

IE-0431 Sistemas de Control

Sintonización de Controladores PID para el Control de procesos integrantes, inestables y con respuesta inversa

Leonardo Marín Paniagua, Ph.D.

leonardo.marin@ucr.ac.cr

2018

EIE

Escuela de

Ingeniería Eléctrica

Introducción

- Existen procesos que debido a sus características, son un desafío para el diseño de un sistema de control, entre los que se encuentran:
 - Autorregulados con respuesta inversa (modelos estables con ceros en el semiplano derecho).
 - Integrantes más tiempo muerto (modelos con polos en el origen).
 - Inestables más tiempo muerto (modelos con polos en el semiplano derecho).
 - Con un tiempo muerto normalizado grande (modelos con $\tau_0 \gg 1$).

Modelos con ceros de fase no mínima: generados por ejemplo cuando el proceso tiene 2 dinámicas en competencia:

$$y(s) = \left(\frac{K_1}{T_1s+1} - \frac{K_2}{T_2s+1}\right)u(s) = \frac{(K_1T_2 - K_2T_1)s + K_1 - K_2}{(T_1s+1)(T_2s+1)}u(s)$$

$$y(s) = \frac{(K_1 - K_2) \left[\left(\frac{K_1 T_2 - K_2 T_1}{K_1 - K_2} \right) s + 1 \right]}{(T_1 s + 1)(T_2 s + 1)} u(s) = \frac{K(-bTs + 1)}{(Ts + 1)(aTs + 1)} u(s)$$

Se debe cumplir con: $K_1 > K_2 \implies K_1 T_2 - K_2 T_1 < 0$

$$1<\frac{K_1}{K_2}<\frac{T_1}{T_2}$$

 $< \frac{K_1}{K_2} < \frac{T_1}{T_2}$ Se requiere una dinámica lenta (T_1) conganancia alta (K_1) y una dinámica rápida (T_2) con ganancia baja (K_2)

Modelos con ceros de fase no mínima:

$$y(s) = \frac{K(-bTs+1)}{(Ts+1)(aTs+1)}u(s)^{20}$$

$$K - K_1 - K_2$$

$$K=K_1-K_2$$

$$T = T_1$$

$$a = T_2/T_1$$

$$b = (K_2 - aK_1)/(K_1 - K_2)$$

Control mediante síntesis de controladores: Regulador

$$\kappa_{p} \doteq K_{p}K = \frac{-3\tau_{c}^{2}b + [a + (1+a)b](3\tau_{c} + b) - \tau_{c}^{3}}{(\tau_{c} + b)^{3}}$$

$$\tau_{i} \doteq \frac{T_{i}}{T} = \frac{-3\tau_{c}^{2}b + [a + (1+a)b](3\tau_{c} + b) - \tau_{c}^{3}}{a + (1+a+b)b}$$

$$\tau_{d} \doteq \frac{T_{d}}{T} = \frac{(-b - 1 - a)\tau_{c}^{3} + 3\tau_{c}^{2}a + ab(3\tau_{c} + b)}{-3\tau_{c}^{2}b + [a + (1+a)b](3\tau_{c} + b) - \tau_{c}^{3}}$$

T_C
Parámetro
de Diseño
(velocidad
relativa del
lazo)

Ver método en: Chen, D. y D.E. Seborg (2002) - "PI/PID Controller Design Based on Direct Synthesis and Disturbance Rejection", Ind. Eng. Chem. Res., 421, 4807-4822

Síntesis de controladores robusta: Regulador

Para garantizar robustez, se debe establecer la velocidad máxima de diseño: $au_{c.min}$ para $Ms \le 2.0$

$$\tau_{cmin} = a_0 + a_1 b + a_2 b^2 + a_3 b^3$$

а	b _{max}	a ₀	a_1	a_2	a ₃
0,20	1,25	0,2212	0,5386	-0,1377	0,04800
0,40	2,50	0,3263	0,6437	-0,2792	0,06578
0,60	3,25	0,3947	0,7064	-0,2804	0,05164
0,80	3,75	0,4388	0,7648	-0,2795	0,04405
1,0	4,0	0,4659	0,8250	-0,2850	0,40860

Si
$$b \le -0.2 + 8.2a - 2a^2$$
, $\tau_{cmin} \approx 0.05 + 0.75a + 0.475b - 0.1875ab$

Ver método en: Alfaro, V.M., P. Balaguer y O. Arrieta (2012) - "Robustness Considerations on PID Tuning for Regulatory Control of Inverse Response Processes", IFAC Conference on Advances in PID Control (PID'12), marzo 28-30, Brescia, Italia.

