Conjunction Assessment Risk Analysis

Evaluating Probability of Collision Uncertainty

Matthew D. Hejduk Lauren C. Johnson February 2016

Background: Conjunction Assessment

- Conjunction Assessment Risk Analysis (CARA)
 - Evaluate collision risk between two conjuncting objects
 - Mitigate collision risk, if necessary

- Probability of Collision (Pc) is a single-parameter encapsulation of the risk and is computed from
 - Miss distance at time of closest approach (TCA)
 - State estimation error (covariance) for both objects
 - Hard-body radius (HBR) of both objects

2-D Pc Computation

- Define plane perpendicular to velocity vector ("conjunction plane")
 - If a collision will occur, it will occur in this plane
- Combine primary and secondary covariances
- Project combined covariance into conjunction plane, at origin
- Place primary location one miss distance away, on x axis
- HBR is defined as circle (with appropriate area) placed at that point
- Pc is then the portion of the density that falls within the HBR circle

$$P_{C} = \frac{1}{\sqrt{(2\pi)^{2}|C^{*}|}} \iint_{A} \exp\left(-\frac{1}{2}\vec{r}^{T}C^{*-1}\vec{r}\right) dXdZ$$

Probability of Collision Calculation

- Pc is only a nominal solution for the conjunction
 - Derived from estimates of the mean
 - If error distributions non-Gaussian, then this is not an expression of central tendency
 - Does not include uncertainties on the inputs
 - "Uncertainty of uncertainty volumes" or HBR
- Thus, while representing the risk, nominal Pc is just a point estimate
- Want to know how much variation or uncertainty in the Pc calculated for any given conjunction
 - Determine uncertainty PDFs for the Pc calculation inputs
 - Through Monte Carlo trials, vary above inputs to the Pc calculation
 - Include a resampling technique to determine natural variation
 - Generate a probability density of resultant Pc values
 - Characterize this distribution empirically

Uncertainty in the Probability

- Generate a Pc distribution, using Monte Carlo (MC) trials of the underlying uncertainties
 - Determine uncertainty for each of the Pc parameters

Covariance Uncertainty

- Changes in covariance sizes can change calculated Pc, sometimes substantially
 - Especially if on right side of canonical curve
- Need to know range of values for appropriate scale factors for covariances
 - Typical applied range is from 0.2 to 5, but this is unrealistically large for nearly all cases
 - Should be object-specific
 - Should include probabilistic element

Relative Pc vs Covariance "Size"

Covariance Uncertainty: Evaluation Products

- JSpOC-resident utility generates reference orbits for every satellite
 - Similar methodology as that used for SLR precision ephemerides
 - Covariance data from generating ODs preserved
- Second utility compares each generated SP vector to reference orbit at propagation points of interest
 - -1, 2, 3, 5, and 7 days from epoch
 - Calculates position residuals and combined covariance, which is combination of propagated vector covariance and reference orbit covariance
- With position residuals and combined covariance, can compute covariance "realism" factor for each vector at each prop point
 - For each vector, can calculate $\varepsilon C^{-1} \varepsilon^{T}$ (M², square of Mahalanobis distance)
 - ε is the vector of position residuals; C is the combined covariance
 - If covariance realistic, M² set should produce a 3-DoF chi-squared distribution

Mahalanobis Distances to Scale Factors

- Presume set of 100 M2 factors generated for a satellite
 - Rank-order the 100 factors
 - Align each with the 3-DoF chi-squared value for that given percentile
 - E.g., factor #20 aligned with 20th percentile chi-squared value
 - Empirical / ideal value is scale factor for each instance
 - Value by which covariance would need to be multiplied to produce ideal chi-squared value for that percentile point
 - Set of 100 scale factors now available for Monte Carlo draws

Sets of these calculated for every satellite for propagation points of

interest

NASA NASA

Hard-Body Radius

- HBR is typically found by circumscribing both objects in spheres and combining the objects into one bounding sphere
 - Size of the secondary is typically not known, so added as a large estimate of debris object dimensions

- HBR uncertainties that follow represent a more realistic estimate of the area in the conjunction plane
 - The combined uncertainties are much smaller than the bounding sphere

Primary Object HBR Uncertainty: PDF of More Realistic Values

- Uncertainty estimated by the projected area of the spacecraft in a random orientation on the conjunction plane
 - Simplified geometric model of the spacecraft
 - Save the projection areas to a PDF
 - Projected area expressed as a circular radius

Geometric model of OCO-2 in arbitrary orientation on conjunction plane

Secondary Object HBR Uncertainty (1 of 2)

