

COMP140 Individual Creative Computing Project

Register Attendance

Figure 1: Attendance monitoring is in place. It is your responsability to ensure that you have signed yourself in.

Learning Outcomes

After this session you will be able to:

- Exlain the difference between current, voltage, and resistance
- Predict the characteristics of basic circuits using simple formulas
- Choose components based on their purpose and characteristics

What is current electricity?

(the stuff that makes our gadgets tick)

source:https://learn.sparkfun.com/tutorials/what-is-electricity/allrmar

- The flow of electrons through
- a closed circuit (wire, components, etc)
- Induced by an electric field (battery)

Battery Example

source:https://learn.sparkfun.com/tutorials/what-is-electricity/allrmar

Basic characteristics

- Voltage (V) The relative level of electrical energy between any two points in a circuit. Voltage is measured in volts.
- Current (I) The amount of electrical energy passing through any point in a circuit. Current is measured in amps
- Resistence (R) The amount that any component in the circuit resists the flow of current. Resistence is measured in ohms

Water Analogy

Hagan, J. (2017). Learn Electronics with Arduino. Maker Media, Inc

Reading Schematic Diagrams

The Rules

- Positive volatages are uppermost
- ► Things happen left to right
- ► All components have a name and values
- Remember symbols
- ▶ Dots show that the wires are connected:

▶ Nets: Inferred connection based on symbol or name:

Reading Schematic Diagrams (answer)

Schematic Circuits 1

Schematic Circuits 2

Ohm's Law

$$I = V/R$$

- If the voltage increases, whe the current (a) increase or (b) decrease.
- If the resistance increases will the current (a) increase or (b) decrease.

Ohm's Law Example 1

Ohm's Law Example 1 - Answer

$$I = V/R$$

Answer = 36 Volts

Ohm's Law Example 2

Ohm's Law Example 2 - Answer

$$I = V/R$$

$$3amps = 12volts/?$$

 $R = 12/3$

Answer = 40hms

Resistors (Series vs. Parrallel)

Series

$$R_T = R_1 + R_2 + R_3 + R_4$$

 $R_T = 4700 + 4700 + 4700 + 4700 = 18000 ohms = 18kohms$

Parallel

Conductance(G) =
$$\frac{1}{R_7} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$

Then calculate the resistance based on the reciprocal:

Conductance(G) =
$$\frac{4}{4700}$$
Reciprocal = $\frac{4700}{4}$

Resistance = 1175ohms = 1.175kohms

Power Dissipation (Watts-W)

Similar to current, Power is a measure of change over time. Instead of charge, power is the amount of energy converted into heat over time.

- When the flow of current is resisted, heat is generated
- Calculated by measuring the voltage across a load times the current flowing through it

$$P = I * V$$

 $P = V^2/R$

Power Example

Power Example Answer

$$I = 12/3 = 4$$

 $W = 12 * 4 = 48$

Power Dissispation = 48 Watts

Voltage Divider

- ▶ Used to step down the voltage
- ► Involves a pair of resistors

Voltage Divider Formula

$$Vout = \frac{V_s x R_2}{(R_1 + R_2)}$$

Voltage Divider Example 1

Voltage Divider Everence 1 Appr

Voltage Divider Example 1 - Answer

$$Vout = \frac{V_s x R_2}{(R_1 + R_2)}$$

$$12v * 2200 ohms = 26400$$