

UNIVERSIDAD DE GRANADA

APRENDIZAJE AUTOMÁTICO GRADO EN INGENIERÍA INFORMÁTICA

PRÁCTICA 3

Programación

Autor

Vladislav Nikolov Vasilev

Rama

Computación y Sistemas Inteligentes

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS INFORMÁTICA Y DE TELECOMUNICACIÓN

Curso 2018-2019

Índice

1.	Problema de Regresión	2
	1.1. Descripción del problema	2
2.	Problema de Clasificación	3
Re	eferencias	4

1. Problema de Regresión

1.1. Descripción del problema

En este problema vamos a trabajar con el conjunto de datos Airfoil Self-Noise, el cuál ha sido proporcionado por la NASA, y contiene los resultados de haber realizado un conjunto de pruebas aerodinámicas y acústicas en un túnel de viento sobre perfiles alares de dos y tres dimensiones.

El conjunto de datos está compuesto por 1503 filas y 6 columnas, los valores de las cuáles son todos números reales. Los datos de las 5 primeras columnas se corresponden con los datos de entrada, y la última columna se corresponde con la información de salida. A continuación se puede ver que representa cada uno de los atributos de forma ordenada:

- 1. Frecuencia, medida en Hz.
- 2. Ángulo de ataque (ángulo que forman la cuerda geométrica de un perfil alar con la dirección del aire incidente), medida en grados.
- 3. Longitud de la cuerda del perfil alar, medida en metros.
- 4. Velocidad free-stream, medida en metros por segundo.
- 5. Distancia de desplazamiento de succión, medida en metros.
- 6. Nivel de presión sonora, medida en dB.

1.2. Análisis, particionado y preprocesado de los datos

2. Problema de Clasificación

Referencias

[1] Texto referencia https://url.referencia.com