No solutions due in Week 1.

1. Use truth tables to determine whether the following propositions are tautologies, contradictions, or contingencies.

a) $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$ b) $(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$ c) $(p \Leftrightarrow q) \Leftrightarrow (\neg p \Leftrightarrow \neg q)$

Solution

a) Tautology

/	7 00					
p	q	$\neg (p \lor q)$	$\neg p \land \neg q$	$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$		
Т	Т	F	F	Т		
Т	F	F	F	m T		
F	Т	F	F	T		
F	F	Γ	T	Т		

b) Contingency

p	q	$p \Rightarrow q$	$\neg p \Rightarrow \neg q$	$(p \Rightarrow q) \Rightarrow (\neg p \Rightarrow \neg q)$
T	Т	Τ	${ m T}$	Τ
T	F	\mathbf{F}	T	T
F	Т	Τ	F	F
F	F	Т	Τ	Γ

c) Tautology

p	q	$p \Leftrightarrow q$	$\neg p \Leftrightarrow \neg q$	$(p \Leftrightarrow q) \Leftrightarrow (\neg p \Leftrightarrow \neg q)$
Τ	Т	Т	T	${ m T}$
T	F	F	Γ	${ m T}$
F	T	F	F	${ m T}$
F	F	Γ	Γ	T

2. Prove De Morgan's laws for sets.

a)
$$(A \cup B)^c = A^c \cap B^c$$
 b) $(A \cap B)^c = A^c \cup B^c$

Solution

- a) $x \in (A \cup B)^c \Leftrightarrow x \notin A \cup B \Leftrightarrow x \notin A \text{ and } x \notin B \Leftrightarrow x \in A^c \text{ and } x \in B^c \Leftrightarrow x \in A^c \cap B^c$.
- b) $x \in (A \cap B)^c \Leftrightarrow x \notin A \cap C \Leftrightarrow x \notin A \text{ or } x \notin B \Leftrightarrow x \in A^c \cup B^c.$
- 3. Find the power set for each of the following sets.

a)
$$\{R, G, B\}$$

c)
$$\mathcal{P}(\{\emptyset\})$$

Solution

- a) $\mathcal{P}(\{R,G,B\}) = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \{R,G,B\}\}\}.$
- b) $\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$
- c) $\mathcal{P}(\mathcal{P}(\{\emptyset\})) = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$
- 4. Prove by contradiction that the sum of a rational number and an irrational number is irrational.

Solution

Let $a \in \mathbb{Q}$ be a rational number and $b \in \mathbb{R} \setminus \mathbb{Q}$ be an irrational number. Assume a+b is rational. Then $a+b=\frac{p}{q}$ with $p,q\in\mathbb{Z}$ relatively prime. Since a is rational, a can be represented as $\frac{r}{s}$, with $r,s\in\mathbb{Z}$ relatively prime.

 $b=rac{p}{q}-rac{r}{s}=rac{ps-qr}{qs}.$ $ps-qr\in\mathbb{Z}$ and $qs\in\mathbb{Z}$ since integers are closed under addition and multiplication. Therefore b is rational. Contradiction.

5. Prove by induction that $1 + x + x^2 + \cdots + x^n = \frac{1-x^{n+1}}{1-x}$ for |x| < 1.

Solution

Base case: (n = 0)

 $\overline{\text{Sum of first 0 powers of x is 1. } \frac{1-x^{0+1}}{1-x}} = 1.$

Induction Step:

$$\frac{1}{1+x+\dots+x^n} + x^{n+1} = \frac{1-x^{n+1}}{1-x} + x^{n+1} \text{ (by induction hypothesis)}$$

$$= \frac{1-x^{n+1}}{1-x} + \frac{x^{n+1}(1-x)}{1-x} = \frac{1-x^{n+1}}{1-x} + \frac{x^{n+1}-x^{n+2}}{1-x} = \frac{1-x^{n+1}+x^{n+1}-x^{n+2}}{1-x} = \frac{1-x^{(n+1)+1}}{1-x}$$

6. Prove by induction that $n! \ge n^2 \quad \forall n \ge 4$.

Solution

Base case:
$$(n = 4)$$

 $4! = 4 \times 3 \times 2 \times 1 = 24$. $4^2 = 16$. $24 \ge 16$.

