Wireless Networking [ET4394]

Cognitive Radio

Przemysław Pawełczak

Learning objectives (LO)

 LO: To understand the principles of Cognitive Radio Operation

Literature

Overview paper

- Y.-C. Liang, K.-C. Chen, G. Y. Li, P. Mahönen, Cognitive Radio Networking and Communications: An Overview, IEEE Transactions on Vehicular Technology, vol. 60, no. 7, Sept. 2011
 - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=578394
 8

Book

• E. Biglieri, A. J. Goldsmith, L. J. Greenstein, N. B. Mandayam, *Principles of Cognitive Radio*, Cambridge University Press, 2013

The Paradox of Radio Spectrum Regulation

All spectrum is allocated but most of it is unused

Source: http://en.wikipedia.org/wiki/Frequency_allocation

Real-life Example

- Queen Beatrix abdication: Amsterdam 30 April 2013
- 3 measurement stations of Agentschap Telekom
 - Bijenkorf, het 'IJ, Rokin
- 24 hour measurement through RFEye stations
 - http://www.crfs.com/products/category/rf-receiver-nodes-bdcs/
- 22 channels granted for TV operation
 - Reuters, NOS, WDR, RTV Noord-Holland, ...
- Most dense wireless spectrum utilization in Dutch history

Results

- 'IJ: 7/22 allocated video signals used =31.8%
- Bijenkorf: 3/22 allocated video signals used=13.6%
- Rokin: 7/22 allocated video signals used=31.8%

Real-life Example

Real-life Example

Cognitive Radio: History

Joseph Mitola and Gerald Q. Maguire, Jr.

- Cognitive Radio: Making Software Radios More Personal, IEEE Personal Communications, Aug. 1999
- http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=788
 210

Simon Haykin

- Cognitive Radio: Brain-Empowered Wireless Communications,
 IEEE Journal on Selected Areas in Communications, vol. 23, no.
 Feb. 2005
- http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=139
 1031

Cognitive Radio: Definition

Soure: Joseph Mitola and Gerald Q. Maguire, Jr., Cognitive Radio: Making Software Radios More personal, IEEE Personal Communications, Aug. 1999

Spectrum Sensing

- Question: how to find a white space?
- Answer: local detection based on signal observation

Assumptions

- time is slotted
- r(t): Detected signal has a non-zero carrier
- n(t): noise is Gaussian with zero mean and unit variance
- No fading or other signal perturbations

Spectrum Sensing: Energy Detector

- BPF: Band Pass Filter
- t: sample instance time
- r(t): input signal
- r_f(t): filtered input signal
- Y: decision variable

$$\begin{array}{c|c}
\hline r(t) \\
\hline BPF\{r(t)\} \\
\hline \end{array} \begin{array}{c|c}
\hline r_f(t) \\
\hline \end{array} \begin{array}{c|c}
\hline (r_f(t))^2 \\
\hline \end{array} \begin{array}{c|c}
\hline \int_0^T r_f^2(t) dt \\
\hline \end{array} \begin{array}{c|c}
\hline Y \\
\hline \end{array}$$

F. E. Visser, G. Janssen, P. Pawełczak, Multinode Spectrum Sensing Based on Energy Detection for Dynamic Spectrum Access, Proc. IEEE

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4525849

Spectrum Sensing: Energy Detector Hypothesis

Two hypothesis

$$\begin{cases} n(t), & H_0 \\ r(t) + n(t), & H_1 \end{cases}$$

In distribution

$$Y \sim \begin{cases} \chi_{2u}^2, & \text{under } H_0, \\ \chi_{2u}^2(2\gamma), & \text{under } H_1, \end{cases} \qquad P_D = \Pr(Y > \lambda | H_1) = Q_u(\sqrt{2\gamma}, \sqrt{\lambda}), \\ P_F = \Pr(Y > \lambda | H_0) = \frac{\Gamma(u, \lambda/2)}{\Gamma(u)}, \end{cases}$$

F. E. Visser, G. Janssen, P. Pawełczak, Multinode Spectrum Sensing Based on Energy Detection for Dynamic Spectrum Access, Proc. IEEE

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4525849

Receiver Operating Characteristic

Source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Complementary ROC

F. E. Visser, G. Janssen, P. Pawełczak, Multinode **Spectrum Sensing Based on Energy Detection for** Dynamic Spectrum Access, Proc. IEEE VTC-Spring 2008

Complementary ROC for Log-Normal+Rayleigh fading at different SNR values for u = 10 and σ_{dB} = 6 dB

Spectrum Sensing: Other methods

Cooperative methods

- Measurement combining
 - Hard decision
 - "k out of n" voting based on local decisions
 - Soft Decision
 - Fusion of measurement data (before decision) in a central point

Feature detection

Power mask, time-domain features (cyclostationarity), ...

