#1. Счётность множества рациональных чисел, несчетность множества действительных чисел.

Def 1.1. Два множества называют равномощными, если между их элементами можно установить взаимно однозначное соответствие.

Def 1.2. Множество, равномощное множеству всех натуральных чисел, называется счетным.

Th 1.1. Множество всех рациональных чисел счетно.

Solution. Расположим рациональный числа в таблицу следующим образом. В первую строчку поместим все целые числа в порядке возрастания их абсолютной величины и так, что за каждым натуральным числом поставлено ему противоположное:

$$0, 1, -1, 2..., n, -n$$
.

Во вторую строчку поместим все несократимые рациональные дроби со знаменателем 2, упорядоченные по их абсолютной величине, причем снова за каждым положительным числом поставим ему противоположное:

$$\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{5}{2}, -\frac{5}{2}, \dots$$

Вообще, в n-ю строчку поместим все несократимые рациональные дроби со знаменателем n, упорядоченные по их абсолютной величине, и так, что за каждым положительным числом следует его противоположное. В результате получим таблицу с бесконечным числом строк и столбцов.

Очевидно, что каждое рациональное число попадает на какое-то место в этой таблице.

Занумеруем теперь все элементы получившейся таблицы по диагонали сверху вниз. В результате все рациональные числа оказывают занумерованы, т.е. множество $\mathbb Q$ рациональных чисел счетно.

Тh 1.2. (теорема Кантора) Множество всех действительных чисел несчетно.

Solution. Допустим противное: пусть удалось занумеровать все действительные числа: $x_1, x_2, ..., x_n, ...$; запишем их с помощью допустимых десятичных дробей:

$$\begin{split} x_1 &= \alpha_0^{(1)}, \alpha_1^{(1)}, \alpha_2^{(1)}, ..., \alpha_m^{(1)}... \quad , \\ x_2 &= \alpha_0^{(2)}, \alpha_1^{(2)}, \alpha_2^{(2)}, ..., \alpha_m^{(2)}... \quad , \\ & ... \\ x_n &= \alpha_0^{(n)}, \alpha_1^{(n)}, \alpha_2^{(n)}, ..., \alpha_m^{(n)}... \quad , \end{split}$$

Здесь $\alpha_m^{(n)}, n=1,2,...,m=1,2,...$, обозначает одну из цифр 0, 1, 2, ..., 9, а $\alpha_0^{(n)}$ – целое число с тем или иным знаком. Выберем цифру α_n , так чтобы $\alpha_n \neq \alpha_n^{(n)}$ и $\alpha_n \neq 9$. Тогда дробь $0, \alpha_1\alpha_2...\alpha_n...$ хотя бы одним десятичным знаком отличается от каждой из десятичных дробей выше. Полученное противоречие и доказывает теорему.

#2. Теорема о существовании точной верхней (нижней) грани множества.

Def 2.1. Наименьшее среди всех чисел, ограничивающих сверху множество $X \subset \mathbb{R}$, называется его верхней гранью и обозначается $\sup X$ или $\sup \{x\}, x \in X$.

В арифметическом виде:

- $\forall x \in X : x \leq \beta$
- $\forall \beta' < \beta \exists x \in X : x > \beta'$ или $\forall \varepsilon > 0 \exists x \in X : x > \beta \varepsilon$

Def 2.2. Наибольшее среди всех чисел, ограничивающих снизу множество $X \subset \mathbb{R}$, называется его нижней гранью и обозначается $\inf X$ или $\inf \{x\}, x \in X$.

В арифметическом виде:

- $\forall x \in X : x > \beta$
- $\forall \alpha' > \alpha \exists x \in X : x < \alpha'$ или $\forall \varepsilon > 0 \exists x \in X : x > \alpha + \varepsilon$

Th 2.1. Всякое ограниченное сверху непустое числовое множество имеет верхнюю грань, а всякое ограниченное снизу числовое множество имеет нижнюю грань.

Solution. Пусть X – ограниченное сверху непустое числовое множество. Обозначим через Y множество всех чисел, ограничивающих сверху множество X. Каждый элемент $y \in Y$ ограничивает сверху множество X, т.е. для любого элемента $x \in X$ выполняется неравенство $x \leq y$. Элементы x и y являются произвольными элементами соответственно множеств X и Y, поэтому, в силу свойства непрерывности действительных чисел, существует такое число β , что для любых $x \in X$ и $y \in Y$ имеет место равенство:

$$x \leq \beta \leq y$$
.

Выполнение неравенства $x \leq \beta$ для всех $x \in X$ означает, что число β ограничивает сверху множество X, а выполнение неравенства $\beta \leq y$ для всех $y \in Y$, означает, что число β является наименьшим среди всех таких чисел, т.е. верхней гранью множества X: $\beta = \sup X$.

Существование нижней грани доказывается аналогично.

#3. Теорема об отделимости двух множеств действительных чисел.

Th 3.1. Если X и Y – непустые числовые множества действительных чисел такие, что для любых $x \in X$ и $y \in Y$, справедливо неравенство $x \le y$, то существуют $\sup X$ и $\inf Y$, причем для любых x и y выполняется неравенство $x < \sup X < \inf Y < y$.

Solution. Так как X – непустое числовое множество, ограниченное сверху любым элементом множества Y, то по теореме о существовании точной верхней грани существует $\sup X$. Аналогично из ограниченности непустого числового множества Y снизу любым элементом множества X следует существование $\inf Y$. Из определения верхних и нижних граней: $\forall x \in X \to x \leq \sup X$ и $\forall y \in Y \to \inf Y \leq y$, следует, что каждое число $\inf Y$ – верхняя грань множества X, а $\sup X$ – нижняя грань множества Y. Значит, $X \leq \sup X \leq \inf Y \leq y$.

#4. Единственность предела сходящейся последовательности. Ограниченность сходящейся последовательности.

Тh 4.1. Последовательность точек расширенной числовой прямой может иметь на этой прямой только один предел.

Conclusion. Числовая последовательность может иметь только один предел, конечный или определённого знака бесконечный.

Solution. Допустим, что утверждение теоремы несправедливо. Это означает, что существует последовательность $x_n \in \mathbb{R}, n=1,2,...$, у которой имеется хотя бы два различных предела: $a \in \mathbb{R}$ и $b \in \mathbb{R}$. Выберем $\varepsilon_1 > 0$ и $\varepsilon_2 > 0$ так, чтобы ε_1 -окрестность точки a не пересекалась с ε_2 -окрестностью точки b. В силу определения предела, из условия $\lim_{n \to \infty} x_n = a$ следует, что существует такой номер $n_1 \in \mathbb{N}$, что для всех номеров $n > n_1, n \in \mathbb{N}$, имеет место включение $x_n \in U(a, \varepsilon_1)$, а из условия $\lim_{n \to \infty} x_n = b$ следует, что существует такой номер $n_2 \in \mathbb{N}$, что для всех номеров $n > n_2, n \in \mathbb{N}$, имеет место включение $x_n \in U(b, \varepsilon_2)$. Следовательно, если обозначить через n_0 наибольший из номеров n_1 и n_2 ; $n_0 \stackrel{\text{def}}{=} \max\{n_1, n_2\}$, то для любого $n > n_0$ одновременно будем иметь $x_n \in U(a, \varepsilon_1)$ и $x_n \in U(b, \varepsilon_2)$, т.е. $x_n \in U(a, \varepsilon_1) \cap U(a, \varepsilon_2)$. Это противоречит условию.

