

WELCOME TO CS 24!

Problem Solving with Computers-II

Instructor: Diba Mirza

Read the syllabus. Know what's required. Know how to get help.

About this course

- Design and implement larger programs that run fast
- Organize data in programs using data structures
- Analyze the complexity of your programs
- Understand what goes on under the hood of programs

Data Structures and C++

Complexity Analysis

About the team

Diba Mirza

- Prof. Mirza's Office hours: M 2:30-3:30p, HFH 1155, or by appointment
- Communication with staff via Piazza
- Include [CS24] in the subject line of any email communication with me
- Sections start this week on Thursday
- Office hours start next week

Ask questions about class examples, assignment questions, or other CS topics.

Jeffrey LA Zack LA Karanina LA Torin

Course Logistics

- Course website: https://ucsb-cs24.github.io/f23
- Read the syllabus
- If you have a section conflict, you may informally switch your section time.
- No makeup on exams unless its a real emergency!

• To complete the labs you need a college of engineering account. If you don't have one yet, send an email to help@engineering.ucsb.edu

iClicker Cloud

Join the class CMPSC24: Problem Solving with Computers-2:

https://join.iclicker.com/HFXE or use the QR code

Recommended textbook

Problem Solving with C++, Walter Savitch, Edition 9

About lectures

- I will not be a talking textbook
- Ask questions anytime!
- I'll ask you questions too! Be ready to discuss with the people near you and respond to multiple-choice questions (using the clickers).
- Take a moment to introduce yourself to the people sitting near you.
 - Talk about...
 - your background,
 - experience in CS so far, and
 - what you hope to get out of this class!

About you: When did you take CS16 or an equivalent course?

- A. Summer 2023
- B. Spring 2023
- C. Winter 2023
- D. Fall 2022 or earlier

About you...

What is your familiarity/confidence in C++?

- A. Know nothing or almost nothing about it.
- B. Used it a little, beginner level.
- C. Some expertise, lots of gaps though.
- D. Lots of expertise, a few gaps.
- E. Know too much; I have no life.

About you...

What is your familiarity/confidence with using git or any version control system?

- A. Know nothing or almost nothing about it.
- B. Used it a little, beginner level.
- C. Some expertise, lots of gaps though.
- D. Lots of expertise, a few gaps.
- E. Know too much; I have no life.

Review: Tracing code involving pointers

```
int* p;
int x = 10;
p = &x;
*p = *p + 1;
```

Q: Which of the following pointer diagrams best represents the outcome of the above code?

C. Neither, the code is incorrect

Review: Pointer assignment

```
int* p1, *p2, x;
p1 = &x;
p2 = p1;
```

Q: Which of the following pointer diagrams best represents the outcome of the above code?

C. Neither, the code is incorrect

Two important facts about Pointers

1) A pointer can only point to one type —(basic or derived) such as int, char, a struct, a class another pointer, etc

- 2) After declaring a pointer: int *ptr; ptr doesn't actually point to anything yet.
 - We can either:
 - make it point to something that already exists, OR
 - > allocate room in memory for something new that it will point to

Review: Heap vs. stack

```
1 #include <iostream>
2 using namespace std;
3
4 int* createAnIntArray(int len){
5
6    int arr[len];
7    return arr;
8
9 }
```

Where does the above function create the array of integers?

- A. Stack
- B. Heap
- C. Don't know, what do you mean by stack and heap?

Review: C++ Program's Memory Regions

```
#include <iostream>
using namespace std;
// Program is stored in code memory
int myGlobal = 33;  // In static memory
void MyFct() {
  int myLocal;
                   // On stack
  myLocal = 999;
  cout << " " << myLocal;</pre>
int main() {
  int* myPtr = nullptr; // On stack
  myInt = 555;
  myPtr = new int;
                      // In heap
  *myPtr = 222;
  cout << *myPtr << " " << myInt;</pre>
  delete myPtr; // Deallocated from heap
  MyFct(); // Stack grows, then shrinks
  return 0;
```


The code regions store program instructions. myGlobal is a global variable and is stored in the static memory region. Code and static regions last for the entire program execution.

Review: C++ Program's Memory Regions

```
#include <iostream>
using namespace std;
// Program is stored in code memory
int myGlobal = 33;
                     // In static memory
void MyFct() {
   int myLocal;
                      // On stack
  myLocal = 999;
   cout << " " << myLocal;</pre>
int main() {
   int myInt;
                         // On stack
  int* myPtr = nullptr; // On stack
  myInt = 555;
  myPtr = new int;
                         // In heap
   *myPtr = 222;
   cout << *myPtr << " " << myInt;</pre>
   delete myPtr; // Deallocated from heap
  MyFct(); // Stack grows, then shrinks
   return 0;
```


- Stack: Segment of memory managed automatically using a Last in First Out (LIFO) principle.
- Heap: Segment of memory managed by the programmer
 - Data created on the heap stays there
 - FOREVER or
 - until the programmer explicitly deletes it

The code regions store program instructions. myGlobal is a global variable and is stored in the static memory region. Code and static regions last for the entire program execution.

Review: Heap vs. stack

```
#include <iostream>
int main() {
  int* x = new int[3];
  x[1] = 20;
  int* p = &x[1];
  const char** fruit = new const char*[3];
  fruit[1] = "bananas";
  std::cout << "Yum " << *p << " " << fruit[1];
  return 0;
}</pre>
```

What is the output?

What data structure does the diagram represent?

```
struct Node {
                                                 int data;
                                                 Node *next;
                                            };
head
```

Evaluate each of the following expressions?

- 1. head->data
- 2. head->next->data
- 3. head->next->next->data
- 4. head->next->next->next->data

A. 1

C. 3

D. nullptr

E. Run time error

Write a C++ function to add a node to the head of the list


```
struct Node {
    int data;
    Node *next;
};
```

Next time

Intro to Object Oriented Programming in C++