Homework 4

Course: CO20-320241

7 October, 2019

Problem 4.1 Solution:

The boolean expression of the circuit is: $X = (A XOR B) \land (B XNOR C) \land C$

A	В	С	A XOR B	B XNOR C	X
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	0

As it is evident from the truth table, X = 1 if we have the following input condition: $\overline{\mathbf{A}} \wedge \mathbf{B} \wedge \mathbf{C}$

Problem 4.2

Solution:

Boolean Expression from the circuit: $\overline{AB+C}$ XOR $(\overline{A}*(B+C))$

a) Truth Table:

A	В	С	$\overline{AB+C}$	$(\overline{A}*(B+C))$	X
0	0	0	1	0	1
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	0	0	0

b) Sum of products: $\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

Problem 4.3

Solution:

a)
$$+27_{10} = \mathbf{00011011}$$

27	/ 2	result	13	remainder	1	1
13	/ 2	result	6	remainder	1	1
6	/ 2	result	3	remainder	(0
3	/ 2	result	1	remainder	1	1
1	/ 2	result	0	remainder	1	1

b) $+66_{10} = \mathbf{01000010}$

66	/ 2	result	33	remainder	0
33	/ 2	result	16	remainder	1
16	/ 2	result	8	remainder	0
8	/ 2	result	4	remainder	0
4	/ 2	result	2	remainder	0
2	/ 2	result	1	remainder	0
1	/ 2	result	0	remainder	1

c) $-18_{10} = 11101110$

Convert the positive version of the number to a binary representation: $18_{10} = 00010010_2$

18	/ 2	result	9	remainder	(0
9	/ 2	result	4	remainder	1	1
4	/ 2	result	2	remainder	(0
2	/ 2	result	1	remainder	(0
1	/ 2	result	0	remainder	1	1

Flip the bits: !(00010010) = 11101101

 $Add\ 1{:}\ -18_{10} = 11101101 + 00000001 = \textbf{11101110}$

d) $127_{10} = \mathbf{011111111}$

127	/ 2 result	63 remainder	1
63	/ 2 result	31 remainder	1
31	/ 2 result	15 remainder	1
15	/ 2 result	7 remainder	1
7	/ 2 result	3 remainder	1
3	/ 2 result	1 remainder	1
1	/ 2 result	0 remainder	1

e) $-127_{10} = 10000001$

Convert the positive version of the number to a binary representation: $127_{10} = 011111111_2$

127	/ 2 result	63 remainder	1
63	/ 2 result	31 remainder	1
31	/ 2 result	15 remainder	1
15	/ 2 result	7 remainder	1
7	/ 2 result	3 remainder	1
3	/ 2 result	1 remainder	1
1	/ 2 result	0 remainder	1

Flip the bits: !(011111111) = 100000000

 $Add\ 1{:}\ -127_{10} = 100000000 + 000000001 = \textbf{100000001}$

$$\mathbf{f)} - 128_{10} = 10000000$$

Convert the positive version of the number to a binary representation: $128_{10} = 10000000_2$

128 / 2 result 64 remainder	0
64 / 2 result 32 remainder	0
32 / 2 result 16 remainder	0
16 / 2 result 8 remainder	0
8 / 2 result 4 remainder	0
4 / 2 result 2 remainder	0
2 / 2 result 1 remainder	0
1 / 2 result 0 remainder	1

Flip the bits: !(10000000) = 011111111

Add 1: $-128_{10} = 011111111 + 000000001 =$ **10000000**

g) $+131_{10} = 10000011$ As it is evident, the number is positive and after converting by using only 8 bits we get a binary number where the most significant bit is 1, meaning that it is negative. Thus, in this case we have an overflow.

131	/ 2 result	65 remainder	1
65	/ 2 result	32 remainder	1
32	/ 2 result	16 remainder	0
16	/ 2 result	8 remainder	0
8	/ 2 result	4 remainder	0
4	/ 2 result	2 remainder	0
2	/ 2 result	1 remainder	0
1	/ 2 result	0 remainder	1

h)
$$-7_{10} = 11111001$$

Convert the positive version of the number to a binary representation: $7_{10} = 00000111_2$

7	/	2	result	3	remainder	1
3	/	2	result	1	remainder	1
1	/	2	result	0	remainder	1

Flip the bits: !(00000111) = 11111000

Add 1: $-7_{10} = 111111000 + 00000001 = 111111001$

Problem 4.4 Solution:

a) $00011000 = 24_{10}$

The number is positive, only the conversion to decimal is needed:

$$00011000 = (0*2^7) + (0*2^6) + (0*2^5) + (1*2^4) + (1*2^3) + (0*2^2) + (0*2^1) + (0*2^0) = \mathbf{24_{10}}$$

b)
$$11110101 = -11_{10}$$

Value is negative because it starts with 1.

