In []: import catboost In []: from google.colab import drive drive.mount('/content/drive') Mounted at /content/drive MDATA_PATH = '/content/drive/MyDrive/mdata' DEVICE = 'cpu' # you may try 'cuda' if your machine supports NVIDIA def get_dates(): return sorted(os.listdir(MDATA_PATH)) def get_tickers(): dates = get_dates() tickers = [] for date in dates: tickers += os.listdir(os.path.join(MDATA_PATH,date)) return np.unique(tickers) def get_market_data(ticker): agg_mmf_data_raw = [] for date in get_dates(): if not os.path.exists(os.path.join(MDATA_PATH,date,ticker)): continue df = pd.read_csv(os.path.join(MDATA_PATH,date,ticker), compression='gzip', dtype={'bar time':float,'TIMESTAMP':float}, parse_dates=[2,3], date_parser=pd.to_datetime,).sort_values(by=['VOLUME','bar_count']).groupby('bar_time',as_index=False).last() agg_mmf_data_raw.append(df) agg_mmf_data_raw = pd.concat(agg_mmf_data_raw).set_index('bar_time').sort_index() agg_price_grid_raw = agg_mmf_data_raw.filter(like='PRICE_GRID') agg_vol_grid_raw = agg_mmf_data_raw.filter(like='VOL_GRID') agg_mmf_data_raw = agg_mmf_data_raw[agg_mmf_data_raw.columns[(~agg_mmf_data_raw.columns.str.startswith('EXEC') ~agg_mmf_data_raw.columns.str.startswith('PRICE_GRID') ~agg_mmf_data_raw.columns.str.startswith('VOL_GRID') agg_mmf_data_raw.drop(['TIMESTAMP', 'ZERO_SPREAD_ON_TRADE', 'EMPTY_LOB_SIDE_AFTER_UPDATE', 'NEGATIVE_SPREAD_AFTER_UPDATE', 'ZERO_SPREAD_AFTER_UPDATE', 'EMPTY_LOB_SIDE_ON_TRADE', 'NEGATIVE_SPREAD_ON_TRADE', 'bar_count', 'WEEKDAY'],inplace=True,axis=1) return agg_mmf_data_raw,agg_price_grid_raw def get_adf_p_value(dtest): dftest = adfuller(dtest, maxlag=10) p_value = dftest[1] return p_value def generate_features(mmf_data_raw,price_grid_raw,preserve_cols=['DVOL']): dset = (mmf_data_raw.BEST_ASK/2 + mmf_data_raw.BEST_BID/2).to_frame('MID_PRICE') dset['TG_Y'] = (mmf_data_raw['VWAP'].shift(-2) - mmf_data_raw['VWAP'].shift(-1)) / mmf_data_raw['VWAP'].shift(-1) dset['R1_X'] = (dset['MID_PRICE'] - dset['MID_PRICE'].shift(1)) * 100 dset['R2_X'] = (dset['MID_PRICE'] - dset['MID_PRICE'].shift(2)) * 100 dset['R1V_X'] = (mmf_data_raw['VWAP'] - mmf_data_raw['VWAP'].shift(1)) * 100 dset['R2V_X'] = (mmf_data_raw['VWAP'] - mmf_data_raw['VWAP'].shift(2)) * 100 dset['RVW_ema_X'] = mmf_data_raw['VWAP'] - mmf_data_raw['VWAP'].ewm(halflife=8).mean() dset['RVW_ema2_X'] = mmf_data_raw['VWAP'].ewm(halflife=8).mean() - mmf_data_raw['VWAP'].ewm(halflife=16).mean() dset['RVW_ema3_X'] = mmf_data_raw['VWAP'].ewm(halflife=16).mean() - mmf_data_raw['VWAP'].ewm(halflife=32).mean() dset['RVW_ema4_X'] = mmf_data_raw['VWAP'].ewm(halflife=32).mean() - mmf_data_raw['VWAP'].ewm(halflife=64).mean() for col in preserve_cols: dset[f"{col}_X"] = mmf_data_raw[col] dset['DVOL_EMA3_X'] = dset['DVOL_X'].ewm(halflife=3).mean() dset['DVOL EMA10 X'] = dset['DVOL X'].ewm(halflife=10).mean() dset['BTC_BID_VOL'] = price_grid_raw[['PRICE_GRID_0.991026', 'PRICE_GRID_0.993590', 'PRICE_GRID_0.996154', 'PRICE_GRID_0.998718']].sum(axis=1).abs() dset['BTC_ASK_VOL'] = price_grid_raw[['PRICE_GRID_1.001282','PRICE_GRID_1.003846', 'PRICE_GRID_1.006410', 'PRICE_GRID_1.008974']].sum(axis=1).abs() dset['OIR_X'] = (dset['BTC_BID_VOL'] - dset['BTC_ASK_VOL']) / (dset['BTC_BID_VOL'] + dset['BTC_ASK_VOL']) X, y = dset.filter(like='_X'), dset.filter(like='_Y') return X,y tickers = get_tickers() print (tickers) ['Z.ADA' 'Z.BNB' 'Z.BTC' 'Z.DOGE' 'Z.DOT' 'Z.ETC' 'Z.ETH' 'Z.FIL' 'Z.LINK' 'Z.LTC' 'Z.MATIC' 'Z.THETA' 'Z.UNI' 'Z.XRP'] # SELECT ONE ON YOUR PREFERENCE ticker = 'Z.DOGE' agg_mmf_data_raw,agg_price_grid_raw = get_market_data(ticker) # getting rid of the integrated time series, use with caution adf_test_p_value = agg_mmf_data_raw.aggregate(get_adf_p_value,axis=0) preserve_cols = adf_test_p_value.loc[lambda x: x<1e-4].index</pre> X_mmf,y_regr = generate_features(agg_mmf_data_raw,agg_price_grid_raw,preserve_cols=preserve_cols) y_regr = y_regr * 100 nna_indices = X_mmf.notnull().min(axis=1) & agg_price_grid_raw.notnull().min(axis=1) & y_regr.notnull().min(axis=1) agg_mmf_data_raw,agg_price_grid_raw,X_mmf,y_regr = agg_mmf_data_raw[nna_indices],agg_price_grid_raw[nna_indices],X_mmf[nna_indices],y_regr[nna_indices] Splitting train / test , 70/30 \ Transfrom train and test features to quantiles n_features = X_mmf.shape[1] X_train,X_test, y_train,y_test = train_test_split(X_mmf,y_regr,test_size=0.3,shuffle=False) qt = QuantileTransformer() X_train = qt.fit_transform(X_train) X_test = qt.transform(X_test) CatBoost regressor We will use it as benchmark, i.e. compare our LSTM result with catboost result cb_regressor = catboost.CatBoostRegressor(depth=8) cb_regressor.fit(X_train,y_train,silent=True) y_train_pred_cb = cb_regressor.predict(X_train) y_test_pred_cb = cb_regressor.predict(X_test) cb_mse_error_train = metrics.mean_squared_error(y_train,y_train_pred_cb) cb_mse_error_test = metrics.mean_squared_error(y_test,y_test_pred_cb) **Define dataset** MMF stands for Market Microstructure Features # good idea to store all hyperparameters and experiment settings in a dedicated dictionary # this way you can store the dictionary in wandb and compare all the settings between several experiments mmf params = dict($hid_size1 = 128$, hid_size2 = 16, batch_size = 128, learning_rate = 1e-04, episode_len = 128, $lstm_warm_up = 32$ # to properly pass our data to LSTM, we need to define how we will iterate through the dataset # to do that, we define a custom class derived from torch.utils.data.Dataset, and overwrite its __len__ and __getitem__ methods # these methods allow the dataset to be iterated in a way we need MMF_Episode = namedtuple('MMF_Episode', ['features', 'targets']) class MMF_Set(torch.utils.data.Dataset): def __init__(self,X,y,episode_len): super().__init__() self.feature_t = torch.tensor(X, dtype=torch.float32, device=DEVICE) # transform X to tensor of type float32 and convert it to DEVICE self.target_t = torch.tensor(y, dtype=torch.float32, device=DEVICE) # transform y to tensor of type float32 and convert it to DEVICE self.n_ticks, self.n_features = X.shape self.episode_len = episode_len def __len__(self): return self.n_ticks-self.episode_len+1 # get i-th "rolling window" def __getitem__(self,i): return MMF_Episode(features = self.feature_t[i:i+self.episode_len] , # get the slice of feature_t tensor from i to i+episode_len targets = self.target_t[i:i+self.episode_len] , # get the slice of target_t tensor from i to i+episode_len mmf_train_feature_set = MMF_Set(X_train.copy(),pd.DataFrame(y_train).values,episode_len=mmf_params['episode_len']) For debugging purposes In []: # torch format of the dataset # splitting to batches mmf_train_feature_set_t = torch.utils.data.DataLoader(mmf_train_feature_set,batch_size=20,shuffle=True,num_workers=0) mmf_item = next(iter(mmf_train_feature_set_t)) # make sure this output is [n_batches, n_episodes, n_features], [n_batches, n_episodes, 1] mmf_item.features.shape, mmf_item.targets.shape Out[]: (torch.Size([20, 128, 33]), torch.Size([20, 128, 1])) Transforming data to torch-compatible format we have to do this, because any nn. Module accepts only torch tensors as input In []: X_train_t = torch.tensor(X_train, dtype=torch.float32) # transform X_train to tensor of type float32 X_test_t = torch.tensor(X_test, dtype=torch.float32) # transform X_test to tensor of type float32 y_train_t = torch.tensor(y_train.values, dtype=torch.float32) # transform y_train of size [n] to tensor of type float32 and shape [n,1] y_test_t = torch.tensor(y_test.values, dtype=torch.float32) # transform y_test of size [n] to tensor of type float32 and shape [n,1] X_train_t.shape, X_test_t.shape (torch.Size([232382, 33]), torch.Size([99593, 33])) **Network definition** class MMF_LSTM(nn.Module): def __init__(self,input_size,hid_size1,hid_size2): super().