PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 00/18886 (11) International Publication Number: C12N 5/04, 15/00, 15/09, 15/11, 15/29, **A1** (43) International Publication Date: 6 April 2000 (06.04.00) 15/63, 15/74, 15/81, 15/82, A01H 5/00 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, PCT/US99/22363 (21) International Application Number: BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP. (22) International Filing Date: 24 September 1999 (24.09.99) KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, (30) Priority Data: UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, 25 September 1998 (25.09.98) US 60/101,814 MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, (71) Applicant (for all designated States except US): WISCONSIN CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, ALUMNI RESEARCH FOUNDATION [US/US]; 614 Wal-GN, GW, ML, MR, NE, SN, TD, TG). nut Street, Madison, WI 53705 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): SPALDING, Edgar, P. Published [US/US]; 7417 South Avenue, Middleton, WI 53562 (US). With international search report. Before the expiration of the time limit for amending the NOH, Bosl [US/US]; 308E Eagle Heights, Madison, WI 53705 (US). claims and to be republished in the event of the receipt of amendments. (74) Agents: KLANN, Ellen, M. et al.; Dann, Dorfman, Herrell and Skillman, Suite 720, 1601 Market Street, Philadelphia, PA 19103 (US). (54) Title: XENOBIOTIC DETOXIFICATION GENE FROM PLANTS (57) Abstract A novel plant gene is provided, which is a member of the mdr family of genes encoding ABC transporters. The gene is inducible by NPPB, and is preferentially expressed in roots upon induction. The gene is useful for detoxification of certain xenobiotics to protect plants from the detrimental effects of such compounds. Also provided are plants that over-express and under-express this mdr gene.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain ·	LS	Lesotho	SI	Slovenia	
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam	
CC	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			

XENOBIOTIC DETOXIFICATION GENE FROM PLANTS

This application claims priority to U.S. 60/101,814, filed September 25, 1998, the entirety of which is incorporated by reference herein.

Pursuant to 35 U.S.C. §202(c), it is acknowledged that the U.S. Government has certain rights in the invention described herein, which was made in part with funds from the National Science Foundation, Grant No. IBN-9416016.

10

15

20

25

30

FIELD OF THE INVENTION

This invention relates to the field of stress resistance in plants. In particular, the invention provides a novel gene from plants, which encodes an MDR-like ABC transporter, involved in detoxification of certain xenobiotics to protect plants from their detrimental effects.

BACKGROUND OF THE INVENTION

Several publications are referenced in this application to describe the state of the art to which the invention pertains. Each of these publications is incorporated by reference herein.

Environmental stress is one of the most important limitations on plant productivity, growth and survival. An ever-increasing source of environmental stress to plants is the stress caused by environmental pollutants in the soil, water and atmosphere. Such pollutants include herbicides, pesticides and related agronomic products, as well as organic and inorganic waste material from industry and other sources. Other toxic agents that threaten the survival of plants include various toxins produced by ephiphytic or soilborne

- 2 -

microorganisms, such as fungi and bacteria.

5

10

15

20

In order to survive in toxic environments, plants must have mechanisms to detoxify xenobiotics, heavy metals and other toxic compounds. This generally involves modification of the toxic compound and subsequent excretion into the vacuole or apoplastic space. Recently, certain ATP-binding cassette (ABC) transporters have been identified in plants, which appear to be involved in the detoxification process.

The ABC transporter family is very large, with representatives existing in many different classes of organisms. Two well studied groups of ABC transporters, encoded by mdr and mrp genes, respectively, are associated with the multi-drug resistance phenomenon observed in mammalian tumor cells. The mdr genes encode a family of P-glycoproteins that mediate the energy-dependent efflux of certain lipophilic drugs from cells. The mrp genes encode a family of transporters that mediate the extrusion of a variety of organic compounds after their conjugation with glutathione. YCF1, the yeast homolog of mrp, encodes a protein capable of glutathione-mediated detoxification of heavy metals.

Homologs of mrp and mdr genes have been identified in plant species. In Arabidopsis thaliana,

25 the glutathione-conjugate transporter encoded by the mrp homolog is located in the vacuolar membrane and is responsible for sequestration of xenobiotics in the central vacuole (Tommasini et al., FEBS Lett. 411: 206-210, 1997; Li et al., Plant Physiol. 107: 1257-1268,

30 1995). An mdr-like gene (atpgp1) has also been identified in A. thaliana, which encodes a putative P-glycoprotein homolog. The atpgp1 gene was found to share significant sequence homology and structural organization with human mdr genes, and was expressed with particular

WO 00/18886

- 3 -

PCT/US99/22363

abundance in inflorescence axes (Dudler & Hertig, J. Biol. Chem. <u>267</u>: 5882-5888, 1992). Other MDR homologs have been found in potato (Wang et al., Plant Mol. Biol. <u>31</u>: 683, 1996) and barley (Davies et al., Gene <u>199</u>: 195, 1997).

The aforementioned mrp and mdr plant homologs were identified as a result of an effort to understand the molecular basis for development in plants of cross-resistance to herbicides of unrelated classes. However, these transporters are likely to serve the more general role in plants of sequestering, secreting, or otherwise detoxifying various organic and inorganic xenobiotics. Accordingly, it will constitute an advance in the art of plant genetic engineering of stress tolerance to identify and characterize other members of this class of transporters in plants.

SUMMARY OF THE INVENTION

5

10

15

20

25

30

In accordance with the present invention, a new plant mdr homolog has been identified. Unlike the previously identified plant mdr homologs, this new gene is inducible by a class of compounds known to inhibit chloride ion channels.

According to one aspect of the invention, a nucleic acid isolated from a plant is provided, which encodes a p-glycoprotein that is inducible by exposure of the plant to NPPB. The isolated nucleic acid is preferentially expressed in plant roots upon exposure of the plant to NPPB. In a preferred embodiment, the plant from which the nucleic acid is isolated is selected from the group consisting of Brassica napus and Arabidopsis thaliana and is 3850-4150 nucleotides in length. In a more preferred embodiment, the nucleic acid has the restriction sites shown in Figure 4 for at least three

- 4 -

restriction enzymes. In particularly preferred embodiments, the nucleic acid molecule encodes a polypeptide having SEQ ID NO:2. In an exemplary embodiment, the nucleic acid is a cDNA comprising the coding region of SEQ ID NO:1 or SEQ ID NO:10.

5

10

15

20

25

30

According to another aspect of the invention is an expression cassette that comprises a plPAC gene operably linked to a promoter, and in a more preferred embodiment the plPAC gene is from Arabidopsis. In preferred embodiments, the expression cassette comprises the cauliflower mosaic virus 35S promoter, and part of all of SEQ ID NO:1 or SEQ ID NO:10. Further included in this aspect is a vector comprising the expression cassette and a method for producing transgenic plants with the expression cassette and vector.

Another aspect of the invention are transgenic cells and plants containing the nucleic acids of the invention. In one preferred embodiment, the nucleic acids are be in the aforementioned expression cassette. Further included in this aspect are reporductive units from the transgenic plant.

According to another aspect of the invention, an isolated nucleic acid molecule is provided, which has a sequence selected from the group consisting of: a) SEQ ID NO:1 and SEQ ID NO:10; b) a nucleic acid sequence that is at least about 60% homologous to the coding regions of SEQ ID NO:1 or SEQ ID NO:10; c) a sequence hybridizing with SEQ ID NO:1 or SEQ ID NO:10 at moderate stringency; d) a sequence encoding part or all of a polypeptide having SEQ ID NO:2; e) a sequence encoding an amino acid sequence that is at least about 70% identical to SEQ ID NO:2; f) a sequence encoding an amino acid sequence that is at least about 80% similar to SEQ ID NO:2; g) a sequence encoding an amino acid sequence that

- 5 -

is at least about 40% similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2; and h) a sequence hybridizing at moderate stringency to a sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2. A polypeptide produced by expression of the above listed sequences is also provided.

5

10

15

20

According to another aspect of the invention, an isolated plant p-glycoprotein, which is inducible upon exposure of the plant to NPPB, is provided. The polypeptide preferably confers upon a cell in which it is found resistance to Rhodamine 6G. The polypeptide is preferentially produced in roots upon the exposure to the The polypeptide is preferrably from Brassica napus or Arabidopsis thaliana. In most preferred embodiments, the polypeptide has a sequence that is a) an amino acid sequence that is at least 80% similar to SEQ ID NO:2; b) an amino acid sequence that is at least 70% identical to SEQ ID NO:2; c) an amino acid sequence that is at least 40% similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2; and d) an amino acid sequence encoded by a nucleic acid sequence hybridizing at moderate stringency to a amino acid sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

According to other aspects of the invention,
25 antibodies immunologically specific for the polypeptides
of the invention are provided, that immunologically
specific to any of the polypeptides, of polypeptide
encoded by the nucleic acids of the invention. In a
preferred embodiment, the antibody is immunospecific to
30 residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

According to another aspect of the invention, a plant p-glycoprotein gene promoter, which is inducible by NPPB, is also provided. In a preferred embodiment, the promoter is part or all of residues 1-3429 of SEQ ID

NO:10.

5

25

According to another aspect of the invention, plants that have reduces levels of plPAC protein are provided. In a preferred embodiment, these plants have mutations in the plPAC gene, and in a particularly preferred embodiment, the plPAC gene is mutated due to the insertion of a T-DNA. Also provided with this aspect is a method for selecting plants with mutations in plPAC using SEQ ID NOS:11-14 as PCR primers.

These and other features and advantages of the present invention will be described in greater detail in the description and examples set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

15 Figure 1. Amino acid sequence lineup of ATPAC deduced amino acid sequence and the amino acid sequences of related mammalian and plant genes. The lineup shows the ATPAC deduced amino acid sequence (SEQ ID NO:2) compared with (1) hmdrl (SEQ ID NO:3); (2) mmdrl (SEQ ID NO:4); (3) hmdrl (SEQ ID NO:5); (4) mmdrl (SEQ ID NO:6); (5) atpgpl (SEQ ID NO:7); and (6) atpgpl (SEQ ID NO:8). A consensus sequence (SEQ ID NO: 9) is also shown.

Figure 2. Graph depicting the effect of rhodamine 6G on the growth rate of cells transformed with and expressing ATPAC as compared with control cells not containing ATPAC.

Figure 3. Restriction map of genomic clone of ATPAC, SEQ ID NO:10.

Figure 4. Restriction map of cDNA clone of 30 ATPAC, SEQ ID NO:1.

DETAILED DESCRIPTION OF THE INVENTION

I. <u>Definitions</u>

Various terms relating to the biological

```
molecules of the present invention are used hereinabove
                                                                        molecules of the present invention are used nereing and claims.

and also throughout the specification and claims.
                                                                                                      With reference to nucleic acids of the

With reference to nucleic acid" is sometimes

with reference to nucleic acid" is sometimes

refere to acids of the

nucleic acids of the

reference to nucleic acids of the nucleic
                                                                                                                                                                                                                                      This term, when applied to DNA, refers to a DNA, when applied to DNA, refers, which is the property of the DNA, refers, which is th
MO 00|18886
                                                                                                                                        used. That is separated from sequences with which it molecule that is separated lin the si and 21 directions.
                                                                                                                                                        molecule that is separated from sequences with which it immediately contiguous is immediately contiguous.
                                                                                                                                                                            in the naturally occurring genome of the natural occurring genome occurring genome
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   For example, the "isolated nucleic
                                                                                                                                                                                                        which it was derived.

For example, the "isolated nucleic the "isolated into a vector, the inserted into a vector, the acid" may comprise a DNA molecule inserted into a intrarated into the acid" may comprise a DNA molecule inserted into a intrarated into the acid" may comprise a DNA molecule inserted into a vector or intrarated into the acid" may comprise a DNA molecule inserted into a vector or intrarated into the acid" may comprise a DNA molecule inserted into a vector, and the acid" may comprise a DNA molecule inserted into a vector, and the acid" may comprise a DNA molecule inserted into a vector, acid in the acid into a vector, and the acid into a vector or intrarectly 
                                                                                                                                                                                                                           acia. may comprise a JNA molecule inserted into a vector, or integrated into the area a plasmid or virus vector, or ancarvote or ancarvote and as a plasmid or or ancarvote or
                                                                                                                                                                                                                                            such as a plasmid of a procaryote or eucaryote.

genomic DNA of a procaryote or encaryote.
                                                                                                                                                                                                                                                             genomic una or a procaryote or eucaryote. An ... 150 lated a colla molecule.

Mith recepet to ann molecule of the invention and molecule acid molecule.
                                                                                                                                                                                                                                                                                                                                                                                                                                               With respect to RNA molecules of the invention
                                                                                                                                                                                               which it was derived.
                                                                                                                                                                                                                                                                                           the term malecule acrossed his ar isolated number is a and the term malecule acrossed his ar isolated number is a second acrossed his artificiated number isolated number isolated number isolated number is a second number i
                                                                                                                                                                                                                                                                                                            the term "1501alea nucleic acia" primarily reters to as isolated DNA molecule as isolated DNA molecule as an isolated DNA molecule acia" primarily reters to acia" primarily r
                                                                                                                                                                                                                                                                                                                             KNA molecule encoded by an isolated unia may refer to an term may refer to an the term may refer from the term may refer to an an isolated unia may refer to an is
                                                                                                                                                                                                                                                                                                                                          derined above. Alternatively, the term may refer to an the sufficiently separated from that has been sufficiently separated from an accident that has been sufficiently separated from the sufficiently separated from the sufficient s
                                                                                                                                                                                                                                                                                                                                                           HNA molecules with which it would be associated in its would be associated 
                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                               RUMA MOLECULES WICH WHICH IN CELLS OF tissues) form in cells or tissues) form that it natural state natural in a memberantially nive or form the term
                                                                                                                                                                                                                                                                                                                                                                                               natural state (1.e., in cells or form (the term exists in a "substantially pure" harden.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Nucleic acid sequences and amino acid sequences
                                                                                                                                                                                                                                                                                                                                                                                                                                                 can be compared using computer programs that align the
                                                                                                                                                                                                                                                                                                                                                                                                                   "substantially pure" is defined below).
                                                                                                                                                                                                                           15
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  can be compared using computer programs that align the nucleic or amino acids thus similar sequences of the nucleic or amino acids thus align the nucleic or amino acids thus are not as a sequences of the nucleic or amino acids thus are not as a sequences of the nucleic or amino acids thus are not as a sequences of the nucleic or amino acids thus are not as a sequences of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids thus are not as a sequence of the nucleic or amino acids are not as a sequence of the nucleic or amino acids are not as a sequence of the nucleic or amino acids are not as a sequence of the nucleic or amino acids are not as a sequence of the nucleic or amino acids are not acids and the nucleic or amino acids are not acids and acids are not acids acids are not acids acids are not acids acids and acids are not acids acids are not acids acids acids acids acids are not acids ac
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      For purposes of this invention
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 derine the differences. DNAStar, that rrows are the the DNAStar program to remark resemble to the default resemble resem
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 the UNASTAR program (UNASTAR) used by that program are the used by that program to compare semicons and the default parameters used herein to compare semicons and the default parameters.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               and the detault parameters used herein to compare and the detault parameters used herein to he alasth and parameters intended to be alternated. The Alasth and parameters intended to be alternated.
                                                                                                                                                                                                                                                                                                               20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Parameters incended to be used nerein to compare sequent the Blastn and Alternately!

Incended to be used nerein to compare sequent the Blastn and Alternately!

Alternately!

Incended to be used nerein to compare sequent the Blastn and the Blastn
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        define the differences.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Identity and Similarity.

Alternately, the National Center for Blastp 2.0 programs provided by the National Center provided by the National Center for the Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the National Center for Blastp 2.0 programs provided by the Nationa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     procecumorogy information (at http://www.ncbi.nlm.nih.gov/blast/; Altschul et al.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     nccp://www.ncol.nlm.nln.gov/plast/ ; Alcscnul et al., alignment using a gapped alignment 1990, J Mol Biol 215:403-410) using a gapped alignment
                                                                                                                                                                                                                                                                                                                                                                                               25
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Biotechnology Information (at
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   30
```

WO 00/18886

5

10

15

20

25

30

- 8 -

PCT/US99/22363

with default parameters, may be used to determine the level of identity and similarity between nucleic acid sequences and amino acid sequences.

The term "substantially the same" refers to nucleic acid or amino acid sequences having sequence variation that do not materially affect the nature of the protein (i.e. the structure, thermostability characteristics and/or biological activity of the protein). With particular reference to nucleic acid sequences, the term "substantially the same" is intended to refer to the coding region and to conserved sequences governing expression, and refers primarily to degenerate codons encoding the same amino acid, or alternate codons encoding conservative substitute amino acids in the encoded polypeptide. With reference to amino acid sequences, the term "substantially the same" refers generally to conservative substitutions and/or variations in regions of the polypeptide not involved in determination of structure or function.

The terms "percent identical" and "percent similar" are also used herein in comparisons among amino acid and nucleic acid sequences. When referring to amino acid sequences, "percent identical" refers to the percent of the amino acids of the subject amino acid sequence that have been matched to identical amino acids in the compared amino acid sequence by a sequence analysis program. "Percent similar" refers to the percent of the amino acids of the subject amino acid sequence that have been matched to identical or conserved amino acids. Conserved amino acids are those which differ in structure but are similar in physical properties such that the exchange of one for another would not appreciably change the tertiary structure of the resulting protein. Conservative substitutions are defined in Taylor (1986,

- 9 **-**

J. Theor. Biol. 119:205). When referring to nucleic acid molecules, "percent identical" refers to the percent of the nucleotides of the subject nucleic acid sequence that have been matched to identical nucleotides by a sequence analysis program.

5

10

25

30

With respect to protein, the term "isolated protein" or "isolated and purified protein" is sometimes used herein. This term refers primarily to a protein produced by expression of an isolated nucleic acid molecule of the invention. Alternatively, this term may refer to a protein which has been sufficiently separated from other proteins with which it would naturally be associated, so as to exist in "substantially pure" form.

The term "substantially pure" refers to a

preparation comprising at least 50-60% by weight the
compound of interest (e.g., nucleic acid,
oligonucleotide, protein, etc.). More preferably, the
preparation comprises at least 75% by weight, and most
preferably 90-99% by weight, the compound of interest.

Purity is measured by methods appropriate for the
compound of interest (e.g. chromatographic methods,
agarose or polyacrylamide gel electrophoresis, HPLC
analysis, and the like).

With respect to antibodies of the invention, the term "immunologically specific" refers to antibodies that bind to one or more epitopes of a protein of interest, but which do not substantially recognize and bind other molecules in a sample containing a mixed population of antigenic biological molecules.

With respect to oligonucleotides, the term
"specifically hybridizing" refers to the association
between two single-stranded nucleotide molecules of
sufficiently complementary sequence to permit such
hybridization under pre-determined conditions generally

- 10 -

used in the art (sometimes termed "substantially complementary"). In particular, the term refers to hybridization of an oligonucleotide with a substantially complementary sequence contained within a single-stranded DNA or RNA molecule of the invention, to the substantial exclusion of hybridization of the oligonucleotide with single-stranded nucleic acids of non-complementary sequence.

5

10

15

20

25

30

The term "expression cassette", as used herein, comprises 5' and 3' regulatory regions operably linked to a coding sequence. The coding sequence may be in the sense or antisense orientation with respect to the 5' regulatory region.

The term "promoter region" refers to the 5' regulatory regions of a gene.

The term "reporter gene" refers to genetic sequences which may be operably linked to a promoter region forming a transgene, such that expression of the reporter gene coding region is regulated by the promoter and expression of the transgene is readily assayed.

The term "selectable marker gene" refers to a gene product that when expressed confers a selectable phenotype, such as antibiotic resistance, on a transformed cell or plant.

The term "operably linked" means that the regulatory sequences necessary for expression of the coding sequence are placed in the DNA molecule in the appropriate positions relative to the coding sequence so as to effect expression of the coding sequence. This same definition is sometimes applied to the arrangement of coding sequences and transcription control elements (e.g. promoters, enhancers, and termination elements) in an expression vector.

The term "DNA construct" refers to genetic

- 11 -

sequence used to transform plants and generate progeny transgenic plants. These constructs may be administered to plants in a viral or plasmid vector. Other methods of delivery such as Agrobacterium T-DNA mediated transformation and transformation using the biolistic 5 process are also contemplated to be within the scope of the present invention. The transforming DNA may be prepared according to standard protocols such as those set forth in "Current Protocols in Molecular Biology", 10 eds. Frederick M. Ausubel et al., John Wiley & Sons, 1995.

The term "xenobiotic" refers to foreign chemicals or agents not produced or naturally found in the organism. The term is commonly used in reference to toxic or otherwise detrimental foreign chemicals, such as organic pollutants or heavy metals.

Description of plPAC II. and its Encoded Polyeptide

20

25

15

In accordance with the present invention, a nucleic acid encoding a novel ATP-binding-cassette (ABC) transporter has been isolated and cloned from plants. The nucleic acid is referred to herein as plPAC.

A cDNA clone of the plPAC from Arabidopsis thaliana, an exemplary plPAC of the invention, is described in detail herein and its nucleotide sequence is set forth in Example 1 as SEQ ID NO:1. This nucleic acid molecule is referred to as "ATPAC". It is 36% identical and 51% similar to human mdr1 across the entire sequence. 30 It is 51% identical to the atpgp1 gene reported by Dudler & Hertig (1997, supra) and 50% identical to atpgp2, a close homolog of atpgp1, published in the Genbank database. ATPAC protein is 65% similar to atpgp1 and 35 atpgp2 proteins.

