of $oldsymbol{z}$ is the standard Gaussian, i.e.,

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I}).$$

• The dependency between z and x is linear and we assume a Gaussian additive noise:

$$x = Wz + b + \varepsilon$$

• Here $\boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{\varepsilon} \mid \boldsymbol{0}, \sigma^2 \boldsymbol{I})$ and independent from \boldsymbol{z} .

Probabilistic Principal Component Analysis: Model

PPCA Model

$$x = Wz + b + \epsilon$$
, $z \sim \mathcal{N}(z \mid 0, I)$, $\epsilon \sim \mathcal{N}(\epsilon \mid 0, \sigma^2 I)$.

• x is a linear combination of Gaussians, thus $p(x) = \mathcal{N}(x \mid b, WW^{\top} + \sigma^2 I)$ because

$$\mathbb{E}[x] = \mathbb{E}[Wz] + \mathbb{E}[b] + \mathbb{E}[\epsilon] = W\mathbb{E}[z] + b + 0 = b$$

$$\mathbb{V}[x] = \mathbb{V}[Wz + b + \epsilon] = W\mathbb{V}(z)W^{\mathsf{T}} + \mathbb{V}[\epsilon] = WW^{\mathsf{T}} + \sigma^2 I$$

• $x \mid z$ is a constant + a Gaussian, thus $p(x \mid z) = \mathcal{N}(x \mid Wz + b, \sigma^2 I)$ because

$$\mathbb{E}[\mathbf{x} \mid \mathbf{z}] = \mathbf{W}\mathbf{z} + \mathbf{b} + \mathbb{E}[\boldsymbol{\epsilon}] = \mathbf{W}\mathbf{z} + \mathbf{b}$$

$$\mathbb{V}[\mathbf{x} \mid \mathbf{z}] = \mathbb{V}[\boldsymbol{\epsilon}] = \sigma^2 \mathbf{I}$$

Probabilistic Principal Component Analysis: Model

• PPCA model: $\mathbf{x} = \mathbf{W}\mathbf{z} + \mathbf{b} + \boldsymbol{\epsilon}$, $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})$, $p(\boldsymbol{\epsilon}) = \mathcal{N}(\boldsymbol{\epsilon} \mid \mathbf{0}, \sigma^2 \mathbf{I})$, $p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid \mathbf{W}\mathbf{z} + \mathbf{b}, \sigma^2 \mathbf{I}), \qquad p(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \mathbf{b}, \mathbf{W}\mathbf{W}^{\mathsf{T}} + \sigma^2 \mathbf{I})$

• Let $M = W^T W + \sigma^2 I$. We can compute the conditional distribution of $(z \mid x)$ as

$$p(z \mid x) = \frac{p(x \mid z)p(z)}{p(x)} \propto e^{-\frac{1}{2\sigma^2}||x - Wz - b||^2} e^{-\frac{1}{2}||z||^2}$$

$$p(\boldsymbol{z} \mid \boldsymbol{x}) \propto e^{-\frac{1}{2\sigma^2} (\boldsymbol{z}^T \boldsymbol{W}^T \boldsymbol{W} \boldsymbol{z} - 2\boldsymbol{z}^T \boldsymbol{W}^T (\boldsymbol{x} - \boldsymbol{b}) + \sigma^2 ||\boldsymbol{z}||^2)} \propto e^{-\frac{1}{2\sigma^2} (\boldsymbol{z}^T \boldsymbol{M} \boldsymbol{z} - 2\boldsymbol{z}^T \boldsymbol{W}^T (\boldsymbol{x} - \boldsymbol{b}))}$$

$$p(\boldsymbol{z} \mid \boldsymbol{x}) = \mathcal{N}(\boldsymbol{z} \mid \boldsymbol{M}^{-1}\boldsymbol{W}^{\mathsf{T}}(\boldsymbol{x} - \boldsymbol{b}), \sigma^{2}\boldsymbol{M}^{-1})$$

• Recall the ML estimators of the parameters of a Gaussian $\mathcal{N}(x \mid \mu, \Sigma)$ are

$$\mu_N = \frac{1}{N} \sum_{i=1}^N x_i$$
, $\Sigma_N = \frac{1}{N} \sum_{i=1}^N (x_i - \mu_N) (x_i - \mu_N)^T$

