

ARMY RESEARCH LABORATORY

Cure Schedule Evaluation of SC15 and SC79 Low-Viscosity Epoxy VARTM Resins

by Robert Jensen, Aaron Forster, Jessica Dibelka, and Craig Copeland

ARL-TN-249

November 2005

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TN-249

November 2005

Cure Schedule Evaluation of SC15 and SC79 Low-Viscosity Epoxy VARTM Resins

**Robert Jensen, Aaron Forster, Jessica Dibelka, and Craig Copeland
Weapons and Materials Research Directorate, ARL**

REPORT DOCUMENTATION PAGE				<i>Form Approved OMB No. 0704-0188</i>	
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p> <p>PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</p>					
1. REPORT DATE (DD-MM-YYYY) November 2005	2. REPORT TYPE Final	3. DATES COVERED (From - To) June 2005–August 2005			
4. TITLE AND SUBTITLE Cure Schedule Evaluation of SC15 and SC79 Low-Viscosity Epoxy VARTM Resins			5a. CONTRACT NUMBER		
			5b. GRANT NUMBER		
			5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S) Robert Jensen, Aaron Forster, Jessica Dibelka, and Craig Copeland			5d. PROJECT NUMBER AH84		
			5e. TASK NUMBER		
			5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: AMSRD-ARL-WM-MA Aberdeen Proving Ground, MD 21005-5069			8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TN-249		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT In this technical note, the effect of different cure paths on the ultimate glass transition temperature (T_g) and fracture toughness of Applied Poleramic SC15 and SC79 VARTM resins are studied.					
15. SUBJECT TERMS SC15, SC79, VARTM, cure schedule					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT UL	18. NUMBER OF PAGES 16	19a. NAME OF RESPONSIBLE PERSON Robert Jensen
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED	c. THIS PAGE UNCLASSIFIED			19b. TELEPHONE NUMBER (Include area code) 410-306-1910

Contents

List of Tables	iv
Acknowledgments	v
1. Introduction	1
2. Experimental	1
3. Results	3
4. Discussion	4
Distribution List	5

List of Tables

Table 1. Curing schedules for SC15 and SC79 resins.....	2
Table 2. Tabulated results for the cure schedule study of SC15.....	3
Table 3. Tabulated results for the cure schedule study of SC79.....	3

Acknowledgments

This research was also supported in part by an appointment to the Research Participation Program at the U.S. Army Research Laboratory (ARL) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ARL.

INTENTIONALLY LEFT BLANK.

1. Introduction

Vacuum-assisted resin transfer molding (VARTM) is a manufacturing process to create fiber-reinforced composite parts in a fast and cost-effective fashion.^{1, 2} This process uses vacuum pressure to infuse a low-viscosity liquid thermosetting resin (epoxy) through a woven fiber preform. This methodology is advantageous because composites are fabricated at higher fiber volume ratios than wet lay-ups and do not require the high-autoclave pressures of prepreg processing. There are several criteria required of an epoxy resin used in the VARTM process. Resins that have a viscosity below 1000 cPs and have long work times are required to insure wetting and flow through the woven fabric, which enables a low void content in the final cured composite part. Low-temperature curing epoxies (<250 °F) are of particular interest to the manufacturers of multicomponent composites. A lower curing temperature resin reduces residual stress in the final part, minimizes energy costs for curing, and reduces the effects of coefficient of thermal expansion mismatches between dissimilar materials that can concentrate stresses at bonding interfaces. Therefore, VARTM resins can involve complicated mixtures of components that include reactive diluents, additional reactants, and soluble rubber tougheners. The resins often exhibit multiple cure paths and the dominant cure path is dependant on the cure protocol followed. In this technical note, the effect of different cure paths on the ultimate glass transition temperature (T_g) and fracture toughness of Applied Poleramic SC15 and SC79 are studied.

