

#### รายงาน

### The Study of Microstrip Stop-band RF Filter

at Microwave Frequencies Using CLLs Elements conference paper
(การศึกษาบทความเกี่ยวกับตัวกรองความถี่ RF แบบไมโครสตริปที่ความถี่ไมโครเวฟโดยใช้ CLLs Element)

เสนอ

ผศ.ดร. ปรีชา ทองดิษฐ์

(PTD)

นาย โสภณ สุขสมบูรณ์ รหัสนักศึกษา 6201011631188 นักศึกษาชั้นปีที่ 4 สาขาวิศวกรรมไฟฟ้า (โทรคมนาคม)

รายงานเล่มนี้เป็นส่วนหนึ่งของวิชา 010113338 วิศวกรรมไมโครเวฟ ประจำภาคการศึกษา 1/2565 สาขา วิศวกรรมไฟฟ้า (โทรคมนาคม) ภาควิชา วิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะ วิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

# <u>คำอธิบายเกี่ยวกับบทความ</u>

บทความนี้จะทำการศึกษาและออกแบบตัวกรอง RF แบบไมโครสตริป ที่ความไมโครเวฟ โดย Bandstop filter จะมีอยู่ในตัว Filter ทั้งหมด 4 ที่ โดยภายในประกอบไปด้วย สายไมโครสตริป (Microstrip Line) ที่จะ ทำการเชื่อมต่อกับองค์ประกอบ Loaded loops แบบ Capacitively ทั้งหมด 4 ส่วน และมีผลการจำลองใน รูปของ s-parameter ( $S_{11}$ และ  $S_{21}$ ) จำนวนแถบความถี่ที่ถูก Reject จะถูกกำหนดโดยจำนวนของ CLLs โดย RF Filter นี้จะมีรูปทรงที่เรียบง่ายและขนาดกะทัดรัด โดยโครงสร้างที่ศึกษานี้ถือเป็นกระบวนการที่มี แนวโน้มซึ่งสามารถนำมาประยุกต์ใช้กับเครื่องรับ RF แบบ Front-End เพื่อให้เหมาะสมกับระบบ Ultrawideband wireless systems

#### บทนำ

ในปัจจุบัน ระบบการสื่อสารไร้สาย (Wireless Communication systems) ที่มีอัตราการส่งข้อมูล (Bit Rate) สูง ๆ ได้รับความนิยมอย่างมาก เช่น Ultra-wideband (UWB) system และ Narrowband systems ที่มี การใช้มาอย่างยาวนาน อาจจะทำให้ระบบดังกล่าวไปรบกวนระบบ UWB ซึ่งสิ่งเหล่านี้สามารถเกิดขึ้นได้ เพื่อ ป้องกันปัญหาที่จะเกิดในอนาคต และสามารถเพิ่มความต้านทานการรบกวนเหล่านั้นได้ Stop-band filters จึงมีความสำคัญในการเอาชนะผลตอบสนองที่เราไม่ต้องการ หรือก็คือการตัดส่วนของ Noise หรือ สัญญาณที่ เราไม่ต้องการ โดยการ Reject ความถี่ที่ไม่ต้องการ และยอมให้ความถี่ที่ต้องการส่งผ่านไปได้ โดยตัวกรองที่ น่าสนใจคือ Microstrip bandstop filters เนื่องจากต้นทุนต่ำ มีความเรียบง่ายในการรวมเข้ากับวงจร Radio Frequency / Microwave

ในบทความนี้ ได้เสนอถึงตัวกรอง Stop-Band RF Filter โดยมีการเชื่อมโยงกันระหว่าง Microstrip line และ องค์ประกอบลูปโหลดแบบประจุไฟฟ้า (CLLs) 4 ส่วน เพื่อให้ได้ความถี่ในแถบความถี่ GSM, UMTS, WIFI และ LTE โดยเฉพาะอย่างยิ่ง เราจะแสดงให้เห็นว่า การเพิ่ม CLLs นำไปสู่การเปลี่ยนแปลงพฤติกรรมของ ความถี่ที่ถูก Reject และขึ้นอยู่กับขนาดและความใกล้ชิดของสายไมโครสตริปเพียงอย่างเดียว

# Filter Design

ตัวกรองความถี่ RF แบบ Quad-Band มีการกำหนดช่วงความถี่ไมโครเวฟระหว่าง 1.8 – 2.6 GHz และ ประกอบไปด้วย Microstrip line และ CLLs ที่แตกต่างกันสี่ตัว และแต่ละตัวมี Resonant Frequency ที่ไม่ ซ้ำกัน โครงสร้างที่ถ฿กสร้างขึ้นด้วย Rogers DuriodTM 5880 (Substrate) มีความหนา 0.8 mm , ค่า Relative permittivity เท่ากับ 2.2 , ค่า Relative permeability เท่ากับ 1 และ Loss tangent equal to 0.0009 ดังที่แสดงในรูปที่ 1 และ 50Ω-microstrip line มีความกว้างเท่ากับ 2.61 mm ในรูปที่ 1 จะ สังเกตเห็นว่า CLLs จะถูกจับคู่ด้วย 50Ω-microstrip line เพื่อให้อุปกรณ์สามารถสะท้อนความถี่ที่ต่างกันได้



(รูปที่ 1)

Table 1: Dimensions of Quad-Band Filter Structure (mm)

| Parameter | Value (mm) | Parameter | Value (mm) |
|-----------|------------|-----------|------------|
| $W_{s}$   | 50         | $L_1$     | 22         |
| $W_{50}$  | 2.6        | $L_2$     | 20         |
| $W_1$     | 12         | $L_3$     | 20         |
| $W_2$     | 11         | $L_4$     | 20         |
| $W_3$     | 6.5        | g         | 1          |
| $W_4$     | 5          | t         | 1          |
| $L_{s}$   | 50         | d         | 0.7        |

