Experimentalphysik (H.-C. Schulz-Coulon)

Robin Heinemann

13. Januar 2017

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung 4
	1.1	Eigenschaften der Physik
		1.1.1 Beispiel
	1.2	Maßeinheiten
		1.2.1 Basisgrößen
		1.2.2 Weitere Größen
2	Med	chanik 5
	2.1	Kinematik des Massenpunktes
		2.1.1 Eindimensionale Bewegung
		2.1.2 Bewegung im Raum
	2.2	Newtonsche Dynamik
		2.2.1 Kraft und Impuls
3	Ver	schiedene Kräfte und Kraftgesetze 13
	3.1	Gravitation (TODO Skizze)
		3.1.1 Anziehungskraft zweier Massen
		3.1.2 Erdbeschleunigung
	3.2	Federkraft
	3.3	Maxwell'sches Rad
		3.3.1 Ruhezustand
		3.3.2 Frage
		3.3.3 Messung:
		3.3.4 Auswertung
	3.4	Rotierende Kette
	3.5	Normalkraft
	3.6	Schiefe Ebene
	3.7	Reibungskräfte
		3.7.1 Experiment: Bewegung einer Masse
		- 0 0

		3.7.2	Experiment: Tribologische Messung				
	3.8		ogische Reibungslehre				
	3.9		skopisches Modell				
	3.10	Schiefe	e Ebene: Messung der Reibungskraft (Skizze)	17			
	3.11	Zentrij	petalkraft	17			
		3.11.1	Beispiel 1 Rotierendes Pendel	17			
		3.11.2	Beispiel 2 Geostationärer Satellit	17			
4	Arb	eit, Er	nergie, Leistung	18			
	4.1	Arbeit		18			
		4.1.1	Beispiel	18			
		4.1.2	Beispiel Kreisbahn (\implies Gravitation)	18			
	4.2		che Energie				
	4.3		ielle Energie				
		4.3.1	Ball als Feder am Auftreffpunkt				
	4.4	Bemer	kung				
	4.5		ndlung von Energie				
	4.6		e				
	4.7	_	ng				
	4.8		rvative Kräfte				
		4.8.1	Definition				
	4.9	Kraftfe	elder und Potential				
		4.9.1	Definition Kraftfeld				
		4.9.2	Beispiel				
		4.9.3	Feldlinien:				
		4.9.4	konservative Kraftfelder				
		4.9.5	Potential und Gravitationsfeld				
5	Erhaltungssätze 24						
_	5.1	_	eerhaltung				
		5.1.1	Doppelbahn				
		5.1.2	Energieerhaltungssatz der Newtonschen Mechanik				
		5.1.3	Energiediagramme				
6	Syst	eme v	on Massenpunkten	26			
Ū	6.1		eibung eines Systems von Massenpunkten	26			
	0.1	6.1.1	Bewegung des Schwerpunktes	27			
		6.1.2	Raketenantrieb	28			
7	Stöß	3e		30			
-	7.1		earer elastischer Stoß	30			
	7.2		htung im Schwerpunktsystem	31			
		7.2.1	Nicht-zentraler, elastischer Stoß im Schwerpunktsystem				
	7 2	-	ischo Stößo	29			

8	Med	chanik des starren Körper	33
	8.1	Bewegung des starren Körpers	34
	8.2	Drehmoment und Kräftepaare	35
		8.2.1 Drehmoment und Schwerpunkt	35
		8.2.2 Kräftepaare	36
	8.3	Statisches Gleichgewicht	36
	8.4	Rotation und Trägheitsmoment	37
	8.5	Berechnung von Trägheitsmoment	
	8.6	Steinersche Satz	
	8.7	Drehimpuls	
	8.8	Trägheitstensor, freie Rotation und Kreisel	
		8.8.1 Kreisel	
9	Med	chanik deformierbarer Körper	44
	9.1	Atomares Modell	45
	9.2	Feste Körper	45
	9.3	Scherung und Torsion	47
	9.4	Ruhende Flüssigkeiten-Hydrostatik	48
		9.4.1 Auftrieb	50
		9.4.2 Oberflächenspannung	51
	9.5	Gase	51
		9.5.1 Barometrische Höhenformel:	51
	9.6	Strömende Flüssigkeiten und Gase	52
		9.6.1 Kontinuitätsgleichung:	53
		9.6.2 Reibung in Flüssigkeiten	53
		9.6.3 Strömung durch ein Rohr mit kreisförmigen Querschnitt (Hagen-	
		Poiseuille)	54
10	The	ermodynamik	54
10		Arbeit und Wärme	
		erster Hauptsatz der Wärmelehre	
		Volumenarbeit und PV-Diagramme idealer Gase	
	10.0	†	00
		magg m	
		mass, m	
	\vdash		
	⋛		
	\$	T }	
	7/////		
	///////	ware arm	

1 Einleitung

1.1 Eigenschaften der Physik

Physik ist nicht axiomatisch!

- Nicht alle Gesetze der Natur sind bekannt.
- Die bekannten Naturgesetze sind nicht unumstößlich
- unfertig
- empirisch
- quantitativ
- experimentell
- überprüfbar
- braucht Mathematik
- Gefühl für Größenordnungen und rationale Zusammenhänge

1.1.1 Beispiel

Fermi-Probleme:

- Anzahl der Klavierstimmer in Chicago?
- Anzahl der Autos in einem 10km Stau?
- Anzahl von Fischen im Ozean

1.2 Maßeinheiten

Internationales Einheitensystem (SI)

1.2.1 Basisgrößen

Größe	Einheit	$_{\text{Symbol}}$
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{S}

Meter Strecke, die das Licht im Vakuum während der Dauer von $\frac{1}{299792458}$ s durchläuft.

Sekunde Das \$9 192 631 770\$-fache der Periodendauer der am Übergang zwischen den beiden Hyperfeinstukturniveaus des Grundzustandes von Atomen des Nukulids Cs_{133} entsprechenden Strahlung.

Kilogramm Das Kilogramm ist die Einheit der Masse, es ist gleich der Masse des internationalen Kilogrammprototyps (ist scheiße).

Avogadroprojekt

$$N_A = \frac{MVn}{m}$$

 N_A : Avogardokonstante ($N_A = 6.022\,141\,5\times10^{23}$)

1.2.2 Weitere Größen

Größe	Einheit	Symbol
Strom	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candla	cd

2 Mechanik

Kinematik: Beschreibung der Bewegung Dynamik: Ursache der Bewegung

2.1 Kinematik des Massenpunktes

2.1.1 Eindimensionale Bewegung

TODO Skizze 1 $x_1, t_1 \longrightarrow x_2, t_2$ Geschwindigkeit

$$v = \frac{\text{Weg}}{\text{Zeit}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 $[v] = \text{m s}^{-1}$ abgeleitete Größe

Momentangeschwindigkeit

$$v := \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

Beschleunigung

$$a := \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x} \quad [a] = \mathrm{m}\,\mathrm{s}^{-2}$$

Freier Fall a = const. (Behauptung)

$$a = \ddot{x} = \text{const} = \dot{v}$$

 \rightarrow Integration:

$$v(t) = \int_0^t a dt + v_0 = at + v_0$$
$$x(t) = x_0 + \int_0^t v(t) dt = x_0 + \int_0^t (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Bei unserem Fallturm

$$x(t) = \frac{1}{2}at^2 \to a = \frac{2x}{t^2}$$

$$\frac{x[m] \quad t[ms] \quad \frac{2x}{t^2}[ms^{-2}]}{0.45 \quad 304.1 \quad 9.7321696}$$

$$0.9 \quad 429.4 \quad 9.7622163$$

$$1.35 \quad 525.5 \quad 9.7772861$$

$$1.80 \quad 606.8 \quad 9.7771293$$

$$x(t) = \frac{1}{2}gt^2, \ g = 9.81 \,\text{m s}^{-2}$$

Die Erdbeschleunigung g ist für alle Körper gleich (Naturgesetz).

2.1.2 Bewegung im Raum

TODO Skizze 2 Ortsvektor:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} x(t) & y(t) & z(t) \end{pmatrix}^{\mathsf{T}}$$

Durchschnittsgeschwindigkeit

$$\frac{\Delta \vec{r}_{12}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = \vec{v}_D$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = (\dot{x}(t) \quad \dot{y}(t) \quad \dot{z}(t))^{\mathsf{T}} = (v_x \quad v_y \quad v_z)^{\mathsf{T}}$$

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = (\ddot{x} \quad \ddot{y} \quad \ddot{z})^{\mathsf{T}} = (a_x \quad a_y \quad a_z)^{\mathsf{T}}$$

 \rightarrow Superpositionsprinzip:

Kinematik kann für jede einzelne (Orts)komponente einzeln betrachtet werden.

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t^2 - t_0^2) = \begin{pmatrix} x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_{x,0}(t^2 - t_0^2) \\ y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_{y,0}(t^2 - t_0^2) \\ z_0 + v_{z,0}(t - t_0) + \frac{1}{2}a_{z,0}(t^2 - t_0^2) \end{pmatrix}$$

Horizontaler Wurf

TODO Skizze 3

$$t_0 = 0$$

$$\vec{a_0} = \begin{pmatrix} 0 & 0 & -g \end{pmatrix}^{\mathsf{T}}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{x_0} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{r}(t) = \begin{pmatrix} v_{x,0}t & 0 & \frac{1}{2}gt^2 \end{pmatrix}^{\mathsf{T}}$$

Schiefer Wurf

$$\vec{a_0} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} \\ 0 \\ v_{z,0} \end{pmatrix}$$

$$\vec{r_0} = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$

$$r(t) = \begin{pmatrix} v_{x,0}t \\ 0 \\ -\frac{1}{2}gt^2 + v_{z,0}t + z_0 \end{pmatrix}$$

$$z(x) = -\frac{1}{2}\frac{g}{v_{x,0}^2}x^2 + \frac{v_{z,0}}{v_{x,0}}x + z_0$$

Nachtrag

$$a = \dot{v}$$

$$\int_0^t \dot{v} dt' = \int_0^t a dt'$$

$$v \mid_0^t = at' \mid_0^t$$

$$v(t) - \underbrace{v(0)}_{v_0} = at$$

$$v(t) = at + v_0$$

analog:

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

TODO Skizze Wurfparabel

$$\tan \varphi = \frac{v_{z,0}}{v_{x,0}}$$
$$v_0^2 = v_{x,0}^2 + v_{z,0}^2$$

Scheitel:

$$Z'(x_s) = 0$$
$$x_s = \frac{v_0^2}{2q} \sin 2\varphi$$

Wurfweite:

$$Z(x_w) = 0$$

$$x_w = \frac{v_0^2}{2g} \sin 2\varphi (1 + \sqrt{1 + \frac{2gz_0}{v_0^2 \sin^2 \varphi}})$$

Optimaler Winkel: φ_{opt}, x_w max.

$$z_0 = 0 \implies \sin 2\varphi = 1 \rightarrow \varphi = 45^{\circ}$$

$$z_0 \neq 0 \implies \sin \varphi_{opt} = (2 + \frac{2gz_0}{v_0^2})^{-\frac{1}{2}}$$

Gleichförmige Kreisbewegung

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} R\cos\varphi \\ R\sin\varphi \end{pmatrix}$$

 $mit \varphi = \varphi(t)$

$$\vec{v}(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -R\dot{\varphi}\sin\varphi \\ R\dot{\varphi}\cos\varphi \end{pmatrix}$$

Gleichförmige Kreisbewegung: $\dot{\varphi} = \mathrm{const}$ Definition Winkelgeschwindigkeit:

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \quad [w] = \mathrm{rad}\,\mathrm{s}^{-1} = 1/\mathrm{s}$$

Für $\omega = \text{const.}$:

$$\vec{r} = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} = R\omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} \perp \vec{r} \iff \vec{v} \cdot \vec{r} = 0$$

TODO Skizze Kreisbewegung

Mitbewegtes Koordinatensystem

$$\vec{r}(t) = R\vec{e_R} \quad \vec{e_R} = \begin{pmatrix} \cos \varphi(t) \\ \sin \varphi(t) \end{pmatrix}$$
$$\vec{v}(t) = R\omega \vec{e_t} \quad \vec{e_t} = \begin{pmatrix} -\sin \varphi(t) \\ \cos \varphi(t) \end{pmatrix}$$
$$\vec{t} \neq \text{ const das heißt } \vec{a}(t) \neq 0$$

Kreisbeschleunigung

$$\vec{a}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix} = \begin{pmatrix} -R\omega^2 \cos \varphi \\ -R\omega^2 \sin \varphi \end{pmatrix} = -R\omega^2 \vec{e_R} \implies \vec{a} \parallel \vec{r}$$
$$|\vec{a}(t)| = R\omega^2 = \frac{v^2}{R} \neq 0$$

Zentripetalbeschleunigung Zeigt in Richtung des Ursprungs.

$$\vec{a}_{zp} = -R\omega^2 \vec{e_R}$$

Allgemein

 $\vec{\omega}$

Räumliche Lage der Bewegungsebene

$$\vec{v} = \vec{w} \times \vec{r} \quad v = \omega r$$

$$\vec{a} = \vec{w} \times \vec{v}$$

1. **TODO** Skizze omega

Allgemeine Krummlinige Bewegung

$$\vec{v} = v\vec{e_t}$$

$$\vec{a} = \dot{\vec{v}} = \frac{\mathrm{d}(v\vec{e_t})}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{e_t} + v\frac{\mathrm{d}ve_t}{\mathrm{d}t}$$

$$\vec{e_t} = \cos\rho\vec{e_x} + \sin\rho\vec{e_y}$$

$$\vec{e_n} = -\sin\rho\vec{e_x} + \cos\rho\vec{e_y}$$

$$\frac{\mathrm{d}\vec{e_t}}{\mathrm{d}t} = \dot{\rho} - \sin\rho\vec{e_x} + \cos\rho\vec{e_y} = \dot{\rho}\vec{e_n}$$

$$\vec{a} = \dot{v}\vec{e_t} + \frac{v^2}{\rho}\vec{e_n}$$

TODO Skizze

Relativbewegung

- \$S\$-Labor system
- \$S'\$-Bewegtes System
- $\vec{u} = (u, 0, 0) = \text{const Geschwindigkeit von S'}$ im System S
- Punkt P = (x, y, z) in S
- Punkt P' = (x', y', z') in S'
- Zeitpunkt t = 0: S = S', P = P'

TODO Skizze Bewegtes Bezugssystem

Galilei-Transformation

1. Eindimensional

$$x' = x - ut$$

$$y' = y$$

$$z' = z$$

$$v' = v - u$$

$$t' = t$$

2. Dreidimensional

$$\vec{r}' = \vec{r} - \vec{u}t$$

 $\vec{v}' = \vec{v} - \vec{u}$

 $\vec{a}' = \vec{a}$

2.2 Newtonsche Dynamik

Warum bewegen sich Körper?