Induction Step:

$$\overline{(n+1)!} = (n+1)n! \ge (n+1)n^2$$
 (by induction hypothesis)
= $n^3 + n^2 \ge n^2 + 2n + 1$ (since $n^3 \ge 2n + 1$ $n \ge 4$)

$$=(n+1)^2.$$

To verify the claim used in the second step, note that $2 + \frac{1}{n} \le 3 \le n^2$ if n = 4. Since n^2 is increasing, this remains true for $n \ge 4$. Multiply through by n to get the inequality used.

- 7. Let R be a binary relation from a set X to itself. Prove the following properties of R:
 - a) If R is asymmetric then it is anti-symmetric.
 - b) If R is asymmetric then it is irreflexive.
 - c) If R is irreflexive and transitive then it is asymmetric.

Solution

- a) Recall that anti-symmetry is $xRy \wedge yRx \implies x = y$. Asymmetry is $xRy \implies \neg yRx$. If a relation is asymmetric, then $xRy \wedge yRx$ is always false. Implication following from a false proposition is always true. Therefore asymmetry \implies anti-symmetry.
- b) Assume R is not irreflexive. Then $\exists x \text{ s.t. } xRx$. By asymmetry, $xRx \implies \neg xRx$. Contradiction. So R must be irreflexive.
- c) Assume R is not asymmetric. Then $\exists x, y \in X$ s.t. xRy and yRx. By transitivity, $xRy \land yRx \implies xRx$. This contradicts irreflexivity, so R must be asymmetric.
- 8. Let $X = \{a, b, c, d\}$, and (X, \succeq) be a rational weak preference relation. Under these preferences we have $a \succ b \sim c \succ d$. What is the graph of the relation? Solution

$$G = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d), (d, d)\}$$

- 9. Find an example of a function $f: \mathbb{N} \to \mathbb{N}$ that is:
 - a) surjective but not injective.
 - b) injective but not surjective.
 - c) neither injective or surjective.
 - d) bijective.

Solution

- a) f(n) = 1.
- b) f(n) = n + 1
- c) f(1) = 1, f(n) = 2; $n \ge 2$
- d) f(n) = n.
- 10. Let $f: X \to Y$ be a function. Let U_1 and U_2 be subsets of X, and let V_1 and V_2 be subsets of Y. Show that
 - a) if $U_1 \subseteq U_2$ then $f(U_1) \subseteq f(U_2)$.
- c) $\forall U, U \subseteq f^{-1}(f(U)).$
- b) if $V_1 \subseteq V_2$ then $f^{-1}(V_1) \subseteq f^{-1}(V_2)$. d) $\forall V, f(f^{-1}(V)) \subseteq V$.

For c) and d), produce an example where the left hand side is a *strict subset* of the right hand side.

Solution

a) Recall that $f(U_1) = \{y \in Y \mid \exists x \in U_1 \text{ s.t. } f(x) = y\}$ and $f(U_2) = \{y \in Y \mid \exists x \in U_1 \text{ s.t. } f(x) = y\}$ U_2 s.t. f(x) = y. We're aiming to show that if $y \in f(U_1)$ then $y \in f(U_2)$ also.

Pick a $y \in f(U_1)$. Then $\exists x \in U_1$ such that f(x) = y by definition. Since $U_1 \subset U_2$, $x \in U_2$. Since f(x) = y, and $x \in U_2$, then $y \in f(U_2)$ by definition.

- b) $f^{-1}(V_1) = \{x \in X \mid f(x) \in V_1\}$. Pick an $x \in f^{-1}(V_1)$. Then $f(x) \in V_1$. Since $V_1 \subset V_2$, $f(x) \in V_2$. So $x \in f^{-1}(V_2)$.
- c) Pick an $x \in U$. Then $f(x) \in f(U)$ by definition. $f^{-1}(f(U)) = \{a \in X \mid f(a) \in f(U)\}$. x satisfies that requirement, so $x \in f^{-1}(f(U))$. Therefore $U \subset f^{-1}(f(U))$.

Consider the mapping $f: \mathbb{N} \to \mathbb{N}$, f(n) = 1. Let $U = \{1, 2\}$. We have $f(U) = \{1\}$, $f^{-1}(\{1\}) = \mathbb{N}$, and $U \subset \mathbb{N}$. We get a proper subset because there are other elements in the domain not in our set U that also map to 1.

d) Pick a $y \in f(f^{-1}(V))$. Then there must be an $x \in f^{-1}(V)$ such that f(x) = y. Since $x \in f^{-1}(V)$, there must be a $z \in V$ such that f(x) = z. From the definition of a function, if f(x) = y and f(x) = z, then z = y so $y \in V$. Therefore $f(f^{-1}(V)) \subseteq V$.

