Corrigé de la feuille d'exercices 6

1. Posons $f: t \mapsto e^{-t^2}$. On sait que f est continue sur \mathbb{R} . Ainsi, Ψ est définie sur \mathbb{R} .

2. f étant continue sur \mathbb{R} , elle admet une primitive F sur \mathbb{R} . On a alors: $\forall x \in \mathbb{R}$, $\Psi(x) = F(3x) - F(x)$. Or, F est dérivable sur \mathbb{R} et $x\mapsto 3x$ également. Ainsi, par différence et composée, Ψ est dérivable sur \mathbb{R} . Soit $x \in \mathbb{R}$. On a :

 $\Psi'(x)3F'(3x) - F'(x) = 3e^{-9x^2} - e^{-x^2} = e^{-x^2}(3e^{-8x^2} - 1).$

3. Soit $x \in \mathbb{R}$. On a :

$$\Psi'(x) \ge 0 \iff 3e^{-8x^2} - 1 \ge 0$$

$$\iff e^{-8x^2} \ge \frac{1}{3}$$

$$\iff -8x^2 \ge -\ln(3)$$

$$\iff x^2 \le \frac{\ln 3}{8}$$

$$\iff -\sqrt{\frac{\ln 3}{8}} \le x \le \sqrt{\frac{\ln 3}{8}}.$$

Ainsi, Ψ est croissante sur $\left[-\sqrt{\frac{\ln 3}{8}}, \sqrt{\frac{\ln 3}{8}}\right]$, décroissante sur $\left]-\infty, -\sqrt{\frac{\ln 3}{8}}\right[$ et sur $\left[\sqrt{\frac{\ln 3}{8}}, +\infty\right[$.

4. Soit $x \in \mathbb{R}_+^*$ et $t \in [x, 3x]$,

On a : $0 \le x \le t \le 3x$.

Puis : $x^2 \le t^2 \le 9x^2$. D'où : $-9x^2 \le -t^2 \le -x^2$. Ainsi : $e^{-9x^2} \le e^{-t^2} \le e^{-x^2}$ En intégrant (les bornes étant dans le bon sens $x \le 3x$), on obtient :

$$2xe^{-9x^2} \le \Psi(x) \le 2xe^{-x^2}.$$

Or, par croissances comparées $\lim_{x\to +\infty} 2xe^{-9x^2} = 0 = \lim_{x\to +\infty} 2xe^{-x^2}$. D'où par théorème d'encadrement, on en déduit que $\lim_{x \to +\infty} \Psi(x) = 0$.

• Une primitive de ln sur \mathbb{R}_+^* est $F: x \mapsto \int_{-\infty}^x \ln(t) dt$. Exercice 2.

Soit $x \in \mathbb{R}_+^*$. On effectue l'intégration par parties :

$$u'(t) = 1, \quad v(t) = \ln(t)$$

$$u(t) = t \qquad v'(t) = \frac{1}{t}$$

u et v sont bien \mathcal{C}^1 sur \mathbb{R}_+^* . On a alors :

$$F(x) = \left[t \ln t\right]_1^x - \int_1^x \frac{t}{t} dt$$
$$= x \ln x - \int_1^x dt$$
$$= x \ln x - x + 1$$

donc $x \mapsto x \ln x - x$ est une primitive de $\ln \operatorname{sur} \mathbb{R}_+^*$.

• Une primitive de arctan sur \mathbb{R} est $F: x \mapsto \int_{\hat{a}}^{x} \arctan t dt$. Soit $x \in \mathbb{R}$. On effectue l'intégration par parties :

$$u'(t) = 1, \quad v(t) = \arctan(t)$$

 $u(t) = t \qquad v'(t) = \frac{1}{1 + t^2}$

u et v sont bien de classe \mathcal{C}^1 sur [0,x] (ou [x,0]). On a alors :

$$F(x) = \left[t\arctan(t) \right]_0^x - \int_0^x \frac{t}{1+t^2} dt$$
$$= x\arctan x - \left[\frac{1}{2} \ln(1+t^2) \right]_0^x$$
$$= x\arctan x - \frac{1}{2} \ln(1+x^2)$$

donc $x \mapsto x \arctan x - \frac{1}{2} \ln(1+x^2)$ est une primitive de arctan sur \mathbb{R} .

• $x \mapsto \frac{x}{\cos^2(x)}$ est continue sur tout intervalle de la forme $\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[, k \in \mathbb{Z}$. Soient α, x appartenant au même intervalle. Calculons $\int_{\alpha}^{x} \frac{t}{\cos^{2}(t)} dt$. On effectue l'intégration par parties :

$$u'(t) = \frac{1}{\cos^2(t)}, \quad v(t) = t$$
$$u(t) = \tan(t) \qquad v'(t) = 1$$

u et v sont bien de classe \mathcal{C}^1 sur $[\alpha, x]$ (ou $[x, \alpha]$). On a alors :

$$\int_{\alpha}^{x} \frac{t}{\cos^{2}(t)} dt = \left[t \tan(t)\right]_{\alpha}^{x} - \int_{\alpha}^{x} \tan(t) dt$$

$$= x \tan x - \int_{\alpha}^{x} \frac{\sin(t)}{\cos(t)} dt + C_{1}$$

$$= x \tan(x) + \left[\ln|\cos(t)|\right]_{\alpha}^{x} + C_{1}$$

$$= x \tan(x) + \ln|\cos(x)| + C_{2}$$

où $C_1, C_2 \in \mathbb{R}$.

Donc $x \mapsto x \tan(x) + \ln|\cos(x)|$ est une primitive de $x \mapsto \frac{x}{\cos^2(x)}$ sur $\bigcup_{x \in \mathbb{Z}} \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right]$.

Exercice 3. Intégrales de Wallis

1. Soit $n \in \mathbb{N}$, $n \geq 2$.

$$I_n = \int_0^{\frac{\pi}{2}} (\sin t)^n dt = \int_0^{\frac{\pi}{2}} (\sin t)^{n-1} \times \sin t \ dt.$$
On effectue l'intégration par parties :

$$\begin{aligned} &u'(t) = \sin(t), \quad v(t) = (\sin(t))^{n-1} \\ &u(t) = -\cos(t) \quad v'(t) = (n-1)(\sin(t))^{n-2}\cos(t) \end{aligned}$$

 \sin^{n-1} et $-\cos$ sont de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$. On a alors :

$$I_n = \left[(\sin t)^{n-1} (-\cos t) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (n-1) (\sin t)^{n-2} \cos t (-\cos t) dt = (n-1) \int_0^{\frac{\pi}{2}} (\sin t)^{n-2} \cos^2 t dt$$
$$= (n-1) \int_0^{\frac{\pi}{2}} (\sin t)^{n-2} (1 - \sin^2 t) dt = (n-1) I_{n-2} - (n-1) I_n$$

Ainsi, $nI_n = (n-1)I_{n-2}$. Donc: $\forall n \in \mathbb{N} \setminus \{0,1\}, \ I_n = \frac{(n-1)}{n}I_{n-2}$.

- 2. Soit $p \in \mathbb{N}$.
 - Réflexion :

D'après la relation de récurrence précédente, on a :

$$I_{2p+1} = \frac{2p}{2p+1}I_{2p-1} = \frac{(2p)(2p-2)}{(2p+1)(2p-1)}I_{2p-3}$$

En répétant l'opération, on obtient :

$$I_{2p+1} = \frac{2p(2p-2)\cdots \times 2}{(2p+1)(2p-1)\cdots \times 3}I_1$$

Or,
$$2p(2p-2)...\times 2=2^pp!$$
 et $(2p+1)(2p-1)\cdots\times 3=\frac{(2p+1)!}{2p(2p-2)\cdots 2}=\frac{(2p+1)!}{2^pp!}$.

Enfin,
$$I_1 = \int_0^{\frac{\pi}{2}} \sin(t)dt = [-\cos(t)]_0^{\frac{\pi}{2}}.$$

Finalement, on obtient:

$$I_{2p+1} = \frac{(2^p p!)^2}{(2p+1)!}$$

Rédaction:

Montrons par récurrence que : $\forall p \in \mathbb{N}, \ I_{2p+1} = \frac{(2^p p!)^2}{(2p+1)!}$.

- Pour p = 0, $I_1 = 1$ et $\frac{\left(2^0 0!\right)^2}{1!} = 1$ donc la propriété est vraie pour p = 0.
- Soit $p \in \mathbb{N}$, supposons que $I_{2p+1} = \frac{(2^p p!)^2}{(2p+1)!}$. D'après la formule de récurrence démontré en 1., on a :

$$\begin{split} I_{2(p+1)+1} &= I_{2p+3} = \frac{2p+2}{2p+3} I_{2p+1} \\ &= \frac{(2p+2)}{2p+3} \times \frac{(2^p p!)^2}{(2p+1)!} \\ &= \frac{(2(p+1))^2}{(2p+3)(2p+2)} \times \frac{(2^p p!)^2}{(2p+1)!} \\ &= \frac{\left(2^{p+1}(p+1)!\right)^2}{(2p+3)!} \end{split}$$

- On a donc montré par récurrence que : $\forall p \in \mathbb{N}, \ I_{2p+1} = \frac{\left(2^p p!\right)^2}{(2p+1)!}$
- Réflexion :

De façon analogue, d'après la relation de récurrence, on a :

$$I_{2p} = \frac{(2p-1)(2p-3)}{2p(2p-2)}I_{2p-4}$$

Ainsi, en itérant, on obtient :

$$I_{2p} = \frac{(2p-1)(2p-3)\cdots 1}{2p(2p-2)\cdots \times 2}I_0$$
$$= \frac{(2p)!}{(2^pp!)^2}I_0$$

Or,
$$I_0 = \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{2}$$
. Ainsi,

$$I_{2p} = \frac{(2p)!}{(2pp!)^2} \times \frac{\pi}{2}.$$

 $\underline{\text{R\'edaction}:} \text{ Montrons par r\'ecurrence que}: \forall p \in \mathbb{N}, \ I_{2p} = \frac{(2p)!}{(2^p p!)^2} \times \frac{\pi}{2}.$

- Pour p=0, $I_0=\frac{\pi}{2}$ et $\frac{0!}{\left(2^00!\right)^2}\times\frac{\pi}{2}=\frac{\pi}{2}$ donc la propriété est vraie pour p=0.
- Soit $p \in \mathbb{N}$, supposons que $I_{2p} = \frac{(2p)!}{(2^p p!)^2} \times \frac{\pi}{2}$.

D'après la formule de récurrence démontré en 1., on a :

$$\begin{split} I_{2(p+1)} &= I_{2p+2} = \frac{2p+1}{2p+2} I_{2p} \\ &= \frac{(2p+1)}{2p+2} \times \frac{(2p)!}{(2^p p!)^2} \times \frac{\pi}{2} \\ &= \frac{(2p+1)(2p+2)}{(2p+2)(2p+2)} \times \frac{(2p)!}{(2^p p!)^2} \times \frac{\pi}{2} \\ &= \frac{(2p+1)(2p+2)}{2^2 (p+1)^2} \times \frac{(2p)!}{(2^p p!)^2} \times \frac{\pi}{2} \\ &= \frac{(2p+2)!}{(2^{p+1}(p+1)!)^2} \times \frac{\pi}{2} \end{split}$$

- On a donc montré par récurrence que : $\forall p \in \mathbb{N}, \ I_{2p} = \frac{(2p)!}{\left(2^p p!\right)^2} \times \frac{\pi}{2}$
- Exercice 4. Calculer l'intégrale $I_1 = \int_0^1 \frac{e^{2t}dt}{1+e^t}$.

