1	1.	Method of structurally converting a binary sequence into an encrypted final image
2		G, the structural conversion comprising the steps of:
3		
4		forming an image M of the binary sequence as a concatenation of a tag data
5		element T and structural data element S , tag data element T comprising
6		information necessary to reverse a conversion process, structural data element S
7		comprising a sequence of logical scales of position coding;
8		
9		selecting a number of conversion function iterations P to be performed;
10		
11		iteratively executing P times a conversion function comprised of the following
12		steps:
13		selecting a transformation algorithm A from a predefined set of
14		transformation algorithms L ;
15		selecting an alphabet of transformation AV based upon the structural data
16		element S;
17		applying algorithm A and alphabet AV to structural data element S to form
18		a plurality of logical scales of position coding;
19		forming a transformed structural data element S' comprised of a sequence
20		of the logical scales of position coding;
21		selecting an external key K^x ;
22		forming tag data element T ;
23		coding the tag data element T with external key K^x to obtain coded tag
24		data element T'' ;
25		repeating the steps of the conversion function upon a converted image M'
26		comprised of a concatenation of the coded tag data element T'' and
27		the transformed structural data element S' ;
28		
29		and forming the encrypted final image G as a concatenation of the coded tag data
30		element T'' and the transformed structural data element S' created upon the P^{th}

1		iteration of the conversion function.
2		
3	2.	Method of structurally converting a binary sequence into an encrypted final image
4		G, said structural conversion comprising the steps of:
5		
6		forming an image M of the binary sequence as a concatenation of a tag data
7		element T and structural data element S , tag data element T comprising
8		information necessary to reverse the conversion process, structural data element S
9		comprising a sequence of logical scales of position coding;
10		
11		selecting a number of conversion function iterations P to be performed;
12		
13		iteratively executing P times a conversion function comprised of the following
14		steps:
15		selecting a transformation algorithm A from a predefined set of
16		transformation algorithms L ;
17		selecting an alphabet of transformation AV based upon the structural data
18		element S ;
19		applying algorithm A and alphabet AV to structural data element S to form
20		a plurality of logical scales of position coding;
21		forming a transformed structural data element S' comprised of a sequence
22		of the logical scales of position coding;
23		stochastically selecting a bit length parameter and a shift parameter which
24		define an internal identifier K within transformed structural data
25		element S ';
26		forming tag data element T ;
27		coding a portion of the tag data element T with internal identifier K to
28		obtain a partially coded tag data element T ;
29		selecting an external key K^x ;
30		coding the partially coded tag data element T' with external key K^x to

1		obtain coded tag data element T";
2		determining whether to extract internal identifier K from
3		transformed structural data element S', and if determined
4		necessary, extracting the internal identifier K from transformed
5		structural data element S ' to obtain structural data element S '' and
6		storing internal identifier K in a file of internal identifiers FID ;
7		repeating the steps of the conversion function upon a converted image M'
8		comprised of a concatenation of the coded tag data element T'' and
9		either transformed structural data element S' if internal identifier K
10		was not extracted, or structural data element S'' if internal identifier
11		K was extracted;
12		
13		and forming the encrypted final image G as a concatenation of the coded tag
14		data element T'' and either transformed structural data element S' if internal
15		identifier K was not extracted, or structural data element S'' if internal
16		identifier K was extracted.
17		
18	3.	Method of structurally converting a binary sequence into an encrypted final image
19		G, said structural conversion comprising the steps of:
20		
21		forming an image M of the binary sequence as a concatenation of a tag data
22		element T and structural data element S , tag data element T comprising
23		information necessary to reverse the conversion process, structural data element S
24		comprising a sequence of logical scales of position coding;
25		
26		selecting a number of conversion function iterations P to be performed;
27		
28		iteratively executing P times a conversion function comprised of the following
29		steps:
30		selecting a transformation algorithm A from a predefined set of

