

PATENTTI- JA REKISTERIHALLITUS
NATIONAL BOARD OF PATENTS AND REGISTRATION

Helsinki 17.7.2001

#2
A 137/01
12/

J1003 U.S. PRO
09/954602
09/17/01

E T U O I K E U S T O D I S T U S
P R I O R I T Y D O C U M E N T

Hakija
Applicant

Nokia Mobile Phones Ltd
Espoo

Patentihakemus nro
Patent application no

20002065

Tekemispäivä
Filing date

19.09.2000

Kansainvälinen luokka
International class

H04L

Keksinnön nimitys
Title of invention

"Puhekehysen käsitteeminen radiojärjestelmässä"

Täten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä, patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the description, claims, abstract and drawings originally filed with the Finnish Patent Office.

Pirjo Kalla
Tutkimussihteeri

CERTIFIED COPY OF
PRIORITY DOCUMENT

Maksu 300,- mk
Fee 300,- FIM

Osoite: Arkadiankatu 6 A Puhelin: 09 6939 500 Telefax: 09 6939 5328
P.O.Box 1160 Telephone: + 358 9 6939 500 Telefax: + 358 9 6939 5328
FIN-00101 Helsinki, FINLAND

Puhekehysen käsitteleminen radiojärjestelmässä

Ala

Keksinnön kohteena on menetelmä puhekehysen käsittelemiseksi radiojärjestelmässä, radiojärjestelmä, radiojärjestelmän tilaajapäästelaite, sekä 5 radiojärjestelmän verkko.

Tausta

Radiojärjestelmän siirrettävä puhe koodataan lähettimessä puhekoodeilla. Esimerkki puhekoodeista on TETRA-järjestelmän (Terrestrial Trunked Radio) ACELP-kooderi (Algebraic Code Excited Linear Predictive). 10 TETRA-järjestelmä kuvataan kirjassa John Dunlop, Demessie Girma, James Irvine: Digital Mobile Communications and the TETRA System, John Wiley & Sons Limited 1999, ISBN 0-471-98792-1, joka otetaan tähän viitteeksi. Vastaanottimessa on puhedekooderi, joka muuntaa vastaanotetun puhetta kuvauvan informaation takaisin ihmisen ymmärtämäksi puheeksi. Jos puhekoodeksi 15 sisältää myös puhedekooderin, laitetta nimitetään puhekoodekiksi.

Puhetta esittävä digitaalinen informaatio kanavakoodataan lähettimessä radiotilliä esiintyvän kohinan aiheuttamien haitallisten vaikutusten estämiseksi. Kanavakoodit voivat olla virheen havaitsevia ja/tai virheen korjaavia. 20 Kanavakoodit voidaan periaatteessa jakaa lohkokodeihin ja konvoluutiokoodi- deihin. Molempia koodaustapoja voidaan käyttää myös samanaikaisesti. Eräs lohkokoodi on syklinen redundanssitarkastus (cyclic redundancy check, CRC). Lisäksi käytetään tyyppillisesti konvoluutiokoodausta ja sen erilaisia muunnelmia, esimerkiksi punkturoitua konvoluutiokoodausta. Tyyppillinen konvoluutiokoodauksen koodaussuhde (code rate), eli käyttäjän databittien lukumäärän 25 suhde kanavan koodattuihin databitteihin, on esimerkiksi 1/2 tai 1/3. Kanavakoodauksen lisänä käytetään usein lomitusta (interleaving). Lomituksessa peräkkäiset bitit sekoitetaan keskenään pitemmälle ajanjaksolle siten, ettei hetkellinen häipymä radiotilliä riittäisi tekemään kyseisen ajanjakson radiosignaalia tunnistamattomaksi, vaan että siihen aiheutuneet virheet voitaisiin kanavakoodauksen dekoodauksella vielä poistaa. 30

Kanavakoodauksen lisäksi informaatio voidaan salata salakuunte-lun estämiseksi. Salaus toteutetaan yleensä siten, että salausalgoritmilla luodaan tiettyjä syöttöparametreja, kuten salausavainta, käyttäen salausmaski, joka liitetään XOR-operaatiolla (looginen ekslusivinen TAI -operaatio) yhteen 35 siirrettävän informaation kanssa. Salaus voidaan tehdä joko ennen kanava-

koodausta tai sen jälkeen. Salausta voi myös olla useampitasoista, esimerkiksi salaus radiorajapinnan yli, sekä pisteestä-pisteeseen-salausta esimerkiksi kahden tilaajapäätelaitteen välillä. Salaus pystytään purkamaan vastaanottimessa samaa lähetyksessä käytettyä salausalgoritmia käyttäen, kunhan myös 5 syöttöparametrit ovat samat.

Virheenhavaitseva kanavakoodi, esimerkiksi syklisen redundanssi-tarkastuksen laskenta, yleensä ilmaisee kanavakoodattuun puhekehysteen radiotiellä ilmaantuneet bittivirheet, jolloin puhedekooderille lähetetään huonon kehyn osoitus (Bad Frame Indication, BFI), josta puhedekooderi tietää, et-10 tei kyseistä puhekehystä kannata yrittää dekoodata. Tällöin puhedekooderissa käytetään yleisesti menettelyä, jossa edellisen ehjän kehyn parametreja käytetään vahvistusta vähentää.

On kuitenkin tilanteita, joissa puhekehyn bittien sopivasti kään-tyessä radiotiellä puhekehys ei enää sisällä kelvollista dataa, joka voitaisiin 15 dekoodata puhedekooderilla, vaikka kanavakoodin dekoodauksen perusteella puhekehys on virheetön. Koska mahdollisia puhekehyn sisältämiä bitti-kombinaatioita on erittäin suuri määrä, esimerkiksi TETRA:ssa $2^{137}-1$ erilaista kombinaatiota, on niiden kaikkien testaaminen käytännössä mahdotonta. Täl-20 löin on mahdollista, että yritettäessä dekoodata viallista puhekehystä, voi pu- hedekooderin ulostulosta tulla erittäin voimakas virheellinen signaali, joka ai-heuttaa epämiellyttävän audioshokin kuuntelijan korvaan, ja pahimmillaan jopa kuulovaurion.