On effectue le changement de variable $u = e^t$. On a $du = e^t dt$, $dt = \frac{du}{u}$. Ainsi :

$$I_{1} = \int_{1}^{e} \frac{u^{2}}{u(1+u)} du$$

$$= \int_{1}^{e} \frac{u}{1+u} du$$

$$= \int_{1}^{e} \left(1 - \frac{1}{1+u}\right) du$$

$$= e - 1 - (\ln(1+e) - \ln(2))$$

$$= \ln(2) + e - 1 - \ln(1+e).$$

• Calculer l'intégrale : $I_2=\int_0^1\sqrt{1-x^2}dx$. On effectue le changement de variable : $x=\cos t$. On a $dx=-\sin t dt$. Ainsi :

$$I_{2} = \int_{\frac{\pi}{2}}^{0} \sqrt{1 - \cos^{2} t} (-\sin t) dt$$

$$= \int_{0}^{\frac{\pi}{2}} |\sin t| \sin t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sin^{2} t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos(2t)}{2} dt$$

$$= \frac{\pi}{4} - \left[\frac{\sin(2t)}{4}\right]_{0}^{\frac{\pi}{2}}$$

$$= \frac{\pi}{4}$$

• Calculer l'intégrale : $I_3 = \int_0^1 \frac{x^4}{x^{10} + 1} dx$. On effectue le changement de variable : $t = x^5$. On a $dt = 5x^4 dx$, $\frac{1}{5} dt = x^4 dx$. Ainsi:

$$I_{3} = \int_{0}^{1} \frac{1}{5} \times \frac{1}{t^{2} + 1} dt$$

$$= \frac{1}{5} \int_{0}^{1} \left| \frac{1}{t^{2} + 1} dt \right|$$

$$= \frac{1}{5} \left[\arctan(t) \right]_{0}^{1}$$

$$= \frac{1}{5} \left(\frac{\pi}{4} - 0 \right)$$

$$= \frac{\pi}{20}$$

• $x \mapsto \frac{1}{\sqrt{a^2 - x^2}}$ est continue sur] - a, a[. Exercice 5.

Soit $\alpha, X \in]-a, a[.$ On calcule $\int_{\alpha}^{X} \frac{1}{\sqrt{a^2-x^2}} dx.$ On effectue le changement de variable : x=at. On a dx=adt.

Ainsi:

$$\int_{\alpha}^{X} \frac{1}{\sqrt{a^2 - x^2}} dx = a \int_{\frac{\alpha}{a}}^{\frac{X}{a}} \frac{1}{\sqrt{a^2 - a^2 t^2}} dt$$

$$= \frac{a}{|a|} \int_{\frac{\alpha}{a}}^{\frac{X}{a}} \frac{1}{\sqrt{1 - t^2}} dt$$

$$= \left[\arcsin(t)\right]_{\frac{\alpha}{a}}^{\frac{X}{a}}$$

$$= \arcsin\left(\frac{X}{a}\right) + C$$

où $C \in \mathbb{R}$.

Ainsi, $x \mapsto \arcsin\left(\frac{x}{a}\right)$ est une primitive de $x \mapsto \frac{1}{\sqrt{a^2 - x^2}}$ sur]-a, a[.

• $x \mapsto \frac{1}{a^2 + x^2}$ est continue sur \mathbb{R} .

Soit $\alpha, X \in \mathbb{R}$. On calcule $\int_{\alpha}^{X} \frac{1}{a^2 + x^2} dx$. On effectue le changement de variable : x = at. On a dx = adt. Ainsi:

$$\int_{\alpha}^{X} \frac{1}{a^2 + x^2} dx = a \int_{\frac{\alpha}{a}}^{\frac{X}{a}} \frac{1}{a^2 + a^2 t^2} dt$$

$$= \frac{1}{a} \int_{\frac{\alpha}{a}}^{\frac{X}{a}} \frac{1}{1 + t^2} dt$$

$$= \frac{1}{a} \left[\arctan(t) \right]_{\frac{\alpha}{a}}^{\frac{X}{a}}$$

$$= \frac{1}{a} \arctan\left(\frac{X}{a}\right) + C$$

où $C \in \mathbb{R}$. Ainsi, $x \mapsto \frac{1}{a} \arctan\left(\frac{x}{a}\right)$ est une primitive de $x \mapsto \frac{1}{a^2 + x^2}$ sur \mathbb{R} .

Exercice 6. 1. Soit $x \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}$, on a :

$$\sin x = 2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)$$
$$= 2\cos^2\left(\frac{x}{2}\right)\tan\left(\frac{x}{2}\right)$$
$$= \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$$

2. • f est continue sur $\bigcup_{k \in \mathbb{Z}}]k\pi, (k+1)\pi[$.

Soit $a, x \in]k\pi, (k+1)\pi[$, $k \in \mathbb{Z}$. On cherche à calculer $\int_a^x \frac{1}{\sin(t)} dt$.

On effectue le changement de variable $u = \tan(\frac{t}{2})$. On a $du = \frac{(1 + \tan^2(\frac{t}{2}))}{2} dt$, $dt = \frac{2du}{1 + u^2}$. Ainsi :

$$\int_{a}^{x} \frac{1}{\sin(t)} dt = \int_{\tan(\frac{a}{2})}^{\tan(\frac{x}{2})} \frac{(1+u^{2})}{2u} \times \frac{2}{1+u^{2}} du$$

$$= \int_{\tan(\frac{a}{2})}^{\tan(\frac{x}{2})} \frac{1}{u} du$$

$$= \ln|\tan(\frac{x}{2})| + C_{k}$$

où $C_k \in \mathbb{R}$. Finalement, $x \mapsto \ln \left| \tan \left(\frac{x}{2} \right) \right|$ est une primitive de $x \mapsto \frac{1}{\sin(x)} \sup_{k \in \mathbb{Z}} \left| k\pi, (k+1)\pi \right|$.

• g est continue sur $\bigcup_{k \in \mathbb{Z}} \left] - \frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right[$. On cherche à calculer $\int_a^x \frac{1}{\cos(t)} dt = \int_a^x \frac{1}{\sin\left(\frac{\pi}{2} - t\right)} dt.$ On effectue le changement de variable $u = \frac{\pi}{2} - t$. On a du = -dt.

$$\int_{a}^{x} \frac{1}{\cos(t)} dt = -\int_{\frac{\pi}{2} - a}^{\frac{\pi}{2} - a} \frac{1}{\sin(u)} du$$

$$= -\left[\ln\left|\tan\left(\frac{u}{2}\right)\right|\right]_{\frac{\pi}{2} - a}^{\frac{\pi}{2} - x} \quad \text{d'après le point précédent.}$$

$$= -\ln\left|\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)\right| + C_{k}$$

$$= -\ln\left|\tan\left(\frac{\pi}{2} - \frac{\pi}{4} - \frac{x}{2}\right)\right| + C_{k}$$

$$= -\ln\left|\frac{\sin\left(\frac{\pi}{2} - \left(\frac{\pi}{4} + \frac{x}{2}\right)\right)}{\cos\left(\frac{\pi}{2} - \left(\frac{\pi}{4} + \frac{x}{2}\right)\right)}\right| + C_{k}$$

$$= -\ln\left|\frac{\cos\left(\frac{\pi}{4} + \frac{x}{2}\right)}{\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right| + C_{k}$$

$$= \ln\left|\frac{\sin\left(\frac{\pi}{4} + \frac{x}{2}\right)}{\cos\left(\frac{\pi}{4} + \frac{x}{2}\right)}\right| + C_{k}$$

$$= \ln\left|\tan\frac{\pi}{4} + \frac{x}{2}\right| + C_{k}$$

Finalement, $x \mapsto \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right|$ est une primitive de $x \mapsto \frac{1}{\cos(x)}$ sur $\bigcup_{k \in \mathbb{Z}} \left| -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right|$.

Exercice 7. 1. Soit $x \in \mathbb{R} \setminus \{\pi + 2k\pi, k \in \mathbb{Z}\}$, on a :

$$\sin x = 2\cos\left(\frac{x}{2}\right)\sin\left(\frac{x}{2}\right)$$
$$= 2\cos^2\left(\frac{x}{2}\right)\tan\left(\frac{x}{2}\right)$$
$$= \frac{2\tan\left(\frac{x}{2}\right)}{1 + \tan^2\left(\frac{x}{2}\right)}$$

6

2. On effectue le changement de variable $u = \tan\left(\frac{x}{2}\right)$. On a : $du = \frac{1}{2}\left(1 + \tan^2\left(\frac{x}{2}\right)\right) dx$, $dx = \frac{2du}{1 + u^2}$

Ainsi:

$$\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin(x)} = \int_0^1 \frac{2 + \frac{2u}{1 + u^2}}{x} \frac{2}{1 + u^2} du$$
$$= 2 \int_0^1 \frac{1}{2u^2 + 2u + 2} du$$
$$= \int_0^1 \frac{1}{u^2 + u + 1} du$$

Le discriminant du trinôme $1 + u + u^2$ vaut $\Delta = -3 < 0$. Soit $x \in \mathbb{R}$. On a

$$1 + u + u^2 = \left(u + \frac{1}{2}\right)^2 + 1 - \frac{1}{4} = \left(u + \frac{1}{2}\right)^2 + \frac{3}{4}$$

donc

$$\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \sin(x)} = \int_0^1 \frac{1}{1 + u + u^2} du$$

$$= \int_0^1 \frac{dt}{\left(u + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$= \left(\frac{2}{\sqrt{3}}\right)^2 \int_0^1 \frac{du}{\left(\frac{u + \frac{1}{2}}{2}\right)^2 + 1}$$

$$= \left(\frac{2}{\sqrt{3}}\right)^2 \int_0^1 \frac{du}{\left(\frac{2u + 1}{\sqrt{3}}\right)^2 + 1}$$

On effectue le changement de variable : $t=\frac{2u+1}{\sqrt{3}}.$ On a : $dt=\frac{2}{\sqrt{3}}du.$ Ainsi :

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \sin(x)} = \left(\frac{2}{\sqrt{3}}\right)^{2} \int_{\frac{1}{\sqrt{3}}}^{\frac{3}{\sqrt{3}}} \frac{\frac{\sqrt{3}}{2}}{t^{2} + 1} dt$$

$$= \frac{2}{\sqrt{3}} \int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{1}{t^{2} + 1} dt$$

$$= \frac{2}{\sqrt{3}} \left[\arctan(t)\right]_{\frac{1}{\sqrt{3}}}^{\sqrt{3}}$$

$$= \frac{2}{\sqrt{3}} \left[\arctan(\sqrt{3}) - \arctan\left(\frac{1}{\sqrt{3}}\right)\right]$$

$$= \frac{2}{\sqrt{3}} \left[\frac{\pi}{3} - \frac{\pi}{6}\right]$$

$$= \frac{\pi}{3\sqrt{3}}$$

Exercice 8. • On reconnait une fonction sous la forme $-\frac{1}{2}u'u^{\frac{1}{2}}$ avec $u: x \mapsto 1-x^2$. Ainsi, $x \mapsto -\frac{(1-x^2)^{\frac{3}{2}}}{3}$ est une primitive de f sur [-1,1].

- On reconnait une fonction sous la forme $\frac{u'}{\sqrt{u}}$ avec $u: x \mapsto 1 + e^x$. Ainsi, $x \mapsto 2\sqrt{1 + e^x}$ est une primitive de g sur \mathbb{R} .
- On reconnait une fonction sous la forme $u'u^3$ avec $u: x \mapsto \ln(3x+6)$. Ainsi, $x \mapsto \frac{(\ln(3x+6))^4}{4}$ est une primitive de h sur $]-2,+\infty[$.
- On reconnait une fonction sous la forme $\frac{u'}{u^4} = u'u^{-4}$ où $u: x \mapsto x^2 5x + 9$. Ainsi, $x \mapsto -\frac{1}{3(x^2 - 5x + 9)^3}$ est une primitive sur \mathbb{R} de l.

