MATH 603 Fall 2013 Homework #4

Due Nov. 7, Thu in class

- Textbook, Section 5.1, p.276: 5.1.5;
- Textbook, Section 5.2, p.285: 5.2.3;
- Textbook, Section 5.3, p.292: 5.3.4;
- Textbook, Section 5.4, p.304: 5.4.9, 5.4.12, 5.4.16;
- Consider the pseudo-norm on \mathbb{R}^n : let $x \in \mathbb{R}^n$,

 $||x||_0 :=$ the number of nonzero elements in x.

- Show that (i) $||x||_0 \ge 0, \forall x \in \mathbb{R}^n$, and $||x||_0 = 0$ if and only if x = 0; and (ii) $||x + y||_0 \le ||x||_0 + ||y||_0, \forall x, y \in \mathbb{R}^n$;
- Explain why $\|\cdot\|_0$ is not a norm.
- Let $A \in \mathbb{R}^{m \times n}$ be nonzero, and $||A||_2$ be the induced 2-norm of A. It is shown that $||A||_2 = \max_{\|x\|_2 = 1, \|y\|_2 = 1} y^T A x$, where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, in two steps as follows.
 - Show that $\max_{\|x\|_2=1, \|y\|_2=1} y^T A x \le \|A\|_2$.
 - Show that

$$\max_{\|x\|_2=1, \|y\|_2=1} y^T A x \ge \|A\|_2.$$

(Hint: show that

$$||A||_2 = \max_{\|x\|_2 = 1, Ax \neq 0} \left(\frac{Ax}{\|Ax\|_2}\right)^T Ax.$$

)