Ongelmaa pahentaa se, että esimerkiksi TETRA-järjestelmässä käytetään asiakkaiden toivomuksesta tilaajapäätelaitteen kaiuttimessa suu-25 rimpia sallittuja maksimitehoja puheen kuuluvuuden maksimoimiseksi meluisissa ympäristöissä. Näin ollen kaiutinpiirin oma, esimerkiksi 100 desibelin tai jopa 110 desibelin, tehonrajoitus ei ratkaise ongelmaa. Ongelmaa pahentaa myös se, että monissa radiojärjestelmissä puhekehyn ollessa viallinen toistetaan edellisen puhekehyn dekoodaus puhedekooderilla, jolloin jos 30 sekin oli viallinen, mutta kanavakoodin perusteella virheetön, niin silloin de- koodataan peräkkäin kaksi viallista puhekehystä.

Vaikka kanavakoodaus kykenisi havaitsemaan virheet, niin seuraavaksi kuvattava toinen ongelma voi aiheuttaa audioshokin. Yleensä radiojär-35 jestelmissä, esimerkiksi GSM-järjestelmässä (Global System for Mobile Communication), salaus puretaan ennen kanavadekoodausta. Kuitenkin esimerkiksi TETRA:ssa salauksenpurku suoritetaan vasta kanavadekoodauksen jäl-

keen. Tällöin voi syntyä tilanne, jossa puhetta sisältävä puhekehys on oikeasti virheetön myös kanavakoodin perusteella, mutta salauksen purku jostakin syystä, esimerkiksi vääristä syöttöparametreista johtuen, sotkee täysin sinänsä virheettömän puhekehyn sisällön. Jos puhedekooderi tunnistaa huonot puhekehykset kanavakoodin perusteella, esimerkiksi saamalla tarvittaessa huonon kehyksen osoitukseen kanavadekooderilta, niin se ei kykene tunnistamaan salauksen purun sotkemaa puhekehystä, jolle ei tule huonon kehyksen osoitusta. Tällöin puhedekooderi yrittää dekoodata sotketun puhekehyn, jolloin pahimmissa seurauksena on jälleen audioshokki. Ongelman tekee todennäköisemmäksi TETRA:ssa oleva kaksitasoinen salausmahdollisuus: radiorajapintasalaus sekä pisteestä-pisteeseen-salaus. TETRA-päätelaitteisiin voi laitteen käyttäjä laittaa oman salausmodulinsa pisteestä-pisteeseen-salauskuksen suorittamiseksi, jolloin laitteen valmistajalla ei ole mitään mahdollisuutta varmistaa ja testata kyseisen salausmodulin toimintaa, koska salausmoduli käsittelee jo kanavadekoodattua tietoa. Salausmoduli on laitteen valmistajan kannalta musta laatikko, josta ideaalitapauksessa tulee ulos puhetta sisältävä puhekehys, jonka salaus on purettu. Lisäksi salausvaimien päivittämisessä voi esimerkiksi ilmetä virhetilanteita, joissa salausalgoritmin syöttöparametrina käytetään väärää salausavainta.

20. Lyhyt selostus

Keksinnön tavoitteena on tarjota parannettu menetelmä, parannettu radiojärjestelmä, parannettu radiojärjestelmän tilaajapäätelaite ja parannettu radiojärjestelmän verkko. Keksinnön eräänä puolena esitetään patenttivaatimuksen 1 mukainen menetelmä. Keksinnön eräänä puolena esitetään patenttivaatimuksen 12 mukainen radiojärjestelmä. Keksinnön eräänä puolena esitetään patenttivaatimuksen 23 mukainen radiojärjestelmän tilaajapäätelaite. Keksinnön eräänä puolena esitetään patenttivaatimuksen 24 mukainen radiojärjestelmän verkko. Keksinnön muut edulliset suoritusmuodot ovat epäitseväistä patenttivaatimuksen kohteena.

30 Keksintö perustuu siihen, että vaikka puhekehys olisikin kanavadekoodauksen perusteella virheetön, niin tutkitaan kanavadekoodatun puhekehyn sisältämää ainakin yhtä puhetta kuvaavaa parametria, ja päätetään tutkimuksen perusteella kannattaako puhekehystä yrittää dekoodata puhedekooderilla. Audioshokki vältetään siis siten, ettei sokeasti luoteta kanavadekoodauksen kykyyn havaita virheet. Toisaalta jos järjestelmässä salaus purettiin kanavadekoodauksen jälkeen, niin silloin kanavadekoodatun ja salauk-

sesta puretun puhekehysen sisältämien parametrien tutkiminen estää myös mahdollisen audioshokin tilanteessa, jossa kanavadekoodattu puhekehys oli virheetön, mutta salauksen purku sotki puhekehysen sisällön.

Keksinnön merkittävin etu on se, että sitä käytettäessä voidaan 5 välittää audioshokit edelläkuvatuissa ongelmatilanteissa.

Kuvioluettelo

Keksinnön edulliset suoritusmuodot selostetaan esimerkinomaisesti alla viitaten oheisiin piirroksiin, joista:

10 kuvio 1 esittää esimerkkiä radiojärjestelmän rakenteesta;
kuvio 2 esittää radiojärjestelmän verkon ja radiojärjestelmän tilaaja-päätelaitteen rakennetta;
kuvio 3 esittää radiolähettimen ja radiovastaanottimen rakennetta;
kuvio 4 esittää puhebittien kanavakoodausta;
kuvio 5 on vuokaavio havainnollistaen menetelmää puhekehysen 15 käsittelemiseksi radiojärjestelmässä.

Suoritusmuotojen kuvaus

Viitaten kuvioon 1 selostetaan radiojärjestelmän rakenne. Selostettava järjestelmä on TETRA, mutta on selvää, etteivät suoritusmuodot ole rajoittuneet pelkästään kyseiseen järjestelmään, vaan niitä voidaan käyttää kai-20 kissa radiojärjestelmissä, joissa esiintyy ainakin toinen alussa esitetyistä ongelmista, eli kanavadekoodauksen epäideaalisuus ja/tai salauksenpurun väärä toiminta. TETRA-standardi kuvaaa kuusi systeemikomponenttia ja niiden väliset liitännät. Systeemikomponenttien sisäisiä liityntöjä ei ole määritetty standardissa, jotta valmistajat voivat tehokkaimmalla mahdollisella tavalla toteuttaa kai-25kin systeemikomponentin sisäisen rakenteen. Systeemikomponentit ovat: verkko (network) 100, johtoasema (line station) 108, tilaajapäätelaitte (mobile station) 112, suoramooditilaajapäätelaitte (direct mode mobile station) 114, 116, yhdyskäytävä (gateway) 104, ja verkonhallintayksikkö (network management unit) 106.

