Análise de Séries Temporais - Trabalho 2

Davi Guerra Alves - Henrique Oliveira Dumay

2023-07-02

Apresentação

A série analisada consiste na série número 1686 pertencente ao banco de dados da competição de previsão M3, disponível no pacote Mcomp do software R. A série descreve o número de carregamentos com código TD-AUTOUNITS, mensalmente, de outubro de 1984 a setembro de 1993.

Figure 1: Comportamento da série ao longo do tempo

Decomposição MSTL

Série Original

Figure 2: Decomposição MSTL

A decomposição MSTL mostra os componentes de tendência, sazonalidade e erro da série estudada. Percebe-se a presença de uma tendência crescente, com múltiplas sazonalidades que apesentam mudança do comportamento ao longo do tempo. É possível observar, graficamente, um alargamento da sazonalidade ao fim da série quando comparando ao início da série.

Modelos ARIMA

A presença do componente de tendência explicita a não-estacionaridade da série original. A função ndiffs() é utilizada para estimar o número de diferenças exigidas para tornar a série estacionária por meio de um teste de raíz unitária, com a hipótese nula de que a série tem raízes estacionárias contra a hipótese alternativa de que a série tem raíz unitária. O teste retorna o menor número de diferenças exigidas para o teste em um nível de significância de 95%. Já a função nsdiffs() utiliza testes de raíz unitária para determinar o número de diferenças sazonais para tornar a série estacionária.

Com o uso das funções acima, obteve-se o valor para d=1 e D=0. Os modelos candidatos terão a forma:

$$SARIMA(p, 1, q) \times (P, 0, Q)_{12}$$

A estacionariedade da série pode ser testada utilizando o teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS), com a hipótese nula de que a série é estacionária. O teste resulta em um valor de 0.0221285, com p-valor de 0.1, que não nos permite rejeitar a hipótese nula a um nível de significância $\alpha = 0,05$.

Consideramos que a série é, agora, estacionária, observamos os gráficos da função de autocorrelação (ACF) e da função de autocorrelação parcial (PACF) em busca de possíveis autocorrelações entre os diferentes atrasos da série. Os gráficos a seguir ilustram a série diferenciada, assim como os gráficos das funções de ACF e PACF.

Figure 3: Gráficos ACF e PACF

Dos gráficos apresentados, pode-se afirmar que a série diferenciada não apresenta um padrão claro de autocorrelações simples e sazonais que permita inferir diretamente a modelagem. Neste sentido, serão testados valores diferentes para p, P, q e Q e os diferentes modelos serão comparados por meio do critério AIC.

Para os diferentes valores de (p, q, P, Q) teremos:

```
## p = 0 , q = 0 , P = 0 , Q = 0 , AICc = 1782.086
## p = 0 , q = 1 , P = 0 , Q = 0 , AICc = 1772.446
## p = 0 , q = 3 , P = 0 , Q = 0 , AICc = 1765.736
## p = 2 , q = 3 , P = 0 , Q = 0 , AICc = 1745.548
## p = 0 , q = 2 , P = 1 , Q = 0 , AICc = 1745.396
## p = 1 , q = 1 , P = 1 , Q = 0 , AICc = 1744.079
## p = 2 , q = 2 , P = 1 , Q = 0 , AICc = 1743.72
## p = 3 , q = 3 , P = 1 , Q = 0 , AICc = 1741.292
## p = 0 , q = 1 , P = 1 , Q = 1 , AICc = 1739.715
## p = 0 , q = 2 , P = 1 , Q = 1 , AICc = 1735.097
## p = 1 , q = 1 , P = 1 , Q = 1 , AICc = 1733.713
```

O modelo com menor AICc foi o $SARIMA(1,1,1) \times (1,0,1)_{12}$.

Os coeficientes do modelo proposto, portanto, serão obtidos do cálculo da função Arima com o modelo acima proposto. Os coeficientes do modelo terão a seguinte forma:

$$\phi_1 = 0,3152; \theta_1 = -0,9218; \varphi = 0,9606; \vartheta = -0,7359$$

Para o modelo ARIMA utilizando transformação Box-Cox, os valores para d e D utilizando as funções ndiffs() e nsdiffs() são, respectivamente, 1 e 0. De acordo com o teste KPSS, não se pode rejeitar a hipótese nula da série transformada ser estacionária (KPSS = 0.021624 e p-valor = 0.1). O valor do parâmetro λ da transformação de Box-Cox é 0.09559902.