- 12 -

A partial clone of a plPAC of the invention was originally isolated from Brassica napus via differential expression screening of plants grown in the presence or absence of the chloride channel blocker, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). A 0.5 kb gene fragment was identified, which had been up-regulated in response to NPPB treatment. This cDNA fragment was used to screen an Arabidopsis cDNA library, from which the complete ATPAC clone was isolated. The isolation and characterization of ATPAC is described in Example 1.

5

10

15

20

25

30

A genomic clone of ATPAC (SEQ ID NO:10) has also been isolated from a bacterial artificial chromosome (BAC) library of the Arabidopsis genome (BAC clone IGF F3J22, obtained from the Arabidopsis stock center, Ohio State University). A 7 kb fragment containing part of ATPAC and additional 5' regulatory sequences was subcloned into a plasmid vector (pBluescript). A restriction map of ATPAC is found in Fig. 3. The corresponding cDNA clone of ATPAC is found in SEQ ID NO:1 and its restriction map is Fig. 4.

Among the unique features of this nucleic acid molecule as compared with other mdr-like genes from plants are its inducibility by certain compounds, including NPPB and herbicides, and its preferential expression in roots. The promoter regulatory region of ATPAC comprises residues 1-3429 of SEQ ID NO:10.

Although the ATPAC cDNA clone from Arabidopsis thaliana is described and exemplified herein, this invention is intended to encompass nucleic acid sequences and proteins from other plant species that are sufficiently similar to be used instead of ATPAC nucleic acid and proteins for the purposes described below. These include, but are not limited to, allelic variants and natural mutants of SEQ ID NO:1, which are likely to

- 13 -

be found in different species of plants or varieties of Arabidopsis.

5

10

15

20

25

30

Because such variants are expected to possess certain differences in nucleotide and amino acid sequence, this invention provides an isolated plPAC nucleic acid molecule having at least about 60% (preferably 70% and more preferably over 80%) sequence homology in the coding regions with the nucleotide sequence set forth as SEQ ID NO:1 or SEQ ID NO:10 (and, most preferably, specifically comprising the coding region of SEQ ID NO:1). Also provided are nucleic acids that encode a polypeptide that is at least about 40% (preferably 50% and most preferably 60%) similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2. Also provided are nucleic acids that hybridize to the nucleic acids of SEQ ID NO:1, SEQ ID NO:10, or nucleic acids encoding the regions of residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2, preferably under moderate stringency (more preferably, high stringency, and most preferably, very high stringency).

In other preferred embodiments, the nucleic acids have a restriction digest map that is identical for at least 3 enzymes (more preferably 6 enzymes and most preferably 9 enzymes) to the maps shown in Figs. 3 or 4. In another preferred embodiment, the nucleic acids have a restriction digest map identical to those shown in Fig. 3 for enzymes XhoI, XcmI and SpeI (preferably additionally SacI, PacI and BsaI, and most preferably additionally AclI, BanI and SnaBI). In another preferred embodiment, the nucleic acids have a restriction digest map identical to those shown in Fig. 4 for enzymes XbaI, TatI and NciI (preferably additionally DraI, BsmI and BclI, and most preferably additionally DraI, BsmI and BclI, and most preferably additionally AccI, BsgI and TliI). The nucleic acids of the invention are at least 20 nucleic

- 14 -

acids in length (preferably at least 50 nucleic acids and most preferably at least 100 nucleic acids).

In accordance with the invention, novel plPAC genes from two plant species, Brassica napus and Arabidopsis thaliana, are presented. This constitutes the first description of this unique p-glycoprotein in plants. Indeed, the closest known protein sequence, also. from Arabidopsis, is only 65% identical suggesting that the ATPAC gene is novel and is expected to have novel properties. The isolation of two plPAC genes from different species enables the isolation of further plPAC genes from other plant species. Isolated nucleic acids that are plPAC genes from any plant species are considered part of the instant invention. In particular, the nucleic acids of other pIPAC genes can be isolated using sequences of ATPAC that distinguish plPAC genes from other plant mdr genes according to methods that are well known to those in the art of gene isolation. particular, sequences that encode residues 1-76, 613-669 and 1144-1161 of SEQ ID NO:2 can be used. In a preferred embodiment, the plPAC gene is from any higher plant species (more preferred from a dicot species, and most preferred from a species in Brassicaceae (or Cruciferae)).

10

15

20

25

30

This invention also provides isolated polypeptide products of the open reading frames of SEQ ID NO:1 or SEQ ID NO:10, having at least about 70% (preferably 80% and most preferably 90%) sequence identity, or at least about 80% similarity (preferably 90% and more preferably 95%) with the amino acid sequence of SEQ ID NO:2. In another embodiment, the polypeptides of the invention are at least about 40% identical (preferably 50%, and most preferably 60%) to the regions of residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

Because of the natural sequence variation likely to exist among plPAC genes, one skilled in the art would expect to find up to about 30-40% nucleotide sequence variation, while still maintaining the unique properties of the plPAC gene and encoded polypeptide of the present invention. Such an expectation is due in part to the degeneracy of the genetic code, as well as to the known evolutionary success of conservative amino acid sequence variations, which do not appreciably alter the nature of the encoded protein. Accordingly, such variants are considered substantially the same as one another and are included within the scope of the present invention.

5

10

Also provided are transgenic plants transformed with part or all of the nucleic acids of the invention. Transgenic plants that over-express a plPAC coding 15 sequence are one embodiment of this aspect of the invention. Example 3 provides for one prototype of such a plant. In a preferred embodiment, the ATPAC gene is used, and in a most preferred embodiment SEQ ID NO:1 or SEQ ID NO:10 is used. The plPAC gene may be placed under 20 a powerful constitutive promoter, such as the Cauliflower Mosaic Virus (CaMV) 35S promoter or the figwort mosaic virus 35S promoter. In a preferred embodiment, the 35SCaMV promoter is used. Transgenic plants expressing 25 the pIPAC gene under an inducible promoter (either its own promoter or a heterologous promoter) are also contemplated to be within the scope of the present invention. Inducible plant promoters include the tetracycline repressor/operator controlled promoter. 30 a preferred embodiment, a native plPAC promoter is used, and in a most preferred embodiment, residues 1-3429 of SEQ ID NO:10 is used. Plant species that are contemplated for overexpression of a pIPAC coding sequence include, but are not limited to, soybean.

In another embodiment, overexpression of plPAC is induced to generate a co-suppression effect. This excess expression serves to promote down-regulation of both endogenous and exogenous plPAC genes.

5

10

15

20

25

30

In some instances, it may be desirable to downregulate or inhibit expression of endogenous plPAC in plants possessing the gene. Accordingly, plPAC nucleic acid molecules, or fragments thereof, may also be utilized to control the production of plPAC-encoded Pglycoproteins. In one embodiment, full-length plPAC antisense molecules or antisense oligonucleotides, targeted to specific regions of plPAC-encoded RNA that are critical for translation, are used. antisense molecules to decrease expression levels of a pre-determined gene is known in the art. In a preferred embodiment, antisense molecules are provided in situ by transforming plant cells with a DNA construct which, upon transcription, produces the antisense sequences. Such constructs can be designed to produce full-length or partial antisense sequences. One example of antisense plPAC transgenic plants is given in Example 3.

In another embodiment, knock-out plants are obtained by screening a T-DNA mutagenized plant population for insertions in the plPAC gene (see Krysan et al., 1996, PNAS 93:8145). One example of this embodiment of the invention is found in Example 3. Optionally, transgenic plants can be created containing mutations in the region encoding the active site of plPAC. These last two embodiments are preferred over the use of anti-sense constructs due to the high homology among P-glycoproteins.

The promoter of ATPAC is also provided in accordance with the invention. This promoter has the useful properties of root expression and inducability by

- 17 -

NPPB. The prototypic example of this aspect of the invention is residues 1-3429 of SEQ ID NO:10. It is anticipated that plPAC genes from other plant species will likewise exhibit the aforementioned useful 5 properties. As these promoter regions can easily be isolated from the plPAC genes that are provided with the invention, all plant plPAC gene promoters are provided with the invention. The nucleic acids of the invention therefore include a nucleic acid molecule that is at 10 least about 70% identical (preferably 80% and most preferably 90%) to the residues 1-3429 of SEQ ID NO:10. Also provided are nucleic acids that hybridize to the nucleic acid residues 1-3429 of SEQ ID NO:10 preferably under moderate stringency (more preferably, high 15 stringency, and most preferably, very high stringency).

The present invention also provides antibodies capable of immuno-specifically binding to polypeptides of the invention. Polyclonal or monoclonal antibodies directed toward any of the peptides encoded by plPAC may be prepared according to standard methods. Monoclonal antibodies may be prepared according to general methods of Köhler and Milstein, following standard protocols. In a preferred embodiment, antibodies are prepared, which react immuno-specifically with various epitopes of the plPAC-encoded polypeptides. In a preferred embodiment, the antibodies are immunologically specific to the polypeptide of residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

20

25

The following description sets forth the

general procedures involved in practicing the present invention. To the extent that specific materials are mentioned, it is merely for purposes of illustration and is not intended to limit the invention. Unless otherwise specified, general cloning procedures, such as those set

- 18 -

forth in Sambrook et al., <u>Molecular Cloning</u>, Cold Spring Harbor Laboratory (1989) (hereinafter "Sambrook et al.") or Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1997) (hereinafter "Ausubel et al.") are used.

III. Preparation of *PlPAC* Nucleic Acid Molecules, encoded Polypeptides, Antibodies Specific for the <u>Polypeptides and Transgenic Plants</u>

10

15

20

25

30

35

5

1. Nucleic Acid Molecules

PIPAC nucleic acid molecules of the invention may be prepared by two general methods: (1) they may be synthesized from appropriate nucleotide triphosphates, or (2) they may be isolated from biological sources. Both methods utilize protocols well known in the art.

The availability of nucleotide sequence information, such as the cDNA having SEQ ID NO:1, enables preparation of an isolated nucleic acid molecule of the invention by oligonucleotide synthesis. Synthetic oligonucleotides may be prepared by the phosphoramadite method employed in the Applied Biosystems 38A DNA Synthesizer or similar devices. The resultant construct may be purified according to methods known in the art, such as high performance liquid chromatography (HPLC). Long, double-stranded polynucleotides, such as a DNA molecule of the present invention, must be synthesized in stages, due to the size limitations inherent in current oligonucleotide synthetic methods. Thus, for example, a long double-stranded molecule may be synthesized as several smaller segments of appropriate complementarity. Complementary segments thus produced may be annealed such that each segment possesses appropriate cohesive termini for attachment of an adjacent segment. Adjacent segments may be ligated by annealing cohesive termini in the

- 19 -

presence of DNA ligase to construct an entire long double-stranded molecule. A synthetic DNA molecule so constructed may then be cloned and amplified in an appropriate vector.

5

10

PIPAC genes also may be isolated from appropriate biological sources using methods known in the art. In fact, the ATPAC clone was isolated from an Arabidopsis cDNA library using a partial clone obtained from Brassica napus. In alternative embodiments, genomic clones of plPAC may be isolated.

In accordance with the present invention, nucleic acids having the appropriate level sequence homology with part or all the coding regions of SEQ ID NO:1 or SEQ ID NO:10 may be identified by using 15 hybridization and washing conditions of appropriate stringency. For example, hybridizations may be performed, according to the method of Sambrook et al., using a hybridization solution comprising: 5X SSC, 5X Denhardt's reagent, 1.0% SDS, 100 μg/ml denatured, 20 fragmented salmon sperm DNA, 0.05% sodium pyrophosphate and up to 50% formamide. Hybridization is carried out at 37-42°C for at least six hours. Following hybridization, filters are washed as follows: (1) 5 minutes at room temperature in 2X SSC and 1% SDS; (2) 15 minutes at room 25 temperature in 2X SSC and 0.1% SDS; (3) 30 minutes-1 hour at 37°C in 2X SSC and 0.1% SDS; (4) 2 hours at 45-55°in 2X SSC and 0.1% SDS, changing the solution every 30 minutes.

One common formula for calculating the

30 stringency conditions required to achieve hybridization
between nucleic acid molecules of a specified sequence
homology (Sambrook et al., 1989):

 $T_m = 81.5$ °C + 16.6Log [Na+] + 0.41(% G+C) - 0.63 (% formamide) - 600/#bp in duplex

- 20 -

As an illustration of the above formula, using [N+] = [0.368] and 50% formamide, with GC content of 42% and an average probe size of 200 bases, the T_m is 57°C. The T_m of a DNA duplex decreases by 1 - 1.5°C with every 1% decrease in homology. Thus, targets with greater than about 75% sequence identity would be observed using a hybridization temperature of 42°C.

5

The stringency of the hybridization and wash depend primarily on the salt concentration and 10 temperature of the solutions. In general, to maximize the rate of annealing of the probe with its target, the hybridization is usually carried out at salt and temperature conditions that are 20-25°C below the calculated T_m of the of the hybrid. Wash conditions should be as stringent as possible for the degree of 15 identity of the probe for the target. In general, wash conditions are selected to be approximately 12-20°C below the T_m of the hybrid. In regards to the nucleic acids of the current invention, a moderate stringency 20 hybridization is defined as hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 µg/ml denatured salmon sperm DNA at 42°C, and wash in 2X SSC and 0.5% SDS at 55°C for 15 minutes. A high stringency hybridization is defined as hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 $\mu g/ml$ denatured salmon sperm 25 DNA at 42°C, and wash in 1X SSC and 0.5% SDS at 65°C for 15 minutes. A very high stringency hybridization is defined as hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 µg/ml denatured salmon sperm DNA at 42°C, and wash in 0.1% SSC and 0.5% SDS at 65°C 30 for 15 minutes.

Nucleic acids of the present invention may be maintained as DNA in any convenient cloning vector. In a preferred embodiment, clones are maintained in plasmid

cloning/expression vector, such as pGEM-T (Promega Biotech, Madison, WI) or pBluescript (Stratagene, La Jolla, CA), either of which is propagated in a suitable E. coli host cell.

PIPAC nucleic acid molecules of the invention include cDNA, genomic DNA, RNA, and fragments thereof which may be single- or double-stranded. Thus, this invention provides oligonucleotides (sense or antisense strands of DNA or RNA) having sequences capable of hybridizing with at least one sequence of a nucleic acid molecule of the present invention, such as selected segments of SEQ ID NO:1 or SEQ ID NO:10. Such oligonucleotides are useful as probes for detecting plPAC genes or mRNA in test samples, e.g. by PCR amplification, mapping of genes or for the positive or negative regulation of expression of plPAC genes at or before translation of the mRNA into proteins.

The pIPAC promoter is also expected to be useful in connection with the present invention, inasmuch as it is inducible in plants upon exposure to anion channel blockers. As mentioned above, seven-kilobase fragment of genomic DNA has been isolated, which contains part or all of the pIPAC promoter from Arabidopsis thaliana. This promoter can be used in chimeric gene constructs to facilitate inducible expression of any coding sequence of interest, upon exposure to NPPB or similar-acting compounds.

2. Proteins

5

10

15

20

25

Polypeptides encoded by plPAC nucleic acids of the invention may be prepared in a variety of ways, according to known methods. If produced in situ the polypeptides may be purified from appropriate sources, e.g., plant roots or other plant parts.

Alternatively, the availability of nucleic acid molecules encoding the polypeptides enables production of the proteins using in vitro expression methods known in the art. For example, a cDNA or gene may be cloned into an appropriate in vitro transcription vector, such a pSP64 or pSP65 for in vitro transcription, followed by cell-free translation in a suitable cell-free translation system, such as wheat germ or rabbit reticulocytes. In vitro transcription and translation systems are commercially available, e.g., from Promega Biotech, Madison, Wisconsin or BRL, Rockville, Maryland.

10

15

20

25

30

According to a preferred embodiment, larger quantities of plPAC-encoded polypeptide may be produced by expression in a suitable procaryotic or eucaryotic system. For example, part or all of a DNA molecule, such as the cDNA having SEQ ID NO:1, may be inserted into a plasmid vector adapted for expression in a bacterial cell (such as E. coli) or a yeast cell (such as Saccharomyces cerevisiae), or into a baculovirus vector for expression in an insect cell. Such vectors comprise the regulatory elements necessary for expression of the DNA in the host cell, positioned in such a manner as to permit expression of the DNA in the host cell. Such regulatory elements required for expression include promoter sequences, transcription initiation sequences and, optionally, enhancer sequences.

The plPAC polypeptide produced by gene expression in a recombinant procaryotic or eucyarotic system may be purified according to methods known in the art. In a preferred embodiment, a commercially available expression/secretion system can be used, whereby the recombinant protein is expressed and thereafter secreted from the host cell, to be easily purified from the surrounding medium. If expression/secretion vectors are

- 23 -

not used, an alternative approach involves purifying the recombinant protein by affinity separation, such as by immunological interaction with antibodies that bind specifically to the recombinant protein. Such methods are commonly used by skilled practitioners.

The p1PAC-encoded polypeptides of the invention, prepared by the aforementioned methods, may be analyzed according to standard procedures.

C. Transgenic Plants

5

10

Transgenic plants expressing the plPAC gene can be generated using standard plant transformation methods known to those skilled in the art. These include, but are not limited to, Agrobacterium vectors, PEG treatment of protoplasts, biolistic DNA delivery, UV laser 15 microbeam, gemini virus vectors, calcium phosphate treatment of protoplasts, electroporation of isolated protoplasts, agitation of cell suspensions with microbeads coated with the transforming DNA, direct DNA uptake, liposome-mediated DNA uptake, and the like. 20 methods have been published in the art. See, e.g., Methods for Plant Molecular Biology (Weissbach & Weissbach, eds., 1988); Methods in Plant Molecular Biology (Schuler & Zielinski, eds., 1989); Plant Molecular Biology Manual (Gelvin, Schilperoort, Verma, 25 eds., 1993); and Methods in Plant Molecular Biology - A Laboratory Manual (Maliga, Klessig, Cashmore, Gruissem & Varner, eds., 1994).

The method of transformation depends upon the plant to be transformed. The biolistic DNA delivery method is useful for nuclear transformation. In another embodiment of the invention, Agrobacterium vectors are used to advantage for efficient transformation of plant nuclei.

WO 00/18886

10

15

20

- 24 -

PCT/US99/22363.

In a preferred embodiment, the gene is introduced into plant nuclei in Agrobacterium binary vectors. Such vectors include, but are not limited to, BIN19 (Bevan, 1984, Nucleic Acid Res 12: 8711-8721) and derivatives thereof, the pBI vector series (Jefferson et al., 1987, PNAS 83:8447-51), and binary vectors pGA482 and pGA492 (An, 1986) and others (for review, see An, 1995, Methods Mol Biol 44:47-58). In preferred embodiments, the pPZP211 vector (Hajdukiewicz et al., 1994, PMB 25:989-994) or PCGN7366 (Calgene, CA) are used. DNA constructs for transforming a selected plant comprise a coding sequence of interest operably linked to appropriate 5' (e.g., promoters and translational regulatory sequences) and 3' regulatory sequences (e.g., terminators).

Using an Agrobacterium binary vector system for transformation, the plPAC coding region, under control of a constitutive or inducible promoter as described above, is linked to a nuclear drug resistance marker, such as kanamycin resistance. Agrobacterium-mediated transformation of plant nuclei is accomplished according to the following procedure:

- (1) the gene is inserted into the selected Agrobacterium binary vector;
- 25 (2) transformation is accomplished by cocultivation of plant tissue (e.g., leaf discs) with a
 suspension of recombinant Agrobacterium, followed by
 incubation (e.g., two days) on growth medium in the
 absence of the drug used as the selective medium (see,
 30 e.g., Horsch et al. 1985, Cold Spring Harb Symp Quant
 Biol. 50:433-7);
 - (3) plant tissue is then transferred onto the selective medium to identify transformed tissue; and
 - (4) identified transformants are regenerated

- 25 -

to intact plants.

It should be recognized that the amount of expression, as well as the tissue specificity of expression of the *plPAC* gene in transformed plants can vary depending on the position of their insertion into the nuclear genome. Such position effects are well known in the art. For this reason, several nuclear transformants should be regenerated and tested for expression of the transgene.

10

25

30

5

IV. Uses of PIPAC Nucleic Acids, Encoded Proteins and Antibodies

1. PIPAC Nucleic Acids

of purposes in accordance with the present invention.

The DNA, RNA, or fragments thereof may be used as probes to detect the presence of and/or expression of plPAC genes. Methods in which plPAC nucleic acids may be utilized as probes for such assays include, but are not limited to: (1) in situ hybridization; (2) Southern hybridization (3) northern hybridization; and (4) assorted amplification reactions such as polymerase chain reactions (PCR).

The pIPAC nucleic acids of the invention may also be utilized as probes to identify related genes from other plant species. As is well known in the art and described above, hybridization stringencies may be adjusted to allow hybridization of nucleic acid probes with complementary sequences of varying degrees of homology. Thus, pIPAC nucleic acids may be used to advantage to identify and characterize other genes of varying degrees of relation to the exemplary ATPAC, thereby enabling further characterization of this family

- 26 -

of genes in plants. Additionally, they may be used to identify genes encoding proteins that interact with the P-glycoprotein encoded by *plPAC* (e.g., by the "interaction trap" technique).

5

10

15

20

25

30

2. PlPAC Proteins and Antibodies

Purified plPAC-encoded P-glycoproteins, or fragments thereof, may be used to produce polyclonal or monoclonal antibodies which also may serve as sensitive detection reagents for the presence and accumulation of plant P-glycoproteins in cultured plant cells or tissues and in intact plants. Recombinant techniques enable expression of fusion proteins containing part or all of the plPAC-encoded protein. The full length protein or fragments of the protein may be used to advantage to generate an array of monoclonal or polyclonal antibodies specific for various epitopes of the protein, thereby providing even greater sensitivity for detection of the protein in cells or tissue.