Newton 1686: Ursache von Bewegungsänderungen sind Kräfte. Newtonsche Gesetze (Axiome)

- 1. Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, sofern er nicht durch Kräfte gezwungen wird diesen Bewegungszustand zu verlassen
- 2. Die Änderung einer Bewegung wird durch Einwirken einer Kraft verursacht. Sie geschieht in Richtung der Kraft und ist proportional zu Größe der Kraft
- 3. Übt ein Körper 1 auf einen Körper 2 die Kraft F_{12} , so reagiert Körper 2 auf den Körper 1 mit der Gegenkraft F_{21} und es gilt $F_{21} = -F_{12}$ (actio = reactio)

2.2.1 Kraft und Impuls

$$\vec{F} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix}$$

Superpositions von Kräften (Zusatz zu den Newtonschen Gesetzen (Korollar)):

$$\vec{F}_{\text{ges}} = \sum_{i=1}^{n} \vec{F}_{i}$$

TODO Skizze Addition von Kräften

Grundkräfte der Natur

- Elektromagnetische Kraft
- Starke Kraft
- Schwache Kraft
- Gravitation

Impuls

$$\vec{P} = m\vec{v} \quad [\vec{P}] = \text{kg m s}^{-1}$$

Kraft

$$\vec{F} = \frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \dot{\vec{P}} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v})$$

m = const.:

$$\vec{F} = m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m \dot{\vec{v}} = m \ddot{\vec{x}} = m \vec{a}$$

Grundgesetz der Dynamik

$$\vec{F}=\dot{\vec{P}}$$
beziehungsweise $\vec{F}=m\vec{a}$

Trägheitsprinzip (Impulserhaltung)

$$\vec{P} = m\vec{v} = \text{const}, \ \vec{P} = 0 \ \text{für} \ \vec{F} = 0$$

Experiment

$$\vec{F}_G = \underbrace{m\vec{g}}_{Kraft} = \underbrace{(m+M)}_{Trgheit} \vec{a} = m_{\text{ges}} \vec{a}$$

$$\vec{a} = \frac{m}{m+M} \vec{g} \stackrel{d=1}{\Longleftrightarrow} a = \frac{m}{m+M} g = \frac{m}{m_{\text{ges}}} g$$

Erwartung: $a \sim \frac{m}{m_{\rm ges}}, \, a = \frac{2\Delta s}{\Delta s}, \, {\rm weil} \, \Delta s = \frac{1}{2} a \Delta t^2$

Messung:

TODO Skizze

Trägheitsprinzip - "revisited" Definition: Ein Bezugssystem in dem das Trägheitsprinzip gilt nennt man ein Inertialsystem.

In einem beschleunigten Bezugssystem gilt das Trägheitsprinzip <u>nicht</u>. Beschleunigte Systeme \neq Inertialsysteme. Das Trägheitsprinzip ist Galilei-invariant.

TODO Skizze whatever

Trägheitsprinzip: [moderne Formulierung]: Es gibt Inertialsysteme, das heißt Koordinatensysteme in denen ein kräftefreier Körper im Zustand der Ruhe oder der gradlinig gleichförmigen Bewegung verbleibt.

Actio gleich Reactio

$$\underbrace{\vec{F_{12}}}_{\text{Kraft}} = \underbrace{-\vec{F_{21}}}_{\text{Gegenkraft}}$$

TODO Skizze von Körpern

TODO (Skizze) Experiment

1. Erwartung:

$$v_1 = v_2 \rightarrow a_1 = a_2 \rightarrow F_1 = F_2 \checkmark$$

Nicht trivialer Fall:

Kraftstoß:

Magnetische Kraft: $F_{\text{mag}} \sim \frac{1}{r^2}$

$$v_{1,2} = \int_0^{t_{1,2}} a(t) dt = a_{\text{eff}} T$$

 $\to F_1(t) = F_2(t) \to v_1 = v_2$

Experiment 2

$$m_1 = 241.8 \,\mathrm{g} \wedge 2 = 341.8 \,\mathrm{g} \implies \frac{m_2}{m_1} \approx 1.5$$

$$v = \frac{\Delta s}{\Delta t} \to \frac{v_1}{v_2} = \frac{t_2}{t_1} = \frac{71}{48} \approx 1.5$$

$$a \sim v, F = ma \to \frac{v_1}{v_2} = \frac{a_1}{a_2} = \frac{m_2}{m_1} \cdot \frac{F_1}{F_2}$$

$$1 = \frac{F_1}{F_2} \implies F_1 = F_2$$

Beispiele

- Kraft und Gegenkraft (TODO Skizze)
- Flaschenzug, Seilkräfte (TODO Skizze)

3 Verschiedene Kräfte und Kraftgesetze

3.1 Gravitation (TODO Skizze)

Experimenteller Nachweis im Labor mit Torsionsdrehungen (erstmals Cavendish)

3.1.1 Anziehungskraft zweier Massen

 m_1, m_2 Massen, Newtonsches Gravitationsgesetz:

$$\vec{F}_G = -G \frac{m_1 m_2}{r^2} \vec{e_r}$$

mit
$$G = 6.67 \times 10^{-11} \,\mathrm{m^3 \, kg^{-1} \, s^{-2}}$$

3.1.2 Erdbeschleunigung

$$F_G = G \frac{mM_E}{(r_E + h)^2} \approx G \frac{mM_E}{r^2} = mg \implies g \approx 9.81 \,\mathrm{m\,s}^{-2}$$

(mittleres g)

Abweichungen

- komplizierte Massenverteilung, Strukturen
- Abflachung der Erde

Messung von g

- Gravimeter (Federgravimeter, Pendelgravimeter), relative Messung
- Absolutgravimeter (freier Fall, supraleitende Gravimeter)

Träge und schwere Masse

$$F = m_T a \rightarrow \text{träge Masse}$$

$$F = m_S G \frac{M_E}{r_E^2} \rightarrow \text{ schwere Masse}$$

Äquivalenzprinzip $m_S \sim T$ beziehungsweise $m_S = m_T$

3.2 Federkraft

Hook'sches Gesetz

$$F_x = F_x(\Delta x) = -k_F \Delta x$$

Beliebige Auslenkungsfunktion $(F_x(\Delta x = x - x_0))$

$$F_x(x) = F_x(x_0) + \frac{\mathrm{d}F_x(x)}{\mathrm{d}x}(x - x_0) + \frac{1}{2}\frac{\mathrm{d}^2 f_x(x)}{\mathrm{d}x^2}(x - x_0) + \dots$$

 \rightarrow unabhängig von konkreter Zusammenhang $f_x(x)$ gilt kleine Änderungen

3.3 Maxwell'sches Rad

3.3.1 Ruhezustand

Waage misst Gesamtmasse M austarierter

3.3.2 Frage

Was passiert, wenn sich das Rad bewegt??

3.3.3 Messung:

- 1. Rad fixiert $\rightarrow m = 0$
- 2. Rad läuft $\rightarrow \Delta m = -0.7g < 0$

3.3.4 Auswertung

Anwendung 3. Newtonsches Gesetz: $\vec{F}_1 + \vec{F}_2 = m\vec{a}$ beziehungsweise $F_2 = -F_1 + m\vec{a}$

1.
$$\vec{a}=0:\left|\vec{F}_{2}\right|=\left|\vec{F}_{1}\right|\rightarrow\left|\vec{F}_{2}\right|=0,0m=0$$
 (Waage)

2.
$$\vec{a} > 0: \left| \vec{F}_2 \right| < \left| \vec{F}_1 \right| \to$$
 Waage mit $\left| \vec{F}_2 \right| < mg \ \Delta m < 0$

3.4 Rotierende Kette

Winkelelement $\Delta \alpha$. Radialkraft $\vec{F_r}$ ist resultierende Kraft der vom abgeschnittenen Teil der Kette wirkende Kräfte $\vec{F_1} + \vec{F_2}$

 $(\vec{F}_G$ vernachlässigbar klein bei hoher Umdrehung und somit großen $|F_1|, |F_2|)$ Es gilt:

$$\vec{a}_z p = -\frac{v^2}{R} \vec{e}_r \quad \vec{v} = R\omega \vec{e}_t$$

$$\vec{F_r} = \Delta m \vec{a}_z p = -\Delta m \frac{v^2}{R} \vec{e}_r$$

$$\vec{F_r} = \vec{F_1} + \vec{F_2}$$

$$F_r \approx \Delta \alpha F = F \frac{\Delta L}{R}$$

$$F = F_r \frac{R}{\Delta L} = \Delta m \frac{v^2}{R} \frac{R}{\Delta L} = \frac{m}{2\pi R} v^2$$

Die Kraft $F = \frac{m}{2\pi R}v^2$ spannt die Kette.

3.5 Normalkraft

1. (Skizze) Normalkraft \vec{F}_N = Kraft senkrecht zur Kontaktfläche. Wird kompensiert durch \vec{F}_N' = Kraft mit der die Unterlage auf Körper wirkt (Źwangskräfte)

3.6 Schiefe Ebene

• Gewichtskraft: $\vec{F}_G = m\vec{g}$

• Normalkraft: $\vec{F}_N = mg \cos \alpha \vec{e}_y$

• Hangabtriebskraft: $\vec{F}_H = mg \sin \alpha \vec{e}_x$

Bewegungsgleichung

$$F_H = m\ddot{x} \to x_x = g \sin \alpha = \text{const.}$$

3.7 Reibungskräfte

• im täglichen Leben über all präsent

• spielt eine wichtige Rolle Technik

 \rightarrow Tribologie = Reibungslehre

• Reibung hängt stark von der Oberfläche ab

3.7.1 Experiment: Bewegung einer Masse

• Gewicht ruhte: $\vec{F}_Z = -\vec{F}_R \rightarrow a = 0, v = 0$

• Gewicht setzt sich in Bewegung: $\left|\vec{F}_{Z}\right|>\left|\vec{F}_{R}\right|\to a>0, v$ steigt an

• Gewicht gleitet: $\vec{F}_Z = -\vec{R}_R \rightarrow a = 0, v = \text{const.} \neq 0 \text{ mit } \vec{v} = \text{const.}$

Reibungskraft nimmt ab, sobald das Gewicht bewegt wird.

- Haftreibung F_H Schwellenwert für Zugkraft um Körper zu bewegen

• Gleitreibung F_G Reibungskraft bei bewegtem Körper

3.7.2 Experiment: Tribologische Messung

Messung der Zugkraft bei der sich der Holzblock nach kleiner Störung in Richtung Rolle bewegt: $F_R = F_Z$

Beobachtung

- F_R hängt nicht von der Oberfläche ab.
- F_R hängt von dem Gewicht des Blocks ab
- F_R ist Materialabhängig

3.8 Tribologische Reibungslehre

3.9 Mikroskopisches Modell

Verantwortlich sind elektrische Kräfte zwischen Atomen und Molekülen der beieinander liegenden Oberflächen: Van-der-Waals-Kräfte

• Stärke ergibt sich aus effektivem Kontakt.

Relative mikroskopische Reibungsfläche: $\sum \frac{a_i}{A} \sim \frac{F_N}{A} \leftarrow \; \text{Druck}$

• $a_1 =$ effektive Kontaktfläche eines Einzelatoms

Also:

$$F_R \sim \sum \frac{a_i}{A} \sim F_N$$

- Haftreibung: Verzahnung der Oberflächen mit minimalen Abstand
- Gleitreibung: Minimaler Abstand wird auf Grund der Bewegung nicht erreicht

3.10 Schiefe Ebene: Messung der Reibungskraft (Skizze)

Kräftegleichgewicht: $F_H = F_R$

$$F_H = mg \sin \alpha, F_N = mg \cos \alpha$$

Grenzwinkel: $F_R = mg \sin \alpha = \mu_R mg \cos \alpha \implies \mu_R = \tan \alpha$

$$\alpha = 15^{\circ} \to \tan \alpha = 0.27, \mu_G = 0.27$$

3.11 Zentripetalkraft

$$\vec{a}_{Zp} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$$
 $\vec{F}_{Zp} = m\vec{\omega} \times (\vec{\omega} \times \vec{r})$

$$a_{Zp} = \omega^2 r = \frac{v^2}{r}$$
 $F_{Zp} = m\omega^2 r = m\frac{v^2}{r}$

3.11.1 Beispiel 1 Rotierendes Pendel

$$\vec{F}_{Zp} := \vec{F}_G + \vec{F}_Z$$

$$F_G = mg = F_Z \cos \theta$$

$$F_{Zp} = F_Z \sin \theta$$

$$F_{Zp} = mg \frac{\sin \theta}{\cos \theta} = mg \tan \theta, \quad a_{Zp} = g \tan \theta$$

$$a_{Zp} = \omega^2 r \implies \omega = \sqrt{\frac{g}{\tan \theta}}$$

- θ steigt mit ω an
- $\theta(\omega)$ ist unabhängig von Masse

3.11.2 Beispiel 2 Geostationärer Satellit

Zentripetal = Gravitationskraft

$$m\omega^2 R = G \frac{mM_E}{R^2}$$

Geostationär: $\omega = \frac{2\pi}{24\,\mathrm{h}} = \frac{2\pi}{24\cdot3600\,\mathrm{s}} = 7.27\times10^{-5}\,\mathrm{s}^{-1}$

$$R^3 = \frac{GM_E}{\omega^2} \to R = 42312 \,\mathrm{km}$$

Abstand von der Erd-Oberfläche:

$$\tilde{R} = R - R_E = 35\,930\,\mathrm{km}$$

- $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^2$
- $M_E = 6 \times 10^{24} \,\mathrm{kg}$
- $R_E = 6373 \,\mathrm{km}$

4 Arbeit, Energie, Leistung

4.1 Arbeit

$$\Delta W = \vec{F}\vec{x} = F_x \Delta x + F_y \Delta y + F_z \Delta z$$
$$dW = \lim_{\Delta r \to 0} \Delta W = \lim_{\Delta r \to 0} \vec{F} \Delta \vec{r} = \vec{F} d\vec{r}$$
$$= F_x dx + F_y dy + F_z dz$$

Gesamtarbeit für Verschiebung von $\vec{r_1}$ nach $\vec{r_2}$

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r}$$
$$[W] = N \,\mathrm{m} = \mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2} = \mathrm{J}$$
$$\int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{r_1}^{r_2} F_x dx + \int_{r_1}^{r_2} F_y dy + \int_{r_1}^{r_2} F_z dz = \int_{s_1=0}^{s_2} \vec{F}(s) \frac{d\vec{r}}{ds} ds$$

 $\vec{r}(s)$ parametrisiere Geschwindigkeit.

