

Gaussian Process Regression

Mario Teixeira Parente (m.parente@fz-juelich.de)

ISIS LENS Machine Learning School

February 19, 2021

MLZ is a cooperation between

Introduction

- With Gaussian Process Regression (GPR), you can
 - approximate functions while at the same time you
 - quantify uncertainty about the approximation itself.

- It is *flexible* and based on "not too many assumptions".
- However, it can become computationally intractable with functions defined on higher-dimensional domains, i. e., when the number of dimensions exceeds a few dozens.

Bayesian statistics

- In Bayesian statistics, we estimate a parameter θ of a distribution μ with observational data $Y = (Y_1, \dots, Y_N)^\top$.
- More exactly, we estimate a distribution for θ , the so-called **posterior distribution**.
- We start by including knowledge about θ a priori, i. e., before making any observations. This prior information is encoded in a **prior distribution** $\rho(\theta)$.

Bayesian statistics - II

- After observing data $Y_i \sim \mu$, we incorporate this information and *update* the prior to get the posterior information.
- We use Bayes' theorem to get

$$posterior = \frac{likelihood \times prior}{evidence},$$
 (1)

i. e.,

$$\rho(\theta|Y) = \frac{\rho(Y|\theta) \times \rho(\theta)}{\rho(Y)}.$$
 (2)

Gaussian Process Regression

- In GPR, we do not estimate a distribution for finite-dimensional parameters θ , but for *functions*.
- All distributions involved, i. e., priors and posteriors, are Gaussian.
- A Gaussian Process f is such a distribution over functions.

Gaussian Process Regression - II

It is uniquely determined by its mean function m(x) and kernel function k(x, x'), i.e.,

$$f \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$$
 (3)

- For each \mathbf{x} , $f(\mathbf{x}) \sim \mathcal{N}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}))$.
- For $\mathbf{x}_1, \dots, \mathbf{x}_n$, we have that

$$\mathbf{f} := (f(\mathbf{x}_1), \dots, f(\mathbf{x}_n))^{\top} \sim \mathcal{N}(\mathbf{m}, K)$$
 (4)

with $\mathbf{m} = (m(\mathbf{x}_1), \dots, m(\mathbf{x}_n))^{\top}$ and $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$.

■ W.I.o.g., we set $m(\mathbf{x}) \equiv 0$.

Kernel function

- The kernel function k is the most important quantity in GPR.
- It describes the *correlation* between two random function values $f(\mathbf{x})$, $f(\mathbf{x}')$ and hence the "shape" of the function,

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))]. \tag{5}$$

■ There are kernel functions available for many contexts.

Kernel function - II

Example: RBF kernel (Radial Basis Function) a.k.a. Gaussian kernel,

$$k_{\ell}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right), \quad \ell = 0.05 \text{ (length scale)}.$$
 (6)

Regression

- Regression is done when we observe function values at x_1, \dots, x_n and would like to predict values in between.
- Let us assume that we observe $y_i = f(\mathbf{x}_i) + \eta$, $\eta \sim \mathcal{N}(0, \sigma^2)$, at locations $X = (\mathbf{x}_i)_i$ and we want to predict $f(\mathbf{x}^*)$ at some point \mathbf{x}^* .
- For $\mathbf{y} = (y_i)_i$, using Gaussian identities we get that

$$f(\mathbf{x}^*)|\mathbf{y} \sim \mathcal{N}(\hat{f}(\mathbf{x}^*), \hat{\sigma}^2(\mathbf{x}^*)),$$
 (7)

where

$$\hat{f}(\mathbf{x}^*) = k(\mathbf{x}^*, X)(k(X, X) + \sigma^2 I)^{-1}\mathbf{y}, \tag{8}$$

$$\hat{\sigma}^{2}(\mathbf{x}^{*}) = k(\mathbf{x}^{*}, \mathbf{x}^{*}) - k(\mathbf{x}^{*}, X)(k(X, X) + \sigma^{2}I)^{-1}k(X, \mathbf{x}^{*}).$$
 (9)

Regression - II

Example: We observe at equidistant locations $\mathbf{x}_i \in [0,1]$.

Problem: Length scale ℓ does not fit to the data.

Regression - III

Solution: Optimize for length scale ℓ . ($\rightarrow \ell = 0.109$)

Time for the tutorial!

More **details** on GPR can be found in C. Williams and C. Rasmussen. *Gaussian Processes for Machine Learning*. MIT Press. 2006.

(http://www.gaussianprocess.org/gpml/chapters/RW.pdf).