How to run code

- \$ bash hw3 1.sh
- \$ bash hw3_2.sh
- \$ bash hw3 3.sh
- \$./hw3_1
- \$./hw3_2
- \$./hw3 3

Results

```
(base) qmin@rose:~/na/Homework #3/Code$ ./hw3 1
######## Using Gauss-Jordan Elimination #########
Answers for A2
-2.873567 -0.612357 0.976277 0.635819 -0.553441
Answers for A3
-0.326608 1.532293 -1.044825 -1.587447 2.928480 -2.218931
total time 0.000048
######### Using LU decomposition #########
Answers for A1
1.000000 -3.000000 2.000000 0.000000
Answers for A2
-2.873566 -0.612357 0.976277 0.635819 -0.553441
Answers for A3
-0.326608 1.532292 -1.044826 -1.587447 2.928480 -2.218930
total time 0.000044
######### Using svd #########
Answers for A1
1.293531 -2.412938 1.119406 -0.293531
Answers for A2
-2.873566 -0.612357 0.976278 0.635819 -0.553441
Answers for A3
-0.326609 1.532292 -1.044825 -1.587447 2.928479 -2.218929
total time 0.000071
```

```
(base) quingrose:~/na/homework #3/Code$ ./hw3_2
-2.8735663890838623046875000 -0.6123567223548889160156250 0.9762773513793945312500000 0.6358186602592468261718750 -0.5534411072731018066406250
Is it improved??
-2.8735661590652832031250000 -0.6123565435409545898437500 0.9762773513793945312500000 0.63581848144531250000000000 -0.5534410476684570312500000
-2.8735663890838623046875000 -0.6123566627502441406250000 0.9762773513793945312500000 0.635818460654602057812500 -0.5534411072731018066406250
-2.8735663890838623046875000 -0.6123566627502441406250000 0.9762773513793945312500000 0.635818460654602057812500 -0.5534411072731018066406250
-2.8735661506652832031250000 -0.6123566627502441406250000 0.9762773513793945312500000 0.63581846006546020507812500 -0.5534411072731018066406250
-2.8735661506652832031250000 -0.6123566031455993652343750 0.9762773513793945312500000 0.6358186006546020507812500 -0.5534411072731018066406250
-2.8735661506652832031250000 -0.6123566031455993652343750 0.9762773513793945312500000 0.6358184814453125000000000 -0.5534410476684570312500000

-0.3266078829765319824218750 1.5322924852371215820312500 -1.0448256731033325195312500 -1.587447643280029296875000 2.9284801483154296875000000 -2.2189300060272216796875000
-0.3266079425811767578125000 1.5322923660278320312500000 -1.0448253154754638671875000 -1.58744762480029296875000 2.9284801483154296875000000 -2.2189316749572753906250000
-0.3266079425811767578125000 1.53229234628049902343750000 -1.0448253154754638671875000 -1.58744762480029296875000 2.9284801483154296875000000 -2.2189316749572753906250000
-0.3266079425811767578125000 1.532292346206978320312500000 -1.044825531847596875000 -1.587447624800292968750000 2.9284801483154296875000000 -2.2189316749572753906250000
-0.3266079425811767578125000 1.5322923660278320312500000 -1.044825531847596875000 -1.5874476248009978979492187500 2.9284801483154296875000000 -2.21893067212829589843750000
-0.3266079425811767578125000 1.5322923660278320312500000 -1.044825531847596875000 -1.58744762480009078979492187500 2.928480148
```

inverse matri	LX 1087734272 .000000	_37500000751	532900352.000000	375000007515	32900352.000000	12500001350022594560.000000
-200000056784733601792.000000		-75000019095251845120.000000		75000010299158822912.000000		25000001330022334300.000000
300000041196635291648.000000		112500015448738234368.000000		-112500006652645212160.000000		-37500005149579411456.000000
10000002004087734272.000000		37500000751532900352.000000		-37499996353486389248.000000		-12500001350022594560.000000
determinant						
-0.000000						
Answers for A	12					
inverse matri	ix					
0.354536	0.766945	0.207769	-0.595412	0.253128		
0.035454	0.126695	0.195777	-0.159541	0.050313		
-0.138686	-0.098540	-0.096715	0.124088	0.016423		
-0.052138	-0.303962	-0.023201	0.234619	-0.044578		
0.149114	0.459333	0.051356	-0.171011	0.042492		
determinant						
3835.999512						
Answers for A	50					
inverse matri						
-0.162205	0.122801	0.024068	-0.016431	-0.022840	0.046132	
0.169407	-0.041117	0.228313	-0.087624	0.180306	-0.395655	
-0.011636	0.122745	-0.117407	-0.180981	0.015910	0.186766	
0.105669	-0.051726	-0.108916	0.299774	0.000859	-0.190541	
-0.053026	-0.042362	0.160508	-0.224034	0.161811	0.015024	
-0.062341 determinant	-0.064694	-0.234216	0.351126	-0.364828	0.434633	
determinant 16178.401367						
101/0.40130/		201			<u> </u>	

Discussion

1.

총 걸린 시간은 SVD >>>> Gauss-Jordan > LU 이다.

SVD는 3개의 matrix로 분해하고 다시 역행렬을 취하고 계산해야 하기 때문에 직관적으로 다른 2가지 방법보다 계산량이 많아 시간이 오래걸린 것으로 생각된다. Gauss-Jordan ,LU는 시간이 걸린 시간이 거의 비슷하다.

LU와 SVD는 singular한 matrix lineq1에 대해서도 근사적으로 해를 구할 수 있다. 하지만 Gauss-jordan은 해를 구하지 못하고 종료된다.

2.

mprove 함수를 적용하면 solution값이 바뀐다. 하지만 원래 정확한 solution을 모르기 때문에 실제로 더 정확한 solution으로 바뀌었는지는 실험결과 값을 통해 확인은 불가능하다. Numerical recipe 교재에서는, mprove를 1~2번 call 하는 것만으로도 충분히 수렴한다고 언급되어 있다. ./hw3_2에서 mprove를 5번 call한 결과값을 출력하고 있는데, 값이 크게 변하지 않는 점을 보아, 교재의 말을 실험결과값을 통해 확인 할 수 있었다.

3.

LU decomposition을 하고나면, back substitution을 통해 쉽게 역행렬을 구할 수 있음을 확인했다. 또한, determinant도, 대각행렬의 값을 곱 하면 되기 때문에, 간단하게 구할 수 있다.