

32位、10 kSPS Σ-Δ型ADC,100 μs 建立时间,集成真轨到轨缓冲器

AD7177-2

产品特性

32位数据输出

快速且灵活的输出速率: 5 SPS至10 kSPS

通道扫描数据速率: 10 kSPS/通道(100 µs建立时间)

性能规格

19.1位无噪声分辨率(10 kSPS)

20.2位无噪声分辨率(2.5 kSPS)

24.6位无噪声分辨率(5 SPS)

积分非线性(INL): FSR的±1 ppm

50 Hz和60 Hz抑制: 85 dB, 建立时间为50 ms

用户可配置的输入通道

2个全差分通道或4个单端通道

交叉点多路复用器

2.5 V片内基准电压源(±2 ppm/°C漂移)

真正的轨到轨模拟和基准输入缓冲器

内部或外部时钟

电源: AVDD1 - AVSS = 5 V, AVDD2 = IOVDD = 2.5 V至5 V

分离电源,AVDD1/AVSS为±2.5 V

ADC电流: 8.4 mA

温度范围: -40°C至+105℃

3或4线串行数字接口(SCLK上为施密特触发器)

串行端口接口(SPI)、QSPI、MICROWIRE和DSP兼容

应用

过程控制: PLC/DCS模块

温度和压力测量

医疗与科学多通道仪器

色谱仪

概述

AD7177-2是一款32位低噪声、快速建立、多路复用、2/4通道(全差分/伪差分)Σ-Δ型模数转换器(ADC),适合低带宽输入。对完全建立的数据,该器件最大通道扫描速率为10 kSPS (100 μs)。该器件的输出数据速率范围为5 SPS至10 kSPS。

AD7177-2集成关键的模拟和数字信号调理模块,可让用户针对使用的每个模拟输入通道单独进行配置。用户可为各通道单独选择功能。模拟输入端和外部基准电压输入端的集成真轨到轨缓冲器可提供易于驱动的高阻抗输入。精密2.5 V低漂移(2 ppm/°C)带隙内部基准电压源(带输出基准电压源缓冲器)增加了嵌入式功能,同时减少了外部元件数。

数字滤波器允许以27.27 SPS输出数据速率提供50 Hz和60 Hz同时抑制。用户可根据应用中每个通道的需要而在不同滤波器选项之间进行切换。ADC可自动在每个选定的通道间进行切换。更多数字处理功能包括失调和增益校准寄存器,可根据各通道进行配置。

器件采用5 V AVDD1或±2.5V AVDD1/AVSS和2 V至5 V AVDD2 以及IOVDD电源供电。AD7177-2的额定工作温度范围为-40°C至+105°C、采用24引脚TSSOP封装。

Rev. A Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

目录

产品特性	1
应用	1
概述	1
功能框图	1
修订历史	3
技术规格	4
时序特性	7
绝对最大额定值	9
热阻	9
ESD警告	9
引脚配置和功能描述	10
典型性能参数	12
噪声性能和分辨率	18
开始使用	19
电源	20
数字通信	20
AD7177-2复位	21
配置概述	21
电路描述	26
模拟输入缓冲	26
交叉点多路复用器	26
AD7177-2基准电压源	27
基准电压输入缓冲	28
时钟源	28
数字滤波器	29
Sinc5 + Sinc1滤波器	29
Sinc3滤波器	29
单周期建立	30
增强型50 Hz和60 Hz抑制滤波器	33
工作模式	36
连续转换模式	36
连续读取模式	37
单次转换模式	38
待机和关断模式	39
校准	39
数字接口	40
校验和保护	40

集成功能	43
通用I/O	43
外部多路复用器控制	43
延迟	43
24位/32位转换	43
DOUT_RESET	43
同步	43
错误标志	44
DATA_STAT	44
IOSTRENGTH	45
内部温度传感器	45
妾地和布局布线	46
寄存器汇总	47
寄存器详解	48
通信寄存器	48
状态寄存器	49
ADC模式寄存器	50
接口模式寄存器	51
寄存器检查	52
数据寄存器	52
GPIO配置寄存器	53
ID寄存器	54
通道寄存器0	54
通道寄存器1至通道寄存器3	55
设置配置寄存器0	56
设置配置寄存器1至设置配置寄存器3	56
滤波器配置寄存器0	57
滤波器配置寄存器1至滤波器配置寄存器3	58
失调寄存器0	58
失调寄存器1至失调寄存器3	58
增益寄存器0	58
增益寄存器1至增益寄存器3	58
外形尺寸	
订购指 志	50

修订历史

2015年9月—修订版0至修订版A	2015年9	月—修订	T版0至修订	「版A
-------------------	--------	------	--------	-----

更改图12和图13	13
更改表37	57
更改表40和表42	58

2015年3月—修订版0: 初始版

技术规格

除非另有说明,AVDD1 = 4.5 V至5.5 V,AVDD2 = 2 V至5.5 V,IOVDD = 2 V至5.5 V,AVSS = DGND = 0 V,REF+ = 2.5 V,REF- = AVSS,内部主时钟(MCLK) = 16 MHz,T_A = T_{MIN}至T_{MAX}(-40°C至+105°C)。

表1.

参数	测试条件/注释	最小值	典型值	最大值	单位
ADC速度和性能					
输出数据速率(ODR)		5		10,000	SPS
无失码1		32			位
分辨率	见表19至表23				
噪声	见表19至表23				
FIR滤波器抑制	见表23				
精度					
积分非线性(INL)	所有输入缓冲器禁用		±1	±3.5	FSR的ppm
	所有输入缓冲器使能		±3.5	±7.8	FSR的ppm
失调误差 ²	内部短路		±40		μV
失调漂移	内部短路		±80		nV/°C
增益误差2	所有输入缓冲器禁用		±45	±100	FSR的ppm
H mr 6.47	所有输入缓冲器使能		±2.5	±40	FSR的ppm
增益漂移	//		±0.4	±0.75	ppm/°C
抑制					PP
电源抑制	AVDD1, AVDD2, $V_{IN} = 1 \text{ V}$		95		dB
共模抑制	V _{IN} = 0.1 V				
DC时	IN STATE	95			dB
50 Hz和60 Hz时 ¹	20 Hz输出数据速率(后置滤波器),	120			dB
30112/140011241	50 Hz ± 1 Hz和60 Hz ± 1 Hz	120			
工频干扰抑制串模干扰抑制'	50 Hz ± 1 Hz和60 Hz ± 1 Hz				
=======================================	内部时钟, 20 SPS ODR(后置滤波器)	71	90		dB
	外部时钟, 20 SPS ODR(后置滤波器)	85	90		dB
模拟输入	The very				
差分输入范围	$V_{RFF} = (REF+) - (REF-)$		$\pm V_{RFF}$		V
绝对电压限值1	REF				
禁用输入缓冲器		AVSS - 0.05		AVDD1 + 0.05	V
使能输入缓冲器		AVSS		AVDD1	V
模拟输入电流		7.033		7.0001	
禁用输入缓冲器					
输入电流			±48		μA/V
输入电流漂移	外部时钟		±0.75		nA/V/°C
相入电机保存	内部时钟(±2.5%时钟)		±0.75		nA/V/°C
使能输入缓冲器	\dightarrow \text{\dightarrow} \		<u> </u>		11/7/ 7/ C
世間 へ 場 中 品			±30		nA
	AVDD1 0.3 V = AVSS + 0.3 V				
输入电流漂移	AVDD1 = 0.2 V至AVSS + 0.2 V		±75 ±1		pA/°C nA/°C
医茶臼申朴	AVDD1至AVSS				
通道间串扰	1 kHz输入		-120		dB
内部基准电压源	100 nF外部电容退耦至AVSS		2.5		.,
输出电压	REFOUT,相对于AVSS		2.5		V
初始精度3	REFOUT, T _A = 25°C	-0.12		+0.12	V的百分比
温度系数1			_	_	
0℃至105℃			±2	±5	ppm/°C
-40°C至+105°C			±3	±10	ppm/°C
基准负载电流I _{LOAD}		-10		+10	mA
电源抑制	AVDD1、AVDD2(电压调整)		90		dB
负载调整率	$\Delta V_{OUT}/\Delta I_{LOAD}$		32		ppm/mA

参数	测试条件/注释	最小值	典型值	最大值	单位
电压噪声	e _N , 0.1 Hz至10 Hz, 2.5 V基准电压		4.5		μV rms
电压噪声密度	e _N , 1 kHz, 2.5 V基准电压		215		nV/√Hz
开启建立时间	100 nF REFOUT电容		200		μs
短路电流I _{sc}			25		mA
外部基准输入					
差分输入范围	$V_{RFF} = (REF+) - (REF-)$	1	2.5	AVDD1	V
绝对电压限值1					
禁用输入缓冲器		AVSS - 0.05		AVDD1 + 0.05	V
使能输入缓冲器		AVSS		AVDD1	V
REF+/REF-输入电流					
禁用输入缓冲器					
输入电流			±72		μA/V
输入电流漂移	外部时钟		±1.2		nA/V/°C
	内部时钟		±6		nA/V/°C
使能输入缓冲器					
输入电流			±800		nA
输入电流漂移			1.25		nA/°C
工频干扰抑制1	见"抑制"参数部分				
共模抑制			95		dB
温度传感器					
精度	25℃时用户校准后应用		±2		°C
灵敏度			470		μV/K
开路测试电流					
源/吸电流	必须使能模拟输入缓冲器		±10		μΑ
通用I/O	相对于AVSS				
(GPIO0, GPIO1)					
输入模式漏电流1		-10		+10	μΑ
浮空态输出电容			5		pF
输出高电压V _{OH} 1	$I_{SOURCE} = 200 \mu A$	AVSS + 4			V
输出低电压V _{ol} 1	$I_{SINK} = 800 \mu A$			AVSS + 0.4	V
输入高电压V _H 1		AVSS + 3			V
输入低电压V _□ ¹				AVSS + 0.7	V
时钟					
内部时钟					
频率			16		MHz
精度		-2.5%		+2.5%	%
占空比			50		%
输出低电压V _{oℓ}				0.4	V
输出高电压V _{OH}		0.8 × IOVDD			V
晶振					
频率		14	16	16.384	MHz
启动时间			10		μs
外部时钟(CLKIO)			16	16.384	MHz
占空比¹		30	50	70	%

参数	测试条件/注释	最小值	典型值	最大值	单位
逻辑输入					
输入高电压V _{INH} 1	2 V ≤ IOVDD < 2.3 V	0.65 × IOVDD			V
	2.3 V ≤ IOVDD ≤ 5.5 V	0.7 × IOVDD			V
输入低电压V _{INI} 1	2 V ≤ IOVDD < 2.3 V			$0.35 \times IOVDD$	V
INL	2.3 V ≤ IOVDD ≤ 5.5 V			0.7	V
迟滞1	IOVDD ≥ 2.7 V	0.08		0.25	V
	IOVDD < 2.7 V	0.04		0.2	V
漏电流	10000 (20)	-10		+10	μA
逻辑输出(DOUT/RDY)		-			
输出高电压V _{0H} 1	IOVDD ≥ 4.5 V, I _{SOURCE} = 1 mA	0.8 × IOVDD			V
AND IN INC. E. Z. OH	$2.7 \text{ V} \le \text{IOVDD} < 4.5 \text{ V}, I_{\text{SOURCE}} = 500 \mu\text{A}$	0.8 × IOVDD			V
	$10VDD < 2.7 \text{ V}$, $I_{SOURCE} = 200 \mu\text{A}$	0.8 × IOVDD			v
输出低电压V ₀₁ ¹	$IOVDD \ge 2.5 \text{ V}$, $I_{SOURCE} = 200 \text{ µA}$ $IOVDD \ge 4.5 \text{ V}$, $I_{SINK} = 2 \text{ mA}$	0.0 × 10 VDD		0.4	V
ти ш к С L v _{OL}				0.4	V
	$2.7 \text{ V} \le \text{IOVDD} < 4.5 \text{ V}, I_{\text{SINK}} = 1 \text{ mA}$				V
HT A	$IOVDD < 2.7 \text{ V}, I_{SINK} = 400 \mu\text{A}$	10		0.4	-
漏电流	浮空态	-10	40	+10	μA
输出电容	浮空态		10		pF
系统校准1					
满量程(FS)校准限值				$1.05 \times FS$	V
零电平校准限值		$-1.05 \times FS$			V
输入跨度		0.8 × FS		2.1 × FS	V
电源要求					
电源电压					
AVDD1至AVSS		4.5	5	5.5	V
AVDD2至AVSS		2	2.5 to 5	5.5	٧
AVSS至DGND		-2.75		0	V
IOVDD至DGND		2	2.5 to 5	5.5	٧
IOVDD至AVSS	AVSS < DGND			6.35	V
电源电流⁴	所有输出空载,数字输入连接到 IOVDD或DGND				
完全工作模式					
AVDD1电流	模拟输入和基准输入缓冲器禁用, 外部基准电压源		1.4	1.65	mA
	模拟输入和基准输入缓冲器禁用, 内部基准电压源		1.75	2	mA
	模拟输入和基准输入缓冲器使能, 外部基准电压源		13	16	mA
	每缓冲器: AIN+、AIN-、REF+、REF-		2.9		mA
AVDD2电流	外部基准电压源		4.5	5	mA
_ /16	内部基准电压源		4.75	5.2	mA
IOVDD电流	外部时钟		2.5	2.8	mA
3716	内部时钟		2.75	3.1	mA
	外部晶振		3	5.	mA
待机模式(LDO开启)	内部基准电压源关闭,总功耗		25		μΑ
pg //lul大人(LDO /I /ロ/	内部基准电压源开启,总功耗		425		-
大帐语子				10	μΑ
关断模式	完全关断(包括LDO和内部基准电压源)		5	10	μΑ

参数	测试条件/注释	最小值	典型值	最大值	单位
功耗4					
完全工作模式	所有缓冲器禁用,外部时钟和基准		21		mW
	电压源, AVDD2=2V, IOVDD=2V				
	所有缓冲器禁用,外部时钟和基准		42		mW
	电压源,所有电源=5V				
	所有缓冲器禁用,外部时钟和基准			52	mW
	电压源,所有电源=5.5 V				
	所有缓冲器使能,内部时钟和基准		82		mW
	电压源,AVDD2=2V,IOVDD=2V				
	所有缓冲器使能, 内部时钟和基准		105		mW
	电压源,所有电源=5V				
	所有缓冲器使能,内部时钟和基准			136	mW
	电压源,所有电源 = 5.5 V				
待机模式	内部基准电压源关闭,所有电源=5V		125		μW
	内部基准电压源开启,所有电源=5V		2.2		mW
关断模式	完全关断,所有电源=5V		25	50	μW

¹ 本技术规格未经生产测试,但受产品初始发布时的特性数据支持。

时序特性

除非另有说明,IOVDD = 2 V至5.5 V,DGND = 0 V,逻辑输入0 = 0 V,逻辑输入1 = IOVDD,C_{LOAD} = 20 pF。

表2.

