3

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

3.0	Introduction	3.3	Using the State Space to	
3.1	Graph Theory		Represent Reasoning with the Predicate Calculus	
3.2	Strategies for State Space Search	3.4	Epilogue and References	
		3.5	Exercises	

Figure 3.1: The city of Königsberg.

Figure 3.2: Graph of the Königsberg bridge system.

Figure 3.3: A labeled directed graph.

Nodes = $\{a,b,c,d,e\}$ Arcs = $\{(a,b),(a,d),(b,c),(c,b),(c,d),(d,a),(d,e),(e,c),(e,d)\}$

Figure 3.4: A rooted tree, exemplifying family relationships.

GRAPH

A graph consists of:

A set of nodes N_1 , N_2 , N_3 , ... N_n ..., which need not be finite.

A set of arcs that connect pairs of nodes.

 N_4 . This would indicate a direct connection from node N_3 to N_4 but not from N_4 to N_3 , unless (N_4, N_3) is also an arc, in which case the arc joining N_3 and N_4 is Arcs are ordered pairs of nodes; i.e., the arc (N_3, N_4) connects node N_3 to node undirected. If a directed arc connects N_j and N_k , then N_j is called the parent of N_k and N_k , the child of N_j . If the graph also contains an arc (N_j, N_l) , then N_k and N_l called siblings. A rooted graph has a unique node N_S from which all paths in the graph originate. That is, the root has no parent in the graph

A tip or leaf node is a node that has no children.

An ordered sequence of nodes $[N_1, N_2, N_3, ..., N_n]$, where each pair N_1, N_{i+1} in the sequence represents an arc, i.e., (N_i, N_{i+1}), is called a path of length n - 1 in the graph. On a path in a rooted graph, a node is said to be an ancestor of all nodes positioned after it (to its right) as well as a descendant of all nodes before it (to its

A path that contains any node more than once (some N_i in the definition of path above is repeated) is said to contain a cycle or loop. A tree is a graph in which there is a unique path between every pair of nodes. (The paths in a tree, therefore, contain no cycles.) The edges in a rooted tree are directed away from the root. Each node in a rooted tree has a unique parent.

Two nodes are said to be *connected* if a path exists that includes them both.

Slide 3.6

STATE SPACE SEARCH

A *state space* is represented by a four-tuple [**N,A,S,GD**], where:

N is the set of nodes or states of the graph. These correspond to the states in a problem-solving process.

A is the set of arcs (or links) between nodes. These correspond to the steps in a problem-solving process.

S, a nonempty subset of N, contains the start state(s) of the problem.

GD, a nonempty subset of **N**, contains the goal state(s) of the problem. The states in **GD** are described using either:

- 1. A measurable property of the states encountered in the search.
- 2. A property of the path developed in the search, for example, the transition costs for the arcs of the path.

A *solution path* is a path through this graph from a node in **S** to a node in **GD**.

Figure 3.6: State space of the 8-puzzle generated by "move blank" operations.

Figure 3.7: An instance of the traveling salesperson problem.

Figure 3.8: Search of the traveling salesperson problem. Each arc is marked with the total weight of all paths from the start node (A) to its endpoint.

Figure 3.9: An instance of the traveling salesperson problem with the nearest neighbor path in bold. Note that this path (A, E, D, B, C, A), at a cost of 550, is not the shortest path. The comparatively high cost of arc (C, A) defeated the heuristic.

Figure 3.10: State space in which goal-directed search effectively prunes extraneous search paths.

Figure 3.11: State space in which data-directed search prunes irrelevant data and their consequents and determines one of a number of possible goals.

Function backtrack algorithm

```
function backtrack;
```

```
begin
  SL := [Start]; NSL := [Start]; DE := []; CS := Start;
                                                                    % initialize:
  while NSL ≠ [] do
                                             % while there are states to be tried
    begin
      if CS = goal (or meets goal description)
        then return SL:
                                      % on success, return list of states in path.
      if CS has no children (excluding nodes already on DE, SL, and NSL)
        then begin
          while SL is not empty and CS = the first element of SL do
            begin
              add CS to DE:
                                                     % record state as dead end
              remove first element from SL;
                                                                    %backtrack
              remove first element from NSL:
              CS := first element of NSL;
            end
          add CS to SL;
        end
        else begin
          place children of CS (except nodes already on DE, SL, or NSL) on NSL;
          CS := first element of NSL;
          add CS to SL
        end
    end;
    return FAIL;
end.
```

Initialize: SL = [A]; NSL = [A]; DE = []; CS = A;

AFTER ITERATION	CS	SL	NSL	DE
0	Α	[A]	[A]	[]
1	В	[B A]	[B C D A]	[]
2	Е	[E B A]	[EFBCDA]	[]
3	Н	[H E B A]	[HIEFBCDA]	[]
4	1	[I E B A]	[IEFBCDA]	[H]
5	F	[F B A]	[FBCDA]	[E I H]
6	J	[JFBA]	[JFBCDA]	[E I H]
7	С	[C A]	[C D A]	[BFJEIH]
8	G	[G C A]	[G C D A]	[B F J E I H]

Figure 3.12: Backtracking search of a hypothetical state space.

Figure 3.13: Graph for breadth- and depth-first search examples.

Function breadth_first search algorithm

```
function breadth_first_search;
begin
  open := [Start];
                                                                             % initialize
  closed := [];
                                                                       % states remain
  while open ≠ [] do
    begin
      remove leftmost state from open, call it X;
         if X is a goal then return SUCCESS
                                                                          % goal found
           else begin
             generate children of X;
             put X on closed;
             discard children of X if already on open or closed;
                                                                          % loop check
             put remaining children on right end of open
                                                                              % queue
           end
    end
  return FAIL
                                                                        % no states left
end.
```

- 1. open = [A]; closed = []
- open = [B,C,D]; closed = [A]
- 3. **open = [C,D,E,F]; closed = [B,A]**
- 4. open = [D,E,F,G,H]; closed = [C,B,A]
- 5. open = [E,F,G,H,I,J]; closed = [D,C,B,A]
- 6. open = [F,G,H,I,J,K,L]; closed = [E,D,C,B,A]
- 7. open = [G,H,I,J,K,L,M] (as L is already on open); closed = [F,E,D,C,B,A]
- 8. open = [H,I,J,K,L,M,N]; closed = [G,F,E,D,C,B,A]
- 9. and so on until either U is found or **open** = []