Introdução à microcontroladores

As pessoas que realmente levam a sério o software devem fazer o seu próprio hardware.

Alan Kay

Histórico

Circuitos digitais

Finalidades múltiplas

Arquiteturas variadas

Ponto em comum: são de aplicação específica

Operação específica, inflexível

Viáveis?

Histórico

1969/1971 - BUSICOM 141-PF

BUSICOM + Intel:

projeto de um circuito integrado para a calculadora 141-PF

Questões técnicas

Questões econômicas

Microprocessador

Operação flexível

1969

- **Proposição** do circuito "microprocessador":
 - Intel + BUSICOM
 - Marcian "Ted" Hoff

1971

- A Intel obtém o direito comercial do primeiro circuito integrado (CI)
- O primeiro CI foi desenvolvido com a ajuda de Frederico Faggin
- A idéia do circuito "microprocessador" é comprada da BUSICOM

1971

- É lançado, pela Intel, o 4004;
- **Primeiro** μP comercial;
- arquitetura de 4 bits;
- **45** instruções;
- realizava 6000 instruções/s;
- 750kHz de freqüência de operação.

Demais circuitos:

: memória ROM (2048-bits)

: memória RAM (320-bit)

: registrador de deslocamento de 10 bits

BUSICOM 141-PF

Fonte: www.dentaku-museum.com

1972

- Intel e Texas Instruments lançam o 8008;
- Primeiro μP comercial de 8 bits;
- **45** instruções;
- Realizava 300.000 instruções/s;
- 0.8 MHz de freqüência de operação;
- Endereçamento de **16k** posições.

1974

- Intel lança o 8080;
- μP de 8 bits;
- 2 MHz de freqüência de operação;
- Endereçamento de 64k posições;
- Preço inicial: \$ 360

1974...

- Motorola lança o 6800;
- μ P de 8 bits;
- **75** instruções;
- Até 2 MHz de freqüência de operação;
- Endereçamento de 64k posições;
- Lançados periféricos próprios para o μP
 - 6820: Interface paralela de entrada/saída
 - 6850: Interface serial de comunicação

Obs: O projeto esteve sob coordenação de *Chuck Peddle*

1975

Aspectos comerciais entram em cena!

- MOS Technology:
 - Lança o 6501 e o 6502 com preços de \$ 25 cada;
 - Disponibilidade imediata;
 - **Obs**: 8080 e 6800 são vendidos por \$ **179** cada.
- Respostas:
 - 8080 e 6800 passaram a ser vendidos a \$ 69,96 cada;
 - Chuck Peddle é processado pela Motorola... pois
 - fez parte da MOS Technology na época do projeto do 6501/6502....

1975...

O 6502 toma a cena....

- Devido a seu preço, o 6502 conquista o mercado....
- Especificações:
 - 8 bits;
 - **56** instruções;
 - endereçamento de **64k** posições.

1975...

O 6502 toma a cena....

- Apple, Atari, Commodore e outras adotam o 6502
- Empresas como **Rockwell, Ricoh, NCR** e afins passam a produzi-lo
- O μP chega a vender **15 milhões/ano**

1976

- Frederico Faggin deixa a Intel e funda a Zilog;
- É anunciado o **Z80** (Zilog):
 - Compatível com os aplicativos do 8080
 - Superior aos demais:
 - 8 bits / **176** instruções;
 - **64k** de endereçamento direto;
 - vários registros;
 - fonte de alimentação única; e
 - maiores frequências de operação.

É o μP de 8 bits com maior aceitação

1976

• Intel lança o **8085**, que não chega a fazer frente **Z80**

~1978

• Surge a família **8086** (iAPX86), que dá novo rumo aos processadores empregados em computadores pessoais.

Microprocessador

Microprocessador

roteiro

comando 1 comando 2 comando 3 Circuitos digitais dedicados

Propósito geral

Operação programável

Máquinas de calcular

Máquinas de calcular programáveis

Modelo de aplicação

comando 1 comando 2 comando 3

Execução de tarefas

dados

dado 1 dado 2 dado 3

...

Princípio de operação

Princípio de operação

Ciclo de busca e execução

Elementos básicos

Arquitetura de Von Neumann

Elementos básicos

Arquitetura de Harvard

Elementos básicos

Modelo do Atmega

Modelo do PIC32

Modelo do KL05

Kinetis KL0x MCU Family Block Diagram

Modelo de interface com periféricos

- Total de memória disponível depende:
 - Do tamanho da palavra de dados
 - Do tamanho do "apontador"
 - Total de memória embutida no chip
 - Total de memória anexada à placa (modo expandido)
- A arquitetura Harvard possui dois barramentos
 - Memória
 - Dados

- Algumas posições podem ser de "tipos" diferentes
 - RAM
 - ROM
 - EEPROM
- Algumas não funcionam como uma memória tradicional
 - SFR
 - Vetor de interrupção
- Algumas nem são memórias
 - Portas de entrada e saída
 - Registros de timers

Modelo de interface com periféricos

Modelo de interface com periféricos

Aplicação prática

Mapeamento em memória

Mapeamento em memória

Endereço no μP	Endereço na ROM	Endereço na RAM
0000h	000h	-
03FFh	3FFh	-
0400h	-	00h
047Fh	-	7Fh

Circuitos importantes

- Alimentação
 - Depende do modelo do processador
 - Geralmente existe uma faixa de tolerância
- Clock
 - Cristal Externo (XT)
 - RC Externo
 - RC Interno
 - Fonte de clock externa
- Modo de programação
 - Na própria placa
 - Debug ou não
 - Utiliza alguns pinos do microcontrolador

