Курс: Методы оптимизации в машинном обучении, осень 2016

ВМК МГУ

Практическое задание 3.

Выпуклая негладкая, условная и структурная оптимизация.

Начало выполнения задания: 6 ноября 2016 г.

Срок сдачи: 30 ноября (среда), 23:59.

Среда для выполнения задания: Python 3.

1 Модель разреженной линейной регрессии

Рассматривается задача регрессии. Имеется обучающая выборка $\mathcal{D} := ((x_i, y_i))_{i=1}^n$, где $x_i \in \mathbb{R}^d$ — вектор признаков i-го объекта, а $y_i \in \mathbb{R}$ — его регрессионное значение. Задача заключается в прогнозировании регрессионного значения y_{new} для нового объекта, представленного своим вектором признаков x_{new} .

В линейной регрессии прогнозирование выполняется с помощью линейной функции:

$$y(x) := x^{\top} w,$$

где $w \in \mathbb{R}^d$ — параметры модели, настраиваемые в процессе обучения.

Обучение модели осуществляется с помощью минимизации следующей L_1 -регуляризованной функции потерь:

$$\phi(w) := \frac{1}{2n} \sum_{i=1}^{n} (x_i^{\top} w - y_i)^2 + \lambda \sum_{j=1}^{d} |w_j| =: \frac{1}{2n} ||Xw - y||_2^2 + \lambda ||w||_1 \to \min_{w \in \mathbb{R}^d}.$$
 (1)

Здесь $\lambda > 0$ — задаваемый пользователем коэффициент регуляризации. Использование L_1 -регуляризации позволяет, во-первых, снизить вероятность переобучения модели, а, во-вторых, получить разреженное решение. В разреженном решении часть компонент оптимального вектора весов w^* равна нулю; (можно показать, что при $\lambda \geq \|X^\top y\|_{\infty}$ все веса будут равны нулю). Нулевые веса соответствуют исключению соответствующих признаков из модели (признание их неинформативными).

1.1 Двойственная задача и критерий остановки

Перепишем задачу (1) в следующем эквивалентном виде:

$$\min_{w \in \mathbb{R}^d, z \in \mathbb{R}^n} \left\{ \frac{1}{2n} \|z\|_2^2 + \lambda \|w\|_1 : Xw - y = z \right\}.$$
 (2)

Можно показать, что двойственной задачей к задаче (2) является

$$\max_{\mu \in \mathbb{R}^n} \left\{ -\frac{n}{2} \|\mu\|_2^2 - y^\top \mu : \|X^\top \mu\|_{\infty} \le \lambda \right\}.$$
 (3)

Таким образом, имея в распоряжении допустимую двойственную точку $\mu \in \mathbb{R}^n$, т. е. такую что $\|X^\top \mu\|_{\infty} \le \lambda$, можно вычислить следующую оценку для невязки в задаче (1):

$$\phi(w) - \phi^* \le \frac{1}{2n} \|Xw - y\|_2^2 + \lambda \|w\|_1 + \frac{n}{2} \|\mu\|_2^2 + y^\top \mu =: \eta(w, \mu).$$
(4)

Величина $\eta(w,\mu)$ называется зазором двойственности и обращается в ноль в оптимальных решениях w^* и μ^* задач (1) и (3). Заметим, что решения w^* и μ^* связаны между собой следующим соотношением: $Xw^* - y = n\mu^*$. Поэтому для фиксированного w естественным выбором соответствующего μ будет

$$\mu(w) := \min\left\{1, \frac{n\lambda}{\|X^{\top}(Xw - y)\|_{\infty}}\right\} \frac{1}{n} (Xw - y).$$

Такой выбор обеспечивает стремление зазора двойственности $\eta(w,\mu(w))$ к нулю при $w \to w^*$, что позволяет использовать условие $\eta(w,\mu(w)) < \epsilon$ в качестве критерия остановки в любом итеративном методе решения задачи (1).

1.2 Сведение к гладкой условной задаче оптимизации

Введя вспомогательные переменные w^+, w^- , задачу (1) можно эквивалентно переписать в виде гладкой условной задачи

$$\min_{w^{+} \in \mathbb{R}^{d}, w^{-} \in \mathbb{R}^{d}} \left\{ \frac{1}{2n} \| X(w^{+} - w^{-}) - y \|_{2}^{2} + \lambda \vec{1}^{\top} (w^{+} + w^{-}) : w^{+} \succeq 0 \land w^{-} \succeq 0 \right\}.$$
 (5)

где $\vec{1} := (1, \dots, 1)$.

Задачу (5) можно решать с помощью метода барьеров.