• Le discriminant de $x^2 - 5x + 6$ est $\Delta = 25 - 24 = 1$. Ses racines sont donc 2 et 3. Exercice 9.

Ainsi, pour tout
$$x \in \mathbb{R} \setminus \{2,3\}$$
, $\frac{1}{x^2 - 5x + 63} = \frac{1}{(x-2)(x-3)}$

Ainsi, pour tout $x \in \mathbb{R} \setminus \{2,3\}$, $\frac{1}{x^2 - 5x + 63} = \frac{1}{(x-2)(x-3)}$. Cherchons $a, b \in \mathbb{R}$ tels que : $\forall x \in \mathbb{R} \setminus \{2,3\}$, $\frac{1}{x^2 - 5x + 63} = \frac{a}{x-2} + \frac{b}{x-3}$ Soit $a, b \in \mathbb{R}$.

$$\forall x \in \mathbb{R} \setminus \{2,3\}, \ \frac{1}{(x-2)(x-3)} = \frac{a}{x-2} + \frac{b}{x-3}$$

$$\iff \forall x \in \mathbb{R} \setminus \{2,3\}, \ \frac{1}{(x-1)(x-2)} = \frac{(a+b)x - 3a - 2b}{(x-2)(x-3)}$$

$$\iff \forall x \in \mathbb{R} \setminus \{2,3\}, \ 1 = (a+b)x - 3a - 2b$$

$$\iff \begin{cases} a+b=0\\ -3a-2b=1 \end{cases}$$

$$\iff \begin{cases} a=-1\\ b=1 \end{cases}$$

Ainsi,

$$\forall x \in \mathbb{R} \setminus \{2,3\}, \ \frac{1}{x^2 - 5x + 6} = -\frac{1}{x - 2} + \frac{1}{x - 3}.$$

Donc, la fonction $x \mapsto -\ln(|x-2|) + \ln(|x-3|)$ est une primitive de f sur $]-\infty,2[,]2,3[,]3,+\infty[$.

• On sait que :
$$\forall x \in \mathbb{R}, \ x^2 + 2x + 1 = (x+1)^2$$
.
Ainsi : $\forall x \in \mathbb{R} \setminus \{-1\}, \ g(x) = \frac{1}{(x+1)^2}$.

La fonction $x \mapsto -\frac{1}{x+1}$ est une primitive de g sur $]-\infty,-1[,]-1,+\infty[$.

• Le discriminant du trinôme $1 + x + x^2$ vaut $\Delta = -3 < 0$ Soit $x \in \mathbb{R}$. On a

$$1 + x + x^2 = \left(x + \frac{1}{2}\right)^2 + 1 - \frac{1}{4} = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$$

donc

$$\int_{0}^{x} \frac{1}{1+t+t^{2}} dt = \int_{0}^{x} \frac{1}{\left(t+\frac{1}{2}\right)^{2} + \frac{3}{4}} dt$$

$$= \int_{0}^{x} \frac{dt}{\left(t+\frac{1}{2}\right)^{2} + \left(\frac{\sqrt{3}}{2}\right)^{2}}$$

$$= \left(\frac{2}{\sqrt{3}}\right)^{2} \int_{0}^{x} \frac{dt}{\left(\frac{t+\frac{1}{2}}{\sqrt{3}}\right)^{2} + 1}$$

$$= \left(\frac{2}{\sqrt{3}}\right)^{2} \int_{0}^{x} \frac{dt}{\left(\frac{2t+1}{\sqrt{3}}\right)^{2} + 1}$$

On effectue le changement de variable : $u = \frac{2t+1}{\sqrt{3}}$. On a : $du = \frac{2}{\sqrt{3}}dt$. Ainsi:

$$\int_0^x \frac{1}{1+t+t^2} dt = \left(\frac{2}{\sqrt{3}}\right)^2 \int_{\frac{1}{\sqrt{3}}}^{\frac{2x+1}{\sqrt{3}}} \frac{\frac{\sqrt{3}}{2}}{u^2+1} du$$

$$= \frac{2}{\sqrt{3}} \int_{\frac{1}{\sqrt{3}}}^{\frac{2x+1}{\sqrt{3}}} \frac{1}{u^2+1} du$$

$$= \frac{2}{\sqrt{3}} \left[\arctan\left(u\right)\right]_{\frac{1}{\sqrt{3}}}^{\frac{2x+1}{\sqrt{3}}}$$

$$= \frac{2}{\sqrt{3}} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C$$

où $C \in \mathbb{R}$.

Une primitive sur \mathbb{R} de $x \mapsto \frac{1}{1+x+x^2}$ est $x \mapsto \frac{2}{\sqrt{3}}\arctan\left(\frac{2x+1}{\sqrt{3}}\right)$.

Exercice 10. • Le discriminant du polynôme au dénominateur est strictement négatif. Soit $x \in \mathbb{R}$. On a :

$$f(x) = \frac{(x^2 + x + 1) - 2x}{x^2 + x + 1} = 1 - \frac{2x}{x^2 + x + 1} = 1 - \frac{2x + 1 - 1}{x^2 + x + 1} = 1 - \frac{2x + 1}{x^2 + x + 1} - \frac{1}{x^2 + x + 1}$$

On a déjà vu que $x\mapsto \frac{2}{\sqrt{3}}\arctan\left(\frac{2x+1}{\sqrt{3}}\right)$ est une primitive sur $\mathbb R$ de $x\mapsto \frac{1}{x^2+x+1}$.

Finalement, $x \mapsto x - \ln(x^2 + x + 1) + \frac{2}{\sqrt{3}} \arctan\left(\frac{2x+1}{\sqrt{3}}\right)$ est une primitive de f sur \mathbb{R} .

• Soient $a, b \in \mathbb{R}$, on a :

$$\forall x \in \mathbb{R} \setminus \{1\}, \ \frac{2x+1}{(x+1)^2} = \frac{a}{x+1} + \frac{b}{(x+1)^2} \iff \forall x \in \mathbb{R} \setminus \{1\}, \ \frac{2x+1}{(x+1)^2} = \frac{a(x+1)+b}{(x+1)^2}$$

$$\iff \forall x \in \mathbb{R} \setminus \{1\}, \ 2x+1 = ax+a+b$$

$$\iff \begin{cases} a=2\\ a+b=1 \end{cases}$$

$$\iff \begin{cases} a=2\\ b=-1 \end{cases}$$

Ainsi:

$$\forall x \in \mathbb{R} \setminus \{1\}, \ \frac{2x+1}{(x+1)^2} = \frac{2}{x+1} - \frac{1}{(x+1)^2}.$$

Ainsi, $x \mapsto 2 \ln |x+1| + \frac{1}{x+1}$ est une primitive de $x \mapsto \frac{2x+1}{(x+1)^2}$ sur $\mathbb{R} \setminus \{1\}$.

Exercice 11. 1. On procède par intégration par parties.

Une primitive de arcsin sur]-1,1[est $F:x\mapsto \int_0^x \arcsin(t)dt.$

Soit $x \in]-1,1[$. On effectue l'intégration par parties

$$u'(t) = 1, \quad v(t) = \arcsin(t)$$

 $u(t) = t \qquad v'(t) = \frac{1}{\sqrt{1 - t^2}}$

u et v sont bien \mathcal{C}^1 sur]-1,1[. On a alors :

$$F(x) = \left[t\arcsin{(t)}\right]_0^x - \int_0^x \frac{t}{\sqrt{1 - t^2}} dt = x\arcsin{(x)} + \left[\sqrt{1 - t^2}\right]_0^x = x\arcsin{(x)} + \sqrt{1 - x^2} - 1$$

Ainsi, une primitive sur]-1,1[de arcsin est $: x \mapsto x \arcsin x + \sqrt{1-x^2}.$

2. On procède par double intégration par parties :

Soit $x \in \mathbb{R}$. On effectue l'intégration par parties :

$$u'_1(t) = e^{3t}, \quad v_1(t) = t^2 + 3t + 1$$

 $u_1(t) = \frac{e^{3t}}{3} \quad v'_1(t) = 2t + 3$

 u_1 et v_1 sont de classe \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_0^x (t^2 + 3t + 1)e^{3t}dt = \left[\frac{(t^2 + 3t + 1)}{3}e^{3t}\right] - \frac{1}{3}\int_0^x (2t + 3)e^{3t}dt = \frac{(x^2 + 3x + 1)}{3}e^{3x} - \frac{1}{3} - \frac{1}{3}\int_0^x (2t + 3)e^{3t}dt.$$

On effectue de nouveau une intégration par parties :

$$u'_2 = e^{3t}, \quad v_2(t) = 2t + 3$$

 $u_2(t) = \frac{e^{3t}}{3}, \quad v'_2(t) = 2$

 u_2 et v_2 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\begin{split} \int_0^x (t^2 + 3t + 1)e^{3t} dt &= \frac{(x^2 + 3x + 1)}{3}e^{3x} - \frac{1}{3} - \frac{1}{9}\Big[(2t + 3)e^{3t}\Big]_0^x + \frac{2}{9}\int_0^x e^{3t} dt \\ &= \frac{(x^2 + 3x + 1)}{3}e^{3x} - \frac{1}{3} - \frac{1}{9}(2x + 3)e^{3x} + \frac{1}{3} + \frac{2}{27}\Big[\frac{e^{3t}}{3}\Big]_0^x \\ &= \frac{(x^2 + 3x + 1)}{3}e^{3x} - \frac{1}{3} - \frac{1}{9}(2x + 3)e^{3x} + \frac{1}{3} + \frac{2}{27}e^{3x} - \frac{2}{27} \\ &= \frac{(9x^2 + 21x + 2)}{27}e^{3x} \end{split}$$

Ainsi, une primitive de $x \mapsto (x^2 + 3x + 1)e^{3x}$ sur \mathbb{R} est $x \mapsto \frac{(9x^2 + 21x + 2)}{27}e^{3x}$

3. On procède par intégration par parties.

Une primitive de $x \mapsto x^2 \cos x$ sur \mathbb{R} est $F: x \mapsto \int_0^x t^2 \cos(t) dt$. Soit $x \in \mathbb{R}$. On effectue l'intégration par parties

$$u'_1(t) = \cos(t), \quad v_1(t) = t^2$$

 $u_1(t) = \sin(t) \quad v'_1(t) = 2t$

 u_1 et v_1 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_0^x t^2 \cos t dt = \left[t^2 \sin(t) \right]_0^x - 2 \int_0^x t \sin(t) dt = x^2 \sin(x) - 2 \int_0^x t \sin(t) dt.$$

On effectue de nouveau une intégration par parties :

$$u'_2(t) = \sin(t), \quad v_1(t) = t$$

 $u_2(t) = -\cos(t) \quad v'_1(t) = 1$.

 u_2 et v_2 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_0^x t^2 \cos t dt = x^2 \sin(x) + 2 \Big[t \cos(t) \Big]_0^x - 2 \int_0^x \cos(t) dt = x^2 \sin(x) + 2x \cos(x) - 2 \Big[\sin(t) \Big]_0^x = x^2 \sin(x) + 2x \cos(x) - 2 \sin(x) + 2x \cos(x) + 2x \cos($$

Ainsi, une primitive de $x \mapsto x^2 \cos(x)$ sur \mathbb{R} est $x \mapsto x^2 \sin(x) + 2x \cos(x) - 2\sin(x)$. 4. Soit $x \in \mathbb{R}$, on a $(x \operatorname{sh}(x))^2 = x^2 \times \frac{(e^{2x} - 2 + e^{-2x})}{4}$.

