Implementacja algorytmu sprawdzającego pierwszość liczby w czasie wielomianowym

Martyna Siejba

Uniwersytet Wrocławski

29 kwietnia 2019

Małe Twierdzenie Fermata

Niech $a, n \in \mathbb{N}$ takie, że NWD(a, n) = 1. Wówczas zachodzi implikacja, że jeśli $a^{n-1} = 1 \pmod{n}$, to p jest liczbą pierwszą.

Małe Twierdzenie Fermata

Niech $a,n\in\mathbb{N}$ takie, że NWD(a,n)=1. Wówczas zachodzi implikacja, że jeśli $a^{n-1}=1\ (mod\ n)$, to p jest liczbą pierwszą.

Uogólnione Twierdzenia Fermata

Niech $a, n \in \mathbb{N}, n \ge 2$ i NWD(a, n) = 1. Wtedy n jest pierwsza wtedy i tylko wtedy, gdy $(X + a)^n = X^n + a \pmod{n}$.

Małe Twierdzenie Fermata

Niech $a,n\in\mathbb{N}$ takie, że NWD(a,n)=1. Wówczas zachodzi implikacja, że jeśli $a^{n-1}=1\ (mod\ n)$, to p jest liczbą pierwszą.

Uogólnione Twierdzenia Fermata

Niech $a, n \in \mathbb{N}, n \ge 2$ i NWD(a, n) = 1. Wtedy n jest pierwsza wtedy i tylko wtedy, gdy $(X + a)^n = X^n + a \pmod{n}$.

• Zamiast $(X + a)^n = X^n + a \pmod{n}$ rozpatrzmy kongruencję $(X + a)^n = X^n + a \pmod{X^r - 1}$, n), dla pewnego $r \in \mathbb{N}$.

$$(X+a)^n = X^n + a \pmod{X^r - 1, n}$$

Problem

Istnieją liczby złożone, dla których kongruencja może zachodzić.

$$(X+a)^n = X^n + a \pmod{X^r - 1, n}$$

Problem

Istnieją liczby złożone, dla których kongruencja może zachodzić.

Rozwiązanie

Jeśli sprawdzimy odpowiednio wiele różnych a jesteśmy w stanie stwierdzić, czy n jest potęgą liczby pierwszej. Niech ℓ oznacza liczbę rożnych sprawdzanych a.

$$(X+a)^n = X^n + a \pmod{X^r - 1, n}$$

Problem

Istnieją liczby złożone, dla których kongruencja może zachodzić.

Rozwiązanie

Jeśli sprawdzimy odpowiednio wiele różnych a jesteśmy w stanie stwierdzić, czy n jest potęgą liczby pierwszej. Niech ℓ oznacza liczbę rożnych sprawdzanych a.

Agrawal, Kayal i Saxena w PRIMES is in P znajdują odpowiednie r i ℓ .

1: **if** istnieje takie $a \in \mathbb{N}, b > 1$, że $a^b = n$ **then** return ZŁOŻONA

⊳ Krok 1.

3: end if

2:

1: **if** istnieje takie $a \in \mathbb{N}, b > 1$, że $a^b = n$ **then** 2: **return** ZŁOŻONA

⊳ Krok 1.

- 3: end if
- 4: r ← najmniejsza liczba taka, że zachodzi $o_r(n) > log^2 n$ \triangleright Krok 2.

1: **if** istnieje takie $a \in \mathbb{N}, b > 1$, że $a^b = n$ **then**

⊳ Krok 1.

- 3: end if
- 4: r ← najmniejsza liczba taka, że zachodzi $o_r(n) > log^2 n$
- ⊳ Krok 2.⊳ Krok 3.

5: **if** istnieje $a \le r$ takie, że 1 < NWD(a, n) < n **then** 6: **return** 7 \nmid OŻONA

return 7ł OŻONA

7: end if

1: **if** istnieje takie $a \in \mathbb{N}, b > 1$, że $a^b = n$ **then**

⊳ Krok 1.

- 3: end if
- 4: r ← najmniejsza liczba taka, że zachodzi $o_r(n) > log^2 n$
- ⊳ Krok 2.

5: **if** istnieje $a \le r$ takie, że 1 < NWD(a, n) < n **then**

⊳ Krok 3.

6: **return** ZŁOŻONA

return 7ł OŻONA

- 7: end if
- 8: if $n \leqslant r$ then

⊳ Krok 4.

- 9: **return** PIERWSZA
- 10: end if

```
return 7ł OŻONA
 3: end if
 4: r \leftarrow \text{najmniejsza liczba taka, że zachodzi } o_r(n) > log^2 n

⊳ Krok 2.

 5: if istnieje a \le r takie, że 1 < NWD(a, n) < n then

⊳ Krok 3.

       return 7ł0ŻONA
 7: end if
 8: if n \leq r then

⊳ Krok 4.

    return PIFRWS7A
10: end if
11: for a \leftarrow 1 to |\sqrt{\phi(r)} \log n| do
                                                                      ⊳ Krok 5
       if (X + a)^n \neq X^n + a \pmod{X^r - 1}, n) then

⊳ Krok 6.

12:
          return ZŁOŻONA
13:
14.
    end if
15: end for
```

1: **if** istnieje takie $a \in \mathbb{N}, b > 1$, że $a^b = n$ **then**

16: return PIERWS7A

⊳ Krok 7

⊳ Krok 1.