30 Verkko 100 on TETRA:n verkkojärjestelmä, joka käsittää yksittäisiä verkkoelementtejä, kuten kuviossa 2 kuvatun radioyhteyden toteuttavan tuki-35 aseman 212 antenneineen 210 ja matkapuhelinkeskuksen 214. Verkko 100 vastaa suunnilleen GSM-järjestelmän tukiasemajärjestelmää (base station subsystem) ja verkkojärjestelmää (network subsystem) yhdistettynä. Kuviossa 1 tästä yhdistelmää kuvataan viitenumeroilla 102. Viitenumeron 102 lisäksi

verkko 100 sisältää myös verkonhallintayksikön 106 ja yhdyskäytävän 104. Kuten kuviosta 1 nähdään, niin TETRA-verkko 100 voidaan kytkeä yhteyteen myös toisen TETRA-verkon 120 kanssa, jolloin toisessa TETRA-verkossa 120 on radioyhteys 122 TETRA-tilaajapäätelaitteeseen 124.

5 Johtoasema 108 on käytännössä TETRA-verkkoa 100 valvovassa kontrollihuoneessa sijaitseva terminaali tai päivystäjän yksikkö (dispatcher unit).

Yhdyskäytävä 104 mahdollistaa puhelut TETRA-verkon 100 käyttäjien ja ei-TETRA-verkon käyttäjien välillä. Yhdyskäytävän 104 määrittely on 10 välttämätön, koska muut TETRA-verkkoon 100 kytkettävät verkot käyttävät yhteensopimattomia informaatioformaatteja ja kommunikointiprotokollia, jolloin täytyy suorittaa käänöksiä tai konversioita. Kuviossa 1 esitetään esimerkkinä ei-TETRA-verkosta julkinen puhelinverkko 130, jossa olevaan normaaliin puhelimeen 132 voidaan siis saada yhteys TETRA:n tilaajapäätelaitteesta 112. 15 Muita ei-TETRA-verkkoja joihin voidaan luoda yhteys yhdyskäytävän 104 välityksellä ovat ISDN (Integrated Services Digital Network) ja julkisen dataverkko (Public Data Network).

Verkonhallintayksiköllä 106 suoritetaan verkonvalvontaa paikallisesti ja kaukokäytöllä. Verkonvalvonta käsittää esimerkiksi virhetilanteiden 20 valvontan, järjestelmän konfiguroinnin, laskutuksen, suorituskyvyn mittauksen, ja suunnittelun.

Tilaajapäätelaitteella 112 saadaan radioyhteys 110 verkkoon 100. Tilaajapäätelaita 112 voi olla kannettava tai ajoneuvoon sijoitettu. Suoramooditilaajapäätelaitteella 114 voidaan olla radioyhteydessä 118 suoraan toisen 25 suoramooditilaajapäätelaitteen 116 kanssa ilman, että verkkoa 100 käytetään mitenkään hyväksi radioyhteyden 118 toteuttamisessa. Radioyhteys 118 voi olla pisteestä-pisteeseen-yhteys tai monipisteyhteys. Myös sellainen laite, jossa yhdistyvät sekä normaali tilaajapäätelaitte 112 että suoramooditilaajapääte- 30 laite 114 on mahdollinen. Normaali radioyhteys 110 verkko 100 käytäen käyttää trunking-moodi-ilmarajapintaa, ja kahden suoramooditilaajapäätelait-teen 114, 116 välinen radioyhteys 118 käyttää suoramoodi-ilmarajapintaa.

Kahden suoramooditilaajapäätelaitteen 140, 148 välinen yhteys voidaan toteuttaa myös itsenäistä radiotoistinta 144 käytäen. Tällöin ensimäisen tilaajapäätelaitteen 140 ja radiotoistimen 144 välinen radioyhteys 142 35 käyttää muunnettua suoramoodi-ilmarajapintaa, samoin kuin toisen tilaaja-päätelaitteen 148 ja radiotoistimen 144 välinen radioyhteys 146. Toinen tapa

kuuluvuusalueen laajentamiseksi on yhdyskäytäväradiotoistimen 152 käyttö. Tällöin suoramooditilaajapäätelaite 156 käyttää muunnettua suoramoodi-ilmarajapintaa radioyhteyden 154 toteuttamiseksi yhdyskäytäväradiotoistimen 152 kanssa. Yhdyskäytäväradiotoistimen 152 radioyhteys 150 toteutetaan 5 verkon 100 kanssa trunking-moodi-ilmarajapintaa käyttäen.

Yhdessä eri puhelussa voi olla käytössä useita eri salauksia eri salausvaimilla ja salausalgoritmeilla yhtäaikaa. Esimerkiksi kuviossa 1 tilaajapäätelaitteen 112 ja verkon 100 välisessä yhteydessä 110 on radiorajapintasalaus. Sitten verkon 100 ja yhdyskäytäväradiotoistimen 150 välisessä yhteydessä 150 on myös radiorajapintasalaus. Myös yhdyskäytäväradiotoistimen 152 ja suoramooditilaajapäätelaitteen 156 välisessä yhteydessä 154 on radiorajapintasalaus. Lisäksi tilaajapäätelaitteen 112 ja suoramooditilaajapäätelaitteen 156 välillä voi olla käytössä pisteestä-pisteeseen-salaus. Siis neljä eri salausta yhden puhelun toteuttamiseksi. Tilanne voisi myös olla pahempi, 10 esimerkiksi siten, että yhdyskäytäväradiotoistimesta 152 olisi yhteys radiotoistimeen 144, josta edelleen olisi yhteys suoramooditilaajapäätelaitteeseen 148. 15 Tällöin yhdessä puhelussa olisi jopa viisi eri salausta erilaisilla salausmaskilla toteutettuna.

