

Université Pierre Marie Curie Master 1 Informatique Spécialité SAR

Projet d'interface graphique pour la logique en L3

RAPPORT

DIALLO OUSMANE 3 KATUITSHI-NTUMBA JEAN-MARC

Année universitaire : 2015 - 2016

Table des matières

Remerciements Introduction			3	
				1
	1.1	Diagramme de Use case	4	
	1.2	Fiche détaillé	4	
	1.3	Diagramme de classe	9	
	1.4	Diagramme de séquence	10	
		1.4.1 création d'un jardin	10	
		1.4.2 sauvegarde d'un jardin	10	
2	Pha	ase de conception et de développement du projet	12	
	2.1	Diagramme de classe	12	
	2.2	Diagramme de composant	12	
	2.3	Diagramme de structure interne	13	
3	Dév	veloppement des différents composants du projet	14	
	3.1	Composant environnement	14	
	3.2	Composant Formule	14	
	3.3	Composant analyseur syntaxique	14	
	3.4	Composant de communication java-python	14	
Conclusion			15	
Références			16	

Remerciements

Nous tenons à remercier Mme Béatrice Berard, Mr Mathieu Jaume et Mme Legastlois pour leur encadrement tout au long de ce projet. Nous tenons aussi à remercier tous nos professeurs qui ont contribué à notre formations.

Introduction

Le projet Interface graphique pour la Logique en L3 consiste à développer un outil dynamique et robuste afin d'améliorer l'enseignement de la logique en L3. Ce projet nous a été soumis dans le cadre de l'UE PSAR du Master 1 Informatique spécialité SAR. Il est sous la responsabilité de Mr Fabrice Kordon suivi par Mme Béatrice Berard, Mr Mathieu Jaume et Mme Bénédicte Legastelois.

1 La phase d'analyse du projet

1.1 Diagramme de Use case

Ce diagramme nous présente l'ensemble des fonctionnalités ainsi que les différents acteurs de notre système

1.2 Fiche détaillé

Description du cas : « création d'un jardin»

Identification

Nom du cas :Création d'un environnement

But : Décrire les étapes permettant à un utilisateur de créer un jardin via

notre application

Acteur principal : Utilisateur Acteur Secondaire : néant Date de création : 04/03/2016Date de mise à jour : 04/03/2016Responsable : Ousmane Jean Marc

Version :1.0 Séquencement :

Le cas d'utilisation commence lorsque l'application est démarrée

Préconditions:

néant

Enchaînement nominal:

- 1. L'utilisateur choisit «créer jardin»
- 2. Le système affiche un jardin vide
- 3. l'utilisateur sélectionne « ajouter fleur »

4. le système ajoute la fleur à la position suivante dans le jardin

Post-conditions

Le jardin est visible sur l'interface graphique.

Description du cas : «Sauvegarder un jardin»

Identification

Nom du cas :Sauvegarde d'un environnement

But : Décrire les étapes permettant à un utilisateur de sauvegarder un

jardin

Acteur principal: Utilisateur

Acteur Secondaire:

néant

Date de création : 04/03/2016Date de mise à jour : 04/03/2016Responsable : Ousmane Jean Marc

Version :1.0 Séquencement :

Le cas d'utilisation commence lorsqu'un jardin a été crée ou chargé

Préconditions:

Un jardin est crée ou chargé selon le cas d'utilisation usecase1

Enchaînement nominal:

- 1. L'utilisateur choisit «sauvegarder jardin»
- 2. Le système ouvre le menu de dialogue standard lui permettant de choisir le répertoire de sauvegarde
- 3. l'utilisateur choisit son répertoire de sauvegarde
- 4. l'utilisateur saisit le nom du fichier à sauvegardé
- 5. le système enregistre le jardin dans ce répertoire.

Post-conditions

Le jardin est bien sauvegardé dans le répertoire choisi par l'utilisateur.

