

Mathematical Statistics

Chapter 1: Probability

Huei-Wen Teng

Dept Information Management and Finance National Yang Ming Chiao Tung University

Motivation

This course is based on

1.1 Introduction

Introduction 4

Here is the beef

Once, a student bravely asked me: Teacher, why do we need to learn mathematical statistics? I really feel that I have learned nothing and it is of no use.

- □ short term (1-2 Y):
 - Graduate financial engineering entrance exam
 - P-exam for American Actuary Association
- - Financial engineering, model validation
 - Risk management, Basel III accord
 - Portfolio management, fund management
 - FinTech

A real-world example in Statistics

- We would like to know if the average height of NYCU male students is 170 cm. Suppose we find 5 male students and record their heights:185, 168, 160, 172, 170. How do you answer this question?
- \square With data, we calculate the sample mean $\overline{X}=171$ and sample variance $s^2=82$.

Introduction 6

Mathematical notations

 \square Let height follows $X \sim N(\mu, \sigma^2)$. But both μ and σ^2 are unknown.

Six steps in Hypothesis test

- □ We set up a hypothesis test: $H_0: \mu = 170$ vs. $H_a: \mu \neq 170$.
- \square Set up $\alpha = 0.05$
- \square Collect data to calculate the realized statistic: $t^* = 0.25$.
- □ Find the rejection region $\{t: |t| > 2.776\}$

Introduction 8

Conclusion with plain language

There is no significant evidence that the average height of male student at NYCU is different from $170\,\mathrm{cm}$. Thus, it is likely that the average height of male student at NYCU is $170\,\mathrm{cm}$.

Goals

- We would like to understand, why these six steps work?
- □ Specifically, why Step 3 is correct?
 - A statistic, a countable noun, is a function of random samples $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} F(\theta)$
 - Statistics, an uncountable noun, is a set of knowledge that includes many statistics.
 - We would like to know the distribution of a statistic, $G(X_1, \dots, X_n)$.
 - ► How? We need knowledge accumulated from Chapters 1 to 6 to understand the distribution or the density function of $G(X_1, \dots, X_n)$

Introduction 10

Extensions to this course

 Financial Econometrics: Regression, endogenous problem, simultaneous equations, panel data

- □ Time series: portfolio management, risk management
- Mathematical Finance: financial derivatives
- Machine learning: FinTech, Al

Introduction 11

Motivations

□ Chapters 3 to 6 provide fundamental to prove the step 3 seen in Statistics.

- Applications of probability: bioinformatics, kinetic theory of gases, computer operating systems, queues, electrical devices and communication systems, atmospheric turbulence, operations research, actual science, commercial or military aircraft, finance
- To understand statistics in a deeper level, we start with learning probability.

1.2 Sample Spaces

What is probability theory

- Probability theory is concerned with situations in which the outcomes occur randomly.
- Generically, such situations are called experiments, and the set of all possible outcomes is the sample space corresponding to an experiment.
- The sample space is denoted by Ω , and an *element* of Ω is denoted by ω .
- □ This element is also called a simple event.

Example

- Driving to work, a computer passes through a sequence of three intersections with traffic lights. At each light, she either stops, s, or continues, c. The sample space is the set of all possible outcomes $\Omega = \left\{ \text{ccc}, \text{ccs}, \text{css}, \text{csc}, \text{ssc}, \text{scc}, \text{scs} \right\}$
- □ The length of time between successive earthquakes is

$$\Omega = \{t \mid t \ge 0\}$$

Events

- oxdots We are often interested in particular subsets of Ω , which in probability language are called *events*.
 - ightharpoonup The empty set is the set with no element, denoted by \varnothing .
 - If $A \cap B = \emptyset$, A and B are said to be disjoint.

Set operations

$$A = \{sss, ssc, scc, scs\}$$
$$B = \{sss, scs, ccs, css\}$$

Events

The union of two events:

$$C = A \cup B = \{sss, ssc, scc, scs, ccs, css\}$$

- The intersection of two events: $C = A \cap B = \{sss, scs\}$
- The complement of an event: $A^c = \{ccc, ccs, css, csc\}$

FIGURE **1.1** Venn diagrams of $A \cup B$ and $A \cap B$.

Events

Commutative laws: $A \cup B = B \cup A$, $A \cap B = B \cap A$.