参数	T _{MIN} 、T _{MAX} 时的限值	单位	描述 ^{1,2}
SCLK			
t ₃	25	ns(最小值)	SCLK高电平脉宽
t ₄	25	ns(最小值)	SCLK低电平脉宽
读操作			
t_1	0	ns(最小值)	CS 下降沿到DOUT/RDY有效时间
	15	ns(最大值)	IOVDD = 4.75 V至5.5 V
	40	ns(最大值)	IOVDD = 2 V至3.6 V
t_2^3	0	ns(最小值)	SCLK有效沿到数据有效延迟 ⁴
	12.5	ns(最大值)	IOVDD = 4.75 V至5.5 V
	25	ns(最大值)	IOVDD = 2 V至3.6 V
t ₅ ⁵	2.5	ns(最小值)	CS 无效沿后的总线释放时间
	20	ns(最大值)	
t ₆	0	ns(最小值)	SCLK无效沿到CS无效沿
t ₇	10	ns(最小值)	SCLK无效沿到DOUT/RDY高电平/低电平
写操作			
t ₈	0	ns(最小值)	CS 下降沿到SCLK有效沿建立时间⁴
t_9	8	ns(最小值)	数据有效到SCLK沿建立时间
t ₁₀	8	ns(最小值)	数据有效到SCLK沿保持时间
t ₁₁	5	ns(最小值)	CS 上升沿到SCLK沿保持时间

¹ 样片在初次发布期间均经过测试,以确保符合标准要求。

² 经系统或内部零电平校准,此失调误差与选定的编程输出数据速率所对应的噪声相当。系统满量程校准可以把增益误差降至与编程输出数据速率对应的 噪声相当的水平。

³ 本技术规格包括湿度灵敏度等级(MSL)预调理效应。

⁴ 本技术规格是在REFOUT和数字输出引脚上无负载的条件下测得。

² 参见图2和图3。

³此参数定义为输出跨越V_{OL}或V_{OH}限值所需的时间。

⁴ SCLK有效沿为SCLK的下降沿。

⁵ 读取数据寄存器之后,DOUT/RDY返回高电平。在单次转换模式和连续转换模式下,当DOUT/RDY为高电平时,如有必要,可以再次读取同一数据,但必 须确保后续读取操作的发生时间不能接近下一次输出更新时间。如果使能连续读取功能,数字字只能被读取一次。

时序图

绝对最大额定值

除非另有说明, T_A = 25°C。

表3.

参数	额定值
AVDD1、AVDD2至AVSS	-0.3 V至+6.5 V
AVDD1至DGND	-0.3 V至+6.5 V
IOVDD至DGND	-0.3 V至+6.5 V
IOVDD至AVSS	−0.3 V至+7.5 V
AVSS至DGND	-3.25 V至+0.3 V
模拟输入电压至AVSS	-0.3 V至AVDD1 + 0.3 V
基准输入电压至AVSS	-0.3 V至AVDD1 + 0.3 V
数字输入电压至DGND	-0.3 V至IOVDD + 0.3 V
数字输出电压至DGND	-0.3 V至IOVDD + 0.3 V
模拟输入/数字输入电流	10 mA
工作温度范围	-40°C至+105°C
存储温度范围	-65°C至+150°C
最高结温	150°C
引脚焊接,回流温度	260°C
ESD额定值(人体模型)	4 kV

注意,等于或超出上述绝对最大额定值可能会导致产品永久性损坏。这只是额定最值,并不能以这些条件或者在任何其它超出本技术规范操作章节中所示规格的条件下,推断产品能否正常工作。长期在超出最大额定值条件下工作会影响产品的可靠性。

热阻

θ₁指定器件焊接在JEDEC测试板上以实现表贴封装。

表4. 热阻

封装类型	θ_{JA}	单位
24引脚 TSSOP		
JEDEC 1层板	149	°C/W
JEDEC 2层板	81	°C/W

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高能 量ESD时,器件可能会损坏。因此,应当采取适当的 ESD防范措施,以避免器件性能下降或功能丧失。

引脚配置和功能描述

图4. 引脚配置

表5. 引脚功能描述1

引脚编号	引脚名称	类型 ²	描述
1	AIN4	Al	模拟输入4。此引脚可通过交叉点多路复用器选择。
2	REF-	Al	基准输入负端。REF-的范围是AVSS至AVDD1-1V。
3	REF+	Al	基准输入正端。REF+与REF-之间可以施加一个外部基准电压。REF+的范围
			是AVSS + 1 V至AVDD1。该器件采用1 V至AVDD1幅度的基准电压工作。
4	REFOUT	AO	内部基准电压源的缓冲输出。输出相对于AVSS为2.5 V。
5	REGCAPA	AO	模拟低压差(LDO)稳压器的输出。利用1 μF和0.1 μF电容将此引脚去耦至AVSS。
6	AVSS	Р	负模拟电源。此电源的范围是-2.75 V到0 V,标称设置为0 V。
7	AVDD1	Р	模拟电源电压1。此电压相对于AVSS为5 V ± 10%。AVDD1 – AVSS可以是5 V 单电源或±2.5 V分离电源。
8	AVDD2	Р	模拟电源电压2。此电压相对于AVSS的范围是2 V至5 V。
9	XTAL1	Al	晶振输入1。
10	XTAL2/CLKIO	AI/DI	晶振输入2/时钟输入或输出。此引脚的功能取决于ADCMODE寄存器中的 CLOCKSEL位。MCLK源的选择有以下四个选项可用:
			内部振荡器: 无输出。
			内部振荡器:输出至XTAL2/CLKIO。工作在IOVDD逻辑电平。
			外部时钟:输入至XTAL2/CLKIO。输入必须为IOVDD逻辑电平。
			外部晶振: 连接在XTAL1与XTAL2/CLKIO之间。
11	DOUT/RDY	DO	串行数据输出/数据就绪输出引脚。DOUT/RDY是双功能引脚。它可以用作
11	DOUT/KDT	DO	串行数据输出引脚,以访问ADC的输出移位寄存器。输出移位寄存器可以
			含有来自任一片内数据寄存器或控制寄存器的数据。数据字/控制字信息
			在SCLK下降沿置于DOUT/RDY默认引脚上,且在SCLK上升沿有效。当CS为
			高电平时,DOUT/RDY输出为三态。当CS为低电平时,DOUT/RDY默认用作
			数据就绪引脚,变为低电平时表示转换已完成。转换完成后,如果数据
			未被读取,该引脚将在下一次更新之前变为高电平。DOUT/RDY下降沿
			可以用作处理器的中断,表示存在可用数据。
12	DIN	DI	ADC输入移位寄存器的串行数据输入。该移位寄存器中的数据传输至ADC
			内的控制寄存器,通信寄存器的寄存器地址(RA)位确定适当的寄存器。
			数据在SCLK的上升沿逐个输入。
13	SCLK	DI	串行时钟输入。用于与ADC进行数据传输。SCLK引脚具有施密特触发式输入,
1.4	CS	DI	因而该接口适合光隔离应用。
14	CS	DI	片选输入引脚。此引脚是一个 <mark>低电平有效</mark> 逻辑输入,用于选择ADC。CS可以 用来在串行总线上具有多个器件的系统中选择ADC。CS可以用硬连线方式
			一用米住单行总线上具有多个益件的系统甲选择ADC。CS可以用硬连线方式 置为低电平,使得ADC能以3线式模式工作,使用SCLK、DIN和DOUT与器件
			接口。当CS为高电平时,DOUT/RDY输出为三态。

引脚编号	引脚名称	类型²	描述
15	SYNC/ERROR	DI/O	同步输入/错误输入或输出。此引脚可以通过GPIOCON寄存器
			在逻辑输入与逻辑输出之间切换。 <mark>使能同步输入(SYNC)时,</mark>
			此引脚可以使多个AD7177-2器件的数字滤波器和模拟调制器
			同步。更多信息请参见"同步"部分。禁用同步输入时,
			此引脚可以用于三种模式之一:
			低电平有效错误输入模式:此模式将状态寄存器的ADC_ERROR位设为1。
			低电平有效、开漏错误输出模式:状态寄存器错误位映射到ERROR输出。
			多个器件的SYNC/ERROR引脚可以连接到同一个上拉电阻,这样就可以
			观察到任何器件的错误。
			通用输出模式:此引脚的状态由GPIOCON寄存器的ERR_DAT位控制。
			此引脚参考IOVDD与DGND之间的电平,而不是GPIOx引脚使用的
			AVDD1和AVSS电平。这种模式下,该引脚有一个有源上拉电路。
16	IOVDD	Р	数字I/O电源电压。IOVDD电压范围是2 V至5.5 V。IOVDD与AVDD2无关。
			例如,当AVDD2为5 V时,IOVDD可采用3 V工作,反之亦然。如果AVSS
			设置为-2.5 V,则IOVDD上的电压不得超过3.6 V。
17	DGND	P	数字地。
18	REGCAPD	AO	数字LDO稳压器输出。 <mark>此引脚仅用于去耦。</mark> 利用1 μF和0.1 μF电容将此
			引脚去耦至DGND。
19	GPIO0	DI/O	通用输入/输出0。此引脚参考AVDD1与AVSS之间的电平。
20	GPIO1	DI/O	通用输入/输出1。此引脚参考AVDD1与AVSS之间的电平。
21	AIN0	Al	模拟输入0。此引脚可通过交叉点多路复用器选择。
22	AIN1	Al	模拟输入1。此引脚可通过交叉点多路复用器选择。
23	AIN2	Al	模拟输入2。此引脚可通过交叉点多路复用器选择。
24	AIN3	Al	模拟输入3。此引脚可通过交叉点多路复用器选择。

¹ 注意在整篇数据手册中,双功能引脚名称仅通过相关功能来引用。

 $^{^2}$ Al为模拟输入,AO为模拟输出,P为电源,Dl为数字输入,DO为数字输出,Dl/O为双向数字输入/输出。

典型性能参数

除非另有说明, AVDD1 = 5 V, AVDD2 = 5 V, IOVDD = 3.3 V, T_A = 25°C。

图5. 噪声(模拟输入缓冲器禁用, V_{REF} = 5 V, 输出数据速率 = 5 SPS, 32位数据输出)

图6. 噪声(模拟输入缓冲器禁用, V_{REF} = 5 V, 输出数据速率 = 10 kSPS, 32位数据输出)

图7. 噪声(模拟输入缓冲器使能, $V_{REF} = 5 V$,输出数据速率 = 5 SPS)

图8. 直方图(模拟输入缓冲器禁用, $V_{REF} = 5V$,输出数据速率 = 5 SPS, 32位数据输出)

图9. 直方图(模拟输入缓冲器禁用, V_{REF} = 5 V, 输出数据速率 = 10 kSPS, 32位数据输出)

图10. 直方图(模拟输入缓冲器使能, $V_{REF} = 5 V$,输出数据速率 = 5 SPS)

图11. 噪声(模拟输入缓冲器使能, $V_{REF} = 5 V$,输出数据速率 = 10 kSPS)

图12. 噪声与输入共模电压的关系, 模拟输入缓冲器开启和关闭

图13. 噪声与外部主时钟频率的关系, 模拟输入缓冲器开启和关闭

图14. 直方图(模拟输入缓冲器使能, V_{REF} = 5 V, 输出数据速率 = 10 kSPS)

图15. 内部基准电压源建立时间

图16. 共模抑制比(CMRR)与 $V_{\rm IN}$ 频率的关系 $(V_{\rm IN}$ = 0.1 V)

图17. 共模抑制比(CMRR)与 $V_{\rm IN}$ 频率的关系($V_{\rm IN}$ = 0.1 V, 10 Hz至70 Hz,输出数据速率 = 20 SPS,增强滤波器)

图18. 电源抑制比(PSRR)与V_{IN}频率的关系

(差分输入)的关系

25 20 15 10 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 INL ERROR (ppm)

图20. 积分非线性(INL)分布直方图(差分输入, 所有输入缓冲器使能, $V_{\rm REF}$ = 2.5 V外部,100片)

图21. 积分非线性(INL)分布直方图(差分输入, 所有输入缓冲器禁用, V_{REF} = 2.5 V外部, 100片)

图22. 积分非线性(INL)分布直方图(所有输入缓冲器使能, 差分输入, $V_{REF} = 5 V$ 外部,100片)

图23. 积分非线性(INL)分布直方图(所有输入缓冲器禁用, 差分输入, $V_{\text{REF}} = 5 \text{ V}$ 外部,100片)

图24. 积分非线性(INL)与温度的关系 (差分输入, V_{REF} = 2.5 V外部)

图25. 内部振荡器频率/精度分布直方图 (100片)

图26. 内部振荡器频率与温度的关系

图27. 绝对基准误差与温度的关系

图28. 失调误差分布直方图(内部短路, 248片)

图29. 失调误差漂移分布直方图(内部短路, 248片)

图30. 增益误差分布直方图(所有输入缓冲器使能, 100片)

图31. 增益误差分布直方图 (所有输入缓冲器禁用, 100片)

图32. 增益误差漂移分布直方图 (所有输入缓冲器使能,100片)

图33. 增益误差漂移分布直方图 (所有输入缓冲器禁用, 100片)

图34. 电源电流与温度的关系 (连续转换模式)

图35. 电源电流与温度的关系(关断模式)

图36. 温度传感器分布直方图 (未校准, 100片)

图37. 开路测试电流分布直方图 (100片)

图38. 模拟输入电流与输入电压的关系 (V_{CM} = 2.5 V, 所有输入缓冲器使能)

图39. 模拟输入电流与温度的关系 (所有输入缓冲器使能)

噪声性能和分辨率

表6和表7所示为AD7177-2在不同输出数据速率和滤波器下的均方根噪声、峰峰值噪声、有效分辨率和无噪声(峰峰值)分辨率。所提供的数据是针对双极性输入范围以及采用5V外部基准电压源而言。这些数据是在单个通道上连续转

换ADC时,差分输入电压为0V产生的典型值。必须注意,峰峰值分辨率是根据峰峰值噪声计算得出。峰峰值分辨率表示无闪烁码的分辨率。

表6. RMS噪声和峰峰值分辨率与输出数据速率的关系,使用Sinc5 + Sinc1滤波器(默认)1

输出数据速率(SPS)	RMS噪声(μV rms)	有效分辨率(位)	峰峰值噪声(μV p-p)	峰峰值分辨率(位)
禁用输入缓冲器				
10,000	2.5	21.9	18.3	19.1
1000	0.77	23.6	5.2	20.9
59.92	0.19	25.8	1.1	23.1
49.96	0.18	26	0.95	23.3
16.66	0.1	26.7	0.45	24.1
5	0.07	27.3	0.34	24.6
使能输入缓冲器				
10,000	3	21.7	23	18.7
1000	0.92	23.4	5.7	20.7
59.98	0.23	25.7	1.2	23.0
49.96	0.2	26	1	23.3
16.66	0.13	26.6	0.66	23.9
5	0.07	26.7	0.32	24.6

¹仅限选定速率,1000样本。

表7. RMS噪声和峰峰值分辨率与输出数据速率的关系,使用Sinc3滤波器1

输出数据速率(SPS)	RMS噪声(μV rms)	有效分辨率(位)	峰峰值噪声(μV p-p)	峰峰值分辨率(位)
禁用输入缓冲器				
10,000	1.8	22.4	14	19.4
1000	0.56	24	3.9	21.3
60	0.13	26.3	0.8	23.6
50	0.13	26.5	0.7	23.8
16.66	0.07	27	0.37	24.3
5	0.05	27.5	0.21	24.8
使能输入缓冲器				
10,000	2.1	22.2	16	19.3
1000	0.71	23.7	4.5	21.1
60	0.17	25.8	1.1	23.1
50	0.15	26.2	0.83	23.5
16.66	0.12	26.8	0.6	24.1
5	0.08	27.2	0.35	24.5
5	0.08	24	0.35	24

¹仅限选定速率,1000样本。

开始使用

AD7177-2是一款快速建立、高分辨率、多路复用ADC,配置灵活。AD7177-2包括下列特性:

- 两路全差分或四路单端模拟输入。
- 交叉点多路复用器可选择任何模拟输入组合作为要转换 的输入信号,并将其路由至调制器正或负输入。
- 真正的轨到轨缓冲模拟和基准输入。
- 全差分输入或单端输入(相对于任何模拟输入)。
- 各通道独立配置能力——最多可以定义四种不同的设置。可以将不同的设置映射到各通道。每种设置都允许用户配置缓冲器使能与否、增益和失调校正、滤波器类型、输出数据速率以及基准电压源选择(内部或外部)。

