Experiência 1 – Modelagem matemática e linearização do ECP M-505 Pêndulo Invertido

Rodrigo Seiji Piubeli Hirao (186837)

3 de abril de 2021

Conteúdo

1	Rep	presentação por variáveis de estado e simulação do pêndulo não linear
	1.1	Forma de variáveis de estado
	1.2	Simulação do sistema não linear
	1.3	Haste fixa
		1.3.1
		1.3.2
		1.3.3
2	Line	ear <mark>izaçã</mark> o
	2.1	Processo de Linearização
		Função de Transferência
		Comparação Linear x Não linear

1 Representação por variáveis de estado e simulação do pêndulo não linear

1.1 Forma de variáveis de estado

Usando a seguinte mudança de variáveis:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \theta \\ \dot{\theta} \\ x \\ \dot{x} \end{bmatrix}$$

Foram encontradas as seguintes equações de estado para o sistema do pêndulo invertido:

$$\dot{x} = \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \dot{x_3} \\ \dot{x_4} \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{-2m_1x_3x_4x_2 - m_1l_0x_3x_2^2 + m_2l_cgsen(x_1) + m_1gx_3cos(x_1) + l_0F}{J} \\ x_4 \\ \frac{J^*x_3x_2^2 + 2m_1l_0x_3x_4x_2 - (m_2l_0l_c - \bar{J})gsen(x_1) - m_1l_0gx_3cos(x_1) - \frac{J^*}{m_1}F}{J} \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

1.2 Simulação do sistema não linear

Foi feita a simulação do sistema a partir das equações das variáveis de estado

Figura 1: Simulação do sistema não linear no Simulink

E foi medido o ângulo θ com as condições iniciais $\theta(0) = \frac{\pi}{8}, \dot{\theta}(0) = x(0) = \dot{x}(0) = 0$

Figura 2: $\theta(t)$, $\theta(0) = \frac{\pi}{8}$

Sabendo que com a condição incial de $\theta(0)=0$ a função se mantém constante no valor de 0 é possível ver que o o ponto $\theta(0)=0$ é um ponto de equilíbrio, e ao rodar a simulação com $\theta(0)=\frac{\pi}{8}$ pode-se perceber que o valor se afasta de 0, assim fazendo $\theta(0)=0$ ser um ponto de equilíbrio instável.

1.3 Haste fixa

Com $x = \dot{x} = 0$ temos a equação simplificada:

$$\begin{cases} (m_2 l_0 l_c - \bar{J}) gsen(\theta) = \frac{J^*}{m_1} F \\ \bar{J} \ddot{\theta} - m_2 l_c gsen(\theta) = -l_c F \end{cases}$$
 (1)

Com as seguintes variáveis de estado:

$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{m_2 l_c g sen(x_1) + l_0 F}{\bar{J}} \end{bmatrix}$$

1.3.1

Simulando o resultado para as os seguintes valores iniciais de θ , temos as seguintes frequências:

$\theta(0)$	f (mHz)
0.1	686.5
0.4	681.0
0.7	666.9
1.0	645.1
1.3	615.8
1.6	578.9
1.9	534.3
2.2	481.5
2.5	418.7

Figura 3: $f(\theta)$

Mostrando que o sistema funciona com maiores frequências quanto menor o ângulo inicial.

1.3.2

Simulando o resultado com o valor inicial de $\theta(0) = \frac{\pi}{8}$ e usando os seguintes valores de l_{w2} , temos as seguintes frequências:

$l_{w2}(cm)$	f (mHz)
-15	698.0
-30	720.0
-50	627.6
-60	587.0

Figura 4: $f(l_{w2})$

Onde temos um pico de frequência próximo de $l_{w2} = -30cm$ que é quando o momento angular do contrapeso começa a se igualar ao da haste.