Kuvion 2 mukaisesti tilaajapäätelaitteessa 112 on antenni 200, lähetinvastaanotin 202, ja ohjausosa 204. Muita tilaajapäätelaitteen 112 komponentteja, esimerkiksi käytöliittymän toteuttavia välineitä ei ole tässä kuvattu.

Tässä ei enempää esitellä TETRA:a, vaan lukijaa kehotetaan tarvittaessa tutustumaan alussa mainittuun kirjaan "Digital Mobile Communications and the TETRA System".

25 Seuraavaksi viitataan kuvioon 3, joka esittää radiolähettimen ja radiovastaanottimen rakennetta.

Kuvion 3 yläosassa esitetään lähettimen rakenne yksinkertaistetusti. On selvää, että lähetin käsittää myös muita toimintoja ja rakenneosia, mutta ne eivät ole tämän tarkastelun kannalta oleellisia. Puhe 320 koodataan puhekoodeilla, esimerkiksi alussa mainitulla ACELP-koodeilla, jota kuvataan mainitussa kirjassa "Digital Mobile Communications and the TETRA System". ACELP-koodekin rakennetta kuvataan täähän viitteeksi otettavassa ETSI:n (European Telecommunication Standards Institute) spesifikaatiossa ETS 300 395-1, May 1997, "Terrestrial Trunked Radio (TETRA); Speech CODEC for 35 full-rate traffic channel; Part 1: General Description of Speech Functions".

Seuraavaksi puhekoodekin tuottama, puhetta erilaisten parametrien muodossa kuvaava bittivirta viedään salauksen suorittavaan lohkoon 302, jossa alussa kuvatulla tavalla bittivirta salataan liittämällä siihen salausalgoritmin tuottama salausmaski.

5 Sitten salattu bittivirta kanavakoodataan kanavakooderissa 304, esimerkiksi TETRA:ssa ensin suoritetaan lohkokoodaus CRC:n muodossa ja sitten konvoluutiokoodaus. Tätä kuvataan tarkemmin kuviossa 4, joka esittää puhebittien kanavakoodausta. ACELP-koodekki tuottaa 137 bittiä kutakin 30 millisekunnin pituista puheen osaa kohti, joka vastaa bittinopeutta 4,567 kbit/s.

10 Bittejä on kaksi kertaa 137 bittiä, sillä yhteen radiorajapinnan purskeeseen sijoitetaan kaksi ACELP-koodekin tuottamaa puhekehystä. Yhden puhekehynnen bitit jaetaan kolmeen eri luokkaan bittien herkyyden perusteella. Virheelle kaikkein herkimmät 30 bittiä sijoitetaan luokkaan 2, 56 bittiä sijoitetaan luokkaan 1, ja vähiten virheelle herkimmät 51 bittiä luokkaan 0. Luokan 2 bitteihin 15 lisätään kahdeksan bitin mittainen syklinen redundanssitarkastus ja lisäksi neljä häntäbittiä. Näin luokassa 2 on 72 bittiä, joille suoritetaan 8/18 konvoluutiokoodaus, eli kutakin kahdeksaa databittiä vastaa 18 kanavan koodattua databittiä, eli luokan 2 bittien lopullinen määrä on 162 bittiä. Luokan 1 biteille suoritetaan 2/3 konvoluutiokoodaus, eli 112 databitistä tulee 168 kanavan koodattua databittiä. Luokan 0 bittejä ei suojata ollenkaan kanavakoodauksella, eli niitä tulee kanavaan yhteensä 102 bittiä. Bittien kokonaismäärä on siten $162 + 168 + 102 = 432$ bittiä, jotka jaetaan normaalissa nousevan siirtotien tai laskevan siirtotien purskeessa kahteen 216 bitin mittaiseen kentään.

20

ACELP-koodekin tuottamat 137 bittiä kuvataan seuraavaksi taulukossa 1. Biteistä muodostuu parametreja, jotka luokitellaan kuuluviksi joko suodattimeen tai johonkin neljästä alikehyksestä. Suodatinparametrit ovat koodikirjaindeksit (Codebook Index), joita on kymmenen kappaletta LSP1-LSP10 (LSP = Line Spectrum Pair). Kussakin alikehyksessä ovat seuraavat parametrit: äänensuuntauden viive (Pitch Delay), koodikirjaindeksit neljälle eri pulssille, pulssin globaali merkki (Pulse Global Sign), pulssin siirros (Pulse Shift) ja koodikirjaindeksi vahvistuksille (Gains).

25

30

Parametrin luokka	Parametrin nimi	Bittien lukumäärä
Suodatin	Koodikirjaindeksi: LSP1-LSP3	8
	Koodikirjaindeksi: LSP4-LSP6	9
	Koodikirjaindeksi: LSP7-LSP10	9
Alikehys 1	Äänenkorkeuden viive	8
	Koodikirjaindeksi: pulssi 4	3
	Koodikirjaindeksi: pulssi 3	3
	Koodikirjaindeksi: pulssi 2	3
	Koodikirjaindeksi: pulssi 1	5
	Pulssin globaali merkki	1
	Pulssin siirros	1
	Koodikirjaindeksi: vahvistukset	6
Alikehys 2	Äänenkorkeuden viive	5
	Koodikirjaindeksi: pulssi 4	3
	Koodikirjaindeksi: pulssi 3	3
	Koodikirjaindeksi: pulssi 2	3
	Koodikirjaindeksi: pulssi 1	5
	Pulssin globaali merkki	1
	Pulssin siirros	1
	Koodikirjaindeksi: vahvistukset	6
Alikehys 3	Äänenkorkeuden viive	5
	Koodikirjaindeksi: pulssi 4	3
	Koodikirjaindeksi: pulssi 3	3
	Koodikirjaindeksi: pulssi 2	3
	Koodikirjaindeksi: pulssi 1	5
	Pulssin globaali merkki	1
	Pulssin siirros	1
	Koodikirjaindeksi: vahvistukset	6
Alikehys 4	Äänenkorkeuden viive	5
	Koodikirjaindeksi: pulssi 4	3
	Koodikirjaindeksi: pulssi 3	3
	Koodikirjaindeksi: pulssi 2	3
	Koodikirjaindeksi: pulssi 1	5
	Pulssin globaali merkki	1
	Pulssin siirros	1
	Koodikirjaindeksi: vahvistukset	6

