Springboard Capstone 2 Final Presentation

ANALYSIS OF TEXAS HOLD'EM POKER STRATEGY

The Problem

- Winning poker strategies are very complex, which involves the odds, combinatorics, observation, and self-control.
- Recreational players enjoy playing poker, but do not have time nor the dedication to develop a winning strategy.
- The goal is to find a simple strategy that players can pick up and use immediately at the poker table.

Who Cares

Recreational poker players who intend on saving money in the game.

Poker room owners/online poker sites who will benefit from their players stay in the game for longer periods of time.

Poker Myths and Common Beliefs

The notion of "I have been unlucky for the past few days, so I will be lucky today". (gambler's fallacy)

➤ Poker is all about bluffing.

Reading other people's body expressions is a very important skill to have.

Logical factors that affect win rate

- The overall quality of hands the player plays, where higher quality of hands should win more
- Willingness to put money in the pot, this usually indicates the bluffing frequency, which is highly dependent on skill.
- Number of players in a hand, where more players will result in a lower chance of winning.

Data Information

- Records of all the poker hands played from 07/01/2009 until 07/23/2009 on an online poker site.
- Low stake poker hands (\$0.5/\$1 blinds) are chosen because it's the most likely stake to find recreational players.
- >324011 poker hands recorded during that period.
- ➤ Over 8000 players were involved.

Poker hands were recorded across 325 text files.

Data Wrangling part 1

The original data were recorded in descriptive format in .txt files. For example, a poker hand was recorded like this:

```
Stage #3017237436: Holdem No Limit $1 - 2009-07-01 00:00:09 (ET)
Table: INDIANA ST (Real Money) Seat #5 is the dealer
Seat 5 - vETYfpoA+FhBercnDPJrRw ($197 in chips)
Seat 6 - DeZAZcPNNQ5w+Wb+5ujZdA ($200.30 in chips)
Seat 2 - AiiJXMMOCfYl69+Nq3jyfA ($78.50 in chips)
Seat 3 - id+sbECX+YdI8qhMhpje+g ($81.60 in chips)
DeZAZcPNNQ5w+Wb+5ujZdA - Posts small blind $0.50
id+sbECX+YdI8qhMhpje+g - Posts big blind $1
*** POCKET CARDS ***
vETYfpoA+FhBercnDPJrRw - Folds
DeZAZcPNNQ5w+Wb+5ujZdA - Raises $2.50 to $3
id+sbECX+YdI8qhMhpje+g - Folds
DeZAZcPNNQ5w+Wb+5ujZdA - returned ($2) : not called
*** SHOW DOWN ***
DeZAZcPNNQ5w+Wb+5ujZdA - Does not show
DeZAZcPNNQ5w+Wb+5ujZdA Collects $2 from main pot
*** SUMMARY ***
Total Pot($2)
Seat 3: id+sbECX+YdI8qhMhpje+g (big blind) Folded on the POCKET CARDS
Seat 5: vETYfpoA+FhBercnDPJrRw (dealer) Folded on the POCKET CARDS
Seat 6: DeZAZcPNNQ5w+Wb+5ujZdA (small blind) collected Total ($2)
```

- Some of the information to be extracted from the text:
 - >Hand ID
 - ➤ Player ID
 - >Stack size
 - **Position**
 - ► Preflop, flop, turn, river actions and amounts

Data Wrangling Part 2

- The primary tool used to extract information from the text files is python's REGEX module.
- Temperorily stored information in lists for the next step of processing.
- Example code to extract each player's amount of money invested preflop from the text file is:

```
pre_amount = []
for n, i in enumerate(pre_flop):
    x = active_players[n]
    y = re.findall(r'(.{22})) \- (?:Raises|Checks|Calls|Bets) \$(\S+)', i)
    amounts = []
    for a in x:
        amount = 0
        for b in y:
            if a == b[0]:
                amounts.append(amount)
        pre_amount.append(amounts)
len(pre_amount)
```

Data Wrangling Part 3

- ➤ Python's PANDAS dataframe was used to record the extracted data.
- Combined all the lists constructed in the previous step into a dataframe.
- Each row indicated each player in each hand
- Resulting dataframe was 1767588 rows by 16 columns

hand_id	player_id	seat	stack	position	post	preflop	p_amount	flop	f_amount	turn	t_amount	river	r_amount	player_num
3017237436	vETYfpoA+FhBercnDPJrRw	5	197	dealer	0	Folds	0	NA	0	NA	0	NA	0	4
3017237436	DeZAZcPNNQ5w+Wb+5ujZdA	6	200.30	small blind	0.5	Raises	2.5	NA	0	NA	0	NA	0	4
3017237436	AiiJXMM0CfYl69+Nq3jyfA	2	78.50	other	0	NA	0	NA	0	NA	0	NA	0	4
3017237436	id+sbECX+Ydl8qhMhpje+g	3	81.60	big blind	1	Folds	0	NA	0	NA	0	NA	0	4
3017235188	s32h30cC3rPhG5FiSCU42g	4	55.50	dealer	0	Folds	0	NA	0	NA	0	NA	0	5

