ІНДИВІДУАЛЬНЕ ЗАВДАННЯ №3 З КУРСУ «МАТЕМАТИЧНА СТАТИСТИКА»

НЕЛІНІЙНА РЕГРЕСІЯ

Нехай вивчається генеральна сукупність, що характеризується системою кількісних ознак (X,Y). Для аналізу залежності між випадковими величинами X і Y зроблена вибірка, причому складова X набула значень $x_1, x_2, ..., x_k$, складова Y – $y_1,y_2,...,y_l$, а подія $\{X=x_i,\ Y=y_i\}$ мала частоту появи n_{ij} $(i=1,...,k\ ;\ j=1,...,l).$ Результати цих спостережень записують у вигляді кореляційної таблиці:

Y X	x_1	x_2	•••	x_i	•••	x_k	m_j
<i>y</i> ₁	n_{11}	n_{21}	•••	n_{il}	•••	n_{kI}	m_1
<i>y</i> ₂	n_{12}	n_{22}		n_{i2}		n_{k2}	m_2
•••	•••	•••		•••		•••	
y_j	n_{1j}	n_{2j}		n_{ij}		n_{kj}	m_j
•••	•••	•••	•••	•••	•••	•••	•••
Уı	n_{1l}	n_{2l}	•••	n_{il}	•••	n_{kl}	m_l
n_i	n_1	n_2	•••	n_i	•••	n_k	n

За даними кореляційної таблиці обчислюють умовні середні
$$\overline{y_{xi}}$$
 ($i=1,...,k$):
$$\overline{y_{x_1}} = \frac{y_1n_{11} + y_2n_{12} + ... + y_ln_{1l}}{n_1}, \quad \overline{y_{x_2}} = \frac{y_1n_{21} + y_2n_{22} + ... + y_ln_{2l}}{n_2}, \dots,$$

$$\overline{y_{x_l}} = \frac{y_1n_{i1} + y_2n_{i2} + ... + y_ln_{il}}{n_i}, \dots, \overline{y_{x_k}} = \frac{y_1n_{k1} + y_2n_{k2} + ... + y_ln_{kl}}{n_k}.$$

Складають таблицю умовних середніх $\overline{y_x}$:

x	x_1	x_2	 x_i	 x_k
$\overline{y_x}$	$\overline{y_{x_1}}$	y_{x_2}	 $\overline{y_{x_i}}$	 $\overline{y_{x_k}}$

Аналогічно можна скласти таблицю умовних середніх $\overline{x_y}$:

y	y_1	y_2	 y_j	 y_l
$\overline{x_y}$	$\overline{x_{y_1}}$	$\overline{x_{y_2}}$	 $\overline{x_{y_j}}$	 $\overline{x_{y_l}}$

Для визначення вигляду функції регресії будують точки $(x; \bar{y}_x)$ (або $(y; \bar{x}_y)$) і за їх розміщенням роблять висновок про приблизний вигляд функції регресії.

Якщо графік регресії $\bar{y}_x = f(x)$ або $\bar{x}_y = \phi(y)$ зображається кривою лінією, то кореляцію називають нелінійною (криволінійною).

Наприклад, функції регресії У на Х можуть мати вигляд:

$$\bar{y}_x = ax^2 + bx + c$$
 (параболічна кореляція другого порядку);

$$\overline{y}_x = ax^3 + bx^2 + cx + d$$
 (параболічна кореляція третього порядку);
$$\overline{y}_x = \frac{a}{x} + b$$
 (гіперболічна кореляція);
$$\overline{y}_x = ba^x$$
 (показникова кореляція).

Теорія криволінійної кореляції розв'язує ті самі задачі, що і теорія лінійної кореляції, а саме:

- 1) за даними кореляційної таблиці встановлюють форму кореляційного зв'язку, тобто визначають вигляд функції $\bar{y}_x = f(x)$ або $\bar{x}_y = \phi(y)$;
- 2) оцінюють щільність кореляційного зв'язку, тобто дають оцінку ступеню розсіювання значень випадкової величини Y навколо побудованої кривої регресії $\overline{y_x}$ (або значень випадкової величини X навколо $\overline{x_y}$).
- 1. **Параболічна кореляція.** У прямокутній системі координат позначимо всі точки, які відповідають парам чисел $(x_i; y_{xi})$, тобто побудуємо *поле кореляції*.

