STATE-OF-THE-ART SPEECH RECOGNITION WITH SEQUENCE-TO-SEQUENCE MODELS

7107018016 翁婉庭

2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Introduction

■ Traditional:

ASR(automatic speech recognition):
AM(acoustic model), PM(pronunciation model), LM(language model)

■ Now:

Attention-based encorder-decorder architectures: Sequence-to-sequence models ex:LAS(Listen,Attend and Spell),RNN-T,RNA.....

■ Goal:

explore various structure and optimization improvements to allow sequence-to-sequence models to significantly outperform a conventional ASR system on a voice search task.

minimum WER(word error rate)

Model

- Basic LAS Model
- 3 modules:
 - 1.listener (encoder編碼器)module input x , map them to a higher-level feature representation, henc
 - 2. Attention module input h^{enc} output attention context, c_i
 - 3.Speller (decorder解碼器)module take c_i and embede previous prediction y_{i-1} , in order to produce a probability distribution, $P(y_i|y_{i-1},...,y_0)$, over the current sub-word unit, y_i

Structure Improvements

1. Wordpiece models(WPM)

traditional: graphemes(字形)

now: wordpiece

- ✓ 有較高準確度
- ✓ 能記住常出現的單詞發音
- ✓ 減少解碼步驟

2. Multi-headed attention(MHA)

Optimization Improvements

1. Minimum Word Error Rate(MWER) Training

Loss function
$$\mathcal{L}_{ ext{MWER}} = \mathbb{E}_{P(\mathbf{y}|\mathbf{x})}[\mathcal{W}(\mathbf{y},\mathbf{y}^*)] + \lambda \mathcal{L}_{ ext{CE}}$$

N-best list NBest(\mathbf{x}, N) = { $\mathbf{y}_1, \dots, \mathbf{y}_N$ }

$$\mathcal{L}_{ ext{MWER}}^{ ext{N-best}} = rac{1}{N} \sum_{y_i \in ext{NBest}(\mathbf{x}, N)} [\mathcal{W}(\mathbf{y_i}, \mathbf{y^*}) - \widehat{\mathcal{W}}] \hat{P}(\mathbf{y_i} | \mathbf{x}) + \lambda \mathcal{L}_{ ext{CE}}$$

Re-normalized (N-best hypotheses)
$$\widehat{P}(\mathbf{y}_i|\mathbf{x}) = \frac{P(\mathbf{y}_i|\mathbf{x})}{\sum_{\mathbf{y}_i \in \mathrm{NBest}(\mathbf{x},N)} P(\mathbf{y}_i|\mathbf{x})}$$

- $\mathcal{W}(y, y^*)$: the number of word errors
- y*: the ground-label sequence
- $\widehat{\mathcal{W}}(y_i, y^*) \widehat{\mathcal{W}}$: variance reduction
- CE: cross-entropy

求 $\mathbb{E}_{p(y|x)}$:sampling or restricting the summation to an N-best list of decoded hypothese

Optimization Improvements

2. Scheduled Sampling

在訓練的時候,提供先前的標記(token)作為下次預測的標記

→ 縮小訓練及推理(inference)之間的差距

3. Asynchronous and Synchronous

異步訓練:不同副本(replica)各自運行反向傳播的過程,並獨立地更新參數同步訓練:所有的副本同時讀取參數的取值,並且當反向傳播算法完成之後, 計算出不同副本上參數梯度的平均值,最後再根據平均值對參數進行更新

→ 同步訓練:提供更快的收斂速度及更好的模型

4. Label smoothing

→ 正規化機制,防止模型過度自信的預測 (在訓練時即假設標籤可能存在錯誤,避免"過分"相信訓練樣本的標籤)

Second-Pass Rescoring

透過對數線性插值(Log-Linear interpolation)將LM合併到第二次校正模型

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \log P(\mathbf{y}|\mathbf{x}) + \lambda \log P_{LM}(\mathbf{y}) + \gamma \mathrm{len}(\mathbf{y})$$

Motivation:

- ✓ LAS model requires audio-text pairs(音頻文本):only have text
- ✓ 一些語音搜索的錯誤可以 從更多的純文本數據上訓練的 良好的LM來修復

Reference	LAS model output
What language is built into electrical circuitry of a computer?	what language is built into electrical circuit tree of a computer
Leona Lewis believe	vienna lewis believe
Suns-Timberwolves score	sun's timberwolves score

合併外部的LM: Shallow fusion(淺融合): 通常只在推理時執行

Experimental

- Training set:
 - 15million English utterances from Google Voice Search Traffic.
 - +Varying degrees of <u>noise and reverberation</u> which from YouTube and daily life noisy environmental recordings.
- Evaluation:
 the resulting model which trained with only voice search data

Results

Exp-ID	Model	VS/D	1st pass Model Size
E8	Proposed	5.6/4.1	0.4 GB
E9	Conventional LFR system	6.7/5.0	0.1 GB (AM) + 2.2 GB (PM) + 4.9 GB (LM) = 7.2GB

Table 5: Resulting WER on voice search (VS)/dictation (D). The improved LAS outperforms the conventional LFR system while being more compact. Both models use second-pass rescoring.