EDA Part 1

- The analysis focused on individual players instead of individual hands.
- Dataframe from the previous slide were grouped by players.
- Features were created per player, such as hands played, net amount won, VPIP, average pot size etc.

	hands_played	pots_won	amount_won	to_inv	net_win	per_hand	vpip_count	inv_count	vpip	% won	avg_p_size
hc0LUofSVtJkKIO0r20FzA	2147	199.0	4536.24	3919.26	616.98	0.287368	359	770	0.167210	0.258442	22.795176
gxztVvz8QgeSaABFE8/xYQ	2219	162.0	2950.60	2511.25	439.35	0.197995	311	748	0.140153	0.216578	18.213580
gm8F7k++eftjEjB5FWxUTA	1671	239.0	5397.90	5041.34	356.56	0.213381	356	816	0.213046	0.292892	22.585356
lr5ondonH45KZUPlsjjOZg	1667	176.0	2910.37	2575.30	335.07	0.201002	407	705	0.244151	0.249645	16.536193
sBCULyaFD9K2rD/+eGv7Eg	1522	150.0	2724.30	2501.24	223.06	0.146557	302	588	0.198423	0.255102	18.162000

EDA part 2

➤ How was the overall win/loss of all players.

- Following were observed from the above graph:
 - ➤ Over 8000 players were involved.
 - Many more losing players than winning players.
 - Losing players lost much more than winning players won.
 - ➤ Average was around –80 instead of 0, indicated the effect of rake.

EDA part 3

Some example plots of different features vs win rate.

- > VPIP was possitively correlated
- > Average aggression was negatively correlated
- Number of players at the table is positively correlated
- > Number of players post flop was positively correlated

Feature Engineering

- From more than 8000 players involved, only players who played more than 1000 hands are selected, resulting in 329 players.
- From 19 features, 7 were selected, and winning per hand was selected as the label.
- All variables were represented with binary categories, and then encoded into 1s and 0s

	p_agg_aggressive	f_agg_aggressive	t_agg_aggressive	r_agg_aggressive	vpip_tight	pot_size_large	post_num_many	win_per_hand
0	1	0	0	0	1	1	0	0
1	0	1	1	1	1	1	0	1
2	0	0	0	0	1	0	1	1
3	1	1	0	0	1	1	0	0
4	1	0	0	0	1	0	0	0

Modeling part 1

- Python's sklearn module was used for the majority of the modeling process.
- ➤ Used 70/30 train test split, 5 folds cross validation.
- Tested 3 models: random forest, logistic regression, and gradient boosting.

Modeling part 2

- Chose the logistic regression model due to slightly higher ROC-AUC score
- Tuned logistic regression model resulted in C of 0.1 and ridge(I2) regularizer
- ➤ Model had ROC-AUC score of 0.685, and accuracy score of 0.689 on the test data
- Confusion matrix plot of the test data:

Modeling Part 3

- ➤ How does each feature affect the win rate?
- Feature importance plot will help to build a set of rules for minimizing recreational players' losses.

Limitations and Disclaimers

>Limitations:

- ➤ Players' actually cards were not recorded, which means it was not possible to test the impact of hand quality.
- The poker hands were from a span of only 23 days, more data would have resulted more accurate modeling.
- A few factors that were hard to analyze, such as luck and players' emotions.

Disclaimer: The set of rules found by the model only serves to help recreational players to lose less money, it will most likely not make a recreational player a winning player.

Ideas to improve future modeling

- ➤ Obtain more hand history per player.
- Attempt to analyze hand by hand instead of player by player.
- Attempt to analyze table envoriment, such as how many winning players are present on a table
- Attempt to analyze the network effect of the player pool, such as how often player A played on the same table as player B.

Conclusion

- Over 20 features are created from the original text files and during the EDA process, only 6 features were deemed important by the model in the end.
- ➤ Out of the 3 tested supervised learning models, the logistic regression model was the most accurate and consistent.
- The final tuned model has ROC-AUC score of 0.69 on the test data set, derived from a 70/30 train/test split.
- The set of rules recreational players should follow are:
 - ➤ Play more large pots
 - ➤ Play more multiway pots
 - ► Play less than 30% of the hands dealt
 - ➤ Play passively on all streets