2. Experimental

The resins under investigation are the SC15 and SC79 commercial VARTM resins developed by Applied Poleramic Inc. (Benicia, CA). These low-viscosity, epoxy-based resins are both rubber toughened, with SC15 having a lower ultimate T_g than SC79. Resins were cured according to the cure schedules often encountered in a manufacturing environment and are listed in table 1. Neat resin bars were made for differential scanning calorimetry (DSC) analysis and fracture toughness measurements. The fracture toughness (critical strain energy release rate, G_{IC}) was measured using an Instron 4505 according to ASTM D 5045-95.³ The samples were prepared using the Single Edge Notched Beam geometry with a crosshead rate of 10 mm/min.

¹Seemann, W. H. Plastic Transfer Molding Techniques for the Production of Fiber Reinforced Plastic Structures. U.S. Patent 4,902,215, 1990.

²Hsiao, K. T.; Gillespie, J. W.; Advani, S. G.; Fink, B. K. Role of Vacuum Pressure and Port Locations on Flow Front Control for Liquid Composite Molding Processes. *Polymer Composites* **2001**, 22, 660–667.

³ASTM D 5045-95. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. Annu. Book ASTM Stand. **1995**.

Resin samples were mixed in a ratio of 100 g of epoxy to 30 g of hardener for SC15 and 100 g of epoxy to 40 g of hardener for SC79, per the manufacturer recommendations. The uncured resin was degassed in a vacuum to remove air bubbles and poured immediately into silicone rubber molds. The molds were covered with PTFE tape and placed into a converted, programmable gas chromatograph oven. Each set of fracture toughness and DSC samples were exposed to set pre-cure and post-cure conditions according to the following schedule (see table 1).

Table 1. Curing schedules for SC15 and SC79 resins.

Pre-Cure Conditions	Post-Cure Conditions
30 hours at 25 °C	No post-cure
24 hours at 25 °C	2 hours at 122 °C
24 hours at 25 °C	6 hours at 122 °C
24 hours at 25 °C	8 hours at 122 °C
24 hours at 25 °C	2 hours at 177 °C
24 hours at 25 °C	8 hours at 177 °C
2 hours at 60 °C	2 hours at 122 °C
2 hours at 60 °C	6 hours at 122 °C
2 hours at 60 °C	8 hours at 122 °C
2 hours at 60 °C	2 hours at 177 °C
2 hours at 60 °C	8 hours at 177 °C
No pre-cure	4 hours at 122 °C
No pre-cure	4 hours at 177 °C

After curing, the bars were allowed to cool slowly to room temperature (3.3 °C/min) to minimize residual stress buildup. For the DSC measurements, samples weighing ~10–15 mg were placed into aluminum crimped pans. The samples were ramped from 0 to 225 °C at a rate of 10 °C/min through two cycles. The T_g of the resin was determined using the half height method in the TA Universal Analysis software from first heat, second heat and cool down. The critical-stress-intensity factor (K_{IC}) and critical strain energy release rate (G_{IC}) at a span (S) to width (W) ratio of 4 are defined by the following expressions:

$$G_{IC} = \frac{(1-v^2)K_{IC}^2}{E}, \quad (1)$$

where

$$K_{IC} = (PBW^{1/2})f(x), \quad (2)$$

$$f(x) = 6x^{1/2} \frac{[1.99 - x(1-x)(2.15 - 3.93x + 2.7x^2)]}{(1+2x)(1-x)^{3/2}}, \quad (3)$$

and

P = load,
 B = sample thickness,
 W = sample width,
 a = crack length,
 $x = 0.45 < a/W < 0.55$,
 E = modulus, assumed 2.0 GPa for SC15 and SC79, and
 v = Poisson's ratio, assumed 0.35 for SC15 and SC79.

3. Results

Tables 2 and 3 show the tabulated results for the cure schedule study of SC15 and SC79.

Table 2. Tabulated results for the cure schedule study of SC15.