1.3.3

Testando com diferentes valores de $l_{w2} > -15cm$ foi encontrado o menor valor de $l_{w2} = -5.573cm$ onde o ponto $\dot{x} = x = \dot{\theta} = \theta = 0$ é um ponto de equilíbrio instável, assim tendo o ângulo se afastando de 0 e se estabilizando em, no caso, 3.42 rad:

Figura 5: $\theta(t), l_{w2} = -5.573cm$

2 Linearização

2.1 Processo de Linearização

O sistema será linearizado em torno do ponto $x = [0, 0, 0, 0]^T$. Calculando o Jacobiano em torno desse ponto temos que:

$$\dot{x} = Ax + BF = \begin{bmatrix} \frac{\partial \dot{x}1}{\partial x_1}(0) & \frac{\partial \dot{x}1}{\partial x_2}(0) & \frac{\partial \dot{x}1}{\partial x_3}(0) & \frac{\partial \dot{x}1}{\partial x_4}(0) \\ \frac{\partial \dot{x}2}{\partial x_1}(0) & \frac{\partial \dot{x}2}{\partial x_2}(0) & \frac{\partial \dot{x}2}{\partial x_3}(0) & \frac{\partial \dot{x}2}{\partial x_4}(0) \\ \frac{\partial \dot{x}3}{\partial x_1}(0) & \frac{\partial \dot{x}3}{\partial x_2}(0) & \frac{\partial \dot{x}3}{\partial x_3}(0) & \frac{\partial \dot{x}3}{\partial x_4}(0) \\ \frac{\partial \dot{x}4}{\partial x_1}(0) & \frac{\partial \dot{x}4}{\partial x_2}(0) & \frac{\partial \dot{x}4}{\partial x_3}(0) & \frac{\partial \dot{x}4}{\partial x_3}(0) \end{bmatrix} x + \begin{bmatrix} \frac{\partial \dot{x}1}{\partial F}(0) \\ \frac{\partial \dot{x}2}{\partial F}(0) \\ \frac{\partial \dot{x}3}{\partial F}(0) \\ \frac{\partial \dot{x}4}{\partial F}(0) \end{bmatrix} F = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{m_2 l_c g}{J} & 0 & \frac{m_1 g}{J} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{(m_2 l_0 l_c - \bar{J})g}{J} & 0 & \frac{m_1 l_0 g}{J} & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ \frac{l_0}{J} \\ 0 \\ \frac{J^*}{m_1 J} \end{bmatrix} F$$

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} x$$

2.2 Função de Transferência

Usando as funções s
s e tf do matlab foi descoberta a função de transferência do sistema a partir das variáveis de estado linearizadas.

ans =

```
A =
            x1
                     x2
                              хЗ
                                       x4
                              0
   x1
             0
                      1
                                       0
       -18.68
                      0
                          51.88
                                       0
   x2
                               0
   xЗ
             0
                      0
                                        1
   x4
         15.97
                         -17.12
  B =
               u1
   x1
                0
   x2
        0.007466
   хЗ
   x4
       -0.006737
  C =
            x2
                xЗ
                    x4
                 0
                      0
   y1
  D =
       u1
   у1
        0
Continuous-time state-space model.
>> [Num, Den] = ss2tf(A, B, C, D)
Num =
          0
                     0
                          0.0075
                                               -0.2217
Den =
                                           0 -508.4471
    1.0000
              -0.0000
                         35.8044
>> tf(Num, Den)
```

Continuous-time transfer function.

 $0.007466 \text{ s}^2 - 0.2217$

 $s^4 - 4.885e - 15 s^3 + 35.8 s^2 - 508.4$

ans =

Figura 6: Simulação com a função de transferência do sistema linearizado

2.3 Comparação Linear x Não linear

Comparando a resposta do sistema à entrada degrau de amplitude F, é visto que o sistema se comporta similar em ângulos próximos de 0, mas quanto mais distante o ângulo se afasta de 0, mais as respostas se divergem, a ponto do sistema linearizado não ser mais um sistema estável.

Figura 7: Gráfico do sistema não liear e linearizado, ${\rm F}=0.01{\rm N}$

Ao aumentar a força externa, pode ser visto ainda que o sistema linearizado deixa de ser confiável logo no começo, pela força externa fazer com que o pêndulo já se afaste consideravelmente de 0, fazendo a linearização não poder mais ser usada.

Figura 8: Gráfico do sistema não liear e linearizado, F $=2000\mathrm{N}$