AD7177-2內置一个2.5 V精密低漂移(±2 ppm/°C)带隙基准电压源。此基准电压源用于ADC转换,从而减少外部元件数量。另外,该基准电压源也可以通过REFOUT引脚输出,用作外部电路的低噪声偏置电压。比如利用REFOUT信号设置外部放大器的输入共模电压。

AD7177-2内置两个独立的线性稳压器模块,分别用于模拟和数字电路。模拟LDO将AVDD2电源调节到1.8 V,以便为ADC内核供电。用户可以简单地将AVDD1和AVDD2电源连在一起。如果系统中已经有一个2 V(最小值)至5.5 V(最大值)的干净模拟电源轨,用户也可以选择将此电源连接到AVDD2输入,从而降低功耗。

用于数字IOVDD电源的线性稳压器执行类似的功能,将施加于IOVDD引脚的输入电压调节至1.8 V,用于内部数字滤波。串行接口信号始终采用该引脚上出现的IOVDD电源工作。这意味着,如果将3.3 V电压施加于IOVDD引脚,接口逻辑输入和输出将以此电平工作。

AD7177-2适合类型广泛的应用,可提供高分辨率和高精度。应用情形举例如下:

- 利用内部多路复用器快速扫描模拟输入通道
- 利用外部多路复用器快速扫描模拟输入通道,通过 GPIO自动控制
- 在通道扫描或每通道ADC应用中以较低速度实现高分辨率
- 每通道单ADC:快速低延迟输出支持在外部微控制器、 DSP或FPGA中进行进一步的应用特定滤波

电源

AD7177-2有三个独立的电源: AVDD1、AVDD2和IOVDD。

AVDD1为交叉点多路复用器和集成的模拟与基准输入缓冲器供电。AVDD1以AVSS为基准,AVDD1 - AVSS = 5 V。 AVDD1 - AVSS可以是5 V单电源或±2.5 V分离电源。分离电源供电支持真双极性输入。采用分离电源时,应考虑绝对最大额定值(参见"绝对最大额定值"部分)。

AVDD2为内部1.8 V模拟LDO稳压器供电。此稳压器为ADC内核供电。AVDD2以AVSS为基准,AVDD2 – AVSS可以在2 V(最小值)到5.5 V(最大值)之间。

IOVDD为内部1.8 V数字LDO稳压器供电。此稳压器为ADC的数字逻辑供电。IOVDD设置ADC的SPI接口的电平。IOVDD以DGND为基准, IOVDD – DGND可以在2 V(最小值)到5.5 V(最大值)之间。

数字诵信

AD7177-2有一个3线或4线SPI接口,它与QSPI™、MICROWIRE®和DSP兼容。该接口以SPI模式3工作,在CS接低电平时也能工作。在SPI模式3下,SCLK空闲时为高电平,SCLK的下降沿为驱动沿,上升沿为采样沿。这意味着,数据在下降/驱动沿输出,在上升/采样沿输入。

访问ADC寄存器映射

通信寄存器控制对ADC全部寄存器映射的访问。此寄存器是一个8位只写寄存器。上电或复位后,数字接口默认处于期待对通信寄存器执行一个写操作的状态,因此,所有通信均从写入通信寄存器开始。

写入通信寄存器的数据决定要访问哪一个寄存器,以及下一个操作是读操作还是写操作。寄存器地址位(RA[5:0])决定读或写操作的目标寄存器。

当对选定寄存器的读或写操作完成后,接口返回到默认状态,即期待对通信寄存器执行写操作的状态。

图42和图43显示了对一个寄存器的读写操作:首先将一个 8位命令写入通信寄存器,然后是针对该寄存器的数据。

图42. 写入一个寄存器 (8位命令和寄存器地址,随后是8位、16位或24位数据; DIN上的数据长度取决于所选的寄存器)

图43. 读取一个寄存器 (8位命令和寄存器地址,随后是8位、16位或24位数据; DOUT上的数据长度取决于所选的寄存器)

要验证器件通信是否正常,建议读取ID寄存器。ID寄存器是一个只读寄存器,含有针对AD7177-2的值0x4FDX。通信寄存器和ID寄存器详情分别参见表8和表9。

AD7177-2复位

当接口同步丧失时,执行一个占用至少64个串行时钟周期的写操作,并使DIN处于高电平状态,可以复位整个器件,使ADC返回默认状态,包括寄存器内容。另外,如果CS配合数字接口使用,让CS变为高电平就能将数字接口设为默认状态,并中止任何串行接口操作。

配置概述

在加电或复位后,AD7177-2的默认配置如下:注意,这里只展示了少数几种寄存器设置选项,本列表只是一个示例。 有关寄存器的完整信息,请参阅"寄存器详解"部分。

- 通道配置。CH0使能, AIN0被选为正输入, AIN1被选 为负输入。选择设置0。
- 设置配置。使能内部基准源和模拟输入缓冲器。禁用基准输入缓冲器。
- 滤波器配置。选择sinc5 + sinc1滤波器,并选择10 kSPS的最大输出数据速率。
- ADC模式。使能连续转换模式和内部振荡器。
- 接口模式。禁用CRC以及数据+状态输出。

图44概要展示了ADC配置的建议更改流程,分为以下三个模块:

- 通道配置(见图44中的框A)
- 设置配置(见图44中的框B)
- ADC模式和接口模式配置(见图44中的框C)

通道配置

AD7177-2有4个独立通道和4种独立设置。用户可以选择任意通道上的任何模拟输入对,还可为任何通道选择4种设置中的任意一种,让用户在通道配置方面拥有全面的灵活性。此外,在使用差分输入和单端输入时,因为每个通道都可以拥有自己的专用设置,所以可以按通道进行配置。

通道寄存器

通道寄存器用于选择5个模拟输入引脚(AIN0至AIN4)中的哪一个用作该通道的正模拟输入(AIN+)或负模拟输入(AIN-)。 此寄存器还包含通道使能/禁用位和设置选择位,用于选择 该通道使用4种可用设置中的哪一种。

当AD7177-2工作时,若有一个以上的通道被使能,通道序列器将按顺序遍历各使能的通道,从通道0到通道3。如果一个通道被禁用,序列器将跳过该通道。通道0的通道寄存器详情如表10所示。

图44. 建议ADC配置流程

表8. 通信寄存器

える。原言	No. Miles I fee												
寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW	
0x00	COMMS	[7:0]	WEN	R/W			R	Α			0x00	W	

表9. ID寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x07	ID	[15:8]		ID[15:8]								
		[7:0]		ID[7:0]								

表10. 通道0寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x10	CH0	[15:8]	CH_EN0	保留	SETUP_SEL[2:0]		保留		AINPOS0[4:3]		0x8001	RW
		[7:0]	AINPOS0[2:0]									

ADC设置

AD7177-2有4种独立设置。每种设置包括以下四个寄存器:

- 设置配置寄存器
- 滤波器配置寄存器
- 增益寄存器
- 失调寄存器

例如,设置0包括设置配置寄存器0、滤波器配置寄存器0、增益寄存器0和失调寄存器0。图45展示的是这些寄存器的分组情况。设置可从通道寄存器中选择(参见"通道配置"部分),可以为各通道分配4种独立设置中的一种。表11至表14显示了设置0相关的四个寄存器。该结构在设置1至设置3重复出现。

设置配置寄存器

设置配置寄存器允许用户通过选择双极性或单极性来选择ADC的输出编码。在双极性模式下,ADC支持负差分输入电压,输出编码为偏移二进制。在单极性模式下,ADC仅支持正差分电压,输出编码为标准二进制。无论何种情况,输入电压必须在AVDD1/AVSS电源电压范围内。用户可以利用这些寄存器选择基准电压源。提供三种选项:内部2.5 V基准电压源、连接在REF+与REF-引脚之间的外部基准电压源或AVDD1 - AVSS。模拟输入和基准输入缓冲器也可以利用此寄存器使能或禁用。

滤波器配置寄存器

滤波器配置寄存器选择ADC调制器的输出端使用何种数字 滤波器。 滤波器的阶数和输出数据速率通过设置此寄存器 的各位来选择。更多信息请参阅"数字滤波器"部分。

图45. ADC设置寄存器分组情况

表11.设置配置0寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x20	SETUPCON0	[15:8]		保留		BI_UNIPOLAR0	REFBUF0+	REFBUF0-	AINBUF0+	AINBUF0-	0x1320	RW
		[7:0]	BURNOUT_EN0	保留	REF	_SEL0		保	留			<u> </u>

表12. 滤波器配置0寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x28	FILTCON0	[15:8]	SINC3_MAP0	保留			ENHFILTEN0		ENHFILT)	0x0507	RW
		[7:0]	保留	ORDER0			ODR0					

表13. 增益配置0寄存器

寄存器	名称	位	位[23:0]	复位	RW
0x38	GAIN0	[23:0]	GAIN0[23:0]	0x5XXXX0	RW

表14. 失调配置0寄存器

寄存器	名称	位	位[23:0]	复位	RW
0x30	OFFSET0	[23:0]	OFFSET0[23:0]	0x800000	RW

增益寄存器

增益寄存器是24位寄存器,用来保存ADC的增益校准系数。增益寄存器是读/写寄存器。这些寄存器在上电时加载工厂校准系数。因此,每个器件具有不同的默认系数。如果用户启动系统满量程校准,或者写入增益寄存器,该默认值将被自动覆盖。有关校准的更多信息请参见"工作模式"部分。

失调寄存器

失调寄存器保存ADC的失调校准系数。失调寄存器的上电复位值为0x800000。 失调寄存器为24位读/写寄存器。如果用户启动内部或系统零电平校准,或者写入失调寄存器,该上电复位值将被自动覆盖。

ADC模式和接口模式配置

ADC模式寄存器和接口模式寄存器用于配置供AD7177-2使 用的内核外设,同时也用于配置数字接口模式。

ADC模式寄存器

ADC模式寄存器主要用于设置ADC的转换模式:连续转换或单次转换。用户也可以选择待机和关断模式以及任何校准模式。此外,该寄存器还包含时钟源选择位和内部基准电压源使能位。基准电压源选择位包含在设置配置寄存器中(更多信息参见"ADC设置"部分)。

接口模式寄存器

接口模式寄存器用于配置数字接口的工作模式。利用此寄存器,用户可以控制数据字长度、CRC使能、数据+状态读取和连续读取模式。ADC模式和接口模式寄存器的详情分别参见表15和表16。更多信息请参阅"数字接口"部分。

表15. ADC模式寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x01	ADCMODE	[15:8]	REF_EN	HIDE_DELAY SING_CYC			R留 Delay				0x8000	RW
		[7:0]	保留		Mode		CLOCK	SEL	保	留		

表16.接口模式寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x02	IFMODE	[15:8]	保留			ALT_SYNC	IOSTRENGTH	伢	と留	DOUT_RESET	0x0000	RW
		[7:0]	CONTREAD	DATA_STAT	REG_CHECK	保留	CRC_EN	1	WL32	保留		

了解配置灵活性

AD7177-2最简单的实现方式是利用邻近模拟输入构成2路差分输入,并以相同的设置、增益校正和失调校正寄存器运行这些输入。在这种情况下,用户选择以下差分输入: AIN0/AIN1和AIN2/AIN3。在图46中,黑色字体所示寄存器必须针对这样一种配置进行编程。在这种配置中,显示为灰色字体的寄存器是冗余的。

对于任何应用案例,对增益和失调寄存器进行编程都是可 选的,寄存器框图之间的虚线也表明了这一点。

实现这两路全差分输入的另一种方法是使用4种可用设置。这样做的动因包括:各差分输入存在不同的速度/噪声要求,或者各通道可能有特定的失调或增益校正。图47展示了每个差分输入可能使用独立设置的方式,从而为每个通道的配置带来全面的灵活性。

图46.2个全差分输入,均使用一种设置(SETUPCON0, FILTCON0, GAIN0, OFFSET0)

图47.2个全差分输入(各通道一种设置)

12912-047

图48中的示例展示了通道寄存器在模拟输入引脚与设置配置下游之间的跨越方式。在该示例中,需要1个差分输入和2个单端输入。单端输入为AIN2/AIN4和AIN3/AIN4组合。差分输入对为AIN0/AIN1,采用设置0。两个单端输入对设置为诊断输入,因而采用不同于差分输入的独立设置,但单端输入之间共享设置1。鉴于选择了两种设置供使用,因此,根据需要对SETUPCON0和SETUPCON1寄存器进行编程,同时还根据需要对FILTCON0和FILTCON1寄存器进行编程。通过对GAIN0、GAIN1寄存器和OFFSET0、

OFFSET1寄存器进行编程,可以根据具体设置使用可选的增益和失调校正。

在图48所示例子中,使用的是CH0至CH2寄存器。设置这些寄存器中每一个的MSB, CH_EN0至CH_EN2位通过交叉点多路复用器使能3种组合。当AD7177-2转换时,序列器以升序从CH0转到CH1,再到CH2,然后回到CH0,重复整个序列。

图48. 差分和单端混合配置(使用多种共用设置)

ENHANCED 50Hz AND 60Hz

12912-048

电路描述

模拟输入缓冲

AD7177-2的两个ADC模拟输入上均集成真正的轨到轨精密单位增益缓冲器。缓冲器的好处是可提供高输入阻抗,而典型输入电流仅±30 nA,使得高阻抗信号源可以直接连接到模拟输入。缓冲器全面驱动ADC内置开关电容采样网络,简化了模拟前端电路要求,而每个缓冲器的典型功耗仅有2.9 mA。每个模拟输入缓冲器放大器均完全斩波,就是说,这会使缓冲器的失调误差漂移和1/f噪声最小。ADC和缓冲器的总1/f噪声曲线如图49所示。

图49. 短路输入FFT(使能模拟输入缓冲器)

在接近电源轨工作时,不像很多分立放大器,这些模拟输入缓冲器的线性度不会下降。在AVDD1和AVSS电源轨或附近工作时,输入电流会提高。温度较高时,提高幅度最为明显。图38和图39显示了不同条件下的模拟输入电流。禁用模拟输入缓冲器时,AD7177-2的平均输入电流以±48 μA/V的速率随差分输入电压而线性变化。

交叉点多路复用器

有5个模拟输入引脚: AIN0、AIN1、AIN2、AIN3和AIN4。各引脚均连接到内部交叉点多路复用器。交叉点多路复用器支持将其中的任何引脚配置为单端或全差分输入对。AD7177-2最多可以有四个有效通道。使能多个通道时,各通道按顺序自动处理: 从编号最小的使能通道到编号最大的使能通道。多路复用器的输出连接到集成真轨到轨缓冲器的输入。可禁用这些缓冲器,让多路复用器的输出直接连到ADC的开关电容输入。简化的模拟输入电路如图50所示。

图50. 简化模拟输入电路

CS1和CS2为皮法级电容。此容值是采样电容和寄生电容的 组合。

全差分输入

AIN0至AIN4模拟输入均连接到交叉点多路复用器,因此可以使用信号的任意组合来构成模拟输入对。这样,用户就可以选择2个全差分输入或4个单端输入。

若有两个全差分输入路径连接到AD7177-2,考虑到引脚彼此的相对位置,建议将AIN0/AIN1用作一个差分输入对,并将AIN2/AIN3用作第二个差分输入对。将所有模拟输入去耦至AVSS。

单端输入

用户也可以选择测量四路不同的单端模拟输入。这种情况下,各路模拟输入被转换为待测量的单端输入与设定的模拟输入公共引脚之间的差值。由于存在一个交叉点多路复用器,因此用户可以将任意模拟输入设置为公共引脚。例如,将AIN4引脚连接到AVSS或REFOUT电压(即AVSS + 2.5 V),并在配置交叉点多路复用器时选择此输入。在单端输入下使用AD7177-2时,INL性能会降低。

AD7177-2基准电压源

AD7177-2允许用户将外部基准电压源施加于器件的REF+和REF-引脚,或者使用内部2.5 V、低噪声、低漂移基准电压源。适当设置设置配置寄存器的REF_SELx位(位[5:4]),可以选择要使用的基准电压源。设置配置0寄存器的结构如表17所示。上电时,AD7177-2默认使用内部2.5 V基准电压源。

外部基准电压源

AD7177-2具有全差分基准电压输入,通过REF+和REF-引脚施加。推荐使用标准低噪声、低漂移基准电压源,如ADR445、ADR444和ADR441等。将外部基准电压施加于AD7177-2基准电压引脚,如图51所示。将任何外部基准电压源的输出去耦至AVSS。如图51所示,ADR445输出通过其输出端的0.1 μF电容去耦以确保稳定。输出然后连接到一个4.7 μF电容,它用作ADC所需动态电荷的储存库,REF+输入端连接一个0.1 μF去耦电容。此电容应尽可能靠近REF+和REF-引脚。REF-引脚直接连到AVSS电位。AD7177-2上电

时,内部基准电压源默认使能,并通过REFOUT引脚输出。当使用外部基准电压源而非内部基准电压源为AD7177-2供电时,必须注意REFOUT引脚的输出。如果应用的其它地方不使用内部基准电压源,应确保不要将REFOUT引脚硬连线到AVSS,否则会在上电时消耗大量电流。上电时,如果不使用内部基准电压源,应写入ADC模式寄存器,禁用内部基准电压源。这是由ADC模式寄存器的REF_EN位(位15)控制,如表18所示。

内部基准电压源

AD7177-2内置低噪声、低漂移基准电压源。内部基准电压源提供2.5 V输出。ADC模式寄存器的REF_EN位设置为1后,内部基准电压源通过REFOUT引脚输出,并通过一个0.1 μF电容去耦至AVSS。AD7177-2的内部基准电压源在上电时默认使能,并且被选择为ADC的基准电压源。使用内部基准电压源时,INL性能会降低,如图19所示。

REFOUT信号经过缓冲后输出到该引脚。该信号可以在电路外部使用,用作外部放大器配置的共模源。

¹ALL DECOUPLING IS TO AVSS.