Pre-Cure Conditions	Post-Cure Conditions	1st Heat T _g (°C)	2nd Heat T _g (°C)	G _{IC} (J/m ²)
30 hours at 25 °C	No post-cure	44	NA	NA
24 hours at 25 °C	2 hours at 122 °C	82	97	2020 (± 230)
24 hours at 25 °C	6 hours at 122 °C	NA	NA	NA
24 hours at 25 °C	8 hours at 122 °C	89	98	1430 (± 100)
24 hours at 25 °C	2 hours at 177 °C	91	99	1460 (± 240)
24 hours at 25 °C	8 hours at 177 °C	95	99	1320 (± 210)
2 hours at 60 °C	2 hours at 122 °C	82	97	1920 (± 240)
2 hours at 60 °C	6 hours at 122 °C	NA	NA	NA
2 hours at 60 °C	8 hours at 122 °C	87	97	1520 (± 120)
2 hours at 60 °C	2 hours at 177 °C	88	97	1610 (± 190)
2 hours at 60 °C	8 hours at 177 °C	93	99	1180 (± 70)
No pre-cure	4 hours at 122 °C	86	97	1400 (± 120)
No pre-cure	4 hours at 177 °C	90	100	1600 (± 230)

Note: NA = not available.

Table 3. Tabulated results for the cure schedule study of SC79.

Pre-Cure Conditions	Post-Cure Conditions	1st Heat T _g (°C)	2nd Heat T _g (°C)	G _{IC} (J/m ²)
30 hours at 25 °C	No post-cure	44	NA	NA
24 hours at 25 °C	2 hours at 122 °C	116	156	285 (± 61)
24 hours at 25 °C	6 hours at 122 °C	134	169	157 (± 43)
24 hours at 25 °C	8 hours at 122 °C	137	161	173 (± 32)
24 hours at 25 °C	2 hours at 177 °C	140	165	294 (± 43)
24 hours at 25 °C	8 hours at 177 °C	176	179	413 (± 61)
2 hours at 60 °C	2 hours at 122 °C	121	119	787 (± 251)
2 hours at 60 °C	6 hours at 122 °C	109	121	523 (± 18)
2 hours at 60 °C	8 hours at 122 °C	126	120	191 (± 67)
2 hours at 60 °C	2 hours at 177 °C	151	161	290 (± 115)
2 hours at 60 °C	8 hours at 177 °C	172	171	212 (± 135)
No pre-cure	4 hours at 122 °C	139	169	227 (± 124)
No pre-cure	4 hours at 177 °C	149	175	341 (± 44)

Note: NA = not available.

4. Discussion

The following conclusions can be drawn from the T_g and fracture toughness results shown in tables 2 and 3:

1. The fracture toughness of SC15 is increased in comparison to SC79, regardless of cure conditions.
2. For room-temperature curing only, the T_g of SC15 and SC79 is 44 °C. For room-temperature cure conditions, both epoxies vitrify prior to achieving a significant degree of chemical conversion.
3. The ultimate T_g of SC15 is ~100 °C, which is below the post-cure temperatures of 122 and 177 °C of this study. Optimal high degrees of conversion in epoxy resins are typically achieved by selecting a post-cure temperature that is greater than the ultimate T_g of the resin, as vitrification of the epoxy prior to full conversion is avoided during cure. As a result of the high post-cure temperatures, SC15 achieved a T_g fairly close to 100 °C, regardless of the post-cure conditions used for this study.
4. The ultimate T_g of SC79 is ~180 °C, which is above the post-cure temperatures of 122 and 177 °C of this study. From the T_g data presented in table 3, it can be implied that SC79 vitrifies during cure. Vitrification into a glassy state occurs as the T_g of the epoxy continues to increase during cure. If the cure temperature is below the ultimate T_g , then eventually the increasing T_g will equal the cure temperature. At this point, the epoxy will vitrify, which essentially quenches further crosslinking reactions in the epoxy due to mobility restrictions. From this study, it can be seen that the T_g of SC79 typically increases with increasing post-cure temperatures and times, with the exception of the 60/122 °C pre- and post-cure conditions. As mentioned in the introduction, VARTM resin may involve complex formulations of reactive diluents to decrease processing viscosity. The mixtures of reactants could have varying chemical reaction mechanisms and rates. At the 60/122 °C pre and post-cure conditions, SC79 locks in a first heat DSC T_g of approximately 120 °C that is not increased upon further cure. For all other pre- and post-curing conditions, the second heat DSC T_g increases, which is a typical response for classic epoxy systems. Unlike SC15, the higher ultimate T_g of SC79 and formulation variations result in a resin system with increased sensitivity to curing conditions.

