

Universidad de Buenos Aires Facultad de Ingeniería

61.09 Probabilidad y Estadística B

Método Monte Carlo

 $Ezequiel\ P\'erez\ Dittler$

1. Enunciado

Sea $f: \mathbb{R} \to \mathbb{R}$ una función continua y no negativa. Sea M > 0 el valor máximo de la función f sobre el intervalo [a, b].

- (a) Se elige al azar un punto de coordenadas (X,Y) dentro del rectángulo de vértices (a,0), (b,0), (b,M), (a,M). Relacionar la probabilidad del evento $A=\{Y\leqslant f(X)\}$ con el valor de la integral $\int\limits_a^b f(x)dx$.
- (b) Si se conoce el valor de la probabilidad, P(A), del evento $A=\{Y\leqslant f(X)\}$, ¿cómo se calcula la integral $\int\limits_{a}^{b}f(x)dx$?
- (c) Obtener un método que permita estimar el valor de la integral $\int_a^b f(x)dx$ en base a los resultados de n simulaciones del experimento descrito en Inciso (a).
- (d) Estimar el valor de la integral $\int_{0}^{2} e^{-x^{2}} dx$ utilizando el método obtenido en Inciso (c) basándose en los resultados de 10000 simulaciones.

2. Resolución

2.1. Inciso (a)

Figura 1: Rectángulo de vértices (a, 0), (b, 0), (b, M), (a, M)

$$P(A) = P(Y \leqslant f(X)) = \frac{area(A)}{area(\Omega)} = \frac{\int\limits_{a}^{b} f(x)dx}{(b-a)M}$$

2.2. Inciso (b)

Siendo P(A) conocido, se puede estimar el valor de la integral $\int\limits_a^b f(x)dx$ del siguiente modo

$$\int_{a}^{b} f(x)dx = P(A).(b-a).M$$

2.3. Inciso (c)

Listing 1: Algoritmo Monte Carlo en Octave

```
function r = monte_carlo(probabilidad, a, b, M, cant_simulaciones)

U = rand(1, cant_simulaciones);

Y = (U <= probabilidad);

nueva_probabilidad = sum(Y) / cant_simulaciones;

r = nueva_probabilidad * (b - a) * M;
endfunction</pre>
```