Def 4.1. Последовательность называется ограниченной сверху (снизу), если множество значений ее элементов ограничено сверху (снизу).

Def 4.2. Последовательность, ограниченная сверху и снизу, называется просто ограниченной.

Очевидно, что последовательность $\{x_n\}$ ограничена тогда и только тогда, когда существует такое число b, что для всех номеров $n=1,2,\dots$ выполняется неравенство $|x_n|\leq b$.

Def 4.3. Последовательность, не являющаяся ограниченной (сверху, снизу), называется неограниченной (сверху, снизу).

Тh 4.2. Если числовая последовательность имеет конечный предел, то она ограничена.

Solution. Пусть дана сходящаяся последовательность $\{x_n\}$ и пусть $\lim_{n \to \infty} x_n = a$. Возьмем, например, $\varepsilon = 1$. Согласно определению предела последовательности, существует такое n_1 , что для всех $n > n_1$ выполняется неравенство $|x_n - a| < 1$. Пусть d – наибольшее из чисел $1, |x_n - a|, ..., |x_{n_1} - a|$. Тогда для всех n = 1, 2, ... справедливо неравенство $|x_n - a| \le d$, т.е. для всех n

$$a-d \le x_n \le a+d$$
.

Это и означает ограниченность заданной последовательности.

#5. Бесконечно малые последовательности и их свойства.

Def 5.1. Пусть заданы числовые последовательности $\{x_n\}$ и $\{y_n\}$: суммой, разностью и произведением этих последовательностей называются соответственно последовательности $\{x_n+y_n\}, \{x_n-y_n\}, \{x_ny_n\}$. Если $y_n\neq 0, n=1,2,...$, то частным от деления последовательности $\{x_n\}$ на последовательность $\{y_n\}$ называется последовательность $\{x_n/y_n\}$. Наконец, произведение последовательности $\{x_n\}$ на число c называется последовательность $\{cx_n\}$.

Def 5.2. Последовательность $\{\alpha_n\}$ называется бесконечно малой последовательностью, если $\lim_{n\to\infty}\alpha_n=0.$

Отметим несколько свойств бесконечно малых последовательностей:

• Любая конечная линейная комбинация бесконечно малых последовательностей является бесконечно малой.

Пусть числовые последовательности $\{\alpha_n\}$ и $\{\beta_n\}$ – бесконечно малые, т.е.

$$\lim_{n\to\infty}\alpha_n=\lim_{n\to\infty}\beta=0,$$

а λ и μ – какие-либо действительные числа. Покажем, что последовательность $\{\lambda\alpha_n+\mu\beta_n\}$ также бесконечно малая. Зададим произвольно $\varepsilon>0$ и возьмем какое-либо число c такое, что

$$c > |\mu| + |\lambda|$$
.

Тогда, согласно определению предела следует, что существует такой n_0 , что для всех номеров $n>n_0$ выполняются неравенства

$$|\alpha_n| < \frac{\varepsilon}{c}, \quad |\beta_n| < \frac{\varepsilon}{c},$$

следовательно, и неравенство

$$|\lambda \alpha_n + \mu \beta_n| \le |\lambda| |\alpha_n| + |\mu| |\beta_n| < \frac{|\lambda| + |\mu|}{c} \varepsilon < \varepsilon.$$

Это и означает, что $\lim_{n \to \infty} (\lambda \alpha_n + \mu \beta_n) = 0$, т.е. бесконечно малая.

Соответствующее утверждение для любой конечной линейной комбинации бесконечно малых следует, из доказанного методом математической индукции.

• Произведение бесконечно малой последовательности на ограниченную последовательность является бесконечно малой последовательностью.

Пусть $\{\alpha_n\}$ – бесконечно малая последовательность, а $\{x_n\}$ – ограниченная последовательность, т.е. существует такое число b>0, что для всех номеров $n=1,2,\dots$ выполняется неравенство $|x_n|\leq b$.

Зададим $\varepsilon>0$; в силу определения бесконечно малой последовательности, существует такой номер n_{ε} , что для всех $n>n_{\varepsilon}$ выполняется неравенство $|\alpha_n|<\frac{\varepsilon}{\hbar}$. поэтому для всех $n>n_{\varepsilon}$ имеем

$$|\alpha_n x_n| = |\alpha_n||x_n| < \frac{\varepsilon}{b} \cdot b = \varepsilon,$$

что и означает, что последовательность $\{\alpha_n x_n\}$ бесконечно малая.

Conclusion. Произведение конечного числа бесконечно малых последовательностей является бесконечно малой последовательностью.

Это сразу следует по индукции, если заметить, что бесконечно малая последовательность, как и вся последовательность, имеющая предел, ограничена.

#6. Арифметические операции со сходящимися последовательностями.

Lemma. Для того чтобы число a являлось пределом числовой последовательности $\{x_n\}$, необходимо и достаточно, чтобы ее члены x_n имели вид $x_n=a+\alpha_n, n=1,2,...$, где $\{\alpha_n\}$ – бесконечно малая последовательность.

• Если последовательность $\{x_n\}$ сходится, то сходится и последовательность $\{|x_n|\}$, причем если $\lim_{n\to\infty}x_n=a$, то

$$\lim_{n \to \infty} |x_n| = |a|.$$

Solution. Если $\lim_{n\to\infty}x_n=a$, то для каждого $\varepsilon>0$ существует такой номер n_ε , что для всех номеров $n>n_\varepsilon$ выполняется неравенство $|x_n-a|<\varepsilon$, но $||x_n|-|a||<|x_n-a|$. Следовательно, для всех номеров $n>n_\varepsilon$ имеет место неравенство $||x_n|-|a||<\varepsilon$, а это и означает, что $\lim_{n\to\infty}|x_n|=|a|$.

• Конечная линейная комбинация сходящихся последовательностей также является сходящейся последовательностью, и ее предел равен такой же линейной комбинации пределов данных последовательностей.