Polyclonal or monoclonal antibodies immunologically specific for pIPAC-encoded proteins may be used in a variety of assays designed to detect and quantitate the protein. Such assays include, but are not limited to: (1) flow cytometric analysis; (2) immunochemical localization in cultured cells or tissues; and (3) immunoblot analysis (e.g., dot blot, Western blot) of extracts from various cells and tissues.

Polyclonal or monoclonal antibodies that immunospecifically interact with one or more of the polypeptides encoded by plPAC can be utilized for identifying and purifying such proteins. For example, antibodies may be utilized for affinity separation of proteins with which they immunospecifically interact. Antibodies may also be used to immunoprecipitate proteins

- 27 -

from a sample containing a mixture of proteins and other biological molecules.

3. plPAC Transgenic Plants

5

10

15

20

25

30

Transgenic plants that over- or under- express plPAC can be used in a varied of agronomic and research applications. From the foregoing discussion, it can be seen that plPAC and its homologs, and transgenic plants containing them will be useful for improving stress resistance or tolerance in plants. This provides an avenue for developing marginal or toxic soil environments for crop production. Both over- and under-expressing plPAC transgenic plants have great utility in the research of herbicides and other xenobiotic compounds.

As discussed above and in greater detail in Example 1, the similarity between plant and mammalian mdr genes indicates that their functional aspects will also be conserved. Thus, plPAC is expected to play an important role in the exclusion of toxic metabolic or xenobiotic compounds from cells. The fact that plPAC also is inducible and appears to be preferentially expressed in roots, where contact with such compounds often occurs, makes plPAC particularly desirable for genetic engineering of plants to increase their tolerance to such compounds. Accordingly, plants engineered to overexpress the pIPAC gene should be resistant to a wide range of chemicals, both intentionally applied as herbicides or unintentionally as wastes. Examples of the kinds of xenobiotics that should be detoxified by the plPAC of the invention include, but are not limited to, hydrophobic (i.e., lipophilic) herbicides and other compounds, such as 3(3,4-dichlorophenyl)-1,1, dimethyl urea (also known as DCMU or Diuron, available from Sigma Chemical Co., St. Louis, MO) or other hydrophobic

- 28 -

compounds that disrupt photosynthetic electron transport, as well as Metachlor (Ciba Geigy, Basel Switzerland), Taurocholate (Sigma Chemical Co.), Primisulfuron (Ciba Geigy), and IRL-1803.

5

10

15

20

25

30

35

As illustrated in Example 2, plant cells that over-express a pIPAC gene have surprisingly higher growth rate with or without the xenobiotic compound Rhodamine 6G. It is contemplated that pIPAC overexpression may be a generally useful way to increase plant and plant cell culture growth, even without the presence of xenobiotic compounds.

The following specific examples are provided to illustrate embodiments of the invention. They are not intended to limit the scope of the invention in any way.

EXAMPLE 1 Cloning and Analysis of a PlPAC From Arabidopsis thaliana

The pIPAC of the present invention was identified by its up-regulation in response to a chloride ion channel blocker. Brassica napus plants were grown either in the presence or absence of 20 µM 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). After five days, the roots of the seedlings were harvested and total RNA was extracted separately from the treated and untreated plants. From the total RNA preparations, poly (A)+ RNA was isolated and used as the starting material to create a cDNA subtraction library, using the CLONTECH PCR-SELECT™ cDNA Subtraction Kit and accompanying instructions (CLONTECH Laboratories, Inc., Palo Alto, CA).

Using the subtractive hybridization kit, a gene fragment was identified that was up-regulated in response to treatment of the plants with NPPB. This fragment (0.5 kb) was used to screen a cDNA library of Arabidopsis thaliana, from which a full-length cDNA clone was isolated. The nucleotide sequence of this cDNA clone, referred to as ATPAC (Arabidopsis thaliana putative anion channel) is set forth below as SEQ ID NO:1.

5

20

25

30

The 3.76 kb cDNA clone encodes a polypeptide

1,254 amino acids in length. The deduced amino acid
sequence encoded by SEQ ID NO:1 is shown in Figure 1 as
"atpac" (SEQ ID NO:2), in a lineup with the following
sequences: (1) hmdr1 (SEQ ID NO:3); (2) mmdr1 (SEQ ID
NO:4); (3) hmdr3 (SEQ ID NO:5); (4) mmdr2 (SEQ ID NO:6);

(5) atpgp1 (SEQ ID NO:7); and (6) atpgp2 (SEQ ID NO:8).
A consensus sequence (SEQ ID NO:9) is also shown.

A search of various sequence databases indicates that ATPAC is a new and distinct member of the mdr family of ABC transporters. In none of the databases, including the EST collection, does an exact match exist. The ABC transporter family is very large, consisting of at least two sub-groups, mrp and homologs and mdr and homologs. The only examples of plant mdrlike genes are atpgp1 and atpgp2 from A. thaliana and two homologs from potato and barley, respectively. Though . the atpgp1 and atpgp2 genes are similar to ATPAC, they are only 51 and 50% identical, respectively, indicating that ATPAC is a distinct gene by comparison. Sequence homology with the potato and barley mdr-like genes is even more divergent. Another difference between the agpgp1 gene and the ATPAC gene is their respective preferential expression in inflorescens and roots, respectively.

- 30 -

EXAMPLE 2 Effect of ATPAC Expression in Bacterial Cells on Their Ability to Detoxify Rhodamine 6G

5

25

30

35

The compound Rhodamine 6G is a well known substrate of mammalian p-glycoproteins (Kolaczkowski et al., J. Biol. Chem. <u>271</u>: 31543-31548, 1996). The ability 10 of a cell to detoxify the compound is indicative of activity of p-glycoproteins. A bacterial cell line was transformed with an expression vector comprising ATPAC. The growth rate of transformed and non-transformed cells was then measured, in the presence or absence of 15 Rhodamine 6G. Results are shown in Figure 2. As can be seen, ATPAC-expressing cells grown in the absence of the drug had the best growth rate. Moreover, even in the presence of the drug, the cells grew more quickly than non-transformed cells in the presence or absence of Rhodamine 6G. These results demonstrate that ATPAC 20 encodes a functional and robust p-glycoprotein.

Example 3 Transgenic Plants the Overexpress and Underexpress ATPAC

binary vector pPZP211 (Hajdukiewicz et al., 1994 Plant Mol. Biol. 25:989-994) was digested with EcoRI and SmaI, and self-ligated. This molecule was named pPZP211'. The Agrobacterium binary vector pCGN7366 (Calgene, CA) was digested with XhoI and cloned in SalI-digested pPZP211'. We named this binary vector pPZP-PCGN. The 3.8 kb full-length ATPAC cDNA was cloned into the pGH19 vector. After digestion with SmaI (in the multiple cloning site upstream) and EcoRI, a 3.1 kb cDNA fragment was cut out.

- 31 -

This SmaI-EcoRI 3.1 kb fragment was cloned into the SmaI/EcoRI site of pPZP-pCGN. The rest of ATPAC gene was amplified using polymerase chain reaction to have translationally fused HA-tag at its 3'-terminal. After ligating EcoRI linkers to the ends of the resulting PCR product, the 0.7 kb fragment was cloned into the EcoRI site of the SmaI-EcoRI 3.1 kb ATPAC fragment in pPZP-pCGN. The final construct was named pATPAC-OE.

5

15

20

25

30

Plant transformation. pATPAC-OE was introduced into Agrobacterium tumefaciens strain by a direct transformation method. Agrobacterium-mediated transformation was performed using vacuum infiltration (Bechtold et al., 1993,. CR Acad. Sci. [III] 316: 1194-1199.)

T1 plants which survived on kanamycin-containing plates were selected, transplanted into soil and grown to set T2 seed. T3 seeds were collected from kanamycin-resistant T2 plants. T3 plants which showed 100% kanamycin-resistance were selected and were considered homozygous for the transgene.

Antisense Plants. The full length cDNA in pBluescript SK(-) vector (Stratagene, CA) is digested with EcoRI (there is a cleavage site in the upstream polylinker) and SspI. The resulting 1.3 Kb fragment representing a 5' portion of the AtPAC cDNA was cloned into the aforementioned pPZP-PCGN, which had been digested with EcoRI/SmaI, ensuring that this fragment of the cDNA was inserted in the antisense orientation. This construct was named pATPAC-AE. pATPAC-AE was introduced into Arabidopsis plants by Agrobacterium transformation, as described above.

- 32 -

Knock-out Plants. The method of Krysan et al (1996, PNAS 93:8145, incorporated by reference herein) was followed using the following primers:

Gene-specific primers:

AtpacF: CACTGCTCAATGATCTCGTTTTCTCACTA (SEQ ID NO:11)
AtpacR: CTTGAATCACACCAATGCAATCAACACCTC (SEQ ID NO:12)
Primers for T-DNA left boarder:

JL202: CATTTTATAATAACGCTGCGGACATCTAC (SEQ ID NO:13) JL270: TTTCTCCATATTGACCATCATACTCATTG (SEQ ID NO:14)

10

15

While certain of the preferred embodiments of the present invention have been described and specifically exemplified above, it is not intended that the invention be limited to such embodiments. Various modifications may be made thereto without departing from the scope and spirit of the present invention, as set forth in the following claims.

- 33 -

What is claimed:

 A nucleic acid isolated from a plant, which encodes a p-glycoprotein that is inducible by exposure of the plant to NPPB.

2. The isolated nucleic acid of claim 1, which is preferentially expressed in plant roots upon exposure of the plant to NPPB.

10

3. The isolated nucleic acid of claim 1, wherein the plant is selected from the group consisting of *Brassica napus* and *Arabidopsis thaliana* and is 3850-4150 nucleotides long.

15

- 4. The isolated nucleic acid of claim 1, which has the restriction sites shown in Figure 4 for at least three enzymes.
- 5. The isolated nucleic acid of claim 4, which encodes a polypeptide having SEQ ID NO:2.
- 6. The isolated nucleic acid of claim 5, which is a cDNA comprising a coding region selected from the group consisting of SEQ ID NO:1 and SEQ ID NO:10.
 - 7. An isolated protein, which is a product of expression of part or all of the isolated nucleic acid molecule of claim 1.

30

- 8. Antibodies immunologically specific for the protein of claim 7.
 - 9. A expression cassette, which comprises a

- 34 -

plPAC gene coding sequence operably linked to a promoter.

10. The expression cassette of claim 9, which comprises a plPAC gene from Arabidopsis thaliana.

5

- 11. The expression cassette of claim 10, in which the promoter is the cauliflower mosaic virus 35S promoter.
- 10 12. The expression cassette of claim 10, in which the *plPAC* gene is part or all of SEQ ID NO:1 or SEQ ID NO:10.
- 13. A vector comprising the expression15 cassette of claim 9.
 - 14. The vector of claim 13, which is comprised of an *Agrobacterium* binary vector selected from the group consisting of pPZP211 and pCGN7366.

20

15. A method for producing a plant with enhanced resistance to xenobiotic compounds by transforming *in vitro* the plant with the expression cassette of claim 9.

25

- 16. The method of claim 15, wherein the transformation step further uses the vector of claim 13.
- 17. A transgenic plant produced by the method 30 of claim 15.
 - 18. A reproductive unit form the transgenic plant of claim 17.

- 35 -

19. A cell from the transgenic plant of claim17.

- 20. A recombinant DNA molecule comprising the nucleic acid molecule of claim 1, operably linked to a vector for transforming cells.
 - 21. A cell transformed with the recombinant DNA molecule of claim 20.

10

30

- 22. The cell of claim 21, selected from the group consisting of bacterial cells, yeast cells and plant cells.
- 23. A transgenic plant regenerated from the transformed cell of claim 22.
- 24. An isolated nucleic acid molecule of at least 20 nucleotides in length having a sequence selected from the group consisting of:
 - a) SEQ ID NO:1 and SEQ ID NO:10;
 - b) a nucleic acid sequence that is at least about 60% homologous to the coding regions of SEQ ID NO:1 or SEQ ID NO:10;
- c) a sequence hybridizing with SEQ ID NO:1 or SEQ ID NO:10 at moderate stringency;
 - d) a sequence encoding part or all of a polypeptide having SEQ ID NO:2;
 - e) a sequence encoding an amino acid sequence that is at least about 70% identical to SEQ ID NO:2;
 - f) a sequence encoding an amino acid sequence that is at least about 80% similar to SEQ ID NO:2;
 - g) a sequence encoding an amino acid sequence that is at least about 40% similar to residues 1-76, 613-

- 36 -

669 or 1144-1161 of SEQ ID NO:2; and

h) a sequence hybridizing at moderate stringency to a sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

5

- 25. A polypeptide produced by expression of the nucleic acid sequence of claim 24.
- 26. Antibodies immunologically specific for the polypeptide of claim 24.
- 27. An oligonucleotide between about 10 and about 100 nucleotides in length, which specifically hybridizes at moderate stringency with a portion of the nucleic acid molecule of claim 24.
 - 28. A recombinant DNA molecule comprising the nucleic acid molecule of claim 24, operably linked to a vector for transforming cells.

20

- $\,$ 29. A cell transformed with the recombinant DNA molecule of claim 28.
- 30. The cell of claim 29, selected from the group consisting of bacterial cells, yeast cells and plant cells.
 - 31. A transgenic plant regenerated from the cell of claim 30.

30

- 32. An isolated plant p-glycoprotein, which is inducible upon exposure of the plant to NPPB.
 - 33. The p-glycoprotein of claim 32, which

- 37 -

confers upon a cell in which it is found resistance to Rhodamine 6G.

- 34. The p-glycoprotein of claim 33, which is preferentially produced in roots upon the exposure to the NPPB.
- 35. The p-glycoprotein of claim 34, from a plant selected from the group consisting of Brassica napus and Arabidopsis thaliana.
 - 36. The p-glycoprotein of claim 35, having an amino acid sequence that selected from the group consisting of:
- a) an amino acid sequence that is at least 80% similar to SEO ID NO:2;
 - b) an amino acid sequence that is at least 70% identical to SEQ ID NO:2;
- c) an amino acid sequence that is at least 40% similar to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2; and
 - d) an amino acid sequence encoded by a nucleic acid sequence hybridizing at moderate stringency to a amino acid sequence encoding residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.
 - 37. Antibodies immunologically specific for the p-glycoprotein of claim 32.
- 38 The antibodies of claim 35, that are immunologically specific to residues 1-76, 613-669 or 1144-1161 of SEQ ID NO:2.

25

39. A plant p-glycoprotein gene promoter which

- 38 -

is inducible by NPPB.

- 40. The plant p-glycoprotein gene promoter of claim 39, that is part or all of residues 1-3429 of SEQ ID NO:10.
 - 41. A plant with reduced levels of plPAC protein.
- 10 42. The plant of claim 41, wherein the native plPAC gene is mutated.
 - 43. The plant of claim 42, wherein the plPAC gene is mutated due to the insertion of a T-DNA.

15

- 44. A method for making the plant of claim 42, wherein a population of mutated plants are screened using at least one of SEQ ID NOS:11-14 as PCR primers.
- 20 45. The method of claim 44, wherein the population of plants is mutated by T-DNA insertion.

Figure 1 (sheet 1 of 4)

SRAIVKNPS<u>ILLID</u>EATSALDAESEKSVQEALDRVMVGRTTVVVAHRLSTVRNADIIAVVHEGKIVEFGNHENLIS.NPDGAYSSLLRLQETASLQRNPSLNRTLSRPHS aralvrnpkillidbeatsaldtesEavVQ Aldkar GRTTiviaHRLsTvRnaDviAgfedGvivE GsHdelmkk GvYfkLv mQt g i n QQKCNIFSLIFLFLGIISFFTFFLQGFTFGKAGEILTRRLRSMAFKAMLRQDMSWFDDHKNSTGALSTRLATDAAQVQGATGTRLALIAQNIANLGTGIIISFIYGWQLT QQKCNMFSIVFLGLGVLSFFTFFLQGFTFGKAGEILTTRLRSMAFKAMLRQDMSWFDDHKNSTGALSTRLATDAAQVQGATGTKLALIAQNTANLGTGIIISFIYGWQLT ARALVRNPKILLIDEATSALDTESEAEVQAALDKAREGRTTIVIAHRLSTIRNADVIAGFEDGVIVEQGSHSELMKK..EGIYFRLVNMQTAGSQILSEE.....FE $\texttt{ARALURNPK} \overline{\textbf{ILLLD}} \overline{\textbf{EATSALDTESEAVV}} \overline{\textbf{QVALDKARKGRITIVIAHRLST}} \overline{\textbf{VRNADVIAGFDDGVIVEKGNHDELMKE..KGIYFKL}} \overline{\textbf{VTMQTAGNEVELEN....}} \overline{\textbf{AA}}$ ARALVRNPKI<u>llid</u>batsaldteseavvqaaldkaregrttiviahrlstvrnadviagfdggviveqgnhdelmre..kgiyfklvmtqtrgneiepgn.....na ARAMIKDPK<u>IILID</u>BATSALDASSESIVQEALDRVMVGRTTVVVVAHRLCTIRNVDSIAVIQQGQVVETGTHEELIAK..SGAYASLIRFQEMVGTRDFSNPSTRRTRSTR ARAMIKNPA<u>I LILD</u>EATSALDSESEKIVQEALDRFMIGRTTLI I AHRLSTIRKADIVAVLQQGSVSEI GTHDELFSKGENGVYAKLI KMQEAAHETAMSNARKSSARPSS . ELNDEKAATRMAPNGWKSRLFRHSTQKNLKNSQMCQK...SLDVETDGLEANVPPVSFLKVLKLNKTEWPYFVVGTVCAIANGGLQPAFSVIFSEIIAIFGPGDD.AVK VELSDEKAAGDVAPNGWKARIFRNSTKKSLKSPH...QN...RLDEETNELDANVPPVSFLKVLKLNKTEWPYFVVGTVCAIANGALQPAFSIILSEMIAIFGPGDD.AVK DESKSEIDALEMSSNDSRSSLIRKRSTRRSVRGSQAQD...RKLSTKEALDESIPPVSFWRIMKLNLTEWPYFVVGVFCALINGGLQPAFALIFSKIIGVFTRIDDPETK YGSQSDTDASELTSEESKSPLIR.RSIYRSVHRKQDQE...RRLSMKEAVDEDVPLVSFWRIININLSEWPYLLVGVLCAVINGCIQPVFAIVFSRIVGVFSRDDDHETK GKSTVISLIERFYEPISGAVILDGNNISELDIKWIRGQIGLVNQEPALFATTIRENILYGKDDATAEEITRAAKISEAISFINNIPEGFETQVGERGIQLSGGQKQRIAI GKSTtvqiiqRlYdp eg v iDGqdirtinvrylReiIGvVsQEPvLFaTtlaENI yGr dvtmdEiekAvkeanAyeFImklp fdTlVGeRGaQLSGGQKQRIAI ARALVRNPKILLLDBEATSALDTESEAEVQAALDKAREGRTTIVIAHRLSTVRNADVIAGFEDGVIVEQGSHSELMKK..EGVYFKLVNMQTSGSQIQSEE....F. GKSTTVQLMQRLYDPTEGMVSVDGQDIRTINVRFLREIIGVVSQEPVLFATTIAENIRYGRENVTMDEIEKAVKEANAYDFIMKLPHKFDTLVGERGAQLSGGQKQRIAI <u>GKS</u>TTVQLMQRLYDPLEGVVSIDGQDIRTINVRYLREIIGVVSQEPVLFATTIAENIRYGREDVTMDEIEKAVKEANAYDFIMKLPHQFDTLVGERGAQLSGGQKQRIAI GKSTVVSLIERFYDPNSGQILLDGVEIKTLQLKFLREQIGLVNQEPALFATTILENILYGKPDATMVEVEAAASAANAHSFITLLPKGYDTQVGERGVQLSGGQKQRIAI <u>GKS</u>TVVSLIERFYDPNSGQVLLDGQDLKTLKLRWLRQQIGLVSQEPALFATSIKENILLGRPDADQVEIEEAARVANAHSFIIKLPDGFDTQVGERGLQLSGGQKQRIAI GKSTTVQLIQRLYDPDEGTINIDGQDIRNFNVNYLREIIGVVSQEPVLFSTTIAENICYGRGNVTMDEIKKAVKEANAYEFIMKLPQKFDTLVGERGAQLSGGQKQRIAI <u>GKS</u>TTVQLLQRLYDPTEGKISIDGQDIRNFNVRCLREIIGVVSQEPVLFSTTIAENIRYGRGNVTMDEIEKAVKEANAYDFIMKLPQKFDTLVGDRGAQLSGGQKQRIAI 623 628 620 748 745 749 747 725 738 515 518 511 641 401 661 431 405 408 consensus consensus consensus atpgp2 atpgp2 atpgpl atpgp1 atpgp1atpgp2 hmdr1 atpac mmdr2 hmdr3 atpac mmdr1 mmdr1 atpac mmdr2 hmdr1 mmdr1 mmdr2 hmdr1

N (sheet Figure

KE. IKKIAILFCCASVITLIVYTIEHICFGTMGERLTLRVRENMFRAILKNEIGWFDEVDNTSSMLASRLESDATLLKTIVVDRSTILLONLGLVVTSFIIAFILNWRLT

nifsliflglgiisfitfflggftfgkaGEiLTrRvR mvfkamLrqdmsWFDd knstg lstRLatDAaqvkgaig rlavi QNianlgtgiiisfiygWqlt

consensus

atpgp1 atpgp2

atpac

mmdr2

hmdr1 mmdr1

RQNCNLFSLFFLVMGLISFVTYFFQGFTFGKAGEILTKRVRYMVFKSMLRQDISWFDDHKNSTGSLTTRLASDASSVKGAMGARLAVVTQNVANLGTGVILSLVYGWQLT RK. TKEYVFIYIGAGLYAVGAYLIQHYFFSIMGENLTTRVRRMMLSAILRNEVGWFDEDEHNSSLIAARLATDAADVKSAIAERISVILQNMTSLLTSFIVAFIVEWRVS KQ. IDKYCYLLIGLSSAALVFNTLQHSFWDIVGENLTKRVREKMLSAVLKNEMAWFDQEENESARIAARLALDANNVRSAIGDRISVIVQNTALMLVACTAGFVLQWRLA

RONSNLFSLLFLALGIISFITFFLQGFTFGKAGEILTKRLRYMVFRSMLRQDVSWFDDPKNTTGALTTRLANDAAQVKGAIGSRLAVITQNIANLGTGIIISFIYGWQLT

KSSVISLIQRFYEPSSGRVMIDGKDIRKYNLKAIRKHIAIVPQEPCLFGTTIYENIAYGHEC..ATEAEIIQAATLASAHKFISALPEGYKTYVGERGVQLSGGQKQRIA KSSVISLILRFYDPTAGKVMIEGKDIKKLDLKALRKHIGIVQQEPALFATTIYENILYGNEG..ASQSEVVESAMLANAHSFITSLPEGYSTKVGERGVQMSGGQRQRIA KSTVVqlleRFYdplaGkVlldGkeikklnvqwlRahlgiVsQEPiLFdcsIaeNIaYGdnsr vs dEiv aak anih FietLPdkY TrVGdkGtQlSGGQkQRIA KSTVVQLLERFYDPMAGSVLLDGQEAKKLNVQWLRAQLGIVSQEPILFDCSIAENIAYGDNSRVVPHDEIVRAAKEANIHPFIETLPQKYNTRVGDKGTQLSGGQKQRIA KSTVVQLLERFYDPLAGKVLLDGKEIKRLNVQWLRAHLGIVSQEPILFDCSIAENIAYGDNSRVVSQEEIVRAAKEANIHAFIESLPNKYSTKVGDKGTQLSGGQKQRIA KSTVVOLLERFYDPMAGSVFLDGKEIKQLNVQWLRAHLGIVSQEPILFDCSIAENIAYGDNSRAVSHEEIVRAAKEANIHQFIDSLPDKYNTRVGDKGTQLSGGQKQRIA KSSVIAMIERFYDLLAGKVMIDGKDIRRLNLKSLRLKIGLVQQEPALFAATIFDNIAYGKDG..ATESEVIDAARAANAHGFISGLPEGYKTPVGERGVQLSGGQKQRIA KSTVVQLLERFYDPLAGTVLLDGQEAKKLNVQWLRAQLGIVSQEPILFDCSIAENIAYGDNSRVVSQDEIVSAAKAANIHPFIETLPHKYETRVGDKGTQLSGGQKQRIA 9201 1074 1053 1065 1075 1031 1101 consensus atpgbl mmdr2 hmdr1 mmdr1 atpac hmdr3

of ന (sheet \leftarrow Figure

Figure 1 (sheet 4 of 4)

hmdr3 1280 ~~~~ hmdr1 1277 ~~~~ hmdr1 1281 ~~~~ atpac 1255 ~~~~ atpgp1 1283 EDDA atpgp2 1234 ~~~~ consensus 1321

Figure 2

Figure 3

Figure 4

WO 00/18886

1.