Associative laws: $(A \cup B) \cup C = A \cup (B \cup C),$ $(A \cap B) \cap C = A \cap (B \cap C).$

Distributive laws: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C),$ $(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$

1.3 Probability Measures

An original definition of probability

- oxdots What is the probability of observing a head (H) or tail (T), when tossing a fair coin?
- The sample space is $\Omega = \{H, T\}$. We are interested in the event

$$A = \{H\}.$$

$$P(H) = \lim_{n \to \infty} \frac{\#H}{n}$$

- where n is the number of independent trial and #H is the number of heads observed in the n trials.
- ► We denote *H* by 1 and *T* by 0.
- Essentially, probability contains two ideas:
 - Ratio
 - Repeated sampling (a dynamic procedure)

An example

- See the result of randomly selection: [0 1 0 1 0 1 0 0 1 0]
- Ratios of observing 1 from the *I*-th observations:[0, 1/2, 1/3, 2/4, 2/5, 3/6, 3/7, 3/8, 4/9, 4/10]

https://colab.research.google.com/drive/ 1QM4lwy3EDU7HWFIU8O4Kokdzq3HeuhWf#scrollTo=7cMDCen6Yo2R

A probability measure

- $\ \square$ A probability measure on Ω is a function P from subsets of Ω to the real numbers that satisfies the following axioms:
 - $ightharpoonup P(\Omega) = 1;$
 - ▶ If $A \in \Omega$, then $P(A) \ge 0$;
 - \blacktriangleright If A_1, A_2, \cdots , are mutually disjoint, then

$$P\bigg(\bigcup_{i=1}^{\infty} A_i\bigg) = \sum_{i=1}^{\infty} P(A_i)$$

Properties

- $P(A^c) = 1 P(A).$
- $\square P(\emptyset) = 0.$
- \Box If $A \subset B$, then $P(A) \leq P(B)$.

1.4 Computing Probabilities: Counting Methods

Counting rules to probabilities

- The element of Ω all have equal probabilities; so if there are N elements in Ω , each of them has probability 1/N.
- If A can occur if any of n mutually exclusive ways, then P(A) = n/N, or

$$P(A) = \frac{\text{number of ways } A \text{ can occur}}{\text{total number of outcomes}}$$

Multiplication principle

If there are p experiments and the first has n_1 possible outcomes, the second n_2 , and the p-th n_p possible outcomes, then there is a total of $n_1 \times n_2 \times \cdots \times n_p$ possible outcomes for the p experiments.

Example 1

- □ A class has 12 boys and 8 girls. The teacher selects 1 boy and 1 girl to act as representative to the student government.
- □ Solution
 - She can do this in any $12 \times 8 = 96$ different ways.

Example 2

- Solution
 - There are $2^8 = 256$ such words.

Proposition A

- \square For a set of size n and a sample of size r,
 - \triangleright there are n^r different ordered sampled samples with replacement
 - ► there are $n(n-1)(n-2)\cdots(n-r+1)$ different order samples without replacement.

Corollary A

- □ The number of ordering n elements is $n(n-1)(n-2)\cdots = n!$.
- Example:
 - ► How many ways can five children be lined up?
- Solution
 - There are 5! ways.

Birthday problem

Suppose that a room contains n people. What is the probability that at least two of them have a common birthday? Assume that every day of the year is equally likely to be a birthday. Let A denote the event that at least two people have a common birthday. Then,

$$P(A^c) = \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

$$P(A) = 1 - P(A^c) = 1 - \frac{365 \times 364 \times \dots \times (365 - n + 1)}{365^n}$$

Birthday problem

 $\underline{https:/\!/colab.research.google.com/\!/drive/iQM4lwy3EDU7HWFIU8O4Kokdzq3HeuhWf\#scrollTo=YEGBmNkPWcX_locality.pdf. All the properties of the properties of$

Proposition B

Denote

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The number of unordered samples of k objects selected from n objects without replacements is $\binom{n}{k}$. The numbers $\binom{n}{k}$, called the binomial coefficients, occur in the expansion

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Proposition B

□ In particular,

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

oxdots The latter results can be interpreted as the number of subsets of a set of n objects.

Capture/Recapture method

We assume that there are n animals in the population, of which 10 are tagged. If the 20 animals captured later are taken in such a way that all $\binom{n}{20}$ possible groups are equally likely, the probability that 4 of them are tagged is

$$\frac{\binom{10}{4}\binom{n-10}{16}}{\binom{n}{20}}$$

Likelihood for Example 1

Proposition C

The number of ways that n objects can be grouped into r classes with n_i in the i-th class, $i=1,\cdots,r$, and $\sum_{i=1}^r n_i=n$ is

$$\binom{n}{n_1 n_2 \cdots n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Multinomial coefficients

The numbers $\begin{pmatrix} n \\ n_1 n_2 \cdots n_r \end{pmatrix}$ are called multinomial coefficients.

They occur in the expansion

$$(x_1 + x_2 + \dots + x_r)^n = \sum_{n_1 = 1}^{\infty} {n \choose n_1 n_2 \dots n_r} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$$

where the sum is over all non-negative integers n_1, n_2, \dots, n_r such that $n_1 + \dots + n_r = n$.

Example

- □ A committee of seven members is to be divided into three subcommittees of size three, two, and two.
- Solution
 - This can be done in

$$\binom{7}{322} = \frac{7!}{3!2!2!} = 210$$

ways.

