Campus Resilience Case Study

A Climate Change Risk and Resilience Assessment Process

Lissa Myers
National Renewable Energy Laboratory
August 15, 2017

NREL/PR-3500-70038

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

NREL Program Portfolio

Broad Range of Clean Energy Solutions

Energy Efficiency

Vehicle Technologies **Building Technologies**

Renewable Resources

Wind and Water

Solar

Biomass

Hydrogen

Geothermal

Systems Integration

Grid Infrastructure

- SmartGrid and RE Grid

Battery and

Thermal Storage

International, Tribal, Federal Agencies, States, Local Communities, Private Sector

Foundational Science

Why Climate Change Resilience Planning?

The business case:

Extreme weather has already had an impact across the nation. Preparing for and strengthening assets and processes to lessen impacts and recover quickly from existing weather-related events and climate change will help ensure viability of the organization.

 EO 13693: Planning for Federal Sustainability in the Next Decade (March 2015)

"...ensure that agency operations and facilities prepare for impacts of climate change." (Section 13)

Each year there are multiple weather and climate disaster events with losses exceeding \$1 billion each across the United States

NOAA National Centers For Environmental Information

NREL's Climate Resilience Assessment Pilot Project

Project Context

Source: www.ucsusa.org/resilience_principles

Mitigation

Reducing emissions and increasing energy efficiency to minimize contributions to climate change (e.g., renewable electricity and demand management)

Adaptation

Changing what you have, how you operate, or what you do, so enough flexibility exists to adapt to climate changes, while continuing to thrive (e.g., design standards, back-up power generation)

Modified an Established Approach

- U.S. EPA's Climate Ready Estuaries approach as a guide
- Tailored the process more suitable for a site-level assessment

 Sought external assistance to provided credible and actionable climate science info

Collaborative Stakeholder-Driven Participatory Process

Resilience Assessment Process Overview

Stage 1: Impacts Framework

Explore role that climate stressors play in organization's ability to meet its key organizational objectives (in relation to the key resources needed to meet those objectives).

			Key Organizat	ational Objectives			
		I	II	III	IV		
		Drawdown Execution	Protect the Nation's Crude Oil Stockpile	Maintain SPR's Current Import Protection Level	Promote International Energy Stockpiling & Alliances		
		Water		(quantity, quality, and access)			
		6	Power	Power (quantity, quality, and access)			
		(a)	Command and Control System	(communications systems)			
	ses	Physical Space Specialized Equipment		(caverns, land, facilities, site infrastructure (e.g. perimeter fencing))			
	Key Resources						
	Key		Physical Site	(site (e.g., roadways and lighting), perimeter			

				6 - 6	,	Security (e.g., detection and fencing)
		Key R	esources			security (e.g., detection and rending)
Water (quality & quantity)	Energy utilities (electricity, gas, steam)	HVAC	Physical space (land, building, storage, facilities, site infrastructure)	Site Access (internet connectivity, external roadways, worksite/transportatio n)	Workforce	operations and security) partnerships and physical infrastructure (e.g.,
Questions 3-6	Questions 9-15	Questions 17-20	Questions 22-26	Questions 28-30	Questions 32-36	quantity and quality) SPR's Impacts Framework
Question 7	Question 16	Question 21	Question 27	Question 31	Question 37	
Questions 3-5, 8	Questions 9-15	Questions 17-20	Questions 22-26	Questions 28, 30	Questions 32-36, 38	
	(quality & quantity) Questions 3-6 Question 7	Water (quality & quantity) (electricity, gas, steam) Questions 3-6 Questions 9-15 Question 7 Question 16	Water (quality & quantity) Questions 3-6 Questions 9-15 Questions 17-20 Question 7 Question 16 Question 21	Water (quality & quantity) Questions 3-6 Questions 9-15 Questions 17-20 Questions 22-26	Water (quality & quantity) Questions 3-6 Question 7 Question 16 Water (quality & Question 21 Question 21 Question 21 Question 27 Question 31 Nite Access (internet connectivity, external roadways, worksite/transportation) Questions 22-26 Questions 22-26 Questions 28-30	Water (quality & quantity) Questions 3-6 Questions 9-15 Questions 17-20 Questions 22-26 Questions 28-30 Questions 32-36 Question 7 Question 16 Question 21 Question 27 Question 31 Question 37

NREL's Impacts Framework

Stage 1: Identifying & Scoring Vulnerabilities

Utilize the **impacts framework**

Create a list of **potential climate-related vulnerabilities**

Assign a **consequence score** for each vulnerability.