1	transformation algorithms L ;
2	selecting an alphabet of transformation AV based upon the structural data
3	element S;
4	applying algorithm A and alphabet AV to structural data element S to form
5	a plurality of logical scales of position coding;
6	forming a transformed structural data element S' comprised of a sequence
7	of the logical scales of position coding;
8	stochastically selecting a bit length parameter and a shift parameter which
9	define an internal identifier K within transformed structural data
10	element S';
11	scrambling internal identifier K with a scrambling function to obtain a
12	scrambled internal identifier K' ;
13	forming tag data element T ;
14	coding a portion of the tag data element T with scrambled internal
15	identifier K ' to obtain a partially coded tag data element T ';
16	selecting an external key K^x ;
17	coding the partially coded tag data element T' with external key K^x to
18	obtain coded tag data element T'' ;
19	determining whether to extract internal identifier K from
20	transformed structural data element S' , and if determined
21	necessary, extracting the internal identifier K from transformed
22	structural data element S ' to obtain structural data element S '' and
23	storing scrambled internal identifier K' in a file of internal
24	identifiers FID;
25	repeating the steps of the conversion function upon a converted image M'
26	comprised of a concatenation of the coded tag data element T'' and
27	either transformed structural data element S' if internal identifier K
28	was not extracted, or structural data element S'' if internal
29	identifier K was extracted;
30	

1		and forming the encrypted final image G as a concatenation of the coded tag data
2		element T'' and either transformed structural data element S' if internal identifier
3		K was not extracted, or structural data element S'' if internal identifier K was
4		extracted.
5		
6	4.	The method of claim 2, further comprising the steps of:
7		
8		structurally converting the file of internal identifiers FID to obtain a converted file
9		of internal identifiers FID', wherein a tag data element formed during the
10		structural conversion of the file of internal identifiers FID is coded with an
11		external key selected stochastically from a multitude of external keys in an
12		external key file K_{EXT} ; and
13		
14		optionally transmitting the encrypted final image G and structurally converted file
15		of internal identifiers FID' to a subscriber or receiver.
16		
17	5.	The method of claim 1, wherein the external key K^x is selected from a multitude
18		of external keys in an external key file K_{EXT} .
19		
20	6.	The method of claim 1, wherein the selection of external key K^x is a stochastic
21		selection.
22		
23	7.	The method of claim 1, wherein a same external key K^x is selected for use in all
24		iterations.
25		
26	8.	The method of claim 1, wherein a different external key K^x is selected upon each
27		iteration.
28		
29	9.	The method of claim 1, wherein the external key K^x is entered by a user during the
30		conversion and reverse conversion process.

1		
2	10.	The method of claim 5, further comprising the steps of:
3		
4		structurally converting the external key file K_{EXT} to obtain a structurally converted
5		external key file; and
6		
7		transmitting to a subscriber the structurally converted external key file and an
8		initial key K_{INIT} required to reverse the structural conversion of the structurally
9		converted external key file to obtain the external key file K_{EXT} .
10		
11	11.	The method of claim 1, wherein the selection of transformation algorithm A may
12		be a stochastic selection.
13		
14	12.	The method of claim 1, wherein the selection of transformation algorithm A may
15		depend upon adherence to a mathematical criterion.
16		
17	13.	The method of claim 1, wherein the selection of transformation algorithm A may
18		depend upon adherence to a logical criterion.
19		
20	14.	The method of claim 1, wherein the selection of transformation algorithm A may
21		depend upon adherence to a file size criteria for encrypted final image G .
22		
23	15.	The method of claim 1, wherein the predefined set of transformation algorithms \mathcal{L}
24		may be supplemented.
25		
26	16.	The method of claim 1, wherein the selection of a number of conversion steps P
27		may be a stochastic selection.
28		
29	17.	The method of claim 1, wherein the selection of a number of conversion steps P
30		may depend upon adherence to a mathematical criterion.

1	18.	The method of claim 1, wherein the selection of a number of conversion steps P
2		may depend upon adherence to a logical criterion.
3		
4	19.	The method of claim 1, wherein the selection of a number of conversion steps P
5		may depend upon adherence to a file size criteria for encrypted final image G .
6		
7	20.	The method of claim 1, wherein the alphabet of transformation AV is comprised
8		of letters or quants, each letter or quant comprising a segment of structural data
9		element S.
10		
11	21.	The method of claim 2, further comprising the step of determining upon which
12		iterations, if any, internal identifiers are to be extracted.
13		
14	22.	The method of claim 3, further comprising the step of determining upon which
15		iterations, if any, internal identifiers are to be extracted.
16		
17	23.	The method of claim 20, wherein a number of bits in each letter or quant is
18		stochastically selected.
19		
20	24.	The method of claim 20, wherein a number of bits in each letter or quant may
21		depend upon adherence to a mathematical criterion.
22		
23	25.	The method of claim 20, wherein a number of bits in each letter or quant may
24		depend upon adherence to a logical criterion.
25		
26	26.	The method of claim 20, wherein a number of bits in each letter or quant may
27		depend upon adherence to a file size criteria for encrypted final image G .
28		

