(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 9. September 2005 (09.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2005/083093\ A2$

(51)	Internationale Patentklassifikation	on ⁷ :	C12N 15/82
(21)	Internationales Aktenzeichen:	PCT/	EP2005/001863

(21) Internationales Aktenzeichen: PC1/EP2003/0018

(22) Internationales Anmeldedatum:

23. Februar 2005 (23.02.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

10 2004 009 457.8

27. Februar 2004 (27.02.2004) DE

10 2004 012 370.5 13. März 2004 (13.03.2004) DE 10 2004 017 518.7 8. April 2004 (08.04.2004) DE 10 2004 024 014.0 14. Mai 2004 (14.05.2004) DE PCT/EP/04/07957 16. Juli 2004 (16.07.2004) EP 10 2004 062 543.3 24. Dezember 2004 (24.12.2004) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF PLANT SCIENCE GmbH [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): CIRPUS, Petra

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCING POLYUNSATURATED FATTY ACIDS IN TRANSGENIC PLANTS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG MEHRFACH UNGESÄTTIGTER FETTSÄUREN IN TRANSGENEN PFLANZEN

11 ... VARIOUS SYNTHESE-WAY FOR BIOSYNTHESE OF DHA (ACID DOCOSAHEXAENOIC) FF ... SPEAKER PATHWAY

(57) Abstract: The invention relates to a method for producing polyunsaturated fatty acids in seeds of transgenic plants. According to said method, nucleic acids, coding for polypeptides with a ω -3-desaturase, Δ -12-desaturase, Δ -6-desaturase, Δ -6-elongase, Δ -5-desaturase, Δ -5-elongase and/or Δ -4-desaturase activity, preferably for polypeptides with a Δ -6-desaturase, Δ -6-elongase and Δ -5-desaturase activity, are introduced into the organism. The nucleic acid sequences are represented by SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 and SEQ ID NO: 201. Advantageously, said nucleic acid sequences can be expressed in the organism optionally together with other nucleic acid sequences that code for polypeptides of the biosynthesis of the fatty acid or lipid metabolism. Nucleic acid sequences coding for a Δ -6-desaturase, Δ -5-desaturase, Δ -4-desaturase, Δ -1 2-desaturase and/or Δ -6-elongase activity are especially advantageous. Advantageously, said desaturases and elongases originate from thalassiosira, euglena or ostreococcus. The invention

also relates to a method for producing oils and/or triacylglycerides with an increased content of long-chain polyunsaturated fatty acids. In a preferred embodiment, the invention also relates to a method for producing arachidonic acid, eicosapentaenic acid or docosahexaenic acid, and to a method for producing triglycerides with an increased content of unsaturated fatty acids, especially arachidonic acid, eicosapentaenoic acid and/or docosahexaenoic acid, in transgenic plants, preferably in seeds of the transgenic plants. The invention further relates to the production of a transgenic plant with an increased content of polyunsaturated fatty acids, especially arachidonic acid, eicosapentaenoic acid and/or docosahexaenoic acid, based on the expression of the elongases and desaturases used in the inventive method. The invention also relates to recombinant nucleic acids molecules containing, together or individually, nucleic acid sequences coding for the polypeptides with a Δ -6-desaturase, Δ -6-elongase, Δ -5-desaturase and Δ -5-elongase activity, and transgenic plants containing said recombinant nucleic acid molecules. Another part of the invention relates to oils, lipids and/or fatty acids produced according to the inventive method, and to the use thereof. Furthermore, the invention relates to unsaturated fatty acids and triglycerides with an increased content of unsaturated fatty acids, and to the use of

(57) Zusammenfassung: Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren im Samen transgener Pflanzen, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit ω -3-Desaturase-, Δ -12-Desaturase-, Δ -6-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturaseaktivität bevorzugt für Polypeptide mit Δ -6-Desaturase-,

NO 2005/083093 ∤

[DE/DE]; Landteilstr.12, 68163 Mannheim (DE). **BAUER, Jörg** [DE/DE]; Thorwaldsenstr. 1A, 67061 Ludwigshafen (DE). **QIU, Xiao** [CA/CA]; 403 Kendardine Road, Saskatoon Sk. S7N 3S5 (CA). **WU, Guohai** [CA/CA]; 2103 Kenderdine Road, Saskatoon Sk. S7N 4A9 (CA). **DATLA, Nagamani** [CA/CA]; 527 Bayview Terrace, Saskatoon Sk. S7V 1B6 (CA).

- (74) Anwalt: PRESSLER, Uwe; c/o BASF Aktiengesellschaft, 67056 Ludwigshafen (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,

- TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

 Δ -6-Elongase- und Δ -5-Desaturaseaktivität codieren. Bei den Nukleinsäuresequenzen handelt es sich um die in SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 und SEQ ID NO: 201 dargestellten Sequenzen. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäure- oder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ -6-Desaturase-, eine Δ -5-Desaturase-, Δ -4-Desaturase-, Δ -1 2-Desaturase- und/oder Δ -6-Elongaseaktivität codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira, Euglena oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen mehrfach ungesättigten Fettsäuren. Die Erfindung betrifft in einer bevorzugten Ausführungsform ausserdem ein Verfahren zur Herstellung von Arachidonsäure, Eicosapentaensäure oder Docosahexaensäure sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, insbesondere Arachidonsäure, Eicosapentaensäure und/oder Docosahexaensäure, in transgenen Pflanzen vorteilhaft im Samen der transgenen Pflanze. Die Erfindung betrifft die Herstellung einer transgenen Pflanze mit erhöhtem Gehalt an mehrfach ungesättigten Fettsäuren, insbesondere Arachidonsäure, Eicosapentaensäure und/oder Docosahexaensäure, aufgrund der Expression der im erfindungsgemässen Verfahren verwendeten Elongasen und Desaturasen. Die Erfindung betrifft weiterhin rekombinante Nukleinsäuremoleküle, die die Nukleinsäuresequenzen, die für die Polypeptide mit Δ -6-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase- und Δ -5-Elongaseaktivität kodieren, gemeinsam oder einzeln enthalten, sowie transgene Pflanzen, die die vorgenannten rekombinanten Nukleinsäuremoleküle enthalten. Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemässen Verfahren und deren Verwendung. Ausserdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

WO 2005/083093 PCT/EP2005/001863

Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen

Beschreibung^{*}

5

30

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren im Samen transgener Pflanzen, indem Nukleinsäuren in den Organismus eingebracht werden, die für Polypeptide mit ω -3-Desaturase-, Δ -12-Desaturase-, Δ -6-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturaseaktivität bevorzugt für Polypeptide mit Δ -6-Desaturase-, Δ -6-Elongase- und Δ -5-Desaturaseaktivität codieren.

Bei den Nukleinsäuresequenzen handelt es sich um die in SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 und SEQ ID NO: 201 dargestellten Sequenzen. Bevorzugt wird neben diesen Nukleinsäuresequenzen eine weitere Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-12-Desaturaseaktivität kodiert, in die Pflanze eingebracht und ebenfalls gleichzeitig exprimiert. Besonders bevorzugt handelt es sich dabei um die in SEQ ID NO: 195 dargestellte Nukleinsäuresequenz.

Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit weiteren Nukleinsäuresequenzen, die für Polypeptide der Biosynthese des Fettsäureoder Lipidstoffwechels codieren, in dem Organismus exprimiert werden. Besonders
vorteilhaft sind Nukleinsäuresequenzen, die für eine Δ-6-Desaturase-, eine Δ-5Desaturase-, Δ-4-Desaturase-, Δ-12-Desaturase- und/oder Δ-6-Elongaseaktivität
codieren. Vorteilhaft stammen diese Desaturasen und Elongasen aus Thalassiosira,
Euglena oder Ostreococcus. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung von Ölen und/oder Triacylglyceriden mit einem erhöhten Gehalt an langkettigen
mehrfach ungesättigten Fettsäuren.

Die Erfindung betrifft in einer bevorzugten Ausführungsform außerdem ein Verfahren zur Herstellung von Arachidonsäure, Eicosapentaensäure oder Docosahexaensäure sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, insbesondere Arachidonsäure, Eicosapentaensäure und/oder Docosahexaensäure, in transgenen Pflanzen vorteilhaft im Samen der transgenen Pflanze. Die Erfindung betrifft die Herstellung einer transgenen Pflanze mit erhöhtem Gehalt an mehrfach ungesättigten Fettsäuren, insbesondere Arachidonsäure, Eicosapentaensäure und/oder Docosahexaensäure, aufgrund der Expression der im erfindungsgemäßen Verfahren verwendeten Elongasen und Desaturasen.

Die Erfindung betrifft weiterhin rekombinante Nukleinsäuremoleküle, die die Nukleinsäuresequenzen, die für die Polypeptide mit Δ -6-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase- und Δ -5-Elongaseaktivität kodieren, gemeinsam oder einzeln enthalten, sowie transgene Pflanzen, die die vorgenannten rekombinanten Nukleinsäuremoleküle enthalten.

WO 2005/083093 PCT/EP2005/001863

Ein weiterer Teil der Erfindung betrifft Öle, Lipide und/oder Fettsäuren hergestellt nach dem erfindungsgemäßen Verfahren und deren Verwendung. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.

2

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäu-5 ren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach 10 einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiolo-20 gical Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend für die weiteren Elongationen aus den Phospholipiden wieder in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die 25 Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.

Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).

30

Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation,

Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln:
Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und
Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant
Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK

Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer &
Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res.
34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane

and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.

Im folgenden werden mehrfach ungesättigte Fettsäuren als PUFA, PUFAs, LCPUFA oder LCPUFAs bezeichnet (**p**oly **u**nsaturated **f**atty **a**cids, **PUFA**, mehrfach ungesättigte Fettsäuren; long **c**hain **p**oly **u**nsaturated **f**atty **a**cids, **LCPUFA**, langkettige mehrfach ungesättigte Fettsäuren).

Fettsäuren und Triacylglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem, ob es sich um freie gesättigte und ungesättigte Fettsäuren oder um 10 Triacylglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfachungesättigte Fettsäuren wie Linol- und Linolensäure sind für Säugetiere essentiell, da sie nicht von diesen selbst hergestellt werden können. Deshalb stellen mehrfach ungesättigte ω -3-Fettsäuren und ω -6-Fettsäuren einen wichtigen Bestandteil der 15 tierischen und menschlichen Nahrung dar. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren, speziell mehrfach ungesättigten, Fettsäuren bevorzugt. Den mehrfach ungesättigten ω-3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω-3-Fettsäuren zur Nahrung kann das Risiko 20 einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108).

Auch entzündliche, speziell chronisch entzündliche, Prozesse im Rahmen immunologischer Erkrankungen wie rheumatoider Arthritis lassen sich durch ω-3-Fettsäuren positiv beeinflussen (Calder 2002, Proc. Nutr. Soc. 61, 345-358; Cleland und James 2000, J. Rheumatol. 27, 2305-2307). Sie werden deshalb Lebensmitteln, speziell diätetischen Lebensmitteln, zugegeben oder finden in Medikamenten Anwendung. ω-6-Fettsäuren wie Arachidonsäure üben bei diesen rheumatischen Erkrankungen eher einen negativen Effekt aus.

25

40

ω-3- und ω-6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo-γ-linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, und den Thromboxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus ω-6-Fettsäuren gebildet werden,
 fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus ω-3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

Mehrfach ungesättigte langkettige ω -3-Fettsäuren wie Eicosapentaensäure (= EPA, C20:5 $^{\Delta5,8,11,14,17}$) oder Docosahexaensäure (= DHA, C22:6 $^{\Delta4,7,10,13,16,19}$) sind wichtige Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeu-

gung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren.

- Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eisosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) Babynahrung zur Erhöhung des
 Nährwertes zugesetzt. Der ungesättigten Fettsäure DHA wird dabei ein positiver Effekt auf die Entwicklung und Aufrechterhaltung von Gehirnfunktionen zugeschrieben. Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren.
- Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder Schizochytrium oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Algen wie Crypthecodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z.B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Sehr
 langkettige mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) werden in Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färbersaflor nicht synthetisiert. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele,
 Zander oder Thunfisch oder Algen.
 - Je nach Anwendungszweck werden Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt. So werden z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten ω -3-Fettsäuren wird dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser ω -3-Fettsäuren zur Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch ω -3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung. ω -6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

30

35

40 Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für

die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ -9-Desaturase beschrieben. In WO 93/11245 wird eine Δ -15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, 5 WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144–20149, Wada et al., Nature 347, 1990: 200–203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren 10 sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ-6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, 15 WO 96/21022, WO00/21557 und WO 99/27111 beschrieben. Die Anwendung zur Produktion in transgenen Organismen wird in WO98/46763 WO98/46764, WO9846765 beschrieben. Die Expression verschiedener Desaturasen wird in WO99/64616 oder WO98/46776 beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihrem Einfluss auf die Bildung mehrfach ungesättigter Fettsäuren ist 20 anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an ungesättigten Fettsäuren/Lipiden wie z.B. γ-Linolensäure und Stearidonsäure erreicht wurden.

In der Vergangenheit wurden zahlreiche Versuche unternommen, Elongase-Gene zu erhalten. Millar and Kunst, 1997 (Plant Journal 12:121-131) und Millar et al., 1999 (Plant Cell 11:825-838) beschreiben die Charakterisierung von pflanzlichen Elongasen zur Synthese von einfach ungesättigten langkettigen Fettsäuren (C22:1) bzw. zur Synthese von sehr langkettigen Fettsäuren für die Wachsbildung in Pflanzen (C28-C32). Beschreibungen zur Synthese von Arachidonsäure und EPA finden sich beispielsweise in WO 01/59128, WO 00/12720, WO 02/077213 und WO 02/08401. Die Synthese von mehrfach ungesättigter C24-Fettsäuren ist beispielsweise in Tvrdik et al. 2000, J. Cell Biol. 149:707-718 oder WO 02/44320 beschrieben.

25

30

35

40

Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Mikroalgen wie Phaeodactylum tricornutum, Porphiridium-Arten, Thraustochytrien-Arten, Schizochytrien-Arten oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor und/oder Moosen wie Physcomitrella, Ceratodon und Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten

WO 2005/083093 PCT/EP2005/001863

6

Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wann immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und ARA anfallen.

5

25

30

35

40

Höhere Pflanzen enthalten mehrfach ungesättigte Fettsäuren wie Linolsäure (C18:2) und Linolensäure (C18:3). ARA, EPA und DHA kommen im Samenöl höherer Pflanzen gar nicht oder nur in Spuren vor (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales. Technique & Documentation - Lavoisier, 1995. ISBN: 2-7430-0009-0). Es ware 10 jedoch vorteilhaft, in höheren Pflanzen, bevorzugt in Ölsaaten wie Raps, Lein, Sonnenblume und Soja, LCPUFAs herzustellen, da auf diese Weise große Mengen qualitativ hochwertiger LCPUFAs für die Lebensmittelindustrie, die Tierernährung und für pharmazeutische Zwecke kostengünstig gewonnen werden können. Hierzu werden vorteilhafterweise über gentechnische Methoden Gene, die für Enzyme der Biosynthe-15 se von LCPUFAs kodieren, in Ölsaaten eingeführt und exprimiert, vorteilhaft im Samen exprimiert. Dies sind Gene, die beispielsweise für Δ -6-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ-5-Elongasen oder Δ-4-Desaturasen kodieren. Diese Gene können vorteilhaft aus Mikroorganismen und niederen Pflanzen isoliert werden, die LCPUFAs herstellen und in den Membranen oder Triacylglyceriden einbauen. So konnten bereits 20 Δ -6-Desaturase-Gene aus dem Moos Physcomitrella patens und Δ -6-Elongase-Gene aus P. patens und dem Nematoden C. elegans isoliert werden.

Für die Synthese von Arachidonsäure, Eicosapentaensäure (EPA) und Docosahexaensäure (DHA) werden verschiedene Synthesewege diskutiert (Figur. 1). So erfolgt die Produktion von EPA bzw. DHA in marinen Bakterien wie Vibrio sp. oder Shewanella sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1997).

Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31:255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Eine Modifikation des beschriebenen Weges über Δ6-Desaturase, Δ6-Elongase, Δ5-Desaturase, Δ5-Elongase, Δ4-Desaturase ist der Sprecher-Syntheseweg (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in Säugetieren. Anstelle der Δ4-Desaturierung erfolgt hier ein weiterer Elongationsschritt auf C₂₄, eine weitere Δ6-Desaturierung und abschliessend eine β-Oxidation auf die C₂₂-Kettenlänge. Für die Herstellung in Pflanzen und Mikroorganismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen nicht bekannt sind.

Die polyungesättigten Fettsäuren können entsprechend ihrem Desaturierungsmuster in zwei große Klassen, in ω -6- oder ω -3-Fettsäuren eingeteilt werden, die metabolisch und funktionell unterschiedlich Aktivitäten haben (Fig. 1).

Als Ausgangsprodukt für den ω -6-Stoffwechselweg fungiert die Fettsäure Linolsäure (18:2 $^{\Delta 9,12}$), während der ω -3-Weg über Linolensäure (18:3 $^{\Delta 9,12,15}$) abläuft. Linolensäure wird dabei durch Aktivität einer ω -3-Desaturase gebildet (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

Säugetiere und damit auch der Mensch verfügen über keine entsprechende Desaturaseaktivität (Δ-12- und ω-3-Desaturase) und müssen diese Fettsäuren (essentielle Fettsäuren) über die Nahrung aufnehmen. Über die Abfolge von Desaturase- und Elongase-Reaktionen werden dann aus diesen Vorstufen die physiologisch wichtigen polyungesättigten Fettsäuren Arachidonsäure (= ARA, 20:4^{Δ5,8,11,14}), eine ω-6-Fettsäure und die beiden ω-3-Fettsäuren Eicosapentaen- (= EPA, 20:5^{Δ5,8,11,14,17}) und Docosahexaensäure (DHA, 22:6^{Δ4,7,10,13,17,19}) synthetisiert. Die Applikation von ω-3-Fettsäuren zeigt dabei die wie oben beschrieben therapeutische Wirkung bei der Behandlung von Herz-Kreislaufkrankheiten (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), Entzündungen (Calder 2002, Proc. Nutr. Soc. 61, 345-358) und Arthridis (Cleland und James 2000, J. Rheumatol. 27, 2305-2307).

Aus ernährungsphysiologischer Sicht ist es deshalb günstig eine Verschiebung zwischen dem ω -6-Syntheseweg und dem ω -3-Syntheseweg (siehe Figur 1) zu erreichen, so dass mehr ω -3-Fettsäuren hergestellt werden. In der Literatur wurden die enzymatischen Aktivitäten verschiedener ω -3-Desaturasen beschrieben, die C_{18:2}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturieren (siehe Figur 1). Keine der biochemisch beschriebenen Desaturasen setzt jedoch ein breites Substratspektrum des ω -6-Synthesewegs zu den entsprechenden Fettsäuren des ω -3-Syntheseweg um.

20

25

30

35

40

Die Verlängerung von Fettsäuren durch Elongasen um 2 bzw. 4 C-Atome ist für die Produktion von C₂₀- bzw. C₂₂-PUFAs von entscheidender Bedeutung. Dieser Prozess verläuft über 4 Stufen. Der erste Schritt stellt die Kondensation von Malonyl-CoA an das Fettsäure-Acyl-CoA durch die Ketoacyl-CoA-Synthase (KCS, im weiteren Text als Elongase bezeichnet). Es folgt dann ein Reduktionschritt (Ketoacyl-CoA-Reduktase, KCR), ein Dehydratationsschritt (Dehydratase) und ein abschliessender Reduktionsschritt (enoyl-CoA-Reduktase). Es wurde postuliert, dass die Aktivität der Elongase die Spezifität und Geschwindigkeit des gesamten Prozesses beeinflussen (Millar and Kunst, 1997 Plant Journal 12:121-131).

Zur Herstellung von DHA (C22:6 n-3) in Organismen, die diese Fettsäure natürlicherweise nicht produzieren, wurde bisher keine spezifische Elongase beschrieben. Bisher wurden nur Elongasen beschrieben, die C_{20} - bzw. C_{24} -Fettsäuren bereitstellen. Eine Δ -5-Elongase-Aktivität wurde bisher noch nicht beschrieben.

Erste transgene Pflanzen, die für Enzyme der LCPUFA-Biosynthese kodierende Gene enthalten und exprimieren und als Folge dessen LCPUFAs produzieren, wurden beispielsweise in DE 102 19 203 (Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen) oder WO 2004/071467 beschrieben. Diese Pflanzen produzieren allerdings LCPUFAs in Mengen, die für eine Aufarbeitung der in den Pflanzen enthaltenen Öle noch weiter optimiert werden müssen. So beträgt der Gehalt von ARA

10

in den in DE-A-102 19 203 beschriebenen Pflanzen lediglich 0,4 bis 2% und der Gehalt von EPA lediglich 0,5 bis 1%, jeweils bezogen auf den Gesamtlipidgehalt der Pflanze. In WO 2004/071467 werden höhere Gehalte an mehrfach ungesättigten C₂₀- und C₂₂- Fettsäuren, wie ARA, EPA oder DHA offenbart. Jedoch weist das offenbarte Verfahren einige gravierende Nachteile auf. DHA lässt sich im offenbarten Verfahren offenbar überhaupt nicht im Samen nachweisen. Für eine Herstellung von PUFAs ist Soja aufgrund des geringen Ölgehalts von ca. nur 20 Gew.-% weniger geeignet. Soja ist eine vorteilhafte Proteinquelle und wird deshalb in großem Umfang angebaut. Der Ölgehalt von Soja ist jedoch eher gering. Weiterhin ist der im Herstellungsverfahren erzielte Gehalt an Dihomo-γ-linolensäure (=DGHL oder HGLA) viel zu hoch. In Fischoder Algenölen oder mikrobiellen Ölen ist HGLA kaum nachweisbar. Ein weiterer Nachteil ist, dass die in WO 2004/071467 offenbarten Pflanzen durch Cotransformation erzeugt wurden, dies führt zur Aufspaltung der Eigenschaften in den folgenden Generationen und damit zu einem erhöhten Selektionsaufwand.

- 15 Um eine Anreicherung der Nahrung und/oder des Futters mit diesen mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher nachwievor ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren in pflanzlichen Systemen speziell im Samen von transgenen Pflanzen.
- Daher bestand die Aufgabe der Erfindung darin, ein Verfahren zur Herstellung großer Mengen von mehrfach ungesättigten Fettsäuren, speziell ARA, EPA und DHA, im Samen einer transgenen Pflanze zu entwickeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$R^{1} = CH_{2} + CH_{2} + CH_{3}$$

$$CH = CH$$

$$CH_{2} + CH_{3} + CH_{3}$$

$$CH_{2} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3} + CH_{3}$$

$$CH_{3} + CH_{3} + CH_{3} + CH_{3} + CH_{3}$$

25

im Samen von transgenen Pflanzen mit einem Gehalt von mindestens 20 Gew.-% bezogen auf den Gesamtlipidgehalt, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- und/oder eine Δ -6-Desaturase-Aktivität codiert, und
- 30 b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -8-Desaturase- und/oder eine Δ -6-Elongase-Aktivität codiert, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Desaturase-Aktivität codiert, und

15

- d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-5-Elongase-Aktivität codiert, und
- e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-4-Desaturase-Aktivität codiert, und
- 5 wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:
 - R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{2}C-O-R^{3}$
 $H_{2}C-O-$
(II)

- R^2 = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-,
- R^3 = Wasserstoff-, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder R^2 oder R^3 unabhängig voneinander einen Rest der allgemeinen Formel Ia:

$$\begin{array}{c|c} O & CH_2 & CH_2 & CH_3 \\ \hline & CH = CH & CH_2 & CH_2 \\ \hline \end{array}$$
 (la)

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3, gelöst. Vorteilhaft bedeuten die Variablen n, m und p in den vorgenannten Formel I und la folgendes: n = 2, 3 oder 5, m = 4, 5 oder 6 und p = 0 oder 3. In einer besonders vorteilhaften Ausführung des Verfahrens bedeuten die Variable n, m und p in den Formeln I und la das folgende: m = 4, n = 3, p = 3 und die Verbindungen der allgemeinen Formel I und la bedeuten damit Arachidonsäure und/oder m = 5, n = 3, p = 0 und die Verbindungen der allgemeinen Formel I und la bedeuten damit Eicosapentaensäure und/oder m = 5, n = 5, p = 0 und die Verbindungen der allgemeinen Formel I und la bedeuten damit Docosapentaensäure ist und/oder m = 6, n = 3, p = 0 und die Verbindungen der allgemeinen Formel I und la bedeuten damit Docosahexaensäure ist.

5.

10

15

20

25

30

35

R¹ bedeutet in der allgemeinen Formel I Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{2}C-O-R^{3}$ (II)

Die oben genannten Reste von R¹ sind immer in Form ihrer Thioester an die Verbindungen der allgemeinen Formel I gebunden.

 R^2 bedeutet in der allgemeinen Formel II Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylgthanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_2 -Alkylcarbonyl-,

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-,n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-., die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder ungesättigte C₁₀–C₂₂–Alkylcarbonylreste wie C₁₀–Alkylcarbonyl-, C₁₁–Alkylcarbonyl-, C₁₂-Alkylcarbonyl-, C₁₃-Alkylcarbonyl-, C₁₄-Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀–Alkylcarbonyl- oder C₂₂–Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C_{16} – C_{22} –Alkylcarbonylreste wie C_{16} –Alkylcarbonyl-, C_{18} –Alkylcarbonyl-, C_{20} – Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt vier, fünf oder sechs Doppelbindungen, ganz besonders bevorzugt fünf oder sechs. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

 R^3 bedeutet in der allgemeinen Formel II Wasserstoff-, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl.

Als Alkylreste seien substituiert oder unsubstituiert, gesättigt oder ungesättigte C2-C24-Alkylcarbonyl-Ketten wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, 5 n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- or n-Tetracosanylcarbonyl- genannt, die ein oder mehrere Doppelbindungen enthalten. Gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste 10 wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten, sind bevorzugt. Besonders bevorzugt sind gesättigte und/oder 15 ungesättigte C_{10} – C_{22} –Alkylcarbonylreste wie C_{10} –Alkylcarbonyl-, C_{11} –Alkylcarbonyl-, C₁₂-Alkylcarbonyl-, C₁₃-Alkylcarbonyl-, C₁₄-Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder unge sättigte C₁₆–C₂₂–Alkylcarbonylreste wie C₁₆–Alkylcarbonyl-, C₁₈–Alkylcarbonyl-, C₂₀– 20 Alkylcarbonyl- oder C22-Alkylcarbonylreste, die ein oder mehrere Doppelbindungen enthalten. Diese vorteilhaften Reste können zwei, drei, vier, fünf oder sechs Doppelbindungen enthalten. Die besonders vorteilhaften Reste mit 20 oder 22 Kohlenstoffatomen in der Fettsäurekette enthalten bis zu sechs Doppelbindungen, vorteilhaft drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt vier, fünf oder sechs 25 Doppelbindungen, ganz besonders bevorzugt fünf oder sechs.. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

Die oben genannten Reste von R¹, R² and R³ können mit Hydroxyl- und/oder Epoxygruppen substituierte sein und/oder können Dreifachbindungen enthalten.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei vorteilhaft drei, vier, fünf oder sechs Doppelbindungen. Besonders vorteilhaft enthalten die Fettsäuren vier fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren haben vorteilhaft 18-, 20- oder 22-C-Atome in der Fettsäurekette, bevorzugt enthalten die Fettsäuren 20 oder 22 Kohlenstoffatome in der Fettsäurekette. Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, das im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 % der Aktivität, vorteilhaft weniger als 3 %, besonders vorteilhaft mit weniger als 2 %, ganz besonders bevorzugt mit weniger als 1; 0,5; 0,25 oder 0,125 % umgesetzt werden. Diese hergestellten Fettsäuren können als einziges Produkt im Verfahren hergestellt werden oder in einem Fettsäuregemisch vorliegen.

Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase- und/oder Δ -4-Desaturaseaktivität codieren.

- Vorteilhaft werden im erfindungsgemäßen Verfahren Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, verwendet ausgewählt aus der Gruppe bestehend aus:
- einer Nukleinsäureseguenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, 10 SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, 15 SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 20 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 dargestellten Sequenz, oder
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, 25 SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, 30 SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 35 184, SEQ ID NO: 194, SEQ ID NO: 198, SEQ ID NO: 200 oder SEQ ID NO: 202 dargestellten Aminosäuresequenzen ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37,

35

SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, 5 SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 dargestellten Nukleinsäureseguenz, die für Polypeptide mit mindestens 40 % Iden-10 tität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, 15 SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, 20 SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 184, SEQ ID NO: 194, SEQ ID NO: 198, SEQ ID NO: 200 oder SEQ ID NO: 202 codieren und eine Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-25 Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität aufweisen.

Vorteilhaft bedeuten die Substituenten R^2 oder R^3 in den allgemeinen Formeln I und II unabhängig voneinander gesättigtes oder ungesättigtes C_{18} - C_{22} -Alkylcarbonyl-, besonders vorteilhaft bedeuten sie unabhängig voneinander ungesättigtes C_{18} -, C_{20} - oder C_{22} -Alkylcarbonyl- mit mindestens zwei Doppelbindungen, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen, besonders vorteilhaft mit mindestens vier, fünf oder sechs Doppelbindungen.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in die transgene Pflanze eingebracht wird, die für Polypeptide mit ω -3-Desaturase-Aktivität codiert, ausgewählt aus der Gruppe bestehend aus:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Sequenz, oder
- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen
 40 Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder

- c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturaseaktivität aufweisen.
- In einer weiteren bevorzugten Ausführungsform ist das Verfahren dadurch gekennzeichnet, dass eine Nukleinsäuresequenz zusätzlich in die transgene Pflanze eingebracht wird, die für Polypeptide mit Δ-12-Desaturaseaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 107, SEQ ID NO: 109 oder
 SEQ ID NO: 195 dargestellten Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108, SEQ ID NO: 110 oder SEQ ID NO: 196 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107, SEQ ID NO: 109 oder SEQ ID NO: 195 darge-stellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 108, SEQ ID NO: 110 oder SEQ ID NO: 196 codieren und eine Δ-12-Desaturaseaktivität aufweisen.

Diese vorgenannten Δ -12-Desaturasesequenzen können allein oder in Kombination mit den ω 3-Desaturasesequenzen mit den im Verfahren verwendeten Nukleinsäuresequenzen, die für Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen codieren verwendet werden.

Tabelle 1 gibt die Nukleinsäuresequenzen, den Herkunftsorganismus und die Sequenz-ID-Nummer wieder.

20

			·
Nr.	Organismus	Aktivität	Sequenznummer
1.	Euglena gracilis	Δ-8-Desaturase	SEQ ID NO: 1
2.	Isochrysis galbana	Δ-9-Elongase	SEQ ID NO: 3
3.	Phaeodactylum tricornutum	Δ-5-Desaturase	SEQ ID NO: 5
4.	Ceratodon purpureus	Δ-5-Desaturase	SEQ ID NO: 7
5.	Physcomitrella patens	Δ-5-Desaturase	SEQ ID NO: 9
6.	Thraustrochytrium sp.	Δ-5-Desaturase	SEQ ID NO: 11
7.	Mortierella alpina	Δ-5-Desaturase	SEQ ID NO: 13
8.	Caenorhabditis elegans	Δ-5-Desaturase	SEQ ID NO: 15
9.	Borago officinalis	Δ-6-Desaturase	SEQ ID NO: 17

Nr.	Organismus	Aktivität	Sequenznummer	
10.	Ceratodon purpureus	Δ-6-Desaturase	SEQ ID NO: 19	
11.	Phaeodactylum tricornutum	Δ-6-Desaturase	SEQ ID NO: 21	
12.	Physcomitrella patens	Δ-6-Desaturase	SEQ ID NO: 23	
13.	Caenorhabditis elegans	Δ-6-Desaturase	SEQ ID NO: 25	
14.	Physcomitrella patens	Δ-6-Elongase	SEQ ID NO: 27	
15.	Thraustrochytrium sp.	Δ-6-Elongase	SEQ ID NO: 29	
16.	Phytophtora infestans	Δ-6-Elongase	SEQ ID NO: 31	
17.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 33	
18.	Mortierella alpina	Δ-6-Elongase	SEQ ID NO: 35	
19.	Caenorhabditis elegans	Δ-6-Elongase	SEQ ID NO: 37	
20.	Euglena gracilis	Δ-4-Desaturase	SEQ ID NO: 39	
21.	Thraustrochytrium sp.	Δ-4-Desaturase	SEQ ID NO: 41	
22.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 43	
23.	Thalassiosira pseudonana	Δ-6-Elongase	SEQ ID NO: 45	
24.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 47	
25.	Crypthecodinium cohnii	Δ-5-Elongase	SEQ ID NO: 49	
26.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 51	
27.	Oncorhynchus mykiss	Δ-5-Elongase	SEQ ID NO: 53	
28.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 59	
29.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 61	
30.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 63	
31.	Thraustrochytrium aureum	Δ-5-Elongase	SEQ ID NO: 65	
32.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 67	
33.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 69	
34.	Prímula farinosa	Δ-6-Desaturase	SEQ ID NO: 71	
35.	Primula vialii	Δ-6-Desaturase	SEQ ID NO: 73	
36.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 75	
37.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 77	
38.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 79	
39.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 81	

Nr. Organismus Aktivität Sequenznummer 40. Thraustrochytrium sp. Δ-5-Elongase SEQ ID NO: 83 41. Thalassiosira pseudonana Δ-5-Elongase SEQ ID NO: 85 42. Phytophtora infestans ω-3-Desaturase SEQ ID NO: 87 43. Ostreococcus tauri Δ-6-Desaturase SEQ ID NO: 98 44. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 91 45. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 93 46. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 95 47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-3-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 107 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 111 55.				
41. Thalassiosira pseudonana Δ-5-Elongase SEQ ID NO: 85 42. Phytophtora infestans ω-3-Desaturase SEQ ID NO: 87 43. Ostreococcus tauri Δ-6-Desaturase SEQ ID NO: 91 44. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 91 45. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 93 46. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 95 47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 110 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 111 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 113 56. Xenopus laevis (BC044967) Δ-5-Elongase SEQ ID NO: 131 59. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133	Nr.	Organismus	Aktivität	Sequenznummer
42. Phytophtora infestans ω-3-Desaturase SEQ ID NO: 87 43. Ostreococcus tauri Δ-6-Desaturase SEQ ID NO: 99 44. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 91 45. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 93 46. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 95 47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 110 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 111 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 111 56. Xenopus laevis (BCO44967) Δ-5-Elongase SEQ ID NO: 119 57. Ciona intestinalis (AK112719) Δ-5-Elongase SEQ ID NO: 131 59. Eugl	40.	Thraustrochytrium sp.	ustrochytrium sp. Δ-5-Elongase	
43. Ostreococcus tauri Δ-6-Desaturase SEQ ID NO: 89 44. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 91 45. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 93 46. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 95 47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana Δ-3-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 107 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 111 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 111 56. Xenopus laevis (BC044967) Δ-5-Elongase SEQ ID NO: 117 57. Clona intestinalis (AK112719) Δ-5-Elongase SEQ ID NO: 131 58. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133 59. Euglena grac	41.	Thalassiosira pseudonana	Δ-5-Elongase	SEQ ID NO: 85
44. Ostreococcus tauri 45. Ostreococcus tauri 46. Ostreococcus tauri 47. Thalassiosira pseudonana 48. Thalassiosira pseud	42.	Phytophtora infestans	ω-3-Desaturase	SEQ ID NO: 87
45. Ostreococcus tauri Δ-5-Desaturase SEQ ID NO: 93 46. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 95 47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 109 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 119 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 111 56. Xenopus laevis (BC044987) Δ-5-Elongase SEQ ID NO: 117 57. Ciona intestinalis (AK112719) Δ-5-Elongase SEQ ID NO: 131 58. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133 59.	43.	Ostreococcus tauri	Δ-6-Desaturase	SEQ ID NO: 89
46. Ostreococcus tauri Δ-4-Desaturase SEQ ID NO: 95 47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana ω-3-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 109 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 111 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 111 56. Xenopus laevis (BC044987) Δ-5-Elongase SEQ ID NO: 117 57. Ciona intestinalis (AK112719) 58. Euglena gracilis Δ-5-Elongase SEQ ID NO: 131 59. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133 60. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 135 61. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 137 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 193 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 193 66. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 193 67. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 193 68. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 193 69. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 193 60. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 195 60. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 197 60. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199	44.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 91
47. Thalassiosira pseudonana Δ-6-Desaturase SEQ ID NO: 97 48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana ω-3-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 109 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 111 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 111 56. Xenopus laevis (BC044967) Δ-5-Elongase SEQ ID NO: 117 57. Ciona intestinalis (AK112719) 58. Euglena gracilis Δ-5-Elongase SEQ ID NO: 131 59. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133 60. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 135 61. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 137 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 195 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 197	45.	Ostreococcus tauri	Δ-5-Desaturase	SEQ ID NO: 93
48. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 99 49. Thalassiosira pseudonana Δ-5-Desaturase SEQ ID NO: 101 50. Thalassiosira pseudonana Δ-4-Desaturase SEQ ID NO: 103 51. Thalassiosira pseudonana ω-3-Desaturase SEQ ID NO: 105 52. Ostreococcus tauri Δ-12-Desaturase SEQ ID NO: 107 53. Thalassiosira pseudonana Δ-12-Desaturase SEQ ID NO: 109 54. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 111 55. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 113 56. Xenopus laevis (BC044967) Δ-5-Elongase SEQ ID NO: 117 57. Ciona intestinalis (AK112719) 58. Euglena gracilis Δ-5-Elongase SEQ ID NO: 131 59. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133 60. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 135 61. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 137 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 195 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 197	46.	Ostreococcus tauri	Δ-4-Desaturase	SEQ ID NO: 95
49.Thalassiosira pseudonanaΔ-5-DesaturaseSEQ ID NO: 10150.Thalassiosira pseudonanaΔ-4-DesaturaseSEQ ID NO: 10351.Thalassiosira pseudonanaω-3-DesaturaseSEQ ID NO: 10552.Ostreococcus tauriΔ-12-DesaturaseSEQ ID NO: 10753.Thalassiosira pseudonanaΔ-12-DesaturaseSEQ ID NO: 10954.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 11155.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 11356.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13761.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	47.	Thalassiosira pseudonana	Δ-6-Desaturase	SEQ ID NO: 97
50. Thalassiosira pseudonana	48.	Thalassiosira pseudonana	Δ-5-Desaturase	SEQ ID NO: 99
51.Thalassiosira pseudonanaω-3-DesaturaseSEQ ID NO: 10552.Ostreococcus tauriΔ-12-DesaturaseSEQ ID NO: 10753.Thalassiosira pseudonanaΔ-12-DesaturaseSEQ ID NO: 10954.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 11155.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 11356.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	49.	Thalassiosira pseudonana	Δ-5-Desaturase	SEQ ID NO: 101
52.Ostreococcus tauriΔ-12-DesaturaseSEQ ID NO: 10753.Thalassiosira pseudonanaΔ-12-DesaturaseSEQ ID NO: 10954.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 11155.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 11356.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	50.	Thalassiosira pseudonana	Δ-4-Desaturase	SEQ ID NO: 103
53.Thalassiosira pseudonanaΔ-12-DesaturaseSEQ ID NO: 10954.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 11155.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 11356.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	51.	Thalassiosira pseudonana	ω-3-Desaturase	SEQ ID NO: 105
54.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 11155.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 11356.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	52.	Ostreococcus tauri	Δ-12-Desaturase	SEQ ID NO: 107
55.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 11356.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	53.	Thalassiosira pseudonana	Δ-12-Desaturase	SEQ ID NO: 109
56.Xenopus laevis (BC044967)Δ-5-ElongaseSEQ ID NO: 11757.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	54.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 111
57.Ciona intestinalis (AK112719)Δ-5-ElongaseSEQ ID NO: 11958.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13159.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	55.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 113
(AK112719) 58. Euglena gracilis Δ-5-Elongase SEQ ID NO: 131 59. Euglena gracilis Δ-5-Elongase SEQ ID NO: 133 60. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 135 61. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 137 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 193 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199	56.	Xenopus laevis (BC044967)	Δ-5-Elongase	SEQ ID NO: 117
59.Euglena gracilisΔ-5-ElongaseSEQ ID NO: 13360.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13561.Arabidopsis thalianaΔ-5-ElongaseSEQ ID NO: 13762.Phaeodactylum tricornutumΔ-6-ElongaseSEQ ID NO: 18363.Phytium irregulareΔ-6-DesaturaseSEQ ID NO: 19364.Calendula officinalisΔ-12-DesaturaseSEQ ID NO: 19565.Ostreococcus tauriΔ-5-ElongaseSEQ ID NO: 19766.Ostreococcus tauriΔ-6-ElongaseSEQ ID NO: 199	57.		Δ-5-Elongase	SEQ ID NO: 119
 60. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 135 61. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 137 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 193 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199 	58.	Euglena gracilis	Δ-5-Elongase	SEQ ID NO: 131
 61. Arabidopsis thaliana Δ-5-Elongase SEQ ID NO: 137 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 193 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199 	59.	Euglena gracilis	Δ-5-Elongase	SEQ ID NO: 133
 62. Phaeodactylum tricornutum Δ-6-Elongase SEQ ID NO: 183 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 193 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199 	60.	Arabidopsis thaliana	Δ-5-Elongase	SEQ ID NO: 135
 63. Phytium irregulare Δ-6-Desaturase SEQ ID NO: 193 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199 	61.	Arabidopsis thaliana	Δ-5-Elongase	SEQ ID NO: 137
 64. Calendula officinalis Δ-12-Desaturase SEQ ID NO: 195 65. Ostreococcus tauri Δ-5-Elongase SEQ ID NO: 197 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199 	62.	Phaeodactylum tricornutum	Δ-6-Elongase	SEQ ID NO: 183
 65. Ostreococcus tauri 66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 197 SEQ ID NO: 199 	63.	Phytium irregulare	Δ-6-Desaturase	SEQ ID NO: 193
66. Ostreococcus tauri Δ-6-Elongase SEQ ID NO: 199	64.	Calendula officinalis	Δ-12-Desaturase	SEQ ID NO: 195
	65.	Ostreococcus tauri	Δ-5-Elongase	SEQ ID NO: 197
67. Ostreococcus tauri Δ-6-Desaturase SEQ ID NO: 201	66.	Ostreococcus tauri	Δ-6-Elongase	SEQ ID NO: 199
	67.	Ostreococcus tauri	Δ-6-Desaturase	SEQ ID NO: 201

15

20

25

30

In einer weiteren Ausführungsform der Erfindung wurde ein Verfahren zur Herstellung großer Mengen von mehrfach ungesättigten Fettsäuren, speziell ARA und EPA, in einer transgenen Pflanze zu entwickeln. Dieses Verfahren ist ebenfalls zur Herstellung von DHA geeignet. So lassen sich im Verfahren ARA, EPA, DHA oder deren Mischungen hergestellen. Eine weitere Ausführungsform der Erfindung ist somit ein Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 \\
\hline
CH = CH & CH_2 & CH_2 \\
\hline
CH_2 & CH_3 & (I)
\end{array}$$

in transgenen Pflanzen gelöst, wobei das Verfahren umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, welche für ein
 10 Polypeptid mit der Aktivität einer Δ-6-Desaturase-Aktivität kodiert, und ausgewählt ist aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 193 oder SEQ ID NO: 201 dargestellten Sequenz,
 - ii) Nukleinsäuresequenzen, die für die in SEQ ID NO: 194 oder SEQ ID NO: 202 angegebene Aminosäuresequenz kodieren,
 - iii) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 193 oder SEQ ID NO: 201 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
 - iv) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 193 oder SEQ ID NO: 201 angegebenen Sequenz zu mindestens 60% identisch sind, und
 - b) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, welche für ein Polypeptid mit einer Δ -6-Elongase-Aktivität kodiert, und ausgewählt ist aus der Gruppe bestehend aus:
 - i) einer Nukleinsäuresequenz mit der in SEQ ID NO: 27 oder SEQ ID NO: 199 dargestellten Sequenz.
 - ii) Nukleinsäuresequenzen, die für die in SEQ ID NO: 28 oder SEQ ID NO: 200 angegebene Aminosäuresequenz kodieren,
 - iii) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 27 oder SEQ ID NO: 199 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
 - iv) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 27 oder SEQ ID NO: 199 angegebenen Sequenz zu mindestens 60% identisch sind,

- c) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, welche für ein Polypeptid mit einer Δ -5-Desaturase-Aktivität kodiert, und ausgewählt ist aus der Gruppe bestehend aus:
 - i) einer Nukleinsäuresequenz mit der in SEQ ID NO: 11 dargestellten Sequenz,

10

- ii) Nukleinsäuresequenzen, die für die in SEQ ID NO: 12 angegebene Aminosäuresequenz kodieren,
- iii) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 11 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
- iv) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 11 angegebenen Sequenz zu mindestens 60% identisch sind,

wobei die Variablen und Substituenten in der Formel I die oben genannte Bedeutung haben.

- Die im erfindungsgemäßen Verfahren verwendbaren Nukleinsäuresequenzen sind beschrieben in WO 02/26946 (Δ-5-Desaturase aus Thraustochytrium ssp., SEQ ID NO: 11 und Δ-6-Desaturase aus Phytium irregulare, SEQ ID NO: 193) sowie in WO 01/59128 (Δ-6-Elongase aus Physcomitrella patens, SEQ ID NO: 27), auf die hier ausdrücklich Bezug genommen wird. Allerdings wurde in diesen Fällen die Bildung von ARA und EPA entweder nicht in transgenen Pflanzen, sondern lediglich in Mikroorganismen untersucht, oder es konnte keine Steigerung der ARA- und EPA-Synthese in den transgenen Pflanzen nachgewiesen werden. Darüber hinaus wurden in diesen Anmeldungen die erfindungsgemäßen Nukleinsäuren nicht mit Nukleinsäuren, die für andere Enzyme des Fettsäuresynthesewegs kodieren, kombiniert.
- Es wurde nun überraschend gefunden, dass die Co-Expression der Nukleinsäuren mit den in SEQ ID NO: 11, 27, 193, 199 und 201 angegebenen Sequenzen in transgenen Pflanzen zu einer starken Erhöhung des ARA-Gehalts auf bis zu mehr als 8%, vorteilhaft bis zu mehr als 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% oder 20%, besonders vorteilhaft auf mehr als 21 %, 22%, 23%, 24% oder 25%, bezogen auf den gesamten Lipidgehalt der Pflanze, führt (vgl. Tabelle 2, Tabelle 3, Tabelle 4 und Figur 31). Bei den vorgenannten Prozentwerten handelt es sich um Gewichtsprozentangaben.
- Zur weiteren Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft gegenüber Ölen und/oder Triglyceriden aus Wildtyp-Pflanzen erhöhten Gehalt an mehrfach ungesättigten Fettsäuren, vor allem von ARA, EPA oder DHA oder deren Mischungen, kann es vorteilhaft sein, die Menge des Ausgangsstoffs für die Fettsäuresynthese zu steigern. Dies kann beispielsweise durch das Einbringen einer Nukleinsäure, die für ein Polypeptid mit der Aktivität einer Δ-12-Desaturase kodiert, und deren Co-Expression in dem Organismus erreicht werden.

Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie der Familie der Brassicaceae wie der Gattung Brassica, z.B. Raps, Rübsen oder Sareptasenf; der Familie der Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea oder der Familie Fabaceae wie der Gattung Glycine z.B. die Gattung und Art Glycine max, die einen hohen Ölsäuregehalt, aber nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681).

5

10

15

20

Daher wird in einer bevorzugten Ausführungsform der vorliegenden Erfindung zusätzlich eine Nukleinsäuresequenz in die transgene Pflanze eingebracht, die für ein Polypeptid mit Δ -12-Desaturaseaktivität kodiert.

Besonders bevorzugt ist diese Nukleinsäuresequenz ausgewählt aus der Gruppe bestehend aus:

- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 195 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die für die in SEQ ID NO: 196 dargestellte Aminosäuresequenz kodieren,
- Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO:
 195 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
- d) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 195 angegebenen Sequenz zu mindestens 60% identisch sind.

Die Nukleinsäuresequenz mit der SEQ ID NO: 195 stammt aus Calendula officinalis und ist beschrieben in WO 01/85968, deren Offenbarung hier ebenfalls durch Bezugnahme in die vorliegende Anmeldung mit aufgenommen ist.

Vorteilhaft setzen die im erfingungsgemäßen Verfahren verwendeten Δ-12Desaturasen Ölsaure (C18:1^{Δ9}) zu Linolsäure (C18:2^{Δ9,12}) oder C18:2^{Δ6,9} zu C18:3^{Δ6,9,12}
(Gammalinolensäure = GLA), den Ausgangssubstanzen für die Synthese von ARA,
EPA und DHA um. Vorteilhaft setzen die verwendeten Δ-12-Desaturasen Fettsäuren
gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft gebunden an CoAFettsäureester, um. Dies führt, wenn vorher ein Elongationsschritt stattgefunden hat,
vorteilhaft zu höheren Ausbeuten an Syntheseprodukten, da die Elongation in der
Regel an CoA-Fettsäureestern erfolgt, während die Desaturierung überwiegend an den
Phospholipiden oder an den Triglyceriden erfolgt. Ein Ausstausch, der eine weitere
möglicherweise limitierende Enzymreaktion erfoderlich machen würde, zwischen den
CoA-Fettsäureestern und den Phospholipiden oder Triglyceriden ist somit nicht
erforderlich.

Die zusätzliche Expression der ∆-12-Desaturase in den transgenen Pflanzen führt zu einer weiteren Steigerung des ARA-Gehalts auf bis zu mehr als 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% oder 20%, besonders vorteilhaft auf mehr als 21 %, 22%, 23%, 24% oder 25%, bezogen auf den gesamten Lipidgehalt der Pflanze (vgl.

30

20

Tabelle 3 und 4 und Figur 32). Bei den vorgenannten Prozentwerten handelt es sich um Gewichtsprozentangaben.

Vorteilhaft können im erfindungsgemäßen Verfahren weitere Nukleinsäuresequenzen in die Pflanzen eingebracht werden, die für ein Polypeptid mit einer Δ -5-Elongase-Aktivität kodieren.

Bevorzugt werden derartige Nukleinsäuresequenzen, die für Δ -5-Elongaseaktivität kodieren, ausgewählt ist aus der Gruppe bestehend aus:

- einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 197 dargestellten Sequenz,
- b) Nukleinsäuresequenzen, die für die in SEQ ID NO: 44, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 198 angegebene Aminosäuresequenz kodieren,
- 20 c) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 197 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
 - d) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 197 angegebenen Sequenz zu mindestens 60% identisch sind.

In einer bevorzugten Ausführungsform des Verfahrens werden die Δ-5-Elongase-Gene unter der Kontrolle eines samenspezifischen Promotors exprimiert.

In einer weiteren vorteilhaften Ausführungsform des Verfahrens werden alle Nukleinsäuresequenzen auf einem gemeinsamen rekombinanten Nukleinsäuremolekül in die Pflanzen eingebracht werden, wobei jede Nukleinsäuresequenz unter Kontrolle eines

eigenen Promotors steht kann und es sich bei diesem eigenen Promotor um einen samenspezifischen Promotor handelt kann.

Die Erfindung kann aber nicht nur mit den im Sequenzprotokoll angegebenen Nukleinsäuren erfolgreich umgesetzt werden, vielmehr können auch von diesen Sequenzen bis zu einem gewissen Grad abweichende Sequenzen, die für Proteine mit der im Wesentlichen gleichen enzymatischen Aktivität kodieren, eingesetzt werden. Hierbei handelt es sich um Nukleinsäuren, die zu den im Sequenzprotokoll spezifizierten Sequenzen einen bestimmten Identitäts- oder Homologiegrad aufweisen. Unter im wesentlichen gleiche enzymatische Aktivität sind Proteine zu verstehen, die mindestens 20%, 30%, 40%, 50% oder 60%, vorteilhaft mindestens 70%, 80%, 90% oder 95%, besonders vorteilhaft mindestens 96%, 97%, 98% oder 99% der enzymatischen Aktivität der Wildtyp-Enzyme aufweisen.

10

15

20

25

30

35

40

Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen oder von zwei Nukleinsäuren werden die Sequenzen untereinander geschrieben (z.B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d.h. Aminosäure- oder Nukleinsäure-"Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure-"Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an Positionen, die den Sequenzen gemeinsam sind (d.h. % Homologie = Anzahl der identischen Positionen/Gesamtanzahl der Positionen x 100). Die Begriffe Homologie und Identität sind damit als synonym anzusehen.

Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für den Vergleich verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen, zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151–153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet.

Der Fachmann erkennt, dass innerhalb einer Population DNA-Sequenzpolymorphismen, die zu Änderungen der Aminosäuresequenz der SEQ ID NO: 12, 28, 194, 196, 198, 200 und/oder 202 führen, auftreten können. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Δ-12-

Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-6- Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Δ-12-Desaturase, Δ-6-Desaturase, Δ-5- Desaturase, Δ-5-Elongase und/oder Δ-6-Elongase, die das Ergebnis natürlicher Variation sind und die die enzymatische Aktivität nicht wesentlich verändern, sollen im Umfang der Erfindung enthalten sein.

Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten Δ -12-Desaturase-, Δ -6-Desaturase, Δ -5-Elongase, Δ -6-Elongase oder Δ -5-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz und deren Derivate kodierten Proteinen/Enzymen im Vergleich noch eine enzymatische Aktivität von mindestens 10 %, bevorzugt von mindestens 20 %, besonders bevorzugt von mindestens 30 %, 40 %, 50 % oder mind. 60 % und am meisten bevorzugt von mindestens 70 %, 80 %, 90 %, 95 %, 96 %, 97 %, 98 % oder 99 % aufweisen und damit am Stoffwechsel von Verbindungen, die zum Aufbau von Fettsäuren, Fettsäureestern wie Diacylglyceriden und/oder Triacylglyceriden in einer Pflanze oder Pflanzenzelle benötigt werden oder am Transport von Molekülen über Membranen teilnehmen können, wobei C_{18} -, C_{20} - oder C_{22} -Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint sind.

15

20

40

Ebenfalls im Umfang der Erfindung enthalten sind Nukleinsäuremoleküle, die unter stringenten Bedingungen mit dem komplementären Strang der hier verwendeten Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-5-Elongase- und/oder Δ-6-25 Elongase-Nukleinsäuren hybridisieren. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60 % homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind 30 vorzugsweise derart, dass Sequenzen, die mindestens etwa 65 %, 70 %, 80 % oder 90 %, bevorzugt mindestens etwa 91 %, 92 %, 93 %, 94 % oder 95 % und besonders bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und z.B. in Current Protocols in Molecular Biology, John Wiley 35 & Sons, N. Y. (1989), 6.3.1-6.3.6, beschrieben.

Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodium citrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1 % SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass sich diese Hybridisierungsbedingungen je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Hybridisierungstemperatur liegt

beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 x SSC (pH 7,2). Falls organisches Lösungsmittel, zum Beispiel 50 % Formamid, im obengenannten Puffer vorliegt, beträgt die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 x SSC und 20°C bis 45°C, vorzugsweise 30°C bis 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 x SSC und 30°C bis 55°C, vorzugsweise 45°C bis 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die für eine bestimmte Nukleinsäure erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie etwa Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.

5

10

15

20

25

30

35

40

Durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder deletionen in eine Nukleotidsequenz kann ein isoliertes Nukleinsäuremolekül erzeugt werden, das für eine Δ -12-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -5-Elongase und/oder Δ-6-Elongase mit einer oder mehreren Aminosäuresubstitutionen, -additionen oder -deletionen kodiert. Mutationen können in eine der Sequenzen durch Standardtechniken, wie stellenspezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einem oder mehreren der vorhergesagten nicht-essentiellen Aminosäurereste hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z.B. Lysin, Arginin, Histidin), sauren Seitenketten (z.B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z.B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z.B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryptophan), beta-verzweigten Seitenketten (z.B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z.B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Δ-12-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -6-Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der für die Δ-12-Desaturase, Δ -6-Desaturase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -6-Elongase kodierenden Sequenz eingebracht werden, z.B. durch Sättigungsmutagenese, und die resultierenden Mutanten können durch rekombinante Expression nach der hier beschriebenen Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-5-Desaturase-, Δ-5-Elongase-

oder Δ-6-Elongase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die

die Δ -12-Desaturase-, Δ -6-Desaturase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -6-Elongase-Aktivität beibehalten haben.

Vorteilhaft enthalten die im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigten Fettsäuren mindestens zwei, bevorzugt drei, vier, fünf oder sechs Doppelbindungen. Besonders bevorzugt enthalten die Fettsäuren vier, fünf oder sechs Doppelbindungen. Im Verfahren hergestellte Fettsäuren weisen bevorzugt eine Länge von 20C- oder 22C-Atomen auf.

Vorteilhaft werden gesättigte Fettsäuren mit den im Verfahren verwendeten Nukleinsäuren wenig oder gar nicht umgesetzt. Unter wenig ist zu verstehen, dass im Vergleich zu mehrfach ungesättigten Fettsäuren die gesättigten Fettsäuren mit weniger als 5 %, bevorzugt mit weniger als 3 %, besonders bevorzugt mit weniger als 2 %, am meisten bevorzugt mit weniger als 1; 0,5; 0,25 oder 0,125 % der Aktivität umgesetzt werden. Die hergestellten Fettsäuren können das einzige Produkt des Verfahrens darstellen oder in einem Fettsäuregemisch vorliegen.

10

30

35

40

Die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren sind vorteilhaft in Membranlipiden und/oder Triacylglyceriden gebunden, können aber auch als freie Fettsäuren oder aber gebunden in Form anderer Fettsäureester in den Organismen vorkommen. Dabei können sie als "Reinprodukte" oder aber vorteilhaft in Form von Mischungen verschiedener Fettsäuren oder Mischungen unterschiedlicher Glyceride vorliegen. Die in den Triacylglyceriden gebundenen verschieden Fettsäuren lassen sich dabei von kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren besonders bevorzugt sind die langkettigen Fettsäuren LCPUFAs von C₂₀- und/oder C₂₂-Fettsäuren wie ARA, EPA, DHA oder deren Kombination.

Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester mit mehrfach ungesättigten C₁₈-, C₂₀- und/oder C₂₂-Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester, vorteilhaft mit mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäureester, besonders vorteilhaft von mindestens vier, fünf oder sechs Doppelbindungen im Fettsäureester, ganz besonders vorteilhaft von mindestens fünf oder sechs Doppelbindungen im Fettsäureester hergestellt. Dies führt vorteilhaft zur Synthese von Linolsäure (=LA, C18:2^{Δ9,12}), γ-Linolensäure (= GLA, C18:3^{Δ6,9,12}), Stearidonsäure (= SDA, C18:4^{Δ6,9,12,15}), Dihomo-γ-Linolensäure (= DGLA, 20:3^{Δ8,11,14}), ω-3-Eicosatetraensäure (= ETA, C20:4^{Δ5,8,11,14}), Arachidonsäure (ARA, C20:4^{Δ5,8,11,14}), Eicosapentaensäure (EPA, C20:5^{Δ5,8,11,14,17}), oder deren Mischungen synthetisiert, bevorzugt werden ω-3-Eicosatetraensäure (= ETA, C20:4^{Δ5,8,11,14}), Arachidonsäure (ARA, C20:4^{Δ5,8,11,14}), Eicosapentaensäure (EPA, C20:5^{Δ5,8,11,14}), ω-6-Docosapentaensäure (C22:5^{Δ4,7,10,13,16}), ω-6-Docosatetraensäure (C22:4^{Δ,7,10,13,16}), ω-3-Docosapentaensäure (= DPA, C22:5^{Δ7,10,13,16,19}), Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder deren Mischungen, ganz besonders bevorzugt ARA, EPA

und/oder DHA hergestellt. Vorteilhaft werden ω -3-Fettsäuren wie EPA und/oder DHA, bevorzugt DHA hergestellt.

Die Fettsäureester mit mehrfach ungesättigten C₁₈-, C₂₀- und/oder C₂₂-Fettsäuremolekülen vorteilhaft mit mehrfach ungesättigten C20- und/oder C22-Fettsäuremolekülen können aus den Pflanzen, die für die Herstellung der Fettsäureester verwendet 5 wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycosphingolipide, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phosphatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, 10 Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die Acetyl-CoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs, bevorzugt vier, fünf oder sechs, besonders bevorzugt fünf oder sechs Doppelbindungen enthalten, isoliert werden. Vorteilhaft werden sie in der Form ihrer Diacylglyceride, Triacylglyceride und/oder in Form des Phosphatidylcholin isoliert, 15 besonders bevorzugt in der Form der Triacylglyceride isoliert. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden an andere Verbindungen in den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäureester und frei Fettsäuren) in den Organismen in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 20 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

Im erfindungsgemäßen Verfahren bzw. in den erfindungsgemäßen Verfahren (der singular soll im Sinne der Erfindung und der hier dargestellten Offenbarung den plural 25 umfassen und umgekehrt) werden die hergestellten LCPUFAs mit einem Gehalt von mindestens 3, 5, 6, 7 oder 8 Gew.-%, vorteilhaft von mindestens 9, 10, 11, 12, 13, 14 oder 15 Gew.-%, bevorzugt von mindestens 16, 17, 18, 19 oder 20 Gew.-%, besonders bevorzugt von mindestens 21, 22, 23, 24 oder 25 Gew.-%, ganz besonders bevorzugt von mindestens 26, 27, 28, 29 oder 30 Gew.-% bezogen auf die gesamten 30 Fettsäuren in den transgenen Organismen vorteilhaft im Samen der transgenen Pflanzen hergestellt. Dabei werden vorteilhaft C₁₈- und/oder C₂₀-Fettsäuren, die in den Wirtsorganismen vorhanden sind, zu mindestens 10 %, vorteilhaft zu mindestens 20 %, besonders vorteilhaft zu mindestens 30 %, ganz besonders vorteilhaft zu mindestens 40 % in die entsprechenden Produkte wie ARA, EPA, DPA oder DHA, um nur einige 35 beispielhaft zu nennen, umgesetzt. Vorteilhaft werden die Fettsäuren in gebundener Form hergestellt.

Vorteilhaft werden dabei im Verfahren mehrfach ungesättigte C₂₀-Fettsäuren mit vier oder fünf Doppelbindungen im Molekül mit einem Gehalt von zusammen allen derartigen Fettsäuren von mindestens 15, 16, 17, 18, 19 oder 20 Gew.-%, vorteilhaft zu mindestens 21, 22, 23, 24 oder 25 Gew.-%, besonders vorteilhaft von mindestens 26, 27, 28, 29 oder 30 Gew.-% bezogen auf die gesamten Fettsäuren in den Samen der transgenen Pflanzen hergestellt.

40

Vorteilhaft werden dabei im Verfahren mehrfach ungesättigte C₂₀- und/oder C₂₂- Fettsäuren mit vier, fünf oder sechs Doppelbindungen im Molekül mit einem Gehalt von zusammen allen derartigen Fettsäuren von mindestens 15, 16, 17, 18, 19 oder 20 Gew.-%, vorteilhaft zu mindestens 21, 22, 23, 24 oder 25 Gew.-%, besonders vorteilhaft von mindestens 26, 27, 28, 29 oder 30 Gew.-%, ganz besonders vorteilhaft von mindestens 31, 32, 33, 34 oder 35 Gew.-% bezogen auf die gesamten Fettsäuren in den Samen der transgenen Pflanze hergestellt.

5

10

Im erfindungsgemäßen Verfahren wird ARA mit einem Gehalt von mindestens 3, 5, 6, 7, 8, 9 oder 10 Gew.-%, vorteilhaft von mindestens 11, 12, 13, 14 oder 15 Gew.-%, bevorzugt von mindestens 16, 17, 18, 19 oder 20 Gew.-%, besonders bevorzugt von mindestens 21, 22, 23, 24 oder 25 Gew.-%, am meisten bevorzugt von mindestens 26 Gew.-%, bezogen auf den gesamten Lipidgehalt in den Samen der transgenen Pflanzen, hergestellt.

EPA wird im erfindungsgemäßen Verfahren mit einem Gehalt von mindestens 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 Gew.-%, vorteilhaft von mindestens 2, 3, 4 oder 5 Gew.-%, bevorzugt von mindestens 6, 7, 8, 9 oder 10 Gew.-%, besonders bevorzugt von mindestens 11, 12, 13, 14 oder 15 Gew.-% und am meisten bevorzugt von mindestens 16 Gew.-%, bezogen auf den gesamten Lipidgehalt in den Samen der transgenen Pflanzen, hergestellt.

- DHA wird im erfindungsgemäßen Verfahren mit einem Gehalt von mindestens 0,01 oder 0,02 Gew.-%, vorteilhaft von mindestens 0,03 oder 0,05 Gew.-%, bevorzugt von mindestens 0,09 oder 0,1 Gew.-%, besonders bevorzugt von mindestens 0,2 oder 0,3 Gew.-% und am meisten bevorzugt von mindestens 0,35 Gew.-%, bezogen auf den gesamten Lipidgehalt in den Samen der transgenen Pflanzen, hergestellt.
- 25 Mit Hilfe der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren lassen sich diese ungesättigten Fettsäuren an sn1-, sn2- und/oder sn3-Position der vorteilhaft hergestellten Triglyceride bringen. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie 30 beispielsweise Arachidonsäure (ARA), Eicosapentaensäure (EPA), ω-6-Docosapentaensäure oder DHA nicht als absolute Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in dem Ausgangsorganismus bzw. in der Ausgangspflanze beispielsweise sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA, EPA oder DHA als 35 Mischungen vor. Vorteilhaft sollten in den Endprodukten ARA oder DHA nur geringe Mengen, der jeweils anderen Endprodukte vorhanden sein. In einem DHA haltigen Lipid und/oder Öl sollten deshalb weniger als 15, 14, 13, 12 oder 11 Gew.-%, vorteilhaft weniger als 10, 9, 8, 7, 6 oder 5 Gew.-%, besonders vorteilhaft weniger als 4, 3, 2 oder 1 Gew.-% EPA und/oder ARA enthalten sein. In einem EPA haltigen Lipid 40 und/oder Öl sollten deshalb weniger als 15, 14, 13, 12 oder 11 Gew.-%, vorteilhaft

weniger als 10, 9, 8, 7, 6 oder 5 Gew.-%, besonders vorteilhaft weniger als 4, 3, 2 oder

- 1 Gew.-% ARA enthalten sein. Auch in einem ARA haltigen Lipid und/oder Öl sollten deshalb weniger als 15, 14, 13, 12 oder 11 Gew.-%, vorteilhaft weniger als 10, 9, 8, 7, 6 oder 5 Gew.-%, besonders vorteilhaft weniger als 4, 3, 2 oder 1 Gew.-% EPA und/oder DHA enthalten sein.
- Es können aber auch Mischungen von verschiedenen mehrfach ungesättigten C₂₀und/oder C₂₂-Fettsäuren in einem Produkt wünschenswert sein. In solchen Fällen
 können DHA haltige Lipide und/oder Öle mindestens 1, 2, 3, 4 oder 5 Gew.-% ARA
 und/oder EPA, vorteilhaft mindestens 6, 7 oder 8 Gew.-%, besonders vorteilhaft
 mindestens 9, 10, 11, 12, 13, 14 oder 15 Gew.-%, ganz besonders vorteilhaft mindestens 16, 17, 18, 19, 20, 21, 22, 23, 24 oder 25 Gew.-% bezogen auf den gesamten
 Lipidgehalt in den Samen der transgenen Pflanzen enthalten.
 - Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen.
- Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA, EPA oder nur DHA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren hergestellt. Werden die Verbindungen ARA, EPA und DHA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:1:2 (EPA:ARA:DHA), vorteilhaft von mindestens 1:1:3, bevorzugt von 1:1:4, besonders bevorzugt von 1:1:5 hergestellt.
- Werden die Verbindungen ARA und EPA gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindestens 1:6 (EPA:ARA), vorteilhaft von mindestens 1:8, bevorzugt von mindestens 1:10, besonders bevorzugt von mindestens 1:12 in der Pflanze hergestellt.
- Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, enthalten vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen.
- Weiterhin enthalten die Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9-enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-35 Epoxy-octadeca-9 11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure).
- Epoxy-octadeca-9,11-dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13-ene-9,11-diynonsäure, Petroselensäure (cis-6-
- 40 Octadecenonsäure), 9c,12t-Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure

(9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäure (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure), Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11t-Octadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren und/oder keine Buttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{A4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23: $6^{\Delta 3,8,12,15,18,21}$).

10

15

20

25

30

35

40

Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren, vor allem an ARA und EPA aber auch DHA, von mindestens 50, 80 oder 100 %, vorteilhaft von mindestens 150, 200 oder 250 %, besonders vorteilhaft von mindestens 300, 400, 500, 600, 700, 800 oder 900 %, ganz besonders vorteilhaft von mindestens 1000, 1100, 1200, 1300, 1400 oder 1500 % gegenüber der nicht transgenen Ausgangspflanze beispielsweise einer Pflanze wie Brassica juncea, Brassica napus, Camelina sativa, Arabidopsis thanliana oder Linum usitatissimum beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

Vorteilhaft werden, wie oben beschrieben, die im Verfahren hergestellten mehrfach ungesättigten C₂₀- und/oder C₂₂-Fettsäuren mit vier, fünf oder sechs Doppelbindungen im Molekül im Samen von Pflanzen, die keine oder nur sehr geringe Mengen an C12:0bzw. C14:0-Fettsäuren enthalten. Auch noch kürzere gesättigte Fettsäuren wie die Fettsäuren C4:0, C6:0, C8:0 oder C10:0 sollten nicht oder nur in geringen Mengen im Lipid und/oder Öl vorhanden sein. Unter nur sehr geringen Mengen sind vorteilhaft Mengen zu verstehen, die in der GC-Analyse vorteilhaft unter 5, 4, 3, 2 oder 1 %, vorteilhaft unter 0,9; 0,8; 0,7; 0,6 oder 0,5 %, besonders vorteilhaft unter 0,4; 0,3; 0,2 ider 0,1 %, ganz besonders bevorzugt unter 0,09; 0,08; 0,07; 0,06; 0,05; 0,04; 0,03; 0,02 oder 0,01 Flächeneinheiten in der GC liegen. Die Fettsäure C16:0 sollte vorteilhaft in einem Bereich von 1 bis 28 % GC-Flächeneinheiten liegen. Vorteilhaft sollte die Fettsäure C16:0 in GC-Flächeneinheiten von weniger als 25%, 20%, 15% oder 10%, vorteilhaft von weniger als 9%, 8%, 7%, 6% oder 5%, besonders vorteilhaft von weniger als 4%, 3%, 2% oder 1% oder gar nicht in den Lipiden, Ölen und/oder freien Fettsäuren vorhanden sein. Die Fettsäure C16:1 sollte vorteilhaft weniger als 1; 0,5; 0,4; 0,3; 0,2 oder 0,1 %, besonders vorteilhaft 0,09; 0,08; 0,07; 0,06; 0,05; 0,04; 0,03;

0,02 oder 0,01 Flächeneinheiten in der GC betragen. Ganz besonders bevorzugt sollte die Fettsäure C16:1 nicht in den nach dem Verfahren hergestellten Ölen und/oder Lipiden vorhanden sein. Gleiches gilt für die Fettsäuren C15:0, C17:0, C16:1 Δ³trans, C16:4 Δ⁴4,7,10,13 und C18:5 Δ³,6,9,12,15. Neben Ölsäure (C18:1 Δ⁴9) können auch die Isomere (C18:1 Δ⁴7, C18:1 Δ¹1) in den Lipiden, Ölen oder freien Fettsäuren vorhanden sein. Vorteilhaft in Mengen, gemessen als GC-Flächeneinheiten, von weniger als 5%, 4%, 3%, 2% oder 1%. Die Fettsäuren C20:0, C20:1, C24:0 und C24:1 sollten jeweils in einem Bereich von 0 bis 1 %, 0 bis 3% bzw. 0 bis 5 % Flächeneinheiten in der GC liegen. Weiterhin sollte in der GC-Analyse wenig Dihomo-γ-linolensäure (= DGLA) im Samenöl und/oder –lipid in GC-Flächeneinheiten detektierbar sein. Unter wenig sind weniger als 2; 1,9; 1,8; 1,7; 1,6 oder 1,5 %, vorteilhaft weniger als 1,4; 1,3; 1,2; 1,1 oder 1 %, besonders vorteilhaft weniger als 0,9; 0,8; 0,7; 0,6; 0,5 oder 0,4 % in GC-Flächeneinheiten zu verstehen.

In einer bevorzugten Ausführungsform des Verfahrens sollte DGLA und ARA in einem Verhältnis von 1:1 bis zu 1:100, vorteilhaft von 1:2 bis zu 1:80, besonders vorteilhaft von 1:3 bis zu 1:70, ganz besonders bevorzugt von 1:5 bis zu 1:60 entstehen.

10

20

25

30

35

40

In weiteren bevorzugten Ausführungsform des Verfahrens sollte DGLA und EPA in einem Verhältnis von 1:1 bis zu 1:100, vorteilhaft von 1:2 bis zu 1:80, besonders vorteilhaft von 1:3 bis zu 1:70, ganz besonders bevorzugt von 1:5 bis zu 1:60 entstehen.

Vorteilhaft sollten die im erfindungsgemäßen Verfahren hergestellten Lipide und/oder Öle einen hohen Anteil von ungesättigten Fettsäuren vorteilhaft von mehrfach ungesättigten Fettsäuren von mindestens 30, 40 oder 50 Gew.-%, vorteilhaft von mindestens 60, 70 oder 80 Gew.-% bezogen auf den Gesamtfettsäuregehalt in den Samen der transgenen Pflanzen betragen.

Alle gesättigten Fettsäuren zusammen sollten vorteilhaft in den für das erfindungsgemäße Verfahren bevorzugt verwendeten Pflanzen nur einen geringen Anteil ausmachen. Unter geringen Anteil ist in diesem Zusammenhang ein Anteil in GC-Flächeneinheiten von weniger als 15%, 14%, 13%, 12%, 11% oder 10%, bevorzugt von weniger als 9%, 8%, 7% oder 6% zu verstehen.

Weiterhin sollten die im Verfahren vorteilhaft als Wirtspflanzen, die die über verschiedene Methoden eingebrachten im Verfahren verwendeten Gene zur Synthese der mehrfach ungesättigten Fettsäuren enthalten, vorteilhaft einen höheren Ölanteil als Proteinanteil im Samen haben, vorteilhafte Pflanzen haben einen Öl-/Proteingehaltverhältnis von 5 zu 1, 4 zu 1, 3 zu 1, 2 zu 1 oder 1 zu 1. Dabei sollte der Ölgehalt bezogen auf das Gesamtgewicht des Samens in einem Bereich von 15 – 55%, vorteilhaft zwischen 25 – 50%, besonders vorteilhaft zwischen 35 – 50% liegen.

Vorteilhafte im Verfahren verwendete Wirtspflanzen sollten am Triglycerid in sn1-, sn2und sn3-Position eine Verteilung der ungesättigten Fettsäuren wie Ölsäure, Linolsäure und Linolensäure, die die Ausgangsverbindungen im erfindungsgemäßen Verfahren zur Synthese mehrfach ungesättigter Fettsäuren sind, wie in der folgenden Tabelle 5 dargestellt haben, wobei die Zeilen Nr. 1 – 7 verschiedene vorteilhafte Alternativen derartiger Verteilungen wiedergeben. Die Bezeichnung n.v. bedeutet nicht vorhanden.

Tabelle 5: Pflanzen mit vorteilhafter Fettsäureverteilung in sn1-, sn2- und sn3-Postion am Triglycerid

5

Nr.		Ölsäure	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Linolsäure		α-Linolensäure			
	sn1	sn2	sn3	sn1	sn2	sn3	sn1	sn2	sn3
1.	1	1	1	2	4	1	n.v.	n.v.	n.v.
2.	1,4	2,2	1	2,8	9	1	2	6,7	1
3.	0,8	0,8	1.	1,1	1,6	1	1	0,8	1
4.	0,9	0,9	1	1,2	. 1,6	1	0,9	1	1
5.	0,9	0,9	1	· 1	1,3	1	1	1 ,	1 .
6.	1	1,1	1	2	2,8	1	1	1	n.v.
7.	1,3	9,7	1	1	9	Spuren ⁻	1	n.v.	n.v.

Die Zeilen geben die Verhältnisse der folgenden Pflanzen wieder: Zeile 1 = Arachis hypogaea, Zeile 2 = Brassica napus, Zeile 3 = Glycine max, Zeile 4 = Linum usitatissimum, Zeile 5 = Zea mays, Zeile 6 = Olea europaea und Zeile 7 = Theobroma cacao.

Für das Verfahren vorteilhafte Wirtspflanzen sind solche, die einen hohen Anteil an
Ölsäure, das heißt von mindestens 40, 50, 60 oder 70 Gew.-% bezogen auf den
gesamten Fettsäuregehalt der Pflanze haben, im Vergleich zu Linolsäure und/oder
Linolensäure in den Lipiden und/oder Ölen besonders im Triglycerid haben wie z.B.
Anarcardium occidentale, Argania spinosa, Bombax malabaricum, Brassica napus,
Butyrospermum parkii, hoch Ölsäure Distel (Carthamus tinctorius), Citrullus colocythis,
Corylus avellana, Curcurbita foetidissima, Curcurbita pepo, Guizotia abyssinica, hoch
Ölsäure Sonneblume (Helianthus annus), Macadamia intergrifolia, Nigella sativa, Olea
europaea, Papaver somniferium, Passiflora edulis, Persea americana, Prunus amygda-

lis, Prunus armeniaca, Prunus dulcis, Prunus communis, Sesamum indicum, Simarouba glauca, Thea sasumgua, oder Theobroma cacao. Weitere vorteilhafte Pflanzen haben einen höheren Anteil der ungesättigten Fettsäuren Ölsäure, Linolsäure und α-Linolensäure in sn2-Position im Vergleich zu den anderen Positionen sn1 und sn3. Unter höheren Anteil sind Verhältnisse von (sn1:sn2:sn3) 1:1,1:1, 1:1,5:1 bis 1:3:1 zu 5 verstehen. Vorteilhafte Pflanzen wie Actinidia chinensis, Aleurites moluccana, Arnebia griffithii, Brassica alba, Brassica hirta, Brassica nigra, Brassica juncea, Brassica carinata, Camelina sativa, Cannabis sativa, Echium rubrum, Echium vulgare, Humulus lupulus, Juglans regia, Linum usitatissimum, Ocimum spp., Perilla frutescens, Portula-10 ca oleracea, Prunus cerasus, Salicornia bigelovii, Salvia hispanica sind auch solche die einen hohen Anteil an α-Linolensäure im Lipid und/oder Öl der Pflanze aufweisen, das heißt eine Anteil an α-Linolensäure von mindestens 10, 15 oder 20 Gew.-%, vorteilhaft von mindestens 25, 30, 35, 40, 45 oder 50 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Pflanze aufweisen. Ganz besonders vorteilhafte Pflanzen zeigen 15 für die im Verfahren hergestellte Arachidonsäure, Eicosapentaensäure oder Docosahexaensäure ebenfalls eine Präferenz für die sn2-Position im Triglycerid gegenüber den Positionen sn1 und sn3 von vorteilhaft 1:1,1:1; 1:1,5:1 bis 1:3:1.

Für das Verfahren verwendete Pflanzen sollten vorteilhaft einen Gehalt an Erucasäure von weniger als 2 Gew.-% bezogen auf den Gesamtfettsäuregehalt der Pflanze haben. 20 Auch sollte der Gehalt an gesättigten Fettsäuren C16:0 und/oder C18:0 vorteilhaft geringer als 19, 18, 17, 16, 15, 14, 13, 12, 11, oder 10 Gew.-%, vorteilhaft weniger als 9, 8, 7, 6 oder 5 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Pflanze sein. Vorteilhaft sollten auch längere Fettsäuren wie C20:0 oder C22:1 gar nicht oder in nur geringen Mengen vorteilhaft geringer als 4, 3, 2 oder 1 Gew.-%, vorteilhaft weniger als 25 0,9; 0,8; 0,7; 0,6; 0,5; 0,4; 0,3; 0,2 oder 0,1 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Pflanze in den im Verfahren verwendeten Pflanzen vorhanden sein. Typischerweise ist in den für das erfindungsgemäße Verfahren verwendeten Pflanzen kein oder nur in geringen Mengen C16:1 als Fettsäure enthalten. Unter geringen Mengen sind vorteilhaft Gehalte an Fettsäuren zu verstehen, die geringer als 30 4, 3, 2 oder 1 Gew.-%, vorteilhaft weniger als 0,9; 0,8; 0,7; 0,6; 0,5; 0,4; 0,3; 0,2 oder 0,1 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Pflanze sind.

Aus wirtschaftlichen Gründen, das heißt aufgrund der Anbaufläche und Ölerträge werden Pflanzen bevorzugt, die auf großen Flächen angebaut werden, wie Soja, Raps, Senf, Camelina, Lein, Sonnenblume, Ölpalme, Baumwolle, Sesam, Mais, Olive bevorzugt Raps, Camelina, Lein, Sonnenblume im Verfahren als Wirtspflanze gern genommen.

35

40

Auch chemisch reine mehrfach ungesättigte Fettsäuren oder Fettsäurezusammensetzungen sind nach den vorbeschriebenen Verfahren darstellbar. Dazu werden die Fettsäuren oder die Fettsäurezusammensetzungen aus den Pflanzen vorteilhaft den Pflanzensamen in bekannter Weise beispielsweise über aufbrechen der Samen wie Mahlen und anschließender Extraktion, Destillation, Kristallisation, Chromatographie oder Kombinationen dieser Methoden isoliert. Diese chemisch reinen Fettsäuren oder

Fettsäurezusammensetzungen sind für Anwendungen im Bereich der Lebensmittelindustrie, der Kosmetikindustrie und besonders der Pharmaindustrie vorteilhaft.

Als Pflanzen für das erfindungsgemäße Verfahren kommen prinzipiell alle Pflanzen in Frage, die in der Lage sind Fettsäuren zu synthetisieren wie alle dicotylen oder 5 monokotylen Pflanzen, Algen oder Moose. Vorteilhaft Pflanzen sind ausgewählt aus der Gruppe der Pflanzenfamilien Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Compositae, Convolvulaceae, Cruciferae, Cucurbitaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, 10 Lauraceae, Leguminosae, Linaceae, Malvaceae, Moringaceae, Marchantiaceae, Onagraceae, Olacaceae, Oleaceae, Papaveraceae, Piperaceae, Pedaliaceae, Poaceae, Rosaceae oder Solanaceae, vorteilhaft Anacardiaceae, Asteraceae, Boraginaceae, Brassicaceae, Cannabaceae, Compositae, Cruciferae, Cucurbitaceae. Elaeagnaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Leguminosae, 15 Linaceae, Malvaceae, Moringaceae, Marchantiaceae, Onagraceae, Olacaceae, Oleaceae, Papaveraceae, Piperaceae, Pedaliaceae, Poaceae oder Solanaceae. Aber auch Gemüsepflanzen oder Zierpflanzen wie Tagetes kommen für das Verfahren in Betracht.

Beispielhaft seien die folgenden Pflanzen genannt ausgewählt aus der Gruppe: 20 Anacardiaceae wie die Gattungen Pistacia, Mangifera, Anacardium z.B. die Gattung und Arten Pistacia vera [Pistazie], Mangifer indica [Mango] oder Anacardium occidentale [Cashew], Asteraceae wie die Gattungen Artemisia, Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana z.B. die Gattung und Arten Artemisia sphaerocephala, Calendula officinalis [Garten-25 Ringelblume], Carthamus tinctorius [Färberdistel, safflower], Centaurea cyanus [Kornblume], Cichorium intybus [Wegwarte], Cynara scolymus [Artichoke], Helianthus annus [Sonnenblume], Lactuca sativa, Lactuca crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta 30 [Salat], Tagetes lucida, Tagetes erecta oder Tagetes tenuifolia [Studentenblume], Apiaceae wie die Gattung Daucus z.B. die Gattung und Art Daucus carota [Karotte], Betulaceae wie die Gattung Corylus z.B. die Gattungen und Arten Corylus avellana oder Corylus colurna [Haselnuss], Boraginaceae wie die Gattung Adelocaryum, Alkanna, Anchusa, Borago, Brunnera, Cerinthe, Cynoglossum, Echium, Gastrocatyle, 35 Lithospermum, Moltkia, Nonea, Onosma, Onosmodium, Paracaryum, Pectocarya, Symphytum z.B. die Gattung und Art Adelocaryum coelestinum, Alkanna orientalis, Anchusa anzurea, Anchusa capensis, Anchusa hybrida, Borago officinalis [Borretsch]. Brunnera orientalis, Cerinthe minor, Cynoglossum amabile, Cynoglossum lanceolatum, Echium rubrum, Echium vulgare, Gastrocatyle hispida, Lithospermum arvense, Lithospermum purpureocaeruleum, Moltkia aurea, Moltkia coerules, Nonea mac-40 rosperma, Onosma sericeum, Onosmodium molle, Onosmodium occidentale, Paracaryum caelestinum, Pectocarya platycarpa, Symphytum officinale, Brassicaceae wie die

Gattungen Brassica, Camelina, Melanosinapis, Sinapis, Arabadopsis z.B. die Gattun-

gen und Arten Brassica alba, Brassica carinata, Brassica hirta, Brassica napus, Brassica rapa ssp. [Raps], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [Senfl. Brassica 5 oleracea [Futterrübe] oder Arabidopsis thaliana, Bromeliaceae wie die Gattungen Anana, Bromelia (Ananas) z.B. die Gattungen und Arten Anana comosus, Ananas ananas oder Bromelia comosa [Ananas], Caricaceae wie die Gattung Carica wie die Gattung und Art Carica papaya [Papaya], Cannabaceae wie die Gattung Cannabis wie die Gattung und Art Cannabis sative [Hanf], Convolvulaceae wie die Gattungen 10 Ipomea, Convolvulus z.B. die Gattungen und Arten Ipomoea batatus. Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba oder Convolvulus panduratus [Süßkartoffel, Batatel, Chenopodiaceae wie die Gattung Beta wie die Gattungen und Arten Beta vulgaris. Beta vulgaris var. altissima, Beta vulgaris var. Vulgaris, Beta maritima, Beta vulgaris var. 15 perennis, Beta vulgaris var. conditiva oder Beta vulgaris var. esculenta [Zuckerrübe], Crypthecodiniaceae wie die Gattung Crypthecodinium z.B. die Gattung und Art Cryptecodinium cohnii, Cucurbitaceae wie die Gattung Cucubita z.B. die Gattungen und Arten Cucurbita maxima, Cucurbita mixta, Cucurbita pepo oder Cucurbita moschata [Kürbis], Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art Olea europaea [Olive], Ericaceae wie die Gattung Kalmia z.B. die Gattungen und Arten Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros oder Kalmia lucida [Berglorbeer], Euphorbiaceae wie die Gattungen Manihot, Janipha, Jatropha, Ricinus z.B. die Gattungen und Arten Manihot utilissima, Janipha manihot, Jatropha manihot., Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis. Manihot esculenta [Manihot] oder Ricinus communis [Rizinus], Fabaceae wie die Gattungen Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicago, Glycine, Dolichos, Phaseolus, Soja z.B. die Gattungen und Arten Pisum sativum, Pisum arvense, Pisum humile [Erbse], Albizia berteriana, Albizia julibrissin, Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbek, Feuilleea lebbeck, Mimosa lebbeck, Mimosa speciosa [Seidenbaum], Medicago sativa, Medicago falcata, Medicago varia [Alfalfa] Glycine max, Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida oder Soja max [Sojabohne], Geraniaceae wie die Gattungen Pelargonium, Cocos, Oleum z.B. die Gattungen und Arten Cocos nucifera, Pelargonium grossularioides oder Oleum cocois [Kokusnuss], Gramineae wie die Gattung Saccharum z.B. die Gattung und Art Saccharum officinarum, Juglandaceae wie die Gattungen Juglans, Wallia z.B. die Gattungen und Arten Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans

major, Juglans microcarpa, Juglans nigra oder Wallia nigra [Walnuss], Lauraceae Wie

die Gattungen Persea, Laurus z.B. die Gattungen und Arten Laurus nobilis [Lorbeer],

20

25

30

35

40

45

10

15

20

25

30

35

40

45

PCT/EP2005/001863

Persea americana, Persea gratissima oder Persea persea [Avocado], Leguminosae wie die Gattung Arachis z.B. die Gattung und Art Arachis hypogaea [Erdnuss], Linaceae wie die Gattungen Linum, Adenolinum z.B. die Gattungen und Arten Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense oder Linum trigynum [Lein], Lythrarieae wie die Gattung Punica z.B. die Gattung und Art Punica granatum [Granatapfel], Malvaceae wie die Gattung Gossypium z.B. die Gattungen und Arten Gossypium hirsutum, Gossypium arboreum, Gossypium barbadense. Gossypium herbaceum oder Gossypium thurberi [Baumwolle], Marchantiaceae wie die Gattung Marchantia z.B. die Gattungen und Arten Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae wie die Gattung Musa z.B. die Gattungen und Arten Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [Banane], Onagraceae wie die Gattungen Camissonia, Oenothera z.B. die Gattungen und Arten Oenothera biennis, Oenothera grandiflora oder Camissonia brevipes [Nachtkerze], Palmae wie die Gattung Elacis z.B. die Gattung und Art Elaeis guineensis [Ölpalme], Papaveraceae wie die Gattung Papaver z.B. die Gattungen und Arten Papaver orientale, Papaver rhoeas, Papaver dubium [Mohn], Pedaliaceae wie die Gattung Sesamum z.B. die Gattung und Art Sesamum indicum [Sesam], Piperaceae wie die Gattungen Piper, Artanthe, Peperomia, Steffensia z.B. die Gattungen und Arten Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peperomia elongata, Piper elongatum, Steffensia elongata. [Cayennepfeffer], Poaceae wie die Gattungen Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (Mais), Triticum z.B. die Gattungen und Arten Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon Hordeum aegiceras, Hordeum hexastichon., Hordeum hexastichum. Hordeum irregulare, Hordeum sativum, Hordeum secalinum [Gerste], Secale cereale [Roggen], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [Hafer], Sorghum bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum. Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum quineense. Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [Hirse], Oryza sativa, Oryza latifolia [Reis]. Zea mays [Mais] Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum oder Triticum vulgare [Weizen], Porphyridiaceae wie die Gattungen Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia z.B. die Gattung und Art Porphyridium cruentum, Proteaceae wie die Gattung Macadamia z.B. die Gattung und Art Macadamia intergrifolia [Macadamia], Rosaceae wie die Gattung Prunus z.B. die Gattung und Art Prunus armeniaca, Prunus amygdalus, Prunus avilum, Rubiaceae wie die Gattung Coffea z.B. die Gattungen und Arten Cofea spp., Coffea arabica, Coffea canephora oder Coffea

liberica [Kaffee], Scrophulariaceae wie die Gattung Scrophularia, Verbascum z.B. die

34

10

15

35

35

Gattungen und Arten Scrophularia marilandica, Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbascum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Verbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum oder Verbascum thapsus [Königskerzel, Solanaceae wie die Gattungen Capsicum, Nicotiana, Solanum, Lycopersicon z.B. die Gattungen und Arten Capsicum annuum, Capsicum annuum var. glabriuscu-Ium, Capsicum frutescens [Pfeffer], Capsicum annuum [Paprika], Nicotiana tabacum, Nicotiana alata, Nicotiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [Tabak], Solanum tuberosum [Kartoffel], Solanum melongena [Aubergine] Lycopersicon esculentum, Lycopersicon lycopersicum., Lycopersicon pyriforme, Solanum integrifolium oder Solanum lycopersicum [Tomate], Sterculiaceae wie die Gattung Theobroma z.B. die Gattung und Art Theobroma cacao [Kakao] oder Theaceae wie die Gattung Camellia z.B. die Gattung und Art Camellia sinensis [Tee]. Als weitere Pflanzen seien die Gattung und Art Argania spinosa, Arnebia griffithii, Adansonia digitata, Orbignya martiana, Carum carvi, Bertholletia excelsa, Aleurites moluccana, Hydnocarpus kurzii, Salvia hispanica, Vitis vinifera, Corvlus avellana, Humulus lupus, Hyptis spicigera und Shorea stenoptera genannt.

Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Pflanzen wie zwei-20 keimblättrige oder einkeimblättrige Pflanzen verwendet. Besonders vorteilhaft werden transgene Pflanzen im erfindungsgemäßen Verfahren verwendet, die zu den Ölproduzierenden Pflanzen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor (Carthamus tinctoria), 25 Mohn, Senf, Hanf, Rizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, 30 Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte.

Bevorzugte erfindungsgemäße Pflanzen sind Ölsamen- oder Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Saflor, Mohn, Saeptasenf. Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein, Sareptasenf, Camelina oder Hanf.

40 Für die erfindungsgemäßen beschriebenen Verfahren ist es vorteilhaft in die Pflanze zusätzlich zu den unter Verfahrensschritt (a) bis (e) bzw. (a) bis (c) eingebrachten Nukleinsäuren sowie den ggf. eingebrachten Nukleinsäuresequenzen, die für die ω-3-

Desaturasen und/oder die für die ∆-12-Desaturasen codieren, zusätzlich weitere Nukleinsäuren einzubringen, die für Enzyme des Fettsäure- oder Lipidstoffwechsels codieren.

Im Prinzip können alle Gene des Fettsäure- oder Lipidstoffwechsels vorteilhaft in Kombination mit der(den) erfinderischen Δ -5-Elongase(n), Δ -6-Elongase(n) und/oder 5 ω-3-Desaturase(n) [im Sinne dieser Anmeldung soll der Plural den Singular und umgekehrt beinhalten] im Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren verwendet werden vorteilhaft werden Gene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), 10 Acyl-CoA:Lysophospholipid-Acyltransferasen, Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) in 15 Kombination mit der Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet. Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ-4-Desaturasen, Δ -5-Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -12-Desaturasen, Δ-6-Elongasen oder Δ-9-Elongasen in Kombination mit den vorgenannten Genen für die Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase verwendet, 20 wobei einzelne Gene oder mehrere Gene in Kombination verwendet werden können. Vorteilhaft werden die vorgenannten Geni in Kombination mit der erfindungsgemäß verwendeten Δ -6-Elongase, Δ -5-Elongase, Δ -5-Desaturase, Δ -6-Desaturase und/oder ∆-12-Desaturase verwendet

Besonders bevorzugt werden Gene ausgewählt aus der Gruppe der Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -5-Elongase oder Δ -9-Elongasen in Kombination mit den vorgenannten Genen verwendet.

30

35

40

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -6-Elongase-, Δ -6-Desaturase, Δ -5-Desaturase- und/oder ∆-12-Desaturaseaktivität kodieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie Polypeptide mit Δ-8-Desaturase- oder Δ-5- oder Δ-9-Elongaseaktivität kodieren, können im erfindungsgemäßen Verfahren unterschiedlichste mehrfach ungesättigte Fettsäuren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Pflanzen lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA oder ARA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA, oder Fettsäuren, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18: $2^{\Delta 9,12}$) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können.

Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α -Linolensäure (= ALA, C18:3 $^{\Delta 9,12,15}$) vorhanden, wie beispielsweise in Lein, so können als Produkte des Verfahrens nur SDA, ETA oder EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können.

Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen beispielsweise 5 GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und darin enthaltener ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder Mischungen daraus. Wird zusätzlich die Δ-5-Desaturase in die Pflanze eingebracht, so entstehen auch ARA und/oder EPA. Werden darüber hinaus noch Gene eingebracht, die für eine 10 Δ–5-Elongase- und/oder Δ–4-Desaturaseaktivität codieren, so lassen sich die Fettsäuren DPA und/oder DHA im erfindungsgemäßen Verfahren herstellen. Vorteilhaft werden nur ARA, EPA und/oder DHA oder eine Mischung davon synthetisiert, abhängig von der in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen 15 Endprodukte nicht als Reinsubstanzen in den Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, bevorzugt weniger als 15 Gew.-%, besonders bevorzugt weniger als 10 Gew.-%, am meisten bevorzugt weniger als 5, 4, 3, 2 oder 1 Gew.-%, bezogen auf die Endprodukte DGLA, ETA oder deren Mischungen 20 bzw. ARA, EPA oder deren Mischungen bzw. ARA, EPA, DHA oder deren Mischungen.

Neben der Produktion der Ausgangsfettsäuren für die erfindungsgemäß verwendeten Enzyme direkt in der Pflanze können die Fettsäuren auch von außen gefüttert werden. Aus Kostengründen ist die Produktion in der Pflanze bevorzugt. Bevorzugte Substrate für die Produktion von ARA sind die Linolsäure (C18:2 $^{\Delta 9,12}$), die γ-Linolensäure (C18:3 $^{\Delta 6,9,12}$) und die Dihomo-γ-linolensäure (C20:3 $^{\Delta 8,11,14}$). Bevorzugte Substrate für die Produktion von EPA sind die Linolensäure (C18:3 $^{\Delta 9,12,15}$), die Stearidonsäure (C18:4 $^{\Delta 6,9,12,15}$) und die Eicosatetraensäure (C20:4 $^{\Delta 8,11,14,17}$). Bevorzugte Substrate für die Produktion von DHA sind die Linolensäure (C18:3 $^{\Delta 9,12,15}$), die Stearidonsäure (C18:4 $^{\Delta 6,9,12,15}$), die Eicosatetraensäure (C20:4 $^{\Delta 8,11,14,17}$), EPA und DPA.

25

30

35

40

Die erfindungsgemäßen Δ -5-Elongasen haben gegenüber den humanen Elongasen oder Elongasen aus nicht-humanen Tieren wie denen aus Oncorhynchus, Xenopus oder Ciona die vorteilhafte Eigenschaft, dass sie C_{22} -Fettsäuren nicht zu den entsprechenden C_{24} -Fettsäuren elongieren. Weiterhin setzen sie vorteilhaft keine Fettsäuren mit einer Doppelbindung in Δ -6-Position um, wie sie von den humanen Elongasen oder den Elongasen aus nicht-humanen Tieren umgesetzt werden. Besonders vorteilhafte Δ -5-Elongasen setzen bevorzugt nur ungesättigte C_{20} -Fettsäuren um. Diese vorteilhaften Δ -5-Elongasen weisen einige putative Transmembran-Helixes (5 – 7) auf. Vorteilhaft werden nur C_{20} -Fettsäuren mit einer Doppelbindung in Δ -5-Position umgesetzt, wobei ω -3- C_{20} Fettsäuren bevorzugt werden (EPA). Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ -5-Elongaseaktivität vorteilhaft keine oder nur eine relativ geringe Δ -6-Elongaseaktivität

10

15

aufweisen. Im Gegensatz dazu weisen die humanen Elongasen oder nicht-humanen Tier-Elongasen eine annäherend gleiche Aktivität gegenüber Fettsäuren mit einer Δ-6oder Δ -5-Doppelbindung auf. Diese vorteilhaften Elongasen werden als sogenannte monofunktionelle Elongasen bezeichnet. Die humanen Elongasen oder die nichthumanen Tierelongasen werden dem gegenüber als multifunktionelle Elongasen bezeichnet, die neben den vorgenannten Substraten auch monoungesättigte C₁₆- und C_{18} -Fettsäuren beispielsweise mit Δ -9- oder Δ -11-Doppelbindung umsetzen. Vorteilhaft setzen die monofunktionellen Elongasen in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 15 Gew.-% des zugesetzten EPAs zu Docosapentaensäure (DPA, C22:5^{\Delta7,10,13,16,19}), vorteilhaft mindestens 20 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% um. Wird als Substrat γ-Linolensäure (= GLA, C18: $3^{\Delta 6,9,12}$) gegeben, so wird diese vorteilhaft gar nicht elongiert. Ebenfalls wird auch C18:3^{Δ5,9,12} nicht elongiert. In einer anderen vorteilhaften Ausführungsform werden weniger als 60 Gew.-% des zugesetzten GLA zu Dihomo-vlinolensäure (= C20:3^{Δ8,11,14}) umgesetzt, vorteilhaft weniger als 55 Gew.-%, bevorzugt weniger als 50 Gew.-%, besonders vorteilhaft weniger als 45 Gew.-%, ganz besonders vorteilhaft weniger als 40 Gew.-%. In einer weiteren ganz bevorzugten Ausführungsform der erfindungsgemäßen Δ-5-Elongaseaktivität wird GLA nicht umgesetzt.

PCT/EP2005/001863

Die Figuren 27 und 28 geben die gemessenen Substratspezifitäten der verschiedenen Elongasen wieder. In Figur 27 sind die Spezifitäten der multifunktnonellen Elongasen 20 von Xenopus laevis (Fig. 27 A), Ciona intestinalis (Fig. 27 B) und Oncorhynchus mykiss (Fig. 27 C) wiedergegeben. Alle diese Elongasen setzen ein breites Spektrum an Substraten um. Dies kann im erfindungsgemäßen Verfahren zu Nebenprodukten führen, die durch weitere enzymatische Aktivitäten umgesetzt werden müssen. Diese 25 Enzyme sind deshalb im erfindungsgemäßen Verfahren weniger bevorzugt. Die bevorzugten monofunktionellen Elongasen und ihre Substratspezifität werden in Figur 28 wiedergegeben. Figur 28 A zeigt die Spezifität der Ostreococcus tauri Δ-5-Elongase. Dies setzt nur Fettsäuren mit einer Doppelbindung in Δ-5-Position um. Vorteilhaft werden nur C20-Fettsäuren umgesetzt. Eine ähnlich hohe Substratspezifität 30 weist die Δ-5-Elongase von Thalassiosira pseudonana (Fig. 28. C) auf. Sowohl die Δ-6-Elongase von Ostreococcus tauri (Fig. 28 B) als auch die von Thalassiosira pseudonana (Fig. 28 D) setzen vorteilhaft nur Fettsäuren mit einer Doppelbindung in Δ-6-Position um. Vorteilhaft werden nur C18-Fettsäuren umgesetzt. Auch die Δ-5-Elongasen aus Arabidopsis thaliana und Euglena gracilis zeichnen sich durch ihre Spezifität aus.

35 Vorteilhafte erfindungsgemäße Δ-6-Elongasen zeichnen sich ebenfalls durch eine hohe Spezifität aus, das heißt bevorzugt werden C₁₈-Fettsäuren elongiert. Vorteilhaft setzen sie Fettsäuren mit einer Doppelbindung in Δ -6-Position um. Besonders vorteilhafte Δ -6-Elongasen setzen vorteilhaft C₁₈-Fettsäuren mit drei oder vier Doppelbindungen im Molekül um, wobei diese eine Doppelbindung in Δ-6-Position enthalten müssen. 40 Weiterhin haben sie in einer bevorzugten Ausführungsform der Erfindung die Eigenschaft, dass sie neben der Δ -6-Elongaseaktivität vorteilhaft keine oder nur eine relativ geringe Δ-5-Elongaseaktivität aufweisen. Im Gegensatz dazu weisen die humanen

Elongasen oder nicht-humanen Tier-Elongasen eine annäherend gleiche Aktivität

10

15

39

gegenüber Fettsäuren mit einer Δ -6- oder Δ -5-Doppelbindung auf. Diese vorteilhaften Elongasen werden als sogenannte monofunktionelle Elongasen bezeichnet. Die humanen Elongasen oder die nicht-humanen Tierelongasen werden, wie oben beschrieben, dem gegenüber als multifunktionelle Elongasen bezeichnet, die neben den vorgenannten Substraten auch monoungesättigte C₁₆- und C₁₈-Fettsäuren beispielsweise mit Δ -9- oder Δ -11-Doppelbindung umsetzen. Vorteilhaft setzen die monofunktionellen Elongasen in einem Hefefütterungstext, in dem als Substrat EPA den Hefen zugesetzt wurde, mindestens 10 Gew.-% der zugesetzten α -Linolensäure (= ALA, C18: $3^{\Delta 9,12,15}$) bzw. mindestens 40 Gew.-% der zugesetzten γ-Linolensäure (= GLA, C18:3^{\Delta 6,9,12}), vorteilhaft mindestens 20 Gew.-% bzw. 50 Gew.-%, besonders vorteilhaft mindestens 25 Gew.-% bzw. 60 Gew.-% um. Besonders vorteilhaft wird auch C18:4^{Δ6,9,12,15} (Stearidonsäure) elongiert. SDA wird dabei zu mindestens 40 Gew.-%, vorteilhaft zu mindestens 50 Gew.-%, besonders vorteilhaft zu mindestens 60 Gew.-%, ganz besonders vorteihaft zu mindestens 70 Gew.-% umgesetzt. Besonders vorteilhafte Δ-6-Elongasen zeigen keine oder nur eine sehr geringe Aktivität (weniger als 0,1 Gew-% Umsatz) gegenüber den folgenden Substraten: C18:1^{Δ6}, C18:1^{Δ9}, C18:1 $^{\Delta 11}$, C20:2 $^{\Delta 11,14}$, C20:3 $^{\Delta 11,14,17}$, C20:3 $^{\Delta 8,11,14}$, C20:4 $^{\Delta 5,8,11,14}$, C20:5 $^{\Delta 5,8,11,14,17}$ oder C22: $4^{\Delta 7,10,13,16}$.

Die Figuren 29 und 30 sowie die Tabelle 21 gibt die gemessenen Substratspezifitäten der verschiedenen Elongasen wieder.

Die im erfindungsgemäßen Verfahren verwendete ω-3-Desaturase hat gegenüber den bekannten ω -3-Desaturase die vorteilhafte Eigenschaft, dass sie ein breites Spektrum an ω-6-Fettsäuren desaturieren kann, bevorzugt werden C₂₀- und C₂₂-Fettsäuren wie C_{20:2}-, C_{20:3}-, C_{20:4}-, C_{22:4}- oder C_{22:5}-Fettsäuren desaturiert. Aber auch die kürzeren C₁₈-Fettsäuren wie C_{18:2}- oder C_{18:3}-Fettsäuren werden vorteilhaft desaturiert. Durch diese 25 Eigenschaften der ω-3-Desaturase ist es vorteilhaft möglich das Fettsäurespektrum innerhalb eines Organismus vorteilhaft innerhalb einer Pflanze oder einem Pilz von den ω -6-Fettsäuren zu den ω -3-Fettsäuren hin zu verschieben. Bevorzugt werden von der erfindungsgemäßen ω-3-Desaturase C₂₀-Fettsäuren desaturiert. Innerhalb des 30 Organismus werden diese Fettsäuren aus dem vorhandenen Fettsäurepool zu mindestens 10%, 15%, 20%, 25% oder 30% zu den entsprechenden ω-3-Fettsäuren umgesetzt. Gegenüber den C_{18} -Fettsäuren weist die ω -3-Desaturase eine um den Faktor 10 geringere Aktivität auf, das heißt es werden nur ca. 1,5 bis 3% der im Fettsäurepool vorhandenen Fettsäuren zu den entsprechenden ω-3-Fettsäuren umgesetzt. Bevorzugtes Substrat der erfindungsgemäßen ω-3-Desaturase sind die in 35 Phospholipiden gebundenen ω-6-Fettsäuren. Figur 19 zeigt deutlich am Beispiel der Desaturierung von Dihomo-y-linolensäure [$C_{20.4}^{\Delta8,11,14}$], dass die ω -3-Desaturase bei der Desaturierung vorteilhaft nicht zwischen an sn1- oder sn2-Position gebundenen Fettsäuren unterscheidet. Sowohl an sn1- oder sn2-Position in den Phospholipide gebundene Fettsäuren werden desaturiert. Weiterhin ist vorteilhaft, dass die ω-3-40 Desaturase eine breite Palette von Phospholipiden wie Phosphatidylcholin (= PC), Phosphatidylinositol (= PIS) oder Phosphatidylethanolamin (= PE) umsetzt. Schließlich

lassen sich auch Desaturierungsprodukte in den Neutrallipiden (= NL), das heißt in den Triglyceriden finden.

Die im erfingungsgemäßen Verfahren verwendeten Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen haben gegenüber den bekannten Δ -4-Desaturasen, Δ -5-Desaturasen und Δ -6-Desaturasen den Vorteil, dass sie Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft CoA-Fettsäureester umsetzen können.

5

10

15

20

25

30

35

40

Vorteilhaft setzen die im erfingungsgemäßen Verfahren verwendeten Δ -12-Desaturasen Ölsäure (C18:1 $^{\Delta 9}$) zu Linolsäure (C18:2 $^{\Delta 9,12}$) oder C18:2 $^{\Delta 6,9}$ zu C18:3 $^{\Delta 6,9,12}$ (= GLA) um. Vorteilhaft setzen die verwendeten Δ -12-Desaturasen Fettsäuren gebunden an Phospholipide oder CoA-Fettsäureester, vorteilhaft gebunden an CoA-Fettsäureester um.

Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -5-Elongase-, Δ -6-Elongase- und/oder ω -3-Desaturaseaktivität codieren, vorteilhaft in Kombination mit Nukleinsäuresequenzen, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels wie weiteren Polypeptiden mit Δ -4-, Δ -5-, Δ -6-, Δ -8-, Δ -12-Desaturase- oder Δ -5-, Δ -6-oder Δ -9-Elongaseaktivität codieren, können unterschiedlichste mehrfach ungesättigte Fettsäuren im erfindungsgemäßen Verfahren hergestellt werden. Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten vorteilhaften Pflanze lassen sich Mischungen der verschiedenen mehrfach ungesättigten Fettsäuren oder einzelne mehrfach ungesättigte Fettsäuren wie EPA, ARA oder DHA in freier oder gebundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2- oder C18:3-Fettsäuren) entstehen so Fettsäuren, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA, EPA oder DHA. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{A9,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Durch Expression der zusätzlichen ω-3-Desaturase in diesen Pflanzen kann das Fettsäurespektrum auch hin zu α-Linolensäure, DPA und DHA hin verschoben werden. Allerdings ist diese Verschiebung des Fettsäurespektrums nur relativ eingeschränkt möglich. Vorteilhafter ist eine solche Verschiebung in Pflanzen, die , wie im folgenden beschrieben, schon einen hohen Anteil an α-Linolensäure enthalten. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α-Linolensäure (= ALA, C18:3^{Δ9,12,15}) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA, EPA und/oder DHA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität des an der Synthese beteiligten Enzyms Δ-5-Elongase vorteilhaft in Kombination mit der Δ–4–, Δ–5–, Δ–6–, Δ-12-Desaturase und/oder Δ --6-Elongase, oder der Δ --4--, Δ -5--, Δ -8--, Δ -12-Desaturase, und/oder Δ --9--Elongase lassen sich gezielt in den vorgenannten Pflanzen nur einzelne Produkte herstellten. Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen

beispielsweise GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Werden die Δ -5-Desaturase, die Δ -5-Elongase und die Δ -4-Desaturase zusätzlich in die Organismen vorteilhaft in die Pflanze eingebracht, so entstehen zusätzlich ARA, 5 EPA und/oder DHA. Dies gilt auch für Organismen in die vorher die Δ–8–Desaturase und Δ-9-Elongase eingebracht wurde. Vorteilhaft werden nur ARA, EPA oder DHA oder deren Mischungen synthetisiert, abhängig von der in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den 10 Organismen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA, DHA oder deren Mischun-15 gen vorteilhaft EPA oder DHA oder deren Mischungen.

Die im erfindungsgemäßen Verfahren verwendbare aus Forelle stammende Nukleinsäure mit der SEQ ID NO: 53 kodiert für ein Protein, das eine hohe Spezifität für die beiden C18:4 $^{\Delta6,9,12,15}$ - und C20:5 $^{\Delta5,8,11,14,17}$ -Fettsäuren zeigt, diese sind Vorstufen zur Synthese von DHA (Vorstufen und Synthese von DHA siehe Figur 1). Aber auch andere Fettsäuren werden durch das Enzym elongiert. Das von SEQ NO: 53 kodierte Protein hat damit eine Spezifität für $\Delta6$ - und $\Delta5$ -Fettsäuren mit zusätzlich einer $\omega3$ -Doppelbindung (Figur 2). Die Δ -5-Elongase hat eine keto-Acyl-CoA-Synthase-Aktivität, die vorteilhaft Fettsäurereste von Acyl-CoA-Estern um 2 Kohlenstoffatome verlängert.

20

40

Durch das Genprodukt des vorgenannten Fisch-Δ-5-Elongase-Gens und weiterer Δ-5-25 Elongasen, der Δ5-Desaturase aus Phaeodacylum sowie der Δ4-Desaturase aus Euglena konnte die Synthese von DHA in Hefe (Saccharomyces cerevisiae) nachgewiesen werden (Figur 3).

Neben der Produktion der Ausgangsfettsäuren für die im erfindungsgemäßen Verfahren vorteilhaft verwendeten Δ-5-Elongasen, Δ-6-Elongasen, Δ-9-Elongasen, Δ-430 Desaturasen, Δ-5-Desaturasen, Δ-6-Desaturasen, Δ-12-Desaturasen und/oder ω-3-Desaturasen direkt im transgenen Organismus vorteilhaft in der transgenen Pflanze können die Fettsäuren auch von außen gefüttert werden. Aus Kostengründen ist die Produktion im Organismus bevorzugt. Bevorzugt Substrate der ω-3-Desaturase sind die Linolsäure (C18:2^{Δ9,12}), die γ-Linolensäure (C18:3^{Δ6,9,12}), die Eicosadiensäure (C20:2^{Δ11,14}), die Dihomo-γ-linolensäure (C20:3^{Δ8,11,14}), die Arachidonsäure (C20:4^{Δ5,8,11,14}), die Docosatetraensäure (C22:4^{Δ7,10,13,16}) und die Docosapentaensäure (C22:5^{Δ4,7,10,13,15}).

Zur Steigerung der Ausbeute im beschriebenen Verfahren zur Herstellung von Ölen und/oder Triglyceriden mit einem vorteilhaft erhöhten Gehalt an mehrfach ungesättigten Fettsäuren ist es vorteilhaft die Menge an Ausgangsprodukt für die Fettsäuresynthese zu steigern, dies kann beispielsweise durch das Einbringen einer Nukleinsäure in

den Organismus, die für ein Polypeptid mit Δ-12-Desaturase codiert, erreicht werden. Dies ist besonders vorteilhaft in Öl-produzierenden Organismen wie der Familie der Brassicaceae wie der Gattung Brassica z.B. Raps; der Familie der Elaeagnaceae wie die Gattung Elaeagnus z.B. die Gattung und Art *Olea europaea* oder der Familie Fabaceae wie der Gattung Glycine z.B. die Gattung und Art *Glycine max*, die einen hohen Ölsäuregehalt aufweisen. Da diese Organismen nur einen geringen Gehalt an Linolsäure aufweisen (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 - 681) ist die Verwendung der genannten Δ-12-Desaturasen zur Herstellung des Ausgangsprodukts Linolsäure vorteilhaft.

5

35

40

10 Im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren stammen vorteilhaft aus Pflanzen wie Algen beispielsweise Algen der Familie der Prasinophyceae wie aus den Gattungen Heteromastix, Mammella, Mantoniella, Micromonas, Nephroselmis, Ostreococcus, Prasinocladus, Prasinococcus, Pseudoscourfielda, Pycnococcus, Pyramimonas, Scherffelia oder Tetraselmis wie den Gattungen und Arten Heteromastix 15 longifillis, Mamiella gilva, Mantoniella squamata, Micromonas pusilla, Nephroselmis olivacea, Nephroselmis pyriformis, Nephroselmis rotunda, Ostreococcus tauri, Ostreococcus sp. Prasinocladus ascus, Prasinocladus lubricus, Pycnococcus provasolii, Pyramimonas amylifera, Pyramimonas disomata, Pyramimonas obovata, Pyramimonas orientalis, Pyramimonas parkeae, Pyramimonas spinifera, Pyramimonas sp., Tetraselmis apiculata, Tetraselmis carteriaformis, Tetraselmis chui, Tetraselmis convolutae, 20 Tetraselmis desikacharyi, Tetraselmis gracilis, Tetraselmis hazeni, Tetraselmis impellucida, Tetraselmis inconspicua, Tetraselmis levis, Tetraselmis maculata, Tetraselmis marina, Tetraselmis striata, Tetraselmis subcordiformis, Tetraselmis suecica, Tetraselmis tetrabrachia, Tetraselmis tetrathele, Tetraselmis verrucosa, 25 Tetraselmis verrucosa fo. rubens oder Tetraselmis sp. oder aus Algen der Familie Euglenaceae wie aus den Gattungen Ascoglena, Astasia, Colacium, Cyclidiopsis, Euglena, Euglenopsis, Hyalophacus, Khawkinea, Lepocinclis, Phacus, Strombomonas oder Trachelomonas wie die Gattungen und Art Euglena acus, Euglena geniculata, Euglena gracilis, Euglena mixocylindracea, Euglena rostrifera, Euglena viridis, 30 Colacium stentorium, Trachelomonas cylindrica oder Trachelomonas volvocina. Auch aus Algen wie der Alge Porphyridium cruentum, Isochrysis galbana oder Chlorella minutissima, Chlorella vulgaris, Thraustochytrium aureum oder Nannochloropsis oculata können vorteilhaft die im Verfahren verwendeten Nukleinsäuresequenzen stammen. Vorteilhaft stammen die verwendeten Nukleinsäuren aus Algen der Gattun-

Weitere vorteilhafte Pflanzen als Quellen für die im erfindungsgemäße Verfahren verwendeten Nukleinsäuresequenzen sind Algen wie Isochrysis oder Crypthecodinium, Algen/Diatomeen wie Thalassiosira oder Phaeodactylum, Moose wie Physcomitrella oder Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophthora, Entomophthora,

gen Euglena, Mantoniella oder Ostreococcus.

Mucor oder Mortierella, Bakterien wie Shewanella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten, Fröschen, Seegurken oder Fischen. Vorteilhaft stammen die im erfindungsgemäßen Verfahren isolierten, verwendeten Nukleinsäuresequenzen aus einem Tier aus der Ordnung der Vertebraten. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae bzw. Oncorhynchus oder Vertebrata, Amphibia, Anura, Pipidae, Xenopus oder Evertebrata wie Protochordata, Tunicata, Holothuroidea, Cionidae wie Amaroucium constellatum, Botryllus schlosseri, Ciona intestinalis, Molgula citrina, Molgula manhattensis, Perophora viridis oder Styela partita. Besonders vorteilhaft stammen die Nukleinsäuren aus Pilzen, Tieren oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus der Ordnung der Salmoniformes wie der Familie der Salmonidae wie der Gattung Salmo beispielsweise aus den Gattungen und Arten Oncorhynchus mykiss, Trutta trutta oder Salmo trutta fario, aus Algen wie den Gattungen Mantoniella oder Ostreococcus oder aus den Diatomeen wie den Gattungen Thalassiosira oder Phaeodactylum oder aus Algen wie Crypthecodinium.

5

10

15

20

25

30

35

40

Auch aus Mikroorganismen wie Pilze wie der Gattung Mortierella, Phytium z.B. der Gattung und Art Mortierella alpina, Mortierella elongata, Phytium irregulare, Phytium ultimum oder Bakterien wie der Gattung Shewanella z.B. der Gattung und Art Shewanella hanedai können vorteilhafte im erfindungsgemäßen Verfahren verwendete Nukleinsäure stammen.

Vorteilhaft werden im erfindungsgemäßen Verfahren die vorgenannten Nukleinsäuresequenzen oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen codierten Proteine besitzen. Diese Sequenzen werden einzeln oder in Kombination mit den für die Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -5-Elongase, Δ -6-Elongase und/oder ω -3-Desaturase codierenden Nukleinsäuresquenzen in Expressionskonstrukte cloniert und zum Einbringen und zur Expression in Organismen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer transgenen Pflanze, die die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Pflanze mit einer erfindungsgemäßen Nukleinsäuresequenz, die für die Δ -12-Desaturase, Δ -4-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -6-Elongase und/oder ω -3-Desaturase codiert, einem Genkonstrukt oder einem Vektor wie nachfolgend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder Lipidsstoffwechsels codieren, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus dem Samen der Pflanze wie aus dem Samen einer

Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

Unter Anzucht ist beispielsweise die Kultivierung im Falle von Pflanzenzellen, -gewebe oder -organe auf oder in einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur, Blumentopferde oder auf einem Ackerboden zu verstehen.

Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen, die für eine Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase oder Δ-6-Elongase codieren, enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist. Zusätzlich können weitere Biosynthesegene des Fettsäure— oder Lipidstoffwechsels ausgewählt aus der Gruppe bestehend aus Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]— Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure—Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure—Synthase(n), Fettsäure—Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure—Desaturase(n), Fettsäure—Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid—Synthasen, Hydroperoxid—Lyasen oder Fettsäure—Elongase(n) im Genkonstrukt enthalten sein. Vorteilhaft sind zusätzlich Biosynthesegene des Fettsäure— oder Lipidstoffwechsels ausgewählt aus der Gruppe der Δ-8-Desaturase, Δ-9-

20 Desaturase, Δ -9-Elongase oder ω -3-Desaturase enthalten.

5

10

15

25

Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -12-Desaturase-, Δ -5-Elongase- oder Δ -6-Elongase- Aktivität kodieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einer Pflanze ermöglicht, in die Pflanze eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ -12-Desaturase, Δ -5-Desaturase, Δ -6-Desaturase, Δ -5-Elongase und/oder Δ -6-Elongase enthalten sein.

Zum Einbringen der Nukleinsäuren in die Genkonstrukte werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise unterworfen. Vorzugsweise geht man in Anlehnung an das Protokoll der Pfu-DNA-Polymerase oder eines Pfu/Taq-DNA-Polymerasegemisches vor. Die Primer werden unter Berücksichtigung der zu amplifizierenden Sequenz ausgewählt. Zweckmäßigerweise sollten die Primer so gewählt werden, dass das Amplifikat die gesamte kodogene Sequenz vom Start- bis zum Stop-Kodon umfasst. Im Anschluss an die Amplifikation wird das Amplifikat zweckmäßigerweise analysiert. Beispielsweise kann nach gelelektrophoretischer Auftrennung eine quantitative und qualitative Analyse erfolgen. Im Anschluss kann das Amplifikat nach einem Standardprotokoll gereinigt werden (z.B. Qiagen). Ein Aliquot des gereinigten Amplifikats steht dann für die nachfolgende Klonierung zur Verfügung.

10

15

20

25

30

35

40

Geeignete Klonierungsvektoren sind dem Fachmann allgemein bekannt. Hierzu gehören insbesondere Vektoren, die in mikrobiellen Systemen replizierbar sind, also vor allem Vektoren, die eine effiziente Klonierung in Hefen oder Pilzen gewährleisten, und die die stabile Transformation von Pflanzen ermöglichen. Zu nennen sind insbesondere verschiedene für die T-DNA-vermittelte Transformation geeignete, binäre und co-integrierte Vektorsysteme. Derartige Vektorsysteme sind in der Regel dadurch gekennzeichnet, dass sie zumindest die für die Agrobakterium-vermittelte Transformation benötigten vir-Gene sowie die T-DNA begrenzenden Sequenzen (T-DNA-Border) beinhalten. Vorzugsweise umfassen diese Vektorsysteme auch weitere cisregulatorische Regionen wie Promotoren und Terminatorsequenzen und/oder Selektionsmarker, mit denen entsprechend transformierte Organismen identifiziert werden können. Während bei co-integrierten Vektorsystemen vir-Gene und T-DNA-Sequenzen auf demselben Vektor angeordnet sind, basieren binäre Systeme auf wenigstens zwei Vektoren, von denen einer vir-Gene, aber keine T-DNA und ein zweiter T-DNA, jedoch kein vir-Gen trägt. Dadurch sind letztere Vektoren relativ klein, leicht zu manipulieren und sowohl in E. coli als auch in Agrobacterium zu replizieren. Zu diesen binären Vektoren gehören Vektoren der Serien pBIB-HYG, pPZP, pBecks, pGreen. Erfindungsgemäß werden bevorzugt Bin19, pBI101, pBinAR, pGPTV und pCAMBIA verwendet. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446-451.

Für die Vektorpräparation können die Vektoren zunächst mit Restriktionsendonuklease(n) linearisiert und dann in geeigneter Weise enzymatisch modifiziert werden. Im Anschluss wird der Vektor gereinigt und ein Aliquot für die Klonierung eingesetzt. Bei der Klonierung wird das enzymatisch geschnittene und erforderlichenfalls gereinigte Amplifikat mit ähnlich präparierten Vektorfragmenten unter Einsatz von Ligase verbunden. Dabei kann ein bestimmtes Nukleinsäurekonstrukt bzw. Vektor- oder Plasmidkonstrukt einen oder auch mehrere kodogene Genabschnitte aufweisen. Vorzugsweise sind die kodogenen Genabschnitte in diesen Konstrukten mit regulatorischen Sequenzen funktional verknüpft. Zu den regulatorischen Sequenzen gehören insbesondere pflanzliche Sequenzen wie Promotoren und Terminatorsequenzen. Die Konstrukte lassen sich vorteilhafterweise in Mikroorganismen, insbesondere in *E. coli* und *Agrobacterium tumefaciens*, unter Selektionsbedingungen stabil propagieren und ermöglichen einen Transfer von heterologer DNA in Pflanzen oder Mikroorganismen.

Unter der vorteilhaften Verwendung von Klonierungsvektoren können die im Verfahren verwendeten Nukleinsäuren in Pflanzen eingebracht werden und damit bei der Transformation von Pflanzen verwendet werden, wie denjenigen, die veröffentlicht und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225. Die im Verfahren verwendeten Nukleinsäuren

und/oder Vektoren lassen sich damit zur gentechnologischen Veränderung eines breiten Spektrums an Pflanzen verwenden, so dass diese bessere und/oder effizientere Produzenten von PUFAs werden.

Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase-, Δ-5-Desaturase- und/oder Δ-6-5 Desaturase-Proteins möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produktion der mehrfach ungesättigten Fettsäuren in einer Pflanze, bevorzugt in einer Ölsamen- oder Ölfruchtpflanze, aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der Δ-12-Desaturase-, Δ-6-10 Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-5-Desaturase-Proteine oder -Gene kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einer Pflanze, der die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene fehlte, ist 15 möglich. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines 20 Samens oder Öl-speichernden Gewebes ermöglichen.

Durch das Einbringen einer Kombination von Δ -12-Desaturase-, Δ -6-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- und/oder Δ -5-Desaturase-Genen in die Pflanze allein oder in Kombination mit anderen Genen kann nicht nur der Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl eines oder mehrerer Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-5-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, wird die Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäureund Lipidmolekülen in Pflanzen ermöglicht.

25

30

35

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Pflanzen ermöglicht, eingebracht.

Dabei werden die Nukleinsäuresequenzen, die für die Δ -12-Desaturase, Δ -6-Desaturase, Δ -5-Elongase, Δ -6-Elongase oder Δ -5-Desaturase kodieren, mit einem

oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und Proteine ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert 5 und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen, an die Induktoren oder Repressoren binden und dadurch die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationsseguenzen oder anstelle dieser Sequenzen können die natürlichen Regulationselemente dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch so verändert worden sein, dass ihre natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäß verwendeten Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweiser auch eine oder mehrere sogenannte "Enhancer-Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäureseguenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatorsequenzen.

10

15

30

35

40

20 Die Δ -12-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -5-Elongase- und/oder Δ -6-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen in der Wirtspflanze exprimiert werden. Dabei kann das Genkonstrukt oder 25 die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199, SEQ ID NO: 201 oder deren Derivate definiert sind und für Polypeptide gemäß SEQ ID NO: 12, SEQ ID NO: 28, SEQ ID NO: 194, SEQ ID NO: 196, SEQ ID NO: 198, SEQ ID NO: 200, SEQ ID NO: 202 kodieren. Die genannten Δ-12-Desaturase-, Δ-6-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-5-Desaturase-Proteine führen dabei vorteilhaft zu

einer Desaturierung oder Elongierung von Fettsäuren, wobei das Substrat vorteilhaft ein, zwei, drei oder vier Doppelbindungen und vorteilhaft 18, 20 oder 22 Kohlenstoffatome im Fettsäuremolekül aufweist. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.

5

10

15

20

25

30

Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. die in WO 99/16890 beschriebenen.

Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren, die im Embryo und/oder im Endosperm aktiv sind. Samenspezifische Promotoren können prinzipiell sowohl aus dikotyledonen als auch aus monokotyledonen Pflanzen isoliert werden. Im folgenden sind bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Conlinin (Lein) [WO 02/102970], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 und lpt1(Gerste) [WO 95/15389 u. WO95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja) [EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder α-Amylase (Gerste) [EP 781 849].

Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ-12-Desaturase, Δ-6-Desaturase, Δ-5-Elongase, Δ-6-Elongase und/oder Δ-5-Desaturase kodieren, unter der Kontrolle eines eigenen, bevorzugt eines von den anderen Promotoren verschiedenen, Promotors exprimiert werden, da sich wiederholende Sequenzmotive zur Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Die Expressionskassette ist dabei vorteil-

10

15

20

25

30

35

40

haft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle, vorteilhaft in einem Polylinker, zur Insertion der zu exprimierenden Nukleinsäure folgt und gegebenenfalls eine Terminatorsequenz hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach, bevorzugt drei-, vier-, fünf-, sechs- oder siebenmal, so dass bis zu sieben Gene in einem Konstrukt zusammengeführt werden und zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu viermal. Die Nukleinsäuresequenzen werden zur Expression über eine geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihre eigene Terminatorsequenz. Derartige vorteilhafte Konstrukte sind beispielsweise in DE 101 02 337 oder DE 101 02 338 offenbart. Es ist aber auch möglich, mehrere Nukleinsäuresequenzen hinter einem gemeinsamen Promotor und ggf. vor einer gemeinsamen Terminatorsequenz zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch ihre Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatorsequenzen verwendet werden. Es ist aber auch möglich, nur einen Promotortyp in der Kassette zu verwenden, was jedoch zu unerwünschten Rekombinationsereignissen führen kann.

Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatorsequenzen am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stopcodon) abgebrochen werden. Verwendet werden kann hier z.B. die OCS1-Terminatorsequenz. Wie auch für die Promotoren, so sollten für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Pflanzen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtspflanzen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein.

Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthalten sein, diese Gene können aber auch auf einem oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegen des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe bestehend aus Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]—Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure—Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure—Synthase(n), Fettsäure—Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure—Desaturase(n), Fettsäure—Acetylenase(n),

Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure-Elongase(n) oder Kombinationen davon verwendet.

Besonders vorteilhafte Nukleinsäuresequenzen sind Biosynthesegene des Fettsäureoder Lipidstoffwechsels ausgewählt aus der Gruppe der Acyl-CoA: Lysophospholipid-Acyltransferase, ω -3-Desaturase, Δ -8-Desaturase, Δ -4-Desaturase, Δ -9-Desaturase, Δ -5-Elongase und/oder Δ -9-Elongase.

5

10

15

30

40

Dabei können die vorgenannten Nukleinsäuren bzw. Gene in Kombination mit anderen Elongasen und Desaturasen in Expressionskassetten, wie den vorgenannten, kloniert werden und zur Transformation von Pflanzen mit Hilfe von Agrobakterium eingesetzt werden.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen in die Pflanze verwendet werden oder aber in einen Vektor eingebracht werden.

Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im 20 Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturasen, Δ -6-Desaturasen, Δ -5-Elongasen, Δ -6-Elongasen oder Δ -5-Desaturasen kodieren, oder ein Nukleinsäurekonstrukt, das die verwendete Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-CoA:Lysophospholipid-Acyltransferasen, ω -3-Desaturasen, Δ -8-Desaturasen, Δ -9-25 Desaturasen, ω 3-Desaturasen, Δ -4-Desaturasen, Δ -5-Elongasen und/oder Δ -9-Elongasen enthält.

Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, die an es gebunden ist. Ein Vektortyp ist ein "Plasmid", eine zirkuläre doppelsträngige DNA-Schleife, in die zusätzliche DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z.B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer 35 Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch

auch andere Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff "Vektor" auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

- Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfas-5 sen die erfindungsgemäß verwendeten Nukleinsäuren oder das beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignet, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression verwendeten Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz 10 funktionsfähig verbunden ist, umfassen. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die 15 vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z.B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird).
- Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z.B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z.B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, die die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, der gewünschten Expressionsstärke des Proteins usw., abhängen kann.
- Bei einer weiteren Ausführungsform des Verfahrens können die Δ-12-Desaturasen, Δ-6-Desaturasen, Δ-5-Elongasen, Δ-6-Elongasen und/oder Δ-5-Desaturasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in:
- Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.

Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und die funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus *Agrobacterium tumefaciens*-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktive Terminatorsequenzen sind geeignet.

- Da die Regulation der Pflanzengenexpression sehr oft nicht auf Transkriptionsebene beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbundene Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).
- Das zu exprimierende Gen muss, wie oben beschrieben, funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zelloder gewebespezifische Weise auslöst. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S
 CaMV (siehe auch US 5352605 und WO 84/02913) oder konstitutive Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.
 - Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erreichen (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

25

- Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignet, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).
- Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napin-Promotor aus Raps (US 5,608,152), der Conlinin-Promotor aus Lein (WO 02/102970), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus

vulgaris (US 5,504,200), der Bce4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, die die samenspezifische Expression in monokotyledonen Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen.

5

20

35

40

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren sind der virale RNA-Polymerase-Promotor, beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Δ -12-Desaturasen, Δ -6-Desaturasen, Δ -5-Elongasen, Δ -6-Elongasen und/oder Δ -5-Desaturasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment, beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte Literaturstellen).

Im erfindungsgemäßen Verfahren werden die Nukleinsäuresequenzen mit den SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO:197, SEQ ID NO: 199, SEQ ID NO: 201 oder deren Derivate oder Homologe, die für Polypeptide kodieren, die noch die enzymatische Aktivität der durch Nukleinsäuresequenzen kodierten Proteine besitzen, verwendet. Diese Sequenzen werden einzeln oder in Kombination mit den Nukleinsäuresquenzen, die für die anderen verwendeten Enzyme kodieren, in Expressionskonstrukte kloniert und zur Transformation und Expression in Pflanzen verwendet. Diese Expressionskonstrukte ermöglichen durch ihre Konstruktion eine vorteilhafte optimale Synthese der im erfindungsgemäßen Verfahren produzierten mehrfach ungesättigten Fettsäuren.

Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle oder einer ganzen Pflanze, die die im Verfahren verwendeten Nukleinsäuresequenzen enthält, wobei die Zelle und/oder die Pflanze mit einer Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ -12-Desaturase-, Δ -5-Desaturase-, Δ -6-Desaturase-, Δ -5-Elongase- und/oder Δ -6-Elongase-Aktivität kodiert, einem Genkonstrukt oder einem Vektor wie vorstehend beschrieben, allein oder in Kombination mit weiteren Nukleinsäuresequenzen, die für Proteine des Fettsäure- oder

Lipidstoffwechsels kodieren, transformiert wird. Die so hergestellte Zelle ist vorteilhaft

54

eine Zelle eines Öl-produzierenden Organismus wie einer Ölfruchtpflanze wie bei-10 spielsweise Erdnuss, Raps, Canola, Lein, Hanf, Erdnuss, Soja, Färbersaflor, Hanf, Senf, Sonnenblumen oder Borretsch.

"Transgen" bzw. "Rekombinant" im Sinne der Erfindung bedeutet bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette (= Genkonstrukt) oder einem Vektor enthaltend die erfindungsgemäße Nukleinsäuresequenz oder einem Organismus transformiert mit den erfindungsgemäßen Nukleinsäuresequenzen, Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommenen Konstruktionen, in denen sich entweder

- a) die erfindungsgemäße Nukleinsäuresequenz, oder
- b) eine mit der erfindungsgemäßen Nukleinsäuresequenz funktionell verknüpfte
 genetische Kontrollsequenz, zum Beispiel ein Promotor, oder
 - c) (a) und (b)

5

15

25

30

35

40

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitution, Addition, Deletion, Inversion oder Insertion eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen genomischen bzw. chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des natürlichen Promotors der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen mit den entsprechenden Δ-12-Desaturase-, Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Elongase- und/oder Δ -5-Elongasegenen – wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beispielsweise beschrieben in US 5,565,350 oder WO 00/15815.

Unter transgenen Pflanzen im Sinne der Erfindung ist daher zu verstehen, dass sich die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom der Pflanze befinden, wobei die Nukleinsäuren homolog oder heterolog exprimiert werden können. Transgen bedeutet aber auch, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom der Pflanze sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenz verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren oder der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Pflanzen sind Ölsamenoder Ölfruchtpflanzen.

5

10

35

40

Als Pflanzen zur Verwendung im erfindungsgemäßen Verfahren eignen sich prinzipiell vorteilhaft alle Pflanzen, die in der Lage sind Fettsäuren, speziell ungesättigte Fettsäuren wie ARA, EPA und/oder DHA, zu synthetisieren und die für die Expression rekombinanter Gene geeignet sind. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, FärberSaflor (Carthamus tinctorius) oder Kakaobohne genannt. Bevorzugt werden Pflanzen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Soja, Raps, Camelina, Sareptasenf, Kokosnuss, Ölpalme, Färbersaflor (Carthamus tinctorius), Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Flachs, Raps, FärberSaflor, Sonnenblume, Camelina, Sareptasenf oder Calendula.

Weitere für die Klonierung der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).

Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität 30 aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.

Hierzu gehören auch Pflanzenzellen und bestimmte Gewebe, Organe und Teile von Pflanzen in all ihren Erscheinungsformen, wie Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe und Zellkulturen, das von der eigentlichen transgenen Pflanze abgeleitet ist und/oder dazu verwendet werden kann, die transgene Pflanze hervorzubringen.

Transgene Pflanzen bzw. vorteilhaft deren Samen, die die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren, insbesondere ARA, EPA und/oder DHA enthalten, können vorteilhaft direkt vermarktet werden ohne dass die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im

erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Pflanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern,
Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen
Pflanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze
hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen,

56

Grundsätzlich eignet sich das erfindungsgemäße Verfahren auch zur Herstellung mehrfach ungesättigter Fettsäuren, insbesondere von ARA, EPA und/oder DHA in pflanzlichen Zellkulturen und anschließender Gewinnung der Fettsäuren aus den Kulturen. Dabei kann es sich insbesondere um Suspensions- oder Kalluskulturen handeln.

Epidermis- und Samenzellen, Endosperm oder Embyrogewebe.

5

10

15

25

30

35

40

Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Pflanzen vorteilhaft aus den Pflanzensamen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren, insbesondere ARA, EPA und/oder DHA, lassen sich durch Ernten der Pflanzen bzw. Pflanzensamen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten.

Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Öle, Lipide oder freien Fettsäuren aus der Pflanze oder aus der Kultur. Bei der Kultur kann es sich beispielsweise um eine Treibhaus- oder Feldkultur einer Pflanze handeln.

Das Isolieren der Öle, Lipide oder freien Fettsäuren kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen, erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt.

Danach werden die so erhaltenen Produkte, die die mehrfach ungesättigten Fettsäuren enthalten, weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf desodoriert.

WO 2005/083093

5

15

57

Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs bzw. LCPUFAs C_{18} -, C_{20} - oder C_{22} -Fettsäuremoleküle vorteilhaft C_{20} - oder C_{22} -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, fünf oder sechs Doppelbindungen, besonders bevorzugt mit vier, fünf oder sechs Doppelbindungen. Diese C_{18} -, C_{20} - oder C_{22} -Fettsäuremoleküle lassen sich aus der Pflanze in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Pflanzen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

Eine Ausführungsform der Erfindung sind deshalb Öle, Lipide oder Fettsäuren oder
Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

Die im Verfahren gewonnenen Fettsäuren eignen sich auch als Ausgangsmaterial für die chemische Synthese von weiteren Wertprodukten. Sie können beispielsweise in Kombination miteinander oder allein zur Herstellung von Pharmaka, Nahrungsmittel, Tierfutter oder Kosmetika verwendet werden.

Diese Öle, Lipide oder Fettsäuren enthalten wie oben beschrieben vorteilhaft 6 bis 15 % Palmitinsäure, 1 bis 6 % Stearinsäure; 7 – 85 % Ölsäure; 0,5 bis 8 % Vaccensäure, 0,1 bis 1 % Arachinsäure, 7 bis 25 % gesättigte Fettsäuren, 8 bis 85 % einfach 20 ungesättigte Fettsäuren und 60 bis 85 % mehrfach ungesättigte Fettsäuren jeweils bezogen auf 100 % und auf den Gesamtfettsäuregehalt der Organismen. Als vorteilhafte mehrfach ungesättigte Fettsäure sind in den Fettsäureester bzw. Fettsäuregemische bevorzugt mindestens 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 oder 1 % bezogen auf den Gesamtfettsäuregehalt an Arachidonsäure enthalten. Weiterhin enthalten die 25 Fettsäureester bzw. Fettsäuregemische, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, vorteilhaft Fettsäuren ausgewählt aus der Gruppe der Fettsäuren Erucasäure (13-Docosaensäure), Sterculinsäure (9,10-Methylene octadec-9enonsäure), Malvalinsäure (8,9-Methylen Heptadec-8-enonsäure), Chaulmoogrinsäure (Cyclopenten-dodecansäure), Furan-Fettsäure (9,12-Epoxy-octadeca-9,11-30 dienonsäure), Vernonsäure (9,10-Epoxyoctadec-12-enonsäure), Tarinsäure (6-Octadecynonsäure),6-Nonadecynonsäure, Santalbinsäure (t11-Octadecen-9-ynoic acid), 6,9-Octadecenynonsäure, Pyrulinsäure (t10-Heptadecen-8-ynonsäure), Crepenyninsäure (9-Octadecen-12-ynonsäure), 13,14-Dihydrooropheinsäure, Octadecen-13ene-9,11-diynonsäure, Petroselensäure (cis-6-Octadecenonsäure), 9c,12t-35 Octadecadiensäure, Calendulasäure (8t10t12c-Octadecatriensäure), Catalpinsäure (9t11t13c-Octadecatriensäure), Eleosterinsäure (9c11t13t-Octadecatriensäure), Jacarinsäure (8c10t12c-Octadecatriensäure), Punicinsäure (9c11t13c-Octadecatriensäure), Parinarinsäure (9c11t13t15c-Octadecatetraensäure), Pinolensäu-

re (all-cis-5,9,12-Octadecatriensäure), Laballensäure (5,6-Octadecadienallensäure),
40 Ricinolsäure (12-Hydroxyölsäure) und/oder Coriolinsäure (13-Hydroxy-9c,11tOctadecadienonsäure). Die vorgenannten Fettsäuren kommen in den nach dem
erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen

10

15

20

25

30

35

58

in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren und/oder keine Butterbuttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{Δ3,8,12,15,18,21}).

Die vorgenannten Fettsäuren kommen in den nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemischen in der Regel vorteilhaft nur in Spuren vor, das heißt sie kommen bezogen auf die Gesamtfettsäuren zu weniger als 30 %, bevorzugt zu weniger als 25 %, 24 %, 23 %, 22 % oder 21 %, besonders bevorzugt zu weniger als 20 %, 15 %, 10 %, 9 %, 8 %, 7%, 6 % oder 5%, ganz besonders bevorzugt zu weniger als 4 %, 3 %, 2 % oder 1 % vor. In einer weiteren bevorzugten Form der Erfindung kommen diese vorgenannten Fettsäuren bezogen auf die Gesamtfettsäuren zu weniger als 0,9%; 0,8%; 0,7%; 0,6%; oder 0,5%, besonders bevorzugt zu weniger als 0,4%; 0,3%; 0,2%; 0,1% vor. Vorteilhaft enthalten die nach dem erfindungsgemäßen Verfahren hergestellten Fettsäureester bzw. Fettsäuregemische weniger als 0,1 % bezogen auf die Gesamtfettsäuren und/oder keine Buttersäure, kein Cholesterin, keine Clupanodonsäure (= Docosapentaensäure, C22:5^{Δ4,8,12,15,21}) sowie keine Nisinsäure (Tetracosahexaensäure, C23:6^{Δ3,8,12,15,18,21}).

Vorteilhaft enthalten die erfindungsgemäßen Öle, Lipide oder Fettsäuren mindestens 0,5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% oder 10%, vorteilhaft mindestens 11%, 12%, 13%, 14%, 15%, 16% oder 17%, besonders vorteilhaft mindestens 18%, 19%, 20%, 21%, 22%, 23%, 24% oder 25% ARA oder mindestens 0,5%, 1%, 2%, 3%, 4%, 5% oder 6%, vorteilhaft mindestens 7%, 8%, 9%, 10% oder 11% besonders vorteilhaft mindestens 12%, 13%, 14%, 15%, 16%, 17'%, 18%, 19% oder 20% EPA oder mindestens 0,01%, 0,02%, 0,03%, 0,04% oder 0,05% oder 0,06%, vorteilhaft mindestens 0,07%, 0,08%, 0,09 oder 0,1%, besonders vorteilhaft mindestens 0,2%, 0,3% oder 0,4% DHA bezogen auf den Gesamtfettsäuregehalt des Produktionsorganismus vorteilhaft einer Pflanze, besonders vorteilhaft einer Ölfruchtpflanze wie Soja, Raps, Kokosnuss, Ölpalme, Färbersafflor, Flachs, Hanf, Rizinus, Calendula, Erdnuss, Kakaobohne, Sonnenblume oder den oben genannten weiteren ein- oder zweikeimblättrigen Ölfruchtpflanzen. Alle Prozentangaben beziehen sich auf Gewichtsprozente.

Durch die erfindungsgemäßen Nukleinsäuresequenzen bzw. im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen kann eine Steigerung der Ausbeute an mehrfach ungesättigten Fettsäuren, vor allem an ARA und EPA aber auch DHA, von mindestens 50, 80 oder 100 %, vorteilhaft von mindestens 150, 200 oder 250 %,

besonders vorteilhaft von mindestens 300, 400, 500, 600, 700, 800 oder 900 %, ganz besonders vorteilhaft von mindestens 1000, 1100, 1200, 1300, 1400 oder 1500 % gegenüber der nicht transgenen Ausgangspflanze beispielsweise einer Pflanze wie Brassica juncea, Brassica napus, Camelina sativa, Arabidopsis thanliana oder Linum usitatissimum beim Vergleich in der GC-Analyse siehe Beispiele erreicht werden.

5

10

Die im erfindungsgemäßen Verfahren hergestellten Lipide und/oder Öle haben einen höheren Anteil der ungesättigten Fettsäuren Ölsäure, Linolsäure und α-Linolensäure in sn2-Position im Vergleich zu den anderen Positionen sn1 und sn3. Unter höheren Anteil sind Verhältnisse von (sn1:sn2:sn3) 1:1,1:1; 1:1,5:1 bis 1:3:1 zu verstehen. Auch die im Verfahren hergestellte Arachidonsäure, Eicosapentaensäure oder Docosahe-xaensäure zeigen in den Lipiden und/oder Ölen ebenfalls eine Präferenz für die sn2-Position im Triglycerid gegenüber den Positionen sn1 und sn3 von vorteilhaft 1:1,1:1; 1:1,5:1 bis 1:3:1.

Vorteilhaft werden, wie oben beschrieben, die im Verfahren hergestellten mehrfach 15 ungesättigten C₂₀- und/oder C₂₂-Fettsäuren mit vier, fünf oder sechs Doppelbindungen im Molekül im Samen von Pflanzen, die keine oder nur sehr geringe Mengen an C12:0bzw. C14:0-Fettsäuren enthalten. Auch noch kürzere gesättigte Fettsäuren wie die Fettsäuren C4:0, C6:0, C8:0 oder C10:0 sollten nicht oder nur in geringen Mengen im Lipid und/oder Öl vorhanden sein. Unter nur sehr geringen Mengen sind vorteilhaft 20 Mengen zu verstehen, die in der GC-Analyse vorteilhaft unter 5, 4, 3, 2 oder 1 %, vorteilhaft unter 0,9; 0,8; 0,7; 0,6 oder 0,5 %, besonders vorteilhaft unter 0,4; 0,3; 0,2 ider 0,1 %, ganz besonders bevorzugt unter 0,09; 0,08; 0,07; 0,06; 0,05; 0,04; 0,03; 0,02 oder 0,01 Flächeneinheiten in der GC liegen. Die Fettsäure C16:0 sollte vorteilhaft in einem Bereich von 1 bis 28 % GC-Flächeneinheiten liegen. Vorteilhaft sollte die 25 Fettsäure C16:0 in GC-Flächeneinheiten von weniger als 25%, 20%, 15% oder 10%, vorteilhaft von weniger als 9%, 8%, 7%, 6% oder 5%, besonders vorteilhaft von weniger als 4%, 3%, 2% oder 1% oder gar nicht in den Lipiden, Ölen und/oder freien Fettsäuren vorhanden sein. Die Fettsäure C16:1 sollte vorteilhaft weniger als 1; 0,5; 0,4; 0,3; 0,2 oder 0,1 %, besonders vorteilhaft 0,09; 0,08; 0,07; 0,06; 0,05; 0,04; 0,03; 30 0,02 oder 0,01 Flächeneinheiten in der GC betragen. Ganz besonders bevorzugt sollte die Fettsäure C16:1 nicht in den nach dem Verfahren hergestellten Ölen und/oder Lipiden vorhanden sein. Gleiches gilt für die Fettsäuren C15:0, C17:0, C16:1 Δ3trans, C16: $4^{\Delta4,7,10,13}$ und C18: $5^{\Delta3,6,9,12,15}$. Neben Ölsäure (C18: $1^{\Delta9}$) können auch die Isomere (C18:1^{∆7}, C18:1^{∆11}) in den Lipiden, Ölen oder freien Fettsäuren vorhanden sein. 35 Vorteilhaft in Mengen, gemessen als GC-Flächeneinheiten, von weniger als 5%, 4%, 3%, 2% oder 1%. Die Fettsäuren C20:0, C20:1, C24:0 und C24:1 sollten jeweils in einem Bereich von 0 bis 1 %, 0 bis 3% bzw. 0 bis 5 % Flächeneinheiten in der GC liegen. Weiterhin sollte in der GC-Analyse wenig Dihomo-γ-linolensäure (= DGLA) im Samenöl und/oder -lipid in GC-Flächeneinheiten detektierbar sein. Unter wenig sind 40 weniger als 2; 1,9; 1,8; 1,7; 1,6 oder 1,5 %, vorteilhaft weniger als 1,4; 1,3; 1,2; 1,1

oder 1 %, besonders vorteilhaft weniger als 0,9; 0,8; 0,7; 0,6; 0,5 oder 0,4 % in GC-

Flächeneinheiten zu verstehen.

10

15

20

25

30

PCT/EP2005/001863

In einer bevorzugten Ausführungsform des Verfahrens sollte DGLA und ARA in einem Verhältnis von 1:1 bis zu 1:100, vorteilhaft von 1:2 bis zu 1:80, besonders vorteilhaft von 1:3 bis zu 1:70, ganz besonders bevorzugt von 1:5 bis zu 1:60 entstehen.

In weiteren bevorzugten Ausführungsform des Verfahrens sollte DGLA und EPA in einem Verhältnis von 1:1 bis zu 1:100, vorteilhaft von 1:2 bis zu 1:80, besonders vorteilhaft von 1:3 bis zu 1:70, ganz besonders bevorzugt von 1:5 bis zu 1:60 entstehen.

Vorteilhaft sollten die im erfindungsgemäßen Verfahren hergestellten Lipide. Öle und/oder freien Fettsäuren einen hohen Anteil von ungesättigten Fettsäuren vorteilhaft von mehrfach ungesättigten Fettsäuren von mindestens 30, 40 oder 50 Gew.-%. vorteilhaft von mindestens 60, 70 oder 80 Gew.-% bezogen auf den Gesamtfettsäuregehalt in den Samen der transgenen Pflanzen betragen.

Alle gesättigten Fettsäuren zusammen sollten vorteilhaft in den Lipiden, Ölen und/oder freien Fettsäuren bevorzugt verwendeten Pflanzen nur einen geringen Anteil ausmachen. Unter geringen Anteil ist in diesem Zusammenhang ein Anteil in GC-Flächeneinheiten von weniger als 15%, 14%, 13%, 12%, 11% oder 10%, bevorzugt von weniger als 9%, 8%, 7% oder 6% zu verstehen.

Im Verfahren hergestellte Lipide, Öle und/oder freie Fettsäuren sollten vorteilhaft einen Gehalt an Erucasäure von weniger als 2 Gew.-% bezogen auf den Gesamtfettsäuregehalt der Pflanze haben. Vorteilhaft sollte keine Erucasäure in den Lipiden und/oder Olen vorhanden sein. Auch sollte der Gehalt an gesättigten Fettsäuren C16:0 und/oder C18:0 vorteilhaft geringer als 19, 18, 17, 16, 15, 14, 13, 12, 11, oder 10 Gew.-%, vorteilhaft weniger als 9, 8, 7, 6 oder 5 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Lipide und/oder Öle sein. Vorteilhaft sollten auch längere Fettsäuren wie C20:0 oder C22:1 gar nicht oder in nur geringen Mengen vorteilhaft geringer als 4, 3, 2 oder 1 Gew.-%, vorteilhaft weniger als 0,9; 0,8; 0,7; 0,6; 0,5; 0,4; 0,3; 0,2 oder 0,1 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Lipde und/oder Öle sein. Typischerweise ist in den Lipden und/oder Ölen, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, kein oder nur in geringen Mengen C16:1 als Fettsäure enthalten. Unter geringen Mengen sind vorteilhaft Gehalte an Fettsäuren zu verstehen, die geringer als 4, 3, 2 oder 1 Gew.-%, vorteilhaft weniger als 0,9; 0,8; 0,7; 0,6; 0,5; 0,4; 0,3; 0,2 oder 0,1 Gew.-% bezogen auf den gesamten Fettsäuregehalt der Lipide und/oder Öle.

Die nach dem Pressen erhaltenen erfindungsgemäßen Öle, Lipide, Fettsäuren oder 35 Fettsäuregemische werden als sogenannte Rohöle bezeichnet. Diese enthalten noch die gesamten Öl- und/oder Lipidkomponenten, sowie Verbindungen, die in diesen löslich sind. Derartige Verbindunge sind die verschiedenen Tocopherole wie α-Tocopherol, β-Tocopherol, γ-Tocopherol und/oder δ-Tocopherol oder Phytosterole wie Brassicasterol, Campesterol, Stigmasterol, β-Sitosterol, Sitostanol, Δ⁵-Avenasterol, Δ^5 ,24-Stigmastadienol, Δ^7 -Stigmastenol oder Δ^7 -Avenasterol. Diese Verbindungen sind 40 in einem Bereich von 1 bis 1000 mg/100 g vorteilhaft von 10 bis 800 mg/100 g Lipid

10

15

20

25

30

35

40

oder Öl enthalten. Auch Triterpene wie Germaniol, Amyrin, Cycloartanol und andere können in diesen Lipiden und Ölen enthalten sein. Diese Lipide und/oder Öle enthalten die im Verfahren hergestellten mehrfach ungesättigten Fettsäuren wie ARA, EPA und/oder DHA gebunden in polaren und unpolaren Lipiden wie Phospholipiden z.B.

Phosphatidylcholin, Phosphatidylethanolamin, Phosphatidylinositol, Phosphatidylserin, Phosphatidylglycerin, Galactolipiden, Monoglyceride, Diglyceride oder Triglyceride um nur einige zu nennen. Auch Lysophospholipide können in den Lipiden und/oder Ölen vorkommen. Diese Komponenten der Lipide und/oder Öle können durch geeignete Methoden voneinander getrennt werden. Nicht enthalten in diesen Rohölen ist Cholesterol.

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika. Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Typisch für derartige Fischöle kurzkettige Fettsäuren wie C12:0, C14:0, C14:1, verzweigtkettiges C15:0, C15:0, C16:0 oder C16:1. Auch mehrfach ungesättige C16-Fettsäuren wie C16:2, C16:3 oder C16:4, verzweigtkettiges C17:0, C17:1, verzweigtkettiges C18:0 und C19:0 sowie C19:0 und C19:1 kommen im Fischöl vor. Derartige Fettsäuren sind typisch für Fischöle und werden nur selten oder gar nicht in pflanzlichen Ölen gefunden. Wirtschaftlich relevante Fischöle sind z.B. Anchovissöl, Menhadneöl, Tunfischöl, Sardinenöl, Heringsöl, Markrelenöl, Walöl und Lachsöl. Diese Lipide und/oder Öle tierischen Ursprungs können zum Abmischen mit den erfindungsgemäßen Ölen in Form von Rohölen, das heißt in Form von Lipiden und/oder Ölen, die noch nicht aufgereinigt wurden, verwendet werden oder aber es können verschieden aufgereinigte Fraktionen zum Abmischen verwendet werden.

Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.

Die erfindungsgemäßen Öle, Lipide, Fettsäuren oder Fettsäuregemische können in der dem Fachmann bekannten Weise zur Abmischung mit anderen Ölen, Lipiden, Fettsäuren oder Fettsäuregemischen tierischen Ursprungs wie z.B. Fischölen verwendet werden. Auch diese Öle, Lipide, Fettsäuren oder Fettsäuregemische, die aus pflanzlichen und tierischen Bestandteilen bestehen, können zur Herstellung von Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika verwendet werden.

Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ -Linolensäure, Dihomo- γ -linolensäure, Arachidonsäure, α -Linolensäure, Stearidonsäure, Eicosatetraensäure,

WO 2005/083093 PCT/EP2005/001863 **62**

Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 %, 85% oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Palmitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangspflanze der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

5

- 25

30

35

40

Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen enthalten, handelt es sich wie oben beschrieben beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte
15 Fettsäuren mit vorteilhaft mindestens fünf oder sechs Doppelbindungen lassen sich
die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft
in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische
Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch
direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipidund PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in eine Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder vorteilhaft in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewähr-

leistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen Expression in die Organismen vorteilhaft zur multiparallelen samenspezifischen Expression von Genen in die Pflanzen gebracht.

- 5 Die Co-Expression mehrerer Gene kann natürlich nicht nur durch Einbringen der Gene auf einem gemeinsamen rekombinanten Nukleinsäurekonstrukt erfolgen. Vielmehr können einzelne Gene auch separat gleichzeitig oder nacheinander auf verschiedenen Konstrukten eingebracht werden. Hier wird z.B. durch die Verwendung verschiedener Selektionsmarker die gleichzeitige Anwesenheit in der alle Gene coexprimierenden Pflanze sichergestellt. Diese Pflanze kann das Produkt eines oder mehrerer Transformationsvorgänge sein, oder aber auch ein Kreuzungsprodukt von Pflanzen, die eines oder mehrere der Gene enthalten.
- Als Substrate der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit ω-3-Desaturase-, Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-15 Desaturase-, Δ-8-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongaseund/oder Δ-9-Elongase-Aktivität kodieren, und/oder den weiteren verwendeten Nukleinsäuren wie den Nukleinsäuren, die für Polypeptide des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-20 Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure–Hydroxylase(n), Acetyl-Coenzym A–Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenase(n), Lipoxygenase(n), Triacylglycerol-Lipase(n), Allenoxid-Synthase(n), Hydroperoxid-Lyase(n) oder Fettsäure–Elongase(n) kodieren, eignen sich vorteilhaft C₁₆-, C₁₈-, C₂₀-25 oder C22-Fettsäuren. Bevorzugt werden die im Verfahren als Substrate umgesetzten Fettsäuren in Form ihrer Acyl-CoA-Ester und/oder ihrer Phospholipid-Ester umgesetzt. Vorteilhaft werden im Verfahren Desaturasen verwendet, die eine Spezifität für die Acyl-CoA-Ester haben. Dies hat den Vorteil, dass kein Ausstausch zwischen den

Zur Herstellung der erfindungsgemäßen langkettigen PUFAs müssen die mehrfach ungesättigten C₁₆- oder C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C₁₈- oder C₂₀-Fettsäuren und nach zwei Elongationsrunden zu C₂₀- oder C₂₂-Fettsäuren. Die Aktivität der im erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren vorteilhaft mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier, fünf oder sechs Doppelbindungen, am meisten bevorzugt mit vier, fünf

Phospholipid-Estern, die in der Regel das Substrat der Desaturierung sind, und den

sich gezeigt hat, in einigen Fällen ein limitierender Schritt ist.

Acyl-CoA-Estern stattfinden muss. Dadurch entfällt ein weiterer Enzymschritt, der, wie

30

35

40

25

30

35

oder sechs Doppelbindungen im Molekül. Besonders bevorzugte Produkte des erfindungsgemäßen Verfahrens sind Arachidonsäure, Eicosapentaensäure und/oder Docosahexaensäure. Die C₁₈-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

Der bevorzugte Biosyntheseort von Fettsäuren, Ölen, Lipiden oder Fette in den vorteilhaft verwendeten Pflanzen ist beispielsweise im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression der im Verfahren verwendeten Nukleinsäuren sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.

Durch die Verwendung der erfindungsgemäßen Nukleinsäuren, die für eine Δ-5-Elongase codieren, können im Verfahren die hergestellten mehrfach ungesättigten Fettsäuren mindestens um 5 %, bevorzugt mindestens um 10 %, besonders bevorzugt mindestens um 20 %, ganz besonders bevorzugt um mindestens 50 % gegenüber dem Wildtyp der Organismen, die die Nukleinsäuren nicht rekombinant enthalten, erhöht werden.

Durch das erfindungsgemäße Verfahren können die hergestellten mehrfach ungesättigten Fettsäuren in den im Verfahren verwendeten Pflanzen prinzipiell auf zwei Arten erhöht werden. Es kann entweder der Pool an freien mehrfach ungesättigten Fettsäuren und/oder der Anteil der über das Verfahren hergestellten veresterten mehrfach ungesättigten Fettsäuren erhöht werden. Vorteilhaft wird durch das erfindungsgemäße Verfahren der Pool an veresterten mehrfach ungesättigten Fettsäuren in den transgenen Organismen erhöht.

Ein weiterer erfindungsgemäßer Gegenstand sind isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-Elongase codieren, wobei die durch die Nukleinsäuresequenzen codierten Δ -5-Elongasen C₂₀-Fettsäuren mit mindestens vier Doppelbindungen im Fettsäuremolekül umsetzen; die vorteilhaft letztlich in Diacylglyceride und/oder Triacylglyceride eingebaut werden.

Ein weiterer Erfindungsgegenstand ist somit eine isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -5-Elongase codiert und die in SEQ ID NO: 197 dargestellte Sequenz hat.

Ein weiterer Erfindungsgegenstand ist eine isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -6-Elongaseaktivität codiert und die in SEQ ID NO: 199 dargestellte Sequenz hat.

Noch ein weiterer Erfindungsgegenstand ist eine isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -6-Desaturaseaktivität codiert und die in SEQ ID NO: 201 dargestellte Sequenz hat.

Ebenfalls zu den Erfindungsgegenständen gehört ein rekombinantes Nukleinsäure-5 molekül, umfassend:

- a) eine oder mehrere Kopien eines in Pflanzenzellen, bevorzugt in Samenzellen, aktiven Promotors,
- b) mindestens eine Nukleinsäuresequenz mit der in SEQ ID NO: 193 oder SEQ ID NO: 201 dargestellten Sequenz, die für eine Δ-6-Desaturase-Aktivität kodiert,
- 10 c) mindestens eine Nukleinsäuresequenz mit der in SEQ ID NO: 11 dargestellten Sequenz, die für eine Δ -5-Desaturase-Aktivität kodiert,
 - mindestens eine Nukleinsäuresequenz mit der in SEQ ID NO: 27 oder SEQ ID
 NO: 199 dargestellten Sequenz, die für eine Δ-6-Elongase-Aktivität kodiert, und
 - e) eine oder mehrere Kopien einer Terminatorsequenz.

20

25

Vorteilhaft kann in dem rekombinanten vorgenannten Nukleinsäuremolekül noch zusätzlich eine Nukleinsäuresequenz mit der in SEQ ID NO: 195 dargestellten Sequenz, die für eine Δ-12-Desaturase kodiert, enthalten sein.

In einer weiteren vorteilhaften Ausführungsform kann in dem rekombinanten Nukleinsäuremolekül vorteilhaft noch zusätzlich eine Nukleinsäuresequenz mit der in SEQ ID NO: 197 dargestellten Sequenz, die für eine Δ-5-Elongase kodiert, enthalten sein.

Neben diesen genannten Sequenzen können in das rekombinanten Nukleinsäuremolekül noch weitere Biosynthesegene des Fettsäure— oder Lipidstoffwechsels
ausgewählt aus der Gruppe bestehend aus Acyl-CoA-Dehydrogenase(n), Acyl-ACP[=
acyl carrier protein]—Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure—AcylTransferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure—
Synthase(n), Fettsäure—Hydroxylase(n), Acetyl-Coenzym A—Carboxylase(n), AcylCoenzym A—Oxidase(n), Fettsäure—Desaturase(n), Fettsäure—Acetylenasen, Lipoxygenasen, Triacylglycerol–Lipasen, Allenoxid—Synthasen, Hydroperoxid—Lyasen und
Fettsäure—Elongase(n) eingebracht werden.

30 Bevorzugt sind dies Gene des Fettsäure- oder Lipidstoffwechsels ausgewählt aus der Gruppe bestehend aus Δ -4-Desaturase-, Δ -8-Desaturase-, Δ -9-Desaturase- oder Δ -9-Elongase.

Ein weiterer Erfindungsgegenstand sind Genkonstrukte, die die erfindungsgemäßen Nukleinsäuresequenzen SEQ ID NO: 11, SEQ ID NO: 27, SEQ ID NO: 193, SEQ ID NO: 195, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 enthalten, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.

Vorteilhaft stammen alle die im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen aus einem eukaryontischen Organismus wie einer Pflanze, einem Mikroorganismus wie einer Alge oder einem Tier. Bevorzugt stammen die Nukleinsäuresequenzen aus der Ordnung Salmoniformes, Xenopus oder Ciona, Algen wie Mantoniella, Crypthecodinium, Euglena oder Ostreococcus, Pilzen wie der Gattung Phytophtora oder von Diatomeen wie den Gattungen Thalassiosira oder Phaeodactylum.

5

Die im Verfahren verwendeten Nukleinsäuresequenzen, die für Proteine mit ω-3-Desaturase-, Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-10 9-Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase- Aktivität codieren, werden vorteilhaft allein oder bevorzugt in Kombination in einer Expressionskassette (= Nukleinsäurekonstrukt), die die Expression der Nukleinsäuren in einer Pflanze, eingebracht. Es kann im Nukleinsäurekonstrukt mehr als eine Nukleinsäuresequenz einer enzymatischen Aktivität wie z.B. einer Δ-12-Desaturase, Δ-4-Desaturase, Δ-5-Desaturase, Δ-6-Desaturase, Δ-5-Elongase und/oder ω-3-Desaturase enthalten sein.

Zum Einbringen in die Pflanze werden die im Verfahren verwendeten Nukleinsäuren vorteilhaft einer Amplifikation und Ligation in bekannter Weise, wie oben beschrieben, unterworfen.

20 Es gibt eine Reihe von Mechanismen, durch die eine Veränderung des erfindungsgemäßen Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase, Δ-5-Desaturase-, Δ-4-Desaturase-, Δ-6-Desaturase- und/oder ω-3-Desaturase-Proteins sowie der weiteren im Verfahren verwendeten Proteine wie die Δ -12-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase- oder Δ-4-Desaturase-25 Proteine möglich ist, so dass die Ausbeute, Produktion und/oder Effizienz der Produktion der vorteilhaft mehrfach ungesättigten Fettsäuren in einer Pflanze bevorzugt in einer Ölfruchtpflanze aufgrund dieses veränderten Proteins direkt beeinflusst werden kann. Die Anzahl oder Aktivität der Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase-30 oder Δ-4-Desaturase-Proteine oder -Gene kann erhöht werden, so dass größere Mengen der Genprodukte und damit letztlich größere Mengen der Verbindungen der allgemeinen Formel I hergestellt werden. Auch eine de novo Synthese in einer Pflanze, der die Aktivität und Fähigkeit zur Biosynthese der Verbindungen vor dem Einbringen des/der entsprechenden Gens/Gene fehlte, ist möglich. Entsprechendes gilt für die 35 Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Fettsäure- und Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d.h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z.B. abhängig vom Reifegrad eines Samens oder Öl-40 speichernden Gewebes ermöglicht.

10

15

Durch das Einbringen eines Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongaseund/oder Δ-4-Desaturase-Genes in eine Pflanze allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöht, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöht oder de novo geschaffen werden. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Fettsäuren, Ölen, polaren und/oder neutralen Lipiden nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Gene, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Gene, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Organismen und vorteilhaft aus Pflanzen zu steigern.

Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle 20 codieren für Proteine oder Teile von diesen, wobei die Proteine oder das einzelne Protein oder Teile davon eine Aminosäureseguenz enthält, die ausreichend homolog zu einer Aminosäuresequenz ist, die in den Sequenzen SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, 25 SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, 30 SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 184, SEQ ID NO: 194, SEQ ID NO: 198, SEQ ID NO: 200 oder 35 SEQ ID NO: 202 dargestellt ist, so dass die Proteine oder Teile davon noch eine Δ-12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturase-Aktivität aufweisen. Vorzugsweise haben die Proteine oder Teile davon, die von dem Nukleinsäuremolekül/den Nukleinsäuremolekülen kodiert wird/werden, noch seine wesentliche enzymati-40 sche Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen oder Lipidkörperchen in Organismen vorteilhaft in Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft sind die von den Nukleinsäuremolekülen kodierten Proteine zu mindestens etwa 50 %, vorzugsweise mindestens etwa 60 % und stärker bevorzugt mindestens etwa 70 %,

80 % oder 90 % und am stärksten bevorzugt mindestens etwa 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr identisch zu den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID 5 NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID 10 NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 184, SEQ ID NO: 194, 15 SEQ ID NO: 198, SEQ ID NO: 200 oder SEQ ID NO: 202 dargestellten Aminosäuresequenzen. Im Sinne der Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.

Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fach-20 mann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and 25 Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, 30 Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Diese Einstellungen wurden, falls nicht anders angegeben, immer als Standardeinstellungen für Sequenzvergleiche verwendet wurden.

Unter wesentlicher enzymatischer Aktivität der im erfindungsgemäßen Verfahren verwendeten Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase ist zu verstehen, dass sie gegenüber den durch die Sequenz mit SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID

NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 und deren Derivate codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % und ganz besonders 40 % aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren, Fettsäureester wie Diacylglyceride und/oder Triacylglyceride in einem Organismus vorteilhaft einer Pflanze oder Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei C₁₈-, C₂₀- oder C₂₂-Kohlenstoffketten im Fettsäuremolekül mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier, fünf oder sechs Stellen gemeint sind.

5

10

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Bakterien, Pilzen, 15 Diatomeen, Tieren wie Caenorhabditis oder Oncorhynchus oder Pflanzen wie Algen oder Moosen wie den Gattungen Shewanella, Physcomitrella, Thraustochytrium, Fusarium, Phytophthora, Ceratodon, Mantoniella, Ostreococcus, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium, speziell aus den Gattungen und Arten Oncorhynchus mykiss, Xenopus laevis, Ciona intestinalis, 20 Thalassiosira pseudonona, Mantoniella squamata, Ostreococcus sp., Ostreococcus tauri, Euglena gracilis, Physcomitrella patens, Phytophtora infestans, Fusarium graminaeum, Cryptocodinium cohnii, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Thraustochytrium sp., Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricornutum, Caenorhabditis elegans oder besonders 25 vorteilhaft aus Oncorhynchus mykiss, Euglena gracilis, Thalassiosira pseudonana oder Crypthecodinium cohnii.

Alternativ können im erfindungsgemäßen Verfahren Nukleotidsequenzen verwendet werden, die für eine Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-Desaturase, Δ -5-Elongase oder Δ -4-30 Desaturase codieren und die an eine Nukleotidseguenz, wie in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, 35 SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, 40 SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 dargestellt, vorteilhaft unter stringenten Bedingungen hybridisieren.

Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Organismen wie Mikroorganismen oder Pflanzen ermöglicht, eingebracht.

Dabei werden die Nukleinsäuresequenzen, die für die Δ -12-Desaturase, ω -3-Desaturase, Δ -9-Elongase, Δ -6-Desaturase, Δ -8-Desaturase, Δ -6-Elongase, Δ -5-5 Desaturase, Δ-5-Elongase oder Δ-4-Desaturase codieren, mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtspflanze 10 bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die 15 natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulati-20 onssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequen-25 zen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie 30 weitere regulatorische Elemente oder Terminatoren. Die Δ-12-Desaturase-, ω-3-Desaturase-, Δ-4-Desaturase-, Δ5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ -5-Elongase-, Δ -6-Elongase- und/oder Δ -9-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses 35 Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen.

Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie

Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in
Promotoren vor, wie den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285–294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitin- oder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992:397–404 (Gatz et al., Tetracyclin-induzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol-oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosyl-pyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr.

- U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-
- Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica), von Baeumlein et al., Plant J., 2, 2,
- 1992:233–239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt–2– oder lpt–1–Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.
- Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z.B. beschrieben in WO 99/16890.
- Um einen besonders hohen Gehalt an PUFAs vor allem in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samenspezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samen-spezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Derartige vorteilhafte Promotoren sind weiter oben aufgeführt z.B. der USP-, Vicilin-, Napin-, Oleosin-, Phaseolin-, Bce4-, LegB4-, Lpt2-, lpt1-, Amy32b-, Amy 6-6-, Aleurain- oder Bce4-Promotor.

Darüber hinaus sind auch chemisch induzierbaren Promotor vorteilhaft im erfindungsgemäßen Verfahren nutzbar.

Weitere vorteilhafte Promotoren, die vorteilhaft zur Expression in Soya geeignet sind, sind die Promotoren der β -Conglycinin- α -Untereinheit, der β -Conglycinin- β -

Untereinheit, des Kunitz-Trypsininhibitors, des Annexin, des Glysinin, des Albumin 2S, des Legumin A1, des Legumin A2 und der des BD30.

Besonders vorteilhafte Promotoren sind der USP-, LegB4-, Fad3-, SBP-, DC-3- oder Cruciferin820 Promotor.

Vorteilhafte Regulationssequenzen, die für die Expression der im erfindungsgemäßen
10 Verfahren verwendeten Nukleinsäuresequenzen benutzt werden, sind Terminatoren für die Expression vorteilhaft in Soya sind der Leg2A3', Kti3', Phas3', BD30 3' oder der AIS3'.

Besonders vorteilhafte Terminatoren sind der A7T-, OCS-, LeB3T- oder cat-Terminator.

- Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte, wie oben beschrieben, jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ-12-Desaturase, ω-3-Desaturase, Δ-9-Elongase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase und/oder Δ-4-Desaturase codieren, unter der Kontrolle eines eigenen
 bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholen-
- de Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen führen können. Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Pflanze eingebracht werden sollen.
- Die zur Expression der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren vorteilhaft genutzten regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen.
 - Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäuren, die für die Δ -12-Desaturasen, ω -3-
- Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen oder Δ -4-Desaturasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels wie den Acyl-CoA:Lysophospholipid-Acyltransferasen, ω -3-Desaturasen, Δ -4-Desaturasen, Δ -5-
- Desaturasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -9-Desaturasen, Δ -12-Desaturasen, ω 3-Desaturasen, Δ -5-Elongasen, Δ -6-Elongasen und/oder Δ -9-Elongasen.

Wie hier verwendet und beschrieben, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist.

10

15

20

25

30

Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Δ-12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ -4-Desaturasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können die Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S.71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in

Die Expression von Proteinen in Prokaryoten, vorteilhaft zu einfachen Detektion der enzymatischen Aktivität z.B. zum Nachweis der Desaturase- oder Elongaseaktivität, erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u.a. pGEX (Pharmacia Biotech Inc; Smith, D.B., und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

vitro transkribiert und translatiert werden.

Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u.a. pTrc (Amann et al. (1988) Gene 69:301-315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. 5 Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

10

35

Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, Agt11 or pBdCl, in Streptomyces plJ101, plJ364, plJ702 oder plJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen 20 pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: 25 van den Hondel, C.A.M.J.J., & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, 30 YEp6, YEp13 oder pEMBLYe23.

Alternativ können die Δ -12-Desaturasen, ω -3-Desaturasen, Δ -9-Elongasen, Δ -6-Desaturasen, Δ -8-Desaturasen, Δ -6-Elongasen, Δ -5-Desaturasen, Δ -5-Elongasen und/oder Δ-4-Desaturasen in Insektenzellen unter Verwendung von Baculovirus-Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (z.B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).

Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum 40 Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E.F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1989.

- Zum Nachweis der Enzymaktivität können die Δ-12-Desaturasen, ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen, Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3):239-251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z.B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15-38.
- Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-T-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.
- Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711).
 - Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zelloder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195-2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

35

Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 und darin zitierte

Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer
 Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397-404) und ein Ethanol-induzierbarer Promotor.

Auch Promotoren, die auf biotische oder abiotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alpha-Amylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

15

Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Fettsäure-, Lipid- und Ölbio-20 synthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bce4-Promotor aus 25 Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 30 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen).

Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Δ-12Desaturasen, ω-3-Desaturasen, Δ-9-Elongasen, Δ-6-Desaturasen, Δ-8-Desaturasen,
Δ-6-Elongasen, Δ-5-Desaturasen, Δ-5-Elongasen und/oder Δ-4-Desaturasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane
Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt
durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können
mehrere Vektoren mit jeweils mehreren Expressionskassetten transformiert und auf die
Wirtszelle übertragen werden.

Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

5

35

Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion, wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z.B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

Die vorteilhafterweise verwendeten Wirtsorganismen sind Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Besonders bevorzugt sind Pflanzen, wie Ölsamen- oder Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Saflor, Sareptasenf, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis,
 Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuss, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Saflor, Bäume (Ölpalme, Kokosnuss).

Ein weiterer erfindungsgemäßer Gegenstand ist, wie oben beschrieben, eine isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ -5-Elongase-Aktivität codiert und die die in in SEQ ID NO: 197 dargestellte Sequenz hat, wobei die durch die Nukleinsäuresequenz codierte Elongase C_{16} - und C_{18} - Fettsäuren mit einer Doppelbindung nicht elongiert. Auch mehrfach ungesättigte C_{18} -Fettsäuren mit einer Δ 6-Doppelbindung oder C_{22} -Fettsäuren werden nicht umgesetzt. Durch die enzymatische Aktivität werden vorteilhaft nur mehrfach ungesättigte C_{20} -Fettsäuren mit einer Δ 5-Doppelbindung elongiert. Weitere Erfindungsgegenstände sind, wie oben beschrieben, eine Δ -6-Elongase, Δ -6-Desaturase und eine Δ -12-Desaturase.

Der Begriff "Nukleinsäure(molekül)", wie hier verwendet, umfasst in einer vorteilhaften Ausführungsform zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs WO 2005/083093 PCT/EP2005/001863 78

gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z.B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturasemolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.

5

10

15

20

25

30

35

40

Die im Verfahren verwendeten Nukleinsäuremoleküle, z.B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann Mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID

WO 2005/083093

NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID 5 NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, 10 verwendet werden (z.B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind). Zum Beispiel lässt sich mRNA aus Zellen isolieren (z.B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Bioche-15 mistry 18:5294-5299) und cDNA mittels Reverser Transkriptase (z.B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transkriptase, erhältlich von Seikagaku America, Inc., St.Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, 20 SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID 25 NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, 30 SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 gezeigten Sequenzen oder Mithilfe der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, 35 SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, 40 SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 184, SEQ ID NO: 194, SEQ ID NO: 198, SEQ ID NO: 200 oder SEQ ID NO: 202 dargestellten Aminosäuresequenzen erstellen. Eine der vorgenannten Nukleinsäuren kann unter 45

Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

5

Homologe der verwendeten Δ-12-Desaturase-, ω-3-Desaturase-, Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, SEQ ID NO: 10 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15. SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35. SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID 15 NO: 59. SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID 20 NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 oder 60 %, vorzugsweise mindestens etwa 60 oder 70 %, stärker bevorzugt mindestens etwa 70 oder 80 %, 90 % oder 95 % und noch stärker bevorzugt mindestens etwa 85 25 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, 99 % oder mehr Identität bzw. Homologie zu einer in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID 30 NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID 35 NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder 40 Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID

NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID

5

15

25

30

NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID

NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID

NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID

NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID

NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID

NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID

NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183,

SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z.B. unter stringenten

Bedingungen hybridisiert. Unter einem Teil gemäß der Erfindung ist dabei zu verstehen, dass mindestens 25 Basenpaare (= bp), 50 bp, 75 bp, 100 bp, 125 bp oder 150

bp, bevorzugt mindestens 175 bp, 200 bp, 225 bp, 250 bp, 275 bp oder 300 bp,

besonders bevorzugt 350 bp, 400 bp, 450 bp, 500 bp oder mehr Basenpaare für die Hybridisierung verwendet werden. Es kann auch vorteilhaft die Gesamtsequenz verwendet werden. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ

ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11,

20 SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21,

SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31,

SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41,

SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51,

SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65,

SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75,

SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85,

SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97,

SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO:

113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID

NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ

ID NO: 199 oder SEQ ID NO: 201 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten

wird. Proteine, die noch die enzymatische Aktivität der Δ -12-Desaturase, ω -3-

Desaturase, Δ-9-Elongase, Δ-6-Desaturase, Δ-8-Desaturase, Δ-6-Elongase, Δ-5-Desaturase, Δ-5-Elongase oder Δ-4-Desaturase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10 %, vorzugsweise 20 %, besonders bevorzugt 30 %, ganz besonders bevorzugt 40 % der ursprünglichen

Enzymaktivität, verglichen mit dem durch SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ

ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID

NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID

NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID

45 NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID

10

15

20

25

30

35

40

82

NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 kodierten Protein. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für das Vergleichen verschiedener Sequenzen stehen dem Fachmann eine Reihe von Programmen, die auf verschiedenen Algorithmen beruhen zur Verfügung. Dabei liefern die Algorithmen von Needleman und Wunsch oder Smith und Waterman besonders zuverlässige Ergebnisse. Für die Sequenzvergleiche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970) und Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software-Packet [Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm GAP über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 und Average Mismatch: 0.000. Die falls nicht anders angegeben als Standardeinstellungen immer für Sequenzvergleiche verwendet wurden.

Homologen der vorgenannten Nukleinsäuresequenzen bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz oder auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Δ -12-Desaturase-, ω -3-Desaturase-, Δ -9-Elongase-, Δ -6-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- und/oder Δ -4-Desaturase-Aktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von PUFAs in transgenen Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola, Sareptasenf und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z.B. wenn

die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwendet und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion der PUFAs oder einer Abnahme unerwünschter Verbindungen führt (z.B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion oder der Zusammensetzung der gewünschten Verbindungen innerhalb der Zellen führt, was wiederum die Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

5

10

15

20

25

30

35

40

Besonders zur Herstellung von PUFAs, bevorzugt von Arachidonsäure, Eicosapentaensäure oder Docosahexaensäure, eignen sich Brassicaceen, Boraginaceen, Primulaceen, oder Linaceen. Besonders geeignet zur Herstellung von PUFAs mit den erfindungsgemäßen Nukleinsäuresequenzen, vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen, sind Sareptasenf (*Brassica juncea*), Raps und Camelina sativa.

Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden.

Besonders zur Herstellung von PUFAs, beispielsweise Stearidonsäure, Eicosapentaensäure und Docosahexaensäure eignen sich Brasicaceae, Boraginaceen, Primulaceen, oder Linaceen. Besonders vorteilhaft eignet sich Lein (Linum usitatissimum), Brassica juncea und Camelina sativa zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft, wie beschrieben, in Kombination mit weiteren Desaturasen und Elongasen.

Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Aceto-acetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F.C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D.C., S. 612-636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New

York, und die enthaltene Literaturstellen, sowie Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 und die enthaltenen Literaturstellen). Die so hergestellten an Phospholipide gebundenen Fettsäuren müssen anschließend wieder für die weitere Elongationen aus den Phospholipiden in den FettsäureCoA-Ester-Pool überführt werden. Dies ermöglichen Acyl-CoA:Lysophospholipid-Acyltransferasen. Weiterhin können diese Enzyme die elongierten Fettsäuren wieder von den CoA-Estern auf die Phospholipide übertragen. Diese Reaktionsabfolge kann gegebenenfalls mehrfach durchlaufen werden.

5

40

Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C₁₈-Kohlenstoff-Fettsäuren müssen auf C₂₀ und C₂₂ verlängert werden, 10 damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ -12-, ω 3-, Δ -4-, Δ -5-, Δ -6- und Δ -8-Desaturasen und/oder der Δ-5-, Δ-6-, Δ-9-Elongasen können Arachidonsäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure vorteilhaft Eicosapentaensäure und/oder Docosahexaensäure hergestellt werden und anschlie-15 ßend für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet werden. Mit den genannten Enzymen können C₂₀- und/oder C₂₂-Fettsäuren mit mindestens zwei vorteilhaft mindestens drei, vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül, vorzugsweise C20- oder C22-Fettsäuren mit vorteilhaft vier, fünf oder sechs Doppelbindungen im Fettsäuremolekül 20 hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturaseaktivitäten und der möglichen weiteren Desaturierung und Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C20 zu C22-Fettsäuren.zu Fettsäuren wie γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, 25 Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate der verwendeten Desaturasen und Elongasen im erfindungsgemäßen Verfahren sind C16-, C18oder C₂₀-Fettsäuren wie zum Beispiel Linolsäure, γ-Linolensäure, α-Linolensäure, Dihomo-y-linolensäure, Eicosatetraensäure oder Stearidonsäure. Bevorzugte Substrate sind Linolsäure, γ-Linolensäure und/oder α-Linolensäure, Dihomo-y-linolensäure 30 bzw. Arachidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Die synthetisierten C20- oder C22-Fettsäuren mit mindestens zwei, drei, vier, fünf oder sechs, vorteilhaft mit mindestens vier, fünf oder sechs Doppelbindungen in der Fettsäure fallen im erfindungsgemäßen Verfahren in Form der freien Fettsäure oder in Form ihrer Ester beispielsweise in Form ihrer Glyceride an. 35

Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Glyceridgemisch kann weitere Zusätze, z.B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschrie-

benen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

- Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4-5):161-166).
- Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den 10 Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19:149-166; Ohlrogge und 15 Browse, 1995, Plant Cell 7:957-970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane 20 and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.

Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

25

35

40

Unter Phospholipiden im Sinne der Erfindung sind zu verstehen Phosphatidylcholin,
30 Phosphatidylethanolamin, Phosphatidylserin, Phosphatidylglycerin und/oder Phosphatidylinositol vorteilhafterweise Phosphatidylcholin.

Die Begriffe "Produktion" oder "Produktivität" sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z.B. kg Produkt pro Stunde pro Liter). Sie umfassen auch die Produktivität innerhalb einer Pflanzenzelle oder einer Pflanze, das heißt den Gehalt an den gewünschten im Verfahren hergestellten Fettsäuren bezogen auf den Gehalt an allen Fettsäuren in dieser Zelle oder Pflanze. Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z.B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff "Ausbeute" oder "Produkt/Kohlenstoff-Ausbeute" ist im Fachge-

biet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d.h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht.

Die Begriffe "Biosynthese" oder "Biosyntheseweg" sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess.

Die Begriffe "Abbau" oder "Abbauweg" sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess.

- Der Begriff "Stoffwechsel" ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden. Der Stoffwechsel einer bestimmten Verbindung (z.B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.
- Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefasst werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

Beispiele

30

5

10

25 Beispiel 1: Allgemeine Klonierungsverfahren:

Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt.

Beispiel 2: Sequenzanalyse rekombinanter DNA:

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.

Beispiel 3: Klonierung von Genen aus Oncorhynchus mykiss

Durch Suche nach konservierten Bereichen in den Proteinsequenzen entsprechend der in der Anmeldung aufgeführten Elongase-Gene wurden zwei Sequenzen mit entsprechenden Motiven in der Sequenzdatenbank von Genbank identifiziert.

Gen-Name	Genbank No	Aminosäuren
OmELO2	CA385234, CA364848, CA366480	264
OmELO3	CA360014, CA350786	295

Gesamt-RNA von Oncoryhnchus mykiss wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene)
 kloniert. Entsprechend Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt. Die cDNA-Plasmid-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden verwendet.

Beispiel 4: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der zwei Sequenzen zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Primer	Nukleotidsequenz
5' f* OmELO2	5' aagettacataatggetteaacatggeaa (SEQ ID NO: 179)
3' r* OmELO2	5' ggateettatgtettettgetetteetgtt (SEQ ID NO: 180)
5' f OmELO3	5' aagcttacataatggagacttttaat (SEQ ID NO: 181)
3' r OmELO3	5' ggatcettcagtccccctcactttcc (SEQ ID NO: 182)
* f: forward. r: reverse	

Zusammensetzung des PCR-Ansatzes (50 µL):

- 5,00 µL Template cDNA
- 5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2
- 20 5,00 μL 2mM dNTP

15

- 1,25 µL je Primer (10 pmol/µL)
- 0,50 µL Advantage-Polymerase
- Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschliessend wurde das 812 bp bzw. 905 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen 10 Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und Elongase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pYES3-OmELO2 und pYES3-OmELO3 wurden durch Sequenzierung verifiziert und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transfor-15 miert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-OmELO2 (SEQ ID NO: 51) und pYES3-OmELO3 (SEQ ID NO: 53). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt. 20

Beispiel 5: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnitt-

25 stellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-OmELO2

Forward: 5'-GCGGCCGCATAATGGCTTCAACATGGCAA (SEQ ID NO: 175)
Reverse: 3'-GCGGCCGCTTATGTCTTCTTGCTCTTCCTGTT (SEQ ID NO: 176)
PSUN-OMELO3

30 Forward: 5'-GCGGCCGCataatggagacttttaat (SEQ ID NO: 177) Reverse: 3'-GCGGCCGCtcagtccccctcactttcc (SEQ ID NO: 178)

Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

35 5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

10

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OmELO2 und pSUN-OmELO3 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant 15 transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and 20 transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standard-25 primer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 174). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator einge-30 setzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel 6: Lipidextraktion aus Hefen und Samen:

Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und

10

40

mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1);
"Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte,
 um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der
 Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethyl-35 ester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie,

WO 2005/083093 PCT/EP2005/001863

91

Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33:343-353).

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. 5 Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Ver-10 wendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen 15 erhältlich sind (d.h. Sigma), definiert werden.

Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer Extraktion zugänglicher zu machen.

Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimentiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES3, pYES3-OmELO2 und pYES3-OmELO3 transformiert wurden, wurden folgendermaßen analysiert:

30

35

40

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 10 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1N methonolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-

15

20

Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert,

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma).

Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

10 Beispiel 7: Funktionelle Charakterisierung von OmELO2 und OmELO3;

OmELO2 zeigt keine Elongase-Aktivität, während für OmELO3 eine deutliche Aktivität mit verschiedenen Substraten nachgewiesen werden konnte. Die Substratspezifität der OmElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 2). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der OmElo3-Reaktion. Dies bedeutet, dass das Gen OmElo3 funktional exprimiert werden konnte.

Figur 2 zeigt, dass die OmElo3 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Es konnte in geringerer Spezifität des weiteren auch $\omega 6$ -Fettsäuren (C18 und C20) elongiert werden. Stearidonsäure (C18:4 $\omega 3$) und Eicosapentaensäure (C20:5 $\omega 3$) stellen die besten Substrate für die OmElo3 dar (bis zu 66 % Elongation).

Beispiel 8: Rekonstitution der Synthese von DHA in Hefe

Die Rekonstitution der Biosynthese von DHA (22:6 ω3) wurde ausgehend von EPA 25 (20:5 ω3) bzw. Stearidonsäure (18:4 ω3) durch die Coexpression der OmElo3 mit der Δ-4-Desaturase aus Euglena gracilis bzw. der Δ-5-Desaturase aus Phaeodactylum tricornutum und der Δ -4-Desaturase aus Euglena gracilis durchgeführt. Dazu wurden weiterhin die Expressionsvektoren pYes2-EgD4 und pESCLeu-PtD5 konstruiert. Der o.g. Hefestamm, der bereits mit dem pYes3-OmElo3 (SEQ ID NO: 55) transformiert ist, 30 wurde weiter mit dem pYes2-EgD4 bzw. gleichzeitig mit pYes2-EgD4 und pESCLeu-PtD5 transformiert. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium-Agarplatten mit 2% Glucose, aber ohne Tryptophan und Uracil im Falle des pYes3-OmELO/pYes2-EgD4-Stammes und ohne Tryptophan, Uracil und Leucin im Falle des pYes3-OmELO/pYes2-EgD4+pESCLeu-PtD5-Stammes. Die 35 Expression wurde wie oben angegeben durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 120 h bei 15°C inkubiert.

Figur 3 zeigt die Fettsäureprofile von transgenen Hefen, die mit 20:5 ω 3 gefüttert wurden. In der Kontroll-Hefe (A), die mit dem pYes3-OmElo3-Vektor und dem leeren

Vektor pYes2 transformiert wurden, wurde 20:5 ω 3 sehr effizient zu 22:5 ω 3 elongiert (65% Elongation). Die zusätzliche Einführung der Eg Δ -4-Desaturase führte zu der Umsetzung von 22:5 ω 3 zu 22:6 ω 3 (DHA). Die Fettsäure-Zusammensetzung der transgenen Hefen ist in Figur 5 wiedergegeben. Nach der Co-Expression von OmElo3 und EgD4 konnte bis zu 3% DHA in Hefen nachgewiesen werden.

In einem weiteren Co-Expressionsexperiment wurden OmElo3, EgD4 und eine $\Delta 5$ -Desaturase aus P. tricornutum (PtD5) zusammen exprimiert. Die transgenen Hefen wurden mit Stearidonsäure (18:4 $\omega 3$) gefüttert und analysiert (Figur 4). Die Fettsäure-Zusammensetzung dieser Hefen ist in Figur 5 aufgeführt. Durch OmElo3 wurde die gefütterte Fettsäure 18:4 $\omega 3$ zu 20:4 $\omega 3$ elongiert (60% Elongation). Letztere wurde durch die PtD5 zu 20:5 $\omega 3$ desaturiert. Die Aktivität der PtD5 betrug 15%. 20:5 $\omega 3$ konnte weiterhin durch die OmElo3 zu 22:5 $\omega 3$ elongiert werden. Im Anschluß wurde die neu synthetisierte 22:5 $\omega 3$ zu 22:6 $\omega 3$ (DHA) desaturiert. In diesen Experimenten konnte bis zu 0,7% DHA erzielt werden.

Aus diesen Experimenten geht hervor, dass die in dieser Erfindung verwendeten Sequenzen OmElo3, EgD4 und PtD5 für die Produktion von DHA in eukaryotischen Zellen geeignet sind.

Beispiel 9: Erzeugung von transgenen Pflanzen

5

10

20

40

 a) Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)

Zur Erzeugung transgener Rapspflanzen können binäre Vektoren in Agrobacterium tumefaciens C58C1:pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Nordeutsche Pflanzenzucht, Hohenlieth, Deutschland), wird eine 1:50 Verdün-25 nung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt. Petiolen oder Hypokotyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm²) werden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige 30 Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wird nach 3 Tagen mit 16 Stunden Licht / 8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l Kanamycin, 20 mikroM Benzylaminopurin (BAP) und 1,6 g/l Glukose weitergeführt. Wachsende Sprosse werden auf MS-Medium mit 2 % 35 Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bilden sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indolbuttersäure zum Bewurzeln zum Medium gegeben.

Regenerierte Sprosse werden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen

geerntet und auf Elongase-Expression wie Δ -5-Elongase- oder Δ -6-Elongaseaktivität oder ω -3-Desaturaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfachungesättigten Fettsäuren können so identifiziert werden.

5 b) Herstellung von transgenen Leinpflanzen

10

Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. In der Regel wurde eine Agrobakterien-vermittelte Transformation zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 zur Leintransformation verwendet.

Beispiel 10: Klonierung von Δ5-Elongase-Genen aus Thraustochytrium aureum ATCC34304 und Thraustochytrium ssp.

Durch Vergleiche der verschiedenen in dieser Anmeldung gefundenen Elongase-Proteinsequenzen konnten konservierte Nukleinsäurebereiche definiert werden 15 (Histidin-Box: His-Val-X-His-His, Tyrosin-Box: Met-Tyr-X-Tyr-Tyr). Mit Hilfe dieser Sequenzen wurde eine EST-Datenbank von T. aureum ATCC34304 und Thraustochytrium ssp. nach weiteren Δ-5-Elongasen durchsucht. Folgende neue Sequenzen konnten gefunden werden:

Gen-Name	Nukleotide	Aminosäuren
BioTaurELO1	828 bp	275
TL16y2	831	276

Gesamt-RNA von T. aureum ATCC34304 und Thraustochytrium ssp. wurde mit Hilfe
des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA
wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die
mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse
transkribiert und entsprechend der Herstellerangaben Adaptoren ligiert. Die cDNABank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und
3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 11: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Nukleotidsequenz
5' gacataatgacgagcaacatgag (SEQ ID NO: 170)
5' cggcttaggccgacttggccttggg (SEQ ID NO: 171)
5' agacataatggacgtcgtcgagcagcaatg (SEQ ID NO: 172)
5' ttagatggtcttctgcttcttgggcgcc (SEQ ID NO: 173)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

10 5,00 μL 2mM dNTP

5

1,25 µL je Primer (10 pmol/µL)

0,50 µL pfu-Polymerase

Die Advantage-Polymerase von Clontech wurde eingesetzt.

Reaktionsbedingungen der PCR:

15 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzaḥl der Zyklen: 35

Die PCR Produkte BioTaurELO1 (siehe SEQ ID NO: 65) und TL16y2 (siehe SEQ ID NO: 83) wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor pYES2.1-TOPO .20 (Invitrogen) inkubiert gemäss Herstellerangaben. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5 α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen NAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde 25 dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-BioTaurELO1 und 30 pYES2.1-TL16y2. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

PCT/EP2005/001863

Beispiel 12:

Klonierung von Expressionsplasmiden zur Samen-spezifischen

96

Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:

PSUN-BioTaurELO1

Forward: 5'-GCGGCCGCATAATGACGAGCAACATGAGC (SEQ ID NO: 166)

10 Reverse: 3'-GCGGCCGCTTAGGCCGACTTGGCCTTGGG (SEQ ID NO: 167)

PSUN-TL16y2

Forward: 5'-GCGGCCGCACCATGGACGTCGTCGAGCAGCAATG (SEQ ID NO: 168)

Reverse: 5'-GCGGCCGCTTAGATGGTCTTCTGCTTCTTGGGCGCCC

15 (SEQ ID NO: 169)

Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

20 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

25 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Not1 inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-BioTaurELO1 und pSUN-TL16y2 wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant

40 transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300,

indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine 5 synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine 10 PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 165). Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde 15 zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 13: Funktionelle Charakterisierung von BioTaurELO1 und TL16y2:

Die Substratspezifität der BioTaurELO1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 6). Figur 6 zeigt die Fütterungsexperimente zur Bestimmung der Funktionalität und Substratspezifität mit Hefestämmen, die entweder den Vektor pYes2.1 (Kontrolle = Control) oder den Vektor pYes2.1-BioTaurELO1 (= BioTaur) mit der Δ-5-Elongase enthalten. In beiden Ansätzen wurde 200 uM γ-Linolensäure und Eicosapentaensäure dem Hefeinkubationsmedium
 zugesetzt und 24 h inkubiert. Nach Extraktion der Fettsäuren aus den Hefen wurden diese transmethyliert und gaschromatographisch aufgetrennt. Die aus den beiden gefütterten Fettsäuren entstandenen Elongationsprodukte sind durch Pfeile markiert.

Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Alle transgene Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der BioTaurELO1-Reaktion. Dies bedeutet, dass das Gen BioTaurELO1 funktional exprimiert werden konnte.

30

35

40

Figur 6 zeigt, dass die BioTaurELO1 eine Substratspezifität aufweist, die mit hoher Spezifität zur Verlängerung von $\Delta 5$ - und $\Delta 6$ -Fettsäuren mit einer $\omega 3$ -Doppelbindung führt. Des weiteren konnten auch $\omega 6$ -Fettsäuren (C18 und C20) elongiert werden. Es werden γ -Linolensäure (C18:3 $\omega 6$) mit 65,28 %, Stearidonsäure (C18:4 $\omega 3$) mit 65.66 % und Eicosapentaensäure (C20:5 $\omega 3$) mit 22,01 % Konversion umgesetzt. Die Substratspezifitäten der verschiedenen Fütterungsexperimente sind in Tabelle 6 dargestellt (siehe am Ende der Beschreibung).

Die Konversionsrate von GLA bei Fütterung von GLA und EPA betrug 65,28 %. Die Konversionsrate von EPA bei gleicher Fütterung von GLA und EPA betrug 9,99 %.

Wurde nur EPA gefüttert, so betrug die Konversionsrate von EPA 22,01 %. Auch Arachidonsäure (= ARA) wurde bei Fütterung umgesetzt. Die Konversionsrate betrug 14,47 %. Auch Stearidonsäure (= SDA) wurde umgesetzt. In diesem Fall betrug die Konversionsrate 65,66 %.

Die Funktionalität und Substratspezifität von TL16y2 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Tabelle 7 zeigt die Fütterungsexperimente. Die Fütterungsversuche wurden in gleicherweise durchgeführt wie für BioTaurELO1 beschrieben. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TL16y2-Reaktion (Fig. 11). Dies bedeutet, dass das Gen TL16y2 funktional exprimiert werden konnte.

Tabelle 7: Expression von TL16y2 in Hefe.

Flächen der gaschromatographischen Analyse in %									
Plasmid	Fettsäure	C18:3 (n-6)	C18:4 (n-3)	C20:3 (n-6)	C20:4 (n-6)	C20:4 (n-3)	C20:5 (n-3)	C22:4 (n-6)	C22:5 (n-3)
pYES	250 uM EPA						13,79		
TL16y2	250 uM EPA						25,81		2,25
pYES	50 uM EPA						5,07		,
TL16y2	50 uM EPA						2,48		1,73
pYES	250 uMGLA	8,31				,,			
TL16y2	250 uM GLA	3,59		10,71					
pYES	250 uM ARA				16,03				,
TL16y2	250 uM ARA				15,2		3,87		
pYES	250 uM SDA		26,79			0,35			
TL16y2	250 uM SDA		7,74			29,17			

Die in Tabelle 7 wiedergegebenen Ergebnisse zeigen mit TL16y2 gegenüber der
Kontrolle folgende prozentuale Umsätze: a) % Umsatz EPA (250 uM): 8 %, b) %
Umsatz EPA (50 uM): 41 %, c) % Umsatz ARA: 20,3 %, d) % Umsatz SDA: 79, 4%
und e) % Umsatz GLA: 74,9 %.

TL16y2 zeigt damit Δ 5-, Δ 6- und Δ 8-Elongaseaktivität. Dabei ist die Aktivität für C18-Fettsäuren mit Δ 6-Doppelbindung am höchsten. Abhängig von der Konzentration an gefütterten Fettsäuren werden dann C20-Fettsäuren mit einer Δ 5- bzw. Δ 8-Doppelbindung verlängert.

5 Beispiel 14: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden.

10 Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300	·
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292	

OtElo1 weist die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweist (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

15 Die Klonierung wurde wie folgt durchgeführt:

20

25

40 ml einer *Ostreococcus tauri* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel 15: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus *Ostreococcus tauri* wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1 und pOTE2 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1 bzw. pOTE2 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.

5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Beispiel 16: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expres-15 sion in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR NotI-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1 und OtElo2 abgeleitet.

20 Zusammensetzung des PCR-Ansatzes (50 μL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

5

1,25 µL je Primer (10 pmol/µL)

25 0,50 μL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

30 Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschliessend wurde die PCR Produkte sowie der Vektor durch Agarose-

Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1 und pSUN-OtELO2 wurde durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indemin pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid 5 (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region 10 des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz:

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC
 GGATCTGCTGGCTATGAA-3', SEQ ID NO: 164).
 Das PCR-Fragment wurde mit EcoRl/Sall nachgeschnitten und in den Vektor
 pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana,
 Raps, Tabak und Leinsamen verwendet.

Beispiel 17: Expression von OtELO1 und OtELO2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1 und pYES3-OtELO2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium 25 und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organi-30 schen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für 35 die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch.

Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 18: Funktionelle Charakterisierung von OtELO1 und OtELO2:

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab.8). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 7 zeigt, dass die OtElo1 eine enge Substratspezifität aufweist. Die OtElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 7) und Arachidonsäure (Figur 8) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Tabelle 8:

Fettsäuresubstrat	Umsatz (in %)
16:0	-
16:1 ^{∆9}	-
18:0	-
18:1 ^{∆9}	-
18:1 ^{∆11}	-
18:2 ^{Δ9,12}	-
18:3 ^{∆6,9,12}	-
18:3 ^{∆5,9,12}	· -
20:3 ^{Δ8,11,14}	-
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6
20:5 ^{Δ5,8,11,14,17}	46,8 ± 3,6
22:4 ^{Δ7,10,13,16}	-
22:6 ^{Δ4,7,10,13,16,19}	-

Tabelle 8 zeigt die Substratspezifität der Elongase OtElo1 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 9). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass das Gen OtElo2 funktional exprimiert werden konnte.

Tabelle 9:

Fettsäuresubstrat	Umsatz (in %)
16:0	-
16:1 ^{Δ9}	
16:3 ^{Δ7,10,13}	
18:0	
18:1 ^{∆6}	-
.18:1 ^{Δ9} /	-
18:1 ^{∆11}	-
18:2 ^{∆9,12}	-
18:3 ^{∆6,9,12}	15,3±
18:3 ^{Δ5,9,12}	—
18:4 ^{Δ6,9,12,15}	21,1±
20:2 ^{Δ11,14}	100
20:3 ^{Δ8,11,14}	-
20:4 ^{Δ5,8,11,14}	*
20:5 ^{Δ5,8,11,14,17}	-
22:4 ^{Δ7,10,13,16}	P4
22:5 ^{Δ7,10,13,16,19}	-
22:6 ^{Δ4,7,10,13,16,19}	-

Tabelle 9 zeigt die Substratspezifität der Elongase OtElo2 gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder.

Die enzymatische Aktivität, die in Tabelle 9 wiedergegeben wird, zeigt klar, dass 10 OTELO2 eine Δ-6-Elongase ist.

Beispiel 19: Klonierung von Genen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten zwei Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren
TpELO1 (∆5-Elongase)	43	358
TpELO2 (∆Ş-Elongase)	59	358
TpELO3 (∆6-Elongase)	45	272

Eine 2 L Kultur von T. pseudonana wurde in f/2 Medium (Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In *Culture of Marine Invertebrate Animals* (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29–60.)

20 für 14 d (= Tage) bei einer Lichtstärke von 80 E/cm² angezogen. Nach Zentrifugation der Zellen wurde RNA mit Hilfe des RNAeasy Kits der Firma Quiagen (Valencia, CA, US) nach Herstellerangaben isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend den Herstellerangaben Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Beispiel 20: Klonierung von Expressionsplasmiden zur heterologen Expression in - Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-30 Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292)

neben dem Startcodon trugen. Die Amplifizierung der TpElo-DNAs wurde jeweils mit 1 μ L cDNA, 200 μ M dNTPs, 2,5 U *Advantage*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μ l durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
TpELO1 (Δ5-Elongase), SEQ ID NO: 59	F:5'-accatgtgctcaccaccgccgtc (SEQ ID NO: 158)
	R:5'- ctacatggcaccagtaac (SEQ ID NO: 159)
TpELO2 (∆5-Elongase), SEQ ID NO: 85	F:5'-accatgtgctcatcaccgccgtc (SEQ ID NO: 160)
•	R:5'-ctacatggcaccagtaac (SEQ ID NO: 161)
TpELO3 (Δ6-Elongase), SEQ ID NO:45	F:5'-accatggacgcctacaacgctgc (SEQ ID NO: 162)
	R:5'- ctaagcactcttcttcttt (SEQ ID NO: 163)

^{*}F=forward primer, R=reverse primer

5

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor -10 pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli $\text{DH}5\alpha$ Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte 15 Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-20 TpELO1, pYES2.1-TpELO2 und pYES2.1-TpELO3. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 21: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wird mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-TPELO1

5

Forward: 5'-GCGGCCGCACCATGTGCTCACCACCGCCGTC (SEQ ID NO: 152)

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC (SEQ ID NO: 153)

PSUN-TPELO2 `

10 Forward: 5'-GCGGCCGCACCATGTGCTCATCACCGCCGTC (SEQ ID NO: 154)

Reverse: 3'-GCGGCCGCCTACATGGCACCAGTAAC (SEQ ID NO: 155)

PSUN-TPELO3

Forward: 5'-GCGGCCGCaccatggacgcctacaacgctgc (SEQ ID NO: 156) Reverse: 3'-GCGGCCGCCTAAGCACTCTTCTTT (SEQ ID NO: 157)

15 Zusammensetzung des PCR-Ansatzes (50 μL):

5.00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

20 0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der 7624 bp große Vektor durch

30 Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend werden Vektor und PCR-Produkte ligiert. Dazu wird das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-TPELO1, pSUN-TPELO2 und pSUN-TPELO3 werden durch Sequenzierung

35 verifiziert.

25

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 151).

15

20

25

30

35

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 22: Expression von TpELO1, TpELO2 und TpELO3 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-TpELO1, pYES2-TpELO2 und pYES2-TpELO3 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 23: Funktionelle Charakterisierung von TpELO1 und TpELO3:

10

15

Die Substratspezifität der TpElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 9). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo1-Reaktion. Dies bedeutet, dass das Gen TpElo1 funktional exprimiert werden konnte.

Tabelle 10 zeigt, dass die TpElo1 eine enge Substratspezifität aufweist. Die TpElo1 konnte nur die C20-Fettsäuren Eicosapentaensäure und Arachidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Eicosapentaensäure.

Die Hefen, die mit dem Vektor pYES2-TpELO1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 10: Expression von TpELO1 in Hefe. In den Spalten 1 und 3 sind die Kontrolreaktionen für die Spalten 2 (gefüttert 250 μ M 20:4 Δ 5,8,11,14) und 4 (gefüttert 250 μ M 20:5 Δ 5,8,11,14,17) wiedergegeben.

	Expression	Expression	Expression	Expression
Fettsäuren	1	2	3	4
16:0	18.8	17.8 .	25.4	25.2
16:1 ^{∆9}	28.0	29.8	36.6	36.6
18:0	5.2	5.0	6.8	6.9
18:1 ^{∆9}	25.5	23.6	24.6	23.9
20:4 ^{Δ5,8,11,14}	22.5	23.4	-	-
22:4 ^{Δ7,10,13,16}	-	0.4	-	-
20:5 ^{∆5,8,11,14,17}	-	-	6.6	6.5
22:5 ^{Δ7,10,13,16,19}	-	-	-	0.9
% Umsatz	0	1.7	0	12.2

Die Substratspezifität der TpElo3 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 10). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der TpElo3-Reaktion. Dies bedeutet, dass das Gen TpElo3 funktional exprimiert werden konnte.

Tabelle 11 zeigt, dass die TpElo3 eine enge Substratspezifität aufweist. Die TpElo3 konnte nur die C18-Fettsäuren γ -Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Stearidonsäure.

5

15

Die Hefen, die mit dem Vektor pYES2-TpELO3 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 11: Expression von TpELO3 in Hefe. Spalte 1 zeigt das Fettsäureprofil von Hefe ohne Fütterung. Spalte 2 zeigt die Kontrollreaktion. In den Spalten 3 bis 6 wurden γ-Linolensäure, Stearidonsäure, Arachidonsäure und Eicosapentaensäure gefüttert (250 μM jeder Fettsäure).

Fettsäuren	1	2	3	4	5	6
16:0	17.9	20.6	17.8	16.7	18.8	18.8
16:1 ^{∆9}	41.7	18.7	27.0	33.2	24.0	31.3
18:0	7.0	7.7	6.4	6.6	5.2	6,0
18:1 ^{Δ9}	33.3	16.8	24.2	31.8	25.5	26.4
18:2 ^{∆9,12}	_	36.1	-	-	- ,	-
18:3 ^{∆6,9,12}	-	-	6.1	-	-	
18:4 ^{Δ6,9,12,15}	-	_	-	1.7	-	
20:2 ^{Δ11,14}	-	0	-	-	***	
20:3 ^{\Delta 8,11,14}	-	-	18.5	-	-	
20:4 ^{\Delta 8,11,14,17}	-	-	_	10.0	-	
20:4 ^{\Delta 5,8,11,14}	-	_	-	-	22.5	
22:4 ^{Δ7,10,13,16}		-	-	-	0	
20:5 ^{\Delta 5,8,11,14,17}	_	-	-	-	-	17.4
22:5 ^{Δ7,10,13,16,19}	-	-	-	-	-	0
% Umsatz	0	0	75	85	0	0

WO 2005/083093

110

PCT/EP2005/001863

Beispiel 24: Klonierung eines Expressionsplasmides zur heterologen Expression

der Pi-omega3Des in Hefen

Der Pi-omega3Des Klon wurde für die heterologe Expression in Hefen über PCR mit entsprechenden Pi-omega3Des spezifischen Primern in den Hefe-Expressionsvektor pYES3 kloniert. Dabei wurde ausschließlich der für das Pi-omega3Des Protein kodierende offene Leseraster des Gens amplifiziert und mit zwei Schnittstellen für die Klonierung in den pYES3 Expressionsvektor versehen:

Forward Primer: 5'-TAAGCTTACATGGCGACGAAGGAGG (SEQ ID NO: 149)

10 Reverse Primer: 5'-TGGATCCACTTACGTGGACTTGGT (SEQ ID NO: 150)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

15 5,00 μL 2mM dNTP

5

1,25 µL je Primer (10 pmol/µL des 5'-ATG sowie des 3'-Stopp Primers)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

20 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen HindIII und 25 BamHI inkubiert. Der Hefe-Expressionsvektor pYES3 (Invitrogen) wurde in gleicherweise inkubiert. Anschließend wurde das 1104 bp große PCR Produkt sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschließend wurden Vektor und Desatura-30 se-cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pYES3-Pi-omega3Des wurde durch Sequenzierung überprüftt und in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde pYES3 parallel transformiert. Anschliessend wurden die Hefen auf Komplett-Minimalmedium ohne Tryptophan mit 2 % Glucose ausplattiert. 35 Zellen, die auf ohne Tryptophan im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES3, pYES3-Pi-omega3Des. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 25: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl-

Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.
PSUN-Pi-omega3Des

Reverse: 3'-GCGGCCGCTTACGTGGACTTGGTC (SEQ ID NO: 147) Forward: 5'-GCGGCCGCatGGCGACGAAGGAGG (SEQ ID NO: 148)

Zusammensetzung des PCR-Ansatzes (50 µL):

10 5,00 μL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

15 Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

20 Anzahl der Zyklen: 35

Die PCR Produkte wurden für 4 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert. Anschließend wurde die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäss Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pSUN-Piomega3Des wurde durch Sequenzierung verifiziert.

Beispiel 26: Expression von Pi-omega3Des in Hefen

Hefen, die wie unter Beispiel 24 mit dem Plasmid pYES3 oder pYES3- Pi-omega3Des transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethyl-

ester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. 5 gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit 10 einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert. Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. 15 Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 27: Funktionelle Charakterisierung von Pi-omega3Des:

Die Substratspezifität der Pi-omega3Des konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Figur 12 bis 18). Die gefütterten Substrate liegen in großen Mengen in allen transgenen Hefen vor, wodurch die Aufnahme dieser Fettsäuren in die Hefen bewiesen ist. Die transgenen Hefen zeigen die Synthese neuer Fettsäuren, den Produkten der Pi-omega3Des-Reaktion. Dies bedeutet, dass das Gen Pi-omega3Des funktional exprimiert werden konnte.

Figur 12 gibt die Desaturierung von Linolsäure (18:2 ω-6-Fettsäure) zu α-Linolensäure (18:3 ω-3-Fettsäure) durch die Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 12 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 12 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C18:2^{Δ9,12} Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

In Figur 13 ist die Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des wiedergegeben. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 13 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 13 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von γ -C18:3 $^{\Delta6,9,12}$ -Fettsäure (300 μ M) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

35

Figur 14 gibt die Desaturierung von C20:2-ω-6-Fettsäure zu C20:3-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 14 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 14 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:2^{Δ11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

5

10

30

Figur 15 gibt die Desaturierung von C20:3-ω-6-Fettsäure zu C20:4-ω-3-Fettsäure durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 15 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 15 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:3^{Δ8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

In Figur 16 wird die Desaturierung von Arachidonsäure (C20:4- ω -6-Fettsäure) zu Eicosapentaensäure (C20:5- ω -3-Fettsäure) durch die Pi-omega3Des gezeigt.

- Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 16 A) oder dem Vektor pYes3-Piomega3Des (Figur 16 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in Gegenwart von C20:4^{Δ5,8,11,14}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.
- Figur 17 gibt die Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des wieder. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen, die mit dem Leervektor pYES2 (Figur 17 A) oder dem Vektor pYes3-Pi-omega3Des (Figur 17 B) transformiert worden waren. Die Hefen wurden in Minimalmedium in
 Gegenwart von C22:4^{Δ7,10,13,16}-Fettsäure (300 μM) kultiviert. Anschließend wurden die FAMEs über GLC analysiert.

Die Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren ist Figur 18 zu entnehmen. Die Hefen, die mit dem Vektor pYes3-Pi-omega3Des transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt einen Mittelwert aus drei Messungen wieder. Die Umsetzungsraten (% Desaturation) wurden mit der Formel:

[Produkt]/[Produkt]+[Substrat]*100 errechnet.

Wie unter Beispiel 9 beschrieben kann auch die Pi-omega3Des zur Erzeugung transgener Pflanzen verwendet werden. Aus den Samen dieser Pflanzen kann dann die Lipidextraktion wie unter Beispiel 6 beschrieben erfolgen.

Beispiel 28: Klonierung von Desaturasegenen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) konnten fünf Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	Homologie
OtD4	SEQ ID NO: 95	536	Δ-4-Desaturase
OtD5.1	SEQ ID NO: 91	201	Δ-5-Desaturase
OtD5.2	SEQ ID NO: 93	237	Δ-5-Desaturase
OtD6.1	SEQ ID NO: 89	456	Δ-6-Desaturase
OtFad2	SEQ ID NO: 107	361	Δ-12-Desaturase

10

Die Alignments zur Auffindung von Homologien der einzelnen Gene wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung erfolgte wie folgt:

40 ml einer Ostreococcus tauri Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtDes-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U Taq-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Folgende Primer wurden für die PCR eingesetzt:

OtDes6.1 Forward: 5'ggtaccacataatgtgcgtggagacggaaaataacg3' (SEQ ID NO: 145)

OtDes6.1 Reverse: 5'ctcgagttacgccgtctttccggagtgttggcc3' (SEQ ID NO: 146)

Beispiel: 29 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Desaturase OtDes6.1 (= Δ-6-Desaturase) aus Ostreococcus tauri wurde der offenen Leserahmen der DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-OtDes6.1 Klon erhalten wurde. In entsprechender Art und Weise können weitere Desaturase-Gene aus Ostreococcus kloniert werden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pYES2.1-OtDes6.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der OtDes6.1 Desaturase wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.
 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft.
 Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

Beispiel: 30 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR NotI-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

30

WO 2005/083093 PCT/EP2005/001863

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.

- pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant 15 transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map 20 of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines 25 synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert. (Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3', SEQ ID NO: 144).
- Das PCR–Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel: 31 Expression von OtDes6.1 in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-OtDes6.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethyl-

ester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

10

15

30

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel: 32 Funktionelle Charakterisierung von Desaturasen aus Ostreococcus:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15–Desaturasen, WO 94/11516 für Δ12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem.
276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.

Tabelle 12 gibt die Substratspezifität der Desaturase OtDes6.1 gegenüber verschiedenen Fettsäuren wieder. Die Substratspezifität der OtDes6.1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden. Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtDes6.2-Reaktion (Fig. 20). Dies bedeutet, dass das Gen OtDes6.1 funktional exprimiert werden konnte.

Die Hefen, die mit dem Vektor pYES2-OtDes6.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. Jeder Wert gibt den Mittelwert (n=3) ± Standardabweichung wieder. Die Aktivität entspricht der Konversionsrate errechnet nach [Substrat/(Substrat+Produkt)*100].

WO 2005/083093 PCT/EP2005/001863

118

Tabelle 12 zeigt, dass die OtDes6.1 eine Substratspezifität für Linol- und Linolensäure (18:2 und 18:3) aufweist, da mit diesen Fettsäuren die höchsten Aktivitäten erreicht werden. Die Aktivität für Ölsäure (18:1) und Palmitoleinsäure (16:1) ist dagegen deutlich geringer. Die bevorzugte Umsetzung von Linol- und Linolensäure zeigt die Eignung dieser Desaturase für die Herstellung von polyungesättigten Fettsäuren.

Substrate	Aktivität in %
16:1 ^{∆9}	5,6
18:1 ^{∆9}	13,1
18:2 ^{Δ9,12}	68,7
18:3 ^{∆9,12,15}	64,6

Figur 20 zeigt die Umsetzung von Linolsäure durch OtDes6.1. Die Analyse der FAMEs erfolgte über Gaschrommatographie. Das gefütterte Substrat (C18:2) wird zu γ-C18:3 umgesetzt. Sowohl Edukt als auch das entstandene Produkt sind durch Pfeile markiert.

In Figur 21 wird die Umsetzung von Linolsäure (= LA) und α-Linolensäure (= ALA) in Gegenwart von OtDes6.1 zu y-Linolensäure (= GLA) bzw. Stearidonsäure (= STA) wiedergegeben (Figur 21 A und C). Weiterhin zeigt Figur 21 die Umsetzung von Linolsäure (= LA) und α -Linolensäure (= ALA) in Gegenwart der Δ -6-Desaturase 15 OtDes6.1 zusammen mit der Δ-6-Elongase PSE1 aus Physcomitrella patens (Zank et al. 2002, Plant J. 31:255-268) und der Δ-5-Desaturase PtD5 aus Phaeodactylum tricornutum (Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113) zu Dihomo-ylinolensäure (= DHGLA) und Arachidonsäure (= ARA, Figur 21 B) bzw. zu Dihomostearidonsäure (= DHSTA) bzw. Eicosapentaensäure (= EPA, Figur 21 D). Figur 21 zeigt deutlich, dass die Reaktionsprodukte GLA und STA der Δ -6-Desaturase OtDes6.1 in 20 Gegenwart der Δ -6-Elongase PSE1 fast quantitativ zu DHGLA bzw. DHSTA elongiert wird. Die nachfolgende Desaturierung durch die Δ-5-Desaturase PtD5 erfolgt ebenfalls reibungslos zu ARA bzw. EPA. Es werden ca. 25 – 30% des Elongaseprodukts desaturiert (Figur 21 B und D).

5

10

Die folgenden Tabelle 13 gibt eine Übersiche über die klonierten Ostreococcus Desaturasen wieder:

	Ostreococcus tauri Desaturasen						
Name	bp	aa	Homologie	Cyt. B5	His-Box1	His-Box2	His-Box3
OtD4	1611	536	Δ-4- Desatu- rase	HPGG	HCANH	WRYHHQVSHH	QVEHHLFP
OtD5.1	606	201	Δ-5- Desaturase	-	-	_	QVVHHLFP
OtD5.2	714	237	Δ-5- Desaturase	-	_	WRYHHMVSHH	QIEHHLPF
OtD6.1	1443	480	Δ-6- Desaturase	HPGG	HEGGH	WNSMHNKHH	QVIHHLFP
OtFAD2	1086	361	Δ-12- Desaturase	-	HECGH	WQRSHAVHH	HVAHH

Beispiel: 33 Klonierung von Desaturasegenen aus Thalassiosira pseudonana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe von konservierten Motiven (His-Boxen, siehe Motive) konnten sechs Sequenzen mit entsprechenden Motiven in einer Thalassiosira pseudonana Sequenzdatenbank (genomische Sequenzen) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	SEQ ID	Aminosäuren	Homologie
TpD4	SEQ ID NO: 103	503	Δ-4-Desaturase
TpD5-1	SEQ ID NO: 99	476	Δ-5-Desaturase
TpD5-2	SEQ ID NO: 101	482	Δ-5-Desaturase
TpD6	SEQ ID NO: 97	484	Δ-6-Desaturase
TpFAD2	SEQ ID NO: 109	434	Δ-12-Desaturase
TpO3	SEQ ID NO: 105	418	ω-3-Desaturase

10

Die Klonierung erfolgte wie folgt:

40 ml einer *Thalassiosira pseudonana* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die

entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der TpDes-DNAs wurde jeweils mit 1 µl aufgetauten Zellen, 200 µM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Beispiel: 34 Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

10

25

Zur Charakterisierung der Funktion der Desaturasen aus *Thalassiosira pseudonana* wird der offenen Leserahmen der jeweiligen DNA stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei der entsprechenden pYES2.1-Klone erhalten werden.

Der Saccharomyces cerevisiae-Stamm 334 wird durch Elektroporation (1500 V) mit den Vektoren pYES2.1-TpDesaturasen transformiert. Als Kontrolle wird eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wird. Die Selektion der transformierten Hefen erfolgt auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion werden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Tp-Desaturasen werden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren werden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wird durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen werden für weitere 96 h bei 20°C inkubiert.

Beispiel: 35 Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mittels PCR Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen werden von den 5'- und 3-Bereich der Desaturasen abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5.00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

5,00 µL 2mM dNTP

5 1,25 μL je Primer (10 pmol/μL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

10

25

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

- Anschliessend werden die PCR Produkte sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschliessend werden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide werden durch Sequenzierung verifiziert.
 - pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des OCS-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol.
- Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden
 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region
 des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7–Standardprimer (Stratagene) und mit Hilfe eines
 synthetisierten Primers über eine PCR–Reaktion nach Standardmethoden amplifiziert.
 (Primersequenz: 5'–
- 35 GTCGACCGGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 143)

Das PCR–Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeich-

35

PCT/EP2005/001863

nung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Beispiel: 36 Expression von Tp-Desaturasen in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-TpDesaturasen transformiert werden, werden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen werden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten werden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu werden die Zellsedimente 10 mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren werden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO3, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend werden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon 15 eingedampft und in 100 µl PE aufgenommen. Die Proben werden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse sind wie folgt: Die Ofentemperatur wird von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgt durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel: 37 Funktionelle Charakterisierung von Desaturasen aus Thalassiosira pseudonana:

Die Substratspezifität von Desaturasen kann nach Expression in Hefe (siehe Beispiele Klonierung von Desaturase-Genen, Hefeexpression) durch die Fütterung mittels verschiedener Hefen ermittelt werden. Beschreibungen für die Bestimmung der einzelnen Aktivitäten finden sich in WO 93/11245 für Δ15–Desaturasen, WO 94/11516 für Δ12–Desaturasen, WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 für Δ6-Desaturasen, Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566 für Δ4-Desaturasen, Hong et al. 2002, Lipids 37,863-868 für Δ5-Desaturasen.

Die Aktivität der einzelnen Desaturasen wird aus der Konversionsrate errechnet nach der Formel [Substrat/(Substrat+Produkt)*100].

Die folgenden Tabellen 11 und 12 geben eine Übersicht über die clonierten Thalassiosira pseudonana Desaturasen wieder.

Tabelle 14: Länge und charakteristische Merkmale der clonierten Thalassiosira Desaturasen.

	cDNA					
Desaturase	(bp)	Protein (aa)	Cyt. B5	His-Box1	His-Box2	His-Box3
TpD4	1512	503	HPGG	HDGNH	WELQHMLGHH	QIEHHLFP
TpD5-1	1431	476	HPGG	HDANH	WMAQHWTHH	QVEHHLFP
TpD5-2	1443	482	HPGG	HDANH	WLAQHWTHH	QVEHHLFP
TpD6	1449	484	HPGG	HDFLH	WKNKHNGHH	QVDHHLFP
TpFAD2	1305	434	-	HECGH	HAKHH	HVAHHLFH
(d12)						
TpO3	1257	419	-	HDAGH	WLFMVTYLQH	HVVHHLF
		,		,	Н	

5

Tabelle 15: Länge, Exons, Homolgie und Identitäten der clonierten Desaturasen.

	GDN				
Des.	A (bp)	Exon 1	Exon 2	First Blast Hit	Hom./Iden.
TpD4	2633	496-1314	1571-2260	Thrautochitrium D4-	56% / 43%
	*			des	
TpD5-1	2630	490-800	900-2019	Phaeodactylum D5-	74% / 62%
				des	
TpD5-2	2643	532-765	854-2068	Phaeodactylum D5-	72% / 61%
				des	
TpD6	2371	379-480	630-1982	Phaeodactylum D6-	83% / 69%
		,		des	
TpFAD2	2667	728-2032	-	Phaeodactylum FAD2	76% / 61%
TpO3	2402	403-988	1073-1743	Chaenorhabdidis	49% / 28%
				Fad2	

Analog zu den vorgenannten Beispielen lassen sich auch die Δ -12-Desaturasegene aus Ostreococcus und Thalassiosira clonieren.

Beispiel 38 Klonierung von Elongase Genen aus Xenopus laevis und Ciona intestinalis

Durch Suche nach konservierten Bereichen (siehe Konsensus-Sequenzen, SEQ ID NO: 115 und SEQ ID NO: 116) in den Proteinsequenzen in Gendatenbanken (Genbank) mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten weitere Elongasesequenzen aus anderen Organismen identifiziert und isoliert werden. Aus X. laevis bzw. aus C. intestinalis konnten mit entsprechenden Motiven jeweils weitere Sequenzen identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

Gen-Name	Organismus	Genbank-Nr.	SEQ ID NO:	Aminosäuren
ELO(XI)	Xenopus laevis	BC044967	117	303
ELO(Ci)	Ciona intestinalis	AK112719	119	290

10

20

25

5

Der cDNA Klon von X. laevis wurde vom NIH (National Institut of Health) bezogen [Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative, Dev. Dyn. 225 (4), 384-391 (2002)].

Der cDNA Klon von C. inetstinalis wurde von der Universität von Kyto bezogen [Satou,Y., Yamada,L., Mochizuki,Y., Takatori,N., Kawashima,T., Sasaki,A., Hamaguchi,M., Awazu,S., Yagi,K., Sasakura,Y., Nakayama,A., Ishikawa,H., Inaba,K. and Satoh,N. "A cDNA resource from the basal chordate Ciona intestinalis" JOURNAL Genesis 33 (4), 153-154 (2002)].

Beispiel 39: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die Amplifizierung der Elongase-DNAs wurde jeweils mit 1 µL cDNA, 200 µM dNTPs, 2,5 U *Advantage*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 µl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
ELO(XI) SEQ ID NO: 121	F:5'- AGGATCCATGGCCTTCAAGGAGCTCACATC
SEQ ID NO: 122	R:5'- CCTCGAG <u>TCA</u> ATGGTTTTTGCTTTTCAATG- CACCG
ELO(Ci), SEQ ID NO: 123	F:5'- TAAGCTT <u>ATG</u> GACGTACTTCATCGT
SEQ ID NO: 124	R:5'- TCAGATCT <u>TTA</u> ATCGGTTTTACCATT

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurde für 30 min bei 21 °C mit dem Hefe-Expressionsvektor - pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt wird dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen)
 nach Herstellerangaben in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR - identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden Plasmide pYES2.1, pYES2.1-ELO(XI) und pYES2.1-ELO(Ci). Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

15 Beispiel 40: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu werden mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

20 pSUN-ELO(XI)

Forward: 5'-GCGGCCGCACCATGGCCTTCAAGGAGCTCACATC

(SEQ ID NO: 125)

Reverse: 3'-GCGGCCGCCTTCAATGGTTTTTGCTTTTCAATGCACCG

(SEQ ID NO: 126)

25 pSUN-ELO(Ci)

Forward: 5'-GCGGCCGCACCATGGACGTACTTCATCGT

(SEQ ID NO: 127)

Reverse: 3'-GCGGCCGCTTTAATCGGTTTTACCATT

(SEQ ID NO: 128)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 μL 2mM dNTP

5 1,25 μ L je Primer (10 pmol/ μ L)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

10 Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte wurden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wurde in gleicherweise inkubiert.

Anschliessend wurden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-ELO(XI) und pSUN-ELO(Ci) wurden durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP [Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994]. pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7–Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

Primersequenz: 5'-

25

30

35 GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3' (SEQ ID NO: 129).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeich-

nung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 41: Expression von ELO(XI) und ELO(Ci) in Hefen

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2, pYES2-ELO(XI) und pYES2-ELO(Ci) transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethyl-10 ester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. 15 gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 µl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 µm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit 20 einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8): 761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 42: Funktionelle Charakterisierung von ELO(XI) und ELO(Ci):

25

30

35

Die Substratspezifität der ELO(XI) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 22). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der ELO(XI)-Reaktion. Dies bedeutet, dass das Gen ELO(XI) funktional exprimiert werden konnte.

Tabelle 16 zeigt, dass die ELO(XI) eine breite Substratspezifität aufweist. Es werden sowohl C18 als auch C20 Fettsäuren verlängert, wobei ein Bevorzugung von Δ 5- und Δ 6-desaturierten Fettsäuren zu beobachten ist.

Die Hefen, die mit dem Vektor pYES2-ELO(XI) transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der

Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Tabelle 16: Expression von ELO(XI) in Hefe. Beschrieben ist die Umsetzungsrate (Konversionsrate) verschiedener Edukte (gefüttert jeweils 250 µM).

Edukte	Konversion der Edukte durch ELO(XI) in %
16:0	3
16:1 ^{∆9}	0
18:0	2
18:1 ^{Δ9}	0
18:2 ^{∆9,12}	3
18:3 ^{∆6,9,12}	12
18:3 ^{∆5,9,12}	13
18:3 ^{Δ9,12,15}	3
18:4 ^{Δ6,9,12,15}	20
20:3 ^{∆8,11,14}	. 5
20:3 ^{∆11,14,17}	13
20:4 ^{Δ5,8,11,14}	15
20:5 ^{∆5,8,11,14,17}	10
22:4 ^{Δ7,10,13,16}	. 0
22:6 ^{Δ4,7,10,13,16,19}	0

Die Substratspezifität der ELO(Ci) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 23). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die

Synthese neuer Fettsäuren, den Produkten der ELO(Ci)-Reaktion. Dies bedeutet, dass das Gen ELO(Ci) funktional exprimiert werden konnte.

Tabelle 17: Expression von ELO(Ci) in Hefe. Beschrieben ist die Umsetzungsrate (Konversionsrate) verschiedener Edukte (gefüttert jeweils 250 µM).

Edukte	Konversion der Edukte durch ELO(Ci) in %
16:0	0
16:1 ^{∆9}	. 0
18:0	0
18:1 ^{∆9}	0
18: ^{2Δ9,12}	23
18:3 ^{Δ6,9,12}	10
18:3 ^{Δ5,9,12}	38
18:3 ^{Δ9,12,15}	25
18:4 ^{Δ6,9,12,15}	3
20:3 ^{∆8,11,14}	10
20:3 ^{∆11,14,17}	. 8
20:4Δ5,8,11,14	10
20:5Δ5,8,11,14,17	15
22:4Δ7,10,13,16	0
22:6Δ4,7,10,13,16,19	0

5

Tabelle 17 zeigt, dass die ELO(Ci) eine breite Substratspezifität aufweist. Es werden sowohl C18 als auch C20 Fettsäuren verlängert, wobei ein Bevorzugung von $\Delta 5$ - und $\Delta 6$ -desaturierten Fettsäuren zu beobachten ist.

Die Hefen, die mit dem Vektor pYES2-ELO(Ci) transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

5 Beispiel 43: Klonierung von Genen aus Ostreococcus tauri

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der hierin beschriebenen Elongase-Gene mit Δ -5-Elongaseaktivität oder Δ -6-Elongaseaktivität konnten je zwei Sequenzen mit entsprechenden Motiven in einer Ostreococcus tauri Sequenzdatenbank (genomische Sequenzen) identifiziert werden.

10 Es handelt sich dabei um die folgenden Sequenzen:

15

20

25

Gen-Name	SEQ ID	Aminosäuren	
OtELO1, (Δ-5-Elongase)	SEQ ID NO: 67	300	
OtELO1.2, (Δ-5-Elongase)	SEQ ID NO: 113	300	
OtELO2, (Δ-6-Elongase)	SEQ ID NO: 69	292	
OtELO2.1, (Δ-6-Elongase)	SEQ ID NO: 111	292	

OtElo1 und OtElo1.2 weisen die höchste Ähnlichkeit zu einer Elongase aus Danio rerio auf (GenBank AAN77156; ca. 26 % Identität), während OtElo2 und OtElo2.1 die größte Ähnlichkeit zur Physcomitrella Elo (PSE) [ca. 36 % Identität] aufweisen (Alignments wurden mit dem tBLASTn-Aalgorithmus (Altschul et al., J. Mol. Biol. 1990, 215: 403 – 410) durchgeführt.

Die Klonierung der Elongasen wurde wie folgt durchgeführt:

40 ml einer *Ostreococcus tauri* Kultur in der stationären Phase wurden abzentrifugiert und in 100 μl Aqua bidest resuspendiert und bei –20°C gelagert. Auf der Basis des PCR-Verfahren wurden die zugehörigen genomischen DNAs amplifiziert. Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der OtElo-DNAs wurde jeweils mit 1 μl aufgetauten Zellen, 200 μM dNTPs, 2,5 U *Taq*-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

25

Beispiel 44: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus *Ostreococcus tauri* wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pOTE1, pOTE1.2, pOTE2 und pOTE2.1 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pOTE1, pOTE1.2, pOTE2 bzw. pOTE2.1 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der Ot-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert. 5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

20 Beispiel 45: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurden mittels PCR NotI-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenzen eingefügt. Die entsprechenden Primersequenzen wurden von den 5'- und 3-Bereich von OtElo1, OtElo1.2, OtElo2 und OtElo2.1 abgeleitet.

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl₂

30 5,00 μL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

35 Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert. Anschließend wurden die PCR Produkte sowie der Vektor durch Agarose-Gelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschliessend wurden Vektor und PCR-Produkte ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Die entstandenen Plasmide pSUN-OtELO1, pSUN-OtELO1.2, pSUN-OtELO2 und pSUN-OtELO2.2 wurden durch Sequenzierung verifiziert.

10 pSUN300 ist ein Derivat des Plasmides pPZP [Hajdukiewicz, P., Svab, Z., Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994]. pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Polyadenylierungssignal ist das des Ostreococcus-Gens aus dem A. tumefaciens Ti-Plasmid 15 (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1 bis 684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region 20 des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

Primersequenz:

25

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). (SEQ ID NO: 130)

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

30 Beispiel 46: Expression von OtElo1, OtElo1.2, OtElo2 und OtELO2.2 in Hefen

Hefen, die wie unter Beispiel 15 mit den Plasmiden pYES3, pYES3-OtELO1, pYES3-OtELO1.2, pYES3-OtELO2 und pYES3-OtELO2.2 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit

Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C (halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

15 Beispiel 47: Funktionelle Charakterisierung von OtElo1, OtElo1.2, OtElo2 und OtElo2.1:

20

25

Die Substratspezifität der OtElo1 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 18). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo1-Reaktion. Dies bedeutet, dass das Gen OtElo1 funktional exprimiert werden konnte.

Tabelle 18 zeigt, dass OtElo1 bzw. OtElo1.2 eine enge Substratspezifität aufweist. OtElo1 bzw. OtElo1.2 konnte nur die C20-Fettsäuren Eicosapentaensäure (Figur 24A, 24B) und Arachidonsäure (Figur 25A, 25B) elongieren, bevorzugte aber die ω-3-desaturierte Eicosapentaensäure.

Tabelle 18 zeigt die Substratspezifität der Elongase OtElo1 und OtElo1.2 für C20 polyungesättigte Fettsäuren mit einer Doppelbindung in $\Delta 5$ Position gegenüber verschiedenen Fettsäuren.

Die Hefen, die mit dem Vektor pOTE1 bzw. pOTE1.2 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Die Substratspezifität der OtElo2 (SEQ ID NO: 81) OtElo2.1 (SEQ ID NO: 111) konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 19).

Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der OtElo2-Reaktion. Dies bedeutet, dass die Gene OtElo2 und OtElo2.1 funktional exprimiert werden konnte.

Tabelle 18:

Fettsäuresubstrat	Umsatz (in %) OtElo1	Umsatz (in %) OtElo1.2
16:0		-
16:1 ^{∆9}	-	-
18:0	-	
18:1 ^{Δ9}	-	_
18:1 ^{Δ11}	-	-
. 18:2 ^{Δ9,12}	-	-
18:3 ^{∆6,9,12}	-	-
18:3 ^{Δ5,9,12}	-	-
20:3 ^{Δ8,11,14}	-	-
20:4 ^{Δ5,8,11,14}	10,8 ± 0,6	38,0
20:5 ^{Δ5,8,11,14,17}	46,8 ± 3,6	68,6
22:4 ^{Δ7,10,13,16}	-	-
22:6 ^{Δ4,7,10,13,16,19}	-	-

Tabelle 19 zeigt die Substratspezifität der Elongase OtElo2 und OtElo2.1 gegenüber verschiedenen Fettsäuren. OtElo2.1 zeigt eine deutlich höhere Aktivität.

Die Hefen, die mit dem Vektor pOTE2 bzw. pOTE2.1 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert.

Die enzymatische Aktivität, die in Tabelle 19 wiedergegeben wird, zeigt klar, dass 10 OtElo2 bzw. OtElo2.1 eine Δ-6-Elongase ist.

WO 2005/083093 PCT/EP2005/001863

Tabelle 19:

Fettsäuresubstrat	Umsatz (in %) OtElo2	Umsatz (in %)OtE- LO2.2	
16:0	· •	•	
16:1 ^{∆9}	•	**	
16:3 ^{Δ7,10,13}		=	
18:0	-	=	
18:1 ^{∆6}	-	<u> </u>	
18:1 ^{Δ9}	_	-	
18:1 ^{∆11}	-	-	
18:2 ^{∆9,12}	-	<u> </u>	
18:3 ^{Δ6,9,12}	15,3	55,7	
18:3 ^{Δ5,9,12}	-	=	
18:4 ^{Δ6,9,12,15}	21,1	70,4	
20:2 ^{Δ11,14}	- .	-	
20:3 ^{Δ8,11,14}	_		
20:4 ^{Δ5,8,11,14}		, =	
20:5 ^{Δ5,8,11,14,17}	-	=	
22:4 ^{Δ7,10,13,16}	-	-	
22:5 ^{Δ7,10,13,16,19}	-	-	
22:6 ^{Δ4,7,10,13,16,19}	-	•	

Figur 24 A – D zeigt die Elongation von Eicosapentaensäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:5ω3).

5 Figur 25 A – D zeigt die Elongation von Arachidonsäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:4ω6).

Beispiel 48: Klonierung von Elongase-Genen aus Euglena gracilis und Arabidopsis thaliana

Durch Suche nach konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ-5-Elongaseaktivität oder Δ-6-Elongaseaktivität konnten Sequenzen aus Arabidopsis thaliana bzw. Euglena gracilis mit entsprechenden Motiven in Sequenzdatenbanken (Genbank, Euglena EST Bank) identifiziert werden. Es handelt sich dabei um die folgenden Sequenzen:

WO 2005/083093 PCT/EP2005/001863

136

Gen-Name	SEQ ID	Aminosäuren	
EGY1019 (E. gracilis)	SEQ ID NO: 131	262	
EGY2019 (E. gracilis)	SEQ ID NO: 133	262	
At3g06460 (A. thaliana)	SEQ ID NO: 135	298	
At3g06470 (A. thaliana)	SEQ ID NO: 137	278	

Die Klonierung der Elongasen aus Euglena gracilis wurden wie folgt durchgeführt:

5

10

15

25

30

Der Euglena gracilis Stamm 1224-5/25 wurde erhalten von der Sammlung für Algenkulturen Göttingen (SAG). Zur Isolierung wurde der Stamm in Medium II (Calvayrac R and Douce R, FEBS Letters 7:259-262, 1970) für 4 Tage bei 23 °C unter einem Licht-/ Dunkelintervall von 8 h / 16 h (35 mol s-1 m-2 Lichtstärke) angezogen.

Gesamt-RNA von einer viertägigen Euglena Kultur wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene) kloniert. Entsprechend der Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt und Klone wurden zur Zufallssequenzierung ansequenziert. Aus der Gesamt-RNA wurde mit Hilfe des PolyATract Isolierungssystems (Promega) mRNA isoliert. Die mRNA wurde mit dem Marathon cDNA Amplification-Kit (BD Biosciences) reverse transkribiert und entsprechend der Herstellerangaben wurden die Adaptoren ligiert. Die cDNA-Bank wurde dann für die PCR zur Klonierung von Expressionsplasmiden mittels 5'- und 3'-RACE (rapid amplification of cDNA ends) verwendet.

Die Klonierung der Elongasen aus Arabidopsis thaliana wurde wie folgt durchgeführt:

Ausgehend von der genomischen DNA wurden für die beiden Gene Primer entsprechend am 5'- und 3'-Ende des offenen Leserahmens abgeleitet.

Zur Isolierung von Gesamt-RNA aus *A. thaliana* wurde nach Chrigwin *et al.*, (1979) verfahren. Blätter von 21 Tage alten Pflanzen wurden in flüssigem Stickstoff zermörsert, mit Aufschlusspuffer versetzt und für 15 min bei 37 °C inkubiert. Nach Zentrifugation (10 min, 4 °C, 12000xg) wurde die RNA im Überstand mit 0,02 Volumen 3 M Natriumacetat pH 5,0 und 0,75 Volumen Ethanol bei –20 °C für 5 h präzipitiert. Die RNA wurde dann nach einem weiteren Zentrifugationsschritt in 1 mL TES pro g Ausgangsmaterial aufgenommen, einmal mit einem Volumen Phenol-Chloroform und einmal mit einem Volumen Chloroform extrahiert und die RNA mit 2,5 M LiCl gefällt. Nach anschliessendem Zentrifugieren und Waschen mit 80 %igem Ethanol wurde die RNA in Wasser resuspendiert. Entsprechend Sambrook et al. 1989 wurde die cDNA synthetisiert und RT-PCR mit den abgeleiteten Primer durchgeführt. Die PCR-Produkte wurden nach Herstellerangaben in den Vektor pYES2.1-TOPO (Invitrogen) kloniert.

10

15

25

30.

35

137

PCT/EP2005/001863

Beispiel 49: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen:

Zur Charakterisierung der Funktion der Elongasen aus *A. thalina* wurden die offenen Leserahmen der jeweiligen DNAs stromabwärts des Galactose-induzierbaren GAL1-Promotors von pYES2.1/V5-His-TOPO (Invitrogen) kloniert, wobei pAt60 und pAt70 erhalten wurden.

Der Saccharomyces cerevisiae-Stamm 334 wurde durch Elektroporation (1500 V) mit dem Vektor pAt60 bzw. pAt70 transformiert. Als Kontrolle wurde eine Hefe verwendet, die mit dem leeren Vektor pYES2.1 transformiert wurde. Die Selektion der transformierten Hefen erfolgte auf Komplett-Minimalmedium (CMdum)-Agarplatten mit 2% Glucose, aber ohne Uracil. Nach der Selektion wurden je drei Transformanten zur weiteren funktionellen Expression ausgewählt.

Für die Expresssion der At-Elongasen wurden zunächst Vorkulturen aus jeweils 5 ml CMdum-Flüssigmedium mit 2% (w/v) Raffinose aber ohne Uracil mit den ausgewählten Transformanten angeimpft und 2 Tage bei 30°C, 200 rpm inkubiert.

5 ml CMdum-Flüssigmedium (ohne Uracil) mit 2% Raffinose und 300 μM verschiedener Fettsäuren wurden dann mit den Vorkulturen auf eine OD₆₀₀ von 0,05 angeimpft. Die Expression wurde durch die Zugabe von 2% (w/v) Galactose induziert. Die Kulturen wurden für weitere 96 h bei 20°C inkubiert.

20 Beispiel 50: Expression von pAt60 und pAt70 in Hefen

Hefen, die wie unter Beispiel 5 mit den Plasmiden pYES2.1, pAt60 bzw. pAt70 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest. gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum

Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

5 Beispiel 51: Funktionelle Charakterisierung von pAt60 und pAt70

Die Substratspezifität der Elongasen At3g06460 bzw. At3g06470 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Tab. 20, Fig. 26). Die gefütterten Substrate sind in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der Gene At3g06460 bzw. At3g06470. Dies bedeutet, dass diese Gene funktional exprimiert werden konnte.

Tabelle 20: Elongation von EPA durch die Elongasen At3g06460 bzw. At3g06470. Messung der Hefeextrakte nach Fütterung mit 250 uM EPA.

Gen	Gefütterte	Fettsäure	Gehalt anC20:	5n-3	Gehalt an C22:5n-3
At3g06460	EPA (C20:5	5n-3)	20.8		0,6
At3g06460	EPA (C20:5	5n-3)	25,4		1,1
Konversionsrat	e von EPA	At3g0	6460: 3,0 %	At	3g06470: 4,1 %

Figur 26 gibt die Elongation von 20:5n-3 durch die Elongasen At3g06470 wieder.

15 Beispiel 52: Klonierung einer Elongase aus Phaeodactylum tricornutum

Ausgehend von konservierten Bereichen in den Proteinsequenzen mit Hilfe der in der Anmeldung aufgeführten Elongase-Gene mit Δ-6-Elongaseaktivität wurden degenerierte Primer hergestellt und mit diesen eine *Phaeodactylum* cDNA Bank mittels PCR durchsucht. Folgende Primer-Sequenzen wurden eingesetzt:

Primer-Name	Sequenz 5'-3' Orientierung	Korrespondierende Aminosäuren
Phaelo forward1	AA(C/T)CTUCTUTGGCTUTT(C/T)TA (SEQ ID NO. 185)	NLLWLFY
Phaelo reverse1	GA(C/T)TGUAC(A/G)AA(A/G)AA(C/T)TGUG C(A/G)AA (SEQ ID NO. 186)	FAQFFVQS

10

WO 2005/083093

Nukleotidbasen in Klammern bedeuten, dass eine Mischung von Oligonukleotiden mit jeweils der einen oder anderen Nukleotidbase vorliegen.

Herstellung der Phaeodactylum cDNA Bank:

Eine 2 L Kultur von P. tricornutum UTEX 646 wurde in f/2 Medium (Guillard, R.R.L. 5 1975. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals (Eds. Smith, W.L. and Chanley, M.H.), Plenum Press, New York, pp 29-60.) für 14 d (= Tage) bei einer Lichtstärke von 35 E/cm² angezogen. Gefrorene Zellen wurden nach Zentrifugation in der Gegenwart von flüssigem Stickstoff zu einem feinen Pulver gemahlen und mit 2 mL Homogenisierungspuffer (0,33 M Sorbitol, 0,3 M · 10 NaCl, 10 mM EDTA, 10 mM EGTA, 2% SDS, 2% Mercaptoethanol in 0,2 M Tris-Cl ph 8,5) resuspendiert. Nach Zugabe von 4 mL Phenol und 2 mL Chloroform wurde 15 min kräftig bei 40-50 °C geschüttelt. Anschliessend wurde zentrifugiert (10 min x 10000g) und die wässerige Phase schrittweise mit Chloroform extrahiert. Nukleinsäuren wurden dann durch Zugabe von 1/20 Volumen 4 M Natriumhydrogencarbonatlösung gefällt und 15 zentrifugiert. Das Pellet wurde in 80 mM Tris-borat pH 7,0 und 1 mM EDTA aufgenommen und die RNA mit 8 M Lithiumclorid gefällt. Nach Zentrifugation und Waschen mit 70%igem Ethanol wurde das RNA-Pellet mit Rnase-freiem Wasser aufgenommen. Poly(A)-RNA wurde mit Dynabeads (Dynal, Oslo, Norwegen) nach Herstellerangaben isoliert und die Erst-Strang-cDNA-Synthese mit MLV-Rtase von Roche (Mannheim) 20 durchgeführt. Die Zweit-Strang-Synthese erfolgte dann mittels DNA Polymerase I und Klenow Fragment, gefolgt von einem RnaseH Verdau. Die cDNA wurde mit T4 DNA Polymerase behandelt und anschliessend EcoRI/Xhol Adaptoren (Pharmacia, Freiburg) mittels T4 Ligase angehängt. Nach Xhol Verdau, Phosphorylierung und Geltrennung wurden Fragmente grösser als 300 bp entsprechend der Herstellerangaben in 25 den lambda ZAP Express Phagen ligiert (Stratagene, Amsterdam, Niederlande). Nach Massenexcision der cDNA-Bank und Plasmid-Rückgewinnung wurde die Plasmid-Bank in E. coli DH10B Zellen transformiert und zur PCR-Sichtung eingesetzt.

Mittels den oben genannten degenerierten Primern konnte das PCR-Fragment mit der Sequenznummer SEQ ID NO: 187 generiert werden.

Dieses Fragment wurde mit Digoxigenin markiert (Roche, Mannheim) und als Sonde für die Sichtung der Phagen-Bank verwendet.

Mit Hilfe der Sequenz SEQ ID NO: 187 konnte die Gensequenz SEQ ID NO: 183 erhalten werden, die das Volllängen-RNA-Molekül der Δ6-Elongase von Phaeodacty-lum darstellt:

35 Beispiel 53: Klonierung von Expressionsplasmiden zur heterologen Expression in -Hefen

Die entsprechenden Primerpaare wurden so ausgewählt, dass sie die Hefe-Konsensus-Sequenz für hocheffiziente Translation (Kozak, Cell 1986, 44:283-292) neben dem Startcodon trugen. Die Amplifizierung der PtELO6-DNA wurde jeweils mit

1 μL cDNA, 200 μM dNTPs, 2,5 U Advantage-Polymerase und 100 pmol eines jeden Primers in einem Gesamtvolumen von 50 μl durchgeführt. Die Bedingungen für die PCR waren wie folgt: Erste Denaturierung bei 95°C für 5 Minuten, gefolgt von 30 Zyklen bei 94°C für 30 Sekunden, 55°C für 1 Minute und 72°C für 2 Minuten sowie ein letzter Verlängerungsschritt bei 72°C für 10 Minuten.

Für die Klonierung der Sequenz zur heterologen Expression in Hefen wurden folgende Oligonukleotide für die PCR-Reaktion verwendet:

Gen-Name und SEQ ID NO:	Primersequenz
PtELO6 (SEQ ID NO: 183)	F:5'-GCGGCCGCACATAATGATGGTACCTTCAAG (SEQ ID NO: 188)
	R:3'- GAAGACAGCTTAATAGACTAGT (SEQ ID NO: 189)

^{*}F=forward primer, R=reverse primer

Die PCR Produkte wurden für 30 min bei 21 °C mit dem Hefe-Expressionsvektor -10 pYES2.1-TOPO (Invitrogen) gemäß Herstellerangaben inkubiert. Das PCR-Produkt (siehe SEQ ID NO: 192) wurde dabei durch einen T-Überhang und Aktivität einer Topoisomerase (Invitrogen) in den Vektor ligiert. Nach der Inkubation erfolgte dann die Transformation von E. coli DH5α Zellen. Entsprechende Klone wurden durch PCR identifiziert, die Plasmid-DNA mittels Qiagen DNAeasy-Kit isoliert und durch Sequenzierung verifiziert. Die korrekte Sequenz wurde dann in den Saccharomyces Stamm 15 INVSc1 (Invitrogen) durch Elektroporation (1500 V) transformiert. Zur Kontrolle wurde der leere Vektor pYES2.1 parallel transformiert. Anschließend wurden die Hefen auf Komplett-Minimalmedium ohne Uracil mit 2 % Glucose ausplattiert. Zellen, die ohne Uracil im Medium wachstumsfähig waren, enthalten damit die entsprechenden 20 Plasmide pYES2.1 und pYES2.1-PtELO6. Nach der Selektion wurden je zwei Transformaten zur weiteren funktionellen Expression ausgewählt.

Beispiel 54: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Für die Transformation von Pflanzen wird ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wird mit folgendem Primerpaar Notl-Schnittstellen am 5' und 3'-Ende der kodierenden Sequenz eingefügt:.

PSUN-PtELO6

Forward: 5'-GCGGCCGCACCATGATGGTACCTTCAAGTTA (SEQ ID NO: 190)

Reverse: 3'-GAAGACAGCTTAATAGGCGGCCGC (SEQ ID NO: 191)

Zusammensetzung des PCR-Ansatzes (50 µL):

5,00 µL Template cDNA

5,00 µL 10x Puffer (Advantage-Polymerase)+ 25mM MgCl2

5,00 µL 2mM dNTP

1,25 µL je Primer (10 pmol/µL)

0,50 µL Advantage-Polymerase

Die Advantage-Polymerase von Clontech wurden eingesetzt.

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

10 Denaturierungstemperatur: 1 min 94°C

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

25

30

35

Die PCR Produkte werden für 16 h bei 37 °C mit dem Restriktionsenzym Notl inkubiert. Der Pflanzen-Expressionsvektor pSUN300-USP wird in gleicherweise inkubiert.

Anschliessend werden die PCR Produkte sowie der 7624 bp große Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgt mittels Qiagen Gel Purification Kit gemäss Herstellerangaben. Anschließend werden Vektor und PCR-Produkte ligiert. Dazu wird das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmide pSUN-PtELO wird durch Sequenzierung verifiziert.

pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment, inseriert wurde. Das Polyadeny-lierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti-Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve,H., Dhaese,P., Seurinck,J., Lemmers,M., Van Montagu,M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-Reaktion nach Standardmethoden amplifiziert.

(Primersequenz: 5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC
GGATCTGCTGGCTATGAA-3'; SEQ ID NO: 151).

Das PCR-Fragment wurde mit EcoRI/Sall nachgeschnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeich-

nung pSUN-USP.Das Konstrukt wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.

Die Lipidextraktion aus Hefen und Samen erfolgte identisch zu Beispiel 6.

Beispiel 55: Expression von PtElo in Hefen

20

25

Hefen, die wie unter Beispiel 4 mit den Plasmiden pYES2 und pYES2-PtELO6 transformiert wurden, wurden folgendermaßen analysiert:

Die Hefezellen aus den Hauptkulturen wurden durch Zentrifugation (100 x g, 5 min, 20°C) geerntet und mit 100 mM NaHCO₃, pH 8,0 gewaschen, um restliches Medium und Fettsäuren zu entfernen. Aus den Hefe-Zellsedimenten wurden Fettsäuremethylester (FAMEs) durch saure Methanolyse hergestellt. Hierzu wurden die Zellsedimente mit 2 ml 1 N methanolischer Schwefelsäure und 2% (v/v) Dimethoxypropan für 1 h bei 80°C inkubiert. Die Extraktion der FAMES erfolgte durch zweimalige Extraktion mit Petrolether (PE). Zur Entfernung nicht derivatisierter Fettsäuren wurden die organischen Phasen je einmal mit 2 ml 100 mM NaHCO₃, pH 8,0 und 2 ml Aqua dest.

15 gewaschen. Anschließend wurden die PE-Phasen mit Na₂SO₄ getrocknet, unter Argon eingedampft und in 100 μl PE aufgenommen. Die Proben wurden auf einer DB-23-Kapillarsäule (30 m, 0,25 mm, 0,25 μm, Agilent) in einem Hewlett-Packard 6850-Gaschromatographen mit Flammenionisationsdetektor getrennt. Die Bedingungen für die GLC-Analyse waren wie folgt: Die Ofentemperatur wurde von 50°C bis 250°C mit

einer Rate von 5°C/min und schließlich 10 min bei 250°C(halten) programmiert.

Die Identifikation der Signale erfolgte durch Vergleiche der Retentionszeiten mit entsprechenden Fettsäurestandards (Sigma). Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

Beispiel 56: Funktionelle Charakterisierung von PtELO6:

In Figur 29 ist die Umsetzung von C18:3^{Δ6,9,12} und C18:4^{Δ6,9,12,15} wiedergegeben. Die Substrate werden um je zwei Kohlenstoffatome elongiert es entstehen jeweils die Fettsäuren C20:3^{Δ8,11,14} bzw. C20:4^{Δ8,11,14,17}. Die Substratspezifität von PtELO6 konnte nach Expression und Fütterung verschiedener Fettsäuren ermittelt werden (Fig. 30). Die gefütterten Substrate sind in großen Mengen in allen transgenen Hefen nachzuweisen. Die transgenen Hefen zeigten die Synthese neuer Fettsäuren, den Produkten der PtElo6-Reaktion. Dies bedeutet, dass das Gen PtELO6 funktional exprimiert werden konnte.

Tabelle 21 zeigt, dass die PtElo6 eine enge Substratspezifität aufweist. PtELO6 konnte nur die C18-Fettsäuren Linolsäure, Linolensäure, γ -Linolensäure und Stearidonsäure elongieren, bevorzugte aber die ω -3-desaturierte Stearidonsäure (siehe auch Figur 30).

Fütterungsexperiment: Fettsäuren (fett) wurden jeweils mit 250 µM zugegeben. Die unterstrichenen Fettsäuren wurden neu gebildet.

Tabelle 21:	Substratspezifität	der PtElo6
-------------	--------------------	------------

gefütterte Fetts	äure:	+ 18:2	+ 18:3	+ 18:3	+ 18:4
16:0	16,2	18,2	15,2	20	04:48
16:1	50,6	20,5	22,8	33,5	34,2
18:0	5,4	6,3	6,2	5,2	12,4
18:1	27,7	14,6	19,6	19,3	16,7
18:2		40			
18:3			32,9		
18:3				12,3	
18:4					4,5
20:2		0,4			
20:3			3,4		
20:3				9,7	
20:4					14,5
% Elongation	0,0	0,99	9,37	44,09	76,32

5 Folgende Fettsäuren wurden gefüttert, aber nicht umgesetzt:

- $18:1^{\Delta 6}$, $18:1^{\Delta 9}$, $18:1^{\Delta 11}$
- $20:2^{\Delta 11,14}, 20:3^{\Delta 11,14,17}, 20:3^{\Delta 8,11,14}, 20:4^{\Delta 5,8,11,14}, 20:5^{\Delta 5,8,11,14,17}$
- 22:4^{Δ7,10,13,16}

15

Die Hefen, die mit dem Vektor pYES2-PtELO6 transformiert worden waren, wurden in Minimalmedium in Gegenwart der angegebenen Fettsäuren kultiviert. Die Synthese der Fettsäuremethylester erfolgte durch saure Methanolyse intakter Zellen. Anschließend wurden die FAMEs über GLC analysiert. So wurden die Ergebnisse, die in den Figuren 29 und 30 sowie in der Tabelle 19 dargestellt wurden, ermittelt.

Beispiel 57: Klonierung von Expressionsplasmiden zur Samen-spezifischen Expression in Pflanzen

Die folgenden beschriebenen allgemeinen Bedingungen gelten für alle nachfolgenden Versuche, wenn nicht anders beschrieben.

Erfindungsgemäß bevorzugt verwendet werden für die folgenden Beispiele Bin19, pBI101, pBinAR, pGPTV und pCAMBIA. Eine Übersicht über binäre Vektoren und ihre Verwendung gibt Hellens et al, Trends in Plant Science (2000) 5, 446–451. Verwendet

wurde ein pGPTV-Derivat wie in DE10205607 beschrieben. Dieser Vektor unterscheidet sich von pGPTV durch eine zusätzlich eingefügte Ascl-Restriktionsschnittstelle.

Ausgangspunkt der Klonierung war der Klonierungsvektor pUC19 (Maniatis et al.). Im ersten Schritt wurde das Conlinin-Promotor-Fragment mit folgenden Primern amplifiziert:

Cnl1 C 5': gaattcggcgcgcgagctcctcgagcaacggttccggcggtatagagttgggtaattcga

Cnl1 C 3': cccgggatcgatgccggcagatctccaccattttttggtggtgat

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 µl Template cDNA

10 5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5,00 µl 2mM dNTP

1,25 µl je Primer (10 pmol/µl)

0,50 µl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

15 Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym *Eco*RI und dann für 12 h bei 25°C mit dem Restriktionsenzym *Sma*I inkubiert. Der Klonierungsvektor pUC19 wurde in gleicher Weise inkubiert. Anschließend wurden das PCR-Produkt und der 2668 bp große, geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben.

Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1-C wurde durch Sequenzierung verifiziert.

Im nächsten Schritt wurde der OCS-Terminator (Genbank Accession V00088; De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J.

Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmidencoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982)) aus dem Vektor pGPVT-USP/OCS

(DE 102 05 607) mit den folgenden Primern amplifiziert:

OCS_C 5': aggcctccatggcctgctttaatgagatatgcgagacgcc

35 OCS_C 3': cccgggccggacaatcagtaaattgaacggag

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 µl Template cDNA

5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5,00 µl 2mM dNTP

1,25 µl je Primer (10 pmol/µl)

0,50 µl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C.

10

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym Stul und dann für 12 h bei 25°C mit dem Restriktionsenzym Smal inkubiert. Der Vektor pUC19-Cnl1-C wurde 12 h bei 25°C mit dem Restriktionsenzym Smal inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektro-15 phorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1C_OCS 20 wurde durch Sequenzierung verifiziert.

Im nächsten Schritt wurde der Cnl1-B Promotor durch PCR mittels folgender Primer amplifiziert:

Cnl1-B 5': aggcctcaacggttccggcggtatag

Cnl1-B 3': cccggggttaacgctagcgggcccgatatcggatcccattttttggtggtgattggttct

25 Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 µl Template cDNA

5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5,00 µl 2mM dNTP

1,25 µl je Primer (10 pmol/µl)

0,50 µl Advantage-Polymerase (Clontech) 30

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym *Stul* und dann für 12 h bei 25°C mit dem Restriktionsenzym *Smal* inkubiert. Der Vektor pUC19-Cnl1-C wurde 12 h bei 25°C mit dem Restriktionsenzym *Smal* inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-

- Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1C_Cnl1B_OCS wurde durch Sequenzierung verifiziert.
- In einem weiteren Schritt wurde der OCS-Terminator für CnI1B eingefügt. Dazu wurde die PCR mit folgenden Primer durchgeführt:

OCS2 5': aggcctcctgctttaatgagatatgcgagac OCS2 3': cccgggcggacaatcagtaaattgaacggag

Zusammensetzung des PCR-Ansatzes (50 µl):

15 5,00 μl Template cDNA

5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5,00 µl 2mM dNTP

1,25 µl je Primer (10 pmol/µl)

0,50 µl Advantage-Polymerase (Clontech)

20 Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym Stul und dann für 12 h bei 25°C mit dem Restriktionsenzym Smal inkubiert. Der Vektor pUC19-Cnl1C_Cnl1B_OCS wurde für 12 h bei 25°C mit dem Restriktionsenzym Smal inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente
 ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1C_Cnl1B_OCS2 wurde durch Sequenzierung verifiziert.

Im nächsten Schritt wurde der Cnl1-A Promotor durch PCR mittels folgender Primer amplifiziert:

Cnl1-B 5': aggcctcaacggttccggcggtatagag

Cnl1-B 3': aggccttctagactgcaggcggccgccgcattttttggtggtgattggt

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 µl Template cDNA

5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5.00 ul 2mM dNTP

1,25 µl je Primer (10 pmol/µl)

0,50 µl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

10

Anzahl der Zyklen: 35

Das PCR-Produkt wurde für 2 h bei 37°C mit dem Restriktionsenzym Stul inkubiert. Der Vektor pUC19-Cnl1-C wurde für 12 h bei 25°C mit dem Restriktionsenzym Smal inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch

- Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente 15 ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1C_Cnl1B_Cnl1A_OCS2 wurde durch Sequenzierung verifiziert.
- In einem weiteren Schritt wurde der OCS-Terminator für CnI1A eingefügt. Dazu wurde 20 die PCR mit folgenden Primer durchgeführt:

OCS2 5': ggcctcctgctttaatgagatatgcga

OCS2 3': aagettggcgcgcgagctcgtcgacggacaatcagtaaattgaacggaga

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 µl Template cDNA 25

5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5,00 µl 2mM dNTP

1,25 µl je Primer (10 pmol/µl)

0,50 µl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR: 30

> Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

35 Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym Stul und dann für 2 h bei 37°C mit dem Restriktionsenzym HindIII inkubiert. Der Vektor

pUC19-Cnl1C_Cnl1B_Cnl1A_OCS2 wurde für 2 h bei 37°C mit dem Restriktionsenzym Stul und für 2 h bei 37°C mit dem Restriktionsenzym HindIII inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1C_Cnl1B_Cnl1A_OCS3 wurde durch Sequenzierung verifiziert.

Das Plasmid pUC19-Cnl1C_Cnl1B_Cnl1A_OCS3 wurde im nächsten Schritt zur

Klonierung der Δ6-, Δ5-Desaturase und Δ6-Elongase verwendet. Dazu wurde die Δ6Desaturase aus Phytium irregulare (WO02/26946) mit folgenden PCR-Primern amplifiziert:

D6Des(Pir) 5': agatctatggtggacctcaagcctggagtg D6Des(Pir) 3': ccatggcccgggttacatcgctgggaactcggtgat

15 Zusammensetzung des PCR-Ansatzes (50 μl):

5,00 µl Template cDNA 5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂ 5,00 µl 2mM dNTP 1,25 µl je Primer (10 pmol/µl) 0,50 µl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

25 Anzahl der Zyklen: 35

20

30

35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym *Bgl*II und dann für 2 h bei 37°C mit dem Restriktionsenzym *Nco*I inkubiert. Der Vektor pUC19-CnI1C_CnI1B_CnI1A_OCS3 wurde für 2 h bei 37°C mit dem Restriktionsenzym *Bgl*II und für 2 h bei 37°C mit dem Restriktionsenzym *Nco*I inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-CnI1_d6Des(Pir) wurde durch Sequenzierung verifiziert.

Das Plasmid pUC19-Cnl1_d6Des(Pir) wurde im nächsten Schritt zur Klonierung der Δ 5-Desaturase aus Thraustochytrium ssp. (WO02/26946) verwendet. Dazu wurde die Δ 5-Desaturase aus Thraustochytrium ssp. mit folgenden PCR-Primern amplifiziert:

D5Des(Tc) 5': gggatccatgggcaagggcagcgagggccg D5Des(Tc) 3': ggcgccgacaccaagaagcaggactgagatatc

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 μl Template cDNA
5,00 μl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂
5,00 μl 2mM dNTP
1,25 μl je Primer (10 pmol/μl)
0,50 μl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

10 Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C
Anzahl der Zyklen: 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym BamHI und dann für 2 h bei 37°C mit dem Restriktionsenzym EcoRV inkubiert. Der Vektor pUC19-Cnl1_d6Des(Pir) wurde für 2 h bei 37°C mit dem Restriktionsenzym BamHI und für 2 h bei 37°C mit dem Restriktionsenzym EcoRV inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1_d6Des(Pir)_d5Des(Tc) wurde durch Sequenzierung verifiziert.

Das Plasmid pUC19-Cnl1_d6Des(Pir)_d5Des(Tc) wurde im nächsten Schritt zur Klonierung der Δ6-Elongase aus Physcomitrella patens (WO01/59128) verwendet, wozu diese mit folgenden PCR-Primern amplifiziert wurde:

D6Elo(Pp) 5': gcggccgcatggaggtcgtggagagattctacggtg D6Elo(Pp) 3': gcaaaagggagctaaaactgagtgatctaga

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 μl Template cDNA
 5,00 μl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂
 5,00 μl 2mM dNTP
 1,25 μl je Primer (10 pmol/μl)
 0,50 μl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym Notl und dann für 2 h bei 37°C mit dem Restriktionsenzym Xbal inkubiert. Der Vektor pUC19-Cnl1_d6Des(Pir)_d5Des(Tc) wurde für 2 h bei 37°C mit dem Restriktionsenzym Notl und für 2 h bei 37°C mit dem Restriktionsenzym Xbal inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp) wurde durch Sequenzierung verifiziert.

Ausgehend von pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp) wurde der binäre Vektor für die Pflanzentransformation hergestellt. Dazu wurde pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp) für 2 h bei 37°C mit dem Restriktionsenzym Ascl inkubiert. Der Vektor pGPTV wurde in gleicher Weise behandelt. Anschließend wurden das Fragment aus pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp) und der geschnittene pGPTV-Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pGPTV- Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp) wurde durch Sequenzierung verifiziert.

Ein weiteres Konstrukt, pGPTV- Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co), fand Verwendung. Dazu wurde ausgehend von pUC19-Cnl1C_OCS mit folgenden Primern amplifiziert:

30 Cnl1_OCS 5': gtcgatcaacggttccggcggtatagagttg
Cnl1_OCS 3': gtcgatcggacaatcagtaaattgaacggaga

Zusammensetzung des PCR-Ansatzes (50 µl):

35

5,00 μl Template cDNA 5,00 μl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂ 5,00 μl 2mM dNTP 1,25 μl je Primer (10 pmol/μl) 0,50 μl Advantage-Polymerase (Clontech) Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C
Denaturierungstemperatur: 1 min 94°C
Elongationstemperatur: 2 min 72°C

5 Anzahl der Zyklen: 35

10

Das PCR-Produkt wurde für 2 h bei 37°C mit dem Restriktionsenzym *Sal*I inkubiert. Der Vektor pUC19 wurde für 2 h bei 37°C mit dem Restriktionsenzym *Sal*I inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1 OCS wurde durch Sequenzierung verifiziert.

In einem weiteren Schritt wurde das Δ12-Desaturase-Gen aus Calendula officinalis (WO01/85968) in pUC19-CnI1_OCS kloniert. Dazu wurde d12Des(Co) mit folgenden Primern amplifiziert:

D12Des(Co) 5': agatctatgggtgcaggcggtcgaatgc D12Des(Co) 3': ccatggttaaatcttattacgatacc

Zusammensetzung des PCR-Ansatzes (50 μl):

5,00 μl Template cDNA 5,00 μl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂ 5,00 μl 2mM dNTP 1,25 μl je Primer (10 pmol/μl) 0,50 μl Advantage-Polymerase (Clontech)

25 Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C Denaturierungstemperatur: 1 min 94°C Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR-Produkt wurde für 2 h bei 37°C mit dem Restriktionsenzym Bg/II und anschließend für 2 h bei gleicher Temperatur mit Ncol inkubiert. Der Vektor pUC19-Cnl1_OCS wurde in gleicher Weise inkubiert. Anschließend wurden das PCR-Fragment und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche

PCT/EP2005/001863

verwendet. Das entstandene Plasmid pUC19-Cnl1_D12Des(Co) wurde durch Sequenzierung verifiziert.

Das Plasmid pUC19-Cnl1_D12Des(Co), sowie das Plasmid pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp) wurden für 2 h bei 37°C mit dem

5 Restriktionsenzym Sall inkubiert. Anschließend wurde das Vektor-Fragment sowie der Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und Vektor-Fragment ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) wurde durch Sequenzierung verifiziert.

Ausgehend von pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) wurde der binäre Vektor für die Pflanzentransformation hergestellt. Dazu wurde pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) für 2 h bei 37°C mit dem Restriktionsenzym Ascl inkubiert. Der Vektor pGPTV wurde in gleicher Weise behandelt. Anschließend wurden das Fragment aus pUC19-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) und der geschnittene pGPTV-Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pGPTV- Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) wurde durch Sequenzierung verifiziert.

Ein weiterer für die Pflanzentransformation geeigneter Vektor ist pSUN2. Um die Zahl
der im Vektor enthaltenen Expressionskassetten auf mehr als vier zu erhöhen wurde
dieser Vektor in Kombination mit dem Gateway-System (Invitrogen, Karlsruhe)
verwendet. Dazu wurde in den Vektor pSUN2 gemäss Herstellerangaben die GatewayKassette A wie folgendermassen beschrieben, eingefügt:

Der pSUN2 Vektor (1 µg) wurde 1 h mit dem Restriktionsenzym EcoRV bei 37° inkubiert. Anschliessend wurde die Gateway-Kassette A (Invitrogen, Karlsruhe) in den geschnittene Vektor ligiert mittels des Rapid Ligation Kits von Roche, Mannheim. Das entstandene Plasmid wurde in E. coli DB3.1 Zellen (Invitrogen) transformiert. Das insolierte Plasmid pSUN-GW wurde anschliessend durch Sequenzierung verifiziert.

Im zweiten Schritt wurde die Expressionskassette aus pUC19-CnI1_

d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) mittels Ascl ausgeschnitten und in den in gleicherweise behandelten Vektor pSUN-GW ligiert. Das so entstandene Plasmid pSUN-4G wurde für weitere Genkonstrukte verwendet.

40

Dazu wurde zuerst gemäss Herstellerangaben (Invitrogen) ein pENTR-Klon modifiziert. Das Plasmid pENTR1A (Invitrogen) wurde 1 h bei 37° mit dem Restriktionsenzym Ecorl inkubiert, anschliessend für 30 min mit Klenow-Enzym, sowie einem 1 µM dNTP-Mix

behandelt und dann der Ascl-Adapter (5'-ggcgcgcc; am 5'-Ende phosphoryliert, doppelsträngig) in den pENTR1A-Vektor liegiert. In diesen modifierzerten wurde wie oben beschrieben schrittweise Gene in die Cnl-Kassette eingefügt und über Ascl in den pENTR-Vektor übertragen.

In dieser beschriebenen Art und Weise wurde das Gen TL16y2 aus Thraustochytrium ssp. (SEQ ID No. 83) in den pSUN-4G Vektor übertragen:

Das Plasmid pUC19-Cnl1C_Cnl1B_Cnl1A_OCS3 wurde im nächsten Schritt zur Klonierung der $\Delta 5$ -Elongase TL16y2 verwendet. Dazu wurde die $\Delta 5$ -Elongase aus Thraustochytrium ssp. mit folgenden PCR-Primern amplifiziert:

10 TL16y2 5': agatct atggacgtcgtcgagcagca

TL16y2 3': ccatggcccggg agaagcagaagaccatctaa

Zusammensetzung des PCR-Ansatzes (50 µl):

5,00 µl Template cDNA

5,00 µl 10x Puffer (Advantage-Polymerase) + 25mM MgCl₂

5,00 µl 2mM dNTP 15

1,25 µl je Primer (10 pmol/µl)

0.50 µl Advantage-Polymerase (Clontech)

Reaktionsbedingungen der PCR:

Anlagerungstemperatur: 1 min 55°C

Denaturierungstemperatur: 1 min 94°C 20

Elongationstemperatur: 2 min 72°C

Anzahl der Zyklen: 35

Das PCR-Produkt wurde zuerst für 2 h bei 37°C mit dem Restriktionsenzym Bg/II und dann für 2 h bei 37°C mit dem Restriktionsenzym Ncol inkubiert. Der Vektor pUC19-Cnl1C_Cnl1B_Cnl1A_OCS3 wurde für 2 h bei 37°C mit dem Restriktionsenzym 25 Bg/II und für 2 h bei 37°C mit dem Restriktionsenzym Ncol inkubiert. Anschließend wurden das PCR-Produkt und der geschnittene Vektor durch Agarose-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolgte mittels Qiagen Gel Purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und PCR-Produkt ligiert. Dazu wurde 30 das Rapid Ligation Kit von Roche verwendet. Das entstandene Plasmid pUC19-Cnl1_TL16y2 wurde durch Sequenzierung verifiziert. Anschliessend wurde die Kassette mit Ascl ausgeschnitten und in einen mit Ascl vorbehandelten pENTR-Vektor ligiert. Das entstandene Plasmid pENTR-Cnl1_TL16y2 wurde dann gemäss Herstellerangaben (Invitrogen) in einer Rekombinationsreaktion mit dem Vektor pSUN-4G 35

inkubiert. Das Produkt ergab den Vektor pSUN-5G, der für die Pflanzentransformation eingesetzt wurde.

In einem weiteren Schritt wurde das Konstrukt pSUN-8G mittels derselben beschriebenen Methodik erstellt. Dazu wurden 5'- und 3'-Primer für die Gene SEQ ID 41, 53, 87 und 113 mit den oben beschriebenen Restriktionsschnittstellen sowie den ersten und jeweils letzten 20 Nukleotiden des offenen Leserahmens erstellt und mit den Standardbedingungen (siehe oben) amplifiziert und in den pENTR-Cnl-Vektor ligiert.

Durch Rekombinationsreaktion mit dem Vektor pSUN-4G konnte so das Konstrukt pSUN-8G erstellt werden. Auch dieser Vektor wurde für die Pflanzentransformation eingesetzt.

- 10 Beispiel 58: Erzeugung von transgenen Pflanzen
 - Erzeugung transgener Sareptasenfpflanzen. Es wurde das Protokoll zur Transformation von Rapspflanzen verwendet (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)
- Zur Erzeugung transgener Pflanzen wurden die erzeugten binäre Vektoren pGPTV-Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co), pSUN-5G und pSUN-8G in 15 Agrobacterium tumefaciens C58C1:pGV2260 transformiert (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Sareptasenfpflanzen wurde eine 1:50 Verdünnung einer Übernachtkultur einer positiv transformierten Agrobakterienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) verwendet. Petiolen oder Hypokotyledonen frisch 20 gekeimter steriler Pflanzen (zu je ca. 1 cm²) wurden in einer Petrischale mit einer 1:50 Agrobakterienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Coinkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wurde anschließend mit 16 Stunden Licht / 8 Stunden Dunkelheit und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l 25 Kanamycin, 20 mikroM Benzylaminopurin (BAP) und 1,6 g/l Glukose weitergeführt. Wachsende Sprosse wurden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bildeten sich nach drei Wochen keine Wurzeln, so wurde als Wachstumshormon 2-Indolbuttersäure zum Bewurzeln dem Medium 30 zugegeben.

Regenerierte Sprosse wurden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Elongase-Expression wie Δ -6-Elongaseaktivität oder Δ -5- oder Δ -6-Desaturaseaktivität mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an C20- und C22 mehrfach ungesättigten Fettsäuren wurden so identifiziert.

Mit diesem Protokoll wurden auch transgene Rapspflanzen erfolgreich hergestellt.

30

b) Herstellung von transgenen Leinpflanzen

Die transgenen Leinpflanzen können zum Beispiel nach der Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. Agrobakterien-vermittelte Transformationen können zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 durchgeführt werden.

Beispiel 59: Lipidextraktion aus Samen:

Die Auswirkung der genetischen Modifikation in Pflanzen auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet wird und das Medium und/oder die zellulären Komponenten auf die 10 erhöhte Produktion des gewünschten Produktes (d.h. der Lipide oder einer Fettsäure) untersucht werden. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise 15 Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream processing for 20 Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabral, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications). 25

Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22): 12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141-145 beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischen- und Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der

WO 2005/083093

5

20

25

35

40

156

PCT/EP2005/001863

Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

10 Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-15 Verfahren, Lipide 33:343-353).

Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden.

Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer 30 Extraktion zugänglicher zu machen.

Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimentiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan für 1h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Beispiel 60: Analyse der Samen von den erzeugten transgenen Pflanzen

Entsprechend Beispiel 59, wurden die Samen der Pflanzen, die mit den Konstrukten pGPTV- Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co), pSUN-5G und pSUN-8G transformiert wurden, analysiert. FigurXX zeigt dabei das Fettsäurespektrum von Samen mit dem Konstrukt pGPTV-

Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co). Im Vergleich zu Kontroll-Pflanzen, die nicht transformiert wurden (Wildtyp-Kontrolle, WT) konnte eine deutliche Veränderung im Fettsäurespektrum festgestellt werden. Damit konnte gezeigt werden, dass die transformierten Gene funktionell sind. Tabelle 22 fasst die Ergebnisse aus Figur 32 zusammen.

Tabelle 22:

10

15

Linien			, , , , , , , , , , , , , , , , , , ,	F	ettsäure	n			
	16:0	18:0	18:1	18:2	GLA	18:3	SDA	ARA	EPA
WT Kontrolle	5,6	6,5	31,7	41,7	nd	12,1	nd	nd	nd
1424_Ko82_4	6,6	1,5	8,9	10,5	42,2	3,1	2,8	17,2	0,2
1424_Ko82_5	6,1	1,5	11,0	9,0	40,6	2,9	4,0	15,0	1,5
1424_Ko82_6	5,7	1,6	15,5	10,6	37,1	3,0	3,2	14,6	0,2
1424_Ko82_7	5,4	2,0	20,4	10,7	32,6	3,5	3,2	12,1	1,0
1424_Ko82_8	5,4	1,4	15,1	12,5	39,9	2,6	2,4	12,2	0,7
1424_Ko82_9	6,0	1,8	25,0	9,9	29,7	2,2	2,5	10,2	0,8
1424_Ko82_10	5,7	1,3	10,1	10,3	42,5	2,6	3,5	13,9	1,1
1424_Ko82_11	5,4	1,4	15,7	11,3	38,2	2,6	2,8	14,1	1,0

Die Analyse der Samen mit dem Konstrukt pSUN-5G zeigt dabei Linien, die eine deutliche Erhöhung des Gehaltes an Arachidonsäure verglichen mit dem Konstrukt pGPTV- Cnl1_d6Des(Pir)_d5Des(Tc)_D6Elo(Pp)_D12Des(Co) haben. Dabei konnten Linien mit bis zu 25 % ARA erhalten werden. Die zusätzliche Elongase (TL16y2) muss für diesen Effekt vorantwortlich sein (Figur31, pSUN-5G). Die Ergebnisse dieser Linie sind in Tabelle 23 zusammengefasst.

Tab. 23: Fettsäureanalytik von transgenen Samen, die mit dem Konstrukt pSUN-5G transformiert wurden.

Linien					Fetts	äuren				
	16:0	18:0	18:1	18:2 LA	18:3 GLA	18:3 ALA	18:4 SDA	20:3 HGLA	ARA	ЕРА
WT	5,2	2,3	34,2	37,9	0,0	11,6	0,0	0,0	0,0	0,0
16-1-2	4,2	1,6	20,1	21,5	25,9	4,1	1,8	1,7	8,9	0,8
16-1-3	5,8	2,3	9,9	14,6	33,6	3,1	2,2	2,2	16,0	1,4
16-1-8	5,0	2,8	11,1	12,6	34,9	2,2	1,8	2,6	16,3	1,2
16-2-1	4,9	1,6	14,5	17,4	32,9	3,5	2,0	1,6	12,3	1,0
16-2-5	5,5	3,3	12,9	13,8	32,9	2,9	2,2	1,4	15,4	1,4
16-4-2	5,8	2,5	18,8	14,7	32,0	3,5	2,3	1,2	12,0	1,2
16-4-3	5,9	2,0	19,7	15,0	32,0	3,8	2,4	1,1	11,4	1,2
16-7-2	6,2	4,4	14,3	10,2	30,7	2,0	2,1	1,7	19,4	1,9
16-7-3	5,0	2,5	21,6	13,6	30,7	2,1	1,8	1,5	12,6	1,1
16-7-4	5,3	4,1	18,8	19,5	23,1	4,2	2,2	2,9	11,3	1,4
16-7-5	7,4	1,8	4,2	6,8	33,7	1,8	2,7	2,6	25,8	2,6

5 Beispiel 61: Nachweis von DHA in Samen von transgenen Sareptasenf-Pflanzen.

Samen von Pflanzen, die mit dem Konstrukt pSUN-8G wie unter Beispiel 58 beschrieben hergestellt wurden, wurden wie in Beispiel 59 beschrieben, analysiert. Neben den LCPUFA Arachidonsäure und Eicosapentaensäure konnte in diesen Samen auch Docosahexaensäure nachgewiesen werden, das Produkt nach Umsetzung durch die Δ4-Desaturase aus Thraustochytrium und den Δ5-Elongasen aus Onchorynchis mykiss und Ostreococcus tauri. Figur 32 zeigt das Chromatogramm mit dem geänderten Fettsäurespektrum im Vergleich zu einer nicht-transformierten Kontrollpflanze. In Tabelle 24 sind die Ergebnisse mehrerer Messungen zusammengefasst.

159

Tabelle. 24 gibt die Fettsäureanalytik von transgenen Samen, die mit dem Konstrukt pSUN-8G transformiert wurden.

Mit diesem Experiment konnte zum ersten Mal die Synthese von Docosahexaensäure in Samen demonstriert werden. Z.B. in WO 2004/071467 wird zwar die Synthese von DHA in höheren Pflanzen beschrieben, allerdings konnte die Synthese nicht für Samen gezeigt werden, nur für eine embryogene Zellkultur.

Äquivalente:

Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich
Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

Verteilung der Fettsäuren in den Samen in drei verschiedenen transgenen B. juncea Linien Tabelle 2:

B. juncea Linien	N.	18:1	18:2 (LA)	y18:3 (GLA)	α18:3 (ALA)	18:4 (SDA)	20:3 (HGLA)	20:4 (ARA)
WT	.~-	33,2	38,2	0	12,2	0	0	0
	2	31,3	41,2	0	11,7	0	0	0
8-1424-5	_	25,1	12,8	26,4	3,5	2,4	9'0	8,3
	2	26	12,7	26,3	3,8	2,6	9'0	8,2
	က	25	12,5	25,9	3,4	2,4	8,0	8,5
8-1424-8	-	28,1	13,1	25	5,8	3,7	0,2	6,2
	2	24,7	14,8	26,4	5,2	က	6,3	8,8
8-1424-10	-	25,2	14,2	29,8	5,2	3,4	0,5	ક
	2	27,2	12,7	27,9	4,2	2,9	6,0	6,3

Fettsäuremengen wurden in Gew.-% angegeben.

LA = Linolsäure, GLA = γ -Linolensäure, ALA = α -Linolensäure, SDA = Stearidonsäure, HGLA = Dihomo- γ -Linolensäure, ARA = Arachidonsäure, ETA = Eicosatetraensäure, EPA = Eicosapentaensäure

Tabelle 3: Verteilung der Fettsäuren in den Samen in drei verschiedenen transgenen B. juncea Linien

Probe	ŗ.	18:1 A9	18:2 A6,9	18:2 A9,12 (LA)	18:3 A6,9,12 (GLA)	18:3 A9,12,15 (ALA)	18:4 A6,9,12,15 (SDA)	20:3 Δ8,11,14 (HGLA)	20:4 A5,8,11,14 (ARA)	20:4 A8,11,14,17 (ETA)	20:5 A5,8,11,14,17 (EPA)
TW	1	35,10	00'0	35,71	00,00	10,80	00,00	00'0	00'0	0,00	00'0
	2	27,79	00'0	32,83	00'0	8,94	0,71	00,00	00,00	00'0	00'0
9-1424-1	1	17,62	1,07	12,32	29,92	2,84	2,17	76'0	13,05	<0,01	1,21
	2	23,68	2,17	10,57	23,70	2,39	1,80	86'0	11,60	<0,01	1,16
	3	17,15	0,94	12,86	31,16	3,19	2,40	1,01	12,09	<0,01	1,16
9-1424-5	1	16,48	1,47	11,09	30,49	3,06	2,56	0,75	11,84	<0,01	1,24
	2	17,70	1,23	11,42	27,94	2,35	1,88	0,64	12,30	0,03	1,12
	3	19,29	1,05	10,95	26,11	2,85	2,11	1,07	12,09	<0,01	1,21
9-1424-6	7	24,71	0,00	41,87	00,00	12,32	0,00	00,00	00,0	00'0	00,00
	2	28,84	00,00	40,65	00,00	10,94	00'0	00'0	00'0	00,00	00,00
	သ	29,28	00'0	41,34	00'0	10,76	00'0	00,00	00,00	00'0	00,00

Probe	ŗ.	18:1 A9	18:2 A6,9	18:2 A9,12 (LA)	18:3 A6,9,12 (GLA)	18:3 A9,12,15 (ALA)	18:4 A6,9,12,15 (SDA)	20:3 A8,11,14 (HGLA)	20:4 A5,8,11,14 (ARA)	20:4 A8,11,14,17 (ETA)	20:5 A5,8,11,14,17 (EPA)
9-1424-7	-	32,41	00'0	37,26	00'0	10,05	00'0	00'0	00'0	00'0	00'0
	2	27,76	00'0	36,66	00,00	11,43	0,00	00,00	00'0	00'0	00'0
	3	32,03	00'0	36,27	00,00	9,27	00'0	00'0	00'0	00'0	00,00
9-1424-8	~	19,08	0,61	11,26	23,31	3,73	2,14	1,11	10,93	80'0	1,11
	2	20,34	3,78	10,07	19,59	2,36	1,72	0,68	8,21	<0,01	1,00
	င	28,27	00'0	37,19	00,00	9,32	00'0	00'0	00'0	00'0	00,0
9-1424-9	←	25,95	00'0	37,87	00'0	9,15	00,0	00,00	00'0	00'0	00,00
	2	22,94	0,00	42,69	00'0	9,14	00'0	00,00	0,00	00,00	00,00
	3	18,96	0,61	14,09	23,76	3,17	1,86	0,97	10,46	<0,01	0,94

Fettsäuremengen wurden in Gew.-% angegeben.

LA = Linolsäure, GLA = γ -Linolensäure, ALA = α -Linolensäure, SDA = Stearidonsäure, HGLA = Dihomo- γ -Linolensäure, ARA = Arachidonsäure, ETA = Eicosatetraensäure, EPA = Eicosapentaensäure

Tabelle 4: Fettsäureanalyse in Samen von Brassica juncea

						ΓĄ	GLA	ALA	SDA				HGLA	ARA	ЕТА	EPA
												20:5	20:3			
16:0 18:0 18:1c9 18:1c11 18:2c6,9	18:1c9 18:1c11	18:1c11	8:1c11	18:2c	6,9	18:2	18:3	18:3	18:4	20:0	20:1c5	c8,11	c8,11,14	20:4	20:4	502
5,2 2,3 34,2 3,2 0,0	34,2 3,2	3,2		0'0		37,9	0,0	11,6	0'0	0,4	1,1	3,7	0'0	0'0	0'0	010
4,2 1,6 20,1 2,3 0,1	20,1 2,3	2,3		0,1		21,5	25,9	4,1	1,8	0,4	1,5	3,9	1,7	<u>6</u>	0,5	<u>8</u> 0
5,8 2,3 9,9 2,7 0,1	9,9 2,7	2,7		0,1		14,6	33,6	3,1	2,2	9'0	1,0	3,2	2,2	0'9)	0,4	7.0
5,0 2,8 11,1 2,1 0,3	11,1 2,1	2,1		6,0		12,6	34,9	2,2	1,8	9'0	1,3	3,7	2,6	16.3	0,4	1 12
4,9 1,6 14,5 2,9 0,2	14,5 2,9	2,9		0,2		17,4	32,9	3,5	2,0	0,4	6'0	1,6	1,6	123	1,9	<u>051</u>
5,5 3,3 12,9 3,0 0,4	12,9 3,0	3,0		0,4		13,8	32,9	5,9	2,2	2'0	1,0	2,2	1,4	15.4	0,3	T;T
5,8 2,5 18,8 2,6 0,9	18,8 2,6	2,6		6'0		14,7	32,0	3,5	2,3	2'0	8,0	9,0	1,2	120	0,1	Z.IJ
5,9 2,0 19,7 2,5 1,1	19,7 2,5	2,5		1,1		15,0	32,0	3,8	2,4	9'0	8'0	0,5	1,1		0,1	7.7
6,2 4,4 14,3 2,2 0,7	14,3 2,2	2,2		2'0		10,2	30,7	2,0	2,1	6'0	6'0	2,1	1,7	19.4	0,3	() ()
5,0 2,5 21,6 1,7 1,5	21,6 1,7	1,7		1,5		13,6	30,7	2,1	1,8	9'0	1,1	2,0	1,5	12.6	0,2	
5,3 4,1 18,8 2,2 0,7	18,8 2,2	2,2		2'0		19,5	23,1	4,2	2,2	2,0	1,0	1,8	2,9	11.3	0,3	
7,4 1,8 4,2 3,9 0,0	4,2 3,9	3,9		0'0		8'9	33,7	1,8	2,7	8'0	8'0	3,2	2,6	25.8	9'0	5.6

Fettsäuremengen wurden in Gew.-% angegeben.

LA = Linolsäure, GLA = γ -Linolensäure, ALA = α -Linolensäure, SDA = Stearidonsäure, HGLA = Dihomo- γ -Linolensäure, ARA = Arachidonsäure, ETA = Eicosatetraensäure, EPA = Eicosapentaensäure

Umsetzungsraten der gefütterten Fettsäuren. Die Konversionsraten wurden berechnet nach der Formel: [Konversionsrate]= [Produkt]/[[Substrat]+[Produkt]*100. Tabelle 6:

	C22:5 (n-3)				1.127		3.251				
	C22:4 (n-3)										0.876
	C22:4 (n-6)								1.632		
	C20:5 (n-3)			13.792	10.149	16.225	11.519				
-	C20:4 (n-3)										25.946
	C20:4 (n-6)							27.069	9.648		
	C20:3 (n-6)		•		6.620						
	C18:4 (n-3)									47.911	13.569
	C18:3 (n-6)	-		11.574	3.521						
	C18:1 (n-9)	25.330	26.475	17.289	19.587	21.712	23.131	12.735	21.351	6.344	8.403
nalyse	C18:0	4.670	4.215	5.487	6.129	6.292	6.570	6.587	5.367	6.642	7.246
der GC-A	C16:1 (n-7)	41.576	37.374	23.632	25.554	28.985	26.913	23.332	31.281	12.626	15.878
BioTaur-Klone Fläche in % der GC-Analyse	C16:0	21.261	20.831	22.053	20.439	20.669	20.472	23.169	20.969	18.519	19.683
Klone Flä	Fett- säure	keine	Keine	GLA + EPA	GLA + EPA	EPA	EPA	ARA	ARA	SDA	SDA
Bio Taur-	Clone	Vector	BioTaur	Vector	BioTaur	Vector	BioTaur	Vector	BioTaur	Vector	BioTaur

Tabelle 24: : Fettsäureanalytik von transgenen Samen, die mit dem Konstrukt pSUN-8G transformiert wurden.

_	16:0	16:0 18:0	18:1 A9	LA 18:2 Δ9,12	GLA 18:3 Δ6,9,12	ALA 18:3 Δ9,12,15	GLA ALA SDA HGLA ARA 18:3 18:3 18:4 20:3 20:4 Δ6,9,12 Δ9,12,15 Δ6,9,12,15 Δ8,11,14 Δ5,8,11,14	HGLA 20:3 A8,11,14	ARA 20:4 Δ5,8,11,14	EPA 20:5 Δ5,8,11,14	22:5 Δ7,10,13,16,	DHA 22:6 Δ4,7,10,13,16,
¥	5.26	1.80	30.78	5.26 1.80 30.78 43.93	pu	12.47	pu	pu	pu	, Pu	pu	pu
Bj-17-1-3 4,73 2,28 19,30 14,04	4,73	2,28	19,30	14,04	31,48	3,09	2,40	1,70	3,37	8,65	0,19	0,25
Bj-17-2-1 4,34 2,17 17,60 15,56	4,34	2,17	17,60	15,56	29,97	3,37	2,44	2,14	4,05	9,14	0,23	0,40
Bj-17-4-3 4,31 1,70 14,45 16,94	4,31	1,70	14,45	16,94	35,54	3,43	2,39	0,10	2,09	9,43	0,24	0,23

=	% gesättigte Fettsäuren	% einfach ungesättigte Fettsäuren	% mehrfach ungesättigte Fettsäuren	% LCFAs	% VLCFAs
TW	7.96	35.43	56.62	97.71	2.29
Bj-17-1-3	9,18	24,95	65,87	79,64	20,36
Bj-17-2-1	9,83	25,44	64,73	80,44	19,56
bj-17-4-3	14,05	20,36	65,60	75,27	24,73

LCFAs = alle Fettsäuren bis zu einer Länge von 18 Kohlenstoffatomen in der Fettsäurekette VLCFAs = alle Fettsäuren mit einer Länge ab 20 Kohlenstoffatomen in der Fettsäurekette

25

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I

$$R^{1} = CH_{2} + CH_{2} + CH_{3}$$
 (I)

im Samen von transgenen Pflanzen mit einem Gehalt von mindestens 20 Gew.-% bezogen auf den Gesamtlipidgehalt, dass es folgende Verfahrensschritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -9-Elongase- oder eine Δ -6-Desaturase-Aktivität codiert, und
- b) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ-8-Desaturase- oder eine Δ-6-Elongase-Aktivität codiert, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -5-Desaturase-Aktivität codiert, und
- d) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus,
 welche für eine Δ-5-Elongase-Aktivität codiert, und
 - e) Einbringen mindestens einer Nukleinsäuresequenz in den Organismus, welche für eine Δ -4-Desaturase-Aktivität codiert, und

wobei die Variablen und Substituenten in der Formel I die folgende Bedeutung haben:

R¹ = Hydroxyl-, CoenzymA-(Thioester), Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol-, Sphingobase-, oder einen Rest der allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$ (II)
 $H_{2}C-O-$

- R^2 = Wasserstoff-, Lyso-Phosphatidylcholin-, Lyso-Phosphatidylethanolamin-, Lyso-Phosphatidylglycerol-, Lyso-Diphosphatidylglycerol-, Lyso-Phosphatidylserin-, Lyso-Phosphatidylinositol- oder gesättigtes oder ungesättigtes C_2 - C_2 -Alkylcarbonyl-,
- R^3 = Wasserstoff-, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder R^2 oder R^3 unabhängig voneinander einen Rest der allgemeinen Formel Ia:

$$\begin{array}{c|c} & CH_2 \\ \hline \end{array} \begin{array}{c} CH_3 \\ \hline \end{array} \begin{array}{c} CH_$$

n = 2, 3, 4, 5, 6, 7 oder 9, m = 2, 3, 4, 5 oder 6 und p = 0 oder 3.

10 2. Verfahren gemäß Anspruch 1, wobei die Variablen n, m und p die folgende Bedeutung haben:

n = 2, 3 oder 5, m = 4, 5 oder 6 und p = 0 oder 3.

- Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der Formel I m = 4, n = 3, p = 3 und die Verbindung Arachidonsäure ist und/oder m = 5, n = 3, p = 0 und die Verbindung Eicosapentaensäure ist und/oder m = 5, n = 5, p = 0 und die Verbindung Docosapentaensäure ist und/oder m = 6, n = 3, p = 0 und die Verbindung Docosahexaensäure ist.
- Verfahren gemäß den Ansprüchen 2 bis 3, dadurch gekennzeichnet, dass im Samen der transgenen Pflanze der Gehalt aller Verbindungen der Formel I zusammengenommen mindestens 27 Gew.-% bezogen auf den Gesamtlipidgehalt beträgt.
 - 5. Verfahren gemäß den Ansprüchen 2 bis 3, dadurch gekennzeichnet, dass im Samen der transgenen Pflanze der Gehalt an Docosahexaensäure mindestens 1 Gew.-% bezogen auf den Gesamtlipidgehalt beträgt.
- Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen, die für Polypeptide mit Δ-9-Elongase-, Δ-6-Desaturase-, Δ-8-Desaturase-, Δ-6-Elongase-, Δ-5-Desaturase-, Δ-5-Elongase- oder Δ-4-Desaturaseaktivität codieren, ausgewählt sind aus der Gruppe bestehend aus:
- a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO:5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31,

10

15

20

25

30

35

40

SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137, SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 dargestellten Sequenz, oder

b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von den in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 184, SEQ ID NO: 194, SEQ ID NO: 198, SEQ ID NO: 200 oder SEQ ID NO: 202 dargestellten Aminosäuresequen-

zen ableiten lassen, oder

Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, c) SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 89, SEQ ID NO: 91, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 99, SEQ ID NO: 101, SEQ ID NO: 103, SEQ ID NO: 111, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 SEQ ID NO: 183, SEQ ID NO: 193, SEQ ID NO: 197, SEQ ID NO: 199 oder SEQ ID NO: 201 dargestellten Nukleinsäuresequenz, die für Polypeptide

5

10

15

25

30

mit mindestens 40 % Identität auf Aminosäureebene mit SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO:6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 88, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 98, SEQ ID NO: 100, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138, SEQ ID NO: 184, SEQ ID NO: 194, SEQ ID NO: 198, SEQ ID NO: 200 oder SEQ ID NO: 202 codieren und eine Δ -9-Elongase-, Δ -6-Desaturase-, Δ -8-Desaturase-, Δ -6-Elongase-, Δ -5-Desaturase-, Δ -5-Elongase- oder Δ -4-Desaturaseaktivität aufweisen.

- Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass zusätzlich in die transgene Pflanze eine Nukleinsäuresequenz eingebracht wird, die für
 Polypeptide mit ω3-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten
 Sequenz, oder
 - b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 88 oder SEQ ID NO: 106 dargestellten Aminosäuresequenz ableiten lassen, oder
 - c) Derivate der in SEQ ID NO: 87 oder SEQ ID NO: 105 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60 % Identität auf Aminosäureebene mit SEQ ID NO: 88 oder SEQ ID NO: 106 codieren und eine ω3-Desaturasaktivität aufweisen.
- Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass zusätzlich in die transgene Pflanze eine Nukleinsäuresequenz eingebracht wird, die für Polypeptide mit Δ-12-Desaturasaktivität codiert, ausgewählt aus der Gruppe bestehend aus:
 - a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 107, SEQ ID NO: 109 oder SEQ ID NO: 195 dargestellten Sequenz, oder

- b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 108, SEQ ID NO: 110 oder SEQ ID NO: 196 dargestellten Aminosäuresequenz ableiten lassen, oder
- c) Derivate der in SEQ ID NO: 107, SEQ ID NO: 109 oder SEQ ID NO: 195
 dargestellten Nukleinsäuresequenz, die für Polypeptide mit mindestens 60
 ldentität auf Aminosäureebene mit SEQ ID NO: 108, SEQ ID NO: 110
 oder SEQ ID NO: 196 codieren und eine Δ-12-Desaturasaktivität aufweisen.
- Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass zusätzlich in die transgene Pflanze eine Nukleinsäuresequenz eingebracht wird, die für Proteine des Biosyntheseweges des Fettsäure- oder Lipidstoffwechsels codiert ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).
 - 10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander gesättigtes oder ungesättigtes C₁₈-C₂₂-Alkylcarbonyl- bedeuten.
 - 11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Substituenten R² oder R³ unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- mit mindestens zwei Doppelbindungen bedeuten.
- 12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass die transgene Pflanze ausgewählt ist aus der Gruppe einer Öl-produzierenden Pflanze, einer Gemüsepflanze oder Zierpflanze.

20

- 13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die transgene Organismus eine transgene Pflanze ausgewählt aus der Gruppe der Pflanzenfamilien:
- Anacardiaceae, Asteraceae, Boraginaceae, Brassicaceae, Cannabaceae, Compositae, Cruciferae, Cucurbitaceae, Elaeagnaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Leguminosae, Linaceae, Malvaceae, Moringaceae, Marchantiaceae, Onagraceae, Olacaceae, Oleaceae, Papaveraceae, Piperaceae, Pedaliaceae, Poaceae oder Solanaceae ist.
- 35 14. Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer Öle, Lipide oder freien Fettsäuren isoliert werden.

10

20

25

30

35

- 15. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I gemäß Anspruch 1 in transgenen Pflanzen, umfassend:
 - a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, welche für ein Polypeptid mit einer Δ -6-Desaturase-Aktivität kodiert und ausgewählt ist aus der Gruppe bestehend aus:
 - i) einer Nukleinsäuresequenz mit der in SEQ ID NO: 193 oder SEQ ID NO: 201 dargestellten Sequenz,
 - ii) Nukleinsäuresequenzen, die für die in SEQ ID NO: 194 oder SEQ ID NO: 202 angegebene Aminosäuresequenz kodieren,
 - iii) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 193 oder SEQ ID NO: 201 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
 - iv) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 193 oder SEQ ID NO: 201 angegebenen Sequenz zu mindestens 60% identisch sind,
- b) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, welche für ein Polypeptid mit einer Δ-6-Elongase-Aktivität kodiert und ausgewählt ist aus der Gruppe bestehend aus:
 - i) einer Nukleinsäuresequenz mit der in SEQ ID NO: 27 oder SEQ ID NO: 199 dargestellten Sequenz,
 - ii) Nukleinsäuresequenzen, die für die in SEQ ID NO: 28 oder SEQ ID NO: 200 angegebene Aminosäuresequenz kodieren,
 - iii) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 27 oder SEQ ID NO: 199 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
 - iv) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 27 oder SEQ ID NO: 199 angegebenen Sequenz zu mindestens 60% identisch sind, und
 - c) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, welche für ein Polypeptid mit einer Δ -5-Desaturase-Aktivität kodiert und ausgewählt ist aus der Gruppe bestehend aus:
 - i) einer Nukleinsäuresequenz mit der in SEQ ID NO: 11 dargestellten Sequenz,
 - Nukleinsäuresequenzen, die für die in SEQ ID NO: 12 angegebene Aminosäuresequenz kodieren,
 - iii) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 11 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und

172

iv) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 11 angegebenen Sequenz zu mindestens 60% identisch sind,

wobei die Variablen und Substituenten in der Formel I die in Anspruch 1 genannte Bedeutung haben.

- 5 16. Verfahren nach Anspruch 15, wobei die Substituenten R² oder R³ unabhängig voneinander gesättigtes oder ungesättigtes C₁₀-C₂₂-Alkylcarbonyl bedeuten.
 - 17. Verfahren nach einem der Ansprüche 15 oder 16, wobei die Substituenten R² oder R³ unabhängig voneinander ungesättigtes C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl mit mindestens zwei Doppelbindungen bedeuten.
- 10 18. Verfahren nach den Ansprüchen 15 bis 17, wobei zusätzlich eine Nukleinsäuresequenz in die Pflanze eingebracht wird, die für ein Polypeptid mit einer Δ-12-Desaturase-Aktivität kodiert.
 - 19. Verfahren nach Anspruch 18, wobei die Nukleinsäuresequenz ausgewählt ist aus der Gruppe bestehend aus:
- 15 a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 195 dargestellten Sequenz,
 - b) Nukleinsäuresequenzen, die für die in SEQ ID NO: 196 angegebene Aminosäuresequenz kodieren,
- c) Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ
 10 No. 195 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
 - d) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 195 angegebenen Sequenz zu mindestens 60% identisch sind.
- Verfahren nach Anspruch 18, wobei die Δ-12-Desaturase unter der Kontrolle
 eines samenspezifischen Promotors exprimiert wird.
 - 21. Verfahren nach den Ansprüchen 15 bis 20, wobei zusätzlich eine Nukleinsäuresequenz in die Pflanze eingebracht wird, die für ein Polypeptid mit einer Δ-5-Elongase-Aktivität kodiert.
- Verfahren nach Anspruch 21, wobei die Nukleinsäuresequenz ausgewählt ist aus
 der Gruppe bestehend aus:
 - einer Nukleinsäuresequenz mit der in SEQ ID NO: 43, SEQ ID NO: 47,
 SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID

10

15

NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 197 darge-stellten Sequenz,

- b) Nukleinsäuresequenzen, die für die in SEQ ID NO: 44, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 81, SEQ ID NO: 86, SEQ ID NO: 114, SEQ ID NO: 118, SEQ ID NO: 120, SEQ ID NO: 132, SEQ ID NO: 134, SEQ ID NO: 136, SEQ ID NO: 138 oder SEQ ID NO: 198 angegebene Aminosäuresequenz kodieren,
 - Nukleinsäuresequenzen, die mit dem komplementären Strang der in SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 197 angegebenen Nukleinsäuresequenz unter stringenten Bedingungen hybridisieren, und
- d) Nukleinsäuresequenzen, die zu der in SEQ ID NO: 43, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 113, SEQ ID NO: 117, SEQ ID NO: 119, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 135, SEQ ID NO: 137 oder SEQ ID NO: 197 angegebenen Sequenz zu mindestens 60% identisch sind.
 - 23. Verfahren nach Anspruch 21, wobei die Δ -5-Elongase unter der Kontrolle eines samenspezifischen Promotors exprimiert wird.
- Verfahren nach den Ansprüchen 12 bis 24, wobei alle Nukleinsäuresequenzen auf einem gemeinsamen rekombinanten Nukleinsäuremolekül in die Pflanzen
 eingebracht werden.
 - 25. Verfahren nach Anspruch 24, wobei jede Nukleinsäuresequenz unter Kontrolle eines eigenen Promotors steht.
 - 26. Verfahren nach Anspruch 25, wobei es sich bei dem eigenen Promotor um einen samenspezifischen Promotor handelt.
- 27. Verfahren nach den Ansprüchen 15 bis 26, wobei in der Formel I m = 4, n = 3, p = 3 und die Verbindung Arachidonsäure ist und/oder m = 5, n = 3, p = 0 und die Verbindung Eicosapentaensäure ist und/oder m = 6, n = 3, p = 0 und die Verbindung Docosahexaensäure ist.

174

- 28. Verfahren nach den Ansprüchen 15 bis 27, wobei es sich bei der Pflanze um eine Ölsamen- oder Ölfruchtpflanze handelt.
- 29. Verfahren nach Anspruch 28, wobei die Pflanze ausgewählt ist aus der Gruppe bestehend aus Soja, Erdnuss, Raps, Canola, Lein, Nachtkerze, Königskerze, Distel, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Wildrosen, Kürbis, Pistazien, Sesam, Sonnenblume, Färberdistel, Borretsch, Mais, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Ölpalme, Walnuss und Kokosnuss.

5

30

35

- 30. Verfahren nach Anspruch 28 oder 29, wobei die Pflanze Brassica juncea ist.
- Verfahren nach den Ansprüchen 15 bis 30, wobei die Verbindungen der Formel I
 in Form ihrer Öle, Lipide und freien Fettsäuren aus der Pflanze gewonnen werden.
 - 32. Verfahren nach Anspruch 31, wobei aus den Verbindungen der Formel I ungesättigte oder gesättigte Fettsäuren freigesetzt werden.
- 33. Verfahren nach Anspruch 32, wobei die Freisetzung durch alkalische Hydrolyse
 oder enzymatische Abspaltung erfolgt.
 - 34. Verfahren nach den Ansprüchen 15 bis 33, wobei die Konzentration an Arachidonsäure mindestens 25%, bezogen auf den gesamten Lipidgehalt der transgenen Pflanze, beträgt.
- Verfahren nach den Ansprüchen 15 bis 33, wobei die Konzentration an Eicosa pentaensäure mindestens 15%, bezogen auf den gesamten Lipidgehalt der transgenen Pflanze, beträgt.
 - 36. Öl, Lipide oder Fettsäuren oder eine Fraktion davon, erhalten durch ein Verfahren nach einem der vorangehenden Ansprüche.
- 37. Verwendung einer Δ-12-Elongase, einer Δ-6-Desaturase, einer Δ-5-Desaturase,
 25 einer Δ-6-Elongase und Δ-5-Elongase, wie in Anspruch 15, 18 oder 21 definiert,
 zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1.
 - 38. Rekombinantes Nukleinsäuremolekül, umfassend:
 - eine oder mehrere Kopien eines in Pflanzenzellen, bevorzugt in Samenzellen, aktiven Promotors,
 - b) mindestens eine Nukleinsäuresequenz wie in Anspruch 15 definiert, die für eine Δ -6-Desaturase-Aktivität kodiert,
 - c) mindestens eine Nukleinsäuresequenz wie in Anspruch 15 definiert, die für eine Δ -5-Desaturase-Aktivität kodiert,
 - d) mindestens eine Nukleinsäuresequenz enthält wie in Anspruch 15 definiert, die für eine Δ -6-Elongase-Aktivität kodiert, und
 - e) eine oder mehrere Kopien einer Terminatorsequenz.

39. Rekombinantes Nukleinsäuremolekül nach Anspruch 38, zusätzlich umfassend eine Nukleinsäuresequenz wie in Anspruch 18 definiert, die für eine Δ -12-Desaturase kodiert.

- 40. Rekombinantes Nukleinsäuremolekül nach Anspruch 38 oder 39, zusätzlich
 5 umfassend eine Nukleinsäuresequenz wie in Anspruch 21 definiert, die für eine Δ-5-Elongase kodiert.
- 41. Rekombinantes Nukleinsäuremolekül nach den Ansprüchen 38 bis 40, zusätzlich umfassend Biosynthesegene des Fettsäure— oder Lipidstoffwechsels ausgewählt aus der Gruppe bestehend aus Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]—Desaturase(n), Acyl-ACP—Thioesterase(n), Fettsäure—Acyl—Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure—Synthase(n), Fettsäure—Hydroxylase(n), Acetyl-Coenzym A—Carboxylase(n), Acyl-Coenzym A—Oxidase(n), Fettsäure—Desaturase(n), Fettsäure—Acetylenasen, Lipoxygenasen, Triacylglycerol—Lipasen, Allenoxid—Synthasen, Hydroperoxid—Lyasen und Fettsäure—Elongase(n).
 - 42. Rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 38 bis 41, zusätzlich enthaltend Biosynthesegene des Fettsäure— oder Lipidstoffwechsels ausgewählt aus der Gruppe bestehend aus Δ -4-Desaturase-, Δ -8-Desaturase- oder Δ -9-Elongase.
- 20 43. Transgene Pflanze enthaltend ein rekombinantes Nukleinsäuremolekül nach einem der Ansprüche 38 bis 42 oder enthaltend die in Anspruch 15 und ggf. zusätzlich die in Anspruch 18 oder 21 definierten Nukleinsäuresequenzen.
 - 44. Verfahren nach den Ansprüchen 15 bis 35, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I aus dem Organismus in Form ihrer Öle, Lipide oder freien Fettsäuren isoliert werden.
 - 45. Öl, Lipide oder Fettsäuren oder eine Fraktion davon, hergestellt durch das Verfahren nach einem der Ansprüche 15 bis 35.

25

30

- 46. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 14 umfasst und von transgenen Pflanzen stammt.
 - 47. Verfahren zur Herstellung von Ölen, Lipiden oder Fettsäurezusammensetzungen durch Mischen von Öl, Lipide oder Fettsäuren gemäß Anspruch 45 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 46 mit tierischen oder mikrobiellen Ölen, Lipiden oder Fettsäuren.
- 35 48. Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 45 oder Öl-, Lipidoder Fettsäurezusammensetzung gemäß Anspruch 46 oder Ölen, Lipiden oder

Fettsäurezusammensetzungen hergestellt gemäß Anspruch 46 in Futter, Nahrungsmitteln, Kosmetika oder Pharmazeutika.

- 49. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-5-Elongaseaktivität codiert und die in SEQ ID NO: 197 dargestellte Sequenz hat.
- 5 50. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-6-Elongaseaktivität codiert und die in SEQ ID NO: 199 dargestellte Sequenz hat.
 - 51. Isolierte Nukleinsäuresequenz, die für Polypeptide mit Δ-6-Desaturaseaktivität codiert und die in SEQ ID NO: 201 dargestellte Sequenz hat.
- 52. Genkonstrukt, enthaltend eine isolierte Nukleinsäure nach einem der
 10 Ansprüche 49 bis 51, wobei die Nukleinsäure funktionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
- 53. Genkonstrukt nach Anspruch 53, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[=
 acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid-Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).
 - 54. Vektor, enthaltend eine Nukleinsäure nach Anspruch 50 oder 51 oder ein Genkonstrukt nach Anspruch 52 oder 53.
- 55. Transgene Pflanze, enthaltend mindestens eine Nukleinsäure nach nach Anspruch 50 oder 51 oder ein Genkonstrukt nach Anspruch 52 oder 53 oder einen Vektor nach Anspruch 54.

Figur 1: Verschiedene Synthese-Wege zur Biosynthese von DHA (Docosahexaensäure)

Figur 2: Substratspezifität der Δ-5-Elongase (SEQ ID NO: 53) gegenüber verschiedenen Fettsäuren

Figur 3: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 20:5ω3.

Figur 4: Rekonstitution der DHA-Biosynthese in Hefe ausgehend von 18:4ω3.

Fettsäure-Zusammensetzung (in Mol %) transgener Hefen, die mit den Vektoren pYes3-OmELO3/pYes2-EgD4 oder pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5 transformiert worden waren. Die Hefezellen wurden in Minimalmedium ohne Tryptophan und Uracil / und Leucin in Gegenwart von 250 μM 20:5^{Δ5,8,11,14,17} bzw. 18:4^{Δ6,9,12,15} kultiviert. Die Fettsäuremethylester wurden durch saure Methanolyse aus Zellsedimenten gewonnen und über GLC analysiert. Jeder Wert gibt den Mittelwert (n=4) ± Standardabweichung wieder.

	pYes3-OmELO/pYes2-EgD4	pYes3-OmELO/pYes2-EgD4 EgD4 + pESCLeu-PtD5
Fettsäuren	Fütterung mit 20:5 ^{25,8,11,14,17}	Fütterung mit 18:4 ^{Δ6,9,12,15}
16:0	9,35 ± 1,61	7,35 ± 1,37
16:1 ^{∆9}	14,70 ± 2,72	10,02 ± 1,81
18:0	5,11 ± 1,09	4,27 ± 1,21
18:1 ^{∆9}	19,49 ± 3,01	10,81 ± 1,95
18:1 ^{Δ11}	$18,93 \pm 2,71$	11,61 ± 1,48
18:4 ^{Δ6,9,12,15}	-	7,79 ± 1,29
20:1 ^{∆11}	$\textbf{3,24} \pm \textbf{0,41}$	$1,56 \pm 0,23$
20:1 ^{Δ13}	11,13± 2,07	4,40 ± 0,78
$\mathbf{20:4}^{\Delta 8,11,14,17}$		$30,05 \pm 3,16$
20:5 ^{\Delta 5,8,11,14,17}	6,91± 1,10	$\textbf{3,72} \pm \textbf{0,59}$
22:4 ^{Δ10,13,16,17}	-	5,71 ± 1,30
22:5 ^{Δ7,10,13,16,19}	8,77 ± 1,32	$1,10 \pm 0,27$
22:6 ^{Δ4,7,10,13,16,19}	2,73 ± 0,39	$0,58 \pm 0,10$

DPA (22:5-7,10,14,17,19) 16 15 20:3-8,11,14 Time (min) 12 ဖ

Figur 9: Expression von TpELO1 in Hefe

20:448,11,14,17 20:505,8,11,14,17 20:308,11,14 20:445,11,14 18:446,9,12,15 18:3^{∆6,9,12} Expression 1: TpELO3 (nicht gefüttert) Expression 6: TpELO3 + 20:5^{∆5,8,11,14,1} Figur 10: Expression von TpELO3 in Hefe. 18:2^{Δ9,12} Expression 4: TpELO3 + 18:4^{A6,9,12,15} Expression 5: TpELO3 + 20: $4^{\Delta5,8,11,14}$ 18:1^{Δ9}、 18:0 Expression 3: TpELO3 + $18:3^{\Delta 6,9,12}$ Expression 2: TpELO3 + 18:2^{A9,12} 16:1^{∆9} 16:0

Figur 11: Expression von Thraustochytrium ∆5-Elongase TL16/pYES2.1 in Hefe.

Figur 12: Desaturierung von Linolsäure (18:2 ω -6-Fettsäure) zu α -Linolensäure (18:3 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 13: Desaturierung von γ -Linolensäure (18:3 ω -6-Fettsäure) zu Stearidonsäure (18:4 ω -3-Fettsäure) durch Pi-omega3Des.

Figur 14: Desaturierung von C20:2 ω -6-Fettsäure zu C20:3 ω -3-Fettsäure durch Pi-omega3Des.

Figur 15: Desaturierung von C20:3- ω -6-Fettsäure zu C20:4- ω -3-Fettsäure durch Pi-omega3Des.

Figur 16: Desaturierung von Arachidonsäure (C20:4- ω -6-Fettsäure) zu Eicosapentaensäure (C20:5- ω -3-Fettsäure) durch die Pi-omega3Des.

Figur 17: Desaturierung von Docosatetraensäure (C22:4-ω-6-Fettsäure) zu Docosapentaensäure (C22:5-ω-3-Fettsäure) durch Pi-omega3Des.

Figur 18: Substratspezifität der Pi-omega3Des gegenüber verschiedenen Fettsäuren

% Desaturierung

Figur 19: Desaturierung von Phospholipid gebundener Arachidonsäure zu EPA durch die Pi-Omega3Des

Figur 20: Umsetzung von Linolsäure (Pfeil) zu γ -Linolensäure (γ -18:3) durch Ot-Des6.1.

Absorption mAU

Retentionszeit

Figur 21: Umsetzung von Linolsäure und α-Linolensäure (A und C), sowie Rekonstitution des ARA- bzw. EPA-Syntheseweges in Hefe (B und D) in Gegenwart von OtD6.1.

Figur 22: Expression von ELO(XI) in Hefe.

Figur 23:

Figur 24: Elongation von Eicosapentaensäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:5ω3).

Figur 25: Elongation von Arachidonsäure durch OtElo1 (B) bzw. OtElo1.2 (D). Die Kontrollen (A, C) zeigen nicht das Produkt der Elongation (22:4ω6).

Figur 26: Elongation von 20:5n-3 durch die Elongasen At3g06470.

Absorption in mA

Retentionszeit in min

Figur 27: Substratspezifität der Xenopus Elongase (A), Ciona Elongase (B) und Oncorhynchus Elongase (C)

Figur 28: Substratspezifität der Ostreococcus Δ -5-Elongase (A), der Ostreococcus Δ -6-Elongase (B), der Thalassiosira Δ -5-Elongase (C) und Thalassiosira Ostreococcus Δ -6-Elongase (D)

Figur 29: Expression der Phaeodactylum tricornutum Δ -6-Elongase (PtELO6) in Hefe. A) zeigt die Elongation der C18:3 $^{\Delta6,9,12}$ Fettsäure und B) die Elongation der C18:4 $^{\Delta6,9,12,15}$ Fettsäure

Figur 30: Figur 30 zeigt die Substratspezifität von PtELO6 in Bezug auf die gefütterten Substrate.

PtELO6 Spezifität

Fettsäuresubstrate

Gaschromatographische Analyse des Samens einer transgenen Pflanze, transformiert mit pSUN-5G. Figur 31:

Gaschromatographische Analyse des Samens einer transgenen Pflanze, transformiert mit pGPTV-Figur 32:

WO 2005/083093 PCT/EP2005/001863

SEQUENCE LISTING

<110> BASF Plant Science GmbH

<120> Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren in transgenen Pflanzen

<130> PF56186

<140> 20041035

<141> 2004-12-22

<160> 202

<170> PatentIn version 3.1

<210> 1 <211> 1266 <212> DNA

<213> Euglena gracilis

<220>

<221> CDS <222> (1)..(1266) <223> Delta-8-Desaturase

					•												
)> 1							•									
atg	aag	tca	aag	cgc	caa	gcg	ctt	CCC	ctt	aca	att	gat	gga	aca	aca		48
Met 1	гàг	ser	туѕ	Arg 5	Gln	Ата	ьeu	Pro	ьеи 10	THE	тте	Asp	GTĀ	15	TIIT		
-				٠.													•
					tgg												96
Tyr	Asp	Val		Ala	Trp	Val	Asn		His	Pro	Gly	Gly		Glu	Ile		
			20					25					30				
ata	gag	aat	tac	caa	gga	agg	gat	gcc	act	gat	gcc	ttc	atg	gtt	atg	3	.44
Ile	Glu	Asn	Tyr	Gln	Gly	Arg	Asp	Ala	Thr	Asp	Ala	Phe	Met	Val	Met		
		35	•				40					45					
cac	tct	caa	gaa	acc	ttc	qac	aaq	ctc	aaq	cqc	atg	ccc	aaa	atc	aat	3	.92
					Phe											•	
	50					55					60						
aaa	agt	tct	σασ	tta	cca	aaa	caq	act	σca	ata	aat	qaa	act	caa	gag	2	240
					Pro												
65					70					75					80		
as t	++~	CCC		at a	cga	as s	as a	++a	atc	aca	act	aac	ato	+++	ga t	5	288
					Arq											_	
-			•	85	-				90			-		95	_		
							,)									_	
					tac Tyr											3	336
чта	ರ್ಣ	FIO	±eα.	ייד	т X т	Der	тÄт	чy	776	Ser	T 11T	444	u	-LY	u		

										_					101,		, 0 0 1 0 0 0
				ioo					105	2				110			
	gga Gly	gtg Val	ctg Leu 115	aat.	tat Tyr	ttc Phe	ctg Leu	atq	att	cag Gln	tat Tyr	cag Gln	atg Met 125	tat Tyr	ttc Phe	att Ile	384
	gly aaa	gca Ala 130	ata	ttg Leu	ctt Leu	G1Y 333	atg Met 135	cac His	tat Tyr	caa Gln	cag Gln	atg Met 140	ggc Cly	tgg Trp	ctt Leu	tct Ser	432
	cat His 145	gac Asp	att Ile	Cys tgc	cac His	cac His 150	cag Gln	act Thr	ttc Phe	aag Lys	aac Asn 155	cgg Arg	aac Asn	tgg Trp	aac Asn	aac Asn 160	480
	ctc Leu	gtg Val	gga Gly	ctg Leu	gta Val 165	ttt Phe	ggc Gly	aat Asn	ggt Gly	ctg Leu 170	caa Gln	ggt Gly	ttt Phe	tcc Ser	gtg Val 175	aca Thr	528
	tgc Cys	tgg Trp	aag Lys	gac Asp 180	aga Arg	cac His	aat Asn	gca Ala	cat His 185	cat His	tcg Ser	gca Ala	acc Thr	aat Asn 190	gtt Val	caa Gln	576
	gly aaa	cac His	gac Asp 195	cct Pro	gat Asp	att Ile	ga.c Asp	aac Asn 200	ctc Leu	ccc Pro	ctc Leu	tta Leu	gcc Ala 205	tgg Trp	tct Ser	gag Glu	624
•	gat Asp	gac Asp 210	gtc Val	aca Thr	cgg Arg	gcg Ala	tca Ser 215	ccg Pro	att Ile	tcc Ser	cgc Arg	aag Lys 220	ctc Leu	att Ile	cag Gln	ttc Phe	672
	cag Gln 225	cag Gln	tat Tyr	tat Tyr	ttc Phe	ttg Leu 230	gtc Val	atc Ile	tgt Cys	atc Ile	ttg Leu 235	ttg Leu	cgg Arg	ttc Phe	att Ile	tgg Trp 240	720
	tgt Cys	ttc Phe	cag Gln	agc Ser	gtg Val 245	Leu	acc Thr	gtg Val	cgc Arg	agt Ser 250	Leu	aag Lys	gac Asp	aga Arg	gat Asp 255	aac Asn	768
	caa Gln	ttc Phe	tat Tyr	cgc Arg 260	tct Ser	cag Gln	tat Tyr	aag Lys	aag Lys 265	gag Glu	gcc Ala	att Ile	ggc	ctc Leu 270	gcc Ala	ctg Leu	816
	cat His	tgg Trp	aca Thr 275	Leu	aag Lys	gcc Ala	ctg Leu	ttc Phe 280	His	tta Leu	ttc Phe	ttt Phe	atg Met 285	ccc Pro	agc Ser	atc Ile	864
	ctc Leu	aca Thr 290	Ser	ctg Leu	ttg Leu	gta Val	ttt Phe 295	ttc Phe	gtt Val	tcg Ser	gag Glu	ctg Leu 300	gtt Val	ggc	ggċ	ttc Phe	912
	ggc Gly 305	Ile	gcg Ala	atc Ile	gtg Val	gtg Val 310	Phe	atg Met	aac Asn	cac His	tac Tyr 315	Pro	ctg Leu	gag Glu	aag Lys	atc Ile 320	960
	glà aaa	gac Asp	tcg Ser	gtc Val	tgg Trp 325	Asp	ggc	cat His	gga Gly	ttc Phe 330	ser	gtt Val	ggc . Gly	cag Gln	atc Ile 335	HLS	1008
	gag Glu	acc Thr	atg Met	aac Asn 340	lle	cgg Arg	cga Arg	Gly 333	att Ile 345	. Ile	aca Thr	gat Asp	tgg Trp	Phe 350	Pne	gga Gly	1056
	Gly	ttg Lev	aac Asr 355	ı Tyr	cag Gln	ato Ile	gag Glu	cac His	His	ttg Lev	tgg Trp	cco Pro	g acc Thr 365	, ren	cct Pro	cgc Arg	1104
	cac His	aac Asr	c cto Lev	g aca ı Thr	gcg Ala	gtt Val	agc Ser	tac Tyr	caç Glr	gto val	gaa Glu	caç ı Glı	g cto n Lev	tgc Cys	cag Glr	aag Lys	1152

3

WO 2005/083093 PCT/EP2005/001863

370 375 380

cac aac ctg ccg tat cgg aac ccg ctg ccc cat gaa ggg ttg gtc atc

His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val Ile
385 390 395 400

ctg ctg cgc tat ctg gcg gtg ttc gcc cgg atg gcg gag aag caa ccc 1248 Leu Leu Arg Tyr Leu Ala Val Phe Ala Arg Met Ala Glu Lys Gln Pro 405 410 415

gcg ggg aag gct cta taa 1266 Ala Gly Lys Ala Leu 420

<210> 2

<211> 421

<212> PRT

<213> Euglena gracilis

<400> 2

Met Lys Ser Lys Arg Gln Ala Leu Pro Leu Thr Ile Asp Gly Thr Thr 1 5 10 15

Tyr Asp Val Ser Ala Trp Val Asn Phe His Pro Gly Gly Ala Glu Ile 20 25 30

Ile Glu Asn Tyr Gln Gly Arg Asp Ala Thr Asp Ala Phe Met Val Met 35 40 45

His Ser Gln Glu Ala Phe Asp Lys Leu Lys Arg Met Pro Lys Ile Asn 50 60

Pro Ser Ser Glu Leu Pro Pro Gln Ala Ala Val Asn Glu Ala Gln Glu 65 70 75 80

Asp Phe Arg Lys Leu Arg Glu Glu Leu Ile Ala Thr Gly Met Phe Asp 85 90 95

Ala Ser Pro Leu Trp Tyr Ser Tyr Lys Ile Ser Thr Thr Leu Gly Leu 100 105 110

Gly Val Leu Gly Tyr Phe Leu Met Val Gln Tyr Gln Met Tyr Phe Ile 115 120 125

Gly Ala Val Leu Leu Gly Met His Tyr Gln Gln Met Gly Trp Leu Ser 130 135 140

His Asp Ile Cys His His Gln Thr Phe Lys Asn Arg Asn Trp Asn Asn 145 150 155 160

Leu Val Gly Leu Val Phe Gly Asn Gly Leu Gln Gly Phe Ser Val Thr

4

165 170 175

Cys Trp Lys Asp Arg His Asn Ala His His Ser Ala Thr Asn Val Gln
180 185 190

Gly His Asp Pro Asp Ile Asp Asn Leu Pro Leu Leu Ala Trp Ser Glu 195 200 . 205

Asp Asp Val Thr Arg Ala Ser Pro Ile Ser Arg Lys Leu Ile Gln Phe 210 215 220

Gln Gln Tyr Tyr Phe Leu Val Ile Cys Ile Leu Leu Arg Phe Ile Trp 225 230 235 240

Cys Phe Gln Ser Val Leu Thr Val Arg Ser Leu Lys Asp Arg Asp Asn 245 250 255

Gln Phe Tyr Arg Ser Gln Tyr Lys Lys Glu Ala Ile Gly Leu Ala Leu 260 265 270

His Trp Thr Leu Lys Ala Leu Phe His Leu Phe Phe Met Pro Ser Ile 275 280 285

Leu Thr Ser Leu Leu Val Phe Phe Val Ser Glu Leu Val Gly Gly Phe 290 295 300

Gly Ile Ala Ile Val Val Phe Met Asn His Tyr Pro Leu Glu Lys Ile 305 310 315 320

Gly Asp Ser Val Trp Asp Gly His Gly Phe Ser Val Gly Gln Ile His

Glu Thr Met Asn Ile Arg Arg Gly Ile Ile Thr Asp Trp Phe Phe Gly 340 345 350

Glý Leu Asn Tyr Gln Ile Glu His His Leu Trp Pro Thr Leu Pro Arg 355 . 360 365

His Asn Leu Thr Ala Val Ser Tyr Gln Val Glu Gln Leu Cys Gln Lys 370 375 380

His Asn Leu Pro Tyr Arg Asn Pro Leu Pro His Glu Gly Leu Val Ile 385 390 395 400

Leu Leu Arg Tyr Leu Ala Val Phe Ala Arg Met Ala Glu Lys Gln Pro 405 410 415

Ala Gly Lys Ala Leu 420

<210>	3
<211>	777
<212>	DNA
<213>	Isochrysis galbana
<220>	
<221>	CDS
<222>	(1)(777)
<223>	Delta-9-Elongase

<pre><400> 3 atg gcc ctc gca aac gac gcg gga gag cgc atc tgg gcg gct gtg acc 48</pre>													4.0				
atg Met 1	gcc Ala	ctc Leu	gca Ala	aac Asn 5	gac Asp	gcg Ala	gga Gly	gag Glu	cgc Arg 10	atc Ile	tgg Trp	gcg Ala	Ala	gtg Val 15	acc Thr		48
gac Asp	ccg Pro	gaa Glu	atc Ile 20	ctc Leu	att Ile	ggc Gly	acc. Thr	ttc Phe 25	tcg Ser	tac Tyr	ttg Leu	cta Leu	ctc Leu 30	aaa Lys	ccg Pro		96
ctg Leu	ctc Leu	cgc Arg 35	aat Asn	tcc Ser	eja aaa	ctg Leu	gtg Val 40	gat Asp	gag Glu	aag Lys	aag Lys	ggc Gly 45	gca Ala	tac Tyr	agg Arg	Ξ	144
acg Thr	tcc Ser 50	atg Met	atc Ile	tgg Trp	tac Tyr	aac Asn 55	gtt. Val	ctg Leu	ctg Leu	gcg Ala	ctc Leu 60	ttc Phe	tct Ser	gcg Ala	ctg Leu	:	192
agc Ser 65	ttć Phe	tac Tyr	gtg Val	acg Thr	gcg Ala 70	Thr	gcc Ala	ctc Leu	ggc Gly	tgg Trp 75	gac Asp	tat Tyr	ggt Gly	acg Thr	ggc Gly 80	2	240
gcg Ala	tgg Trp	ctg Leu	Arg cgc	agg Arg 85	caa Gln	acc Thr	ggc Gly	gac Asp	aca Thr 90	ccg Pro	cag Gln	ccg Pro	ctc Leu	ttc Phe 95	cag Gln	:	288
tgc Cys	ccg Pro	tcc Ser	ccg Pro 100	gtt Val	tgg Trp	gac Asp	tcg Ser	aag Lys 105	ctc Leu	ttc Phe	aca Thr	tgg Trp	acc Thr 110	gcc Ala	aag Lys		336
gca Ala	ttc Phe	tat Tyr 115	Tyr	tcc Ser	aag Lys	tac Tyr	gtg Val 120	gag Glu	tac Tyr	ctc Leu	gac Asp	acg Thr 125	gcc Ala	tgg Trp	ctg Leu	:	384
agg Arg	gtc Val 130	tcc Ser	ttt Phe	ctc Leu	cag Gln	gcc Ala 135	ttc Phe	.cac His	cac His	ttt Phe	ggc Gly 140	gcg Ala	ccg Pro	tgg Trp	gat Asp	•	432
gtg Val 145	tac Tyr	ctc Leu	Gly	att Ile	cgg Arg 150	ctg Leu	cac His	aac Asn	gag Glu	ggc Gly 155	gta Val	tgg Trp	atc Ile	ttc Phe	atg Met 160	•	480
ttt Phe	ttc Phe	aac Asn	tcg Ser	ttc Phe 165	att Ile	cac His	acc Thr	atc Ile	atg Met 170	tac Tyr	acc Thr	tac Tyr	tac Tyr	ggc Gly 175	ctc Leu	,	528
acc	gcc	gcc	aaa	tat	aag	ttc	aag	gcc	aag	ccg	ctc	atc	acc	gcg	atg		576

•									,	6							
	Thr	Ala	Ala	Gly 180	Tyr	Lys	Phe	Lys	Ala 185	Lys	Pro	Leu	Ile	Thr 190	Ala	Met	
	cag Gln	atc Ile	tgc Cys 195	cag Gln	ttc Phe	gtg Val	ggc Gly	ggc Gly 200	ttc Phe	ctg Leu	ttg Leu	gtc Val	tgg Trp 205	gac Asp	tac Tyr	atc Ile	624
	aac Asn	gtc Val 210	ccc Pro	tgc Cys	ttc Phe	aac Asn	tcg Ser 215	gac Asp	aaa Lys	gly aaa	aag Lys	ttg Leu 220	ttc Phe	agc Ser	tgg Trp	gct Ala	672
	ttc Phe 225	aac Asn	tat Tyr	gca Ala	tac Tyr	gtc Val 230	ggc ggc	tcg Ser	gtc Val	ttc Phe	ttg Leu 235	Leu	ttc Phe	tgc Cys	cac His	ttt Phe 240	720
	ttc Phe	tac Tyr	cag Gln	gac Asp	aac Asn 245	ttg Leu	gca Ala	acg Thr	aag Lys	aaa Lys 250	tcg Ser	gcc Ala	aag Lys	gcg Ala	ggc Gly 255	aag Lys	768
	cag Gln		tag	,									-				777
	<210)> '	4														
	<21	L> :	258														
	<212	2>	PRT														
	<213	3>	Isoc	hrys	is g	albaı	na										
	<40	0>	4		•												
	Met 1	Ala	Leu	Ala	Asn 5	Asp	Ala	Gly	Glu	Arg 10	Ile	Trp	Ala	Ala	Val 15	Thr	
	Asp	Pro	Glu	Ile 20	Leu	Ile	Gly	Thr	Phe 25	Ser	Tyr	Leu	Leu	Leu 30	Lys	Pro	
	Leu	Leu	Arg 35	Asn	. Ser	Gly	Leu	Val 40	Asp	Glu	Lys	Lys	Gly 45	Ala	Tyr	Arg	
	Thr	Ser 50	. Met	: Ile	Trp	Tyr	Asn 55	Val	. Leu	Leu	Ala	Leu 60	Phe	Ser	Ala	Leu	
	Ser 65	Phe	. Туг	. Val	. Thr	Ala 70	Thr	Ala	. Leu	Gly	Trp 75	Asp	Туг	Gly	Thr	80 Gly	
	Ala	Trp	Leu	ı Árg	Arg 85	Gln	Thr	Gly	Asp	Thr 90	Pro	Gln	. Pro	Leu	Phe 95	Gln	
	Cys	Pro	Ser	r Pro		Trp	Asp	Ser	Lys 105		. Phe	. Thr	Tr	Thr 110	Ala	. Lys	
	Ala	. Phe	э Туг	с Туз	s Ser	: Lys	. Tyr	· Val	l Glu	туг	Lev	ı Asp	Th:	Ala	ı Trp	Leu	

Arg Val Ser Phe Leu Gln Ala Phe His His Phe Gly Ala Pro Trp Asp 130 135 140

Val Tyr Leu Gly Ile Arg Leu His Asn Glu Gly Val Trp Ile Phe Met 145 150 155 160

Phe Phe Asn Ser Phe Ile His Thr Ile Met Tyr Thr Tyr Gly Leu 165 170 175

Thr Ala Ala Gly Tyr Lys Phe Lys Ala Lys Pro Leu Ile Thr Ala Met 180 \$180\$

Gln Ile Cys Gln Phe Val Gly Gly Phe Leu Leu Val Trp Asp Tyr Ile 195 200 205

Asn Val Pro Cys Phe Asn Ser Asp Lys Gly Lys Leu Phe Ser Trp Ala 210 215 220

Phe Asn Tyr Ala Tyr Val Gly Ser Val Phe Leu Leu Phe Cys His Phe 225 230 235 240

Phe Tyr Gln Asp Asn Leu Ala Thr Lys Lys Ser Ala Lys Ala Gly Lys 255

Gln Leu

<210> 5

<211> 1410

<212> DNA

<213> Phaeodactylum tricornutum

<220>

<221> CDS

<222> (1)..(1410)

<223> Delta-5-Desaturase

gcg aag cac aat gct gct acc ata tcg acg cag gaa cgc ctt tgc agt
Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser
20 25 30

ctg tct tcg ctc aaa ggc gaa gaa gtc tgc atc gac gga atc atc tat

Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr

*

			35					40					45				
	gac Asp	ctc Leu 50	caa Gln	tca Ser	ttc Phe	gat Asp	cat His 55	ccc Pro	glà aaa	ggt Gly	gaa Glu	acg Thr 60	atc Ile	aaa Lys	atg Met	ttt Phe	192
	ggt Gly 65	ggc Gly	aac Asn	gat Asp	gtc Val	act Thr 70	gta Val	cag Gln	tac Tyr	aag Lys	atg Met 75	att Ile	cac His	ccg Pro	tac Tyr	cat His 80	240
	acc Thr	gag Glu	aag Lys	cat His	ttg Leu 85	gaa Glu	aag Lys	atg Met	aag Lys	cgť Arg 90	gtc Val	ggc Gly	aag Lys	gtg Val	acg Thr 95	gat Asp	288
	ttc Phe	gtc Val	tgc Cys	gag Glu 100	tac Tyr	aag Lys	ttc Phe	gat Asp	acc Thr 105	gaa Glu	ttt Phe	gaa Glu	cgc Arg	gaa Glu 110	atc Ile	aaa Lys	336
	cga Arg	gaa Glu	gtc Val 115	ttc Phe	aag Lys	att Ile	gtg Val	cga Arg 120	cga Arg	ggc Gly	aag Lys	gat Asp	ttc Phe 125	ggt Gly	act Thr	ttg Leu	384
	gga Gly	tgg Trp 130	ttc Phe	ttc Phe	cgt Arg	gcg Ala	ttt Phe 135	tgc Cys	tac Tyr	att Ile	gcc Ala	att Ile 140	ttc Phe	ttc Phe	tac Tyr	ctg Leu	432
	cag Gln 145	tac Tyr	cat His	tgg Trp	gtc Val	acc Thr 150	acg Thr	gga Gly	acc Thr	tct Ser	tgg Trp 155	ctg Leu	ctg Leu	gcc Ala	gtg Val	gcc Ala 160	480
	tac Tyr	gga Gly	atc Ile	tcc Ser	caa Gln 165	gcg Ala	atg Met	att Ile	ggc Gly	atg Met 170	aat Asn	gtc Val	cag Gln	cac His	gat Asp 175	gcc Ala	528
-	aac Asn	cac His	ggg	gcc Ala 180	acc	tcc Ser	aag Lys	cgt Arg	ccc Pro 185	tgg	gtc Val	aac Asn	gac Asp	atg Met 190	cta Leu	ggc	576
	ctc Leu	ggt Gly	gcg Ala 195	gat Asp	ttt Phe	att Ile	ggt Gly	ggt Gly 200	tcc Ser	aag Lys	tgg Trp	ctc Leu	tgg Trp 205	cag Gln	gaa Glu	caa Gln	624
	cac His	tgg Trp 210	acc Thr	cac His	cac His	gct Ala	tac Tyr 215	acc Thr	aat Asn	cac His	gcc Ala	gag Glu 220	atg Met	gat Asp	ccc Pro	gat Asp	672
	agc Ser 225	ttt Phe	ggt Gly	gcc Ala	gaa Glu	cca Pro 230	atg Met	ctc Leu	cta Leu	ttc Phe	aac Asn 235	gac Asp	tat Tyr	ccc Pro	ttg Leu	gat Asp 240	720
	cat His	ccc Pro	gct Ala	cgt Arg	acc Thr 245	tgg Trp	cta Leu	cat His	cgc Arg	ttt Phe 250	caa Gln	gca Ala	ttc Phe	ttt Phe	tac Tyr 255	atg Met	768
	ccc Pro	gtc Val	ttg Leu	gct Ala 260	gga Gly	tac Tyr	tgg Trp	ttg Leu	tcc Ser 265	gct Ala	gtc Val	ttc Phe	aat Asn	cca Pro 270	caa Gln	att Ile	816
,	ctt Leu	gac Asp	ctc Leu 275	Gln	caa Gln	cgc Arg	ggc	gca Ala 280	ctt Leu	tcc Ser	gtc Val	ggt Gly	atc Ile 285	cgt Arg	ctc Leu	gac Asp	864
	aac Asn	gct Ala	ttc Phe	att Ile	cac His	tcg Ser	cga Arg	cgc Arg	aag Lys	tat Tyr	gcg Ala	gtt Val	ttc Phe	tgg Trp	cgg Arg	gct Ala	912
		290					295					300					

									9								
gtg Val 305	tac Tyr	att Ile	gcg Ala	gtg Val	aac Asn 310	gtg Val	att Ile	gct Ala	ccg Pro	ttt Phe 315	tac Tyr	aca Thr	aac Asn	tcc Ser	ggc Gly 320		960
ctc Leu	gaa Glu	tgg Trp	tcc Ser	tgg Trp 325	cgt Arg	gtc Val	ttt Phe	gga Gly	aac Asn 330	Ile	atg Met	ctc Leu	atg Met	ggt Gly 335	gtg Val		1008
gcģ Ala	gaa Glu	tcg Ser	ctc Leu 340	gcg Ala	ctg Leu	gcg Ala	gtc Val	ctg Leu 345	ttt Phe	tcg Ser	ttg Leu	tcg Ser	cac His 350	aat Asn	ttc Phe		1056
gaa Glu ,	tcc Ser	gcg Ala 355	gat Asp	cgc Arg	gat Asp	ccg Pro	acc Thr 360	gcc Ala	cca Pro	ctg Leu	aaa Lys	aag Lys 365	acg Thr	gga Gly	gaa Glu		1104
cca Pro	gtc Val 370	gac Asp	tgg Trp	ttc Phe	aag Lys	aca Thr 375	cag Gln	gtc Val	gaa Glu	act Thr	tcc Ser 380	tgc Cys	act Thr	tac Tyr	ggt Gly		1152
											aac Asn						1200
cac His	cac His	ttg Leu	ttc Phe	cca Pro 405	cgc Arg	atg Met	agc Ser	agc Ser	gct Ala 410	tgg Trp	tat Tyr	ccc Pro	tac Tyr	att Ile 415	gcc Ala		1248
ccc Pro	aag Lys	gtc Val	cgc Arg	gaa Glu	att Ile	tgc Cys	gcc Ala	aaa Lys	cac His	ggc Gly	gtc Val	cac His	tac Tyr	gcc Ala	tac Tyr		1296
			420					425					430				
tac Tyr	ccg Pro	tgg Trp 435	atc Ile	cac His	caa Gln	aac Asn	ttt Phe 440	ctc Leu	tcc Ser	acc Thr	gtc Val	cgc Arg 445	tac Tyr	atg Met	cac His		1344
gcg Ala	gcc Ala 450	Gly ggg	acc Thr	ggt Gly	gcc Ala	aac Asn 455	tgg Trp	ege Arg	cag Gln	atg Met	gcc Ala 460	aga Arg	gaa Glu	aat Asn	ccc Pro	•	1392
_			cgg Arg		taa	٠											1410
<210)> (5															
<211	.> 4	169															
<212	?>]	PRT															
<213	3> 1	Phae	odaci	tyluı	m tr:	icorı	nutur	n	•								
<400)> (5	٠														
Met 1	Ala	Pro	Asp	Ala 5	Asp	ГÀЗ	Leu	Arg	Gln 10	Arg	Gln	Thr	Thr	Ala 15	Val		

Ala Lys His Asn Ala Ala Thr Ile Ser Thr Gln Glu Arg Leu Cys Ser 20 25 30

Leu Ser Ser Leu Lys Gly Glu Glu Val Cys Ile Asp Gly Ile Ile Tyr 35 40 45

Asp	Leu 50	Gln	Ser	Phe	Asp	His 55	Pro	Gly	Gly	Glu	Thr 60	Ile	Lys	Met	Phe
Gly 65	· Gly	Asn	Asp	Val	Thr 70	Val	Gln	Tyr	Lys	Met 75	Ile	His	Pro	Tyr	His 80
Thr	Glu	Lys	His	Leu 85	Glu	Lys	Met	Lys	Arg 90	Val	Gly	Lys	Val	Thr 95	Asp
Phe	. Val	Cys	Glu 100	Tyr	Lys	Phe	Asp	Thr 105	Glu	Phe	Glu	Arg	Glu 110	Ile	Lys
Arg	Glu	Val 115	Pḥe	Lys	Ile	Val	Arg 120	Arg	Gly	Lys	Asp	Phe 125	Gly	Thr	Leu
Gly	Trp	Phe	Phe	Arg	Ala	Phe 135	Cys	Tyr	Ile	Ala	Ile 140	Phe	Phe	Tyr	Leu
Glr 145	Tyr	His	Trp	Val	Thr 150	Thr	Gly	Thr	Ser	Trp 155	Leu	Leu	Ala	Val	Ala 160
Туг	Gly	Ile	Ser	Gln 165	Ala	Met	Ile	Gly	Met 170	Asn	Val	Gln	His	Asp 175	Ala
Ası	ı His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	Asp	Met 190	Leu	Gly
Leu	ı Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	Ser	Lys	Trp	Leu	Trp 205	Gln	Glu	Gln
His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Ala	Glu 220	Met	Asp	Pro	Asp
Se:	Phe	Gly	Ala	Glu	Pro 230		Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240
His	Pro	Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Tyr 255	Met
Pro	Val	Leu	Ala 260	Gly	Tyr	Trp	. Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270	Gln	Ile
Leı	ı Asp	Leu 275		Gln	Arg	Gly	Ala 280	Leu	Ser	Val	Gly	Ile 285	Arg	Leu	Asp
Ası	1 Ala 290		Ile	His	Ser	Arg 295	Arg	Lys	Tyr	Ala	Val 300	Phe	Trp	Arg	Ala
Va. 30!	L Tyr	Ile	Ala	Val	Asn 310		Ile	Ala	Pro	Phe 315	Tyr	Thr	Asn	Ser	Gly 320

96

Leu Glu Trp Ser Trp Arg Val Phe Gly Asn Ile Met Leu Met Gly Val

Ala Glu Ser Leu Ala Leu Ala Val Leu Phe Ser Leu Ser His Asn Phe 340 345 350

Glu Ser Ala Asp Arg Asp Pro Thr Ala Pro Leu Lys Lys Thr Gly Glu
355 360 365

Pro Val Asp Trp Phe Lys Thr Gln Val Glu Thr Ser Cys Thr Tyr Gly 370 375 380

Gly Phe Leu Ser Gly Cys Phe Thr Gly Gly Leu Asn Phe Gln Val Glu 385 390 395

His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr.Pro Tyr Ile Ala 405 410 415

Pro Lys Val Arg Glu Ile Cys Ala Lys His Gly Val His Tyr Ala Tyr 420 425 430

Tyr Pro Trp Ile His Gln Asn Phe Leu Ser Thr Val Arg Tyr Met His
435
440
445

Ala Ala Gly Thr Gly Ala Asn Trp Arg Gln Met Ala Arg Glu Asn Pro 450 460

Leu Thr Gly Arg Ala 465

<210> 7

<211> 1344

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1344)

<223> Delta-5-Desaturase .

gga aaa tgg tgt caa att gac gat gct gtc ctg aga tca cat cca ggt

									12							
Gly	Lys	Trp	Cys 20	Gln	Ile	Asp	Asp	Ala 25	Val	Leu	Arg ·	Ser	His 30	Pro	Gly	
ggt Gly	agt Ser	gca Ala 35	att Ile	act Thr	acc Thr	tat Tyr	aaa Lys 40	aat Asn	atg Met	gat Asp	gcc Ala	act Thr 45	acc Thr	gta Val	ttc Phe	144
cac His	aca Thr 50	ttc Phe	cat His	act Thr	ggt Gly	tct Ser 55	aaa Lys	gaa Glu	gcg Ala	tat Tyr	caa Gln 60	tgg Trp	ctg Leu	aca Thr	gaa Glu	192
ttg Leu 65	aaa Lys	aaa Lys	gag Glu	tgc Cys	cct Pro 70	aca Thr	caa Gln	gaa Glu	cca Pro	gag Glu 75	atc Ile	cca Pro	gat Asp	att Ile	aag Lys 80	240
gat Asp	gac Asp	cca Pro	atc Ile	aaa Lys 85	gga Gly	att Ile	gat Asp	gat Asp	gtg Val 90	aac Asn	atg Met	gga Gly	act Thr	ttc Phe 95	aat Asn	288
att Ile	tct Ser	gag Glu	aaa Lys 100	cga Arg	tct Ser	gcc Ala	caa Gln	ata Ile 105	aat Asn	aaa Lys	agt Ser	ttc Phe	act Thr 110	gat Asp	cta Leu	336
cgt Arg	atg Met	cga Arg 115	gtt Val	cgt Arg	gca Ala	gaa Glu	gga Gly 120	ctt Leu	atg Met	gat Asp	gga Gly	tct Ser 125	cct Pro	ttg Leu	ttc Phe	384
tac Tyr	att Ile 130	aga Arg	aaa Lys	att Ile	ctt Leu	gaa Glu 135	aca Thr	atc Ile	ttc Phe	aca Thr	att Ile 140	ctt Leu	ttt Phe	gca Ala	ttc Phe	432
tac Tyr 145	ctt Leu	caa Gln	tac Tyr	cac His	aca Thr 150	tat Tyr	tat Tyr	ctt Leu	cca Pro	tca Ser 155	gct Ala	att Ile	cta Leu	atg Met	gga Gly 160	480
gtt Val	gcg Ala	tgg Trp	caa Gln	caa Gln 165	ttg Leu	gga Gly	tgg Trp	tta Leu	atc Ile 170	cat His	gaa Glu	ttc Phe	gca Ala	cat His 175	cat His	528
cag Gln	ttg Leu	ttc Phe	aaa Lys 180	aac Asn	aga Arg	tac Tyr	tac Tyr	aat Asn 185	gaț Asp	ttg Leu	gcc Ala	agc Ser	tat Tyr 190	ttc Phe	gtt Val	576
gga Gly	aac Asn	ttt Phe 195	tta Leu	caa Gln	gga Gly	ttc Phe	tca Ser 200	tct Ser	ggt Gly	ggt Gly	tgg Trp	aaa Lys 205	gag Glu	cag Gln	cac His	624
aat Asn	gtg Val 210	cat His	cac His	gca Ala	gcc Ala	aca Thr 215	aat Asn	gtt Val	gtt Val	gga Gly	cga Arg 220	gac Asp	gga Gly	gat Asp	ctt Leu	672
gat Asp 225	tta Leu	gtc Val	cca Pro	ttc Phe	tat Tyr 230	gct Ala	aca Thr	gtg Val	gca Ala	gaa Glu 235	cat His	ctc Leu	aac Asn	aat Asn	tat Tyr 240	720
tct Ser	cag Gln	gat Asp	tca Ser	tgg Trp 245	gtt Val	atg Met	act Thr	cta Leu	ttc Phe 250	aga Arg	tgg Trp	caa Gln	cat His	gtt Val 255	cat His	768
tgg Trp	aca Thr	ttc Phe	atg Met 260	tta Leu	cca Pro	ttc Phe	ctc Leu	cgt Arg 265	ctc Leu	tcg Ser	tgg Trp	ctt Leu	ctt Leu 270	cag Gln	tca Ser	816
								Thr					Tyr		aga Arg	864
aat	act	gcg	att	tat	gaa	cag	gtt	ggt	ctc	tct	ttg	cac	tgg	gct	tgg	912

O Zuu	13/003	0093												PC1/	LPZU	02/001003
									13				•			
Asn	Thr 290	Ala	Ile	Tyr	Ġlu	Gln 295	Val	Gly	Leu	Ser	Leu 300	His	Trp	Ala	Trp	
tca Ser 305	ttg Leu	ggt Gly	caa Gln	ttg Leu	tat Tyr 310	ttc Phe	cta Leu	ccc Pro	gat Asp	tgg Trp 315	tca Ser	act Thr	aga Arg	ata Ile	atg Met 320	960
ttc Phe	ttc Phe	ctt Leu	gtt Val	tct Ser 325	cat His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	gta Val	1008
					tat Tyr											1056
atc Ile	atg Met	tca Ser 355	aat Asn	tac Tyr	gct Ala	tgt Cys	ctt Leu 360	caa Gln	atc Ile	atg Met	acc Thr	aca Thr 365	aga Arg	aat Asn	atg Met	1104
aga Arg	cct Pro 370	gga Gly	aga Arg	ttc Phe	att Ile	gac Asp 375	tgg Trp	ctt Leu	tgg Trp	gga Gly	ggt Gly 380	ctt Leu	aac Asn	tat Tyr	cag Gln	1152
att Ile 385	gag Glu	cac His	cat His	ctt Leu	ttc Phe 390	cca Pro	acg Thr	atg Met	cca Pro	cga Arg 395	cac His	aac Asn	ttg Leu	aac Asn	act Thr 400	1200
gtt Val	atg Met	cca Pro	ctt Leu	gtt Val 405	aag Lys	gag Glu	ttt Phe	gca Ala	gca Ala 410	gca Ala	aat Asn	ggt Gly	tta Leu	cca Pro 415	tac Tyr	1248
atg Met	gtc Val	gac Asp	gat Asp 420	tat Tyr	ttc Phe	aca Thr	gga Gly	ttc Phe 425	tgg Trp	ctt Leu	gaa Glu	att Ile	gag Glu 430	·caa Gln	ttc Phe	1296
cga Arg	aat Asn	att Ile 435	gca Ala	aat Asn	gtt Val	gct Ala	gct Ala 440	aaa Lys	ttg Leu	act Thr	aaa Lys	aag Lys 445	att Ile	gcc Ala	tag	1344
<21	0 >	8														
<21	1>	447														
<21	2>	PRT														
<21	3 >	Cera	todo	n pu:	rpur	eus										

<400> 8

Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 1 5 5 10 10 15

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly 20 25 30

Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe 35 . 40 45

His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 50 60

Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80

Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85 90 95

Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 100 105 110

Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 115 120 125

Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 135 140

Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 145 150 155 160

Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His 165 170 175

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 180 185 190

Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His 195 200 205

Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu 210 220

Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 225 230 235 240

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 245 250 255

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265 270

Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 275 280 285

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 290 295 300

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 305 310 315 320

Phe Phe Leu Val Ser His Leu Val Gly Phe Leu Leu Ser His Val 325 330 335

Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 340 345 350

Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met 355 360 365

Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 370 380

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 385 390 395 400

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405 410 415

Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 425 430

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 440 440

<210> 9

<211> 1443

<212> DNA

<213> Physcomitrella patens

<220>

<221> CDS

<222> (1)..(1443)

<223> Delta-5-Desaturase

<400)> 9	•												~~~	~~~	48	,
atg Met 1	gcg Ala	ccc Pro	cac His	tct Ser 5	gcg Ala	gat Asp	act Thr	gct Ala	ggg Gly 10	Leu	gtg Val	Pro	Ser	Asp 15	Glu	4 0	•
ttg Leu	agg Arg	cta Leu	cga Arg 20	acg Thr	tcg Ser	aat Asn	tca Ser	aag Lys 25	ggt Gly	ccc Pro	gaa Glu	caa Gln	gag Glu 30	caa Gln	act Thr	96	;
ttg Leu	aag Lys	aag Lys 35	tac Tyr	acc Thr	ctt Leu	gaa Glu	gat Asp 40	gtc Val	agc Ser	cgc Arg	cac His	aac Asn 45	acc Thr	cca Pro	gca Ala	144	Ė
gat Asp	tgt Cys 50	tgg Trp	ttg Leu	gtg Val	ata Ile	tgg Trp 55	ggc Gly	aaa Lys	gtc Val	tac Tyr	gat Asp 60	gtc Val	aca Thr	agc Ser	tgg Trp	192	3
att Ile	ccc Pro	aat Asn	cat His	ccg Pro	ggg Gly	ggc Gly	agt Ser	ctc Leu	atc Ile	cac His	gta Val	aaa Lys	gca Ala	Gly ggg	cag Gln	240)

. 0 2000,0000,0		16	101,212000,001000
65	70	75	80
gat tcc act cag ctt Asp Ser Thr Gln Leu 85	ttc gat tcc tat Phe Asp Ser Tyr	cac ccc ctt tat gtc His Pro Leu Tyr Val 90	agg aaa 288 Arg Lys 95
atg ctc gcg aag tac Met Leu Ala Lys Tyr 100	tgt att ggg gaa Cys Ile Gly Glu 105	tta gta ccg tct gct Leu Val Pro Ser Ala 110	d Gly Asp
gac aag ttt aag aaa Asp Lys Phe Lys Lys 115	gca act ctg gag Ala Thr Leu Glu 120	tat gca gat gcc gaa Tyr Ala Asp Ala Glu 125	ı aat gaa 384 ı Asn Glu
gat ttc tat ttg gtt Asp Phe Tyr Leu Val 130	gtg aag caa cga Val Lys Gln Arg 135	gtt gaa tot tat tto Val Glu Ser Tyr Phe 140	aag agt 432 Lys Ser
aac aag ata aac ccc Asn Lys Ile Asn Pro 145	caa att cat cca Gln Ile His Pro 150	cat atg atc ctg aag His Met Ile Leu Lys 155	g tca ttg 480 s Ser Leu 160
ttc att ctt ggg gga Phe Ile Leu Gly Gly 165	Tyr Phe Ala Ser	tac tat tta gcg tto Tyr Tyr Leu Ala Pho 170	ttc tgg 528 Phe Trp 175
tct tca agt gtc ctt Ser Ser Ser Val Leu 180	gtt tct ttg ttt Val Ser Leu Phe 185	ttc gca ttg tgg atg Phe Ala Leu Trp Met 190	: Gly Phe
ttc gca gcg gaa gtc Phe Ala Ala Glu Val 195	ggc gtg tcg att Gly Val Ser Ile 200	caa cat gat gga aat Gln His Asp Gly Ass 205	c cat ggt 624 n His Gly
tca tac act aaa tgg Ser Tyr Thr Lys Trp 210	cgt ggc ttt gga Arg Gly Phe Gly 215	tat atc atg gga gcc Tyr Ile Met Gly Ala 220	c tcc cta 672 a Ser Leu
gat cta gtc gga gcc Asp Leu Val Gly Ala 225	agt agc ttc atg Ser Ser Phe Met 230	tgg aga cag caa cac Trp Arg Gln Gln His	gtt gtg 720 s Val Val 240
gga cat cac tcg ttt Gly His His Ser Phe 245	Thr Asn Val Asp	aac tac gat cct gat Asn Tyr Asp Pro Asp 250	att cgt 768 o Ile Arg 255
gtg aaa gat cca gat Val Lys Asp Pro Asp 260	gtc agg agg gtt Val Arg Arg Val 265	gcg acc aca caa cca Ala Thr Thr Gln Pro 270	o Arg Gln
tgg tat cat gcg tat Trp Tyr His Ala Tyr 275	cag cat atc tac Gln His Ile Tyr 280	ctg gca gta tta ta Leu Ala Val Leu Ty: 285	t gga act 864 r Gly Thr
cta gct ctt aag agt Leu Ala Leu Lys Ser 290	att ttt cta gat Ile Phe Leu Asp 295	gat ttc ctt gcg tac Asp Phe Leu Ala Ty: 300	c ttc aca 912 r Phe Thr
gga tca att ggc cct Gly Ser Ile Gly Pro 305	gtc aag gtg gcg Val Lys Val Ala 310	aaa atg acc ccc ct Lys Met Thr Pro Let 315	g gag ttc 960 1 Glu Phe 320
aac atc ttc ttt cag Asn Ile Phe Phe Gln 325	Gly Lys Leu Leu	tat gcg ttc tac at Tyr Ala Phe Tyr Me 330	g ttc gtg 1008 t Phe Val 335
ttg cca tct gtg tac Leu Pro Ser Val Tyr			

•																	-,
										17							
				340					345					350		-	
	tat Tyr	gtg Val	gct Ala 355	tct Ser	cag Gln	ctc Leu	att ·Ile	aca Thr 360	ggt Gly	tgg Trp	atg Met	tta Leu	gct Ala 365	ttt Phe	ctt Leu	ttt Phe	1104
•	caa Gln	gta Val 370	gca Ala	cat His	gtc Val	gtg Val	gat Asp 375	gat Asp	gtt Val	gca Ala	ttt Phe	cct Pro 380	aca Thr	cca Pro	gaa Glu	ggt Gly	1152
	ggg Gly 385	aag Lys	gtg Val	aag Lys	gga Gly	gga Gly 390	tgg Trp	gct Ala	gca Ala	atg Met	cag Gln 395	gtt Val	gca Ala	aca Thr	act Thr	acg Thr 400	1200
	gat Asp	ttc Phe	agt Ser	cca Pro	cgc Arg 405	tca Ser	tgg Trp	ttc Phe	tgg Trp	ggt Gly 410	cat His	gtc Val	tct Ser	gga Gly	gga Gly 415	tta Leu	1248
	aac Asn	aac Asn	caa Gln	att Ile 420	gag Glu	cat His	cat His	ctg Leu	ttt Phe 425	cca Pro	gga Gly	gtg Val	tgc Cys	cat His 430	gtt Val	cat His	1296
	tat Tyr	cca Pro	gcc Ala 435	att Ile	cag Gln	cct Pro	att Ile	gtc Val 440	gag Glu	aag Lys	acg Thr	tgc Cys	aag Lys 445	gaa Glu	ttc Phe	gat Asp	1344
	gtg Val	cct Pro 450	tat Tyr	gta Val	gcc Ala	tac Tyr	cca Pro 455	act Thr	ttt Phe	tgg Trp	act Thr	gcg Ala 460	ttg Leu	aga Arg	gcc Ala	cac His	1392
	ttt Phe 465	gcg Ala	cat His	ttg Leu	aaa Lys	aag Lys 470	gtt Val	gga Gly	ttg Leu	aca Thr	gag Glu 475	ttt Phe	cgg Arg	ctc Leu	gat Asp	ggc Gly 480	1440
	tga																1443
	<210	0> :	10														
	<211	l> 4	180														
	<212	2>]	PRT														
	<213	3 > 1	Phys	comi	trel	la p	aten	s									
	<400	0> :	10														
•	Met 1	Ala	Pro	His	Ser 5	Ala	Asp	Thr	Ala	Gly 10	Leu	Val	Pro	Ser	Asp 15	Glu	
	Leu	Arg	Leu	Arg 20	Thr	Ser	Asn	Ser	Lys 25	Gly	Pro	Glu	Gln	Glu 30	Gln	Thr	
	Leu	Lys	Lys 35	Tyr	Thr	Leu	Glu	Asp 40	Val	Ser	Arg	His	Asn 45	Thr	Pro	Ala	
	Asp	Cys 50	Trp	Leu	Val	Ile	Trp 55	Gly	ГЛа	Val	Tyr	Asp 60	Val	Thr	Ser	Trp	
	Ile	Pro	Asn	His	Pro	Gly	Gly	Ser	Leu	Ile	His	Val	Lys	Ala	Gly	Gln	

Asp Ser Thr Gln Leu Phe Asp Ser Tyr His Pro Leu Tyr Val Arg Lys 85 90 95

Met Leu Ala Lys Tyr Cys Ile Gly Glu Leu Val Pro Ser Ala Gly Asp 100 105 110

Asp Lys Phe Lys Lys Ala Thr Leu Glu Tyr Ala Asp Ala Glu Asn Glu 115 120 125

Asp Phe Tyr Leu Val Val Lys Gln Arg Val Glu Ser Tyr Phe Lys Ser 130 135 140

Asn Lys Ile Asn Pro Gln Ile His Pro His Met Ile Leu Lys Ser Leu 145 150 155 160

Phe Ile Leu Gly Gly Tyr Phe Ala Ser Tyr Tyr Leu Ala Phe Phe Trp 165 170 175

Ser Ser Ser Val Leu Val Ser Leu Phe Phe Ala Leu Trp Met Gly Phe 180 185 190

Phe Ala Ala Glu Val Gly Val Ser Ile Gln His Asp Gly Asn His Gly
195 200 205

Ser Tyr Thr Lys Trp Arg Gly Phe Gly Tyr Ile Met Gly Ala Ser Leu 210 \cdot 220

Asp Leu Val Gly Ala Ser Ser Phe Met Trp Arg Gln Gln His Val Val 225 230 235 240

Gly His His Ser Phe Thr Asn Val Asp Asn Tyr Asp Pro Asp Ile Arg 245 250 255

Val Lys Asp Pro Asp Val Arg Arg Val Ala Thr Thr Gln Pro Arg Gln 265 . 270

Trp Tyr His Ala Tyr Gln His Ile Tyr Leu Ala Val Leu Tyr Gly Thr \$275\$ \$280\$

Leu Ala Leu Lys Ser Ile Phe Leu Asp Asp Phe Leu Ala Tyr Phe Thr 290 295 300

Gly Ser Ile Gly Pro Val Lys Val Ala Lys Met Thr Pro Leu Glu Phe 305 310 315 320

Asn Ile Phe Phe Gln Gly Lys Leu Leu Tyr Ala Phe Tyr Met Phe Val 325 330 335

Leu Pro Ser Val Tyr Gly Val His Ser Gly Gly Thr Phe Leu Ala Leu 340 345 350

19

Tyr Val Ala Ser Gln Leu Ile Thr Gly Trp Met Leu Ala Phe Leu Phe 355 360 365

Gln Val Ala His Val Val Asp Asp Val Ala Phe Pro Thr Pro Glu Gly 370 380

Gly Lys Val Lys Gly Gly Trp Ala Ala Met Gln Val Ala Thr Thr 385 390 395 400

Asp Phe Ser Pro Arg Ser Trp Phe Trp Gly His Val Ser Gly Gly Leu 405 410 415

Asn Asn Gln Ile Glu His His Leu Phe Pro Gly Val Cys His Val His 420 425 430

Tyr Pro Ala Ile Gln Pro Ile Val Glu Lys Thr Cys Lys Glu Phe Asp 435 440 445

Val Pro Tyr Val Ala Tyr Pro Thr Phe Trp Thr Ala Leu Arg Ala His 450 455 460

Phe Ala His Leu Lys Lys Val Gly Leu Thr Glu Phe Arg Leu Asp Gly 465 470 475 480

<210> 11

<211> 1320

<212> DNA

<213> Thraustrochytrium

<220>

<221> CDS

<222> (1)..(1320)

<223>

tac gac gcg acg aac ttt aag cac ccg ggc ggt tcg atc atc aac ttc 144
Tyr Asp Ala Thr Asn Phe Lys His Pro Gly Gly Ser Ile Ile Asn Phe
35 40 45

ttg acc gag ggc gag gcc ggc gtg gac gcg acg cag gcg tac cgc gag Leu Thr Glu Gly Glu Ala Gly Val Asp Ala Thr Gln Ala Tyr Arg Glu

						,		20							
50					55					60					
ttt ca Phe Hi 65	t cag s Gln	cgg Arg	tcc Ser	ggc Gly 70	aag Lys	gcc Ala	gac Asp	aag Lys	tac Tyr 75	ctc Leu	aag Lys	tcg Ser	ctg Leu	ccg Pro 80	240
aag ct Lys Le	g gat u Asp	gcg Ala	tcc Ser 85	aag Lys	gtg Val	gag Glu	tcg Ser	cgg Arg 90	ttc Phe	tcg Ser	gcc Ala	aaa Lys	gag Glu 95	cag Gln	288
gcg cg Ala Ar	g cgc g Arg	gac Asp 100	gcc Ala	atg Met	acg Thr	cgc Arg	gac Asp 105	tac Tyr	gcg Ala	gcc Ala	ttt Phe	cgc Arg 110	gag Glu	gag Glu	336
ctc gt Leu Va	c gcc l Ala 115	gag Glu	gly aaa	tac Tyr	ttt Phe	gac Asp 120	ccg Pro	tcg Ser	atc Ile	ccg Pro	cac His 125	atg Met	att Ile	tac Tyr	384
cgc gt Arg Va 13	l Val	gag Glu	atc Ile	gtg Val	gcg Ala 135	ctc Leu	ttc Phe	gcg Ala	ctc Leu	tcg Ser 140	ttc Phe	tgg Trp	ctc Leu	atg Met	432
tcc aa Ser Ly 145	g gcc s Ala	tcg Ser	ccc Pro	acc Thr 150	tcg Ser	ctc Leu	gtg Val	ctg Leu	ggc Gly 155	gtg Val	gtg Val	atg Met	aac Asn	ggc Gly 160	480
att go Ile Al	g cag .a Gln	ggc	cgc Arg 165	tgc Cys	ggc Gly	tgg Trp	gtc Val	atg Met 170	cac His	gag Glu	atg Met	ggc Gly	cac His 175	gly aaa	528
tcg tt Ser Ph	c acg ne Thr	ggc Gly 180	gtc Val	atc Ile	tgg Trp	ctc Leu	gac Asp 185	gac Asp	cgg Arg	atg Met	tgc Cys	gag Glu 190	ttc Phe	ttc Phe	576
tac go Tyr Gl	gc gtc y Val 195	Gly	tgc Cys	ggc Gly	atg Met	agc Ser 200	GJÀ aaa	cac His	tac Tyr	tgg Trp	aag Lys 205	aac Asn	cag Gln	cac His	624
agc as Ser Ly 21	s His	cac His	gcc Ala	gcg Ala	ccc Pro 215	aac Asn	cgc Arg	ctc Leu	gag Glu	cac His 220	gat Asp	gtc Val	gat Asp	ctc Leu	672
aac ac Asn Tl 225	eg ctg ir Leu	Pro Pro	ctg Leu	gtc Val 230	gcc Ala	ttt Phe	aac Asn	gag Glu	cgc Arg 235	gtc Val	gtg Val	cgc Arg	aag Lys	gtc Val 240	720
aag co Lys Pi	eg gga eo Gly	tcg Ser	ctg Leu 245	ctg Leu	gcg Ala	ctc Leu	tgg Trp	ctg Leu 250	cgc Arg	gtg Val	cag Gln	gcg Ala	tac Tyr 255	ctc Leu	768
ttt go Phe A	eg ccc La Pro	gtc Val 260	tcg Ser	tgc Cys	ctg Leu	ctc Leu	atc Ile 265	ggc	ctt Leu	ggc	tgg Trp	acg Thr 270	ctc Leu	tac Tyr	816
ctg ca Leu H	ac ccg is Pro 275	Arg	tac Tyr	atg Met	ctg Leu	cgc Arg 280	Thr	aag Lys	cgg Arg	cac His	atg Met 285	gag Glu	ttc Phe	gtc Val	864
tgg at Trp II	tc ttc le Phe 90	gcg Ala	cgc Arg	tac Tyr	att Ile 295	ggc	tgg Trp	ttc Phe	tcg Ser	ctc Leu 300	. Met	ggc	gct Ala	ctc Leu	912
ggc ta Gly T 305	ac teg yr Ser	CCG Pro	ggc	acc Thr 310	tcg Ser	gtc Val	Gly 333	atg Met	tac Tyr 315	Leu	tgc Cys	tcg Ser	ttc Phe	ggc Gly 320	960
ctc g Leu G	gc tgo ly Cys	att Ile	tac Tyr	att Ile	ttc Phe	ctg Leu	cag Gln	ttc Phe	gcc Ala	gtc Val	agc Ser	cac His	acg Thr	cac His	1008

21 335 325 330 ctg ccg gtg acc aac ccg gag gac cag ctg cac tgg ctc gag tac gcg 1056 Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala 345 340 1104 gcc gac cac acg gtg aac att agc acc aag tcc tgg ctc gtc acg tgg Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp tgg atg tcg aac ctg aac ttt cag atc gag cac cac ctc ttc ccc acg 1152 Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr 370 geg eeg cag tte ege tte aag gaa ate agt eet ege gte gag gee ete 1200 Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu 390 395 ttc aaq cqc cac aac ctc ccg tac tac gac ctg ccc tac acg agc gcg 1248 Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala gtc tcg acc acc ttt gcc aat ctt tat tcc gtc ggc cac tcg gtc ggc 1296 Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly 425 1320 gcc gac acc aag aag cag gac tga Ala Asp Thr Lys Lys Gln Asp 435 <210> 12 <211> 439 <212> PRT <213> Thraustrochytrium <400> 12 Met Gly Lys Gly Ser Glu Gly Arg Ser Ala Ala Arg Glu Met Thr Ala Glu Ala Asn Gly Asp Lys Arg Lys Thr Ile Leu Ile Glu Gly Val Leu 25 Tyr Asp Ala Thr Asn Phe Lys His Pro Gly Gly Ser Ile Ile Asn Phe 40 Leu Thr Glu Gly Glu Ala Gly Val Asp Ala Thr Gln Ala Tyr Arg Glu 55 Phe His Gln Arg Ser Gly Lys Ala Asp Lys Tyr Leu Lys Ser Leu Pro 70 75 Lys Leu Asp Ala Ser Lys Val Glu Ser Arg Phe Ser Ala Lys Glu Gln Ala Arg Arg Asp Ala Met Thr Arg Asp Tyr Ala Ala Phe Arg Glu Glu

100 105 110

Leu Val Ala Glu Gly Tyr Phe Asp Pro Ser Ile Pro His Met Ile Tyr 115 120 125

Arg Val Val Glu Ile Val Ala Leu Phe Ala Leu Ser Phe Trp Leu Met 130 135 140

Ser Lys Ala Ser Pro Thr Ser Leu Val Leu Gly Val Val Met Asn Gly 145 150 155 160

Ile Ala Gln Gly Arg Cys Gly Trp Val Met His Glu Met Gly His Gly 165 170 175

Ser Phe Thr Gly Val Ile Trp Leu Asp Asp Arg Met Cys Glu Phe Phe 180 185 190

Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His 195 200 205

Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Leu 210 . 215 220

Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val 225 230 235 240

Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu 245 250 255

Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr 260 265 270

Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val 275 280 285

Trp Ile Phe Ala Arg Tyr Ile Gly Trp Phe Ser Leu Met Gly Ala Leu 290 295 300

Gly Tyr Ser Pro Gly Thr Ser Val Gly Met Tyr Leu Cys Ser Phe Gly 305 310 315 320

Leu Gly Cys Ile Tyr Ile Phe Leu Gln Phe Ala Val Ser His Thr His 325 330 335

Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala 340 345 350

Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp 355 360 365

Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr

23 375 380

Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu 400

Phe Lys Arg His Asn Leu Pro Tyr Tyr Asp Leu Pro Tyr Thr Ser Ala 415

Val Ser Thr Thr Phe Ala Asn Leu Tyr Ser Val Gly His Ser Val Gly

Ala Asp Thr Lys Lys Gln Asp 435

<210> 13

<211> 1341

<212> DNA

<213> Mortierella alpina

<220>

<221> CDS

<222> (1)..(1341)

<223> Delta-5-Desaturase

atg)> 1 gga Gly	acg	gac Asp	caa Gln 5	gga Gly	aaa Lys	acc Thr	ttc Phe	acc Thr 10	tgg Trp	gaa Glu	gag Glu	ctg Leu	gcg Ala 15	gcc Ala	48
cat His	aac Asn	acc Thr	aag Lys 20	gac Asp	gac Asp	cta Leu	ctc Leu	ttg Leu 25	gcc Ala	atc Ile	cgc Arg	ggc Gly	agg Arg 30	gtg Val	tac Tyr	96
gat Asp	gtc Val	aca Thr 35	aag Lys	ttc Phe	ttg Leu	agc Ser	cgc Arg 40	cat His	cct Pro	ggt Gly	gga Gly	gtg Val 45	gac Asp	act Thr	ctc Leu	. 144
ctg Leu	ctc Leu 50	gga Gly	gct Ala	ggc Gly	cga Arg	gat Asp 55	gtt Val	act Thr	ccg Pro	gtc Val	ttt Phe 60	gag Glu	atg Met	tat Tyr	cac His	192
gcg Ala 65	ttt Phe	gjå aaa	gct Ala	gca Ala	gat Asp 70	gcc Ala	att Ile	atg Met	aag Lys	aag Lys 75	tac Tyr	tat Tyr	gtc Val	ggt Gly	aca Thr 80	240
							atc Ile									288
aaa Lys	acc Thr	atc Ile	aag Lys 100	acg Thr	aga Arg	gtc Val	gag Glu	ggc Gly 105	tac Tyr	ttt Phe	acg Thr	gat Asp	cgg Arg 110	aac Asn	att Ile	336

									24							
gat Asp	ccc Pro	aag Lys 115	aat Asn	aga Arg	cca Pro	gag Glu	atc Ile 120	tgg Trp	gga Gly	cga Arg	tac Tyr	gct Ala 125	ctt Leu	atc Ile	ttt Phe	384
											ttt Phe 140					432
gtc Val 145	gaa Glu	cgc Arg	aca Thr	tgg Trp	ctt Leu 150	cag Gln	gtg Val	gtg Val	ttt Phe	gca Ala 155	atc Ile	atc Ile	atg Met	gga Gly	ttt Phe 160	480
gcg Ala	tgc Cys	gca Ala	caa Gln	gtc Val 165	gga Gly	ctc Leu	aac Asn	cct Pro	ctt Leu 170	cat His	gat Asp	gcg Ala	tct Ser	cac His 175	ttt Phe	528
tca Ser	gtg Val	acc Thr	cac His 180	aac Asn	ccc Pro	act Thr	gtc Val	tgg Trp 185	aag Lys	att Ile	ctg Leu	gga Gly	gcc Ala 190	acg Thr	cac His	576
gac Asp	ttt Phe	ttc Phe 195	aac Asn	gga Gly	gca Ala	tcg Ser	tac Tyr 200	ctg Leu	gtg Val	tgg Trp	atg Met	tac Tyr 205	caa Gln	cat His	atg Met	624
ctc Leu	ggc Gly 210	cat His	cac His	ccc Pro	tac Tyr	acc Thr 215	aac Asn	att Ile	gct Ala	gga Gly	gca Ala 220	gat Asp	ccc Pro	gac Asp	gtg Val	· 672
											ccc Pro					· 720
ttt Phe	gtc Val	aac Asn	cac His	atc Ile 245	aac Asn	cag Gln	cac His	atg Met	ttt Phe 250	gtt Val	cct Pro	ttc Phe	ctg Leu	tac Tyr 255	gga Gly	768
ctg Leu	ctg Leu	gcg Ala	ttc Phe 260	aag Lys	gtg Val	cgc Arg	att Ile	cag Gln 265	gac Asp	atc Ile	aac Asn	att Ile	ttg Leu 270	tac Tyr	ttt: Phe	816
											atc Ile					864
act Thr	gtg Val 290	atg Met	ttc Phe	tgg Trp	ggc Gly	ggc Gly 295	aag Lys	gct Ala	ttc Phe	ttt Phe	gtc Val 300	tgg Trp	tat Tyr	cgc Arg	ctg Leu	912
att Ile 305	gtt Val	ccc Pro	ctg Leu	cag Gln	tat Tyr 310	ctg Leu	ccc Pro	ctg Leu	ggc	aag Lys 315	gtg Val	ctg Leu	ctc Leu	ttg Leu	ttc Phe 320	960
											gcg Ala					1008
											ttg Leu					1056
											gtc Val					1104
											atc Ile 380					1152

									25							
aac Asn 385	tac Tyr	cag Gln	gct Ala	gtg Val	cac His 390	cat His	ctg Leu	ttc Phe	ccc Pro.	aac Asn 395	gtg Val	tcg Ser	cag Gln	cac His	cat His 400	
tat Tyr	ccc Pro	gat Asp	att Ile	ctg Leu 405	gcc Ala	atc Ile	atc Ile	aag Lys	aac Asn 410	acc Thr	tgc Cys	agc Ser	gag Glu	tac Tyr 415	aag Lys	
gtt Val	cca Pro	tac Tyr	ctt Leu 420	gtc Val	aag Lys	gat Asp	acg Thr	ttt Phe 425	tgg Trp	caa Gln	gca Ala	ttt Phe	gct Ala 430	tca Ser	cat His	•
ttg Leu	gag Glu	cac His 435	ttg Leu	cgt Arg	gtt Val	ctt Leu	gga Gly 440	ctc Leu	cgt Arg	ccc Pro	aag Lys	gaa Glu 445	gag Glu	tag		
<21	0 > 3	14														
<21	1> 4	446														
<21	.2>]	· PRT														
<21	.3> İ	Mort	iere	lla a	alpiı	ıa										
					_											
<40	0> :	14														
	Gly		geA	Gln	Glv	Lvs	Thr	Phe	Thr	Trp	Glu	Glu	Leu	Ala	Ala	
1				5					10	-	•	4		15		•
His	. Asn	Thr	Lys 20	Asp	Asp	Leu	Leu	Leu 25	Ala	Ile	Arg	Gly	Arg 30	Val	Tyr	
Asr	val	Thr 35	Lys	Phe	Leu	Ser	Arg 40	His	Pro	Gly	Gly	Val 45	Asp	Thr	Leu	
Leu	Leu 50	Gly	Ala	Gly	Arg	Asp 55	Val	Thr	Pro	Val	Phe 60	Glu	Met	Tyr	His	
Ala 65	. Phe	Gly	Ala	Ala	Asp 70	Ala	Ile	Met	Lys	Lys 75	Tyr	Tyr	Val	Gly	Thr 80	
Let	ı Val	Ser	Asn	Glu 85	Leu	Pro	Ile	Phe	Pro 90	Glu	Pro	Thr	Val	Phe 95	His	•
Lys	Thr	Ile	Lys 100		Arg	Val	Glu	Gly 105		Phe	Thr	Asp	Arg 110	Asn	Ile	
As <u>r</u>	Pro	Lys 115		. Arg	Pro	Glu	Ile 120		Gly	Arg	Tyr	Ala 125		Ile	Phe	
Gl	7 Ser 130		ı Ile	Ala	Ser	Tyr 135		Ala	Gln	Leu	Phe 140		Pro	Phe	Val	
Val	L Glu S	Arg	Thr	Trp	Leu 150		. Val	. Val	Phe	Ala 155		Ile	Met	Gly	Phe 160	

Ala Cys Ala Gln Val Gly Leu Asn Pro Leu His Asp Ala Ser His Phe 165 170 175

Ser Val Thr His Asn Pro Thr Val Trp Lys Ile Leu Gly Ala Thr His 180 185 190

Asp Phe Phe Asn Gly Ala Ser Tyr Leu Val Trp Met Tyr Gln His Met 195 200 205

Leu Gly His His Pro Tyr Thr Asn Ile Ala Gly Ala Asp Pro Asp Val 210 215 . 220

Ser Thr Ser Glu Pro Asp Val Arg Arg Ile Lys Pro Asn Gln Lys Trp 225 230 235 240

Phe Val Asn His Ile Asn Gln His Met Phe Val Pro Phe Leu Tyr Gly 245 250 255

Leu Leu Ala Phe Lys Val Arg Ile Gln Asp Ile Asn Ile Leu Tyr Phe 260 265 270

Val Lys Thr Asn Asp Ala Ile Arg Val Asn Pro Ile Ser Thr Trp His 275 280 285

Thr Val Met Phe Trp Gly Gly Lys Ala Phe Phe Val Trp Tyr Arg Leu 290 295 300

Ile Val Pro Leu Gln Tyr Leu Pro Leu Gly Lys Val Leu Leu Leu Phe 305 310 315 320

Thr Val Ala Asp Met Val Ser Ser Tyr Trp Leu Ala Leu Thr Phe Gln 325. 330 335

Ala Asn His Val Val Glu Glu Val Gln Trp Pro Leu Pro Asp Glu Asn 340 345 350

Gly Ile Ile Gln Lys Asp Trp Ala Ala Met Gln Val Glu Thr Thr Gln 355 $360 \cdot$ 365

Asp Tyr Ala His Asp Ser His Leu Trp Thr Ser Ile Thr Gly Ser Leu 370 380

Asn Tyr Gln Ala Val His His Leu Phe Pro Asn Val Ser Gln His His 385 390 395 400

Tyr Pro Asp Ile Leu Ala Ile Ile Lys Asn Thr Cys Ser Glu Tyr Lys 405 410 415

Val Pro Tyr Leu Val Lys Asp Thr Phe Trp Gln Ala Phe Ala Ser His 420 425 430

Leu Glu His Leu Arg Val Leu Gly Leu Arg Pro Lys Glu Glu 435 440 445	
<210> 15	
<211> 1344	
. <212> DNA	
<213> Caenorhabditis elegans	
<220>	
<221> CDS	
<222> (1)(1344)	
<223> Delta-5-Desaturase	
<400> 15	
atg gta tta cga gag caa gag cat gag cca ttc ttc att aaa att gat Met Val Leu Arg Glu Glu Glu His Glu Pro Phe Phe Ile Lys Ile Asp	48
1 5 10 15	
gga aaa tgg tgt caa att gac gat gct gtc ctg aga tca cat cca ggt Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly 20 25 30	96
ggt agt gca att act acc tat aaa aat atg gat gcc act acc gta ttc Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe 35 40 45	144
cac aca ttc cat act ggt tct aaa gaa gcg tat caa tgg ctg aca gaa His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 50 55 60	192
·	240
gat gac cca atc aaa gga att gat gat gtg aac atg gga act ttc aat Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85 90 95	288
att tot gag aaa oga tot goo caa ata aat aaa agt tto act gat ota Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu 100 105 110	336
cgt atg cga gtt cgt gca gaa gga ctt atg gat gga tct cct ttg ttc Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe 115 120 125	384
tac att aga aaa att ctt gaa aca atc ttc aca att ctt ttt gca ttc Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 135 140	432
tac ctt caa tac cac aca tat tat ctt cca tca gct att cta atg gga Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 145 150 155 160	480
gtt gcg tgg caa caa ttg gga tgg tta atc cat gaa ttc gca cat cat Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His	528

, A	<i>J</i> 200	3/003	093											-	FC 17.	EF ZUU	3/001003
					165					28					175		
	cag Gln	ttg Leu	ttc Phe	aaa Lys	aac	aga Arg	tac Tvr	tac Tvr	aat Asn	gat	ttg Leu	gcc Ala	agc Ser	tat Tvr	ttc	gtt Val	576
		aac		180					185					190			624
•		Asn															02 4
		gtg Val 210															672
	gat Asp 225	tta Leu	gtc Val	cca Pro	ttc Phe	tat Tyr 230	gct Ala	aca Thr	gtg Val	gca Ala	gaa Glu 235	cat His	ctc Leu	aac Asn	aat Asn	tat Tyr 240	720
	tct Ser	cag Gln	gat Asp	tca Ser	tgg Trp 245	gtt Val	atg Met	act Thr	cta Leu	ttc Phe 250	aga Arg	tgg Trp	caa Gln	cat His	gtt Val 255	cat His	768
		aca Thr															816
		att Ile															864
		act Thr 290															912
		ttg Leu															960
	ttc Phe	ttc Phe	ctt Leu	gtt Val	tct Ser 325	cat His	ctt Leu	gtt Val	gga Gly	ggt Gly 330	ttc Phe	ctg Leu	ctc Leu	tct Ser	cat His 335	gta Val	1008
	gtt Val	act Thr	ttc Phe	aat Asn 340	cat His	tat Tyr	tca Ser	gtg Val	gag Glu 345	aag Lys	ttt Phe	gca Ala	ttg Leu	agc Ser 350	tcg Ser	aac Asn	1056
		atg Met															1104
		cct Pro 370															1152
		gag Glu															1200
		atg Met															1248
		gtc Val															1296
		aat Asn														tag	1344

440

29

445

435

<210> 16

<211> 447

<212> PRT

<213> Caenorhabditis elegans

<400> 16

Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp 1 5 10 15

Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly
20 25 30

Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe 35 40 45

His Thr Phe His Thr Gly Ser Lys Glu Ala Tyr Gln Trp Leu Thr Glu 50 60

Leu Lys Lys Glu Cys Pro Thr Gln Glu Pro Glu Ile Pro Asp Ile Lys 65 70 75 80

Asp Asp Pro Ile Lys Gly Ile Asp Asp Val Asn Met Gly Thr Phe Asn 85 90 95

Ile Ser Glu Lys Arg Ser Ala Gln Ile Asn Lys Ser Phe Thr Asp Leu
100 105 110

Arg Met Arg Val Arg Ala Glu Gly Leu Met Asp Gly Ser Pro Leu Phe
115 120 125

Tyr Ile Arg Lys Ile Leu Glu Thr Ile Phe Thr Ile Leu Phe Ala Phe 130 135 140

Tyr Leu Gln Tyr His Thr Tyr Tyr Leu Pro Ser Ala Ile Leu Met Gly 145 150 155

Val Ala Trp Gln Gln Leu Gly Trp Leu Ile His Glu Phe Ala His His
165 170 175

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val 180 185 190

Gly Asn Phe Leu Gln Gly Phe Ser Ser Gly Gly Trp Lys Glu Gln His 195 200 205

Asn Val His His Ala Ala Thr Asn Val Val Gly Arg Asp Gly Asp Leu

30 .

210 215 220

Asp Leu Val Pro Phe Tyr Ala Thr Val Ala Glu His Leu Asn Asn Tyr 225 230 235 240

Ser Gln Asp Ser Trp Val Met Thr Leu Phe Arg Trp Gln His Val His 245 250 255

Trp Thr Phe Met Leu Pro Phe Leu Arg Leu Ser Trp Leu Leu Gln Ser 260 265 270

Ile Ile Phe Val Ser Gln Met Pro Thr His Tyr Tyr Asp Tyr Tyr Arg 275 280 285

Asn Thr Ala Ile Tyr Glu Gln Val Gly Leu Ser Leu His Trp Ala Trp 290 295 300

Ser Leu Gly Gln Leu Tyr Phe Leu Pro Asp Trp Ser Thr Arg Ile Met 305 310 315 320

Phe Phe Leu Val Ser His Leu Val Gly Gly Phe Leu Leu Ser His Val 325 330 335

Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn 340 345 350

Ile Met Ser Asn Tyr Ala Cys Leu Gln Ile Met Thr Thr Arg Asn Met 355 360 365

Arg Pro Gly Arg Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln 370 380

Ile Glu His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Thr 385 390 395 400

Val Met Pro Leu Val Lys Glu Phe Ala Ala Ala Asn Gly Leu Pro Tyr 405 410 410

Met Val Asp Asp Tyr Phe Thr Gly Phe Trp Leu Glu Ile Glu Gln Phe 420 425 430

Arg Asn Ile Ala Asn Val Ala Ala Lys Leu Thr Lys Lys Ile Ala 435 440 445

<210> 17

<211> 1683 .

<212> DNA

<213> Borago officinalis

<220>

<221> CDS

<222> (42)..(1388)

<223> Delta-6-Desaturase

<400 tato		.7 cta c	cacto	ccaa	ıa ga	ıgagt	agto	att	ttto	atc	a at Me	g go et Al	et go .a Al	et ca .a Gl	aa atc in Ile 5		56
aag Lys	aaa Lys	tac Tyr	att Ile	acc Thr 10	tca Ser	gat Asp	gaa Glu	ctc Leu	aag Lys 15	aac Asn	cac His	gat Asp	aaa Lys	ccc Pro 20	gga Gly	:	104
gat Asp	cta Leu	tgg Trp	atc Ile 25	tcg Ser	att Ile	caa Gln	gly ggg	aaa Lys 30	gcc Ala	tat Tyr	gat Asp	gtt Val	tcg Ser 35	gat Asp	tgg Trp	:	152
gtg Val	aaa Lys	gac Asp 40	cat His	cca Pro	ggt Gly	ggc Gly	agc Ser 45	ttt Phe	ccc Pro	ttg Leu	aag Lys	agt Ser 50	ctt Leu	gct Ala	ggt Gly	:	200
caa Gln	gag Glu 55	gta Val	act Thr	gat Asp	gca Ala	ttt Phe 60	gtt Val	gca Ala	ttc Phe	cat His	cct Pro 65	gcc Ala	tct Ser	aca Thr	tgg Trp	:	248
aag Lys 70	aat Asn	ctt Leu	gat Asp :	aag Lys	ttt Phe 75	ttc Phe	act Thr	gly ggg	tat Tyr	tat Tyr 80	ctt Leu	aaa Lys	gat Asp	tac Tyr	tct Ser 85	:	296
gtt Val	tct Ser	gag Glu	gtt Val	tct Ser 90	aaa Lys	gat Asp	tat Tyr	agg Arg	aag Lys 95	ctt Leu	gtg Val	ttt Phe	gag Glu	ttt Phe 100	tct Ser	:	344
aaa Lys	atg Met	ggt Gly	ttg Leu 105	tat Tyr	gac Asp	aaa Lys	aaa Lys	ggt Gly 110	cat His	att Ile	atg Met	ttt Phe	gca Ala 115	act Thr	ttg Leu		392
tgc Cys	ttt Phe	ata Ile 120	gca Ala	atg Met	ctg Leu	ttt Phe	gct Ala 125	atg Met	agt Ser	gtt Val	tat Tyr	999 Gly 130	gtt Val	ttg Leu	ttt Phe		440
tgt Cys	gag Glu 135	ggt Gly	gtt Val	ttg Leu	gta Val	cat His 140	ttg Leu	ttt Phe	tct Ser	gjå aaa	tgt Cys 145	ttg Leu	atg Met	gly aaa	ttt Phe	•	488
ctt Leu 150	tgg Trp	att Ile	cag Gln	agt Ser	ggt Gly 155	tgg Trp	att Ile	gga Gly	cat His	gat Asp 160	gct Ala	Gly 333	cat His	tat Tyr	atg ·Met 165		536
gta Val	gtg Val	tct Ser	gat Asp	tca Ser 170	agg Arg	ctt Leu	aat Asn	aag Lys	ttt Phe 175	atg Met	ggt Gly	att Ile	ttt Phe	gct Ala 180	gca Ala		584
aat Asn	tgt Cys	ctt Leu	tca Ser 185	gga Gly	ata Ile	agt Ser	att Ile	ggt Gly 190	tgg Trp	tgg Trp	aaa Lys	tgg Trp	aac Asn 195	cat His	aat Asn		632
gca Ala	cat His	cac His 200	att Ile	gcc Ala	tgt Cys	aat Asn	agc Ser 205	ctt Leu	gaa Glu	tat Tyr	gac Asp	cct Pro 210	gat Asp	tta Leu	caa Gln		680

t	tat Tyr	ata Ile 215	cca Pro	ttc Phe	ctt Leu	gtt Val	gtg Val 220	tct Ser	tcc Ser	aag Lys	ttt Phe	ttt Phe 225	ggt Gly	tca Ser	ctc Leu	acc Thr	728	3
٤	tct Ser 230	cat His	ttc Phe	tat Tyr	gag Glu	aaa Lys 235	agg Arg	ttg Leu	act Thr	ttt Phe	gac Asp 240	tct Ser	tta Leu	tca Ser	aga Arg	ttc Phe 245	776	5
t	ttt Phe	gta Val	agt Ser	tat Tyr	caa Gln 250	cat His	tgg Trp	aca Thr	ttt Phe	tac Tyr 255	cct Pro	att Ile	atg Met	tgt Cys	gct Ala 260	gct Ala	824 ,	Ŀ
ž	agg Arg	ctc Leu	aat Asn	atg Met 265	tat Tyr	gta Val	caa Gln	tct Ser	ctc Leu 270	ata Ile	atg Met	ttg Leu	ttg Leu	acc Thr 275	aag Lys	aga Arg	872	2
ž	aat Asn	gtg Val	tcc Ser 280	tat Tyr	cga Arg	gct Ala	cag Gln	gaa Glu 285	ctc Leu	ttg Leu	gga Gly	tgc Cys	cta Leu 290	gtg Val	ttc Phe	tcg Ser	920)
. :	att Ile	tgg Trp 295	tac Tyr	ccg Pro	ttg Leu	ctt Leu	gtt Val 300	tct Ser	tgt Cys	ttg Leu	cct Pro	aat Asn 305	tgg Trp	ggt Gly	gaa Glu	aga Arg	968	3
	att Ile 310	atg Met	ttt Phe	gtt Val	att Ile	gca Ala 315	agt Ser	tta Leu	tca Ser	gtg Val	act Thr 320	gga Gly	atg Met	caa Gln	caa Gln	gtt Val 325	1016	5
(cag Gln	ttc Phe	tcc Ser	ttg Leu	aac Asn 330	cac His	ttc Phe	tct Ser	tca Ser	agt Ser 335	gtt Val	tat Tyr	gtt Val	gga Gly	aag Lys 340	cct Pro	1064	1
:	aaa Lys	Gly 333	aat Asn	aat Asn 345	tgg Trp	ttt Phe	gag Glu	aaa Lys	caa Gln 350	acg Thr	gat Asp	gly aaa	aca Thr	ctt Leu 355	gac Asp	att Ile	1112	2
	tct Ser	tgt Cys	cct Pro 360	cct Pro	tgg Trp	atg Met	gat Asp	tgg Trp 365	ttt Phe	cat His	ggt Gly	gga Gly	ttg Leu 370	caa Gln	ttc Phe	caa Gln	1160	0
,	att Ile	gag Glu 375	cat His	cat His	ttg Leu	ttt Phe	ccc Pro 380	Lys	atg Met	cct Pro	aga Arg	tgc Cys 385	aac Asn	ctt Leu	agg Arg	aaa Lys	1208	8
	atc Ile 390	tcg Ser	ccc Pro	tac Tyr	gtg Val	atc Ile 395	gag Gl _. u	tta Leu	tgc Cys	aag Lys	aaa Lys 400	cat His	aat Asn	ttg Leu	cct Pro	tac Tyr 405	125	6
	aat Asn	tat Tyr	gcá Ala	tct Ser	ttc Phe 410	tcc Ser	aag Lys	gcc Ala	aat Asn	gaa Glu 415	atg Met	aca Thr	ctc Leu	aga Arg	aca Thr 420	ttg Leu	1304	4
	agg Arg	aac Asn	aca Thr	gca Ala 425	Leu	cag Gln	gct Ala	agg Arg	gat Asp 430	ata Ile	acc Thr	aag Lys	ccg Pro	ctc Leu 435	Pro	aag Lys	135:	2
				Trp		gct Ala			Thr				aat	tacc	ctt		139	8
	agt	tcat	gta	ataa	tttg	ag a	ttat	gtat	c tc	ctat	gttt	gtg	tctt	gtc	ttgg	ttctac	145	8
	ttg	ttgg	agt	catt	gcaa	ct t	gtct	ttta	t gg	ttta	ttag	atg	tttt	tta	atat	atttta	151	8
																tgttgt	157	8
		_														gctcat	163	8
	•																	

33

gtgtacttct atagactttg tttaaatggt tatgtcatgt tattt

1683

<210> 18

<211> 448

<212> PRT

<213> Borago officinalis

<400> 18

Met Ala Ala Gln Ile Lys Lys Tyr Ile Thr Ser Asp Glu Leu Lys Asn 1 5 10 15

His Asp Lys Pro Gly Asp Leu Trp Ile Ser Ile Gln Gly Lys Ala Tyr 20 25 30

Asp Val Ser Asp Trp Val Lys Asp His Pro Gly Gly Ser Phe Pro Leu 35 40 45

Lys Ser Leu Ala Gly Gln Glu Val Thr Asp Ala Phe Val Ala Phe His 50 55 60

Pro Ala Ser Thr Trp Lys Asn Leu Asp Lys Phe Phe Thr Gly Tyr Tyr 65 70 75 80

Leu Lys Asp Tyr Ser Val Ser Glu Val Ser Lys Asp Tyr Arg Lys Leu 85 90 95

Val Phe Glu Phe Ser Lys Met Gly Leu Tyr Asp Lys Lys Gly His Ile 100 105 110

Met Phe Ala Thr Leu Cys Phe Ile Ala Met Leu Phe Ala Met Ser Val 115 120 125

Cys Leu Met Gly Phe Leu Trp Ile Gln Ser Gly Trp Ile Gly His Asp 145 150 155 160

Ala Gly His Tyr Met Val Val Ser Asp Ser Arg Leu Asn Lys Phe Met 165 170 175

Gly Ile Phe Ala Ala Asn Cys Leu Ser Gly Ile Ser Ile Gly Trp Trp 180 185 190

Lys Trp Asn His Asn Ala His His Ile Ala Cys Asn Ser Leu Glu Tyr
195 200 205

WO 2005/083093 PCT/EP2005/001863

Asp Pro Asp Leu Gln Tyr Ile Pro Phe Leu Val Val Ser Ser Lys Phe 210 215 220

Phe Gly Ser Leu Thr Ser His Phe Tyr Glu Lys Arg Leu Thr Phe Asp 225 230 235

Ser Leu Ser Arg Phe Phe Val Ser Tyr Gln His Trp Thr Phe Tyr Pro 245 250 255

Ile Met Cys Ala Ala Arg Leu Asn Met Tyr Val Gln Ser Leu Ile Met 260 265 270

Leu Leu Thr Lys Arg Asn Val Ser Tyr Arg Ala Gln Glu Leu Leu Gly 275 280 285

Cys Leu Val Phe Ser Ile Trp Tyr Pro Leu Leu Val Ser Cys Leu Pro 290 295 300

Asn Trp Gly Glu Arg Ile Met Phe Val Ile Ala Ser Leu Ser Val Thr 305 310 315

Gly Met Gln Gln Val Gln Phe Ser Leu Asn His Phe Ser Ser Ser Val 325 330 335

Tyr Val Gly Lys Pro Lys Gly Asn Asn Trp Phe Glu Lys Gln Thr Asp $340. \hspace{1.5cm} 345 \hspace{1.5cm} 350$

Gly Thr Leu Asp Ile Ser Cys Pro Pro Trp Met Asp Trp Phe His Gly 355 360

Gly Leu Gln Phe Gln Ile Glu His His Leu Phe Pro Lys Met Pro Arg 370 $$ 375 $$ 380

Cys Asn Leu Arg Lys Ile Ser Pro Tyr Val Ile Glu Leu Cys Lys Lys 385 390 395 400

His Asn Leu Pro Tyr Asn Tyr Ala Ser Phe Ser Lys Ala Asn Glu Met 405 410 415

Thr Leu Arg Thr Leu Arg Asn Thr Ala Leu Gln Ala Arg Asp Ile Thr 420 425 430

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly 435 440 445

<210> 19

<211> 1563

<212> DNA

<213> Ceratodon purpureus

<220>

<221> CDS

<222> (1)..(1563)

<223> Delta-6-Desaturase

			•														
	0> 1 gtg Val																48
	gac Asp																96
	gtc VaI			_		_	~ ~	_		_							144
	ttc Phe 50															•	192
	gca Ala																240
	tcg Ser																288
	gtt Val																336
	tgc Cys																384
	gag Glu 130														cga Arg		432
	gcc Ala															•	480
	ctt Leu																528
ttg Leu	gag Glu	ctg Leu	ctg Leu 180	aag Lys	gag Glu	tac Tyr	aga Arg	gag Glu 185	ttg Leu	aga Arg	gcc Ala	ctt Leu	ttc Phe 190	ttg Leu	aga Arg		576
	cag Gln																624
	aat Asn 210																672

aaσ	tct	tac	caa	aca	att	ctg	tta	tica	acc	agt.	tta	ato	aac	tta	ttt	720)
Lys 225	Ser	Tyr	Arg	Ala	Val 230	Leu	Leu	Ser	Ala	Ser 235	Leu	Met	ĞÎy	Leu	Phe 240	, 2	•
						ttg Leu										768	3
						aat Asn										816	5
						gtc Val										864	ļ
						gaa Glu 295										912	2
						ccc Pro										960)
gcc Ala	act Thr	gtt Val	gag Glu	agc Ser 325	aag Lys	acc Thr	atg Met	ttg Leu	cga Arg 330	gtt Val	ctt Leu	cag Gln	tac Tyr	cag Gln 335	cac His	1008	3
						ttg Leu										1056	5
						ctc Leu										1104	Ŧ
						atg Met 375										1152	2
						ccc Pro										1200)
						ggt Gly										1248	3
agt Ser	cac His	aat Asn	gga Gly 420	atg Met	gag Glu	gtg Val	tac Tyr	aat Asn 425	acg Thr	tca Ser	aag Lys	gac Asp	ttc Phe 430	gtg Val	aat Asn	1296	; ·
						cgc Arg										1344	Ē
						aac Asn 455										1392	2
						ctt Leu										1440)
						ctg Leu										1488	}

ggc act tac cgg gtt ttg aaa aca ctt aag gac gtt gcc gat gct gct 1536 Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 500 505 510

tca cac cag cag ctt gct gcg agt tga Ser His Gln Gln Leu Ala Ala Ser 515 520 1563

<210> 20

<211> 520

<212> PRT

<213> Ceratodon purpureus

<400> 20

Met Val Ser Gln Gly Gly Gly Leu Ser Gln Gly Ser Ile Glu Glu Asn 1 5 10 15

Ile Asp Val Glu His Leu Ala Thr Met Pro Leu Val Ser Asp Phe Leu 20 25 30

Asn Val Leu Gly Thr Thr Leu Gly Gln Trp Ser Leu Ser Thr Thr Phe 35 40 45

Ala Phe Lys Arg Leu Thr Thr Lys Lys His Ser Ser Asp Ile Ser Val 50 55 60

Glu Ala Gln Lys Glu Ser Val Ala Arg Gly Pro Val Glu Asn Ile Ser 65 70 75 80

Gln Ser Val Ala Gln Pro Ile Arg Arg Trp Val Gln Asp Lys Lys 85 90 95

Pro Val Thr Tyr Ser Leu Lys Asp Val Ala Ser His Asp Met Pro Gln 100 105 110

Asp Cys Trp Ile Ile Ile Lys Glu Lys Val Tyr Asp Val Ser Thr Phe 115 120 125

Ala Glu Gln His Pro Gly Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg 130 135 140

Asp Ala Thr Asp Val Phe Ser Thr Phe His Ala Ser Thr Ser Trp Lys 145 150 155 160

Ile Leu Gln Asn Phe Tyr Ile Gly Asn Leu Val Arg Glu Glu Pro Thr 165 170 175

Leu Glu Leu Lys Glu Tyr Arg Glu Leu Arg Ala Leu Phe Leu Arg
180 185 190

Glu Gln Leu Phe Lys Ser Ser Lys Ser Tyr Tyr Leu Phe Lys Thr Leu lleu lleu 205

Lys Ser Tyr Arg Ala Val Leu Leu Ser Ala Ser Leu Met Gly Leu Phe 240

Lys Ser Tyr Arg Ala Val Leu Leu Ser Ala Ser Leu Met Gly Leu Phe 240

Ile Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His His Gln Val 245 250 255

Phe Glu Thr Arg Trp Leu Asn Asp Val Val Gly Tyr Val Val Gly Asn 260 265 270

Val Val Leu Gly Phe Ser Val Ser Trp Trp Lys Thr Lys His Asn Leu 275 280 285

His His Ala Ala Pro Asn Glu Cys Asp Gln Lys Tyr Thr Pro Ile Asp 290 295 300

Glu Asp Ile Asp Thr Leu Pro Ile Ile Ala Trp Ser Lys Asp Leu Leu 305 310 315 320

Ala Thr Val Glu Ser Lys Thr Met Leu Arg Val Leu Gln Tyr Gln His 325 330 335

Trp Ser Ala Ala Phe Thr Leu Arg Pro Glu Leu Thr Leu Gly Glu Lys 355 360 365

Leu Leu Glu Arg Gly Thr Met Ala Leu His Tyr Ile Trp Phe Asn Ser 370 375 380

Val Ala Phe Tyr Leu Leu Pro Gly Trp Lys Pro Val Val Trp Met Val 385 390 395 400

Val Ser Glu Leu Met Ser Gly Phe Leu Leu Gly Tyr Val Phe Val Leu 405 410 415

Ser His Asn Gly Met Glu Val Tyr Asn Thr Ser Lys Asp Phe Val Asn 420 425 430

Ala Gln Ile Ala Ser Thr Arg Asp Ile Lys Ala Gly Val Phe Asn Asp 435 440 445

Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu His His Leu Phe Pro 450 455 460

Thr Met Pro Arg His Asn Leu Asn Lys Ile Ser Pro His Val Glu Thr 475 470 Leu Cys Lys Lys His Gly Leu Val Tyr Glu Asp Val Ser Met Ala Ser Gly Thr Tyr Arg Val Leu Lys Thr Leu Lys Asp Val Ala Asp Ala Ala 505 Ser His Gln Gln Leu Ala Ala Ser 515 <210> 21 <211> 1434 <212> DNA <213> Phaeodactylum tricornutum <220> <221> CDS <222> (1)..(1434) <223> Delta-6-Desaturase <400> 21 atg ggc aaa gga ggg gac gct cgg gcc tcg aag ggc tca acg gcg gct 48 Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Ser Thr Ala Ala cgc aag atc agt tgg cag gaa gtc aag acc cac gcg tct ccg gag gac 96 Arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp 20 gcc tgg atc att cac tcc aat aag gtc tac gac gtg tcc aac tgg cac Ala Trp Ile Ile His Ser Asn Lys Val Tyr Asp Val Ser Asn Trp His 144 192 gaa cat ccc gga ggc gcc gtc att ttc acg cac gcc ggt gac gac atg Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met acg gac att ttc gct gcc ttt cac gca ccc gga tcg cag tcg ctc atg 240 Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met 288 aag aag ttc tac att ggc gaa ttg ctc ccg gaa acc acc ggc aag gag Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu 85 90 ccg cag caa atc gcc ttt gaa aag ggc tac cgc gat ctg cgc tcc aaa 336 Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys

ctc atc atg atg ggc atg ttc aag tcc aac aag tgg ttc tac gtc tac

									40							
Leu	Ile	Met 115	Met,	Gly	Met	Phe	Lys 120	Ser	Asn	Lys	Trp	Phe 125	Tyr	Val	Tyr	
aag Lys	tgc Cys 130	ctc Leu	agc Ser	aac Asn	atg Met	gcc Ala 135	att Ile	tgg Trp	gcc Ala	gcc Ala	gcc Ala 140	tgt Cys	gct Ala	ctc Leu	gtc Val	432
ttt Phe 145	tac Tyr	tcg Ser	gac Asp	cgc Arg	ttc Phe 150	tgg Trp	gta Val	cac His	ctg Leu	gcc Ala 155	agc Ser	gcc Ala	gtc Val	atg Met	ctg Leu 160	480
gga Gly	aca Thr	ttc Phe	ttt Phe	cag Gln 165	cag Gln	tcg Ser	gga Gly	tgg Trp	ttg Leu 170	gca Ala	cac His	gac Asp	ttt Phe	ctg Leu 175	cac His	528
cac His	cag Gln	gtc Val	ttc Phe 180	acc Thr	aag Lys	cgc Arg	aag Lys	cac His 185	gly ggg	gat Asp	ctc Leu	gga Gly	gga Gly 190	ctc Leu	ttt Phe	576 _.
tgg Trp	glà aaa	aac Asn 195	ctc Leu	atg Met	cag Gln	ggt Gly	tac Tyr 200	tcc Ser	gta Val	cag Gln	tgg Trp	tgg Trp 205	aaa Lys	aac Asn	aag Lys	624
cac His	aac Asn 210	gga Gly	cac His	cac His	gcc Ala	gtc Val 215	ccc Pro	aac Asn	ctc Leu	cac His	tgc Cys 220	tcc Ser	tcc Ser	gca Ala	gtc Val	672
gcg Ala 225	caa Gln	gat Asp	Glà aaa	gac Asp	ccg Pro 230	gac Asp	atc Ile	gat Asp	acc Thr	atg Met 235	ccc Pro	ctt Leu	ctc Leu	gcc Ala	tgg Trp 240	720
tcc Ser	gtc Val	cag Gln	caa Gln	gcc Ala 245	cag Gln	tct Ser	tac Tyr	cgg Arg	gaa Glu 250	ctc Leu	caa Gln	gcc Ala	gac Asp	gga Gly 255	aag Lys	768
gat Asp	tcg Ser	ggt Gly	ttg Leu 260	gtc Val	aag Lys	ttc Phe	atg Met	atc Ile 265	cgt Arg	aac Asn	caa Gln	tcc Ser	tac Tyr 270	ttt Phe	tac Tyr	816
ttt Phe	ccc Pro	atc Ile 275	ttg Leu	ttg Leu	ctc Leu	gcc Ala	cgc Arg 280	ctg Leu	tcg Ser	tgg Trp	ttg Leu	aac Asn 285	gag Glu	tcc Ser	ttc Phe	864
aag Lys	tgc Cys 290	gcc Ala	ttt Phe	ggg ggg	ctt Leu	gga Gly 295	gct Ala	gcg Ala	tcg Ser	gag Glu	aac Asn 300	gct Ala	gct Ala	ctc Leu	gaa Glu	912
ctc Leu 305	aag Lys	gcc Ala	aag Lys	ggt Gly	ctt Leu 310	cag Gln	tac Tyr	ccc Pro	ctt Leu	ttg Leu 315	gaa Glu	aag Lys	gct Ala	ggc Gly	atc Ile 320	960
ctg Leu	ctg Leu	cac His	tac Tyr	gct Ala 325	tgg Trp	atg Met	ctt Leu	aca Thr	gtt Val 330	tcg Ser	tcc Ser	ggc	ttt Phe	gga Gly 335	cgc Arg	1008
ttc Phe	tcg Ser	ttc Phe	gcg Ala 340	tac Tyr	acc Thr	gca Ala	ttt Phe	tac Tyr 345	ttt Phe	cta Leu	acc Thr	gcg Ala	acc Thr 350	gcg Ala	tcc Ser	1056
tgt Cys	gga Gly	ttc Phe 355	Leu	ctc Leu	gcc Ala	att Ile	gtc Val 360	ttt Phe	ggc Gly	ctc Leu	Gly	cac His 365	aac Asn	ggc	atg Met	1104
gcc Ala	acc Thr 370	tac Tyr	aat Asn	gcc Ala	gac Asp	gcc Ala 375	cgt Arg	ccg Pro	gac Asp	ttc Phe	tgg Trp 380	Lys	ctc Leu	caa Gln	gtc Val	1152
acc	acg	act	cgc	aac	gtc	acg	ggc	gga	cac	ggt	ttc	ccc	caa	gcc	ttt	1200

									41							
Thr 385	Thr	Thr	Arg	Asn	Val 390	Thr	Gly	Gly	His	Gly 395	Phe	Pro	Gln	Ala	Phe 400	
gtc Val	gac Asp	tgg Trp	ttc Phe	tgt Cys 405	ggt Gly	ggc Gly	ctc Leu	·cag Gln	tac Tyr 410	caa Gln	gtc Val	gac Asp	cac His	cac His 415	Leu	1248
ttc Phe	ccc Pro	agc Ser	ctg Leu 420	ccc Pro	cga Arg	cac His	aat Asn	ctg Leu 425	gcc Ala	aag Lys	aca Thr	cac His	gca Ala 430	ctg Leu	gtc Val	1296
gaa Glu	tcg Ser	ttc Phe 435	Cys tgc	aag Lys	gag Glu	tgg Trp	ggt Gly 440	Val	cag Gln	tac Tyr	cac His	gaa Glu 445	gcc Ala	gac Asp	ctt Leu	1344
gtg Val	gac Asp 450	glà aaa	acc Thr	atg Met	gaa Glu	gtc Val 455	ttg Leu	cac His	cat His	ttg Leu	ggc Gly 460	agc Ser	gtg Val	gcc Ala	ggc Gly	1392
gaa Glu 465	ttc Phe	gtc Val	gtg Val	gat Asp	ttt Phe 470	gta Val	cgc Arg	gat Asp	gga Gly	ccc Pro 475	gcc Ala	atg Met	taa			1434
<210	,) > _ 2	22 .														
<21		177														
<212		PRT														
<213			ođact	vlur	n tri	icori	nutur	n								
				-												
<400)> 2	22														•
Met 1	Gly	Lys	Gly	Gly 5	Asp	Ala	Arg	Ala	Ser 10	Lys	Gly	Ser	Thr	Ala 15	Ala	
Arg	Lys	Ile	Ser 20	Trp	Gln	Glu	Val	Lys 25	Thr	His	Ala	Ser	Pro 30	Glu	Asp	
Ala	Trp	Ile 35	Ile	His	Ser	Asn	Lys 40	Val	Tyr	Asp	Val	Ser 45	Asn	Trp	His	
Glu	His 50	Pro	Gly	Gly	Ala	Val 55	Ile	Phe	Thr	His	Ala 60	Gly	Asp	Asp	Met ,	
Thr 65	Asp	Ile	Phe	Ala	Ala 70	Phe	His	Ala	Pro	Gly 75	Ser	Gln	Ser	Leu	Met 80	
Lys	Lys	Phe	Tyr	Ile 85	Gly	Glu	Leu	Leu	Pro 90	Glu	Thr	Thr	Gly	Lys 95	Glu	
Pro	Gļn	Gln	Ile 100	Ala	Phe	Glu	Lys	Gly 105	Tyr	Arg	Asp	Leu	Arg 110	Ser	Lys	
Leu	Ile	Met 115	Met	Gly	Met	Phe	Lys 120	Ser	Asn	Lys	Trp	Phe 125	Tyr	۷al	Tyr	

Lys Cys Leu Ser Asn Met Ala Ile Trp Ala Ala Cys Ala Leu Val 130 135 140

Phe Tyr Ser Asp Arg Phe Trp Val His Leu Ala Ser Ala Val Met Leu 145 150 155 160

. Gly Thr Phe Phe Gln Gln Ser Gly Trp Leu Ala His Asp Phe Leu His . 175

His Gln Val Phe Thr Lys Arg Lys His Gly Asp Leu Gly Gly Leu Phe 180 180 185

Trp Gly Asn Leu Met Gln Gly Tyr Ser Val Gln Trp Trp Lys Asn Lys 195 200 205

His Asn Gly His His Ala Val Pro Asn Leu His Cys Ser Ser Ala Val 210 215 220

Ala Gln Asp Gly Asp Pro Asp Ile Asp Thr Met Pro Leu Leu Ala Trp 225 230 235

Ser Val Gln Gln Ala Gln Ser Tyr Arg Glu Leu Gln Ala Asp Gly Lys 245 250 255

Asp Ser Gly Leu Val Lys Phe Met Ile Arg Asn Gln Ser Tyr Phe Tyr 260 265 270

Phe Pro Ile Leu Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe 275 280 285

Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 290 295 300

Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 305 310 315 320

Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg 325 330 335

Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 340 345 350

Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met 355 360 365

Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val 370 . 375 380

Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe

43 Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu-415 Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val 425 Glu Ser Phe Cys Lys Glu Trp Gly Val Gln Tyr His Glu Ala Asp Leu 440 Val Asp Gly Thr Met Glu Val Leu His His Leu Gly Ser Val Ala Gly Glu Phe Val Val Asp Phe Val Arg Asp Gly Pro Ala Met 470 <210> 23 <211> 1578 <212> DNA <213> Physcomitrella patens <220> <221> CDS <222> (1)..(1578) <223> Delta-6-Desaturase 48 atg gta ttc gcg ggc ggt gga ctt cag cag ggc tct ctc gaa gaa aac Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn ate gae gte gag cae att gee agt atg tet ete tte age gae tte tte . 96 Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe 25 agt tat gtg tct tca act gtt ggt tcg tgg agc gta cac agt ata caa 144 Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln cct ttg aag cgc ctg acg agt aag aag cgt gtt tcg gaa agc gct gcc 192 Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala 55 240 gtg caa tgt ata tca gct gaa gtt cag aga aat tcg agt acc cag gga Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly act gcg gag gca ctc gca gaa tca gtc gtg aag ccc acg aga cga agg 288 Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg

tca tct cag tgg aag aag tcg aca cac ccc cta tca gaa gta gca gta

Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val

105

100

336

cac His	aac Asn	aag Lys 115	cca Pro	agc Ser	gat Asp	tgc Cys	tgg Trp 120	att Ile	gtt Val	gta Val	aaa Lys	aac Asn 125	aag Lys	gtg Val	tat Tyr		384
gat Asp	gtt Val 130	tcc Ser	aat Asn	ttt Phe	gcg Ala	gac Asp 135	gag Glu	cat His	ccc Pro	gga Gly	gga Gly 140	tca Ser	gtt Val	att Ile	agt Ser		432
act Thr 145	tat Tyr	ttt Phe	gga Gly	cga Arg	gac Asp 150	ggc Gly	aca Thr	gat Asp	gtt Val	ttc Phe 155	tct Ser	agt Ser	ttt Phe	cat His	gca Ala 160		480
gct Ala	tct Ser	aca Thr	tgg Trp	aaa Lys 165	att Ile	ctt Leu	caa Gln	gac Asp	ttt Phe 170	tac Tyr	att Ile	ggt Gly	gac Asp	gtg Val 175	gag Glu		528
agg Arg	gtg Val	gag Glu	ccg Pro 180	act Thr	cca Pro	gag Glu	ctg Leu	ctg Leu 185	aaa Lys	gat Asp	ttc Phe	cga Arg	gaa Glu 190	atg Met	aga Arg		576
gct Ala	ctt Leu	ttc Phe 195	ctg Leu	agg Arg	gag Glu	caa Gln	ctt Leu 200	ttc Phe	aaa Lys	agt Ser	tcg Ser	aaa Lys 205	ttg Leu	tac Tyr	tat Tyr		624
gtt Val	atg Met 210	aag Lys	ctg Leu	ctc Leu	acg Thr	aat Asn 215	gtt Val	gct Ala	att Ile	ttt Phe	gct Ala 220	gcg Ala	agc Ser	att Ile	gca Ala		672
ata Ile 225	ata Ile	tgt Cys	tgg Trp	agc Ser	aag Lys 230	act Thr	att Ile	tca Ser	gcg Ala	gtt Val 235	ttg Leu	gct Ala	tca Ser	gct Ala	tgt Cys 240		720
					ttc Phe												768
ctc Leu	cac His	aat Asn	cag Gln 260	gtg Val	ttt Phe	gag Glu	aca Thr	cgc Arg 265	tgg Trp	ctt Leu	aat Asn	gaa Glu	gtt Val 270	gtc Val	gly aaa		816
					gcc Ala												864
					cat His												912
					gaa Glu 310											٠	960
agc Ser	aag Lys	gac Asp	ata Ile	ctg Leu 325	gcc Ala	aca Thr	gtt Val	gag Glu	aat Asn 330	aag Lys	aca Thr	ttc Phe	ttg Leu	cga Arg 335	atc Ile	1	800
					ctg Leu											1	.056
					tgg Trp											1	104
					ttg Leu											1	.152

PCT/EP2005/001863

ttt tgg ttc gtc ggg aca gcg tgc tat ctt ctc cct ggt tgg aag cca 1200 Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro 390 395 tta gta tgg atg gcg gtg act gag ctc atg tcc ggc atg ctg ctg ggc 1248 Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly ttt gta ttt gta ctt agc cac aat ggg atg gag gtt tat aat tcg tct 1296 Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser 425 1344 aaa gaa tto gtg agt goa cag ato gta too aca ogg gat ato aaa gga Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 440 1392 aac ata ttc aac gac tgg ttc act ggt ggc ctt aac agg caa ata gag Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu cat cat ctt ttc cca aca atg ccc agg cat aat tta aac aaa ata gca 1440 His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 475 465 cct aga gtg gag gtg ttc tgt aag aaa cac ggt ctg gtg tac gaa gac Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 1488 490 485 gta tot att got acc ggc act tgc aag gtt ttg aaa gca ttg aag gaa 1536 Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu gtc gcg gag gct gcg gca gag cag cat gct acc acc agt taa 1578 Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 520 <210> 24 <211> 525 <212> PRT <213> Physcomitrella patens <400> 24 Met Val Phe Ala Gly Gly Gly Leu Gln Gln Gly Ser Leu Glu Glu Asn Ile Asp Val Glu His Ile Ala Ser Met Ser Leu Phe Ser Asp Phe Phe Ser Tyr Val Ser Ser Thr Val Gly Ser Trp Ser Val His Ser Ile Gln Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala

Val Gln Cys Ile Ser Ala Glu Val Gln Arg Asn Ser Ser Thr Gln Gly

Thr Ala Glu Ala Leu Ala Glu Ser Val Val Lys Pro Thr Arg Arg Arg 85 90 95

Ser Ser Gln Trp Lys Lys Ser Thr His Pro Leu Ser Glu Val Ala Val 100 105 110

His Asn Lys Pro Ser Asp Cys Trp Ile Val Val Lys Asn Lys Val Tyr 115 120 125

Asp Val Ser Asn Phe Ala Asp Glu His Pro Gly Gly Ser Val Ile Ser 130 135 140

Thr Tyr Phe Gly Arg Asp Gly Thr Asp Val Phe Ser Ser Phe His Ala 145 150 150 160

Ala Ser Thr Trp Lys Ile Leu Gln Asp Phe Tyr Ile Gly Asp Val Glu 165 170 175

Arg Val Glu Pro Thr Pro Glu Leu Leu Lys Asp Phe Arg Glu Met Arg 180 185 190

Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser Ser Lys Leu Tyr Tyr 195 200 205

Val Met Lys Leu Leu Thr Asn Val Ala Ile Phe Ala Ala Ser Ile Ala 210 215 220

Ile Ile Cys Trp Ser Lys Thr Ile Ser Ala Val Leu Ala Ser Ala Cys 225 230 235

Met Met Ala Leu Cys Phe Gln Gln Cys Gly Trp Leu Ser His Asp Phe 245 250 255

Leu His Asn Gln Val Phe Glu Thr Arg Trp Leu Asn Glu Val Val Gly 260 265 270

Tyr Val Ile Gly Asn Ala Val Leu Gly Phe Ser Thr Gly Trp Trp Lys 275 280 285

Glu Lys His Asn Leu His His Ala Ala Pro Asn Glu Cys Asp Gln Thr 290 295 300

Tyr Gln Pro Ile Asp Glu Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp 305 310 315 320

Ser Lys Asp Ile Leu Ala Thr Val Glu Asn Lys Thr Phe Leu Arg Ile 325 330 335

Leu Gln Tyr Gln His Leu Phe Phe Met Gly Leu Leu Phe Phe Ala Arg 340 345 350

Gly Ser Trp Leu Phe Trp Ser Trp Arg Tyr Thr Ser Thr Ala Val Leu 355 360 365

Ser Pro Val Asp Arg Leu Leu Glu Lys Gly Thr Val Leu Phe His Tyr 370 380

Phe Trp Phe Val Gly Thr Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro 385 390 395

Leu Val Trp Met Ala Val Thr Glu Leu Met Ser Gly Met Leu Leu Gly 405 410 415

Phe Val Phe Val Leu Ser His Asn Gly Met Glu Val Tyr Asn Ser Ser 420 425 430

Lys Glu Phe Val Ser Ala Gln Ile Val Ser Thr Arg Asp Ile Lys Gly 435 440 445

Asn Ile Phe Asn Asp Trp Phe Thr Gly Gly Leu Asn Arg Gln Ile Glu 450 455 460

His His Leu Phe Pro Thr Met Pro Arg His Asn Leu Asn Lys Ile Ala 465 470 475 480

Pro Arg Val Glu Val Phe Cys Lys Lys His Gly Leu Val Tyr Glu Asp 485 490 495

Val Ser Ile Ala Thr Gly Thr Cys Lys Val Leu Lys Ala Leu Lys Glu 500 505 510

Val Ala Glu Ala Ala Glu Gln His Ala Thr Thr Ser 515 520 525

<210> 25

<211> 1332

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> CDS

<222> (1)..(1332)