Solution. Пусть

$$\lim_{n\to\infty}x_n=a\in\mathbb{R};\quad \lim_{n\to\infty}y_n=b\in\mathbb{R}.$$

Тогда, в силу необходимости условий леммы для существования конечного предела, члены последовательностей $\{x_n\}$ и $\{y_n\}$ можно представить в виде

$$x_n=a+\alpha_n, \quad y_n=\beta+\beta_n, \quad n=1,2,...,$$

где $\{\alpha_n\}$ и β_n – бесконечно малые:

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0.$$

Пусть теперь λ и μ – какие-либо числа. Тогда члены последовательности $\{\lambda x_n + \mu y_n\}$ представимы в виде

$$\lambda x_n + \mu y_n = (\lambda a + \mu b) + (\lambda \alpha_n + \mu \beta_n), \quad n = 1, 2, ...,$$

где последовательность $\{\lambda \alpha_n + \mu \beta_n\}$ бесконечно малая:

$$\lim_{n\to\infty}(\lambda\alpha_n+\mu\beta_n)=0.$$

Поэтому, в силу достаточности условий леммы для существования конечно предела, из равенств следует, что последовательность $\{\lambda x_n + \mu y_n\}$ имеет предел, равный $\lambda a + \mu b$:

$$\lim_{n \to \infty} (\lambda x_n + \mu y_n) = \lambda a + \mu b$$

т.е.

$$\lim_{n\to\infty}(\lambda x_n+\mu y_n)=\lambda\lim_{n\to\infty}x_n+\mu\lim_{n\to\infty}y_n.$$

Соответствующее утверждение для любой конечной линейной комбинации сходящихся последовательностей следует из доказанного, если воспользоваться методом математической индукции.

• Если последовательности $\{x_n\}$ и $\{y_n\}$ сходятся, то их произведение $\{x_ny_n\}$ также сходится и

$$\lim_{n \to \infty} x_n y_n = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n,$$

то есть предел произведения сходящихся последовательностей существует и равен произведению пределов данных последовательностей.

Solution. Пусть $\lim_{n\to\infty}x_n=a,\quad \lim_{n\to\infty}y_n=b;$ тогда $x_n=a+\alpha_n,\quad y_n=b+\beta_n,\quad n=1,2,...,$ где $\lim_{n\to\infty}\alpha_n=\lim_{n\to\infty}\beta_n=0;$ поэтому

$$x_ny_n=ab+(\alpha_nb+\beta_na+\alpha_n\beta_n).$$

Так как $\lim_{n\to\infty}(\alpha_n b + \beta_n a + \alpha_n \beta_n) = 0$:

$$\lim_{n\to\infty} x_n y_n = ab = \lim_{n\to\infty} x_n \lim_{n\to\infty} y_n.$$

Conclusion. Если последовательность $\{x_n\}$ сходится, то для любого числа c последовательность $\{cx_n\}$ также сходится и

$$\lim_{n \to \infty} cx_n = c \lim_{n \to \infty} x_n,$$

то есть постоянную можно выносить за знак предела.

Conclusion. Если $\{x_n\}$ – сходящаяся последовательность и k – натуральное число, то

$$\lim_{n \to \infty} (x_n)^k = \left(\lim_{n \to \infty} x_n\right)^k.$$

• Если последовательность $\{x_n\}$ и $\{y_n\}$ сходятся, $y_n \neq 0, n=1,2,...$, и $\lim_{n \to \infty} y_n \neq 0$, то последовательность $\left\{\frac{x_n}{y_n}\right\}$ сходится и

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{\lim_{n\to\infty}x_n}{\lim_{n\to\infty}y_n}.$$

#7. Свойства пределов, связанные с неравенствами.

- Если для всех $n=1,2,\dots$ имеет место равенство $x_n=a\in\mathbb{R}$, то $\lim_{n\to\infty}x_n=a.$
- Если

$$x_n \in \mathbb{R}, \quad y_n \in \mathbb{R}, \quad z_n \in \mathbb{R}, \quad x_n \le y_n < z_n, \quad n = 1, 2, \dots,$$

И

$$\lim_{n\to\infty}x_n=\lim_{n\to\infty}z_n=a\in\mathbb{R},$$

TO

$$\lim_{n\to\infty}y_n=a.$$

Solution. Зафиксируем произвольно окрестность U(a) точка a. Существует такое номер n_1 , что для всех номеров $n>n_1$ выполняется включение

$$x_n \in U(a)$$
,

и такой номер n_2 , что для всех номеров $n>n_2$ – включение

$$z_n \in U(a)$$
.

Возьмем в качестве номера n_0 наибольший из номеров n_1 и n_2 : $n_0=\max\{n_1;n_2\}$. Тогда для номеров $n>n_0$ одновременно выполняются оба включения; тогда для всех номеров $n>n_0$ выполняется включение $y_n\in U(a)$, а это и означает справедливость утверждения.

/доделать/

#8. Теорема о пределе ограниченной монотонной последовательности.

Def 8.1. Верхней (нижней) гранью последовательности называется верхняя (нижняя) грань множества значений ее элементов.

Каждая последовательность имеет в $\mathbb R$ верхнюю и нижнюю грани.

Def 8.2. Последовательность $\{x_n\}$ называется возрастающей (убывающей), если $x_n \leq x_{n+1}, \quad n=1,2,....$

Символ $x_n \uparrow (x_n \downarrow)$ означает, что последовательность x_n возрастающая (убывающая). Символ $x_n \uparrow x(x_n \downarrow x)$ означает, что последовательность $\{x_n\}$ возрастает (убывает) и сходится к x.

Возрастающие и убывающие последовательности называются монотонными.

Def 8.3. Последовательность $\{x_n\}$ называется строго возрастающей (строго убывающей), если $x_n < x_{n+1}(x_n > x_{n+1}), \quad n=1,2,....$

Строго возрастающие и строго убывающие последовательности называются строго монотонными.

Th 8.1. Всякая возрастающая последовательность $\{x_n\}$ имеет в $\mathbb R$ предел $\lim_{n\to\infty}x_n=\sup\{x_n\}$. Этот предел конечен, если последовательность $\{x_n\}$ ограничена сверху, и равен $+\infty$, если последовательность $\{x_n\}$ не ограничена сверху.

Solution. Пусть $x\stackrel{\text{\tiny def}}{=}\sup\{x_n\}\leq +\infty$. Тогда по определению верхней грани $x_n\leq x\quad \forall n\in\mathbb{N}$ и $\forall \varepsilon>0\quad \exists n_\varepsilon\in\mathbb{N}: x_{n_\varepsilon}\in U(x)$. Поскольку $x_{n_\varepsilon}\leq x_n\leq x$ при $n\geq n_\varepsilon$, получаем, что

$$x_n \in U(x) \quad \forall n \geq n_{\varepsilon}.$$

Это означает, что $\lim_{n\to\infty}x_n=x$, что и требовалось доказать.

#9. Экспонента действительного числа.

#10. Теорема Кантора о вложенных отрезках.

Тh 10.1. Для всякой системы вложенных отрезков существует хотя бы одно число, которое принадлежит всем отрезком данной системы.

Solution. Пусть задана система вложенных отрезков $[a_n,b_n], n=1,2,...$. Обозначим через A множество всех левых концов a_n , а через B – множество всех правых концов b_n . Для любых номер m и n выполняется неравенство

$$a_m \leq b_n$$
.

В самом деле, если $n \ge m$, то $a_m \le a_n \le b_n$, а если n < m, то $a_m \le b_m \le b_n$.

Поэтому из неравенств, в силу свойства непрерывности действительных чисел, следует, что существует такое число ξ , для которого при всех номерах m и n выполняется неравенство $a_m \leq \xi \leq b_n$, в частности неравенство $a_n \leq \xi \leq b_n$, $n=1,2,\ldots$ Это и означает, что число ξ принадлежит всем отрезкам $[a_n,b_n]$.

