Computational MRI

Introduction to machine learning and neural networks

Neural networks

Fig. 2A. Schematic representation of connections in a simple perceptron.

FIG. 2B. Venn diagram of the same perceptron \P (shading shows active sets for R_1 response).

Neural networks

Neural networks

Large number of model parameters

High descriptive capacity

$$a^4 = F(x) = f^4(f^3(f^2(f^1(x))))$$

Cybenko: Math Control Sig Sys 1989

Neural networks: Notation

ER chest X-Ray diagnosistic classification

Normal

COVID-19

Chest X-Ray data set

$$\{(x_1, y_1), ...(x_N, y_N)\}$$

Neural network training

Change weights and biases to bring output closer to target

Neural network training: Cost function

 $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

 $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

 $y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C(w, b) = \frac{1}{2N} \sum_{x=1}^{N} ||y_x - a_x||_2^2$$

Find minimum of function: Gradient descent

$$x_{i+1} = x_i - \alpha \frac{\partial f(x_i)}{\partial x_i}$$

Neural network training: Gradient descent

$$\min_{w,b} C(w,b) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \cdots$$

$$\tilde{w_{jk}}^I = w_{jk}^I - \alpha \frac{\partial C}{\partial w_{ik}^I}$$

$$\tilde{b}_{j}^{l} = b_{j}^{l} - \alpha \frac{\partial C}{\partial b_{j}^{l}}$$

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton† & Ronald J. Williams*

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal 'hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure¹.

$$rac{\partial C}{\partial w_{jk}^I} \qquad rac{\partial C}{\partial b_j^I}$$

→ calculate these partial derivatives

Rumelhart (1986)

^{*} Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA † Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

Backpropagation: Forward pass

Backpropagation: Backward pass

Backpropagation: Backward pass

Partial derivatives

$$\frac{\partial C_0}{\partial w^L} =$$

$$\frac{\partial C_0}{\partial b^L} =$$

$$\frac{\partial C_0}{\partial w^L}$$

$$\frac{\partial C_0}{\partial w^L} = \frac{\partial z^L}{\partial w^L}$$

$$\frac{\partial z^L}{\partial w^L} = a^{L-1}$$

$$\frac{\partial C_0}{\partial w^L} = \frac{\partial z^L}{\partial w^L} \frac{\partial a^L}{\partial z^L}$$

$$\frac{\partial z^L}{\partial w^L} = a^{L-1}$$

$$\frac{\partial a^L}{\partial z^L} = \sigma'(z^L)$$

$$\frac{\partial C_0}{\partial w^L} = \frac{\partial z^L}{\partial w^L} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L}$$

$$\frac{\partial w^L}{\partial w^L} = \frac{\partial w^L}{\partial z^L} \frac{\partial z^L}{\partial a^L}$$

$$\frac{\partial z^L}{\partial w^L} = a^{L-1}$$

$$\frac{\partial a^L}{\partial z^L} = \sigma'(z^L)$$

$$\frac{\partial C_0}{\partial a^L} = a^L - y$$

$$\frac{\partial C_0}{\partial w^L} = \frac{\partial z^L}{\partial w^L} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = a^{L-1} \sigma'(z^L)(a^L - y)$$

$$\frac{\partial z^L}{\partial w^L} = a^{L-1}$$

$$z^L \qquad z^L = w^L a^{L-1} + b^L$$

$$\frac{\partial a^L}{\partial z^L} = \sigma'(z^L)$$

$$\frac{\partial C_0}{\partial a^L} = a^L - y$$

$$C_0 \qquad C_0 = \frac{1}{2}(y - a^L)^2$$

Backpropagation: Bias

$$\frac{\partial C_0}{\partial b^L} = \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = \sigma'(z^L)(a^L - y)$$

$$w^L \quad a^{L-1} \quad b^L$$

$$z^L \quad z^L = w^L a^{L-1} + b^L$$

$$\frac{\partial a^L}{\partial z^L} = \sigma'(z^L)$$

$$\frac{\partial C_0}{\partial a^L} = a^L - y$$

$$C_0 \quad C_0 = \frac{1}{2}(y - a^L)^2$$

Backpropagation: Bias

$$\frac{\partial C_0}{\partial b^L} = \frac{\partial z^L}{\partial b^L} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = \sigma'(z^L)(a^L - y)$$

