

Data Mining and Warehousing (03105430)

Prof. Dheeraj Kumar Singh, Assistant Professor Information Technology Department

CHAPTER-4

Data Pre-processing

No quality data, results in no quality mining!

What is Data Preprocessing?

- Allows to analyse and summarize main characteristics of data sets.
- Refers to steps applied to make data more suitable for data mining.

What is Data Preprocessing?

Used to deal with:

Incomplete data: missing attribute values, unavailable data properties, or containing only summary data.

Noisy data: random errors or incorrect attribute values

Inconsistent data: containing discrepancies in codes or names, outliers.

Significance of Preprocessing

- Data in the real world is generally incomplete, noisy and inconsistent.
- Quality decisions must be based on quality data

Index	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-set…
2	4.9	nan	1.4	0.2	nan
3	4.7	3.2	1.3	0.2	Iris-set…
4	??	3.1	1.5	0.2	Iris-set…
5	5	3.6	###	0.2	Iris-set…

Image source: NPTEL

Statistical Descriptions of Data

- Better understanding of data is important for successful data preprocessing.
- Provides a way to characterize the central tendency and dispersion of data.
- Helps in understanding distribution of data.
- Data quality can be assessed in terms of

Accuracy

Timeliness

Completeness

Believability

Consistency

Value added

Interpretability

Accessibility

Statistical Description Measure

- Measures of central tendency:
 - Mean
 - Median
 - Mode
 - Midrange

- Measures of Data Dispersion:
 - Range
 - Quartiles (five number summary)
 - Interquartile range (IQR)
 - Variance
 - Standard deviation

Statistical Descriptions of Data

- **Distributive Measure:** sum(), count(), max(), min() etc.
 - Partition the data into subsets and merge values obtained for each subsets.
- Algebraic Measure: average() or mean()
 - Computed as sum() /count().
- Holistic Measure: median()
 - Computed on entire dataset as a whole.

Measuring the Central Tendency: Mean

Arithmetic Mean or Average

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{or,} \quad \mu = \frac{\sum x}{N}$$

Weighted Arithmetic Mean on Weighted Average

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Trimmed Mean
 - problem with the mean is its sensitivity to extreme (e.g., outlier)
 - offset this effect, mean is obtained after chopping off values at high and low extremes.

Measuring the Central Tendency: Median

- Median is a better measure of center of data for skewed (asymmetric) data.
- Given dataset of N distinct values is sorted in numerical order.
 - If N is odd, then the median is the middle value,
 - otherwise median is the average of the two middle values.
- Suppose that a given data grouped in intervals according to frequency.

$$median = L_1 + (\frac{N/2 - (\sum f)l}{f_{median}})c$$

where L1 is lower bound of median interval, N is number of values in entire data set, $(\sum f)l$ is sum of frequencies of all of intervals that are lower than median interval. f _{median} is frequency of median interval, and c is the width of median interval.

Measuring the Central Tendency: Mode and Midrange

- Value that occurs most frequently in the data set.
- It is possible for the greatest frequency to correspond to several different values, which results in more than one mode.
- Data sets with two or more modes is multimodal.
 - Unimodal: with only one mode.
 - Bimodal: with two modes.
 - Trimodal: with three modes.
- If each data value occurs only once, then there is no mode.
- Midrange is average of the largest and smallest values in the set.

Empirical relation: Mean, Median and Mode

• Empirical formula: $mean-mode=3\times(mean-median)$

Mean, median, and mode of symmetric versus positively and negatively skewed data

Measuring the Dispersion of Data

- The degree to which numerical data tend to spread is called the dispersion, or variance of the data.
- The k_{th} percentile of a set of data in numerical order is the value x_i having property that k percent of the data entries lie at or below x_i .
- Range, Quartiles, and Inter-quartile range(IQR):
 - Range: Difference between the largest (max()) and smallest (min()) values.
 - Quartiles: First quartile: Q₁ (25th percentile), Third quartile: Q₃ (75th percentile)
 - Inter-quartile range: Distance between first and third quartiles, IQR =
 Q₃-Q₁
 - Five-number summary: min, Q₁, M, Q₃, max
 - Outlier: usually, a value higher/lower than 1.5 x IQR

Measuring the Dispersion of Data: Boxplot Analysis

- way of visualizing a distribution.
- A boxplot incorporates the five-number summary:
 - Data is represented with a box.
 - The ends of the box are at the first and third quartiles, i.e., height of the box is IRQ.
 - The median is marked by a line within box.
 - Whiskers: two lines outside the box extend to Minimum and Maximum.