#11. Подпоследовательности и частичные пределы. Критерий частичного предела.

Def 11.1. Пусть $\{n_k\}$ – строго возрастающая последовательность натуральных чисел. Тогда последовательность x_{n_k} называется подпоследовательностью последовательности n_k .

Def 11.2. Частичным пределом последовательности называется какой-либо ее предел подпоследовательности, сходящийся к \mathbb{R} .

Def 11.3. Частичным пределом последовательности называется элемент $\mu \in \mathbb{R}$, любая окрестность $U(\mu)$ которого содержит бесконечное множество элементов последовательности.

Th 11.1. Определения 11.2 и 11.3 эквивалентны.

Solution. Сначала покажем, что из определения 11.2 следует определение 11.3. Пусть μ является частичным пределом в смысле определения 11.2. Тогда по определению предела в любой последовательность $U(\mu)$ содержатся почти все элементы некоторой подпоследовательности. Следовательно μ удовлетворяет определению 11.3.

Теперь покажем, что определение 11.2 следует из определения 11.3. Пусть μ является частичным пределом последовательности $\{x_n\}$ в смысле определения 11.3. Выберем какой-либо элемент последовательность $x_{n_2} \in U_1(\mu)$, затем какой-либо элемент последовательности $x_{n_2} \in U_{1/2}(\mu)$, удовлетворяющий условию $n_2 > n_1$. Это возможно, так как $U_{1/2}(\mu)$ содержит бесконечное множество элементов. Затем выберем $x_{n_3} \in U_{1/2}(\mu)$, $n_3 > n_2$. Продолжая процесс, получим подпоследовательность $\{x_{n_k}\}$, сходящуюся в $\mathbb R$ к μ , так как для любого $\varepsilon > 0$ окрестность $U_{\varepsilon(\mu)}$ содержит все члены этой подпоследовательности, начиная с члена x_{k_ε} , где $k_\varepsilon > 1/\varepsilon$.

Th 11.2. Последовательность имеет единственный в \mathbb{R} частичный предел тогда и только тогда, когда она сходится к \mathbb{R} .

Solution.

Heoбxoдимость. Пусть последовательность $\{a_n\}$ сходится в $\mathbb R$ к a. Пусть $\{a_{n_k}\}$ – произвольная ее подпоследовательность. По определению предела последовательности любая окрестность U(a) содержит значения почти всех элементов последовательности $\{a_n\}$, а следовательно, и почти все элементы подпоследовательности $\{a_{n_k}\}$. Следовательно, $\lim_{n\to\infty}a_{n_k}=a.$

Достаточность. Пусть последовательность $\{a_n\}$ имеет единственный частичный предел. Обозначим его через a и покажем, что $\exists \lim_{n \to \infty} a_n = a$. Допустим противное, т.е. что a не является пределом последовательности. Тогда существует $\varepsilon_0 > 0$, такое, что вне $U_{\varepsilon_0}(a)$ находятся значения бесконечного множества элементов последовательности. Построим подпоследовательность $\left\{a_{n_k}\right\}$, все элементы которого лежат вне $U_{\varepsilon_0}(a)$. В силу обобщающей последовательности Больцано-Вейерштрасса последовательность $\left\{a_{n_k}\right\}$ имеет частичный предел, являющийся частичным пределом $\{a_n\}$. Он не совпадает с a, так как $a_{n_k} \notin U_{\varepsilon_0}(a) \quad \forall k \in \mathbb{N}$, что противоречит положению о единстве частичного предела последовательности $\{a_n\}$. Следовательно, $a=\lim_{n\to\infty}a_n$.

#12. Верхний и нижний пределы числовой последовательности.

Def 12.1. Верхним (нижним) пределом числовой последовательности $\{a_n\}$ называется наибольший (наименьший) из ее частичных пределов $\mathbb R$.

Его обозначают символом $\limsup_{n\to\infty} a_n (\liminf_{n\to\infty} a_n)$

Th 12.1. Всякая последовательность имеет в $\mathbb R$ верхний и нижний пределы.

Solution. (для верхнего предела) Пусть $\{x_n\}$ – произвольная числовая последовательность. Возможны три случая.

 $\mathit{Случай}$ 1. Любая окрестность $U(+\infty)$ содержит бесконечно много элементов последовательности $\{x_n\}$. Очевидно, что $\exists \lim\sup_{n\to+\infty} x_n = +\infty$.

 $\mathit{Случай}\ 2$. Любая окрестность $U(-\infty)$ содержит бесконечно много элементов последовательности $\{x_n\}$. Очевидно, что $\exists \limsup_{n \to +\infty} x_n = -\infty$.

Cлучай 3. Найдутся числа $a,b\in\mathbb{R}, a< b$, такие, что правее a лежит бесконечно много элементов последовательности $\{x_n\}$, а правее b не более конечного числа элементов последовательности. Поделим отрезок [a,b] пополам и обозначим через $[a_1,b_1]$ самую правую из его половин, содержащую бесконечно много элементов последовательность $\{x_n\}$. Поделим отрезок $[a_1,b_1]$ и самую правую из его половин, содержащую бесконечно много элементов последовательность $\{x_n\}$, обозначим через $[a_2,b_2]$. Продолжая процесс деления пополам и отбора самой право половины, содержащей бесконечно много элементов последовательности $\{x_n\}$, получим систему вложенных отрезков. Правее каждого из b_n находится не более конечного числа элементов последовательности $\{x_n\}$. Пусть точка c принадлежит всем отрезкам этой системы (существование такой точки установлено теоремой Кантора).

Число c является частичным пределом последовательности $\{x_n\}$, так как в любой окрестности c лежит некоторый отрезок $[a_n,b_n]$, содержащий бесконечно много элементов этой последовательности. Число c является верхним пределом последовательности $\{x_n\}$. В самом деле, никакое $c_1>c$ не является ее частичным пределом, поскольку найдется окрестность $U(c_1)$, лежащая правее отрезка $[a_n,b_n]$ с достаточно большим номером n и, следовательно, содержащая не более конечного множества элементов последовательности $\{x_n\}$.

#13. Теорема Больцано-Вейерштрасса.

Тh 13.1. Из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность, а из любой неограниченной последовательности – бесконечно большую подпоследовательность, имеющую своим пределом бесконечность определенного знака.

Solution. Пусть последовательность $\{x_n\}$ ограничена, т.е. существует такой отрезок [a,b], что $a \le x_n \le b$ для всех n=1,2,... Разделим отрезок [a,b] на два равных отрезка. По крайней мере один из получившихся отрезков содержит бесконечно много элементов данной последовательности. Обозначим его через $[a_1,b_1]$. Пусть x_{n_1} – какой-либо из членов данной последовательности, лежащий на отрезке $[a_1,b_1]$.

