Correction

Exercice 3 (10 points)

- 1. Capacité = 2*8*32=512 octets 24 bits
- 2. Etiquette = 16 bits, Ligne=3 bits et Deplacement= 5 bits
- 3. Le cache est initialement vide. Le processeur lit 513 octets à partir des adresses 0, 1, 2...,512 dans cet ordre, puis relit ces mêmes octets dans le même ordre.
 - a. après lecture des 513 octets

512543	256287
3263	288319
124255	480511

Après le premier passage le cache est ainsi. Au second passage tous les octets sont déjà dans le cache sauf le premier bloc, le contenu devient donc

256287	512543
3263	288319
124255	480511

b. Pour le premier passage : chaque case du cache se remplit suite à un échec et ensuite viennent 31 succès. Le temps d'accès pour une case est donc (10+31*1)=41ns. Comme il y a 16 cases, cela fait 16*41=656ns. Il faut y ajouter l'échec de l'accès à l'octet 512 donc 656+10=666 ns. Pour le second

passage il n'y a que des succès sauf pour les blocs de la première ligne où il y a 3 échecs, le temps d'accès pour le second passage est donc 510*1ns+3*10=540ns.

4. a- tab est stocké en mémoire depuis l'adresse 0 jusqu'à l'adresse 399. Les adresses accédées sont donc 0, 3, 7, ...,397. Elles sont accédées chacune 1 fois en lecture et 2 fois en écriture.

b- en Write through , il y a un accès mémoire pour chaque adresse accédée en écriture donc 100*2 = 200 accès en écriture.

En Write back : il y a un accès mémoire pour chaque bloc modifié en écriture. Or tab est stocké sur 400/32 = 13 blocs donc il y a 13 accès en écriture.

Bilan : on économise 200-13=187 accès en écriture en mémoire centrale