1	27.	The method of claim 1, wherein the information necessary to reverse the
2		conversion process stored in tag data element T may comprise one or more of the
3		following:
4		
5		an indicator of whether a current iterative step is the P^{th} iteration;
6		
7		an indicator of whether the selected external key K^x is to be used for all P
8		iterations;
9		an indicator of the selected external key K^{x} ;
10		
11		an indicator of the selected transformation algorithm A ;
12		
13		a length of a first logical scale of position coding;
14		an indicator of user information;
15		
16		the alphabet of transformation AV ; and
17		
18		other transformation algorithm A parameters.
19		
20	28.	The method of claim 2, wherein the information necessary to reverse the
21		conversion process stored in tag data element T may comprise one or more of the
22		following:
23		
24		an indicator of whether a current iterative step is the P^{th} iteration;
25		
26		an indicator of whether the selected external key K^x is to be used for all P
27		iterations;
28		
29		an indicator of the selected external key K^x ;
30		

1		an indicator of the selected transformation algorithm A ;
2		an indicator of user information;
3		
4		the alphabet of transformation AV ;
5		
6		a length of a first logical scale of position coding;
7		
8		other transformation algorithm A parameters;
9		
10		the bit internal identifier K length and shift parameters; and
11		an indicator of internal identifier K extraction.
12		
13	29.	The method of claim 3, wherein the information necessary to reverse the
14		conversion process stored in tag data element T may comprise one or more of the
15		following:
16		
17		an indicator of whether a current iterative step is the P^{th} iteration;
18		
19		an indicator of whether the selected external key K^x is to be used for all P
20		iterations;
21		
22		an indicator of the selected external key K^x ;
23		
24		an indicator of the selected transformation algorithm A ;
25		an indicator of user information;
26		
27		the alphabet of transformation AV ;
28		
29		a length of a first logical scale of position coding;
30		

1		other transformation algorithm A parameters;
2		
3		an indicator of the scrambling function selected;
4		
5		the bit internal identifier K length and shift parameters; and
6		
7		an indicator of internal identifier K extraction.
8		
9	30.	The method of claim 3, wherein the scrambling function is selected from a
10		scrambling matrix comprised of a predefined set of scrambling functions.
11		
12	31.	The method of claim 30, wherein the predefined set of scrambling functions is
13		changed periodically.
14		
15	32.	The method of claim 1, wherein the conversion function further comprises the
16		step of:
17		determining whether to insert user information into structural data element S, and
18		inserting user information into structural data element S if determined necessary,
19		thereby providing a means for user authentication and digital signing.
20		
21	33.	The method of claim 2, wherein the conversion function further comprises the
22		step of:
23		determining whether to insert user information into structural data element S, and
24		inserting user information into structural data element S if determined necessary,
25		thereby providing a means for user authentication and digital signing.
26		
27	34.	The method of claim 3, wherein the conversion function further comprises the
28		step of:

1		determining whether to insert user information into structural data element S, and
2		inserting user information into structural data element S if determined necessary,
3		thereby providing a means for user authentication and digital signing.
4		
5	35.	Computer executable process steps stored on a computer readable medium, the
6		computer executable process steps for structurally converting a binary sequence
7		into an encrypted final image G , the computer executable process steps
8		comprising:
9		
10		forming an image M of the binary sequence as a concatenation of a tag data
11		element T and structural data element S , tag data element T comprising
12		information necessary to reverse a conversion process, structural data element S
13		comprising a sequence of logical scales of position coding;
14		
15		selecting a number of conversion steps P to be performed;
16		
17		iteratively executing P times a conversion function comprised of the following
18		steps:
19		selecting a transformation algorithm A from a predefined set of
20		transformation algorithms L ;
21		selecting an alphabet of transformation AV based upon the structural data
22		element S;
23		applying algorithm A and alphabet AV to structural data element S to form
24		a plurality of logical scales of position coding;
25		forming a transformed structural data element S' comprised of a sequence
26		of the logical scales of position coding;
27		selecting an external key K^x ;
28		forming tag data element T ;
29		coding the tag data element T with external key K^{x} to obtain coded tag
30		data element T'' ;

