Devoir à la maison n° 17

À rendre le 1 avril

L'objectif de ce problème est de montrer que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, ce symbole de sommation étant à comprendre comme voulant dire

$$\sum_{n=1}^{N} \frac{1}{n^2} \xrightarrow[N \to +\infty]{} \frac{\pi^2}{6}.$$

Pour tout $N \ge 1$, on note $S_N = \sum_{n=1}^N \frac{1}{n^2}$.

1) Soit f une fonction de classe \mathscr{C}^1 sur $[0,\pi]$. Montrer que

$$\int_0^{\pi} f(t) \sin\left(\frac{2N+1}{2}t\right) dt \xrightarrow[N \to +\infty]{} 0.$$

Indication: on pourra procéder par intégration par parties.

2) On pose $A_N(t) = \frac{1}{2} + \sum_{n=1}^N \cos(nt)$. Montrer que pour tout $t \in]0,\pi]$:

$$A_N(t) = \frac{\sin\left(\frac{2N+1}{2}t\right)}{2\sin\left(\frac{t}{2}\right)}.$$

Que dire de cette relation pour t = 0?

3) Déterminer deux réels a et b tels que, pour tout $n \ge 1$,

$$\int_0^{\pi} (at^2 + bt) \cos(nt) dt = \frac{1}{n^2}.$$

4) En déduire que pour tout $N \geqslant 1$,

$$\int_0^{\pi} (at^2 + bt) A_N(t) dt = S_N - \frac{\pi^2}{6}.$$

5) Montrer que $S_N \xrightarrow[N \to +\infty]{} \frac{\pi^2}{6}$.

Indication : on justifiera proprement que la fonction $f: t \mapsto \frac{at^2 + bt}{2\sin\left(\frac{t}{2}\right)}$ vérifie les hypothèses de la première question.

- 6) Soit $\alpha > 1$.
 - a) Comparer pour tout $n \ge 2$: $\int_{n}^{n+1} \frac{dt}{t^{\alpha}}$, $\frac{1}{n^{\alpha}}$ et $\int_{n-1}^{n} \frac{dt}{t^{\alpha}}$.

- b) En déduire pour tout $N\geqslant 1$ et p>N un encadrement de $\sum_{n=N+1}^p\frac{1}{n^\alpha}$ par deux intégrales, que vous calculerez.
- c) Soit $N \ge 1$. En déduire l'existence de la limite lorsque p tend vers $+\infty$ de $\sum_{n=N+1}^{p} \frac{1}{n^{\alpha}}$.
- **d)** On note dorénavant $R_N(\alpha) = \lim_{p \to +\infty} \sum_{n=N+1}^p \frac{1}{n^{\alpha}}$.

Déduire des encadrements précédents que $R_N(\alpha) \underset{N \to +\infty}{\sim} \frac{1}{(\alpha - 1)N^{\alpha - 1}}$.

7) Montrer que

$$S_N \underset{N \to +\infty}{=} \frac{\pi^2}{6} - \frac{1}{N} + o\left(\frac{1}{N}\right).$$
--- FIN ---