Taulukko 1: ACELP-koodekin tuottamat 137 bittiä

Puheen dekoodauksessa taulukossa 1 kuvatut parametrit dekoo-
 5 dataan ja synteesisuodattimella rekonstruoidaan puhe. Tärkeimmät, luokkaan
 2 kuuluvat, bitit sijaitsevat seuraavissa puhekehyn parametreissa:
 10 - Koodikirjaindeksi: LSP1-LSP3, puhekehyn bitit B1-B4;
 - Koodikirjaindeksi: LSP4-LSP6, puhekehyn bitit B9-B12;
 - Koodikirjaindeksi: LSP7-LSP10, puhekehyn bitit B18-B21;
 - Äänenkorkeuden viive alikehyselle 1, puhekehyn bitit B27-
 B32;
 15 - Kussakin alikehysessä 1-4 koodikirjaindeksi: vahvistukset, puhe-
 kehyn bitit B51-B53, B73-B80, B105-B107 ja B132-B134.

Salattu ja kanavakoodattu kehys lähetetään lopuksi radiotielle 110
 15 moduloimalla se modulaattorissa 306. TETRA:ssa käytetään monikäytömenetelmänä TDMA:a (Time Division Multiple Access), ja modulointimenetelmänä on $\pi/4$ – DQPSK (Differential Quaternary Phase Shift Keying).

Kuvion 3 alaosassa esitetään vastaanottimen rakenne yksinkertaistetusti. On selvää, että vastaanotin käsittää myös muita toimintoja ja rakenneosia, mutta ne eivät ole tämän tarkastelun kannalta oleellisia. Seuraavassa viitataan myös kuvion 5 vuokaavioon, jossa havainnollistetaan menetelmää puhekehyn käsittelyksi radiojärjestelmässä.

Radiotietä 110 vastaanotettu purske demoduloidaan demodulaattorissa 308. Sitten kanavadekooderissa 310 suoritetaan kanavadekoodaus, eli 25 lasketaan syklinen redundanssitarkastus ja puretaan konvoluutiokoodaus esimerkiksi Viterbi-dekooderia käytäen. Tässä kohdassa aletaan varsinaisesti suorittaa menetelmää puhekehyn käsittelyksi radiojärjestelmässä. Menetelmän suoritus aloitetaan lohkossa 500, ja lohkossa 502 kanavadekoodataan radiotien ylitse kulkenut kanavakoodattu puhekehys.

30 Seuraavaksi menetelmässä on optionaalinen salauksenpurkulohko 504, jossa puretaan puhekehyn salaus, jos sellaista on käytetty.

Sitten lohkossa 506 tarkistetaan onko kanavadekoodauksen perusteella puhekehys virheetön. Tämä voidaan suorittaa esimerkiksi vertaamalla laskettua syklistä redundanssitarkastusta kanavasta vastaanotettuun 35 luokan 2 bitteihin sisältyvään kahdeksanbittiseen sykliseen redundanssitarkastukseen.

Jos kanavadekoodauksen, esimerkiksi syklisen redundanssitar-
kastuksen, mukaan puhekehys on virheellinen, niin lohkosta 506 mennään
nuolen 520 mukaisesti lohkoon 514. Lohkon 514 mukaisesti kyseistä virheel-
listä puhekehystä ei yritetä koodata puhedekooderilla 316, vaan:

5 A) Puhekehys voidaan korvata esimerkiksi aikaisemmin vastaan-
otetulla virheettömällä puhetta sisältäväällä puhekehysellä, vahvistusta vai-
mentaen.

B) Laitetaan puheeseen kyseisen puhekehysen paikalle tauko, eli
30 millisekunnin aikana laitteen kaiuttimesta ei kuulu puhetta.

10 C) Radioyhteys 110 voidaan katkaista, jos radioyhteys on liian huo-
no, esimerkiksi jos virheellisiä puhekehysiä on tullut jo tietty määrä peräkkäin
tai tietyn aikajakson kuluessa.

Jos puhelu loppuu, niin lohkosta 514 mennään nuolen 530 mukai-
sesti lohkoon 516, jossa lopetetaan menetelmän suoritus. Jos puhelu jatkuu,
15 niin lohkosta 514 mennään nuolen 528 mukaisesti lohkoon 502 käsittelemään
seuraavaa vastaanotettua puhekehystä.

Jos kanavadekoodauksen perusteella puhekehys on virheetön, niin
lohkosta 506 mennään nuolen 522 mukaisesti lohkoon 508. Lohkossa 508
päätellään kanavadekoodatun puhekehysen sisältämän ainakin yhden pu-
20 hetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhede-
kooderilla dekoodattavissa olevaa puhetta. Esimerkiksi TETRA:ssa puhetta
kuvaavalla parametrilla tarkoitetaan edellä taulukossa 1 kuvattuja ACELP-
koodekilla tuotettuja parametreja. Tämä päättely voidaan suorittaa US-
25 patentissa 6,021,385 (Järvinen et al.) kuvattavalla tavalla muodostamalla pu-
hetta kuvaavan parametrin arvoille todennäköisyysjakauma, kuitenkin sillä
erotuksella, että menetelmän käyttöönottoa ei tehdä radiolinkin laadun perus-
teella vaan kanavadekoodauksen onnistumisen perusteella. Poikkeuksena on
myös se että puhekehysen sisältämiä kanavakoodauksella suojaatua vir-
heelle herkimpiä bittejä käytetään päättelyssä 508, eli TETRA:ssa myös luo-
30 kan 2 bittejä käytetään lohkon 508 päättelyssä apuna. Tässä hakemuksessa
kuvattavan menetelmän erona kyseiseen US-patentiin on myös se, että ky-
seinen US-patentti ei kykene ratkaisemaan tässä hakemuksessa esitettyjä on-
gelmia. US 6,021,385:n tarkoituksesta on parantaa puheen dekoodauksen
laatua, ja siinä käytetään hyväksi tietoa radiolinkin laadusta, esimerkiksi vas-
35 taanottotehoa tai bittivirhesuhdetta.