- For intact spacecraft, possible to use published dimensions
 - For payloads, these are often not precise enough to be useful, and at least some canonical models would have to be imposed
 - Error in all of this great enough that approach is questionable
 - For rocket bodies, published dimensions are probably adequate
 - But many booster types lack published dimensions
- Most common secondaries are debris objects, for which no size information is available
- Can try to estimate size from RCS value
 - CDFs of individual objects' RCS values not available, so must assume canonical distribution
 - 2010 study showed Swerling III to be most common for debris; also most conservative in terms of object sizes
 - Can scale this distribution by average RCS value in CDM to size it properly for any particular debris object
 - Then must transform RCS values to size values

Secondary Object HBR Uncertainty (2 of 2)

Converting RCS to physical size

- Can assume object to be a perfectly conducting sphere
 - Not only a bad assumption for debris, but renders non-unique size solutions
- Can use ODPO-developed Size Estimation Model
 - Certified only for debris smaller than 20cm and then only to convert an entire PDF of RCS values to a PDF of characteristic dimensions
 - Somewhat off-label use, but true to restriction of converting PDFs of data rather than single values

Pc Calculation Resampling

- Resampling/bootstrap methods often used to generate confidence intervals when calculation final distribution unknown
- Early attempts at this with Pc used resampling with invariant covariances
 - Take position draw on primary and secondary covariance at TCA
 - Find new TCA; this defines new nominal miss vector
 - Recompute Pc with this new miss vector and unaltered covariances
 - Problem: covariance is clearly correlated with miss distance
 - Cannot produce new miss distance from covariance-based sampling and then recompute Pc using those same covariances
- Need approach that considers miss distance / covariance linkage

Pc Calculation Resampling Proposed Approach

- J.H. Frisbee proposed a resampling technique that would also address the correlation problem
 - Choose samples from the combined covariance to generate m miss distances
 - Take mean of m miss distances—this is new nominal miss distance
 - Take sample covariance of m miss distances—this is new combined covariance
 - Compute Pc from this mean miss distance and sample combined covariance
 - Repeat procedure *n* times—this produces bootstrap dataset
- In this framework, covariances are considered representatives of parent distributions, here further characterized by resampling
- Issue: what should be the value of *m*?
 - In bootstrapping, want the bootstrap sample size to equal the single-sample size that would have been used (or was used) to estimate the parameter
 - Thus, want the number of samples (DoF) of the bootstrap resampling (*m*) to equal the DoF that produced the covariance in the first place
 - That is, the DoF of the generating OD

Tracking Levels and Degrees of Freedom

- DoF is usually calculated as the number of data points minus the number of estimated parameters
 - JSpOC ODs calculated with SSN obs (usually have range, azimuth, and elevation—three observables)
 - Obs provided in "tracks"—group of obs taken during one tracking session.
- Thus, tabulation issues arise
 - Each ob provides 3 DoF, minus the estimated parameters
 - However, rather little information content in interior obs of a track
 - JSpOC "track weighting" confirms this—all tracks weighted the same in the OD, regardless of length
 - Better tabulation to count each track as equivalent of one state estimate
 - Longish track about enough data to execute a single state estimate
 - Total estimated parameters in OD would thus be only one—one state estimated
 - DoF calculation is thus "# of tracks 1"
 - Would need to be amended for DS, where obs report only two parameters

Resampling Approach Schematic

- Repeated thousands of times to calculate distribution of Pc values
- Benefits
 - Correlation of the miss vector and the covariance
 - Maintains an equivalent sampling level to the original OD
 - Naturally responds to variations in tracking density

NASA SA SESS MITICATE SES MITI

Pc Uncertainty Plot

- Each perturbation (covariance realism, HBR, and resampling) is plotted without inputs from the other perturbations
- Total (blue) line combines all the perturbations

Uncertainty Plot Interpretation

- Fixed primary size against debris: very little HBR variation
- Covariance scaling and natural variation have wider spreads; in each case median lies below nominal value
- Total line has 80% of points below nominal value
- CARA usual threshold for remediation is ~4E-04
 - If worried that nominal is close to this and therefore remediation should perhaps be considered, fewer than 5% of points over that value
 - So can dismiss that possibility fairly easily
- Some users set 1E-04 as remediation threshold
 - Right at median level for Total line

Conclusions and Future Work

Proposed method

- Characterizes the PDF that can represent the Pc from a particular conjunction, given the uncertainties in covariances, HBR and natural variation in the Pc calculation
- Gives a sense of the dynamic range of the Pc and allow maneuver decisions to be based on percentile points of this range rather than the nominal value alone
- Provides a mechanism for obtaining a better expression of the calculation's central tendency (here the median)

Future Work

- Refine DoF calculation and generate expansion for angles-only cases
- Survey results from runs of large datasets
 - Stability studies of simplifying assumptions for faster processing
- Examine potential as a Pc forecaster

