Stat 516, Homework 6

Name: Neal Marquez

Due date: Tuesday, November 28.

Note: Do this homework *individually*. Do not include any R code in your main handout – just include as an appendix, in compact form.

1. (a) As an illustration of rejection sampling, show how one can generate a draw from N(0,1) by using a Cauchy proposal distribution. What is the acceptance rate of your sampler? What is the mean number of trials until acceptance of the Cauchy draw? (The Cauchy has density $1/\left[\pi(1+x^2)\right]$.)

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$
$$g(x) = \frac{1}{\pi(1+x^2)}$$
$$\frac{f}{g}(x) = \frac{\pi(1+x^2)\exp\left(-\frac{x^2}{2}\right)}{\sqrt{2\pi}}$$
$$\frac{d}{dx} = \frac{\pi}{\sqrt{2\pi}} - \exp\left(-\frac{x^2}{2}\right)x(x^2-1)$$

set $\frac{d}{dx}$ to 0 to find x_M ...

$$x_M = \pm 1$$

$$M = \frac{2\pi}{\sqrt{2\pi}} \exp\left(\frac{-1}{2}\right) \approx 1.52$$

$$p_a = \frac{\int_{-\infty}^{\infty} f(x)}{M} = M^{-1} \approx .66$$

Expected number of trails is then

$$E[X] = p(X \ge 1) + p(X \ge 2) + p(X \ge 3) + \dots$$
$$= 1 + (1 - p_a) + (1 - p_a)^2 + \dots$$
$$= \frac{1}{p_a} = M$$

(b) Again you wish to generate a draw from N(0,1). But instead of using the standard Cauchy proposal from (a) you are using a scaled Cauchy with density $1/\left[\pi\gamma(1+(x/\gamma)^2)\right]$, where $\gamma > 0$ is a scale parameter. How would optimally choose γ ?

$$\frac{f}{g}(x) = \frac{\pi\gamma(1 + (x/\gamma)^2)\exp(-\frac{x^2}{2})}{\sqrt{2\pi}}$$

find $\frac{d}{dx}$ and set to 0 to find x_M ...

$$x_M = \sqrt{2 - \gamma^2}$$

$$M = \frac{\pi \gamma (1 + (2 - \gamma^2)/\gamma^2) \exp\left(-\frac{2 - \gamma^2}{2}\right)}{\sqrt{2\pi}}$$

find $\frac{d}{d\gamma}$ and set to 0 to find optimal γ ...

$$\gamma = 1$$

- (c) Is it possible to generate a draw from a Cauchy distribution using N(0,1) as proposal distribution? No because the integral of $\frac{f}{g}(x)$ is indefinite on the support for the standard normal distribution for any chosen cauchy distribution when g is the normal density and f is cauchy and furthermore M has no set value.
- 2. In this question we will analyze data on 10 power plant pumps using a Poisson gamma model. The number of failures Y_i is assumed to follow a Poisson distribution

$$Y_i | \theta_i \sim_{ind} \text{Poisson}(\theta_i t_i), \quad i = 1, ..., 10$$

where θ_i is the failure rate for pump i and t_i is the length of operation time of the pump (in 1000s of hours). The data is shown below.

Pump	1	2	3	4	5	6	7	8	9	10
t_i	94.3	15.7	62.9	126	5.24	31.4	1.05	1.05	2.1	10.5
y_i	5	1	5	14	3	19	1	1	4	22

A conjugate gamma prior distribution is adopted for the failure rates:

$$\theta_i | \alpha, \beta \sim_{iid} \text{Gamma}(\alpha, \beta), \quad i = 1, ..., 10,$$

with a hyperprior under which α and β are independent and

$$\alpha \sim \text{Exponential}(1), \qquad \beta \sim \text{Gamma}(0.1, 1).$$

(a) Carefully show, using Bayes theorem and the conditional independencies in the model description, that the posterior distribution is given by:

$$p(\alpha, \beta, \boldsymbol{\theta}|\mathbf{y}) \propto \prod_{i=1} \left\{ \Pr(y_i|\theta_i) \times p(\theta_i|\alpha, \beta) \right\} \times \pi(\alpha, \beta)$$
 (1)

where $\boldsymbol{\theta} = (\theta_1, ..., \theta_{10})$

$$p(\alpha, \beta, \boldsymbol{\theta}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\alpha, \beta, \boldsymbol{\theta}) \times p(\alpha, \beta, \boldsymbol{\theta})$$

$$p(\boldsymbol{y}|\alpha, \beta, \boldsymbol{\theta}) = \prod_{i=1}^{n} \frac{(t_i \theta_i)^{y_i} e^{-t_i \theta_i}}{y_i!} = \prod_{i=1}^{n} \Pr(y_i | \theta_i)$$

$$p(\alpha, \beta, \boldsymbol{\theta}) = \pi(\alpha, \beta) \prod_{i=1}^{n} \frac{\beta^{\alpha} \theta_i^{\alpha - 1} e^{-b \theta_i}}{\Gamma(\alpha)} = \prod_{i=1}^{n} \{p(\theta_i | \alpha, \beta)\} \times \pi(\alpha, \beta)$$

(b) By using (1) write out the steps of a Metropolis-Hastings within Gibbs sampling algorithm to analyze these data.

