BykovDS 11102024-183358

Найти точку (см. рисунок 1), соответствующую коэффициенту отражения от нормированного импеданса $z=0.42{+}1.49\mathrm{i}$.

Рисунок 1 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 2, причём $R1 = 236.29 \, \text{Om}$.

Рисунок 2 – Двухполюсник

Найти полуокружность (см. рисунок 3), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 3 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.539	162.8	5.450	72.5	0.055	56.8	0.269	-44.5
1.2	0.541	158.9	4.991	69.9	0.059	56.3	0.265	-45.4
1.3	0.547	155.7	4.597	67.2	0.063	55.9	0.261	-46.7
1.4	0.550	152.0	4.289	64.7	0.067	55.6	0.258	-47.9
1.5	0.555	149.0	4.004	61.8	0.071	55.3	0.255	-49.1
1.6	0.557	145.3	3.754	59.4	0.074	54.7	0.253	-50.7
1.7	0.567	142.5	3.523	56.9	0.079	54.1	0.250	-52.6
1.8	0.572	139.6	3.324	54.4	0.083	53.4	0.246	-54.4
1.9	0.575	136.6	3.146	52.1	0.087	52.6	0.244	-56.1
2.0	0.582	133.5	2.973	49.7	0.090	51.7	0.243	-58.1
2.1	0.588	131.0	2.836	47.5	0.094	50.9	0.239	-60.3

и частоты $f_{\scriptscriptstyle \rm H}=1.2$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=1.8$ $\Gamma\Gamma$ ц.

Найти модуль $s_{11}\,$ в дБ на частоте $f_{\scriptscriptstyle \rm B}\,$.

Варианты ОТВЕТА:

- 1) -4.9 дБ
- 2) -12.2 дБ
- 3) 10.4 дБ
- 4) -21.6 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.2	0.564	156.8	4.666	68.8	0.058	58.1	0.263	-44.1
1.5	0.578	147.3	3.740	60.7	0.070	57.0	0.254	-48.4
1.8	0.594	138.0	3.104	53.2	0.082	54.8	0.246	-53.9
2.1	0.608	130.0	2.651	46.3	0.094	52.3	0.241	-60.1
2.4	0.629	122.1	2.313	39.3	0.105	49.7	0.234	-67.3
2.7	0.653	115.2	2.038	32.5	0.116	46.7	0.227	-75.2
3.0	0.674	108.9	1.818	26.1	0.126	43.9	0.220	-83.8
3.3	0.692	103.1	1.640	20.5	0.135	41.1	0.217	-93.1
3.6	0.713	97.7	1.485	14.5	0.145	38.3	0.217	-102.7

и частоты $f_{\scriptscriptstyle \rm H}=1.2$ ГГц, $f_{\scriptscriptstyle \rm B}=3.3$ ГГц.

Найти обратные потери по выходу $% f_{\mathrm{B}}$ на f_{B} .

Варианты ОТВЕТА:

1) 11.6 дБ 2) 5.8 дБ 3) 6.6 дБ 4) 13.3 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
2.2	0.360	173.8	6.033	72.1	0.072	65.5	0.194	-80.2
2.4	0.359	170.7	5.465	69.5	0.078	64.4	0.185	-84.2
2.6	0.364	168.0	5.044	67.3	0.084	63.6	0.176	-88.0
2.8	0.366	165.1	4.673	64.9	0.090	62.5	0.171	-91.5
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
3.5	0.375	156.7	3.707	57.7	0.110	58.9	0.159	-102.4
4.0	0.380	151.1	3.239	52.7	0.125	55.9	0.154	-108.8
4.5	0.388	146.3	2.880	47.8	0.140	52.8	0.145	-114.6
5.0	0.393	142.2	2.599	43.2	0.154	49.5	0.135	-120.4
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
6.0	0.406	132.7	2.181	33.6	0.181	42.9	0.103	-135.0

и частоты $f_{\mbox{\tiny H}}=2.6$ $\Gamma\Gamma\mbox{\scriptsize H},\,f_{\mbox{\tiny B}}=5.5$ $\Gamma\Gamma\mbox{\scriptsize H}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 3.3 дБ 2) 6.6 дБ 3) 8.8 дБ 4) 0.7 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.319	-150.8	13.645	94.1	0.037	67.5	0.365	-57.1
1.5	0.332	-169.3	9.118	82.7	0.052	66.6	0.269	-66.6
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
5.5	0.389	138.8	2.403	38.7	0.168	45.7	0.123	-128.0
8.0	0.472	114.8	1.652	15.2	0.231	28.4	0.089	138.9

Найти точку (см. рисунок 5), соответствующую s_{11} на частоте 8.0 $\Gamma\Gamma$ ц.

Рисунок 5 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D