SEQUENCE LISTING

PCT/US99/22363

```
<110> Wisconsin Alumni Research Foundation
             Spalding, Edgar P.
             Noh, Bosl
      <120> Xenobiotic Detoxification Gene from
      <130> WARF S212
      <150> 60/101,814
      <151> 1998-09-25
      <160> 14
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 4051
      <212> DNA
      <213> Arabidopsis thaliana
      <220>
      <221> misc_feature
      <222> (94)...(0)
      <223> Translation start codon
      <221> misc feature
      \langle 222 \rangle (393\overline{2})...(0)
      <223> Stop codon
      <400> 1
cttgaacttc acaaaacaat tgtcagattt tcaagaaaaa ctttataaaa caaaaaacat
ttcattcttt ctctctctt ctctcactge tcaatgatct cgttttctca ctaaaccaac
                                                                         120
tcgtttcttc ttactttctt taactcggat ctacaaaaaa ccatgtcgga aactaacaca
                                                                         180
accgatgcca agactgttcc agcagaagca gagaagaaga aagaacagag tttaccattc tttaaactct tttctttcgc tgataaattt gattatctct taatgttcgt tggttctctt
                                                                         240
                                                                         300
ggtgccattg ttcatggctc ttccatgcct gtcttctttt tactctttgg tcaaatggtt
                                                                         360
aatggatttg gtaaaaacca aatggattta catcaaatgg ttcatgaagt ctctagatat
                                                                         420
tototatatt togtotactt gggtttggtc gtttgettct cttcttacgc agagatagca
                                                                         480
tgttggatgt attctggaga aagacaagta gcagcattaa ggaagaaata tcttgaagca
                                                                         540
gtattaaaac aagacgttgg gttctttgat actgatgcta gaactggtga cattgtcttt
                                                                         600
agtgtttcta ctgatactct tcttgttcaa gatgccatta gtgaaaaggt tggaaacttt
                                                                         660
atacattacc tctcaacatt tttggcggga ttagtagttg gatttgtatc agcatggaaa
                                                                         720
ttagctttgt taagtgttgc tgtgattccc ggaatcgctt tcgccggagg tttatacgct
                                                                         780
tatacactca ccggaattac ttcaaagagc cgtgaatctt atgctaacgc cggtgttatc
                                                                         840
gccgagcagg caattgctca agttcgaact gtttattctt atgttggaga gagtaaggca
                                                                         900
cttaatgcgt attcggatgc gattcagtat acgcttaagc tcggttataa agcggggatg
                                                                         960
gctaaagggt tgggtttagg atgtacttat ggaatagctt gtatgtcatg ggctttggtg
                                                                        1020
ttttggtatg ctggagtttt tattcggaat ggacaaaccg atggaggaaa ggcgtttact
                                                                        1080
gctatattct ctgctattgt tggtggaatg agtttggggc aatctttctc gaatcttggg
                                                                        1140
gcgtttagta aaggtaaagc ggctggttat aagttgatgg agataattaa ccagagaccg
                                                                        1200
acgataattc aagacccgtt ggatggaaaa tgtttggatc aagttcatgg gaacattgag
                                                                        1260
tttaaagatg tgacttttag ctatccttca cggcctgatg ttatgatctt caggaacttt
                                                                        1320
aatattttct teeettetgg gaaaactgtg geggttgttg gtgggagtgg etetggaaag
agtactgttg tttccctcat tgagagattc tatgatccaa acagcgggca aattctgttg
                                                                        1440
gatggtgttg agataaagac gcttcagttg aagtttttgc gtgaacaaat cgggcttgtg
                                                                        1500
aatcaagaac ctgcgctctt tgccactact atactagaga acatactcta tggaaagcct
                                                                        1560
gatgcaacaa tggttgaagt tgaagctgct gcttccgctg cgaatgcgca tagtttcatt
                                                                        1620
acattacttc ctaaaggcta cgacacacag gttggagaac gtggtgttca actctcaggt
                                                                        1680
```

```
ggacagaagc agagaattgc aattgctagg gcgatgttga aagacccaaa gattctgtta
                                                                    1740
                                                                    1800
ctagatgaag ctacaagcgc tcttgatgct agctctgaga gcattgttca ggaagcttta
gacagagtca tggtggggag gaccactgtt gttgttgctc atcgtctctg caccatcaga
                                                                    1860
aatgttgatt ccattgccgt gatacagcaa ggccaagttg ttgaaaccgg aacacatgaa
                                                                    1920
gaactcattg ccaaatccgg tgcttacgca tccctcatca ggtttcagga aatggttggt
                                                                    1980
                                                                    2040
actcgagatt tctcaaaccc gtcaactcgt cgcactcgtt caacccgttt gagccattca
ctgtcaacga aatcactcag tttaagatca ggaagtttga ggaatctgag ctattcttac
                                                                    2100
agcactggag ctgatggtcg gatagagatg atttcaaatg cagagactga ccgaaagact
                                                                    2160
cgtgcccctg aaaattactt ctacaggctt ctcaagctta attcaccgga atggccttac
                                                                    2220
tcaatcatgg gagcagtagg ctcaattctt tctggtttca ttggtcctac atttgctatt
                                                                    2280
                                                                    2340
2400
acaaaagagt atgtcttcat ctacattggt gctggtctct atgctgtggg tgcttatttg
atccaacatt acttctttag catcatggga gaaaacctca caacaagagt aagaagaatg
                                                                    2460
atgctctcag ctatcttgag aaacgaagtt ggttggttcg atgaggatga acacaactca
                                                                    2520
agcctgatcg ctgcacgttt agctactgat gcagcagatg ttaaatccgc tatagccgag
                                                                    2580
agaateteag taattetaca aaacatgaet teaettetea cateetteat agtegeette
                                                                    2640
                                                                    2700
atagtagaat ggagagtete actteteate ttaggeacat teccaettet agteeteget
aactttgctc agcaactatc tctgaagggt tttgctggag acacagctaa ggctcatgca
                                                                    2760
aagacttcaa tgattgctgg tgaaggagtc agtaacatta gaaccgtagc agctttcaat
                                                                    2820
gcacagagca agattetete tttgttetgt catgagette gtgtacetea gaaaagaage
                                                                    2880
ttaagcttat accgaagtca aacctcgggt ttcctatttg gcctctcgca gcttgctctc
                                                                    2940
                                                                    3000
tatggttctg aggctttaat tctctggtat ggtgcccacc ttgtgagtaa aggcgtgtca
accttttcca aagtgatcaa agtgtttgtg gttttggtca ttactgcaaa ctctgttgct
                                                                    3060
gaaactgtca gtcttgctcc tgaaattatt cggggaggtg aagctgttgg ttcggttttc
                                                                    3120
toggtottgg acaggcagac caggattgac coggatgatg ctgatgctga toccgtggag
                                                                    3180
acgatccgtg gagacattga gtttaggcat gttgatttcg cttacccttc aagacccgac
                                                                    3240
gtcatggttt tcagggactt taacctcaga attcgagctg gacatagcca agctcttgtg
                                                                    3300
ggcgcgagtg ggtcagggaa gagttctgta attgcgatga tcgagcggtt ttacgacctt
                                                                    3360
                                                                    3420
cttgctggaa aagtcatgat tgatggcaaa gacatccgcc ggctaaacct gaaatctcta
aggeteaaaa teggtettgt teaacaagaa eeagetettt tegeageaae gatettegae
                                                                    3480
aacatcgcct atggtaaaga tggtgcaact gaatccgagg taattgatgc agctcgagcc
                                                                    3540
gcaaatgctc acggtttcat cagtggttta cctgaaggtt acaaaactcc agtaggcgaa
                                                                    3600
agaggagtgc agttatcagg tggacagaaa cagaggatcg cgatagcaag agctgtgctc
                                                                    3660
aagaacccta cagtgttgct tctagacgaa gcaactagcg cactagatgc agaatcagaa
                                                                    3720
                                                                    3780
tgcgtgctgc aagaggcgtt agagaggctc atgagaggtc ggaccaccgt ggtagttgct
caccgcttgt ccaccataag aggtgttgat tgcattggtg tgattcaaga cgggcggatt
                                                                    3840
gtggagcaag gcagccattc agagctcgtt agccgaccag agggagctta ttcaaggctg
                                                                    3900
ttacagcttc aaacacatag gatttgaagc ttgatcatgg attaaaaaca aaaaatcggt
                                                                    3960
                                                                    4020
ttgtgtaatt ttttttatat taaaacttta atttggaaga tttctatgga ctataacgat
                                                                    4051
aatatgaata ggtgtagata atgaagcttt t
```

<210> 2

<211> 1254

<212> PRT

<213> Arabidopsis thaliana

 400>
 2

 Met
 Ser
 Glu
 Thr
 Asn
 Thr
 Thr
 Asp
 Ala
 Lys
 Thr
 Val
 Pro
 Ala
 Glu
 Ala
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 16
 15
 16
 15
 16
 12
 16
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 14
 <td

Lys Gln Asp Val Gly Phe Phe Asp Thr Asp Ala Arg Thr Gly Asp Ile Val Phe Ser Val Ser Thr Asp Thr Leu Leu Val Gln Asp Ala Ile Ser Glu Lys Val Gly Asn Phe Ile His Tyr Leu Ser Thr Phe Leu Ala Gly Leu Val Val Gly Phe Val Ser Ala Trp Lys Leu Ala Leu Leu Ser Val Ala Val Ile Pro Gly Ile Ala Phe Ala Gly Gly Leu Tyr Ala Tyr Thr Leu Thr Gly Ile Thr Ser Lys Ser Arg Glu Ser Tyr Ala Asn Ala Gly Val Ile Ala Glu Gln Ala Ile Ala Gln Val Arg Thr Val Tyr Ser Tyr Val Gly Glu Ser Lys Ala Leu Asn Ala Tyr Ser Asp Ala Ile Gln Tyr Thr Leu Lys Leu Gly Tyr Lys Ala Gly Met Ala Lys Gly Leu Gly Leu Gly Cys Thr Tyr Gly Ile Ala Cys Met Ser Trp Ala Leu Val Phe Trp Tyr Ala Gly Val Phe Ile Arg Asn Gly Gln Thr Asp Gly Gly Lys Ala 295 300 Phe Thr Ala Ile Phe Ser Ala Ile Val Gly Gly Met Ser Leu Gly Gln Ser Phe Ser Asn Leu Gly Ala Phe Ser Lys Gly Lys Ala Ala Gly Tyr Lys Leu Met Glu Ile Ile Asn Gln Arg Pro Thr Ile Ile Gln Asp Pro Leu Asp Gly Lys Cys Leu Asp Gln Val His Gly Asn Ile Glu Phe Lys Asp Val Thr Phe Ser Tyr Pro Ser Arg Pro Asp Val Met Ile Phe Arg Asn Phe Asn Ile Phe Phe Pro Ser Gly Lys Thr Val Ala Val Val Gly Gly Ser Gly Ser Gly Lys Ser Thr Val Val Ser Leu Ile Glu Arg Phe 405 410 Tyr Asp Pro Asn Ser Gly Gln Ile Leu Leu Asp Gly Val Glu Ile Lys Thr Leu Gln Leu Lys Phe Leu Arg Glu Gln Ile Gly Leu Val Asn Gln Glu Pro Ala Leu Phe Ala Thr Thr Ile Leu Glu Asn Ile Leu Tyr Gly Lys Pro Asp Ala Thr Met Val Glu Val Glu Ala Ala Ala Ser Ala Ala Asn Ala His Ser Phe Ile Thr Leu Leu Pro Lys Gly Tyr Asp Thr Gln Val Gly Glu Arg Gly Val Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Met Leu Lys Asp Pro Lys Ile Leu Leu Asp 515 520 525 Glu Ala Thr Ser Ala Leu Asp Ala Ser Ser Glu Ser Ile Val Gln Glu 530 535 540 Ala Leu Asp Arg Val Met Val Gly Arg Thr Thr Val Val Val Ala His Arg Leu Cys Thr Ile Arg Asn Val Asp Ser Ile Ala Val Ile Gln Gln Gly Gln Val Val Glu Thr Gly Thr His Glu Glu Leu Ile Ala Lys Ser Gly Ala Tyr Ala Ser Leu Ile Arg Phe Gln Glu Met Val Gly Thr Arg Asp Phe Ser Asn Pro Ser Thr Arg Arg Thr Arg Ser Thr Arg Leu Ser

	610					615					620				
His 625	Ser	Leu	Ser	Thr	Lys 630		Leu	Ser	Leu	Arg 635		Gly	Ser	Leu	Arg 640
Asn	Leu	Ser	Tyr	Ser 645		Ser	Thr	Gly	Ala 650		Gly	Arg	Ile	Glu 655	Met
Ile	Ser	Asn	Ala 660		Thr	Asp	Arg	Lys 665		Arg	Ala	Pro	Glu 670	Asn	Tyr
Phe	Tyr	Arg 675		Leu	Lys	Leu	Asn 680		Pro	Glu	Trp	Pro 685		Ser	Ile
Met	Gly 690		Val	Gly	Ser	Ile 695		Ser	Gly	Phe	Ile 700	-	Pro	Thr	Phe
Ala 705	Ile	Val	Met	Ser	Asn 710		Ile	Glu	Val	Phe 715		Tyr	Thr	Asp	Tyr 720
Asp	Ser	Met	Glu	Arg 725		Thr	Lys	Glu	Tyr 730	Val	Phe	Ile	Tyr	11e 735	Gly
Ala	Gly	Leu	Tyr 740	Ala	Val	Gly	Ala	Tyr 745	Leu	Ile	Gln	His	Tyr 750	Phe	Phe
Ser	Ile	Met 755	Gly	Glu	Asn	Leu	Thr 760	Thr	Arg	Val	Arg	Arg 765	Met	Met	Leu
	770	Ile				775					780			Glu	
785					790					795				Asp	800
-				805					810					Met 815	
			820					825					830	Arg	
		835					840					845		Asn -	
	850					855					860			Lys	
865					870					875				Ile	880
				885					890					Phe 895	
			900					905					910	Arg	
		915					920					925		Tyr	
	930					935					940			Lys	
945					950					955				Val	960
				965					Ser 970	Leu	Ala			11e 975	
		Gly		Ala	Val	Clu									GIn
			980					985			Val		990		
Ara		995	Asp	Pro	Asp	Asp	Ala 1000	985 Asp	Ala	Asp	Pro	Val 1005	990 Glu 5	Thr	Ile
	Gly 101	995 Asp 0	Asp Ile	Pro Glu	Asp Phe	Asp Arg 101	Ala 1000 His	985 Asp) Val	Ala Asp	Asp Phe	Pro Ala 1020	Val 1005 Tyr)	990 Glu Fro	Thr Ser	Ile Arg
Pro 102	Gly 101 Asp	995 Asp 0 Val	Asp Ile Met	Pro Glu Val	Asp Phe Phe	Asp Arg 101! Arg	Ala 1000 His 5 Asp	985 Asp Val Val	Ala Asp Asn	Asp Phe Leu 103	Pro Ala 1020 Arg	Val 1005 Tyr) Ile	990 Glu Pro Arg	Thr Ser Ala	Ile Arg Gly 1040
Pro 1025 His	Gly 1010 Asp 5 Ser	995 Asp 0 Val Gln	Asp Ile Met Ala	Pro Glu Val Leu 104	Asp Phe Phe 103 Val	Asp Arg 101! Arg 0 Gly	Ala 1000 His Asp Ala	985 Asp Val Phe	Ala Asp Asn Gly 1056	Asp Phe Leu 103: Ser	Pro Ala 1020 Arg 5 Gly	Val 1005 Tyr) Ile Lys	990 Glu Pro Arg	Thr Ser Ala Ser 105	Ile Arg Gly 1040 Val
Pro 1025 His	Gly 1010 Asp Ser Ala	995 Asp O Val Gln Met	Asp Ile Met Ala Ile 106	Pro Glu Val Leu 104 Glu	Asp Phe Phe 103 Val 5 Arg	Asp Arg 101! Arg O Gly	Ala 1000 His Asp Ala Tyr	985 Asp Val Phe Ser Asp	Ala Asp Asn Gly 1050 Leu	Asp Phe Leu 103: Ser Leu Leu	Pro Ala 1020 Arg Gly Ala	Val 1005 Tyr) Ile Lys Gly	990 Glu Pro Arg Ser Lys	Thr Ser Ala Ser 1055 Val	Arg Gly 1040 Val Met
Pro 1025 His Ile	Gly 1010 Asp 5 Ser Ala Asp	995 Asp Val Gln Met Gly 107	Asp Ile Met Ala Ile 106 Lys	Pro Glu Val Leu 104 Glu 0 Asp	Asp Phe Phe 103 Val S Arg	Asp Arg 101: Arg Gly Phe	Ala 1000 His 5 Asp Ala Tyr Arg 108	985 Asp Val Phe Ser Asp 106 Leu	Ala Asp Asn Gly 1050 Leu 5 Asn	Asp Phe Leu 1039 Ser Leu Leu	Pro Ala 1020 Arg Gly Ala Lys	Val 1005 Tyr) Ile Lys Gly Ser 1085	990 Glu Pro Arg Ser Lys 1079 Leu	Thr Ser Ala Ser 1055 Val O Arg	Arg Gly 1040 Val Met Leu
Pro 1023 His Ile Ile Lys	Gly 1010 Asp 5 Ser Ala Asp Ile 109	995 Asp O Val Gln Met Gly 107 Gly	Asp Ile Met Ala Ile 106 Lys Lys	Pro Glu Val Leu 104 Glu 0 Asp	Asp Phe Phe 103 Val 5 Arg Ile Gln	Asp Arg 101: Arg Gly Phe Arg Gln 109	Ala 1000 His Asp Ala Tyr Arg 1080 Glu	985 Asp Val Phe Ser Asp 106 Leu Pro	Ala Asp Asn Gly 1050 Leu 5 Asn Ala	Asp Phe Leu 103! Ser Leu Leu Leu	Ala 1020 Arg Gly Ala Lys Phe 1100	Val 1005 Tyr Ile Lys Gly Ser 1085 Ala	990 Glu Pro Arg Ser Lys 1070 Leu Ala	Thr Ser Ala Ser 1055 Val	Arg Gly 1040 Val Met Leu Ile