²ANY OF THE ADR440/ADR441/ADR443/ADR444/ADR445 FAMILY OF REFERENCES

CAN BE USED. THE ADR444 AND ADR441 BOTH ENABLE REUSE OF THE

5V ANALOG SUPPLY NEEDED FOR AVDD1 TO POWER THE REFERENCE V_{IN}.

图51. 外部基准电压源ADR445连接到AD7177-2基准电压引脚

表17. 设置配置0寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x20	SETUPCON0	[15:8]	保留		BI_UNIPOLAR0	REFBUF0+	REFBUF0-	AINBUF0+	AINBUF0-	0x1320	RW	
		[7:0]	BURNOUT_EN0	保留	RE	F_SEL0		保留				

表18. ADC模式寄存器

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x01	ADCMODE	[15:8]	REF_EN	HIDE_DELAY	SING_CYC	保留		Delay			0x8000	RW
		[7:0]	保留		Mode		CLOC	KSEL	保留	1		

基准电压输入缓冲

AD7177-2的两个ADC基准输入上均集成真正的轨到轨精密单位增益缓冲器。缓冲器的好处是提供高输入阻抗,使外部高阻抗信号源可以直接连接到基准输入。集成基准电压缓冲器可以全面驱动内置基准电压开关电容采样网络,简化了基准电压电路要求,而每个缓冲器的典型功耗仅有2.9 mA。每个基准输入缓冲器放大器均完全斩波,就是说,这会使缓冲器的失调误差漂移和1/f噪声最小。使用ADR445、ADR444和ADR441等外部基准电压源时,不需要这些缓冲器,因为这些基准电压源经过适当去耦后可以直接驱动基准输入。

时钟源

AD7177-2需要标称16 MHz的主时钟。AD7177-2可以从以下 三个来源获得采样时钟:

- 内部振荡器
- 外部晶振
- 外部时钟源

本数据手册中列出的所有输出数据速率均与16 MHz的主时钟速率相关。例如,使用外部源提供的较低时钟频率时,所有列出的数据速率将按比例缩放。为实现额定数据速率,尤其是支持50 Hz和60 Hz抑制的速率,应使用16 MHz时钟。主时钟的来源通过设置ADC模式寄存器的CLOCKSEL位(位[3:2])来选择,如表18所示。AD7177-2上电和复位时默认使用内部振荡器工作。在低输出数据速率时,利用SINC3_MAPx位可以微调输出数据速率和滤波器陷波频率。更多信息参见"Sinc3滤波器"部分。

内部振荡器

内部振荡器工作频率为16 MHz,可以用作ADC主时钟。它是AD7177-2的默认时钟源,额定精度为±2.5%。

有一个选项允许内部时钟振荡器通过XTAL2/CLKIO引脚输出。时钟输出被驱动到IOVDD逻辑电平。由于输出驱动器会产生干扰,使用此选项可能影响AD7177-2的直流性能。性能受影响的程度取决于IOVDD电压。IOVDD电压越高,则驱动器的逻辑输出摆幅越宽,因而性能受到的影响越大。如果IOSTRENGTH位设置为较高的IOVDD电平,则影响更严重(更多信息参见表28)。

外部晶振

如果需要更高精度、更低抖动的时钟源,AD7177-2可以使用外部晶振来产生主时钟。晶振连接到XTAL1和XTAL2/CLKIO引脚。建议使用的晶振之一是Epson-Toyocom的16 MHz、10 ppm、9 pF晶振FA-20H,它采用表贴封装。如图52所示,从连接晶振的走线到XTAL1和XTAL2/CLKIO引脚之间插入两个电容。这些电容支持电路调谐。应将这些电容连接到DGND引脚。这些电容的值取决于晶振与XTAL1和XTAL2/CLKIO引脚之间的走线连接的长度和容值。因此,印刷电路板(PCB)布局和采用的晶振不同,这些电容的值也不同。

图52. 外部晶振连接

根据所用的SCLK频率、IOVDD电压、晶振电路布局以及晶振,外部晶振电路可能对SCLK边沿敏感。晶振启动时,SCLK边沿造成的任何干扰都可能引起晶振输入出现双边沿,导致转换无效,直至晶振电压达到足够高的水平,使得SCLK边沿的任何干扰都不足以引起双时钟。启动后,确保晶振电路已达到足够高的电平,然后再施加SCLK信号,可以避免双时钟问题。

由于晶振电路的性质,建议在要求条件下,利用最终PCB 布局和晶振对电路进行实证检验,确保其能正常工作。

外部时钟

AD7177-2也可以使用外部提供的时钟。在使用外部时钟的系统中,外部时钟连接到XTAL2/CLKIO引脚。这种配置中,XTAL2/CLKIO引脚接受外部提供的时钟,并将其路由至调制器。此时钟输入的逻辑电平由施加于IOVDD引脚的电压定义。

数字滤波器

AD7177-2有如下三个灵活的滤波器选项,支持对噪声、建立时间和抑制性能进行优化:

- Sinc5 + sinc1滤波器
- Sinc3滤波器
- 增强型50 Hz和60 Hz抑制滤波器

图53. 数字滤波器功能框图

滤波器和输出数据速率是通过设置选定设置的滤波器配置 寄存器的相应位来配置。各通道可使用不同的设置,因而 可使用不同的滤波器和输出数据速率。更多信息参见"寄 存器详解"部分。

SINC5 + SINC1滤波器

Sinc5 + Sinc1滤波器主要用于多路复用应用,在10 kSPS和更低的输出数据速率时,可实现单周期建立。Sinc5模块输出固定在10 kSPS的最大速率,Sinc1模块的输出数据速率可变,从而控制最终ADC输出数据速率。图54显示Sinc5 + Sinc1滤波器在50 SPS输出数据速率(ODR)时的频域响应。Sinc5 + Sinc1滤波器随频率的滚降速度很慢,陷波频率很窄。

图54. Sinc5 + Sinc1滤波器在50 SPS ODR时的响应

Sinc5+Sinc1滤波器的ODR以及相应的建立时间和均方根噪声如表19和表20所示。

SINC3滤波器

Sinc3滤波器在较低速率时可实现最佳单通道噪声性能,因此最适合单通道应用。Sinc3滤波器的建立时间t_{SETTLE}始终等于

tsettle = 3/输出数据速率

图55所示为Sinc3滤波器的频域滤波器响应。Sinc3滤波器具有良好的随频率滚降性能,并具有宽陷波频率,可实现良好的陷波频率抑制。

图55. Sinc3滤波器响应

Sinc3滤波器的ODR以及相应的建立时间和均方根噪声如表 21和表22所示。通过设置滤波器配置寄存器的SINC3_MAPx 位,可以精密调整Sinc3滤波器的输出数据速率。如果此位 置1,滤波器寄存器的映射将变为直接对Sinc3滤波器的抽取率进行编程。所有其他选项均无效。单通道的数据速率可通过下式计算:

$$Output\ Data\ Rate = \frac{f_{MOD}}{32 \times FILTCONx[14:0]}$$

其中:

f_{MOD}为调制器速率(MCLK/2),对于16 MHz MCLK,它等于8 MHz。

FILTCONx[14:0]是滤波器配置寄存器的内容,不包括MSB。

例如,通过将FILTCONx[14:0]位设置为5000以使能 SINC3_MAPx,可以实现50 SPS的输出数据速率。

单周期建立

AD7177-2可以配置如下:将ADC模式寄存器的SING_CYC位设置为1,以便仅输出完全建立的数据,从而将ADC有效置于单周期建立模式。此模式将输出数据速率降至与选定输出数据速率的ADC建立时间相等的水平,从而实现单周期建立。Sinc5+Sinc1滤波器在10kSPS及更低的输出数据速率时,此位不起作用。

图56显示了禁用此模式且选择Sinc3滤波器时模拟输入上的 阶跃。为使输出达到最终稳定值,阶跃变化后模拟输入至 少需要三个周期。

图57显示了单周期建立使能时模拟输入上的相同阶跃。为使输出完全建立,模拟输入至少需要一个周期。输出数据速率(如RDY信号所指示)降为与选定输出数据速率的建立时间相当的水平。

表19. 使用Sinc5 + Sinc1滤波器且禁用输入缓冲器时的输出数据速率、建立时间和噪声

默认输出数据 速率(SPS); SING_CYC = 0 且单通道使能 ¹	输出数据速率 (SPS/通道); SING_CYC = 1或 使能多个通道 ¹	建立时间1	陷波频率 (Hz)	噪声 (μV rms)	采用5 V 基准电压 时的有效 分辨率 (位)	采用5 V 基准电压 时的动态 范围(dB)	噪声 (μV p-p)	采用5 V基准 电压时的峰 峰值分辨率 (位)
10,000	10,000	100 μs	11,905	2.5	21.9	123	18.3	19.1
5000	5000	200 μs	5435	1.7	22.5	126.4	12	19.7
2500	2500	400 μs	2604	1.2	23	129.4	8.2	20.2
1000	1000	1.0 ms	1016	0.77	23.6	133.2	5.2	20.9
500	500.0	2.0 ms	504	0.57	24.3	135.9	3.2	21.6
397.5	397.5	2.516 ms	400.00	0.5	24.4	137	3	21.7
200	200.0	5.0 ms	200.64	0.36	25	139.8	2	22.3
100	100	10 ms	100.16	0.25	25.6	143	1.3	22.9
59.92	59.92	16.67 ms	59.98	0.19	25.8	145.4	1.1	23.1
49.96	49.96	20.016 ms	50.00	0.18	26	145.9	0.95	23.3
20	20.00	50.0 ms	20.01	0.11	26.7	150.1	0.6	24
16.66	16.66	60.02 ms	16.66	0.1	26.7	151	0.45	24.1
10	10.00	100 ms	10.00	0.08	26.8	152.9	0.4	24.2
5	5.00	200 ms	5.00	0.07	27.3	154.1	0.34	24.6

¹ 建立时间舍入到最接近的微秒数。这反映在输出数据速率和通道开关速率中。通道开关速率=1÷建立时间。

² 利用1000个样本进行测量。

表20. 使用Sinc5 + Sinc1滤波器且使能输入缓冲器时的输出数据速率、建立时间和噪声

默认输出数据 速率(SPS); SING_CYC = 0 且单通道使能 ¹	输出数据速率 (SPS/通道); SING_CYC = 1或 使能多个通道 ¹	建立时间1	陷波频率 (Hz)	Noise (μV rms)	采用5 V基准 电压时的 有效分辨率 (位)	采用5 V基准 电压时的 动态范围 (dB)	噪声 (μV p-p)²	采用5 V基准 电压时的峰 峰值分辨率 (位)
10,000	10,000	100 μs	11,905	3	21.7	121.4	23	18.7
5000	5000	200 μs	5435	2.1	22.2	124.5	16	19.3
2500	2500	400 μs	2604	1.5	22.7	127.4	10	19.9
1000	1000	1.0 ms	1016	0.92	23.4	131.7	5.7	20.7
500	500.0	2.0 ms	504	0.68	23.8	134.3	3.9	21.3
397.5	397.5	2.516 ms	400.00	0.6	24.1	135.4	3.7	21.4
200	200.0	5.0 ms	200.64	0.43	24.8	138.3	2.2	22.1
100	100	10 ms	100.16	0.32	25.2	140.9	1.7	22.5
59.92	59.92	16.67 ms	59.98	0.23	25.7	143.7	1.2	23
49.96	49.96	20.016 ms	50.00	0.2	26	144.9	1	23.3
20	20.00	50.0 ms	20.01	0.14	26.4	148	0.75	23.7
16.66	16.66	60.02 ms	16.66	0.13	26.6	148.7	0.66	23.9
10	10.00	100 ms	10.00	0.1	26.7	151	0.47	24.1
5	5.00	200 ms	5.00	0.07	26.7	154.1	0.32	24.6

¹ 建立时间舍入到最接近的微秒数。这反映在输出数据速率和通道开关速率中。通道开关速率=1÷建立时间。

表21. 使用Sinc3滤波器且禁用输入缓冲器时的输出数据速率、建立时间和噪声

默认输出数据 速率(SPS); SING_CYC=0 且单通道使能 ¹	输出数据速率 (SPS/通道); SING_CYC = 1或 使能多个通道 ¹	建立 时间 ¹	陷波 频率 (Hz)	Noise (μV rms)	采用5 V基准 电压时的 有效分辨率 (位)	采用5 V 基准电压 时的动态 范围(dB)	噪声 (μV p-p)²	采用5 V基准 电压时的峰 峰值分辨率 (位)
10,000	3333	300 μs	10,000	1.8	22.4	125.9	14	19.4
5000	1667	6 µs	5000	1.3	22.9	128.7	9.5	20
2500	833	1.2 ms	2500	0.91	23.4	131.8	6	20.7
1000	333.3	3 ms	1000	0.56	24	136	3.9	21.3
500	166.7	6 ms	500	0.44	24.6	138.1	2.5	21.9
400	133.3	7.5 ms	400	0.4	24.8	138.9	2.3	22.1
200	66.7	15 ms	200	0.25	25.5	143	1.4	22.8
100	33.33	30 ms	100	0.2	26	144.9	1	23.3
60	19.99	50.02 ms	59.98	0.13	26.3	148.7	0.8	23.6
50	16.67	60 ms	50	0.13	26.5	148.7	0.7	23.8
20	6.67	150 ms	20	0.08	26.9	152.9	0.42	24.2
16.67	5.56	180 ms	16.67	0.07	27	154.1	0.37	24.3
10	3.33	300 ms	10	0.06	27.1	155.4	0.28	24.4
5	1.67	600 ms	5	0.05	27.5	157	0.21	24.8