Sample considerations when assigning consequence scores:

- The health effects on staff, including worker safety
- The effect on internal operations, including the scope and duration of service interruptions, reputational risk, and the potential to encounter regulatory problems
- The effect on capital and operating costs, including all capital and operating costs and revenue implications (award fee) caused by the climate change impact
- The number of staff affected
- The environmental effects, including the release of toxic materials, effects on biodiversity, changes to the area's ecosystem, and impacts on historic sites.

Consequence: Impact on the key objective, should the key resource(s) be affected by climate changes

Negligible - Low magnitude of consequence. The key objectives would either experience no major effect or an in-place backup system would resolve the failure.

Marginal - Medium magnitude of consequence. The key objectives would be somewhat affected.

Critical - High magnitude of consequence. The key objectives would be significantly affected. Impacts would hinder almost every staff member's work and have serious implications for the ability to achieve key objectives.

Stage 1: Example Climate-Related Vulnerabilities

Main Key Resource			Consequence Score
Multiple	S1	Ability to respond if a weather event impacts more than one site at the same time	Critical (I)
RITA	S2	Ability to meet statutory oil quantity requirements	Critical (I)
	S3	Ability to maintain necessary raw water quality and quantity for drawdown	Critical (I)
Water	S4	Ability to conduct process pump seal flushing and bearing cooling	Critical (I)
	S5	Increased build-up of silt in raw water systems	Critical (I)
	S6	Ability to maintain necessary raw water quality for disposal of brine to the Gulf of Mexico (i.e., 95%+ salinity, pH levels, etc.)	Marginal (II)
	S7	Ability to access raw water for flushing of brine strings during fill operations	Marginal (II)
Power	S8	Reliance on a single supplier of commercial power line to each of the sites	Critical (I)
Command and Control	S9	Adequate power required to run the DCS	Marginal (II)
System	S10	Command center, single facility for control of pumping stations	Marginal (II)
Physical Space S11 Sites elevation and proximity to the ocean		Sites elevation and proximity to the ocean	Critical (I)

Sample of SPR's Scored Climate-Related Sensitivities

Stage 1: Identifying & Scoring Climate Stressors

No.	Potential Climate Stressor	Likelihood
V1	Increased annual average temperatures	High
V2	Increases in magnitude of hottest annual temperature	High
V3	Increase in the number of days with temperatures >= 95°F per year	High
V4	Increased rainfall amounts on days with rain	High
V5	Increased sea level	High
V6	Decreased annual rainfall	Med-High
V7	Increased number of days with heavy rainfall	Med-High
V8	Increased intensity of hurricane winds	Med-High
V9	Higher storm surge due to hurricanes	Med-High
V10	Increased raw water temperature	Med-High
V11	Decrease in wind speed	Med-High
V12	Increased number of days with thunderstorms/lightning	Med-High
V13	Decrease in relative humidity	Med-High
V14	Subsidence – increase with sea level rise	Med-High
V15	Coastal land loss – increase	Med-High
V16	Increased chance of flooding/high water levels	Medium
V17	Increased chance of drought/low water levels	Medium
V18	Increased annual rainfall	Medium
V19	Increase in severe thunderstorms	Medium
V20	Increase in vector-borne diseases	Medium
V21	Changes in raw water quality - increase sediment	Med-Low
V22	Changes in raw water quality - increase salinity	Med-Low
V23	Changes in raw water quality - pH	Med-Low
V24	Increase in wind speed	Med-Low
V25	Increase in tornadoes	Med-Low
V26	Decreased number of days with heavy rainfall	Med-Low
V27	Increase in wildfire occurrence	Med-Low
V28	Increase in relative humidity	Low

SPR's Scored Climate Stressors

Scoring Climate Stressors by Likelihood of Change

A stressor is assigned a higher likelihood of occurrence if the climate models demonstrated strong agreement about its direction and a high degree of change.

