Continuous Assessment Test I - September 2023

Programme	: B.Tech CSE	Semester	: FALL 2023-24
Course	: Theory of Computation	Code	BCSE304L
		Slot :	F2+TF2
Faculty	Dr. S. Suseela Dr. Amutha S Dr. Karmel A	Class Nbr	CH202324010 CH2023240100 CH2023240101
Time	: 90 Minutes	Max. Marks :	50

Answer ALL the questions

	Answer ALL the questions
Q	Questions
4.	A lock for a bank contains numbers 0 through 9 in its door. It opens with the current combination that follows: a. Six keys to be pressed in sequence. b. Every odd numbered press should be a prime number (excluding 1), second press should be multiple of three, fourth press should not be a multiple of 4 and 8, the sixth press could be number that do not fall under any of the previous constraint. Design a deterministic finite automaton for deciding whether to open or not to open the lock and construct the regular expression.
2.	 a) Let ∑={a,b}. A word w in ∑* is said to contain a triple letter if w contains aaa or bbb as a substring. Construct the regular grammar that generates all the strings in the language, L={w ∈ ∑* w contains exactly one triple letter} [Hint: "baaaba" has exactly one triple string. "baaaaba" has two triple strings.] b) Construct an equivalent finite automaton for the expression given below.[5 marks] i. (aa*b)* + ba* ii. (1 (01*0)* 1)*
1	Construct an equivalent deterministic finite automaton D for the non-deterministic automaton given below.
	$\begin{pmatrix} c \end{pmatrix}$

Design a finite automaton that accepts the language, L={L1 U L2}

Where,

4.
$$L_1 = \{a^{2n+3} \mid n > 0\}$$

 $L_2 = \{a^{3n+2} \mid n > 0\}$

10

Construct a minimized Deterministic Finite Automata for the automaton given below.

10