$$\int_0^x (t \sin t)^2 dt = \frac{1}{4} \int_0^x t^2 (e^{2t} - 2 + e^{-2t}) dt = \frac{1}{4} \int_0^x t^2 (e^{2t} + e^{-2t}) dt - \frac{1}{2} \int_0^x 1 dt = \frac{1}{4} \int_0^x t^2 (e^{2t} + e^{-2t}) dt - \frac{1}{2} x.$$
On calcule la première intégrale par une double intégration par parties :

$$u'_1(t) = e^{2t} + e^{-2t}, \quad v_1(t) = t^2$$

 $u_1(t) = \frac{e^{2t} - e^{-2t}}{2} \quad v'_1(t) = 2t$

 u_1 et v_1 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors

$$\int_0^x t^2 (e^{2t} + e^{-2t}) dt = \left[\frac{t^2 (e^{2t} - e^{-2t})}{2} \right]_0^x - \int_0^x t (e^{2t} - e^{-2t}) dt = \frac{x^2 (e^{2x} - e^{-2x})}{2} - \int_0^x t (e^{2t} - e^{-2t}) dt$$

On effectue l'intégration par parties :

$$u_2'(t) = e^{2t} - e^{-2t}, \quad v_2(t) = t$$

 $u_2(t) = \frac{e^{2t} + e^{-2t}}{2}, \quad v_2'(t) = 1$

 u_2 et v_2 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors:

$$\int_0^x t^2 (e^{2t} + e^{-2t}) dt = \frac{x^2 (e^{2x} - e^{-2x})}{2} - \left[\frac{t(e^{2t} + e^{-2t})}{2} \right]_0^x + \int_0^x \frac{e^{2t} + e^{-2t}}{2} dt$$

$$= \frac{x^2 (e^{2x} - e^{-2x})}{2} - \frac{x(e^{2x} + e^{-2x})}{2} + \int_0^x \frac{e^{2t} + e^{-2t}}{2} dt$$

$$= \frac{x^2 (e^{2x} - e^{-2x})}{2} - \frac{x(e^{2x} + e^{-2x})}{2} + \left[\frac{e^{2t} - e^{-2t}}{4} \right]_0^x$$

$$= \frac{x^2 (e^{2x} - e^{-2x})}{2} - \frac{x(e^{2x} + e^{-2x})}{2} + \frac{e^{2x} - e^{-2x}}{4}$$

Ainsi,

$$\int_0^x (t \operatorname{sh}(t))^2 dt = \frac{x^2 (e^{2x} - e^{-2x})}{8} - \frac{x(e^{2x} + e^{-2x})}{8} + \frac{e^{2x} - e^{-2x}}{16} - \frac{1}{2}x$$

Donc $x \mapsto \frac{x^2(e^{2x} - e^{-2x})}{8} - \frac{x(e^{2x} + e^{-2x})}{8} + \frac{e^{2x} - e^{-2x}}{16} - \frac{1}{2}x$ est une primitive de $x \mapsto (x \operatorname{sh}(x))^2$ sur \mathbb{R} .

5. **Méthode 1**: $x \mapsto \int_1^x \sin(\ln t) dt$ est une primitive de $x \mapsto \sin(\ln x)$ sur \mathbb{R}_+^*

On effectue le changement de variable $u = \ln(t)$ ie $t = e^u$. On a : $dt = e^u du$. Ainsi,

$$\int_{1}^{x} \sin(\ln t) dt = \int_{0}^{\ln x} e^{u} \sin(u) du$$

$$= \int_{0}^{1} e^{u} \operatorname{Im} \left(e^{iu} \right) du$$

$$= \int_{0}^{1} \operatorname{Im} \left(e^{(1+i)u} \right) du$$

$$= \operatorname{Im} \left(\int_{0}^{1} e^{(1+i)u} du \right)$$

$$= \operatorname{Im} \left(\left[\frac{e^{(1+i)u}}{1+i} \right]_{0}^{\ln x} \right)$$

$$= \operatorname{Im} \left(\frac{(1-i)}{2} \times \left(e^{(1+i)\ln x} - 1 \right) \right)$$

$$= \frac{e^{\ln x}}{2} \operatorname{Im} \left((1-i)e^{i\ln x} \right) + C$$

$$= \frac{x}{2} \left(-\cos(\ln x) + \sin(\ln x) \right) + C$$

où $C \in \mathbb{R}$.

Ainsi, une primitive de $x \mapsto \sin(\ln x)$ sur \mathbb{R}_+^* est $x \mapsto \frac{x}{2} (-\cos(\ln x) + \sin(\ln x))$.

Méthode 2 : On procède par double intégration par parties.

Une primitive de $x \mapsto \sin(\ln x)$ sur \mathbb{R}_+^* est $F: x \mapsto \int_1^x \sin(\ln t) dt$.

Soit $x \in \mathbb{R}_+^*$. On effectue l'intégration par parties :

$$u_1'(t) = 1,$$
 $v_1(t) = \sin(\ln t)$
 $u_1(t) = t$ $v_1'(t) = \frac{1}{t}\cos(\ln t)$.

 u_1 et v_1 sont bien \mathcal{C}^1 sur \mathbb{R}_+^* . On a alors :

$$\int_1^x \sin(\ln(t))dt = \left[t\sin(\ln t)\right]_1^x - \int_1^x \cos(\ln(t))dt = x\sin(\ln(x)) - \int_1^x \cos(\ln(t))dt$$

On effectue de nouveau une intégration par parties :

$$u_2'(t) = 1,$$
 $v_2(t) = \cos(\ln t)$
 $u_2(t) = t$ $v_2'(t) = -\frac{1}{t}\sin(\ln t)$.

 u_2 et v_2 sont bien \mathcal{C}^1 sur \mathbb{R}_+^* . On a alors :

$$\int_{1}^{x} \sin(\ln(t))dt = x\sin(\ln(x)) - \left[t\cos(\ln t)\right]_{1}^{x} - \int_{1}^{x} \sin(\ln t)dt = x\sin(\ln(x)) - x\cos(\ln(x)) + 1 - \int_{1}^{x} \sin(\ln(t))dt.$$

Ainsi,
$$2\int_{1}^{x} \sin(\ln(t))dt = x\sin(\ln(x)) - x\cos(\ln(x)) + 1.$$

Ainsi, une primitive de $x \mapsto \sin(\ln x)$ sur \mathbb{R}_+^* est $x \mapsto \frac{x}{2}\sin(\ln(x)) - \frac{x}{2}\cos(\ln(x))$.

6. Soit $x \in \mathbb{R}$, on cherche $\int_0^x \frac{t^7}{(t^4+1)^2} dt$.

On effectue le changement de variable $u=t^4$. On a $du=4t^3dt$. Ainsi,

$$\int_0^x \frac{t^7}{(t^4+1)^2} dt = \frac{1}{4} \int_0^{x^4} \frac{u}{(u+1)^2} du.$$

Or:
$$\forall u \in \mathbb{R}_+, \ \frac{u}{(u+1)^2} = \frac{1}{(u+1)} - \frac{1}{(u+1)^2}$$
. Ainsi:

$$\int_0^x \frac{t^7}{(t^4+1)^2} dt = \frac{1}{4} \ln(x^4+1) + \frac{1}{4(x^4+1)} - \frac{1}{4}$$

Finalement, une primitive de $x \mapsto \frac{x^7}{(x^4+1)^2}$ sur \mathbb{R} est $x \mapsto \frac{1}{4}\ln(x^4+1) + \frac{1}{4(x^4+1)}$.

7. Soit $x \in \mathbb{R}$, on cherche $\int_0^x \frac{1}{\operatorname{ch}(t)} dt = \int_0^x \frac{2}{e^t + e^{-t}} dt$. On effectue le changement de variable $u = e^t$. On a du = udt. Ainsi,

$$\int_{0}^{x} \frac{1}{\operatorname{ch}(t)} dt = \int_{1}^{e^{x}} \frac{2}{u(u + \frac{1}{x})} du = \int_{1}^{e^{x}} \frac{2}{1 + u^{2}} du = \left[2 \arctan\left(u\right) \right]_{1}^{e^{x}} 2 \arctan\left(e^{x}\right) - 2 \arctan\left(1\right).$$

Finalement, une primitive de $x \mapsto \frac{1}{\operatorname{ch} x}$ sur \mathbb{R} est $x \mapsto 2\operatorname{arctan}(e^x)$.

8. Soit $x \in \mathbb{R}_+^*$, on cherche $\int_1^x \frac{1}{\sqrt{t(1+t)}} dt$.

On effectue le changement de variable $u = \sqrt{t}$. On a $du = \frac{1}{2\sqrt{t}}dt$. Ainsi,

$$\int_{1}^{x} \frac{1}{(1+t)\sqrt{t}} dt = 2 \int_{1}^{\sqrt{x}} \frac{1}{1+u^{2}} du = 2 \left[\arctan\left(u\right)\right]_{1}^{\sqrt{x}} = 2\arctan\left(\sqrt{x}\right) - 2\arctan\left(1\right).$$

Finalement, une primitive de $x \mapsto \frac{1}{(1+x)\sqrt{x}}$ sur \mathbb{R}_+^* est $x \mapsto 2\arctan{(\sqrt{x})}$.

9. Soit $x \in \mathbb{R}$, on cherche à calculer $\int_0^{\infty} e^{\sqrt{t}} dt$.

On effectue le changement de variable $y = \sqrt{t}$, on a $dy = \frac{1}{2\sqrt{t}}dt$, dt = 2ydy. Ainsi, on a :

$$\int_0^x e^{\sqrt{t}} dt = 2 \int_0^{\sqrt{x}} y e^y dy.$$

On effectue l'intégration par parties :

$$u'(y) = e^y,$$
 $v(y) = y$
 $u(y) = e^y,$ $v'(y) = 1.$

u et v sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_0^x e^{\sqrt{t}} dt = 2 \left[y e^y \right]_0^{\sqrt{x}} - 2 \int_0^{\sqrt{x}} e^y dy$$
$$= 2\sqrt{x} e^{\sqrt{x}} - 2 \left[e^y \right]_0^{\sqrt{x}}$$
$$= 2\sqrt{x} e^{\sqrt{x}} - 2 e^{\sqrt{x}} + 2$$

Ainsi, $x \mapsto 2\sqrt{x}e^{\sqrt{x}} - 2e^{\sqrt{x}}$ est une primitive de $x \mapsto e^{\sqrt{x}}$ sur \mathbb{R} . 10. Le discriminant de $X^2 - X - 2$ vaut 9 et ses racines sont donc $\frac{1-3}{2} = -1$ et $\frac{1+3}{2} = 2$.

Ainsi, les racines de $X^4 - X^2 - 2$ sont $\pm \sqrt{2}$.

Soit $a, x \in \mathbb{R} \setminus \{-\sqrt{2}, \sqrt{2}\}$, on cherche $\int_a^x \frac{t}{t^4 - t^2 - 2} dt$.

On effectue le changement de variable $u = t^2$. On a du = 2tdt. Ainsi

$$\int_{a}^{x} \frac{t}{t^4 - t^2 - 2} dt = \frac{1}{2} \int_{a^2}^{x^2} \frac{1}{u^2 - u - 2} du$$

Les racines du dénominateur sont -1 et 2.

