

Летний научный выезд Фонда "Институт "Вега"

Эволюционная модель с эндогенными аффинными выплатами

Александра Токаева
Supervisors: Житлухин Михаил Валентинович
Vega Institute Foundation

24 июля 2023г

Содержание

Введение

Введение: цель работы

Описание модели рынка

Общая модель рынка с эндогенными ценами

Стратегии

Выживающие стратегии

Модель 1: Активы с взаимоисключающими дивидендами

Модель 2: Активы с произвольными случайными дивидендами

Модель 3: Активы с аффинными дивидендами

Основные результаты

Теорема 1: "выживающая" стратегия — неподвижная точка отображения

Теорема 2: "выживающая" стратегия единственна

Теорема 3: случай н.о.р. коэффициентов

Численный пример

Литература

Введение

- Цель работы построить стратегию, "выживающую" на рынке вне зависимости от стратегий других инвесторов.
- Рассматривается стохастическая модель рынка с дискретным временем, эндогенными ценами и аффинными дивидендами.
- Обобщается модель из статьи Amir R., Evstigneev I., and Schenk-Hoppé K. R. Asset market games of survival: a synthesis of evolutionary and dynamic games (2013).
- Необходимость рассмотрения такой модели указана в статье Evstigneev I., Hens T., and Schenk-Hoppé K. R. Evolutionary behaviorial finance (2016).
- Результаты работы изложены в статье Evstigneev I., Tokaeva A., Vanaei M., and Zhitlukhin M. Survival strategies in an evolutionary finance model with endogenous asset payoffs (2023).
- Подход Evolutionary Behavorial Finance уйти от Вальрасовской модели, где каждый участник максимизирует (ненаблюдаемые) utility functions, и позволить участникам рынка использовать любые стратегии, а рынку отбирать те стратегии, которые хорошо себя показывают.

Общая модель рынка с эндогенными ценами

- N > 2 агентов.
- $K \ge 2$ активов, активы "короткоживущие".
- Каждый агент n в каждый момент времени t выбирает вектор долей $\lambda_t^n=(\lambda_t^{n,1},\dots,\lambda_t^{n,K})$, в которых он вкладывает свой капитал W_t^n в каждый из K активов в момент времени t.
- Цены устанавливаются эндогенно из условия равенства спроса и предложения на каждый из активов.
- Активы платят случайные дивиденды A_t^k .

Стратегии

• Стратегия n-го агента — это последовательность $\Lambda^n=(\Lambda^n_t)_{t=0}^\infty$ измеримых векторнозначных функций

$$\Lambda^n_t = \Lambda^n_t(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-1})$$

со значениями в стандартном K-симплексе

$$\Delta^K = \{(a^1, \dots, a^K) \in \mathbb{R}_+^K : a^1 + \dots + a^K = 1\}.$$

- ullet $ar{s}_t := (s_1, ..., s_t)$ история состояний случайного фактора.
- ullet $ar{W}_0 := (W_0^1,...,W_0^N)$ вектор начальных капиталов.
- ullet $ar{\lambda}_{t-1}:=(\lambda_0,...,\lambda_{t-1})$, где $\lambda_s=(\lambda_s^1,\ldots,\lambda_s^N)$ история игры.

Выживающие стратегии

• Мы будем интересоваться поведением *относительных капиталов* агентов, определяемых формулой $r_t^n := \frac{W_t^n}{W_t}$.

Определение 1

Стратегия Λ^n n-го агента называется **"выживающей"**, если для любого вектора начальных капиталов \bar{W}_0 и любого профиля стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ с заданной стратегией Λ^n и произвольными стратегиями Λ^j агентов $j\neq n$ выполняется неравенство $W^n_t>0$ п.н. для всех $t\geq 0$ и

$$\inf_{t\geq 0} r_t^n > 0$$
 п.н.

Выживающая и лог-оптимальная стратегия

• Чтобы найти выживающую стратегию, мы будем искать *лог-оптимальную стратегию*.