¹ 建立时间舍入到最接近的微秒数。这反映在输出数据速率和通道开关速率中。通道开关速率=1÷建立时间。

² 利用1000个样本进行测量。

² 利用1000个样本进行测量。

表22. 使用Sinc3滤波器且使能输入缓冲器时的输出数据速率、建立时间和噪声

默认输出数据 速率(SPS); SING_CYC = 0	输出数据速率 (SPS/通道); SING_CYC = 1或	建立	陷波频率	噪声	采用5 V基准 电压时的 有效分辨率	采用5 V 基准电压 时的动态	噪声	采用5 V基准 电压时的峰 峰值分辨率
且单通道使能1	使能多个通道1	时间1	(Hz)	(μV rms)	(位)	范围(dB)	(μV p-p) ²	(位)
10,000	3333	300 μs	10,000	2.1	22.2	124.5	16	19.3
5000	1667	6 µs	5000	1.5	22.7	127.4	11	19.8
2500	833	1.2 ms	2500	1.1	23.1	130.1	7	20.4
1000	333.3	3 ms	1000	0.71	23.7	133.9	4.5	21.1
500	166.7	6 ms	500	0.52	24.4	136.6	3	21.7
400	133.3	7.5 ms	400	0.41	24.5	138.7	2.7	21.8
200	66.7	15 ms	200	0.32	25.1	140.9	1.8	22.4
100	33.33	30 ms	100	0.2	25.7	144.9	1.2	23
60	19.99	50.02 ms	59.98	0.17	25.8	146.4	1.1	23.1
50	16.67	60 ms	50	0.15	26.2	147.4	0.83	23.5
20	6.67	150 ms	20	0.13	26.7	148.7	0.61	24
16.67	5.56	180 ms	16.67	0.12	26.8	149.4	0.6	24.1
10	3.33	300 ms	10	0.1	26.9	151	0.55	24.2
5	1.67	600 ms	5	0.08	27.2	152.9	0.35	24.5

¹ 建立时间舍入到最接近的微秒数。这反映在输出数据速率和通道开关速率中。通道开关速率 = 1 ÷ 建立时间。

² 利用1000个样本进行测量。

增强型50 Hz和60 Hz抑制滤波器

增强型滤波器旨在提供50 Hz和60 Hz同时抑制,并且允许 用户在在建立时间和工频抑制性能间做折衷。 这些滤波器 可以最高27.27 SPS的速率工作,或者可以抑制最高90 dB的 50 Hz ± 1 Hz和60 Hz ± 1 Hz干扰。这些滤波器是通过对Sinc5 + Sinc1滤波器输出进行后置滤波实现的。因此,使用增强型滤波器以实现额定建立时间和噪声性能时,必须选择Sinc5+Sinc1滤波器。表23显示了输出数据速率及相应的建立时间、抑制性能和均方根噪声。图58至图65显示了增强型滤波器的频域响应。

表23. 使用增强型滤波器的输出数据速率、噪声、建立时间和抑制性能

输出数据速率(SPS)	建立 时间 (ms)	 50 Hz ± 1 Hz和60 Hz ± 1 Hz 同时抑制(dB) ¹	噪声 (μV rms)	峰峰值分辨率(位)	注释
禁用输入缓冲器	(1113)	1-11114 (42)	(μν τιπο)	"平压力",一个位	7±1+
27.27	36.67	47	0.22	22.7	参见图58和图61
25	40.0	62	0.2	22.9	参见图59和图62
20	50.0	85	0.2	22.9	参见图60和图63
16.667	60.0	90	0.17	23	参见图64和图65
使能输入缓冲器					
27.27	36.67	47	0.22	22.7	参见图58和图61
25	40.0	62	0.22	22.7	参见图59和图62
20	50.0	85	0.21	22.8	参见图60和图63
16.667	60.0	90	0.21	22.8	参见图64和图65

¹ 主时钟 = 16.00 MHz。

图64. 16.667 SPS ODR、60 ms建立时间

图65. 16.667 SPS ODR、60 ms建立时间(50 Hz/60 Hz时)

工作模式

AD7177-2有多种工作模式,可利用ADC模式寄存器和接口模式寄存器(参见表27和表28)设置工作模式。这些模式列示如下,将在以下章节中加以介绍:

- 连续转换模式
- 连续读取模式
- 单次转换模式
- 待机模式
- 关断模式
- 校准模式(三种模式)

连续转换模式

连续转换模式是上电后的默认转换模式。AD7177-2连续进行转换,每次完成转换后,状态寄存器中的RDY位变为低电平。如果CS的瞬间为低电平,则完成一次转换时,RDY输出也会变为低电平。若要读取转换结果,用户需要写入

通信寄存器,指示下一操作为读取数据寄存器。从数据寄存器中读取数据字后,DOUT/RDY引脚变为高电平。如需要,用户可以多次读取该寄存器。但用户必须确保在下一次转换完成的瞬间,不访问数据寄存器,否则,新的转换结果将丢失。

如果使能了多个通道,ADC将自动遍历各使能通道,在每个通道上执行一次转换。所有通道均转换完毕后,又从第一个通道开始。使能的通道按从低到高的顺序转换。一旦获得转换结果,就会立即更新数据寄存器。每次获得转换结果时,RDY输出都会变为低电平。然后,用户可以读取转换结果,同时ADC转换下一个使能通道。

如果接口模式寄存器中的DATA_STAT位设置为1,则每次 读取数据寄存器时,状态寄存器的内容将与转换数据一同 输出。状态寄存器指示对应的转换通道。

连续读取模式

在连续读取模式下,读取ADC数据之前不需要写入通信寄存器,只需在RDY变为低电平(表示转换结束)后提供所需数量的SCLK脉冲。读取转换结果后,RDY返回到高电平,直到下一转换结果可用为止。这种模式下,数据只能被读取一次,而且用户必须确保在下一转换完成前读取数据字。如果在下一转换完成之前,用户尚未读取转换结果,或者为AD7177-2提供的串行时钟数不足以完成对数据字的读取,则在下一转换完成之前不久,串行输出寄存器将复位,新转换结果将置于输出串行寄存器中。要使用连续读取模式,ADC必须配置为连续转换模式。

要使能连续读取模式,应将接口模式寄存器的CONTREAD 位设置为1。此位设置为1时,唯一可能的串行接口操作是读取数据寄存器。要退出连续读取模式,应在RDY输出为低电平时发出一个伪读取ADC数据寄存器命令(0x44),或者应用软件复位,即在CS=0且DIN=1时提供64个SCLK脉冲,从而复位ADC及所有寄存器内容。接口被置于连续读取模式后只能识别这些命令。在连续读取模式下,在有指令写入器件前,DIN应保持低电平。

使能多个ADC通道时,各通道轮流输出,如果接口模式寄存器的DATA_STAT置1,数据将为附加状态位。状态寄存器指示对应的转换通道。

Rev. A | Page 37 of 59

单次转换模式

在单次转换模式下,AD7177-2执行一次转换,完成转换后即被置于待机模式。RDY输出变为低电平表示转换完成。从数据寄存器中读取数据字后,DOUT/RDY引脚变为高电平。如果需要,即使DOUT/RDY引脚已变为高电平,也可以多次读取数据寄存器。

如果使能了多个通道,ADC将自动遍历各使能通道,并在各通道上执行转换。开始转换后,DOUT/RDY引脚变为高电平并保持该状态,直到获得有效转换结果且CS变为低电平。一旦转换结果可用,RDY输出就变为低电平。然后,

ADC选择下一个通道并开始转换。在执行下一转换过程中,用户可以读取当前的转换结果。下一转换完成后,数据寄存器便会更新,因此,用户读取转换结果的时间有限。ADC在各选择通道上均完成一次转换后,便会返回待机模式。

如果接口模式寄存器中的DATA_STAT位设置为1,则每次 读取数据寄存器时,状态寄存器的内容将与转换数据一同 输出。状态寄存器的两个LSB表示对应的转换通道。

待机和关断模式

在待机模式下,大部分模块被关断。LDO仍然有效,因此寄存器保持其内容不变。内部基准电压源若使能则仍然有效,晶振若被选择则仍然有效。要在待机模式下关断基准电压源,应将ADC模式寄存器的REF_EN位设置为0。要在待机模式下关断时钟,应将ADC模式寄存器的CLOCKSEL位设置为00(内部振荡器)。

关断模式下,所有寄存器丢失其内容,GPIOx输出被置于三态。要防止意外进入关断模式,必须首先将ADC置于待机模式。退出关断模式需要在CS=0且DIN=1时提供64个SCLK脉冲,即执行串行接口复位。建议延迟500μs后再发出后续串行接口命令以保证LDO有足够时间上电。

图15显示从待机模式(REF_EN先设为0再设为1)和从关断模式返回后内部基准电压源的建立时间。

校准

为了消除失调和增益误差,AD7177-2可以执行两点校准。 如下三种校准模式可用来在各种设置基础上消除失调和增 益误差:

- 内部零电平校准模式
- 系统零电平校准模式
- 系统满量程校准模式

没有内部满量程校准模式,原因是这已在生产时由工厂执行。

校准期间只能有一个通道有效。每次转换完成后,ADC转换结果需利用ADC校准寄存器进行调整,然后写入数据寄存器。

失调寄存器的默认值是0x800000,增益寄存器的标称值是0x555555。ADC增益的校准范围是0.4×V_{REF}至1.05×V_{REF}。24位数据输出的计算使用下面的公式。在单极性模式下,理想关系(即不考虑ADC增益误差和失调误差)如下:

$$Data = \left(\frac{0.75 \times V_{IN}}{V_{REF}} \times 2^{23} - \left(Offset - 0 \times 800000\right)\right) \times \frac{Gain}{0 \times 400000} \times 2$$

在双极性模式下,理想关系(即不考虑ADC增益误差和失调误差)如下:

$$Data = \left(\frac{0.75 \times V_{IN}}{V_{REF}} \times 2^{23} - (Offset - 0 \times 800000)\right) \times \frac{Gain}{0 \times 400000} + 0 \times 800000$$

为启动校准,应将适当的值写入ADC模式寄存器的mode 位。启动校准后,DOUT/RDY引脚和状态寄存器中的RDY 位变为高电平。校准完成时,相应失调或增益寄存器的内 容会更新,状态寄存器的RDY位复位,RDY输出引脚返回到 低电平(如果CS为低电平),并且AD7177-2返回待机模式。

内部失调校准期间,所选正模拟输入引脚断开,调制器的两个输入均内部连接到所选的负模拟输入引脚。因此,必须确保所选负模拟输入引脚上的电压不超过允许的限值,并且没有过大的噪声和干扰。

然而,系统校准则要求在启动校准模式之前,将系统零电平(失调)和系统满量程(增益)电压施加于ADC引脚,这样可以消除ADC的外部误差。

校准开始执行后应该输出速率对应的从操作上来看,校准就像另一次ADC转换。如果需要,失调校准必须总是在满量程校准之前执行。校准开始执行后对系统软件应该监视状态寄存器的RDY位或RDY输出,通过一个轮询或中断驱动的例行程序确定校准何时结束。所有校准所需的时间等于选定输出速率对应的滤波器建立时间。

内部失调校准、系统零电平校准和系统满量程校准可以在 任何输出数据速率下执行。使用较低的输出数据速率可以 获得更高的校准精度,并且对所有输出数据速率都是精确 的。如果一个通道的基准电压源发生改变,则该通道需要 重新进行失调校准。

失调误差典型值为±40 μV,失调校准将失调误差降至噪声 水平。增益误差在环境温度下经过出厂校准。校准之后, 增益误差典型值为FSR的±2.5 ppm。

用户可以访问AD7177-2的片内校准寄存器,通过微处理器读取器件的校准系数,以及写入自己的校准系数。读写失调和增益寄存器可以在内部或自校准以外的任意时间执行。

数字接口

AD7177-2的可编程功能通过SPI串行接口控制。AD7177-2的 串行接口包含四个信号: CS、DIN、SCLK和DOUT/RDY。DIN输入用于将数据传输至片内寄存器中,DOUT输出则用于从片内寄存器中获取数据。SCLK是器件的串行时钟输入,所有数据传输(无论是DIN输入上还是DOUT输出上)均与SCLK信号相关。

DOUT/RDY引脚也可用作数据就绪信号;当数据寄存器中有新数据字可用时,如果CS为低电平,则该输出变为低电平。对数据寄存器的读操作完成时,RDY输出复位为高电平。临近数据寄存器更新时,RDY输出也会变为高电平,以提示此时不应读取数据,确保寄存器正在更新时不会发生数据读取操作。当RDY输出即将变为低电平时,务必小心,避免从数据寄存器读取数据。确保无数据读取操作的最佳方法是始终监控RDY输出;当RDY输出变为低电平时,尽快开始读取数据寄存器;确保SCLK速率足够高,以便读取操作能在下一个转换结果之前完成。CS用于选择器件。在多个器件与串行总线相连的系统中,它可以用于对AD7177-2进行解码。

图2和图3显示了与AD7177-2进行接口的时序图,其中CS用于片选该器件。图2显示对AD7177-2执行读操作的时序,图3显示对AD7177-2执行写操作的时序。即使在第一次读操作之后RDY输出返回到高电平,也可以多次读取数据寄存器。不过,必须确保在下一输出更新发生之前,这些读操作已完成。连续读取模式下,只能从数据寄存器读取一次。

将CS与低电平相连时,串行接口可以在三线模式下工作。 这种情况下,SCLK、DIN和DOUT/RDY引脚用于与 AD7177-2通信。转换是否结束也可以利用状态寄存器的 RDY位来监视。

在CS=0且DIN=1时,写入64个SCLK可以复位AD7177-2。 复位使接口返回到ADC等待主机对通信寄存器执行写操作 的状态。该操作会将所有寄存器的内容复位到其上电值。 复位后,用户应等待500 μs再访问串行接口。

校验和保护

AD7177-2具有校验和模式,可用来提高接口的鲁棒性。使用校验和可确保仅将有效数据写入寄存器,并且可以对从寄存器读取的数据进行验证。如果寄存器写入期间发生错误,状态寄存器的CRC_ERROR位将置1。然而,为确保寄存器写入成功,必须回读该寄存器并验证校验和。

写操作期间的CRC校验和计算始终使用下列多项式:

$x^8 + x^2 + x + 1$

读操作期间,用户可以选择此多项式或更简单的异或 (XOR)函数。与基于多项式的校验和相比,主机处理器处理XOR函数所需的时间更少。接口模式寄存器的CRC_EN 位用于使能和禁用校验和,并允许用户选择多项式或简单的XOR校验。

校验和附加于每次读和写处理的末尾。写处理的校验和利用8位命令字和数据(8位至24位取决于寄存器长度)计算。 读处理的校验和利用命令字和数据(8位至32位取决于寄存器长度)计算。图69和图70分别显示了SPI读和写处理。

图69. 使能CRC的SPI写处理

图70. 使能CRC的SPI读处理

连续读取模式有效时,如果使能校验和保护,则每次数据 传输前存在暗含的读取数据命令0x44, 计算校验和值时必 须予以考虑。这一暗含的读取数据命令是为了确保即使 ADC数据等于0x0000000, 校验和值也不是零。

CRC计算

多项式

校验和为8位宽,利用以下多项式产生:

 $x^8 + x^2 + x + 1$

要生成校验和,需将数据左移8位,产生一个后8位为逻辑0的数值。对齐多项式,使其MSB与该数据最左侧的逻辑1对齐。对该数据作用一个XOR函数,以产生一个更短的新数。再次对齐多项式,使其MSB与新结果最左侧的逻辑1对齐,重复上述步骤。最后,原始数据将减少至小于多项式的值。此值即是8位校验和。