4.1.1 Beispiel

$$\vec{r_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \vec{r_2} = \begin{pmatrix} \Delta x \\ 0 \\ 0 \end{pmatrix}, \vec{F} = \begin{pmatrix} mg \\ 0 \\ 0 \end{pmatrix}, d\vec{r} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$
$$W = \int_{(0)}^{(1)} mg dx + \int 0 dy + \int 0 dz = mg \Delta x$$

4.1.2 Beispiel Kreisbahn (\Longrightarrow Gravitation)

$$W = \int_{A}^{B} \vec{F} d\vec{r} = 0$$

4.2 kinetische Energie

$$k = \frac{1}{2}gt^2$$

$$v = gt$$

$$v^2 = g^2t^2$$

$$v^2 = gh$$

$$W = \int_0^h F_G dx = F_G \int_0^h dx = F_G h = mgh = \frac{1}{2}mv^2$$

• Kinetische Energie: E_{kin}

$$E_{kin} = \frac{1}{2}mv^2$$
 $[E_{kin} = \text{kg m s}^{-2} = \text{J}]$

• Die Zunahme (beziehungsweise Abnahme) der kinetischen Energie eines Körpers ist gleich der ihm zugeführten (beziehungsweise der von ihm gelieferten) Arbeit (keine Reibung)

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{\vec{r_1}}^{\vec{r_2}} m \frac{d\vec{v}}{dt} d\vec{r} = \int_{\vec{v_1}}^{\vec{v_2}} m \frac{d\vec{r}}{dt} d\vec{v}$$
 (1)

$$= \int_{\vec{v_1}}^{\vec{v_2}} m\vec{v} d\vec{r} = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2$$
 (2)

4.3 Potentielle Energie

$$W = \int_{h}^{0} F_{g} dx = \int_{h}^{0} -gm dx = mgh = \frac{1}{2}mv^{2}$$

4.3.1 Ball als Feder am Auftreffpunkt

$$F = k\xi$$

$$W = \int_0^{\xi} k\xi' d\xi' = \frac{1}{2}k\xi^2$$

4.4 Bemerkung

Arbeit $W=\int_{\vec{r_1}}^{\vec{r_2}} \vec{F} \, \mathrm{d}\vec{F}$ gilt immer, Symbol für Linienintegral meist weggelassen.

- kinetische Energie $E_{kin} = \frac{1}{2}mv^2$
- potentielle Energie

$$-E_{pot} = \frac{1}{2}mx^{2}$$
 (Verformen)

$$-E_{pot} = mgh$$
 (Lage)

4.5 Umwandlung von Energie

$$dE_{kin} = Fdx = -dE_{pot}$$

Gilt nur für konservative Kräfte!

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{E_1}^{E_2} dE_{kin} = E_{kin}(\vec{r_2}) - E_{kin}(\vec{r_1})$$
 (3)

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = -\int_{E_1}^{E_2} dE_{kin} = E_{pot}(\vec{r_1}) - E_{pot}(\vec{r_2})$$
 (4)

- 1. Für
 - W>0: E_{kin} nimmt zu (Arbeit von System am Objekt verrichtet)
 - W < 0: E_{kin} nimmt ab

- 2. Für
 - W > 0: E_{pot} nimmt ab
 - W < 0: E_{pot} nimmt zu

4.6 Energie

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} \tag{5}$$

$$=E_{kin}(\vec{r_2}) - E_{kin}(\vec{r_1}) \tag{6}$$

$$= E_{pot}(\vec{r_2}) - E_{pot}(\vec{r_1}) \tag{7}$$

Die unteren beiden Gleichungen gelten nur für konservative Kräfte

4.7 Leistung

$$\vec{F} = \text{const}$$

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{F}\vec{c}$$

$$[P] = \mathrm{N}\,\mathrm{m}\,\mathrm{s}^{-1} = \mathrm{J}\,\mathrm{s}^{-1} = \mathrm{W} = \mathrm{Watt}$$

4.8 Konservative Kräfte

$$W_1 = \int_{1 \text{ Weal}}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$
 (8)

$$W_2 = \int_{1 \text{ Weg2}}^2 \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$
 (9)

(10)

Geschlossener Weg: $1 \rightarrow 2 \rightarrow 1$

$$W = \oint_{\mathcal{C}} \vec{F} \, \mathrm{d}\vec{r} = W_1 - W_2 = 0$$

4.8.1 Definition

Kräfte, für die die Arbeit unabhängig vom Weg ist nennt man konservativ. Für konservative Kräfte gilt:

$$W = \oint \vec{F} \, \mathrm{d}\vec{s} = 0$$

4.9 Kraftfelder und Potential

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r}$$

4.9.1 Definition Kraftfeld

Eindeutige Zuordnung einer Kraft zu jedem Punkt im Raum:

$$\vec{F} = \vec{F}(\vec{r}) = \vec{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))$$

4.9.2 Beispiel

Gravitationskraft:

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2}\vec{e}_r \tag{11}$$

$$= f(r)\vec{e}_r \tag{12}$$

Kugelsymmetrisch, Zentralfeld

TODO Skizze Vektorfeld

TODO Skizze Feldlinien

4.9.3 Feldlinien:

- Feldlinien sind immer tangential zur Kraftrichtung
- Feldliniendichte ist proportional zum Betrag der Kraft
- Feldlinien schneiden sich nie

4.9.4 konservative Kraftfelder

Kraftfelder, die konservative Kräfte beschreiben nennt man konservative Kraftfelder Für konservative Kraftfelder gilt

$$W_{12} = \int_{1}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$

- jedem Ort im Raum kann ein Skalar, die potentielle Energie zugeordnet werden $\implies E_{pot} = E_{pot}(x,y,z)$ Skalar!
- wird bei der Verschiebung eines Körpers von Ort 1 nach Ort 2 Arbeit gegen eine konservative Kraft geleistet, so erhöht sich die potentielle Energie, das heißt $E_{pot}(2) > E_{pot}(1)$.
- Der Nullpunkt $E_{pot}(\vec{r}) = 0$ der potentiellen Energie ist frei wählbar, da allein die Differenz der potentiellen Energie an zwei Punkten relevant ist.

homogenes Kraftfeld

$$\vec{F}(\vec{R}) = (0, 0, F_z)$$

• Weg 1:

$$W_1 = \int_{\text{Wegl}} \vec{F} d\vec{R} = \int_{z_1}^z F_z dz = F_z(z_2 - z_1)$$

• Weg 2:

$$W_2 = \int_{\text{Weg}2} \vec{F} d\vec{R} = \int_{z_1}^z F_z dz = F_z(z_2 - z_1)$$

TODO Skizze

Zentralkraftfeld

$$\vec{F}(\vec{r}) = f(r)\vec{e}_r$$

$$W = \oint \vec{F} \, \mathrm{d}\vec{r} \tag{13}$$

$$= \int_{1}^{2} f(r)dr + \int_{2}^{3} \vec{F}d\vec{r} + \int_{3}^{4} f(r)dr + \int_{4}^{1} \vec{F}d\vec{r}$$
 (14)

$$=0 (15)$$

Gravitationsfeld

$$W_{AB} = \int_{A}^{B} \vec{F} d\vec{R} \tag{16}$$

$$= \int_{A}^{B} -G \frac{mM}{r^2} \vec{e}_r d\vec{r} \tag{17}$$

$$= \int_{A}^{B} -G \frac{mM}{r^2} \mathrm{d}r \tag{18}$$

$$= \left[G \frac{mM}{r+\xi} \right]_{r_A}^{r_B} \qquad = E_{pot}(A) - E_{pot}(B) \tag{19}$$

$$\implies E_{pot}(A) = -G\frac{mM}{r_A} + \xi$$

$$\implies E_{pot}(B) = -G\frac{mM}{r_B} + \xi = E_{pot}(C)$$

Potentielle Energie des Gravitationsfelder:

$$E_{pot}^{grav} = -G\frac{mM}{r}$$

d = 1 Zusammenhang zwischen konservativen Kraftfeld und potentieller Energie:

$$E_{pot} = -\int F dx$$
$$dE_{pot} = -F dx$$
$$-\frac{dE_{pot}}{dx} = F$$

d=3 Zusammenhang zwischen konservativen Kraftfeld und potentieller Energie:

$$E_{pot} = -\int \vec{F} d\vec{r} \rightarrow \vec{F} = -\frac{dE_{pot}}{d\vec{r}}$$

Gesucht: Ableitung eines Vektors nach einem Skalar. Betrachte:

$$\Delta E_{pot} = -\vec{F}\Delta \vec{r} = -(F_x \Delta x + F_y \Delta y + F_z \Delta z)$$

$$\Delta E_{pot} = \frac{\partial E_{pot}}{\partial x} \Delta x + \frac{\partial E_{pot}}{\partial y} \Delta y + \frac{\partial E_{pot}}{\partial z} \Delta z$$

$$Vergleich : \vec{F}(x, y, z) = -(\frac{\partial E_{pot}}{\partial x} \Delta x, \frac{\partial E_{pot}}{\partial y} \Delta y, \frac{\partial E_{pot}}{\partial z} \Delta z)$$

$$= -\operatorname{grad} E_{pot} \qquad (20)$$

Gilt nur für konservative Kräfte

Gradient Der Gradient eines Skalarfeldes ist ein Vektorfeld, dass in jedem Punkt in die Richtung des steilsten Anstiegs der skalaren Größe zeigt.

Notation:

$$\vec{F} = -\operatorname{grad} E_{pot}$$

$$\vec{F} = -\vec{\nabla} E_{pot}, \vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial z}, \frac{\partial}{\partial z})$$

4.9.5 Potential und Gravitationsfeld

• Gravitationskraft:

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2}\vec{e}_r$$

• Potentielle Energie:

$$\vec{E}_{pot}(\vec{r}) = -G\frac{mM}{r}$$

Potential:

$$\Phi(\vec{r}) = \lim_{m \to 0} \frac{E_{pot}(\vec{r})}{m}$$

• Gravitationspotential:

$$\Phi = -G\frac{M}{r}$$

• Gravitationsfeld:

$$\vec{G} = -G\frac{M}{r^2}\vec{e}_r$$

•

$$\vec{G} = -\operatorname{grad}\Phi$$

•

$$E_{pot} = m\Phi$$

5 Erhaltungssätze

5.1 Energieerhaltung

Für konservative Kräfte gilt:

$$\Delta E_{kin} = -\Delta E_{pot} = \int_{1}^{2} \vec{F} d\vec{r}$$

das heißt: die kinetische Energie ergibt sich allein aus der Potentialdifferenz und ist unabhängig vom durchlaufenen Weg.

$$E_{kin}(2) - E_{kin}(1) = E_{pot}(1) - E_{pot}(2)$$

$$E_{kin}(1) + E_{pot}(1) = E_{kin}(2) + E_{pot}(2) = \dots = \text{const}$$

5.1.1 Doppelbahn

$$E_{pot}(1) = m \cdot g \cdot h$$

$$E_{pot}(1) = E_{pot(2')} = 0$$

$$\rightarrow$$

$$E_{kin}(2) = E_{kin}(2') = \frac{1}{2}mv^2$$

Bemerkung: Berechnung von v mit Newtonschen Gesetzen deutlich komplexer

5.1.2 Energieerhaltungssatz der Newtonschen Mechanik

$$E_{pot} + E_{kin} = E_{qes} = \text{const}$$

 $E_{ges} = \text{mechanische Gesamtenergie}$

das heißt: In einem konservativen Kraftfeld ist die Summe aus potentieller und kinetischer Energie eines Massenpunktes zu jeder Zeit konstant

Wichtig: gilt nur für konservative Kraftfelder (Beim Auftreten nicht-konservativer, dissipativer Kräfte wird mechanische Energie in Wärme umgewandelt)

5.1.3 Energiediagramme

Häufig: Potentielle Energie abhängig von Ort \boldsymbol{x} oder Abstand \boldsymbol{r}

Hilfreich: Diskussion mittels Energiediagramme

Kugelbahn

- Abhängig von E_{ges} kann sich die Kugel nur in bestimmten Bereichen aufhalten
- Gleichgewichtslage: Kugel ruht, es wirken keine Kräfte, das heißt

$$F = -\frac{\mathrm{d}E_{pot}}{dx} = 0$$
, bzw $\vec{F} = -\operatorname{grad}E_{pot} = 0$

Drei Fälle:

- 1. Stabiles bzw. Metastabiles Gleichgewicht: Potentialkurve hat ein Minimum
- 2. labiles Gleichgewicht: Potentialkurve hat ein Maximum
- 3. Indifferentes Gleichgewicht: Flacher Verlauf der Potentialkurve

Lennard-Jones-Potential Potential zur Beschreibung von molekularen Bindungen

$$E_{pot} = V_0(\frac{r}{r_0})^{-12} - 2(\frac{r}{r_0})^{-6}$$

(Dipol-Dipol-Wechselwirkung, Van-der-Waals Kräfte)

Mechanischer Verstärker

$$E'_{pot} = mgh = \rho(abc)gh$$

$$\downarrow$$
 Dichte

mit
$$h = \frac{1}{2}c$$

Fallender Dominostein: $E_{pot} \to E_{kin}$

Startposition: (Meta)stabiles Gleichgewicht

das heißt: Dominosteine müssen über einen Potentialberg angehoben werden. Danach ist die kinetische Energie ausreichend, um den nächsten Stein über Potentialschwelle zu heben. Verstärkungsfaktor:

Skalierung zwischen den Steinen: Alle Längen $\times \sqrt{2}$

Potentielle Energie für Stein m:

$$E_{pot} = \rho(a^{(n)}b^{(n)}c^{(n)})h^{(n)}g = (\sqrt{2})^4 E_{pot}^{(n-1)}$$

$$E_{pot}^{(1)} = mgh$$

$$\implies E_pot^{(13)} = 4^{12}E_{pot}^{(1)}$$

 \implies Verstärkungsfaktor $\approx 1.7 \times 10^7$

6 Systeme von Massenpunkten

Bisher: Bewegung einzelner Massenpunkte. Jetzt: Betrachte Systeme von Massenpunkten.

