Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät Institut für Mathematik

Die Crouzeix-Raviart Finite-Elemente Methode für eine Minimierung im Raum der Funktionen von beschränkter Variation

Enrico Bergmann

Version: 23. März 2021

Inhaltsverzeichnis

To	o list	3
1	Einleitung	4
2		8 8 9 10
3	3.1 Formulierung	13 13 13
4	1.1 Formulierung	18 18 18 22 23
5	terative Lösung	24
6	Seitennummerierungskonvention lokal Aufstellung des zu lösenden LGS Berechnung der Werte einer CR Funktion auf einem Element in den Knoten Berechnung der L1 Norm der Sprünge Implementation der GLEB Implementation des Refinement Indicators	28 28 28 28 28 29 29
7	7.1 Erstellen eines lauffähigen Benchmarks (Minimalbeispeil)	30 30 33 33 33 33
8	Numerische Beispiele	34
9	Auswertung	35

Zusammenfassung

todo todo, vielleicht auch eher for dem Inhaltsverzeichnis?

Titelseite nach Vorgaben in Formalien-Lesezeichen-Ordner anpassen

Konvergenz im Fließtext nicht mit overset sondern das n to infty dahinter im Fließtext

1 Einleitung

In der Bildverarbeitung kann ein gegebenes Signal häufig nur durch eine unstetige Funktion dargestellt werden. Deshalb stellt sich zunächst die Frage, welcher Funktionenraum zum Beschreiben dieser Signale geeignet ist.

Sei $\Omega \subset \mathbb{R}^2$ ein beschränktes Lipschitz-Gebiet und $g:\Omega \to \mathbb{R}$ stelle ein gegebenes Signal auf Ω dar. Das Signal g könnte im Sobolev-Raum $W^{1,1}(\Omega)$ vermutet werden, da Elemente dieses Raums im Allgemeinen nicht stetig sein müssen. Allerdings lassen Sobolev-Funktionen die oftmals benötigten Sprünge über Teilmengen niedrigerer Dimension von Ω nicht zu [Bar15b, S. 297]. Dieses Problem kann gelöst werden, indem der Raum der Funktionen von beschränkter Variation $\mathrm{BV}(\Omega)$ betrachtet wird. Dieser ist eine echte Obermenge von $W^{1,1}(\Omega)$ und hat sich als geeignet für die Modellierung von Signalen in der Bildverarbeitung und weitere Anwendungen erwiesen (cf. [ABM14, S. 393; AK06, S. 42; Bar15b, S. 297; Bra98, S. 1 f.]).

Eine mögliche Problemstellung in der Bildverarbeitung ist die Rauschunterdrückung, das heißt der Versuch unerwünschtes Rauschen in einem Signal zu verringern. In [ROF92] beschrieben Rudin, Osher und Fatemi 1992 das heute als ROF-Modell bekannte Minimierungsproblem dafür (cf. [Bar15a, S. 1217; CP10, S. 132; Get12, S. 74 f.]). Dabei ist für das gegebene Signal $g \in L^2(\Omega)$ und eine Funktion $v \in BV(\Omega) \cap L^2(\Omega)$ die Minimierung der Summe der zwei folgenden Terme relevant. Der erste Term ist die Seminorm

$$|v|_{\mathrm{BV}(\Omega)} \coloneqq \sup_{\substack{\phi \in C_0^{\infty}(\Omega; \mathbb{R}^2) \\ |\phi| \le 1}} \int_{\Omega} v \operatorname{div}(\phi) \, \mathrm{d}x < \infty.$$

von v auf BV(Ω) [Bar12, S. 1162]. Diese entspricht der totalen Variation der distributionellen Ableitung Dv von v und ihre Minimierung verhindert Oszillationen in der Lösung, lässt aber Unstetigkeiten zu [Get12, S. 72]. Außerdem stimmt diese, falls $v \in W^{1,1}(\Omega)$, mit der Seminorm auf $W^{1,1}(\Omega)$ überein. Der zweite Term $\|v-g\|_{L^2(\Omega)}^2$ misst den Abstand von v und g in $L^2(\Omega)$. Die Minimierung dieses Terms bewirkt, dass die Lösung dem Eingangssignal ähnelt. Mit diesen Termen und mit einen positiven Parameter $\alpha \in \mathbb{R}_+$, der das Verhältnis zwischen Rauschverminderung und Ähnlichkeit der Lösung zum Eingangssignal gewichtet, sucht das ROF-Modell eine Funktion $u \in \mathrm{BV}(\Omega) \cap L^2(\Omega)$, die das Funktional

$$I(v) \coloneqq |v|_{\mathrm{BV}(\Omega)} + \frac{\alpha}{2} \|v - g\|_{L^2(\Omega)}^2$$

unter allen $v \in BV(\Omega) \cap L^2(\Omega)$ minimiert.

Wird hierbei α zu klein gewählt, führt das zu einer zu stark geglätteten, verwaschen aussehenden Lösung, zu sehen zum Beispiel in den Abbildungen 1.1c und 1.1d. Wird andererseits α zu groß gewählt, ist die Verminderung des Rauschens im Vergleich zum Eingangssignal g nur gering, zu sehen zum Beispiel in den Abbildungen 1.1f und 1.1g.

Für weitere Details und Referenzen zur Rauschunterdrückung und zur Wahl von α siehe [Get12].

Zur numerischen Behandlung dieses Problems gibt es bereits einige Ansätze. Dazu gehören die Regularisierung der Seminorm $| \cdot |_{BV(\Omega)}$, indem die Betragsfunktion $| \cdot |$ durch eine stetig differenzierbare Approximation $| \cdot |_{\varepsilon}$ ersetzt wird, und die Nutzung von höheren Ableitungen in der Definition von $| \cdot |_{BV(\Omega)}$. Vor- und Nachteile dieser Ansätze und entsprechende Referenzen werden in [Bar12, S. 1165] zusammengefasst. Außerdem wird ebenda

uelle?

uelle?

erweis auf päter?

Quelle? Verweis uf später? auf Arbeiten verwiesen, in denen verschieden iterative Lösungsmethoden für das ROF-Modell-Problem diskutiert werden.

Professor Bartels selbst untersucht in [Bar15b, Kapitel 10.2] eine $W^{1,1}$ -konforme Diskretisierung des ROF-Modells mit der Courant-Finite-Elemente-Methode. Zur numerischen Lösung dieser diskreten Formulierung nutzt er eine primale-duale Iteration, welche motiviert ist durch Betachtung der primalen und der dualen Formulierung des Minimierungsproblems. Eine Regularisierung oder die Nutzung höherer Ableitungen für die BV-Seminorm werden dabei nicht benötigt.

In dieser Arbeit möchte wir die Anwendung dieser primalen-dualen Iteration auf eine nichtkonforme Formulierung des ROF-Modells und einer Diskretisierung mit der Crouzeix-Raviart-Finite-Elemente-Methode untersuchen. Dabei nutzen wir einen von Professor Carstensen zur Verfügung gestellten Verfeinerungsindikator, um die Iteration sukzessiv auf einer Folge von uniform oder adaptiv verfeinerten Netzen anzuwenden. Außerdem erlaubt uns die nichtkonforme Formulierung die Betrachtung einer garantierten unteren Energieschranke, welche ebenfalls von Professor Carstensen zur Verfügung gestellt wurde.

Die Implementation des adaptiven Algorithmus basiert auf dem Matlab-Softwarepaket [Car09a].

Abschließend sei angemerkt, dass wir folgende, leicht andere Formulierung des ROF-Modells betrachten. Wir minimieren das Funktional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

unter allen $v \in \mathrm{BV}(\Omega) \cap L^2(\Omega)$. Für $f = \alpha g$ und alle $v \in \mathrm{BV}(\Omega) \cap L^2(\Omega)$ gilt dann $I(v) = E(v) - \|v\|_{L^1(\partial\Omega)} + \frac{\alpha}{2} \|g\|_{L^2(\Omega)}^2$. Der Zusammenhang mit dem ROF-Modell ist, aufgrund der Konstanz des Terms $\frac{\alpha}{2} \|g\|_{L^2(\Omega)}^2$, folglich, dass die Funktionale E und I die gleichen Minimierer in $\{v \in \mathrm{BV}(\Omega) \cap L^2(\Omega) \mid \|v\|_{L^1(\partial\Omega)} = 0\}$ besitzen.

Die Struktur dieser Arbeit ist wie folgt. Nachdem in Kapitel 2 zunächst die Notationen eingeführt und die theoretischen Grundlagen aus der Optimierung und zu den Funktionen beschränkter Variation zusammengetragen wurden, wird in Kapitel 3 bewiesen, dass für unsere Formulierung des ROF-Modells ein eindeutiger Minimierer existiert. Anschließend folgt in Kapitel 4 die nichtkonforme Formulierung und Diskretisierung des Minimierungsproblems. Mithilfe der Sattelpunktsformulierung des diskreten Problems werden äquivalente Charakterisierungen, Existenz und Eindeutigkeit für den diskreten Minimierer bewiesen. Außerdem werden die zu untersuchenden Konvergenzraten, der Verfeinerungsindikator und die garantierte untere Energieschranke aufgeführt. In Kapitel 5 wird die primale-duale Iteration formuliert und bewiesen, dass diese gegen den diskreten Minimierer konvergiert. Es folgen in Kapitel 6 Hinweise zur Benutzung des Programm und Details zur Implementation des Algorithmus und schließlich in Kapitel 8 die Darstellung der Experimente und deren Auswerung in Kapitel 9.

Quelle?

Abbildung 1.1: Originalbild¹(a) und Originalbild mit additiven weißen gaußschen Rauschen (b) mit einem Signal-Rausch-Verhältnis (eng. signal-to-noise ratio, SNR) von 10, jeweils mit nachträglich hinzugefügten graduellen Übergang zu schwarzen Rand, um Nullranddaten zu garantierten. Außerdem fünf Ergebnisse (c)-(g) des adaptiven Algorithmus mit verschiedenen Werten von α .

¹ https://homepages.cae.wisc.edu/~ece533/images/cameraman.tif

Experimente länger rechnen und vielleicht 6 (bzw so vielen wie möglich, sodass die Figure UND Fußnote auf eine Seite können und diese ausfüllen) Wahlen für alpha mit einem ernsthaften Versuch, ein gut aussehendes entrauschtes Bild zu bekommen. Formatierung des Figure und die Captions hier überarbeiten und überlegen, wie die Bildquelle sinnvoll zitiert werden kann (mglw. als Fußnote).

2 Theoretische Grundlagen

2.1 Vorausgesetztes Wissen

In dieser Arbeit werden Grundbegriffe in topologischen Räumen und Kentnisse zu Banachund Hilberträumen sowie zu Lebesgue- und Sobolev-Räumen vorausgesetzt. Dazu gehören insbesondere wichtige Ungleichungen (z.B. Cauchy-Schwarz, Hölder, Young), grundlegende Einbettungssätze, Dualraumtheorie, Aussagen zur schwachen Konvergenz sowie der Rieszsche Darstellungssatz und seine Implikationen. Außerdem sollte ein grundlegendes Verständnis von Konzepten in der Optimierung vorhanden sein.

Benötigte topologische Begriffe und grundlegende Aussagen zu Banach- und Hilberträumen können beispielsweise in [Zei86] nachgeschlagen werden. Grundlagen der Optimierung sind in in [Zei85] nachlesbar und alles Weitere eben genannte in [Zei90a] und [Zei90b].

Dabei eignen sich die Register von [Zei90b] und [Zei85] hervorragend zum schnellen Auffinden von Begriffen in allen eben aufgeführten Referenzen.

2.2 Notation

Wir wählen für die natürlichen Zahlen die Konvention $\mathbb{N} = \{1, 2, 3, ...\}$ und $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. Die Menge der positiven reellen Zahlen notieren wir mit \mathbb{R}_+ .

Um auszudrücken, dass eine Menge A Teilmenge einer Menge B ist, schreiben wir $A \subseteq B$. Falls wir hervorheben wollen, dass A sogar eine echte Teilmenge von B ist, so schreiben wir $A \subset B$.

Ist A Teilmenge eines topologischen Raumes, so notieren wir den Rand von A mit ∂A , das Innere von A mit $\operatorname{int}(A)$ und den Abschluss von A mit \overline{A} . Wir nennen weiterhin eine Teilmenge $B \subseteq A$ Umgebung eines Punktes $x \in A$, wenn es eine offene Teilmenge von B gibt, die x enthält.

Für den Rest dieses Abschnitts seien $d, m \in \mathbb{N}, k \in \mathbb{N}_0, p \in [1, \infty]$ und U eine nichtleere, offene Teilmenge von \mathbb{R}^d .

Für das euklidische Skalarprodukt zweier Vektoren $v, w \in \mathbb{R}^m$ schreiben wir $v \cdot w$.

Betrachten wir einen Funktionenraum mit Werten in \mathbb{R} , so verzichten wir auf \mathbb{R} beim Notieren des Funktionenraums. Zum Beispiel schreiben wir $C(U) := C(U; \mathbb{R})$ für den Raum der stetigen Funktionen von U nach \mathbb{R} .

Mit der Menge $\Omega \subset \mathbb{R}^d$ bezeichnen wir stets ein polygonal berandetes Lipschitz-Gebiet. Falls $\Omega \subset \mathbb{R}^2$, nutzen wir die Notation \mathcal{T} für eine reguläre Triangulierung von Ω im Sinne von Philippe Ciarlet in eine Menge von abgeschlossenen Dreiecken (cf. [Car09b, Kapitel 1.3.1]). Die Menge der stückweisen konstanten Funktionen auf der Triangulierung \mathcal{T} mit Werten in \mathbb{R}^m notieren wir dann mit $\mathbb{P}_0(\mathcal{T},\mathbb{R}^m)$ und die Menge der stückweisen affinen Funktionen auf \mathcal{T} mit Werten in \mathbb{R}^m mit $\mathbb{P}_1(\mathcal{T},\mathbb{R}^m)$. Für ein Dreieck $T \in \mathcal{T}$ sei die längste Seitenlänge h_T . Damit können wir die stückweise konstante Funktion $h_{\mathcal{T}} \in \mathbb{P}_0(\mathcal{T})$ für alle $T \in \mathcal{T}$ durch $h_{\mathcal{T}}|_T := h_T$ definieren. Die Menge der Knoten der Triangulierung sei \mathcal{N} , wobei die Menge der inneren Knoten mit $\mathcal{N}(\Omega)$, die Menge der Randknoten mit $\mathcal{N}(\partial\Omega)$ und die Menge der Knoten eines Dreiecks $T \in \mathcal{T}$ mit $\mathcal{N}(T)$ bezeichnet werde. Für die Kanten der Triangulierung seien die Mengen $\mathcal{E}, \mathcal{E}(\Omega), \mathcal{E}(\partial\Omega)$ und $\mathcal{E}(T)$ analog definiert. Den Mittelpunkt einer Kante $E \in \mathcal{F}$ bezeichnen wir mit mid(E). Der Normaleneinheitsvektor

auf dem Rand eines Dreiecks $T \in \mathcal{T}$ sei ν_T und der Normaleneinheitsvektor auf einer Kante $E \in \mathcal{E}$ sei ν_E . Für eine Innenkante $E \in \mathcal{E}(\Omega)$ bezeichnen wir dann die beiden Dreiecke, die E als gemeinsame Kanten haben, so mit T_+ und T_- , dass ν_{T_+} und ν_E gleichorientiert sind, also $\nu_{T_+} \cdot \nu_E = 1$. Damit können wir den Sprung entlang einer Innenkante $E \in \mathcal{E}(\Omega)$ definieren als $[\bullet]_E := \bullet|_{T_+} - \bullet|_{T_-}$. Für eine Randkante $E \in \mathcal{E}(\partial \Omega)$ definieren wir $[\bullet]_E := \bullet|_{E}$.

