1 The Real Number System

1 If $n, m \in \mathbb{Z}$, then n + m, n - m and mn belong to \mathbb{Z} .

The absolute value of a number $a \in \mathbb{R}$ is the number

$$|a| := \begin{cases} a & a \leq \\ -a & a < \end{cases}$$

Theorem 1.6 Fundamental Theorem of Absolute Values

Let $a \in \mathbb{R}$ and $M \ge 0$. Then $|a| \le M \iff -M \le a \le M$. Theorem 1.7 The absolute value satisfies the following three

1. Positive Definite: For all $a \in \mathbb{R}$, |a| > 0 with |a| = 0 if and only if a = 0.

- $|a+b| \le |a| + |b|$ and $||a| |b|| \le |a-b|$
- Theorem 1.9 Let $x, y, a \in \mathbb{R}$
- 1. $x < y + \epsilon \ \forall \epsilon > 0 \iff x \le y$
- 2. $x > y \epsilon \ \forall \epsilon > 0 \iff x \ge y$
- $3 |a| < \epsilon \forall \epsilon > 0 \iff a = 0$

Definition 1.10 Upper bounds

Let $E \subset \mathbb{R}$ be non-empty

1. The set E is said to be bounded above if and only if there is an $M \in \mathbb{R}$ such that $a \leq M$ for all $a \in E$, in which case M is called an upper bound of E.

Theorem 2.11 Let $E \subset \mathbb{R}$. If E has a finite supremum (respectively, a fi- $\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n$. nite infimum), then there is a sequence $x_n \in E$ such that In particular, if $x_n \in [a,b]$ converges to some point c, then c

Theorem 2.12 Suppose that $\{x_n\}$ and $\{y_n\}$ are real sequences and that $\alpha \in \mathbb{R}$. If $\{x_n\}$ and $\{y_n\}$ are convergent, then

1. $\lim_{n\to\infty} (x_n + y_n) = \lim_{n\to\infty} x_n + \lim_{n\to\infty} y_n$

- 2. $\lim_{n\to\infty} (\alpha x_n) = \alpha \lim_{n\to\infty} x_n$ and
- 3. $\lim_{n\to\infty} (x_n y_n) = (\lim_{n\to\infty} x_n)(\lim_{n\to\infty} y_n)$ If, in addition, $y_n \neq 0$ and $\lim_{n\to\infty} y_n \neq 0$, then
- 4. $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{\lim_{n\to\infty} x_n}{\lim_{n\to\infty} y_n}$ (In particular, all these limits exist.)
- Definition 2.14 Divergence

Let $\{x_n\}$ be a sequence of real numbers.

1. $\{x_n\}$ is said to diverge to $+\infty$ if and only if for each

- $M \in \mathbb{R}$ there is an $N \in \mathbb{N}$ such that $n > N \implies r > M$
- 2. $\{x_n\}$ is said to diverge to $-\infty$ if and only if for each A sequence of sets $\{I_n\}_{n\in\mathbb{N}}$ is said to be nested if and only if $M \in \mathbb{R}$ there is an $N \in \mathbb{N}$ such that

Suppose that $\{x_n\}$ and $\{y_n\}$ are real sequences such that $x_n \to +\infty$ (respectively, $x_n \to -\infty$) as $n \to \infty$.

- 1. If y_n is bounded below (respectively, y_n is bounded above), then $\lim_{n\to\infty} (x_n + y_n) = +\infty$
- 2. If $\alpha > 0$, then $\lim_{n\to\infty} (\alpha x_n) = +\infty$ 3. If $y_n > M_0$ for some $M_0 > 0$ and all $n \in \mathbb{N}$, then
- $\lim_{n\to\infty} (x_n y_n) = +\infty$
- 4. If $\{y_n\}$ is bounded and $x_n \neq 0$, then $\lim_{n \to \infty} \frac{y_n}{x_n} = 0$

Let $\{x_n\}$, $\{y_n\}$ be real sequences and α, x, y be extended real

Definition 2.27 Cauchy A sequence of points $x_n \in \mathbb{R}$ is said to be Cauchy (in R) if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

Theorem 2.26 Bolzano-Weierstrass Theorem

 $n, m \ge N \implies |x_n - x_m| < \epsilon$ Suppose that $\{x_n\}$ and $\{y_n\}$ are convergent sequences. If **Remark 2.28** If $\{x_n\}$ is convergent, then $\{x_n\}$ is Cauchy.

- 2. A number s is called a supremum of the set E if and Theorem 1.21 Monotone Property only if s is an upper bound of E and s < M for all upper Suppose that $A \subseteq B$ are nonempty subsets of \mathbb{R}
 - If B has a supremum, then sup A < sup B
 - If B has an infimum, then inf A > inf B.

1.4 Mathematical Induction

If E is a nonempty subset of \mathbb{N} , then E has a least element (i.e. E has a finite infimum and inf $E \in E$).

Theorem 1.23 Suppose for each $n \in \mathbb{N}$ that A(n) is a proposition which satisfies the following two properties:

- A(1) is true.
- 2. For every $n \in \mathbb{N}$ for which A(n) is true, A(n + 1) is also
- Then A(n) is true for all $n \in \mathbb{N}$

Theorem 1.26 Binomial Formula If $a, b \in \mathbb{R}$, $n \in \mathbb{N}$ and 0^0 is interpreted to be 1, then

 $(a + b)^n = \sum_{k=0}^{n} {n \choose k} a^{n-k} b^k$

$$n \in \mathbb{N}$$
 such that $b < na$.

Theorem 1.18 Density of Rationals If $a, b \in \mathbb{R}$ satisfy $a < b$, then there is a $q \in \mathbb{Q}$ such that 1.5 Inverse Functions and Images

Definition 1.29 Injection, Surjection, Bijection

Let X and Y be sets and $f: X \to Y$ 1. f is said to be injective if and only if

- $x_1, x_2 \in X$ and $f(x_1) = f(x_2) \implies x_1 = x_2$
- 2. f is said to be surjective if and only if

$$\forall y \in Y \exists x \in X \ni y = f(x)$$

$$3.\ f$$
 is called $bijective$ if and only if it is both injective and surjective

Theorem 1.30

Let X and Y be sets and $f: X \to Y$. Then the following three statements are equivalent

- f has an inverse
- f is injective from X onto Y;

if and only if $\{x_n\}$ converges (to some point $a \in \mathbb{R}$). necessarily Cauchy.

there is an $N_0 \in \mathbb{N}$ such that $x_n \leq y_n$ for $n \geq N_0$ then **Theorem 2.29** Cauchy

Let $\{x_n\}$ be a sequence of real numbers. Then $\{x_n\}$ is Cauchy

2.5 Limits Supremum and Infimum

Definition 2.32 Limit Supremum & Infimum Let $\{x_n\}$ be a real sequence. Then the limit supremum of $\{x_n\}$ 1. {x_n} is said to be increasing (respectively, strictly inis the extended real number creasing) if and only if $x_1 \le x_2 \le \cdots$ (respectively, $x_1 <$ $\limsup_{n\to\infty} x_n := \lim_{n\to\infty} (\sup_{k\geq n} x_k)$

Remark 2.31 A sequence that satisfies $x_{n+1} - x_n \rightarrow 0$ is not

and the limit infimum of $\{x_n\}$ is the extended real number 2. $\{x_n\}$ is said to be decreasing (respectively, strictly delim $\inf_{n\to\infty} x_n := \lim_{n\to\infty} (\inf_{k\geq n} x_k)$ Theorem 2.35

Let $\{x_n\}$ be a sequence of real numbers,

 $s = \limsup_{n \to \infty} x_n$, and $t = \liminf_{n \to \infty} x_n$ Then there are subsequences $\{x_{nk}\}_{k\in\mathbb{N}}$ and $\{x_{\ell j}\}_{j\in\mathbb{N}}$ such that $x_{nk} \to s \text{ as } k \to \infty \text{ and } x_{\ell j} \to t \text{ as } j \to \infty.$

Let $\{x_n\}$ be a real sequence and x be an extended real number

Then $x_n \to x$ as $n \to \infty$ if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = x$. Theorem 2.37

(respectively, $\liminf_{n\to\infty}$) is the largest value (respectively, the

Let $\{x_n\}$ be a sequence of real numbers. Then $\limsup_{n\to\infty} x_n$

smallest value) to which some subsequences of $\{x_n\}$ converges Namely, if $x_{nk} \to x$ as $k \to \infty$, then $\liminf_{n\to\infty} x_n \le x \le \limsup_{n\to\infty} x_n$ Remark 2.38 If $\{x_n\}$ is any sequence of real numbers, then $\lim \inf_{n \to \infty} x_n \le \lim \sup_{n \to \infty} x_n$

Remark 2.39 A real sequence $\{x_n\}$ is bounded above if and Remark 2.25 The Nested Interval Property might not hold only if $\limsup_{n\to\infty} x_n < \infty$, and is bounded below if and only if $\liminf_{n\to\infty} x_n > -\infty$.

Theorem 2.40 If $x_n \leq y_n$ for n large, then

 $\limsup_{n\to\infty} x_n \leq \limsup_{n\to\infty} y_n$ and $\lim \inf_{n \to \infty} y_n < \lim \inf_{n \to \infty} y_n$

3 Functions on R

3.1 Two-Sided Limits

Definition 3.1 Limits Let $a \in \mathbb{R}$, let I be an open interval which contains a, and let Let I be an interval and let $f: I \to \mathbb{R}$. If the derivative of f Definition 1.38 Countable & Uncountable

Definition 1.33 Image Let X and Y be sets and $f: X \to Y$. The image of a set

3. There is a function $q: Y \to X$ such that

that satisfies these. It is the inverse function f^-

 $g(f(x)) = x \quad \forall x \in X \text{ and }$

 $f(q(y)) = y \quad \forall y \in Y$

 $f(E) := \{y \in Y : y = f(x) \text{ for some } x \in E\}$

se image of a set
$$E \subseteq Y$$
 under f is the set

Definition 1.35 Union, Intersection

Let
$$\mathcal{E} = \{E_{\alpha}\}_{\alpha \in A}$$
 be a collection of sets.