Припустимо, що точки $M_i(\bar{x}_i; y_{xi}), i = 1, ..., k$, розташовані приблизно на параболі другого порядку. Рівняння параболи — параболічної регресії Y на X будемо шукати у вигляді

$$f(x) = ax^2 + bx + c, (1)$$

де a,b,c — невідомі параметри.

Із всіх парабол такого виду шукана найближче розташована (згідно з методом найменших квадратів) до точок M_1 , M_2 ,..., M_k , причому точка M_i вибирається n_i разів, i = 1, ..., k (скільки разів зустрічаються у розподілі значення x_i).

Невідомі коефіцієнти a,b,c визначимо таким чином, щоб сума відповідних відхилень була мінімальною. Застосуємо відомий спосіб найменших квадратів. Для цього складемо функцію:

$$F(a,b,c) = \sum_{i=1}^{k} n_i (f(x_i) - \overline{y}_{x_i})^2 = \sum_{i=1}^{k} (ax_i^2 + bx_i + c - \overline{y}_{x_i})^2 n_i$$

Це функція трьох незалежних змінних a,b,c. Необхідна умова екстремуму функції (рівність нулю частинних похідних за змінними a,b і c) дає три рівняння. Наведемо кінцевий вигляд системи рівнянь відносно параметрів a,b,c:

$$\begin{cases} \left(\sum_{i=1}^{k} n_{i}x_{i}^{4}\right)a + \left(\sum_{i=1}^{k} n_{i}x_{i}^{3}\right)b + \left(\sum_{i=1}^{k} n_{i}x_{i}^{2}\right)c = \sum_{i=1}^{k} n_{i}\overline{y}_{x_{i}}x_{i}^{2}; \\ \left(\sum_{i=1}^{k} n_{i}x_{i}^{3}\right)a + \left(\sum_{i=1}^{k} n_{i}x_{i}^{2}\right)b + \left(\sum_{i=1}^{k} n_{i}x_{i}\right)c = \sum_{i=1}^{k} n_{i}\overline{y}_{x_{i}}x_{i}; \\ \left(\sum_{i=1}^{k} n_{i}x_{i}^{2}\right)a + \left(\sum_{i=1}^{k} n_{i}x_{i}\right)b + nc = \sum_{i=1}^{k} n_{i}\overline{y}_{x_{i}}. \end{cases}$$

$$(2)$$

Розв'язуючи $\ddot{\text{п}}$ методом Гаусса, знайдемо параметри a,b,c, які підставимо в (1).

У випадку параболічної регресії X на Y необхідно знайти функцію $\phi(y) = a_1 y^2 + b_1 y + c_1$. У результаті одержуємо систему рівнянь відносно параметрів a_1, b_1, c_1 , в якій порівняно з системою (2) x і y міняються місцями.

2. Гіперболічна кореляція. Припустимо, що аналіз залежності між змінними X і Y, вираженої кореляційною таблицею, приводить до вибору форми кореляційної залежності Y на X у вигляді рівняння гіперболи

$$\overline{y}_x = \frac{a}{x} + b,\tag{3}$$

а у випадку регресії Х на У – гіперболи

$$\overline{x}_y = \frac{c}{y} + d. \tag{4}$$

Регресії такого типу називаються гіперболічними.

За методом найменших квадратів невідомі параметри a і b шукаємо з системи рівнянь:

$$\begin{cases} a \sum_{i=1}^{k} \frac{1}{x_i} n_i + bn = \sum_{i=1}^{k} \overline{y}_{x_i} n_i; \\ a \sum_{i=1}^{k} \frac{1}{x_i^2} n_i + b \sum_{i=1}^{k} \frac{1}{x_i} n_i = \sum_{i=1}^{k} \frac{1}{x_i} \overline{y}_{x_i} n_i. \end{cases}$$
(5)

У випадку гіперболічної регресії X на Y система рівнянь для визначення параметрів c,d рівняння (4) знаходиться аналогічно.

з. Показникова кореляція.

