

REDES NEURAIS COM TENSORFLOW

AGRUPAMENTOS

DIEGO RODRIGUES DSC

INFNET

CRONOGRAMA

Dia	Aula	Trab
29/07	Perceptron de Rosenblatt	
31/07	Classificação: Neurônio Sigmóide	
05/08	Classificação: Rede Neural Feedforward	Grupos
07/08	Classificação: Rede Neural Profunda	
12/08	Regressão	ase de Dados
14/08	Agrupamento	
19/08	Séries Temporais	Modelos
21/08	Apresentação dos Trabalhos Parte I	

AGRUPAMENTOS

- PARTE 1 : MODELOS DE AGRUPAMENTO
 - BUSINESS UNDERSTANDING
 - MODELING
- PARTE 2 : PRÁTICA
 - NOTEBOOK: SOM IRIS
- PARTE 3: TRABALHOS
 - ESCOPO & EVOLUÇÃO

PARTE 1 : TEORIA

CROSS INDUSTRY PROCESS FOR DATA MINING (CRISP-DM)

BUSINESS UNDERSTANDING

NOVO CICLO CRISP

Algoritmo

- Reta 2 Pontos
- NN 10% VAL
- NN 10 Folds
- PS10
- PS10
- SOM

Representação

- 2D
- 2D
- 2D
- 4D / 3 Classes
- 7D / 1D Regressão
- 4D

Preparação

- Nenhuma
- Nenhuma
- Scale
- Scale
- Scale
- PCA

Modelagem

- Reta 2 Pontos
- 1 Neurônio
- 1 Hidden
- 1 Hidden
- 1 Hidden
- SOM 10x10

Validação

- Nenhuma
- Precisão/Recall
- Precisão/Recall
- Acurácia
- MSE
- MSE

- Mapa Auto Organizável para Encontrar Grupos
- Análise da saída do mapa por atributo
- Análise da matriz U

APRENDIZADO SUPERVISIONADO

APRENDIZADO NÃO-SUPERVISIONADO APRENDIZADO POR REFORÇO

CLASSIFICAÇÃO

REGRESSÃO

GENERATIVO

AGRUPAMENTO

REFORÇO

Aprendizado Não-Supervisionado

Não existe um **conhecimento "a priori" dos grupos** contidos nos dados. Algoritmos de agrupamento dependem fortemente de uma definição de "**distância**" ou "**similaridade**" entre as observações.

Agrupamento (Clustering)

Um bebê consegue **agrupar objetos por cor, tamanho, formato** e muitos outros atributos que ele pode observar nos objetos.

Diferentes maneiras de organizar os objetos são diferentes **estruturas de agrupamentos** existentes em uma amostra de dados.

De quantas maneiras estes blocos podem ser organizados em grupos?

Um modelo de agrupamento é usado para identificar grupos, ou estruturas de agrupamentos, nos dados.

REPRESENTAÇÃO: COMO ENCONTRAR OS 10 MUNICÍPIOS MAIS SIMILARES A NITERÓI?

VARIAVEIS QUE FORMAM O GRUPO

município selecionado com os 10 outros municípios brasileiros de perfil mais semelhante para cada item de receita.

Para cada um destes, foi definido o conjunto de variáveis que mais afetam seu resultado – por exemplo, frota de veículos influencia fortemente o valor total de IPVA.

Por meio dos valores dessas variáveis, chega-se aos 10 municípios mais comparáveis com o selecionado.

Veja acima as variáveis que foram utilizadas para o componente de receita definido.

Clique em cada variável acima para entender sua importância.

lique em cada variavel acima para ntender sua importância.

veja acima as variaveis que foram utilizad.

MODELING

DISTÂNCIA

ALGUMAS MÉTRICAS DE DISTÂNCIA

ALGORITMOS

AGRUPAMENTO: ALGORITMOS

- 1)K-Means
- 2)Hieráquico
- 3)DBSCAN
- 4) Mapa Auto-Organizável

Além da escolha do algoritmo, os resultados do agrupamento dependem diretamente dos atributos e da métrica escolhida para definir similaridade entre os objetos.

PARTICIONAMENTO: K-MEANS

K-means (ou K-médias) parte de K centroides (centros de agrupamento) e através de iteração, recalcula os centroides até que particione os dados em K grupos.

AGRUPAMENTO HIERÁRQUICO

Esse algoritmo depende de mais uma definição de "Linkage" para decidir como calcular similaridade entre um grupo e um indivíduo, e permite que diferentes arranjos de grupos sejam detectados, variando o limiar de distância.

https://www.datacamp.com/tutorial/introduction-hierarchical-clustering-python

DBSCAN: DENSIDADE

Density-Based Spatial Clustering of Applications with Noise

Baseado em uma similaridade

mínima e quantidade de vizinhos

para ser considerado um ponto

central, DBSCAN agrupa pontos que

tenham vizinhos comuns.

COMPARAÇÃO DE ALGORITMOS: SKLEARN

O "CLUSTERIZADOR UNIVERSAL"

REDE AUTO ENCODER

Encontra uma
representação de
menor
dimensionalidade
do dado

Encontra um
hiperespaço
reduzido contendo
toda a informação

Rede AutoEncoder

Encoder

Original

input

Decoder

Reconstructed

MAPA AUTO ORGANIZÁVEL

Transforma uma
entrada
multidimensional
em um mapa
bidimensional

Cada neurônio serve como "centróide" de uma pequena região do espaço

PARTE 2 : PRÁTICA

AMBIENTE PYTHON

4. Variáveis Aleatórias

1. Editor de Código

5. Visualização

2. Gestor de Ambiente

6. Machine Learning

3. Ambiente
Python do Projeto

3. Notebook Dinâmico

PROBLEMA DE NEGÓCIO

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

Iris Setosa

Iris Versicolor

Iris Virginica

Iris Setosa

Iris Versicolor

Iris Virginica

REPRESENTAÇÃO

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

MODELAGEM

MAPA AUTO ORGANIZÁVEL

- REPRESENTAÇÃO: 4 ATRIBUTOS > 2 DIMENSÕES NO MAPA
- HIPERPARÂMETROS: NÚMERO DE NEURÔNIOS DO MAPA 10X10.
- TREINAMENTO: BASE DE TREINO COMPLETA.
 - MSE

REGRESSÃO IRIS

EXERCÍCIO: SOM IRIS

PRÓXIMA AULA: SÉRIE TEMPORAL