Boxplot of unit price data for items sold at four branches of *a shop*

Variance and Standard Deviation

• The variance of N observations, $x_1, x_2, ... x_N$, is

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{n} (x_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^{n} x_i^2 - \mu^2$$

- where μ is the mean value of the observations.
- Standard deviation, σ is the square root of variance σ^2 .
- σ measures spread about mean and should be used only when mean is chosen as the measure of center.
- σ =0 only when there is no spread, i.e. , when all observations have same value. Otherwise σ > 0.

Data Visualization: Histogram Analysis

- Plotting histograms, or frequency histograms, is a graphical method for summarizing distribution of a given attribute.
- Categorical attributes histograms are referred as a bar chart, where as for numeric attribute, the term histogram is preferred.
- A histogram for partitions data distribution of given attribute into disjoint subsets, called buckets.
- The width of each bucket is uniform.
- Each bucket is represented by a rectangle whose height is equal to the relative frequency of values at the bucket.

Data Visualization: Histogram Analysis

Example

Table of unit price data for items sold

<u>Unit price (\$)</u>	Count of items sold
40	275
43	300
47	250
74	360
75	515
78	540
115	320
117	270
120	350

Histogram for the data set of Table

Image source: Data Mining Concepts and Techniques Book

Data Visualization: Quantile Plot

- Displays all of data for given attribute, allowing user to assess both overall behavior and unusual occurrences.
- Allows us to compare different distributions based on their quantiles.
- It plots quantile information.
- For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

$$f_i = (i - 0.5) / N$$

These numbers increase in equal steps of 1/N, ranging from 1/2N to 1-1/2N.

Data Visualization: Quantile Plot

Example

Table of unit price data for items sold

<u>Unit price (\$)</u>	Count of items sold
40	275
43	300
47	250
74	360
75	515
78	540
115	320
117	270
120	350

Quantile Plot for unit price of Table

Image source: Data Mining Concepts and Techniques Book

Data Visualization: Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against corresponding quantiles of another.
- Allows user to view whether there is a shift in going from one distribution to another.
- Let x_1 , ... x_N , and y_1 , ... y_M be two sets of observations, where each data set is sorted in increasing order.
 - If M = N then $f_i = (i 0.5) / N$
 - If M < N then $f_i = (i 0.5) / M$
- This computation typically involves interpolation.

Data Visualization: Quantile-Quantile (Q-Q) Plot

Example

Each point corresponds to same quantile for each data set and shows the unit price of items sold at branch 1 versus branch 2 for that quantile.

Q-Q Plot of unit price data from two different branches

Image source: Data Mining Concepts and Techniques Book

Data Visualization: Scatter plot

- Used to find a relationship, pattern, or trend between two numerical attributes.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane.
- Useful method for providing a first look at bivariate data to see clusters of points and outliers.
- When dealing with several attributes, the scatter-plot matrix is a useful extension to the scatter plot.
- Given n attributes, a scatter-plot matrix is an nxn grid of scatter plotsthat provides a visualization of each attribute with every other attribute.

Data Visualization: Scatter plot

Example

Table of unit price data for items sold

Unit price (\$)	Count of items sold
40	275
43	300
47	250
74	360
75	515
78	540
115	320
117	270
120	350

Scatter Plot for unit price of Table

Image source: Data Mining Concepts and Techniques Book

Data Visualization: Loess Curve

- Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence.
- The word loess is short for "local regression".
- Loess curve is fitted by setting two parameters: α , smoothing parameter, and λ , the degree of the polynomials that are fitted by the regression.
- While α can be any positive number (typical values are between 1=4 and 1), λ can be 1 or 2.
- The goal in choosing α is to produce a fit that is as smooth as possible without unduly distorting the underlying pattern in the data.