1.5 Conditional Probability

Conditional probability

- \Box Let A and B be two events with $P(B) \neq 0$.
- oxdot The conditional probability of A given B is defined to be

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Multiplication law

 \Box Let A and B be events and assume that $P(B) \neq 0$. Then.

$$P(A \cap B) = P(A \mid B)P(B)$$

Law of total probability

Let B_1, B_2, \cdots, B_n be such that $\bigcup_{i=1}^n B_i = \Omega$ and $B_1 \cap B_j = \emptyset$ for

 $i \neq j$, with $P(B_i) > 0$ for all i. Then for any event A,

$$P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$$

Proof

$$P(A) = P(A \cap \Omega)$$

$$= P\left(A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)\right)$$

$$= P\left(\bigcup_{i=1}^{n} (A \cap B_{i})\right)$$

$$= \sum_{i=1}^{n} P(A \cap B_{i})$$

$$= P(A \mid B_{i}) P(B_{i}).$$

Example 1

- An urn contains three red balls and one blue ball. Two balls are selected without replacement. What is the probability that they are both red?
- Solution
 - Let R_i denote the events that a red ball is draw on the i-th trial. Then

$$P(R_1 \cap R_2) = P(R_1)P(R_2 | R_1) = \frac{3}{4} \cdot \frac{2}{3} = \frac{1}{2}$$

Example 2

- An urn contains three red balls and one blue ball. Two balls are selected without replacement. What is the probability that a red ball is selected on the second draw?
- □ Solution

$$P(R_2) = P(R_2|R_1)P(R_1) + P(R_2|B_1)P(B_1) = \frac{2}{3}\frac{3}{4} + \frac{1}{1}\frac{1}{4} = \frac{3}{4}$$

Bayes' rule

 \Box Let A and B_1, \dots, B_n be events where the B_i are disjoint,

$$\bigcup_{i=1}^n B_i = \Omega, \text{ and } P(B_i) > 0 \text{ for all } i. \text{ Then}$$

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

Proof

Because
$$P\left(B_j \mid A\right) = \frac{P\left(A \cap B_j\right)}{P(A)}$$
, we have
$$P\left(A \cap B_j\right) = P\left(A \mid B_j\right)P(B_j)\,.$$

Second, we have

$$P(A) = P(A \cap \Omega)$$

$$= P\left(A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)\right)$$

$$= P\left(\bigcup_{i=1}^{n} (A \cap B_{i})\right)$$

$$= \sum_{i=1}^{n} P(A \cap B_{i})$$

$$= P(A \mid B_{i}) P(B_{i}).$$

1.6 Independence

Proof

Because
$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)}$$
, we have $P(A \cap B_j) = P(A|B_j)P(B_j)$.

Second, we have
 Second, we have

$$P(A) = P(A \cap \Omega)$$

$$= P\left(A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)\right)$$

$$= P\left(\bigcup_{i=1}^{n} (A \cap B_{i})\right)$$

$$= \sum_{i=1}^{n} P(A \cap B_{i})$$

$$= P(A \mid B_{i}) P(B_{i}).$$

Intuitions for independent events

Intuitively, we would say that two events, A and B, are independent, if knowing that one had occurred gave us no information about whether the other had occurred; that is,

$$P(A \mid B) = P(A)$$

and

$$P(B|A) = P(B)$$

Definition of independent events

■ Now, if

$$P(A) = P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

then

$$P(A \cap B) = P(A)P(B)$$

An easier definition of independent events for checking

oxdot A and B are said to be independent events if

$$P(A \cap B) = P(A)P(B)$$

 $\Box A_1, A_2, \cdots, A_n$ are said to be *mutually independent*, if for any sub collection, A_{i_1}, \cdots, A_{i_m} ,

$$P(A_{i_1} \cap \cdots \cap A_{i_m}) = P(A_{i_1}) \cdots P(A_{i_m})$$

□ Note: pairwise independence does not imply mutual independence.

Example

ldots A fair coin is tossed twice. Let A denote the event of heads on the first toss, B the event of heads on the second toss, and C the event that exactly one head is throw.

- ightharpoonup A and B are independent:
- ightharpoonup A and C are independent:
- ightharpoonup A, B, and C are not mutually independent:

Definition of independent events

Solution

$$P(A) = P(B) = P(C) = 1/2,$$

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = 1/4,$$

$$P(A \cap B \cap C) = 0.$$

Example

Consider a circuit with three relays. Let A_i denote the event that the i -th relay works, and assume that $P(A_i) = p$ and that the relays are mutually independent. If F denotes the event that current flows through the circuit. Find P(F).

□ Sol. $P(F) = P(A_3) + P(A_1 \cap A_2) - P(A_1 \cap A_2 \cap A_3)$.