Lohkossa 510 tarkistetaan lohkossa 508 suoritetun päättelyn tulos. Jos päättelyn mukaan puhekehys sisältää puhedekooderilla 316 dekoodattavissa olevaa puhetta, niin mennään nuolen 526 mukaisesti lohkoon 512, jossa dekoodataan puhekehys puhedekooderilla 316. Sitten jos puhelu loppuu, niin 5 lohkosta 512 mennään nuolen 532 mukaisesti lohkoon 516, jossa lopetetaan menetelmän suoritus. Jos puhelu jatkuu, niin lohkosta 512 mennään nuolen 10 534 mukaisesti lohkoon 502 käsittämään seuraavaa vastaanotettua puhekehystä. Jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla 316 dekoodattavissa olevaa puhetta, niin mennään nuolen 524 mukaisesti edellä kuvattuun lohkoon 514, jossa kyseistä puhekehystä ei dekoodata, vaan suoriteaan jokin lohkon 514 korvaavista toimenpiteistä.

Kuvion 3 mukainen radiojärjestelmä käsittää siis lisäksi päättelyvälineet 314 päätellä kanavadekoodatun puhekehysen sisältämän ainakin yhden puhetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhedekooderilla 316 dekoodattavissa olevaa puhetta, jos kanavadekooderin 310 mukaan puhekehys on virheetön. Lisäksi puhedekooderi 316 on sovitettu dekoodaamaan puhekehys jos päättelyn mukaan puhekehys sisältää puhedekooderilla 316 dekoodattavissa olevaa puhetta, ja puhedekooderi 316 on sovitettu olemaan dekoodaamatta puhekehystä jos päättelyn mukaan puhekehys 20 ei sisällä puhedekooderilla 316 dekoodattavissa olevaa puhetta. Mahdollinen salauksenpurkaja 312 on kytketty kanavadekooderin 310 ja päättelyvälineiden 314 välisiin, joskin muissa järjestelmissä kuin TETRA:ssa salauksenpurkaja 312 voi olla myös ennen kanavadekooderia 310. Salauksenpurkajasta 312 salauksesta purettu puhekehys viedään päättelyvälineisiin 314, sekä nuolen 324 mukaisesti myös puhedekooderiin 316.

Nuolen 322 mukaisesti kanavadekooderi 310 lähetää huonon kehyksen osoituksen puhedekooderille 316, jos kanavadekoodauksen perusteella puhekehys on virheellinen. Puhedekooderista 316 tulee optimitapauksessa ulos samalta kuulostava puhe 320 kuin mitä alunperin lähetettiin lähetimessä.

Eräässä edullisessa suoritusmuodossa päättelyvälineet 314 on sovitettu lähetämään huonon kehyksen osoitus 324 puhedekooderille 316, jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla 316 dekoodattavissa olevaa puhetta. Toinen ratkaisu, jolla voidaan ilmoittaa puhedekooderille 316 35 ettei puhekehysen dekoodausta kannata yrittää on sellainen, jossa päättelyvälineet 314 on sovitettu lähetämään paluusekvenssi (homing sequence) 326

puhededekoderille 316, jos päättelyn mukaan puhekehys ei sisällä puhededekoderilla 316 dekoodattavissa olevaa puhetta. Paluusekvenssin tarkoituksesta on saattaa puhededekoderi 316 tunnettuun tilaan, ja mahdollistaa siten sellaisen ulostulon antaminen kaiuttimelle, joka ei aiheuta audioshokkia.

5 Eräässä edullisessa suoritusmuodossa menetelmän lohkon 508 mukainen päättely suoritetaan siten, että päättelyvälineet 314 suorittavat päättelyn todennäköisyyslaskentaa hyväksikäytäen. Tämä toteutetaan esimerkiksi siten, että päättelyvälineet 314 laskevat päättelyssä ainakin yhden puhetta kuvaavan parametrin arvon todennäköisyyden. Jos puhetta kuvaava 10 parametri saa jonkin siinä tilanteessa hyvin epätodennäköisen arvon, voidaan olettaa ettei puhekehys sisällä puhetta. Tietenkin käyttämällä kahta tai useampaa parametria, joille lasketaan todennäköisyys, saadaan päättelyn varmuus kasvamaan. Puhetta kuvaavan parametrin arvon muutoksen todennäköisyydelle voidaan myös laskea arvo. Tällöin päättelyvälineissä 314 on määritelty 15 verrattavan parametrin arvon muuttumisen todennäköisyydelle tietyn puhekehysmäärän aikana kynnysarvo. Päättelyvälineet 314 päätelevät ettei puhekehys sisällä puhededekoderilla 316 dekoodattavissa olevaa puhetta, jos muutoksen todennäköisyys on pienempi kuin kynnysarvo. Esimerkinä voidaan ajatella, että normaalisti puhelun aikana puhujan äänen korkeus ei vaihtelevi 20 kaan paljoa. Jos äänenkorkeutta kuvaavan parametrin arvo muuttuu liikaa kahden peräkkäisen puhekehyn välillä, voidaan päätellä, että puhekehys on korruptoitunut joko radiotien häiriöiden vuoksi ja/tai salauksenpurun virheellisen toiminnan vuoksi. Ei siis olla kiinnostuneita parametrin arvosta tai sen muuttumisesta sinänsä, vaan parametrin arvon todennäköisyydestä tai 25 parametrin arvon muutoksen todennäköisyydestä.

Periaatteessa parametrien todennäköisyyslaskennassa on kyse siitä, että todellisissa olosuhteissa parametrien bittien kesken on aina korrelatiota. Todennäköisyyslaskentaa voidaan käyttää yhden puhekehyn sisällä olevien parametrien välisen todennäköisyyksien laskentaan, tai peräkkäisten puhekehysien joidenkin parametrien välisiin arvoihin. Molempia laskentatapoja voidaan tietysti myös käyttää yhtäaikaa tuloksen varmistamiseksi, esimerkiksi siten, että ensin lasketaan puhekehysien välisiä todennäköisyyksiä, ja sitten jos puhekehys alkaa näyttää korruptoituneelta, niin lasketaan kyseisen puhekehyn ainakin yhdelle parametrille todennäköisyys. Peräkkäisten puhekehysten arvojen vertaaminen edellyttää, että päättelyvälineiden

314 yhteydessä on muistia, johon edellisiä laskettuja arvoja tai kokonaisia puhekehyskiä voidaan tallentaa.