Определение 2

Стратегия Λ^n называется **лог-оптимальной**, если для любого вектора начальных капиталов \bar{W}_0 и профиля стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$, где Λ^n - данная стратегия, выполнено $W^n_t>0$ п.н. для всех $t\geq 0$ и $\ln r^n_t$ является субмартингалом.

Утверждение

Любая лог-оптимальная стратегия является "выживающей".

Модель 1: Активы с взаимоисключающими дивидендами

- $ar{A}_t = ar{A}_t(s_t) \in \{e_1, \dots, e_K\}$ вектор дивидендов от всех активов в момент времени $t \geq 1$.
- $e_i = (0, 0, 0, 1, 0, \dots, 0).$
- $\lambda_t^n(s_t) \in \Delta^K = \{(a^1, \dots, a^K) \in \mathbb{R}_+^K : a^1 + \dots + a^K = 1\}.$

Teopeмa, Blume, Easley, 1992

Выживающей стратегией является константная стратегия $\lambda^*=(\lambda^{*,1},\dots,\lambda^{*,K})$, где $\lambda^{*,k}=P(A_t^k=1).$

При этом стратегия λ^* является единственной выживающей стратегией в классе константных стратегий.

Кроме того, репрезентативная стратегия рынка стремится к стратегии λ^* .

Модель 2: Активы с произвольными случайными дивидендами

- Рассмотрим ту же модель, но будем считать, что \bar{A}_t последовательность произвольных н.о.р. случайных величин в R^K с условием $P(A_t^k>0)>0$.
- $\lambda_t^n(s_t) \in \Delta^K = \{(a^1, \dots, a^K) \in \mathbb{R}_+^K : a^1 + \dots + a^K = 1\}.$

Теорема, Amir, Evstigneev, 2013

Выживающая стратегия $\lambda_t^* = (\lambda^{*,1}, \dots, \lambda^{*,K})$ задается равенством

$$\lambda_t^* = rac{A_t^k}{A_t^1 + \cdots + A_t^K}$$

Кроме того, если на рынке один из игроков использует стратегию λ^* , то для репрезентативной стратегии рынка μ_t выполнено:

$$\sum_{t=1}^{\infty}\|\lambda_t^n-\mu_t\|^2<\infty$$
 п.н.,

Модель 3: Активы с аффинными дивидендами

- ullet $W_t = \sum_{n=1}^N W_t^n$ полный капитал рынка в момент времени t.
- ullet $\mu^k_t = rac{1}{W_t} \sum_{n=1}^N \lambda^{n,k}_t W^n_t$ доля W_t , вложенная в k-й актив.
- $A^k_t = A^k_t(\bar{s}_t)$, $k=1,\ldots,K$ дивиденды от единицы актива k в момент времени $t \geq 1$.
- Дивиденды аффинные:

$$A_{t+1}^k = \alpha_{t+1}^k + \beta_{t+1}^k \mu_t^k,$$

где $lpha_{t+1}^k$ и eta_{t+1}^k — произвольные случайные величины вида

$$\alpha_{t+1}^{k}(\bar{s}_{t+1}) = a_{t+1}^{k}(\bar{s}_{t+1}, \bar{W}_0, \bar{\lambda}_{t-1}(\bar{s}_{t-1})), \tag{1}$$

$$\beta_{t+1}^k(\bar{s}_{t+1}) = b_{t+1}^k(\bar{s}_{t+1}, \bar{W}_0, \bar{\lambda}_{t-1}(\bar{s}_{t-1}))$$
(2)

с некоторыми измеримыми неотрицательными коэффициентами $a_{t+1}^k,\,b_{t+1}^k.$

Динамика капитала

- ullet $ar{P}_t = (P_t^1, \dots, P_t^K)$ вектор цен активов в момент времени t.
- ullet $ar{X}_t^n=(X_t^{n,1},\dots,X_t^{n,K})$, где $X_t^{n,k}=rac{\lambda_t^{n,k}W_t^n}{P_t^k}$ количество единиц актива k в портфеле.
- Из равенства спроса и предложения находим цены.