5.

```
1110
                               1115
Ile Asp Ala Ala Arg Ala Ala Asn Ala His Gly Phe Ile Ser Gly Leu
                                            1135
          1125 1130
Pro Glu Gly Tyr Lys Thr Pro Val Gly Glu Arg Gly Val Gln Leu Ser
                                 1150
         1140
               1145
Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Val Leu Lys Asn
 1155 1160 1165
Pro Thr Val Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Ala Glu
 1170 1175 1180
Ser Glu Cys Val Leu Gln Glu Ala Leu Glu Arg Leu Met Arg Gly Arg
1185 1190 1195 1200
Thr Thr Val Val Val Ala His Arg Leu Ser Thr Ile Arg Gly Val Asp
       1205 1210
Cys Ile Gly Val Ile Gln Asp Gly Arg Ile Val Glu Gln Gly Ser His
        1220 1225 1230
Ser Glu Leu Val Ser Arg Pro Glu Gly Ala Tyr Ser Arg Leu Leu Gln
                              1245
     1235
                   1240
Leu Gln Thr His Arg Ile
   1250
     <210> 3
    <211> 1280
     <212> PRT
     <213> Homo sapiens
    <300>
    <308> Genbank P08183
    <309> 1997-11-01
    <400> 3
Met Asp Leu Glu Gly Asp Arg Asn Gly Gly Ala Lys Lys Lys Asn Phe 1 5 10
Phe Lys Leu Asn Asn Lys Ser Glu Lys Asp Lys Lys Glu Lys Lys Pro
   20
                        25
Thr Val Ser Val Phe Ser Met Phe Arg Tyr Ser Asn Trp Leu Asp Lys
                                     45
                   40
    35
Leu Tyr Met Val Val Gly Thr Leu Ala Ala Ile Ile His Gly Ala Gly
                   55
                                  60
Leu Pro Leu Met Met Leu Val Phe Gly Glu Met Thr Asp Ile Phe Ala
                                75
                70
Asn Ala Gly Asn Leu Glu Asp Leu Met Ser Asn Ile Thr Asn Arg Ser
          85 90
Asp Ile Asn Asp Thr Gly Phe Phe Met Asn Leu Glu Glu Asp Met Thr
                105 110
        100
Arg Tyr Ala Tyr Tyr Tyr Ser Gly Ile Gly Ala Gly Val Leu Val Ala
                                      125
                      120
    115
Ala Tyr Ile Gln Val Ser Phe Trp Cys Leu Ala Ala Gly Arg Gln Ile
   130
                  135
                                  140
His Lys Ile Arg Lys Gln Phe Phe His Ala Ile Met Arg Gln Glu Ile
               150
                               155
Gly Trp Phe Asp Val His Asp Val Gly Glu Leu Asn Thr Arg Leu Thr
                                             175
            165
                            170
Asp Asp Val Ser Lys Ile Asn Glu Val Ile Gly Asp Lys Ile Gly Met
        180 185
Phe Phe Gln Ser Met Ala Thr Phe Phe Thr Gly Phe Ile Val Gly Phe
    195 200 205
Thr Arg Gly Trp Lys Leu Thr Leu Val Ile Leu Ala Ile Ser Pro Val
         215
Leu Gly Leu Ser Ala Ala Val Trp Ala Lys Ile Leu Ser Ser Phe Thr
             230 235
Asp Lys Glu Leu Leu Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu
                             250
```

Val Leu Ala Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Lys Lys Glu Leu Glu Arg Tyr Asn Lys Asn Leu Glu Glu Ala Lys Arg Ile Gly Ile Lys Lys Ala Ile Thr Ala Asn Ile Ser Ile Gly Ala Ala Phe Leu Leu Ile Tyr Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Thr Thr Leu Val Leu Ser Gly Glu Tyr Ser Ile Gly Gln Val Leu Thr Val Phe Phe Ser Val Leu Ile Gly Ala Phe Ser Val Gly Gln Ala Ser Pro Ser Ile Glu Ala Phe Ala Asn Ala Arg Gly Ala Ala Tyr Glu Ile Phe Lys Ile Ile Asp Asn Lys Pro Ser Ile Asp Ser Tyr Ser Lys Ser Gly His Lys Pro Asp Asn Ile Lys Gly Asn Leu Glu Phe Arg Asn Val His Phe Ser Tyr Pro Ser Arg Lys Glu Val Lys Ile Leu Lys Gly Leu Asn Leu Lys Val Gln Ser Gly Gln Thr Val Ala Leu Val Gly Asn Ser Gly Cys Gly Lys Ser Thr Thr Val Gln Leu Met Gln Arg Leu Tyr Asp Pro Thr Glu Gly Met Val Ser Val Asp Gly Gln Asp Ile Arg Thr Ile Asn Val Arg Phe Leu Arg Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ala Thr Thr Ile Ala Glu Asn Ile Arg Tyr Gly Arg Glu Asn Val Thr Met Asp Glu Ile Glu Lys Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe Ile Met Lys Leu Pro His Lys Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala 535 . 540 Leu Val Arg Asn Pro Lys Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala 550 555 Leu Asp Thr Glu Ser Glu Ala Val Val Gln Val Ala Leu Asp Lys Ala Arg Lys Gly Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Val Arg Asn Ala Asp Val Ile Ala Gly Phe Asp Asp Gly Val Ile Val Glu Lys Gly Asn His Asp Glu Leu Met Lys Glu Lys Gly Ile Tyr Phe Lys Leu Val Thr Met Gln Thr Ala Gly Asn Glu Val Glu Leu Glu Asn Ala Ala Asp Glu Ser Lys Ser Glu Ile Asp Ala Leu Glu Met Ser Ser Asn Asp Ser Arg Ser Ser Leu Ile Arg Lys Arg Ser Thr Arg Arg Ser Val Arg Gly Ser Gln Ala Gln Asp Arg Lys Leu Ser Thr Lys Glu Ala Leu Asp Glu Ser Ile Pro Pro Val Ser Phe Trp Arg Ile Met Lys Leu Asn Leu Thr Glu Trp Pro Tyr Phe Val Val Gly Val Phe Cys Ala Ile Ile Asn Gly Gly Leu Gln Pro Ala Phe Ala Ile Ile Phe Ser Lys Ile Ile Gly Val Phe Thr Arg Ile Asp Asp Pro Glu Thr Lys Arg Gln Asn Ser

Asn	Leu	Phe 755	Ser	Leu	Leu	Phe	Leu 760	Ala	Leu	Gly	Ile	11e 765	Ser	Phe	Ile
Thr	Phe		Leu	Gln	Gly	Phe 775	Thr	Phe	Gly	Lys	Ala 780	Gly	Glu	Ile	Leu
Thr 785		Arg	Leu	Arg	Tyr 790		Val	Phe	Arg	Ser 795	Met	Leu	Arg	Gln	Asp 800
	Ser	Trp	Phe	Asp 805		Pro	Lys	Asn	Thr 810		Gly	Ala	Leu	Thr 815	Thr
Arg	Leu	Ala	Asn 820		Ala	Ala	Gln	Val 825		Gly	Ala	Ile	Gly 830	Ser	Arg
Leu	Ala	Val 835		Thr	Gln	Asn	Ile 840		Asn	Leu	Gly	Thr 845	Gly	Ile	Ile
Ile	Ser 850		Ile	Tyr	Gly	Trp 855		Leu	Thr	Leu	Leu 860	Leu	Leu	Ala	Ile
Val 865		Ile	Ile	Ala	Ile 870		Gly	Val	Val	Glu 875	Met	Lys	Met	Leu	Ser 880
Gly	Gln	Ala	Leu	Lys 885	Asp	Lys	Lys	Glu	Leu 890	Glu	Gly	Ala	Gly	Lys 895	Ile
			900					905					910	Thr	
		915					920					925		Pro	
_	930					935					940			Ser	
945					950					955				Phe	960
				965					970					Leu 975	
			980					985					990	Val	
		995					1000)				1005	5	His	
	1010)				1015	5				1020)		Thr	
1025	i				1030)				1035	5			Glu	1040
				1045	5				1050)				Gly 1055	5
			1060)				1065	5				1070		
		1075	5				1080)				1085	5	Tyr	
	1090)		_		1095	5				1100	3		Arg	
1105	5				1110)				1115	5			Glu	1120
				1125	5				1130)				Asp 1135	5
			1140)				1145	5				115		
		115	5				1160	0				116	5	Thr	
	1170)				1175	5				118	0		Arg	
1185	5				119	0				119	5			Leu	1200
				120	5				1210	0				Gln 121	5 -
			1220	0				122	5				123		
Arg	Leu	Ser 123	_	Ile	Gln	Asn	Ala 124		Leu	Ile	Val	Val 124		Gln	Asn

8

Gly Arg Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala Gln Lys
1250 1255 1260

Gly Ile Tyr Phe Ser Met Val Ser Val Gln Ala Gly Thr Lys Arg Gln
1265 1270 1275 1280

<210> 4

<211> 1175

<212> PRT

<213> Mus musculus

<300>

<308> Genbank P06795

<309> 1998-07-15

<400> 4 Ser Asn Ser Ser Leu Glu Glu Glu Met Ala Ile Tyr Ala Tyr Tyr 10 Thr Gly Ile Gly Ala Gly Val Leu Ile Val Ala Tyr Ile Gln Val Ser 20 25 Leu Trp Cys Leu Ala Ala Gly Arg Gln Ile His Lys Ile Arg Gln Lys 35 40 45 Phe Phe His Ala Ile Met Asn Gln Glu Ile Gly Trp Phe Asp Val His 55 Asp Val Gly Glu Leu Asn Thr Arg Leu Thr Asp Asp Val Ser Lys Ile 65 70 75 80 Asn Asp Gly Ile Gly Asp Lys Ile Gly Met Phe Phe Gln Ser Ile Thr 90 85 Thr Phe Leu Ala Gly Phe Ile Ile Gly Phe Ile Ser Gly Trp Lys Leu 100 105 110 Thr Leu Val Ile Leu Ala Val Ser Pro Leu Ile Gly Leu Ser Ser Ala 120 125 115 Leu Trp Ala Lys Val Leu Thr Ser Phe Thr Asn Lys Glu Leu Gln Ala 130 135 140 Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu Val Leu Ala Ala Ile Arg 145 150 155 Thr Val Ile Ala Phe Gly Gly Gln Gln Lys Glu Leu Glu Arg Tyr Asn 165 170 Lys Asn Leu Glu Glu Ala Lys Asn Val Gly Ile Lys Lys Ala Ile Thr 190 185 Ala Ser Ile Ser Ile Gly Ile Ala Tyr Leu Leu Val Tyr Ala Ser Tyr 195 200 205 195 200 Ala Leu Ala Phe Trp Tyr Gly Thr Ser Leu Val Leu Ser Asn Glu Tyr 210 215 220 Ser Ile Gly Glu Val Leu Thr Val Phe Phe Ser Ile Leu Leu Gly Thr 225 230 235 240 Phe Ser Ile Gly His Leu Ala Pro Asn Ile Glu Ala Phe Ala Asn Ala 245 250 255 245 Arg Gly Ala Ala Phe Glu Ile Phe Lys Ile Ile Asp Asn Glu Pro Ser 265 270 260 Ile Asp Ser Phe Ser Thr Lys Gly Tyr Lys Pro Asp Ser Ile Met Gly 280 285 275 Asn Leu Glu Phe Lys Asn Val His Phe Asn Tyr Pro Ser Arg Ser Glu 295 300 Val Gln Ile Leu Lys Gly Leu Asn Leu Lys Val Lys Ser Gly Gln Thr 305 310 315 Val Ala Leu Val Gly Asn Ser Gly Cys Gly Lys Ser Thr Thr Val Gln 325 330 335 Leu Met Gln Arg Leu Tyr Asp Pro Leu Glu Gly Val Val Ser Ile Asp 340 345 350 Gly Gln Asp Ile Arg Thr Ile Asn Val Arg Tyr Leu Arg Glu Ile Ile 360 365 Gly Val Val Ser Gln Glu Pro Val Leu Phe Ala Thr Thr Ile Ala Glu

375 Asn Ile Arg Tyr Gly Arg Glu Asp Val Thr Met Asp Glu Ile Glu Lys 390 395 Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe Ile Met Lys Leu Pro His 410 405 Gln Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu Ser Gly Gly 430 425 420 Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Asn Pro Lys 445 440 435 Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu 460 455 Ala Val Val Gln Ala Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Thr 470 475 Ile Val Ile Ala His Arg Leu Ser Thr Val Arg Asn Ala Asp Val Ile 490 485 Ala Gly Phe Asp Gly Gly Val Ile Val Glu Gln Gly Asn His Asp Glu 505 500 Leu Met Arg Glu Lys Gly Ile Tyr Phe Lys Leu Val Met Thr Gln Thr 515 520 525 Arg Gly Asn Glu Ile Glu Pro Gly Asn Asn Ala Tyr Gly Ser Gln Ser 535 540 Asp Thr Asp Ala Ser Glu Leu Thr Ser Glu Glu Ser Lys Ser Pro Leu 550 555 Ile Arg Arg Ser Ile Tyr Arg Ser Val His Arg Lys Gln Asp Gln Glu 570 565 Arg Arg Leu Ser Met Lys Glu Ala Val Asp Glu Asp Val Pro Leu Val 590 585 580 Ser Phe Trp Arg Ile Leu Asn Leu Asn Leu Ser Glu Trp Pro Tyr Leu 605 600 595 Leu Val Gly Val Leu Cys Ala Val Ile Asn Gly Cys Ile Gln Pro Val 620 615 Phe Ala Ile Val Phe Ser Arg Ile Val Gly Val Phe Ser Arg Asp Asp 635 630 Asp His Glu Thr Lys Arg Gln Asn Cys Asn Leu Phe Ser Leu Phe Phe 650 645 Leu Val Met Gly Leu Ile Ser Phe Val Thr Tyr Phe Phe Gln Gly Phe 665 670 660 Thr Phe Gly Lys Ala Gly Glu Ile Leu Thr Lys Arg Val Arg Tyr Met 680 Val Phe Lys Ser Met Leu Arg Gln Asp Ile Ser Trp Phe Asp Asp His 700 695 Lys Asn Ser Thr Gly Ser Leu Thr Thr Arg Leu Ala Ser Asp Ala Ser 710 715 720 Ser Val Lys Gly Ala Met Gly Ala Arg Leu Ala Val Val Thr Gln Asn 725 730 735 Val Ala Asn Leu Gly Thr Gly Val Ile Leu Ser Leu Val Tyr Gly Trp 745 Gln Leu Thr Leu Leu Leu Val Val Ile Ile Pro Leu Ile Val Leu Gly 760 765 755 Gly Ile Ile Glu Met Lys Leu Leu Ser Gly Gln Ala Leu Lys Asp Lys 780 775 Lys Gln Leu Glu Ile Ser Gly Lys Ile Ala Thr Glu Ala Ile Glu Asn 795 790 Phe Arg Thr Ile Val Ser Leu Thr Arg Glu Gln Lys Phe Glu Thr Met 805 810 Tyr Ala Gln Ser Leu Gln Val Pro Tyr Arg Asn Ala Met Lys Lys Ala 820 825 830 His Val Phe Gly Ile Thr Phe Ser Phe Thr Gln Ala Met Met Tyr Phe 840 845 835 Ser Tyr Ala Ala Cys Phe Arg Phe Gly Ala Tyr Leu Val Ala Gln Gln 855 Leu Met Thr Phe Glu Asn Val Met Leu Val Phe Ser Ala Val Val Phe

10

```
870
                               875
Gly Ala Met Ala Ala Gly Asn Thr Ser Ser Phe Ala Pro Asp Tyr Ala
         885 890
Lys Ala Lys Val Ser Ala Ser His Ile Ile Arg Ile Ile Glu Lys Thr
                         905
                                        910
         900
Pro Glu Ile Asp Ser Tyr Ser Thr Glu Gly Leu Lys Pro Thr Leu Leu
   915 920
                              925
Glu Gly Asn Val Lys Phe Asn Gly Val Gln Phe Asn Tyr Pro Thr Arg
         935
                          940
Pro Asn Ile Pro Val Leu Gln Gly Leu Ser Leu Glu Val Lys Lys Gly
                       955
      950
Gln Thr Leu Ala Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr Val
      965 970 975
Val Gln Leu Leu Glu Arg Phe Tyr Asp Pro Met Ala Gly Ser Val Phe
                             990
         980 985
Leu Asp Gly Lys Glu Ile Lys Gln Leu Asn Val Gln Trp Leu Arg Ala
           1000
                                      1005
     995
His Leu Gly Ile Val Ser Gln Glu Pro Ile Leu Phe Asp Cys Ser Ile
 1010
         1015 1020
Ala Glu Asn Ile Ala Tyr Gly Asp Asn Ser Arg Ala Val Ser His Glu
1025 1030 1035 1040
Glu Ile Val Arg Ala Ala Lys Glu Ala Asn Ile His Gln Phe Ile Asp
1045 1050 1055
Ser Leu Pro Asp Lys Tyr Asn Thr Arg Val Gly Asp Lys Gly Thr Gln
       1060 1065 1070
Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val
     1075 1080 1085
Arg Gln Pro His Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp
                1095
                                  1100
  1090
Thr Glu Ser Glu Lys Val Val Gln Glu Ala Leu Asp Lys Ala Arg Glu
1105 1110 1115
Gly Arg Thr Cys Ile Val Ile Ala His Arg Leu Ser Thr Ile Gln Asn
1125 1130 1135
Ala Asp Leu Ile Val Val Ile Glu Asn Gly Lys Val Lys Glu His Gly
        1140 1145 1150
Thr His Gln Gln Leu Leu Ala Gln Lys Gly Ile Tyr Phe Ser Met Val
    1155 1160
Gln Ala Gly Ala Lys Arg Ser
         1175
   1170
    <210> 5
    <211> 1066
    <212> PRT
    <213> Homo sapiens
    <300>
     <308> Genbank P21439
    <309> 1998-07-15
    <400> 5
Trp Lys Leu Thr Leu Val Ile Met Ala Ile Ser Pro Ile Leu Gly Leu
             5
                            10
Ser Ala Ala Val Trp Ala Lys Ile Leu Ser Ala Phe Ser Asp Lys Glu
                         25
     20
Leu Ala Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu Ala Leu Gly
35 40
               40
Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Asn Lys Glu Leu Glu
                55
Arg Tyr Gln Lys His Leu Glu Asn Ala Lys Glu Ile Gly Ile Lys Lys
            70 75
Ala Ile Ser Ala Asn Ile Ser Met Gly Ile Ala Phe Leu Leu Ile Tyr
                            90
```

Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Ser Thr Leu Val Ile Ser Lys Glu Tyr Thr Ile Gly Asn Ala Met Thr Val Phe Phe Ser Ile Leu Ile Gly Ala Phe Ser Val Gly Gln Ala Ala Pro Cys Ile Asp Ala Phe Ala Asn Ala Arg Gly Ala Ala Tyr Val Ile Phe Asp Ile Ile Asp Asn Asn Pro Lys Ile Asp Ser Phe Ser Glu Arg Gly His Lys Pro Asp Ser Ile Lys Gly Asn Leu Glu Phe Asn Asp Val His Phe Ser Tyr Pro Ser Arg Ala Asn Val Lys Ile Leu Lys Gly Leu Asn Leu Lys Val Gln Ser Gly Gln Thr Val Ala Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr Thr Val Gln Leu Ile Gln Arg Leu Tyr Asp Pro Asp Glu Gly Thr Ile Asn Ile Asp Gly Gln Asp Ile Arg Asn Phe Asn Val Asn Tyr Leu Arg Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ser Thr Thr Ile Ala Glu Asn Ile Cys Tyr Gly Arg Gly Asn Val Thr Met Asp Glu Ile Lys Lys Ala Val Lys Glu Ala Asn Ala Tyr Glu Phe Ile Met Lys 290 295 300 Leu Pro Gln Lys Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Asn Pro Lys Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Ala Glu Val Gln Ala Ala Leu Asp Lys Ala Arg Glu Gly 355 360 Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Val Arg Asn Ala Asp Val Ile Ala Gly Phe Glu Asp Gly Val Ile Val Glu Gln Gly Ser His Ser Glu Leu Met Lys Lys Glu Gly Val Tyr Phe Lys Leu Val Asn Met Gln Thr Ser Gly Ser Gln Ile Gln Ser Glu Glu Phe Glu Leu Asn Asp Glu Lys Ala Ala Thr Arg Met Ala Pro Asn Gly Trp Lys Ser Arg Leu Phe Arg His Ser Thr Gln Lys Asn Leu Lys Asn Ser Gln Met Cys Gln Lys Ser Leu Asp Val Glu Thr Asp Gly Leu Glu Ala Asn Val Pro Pro Val Ser Phe Leu Lys Val Leu Lys Leu Asn Lys Thr Glu Trp Pro Tyr Phe Val Val Gly Thr Val Cys Ala Ile Ala Asn Gly Gly Leu Gln Pro Ala Phe Ser Val Ile Phe Ser Glu Ile Ile Ala Ile Phe Gly Pro Gly Asp Asp Ala Val Lys Gln Gln Lys Cys Asn Ile Phe Ser Leu Ile Phe Leu Phe Leu Gly Ile Ile Ser Phe Phe Thr Phe Phe Leu Gln Gly 550 555 Phe Thr Phe Gly Lys Ala Gly Glu Ile Leu Thr Arg Arg Leu Arg Ser Met Ala Phe Lys Ala Met Leu Arg Gln Asp Met Ser Trp Phe Asp Asp

```
His Lys Asn Ser Thr Gly Ala Leu Ser Thr Arg Leu Ala Thr Asp Ala
                 600
      595
Ala Gln Val Gln Gly Ala Thr Gly Thr Arg Leu Ala Leu Ile Ala Gln
                                  620
                   615
Asn Ile Ala Asn Leu Gly Thr Gly Ile Ile Ser Phe Ile Tyr Gly
       630
                                 635
Trp Gln Leu Thr Leu Leu Leu Ala Val Val Pro Ile Ile Ala Val
             645
                             650
Ser Gly Ile Val Glu Met Lys Leu Leu Ala Gly Asn Ala Lys Arg Asp
                          665
         660
Lys Lys Glu Leu Glu Ala Ala Gly Lys Ile Ala Thr Glu Ala Ile Glu
                      680
Asn Ile Arg Thr Val Val Ser Leu Thr Gln Glu Arg Lys Phe Glu Ser
                   695
                                 700
Met Tyr Val Glu Lys Leu Tyr Gly Pro Tyr Arg Asn Ser Val Gln Lys
             710 715
Ala His Ile Tyr Gly Ile Thr Phe Ser Ile Ser Gln Ala Phe Met Tyr
            725 730
                                               735
Phe Ser Tyr Ala Gly Cys Phe Arg Phe Gly Ala Tyr Leu Ile Val Asn
                           745
                                          750
         740
Gly His Met Arg Phe Arg Asp Val Ile Leu Val Phe Ser Ala Ile Val
                                       765
                    760
      755
Phe Gly Ala Val Ala Leu Gly His Ala Ser Ser Phe Ala Pro Asp Tyr
                                    780
                   775
Ala Lys Ala Lys Leu Ser Ala Ala His Leu Phe Met Leu Phe Glu Arg
                                 795
                790
Gln Pro Leu Ile Asp Ser Tyr Ser Glu Glu Gly Leu Lys Pro Asp Lys
           805 810 815
Phe Glu Gly Asn Ile Thr Phe Asn Glu Val Val Phe Asn Tyr Pro Thr
                 825 830
Arg Ala Asn Val Pro Val Leu Gln Gly Leu Ser Leu Glu Val Lys Lys
                                       845
                       840
    835
Gly Gln Thr Leu Ala Leu Val Gly Ser Ser Gly Cys Gly Lys Ser Thr
                   855
Val Val Gln Leu Leu Glu Arg Phe Tyr Asp Pro Leu Ala Gly Thr Val
                                 875
                870
Leu Leu Asp Gly Gln Glu Ala Lys Lys Leu Asn Val Gln Trp Leu Arg
                              890
                                              895
             885
Ala Gln Leu Gly Ile Val Ser Gln Glu Pro Ile Leu Phe Asp Cys Ser
                 905
        900
Ile Ala Glu Asn Ile Ala Tyr Gly Asp Asn Ser Arg Val Val Ser Gln
                      920 925
Asp Glu Ile Val Ser Ala Ala Lys Ala Ala Asn Ile His Pro Phe Ile
                                    940
                 935
Glu Thr Leu Pro His Lys Tyr Glu Thr Arg Val Gly Asp Lys Gly Thr
                950
                                 955
Gln Leu Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu
             965
                             970
Ile Arg Gln Pro Gln Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu
                                           990
         980
                           985
Asp Thr Glu Ser Glu Lys Val Val Gln Glu Ala Leu Asp Lys Ala Arg
             1000 1005
      995
Glu Gly Arg Thr Cys Ile Val Ile Ala His Arg Leu Ser Thr Ile Gln
 1010 1015 1020
Asn Ala Asp Leu Ile Val Val Phe Gln Asn Gly Arg Val Lys Glu His
       1030 1035
Gly Thr His Gln Gln Leu Leu Ala Gln Lys Gly Ile Tyr Phe Ser Met
             1045 1050
Val Ser Val Gln Ala Gly Thr Gln Asn Leu
          1060
```

