

Auto-IA Workshop HMTM Hannover

TEXT MINING FOR SOCIAL SCIENTISTS

Lexicometrics

Gregor Wiedemann | g.wiedemann@leibniz-hbi.de Media Research Methods Lab Leibniz-Institute for Media Research | Hans-Bredow-Institut

Andreas Niekler | aniekler@informatik.uni-leipzig.de Abteilung Automatische Sprachverarbeitung, Institut für Informatik Universität Leipzig

This lecture

- 1. Frequency analysis
- 2. Key term extraction
- 3. Cooccurrence analysis

- Motivation: Analysis: comparing frequencies of units of analysis per context
 - 1) between different UoA
 - 2) in different collections
 - 3) over time
- Possible Units of Analysis (UoA):
 - terms → in CA we often will concentrate on those
 - concepts (set of terms), ...
 - documents, paragraphs, ...
 - linguistic units (sentences, punctuation marks, vowels, ...)
- Context Units
 - term frequency: frequency of a term within a document / entire collection
 - document frequency: frequency of documents containing a term

Problems of "term as events":

- distribution of language data → keep Zipf's law in mind
- "burstiness of terms"
 - \rightarrow probability of a word occurring again after seen once increases drastically
 - $-\rightarrow$ use log(tf(w)) or df(w) ?
- varying collection sizes → normalize frequencies by collection size!

Zipf's law

- George K. Zipf 1935: observation on distribution of terms in a corpus
 - List types of a corpus by frequency (n) and assign a rank (r) such that the most frequent type has rank 1
 - rank of a word multiplied by its frequency is roughly constant (k): $r \times n \approx k$

type	frequency n	rank r	r * n
sich	1.680.106	10	16.801.060
immer	197.502	100	19.750.200
Mio	66.116	500	18.059.500
Medien	19.041	1000	19.041.000
Miete	3.755	5000	18.775.000
vorläufige	1.664	10000	16.640.000

[Data: Projekt "Deutscher Wortschatz"]

Implication: from Zipf's Law can be derived that roughly 50% of the vocabulary occurs only once in every document/collection!

(see Heyer/Quasthoff/Wittig 2006)

Aggregation / Normalization

- analytic insights in frequency analysis comes from relating / comparing frequency information (→e.g. time series)
- frequencies are easily summable to create information on higher / more abstract levels

- in many cases absolute frequencies may be hard to interprete
- normalization: relative frequencies by all terms/documents in base population

$$tfnorm_{w} = \frac{tf(w, y)}{\sum_{d \in D_{y}} \sum_{t \in V} tf(t, d)} \qquad dfnorm_{w} = \frac{df(w, y)}{|D_{y}|}$$

D_y – set of documents in year y V – vocabulary

Visualization as word clouds

Concepts / dictionaries

- dictionaries (list of words) may be compiled to count conceptual events
 - e.g. basic approach of sentiment analysis → identification of subjective mood in source materials

```
    positive terms: {good, awesome, brilliant, gorgious, ...}
    negative term: {bad, aweful, horrifying, devastating, ...}

→ Tutorial 3
```

- intersection of discoursive fields:
 - war terminology: {blitz, bomb, formation, neutral zone, red zone, kamikaze, ...} measured in articles about soccer, american football or quidditch
- operationalization of theoretical hypthothesis
 - TINA rethorics: {no alternative, no other possibility, impossible, indispensable, ...} with respect to different policy fields

caution:

- Should all events count equally? (e.g. sentiments)
- does occurrence match appropriate context? (feature-/aspect based sentiments)

Applying frequency analysis

- Context matters!
 - counting simple occurrence usually neglects contexts
 - but, right contexts can be assured by previous selection strategies
 - e.g. counting "no alternative" in documents on European politics compared to a general corpus
 - ← Applying filter beforehand increases chances to generate informative data
- Utilization of frequency data for description / identification of
 - content shares → e.g. pie chart
 - trends / time series → e.g. line chart
- consider normalization strategies