Розглянемо випадок, коли аналіз зв'язку між змінними X та Y, заданими кореляційною таблицею, приводить до вибору форми кореляційної залежності Y на X у вигляді показникової функції

$$\overline{y}_x = ba^x,$$
 (6)

а при розгляді регресії X на Y – показникової функції

$$\overline{x}_{y} = dc^{y}. (7)$$

Логарифмуючи обидві частини рівності (6), одержимо $\lg y = x \lg a + \lg b$. Отже, якщо між X та Y існує кореляційна залежність Y на X з параметрами a і b, то між $\lg Y$ і X — лінійна кореляційна залежність з параметрами $\lg a$ і $\lg b$. Тому система рівнянь для визначення $\lg a$ і $\lg b$ буде мати вигляд

$$\begin{cases} \lg a \sum_{i=1}^{k} n_i x_i + n \lg b = \sum_{i=1}^{k} n_i \lg \overline{y}_{x_i}; \\ \lg a \sum_{i=1}^{k} n_i x_i^2 + \lg b \sum_{i=1}^{k} n_i x_i = \sum_{i=1}^{k} n_i x_i \lg \overline{y}_{x_i}. \end{cases}$$

$$(8)$$

Розв'язуючи її, знаходимо $\lg a$ і $\lg b$, а потім параметри a і b показникової функції (6). Аналогічно можна одержати систему рівнянь для визначення логарифмів параметрів c і d рівняння (7).

4. **Коренева кореляція.** Припустимо, що аналіз залежності між змінними X і Y, вираженої кореляційною таблицею, приводить до вибору форми кореляційної залежності Y на X у вигляді рівняння

$$\overline{y}_x = a\sqrt{x} + b,$$
 (9)

а у випадку регресії X на Y – рівняння

$$\overline{x}_y = c\sqrt{y} + d. \tag{10}$$

У цьому випадку невідомі параметри а і в будемо шукати з системи рівнянь

$$\begin{cases} a \sum_{i=1}^{k} n_i \sqrt{x_i} + bn = \sum_{i=1}^{k} \overline{y}_{x_i} n_i; \\ a \sum_{i=1}^{k} n_i x_i + b \sum_{i=1}^{k} n_i \sqrt{x_i} = \sum_{i=1}^{k} n_i \overline{y}_{x_i} \sqrt{x_i}. \end{cases}$$

$$(11)$$

Для відшукання параметрів c і d рівняння (10) складаємо аналогічну до (11) систему рівнянь, де змінні x і y міняються місцями.

5. Оцінка щільності кореляційного зв'язку. За побудованою кривою регресії $\overline{y}_x = f(x)$ (або $\overline{x}_y = \phi(y)$) можна оцінити відхилення значень випадкової величини Y від кривої регресії \overline{y}_x (або значень випадкової величини X від кривої регресії X_y). Зокрема, обчислюють дисперсію величини X відносно кривої регресії X_y на X:

$$\sigma^{2}(y, \overline{y}_{x}) = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{l} (y_{j} - f(x_{i}))^{2} n_{ij} = \frac{\Delta}{n},$$

$$\Delta = n_{11} [y_{1} - f(x_{1})]^{2} + n_{21} [y_{1} - f(x_{2})]^{2} + \dots + n_{k1} [y_{1} - f(x_{k})]^{2} + \dots + n_{12} [y_{2} - f(x_{1})]^{2} + n_{22} [y_{2} - f(x_{2})]^{2} + \dots + n_{k2} [y_{2} - f(x_{k})]^{2} + \dots + n_{ll} [y_{l} - f(x_{1})]^{2} + n_{2l} [y_{l} - f(x_{2})]^{2} + \dots + n_{kl} [y_{l} - f(x_{k})]^{2}.$$

$$(12)$$

За міру розсіяння значень випадкової величини Y від кривої регресії y_x можна також взяти, наприклад, суму квадратів відхилень δ^2 умовних середніх

$$\overline{y_{x_i}} = \frac{1}{n_i} \sum_{j=1} y_j n_{ij}$$

обчислених за даними кореляційної таблиці, від значень $f(x_i)$ функції регресії:

$$\delta^2 = \sum_{i=1}^k \delta_i^2 n_i = \sum_{i=1}^k |\overline{y_{x_i}} - f(x_i)|^2 n_i$$
(13)

