Engineering a Model Cell for Rational Tuning of GPCR Signaling

William M. Shaw, Hitoshi Yamauchi, Jack Mead, Glen-Oliver F. Gowers, David J. Bell, David Öling, Niklas Larsson, Mark Wigglesworth, Graham Ladds, Tom Ellis

Cell

Volume 177 Issue 3 Pages 782-796.e27 (April 2019)

DOI: 10.1016/j.cell.2019.02.023

GPCR signalling:

- Widely represented in eukaryotic lifeforms
- Largest family of signalling proteins in humans (>800 members)
- (indirect) target of almost half of all known drugs
- General mechanism, modular
- Very suited for biosensors

Characteristics of a sensor sensor

The pheromone response pathway of Saccharomyces cervisiae

11 of the 15 genes deleted in the GPCR model strain

Refactored minimised GPCR pathway

Mathematical Model

minimum Signal maximum Signal

D

GPCR (Ste2)

GFP fluorescence

X-fold increase in signal

Maximum pathway output

- Idea: increase pheromone-responsive transcription factor Ste12
- Problem: leads to poor cell growth
- Why: high basal activation of mating response genes
- Solution: synthetic transcription factor

Putting it all together

Initial demonstration

Extending and narrowing operational range

- How to tune the Hill slope of the dose-response curve?
- Usually done by introducing feedback loops
- This is what we tried to avoid
- Even if we wanted, we could not reintroduce it easily because the autoregulatory feedback of the Ste12 promotor is missing

→ Use population consortia

Summary

Questions?

Questions?