Modelo de spins independentes Campo médio no modelo Ising Modelo Ising d=1 Modelo Ising d=2 Exercícios

Modelação e Física Estatística Modelos de magnetismo

António Luís Ferreira

June 6, 2021

Temas

- Modelo de spins independentes
- Campo médio no modelo Ising
- Modelo Ising d=1
- Modelo Ising d=2
 - Matriz de transferência
 - Solução exata
 - Invariância de escala
 - Expansões a alta e baixa temperatura.
 - Redes duais.
 - Valor exato de T_C .
- Exercícios

modelo de spins independentes

interação apenas com campo magnético

- $\mathcal{H}(\{s_i\}) = -H\sum_{i=1}^N s_i = -NHm \text{ com } s_i = \pm 1$, $M = \sum_i s_i$ e $m = \frac{M}{N}$ (magnetização por spin)
 - $\ln Z_N = N \ln (2 \cosh (\beta H)); F(\beta, H) = -\frac{1}{\beta} \ln Z_N$
 - $E = \langle \mathscr{H} \rangle = -NH \tanh{(\beta H)} \text{ com } \lim_{\beta \to \infty} E = -NH \text{ e } \lim_{\beta \to 0} E = 0$
 - $C_{V,H} = \left(\frac{dE}{dT}\right)_{V,H} = Nk_B \frac{(\beta H)^2}{\cosh^2(\beta H)}$, com $\lim_{\beta \to \infty} C_{V,H} \to Nk_B (\beta H)^2 \exp(-2\beta H) \to 0$ e $\lim_{\beta \to 0} C_{V,H} \to Nk_B (\beta H)^2 \to 0$

modelo de spins independentes

- $\langle m \rangle = -\frac{1}{N} \left(\frac{\partial F}{\partial H} \right)_T = \tanh \left(\beta H \right) \, \mathrm{com} \, \lim_{\beta \to \infty} \langle m \rangle = \pm 1 \, \mathrm{e}$ $\lim_{\beta \to 0} \langle m \rangle = 0$
- susceptibilidade, $\chi_T = \left(\frac{\partial \langle M \rangle}{\partial H}\right)_T = \beta \left(\left\langle M^2 \right\rangle \left\langle M \right\rangle^2\right) = N \frac{\beta}{\cosh^2(\beta H)} \text{ e}$ $\chi_{T,H=0} = N \frac{1}{k_B T}, \text{ lei de Curie}$
- entropia, $S = -\left(\frac{dF}{dT}\right)_{N,H} = Nk_B \left[\ln\left(2\cosh\left(\beta H\right)\right) \beta H \tanh\left(\beta H\right)\right] \text{ com} \\ \lim_{\beta \to \infty} S = 0 \text{ e } \lim_{\beta \to 0} S = Nk_B \ln 2$

modelo de spins independentes

- Arrefecimento adiabático.
 - inicialmente $T=T_1$ e aumenta-se H de H_0 até H_1 mantendo o sistema em contacto térmico com reservatório a temperatura T_1 . A entropia diminui de S_0 até S_1
 - diminui-se o campo de H_1 até H_0 com o sistema térmicamente isolado e portanto a entropia constante. A temperatura do sistema diminui até T_2 . Como a entropia é função de $\frac{H}{T}$ temos $\frac{H_0}{T_2} = \frac{H_1}{T_1}$ e $T_2 = T_1 \frac{H_0}{H_1}$ é inferior a T_1

teorias de campo médio

- $\mathcal{H} = -J\sum_{(i,j)} s_i s_j H\sum_i s_i \text{ com } \sum_{(i,j)} \cdots \text{ soma sobre pares de vizinhos próximos}$
- Campo efetivo, $H_{\text{eff}} = Jzm + H$; onde z é o número de vizinhos.
- Hamiltoniano de campo médio, $\mathscr{H}_{\mathrm{cm}} = -H_{\mathrm{eff}} \sum_{i} s_{i}$
 - Com H=0 temos $m=\tanh{(\beta Jzm)}$ usando a expansão $\tanh{x}\simeq x-\frac{x^3}{3}$ quando $m\to 0$ temos uma solução
 - m=0 para $T>T_c=z\frac{J}{k_B}$
 - ullet e duas soluções $m=\pm\left(rac{3}{zeta J}
 ight)^{1/2}\sqrt{T_c-T}$ para $T< T_c$
 - ullet Temos $m\sim ({\it T}_c-{\it T})^{eta_{
 m cm}}$ para ${\it T}<{\it T}_c$ com $eta_{
 m cm}=1/2$

teorias de campo médio

- Em T = T_C o sistema tem uma transição de fase contínua; A magnetização é designada por parâmetro de ordem e varia contínuamente na transição.
- ullet Susceptibilidade magnética, $\chi_T = \left(rac{\partial \langle M
 angle}{\partial H}
 ight)_{T,H=0}$
 - Demonstra-se que para $T\gtrsim T_c$ temos $\chi_{T,H=0}=N\frac{1}{k_B}\frac{1}{T-T_C}$, e para $T\lesssim T_c$ $\chi_{T,H=0}=N\frac{1}{2k_B}\frac{1}{T_C-T}$ Lei de Curie-Weiss.
 - A susceptibilidade diverge em $\check{T}=T_C$. Numa transição de fase de $2^{\underline{a}}$ ordem há divergências ou descontinuidades nas derivadas de $2^{\underline{a}}$ ordem da energia livre.
 - $\chi_{T,H=0} \sim |T T_C|^{-\gamma_{\rm cm}} \operatorname{com} \gamma_{\rm cm} = 1$