Backpropagation: Bias

$$\frac{\partial C_0}{\partial b^L} = \frac{\partial z^L}{\partial b^L} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = 1\sigma'(z^L)(a^L - y)$$

Backpropagation: Activation of previous layer

$$\frac{\partial C_0}{\partial a^{L-1}} = \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = \sigma'(z^L)(a^L - y)$$

$$w^L \quad a^{L-1} \quad b^L$$

$$z^L \quad z^L = w^L a^{L-1} + b^L$$

$$a^L \quad a^L = \sigma(z^L)$$

$$C_0 \quad C_0 = \frac{1}{2}(y - a^L)^2$$

Backpropagation: Activation of previous layer

$$\frac{\partial C_0}{\partial a^{L-1}} = \frac{\partial z^L}{\partial a^{L-1}} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = \sigma'(z^L)(a^L - y)$$

$$w^L \quad a^{L-1} \quad b^L$$

Backpropagation: Activation of previous layer

$$\frac{\partial C_0}{\partial a^{L-1}} = \frac{\partial z^L}{\partial a^{L-1}} \frac{\partial a^L}{\partial z^L} \frac{\partial C_0}{\partial a^L} = w^L \sigma'(z^L)(a^L - y)$$

$$\frac{\partial C_0}{\partial w^L} = a^{L-1} \sigma'(z^L) \frac{\partial C_0}{\partial a^L} \qquad \qquad \frac{\partial C_0}{\partial b^L} = \sigma'(z^L) \frac{\partial C_0}{\partial a^L} \qquad \qquad \frac{\partial C_0}{\partial a^L} = a^L - y$$

$$\frac{\partial C_0}{\partial b^L} = \sigma'(z^L) \frac{\partial C_0}{\partial a^L}$$

$$\frac{\partial C_0}{\partial a^L} = a^L - y$$

$$\longrightarrow \sigma_{\overline{a^1}} \cdots w^{l-1} \sigma_{\overline{a^{l-1}}} w^{l} \sigma_{\overline{a^{l}}}$$

$$y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\frac{\partial C_0}{\partial w^{L-1}} = a^{L-2}\sigma'(z^{L-1})\frac{\partial C_0}{\partial a^{L-1}} \qquad \frac{\partial C_0}{\partial b^{L-1}} = \sigma'(z^{L-1})\frac{\partial C_0}{\partial a^{L-1}} \qquad \frac{\partial C_0}{\partial a^{L-1}} = w^L\sigma'(z^L)\frac{\partial C_0}{\partial a^L}$$

$$\frac{\partial C_0}{\partial b^{L-1}} = \sigma'(z^{L-1}) \frac{\partial C_0}{\partial a^{L-1}}$$

$$\frac{\partial C_0}{\partial a^{L-1}} = w^L \sigma'(z^L) \frac{\partial C_0}{\partial a^L}$$

$$rac{\partial \mathcal{C}_0}{\partial w^I} = a^{I-1} \sigma'(z^I) rac{\partial \mathcal{C}_0}{\partial a^I}$$

$$rac{\partial \mathcal{C}_0}{\partial b^l} = \sigma'(z^l) rac{\partial \mathcal{C}_0}{\partial a^l}$$

$$\frac{\partial C_0}{\partial w^l} = a^{l-1} \sigma'(z^l) \frac{\partial C_0}{\partial a^l} \qquad \qquad \frac{\partial C_0}{\partial b^l} = \sigma'(z^l) \frac{\partial C_0}{\partial a^l} \qquad \qquad \frac{\partial C_0}{\partial a^l} = w^{l+1} \sigma'(z^{l+1}) \frac{\partial C_0}{\partial a^{l+1}}$$

$$y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Plug partial derivatives into gradient descent

$$\frac{\partial C_0}{\partial w^l} = a^{l-1} \sigma'(z^l) \frac{\partial C_0}{\partial a^l}$$

$$\frac{\partial C_0}{\partial b^I} = \sigma'(z^I) \frac{\partial C_0}{\partial a^I}$$

$$\frac{\partial C_0}{\partial a^l} = w^{l+1} \sigma'(z^{l+1}) \frac{\partial C_0}{\partial a^{l+1}}$$

