Theorems

John Doe

Ramon Casellas

21st April 2003

Chapter 1

This is NOT DOCBOOK

I have extended (for my own purposes) the DTD, using mathelement, and its content model that I saw on a mailing list (credit is due, contact me).

Définition 1.0.1 (Task). A task is something that has to be done, usually given by your boss, under the hypothesis that you do not want to. (Otherwise it is a pleasure, like working on DB2LaTeX).

Thérème 1.0.1 (Lazy man theorem). *Given a task to do, T Do not perform task T today, if it can be done tomorrow.*

Proof. A proof will be given tomorrow.

Définition 1.0.2 (Processus stationnaire). Un processus stochastique x(t) est dit **stationnaire** si $\forall n \in \mathbb{N}, \forall \tau, \forall t_0 < t_1 < t_2 < \ldots < t_n$ on a :

$$(x(t_0), \dots, x(t_n)) =_{\mathbb{L}} (x(t_0 + \tau), \dots, x(t_n + \tau))$$

$$\rho(\tau) = \frac{\text{cov}[x(t), x(t + \tau)]}{\sqrt{\text{var}[x(t + \tau)]\text{var}[x(t)]}}$$

- $\mathbb{E}[x(t)] = \lambda < \infty$
- $\mathbb{E}[(x(t) \lambda)^2] = \sigma^2 < \infty$
- $\mathbb{E}[(x(t) \lambda)(x(t + \tau) \lambda)] = \operatorname{cov}(\tau) < \infty$

$$\rho(\tau) = \frac{\text{cov}(\tau)}{\sigma^2}$$

Définition 1.0.3 (Processus Cumulatif (ang. Cumulant Process)). Soit x(t) un processus stochastique discret (resp. continu), et $t_0, t_1 \in \mathbb{N}$ (resp. $t_0, t_1 \in \mathbb{R}$). Le processus $X[t_0, t_1) \triangleq \sum_{t_0}^{t_1} x(t)$ (resp. $X[t_0, t_1) \triangleq \int_{t_0}^{t_1} x(t) dt$) est dit processus cumulatif (ou **processus d'accroissements**) de x(t).

Définition 1.0.4 (Processus à accroissements indépendants). Un processus x(t) est dit **à accroissements indépendants** si pour n'importe quelle suite d'instants de temps $0 = t_0 < t_1 < t_2 < \ldots < t_n$, les accroissements du processus $x(t_n) - x(t_{n-1}), x(t_{n-1}), \ldots, x(t_1) - x(t_0)$ sont indépendants.

Définition 1.0.5 (Processus à borne stationnaire). Un processus d'accroissements x(t) est borné stationnairement si $\forall h$

$$\lim_{a \to \infty} \sup_{t} \mathbb{P}\left\{ x(t+h) - x(t) \ge a \right\} = 0 \tag{1.1}$$

Définition 1.0.6 (Processus à mémoire longue (ang. Long Range Dependent)). Un processus x(t) stationnaire est dit <<à mémoire longue>> (ang. Long Range Dependent) si

$$\sum_{k=-\infty}^{\infty} |\rho_x(k)| = \infty \tag{1.2}$$

Définition 1.0.7 (Modèles de Trafic à Queue Lourde). Une variable aléatoire X est dit <<à queue lourde>> si $\exists \alpha, 0<\alpha<2$ et $\exists C$ tel que $x^{\alpha}\mathbb{P}(|X|>x)\to C$, quand $x\to\infty$, où C est une constante et α est l'index de la distribution. Un processus avec des distributions marginales à queue lourde est dit un processus à queue lourde.

Définition 1.0.8 (Auto-similarité). Un processus x(t) est dit <<auto similaire>> (self-similar) de paramètre H, si le processus $c^{-H}x(ct)$ et le processus x(t) sont équivalents en distribution. L'exemple classique de processus auto similaire est le processus mouvement fractionnaire Brownien (fBm) de paramètre H (paramètre de Hurst). Voir par exemple [1] (pp. 34) ou [2].

Bibliography

- [1] F. Surname, *Title of Book ABC*. Publisher, 2003. 1.0.8
- [2] F. Surname, *Title of Book DEF*. Publisher, 2003. 1.0.8