ЗАВДАННЯ ДО ЛАБОРАТОРНОЇ РОБОТИ

- 1. За даними кореляційної таблиці обчислити умовні середні \bar{y}_{xi} (i=1,...,k).
- 2. Побудувати поле кореляції, тобто нанести точки $M_i(x_i; \bar{y}_{xi})$, i = 1, ..., k, на координатну площину. На основі цього зробити припущення про вигляд функції регресії (парабола, гіпербола і т.д.)
- 3. В залежності від вигляду функції регресії ((1), (3), (6) чи (9)) скласти відповідну систему рівнянь ((2), (5), (8) чи (11)). Розв'язати її і знайти невідомі параметри вибраної функції регресії.
- 4. Записати рівняння кривої регресії Y на $X : \overline{y}_x = f(x)$ (з конкретною знайденою в пункті 3 функцією регресії f(x)) та побудувати її графік.
 - 5. Обчислити дисперсію (12) величини Y відносно кривої регресії Y на X .
- 6. Визначити суму квадратів відхилень δ^2 умовних середніх від значень функції регресії за формулою (13).

Структура звіту:

- 1) Постановка задачі;
- 2) Короткі теоретичні відомості;
- 3) Програмна реалізація (без тексту програми);
- 4) Отримані результати (графічні та числові) та їх аналіз;
- 5) Висновки (детальні)

Максимальна кількість балів — 10. Термін виконання — 18 травня

	Y X	3	6	7	10	13	15	17]	- 1	Y J		2	3	5	Т	7	9	12	13
	1	22							1	Ì	3	\top			\vdash	\top	\neg		13	4
	1,5	2	31			-			1		5	\forall				+	1	21	2	
1.	2		1	25	4	-	+	+	1	2.	6	+			\vdash		24	3	$\overline{}$	\dashv
	2,5			2	18	3		+	1		7	+		7	13	_	2			-
	3,5			_	1	30	8	+	ł		10	+	3	18	4	-	_	$\overline{}$	$\overline{}$	-
	4	\vdash				100	12	2	ł	1	12	+	23		Η.	+	\dashv	$\overline{}$	$\overline{}$	\dashv
	-					_	12	1-	J		-12		20			_				
	Y X	0	1	2	3	4	5	6		Г	Y X	10	0	,5	1	1,5	2	2,5	5 3	٦
	2	30	3	5			Ť	H		\vdash	5	3			2	3	┢	1-,-	+	┨
	3	2	20			-		\vdash		h	25	+	_	\rightarrow	1	10	5	\vdash	+	┪
3.	5		5	10	2	\vdash		\forall	4	ı. H	40	+	+	\dashv	+		7	_	+	┥
	10			7	12	10		\vdash		``	55	+	+	\dashv	+		Ť	10	+	┥
	17					20	15	\forall		H	70	+	+	\dashv	+		\vdash	1	10	7
	30					1-0	5	5		H	100	+	+	\dashv	+		\vdash	+-	35	
							-	Ů		L	100	_					_		-	
	Y X	3	4	7	10	11	14	17	1	1	Y X		2	3	5	Т	8	10	11	13
	1	18							1		3	+		_	Ť	+			19	2
ŀ	2	2	18	3		-		+	1	1	4	+			\vdash		3	31	2	$\overline{}$
5.	2,5		4	25	2	\vdash	+	+	1	6.	6	\top			1	_	6	3		\neg
٠. ا	3	\vdash			30	2	5	+	ł	٠.	8	+		2	21	_	4		$\overline{}$	\dashv
	4					16	4	4	1		10	+	3	31	5	+	-	$\overline{}$	$\overline{}$	-
	4,5	Н				10	22	3	1	1	12	+	30	2	Ť	+	\dashv	$\overline{}$	$\overline{}$	\dashv
	7-								J							_				
	Y X	0	4	6	7	8	9	10		Y	X	0	1	2	1:	3	4	5	6	1
	5	25		2		\neg		\neg		\vdash	1	29	5	_	_	5				1
	20	10	60		\neg	\top	\neg	\dashv			10		1	_	_	0	8	\vdash	+	1
7.	40		2	22	2	\neg		\neg	8.		20		\top	1	_	1	10	9	+	1
	62				1	2	\top	\dashv			30		+	+	+	\dashv	1	20	+	1
	78				\vdash	-	28	\dashv		-	40		+	+	+	\dashv		5	+	1
	95				\vdash	-		21		_	64		+	+	+	\dashv		4	20	1
										_			_		_					_
	Y X	3	5	6	9	12	14	19	1		Y	X	2	3		5	7	9	12	13
	1,5	21							1		3			\top	\top	\dashv		\top	21	1
	2,5	4	31	3					1		4			\top	1:	2	3	20	\top	
9.	3		5	28	3	4			1	10.				2		1	12		T	
	3,5				25	4	3		1		-6			15		3		\top	\vdash	
	4	\vdash				17	3	5	1		1		3	7		\dashv		+	+	
	4,5					<u> </u>	29		1		1		25		+	\dashv		+	+	
	-,-						1		J			_				_				
	Y X	0	1	2	3	4	. 5	6	1		Y	X	0	0,5	1	Т	1,5	2	2,5	3
	7	50			+		+	+	1		1		2	15	_		,-	10	_	
	11	2	15	3	+	+	+	+	1		- 5		Ē	3	30		45	10		+
11.		+-	20	_	4	+	+	+	1	12.				Ť	2	_	1	20	_	
	35	+	120	15			,	+	1		1				1	_	1	3	25	
	50	+		+	7	_	_	0	1		2				+	+	1	5	18	_
	75	+	+	+	+ '	1	_	_	1		2				+	+	_	1	+10	18
	10						1 4	- 2	J			•								110