• For PPCA we need to estimate the parameters of a Gaussian with structured covariance $\Sigma = WW^T + \sigma^2 I$. The estimate of the mean is the same as before $\mu = \mu_N$. To estimate W, we need to maximize the log-likelihood w.r.t. (W, σ)

$$\ell = -\frac{N}{2}\log(\det(\mathbf{\Sigma})) - \frac{N}{2}\operatorname{trace}(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_N)$$

ullet Taking derivatives w.r.t. $oldsymbol{W}$ we get

$$\frac{\partial \ell}{\partial \mathbf{W}} = \frac{\partial \ell}{\partial \mathbf{\Sigma}} \frac{\partial \mathbf{\Sigma}}{\partial \mathbf{W}} = -\frac{N}{2} (\mathbf{\Sigma}^{-1} - \mathbf{\Sigma}^{-1} \mathbf{\Sigma}_N \mathbf{\Sigma}^{-1}) 2\mathbf{W} = 0 \implies \mathbf{\Sigma}_N \mathbf{\Sigma}^{-1} \mathbf{W} = \mathbf{W}$$

We thus need to solve the nonlinear equations

$$\Sigma_N \Sigma^{-1} W = W$$
 and $\Sigma = W W^T + \sigma^2 I$

- A trivial solution is W = 0, but this is a minimum of the log-likelihood.
- Another solution is $\Sigma = \Sigma_N$, but this would require the structure of the sample covariance Σ_N to match the structure of $\Sigma = WW^T + \sigma^2 I$, i.e., the smallest eigenvalues would need to be all equal to each other and equal to σ^2 .
- Alternatively, let

$$W = \begin{bmatrix} \boldsymbol{Z}_1 & \boldsymbol{Z}_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Gamma}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} [\boldsymbol{V}_1 & \boldsymbol{V}_2]^T = \boldsymbol{Z}_1 \boldsymbol{\Gamma}_1 \boldsymbol{V}_1^T$$

Then

$$\Sigma = WW^T + \sigma^2 I = Z_1 \Gamma_1^2 Z_1^T + \sigma^2 (Z_1 Z_1^T + Z_2 Z_2^T) = Z_1 (\Gamma_1^2 + \sigma^2 I) Z_1^T + \sigma^2 Z_2 Z_2^T$$

$$\Sigma^{-1} W = (Z_1 (\Gamma_1^2 + \sigma^2 I)^{-1} Z_1^T + \sigma^{-2} Z_2 Z_2^T) Z_1 \Gamma_1 V_1^T = Z_1 (\Gamma_1^2 + \sigma^2 I)^{-1} \Gamma_1 V_1^T$$

Therefore,

$$\Sigma_{N}\Sigma^{-1}W = W \Rightarrow \Sigma_{N}Z_{1}(\Gamma_{1}^{2} + \sigma^{2}I)^{-1}\Gamma_{1}V_{1}^{T} = Z_{1}\Gamma_{1}V_{1}^{T} \Rightarrow$$

$$\Sigma_{N}Z_{1}(\Gamma_{1}^{2} + \sigma^{2}I)^{-1} = Z_{1} \Rightarrow \Sigma_{N}Z_{1} = Z_{1}(\Gamma_{1}^{2} + \sigma^{2}I) \Rightarrow \Sigma_{N}Z_{i} = (\gamma_{i}^{2} + \sigma^{2})Z_{i}$$

- In other words, z_i is an eigenvector of Σ_N with eigenvalue $\gamma_i^2 + \sigma^2$.
- Thus if $\Sigma_N = [U_1 \ U_2] \begin{bmatrix} \Lambda_1 & \mathbf{0} \\ \mathbf{0} & \Lambda_2 \end{bmatrix} [U_1 \ U_2]^T$, then $Z_1 = U_1$, $\Gamma_1^2 + \sigma^2 I = \Lambda_1$.
 - In other words, $m{U}_1$ is a matrix whose d columns correspond to d singular vectors of $m{\Sigma}_N$
- Therefore, $\boldsymbol{W} = \boldsymbol{Z}_1 \boldsymbol{\Gamma}_1 \boldsymbol{V}_1^T = \boldsymbol{U}_1 (\boldsymbol{\Lambda}_1 \sigma^2 \boldsymbol{I})^{1/2} \boldsymbol{V}_1^T$
- Having "almost" found W (we don't know which d columns), we now turn to finding σ .