A stressor is assigned a **lower likelihood of occurrence** if the models showed less agreement and a lower degree of change.

Scores include low, medium-low, medium, medium-high, and high.

Increased annual average temperatures Increased extreme heat events Earlier peak stream flows Increased likelihood of fire and longer fire season Increased minimum nighttime temperatures Increased intensity of summer rainfall Increased intensity of winter storms Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count Medium
Earlier peak stream flows Increased likelihood of fire and longer fire season Increased minimum nighttime temperatures Increased intensity of summer rainfall Increased intensity of winter storms Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Increased likelihood of fire and longer fire season Increased minimum nighttime temperatures Increased intensity of summer rainfall Increased intensity of winter storms Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Increased minimum nighttime temperatures Increased intensity of summer rainfall Increased intensity of winter storms Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Increased intensity of summer rainfall Increased intensity of winter storms Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Increased intensity of winter storms Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Increased drought intensity Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Increased evapotranspiration Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Changes in lightning patterns and longer lightning seasons Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Reduction in late summer stream flow Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Reduction in raw water quality Higher particulate loading Increased intensity of storm events Increased pollen count
Higher particulate loading Increased intensity of storm events Increased pollen count
Increased intensity of storm events
Increased pollen count
Increased pollen count
Landslides
Increased likelihood of ice storms Low-to-medium
Shifts in annual and seasonal precipitation amounts
Changes in total annual stream flows Low
Changes in wind patterns

NREL's Scored Climate Stressors

Stage 1: Selecting Climate Stressors for Each Vulnerability

Utilized comprehensive **list of potential climate stressors** and
their **likelihood scores** developed
by climate experts

Discussed and identified climate stressors related to (or have the potential to impact) **each vulnerability**.

	Potential vulnerability: NREL has only one
Potentially Relevant Climate Variable	electricity supplier and depends on electricity to
Potentially Relevant Climate Variable	support mission-critical activities (e.g. power to
	buildings, IT connectivity).
Increased annual average temperatures	✓
Increased extreme heat events	✓
Earlier peak stream flows	
Increased likelihood of fire and longer	/
fire season	V
Increased minimum nighttime	
temperatures	
Increased intensity of summer rainfall	✓
Increased intensity of winter storms	✓
Increased drought intensity	
Increased evapotranspiration	
Changes in lightning patterns and longer	/
lightning seasons	•
Reduction in late summer stream flow	
Reduction in raw water quality	
Higher particulate loading	
Increased intensity of storm events	
Increased pollen count	
Landslides	
Increased likelihood of ice storms	✓
Shifts in annual and seasonal	
precipitation amounts	
Changes in total annual stream flows	
Changes in wind patterns	✓

Example of selecting relevant climate stressors for a particular vulnerability from NREL's study

Stage 1: Evaluating Climate-related Risks

The risk score is based on:

- vulnerability's consequence score
- all applicable climate stressors' likelihood scores.

The risk matrix provides a structure for combining these scores in a meaningful way that enables analysis and ranking of the risks.

The outcome:

ranked listing of climaterelated risks.

Sensitivity -	Climate Stressors - Likelihood						
Consequence	High (H)	Med-High (MH)	Medium (M)	Med-Low (ML)	Low (L)		
Critical (I)	IH ⁽¹⁾	IMH ⁽²⁾	IM ⁽³⁾	IML ⁽⁶⁾	IL ⁽⁷⁾		
Marginal (II)	IIH ⁽⁴⁾	IIMH ⁽⁵⁾	IIM ⁽⁸⁾	IIML	IIL ⁽¹²⁾		
Negligible (III)	IIIH ⁽⁹⁾	IIIMH ⁽¹⁰⁾	IIIM	IIIML (14)	IIIL ⁽¹⁵⁾		
 1-2 3-5 6-10 High Risk Sensitivity Medium-High Risk Sensitivity Medium Risk Sensitivity 			11-13 - 14-15 -	Medium-Low Ris Low Risk Sensiti	•		