2 Субградиентный метод

Субградиентный метод — это общий метод решения негладкой выпуклой задачи оптимизации

$$\min_{x \in \mathbb{R}^n} \phi(x),$$

где $\phi: \mathbb{R}^n \to \mathbb{R}$ — выпуклая функция, возможно, недифференцируемая.

Итерация субградиентного метода заключается в шаге из текущей точки x_k в направлении (любого) анти-субградиента $\phi'(x_k)$. При этом, поскольку для негладких задач норма субградиента $\|\phi'(x_k)\|_2$ не является информативной, субградиентный метод использует в качестве направления нормированный вектор $\phi'(x_k)/\|\phi'(x_k)\|_2$:

$$x_{k+1} = x_k - \alpha_k \frac{\phi'(x_k)}{\|\phi'(x_k)\|_2}.$$

Для сходимости метода необходимо, чтобы длины шагов $\{\alpha_k\}_{k>0}$ убывали к нулю, но не слишком быстро:

$$\alpha_k > 0, \quad \alpha_k \to 0, \quad \sum_{k=0}^{\infty} \alpha_k = \infty.$$

Обычно длины шагов выбирают по правилу $\alpha_k = \alpha/\sqrt{k+1}$, где $\alpha > 0$ — некоторая константа.

Нужно отметить, что последовательность $\{x_k\}$, построенная субградиентным методом, может не быть релаксационной последовательностью для функции ϕ , т. е. утверждение $\phi(x_{k+1}) \leq \phi(x_k)$ может быть неверно. Поэтому в субградиентном методе в качестве результата работы после N итераций метода вместо точки x_N возвращается точка $y_N := \operatorname{argmin}\{\phi(x): x \in \{x_0,\dots,x_N\}\}$ (т. е. из всех пробных точек x_k , построенных методом, выбирается та, в которой значение функции оказалось наименьшим).

 $^{^{-1}}$ Заметим, что в практической реализации метода для вычисления результата y_N сами точки x_0, \ldots, x_N хранить в памяти не нужно.

3 Проксимальный градиентный метод

Проксимальный градиентный метод используется для минимизации композитных функций:

$$\phi(x) := f(x) + h(x),$$

где функция $f: \mathbb{R}^n \to \mathbb{R}$ непрерывно дифференцируемая выпуклая функция, а функция $h: \mathbb{R}^n \to \mathbb{R}$ выпуклая и простая, возможно, недифференцируемая.

Под npocmomoй функции h подразумевается то, что для этой функции возможно эффективно вычислить проксимальное отображение

$$\operatorname{prox}_{h}^{\alpha}(x) := \underset{y \in \mathbb{R}^{n}}{\operatorname{argmin}} \left[\alpha h(y) + \frac{1}{2} \|y - x\|_{2}^{2} \right],$$

где $x \in \mathbb{R}^n$, $\alpha > 0$. Например, для $h(x) = \|x\|_1$ проксимальное отображение может быть вычислено аналитически независимо для каждой из координат $i = 1, \ldots, n$:

$$[\operatorname{prox}_{\|\cdot\|_1}^{\alpha}(x)]_i = \begin{cases} x_i + \alpha, & x_i < -\alpha, \\ 0, & |x_i| \le \alpha, \\ x_i - \alpha, & x_i > \alpha. \end{cases}$$

Итерация проксимального градиентного метода имеет следующий вид:

$$x_{k+1} = \operatorname{prox}_{h}^{\alpha_k}(x_k - \alpha_k \nabla f(x_k)), \tag{6}$$

где $\nabla f(x_k)$ — градиент дифференцируемой функции f точке x_k , а $\alpha_k>0$ — некоторым образом выбранная длина шага.

3.1 Схема Нестерова для подбора длины шага

Итерация (6) имеет следующий геометрический смысл. Если градиент функции f удовлетворяет условию Липшица с константой $L_f > 0$, то для любых $x, y \in \mathbb{R}^n$ и $L \ge L_f$ справедлива оценка

$$\phi(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||_2^2 + h(y) =: m_L(y; x), \tag{7}$$

которая является точной в точке y=x. Выбрав $x=x_k$, $L=L_k:=1/\alpha_k$, получаем, что итерация проксимального градиентного метода (6) в точности соответствует минимизации функции $m_{L_k}(\cdot;x_k)$:

$$x_{k+1} = \operatorname*{argmin}_{y \in \mathbb{R}^n} m_{L_k}(y; x_k).$$

Если $L_k \ge L_f$, то, согласно оценке (7), значение функции ϕ в новой точке x_{k+1} уменьшается относительно значения в старой точке $\phi(x_k)$ по крайней мере на величину $m_{L_k}(x_{k+1};x_k) - \phi(x_k)$:

$$\phi(x_{k+1}) \le m_{L_k}(x_{k+1}; x_k) \qquad (\le \phi(x_k)).$$
 (8)

