Deep Learning for Healthcare using Computer Vision

- 1. Utilize machine vision techniques to classify de-identified chest radiographs for misplaced endotracheal tubes, central lines, and pneumothorax.
- Develop a deep learning model that can accurately classify an imaging sequences according to modality, body region, imaging technique, imaging plane, phase and type of contrast, and MR pulse sequence.
- 3. Evaluate a convolutional neural network model that can estimate skeletal maturity with accuracy similar to that of an expert radiologist and to that of current state-of-the-art feature-extraction-based automated bone age assessment models
- 4. Develop a deep-learning classifier for evaluating pediatric brain MRI
- 5. Use deep learning to predict "brain age" using MRI data
- 6. Investigate deep learning in "super human" imaging tasks including PE prediction on chest xrays and stroke detection on head CT
- 7. Develop a convolutional neural network model that can predict pathology/genomic information from imaging examinations in pediatric cancer
- 8. Using deep learning for rapid histopathology diagnosis in the operative setting
- 9. Deep learning to identify facial features from cross sectional imaging
- 10. Utilize a deep learning method for emergent imaging finding detection (multi-modality)
- 11. Investigate whether scanner-level deep learning models can improve detection at the time of image acquisition
- 12. Computer vision for CAD in FDG and bone scans
- 13. Automated fetal brain ultrasound diagnosis and evaluation with deep learning
- 14. Musculoskeletal tumor identification on plain films with histopathological confirmation with deep learning
- 15. Deep learning for imaging follow up in clinical trials
- 16. Real-time detection and diagnosis of video cystoscopy with deep learning

OTHER PROJECTS AND GIT HUB LINKS

- 1. https://github.com/kjw0612/awesome-deep-vision
- 2. https://github.com/luanfujun/deep-photo-styletransfer?utm_source=mybridge&utm_medium=blog-wutm_campaign=read_more
- 3. https://github.com/ageitgey/face_recognition?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
- 4. https://github.com/lengstrom/fast-style-transfer?utm_source=mybridge&utm_medium=blog&utm_campaign=read more

- 5. https://github.com/junyanz/iGAN?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more
- 6. https://github.com/oarriaga/face_classification?utm_source=mybridge&utm_medium=blog&utm_c ampaign=read_more (MY FAVOURITE)