SPR's Risk Matrix

Stage 1: Example Risk Evaluation

No.	Sensitivity	Consequence (C)	No.	Climate Stressor	Likelihood (L)	C + Scor		Risk Score
			V2	Increases in magnitude of hottest annual temperature	High	IH	1	
	A1 324	oility to aintain cessary v water Critical (I) vity and ntity for	V4	Increased rainfall amounts on days with rain	High	IH	1	
	Ability to maintain		V7	Increased number of days with heavy rainfall	Med-High	IMH	2	
S3	,		V10	Increased raw water temperature	Med-High	IMH	2	2
			V16	Increased chance of flooding/high water levels	Medium	IM	3	
			V17 Increased chance of drought/low water levels Medium	IM	3			
			V21	Changes in raw water quality – increase sediment	Med-Low	IML	6	

Each vulnerability's consequence score is combined with all the likelihood scores for the climate stressors identified.

The combined scores are then averaged to calculate an **overall risk score** for that vulnerability.

SPR example risk evaluation for a particular sensitivity

Vulnerability	Consequence	Climate Variable	Likelihood	Risk Score	Overall Risk Score
		Earlier peak stream flows	High	High	
Each campus has only one water supplier and no backup options		Changes in total annual stream flows	Low	Medium	
		Reduced late summer stream flows	Medium-to-high	High	
		Increased intensity of summer rainfall	Medium-to-high	High	
	High	Increased intensity of winter storms	Medium-to-high	High	High
		Shift in annual and seasonal precipitation amounts	Low	Medium	
		Increased drought intensity	Medium-to-high	High	
		Increased evapotranspiration	Medium-to-high	High	
		Increased likelihood of fire and longer fire season	High	High	

NREL example risk evaluation for a particular vulnerability

Stage 1: Climate Related Risks

No.	Sensitivity	Risk Score			
S1	Ability to respond if a weather event impacts more than one site at the same time	2			
S2	Ability to meet statutory oil quantity requirements				
S3	Ability to maintain necessary raw water quality and quantity for drawdown				
S8	Reliance on a single supplier of commercial power line to each of the sites	2			
S13	Large amount of old and fatigued equipment (70% past lifespan design)	2			
S16	Availability of distribution systems, pipelines, and terminals in the region that SPR uses to meet mission requirements	2			
S4	Ability to conduct process pump seal flushing and bearing cooling	3			
S5	Increased build-up of silt in raw water systems	3			
S11	Sites elevation and proximity to the ocean	3			
S15	Outdoor workforce exposed to elements	3			
S17	Ability to maintain oil temperature (i.e., increasing raw water temperatures affecting crude oil cooling capability)	5			
S6	Ability to maintain necessary raw water quality for disposal of brine to the Gulf of Mexico (i.e., 95%+salinity, pH levels, etc.)	6			
S7	Ability to access raw water for flushing of brine strings during fill operations	8			
S9	Adequate power required to run the DCS	6			
S10	Command center, single facility for control of pumping stations	6			
S12	Susceptibility to mold in buildings	10			
S14	Wellhead exposure to weather	11			