teorias de campo médio

- Isotérmica crítica: Para $T=T_C$ e H pequeno $m=(3\beta H)^{1/3}\sim H^{1/\delta_{\rm cm}}$ com $\delta_{\rm cm}=3$
- Energia interna, em campo nulo: $E=-rac{N}{2}Jzm^2$ com E=0 para $T>T_c$
- ullet Capacidade térmica em campo nulo, $C_{V,H=0}=\left(rac{\partial E}{\partial T}
 ight)_{V,H=0}$
 - Demonstra-se que $C_{V,H=0}=3Nk_B\left(\frac{1}{2}+\frac{T_C-T}{T_C}\right)$ para $T< T_c$ e $C_{V,H=0}=0$ para $T>T_c$ sendo descontínua em $T=T_C$

Modelo Ising numa rede totalmente conectada

- $\mathscr{H} = -\frac{J}{N}\sum_{i,j\neq i} s_i s_j + \frac{N-1}{2}J H\sum_i s_i$ onde se adicionou o termo constante $\frac{N-1}{2}J$ para que \mathscr{H} seja nulo quando todos os spins são iguais em campo nulo. Esta expressão pode ser simplificada para $\mathscr{H} = \frac{NJ}{2} \frac{NJ}{2}m^2(\underline{s}) NHm(\underline{s})$ com $m = \frac{1}{N}\sum_i s_i$.
 - $Z_N(\beta, H) = \sum_m \binom{N}{n_+} \exp(-\beta \mathscr{H})$, com $n_+ = N \frac{1+m}{2}$ e $n_- = N \frac{1-m}{2}$. Usando a fórmula de Stirling podemos simplificar $\ln \binom{N}{n_+} \simeq -N \left[p_+ \ln p_+ + (1-p_+) \ln (1-p_+) \right] = NS_B(p_+)$ com $p_+ = \frac{1+m}{2}$.

rede totalmente conectada

- $Z_N(\beta, H) = \sum_m \exp\left(N\left[S_B(\frac{1+m}{2}) \frac{\beta J}{2}(1-m^2) + \beta Hm\right]\right)$, $Z_N(\beta, H) = \int_{-1}^1 dm \exp\left(N\Phi_{cm}(m)\right)$, com $\Phi_{cm}(m) = S_B(\frac{1+m}{2}) - \frac{\beta J}{2}(1-m^2) + \beta Hm$.
- Método de Laplace: Se $\Phi_{\rm cm}(m,\beta,H)$ tem um máximo em m_0 , no interior do intervalo de integração, então, no limite em que N é muito grande $Z_N(\beta,H)=\sqrt{\frac{2\pi}{N|\Phi_{\rm cm}^{\prime\prime}(m_0)|}}\exp(N\Phi_{\rm cm}(m_0))$.
- $\frac{d}{dm}\Phi_{\rm cm}(m)=\beta(Jm+H)+\frac{1}{2}\ln\frac{1-m}{1+m}$ e $m_0=\tanh\left(\beta\left(Jm_0+H\right)\right)$
- com H=0 temos $\beta_c J=1$ ou seja $T_c=J/k_B$

Modelo Ising d=1

•
$$\mathcal{H} = -J\sum_{i=1}^{N} s_i s_{i+1} - H\sum_i s_i$$

- Condições fronteira livres em campo nulo
 - $Z_N = 2 \cosh(\beta J) Z_{N-1} = 2 (2 \cosh(\beta J))^{N-1}$
 - $\langle E \rangle = -NJ \tanh(\beta J)$, $S = Nk_B [\ln(2 \coth(\beta J)) \beta J \tanh(\beta J)]$
 - Capacidade térmica, $C_V = \left(\frac{d}{dT}\langle E \rangle\right)_H = Nk_B \frac{(\beta J)^2}{\cosh^2(\beta J)}$

$$Z_{1} = \sum_{\lambda_{1}} \sum_{\lambda_{1}} \sum_{\lambda_{2}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{1} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{N-1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{1} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{N-1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{N-1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{N-1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{2}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{1}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{1}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{1}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{2} + \frac{\lambda_{2}}{\lambda_{1}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{1} + \frac{\lambda_{1}}{\lambda_{1}} \lambda_{2} + \cdots + \frac{\lambda_{N-1}}{N-1} \lambda_{N} \right)$$

$$= \sum_{\lambda_{1}} \sum_{\lambda_{1}} \left(\frac{\beta J}{\lambda_{1}} \lambda_{1} + \frac{\lambda_{1}}{\lambda_{1}} \lambda_{2} + \cdots + \frac{\lambda_{N-$$

Modelo Ising d=1

- Condições fronteira livres em campo nulo
 - Função de correlação de spins

•
$$\langle s_k s_{k+r} \rangle = [\tanh(\beta J)]^r = \exp\left(-\frac{r}{\xi}\right)$$

•
$$\xi = -1/\ln\tanh(\beta J)$$

 Condições fronteira periódicas Método da matriz de transferência.

$$\mathcal{H} = -J\sum_{i=1}^{N} s_i s_{i+1} - \frac{H}{2} \sum_i (s_i + s_{i+1})$$

$$T_{s,s'} = \exp\left(\beta \left(Jss' + \frac{H}{2}(s+s')\right)\right)$$

$$Z_{N} = \beta^{2} Z_{N} Z_$$