1. The union of the collection \mathcal{E} is the set

- $\bigcap E_{\alpha} := \{x : x \in E_{\alpha} \text{ for all } \alpha \in A\}$
- Theorem 1.36 DeMorgan's Laws

Theorem 1.37 Let X and Y be sets and $f: X \to Y$.

- $f\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f(E_{\alpha})$ and $f\left(\bigcap_{\alpha \in A} E_{\alpha}\right) \subseteq \bigcap_{\alpha \in A} f(E_{\alpha})$
- If B and C are subsets of X, then f(C)\f(B) ⊆ f(C\B)
- $f^{-1}\left(\bigcup_{\alpha \in A} E_{\alpha}\right) = \bigcup_{\alpha \in A} f^{-1}(E_{\alpha})$ and

f be a real function defined everywhere on I except possibly at a. Then f(x) is said to converge to L, as x approaches a, if and only if for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I, and a) such that $0 < |x - a| < \delta \implies |f(x) - L| < \epsilon$

the limit of
$$f(x)$$
 as x approaches a .

Remark 3.4 Let $a \in \mathbb{R}$, let I be an open interval which contains a, and let

then g(x) also has a limit as $x \to a$, and $\lim_{x \to a} g(x) = \lim_{x \to a} f(x)$

Let
$$a\in\mathbb{R}$$
, let I be an open interval which contains a , and let f be a real function defined everywhere on I except possibly at a . Then
$$L=\lim f(x)$$

exists if and only if $f(x_n) \to L$ as $n \to \infty$ for every sequence $\{x_n\} \in I \setminus \{a\}$ which converges to a as $n \to \infty$.

at a. Then

cept possibly at a. If f(x) and q(x) converge as x approaches a, then so do (f+q)(x), (fq)(x), $(\alpha f)(x)$, and (f/q)(x) (when the limit of q(x) is nonzer). In fact, $\lim (f+g)(x) = \lim + \lim g(x)$

$$\lim_{x \to a} (\alpha f)(x) = \lim_{x \to a} f(x)$$
$$\lim_{x \to a} (fg)(x) = \lim_{x \to a} \lim_{x \to a} g(x)$$

 $\lim_{x\to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$

Theorem 3.9 Squeeze Theorem for Functions Suppose that $a \in \mathbb{R}$, that I is an open interval which contains a, and that f, g, h are real functions defined everywhere on Iexcept possibly at a.

 $f^{-1}(C) \setminus f^{-1}(B)$ 2.1 Limits of Sequences 5. If $E \subseteq f(x)$, then $f(f^{-1}(E)) = E$, but if $E \subseteq X$. then

4. If B and C are subsets of Y, then $f^{-1}(C \setminus B) = 2$ Sequences in \mathbb{R}

Definition 2.1 Convergence

A sequence of real numbers $\{x_n\}$ is set to converge to a real number $a \in \mathbb{R}$ if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ (which in general depends on ϵ) such that

$$n \ge N \implies |x_n - a| < \epsilon$$

Remark 2.4 A sequence can have at most one limit.

Definition 2.5 Subsequence By a subsequence of a sequence $\{x_n\}_{n\in\mathbb{N}}$, we shall mean a

sequence of the form $\{x_{n_k}\}_{k\in\mathbb{N}}$, where each $n_k\in\mathbb{N}$ and

If $\{x_n\}_{n\in\mathbb{N}}$ converges to a and $\{x_{nk}\}k\in\mathbb{N}$ is any subsequence of $\{x_n\}_{n\in\mathbb{N}}$, then x_{nk} converges to a as $k \to \infty$.

Definition 2.7 Bounded Sequences Let $\{x_n\}$ be a sequence of real numbers

The sequence {x_n} is said to be bounded above if and

- only if the set $\{x_n : n \in \mathbb{N}\}$ is bounded above
- only if the set $\{x_n : n \in \mathbb{N}\}$ is bounded below. {x_n} is said to be bounded if and only if it is bounded
- both above and below.
- Theorem 2.8 Every convergent sequence is bounded.

The sequence {x_n} is said to be bounded below if and

2.2 Limit Theorems Theorem 2.9 Squeeze Theorem

Suppose that $\{x_n\}$, $\{y_n\}$, and $\{w_n\}$ are real sequences

- $N_0 \in \mathbb{N}$ such that
 - $x_n \le w_n \le y_n$ for $n \ge N_0$

then
$$w_n \to a$$
 as $n \to \infty$.

If x_n → 0 as n → ∞ and {y_n} is bounded, then x_ny_n → 0

Theorem 3.14 Let f be a real function. Then the limit

 $\lim_{x \to a} f(x)$

exists and equals L if and only if

Definition 3.15 Convergence

$$L = \lim_{x \to a+} f(x) = \lim_{x \to a-}$$

Let $a, L \in \mathbb{R}$ and let f be a real function

there exists a c > 0 such that $(c, \infty) \subset Dom(f)$ and given $\epsilon > 0$ there is an $M \in \mathbb{R}$ such that x > M implies $|f(x) - L| < \epsilon$, in which case we shall write

Similarly,
$$f(x)$$
 is said to converge to L as $x \to -\infty$ if and only if there exists a $c > 0$ such that $(infty, -c) \subset$

 $\operatorname{Dom}(f)$ and given $\epsilon > 0$ there is $M \in \mathbb{R}$ such that x > Mimplies $|f(x) - L| < \epsilon$, in which case we shall write $\lim_{x \to \infty} = L$ or $f(x) \to L$ as $x \to \infty$

2. The function
$$f(x)$$
 is said to converge to ∞ as $x \to a$ if

case we shall write $\lim \, f(x) = \infty \quad \text{or} \quad f(x) \to \infty \, \text{ as } x \to a$

Similarly,
$$f(x)$$
 is said to $converge$ to $-\infty$ as $x \to a$ if

case we shall write

on I except possibly at a. Then

and only if there is an open interval I containing a such

 $\lim_{x \to x \in I} f(x)$

4. E is said to be uncountable if and only if E is neither finite nor countable. Remark 1.39 Cantor's Diagonalisation Argument

A nonempty set E is at most countable if and only if there is

Theorem 1.41 Suppose A and B are sets. 1. If $A \subseteq B$ and B is at most countable, then A is at most

- If A ⊆ B and A is uncountable, then B is uncountable.
- 3. R is uncountable

a function q from \mathbb{N} onto E.

 $E \subseteq f^{-1}(f(E)).$

E, for some $n \in \mathbb{N}$.

finite or countable.

The open interval (0.1) is uncountable.

1.6 Countable and Uncountable Sets

injective function which takes \mathbb{N} onto E.

E is said to be finite if and only if either E = ∅ or there

2. E is said to be countable if and only if there exists and

3. E is said to be at most countable if and only if E is either

exists an injective function which takes $\{1, 2, ..., n\}$ onto

Theorem 1.42 Let A_1, A_2, \ldots be at most countable sets.

Lemma 1.40

1. Then $A_1 \times A_2$ is at most countable

$$E = \bigcup_{j=1}^{\infty} A_j := \bigcup_{j \in \mathbb{N}} A_j := \{x : x \in A_j \text{ for some } j \in \mathbb{N}\},$$
 then E is at most countable.

The sets $\mathbb Z$ and $\mathbb Q$ are countable, but the set of irrationals is

1. If $q(x) \le h(x) \le f(x) \ \forall x \in I \setminus \{a\}$, and

 $\lim f(x) = \lim g(x) = L$, then the limit of h(x) exists, as $x \to a$, and

$$\lim h(x) = L$$

2. If $|g(x)| \le M \ \forall x \in I \setminus \{a\}$ and $f(x) \to 0$ as $x \to a$, then

denote it by

$$\lim_{x \to a} f(x)g(x) = 0$$

Theorem 3.10 Comparison Theorem for Functions Suppose that $a \in \mathbb{R}$, that I is an open interval which contains a, and that f, a are real functions defined everywhere on I except possibly at a. If f and a have a limit as x approaches a and $f(x) \le g(x) \ \forall x \in I \setminus \{a\}$, then

$$\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$$

3.2 One-Sided Limits and Limits at Infinity Definition 3.12 Converge from left & right

1. f(x) is said to converge to L as x approaches a from the

$$a + \delta \in I$$
 and $a < x < a + \delta \implies |f(x) - L| < \epsilon$
in this case we call L the right-hand limit of f at a , and

 $f(a+) := L =: \lim_{x \to a} f(x)$

left if and only if f is defined on some open interval I Theorem 3.17 with left endpoint a and for every $\epsilon > 0$ there is a $\delta > 0$

 $x_n \in I$ which satisfy $x_n \neq a$ and $x_n \rightarrow a$ as $n \rightarrow \infty$.

1.2 Ordered Field Axioms

1.1 Introduction

Remark 1.1

- There is no n ∈ Z that satisfies 0 < n < 1
- Definition 1.4 Absolute Value

$|a| := \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$

Remark 1.5 The absolute value is multiplicative; that is, $|ab| = |a||b| \forall a, b \in \mathbb{R}$

- 2. Symmetric: For all $a, b \in \mathbb{R}$, |a b| = |b a|,
- 3. Triangle Inequalities: For all $a, b \in \mathbb{R}$
- 1.3 Completeness Axiom
- $x_n \to \sup E$ (respectively, a sequence $y_n \in E$ such that must belong to [a, b]. $u_n \to \inf E$) as $n \to \infty$.

