Annexe B

Algorithmes Dijkstra et A^*

On s'intéresse, dans cette annexe, à l'algorithme A^* . Cette annexe se situe à l'intersection des chapitres sur les graphes, et sur les jeux. L'algorithme A^* est une modification de l'algorithme de Dijkstra. Dans cette annexe, on prouvera la correction de l'algorithme A^* .

On se place dans le contexte d'exécution d'un algorithme de calcul de plus cours chemin utilisant un tableau de distances μ , et le manipulant en n'effectuant que des opérations Relâcher. Notons le graphe G=(V,E), le sommet source s. Notons également $d(\cdot,\cdot)$ la distance induite par les arêtes du graphe G. De plus, on notera $c(\cdot,\cdot)$ les coûts (positifs, non nuls) d'une arête de G. Notons $\ell(\cdot)$ les rongeurs des chemins.

Lemme 1:

$$\forall (u, v) \in E, \quad d(s, v) \leqslant d(s, u) + c(u, v).$$

Preuve :

Soit $(u, v) \in E$. Soit γ_u un plus court chemin de $s \ge u$. Alors, $\gamma_u \cdot v$ est un chemin de $s \ge v$:

$$\ell(\gamma_u \cdot v) = \ell(\gamma_u) + c(u, v) = d(s, u) + c(u, v) \geqslant d(s, v).$$

Lemme 2 : Pour tout sommet u, la valeur de $\mu[u]$ est décroissant à mesure que l'algorithme s'exécute.

Preuve

Soit $\underline{\mu}$ et $\bar{\mu}$ les valeurs de μ avant et après une opération Relâcher(x,y). Pour tout sommet $v\neq y, \bar{\mu}[v]=\underline{\mu}[v]$. De plus, par disjonction de cas,

- ou bien $\bar{\mu}[y] = \underline{\mu}[y]$, ок.
- ou bien $\bar{\mu}[y] = \mu[x] + c(x,y)$ lorsque $\mu[x] + c(x,y) \leqslant \mu[y]$, donc $\bar{\mu}[y] \leqslant \mu[y]$, ok.

Lemme 3: Supposons que l'algorithme ait initialisé μ de la manière suivante :

$$\forall u \in V, \qquad \mu[u] = \begin{cases} +\infty & \text{ si } u \neq s \\ 0 & \text{ sinon.} \end{cases}$$

Alors, tout au long de l'exécution de l'algorithme, pour tout sommet $u, \mu[u] \geqslant d(s, u)$.

Preuve :Initialement La propriété est vraie par hypothèse.

Hérédité Supposons vrai jusqu'à un certain état μ , pour une opération Relâcher(x,y). Pour tout sommet $v \neq y, \mu[v] = \bar{\mu}[v] \geqslant d(s,v)$. De plus, par disjonction de cas,

- $\sin \bar{\mu}[y] = \underline{\mu}[y] \geqslant d(s, y);$
- sinon si $\mu[y]=\mu[x]+c(x,y)\geqslant d(s,x)+c(x,y)\geqslant d(s,y)$ par hypothèse de récurrence, puis par lemme $\bar{1}$.

Corollaire: Si « à un moment » $\mu[u]=d(s,u)$, alors « pour toujours après » $\mu[u]=d(s,u)$.

Lemme 4: Si (s,\ldots,u,v) est un plus court chemin de s à v tel que $\underline{\mu}[u]=d(s,u)$ « à un certain moment de l'exécution de l'algorithme. » Notons $\bar{\mu}$ obtenu par Relâcher(u,v).

Preuve:

On a

$$\bar{\mu} = \begin{cases} \underline{\mu}[v] & \text{si } \underline{\mu}[v] < \underline{\mu}[u] + c(u,v) \\ \underline{\mu}[u] + c(u,v) & \text{sinon.} \end{cases}$$

Par disjonction de cas,

- si $\mu[v] < \mu[u] + c(u,v) = d(s,u) + c(u,v) = d(s,v)$, et donc, en utilisant le lemme 3, $\bar{\mu}[v] = d(s,v)$
- $\ \ \text{sinon, } \bar{\mu}[v] = \mu[u] + c(u,v) = d(u,v) + c(u,v) = d(s,v).$

Lemme 5: Soit $(s = x_0, x_1, x_2, \dots, x_n)$ un plus court chemin. Si on effectue des opérations Relâcher (x_i,x_{i+1}) dans l'ordre $0 \to n-1$, possiblement entremêlés avec d'autres opérations Relâcher, alors pour tout $i \in [0, n]$, $\mu_{\text{final}}[x_i] = d(s, x_i)$.