Data Visualization: Loess Curve

Example

Table of unit price data for items sold

Unit price (\$)	Count of items sold
40	275
43	300
47	250
74	360
75	515
78	540
115	320
117	270
120	350

Loess Curve for unit price of Table

Image source: Data Mining Concepts and Techniques Book

Tasks involved in Data Pre-processing

Data Cleaning: Fill missing Data

- Ignore the tuple: usually done when most of attribute values are missing
- Fill in the missing value manually: Tedious & infeasible sometime
- Use a global constant to fill in the missing value: e.g., unknown, a new class
- Use the attribute mean to fill in the missing value: calculate mean for all samples of the same class
- Use the most probable value to fill in the missing value: based on inference

Data Cleaning: Noisy Data

- Meaningless data or unknown values
- Cannot interpreted by machine
- Error in a measured variable
- Incorrect attribute values
- Sources of such data:
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - technology limitation
 - inconsistency in naming convention

Data Cleaning: Handling Noisy Data

- **Binning Method:** sort the data and partition into segments of equal size called bins. Then binning methods are performed on each partition.
- **Clustering:** groups the similar data in a cluster and detect outliers.
- Regression: made smooth by fitting in to a regression function.
- Semi-automated method: human detect suspicious values and update manually.

Data Cleaning: Binning Method

- Sort the input data
- Create bins according to given bin size
- Partition data in to equal segment and arrange bins
- Apply smoothing by
 - bin mean
 - bin boundaries
 - bin medians

Data Cleaning: Binning Method

• Example: Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15

Bin 2: 21, 21, 24

Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9

Bin 2: 22, 22, 22

Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15

Bin 2: 21, 21, 24

Bin 3: 25, 25, 34

Smoothing by bin median:

Bin 1: 8, 8, 8

Bin 2: 21, 21, 21

Bin 3: 28, 28, 28

Data Cleaning: Clustering

- Outliers may be detected by clustering
- In clustering, similar values are organized into groups.
- Intuitively, values that fall outside of the set of clusters may be considered outliers

Data Cleaning: Regression

- Regression fits the data to a function.
 - Linear regression
 - Multiple linear regression

Data Cleaning: Handling Inconsistent Data

- Manual correction using external references
- Semi-automatic using various tools
 - To detect violation of known functional dependencies and data constraints
 - To correct redundant data

Image source : Google

Data Transformation

- Data transformed or consolidated into forms appropriate for mining.
 - To detect violation of functional dependencies and data constraints
 - To correct redundant data

•Transformation can involve:

- Smoothing: remove noise from data (binning, clustering, regression)
- Aggregation: summarization, data cube construction
- Generalization: uses concept hierarchy
- Normalization: scaled to fall within a small, specified range
- Attribute or feature construction: New attributes constructed, added from the given set of attributes

Data Transformation: Normalization

- Solve issue of features with different scales for comparing features of data.
 - min-max normalization

$$v' = \frac{v - min_A}{max_A - min_A}(new_max_A - new_min_A) + new_min_A$$

Where minA and maxA are minimum and maximum values of an attribute A.

- z-score normalization
$$v' = \frac{v - mean_A}{stand_dev_A}$$

Where meanA and stand_devA are mean & standard deviation of attribute A.

normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 Where j is the smallest integer such that Max(| v' |)<1

Data Transformation: Normalization

- min-max normalization example
 - Suppose that the minimum and maximum values for an attribute income are \$12,000 and \$98,000, respectively. We would like to map income to range [0,1]. By min-max normalization, a value of \$73,600 for income is transformed as following:

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$
=(73600-12000)/(98000-12000) x (1-0) +0 = 0.716

Data Transformation: Normalization

- min-max normalization example
 - Suppose that the mean and standard deviation of values for the attribute income are \$54,000 and \$16,000, respectively. With zscore normalization, a value of \$73,600 for income is transformed

as:

$$v' = \frac{v - mean_A}{stand_dev_A}$$
=(73600-54000)/16000 = 1.225

Data Transformation: Normalization

- min-max normalization example
 - Suppose that the recorded values of A range from -986 to 917. The maximum absolute value of A is 986.