Man unterscheidet:

- Innere Kräfte: Kräfte, die zwischen den Massenpunkten eines Systems wirken.
- Äußere Kräfte: Kräfte, die von außen auf das System einwirken

6.1 Beschreibung eines Systems von Massenpunkten

 \vec{r}_1 : Ortsvektor zum Massenpunkt i m_i : Masse des Massenpunktes i

 $[i=1,\ldots,n]$

Gesamtmasse:

$$M = \sum_{i=1}^{n} m_i$$

Definition 1 Schwerpunkt.

$$\vec{r}_s = \frac{\sum m_i \vec{r}_i}{\sum m_i} = \frac{1}{M} \sum_{i=1}^n m_i \vec{r}_i$$
$$\vec{r}_s = \frac{1}{M} \int_v \vec{r} dm = \frac{1}{M} \int_v \vec{r} \rho(\vec{r}) dV$$

Beispiel 1 System zweier Massenpunkte.

$$\vec{r}_{s} = \frac{m_{1}\vec{r}_{1} + m_{2}\vec{r}_{2}}{m_{1} + m_{2}} \quad s_{1}, s_{2} = ?$$

$$\vec{r}_{s} = \vec{r}_{1} + \lambda_{s}(\vec{r}_{1} - \vec{r}_{1})$$

$$= (1 - \lambda_{s})\vec{r}_{1} + \lambda_{s}\vec{r}_{2}$$

$$= \underbrace{\frac{m_{1}}{m_{1} + m_{2}}}_{=1 - \lambda_{s}} \vec{r}_{1} + \underbrace{\frac{m_{2}}{m_{1} + m_{2}}}_{=\lambda_{s}} \vec{r}_{2}$$

$$\implies S_{1} = \frac{m_{2}}{m_{1} + m_{2}}, S_{2} = \frac{m_{1}}{m_{1} + m_{2}} \wedge \underbrace{\frac{S_{1}}{S_{2}}}_{=2} = \frac{m_{2}}{m_{2}}$$

Das heißt: Das Verhältnis $\frac{S_1}{S_2}$ ist umgekehrt proportional zum Massenverhältnis $\frac{m_1}{m_2}$. Beispiel 2 Schwerpunkt Erde-Sonne.

$$M_E = 6 \times 10^{21} \,\mathrm{kg}, M_S = 2 \times 10^{30} \,\mathrm{kg}$$

$$X_S = \frac{M_E X_E + M_S 0}{M_E + M_S} = 4.5 \times 10^5 \,\mathrm{m}$$

Vergleich mit Sonnenradius 7×10^8 m Schwerpunkt praktisch im Sonnenmittelpunkt

6.1.1 Bewegung des Schwerpunktes

Geschwindigkeit:

$$\vec{v}_s = \frac{d\vec{r}_s}{dt} = \frac{1}{M} \sum_{i=1}^n m_1 \frac{d\vec{r}_i}{dt} = \frac{1}{M} \sum_{i=1}^n m_i \vec{v}_i = \frac{1}{M} \sum_{i=1}^n \vec{p}_i$$

 \vec{p}_i : Impuls des einzelnen Massenpunktes

Definition 2 Schwerpunktimpuls.

$$\vec{p}_s = \sum_{i=1}^n \vec{p}_i = \sum_{i=1}^n m_i \vec{v}_i = M \vec{v}_s$$

das heißt: Schwerpunktimpuls ergibt sich aus der Summe der Einzelimpulse

Frage: Wie bewegt sich ein System von Massepunkten unter Einfluss von Kräften? Es gilt:

innere Kraft
$$\frac{\mathrm{d}\vec{p}_i}{d=} \vec{F}_i + \sum_{i \neq j} \vec{F}_{ij}, \vec{F}_{ij} = -\vec{F}_{ji}$$
äußere Kraft

 \implies : Änderung des Schwerpunktimpulses \vec{p}_s :

$$\frac{d\vec{p}_s}{dt} = \sum_{i=1}^{n} \vec{p}_i = \sum_{i=1}^{n} \vec{F}_i + \sum_{i} \sum_{i \neq j} \vec{F}_{ij} = \sum_{i=1}^{n} \vec{F}_i$$

das heißt: die Impulsänderung des Schwerpunktes ergibt sich aus der Summe der äußeren Kräfte:

1. Newtonsches Gesetz für Systeme von Massenpunkten.

$$\vec{p}_s = M\vec{a}_s = \sum_{i=1}^n \vec{F}_i$$

Hierbei: $\vec{a}_s = \vec{v}_s = \frac{1}{M} \sum m_i \ddot{\vec{r}}_i = \frac{1}{M} \sum m_i \vec{a}_i$

Definition 3 Allgemeiner Impulssatz. Das Schwerpunkt eines beliebiges Systems von Massenpunkten I bewegt sich so, als sei er ein Körper mit der Gesamtmasse $M = \sum m_i$

Definition 4 Abgeschlossenes System. Ein abgeschlossenes System ist ein System auf das keine äußeren Kräfte einwirken, das heißt:

$$\sum F_i = 0$$

Der Massenschwerpunkt eines abgeschlossenen Systems hat einen zeitlich konstanten Impuls, das heißt

$$\vec{p}_s = \sum_{i=1}^n \vec{p}_i = \text{const}$$

 $(\Longrightarrow Impulserhaltung!!)$

6.1.2 Raketenantrieb

das heißt: die Bewegung von Objekten mit veränderlicher Masse

Beobachtung: Abstoßen einer Masse kann zum Antrieb verwendet werden (Beispiele: Rakete, Medizinball und Schlittschuhläufer)

Betrachte Rakete: Impulssatz:

$$p(t) = p(t + \Delta t)$$

Zeitpunkt t

$$p(t) = (m + \Delta m)v$$

Zeitpunkt $t + \Delta t$

$$p(t + \Delta t)0m(v + \Delta v) + \Delta m(v - v_B)$$

$$\implies mv + \Delta v = mv + m\Delta v + \Delta mv - \Delta mv_B$$

$$m\Delta v - \Delta mv_B = 0$$

Änderung Blickwinkel:

$$m\Delta v + \Delta m v_b = 0$$

Wichtig: Masse m und Massenänderung dm müssen sich auf gleiche Referenz beziehen. Damit folgt:

$$\mathrm{d}v = -v_b \frac{\mathrm{d}m}{m}$$

Integration:

$$\int_{v_1}^{v_2} dv = -v_B \int_{m_1}^{m_2} \frac{1}{m} dm, m_1 > m_2, v_B = \text{const}$$

$$v_2 - v_1 = -v_B \cdot \left[\ln m \right]_{m_1}^{m_2} = v_B (\ln m_1 - \ln m_2) = v_B \ln \frac{m_1}{m_2} > 0$$

Wähle Anfangsbedingungen:

$$v_1 = 0, m_1 = 0, m_0 = m(t = 0), m_2 = m(t)$$

⇒ Raketengleichung für kräftefreie Rakete

$$v(t) = v_B \ln \frac{m_0}{m(t)}$$

das heißt: Die Endgeschwindkigkeit einer Rakete wird durch die Ausstoßgeschwindigkeit und die Brennstoffmenge bestimmt

Für die nicht kräftefreie Rakete gilt:

$$m(t)\frac{\mathrm{d}\vec{v}(t)}{\mathrm{d}t} = -\frac{\mathrm{d}m(t)}{\mathrm{d}t}\vec{v}_B + \vec{F}$$

Allgemeine Raketengleichung (ohne Herleitung)

Bemerkung 1. Vorsicht bei der Anwendung des zweiten Newtonschen Gesetzen $\vec{F}=\dot{\vec{p}}$ Naiver Ansatz für kräftefreie Rakete:

$$\frac{\mathrm{d}mv}{dt} = \frac{\mathrm{d}m}{dt}v + m\frac{\mathrm{d}v}{dt} = 0$$

Funktioniert nicht! Grund: Impuls des ausströmenden Gases wird bei diesem Ansatz nicht in der Impulsbilanz berücksichtigt

Korrekter Ansatz:

$$\frac{\mathrm{d}mv}{dt} - (v - v_B)\frac{\mathrm{d}m}{dt} = 0 \implies m\frac{\mathrm{d}v}{dt} + v_B\frac{\mathrm{d}m}{dt} = 0$$

das heißt: der naive Ansatz funktioniert nur, wenn $v - v_B = 0$, also die Ausströmungsgeschwindigkeit verschwindet.

7 Stöße

Für ein abgeschlossenes System gilt: (keine äußere Kräfte) Impulserhaltung:

$$\sum_{i=1}^{n} \vec{p}_{i} = \sum_{i=1}^{n} \vec{p}'_{i}$$

Energieerhaltung:

$$\sum_{i=1}^{n} E_i = \sum_{i=1}^{n} E'_i$$

7.1 Kollinearer elastischer Stoß

Es gilt:

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

$$\frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 = \frac{1}{2}m_1v_1'^2 + \frac{1}{2}m_2v_2'^2$$

⇒ Lösung (ohne Herleitung)

$$v_1' = \frac{v_1(m_1 - m_2) + 2m_2v_2}{m_1 + m_2}$$
$$v_2' = \frac{v_2(m_2 - m_1) + 2m_1v_1}{m_1 + m_2}$$

Geschwindigkeit nach Kollinearer elastisch Stoß Tipp zur Herleitung: Betrachte Bewegung relativ zur Schwerpunktsbewegung (siehe z.B. Demtröders)

Hier Betrachtung von Spezialfällen.

Betrachtung von Spezialfällen ist immer wichtig! Hilft beim Verständnis physikalischer Zusammenhänge

1.
$$m_1 = m_2 = m, r_1 > 0, v_2 = 0$$

$$v_1' = \frac{2mv_2}{2m} = v_2 = 0, v_2' = \frac{2mr_1}{2m} = v_1$$

2.
$$m_1 = m, m_2 = 2m, v_1 > 0, v_2 > 0$$

$$v_1' = \frac{v_1(-m)}{3m} = -\frac{1}{3}v_1$$
$$v_2' = \frac{2mv_1}{3m} = \frac{2}{3}v_1$$

3.
$$m_1 = m, m_2 = 3m, v_1 = v > 0, v_2 = -v$$

$$v_1' = \frac{v(m-2m) - 2(3m)v}{4m} = \frac{v(-2m-6m)}{4m} = -2v$$
$$v_2' = \frac{-v(2m-m) + 2mv}{2m} = \frac{v(-2m+2m)}{3m} = 0$$

4. $m_1 = m, m_2 \to \infty, v_1 = v, v_2 = 0$

$$v_1' = \frac{v(-m_2)}{m_2} = -v$$
 (da m_1 vernachlässigbar)
$$v_2' = \frac{2m_1v}{m_2} = 0$$
 (da $m_1 \ll m_2$)

5. $m_1 = m, m_2$ sehr groß!, $v_1 = 0, v_2 = v$

$$v_1' = \frac{2m_2v}{m_2} = 2v, \quad v_2' = \frac{vm_2}{m_2} = v$$

7.2 Betrachtung im Schwerpunktsystem

Es gilt:

$$v_s = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

Geschwindigkeiten im Schwerpunktsystem:

$$v_1^* = v_1 - v_s = \frac{m_2 v_1 - m_2 v_2}{m_1 + m_2}$$
$$v_2^* = v_2 - v_s = \frac{m_1 v_2 - m_1 v_1}{m_1 + m_2}$$

daraus folgt:

$$p_1^* = m_1 v_1^* = \frac{m_1 m_2}{m_1 + m_2} (v_1 - v_2)$$
$$p_2^* = m_2 v_2^* = \frac{m_1 m_2}{m_1 + m_2} (v_2 - v_1)$$

Das heißt vor dem Stoß gilt:

$$p_1^* = -p_2^* E_{kin,1}^* = \frac{1}{2} m(v_1^*)^2 = \frac{(p_1^*)^2}{2m_1} E_{kin,2}^* = \frac{(p_2^*)^2}{2m_2}$$

nach dem Stoß:

Impulserhaltung:

$$p_s^* = p_1^* + p_2^* = p_1^{*\prime} + p_2^{*\prime} = 0 \rightarrow p_1^{*\prime} = -p_2^{*\prime}$$

Energieerhaltung:

$$E_{ges}^* = E_{kin,1}^* + E_{kin,2}^* = E_{kin,1}^{*\prime} + E_{kin,2}^{*\prime}$$

Außerdem:

$$p_1^{*'} = \frac{p_1^*(m_1 - m_2) + 2m_1p_2^*}{m_1 + m_2} = -p_1^*, p_2^{*'} = -p_2^*$$

daraus folgt:

$$E_{kin,1}^{*\prime} = E_{kin,1}^{*}$$

 $E_{kin,2}^{*\prime} = E_{kin,2}^{*}$

Im Schwerpunktsystem findet bei elastischen Stößen keine Energieübertragung statt. Aber: Impulse werden ausgetauscht

7.2.1 Nicht-zentraler, elastischer Stoß im Schwerpunktsystem

$$\begin{aligned} \vec{p}_s^* &= 0, \vec{p}_1^* = -\vec{p}_2^* \\ \vec{p}_s^{*\prime} &= -\vec{p}_2^{*\prime}, \left| \vec{p}_1^* = \left| \vec{p}_1^{*\prime} \right| \right| \end{aligned}$$

Im Schwerpunktsystem sind für ein abgeschlossenes System zweier Massenpunkte einund auslaufende kollinear und vom Betrag her gleich

7.3 Inelastische Stöße

Betrachte 2 Kugeln

• Massen: m_1, m_2

• Geschwindigkeit: $v_1 = v, v_2 = 0$

• Impulserhaltung:

$$m_1 v = (m_1 + m_2)v'$$
$$v' = \frac{m}{m_1 + m_2}v$$

• Energiebilanz:

$$E_{kin} = \frac{1}{2}m_1v^2, E'_{kin} = \frac{1}{2}(m_1 + m_2)(\frac{m_1}{m_1 + m_2})^2v^2 = \frac{1}{2}\frac{m_1^2}{m_1 + m_2}v^2 < E_{kin}$$

Beim inelastischen Stoß geht mechanische Energie verloren, sie wird beim Stoß in andere Energieformen (zum Beispiel Wärme) umgewandelt. (siehe Thermodynamik)

Interessant: Betrachtung im Schwerpunktsystem.

$$m_1 v_1^* - m_2 v_2^* = (m_1 + m_2) v^{*\prime}$$

da $p_1^* = -p_2^*$

$$(m_1 + m_2)v^{*\prime} = 0$$
$$E_{kin}^{*\prime} = \frac{1}{2}(m_1 + m_2)(v^{*\prime})^2 = 0$$

Im Schwerpunktsystem findet beim inelastischen Stoß eine vollständige Umwandlung der kinetischen Energie statt.