Soient $a, b \in \mathbb{R}$.

$$\forall u \in \mathbb{R}_{+} \setminus \{2\}, \ \frac{1}{u^{2} - u - 2} = \frac{a}{u + 1} + \frac{b}{u - 2}$$

$$\iff \forall u \in \mathbb{R}_{+} \setminus \{2\}, \ \frac{1}{u^{2} - u - 2} = \frac{a(u - 2) + b(u + 1)}{(u + 1)(u - 2)}$$

$$\iff \forall u \in \mathbb{R}_{+} \setminus \{2\}, \ \frac{1}{u^{2} - u - 2} = \frac{(a + b)u - 2a + b}{(u + 1)(u - 2)}$$

$$\iff \forall u \in \mathbb{R}_{+} \setminus \{2\}, \ 1 = (a + b)u - 2a + b$$

$$\iff \begin{cases} a + b = 0 \\ -2a + b = 1 \end{cases}$$

$$\iff \begin{cases} b = -a \\ a = -\frac{1}{3} \end{cases}$$

$$\iff \begin{cases} b = \frac{1}{3} \\ a = -\frac{1}{3} \end{cases}$$

Ainsi, on a:

$$\forall u \in \mathbb{R}_+ \setminus \{2\}, \ \frac{1}{u^2 - u - 2} = \frac{1}{3} \left(-\frac{1}{u+1} + \frac{1}{u-2} \right)$$

Donc:

$$\int_{a}^{x} \frac{t}{t^4 - t^2 - 2} dt = \frac{1}{2} \int_{a^2}^{x^2} \frac{1}{u^2 - u - 2} du = \frac{1}{6} \left[-\ln|1 + u| + \ln|u - 2| \right]_{a^2}^{x^2} = \frac{1}{6} \left(\ln\left|\frac{x^2 - 2}{1 + x^2}\right| - \ln\left|\frac{a^2 - 2}{1 + a^2}\right| \right).$$

Finalement, une primitive de $x \mapsto \frac{1}{x^4 - x^2 - 2}$ sur $R \setminus \{\pm \sqrt{2}\}$ est $x \mapsto \frac{1}{6} \ln \left| \frac{x^2 - 2}{1 + x^2} \right|$.

- 11. On reconnait une fonction sous la forme $x \mapsto u'(x)u(x)$. Ainsi, une primitive sur \mathbb{R}_+^* de $x \mapsto \frac{\ln x}{x}$ est $x \mapsto \frac{(\ln(x))^2}{2}$. 12. On reconnait une fonction sous la forme $x \mapsto u'(x)e^{u(x)}$. Ainsi, une primitive sur $\bigcup_{x \in \mathbb{Z}} \left[-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \right] = 0$. $x \mapsto \frac{e^{\tan(x)}}{\cos^2(x)}$ est $x \mapsto \frac{1}{2} \left(e^{\tan(x)} \right)^2$.
- 13. On reconnait une fonction sous la forme : $x \mapsto \frac{u'(x)u(x)}{2}$. Ainsi, une primitive sur sur \mathbb{R} de $x \mapsto xe^{x^2}$ est $x \mapsto \frac{1}{2}e^{x^2}$.
- 14. On reconnait une fonction sous la forme : $x \mapsto u'(x)u(x)$. Ainsi, une primitive sur \mathbb{R} de $x \mapsto \frac{\arctan x}{1+x^2}$ est $x \mapsto \frac{(\arctan x)^2}{2}$.
- 15. On reconnait la dérivée d'une fonction usuelle. Ainsi, $x \mapsto \arcsin(x)$ est une primitive sur]-1,1[de $x \mapsto \frac{1}{\sqrt{1-x^2}}$
- 16. La fonction s'écrit encore $x \mapsto x^{\frac{1}{2}} x^{\frac{3}{2}}$. Ainsi, une primitive sur \mathbb{R}_+ de $x \mapsto \sqrt{x}(1-x)$ est $x \mapsto \frac{2}{3}x^{\frac{3}{2}} \frac{\sqrt{2}}{5}x^{\frac{5}{2}}$
- 17. Soit $x \in \mathbb{R}$. $x^2 x + 4 = (x \frac{1}{2})^2 + \frac{15}{4}$.

 Ainsi, $\frac{1}{x^2 x + 4} = \frac{1}{(x \frac{1}{2})^2 + \frac{15}{4}} = \frac{4}{15} \times \frac{1}{\left(\frac{x \frac{1}{2}}{\sqrt{15}}\right)^2 + 1} = \frac{4}{15} \times \frac{1}{\left(\frac{2}{\sqrt{15}}x \frac{1}{\sqrt{15}}\right)^2 + 1}$.

Soit $a \in \mathbb{R}$. On a :

$$\int_{a}^{x} \frac{1}{t^{2} - t + 4} dt = \frac{4}{15} \int_{a}^{x} \frac{1}{\left(\frac{2}{\sqrt{15}}t - \frac{1}{\sqrt{15}}\right)^{2} + 1} dt$$

On effectue le changement de variable $u = \frac{2}{\sqrt{15}}t - \frac{1}{\sqrt{15}}$. On a : $du = \frac{2}{\sqrt{15}}dt$.

Ainsi,

$$\int_{a}^{x} \frac{1}{t^{2} - t + 4} dt = \frac{4}{15} \int_{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}}^{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}} \frac{\sqrt{15}}{u^{2} + 1} du$$

$$= \frac{4}{15} \times \frac{\sqrt{15}}{2} \int_{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}}^{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}} \frac{1}{u^{2} + 1} du$$

$$= \frac{2}{\sqrt{15}} \int_{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}}^{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}} \frac{1}{u^{2} + 1} du$$

$$= \frac{2}{\sqrt{15}} \left[\arctan(u) \right]_{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}}^{\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}}$$

$$= \frac{2}{\sqrt{15}} \arctan\left(\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}\right) + C$$

où $C \in \mathbb{R}$.

Ainsi, une primitive sur \mathbb{R} est $x \mapsto \frac{2}{\sqrt{15}} \arctan\left(\frac{2}{\sqrt{15}}x - \frac{1}{\sqrt{15}}\right)$.

18. Soit
$$x \in \mathbb{R}$$
. $2x^2 + x + 5 = 2\left(x^2 + \frac{1}{2}x + \frac{5}{2}\right) = 2\left((x + \frac{1}{4})^2 + \frac{39}{16}\right)$.
Ainsi, $\frac{1}{2x^2 + x + 5} = \frac{1}{2} \times \frac{1}{(x + \frac{1}{4})^2 + \frac{39}{16}} = \frac{8}{39} \times \frac{1}{\left(\frac{x + \frac{1}{4}}{\sqrt{39}}\right)^2 + 1} = \frac{8}{39} \times \frac{1}{\left(\frac{4}{\sqrt{39}}x + \frac{1}{\sqrt{39}}\right)^2 + 1}$.

Soit $a \in \mathbb{R}$. On a :

$$\int_{a}^{x} \frac{1}{2t^{2} + t + 5} dt = \frac{8}{39} \int_{a}^{x} \frac{1}{\left(\frac{4}{\sqrt{39}}t + \frac{1}{\sqrt{39}}\right)^{2} + 1} dt$$

On effectue le changement de variable $u = \frac{4}{\sqrt{39}}t + \frac{1}{\sqrt{39}}$. On a : $du = \frac{4}{\sqrt{39}}dt$. Ainsi,

$$\int_{a}^{x} \frac{1}{2t^{2} + t + 5} dt = \frac{8}{39} \int_{\frac{4}{\sqrt{39}} a + \frac{1}{\sqrt{39}}}^{\frac{4}{\sqrt{39}} x + \frac{1}{\sqrt{39}}} \frac{\sqrt{39}}{u^{2} + 1} du$$

$$= \frac{8}{39} \times \frac{\sqrt{39}}{4} \int_{\frac{4}{\sqrt{39}} a + \frac{1}{\sqrt{39}}}^{\frac{4}{\sqrt{39}} x + \frac{1}{\sqrt{39}}} \frac{1}{u^{2} + 1} du$$

$$= \frac{2}{\sqrt{39}} \int_{\frac{4}{\sqrt{39}} a + \frac{1}{\sqrt{39}}}^{\frac{4}{\sqrt{39}} a + \frac{1}{\sqrt{39}}} \frac{1}{u^{2} + 1} du$$

$$= \frac{2}{\sqrt{39}} \left[\arctan(u) \right]_{\frac{4}{\sqrt{39}} a + \frac{1}{\sqrt{39}}}^{\frac{4}{\sqrt{39}} a + \frac{1}{\sqrt{39}}}$$

$$= \frac{2}{\sqrt{39}} \arctan\left(\frac{4}{\sqrt{39}} x + \frac{1}{\sqrt{39}}\right) + C$$

où $C \in \mathbb{R}$.

Ainsi, une primitive sur \mathbb{R} de $x \mapsto \frac{1}{2x^2 + x + 5}$ est $x \mapsto \frac{2}{\sqrt{39}} \arctan\left(\frac{4}{\sqrt{39}}x + \frac{1}{\sqrt{39}}\right)$. 19. Le dénominateur admet pour racines : 1 et 2. Soit $(a, b) \in \mathbb{R}^2$.

$$\forall x \in \mathbb{R} \setminus \{1, 2\}, \ \frac{1}{x^2 - 3x + 2} = \frac{a}{x - 1} + \frac{b}{x - 2}$$

$$\iff \forall x \in \mathbb{R} \setminus \{1, 2\}, \ \frac{1}{(x - 1)(x - 2)} = \frac{a(x - 2) + b(x - 1)}{(x - 1)(x - 2)}$$

$$\iff \forall x \in \mathbb{R} \setminus \{1, 2\}, \ \frac{1}{(x - 1)(x - 2)} = \frac{(a + b) - 2a - b}{(x - 1)(x - 2)}$$

$$\iff \begin{cases} a + b = 0 \\ -2a - b = 1 \end{cases}$$

$$\iff \begin{cases} a = -1 \\ b = -a \end{cases}$$

$$\iff \begin{cases} a = -1 \\ b = 1 \end{cases}$$

Ainsi, on a:

$$\forall x \in \mathbb{R} \setminus \{1, 2\}, \ \frac{1}{x^2 - 3x + 2} = -\frac{1}{x - 1} + \frac{1}{x - 2}.$$

Ainsi, une primitive de $x \mapsto \frac{1}{x^2 - 3x + 2}$ sur $\mathbb{R} \setminus \{1, 2\}$ est $x \mapsto -\ln(|x - 1|) + \ln(|x - 2|) = \ln\left(\left|\frac{x - 2}{x - 1}\right|\right)$.

20. Soit $x \in \mathbb{R}$. On a :

$$\frac{2x}{x^2 - x + 1} = \frac{2x - 1 + 1}{x^2 - x + 1} = \frac{2x - 1}{x^2 - x + 1} + \frac{1}{x^2 - x + 1}.$$

Un primitive de $x \mapsto \frac{2x-1}{x^2-x+1}$ sur \mathbb{R} est $x \mapsto \ln(x^2-x+1)$.

Déterminons une primitive de $x \mapsto \frac{1}{x^2 - x + 1}$

Soit $x \in \mathbb{R}$, on sait que $x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$

$$\frac{1}{x^2 - x + 1} = \frac{1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}}$$

$$= \frac{4}{3} \times \frac{1}{\left(\frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)^2 + 1}$$

$$= \frac{4}{3} \times \frac{1}{\left(\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right)^2 + 1}$$

Soit $a \in \mathbb{R}$. Ainsi,

$$\int_{a}^{x} \frac{1}{t^{2} - t + 1} dt = \frac{4}{3} \int_{a}^{x} \frac{1}{\left(\frac{2t}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right)^{2} + 1} dt$$

On effectue le changement de variable $u = \frac{2t}{\sqrt{3}} - \frac{1}{\sqrt{3}}$. On a $du = \frac{2}{\sqrt{3}}dt$. Ainsi,

$$\begin{split} \int_{a}^{x} \frac{1}{t^{2} - t + 1} dt &= \frac{4}{3} \int_{\frac{2a}{\sqrt{3}} - \frac{1}{\sqrt{3}}}^{\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}} \frac{\frac{\sqrt{3}}{2}}{u^{2} + 1} du \\ &= \frac{2}{\sqrt{3}} \int_{\frac{2a}{\sqrt{3}} - \frac{1}{\sqrt{3}}}^{\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}} \frac{1}{u^{2} + 1} du \\ &= \frac{2}{\sqrt{3}} \left[\arctan\left(u\right) \right]_{\frac{2a}{\sqrt{3}} - \frac{1}{\sqrt{3}}}^{\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}} \\ &= \frac{2}{\sqrt{3}} \arctan\left(\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right) + C \end{split}$$

où $C \in \mathbb{R}$.

