

The primary channel

- The gravitational-wave channel
- Also called strain, h(t), DARM (differential arm)
 - Sensitive to a 10^-22 relative length change of a 4 km Michelson interferometer

- Sampled at 16384 Hz (use powers of two everywhere for convenience)
- Sensitive range is 20 to 2000 kHz (basically audio)

Features of the noise

Auxiliary channels (per site)

- 3,000 fast channels (256 Hz to 16384 Hz)
- 200,000 slow channels (16 Hz)
- 1 terabyte per day
- Archived in 64-second chunks, all channels together, in our own frame format
- Also second and minute trends (min,max,mean,rms)

Kinds of auxiliary channels

- Physical and environmental monitoring
- Suspensions of the mirrors
- Instrumental
 - Sensing
 - Control

PEM (Environmental Monitoring)

PEM

- PEM is (roughly) all sensors outside the instrument
- Ground motion: Many seismometers
- Acoustic: Microphones, accelerometers
- E&M: Many magnetometers, power mains monitor, radio receivers
- Weather: Humidity, wind, pressure

Seismic

Acoustic/Vibration

- Mostly really well isolated
- Gets in at only a few different sites
 - Often by exciting a known mechanical resonance
- Test these with PEM injections (speakers/shakers)
- Have known coupling functions
 - But nonlinearity/upconversion are a problem

Suspensions

- All mirrors hung in vacuum (about 20)
- Multiple levels of pendula, control on each
- Also active seismic at the top
- Very complicated but works very well; not too much to investigate

Instrumental

Multiple optical cavities

- Two big: common and differential arm
- Three small: Power and signal recycling cavities, and the small Michelson
- Also lots of steering mirrors, laser stabilization, output mode cleaner

All must be controlled in length and angles

Instrumental

- Photodiodes, quadrant photodiodes, and wavefront sensors
- Look at DC light power and 9,45 MHz RF modulations
- Control loops take these noisy sensors and feed back

Artifacts and Misbehaviors

- Strain channel has the following things:
 - Mostly-stationary Gaussian noise (changes over minutes with slow changes in instrument)
 - Lines (some thermal, some 60 Hz power line harmonics, some modes of the various mirrors)
 - Bursts of noise on second and minute timescale
 - Glitches (short transients)

Non-stationary noise

- Many other channels are coupled to DARM when not on their operating point
- Or can be something getting through isolation

Glitches

- Short transients (usually few 100 ms)
- Variety of morphologies; can identify many by eye
- Some completely mysterious

Current Strategies

- sine-Gaussian basis to detect glitches
 - Look for aux. channel that reliably glitches at same time
- Look for coherence of DARM with aux channels
 - Or look for noise feature RMS correlated with some slow channel
- Or look directly for physical causes we know
 - E.g. DAC major-carry transitions, RF beatnotes, light scattered by moving mirror, big power draws

Interesting Problems 1

- Treat aux channels as a very high dimension feature space
 - Does some noise feature happen only in some region of the space?
 - Try to tune something that vetoes problems very reliably
- Difficulties:
 - imbalanced classes (more clean times than bad)
 - Mixture of several different causes
 - Time delays, slow drifts in alignment
 - Channels not valid over all range, have noise and lines

Interesting Problems 2

- Avoid overtraining
 - We need to be confident that we understand background; classifier can't just be memorizing what it's seen, or trigger off something accidental
- Change-point detection
 - Detect when something goes wrong with a channel or system, or something gets worse; problem is huge number of channels

Interesting Problems 3

- Establishing causality
 - When lots of things are going wrong, which are causes and which are effects?
- Non-linearities
 - We do well with direct coherence, but bilinear and more complicated couplings can be very hard to understand

Caveats

- With so many channels, multiple comparisons is a huge problem
- Some channels sense GW channel directly (called unsafe); must carefully avoid these
- Instrument changes over any time scale you can imagine
- In the end, always want to understand what is going on

Extra

Extra

 $Fs = 16,384 \text{Hz}, \ sec/fft = 1.00, \ overlap = 0.70, \ fft \ length = 16,384, \ \#-FFT = 198, \ bw = 1, \ in \ samples = 983 \text{K}, \ low = 0.20$

Extra

