Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Кафедра вычислительной техники

Физика

Лабораторная работа №3

Определение момента инерции крестовины при различном расположении грузов

Выполнил: Ю. У. Салимзянов

Группа: Р3111

Преподаватель: Я. Б. Музыченко

Санкт-Петербург 2017

Цель работы

Измерить момент инерции крестовины при заданном расположении грузов на спицах относительно оси вращения.

Выполнение работы

Наименование средства измерения	Предел измерений	Цена деления	Класс точности	Погрешность, Δ_u
Линейка	700 мм	1мм/дел.	-	1 мм
Секундомер	30 мин	0.2 с/дел.	-	0.2 с

Таблица 1

Определяемые величины	Количество шайб на каретке, k													
	4			3			2			1				
т, г	927			707			487			267				
t, c	4.82	4.81	4.84	5.63	5.68	5.6	6.68	6.79	6.8	9.08	9.41	9.27		
ε , $pa\partial/c^2$	2.62			1.92			1.33			0.71				
M_H , $H*M$	0.18			0.15			0.11			0.06				

Исходные данные:

$$H_0 = 0 \text{ M};$$
 $h = H - H_0 = 0.7 - H_0 = 0.7 \text{ M}$ $m_{\kappa} = 47,0 \text{ c}; \Delta_{(u(m_{\kappa}))} = 1,0 \text{ c}; m_{w} = 220,0 \text{ c}; \Delta_{(u(m_{\kappa}))} = 1,0 \text{ c}$

Таблица 2

Определяе	Номер риски на спице																	
мые величины	1			2			3			4			5			6		
t, c	3.62	3.65	3.7	4.27	4.3	4.4	5.07	5.02	5.02	5.98	5.93	5.9	6.76	6.65	6.66	7.41	7.46	7.6
R, м	0.067		0.092		0.117			0.142			0.167			0.192				
R^2 , M^2	0.004			0.008			0.014			0.02		0.028		0.037				
$M_{\scriptscriptstyle H}-M_{\scriptscriptstyle mp}$,	0,09																	
ϵ , $pa\partial/c^2$	4.57		3.26		2.4		1.73		1.36		1.09							
I , $\kappa z * m^2$	0,41		0,29		0,22			0,16			0,12			0,1				

Таблица 3

<u>Теория опыта</u>

Момент инерции вращающейся системы зависит от распределения массы относительно оси вращения. Эта зависимость имеет вид $I \sim R^2$. В данной работе R - расстояние от центра груза на спице до оси вращения. Положение груза на первой риске соответствует R = 67 мм. Расстояние между рисками 25 мм.

Основное уравнение динамики вращательного движения в проекции на ось вращения для вращающейся крестовины записывается следующим образом: $Mh - Mtp = I\epsilon$, (1)

где Mн - момент силы натяжения нити, вызывающей вращение; Mтр - момент сил трения; ε - угловое ускорение, I - момент инерции системы.

Вращение крестовины вызвано поступательным движением каретки с шайбами. Это движение описывается следующим уравнением динамики: mg - Fh = ma, (2)

здесь m - масса каретки с шайбами, Fн - сила натяжения нити.

Сила натяжения из уравнения (2) FH = mg -ma. (3)

Считая движение каретки равноускоренным, можно вычислить ускорение по формуле:

$$a=2\frac{h}{t^2}$$
 . (4)

Подстановка выражения (4) в формулы (3) дает

$$F_H = m(g - 2\frac{h}{t^2})$$
 . (5)

Соответственно момент силы натяжения $M_H = F_H r$, (6) где r - радиус ступицы.

Выражая радиус ступицы через ее диаметр $r = \frac{d}{2}$ и учитывая формулу (5), получаем

$$M_H = \frac{md}{2}(g - 2\frac{h}{t^2})$$
 . (7)

При отсутствии проскальзывания нити, угловое ускорение, с которым вращается система, связано с линейным ускорением через радиус r ступицы $a = \epsilon r = \epsilon d/2$, (8) где d – диаметр ступицы, d = 46,0 мм.

Объединение формул (4) и (8) дает расчетную формулу для углового ускорения

$$\varepsilon = 4 \frac{h}{t^2 d}$$
 (9)

Из уравнения динамики (1) вращающий момент силы натяжения

$$MH = MTp + I\epsilon$$
. (10)

График функции Мн = f (ϵ) представляет собой прямую линию и показан на рис. 2.

Рис. 2. Зависимость момента силы натяжения нити от углового ускорения

Обработка результатов измерений

Часть І

Измерим момент силы трения крестовины.

1. Рассчитаем массу каретки с шайбами k=1..4 по формуле $m=m_{\kappa}+km_{\omega}$, $z\partial e\ m_{\kappa}$, $m_{\omega}-$ массы каретки и шайбы , значения которых приведены в табл. 2. Занесем результаты во 2 таблицу

$$m1=267 \text{ r.};$$
 $m2=487 \text{ r.};$ $m=707 \text{ r.};$ $m=927 \text{ r.}$ $t_{cp4}=4,82 \text{ c.};$ $t_{cp4}=5,64 \text{ c.};$ $t_{cp4}=6,76 \text{ c.};$ $t_{cp4}=9,25 \text{ c.}$

2. Рассчитав угловое ускорение по формуле (9) и вращающий момент $M_{\rm H}$ по формуле (7), заполним таблицу 2

$$\begin{array}{lll} \epsilon &= 2.8/1,07 = 2,62 & \epsilon &= 2.8/2,1 = 1,33 \\ \epsilon &= 2.8/1,46 = 1,92 & \epsilon &= 2.8/3,94 = 0,71 \\ M_H = 0,021321/(9.8-1,22) = 0,18 & M_H = 0,011201/(9.8-0,32) = 0,11 \\ M_H = 0,016261/(9.8-0,66) = 0,15 & M_H = 0,006141/(9.8-0,09) = 0,06 \end{array}$$

3. По результатам расчетов построим график зависимости $M_H=f(e)$; экстраполируем полученную прямую до пересечения с осью ординат и определим момент силы трения MTp (см. Рис. 2); MTp = 0.02~H*m

- 1. Рассчитаем значения R^2 и занесем результаты в таблицу 3.
- 2. Возьмем из табл. 2 значение момента M_H для опыта с двумя шайбами и с учетом измерений момента силы трения $M\tau p$, запишем в таблицу 3. $MH-M\tau p=0.09~H^*m$

3. Заполним последние строки табл. 3, рассчитав угловое ускорение по формуле (9) и момент инерции по формуле $I = \frac{M_H - M_{mp}}{\epsilon}$

4. Построим график зависимости $I=f(R^2)$

5. Эстраполируем полученную прямую до пересечения с осью ординат и определим момент инерции ступицы со спицами $I_{\rm cr}$. Сравним с $I_{\rm cr,pacq}=7.0*10^{-3}~{\rm kr}^*{\rm m}^2$.

$$|I_{\text{ct}}\text{-}I_{\text{pacy-}}|$$
=0.012-0.007=0.005 кг*м 2

Вывод

Выполнив эту лабораторную работу я научился находить по графику значение моемента инерции и силы, а также удостоверился в правильности подсчетов, сравнив рассчетное значение момента инерции ступицы с полученным.