Hint: First write down the forms for $(\alpha | \beta, \theta, \mathbf{y})$, $(\beta | \alpha, \theta, \mathbf{y})$, $(\theta_i | \theta_{-i}, \alpha, \beta, \mathbf{y})$, for i = 1, ..., 10.

$$p(\theta_{i}|\boldsymbol{\theta}_{-i},\alpha,\beta,\mathbf{y}) \propto \prod_{i=1} \frac{(t_{i}\theta_{i})^{y_{i}}e^{-t_{i}\theta_{i}}}{y_{i}!} \frac{\beta^{\alpha}\theta_{i}^{\alpha-1}e^{-b\theta_{i}}}{\Gamma(\alpha)}$$

$$\propto \operatorname{Gamma}(y_{i}+\alpha,\beta+t_{i})$$

$$\therefore \quad \theta_{i} \perp \boldsymbol{\theta}_{-i}, \mathbf{y}_{-i}|y_{i},\alpha,\beta$$

$$p(\beta|\alpha,\boldsymbol{\theta},\mathbf{y}) \propto \left\{ \prod_{i=1} \beta^{\alpha}e^{-\beta\theta_{i}} \right\} \Gamma(.1)^{-1}\beta^{-.9}e^{-\beta}$$

$$= \beta^{10a-.9}e^{-\beta(1+\sum_{i=1}\theta_{i})}$$

$$\propto \operatorname{Gamma}(10\alpha+.1,1+\sum_{i=1}\theta_{i})$$

$$\therefore \quad \beta \perp \mathbf{y}|\boldsymbol{\theta},\alpha$$

$$p(\alpha|\beta,\boldsymbol{\theta},\mathbf{y}) = e^{-\alpha}\beta^{10\alpha}\Gamma(\alpha)^{-10}\prod_{i=1}\theta_{i}^{\alpha-1}$$

$$\therefore \alpha \perp \mathbf{y}|\boldsymbol{\theta}\beta$$

Algorithm...

- i. Choose staring values for parameters $\boldsymbol{\theta}, \alpha, \beta$
- ii. Update values of θ_i using last iteration of α and β with the distribution Gamma $(y_i + \alpha, \beta + t_i)$
- iii. Update β using last iteration of α and current $\boldsymbol{\theta}$ with the distribution Gamma $(10\alpha+1,1+\sum_{i=1}\theta_i)$
- iv. simulate a value u which is distributed Uniform(0,1)
- v. propose a new value of α , α^{\star} , which is distributed $\mathcal{N}(\alpha, .2)$
- vi. accept α^\star as the new α if $\alpha^\star>0$ and $u<\frac{p(\alpha^\star|\beta,\theta)}{p(\alpha|\beta,\theta)}$
- vii. repeat steps ii-vi 1000000 times recording each new iteration of parameters θ , α , β
- (c) Apply your algorithm to the pump data and give histogram representations of the univariate posterior distributions for α and β and a scatterplot representing the bivariate posterior distribution.

Posterior of Beta

Bivariate Posterior of Hyperparameters

(d) Analytically integrate θ_i , i=1,...,10 from the posterior (1) and hence give the form, up to proportionality, of the posterior $p(\alpha,\beta|\mathbf{y})$.

$$p(\alpha, \beta | \mathbf{y}) \propto \beta^{10a - .9} e^{-\beta(1 + \sum_{i=1}^{\infty} \theta_i)} e^{-\alpha} \beta^{10\alpha} \Gamma(\alpha)^{-10} \prod_{i=1}^{\infty} \theta_i^{\alpha - 1}$$
$$= \beta^{20\alpha - .9} e^{-\beta(1 + \sum_{i=1}^{\infty} \theta_i) - \alpha} \Gamma(\alpha)^{-10} \prod_{i=1}^{\infty} \theta_i^{\alpha - 1}$$

- (e) Construct a Metropolis-Hastings algorithm, to provide a Markov chain with stationary distribution the posterior $p(\alpha, \beta|\mathbf{y})$.
 - i. Choose staring values for parameters α, β
 - ii. simulate a value u which is distributed Uniform(0,1)
 - iii. propose a new value of α , α^* , which is distributed $\mathcal{N}(\alpha, .2)$ and β , β^* , which is distributed $\mathcal{N}(\beta, .2)$
 - iv. accept α^* and β^* as the new α and β if $\alpha^* > 0$, $\beta^* > 0$, and $log(u) < log(p(\alpha^*, \beta^*|\mathbf{y})) log(p(\alpha, \beta|\mathbf{y}))$
 - v. repeat steps ii-iv 1000000 times recording each new iteration of parameters θ , α , β
- (f) Implement the algorithm of the previous part, and provide the same univariate and bivariate posteriors that were produced in part (c).

