

Winter 2017/18, Term 2 Timm Treskatis

Specifying Solvers for Linear Systems in FEniCS

1 General Workflow

1. Assemble the matrix A and the right hand side b of the linear system Ax = b.

Example:

```
A = assemble(dot(grad(u), grad(v))*dx) # stiffness matrix
b = assemble(f*v*dx) # load vector
```

2. Apply Dirichlet boundary conditions, if applicable.

Example:

```
bc.apply(A) # apply boundary conditions to A only
bc.apply(b) # apply boundary conditions to b only
bc.apply(A,b) # apply boundary conditions to both A and b
```

If A or b change in a time loop, remember to re-apply the boundary conditions after each such change.

3. Create a solver object for linear systems with the matrix A.

Example:

```
# solve linear systems by matrix factorisation (direct solver):
solver = LUSolver(A)
# solve linear systems with a Krylov subspace method (iterative solver):
solver = KrylovSolver(A, 'alg') # replace 'alg' with 'cg', 'minres' or 'gmres'
If A changes in a time loop, remember to update the solver after each such change:
solver.set_operator(A)
```

- 4. Specify additional parameters (see below).
- 5. Solve the linear system.

Example:

```
u = Function(V) # if not already defined solver.solve(u.vector(), b) # solve Ax = b and write the solution to u
```

2 Direct Solvers

LU Factorisation

```
directsolver = LUSolver(A) directsolver.parameters.symmetric = False If you have to solve multiple linear systems with the same matrix A but different right hand sides b, use directsolver.parameters.reuse_factorization = True to keep the matrices L and U in memory.
```

Cholesky Factorisation

```
directsolver = LUSolver(A)
directsolver.parameters.symmetric = True
```

If you have to solve multiple linear systems with the same matrix A but different right hand sides b, use

directsolver.parameters.reuse_factorization = True

to keep the matrix L in memory.

3 Iterative Solvers

CG. MINRES and GMRES

```
# CG-method:
iterativesolver = KrylovSolver(A,'cg')
# CG-method preconditioned with incomplete Cholesky factorisation
iterativesolver = KrylovSolver(A,'cg','icc')
# Or use 'minres' or 'gmres' instead of 'cg'. To list all alternatives:
list_linear_solver_methods()
# Or use 'ilu' instead of 'icc' (for incomplete LU factorisation). To list all alternatives:
list_krylov_solver_preconditioners()
```

Initial Guess These iterative methods require an initial guess for the solution of the linear system. By default, the initial guess is the vector of all zeros. If you know of a better initial guess (e.g. the solution from a previous time step) set

iterativesolver.parameters.nonzero_initial_guess = True

Then

iterativesolver.solve(u.vector(), b)

will use the vector stored in u.vector() to start the CG, MINRES or GMRES iteration.

Stopping Criterion The above iterative solvers monitor the residual $||r_k|| = ||Ax_k - b||$ (where k is the iteration counter).

• To stop when

$$||r_k|| \leq \texttt{abstol}$$

use

iterativesolver.parameters.absolute_tolerance = abstol # e.g. 1E-9

• To stop when

$$||r_k|| \leq \mathtt{reltol}||r_0||$$

use

iterativesolver.parameters.relative_tolerance = reltol # e.g. 1E-6

• To stop when

 $k = \mathtt{maxiter}$

use

iterativesolver.parameters.maximum_iterations = maxiter # e.g. 1000