__init__() self.lstm = nn.LSTM(input_size = input_size, hidden_size = hid_size1) # initialize a nn.LSTM object dealing with batches of input_size = input_size and hidden_size = hid_size1 # the following part is in general of your own freedom of choice # instead of what we propose, you may use just one linear transformation hid_size1 -> 1 self.hid_to_hll = nn.Linear(in_features=hid_size1, out_features=hid_size2) # initialize linear transformation with #{input features} = hid_size1 and #{output_features} = hid_size2 self.hll_to_out = nn.Linear(in_features=hid_size2, out_features=1) # initialize linear transformation with #{input features} = hid_size2 and #{output features} = 1 def forward(self,x): # the forward pass has to be as follows: # lstm -> first linear layer -> ReLU -> second linear layer x, _ = self.lstm(x) # get result of lstm network defined in constructor x = self.hid to hll(x)x = F.relu(x)output = self.hll_to_out(x) return output Main train loop mmf_lstm_model = MMF_LSTM(input_size=n_features, hid_size1=mmf_params['hid_size2=mmf_params['hid_size2']) # define LSTM object of our custom class with input size = n_features mmf_loss_fn = nn.MSELoss() # define a criterion - mean squared error mmf_optimizer = torch.optim.Adam(params=mmf_lstm_model.parameters(), lr=mmf_params['learning_rate']) # define Adam optimizer receiving mmf_lst_model parameters and learning rate defined in mmf_activation_fn = torch.tanh # define activation function - hyperbolic tangent mmf_warm_up = mmf_params['lstm_warm_up'] # define a warm-up window to start training the model, from mmf_params # lists to store performance metrics of the learning train_loss_history = [] max_gradient_history = [] mse_train_history = [] mse_test_history = [] mmf_train_feature_set <__main__.MMF_Set at 0x7fb310485550> for epoch in range(10): # you may vary it, or think out of some stop criterion mmf_train_feature_set_t = torch.utils.data.DataLoader(mmf_train_feature_set,batch_size=mmf_params['batch_size'],shuffle=True,num_workers=0) try: with tqdm(mmf_train_feature_set_t) as progressbar: for mmf_episode in progressbar: predicted_return = mmf_lstm_model(mmf_episode[0]) # get mmf_lstm_model prediction calculated on the current episode features #print(mmf_episode[0].shape, mmf_episode[1].shape, type(mmf_episode), predicted_return.shape) train_loss = mmf_loss_fn(input=predicted_return, target=mmf_episode[1]) # calculate loss between actual and predicted values. please ignore the starting warm-up window in lo train_loss_history.append(train_loss.item()) # store the loss of the current episode mmf_optimizer.zero_grad() # set the gradients of all optimized tensors to zero train_loss.backward() # backward propagation mmf optimizer.step() # take an optimization step # it is in general a good idea to monitor max gradient and to be able to clip if necessary it using: # nn.utils.clip_grad_value_(mmf_lstm_model.parameters(), clip_value=1.0) max_gradient_history.append(np.max([torch.max(p.grad).item() for p in mmf_lstm_model.parameters() if p.grad is not None])) if len(train_loss_history) % 50 == 0: mmf_lstm_model.train(False) # disable learning mode mse_train_history.append(mmf_loss_fn(mmf_activation_fn(mmf_lstm_model(X_train_t)),y_train_t).item()) # losses calculcated on the whole history / mse_test_history.append(mmf_loss_fn(mmf_activation_fn(mmf_lstm_model(X_test_t)),y_test_t).item()) # unlike row #8 where the current episode only mmf_lstm_model.train(True) # enable learning mode clear_output(True) fgs,axs = plt.subplots(1,2, figsize=[25,8]) axs[1].plot(max_gradient_history, label='max grad') axs[1].legend(loc='best') axs[1].grid() axs[0].plot(mse_train_history, label='train loss', color='blue') axs[0].plot(mse test history, label='test loss', color='red') axs[0].set_yscale('log') axs[0].yaxis.set_major_formatter(plt.LogFormatter()) axs[0].yaxis.set_minor_formatter(plt.LogFormatter()) axs[0].axhline(y=cb_mse_error_test, color='red', linestyle='--', alpha=0.8, label='catboost test loss') axs[0].axhline(y=cb_mse_error_train, color='blue', linestyle='--', alpha=0.8, label='catboost train loss') axs[0].legend(loc='best') plt.show() except KeyboardInterrupt: pass 2e-01 0.040 0.035 0.030 0.025 le-01 train loss test loss 0.020 catboost test loss --- catboost train loss 0.015 6e-02 0.010 0.005 4e-02 0.000

