Extrapolation.

$$(x-m)^2 + (x-m)^2 = 1$$

Suchum is (m, m)

Habrabase a, transmodul $c = (a^2 + b^2)$
 $(m-c, n)$

Berio competate:

 $(x-m)^2 + (x-m)^2 = 1$
 $(x-m)^2 + (x-m)^2 - a^2$
 $(x-m)^2 + (x-m)^2 - a^2$

Eko. Firm sentum, talvakoe, bennpunkt og asymptoter for $3x^{2}-12x-y^{2}-6y-9=0$ $3(x^2-4x)-(y^2+6y)-9$ $= 3(x-2)^{2}-12-(y+3)^{2}+9-9$ $= 3(x-2)^{2} - (y+3)^{2} - 12 = 0$ $3(x-2)^2-(y+3)^2=12$ $\frac{(x-2)^2}{4} - \frac{(y+3)^2}{12} = 1$ Sunhum (2,-3)a = 4. Halvaksen a = 2 $b^2 = 12$, b = 213C= a2+62=16 Bremwide C=4 Acymptotu $y+3=\pm \frac{213}{3}(x-2)=\pm 13(x-2)$ (0,-3)

 $\times(\psi, y(t)$

$$\frac{\left(x-m\right)^{2}-\left(y-m\right)^{2}-1}{\left(x-m\right)^{2}}$$

X-m=acoht y-m=b sinht

V.S. cont-onnt=1

I variabel o y=f(x) t(x)

feb 14-14:42

feb 14-15:17

feb 14-15:29

feb 14-15:40

Kom ee på mivåflade

$$N_{c} = \{(x_{1}y_{1}z) \mid f(x_{1}y_{2}) = c\}$$

Eho. $f(x_{1}y_{1}z) = x^{2} + y^{2} + z^{2} = c$

Sfore med radius $C = (c \ge 0)$
 $f(x_{1}y_{1}z) = x^{2} + y^{2} - z^{2} = c$
 $C > 0$

Hyperty

 $C = 0$

Hyperty

 $C = 0$

M NTNU

 $C = 0$

feb 14-15:52