1		repeating the steps of the conversion function upon a converted image M'
2		comprised of a concatenation of the coded tag data element T'' and the
3		transformed structural data element S' ;
4		
5		and forming the encrypted final image G as a concatenation of the coded tag data
6		element T'' and the transformed structural data element S' created upon the P^{th}
7		iteration of the conversion function.
8		
9	36.	Computer executable process steps stored on a computer readable medium, the
10		computer executable process steps for structurally converting a binary sequence
11		into an encrypted final image G , the computer executable process steps
12		comprising:
13		
14		forming an image M of the binary sequence as a concatenation of a tag data
15		element T and structural data element S , tag data element T comprising
16		information necessary to reverse the conversion process, structural data element S
17		comprising a sequence of logical scales of position coding;
18		
19		selecting a number of conversion steps P to be performed;
20		
21		iteratively executing P times a conversion function comprised of the following
22		steps:
23		selecting a transformation algorithm A from a predefined set of
24		transformation algorithms L ;
25		selecting an alphabet of transformation AV based upon the structural data
26		element S;
27		applying algorithm A and alphabet AV to structural data element S to form
28		a plurality of logical scales of position coding;
29		forming a transformed structural data element S' comprised of a sequence
30		of the logical scales of position coding:

1		stochastically selecting a bit length parameter and a shift parameter which
2		define an internal identifier K within transformed structural data
3		element S';
4		forming tag data element T ;
5		coding a portion of the tag data element T with internal identifier K to
6		obtain a partially coded tag data element T ';
7		selecting an external key K^x ;
8		coding the partially coded tag data element T' with external key K^x to
9		obtain coded tag data element T";
10		stochastically determining whether to extract internal identifier K from
11		transformed structural data element S', and if determined
12		necessary, extracting the internal identifier K from transformed
13		structural data element S ' to obtain structural data element S '' and
14		storing internal identifier K in a file of internal identifiers FID ;
15		performing the steps of the conversion function upon a converted image
16		M' comprised of a concatenation of the coded tag data element T''
17		and either transformed structural data element S' if internal
18		identifier K was not extracted, or structural data element S'' if
19		internal identifier K was extracted;
20		
21		and forming the encrypted final image G as a concatenation of the coded tag data
22		element T'' and either transformed structural data element S' if internal identifier
23		K was not extracted, or structural data element S'' if internal identifier K was
24		extracted.
25		
26	37.	Computer executable process steps stored on a computer readable medium, the
27		computer executable process steps for structurally converting a binary sequence
28		into an encrypted final image G , the computer executable process steps
29		comprising:
30		

1	forming an image M of the binary sequence as a concatenation of a tag data
2	element T and structural data element S , tag data element T comprising
3	information necessary to reverse the conversion process, structural data element S
4	comprising a sequence of logical scales of position coding;
5	
6	selecting a number of conversion steps P to be performed;
7	
8	iteratively executing P times a conversion function comprised of the following
9	steps:
10	selecting a transformation algorithm A from a predefined set of
11	transformation algorithms L ;
12	selecting an alphabet of transformation AV based upon the structural data
13	element S;
14	applying algorithm A and alphabet AV to structural data element S to form
15	a plurality of logical scales of position coding;
16	forming a transformed structural data element S' comprised of a sequence
17	of the logical scales of position coding;
18	stochastically selecting a bit length parameter and a shift parameter which
19	define an internal identifier K within transformed structural data
20	element S' ;
21	scrambling internal identifier K with a scrambling function to obtain a
22	scrambled internal identifier K ';
23	forming tag data element T ;
24	coding a portion of the tag data element T with scrambled internal
25	identifier K' to obtain a partially coded tag data element T' ;
26	selecting an external key K^x ;
27	coding the partially coded tag data element T' with external key K^x to
28	obtain coded tag data element T";
29	stochastically determining whether to extract internal identifier K from
30	transformed structural data element S', and if determined

1		necessary, extracting the internal identifier K from transformed
2		structural data element S ' to obtain structural data element S '' and
3		storing scrambled internal identifier K ' in a file of internal
4		identifiers FID;
5		performing the steps of the conversion function upon a converted image
6		M' comprised of a concatenation of the coded tag data element T''
7		and either transformed structural data element S' if internal
8		identifier K was not extracted, or structural data element S'' if
9		internal identifier K was extracted;
10		
11		and forming the encrypted final image G as a concatenation of the coded tag data
12		element T'' and either transformed structural data element S' if internal identifier
13		K was not extracted, or structural data element S'' if internal identifier K was
14		extracted.
15		
16	38.	The computer executable process steps stored on a computer readable medium of
17		claim 35, wherein the external key K^{x} is selected from a multitude of external
18		keys in an external key file K_{EXT} .
19		
20	39.	The computer executable process steps stored on a computer readable medium of
21		claim 35, wherein the selection of the external key K^x is a stochastic selection.
22		
23	40.	The computer executable process steps stored on a computer readable medium of
24		claim 35, wherein a same external key K^{x} is selected for use in all iterations.
25		
26	41.	The computer executable process steps stored on a computer readable medium of
27		claim 35, wherein a different external key K^x is selected upon each iteration.
28		