Key term extraction

Key term extraction

- One task, many names:
 - "Terminology mining, term extraction, term recognition, or glossary extraction, is a subtask of information extraction. The goal of terminology extraction is to *automatically* extract relevant terms from a given corpus."
 [Wikipedia]
- Extended task: "Ontology learning"
 - key terms and their (hierarchical)
 relationships (e.g. is-a, part-of,
 hypernym/hyperonym, synonym/antonym
 relations)
- Evaluation:
 - judgements on relevancy done by human experts

- approaches based on:
 - Frequency
 - Frequency
 - TF-IDF
 - Difference corpus
 - Log likelihood
 - Characteristic elements diagnostics

Frequency

- Assumption
 - the more frequent, the more important
 - removing stop words helps to identify more relevant terms
- Evaluation
 - language is Zipf distributed
 - raw frequency does not cover relevancy well

- example:
 - protest data TAZ (2000-2009)
- approach to get n most relevant terms
 - 1) create DTM from corpus
 - 2) compute vector v of column sums
 - 3) order v in decreasing order
 - 4) output item 1 to n of v

Lexicometrics 16

TF-IDF

- remember TF-IDF from Information Retrieval:
 - relevancy is correlated with term frequency and inversed document frequency

$$N = |D|$$

$$idf_{w} = \log(\frac{N}{n_{w}})$$

$$weight_{w} = tf_{wd} \cdot idf_{w}$$

polizei	7.089975
rund	6.731556
neonazis	6.309970
uhr	6.270761
samstag	6.236580
kundgebung	6.021211
menschen	5.990043
npd	5.892383
sie	5.598942
gestern	5.563909
ist	5.556133
etwa	5.476461
berlin	5.457175
aufmarsch	5.453003
demonstranten	5.437748
hatten	5.436246
teilnehmer	5.336355
rechten	5.246831
nicht	5.204938
unter	4.991625

- Difference based Term Extraction methods follow a different approach:
 - comparing frequencies in a target corpus T with frequencies in a general comparison corpus C
 - significant deviation in T from expected term distribution measured in C is considered as relevancy criterion
- Tests used in CA
 - Log Likelihood (Dunning 1993; Rayson/Garside 2000)
 - Characteristic elements diagnostics (Lebart/Salem 1994)

Log Likelihood

Contingency Table

	Corpus 1	Corpus 2	Total
Frequency of word	a	b	a+b
Frequency of other words	c-a	d-b	c+d-a-b
Total	С	d	c+d

Log Likelihood

- E1 = c*(a+b) / (c+d)
- E2 = d*(a+b) / (c+d)
- LL = 2*((a*log (a/E1)) + (b*log (b/E2)))

Summary

- lot's of approaches to extract terms...
- corpus comparison methods are usually better than frequency based methods
- disadvantage?: terms are observed independently of each other
- LL and "characteristic elements diagnostic" well established in corpus linguistic literature

Cooccurrence Analysis

- Structuralist semantics (F. de Saussure):
 - syntagmatic relation: signifiers which occur conjointly complement w.r.t
 function and content
 - paradigmatic relation: signifiers which occur in similar contexts have similar function w.r.t. grammar and content → cp. distributional hypothesis
- Computing cooccurrences
 - local context C(w): set of words that occur in the same 'window' as w
 - global context G(w): set of words which occur conjointly with w in a statistically significant manner
 - windows: sentences, paragraphs, documents, headlines, k left/right neighbour words

Cooccurrence Analysis

The sun is shining.	$C_{\text{sentence}}(\text{sun}) = \{\text{The, is, shining}\}$
The sun is burning.	$C_{\text{sentence}}(\text{sun}) = \{\text{The, is, burning}\}\$
The light is shining.	$C_{\text{sentence}}(\text{light}) = \{\text{The, is, shining}\}$

