COMPUTATIONAL STATISTICS: TIME SERIES AND DATA MINING

(Spine title: Plib)
(Thesis format: Monograph)

by

Tom Smith

Graduate Program in Statistics and Actuarial Science

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario
London, Ontario, Canada

© Tom Smith 2014

THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:	
Dr. A. I. McLeod	Examiners:
Joint Supervisor:	Dr. Q. Ring
Dr. A. Manning	Dr. W. Fing
Supervisory Committee: Dr. W. J. Braun	Dr. G. Hing
Dr. A. Bing	
Т	he thesis by
1	Com Smith
	entitled:
Computational Statistic	cs: Time Series and Data Mining
requireme	partial fulfillment of the ents for the degree of ters of Science
Date	Chair of the Thesis Examination Board

Abstract

This is a really silly abstract.

Keywords: Time series analysis, data mining

Contents

C	ertificate of Examination	ii
Al	bstract	iii
Li	st of Figures	v
Li	st of Tables	vi
Li	st of Appendices	vii
1	Time series: Long memory	1
2	Theorems 2.1 Basic Theorems	3 3
Bi	bliography	4
A	Proofs of Theorems	5
Cı	urriculum Vitae	6

List of Figures

1 1	A lang mamany time a samias	
1.1	A long memory time series	 J

List of Tables

1.1 A random table

List of Appendices

Appendix A Proofs of Theorems																			5
-------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Chapter 1

Time series: Long memory

Here is a picture of a long memory time series.

Figure 1.1: A long memory time series

Here's a table.

n	α	nα	β
1	0.2	0.2	5
2	0.3	0.6	4
3	0.7	2.1	3

Table 1.1: A random table

$$y = mx + b (1.1)$$

$$= ax + c ag{1.2}$$

This is an un-numbered equation, along with a numbered one.

$$u = px$$

$$p = P(X = x)$$
(1.3)

Look at Table 1.1 and Figure 1.1 and equations 1.1, 1.2, and 1.3. Let's do some matrix algebra now.

$$det \left(\begin{vmatrix} 2 & 3 & 5 \\ 4 & 4 & 6 \\ 9 & 8 & 1 \end{vmatrix} \right) = 42 \tag{1.4}$$

In the equation and equarray environments, you don't need to have the dollar sign to enter math mode.

$$\alpha = \beta_1 \Gamma^{-1} \tag{1.5}$$

This is citing a reference [2]. This is citing another [3]. Nobody said something [1].

Chapter 2

Theorems

2.1 Basic Theorems

Theorem 2.1.1 $e^{i\pi} = -1$

Bibliography

- [1] Nobody Jr. My article, 2006.
- [2] ME. Oh, my! 1990.
- [3] Mr. X. Mr. X Knows BibTeX. AWOL, 2005.

Appendix A

Proofs of Theorems

Proof of Theorem 2.1.1

$$e^{i\pi} = \cos(\pi) + i\sin(\pi) \tag{A.1}$$

$$= -1 \tag{A.2}$$

Curriculum Vitae

Name: Tom Smith

Post-Secondary La La School **Education and** La La Land **Degrees:** 1996 - 2000 M.A.

University of Western Ontario

London, ON 2008 - 2012 Ph.D.

Honours and NSERC PGS M **Awards:** 2006-2007

Related Work Teaching Assistant

Experience: The University of Western Ontario

2008 - 2012

Publications:

La La