Оказывается, что именно это неравенство, а не условие $L_k \geq L_f$ отвечает за сходимость проксимального градиентного метода. Поэтому для подбора константы L_k (или, эквивалентно, длины шага α_k) на текущей итерации k можно использовать следующую простую процедуру одномерного поиска: начать с некоторого значения L и увеличивать его в два раза, пока не выполнится неравенство (8). Заметим, что эта процедура определена корректно: как только значение L превысит L_f , неравенство (8) обязательно будет выполнено в силу липшицевости градиента функции f. О константе L_k удобно думать как о «локальной» константе Липшица градиента функции f.

Поскольку каждое пробное значение константы L требует полного вычисления функции ϕ , то число итераций одномерного поиска необходимо, по возможности, сократить. Для этого имеет смысл инициализировать значение L_{k+1} с помощью уже найденного значения L_k . Естественным вариантом является инициализация $L_{k+1} = L_k$. Однако в этом случае константы L_k всегда будут только увеличиваться и никогда не уменьшаться; это плохо, поскольку при прочих равных лучше выбрать значение L как можно меньше, что будет соответствовать большему шагу и большему прогрессу в оптимизации (в некоторых областях пространства локальная константа Липшица может быть меньше, чем в области, содержащей начальную точку метода). Таким образом, чтобы константы Липшица на соседних итерациях были близки, но также со временем могли уменьшаться, в схеме Нестерова выполняется инициализация $L_{k+1} = L_k/2$.

Итоговый алгоритм проксимального градиентного метода с подбором длины шага по схеме Нестерова представлен в алгоритме 1. Здесь $L_0 > 0$ — параметр метода (нижняя оценка на глобальную константу Липшица L_f); его всегда можно выбрать равным единице ($L_0 = 1$) без принципиального ущерба для сходимости метода.

Можно показать, что, несмотря на то, что на отдельных итерациях проксимального градиентного метода может выполняться много шагов одномерного поиска, среднее число вычислений функции ϕ за итерацию равно двум (задание 4).

Алгоритм 1: Проксимальный градиентный метод с подбором длины шага по схеме Нестерова

4 Формулировка задания

- 1. Выписать для задачи (5) вспомогательную функцию $\phi_t(w^+,w^-)$, минимизируемую в методе барьеров. Выписать систему линейных уравнений, задающую ньютоновоское направление $p_k = (p_k^+, p_k^-)$, предложить свой способ решения этой системы и прокомментировать его достоинства и недостатки. Для текущей точки (w_k^+, w_k^-) и направления p_k определить максимальную допустимую длину шага α . Какую начальную точку (w_0^+, w_0^-) можно выбрать для метода барьеров?
- 2. Реализовать метод барьеров для задачи (5). Для решения систем линейных уравнений можно использовать стандартные алгоритмы линейной алгебры из numpy/scipy. Для подбора длины шага использовать последовательное деление пополам до выполнения условия Армихо для функции ϕ_t (не забыть выбирать начальное значение длины шага равным единице, если оно допустимо). В качестве критерия остановки использовать зазор двойственности (4).
- 3. Реализовать для задачи (1) субградиентный метод и проксимальный градиентный метод. В качестве критерия остановки в обоих методах использовать зазор двойственности (4). Какую начальную точку можно выбрать для субградиентного метода? Какую для проксимального?
- 4. Для проксимального метода построить график суммарного (куммулятивного) числа итераций одномерного поиска в зависимости от номера итерации. Действительно ли среднее число итераций одномерного поиска не превышает (примерно) двух?

5. Провести экспериментальное сравнение трех реализованных методов для различных значений числа переменных d; рассмотреть, как минимум, случаи $d \le 100$ и $d \ge 1000$. Какие методы быстрее достигают низкой точности ($\epsilon = 10^{-2}$), а какие высокой ($\epsilon = 10^{-10}$)?

Значение коэффициента регуляризации λ выбрать стандартным образом: $\lambda = 1/n$.

Для сравнения методов рисовать графики 1) числа итераций против гарантируемой точности по зазору двойственности (4) и 2) реального времени работы против зазора двойственности. Для зазора двойственности использовать логарифмическую шкалу.

Рекомендация: Реальные наборы данных для тестирования можно взять с сайта LIBSVM². Любой набор данных с сайта LIBSVM представляет из себя текстовый файл в формате symlight. Чтобы считать такой текстовый файл, можно использовать функцию load_symlight_file из модуля sklearn.datasets. Эта функция всегда возвращает матрицу X типа sp.sparse.csr_matrix (разреженная марица). В данном задании разреженность матрицы X никак использовать не нужно, поэтому сразу же после вызова функции load_symlight_file следует привести X к типу np.ndarray. Это можно сделать с помощью команды X = X.toarray().