- $n \ge N \implies x_n < M$ Theorem 2.15

- of the form $\infty \infty$, and $\lim_{n\to\infty} (\alpha x_n) = \alpha x$, $\lim_{n\to\infty} (x_n y_n) = xy$
- numbers. If $x_n \to x$ and $y_n \to y$, as $n \to \infty$, then
- $\lim_{n\to\infty} (x_n + y_n) = x + y$ provided that the right side is not provided that none of these products is of the form $0 \cdot \pm \infty$.
- Theorem 2.17 Comparison Theorem

- many upper bounds. We will assume that the sets $\mathbb N$ and $\mathbb Z$ satisfy the following 2. If $n \in \mathbb{Z}$, then $n \in \mathbb{N}$ if and only if $n \ge 1$ then there is a point $a \in E$ such that
 - Remark 1.13 If a set has a supremum, then it has only one Theorem Approximation Property for Suprema

If $E \subset \mathbb{Z}$ has a supremum, then $\sup E \in E$. In particular, if

the supremum of a set, which contains only integers, exists.

If E is a nonempty subset of $\mathbb R$ that is bounded above, then E

Given real numbers a and b, with a > 0, there is an integer

The set E is said to be bounded below if and only if there

A number t is called an infimum of the set E if and only

3. E is said to be bounded if and only if it is bounded both

E has a supremum if and only if −E has an infimum, in

2. E has an infimum if and only if -E has a supremum, in

creasing) if and only if $x_1 \ge x_2 \ge \cdots$ (respectively, $x_1 >$

3. $\{x_n\}$ is said to be monotone if and only if it is either

If $\{x_n\}$ is increasing and bounded above, or if $\{x_n\}$ is decreas-

ing and bounded below, then $\{x_n\}$ converges to a finite limit.

If $\{I_n\}_{n \in \mathbb{N}}$ is a nested sequence of nonempty closed bounded

intervals, then $E := \bigcap_{n=1}^{\infty} I_n$ is nonempty. Moreover, if the

lengths of these intervals satisfy $|I_n| \to 0$ as $n \to \infty$ then E is

Remark 2.24 The Nested Interval Property might not hold

Every bounded sequence of real numbers has a convergent sub-

if t is a lower bound of E and $t \ge m$ and write $t = \inf E$

is an $m \in \mathbb{R}$ such that $a \geq E$, in which case m is called

Remark 1.12 If a set has one upper bound, it has infinitely

finite supremum s and write $s = \sup E$.)

 $\sup E - \epsilon < a \le \sup E$

that supremum must be an integer.

Postulate 3 Completeness Axiom

Theorem 1.18 Density of Rationals

a lower bound of the set E.

Theorem 1.20 Reflection Principle

which case $\inf(-E) = -\sup E$.

which case $\sup(-E) = -\inf E$

2.3 Bolzano-Weierstrass Theorem

Definition 2.18 Increasing, Decreasing

increasing or decreasing.

Theorem 2.23 Nested Interval Property

Definition 2.22 Nested

 $I_1 \supset I_2 \supset \cdots$

a single point.

if "closed" is omitted

if "bounded" is omitted

2.4 Cauchy Sequences

Theorem 2.19 Monotone Convergence Theorem

Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers.

Definition 1.19 Upper bounds

Let $E \in \mathbb{R}$ be nonempty

above and below

Let $E \in \mathbb{R}$ be nonempty

Theorem 1.16 The Archimedean Principle

Theorem 1.15

bounds M of E. (In this case we shall say that E has a

- If E has a finite supremum and $\epsilon > 0$ is any positive number.
- Theorem 1.22 Well-Ordering Principle
- - - is either always positive on I, or always negative on I, then f Let E be a set. is injective on I

Moreover, for each $f: X \to Y$, there is only one function q

- $E \subseteq X$ under f is the set
- The inverse image of a set $E \subseteq Y$ under f is the set
 - $f^{-1}(E) := \{x \in X : f(x) = y \text{ for some } y \in E\}$
 - - $B_{\alpha} := \{x : x \in E_{\alpha} \text{ for some } \alpha \in A\}$
- The intersection of the collection £ is the set
- Let X be a set and $\{E_{\alpha}^{"}\}_{\alpha \in A}$ be a collection of subsets of X. If for each $E \subseteq X$ the symbol E^c represents the set $X \setminus E$, then $\left(\bigcup_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}$ and $\left(\bigcap_{\alpha \in A} E_{\alpha}\right)^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}$
- 1. If $\{E_{\alpha}\}_{\alpha} \in A$ is a collection of subsets of X, then
- 3. If $\{E_{\alpha}\}_{\alpha \in A}$ is a collection of subsets of Y, then Remark 1.43 $f^{-1}\left(\bigcap_{\alpha \in A} E_{\alpha}\right) = \bigcap_{\alpha \in A} f^{-1}(E_{\alpha})$

 $L = \lim f(x)$ or $f(x) \to L$ as $x \to a$

- and call L the limit of f(x) as x approaches a.
- f, a be real functions defined everywhere on I except possibly at a. If f(x) = g(x) for all $x \in I \setminus \{a\}$ and $f(x) \to L$ as $x \to a$,
- Theorem 3.6 Sequential Characterisation of Limits
- Suppose that $a \in \mathbb{R}$, that I is an open interval which contains a, and that f, g, are real functions defined everywhere on I ex-
- and (when the limit of g(x) is nonzero)

- Let $a \in \mathbb{R}$ and f be a real function. and only if there is an open interval I containing a such that $I \setminus \{a\} \subset Dom(f)$ and given $M \in \mathbb{R}$ there is a $\delta > 0$ right if and only if f is defined on some open interval Iwith left endpoint a and for every $\epsilon > 0$ there is a $\delta > 0$ (which in general depends on ϵ , f, I, and a) such that
- 2. f(x) is said to converge to L as x approaches a from the
- (which in general depends on ϵ , f, I, and a) such that $a + \delta \in I$ and $a < x < a + \delta \Longrightarrow |f(x) - L| < \epsilon$ in this case we call L the left-hand limit of f at a, and
 - $f(a-) := L =: \lim_{x \to a} f(x)$

- such that $0 \le |x a| < \delta$ implies f(x) < M, in which
- that $I \setminus \{a\} \subset Dom(f)$ and given $M \in \mathbb{R}$ there is a $\delta > 0$ such that $0 < |x - a| < \delta$ implies f(x) < M, in which
- Let a be an extended real number, and let I be a nondegener

- 1. If $x_n \to a$ and $y_n \to a$ as $n \to \infty$, and if there is an
- - $L = \lim_{x \to 0} f(x) = \lim_{x \to 0} f(x)$
- 1. f(x) is said to converge to L as $x \to \infty$ if and only if
 - $\lim \ f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to \infty$

 - $\lim f(x) = -\infty$ or $f(x) \to -\infty$ as $x \to a$
- ate open interval which either contains a or has a as one of its

- endpoints. Suppose further that f is a real function defined
- exists and equals L if and only if $f(x_n) \to L$ for all sequences

on ϵ , f, and a) such that

Definition 3.19 Continuous Let E be a nonempty subset of \mathbb{R} and $f: E \to \mathbb{R}$

1. f is said to be continuous at a point $a \in \mathbb{E}$ if and only if given $\epsilon > 0$ there is a $\delta > 0$ (which in general depends

$$|x-a|<\delta \quad \text{and} \quad x\in E \implies |f(x)-f(a)|<\epsilon$$

tinuous at every $x \in E$. Remark 3 20

Let I be an open interval which contains a point a and $f: I \to \mathbb{R}$. Then f is continuous at $a \in I$ if and only if

$$f(a) = \lim_{x \to a} f(x)$$

Suppose that E is a nonempty subset of \mathbb{R} , that $a \in E$, and that $f: E \to \mathbb{R}$. Then the following statements are equivalent:

- f is continuous at a ∈ E.
- If x_n converges to a and x_n ∈ E, then f(x_n) → f(a) as

Let E be a nonempty subset of \mathbb{R} and $f, q : E \to \mathbb{R}$. If f, q are continuous at a point $a \in E$ (respectively continuous on the set E), then so are f + q, fq, and αf (for any $\alpha \in \mathbb{R}$). Moreover, f/q is continuous at $a \in E$ when $q(a) \neq 0$ (respectively, on E when $q(x) \neq 0 \ \forall x \in E$).

Definition 3.23 Composition

Suppose that A and B are subsets of R, that $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$. If $F(A) \subseteq B$ for every $x \in A$, then the composition of g with f is the function $g \circ f : A \to \mathbb{R}$ defined by

$$(g\circ f)(x):=g(f(x)),\quad x\in A$$

Suppose that A and B are subsets of \mathbb{R} , that $f: A \to \mathbb{R}$ and $a: B \to \mathbb{R}$, and that $f(x) \in B \ \forall x \in A$.

 If A := I\{a\}, where I is a nondegenerate interval which either contains a or has a as one of its endpoints, if

$$L := \lim_{x \to ax \in I} f(x)$$

5 Riemann Integration

5.2 Step functions and their integrals

Definition 1 Sten function

We say that $\phi : \mathbb{R} \to \mathbb{R}$ is a step function if there exist real numbers $x_0 < x_1 < \cdots < x_n$ (for some $n \in \mathbb{N}$) such that

5.1 Introduction

1. $\phi(x) = 0$ for $x < x_0$ and $x > x_n$

- φ is constant on (x_{i-1}, x_i)1 ≤ j ≤ n.