- Síntesis de controladores <u>robusta</u>: Regulador, Ejemplo:
- Modelo del proceso:

$$P(s) = \frac{1,5(-10s+1)}{(5s+1)(2s+1)}, \quad K = 1,5, \quad T = 5 \text{ s}, \quad a = 0,4, \quad b = 2$$

Velocidad máxima para Ms≤2,0 :

$$\tau_{c,min}$$
 =1,023

Parámetros del controlador (utilizando τ_c =1,1)

$$K_p = 0.187, T_i = 5.812 \text{ s}, T_d = 0.697 \text{ s}, \beta = 1, \gamma = 0$$

Robustez del sistema de control: $M_{\mathcal{S}}^r=1{,}92$

Síntesis de controladores <u>robusta</u>: Regulador, Ejemplo

Control PI de 2GdL por modelo de referencia (MoReRT)

- Modelo de segundo orden y Controlador de primer orden
- Respuesta de los modelos de referencia (τ_c → parámetro de diseño)

$$y_d^t = \frac{(T_i/K_p)s(-bTs+1)}{(\tau_c Ts+1)^2(a\tau_c T1)}d(s), \quad y_r^t(s) = \frac{-bTs+1}{(\tau_c Ts+1)(a\tau_c Ts+1)}r(s)$$

• Funcional de Costo: $J_T(\tau_c, \overline{\theta}_c, \overline{\theta}_p) \doteq J_r(\tau_c, \overline{\theta}_c, \overline{\theta}_p) + J_d(\tau_c, \overline{\theta}_c, \overline{\theta}_p)$

$$J_{r}(\tau_{c}, \overline{\theta}_{c}, \overline{\theta}_{p}) \doteq \int_{0}^{\infty} \left[y_{r}^{t}(\tau_{c}, \overline{\theta}_{p}, t) - y_{r}(\overline{\theta}_{c}, \overline{\theta}_{p}, t) \right]^{2} dt$$

$$J_{d}(\tau_{c}, \overline{\theta}_{c}, \overline{\theta}_{p}) \doteq \int_{0}^{\infty} \left[y_{d}^{t}(\tau_{c}, \overline{\theta}_{c}, \overline{\theta}_{p}, t) - y_{d}(\overline{\theta}_{c}, \overline{\theta}_{p}, t) \right]^{2} dt$$

Ver método en: Alfaro, V.M. y R. Vilanova (2012) - "Two-Degree-of-Freedom Proportional Integral Control of Inverse Response Second-Order Processes", 16th International Conference on Systems Theory, Control and Computing (ICSTCC), octubre 12-14, Sinaia, Rumanía

Control PI de 2GdL por modelo de referencia (MoReRT)

Parámetros:

$$\kappa_{p} \doteq K_{p}K = a_{0} + a_{1}b^{a_{2}}$$

$$\tau_{i} \doteq \frac{T_{i}}{T} = \frac{b_{0} + b_{1}b}{b_{2} + b_{3}b + b_{4}b^{2} + b_{5}b^{3} + b_{6}b^{4}}$$

$$\beta = c_{0} + c_{1}b + c_{2}b^{2} + c_{3}b^{3}$$

Las constantes a_i , b_i y c_i dependen de a $(0,1 \le a \le 1,0)$ y M_S^t

Posiciones del cero de fase no mínima, admisibles para las ecuaciones de sintonización →