Kuvion 3 mukainen lähetin/vastaanotinpari voi olla esimerkiksi kaksi TETRA:n normaaliala tilaajapäätelaitetta 112, kaksi TETRA:n suoramooditila-5 ja päätelaitetta 114, tilaajapäätelaitte 112 ja verkko 100, tai verkko 100 ja tilaajapäätelaitte 112. Yhteyden ollessa verkon 100 ja tilaajapäätelaitteen välinen, puheen dekoodausta voidaan tehdä yhdyskäytävässä 104 ennen menoaa ei-TETRA-verkkoon 130, tai verkon 100 jossakin osassa kuten matkapuhelinkeskusessa 214 ennen menoaa toiseen TETRA-verkkoon 120 tai johtoasemaan 10 108.

Tarvittava toiminnallisuus voidaan toteuttaa esimerkiksi yleiskäyttöisessä prosessorissa suoritettavana ohjelmistona, jolloin vaaditut toiminnallisuudet toteutetaan ohjelmistokomponentteina. Myös laitteistototeutus on mahdollinen, esimerkiksi ASIC:ina (Application Specific Integrated Circuit) tai erilaisliskomponenteista rakennettuna ohjauslogiikkana. Tyypillisesti kaikki kuviossa 3 kuvatut toiminnot voidaan toteuttaa ohjelmistona. Siten keksinnön kannalta merkittävät päättelyvälineet 314 voidaan myös edullisesti toteuttaa ohjelmistona, joka vastaanottaa syöttötietoa salauksenpurkajasta 312, ja jolla on syöttöliityntä 326 puhedekoderiin 316. Ohjelmistoja voidaan suorittaa esimerkiksi 15 tilaajapäätelaitteen 112 ohjausosassa 204 ja verkossa 100 esimerkiksi matkapuhelinkeskuksen 214 tai yhdyskäytävän 104 ohjausosassa.

Vaikka keksintöä on edellä selostettu viitaten oheisten piirustusten mukaiseen esimerkkiin, on selvää, ettei keksintö ole rajoittunut siihen, vaan sitä voidaan muunnella monin tavoin oheisten patenttivaatimusten esittämän 20 keksinnöllisen ajatuksen puitteissa.

Patenttivaatimukset

1. Menetelmä puhekehysen käsittelemiseksi radiojärjestelmässä, käsittäen:

5 (502) kanavadekoodataan radiotien ylitse kulkenut kanavakoodattu puhekehys;

tunnettu siitä, että:

(506, 522) jos kanavadekoodauksen perusteella puhekehys on virheetön,

10 niin (508) päättelään kanavadekoodatun puhekehys- sen sisältämän ainakin yhden puhetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhedekooderilla dekoodattavissa olevaa puhetta,

ja (510, 526) jos päättelyn mukaan puhekehys sisältää puhedekooderilla dekoodattavissa olevaa puhetta, niin (512) dekoodataan puhekehys puhedekooderilla,

15 ja (510, 524) jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla dekoodattavissa olevaa puhetta, niin (514) kyseistä puhekehystä ei dekoodata.

20 2. Patenttivaatimuksen 1 mukainen menetelmä, tunnettu siitä, että puhekehys on salattu, jolloin menetelmässä (504) puretaan puhekehys- sen salaus.

25 3. Patenttivaatimuksen 2 mukainen menetelmä, tunnettu siitä, että (504) puhekehysen salaus puretaan kanavadekoodauksen (502) jälkeen ennen päättelyä (508).

30 4. Patenttivaatimuksen 3 mukainen menetelmä, tunnettu siitä, että jos päättelyn (508) mukaan puhekehys ei sisällä puhedekooderilla dekoodattavissa olevaa puhetta, niin lähetetään huonon kehysen osoitus puhedekooderille.

35 5. Patenttivaatimuksen 3 mukainen menetelmä, tunnettu siitä, että jos päättelyn (508) mukaan puhekehys ei sisällä puhedekooderilla dekoodattavissa olevaa puhetta, niin lähetetään paluusekvenssi puhedekooderille.

6. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että myös puhekehysen sisältämiä kanavakoodauksella suojaatua symboleja käytetään päättelyssä (508).

7. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, tunnettu siitä, että päättely (508) suoritetaan todennäköisyyslaskentaa hyväksikäyttäen.

8. Patenttivaatimuksen 7 mukainen menetelmä, t u n n e t t u siitä, että päättelyssä (508) lasketaan ainakin yhden puhetta kuvaavan parametrin arvon todennäköisyys.

9. Jonkin edellisen patenttivaatimuksen mukainen menetelmä, 5 t u n n e t t u siitä, että päättelyssä (508) lasketaan ainakin yhden puhetta kuvaavan parametrin arvon muutoksen todennäköisyys.

10. Patenttivaatimuksen 9 mukainen menetelmä, t u n n e t t u siitä, että parametrin arvon muuttumisen todennäköisyydelle tietyn puhekehysmääärän aikana on määritelty kynnysarvo.

10 11. Patenttivaatimuksen 10 mukainen menetelmä, t u n n e t t u siitä, että jos muutoksen todennäköisyys on pienempi kuin kynnysarvo, niin päättellään, että puhekehys ei sisällä puhedekooderilla dekoodattavissa olevaa puhetta.

12. Radiojärjestelmä käsittää kanavadekooderin (310) kanavade-15 koodata radiotien ylitse kulkenut kanavakoodattu puhekehys, ja puhedekooderin (316) dekoodata puhekehys;

t u n n e t t u siitä, että

radiojärjestelmä käsittää lisäksi päättelyväliset (314) päättely ka-20 navadekoodatun puhekehyn sisältämän ainakin yhden puhetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhedekooderilla (316) dekoodattavissa olevaa puhetta, jos kanavadekooderin (310) mukaan puhekehys on virheetön;

ja puhedekooderi (316) on sovitettu dekoodaamaan puhekehys jos päättelyn mukaan puhekehys sisältää puhedekooderilla (316) dekoodattavissa 25 olevaa puhetta, ja puhedekooderi (316) on sovitettu olemaan dekoodaamatta puhekehystä jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla (316) dekoodattavissa olevaa puhetta.

