Lecture 11: The Valuation and Pricing of Information

I.Economic Foundations of Value of Information

		Coin s	state ω	
		1/2	1/2	Prior belief $q(\omega)$
		tail	head	
action	0	2t	0	
	1	0	2t	
		u(a	ι, ω)	•

Without information, decision maker (DM) gets $\max_a \left[\mathbb{E}_{\omega \sim q} u(a,\omega)\right] = t$ With my (full) information, DM gets $\mathbb{E}_{\omega \sim q}[\max_a u(a,\omega)] = 2t$ Value of (full) info = $\mathbb{E}_{\omega \sim q}[\max_a u(a,\omega)] - \max_a \left[\mathbb{E}_{\omega \sim q} u(a,\omega)\right]$

Noisy information revelation

Realistically, can think of 0 as noisy prediction of state ω (e.g., stock trend, purchase prob)

Question: What is the value of this noisy signal 0?

- $\bullet~$ Without knowing this signal, DM takes action 1
- With this signal 0, DM takes action 0(assuming ε very small)
- However, true distribution is the posterior p regardless

Value of knowing
$$0 = \mathbb{E}_{\omega \sim p}[u(0, \omega)] - \mathbb{E}_{\omega \sim p}u(1, \omega)$$

Definition(**FK'19**):Consider an arbitrary desicion making problem $u(a, \omega)$, suppose a signal updates the DM's belief about state ω from $q \in \Delta(\Omega)$ to $p \in \Delta(\Omega)$, the value of this signal is defined as

$$D^u(p;q) = \mathbb{E}_{\omega \sim p}[u(a^*(p),\omega)] - \mathbb{E}_{\omega \sim p}u(a^*(q),\omega)$$

Example 1:

- $a \in A = \Delta(\Omega) \to \text{action}$ is to pick a distribution over states
- $u(a,\omega) = \log a_{\omega}$
- Which action $a \in \Delta(\Omega)$ maximizes expected utility $\mathbb{E}_{\omega \sim p}[u(a,\omega)]$?

$$a^*(p) = p$$

$$D^u(p;q) = \sum_{\omega} p_{\omega} \log \frac{p_{\omega}}{q_{\omega}} \qquad \text{KL-divergence}$$

Example 2:

- $a \in A = \Delta(A) \rightarrow \text{action}$ is to pick a distribution over states
- $u(a,\omega) = -\|a e_{\omega}\|^2$

$$a^*(p) = p$$

$$D^u(p;q) = \|p-q\|^2$$
 Squared distance

Some obvious properties

- Non-negativity: $D^u(p;q) \geq 0$
- Null information has no value: $D^{u}(q;q) = 0$
- Order-invariant: if DM receives signal σ_1, σ_2 , the order of receiving them does not affect final expected total value

In this case, we say D(p;q) is a valid measure for value of information

Theorem 1(FK'19): Consider any D(p;q) function. There exists a decision problem $u(a,\omega)$ such that

$$D^u(p;q) = \mathbb{E}_{\omega \sim p}[u(a^*(p),\omega)] - \mathbb{E}_{\omega \sim p}u(a^*(q),\omega)$$

if and only if D(p;q) satisfies

- Non-negativity: $D^u(p;q) \geq 0$
- Null information has no value: $D^u(q;q) = 0$
- Order-invariant: if DM receives signal σ_1, σ_2 , the order of receiving them does not affect final expected total value

Theorem 2(FK'19):

- 1. For any concave function H, its Bregman divergence is a valid measure for value of information.
- 2. Conversely, for any valid measure D(p;q) for value of information,

$$H(q) = \sum_{\omega} q^{\omega} D(e_{\omega}, q)$$

is a concave function whosw Bregman divergence is D(p;q)

Why useful?

• Many functions - even natural ones like l_2 distance $\|p-q\|$ - are not valid measures

- In fact, any metric is not valid, since metric cannot be a Bregman divergence
- There are efficient ways to tell whether a D(p,q) is valid

II.Optimal Pricing of Information

1.Plans

- Vignette 1: closed-form optimal mechanism for structed setups
- Vignette 2: algorithmic solution for general setups
- Vignette 3: from distilled data (i.e. information) to raw data

2.A Model of Information Pricing

- One seller, one buyer
- Buyers is a decision marker who faces a binary choice: an active action 1 and a passive action 0: Active action: come to talk, approve loan, invest stock X, etc.
- Payoff of passive action $\equiv 0$
- Payoff of active action= $v(\omega, t) = v_1(\omega)[t + \rho(\omega)]$
 - ω is a state of nature, t is buyer type
 - Assume $v(\omega,t)$ is linear and non-decreasing in $t \in [t_1,t_2]$
- Information structure:
 - Seller observes ω , and buyer knows t

Mechanism design question: How can seller optimally sell her information about ω to the buyer?