If ϕ is a step function with respect to $\{x_0, x_1, \dots, x_n\}$ which takes the value c_i on (x_{i-1}, x_i) , then

$$\int \phi := \sum_{j=1}^{n} c_{j}(x_{j} - x_{j-1})$$

Proposition 1

If ϕ and ψ are step functions and α and $\beta \in \mathbb{R}$, then

$$\int (\alpha \phi + \beta \psi) = \alpha \int \phi + \beta \int \psi.$$

5.3 Riemann-integrable functions and their Suppose f and g are Riemann-integrable and α and β are real integrals

Definition 3 Riemann-integrable

Let $f : \mathbb{R} \to \mathbb{R}$. We say that f is Riemann-integrable if for every $\epsilon > 0$ there exist step functions ϕ and ψ such that $\phi < f < \psi$ and $\int \psi - \int \phi < \epsilon$

Theorem 1

A function $f : \mathbb{R} \to \mathbb{R}$ is Riemann-integrable if and only if $\sup\{ \int \phi : \phi \text{ is a step function and } \phi \leq f \} =$ $\inf\{\int \psi : \psi \text{ is a step function and } \psi \geq f\}.$

Definition 4

If f is Riemann-integrable we define its integral $\int f$ as the If $g: [a,b] \to \mathbb{R}$ is continuous, and f defined by f(x) = g(x) for common value $\int f := \sup \{ \int \phi : \phi \text{ is a step function and } \phi \leq f \}$

= $\inf\{\int \psi : \psi \text{ is a step function and } \psi \geq f\}.$

above, then $\int \phi_n \to \int f$ and $\int \psi_n \to \int f$ as $n \to \infty$.

A function $f : \mathbb{R} \to \mathbb{R}$ is Riemann-integrable if and only if there exist sequences of step functions ϕ_n and ψ_n such that $\phi_n \le f \le \psi_n \ \forall n, \text{ and } \int \psi_n - \int \phi_n \to 0$ If ϕ_n and ψ_n are any sequences of step functions satisfying $G(x) = \int_a^x g$. Suppose g is continuous at x for some $x \in [a, b]$. Theorem 6.7 Geometric Series

exists and belongs to B, and if q is continuous and $L \in B$, Lemma 3.38 Suppose that $E \subseteq \mathbb{R}$ and that $f : E \to \mathbb{R}$ is uniformly continuous. If $x_n \in E$ is Cauchy, the $f(x_n)$ is Cauchy.

$$\lim_{x \to a; x \in I} (g \circ f)(x) = g \left(\lim_{x \to a; x \in I} f(x) \right)$$

2. If f is continuous at $a \in A$ and q is continuous at $f(a) \in B$, then $g \circ f$ is continuous at $a \in A$.

Definition 3.25 Bounded Let E be a nonempty subset of $\mathbb{R}.$ A function $f:E\to\mathbb{R}$ is said to be bounded on E if and only if there is an $M \in \mathbb{R}$ such 2. f is said to be continuous on E if and only if f is contact that $|f(x)| \leq M$ for all $x \in E$, in which case we shall say that

 $M = \sup_{x \in \mathcal{X}} f(x)$ and $m = \inf_{x \in \mathcal{X}} f(x)$

 $f(x_M) = M$ and $f(x_m) = m$

Remark 3.27 The Existence Value Theorem is false if either

Suppose that a < B and that $f : [a, b) \to \mathbb{R}$. If f is continuous

at a point $x_0 \in [a, b)$ and $f(x_0) > 0$, then there exist a posi-

Suppose that a < b and that $f : [a, b] \to \mathbb{R}$ is continuous. If y_0

lies between f(a) and f(b), then there is an $x_0 \in (a,b)$ such

 $|x - a| < \delta$ and $x, a, \in E \implies |f(x) - f(a)| < \epsilon \quad \forall a \in E$

values of f on $[x_{j-1}, x_j]$ respectively, then $\sum_{j=1}^{n} (M_j -$

port [a, b] and for $a = x_0 < \cdots < x_n = b$, let $I_i =$

 $(x_{i-1}, x_i), m_i := \inf_{x \in I_i} f(x)$ and $M_j := \sup_{x \in I_i} f(x)$.

Define the lower step function of f with respect to

and the upper step function of f with respect to

Note that ϕ_* and ϕ^* are step functions, and that $\phi_* \leq$

"closed" or "bounded" is dropped from the hypotheses.

f is dominated by M on E.

 $f(x) > \epsilon \ \forall x \in [x_0, x_1].$

that $f(x_0) = y_0$.

Theorem 3.26 Extreme Value Theorem

on I, then f is bounded on I. Moreover if

then there exist points $x_m, x_M \in I$ such that

Theorem 3.29 Intermediate Value Theorem

O and a is discontinuous at only one point.

3.4 Uniform Continuity

 $\epsilon > 0$ there is a $\delta > 0$ such that

[a, b]. The following are equivalent:

f is Riemann-integrable.

 $m_j)(x_j - x_{j-1}) < \epsilon$

 $\{x_0, ..., x_n\}$ as $\phi_*(x) = \sum_{j=1}^n m_j \chi_{I_j} + \sum_{j=0}^n \chi_{x_j}$

 $\{x_0, ..., x_n\}$ as

 $f < \phi^*$.

Theorem 3

 $\phi^*(x) = \sum_{j=1}^{n} M_j \chi_{I_j} + \sum_{j=0}^{n} \chi_{x_j}$

1. $\alpha f + \beta q$ is Riemann-integrable and

2. If $f \ge 0$ then $\int f \ge 0$; if $f \le g$ then $\int f \le \int g$.

max{f,g} and min{f,g} are Riemann-integrable.

 $a \le x \le b$, f(x) = 0 for $x \notin [a, b]$ then f is Riemann-integrable.

5.4 Fundamental Theorem of Calculus, and

Let $g:[a,b]\to\mathbb{R}$ be Riemann-integrable. For $a\leq x\leq b$ let

3. |f| is Riemann-integrable and $|\int f| \le \int |f|$

 $\int (\alpha f + \beta g) = \alpha \int f + \beta \int g$

fg is Riemann-integrable.

Practical Integration

Definition 3.35 Uniform continuity

formly continuous on (a, b) if and only if f can be continuously extended to [a b]: that is, if and only if there is a continuous If I a is closed, bounded interval and $f:I\to\mathbb{R}$ is continuous

function
$$g:[a,b] \to \mathbb{R}$$
 which satisfies
$$f(x) = g(x), \quad x \in (a,b)$$

Suppose that I is a closed, bounded interval. If $f: I \to \mathbb{R}$ is

Suppose that a < b and that $f: (a, b) \to \mathbb{R}$. Then f is uni-

continuous on I, then f is uniformly continuous on I.

4 Differentiability on R

4.1 The Derivative Definition 4.1 Differentiable

Theorem 3.40

A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if and only if f is defined on some open interval I containing

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. In this case f'(a) is called the derivative of f at a.

A real function f is differentiable at some point $a \in \mathbb{R}$ if and

tive number ϵ and a point $x_1 \in [a,b)$ such that $x_1 > x_0$ and only if there exist an open interval I and a function $F: I \to \mathbb{R}$ such that $a \in I$, f is defined on I, F is continuous at a, and f(x) = F(x)(x - a) + f(a)

$$f(x) = F(x)(x-a) + f(a)$$

holds for all $x \in I$ in which case F(a) = f'(a)

Remark 3.34 The composition of two functions $g \circ f$ can be Theorem 4.3

nowhere continuous, even though f is discontinuous only on A real function f is differentiable at a if and only if there is a function T of the form T(x) := m(x) such that

$$\lim_{h\to 0} \frac{f(a+h) - f(a) - t(h)}{h} =$$

Let E be a nonempty subset of \mathbb{R} and $f: E \to \mathbb{R}$. Then f is **Theorem 4.4**

said to be uniformly continuous on E if and only if for every If f is differentiable at a, then f is continuous at a

Definition 4.6 Continuously differentiable Let I be a nondegenerate interval

is differentiable at x and G'(x) = g(x). [If x is an endpoint,

Let $f : \mathbb{R} \to \mathbb{R}$ be a bounded function with bounded support—we mean one-sided differentiable.]

Suppose $f : [a, b] \to \mathbb{R}$ has continuous derivative f' on [a, b]Then $\int_a^b f' = f(b) - f(a)$. 2. for every $\epsilon > 0$ there exist $a = x_0 < \cdots < x_n = b$ such that, if M_i and m_i denote the supremum and infimum

5.5 Integrals and uniform limits of sequences and series of functions

3. for every $\epsilon > 0$ there exist $a = x_0 < \cdots <$ $x_n = b$ such that, with $I_j = (x_{j-1}, x_j)$ for $j \geq 1$, Suppose that $f_n : \mathbb{R} \to \mathbb{R}$ is a sequence if Riemann-integrable functions which converges uniformly to a function f. Suppose $\sum_{j=1}^{n} \sup_{x,y,\in I_j} |f(x) - f(y)| |I_j| < \epsilon.$ For $f: \mathbb{R} \to \mathbb{R}$ a bounded function with bounded supthat f_n and f are zero outside some common interval [a, b]Then f is Riemann-integrable and $\int f = \lim_{n\to\infty} \int f_n$.

