```
Statements: sentence that is either True or False. (not both)
eg: 2+2 = 4 : True 2+2 = 5 : False
Non-statements: · Fridays are nice (subjective, i not statement)
                                             10
Compound Statements
 · several statements in sentence using logical connectives
    eg: My brother, John, is a student -> statement 1
       · 3 t 5 = 8 -> statement 2
                                            and : conjunction
         Statement 1 ^ statement 2
                                           or : disjunction
                      C and
Truth Tables and
                          T
                                                  Т
                                            Т
                                                              elifferent.
                                                  Τ
                                            F
                          T
                                 T
           F
                          F
                                            ۴
                                                  F
                                 F
Logical Equivalence (=)
 Given 2 statements p.q.
  PAQ = 7 ^ p > logical equivalent.
  P= ~~P
Tautologies & contradictions - construct truth table to determine fautology
                                              or contradiction
  Tautology: Statement that always yield True.
                                                   Tantology = All values T
                                                    Contradicte = An values F
              T
                        T
  contradiction: statement that always yield false
             ~ 6
                     P 1 ~ P
                                                                      ~ፂ^ቮ
       T
                                                               ۴
                       F
                                                  F
                                                      F
              F
                                                                         F
       F
                       F
                                                                         T
                                              T
                                                  T
                                                              T
                                                                         ۴
                                             F
 De Morgan's Law (Logic)
1. ~ (prq) = ~proof: using truth table
2. ~ (p v q) = ~p ~ ~q.
Logical Equivalence laws
 PAQ = q^p: commutative
 (PAq) Ar = PA(qAr) : associative
  p n (q v r) = (p n q) v (p nr): distributive
  PAt =p, t = tautology = All true.
  pvt =t
  PAC = C, C = contradiction = All false
 ~+ = c
                                          hypothesis
  Conditional statements
                                           (+) conclusion
               eg: p = work hard if p then q then
  if ... then ...
                               denoted: p -> q.
                        hypothesis true conclusion false.
                      work hard but no pay yields pag = false
                                                  the rost will be true
```

```
Negation of conditional statements
  P > 2 = ~ P V 2
: ~ (p > q) = ~ (~p vq)
           = ~ (~p) ^ ~q
    ~ (p > q) = p 1 ~ q + Note: After negation, if alisappears.
  Stcps
    1. identify P + Q
    2. Aprily relevant logice then sub in p 2 q for fraul result.
Contrapositive statement
   p > q = ~q → ~p
eg: if today tuesday then today work day = if not today work day then not
                                               today tuesday.
 Converse & Inverse Statements
   p -> q: if p then q.
     converse: 2 > p : if g then p.
     Inverse: mp > ~9
    contempositive: ~2 > ~p. hypothesis time, conclusion false yield false
                                        مر م حو م
                 ~9 10 9 9 9 7
           F
           f T | F T
                        Τ
      TTF
                                  F
                                                          T
                            T
           T.
                                                          T
                                                         contra positive
                      priginal $ converse =
                                            Inverse
  Biconditional statement
     p 4 9
        if p then q happens.
    but if q then p happens.
              if you study hard then you pass.
              if you pass then you have studied hard
              p +> q - T if p & q similar.
                    T
         F
                    F
          T
    \frac{\rho \leftrightarrow q \equiv (\rho \rightarrow q) \wedge (q \rightarrow \rho)}{\rho \leftrightarrow q \equiv (\sim \rho \vee q) \wedge (\sim q \vee \rho)} \sim \leftrightarrow \beta \rightarrow \text{converted to}
    p → q = ~p v q
   * can use Truth table generator (online help tool)
Digital Logic Circuits
```

Black boxes & Gates	
· Black box used to represent circuits (abstract	ctron)
· only interested in inputs & outputs. (not	interested in implementation)
inputs Outputs Basic Gates	
AND AD-	
OR D	
NOT -DO-	
Boolean Expressions	•6
contain boolean variables & boolean connecti	
True or False ~, A, V	: not, and, or.
(P v q) \(\nu\nu\) = Bo	o lean
	xpression
Construct circuit from touth table	
FFFFF Dickentify FTFF D. using on	all rows with output as T
eg: PQ r output Steps FFFF P FFTF P 2. Using on FTTF F	ly AND, form required lugic for
TFFT	rows.
	rann for TFF
	NQ N V for TFT
	QArBrTTT
	t boolean expressions formed in step
with	*
	~ a v ~ L) ~ (b v ~ d v ~) ~
4. Draw	eircuit with reference to expression top 3.
Equivalent Circuits	
· if inputs a outputs are some (construct truth	take to verify)
· can reduce complicated circuits to simpler	equivalent.
NAND & NOR Gates	1 0 0 1
AND with NOT & OR with NOT	1 0 0 1
Notation: PIQ + PIQ	
Shefer stroke Pierce Arrow	
112122 111	
e o output e o output	
p Q output p Q output	
1 1 0 1 1 0	
1 1 0 1 1 0	
Quantified statements - ALL	
1 0 1 0 0 0 0 0 0 0	statement
1 0 1 0 0 0 0 0 0 0	etatement
Quantified statements - ALL An: Y suppose A = {1,2,3,4,5} Ax E A X > 0. E known as universal Coll clements set A set A set alement > 0	statement Satisfy rule.
O 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Quantified statements - ALL An: V suppose A = {1,2,3,4,5} V x E A X 70. E known as universal an elements set A sit each element >0 Universal quantifier. Quantified statements - THERE EXIST	(² = 1
Quantified statements - ALL An: V suppose A = {1,2,3,4,5} V X E A X > 0. & known as universal Quantified statements - There Exist Quantified statements - THERE Exist There Exist: \(\frac{1}{2} \) suppose M = any integer Z = set of an	integers I m & Z, m2 = m : True
Oli	integers I m & Z, m2 = m : True Acyation of that
Quantified statements - ALL An: V suppose A = {1,2,3,4,5} V X E A X > 0. & known as universal Quantified statements - There Exist Quantified statements - THERE Exist There Exist: \(\frac{1}{2} \) suppose M = any integer Z = set of an	integers I m & Z, m2 = m : True Acyation of that