Project Development Phase Model Performance Test

Date	17th November 2022	
Team ID	PNT2022TMID28255	
Project Name	Project – Detecting Parkinson's Disease using	
	Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S. No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model: Confusion Matrix, F1 Score, Accuracy Score & Classification Report	Committee and
2.	Tune the Model	Data mining - XGBoost Classifier	ASSEction Forces - Supervised Machine Learning (In) Indigit, a state-on-transport of the Control of th

1) Metrics Parameter screenshot

▼ XGBClassification - Supervised Machine Learning

▼ Assessing the model using metrics

```
[32] y_predict = Model_XG.predict(x_test)
print(accuracy_score(y_test,y_predict)*100)

98.30508474576271
```

Hence by reducing the overfitting using XGBoost Classifier, we are getting accuracy_score of 98.30% for the model

▼ Confusion metrics

2)Tune the model Parameter screenshot

```
(32] y_predict = Model_XG.predict(x_test)
  print(accuracy_score(y_test,y_predict)*100)
  Hence by reducing the overfitting using XGBoost Classifier, we are getting accuracy_score of 98.30% for the model

    ▼ Confusion metrics

\frac{\checkmark}{0s} [33] from sklearn.metrics import confusion_matrix
       ypre = Classification_model.predict(x_test)
       ypre = (ypre>0.5)
       confusion_matrix(y_test,ypre)
   ▼ F1 score
y [34] from sklearn.metrics import f1_score
       Variation_score = f1_score(y_test, Model_XG.predict(x_test), average='binary')
      print(Variation_score/0.01)
       98.59154929577464

▼ Classification report

[35] from sklearn import metrics
       from sklearn.metrics import classification_report
       print("\n Classification report for Model %s:\n%s\n" % (Model_XG, metrics.classification_report(y_test, y_pred)))
        Classification report for Model XGBClassifier(): precision recall f1-score support
```