11/2/15 For next week: Keeler CL 4 Q 1,35,7-13 *Stopped at Sensitivity *

Signal processing

Chris Waudby

c.waudby@ucl.ac.uk

Quadrature detection and phasing

- NMR data are acquired in quadrature – they are complex numbers
- Fourier transformation of complex number input gives a complex number output.
 However, NMR spectra almost always show only the real part of the spectrum – the imaginary part is discarded
- Before doing this it is necessary to phase the spectrum to generate absorption mode lineshapes

Fourier transformation and quadrature detection

Coil design

Conceptually perhaps
but not physically!

Helmholtz coil:

Bo

Only I coil

- guad
cetection?

NB single source - noise in both channels strongly correlated!

Receiver block diagram

Zero filling

Window functions (apodization)

- Multiplication of time-domain signal, s(t), by window function, h(t), prior to Fourier transformation
- Wide selection of window functions for different purposes:
 - · suppression of sinc wiggles
 - · enhanced sensitivity
 - · enhanced resolution
 - · better lineshapes

for all peaks

Matched filter:

S(t)=e^{-R_z t} => choose window function = e^{-R_z t} for optimal SNR

Lorentz-to-Gauss functions

Window functions (apodization)

Ernst et al. Principles of NMR in One and Two Dimensions

Subtlety-due to receiver design noise in Re and In is some in direct/dimension - no sensitivity

Zero filling, causality and sensitivity

Throwing away half the data

Plants

Throwing away half the data

Throwing away half the data

But we know more about the signal:

