Welcome!

Firmware Training Week 3

ROBOJACKETS COMPETITIVE ROBOTICS AT GEORGIA TECH

www.robojackets.org

Last Week!

- Git / GitHub
- Arduino Reference
- Debugging
- Interrupts

This Week!

- Reading Datasheets
- Registers and Timers
- PWM
- Bitwise Operations
- Masking

Dues

- Please pay dues ASAP
- Can do so at my.robojackets.org/dues

Reading Datasheets

ATMega328p

- ATMega328p: main MCU on Arduino Nano
 - 8-bit, AVR MCU
- In today's lab, we will be digging around in the datasheet!

Datasheet for today's lab:

https://www.sparkfun.com/datasheets/Components/SMD/ATMega328.pdf

- What does "8-bit" mean?
 - See Figure 4-1

- What does "8-bit" mean?
 - A: size of MCU's data bus
- Look at Arduino Nano pinout.
 What does "Microcontroller Port" mean?
 - See Section 11.2, 11.4

ARDUINO NANO

- What does "8-bit" mean?
 - A: size of MCU's data bus
- Look at Arduino Nano pinout. What does "Microcontroller Port" mean?
 - A: Digital I/O port names associated with ATMega328P
- What are the "Output Compare Registers"? What are they used for?
 - See section 15.5, 15.11

- What does "8-bit" mean?
 - A: size of MCU's data bus
- Look at Arduino Nano pinout. What does "Microcontroller Port" mean?
 - A: Digital I/O port names associated with ATMega328P
- What are the "Output Compare Registers"? What are they used for?
 - A: OCR2A, OCR2B. Hardware timer. Can generate an interrupt when timer reaches threshold

Registers and Timers

What is a register?

- Hardware used for storage can read or write multiple bits
- Methods like Arduino's digitalWrite modify the value of a register that controls whether a pin is high or low

Timers and Timer Registers

- Timers are a peripheral device used to count up to a certain value before resetting
- Timer registers can be used to trigger different actions at set intervals by checking the value of the timer register against a different register

PWM

Pulses go brrrrr

What is PWM?

- Pulse-width modulation
- By alternating between a low and high voltage the effect of a middle voltage can be achieved
- We can get this voltage by varying the duty cycle (the effective voltage is the weighted average)

Relation to Timers

- Switching frequency is controlled by a timer register
- The time voltage is high compared to the total time tells us the % duty cycle which directly relates to the output voltage

Binary and Hexadecimal

52 6f 62 6f 4a 61 63 6b 65 74 73

What are Binary and Hexadecimal?

- Binary and Hexadecimal are alternate number systems
- The number system that everyone is taught is called decimal and it is base 10
- Binary is base 2: 0,1
- Hexadecimal is base 16:
 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

decimal	hexadecimal	binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

Example Conversion Binary-Decimal

Decimal to Binary: 158 to 10011110

Binary to Decimal: 10011110 to 158

2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2⁴ 16	2 ³	2 ² 4	2¹ 2	2° 1
1	0	0	1	1	1	1	0

Example Conversion Hexa-Decimal

Decimal to Hexadecimal:

158 to 9E

14 is E in Hexadecimal so the result is 9E!

Hexadecimal to Decimal: 9E to 158

16¹	16°
16	1
9	Е

Example Conversion Hexa-Binary

Hexa to Binary: 9E to 10011110

decimal	hexadecimal	binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

Binary to Hexa: 10011110 to 9E

Bitwise Operations

Yes or no

What are Bitwise Operations?

- Bitwise operators:
 - AND &
 - OR I
 - NOT →!
 - XOR → ^
 - (A & !B) | (!A & B)

BITA	BIT B	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

Bitwise operations are Logical Operations but instead of comparing conditions, bits are compared

How does it work?

Example: 01000011(67); 00101010(42)

```
01000011
                       <sub>^</sub>01000011
            01000011
             00101010
                         00101010
Bin: 0b01010101
                         01101001
```

Hex: 0xAF03

dEc: 10

Logical Shift

Left Shift

Left Shift	Right Shift
<<	>>

- A single left shift multiplies a number by 2:
 - (2) $0010 << 1 \rightarrow 0100 (4)$
- Right Shift
 - A single right shift divides a number by 2 (discards the remainder)
 - (5) 0101 \Rightarrow 1 \rightarrow 0010 (2)

Why are they useful?

- Very efficient
- Small memory usage
- They are used in embedded devices, socket programming (network), cryptography etc...

Masking

Mask on (or off)

What is it?

- Using bitwise operations to access/set particular bits
- Read a value from a binary number
 - Masking with 0 to ignore subset of bits
 - Use a bitwise AND (&)
- Write certain bits of a binary number
 - Masking bits to 1 to change subset of bits
 - Use a bitwise OR (|)

How to mask?

Masking with &:

- Any number & 0 leaves a 0
- Any number & 1 leaves that number

Ex:

```
1001010
&<u>0101001</u>
0001000
```

Masking with |:

- Any number | 0 leaves that number
- Any number | 1 leaves a 1

Ex:

```
1001010
| <u>0101001</u>
1101011
```


You have a color: #34EB98 (hexadecimal), 110100111010111000 (binary)

How do you get only the amount of blue of this color?


```
You have a color: #34EB98 (hexadecimal),
```

001101001110101110011000 (binary)

How do you get only the amount of blue of this color?

```
Mask (&): 0011 0100 1110 1011 1001 1000
```

- & 0000 0000 0000 0000 1111 1111
- => 0000 0000 0000 0000 1001 1000


```
You have a color: #34EB98 (hexadecimal),
```

001101001110101110011000 (binary)

How about the amount of green?

```
Mask (&): 0011 0100 1110 1011 1001 1000
```

& 0000 0000 1111 1111 0000 0000

=> 0000 0000 1110 1011 0000 0000

Shift right (>>8): 0000 0000 0000 0000 1110 1011

Now we have: #000098 (hexadecimal),

00000000000000010011000 (binary)

How do you add red to this color?

Now we have: #00098 (hexadecimal),

00000000000000010011000 (binary)

How do you add red to this color?

Mask (|): 0000 0000 0000 0000 1001 1000

| 1111 1111 0000 0000 0000 0000

=> 1111 1111 0000 0000 1001 1000


```
Now we have:
                  #000098 (hexadecimal),
00000000000000010<mark>011000</mark> (binary)
How do you add a specific amount of red? (E.g. 129)
Shift, then mask!
Get value (129):
               0000 0000 0000 0000 1000 0001
Shift right (<<16): 1001 0001 0000 0000 0000 0000
Mask (I):
               0000 0000 0000 0000 1001 1000
               1000 0001 0000 0000 0000 0000
           => 1000 0001 0000 0000 1001 1000
```


Lab Time

Lab Info

- Read about ATmega microcontroller
- Read about the timer registers
 - Setup fast PWM mode using the register
- Write interrupt handler for button
- Display brightness using LED