6 Infinite Series of Real Numbers

6.1 Introduction

Definition 6.1 Partial sum Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series with terms a_k

- For each n ∈ N, the partial sum of S of order n is defined $s_n := \sum_{k=1}^{n} a_k$
- 2. S is said to converge if and only if its sequence of partial sums $\{s_n\}$ converges to some $s \in \mathbb{R}$ as $n \to \infty$; that is, if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \ge N \implies |s_n - s| < \epsilon$. In this case we shall write $\sum_{k=1}^{\infty} a_k = s$ and call s the sum, or value, of the series $\sum_{k=1}^{\infty} a_k$
- 3. S is said to diverge if and only if its sequence of partial sums $\{s_n\}$ does not converge as $n \to \infty$. When s_n diverges to $+\infty$ as $n \to \infty$, we shall also write $\sum_{k=1}^{\infty} a_k = s$

Theorem 6.5 Divergence Test Let $\{a_k\}_{k\in\mathbb{N}}$ be a sequence of real numbers. If a_k does not

converge to zero, then the series $\sum_{k=1}^{\infty} a_k$ diverges. Theorem 6.6 Telescoping Series

If $\{a_k\}$ is a convergent real sequence, then $\sum_{k=0}^{\infty} (a_k - a_{k+1}) = a_1 - \lim_{k \to \infty} a_k$

$$G(x) = \int_a^x g$$
. Suppose g is continuous at x for some $x \in [a, b]$. Theorem 6.7 Geometric Series [If x is an endpoint, we mean one-sided continuous.] Then G Suppose that $x \in \mathbb{R}$, that $N \in \{0, 1, \ldots\}$, and that 0^0 is in

 A function f: I → R is said to be differentiable on I if 1. Generalised Mean Value Theorem: If f, g are continu- $(1+x)^{\alpha} \leq 1 + \alpha x \ \forall x \in [-1, \infty)$, and if $\alpha \geq 1$, then ous on [a,b] and differentiable on (a,b), then there is a $(1+x)^{\alpha} > 1 + \alpha x \ \forall x \in [-1,\infty)$.

$$f_i'(a) := \lim_{x \to a; x \in I} \frac{f(x) - f(a)}{x - a}$$
 exists and is finite for every $a \in I$

2. f is said to be continuously differentiable on I if and only if f'_I exists and is continuous on I.

f(x) = |x| is differentiable on [0, 1] and on [-1, 0] but not on

4.2 Differentiability Theorems

Theorem 4.10 Let f and g be real functions and $\alpha \in \mathbb{R}$. If f and g are differ-

entiable at a, then $f+g, \, \alpha f, \, f\cdot g, \, \text{and [when } g(a)\neq 0] \, f/g$ are all differentiable at a. In fact, (f + g)'(a) = f'(a) + g'(a)

$$\begin{split} (\alpha f)'(a) &= \alpha f'(a) \\ (f \cdot g)'(a) &= g(a)g'(a) + f(a)g'(a) \\ \left(\frac{f}{g}\right)'(a) &= \frac{g(a)f'(a) - f(a)g'(a)}{g^2(a)} \end{split}$$

Let f and g be real functions. If f is differentiable at a and gis differentiable at f(a), then $g \circ f$ is differentiable at a with

 $(q \circ f)'(a) = q'(f(a))f'(a)$ 4.3 Mean Value Theorem

Lemma 4.12 Rolle's Theorem

Suppose that $a, b \in \mathbb{R}$ with a < b. If f is continuous on [a, b], differentiable on (a, b), and if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Remark 4.13

The continuity hypothesis on Rolle's Theorem cannot be relaxed at even one point in [a, b]. Remark 4.14

relaxed at even one point in [a, b].

Theorem 4.15 Suppose that $a, b \in \mathbb{R}$ with a < b.

only if |x| < 1, in which case

$$\sum_{k=N} x^k = \frac{x}{1-x}$$

ular,
$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}, \quad |x| < 1.$$

Theorem 6.8 The Cauchy Criterion

Let $\{a_k\}$ be a real sequence. Then the infinite series $\sum_{k=1}^{\infty} a_k$ converges if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such

$$m \geq n \geq N \implies \left| \sum_{k=n}^m a_k \right| < \epsilon$$

Corollary 6.9

Let $\{a_k\}$ be a real sequence. Then the infinite series $\sum_{k=1}^{\infty} a_k$ converges if and only if given $\epsilon > 0$ there is an $N \in \mathbb{N}$ such

$$n \geq N \implies \left| \sum_{k=n}^{\infty} a_k \right| < \epsilon$$

Theorem 6.10

Let $\{a_k\}$ and $\{b_k\}$ be real sequences. If $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are convergent series, then $\sum_{i=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$ $\sum_{k=1}^{\infty} (\alpha a_k) = \alpha \sum_{k=1}^{\infty} a_k$ for any $\alpha \in \mathbb{R}$.

6.2 Series with Nonnegative Terms

Suppose that $a_k \ge 0$ for large k. Then $\sum_{k=1}^{\infty} a_k$ converges if and only if its sequence of partial sums $\{s_n\}$ is bounded; that Remark 6.20 is, if and only if there exists a finite number M > 0 such that $\left|\sum_{i=1}^{n} a_{k}\right| \leq M \ \forall n \in \mathbb{N}.$ Theorem 6.12 Integral Test

Suppose that $f:[1,\infty)\to\mathbb{R}$ is positive and decreasing on $[1,\infty)$. Then $\sum_{k=1}^{\infty}f(k)$ converges if and only if f is impropute $\{x_k\}$ is $\{x_k\}$ in $\{x_k\}$ in erly integrable on $[1, \infty)$; that is if and only if $f(x) dx < \infty$

$$\limsup_{k\to\infty} x_k := \lim_{n\to\infty} \left(\sup_{k>n} x_k \right).$$

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a))$$

 $c \in (a, b)$ such that

2. Mean Value Theorem: If f is continuous on [a, b] and

differentiable on
$$(a,b)$$
, then there is a $c \in (a,b)$ such that

t
$$f(b) - f(c) = f'(c)(b - 4)$$

$$f(b) - f(a) = f'(c)(b - A)$$

Definition 4.16 Increasing, Monotone, Decreasing Let E be a nonempty subset of \mathbb{R} and $f : E \to \mathbb{R}$. 1. f is said to be increasing (respectively, strictly increas-

- ina) on E if and only if $x_1, x_2 \in E$ and $x_1 < x_2 \Longrightarrow$ $f(x_1) \le f(x_2)$ [respectively, $f(x_1) < f(x_2)$]. 2. f is said to be decreasing (respectively, strictly decreas-
- ing) on E if and only if $x_1, x_2 \in E$ and $x_1 < x_2 \implies$ $f(x_1) \ge f(x_2)$ [respectively, $f(x_1) > f(x_2)$].
- 3. f is said to be monotone (respectively, strictly monotone) on E if and only if f is either decreasing or increasing (respectively, either strictly decreasing or strictly increasing) on E.

Suppose that $a, b \in \mathbb{R}$, with a < b, that f is continuous on is either 0 or ∞ . If

[a, b], and that f is differentiable on (a, b). 1. If f'(x) > 0 [respectively f'(x) < 0] for all $x \in (a, b)$, then f is strictly increasing (respectively, strictly de-

- creasing) on [a, b]. 2. If f'(x) = 0 for all $x \in (a, b)$, then f is constant on [a, b],
- 3. If a is continuous on [a, b] and differentiable on (a, b), and if f'(x) = g'(x) for all $x \in (a, b)$, then f - g is constant
- Theorem 4 18 Suppose that f is increasing on [a, b]

1. If $c \in [a, b)$, then f(c+) exists and $f(c) \leq f(c+)$.

- If c ∈ (a, b], then f(c−) exists and f(c−) ≤ f(c).
- Theorem 4.19

many points of discontinuity on I. Theorem 4.21 Bernoulli's Inequality Let α be a positive real number. If $0 < \alpha < 1$, then

terpreted to be 1. Then the series $\sum_{k=N}^{\infty} x^k$ converges if and Corollary 6.13 p-Series Test The series

$$\sum_{i=1}^{\infty} \frac{1}{k^p}$$

converges if and only if p > 1.

Theorem 6.14 Comparison Test Suppose that $0 \le a_k \le b_k$ for large k.

If $\sum_{k=1}^{\infty} b_k < \infty$, then $\sum_{k=1}^{\infty} a_k < \infty$. If $\sum_{k=1}^{\infty} b_k = \infty$, then $\sum_{k=1}^{\infty} a_k = \infty$. Theorem 6.16 Limit Comparison Test

Suppose that $a_k \ge 0$, that $b_k > 0$ for large k, and that $L := \lim_{n\to\infty} \frac{a_n}{b}$ exists as an extended real number.

- $\sum_{k=1}^{\infty} b_k$ converges.
- If L = 0 and ∑_{k=1}[∞] b_k converges then ∑_{k=1}[∞] a_k converges.

6.3 Absolute Convergence

Let $S = \sum_{k=1}^{\infty} a_k$ be an infinite series.

 S is said to converge absolutely if and only if ∑_{k=1}[∞] |a_k| < 2. S is said to converge conditionally if and only if S converges but not absolutely.