Разделим отрезок $[a_1,b_1]$ на два равных отрезка; снова хотя бы один из получивших отрезков содержит бесконечно много членов исходной последовательности; обозначим его через $[a_2,b_2]$. В силу того что на отрезке $[a_2,b_2]$ бесконечно много членов последовательности $\{x_n\}$, найдет такой ее член x_{n_2} , что $x_{n_2} \in [a_2,b_2]$ и $n_2 > n_1$. Продолжая этот процесс, получим последовательность отрезков $[a_k,b_k]$, в которой каждый следующий является половиной предыдущего, и последовательность таких элементов x_{n_k} данной последовательности, что $x_{n_k} \in [a_k,b_k], k=1,2,...$, и $n_{k''} > n_{k'}$ при k'' > k'. Последовательность $\{x_{n_k}\}$ является, в силу построения, подпоследовательностью последовательности $\{x_n\}$. Покажем, что эта последовательность сходящаяся.

Последовательность $[a_k,b_k], k=1,2,...$, является последовательностью вложенных отрезков, по длине стремящихся к нулю, так как $b_k-a_k=\frac{b-a}{2^k}\to 0$ при $k\to\infty$. Согласно принципу вложенных отрезков существует единственная точка ξ , принадлежащая всем этим отрезкам. Известно, что $\lim_{k\to\infty}a_k=\lim_{k\to\infty}b_k=\xi$, но $a_k\le x_{n_k}\le b_k,\quad k=1,2,...$, поэтому последовательность $\left\{x_{n_k}\right\}$ также сходится и $\lim_{k\to\infty}x_{n_k}=\xi$.

Пусть теперь последовательность $\{x_n\}$ не ограничена. Тогда она либо не ограничена сверху, либо не ограничена снизу, либо имеет место и то, и другое. Пусть для определенности последовательность $\{x_n\}$ не ограничена сверху. Тогда существует такой номер $n_1\in\mathbb{N}$, что $x_{n_1}>1$.

Очевидно, последовательность $\{x_n\}$, $n=n_1+1, n=n_2+2,...$, также не ограничена сверху, так как получается из данного неограниченной последовательность $\{x_n\}, n=1,2,...$, отбрасыванием конечного числа ее членов. Поэтому существует такое $n_2>n_1$, что $x_{n_2}>2$.

Продолжая этот процесс, получаем последовательность таких номеров n_k , что $n_1 < n_2 < \ldots < n_k < \ldots$ и $x_{n_2} > 2, \ldots x_{n_k} > k \ldots$ Отсюда следует, что $\left\{ x_{n_k} \right\}$ – подпоследовательность последовательности $\left\{ x_n \right\}$ и $\lim_{k \to \infty} x_{n_k} = +\infty$.

#14. Теорема о единственном частичном пределе.

Билет 11 Th.11.2.

#15. Критерий Коши сходимости числовой последовательности.

Def 15.1. Будем говорить, что последовательность $\{x_n\}$ удовлетворяет условию Коши, если для любого $\varepsilon>0$ существует такой номер n_ε , что для всех номеров n и m, удовлетворяющих условию $n>n_\varepsilon$ и $m>b_\varepsilon$, справедливо неравенство

$$|x_n-x_m|<\varepsilon.$$

$$\forall \varepsilon>0 \quad \exists n_\varepsilon\in\mathbb{N} \quad \forall n\in\mathbb{N}, m\in\mathbb{N}, n>n_\varepsilon, m>n_\varepsilon: \quad |x_n-x_m|<\varepsilon.$$

Th 15.1. (критерий Коши) Для того чтобы последовательность сходилась , необходимо и достаточно, чтобы она удовлетворяла условию Коши.

Solution.

Heoбxoдимость. Пусть последовательность $\{x_n\}$ сходится и $\lim_{n \to \infty} x_n = a$. Зададим $\varepsilon > 0$; тогда, согласно определению предела последовательности, существует такое n_ε , что для всех номеров $n > n_\varepsilon$ выполняется неравенство $|x_n - a| < \frac{\varepsilon}{2}$.

Пусть теперь $n>n_{\varepsilon}$ и $m>n_{\varepsilon}$; тогда

$$|x_n-x_m|=|(x_n-a)+(a-x_m)|\leq |x_n-a|+|x_m-a|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

т.е. выполняется условие Коши.

Достаточность. Пусть последовательность удовлетворяет условию Коши, т.е. для всякого $\varepsilon>0$ существует такое n_{ε} , что если $n>n_{\varepsilon}$ и $m>n_{\varepsilon}$, то $|x_n-x_m|<\varepsilon$. Возьмем, например, $\varepsilon=1$; тогда существует n_1 , что при $n>n_1$ и $m>n_1$ выполняется неравенство $|x_n-x_m|<1$. В частности, если $n>n_1$ и $m=n_1+1$, то $\left|x_{n_1}-x_{n_1+1}\right|<\varepsilon$, т.е. $x_{n_1+1}-1< x_n< x_{n_1+1}+1$ при $n>n_1$. Это означает, что последовательность $\{x_n\}$ ограничена. Поэтому, в силу теоремы Больцано-Вейерштрасса, существует ее сходящаяся подпоследовательность $\{x_{n_k}\}$.

Пусть $\lim_{n\to\infty}x_{n_k}=a$. Покажем, что данная последовательность $\{x_n\}$ также сходится и имеет предел число a. Зададим некоторое $\varepsilon>0$. Тогда, во-первых, по определению предела последовательности, существует такое k_ε , что для всех номеров $k>k_\varepsilon$ или, что то же самое, согласно определению подпоследовательности, для всех $n_k>n_{k_\varepsilon}$ выполняется неравенство $\left|x_{n_k}-a\right|<\frac{\varepsilon}{2}$.

Во-вторых, так как последовательность $\{x_n\}$ удовлетворяет условию Коши, то существует такое n_{ε} , что для всех номеров $n>n_{\varepsilon}$ и всех $m>n_{\varepsilon}$ выполняются неравенства $|x_n-x_m|<\frac{\varepsilon}{2}$.

Положим $N_{\varepsilon}=\max \left\{ n_{\varepsilon},n_{k_{\varepsilon}} \right\}$ и зафиксируем некоторое $n_{k}>N_{\varepsilon}$. Тогда для всех $n>N_{\varepsilon}$ получим

$$|x_n-a|=\left|\left(x_n-x_{n_k}\right)+\left(x_{n_k}-a\right)\right|\leq \left|x_n-x_{n_k}\right|+\left|x_{n_k}-a\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

а это и доказывает, что $\lim_{n\to\infty}x_n=a$.

#16. Открытые и замкнутые подмножества действительной прямой и их

свойства

#17. Определение предела функции в точке по Коши и по Гейне, их эквивалентность.

Def 17.1. (по Гейне) Точка a называется пределом функции $f:X\to\mathbb{R}$ в точке x_0 (или, что то же, при $x\to x_0$), если для любой последовательность $x_n\in X, n=1,2,...$, имеющей своим пределом точку x_0 , т.е. такой, что

$$\lim_{n \to \infty} x_n = x_0,$$

последовательность $\{f(x_n)\}$ имеет своим пределом точку a, т.е.

$$\lim_{n\to\infty} f(x_n) = a.$$

$$\forall x_n \in X, n=1,2,..., \quad \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = a.$$

Def 17.2. (по Коши) Точка a называется пределом функции $f: X \to \mathbb{R}$ при $x \to x_0$, если для любой окрестности U(a) точки a существует такая окрестность $U(x_0)$ точки x_0 , что $f(X \cap U(x_0)) \subset U(a)$.

$$\forall U(a) \quad \exists U(x_0) : f(X \cap U(x_0)) \subset U(a).$$

Th 17.1. Определения 1 и 2 предела функции в точке прикосновения множества определения функции эквивалентны.

