

Lambton College

School of Computer Studies

Lecture 2

CBD-3335 Data Mining and Analysis

Learning Outcomes

- Data Taxonomies.
- Data sources, and types
- Textual Data Challenges.
- Feature Selection.
- Theory of Measurements

Data Taxonomies

- Categorizing data from different aspects
 - Data source
 - Data type
 - Structure
 - Time
 - Dimensionality
 - Quality

Data Sources Where data comes from?

- Database and data warehouses: Queries
- Sensory data (usually real-time): temperature data
- Data entry: questionaries' data, data surveys
- Online data: data from other computers
- Embedded data: data from computers inside other devices such as mobile data
- Web data: data collected from web resources
- User-generated data: Content generated by user

Data

- Numerical
- Categorical

Numerical data is information that is measurable and represented as numbers. It can be

- a) Discreate (Interval), or
- b) Continuous (Real, Ratio).

- 1. Discreate: Numerical data that have a logical end. Examples: Variables for days in the month, or number of bugs logged.
- 2. Continuous: Numerical numbers that don't have a logical end.

Examples: Variables that represent money or height.

Categorical data is any data that isn't number; which can mean a string of text or date. It can be mainly

- a) Ordinal, or
- b) Nominal.
- Ordinal: Categorical data that have a set order to them.
 Examples: Having a priority on a bug such as "Critical" or "Low" or the ranking of a race as "First" or "Third".
- 2. Nominal: represent values with no set order to them.

Examples: Variables such as "Country" or "Marital Status".

Binary data a special type of categorical data type having only two values – yes or no.

- This can be represented in different ways such as "True" and "False" or 1 and 0.
- Often used to represent one of two conceptually opposed values, e.g.
 the outcome of an experiment ("success" or "failure")
- Binary data occurs in many different technical and scientific fields, where it can be called by different names:
 - "bit" (binary digit) in computer science,
 - "truth value" in mathematical logic and related domains,
 - "binary variable" in statistics.

Structured & unstructured data

Structured data:

- Data that can be stored in a tabular form
- Every instance has the same structure
- Can be easily stored, organized, searched, recorded and merged with other structured data.
- Suitable for integration into an analytics records.

Example: The demographic data for a population where each row in the table describe one person (attributes: name, age, date of birth, gender, address, education, employment status etc.)

Structured & unstructured data

Unstructured data:

- Structure of data might not necessarily the same in every instance
- Each instance might have its own internal structure
- More common data type in real world; email tweets, text, posts, image, music, video, input from sensors etc. can be some examples.
- Difficult to analyze due to variation in structure.

Example: Dataset of webpages; each website might have data of an unique type).

Semi-structured data

- Most XML data
- Wordnet:
 - WordNet is a lexical database of semantic relations between words
- WordNet links words into semantic relations including synonyms, hyponyms, and meronyms.

Time

- Temporal data: financial data, twitter streaming data
 - Real-time data: time sensitive, if we miss reading any data, the consequence might be disastrous.
 - Non-time sensitive: We may miss some data without any dramatic consequences.
 - If data is numeric in type, data is a time series.
 - Static data: Fingerprint or biometric data

Dimension

- One dimensional:
 - body temperature, crime index, financial data
- Two-dimensional:
 - Image data (nxn matrix of pixels)
- N- dimensional:
 - Demographic data (age, height, weight, eye-color, race, DOB, POB, gender, occupation,)
- High dimensional:
 - Text data, Gene-expression data

Quality (1)

- Good quality data: Twitter of COVID-19 about recent Pandemic.
- Noise:
 - Faulty data collection instruments
 - Human or computer error at data entry
 - Errors in data transmission
- Outlier: IQ>160 when collecting IQ of high school students in public schools
- Inconsistent: (salary = -5000\$)
 - containing discrepancies in codes or names

Quality (2)

- Twitter data example
- Incomplete: A broken tweet, (John, 21, male, ??, 160 lb, American, ??)
 - lacking attribute values, lacking certain attributes of interest, or containing only aggregated data
- Missing: Some missing tweets because of rate of sampling
- Duplicate: Many copies of a single tweet
- Irrelevant: Lady GAGA concert in Chicago

Quality (3)

- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - e.g., duplicate or missing data may cause incorrect or even misleading statistics.

