### Bessel Functions I\_nu(x)



### Bessel Functions J\_nu(x)



Bessel  $I_{\nu}(x)$  for fixed x, as  $f(\nu)$ 



## Bessel $J_{\nu}(x)$ for fixed x



## Bessel $J_{\nu}(x)$ for fixed x



# Bessel Functions J\_nu(x) near 0 log – log scale



# Bessel Functions K\_nu(x) near 0 log – log scale



### Bessel Functions K\_nu(x)



### Bessel Functions Y\_nu(x)



## besselY(x, v) v = -0.1, -0.2, ..., -2



#### **Huber's function**



X











#### all.equal.numeric() -- not counting equal parts



х1

Rotation by  $\pi = 180^{\circ}$ 



### Histogram of replicate(100, mean(rexp(10)))







Stopping distance of cars (ft) vs. speed (mph) from **Ezekiel (1930)** help("paste") 









plot(x, type = "s")