Solution. Докажем сначала, что если функция имеет в некоторой точке предел в смысле определения 1, то она имеет тот же самый предел в этой точке и в смысле определения 2. Пусть $f:X\to\mathbb{R}, x_0$ – точка прикосновения множества X и $\lim_{n\to\infty}f(x)=a$ в смысле определения 1. Покажем, что тогда выполняется и условие в правой части формулы

$$\lim_{x\to x_0} f(x) = a \leftrightarrow \forall U(a) \exists U(x_0) \forall x \in X \cap U(x_0) : f(x) \in U(a)$$

Допустим, что это не так, т.е. что

$$\exists U(a) \forall U(x_0) \exists x \in X \cap U(x_0) : f(x) \notin U(a),$$

или, иначе говоря, найдется такая окрестность U(a) точки a, что в любой окрестности $U(x_0)$ точки x_0 существует точка $x \in X$, значение функции f(x) в которой не принадлежит к окрестности U(a). В частности, указанные точки x найдутся в каждой окрестности $U(x_0, \frac{1}{n})$. Обозначим их через x_n , т.е.

$$x_n \in X \cap U\left(x_0, \frac{1}{n}\right),$$

$$f(x_n) \not\in U(a), n=1,2,....$$

Отсюда следует, что

$$\lim_{n\to\infty}x_n=x_0$$

. Поскольку $\lim_{n\to\infty} f(x_n)=a$ в смысле определения 1, то для любой последовательности $x_n\to x_0, n=1,2,...$, имеет место равенство $\lim_{n\to\infty} f(x_n)=a$. Согласно определению предела последовательности, это означает, что для любой окрестности U(a), в частности и для выбранной выше, существует такой номер n_0 , что для всех номеров $n>n_0$ имеет место

$$f(x_n) \in U(a)$$
.

Это противоречит составленному нами отрицанию. Полученное противоречие доказывает сделанное утверждение.

Теперь докажем, что если функция имеет в некоторой точке предел в смысле определения 2, то она имеет в этой точке тот же самый предел в смысле определения 1. Пусть $\lim_{x\to x_0}f(x)=a$ в смысле определения 2 предела функции, $f:X\to\mathbb{R},\,x_0$ – точка прикосновения множества X, и пусть

$$x_n \to x_0, x_n \in \mathbb{X}, n = 1, 2, \dots$$

Покажем, что тогда

$$\lim_{n\to\infty}f(x_n)=a,$$

т.е. точка a является и пределом функции f в смысле определения 1.

Зададим произвольную окрестность U(a) точки a и выберем для нее окрестность $U(x_0)$ точки x_0 удовлетворяющую условиям определения 2. Для этой окрестности $U(x_0)$ найдется такой номер n_0 , что для всех номеров $n>n_0$ будет выполнятся включение $x_n\in X\cap U(x_0)$. Но тогда имеем $f(x_n)\in U(a)$. то и означает выполнение условия.

#18. Критерий Коши существования предела функции.

Тh 18.1. Для того, чтобы функция $f:X\to\mathbb{R}$ имела в точке x_0 конечный предел, необходимо и достаточно, чтобы для любого $\varepsilon>0$ существовала такая окрестность $U(x_0)$ точки x_0 , что для любых $x'\in U(x_0)\cap X$ и $x''\in U(x_0)\cap X$ выполнялось бы неравенство

$$|f(x'') - f(x')| < \varepsilon.$$

Solution.

Heoбxoдимость. Пусть $f:X\to\mathbb{R}$ и $\lim_{x\to x_0}f(x)=a\in\mathbb{R}.$ Это означает, что для любого $\varepsilon>0$ существует такая окрестность $U(x_0)$ точки x_0 , что для каждого $x\in U(x_0)\cap X$ справедливо неравенство

$$|f(x) - a| < \frac{\varepsilon}{2}.$$

Пусть $x' \in U(x_0) \cap X$ и $x'' \in U(x_0) \cap X$; тогда будем иметь

$$|f(x'')-f(x')|=|[f(x'')-a]+[a-f(x')]|\leq |f(x'')-a|+|a-f(x')|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}<\varepsilon.$$

Достаточность. Пусть функция $f:X\to\mathbb{R}$ такова, что для любого $\varepsilon>0$ существует такая окрестность $U(x_0)$ точки x_0 , что для всех

$$x'\in U(x_0)\cap X,\quad x''\in U(x_0)\cap X,$$

выполняется неравенство

$$|f(x'') - f(x')| < \varepsilon.$$

Покажем, что отсюда следует существование у функции f конечного предела в точке x_0 . Возьмем какую-либо последовательность $x_n \in X, n=1,2,...,$

$$\lim_{n\to\infty}x_n=x_0$$

и произвольно зададим $\varepsilon>0$. Для этого ε , согласно сделанному предположению, существует окрестность $U(x_0)$ точки x_0 , удовлетворяющая условиям выше. В силу же последнего условия, для этой окрестности $U(x_0)$ существует такое $n_0\in\mathbb{N}$, что при всех $n>n_0, n\in\mathbb{N}$, имеет место $x_n\in U(x_0)$, а так как $x_n\in X$, то $x_n\in U(x_0)\cap X$, $n=n_0+1, n_0+2, \ldots$ Отсюда, принимая во внимание условия выше, получаем, что для всех $n>n_0$ и всех $m>n_0$ выполняется неравенство

$$|f(x_n) - f(x_m)| < \varepsilon,$$

т.е. числовая последовательность $\{f(x_n)\}$ удовлетворяет условиям критерии Коши для числовых последовательностей и, следовательно, сходится.

Таким образом, для каждой последовательности $x_n \in X, n \in \mathbb{N}, \lim_{n \to \infty} x_n = x_0$ последовательность $\{x_n\}$ сходится. Отсюда, ка известно, следует существование конечного предела $\lim_{x \to x_0} f(x)$.

#19. Существование односторонних пределов у монотонных функций.

Def 19.1. Функция $f: X \to \mathbb{R}, X \subset \mathbb{R}$, называется возрастающей (убывающей) на множестве X, если для любых таких точек $x_1 \in X$ и $x_2 \in X$, что $x_1 < x_2$ выполняется неравенство $f(x_1) \leq f(x_2)$ (соответственно неравенство $f(x_1) \geq f(x_2)$).

Th 19.1. Пусть функция $f:X\in\mathbb{R}$ возрастает на множестве $X,a=\inf X,b=\sup X$, причем $a\notin X,b\notin X$; тогда у функции f в точке a существует предел справа и $\lim_{x\to a}f(x)=\inf_{x\in X}f(X)$, а в точке b – предел слева и $\lim_{x\to b}f(x)=\sup_{x\in X}f(X)$.