Ainsi, une primitive de $x \mapsto \frac{1}{x^2 - x + 1}$ sur \mathbb{R} est $x \mapsto \frac{2}{\sqrt{3}} \arctan\left(\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right)$. Finalement, une primitive de $x \mapsto \frac{2x}{x^2 - x + 1}$ est $x \mapsto \ln(x^2 - x + 1) + \frac{2}{\sqrt{3}} \arctan\left(\frac{2x}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right)$.

21. On utilise l'exponentielle complexe. Pour tout $x \in \mathbb{R}$, $e^{3x} \cos 2x = e^{3x} \operatorname{Re} \left(e^{2ix} \right) = \operatorname{Re} \left(e^{(3+2i)x} \right)$. Or, $x \mapsto \frac{e^{(3+2i)x}}{(3+2i)}$ est une primitive sur \mathbb{R} de $x \mapsto e^{(3+2i)x}$. Ainsi, $x \mapsto \operatorname{Re} \left(\frac{e^{(3+2i)x}}{(3+2i)} \right)$ est une primitive sur \mathbb{R} de $x \mapsto e^{3x} \cos(2x)$. Soit $x \in \mathbb{R}$,

$$\operatorname{Re}\left(\frac{e^{(3+2i)x}}{(3+2i)}\right) = \operatorname{Re}\left(\frac{(3-2i)e^{(3+2i)x}}{13}\right)$$
$$= e^{3x}\operatorname{Re}\left(\frac{(3-2i)e^{2ix}}{13}\right)$$
$$= e^{3x}\frac{(3\cos(2x) + 2\sin(2x))}{13}$$

Ainsi, une primitive sur \mathbb{R} de $x \mapsto e^{3x} \cos(2x)$ est $e^{3x} \left(\frac{3}{13} \cos(2x) + \frac{2}{13} \sin(2x) \right)$.

22. Soit $x \in \mathbb{R}$. $(x+1)e^{2x}\cos x = (x+1)e^{2x}\operatorname{Re}\left(e^{ix}\right) = \operatorname{Re}\left((x+1)e^{(2+i)x}\right)$. On procède ensuite par intégration par parties.

On procède par intégration par parties.

Une primitive de $x \mapsto (x+1)e^{(2+i)x}$ sur \mathbb{R} est $F: x \mapsto \int_0^x (t+1)e^{(2+i)t}dt$. Soit $x \in \mathbb{R}$. On effectue l'intégration par parties :

$$u'(t) = e^{(2+i)t},$$
 $v(t) = t+1$
 $u(t) = \frac{e^{(2+i)t}}{2+i}$ $v'(t) = 1$.

u et v sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_{-1}^{x} (t+1)e^{(2+i)t} dt = \left[(t+1)\frac{e^{(2+i)t}}{2+i} \right]_{-1}^{x} - \int_{-1}^{x} \frac{e^{(2+i)t}}{2+i} dt$$
$$= (x+1)\frac{e^{(2+i)x}}{2+i} - \left[\frac{e^{(2+i)t}}{(2+i)^2} \right]_{-1}^{x}$$
$$= (x+1)\frac{e^{(2+i)x}}{2+i} - \frac{e^{(2+i)x}}{(2+i)^2} + C$$

avec $C \in \mathbb{C}$.

On a alors:

$$\operatorname{Re}\left((x+1)\frac{e^{(2+i)x}}{2+i} - \frac{e^{(2+i)x}}{(2+i)^2}\right) = (x+1)\operatorname{Re}\left(\frac{(2-i)}{5}e^{(2+i)x}\right) - \operatorname{Re}\left(\frac{(2-i)^2}{25}e^{(2+i)x}\right)$$

$$= \frac{(x+1)e^{2x}}{5}\operatorname{Re}\left((2-i)e^{ix}\right) - \frac{e^{2x}}{25}\operatorname{Re}\left((3-4i)e^{ix}\right)$$

$$= \frac{(x+1)e^{2x}}{5}\left(2\cos(x) + \sin(x)\right) - \frac{e^{2x}}{25}\left(3\cos(x) + 4\sin(x)\right)$$

Ainsi, une primitive de $x \mapsto (x+1)e^{2x}\cos x$ sur $\mathbb R$ est : $x \mapsto e^{2x} \times \frac{((10x+7)\cos(x)+(5x+1)\sin(x))}{25}$

23. Soit $x \in \mathbb{R}$, on a :

$$\begin{split} \sin^3(x) \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^3 & \text{d'après les formules d'Euler} \\ &= \frac{e^{3ix} - 3e^{ix} + 3e^{-ix} - e^{-3ix}}{-8i} & \text{d'après la formule de Moivre et le binôme de Newton} \\ &= \frac{2i\sin(3x)}{-8i} - \frac{6i\sin(x)}{-8i} \\ &= -\frac{1}{4}\sin(3x) + \frac{3}{4}\sin(x) \end{split}$$

Ainsi, $x \mapsto \frac{1}{12}\cos(3x) - \frac{3}{4}\cos(x)$ est une primitive de $x \mapsto \sin^3(x)$ sur \mathbb{R} .

24. On commence par linéariser \cos^3 . Soit $x \in \mathbb{R}$,

$$\cos^{3}(x) = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{3}$$

$$= \frac{e^{3ix} + 3e^{ix} + 3e^{-ix} + e^{-3ix}}{8}$$

$$= \frac{2\cos(3x) + 6\cos x}{8}$$

$$= \frac{1}{4}\cos(3x) + \frac{3}{4}\cos x$$

On procède ensuite par double intégration par parties. Soit $x \in \mathbb{R}$. On effectue l'intégration par parties :

$$u'_1(t) = \frac{1}{4}\cos(3t) + \frac{3}{4}\cos t,$$
 $v_1(t) = t^2$
 $u_1(t) = \frac{1}{12}\sin(3x) + \frac{3}{4}\sin t$ $v'_1(t) = 2t$

 u_1 et v_1 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_0^x t^2 \cos^3 t dt = \left[t^2 \left(\frac{1}{12} \sin(3t) + \frac{3}{4} \sin t \right) \right]_0^x - 2 \int_0^x t \left(\frac{1}{12} \sin(3t) + \frac{3}{4} \sin t \right) dt$$
$$= x^2 \left(\frac{1}{12} \sin(3x) + \frac{3}{4} \sin x \right) - 2 \int_0^x t \left(\frac{1}{12} \sin(3t) + \frac{3}{4} \sin t \right) dt.$$

On effectue de nouveau une intégration par parties :

$$u_2'(t) = \frac{1}{12}\sin(3t) + \frac{3}{4}\sin t, \qquad v_1(t) = t$$

$$u_2(t) = -\frac{1}{36}\cos(3t) - \frac{3}{4}\cos t \qquad v_1'(t) = 1$$

 u_2 et v_2 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$\int_0^x t^2 \cos^3 t dt = x^2 \left(\frac{1}{12} \sin(3x) + \frac{3}{4} \sin x \right) + 2 \left[t \left(\frac{1}{36} \cos(3t) + \frac{3}{4} \cos t \right) \right]_0^x - 2 \int_0^x \frac{1}{36} \cos(3t) + \frac{3}{4} \cos t dt$$

$$= x^2 \left(\frac{1}{12} \sin(3x) + \frac{3}{4} \sin x \right) + 2x \left(\frac{1}{36} \cos(3x) + \frac{3}{4} \cos x \right) - \left[\frac{1}{54} \sin(3t) + \frac{3}{2} \sin t \right]_0^x$$

$$= x^2 \left(\frac{1}{12} \sin(3x) + \frac{3}{4} \sin x \right) + 2x \left(\frac{1}{36} \cos(3x) + \frac{3}{4} \cos x \right) - \left(\frac{1}{54} \sin(3x) + \frac{3}{2} \sin x \right)$$

Ainsi, une primitive de $x \mapsto x^2 \cos^3(x)$ sur \mathbb{R} est

$$x \mapsto \frac{x^2}{12}\sin(3x) + \frac{x}{18}\cos(3x) - \frac{1}{54}\sin(3x) + \frac{3}{4}x^2\sin(x) + \frac{3}{2}x\cos(x) - \frac{3}{2}\sin(x).$$

Exercice 12. 1. On effectue l'intégration par parties

$$u'(t) = t,$$
 $v(t) = \arctan(t)$
 $u(t) = \frac{t^2}{2}$ $v'(t) = \frac{1}{1+t^2}$.

u et v sont bien \mathcal{C}^1 sur [0,1] . On a alors :

$$\begin{split} \int_0^1 \tan(t)dt &= \left[\frac{t^2}{2}\arctan t\right]_0^1 - \int_0^1 \frac{t^2}{2(1+t^2)}dt = \frac{\pi}{8} - \frac{1}{2}\int_0^1 \frac{1+t^2-1}{1+t^2}dt \\ &= \frac{\pi}{8} - \frac{1}{2}\int_0^1 \left(1 - \frac{1}{1+t^2}\right)dt = \frac{\pi}{8} - \int_0^1 \frac{dt}{2} + \int_0^1 \frac{dt}{2(t^2+1)} \\ &= \frac{\pi}{8} - \frac{1}{2} + \left[\frac{1}{2}\arctan t\right]_0^1 = \frac{\pi}{4} - \frac{1}{2}. \end{split}$$

2. On effectue l'intégration par parties :

$$u'_1(t) = \operatorname{ch}(t),$$
 $v_1(t) = t^3 - 1$
 $u_1(t) = \operatorname{sh}(t)$ $v'_1(t) = 3t^2$.

 u_1 et v_1 sont bien \mathcal{C}^1 sur [-1,1] . On a alors :

$$\int_{-1}^{1} (t^3 - 1) \operatorname{ch} t dt = \left[(t^3 - 1) \operatorname{sh}(t) \right]_{-1}^{1} - \int_{-1}^{1} 3t^2 \operatorname{sh}(t) dt$$
$$= 2 \operatorname{sh}(-1) - 3 \int_{-1}^{1} t^2 \operatorname{sh}(t) dt$$
$$= -2 \operatorname{sh}(1) - 3 \int_{-1}^{1} t^2 \operatorname{sh}(t) dt$$

On effectue l'intégration par parties :

$$u'_2(t) = \operatorname{sh}(t),$$
 $v_2(t) = t^2$
 $u_2(t) = \operatorname{ch}(t)$ $v'_2(t) = 2t$

 u_2 et v_2 sont bien \mathcal{C}^1 sur [-1,1] . On a alors :

$$\int_{-1}^{1} (t^3 - 1) \operatorname{ch} t dt = -2\operatorname{sh}(1) - 3 \left[t^2 \operatorname{ch}(t) \right]_{-1}^{1} + 3 \int_{-1}^{1} 2t \operatorname{ch} t dt$$
$$= -2\operatorname{sh}(1) + 6 \int_{-1}^{1} t \operatorname{ch} t dt$$

On effectue l'intégration par parties :

$$u'_3(t) = \operatorname{ch}(t),$$
 $v_3(t) = t$
 $u_3(t) = \operatorname{sh}(t)$ $v'_2(t) = 1$.

 u_3 et v_3 sont bien \mathcal{C}^1 sur [-1,1] . On a alors :

$$\int_{-1}^{1} (t^3 - 1) \operatorname{ch} t dt = -2\operatorname{sh}(1) + 6 \left[t \operatorname{sh} t \right]_{-1}^{1} - 6 \int_{-1}^{1} \operatorname{sh} t dt$$
$$= -2\operatorname{sh}(1)$$

3.
$$\int_{1}^{e} \frac{(\ln x)^{n}}{x} dx = \left[\frac{(\ln x)^{n+1}}{n+1} \right]_{1}^{e} = \frac{1}{n+1}$$