Allgemein:

falls $\vec{F}_{auen} = 0$

$$E_{kin,1} + E_{kin,2} = E'_{kin,1} + E'_{kin,2} + Q \sum \vec{p}_i = \sum \vec{p}'_i = \text{const}$$

$$\sum E_{kin,i} = \sum E'_{kin,i} + Q$$

$$Q = 0 \qquad \text{elastisch}$$

$$Q > 0 \qquad \text{inelastisch}$$

$$Q < 0 \qquad \text{superelastisch}$$

8 Mechanik des starren Körper

Definition 5 Starrer Körper. System von Massenpunkten mit festen, nicht veränderlichen Abständen.

Idealisierung!

Es gilt:

Volumen:

$$V = \lim_{\Delta V_i \to 0} \sum \Delta V_i = \int \mathrm{d}v$$

Masse:

$$M = \lim_{\Delta m_i \to 0} \sum \Delta m_i = \int dm = \int \rho(\vec{r}) dV$$

Schwerpunkt:

$$\vec{r}_s = \frac{1}{M} \int \vec{r} dm = \frac{1}{M} \int \vec{r} \rho(\vec{r}) dV M = \int \rho dV = \int \rho d^3r$$

Beispiel 3 Quader.

$$\vec{r}_s = \frac{1}{M} \int \vec{r} \rho(\vec{r}) dV$$
$$= \frac{1}{M} \int_0^a \int_0^b \int_0^c \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rho dx dy dz$$

Integration für jede einzelne Ortskomponente:

$$x_{s} = \frac{1}{m} \int_{0}^{a} \int_{0}^{b} \int_{0}^{c} x \rho dx dy dz = \frac{1}{M} \rho b c \int_{0}^{b} x dx = \frac{1}{M} \rho a b c \frac{1}{2} a = \frac{1}{2} a$$

$$y_{s} = \dots = \frac{1}{2} b$$

$$z_{s} = \dots = \frac{1}{2} c$$

$$\vec{r}_{s} = \frac{1}{2} \begin{pmatrix} a \\ b \\ v \end{pmatrix}$$

8.1 Bewegung des starren Körpers

Es gilt:

$$\vec{r}_{si} = \vec{r}_i - \vec{r}_s \rightarrow \frac{\mathrm{d}\vec{r}_{si}}{\mathrm{d}t} = \vec{v}_{si} = \vec{v}_i - \vec{v}_s$$

Mit $|\vec{r}_{si}| = \text{const}$ beziehungsweise $\vec{r}_{si}^2 = \text{const}$ (starrer Körper)

$$\frac{\mathrm{d}}{\mathrm{d}t}(\vec{r}_{si}^2) = 2\vec{r}_{si}\vec{v}_{si} = 0 \to \vec{v}_{si} \perp \vec{r}_{si}$$

da $\vec{v}_{si} \perp \vec{r}_{si}$ gilt: Betrachte Bewegung in der von $\vec{v}_{si}, \vec{r}_{si}$ aufgespannten Ebene \rightarrow Kreisbewegung!, Das heißt:

$$\vec{v}_{si} = \vec{\omega} \times \vec{r}_{si}$$

wobei im Allgemeinen $\vec{\omega}$ zeitabhängig sein kann.

Mit $\vec{v}_{si} = \vec{v}_i - \vec{v}_s$ folgt:

$$\vec{v}_i = \vec{v}_s + (\vec{\omega} \times \vec{r}_{si})$$

Achtung: $\vec{\omega} = \vec{\omega}(t)$ muss nicht raumfest sein.

Die Bewegung eines starren Körpers lässt sich in eine Translationsbewegung und eine Rotation um den Schwerpunkt zerlegen

- \bullet 3 Translationsfreiheitsgrade
- 3 Rotationsfreiheitsgrade

8.2 Drehmoment und Kräftepaare

Frage: Wie versetzt man einen Körper in Rotation?

Beispiel 4 Balkenwaage. Beobachtung: Kraft mit Angriffspunkt im Abstand l, bewirkt Drehbewegung

Es gilt das Hebelgesetz:

$$F_1l_1 = F_2l_2$$

Hebelarm: Abstand zwischen Drehachse und Angriffspunkt der Kräfte \vec{F}_1, \vec{F}_2

Beobachtung

Kraft \vec{F}_{\parallel} parallel zum Hebelarm bewirkt keine Drehung, nur Kraft \vec{F}_{\perp} senkrecht zur Verbindungslinie zwischen Angriffspunkt und Drehachse führt zur Rotation. Richtung von \vec{F}_{\perp} bestimmt Drehsinn

Definition 6 Drehmoment.

$$\vec{M} := \vec{r} \times \vec{F}$$

Gibt Drehsinn und Stärke der Kraftwirkung an.

$$M = rF\sin(\angle(\vec{r}, \vec{F}))$$

8.2.1 Drehmoment und Schwerpunkt

Betrachte starren Körper aus zwei Massenpunkten plus masselose Verbindung

$$\begin{split} \vec{M}_1 &= \vec{r}_1 \times \vec{F}_1 \\ \vec{M}_2 &= \vec{r}_2 \times \vec{F}_2 \\ \vec{M}_1 &= r_1 m_1 g \sin \alpha_1 \vec{l}_z \\ \vec{M}_2 &= -r_2 m_2 g \sin \alpha_2 \vec{l}_z \\ &= -r_2 m_2 g \sin \alpha_1 \vec{l}_z \\ \vec{M}_{tot} &= \vec{M}_1 + \vec{M}_2 = (r_1 m_1 - r_2 m_2) g \sin \alpha_1 \vec{l}_z \end{split}$$

vektoriell:

$$\vec{M}_{tot} = \vec{M}_1 + \vec{M}_2 = \vec{r}_1 \times m_2 \vec{g} + \vec{r}_2 \times m_2 \vec{g} = (\vec{r}_1 m_1 + \vec{r}_2 m_2) \times \vec{g}$$

Beliebiger Körper:

$$\vec{M}_{tot} = \sum \vec{M}_i = \sum m_i \vec{r}_i \times \vec{g}$$

$$(\sum m_i \vec{r}_i) \times \vec{g} = m_{ges} \vec{r}_s \times \vec{g} = \vec{r}_s \times \vec{F}$$

Das Gewicht eines starren Körpers greift immer im Schwerpunkt an. Bei Aufhängung eines Körpers im Schwerpunkt ist das resultierende Drehmoment auf Grund der Schwerkraft Null. Grund: Im Schwerpunkt gilt: $\vec{r}_s = 0$, $\vec{M}_{tot} = \vec{r}_s \times \vec{F}_s = 0$

8.2.2 Kräftepaare

Frage: Wirkung einer Kraft \vec{F}_1 auf einen starren Körper.

Lösungsansatz:

Einführung der sich gegenseitig aufgebenden Kräfte \vec{F}_2 und \vec{F}_3 im Schwerpunkt S. Ändert nichts!

Zerlegung der Bewegung:

Translation durch Kraft \vec{F}_2 mit Angriffspunkt S.

Rotation durch Kräftepaar (\vec{F}_1, \vec{F}_3) mit $F_1 = F_3, \vec{M} = \vec{r} \times \vec{F}_1$

Die Wirkung aller Kräfte auf einen starren Körper lässt sich durch

$$\vec{F} = \sum \vec{F}_i$$
 (Gesamtkraft (Gesamtkraft))
 $\vec{M} = \sum F_{si} \times \vec{F}_i = \sum M_i$ (Gesamtdrehmoment (Rotation))

beschreiben. Dabei greift \vec{F} im Schwerpunkt an

Wirkung von Kräftepaaren: Reine Rotation. Es gilt:

$$\vec{M} = \vec{r}_1 \times \vec{F} - \vec{r}_2 \times \vec{F} = (\vec{r}_1 - \vec{r}_2) \times \vec{F} = \vec{r}_{12} \times \vec{F}$$

Merke: Das Drehmoment eines Kräftepaares ist unabhängig vom Bezugspunkt 0 Zwei Kräftepaare sind äquivalent, wenn sie das gleiche Drehmoment besitzen. Äquivalente Kräftepaare können einander ersetzen.

8.3 Statisches Gleichgewicht

Statik:

$$\vec{F} = \sum \vec{F}_i = 0, \vec{M} = \sum \vec{M}_i = 0$$

das heißt keine Translation, keine Rotation $Beispiel\ 5.$

1. Gleichgewicht eines starren Körpers in Schwerefeld Frage: Wo muss \vec{F} angreifen um für statisches Gleichgewicht zu sorgen? Kräfte:

$$\sum_{\vec{F}} \vec{F}_i + \vec{F} = 0$$

$$\vec{F} = -\sum_{i} m_i \vec{g} = -m_{ges} \vec{g}$$

Drehmomente:

$$\sum \vec{M}_i + \vec{R} \times \vec{F} = 0$$

$$\sum \vec{r}_i \times \vec{F}_i + \vec{R} \times \vec{F} = \sum m_i (\vec{r}_i \times \vec{g}) + \vec{R} \times \vec{F}$$

$$= (\sum m_i \vec{r}_i) \times \vec{g} - m_{ges} \vec{R} \times \vec{G}$$

$$= m_{ges} (\vec{R} \times \vec{g}) = m_{ges} (\vec{r}_s \times \vec{g})$$

Lösung A: $\vec{R} = \vec{r}_s$, das heißt Unterstützung im Schwerpunkt mit $\vec{F} = -mges\vec{g}$ Lösung B: $(\vec{R} - \vec{f}_s) \times \vec{g} = 0$, das heißt $(\vec{R} - \vec{r}_s) \parallel \vec{g}$, also Unterstützung oberhalb oder unterhalb des Schwerpunkt 3 Möglichkeiten:

• \vec{R} über Schwerpunkt: stabiles Gleichgewicht

• \vec{R} unter SP: labiles Gleichgewicht

• \vec{R} in PS: indifferentes Gleichgewicht

2. Schiefer Turm

Drehmoment:

$$F_q r = F_z r \rightarrow F_q = F_z$$

Kräftegleichgewicht:

$$F_q + F_z + F_s = 0 \rightarrow F_s = -2F_q$$

3. Stehende Leiter

Kräftegleichgewicht:

$$\vec{F}_N = -\vec{F}_G, \vec{F}_N' = -\vec{F}_R$$

Drehmomente:

Bezugspunkt = unteres Leiter-Ende (günstige Wahl!)

$$F_W h = F_g(\frac{1}{2}a)$$

(vergleiche Übungsaufgabe)

8.4 Rotation und Trägheitsmoment

Bewegungsenergie eines starren Körpers setzt sich zusammen aus:

- kinetischer Energie der Schwerpunktsbewegung
- kinetische Energie aufgrund von Rotation

Experiment: Rollende Objekte $\rightarrow FormdesKrperswichtig!$ Mathematisch:

$$E_{kin} = \sum_{i=1}^{n} \frac{1}{2} m_i \vec{v}_i^2$$
 (mit $\vec{v}_i = \vec{v}_s + \vec{v}_{si}$)

$$E_{kin} = \frac{1}{2} \sum_{i=1}^{n} m_i (\vec{v}_s^2 + 2\vec{v}_s \vec{v}_{si} + \vec{v}_{si} + \vec{v}_{si}^2)$$

$$= \frac{1}{2} \sum_{i=1}^{n} m_i \vec{v}_s^2 + \vec{v}_s \sum_{i=1}^{n} m_i \vec{v}_{si} + \frac{1}{2} \sum_{i=1}^{n} m_i \vec{v}_{si}^2$$

Die kinetische Energie zerlegt sich in die kinetische Energie des Schwerpunktes und Rotationsenergie, aus der kinetischen Energie der Bewegung relativ zum Schwerpunkt Jetzt: Betrachte Rotation um raumfeste Achse: (Spezialfall: Achse durch Schwerpunkt) Kinetische Energie des Massenstücks dm:

$$\begin{split} \mathrm{d}E_{kin} &= \frac{1}{2} \mathrm{d}m \vec{v}_i^2 = \frac{1}{2} \mathrm{d}m (\omega r_\perp)^2 \\ &= \frac{1}{2} \mathrm{d}m \omega^2 r_\perp^2 \\ E_{rot} &= \int \mathrm{d}E_{kin} = \frac{1}{2} \int \omega^2 r_\perp^2 \mathrm{d}m = \frac{1}{2} \omega^2 \underbrace{\int r_\perp^2 \mathrm{d}m}_{\text{Trägheitsmoment}} \end{split}$$

Definition 7 Trägheitsmoment. Trägheitsmoment bezüglich einer raumfesten Achse

$$I = \int r_{\perp}^2 \mathrm{d}m = \Theta^2 \mathrm{d}m = \Theta$$

Diskret:

$$\Theta = \sum r_{\perp,i}^2 m_i$$

Dabei ist r_{\perp} der Abstand zwischen dem Massenstück dm und der Drehachse.

