Лабораторная работа 6

Модель хищник-жертва

Клюкин Михаил Александрович

Содержание

1	Цель работы	5	
2	Задание		
3	3 Теоретическое введение		
4	Выполнение лабораторной работы 4.1 Реализация модели в хсоз	8 8 11 14	
5	Выводы	16	
Сп	Список литературы		

Список иллюстраций

4.1	Задание переменных окружения	8
4.2	Модель хищник-жертва в xcos	9
4.3	Конечное время интегрирования	9
4.4	Начальные значения для верхнего блока интегрирования	10
4.5	Начальные значения для нижнего блока интегрирования	10
4.6	Результат моделирования	11
4.7	Фазовый портрет модели	11
4.8	Задание переменных окружения	12
4.9	Модель хищник-жертва с применением блока Modelica	12
4.10	Параметры блока Modelica	13
4.11	Результат моделирования с применением блока Modelica	13
4.12	Фазовый портрет модели с применением блока Modelica	14
4.13	Динамика численности особей модели хищник-жертва в OpenModelica	15
4.14	Фазовый портрет модели хищник-жертва в OpenModelica	15

Список таблиц

1 Цель работы

Реализовать модель хищник-жертва в xcos и OpenModelica.

2 Задание

- 1. Реализовать модель хищник-жертва в хсоз;
- 2. Реализовать модель хищник-жертва в xcos с помощью блока Modelica;
- 3. Реализовать модель хищник-жертва в OpenModelica.

3 Теоретическое введение

Модель «хищник-жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель имеет вид:

$$\Big\{\dot{x} = ax - bxy; \dot{y} = cxy - dy,$$

где x — количество жертв; y — количество хищников; a,b,c,d — коэффициен-ты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент рождения хищников; d — коэффициент убыли хищников.

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоѕ

Зафиксируем начальные данные: a=2, b=1, c=0, 3, d=1, x(0)=2, y(0)=1. В меню Моделирование, Задать переменные окружения зададим значения коэффициентов a, b, c, d (рис. 4.1).

Рис. 4.1: Задание переменных окружения

Для реализации модели в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPX — регистрирующее устройство для построения фазового портрета.

Реализованная модель хищник-жертва предствлена на рис. 4.2.

Рис. 4.2: Модель хищник-жертва в хсоѕ

В меню Моделирование, Установка необходимо задать конечное время интегрирования, равным времени моделирования: 30 (рис. 4.3).

Рис. 4.3: Конечное время интегрирования

В параметрах блоков интегрирования зададим начальные значения x(0) = 2, y(0) = 1 (рис. 4.4, 4.5).

7	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	2
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 4.4: Начальные значения для верхнего блока интегрирования

Рис. 4.5: Начальные значения для нижнего блока интегрирования

Результат моделирования представлен на рис. 4.6. Черной линией обозначен график x(t) (динамика численности жертв), зеленая линия определяет y(t) — динамику численности хищников.

Рис. 4.6: Результат моделирования

На рис. 4.7 приведён фазовый портрет модели.

Рис. 4.7: Фазовый портрет модели

4.2 Реализация модели с помощью блока Modelica

Для реализации модели с помощью языка Modelica потребуются следующие блоки xcos: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK (Modelica

generic).

Как и ранее, задаём значения коэффициентов a, b, c, d (рис. 4.8).

Рис. 4.8: Задание переменных окружения

Готовая модель хищник-жертва представлена на рис. 4.9.

Рис. 4.9: Модель хищник-жертва с применением блока Modelica

Параметры блока Modelica представлены на рис. 4.10. Переменные на входе ("a", "b", "c", "d") и выходе ("x", "y") блока заданы как внешние ("E").

Рис. 4.10: Параметры блока Modelica

Результат моделирования получаем следующие графики (рис. 4.11, 4.12).

Рис. 4.11: Результат моделирования с применением блока Modelica

Рис. 4.12: Фазовый портрет модели с применением блока Modelica

4.3 Упражнение

Реализуем модель «хищник – жертва» в OpenModelica. Построим графики изменения численности популяций и фазовый портрет.

```
parameter Real a = 2;
parameter Real b = 1;
parameter Real c = 0.3;
parameter Real d = 1;
parameter Real x0 = 2;
parameter Real y0 = 1;

Real x(start=x0);
Real y(start=y0);
equation
  der(x) = a*x - b*x*y;
  der(y) = c*x*y - d*y;
```

В результате выполнения симуляции получим график изменения численности хищников и жертв (рис. 4.13).

Рис. 4.13: Динамика численности особей модели хищник-жертва в OpenModelica

Также получим фазовый портрет для модели (рис. 4.14).

Рис. 4.14: Фазовый портрет модели хищник-жертва в OpenModelica

5 Выводы

В результате выполнения лабораторной работы реализована модель хищникжертва в xcos, с помощью блока Modelica и OpenModelica.

Список литературы