Conclusion. Если функция f монотонна на множестве $X, x_0 \in \mathbb{R}$, множества $X_<(x_0) \stackrel{\text{def}}{=} \{x: x \in X, x < x_0\}$ и $X_>(x_0) \stackrel{\text{def}}{=} \{x: x \in X, x > x_0\}$ не пусты, а x_0 является точкой прикосновения каждого из них, то в точке x_0 существуют конечные односторонние пределы

$$f(x_0-0)=\sup_{X_<(x_0)}f(x),\quad f(x_0+0)=\inf_{X_>(x_0)}f(x),$$

причем в случае возрастающей функции

$$f(x_0 - 0) \le f(x_0 + 0),$$

а в случае убывающей функции

$$f(x_0 - 0) \ge f(x_0 + 0).$$

Solution. Пусть для определенности функция возрастает на множестве X и x_0 является точкой прикосновения непустых множеств $X_<(x_0)$ и $X_>(x_0)$. Тогда каковы бы ни были точки $x' \in X_<(x_0)$ и $x'' \in X_>(x_0)$, справедливо неравенство $f(x') \leq f(x'')$. Поэтому функция f ограничена сверху на множестве $X_<(x_0)$ числом f(x'') и ограничена снизу на множестве $X_>(x_0)$ числом f(x'). Следовательно, $\sup_{x_<(x_0)} f(x) \leq f(x'')$, $\inf_{X_>(x_0)} f(x) \geq f(x')$. В частности, указанные верхние и нижние грани конечны, причем первое из неравенств справедливо для любой точки $x'' \in X_>(x_0)$, поэтому, перейдя в его правой части к нижней грани значений функции на множестве $X_>(x_0)$, получим

$$\sup_{X_{<}(x_0)} f(x) \leq \inf_{X_{>}(x_0)} f(x).$$

Этим завершается доказательство следствия, так как, согласно теореме, пределы слева $f(x_0-0)$ и справа $(f(x_0+0))$ существуют, причем

$$f(x_0-0)=\sup_{X_<(x_0)}f(x),\quad f(x_0+0)=\inf_{X_>(x_0)}f(x),$$

поэтому неравенства $f(x_0-0) \leq f(x_0+0), f(x_0-0) \geq f(x_0+0)$ совпадают с неравенством $\sup_{X_<(x_0)} f(x) \leq \inf_{X_>(x_0)} f(x).$

#20. Непрерывность функции в точке. Непрерывность сложной функции.

Th 20.1. Пусть $f:X\in\mathbb{R}$ и $x_0\in X$. Тогда, для того чтобы функция f имела предел в точке x_0 , необходимо и достаточно, чтобы

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Solution. Достаточность условия для существования предела функции f в точке x_0 очевидна: это условие даже сильнее, так как оно утверждает не только существование предела, но и определяется его значение, равное $f(x_0)$.

Докажем необходимость условия для существования предела функции f в точке x_0 . Пусть у функции f в точке x_0 существует предел, равный a:

$$\lim_{x \to x_0} f(x) = a.$$

Согласно определению предела, это означает, что для любой последовательности $x_n \in X, n=1,2,...,\lim_{n \to \infty} x_n = x_0$, справедливо равенство

$$\lim_{n \to \infty} f(x_n) = a.$$

В частности, поскольку $x_0 \in X$, это равенство справедливо и для стационарной последовательности, составленной из одной точки x_0 , т.е. для последовательности $x_n=x_0, n=1,2,...$. В этом случае последнее равенство имеет вид

$$\lim_{n\to\infty} f(x_0) = f(x_0).$$

Сравнив два равенства, получим $f(x_0) = a$.

 ${f Def~20.1.}$ Функция $f:X\in\mathbb{R}$ называется непрерывной в точке $x_0\in X,$ если

$$\lim_{x\to x_0} f(x) = f(x_0).$$

Th 20.2. Пусть $f:X\in\mathbb{R},\,g:Y\in\mathbb{R},\,f(X)\subset Y$ и существуют конечные или бесконечные пределы

$$\lim_{x\to x_0}f(x)=y_0,\quad \lim_{y\to y_0}g(y);$$

тогда при $x o x_0$ существует и предел (конечный или бесконечный) сложной функции g[f(x)], причем

$$\lim_{x\to x_0}g[f(x)]=\lim_{y\to y_0}g(y).$$

Conclusion. Если $f:X\in\mathbb{R},\,g:Y\in\mathbb{R},\,f(X)\subset Y$ и функция f непрерывная в точке $x_0\in X$, а функция g непрерывна в точке $y_0=f_{x_0}$, то сложная функция g[f(x)] непрерывная в точке x_0 .

Solution. Обозначим значение предела через $z_0:\lim(y o y_0)g(y)=z_0$ и зафиксируем произвольным образом окрестность $U=U(z_0)$ точки z_0 . Тогда, согласно определению предела, существует такая окрестность $V=V(y_0)$ точки y, что если

$$y \in Y \cap V(y_0)$$
,

то

$$g(y) \in U(z_0.)$$

Далее, для полученной окрестности $V(y_0)$, в силу существования предела $\lim_{x\to x_0}f(x)=y_0$, найдется такая окрестность $W=W(x_0)$, что если

$$x \in X \cap W(x_0),$$

то

$$f(x) \in V(y_0),$$

а так как $f(x) \in Y$, то

$$f(x) \in Y \cap V(y_0)$$
.

Из выполнения условий при y=f(x) имеем: если выполнено включение $f(x)\in V(y_0)$, то

$$g[f(x)] \in U(z_0).$$

Так как окрестность $U(z_0)$ точки z_0 была произвольна, то это означает, что при $x \to x_0$ у функции g[f(x)] существует предел, равный z_0 :

$$\lim_{x\to x_0}g[f(x)]=z_0=\lim_{y\to y_0}g(y).$$

#21. Ограниченность функции, непрерывной на отрезке.

Def 21.1. Функция $f: X \in \mathbb{R}, X \subset \mathbb{R}$, называется непрерывной на множестве X, если она непрерывна по множеству X в каждой его точке.

Th 21.1. (теорема Вейерштрасса) Непрерывная на отрезке функция ограничена и принимает на нем наибольшее и наименьшее значение.

Solution. Пусть функция f непрерывна на отрезке [a,b] и пусть $M=\sup_{a\leq x\leq b}f(x)$; как и всякая верхняя грань непустого множества чисел, M может быть либо конечной, либо бесконечной, равной $+\infty$. Покажем, что $M<+\infty$ и что существует такая точка $x_0\in [a,b]$, что $f(x_0)=M$.

Выберем какую-либо последовательность таких чисел $a_n, n=1,2,...,$ что

$$\lim_{n \to \infty} a_n = M, a_n < M, n = 1, 2, \dots$$

Согласно определению верхней грани функции, для каждого $a_n, n=1,2,...$, существует такая точка $x_n \in [a,b]$, что

$$f(x_n) > a_n, n = 1, 2, \dots$$

С другой стороны, поскольку M – верхняя грань функции f, для всех точек $x \in [a,b]$ справедливо неравенство

$$f(x) \leq M$$
.