<211> 1266 <212> PRT <213> Mus musculus <300> <308> Genbank P21440 <309> 1997-11-01

<400> 6 Trp Lys Leu Thr Leu Val Ile Met Ala Ile Ser Pro Ile Leu Gly Leu 5 10 Ser Thr Ala Val Trp Ala Lys Ile Leu Ser Thr Phe Ser Asp Lys Glu 20 25 Leu Ala Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu Glu Ala Pro Gly 4Ω 45 . 35 Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Asn Lys Glu Leu Glu 55 Arg Tyr Gln Lys His Leu Glu Asn Ala Lys Lys Ile Gly Ile Lys Lys 65 70 75 80 Ala Ile Ser Ala Asn Ile Ser Met Gly Ile Ala Phe Leu Leu Ile Tyr 90 85 Ala Ser Tyr Ala Leu Ala Phe Trp Tyr Gly Ser Thr Leu Val Ile Ser 100 105 110 Lys Glu Tyr Thr Ile Gly Asn Ala Met Thr Val Phe Phe Ser Ile Leu 125 120 115 Ile Gly Ala Phe Ser Val Gly Gln Ala Ala Pro Cys Ile Asp Ala Phe 140 135 Ala Asn Ala Arg Gly Ala Ala Tyr Val Ile Phe Asp Ile Ile Asp Asn 150 155 Asn Pro Lys Ile Asp Ser Phe Ser Glu Arg Gly His Lys Pro Asp Asn 170 165 Ile Lys Gly Asn Leu Glu Phe Ser Asp Val His Phe Ser Tyr Pro Ser 180 185 190 Arg Ala Asn Ile Lys Ile Leu Lys Gly Leu Asn Leu Lys Val Lys Ser 195 200 205 Gly Gln Thr Val Ala Leu Val Gly Asn Ser Gly Cys Gly Lys Ser Thr 210 215 220 Thr Val Gln Leu Leu Gln Arg Leu Tyr Asp Pro Thr Glu Gly Lys Ile 235 230 Ser Ile Asp Gly Gln Asp Ile Arg Asn Phe Asn Val Arg Cys Leu Arg 250 255 245 Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ser Thr Thr 260 265 270 Ile Ala Glu Asn Ile Arg Tyr Gly Arg Gly Asn Val Thr Met Asp Glu 275 280 285 Ile Glu Lys Ala Val Lys Glu Ala Asn Ala Tyr Asp Phe Ile Met Lys 295 300 Leu Pro Gln Lys Phe Asp Thr Leu Val Gly Asp Arg Gly Ala Gln Leu 310 315 305 Ser Gly Gly Gln Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg 330 · 335 325 Asn Pro Lys Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr 350 345 340 Glu Ser Glu Ala Glu Val Gln Ala Ala Leu Asp Lys Ala Arg Glu Gly 355 360 Arg Thr Thr Ile Val Ile Ala His Arg Leu Ser Thr Ile Arg Asn Ala 375 380 Asp Val Ile Ala Gly Phe Glu Asp Gly Val Ile Val Glu Gln Gly Ser 385 390 395 400 His Ser Glu Leu Met Lys Lys Glu Gly Ile Tyr Phe Arg Leu Val Asn 410 405 Met Gln Thr Ala Gly Ser Gln Ile Leu Ser Glu Glu Phe Glu Ala Arg 14.

			420					425					430		
Ala	Leu	Val 435	Arg	Asn	Pro	Lys	Ile 440	Leu	Leu	Leu	Asp	Glu 445	Ala	Thr	Ser
Ala	Leu 450	Asp	Thr	Glu	Ser	Glu 455	Ala	Val	Val	Gln	Val 460	Ala	Leu	Asp	Lys
Ala 465	Arg	Lys	Gly	Arg	Thr 470	Thr	Ile	Val	Ile	Ala 475	His	Arg	Leu	Ser	Thr 480
	Arg	Asn	Ala	Asp 485	Val	Ile	Ala	Gly	Phe 490	Asp	Asp	Gly	Val	Ile 495	Val
Glu	Lys	Gly	Asn 500		Asp	Glu	Leu	Met 505	Lys	Glu	Lys	Gly	Ile 510	Tyr	Phe
Lys	Leu	Val 515		Met	Gln	Thr	Ala 520	Gly	Asn	Glu	Val	Glu 525	Leu	Glu	Asn
	530				Leu	535					540				
545					Leu 550					555					560
				565	Arg				570					575	
Arg	Leu	Ser	Thr 580	Val	Arg	Asn	Ala	Asp 585	Val	Ile	Ala	Gly	Phe 590	Asp	Gly
•		595			Gln		600					605			
-	610	-		-	Leu	615					620				
625					Ala 630					635					640
				645	Gly				650					655	
_	_		660		Ser			665					670		
		675			Asn		680					685			
_	690				Glu	695					700				
705					Ala 710					715					720
				725	Phe				730					735	
-	=		740		Ser			745					750		
		755			Leu		760					765			
	770				Leu	775					780				
785					Phe 790					795					800
				805	Thr				810					815	
	-		820		Ile			825					830		
		835			Ile		840					845			
	850				Ile	855					860				
865					Lys 870					875					880
_				885	Ala				890					895	
			900		Phe			905					910		
Pro	Tyr	Arg	Asn	Ser	Val	Arg	Lys	Ala	His	Пe	Tyr	GTÀ	тте	Thr	rne

15.

```
920
      915
Ser Ile Ser Gln Ala Phe Met Tyr Phe Ser Tyr Ala Gly Cys Phe Arg
 930 935
                                   940
Phe Gly Ser Tyr Leu Ile Val Asn Gly His Met Arg Phe Lys Asp Val
                       955
      950
Ile Leu Val Phe Ser Ala Ile Val Leu Gly Ala Val Ala Leu Gly His
           965
                            970
Ala Ser Ser Phe Ala Pro Asp Tyr Ala Lys Ala Lys Leu Ser Ala Ala
       980 985
                                 990
Tyr Leu Phe Ser Leu Phe Glu Arg Gln Pro Leu Ile Asp Ser Tyr Ser
    995 1000 1005
Gly Glu Gly Leu Trp Pro Asp Lys Phe Glu Gly Ser Val Thr Phe Asn
1010 1015 1020
Glu Val Val Phe Asn Tyr Pro Thr Arg Ala Asn Val Pro Val Leu Gln
1025 1030 1035
Gly Leu Ser Leu Glu Val Lys Lys Gly Gln Thr Leu Ala Leu Val Gly
           1045 1050 1055
Ser Ser Gly Cys Gly Lys Ser Thr Val Val Gln Leu Leu Glu Arg Phe
1060 1065 1070
Tyr Asp Pro Met Ala Gly Ser Val Leu Leu Asp Gly Gln Glu Ala Lys
     1075 1080 1085
Lys Leu Asn Val Gln Trp Leu Arg Ala Gln Leu Gly Ile Val Ser Gln
 1090 1095 1100
Glu Pro Ile Leu Phe Asp Cys Ser Ile Ala Glu Asn Ile Ala Tyr Gly
1105 1110 1115 1120
1105 1110
Asp Asn Ser Arg Val Val Pro His Asp Glu Ile Val Arg Ala Ala Lys
                                            1135
            1125 1130
Glu Ala Asn Ile His Pro Phe Ile Glu Thr Leu Pro Gln Lys Tyr Asn
         1140 1145 1150
Thr Arg Val Gly Asp Lys Gly Thr Gln Leu Ser Gly Gly Gln Lys Gln
      1155 1160 1165
Arg Ile Ala Ile Ala Arg Ala Leu Ile Arg Gln Pro Arg Val Leu Leu
  1170 1175 1180
Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Lys Val Val
1185 1190 1195
Gln Glu Ala Leu Asp Lys Ala Arg Glu Gly Arg Thr Cys Ile Val Ile
1205 1210 1215
Ala His Arg Leu Ser Thr Ile Gln Asn Ala Asp Leu Ile Val Val Ile
                        1225 1230
        1220
Glu Asn Gly Lys Val Lys Glu His Gly Thr His Gln Gln Leu Leu Ala
     1235 1240 1245
Gln Lys Gly Ile Tyr Phe Ser Met Val Asn Ile Gln Ala Gly Thr Gln
                           1260
  1250
          1255
Asn Leu
1265
    <210> 7
     <211> 1207
     <212> PRT
     <213> Arabidopsis thaliana
     <300>
     <308> Genbank A42150
     <309> 1997-03-13
    <400> 7
Glu Lys Met Met Glu Glu Val Leu Lys Tyr Ala Leu Tyr Phe Leu Val
1 5 10 15
Val Gly Ala Ala Ile Trp Ala Ser Ser Trp Ala Glu Ile Ser Cys Trp
                       25
                                        30
      20
Met Trp Ser Gly Glu Arg Gln Thr Thr Lys Met Arg Ile Lys Tyr Leu
                    40
      35
```

	50					55					60		Glu		
Thr 65	Ser	Asp	Val	Val	Phe 70	Ala	Ile	Asn	Thr	Asp 75	Ala	Val	Met	Val	Gln 80
Asp	Ala	Ile	Ser	Glu 85	Lys	Leu	Gly	Asn	Phe 90	Ile	His	Tyr	Met	Ala 95	Thr
Phe	Val	Ser	Gly 100	Phe	Ile	Val	Gly	Phe 105	Thr	Ala	Val	Trp	Gln 110	Leu	Ala
Leu	Val	Thr 115	Leu	Ala	Val	Val	Pro 120	Leu	Ile	Ala	Val	Ile 125	Gly	Gly	Ile
His	130					135					140		Glu		
145					150					155			Ile		160
				165					170				Tyr	175	
			180					185					Leu 190		
_		195					200					205	Cys		
	210					215					220		Leu		
225	_				230					235			Gly		240
				245					250				Lys	255	
			260					265					Pro 270 Thr		
	_	275					280					285	Pro		
	290					295					300		Lys		
305					310					315					320
				325					330				Val	335	
			340					345					Leu 350		
	_	355					360					365	Gln		
	370					375	•				380		Lys		
385					390					395			Glu		400
				405					410				Pro	415	
			420					425					Gly 430		
-		435					440					445	Pro		
	450					455					460		Ser		
465					470					475			Thr		480
				485					490				Leu	495	
Val	Leu	Gln	Gln 500	Gly	Ser	Val	ser	Glu 505	TTE	стА	THE	n1S	Asp 510	GIU	Ten
		515	Gly				520	Tyr				525	Lys		
Glu	Ala 530	Ala	His	Glu	Thr	Ala 535	Met	Ser	Asn	Ala	Arg 540	Lys	Ser	Ser	Ala

Arg 545	Pro	Ser	Ser	Ala	Arg 550	Asn	Ser	Val	Ser	Ser 555	Pro	Ile	Met	Thr	Arg 560
Asn	Ser	Ser	Tyr	Gly 565	Arg	Ser	Pro	Tyr	Ser 570	Arg	Arg	Leu	Ser	Asp 575	Phe
Ser	Thr	Ser	Asp 580	Phe	Ser	Leu	Ser	Ile 585	Asp	Ala	Ser	Ser	Tyr 590	Pro	Asn
_		595	Glu				600					605			
	610		Lys			615					620				
625			Ser		630					635					640
			Ala	645					650					655	
			Gln 660					665					670		
		675	Leu				680					685			
	690		Asn Asn			695					700				
705			Ala		710					715					720
			Asp	725					730					735	
			740 Cys					745		•			750		
		755	Ala				760					765			
	770		Met			775					780				Ala
785			Gln		790				Ile	795				Thr	800
Ala	Ala	Phe	Asn	805 Ser	Glu	Ala	Lys		810 Val	Arg	Leu	Tyr		815 Ala	Asn
Leu	Glu		820 Pro	Leu	Lys	Arg		825 Phe	Trp	Lys	Gly	Gln	830 Ile	Ala	Gly
Ser		835 Tyr	Gly	Val	Ala		840 Phe	Cys	Leu	Tyr	Ala 860	845 Ser	Tyr	Ala	Leu
	850 Leu	Trp	Tyr	Ala		855 Trp	Leu	Val	Lys	His 875		Ile	Ser	Asp	Phe 880
865 Ser	Lys	Thr	Ile	Arg 885	870 Val	Phe	Met	Val	Leu 890		Val	Ser	Ala	Asn 895	
Ala	Ala	Glu	Thr		Thr	Leu		Pro 905	Asp	Phe	Ile	Lys	Gly 910	Gly	Gln
Ala	Met	Arg 915		Val	Phe	Glu				Arg	Lys	Thr 925			Glu
Pro	Asp 930		Pro	Asp	Thr	Thr 935		Val	Pro	Asp	Arg 940	Leu	Arg	Gly	Glu
945			Lys		950					955					960
			Arg	965					970					975	
			Gly 980					985					990		
		995	Phe				100	0				100	5		
	1010	3				101	5				102	0			Ala
Ile 1029		Pro	Gln	Glu	Pro 103		Leu	Phe	GLY	Thr 103	Tnr 5	тте	Tyr	GIU	Asn 1040

18

Ile Ala Tyr Gly His Glu Cys Ala Thr Glu Ala Glu Ile Ile Gln Ala 1045 1050 Ala Thr Leu Ala Ser Ala His Lys Phe Ile Ser Ala Leu Pro Glu Gly 1065 1070 1060 Tyr Lys Thr Tyr Val Gly Glu Arg Gly Val Gln Leu Ser Gly Gly Gln 1080 1085 1075 Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Lys Ala Glu Ile 1090 1095 1100 Met Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Ala Glu Ser Glu Arg 1105 1110 1115 1120 Ser Val Gln Glu Ala Leu Asp Gln Ala Cys Ser Gly Arg Thr Ser Ile 1125 1130 1135 Val Val Ala His Arg Leu Ser Thr Ile Arg Asn Ala His Val Ile Ala 1140 1145 1150 Val Ile Asp Asp Gly Lys Val Ala Glu Gln Gly Ser His Ser His Leu 1155 1165 1160 Leu Lys Asn His Pro Asp Gly Ile Tyr Ala Arg Met Ile Gln Leu Gln 1180 1170 1175 Arg Phe Thr His Thr Gln Val Ile Gly Met Thr Ser Gly Ser Ser Ser 1190 1195 Arg Val Lys Glu Asp Asp Ala 1205

<210> 8

<211> 1161

<212> PRT

<213> Arabidopsis thaliana

<300>

<400> 8

<308> Genbank CAA71277

165

180

195

<309> 1997-05-19

5 10 Leu Ser Val Ala Ile Leu Phe Ser Ser Trp Leu Glu Val Ala Cys Trp 20 25 Met His Thr Gly Glu Arg Gln Ala Ala Lys Met Arg Arg Ala Tyr Leu 40 Arg Ser Met Leu Ser Gln Asp Ile Ser Leu Phe Asp Thr Glu Ala Ser 55 Thr Gly Glu Val Ile Ser Ala Ile Thr Ser Asp Ile Leu Val Val Gln 75 70 Asp Ala Leu Ser Glu Lys Val Gly Asn Phe Leu His Tyr Ile Ser Arg 85 90 Phe Ile Ala Gly Phe Ala Ile Gly Phe Thr Ser Val Trp Gln Ile Ser 100 105 110 Leu Val Thr Leu Ser Ile Val Pro Leu Ile Ala Leu Ala Gly Gly Ile 120 125 115 Tyr Ala Phe Val Ala Ile Gly Leu Ile Ala Arg Val Arg Lys Ser Tyr 140 135 Ile Lys Ala Gly Glu Ile Ala Glu Glu Val Ile Gly Asn Val Arg Thr 155 150 Val Gln Ala Phe Thr Gly Glu Glu Arg Ala Val Arg Leu Tyr Arg Glu

