DESCRIPTION	FORMULA
Present value of a growing annuity	$PVA = \frac{C}{i-g} \times \left[1 - \frac{(1+g)^N}{(1+i)^N}\right]$
Present value of a growing perpetuity	$PVP = \frac{C}{i - g}$
Expected return and systematic risk (CAPM)	$E(R_i) = R_{rf} + \beta_i \big[E(R_m) - R_{rf} \big]$
One period stock price model	$P_0 = \frac{D_1 + P_1}{1 + R}$
One period stock price model at n	$P_n = \frac{D_{n+1} + P_{n+1}}{1 + R}$
Zero growth dividend model	$P_0 = \frac{D}{R}$
Value of dividend at time n with constant growth	$D_n = D_0 \times (1+g)^n$
Constant growth dividend growth model	$P_0 = \frac{D_1}{R - g}$
Value of a stock at time n when dividends grow at constant rate	$P_n = \frac{D_{n+1}}{R - g}$
Mixed (supernormal) growth dividend model	$P_0 = \frac{D_1}{1+R} + \frac{D_2}{(1+R)^2} + \dots + \frac{D_n}{(1+R)^n} + \frac{P_n}{(1+R)^n}$
Value of preferred stock with a fixed maturity	$PS_0 = \frac{D/m}{1 + i/m} + \frac{D/m}{(1 + i/m)^2} + \frac{D/m}{(1 + i/m)^3} + \dots + \frac{D/m + P_{mn}}{(1 + i/m)^{mn}}$
Net Present Value	$NPV = NCF_0 + \frac{NCF_1}{1+i} + \frac{NCF_2}{(1+i)^2} + \dots + \frac{NCF_n}{(1+i)^n} = \sum_{t=0}^n \frac{NCF_t}{(1+i)^t}$
Internal Rate of Return	$NPV = \sum_{t=0}^{n} \frac{NCF_t}{(1 + IRR)^t} = 0$
Payback Period	$PB = Years\ before\ cost\ recovery + \frac{Remaining\ cost\ to\ recover}{Cash\ flow\ during\ the\ year}$
Incremental Free Cash Flow	$FCF_{Project} = FCF_{Firm\ with\ project} - FCF_{Firm\ without\ project}$
Free Cash Flow Calculation	$FCF = [(Revenue - OpEx - D\&A) \times (1 - t)] + D\&A - CapExp - \Delta WC$
Incremental additions to working capital	ΔWC = Change in cash + Change in accounts receivable + Change in inventories – Change in accounts payable