多项式CRC计算示例-24位字: 0x654321(8位命令和16位数据)

下例使用基于多项式的校验和生成8位校验和:

初始值 011001010100001100100001

01100101010000110010000100000000

011001010100001100100001000000

 $x^8 + x^2 + x + 1 = 100000111$

100100100000110010000100000000 XOR结果

100000111 多项式

100011000110010000100000000 XOR结果

100000111 多项式

111111110010000100000000 XOR结果

100000111 多项式值

1111101110000100000000 XOR结果

100000111 多项式值

111100000000100000000 XOR结果

100000111 多项式值

11100111000100000000 XOR结果

100000111 多项式值

11001001001000000000 XOR结果

100000111 多项式值

1001010101000000000 XOR结果

100000111 多项式值

1011011000000000 XOR结果

100000111 多项式值

11010110000000 XOR结果

100000111 多项式值

101010110000 XOR结果

100000111 多项式值

1010001000 XOR结果

100000111多项式值10000110校验和 = 0x86

多项式

左移8位

XOR计算

校验和为8位宽,产生方法如下:将数据拆分为字节,然后对这些字节执行XOR运算。

XOR计算示例-24位字: 0x654321(8位命令和16位数据)

使用上面的多项式CRC计算示例,将数据分为三个字节: 0x65、0x43和0x21。

01100101 0x65 01000011 0x43

00100110 XOR结果

00100001 0x21 00000111 CRC

集成功能

AD7177-2的集成功能可增强多种应用的有效性,在安全敏感的应用中还可用于诊断。

通用I/O

AD7177-2有两个通用数字输入/输出引脚: GPIO0和GPIO1。这些引脚通过GPIOCON寄存器中的IP_EN0/IP_EN1或OP_EN0/OP_EN1位使能。当GPIO0或GPIO1引脚被使能为输入时,引脚的逻辑电平分别包含在GP_DATA0和GP_DATA1位中。当GPIO0或GPIO1引脚被使能为输出时,GP_DATA0或GP_DATA1位决定引脚的逻辑电平输出。这些引脚的逻辑电平以AVDD1和AVSS为基准,因此,输出幅度为5 V。

SYNC/ERROR引脚也可以用作通用输出。当GPIOCON寄存器的ERR_EN位设置为11时,SYNC/ERROR引脚用作通用输出。这种配置下,GPIOCON寄存器的ERR_DAT位决定引脚的逻辑电平输出。引脚逻辑电平以IOVDD和DGND为基准。

均有内置上拉当设置为通用输出时,GPIO和SYNC/ERROR 引脚均有内置上拉。

外部多路复用器控制

当使用外部多路复用器来提高通道数时,多路复用器逻辑引脚可以通过AD7177-2 GPIOx引脚进行控制。使能ADC当前转换的通道编号会输出到此时用GPIOx控制外置多路复用器,MUX_IO位,ADC当前转换的通道编号会输出到GPIOx;此时用GPIOx控制外置多路复用器通道变化与ADC同步,无需外部同步。

延迟

在AD7177-2开始采样之前,可以插入一个可编程延迟时间。此延迟可以让外部放大器或多路复用器有时间建立,并且能降低外部放大器或多路复用器的技术要求。利用ADC模式寄存器中的Delay位(寄存器0x01的位[10:8]),可以设置从0μs到1ms的八个可编程选项。

如果选择大于0 μs的延迟,并且ADC模式寄存器中的HIDE_ DELAY位设为0,此延迟将增加到转换时间中,无论选定的输出数据速率是多少。

使用sinc5+sinc1滤波器时,可以隐藏此延迟,使得输出数据速率保持不变,像没有使能延迟一样。如果HIDE_DELAY位设为1,ADC会且所选延迟小于转换时间的一半,则ADC会减少数字滤波器求均值的次数,从而吸收此延迟,使转换时间相同,但噪声性能可能会受影响。

对噪声性能的影响取决于延迟时间与转换时间的关系。只有小于10 kSPS的输出数据速率才能吸收延迟,但以下四个速率除外(不能吸收任何延迟): 397.5 SPS、59.92 SPS、49.96 SPS和16.66 SPS。

24位/32位转换

AD7177-2默认产生24位转换结果。然而,转换结果的宽度可以提高至32位。将接口模式寄存器的WL32位设置为1,可将所有数据转换设置为32位。此位清0时,数据转换的宽度为24位。WL32位影响数据寄存器的大小,但不影响失调或增益寄存器的大小。

如果使能32位数据转换,同时将DATA_STAT位置1,则每次读取数据时,ADC输出28位数据加状态寄存器的4个通道位。

DOUT RESET

串行接口使用共享的DOUT/RDY引脚。默认情况下,此引脚输出RDY信号。数据读取期间,此引脚从所读取的寄存器输出数据。完成读取后,经过短暂的固定时间(t₇),该引脚恢复输出RDY信号。然而,此时间对某些微控制器而言可能太短,可以将接口模式寄存器中的DOUT_RESET位设为1,使其延长至CS引脚变为高电平为止。这意味着,必须使用CS来对每个读操作进行帧传输以及完成串行接口处理。

同步

正常同步

当GPIOCON寄存器的SYNC_EN位设置为1时,SYNC/ERROR 引脚用作同步输入。利用SYNC输入,用户可以复位调制器和数字滤波器,而不会影响器件的任何设置条件。这样,用户就可以从已知时间点,即SYNC输入的上升沿开始采集模拟输入的样本。为确保同步发生,SYNC输入必须保持低电平至少一个主时钟周期。

如果多个AD7177-2器件利用一个公共主时钟工作,则可以让这些器件同步,使其模拟输入采样同步进行。这种同步一般在各AD7177-2已执行自身的校准或已将校准系数载入其校准寄存器之后完成。SYNC输入的下降沿使数字滤波器和模拟调制器复位,并将AD7177-2置于一致的已知状态。在SYNC输入为低电平期间,AD7177-2保持该已知状态。在SYNC输入上升沿,调制器和滤波器离开复位状态;在下一主时钟沿,器件再次开始采集输入样本。

该器件在SYNC输入由低到高跃迁之后的主时钟下降沿离开复位状态。因此,当同步多个器件时,在主时钟上升沿使SYNC输入变为高电平,确保所有器件在主时钟下降沿均被释放。如果SYNC输入没有在充足的时间内变为高电平,则器件之间可能相差一个主时钟周期,即对于不同器件,获得转换结果的时刻最多相差一个主时钟周期。

在正常同步模式下,SYNC输入也可用作单个通道的开始转换命令。这种模式下,SYNC输入的上升沿启动转换,RDY输出的下降沿指示转换已完成。每次数据寄存器更新时,需要考虑滤波器的建立时间。转换完成后,拉低SYNC输入以准备下一个转换开始信号。

交替同步

在交替同步模式下,当AD7177-2的多个通道使能时, SYNC 输入用作开始转换命令。将接口模式寄存器的 ALT_SYNC位设置为1,可以使能交替同步方案。当SYNC 输入变为低电平时,ADC完成对当前通道的转换,按顺序选择下一个通道,然后等到SYNC输入变为高电平时开始转换。当前通道的转换完成时,RDY输出变为低电平,数据寄存器更新为对应的转换结果。因此,SYNC输入不会干扰当前选定通道的采样,但允许用户控制下一个通道开始转换的时刻。

交替同步模式只能在使能多个通道时使用。仅使能一个通 道时不建议使用这种模式。

错误标志

状态寄存器包含三个错误位(ADC_ERROR、CRC_ERROR 和REG_ERROR),分别指示ADC转换错误、CRC校验错误和寄存器改变引起的错误。此外,ERROR输出可以指示已发生错误。

ADC ERROR

状态寄存器的ADC_ERROR位指示转换过程中发生的所有错误。当ADC输出超量程或欠量程结果时,该标志位置1。发生过压或欠压时,ADC也会输出全0或全1。此标志仅在过压或欠压消失时复位。该取数据寄存器不会使其复位。

CRC ERROR

如果一个写操作相关的CRC值与所发送的信息不一致, CRC_ERROR标志位即置1。一旦明确读取状态寄存器,该 标志就会复位。

REG ERROR

REG_ERROR标志位与接口模式寄存器的REG_CHECK位一起使用。当REG_CHECK位置1时,AD7177-2监视片内寄存器的值。若有任一位改变,REG_ERROR位就会置1。因此,为了写入片内寄存器,应将REG_CHECK置0。更新寄存器后,就可以将REG_CHECK位置1。AD7177-2计算片内寄存器的校验和。若有一个寄存器值发生改变,REG_ERROR位就会置1。发现错误后,必须将REG_CHECK位清0才能清除状态寄存器的REG_ERROR位。寄存器校验功能不监视数据寄存器、状态寄存器和接口模式寄存器。

ERROR输入/输出

当GPIOCON寄存器的SYNC_EN位设置为0时,SYNC/ERROR 引脚用作错误输入/输出引脚或通用输出引脚。GPIOCON 寄存器的ERR_EN位决定该引脚的功能。

ERR_EN设置为10时,SYNC/ERROR引脚用作开漏错误输出ERROR。状态寄存器的三个错误位(ADC_ERROR、CRC_ERROR和REG_ERROR)经过"或"运算并反转后映射到ERROR输出。因此,ERROR输出指示已发生错误。要确定错误来源,必须读取状态寄存器。

ERR_EN设置为01时,SYNC/ERROR引脚用作错误输入ERROR。其它器件的错误输出可以连接到AD7177-2 ERROR输入,因此AD7177-2可以指示自身或外部器件发生错误。ERROR输入的值经过反转并与ADC转换错误进行"或"运算,结果通过状态寄存器的ADC_ERROR位显示。ERROR输入的值反映在状态寄存器的ERR_DAT位。

ERR_EN设置为00时, ERROR输入/输出禁用。ERR_EN位设置为11时, SYNC/ERROR引脚用作通用输出。

DATA STAT

可以将状态寄存器的内容附加到AD7177-2的每次转换结果。使能多个通道时,此功能很有用。每次输出转换结果时,都会附加状态寄存器的内容。状态寄存器的两个LSB

表示对应的转换通道。此外,用户可以通过错误位确定是否发生错误。如果使能32位数据转换,同时将DATA_STAT位置1,则每次读取数据时,ADC输出28位数据加状态寄存器的4个通道位。

IOSTRENGTH

串行接口可以采用低至2 V的电源工作。然而,在此低压下,如果板上的寄生电容较大或SCLK频率较高,DOUT/RDY引脚可能没有足够的驱动强度。接口模式寄存器的IOSTRENGTH位可提高DOUT/RDY引脚的驱动强度。

内部温度传感器

AD7177-2集成一个温度传感器。该温度传感器可大致指示器件工作所处的环境温度,从而用于诊断目的,或者作为一个指标来判断应用电路是否需要重新运行校准例程以考

虑工作温度的变化。温度传感器通过交叉点多路复用器选择,与模拟输入通道的选择方法相同。温度传感器要求两路模拟输入的缓冲器均使能。如果缓冲器未使能,选择温度传感器为输入会迫使缓冲器在转换过程中使能。

要使用温度传感器,第一步是在已知温度(25°C)下校准器件,并将一个转换结果作为基准点。温度传感器的标称灵敏度为470 μV/K;可利用理想斜率与实测斜率之差来校准温度传感器。在25°C进行校准后,温度传感器的额定典型精度为±2°C。温度校准如下:

Temperature (°C) =
$$\left(\frac{Conversion Result}{470 \,\mu\text{V}}\right)$$
 - 273.15

接地和布局布线

由于模拟输入和基准输入均为差分输入,因此模拟调制器中的多数电压都是共模电压。器件的高共模抑制性能可消除这些输入信号中的共模噪声。为将模拟部分与数字部分之间的耦合降至最低,AD7177-2的模拟电源和数字电源彼此独立,并连接到不同的引脚。数字滤波器可抑制电源上的宽带噪声,但无法抑制那些频率为主时钟频率的整数倍的噪声。

另外,数字滤波器还能够消除来自模拟和基准输入端的噪声,但前提是这些噪声源没有使模拟调制器饱和。因此,与传统高分辨率转换器相比,AD7177-2具有更强的抗噪能力。不过,由于AD7177-2的分辨率较高,而转换器的噪声电平极低,因此必须谨慎对待接地和布局。

ADC所在的PCB必须采用模拟部分与数字部分分离设计, 并限制在电路板的一定区域内。为实现最佳屏蔽,在地层 一般应尽量减少在地层蚀刻。

无论采取何种布局,用户均必须注意规划系统中电流的回流路径,确保所有电流的回流路径均尽可能靠近电流到达目的地所经过的路径。

避免在该器件下方布设数字线路,否则会将噪声耦合至芯片,将模拟接地层放在AD7177-2下方可以防止噪声耦合。 AD7177-2的电源线路必须采用尽可能宽的走线,以提供低 阻抗路径,并减小电源线路上的毛刺噪声。应利用数字地 屏蔽时钟等快速切换信号,以免向电路板的其他部分辐射 噪声,并且绝不应将时钟信号走线布设在模拟输入附近。 避免数字信号与模拟信号交叠。电路板相反两侧上的走线 应彼此垂直。这种技术可减小电路板上的馈通效应。微带 线技术是目前的最佳选择,但这种技术对于双面电路板未 必总是可行。

使用高分辨率ADC时,良好的去耦十分重要。AD7177-2有三个电源引脚:AVDD1、AVDD2和IOVDD。AVDD1和AVDD2引脚以AVSS为基准,IOVDD引脚以DGND为基准。通过10 μF电容与0.1 μF电容的并联组合将AVDD1和AVDD2去耦至各引脚上的AVSS。使各电源的0.1 μF电容应尽可能靠近该器件,最好正对着该器件。通过10 μF电容与0.1 μF电容的并联组合将IOVDD去耦至DGND。将所有模拟输入去耦至AVSS。如果使用外部基准电压源,将REF+和REF-引脚去耦至AVSS。

AD7177-2还有两个片上LDO稳压器,一个调节AVDD2电源,另一个调节IOVDD电源。对于REGCAPA引脚,建议利用1 μF和0.1 μF电容将其去耦至AVSS。类似地,对于REGCAPD引脚,建议利用1 μF和0.1 μF电容将其去耦至DGND。