Mit $|\cdot|$ bezeichnen wir, je nach Argument, die euklidischen Norm eines Vektors $v \in \mathbb{R}^m$, den Inhalt eines Dreiecks $T \in \mathcal{T}$, die Länge einer Kante $E \in \mathcal{E}$ oder $|\Omega| = \int_{\Omega} 1 \, dx$.

Ist V ein normierter Vektorraum, so bezeichnen wir die entsprechende Norm auf V mit $\| \bullet \|_V$. Falls V sogar ein Prähilbertraum ist, bezeichnen wir das Skalarprodukt auf V, welches $\| \bullet \|_V$ induziert, mit $(\bullet , \bullet)_V$.

Für den Dualraum eines Banachraums X über \mathbb{R} schreiben wir X^* . Die Auswertung eines Funktionals $F \in X^*$ an der Stelle $u \in X$ notieren wir, vor eventueller Anwendung des Rieszschen Darstellungssatzes, mit $\langle F, u \rangle$. Identifizieren wir einen Raum Y mit dem Dualraum X^* , so schreiben wir $Y \cong X^*$.

Weiterhin benutzen wir die übliche Notation für Lebesgue-Räume $L^p(U)$ und die Sobolev-Räume $W^{k,p}(U)$ sowie $H^k(U) := W^{k,2}(U)$ und $H^k_0(U)$. Falls p=2, schreiben wir auch $\| \bullet \| := \| \bullet \|_{L^2(\Omega)}$ und $(\bullet , \bullet) := (\bullet , \bullet)_{L^2(\Omega)}$.

2.3 Variationsrechnung auf Banachräumen

Wie in Abschnitt 2.1 beschrieben, setzen wir in dieser Arbeit Kentnisse über die Variationsrechung voraus. Da wir aber einige Aussagen auch für Funktionale benötigen, die auf unedlichdimensionalen reellen Banachräumen definiert sind, führen wir in diesen Abschnitt die grundlegenden Notationen dafür ein und formulieren schließlich die notwendige Optimalitätsbedingung erster Ordnung.

Dabei folgen wir [Zei85, S. 189-194]. Dort werden die Aussagen auf einen reellen lokal konvexen Raum formuliert. Da nach [Zei86, S. 781, (43)] alle Banachräume lokal konvex sind und wir die Aussagen in dieser Arbeit nur auf Banachräumen benötigen, formulieren wir sie hier auf einen reellen Banachraum X. Außerdem betrachten wir eine Teilmenge $V \subseteq X$, einen inneren Punkt u von V und ein Funktional $F: V \to \mathbb{R}$. Schließlich definieren wir noch für alle $h \in X$ eine Funktion $\varphi_h : \mathbb{R} \to \mathbb{R}$, die für alle $t \in \mathbb{R}$ gegeben ist durch $\varphi_h(t) := F(u + th)$.

Damit können wir die n-te Variation, das Gâteaux- und das Fréchet-Differential von F definieren.

Definition 2.1 (*n*-te Variation). Die *n*-te Variation von F an der Stelle u in Richtung $h \in X$ ist, falls die n-te Ableitung $\varphi_h^{(n)}(0)$ von φ_h in 0 existiert, definiert durch

$$\delta^n F(u;h) := \varphi_h^{(n)}(0) = \left. \frac{d^n F(u+th)}{dt^n} \right|_{t=0}.$$

Wir schreiben δ für δ^1 .

Definition 2.2 (Gâteaux- und Fréchet-Differential). F heißt Gâteaux-differenzierbar an der Stelle u, falls ein Funktional $F'(u) \in X^*$ existiert, sodass

$$\lim_{t\to 0} \frac{F(u+th) - F(u)}{t} = \langle F'(u), h \rangle \quad \text{für alle } h \in X.$$

F'(u) heißt dann Gâteaux-Differential von F an der Stelle u.

noch sagen, das Beweise da zu finden sind oder ist das mit dem Satz schon klar F heißt Fréchet-differenzierbar an der Stelle u, falls ein Funktional $F'(u) \in X^*$ existiert, sodass

$$\lim_{\|h\|_X \to 0} \frac{|F(u+th) - F(u) - \langle F'(u), h \rangle|}{\|h\|_X} = 0.$$

F'(u) heißt dann Fréchet-Differential von F an der Stelle u. Das Fréchet-Differential von F an der Stelle u in Richtung $h \in X$ ist definiert durch $dF(u;h) := \langle F'(u), h \rangle$.

Bemerkung 2.3. Existiert das Fréchet-Differential F'(u) von F an der Stelle u, so ist F'(u) auch das Gâteaux-Differential von F an der Stelle u und es gilt

$$\delta F(u;h) = dF(u;h) = \langle F'(u),h \rangle$$
 für alle $h \in X$.

Nachdem die relevante Notation eingeführt ist, können wir zum Abschluss die notwendige Bedingung erster Ordnung für einen lokalen Minimierer von F formulieren.

Theorem 2.4 (Notwendige Optimalitätsbedingung erster Ordnung). Sei $u \in \text{int}(V)$ lokaler Minimierer von F, das heißt es existiere eine Umgebung U von u, sodass $F(v) \ge F(u)$ für alle $v \in U$. Dann gilt für alle $h \in X$, dass $\delta F(u;h) = 0$, falls diese Variation für alle $h \in X$ existiert, beziehungsweise F'(u) = 0, falls F'(u) als Gâteaux- oder Fréchet-Differential existiert.

2.4 Subdifferentiale

Für diesen Abschnitt betrachten wir stets einen reellen Banachraum X und, falls nicht anders spezifiziert, ein Funktional $F: X \to [-\infty, \infty]$.

Wir wollen die in dieser Arbeit benötigten Notationen und Eigenschaften des Subdifferentials von F zusammentragen.

Zuvor starten wir mit einer grundlegenden Definition.

Definition 2.5 ([Zei85, S. 245, Definition 42.1]). Sei V ein Vektorraum, $M \subseteq V$ und $F: M \to \mathbb{R}$.

Dann heißt die Menge M konvex, wenn für alle $u, v \in M$ und alle $t \in [0, 1]$ gilt

$$(1-t)u + tv \in M.$$

Ist M konvex, so heißt F konvex, falls für alle $u, v \in M$ und alle $t \in [0, 1]$ gilt

$$F((1-t)u + tv) \le (1-t)F(u) + tF(v). \tag{2.1}$$

Gilt Ungleichung (2.1) mit "<", so heißt F strikt konvex. Falls -F konvex ist, so heißt F konkev.

Für den Rest dieses Abschnitts folgen wir [Zei85, S. 385-397]. Analog zur Begründung zum Beginn von Abschnitt 2.3, schränken wir auch hier die Definitionen und Aussagen, die in [Zei85] auf reellen lokal konvexen Räumen formuliert sind, auf den reellen Banachraum X ein.

Zunächst definieren wir das Subdifferential von F an einer Stelle $u \in X$.

Definition 2.6 (Subdifferential). Für $u \in X$ mit $F(u) \neq \pm \infty$ heißt

$$\partial F(u) := \{ u^* \in X^* \mid \forall v \in X \quad F(v) \geqslant F(u) + \langle u^*, v - u \rangle \}$$
 (2.2)

Subdifferential von F an der Stelle u. Für $F(u) = \pm \infty$ ist $\partial F(u) := \emptyset$. Ein Element $u^* \in \partial F(u)$ heißt Subgradient von F an der Stelle u.

och sagen, dass deweise da zu nden sind oder et das mit dem atz schon klar? desser sowas agen wie 'Die cussagen stamnen aus'? Es folgen für Optimierungsprobleme wichtige Aussagen über das Subdifferential von F.

Theorem 2.7. Falls $F: X \to (-\infty, \infty]$ mit $F \not\equiv \infty$, gilt $F(u) = \inf_{v \in X} F(v)$ genau dann, wenn $0 \in \partial F(u)$.

Theorem 2.8. Falls F konvex ist und Gâteaux-differenzierbar an der Stelle $u \in X$ mit Gâteaux-Differential F'(u), gilt $\partial F(u) = \{F'(u)\}.$

Das folgende Theorem folgt aus [Zei85, S. 389, Theorem 47.B] unter Beachtung der Tatsache, dass die Addition von Funktionalen $F_1, F_2, \ldots, F_n : X \to (-\infty, \infty]$ und die Addition von Menge in X^* kommutieren.

Theorem 2.9. Seien für $n \ge 2$ die Funktionale $F_1, F_2, \ldots, F_n : X \to (-\infty, \infty]$ konvex und es existiere ein $u_0 \in X$, sodass $F_k(u_0) < \infty$ für alle $k \in \{1, 2, \ldots, n\}$. Außerdem seien mindestens n-1 der n Funktionale F_1, F_2, \ldots, F_n stetig an der Stelle u_0 .

Dann gilt

$$\partial (F_1 + F_2 + \ldots + F_n)(u) = \partial F_1(u) + \partial F_2(u) + \ldots + \partial F_n(u)$$
 für alle $u \in X$.

Zum Abschluss formulieren wir noch die Monotonie des Subdifferentials.

Theorem 2.10. Sei $F: X \to (-\infty, \infty]$ konvex und unterhalbstetig mit $F \not\equiv \infty$. Dann ist $\partial F(\bullet)$ monoton, das heißt

$$\langle u^* - v^*, u - v \rangle \geqslant 0$$
 für alle $u, v \in X, u^* \in \partial F(u), v^* \in \partial F(v)$.

2.5 Funktionen beschränkter Variation

In diesen Abschnitt führen wir den Raum der Funktionen beschränkter Variation ein. Wir vermeiden dabei, soweit möglich, für den weiteren Verlauf dieser Arbeit nicht benötigte Notation und Theorie, indem wir die Definitionen und Aussagen entsprechend aus- und umformulieren. Für weit detailliertere Ausführungen und die maßtheoretischen Hintergründe siehe zum Beispiel [ABM14; EG92; Bra98].

Soweit nicht anders angegeben, folgen die Definitionen und Aussagen dieses Abschnitts aus [ABM14, S. 393-395]

Sei im Weiteren U eine offene Teilmenge des \mathbb{R}^d .

Zunächst definieren wir den Raum der Funktionen beschränkter Variation.

Definition 2.11 (Funktionen beschränkter Variation). Eine Funktion $u \in L^1(U)$ ist von beschränkter Variation, wenn

$$|u|_{\mathrm{BV}(U)} \coloneqq \sup_{\substack{\phi \in C_C^1(U; \mathbb{R}^d) \\ \|\phi\|_{L^{\infty}(U)} \leqslant 1}} \int_U u \operatorname{div}(\phi) \, \mathrm{d}x < \infty. \tag{2.3}$$

Die Menge aller Funktionen beschränkter Variation ist BV(U).

Bemerkung 2.12. Durch $| \cdot |_{\mathrm{BV}(U)}$ ist eine Seminorm auf $\mathrm{BV}(U)$ gegeben. Ausgestattet mit der Norm

$$\|\bullet\|_{\mathrm{BV}(U)} \coloneqq \|\bullet\|_{L^1(U)} + |\bullet|_{\mathrm{BV}(U)}$$

ist BV(U) ein Banachraum.

Außerdem gilt $W^{1,1}(U) \subset BV(U)$ und $||u||_{BV(U)} = ||u||_{W^{1,1}(U)}$ für alle $u \in W^{1,1}(U)$.

In der Anwendung ist Konvergenz in $\mathrm{BV}(U)$ bezüglich der Norm $\| \bullet \|_{\mathrm{BV}(U)}$ zu restriktiv (cf. [Bar15b, S. 300]). Deshalb führen wir zwei schwächere Konvergenzbegriffe ein.

noch sagen, das Beweise da zu finden sind oder ist das mit dem Satz schon klar' Besser sowas sagen wie 'Die Aussagen stammen aus'? **Definition 2.13.** Sei $(u_n)_{n\in\mathbb{N}}\subset \mathrm{BV}(U)$ und sei $u\in\mathrm{BV}(U)$ mit $u_n\to u$ in $L^1(U)$ für $n\to\infty$.

(i) Die Folge $(u_n)_{n\in\mathbb{N}}$ konvergiert strikt gegen u, wenn $|u_n|_{\mathrm{BV}(U)} \to |u|_{\mathrm{BV}(U)}$ für $n\to\infty$.

Nochmal gucken, das wird glaube ich nirgends gebraucht. Falls das stimmt, rausnehmen. Wird für Dichte von C^{∞} usw in BV gebraucht bzgl dieser Konvergenz. Gucken, ob das relevant wird. Falls es rausgenomme wird, Text vor und nach dieser Def noch anpassen

(ii) Die Folge $(u_n)_{n\in\mathbb{N}}$ konvergiert schwach gegen u, wenn für alle $\phi\in C_0(U;\mathbb{R}^d)$ gilt, dass $\int_U u_n \operatorname{div}(\phi) dx \to \int_U u \operatorname{div}(\phi) dx$ für $n\to\infty$. Wir schreiben dann $u_n\to u$ für $n\to\infty$.

Damit können wir das folgende Theorem formulieren, welches unmittelbar die schwache Unterhalbstetigkeit der Seminorm $| \cdot |_{BV(U)}$ auf BV(U) impliziert.

Theorem 2.14. Sei $u \in L^1(U)$ und sei $(u_n)_{n \in \mathbb{N}} \subset BV(U)$ mit $\sup_{n \in \mathbb{N}} |u_n|_{BV(U)} < \infty$ und $u_n \to u$ in $L^1(U)$ für $n \to \infty$.

Dann gilt $u \in BV(U)$ und $|u|_{BV(U)} \le \liminf_{n\to\infty} |u_n|_{BV(U)}$. Außerdem gilt dann $u_n \to u$ in BV(U).

Mit Blick auf die folgenden Kapitel betrachten wir nun das polygonal berandete Lipschitz-Gebiet $\Omega \subset \mathbb{R}^d$. Unter dieser Voraussetzung können wir zeigen, dass jede in $\mathrm{BV}(\Omega)$ beschränkte Folge eine in $\mathrm{BV}(\Omega)$ schwach konvergente Teilfolge besitzt mit schwachen Grenzwert in $\mathrm{BV}(\Omega)$. Für den Beweis dieser Aussage benötigen wir noch das folgende Theorem aus [EG92, S. 176, Theorem 4].

Nochmal nachfragen: das heißt tatsächlich offen, beschränkt mit Lipschitz Rand, korrekt?

Nochmal nachfragen: $\sup u_k < \infty \Leftrightarrow u_k$ bounded, korrekt? Ich übersehe da nichts, oder? Falls doch, alle Theoreme nochmal nachschlagen und sichergehen, dass sie richtig zitiert sind.

Theorem 2.15. Sei $(u_n)_{n\in\mathbb{N}}\subset \mathrm{BV}(\Omega)$ eine beschränkte Folge. Dann existiert eine Teilfolge $(u_{n_k})_{k\in\mathbb{N}}$ von $(u_n)_{n\in\mathbb{N}}$ und ein $u\in\mathrm{BV}(\Omega)$, sodass $u_{n_k}\to u$ in $L^1(\Omega)$ für $k\to\infty$.

Damit können wir nun das folgende Theorem beweisen.

Theorem 2.16. Sei $(u_n)_{n\in\mathbb{N}}\subset \mathrm{BV}(\Omega)$ eine beschränkte Folge. Dann existiert eine Teilfolge $(u_{n_k})_{k\in\mathbb{N}}$ und ein $u\in\mathrm{BV}(\Omega)$, sodass $u_{n_k}\rightharpoonup u$ in $\mathrm{BV}(\Omega)$ für $k\to\infty$.

Beweis. Nach Theorem 2.15 besitzt $(u_n)_{n\in\mathbb{N}}$ eine Teilfolge $(u_{n_k})_{k\in\mathbb{N}}$, die in $L^1(\Omega)$ gegen ein $u\in \mathrm{BV}(\Omega)$ konvergiert. Diese Teilfolge ist nach Voraussetzung ebenfalls beschränkt in $\mathrm{BV}(\Omega)$, woraus nach Definition der Norm auf $\mathrm{BV}(\Omega)$ insbesondere folgt, dass $\sup_{k\in\mathbb{N}} |u_{n_k}|_{\mathrm{BV}(\Omega)} < \infty$.