A series $\sum_{k=1}^{\infty} a_k$ converges absolutely if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then $\sum_{k=1}^{\infty} a_k$ converges, but

there is an $x_0 \in (a, b)$ such that $f'(x_0) = y_0$.

 y_0 is a real number which lies between f'(a) and f'(b), then 4.4 Taylor's Theorem and L'Hopital's Rule

Theorem 4.23 Intermediate Value Theorem for Derivatives Suppose that f is differentiable on [a, b] with $f'(a) \neq f'(b)$. If

Theorem 4.24 Taylor's Formula

Let $n \in \mathbb{N}$ and let a, b be extended real numbers with a < b

If $f:(a,b) \to \mathbb{R}$, and if $f^{(n+1)}$ exists on (a,b), then for each pair of points $x, x_0 \in (a, b)$ there is a number c between x and $f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k +$

$$f^{(n+1)}(c) \over (n+1)!} (x-x_0)^{n+1}$$
 S^-

Theorem 4.27 L'Hopital's Rule

Let a be an extended real number and I be an open inter-

val which either contains a or has a as an endpoint. Suppose that f and q are differentiable on $I \setminus \{a\}$ and that $q(x) \neq 0 \neq q'(x) \ \forall x \in I \setminus \{a\}$. Suppose further that $A := \lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x)$

$$B := \lim_{x \to a; x \in I} \frac{1}{g'(x)}$$

exists as an extended real number, then

$$\lim_{x \to a; x \in I} \frac{f(x)}{g(x)} = \lim_{x \to a; x \in I} \frac{f'(x)}{g'(x)}$$

4.5 Inverse Function Theorems Theorem 4 22

Let I be a nondegenerate interval and suppose that $f: I \to \mathbb{R}$ is injective. If f is continuous on I, then J := f(I) is an interval, f is strictly monotone on I, and f^{-1} is continuous and strictly monotone on I

Theorem 4.33 Inverse Function Theorem Let I be an open interval and $f: I \to \mathbb{R}$ be injective and con-

tinuous. If b = f(a) for some $a \in I$ and if f'(a) exists and is nonzero, then f^{-1} is differentiable at b and $(f^{-1})'(b) = \frac{1}{f'(a)}$ Remark 6.22 Let $x \in \mathbb{R}$ and $\{x_k\}$ be a real sequence.

 If lim sup_{k→∞} x_k < x, then x_k < x for large k. 2. If $\limsup_{k\to\infty} x_k > x$, then $x_k > x$ for infinitely many

 If x_k → x as x → ∞, then lim sup_{k→∞} x_k = x. Theorem 6.23 Root Test

Let $a_k \in \mathbb{R}$ and $r := \limsup_{k \to \infty} |a_k|^{\frac{1}{k}}$.

1. If r < 1, then $\sum_{k=1}^{\infty} a_k$ converges absolutely If r > 1, then ∑_{k=1}[∞] a_k diverges.

Theorem 6.24 Ratio test Let $a_k \in \mathbb{R}$ with $a_k \neq 0$ for large k and suppose that

exists as an extended real number.

If r < 1, then ∑_{k=1}[∞] a_k converges absolutely

If r > 1, then ∑_{k=1}[∞] a_k diverges.

Definition 6.26 Rearrangement

A series $\sum_{j=1}^{\infty} b_j$ is called a rearrangement of a series $\sum_{k=1}^{\infty} a_k$ if and only if there is an injection $f: \mathbb{N} \to \mathbb{N}$ such that $b_{f(k)} = a_k, k \in \mathbb{N}$

If $\sum_{k=1}^{\infty} a_k$ converges absolutely and $\sum_{j=1}^{\infty} b_j$ is any rearrange

Remark 6.25 The Root and Ratio tests are inconclusive when

ment of $\sum_{k=1}^{\infty} a_k$, then $\sum_{i=1}^{\infty} b_i$ converges and

6.4 Alternating Series

Theorem 6.30 Abel's Formula

Theorem 6.27

Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be real sequences, and for each pair of integers $n \ge m \ge 1$ set $A_{n,m} := \sum_{k=m}^{n} a_k$ Then

 $\sum_{k=m}^{n} a_k b_k = A_{n,m} b_n - \sum_{k=m}^{n-1} A_{k,m} (b_{k+1} - b_k)$ for all integers

1. If $0 < L < \infty$, then $\sum_{k=1}^{\infty} a_k$ converges if and only if

If L = ∞ and ∑_{k=1}[∞] b_k diverges then ∑_{k=1}[∞] a_k diverges.

Definition 6.18 Absolute & Conditional Convergence

$m > n \ge N \implies \sum_{k=0}^{m} |a_k| < \epsilon$

not conversely. In particular, there exist conditionally conver-

Theorem 6.31 Dirichlet's Test

 $s_n = \sum_{k=1}^n a_k$ is bounded and $b_k \to 0$ as $k \to \infty$, then $f_n : E \to \mathbb{R}$ is said to converge uniformly on E to a function

Corollary 6.32 Alternating Series Test If $a_k \to 0$ as $k \to \infty$, then

 $\sum_{k=1}^{\infty} (-1)^k a_k$ converges.

7 Infinite Series of Functions

7.1 Uniform Convergence of Sequences

Definition 7.1 Pointwise Convergence

Let E be a nonempty subset of \mathbb{R} . A sequence of functions $f_n: E \to \mathbb{R}$ is said to converge pointwise on E if and only if $f(x) = \lim_{n\to\infty} f_n(x)$ exists for each $x \in E$.

Remark 7.2

Remark 7.2 Let E be a nonempty subset of \mathbb{R} . Then a sequence of func- In fact, $\lim_{n\to\infty} \int_a^x f_n(t) dt = \int_a^x f(t) dt$ uniformly for $x \in$ tions f_n converges pointwise on E, as $n \to \infty$ if and only if for [a, b]every $\epsilon > 0$ and $x \in E$ there is an $N \in \mathbb{N}$ (which may depend on x as well as ϵ) such that

$$n \ge N \implies |f_n(x) - f(x)| < \epsilon$$

Remark 7.3 The pointwise limit of continuous (respectively, differentiable)

functions is not necessarily continuous (respectively, differen-Remark 7.4

The pointwise limit of integrable functions is not necessarily

Remark 7.5 There exist differentiable functions f_n and f such that $f_n \to f$ for each $x \in (a, b)$.

$$\lim_{n \to \infty} f'_n(x) \neq \left(\lim_{n \to \infty} f_n(x)\right)'$$

for
$$x = 1$$

pointwise on [0, 1] but

Remark 7.6

There exist continuous functions f_n and f such that $f_n \to f$ pointwise on [0, 1] but

$$\lim_{n\to\infty} \int_0^1 f_n(x) \, \mathrm{d}x \neq \int_0^1 \left(\lim_{n\to\infty} f_n(x)\right) \, \mathrm{d}x$$

2. Sequential characterisation of limits. The limit

$$L:=\lim_{x\to a}f(x)$$

exists if and only if $f(x_n) \to L$ as $n \to \infty$ for every sequence $x_n \in X \setminus \{a\}$ which converges to a as $n \to \infty$.

3. Suppose that $Y = \mathbb{R}^n$. If f(x) and g(x) have a limit as x approaches a, then so do (f+g)(x), $(f \cdot g)(x)$, $(\alpha f)(x)$, and (f/g)(x) [when $Y = \mathbb{R}$ and the limit of g(x) is nonzerol. In fact.

$$\begin{split} &\lim_{x\to a}(f+g)(x) = \lim_{x\to a}f(x) + \lim_{x\to a}g(x), \\ &\lim_{x\to a}(\alpha f)(x) = \alpha \lim_{x\to a}f(x), \\ &\lim_{x\to a}(f\cdot g)(x) = \lim_{x\to a}f(x) \cdot \lim_{x\to a}g(x) \end{split}$$

and [when $Y = \mathbb{R}$ and the limit of q(x) is nonzero]

$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

 Squeeze Theorem for Functions. Suppose that Y = ℝ. If $h: X \setminus \{a\} \to \mathbb{R}$ satisfies $g(x) \le h(x) \le f(x) \ \forall x \in 8.3$ Interior, Closure, and Boundary

$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = L$$

then the limit of h exists, as $x \to a$, and

$$\lim_{x \to a} h(x) = L$$

 Comparison Theorem for Functions. Suppose that Y = \mathbb{R} . If $f(x) \leq g(x) \ \forall X \setminus \{a\}$, and if f and g have a limit as x approaches a, then

$$\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$$

Definition 10.27 Continuity

tinuous at every $x \in E$.

Let E be a nonempty subset of X and $f:E\to Y$ 1. f is said to be continuous at a point $a \in E$ if and only

if given $\epsilon > 0$ there is a $\delta > 0$ such that $\rho(x, a) < \delta$ and $\in E \implies \tau(f(x), f(a)) < \epsilon$.

Definition 7.7 Uniform Convergence

then f is continuous at $x_0 \in E$.

for all $x \in E$.

Theorem 7.9

f if and only if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

 $n > N \implies |f_n(x) - f(x)| < \epsilon$

Let E be a nonempty subset of \mathbb{R} and suppose that $f_n \to f$

uniformly on E, as $n \to \infty$. If f_n is continuous at some $x_0 \in E$,

Suppose that $f_n \to f$ uniformly on a closed interval [a, b]. If

 $\lim_{x \to a} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \left(\lim_{x \to a} f_{n}(x) \right) dx$

Let E be a nonempty subset of \mathbb{R} and let $f_n : E \to \mathbb{R}$ be a

sequence of functions. Then f_n converges uniformly on E if

 $n, m \ge N \implies |f_n(x) - f_m(x)| < \epsilon$

Let (a,b) be a bounded interval and suppose that f_n is a se-

quence of funtions which converges at some $x_0 \in (a,b)$. If

each f_n is differentiable on (a, b), and f'_n converges uniformly

on (a, b) as $n \to \infty$, the f_n converges uniformly on (a, b) and

Let f_k be a sequence of real functions defined on some set E

 $s_n(k) := \sum f_k(x), x \in E, n \in \mathbb{N}$

1. The series $\sum_{k=1}^{n} f_k(x)$ is said to converge pointwise on

1. f is continuous at $a \in E$ if and only if $f(x_n) \to f(a)$, as

 $n \to \infty$, for all sequences $x_n \in E$ which converge to a.