4.
$$\int_{0}^{\frac{1}{2}} \sqrt{\frac{\arcsin x}{1-x^2}} dx = \left[\frac{2}{3}(\arcsin(x))^{\frac{3}{2}}\right]_{0}^{\frac{1}{2}} = \frac{2}{3}\left(\frac{\pi}{6}\right)^{\frac{3}{2}}.$$

4.
$$\int_{0}^{\frac{1}{2}} \sqrt{\frac{\arcsin x}{1 - x^{2}}} dx = \left[\frac{2}{3} (\arcsin(x))^{\frac{3}{2}} \right]_{0}^{\frac{1}{2}} = \frac{2}{3} \left(\frac{\pi}{6} \right)^{\frac{3}{2}}.$$
5.
$$\forall t \in \mathbb{R}, \ \frac{1}{2t + 2t + 1} = \frac{1}{2} \times \frac{1}{\left(t + \frac{1}{2}\right)^{2} + \frac{1}{4}}. \text{ Donc}:$$

$$\int_0^1 \frac{dt}{2t^2 + 2t + 1} = \frac{1}{2} \int_0^1 \frac{1}{\left(t + \frac{1}{2}\right)^2 + \frac{1}{4}} dt = 2 \int_0^1 \frac{1}{\left(\frac{t + \frac{1}{2}}{\frac{1}{2}}\right)^2 + 1} dt = 2 \int_0^1 \frac{1}{\left(2t + 1\right)^2 + 1} dt$$

On effectue le changement de variable u = 2t + 1. On a $dt = \frac{1}{2}du$.

$$\int_0^1 \frac{dt}{2t^2 + 2t + 1} = \int_1^3 \frac{du}{u^2 + 1} = \left[\arctan\left(u\right)\right]_1^3 = \arctan\left(3\right) - \frac{\pi}{4}.$$

6. On commence par linéariser.

Soit $t \in \mathbb{R}$, on a:

$$\begin{split} \cos^3 t \sin^4 t &= \left(\frac{e^{it} + e^{-it}}{2}\right)^3 \left(\frac{e^{it} - e^{-it}}{2i}\right)^4 \quad \text{d'après les formules d'Euler} \\ &= \frac{1}{2^7} (e^{3it} + 3e^{it} + 3e^{-it} + e^{-3it}) (e^{4it} - 4e^{2it} + 6 - 4e^{-2it} + e^{-4it}) \quad \text{d'après le binôme de Newton} \\ &= \frac{1}{128} (e^{7it} - 4e^{5it} + 6e^{3it} - 4e^{it} + e^{-it} + 3e^{5it} - 12e^{3it} + 18e^{it} - 12e^{-it} + 3e^{-3it} \\ &\quad + 3e^{3it} - 12e^{it} + 18e^{-it} - 12e^{-3it} + 3e^{-5it} + e^{it} - 4e^{-it} + 6e^{-3it} - 4e^{-5it} + e^{-7it}) \\ &= \frac{1}{128} (e^{7it} - e^{5it} - 3e^{3it} + 3e^{it} + 3e^{-it} - 3e^{-3it} - e^{-5it} + e^{-7it}) \\ &= \frac{1}{128} (2\cos(7t) - 2\cos(5t) - 6\cos(3t) + 6\cos t) \\ &= \frac{1}{64} (\cos(7t) - \cos(5t) - 3\cos(3t) + 3\cos t) \end{split}$$

Ainsi

$$\begin{split} \int_0^{\pi/2} \cos^3 t \sin^4 t dt &= \frac{1}{64} \int_0^{\pi/2} \cos(7t) dt - \frac{1}{64} \int_0^{\pi/2} \cos(5t) dt - \frac{3}{64} \int_0^{\pi/2} \cos(3t) dt + \frac{3}{64} \int_0^{\pi/2} \cos(t) dt \\ &= \frac{1}{64} \left[\frac{1}{7} \sin(7t) \right]_0^{\pi/2} - \frac{1}{64} \left[\frac{1}{5} \sin(5t) \right]_0^{\pi/2} - \frac{3}{64} \left[\frac{1}{3} \sin(3t) \right]_0^{\pi/2} + \frac{3}{64} \left[\sin(t) \right]_0^{\pi/2} \\ &= \frac{1}{64} \left(-\frac{1}{7} - \frac{1}{5} + 1 + 3 \right) = \frac{1}{64} \times \frac{128}{35} = \frac{2}{35} \end{split}$$

7. Soit $(a, b, c) \in \mathbb{R}^3$.

$$\forall t \in \mathbb{R} \setminus \{0, -1, -2\}, \ \frac{1}{t(t+1)(t+2)} = \frac{a}{t} + \frac{b}{t+1} + \frac{c}{(t+2)}$$

$$\iff \forall t \in \mathbb{R} \setminus \{0, -1, -2\}, \ \frac{1}{t(t+1)(t+2)} = \frac{a(t+1)(t+2) + bt(t+2) + ct(t+1)}{t(t+1)(t+2)}$$

$$\iff \forall t \in \mathbb{R} \setminus \{0, -1, -2\}, \ \frac{1}{t(t+1)(t+2)} = \frac{(a+b+c)t^2 + (3a+2b+c)t + 2a}{t(t+1)(t+2)}$$

$$\iff \begin{cases} a+b+c=0\\ 3a+2b+c=0\\ 2a=1 \end{cases}$$

$$\iff \begin{cases} a=\frac{1}{2}\\ b=-1\\ c=\frac{1}{2} \end{cases}$$

Ainsi:

$$\forall t \in \mathbb{R} \setminus \{0, -1, -2\}, \ \frac{1}{t(t+1)(t+2)} = \frac{1}{2} \times \frac{1}{t} - \frac{1}{t+1} + \frac{1}{2} \times \frac{1}{(t+2)}.$$

Ainsi,

$$\begin{split} \int_{1}^{2} \frac{dt}{t(t+1)(t+2)} &= \frac{1}{2} \int_{1}^{2} \frac{dt}{t} - \int_{1}^{2} \frac{dt}{t+1} + \frac{1}{2} \int_{1}^{2} \frac{dt}{t+2} \\ &= \frac{1}{2} \Big[\ln|t| \Big]_{1}^{2} - \Big[\ln|1+t| \Big]_{1}^{2} + \frac{1}{2} \Big[\ln|t+2| \Big]_{1}^{2} \\ &= \frac{1}{2} \ln 2 - (\ln 3 - \ln 2) + \frac{1}{2} (\ln 4 - \ln 3) = \frac{5}{2} \ln 2 - \frac{3}{2} \ln 3. \end{split}$$

8. On effectue le changement de variable $u = e^t$. On a $du = e^t dt = u dt$. On obtient :

$$\int_0^1 \frac{dt}{e^t + 1} = \int_1^e \frac{du}{u(u+1)}.$$

Soit $(a,b) \in \mathbb{R}^2$,

$$\forall x \in \mathbb{R} \setminus \{0, -1\}, \ \frac{1}{u(u+1)} = \frac{a}{u} + \frac{b}{u+1}$$

$$\iff \forall x \in \mathbb{R} \setminus \{0, -1\}, \ \frac{1}{u(u+1)} = \frac{a(u+1) + bu}{u(u+1)}$$

$$\iff \forall x \in \mathbb{R} \setminus \{0, -1\}, \ \frac{1}{u(u+1)} = \frac{(a+b)u + a}{u(u+1)}$$

$$\iff \begin{cases} a+b=0\\ a=1 \end{cases}$$

$$\iff \begin{cases} b=-1\\ a=1 \end{cases}$$

Ainsi, on a:

$$\forall x \in \mathbb{R} \setminus \{0, -1\}, \ \frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}.$$

Ainsi,

$$\int_0^1 \frac{dt}{e^t + 1} = \int_1^e \frac{du}{u} - \int_1^e \frac{du}{u + 1} = \left[\ln|u| - \ln|1 + u| \right]_1^e = \ln(e) - \ln(e + 1) + \ln(2) = 1 + \ln 2 - \ln(1 + e).$$

Exercice 13. 1. Soit $(a, b, c) \in \mathbb{R}^3$,

$$\forall x \in \mathbb{R} \setminus \{-1\}, \ \frac{1}{(x+1)(1+x^2)} = \frac{a}{x+1} + \frac{bx+c}{1+x^2}$$

$$\iff \forall x \in \mathbb{R} \setminus \{-1\}, \ \frac{1}{(x+1)(1+x^2)} = \frac{a(1+x^2) + (bx+c)(x+1)}{(x+1)(x^2+1)}$$

$$\iff \forall x \in \mathbb{R} \setminus \{-1\}, \ \frac{1}{(x+1)(1+x^2)} = \frac{(a+b)x^2 + (b+c)x + a + c}{(x+1)(x^2+1)}$$

$$\iff \begin{cases} a+b=0 \\ c+b=0 \\ a+c=1 \end{cases}$$

$$\iff \begin{cases} a = \frac{1}{2} \\ b = -\frac{1}{2} \\ c = \frac{1}{2} \end{cases}$$

Ainsi, $a=\frac{1}{2},\ b=-\frac{1}{2},$ et $c=\frac{1}{2}$ conviennent. 2. Commençons par résoudre $\tan(x)+1=0.$

Soit $x \in \mathbb{R}$.

$$\tan(x) = -1 \iff \tan(x) = \tan\left(-\frac{\pi}{4}\right)$$
 $\iff x \equiv -\frac{\pi}{4} [\pi]$

Soit $k \in \mathbb{Z}$. On pose $I_1^k =] - \frac{\pi}{2} + k\pi, -\frac{\pi}{4} + k\pi[$ et $I_2^k =] - \frac{\pi}{4} + k\pi, \frac{\pi}{2} + k\pi[$. Soit $a, x \in I_1^k \cup I_2^k$, on cherche $\int_a^x \frac{t}{\tan(x) + 1} dt$.

On effectue le changement de variable $u = \tan(t)$. On a $du = (1 + u^2)dt$. Ainsi,

$$\begin{split} \int_{a}^{x} \frac{1}{\tan t + 1} dt &= \int_{\tan(a)}^{\tan(x)} \frac{1}{(u + 1)(1 + u^{2})} du = \frac{1}{2} \int_{\tan(a)}^{\tan(x)} \left(\frac{1}{t + 1} + \frac{-t + 1}{1 + t^{2}} \right) dt \\ &= \frac{1}{2} \Big[\ln|1 + u| \Big]_{\tan(a)}^{\tan(x)} - \frac{1}{4} \Big[\ln(1 + t^{2}) \Big]_{\tan(a)}^{\tan(x)} + \frac{1}{2} \Big[\arctan(u) \Big]_{\tan(a)}^{\tan(x)} \\ &= \frac{1}{2} \ln|\tan(x) + 1| + \frac{1}{2} \arctan(\tan(x)) - \frac{1}{4} \ln|1 + \tan^{2}(x)| + C, \ C \in \mathbb{R}. \end{split}$$

 $\begin{aligned} & \text{Ainsi, les primitives de } x \mapsto \frac{1}{\tan x + 1} \text{ sur } I_1^k \text{ sont } x \mapsto \frac{1}{2} \ln |\tan(x) + 1| + \frac{1}{2} \arctan \left(\tan(x)\right) - \frac{1}{4} \ln \left|1 + \tan^2(x)\right| + \\ & C_1^k \text{ et les primitives de } x \mapsto \frac{1}{\tan x + 1} \text{ sur } I_2^k \text{ sont } x \mapsto \frac{1}{2} \ln |\tan(x) + 1| + \frac{1}{2} \arctan \left(\tan(x)\right) - \frac{1}{4} \ln \left|1 + \tan^2(x)\right| + C_2^k \end{aligned}$ où $(C_1^k, C_2^k) \in \mathbb{R}^2$.

Exercice 14. On cherche à calculer l'intégrale : $I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sin(t) + \tan(t)} dt$.