M_S^t	2,0	1,8	1,6	1,4
b_{min}	0,25	0,25	0,25	0,25
b_{max}	2,5	2,0	1,5	1,0

- Control PI de 2GdL por modelo de referencia (MoReRT)
- Ejemplo:
 - Modelo del proceso

$$P(s) = \frac{2,0(-12,5s+1)}{(10s+1)(5s+1)}, \quad K = 2,0, \quad T = 10 \text{ s}, \quad a = 0,5, \quad b = 1,25$$

• Parámetros del controlador $M_S^t = 2,0$

$$K_p = 0.233, T_i = 14.319 \text{ s}, \ \beta = 0.926 \ \rightarrow M_S^r = 2.03$$

• Parámetros del controlador $M_S^t = 1,6$

$$K_p = 0.151, T_i = 11.679 \text{ s}, \beta = 1.301 \rightarrow M_S^r = 1.60$$

Control PI de 2GdL MoReRT, Ejemplo:

- Síntesis de controladores → control "Simple" PID
 - Proceso Integrante de Primer orden: Servomecanismo :

$$P(s) = rac{K \mathrm{e}^{-Ls}}{s}$$
 $C(s) = K_p \left(1 + rac{1}{T_i s} \right)$ $au_c = rac{T_c}{L}$ Parámetro de relativa del lazo)

Sintonización General:

$$\kappa_p \doteq K_p KL = \frac{1}{\tau_c + 1}$$
 $\tau_i \doteq \frac{T_i}{L} = 4(\tau_c + 1)$

• Se recomienda $\tau_c = 1$ ($T_c = L$) para obtener $M_s = 1.7$, con esto:

$$\kappa_p \doteq K_p KL = 0.5$$
 $\tau_i \doteq \frac{T_i}{L} = 8$

Ver método en: Skogestad, S. (2003) - "Simple analytic rules for model reduction and PID tuning", Journal of Process Control, 13, 291-309.

- Síntesis de controladores → control "Simple" PID:
 - Proceso Integrante de Segundo orden: Servomecanismo

$$P(s) = \frac{Ke^{-Ls}}{s(Ts+1)}, \quad \tau_o = \frac{L}{T} \qquad C(s) = K'_p \left(1 + \frac{1}{T'_i s}\right) \left(T'_d s + 1\right)$$

$$\tau_c = \frac{T_c}{L} \quad \begin{array}{c} \textit{Parámetro de} \\ \textit{Diseño} \text{ (velocidad relativa del lazo)} \end{array}$$

Sintonización General (PID serie):

$$\kappa_p' \doteq \kappa_p' \kappa T = \frac{1}{\tau_c + \tau_o}$$
 $\tau_i' \doteq \frac{T_i'}{T} = 4(\tau_c + \tau_o)$ $\tau_d' \doteq \frac{T_d'}{T} = 1$

■ Para M_s =1.7, entonces: $\tau_c = \tau_o$ ($T_c = L$)

$$\kappa_p' \doteq \kappa_p' \kappa T = \frac{0.5}{\tau_o}$$
 $\tau_i' \doteq \frac{T_i'}{T} = 8\tau_o$ $\tau_d' \doteq \frac{T_d'}{T} = 1$

Síntesis de controladores:

Proceso Integrante de Primer o Segundo orden: Regulador

$$P(s) = \frac{Ke^{-Ls}}{s}$$
 $M_{yd1}^t(s) = \frac{K_d se^{-Ls}}{(T_c s + 1)^2}$

$$P(s) = \frac{Ke^{-Ls}}{s} \longrightarrow M_{yd1}^{t}(s) = \frac{K_{d}se^{-Ls}}{(T_{c}s + 1)^{2}}$$

$$P(s) = \frac{Ke^{-Ls}}{s(Ts + 1)}, \ \tau_{o} = \frac{L}{T} \longrightarrow M_{yd2}^{t}(s) = \frac{K_{d}se^{-Ls}}{(T_{c}s + 1)^{3}}$$

- Aproximación del tiempo muerto: $\mathrm{e}^{-Ls} pprox 1 Ls$
 - Planta de primer orden, controlador Requerido -> Pl
 - Planta de segundo orden, controlador Requerido → PID
- Parámetro de diseño: T_c (no se indica cómo seleccionarlo o la robustez resultante en el sistema de control)

