

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY East Delhi Campus, Surajmal Vihar Delhi - 110092

Pap	er Code:	ARA 21	1									
Subject: Kinematics and Dynamics of Machines									L 4	T /	P	Credits
Mar	king Sche	me							- 1	-		4
1.	Teachers	Continu	ous Eval	uation: 2	5 Marks							
4.	End Term	Theory	Examin	ation: 75	Marke	,						
INST	RUCTIO	NS TO I	PAPER	SETTER	S:				1	Mavimon	N.T. 1	The last
1.	There sho	here should be 9 questions in the end term examination and in Maximum Marks: 75										
	guestion No. 1 should be compulsory and cover the entire 11 l											
	objective or short answer type questions. It should be of 15 marks.										uld have	
8.00	Apart from Question No. 1, rest of the paper shall consist a f.c.										_	
											very unit	
1	unit. Each	question	should	be 15 m	arks.		oc usik	ca to an	tempt of	ny i que	estion fr	om each
4.	The questi	ne questions are to be framed keeping in view the learning outcome.										
2000	- ire requir	Cilicit U	f (scienti	fic) calc	ulators/1	log-table	es/ data-	tables m	av bo en	wified !		a:
Cours												
CO1:	Ability	Ability of students to implement the basic knowledge about components and layout of linkages in the assembly of a system/machine in terms of kingages.										
CO2:	, vointy	roomly of students to implement knowledge of the min-int										
	respect	respect to the displacement, velocity, and acceleration at any point in a link of a mechanism.										
CO3:												
CO4:	Ability	Ability of students to utilize basic concepts of toothod again.										
	the effe	the effects of friction in motion transmission and in machine components.										
Cours	e Outcom	es (CO)	to Prog	ramme	Outcom	os (DO)	Maci	ine com	ponents	•	W	
CO/PO	PO01	PO02	PO03	PO04	PO05	PO06		ping (So	cale 1: L	ow, 2: N		
CO1	3	3	3	3	2	1 000	PO07	PO08	PO09	PO10	PO11	PO12

CO/PO	PO01	PO02	to Prog	DO04	DOOR	10000	Mapping (Scale 1: Low, 2: Medium, 3: High PO07 PO08 PO09 PO10 PO11 PO12						
COL	3	2	1 003	PO04	PO05	PO06	PO07	PO08	PO09	PO10	PO11	PO12	
	2	3	3	3	_ 2	141	-	_	1	1	1	2	
CO2	3	3	3	3	2	-			1	1		2	
CO3	3	3	3	3	2				1	1	l	2	
CO4	3	3	3	2	2				1	1	1	2	
		<i>J</i>	3				-	<u>~</u>	1	1	1	2	

Mechanisms: Definition - Machine and Structure - Kinematic link, pair, and chain classification of Kinematic pairs - Constraint and motion - Degrees of freedom - Slider crank - single and double - Crank rocker mechanisms - Inversions, applications Introduction to Kinematic analysis and synthesis of simple mechanisms - Determination of velocity and acceleration of simple mechanisms

Unit II

Gears and Cams: Gear – Types and profile – nomenclature of spur and helical gears – laws of gearing - interference - the requirement of the minimum number of teeth in gears - gear trains - simple, compound and reverted gear trains - determination of speed and torque in epicyclic gear trains - cams different types of followers - Cam - Types of cams and followers - Cam design for different follower motions.

> Prof. Ajay S. Singholi Professor In-charge, USAR A Guru Gobind Singh Indraprastha University 9/22 (East Dethi Campus) Suraimal Vihar, Delhi-110092

University School of Automation and Robotics GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY East Delhi Campus, Surajmal Vihar Delhi - 110092

Unit III

Balancing: Static and dynamic balancing – single and several masses in different planes – primary and secondary balancing of reciprocating masses – Balancing of single and multi-cylinder engines -Governors and Gyroscopic effects

Vibrations: free vibrations – Equations of motion – natural Frequency – Damped Vibration – bending critical speed of simple shaft.

Unit IV

Force Analysis: Applied and Constrained Forces – Free body diagrams – static Equilibrium conditions – Two, Three and four members – Static Force analysis in simple machine members – Dynamic, Force Analysis – Inertia Forces and Inertia Torque – D'Alembert's principle – superposition principle – dynamic Force Analysis in simple machine members.

Text Books:

- 1. Bansal R.K., (2009) Theory of Machines, Laxmi Publications Pvt Ltd., New Delhi, 20th edition.
- 2. Rattan S.S., (2011) Theory of machines, Tata McGraw Hill publishing Co., New Delhi, 2nd edition.

References:

- 1. Gosh A and Mallick A.K.,(2009) Theory of Machines and Mechanisms, Affiliated East West press.
- 2. Malhotra D.R. and Gupta H.C , (2008) The Theory of machines, Satya Prakasam, Tech. India Publications
- 3. Dukkipati, R. V. (2007). Mechanism and machine theory. bohem press.
- 4. Shigley J.E. and Uicker J.J., (2006) Theory of Machines and Mechanisms", McGraw Hill.
- 5. Ambekar, A. G. (2007). Mechanism and machine theory. PHI Learning Pvt. Ltd.

Prof. Ajay S. Singholi Professor In-charge, USAR

(East Delhi Campus)
Suraimal Vihar, Delhi-110092

morried by Dag aftig AD. 1/09/22