SPR example risk evaluation for a particular sensitivity

Vulnerability	Associated Climate Variables Likely To Change	Overall Risk Score
Each campus has only one water supplier and no backup options	Stream flows, precipitation, drought, evapotranspiration	High
NREL may not be able to continue to rely on evaporative cooling and chillers	Temperature	Medium-to-high
NREL has only one electricity supplier and depends on electricity to support mission-critical activities, including information technology connectivity	Temperature, precipitation, lightning, fire	High
Landslides may occur because the South Table Mountain campus buildings are close to the mesa slope	Precipitation and fire	High
Site flooding may occur because the South Table Mountain campus has poor drainage	Precipitation	Medium-to-high
Damage to climate-sensitive equipment may disrupt research	Temperature, precipitation, lightning, fire	Medium-to-high
Key staff may not be able to access NREL's sites to respond to emergencies and to conduct research; some situations may require staff redundancy	Temperature, precipitation, fire, lightning	Medium-to-high
Staff may not be able to conduct outdoor research and other outdoor activities	Temperature and lightning	Medium-to-high
NREL's reputation as a sustainable campus may be damaged if it moves to traditional air conditioners for space cooling	Temperature	Medium-to-high
	Each campus has only one water supplier and no backup options NREL may not be able to continue to rely on evaporative cooling and chillers NREL has only one electricity supplier and depends on electricity to support mission-critical activities, including information technology connectivity Landslides may occur because the South Table Mountain campus buildings are close to the mesa slope Site flooding may occur because the South Table Mountain campus has poor drainage Damage to climate-sensitive equipment may disrupt research Key staff may not be able to access NREL's sites to respond to emergencies and to conduct research; some situations may require staff redundancy Staff may not be able to conduct outdoor research and other outdoor activities NREL's reputation as a sustainable campus may be damaged if it moves to traditional air conditioners for space cooling	Each campus has only one water supplier and no backup options Each campus has only one water supplier and no backup options NREL may not be able to continue to rely on evaporative cooling and chillers NREL has only one electricity supplier and depends on electricity to support mission-critical activities, including information technology connectivity Landslides may occur because the South Table Mountain campus buildings are close to the mesa slope Site flooding may occur because the South Table Mountain campus has poor drainage Damage to climate-sensitive equipment may disrupt research Key staff may not be able to access NREL's sites to respond to emergencies and to conduct research; some situations may require staff redundancy Staff may not be able to conduct outdoor research and other outdoor activities NREL's reputation as a sustainable campus may be damaged if it moves to traditional air conditioners for

^{*} Red indicates high risk and dark orange indicates medium-to-high risk.

NREL example risk evaluation for a particular vulnerability

Stage 2: Resilience Evaluation Process

- (1) **Identify** the potential resilience options
- (2) Score the resilience options at a high level based on key criteria
- (3) Prioritize the options by recommending an approach for each of the options

Resilience: The capacity to prevent, withstand, respond to, and recover from a disruption.

*modified from the National Oceanic and Atmospheric Administration's U.S. Climate Resilience Toolkit.

Stage 2: Scoring Resilience Options

Effectiveness - the capacity of the resilience option to reduce the vulnerability's overall risk.

Feasibility - is a measure of whether the option could be implemented—technically, organizationally, and politically.

Cost - is the estimated monetary outlay price of the resilience option.

Assessment		Score: Description	
Criterion	Good	Fair	Poor
Effectiveness	Would completely or nearly eliminate the vulnerability's risk	Would significantly reduce part or all of the vulnerability's risk	Would not significantly reduce the vulnerability's risk
Feasibility	Could be implemented technically and organizationally	Some reservations about the ability to implement the action technically and organizationally, or only a part of the action could be implemented	Could not be implemented technically or organizationally
Cost	Would have relatively low monetary cost to implement; generally desk-style projects, often with no or few infrastructure components.	Would have relatively moderate monetary costs; could include a modest infrastructure component	Would have relatively high monetary costs; could include significant infrastructure components

Stage 2: Recommending an Approach

In exploring recommended approaches, the project team utilized the following:

- Best professional judgement and sitespecific knowledge relative to each evaluation criterion and not an average of the three evaluation criteria
- Information that emerged during the project team discussions. When the available information was uncertain or could significantly alter the viability of an option, that option was assigned to continue evaluating
- Consideration of each resilience option independently (not compared to each other) to determine a recommended approach.

Do now

- actions that can reasonably pursue
- may benefit other strategies beyond climate change resilience planning
- reduce facility risk to current climate stressors
- investment is worthwhile regardless of the climate future
- may involve some cost that is not fully justified under current climate conditions

Continue evaluating

- > require more in depth analysis to better determine
 - ➤ If do-now actions
 - If remove from consideration

Remove from consideration

- untenable for one or more reasons
- resilience options address impacts beyond current planning horizons.