6. Написать отчет в формате PDF с описанием всех проведенных исследований.

5 Оформление задания

Результатом выполнения задания являются 1) pdf-отчет о проведенных исследованиях со всеми необходимыми формулами и выводами, 2) файл 111inreg.py, содержащий исходные коды трех методов. Выполненное задание следует отправить письмом по адресу bayesml@gmail.com с заголовком

«[ВМК МОМО16] Задание 3, Фамилия Имя».

Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом.

Поскольку проверка реализованных алгоритмов будет осуществляться в полуавтоматическом режиме, все реализованные функции должны строго соответствовать приведенным ниже прототипам и корректно запускаться в Python 3 (а не Python 2!). Проверить наличие всех необходимых функций, а также их соответствие требуемым прототипам можно с помощью специального скрипта check_submission_ass3.py, выдаваемого вместе с текстом задания.

6 Прототипы функций

1. Метод барьеров для решения задачи (5):

Модуль:	lllinreg
Функция:	<pre>barrier(X, y, reg_coef, w0_plus, w0_minus, tol=1e-5, tol_inner=1e-8, max_iter=100, max_iter_inner=20, t0=1, gamma=10, c1=1e-4, disp=False, trace=False)</pre>
Параметры:	X: пр.пdаrray Матрица признаков размеров $n \times d$. у: пр.пdarray Регрессионные значения, вектор размера n . ref_coef: float Коэффициент регуляризации $\lambda > 0$.

²http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

w0_plus: np.ndarray

Начальная точка w_0^+ , вектор размера d.

w0_minus: np.ndarray

Начальная точка w_0^- , вектор размера d.

tol: float, опционально

Точность оптимизации по функции: $\phi(\hat{w}) - \phi^* \leq \epsilon$.

tol_inner: float, опционально

Точность оптимизации функции ϕ_t на внутренних итерациях метода Ньютона: $\|\nabla\phi_t(w_k^+,w_k^-)\|_\infty < \epsilon^{\text{inner}}.$

max_iter: int, опционально

Максимальное число (внешних) итераций метода.

max_iter_inner: int, опционально

Максимальное число внутренних итераций метода Ньютона.

t0: float, опционально

Начальное значение параметра центрирования t.

gamma: float, опционально

Коэффициент увеличения параметра t на внешних итерациях: $t_{k+1} = \gamma t_k$.

c1: float, опционально

Значение константы c_1 в условии Армихо.

disp: bool, опционально

Отображать прогресс метода по итерациям (номер итерации, пройденное время, значение функции, зазор двойственности и пр.) или нет.

trace: bool, опционально

Сохранять траекторию метода для возврата истории или нет.

Возврат:

w_hat: np.ndarray

Найденная точка \hat{w} , вектор размера d.

status: int

Статус выхода, число:

0: решение найдено с заданной точностью: $\phi(\hat{w}) - \phi^* \leq \epsilon$;

1: достигнуто максимальное число итераций.

hist: dict, возвращается только если trace=True

История процесса оптимизации по итерациям (новая запись добавляется на каждой внутренней итерации метода). Словарь со следующими полями:

elaps_t: np.ndarray

Время, пройденное с начала оптимизации.

phi: np.ndarray

Текущее значение функции $\phi(w_k)$.

dual_gap: np.ndarray

Текущий зазор двойственности $\eta(w_k, \mu(w_k))$, заданный в (4).

2. Субградиентный метод для решения задачи (1):

Функция:	<pre>subgrad(X, y, reg_coef, w0, tol=1e-2, max_iter=1000, alpha=1, disp=False, trace=False)</pre>
Параметры:	w0: np.ndarray
	Начальная точка w_0 , вектор размера d .
	alpha: float, опционально
	Константа α для выбора длины шага: $\alpha_k = \alpha/\sqrt{k+1}$.
	Остальные параметры такие же, как и для функции barrier.

3. Проксимальный метод для решения задачи (1):

Функция:	prox_grad(X, y, reg_coef, w0, tol=1e-5, max_iter=1000, L0=1, disp=False, trace=False)
Параметры:	w0: np.ndarray
	Начальная точка w_0 , вектор размера d .
	LO: float, опционально
	Константа L_0 в схеме Нестерова для подбора длины шага.
	Остальные параметры такие же, как и для функции barrier.

Внимание: В этом методе история hist должна содержать дополнительное четвертое поле ls_iters, содержащее суммарное (куммулятивное) число итераций одномерного поиска с самого начала работы проксимального метода.