Description du cas : «Charger un jardin»

Identification

Nom du cas :Chargement d'un jardin existant

But : Décrire les étapes permettant à un utilisateur de charger un jardin existant

Acteur principal: Utilisateur

Acteur Secondaire :

néant

Date de création : 04/03/2016 Date de mise à jour : 04/03/2016 Responsable : Ousmane Jean Marc

Version :1.0 Séquencement : Le cas d'utilisation commence lorsque l'application est démarrée

Préconditions:

L'utilisateur dispose d'un jardin sauvegardé sur son répertoire

Enchaînement nominal:

- 1. L'utilisateur choisit «Charger jardin»
- 2. Le système ouvre le menu de dialogue standard lui permettant de choisir le répertoire où se trouve son jardin.
- 3. l'utilisateur choisit le jardin à charger et valide
- 4. le système charge le jardin dans l'interface graphique .

Enchaînement d'exception

E1: L'utilisateur annule le chargement

L'enchaînement reprend au point 1 du cas nominal

Post-conditions

Le jardin sélectionné depuis son répertoire est bien chargé sur l'interface graphique.

Description du cas : «Imprimer un jardin»

Identification

Nom du cas :Impression d'un jardin

But : Décrire les étapes permettant à un utilisateur d'imprimer un jardin

Acteur principal: Utilisateur

Acteur Secondaire:

néant

Date de création : 04/03/2016 Date de mise à jour : 04/03/2016 Responsable : Ousmane Jean Marc

Version :1.0 Séquencement :

Le cas d'utilisation commence lorsque l'application est démarrée

Préconditions:

L'utilisateur dispose d'un jardin sur l'interface graphique

Enchaînement nominal:

- 1. L'utilisateur choisit «Imprimer jardin»
- 2. Le système ouvre le menu de dialogue standard lui permettant de choisir l'imprimante.
- 3. l'utilisateur choisit l'imprimante et valide.
- 4. le système lance l'impression.

Enchaînement d'exception

E1: L'utilisateur annule l'impression

L'enchaînement reprend au point 1 du cas nominal

Post-conditions

L'utilisateur dispose sur papier imprimé son jardin

Description du cas : créer une formule

Identification:

Nom du cas : «créer une formule »

But : Décrire les étapes permettant à l'utilisateur de créer une formule

Acteur principal: Utilisateur Date de création: 04/03/2016 Date de mise à jour: 04/03/2016 Responsable: Ousmane Jean Marc

Version :1.0 Séquencement :

Le cas d'utilisation démarre lorsque l'application est démarrée

Préconditions :

néant

Enchaînement nominal:

- 1. L'utilisateur choisit « créer une formule »
- 2 . Le système ouvre un espace d'édition des formules
- 3. L'utilisateur saisit sa formule.

Post-conditions

L'espace d'édition des formules contient bien une formule

Description du cas : charger une formule

Identification:

Nom du cas : « Charger une formule »

But : Décrire les étapes permettant à l'utilisateur de charger une formule.

Acteur principal : Acteur Date de création : 04/03/2016Date de mise à jour : 04/03/2016Responsable : Ousmane Jean Marc

Version :1.0 Séquencement :

Le cas d'utilisation démarre lorsque l'application est démarrée

Préconditions:

néant

Enchaînement nominal:

- 1.L'utilisateur choisit « charger une formule »
- 2.Le système ouvre un menu déroulant contenant les fichiers des formules stockées en mémoire
- 3.L'utilisateur sélectionne le fichier contenant sa formule.
- 4.Le système affiche les différentes formules contenues dans le fichier

Post-conditions

L'espace d'édition des formules contient bien toutes les formules du fichier

Description du cas : Sauvegarder une formule

Identification:

Nom du cas : Sauvegarder une formule

But : Décrire les étapes permettant à l'utilisateur de sauvegarder une

formule

Acteur principal : Acteur Date de création : 04/03/2016Date de mise à jour : 04/03/2016Responsable : Ousmane Jean Marc

Version :1.0 Séquencement : Préconditions :

Il existe au moins une formule sur l'espace d'édition des formules.

Enchaînement nominal:

- 1. l'utilisateur choisit « sauvegarder une formule »
- 2. Le système ouvre une fenêtre permettant à l'utilisateur de saisir le nom et l'emplacement du fichier
- 3. l'utilisateur saisit un nom ,sélectionne l'emplacement du fichier et valide
- 4. le système enregistre le fichier.