Recall the log-likelihood

$$\ell = -\frac{N}{2}\log(\det(\mathbf{\Sigma})) - \frac{N}{2}\operatorname{trace}(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_N)$$

• We have $\mathbf{\Sigma}=m{W}m{W}^T+\sigma^2I$ and $m{W}=m{U}_1m{\Gamma}_1m{V}_1^T$. Thus, $m{W}m{W}^T=m{U}_1m{\Gamma}_1^2m{U}_1^T$ and

$$\Sigma = U_1(\Gamma_1^2 + \sigma^2 I)U_1^T + \sigma^2 U_2 U_2^T = U_1 \Lambda_1 U_1^T + \sigma^2 U_2 U_2^T$$

$$\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_{N} = (\mathbf{U}_{1}\mathbf{\Lambda}_{1}^{-1}\mathbf{U}_{1}^{T} + \sigma^{-2}\mathbf{U}_{2}\mathbf{U}_{2}^{T})(\mathbf{U}_{1}\mathbf{\Lambda}_{1}\mathbf{U}_{1}^{T} + \mathbf{U}_{2}\mathbf{\Lambda}_{2}\mathbf{U}_{2}^{T}) = \mathbf{U}_{1}\mathbf{U}_{1}^{T} + \sigma^{-2}\mathbf{U}_{2}\mathbf{\Lambda}_{2}\mathbf{U}_{2}^{T}$$

• Substituting into the log-likelihood, we get

$$\ell = -\frac{N}{2}\log(\det(\mathbf{\Lambda}_1)\sigma^{2(D-d)}) - \frac{N}{2}(d + \sigma^{-2}\operatorname{trace}(\mathbf{\Lambda}_2))$$

- Taking the derivative yields $\frac{\partial \ell}{\partial \sigma^2} = -\frac{N}{2} \left(\frac{D-d}{\sigma^2} \frac{\operatorname{trace}(\Lambda_2)}{\sigma^4} \right) = 0 \Longrightarrow \sigma^2 = \frac{\operatorname{trace}(\Lambda_2)}{D-d}$
- ullet Final piece: we have not shown $oldsymbol{\Lambda}_1$ corresponds to $oldsymbol{top}$ d eigenvalues of $oldsymbol{\Sigma}_N$
 - Exercise 2.13 in GPCA textbook

• Theorem. The ML estimates for the parameters of the PPCA model b, W, and σ can be obtained from the ML estimates of the mean and covariance of the data, μ_N and Σ_N , respectively, as

$$\boldsymbol{b} = \boldsymbol{\mu}_N$$
, $\boldsymbol{W} = \boldsymbol{U}_1 (\boldsymbol{\Lambda}_1 - \sigma^2 I)^{1/2} R$ and $\sigma^2 = \frac{1}{D-d} \sum_{i=d+1}^{D} \lambda_i$

• where U_1 is the matrix with the top d eigenvectors of Σ_N , Λ_1 is the matrix with the corresponding top d eigenvalues, $R \in \mathbb{R}^{d \times d}$ is an arbitrary orthogonal matrix, and λ_i is the ith largest eigenvalue of Σ_N .

PPCA as an Encoder Decoder Architecture

•
$$p(z|x) = \mathcal{N}(z \mid M^{-1}W^{T}(x-b), \sigma^{-2}M)$$
 $p(x \mid z) = \mathcal{N}(x \mid Wz + b, \sigma^{2}I)$

Application of PPCA to Generating Face Images

Fig. 2.2 Face images of subject 20 under 10 different illumination conditions in the extended Yale B data set. All images are frontal faces cropped to size 192×168 .

Application of PPCA to Generating Face Images

Fig. 2.5 Mean face and the first two eigenfaces by applying PPCA to the ten images in Figure 2.2.

Application of PPCA to Generating Face Images

Fig. 2.6 Variation of the face images along the two eigenfaces given by PPCA. Each row plots $\mu + y_i u_i$ for $y_i = -1$: $\frac{1}{3}$: 1, i = 1, 2.