Ala Leu Glu Asn Thr Tyr Lys Tyr Gly Arg Lys Ala Gly Leu Thr Lys

Leu Leu Val Trp Phe Thr Ser Val Val Val His Lys Asp Ile Ala Asp

Gly Gly Lys Ser Phe Thr Thr Met Leu Asn Val Val Ile Ala Gly Leu

200

215

185 Gly Leu Gly Leu Gly Ser Met His Cys Val Leu Phe Leu Ser Trp Ala

170

190

205

Lys Gln Ala Ser His Arg Val Ala Lys Tyr Ser Leu Asp Phe Val Tyr

										225					240
225			•		230		*	~1.	0	235	Dha	1/21	7 ~~	- ות	240
			Gln	245					250					255	
			Tyr 260					265					270		
Lys	Thr	Ser 275	Ala	Lys	Ser	Gly	Arg 280	Lys	Leu	Gly	Lys	Val 285	Asp	Gly	His
Ile	Gln 290	Phe	Lys	Asp	Ala	Thr 295	Phe	Ser	Tyr	Pro	Ser 300	Arg	Pro	Asp	Val
Val 305	Ile	Phe	Asp	Arg	Leu 310	Asn	Leu	Ala	Ile	Pro 315	Ala	Gly	Lys	Ile	Val 320
Ala	Leu	Val	Gly	Gly 325		Gly	Ser	Gly	Lys 330	Ser	Thr	Val	Ile	Ser 335	Leu
Ile	Glu	Arg	Phe 340		Glu	Pro	Ile	Ser 345		Ala	Val	Leu	Leu 350	Asp	Gly
Asn	Asn	Ile 355	Ser	Glu	Leu	Asp	Ile 360		Trp	Leu	Arg	Gly 365	Gln	Ile	Gly
Leu	Val 370	Asn	Gln	Glu	Pro	Ala 375		Phe	Ala	Thr	Thr 380	Ile	Arg	Glu	Asn
Ile 385	Leu	Tyr	Gly	Lys	Asp 390		Ala	Thr	Ala	Glu 395		Ile	Thr	Arg	Ala 400
Ala	Lys	Leu	Ser	Glu 405		Ile	Ser	Phe	Ile 410		Asn	Leu	Pro	Glu 415	Gly
Phe	Glu	Thr	Gln 420	Val	Gly	Glu	Arg	Gly 425		Gln	Leu	Ser	Gly 430	Gly	Gln
Lys	Gln	Arg 435	Ile	Ala	Ile	Ser	Arg 440		Ile	Val	Lys	Asn 445	Pro	Ser	Ile
	450	Leu	Asp			455					460				
465	Val		Glu		470					475					480
Val			His	485					490					495	
			Glu 500					505					510		
		515	Pro				520					525			
	530		Leu			535					540				
545			Ile		550					555					560
			Glu	565					570					575	
			Val 580					585					590		
		595	Met				600					605			
	610		Met			615					620				
625			Ser		630					635					640
			Phe	645					650					655	
			Ile 660					665					670		
		675	Asn				680					685			
	690		Val			695					700				
705			Thr		710					715					720
Leu	Leu	Gln	Asn	Leu	Gly	Leu	Val	Val	Thr	Ser	Phe	Ile	Ile	Ala	rne

```
725
                             730
Ile Leu Asn Trp Arg Leu Thr Leu Val Val Leu Ala Thr Tyr Pro Leu
               . 745
         740
Val Ile Ser Gly His Ile Ser Glu Lys Leu Phe Met Gln Gly Tyr Gly
755 760 765
Gly Asp Leu Asn Lys Ala Tyr Leu Lys Ala Asn Met Leu Ala Gly Glu
770 775 780
Ser Val Ser Asn Ile Arg Thr Val Ala Ala Phe Cys Ala Glu Glu Lys
785 790 795 800
Ile Leu Glu Leu Tyr Ser Arg Glu Leu Leu Glu Pro Ser Lys Ser Ser 805 810 815
Phe Arg Arg Gly Gln Ile Ala Gly Leu Phe Tyr Gly Val Ser Gln Phe
         820 825
Phe Ile Phe Ser Ser Tyr Gly Leu Ala Leu Trp Tyr Gly Ser Thr Leu
                                       845
                      840
Met Asp Lys Gly Leu Ala Gly Phe Lys Ser Val Met Lys Thr Phe Met
 850 855
Val Leu Ile Val Thr Ala Leu Ala Met Gly Glu Thr Leu Ala Leu Ala
                870
                                 875
Pro Asp Leu Leu Lys Gly Asn Gln Met Val Ala Ser Val Phe Glu Ile
885 890 895
Leu Asp Arg Lys Thr Gln Ile Val Gly Glu Thr Ser Glu Glu Leu Asn 900 905 910
Asn Val Glu Gly Thr Ile Glu Leu Lys Gly Val His Phe Ser Tyr Pro
       915 920 925
Ser Arg Pro Asp Val Val Ile Phe Arg Asp Phe Asp Leu Ile Val Arg
                                    940
 930
                   935
Ala Gly Lys Ser Met Ala Leu Val Gly Gln Ser Gly Ser Gly Lys Ser
                               955
       950
Ser Val Ile Ser Leu Ile Leu Arg Phe Tyr Asp Pro Thr Ala Gly Lys
                    970 975
             965
Val Met Ile Glu Gly Lys Asp Ile Lys Lys Leu Asp Leu Lys Ala Leu
980 985 990
        980 985
Arg Lys His Ile Gly Leu Val Gln Gln Glu Pro Ala Leu Phe Ala Thr
  995 1000
                                       1005
Thr Ile Tyr Glu Asn Ile Leu Tyr Gly Asn Glu Gly Ala Ser Gln Ser
         1015 1020
Glu Val Val Glu Ser Ala Met Leu Ala Asn Ala His Ser Phe Ile Thr
                1030 1035
Ser Leu Pro Glu Gly Tyr Ser Thr Lys Val Gly Glu Arg Gly Val Gln
1045 1050 1055
Met Ser Gly Gly Gln Arg Gln Arg Ile Ala Ile Ala Arg Ala Ile Leu
1060 1065 1070
Lys Asn Pro Ala Ile Leu Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp
 1075 1080 1085
Val Glu Ser Glu Arg Val Val Gln Gln Ala Leu Asp Arg Leu Met Ala
  1090 1095 1100
Asn Arg Thr Thr Val Val Val Ala His Arg Leu Ser Thr Ile Lys Asn
       1110 1115
Ala Asp Thr Ile Ser Val Leu His Gly Gly Lys Ile Val Glu Gln Gly
           1125 1130 1135
Ser His Arg Lys Leu Val Leu Asn Lys Ser Gly Pro Tyr Phe Lys Leu
         1140 1145 1150
Ile Ser Leu Gln Gln Gln Gln Pro
                       1160
       1155
```

<210> 9

<211> 986

<212> PRT

<213> Artificial Sequence

<220>

21

PCT/US99/22363

<223> synthetic consensus sequence

<400> 9 Met Asp Glu Gly Ala Leu Ser Asp Arg Lys Lys Val Gly Val Leu 10 5 Phe Arg Tyr Ala Asp Trp Asp Lys Leu Met Leu Gly Thr Leu Ala Ala 25 Ile Ile His Gly Ser Leu Pro Leu Met Met Ile Val Phe Gly Glu Met 35 40 Thr Asp Phe Ala Ser Lys Leu Glu Glu Glu Met Thr Arg Tyr Ala Tyr 60 55 50 Tyr Tyr Ser Gly Leu Gly Ala Gly Val Leu Val Ala Tyr Ile Gln Val 70 75 Ser Trp Leu Ala Ala Gly Arg Gln Ile Arg Lys Ile Arg Lys Phe Phe 85 90 His Ala Ile Leu Arg Gln Glu Ile Gly Trp Phe Asp Ile Thr Gly Glu 100 105 Leu Asn Thr Arg Leu Thr Asp Asp Ile Ser Lys Ile Asn Asp Gly Ile 125 120 Gly Asp Lys Val Gly Met Phe Phe Gln Val Ala Thr Phe Leu Ala Gly 135 140 Phe Ile Val Gly Phe Ile Gly Trp Lys Leu Thr Leu Val Ile Leu Ala 150 155 Ile Ser Pro Ile Ile Gly Leu Ser Ala Ala Val Trp Ala Lys Ile Leu 165 170 175 Ser Phe Ser Lys Glu Leu Ala Tyr Ala Lys Ala Gly Ala Val Ala Glu 180 185 Glu Leu Gly Ala Ile Arg Thr Val Ile Ala Phe Gly Gly Gln Lys Glu 200 205 Leu Glu Arg Tyr Gln Lys Leu Glu Ala Lys Lys Ile Gly Ile Lys Lys 220 215 Ala Ile Ser Ala Ile Ser Met Gly Ala Phe Leu Leu Ile Tyr Ala Ser 230 235 Tyr Ala Leu Ala Phe Trp Tyr Gly Ser Thr Leu Val Ile Ser Glu Tyr 250 255 245 Thr Ile Gly Ala Met Thr Val Phe Phe Ser Ile Leu Ile Gly Ala Phe 270 260 265 Ser Val Gly Gln Ala Ala Pro Ile Asp Ala Phe Ala Asn Ala Arg Gly 280 275 Ala Ala Tyr Ile Phe Lys Ile Ile Asp Asn Pro Ser Ile Asp Ser Phe 295 300 Ser Gly His Lys Pro Asp Ile Lys Gly Asn Leu Glu Phe Lys Asp Val 310 315 His Phe Ser Tyr Pro Ser Arg Glu Val Lys Ile Leu Lys Gly Leu Asn 325 330 Leu Lys Val Ser Gly Gln Thr Val Ala Leu Val Gly Ser Gly Cys Gly 340 345 350 Lys Ser Thr Thr Val Gln Leu Ile Gln Arg Leu Tyr Asp Pro Glu Gly 360 365 Val Ile Asp Gly Gln Asp Ile Arg Thr Ile Asn Val Arg Tyr Leu Arg 380 375 Glu Ile Ile Gly Val Val Ser Gln Glu Pro Val Leu Phe Ala Thr Thr 390 395 Ile Ala Glu Asn Ile Tyr Gly Arg Asp Val Thr Met Asp Glu Ile Glu 405 410 Lys Ala Val Lys Glu Ala Asn Ala Tyr Glu Phe Ile Met Lys Leu Pro 425 420 Phe Asp Thr Leu Val Gly Glu Arg Gly Ala Gln Leu Ser Gly Gly Gln 440 445 435 Lys Gln Arg Ile Ala Ile Ala Arg Ala Leu Val Arg Asn Pro Lys Ile 455 460 Leu Leu Asp Glu Ala Thr Ser Ala Leu Asp Thr Glu Ser Glu Ala

465					470					475					480
Val	Val	Gln	Ala	Leu 485	Asp	Lys	Ala	Arg	Gly 490	Arg	Thr	Thr	Ile	Val 495	Ile
Ala	His	Arg	Leu 500		Thr	Val	Arg	Asn 505		Asp	Val	Ile	Ala 510	Gly	Phe
Glu	Asp	Gly 515		Ile	Val	Glu	Gly 520		His	Asp	Glu	Leu 525	Met	Lys	Lys
Gly	Val 530		Phe	Lys	Leu	Val 535		Gln	Thr	Gly	Ile 540	Asn	Ser	Glu	Ala
Met 545		Ser	Leu	Arg	Ser 550		Gln	Asp	Arg	Asp 555	Asp	Leu	Glu	Val	Pro 560
	Ser	Phe	Trp	Arg 565		Leu	Lys	Leu	Asn 570	Thr	Glu	Trp	Pro	Tyr 575	Val
Val	Gly	Thr	Val 580	Cys	Ala	Ile	Ile	Asn 585	Gly	Leu	Gln	Pro	Phe 590	Ala	Ile
		595					600					605		Leu	
	610					615					620			Lys	
625					630					635				Ala	640
				645					650					Lys 655	
			660					665					670	His	
_		675					680					685		Tyr	
	690					695					700			Phe Gly	
705					710					715				Ala	720
	•			725					730					735 Pro	
			740					745					750	Val	
		755					760					765		Leu	
	770					775					780			Leu	
785					790					795				Gly	800
				805					810					815 Gly	
			820					825					830	Asn	
Ala	Tyr	835 Gly	Asp	Asn	Ser	Arg	840 Val	Ser	Asp	Glu	Ile	845 Val	Ala	Ala	Lys
Ala	850 Asn	Ile	His	Phe		855 Glu	Thr	Leu	Pro		860 Lys	Tyr	Thr	Arg	
865 Gly	Asp	Lys	Gly	Thr	870 Gln	Leu	Ser	Gly		875 Gln	Lys	Gln	Arg	Ile	880 Ala
Ala	Ile	Ala	Arg	885 Ala	Leu	Ile	Arg		890 Pro	Ile	Leu	Leu		895 Asp	Glu
Ala	Thr		900 Ala	Leu	Asp	Thr		905 Ser	Glu	Lys	Val	Val	910 Gln	Glu	Ala
Leu		915 Lys	Ala	Arg	Glu		920 Arg	Thr	Cys	Ile		925 Ile	Ala	His	Arg
	930 Ser	Thr	Ile	Gln		935 Ala	Asp	Leu	Ile	Val 955	940 Val	Ile	Asn	Gly	Lys 960
945 Val	Lys	Glu	His	Gly	950 Thr	His	Gln	Gln	Leu		Ala	Gln	Lys	Gly	

23.

```
975
                  965
                                       970
 Tyr Phe Ser Met Val Val Gln Ala Gly Thr
              980
       <210> 10
       <211> 14000
       <212> DNA
       <213> Arabidopsis thaliana
       <220>
       <221> misc feature
       \langle 222 \rangle (342\overline{9}) \dots (0)
       <223> Translation start codon
       <300>
       <308> Genbank AP000386
       <309> 1999-08-03
       <400> 10
caattaatta tatcaaaatt tcgtatatca tttaaaattc atcactgatt tttgtttaga
                                                                           60
aaaaaagata gatagctatg gacatgacgt cgaattttaa tatatcctat gtaacagtgt
                                                                          120
tcatataatc aaaaaagaaa aaataattac tattgtttgt gttctttgca acaatgcgtt
                                                                          180
agaaactcgg agaccacttg ttttttctct tatgatttcg cttcagtatg atttagcaaa
                                                                          240
gcatctctac ggtacaaaat atcttacgaa ttgacatgat ctgatccaca ctatatcaag
                                                                          300
gagttagaaa gacagaactg aaagcttctt agctcgatat gtatttcaag ctacggttca
                                                                          360
caccatctag ggagacaaga atggaagaag gcatgacgtc aagtcgaact atgcagctct
                                                                          420
cttacttaaa tgggtcgaca aacaaatacg gaaccaacta tcatccattc gagcaagcgg tgataggtgg tatgactaag gtctctaaat ttggtttacg gcgaaaaatt aattgatcaa aaaatttttg gtttagtgtt ttaagatctt tttcaaaaaa acgttgtatt tgatgtata
                                                                          480
                                                                          540
                                                                          600
                                                                          660
acqctatttc tttttqaaat taatttaata ttatttttgt ttgaaaagaa gaagaaacat
                                                                          720
aattcaaaca atccctatct ttaatqttcc aacatcttaa taaatacata attaaaactc
tacgatcaat actacacttc tgacgattat taaatcgcat cgtcgtacac tattattaca
                                                                          780
                                                                          840
aagaccgttc tatctacatt aatattcttt atatattttt ttttttcatt ttttgagatt
gttggagtat atatccttag attttcttgt atataaaaat agataattat aatgggataa
                                                                          900
                                                                          960
acgaaacatc gttgaagccg tgaagtggca ttggtctaca ccagagcaac acaaaaagac
aaccacttca catggtctgc tcttacattc ataaccgaat ctaagtcact tttagttggt
                                                                         1020
                                                                         1080
tqtaattttq taactattat tccaacacct ctttttttac tttttagatt gttttataat
agaaatattt taattootaa attaataatg aaagtaaatg taatatgagt cagtacaata
                                                                         1140
tgtgaaaaac ttaaaaagtt gacagaattt agcatttgat taaaagtgta tgaagaagaa
                                                                         1200
                                                                         1260
qaaaaaaqaa qatctttttq tatctataqa tttaqtqcat aacttttctc agattttcga
tatatacaag aatttaacat aagaaaaatc aagacaaatg gacctggtta taatcggtta
                                                                         1320
tetgttgtaa atattatatt teatattett etecaettea taattettat tggagtteet
                                                                         1380
                                                                         1440
tcaccaaatg tttgatgttc cattaaatta atctaccact ctaataagag gtatcgtact
                                                                         1500
acaaattaca cttcataaac aagagaagaa cataaatttg aatttttta aaaaaacata
tgcgttataa caccaaacag taacggacta gctgatcctt gaatttatat tagttgcaaa
                                                                         1560
aatttatata toqaaattqa aacatqaatt tttaaaatta ttagaaaatg tatgatgttg
                                                                         1620
tctaaatgtg acattacaaa tacatgatgt tgtttaaaaa ttattataaa acaaccaaag
                                                                         1680
tttggcgtca ttctggtaaa cgcacttaat gaatttatat acagttaaag attttaacat
                                                                         1740
caaattttaa aatgacaact taactaaaat ttgtatccta atatttttac tagagaaact
                                                                         1800
                                                                         1860
cacacatatt tttcaaacaa atgattagtt atatatcctt cgataatagg tattgtgtaa
aactgtgtgg tttgcacaag tgatccctcg atattctttc tgctaaagat cgacttccca
                                                                         1920
caqtttcqat atctcqqqtt tqqqtqcaat aqcatatqct tqtttagtat qcaqataatc
                                                                         1980
gtatgagaga gtcagagaga tcatctattt ttcatgatat ggtctgagct aatcgatcat
                                                                         2040
ttgttattta tactcgataa cgttctaatt tgtatgattt ttcagccttg atctatcaca
                                                                         2100
aaatggagat aatgaaatgg tagtcataag aaaggtaatg atccccttga catgcttatt
                                                                         2160
ataacacaaa aagtaatcgc tactgattag cttaccctat gatttgaatc atataacttt
                                                                         2220
atactaattg totaagtgtg atgatataat gtatatgatg toatttataa ottattagta
aaaatataaa gttcttcatc attgtcataa ggagttaatt ggatatacat caaaaaattt
                                                                         2340
cctaaatttt tagaaattat taatcaagtt ataatagaaa ttattaaata aaatatatga
                                                                         2400
tgttttctaa atgtgacgat acaaaataca tgatgttgtt caaaacttat tagacagaaa
                                                                         2460
ccaaaqtaca tcatcattqt qatgaagact ttaatggatt tatacatttc aaagttttaa
                                                                         2520
                                                                         2580
acattactta tttaaatgaa aaattgagct aaaatttgta tacttatatg ttgaccatag
```

aaatacttct	atataatttt	agacaagttg	tctatacata	tatatatata	tatatatata	2640
tatatatata	tatttacaca	aaaatcaagt	tttcttaatq	taacaatata	aaaatataaa	2700
atatctaatq	ttgtttaaaa	attatttaga	ccaaaaaaaa	aaaaaactqt	aatcaaactt	2760
tcattagatt	atatctaact	ctaaacatga	atttttatac	aatgacatgt	tcaataaaat	2820
teccettte	tagtttgacc	agaaaaaatg	cttgcagatt	tottaaaatc	tctacttatq	2880
coccacceca	gaatcacacc	agattttgat	ttgtagtact	ttaaaaatat	taattgaaca	2940
caaaaccacc	ttaacaaaaa	agatettat	22222222	ctttctaaaa	tgacattaat	3000
taacacaact	tagtcaattc	agacceccae	ataaaatcaa	agtaaaccct	taattotttt	3060
Laacacaaac	tttacaaaat	attanacett	actuatecatea	actaccaaca	cgaatctctc	3120
tttttttttt	gtctcaatga	gttdadtatt	actactactac	atractctct	ctccctccta	3180
aatctctcat	tcacaccctt	gtetttgate	actageette	tetetetet	ctcaccactt	3240
tatataccaa	tcacaccctt	CCCCaaccac	accettacacce	nagaattata	agattttcaa	3300
caaaacaaga	cactcgtaaa	agagttcttg	aacttcacaa	addadtigtt	agattetteaa	3360
gaaaaacttt	ataaaacaaa	aaacatttca	ttetttett	tttatttaa	tarratatar	3420
tgatctcgtt	ttctcactaa	accaactcgt	ttcttcttac	tututuad	reggatetae	3480
aaaaaaccat	gtcggaaact	aacacaaccg	atgccaagac	tgttccagca	gaagcagaga	
agaagaaaga	acagagttta	ccattcttta	aactcttttc	tttcgctgat	aaatttgatt	3540
atctcttaat	gttcgttggt	tctcttggtg	ccattgttca	tggctcttcc	atgcctgtct	3600
tctttttact	ctttggtcaa	atggttaatg	gatttggtaa	aaaccaaatg	gatttacatc	3660
aaatggttca	tgaagtctct	agagtaagtc	ttttttttct	ttcttgtttt	tatcaaatta	3720
gatccaagat	ctgatctaat	ttttgtgttt	gtgaaatttt	gcagtattct	ctatatttcg	3780
tctacttggg	tttggtcgtt	tgcttctctt	cttacgcagg	tttgtttctt	acaaatccaa	3840
tcttctttt	ctttattctt	caatcaagaa	acccagtaat	taaatcacat	tataaacaag	3900
atcaagaaat	tttttgcaca	aaaaaaaag	aaaacaagat	caagaaatta	ataaagttta	3960
gattaaacat	ttgcattatt	ttctttttt	tggttcaacc	aattaaccca	ttaacataaa	4020
ttaaatcaga	ttattaggca	agaaatctaa	aggtgtattt	tttgagtttt	atttgattct	4080
tcctcaaagt	gaccatttac	tctgaaggta	aaacattttt	ttttactcta	caacaaaaac	4140
ccaacttctt	tttttgtttg	cttcaaaatt	atattaaaaa	aagaaagctt	aaactttgtt	4200
taaaatctto	ttttttttgt	cattcqcttt	tgattagaac	taaaaaaacc	atttttatag	4260
aatgttgttt	acataagtga	tgtaatgggg	ttcggaacga	actttccgtg	ccaaccgctt	4320
ttatadacaa	gaaatctaaa	ogtotaattt	ttgagttttt	atttgattct	tccacaaagt	4380
gatcatttac	tctggtaaac	attttttac	tctacaacaa	aaacccaact	tttttatgtt	4440
tocttcaata	aataaaaacc	tagaaacaga	aatcacaatc	tagagagaat	caaaattata	4500
tataaaaaaa	aaacacttca	aatttttaaa	aattttaata	tottaaaagg	ataagccaag	4560
tccacgtgat	tcatggacta	ctactttgtc	tatatcgaaa	aaaaaaaaa	aatgggcatc	4620
teteteacat	ttattacaac	ttcataaaaa	ttcttgtaat	aataaccata	attttttgtt	4680
aaataatttt	acagagatag	catottogat	gtattctgga	gaaagacaag	tagcagcatt	4740
aaaaaaaaaa	tatcttgaag	cagtattaaa	acaagacgtt	aggttctttg	atactgatgc	4800
tagaactgg	gacattgtct	ttagtgtttc	tactgatact	cttcttattc	aagatgccat	4860
tagtaeegge	gtaaccattt	ttttttttac	taccaacaaa	atctagtatt	taccggcggg	4920
tecestttt	ttcatgatca	atctttatca	aagttttggg	tccatttata	ttagcaaccg	4980
teatttatet	tgcgcctcag	ataattaaaa	aagaaaaaag	actatagatt	gattttttt	5040
tttattassa	taaaagttgg	attttttca	taagaattata	aaaataaqta	atttttttt	5100
cttgttaaaa	tatagaaata	accectetta	ttcactattt	aactaaaact	taaatgatat	5160
acaaacccyc	ttcttacatt	tttaatataa	aaatagette	tttttttcca	ttgtgaaaaa	5220
agtactcatt	gcaaaataat	atttatttaa	caactaaaat	aaatatttot	tattaaaaaa	5280
Latitatiat	gtaccttcaa	attttaataa	tagattttat	ctaaaactgt	ttttttt	5340
aatgtgtaaa	cctgtctctg	taataasaa	taggeceac	gagetaacat	acactagate	5400
gcaatttggt	attattatca	tggtgcatgt	tagcaagcac	tasaatasat	taataacaca	5460
ccctagtttc	attattatta	ttactcttt	tracigitya	otagegaac	tatcaacaga	5520
gtagttgaaa	aaaaattgaa	retectcagge	tggaaactt	ttagetttat	taagtattac	5580
tttggcggga	ttagtagttg	gatttgtatt	agcatggaaa	tatagetes	acagaattac	5640
tgtgattccc	ggaatcgctt	tegeeggagg	cccacacycc	cacacacaca	tanatanaga	5700
ttcaaagagc	cgtgaatctt	atgctaacgc	cggtgttatc	geegageagg	caaacaaaya	5760
ttaaagtttg	ttcctttatt	tgttttattt	aatgcccacc	aactgttcga	cycaacyccc	5820
tttaactgtt	cttaggcttg	cttctttgta	cttgatctct	taaatgattt		5880
tcattgcttc	ttatgcaatc	caaagactta	aacagtgttt	Caccaattc	tanatti	5940
attttatttg	gtcggttaat	gattgatgtt	ttggtttctc	aggcaattgc	tcaagttcga	5940 6000
actgtttatt	cttatgttgg	agagagtaag	gcacttaatg	cgtattcgga	cycyattcag	
tatacgctta	agctcggtta	taaagcgggg	atggctaaag	ggttgggttt	aggatgtact	6060 6120
tatggaatag	cttgtatgtc	atgggctttg	grgrrrrggt	atgctggagt	tuttattcgg	
aatggacaaa	ccgatggagg	aaaggcgttt	actgctatat	tctctgctat	tgttggtgga	6180
atgtaagaat	tcaaaacata	acaatgatgt	ggttttgtgt	attitgtgtt	LEGITATEAC	6240
ttggatgtca	ctttttgttt	ctgtgtgtgt	ttttaggagt	ttggggcaat	cttctcgaa	6300