$$1 = \sum_{n=1}^{N} X_t^{n,k} = \sum_{n=1}^{N} \frac{\lambda_t^{n,k} W_t^n}{P_t^k} \Rightarrow \boxed{P_t^k = \sum_{n=1}^{N} \lambda_t^{n,k} W_t^n}$$

• Динамика капитала имеет вид

$$W_{t+1}^{n} = \sum_{k=1}^{K} X_{t-1}^{n,k} A_{t+1}^{k} = \sum_{k=1}^{K} \frac{\lambda_{t}^{n,k} W_{t}^{n}}{P_{t}^{k}} A_{t+1}^{k} = \left[\sum_{k=1}^{K} \frac{\lambda_{t}^{n,k} W_{t}^{n}}{\sum_{n=1}^{N} \lambda_{t}^{n,k} W_{t}^{n}} A_{t+1}^{k} \right]$$

Утверждение 2

- $\bullet \ g^k_t(\lambda^*,\bar{s}_t,\bar{W}_0,\bar{\lambda}_{t-2}) = a^k_t(\bar{s}_t,\bar{W}_0,\bar{\lambda}_{t-2}) + \lambda^* b^k_t(\bar{s}_t,\bar{W}_0,\bar{\lambda}_{t-2}).$
- ullet Обозначим $ar{\chi}_t = (ar{W}_0, ar{\lambda}_{t-1}).$
- Введем отображение

$$L_t^k(\lambda^*, \bar{s}_t, \bar{\chi}_t) = \mathbb{E}_t \left(\frac{g_{t+1}^k(\lambda^*, \bar{s}_{t+1}, \bar{\chi}_t)}{\sum_{k=1}^K g_{t+1}^k(\lambda^*, \bar{s}_{t+1}, \bar{\chi}_t)} \right).$$

Утверждение 2 (продолжение)

Proposition 1

Для любого $t\geq 0$ существует измеримая функция $\Lambda_t^*(\bar{s}_t,\bar{\chi}_t)$ со значениями в Δ^K со следующими свойствами:

ullet для любого $ar{\chi}_t$ выполнено:

$$\mathbb{P}_t \left(\sum_{k=1}^K g_{t+1}^k(\Lambda_t^*(\bar{s}_t, \bar{\chi}_t), \bar{s}_{t+1}, \bar{\chi}_t) = 0 \right) = 0 \text{ n.H.}, \tag{3}$$

$$\mathbb{E}_{t}\left(\frac{b_{t+1}^{k}(\bar{s}_{t+1},\bar{\chi}_{t})}{\sum_{k=1}^{K}g_{t+1}^{k}(\Lambda_{t}^{*}(\bar{s}_{t},\bar{\chi}_{t}),\bar{s}_{t+1},\bar{\chi}_{t})}\right) \leq 1 \text{ n.H.}, \quad k = 1,\ldots,K. \tag{4}$$

ullet Λ_t^* — неподвижная точка отображения L_t , то есть для любого $ar{\chi}_t$ выполнено

$$L_t(\Lambda_t^*(\bar{s}_t, \bar{\chi}_t), \bar{s}_t, \bar{\chi}_t) = \Lambda_t^*(\bar{s}_t, \bar{\chi}_t) \text{ n.H.}, \tag{5}$$

Основная теорема (теорема 1)

Теорема 1

Пусть $\sum_{k=1}^K (a_t^k(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-2}) + b_t^k(\bar{s}_t, \bar{W}_0, \bar{\lambda}_{t-2})) > 0.$ Тогда "выживающая" стратегия Λ_t^* существует.