To normalize by decimal scaling, we divide each value by 1,000

(i.e., j = 3)
$$v' = \frac{v}{10^{j}}$$

So, -986 normalizes to -986/1000= - 0.986

917 normalizes to 917/1000 = 0.917

Data Reduction

- Mining on huge amounts of data can take a long time, making such analysis infeasible.
- Data reduction applied to obtain a reduced representation of data set that is much smaller in volume, yet closely maintains integrity of the original data.
- Strategies for data reduction:
 - Data cube aggregation
 - Attribute subset selection
 - Dimensionality reduction
 - Numerosity reduction
 - Discretization and concept hierarchy generation

Data Reduction: Data cube aggregation

- Applied to the data set in the construction of a data cube.
- Supports multiple level of aggregation in data cube.
- Use the smallest representation capable to solve the task.

Image source: Data Mining Concepts and Techniques Book

Data Reduction: Attribute Subset Selection

- Data sets for analysis may contain hundreds of attributes, many of which may be irrelevant to the mining task or redundant.
- Attribute subset selection removes irrelevant attributes or dimensions.
- For n attributes, there are 2ⁿ possible subsets. An exhaustive search for the optimal subset of attributes can be prohibitively expensive.
- Basic heuristic methods
 - Stepwise forward selection
 - Stepwise backward elimination
 - Combination of forward selection and backward elimination
 - Decision tree induction

Data Reduction: Forward Attribute Subset Selection

- Forward selection starts with an empty set of attributes as reduced set.
- The best of original attributes is determined and added to reduced set.
- At each iteration, best of remaining original attributes is added to the set.
- Example:

```
Initial attribute set: {A1, A2, A3, A4, A5, A6}

Initial reduced set: {}

=> {A1}

=> {A1, A4}

=> Reduced attribute set: {A1, A4, A6}
```


Data Reduction: Backward elimination

- Backward selection starts with the full set of attributes.
- At each step, it removes the worst attribute remaining in the set.
- Example:

```
Initial attribute set: {A1, A2, A3, A4, A5, A6} => {A1, A3, A4, A5, A6}
```

=> {A1, A4, A5, A6}

=> Reduced attribute set: {A1, A4, A6}

Combination of forward selection and backward elimination

- It combines forward selection and backward elimination.
- At each step, the procedure selects the best attribute and removes the worst from the remaining attributes.

Data Reduction: Decision tree induction

- Decision tree classification uses attribute selection measures, such as information gain for selecting best attributes based on given task.
- Example:

Data Reduction: Dimensionality reduction

- Data encoding or data compression mechanisms are used to reduce the original data.
- Data reduction can be
 - Lossless

String compression algorithms

Lossy

Wavelet transforms

Principal components analysis.

String Compression Algorithms

- Several algorithms for string compression are available.
- Typically lossless
- Allow only limited manipulation of the data.

Discrete wavelet transform (DWT):

- Linear signal processing technique that, when applied to a n-dimensional data vector X, transforms it to a numerically different vector X' of same length, of wavelet coefficients.
- Compressed approximation of data can be retained by storing only a small fraction of strongest wavelet coefficients.
- Similar to discrete Fourier transform (DFT), however, the DWT achieves better lossy compression.
- Wavelet transforms have many real-world applications, such as compression of fingerprint images, computer vision, time-series data analysis.

DWT: Hierarchical Pyramid Algorithm

- Length L, input data vector must be an integer power of 2.
 - This condition can be met by padding data vector with zeros as(L >= n).
- Each transform involves two functions applied to pairs of data points in X:
 - Applies data smoothing (e.g., sum or weighted avg.)
 - Then performs a weighted difference to bring out detailed features of data. This results in two sets of data of length L/2.
- Applies these two functions recursively, until resulting data sets obtained are of length 2.
- Selected values from data sets obtained in above iterations are designated wavelet coefficients of the transformed data.