Sensing/Throughput Tradeoff

$$R_0(\epsilon, \tau) = \frac{T - \tau}{T} C_0(1 - P_f(\epsilon, \tau)) P(\mathcal{H}_0),$$

$$R(\tau) = \frac{T - \tau}{T} C_1(1 - P_d(\epsilon, \tau)) P(\mathcal{H}_1),$$

$$R_1(\epsilon, \tau) = \frac{T - \tau}{T} C_1(1 - P_d(\epsilon, \tau)) P(\mathcal{H}_1),$$

Y.-C. Liang, Y. Zeng, E. C.Y. Peh, A. T. Hoang. Sensing-Throughput Tradeoff for Cognitive Radio Networks, IEEE Transactions on Wireless Communications, vol. 7, no. 4, Apr. 2008, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4489760

Sensing/Throughput Tradeoff

T=100 ms $SNR_P=-15 \text{ dB}$

Y.-C. Liang, Y. Zeng, E. C.Y. Peh, A. T. Hoang. **Sensing-Throughput Tradeoff for Cognitive Radio Networks,** IEEE Transactions on Wireless Communications, vol. 7, no. 4, Apr. 2008, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4489760

Cognitive Radio: Database Approach

 Idea: Search for vacant channels through querying of databases

Commercial products

https://www.google.com/get/spectrumdatabase/

http://spectrumbridge.com/ProductsServices/WhiteSpacesSolutio

ns/

Source: https://www.google.com/get/spectrumdatabase/channel/

Database Approach—Database Request (Google)

```
"jsonrpc": "2.0",
"method": "spectrum.paws.init",
"apiVersion": "v1explorer",
"params": {
 "type": "INIT_REQ",
 "version": "1.0",
 "deviceDesc": {
   "serialNumber": "your_serial_number",
   "fccId": "your_FCC_ID",
  // ...
 "location": {
   "point": {
     'center": {"latitude": 37.0, "longitude": -101.3}
 "key": "your_API_key"
},
"id": "any_string"
```

Source: https://developers.google.com/spectrum/paws/gettingstarted

Database Approach—Database Response (Google)

```
"jsonrpc": "2.0",
"id": "any_string",
"result": {
"type": "AVAIL_SPECTRUM_RESP",
"version": "1.0",
"timestamp": "2013-08-31T03:28:08Z",
"deviceDesc": {
 "serialNumber": "your_serial_number", "fccId": "OPS13",
 "fccTvbdDeviceType": "MODE_1"
"spectrumSchedules": [
  "eventTime": {
  "startTime": "2013-08-31T03:28:08Z",
  "stopTime": "2013-09-02T03:28:08Z"
```

Source: https://developers.google.com/spectrum/paws/gettingstarted

Database Approach—Database Response (Google) [cont.]

```
"spectra": [
    'bandwidth": 6000000.0,
    "frequencyRanges": [
     "startHz": 5.12E8,
     "stopHz": 5.72E8,
     "maxPowerDBm": 15.99999928972511
 "needsSpectrumReport": false,
 "rulesetInfo": {
  "authority": "US",
  "maxLocationChange": 100.0,
  "maxPollingSecs": 86400,
  "rulesetIds": [
  "FccTvBandWhiteSpace-2010"
```

Source: https://developers.google.com/spectrum/paws/gettingstarted

"Cognitive" Radio Standards

IEEE SCC41

- Definitions, Policy languages, recommended practices, etc.
- http://grouper.ieee.org/groups/dyspan/index.html
- IEEE 802.11af
 - WiFi over TV White Spaces
- IEEE 802.22
 - WiMax over TV White Spaces
 - http://en.wikipedia.org/wiki/IEEE_802.22
 - http://www.ieee802.org/22/

"Cognitive" IEEE 802.22

Parameter	IEEE 802.16e	IEEE 802.22-2011	NS-2
Bandwidth	10 MHz	{6, 7, 8} MHz	6 MHz
FFT Size	1024	2048	2048
Frequency/Channels	2.5-2.69 GHz	54-698 MHz	54-698 MHz
Frame size	5 ms	10 ms	10 ms
Duplexing method	TDD	TDD	TDD
Tx/Rx Transit Gap (TTG)	105.7 μs	210, 245, 279.8μs	$210\mu s$
Rx/Tx Transit Gap (RTG)	60 μs	81.8, 221.7, 350.3μs	$81.8\mu s$
Modulation types	{16,64}-QAM,	{16,64}-QAM,	{16,64}-QAM,
	QPSK	QPSK	QPSK
Coding rates	1/2, 2/3, 3/4, 5/6	1/2, 2/3, 3/4, 5/6	1/2, 2/3, 3/4
Error correction coding	CC, CTC, LDPC	CTC/BTC	No (emulated)
Max power	BS: 43, CPE: 23 dBm	BS/CPE: 36 dBm	BS/CPE: 36 dBm
Assumed noise figure	BS: 4dB, CPE: 7dB	BS/CPE: 4-6 dB	BS/CPE: 4dB
QoS classes	UGS, rtPS, ErtPS,	UGS, rtPS, ErtPS,	UGS, BE
	nrtPS, BE	nrtPS, BE	
Cyclic prefix mode	1/4, 1/8, 1/16, 1/32	1/4	1/4
OFDM mapping	Rectangular	DL: vert. UL: horiz.	vert.
Error protection	HARQ	ARQ	ARQ

Source: Pal Grønsund, Przemyslaw Pawelczak, Jihoon Park, Danijela Cabric,

System Level Performance of IEEE 802.22-2011 with Sensing-Based Detection of Wireless Microphones,

IEEE Communications Magazine, vol. 52, no. 2, Jan. 2014

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6710084

Take-Home Message

- Cognitive Radio is a very exciting and promising topic
- Much research still needs to be done
- Spectrum sensing is quick but unreliable
- Database approach starts to win the market
- Cognitive Standards are already available