Złożoność obliczeniowa

Lemat

Zachodzi nierówność $r \leq \max\{3, \lceil \log^5 n \rceil\}$.

- krok 1: $O(\log n \cdot (\log n \cdot (\log b \cdot \log n))) = O(\log^2 n \cdot \log \log n)$.
- krok 2: $O(\log^5 n \cdot (\log^2 n \cdot \log r)) = O(\log^7 n \cdot \log \log n)$.
- krok 3: $O(r \cdot (\log n + \log^2 r)) = O(\log^6 n + \log n \cdot \log^2 \log n)$.
- krok 4: O(log n).
- krok 5:
 - krok 6: $O(\log n \cdot (r \cdot \log r \cdot \log n)) = O(\log^7 n \cdot \log \log n)$. $O(\sqrt{\phi(r)} \log n \cdot \log^7 n \cdot \log \log n) \subseteq O(\sqrt{r} \log n \cdot \log^7 n \cdot \log \log n) \subseteq O(\log^{\frac{5}{2}} n \cdot \log^8 n) \subseteq O(\log^{\frac{21}{2}} n \cdot \log \log n)$.

Otrzymujemy ostateczną złożoność $O(\log^{\frac{21}{2}} n \cdot \log \log n)$.

Założenia o zmiennych r i n w kroku 5.:

- n nie jest potęgą liczby pierwszej;
- $\forall_{r' < r} \ o_r(n) \leqslant \log^2 n$;
- \bullet n > r;
- $\forall_{a \leqslant r} NWD(a, n) = 1$.

Założenia o zmiennych r i n w kroku 5.:

- *n* nie jest potęgą liczby pierwszej;
- $\forall_{r' < r} \ o_r(n) \leqslant \log^2 n$;
- \bullet n > r;
- $\forall_{a \leqslant r} NWD(a, n) = 1$.

Idea dowodu

W dowodzie do powyższych założeń dodamy założenie, że istnieje pierwsza liczba p < n taka, że $p \mid n$. Na podstawie jej istnienia zdefiniujemy zbiory, których własności doprowadzą do sprzeczności.

•
$$I = \{(\frac{n}{p})^i \cdot p^j \mid i, j \geqslant 0\},$$

•
$$P = \{\prod_{a=0}^{\ell} (X + a)^{e_a} | e_a \geqslant 0\},$$

•
$$I = \{(\frac{n}{p})^i \cdot p^j \mid i, j \geqslant 0\},$$

•
$$P = \{ \prod_{a=0}^{\ell} (X+a)^{e_a} | e_a \ge 0 \},$$

•
$$G = \{i \pmod{r} | i \in I\}, t = |G|,$$

•
$$I = \{(\frac{n}{p})^i \cdot p^j \mid i, j \ge 0\},\$$

•
$$P = \{\prod_{a=0}^{\ell} (X+a)^{e_a} | e_a \geqslant 0\},$$

•
$$G = \{i \pmod{r} | i \in I\}, t = |G|,$$

•
$$h(X) \in \mathbb{Z}_p[X]$$
 oraz $h(X) \mid Q_r(X)$ i $deg(h) = o_r(p)$,

•
$$I = \{(\frac{n}{p})^i \cdot p^j \mid i, j \geqslant 0\},$$

•
$$P = \{ \prod_{a=0}^{\ell} (X+a)^{e_a} \mid e_a \geqslant 0 \},$$

•
$$G = \{i \pmod{r} | i \in I\}, t = |G|,$$

•
$$h(X) \in \mathbb{Z}_p[X]$$
 oraz $h(X) \mid Q_r(X)$ i $deg(h) = o_r(p)$,

•
$$G = \{q(X) \ (mod \ h(X), \ p) \ | \ q(X) \in P\}$$

Szacowanie dolne mocy ${\cal G}$

Pokazujemy, że $|\mathcal{G}| \geqslant {t+\ell \choose t-1}$.

Dowód przebiega poprzez pokazanie, że dwa różne wielomiany stopnia mniejszego niż t z P odpowiadają różnym wielomianom w \mathcal{G} , a następnie oszacowanie liczby tych wielomianów przez $\binom{t+\ell}{t-1}$.

Szacowanie górne mocy $\mathcal G$

Dowodzimy, że $|\mathcal{G}| \leqslant n^{\sqrt{t}}$.

W dowodzie, wykorzystując własności elementów zbioru I, znajdujemy wielomian, dla którego wszystkie elementy $\mathcal G$ są pierwiastkami i ograniczamy z góry jego stopień.

Sprzeczność otrzymujemy pokazując, że $\binom{t+\ell}{t-1} > n^{\sqrt{t}}$.

Implementacja

- ullet Algorytm zaimplementowałam w języku C++ (standard C++11).
- Wykorzystana biblioteka NTL w wersji 11.3.2.