"Выживающая" стратегия Λ_t^* является неподвижной точкой отображения L_t , явный вид которого представлен в тексте работы:

$$L_t(\Lambda_t^*) = \Lambda_t^*$$
 п.н. (6)

Основная теорема 2

Теорема 2

Если в профиле стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ агент n использует стратегию Λ^* , то при $t\to\infty$ выполнено

$$\|\lambda_t^n - \mu_t\| \to 0.$$

То есть выживающая стратегия в некотором смысле единственна.

Основная теорема 2, подробнее

Теорема 2

Пусть стратегия Λ^* удовлетворяет условиям теоремы 1 и некоторому более сильному условию на функции g_{t+1}^k : существует $\epsilon>0$ такой что для всех $t\geq 0$ и $\bar{\chi}_t$ выполнено

$$\mathbb{E}_{t}\left(\frac{b_{t+1}^{k}(\bar{s}_{t+1},\bar{\chi}_{t})}{\sum_{k=1}^{K}g_{t+1}^{k}(\Lambda_{t}^{*}(\bar{s}_{t},\bar{\chi}_{t}),\bar{s}_{t+1},\bar{\chi}_{t})}\right) \leq 1 - \epsilon \text{ n.H.}, \quad k = 1,\ldots,K. \tag{7}$$

Тогда, если в профиле стратегий $\Lambda=(\Lambda^1,\dots,\Lambda^N)$ агент n использует стратегию Λ^* , то выполнено

$$\sum_{t=1}^{\infty}\|\lambda_t^n-\mu_t\|^2<\infty$$
 п.н.,

В частности, $\|\lambda_t^n - \mu_t\| o 0$ при $t o \infty$.

Основная теорема 3

Теорема 3

Пусть последовательность состояний случайного фактора $s_t,\,t\geq 1$ состоит из н.о.р. случайных величин, а коэффициенты $\alpha_t^k,\,\beta_t^k$ зависят только от s_t , то есть $\alpha_t^k=a^k(s_t),\,\beta_t^k=b^k(s_t).$ Тогда:

- а) "Выживающая" стратегия существует и постоянна.
- б) Пусть дополнительно $\mathbb{P}(\alpha_t^k>0)>0$ для всех $k=1,\dots,K$. Тогда "выживающая" стратегия единственна в классе постоянных стратегий. При этом "выживающая" стратегия оказывается полностью диверсифицированной.
- в) "Выживающая" стратегия "захватывает" рынок. Другими словами, $r_t^n \to 0$ п.н. при $t \to \infty$ для любого агента n, который использует постоянную полностью диверсифицированную стратегию $\Lambda^n \ne \Lambda^*$.

Численный пример

- Выплата каждого из двух активов равна либо $1 + \mu_t^k$ с вероятностью p, либо нулю с вероятностью $1 p, \, p = 2/3.$
- "Выживающая" стратегия $\Lambda^* = (1/2, 1/2)$.
- На рынке есть 9 инвесторов со стратегиями $\Lambda^n = (n/10, 1-n/10)$, где $n=1,2,\dots,9.$

Результаты

- 1. Исследована модель рынка с дискретным временем, эндогенными ценами и аффинными выплатами.
- 2. Доказаны существование и асимптотическая единственность "выживающей" стратегии.
- 3. Найдены условия, при которых "выживающая" стратегия захватывает рынок.

Литература

- [1] Amir R., Evstigneev I. V., and Schenk-Hoppé, K. R. (2013).

 Asset market games of survival: a synthesis of evolutionary and dynamic games.

 Annals of Finance, 9(2):121–144.
- [2] Blume L. and Easley D. (1992). Evolution and market behaviour. *Journal of Economic Theory*, 58(1):9–40.
- [3] Evstigneev I., Tokaeva A., Vanaei M., and Zhitlukhin M.(2023). Survival strategies in an evolutionary finance model with endogenous asset payoffs. *Annals of Operations Research*.
- [4] Evstigneev, I., Hens, T., and Schenk-Hoppé, K. R. (2016). Evolutionary behaviorial finance. In Haven, E. et al., editors, *The handbook of Post Crisis Financial Modelling*, 214-234. Palgrave Macmillan UK.