Somit ist Theorem 2.14 anwendbar und impliziert die schwache Konvergenz von $(u_{n_k})_{k\in\mathbb{N}}$ in $\mathrm{BV}(\Omega)$ gegen $u\in\mathrm{BV}(\Omega)$.

3 Das kontinuierliche Problem

3.1 Formulierung

Für einen Parameter $\alpha \in \mathbb{R}_+$ und eine Funktion $f \in L^2(\Omega)$ betrachten wir das folgende Minimierungsproblem.

Problem 3.1. Finde $u \in BV(\Omega) \cap L^2(\Omega)$, sodass u das Funktional

$$E(v) := \frac{\alpha}{2} \|v\|^2 + |v|_{\text{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)} - \int_{\Omega} fv \, dx \tag{3.1}$$

unter allen $v \in BV(\Omega) \cap L^2(\Omega)$ minimiert.

Dabei ist der Term $||v||_{L^1(\partial\Omega)}$ wohldefiniert, da nach [ABM14, S. 400, Theorem 10.2.1] eine lineare, stetige Abbildung $T: \mathrm{BV}(\Omega) \to L^1(\partial\Omega)$ existiert mit $T(u) = u|_{\partial\Omega}$ für alle $u \in \mathrm{BV}(\Omega) \cap C(\overline{\Omega})$.

Bemerkung 3.2. Nach [ABM14, S. 399, Theorem 10.1.3] ist

noch fragen, was 1-regular nochmal heißt und ob das hier glatt geht (tut es sehr wahrscheinlich)

die Einbettung $\mathrm{BV}(\Omega) \hookrightarrow L^p(\Omega)$ stetig für $1 \leq p \leq d/(d-1)$. Damit ist $\mathrm{BV}(\Omega)$ für d=2 Teilmenge von $L^2(\Omega)$ und die Lösung von Problem 3.1 kann in $\mathrm{BV}(\Omega)$ gesucht werden. Für beliebige $d \in \mathbb{N}$, die wir in diesen Abschnitt betrachten, gilt dies im Allgemeinen nicht.

3.2 Existenz und Eindeutigkeit von Minimierern

Zunächst zeigen wir, dass Problem 3.1 eine Lösung besitzt. Dafür benötigen wir die folgende Formulierung der Youngschen Ungleichung.

Lemma 3.3 (Youngsche Ungleichung). Seien $a, b \in \mathbb{R}$ und $\varepsilon \in \mathbb{R}_+$ beliebig. Dann gilt

$$ab \leqslant \frac{1}{\varepsilon}a^2 + \frac{\varepsilon}{4}b^2.$$

Außerdem wird im Beweis folgende Aussage benötigt, die direkt aus [EG92, S. 183, Theorem 1] folgt, da $0 \in BV(\mathbb{R}^d \setminus \overline{\Omega})$, $|0|_{BV(\mathbb{R}^d \setminus \overline{\Omega})} = 0$ und $0|_{\partial\Omega} = 0$.

Lemma 3.4. Sei $v \in BV(\Omega)$. Definiere, für alle $x \in \mathbb{R}^d$,

$$\tilde{v}(x) := \begin{cases} v(x), & falls \ x \in \Omega, \\ 0, & falls \ x \in \mathbb{R}^d \setminus \overline{\Omega}. \end{cases}$$

 $Dann \ gilt \ \tilde{v} \in \mathrm{BV}\left(\mathbb{R}^d\right) \ und \ |\tilde{v}|_{\mathrm{BV}(\mathbb{R}^d)} = |v|_{\mathrm{BV}(\Omega)} + \|v\|_{L^1(\partial\Omega)}.$

Theorem 3.5 (Existenz einer Lösung). Problem 3.1 besitzt eine Lösung $u \in BV(\Omega) \cap L^2(\Omega)$.

Beweis. Die Beweisidee ist die Anwendung der direkten Methode der Variationsrechnung (cf. z.B. [Dac89]) unter Nutzung der in Abschnitt 2.5 aufgeführten Eigenschaften der schwachen Konvergenz in $BV(\Omega)$.

Für alle $v \in L^2(\Omega) \subseteq L^1(\Omega)$ gilt mit der Hölderschen Ungleichung für p = q = 2, dass

$$||v||_{L^{1}(\Omega)} = ||1 \cdot v||_{L^{1}(\Omega)} \le ||1|||v|| = \sqrt{|\Omega|}||v||.$$
(3.2)

Dann folgt für das Funktional E in (3.1) für alle $v \in BV(\Omega) \cap L^2(\Omega)$ durch die Cauchy-Schwarzsche Ungleichung, die Youngsche Ungleichung aus Lemma 3.3 und Ungleichung (3.2), dass

$$E(v) = \frac{\alpha}{2} \|v\|^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f v \, dx$$

$$\geqslant \frac{\alpha}{2} \|v\|^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\| \|v\|$$

$$\geqslant \frac{\alpha}{2} \|v\|^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|^{2} - \frac{\alpha}{4} \|v\|^{2}$$

$$\geqslant \frac{\alpha}{4} \|v\|^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|^{2}$$

$$\geqslant \frac{\alpha}{4|\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|^{2}$$

$$\geqslant -\frac{1}{\alpha} \|f\|^{2}.$$
(3.3)

Somit ist E nach unten beschränkt, was die Existenz einer infimierenden Folge $(u_n)_{n\in\mathbb{N}} \subset BV(\Omega) \cap L^2(\Omega)$ von E impliziert, das heißt $(u_n)_{n\in\mathbb{N}}$ erfüllt

$$\lim_{n \to \infty} E(u_n) = \inf_{v \in BV(\Omega) \cap L^2(\Omega)} E(v).$$

Ungleichung (3.3) impliziert außerdem, dass $E(u_n) \to \infty$ für $n \to \infty$, falls $|u_n|_{\mathrm{BV}(\Omega)} \to \infty$ oder $||u_n||_{L^1(\Omega)} \to \infty$ für $n \to \infty$. Daraus folgt insbesondere, dass $E(u_n) \to \infty$ für $n \to \infty$, falls $||u_n||_{\mathrm{BV}(\Omega)} \to \infty$ für $n \to \infty$. Deshalb muss die Folge $(u_n)_{n \in \mathbb{N}}$ beschränkt in $\mathrm{BV}(\Omega)$ sein.

Nun garantiert Theorem 2.16 die Existenz einer schwach konvergenten Teilfolge $(u_{n_k})_{k\in\mathbb{N}}$ von $(u_n)_{n\in\mathbb{N}}$ mit schwachen Grenzwert $u\in \mathrm{BV}(\Omega)$. Ohne Beschränkung der Allgemeinheit ist $(u_{n_k})_{k\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}$. Aus der schwachen Konvergenz von $(u_n)_{n\in\mathbb{N}}$ in $\mathrm{BV}(\Omega)$ gegen u folgt nach Definition, dass $(u_n)_{n\in\mathbb{N}}$ stark, und damit insbesondere auch schwach, in $L^1(\Omega)$ gegen u konvergiert.

Weiterhin folgt aus (3.3), dass $E(v) \to \infty$ für $||v|| \to \infty$. Somit muss $(u_n)_{n \in \mathbb{N}}$ auch beschränkt sein bezüglich der Norm $||\cdot||$ und besitzt deshalb, wegen der Reflexivität von $L^2(\Omega)$, eine Teilfolge (ohne Beschränkung der Allgemeinheit weiterhin bezeichnet mit $(u_n)_{n \in \mathbb{N}}$), die in $L^2(\Omega)$ schwach gegen einen Grenzwert $\overline{u} \in L^2(\Omega)$ konvergiert. Damit gilt für alle $w \in L^2(\Omega) \cong L^2(\Omega)^*$ und, da $L^\infty(\Omega) \subseteq L^2(\Omega)$, insbesondere auch für alle $w \in L^\infty(\Omega) \cong L^1(\Omega)^*$, dass

$$\lim_{n \to \infty} \int_{\Omega} u_n w \, \mathrm{d}x = \int_{\Omega} \overline{u} w \, \mathrm{d}x.$$

Das bedeutet, dass $(u_n)_{n\in\mathbb{N}}$ auch schwach in $L^1(\Omega)$ gegen $\overline{u}\in L^2(\Omega)\subseteq L^1(\Omega)$ konvergiert. Da schwache Grenzwerte eindeutig bestimmt sind, gilt insgesamt $u=\overline{u}\in L^2(\Omega)$, das heißt $u\in \mathrm{BV}(\Omega)\cap L^2(\Omega)$.

Nun definieren wir für alle $n \in \mathbb{N}$ und für alle $x \in \mathbb{R}^d$

$$\tilde{u}_n(x) := \begin{cases} u_n(x), & \text{falls } x \in \Omega, \\ 0, & \text{falls } x \in \mathbb{R}^d \backslash \overline{\Omega} \end{cases} \quad \text{und} \quad \tilde{u}(x) := \begin{cases} u(x), & \text{falls } x \in \Omega, \\ 0, & \text{falls } x \in \mathbb{R}^d \backslash \overline{\Omega}. \end{cases}$$

Dann gilt nach Lemma 3.4 sowohl

$$\tilde{u}_n \in \mathrm{BV}\left(\mathbb{R}^d\right)$$
 und $|\tilde{u}_n|_{\mathrm{BV}(\mathbb{R}^d)} = |u_n|_{\mathrm{BV}(\Omega)} + \|u_n\|_{L^1(\partial\Omega)}$ für alle $n \in \mathbb{N}$ als auch $\tilde{u} \in \mathrm{BV}\left(\mathbb{R}^d\right)$ und $|\tilde{u}|_{\mathrm{BV}(\mathbb{R}^d)} = |u|_{\mathrm{BV}(\Omega)} + \|u\|_{L^1(\partial\Omega)}$.

Da $(u_n)_{n\in\mathbb{N}}$ infimierende Folge von E ist, muss die Folge

$$\left(|\tilde{u}_n|_{\mathrm{BV}(\mathbb{R}^d)}\right)_{n\in\mathbb{N}} = \left(|u_n|_{\mathrm{BV}(\Omega)} + \|u_n\|_{L^1(\partial\Omega)}\right)_{n\in\mathbb{N}}$$

beschränkt sein. Außerdem folgt aus den Definitionen von \tilde{u} und \tilde{u}_n für alle $n \in \mathbb{N}$ und der bereits bekannten Eigenschaft $u_n \to u$ in $L^1(\Omega)$ für $n \to \infty$, dass

$$\|\tilde{u}_n - \tilde{u}\|_{L^1(\mathbb{R}^d)} = \int_{\mathbb{R}^d} |\tilde{u}_n - \tilde{u}| \, dx = \int_{\Omega} |u_n - u| \, dx = \|u_n - u\|_{L^1(\Omega)} \to 0 \quad \text{für } n \to \infty,$$

das heißt $\tilde{u}_n \to \tilde{u}$ in $L^1(\mathbb{R}^d)$ für $n \to \infty$.

Insgesamt ist also $(\tilde{u}_n)_{n\in\mathbb{N}}$ eine Folge in BV (\mathbb{R}^d) , die in $L^1(\mathbb{R}^d)$ gegen $\tilde{u}\in$ BV $(\mathbb{R}^d)\subseteq L^1(\mathbb{R}^d)$ konvergiert und $\sup_{n\in\mathbb{N}}|\tilde{u}_n|_{\mathrm{BV}(\mathbb{R}^d)}<\infty$ erfüllt. Somit folgt mit Theorem 2.14

$$|u|_{\mathrm{BV}(\Omega)} + ||u||_{L^{1}(\partial\Omega)} = |\tilde{u}|_{\mathrm{BV}(\mathbb{R}^{d})} \leqslant \liminf_{n \to \infty} |\tilde{u}_{n}|_{\mathrm{BV}(\mathbb{R}^{d})}$$

$$= \liminf_{n \to \infty} \left(|u_{n}|_{\mathrm{BV}(\Omega)} + ||u_{n}||_{L^{1}(\partial\Omega)} \right). \tag{3.4}$$

Die Funktionen $\| \cdot \|^2$ und $-\int_{\Omega} f \cdot dx$ sind auf $L^2(\Omega)$ stetig und konvex, was impliziert, dass sie schwach unterhalbstetig auf $L^2(\Omega)$ sind. Da wir bereits wissen, dass $u_n \to u$ in $L^2(\Omega)$ für $n \to \infty$, folgt

$$\frac{\alpha}{2} \|u\| - \int_{\Omega} f u \, \mathrm{d}x \leqslant \liminf_{n \to \infty} \left(\frac{\alpha}{2} \|u_n\| - \int_{\Omega} f u_n \, \mathrm{d}x \right).$$

Damit und mit Ungleichung (3.4) gilt insgesamt

$$\inf_{v \in \mathrm{BV}(\Omega) \cap L^2(\Omega)} E(v) \leqslant E(u) \leqslant \liminf_{n \to \infty} E\left(u_n\right) = \lim_{n \to \infty} E\left(u_n\right) = \inf_{v \in \mathrm{BV}(\Omega) \cap L^2(\Omega)} E(v),$$

das heißt $\min_{v \in BV(\Omega) \cap L^2(\Omega)} E(v) = E(u)$.

Nachdem wir gezeigt haben, dass für Problem 3.1 eine Lösung existiert, beweisen wir als nächstes ein Theorem, das direkt impliziert, dass diese Lösung eindeutig ist.

Theorem 3.6 (Stabilität und Eindeutigkeit). Seien $u_1, u_2 \in BV(\Omega) \cap L^2(\Omega)$ die Minimierer des Problems 3.1 mit $f_1, f_2 \in L^2(\Omega)$ anstelle von f.

Dann gilt

$$||u_1 - u_2|| \le \frac{1}{\alpha} ||f_1 - f_2||.$$

Beweis. Wir folgen der Argumentation im Beweis von [Bar15b, S. 304, Theorem 10.6]. Zunächst definieren wir die konvexen Funktionale $F: \mathrm{BV}(\Omega) \cap L^2(\Omega) \to \mathbb{R}$ und $G_\ell: \mathrm{BV}(\Omega) \cap L^2(\Omega) \to \mathbb{R}$, $\ell \in \{1,2\}$, für alle $u \in \mathrm{BV}(\Omega) \cap L^2(\Omega)$ durch

$$F(u) \coloneqq |u|_{\mathrm{BV}(\Omega)} + \|u\|_{L^1(\partial\Omega)} \qquad \text{und} \qquad G_{\ell}(u) \coloneqq \frac{\alpha}{2} \|u\|^2 - \int_{\Omega} f_{\ell} u \, \mathrm{d}x.$$

Außerdem definieren wir für $\ell \in \{1,2\}$ das Funktional $E_{\ell} := F + G_{\ell}$.