Principal Components Analysis

- Given N data vectors from k-dimensions, Principal components analysis, or PCA (also called the Karhunen-Loeve, or K-L, method), searches for k ndimensional orthogonal vectors that can best be used to represent the data, where k >n.
- PCA combines essence of attributes by creating an alternative, smaller set of variables.
- PCA can be applied to ordered and unordered attributes.
- It can handle sparse data and skewed data.
- PCA tends to be better at handling sparse data, whereas wavelet transforms are more suitable for data of high dimensionality.

Principal Components Analysis Procedure

- The input data are normalized, so that each attribute falls within same range.
- PCA computes k orthonormal vectors that provide a basis for normalized data.
- The input data are a linear combination of the principal components.
- The principal components are sorted in order of decreasing "significance".
- The principal components essentially serve as a new set of sorted axis, such that the first axis shows data having most variance, the second axis shows the next highest variance, and so on.
- The size of data can be reduced by eliminating weaker components with low variance.

Principal Components Analysis Example

 Figure shows, first two principal components, Y1 and Y2, for the given data set originally mapped to the axes X1 and X2.

Numerosity Reduction

- Data are replaced or estimated by alternative, smaller data representations using
 - parametric models

Instead of the actual data, only the data parameters need to be stored.

Example: Regression and Log-linear models

nonparametric methods

Used to store reduced representations of the data.

Example: histograms, clustering, and sampling.

Parametric models: Regression

Linear regression: The data are modeled to fit a straight line.

For example, a random variable, y can be modeled as a linear function of another random variable, x using following equation:

$$y = w x + b$$
,

where w and b are regression coefficients used to specify the slope of the line and the Y-intercept, respectively.

- Multiple linear regression: Allows a response variable, y to be modeled as a linear function of two or more predictor variables.
 - For example, a random variable, Y can be modeled as a linear function of two random variable, X_1 , X_2 using following equation:

$$Y = b_0 + b_1 X_1 + b_2 X_2$$

where w, b_1 and b_2 are regression coefficients.

Parametric models: Log-Linear Models

- approximates discrete multidimensional joint probability distributions.
- Useful in dimensionality reduction and data smoothing.
- Used to handle skewed data.
- Good scalability for up to 10 or so dimensions.

Nonparametric models: Histogram

- Histograms use binning to approximate data distributions.
- Partitions the data distribution into disjoint subsets also called buckets.
- **Example:** Following data are a sorted list of prices of commonly sold items:

1, 1, 5, 5, 5, 5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 28, 28, 30, 30, 30.

Histogram using **singleton buckets** (each bucket represents one price value/frequency pair)

Nonparametric models: Clustering

- Partition data set into groups called clusters, such that objects within a cluster are similar to one another and dissimilar to objects in other clusters.
- For data reduction, the cluster representations of data are used to replace the actual data.
- It is more effective for data that can be organized into distinct clusters than for smeared data.
- Quality of clusters measured by their diameter (max distance between any two objects in cluster) or centroid distance (average distance of each cluster object from its centroid).

Nonparametric models: Sampling

- Choose a representative subset of the data.
- Sampling complexity is potentially sublinear to the size of the data.
- Other data reduction techniques can require at least one complete pass through D.
- For a fixed sample size, sampling complexity increases only linearly as the number of data dimensions increases, whereas techniques using histograms, for example, increase exponentially in n.
- Common ways of Sampling:
 - Simple random sample without replacement (SRSWOR)
 - Simple random sample with replacement (SRSWR)
 - Cluster sample
 - Stratified sample

SRSWOR and SRSWR Sampling

- SRSWOR of size s is created by drawing s of the N tuples from dataset D (s < N), such that all tuples are equally likely to be sampled.
- SRSWR is similar to SRSWOR, except that each time a tuple is drawn from
 D, it is recorded and then placed back in D so that it may be drawn again.

Data Object from **D**

Cluster and Stratified Sampling

- For Cluster sampling, the tuples in D are grouped into M mutually disjoint clusters, then an SRS of s clusters can be obtained, where s < M.
- In Stratified sampling, data set D is divided into mutually disjoint parts called strata, then a stratified sample of D is generated by obtaining an SRS at each stratum.