3.Design Space

Standard revelation principle implies optimal mechanism can w.l.o.g be a menu $\left\{\pi_t, p_t\right\}_{t \in T}$

- $\pi_t: \Omega \to S$ is an experiment (which generates signals) for type i
- $p_t \in \mathbb{R}$ is t's payment
- Each type is incentivized to report type truthfully

Concrete design question: design IC $\{\pi_t, p_t\}_{t \in T}$ to maximize seller's revenue

4. How Does It Differ from Selling Goods?

- Each experiment is like an item
 - ► In this sense, we are selling infinitely many goods
 - ▶ In fact, we are even "designing the goods"
- Participation constraint is different
 - Without any information, type t's utility is $\max\{\overline{v}(t), 0\}$

$$\overline{v}(t) = \int_{\omega \in \Omega} v(\omega, t) g(\omega) d\omega$$

Ex-ante expected utility of action 1

5. Threshold experiments turn out to suffice

Recall
$$v(\omega, t) = v_1(\omega)[t + \rho(\omega)]$$

Def. π_t is a threshold experiment if π_t simply reveals $\rho(\omega) \geq \theta(t)$ or not some buyer-type-dependent threshold $\theta(t)$

Threshold is on $\rho(\omega)$

6. Virtual Value Functions

Recall virtual value function in [Myerson'81]: $\varphi(t) = t - \frac{1 - F(t)}{f(t)}$

Def.

- Lower virtual value function: $\varphi(t) = t \frac{1 F(t)}{f(t)}$ Upper virtual value function: $\overline{\varphi}(t) = t + \frac{F(t)}{f(t)}$
- Mixed virtual value function: $\varphi_c(t) = c\varphi(t) + (1-c)\overline{\varphi}(t)$

Note: "upper" or "lower" is due to:

$$\varphi(t) \leq t \leq \overline{\varphi}(t)$$

7. The Optimal Mechanism

Depend on two problem-related constants:

$$V_L = \max\{v(t_1), 0\} + \int_{t_1}^{t_2} \int_{q: \rho(q) \geq -\varphi^+(x)} g(q) v_1(q) dq dx$$

$$V_{H} = \max\{v(t_{1}), 0\} + \int_{t_{1}}^{t_{2}} \int_{q: \rho(q) \geq -\overline{\varphi}^{+}(x)} g(q) v_{1}(q) dq dx$$

Note:

$$V_L < V_H$$

Theorem([LSX'21])

1. If $\overline{v}(t_2) \leq V_L$, the mechanism with threshold experiments $\theta^*(t) = -\varphi(t)$ and following payment function represents an optimal mechanism:

$$p^*(t) = \int_{\omega \in \Omega} \pi^*(\omega,t) g(\omega) v(\omega,t) d\omega - \int_{t_1}^t \int_{\omega \in \Omega} \pi^*(\omega,x) g(\omega) v_1(\omega) d\omega dx$$

2. If $\overline{v}(t_2) \geq V_H$, the mechanism wit threshold experiments $\theta^*(t) = -\overline{\varphi}(t)$ and following payment function represents an optimal mechanism:

$$p^*(t) = \int_{\omega \in \Omega} \pi^*(\omega,t) g(\omega) v(\omega,t) d\omega + \int_t^{t_2} \int_{\omega \in \Omega} \pi^*(\omega,x) g(\omega) v_1(\omega) d\omega dx - \overline{v}(t_2)$$

3. If $V_L \leq \overline{v}(t_2) \leq V_H$, the mechanism with threshold experiments $\theta^*(t) = -\varphi_c(t)$ and following payment function represents an optimal mechanism

$$p^*(t) = \int_{\omega \in \Omega} \pi^*(\omega,t) g(\omega) v(\omega,t) d\omega - \int_{t_1}^{t_2} \int_{\omega \in \Omega} \pi^*(\omega,x) g(\omega) v_1(\omega) d\omega dx$$

where constant c is chosen such that

$$\int_{t_1}^{t_2} \int_{\omega: \rho(\omega) \geq \varphi_c^+(x)} g(\omega) v_1(\omega) d\omega dx = \overline{v}(t_2)$$

8. Remarks

• Threshold mechanisms are common in real life: House/car inspections, stock recommendations: information seller only need to reveal it "passed" or "deserves a buy" or not

• Optimal mechanism has personalized thresholds and payments, tailored to accommodate different level of risk each buyer type can take: Different from optimal pricing of physical goods

What if seller is restricted to sell the same information to every buyer (e.g., due to regulation)? How will revenue change?

- This is the optimal price (Merson reserve) in previous example
- Revenue can be arbitrarily worse
- $\frac{1}{e}$ approximation of optimal revenue if the value of full information as a function of t has monotone hazard rate

9. Additional Properties of Optimal Mechanism

III.Summary and Open Problems