Figure 4: Gráficos ACF e PACF da série transformada (BoxCox)

A análise gráfica da funções de autocorrelação e autocorrelação da série transformada não permite a inferência a respeito de seus parâmetros de maneira clara. Procede-se a pesquisa de valores de p, q, P e Q de forma manual de acordo com o critério de AICc.

```
## p = 0 , q = 0 , P = 0 , Q = 0 , AICc = 153.6586
## p = 0 , q = 1 , P = 0 , Q = 0 , AICc = 142.2782
## p = 0 , q = 3 , P = 0 , Q = 0 , AICc = 136.6817
## p = 1 , q = 3 , P = 0 , Q = 0 , AICc = 136.3155
## p = 2 , q = 3 , P = 0 , Q = 0 , AICc = 136.3157
## p = 0 , q = 1 , P = 1 , Q = 0 , AICc = 107.1571
## p = 0 , q = 1 , P = 1 , Q = 1 , AICc = 103.1689
## p = 0 , q = 2 , P = 1 , Q = 1 , AICc = 99.51568
## p = 1 , q = 1 , P = 1 , Q = 1 , AICc = 98.80396
## p = 3 , q = 3 , P = 1 , Q = 1 , AICc = 95.45263
```

Para a série transformada, temos que o menor nível de AICc foi encontrado com os parâmetros p=3, q=3, P=1 e Q=1, cujo modelo pode ser descrito por $SARIMA(3,1,3)\times (1,0,1)_{12}$, com coeficientes iguais a:

$$\phi_1 = 1,2866; \phi_2 = -1,0479; \phi_3 = 0,2771; \theta_1 = -2,0555; \theta_2 = 2,0480. \theta_3 = -0,9371; \varphi = 0,9995; \vartheta = -0,9649, \varphi = -0,9$$

Análise de Resíduos

Os resíduos do modelo ARIMA sem transformação apresentam o seguinte comportamento gráfico:

Figure 5: Resíduos ARIMA sem transformação

Já os resíduos do modelo ARIMA com transformação Box-Cox apresentam o seguinte comportamento gráfico:

Figure 6: Resíduos ARIMA com transformação boxcox

0

1

2

0.5

1.0

1.5

Graficamente, observa-se que os resíduos de ambos os modelos parecem distribuir-se simetricamente ao retor da origem e não apresentam autocorrelações bem definidas. Precisa-se, entretanto, testá-los para estacionariedade, independência e distribuição normal. Essas hipóteses serão testadas conforme se segue, todas assumindo nível de significância $\alpha = 0.05$.

A estacionaridade será testada a partir do teste Kwiatkowski-Phillips-Schmidt-Shin (KPSS), com a hipótese nula de que a série é estacionária. O teste para o modelo $SARIMA(1,1,1) \times (1,0,1)_{12}$ e para o mesmo modelo, utilizando a transformação de Box-Cox:

Modelo	KPSS	P-valor
SARIMA sem Box-Cox SARIMA com Box-Cox		0.1 0.1

De acordo com o teste KPSS, não se pode rejeitar a hipótese de estacionariedade dos resíduos de ambos os modelos.

O teste de independência dos resíduos é realizado a partir do teste Ljung-Box, com a hipótese H_0 de que os resíduos são idenpendentemente distribuídos. O teste apresenta os seguintes valores para os dois modelos:

Modelo	Chi-Quadrado	Graus de liberdade	P-valor
SARIMA sem Box-Cox	23.72163	15	0.069974 0.2252448
SARIMA com Box-Cox	18.7508953	15	

Os resultados acima mostram que a independência dos resíduos não pode ser rejeitada ao nível de significância de 5% em ambos os modelos.

A normalidade dos resíduos é testada com o teste Shapiro-Wilk de Normalidade, com H_0 de que os resíduos apresentam distribuição normal. O valor do teste estatístico para os dois modelos trabalhados é:

Modelo	W	P-valor
SARIMA sem Box-Cox SARIMA com Box-Cox	0.986694 0.9846868	$\begin{array}{c} 0.3620588 \\ 0.2527214 \end{array}$

Do resultado acima, não se pode rejeitar a hipótese de normalidade dos resíduos de ambos os modelos, com nível de significância de 5%.

Previsões

As previsões dos modelos:

Figure 7: Previsões dos modelos ARIMA

Modelos ETS

O modelo ETS (Error, trend and seasonal) permite descrever os modelos de alisamento exponencial em função dos tipos de suas componentes: tendência, sazonalidade e erro. O modelo utiliza três caracteres como identificação de acordo com a terminologia adotada por Hyndman et al. (2002) e Hyndman et al. (2008).

A primeira letra se refere ao componente do erro; a segunda, ao componente da tendência e a terceira, da sazonalidade. A série anteriormente descrita apresenta tendência e sazonalidade claras à decomposição realizada e, portanto, trabalharemos com componentes de modelagem que contenham essas características.