Stage 2: Examples Resilience Options and Recommended Approaches

Create and implement a climate

monitoring and communication system

Install outdoor structures for protection from hazardous weather

Staff may not be able to conduct

NREL example

outdoor research and other outdoor

				Key Resourc	e No.	Resilience Options	Effectiveness	Feasibility	Cost	Approach
					R1	Integrate climate change considerations into future planning and operations	Good	Good	Good	Do Now
				Multiple	R2	Provide more flexible degassing capabilities (i.e., portable degassing equipment)	Good	Good	Fair	Do Now
					R3	Identify, evaluate, and consider elevating at-risk equipment (e.g., pumps)	Good	Good	Fair	Do Now
					R4	Review hurricane after-action reports and identify resilience options that could mitigate impacts for climate change	Good	Fair	Good	Continue Evaluating
Vulnerability	Overall Risk Score	Resiliency Actions	Reco		R21	Bryan Mound - Review study on tanks and integrate climate change information	Good	Good	Fair	Do Now
Cross-cutting solutions identified to mitigate across multiple vulnerabilities ^b	Not applicable	Integrate climate considerations into existing operations and practices	Do now	Water	R5	Review the ongoing sediment study (Bryan Mound) and integrate climate change considerations	Fair	Good	Good	Continue Evaluating
		Create and implement a climate monitoring and communication system	Do now		R6	Continue to evaluate options for maintaining cooling capacity as water temps increase (i.e., resize heat exchangers)	Fair	Fair	Fair	Continue Evaluating
Each campus has only one water supplier and no backup options	High	Develop a water-shortage contingency plan	Do now		R7	Add ILA waterwells (like at West Hackberry) to ensure freshwater for process pumpflushing	Good	Good	Fair	Continue Evaluating
		Connect the National Wind Technology Center to a public water system	Continu		R8	Add tanks or covers to brine ponds (specifically at Bayou Chodaw) to protect from rainwater dilution	Good	Fair	Poor	Continue Evaluating
NREL may not be able to continue to rely on evaporative cooling and chiller	Medium-to-high	Create and implement a climate monitoring and communication system	Do now	Power	R9	Increase RPX pumping capabilities	Good	Fair	Fair	Continue Evaluating
		Add conventional backup air conditioning	Continu		R10	Add diesel pumps as backups at intake structures to have a non-power drawdown option (meets practical demand only, not statutory)	Fair	Fair	Fair	Continue Evaluating
NREL has only one electricity supplier and depends on electricity to support mission-critical activities, including information technology	High	Improve demand management Install a battery supply	Do now		R11	Monitor and continue to investigate potential for solar PV systems as efficiency of panels improves	Good	Poor	Poor	Continue Evaluating
		Establish a microgrid	Continu			Add new generators designed to use crude oil in storage (at SPR) as fuel to				Remove from
Site flooding and landslides may		Evaluate and redesign the site to	evaluat		R12	meet drawdown requirements	Good	Poor	Poor	Consideration
occur at the South Table Mountain campus°	High/medium-to-high ^a	improve drainage and slope stability	Do now		R13	Install non-fossiffuel option (battery) to provide an alternative source for recovery pumps if diesel is not available (backup only, not drawdown)	Poor	Poor	Poor	Remove from Consideration
Damage to climate-sensitive equipment may disrupt research	Medium-to-high	Integrate climate considerations into existing operations and practices	Do now		R14	Reevaluate the feasibility of dual powerfeeds (like at Big Hill)	Poor	Fair	Poor	Remove from Consideration
		Retrofit climate-sensitive equipment	Continu							
Key staff may not be able to access NREL's sites to respond to emergencies and to conduct research; some situations may require staff redundancy ^d	Medium-to-high	No resiliency action proposed because NREL is already addressing this issue ^d		ommended ch beyond NREL	SPR example					
		Integrate climate considerations into existing operations and practices	Do now							

NREL's Climate Change Resilience Study and Process Description Documents

DOE Guidance Documents

Other Go-to Resources

National Climate Assessment (Regional Reports)
 http://nca2014.globalchange.gov/

 U.S. Climate Resilience Toolkit https://toolkit.climate.gov/

 NASA/DOI Interagency Forum on Climate Change Impacts and Adaptations

https://www.fedcenter.gov/programs/greenhouse/ccforum/

Thank you!

Lissa Myers