Definition 8 Rotationsenergie. Rotationsenergie eines starren Rotators (Rotation um raumfeste Achse)

$$E_{rot} = \frac{1}{2}I\omega^2$$

8.5 Berechnung von Trägheitsmoment

Volumenintegral:

$$I = \int r_{\perp}^2 \mathrm{d}m = \int r_{\perp}^2 \rho(\vec{r}) \mathrm{d}V$$

Beispiel 6. 1. Stab (dünn)

$$I = \int_{-\frac{L}{2}}^{\frac{L}{2}} x^2 \rho A dx = \rho A \int_{-\frac{L}{2}}^{\frac{L}{2}} x^2 dx$$
$$= \frac{1}{3} \rho A \left(\left(\frac{L}{2} \right)^3 - \left(-\frac{L}{2} \right)^3 \right)$$
$$= \frac{1}{3} \rho A \frac{L^3}{4} = \frac{1}{12} \rho A L L^2$$
$$= \frac{1}{12} m L^2$$

2. Scheibe, Zylinder

Zylinderkoordinaten:

$$x = r \cos \phi, y = r \sin \phi, z = z$$
$$dV = r d\phi dr dz$$
$$I = \int_{V} \vec{r}_{\perp}^{2} dm = \int_{v} r_{\perp}^{2} \rho dV$$

Zylinderkoordinaten, also $r_{\perp} = r$

$$\begin{split} &= \rho \int_{v} r^{2} r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z \\ &= \rho \int_{0}^{R} \int_{0}^{2\pi} \int_{0}^{h} r^{2} r \mathrm{d}r \mathrm{d}\phi \mathrm{d}z \\ &= 2\pi \rho h \int_{0}^{R} r^{3} \mathrm{d}r = 2\pi \rho h \frac{1}{4} R^{4} = \frac{1}{2} (\pi R^{2} h) \rho R^{2} = \frac{1}{2} m R^{2} \end{split}$$

3. Dünner Hohlzylinder

$$I = \rho \int_{R}^{R+d} \int_{0}^{2\pi} \int_{0}^{h} r^{2}r dr d\phi dz$$

$$= 2\pi \rho h \int_{R}^{R+d} r^{3} dr = 2\pi \rho h \frac{1}{4} \left[r^{4} \right]_{R}^{R+d}$$

$$= 2\pi \rho h \frac{1}{4} ((R+d)^{4} - R^{4})$$

$$= 2\pi \rho h \frac{1}{4} (R^{4} + 4R^{3}d + \dots - R^{4})$$

$$\approx 2\pi \rho h R^{3}d = (2\pi R dh \rho) R^{2} = mR^{2}$$

4. Kugel

$$I = \int r_{\perp}^2 \mathrm{d}m = \frac{2}{5} mR^2$$

(ohne Beweis, zur Übung...)

8.6 Steinersche Satz

Nochmal Stab:

$$I = \int_0^L x^2 \rho A dx$$
$$= \rho A \int_0^L x^2 dx$$
$$= \frac{1}{3} \rho A L^2$$

 $mit m = \rho AL$

$$= \frac{1}{3}mL^3$$

Allgemein:

$$\begin{split} I &= \int r_{\perp}^2 \mathrm{d}m \\ &= \int (r_{s,\perp} + R_{\perp})^2 \mathrm{d}m \\ &= \int \vec{r}_{s,\perp}^2 \mathrm{d}m + \int \vec{R}_{perp}^2 \mathrm{d}m + 2 \int r_{s,\perp} R_{perp} \mathrm{d}m &= \underbrace{\vec{r}_{s,\perp}^2 \int \mathrm{d}m}_{=r_{s,\perp}^2 m} + 1_s + 2r_{s,\perp} \underbrace{\int R_{perp} \mathrm{d}m}_{=0} \end{split}$$

Definition 9 Steinersche Satz.

$$I = I_s + r_{\perp,s}^2 m$$

Beispiel 7 Dünner Stab.

$$I_{A} = \frac{1}{12}mL^{2}$$

$$I_{B} = \frac{1}{3}mL^{2}$$

$$I_{B} = I_{A} + (\frac{L}{2})^{2}m = \frac{1}{3}mL^{2}$$

Trägheitsmomente sind additiv

$$I = \int_{v} r_{\perp}^{2} dm = \int_{v_{1}} r_{\perp}^{2} dm + \int_{v_{2}} r_{\perp}^{2} dm$$

$$Translation Rotation$$

$$\vec{r} \qquad \vec{\phi}$$

$$\vec{v} = \dot{\vec{r}} \qquad \vec{\omega} = \dot{\vec{\phi}}$$

$$\vec{a} = \ddot{\vec{r}} \qquad \vec{\alpha} = \ddot{\vec{\phi}} = \dot{\vec{\omega}}$$

$$E_{kin} = \frac{1}{2} m v^{2} \qquad E_{rot} = \frac{1}{2} I \omega^{2}$$

$$F = m\vec{a} \qquad \vec{M} = I\vec{\alpha}$$

Bei nicht ortsfester Rotationsachse:

$$E_{rot} = \frac{1}{2} \vec{\omega}^T \Theta \vec{\omega}$$

$$\vec{M} = \Theta \vec{\alpha}$$

 $\vec{\Theta}$ ist ein Tensor

$$\vec{v}_{i} = \vec{\omega} \times \vec{r}_{\perp,i}, \vec{v}_{i} = \omega r_{\perp,i}$$

$$\vec{M} = \vec{r}_{\perp,i} \times \vec{F}_{i}$$

$$M_{i} = r_{\perp,i} F_{\perp,i} = r_{\perp,i} m_{i} \frac{\mathrm{d}r_{i}}{\mathrm{d}t}$$

$$= r_{\perp,i}^{2} m_{i} \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

$$M_{tot} = \sum_{\alpha} M_{i}$$

$$M_{tot} = \underbrace{\frac{\mathrm{d}\omega}{\mathrm{d}t}}_{\alpha} \underbrace{\sum_{i} r_{\perp,i}^{2} m_{i}}_{I}$$

Bewegungsgleichung für die Rotation um eine Raumfeste Achse

$$M=I\dot{\omega}=I\alpha$$

Beispiel 8.

$$\begin{split} M &= I\alpha \\ \vec{M} &= \vec{r} \times \vec{F}_G \\ I &= 2mR^2 \\ \alpha &= \frac{M}{I} = \dot{\omega} \\ \omega &= \alpha t + \omega_0 = \alpha t \\ \phi &= \frac{1}{2}\alpha t^2 + \omega_0 t + \phi 0 = \frac{1}{2}\alpha t^2 \\ 2\pi &= \frac{1}{2}\alpha T^2 \\ T^2 &= \frac{4\phi}{\alpha} = 4\pi \frac{I}{M} \end{split}$$

wir wollen berechnen

$$T_0^2 = 4\pi \frac{I_0}{M} = (172)^2 s^2$$

$$T_1^2 = 4\pi \frac{I_0 + 2mR^2}{M} = (59)^2 s^2$$

$$T_2^2 = 4\pi \frac{I_0 + 2m\frac{R^2}{4}}{M} = (33)^2 s^2$$

$$T_1^2 - T_0^2 = 32 s^2$$

$$T_2^2 - T_0^2 = 8 s^2$$

8.7 Drehimpuls

• Translation: $\vec{F} = m\vec{a}, \vec{F} = \dot{\vec{p}}$

• Rotation: $\vec{M} = I\vec{\alpha}, \vec{M} = \dot{\vec{L}} \rightarrow \text{Drehimpuls}$

• Impuls: p = mv

• Drehimpuls: (Guess) $L = I\omega = mr^2 \frac{v}{r} = rmv = rp$

Definition 10 Drehimpuls.

$$\vec{L} = \vec{r} \times \vec{p}$$

Wichtig: Allen bewegten Massenpunkten kann man bezüglich eines Referenzpunkts 0 einen Drehimpuls zuordnen; der hängt vom Bezugspunkt ab.

$$\dot{\vec{L}} = \frac{\mathrm{d}}{\mathrm{d}t}(\vec{r} \times \vec{p}) = \underbrace{\dot{\vec{r}} \times \vec{p}}_{0} + \vec{r} \times \dot{\vec{p}} = \vec{r} \times \vec{F} = \vec{M}$$

Grundgleichung der Dynamik für Rotationsbewegungen:

$$\vec{M} = \frac{\mathrm{d}\vec{L}}{dt} = \dot{\vec{L}}$$

Drehimpulserhaltung:

$$\vec{M} = 0 \rightarrow \vec{L} = \text{const}$$

Drehimpuls für System von Massenpunkten

$$\vec{p}_s = \sum_i \vec{p}_i, \vec{p}_s = \sum_i \vec{F}_i$$

$$\vec{L} = \sum_i \vec{L}_i = \sum_i m_i (\vec{r}_i \times \vec{v}_i)$$

$$\vec{L} = \int_i d\vec{L} = \int_i (\vec{r} \times \vec{r}) dm \dot{\vec{L}} = \frac{d}{dt} \sum_i \vec{r}_i \times \vec{p}_i = \sum_i \dot{\vec{r}}_i \times \vec{p}_i + \sum_i \vec{r}_i \times \dot{\vec{p}}_i = \sum_i \vec{M}_i = \vec{M}$$

Für System von Massenpunkten:

$$\vec{M} = \sum_{i} \vec{r}_i \times \vec{F}_i = \dot{\vec{L}}$$
 $\vec{L} = 0 \text{ für } \vec{M} = 0$

Allgemeiner Zusammenhang:

mit \hat{I} als Tensor:

$$\begin{split} \vec{L} &= \hat{I} \vec{\omega} \\ \vec{L} &= \int \mathrm{d} \vec{L} \\ \mathrm{d} \vec{L} &= \vec{r} \times \mathrm{d} \vec{p} = \vec{r} \times \vec{v} \mathrm{d} m \\ &= \mathrm{d} m (\vec{r} \times \vec{v}) = \vec{r} \times (\vec{\omega} \times \vec{r}) \end{split}$$

mit
$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a}\vec{c}) - \vec{c}(\vec{a}\vec{b})$$

$$= dm(r^2\vec{\omega} - \vec{r}(\vec{\omega}\vec{r}))$$
$$\int d\vec{L} = \vec{\omega} \int r^2 dm - \int \vec{r}(\vec{\omega}\vec{r}) dm$$

Beispiel 9 Schief gestellte Hantel. Drehimpuls:

$$\vec{L} = \vec{r}_1 \times \vec{p}_1 + \vec{r}_2 \times \vec{p}_2$$

Drehimpulsvektor steht senkrecht auf Verbindungslinie zu m_1 und m_2 . Aber: Winkelgeschwindigkeit $\vec{\omega}$ zeigt in Richtung der Drehachse.

Beispiel 10 Rotierende Scheibe mit Unwucht. Für Rad mit Masse M gilt: (ohne Unwucht)

$$\vec{L}_1 = \int \mathrm{d}\vec{L}$$
 parallel zu $\vec{\omega}$

aus Symmetriegründen, $\vec{L} = I\vec{\omega}$ Für das Rad plus Unwucht gilt:

$$\vec{L} = \vec{L}_1 + \vec{L}_2, \vec{L}_2 = \vec{r} \times \vec{p}$$
 \downarrow Drehimpuls der Unwucht

das heißt: \vec{L} nicht parallel zu $\vec{\omega}$, daraus folgt: Drehimpuls hat Komponente senkrecht zur Winkelgeschwindigkeit $\vec{\omega}$, diese rotiert mit $\vec{\omega}$

$$\vec{M} = \dot{\vec{L}}$$

das heißt auf Achse wirkt Drehmoment.

8.8 Trägheitstensor, freie Rotation und Kreisel

Drehimpuls eines starren Körpers:

$$\vec{L} = \vec{\omega} \int r^2 dm - \int \vec{r} (\vec{\omega} \vec{r}) dm$$

(Bezugspunkt wichtig!)

$$L_{x} = \omega_{x} \int r^{2} dm - \int x(\omega_{x} + \omega_{y}y + \omega_{z}z) dm$$

$$= \omega_{x} \int (r^{2} - x^{2}) dm - \omega_{y} \int xy dm - \omega_{z} \int xz dm$$

$$= I_{xx}\omega_{x} + I_{xy}\omega_{y} + I_{xz}\omega_{z}$$

$$L_{y} = I_{yx}\omega_{x} + I_{yy}\omega_{y} + I_{yz}\omega_{z}$$

$$L_{z} = I_{zx}\omega_{x} + I_{zy}\omega_{y} + I_{zz}\omega_{z}$$

$$\vec{L} = \underbrace{\begin{pmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{pmatrix}}_{\text{Trächeitstensor}} \begin{pmatrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{pmatrix}$$

Definition 11 Trägheitstensor.

$$\begin{array}{c} \text{Matrix} \\ \uparrow \\ \vec{L} = \hat{I}\vec{o}mega, \hat{I} = I_{ij} \end{array} \\ I_{xx} = \int (r^2 - x^2) \mathrm{d}m \quad I_{xy} = I_{yx} = -\int xy \mathrm{d}m \\ I_{yy} = \int (r^2 - y^2) \mathrm{d}m \quad I_{yz} = I_{zy} = -\int yz \mathrm{d}m \\ I_{zz} = \int (r^2 - z^2) \mathrm{d}m \quad I_{xz} = I_{zx} = -\int xz \mathrm{d}m \end{array}$$

Rotationsenergie:

$$E_{rot} = \frac{1}{2} \vec{\omega}^T \hat{I} \vec{\omega}$$

Trägheitstensor \hat{I} hängt von der Wahl des Koordinatensystems ab! Geeignete Koordinatentransformation \rightarrow Diagonalisieren von \hat{I} . (Hauptachsentransformation)

Nach Hauptachsentransformation:

$$\hat{I} = \begin{pmatrix} I_a & 0 & 0 \\ 0 & I_b & 0 \\ 0 & 0 & I_c \end{pmatrix}$$

mit $I_a > I_b > I_c$.

