FONCTIONS PART3 E05

EXERCICE N°3

Dresser le tableau de variations de chacune des fonctions polynômes suivantes, après avoir étudier le signe de la dérivée.

1)
$$f(x)=x^3-3x+1$$
 définie sur \mathbb{R} .

$$f(x)=x^{3}-3x+1$$

$$f'(x)=3x^{2}-3$$
Factorisons $f'(x)$

$$f'(x) = 3x^{2}-3 = 3(x^{2}-1) = 3(x+1)(x-1)$$

- 3 > 0 est vrai pour toute valeur de x
- $x+1 \Leftrightarrow x > -1$
- $x-1 > 0 \Leftrightarrow x > 1$

x	$-\infty$		-1		1		+∞
3		+		+	[+	
x+1		_		+	0	+	
x-1		_		_		+	
f'(x)		+	0	_	0	+	
f(x)	-∞		3		-1		+∞

Remarque:

On fait bien attention : l'avant-dernière ligne, c'est pour le signe f' et la dernière, c'est pour les variations de f . On ne se mélange pas les pinceaux dans les « f' »

2)
$$g(x)=2x^3+4x$$
 définie sur \mathbb{R} .

$$g(x)=2x^{3}+4x$$

$$g'(x) = 2\times 3x^{2}+4\times 1 = 6x^{2}+4$$

Ici, on réfléchit un peu : x^2 est toujours supérieur ou égal à zéro, cela reste vrai quand on le multiplie par 6 et quand on ajoute 4, cela devient même strictement positif.

De manière évidente, g'(x) > 0

On en déduit que g est strictement croissante sur \mathbb{R}

3)
$$h(x)=x^3+6x^2$$
 définie sur \mathbb{R} .

$$h(x)=x^3+6x^2$$

 $h'(x) = 3x^2+6\times 2x = 3x^2+12x$
Factorisons $h'(x)$
 $h'(x) = 3x^2+12x = 3x(x+4)$

$$3x > 0 \Leftrightarrow x > 0$$

$$x+4 > 0 \Leftrightarrow x > -4$$

X	$-\infty$		-4		0		+∞
3 x		_		_	0	+	
x+4		_	0	+	1	+	
f'(x)		+	0	-	0	+	
f(x)	-∞ /		3		→ -1 /		+∞