NO. OF
COPIES ORGANIZATION

- 1 DEFENSE TECHNICAL
(PDF INFORMATION CTR
ONLY) DTIC OCA
8725 JOHN J KINGMAN RD
STE 0944
FORT BELVOIR VA 22060-6218
- 1 US ARMY RSRCH DEV &
ENGRG CMD
SYSTEMS OF SYSTEMS
INTEGRATION
AMSRD SS T
6000 6TH ST STE 100
FORT BELVOIR VA 22060-5608
- 1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS
AT AUSTIN
3925 W BRAKER LN
AUSTIN TX 78759-5316
- 1 DIRECTOR
US ARMY RESEARCH LAB
IMNE ALC IMS
2800 POWDER MILL RD
ADELPHI MD 20783-1197
- 3 DIRECTOR
US ARMY RESEARCH LAB
AMSRD ARL CI OK TL
2800 POWDER MILL RD
ADELPHI MD 20783-1197
- 3 DIRECTOR
US ARMY RESEARCH LAB
AMSRD ARL CS IS T
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

- 1 DIR USARL
AMSRD ARL CI OK TP (BLDG 4600)

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL D D SMITH 2800 POWDER MILL RD ADELPHI MD 20783-1197	1	COMMANDER US ARMY TACOM PM COMBAT SYSTEMS SFAE GCS CS 6501 ELEVEN MILE RD WARREN MI 48397-5000
3	NASA Langley RSCH CTR AMSRD ARL VT W ELBER MS 266 F BARTLETT JR MS 266 G FARLEY MS 266 HAMPTON VA 23681-0001	1	COMMANDER US ARMY TACOM AMSTA SF WARREN MI 48397-5000
2	US ARMY RESEARCH OFC D STEPP J CHANG PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211	1	COMMANDER US ARMY TACOM PM SURV SYS SFAE ASM SS 6501 ELEVEN MILE RD WARREN MI 48397-5000
5	DARPA SPECIAL PROJECTS OFC A ALVING TACTICAL TECHNOLOGY OFC W JOHNSON DEFENSE SCIENCE OFC S WAX L CHRISTODOULOU ADVANCED TECHNOLOGY OFC D HONEY 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	1	COMMANDER US ARMY TACOM PEO CS & CSS PM LIGHT TACTICAL VHCLS SFAE CSS LT (M1114 MGR) 6501 ELEVEN MILE RD WARREN MI 48397-5000
1	DIRECTOR DTTRA MSC 6201 8725 JOHN J KINGMAN RD FT BELVOIR VA 22060-6201	12	COMMANDER US ARMY TACOM AMSTA TR R J BENNETT D HANSEN AMSTA JSK S GOODMAN R SIERS K IYER D TEMPLETON J CARIE A SCHUMACHER AMSTA TR D D OSTBERG S HODGES AMSTA CS SF H HUTCHINSON F SCHWARZ WARREN MI 48397-5000
1	DIRECTOR DEFENSE INTELLIGENCE AGENCY TA 5 K CRELLING WASHINGTON DC 20310	1	DIRCTRT OF TNG DOC & CBT DEV ATZK TDD ORSA A POMEY FT KNOX KY 40121-5000
1	DPTY ASST SECY FOR R&T SARD TT THE PENTAGON RM 3EA79 WASHINGTON DC 20301-7100		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	COMMANDER US ARMY AMCOM AVIATION APPLIED TECH DIR J SCHUCK FT EUSTIS VA 23604-5577	1	DIRECTOR LANL F ADDESSIO MS B216 PO BOX 1633 LOS ALAMOS NM 87545