Ver método en: Chen, D. y D.E. Seborg (2002) - "PI/PID Controller Design Based on Direct Synthesis and Disturbance Rejection", Ind. Eng. Chem. Res., 421, 4807-4822

- PI de 2GdL por modelo de referencia (MoReRT):
 - Proceso Integrante de Primer orden más tiempo muerto, Modelos de Referencia:

$$y^{t}(s) = \frac{(\tau_{c}Ls + 1)e^{-Ls}}{\tau_{c}^{2}L^{2}s^{2} + 2\zeta\tau_{c}Ls + 1}r(s) + \frac{(T_{i}/K_{p})se^{-Ls}}{\tau_{c}^{2}L^{2}s^{2} + 2\zeta\tau_{c}Ls + 1}d(s)$$

- Del compromiso IAE y Acción de control TVu: ζ=0.8.
- Ecuaciones de Sintonización:

$$\kappa_p \doteq K_p \ K \ L = a$$
 M_S^t
 $M_S^$

Ver método en: Alfaro, V.M. y R. Vilanova (2012) - "Robust tuning and Performance analysis of 2DoF PI Controllers for Integrating controlled Processes", Ind. Eng. Chem Res., 51, 13182-13194

- PI de 2GdL por modelo de referencia (MoReRT):
 - Proceso Integrante de Segundo orden más tiempo muerto, Modelos de Referencia:

$$y^{t}(s) = \frac{e^{-Ls}}{\tau_{c}^{2} T^{2} s^{2} + 2\zeta \tau_{c} T s + 1} r(s) + \frac{(T_{i}/K_{p}) s e^{-Ls}}{(\tau_{c}^{2} T^{2} s^{2} + 2\zeta \tau_{c} T s + 1)(\tau_{c} T s + 1)} d(s)$$

- Del compromiso IAE y Acción de control TVu: ζ=0.8.
- Ecuaciones de Sintonización: $0.1 \le \tau_o \le 2.0$

$$\kappa_p \doteq K_p \ K \ T = \frac{a_0 + a_1 \tau_o}{a_2 + a_3 \tau_o + {\tau_o}^2}$$

$$\tau_i \doteq \frac{T_i}{T} = b_0 e^{b_1 \tau_o} + b_2 e^{b_3 \tau_o}$$

$$\beta = \frac{c_0 + c_1 \tau_o}{c_2 + \tau_o}$$

- PI de 2GdL por modelo de referencia (MoReRT):
 - Proceso de Segundo orden más tiempo muerto:

M_S^t	1,4	1,6	1,8	2,0
a ₀	0,1040	0,1365	0,3886	1,0730
a_1	0,2800	0,3740	0,4670	0,5955
a_2	0,2539	0,2092	0,4455	0,9721
a ₃	1,1970	1,1410	1,7280	3,3320
b_0	16,6700	10,9800	9,7360	8,3220
b_1	0,2070	0,2533	0,2477	0,2708
b_2	-10,0600	-5,9460	-5,4550	-4,5330
b_3	-0,4497	-0,6769	-0,6914	-0,8444
c_0	0,4673	0,5192	0,5853	0,6714
c_1	0,3093	0,3001	0,2927	0,2860
<i>c</i> ₂	1,2150	1,3490	1,5360	1,7870

Ejemplo:

• Modelo del proceso
$$P(s) = \frac{1.5e^{-2s}}{s}$$

Parámetros del Controlador

Método	K_p	T_i	β	M_S^r
SIMC $(M_S^t = 1,7)$	0,167	16,0	1	1,71
$MoReRT (M_S^t = 2,0)$	0,188	9,604	0,477	1,99
MoReRT $(M_S^t = 1,6)$	0,138	12,434	0,516	1,60