Textual Data Challenges

- Information is in unstructured textual format
- Large textual database
- Very high number of possible "dimensions" (but sparse):
 - all possible words and phrase types in the language!!
- Complex and subtle relationships between concepts in text
 - "AOL merges with Time-Warner" "Time-Warner is bought by AOL"

Textual Data Challenges

- Word ambiguity and context sensitivity
 - automobile = car = vehicle = Toyota
 - Apple (the company) or apple (the fruit)
- Noisy data: Spelling mistakes

Features (1)

- The piece of input data for which an output value is generated is formally called an instance.
 - Record, instance, object, observation, data
- The instance is formally described by a vector of features, which together constitute a description of all known characteristics of the instance.
 - Field, feature, variable, measurement
- The feature vectors can be seen as defining points in an appropriate multidimensional space.

Features (2)

- Vector methods can be correspondingly applied to them, such as computing the dot product or the angle between two vectors.
- <u>Vector space model</u>: Mostly in text data but can be used in other Pattern Recognition and data mining tasks.
 - Every data is a vector in a multi (high) dimensional space

Type of Features (1)

- Categorical aka nominal: consisting of one of a set of unordered items
 - Such as a gender of "male" or "female", or a blood type of "A", "B", "AB" or "O"
- Ordinal: consisting of one of a set of ordered items
 - Such as "large", "medium" or "small"
- Integer-valued
 - Such as a count of the number of occurrences of a particular word in an email

Type of Features (2)

- Real-valued
 - Such as a measurement of blood pressure
- Often, categorical and ordinal data are grouped together; likewise for integer-valued and real-valued data.
- Many algorithms work only with categorical data, such Naïve Bayes Classifier. How can we use numerical features? and require that real-valued or integer-valued data be discretized into groups (e.g., less than 5, between 5 and 10, or greater than 10).

Feature Selection (1)

- When do we employ feature selection?
 - For very high dimensional data, in which feature extraction might be expensive
 - Features are not numeric
 - We are looking for meaningful features

$$y_j = a_{j1}x_1 + a_{j2}x_2 + \Box + a_{jm}x_m$$

Feature Selection (2)

- Feature Selection
 - Searching the feature space for a subset of features maximizing an objective function (quality index)
 - Wrappers
 - Filters
 - Feature ranking
 - Embedded
 - Markov Blanket

Feature Selection (3)

- Search strategy: search the power set of the feature set to find the optimum feature subset
 - Exhaustive search: the order of the search space is $O(2^m)$
 - Search strategy to reduce the size of the search space
 - Sequential Forward Selection (SFS)
 - Sequential Backward Selection (SBS)
 - Beam search
 - Simulated annealing

Search Strategies (2)

- Sequential Forward Selection (SFS)
 - 1. Start with empty set: Y ← {}
 - 2. Select the next best feature that maximizes the objective function of the selected features

$$z \leftarrow \underset{x \notin Y}{\operatorname{argmax}}[h(Y + \{x\})]$$

3. Update Y:

 $Y \leftarrow Y + \{z\}$

- 4. Go to 2
- Example:
 - Select the best feature subset among $X=\{x_1,x_2,x_3,x_4\}$
 - Objective function
- $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

Search Strategies (3)

- SFS performs best when the optimal subset has a small number of features
- When the search is near the empty set, a large number of states can be potentially evaluated
- Towards the full set, the region examined by SFS is narrower since most of the features have already been selected

Search Strategies (4)

- Sequential Backward Selection (SBS)
 - 1. Start with full set: $Y \leftarrow X$
 - Select the next worst feature that maximizes the objective function of the selected features

$$z \leftarrow \underset{x \notin Y}{\operatorname{arg\,max}} [h(Y - \{x\})]$$
$$Y \leftarrow Y - \{z\}$$

- 3. Update Y:
- 4. Go to 2

$$h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

 $h=3x_1+2x_2+6x_3+4x_4-2x_1x_2-4x_1x_2x_3-7x_1x_2x_3x_4$

Objective Function (1)

- Objective function to evaluate the feature subset during the search
 - The objective function is a classifier evaluating feature subsets by their predictive capacity (classifier performance) → Wrapper approach
 - The objective function evaluates feature subsets by their information content, relevance, interclass distance, statistical dependence or information-theoretic measures → Filter approach

Objective Functions (2)

- Distance-based measures: a good feature subset is increasing intraclass similarity and decreasing inter-class similarities
- Correlation-based measures: a good feature subset is correlated with the relevant class. All features should be uncorrelated with each other
- Information-theoretic measures: A good feature shares maximum information with the relevant class

Missing Value

- A variable in an observation does not have any value recorded.
- Common in most real-world datasets (examples: incomplete or partial data for an observation, missing sequence, incomplete feature, reporting error etc.)