Post-conditions

Un fichier contenant des formules est bien crée à l'emplacement choisi.

Description du cas : imprimer une formule

Identification:

Nom du cas : Imprimer une formule

But : Décrire les étapes permettant à utilisateur d'imprimer une formule

Date de création : 04/03/2016 Date de mise à jour : 04/03/2016 Responsable : Ousmane Jean Marc

Version :1.0 Séquencement : Préconditions :

Il existe au moins une formule sur l'espace d'édition des formules.

Enchaînement nominal:

- 1.l'utilisateur choisit « imprimer une formule »
- 2. le système affiche la fenêtre standard d'impression pour choisir l'imprimante
- 3. l'utilisateur confirme.
- 4. le système lance l'impression.

Post-conditions

La formule est bien imprimée sur papier

Description du cas : évaluer une formule

Identification:

Nom du cas : Évaluer une formule

But : Décrire les étapes permettant à l'utilisateur d'évaluer une ou plusieurs

formules

Date de création : 04/03/2016Date de mise à jour : 04/03/2016Responsable : Ousmane Jean Marc

Version :1.0 Séquencement : Préconditions :

Il existe au moins une formule sur l'espace d'édition des formules.

Enchaînement nominal:

- 1.l'utilisateur choisit «évaluer»
- 2.Le système lance l'analyseur syntaxique pour vérifier la ou les formules
- 3. Le système lance l'outil d'évaluation de formules
- 4. le système affiche le résultat.

Post-conditions

Le résultat de l'évaluation est bien visible à l'écran

Enchaînement alternatif:

A1: Formule mal formée

A l'étape 2 du cas nominal si la formule est mal formée, le système demande à l'utilisateur de corriger sa formule.

L'enchaînement reprend au cas nominal 1.

1.3 Diagramme de classe

A l'étape d'analyse, les différentes classes, énumérations de notre projet se présentent comme suit :

1.4 Diagramme de séquence

1.4.1 création d'un jardin

Ce digramme présente les différentes interactions lors de la création d'un nouveau jardin par l'étudiant.

1.4.2 sauvegarde d'un jardin

Ce digramme présente les différentes interactions lors de la sauvegarde d'un nouveau jardin par l'étudiant.

2 Phase de conception et de développement du projet

Dans cette étape du projet, nous parlerons proprement du développement. Nous présenterons les différents composants ainsi que la structure interne du projet.

- -Diagramme de classe
- -Diagramme de composant
- -Diagramme de structure interne

2.1 Diagramme de classe

Ce digramme nous présente les différentes classes, énumérations et interfaces dont nous implémenterons dans le projet.

2.2 Diagramme de composant

Ce digramme présente les différents composants de notre application et les interfaces que ces composants implémentent.

2.3 Diagramme de structure interne

Ce digramme présente la structure interne de notre application. Il y a des composants qui fonctionneront tous seuls(environnement) et d'autre ne fonctionneront qu'à l'aide d'autres(moteur evaluateur,formule, analyseur,ihm).

3 Développement des différents composants du projet

Dans cette étape du projet, nous expliquons l'implémentation des différents composants du projet.

- -Composant environnement
- -Composant formule
- -Composant analyseur syntaxique
- -Composant de communication java et python

3.1 Composant environnement

Le composant environnement regroupant le jardin et les fleurs est implémentés comme le montre la figure suivante :

3.2 Composant Formule

Le composant formule regroupe toutes les fonctionnalités associées à une formule.La figure suivante montre les différentes méthodes implémntées.

3.3 Composant analyseur syntaxique

L'analyseur syntaxique est implémenté comme suit :

3.4 Composant de communication java-python

Notre application java communiquera avec celle de python au moins des sockets. Nous avons implémenté un client java et un serveur python.

Conclusion

Ce projet nous a permis de mettre en pratique les connaissances théoriques déjà apprises dans les différents UE de notre parcours.

Grâce à ce projet nous avons appris :

- -Latex
- -beamer

Il nous a permis non seulement de nous rappeler des notions de la logique du premier ordre mais aussi le développement d'une application du début à la fin.

Références