HW3

Lei Xia (MML)

October 21, 2020

1. Probability measures:

For \mathbb{P}_2 , p(x) = x when $x = 2^{-i}$ for $i \in \mathbb{N}$.

- (a) $\{0\}: 0 \notin 2^{-i} \text{ for any } i \in \mathbb{N}, P(\{0\}) = 0.$
- (b) $\{\frac{1}{2}\}$: $i = 1, x = 2^{-1}, p(\frac{1}{2}) = 1/2$
- (c) $\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$: $\frac{1}{4}, \frac{1}{2}$ are in set $\{2^{-i}\}, i \in \mathbb{N}, p = \frac{1}{4} + \frac{1}{2} = 3/4$.
- (d) All 2^{-2i} are in set $\{2^{-i}\}$. $\sum_{n=1}^{\infty} 2^{-2i} = \sum_{n=1}^{\infty} 4^{-i} = \frac{\frac{1}{4}(1 \frac{1}{4}^n)}{1 \frac{1}{4}} = \frac{1}{3}$
- (e) $[0,\frac{1}{2}]$: In fact, only $\frac{1}{2}$ inside the range has a point mass so $p([0,\frac{1}{2}])=p(\frac{1}{2})=\frac{1}{2}$.
- (f) $p([\frac{1}{4}, \frac{1}{2}]) = p(\{\frac{1}{4}, \frac{1}{2}\}) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$.
- (g) $p([\frac{1}{4}, \frac{1}{2}] \cup [\frac{3}{4}, 1]) = p([\frac{1}{4}, \frac{1}{2}]) = p(\{\frac{1}{4}, \frac{1}{2}\}) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$.

For \mathbb{P}_1 , the cumulative distribution is $P(x) = 1 - e^{-x}, x > 0$ and 0, otherwise given the density.

- (a) $\{0\}, \{\frac{1}{2}\}, \{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$: For a continuous function with a density, each point corresponds to a probability 0. As a result, all probabilities are 0.
- (b) 2^{-2i} for i in \mathbb{N} : This set includes infinite number of points, on an infinite range $[0, \infty]$. $P([0, \infty]) = 1$. $P(\{2^{-i}\}) = \sum_{n=1}^{\infty} 4^{-i} = \frac{1}{3}$. For infinite number of points, probabilities would be the same whether P has a density or a point mass function.
- (c) For ranges $[0, \frac{1}{2}], [\frac{1}{4}, \frac{1}{2}], [\frac{1}{4}, \frac{1}{2}] \cup [\frac{3}{4}, 1]$, use cdf $P(x) = 1 e^{-x}, x > 0$:
 - i. $P(\frac{1}{2}) = 1 e^{-\frac{1}{2}}$
 - ii. $P(\frac{1}{2}) P(\frac{1}{4}) = e^{-\frac{1}{4}} e^{-\frac{1}{2}}$
 - iii. $(P(\frac{1}{2}) P(\frac{1}{4})) + (P(1) P(\frac{3}{4})) = e^{-\frac{1}{4}} + e^{-\frac{3}{4}} e^{-\frac{1}{2}} e^{-1}$

	\mathbb{P}_1	\mathbb{P}_2
{0}	0	0
$\left\{\frac{1}{2}\right\}$	0	1/2
$\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\}$	0	3/4
2^{-2i} for i in \mathbb{N}	1/3	1/3
$[0, \frac{1}{2}]$	$1 - e^{-\frac{1}{2}}$	1/2
$[\frac{1}{4}, \frac{1}{2}]$	$e^{-\frac{1}{4}} - e^{-\frac{1}{2}}$	3/4
$[\frac{1}{4}, \frac{1}{2}] \cup [\frac{3}{4}, 1]$	$e^{-\frac{1}{4}} + e^{-\frac{3}{4}} - e^{-\frac{1}{2}} - e^{-1}$	3/4

2. Cumulative distribution functions:

(a) $F_{p,\theta}(x) = p + (1-p)(1-exp(-\theta x)) => P(S_t = x) = F' = \theta(1-p)e^{-\theta x}$ for $x \ge 0 => P(S_1 = 0) = \theta(1-p)$. To simplify F, $F_{p,\theta}(x) = p + (1-p)(1-e^{-\theta x}) = p + (1-p) - (1-p)e^{-\theta x} = 1 + (p-1)e^{-\theta x}$. Also, I assume $p \ne 1$ because when p = 1, F, P would both be 0 and this whole problem would be meaningless.

For range distribution in (b),(c) and (d), it is asking for cumulative distributions. I can just use $F_{p,\theta}(x)$ to calculate the probability.

