HOT AIR TYPE HEATER

Patent number:

JP4348701

Publication date:

1992-12-03

Inventor:

ODA TAKESHI

Applicant:

MATSUSHITA ELECTRIC WORKS LTD

Classification:

- international:

A45D20/10; A45D20/00; (IPC1-7): A45D20/10

- european:

Application number:

JP19910121648 19910528

Priority number(s):

JP19910121648 19910528

Report a data error here

Abstract of JP4348701

PURPOSE:To offer the hot air type heater which is free from a deformation caused by a work miss at the time of assembly and a thermal deformation caused key using it for many hours and can exhaust air of a uniform temperature distribution from the whole exhaust port. CONSTITUTION:A face-like heater body 4 formed by executing pattern wiring of a heating element 52 onto a substrate 5 prodded with an electric insulating property and heat resistance is provided in a ventilation passage so as to become roughly parallel to the flow direction of ventilation.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-348701

(43)公開日 平成4年(1992)12月3日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FI

技術表示箇所

A 4 5 D 20/10

102

6704 - 3B

審査請求 未請求 請求項の数2(全 4 頁)

(21)出願番号

特願平3-121648

(22)出願日

平成3年(1991)5月28日

(71)出願人 000005832

松下電工株式会社

大阪府門真市大字門真1048番地

(72)発明者 小田 丈司

大阪府門真市大字門真1048番地松下電工株

式会社内

(74)代理人 弁理士 石田 長七 (外2名)

(54)【発明の名称】 温風器

(57)【要約】

【目的】 組立時の作業ミスによる変形や長期間の使用による熱変形がなく、吐出口全体から均一な温度分布の風を出すことができる。

【構成】 電気的絶縁性と耐熱性とを備えた基板 5 上に発熱体 5 2 をパターン配線することで形成した面状のヒーター体 4 を送風路中に送風の流れ方向に対して略平行となるように配設している。

1

【特許請求の範囲】

電気的絶縁性と耐熱性とを備えた基板上 【請求項1】 に発熱体をパターン配線することで形成した面状のヒー ター体を送風路中に送風の流れ方向に対して略平行とな るように配設していることを特徴とする温風器。

【請求項2】 ヒーター体を送風の流れ方向に対して小 角度をもたせて配設していることを特徴とする請求項1 記載の温風器。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は温風を吹き出すヘアドラ イヤーのような温風器に関するものである。

[0002]

【従来の技術】従来の温風器のヒータープロックは、図 9に示すように、十字型に組み合わせた基板9の縁を通 るように波型に屈曲させたヒーター線90を巻装したも のとして形成されている。図中1は筒状のハウジング、 2はファン、3はモータ、91は分圧抵抗である。

[0003]

【発明が解決しようとする課題】この場合、ヒーター線 20 90における基板9に係止された部分ではその位置ずれ が生ずることはないが、基板9と基板9との間ではヒー ター線90を支持するものがないために、基板9にヒー ター線90を巻き付ける際にヒーター線90が変形した り長期間の使用中に熱によってヒーター線90が変形し たりしてしまい、この結果ヒーター線90の位置がずれ て風温の分布が変化し、局部的に熱い風を吹き出したり 逆に低温の風を吹き出したりするという問題を有してい る。

であり、その目的とするところは組立時の作業ミスによ る変形や長期間の使用による熱変形がなく、吐出口全体 から均一な温度分布の風を出すことができる温風器を提 供するにある。

[0005]

【課題を解決するための手段】しかして本発明は、電気 的絶縁性と耐熱性とを備えた基板上に発熱体をパターン 配線することで形成した面状のヒーター体を送風路中に 送風の流れ方向に対して略平行となるように配設してい パターン配線されたものとして発熱体が形成されている ために、発熱体が変形したりすることがないものであ る。

[0006]

【実施例】以下本発明を図示の実施例に基づいて詳述す ると、図1において、1は一端を吸い込み口11、他端 を吐出口12とする円筒状に形成されたハウジングであ り、その内部には吸い込みロ11側にファン2、中央部 にモータ3、吐出口12側にヒータープロックが配設さ れている。図中14は吐出口格子、15は内周筒、16 50 加で1000W) になる。