1	42.	The computer executable process steps stored on a computer readable medium of
2		claim 35, wherein the external key K^{x} is entered by a user during the conversion
3		and reverse conversion process.
4		
5	43.	The computer executable process steps stored on a computer readable medium of
6		claim 35, wherein the selection of transformation algorithm A may be a stochastic
7		selection.
8		
9	44.	The computer executable process steps stored on a computer readable medium of
10		claim 35, wherein the selection of transformation algorithm A may depend upon
11		adherence to a mathematical criterion.
12		
13	45.	The computer executable process steps stored on a computer readable medium of
14		claim 35, wherein the selection of transformation algorithm A may depend upon
15		adherence to a logical criterion.
16		
17	46.	The computer executable process steps stored on a computer readable medium of
18		claim 35, wherein the selection of transformation algorithm A may depend upon
19		adherence to a file size criteria for encrypted final image G .
20		
21	47.	The computer executable process steps stored on a computer readable medium of
22		claim 35, wherein the predefined set of transformation algorithms L may be
23		supplemented.
24		
25	48.	The computer executable process steps stored on a computer readable medium of
26		claim 35, wherein the selection of a number of conversion steps P may be a
27		stochastic selection.
28		

1	49.	The computer executable process steps stored on a computer readable medium of
2		claim 35, wherein the selection of a number of conversion steps P may depend
3		upon adherence to a mathematical criterion.
4		
5	50.	The computer executable process steps stored on a computer readable medium of
6		claim 35, wherein the selection of a number of conversion steps P may depend
7		upon adherence to a logical criterion.
8		
9	51.	The computer executable process steps stored on a computer readable medium of
10		claim 35, wherein the selection of a number of conversion steps P may depend
11		upon adherence to a file size criteria for encrypted final image G .
12		
13	52.	The computer executable process steps stored on a computer readable medium of
14		claim 35, wherein the alphabet of transformation AV is comprised of letters or
15		quants, each letter or quant comprising a segment of structural data element S .
16		
17	53.	The computer executable process steps stored on a computer readable medium of
18		claim 52, wherein a number of bits in each letter or quant is stochastically
19		selected.
20		
21	54.	The computer executable process steps stored on a computer readable medium of
22		claim 52, wherein a number of bits in each letter or quant may depend upon
23		adherence to a mathematical criterion.
24		
25	55.	The computer executable process steps stored on a computer readable medium of
26		claim 52, wherein a number of bits in each letter or quant may depend upon
27		adherence to a logical criterion.
28		

1	56.	The computer executable process steps stored on a computer readable medium of
2		claim 52, wherein a number of bits in each letter or quant may depend upon
3		adherence to a file size criteria for encrypted final image G .
4		
5	57.	The computer executable process steps stored on a computer readable medium of
6		claim 35, wherein the information necessary to reverse the conversion process
7		stored in tag data element T may comprise one or more of the following:
8		an indicator of whether a current iterative step is the P^{th} iteration;
9		an indicator of whether the selected external key K^x is to be used for all P
10		iterations;
11		an indicator of the selected external key K^x ;
12		an indicator of the selected transformation algorithm A ;
13		a length of a first logical scale of position coding;
14		the alphabet of transformation AV ; and
15		other transformation algorithm A parameters.
16		
17	58.	The computer executable process steps stored on a computer readable medium of
18		claim 36, wherein the information necessary to reverse the conversion process
19		stored in tag data element T may comprise one or more of the following:
20		an indicator of whether a current iterative step is the P^{th} iteration;
21		an indicator of whether the selected external key K^x is to be used for all P
22		iterations;
23		an indicator of the selected external key K^x ;
24		an indicator of the selected transformation algorithm A ;
25		the alphabet of transformation AV ;
26		a length of a first logical scale of position coding;
27		other transformation algorithm A parameters;
28		internal identifier K bit length and shift parameters; and
29		an indicator of internal identifier K extraction.
30		