如果AD7177-2采用分离电源供电, AVSS必须使用单独的层。

寄存器汇总

寄存器	名称	位	位7	位6	位5		位4	位3	位2	位1	位0	复位	RW
0x00	COMMS	[7:0]	WEN	R/W			•		RA			0x00	W
0x00	STATUS	[7:0]	RDY	ADC_ERROR	CRC	ERROR	REG ERROR	1	呆留	CH	HANNEL	0x80	R
0x01	ADCMODE	[15:8]	REF_EN	HIDE_DELAY	SING	CYC	保	·	1	DELAY		0x8000	RW
	7.00 0.11.00 2	[7:0]	保留			MODE	; //		: DCKSEL		保留		
0x02	IFMODE	[15:8]	Ж	保留			ALT_SYNC	IOSTRENGTH		_ <u>:</u> 保留	DOUT_RESET	0x0000	RW
0.102		[7:0]	CONTREAD	DATA_STAT	RFG	CHECK	保留	<u>. </u>	RC EN		WL32 保留		
0x03	REGCHECK	[23:16]		,			REGISTER_CH	:			, ма	0x000000	R
07.05		[15:8]					REGISTER_CH					-	
		[7:0]					REGISTER_C						
0x04	DATA	[31:17]					DATA[3					0x000000	R
0,10 .	271171	[23:16]					DATA[2						'`
		[15:8]	-				DATA[1					-	
		[7:0] DATA[7:0]											
0x06	GPIOCON	[15:8]		保留			MUX IO	SYNC EN	F	RR EN	ERR DAT	0x0800	RW
OXOO	di locoli	[7:0]	復		IP_EN	J1	÷ -	OP_EN1	OP_EN0	GP_DATA1	GP_DATA0		
0x07	ID	[15:8]	И	н	in	••	ID[15		ioi _cito	igi _p/ii/(i	GI _DXIINO	0x4FDX	R
0.07		[7:0]					ID[7:					- 0.41 0.7	'`
0x10	CH0	[15:8]	CH_EN0	保留		SET	UP_SEL0		呆留	ΔΙΝΙ	POS0[4:3]	0x8001	RW
OXIO	Cito	[7:0]	CIT_LINO	AINPOS0[2:0]	i	JEI	1	;	AINNEG0	1 /110	1 030[4.5]	0,0001	1111
0x11	CH1	[15:8]	CH_EN1	保留	•	SET	: LID SEL1	1 .	米留			0x0001	RW
OXII	CITI	[7:0]	CIT_LIVI	H_EN1 保留 SETUP_SEL1 保留 AI AINPOS1[2:0] AINNEG1		1 7111	1031[4.5]	000001	1111				
0x12	CH2	[15:8]	CH_EN2	保留	:	SET	_ : UP_SEL2	1 ,	米留	: AIN	POS2[4:3]	0x0001	
UXIZ	CHZ	[7:0]	CII_LIVE	AINPOS2[2:0]	: I	JEI		: '	本田 AINNEG2	: 7414	-	RW	
0x13	CH3	[15:8]	CH EN3			POS3[4·3]	0x0001	RW					
OXID	CHS	[7:0]	CIT_LINS	AINPOS3[2:0]	<u> </u>	JLI	:	<u> </u>	本田 AINNEG3	i Alla	1 033[4.3]	0X0001	11100
0x20	SETUPCON0	[15:8]		保留			BI UNIPOLARO	REFBUF0+		AINBUF0+	- AINBUF0-	BUF0- 0x1320	RW
0,720	SETOT CONO	[7:0]	BURNOUT ENG	1		DE	F_SEL0	TEL BOLOT			71110010		1111
0x21	SETUPCON1	[15:8]	BONNOO1_ENG	保留		ILL	BI UNIPOLAR1	REFBUF1+		本田 AINBUF1+	- AINBUF1-	0x1320	RW
UXZI	SETUPCONT	[7:0]	BURNOUT_EN1				F SEL1	REFBOLIT			AINBOFT	- UX1320	I NV
0x22	SETUPCON2	[15:8]	BURNOUT_EINT	保留 保留		N.	BI UNIPOLAR2	REFBUF2+		保留 : AINBUF2+	AINBUF2-	0x1320	RW
UXZZ	3ETOFCON2	[7:0]	BURNOUT EN2	1			F_SEL2	, KEFBOFZ+			- AINBOF2-	UX1320	I NV
0.422	SETUPCON3	[15:8]	BURNOUT_EINZ		_ i	N.	BI UNIPOLAR3	REFBUF3+		保留 AINBUF3+	- AINBUF3-	0.1220	RW
0x23	SETUPCON3	1	DUDNIOUT FNI	保留			· · · · - · · · · · · · · · · · · · · · · · · ·	KEFBUF3+			AINBUF3-	0x1320	RW
0x28	FILTCON0	[7:0]	BURNOUT_EN3	保留	! 10		F_SEL3	FAILIEU TENIO		保留 ENHFILTO		0x0507	RW
UXZO	FILICONO	[15:8]	SINC3_MAP0	0		:留	7	ENHFILTEN0	_i	EINHFILIU		- 0x0307	rvv
0x29	FILTCON1	[7:0] [15:8]	保留 SINC3_MAP1	UI UI	RDER0	lu sn	<u> </u>	ENHFILTEN1	ODR0	ENHFILT1		0x0507	RW
UXZ9	FILICONT	[7:0]	保留	0	RDER1	保留	1	EINHLIFIKI	.i ODR1	EINHFILI		- 0x0307	rvv
0x2A	FILTCON2	[15:8]	休留 SINC3_MAP2	i Oi	NDENI	lu sn	<u> </u>	ENHFILTEN2	i ODKI	ENHFILT2		0x0507	RW
UXZA	FILICONZ	ļ		0	RDER2	保留	:	EINHFILTEINZ	i ODR2	EINHFIL12		- UXU3U7	rvv
0x2B	FILTCON3	[7:0]	保留 SINC3 MAP3	UI UI	NDEN2	III išn	<u>i</u>	ENHFILTEN3	:	ENHFILT3		0x0507	RW
UXZB	FILICONS	[15:8]			DDED3	保留	т	ENHFILTENS	.i.	EINHFIL I 3		UXU5U7	KVV
0.20	OFFCFTO	[7:0]	保留	1 0	RDER3		OFFICETO	122.01	ODR3			0.000000	DVA
0x30	OFFSET0	[23:0]					OFFSETO					0x800000	_
0x31	OFFSET1	[23:0]					OFFSET1					0x800000	RW
0x32	OFFSET2	[23:0]	-				OFFSET2					0x800000	RW
0x33	OFFSET3	[23:0]	-				OFFSET3					0x800000	RW
0x38	GAIN0	[23:0]					GAIN0[0x5XXXX0	RW
0x39	GAIN1	[23:0]					GAIN1[0x5XXXX0	RW
0x3A	GAIN2	[23:0]					GAIN2[0x5XXXX0	RW
0x3B	GAIN3	[23:0]					GAIN3[23:0]				0x5XXXX0	RW

寄存器详解

通信寄存器

地址: 0x00; 复位: 0x00; 名称: COMMS

对片内寄存器的所有访问均必须以对通信寄存器的写操作开始。此写操作决定接下来要访问哪一个寄存器,以及相关操作是写还是读。

表25. COMMS的位功能描述

<u>位</u> 7	位名称	设置	描述	复位	访问类型
7	WEN		要与ADC开始通信,此位必须为低电平。	0x0	W
6	R/W		此位决定命令是读操作还是写操作。	0x0	W
		0	写命令		
		1	读命令		
[5:0]	RA		寄存器地址位决定当前通信读写哪一个寄存器。	0x00	W
		000000	状态寄存器		
		000001	ADC模式寄存器		
		000010	接口模式寄存器		
		000011	寄存器校验和寄存器		
		000100	数据寄存器		
		000110	GPIO配置寄存器		
		000111	ID寄存器		
		010000	通道0寄存器		
		010001	通道1寄存器		
		010010	通道2寄存器		
		010011	通道3寄存器		
		100000	设置配置0寄存器		
		100001	设置配置1寄存器		
		100010	设置配置2寄存器		
		100011	设置配置3寄存器		
		101000	滤波器配置0寄存器		
		101001	滤波器配置1寄存器		
		101010	滤波器配置2寄存器		
		101011	滤波器配置3寄存器		
		110000	失调0寄存器		
		110001	失调1寄存器		
		110010	失调2寄存器		
		110011	失调3寄存器		
		111000	增益0寄存器		
		111001	増益1寄存器		
		111010	増益2寄存器		
		111011	増益3寄存器		

状态寄存器

地址: 0x00; 复位: 0x80; 名称: STATUS

状态寄存器是一个8位寄存器,包含ADC和串行接口的状态信息。通过将接口模式寄存器的DATA_STAT位设置为1,可以将状态信息附加到数据寄存器。

表26. STATUS的位功能描述

位	位名称	设置	描述	复位	访问类型
7	RDY		只要RDY为低电平且不在读取寄存器,RDY的状态就会输出到DOUT/CS引脚。当ADC已将新结果写入数据寄存器时,此位变为低电平。在ADC校准模式下,ADC写入校准结果后,此位变为低电平。读取数据	0x1	R
			寄存器时,RDY自动变为高电平。		
		0	新数据结果可用		
		1	4.14.47.3444.44.14		
6	ADC_ERROR	发生超量程错误时,ADC结果箝位至0xFFFFFF; 发生欠量程错误时,ADC结果箝位至0x000000。 此位在写入ADC结果时更新,在消除超量程或 欠量程状况后的下一次更新时清0。 无错误	发生超量程错误时,ADC结果箝位至0xFFFFFF; 发生欠量程错误时,ADC结果箝位至0x000000。 此位在写入ADC结果时更新,在消除超量程或 欠量程状况后的下一次更新时清0。	0x0	R
		1	错误		
5	CRC_ERROR	0		0x0	R
4	REG_ERROR	0	此位指示一个内部寄存器的内容是否发生变化, 与激活寄存器完整性检查时计算的值不同。要激活 该检查,须将接口模式寄存器的REG_CHECK位设置 为1。REG_CHECK位清0时,此位清0。 无错误 错误	0x0	R
[3:2]	保留		这些位保留。	0x0	R
[1:0]	CHANNEL		这些位指示数据寄存器中当前存储的结果所对应的 ADC转换通道。这可能与当前正在转换的通道不同。 该映射是通道寄存器的直接映射,因此,通道0产生 0x0,通道3产生0x3。	0x0	R
		00			
		01	通道1		
		10	通道2		
		11	通道3		

ADC模式寄存器

地址: 0x01; 复位: 0x8000; 名称: ADCMODE

ADC模式寄存器控制ADC的工作模式和主时钟选择。写入ADC模式寄存器会复位滤波器和RDY位,并开始新的转换或校准。

表27. ADCMODE的位功能描述

位	位名称	设置	描述	复位	访问类型
15	REF_EN		使能内部基准电压源并输出缓冲2.5 V电压到REFOUT引脚。	0x1	RW
		0	禁用		
		1	使能		
14	HIDE_DELAY		对于使用sinc5 + sinc1滤波器的选定数据速率,	0x0	RW
			如果利用DELAY位设置了可编程延迟,此位		
			允许将延迟吸收到转换时间中,从而隐藏		
		0	处。更多信息参见"延迟"部分。 使能		
		1	快能 禁用		
13	SING_CYC	'	□ 京用 □ 仅单个通道有效时,可以使用此位来设置ADC	0x0	RW
13	SING_CTC		仅单个通道有效时,可以使用此位米设直ADC 仅以建立的滤波器数据速率输出。	UXU	KVV
		0	禁用		
		1	使能		
[12:11]	保留		这些位保留,应设置为0。	0x0	R
[10:8]	DELAY		这些位允许通道切换后增加一个可编程的延迟时间,	0x0	RW
[10.0]	DEDA		以便外部电路能在ADC开始处理其输入前稳定下来。	OXO	11.00
		000	0 μs		
		001	4 μs		
		010	16 µs		
		011	40 μs		
		100	100 μs		
		101	200 μs		
		110	500 μs		
		111	1 ms		
7	保留		此位保留,应设置为0。	0x0	R
[6:4]	MODE		这些位控制ADC的工作模式。更多信息参见"工作模式"部分。	0x0	RW
		000	连续转换模式		
		001	单次转换模式		
		010	待机模式		
		011	关断模式		
		100	内部失调校准		
		110	系统失调校准		
		111	系统增益校准		
[3:2]	CLOCKSEL		这些位用来选择ADC时钟源。如果选择内部振荡器,	0x0	RW
			则也会使能内部振荡器。		
		00	内部振荡器		
		01	XTAL2/CLKIO引脚上的内部振荡器输出		
		10	XTAL2/CLKIO引脚上的外部时钟输入		
		11	XTAL1和XTAL2/CLKIO引脚上的外部晶振		
[1:0]	保留		这些位保留,应设置为0。	0x0	R

接口模式寄存器

地址: 0x02; 复位: 0x0000; 名称: IFMODE

接口模式寄存器配置各种串行接口选项。

表28. IFMODE的位功能描述

位	位名称	设置	描述	复位	访问类型
[15:13]	保留		这些位保留,应设置为0。	0x0	R
12	ALT_SYNC		此位使能SYNC/ERROR引脚的不同行为, 以便利用SYNC/ERROR来控制循环通道 的转换(详见"GPIO配置寄存器"部分 中的SYNC_EN位说明)。	0x0	RW
		0	禁用 使能		
11	IOSTRENGTH	0	此位控制DOUT/RDY引脚的驱动强度。 在IOVDD电源较低且电容中等的情况 下高速读取串行接口时,应将此位置1。 禁用(默认)	0x0	RW
		1	使能		
[10:9]	保留		这些位保留,应设置为0。	0x0	R
8	DOUT_RESET	0	更多信息参见DOUT_RESET部分。 禁用 使能	0x0	RW
7	CONTREAD	0	此位使能ADC数据寄存器的连续读取模式。 要使用连续读取模式,ADC必须配置为连续 转换模式。详情参见"工作模式"部分。 禁用 使能	0x0	RW
6	DATA_STAT	0	此位使状态寄存器可以在读取时附加到数据 寄存器上,使得通道和状态信息与数据一同 传输。这是确保从状态寄存器读出的通道位 与数据寄存器中的数据对应的唯一方式。 禁用 使能	0x0	RW
5	REG_CHECK	0	此位使能寄存器完整性检查,利用此检查可监视 用户寄存器值的任何变化。要使用此特性,需在 此位清0的情况下根据需要配置所有其他寄存器。 然后写入此寄存器,设置REG_CHECK位为1。若有 任一寄存器的内容发生变化,状态寄存器的 REG_ERROR位就会置1。要清除错误,将 REG_CHECK位置0。检查的寄存器不包括 接口模式寄存器、ADC数据和状态寄存器。 如果一个寄存器必须写入新值,应先将此位清0, 否则,写入新寄存器内容时会报错。 禁用 使能	0x0	RW
4	保留		此位保留,应设置为0。	0x0	R
[3:2]	CRC_EN	00 01	这些位使能寄存器读写的CRC保护。 CRC会将串行接口传输的字节数加1。 详情参见"CRC计算"部分。 禁用 寄存器读处理使能XOR校验和;	0x00	RW
		10	寄存器医处理仍然使用CRC。 读和写处理均使能CRC校验和		

位	位名称	设置	描述	复位	访问类型
1	WL32	0	此位用于更改ADC数据寄存器长度。写入接口模式 寄存器不会复位ADC,因此,写入这些位后,ADC 结果不会立即变为正确的字长。第一个新的ADC 结果是正确的。 24位数据 32位数据	0x0	RW
0	保留		此位保留,应设置为0。	0x0	R

寄存器检查

地址: 0x03; 复位: 0x000000; 名称: REGCHECK

寄存器检查寄存器是通过对用户寄存器的内容进行异或运算而求得的24位校验和。要使用此功能,接口模式寄存器的REG_CHECK位必须置1,否则,寄存器读出0。

表29. REGCHECK的位功能描述

位	位名称	设置	描述	复位	访问类型
[23:0]	REGISTER_CHECK		接口模式寄存器的REG_CHECK位设置为1时,	0x000000	R
			此寄存器包含用户寄存器的24位校验和。		

数据寄存器

地址: 0x04; 复位: 0x000000; 名称: DATA

数据寄存器包含ADC转换结果。编码为偏移二进制,也可以通过设置配置寄存器的BI_UNIPOLARx位更改为单极性。 读取数据寄存器会将RDY位和RDY输出拉高(如果当前为低电平)。ADC结果可以多次读取,但由于RDY输出被拉高, 因此无法知道下一个ADC结果是否即将到来。收到读取ADC寄存器的命令之后,ADC不会将新结果写入数据寄存器。

表30. DATA的位功能描述

位	位名称	设置	描述	复位	访问类型
[31:0]	DATA		此寄存器包含ADC转换结果。此寄存器的大小 由接口模式寄存器的WL32位确定。	0x000000	R

