Visual and Thermal Person Recognition for OctoROaCH Platform

C280: Computer Vision, Spring 2012 Austin Buchan and Ryan Julian

Motivation

- Constrained robotic platform
- Search and rescue/surveillance tasks

Lateral Area 78cm²

Weight/Payload 45g/20g

Power 3.7V @ 300mAH

Computation 16bit, 40MHz, 30k RAM

Available I/O 16

Goals

- Real-time person recognition
- Complex environments
- Meet (slightly augmented) constraints of onboard computing for OctoROaCH platform
- Explore low-resolution thermal imaging

Prototype Hardware

Thermal Camera

- 8x8 pixel
- Absolute Temperature
- 60Hz
- Webcam
 - 640x480 pixel
- BeagleBoard
 - o ARM Cortex-A8 1GHz
 - C64x+ DSP core
 - o 512MB RAM

High-fidelity OctoRoACH Perspective Simulator

Dataset

Feature Extraction, Classification

Visual pHOG

- Grayscale
- Clip to 448x448 window
- 2,4,8,16 subdivision
- Magnitude weighted
- Histogram normalized
- Thermal pixel values
 - Scaled to [0,1] per frame
- Linear SVM
 - 10% Train, 90% Test
 - Soft Margin 1

Results

- 90% accuracy All features
 - o 78% Thermal Only

Grouped Importance

Future Work

- Error analysis
- More specific dataset
- Clever Filters
 - Ordered thermal regions
 - pHOG weighted by temperature
- Online classifier implementation