$$\rightarrow 0$$
 $\frac{1}{a^1}$

$$a^{L-1}$$
 a^{L}

Gradient descent

Loop over training examples

$$\frac{\partial C_0}{\partial w^l} = a^{l-1} \sigma'(z^l) \frac{\partial C_0}{\partial a^l}$$

$$\frac{\partial C_0}{\partial b^I} = \sigma'(z^I) \frac{\partial C_0}{\partial a^I}$$

$$\frac{\partial C_0}{\partial a^l} = w^{l+1} \sigma'(z^{l+1}) \frac{\partial C_0}{\partial a^{l+1}}$$

$$y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

 $\min_{w,b} C(w,b)$

$$y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$y = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Backpropagation: Efficiency and insights

$$\frac{\partial C_0}{\partial w^l} = a^{l-1} \sigma'(z^l) \frac{\partial C_0}{\partial a^l}$$

$$\frac{\partial C_0}{\partial b^l} = \sigma'(z^l) \frac{\partial C_0}{\partial a^l}$$

$$\frac{\partial C_0}{\partial a^l} = w^{l+1} \sigma'(z^{l+1}) \frac{\partial C_0}{\partial a^{l+1}}$$

Each computation involves just two layers

$$\rightarrow \sigma_{\overline{a^1}}$$

- Gradients provide insight into what determines speed of learning

Backpropagation: General formulation

$$\frac{\partial C_0}{\partial w_{jk}^l} = a_k^{l-1} \sigma'(z_j^l) \frac{\partial C_0}{\partial a_j^l} \qquad \frac{\partial C_0}{\partial b_j^l} = \sigma'(z_j^l) \frac{\partial C_0}{\partial a_j^l} \qquad \frac{\partial C_0}{\partial a_j^l} = \sum_j w_{jk}^{l+1} \sigma'(z_j^{l+1}) \frac{\partial C_0}{\partial a_j^{l+1}}$$

$$w_{jk}^l \qquad \cdots \qquad \sigma$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\sigma \qquad \cdots \qquad \sigma$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\sigma \qquad \cdots \qquad \sigma$$

$$\vdots \qquad \vdots \qquad \vdots$$

Exercise example 1:

Classification of brain tissue from DTI data

Classification of brain tissue from HCP DTI data

Segmentation

Classification of brain tissue from HCP DTI data

Classification of brain tissue from HCP DTI data

$$\{(x_1, y_1), ...(x_N, y_N)\}$$

$$x_i = [T1w_i, FA_i, MD_i, AD_i, RD_i]$$

T1w (a.u.)	FA (-)	$MD\left(rac{\mu m^2}{ms} ight)$	$AD\left(\frac{\mu m^2}{ms}\right)$	$RD\left(\frac{\mu m^2}{ms}\right)$	Class	Class label
898	0.22	1.066592	1.33	0.94	Thalamus	1
1007	0.68	0.39	0.72	0.22	CC	2
867	0.38	0.58	0.82	0.45	Cortical WM	3

Exercise example 2: Classification of image quality of accelerated reconstructions with convolutional Neural Networks (CNNs)

Fully connected Neural Networks

Fully connected Neural Networks

Number of parameters: 102400*102400 ≈ 1.05*10¹⁰

More efficient use of parameters!

Convolutional neural networks

Figure 1: Examples of original zipcodes from the testing set.

Local connectivity

Share parameters

Lecun: NIPS 1989

Convolutional neural networks

Figure 1: Examples of original zipcodes from the testing set.

Local connectivity

Share parameters

Lecun: NIPS 1989

Convolutional layers

$$w^T x + b$$

320x320 image 3x3 filter *w*

Lecun: NIPS 1989

Convolutional layers

$$w^T x + b$$

320x320 image 3x3 filter *w*

Model parameters: 3*3+1 = 10

Example 2: Classification of image quality of

accelerated reconstructions

Fully sampled reference

Fully sampled reference

PI-CS R=4

Fully sampled reference

PI-CS R=4

Fully sampled reference

PI-CS R=4

Summary

Short recap of neural networks

Training neural networks with gradient descent

Backpropagation: Efficient implementation of chain rule

Exercise: PyTorch examples for MLPs, CNNs