Flip the bits: !(11110101) = 00001010

Add 1: 00001010 + 1 = 00001011

Convert to decimal and add the minus: $00001011 = (1*2^3) + (0*2^2) + (1*2^1) + (1*2^0) = -11_{10}$

c)
$$01011011 = 91_{10}$$

The number is positive, only the conversion to decimal is needed:

$$01011011 = (0*2^7) + (1*2^6) + (0*2^5) + (1*2^4) + (1*2^3) + (0*2^2) + (1*2^1) + (1*2^0) = \mathbf{91_{10}}$$

d)
$$10110110 = -74_{10}$$

Value is negative because it starts with 1.

Flip the bits: !(10110110) = 01001001

Add 1: 01001001 + 1 = 01001010

Convert to decimal and add the minus: $01001010 = (0*2^7) + (1*2^6) + (0*2^5) + (0*2^4) + (1*2^3) + (0*2^2) + (1*2^1) + (0*2^0) = -74_{10}$

e)
$$111111111 = -1_{10}$$

Value is negative because it starts with 1.

Flip the bits: !(111111111) = 000000000

Add 1: 00000000 + 1 = 00000001

Convert to decimal and add the minus: $00000001 = (1 * 2^0) = -1_{10}$

f)
$$011011111 = 111_{10}$$

The number is positive, only the conversion to decimal is needed:

$$01101111 = (0*2^7) + (1*2^6) + (1*2^5) + (0*2^4) + (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = \mathbf{111_{10}}$$

g)
$$10000001 = -127_{10}$$

Value is negative because it starts with 1.

Flip the bits: !(10000001) = 011111110

Add 1:
$$011111110 + 1 = 011111111$$

Convert to decimal and add the minus: $011111111 = (0*2^7) + (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^1) + (1*2^1) + (1*2^0) = -127_{10}$

```
h) 100000000 = -128_{10}
```

Value is negative because it starts with 1.

```
Flip the bits: !(10000000) = 011111111
```

```
Add 1: 011111111 + 1 = 10000000
```

Convert to decimal and add the minus: $10000000 = (1 * 2^7) = -128_{10}$

Problem 4.5

Solution:

For any addition greater than 9_{10} , add binary equivalent of 6 to the Binary sum obtained and get its BCD equivalent (the comma operator distinguishes the digits):

```
27 + 36 = 0010, 0111_{BCD} + 0011, 0110_{BCD} = 0101, 1101 + 0000, 0110 = \mathbf{0110}, \mathbf{0011}_{\mathbf{BCD}} = 63_{10}
```

```
73 + 29 = 0111,0011_{BCD} + 0010,1001_{BCD} = 1001,1100 + 0000,0110 = 1010,0010 + 0110,0000 = 0001,0000,0010_{\mathbf{BCD}} = 102_{10}
```

Problem 4.6

Solution:

a) What is the range of unsigned decimal numbers that can be represented by using 8 bits?

The range is 0 to 255 because the biggest number can be expressed as $111111111_2 = 255_{10}$ and the smallest one is $00000000_2 = 0_{10}$. In general, an m-bit unsigned number represents all numbers in the range 0 to $2^m - 1$.

b) What is the range of signed decimal numbers that can be represented by using 8 bits (including the sign bit)?

The simplest case is to use 1 sign bit and 7 value bits. The range is -127 to 127 because the biggest number can be expressed as $01111111_2 = 127_{10}$ and the smallest one is $11111111_2 = -127_{10}$ considering that the most significant bit is the sign bit.

c) What is the range of unsigned decimal numbers that can be represented by using 11 bits?

The range is 0 to 2047 because the biggest number can be expressed as $111111111111_2 = 2047_{10}$ and the smallest one is $00000000_2 = 0_{10}$. In general, an m-bit unsigned number represents all numbers in the range 0 to $2^m - 1$.

d) What is the range of signed decimal numbers that can be represented by using 11 bits (including the sign bit)?

The simplest case is to use 1 sign bit and 10 value bits. The range is -1023 to 1023 because the biggest number can be expressed as $0111111111111_2 = 1023_{10}$ and the smallest one is $111111111111_2 = -1023_{10}$ considering that the most significant bit is the sign bit.

e) What is the range of signed decimal numbers that can be represented by using 16 bits (including the sign bit)?