	Y X	4	5	7	9	12	15	17	1		Y	X	2	3	5	6	8	10	12
	1	12		\top	\top	\top	\top		1		2	2						22	2
	1,5	3	19	Т	\top	\top	\top		1		3	3				4	13		
13.	2,5		3	31	. 1	\top			1	14.		5		2	3	14	5		
	3			2	18	3 7	\top		1		7	7		4	21				
	3,5			\vdash	1	20) 4		1		1	2	3	14					
	4			\vdash	\top	\top	17	2	1		1	3	12						
								-											
	VIV	- 4	-	17	I 0	10	11			1/1	v	0	1 1	1 0	1 9	1 4	T =	1 6	٦ .
	Y X	4	5	7	9	10 15	11			Y	\rightarrow	0	1	2	3	4	5	6 22	-
	4 15			7	11	15	1			- 1		10	20	30 5	50 45				-
15		10	- 2	2	11	15	\vdash		10				12	2	_	2	18		-
15.	20 25	18	3	2	1	-	\vdash		16.	2			├	2	1	3	15		-
	30	3	5	9	1	1	\vdash				_		₩	-	\vdash	+3	15	_	-
	35	11	10	4	1	3	$\vdash\vdash$			3			₩	₩	-	+	1	10	-
	35	11	10	4	1	3				_ 3	U							1	J
	Y X	3	5	7	9	13	15	17]		Y	X	1	2	4	6	9	11	12
	1	23							1		3	3						7	31
	1,5	2	19		\top	\top			1		4					2	21	4	
17.	2		3	32]	18.					4	12	6		
	3			8	23		_]		7	7		3	22	5			
	3,5			П	2	17			1		1		4	20					
	4						20	3]		1	2	23						
	Y X	0	1	2	3	4	5	6		Г	X X	1	1 1 0	,5	1	1,5	2	2,5	3
	1	45	4	5	3	4	9	\dashv		H	1	5	_	_		20	-	2,0	-
	10	1	4	8	10	\rightarrow	-	\dashv		\vdash	10	1	_			60	23	-	-
19.	20	-	-	7	20	\rightarrow	-	\dashv	20	۱,	20	+	+	_	1	2	20	20	-
15.	25		Н	╗	1	44	-	\dashv	2("H	30	+	+	+	+	1	2	22	\dashv
	30		\vdash	\dashv	-	3	28	\dashv		\vdash	40	+	+	+	+	-	1	25	-
	44		Н	\dashv	$\overline{}$	Ť		11		\vdash	60	+	+	+	+	$\overline{}$	-	1	57
				_			10 1				-							-	٠.
									_		_								
	Y X	4	6	8	11	13	15	17]		Y		0	1	2	3	4	5	6
	1,5	13	2	╙	\perp	\perp]		2		18	3	2				Щ
	2	7	21	1	_	\perp	\perp		1		3		2	20					Щ
21.	3			20					1	22.	£		3	5	10	2	L_		Щ
	3,5			\perp	18		_	<u> </u>	1		1	_			7	12	5		Щ
	4			_	\perp	25		4	1		1						20	3	
	4,5					\perp	16	1			2	6						45	5