Für $\ell \in \{1,2\}$ ist G_{ℓ} Fréchet-differenzierbar und die Fréchet-Ableitung $G'_{\ell}(u): L^2(\Omega) \to \mathsf{r}$ hier

 \mathbb{R} von G_{ℓ} an der Stelle $u \in \mathrm{BV}(\Omega) \cap L^2(\Omega)$ ist für alle $v \in L^2(\Omega)$ gegeben durch

$$dG_{\ell}(u;v) = \alpha(u,v) - \int_{\Omega} f_{\ell}v \, \mathrm{d}x = (\alpha u - f_{\ell}, v).$$

Das Funktional F ist konvex und stetig, also insbesondere unterhalbstetig, deshalb ist nach Theorem 2.10 das Subdifferential ∂F von F monoton, das heißt für alle $\mu_{\ell} \in \partial F(u_{\ell})$, $\ell = 1, 2$, gilt

$$(\mu_1 - \mu_2, u_1 - u_2) \geqslant 0. \tag{3.5}$$

Für $\ell = 1, 2$ wird E_{ℓ} von u_{ℓ} minimiert und G_{ℓ} ist stetig. Nach Theorem 2.7 und Theorem 2.9 gilt deshalb $0 \in \partial E_{\ell}(u_{\ell}) = \partial F(u_{\ell}) + \partial G_{\ell}(u_{\ell}) = \partial F(u_{\ell}) + \{G'_{\ell}(u_{\ell})\}$ und es folgt $-G'_{\ell}(u_{\ell}) \in \partial F(u_{\ell})$. Daraus folgt zusammen mit (3.5)

$$(-(\alpha u_1 - f_1) + (\alpha u_2 - f_2), u_1 - u_2) \ge 0.$$

Umformen und Anwenden der Cauchy-Schwarzschen Ungleichung impliziert

$$\alpha \|u_1 - u_2\|^2 \le (f_1 - f_2, u_1 - u_2)$$

$$\le \|f_1 - f_2\| \|u_1 - u_2\|.$$

Falls $||u_1 - u_2|| = 0$, gilt der Satz. Ansonsten führt Division durch $\alpha ||u_1 - u_2|| \neq 0$ den Beweis zum Abschluss.

Theorem 3.7. Sei $u \in BV(\Omega) \cap L^2(\Omega)$ Lösung von Problem 3.1. Dann gilt

$$\frac{\alpha}{2} \|u - v\|^2 \leqslant E(v) - E(u) \quad \text{für alle } v \in BV(\Omega) \cap L^2(\Omega).$$

Beweis. Definiere die konvexen Funktionale $F: \mathrm{BV}(\Omega) \cap L^2(\Omega) \to \mathbb{R}$ und $G: \mathrm{BV}(\Omega) \cap L^2(\Omega) \to \mathbb{R}$ durch

$$F(u) := |u|_{\mathrm{BV}(\Omega)} + ||u||_{L^1(\partial\Omega)}, \qquad G(u) := \frac{\alpha}{2} ||u||^2 - \int_{\Omega} f u \, \mathrm{d}x.$$

Es gilt E = F + G.

G ist Fréchet-differenzierbar und die Fréchet-Ableitung $G'(u): L^2(\Omega) \to \mathbb{R}$ von G an der Stelle $u \in \mathrm{BV}(\Omega) \cap L^2(\Omega)$ ist für alle $v \in L^2(\Omega)$ gegeben durch

$$dG(u; v) = \alpha(u, v) - \int_{\Omega} f v \, dx = (\alpha u - f, v).$$

Das impliziert mit wenigen Rechenschritten

$$dG(u; v - u) + \frac{\alpha}{2} ||u - v||^2 + G(u) = G(v)$$
(3.6)

für alle $u, v \in BV(\Omega) \cap L^2(\Omega)$.

Da u Minimierer von E ist, gilt mit Theorem 2.7, Theorem 2.9 und Theorem 2.8, dass

$$0 \in \partial E(u) = \partial F(u) + \{G'(u)\},\$$

woraus folgt

$$-G'(u) \in \partial F(u)$$
.

was nach Definition 2.6 äquivalent ist zu

$$-dG(u;v-u)\leqslant F(v)-F(u)\quad \text{für alle }v\in \mathrm{BV}(\Omega)\cap L^2(\Omega).$$

Daraus folgt zusammen mit Gleichung (3.6), dass

$$\frac{\alpha}{2} \|u - v\|^2 + G(u) - G(v) + F(u) = -dG(u; v - u) + F(u) \leqslant F(v)$$

für alle $v \in BV(\Omega) \cap L^2(\Omega)$.

Da
$$E = F + G$$
, folgt daraus die Aussage.

4 Das diskrete Problem

4.1 Formulierung

Quote all CR and discretisation stuff right here somewhere (mglw in einer subsection)

bevor wir das diskrete problem von (cref probcont) formulieren, bemerken wir, dass jede CR Funtkion in BV ist, was induktiv aus [ABM14, S. 404, Example 10.2.1] folgt unter Nutzung (noch irgendwas Dichte Argument mäßiges für die totale Variation)

$$|v_{\mathrm{CR}}|_{\mathrm{BV}(\Omega)} = \|\nabla_{\mathrm{NC}}v_{\mathrm{CR}}\|_{L^{1}(\Omega)} + \sum_{F \in \mathcal{F}(\Omega)} \int_{F} |[v_{\mathrm{CR}}]_{F}| \,\mathrm{d}s,$$

woraus folgt

$$|v_{\mathrm{CR}}|_{\mathrm{BV}(\Omega)} + \|v_{\mathrm{CR}}\|_{L^1(\partial\Omega)} = \|\nabla_{\mathrm{NC}}v_{\mathrm{CR}}\|_{L^1(\Omega)} + \sum_{F\in\mathcal{F}}\int_F |[v_{\mathrm{CR}}]_F|\,\mathrm{d}s,$$

Wir betrachten eine nichtkonforme Diskretisierung, da wir die Sprungterme weglassen, wenn wir $|v_{\text{CR}}|_{\text{BV}(\Omega)} + ||v_{\text{CR}}||_{L^1(\partial\Omega)}$ durch $||\nabla_{\text{NC}}v_{\text{CR}}||_{L^1(\Omega)}$ ersetzen. Somit erhalten wir:

Above was just WIP, write that properly and cite stuff. Programm gibt Sprungtermsumme aus, z.B. stagnierend bei 11 auf allen Leveln, darauf vielleicht noch kurz in der Auswertung eingehen "man sieht, dass die Sprünge tatsächlich im nonkonformen Problem nicht minimiert werden oder so"

Betrachte für gegebenes $\alpha>0$ und rechte Seite $f\in L^2(\Omega)$ folgende Diskretisierung von Problem 3.1.

Problem 4.1. Finde $u_{CR} \in CR_0^1(\mathcal{T})$, sodass u_{CR} das Funktional

$$E_{\rm NC}(v_{\rm CR}) := \frac{\alpha}{2} \|v_{\rm CR}\|_{L^2(\Omega)}^2 + \|\nabla_{\rm NC}v_{\rm CR}\|_{L^1(\Omega)} - \int_{\Omega} f v_{\rm CR} \, \mathrm{d}x \tag{4.1}$$

unter allen $v_{\rm CR} \in \mathrm{CR}_0^1(\mathcal{T})$ minimiert.

4.2 Existenz und eindeutige Lösbarkeit

Definiere für $v_{\rm CR} \in \mathrm{CR}_0^1(\mathcal{T}), \Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \subset L^\infty(\Omega; \mathbb{R}^n)$,

$$K_1(0) := \{ \Lambda \in L^{\infty}(\Omega; \mathbb{R}^n) \mid |\Lambda(\bullet)| \leq 1 \text{ fast "uberall in } \Omega \},$$

$$I_{K_1(0)}(\Lambda) := \begin{cases} \infty, & \text{falls } \Lambda \notin K_1(0), \\ 0, & \text{falls } \Lambda \in K_1(0) \end{cases}$$

und das Funktional $\mathcal{L}_h: \mathrm{CR}^1_0(\mathcal{T}) \times \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \to [-\infty, \infty)$ durch

$$\mathcal{L}_h(v_{\text{CR}}, \Lambda) := \int_{\Omega} \Lambda \cdot \nabla_{\text{NC}} v_{\text{CR}} \, \mathrm{d}x + \frac{\alpha}{2} \|v_{\text{CR}}\|_{L^2(\Omega)}^2 - \int_{\Omega} f v_{\text{CR}} \, \mathrm{d}x - I_{K_1(0)}(\Lambda). \tag{4.2}$$

Falls $\Lambda \notin K_1(0)$, gilt $\mathcal{L}(v_{\text{CR}}, \Lambda) = -\infty$. Da außerdem für beliebige $\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0)$ (d.h. $|\Lambda| \leq 1$ fast überall in Ω und außerdem $I_{K_1(0)}(\Lambda) = 0$) mit der CSU gilt, dass

timmt das so

 $_{
m cimmt~das}$?

$$\begin{split} \int_{\Omega} \Lambda \cdot \nabla_{\text{NC}} v_{\text{CR}} \, \mathrm{d}x & \leqslant \int_{\Omega} |\Lambda \cdot \nabla_{\text{NC}} v_{\text{CR}}| \, \mathrm{d}x \leqslant \int_{\Omega} |\Lambda| |\nabla_{\text{NC}} v_{\text{CR}}| \, \mathrm{d}x \\ & \leqslant \int_{\Omega} 1 |\nabla_{\text{NC}} v_{\text{CR}}| \, \mathrm{d}x \ = \|\nabla_{\text{NC}} v_{\text{CR}}\|_{L^{1}(\Omega)}, \end{split}$$

folgt zunächst

$$\sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}(v_{\mathrm{CR}}, \Lambda) = \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0)} \mathcal{L}(v_{\mathrm{CR}}, \Lambda) \leqslant E_{\mathrm{NC}}(v_{\mathrm{CR}}).$$

Weiterhin gilt für $\Lambda \in \text{sign}(\nabla_{\text{NC}}v_{\text{CR}}) \subset \mathbb{P}_0(\mathcal{T};\mathbb{R}^n) \cap K_1(0)$, dass $E_{\text{NC}}(v_{\text{CR}}) = \mathcal{L}(v_{\text{CR}},\Lambda)$ und deshalb $E_{\text{NC}}(v_{\text{CR}}) \leq \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}(v_{\text{CR}},\Lambda)$

Somit ist das folgende Sattelpunktsproblem äquivalent zu Problem 4.1.

Problem 4.2. Löse

$$\inf_{v_{\mathrm{CR}} \in \mathrm{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathrm{CR}}, \Lambda).$$

Theorem 4.3 (Charakterisierung diskreter Lösungen). Es existiert eine eindeutige Lösung $u_{\rm CR} \in {\rm CR}_0^1(\mathcal{T})$ von Problem 4.1.

Außerdem sind die folgenden drei Aussagen für eine Funktion $u_{CR} \in CR_0^1(\mathcal{T})$ äquivalent.

- (i) Problem 4.1 wird von $u_{\rm CR}$ gelöst.
- (ii) Es existiert ein $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ mit $|\bar{\Lambda}(\bullet)| \leq 1$ fast überall in Ω , sodass

$$\bar{\Lambda}(\bullet) \cdot \nabla_{\mathrm{NC}} u_{\mathrm{CR}}(\bullet) = |\nabla_{\mathrm{NC}} u_{\mathrm{CR}}(\bullet)| \quad \text{fast ""berall in } \Omega$$
(4.3)

und

$$(\bar{\Lambda}, \nabla_{\mathrm{NC}} v_{\mathrm{CR}})_{L^{2}(\Omega)} = (f - \alpha u_{\mathrm{CR}}, v_{\mathrm{CR}})_{L^{2}(\Omega)} \quad \text{für alle } v_{\mathrm{CR}} \in \mathrm{CR}_{0}^{1}(\mathcal{T}). \tag{4.4}$$

(iii) Für alle $v_{\rm CR} \in \mathrm{CR}^1_0(\mathcal{T})$ gilt

$$(f - \alpha u_{\text{CR}}, v_{\text{CR}} - u_{\text{CR}})_{L^2(\Omega)} \leq \|\nabla_{\text{NC}}v_{\text{CR}}\|_{L^1(\Omega)} - \|\nabla_{\text{NC}}u_{\text{CR}}\|_{L^1(\Omega)}. \tag{4.5}$$

Beweis. Mit analogen Abschätzungen wie in Ungleichung (3.3) erhalten wir für das Funktional E_{NC} aus Problem 4.1 für alle $v_{CR} \in CR_0^1(\mathcal{T}) \subset L^2(\Omega)$ die Abschätzung

$$E_{\rm NC}(v_{\rm CR}) \geqslant -\frac{1}{\alpha} \|f\|_{L^2(\Omega)}^2.$$

Somit ist $E_{\rm NC}$ nach unten beschränkt und es existiert eine infimierende Folge $(v_k)_{k\in\mathbb{N}}\subset \operatorname{CR}_0^1(\mathcal{T})$ von $E_{\rm NC}$. Aufgrund der Form von $E_{\rm NC}$ ist diese Folge beschränkt bezüglich der Norm $\|\cdot\|_{L^2(\Omega)}$ und wegen der Reflexivität des abgeschlossenen Unterraums $\operatorname{CR}_0^1(\mathcal{T})$ des reflexiven Raums $L^2(\Omega)$ besitzt diese Folge eine schwach konvergente Teilfolge in $\operatorname{CR}_0^1(\mathcal{T})$ bezüglich der Norm $L^2(\Omega)$, welche auch stark konvergent ist, da $\operatorname{CR}_0^1(\mathcal{T})$ endlichdimensional ist. Der Grenzwert dieser Folge liegt aufgrund der Abgeschlossenheit von $\operatorname{CR}_0^1(\mathcal{T})$ in $\operatorname{CR}_0^1(\mathcal{T})$ und minimiert $E_{\rm NC}$, da $E_{\rm NC}$ stetig ist bezüglich der Konvergenz in $L^2(\Omega)$.

Absatz above: Sachen noch näher begründen? All die benutzten grundlegenden Aussagen noch zusammen suchen und zitieren irgendwo?

Die Lösung $u_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$ ist eindeutig, da das Funktional E_{NC} aus Problem 4.1 strikt konvex ist der erste Term ist quadratisch, also strikt konvex, der zweite ist konvex und der dritte linear, also ist deren Summe strikt konvex.

grundlegende Aussagen der Optimierung wie diese noch zitieren? Beweis ist einfach bei dieser, schneller Widerspruchsbeweis

Nachdem wir die Existenz eines eindeutigen Minimierers $u_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$ von Problem 4.1 bewiesen haben, zeigen wir nun die äquivalenten Charakterisierung von u_{CR} .

 $(i) \Rightarrow (ii)$. Zunächst sei erwähnt, dass aus der Existenz des Minimierers u_{CR} von Problem 4.1 und der Äquivalenz des Minimierungsproblems 4.1 und des Sattelpunktsproblems 4.2, wobei wir insbesondere bereits gezeigt haben, dass $E_{\text{NC}}(v_{\text{CR}}) = \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}_h(v_{\text{CR}}, \Lambda)$ für alle $v_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$, folgt, dass $\bar{\Lambda} \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n) \cap K_1(0)$ (denn sonst ist das innere sup nicht erfüllt, da sonst $-I_{K_1(0)}(\bar{\Lambda}) = -\infty$) existiert mit

$$\mathcal{L}_h\left(u_{\mathrm{CR}},\bar{\Lambda}\right) = \inf_{v_{\mathrm{CR}} \in \mathrm{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T};\mathbb{R}^n)} \mathcal{L}_h(v_{\mathrm{CR}},\Lambda).$$

Da nach [Roc70, S. 379, Lemma 36.1] gilt, dass

$$\inf_{v_{\mathrm{CR}} \in \mathrm{CR}_0^1(\mathcal{T})} \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \mathcal{L}_h(v_{\mathrm{CR}}, \Lambda) \geqslant \sup_{\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)} \inf_{v_{\mathrm{CR}} \in \mathrm{CR}_0^1(\mathcal{T})} \mathcal{L}_h(v_{\mathrm{CR}}, \Lambda),$$

folgt insgesamt

$$\inf_{v_{\mathrm{CR}}\in\mathrm{CR}_0^1(\mathcal{T})}\sup_{\Lambda\in\mathbb{P}_0(\mathcal{T};\mathbb{R}^n)}\mathcal{L}_h(v_{\mathrm{CR}},\Lambda)=\mathcal{L}_h\left(u_{\mathrm{CR}},\bar{\Lambda}\right)=\sup_{\Lambda\in\mathbb{P}_0(\mathcal{T};\mathbb{R}^n)}\inf_{v_{\mathrm{CR}}\in\mathrm{CR}_0^1(\mathcal{T})}\mathcal{L}_h(v_{\mathrm{CR}},\Lambda).$$

Somit ist $(u_{\text{CR}}, \bar{\Lambda}) \in \text{CR}_0^1(\mathcal{T}) \times (\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0))$ nach [Roc70, S. 380, Lemma 36.2] Sattelpunkt von \mathcal{L}_h bezüglich der Maximierung über $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ und der Minimierung über $\text{CR}_0^1(\mathcal{T})$. Das bedeutet nach [Roc70, S. 380] insbesondere, dass u_{CR} Minimierer von $\mathcal{L}_h(\bullet, \bar{\Lambda})$ in $\text{CR}_0^1(\mathcal{T})$ ist und $\bar{\Lambda}$ Maximierer von $\mathcal{L}_h(u_{\text{CR}}, \bullet)$ über $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$.