1	59.	The computer executable process steps stored on a computer readable medium of
2		claim 37, wherein the information necessary to reverse the conversion process
3		stored in tag data element T may comprise one or more of the following:
4		an indicator of whether a current iterative step is the P^{th} iteration;
5		an indicator of whether the selected external key K^x is to be used for all P
6		iterations;
7		an indicator of the selected external key K^x ;
8		an indicator of the selected transformation algorithm A;
9		the alphabet of transformation AV ;
10		a length of a first logical scale of position coding;
11		other transformation algorithm A parameters;
12		an indicator of the scrambling function selected;
13		internal identifier K bit length and shift parameters; and
14		an indicator of internal identifier K extraction.
15		
16	60.	The computer executable process steps stored on a computer readable medium of
17		claim 37, wherein the scrambling function is selected from a scrambling matrix
18		comprised of a predefined set of scrambling functions.
19		
20	61.	The computer executable process steps stored on a computer readable medium of
21		claim 60, wherein the predefined set of scrambling functions is changed
22		periodically.
23		
24	62.	An apparatus for structurally converting a binary sequence into an encrypted final
25		image G, comprising:
26		
27		a memory element for storing computer executable process steps;
28		
29		a processor for executing computer executable process steps;
30		

1	computer executable process steps comprising:
2	
3	forming an image M of the binary sequence as a concatenation of a tag
4	data element T and structural data element S , tag data element T
5	comprising information necessary to reverse a conversion process,
6	structural data element S comprising a sequence of logical scales of
7	position coding;
8	
9	selecting a number of conversion steps P to be performed;
10	
11	iteratively executing P times a conversion function comprised of the
12	following steps:
13	selecting a transformation algorithm A from a predefined set of
14	transformation algorithms L ;
15	selecting an alphabet of transformation AV based upon the
16	structural data element S;
17	applying algorithm A and alphabet AV to structural data element S
18	to form a plurality of logical scales of position coding;
19	forming a transformed structural data element S' comprised of a
20	sequence of the logical scales of position coding;
21	selecting an external key K^x ;
22	forming tag data element T;
23	coding the tag data element T with external key K^x to obtain coded
24	tag data element T'' ;
25	repeating the steps of the conversion function upon a converted
26	image M' comprised of a concatenation of the coded tag
27	data element T'' and the transformed structural data element
28	S':

1		and forming the encrypted final image G as a concatenation of the coded
2		tag data element $T^{\prime\prime}$ and the transformed structural data element S^{\prime} created
3		upon the P^{th} iteration of the conversion function.
4		
5	63.	An apparatus for structurally converting a binary sequence into an encrypted final
6		image G, comprising:
7		
8		a memory element for storing computer executable process steps;
9		
10		a processor for executing computer executable process steps;
11		
12		computer executable process steps comprising:
13		forming an image M of the binary sequence as a concatenation of a tag
14		data element T and structural data element S , tag data element T
15		comprising information necessary to reverse the conversion process,
16		structural data element S comprising a sequence of logical scales of
17		position coding;
18		selecting a number of conversion steps P to be performed;
19		
20		iteratively executing P times a conversion function comprised of the
21		following steps:
22		selecting a transformation algorithm A from a predefined set of
23		transformation algorithms L ;
24		selecting an alphabet of transformation AV based upon the
25		structural data element S ;
26		applying algorithm A and alphabet AV to structural data element S
27		to form a plurality of logical scales of position coding;
28		forming a transformed structural data element S' comprised of a
29		sequence of the logical scales of position coding;
30		stochastically selecting a bit length parameter and a shift parameter

1		which define an internal identifier K within transformed
2		structural data element S';
3		forming tag data element T ;
4		coding a portion of the tag data element T with internal identifier K
5		to obtain a partially coded tag data element T' ;
6		selecting an external key K^x ;
7		coding the partially coded tag data element T' with external key
8		K^{x} to obtain coded tag data element T'' ;
9		stochastically determining whether to extract internal identifier K
10		from transformed structural data element S' , and if
11		determined necessary, extracting the internal identifier K
12		from transformed structural data element S' to obtain
13		structural data element S " and storing internal identifier K
14		in a file of internal identifiers FID;
15		performing the steps of the conversion function upon a converted
16		image M' comprised of a concatenation of the coded tag
17		data element T'' and either transformed structural data
18		element S' if internal identifier K was not extracted, or
19		structural data element S'' if internal identifier K was
20		extracted;
21		
22		and forming the encrypted final image G as a concatenation of the coded tag
23		data element T'' and either transformed structural data element S' if internal
24		identifier K was not extracted, or structural data element S'' if internal
25		identifier K was extracted.
26		
27	64.	The apparatus of claim 63, wherein:
28		
29		the processor is adapted to communicate on a network; and
30		