Posterior of Alpha

Posterior of Beta

Bivariate Posterior of Hyperparameters given y

(g) How can you obtain samples from $p(\theta_i|\mathbf{y})$, based on samples from $p(\alpha, \beta|\mathbf{y})$? You can sample from $p(\theta_i|\mathbf{y})$ by using a the samples directly from the smaples of $p(\alpha, \beta|\mathbf{y})$.

Code appendix

```
rm(list=ls())
library(dplyr)
library(ggplot2)
library(MASS)
library(RColorBrewer)
```

```
Y \leftarrow c(5, 1, 5, 14, 3, 19, 1, 1, 4, 22)
E \leftarrow c(94.3, 15.7, 62.9, 126, 5.24, 31.4, 1.05, 1.05, 2.1, 10.5)
N <- length(Y)</pre>
nchain <- 100000
burnin <- 10000
proposalfunction <- function(param){</pre>
   return(rnorm(1, mean=param, sd=.2))
}
lambda.post <- matrix(1, nrow=N, ncol=nchain)</pre>
b0.post <- rep(1, nchain)
a0.post <- rep(2, nchain)
a0 <- 6
b0 <- 1
for(i in 2:nchain){
   lambda.post[,i] <- lambda <- rgamma(N, a0 + Y, b0 + E)</pre>
   b0.post[i] \leftarrow b0 \leftarrow rgamma(1, N * a0 + ha, sum(lambda) + hb)
   astar <- proposalfunction(a0)</pre>
    # generate a probability of accepting that is g(p*)/g(pi)
   paccept <- prod(lambda)^(astar-a0) * b0^(N * (astar-a0)) *</pre>
        (gamma(astar)/gamma(a0))^-N * exp(-astar+a0)
   if (astar > 0 & runif(1) < paccept){</pre>
       a0 <- astar
   }
   a0.post[i] <- a0
}
plot(a0.post, type="1")
plot(b0.post, type="1")
for(i in 1:N){
   title_ <- pasteO("Posterior Density for y_", i)</pre>
   plot(density(lambda.post[i, burnin:nchain]), main=title_)
}
plot(density(b0.post[burnin:nchain]), main="Posterior of Beta")
plot(density(a0.post[burnin:nchain]), main="Posterior of Alpha")
hist(b0.post[burnin:nchain], nclass=30, main="Posterior of Beta", xlab="")
hist(a0.post[burnin:nchain], nclass=30, main="Posterior of Alpha", xlab="")
```

```
k <- 11
my.cols <- rev(brewer.pal(k, "RdYlBu"))</pre>
z <- kde2d(a0.post[burnin:nchain], b0.post[burnin:nchain], n=50)</pre>
plot(a0.post[burnin:nchain], b0.post[burnin:nchain],
    xlab=expression(alpha), ylab=expression(beta), pch=19, cex=.4,
    main="Bivariate Posterior of Hyperparameters")
contour(z, drawlabels=FALSE, nlevels=k, col=my.cols, add=TRUE)
# sample the joint posterior of alpha and beta
b0joint.post <- rep(1, nchain)
a0joint.post <- rep(2, nchain)
a0 <- 1
b0 <- 1
posterior <- function(a, b, theta=lambda.post[,N]){</pre>
   20 * a*log(b) - log(b^{.9}) + (-b*(1 + sum(theta)) - a) +
       log(gamma(a)^(-10)) + log(prod(theta^(a-1)))
}
for(i in 2:nchain){
   astar <- proposalfunction(a0)</pre>
   bstar <- proposalfunction(b0)</pre>
   # generate a probability of accepting that is g(p*)/g(pi)
   paccept <- posterior(astar, bstar, theta=lambda.post[,i]) -</pre>
       posterior(a0, b0, theta=lambda.post[,i])
   if (astar > 0 & bstar > 0 & log(runif(1)) < paccept){</pre>
       a0 <- astar
       b0 <- bstar
   }
   a0joint.post[i] <- a0
   b0joint.post[i] <- b0</pre>
}
hist(b0joint.post[burnin:nchain], nclass=30,
    main="Posterior of Beta Given y", xlab="")
hist(a0joint.post[burnin:nchain], nclass=30,
    main="Posterior of Alpha Given y", xlab="")
z <- kde2d(a0joint.post[burnin:nchain], b0joint.post[burnin:nchain], n=50)</pre>
plot(a0joint.post[burnin:nchain], b0joint.post[burnin:nchain],
    xlab=expression(alpha), ylab=expression(beta), pch=19, cex=.4,
```

main="Bivariate Posterior of Hyperparameters given y")
contour(z, drawlabels=FALSE, nlevels=k, col=my.cols, add=TRUE)