#### **Group 3**

# Inventory Management with Blockchain

•••

Presented by

Rimi Reza Duity - 21166043 Shovon Paulinus Rozario - 21166036

#### Introduction

- Blockchain is a growing list of records (blocks) linked together using cryptography
- It is used as a publicly distributed ledger
- It ensures high-security & full transparency in transactions
- Its implementation in supply-chain making inventory system management more efficient and transparent to the stakeholders

## Background/Literature-Survey

- Inventory management issues:
  - Excess inventory
  - Poor service levels
  - Low product turnover
  - Failure to keep track of stock
  - Lack of visibility
  - Experiencing difficulty while identifying demand patterns
- The research questions have been formulated as follows:
  - How are businesses currently taking care of their inventory management and what are the current bottlenecks and issues they are facing?
  - What are the characteristics and challenges of blockchain?
  - How is blockchain currently being used in SCM and inventory management, and what are its benefits and challenges?
  - $\circ$  Has blockchain got the potential to solve the previously found inventory management issues? If so, how?
  - What is the current stance of experts working in inventory management on blockchain and could they accept it as a state-of-the-art technology designed to solve the issues?

#### Ideas/Plans

- Blockchain will be used for record keeping
- Assets such as units of inventory, orders, loans etc will be given unique identifiers, serving as digital tokens
- Participants in the blockchain will be given unique digital signatures to sign the blocks they add to the blockchain

#### Capturing the Details of a Simple Transaction: Conventional vs. Blockchain Systems

The financial ledgers and enterprise resource planning systems now used don't reliably allow the three parties involved in a simple supply-chain transaction to see all the relevant flows of information, inventory, and money. A blockhain system eliminates the biling spots.



|                                                                                                                             | CONVENTIONAL RECORD K | BLOCKCHAIN BLOCKS ADDED |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|
| 1. Retailer places<br>order with<br>supplier. Supplier<br>acknowledges<br>receipt of order.                                 | <b>₩</b> ≥            |                         |
| 2. Supplier requests loan from bank. Bank provides financing to supplier.                                                   |                       |                         |
| 3. Supplier invoices and ships merchandise to retailer.                                                                     | <b>→</b>              |                         |
| 4. Retailer pays supplier for merchandise.                                                                                  | → <b> </b>   =        |                         |
| 5. Supplier<br>repays bank.<br>Bank closes<br>loan record.                                                                  |                       |                         |
| 6. Retailer returns<br>unsold or damaged<br>merchandise to<br>supplier and<br>invoices for it.<br>Supplier pays<br>invoice. |                       |                         |

#### Ideas/Plans

- Every step of the transaction will be recorded on the blockchain as a transfer of the corresponding token from one participant to another
- The blockchain needs to be private

#### Capturing the Details of a Simple Transaction: Conventional vs. Blockchain Systems

The financial ledgers and enterprise resource planning systems now used don't reliably allow the three parties involved in a simple supply-chain transaction to see all the relevant flows of information, inventory, and money. A blockchain system eliminates the blind soots



|                                                                                                                             | CONVENTIONAL RECORD KE |             | BLOCKCHAIN      |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----------------|
| Retailer places<br>order with<br>supplier. Supplier<br>acknowledges<br>receipt of order.                                    | FINANCIAL LEDGERS      | BLIND PARTY | BLOCKS<br>ADDED |
| 2. Supplier requests loan from bank. Bank provides financing to supplier.                                                   |                        |             |                 |
| 3. Supplier invoices and ships merchandise to retailer.                                                                     |                        |             |                 |
| 4. Retailer pays supplier for merchandise.                                                                                  | → <b>→</b>   =         |             |                 |
| 5. Supplier<br>repays bank.<br>Bank closes<br>loan record.                                                                  |                        | STORE STORE |                 |
| 6. Retailer returns<br>unsold or damaged<br>merchandise to<br>supplier and<br>invoices for it.<br>Supplier pays<br>invoice. |                        |             |                 |

### **Potential Challenges**

- Need for a governance mechanism to determine the rules of the system
- Another challenge will be to figure out how to address the impact that blockchain could have on pricing and inventory-allocation decisions by making information about the quantity or age of products in the supply chain more transparent

#### Conclusion

There is considerable room to improve supply chains in terms of end-to-end traceability, speed of product delivery, coordination, and financing. The proposed system with blockchain can be a powerful tool for addressing the deficiencies.

# Bibliography

- 2019. Blockchain in retail: Optimizing inventory management with Modex BCDB. https://modex.tech/blockchain-in-retail-optimizing-inventorymanagement-with-modex-bcdb/
- 2020. Building a Transparent Supply Chain.
   https://hbr.org/2020/05/building-a-transparent-supply-chain
- David Banks. 2021. Is blockchain the future of inventory management?
   https://www.theexeterdaily.co.uk/news/business/blockchain-future-inventory-management
- Naveen Joshi. 2019. How manufacturers can use blockchain for inventory management.
   https://www.allerin.com/blog/how-manufacturers-can-useblockchain-for-inventory-management
   nt

# **Thank You!**