Последовательность $\{x_n\}$ ограничена: $a \leq x_n \leq b, n=1,2,...$, поэтому по теореме Больцано-Вейерштрасса из нее можно выделить сходящуюся подпоследовательность $\left\{x_{n_k}\right\}$

$$\lim_{k \to \infty} x_{n_k} = x_0.$$

Так как $a \leq x_{n_k} \leq b, k=1,2,...$, то и $a \leq x_0 \leq b$, т.е. x_0 – точка отрезка [a,b].

Из неравенств выше следует, что для всех k = 1, 2, ... справедливы неравенства

$$a_{n_k} \le f(x_{n_k}) \le M.$$

Предел всякой подпоследовательности последовательности, имеющей конечный или бесконечный предел, равен пределу всей последовательности; поэтому из

$$\lim_{n \to \infty} a_n = M, a_n < M, n = 1, 2, \dots$$

имеем $\lim_{k\to\infty} a_{n_k} = M$.

С другой стороны, в силу непрерывности функции f на отрезке [a,b] она непрерывна в точке x_0 этого отрезка и, следовательно,

$$\lim_{k\to\infty}f\Big(x_{n_k}\Big)=f(x_0).$$

Из последних двух формул имеем $M=f(x_0).$

Таким образом, доказано, что верхняя грань M функции f совпадает со значением функции в точке x_0 и, следовательно, конечна? Тем самым функция f ограничена сверху и ее верхняя грань достигается в точке $x_0 \in [a,b]$.

Аналогично доказывается, что непрерывная на отрезке функция ограничена снизу и достигает на нем своей нижней грани.

#22. Достижение точной верхней и точной нижней граней функции,

непрерывной на отрезке.

#23. Теорема о промежуточных значениях непрерывной функции.

Th 23.1. (теорема Больцано-Коши) Если функция f непрерывна на отрезка [a,b] и f(a)=A, f(b)=B, то для любого C, заключенного между A и B, существует такая точка, $\xi\in[a,b]$, что $f(\xi)=C$.

Solution. Пусть для определенности f(a) = A < B = f(b) и A < C < B. Разделим отрезок [a,b] точкой x_0 на два равных по длине отрезка; тогда либо $f(x_0) = C$ и, значит, искомая точка $\xi = x_0$ найдена, либо $f(x_0) \neq C$ и тогда на концах одного из полученных отрезков функция f принимает значения, лежащие по разные стороны от числа C, точнее – на левом конце значение, меньшее C, на правом – большее.

Обозначим этот отрезок $[a_1,b_1]$ и разделим его снова на два равных по длине отрезка и т.д. В результате либо через конечное число шагов придем к искомой точке ξ , в которой $f(\xi)=C$, либо получим последовательность вложенных отрезков $[a_n,b_n]$, по длине стремящихся к нулю и таких, что

$$f(a_n) < C < f(b_n).$$

Пусть ξ – общая точка всех отрезков $[a_n,b_n], n=1,2,...$ Как известно, $\xi=\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$. Поэтому в силу непрерывности функции f,

$$f(\xi) = \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n).$$

Далее получим,

$$\lim_{n\to\infty} f(a_n) \leq C \leq \lim_{n\to\infty} f(b_n).$$

Отсюда следует, что $f(\xi) = C$.

#24. Теорема об обратной функции.

Def 24.1. Функция f, определенная на числовом множестве X, называется строго возрастающей (строго убывающей), если для любых двух чисел $x_1 \in X$ и $x_2 \in X$ таких, что $x_1 < x_2$, выполняется неравенство $f(x_1) < f(x_2)$ (соответственно $f(x_1) > f(x_2)$).

Lemma. Пусть функция f строго возрастает (убывает) на некотором множестве $X \subset \mathbb{R}$ и пусть Y – множество ее значений. Тогда обратная функция f^{-1} является однозначно строго возрастающей (строго убывающей) функцией на множестве Y.

Th 24.1. Пусть функция f определена, строго возрастает (строго убывает) и непрерывна на отрезке [a,b]; тогда обратная функция f^{-1} определена, однозначна, строго возрастает (строго убывает) и непрерывна на отрезке с концами f(a) и f(b).

Solution. Проведем доказательство теоремы для строго возрастающих функций. Пусть c = f(a), d = f(b).

Покажем, что областью определения обратной функции f^{-1} является сегмент [c,d], или, что то же, [c,d] – множество значений функции f. В самом деле, из возрастающей функции f следует, что $f(a) \leq f(x) \leq f(b)$, т.е. что $f(x) \in [c,d]$ для любого $x \in [a,b]$. С другой стороны, каково бы ни было $y \in [c,d]$, т.е. $f(a) \leq y \leq f(b)$, согласно теореме Больцано-Коши, существует такая точка $x \in [a,b]$, что f(x) = y. Таким образом, все значения заданной функции f лежат на отрезке [c,d], и каждая точка этого отрезка является значением функции f в некоторой точке. Это и означает, что отрезок [c,d] является множеством значений функции f.

В силу леммы, функция f^{-1} однозначна и строго возрастает на отрезке [c,d].

Покажем, наконец, что функция f^{-1} непрерывна на [c,d]. Пусть $y_0 \in [c,d]$ и $x_0 = f^{-1}(y_0)$. Пусть $c < y_0 < d$, т.е. y_0 – внутренняя точка отрезка [c,d], тогда, в силу строгого возрастания функции f^{-1} , и $a < x_0 < b$. Зафиксируем некоторое $\varepsilon > 0$. Не ограничивая общности дальнейших рассуждений, можно считать, что ε таково, что

$$a \leq x_0 - \varepsilon < x_0 < x_0 + \varepsilon \leq b.$$

Пусть $y_1 = f(x_0 - \varepsilon), y_2 = f(x_0 + \varepsilon).$ Тогда из условия выше, в силу строгого возрастания f, следует, что $c \le y_1 < y_0 < y_2 \le d.$

Возьмем $\delta>0$ так, чтобы $y_1\leq y_0-\delta < y_0+\delta \leq y_2$. Если теперь выбрать y, таким, что $y_0-\delta < y < y_0+\delta$, то, тем более, $y_1< y< y_2$, и, следовательно, в силу строгого возрастания функции f^{-1} , справедливо неравенство

$$x_0 - \varepsilon = f^{-1}(y_1) < f^{-1}(y) < f^{-1}(y_2) = x_0 + \varepsilon.$$

Таким образом, для $\varepsilon>0$ указано такое $\delta>0$, что для всех $y\in (y_0-\delta,y_0+\delta)$ выполняется неравенство

$$\left|f^{-1}(y)-f^{-1}(y_0)\right|<\varepsilon,$$

т.е. функция f^{-1} непрерывна в точке y_0 . Если теперь $y_0=c$ или $y_0=d$, то аналогичными рассуждения доказывается, что функция f^{-1} непрерывна справа в точке c и непрерывна слева в точке d. Теорема для строго возрастающих функция доказана.

Напомним, что функция f строго убывает тогда и только тогда, когда функция -f строго возрастает, поэтому справедливость теоремы для строго убывающих функций следует из рассмотренного случая.