1		the computer executable process steps further comprise:
2		
3		structurally converting the file of internal identifiers FID to obtain a
4		converted file of internal identifiers FID', wherein a tag data
5		element formed during the structural conversion of the file of
6		internal identifiers FID is coded with an external key selected
7		stochastically from a multitude of external keys in an external key
8		file K_{EXT} ; and
9		transmitting the encrypted final image G and structurally converted file of
10		internal identifiers FID' to a subscriber or receiver.
11		
12	65.	An apparatus for structurally converting a binary sequence into an encrypted final
13		image G, comprising:
14		
15		a memory element for storing computer executable process steps;
16		
17		a processor for executing computer executable process steps;
18		computer executable process steps comprising:
19		
20		forming an image M of the binary sequence as a concatenation of a tag
21		data element T and structural data element S , tag data element T
22		comprising information necessary to reverse the conversion process,
23		structural data element S comprising a sequence of logical scales of
24		position coding;
25		
26		selecting a number of conversion steps P to be performed;
27		
28		iteratively executing P times a conversion function comprised of the
29		following steps:
30		

1	selecting a transformation algorithm A from a predefined set of
2	transformation algorithms L ;
3	selecting an alphabet of transformation AV based upon the
4	structural data element S;
5	applying algorithm A and alphabet AV to structural data element S
6	to form a plurality of logical scales of position coding;
7	forming a transformed structural data element S' comprised of a
8	sequence of the logical scales of position coding;
9	stochastically selecting a bit length parameter and a shift parameter
10	which define an internal identifier K within transformed
11	structural data element S';
12	scrambling internal identifier K with a scrambling function to
13	obtain a scrambled internal identifier K' ;
14	forming tag data element T ;
15	coding a portion of the tag data element T with scrambled internal
16	identifier K ' to obtain a partially coded tag data element T ';
17	selecting an external key K^x ;
18	coding the partially coded tag data element T' with external key
19	K^{x} to obtain coded tag data element T'' ;
20	stochastically determining whether to extract internal identifier K
21	from transformed structural data element S' , and if
22	determined necessary, extracting the internal identifier K
23	from transformed structural data element S' to obtain
24	structural data element S'' and storing scrambled internal
25	identifier K' in a file of internal identifiers FID ;
26	performing the steps of the conversion function upon a converted
27	image M' comprised of a concatenation of the coded tag
28	data element T'' and either transformed structural data
29	element S' if internal identifier K was not extracted, or

1		structural data element S'' if internal identifier K was
2		extracted;
3		and forming the encrypted final image G as a concatenation of the coded
4		tag data element T'' and either transformed structural data element S' if
5		internal identifier K was not extracted, or structural data element S'' if
6		internal identifier K was extracted.
7		
8	66.	The apparatus of claim 65, wherein:
9		
10		the processor is adapted to communicate on a network; and
11		
12		the computer executable process steps further comprise:
13		structurally converting the file of internal identifiers FID to obtain a
14		converted file of internal identifiers FID', wherein a tag data
15		element formed during the structural conversion of the file of
16		internal identifiers FID is coded with an external key selected
17		stochastically from a multitude of external keys in an external key
18		file K_{EXT} ; and
19		transmitting the encrypted final image G and structurally converted file of
20		internal identifiers FID' to a subscriber or receiver.
21		
22	67.	The apparatus of claim 62, wherein the external key K^{x} is selected from a
23		multitude of external keys in an external key file K_{EXT} .
24		
25	68.	The apparatus of claim 62, wherein the selection of external key K^x is a stochastic
26		selection.
27		
28	69.	The apparatus of claim 62, wherein a same external key K^x is selected for use in
29		all iterations.
30		