In der zweiten Komponente ist \mathcal{L}_h konkav $(K_1(0))$ ist konvex, somit ist $I_{K_1(0)}$ konvex, also $-I_{K_1(0)}$ konkav. Die restlichen Terme sind konstant oder linear in Λ)

diese grundlegende Aussage über Indikatorfunktionen irgendwo (vielleicht sogar in Grundlagen) einmal zitieren

. Da wir bereits wissen, dass $\mathcal{L}_h(u_{\mathrm{CR}}, \bullet)$ von $\bar{\Lambda}$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ maximiert wird, wird das konvexe Funktional $-\mathcal{L}_h(u_{\mathrm{CR}}, \bullet)$

zitieren, was konkav ist und das -konvex=konkav

von $\bar{\Lambda}$ in $\mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$ minimiert

auch diese basic optimierungsaussage noch zitieren

. Nach den Theoremen 2.7, 2.9 und 2.8 gilt somit

$$0 \in \partial \left(-\mathcal{L}_h(u_{\mathrm{CR}}, \bullet) \right) (\bar{\Lambda}) = \left\{ -(\nabla_{\mathrm{NC}} u_{\mathrm{CR}}, \bullet)_{L^2(\Omega)} \right\} + \partial I_{K_1(0)}(\bar{\Lambda}).$$

Äquivalent zu dieser Aussage ist, dass $(\nabla_{NC}u_{CR}, \bullet)_{L^2(\Omega)} \in \partial I_{K_1(0)}(\bar{\Lambda})$, das heißt nach Definition 2.6 gilt für alle $\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n)$

$$(\nabla_{\mathrm{NC}} u_{\mathrm{CR}}, \Lambda - \bar{\Lambda})_{L^2(\Omega)} \leqslant I_{K_1(0)}(\Lambda) - I_{K_1(0)}(\bar{\Lambda}) = I_{K_1(0)}(\Lambda),$$

da $\bar{\Lambda} \in K_1(0)$. Für $\Lambda \in \mathbb{P}_0(\mathcal{T}; \mathbb{R}^n) \cap K_1(0)$ folgt insbesondere

$$(\nabla_{\mathrm{NC}} u_{\mathrm{CR}}, \Lambda - \bar{\Lambda})_{L^{2}(\Omega)} \leq 0, \quad \text{also}$$

 $(\nabla_{\mathrm{NC}} u_{\mathrm{CR}}, \Lambda)_{L^{2}(\Omega)} \leq (\nabla_{\mathrm{NC}} u_{\mathrm{CR}}, \bar{\Lambda})_{L^{2}(\Omega)}.$

Damit und der Wahl $\Lambda \in \text{sign}(\nabla_{\text{NC}}u_{\text{CR}}) \subset \mathbb{P}_0(\mathcal{T};\mathbb{R}^n) \cap K_1(0)$ impliziert die Cauchy-Schwarzsche Ungleichung, dass

$$\int_{\Omega} |\nabla_{\text{NC}} u_{\text{CR}}| \, \mathrm{d}x = (\nabla_{\text{NC}} u_{\text{CR}}, \Lambda)_{L^{2}(\Omega)} \leqslant (\nabla_{\text{NC}} u_{\text{CR}}, \bar{\Lambda})_{L^{2}(\Omega)}
\leqslant \int_{\Omega} |\nabla_{\text{NC}} u_{\text{CR}}| \, |\bar{\Lambda}| \, \mathrm{d}x \leqslant \int_{\Omega} |\nabla_{\text{NC}} u_{\text{CR}}| \, \mathrm{d}x, \quad \text{also}
\int_{\Omega} |\nabla_{\text{NC}} u_{\text{CR}}| \, \mathrm{d}x = (\nabla_{\text{NC}} u_{\text{CR}}, \bar{\Lambda})_{L^{2}(\Omega)} \quad \text{beziehungsweise}
\sum_{T \in \mathcal{T}} |T| \, |(\nabla_{\text{NC}} u_{\text{CR}})|_{T}| = \sum_{T \in \mathcal{T}} |T| \, (\nabla_{\text{NC}} u_{\text{CR}} \cdot \bar{\Lambda})|_{T}.$$

Außerdem gilt mit der Cauchy-Schwarzschen Ungleichung auf allen $T \in \mathcal{T}$, dass $(\nabla_{\text{NC}} u_{\text{CR}} \cdot \bar{\Lambda})|_T \leq |(\nabla_{\text{NC}} u_{\text{CR}})|_T|$, da $\bar{\Lambda} \in K_1(0)$. Dementsprechend muss (da somit alle Summanden der rechten Summe kleiner-gleich den entsprechenden Summanden (d.h. zum gleichen T) der linken Summe sind und Gleichheit der Summen somit nur noch möglich ist, wenn die entsprechenden Summanden tatsächlich gleich sind) für alle $T \in \mathcal{T}$ gelten, dass $(\nabla_{\text{NC}} u_{\text{CR}} \cdot \bar{\Lambda})|_T = |(\nabla_{\text{NC}} u_{\text{CR}})|_T|$, das heißt fast überall in Ω gilt $\bar{\Lambda}(\bullet) \cdot \nabla_{\text{NC}} u_{\text{CR}}(\bullet) = |\nabla_{\text{NC}} u_{\text{CR}}(\bullet)|$. Damit ist Gleichung (4.3) gezeigt.

In der ersten Komponente ist das Lagrange-Funktional <u>Fréchet</u>-differenzierbar (und für $\bar{\Lambda}$ ist das Funktional reellwertig und nimmt nicht $-\infty$ an, also ist Zeidler anwendbar) mit

$$d\mathcal{L}_h(\bullet, \bar{\Lambda})(u_{\mathrm{CR}}; v_{\mathrm{CR}}) = \int_{\Omega} \bar{\Lambda} \cdot \nabla_{\mathrm{NC}} v_{\mathrm{CR}} \, \mathrm{d}x + \alpha(u_{\mathrm{CR}}, v_{\mathrm{CR}})_{L^2(\Omega)} - \int_{\Omega} f v_{\mathrm{CR}} \, \mathrm{d}x$$

für alle $v_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$. Da u_{CR} Minimierer von $\mathcal{L}_h(\bullet, \bar{\Lambda})$ (reellwertig!!!) in $\text{CR}_0^1(\mathcal{T})$ ist, gilt nach Theorem 2.4, dass $0 = d\mathcal{L}_h(\bullet, \bar{\Lambda})(u_{\text{CR}}; v_{\text{CR}})$.

Diese Bedingung ist für alle $v_{\rm CR} \in \operatorname{CR}_0^1(\mathcal{T})$ äquivalent zu

$$(\bar{\Lambda}, \nabla_{\text{NC}}v_{\text{CR}})_{L^2(\Omega)} = (f - \alpha u_{\text{CR}}, v_{\text{CR}})_{L^2(\Omega)}.$$

Somit ist Gleichung (4.4) gezeigt.

 $(ii) \Rightarrow (iii)$. Für alle $v_{\rm CR} \in \mathrm{CR}^1_0(\mathcal{T})$ gilt mit Gleichung (4.4), der CSU, Gleichung (4.3) und $|\bar{\Lambda}(\, \bullet \,)| \leq 1$ fast überall in Ω , dass

$$(f - \alpha u_{\text{CR}}, v_{\text{CR}} - u_{\text{CR}})_{L^{2}(\Omega)} = (f - \alpha u_{\text{CR}}, v_{\text{CR}})_{L^{2}(\Omega)} - (f - \alpha u_{\text{CR}}, u_{\text{CR}})_{L^{2}(\Omega)}$$

$$= (\bar{\Lambda}, \nabla_{\text{NC}} v_{\text{CR}})_{L^{2}(\Omega)} - (\bar{\Lambda}, \nabla_{\text{NC}} u_{\text{CR}})_{L^{2}(\Omega)}$$

$$= \int_{\Omega} \bar{\Lambda} \cdot \nabla_{\text{NC}} v_{\text{CR}} \, dx - \int_{\Omega} \bar{\Lambda} \cdot \nabla_{\text{NC}} u_{\text{CR}} \, dx$$

$$\leq \int_{\Omega} |\bar{\Lambda}| |\nabla_{\text{NC}} v_{\text{CR}}| \, dx - \int_{\Omega} |\nabla_{\text{NC}} u_{\text{CR}}| \, dx$$

$$\leq \int_{\Omega} |\nabla_{\text{NC}} v_{\text{CR}}| \, dx - \int_{\Omega} |\nabla_{\text{NC}} u_{\text{CR}}| \, dx$$

$$= \|\nabla_{\text{NC}} v_{\text{CR}}\|_{L^{1}(\Omega)} - \|\nabla_{\text{NC}} u_{\text{CR}}\|_{L^{1}(\Omega)}.$$

Damit löst u_{CR} Ungleichung (4.5) für alle $v_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$ in $\text{CR}_0^1(\mathcal{T})$.

 $(iii) \Rightarrow (i)$. Sei $u_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$ Lösung von Problem 4.1. Wir haben bereits gezeigt, dass u_{CR} stets existiert und außerdem, dass u_{CR} insbesondere für alle $v_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$ eine Lösung von Ungleichung (4.5) in $\text{CR}_0^1(\mathcal{T})$ ist.

'Lagrange' weglassen, falls nicht doch noch benötigt? Keine Quelle nannte das bisher so Zu zeigen ist somit nur noch, dass eine beliebige Funktion $\tilde{u}_{CR} \in CR_0^1(\mathcal{T})$, die Ungleichung (4.5) in $CR_0^1(\mathcal{T})$ für alle $v_{CR} \in CR_0^1(\mathcal{T})$ löst, auch eine Lösung von Problem 4.1 ist, das heißt zu zeigen ist $\tilde{u}_{CR} = u_{CR}$.

Für ein solches $\tilde{u}_{\rm CR}$ gilt

$$(f - \alpha u_{\mathrm{CR}}, \tilde{u}_{\mathrm{CR}} - u_{\mathrm{CR}})_{L^{2}(\Omega)} \leq \|\nabla_{\mathrm{NC}}\tilde{u}_{\mathrm{CR}}\|_{L^{1}(\Omega)} - \|\nabla_{\mathrm{NC}}u_{\mathrm{CR}}\|_{L^{1}(\Omega)} \quad \text{und}$$

$$(f - \alpha \tilde{u}_{\mathrm{CR}}, u_{\mathrm{CR}} - \tilde{u}_{\mathrm{CR}})_{L^{2}(\Omega)} \leq \|\nabla_{\mathrm{NC}}u_{\mathrm{CR}}\|_{L^{1}(\Omega)} - \|\nabla_{\mathrm{NC}}\tilde{u}_{\mathrm{CR}}\|_{L^{1}(\Omega)}.$$

Addition dieser Ungleichungen liefert die Ungleichung

$$(-\alpha u_{\rm CR}, \tilde{u}_{\rm CR} - u_{\rm CR})_{L^2(\Omega)} + (-\alpha \tilde{u}_{\rm CR}, u_{\rm CR} - \tilde{u}_{\rm CR})_{L^2(\Omega)} \leq 0,$$

welche äquivalent ist zu

$$\alpha \|\tilde{u}_{\mathrm{CR}} - u_{\mathrm{CR}}\|_{L^2(\Omega)}^2 \le 0.$$

Da
$$\alpha > 0$$
, impliziert das $\|\tilde{u}_{CR} - u_{CR}\|_{L^2(\Omega)}^2 = 0$, also $\tilde{u}_{CR} = u_{CR}$ in $CR_0^1(\mathcal{T})$.

Als letztes noch eine von Prof. Carstensen angemerkte äquivalente Charakterisierung der dualen Variable $\bar{\Lambda}$ aus Theorem 4.3 zur diskreten Lösung $u_{\rm CR}$.

Bemerkung 4.4. Das $\bar{\Lambda}$ fast überall in Ω Gleichung (4.3) und $|\bar{\Lambda}(\bullet)| \leq 1$ erfüllt, ist äquivalent zu $\bar{\Lambda} \in \text{sign}(\nabla_{\text{NC}} u_{\text{CR}})$.

Die Notwendigkeit folgt hierbei unter anderem daraus, dass Gleichheit in der CSU gilt genau dann, wenn die Vektoren linear abhänigig sind, da $|\bar{\Lambda}| \leq 1$ gilt.

Falls $\nabla_{\text{NC}}u_{\text{CR}} \neq 0$ auf $T \in \mathcal{T}$, gilt somit, nach Definition von sign, dass $\bar{\Lambda} = \nabla_{\text{NC}}u_{\text{CR}}/|\nabla_{\text{NC}}u_{\text{CR}}|$ eindeutig auf T.

Im Allgemeinen ist $\bar{\Lambda}$ nicht eindeutig. So erfüllt zum Beispiel für $f \equiv 0$ in Problem 4.1 mit eindeutiger Lösung $u_{\rm CR} \equiv 0$ die Wahl $\bar{\Lambda} := {\rm Curl}(v_{\rm C})$ für ein beliebiges $v_{\rm C} \in S^1(\mathcal{T})$ mit $|{\rm Curl}(v_{\rm C})| \leq 1$ die Eigenschaft (ii) aus Theorem 4.3.

4.3 Zu untersuchende Raten (WIP Titel)

Wir zeigen in dieser Arbeit keine Fehlerabschätzung, können aber in den Experimenten Raten mit dem folgenden Theorem für [cite Problem von Bartels bzw ROF-Modell] vergleichen.

Theorem 4.5 ([Bar15b, S. 309, Theorem 10.7]). Sei $\Omega \subset \mathbb{R}^2$ sternförmig und $g \in L^{\infty}$. Sind $u \in BV(\Omega) \cap L^2(\Omega)$ und $u_h \in S^1(\mathcal{T})$ [irgendwann Courant noch einführen, x wahrscheinlich bei den Bartels Vergleich] die Minimiere von I in den entsprechenden Räumen. Dann gilt

$$\frac{\alpha}{2} \|u - u_h\|_{L^2(\Omega)}^2 \le ch^{1/2}.$$

auf S 310 sagt Bartels noch was dazu, dass die Rate suboptimal ist und im Allgmeinen nicht erreicht wird. Angucken und das dann in der Auswertung einfließen lassen

Mit den Betrachtungen zum Beginn dieses Kapitels und nach Theorem 3.7, da $\operatorname{CR}_0^1(\mathcal{T}) \subset \operatorname{BV}(\Omega) \cap L^2(\Omega)$, erhalten wir weiterhin die folgende Aussage.

Korollar 4.6. Ist $u \in BV(\Omega)$ Lösung von Problem 3.1 und $u_{CR} \in CR_0^1(\mathcal{T})$ Lösung von Problem 4.1.