2. Suppose that $Y = \mathbb{R}^n$. If f, g are continuous at a point

 $a \in E$ (respectively continuous on a set E), then so are

 $f + g, f \cdot g$, and αf (for any $\alpha \in \mathbb{R}$). Moreover, in the

case $Y = \mathbb{R}$, f/g is continuous at $a \in E$ when $g(a) \neq 0$

7.2 Uniform Convergence of Series

Let E be a nonempty subset of X and $f, q : E \rightarrow Y$

[respectively, on E when $g(x) \neq 0$, $\forall x \in E$].

 $g:f(X)\to Z.$ If $f(x)\to L$ as a $x\to a$ and g is continuous at

 $\lim_{x \to \infty} (g \circ f)(x) = g \left(\lim_{x \to \infty} f(x) \right).$

Definition 10.30 Bolzano-Weierstrass Property

and only if for every $\epsilon>0$ there is an $N\in\mathbb{N}$ such that

each f_n is integrable on [a, b], then so is f and

Lemma 7.11 Uniform Cauchy Criterion

 $\lim_{n\to\infty} f'_n(x) = (\lim_{n\to\infty} f_n(x))'$

Definition 7.13 Convergence

Theorem 10.28

Theorem 10 29

Theorem 10.31

Theorem 6.31 Dirichlet's Test

Definition 7.7 Uniform Convergence

Let
$$a_k, b_k \in \mathbb{R}$$
 for $k \in \mathbb{N}$. If the sequence of partial sum Let E be a nonempty subset of \mathbb{R} . A sequence of function

 E if and only if the sequence $s_n(x)$ converges uniformly on E to a function

 $s_n = \sum_{n=1}^{n} s_n$ as is bounded and $b_n \to 0$ as $k \to \infty$, then

 $s_n = \sum_{n=1}^{n} s_n$ is the sequence $s_n(x)$ converges uniformly on E to a function

 $s_n = \sum_{n=1}^{n} s_n$ is pointed and $s_n \to \infty$.

3. The series $\sum_{k=1}^{n} f_k(x)$ is said to converge absolutely (pointwise) on E if and only if $\sum_{k=1}^{n} |f_k(x)|$ converges

Let E be a nonempty subset of \mathbb{R} and let $\{f_k\}$ be a sequence of real functions defined on E.

- Suppose that x₀ ∈ E and that each f_k is continuous at x₀ ∈ E. If f = ∑_{k=1}[∞] f_k converges uniformly on E, then f is continuous at $x_0 \in E$.
- 2. Term-by-term integration. Suppose that E = [a, b] and that each f_k is integrable on [a, b]. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on [a, b], then f is integrable on [a, b]

$$\int_a^b \sum_{k=1}^\infty f_k(x) \, \mathrm{d}x = \sum_{k=1}^\infty \int_a^b f_k(x) \, \mathrm{d}x.$$

3. Term-by-term differentiation. Suppose that E is a bounded, open interval and that each f_k is differentiable on E. If $\sum_{k=1}^{\infty} f_k$ converges at some $x_0 \in E$, and $\sum_{k=1}^{f} f_k$ converges uniformly on E, then $f := \sum_{k=1}^{\infty} f_k$ converges uniformly on E, f is differentiable on E, and

$$\left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x)$$

Theorem 7.15 Weierstrass M-Test

Let E be a nonempty subset of \mathbb{R} , let $f_k : E \to \mathbb{R}, k \in \mathbb{N}$, and suppose that $M_k \geq 0$ satisfies $\sum_{k=1}^{\infty} M_k < \infty$. If $|f_k(x)| \leq M_k$ for $k \in \mathbb{N}$ and $x \in E$, then $\sum_{k=1}^{\infty} f_k$ converges absolutely and

Theorem 7.16* Dirichlet's Test for Uniform Convergence Let E be a nonempty subset of \mathbb{R} and suppose that f_k, g_k

$$\left|\sum_{k=1}^{n} f_k(x)\right| \le M < \infty$$

E if and only if the sequence $s_n(x)$ converges pointwise for $n \in \mathbb{N}$ and $x \in E$, and if $g_k \downarrow 0$ uniformly on E as $k \to \infty$, then $\sum_{k=1}^{\infty} f_k g_k$ converges uniformly on E.

2. The closure of E is the set

$$\overline{E}:=\bigcap\{B:B\supseteq E\text{ and }B\text{ is closed in }X\}.$$

Theorem 10.34

- 1. $E^O \subseteq E \subseteq \overline{E}$,
- if V is open and V ⊆ E, then V ⊆ E⁰, and
- 3. if C is closed and $C \supseteq E$, then $C \supseteq \overline{E}$.

Suppose that X, Y, and Z are metric space and that a is a **Definition 10.37** Boundary

cluster point of X. Suppose further that $f: X \to Y$ and Let $E \subseteq X$. The boundary of E is the set

 $\partial E := \{x \in X : \forall r > 0, B_r(x) \cap E \neq \emptyset \text{ and } B_r(x) \cup E^c \neq \emptyset \}.$

We refer to the last two conditions in the definition of ∂E by saving $B_r(x)$ intersects E and E^c .

X is said to satisfy the Bolzano-Weierstrass Property if and Theorem 10.39 only if every bounded sequence $x_n \in X$ has a convergent sub- Let $E \subseteq X$. Then Theorem 10.40

Let $A B \subseteq X$ Then

 $A) \cup (A \cap B).$

8.4 Compact Sets

Definition 10.41 Covering

$$\partial E = \overline{E} \setminus E^0.$$

(A ∪ B)^O ⊃ A^O ∪ B^O, (A ∩ B)^O = A^O ∩ B^O

3. $(A \cup B) \subseteq A \cup B$, and $(A \cap B) \subseteq (A \cap B) \cup (B \cap B)$

Let $\mathcal{V} = \{V_\alpha\}_{\alpha \in A}$ be a collection of subsets of a metric space

 $E \subseteq \bigcup V_{\alpha}$.

V is said to be an open covering of E if and only if V

Let V be a covering of E. V is said to have a finite (re-

spectively countable) subcovering if and only if there is a

finite (respectively, countable) subset A_0 of A such that

2. $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$,

X and suppose that E is a subset of X.

1. V is said to cover E if and only if

covers E and each V_{α} is open.

 $\{V_{\alpha}\}_{\alpha \in A_0}$ covers E.

Let X be a metric space

- 1. If $\{V_{\alpha}\}_{{\alpha}\in A}$ is any collection of open sets in X, then
- 2. If $\{V_k : k = 1, 2, ..., n\}$ is a finite collection of open sets in X, then $\bigcap_{k=1}^{n} V_k := \bigcap_{k \in \{1,2,...,n\}} V_k$ is open.
- 3. If $\{E_{\alpha}\}_{\alpha \in A}$ is any collection of closed sets in X, then $\bigcap_{\alpha \in A} E_{\alpha}$ is closed. 4. If $\{E_k : k = 1, 2, ..., n\}$ is a finite collection of closed
- sets in X, then $\bigcup_{k=1}^{n} E_k := \bigcup_{k \in \{1,2,...,n\}} E_k$ is closed.
- If V is open in X and E is closed in X, then V\E is open and $E \setminus V$ is closed

Statements 2 and 4 of Theorem 10.31 are false if arbitrary collections are used in place of finite collections. Definition 10.33 Interior & Closure

Let E be a subset of a metric space X

1. The interior of E is the set

 $E^O := \bigcup \{V : V \subseteq E \text{ and } V \text{ is open in } X\}.$

7.3 Power Series

Definition Power Series Let (a_n) be a sequence of real numbers, and $c \in \mathbb{R}$. A power series is a series of the form Triangle Inequality $\rho(x, y) \le \rho(x, z) + \rho(z, y)$

 $\sum_{n=1}^{\infty} a_n(x-c)^n$ With a_n being the coefficients and c its centre.

Definition Radius of Convergence The radius of convergence R of the power series $\sum_{n=1}^{\infty} a_n(x - c)^n$

 $R = \sup\{r \overset{\circ}{\geq} 0 : (a_n r^n) \text{ is bounded}\}$ unless $(a_n r^n)$ is bounded for all $r \ge 0$, in which case we declare $\{x \in X : \rho(x, a) \le r\}$ Definition 10.8 Open & Closed

is defined by

Suppose the radius of convergence R satisfies $0 < R < \infty$ If |x - c| < R, the power series converges absolutely. If |x - c| > R, the power series diverges.

Theorem 2 Assume that R > 0. Suppose that 0 < r < R. Then the

continuous function f Hence $f(x) = \sum_{n=0}^{\infty} a_n(x - c)^n$ defines a continuous function $f:(c-R,c+R)\to \mathbb{R}$.

Lemma The two power series $\sum_{n=1}^{\infty} a_n(x-c)^n$ and \emptyset and the whole space X are both open and closed.

 $\sum_{n=1}^{\infty} na_n(x-c)^{n-1}$ have the same radius of convergence.

Suppose the radius of convergence of the power series is R.

Then the function $f(x) = \sum_{n=0}^{\infty} a_n (x-c)^n$ is infinitely differentiable on |x-c| < R, and for such x, $f'(x) = \sum_{n=0}^{\infty} na_n(x - c)^{n-1}$ and the series converges absolutely, and also uniformly on $[c - r, c + r] \forall r < R$. Moreover $a_n = \frac{f^{(n)}(c)}{r!}$

8 Metric Spaces

8.1 Introduction Definition 10.1 Metric Space

A metric space is a set X together with a function $\rho: X \times X \rightarrow$ \mathbb{R} (called the *metric* of ρ) which satisfies the following proper-Definition 10.42 Compact

A subset H of a metric space X is said to be compact if and only if every open covering of H has a finite subcover Remark 10.43 The empty set and all finite subsets of a met

ric space are compact. Remark 10.44 A compact set is always closed.