Es folgt: Bei Rotation eines Körpers um eine der drei Hauptachsen sind Drehimpuls und Winkelgeschwindigkeit parallel.

8.8.1 Kreisel

Ein Kreisel ist ein rotierender starrer Körper, der höchstens an einem Punkt aufgehängt ist. (Kompass, Satellit, Geschoss)

Beschreibung der Kreiselbewegung mit 3 Achsen:

- Figurenachse
- Momentane Drehachse, Richtung von $\vec{\omega}$
- Drehimpulsachse

9 Mechanik deformierbarer Körper

Starrer Körper: $\vec{r}_i - \vec{r}_j = \text{const}$, das heißt Abstand zwischen Massenpunkten konstant. Wirklichkeit: Verformung bei Anwendung äußerer Kräfte.

9.1 Atomares Modell

Experiment: Alle Körper sind aus Atomen oder Molekülen aufgebaut. Beschreibung von Kräften zwischen Atomen und Molekülen durch Lennard-Jones-Potential. (Dipol-Dipol-Wechselwirkung, Van-der-Waals Kräfte)

Gleichgewichtsabstand: r_0 ($E_{pot} = \text{minimal}$) Für kleine Auslenkung gilt:

$$E_{pot} = \frac{1}{2}k(r - r_0)^2$$
$$F = -\frac{\mathrm{d}E_{pot}}{dr} = -k(r - r_0) = -kAr$$

Federkraft! \Longrightarrow

- Modell eines Festkörper: Federmodell. Temperatur unterhalb des Schmelzpunktes. Mittlere kinetische Energie klein gegen $E_{pot}(r_0)$. Atome können Gitterplätze nicht verlassen. Fernordung!
- Modell einer Flüssigkeit: Kugelmodell: Auch hier mittlerer Abstand = r_0 , das heißt Dichte ähnlich die des Festkörpers. Aber: Temperatur zu hoch für feste Zuordnung auf Kristallgitterplätzen \Longrightarrow flüssiger Zustand. Nahordung!
- Modell eines Gases: frei bewegliche Teilchen.
 Mittlere kinetische Energie ist grob gegen Bindungsenergie, hohe Temperatur!

9.2 Feste Körper.

- Elastischer fester Körper → Formelastizität, Volumenelastizität aufgrund rücktreibender Kräfte (Hookscher Bereich)
- Plastisch feste Körper \rightarrow Formänderungen verbleiben

Hier: Elastische Körper! Experimentell findet man:

$$\Delta f \sim F$$

$$\Delta L \sim L, \Delta L \sim A^{-1}$$

$$\Delta L \sim L \frac{F}{A} = Lr$$
 (r: Zugspannung)

Definition 12 Hooksches Gesetz:.

$$\sigma = E \frac{\Delta L}{L} = E \varepsilon$$

- \bullet E: Elastizitätsmodul, E-Modul
- ε : Elongation, relative Längenänderung

• σ : Zugspannung, $\sigma = \frac{F}{A}$

Auswertung Hooksches Gesetz: Material-Stahl, $D=0.3\,\mathrm{mm}, L=6\,\mathrm{m}, A=0.07\,\mathrm{m}^2$

$$F = 1.2 \,\mathrm{kPa} = 11.8 \,\mathrm{N}, \Delta L = 5 \,\mathrm{mm}, \varepsilon = 8 \times 10^{-4} \to \sigma = 168.6 \,\mathrm{N \,mm^{-2}}$$

$$F = 2.4\,\mathrm{kPa} = 13.5\,\mathrm{N}, \Delta L = 10\,\mathrm{mm}, \varepsilon = 1.7\times10^{-3} \rightarrow \sigma = 337.2\,\mathrm{N\,mm^{-2}} \implies E = \frac{\sigma}{\varepsilon}2\times10^{5}\,\mathrm{N\,mm^{-2}} = 100\,\mathrm{mm}$$

Einfaches Atomares Modell: Lineare Kette. Es gilt:

$$L = na, \Delta a \sim F, \Delta L \sim m\Delta a \sim nF$$

Außerdem wegen

$$L \sim m : \Delta L \sim LF \rightarrow F \sim \frac{\Delta L}{L}$$

Für eine lineare Kette ist $\varepsilon \frac{\Delta L}{L}$ tatsächlich proportional zur Kraft F. Für $\varepsilon \sim A^{-1}$ braucht man mehrere lineare Ketten parallel aneinander.

Aber: Auch Wechselwirkung in transversaler Richtung!

Definition 13 Querkontraktion. $\frac{\Delta D}{D} \sim \frac{\Delta L}{L}$

$$\frac{\Delta D}{D} = -\mu \frac{\Delta L}{L}$$

 μ : Poissonsche Zahl ≈ 0.3

Volumenänderung (kleine Änderung)

$$V = \left(\frac{\pi}{4}\right)D^{2}L$$

$$\Delta \xi = \frac{\Delta V}{V} = ?$$

$$\xi = \ln V$$

$$= 2 \ln D + \ln L + \text{ const}$$

$$\Delta \xi \approx \frac{1}{V}\Delta V \approx 2\frac{1}{D}\Delta D + \frac{1}{L}\Delta L = \frac{\mathrm{d}\xi}{dV}\Delta V = \frac{\mathrm{d}\xi}{dD}\Delta D + \frac{\mathrm{d}\xi}{dL}\delta L$$

$$\frac{V}{V} = -2\mu \frac{\Delta L}{L} + \frac{\Delta L}{L} = \frac{\Delta L}{L}(1 - 2\mu)$$

$$\frac{\Delta V}{V} = \frac{\sigma}{E}(1 - 2\mu)$$
(Volumenänderung)

Kompression (von Flüssigkeiten)

$$\frac{\Delta V}{V} = -\chi \Delta p$$

$$\chi = 3\frac{1}{E}(1 - 2\mu)$$

 χ : Kompressibilität

9.3 Scherung und Torsion

Normalspannung oder Zugspannung

$$\sigma = \frac{F_N}{A}$$

Tangentialspannung oder Scherspannung

$$\tau = \frac{F_T}{A}$$

F+r kleine Scherwinkel

$$\tau = G\alpha$$
 (G: Schubmodul, Torsionsmodul)

Torsion eines Drahtes (Vollzylinder)

$$\tau = \frac{\mathrm{d}F}{\mathrm{d}A}$$

$$R\phi = L\alpha$$

$$\mathrm{d}M = \mathrm{d}FR$$

$$\mathrm{d}A = 2\pi R \mathrm{d}R$$

$$\tau = \frac{\mathrm{d}F}{\mathrm{d}A} = \underbrace{\frac{\mathrm{d}M}{R}}_{\mathrm{d}F} \frac{1}{2\pi R \mathrm{d}R} = G\alpha = G\frac{R\phi}{L}$$

$$\mathrm{d}M = \frac{2\pi G\phi}{L} \bar{R}^3 \mathrm{d}\bar{R}$$

$$M = \underbrace{\frac{2\pi GR^4}{L}}_{\mathrm{const}} \phi = k_0 \phi$$

Empfindlichkeit:

$$\frac{\phi}{M} \sim \frac{1}{R^4}$$

$$M = I\ddot{\phi} = -k_D\phi, k_D = \frac{\pi G R^4}{2L}$$

$$\phi(t) = \phi_{max} \sin(\omega_0 t + \phi_0)$$

$$\omega_0 = \sqrt{\frac{k_K}{I}}$$

$$T = \frac{2\pi}{\omega_0} \sim \sqrt{\frac{I}{k_D}} \frac{1}{R^2}$$

Ein bisschen was für Ingenieure

$$\phi = \frac{L}{\rho} = \frac{L + \Delta L}{\rho + \eta}$$

$$\varepsilon = \frac{\Delta L}{L} = \frac{\eta}{\rho}$$

$$dM = \eta dF$$

$$dM = \eta dF = \eta \sigma dA = \eta \varepsilon E dA = \eta^2 \frac{1}{\rho} E dA \qquad \text{(wegen } \varepsilon = \frac{\eta}{\rho}\text{)}$$

$$M = \frac{E}{\rho} \int \eta^2 dA$$

Definition 14 Flächenträgheitsmoment.

$$J = \int \eta^2 \mathrm{d}A$$

- Integral über Querschnittsfläche
- η : senkrechter Abstand der Punkte der Querschnittsfläche von neutraler Ebene Beispiel 11 Quader.

$$J = \int_{-\frac{h}{2}}^{\frac{h}{2}} \eta^2 v d\eta$$
$$= \frac{1}{12} bh^3$$

Bautechnik: Krümmung κ :

$$\kappa = \frac{1}{\rho} = \frac{M}{EJ}$$

9.4 Ruhende Flüssigkeiten-Hydrostatik

keine Formelastizität, G = 0!

aber: Hohe Volumenelastizität

Das heißt: Alle Kräfte senkrecht zur Oberfläche.

Definition 15 Druck. Hydrostatischer Druck

$$p = \frac{F}{A}$$

Also die auf die Fläche wirkende Normalkraft pro Fläche.

$$[p] = N m^{-2} = Pa$$

 $1 bar = 1 \times 10^5 Pa$
 $1 torr = 133.322 Pa$
 $1 atm = 1.013 bar$

$$\frac{\Delta V}{V} = \kappa \Delta p = \frac{1}{K} \Delta p$$

Wasser:

$$\kappa = 5 \times 10^{-10} \,\mathrm{m}^2 \,\mathrm{N}^{-1}$$

Aluminium:

$$\kappa = 1.4 \times 10^{-10} \,\mathrm{m}^2 \,\mathrm{N}^{-1}$$

Im Folgende: $\kappa=0, V=\text{const},$ das heißt Wasser "inkompresible"

Satz 1 Pascalsches Prinzip. Wird auf eine in einem Gefäß eingeschlossene Flüssigkeit ein Druch ausgeübt, dann verteilt sich dieser ungehindert auf jeden Punkt in der Flüssigkeit und die Wände.

Zur Veranschaulichung: betrachte frei schwebendes Flüssigkeitsprisma in ruhender Flüssigkeit, frei wählbar... (hier noch: ohne Schwerkraft)

$$F_x = F_{xc} - F_{xb} = F_c \sin \alpha - F_b$$

$$= P_c h c \sin \alpha - p_b h b ! 0$$

$$F_y = F_{ya} - F_{yc} = F_a - F_c \cos \alpha$$

$$= p_a a h - p_c h c \cos \alpha ! 0$$

Mit $\sin \alpha = \frac{b}{a}, \cos \alpha = \frac{a}{c}$ folgt:

$$p_c h c \frac{b}{c} - p_b b h = 0 \implies p_c = p_b$$
$$p_a a h - p_c h c \frac{a}{c} = 0 \implies p_a = p_c$$

Bemerkung 2. In z-Richtung sind Kräfte aus Symmetriegründen ebenfalls Null! da Flüssigkeitsprisma frei gewählt, das heißt beliebig orientiert werden kann folgt Pascalsches Prinzip

Anwendung: Hydraulische Presse. Druck überall gleich! \Longrightarrow

$$p = \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$F_2 = F_1 \frac{A_2}{A_1}$$

Arbeit:

$$W_1 = F_1 a_1 = p A_1 a_1 = p V \label{eq:W1}$$

$$W_2 = F_2 a_2 = p A_2 a_2 = p V \label{eq:W2}$$

Bisher: Vernachlässigung der Schwerkraft.

Jetzt: Druch im Schwerefeld.

Eigengewicht einer Flüssigkeit verursacht einen von der Tiefe abhängenden Druck. Kraftwirkung auch Fläche A:

$$F = mg = \rho Vg = \rho Ahg$$

mit Tiefe h

$$p = \frac{F}{A} = \rho g h$$

Definition 16 Hydrostatischer Druck. Der Druck in einer ruhenden, inkompressiblen Flüssigkeit nimmt unter Einfluss der Schwerkraft linear mit der Tiefe h zu:

$$p = p_0 + \rho g h$$

Der Hydrostatische Druck ist unabhängig von Form und Volumen des einschließenden Behältnisses

Anwendung: Quecksilberbarometer

$$p_{Luft} + \rho gx = \rho gh + \rho gx$$
$$p_{Luft} = \rho gh$$

Druckeinheit: $1 \,\mathrm{mm}\,\mathrm{Hg} = 133.322\,\mathrm{Pa}$

9.4.1 Auftrieb

Erfahrung: Ein in eine Flüssigkeit eingetauchter Körper erfährt Autrieb. Grund: Auf Körper einwirkende Druckkräfte.

Satz 2 Prinzip des Archimedes. Ein Körper, der in eine Flüssigkeit eingetauch ist erfähft eine Auftriebskraft, deren Betrag gleich der Gewichtskraft der verdrängten Flüssigkeit ist.

$$p_1 = \rho g x_1 + p_0$$

$$p_2 = \rho g x_2 + p_0$$

$$E_1 = \rho g x_1 A + p_0 A$$

$$E_2 = \rho g x_2 A + p_0 A$$

$$F_2 - F_1 = \rho g A \Delta x = mg = F_q$$

Es folgt: Ein Körper schwimmt, wenn seine Dichte kleiner ist als die Flüssigkeit, in die er eingetaucht ist.

9.4.2 Oberflächenspannung

Beobachtung: Flüssigkeiten bilden Oberflächen. Grund: Potentielle Energie an Oberfläche größer.

Im Inneren: Kräftegleichgewicht

An Oberfläche: Kraftwirkung nach Inneren

Minimierung der potentiellen Energie \implies Minimierung der Oberfläche.

Definition 17 Oberflächenspannung.

$$\sigma = \frac{\text{Zunahme der Oberflächenenergie}}{\text{Zunahme der Oberfläche}}$$

Achtung: Anders als Zugspannung. Hier: Kraft pro Länge

9.5 Gase

Wesentlicher Unterschie zu Gestkörpern und Flüssigkeiten: Hohe Kompressibilität.