- (b) For b), F = 0 when $-\frac{1}{2} \le S_1 < 0$; when $S_1 = 0$, $F(0) = 1 + p 1 = p = P(-\frac{1}{2} \le S_1 \le 0) = p$
- (c) $\mathbb{P}(-\frac{1}{2} \le S_1 \le \frac{1}{2}) = \mathbb{P}(0 \le S_1 \le \frac{1}{2}) = 1 + (p-1)e^{-\frac{\theta}{2}}$
- (d) $\mathbb{P}(0 \le S_1 < \infty) = 1$
- (e) When x > 0, x can take on any real value so it is not a finite set, so this probability distribution has no point mass function.
- (f) The premise for a function f to be a density function is that f needs to be continuous. $P(0) = \theta(1-p)$ and $p \neq 1$ from (a) so it is not 0, but $\lim_{x\to 0^-} f(x) = 0$ so P is not continuous. As a result, this probability distribution have no density.

1

- (g) From above, it's known this probability distribution has neither point mass function nor density so it cannot be a mixture of both.
- (h) It is singular because it has no point mass or density, and it's not a mixture.

(i) $E[S_1] = \int_{-\infty}^{\infty} (x - K)^+ \theta (1 - p) e^{-\theta x} dx = \int_{K}^{\infty} \theta x (1 - p) e^{-\theta x} dx - \int_{K}^{\infty} \theta (1 - p) K e^{-\theta x} dx$ $= \frac{1 - p}{\theta} \int_{\theta K}^{\infty} t e^{-t} dt - \theta (1 - p) K \int_{K}^{\infty} e^{-\theta x} dx = (1 - p) (\frac{1}{\theta} (1 + \theta K) e^{-\theta K} - K e^{-\theta K}) = \frac{1 - p}{\theta} e^{-\theta K}$

3. Law of Large Numbers:

(a)

$$S_t = exp((\mu - \frac{\sigma^2}{2})t + \sigma B_t) = \log(S_t) = (\mu - \frac{\sigma^2}{2})t + \sigma B_t = \log(\frac{S_{t_n}}{S_{t_{n-1}}}) = (\mu - \frac{\sigma^2}{2})(t_n - t_{n-1}) + \sigma(B_{t_n} - B_{t_{n-1}})$$

Since $B_{t_2} - B_{t_1}$, $B_{t_3} - B_{t_2}$, ..., $B_{t_n} - B_{t_{n-1}}$ are independent for any $t_1 < t_2 < t_3 < ... < t_{n-1} < t_n$; $t_2 - t_1$, ..., $t_n - t_{n-1}$ are also independent. As a result, the two terms are both independent, which makes $log(\frac{S_{t_n}}{S_{t_{n-1}}})$ independent and $\frac{S_{t_n}}{S_{t_{n-1}}}$ as well.

(b)
$$E[log(\frac{S_{t+1}}{S_t})] = (\mu - \frac{\sigma^2}{2}) + \sigma E[B_{t+1} - B_t] = \mu - \frac{\sigma^2}{2}$$

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \log(\frac{S_{i+1}}{S_{i}}) = n(\mu - \frac{1}{2}\sigma^{2}) + \sigma \sum_{i=1}^{n} (B_{i+1} - B_{i})$$
$$= > \frac{\lim_{n \to \infty} \sum_{i=1}^{n} \log(\frac{S_{i+1}}{S_{i}})}{n} = (\mu - \frac{1}{2}\sigma^{2}) + \lim_{n \to \infty} \sigma \frac{\sum_{i=1}^{n} (B_{i+1} - B_{i})}{n}.$$

 $(\mu - \frac{1}{2}\sigma^2)$ is a constant. If the above formula converges,

$$\lim_{n \to \infty} \sigma \frac{\sum_{i=1}^{n} (B_{i+1} - B_i)}{n}$$

must converge. According to the Law of Large Numbers, for this to converge, each factor in $\sum_{i=1}^{n}(B_{i+1}-B_i)$ must be IID. If they are IID, they can be added up as $n(B_2-B_1)$, or written as $(B_{n+1}-B_n)+(B_n-B_{n-1})+\ldots+(B_2-B_1)=B_{n+1}-B_1.B_1\sim N(0,1)$, then all I need is to make the term with larger variance, $B_{n+1}\sim N(0,n+1)$ converge. The cumulative distribution function $F_{B_{n+1}}(x)=\Phi(\frac{x}{n+1})$, for $n->\infty$, $F(x)=\Phi(0)=0.5$, so the probability is 0.5, which indicates the original

$$\lim_{n \to \infty} \sum_{i=1}^{n} log(\frac{S_{i+1}}{S_i})$$

converges with a probability 0.5.

For each i from 1 to n, $E[B_{i+1} - B_i] = 0$. According to the Law of Large Numbers,

$$P(\lim_{n \to \infty} \sigma \frac{\sum_{i=1}^{n} (B_{i+1} - B_i)}{n} = E[B_{i+1} - B_i] = 0) = 1$$

, so

$$\frac{\lim_{n\to\infty}\sum_{i=1}^n\log(\frac{S_{i+1}}{S_i})}{n}=(\mu-\frac{1}{2}\sigma^2).$$