Force and Acceleration

Objects with balanced forces (zero resultant force) are either stationary or moving at a steady speed in a straight line.

The motion of something with a resultant force changes. It might speed up, slow down or turn. This means that it accelerates.

The **acceleration** depends on the resultant force and the mass of the object. We would expect a 100 N force to have a bigger effect on a 100 g apple than on a $20\,000$ kg bus.

- 1 The diagram above shows a 50 kg trolley in a warehouse and a 2 kg skateboard.
 - (a) Calculate the resultant force on the trolley and also on the skateboard.
 - (b) Calculate the resultant force on each kilogram for the trolley and the skateboard.
 - (c) If the trolley and the skateboard were in a race with these forces, which would pull away from the start line more rapidly?

The acceleration of an object in m/s² is given by the resultant force per kilogram (in N/kg) of the object.

- 2 Use your answers to write down the
 - (a) the acceleration of the trolley in Q1.
 - (b) acceleration of the skateboard in Q1.
- 3 Complete the word equations using **Acceleration**, **Resultant Force** and **Mass**.
 - (a) Acceleration =
- (b) Resultant Force =
- (c) Mass =
- Rewrite your word equations using symbols. a is the acceleration, F is the resultant force and m is the mass.
 - (a) a =

(b) F =

(c) m =

5	Use your understanding of force and acceleration (including the formulae) to calculate (a) The resultant force needed to give a 200 kg pony a 2 m/s^2 acceleration.
	(b) The acceleration when a $20000~\mathrm{kg}$ bus is driven with a $10000~\mathrm{N}$ resultant force.
	(c) The mass of a melon if a $3\mathrm{N}$ force gives it a $6\mathrm{m/s^2}$ acceleration.
6	A $1.6\mathrm{kg}$ motion trolley is pulled with a $4\mathrm{N}$ force on a desk where there is $1.6\mathrm{N}$ of friction. (a) Calculate the resultant force on the trolley.
	(b) Calculate the acceleration of the trolley.
7	Calculate the acceleration of
	(a) A $40~{\rm kg}$ trolley pushed by $100~{\rm N}$ against $80~{\rm N}$ of friction.
	(b) A $60~{\rm kg}$ swimmer pushing forward with $200~{\rm N}$ against $120~{\rm N}$ of drag.
8	A 0.3 kg firework needs to accelerate upwards at 80 m/s ² . As it rises there is a combined downwards force of 9 N acting on it from its weight and the drag.
	(a) Calculate the resultant force from the acceleration and mass.
	(b) Calculate the upwards propulsion force needed to achieve this resultant force.
9	A 300000 kg train takes 80 s to get to its top speed of 100 m/s on a flat track. On average, there is a combined friction and air resistance force of 50 kN = 50000 N. Calculate
	(a) the acceleration needed. Remember: acceleration $=$ velocity change \div time taken.
	(b) the resultant force,
	(c) the force required from the engine.