Remark 10.45 A closed subset of a compact set is compact.

Let H be a subset of a metric space X. If H is compact, then

H is closed and bounded. Remark 10.47 The converse of Theorem 10.46 is false for arbitrary metric spaces

Definition 10.48 Separable A metric space X is said to be separable if and only if it con-

tains a countable dense subset (i.e. if and only if there is a countable subset Z of X such that for every point $a \in X$ there is a sequence $x_k \in \mathbb{Z}$ such that $x_k \to a$ as $k \to \infty$).

Theorem 10.49 Lindelöf Let E be a subset of a separable metric space X. If $\{V_{\alpha}\}_{{\alpha}\in A}$ Theorem 10.58 is a collection of open sets and $E \subseteq \bigcup_{\alpha \in A} V_{\alpha}$, then there is a

countable subset $\{\alpha_1, \alpha_2, ...\}$ of A such that

$E \subseteq \bigcup V_{\alpha_k}$

Theorem 10.50 Heine-Borel

Let X be a separable metric space which satisfies the BolzanoTheorem 10.61 Weierstrass Property, and H be a subset of X. Then H is f(H) = f(H) if H is compact in X and f(H) = f(H) is continuous on H, then f(H) = f(H) is continuous on H, then f(H) = f(H) is f(H) = f(H) is continuous on H, then f(H) = f(H) is f(H) = f(H) is continuous on H, then f(H) = f(H) is f(H) = f(H) is continuous on H, then f(H) = f(H) is f(H) = f(H) is continuous on H, then f(H) = f(H) is f(H) = f(H) is f(H) = f(H) is f(H) = f(H). compact if and only if it is closed and bounded. Definition 10.51 Uniform Continuity

Let X be a metric space E be a nonempty subset of X and $f: E \to Y$. Then f is said to be uniformly continuous on E

if and only if given $\epsilon > 0$ there is a $\delta > 0$ such that $\rho(x, a) < \delta$ and $x, a \in E \implies \tau(f(x), f(a)) < \epsilon$.

Suppose that E is a compact subset of X and that $f: X \to Y$. Then f is uniformly continuous on F if and only if f is continuous on E

8.5 Connected Sets

Definition 10.53 Separate & Connected Let X be a metric space.

ties for all $x, y, z \in X$:

Positive Definite $\rho(x, y) \ge 0$ with $\rho(x, y) = 0 \iff x = y$

Symmetric $\rho(x, y) = \rho(y, x)$

Definition 10.7 Ball

Let $a \in X$ and r > 0. Then open ball (in X) with centre a and mdius r is the set $B_r(a) := \{x \in X : \rho(x, a) < r\}$ and the closed ball (in X) with centre a and radius r is the set

- A set V ⊆ X is said to be open if and only if for every Remark 10.20 $x \in V$ there is an $\epsilon > 0$ such that the open ball $B_{\epsilon}(x)$ is By 10.19, a complete metric space X satisfies two properties: contained in V.
- A set E ⊂ X is set to be closed if and only if E^c := X\E series converges uniformly and absolutely on |x-c| < r to a Remark 10.9 Every open ball is open, and every closed ball

Remark 10.10 If $a \in X$, then $X \setminus \{a\}$ is open, and $\{a\}$ is closed.

Remark (10.11) In an arbitrary metric space, the empty set

Definition 10.13 Convergence, Cauchy, & Boundedness Let $\{x_n\}$ be a sequence in X.

Definition 10.25 Converse 1. $\{x_n\}$ converges (in X) if there is a point $a \in X$ (called Let a be a cluster point of X and $f: X \setminus \{a\} \to Y$. Then f(x)the limit of x_{-}) such that for every $\epsilon > 0$ there is an is said to converge to L. as x approaches a, if and only if for $N \in \mathbb{N}$ such that

2. $\{x_n\}$ is Cauchy if for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such $n, m \ge N \implies \rho(x_n, x_m) < \epsilon$.

3. $\{x_n\}$ is bounded if there is an M > 0 and a $b \in X$ such that $\rho(x_n, b) \le M$ for all $n \in \mathbb{N}$.

Theorem 10.14 Let X be a metric space

 $n \ge N \implies \rho(x_n, a) < \epsilon$.

- A sequence X can have at most one limit 2. If $x_n \in X$ converges to a and $\{x_{n_k}\}$ is any subsequence
- of $\{x_n\}$, then x_{n_k} converges to a as $k \to \infty$. A pair of nonempty open sets U, V in X is said to sepa-
- rate X if and only if $X = U \cup V$ and $U \cap V = \emptyset$. 2 X is said to be connected if and only if X cannot be separated by any pair of open sets U, V.

Definition 10.54 Relatively open & closed Let X be a metric space and $E \subseteq X$.

- 1. A set $U \subseteq E$ is said to be relatively open in E if and only if there is a set V open in X such that $U = E \cap V$.
- 2. A set $A \subseteq E$ is said to be relatively closed in E if and only if there is a set C closed in X such that $A = E \cap C$.

Let $E \subseteq X$. If there exists a pair of open sets A, B in X which separate E, then E is not connected.

Theorem 10.56 A subset E of \mathbb{R} is connected if and only if E is an interval.

8.6 Continuous Functions

that $M = f(x_M)$ and $m = f(x_m)$.

continuous, then f^{-1} is continuous on f(H).

Suppose that $f: X \to Y$. Then f is continuous if and only if $f^{-1}(V)$ is open in X for every open V in Y.

Let $E \subseteq X$ and $f: E \to Y$. Then f is continuous on E if and only if $f^{-1}(V) \cap E$ is relatively open in E for all open sets V

f(H) is compact in Y If E is connected in X and $f: E \to Y$ is continuous on E,

then f(E) is connected in Y is continuous. Suppose also that for all $x, y \in [A - \rho, A + \rho]$ Theorem 10.63 Extreme Value Theorem Let H be a nonempty, compact subset of X and suppose that

 $M:=\sup\{f(x):x\in H\}\quad\text{and}\quad m:=\inf\{f(x):x\in H\}$

are finite real numbers and there exist points $x_M, x_m \in H$ such

If H is a compact subset of X and $f: H \to Y$ is injective and

$$f: H \to \mathbb{R}$$
 is continuous. Then

Suppose F satisfies the Lipschitz Condition. Then there exists an s > 0 such that the ODE

$$\frac{dt}{dt} = F(x, t)$$

 $x(0) = A$

4. Every convergent sequence in X is Cauchy Theorem 10 16 Let $E \subseteq X$. Then E is closed if and only if the limit of every convergent sequence $x_k \in E$ satisfies

Every convergent sequence X is bounded.

 $\lim_{k\to\infty} x_k \in E$. Remark 10.17 The discrete space contains bounded sequence

which have no convergent subsequences. **Remark 10.18** The metric space $X = \mathbb{Q}$ contains Cauchy sequences which do not converge

Definition 10.19 Completeness A metric space X is said to be complete if and only if every

Cauchy sequence $x_n \in X$ converges to some point in X.

1. Every Cauchy sequence in X converges

the limit of every Cauchy sequence in X stay in X.

Theorem 10.21 Let X be a complete metric space E be a subset of X. Then

E (as a subspace) is complete if and only if E as a (subset) is

8.2 Limits of Functions Definition 10.22 Cluster Point

A point $a \in X$ is said to be a cluster point (of X) if and only if $B_{\delta}(a)$ contains infinitely many points for each $\delta > 0$.

every $\epsilon > 0$ there is a $\delta > 0$ such that $0 < \rho(x, a) < \delta \implies \tau(f(x), L) < \epsilon$

In this case we write $f(x) \to L$ as $x \to a$, or

$$L = \lim_{x \to a} f(x),$$

and call L the limit of f(x) as x approaches a. Theorem 10.26

Let a be a cluster point of X and $f, g : X \setminus \{a\} \rightarrow Y$. 1. If $f(x) = q(x) \ \forall x \in X \setminus \{a\}$ and f(x) has a limit as $x \to a$, then q(x) also has a limit as $x \to a$, and

 $\lim g(x) = \lim f(x)$.

9 Contraction Mapping & ODEs

9.1 Banach's Contraction Mapping Theorem

Definition Contraction Let (X, d) be a metric space. A function $f: X \to X$ is called a contraction if there exists a number α with $0 < \alpha < 1$ such

 $d(f(x), f(y)) \le \alpha d(x, y) \ \forall x, y \in X.$

Note the target space and the domain must be the same.

- 1. It is really important that α be strictly less than 1 It's also really important that we have $d(f(x), f(y)) \le$ $\alpha d(x, y)$ and not just $d(f(x), f(y)) < d(x, y) \forall x, y \in X$
- So $f(x) = \cos(x)$ is not a contraction on \mathbb{R} . 2. The constant $\alpha < 1$ is called the contraction constant of

If (X,d) is a complete metric space and if $f: X \to X$ is a contraction, then there is a unique point $x \in X$ such that

 It's really important that X be complete. 2. It's really important that the image of X under f is con-

Theorem Banach's Contraction Mapping Theorem

3. A point x such that f(x) = x is called a fixed point of f

ODEs Definition Lipschitz Condition Suppose $A \in \mathbb{R}$, $\rho, r > 0$, and $F : [A - \rho, A + \rho] \times [-r, r] \rightarrow \mathbb{R}$

and all $t \in [-r, r]$ we have, for some M > 0 $|F(x,t) - F(y,t)| \le M|x-y|$

= F(x, t)

has a unique solution x(t) for |t| < s.