Preuve (par récurrence): — Initialement, $\mu[x_0] = d(s, x_0) = d(s, s)$.

— Et, pour tout les i inférieurs stricts, $\mu[x_i] = d(s, x_i)$, on conclut par le lemme 4.

(De ce lemme découle l'algorithme de Bellman-Ford.)

Corollaire: L'algorithme Dijkstra est correct.

Preuve: Soit $t \in V$, un sommet du graphe. Soit $(s=x_0,x_1,\ldots,x_{p-1},x_p=t)$ un plus court chemin de s à t. Montrons que $\mu_{\mathrm{final}}[t]=d(s,t)$. En utilisant le lemme 5, il suffit de montrer que Dijkstra relâche les arêtes dans cet ordre. Supposons les sommets extraits todo dans l'ordre x_0,\ldots,x_i , pour $i\in[0,p-1]$. Par l'absurde, supposons que Dijkstra sorte x_k de todo pour $k\in[i+2,p]$. « À ce moment là, » on a

$$d(s, x_k) \leqslant \mu[x_k] \leqslant \mu[x_{i+1}] \leqslant d(s, x_{i+1}),$$

d'après le lemme 5, ce qui est absurde (k > i + 1).

Corollaire: L'algorithme A^* est correct.

Algorithme 1 Algorithme A* (partiel)

1: **Procédure** Relâcher(u, v)

 $\sin \mu[v] > \mu[u] + c(u,v)$ alors

3: $\mu[v] \leftarrow \mu[u] + c(u,v)$ $\pi[v] \leftarrow u$ 4:

 $\eta[v] \leftarrow \mu[v] + h(v)$ 5:

Par l'absurde, supposons que non. Soit $t \in V$, un sommet du graphe, tel que $\mu_{\text{final}}[t] \neq d(s,t)$. Donc $d = \mu_{\text{final}}[t] > d(s,t) = d^*$. Soit $(s = x_0, x_1, \dots, x_{p-1}, x_p = t)$ un plus court chemin de s à t de longueur d^* . L'algorithme commence par visiter $x_0 = s$ et on relâche les arêtes sortantes. Alors, $\mu[x_i] = d(s,x_1)$ et $\eta[x_1] = \mu[x_1] + \mu[x_1] + h(x_1) \leqslant d(s,x_1) + d(x_1,t) = d(s,t) = d^* < d$ par hypothèse. « À ce state, » $\eta[t] = \mu[t] + h(t) \geqslant d + 0$. Ainsi, x_1 devrait être chois avant t. A un tel moment, $\mu[x_1] = d(s,x_1)$ et x_1 and x_2 and x_3 are relâche element of x_1 and x_2 are related as x_3 . $\eta[t]=\mu[t]+n(t)\geqslant a+0$. Ainsi, x_1 devrait etre cnoisi avant t. A un tei moment, $\mu[x_1]=d(s,x_1)$, on relâche alors ses arêtes sortantes; en particulier x_1 et x_2 . Ceci assure alors que $\mu[x_2]=d(s,x_2)$, et $\eta[x_2]=\mu[x_2]+h(x_2)\leqslant d(snx_2)+d(x_2,t)\leqslant d(s,t)=d^*< d$. « De proche en proche, » alors que l'on choisit x_{p-1} dans todo, on a $\mu[x_{p-1}]=d(s,x_{p-1})$. On relâche alors $\mu[x_p]=d(s,x_p)=d^*$. Or, $d=\mu_{\text{final}}[t]\leqslant \mu_{\text{à ce moment}}[t]$. Absurde.

Exemple (ré-entrée dans todo) : Exécution de l'algorithme A^* sur l'entrée ci-dessus. La pile todo est vaut donc $\phi,\phi,\phi,\psi,\psi,\phi$.