T7 .C	1.	c ·
Verific	e di	tigies

Nome e cognome:	Classe:	Data:	Griglia
Risposte (variante 96)			-

1	2	3	4	5	6	7	8	9	10
	1								
	4.0	4.0	4.4		4.0		4.0	1.0	20
11	12	13	14	15	16	17	18	19	20
11	12	13	14	15	16	17	18	19	20

- Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio (⁴₂He)?
 - (a) Decadimento Beta meno (β^{-})

(c) Emissione Gamma (γ)

(b) Decadimento Alfa (α)

- (d) Decadimento Beta più (β^+)
- Nel range di energie tipico della radiodiagnostica (es. $30-150\,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?
 - (a) Produzione di coppie (e^+/e^-) .

(c) Effetto Compton.

(b) Effetto fotoelettrico.

- (d) Scattering di Rayleigh (coerente).
- Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (b) Che la luce è composta da particelle (fotoni).
 - (c) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (d) Che il principio di indeterminazione non è valido.
- Una radiazione di frequenza $f=1.0\times 10^{15}\,\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\,\mathrm{eV}$. Sapendo che $h \approx 6.63 \times 10^{-34} \text{ J} \cdot \text{s e 1 eV} \approx 1.6 \times 10^{-19} \text{ J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf \approx 4.14 \,\text{eV}$)
 - (a) $K_{max} \approx 6.14 \,\text{eV}$
- (b) $K_{max} \approx 4.14 \,\text{eV}$
- (c) $K_{max} \approx 2.14 \,\text{eV}$ (d) $K_{max} \approx 2.0 \,\text{eV}$

- Il principio di indeterminazione è una conseguenza fondamentale:
 - (a) Del modello atomico di Bohr.
 - (b) Della teoria della relatività di Einstein.
 - (c) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.
 - (d) Degli errori sperimentali inevitabili negli strumenti di misura.
- Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
 - (b) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
 - (c) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (d) Un atomo emette radiazione solo quando viene ionizzato.
- Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) La volontà del gatto.
 - (b) Il decadimento dell'atomo radioattivo all'interno della scatola.
 - (c) Il tempo trascorso dall'inizio dell'esperimento.
 - (d) L'atto di osservazione o misurazione (apertura della scatola).
- Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $\binom{18}{9}$ F) può decadere β^+ : ${}_{9}^{18}F \rightarrow ? + e^+ + \nu_e$

	(a)	$^{18}_{10}{ m Ne}$	(b) $^{19}_{9}$ F	(c)	¹⁸ O	(d) ¹⁷ F	
9.	9. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?						
	(a) (b)	$\Delta m \approx 2.0141 \mathrm{u}$ $\Delta m \approx 1.0073 + 1.0087 + 1$	$2.0141 \approx 4.0301 \mathrm{u}$		$\Delta m \approx (1.0073 + 1.0087) + \Delta m \approx 2.0141 - (1.0073 + 1.0087)$		
10.	La "cata (a) (b) (c) (d)	Che l'energia emessa fosse Un'intensità energetica m Che l'intensità massima s	roblema sorto nello studio della re e quantizzata fin dall'inizio. ulla per lunghezze d'onda molto i spostasse verso il rosso (frequa finita per lunghezze d'onda mo	pico enze	cole. basse) all'aumentare della	-	
11.	(a) (b)	Il numero di nuclei decad	adioattivi non ancora decaduti j t l tempo t .	prese	nti al tempo t , partendo da	N_0 nuclei al tempo $t=0.$	
12.	Come si		e (E_B) di un nucleo, noto il dif				
	(a)	$E_B = (\sum m_{costituenti})c^2.$	(b) $E_B = (\Delta m)c^2$.	(c)	$E_B = m_{nucleo}c^2.$	(d) $E_B = (\Delta m)/c^2$.	
13.		opo radioattivo ha un temp illigrammi rimarranno dop	po di dimezzamento di $T_{1/2} = 5$ po 20 giorni?	giori	ni. Se inizialmente abbiame	o 16 mg di questo isotopo,	
	(a)	$2\mathrm{mg}$	(b) 4 mg	(c)	$8\mathrm{mg}$	(d) 1 mg	
14.	(a) (b) (c)	Gli urti tra atomi eccitati L'elettrone emette un foto a una a energia inferiore. Il nucleo atomico vibra en	one di energia definita ($E = hf$) qua	ındo salta da un'orbita per		
15.	-	adosso del gatto di Schröd oretazione strettamente qua	linger, cosa rappresenta lo state antistica?	o del	gatto PRIMA che la scate	ola venga aperta, secondo	
 (a) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto". (b) Uno stato indeterminato che non è né vivo né morto. (c) Lo stato "gatto vivo". (d) Lo stato "gatto morto". 							
	(b) (c)	Uno stato indeterminato Lo stato "gatto vivo".		e "gat	tto morto.		
16.	(b) (c) (d)	Uno stato indeterminato Lo stato "gatto vivo". Lo stato "gatto morto".					
16.	(b) (c) (d) Identified	Uno stato indeterminato Lo stato "gatto vivo". Lo stato "gatto morto". care il prodotto mancante il	che non è né vivo né morto.	o-238	$: {}^{238}_{92}\mathrm{U} \to X + \alpha$	(d) $X = {}^{234}_{90}$ Th (Torio-234)	
16. 17.	(b) (c) (d) Identified (a)	Uno stato indeterminato Lo stato "gatto vivo". Lo stato "gatto morto". care il prodotto mancante il $X=^{234}_{88}$ Ra (Radio-234)	che non è né vivo né morto. nel decadimento alfa dell'Urani	o-238	$ \begin{array}{l} : \ _{92}^{238}\mathrm{U} \to X + \alpha \\ \\ X = _{92}^{234}\mathrm{~U~(Uranio-} \\ \\ 234) \end{array} $,	

18. Completare la seguente reazione di decadimento beta meno (β^-): $^{14}_6{
m C} \rightarrow ?+e^-+\bar{\nu}_e$

(c) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).

(d) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).

(b) Passa attraverso l'elettrone senza interagire.

(a) ${}_{6}^{14}C$	(b) $^{13}_{6}$ C	(c) $^{14}_{7}N$	(d) ${}_{5}^{14}B$
(α) 6 \circ	(b) 6 C	(0) 7 1	(a) 5 D

- 19. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
 - (b) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
 - (c) Perché a basse frequenze la luce si comporta solo come un'onda.
 - (d) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
- 20. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta=0^\circ$ (nessuna diffusione).
 - (b) La variazione è indipendente dall'angolo θ .
 - (c) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.
 - (d) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).