Dann qilt

$$\frac{\alpha}{2} \|u - u_{\rm CR}\|_{L^2(\Omega)}^2 \leqslant E(u_{\rm CR}) - E(u) = E_{\rm NC}(u_{\rm CR}) + \sum_{F \in \mathcal{F}} \|[u_{\rm CR}]_F\|_{L^1(F)} - E(u).$$

Insbesondere gilt auch [nur für mich zur erinnerung für den Moment]

$$\frac{\alpha}{2} \|u - u_{\text{CR}}\|_{L^{2}(\Omega)}^{2} \leq E(u_{\text{CR}}) - E(u) = |E(u_{\text{CR}}) - E(u)| = |E(u) - E(u_{\text{CR}})|$$

$$= \left| E_{\text{NC}}(u_{\text{CR}}) + \sum_{F \in \mathcal{F}} \|[u_{\text{CR}}]_{F}\|_{L^{1}(F)} - E(u) \right|$$

$$\leq |E_{\text{NC}}(u_{\text{CR}}) - E(u)| + \left| \sum_{F \in \mathcal{F}} \|[u_{\text{CR}}]_{F}\|_{L^{1}(F)} \right|.$$

4.4 Verfeinerungsindikator und garantierte untere Energieschranke

Prof. Carstensen stellte zur numerischen Untersuchung den folgenden Verfeinerungsindikator zur adaptiven Netzverfeinerung und eine garantierte untere Energieschranke zur Verfügung.

Definition 4.7 (Verfeinerungsindikator). Für $n \in \mathbb{N}$ (hier n = 2) und $0 < \gamma \le 1$ definieren wir den Verfeinerungsindikator $\eta := \sum_{T \in \mathcal{T}} \eta(T)$, wobei

$$\eta(T) := \underbrace{|T|^{2/n} ||f - \alpha u_{\text{CR}}||_{L^{2}(T)}^{2}}_{=:\eta_{\text{V}}(T)} + \underbrace{|T|^{\gamma/n} \sum_{F \in \mathcal{F}(T)} ||[u_{\text{CR}}]_{F}||_{L^{1}(F)}}_{=:\eta_{\text{J}}(T)}$$
(4.6)

für alle $T \in \mathcal{T}$.

Theorem 4.8. Ist $f \in H_0^1(\Omega)$, $u \in H_0^1(\Omega)$ Lösung von Problem 3.1 mit minimaler Energie E(u) und $u_{\rm CR} \in \operatorname{CR}_0^1(\Omega)$ Lösung von Problem 4.1 mit minimaler Energie $E_{\rm NC}(u_{\rm CR})$, dann gilt

$$E_{\rm NC}(u_{\rm CR}) + \frac{\alpha}{2} \|u - u_{\rm CR}\|_{L^2(\Omega)}^2 - \frac{\kappa_{\rm CR}}{\alpha} \|h_{\mathcal{T}}(f - \alpha u_{\rm CR})\|_{L^2(\Omega)} |f|_{1,2} \leqslant E(u), \tag{4.7}$$

wobei $|\cdot|_{1,2} = \|\nabla \cdot\|_{L^2(\Omega)}$.

Insbesondere gilt für $E_{\text{GLEB}} := E_{\text{NC}}(u_{\text{CR}}) - \frac{\kappa_{\text{CR}}}{\alpha} \|h_{\mathcal{T}}(f - \alpha u_{\text{CR}})\|_{L^2(\Omega)} |f|_{1,2}, \ dass \ E_{\text{NC}}(u_{\text{CR}}) \ge E_{\text{GLEB}} \ und \ E(u) \ge E_{\text{GLEB}}.$

 $\kappa_{\rm CR}$ (Bessel Nullstelle) zitieren und wohl noch was zur Regularität der Lösung bei dieser RHS sagen, also das Lösung in H10 falls RHS in H10 (s. CC unausführliche Erwähung).

5 Iterative Lösung

Algorithmus und Convergenzbereis als eigees Kapitel 5, inplemtierung ann als Kapitel

Mehr zur Herleitung des Algorithmus, siehe BartelsBVPaper S. 1163, schwache Formulierung der vorletzten Gleichung

Schreibe sowas wie 'Die GLeichungen basieren auf der primalen dualen Formulierung des Problems, auf einem descent flow ... usw, Details finden sich in barBV, wobei Gleichung (Glg im Alg) die schwache Formulierung von (Glg in Bartels bzw der Herleitung)'. d.h. Stichworte abklappern, damit Leute mit Ahnung wissen was los ist, aber für Details auf andere Leute zeigen.

Weitere Details zur Herleitung auf S. 1168, da noch Details rausschreiben aber nur grob aber dafür darauf verweisen für die Herleitung. Nur das nötigste hier.

Stopping criteria sind in Punkt 6.2

Irgendwo, wahrscheinlich bei "alles zu CR₀" muss noch $a_{NC}(u,v) := \int_{\Omega} \nabla_{NC} u \cdot \nabla_{NC} v \, dx$ erwähnt werden (und warum das ein SP ist muss angerissen werden, Stichwort Friedrichs Ungleichung)

Für unsere Formulierung Problem 4.1 nutzen wir [Bar15b, S. 314, Algorithm 10.1] unter Beachtung von [Bar15b, S. 314, Remark 10.11] als Algorithmus als iterativen Löser und benutzen als inneres Produkt $a_{\rm NC}$ (definiert in Kapitel . . . hier in dieser Arbeit). Weitere Details dazu finden sich in [Bar15b, S. 118-121].

Beim Zitieren z.B. 'Remark' lassen, weil es in Bartels so heißt, oder das lieber übersetzen? Außerdem natürlich, passt das so als Einleitung für den Alg?

Algorithmus 5.1 (Primale-Duale Iteration).

Input: $u_0 \in CR_0^1(\mathcal{T}), \Lambda_0 \in \mathbb{P}_0(\mathcal{T}; B(0,1)), \tau > 0$

Initialisiere $v_0 := 0$ in $CR_0^1(\mathcal{T})$.

for j = 1, 2, ...

$$\tilde{u}_i \coloneqq u_{i-1} + \tau v_{i-1},\tag{5.1}$$

$$\Lambda_j := (\Lambda_{j-1} + \tau \nabla_{\mathrm{NC}} \tilde{u}_j) / (\max\{1, |\Lambda_{j-1} + \tau \nabla_{\mathrm{NC}} \tilde{u}_j|\}), \tag{5.2}$$

bestimme $u_j \in CR_0^1(\mathcal{T})$ als Lösung des linearen Gleichungssystems

$$\frac{1}{\tau} a_{\text{NC}}(u_j, \bullet) + \alpha(u_j, \bullet)_{L^2(\Omega)}$$

$$= \frac{1}{\tau} a_{\text{NC}}(u_{j-1}, \bullet) + (f, \bullet)_{L^2(\Omega)} - (\Lambda_j, \nabla_{\text{NC}} \bullet)_{L^2(\Omega)}$$
(5.3)

in $CR_0^1(\mathcal{T})$,

$$v_j := (u_j - u_{j-1})/\tau.$$

Output: Folge $(u_j, \Lambda_j)_{j \in \mathbb{N}}$ in $CR_0^1(\mathcal{T}) \times \mathbb{P}_0(\mathcal{T}; \overline{B(0, 1)})$

Theorem 5.2. Sei $u_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$ Lösung von Problem 4.1 und $\bar{\Lambda} \in \text{sign}(\nabla_{\text{NC}}u_{\text{CR}})$ erfülle Eigenschaft (ii) in Theorem 4.3. Falls $0 < \tau \le 1$, dann konvergieren die Iterate $(u_j)_{j \in \mathbb{N}}$ von Algorithmus 5.1 gegen u_{CR} .

Beweis. Der Beweis folgt einer Skizze von Prof. Carstensen.

Seien \tilde{u}_j , v_j und Λ_j definiert wie in Algorithmus 5.1. Definiere außerdem $e_j := u_{\text{CR}} - u_j$ und $E_j := \bar{\Lambda} - \Lambda_j$.

Testen wir nun (5.3) mit e_j , erhalten wir

$$a_{\rm NC}(v_j, e_j) + \alpha(u_j, e_j)_{L^2(\Omega)} + (\Lambda_j, \nabla_{\rm NC} e_j)_{L^2(\Omega)} = (f, e_j)_{L^2(\Omega)}.$$

Äquivalent dazu ist, da $u_{\rm CR}$ Gleichung (4.4) löst,

$$a_{\rm NC}(v_j, e_j) = \alpha (u_{\rm CR} - u_j, e_j)_{L^2(\Omega)} + (\bar{\Lambda} - \Lambda_j, \nabla_{\rm NC} e_j)_{L^2(\Omega)}$$

= $\alpha \|e_j\|_{L^2(\Omega)}^2 + (E_j, \nabla_{\rm NC} e_j)_{L^2(\Omega)}.$ (5.4)

Sei $\mu_j := \max\{1, |\Lambda_{j-1} + \tau \nabla_{NC} \tilde{u}_j|\}$. Nutzen wir (5.2) erhalten wir damit

$$\Lambda_{j-1} - \Lambda_j + \tau \nabla_{NC} \tilde{u}_j = (\mu_j - 1) \Lambda_j$$
 fast überall in Ω . (5.5)

Für fast alle $x \in \Omega$ liefert die CSU, da $|\bar{\Lambda}| \leq 1$ fast überall in Ω , $\Lambda_j(x) \cdot \bar{\Lambda}(x) \leq |\Lambda_j(x)|$ und damit folgt aus Gleichung (5.2) und einer einfachen Fallunterscheidung zwischen $1 \geq |\Lambda_{j-1} + \tau \nabla_{\text{NC}} \tilde{u}_j|$ und $1 < |\Lambda_{j-1} + \tau \nabla_{\text{NC}} \tilde{u}_j|$, dass $(1 - |\Lambda_j(x)|)(\mu_j(x) - 1) = 0$. Testen wir nun (5.5) mit E_j , erhalten wir unter Nutzung von $\mu_j \geq 1$ und der CSU damit

$$(\Lambda_{j-1} - \Lambda_j + \tau \nabla_{\mathrm{NC}} \tilde{u}_j, E_j)_{L^2(\Omega)} = ((\mu_j - 1)\Lambda_j, \bar{\Lambda} - \Lambda_j)_{L^2(\Omega)}$$

$$= \int_{\Omega} (\mu_j - 1)(\Lambda_j \cdot \bar{\Lambda} - \Lambda_j \cdot \Lambda_j) \, \mathrm{d}x$$

$$\leq \int_{\Omega} (\mu_j - 1)(|\Lambda_j| - |\Lambda_j|^2) \, \mathrm{d}x$$

$$= \int_{\Omega} |\Lambda_j| (1 - |\Lambda_j|)(\mu_j - 1) \, \mathrm{d}x$$

$$= \int_{\Omega} |\Lambda_j| \cdot 0 \, \mathrm{d}x = 0.$$

Damit und mit $\Lambda_{j-1} - \Lambda_j = E_j - E_{j-1}$, $\tilde{u}_j = u_{j-1} + \tau v_{j-1} = u_{j-1} + u_{j-1} - u_{j-2} = u_{j-1} - (e_{j-1} - e_{j-2})$ für $j \ge 2$ und der Konvention $e_{-1} := e_0$ für j = 1 erhalten wir insgesamt

$$\left(\frac{E_j - E_{j-1}}{\tau} + \nabla_{\text{NC}} u_{j-1} - \nabla_{\text{NC}} (e_{j-1} - e_{j-2}), E_j\right)_{L^2(\Omega)} \leqslant 0 \quad \text{für alle } j \in \mathbb{N}.$$
 (5.6)

Falls $|\nabla_{\text{NC}}u_{\text{CR}}| \neq 0$, gilt somit zusammen mit der CSU, $\bar{\Lambda} \in \text{sign} \nabla_{\text{NC}}u_{\text{CR}}$ und $|\Lambda_j| \leq 1$, dass

$$\nabla_{\text{NC}} u_{\text{CR}} \cdot E_{j} = \nabla_{\text{NC}} u_{\text{CR}} \cdot \bar{\Lambda} - \nabla_{\text{NC}} u_{\text{CR}} \cdot \Lambda_{j}$$

$$\geqslant \nabla_{\text{NC}} u_{\text{CR}} \cdot \bar{\Lambda} - |\nabla_{\text{NC}} u_{\text{CR}}| |\Lambda_{j}|$$

$$= |\nabla_{\text{NC}} u_{\text{CR}}|^{2} / |\nabla_{\text{NC}} u_{\text{CR}}| - |\nabla_{\text{NC}} u_{\text{CR}}| |\Lambda_{j}|$$

$$= |\nabla_{\text{NC}} u_{\text{CR}}| (1 - |\Lambda_{j}|)$$

$$\geqslant 0.$$

Falls $|\nabla_{NC}u_{CR}| = 0$, gilt diese Ungleichung ebenfalls. Daraus folgt

$$(\nabla_{\text{NC}} u_{\text{CR}}, E_j)_{L^2(\Omega)} = \int_{\Omega} \nabla_{\text{NC}} u_{\text{CR}} \cdot E_j \, dx \ge 0.$$
 (5.7)

Mit (5.6) und (5.7) folgt nun

$$\left(\frac{E_j - E_{j-1}}{\tau} + \nabla_{\mathrm{NC}} u_{j-1} - \nabla_{\mathrm{NC}} (e_{j-1} - e_{j-2}), E_j\right)_{L^2(\Omega)} \leqslant (\nabla_{\mathrm{NC}} u_{\mathrm{CR}}, E_j)_{L^2(\Omega)}$$

für alle $j \in \mathbb{N}$, was nach Definition von e_{j-1} äquivalent ist zu

$$\left(\frac{E_j - E_{j-1}}{\tau} - \nabla_{\text{NC}}(2e_{j-1} - e_{j-2}), E_j\right)_{L^2(\Omega)} \le 0.$$
 (5.8)

Unter Nutzung von $-v_j=(e_j-e_{j-1})/\tau,$ (5.4), $\tau>0$ und (5.8) erhalten wir

$$\begin{split} &\|e_j\|_{\mathrm{NC}}^2 - \|e_{j-1}\|_{\mathrm{NC}}^2 + \|E_j\|_{L^2(\Omega)}^2 - \|E_{j-1}\|_{L^2(\Omega)}^2 + \|e_j - e_{j-1}\|_{\mathrm{NC}}^2 + \|E_j - E_{j-1}\|_{L^2(\Omega)}^2 \\ &= 2a_{\mathrm{NC}}(e_j, e_j - e_{j-1}) + 2(E_j, E_j - E_{j-1})_{L^2(\Omega)} \\ &= -2\tau a_{\mathrm{NC}}(e_j, v_j) + 2(E_j, E_j - E_{j-1})_{L^2(\Omega)} \\ &= -2\tau \alpha \|e_j\|_{L^2(\Omega)}^2 + 2\tau \left(E_j, -\nabla_{\mathrm{NC}}e_j + \frac{E_j - E_{j-1}}{\tau}\right)_{L^2(\Omega)} \\ &\leqslant -2\tau \alpha \|e_j\|_{L^2(\Omega)}^2 + 2\tau \left(E_j, -\nabla_{\mathrm{NC}}e_j + \frac{E_j - E_{j-1}}{\tau}\right)_{L^2(\Omega)} \\ &- 2\tau \left(\frac{E_j - E_{j-1}}{\tau} - \nabla_{\mathrm{NC}}(2e_{j-1} - e_{j-2}), E_j\right)_{L^2(\Omega)} \\ &= -2\tau \alpha \|e_j\|_{L^2(\Omega)}^2 - 2\tau \left(E_j, \nabla_{\mathrm{NC}}(e_j - 2e_{j-1} + e_{j-2})\right)_{L^2(\Omega)}. \end{split}$$

Für jedes $J \in \mathbb{N}$ führt die Summation über $j = 1, \dots, J$ und eine Äquivalenzumfomung zu

$$|||e_{J}|||_{NC}^{2} + ||E_{J}||_{L^{2}(\Omega)}^{2} + \sum_{j=1}^{J} \left(|||e_{j} - e_{j-1}||_{NC}^{2} + ||E_{j} - E_{j-1}||_{L^{2}(\Omega)}^{2} \right)$$

$$\leq |||e_{0}||_{NC}^{2} + ||E_{0}||_{L^{2}(\Omega)}^{2} - 2\tau\alpha \sum_{j=1}^{J} ||e_{j}||_{L^{2}(\Omega)}^{2}$$

$$-2\tau \sum_{j=1}^{J} \left(E_{j}, \nabla_{NC}(e_{j} - 2e_{j-1} + e_{j-2}) \right)_{L^{2}(\Omega)}.$$
(5.9)