300

350

250

50

In []:

100

1815/1815 [20:28<00:00, 1.48it/s]

150

200

2500

5000

7500

10000

12500

15000

17500

import os

import torch

import torch.nn as nn

depending on your OS

%matplotlib inline

%pip install catboost

Collecting catboost

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from collections import namedtuple

import sklearn.metrics as metrics

import torch.nn.functional as F

from tqdm import trange,tqdm

from IPython.display import clear_output

Installing collected packages: catboost

Successfully installed catboost-1.1

from statsmodels.tsa.stattools import adfuller

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import QuantileTransformer

from tqdm.notebook import trange,tqdm # works for Linux

Downloading catboost-1.1-cp37-none-manylinux1_x86_64.whl (76.8 MB)

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from catboost) (5.5.0)

Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from catboost) (1.7.3)

Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from catboost) (1.15.0)

Requirement already satisfied: pandas>=0.24.0 in /usr/local/lib/python3.7/dist-packages (from catboost) (1.3.5)

Requirement already satisfied: numpy>=1.16.0 in /usr/local/lib/python3.7/dist-packages (from catboost) (1.21.6)

Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24.0->catboost) (2.8.2)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (3.0.9)

Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib->catboost) (4.1.1)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24.0->catboost) (2022.4)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (1.4.4)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib->catboost) (0.11.0)

Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-packages (from plotly->catboost) (8.1.0)

Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-packages (from catboost) (3.2.2) Requirement already satisfied: graphviz in /usr/local/lib/python3.7/dist-packages (from catboost) (0.10.1)

| 76.8 MB 1.2 MB/s