

Pontificia Universidad Católica de Chile Departamento de Ciencia de la Computación IIC2283 - Diseño y Análisis de Algoritmos

Profesor: Nicolás Van Sint Jan

AYUDANTE: DANTE PINTO

Ayudantía 8

Monte Carlo

Problema 1: Lema de Schwartz-Zippel

Sea $p(x_1, ..., x_n)$ un polinomio, no nulo, de grado k y sea A un subconjunto finito y no vacío de \mathbb{Q} . Demuestre que si $a_1, ..., a_n$ son elegidos de manera uniforme e independiente desde A, entonces:

$$Pr(p(a_1, ..., a_n) = 0) \le \frac{k}{|A|}$$

Solución: La demostración de este lema se encuentra en las slides de clases.

Problema 2: Multiplicación de Matrices

Sean $A, B, C \in \mathbb{Q}^{n \times n}$. Queremos determinar si $A \cdot B = C$.

1. Diseñe un algoritmo determinista que resuelva el problema y caracterice su tiempo de ejecución.

Solución: El algoritmo más simple que podemos utilizar es simplemente multiplicar las matrices A y B y luego comparar el resultado, entrada por entrada, con la matriz C. Considerando la suma y multiplicación de racionales como operación a contar y utilizando la forma más simple de multiplicación de matrices, este algoritmo tomará tiempo cúbico respecto a n.

2. Diseñe un algoritmo aleatorizado que resuelva el problema con un mejor tiempo que el algoritmo anterior.

Solución: En lugar de multiplicar directamente las dos matrices podemos generar, con distribución uniforme, un vector cualquiera v, calcular $A \cdot B \cdot v - C \cdot v$ y luego comparar este valor con el vector 0.

La multiplicación de una matriz por un vector toma tiempo cuadrático, por lo que si calculamos $B \cdot v$ y luego multiplicamos el resultado de esta operación por A, el algoritmo tomará tiempo cuadrático.

3. Calcule la probabilidad de error del algoritmo 2.

Solución: Formalizando el algoritmo anterior, tenemos:

```
1 Function Compare (A, B, C)
2 | generate (v) \in \{0, 1\}^n
3 | c = C \cdot v
4 | b = B \cdot v
5 | a = a \cdot b
6 | r = a - c
7 | if r = \vec{0} then
8 | return true
9 | return false
```

En caso que $r \neq \vec{0}$, es imposible que $A \cdot B = C$, sin importar qué valor tenga el vector v, por tanto el algoritmo solo cometerá errores cuando retorne true y $A \cdot B \neq C$, por lo que solo debemos analizar este caso

En otras palabras, queremos calcular la probabilidad de que $r = \vec{0}$ cuando $A \cdot B \neq 0$. Si definimos $D = A \cdot B - C$, es claro que $r = D \cdot v$ y además que alguna de las entradas de D, d_{i_0,j_0} debe ser no nula, por lo que podemos acotar la probabilidad que buscamos por la probabilidad de que la entrada r_{i_0} sea 0.

El valor de r_{i_0} está dado por:

$$r_{i_0} = \sum_{i=1}^{n} d_{i,j} \cdot v_i = d_{i_0,j_0} \cdot r_{i_0} + k \land k \in \mathbb{N}$$

$$\Rightarrow Pr[r_{i_0} = 0] = Pr[r_{i_0} = 0|k = 0] \cdot Pr[k = 0] + Pr[r_{i_0} = 0|k \neq 0] \cdot Pr[k \neq 0]$$

Calculando las probabilidades que buscamos podemos ver que:

$$Pr[r_{i_0} = 0|k = 0] = Pr[v_{i_0} = 0] = \frac{1}{2}$$

 $Pr[r_{i_0} = 0|k \neq 0] \le Pr[v_{i_0} = 0] = \frac{1}{2}$

Luego:

$$\begin{split} Pr[r=0] & \leq Pr[r_{i_0}=0] \\ & \leq \frac{1}{2} \cdot Pr[k=0] + \frac{1}{2} \cdot Pr[k \neq 0] \\ & = \frac{1}{2} \left(Pr[k=0] + Pr[k \neq 0] \right) \\ & = \frac{1}{2} \end{split}$$

Y por lo tanto la probabilidad de error del algoritmo será menor a un medio.