Definition 18 Gesetz von Boyle-Mariette.

$$pV = \text{const}$$

falls Temperatur T = const, siehe später

9.5.1 Barometrische Höhenformel:

Flüssigkeiten: $p = \rho gh + p_0$, das heißt Druck steigt linear mit der Tiefe. (Ausnahme: Inkompressibilität, also $\rho = \text{const}$, das heißt Druck steigt linear mit der Tiefe. (Ausnahme: Inkompressibilität, also $\rho = \text{const}$)

Gase: Hohe Kompressibilität! Das heißt Dichteänderungen müssen berücksichtigt werden.

Frage:
$$p(h) = ?, \rho(h) = ?$$

Es gilt:

$$pV = \text{const}$$

$$pV = p\frac{M}{\rho} = p_0V_0 = p_0\frac{M}{\rho_0}$$

für konstante Masse M:

$$\frac{p}{\rho} = \frac{p_0}{\rho_0} dp = -\rho g dh - p \frac{\rho_0}{p_0} g dh$$

$$\frac{dp}{p} = -\frac{\rho_0 g}{p_0} dh$$

$$\ln p - \ln p_0 = -\frac{\rho_0 g}{p_0} h$$

$$p = p_0 \exp\left(-\frac{\rho_0 g h}{p_0}\right)$$

Barometrische Höhenformel:

$$p(h) = p_0 \exp(-\frac{\rho_0 g}{p_0} h)$$

das heißt: in Atmosühäre mit kompressiblem gas nimmt der Druck mit der Höhe exponentiell ab.

9.6 Strömende Flüssigkeiten und Gase

Experiment: Flüssigkeitsströmung durch Rohr Beobachtung: Druckabfall entlang des Rohres

$$F_{p} = A(p(x) - p(x + \Delta x))$$

$$= -\frac{\mathrm{d}p}{\mathrm{d}x} \Delta A$$

$$= -\frac{\mathrm{d}p}{\mathrm{d}x} \Delta V$$

$$= -\frac{\Delta p}{\Delta x} \Delta V$$

$$F_{p} = -F_{visc}$$

$$F\Delta x = -\Delta p \Delta V$$

$$F = -\operatorname{grad} p \Delta v$$

- \vec{F}_p : Kraft aufgrund des Druckgradienten
- \vec{F}_{visc} : Kraft aufgrund innerer Reibung

Also: Bei der Strömung von Flüssigkeiten muss Arbeit gegen die innere Reibung aufgebracht werden Es gilt

$$F\Delta x = -\Delta p\Delta V, Fdx = -dp\Delta V$$

Eigentlich ist das ganze deutlich komplizierter:

$$\begin{array}{ccc} \vec{u}(x,y,z,t) & \text{(Geschwindigkeitsfeld)} \\ p(x,y,z,t) & \text{(Druckfeld)} \\ \rho(x,y,z,t) & \text{(Dichtefeld)} \\ \mathrm{d}m\frac{\mathrm{d}\vec{u}}{dt} = \vec{F}_p + \vec{F}_{visc} + \vec{F}_{ext} \end{array}$$

Navier-Stokes-Gleichung

$$\rho(\frac{\partial}{\partial t} + \vec{u} \ vv)\vec{u} = -\operatorname{grad} p + \rho \vec{g} + \eta \Delta \vec{n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$"F_p" \quad "F_{ext}" F_{visc}"$$

9.6.1 Kontinuitätsgleichung:

$$\phi = \frac{\Delta m}{\Delta t} = \text{const}$$

$$\phi = \frac{\Delta m}{\Delta t} = \frac{\rho A_i \Delta x}{\Delta t}$$

$$= \rho A_i v_i$$

$$\rho A_1 v_1 = \rho A_2 v_2$$

$$A_1 v_1 = A_2 v_2$$

$$W = F \Delta x = -\Delta p \Delta V = \frac{1}{2} \Delta m (v_2^2 - v_1^2) + \Delta m g (h_2 - h_1)$$

$$-\Delta p = \frac{1}{2} \rho v_2^2 - \frac{1}{2} \rho v_1^2 + \rho g h_2 - \rho g h_1$$

$$p_1 - p_2 = \dots$$

$$p_1 + \frac{1}{2} \rho v_1^2 + \rho g h_1 = p_2 \frac{1}{2} \rho v_2^2 + \rho g h_2$$

2 2 2 . . .

Definition 19 Bernoullische Gleichung.

$$p + \frac{1}{2}\rho v^2 + \rho g h = \text{const}$$

9.6.2 Reibung in Flüssigkeiten

Merke für Flüssigkeiten keine statischen Scherkräfte, aber es gibt dynamische Scherkräfte. Experiment: Notwendige Schubspannung

$$\tau = \frac{F}{A} \sim \frac{\mathrm{d}v_x}{dy}$$

Schubspannung ist proportional zum Geschwindigkeitsgradienten.

Definition 20 Newtonsches Reibungsgesetz:.

$$\tau = \frac{F_R}{A} = \eta \frac{\mathrm{d}v_x}{dy}$$

$$F_R = \eta A \frac{\mathrm{d}v_x}{dy}$$

eta nennt man dynamische Scherviskosität.

9.6.3 Strömung durch ein Rohr mit kreisförmigen Querschnitt (Hagen-Poiseuille)

$$\Delta p = p_2 - p_1$$

$$F = \Delta \pi r^2$$

$$A = 2\pi r L$$

$$\tau = \frac{F}{A} = \frac{\Delta p \pi r^2}{2\pi r L} = -\eta \frac{\mathrm{d}v}{\mathrm{d}r} \qquad \text{(Newton!)}$$

$$v(r) = \int_{v(r)}^{v(R)=0} -\mathrm{d}v = \int_{r}^{R} \frac{\Delta p r}{2\eta L} \mathrm{d}r = \frac{\Delta p}{4\eta L} (R^2 - r^2) a$$

$$\mathrm{d}V = 2\pi r \mathrm{d}r v(r) \Delta t$$

$$\Delta V = \int_{0}^{R} 2\pi r \mathrm{d}r v(r) \Delta t$$

$$= \frac{2\pi \Delta p}{2\eta L} \Delta t \int_{0}^{R} (R^2 r - r^3) \mathrm{d}r$$

$$= \frac{2\pi \Delta p}{2\eta L} (\frac{1}{4} R^4 - \frac{1}{4} R^4) \Delta t$$

$$\dot{V} = \frac{\mathrm{d}v}{dt} = \frac{\pi \Delta p}{8\eta L} R^4 \sim R^4 \bar{v} = \frac{\dot{V}}{A} = \frac{A\Delta x}{A\Delta t} = \frac{\mathrm{d}V}{dt} \frac{1}{\pi R^2} = \frac{R^2}{8\eta L} \Delta p$$
(Hagen-Posieuilles-Gesetz)

 $\bar{v} \sim \Delta p$ typisch für laminare Strömung

Turbulenz: $\Delta p \sim \bar{v}^2$ Vergleich:

Stationare laminare Strömung	Turbulente Strömung
$\dot{v} = \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = 0$	$\vec{v} = \vec{v}(x, y, z, t)$
Stromflächen	keine Vorhersage der Teilchenbahnen
$F_R \sim ec{v}$	$F_W \sim \bar{v}^2$

10 Thermodynamik

Boyle Mariotte

$$pV = const$$

Gay-Lussac

$$V = V_0 \gamma T$$

$$pV = pV(p, T) = p_0 V(p_0, T) = p_0 V(p_0, T_0) \gamma T = p_0 V_0 \gamma T \sim T$$

 ${\bf Satz~3}$ Boyle-Mariotte-Gay-Lussac. Für idela
e Gase gilt das Boyle-Mariotte-Gay-Lussac Gesetz

$$pV \sim T, \wedge \frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2} = \ const$$

 $p \sim T \text{ für } V = \text{ const}$

Gedankenexperiment: Fasse zwei identische Kisten gefüllt mit idealem Gas zu einer Kiste zusammen:

1 Kist

$$p_0V_0 = \xi T_o$$

2 zusammengefasste Kisten

$$p_0 2V_0 \sim T_0$$

Also: Verdopplung von ξ !. Ansatz: $\xi \sim$ Gasmenge

$$\implies pV = k_B NT$$

$$k_B = 1.381 \times 10^{-23} \, \mathrm{J \, K^{-1}} \qquad \qquad \text{(Boltzmankonstante)}$$

Satz 4 Zustandsgleichung idealer Gase.

$$pV = n \underbrace{N_a k_B}_{R} T$$
$$pV = nRT$$

 $mit\ R\ (universelle\ Gaskonstante):$

$$R = 8.31451 \,\mathrm{J \, K^{-1} \, mol}$$

Für Normalbedingungen:

$$p_0 = 1013\,\mathrm{m\,bar}$$

$$T_0 = 273.15\,\mathrm{K}$$

$$n = 1$$

$$V_0 = 22.4\times 10^{-3}\,\mathrm{m}^3 = 22.4\,\mathrm{L}$$

$$U = nN_a \frac{1}{2} f k_B T = n \frac{1}{2} f R T, R = k_b N_a, Q = c_m \Delta T, Q = \lambda m$$

10.1 Arbeit und Wärme

Machanische Arbiet $\xrightarrow{\text{Reibung}}$ Wärme

$$W = Fs$$

$$= mg(\pi d)n$$

$$Q = c_m \Delta T$$

$$c_m = 65 \operatorname{cal} K^{-1}$$

$$\Delta T \approx 3 \, \mathrm{K} \rightarrow Q \sim 200 \, \mathrm{cal}$$

 $1 \, \mathrm{cal} \approx 4.3 \, \mathrm{J} \rightarrow W \sim 870 \, \mathrm{J}$

Genau:

$$1\,\mathrm{cal}\approx4.186\,\mathrm{J}$$

10.2 erster Hauptsatz der Wärmelehre

$$\Delta U = \Delta Q + \Delta W U = nN_a \overline{E_{kin}}$$
$$= \frac{1}{2} nRT$$

- ΔQ : Wärmezufuhr
- ΔW : aus System geleitete Arbeit
- $\Delta Q > 0$: Wärmezufuhr, $\Delta W > 0$, Arbeit wird **aus** System verrichtet
- $\Delta Q < 0$: Wärmezufuhr, $\Delta W < 0$, Arbeit wird **von** System verrichtet

Bei uns: Anders als in klassischer Mechanik

10.3 Volumenarbeit und PV-Diagramme idealer Gase

Thermodynamische Prozesse, Kreisprozesse: ideale Gase! Zustandsgrößen: n, p, V, T (Q ist **keine** Zustandsgröße)

$$pV = nRT$$

Verscheiben des Kolbens:

- Gegen Gasdruck nach unten: $\Delta W > 0$
- Gegen Außendruck nach **oben**: $\Delta Wy0$

$$\mathrm{d}W = F\mathrm{d}s = -p\mathrm{A}\mathrm{d}l = -p\mathrm{d}V$$

$$\mathrm{d}W < 0 \text{ für } \mathrm{d}V > 0\mathrm{d}W \qquad > 0 \text{ für } \mathrm{d}V < 0 \implies W = -\int_{v_1}^{v_2} p\mathrm{d}V$$

pV-Diagramm: pV = nRT

• Isotherme Zustandsänderung: T = const

$$-T = \text{const}$$

$$-pV = nRT \to p \sim \frac{1}{V}$$

$$-\Delta U_{12} = 0 = \Delta Q_{12} + \Delta W_{12}$$

$$-dU = dQ - pdV = 0$$

$$-\int_{1}^{2} dQ = \int_{1}^{2} pdV \to \Delta Q_{12} = \int_{1}^{2} \frac{nRT}{V} dV = nRT \ln(\frac{V_{2}}{V_{1}})$$

$$-\Delta W_{12} = -\Delta Q_{12} = -nRT \ln(\frac{V_{2}}{V_{1}})$$

• Isobare Zustandsänderung: P = const

$$-\Delta W_{12} = -p(V_2 - V_1) = -nR(T_2 - T_1)$$

$$-\Delta Q_{12} = nc_p(T_2 - T_1)$$

$$-\Delta U_{12} = \Delta W_{12} + \Delta_{12} = n\underbrace{(c_p - R)}_{\frac{f}{2}R}(T_2 - T_1)$$

• Isochore Zustandsänderung V = const

$$-\Delta W_{12} = 0$$

$$-\Delta Q_{12} = nc_v(T_2t_1)$$

$$-\Delta U_{12} = \Delta Q_{12} = nc_v(T_2 - T_1)$$

• Adiabatische Zustandsänderung $Q = \text{const}, \Delta Q = 0$

$$-\Delta Q_{12} = 0, \Delta U_{12} = \Delta W_{12}$$

$$dU = dW$$

$$dU = \frac{1}{2}fnRdT = nc_vdTdW = -pdV = -\frac{nRT}{V}dV$$

$$c_v\frac{dT}{T} = -R\frac{dV}{V}$$

$$c_v\ln T = -R\ln V + \text{ const}$$

$$c_v\ln T + R\ln V = \text{ const}$$

$$\ln T^{c_v} + \ln V^R = \text{ const}$$

$$e^{\ln T^{c_v}V^R} = e^{\text{const}}$$

$$T^{c_v}V^R = \text{ const}$$

$$T^{c_v}V^{c_pc_v} = \text{ const}$$

$$TV^{\frac{c_p-c_v}{c_v}} = \text{ const}$$

$$\gamma - 1 := \frac{c_p - c_v}{c_v}$$

$$\gamma = \frac{f+2}{f}$$

Isotropenindex:

$$TV^{\gamma-1}=\mathrm{const}(pv)V^{\gamma-1}$$
 $=pV^{\gamma}=\mathrm{const}$ $T^{\gamma}p^{1-\gamma}=\mathrm{const}$

Definition 21 Adiabatengleichungen:.

$$\begin{split} pV^{\gamma} &= \text{const}, p \sim V^{-\gamma} \\ TV^{\gamma-1} &= \text{const}, T \sim V^{1-\gamma} \\ T^{\gamma}p^{1-\gamma} &= \text{const}, T^{\gamma} \sim p^{\gamma-1} \end{split}$$

Temperaturerhöhung ist bei konstantem Volumen effektiver als bei konstantem Druck

• Isobar: $\Delta Q = \Delta h - \Delta w$

• Isochor: $\Delta Q = \Delta u$

$$C_v = \frac{f}{2}R, c_p = \frac{f+2}{2}R = \underbrace{\frac{f}{2}R}_{c-V} + R$$