Dabei lässt sich die letzt Summe, unter Beachtung von $e_{-1}=e_0$, umformen zu

$$\begin{split} &\sum_{j=1}^{J} \left(E_{j}, \nabla_{\text{NC}}(e_{j} - 2e_{j-1} + e_{j-2}) \right)_{L^{2}(\Omega)} \\ &= \sum_{j=1}^{J} (E_{j}, \nabla_{\text{NC}}(e_{j} - e_{j-1}))_{L^{2}(\Omega)} - \sum_{j=0}^{J-1} (E_{j+1}, \nabla_{\text{NC}}(e_{j} - e_{j-1}))_{L^{2}(\Omega)} \\ &= \sum_{j=1}^{J-1} \left(E_{j} - E_{j+1}, \nabla_{\text{NC}}(e_{j} - e_{j-1}) \right)_{L^{2}(\Omega)} + (E_{J}, \nabla_{\text{NC}}(e_{J} - e_{J-1}))_{L^{2}(\Omega)} \\ &- (E_{1}, \nabla_{\text{NC}}(e_{0} - e_{-1}))_{L^{2}(\Omega)} \\ &= \sum_{j=1}^{J-1} \left(E_{j} - E_{j+1}, \nabla_{\text{NC}}(e_{j} - e_{j-1}) \right)_{L^{2}(\Omega)} + (E_{J}, \nabla_{\text{NC}}(e_{J} - e_{J-1}))_{L^{2}(\Omega)} \end{split}$$

und da die linke Seite von (5.9) nicht negativ ist, gilt damit für jedes $0 < \tau \le 1$, dass

$$\tau \left(\|\|e_J\|_{\mathrm{NC}}^2 + \|E_J\|_{L^2(\Omega)}^2 + \sum_{j=1}^J \left(\|\|e_j - e_{j-1}\|_{\mathrm{NC}}^2 + \|E_j - E_{j-1}\|_{L^2(\Omega)}^2 \right) \right)$$

$$\leq \|\|e_0\|_{\mathrm{NC}}^2 + \|E_0\|_{L^2(\Omega)}^2 - 2\tau\alpha \sum_{j=1}^J \|e_j\|_{L^2(\Omega)}^2$$

$$-2\tau \left(\sum_{j=1}^{J-1} (E_j - E_{j+1}, \nabla_{\mathrm{NC}}(e_j - e_{j-1}))_{L^2(\Omega)} + (E_J, \nabla_{\mathrm{NC}}(e_J - e_{J-1}))_{L^2(\Omega)} \right).$$

Division durch τ ergibt

$$|||e_{J}|||_{NC}^{2} + ||E_{J}||_{L^{2}(\Omega)}^{2} + \sum_{j=1}^{J} \left(|||e_{j} - e_{j-1}|||_{NC}^{2} + ||E_{j} - E_{j-1}||_{L^{2}(\Omega)}^{2} \right)$$

$$\leq \tau^{-1} (|||e_{0}|||_{NC}^{2} + ||E_{0}||_{L^{2}(\Omega)}^{2}) - 2\alpha \sum_{j=1}^{J} ||e_{j}||_{L^{2}(\Omega)}^{2}$$

$$- 2 \sum_{j=1}^{J-1} (E_{j} - E_{j+1}, \nabla_{NC}(e_{j} - e_{j-1}))_{L^{2}(\Omega)} - 2(E_{J}, \nabla_{NC}(e_{J} - e_{J-1}))_{L^{2}(\Omega)}.$$
(5.10)

Schließlich ergibt eine Abschätzung unter Nutzung von (5.10), dass

$$2\alpha \sum_{j=1}^{J} \|e_{j}\|_{L^{2}(\Omega)}^{2} \leq 2\alpha \sum_{j=1}^{J} \|e_{j}\|_{L^{2}(\Omega)}^{2}$$

$$+ \|E_{J} + \nabla_{NC}(e_{J} - e_{J-1})\|_{L^{2}(\Omega)}^{2} + \|e_{J}\|_{NC}^{2} + \|E_{1} - E_{0}\|_{L^{2}(\Omega)}^{2}$$

$$+ \sum_{j=1}^{J-1} \|\nabla_{NC}(e_{j} - e_{j-1}) - (E_{j+1} - E_{j})\|_{L^{2}(\Omega)}^{2}$$

$$= 2\alpha \sum_{j=1}^{J} \|e_{j}\|_{L^{2}(\Omega)}^{2}$$

$$+ \|e_{J}\|_{NC}^{2} + \|E_{J}\|_{L^{2}(\Omega)}^{2} + \sum_{j=1}^{J} (\|e_{j} - e_{j-1}\|_{NC}^{2} + \|E_{j} - E_{j-1}\|_{L^{2}(\Omega)}^{2})$$

$$+ 2\sum_{j=1}^{J-1} (E_{j} - E_{j+1}, \nabla_{NC}(e_{j} - e_{j-1}))_{L^{2}(\Omega)}$$

$$+ 2(E_{J}, \nabla_{NC}(e_{J} - e_{J-1}))_{L^{2}(\Omega)}$$

$$\leq \tau^{-1} (\|e_{0}\|_{NC}^{2} + \|E_{0}\|_{L^{2}(\Omega)}^{2}).$$

Das zeigt, dass $\sum_{j=1}^{\infty} \|e_j\|_{L^2(\Omega)}^2$ nach oben beschränkt ist, was impliziert, dass $\|e_j\|_{L^2(\Omega)} \to 0$ für $j \to \infty$.

6 Implementierung

6.1 Seitennummerierungskonvention lokal

welche Funktionen haben welche, an welche Stellen wird also umnummeriert

6.2 Aufstellung des zu lösenden LGS

Aufstellung der Gradienten etc.

6.3 Berechnung der Werte einer CR Funktion auf einem Element in den Knoten

Sei $T \in \mathcal{T}$ mit $T = \text{conv}\{P_1, P_2, P_3\}$. Die Seiten von T seien $F_1 = \text{conv}\{P_1, P_2\}$, $F_2 = \text{conv}\{P_2, P_3\}$ und $F_3 = \text{conv}\{P_3, P_1\}$. Die Funktion $u_{\text{CR}} \in \text{CR}^1(\mathcal{T})$ habe in den Mittelpunkte der Seiten die Werte $u_j = u_{\text{CR}}(\text{mid}(F_j))$ für alle j = 1, 2, 3. Gesucht sind die Werte in den Knoten $u_{\text{CR}}(P_1)$, $u_{\text{CR}}(P_2)$ und $u_{\text{CR}}(P_3)$.

Da $u_{\text{CR}} \in \text{CR}^1(\mathcal{T})$ affin-linear ist, gilt für eine Kante $F = \text{conv}\{P, Q\}$, dass der Wert $u_{\text{CR}}(\text{mid}(F))$ von u_{CR} im Mittlpunkt der Kante gegeben ist durch den Mittelwert der Werte von u_{CR} in P und Q.

Somit erhalten wir die drei Gleichungen

$$u_1 = \frac{u_{\rm CR}(P_1) + u_{\rm CR}(P_2)}{2}, \quad u_2 = \frac{u_{\rm CR}(P_2) + u_{\rm CR}(P_3)}{2}, \quad u_3 = \frac{u_{\rm CR}(P_3) + u_{\rm CR}(P_1)}{2}.$$

Sind u_1 , u_2 und u_3 bekannt, können wir dieses Gleichungssystem nach $u_{\rm CR}(P_1)$, $u_{\rm CR}(P_2)$ und $u_{\rm CR}(P_3)$ lösen und erhalten

$$u_{\rm CR}(P_1) = u_1 + u_3 - u_2, \quad u_{\rm CR}(P_2) = u_1 + u_2 - u_3, \quad u_{\rm CR}(P_3) = u_2 + u_3 - u_1.$$

Dies wird realisiert in der Methode computeNodeValuesCR4e.

6.4 Berechnung der L1 Norm der Sprünge

Für die Berechnung des Verfeinerungsindikators [verweis auf entsprechende section] und zur Auswertung der kontinuierlichen Energie $E(v_{\rm CR})$ einer Crouzeix-Raviart Funktion $v_{\rm CR}$, deren diskrete Energie $E_{\rm NC}(v_{\rm CR})$ bereits bekannt ist, werden die L^1 Normen der Kantensprünge $[v_{\rm CR}]_F$ für alle Kanten $F \in \mathcal{F}$ der Triangulierung benötigt, wobei für eine Innenkante $F \in \mathcal{F}(\Omega)$, die gemeinsame Kante der Dreiecke T_+ und T_- ist, gilt $[v_{\rm CR}]_F := (v_{\rm CR}|_{T_+})|_F - (v_{\rm CR}|_{T_-})|_F$ und $[v_{\rm CR}]_F := v_{\rm CR}|_F$ für eine Randkante $F \in \mathcal{F}(\partial\Omega)$. Die Konvention der Wahl von T_+ und T_- ist hier irrelevant, da wir zur Berechung von $\|[v_{\rm CR}]_F\|_{L^1(\Omega)}$ ausschließlich den Betrag $|[v_{\rm CR}]_F|$ benötigen.

Da $v_{\text{CR}} \in \text{CR}^1(\mathcal{T})$, ist $[v_{\text{CR}}]_F$ affin linear und es gilt $[v_{\text{CR}}]_F(\text{mid}(F)) = 0$ für alle Innenkanten $F \in \mathcal{F}(\Omega)$ und, falls $v_{\text{CR}} \in \text{CR}^1_0(\mathcal{T})$, auch für alle Randkanten $F \in \mathcal{F}(\partial\Omega)$.

Die folgenden Aussagen gelten also für Innenkanten beliebiger Crouzeix-Raviart Funktionen, wir beschränken uns aber von nun an auf Funktionen $v_{\rm CR} \in {\rm CR}_0^1(\mathcal{T})$.

Betrachten wir also eine beliebige Kante $F \in \mathcal{F}$ mit $F = \text{conv}\{P_1, P_2\}$. Wir definieren eine Parametrisierung $\gamma: [0,2] \to \mathbb{R}^2$ von F durch $\gamma(t) := \frac{t}{2}(P_2 - P_1) + P_1$. Es gilt $|\gamma'| \equiv \frac{1}{2}|P_2 - P_1| = \frac{1}{2}|F|$.

Sei außerdem $p(t) := [v_{\text{CR}}]_F(\gamma(t))$. Dann gilt nach [cite Wegintegrale]

$$\|[v_{\rm CR}]_F\|_{L^1(F)} = \int_F |[v_{\rm CR}]_F| \, \mathrm{d}s = \int_0^2 |p(t)| \, |\gamma'(t)| \, \mathrm{d}t = \frac{|F|}{2} \int_0^2 |p(t)| \, \mathrm{d}t$$
$$= \frac{|F|}{2} \left(\int_0^1 |p(t)| \, \mathrm{d}t + \int_1^2 |p(t)| \, \mathrm{d}t \right).$$

Da $v_{\text{CR}} \in \text{CR}_0^1(\mathcal{T})$, ist |p| auf [0,1] und [1,2] jeweils ein Polynom vom Grad 1 mit $p(1) = [v_{\text{CR}}]_F(\text{mid}(F)) = 0$, womit sich |p| jeweils explizit ausdrücken lässt durch |p|(t) = (1-t)|p|(0) für alle $t \in [0,1]$ und |p|(t) = (t-1)|p|(2) für alle $t \in [1,2]$. Die Mittelpunktsregel $\int_a^b f(x) \, \mathrm{d}x \approx (b-a)f((a+b)/2)$ [cite] ist exakt für Polynome vom Grad 1 und somit gilt

$$\int_0^1 |p(t)| dt = (1-0)|p| \left(\frac{1}{2}\right) = \frac{|p|(0)}{2} \quad \text{und}$$
$$\int_1^2 |p(t)| dt = (2-1)|p| \left(\frac{3}{2}\right) = \frac{|p|(2)}{2}.$$

Somit erhalten wir insgesamt

$$||[v_{\rm CR}]_F||_{L^1(F)} = \frac{|F|}{2} \left(\frac{|p|(0)}{2} + \frac{|p|(2)}{2} \right) = \frac{|F|}{4} (|p|(0) + |p|(2))$$
$$= \frac{|F|}{4} (|[v_{\rm CR}]_F|(P_1) + |[v_{\rm CR}]_F|(P_2)),$$

beziehungsweise $||[v_{\text{CR}}]_F||_{L^1(F)} = \frac{|F|}{4} (|v_{\text{CR}}|(P_1) + |v_{\text{CR}}|(P_2))$ für eine Randkanten $F \in \mathcal{F}(\partial\Omega)$.

Diese Berechnung ist realisiert durch die Funktionen computeBlaJumps, die die absoluten Sprünge in den Endpunkte einer Kante berchnet, computeAbsJumps, die ..., und computeL1NormOfJumps, die schließlich die L^1 Norm aller Kantensprünge berechnet....

6.5 Implementation der GLEB

6.6 Implementation des Refinement Indicators

6.7 Implementaition der exakten Energie Berechnung

7 Nutzung des Programms

7.1 Erstellen eines lauffähigen Benchmarks (Minimalbeispeil)

Beschreibung der wichtigsten Parameter und Idee hinter structs

Ordner, in denen die Funktionen für rechte Seite, Gradient, exakte Lösung etc liegen müsssen

Wahrscheinlich flag für flag durchgehen, erklären, welche automatisch gesetzt werden u.U., und wann immer nötig sagen, was man vorher machen muss, wo man Funktionen erstellen muss etc.

fur exakte Lösungs Beispiel usw. Berechnung der exakten Energie, also alles was nur mehr Möglichkeiten bietet, Verweis auf die nächste Section (in der dann sagen, welche Flags gesetzt werden können)

7.2 Konstruktion eines Experiments mit exakter Lösung

Um eine rechte Seite zu finden, zu der die exakte Lösung bekannt ist, wähle eine Funktion des Radius $u \in H_0^1([0,1])$ mit Träger im zweidimensionalen Einheitskreis. Insbesondere muss damit gelten u(1) = 0 und u stetig. Die rechte Seite als Funktion des Radius $f \in L^2([0,1])$ ist dann gegeben durch

$$f := \alpha u - \partial_r(\operatorname{sign}(\partial_r u)) - \frac{\operatorname{sign}(\partial_r u)}{r},$$

wobei für $F \in \mathbb{R}^2 \setminus \{0\}$ gilt $\operatorname{sign}(F) := \left\{\frac{F}{|F|}\right\}$ und $\operatorname{sign}(0) \in B_1(0)$. Damit außerdem gilt $f \in H_0^1([0,1])$, was z.B. für GLEB relevant ist, muss also noch Stetigkeit von $\operatorname{sign}(\partial_r u)$ und $\partial_r(\operatorname{sign}(\partial_r u))$ verlangt werden und $\partial_r(\operatorname{sign}(\partial_r u(1))) = \operatorname{sign}(\partial_r u(1)) = 0$. Damit f in 0 definierbar ist, muss auch gelten $\operatorname{sign}(\partial_r u) \in o(r)$ für $r \to 0$.