- PI de 2GdL por modelo de referencia (MoReRT):
 - Proceso: $P(s) = \frac{Ke^{-Ls}}{Ts-1}$
 - Modelos de referencia:

$$y^{t}(s) = \frac{(\beta T_{i}s + 1)e^{-Ls}}{(\tau_{c}T_{s} + 1)^{2}}r(s) + \frac{(T_{i}/K_{p})se^{-Ls}}{(\tau_{c}T_{s} + 1)^{2}}d(s)$$

Robustez Alcanzable:

$$M_S = 1.4 \ (\tau_o \le 0.1), \ M_S = 1.6 \ (\tau_o \le 0.15), \ M_S = 2.0 \ (\tau_o \le 0.26)$$

Tiempos muerto normalizados del modelo inestable, admisibles para la sintonización →

M_S^t	2,0	3,0	4,0	5,0	6,0
$ au_{omin}$	0,10	0,10	0,10	0,10	0,10
$ au_{omax}$	0,25	0,35	0,45	0,50	0,55

Ver método en: Alfaro, V.M. y R. Vilanova (2012) - "Robustness-Based Tuning of Two-Degree-of-Freedom Proportional Integral Controllers for Unstable Processes", Int. Conf. Sys. Theory, Control (ICSTCC), octubre 12-14, Sinaia, Rumanía

PI de 2GdL por modelo de referencia (MoReRT):

Ecuaciones de Sintonización:

$$\kappa_p \doteq K_p K = a_0 + a_1 \tau_o^{a_2}, \quad \tau_i \doteq \frac{T_i}{T} = \frac{b_0 + b_1 \tau_o}{b_2 + b_3 \tau_o + \tau_o^2}, \quad \beta = 0$$

M_S^t	2,0	3,0	4,0	5,0	6,0
a ₀	-1,149	-0,5287	-0,5091	-0,4010	-0,3995
a_1	0,9560	0,8898	0,9986	1,010	1,070
a_2	-0,8468	-0,9564	-0,9525	-0,9684	-0,9559
b_0	0,03242	0,004109	-0,03222	-0,01103	-0,0226
b_1	0,0	2,90	4,722	3,008	3,237
b_2	0,08534	0,8081	1,40	1,023	1,101
b_3	-0,5698	-2,166	/E-3,10	-2,285	-2,347

■ Ejemplo:

Ejempio:

• Modelo del proceso
$$P(s) = \frac{0.75 \mathrm{e}^{-1.6s}}{8s-1}, \ \tau_o = 0.2$$

Parámetros del Controlador

M_S^t	K _p	T_i	β	M_S^r
4,0	5,490	8,90	0	4,0
2,0	3,499	22,791	0	1,99

UNIVERSIDAD DE COSTA RICA

Sistemas con un Tiempo Muerto Normalizado grande

Síntesis del servo control, planta original

$$P(s) = \frac{1}{(20s+1)(5s+1)(s+1)} \frac{1}{\hat{s}^{25}}$$

$$P_m(s) = \frac{e^{-5,4s}}{20,97s+1}, \ \tau_o = 0,26$$

$$\kappa_c = K_p K, \ \tau_i = T_i / T$$

<u>(1)</u>	25 -		(-1-1)	/			***				_
y(t). r(t). d(20		M								
	_5	i					Ī		Î	Ĭ	
	0	50	100	150	200	250	300	350	400	450	500

Sistemas con un Tiempo Muerto Normalizado grande

Síntesis del servo control, tiempo muerto grande

$$P(s) = \frac{e^{-100s}}{(20s+1)(5s+1)(s+1)} \underbrace{\frac{e^{-100s}}{e^{-105,4s}}}_{\text{S}} \underbrace{\frac{e^{-100s}}{e^{-105,4s}}}_{\text{S}}$$

$$P_m(s) = \frac{e^{-105,4s}}{20,97s+1}, \ \tau_o = 5,03$$

$$\kappa_c = K_p K, \ \tau_i = T_i / T$$

$ au_{c}$	K_p	T_i , s	M_S^r
0,5	0,18	20,97	2,65
1,0	0,17	20,97	2,45
2,0	0,14	20,97	2,00

Se requieren esquemas de control con "compensación de tiempo muerto" (predictor de Smith y similares)