は外周筒、25は整流翼、35は整流器である。

【0007】ここにおけるヒーターブロックは3種6枚 のヒーター体4を内周筒15と外周筒16との間の空間 に放射状に配設されたものとして形成されている。これ らヒーター体4は、いずれもセラミック50と鉄51と セラミック50の3層からなる電気的絶縁性と耐熱性と を備えた基板5の片面もしくは両面には発熱体52がパ ターン配線され、発熱体52間の部分には小孔53が明 けられたものとして形成されている。この発熱体52の 10 パターン配線は、吸い込み口11側でピッチが狭く、吐 出口12側でピッチが広くなるようにされている。これ は吸い込み口11側では冷風が当たるために発熱体52 の密度を高く、吐出口12側では吸い込み口11側の発 熱体52で暖められた風がくるために密度を粗くし、ヒ ーターブロック全体の温度分布が均一となるようにして いるためである。

【0008】そして、3種のヒーター体4a,4b,4 c のうち、ヒーター体4 a は、図3(a) に示すように、 発熱体52のみがパターン配線され、ヒーター体4bは 図3(b) に示すようにモータ3に直列に接続される分圧 抵抗54もパターン配線され、ヒーター体4cは図3 (c)に示すように発熱体 5 2 のパターンの位置部をカッ トしてそこにサーモスイッチ58が取り付けられたもの となっている。

【0009】なお、ヒーター体4における発熱体52 は、基板5表面からある高さδをもつものとして形成さ れている。これはヒーター体4表面に沿って流れる風を 乱流とすることで発熱体52から風への伝熱効率を高め るためである。基板5に設けた小孔53も同じ理由で設 【0004】本発明はこのような点に鑑み為されたもの 30 けたものである。また、これらヒーター体4は図3から 明らかなように少しねじった形に形成されており、ハウ ジング1内に取り付けられた時、風の流れ方向に対して 略平行であるものの小角度をなすようにして、風温分布 が更に一定とできるようにしている。

【0010】図1~図5に示す実施例においては、ヒー ター体4aを3枚、ヒーター体4bを2枚、ヒーター体 4 cを1枚としてこれら6枚のヒーター体4を放射状に 並べているが、今、各ヒーター体4における発熱体52 の抵抗値をそれぞれ1. 7Ωとすれば、全体の抵抗値は ることに特徴を有している。本発明によれば、基板上に 40 10.2Ωとなり、100 V の電圧を印加すれば、約9 80Wのヒーターブロックとなる。図6に示すように、 ヒーター体4を一枚減らして5枚のヒーター体4でヒー タープロック4を構成すれば、全体の抵抗値は8.5Ω となり、約1180Wのものとなる。発熱体52を直列 に接続するのではなく、並列に接続するようにしてもよ い。この場合、各ヒーター体4の発熱体52の抵抗値を 50Ωに設定すると、6個を並列にした場合は全体の抵 抗値が8.33Ω(100V印加で1200W)、5個 を並列にした場合は全体の抵抗値が10Ω(100VF)

—2 —

B

3

【0011】分圧抵抗54が設けられたヒーター体4bの数を増やせば、モータ3にかかる印加電圧の切換段数を増やせるために、用途に応じたきめ細かい風量調節の行えるものとなる。ヒーター体4の配置の仕方は制限されるものではない。図7に示すように、格子状に配置してもよく、その他、同心円状、螺旋状に配列してもよい。また、前述のように、ヒーター体4上の発熱体52のピッチを吸い込み口11側と吐出口12側とで異ならせることに代えて、図8に示すように、ピッチは一定であるものの抵抗値が各部で異なるようにしてもよく、こ 10の場合、図示例では発熱体52の幅を吸い込み口11側と吐出口12側とで異ならせるようにしてもよい。

[0012]

【発明の効果】以上のように本発明においては、電気的 絶縁性と耐熱性とを備えた基板上に発熱体をパターン配 線することで形成した面状のヒーター体を送風路中に送 風の流れ方向に対して略平行となるように配設してお り、基板上にパターン配線されたものとして発熱体が形 成されているために、発熱体が組立時の作業ミスや長時間の使用による熱で変形したりすることがなく、したがって安定した温度分布の風を得ることができるものである。

【図面の簡単な説明】

- 【図1】一実施例の断面図である。
- 【図2】正面図である。
- 【図3】(a)(b)(c) は3種の基板の各斜視図である。
- 【図4】基板の断面図である。
- 【図5】回路図である。
 - 【図6】他例の正面図である。
 - 【図7】別の例の正面図である。
 - 【図8】基板の他例の斜視図である。
 - 【図9】従来例の断面図である。

【符号の説明】

- 4 ヒーター体
- 5 基板
- 5 2 発熱体

【図1】

-3 -