<u>Table 2 : Other Parameter</u>

| Parameter                                            | Value (Units) |  |  |
|------------------------------------------------------|---------------|--|--|
| Relative Permittivity : $\mathcal{E}_{oldsymbol{r}}$ | 2.2           |  |  |
| Relative Permeability : $\mu_r$                      | 1             |  |  |
| Tangent loss                                         | 0.0009        |  |  |
| Microstrip line width                                | 2.61 mm       |  |  |



### Simulation Results

# A. $S_{11}$ and $S_{21}$ parameters

การจำลองการแสดงผลของคุณลักษณะของ Return loss และ Insertion loss ( $S_{11}$  and  $S_{21}$ ) ดังแสดง ในภาพ



ดังรูปที่แสดง ช่วงความถี่หยุดอยู่ในช่วง 1.8, 2.0, 2.4 และ 2.6 ตามลำดับ กับความถี่ GSM, UMTS, WIFI และ LTE ความถี่ที่ถูกตัดจะถูกสรุปไว้ในตารางที่ 3 สำหรับการทำงานใน Multi-band สามารถเพิ่ม CLLs ลง ในโครงสร้างได้เพื่อให้ CLLs ที่เพิ่มเข้าไปสามารถจับคู่กับคลื่นที่แพร่กระจายใน Microstrip line สร้าง Resonant Frequency ที่แตกต่างกันและสัมพันธ์กัน การเพิ่มโครงสร้าง CLLs ที่มีขนาดใหญ่ขึ้นสามารถเพิ่ม ลงในโครงสร้างได้ แต่อาจจำเป็นต้องปรับขนาดของอุปกรณ์ RF เพื่อรองรับ Resonant Frequency

Table 3: Electrical Performances of the Proposed Filter

|           | Performances     |           |                |             |  |
|-----------|------------------|-----------|----------------|-------------|--|
| Standards | Center frequency | Bandwidth | Insertion loss | Return loss |  |
|           | (GHz)            | (MHz)     | (dB)           | (dB)        |  |
| GSM       | 1.78             | 20.2      | 18.58          | 1.23        |  |
| UMTS      | 1.98             | 18.5      | 6.7            | 1.56        |  |
| WIFI      | 2.45             | 30.1      | 19.07          | 0.72        |  |
| LTE       | 2.63             | 24.3      | 21.33          | 0.81        |  |

### การจำลองการแสดงผลผ่าน โปรแกรม CST Studio Suite 2022



Table 4: Electrical Performances of the Proposed Filter

|           | Performances     |              |                |              |
|-----------|------------------|--------------|----------------|--------------|
| Standards | Center frequency | Bandwidth    | Insertion loss | Return loss  |
|           | (GHz)            | (MHz)        | (dB)           | (dB)         |
| GSM       | Can't detect     | Can't detect | Can't detect   | Can't detect |
| UMTS      | Can't detect     | Can't detect | Can't detect   | Can't detect |
| WIFI      | 2.45             | 30.1         | 19.07          | 0.72         |
| LTE       | 2.63             | 24.3         | 21.33          | 0.81         |

#### B. Surface Currents Distribution

การกระจายกระแสบนพื้นผิวบนองค์ประกอบทองแดง ที่เกิด Resonant Frequency F1 , F2 , F3 และ F4 ดังแสดงในรูป



จากภาพจะเห็นได้ว่า ความยาวแปรผกผันความถี่ที่ใช้ทดสอบ เราสามารถสังเกตได้ว่าแต่ละส่วนของ CLLs มี resonant ส่วน อื่นๆจะไม่เกิด resonant ขึ้นกับความถี่ส่วนอื่น

# <u>บทสรุป</u>

ตัวกรองคลื่นความถี่วิทยุที่กำหนดค่าใหม่ (GSM,UMTS,WIFI และ LTE) ได้รับการออกแบบ ใช้งาน และทดสอบการใช้งาน โดยมีโครงสร้างที่ประกอบไปด้วย Microstrip line และ CLLs เป็นองค์ประกอบ การ เกิด Resonant Frequency ได้มาจากการเปิดใช้งาน CLLs แต่ละอัน โดยตัวกรองที่เราทำ มีขนาด  $50 \times 50$   ${\rm mm}^2$  และง่ายต่อการสร้าง เราสามารถสังเกตได้ว่าการจำลองพารามิเตอร์ S อยู่ในจุดที่ยอมรับได้ คือ Insertion loss > 6.7 dB และ Return loss < 1.56 dB ในอนาคตเราจะสร้างต้นแบบตัวกรองความถี่แถบ หยุดเพื่อศึกษาประสิทธิภาพของตัวกรอง

# <u>แหล่งอ้างอิง</u>

- [1] Saber DAKHLI, University of Carthage, ISTIC, Department of Telecommunications, 1164, Ben Arous, Tunisia. 2 University of Carthage, SUPCOM, LR11TIC03 Innov'Com Laboratory, 2083, Ariana, Tunisia
- [2] Moheddine SMARI , University of Carthage,ISTIC, Department of Telecommunications, 1164
- [3] Fethi CHOUBANI SMARI , University of Carthage,ISTIC, Department of Telecommunications, 1164
- [4] Jean-Marie FLOC'H ,IETR, INSA, 20 avenue Buttes des Coësmes, 35043 Rennes, France.
- [5] "Microstrip Stop-band RF Filter at Microwave Frequencies Using CLLs Elements" Conference Paper
- [6] CST Studio Suite 2022 Free licensed for personal and educational proposes