

# IC Invention and Silicon Valley Overview of Semiconductor Industry

Chun-Zhang Chen, Ph.D.

June 28 - July 2, 2021



# **Topics**



| Inventions                                |  |
|-------------------------------------------|--|
| 60 <sup>th</sup> Anniversary of Fairchild |  |
| Intel and Moore's Law                     |  |
| Stanford University and UC Berkeley       |  |
| The Creation of Silicon Valley            |  |

#### **Invention of Junction Transistor**



- 1947 the first junction transistor
  - John Bardeen, William Shockley & Walter Brattain
  - 1956 Nobel Prize in Physics

BCS theor

• 1972 Nobe

Shockley



rieffer

#### **Shockley Semiconductor Laboratory**

• 1956, William Shockley founded the Lab

The first high tech company in Silicon Va

A division of Beckman Instruments





## The First *Integrated Circuit* (1/2)



- Jack Kilby (1923-2005)
  - •Inventor of (Ge) IC in 1958
  - IEEE milestones, Nobel Prize in 2000
  - 1964, U.S. Patent 3,138,743





US Patents filed: 3,138,743 (2/6/59) 3,138,744 (5/6/59)



## The First *Integrated Circuit* (2/2)



Arthur Rock, Chairman of Intel's Board, said:

**Noyce**: the visionary, born to inspire; **Moore**: the virtuoso of technology; and

Grove: the technologist turned management

scientist.

- Robert Noyce (1927-1990)
  - "The Traitorous 8"
  - Co-founded Fairchild in 1957
  - Co-inventor of (Si) IC in 1958
  - Co-founded Intel in 1968
  - "The Mayor of Silicon Valley"



Optimism is an essential ingredient of innovation. How else can the individual welcome change over security, adventure over staying in safe places?

— Robert Noyce —

AZ QUOTES

Al-Big Data & SoC Design

## **Computer History Museum**



- Sept 2017
  - FAIRCHILD SEMICONDUCTOR: THE 60TH ANNIVERSARY OF A SILICON VALLEY LEGEND



# **Topics**



| Inventions                                |  |
|-------------------------------------------|--|
| 60 <sup>th</sup> Anniversary of Fairchild |  |
| Intel and Moore's Law                     |  |
| Stanford University and UC Berkeley       |  |
| The Creation of Silicon Valley            |  |

#### **Fairchild Semiconductor**



- 1956, William Shockley founded the Lab
- 1957, Fairchild Semi was formed...
  - A division of Fairchild Camera & Instruments
  - 1959, "IC-Si" (vs. "IC-Ge"); planar process
- IC-Si and Planar Process
  - Jean Hoerni, planar process (2 US patents)
  - Robert Noyce ...

## "The Traitorous Eight"



- 1956, Shockley Semiconductor Laboratory
- 1957, Fairchild Semi was formed...
- 1957, "The Traitorous Eight" resigned ...
  - Gordon Moore, C. Sheldon Roberts, Eugene Kleiner, Robert
     Noyce, Victor Grinich, Julius Blank, Jean Hoerni and Jay Last

### Fairchild Today



- 1957 Founded in San Jose
  - as A division of Fairchild Camera & Instruments
  - Schlumberger bought the firm in 1979
  - Schlumberger sold it to National Semiconductor in 1987;
- Fairchild was spun off as an independent company in 1997
- ON Semiconductor acquired Fairchild in September 2016



# **Topics**



| Inventions                                |  |
|-------------------------------------------|--|
| 60 <sup>th</sup> Anniversary of Fairchild |  |
| Intel and Moore's Law                     |  |
| Stanford University and UC Berkeley       |  |
| The Creation of Silicon Valley            |  |

## Intel and Microprocessors



- An IDM of *Int*egrated *el*ectronics
  - x86 Series and PC
  - Supplies for Apple, Lenovo, HP and Dell
- Arthur Rock: "Intel needs Noyce, Moore and Grove..."
  - Robert Noyce, "The Mayor of Silicon Valley"
  - Gordon Moore, Moore's Law (1965/1975)
  - Andrew Grove, Only the Paranoid Survive (1996)



#### Moore's Law



- Moore's Law
- Dennard Scaling
- Intel
  - Tick-Tock
  - Process-ArchitectureOptimization

#### Moore's law

Moore's law is the observation that the number of transistors in a dense integrated circuit doubles approximately every two years.

➤ The observation is named after Gordon Moore, the co-founder of Intel and Fairchild Semiconductor, whose 1965 paper described a doubling every year in the number of components per integrated circuit, and projected this rate of growth would continue for at least another decade

#### **Transistor Density and Moore's Law**





Intel, at 10nm, Transistor Density >100MTr/mm<sup>2</sup>

## More Moore, More than Moore, & Beyond CMOS ® 作時時候就算





Figure 1: The combined need for digital and non-digital functionalities in an integrated system is translated as a dual trend in the ITRS: miniaturization of the digital functions ("More Moore") and functional diversification ("More-than-Moore").

## **Dennard Scaling Law**



- Dennard (1974) observed that voltage and current should be proportional to the linear dimensions of a transistor
  - Thus, as transistors shrank, so did necessary voltage and current; power is proportional to the area of the transistor.
  - Capacitance is related to area
    - So, as the size of the transistors shrunk, and the voltage was reduced, circuits could operate at higher frequencies at the same power
    - Why haven't clock speeds increased, even though transistors have continued to shrink?

## **End of Dennard Scaling**



- Dennard scaling ignored the "leakage current" and "threshold voltage", which establish a baseline of power per transistor.
  - As transistors get smaller, power density increases because these don't scale with size
  - These created a "Power Wall" that has limited practical processor frequency to around 4 GHz since 2006

Al-Big Data & SoC Design

# **Topics**



| Inventions                                |  |
|-------------------------------------------|--|
| 60 <sup>th</sup> Anniversary of Fairchild |  |
| Intel and Moore's Law                     |  |
| Stanford University and UC Berkeley       |  |
| The Creation of Silicon Valley            |  |

#### **Stanford and Silicon Valley**

Storied past, uncertain future





## Stanford University, 1950 vs Today



#### Stanford University: 1950 vs. Today

| Undergraduate<br>students      | 4,800 | 6,700    |
|--------------------------------|-------|----------|
| Graduate                       | 2,800 | 8,200    |
| students<br>Faculty<br>Members | 370   | 1,800    |
| Tuition                        | \$600 | \$33,000 |
| Endowment                      | \$44M | \$14B    |





#### **CANCER and SPICE**



1970, CANCER

Computer Analysis of Nonlinear Circuits, Excluding Radiation 1971, SPICE

Simulation Program with Integrated Circuit Emphasis



Laurence Nagel, Ron Rohrer, Don Peterson

## **UCB Today**



RISC-V ISA



- Berkeley Architecture Research
   <a href="https://bar.eecs.berkeley.edu/projects/riscv.html">https://bar.eecs.berkeley.edu/projects/riscv.html</a>
- Nobel Prize in EDA
  - Phil Kaufman Award, <a href="https://ieee-ceda.org/">https://ieee-ceda.org/</a>



- EECS
  - Courses, https://eecs.berkeley.edu/academics/courses



# **Topics**



| Inventions                                |  |
|-------------------------------------------|--|
| 60 <sup>th</sup> Anniversary of Fairchild |  |
| Intel and Moore's Law                     |  |
| Stanford University and UC Berkeley       |  |
| The Creation of Silicon Valley            |  |

#### The Creation of Silicon Valley





#### Summary





#### In the Silicon Valley





IC Design and EDA in 20th Century @ 中国中国的人名