- Counting co-occurrence
 - => focus on high frequent events in text data (Zipf's law!)
 - maximal frequency pair: "the of"
- Determine significance of co-occurrence
 - statistical test measuring "surprise"
 - => better captures semantic characteristics of a text
 - there is not the single measure

Cooccurrence Analysis

- statistical significancy
 - measure of deviation from random conjoint occurrence
- measurements
 - n_a windows containing A
 - n_b windows containing B
 - n_{ab} windows containing A and B
 - n number of all windows

(bag of words within windows)

- significance measures
 - Frequency (baseline*)
 - Dice
 - Mutual Information
 - Log Likelihood

^{*} remember Zipf!

Eingabe	logl	dice	baseline	MI
Abfall Abfall Abfall Abfall Abfall	radioaktiv Tonne entsorgen Endlager werden	radioaktiv entsorgen Endlager Entsorgung hochradioaktiv	d- und in werden ein	Abklingzeit Bodenwurzel Chemie-Praktikum Dosenbier-Trinker STAWA
Zink Zink Zink Zink Zink		Blei Kupfer Cadmium Zinn Nickel	d- und %N% ein in	Verzinken Eisengegenstand Hartlot Bismut stolberger
Montag Montag Montag Montag Montag	am	am abend Uhr Freitag kommend	d- am %N% in	VHS-Öffnungszeit Focus-Tag Einzelhandlesverband FIS-Sicherheitsexperte Freischützstras

Lexicometrics 28

Application in Social Science

- (change of) meaning may be inferred from cooccurrence results
- cooccurrence analysis → comparison of different result sets
 - change of context units(neighbours, sentence, document, ...)
 - filter terms by POS-/NE-types
 - tracking change of global contexts
 by comparing time ranges

Visual analytics:

- tables
- graphs
- KWIC-Lists

Visualization

- cooccurrences = network structure
 - → visualization as graph
 - nodes : terms
 - edges : cooccurrence relation
- e.g. additional information:
 - edge width: significancy value
 - node color: order of cooccurrence
- Caution:
 - algorithms for graph drawing produce outcomes which are not necessarily semantically interpretable!

Visualization

Visualization

- KWIC-lists: "Keyword in context" (H.P. Luhn, 1966)
 - selection of snippets by single keyword
 - centering display around key word

Antitrustpolitik unterstützten Festhalten an	konservativen	Idealen, die der modernen
Die FDP steht für liberal	konservativen	Egoismus. Wofür stehen AL
und Sozialpolitiker sind ratlos.	Konservative	Politiker plädieren für härtere Strafen
auf den massiven Widerstand der	konservativen	Mehrheit im Bundesrat. Ihr
Sozialisten), manche Engländer (vornehmlich	Konservative) und Italiener (vor allem
an anderen geschliffen. Der	konservativen	Regierung Margaret Thatchers fällt
Radikalen unter ihnen haben die "	konservative	Revolution" auf ihr Panier geschrieben

Lexicometrics 32

change of contexts

Summary

- Cooccurrence analysis:
 - global contexts → meaning of terms ("discourse level")
 - significancy of cooccurrence relation is crucial
- "visual hermeneutics" / distant reading of collections through graphical representations
- informational enrichment by creative filtering:
 - different sub collections
 - time ranges
 - person names / NE
 - certain POS-types

What differences in results do you expect from different windows?

- sentences
- paragraphs
- documents
- headlines
- k left/right neighbour words

Summary Lexicometrics

- Applications
 - 1. Frequency analysis
 - 2. Key terms / characteristic elements
 - 3. Concordance (local context) → KWIC lists
 - 4. Cooccurrence / collocation (global context)
- 5. application: Dimension reduction by multivariate statistics (not covered in this lecture)
 - Multidimendional scaling
 - Correspondence analysis
 - Prinicipal component analysis
- Context selection:
 - interpretation of contrasting results of different subselections of the base population