Importance

- Can have serious performance effect if not taken care of
- Missing data fields needs to be transformed to fit into ML modeling and further analysis

Missing value example

Student test scores of a class in certain point in time

- Student-6 missed the assignment
- Student-4 test score not recorded by mistake
- Student-8 presentation score on hold for re-submission

Student ID	Assignment	Midterm	Presentation
1	28	47	10
2	22	45	9
3	30	46	9
4	24	N/A	10
5	27	43	8
6	N/A	49	9
7	26	43	8
8	26	48	N/A
9	27	41	10
10	25	40	8

Missing Value Handling

- Missing data reduces the representativeness of the sample.
- Makes it difficult to process the data for many analysis models / algorithms.
- Three main approaches to deal with missing values-
 - 1. Imputation
 - 2. Omission
 - 3. Analysis

Missing Value Handling

Imputation

- Values are filled in the place of missing data
- Works well for situation where analysis tools are not robust to missing values
- Dataset sizes are not reduced but noise gets imposed with the imputation

Estimation methods: regression, maximum likelihood estimation and approximate Bayesian bootstrap

Missing Value Handling

Omission

- Samples with invalid data are discarded from further analysis
- Creates a subset of dataset with no missing values
- Works well for models that are not robust against data missingness

Example techniques: list-wise deletion, pair-wise deletion

Missing Value Handling

Analysis

- Samples with invalid data are discarded from further analysis
- Model-based techniques used to determine missing values
- Various non-stationary Markov chain models can be used for time series data

Analysis: Markov chain models can be used for time series data

Error in Data

- The difference between the recorded data and true value
- Higher error rates in data makes it less representative

Types

- The major types of data error includes-
- Sampling error
- Non-sampling error

Sampling error

- Error for using data from sample of the population, in place of entire population
- It's the difference between the estimate from the sample and true vale for the population
- Could occur for very small sample size
- If the sampling is not random and have some bias

Theory of Measurements

Reference / True Value

Accuracy & Precision

Theory of Measurements

Low Accuracy, Low Precision

Low Accuracy, High Precision

Accuracy & Precision

Theory of Measurements

How would "High accuracy, High precision" look like?

Accuracy & Precision

Relational Database

Relational Model

- Relational model uses table (called relation) to represent a collection of related data values
- Rows are called records or tuples
- Columns are called attributes
- The number of attributes (i.e., number of columns) is called the degree
- Example database: MySQL, PostgreSQL and SQLite3

Relational Database

Relational database terminology

Non-relational database

- Database that does not use the tabular schema of rows and columns;
 i.e. it don't use relational model.
- Often refers to NOSQL (not only SQL); Data may be stored as
 - simple key/value pairs
 - JSON documents or
 - a graph consisting of edges and vertices.
- Most NOSQL systems are distributed databases or distributed storage systems
- Example DB: MongoDB, Oracle NoSQL, Apache CouchDB and Redis.

NOSQL Systems

- Database NOSQL systems focus on storage of "big data"
- Typical applications that use NOSQL
 - Social media
 - Web links
 - Marketing and sales
 - Posts and tweets
 - Road maps and spatial data
 - Email

NOSQL Systems

- BigTable
 - Google's proprietary NOSQL system
 - Column-based or wide column store
- DynamoDB (Amazon)
 - Key-value data store
- Cassandra (Facebook)
 - Uses concepts from both key-value store and column-based systems

NOSQL Systems

- MongoDB and CouchDB
 - Document stores
- Neo4J and GraphBase
 - Graph-based NOSQL system
 - OrientDB
 - Combines several concepts

NOSQL characteristics

- With respect to Data models and query languages
 - Schema not required
 - Less powerful query languages
 - Versioning

NOSQL characteristics

- With respect to distributed databases and distributed systems
 - Scalability
 - Availability, replication, and eventual consistency
 - Replication models (Master-slave & Master-master)
 - High performance data access

Next session: Text Analysis