GPIO配置寄存器

地址: 0x06; 复位: 0x0800; 名称: GPIOCON

GPIO配置寄存器控制ADC的通用I/O引脚。

表31. GPIOCON的位功能描述

位	位名称	设置	描述	复位	访问类型
[15:13]	保留		这些位保留,应设置为0。	0x0	R
12	MUX_IO		此位允许ADC控制外部多路复用器,与内部通道顺序同步使用 GPIO0/GPIO1。用于一个通道的模拟输入引脚仍可按通道进行 选择。因此,可以在AIN0/AIN1之前放上一个4通道多路复用器, 并在AIN2/AIN3之前放上另一个多路复用器,从而为AD7177-2 提供总共8个差分通道。但是,一次只能自动安排4个通道。 切换外部多路复用器之后可以插入一个延迟时间(参见 "ADC模式寄存器"部分的DELAY位)。	0x0	RW
11	SYNC_EN	0 1	此位可使SYNC/ERROR引脚用作同步输入。该引脚为低电平时,ADC和滤波器保持复位状态,直到SYNC/ERROR引脚变为高电平为止。当接口模式寄存器的ALT_SYNC位置1时,可以使用SYNC/ERROR引脚的另一个功能。此模式仅在使能多个通道时有效。这种情况下,SYNC/ERROR引脚的低电平不会导致滤波器/调制器立即复位。相反,当通道就要切换时,如果SYNC/ERROR引脚为低电平,则会阻止调制器和滤波器开始新的转换。将SYNC/ERROR拉高就会开始新的转换。利用这一备选同步模式,可以在遍历通道的同时使用SYNC/ERROR。禁用。使能。	0x1	RW
[10:9]	ERR_EN	00	这些位可使SYNC/ERROR引脚用作错误输入/输出。 禁用。 SYNC/ERROR是错误输入。(反转)回读状态与其他误差源进行 "或"运算,结果通过状态寄存器的ADC_ERROR位输出。 SYNC/ERROR引脚状态也可通过此寄存器的ERR_DAT位读取。	0x0	RW
		10	SYNC/ERROR是开漏错误输出。状态寄存器错误位经过 "或"运算、反转后映射到SYNC/ERROR引脚。多个器件的SYNC/ERROR引脚可以连接到同一个上拉电阻,这样就可以观察到任何器件的错误。 SYNC/ERROR是通用输出。此引脚的状态由该寄存器的ERR_DAT位控制。此输出参考IOVDD与DGND之间的电平,而不是GPIO引脚使用的AVDD1和AVSS电平。这种情况下,SYNC/ERROR引脚有一个有源上拉电阻。		
8	ERR_DAT		SYNC/ERROR引脚用作通用输出时, 此位决定其逻辑电平。该引脚用作 输入时,此位反映其回读状态。	0x0	RW
[7:6]	保留		这些位保留,应设置为0。	0x0	R
5	IP_EN1	0	此位将GPIO1变为输入。输入参考AVDD1或AVSS。 禁用。 使能。	0x0	RW
4	IP_EN0	0	此位将GPIOO变为输入。输入参考AVDD1或AVSS。 禁用。 使能。	0x0	RW
3	OP_EN1	0	此位将GPIO1变为输出。输出参考AVDD1与AVSS之间的电平。 禁用。 使能。	0x0	RW
2	OP_EN0	0	此位将GPIO0变为输出。输出参考AVDD1与AVSS之间的电平。 禁用。 使能。	0x0	RW
1	GP_DATA1		此位是GPIO1的回读或写入数据。	0x0	RW
0	GP_DATA0	1	此位是GPIO0的回读或写入数据。	0x0	RW

ID寄存器

地址: 0x07; 复位: 0x4FDX; 名称: ID

ID寄存器返回16位ID。对于AD7177-2,此ID为0x4FDX。

表32.ID的位功能描述

位	位名称	设置	描述	复位	访问类型
[15:0]	ID		ID寄存器返回ADC特定的16位ID代码。	0x4FDX	R
		0x4FDX	AD7177-2		

通道寄存器0

地址: 0x10; 复位: 0x8001; 名称: CH0

通道寄存器是16位寄存器,用于选择当前有效的通道、各通道使用哪些输入以及该通道使用何种设置来配置ADC。

表33. CH0的位功能描述

位	位名称	设置	描述	复位	访问类型
15	CH_EN0		此位使能通道0。使能多个通道时,	0x1	RW
			ADC自动按顺序处理各通道。		
		0	禁用		
		1	使能(默认)		
14	保留		此位保留,应设置为0。	0x0	R
[13:12]	SETUP_SEL0		这些位决定该通道使用四种设置中的哪一种来	0x0	RW
			配置ADC。设置由四个寄存器组成:设置配置		
			寄存器、滤波器配置寄存器、失调寄存器和 增益寄存器。所有通道可以使用相同的设置,		
			此时对于所有有效的通道,必须将相同的2位		
			值写入这些位,最多可以配置4个不同的通道。		
		00	设置0		
		01	设置1		
		10	设置2		
		11	设置3		
[11:10]	保留		这些位保留,应设置为0。	0x0	R
[9:5]	AINPOS0		这些位选择此通道的哪个输入连接到ADC的正输入。	0x0	RW
		00000	AINO(默认)		
		00001	AIN1		
		00010	AIN2		
		00011	AIN3		
		00100	AIN4		
		10001	温度传感器+		
		10010	温度传感器-		
		10011	((AVDD1 – AVSS)/5)+ (必须使能模拟输入缓冲器)		
		10100	((AVDD1 – AVSS)/5)-(必须使能模拟输入缓冲器)		
		10101	REF+		
		10110	REF—		

位	位名称	设置	描述	复位	访问类型
[4:0]	AINNEG0		这些位选择此通道的哪个输入连接到ADC的负输入。	0x1	RW
		00000	AIN0		
		00001	AIN1(默认)		
		00010	AIN2		
		00011	AIN3		
		00100	AIN4		
		10001	温度传感器+		
		10010	温度传感器-		
		10011	((AVDD1 – AVSS)/5)+		
		10100	((AVDD1 – AVSS)/5)–		
		10101	REF+		
		10110	REF-		

通道寄存器1至通道寄存器3

地址: 0x11至0x13; 复位: 0x0001; 名称: CH1至CH3

剩下的3个通道寄存器使用与通道寄存器0相同的布局。

表34. CH1至CH3寄存器映射

		-, .,										
寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x11	CH1	[15:8]	CH_EN1	保留	SETUF	P_SEL1	£ £	R 留	AINPC	S1[4:3]	0x0001	RW
		[7:0]		AINPOS1[2:0]				AINNEG1				
0x12	CH2	[15:8]	CH_EN2	保留	SETUF	SEL2	P.	R 留	AINPC	S2[4:3]	0x0001	RW
		[7:0]		AINPOS2[2:0]		 		AINNEG2			 	
0x13	CH3	[15:8]	CH_EN3	保留	SETUF	P_SEL3	(P	R 留	AINPC	S3[4:3]	0x0001	RW
		[7:0]		AINPOS3[2:0]		 		AINNEG3				

设置配置寄存器0

地址: 0x20; 复位: 0x1320; 名称: SETUPCON0

设置配置寄存器是16位寄存器,用于配置ADC的基准电压源选择、输入缓冲器和输出编码方式。

表35. SETUPCON0的位功能描述

位	位名称	设置	描述	复位	访问类型
[15:13]	保留		这些位保留,应设置为0。	0x0	R
12	BI_UNIPOLAR0		此位设置设置0的ADC输出编码。	0x1	RW
		0	单极性编码输出		
		1	双极性编码模式(偏移二进制)		
11	REFBUF0+		此位使能或禁用REF+输入缓冲器。	0x0	RW
		0	禁用REF+缓冲器		
		1	使能REF+缓冲器		
10	REFBUF0-		此位使能或禁用REF-输入缓冲器。	0x0	RW
		0	禁用REF-缓冲器		
		1	使能REF-缓冲器		
9	AINBUF0+		此位使能或禁用AIN+输入缓冲器。	0x1	RW
		0	禁用AIN+缓冲器		
		1	使能AIN+缓冲器		
8	AINBUF0-		此位使能或禁用AIN-输入缓冲器。	0x1	RW
		0	禁用AIN-缓冲器		
		1	使能AIN-缓冲器		
7	BURNOUT_EN0		此位在所选正模拟输入上使能10 µA源电流,	0x00	R
			在所选负模拟输入上使能10 µA吸电流。开路		
			测试电流可以用于开路诊断,在这种情况下,		
			ADC结果变为满量程。在测量期间使能开路 测试电流,会在ADC上产生失调电压。这意味		
			着,在精密测量之前或之后间隔开启开路测试		
			电流是诊断开路的最佳方式。		
6	保留		这些位保留,应设置为0。	0x00	R
[5:4]	REF_SEL0		这些位选择用于设置0 ADC转换的基准电压源。	0x2	RW
		00	外部基准电压源。		
		10	2.5 V内部基准电压源。ADC模式寄存器也必须使能此基准电压源。		
		11	AVDD1 – AVSS。这可用于诊断,验证其它基准值。		
[3:0]	保留		这些位保留,应设置为0。	0x0	R

设置配置寄存器1至设置配置寄存器3

地址: 0x21至0x23; 复位: 0x1320; 名称: SETUPCON1至SETUPCON3

剩下的3个设置配置寄存器使用与设置配置寄存器0相同的布局。

表36. SETUPCON1至SETUPCON3寄存器映射

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x21	SETUPCON1	[15:8]		保留		BI_UNIPOLAR1	REFBUF1+	REFBUF1-	AINBUF1+	AINBUF1-	0x1320	RW
		[7:0]	BURNOUT_EN1	保留	R	EF_SEL1		 保	:留			
0x22	SETUPCON2	[15:8]		保留		BI_UNIPOLAR2	REFBUF2+	REFBUF2-	AINBUF2+	AINBUF2-	0x1320	RW
		[7:0]	BURNOUT_EN2	保留	R	EF_SEL2		保	:留			
0x23	SETUPCON3	[15:8]		保留		BI_UNIPOLAR3	REFBUF3+	REFBUF3-	AINBUF3+	AINBUF3-	0x1320	RW
		[7:0]	BURNOUT_EN3	保留	R	EF_SEL3		保	:留			

滤波器配置寄存器0

地址: 0x28; 复位: 0x0507; 名称: FILTCON0

滤波器配置寄存器是16位寄存器,用于配置ADC数据速率和滤波器选项。写入此类寄存器会复位任何正在进行的ADC转换,重新从序列中的第一个通道开始转换。

表37. FILTCON0的位功能描述

位	位名称	设置	描述	复位	访问类型
15	SINC3_MAP0		如果此位置1,滤波器寄存器的映射将变为直接对设置0的Sinc3滤波器的抽取率进行编程。所有其他选项均无效。这种情况下,可以对输出数据速率和滤波器陷波进行精密调整,以便抑制特定频率。对于单个通道,数据速率等于f _{MoD} /(32×FILTCON0[14:0])。	0x0	RW
[14:12]	保留		这些位保留,应设置为0。	0x0	R
11	ENHFILTEN0	0	此位使能设置0的各种后置滤波器,以提供增强的50 Hz/60 Hz抑制性能。为此,ORDER0位必须设置为00以选择Sinc5 + Sinc1滤波器。禁用 使能	0x0	RW
[10:8]	ENHFILTO	010 011 101 110	这些位选择设置0的各种后置滤波器,以提供增强的50 Hz/60 Hz抑制性能。27 SPS、47 dB抑制、36.7 ms建立25 SPS、62 dB抑制、40 ms建立20 SPS、85 dB抑制、50 ms建立16.67 SPS、92 dB抑制、60 ms建立	0x5	RW
7	保留		此位保留,应设置为0。	0x0	R
[6:5]	ORDER0	00	这些位控制设置0的数字滤波器(用于处理调制器数据)的阶数。 Sinc5 + Sinc1(默认) Sinc3	0x0	RW
[4:0]	ODRO	00000至 00110 00111 01000 01001 01010 01011 01100 01111 10000 10001 10010 10011	这些位控制ADC的输出数据速率,从而控制设置0的 建立时间和噪声。所示速率系针对sinc5 + sinc1 滤波器。参见表19至表22。 保留 10,000 SPS 5000 SPS 2500 SPS 1000 SPS 397.5 SPS 200 SPS 100 SPS 100 SPS 59.92 SPS 49.96 SPS 20 SPS 16.66 SPS 10 SPS 5 SPS	0x07	RW

滤波器配置寄存器1至滤波器配置寄存器3

地址: 0x29至0x2B; 复位: 0x0507; 名称: FILTCON1至FILTCON3

剩下的3个滤波器配置寄存器使用与滤波器配置寄存器0相同的布局。

表38. FILTCON1至FILTCON3寄存器映射

寄存器	名称	位	位7	位6	位5	位4	位3	位2	位1	位0	复位	RW
0x29	FILTCON1	[15:8]	SINC3_MAP1		保留		ENHFILTEN1	:	ENHFILT1		0x0507	RW
		[7:0]	保留	ORD	ER1	!		ODR1				
0x2A	FILTCON2	[15:8]	SINC3_MAP2		保留	_	ENHFILTEN2	į	ENHFILT2		0x0507	RW
		[7:0]	保留	ORD	ER2	! !		ODR2				
0x2B	FILTCON3	[15:8]	SINC3_MAP3		保留	_	ENHFILTEN3		ENHFILT3		0x0507	RW
		[7:0]	保留	ORD	ER3			ODR3				

失调寄存器0

地址: 0x30; 复位: 0x800000; 名称: OFFSET0

失调(零电平)寄存器是24位寄存器,可用来补偿ADC或系统中的任何失调误差。

表39. OFFSETO的位功能描述

位	位名称	设置	描述	复位	访问类型
[23:0]	OFFSET0		设置0的失调校准系数。	0x800000	RW

失调寄存器1至失调寄存器3

地址: 0x31至0x33; 复位: 0x800000; 名称: OFFSET1至OFFSET3

剩下的3个失调寄存器使用与失调寄存器0相同的布局。

表40. OFFSET1至OFFSET3寄存器映射

寄存器	名称	位	复位	RW
0x31	OFFSET1	OFFSET1[23:0]	0x800000	RW
0x32	OFFSET2	OFFSET2[23:0]	0x800000	RW
0x33	OFFSET3	OFFSET3[23:0]	0x800000	RW

增益寄存器0

地址: 0x38; 复位: 0x5XXXX0; 名称: GAIN0

增益(满量程)寄存器是24位寄存器,可用来补偿ADC或系统中的任何增益误差。

表41. GAINO的位功能描述

位	位名称	设置	描述	复位	访问类型
[23:0]	GAIN0		设置0的增益校准系数。	0x5XXXX0	RW

增益寄存器1至增益寄存器3

地址: 0x39至0x3B; 复位: 0x5XXXX0; 名称: GAIN1至GAIN3

剩下的3个增益寄存器使用与增益寄存器0相同的布局。

表42. GAIN1至GAIN3寄存器映射

寄存器	名称	位	复位	RW
0x39	GAIN1	GAIN1[23:0]	0x5XXXX0	RW
0x3A	GAIN2	GAIN2[23:0]	0x5XXXX0	RW
0x3B	GAIN3	GAIN3[23:0]	0x5XXXX0	RW

外形尺寸

COMPLIANT TO JEDEC STANDARDS MO-153-AD

图71. 24引脚超薄紧缩小型封装[TSSOP] (RU-24) 图示尺寸单位: mm

订购指南

797739113			
型号¹	温度范围	封装描述	封装选项
AD7177-2BRUZ	-40°C至+105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24
AD7177-2BRUZ-RL7	-40°C至+105°C	24引脚超薄紧缩小型封装[TSSOP]	RU-24

¹Z=符合RoHS标准的器件。