tcttggggcg tttagtaaag gtaaagcggc tggttataag ttgatggaga taattaacca 6360 6420 gagaccgacg ataattcaag acccgttgga tggaaaatgt ttggatcaag ttcatgggaa 6480 cattgagttt aaagatgtga cttttagcta tccttcacgg cctgatgtta tgatcttcag 6540 gaactttaat attttcttcc cttctgggaa aactgtggcg gttgttggtg ggagtggctc tggaaagagt actgttgttt ccctcattga gagattctat gatccaaaca gcggtaattt 6600 gattgaattt gttttttgct atttgagtct ttggctagtg actggatcat aactttgttt 6660 6720 attttttctt gatgagcagg gcaaattctg ttggatggtg ttgagataaa gacgcttcag ttgaagtttt tgcgtgaaca aatcgggctt gtgaatcaag aacctgcgct ctttgccact 6780 6840 actatactag agaacatact ctatggaaag cctgatgcaa caatggttga agttgaagct 6900 caggtataaa tcaaatattt gattatatgt ctagttaatg tcatggcctt ttgcttaatt 6960 ttttgttgaa tgtcaataca attaggttgg agaacgtggt gttcaactct caggtggaca 7020 7080 gaagcagaga attgcaattg ctagggcgat gttgaaagac ccaaagattc tgttactaga tgaagctaca agcgctcttg atgctagctc tgagagcatt gttcaggaag ctttagacag 7140 agtcatggtg gggaggacca ctgttgttgt tgctcatcgt ctctgcacca tcagaaatgt 7200 tgattccatt gccgtgatac agcaaggcca agttgttgaa accggaacac atgaagaact 7260 7320 cattgccaaa tccggtgctt acgcatccct catcaggttt caggaaatgg ttggtactcg 7380 agatttetea aaccegteaa etegtegeae tegtteaacc egtttgagee atteaetgte aacgaaatca ctcagtttaa gatcaggaag tttgaggaat ctgagctatt cttacagcac 7440 7500 tggagctgat ggtcggatag agatgatttc aaatgcagag actgaccgaa agactcgtgc ccctgaaaat tacttctaca ggcttctcaa gcttaattca ccggaatggc cttactcaat 7560 catgggagca gtaggctcaa ttctttctgg tttcattggt cctacatttg ctattgtgat 7620 7680 gagcaacatg atcgaagtct tctactacac agactatgat tcaatggaaa ggaaaacaaa agagtatgtc ttcatctaca ttggtgctgg tctctatgct gtgggtgctt atttgatcca 7740 acattacttc tttagcatca tgggagaaaa cctcacaaca agagtaagaa gaatgatgct 7800 ctcaggtatg tatcaaaatc tcctgaattt gcttaaaatc actttcccat ttcttatttt 7860 ggtttcttga ttgttcttat ttagctatct tgagaaacga agttggttgg ttcgatgagg 7920 atgaacacaa ctcaagcctg atcgctgcac gtttagctac tgatgcagca gatgttaaat 7980 8040 cogctatage egagagaate teagtaatte tacaaaacat gaetteaett eteacateet 8100 tcatagtcgc cttcatagta gaatggagag tctcacttct catcttaggc acattcccac ttctagtcct cgctaacttt gctcaggtaa ataatctaat ctttttactc aaaatctttc 8160 8220 aatattcatc aatcattaaa atataattgg aatcttgcat tcaccattat gatcttaaga aaaaacgaca aaaggccaga tttttataaa tttatatttg cttttcaaaa gttcaaaact 8280 ttatagaaca tggcaacaca gccactgcct ctacacgtgc ttcatcttct aactttatcc 8340 8400 aagtttgcat ttatgtttac aataataatc ataaaagaat tattaagaag ctttttttt ctactttttg gaaatagtgt aagggtcaag atcatggagc cctcacatca ataaatgtgc 8460 taaaaaaatt aaaaaacagt aggotttagt ttactctctg ggcatgtgtg aagaatattt 8520 attatatagt ttctattggt actatgaccc atagataaca gtgttcacga aaatagctaa 8580 gatteetetg tettttgett etgetaaate tateetaett taagetttea tatttaette 8640 actototgaa ototgaactg tgatoccact totototta tttaattott ttgoccataa 8700 8760 aacctcacca caaaaatcca aaaaatctgc aattttttc cttcttagaa ccaatatttt 8820 atttagagtt cttcattggt caaagttgtt gtctcagtgc attatttact tatcacagtg tgtgtgtcag tgtttttaca ccatccacta gtcaatgttt gcttgtgggt ttctttgttt 8880 tggtagatta ggttgtgatg agtttttttt ttgtttctaa ctagctgcaa ggttcaggac 8940 9000 tetgetttga tatatcacca acatttttte accegtgate taattattag ttgaaaaate tatcaaatag atttcacaca gaagaacata gataggcatt gtacttgtac tgatgttgat 9060 9120 gggatagagt gttgcatatg tgatttaact atatggttct acgtcatgtt ttagtggcga cttagacett tgattgtcaa tettatttt tacaagtgaa etattattae catetgttgt 9180 totaaatoat aagtattaat atatgtggot acattgcago aactatotot gaagggtttt 9240 9300 gctggagaca cagctaaggc tcatgcaaag acttcaatga ttgctggtga aggagtcagt aacattagaa ccgtagcagc tttcaatgca cagagcaaga ttctctcttt gttctgtcat 9360 gagettegtg taceteagaa aagaagetta tacegaagte aaaceteggg ttteetattt 9420 ggcctctcgc agcttgctct ctatggttct gaggctttaa ttctctggta tggtgcccac 9480 9540 cttgtgagta aaggcgtgtc aaccttttcc aaagtgatca aagtgtttgt ggttttggtc 9600 attactgcaa actctgttgc tgaaactgtc agtcttgctc ctgaaattat tcggggaggt 9660 gaagctgttg gttcggtttt ctcggtcttg gacaggcaga ccaggattga cccggatgat gctgatgctg atcccgtgga gacgatccgt ggagacattg agtttaggca tgttgatttc 9720 gcttaccctt caagacccga cgtcatggtt ttcagggact ttaacctcag aattcgagct 9780 ggacatagcc aagctcttgt gggcgcgagt gggtcaggga agagttctgt aattgcgatg 9840 atcgagcggt tttacgaccc tcttgctgga aaagtcatga ttgatggcaa agacatccgc 9900 9960 cggctaaacc tgaaatctct aaggctcaaa atcggtcttg ttcaacaaga accagctctc ttcgcagcaa cgatcttcga caacatcgcc tatggtaaag atggtgcaac tgaatccgag 10020

ataattaata	cagctcgagc	cacaaatact	cacggtttca	tcagtggttt	acctgaaggt	10080
tacasaactc	cagtaggcga	aagaggagtg	cagttatcag	gtggacagaa	acagaggatc	10140
racadaaccc	gagctgtgct	caacaaccct	acadtattac	ttctagacga	agcaactagc	10200
gcgatagcaa	cagaatcaga	atacatacta	caagaggggt	tagagaggct	catgagaggt	10260
gcactagatg	tggtagttgc	tcaccactta	tccaccataa	gaggtgttga	ttgcattggt	10320
eggaecaecy	acgggcggat	tataaaacaa	agcagccatt	cadadetect	tagccgacca	10380
gtgattcaag	attcaaggct	cytygagtaa	ggcagccata	ggatttgaag	cttgatcatg	10440
gagggagctt	aaaaaatcgg	tttatatataat	++++++	ttaaaacttt	aatttggaag	10500
gattaaaaac	actataacga	taatataaat	aggtgtagat	aatgaagett	ttagagtatt	10560
atttetatgg	ctttaattaa	agattattt	tttcccattt	tacttatata	cccattttaa	10620
tatgaaggtt	tgaactatgt	tttatta	ttttaattt	atacttcaa	acaaaacaaa	10680
aacataagac	tactttggtt	matananatt	teestaaase	atttaattca	tgactagaat	10740
atcactctaa	tactitggtt	gaccaaaacc	ctcccaaaac	ctaatcacct	tateteet	10800
tgatcggaca	tgttctttta	ggggtttgat	tananattaa	attraggeta	aacagcaaaa	10860
tacagcgact	taatcaattt	agaccggcta	ccaaaactay	tttttataa	actctatcaa	10920
ttgtcttata	taatatccta	aateacagae	tanatatt	catagtggag	ttcaaaccga	10980
ctgatccggt	caaccccggt	agaaacgcac	tgaagtgttt	catageggae	tatttcattc	11040
aattttgcag	aaattgagat	gagaatgage	tetacetege	ttaatattaa	acttccttat	11100
ttgagatctt	aagtaatttt	ttgagatett	aagtaattt	atactactta	cataccacaa	11160
ttttttgcgg	ttactcgtct	tgacatgtta		gtgttattt	attatttaat	11220
tatatgtagg	tttctaaaca	tatataatag	tatatatat	atttattaat	gagattttga	11280
acgtaaagag	taatctggtt	ctacgtagag	totalololl	geeteete	attcatttgg	11340
ctggactgca	tggtaatcct	cgcgcatggt	gtttagttat	ggccgcccc	castttttcc	11400
ccacgctcaa	attttctaga	agaetetteg	gcccccggca	ttattcattt	cccaatattc	11460
atgacaagtt	cattcatatt	tttttgtgac	tetteteset	acatttaaca	tgagatcctc	11520
catgaacgta	tcaaactcaa	taaaattgat	cgccgccacc	aactatctca	catttttact	11580
aacggcagct	tcaccactag	ccatgttttc	acacacgacc	totagaattt	ctadaddaaa	11640
aaggctttaa	gcaggaatat	tacttctaga	attitaataa	tatataagat	tatcaatott	11700
tgttcacatg	tatatatttt aacaaatggg	ggcatatgat	ttatatata	attattagaa	ccttgaatta	11760
taatatactc	tttcactatt	cattttatt	tatttaatat	atagaaccat	aaagttccaa	11820
tttagttctt	gaaaagaaat	ecutivetti.	tacceggege	aactutuaau	ctctttaatc	11880
taatttctat	tgttggatct	gaataaaatt	atttacttta	catotoottt	toctotttaa	11940
ttattetate	atatettete	gttasttettt	ttccaaatca	acacatcaaa	tatataaaag	12000
gataaaggee	ttttgaatag	antcataatt	tatttaatta	caaaaaaact	taaagaattc	12060
actccaaata	atcacaagac	aaccacaacc	aaggaattaa	atatttaaga	taccaaccgc	12120
aagacccgcg	gactcacaat	ttctaaaat	taaaaccaaa	aaaadaaaaa	attagtcatc	12180
taataaataa	ttagtgaaca	aaaatcaata	agaaaaggat	aatatacttt	ttaccaacat	12240
accycatacc	taaaagcatc	tcacaccaaa	agtaaattaa	aaactcagaa	aaagctgaat	12300
cacataaacc	aattttatgg	agarattaa	tatattaata	ttottatcat	tacaacttta	12360
acaagitaty	gaacatgaaa	aaagegeeag	aacatdaadc	agcattggga	aggactcgaa	12420
tataactact	catactgaca	aaacctcaag	tattccagta	cattagattt	cactttccag	12480
tagtetetatet	atctgctttt	trtatatata	ttaatdtaat	agatagtgta	gagaatcatg	12540
cagtatgtgt	tgtaatcata	gaactaagg	ataattttga	togtgtgaaa	taatactatt	12600
ayyaacaccc	acaaggatga	tctggaccga	attcccacta	attttccagg	tgaatatagt	12660
catcaagtaa	cttgatcacc	ggattttaaa	aatgaattat	gaacatgata	tcatttcaac	12720
taatcaagcaa	aaaatgaaaa	aattcatgtg	ggaatcatat	ccctcaaatc	tgttaccacc	12780
aaactacttt	catttggttt	gtgtgagaaa	tataagaatt	atcaaacaaa	gaaaaaggtt	12840
ttacttaatt	ataatgatat	gaggttcatc	aaatttatat	accactaaaa	tattcctaca	12900
ctcatccaaa	tattattctc	gcttatgcag	ttttaatcta	atgtacaaat	catatccata	12960
agggettag	ccgatgctaa	aattttggca	ttagttgttg	atttqttttt	cttgagtcct	13020
atattaaaa	aatatatttg	ataatttaat	gtataaatta	tacccataat	cacattgatc	13080
acycccaaa	gttttgtatt	agttgttgat	tttttattta	tttqcqtqtq	ttgaattttc	13140
ataaataaa	agtaaatacg	ataatcatat	ttcaaaacgt	aaaggtgtta	attagtagtc	13200
taaatootaa	aatataaaca	gtatattata	aaaattacta	aaatggtttt	gtaaaaaaaa	13260
tatoctattt	gtattataat	gaaattcaaa	aattttaaat	agaacgtata	atttctgcac	13320
aaagaggttt	tgaggtgtta	taattcatga	agtaaatttt	atttactgac	gggtaagttg	13380
taaaaaaatt	tgaagactat	tttttttact	tttcacagag	aaaactactt	tectttttaa	13440
ttatataata	апааппсааа	agtgcagaca	tatactttct	tttctcccat	tttcaacaat	13500
gtcactcgtt	gtattattca	tattttagca	aactggttat	atctatatct	atcaatcatt	13560
tcagaacatc	atatccatca	gtttttggac	attqctacat	acgttagtat	tgatgtacca	13620
gttaccctaa	caggettttg	catagtgtgg	cagaacacgt	gaggtgtgat	atatgcggat	13680
gaattetate	ttctgcattt	tgttaccatt	catataaaaq	tattgtttta	gttgtgctgc	13740
J===500=09		_	-			

27

ggtttaagtc ct aaactctaag ag aacttagaaa ga ctttgtattg at tccaaaaaac aa	gaatataag ataacaaaa ccattattg	atcaatgtgt gtaagaacga	aattaataaa gtattttaa	ttttatagtc gcgaatactc	attcggataa tttagatatt	13800 13860 13920 13980 14000
<210> <211>						
<212>	DNA					
<213>	Arabidops	is thaliana	ı			
<400>	11				•	
cactgctcaa t	gatetegtt	ttctcacta				29
<210>	12					
<211>	30		•			
<212>	DNA					
<213>	Arabidops:	is thaliana				
<400>	12					
cttgaatcac a	ccaatgcaa	tcaacacctc	!			30
<210>						
<211>	29					
<212>	DNA					
<213> .	Artificial	l Sequence				
<220>	•					
<223>	PCR prime	r				
<400>						
cattttataa t	aacgctgcg	gacatctac				29
<210>	14					
<211> 2	29					
<212> 3	DNA					
<213> i	Artificial	l Sequence				
<220>						
<223> 1	PCR primer					
<400>						
tttctccata ti	tgaccatca	tactcattg				29

International application No.
PCT/US99/22363

A. CLASSIFICATION OF SUBJECT MATTER							
IPC(6) :Please See Extra Sheet. US CL :Please See Extra Sheet.							
According to	According to International Patent Classification (IPC) or to both national classification and IPC						
	Minimum documentation searched (classification system followed by classification symbols)						
U.S. : 8	800/278, 294, 300; 435/69.1, 71.2, 468, 419, 252.3; 3	120.1; 536/23.6, 24.1					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic d	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)						
Please Sce Extra Sheet.							
C. DOC	C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category*	* Citation of document, with indication, where appropriate, of the relevant passages Relevant to c						
x	DUDLER ET AL. Structure of an mdr-like Gene from Arabidopsis 24, 29-30 thaliana. The Journal of Biological Chemistry. March 1992, Vol.						
Y	267, No. 9, pages 5882-5888, see pag	•	1-6				
	, 10						
Y	Y CHO et al. An Anion Channel in Arabidopsis Hypocotyls Activited						
	by Blue Light. Proc. Natl. Acad. Sci						
	pages 8134-8138, see page 8134.						
x	EMYR DAVIES et al. Cloning and Cl	haracterization of a Novel P-	24, 29-30				
	Glycoprotein Homologue from Barley						
Y	pages 195-202, see whole document.		1-6				
	·		·				
X Furth	er documents are listed in the continuation of Box C	See patent family annex.					
	scial categories of cited documents: cument defining the general state of the art which is not considered	"T" later document published after the inte date and not in conflict with the appl	ication but cited to understand				
	be of particular relevance	"X" document of particular relevance; th					
	lier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is	considered novel or cannot be considered when the document is taken alone					
cite	od to establish the publication date of another citation or other scial reason (as specified)	"Y" document of particular relevance; th					
O document referring to an oral disclosure, use, exhibition or other means *		considered to involve an inventive combined with one or more other suc- being obvious to a person skilled in t	documents, such combination				
	rument published prior to the international filing date but later than, priority date claimed	"&" document member of the same pater	family				
Date of the	actual completion of the international search	Date of mailing of the international sea	rch report				
23 DECEMBER 1999		27 JAN	2000				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Authorized of Ident MEDINA K. IBRAHIM		lles las					
Washington, D.C. 20231		Telephone No. (703) 308-0196	7				
r areatmine is		(, , , , , , , , , , , , , , , , , , ,	<u>:1</u>				

International application No.
PCT/US99/22363

C(Continue	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P Y,P	SIDLER et al. Involvement of an ABC Transporter in a Developmental Pathway Regulating Hypocotyl Cell Elongation in the Light. The Plant Cell. October 1998, Vol. 10, pages 1623-1636, see pages 1623 and 1629-1634.	24, 28-31
Y	TOMMASINI et al. Differential Expression of Genes Coding for ABC Transporters after Treatment of Arabidopsis thaliana with Xenobiotics. FEBS Letters. May 1997, Vol. 411, pages 206-210, see page 206.	1-6, 24
A	US 5,786, 162 A (CORBISIER et al) 28 July 1998, see whole document.	1-6, 9-24, 28-31
A	US 5,073,677 A (HELMER et al) 17. December 1991, see whole document.	1-6, 9-24, 28-31
	*	

International application No. PCT/US99/22363

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please Sec Extra Sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. X No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-6, 9-24, 28-31
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No. PCT/US99/22363

A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):

C12N 5/04, 15/00, 15/09, 15/11, 15/29, 15/63, 15/74, 15/81, 15/82; A01H 5/00

A. CLASSIFICATION OF SUBJECT MATTER: US CL:

800/278, 294, 300; 435/69.1, 71.2, 468, 419, 252.3, 320.1; 536/23.6, 24.1

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

DIALOG, WEST1.2a

SEARCH TERMS: MDR-LIKE GENES, P-GLYCOPROTEIN GENES, ARABIDOPSIS, NPPB, XENOBIOTIC, RESISTANT PLANTS. ABC TRANSPORTER, APPGP1 EXPRESSION, TRANSGENIC PLANT

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-6, 9-24, 28-31, drawn to an isolated nucleic acid in a recombinant expression cassette, a vector comprising it, a transgenic plant, and a method for producing a plant with enhanced resistance to xenobiotic compounds. Group II, claim(s) 7-8, 25-26, 32-38, drawn to an isolated protein and antibodies for the protein.

Group III, claim(s) 27, drawn to an oligonucleotide.

Group IV, claim(s) 39-40, drawn to P-glycoprotein gene promoter.

Group V, claim(s) 41-45, drawn to a plant with mutated pIPAC gene and a method of making it.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The claimed isolated nucleic acid molecules and transformed cells are anticipated by each of Dudler et al, Emyr Davis et al, and Sidler et al, as set forth in the Search Report, and so do not constitute a single special technical feature which would be an advance over the prior art.

The invention of Group I, drawn to a first product and process of use, requires an isolated nucleic acid encoding P-glycoprotein, a vector, host cells, and a method for plant transformation and regeneration not required by any other group.

The invention of Group II, drawn to a second product, requires an isolated polypeptide and antibodies for the polypeptide not required by any other group.

The invention of Group III, drawn to a third product, requires an oligonucleotide and a hybridization technique not required by any other group.

The invention of Group IV, drawn to a fourth product, requires a specific gene promoter not required by any other group.

The invention of Group V, drawn to a fifth product and method of use, requires a plant with mutated plPAC gene and a method of making it not required by any other group.