Os modelos que apresentam as características observadas na decomposição e seus respectivos AICcs, considerando um modelo não transformado e um modelo com transformação de Box-Cox, estão representados na tabela abaixo:

Parâmetros	AICc Modelo sem Box-Cox	AICc Modelo com Box-Cox
AAA	1950.568	290.3203
AAA Dumped	1953.429	295.7952
MAA	1947.757	288.9366
MAA Dumped	1942.956	297.1602
MAM	1925.053	292.4207
MAM Dumped	1928.537	291.7428
MMM	1923.268	300.8768
MMM Dumped	1928.128	293.2297

O modelo com menor AICc e, portanto, o modelo com melhor desempenho comparativo, para o modelo não transformado é o "MMM", em que apresenta componentes multiplicativos para previsões de erros, tendência e sazonalidade. Já para o modelo com transformação de Box-Cox, o modelo com menor AICc é o "MAM" com dumped.

O modelo selecionado sem transformação apresenta a seguinte estrutura:

$$\mu_{t} = l_{t-1}b_{t-1}s_{t-m}$$

$$l_{t} = l_{t-1}b_{t-1} + \frac{\alpha\epsilon_{t}}{s_{t-m}}$$

$$b_{t} = b_{t-1} + \frac{\beta\epsilon_{t}}{s_{t-m}l_{t-1}}$$

$$s_{t} = s_{t-m} + \frac{\gamma\epsilon_{t}}{l_{t-1}b_{t-1}}$$

Enquanto o modelo selecionado para o conjunto de dados transformados por Box-Cox tem a seguinte estrutura:

$$\mu_{t} = (l_{t-1} + \phi b_{t-1}) s_{t-m}$$

$$l_{t} = (l_{t-1} + \phi b_{t-1}) (1 + \alpha \epsilon_{t})$$

$$b_{t} = \phi b_{t-1} + \beta (l_{t-1} + \phi b_{t-1}) \epsilon_{t}$$

$$s_{t} = s_{t-m} (1 + \gamma \epsilon_{t})$$

Decomposition by ETS(M,M,M) method

Figure 8: Decomposição ETS

Utilizando o modelo ETS com uma transformação do tipo Box-Cox

Resíduos

Os resíduos do modelo ETS sem transformação selecionado são ilustrados na figura a seguir:

Figure 9: Análise de Resíduos do ETS

Enquanto os gráficos para o modelo ETS selecionado usando tranformação de Box-Cox são ilustrados abaixo:

Figure 10: Análise de Resíduos do ETS do modelo com Box-Cox

Observa-se que os resíduos parecem comportar-se de maneira aleatória, com distribuição normal e sem autocorrelações importantes entre diferentes intervalos. Os testes formais encontram-se na tabela abaixo, a exemplo do anteriormente realizado:

Teste	Valor do teste	P-valor
KPSS	0.123	0.1
Box-Ljung	32.503	0.038
Shapiro-Wilk	0.988	0.416

Teste	MMM sem dumped	p-valor	MAM com dumped Box-Cox	p-valor
KPSS	0.12301	0.1	0.2145	0.1
Ljung-Box	25.522	0.038	41.505	0.003
Shapiro-Wilk	0.98751	0.416	0.99443	0.944

Agora analisando o modelo ETS(M,M,M), com a transformação boxcox, temos os seguintes resultados:

Figure 11: Análise de Resíduos do ETS com boxcox

Os resultados acima apresentados sugerem que os resíduos do modelo são estacionários, apresentam distribuição normal, entretanto, é possível a rejeição da hipótese nula de independência.

Teste	Valor do teste	P-valor
KPSS	0.215	0.1
Box-Ljung	32.711	0.005
Shapiro-Wilk	0.994	0.944

Uma previsão do modelo para 12 novos períodos é ilustrada abaixo:

Previsão ETS 'MMM'

Figure 12: Previsão ETS

Previsão ETS 'MMM' com transformação boxcox

Figure 13: Previsão ETS com transformação boxcox

Resultados

```
h = 5
#comparar os 4 modelos com os modelos abaixo
fit_auto_arima = auto.arima(serie) %>% forecast() %>% accuracy()
fit_ses = ses(serie, h=h) %>% forecast() %>% accuracy()
fit_holt = holt(serie, h=h) %>% forecast() %>% accuracy()
fit_ets = ets(serie) %>% forecast() %>% accuracy()
fit_stlf = stlf(serie, h=h) %>% forecast() %>% accuracy()
fit_bats = bats(serie) %>% forecast() %>% accuracy()
fit_tbats = tbats(serie) %>% forecast() %>% accuracy()
acuracia <- rbind(fit_auto_arima[3],</pre>
                  fit_ses[3],
                  fit_holt[3],
                  fit_ets[3],
                  fit_stlf[3],
                  fit_bats[3],
                  fit_tbats[3])
modelos = c("auto arima", "ses", "holt", "ets", "stlf", "bats", "tbats")
```

```
resultados = cbind(modelos, round(acuracia,3))
kable(resultados,col.names = c("Modelo", "Acuracia"),align = "c")
```

Modelo	Acuracia
auto arima	490.566
ses	736.233
holt	737.822
$_{ m ets}$	487.182
stlf	483.706
bats	458.351
tbats	469.631