1. On effectue le changement de variable $u = \cos t$. On a $du = -\sin(t)dt$. Ainsi,

$$I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sin(t) + \tan(t)} dt$$

$$= \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sin(t) + \frac{\sin(t)}{\cos(t)}} dt$$

$$= \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sin(t)}{(1 - \cos^2(t)) \left(1 + \frac{1}{\cos(t)}\right)} dt$$

$$= -\int_{\frac{1}{2}}^{0} \frac{1}{(1 - u^2) \left(1 + \frac{1}{u}\right)} du$$

$$= \int_{0}^{\frac{1}{2}} \frac{u}{(1 - u^2)(u + 1)} du.$$

 $\mathrm{Donc}: R(u) = \frac{u}{(1-u^2)(u+1)}.$ 2. Soit $(a,b,c) \in \mathbb{R}^3$,

$$\forall u \in \mathbb{R} \setminus \{-1, 1\}, \ \frac{u}{(1 - u^2)(u + 1)} = \frac{a}{1 - u} + \frac{b}{1 + u} + \frac{c}{(1 + u)^2}$$

$$\iff \forall u \in \mathbb{R} \setminus \{-1, 1\}, \ \frac{u}{(1 - u^2)(u + 1)} = \frac{a(1 + u)^2 + b(1 - u)(1 + u) + c(1 - u)}{(1 - u)(1 + u)^2}$$

$$\iff \forall u \in \mathbb{R} \setminus \{-1, 1\}, \ \frac{u}{(1 - u^2)(u + 1)} = \frac{(a - b)u^2 + (2a - c)u + a + b + c}{(1 - u)(1 + u)^2}$$

$$\iff \begin{cases} a - b = 0 \\ 2a - c = 1 \\ a + b + c = 0 \end{cases}$$

$$\iff \begin{cases} a = \frac{1}{4} \\ b = \frac{1}{4} \\ c = -\frac{1}{2} \end{cases}$$

Ainsi, $a = \frac{1}{4}$, $b = \frac{1}{4}$ et $c = -\frac{1}{2}$ conviennent.

$$I = \int_0^{\frac{1}{2}} \left(\frac{1}{4} \times \frac{1}{1-u} + \frac{1}{4} \times \frac{1}{1+u} - \frac{1}{2} \times \frac{1}{(1+u)^2} \right) du$$

$$= \left[-\frac{1}{4} \ln|1-u| + \frac{1}{4} \ln|1+u| + \frac{1}{2} \times \frac{1}{1+u} \right]_0^{\frac{1}{2}}$$

$$= \left[\frac{1}{4} \ln\left| \frac{1+u}{1-u} \right| + \frac{1}{2} \times \frac{1}{1+u} \right]_0^{\frac{1}{2}}$$

$$= \frac{1}{4} \ln(3) + \frac{1}{3} - \frac{1}{2}$$

$$= \frac{1}{4} \ln(3) - \frac{1}{6}$$

1. Soit $n \in \mathbb{N}$, on effectue le changement de variable $t = \ln x$. On a $dt = \frac{1}{r} dx = \frac{1}{e^t} dx$. Exercice 15. On obtient alors:

$$I_n = \int_0^1 t^n e^t dt.$$

2. Soit $n \in \mathbb{N}$. On effectue l'intégration par parties :

$$u'(t) = e^t,$$
 $v(t) = t^{n+1}$
 $u(t) = e^t,$ $v'(t) = nt^n$

u et v sont bien \mathcal{C}^1 sur [0,1] . On a alors :

$$I_{n+1} = \left[t^{n+1}e^t\right]_0^1 - \int_0^1 (n+1)t^n e^t dt = e - (n+1)I_n.$$

3. Soit $t \in [0, 1]$, on a $1 \le e^t \le e$, donc $0 \le t^n e^t \le t^n e$ car $t^n \ge 0$.

$$\forall t \in [0,1], \ 0 \le t^n e^t \le e t^n.$$

En intégrant (les bornes sont dans le bon sens), il vient $0 \le I_n \le e \int_0^1 t^n dt = \frac{e}{n+1}$. Par le théorème de convergence par encadrement, $(I_n)_{n \in \mathbb{N}}$ converge et sa limite vaut 0.

Exercice 16. 1. Soit $n \in \mathbb{N}$. $I_{n+2} = \int_0^{\frac{\pi}{2}} x^{n+2} \sin x dx$.

On effectue l'intégration par parties:

$$u'_1(t) = \sin(x),$$
 $v_1(t) = x^{n+2}$
 $u_1(t) = -\cos(x)$ $v'_1(t) = (n+2)x^{n+1}$.

 u_1 et v_1 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$I_{n+2} = \left[-x^{n+2}\cos(x) \right]_0^{\frac{\pi}{2}} + (n+2) \int_0^{\frac{\pi}{2}} x^{n+1}\cos x dx = (n+2) \int_0^{\frac{\pi}{2}} x^{n+1}\cos x dx.$$

On effectue l'intégration par parties :

$$u'_2(t) = \cos(x),$$
 $v_2(t) = x^{n+1}$
 $u_2(t) = \sin(x)$ $v'_2(t) = (n+1)x^n$

 u_2 et v_2 sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors:

$$I_{n+2} = (n+2) \left[x^{n+1} \sin(x) \right]_0^{\frac{\pi}{2}} - (n+2)(n+1) \int_0^{\frac{\pi}{2}} x^n \sin(x) dx = (n+2) \left(\frac{\pi}{2} \right)^{n+1} - (n+2)(n+1) I_n.$$

2. Soit $p \in \mathbb{N}$.

$$\begin{split} I_{2p} &= (2p) \left(\frac{\pi}{2}\right)^{2p-1} - 2p(2p-1)I_{2(p-1)} \\ &= (2p) \left(\frac{\pi}{2}\right)^{2p-1} - (2p)(2p-1)(2p-2) \left(\frac{\pi}{2}\right)^{2p-3} + (2p)(2p-1)(2p-2)(2p-3)I_{2(p-2)} \\ &= (-1)^p (2p)! \sum_{k=1}^p \frac{(-1)^k}{(2k-1)!} \left(\frac{\pi}{2}\right)^{2k-1} + (-1)^p (2p)! I_0 \end{split}$$

Or, $I_0 = 1$. Donc,

$$I_{2p} = (-1)^p (2p)! \sum_{k=1}^p \frac{(-1)^k}{(2k-1)!} \left(\frac{\pi}{2}\right)^{2k-1} + (-1)^p (2p)!.$$

(On peut alors prouver cette formule par récurrence). De la même manière,

$$I_{2p+1} = (2p+1) \left(\frac{\pi}{2}\right)^{2p} - (2p+1)(2p)I_{2(p-1)+1}$$

$$= (2p+1) \left(\frac{\pi}{2}\right)^{2p} - (2p+1)(2p)(2p-1) \left(\frac{\pi}{2}\right)^{2p-2} + (2p+1)(2p)(2p-1)(2p-2)I_{2(p-2)+1}$$

$$= (-1)^{p}(2p+1)! \sum_{k=1}^{p} \frac{(-1)^{k}}{(2k)!} \left(\frac{\pi}{2}\right)^{2k} + (-1)^{p}(2p+1)!I_{1}$$

Or, $I_1 = \int_0^{\frac{\pi}{2}} x \sin(x) dx$.

On effectue l'intégration par parties :

$$u'(t) = \sin(x)$$
, et $v(t) = x$
 $u(t) = -\cos(x)$ et $v'(t) = 1$

u et v sont bien \mathcal{C}^1 sur \mathbb{R} . On a alors :

$$I_1 = \left[-x\cos(x) \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) dx = \left[\sin(x) \right]_0^{\frac{\pi}{2}} = 1.$$

Donc,

$$I_{2p+1} = (-1)^p (2p+1)! \sum_{k=1}^p \frac{(-1)^k}{(2k)!} \left(\frac{\pi}{2}\right)^{2k} + (-1)^p (2p+1)!.$$
$$= (-1)^p (2p+1)! \sum_{k=0}^p \frac{(-1)^k}{(2k)!} \left(\frac{\pi}{2}\right)^{2k}$$

(On peut alors prouver cette formule par récurrence).

Exercice 17. Pour tout $x \in [0, +\infty[$, on pose $I(x) = \left(\int_0^x f(t)dt\right)^2 - \int_0^x f^3(t)dt$.

I est dérivable sur $[0, +\infty[$ car $x \mapsto \int_0^x f(t)dt$ est la primitive de f (continue) qui s'annule en 0, de même $x \mapsto \int_0^x f^3(t)dt$ est la primitive de f^3 (continue) qui s'annule en 0.

$$I'(x) = 2 \int_0^x f(t)dt \times f(x) - f^3(x) = f(x) \left(2 \int_0^x f(t)dt - f^2(x) \right).$$

Or, pour tout $x \in [0, +\infty[$, f'(x) > 0 donc f est strictement croissante sur $[0, +\infty[$ et f(0) = 0 donc pour tout $x \in [0, +\infty[$, $f(x) \ge 0$.

Posons désormais : $k(x) = 2 \int_0^x f(t)dt - f^2(x)$.

k est dérivable sur $[0, +\infty[$ pour les mêmes raisons que précédemment.

Soit $x \in [0, +\infty[$,

$$k'(x) = 2f(x) - 2f(x)f'(x) = 2f(x)(1 - f'(x)).$$

Or, pour tout $x \in [0, +\infty[$, $f(x) \ge 0$ et on sait également que pour tout $x \in [0, +\infty[$, f'(x) < 1. Ainsi, pour tout $x \in [0, +\infty[$, $k'(x) \ge 0$ donc k est croissante sur $[0, +\infty[$ et k(0) = 0 donc pour tout $x \in [0, +\infty[$, $k(x) \ge 0$. Finalement, on en déduit que pour tout $x \in [0, +\infty[$, $I'(x) \ge 0$.

Finalement, I est croissante sur $[0, +\infty[$. Or, I(0) = 0 donc pour tout $x \in [0, +\infty[$, $I(x) \ge 0$ ce qui prouve l'inégalité voulue.

Exercice 18. ϕ est dérivable sur $[0, +\infty[$ car fg est continue sur $[0, +\infty]$ donc $x \mapsto \int_0^x f(t)g(t)dt$ est dérivable sur $[0, +\infty[$ (Il s'agit de la primitive de fg qui s'annule en 0). Soit $x \in [0, +\infty[$,

$$\phi'(x) = f(x)g(x)$$

Or, $0 \le f(x) \le C + \phi(x)$ et $g(x) \ge 0$ donc $f(x)g(x) \le Cg(x) + \phi(x)g(x)$. Or, f(x) > 0, g(x) > 0 donc $\phi(x) \ge 0$ et C > 0 donc $C + \phi(x) > 0$. Ainsi, $\phi'(x) \le g(x)(C + \phi(x))$. D'où :

$$\forall x \in [0, +\infty[, \frac{\phi'(x)}{C + \phi(x)} \le g(x).$$

Or, g et $x \mapsto \frac{\phi'(x)}{C + \phi(x)}$ sont continues sur $[0, +\infty[$. Ainsi, en intégrant l'inégalité entre 0 et x (les bornes sont dans le bon sens), on a :

$$\left[\ln|C + \phi(t)|\right]_0^x \le \int_0^x g(t)dt$$

donc

$$\ln(C + \phi(x)) - \ln(C) \le \int_0^x g(t)dt$$

 $(\operatorname{car} \phi(0) = 0) \operatorname{donc}$

$$\frac{C + \phi(x)}{C} \le \exp\left(\int_0^x g(t)dt\right)$$

Comme C > 0), on a :

$$C + \phi(x) \le C \exp\left(\int_0^x g(t)dt\right)$$

$${\bf Final ement}:$$

$$\forall x \in [0, +\infty[, f(x) \le C + \phi(x) \le C \exp\left(\int_0^x g(t)dt\right).$$