13. Patenttivaatimuksen 12 mukainen radiojärjestelmä, t u n -n e t t u siitä, että puhekehys on salattu, jolloin radiojärjestelmä käsittää sala-30 uksenpurkajan (312) purkaa puhekehyn salaus.

14. Patenttivaatimuksen 13 mukainen radiojärjestelmä, t u n -n e t t u siitä, että salauksenpurkaja (312) on kytketty kanavadekooderin (310) ja päättelyväliset (314) väliin.

15. Patenttivaatimuksen 14 mukainen radiojärjestelmä, t u n -35 n e t t u siitä, että päättelyväliset (314) on sovitettu lähetämään huonon ke-

hyksen osoitus (324) puhedekooderille (316), jos päätelyn mukaan puhekehys ei sisällä puhedekooderilla (316) dekoodattavissa olevaa puhetta.

16. Patenttivaatimuksen 14 mukainen radiojärjestelmä, t u n - n e t t u siitä, että päätelyvälineet (314) on sovitettu lähetämään paluusekvenssi (326) puhedekooderille (316), jos päätelyn mukaan puhekehys ei sisällä puhedekooderilla (316) dekoodattavissa olevaa puhetta.

17. Jonkin edellisen patenttivaatimuksen 12-16 mukainen radiojärjestelmä, t u n n e t t u siitä, että päätelyvälineet (314) käyttävät myös puhekehysen sisältämiä kanavakoodauksella suojaattuja symboleja päätelyssä.

18. Jonkin edellisen patenttivaatimuksen 12-17 mukainen radiojärjestelmä, t u n n e t t u siitä, että päätelyvälineet (314) suorittavat päätelyn todennäköisyyslaskentaa hyväksikäytäen.

19. Patenttivaatimuksen 18 mukainen radiojärjestelmä, t u n - n e t t u siitä, että päätelyvälineet (314) laskevat päätelyssä ainakin yhden puhetta kuvaavan parametrin arvon todennäköisyyden.

20. Jonkin edellisen patenttivaatimuksen 12-19 mukainen radiojärjestelmä, t u n n e t t u siitä, että päätelyvälineet (314) laskevat päätelyssä käsitteltävän puhekehysen sisältämän ainakin yhden puhetta kuvaavan parametrin arvon muuttumisen todennäköisyyden.

21. Patenttivaatimuksen 20 mukainen radiojärjestelmä, t u n - n e t t u siitä, että päätelyvälineissä (314) on määritelty parametrin arvon muuttumisen todennäköisyydelle tietyn puhekehysmäärän aikana kynnsarvo.

22. Patenttivaatimuksen 21 mukainen radiojärjestelmä, t u n - n e t t u siitä, että päätelyvälineet (314) päätelevät ettei puhekehys sisällä puhedekooderilla (316) dekoodattavissa olevaa puhetta, jos muutoksen todennäköisyys on pienempi kuin kynnsarvo.

23. Radiojärjestelmän tilaajapäätelaitte käsittää kanavadekooderin (310) kanavadekoodata radiotien ylitse kulkenut kanavakoodattu puhekehys, ja puhedekooderin (316) dekoodata puhekehys;

30 t u n n e t t u siitä, että tilaajapäätelaitte (112, 114) käsittää lisäksi päätelyvälineet (314) päätellä kanavadekoodatun puhekehysen sisältämän ainakin yhden puhetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhedekooderilla (316) dekoodattavissa olevaa puhetta, jos kanavadekooderin (310) mu- 35 kaan puhekehys on virheetön;

ja puhedekooderi (316) on sovitettu dekoodaamaan puhekehys jos päättelyn mukaan puhekehys sisältää puhedekooderilla (316) dekoodattavissa olevaa puhetta, ja puhedekooderi (316) on sovitettu olemaan dekoodaamatta puhekehystä jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla (316) dekoodattavissa olevaa puhetta.

24. Radiojärjestelmän verkko käsitteää kanavadekooderin (310) kanavadekoodata radiotien ylitse kulkenut kanavakoodattu puhekehys, ja puhedekooderin (316) dekoodata puhekehys;

tunneta siitä, että

10 verkko (110) käsitteää lisäksi päättelyväliset (314) päätellä kanavadekoodatun puhekehysen sisältämän ainakin yhden puhetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhedekooderilla (316) dekoodattavissa olevaa puhetta, jos kanavadekooderin (310) mukaan puhekehys on virheetön;

15 ja puhedekooderi (316) on sovitettu dekoodaamaan puhekehys jos päättelyn mukaan puhekehys sisältää puhedekooderilla (316) dekoodattavissa olevaa puhetta, ja puhedekooderi (316) on sovitettu olemaan dekoodaamatta puhekehystä jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla (316) dekoodattavissa olevaa puhetta.

(57) Tiivistelmä

Keksinnön kohteena on menetelmä puhekehysen käsittelemiseksi radiojärjestelmässä, radiojärjestelmä, radiojärjestelmän tilaajapäätelaite, sekä radiojärjestelmän verkkö. Menetelmässä (502) kanavadekoodataan radiotien ylitse kulkenut kanavakoodattu puhekehys. Jos (506, 522) kanavadekoodauksen perusteella puhekehys on virheetön, niin (508) päättelään kanavadekoodatun puhekehysen sisältämän ainakin yhden puhetta kuvaavan parametrin arvon perusteella sisältääkö puhekehys puhedekooderilla dekoodattavissa olevaa puhetta, ja (510, 526) jos päättelyn mukaan puhekehys sisältää puhedekooderilla dekoodattavissa olevaa puhetta, niin (512) dekoodataan puhekehys puhedekooderilla, ja (510, 524) jos päättelyn mukaan puhekehys ei sisällä puhedekooderilla dekoodattavissa olevaa puhetta, niin (514) kyseistä puhekehystä ei dekoodata.

(Kuvio 5)

Fig 1

Fig 2

Fig 3

Fig 4

Fig 5