1	70.	The apparatus of claim 62, wherein a different external key K^x is selected upon
2		each iteration.
3		
4	71.	The apparatus of claim 62, wherein the external key K^x is entered by a user during
5		the conversion and reverse conversion process.
6		
7	72.	The apparatus of claim 67, wherein:
8		
9		the processor is adapted to communicate on a network; and
10		
11		the computer executable process steps further comprise:
12		structurally converting the external key file K_{EXT} to obtain a structurally
13		converted external key file; and
14		transmitting to a subscriber the structurally converted external key file and
15		an initial key K_{INIT} required to reverse the structural conversion of
16		the structurally converted external key file to obtain the external
17		key file K_{EXT} .
18		
19	73.	The apparatus of claim 62, wherein the selection of transformation algorithm A
20		may be a stochastic selection.
21		
22	74.	The apparatus of claim 62 , wherein the selection of transformation algorithm A
23		may depend upon adherence to a mathematical criterion.
24		
25	75.	The apparatus of claim 62 , wherein the selection of transformation algorithm A
26		may depend upon adherence to a logical criterion.
27		
28	76.	The apparatus of claim 62 , wherein the selection of transformation algorithm A
29		may depend upon adherence to a file size criteria for encrypted final image G .
30		

1	77.	The apparatus of claim 62, wherein the predefined set of transformation
2		algorithms L may be supplemented.
3		
4	78.	The apparatus of claim 62, wherein the selection of a number of conversion steps
5		P may be a stochastic selection.
6		
7	79.	The apparatus of claim 62, wherein the selection of a number of conversion steps
8		P may depend upon adherence to a mathematical criterion.
9		
10	80.	The apparatus of claim 62, wherein the selection of a number of conversion steps
11		P may depend upon adherence to a logical criterion.
12		
13	81.	The apparatus of claim 62, wherein the selection of a number of conversion steps
14		P may depend upon adherence to a file size criteria for encrypted final image G.
15		
16	82.	The apparatus of claim 62, wherein the alphabet of transformation AV is
17		comprised of letters or quants, each letter or quant comprising a segment of
18		structural data element S .
19		
20	83.	The apparatus of claim 82, wherein a number of bits in each letter or quant is
21		stochastically selected.
22		
23	84.	The apparatus of claim 82, wherein a number of bits in each letter or quant may
24		depend upon adherence to a mathematical criterion.
25		
26	85.	The apparatus of claim 82, wherein a number of bits in each letter or quant may
27		depend upon adherence to a logical criterion.
28	0.5	
29	86.	The apparatus of claim 82, wherein a number of bits in each letter or quant may
30		depend upon adherence to a file size criteria for encrypted final image G .

1		
2	87.	The apparatus of claim 62, wherein the information necessary to reverse the
3		conversion process stored in tag data element T may comprise one or more of the
4		following:
5		an indicator of whether a current iterative step is the P^{th} iteration;
6		an indicator of whether the selected external key K^x is to be used for all P
7		iterations;
8		an indicator of the selected external key K^x ;
9		an indicator of the selected transformation algorithm A ;
10		a length of a first logical scale of position coding;
11		the alphabet of transformation AV ; and
12		other transformation algorithm A parameters.
13		
14	88.	The apparatus of claim 63, wherein the information necessary to reverse the
15		conversion process stored in tag data element T may comprise one or more of the
16		following:
17		an indicator of whether a current iterative step is the P^{th} iteration;
18		an indicator of whether the selected external key K^x is to be used for all P
19		iterations;
20		an indicator of the selected external key K^x ;
21		an indicator of the selected transformation algorithm A ;
22		the alphabet of transformation AV ;
23		a length of a first logical scale of position coding;
24		other transformation algorithm A parameters;
25		the bit internal identifier K length and shift parameters; and
26		an indicator of internal identifier K extraction.
27		
28	89.	The apparatus of claim 63, wherein the information necessary to reverse the
29		conversion process stored in tag data element T may comprise one or more of the
30		following:

1		an indicator of whether a current iterative step is the P^n iteration;
2		an indicator of whether the selected external key K^x is to be used for all P
3		iterations;
4		an indicator of the selected external key K^x ;
5		an indicator of the selected transformation algorithm A;
6		the alphabet of transformation AV ;
7		a length of a first logical scale of position coding;
8		other transformation algorithm A parameters;
9		an indicator of the scrambling function selected;
10		the bit internal identifier K length and shift parameters; and
11		an indicator of internal identifier K extraction.
12		
13	90.	The apparatus of claim 65, wherein the scrambling function is selected from a
14		scrambling matrix comprised of a predefined set of scrambling functions.
15		
16	91.	The apparatus of claim 90, wherein the predefined set of scrambling functions is
17		changed periodically.
18		
19		
20		