2	OFC OF NAVAL RESEARCH D SIEGEL CODE 315 J KELLY 800 N QUINCY ST ARLINGTON VA 22217-5560	3	THE BOEING CO J CHILDRESS N GERKEN S AVILA MS 84-69 PO BOX 3707 SEATTLE WA 98124
2	NAVAL SURFACE WARFARE CTR U SORATHIA C WILLIAMS CD 6551 9500 MACARTHUR BLVD WEST BETHESDA MD 20817	5	BAE SYSTEMS G THOMAS D SCHADE R MUSANTE T PIKE JC BRODY PO BOX 359 SANTA CLARA CA 95050
1	COMMANDER NAVAL SURFACE WARFARE CTR CARDEROCK DIVISION R PETERSON CODE 2020 BETHESDA MD 20084	2	UDLP R BRYNSVOLD W BALLATA PO BOX 21099 MINNEAPOLIS MN 55421
1	NAVAL SURFACE WARFARE CTR CARDEROCK DIVISION R CRANE CODE 6553 9500 MACARTHUR BLVD WEST BETHESDA MD 20817-5700	1	GENERAL DYNAMICS LAND SYSTEMS SECURITY G TEAL PO BOX 1900 WARREN MI 48090
1	NAVAL SURFACE WARFARE CTR CARDEROCK DIVISION T BURTON (CODE 667) WEST BETHESDA MD 20817-5700	1	CONCURRENT TECH CORP G NICKODEMUS PO BOX 5180 JOHNSTOWN PA 15904
1	MARINE CORPS INTELLIGENCE ACTIVITY D KOSITZKE 3300 RUSSELL RD STE 250 QUANTICO VA 22134-5011	1	RAYTHEON E FACCINI DOCUMENT CONTROL 50 APPLE HILL DR TEWKSBURY MA 01876-0901
1	CENTRAL INTELLIGENCE AGENCY WINPAC/CWTG/GWET M DAN RM 4P07 NHB WASHINGTON DC 20505	1	JOHN J McMULLEN ASSOCIATES R WALLER SECURITY OFFICER SUITE 400 4300 KING ST PO BOX 3009 ALEXANDRIA VA 22302
3	DIRECTOR LLNL S DETERESA M FINGER MS 313 S GROVES PO BOX 808 LIVERMORE CA 94550		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	SOUTHWEST RSCH INST SECURITY OFC C ANDERSON J WALKER PO BOX 28255 SAN ANTONIO TX 78228-0255	P DEHMER S WALSH J CAMPBELL AMSRD ARL WM SG L BURTON AMSRD ARL WM T B BURNS AMSRD ARL WM TA C HOPPEL T HAVEL J RUNYEON M BURKINS E HORWATH W GOOCH S SCHOENFELD	
1	<u>ABERDEEN PROVING GROUND</u> USAMSAA AMSRD AMS TD P DEITZ APG MD 21005-5071	AMSRD ARL WM TB P BAKER AMSRD ARL WM TE A NIILER	
44	DIRECTOR USARL AMSRD ARL CI AMSRD ARL O AP EG FI M ADAMSON AMSRD ARL SL BB D BELY AMSRD ARL WM J SMITH AMSRD ARL WM B R COATES M ZOLTOSKI AMSRD ARL WM RP C SHOEMAKER AMSRD ARL WM M J BEATTY R JENSEN S MCKNIGHT AMSRD ARL WM MB A FRYDMAN T BOGETTI AMSRD ARL WM MC M MAHER AMSRD ARL WM MD W ROY B CHEESEMAN C YEN S GHIORSE M KLUSEWITZ (3 CPS) E CHIN K DOHERTY J MONTGOMERY B SCOTT G GILDE P PATEL R DOOLEY J LASALVIA J SANDS S WOLF	AMSRD ARL WM SG L BURTON AMSRD ARL WM T B BURNS AMSRD ARL WM TA C HOPPEL T HAVEL J RUNYEON M BURKINS E HORWATH W GOOCH S SCHOENFELD	