Consider the mapping $f: \mathbb{N} \to \mathbb{N}$, f(n) = n + 1. Let $V = \{1, 2\}$. Then $f^{-1}(V) = \{1\}$, $f(\{1\}) = \{2\} \subset V$. We get a proper subset because there's an element in our set V, namely 1, that nothing in the domain maps to.

11. Show that a preference relation (X, X, \succeq) can be represented by a utility function *only if* preferences are complete and transitive.

Solution

For any $x, y \in X$, either $U(x) \geq U(y)$ or $U(y) \geq U(X)$. Since U represents the preferences, either $x \succsim y$ or $y \succsim x$. Further, $\forall x \in X, \ U(x) \leq U(x)$, so $x \succsim x$. Therefore the preferences must be complete.

For any $x, y, z \in X$, $U(x) \ge U(y) \land U(y) \ge U(Z) \implies U(x) \ge U(z)$, since \ge is transitive. Therefore $x \succsim y \land y \succsim z \implies x \succsim z$, so preferences are also transitive.

12. Let (X, d_1) and (X, d_2) be metric spaces. Show that $d_3(x, y) = \max\{d_1(x, y), d_2(x, y)\}$ is a valid metric.

Solution

Assumption 1: if x = y, then $d_1(x, y) = d_2(x, y) = 0$. $d_3(x, y) = \max\{0, 0\} = 0$. If $x \neq y$, then d_1 and d_2 are both non-zero. The max of two non-zero numbers is non-zero.

Assumption 2: $d_3(x, y) = \max\{d_1(x, y), d_2(x, y)\} = \max\{d_1(y, x), d_2(y, x)\} = d_3(y, x)$.

Assumption 3: Note that

$$d_1(x,y) \le d_1(x,z) + d_1(z,y) \le \max\{d_1(x,z), d_2(x,z)\} + \max\{d_1(z,y), d_2(z,y)\}.$$

$$d_2(x,y) \le d_2(x,z) + d_2(z,y) \le \max\{d_1(x,z), d_2(x,z)\} + \max\{d_1(z,y), d_2(z,y)\}.$$

If the inequality holds for both d_1 and d_2 then it must hold for the maximum of the two (since the max will be either one or the other).

$$\max\{d_1(x,y), d_2(x,y)\} \le \max\{d_1(x,z), d_2(x,z)\} + \max\{d_1(z,y), d_2(z,y)\}.$$

13. Prove that the union of any number of open sets is open.

Solution

Consider the union of two open sets $A \cup B$ (this generalises to any number of open sets). Pick any point $x \in A \cup B$. x must be in A or B or both.

If $x \in A$, then since A is an open set,

$$\exists \varepsilon_1 > 0 \ s.t \ B(x, \varepsilon_1) \subset A \subset A \cup B$$

If $x \in B$, then since B is an open set,

$$\exists \varepsilon_2 > 0 \ s.t \ B(x, \varepsilon_2) \subset B \subset A \cup B$$

If x is in both, pick either of $\varepsilon_1, \varepsilon_2$.

So for any point in $A \cup B$, we can fit an open ball around it completely contained in $A \cup B$. So $A \cup B$ is an open set.

14. Show that the intersection of finitely many open sets is open.

Solution

Consider the intersection of two open sets, $A \cap B$. Pick any $x \in A \cap B$.

 $x \in A$, which is open, so

$$\exists \varepsilon_1 > 0 \ s.t \ B(x, \varepsilon_1) \subset A$$

 $x \in B$, which is open, so

$$\exists \varepsilon_2 > 0 \ s.t \ B(x, \varepsilon_2) \subset B$$

Pick $\min\{\varepsilon_1, \varepsilon_2\}$.

$$B(x, \min\{\varepsilon_1, \varepsilon_2\}) \subset B(x, \varepsilon_1) \subset A$$
$$B(x, \min\{\varepsilon_1, \varepsilon_2\}) \subset B(x, \varepsilon_2) \subset B$$
$$B(x, \min\{\varepsilon_1, \varepsilon_2\}) \subset A \cap B$$

We can't generalise this to the intersection of any number of sets because, in general, $\min\{\varepsilon_1, \varepsilon_2, \varepsilon_3, ...\}$ may not exist. It does, however, exist for finitely many intersections. So the intersection of finitely many open sets is open.