This helps ensure a representative sample, especially when the data are

skewed.

Data Discretization (Quantization)

- Reduce the number of values for a given continuous attribute by dividing the range of the attribute into intervals.
- Interval labels can then be used to replace actual data values.
- Replacing numerous values of a continuous attribute by a small number of interval labels reduces the original data.
- Types of discretization:

Concept Hierarchy Generation

- Reduce the data by collecting and replacing low level concepts (such as numeric values for the attribute age) by higher level concepts (such as young, middle-aged, or senior).
- Although detail is lost by such data generalization, the generalized data may be more meaningful and easier to interpret.

Concept Hierarchy of Location

Discretization and concept hierarchy generation for numeric data

- Wide diversity of possible data ranges and the frequent updates of data values for numerical attributes create difficulty for concept hierarchy.
- Concept hierarchies for numerical attributes can be constructed automatically based on data discretization.
- Methods:
 - Binning
 - histogram analysis
 - cluster analysis
 - entropy-based discretization
 - $-\chi^2$ -merging,
 - discretization by intuitive partitioning

Entropy-based discretization

- Entropy-based discretization is a supervised, top-down splitting technique.
- Given a set of samples S, if S is partitioned into two intervals S1 and S2 using threshold T on the value of attribute A, the information gain resulting from the partitioning is:

$$I(S,T) = \frac{|S_1|}{|S|} E(S_1) + \frac{|S_2|}{|S|} E(S_2)$$

- where entropy E, of S1 given m classes is: $E(S_1) = -\sum_{i=1}^m p_i \log_2(p_i)$ p_i is the probability of class i in S1.
- The process is recursively applied to partitions obtained until some stopping criterion is met, e.g., $E(S)-I(S,T)<\delta$

χ^2 -merging

- ChiMerge is a χ2 based discretization method
- Applies supervised, bottom-up approach by finding the best neighboring intervals and then merging these to form larger intervals, recursively.
- If two adjacent intervals have very similar class distribution (low $\chi 2$ values), then intervals can be merged. Otherwise, they should remain separate.
- Steps:
 - each distinct value is considered to be one interval.
 - $-\chi 2$ tests are performed for every pair of adjacent intervals.
 - Adjacent intervals with the least χ^2 values are merged together,
 - This merging process proceeds recursively until a predefined stopping criterion is met.

Discretization by intuitive partitioning

- 3-4-5 rule can be used to segment numeric data into relatively uniform, "natural" intervals.
- It partitions a given range into 3,4, or 5 equiwidth intervals recursively level-by-level based on the value range of the most significant digit.
 - If an interval covers 3, 6, 7 or 9 distinct values at the most significant digit, partition the range into 3 equi-width intervals.
 - If it covers 2, 4, or 8 distinct values at the most significant digit,
 partition the range into 4 intervals.
 - If it covers 1, 5, or 10 distinct values at the most significant digit,
 partition the range into 5 intervals.
- The rule can be recursively applied to each interval, for creating a concept hierarchy for given numerical attribute.

Discretization by intuitive partitioning: Example of 3-4-5 rule

Concept hierarchy generation for categorical data

- Categorical attributes have a finite number of distinct values, with no ordering among the values.
- Methods:
 - Specification of a partial ordering of attributes explicitly at the schema level by users or experts.
 - Specification of a portion of a hierarchy by explicit data grouping.
 - Specification of a set of attributes, but not of their partial ordering.
 - Specification of only a partial set of attributes.

Data Integration

- Combines data from multiple sources into a coherent store.
- These sources may include multiple databases, data cubes, or flat files.
- Issues:
 - How can equivalent real-world entities from multiple data sources be matched up? This is referred to as the entity identification problem.
 - **Solution: Schema integration -** integrate metadata from different sources
 - How to deal with Redundancy?
 - **Solution:** Some redundancies can be detected by **correlation analysis**.
 - How to detect and resolve data value conflicts?
 - **Solution:** Careful integration with special attention to structure of data.

DIGITAL LEARNING CONTENT

Parul[®] University