Damit erhält man für die Funktion

$$u_1(r) := \begin{cases} 1, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{6}, \\ 1 + (6r - 1)^{\beta}, & \text{wenn } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ 2, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ 2(\frac{5}{2} - 3r)^{\beta}, & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ 0, & \text{wenn } \frac{5}{6} \leqslant r, \end{cases}$$

wobei $\beta \geqslant 1/2$, mit der Wahl

$$\operatorname{sign}(\partial_r u_1(r)) = \begin{cases} 12r - 36r^2, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{6}, \\ 1, & \text{wenn } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ \cos(\pi(6r - 2)), & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ -1, & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ -\frac{1 + \cos(\pi(6r - 5))}{2}, & \text{wenn } \frac{5}{6} \leqslant r \leqslant 1, \end{cases}$$

die rechte Seite

$$f_1(r) \coloneqq \begin{cases} \alpha - 12(2 - 9r), & \text{wenn } 0 \leqslant r \leqslant \frac{1}{6}, \\ \alpha(1 + (6r - 1)^{\beta}) - \frac{1}{r}, & \text{wenn } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ 2\alpha + 6\pi \sin(\pi(6r - 2)) - \frac{1}{r}\cos(\pi(6r - 2)), & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ 2\alpha(\frac{5}{2} - 3r)^{\beta} + \frac{1}{r}, & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ -3\pi \sin(\pi(6r - 5)) + \frac{1 + \cos(\pi(6r - 5))}{2r}, & \text{wenn } \frac{5}{6} \leqslant r \leqslant 1. \end{cases}$$

Für die Funktion

$$u_2(r) := \begin{cases} 1, & \text{wenn } 0 \leqslant r \leqslant \frac{1-\beta}{2}, \\ -\frac{1}{\beta}r + \frac{1+\beta}{2\beta}, & \text{wenn } \frac{1-\beta}{2} \leqslant r \leqslant \frac{1+\beta}{2}, \\ 0, & \text{wenn } \frac{1+\beta}{2} \leqslant r, \end{cases}$$

erhält man mit der Wahl

$$sign(\partial_{r}u_{2}(r))
:= \begin{cases} \frac{4}{1-\beta}r\left(\frac{1}{1-\beta}r-1\right), & \text{wenn } 0 \leqslant r \leqslant \frac{1-\beta}{2}, \\ -1, & \text{wenn } \frac{1-\beta}{2} \leqslant r \leqslant \frac{1+\beta}{2}, \\ \frac{4}{(\beta-1)^{3}}\left(4r^{3}-3(\beta+3)r^{2}+6(\beta+1)r-3\beta-1\right), & \text{wenn } \frac{1+\beta}{2} \leqslant r \leqslant 1, \end{cases}$$
rechte Seite

die rechte Seite

$$f_2(r) \coloneqq \begin{cases} \alpha - \frac{4}{1-\beta} \left(\frac{3}{1-\beta} r - 2 \right), & \text{wenn } 0 \leqslant r \leqslant \frac{1-\beta}{2}, \\ -\frac{\alpha}{\beta} \left(r - \frac{1+\beta}{2} \right) + \frac{1}{r}, & \text{wenn } \frac{1-\beta}{2} \leqslant r \leqslant \frac{1+\beta}{2}, \\ \frac{-4}{(\beta-1)^3} \left(16r^2 - 9(\beta+3)r + 12(\beta+1) - \frac{3\beta+1}{r} \right), & \text{wenn } \frac{1+\beta}{2} \leqslant r \leqslant 1. \end{cases}$$

Es folgen zwei Beispiele mit exakter Lösung $u_3 = u_4 \in H_0^2((0,1)^2)$, gegeben durch

$$u_3(r) = u_4(r) := \begin{cases} 1, & \text{wenn } 0 \le r \le \frac{1}{3}, \\ 54r^3 - 81r^2 + 36r - 4, & \text{wenn } \frac{1}{3} \le r \le \frac{2}{3}, \\ 0, & \text{wenn } \frac{2}{3} \le r. \end{cases}$$

Mit der Wahl

$$\operatorname{sign}(\partial_r u_3(r)) = \begin{cases} 54r^3 - 27r^2, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{3}, \\ -1, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{2}{3}, \\ -54r^3 + 135r^2 - 108r + 27, & \text{wenn } \frac{2}{3} \leqslant r \leqslant 1, \end{cases}$$

erhalten wir die rechte Seite

$$f_3(r) := \begin{cases} \alpha - 216r^2 + 81r, & \text{wenn } 0 \le r \le \frac{1}{3}, \\ \alpha \left(54r^3 - 81r^2 + 36r - 4\right) + \frac{1}{r}, & \text{wenn } \frac{1}{3} \le r \le \frac{2}{3}, \\ 216r^2 - 405r + 216 - \frac{27}{r}, & \text{wenn } \frac{2}{3} \le r \le 1, \end{cases}$$

für die gilt $f_3 \in H_0^1$ und mit der Wahl

$$\operatorname{sign}(\partial_r u_4(r))$$

$$:= \begin{cases} -1458r^5 + 1215r^4 - 270r^3, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{3}, \\ -1, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{2}{3}, \\ -243r^4 + 756r^3 - 864r^2 + 432r - 81, & \text{wenn } \frac{2}{3} \leqslant r \leqslant 1, \end{cases}$$

erhalten wir die rechte Seite

$$f_4(r) := \begin{cases} \alpha + 8748r^4 - 6075r^3 + 1080r^2, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{3}, \\ \alpha \left(54r^3 - 81r^2 + 36r - 4\right) + \frac{1}{r}, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{2}{3}, \\ 1215r^3 - 3024r^2 + 2592r - 864 + \frac{81}{r}, & \text{wenn } \frac{2}{3} \leqslant r \leqslant 1, \end{cases}$$

für die gilt $f_4 \in H_0^2$.

Damit können Experimente durchgeführt werden bei denen exactSolutionKnown = true gesetzt werden kann und entsprechend auch der L^2 -Fehler berechnet wird.

Soll nun auch die Differenz der exakten Energie mit der garantierten unteren Energie Schranke (GLEB) berechnet werden, dann werden die stückweisen Gradienten der exakten Lösung und der rechten Seite benötigt.

Dabei gelten folgende Ableitungsregeln für die Ableitungen einer Funktion g, wenn man ihr Argument $x=(x_1,x_2)\in\mathbb{R}^2$ in Polarkoordinaten mit Länge $r=\sqrt{x_1^2+x_2^2}$ und Winkel $\varphi=\mathrm{atan}2(x_2,x_1)$, wobei

$$\operatorname{atan2}(x_{2}, x_{1}) := \begin{cases} \arctan\left(\frac{x_{2}}{x_{1}}\right), & \text{wenn } x_{1} > 0, \\ \arctan\left(\frac{x_{2}}{x_{1}}\right) + \pi, & \text{wenn } x_{1} < 0, x_{2} \geqslant 0, \\ \arctan\left(\frac{x_{2}}{x_{1}}\right) - \pi, & \text{wenn } x_{1} < 0, x_{2} < 0, \\ \frac{\pi}{2}, & \text{wenn } x_{1} = 0, x_{2} > 0, \\ -\frac{\pi}{2}, & \text{wenn } x_{1} = 0, x_{2} < 0, \\ \text{undefiniert}, & \text{wenn } x_{1} = x_{2} = 0, \end{cases}$$

auffasst,

$$\partial_{x_1} = \cos(\varphi)\partial_r - \frac{1}{r}\sin(\varphi)\partial_\varphi,$$

$$\partial_{x_2} = \sin(\varphi)\partial_r - \frac{1}{r}\cos(\varphi)\partial_\varphi.$$

Ist g vom Winkel φ unabhängig, so ergibt sich

$$\nabla_{(x_1,x_2)}g = (\cos(\varphi),\sin(\varphi))\partial_r g.$$

Unter Beachtung der trigonometrischen Zusammenhänge

$$\sin(\arctan(y)) = \frac{y}{\sqrt{1+y^2}},$$
$$\cos(\arctan(y)) = \frac{1}{\sqrt{1+y^2}}$$

ergibt sich

$$(\cos(\varphi), \sin(\varphi)) = (x_1, x_2) \frac{1}{r}$$

und damit

$$\nabla_{(x_1,x_2)}g = (x_1,x_2)\frac{\partial_r g}{r},$$

es muss also nur $\partial_r g$ bestimmt werden.

Die entsprechenden Ableitungen lauten

$$\partial_r f_1(r) = \begin{cases} 108, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{6}, \\ 6\alpha\beta(6r-1)^{\beta-1} + \frac{1}{r^2}, & \text{wenn } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ (36\pi^2 + \frac{1}{r^2})\cos(\pi(6r-2)) + \frac{6\pi}{r}\sin(\pi(6r-2)), & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ -\left(6\alpha\beta\left(\frac{5}{2} - 3r\right)^{\beta-1} + \frac{1}{r^2}\right), & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ -\left((18\pi^2 + \frac{1}{2r^2})\cos(\pi(6r-5)) + \frac{1}{2r^2} + \frac{3\pi}{r}\sin(\pi(6r-5))\right), & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ 6\beta(6r-1)^{\beta-1}, & \text{wenn } \frac{1}{6} \leqslant r \leqslant \frac{1}{3}, \\ 0, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ -6\beta\left(\frac{5}{2} - 3r\right)^{\beta-1}, & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ 0, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{1}{2}, \\ -6\beta\left(\frac{5}{2} - 3r\right)^{\beta-1}, & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{5}{6}, \\ 0, & \text{wenn } \frac{1}{2} \leqslant r \leqslant \frac{1+\beta}{2}, \\ -\frac{\alpha}{\beta} - \frac{1}{r^2}, & \text{wenn } 0 \leqslant r \leqslant \frac{1-\beta}{2}, \\ -\frac{\alpha}{(1-\beta)^3}\left(32r - 9(\beta+3) + \frac{3\beta+1}{r^2}\right), & \text{wenn } \frac{1+\beta}{2} \leqslant r \leqslant 1, \end{cases}$$

$$\partial_r u_2(r) = \begin{cases} 0, & \text{wenn } 0 \leqslant r \leqslant \frac{1-\beta}{2}, \\ -\frac{1}{\beta}, & \text{wenn } \frac{1-\beta}{2} \leqslant r \leqslant \frac{1+\beta}{2}, \\ 0, & \text{wenn } \frac{1+\beta}{2} \leqslant r, \end{cases}$$

$$\partial_r f_3(r) = \begin{cases} -432r + 81, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{3}, \\ \alpha\left(162r^2 - 162r + 36\right) - \frac{1}{r^2}, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{2}{3}, \\ 432r - 405 + \frac{27}{r^2}, & \text{wenn } \frac{2}{3} \leqslant r \leqslant 1, \end{cases}$$

$$\partial_r f_4(r) = \begin{cases} 34992r^3 - 18225r^2 + 2160r, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{3}, \\ \alpha\left(162r^2 - 162r + 36\right) - \frac{1}{r^2}, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{2}{3}, \\ 3645r^2 - 6048r + 2592 - 864 - \frac{81}{r^2}, & \text{wenn } \frac{2}{3} \leqslant r \leqslant 1, \end{cases}$$

$$\partial_r u_{3,4}(r) = \begin{cases} 0, & \text{wenn } 0 \leqslant r \leqslant \frac{1}{3}, \\ 0, & \text{wenn } \frac{1}{3} \leqslant r \leqslant \frac{2}{3}, \\ 0, & \text{wenn } \frac{2}{3} \leqslant r \leqslant 1, \end{cases}$$

Mit diesen Informationen kann mit computeExactEnergyBV.m die exakte Energie berechnet werden und somit durch eintragen der exakten Energie in die Variable exactEnergy im Benchmark und setzen der Flag useExactEnergy=true das Experiment durch anschließendes Ausführen von startAlgorithmCR.m gestartet werden.

7.3 Bilder als Input und Rauschverminderung

7.4 Alternative Kapitelstruktur: Anwendung am Beispiel der Benchmarks

- 7.4.1 Experimente mit exakter Lösung: Benchmarks 'f01Bench' und 'f02' Bench
- 7.4.2 Bilder als Input und Rauschverminderung: 'cameramanBench' und ...

8 Numerische Beispiele

Mache alle mögliche Sachen, prüfe Dinge die gelten sollen. Für ein Beispiel (z.B. CCs) fange mit basics an, also mal an einem Iterationsplot aufzeigen, dass die Energie tatsächlich von oben gegen was konvergiert und gehe dann weiter zu anderen Themen wie den Raten, GLEB etc.

9 Auswertung

Literatur

- [ABM14] Hedy Attouch, Giuseppe Buttazzo und Gérard Michaille. Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. Second Edition. Bd. 17. MOS-SIAM Series on Optimization. Philadelphia: Society for Industrial und Applied Mathematics, Mathematical Optimization Society, 2014. ISBN: 978-1-611973-47-1.
- [AK06] Gilles Aubert und Pierre Kornprobst. Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations. Second Edition. Bd. 147. Applied Mathematical Sciences. New York: Springer, 2006. ISBN: 0-387-32200-0.
- [Bar12] Sören Bartels. "Total variation minimization with finite elements: convergence and iterative solution". In: SIAM Journal on Numerical Analysis 50.3 (2012), S. 1162–1180. URL: https://doi.org/10.1137/11083277X.
- [Bar15a] Sören Bartels. "Error control and adaptivity for a variational model problem defined on functions of bounded variation". In: *Mathematics of Computation* 84.293 (2015), S. 1217–1240. URL: https://doi.org/10.1090/S0025-5718-2014-02893-7.
- [Bar15b] Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Bd. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1
- [Bra98] Andrea Braides. Approximation of free-discontinuity problems. Bd. 1694. Lecture Notes in Mathematics. Berlin, Heidelberg, New York: Springer-Verlag, 1998. ISBN: 3-540-64771-6. URL: https://doi.org/10.1007/BFb0097344.
- [Car09a] Carsten Carstensen. AFEM-Softwarepaket der Arbeitsgruppe Numerische Analysis. Institut für Mathematik der Humboldt-Universität zu Berlin, 2009.
- [Car09b] Carsten Carstensen. "Yonsei Lectures at the WCU Department Computational Science and Engineering on Finite Element Method". lokal verfügbar, 2009.
- [CP10] Antonin Chambolle und Thomas Pock. "A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging". In: *Journal of Mathematical Imaging and Vision* 40 (2010), S. 120–145. ISSN: 0924-9907. DOI: 10.1007/s10851-010-0251-1. URL: https://doi.org/10.1007/s10851-010-0251-1.
- [Dac89] Bernard Dacorogna. Direct Methods in the Calculus of Variations. Bd. 78. Applied Mathematical Sciences. Berlin, Heidelberg: Springer-Verlag, 1989. ISBN: 978-3-642-51442-5.
- [EG92] Lawrence C. Evans und Ronald F. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, 1992. ISBN: 0-8493-7157-0.
- [Get12] Pascal Getreuer. "Rudin-Osher-Fatemi Total Variation Denoising using Split Bregman". In: *Image Processing On Line* 2 (2012), S. 74–95. URL: https://doi.org/10.5201/ipol.2012.g-tvd.
- [Roc70] R. Tyrrell Rockafellar. *Convex Analysis*. New Jersey: Princeton University Press, 1970. ISBN: 0-691-08069-0.

- [ROF92] Leonid I. Rudin, Stanley Osher und Emad Fatemi. "Nonlinear total variation based noise removal algorithms". In: Bd. 60. 1-4. 1992, S. 259–268. DOI: 10. 1016/0167-2789(92)90242-F. URL: https://doi.org/10.1016/0167-2789(92)90242-F.
- [Zei85] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization. New York: Springer Science+Business Media, LLC, 1985. ISBN: 978-1-4612-9529-7.
- [Zei86] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications. I: Fixed-Point Theorems. New York, Berlin, Heidelberg, Tokyo: Springer-Verlag, 1986. ISBN: 0-387-90914-1.
- [Zei90a] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications. II/A: Linear Monotone Operators. New York: Springer Science+Business Media, LLC, 1990. ISBN: 978-1-4612-6971-7.
- [Zei90b] Eberhard Zeidler. Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators. New York: Springer Science+Business Media, LLC, 1990. ISBN: 978-1-4612-6969-4.

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig verfasst und noch nicht für andere Prüfungen eingereicht habe. Sämtliche Quellen, einschließlich Internetquellen, die unverändert oder abgewandelt wiedergegeben werden, insbesondere Quellen für Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt, dass bei Verstößen gegen diese Grundsätze ein Verfahren wegen Täuschungsversuchs bzw. Täuschung eingeleitet wird.

Berlin, den 23. März 2021,