<223> Delta-6-Desaturase

<400> 25 atg gtc gtc gac aag aat gcc tcc ggg ctt cga atg aag gtc gat ggc 48

							•		48							
Met 1	Val	Val	Asp	Lys 5	Asn	Ala	Ser	Gly	Leu 10	Arg	Met	Lys	Val	Asp 15	Gly	
aaa Lys	tgg Trp	ctc Leu	tac Tyr 20	ctt Leu	agc Ser	gag Glu	gaa Glu	ttg Leu 25	gtg Val	aag Lys	aaa Lys	cat His	cca Pro 30	gga Gly	gga Gly	96
gct Ala	gtt Val	att Ile 35	gaa Glu	caa Gln	tat Tyr	aga Arg	aat Asn 40	tcg Ser	gat Asp	gct Ala	act Thr	cat His 45	att Ile	ttc Phe	cac His	144
gct Ala	ttc Phe 50	cac His	gaa Glu	gga Gly	tct Ser	tct Ser 55	cag Gln	gct Ala	tat Tyr	aag Lys	caa Gln 60	ctt Leu	gac Asp	ctt Leu	ctg Leu	192
aaa Lys 65	aag Lys	cac His	gga Gly	gag Glu	cac His 70	gat Asp	gaa Glu	ttc Phe	ctt Leu	gag Glu 75	aaa Lys	caa Gln	ttg Leu	gaa Glu	aag Lys 80	240
aga Arg	ctt Leu	gac Asp	aaa Lys	gtt Val 85	gat Asp	atc Ile	aat Asn	gta Val	tca Ser 90	gca Ala	tat Tyr	gat Asp	gtc Val	agt Ser 95	gtt Val	288
gca Ala	caa Gln	gaa Glu	aag Lys 100	aaa Lys	atg Met	gtt Val	gaa Glu	tca Ser 105	ttc Phe	gaa Glu	aaa Lys	cta Leu	cga Arg 110	cag Gln	aag Lys	336
ctt Leu	cat His	gat Asp 115	gat Asp	gga Gly	tta Leu	atg Met	aaa Lys 120	gca Ala	aat Asn	gaa Glu	aca Thr	tat Tyr 125	ttc Phe	ctg Leu	ttt Phe	384
aaa Lys	gcg Ala 130	att Ile	tca Ser	aca Thr	ctt Leu	tca Ser 135	att Ile	atg Met	gca Ala	ttt Phe	gca Ala 140	ttt Phe	tat Tyr	ctt Leu	cag Gln	432
tat Tyr 145	ctt Leu	gga Gly	tgg Trp	tat Tyr	att Ile 150	act Thr	tct Ser	gca Ala	tgt Cys	tta Leu 155	tta Leu	gca Ala	ctt Leu	gca Ala	tgg Trp 160	· 480
caa Gln	caa Gln	ttc Phe	gga Gly	tgg Trp 165	tta Leu	aca Thr	cat His	gag Glu	ttc Phe 170	tgc Cys	cat His	caa Gln	cag Gln	cca Pro 175	aca Thr	528
				ttg Leu												576
tta Leu	caa Gln	gga Gly 195	ttt Phe	tca Ser	aga Arg	gat Asp	tgg Trp 200	tgg Trp	aag Lys	gac Asp	aag Lys	cat His 205	aac Asn	act Thr	cat His	624
				aat Asn												672
				ttt Phe												720
ttt Phe	gaa Glu	aaa Lys	gca Ala	att Ile 245	ctc Leu	aag Lys	att Ile	gta Val	cca Pro 250	tat Tyr	caa Gln	cat His	ctc Leu	tat Tyr 255	ttc Phe	768
acc Thr	gca Ala	atg Met	ctt Leu 260	cca Pro	atg Met	ctc Leu	cgt Arg	ttc Phe 265	tca Ser	tgg Trp	act Thr	ggt Gly	cag Gln 270	tca Ser	gtt Val	816
caa	tgg	gta	ttc	aaa	gag	aat	caa	atg	gag	tac	aag	gtc	tat	caa	aga	864

									49							
Gl	n Trp	Val 275	Phe	Lys	Glu	Asn	Gln 280	Met	Glu	Tyr	Lys	Val 285	Tyr	Gln	Arg	
aa As	t gca n Ala 290	. Phe	tgg Trp	gag Glu	caa Gln	gca Ala 295	aca Thr	att Ile	gtt Val	gga Gly	cat His 300	tgg Trp	gct Ala	tgg Trp	gta Val	912
	c tat e Tyr 5															960
tt Ph	c att	att Ile	tca Ser	caa Gln 325	atg Met	gga Gly	gga Gly	Gly ggc	ctt Leu 330	ttg Leu	att Ile	gct Ala	cac His	gta Val 335	gtc Val	1008
	t tto r Phe															1056
tt Le	a aac u Asn	aac Asn 355	ttc Phe	gcc Ala	gct Ala	ctt Leu	caa Gln 360	att Ile	ttg Leu	acc Thr	aca Thr	cgc Arg 365	aac Asn	atg Met	act Thr	1104
Pr	a tct o Ser 370	Pro	ttc Phe	att Ile	gat Asp	tgg Trp 375	ctt Leu	tgg Trp	ggt Gly	gga Gly	ctc Leu 380	aat Asn	tat Tyr	cag Gln	atc Ile	 1152
ga G1 38	g cac u His 5	cac His	ttg Leu	ttc Phe	cca Pro 390	aca Thr	atg Met	cca Pro	cgt Arg	tgc Cys 395	aat Asn	ctg Leu	aat Asn	gct Ala	tgc Cys 400	1200
gt Va	g aaa 1 Lys	tat Tyr	gtg Val	aaa Lys 405	gaa Glu	tgg Trp	tgc Cys	aaa Lys	gag Glu 410	aat Asn	aat Asn	ctt Leu	cct Pro	tac Tyr 415	ctc Leu	1248
'gt Va	c gat l Asp	gac Asp	tac Tyr 420	ttt Phe	gac Asp	gga Gly	tat Tyr	gca Ala 425	atg Met	aat Asn	ttg Leu	caa Gln	caa Gln 430	ttg Leu	aaa Lys	1296
aa As	t atg	get Ala 435	gag Glu	cac His	att Ile	caa Gln	gct Ala 440	aaa Lys	gct Ala	gcc Ala	taa					1332
<2	10>	26														•
<2	11>	443														
<2	12>	PRT														
<2	:13>	Caen	orhal	bdit:	is e	legaı	ns									
<4	<00>	26														
M∈ 1	et Val	. Val	Àsp	Lys 5	Asn	Ala	Ser	Gly	Leu 10	Arg	Met	Lys	Val	Asp 15	Gly	
_	_	_	_	_	_	~-7	~ 7	_		-	-		D	~1	~1	

Lys Trp Leu Tyr Leu Ser Glu Glu Leu Val Lys Lys His Pro Gly Gly 20 25 30

Ala Val Ile Glu Gln Tyr Arg Asn Ser Asp Ala Thr His Ile Phe His 35 40 45

Ala Phe His Glu Gly Ser Ser Gln Ala Tyr Lys Gln Leu Asp Leu Leu 50 60

Lys Lys His Gly Glu His Asp Glu Phe Leu Glu Lys Gln Leu Glu Lys 65 70 75 80

Arg Leu Asp Lys Val Asp Ile Asn Val Ser Ala Tyr Asp Val Ser Val 85 90 95

Ala Gln Glu Lys Lys Met Val Glu Ser Phe Glu Lys Leu Arg Gln Lys 100 105 110

Leu His Asp Asp Gly Leu Met Lys Ala Asn Glu Thr Tyr Phe Leu Phe 115 120 125

Tyr Leu Gly Trp Tyr Ile Thr Ser Ala Cys Leu Leu Ala Leu Ala Trp 145 150 155

Gln Gln Phe Gly Trp Leu Thr His Glu Phe Cys His Gln Gln Pro Thr 165 170 175

Lys Asn Arg Pro Leu Asn Asp Thr Ile Ser Leu Phe Phe Gly Asn Phe 180 185 190

Leu Gln Gly Phe Ser Arg Asp Trp Trp Lys Asp Lys His Asn Thr His 195 200 205

His Ala Ala Thr Asn Val Ile Asp His Asp Gly Asp Ile Asp Leu Ala 210 215 220

Pro Leu Phe Ala Phe Ile Pro Gly Asp Leu Cys Lys Tyr Lys Ala Ser 225 230 235 240

Phe Glu Lys Ala Ile Leu Lys Ile Val Pro Tyr Gln His Leu Tyr Phe . 245 250 255

Thr Ala Met Leu Pro Met Leu Arg Phe Ser Trp Thr Gly Gln Ser Val

Gln Trp Val Phe Lys Glu Asn Gln Met Glu Tyr Lys Val Tyr Gln Arg 275 280 285

Asn Ala Phe Trp Glu Gln Ala Thr Ile Val Gly His Trp Ala Trp Val 290 . 295 300

Phe Tyr Gln Leu Phe Leu Leu Pro Thr Trp Pro Leu Arg Val Ala Tyr 305 310 315 320

51

Phe Ile Ile Ser Gln Met Gly Gly Gly Leu Leu Ile Ala His Val Val 325 330 335

Thr Phe Asn His Asn Ser Val Asp Lys Tyr Pro Ala Asn Ser Arg Ile 340 345

Leu Asn Asn Phe Ala Ala Leu Gln Ile Leu Thr Thr Arg Asn Met Thr 355 360 365

Pro Ser Pro Phe Ile Asp Trp Leu Trp Gly Gly Leu Asn Tyr Gln Ile 370 375 380

Glu His His Leu Phe Pro Thr Met Pro Arg Cys Asn Leu Asn Ala Cys 385 390 395

Val Lys Tyr Val Lys Glu Trp Cys Lys Glu Asn Asn Leu Pro Tyr Leu 405 410 415

Val Asp Asp Tyr Phe Asp Gly Tyr Ala Met Asn Leu Gln Gln Leu Lys 420 425 430

Asn Met Ala Glu His Ile Gln Ala Lys Ala Ala 435 440

<210> 27

<211> 873

<212> DNA

<213> Physcomitrella patens

<220>

<221> CDS

<222> (1)..(873)

<223> Delta-6-Elongase

	tgg Trp 65	ata Ile	aag Lys	gcc Ala	agg Arg	gat Asp 70	ctg Leu	aaa Lys	ccg Pro	cgc Arg	gcc Ala 75	tcg Ser	gag Glu	cca Pro	ttt Phe	ttg Leu 80	240
	ctc Leu	caa Gln	gct Ala	ttg Leu	gtg Val 85	ctt Leu	gtg Val	cac His	aac Asn	ctg Leu 90	ttc Phe	tgt Cys	ttt Phe	gcg Ala	ctc Leu 95	agt Ser	288
•	ctg Leu	tat Tyr	atg Met	tgc Cys 100	gtg Val	ggc ggc	atc Ile	gct Ala	tat Tyr 105	cag Gln	gct Ala	att Ile	acc Thr	tgg Trp 110	cgg Arg	tac Tyr	336
	tct Ser	ctc Leu	tgg Trp 115	ggc Gly	aat Asn	gca Ala	tac Tyr	aat Asn 120	cct Pro	aaa Lys	cat His	aaa Lys	gag Glu 125	atg Met	gcg Ala	att Ile	384
	ctg Leu	gta Val 130	tac Tyr	ttg Leu	ttc Phe	tac Tyr	atg Met 135	tct Ser	aag Lys	tac Tyr	gtg Val	gaa Glu 140	ttc Phe	atg Met	gat Asp	acc Thr	432
	gtt Val 145	atc Ile	atg Met	ata Ile	ctg Leu	aag Lys 150	cgc Arg	agc Ser	acc Thr	agg Arg	caa Gln 155	ata Ile	agc Ser	ttc Phe	ctc Leu	cac His 160	480
	gtt Val	tat Tyr	cat His	cat His	tct Ser 165	tca Ser	att Ile	tcc Ser	ctc Leu	att Ile 170	tgg Trp	tgg Trp	gct Ala	att Ile	gct Ala 175	cat His	528
	His	Ala	Pro	Gly 180	Gly	gaa Glu	Ala	Tyr	Trp 185	Ser	Ala	Ala	Leu	190	Ser	GTA	576
	Val	His	Val 195	Leu	Met	tat Tyr	Ala	Tyr 200	Tyr	Phe	Leu	Ala	Ala 205	Cys	Leu	Arg	624
	Ser	Ser 210	Pro	Lys	Leu	aaa Lys	Asn 215	Lys	Tyr	Leu	Phe	Trp 220	Gly	Arg	Tyr	Leu	672
	Thr 225	Gln	Phe	Gln	Met	ttc Phe 230	Gln	Phe	Met	Leu	Asn 235	Leu	Val	Gln	Ala	Tyr 240	720
	Tyr	Asp	Met	Lys	Thr 245	aat Asn	Ala	Pro	Tyr	Pro 250	Gln	Trp	Leu	Ile	Lys 255	Ile	768
	Leu	Phe	Tyr	Tyr 260	Met	atc Ile	Ser	Leu	Leu 265	Phe	Leu	Phe	Gly	Asn 270	Phe	Tyr	816
	gta Val	caa Gln	aaa Lys 275	Tyr	atc Ile	aaa Lys	ccc Pro	tct Ser 280	gac Asp	gga Gly	aag Lys	caa Gln	aag Lys 285	gga Gly	gct Ala	aaa Lys	864
		gag Glu 290	tga														873

<210> ⋅28

<211> 290

<212> PRT

<213> Physcomitrella patens

<400> 28

Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser 1 5 10 15

Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp 20 25 30

Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile 35 40 45

Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu 50 60

Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu 65 70 75 80

Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser 85 90 95

Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr 100 105 110

Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 120 125

Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140

Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 160

Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 170 175

His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190

Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 _ 200 205

Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 215 220

Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240

Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 250 255

438

Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 265 Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 280 Thr Glu 290 <210> 29 <211> 1049 <212> DNA Thraustochytrium <213> <220> <221> CDS <222> (43)..(858) <223> Delta-6-Elongase <400> 29 gaatteggea egagagegeg eggageggag aceteggeeg eg atg atg gag eeg 54 Met Met Glu Pro ctc gac agg tac agg gcg ctg gcg gag ctc gcc gcg agg tac gcc agc 102 Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala Arg Tyr Ala Ser tcg gcg gcc ttc aag tgg caa gtc acg tac gac gcc aag gac agc ttc 150 Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala Lys Asp Ser Phe 3.0 25 198 qtc qqq ccc ctq qga atc cgg gag ccg ctc ggg ctc ctg gtg ggc tcc Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu Leu Val Gly Ser 246 gtg gtc ctc tac ctg agc ctg ctg gcc gtg gtc tac gcg ctg cgg aac Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr Ala Leu Arg Asn tac ctt ggc ggc ctc atg gcg ctc cgc agc gtg cat aac ctc ggg ctc Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His Asn Leu Gly Leu 294 tgc ctc ttc tcg ggc gcc gtg tgg atc tac acg agc tac ctc atg atc 342 Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser Tyr Leu Met Ile

95

cag gat ggg cac ttt cgc agc ctc gag gcg gca acg tgc gag ccg ctc Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr Cys Glu Pro Leu

aaq cat ecq cac tte cag etc atc aqe ttg etc ttt geg etg tec aag

										55							
	Lys	His	Pro	His 120	Phe	Gln	Leu	Ile	Ser 125	Leu	Leu	Phe	Ala	Leu 130	Ser	Lys	
	atc Ile	tgg Trp	gag Glu 135	tgg Trp	ttc Phe	gac Asp	acg Thr	gtg Val 140	ctc Leu	ctc Leu	atc Ile	gtc Val	aag Lys 145	ggc Gly	aac Asn	aag Lys	486
	ctc Leu	cgc Arg 150	ttc Phe	ctg Leu	cac His	ġtc Val	ttg Leu 155	cac His	cac His	gcc Ala	acg Thr	acc Thr 160	ttt Phe	tgg Trp	ctc Leu	tac Tyr	534
	gcc Ala 165	atc Ile	gac Asp	cac His	atc Ile	ttt Phe 170	ctc Leu	tcg Ser	tcc Ser	atc Ile	aag Lys 175	tac Tyr	ggc Gly	gtc Val	gcg Ala	gtc Val 180	582
	aat Asn	gct Ala	ttc Phe	atc Ile	cac His 185	acc Thr	gtc Val	atg Met	tac Tyr	gcg Ala 190	cac His	tac Tyr	ttc Phe	cgc Arg	cca Pro 195	ttc Phe	630
	ccg Pro	aag Lys	ggc Gly	ttg Leu 200	cgc Arg	ccg Pro	ctt Leu	att Ile	acg Thr 205	cag Gln	ttg Leu	cag Gln	atc Ile	gtc Val 210	cag Gln	ttc Phe	678
	att Ile	ttc Phe	agc Ser 215	atc Ile	ggc Gly	atc Ile	cat His	acc Thr 220	Ala	att Ile	tac Tyr	tgg Trp	cac His 225	tac Tyr	gac Asp	tgc Cys	726
•	gag Glu	ccg Pro 230	ctc Leu	gtg Val	cat His	acc Thr	cac His 235	ttt Phe	tgg Trp	gaa Glu	tac Tyr	gtc Val 240	acg Thr	ccc Pro	tac Tyr	ctt Leu	774
	ttc Phe 245	gtc Val	gtg Val	ccc Pro	ttc Phe	ctc Leu 250	atc Ile	ctc Leu	ttt Phe	ttc Phe	aat Asn 255	ttt Phe	tac Tyr	ctg Leu	cag Gln	cag Gln 260	822
	tac Tyr	gtc Val	ctc Leu	gcg Ala	ccc Pro 265	gca Ala	aaa Lys	acc Thr	aag Lys	aag Lys 270	gca Ala	tag	cca	cgta	aca		868
	gtag	gacca	agc a	agcg	ccga	gg a	cgcgt	tgaa	g cgt	ttat	cgcg	aag	cacg	aaa	taaa	gaagat	928
	cat	ttgai	ttc a	aacga	aggc	ta c	ttgc	ggcc	a cga	agaa	aaaa	aaa	aaaa	aaa a	aaaa	aaaaaa	988
	aaa	aaaa	aaa a	aaaa	aaaa	aa a	aaaa	aaaa	a aa	aaaa	aaaa	aaa	aaaa	aaa a	aaaa	aaaaaa	1048
	c.																1049

<210> 30

<211> 271

<212> PRT

<213> Thraustochytrium

<400> 30

Met Met Glu Pro Leu Asp Arg Tyr Arg Ala Leu Ala Glu Leu Ala Ala 1 5 10 15

Arg Tyr Ala Ser Ser Ala Ala Phe Lys Trp Gln Val Thr Tyr Asp Ala 20 25 30

Lys Asp Ser Phe Val Gly Pro Leu Gly Ile Arg Glu Pro Leu Gly Leu 35 40 45

Leu Val Gly Ser Val Val Leu Tyr Leu Ser Leu Leu Ala Val Val Tyr 50 60

Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His 65 70 75 80

Asn Leu Gly Leu Cys Leu Phe Ser Gly Ala Val Trp Ile Tyr Thr Ser 85 90 95

Tyr Leu Met Ile Gln Asp Gly His Phe Arg Ser Leu Glu Ala Ala Thr 100 105 110

Cys Glu Pro Leu Lys His Pro His Phe Gln Leu Ile Ser Leu Leu Phe 115 120 125

Ala Leu Ser Lys Ile Trp Glu Trp Phe Asp Thr Val Leu Leu Ile Val 130 140

Lys Gly Asn Lys Leu Arg Phe Leu His Val Leu His His Ala Thr Thr 145 150 155 160

Phe Trp Leu Tyr Ala Ile Asp His Ile Phe Leu Ser Ser Ile Lys Tyr 165 170 175

Gly Val Ala Val Asn Ala Phe Ile His Thr Val Met Tyr Ala His Tyr 180 185 190

Phe Arg Pro Phe Pro Lys Gly Leu Arg Pro Leu Ile Thr Gln Leu Gln 195 200 205

Ile Val Gln Phe Ile Phe Ser Ile Gly Ile His Thr Ala Ile Tyr Trp 210 · 215 220

His Tyr Asp Cys Glu Pro Leu Val His Thr His Phe Trp Glu Tyr Val 225 230 235 240

Thr Pro Tyr Leu Phe Val Val Pro Phe Leu Ile Leu Phe Phe Asn Phe 245 250 255

Tyr Leu Gln Gln Tyr Val Leu Ala Pro Ala Lys Thr Lys Lys Ala 260 265 270

<210> 31

<211> 837

<212> DNA

<213> Phytophthora infestans

<220>

<221> CDS

<222> (1)..(837)

<223> Delta-6-Elongase

<400 atg Met 1	tcq	act Thr	gag Glu	cta Leu 5	ctg Leu	cag Gln	agc Ser	tac Tyr	tac Tyr 10	gcg Ala	tgg Trp	gcc Ala	aac Asn	gcc Ala 15	acg Thr	48
gag Glu	gcc Ala	aag Lys	ctg Leu 20	ctg Leu	gac Asp	tgg Trp	Val	gac Asp 25	cct Pro	gag Glu	ggc Gly	ggc Gly	tgg Trp 30	aag Lys	gtg Val	96
cat His	cct Pro	atg Met 35	gca Ala	gac Asp	tac Tyr	ccc Pro	cta Leu 40	gcc Ala	aac Asn	ttc Phe	tcc Ser	agc Ser 45	gtc Val	tac Tyr	gcc Ala	144
atc Ile	tgc Cys 50	gtc Val	gga Gly	tac Tyr	ttg Leu	ctc Leu 55	ttc Phe	gta Val	atc Ile	ttc Phe	ggc Gly 60	acg Thr	gcc Ala	ctg Leu	atg Met	192
aaa Lys 65	atg Met	gga Gly	gtc Val	ccc Pro	gcc Ala 70	atc Ile	aag Lys	acc Thr	agt Ser	cca Pro 75	tta Leu	cag Gln	ttt Phe	gtg Val	tac Tyr 80	240
aac Asn	ccc Pro	atc Ile	caa Gln	gtc Val 85	att Ile	gcc Ala	tgc Cys	tct Ser	tat Tyr 90	atg Met	tgc Cys	gtg Val	gag Glu	gcc Ala 95	gcc Ala	. 288
atc Ile	cag Gln	gcc Ala	tac Tyr 100	cgc Arg	aac Asn	ggc Gly	tac Tyr	acc Thr 105	gcc Ala	gcc Ala	ccg Pro	tgc Cys	aac Asn 110	gcc Ala	ttt Phe	336
aag Lys	tcc Ser	gac Asp 115	gac Asp	ccc Pro	gtc Val	atg Met	ggc Gly 120	aac Asn	gtt Val	ctg Leu	tac Tyr	ctc Leu 125	ttc Phe	tat Tyr	ctc Leu	384
tcc Ser	aag Lys 130	atg Met	ctc Leu	gac Asp	ctg Leu	tgc Cys 135	gac Asp	aca Thr	gtc Val	ttc Phe	att Ile 140	atc Ile	cta Leu	gga Gly	aag Lys	432
aag Lys 145	tgg Trp	aaa Lys	cag Gln	ctt Leu	tcc Ser 150	atc Ile	ttg Leu	cac His	gtg Val	tac Tyr 155	cac His	cac His	ctt Leu	acc Thr	gtg Val 160	480
ctt Leu	ttc Phe	gtc Val	tac Tyr	tat Tyr 165	gtg Val	acg Thr	ttc Phe	cgc Arg	gcc Ala 170	gct Ala	cag Gln	gac Asp	Gly	gac Asp 175	tca Ser	528
					ctc Leu											576
tac Tyr	tac Tyr	ttc Phe 195	gtc Val	agc Ser	gcc Ala	cac His	acg Thr 200	cgc Arg	aac Asn	att Ile	tgg Trp	tgg Trp 205	aag Lys	aag Lys	tac Tyr	624
ctc Leu	acg Thr 210	cgc Arg	att Ile	cag Gln	ctt Leu	atc Ile 215	cag Gln	ttc Phe	gtg Val	acc Thr	atg Met 220	aac Asn	gtg Val	cag Gln	ggc Gly	672

tac Tyr 225	Leu	acc Thr	tac Tyr	tct Ser	cga Arg 230	cag Gln	tgc Cys	cca Pro	ggc	atg Met 235	cct Pro	cct Pro	aag Lys	gtg Val	ccg Pro 240		720
cto	atg Met	tac Tyr	ctt Leu	gtg Val 245	tac Tyr	gtg Val	cag Gln	tca Ser	ctc Leu 250	ttc Phe	tgg Trp	ctc Leu	ttc Phe	atg Met 255	aat Asn		768
ttc Phe	tac Tyr	att Ile	cgc Arg 260	gcg Ala	tac Tyr	gtg Val	ttc Phe	ggc Gly 265	ccc Pro	aag Lys	aaa Lys	ccg Pro	gcc Ala 270	gtg Val	gag Glu		816
		aag Lys 275				taa											837
<21	0.	32														•	
<21		278															
	L2> ·		. 1 1														
<21	L3>	Phyt	opnt	nora	ini	estai	ıs										
													•				
	00>		,														
Met 1	: Sei	Thr	Glu	Leu 5	Leu	Gln	Ser	Tyr	Tyr 10	Ala	Trp	Ala	Asn	Ala 15	Thr		
Glı	ı Ala	Lys	Leu 20	Leu	Asp	Trp	Val	Asp 25	Pro	Glu	Gly	Gly	Trp	Lys	Val		
His	s Pro	Met 35	Ala	Asp	Tyr	Pro	Leu 40	Ala	Asn	Phe	Ser	Ser 45	Val	Tyr	Ala		
Ιlє	e Cys 50	. Val	Gly	Tyr	Leu	Leu 55	Phe	Val	Ile	Phe	Gly 60	Thr	Ala	Leu	Met		
Lу: 65	s Met	: Gly	Val	Pro	Ala 70	Ile	Lys	Thr	Ser	Pro 75	Leu	Gln	Phe	Val	Tyr 80		
Ası	n Pro	o Ile	Gln	Val 85	Ile	Ala	Cys	Ser	Туг 90	Met	Cys	Val	Glu	Ala 95	Ala		
Ιl	e Gli	ı Ala	Tyr 100		Asn	Gly	Tyr	Thr 105	Ala	Ala	Pro	Cys	Asn 110	Ala	Phe		
Lу	s Sei	Asp 115		Pro	Val	Met	Gly 120		Val	Leu	Tyr	Leu 125	Phe	Tyr	Leu		
Se:	r Ly:	Met	Leu	Asp	Leu	Cys 135	Asp	Thr	Val	Phe	Ile 140	Ile	Leu	Gly	Lys		
Ьу: 14!) Lys	Gln	Leu	Ser 150	Ile	Leu	His	Val	Tyr 155		His	Leu	Thr	Val 160		ī

Leu Phe Val Tyr Tyr Val Thr Phe Arg Ala Ala Gln Asp Gly Asp Ser 165 170 175

Tyr Ala Thr Ile Val Leu Asn Gly Phe Val His Thr Ile Met Tyr Thr 180 185 190

Tyr Tyr Phe Val Ser Ala His Thr Arg Asn Ile Trp Trp Lys Lys Tyr 195 200 205

Leu Thr Arg Ile Gln Leu Ile Gln Phe Val Thr Met Asn Val Gln Gly 210 220

Tyr Leu Thr Tyr Ser Arg Gln Cys Pro Gly Met Pro Pro Lys Val Pro 225 230 235 240

Leu Met Tyr Leu Val Tyr Val Gln Ser Leu Phe Trp Leu Phe Met Asn 245 250 255

Phe Tyr Ile Arg Ala Tyr Val Phe Gly Pro Lys Lys Pro Ala Val Glu 260 265 270

Glu Ser Lys Lys Leu 275

<210> 33

<211> 954

<212> DNA

<213> Mortierella alpina

<220>

<221> CDS

<222> (1)..(954)

<223> Delta-6-Elongase

ctc tcg acc cag aga gac gcc atg tgg act atc act tac ttc gtc 192

										60						•	
	Leu	Ser 50	Thr	Gln	Arg	Glu	Val 55	Ala	Met	Trp	Thr	Ile 60	Thr	Tyr	Phe	Val	
	gtc Val 65	atc Ile	ttt Phe	ggt Gly	ggt Gly	cgc Arg 70	cag Gln	atc Ile	atg Met	aag Lys	agc Ser 75	cag Gln	gac Asp	gcc Ala	ttc Phe	aag Lys 80	240
•	ctc Leu	aag Lys	ccc Pro	ctc Leu	ttc Phe 85	atc Ile	ctc Leu	cac His	aac Asn	ttc Phe 90	ctc Leu	ctg Leu	acg Thr	atc Ile	gcg Ala 95	tcc Ser	288
	gga Gly	tcg Ser	ctg Leu	ttg Leu 100	ctc Leu	ctg Leu	ttc Phe	atc Ile	gag Glu 105	aac Asn	ctg Leu	gtc Val	ccc Pro	atc Ile 110	ctc Leu	gcc Ala	336
	aga Arg	aac Asn	gga Gly 115	ctt Leu	ttc Phe	tac Tyr	gcc Ala	atc Ile 120	tgc Cys	gac Asp	gac Asp	ggt Gly	gqc Ala 125	tgg Trp	acc Thr	cag Gln	384
	cgc Arg	ctc Leu 130	gag Glu	ctc Leu	ctc Leu	tac Tyr	tac Tyr 135	ctc Leu	aac Asņ	tac Tyr	ctg Leu	gtc Val 140	aag Lys	tac Tyr	tgg Trp	gag Glu	432
	ttg Leu 145	gcc Ala	gac Asp	acc Thr	gtc Val	ttt Phe 150	ttg Leu	gtc Val	ctc Leu	aag Lys	aag Lys 155	aag Lys	cct Pro	ctt Leu	gag Glu	ttc Phe 160	480
	ctg Leu	cac His	tac Tyr	ttc Phe	cac His 165	cac His	tcg Ser	atg Met	acc Thr	atg Met 170	gtt Val	ctc Leu	tgc Cys	ttt Phe	gtc Val 175	cag Gln	528
•						tca Ser											576
	act Thr	gtc Val	cac His 195	gtc Val	ttc Phe	atg Met	tac Tyr	tac Tyr 200	tac Tyr	tac Tyr	atg Met	cgc Arg	tac Ser 205	gct Ala	gcc Ala	ggt Gly	624
	gtt Val	cgc Arg 210	atc Ile	tgg Trp	tgg Trp	aag Lys	cag Gln 215	tac Tyr	ttg Leu	acc Thr	act Thr	ctc Leu 220	cag Gln	atc Ile	gtc Val	cag Gln	672
	ttc Phe 225	gtt Val	ctt Leu	gac Asp	ctc Leu	gga Gly 230	ttc Phe	atc Ile	tac Tyr	ttc Phe	tgc Cys 235	gcc Ala	tac Tyr	acc Thr	tac Tyr	ttc Phe 240	720
						ccc Pro											768
	acc Thr	gag Glụ	ggt Gly	gct Ala 260	gct Ala	ctc Leu	ttt Phe	ggc	tgc Cys 265	gga Gly	ctc Leu	ctc Leu	tcc Ser	agc Ser 270	tat Tyr	ctc Leu	816
						ttc Phe											864
						gga Gly											912
						aag Lys 310								taa	٠		954

<210> 34

<211> 317

<212> PRT

<213> Mortierella alpina

<400> 34

Met Ala Ala Ile Leu Asp Lys Val Asn Phe Gly Ile Asp Gln Pro 1 5 10

Phe Gly Ile Lys Leu Asp Thr Tyr Phe Ala Gln Ala Tyr Glu Leu Val 20 25 30

Thr Gly Lys Ser Ile Asp Ser Phe Val Phe Gln Glu Gly Val Thr Pro 35 40 45

Leu Ser Thr Gln Arg Glu Val Ala Met Trp Thr Ile Thr Tyr Phe Val 50 55 60

Val Ile Phe Gly Gly Arg Gln Ile Met Lys Ser Gln Asp Ala Phe Lys 65 70 75 80

Leu Lys Pro Leu Phe Ile Leu His Asn Phe Leu Leu Thr Ile Ala Ser 85 90 95

Gly Ser Leu Leu Leu Phe Ile Glu Asn Leu Val Pro Ile Leu Ala 100 105 110

Arg Asn Gly Leu Phe Tyr Ala Ile Cys Asp Asp Gly Ala Trp Thr Gln 115 120 125

Arg Leu Glu Leu Leu Tyr Tyr Leu Asn Tyr Leu Val Lys Tyr Trp Glu 130 135 140

Leu Ala Asp Thr Val Phe Leu Val Leu Lys Lys Lys Pro Leu Glu Phe 145 150 155

Leu His Tyr Phe His His Ser Met Thr Met Val Leu Cys Phe Val Gln 165 170 175

Leu Gly Gly Tyr Thr Ser Val Ser Trp Val Pro Ile Thr Leu Asn Leu 180 185 190

Thr Val His Val Phe Met Tyr Tyr Tyr Tyr Met Arg Ser Ala Ala Gly
195 . 200 205

Val Arg Ile Trp Trp Lys Gln Tyr Leu Thr Thr Leu Gln Ile Val Gln 210 220

Phe Val Leu Asp Leu Gly Phe Ile Tyr Phe Cys Ala Tyr Thr Tyr 225 230 235	Phe 240
Ala Phe Thr Tyr Phe Pro Trp Ala Pro Asn Val Gly Lys Cys Ala 245 250 255	Gly
Thr Glu Gly Ala Ala Leu Phe Gly Cys Gly Leu Leu Ser Ser Tyr 260 265 270	Leu
Leu Leu Phe Ile Asn Phe Tyr Arg Ile Thr Tyr Asn Ala Lys Ala 275 280 285	Lys
Ala Ala Lys Glu Arg Gly Ser Asn Phe Thr Pro Lys Thr Val Lys 290 295 300	Ser
Gly Gly Ser Pro Lys Lys Pro Ser Lys Ser Lys His Ile 305 310 315	
<210> 35	
<211> 957	•
<212> DNA	
<213> Mortierella alpina	
•	
<220>	
<221> CDS	
<222> (1)(957)	
<223> Delta-6-Elongase	
<pre><400> 35 atg gag tcg att gcg cca ttc ctc cca tca aag atg ccg caa gat Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp 1 5 10 15</pre>	ctg 48 Leu
ttt atg gac ctt gcc acc gct atc ggt gtc cgg gcc gcg ccc tat Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr 20 25 30	gtc 96 Val
gat cct ctc gag gcc gcg ctg gtg gcc cag gcc gag aag tac atc Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile 35 40 45	ccc 144 Pro
acg att gtc cat cac acg cgt ggg ttc ctg gtc gcg gtg gag tcg Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser 50 55 60	cct 192 Pro
ttg gcc cgt gag ctg ccg ttg atg aac ccg ttc cac gtg ctg ttg Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu 65 70 75	atc 240 Ile 80
gtg ctc gct tat ttg gtc acg gtc ttt gtg ggc atg cag atc atg Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met 85 90 95	aag 288 Lys

	aac Asn	ttt Phe	gag Glu	cgg Arg 100	ttc Phe	gag Glu	gtc Val	aag Lys	acg Thr 105	ttt Phe	tcg Ser	ctc Leu	ctg Leu	cac His 110	aac Asn	ttt Phe	336
	tgt Cys	ctg Leu	gtc Val 115	tcg Ser	atc Ile	agc Ser	gcc Ala	tac Tyr 120	atg Met	tgc Cys	ggt Gly	Gly ggg	atc Ile 125	ctg Leu	tac Tyr	gag Glu	384
•									ttt Phe								432
	ttc Phe 145	aag Lys	ggt Gly	ctt Leu	cct Pro	atg Met 150	gcc Ala	aag Lys	atg Met	atc Ile	tgg Trp 155	ctc Leu	ttc Phe	tac Tyr	ttc Phe	tcc Ser 160	480
	aag Lys	atc Ile	atg Met	gag Glu	ttt Phe 165	gtc Val	gac Asp	acc Thr	atg Met	atc Ile 170	atg Met	gtc Val	ctc Leu	aag Lys	aag Lys 175	aac Asn	528
	aac Asn	cgc Arg	cag Gln	atc Ile 180	tcc Ser	ttc Phe	ttg Leu	cac His	gtt Val 185	tac Tyr	cac His	cac His	agc Ser	tcc Ser 190	atc Ile	ttc Phe	576
	acc Thr	atc Ile	tgg Trp 195	tgg Trp	ttg Leu	gtc Val	acc Thr	ttt Phe 200	gtt Val	gca Ala	ccc Pro	aac Asn	ggt Gly 205	gaa Glu	gcc Ala	tac Tyr	624
	ttc Phe	tct Ser 210	gct Ala	gcg Ala	ttg Leu	aac Asn	tcg Ser 215	ttc Phe	atc Ile	cat His	gtg Val	atc Ile 220	atg Met	tac Tyr	ggc Gly	tac Tyr	672
	tac Tyr 225	ttc Phe	ttg Leu	tcg Ser	gcc Ala	ttg Leu 230	ggc Gly	ttc Phe	aag Lys	cag Gln	gtg Val 235	tcg Ser	ttc Phe	atc Ile	aag Lys	ttc Phe 240	720
	tac Tyr	atc Ile	acg Thr	cgc Arg	tcg Ser 245	cag Gln	atg Met	aca Thr	cag Gln	ttc Phe 250	tgc Cys	atg Met	atg Met	tcg Ser	gtc Val 255	cag Gln	768
									aag Lys 265								816
	ccc Pro	ttc Phe	ttc Phe 275	atc Ile	acg Thr	gct Ala	ctg Leu	ctt Leu 280	tgg Trp	ttc Phe	tac Tyr	atg Met	tgg Trp 285	acc Thr	atg Met	ctc Leu	864
									aag Lys								912
•									aag Lys						taa		957

<210> 36

<211> 318

<212> PRT

<213> Mortierella alpina

<400> 36

Met Glu Ser Ile Ala Pro Phe Leu Pro Ser Lys Met Pro Gln Asp Leu 1 5 10 15

Phe Met Asp Leu Ala Thr Ala Ile Gly Val Arg Ala Ala Pro Tyr Val 20 25 30

Asp Pro Leu Glu Ala Ala Leu Val Ala Gln Ala Glu Lys Tyr Ile Pro 35 40 45

Thr Ile Val His His Thr Arg Gly Phe Leu Val Ala Val Glu Ser Pro 50 60

Leu Ala Arg Glu Leu Pro Leu Met Asn Pro Phe His Val Leu Leu Ile 65 70 75 80

Val Leu Ala Tyr Leu Val Thr Val Phe Val Gly Met Gln Ile Met Lys 85 90 95

Asn Phe Glu Arg Phe Glu Val Lys Thr Phe Ser Leu Leu His Asn Phe 100 105 110

Cys Leu Val Ser Ile Ser Ala Tyr Met Cys Gly Gly Ile Leu Tyr Glu 115 120 125

Ala Tyr Gln Ala Asn Tyr Gly Leu Phe Glu Asn Ala Ala Asp His Thr 130 140

Phe Lys Gly Leu Pro Met Ala Lys Met Ile Trp Leu Phe Tyr Phe Ser 145 150 150

Lys Ile Met Glu Phe Val Asp Thr Met Ile Met Val Leu Lys Lys Asn 165 170 175

Asn Arg Gln Ile Ser Phe Leu His Val Tyr His His Ser Ser Ile Phe 180 185 190

Thr Ile Trp Trp Leu Val Thr Phe Val Ala Pro Asn Gly Glu Ala Tyr 195 200 205

Phe Ser Ala Ala Leu Asn Ser Phe Ile His Val Ile Met Tyr Gly Tyr 210 220

Tyr Phe Leu Ser Ala Leu Gly Phe Lys Gln Val Ser Phe Ile Lys Phe 225 230 235 240

Tyr Ile Thr Arg Ser Gln Met Thr Gln Phe Cys Met Met Ser Val Gln 245 250

Ser Ser Trp Asp Met Tyr Ala Met Lys Val Leu Gly Arg Pro Gly Tyr 260 265 270

Pro Phe Phe Ile Thr Ala Leu Leu Trp Phe Tyr Met Trp Thr Met Leu 275 280 285

Gly Leu Phe Tyr Asn Phe Tyr Arg Lys Asn Ala Lys Leu Ala Lys Gln 290 295 300

Ala Lys Ala Asp Ala Ala Lys Glu Lys Ala Arg Lys Leu Gl
n 305 315

<210> 37

<211> 867

<212> DNA

<213> Caenorhabditis elegans

<220>

<221> CDS

<222> (1)..(867)

<223> Delta-6-Elongase

<400)> 3	37															
		cag Gln															48
		cga Arg														•	96
gac Asp	gca Ala	gaa Glu 35	ggt Gly	cgc Arg	aag Lys	ttc Phe	ttt Phe 40	gct Ala	gat Asp	cac His	ttt Phe	gat Asp 45	gtt Val	act Thr	att Ile		. 144
cag Gln	gct Ala 50	tca Ser	atc Ile	ctg Leu	tac Tyr	atg Met 55	gtc Val	gtt Val	gtg Val	ttc Phe	gga Gly 60	aca Thr	aaa Lys	tgg Trp	ttc Phe	٠.	192
atg Met 65	cgt Arg	aat Asn	cgt Arg	caa Gln	cca Pro 70	ttc Phe	caa Gln	ttg Leu	act Thr	att Ile 75	cca Pro	ctc Leu	aac Asn	atc Ile	tgg Trp 80		240
		atc Ile						Ile									288
		ttc Phe															336
		gtg Val 115															384
ctc	ttc	atg	gct	tcc	aaa	ctt	ttc	gaa	ctt	gtt	gac	acc	atc	ttc	ttg		432

									66			•					
Leu	Phe 130	Met	Ala	Ser	Lys	Leu 135	Phe	Glu	Leu	Val	Asp 140	Thr	Ile	Phe	Leu		
gtt Val 145	ctc Leu	cgt Arg	aaa Lys	cgt Arg	cca Pro 150	ctc Leu	atg Met	ttc Phe	ctt Leu	cac His 155	tgg Trp	tat Tyr	cac His	cat His	att Ile 160		480
ctc Leu	acc Thr	atg Met	atc Ile	tac Tyr 165	gcc Ala	tgg Trp	tac Tyr	tct Ser	cat His 170	cca Pro	ttg Leu	acc Thr	cca Pro	gga Gly 175	ttc Phe		528
aac Asn	aga Arg	tac Tyr	gga Gly 180	att Ile	tat Tyr	ctt Leu	aac Asn	ttt Phe 185	gtc Val	gtc Val	cac His	gcc Ala	ttc Phe 190	atg Met	tac Tyr	٠	576
tct Ser	tac Tyr	tac Tyr 195	ttc Phe	ctt Leu	cgc Arg	tcg Ser	atg Met 200	aag Lys	att Ile	cgc Arg	gtg Val	cca Pro 205	gga Gly	ttc Phe	atc Ile		624
gcc Ala	caa Gln 210	gct Ala	atc Ile	aca Thr	tct Ser	ctt Leu 215	caa Gln	atc Ile	gtt Val	caa Gln	ttc Phe 220	atc Ile	atc Ile	tct Ser	tgc Cys		672
gcc Ala 225	gtt Val	ctt Leu	gct Ala	cat His	ctt Leu 230	ggt Gly	tat Tyr	ctc Leu	atg Met	cac His 235	ttc Phe	acc Thr	aat Asn	gcc Ala	aac Asn 240		720
tgt Cys	gat Asp	ttc Phe	gag Glu	cca Pro 245	tca Ser	gta Val	ttc Phe	aag Lys	ctc Leu 250	gca Ala	gtt Val	ttc Phe	atg Met	gac Asp 255	aca Thr		768
aca Thr	tac Tyr	ttg Leu	gct Ala 260	ctt Leu	ttc Phe	gtc Val	aac Asn	ttc Phe 265	ttc Phe	ctc Leu	caa Gln	tca Ser	tat Tyr 270	gtt Val	ctc Leu		816
cgc Arg	gga Gly	gga Gly 275	Lys	gac Asp	aag Lys	tac Tyr	aag Lys 28,0	gca Ala	gtg Val	cca Pro	aag Lys	aag Lys 285	aag Lys	aac Asn	aac Asn		864
taa				-													867
<21	0>	38															
<21	1>	288															
<21	2>	PRT															
<21	3>	Caen	orha	bdit	is e	lega	ns										
<40	0>	38															
Met 1	Ala	. Gln	. His	Pro 5	Leu	Val	Gln	Arg	Leu 10	Leu	Asp	Val	Lys	Phe 15	qeA		
Thr	Lys	Arg	Phe	Val	Ala	Ile	Ala	Thr 25	His	Gly	Pro	Lys	Asn 30	Phe	Pro		

Asp Ala Glu Gly Arg Lys Phe Phe Ala Asp His Phe Asp Val Thr Ile

Gln Ala Ser Ile Leu Tyr Met Val Val Val Phe Gly Thr Lys Trp Phe 50 55 60

Met Arg Asn Arg Gln Pro Phe Gln Leu Thr Ile Pro Leu Asn Ile Trp 65 70 75 80

Asn Phe Ile Leu Ala Ala Phe Ser Ile Ala Gly Ala Val Lys Met Thr 85 90 95

Pro Glu Phe Phe Gly Thr Ile Ala Asn Lys Gly Ile Val Ala Ser Tyr 100 105 110

Cys Lys Val Phe Asp Phe Thr Lys Gly Glu Asn Gly Tyr Trp Val Trp 115 120 125

Leu Phe Met Ala Ser Lys Leu Phe Glu Leu Val Asp Thr Ile Phe Leu 130 135 140

Val Leu Arg Lys Arg Pro Leu Met Phe Leu His Trp Tyr His His Ile 145 150 155 160

Leu Thr Met Ile Tyr Ala Trp Tyr Ser His Pro Leu Thr Pro Gly Phe

Asn Arg Tyr Gly Ile Tyr Leu Asn Phe Val Val His Ala Phe Met Tyr 180 185 190

Ser Tyr Tyr Phe Leu Arg Ser Met Lys Ile Arg Val Pro Gly Phe Ile 195 . 200 205

Ala Gln Ala Ile Thr Ser Leu Gln Ile Val Gln Phe Ile Ile Ser Cys 210 215 220

Ala Val Leu Ala His Leu Gly Tyr Leu Met His Phe Thr Asn Ala Asn 225 230 235 240

Cys Asp Phe Glu Pro Ser Val Phe Lys Leu Ala Val Phe Met Asp Thr 245 250 255

Thr Tyr Leu Ala Leu Phe Val Asn Phe Phe Leu Gln Ser Tyr Val Leu 260 265 270

Arg Gly Gly Lys Asp Lys Tyr Lys Ala Val Pro Lys Lys Lys Asn Asn 275 280 285

<210> 39

<211> 1626

<212> DNA

<213> Euglena gracilis

<220>

<221> CDS

<222>. (1)..(1626)

<223> Delta-4-Desaturase

<400> 39					•		
atg ttg gtg Met Leu Val 1	ctg ttt gg Leu Phe Gl 5	c aat ttc 7 Asn Phe	tat gtc Tyr Val 10	aag caa Lys Gln	tac tcc Tyr Ser	caa aag Gln Lys 15	48
aac ggc aag Asn Gly Lys	ccg gag aa Pro Glu As 20	c gga gcc n Gly Ala	acc cct Thr Pro 25	gag aac Glu Asn	gga gcg Gly Ala 30	aag ccg Lys Pro	96
caa cct tgc Gln Pro Cys 35							144
aac gtt cgg Asn Val Arg 50	ccc acc cg Pro Thr Ar	cca gct g Pro Ala 55	gga ccc Gly Pro	ccg ccg Pro Pro 60	gcc acg Ala Thr	tac tac Tyr Tyr	192
gac tcc ctg Asp Ser Leu 65							240
gat gag gtg Asp Glu Val	agg cgg ca Arg Arg Hi 85	c atc ctc s Ile Leu	ccc acc Pro Thr 90	gat ggc Asp Gly	tgg ctg Trp Leu	acg tgc Thr Cys 95	288
cac gaa gga His Glu Gly	gtc tac ga Val Tyr As 100	gtc act Val Thr	gat ttc Asp Phe 105	ctt gcc Leu Ala	aag cac Lys His 110	cct ggt Pro Gly	336
ggc ggt gtc Gly Gly Val 115	Ile Thr Le	g ggc ctt ı Gly Leu 120	gga agg Gly Arg	gac tgc Asp Cys	aca atc Thr Ile 125	ctc atc Leu Ile	384
gag tca tac Glu Ser Tyr 130	cac cct gc His Pro Al	ggg cgc Gly Arg 135	ccg gac Pro Asp	aag gtg Lys Val 140	atg gag Met Glu	aag tac Lys Tyr	432·
cgc att ggt Arg Ile Gly 145	acg ctg ca Thr Leu Gl 15	n Asp Pro	aag acg Lys Thr	ttc tat Phe Tyr 155	gct tgg Ala Trp	gga gag Gly Glu 160	480
tcc gat ttc Ser Asp Phe							528
gag gct ggt Glu Ala Gly	çag gcg cg Gln Ala Ar 180	g cgc ggc g Arg Gly	ggc ctt Gly Leu 185	ggg gtg Gly Val	aag gcc Lys Ala 190	ctc ctg Leu Leu	576
gtg ctc acc Val Leu Thr 195	Leu Phe Ph						624
tcc ttc ctc Ser Phe Leu 210							672
ctg agc atc	cag cac ga	ggc aac	cac ggc	gcg ttc	agc cgc	aac aca	720

									03							
Leu 225	Ser	Ile	Gln	His	Asp 230	Gly	Asn	His	Gly	Ala 235	Phe	Ser	Arg	Asn	Thr 240	
ctg Leu	gtg Val	aac Asn	cgc Arg	ctg Leu 245	gcg Ala	glà aaa	tgg Trp	ggc Gly	atg Met 250	gac Asp	ttg Leu	atc Ile	ggc Gly	gcg Ala 255	tcg Ser	768
tcc Ser	acg Thr	gtg Val	tgg Trp 260	gag Glu	tac Tyr	cag Gln	cac His	gtc Val 265	atc Ile	ggc Gly	cac His	cac His	cag Gln 270	tac Tyr	acc Thr	816
								agt Ser								864
								cgc Arg								912
								ctg Leu								960
ctg Leu	atg Met	aca Thr	atc Ile	agc Ser 325	aag Lys	gtg Val	ctg Leu	acc Thr	agc Ser 330	gat Asp _.	ttc Phe	gct Ala	gtc Val	tgc Cys 335	ctc Leu	1008
agc Ser	atg Met	aag Lys	aag Lys 340	elà aaa	tcc Ser	atc Ile	gac Asp	tgc Cys 345	tcc Ser	tcc Ser	agg Arg	ctc Leu	gtc Val 350	cca Pro	ctg Leu	1056
								gcc Ala								1104
cag Gln	att Ile 370	gtg Val	ttg Leu	cca Pro	tgc Cys	tac Tyr 375	ctc Leu	cac His	gly aaa	aca Thr	gct Ala 380	atg Met	ggc Gly	ctg Leu	gcc Ala	1152
	Phe							tcg Ser								1200
			Asn		Ile		Glu	tct Ser	Cys	Glu					Ser	1248
								gag Glu 425								1296
gca Ala	gcg Ala	gag Glu 435	gcc Ala	aag Lys	aag Lys	gtg Val	aag Lys 440	ccc Pro	acc Thr	cct Pro	cca Pro	ccg Pro 445	aac Asn	gat Asp	tgg Trp	1344
								gtg Val								1392
								ttg Leu								1,440
								aac Asn								1488
gtg	aag	gag	gtg	tgc	gag	gag	tac	999	ttg	ccg	tac	aag	aat	tac	gtc	1536

Val Lys Glu Val Cys Glu Glu Tyr Gly Leu Pro Tyr Lys Asn Tyr Val 500 505

acg ttc tgg gat gca gtc tgt ggc atg gtt cag cac ctc cgg ttg atg
Thr Phe Trp Asp Ala Val Cys Gly Met Val Gln His Leu Arg Leu Met
515 520 525

ggt gct cca ccg gtg cca acg aac ggg gac aaa aag tca taa 1626 Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser 530 535 540

<210> 40

<211> 541

<212> PRT

<213> Euglena gracilis

<400> 40

Met Leu Val Leu Phe Gly Asn Phe Tyr Val Lys Gln Tyr Ser Gln Lys 1 5 10 15

Asn Gly Lys Pro Glu Asn Gly Ala Thr Pro Glu Asn Gly Ala Lys Pro 20 25 30

Gln Pro Cys Glu Asn Gly Thr Val Glu Lys Arg Glu Asn Asp Thr Ala 35 40 45

Asn Val Arg Pro Thr Arg Pro Ala Gly Pro Pro Pro Ala Thr Tyr Tyr 50 55 60

Asp Ser Leu Ala Val Ser Gly Gln Gly Lys Glu Arg Leu Phe Thr Thr 65 70 75 80

Asp Glu Val Arg Arg His Ile Leu Pro Thr Asp Gly Trp Leu Thr Cys 85 90 95

His Glu Gly Val Tyr Asp Val Thr Asp Phe Lieu Ala Lys His Pro Gly
100 105 110

Gly Gly Val Ile Thr Leu Gly Leu Gly Arg Asp Cys Thr Ile Leu Ile 115 120 125

Glu Ser Tyr His Pro Ala Gly Arg Pro Asp Lys Val Met Glu Lys Tyr 130 135 140

Ser Asp Phe Tyr Pro Glu Leu Lys Arg Arg Ala Leu Ala Arg Leu Lys 165 170 175

Glu Ala Gly Gln Ala Arg Arg Gly Gly Leu Gly Val Lys Ala Leu Leu 180 185 190

Val Leu Thr Leu Phe Phe Val Ser Trp Tyr Met Trp Val Ala His Lys
195 200 205

Ser Phe Leu Trp Ala Ala Val Trp Gly Phe Ala Gly Ser His Val Gly 210 220

Leu Ser Ile Gln His Asp Gly Asn His Gly Ala Phe Ser Arg Asn Thr 225 230 235 240

Leu Val Asn Arg Leu Ala Gly Trp Gly Met Asp Leu Ile Gly Ala Ser 245 250 250

Ser Thr Val Trp Glu Tyr Gln His Val Ile Gly His His Gln Tyr Thr

Asn Leu Val Ser Asp Thr Leu Phe Ser Leu Pro Glu Asn Asp Pro Asp 275 280 285

Val Phe Ser Ser Tyr Pro Leu Met Arg Met His Pro Asp Thr Ala Trp 290 295 300

Gln Pro His His Arg Phe Gln His Leu Phe Ala Phe Pro Leu Phe Ala 305 310 315 320

Leu Met Thr Ile Ser Lys Val Leu Thr Ser Asp Phe Ala Val Cys Leu 325 330 335

Ser Met Lys Lys Gly Ser Ile Asp Cys Ser Ser Arg Leu Val Pro Leu 340 345 350

Glu Gly Gln Leu Leu Phe Trp Gly Ala Lys Leu Ala Asn Phe Leu Leu 355 360 365

Gln Ile Val Leu Pro Cys Tyr Leu His Gly Thr Ala Met Gly Leu Ala 370 375 380

Leu Phe Ser Val Ala His Leu Val Ser Gly Glu Tyr Leu Ala Ile Cys 385 390 395 400

Phe Ile Ile Asn His Ile Ser Glu Ser Cys Glu Phe Met Asn Thr Ser 405 410 415

Phe Gln Thr Ala Ala Arg Arg Thr Glu Met Leu Gln Ala Ala His Gln
420 425 430

Ala Ala Glu Ala Lys Lys Val Lys Pro Thr Pro Pro Pro Asn Asp Trp 435 440 445

72

Ala Val Thr Gln Val Gln Cys Cys Val Asn Trp Arg Ser Gly Gly Val Leu Ala Asn His Leu Ser Gly Gly Leu Asn His Gln Ile Glu His His 475 470 . Leu Phe Pro Ser Ile Ser His Ala Asn Tyr Pro Thr Ile Ala Pro Val Val Lys Glu Val Cys Glu Glu Tyr Gly Leu Pro Tyr Lys Asn Tyr Val 505 Thr Phe Trp Asp Ala Val Cys Gly Met Val Gln His Leu Arg Leu Met 520 Gly Ala Pro Pro Val Pro Thr Asn Gly Asp Lys Lys Ser <210> 41 <211> 1548 <212> DNA <213> Thraustochytrium <220> <221> CDS <222> (1)..(1548) <223> Delta-4-Desaturase <400> 41 atg acg gtc ggg ttt gac gaa acg gtg act atg gac acg gtc cgc aac Met Thr Val Gly Phe Asp Glu Thr Val Thr Met Asp Thr Val Arg Asn 48 96 cac aac atg ccg gac gac gcc tgg tgc gcg atc cac ggc acc gtg tac His Asn Met Pro Asp Asp Ala Trp Cys Ala Ile His Gly Thr Val Tyr 20 gac atc acc aag ttc agc aag gtg cac ccc ggc ggg gac atc atc atg 144 Asp Ile Thr Lys Phe Ser Lys Val His Pro Gly Gly Asp Ile Ile Met ctg gcc gct ggc aag gag gcc acc atc ctg ttc gag acc tac cac atc 192 Leu Ala Ala Gly Lys Glu Ala Thr Ile Leu Phe Glu Thr Tyr His Ile 55 240 aag ggc gtc ccg gac gcg gtg ctg cgc aag tac aag gtc ggc aag ctc Lys Gly Val Pro Asp Ala Val Leu Arg Lys Tyr Lys Val Gly Lys Leu 70 288 ccc cag ggc aag aag ggc gaa acg agc cac atg ccc acc ggg ctc gac

Pro Gln Gly Lys Lys Gly Glu Thr Ser His Met Pro Thr Gly Leu Asp

tcg Ser	gcc Ala	tcc Ser	tac Tyr 100	tac Tyr	tcg Ser	tgg Trp	gac Asp	agc Ser 105	gag Glu	ttt Phe	tac Tyr	agg Arg	gtg Val 110	ctc Leu	cgc Arg	336
					aag Lys											384
cgc Arg	atg Met 130	gag Glu	ctc Lėu	tgg Trp	gcc Ala	aag Lys 135	gcg Ala	atc Ile	ttc Phe	ctc Leu	ctg Leu 140	gca Ala	ggt Gly	ttc Phe	tgg Trp	432
ggc Gly 145	tcc Ser	ctt Leu	tac Tyr	gcc Ala	atg Met 150	tgc Cys	gtg Val	cta Leu	gac Asp	ccg Pro 155	cac His	ggc Gly	ggt Gly	gcc Ala	atg Met 160	480
gta Val	gcc Ala	gcc Ala	gtt Val	acg Thr 165	ctc Leu	ggc Gly	gtg Val	ttc Phe	gct Ala 170	gcc Ala	ttt Phe	gtc Val	gga Gly	act Thr 175	Cys Cys	528
					agc Ser											576
aac Asn	aag Lys	gcg Ala 195	gcg Ala	ggc Gly	tgg Trp	acc Thr	ctc Leu 200	gac Asp	atg Met	atc Ile	ggc Gly	gcg Ala 205	agt Ser	gcg Ala	atg Met	624
acc Thr	tgg Trp 210	gag Glu	atg Met	cag Gln	cac His	gtt Val 215	ctt Leu	ggc Gly	cac His	cac His	ccg Pro 220	tac Tyr	acc Thr	aac Asn	ctc Leu	672
					ggt Gly 230	Leu										720
					cag Gln											768
					cac His											816
					gcc Ala											864
					gat Asp											912
		_	_		tgc Cys 310				_					_	_	960
					ctc Leu											1008
					cct Pro											1056
					gag Glu											1104

									•								
atc Ile	atc Ile 370	gag Glu	ggc Gly	gtc Val	agc Ser	tac Tyr 375	gct Ala	tcc Ser	aag Lys	gac Asp	gcg Ala 380	gtc Val	aag Lys	ggc Gly	gtc Val	1152	
atg Met 385	gct Ala	ccg Pro	ccg Pro	cgc Arg	act Thr 390	gtg Val	cac His	ggt Gly	gtc Val	acc Thr 395	ccg Pro	atg Met	cag Gln	gtg Val	acg Thr 400	1200	
caa Gln	aag Lys	gcg Ala	ctc Leu	agt Ser 405	gcg Ala	gcc Ala	gag Glu	tcg Ser	gcc Ala 410	aag Lys	tcg Ser	gac Asp	gcc Ala	gac Asp 415	aag Lys	1248	
acg Thr	acc Thr	atg Met	atc Ile 420	ccc Pro	ctc Leu	aac Asn	gac Asp	tgg Trp 425	gcc Ala	gct Ala	gtg Val	cag Gln	tgc Cys 430	cag Gln	acc Thr	1296	
tct Ser	gtg Val	aac Asn 435	tgg Trp	gct Ala	gtc Val	Gly aaa	tcg Ser 440	tgg Trp	ttt Phe	tgg Trp	aac Asn	cac His 445	ttt Phe	tcg Ser	Gly	1344	
ggc Gly	ctc Leu 450	aac Asn	cac His	cag Gln	att Ile	gag Glu 455	cac His	cac His	tgc Cys	ttc Phe	ccc Pro 460	caa Gln	aac Asn	ccc Pro	cac His	1392	
acg Thr 465	gtc Val	aac Asn	gtc Val	tac Tyr	atc Ile 470	tcg Ser	ggc Gly	atc Ile	gtc Val	aag Lys 475	gag Glu	acc Thr	tgc Cys	gaa Glu	gaa Glu 480	1440	
tac Tyr	ggc Gly	gtg Val	ccg Pro	tac Tyr 485	cag Gln	gct Ala	gag Glu	atc Ile	agc Ser 490	ctc Leu	ttc Phe	tct Ser	gcc Ala	tat Tyr 495	ttc Phe	1488	
aag Lys	atg Met	ctg Leu	tcg Ser 500	cac His	ctc Leu	cgc Arg	acg Thr	ctc Leu 505	ggc Gly	aac Asn	gag Glu	gac Asp	ctc Leu 510	acg Thr	gcc Ala	1536	
		acg Thr 515	tga	-												1548	
<21	0> 4	42															
<21	L> !	515															
<21	2> :	PRT							•			٠.					
<21	3> 5	Thra	usto	chyt:	rium												
<40	O > ·	42															
Met 1	Thr	Val	Gly	Phe 5	Asp	Glu	Thr	Val	Thr 10	Met	Asp	Thr	Val	Arg 15	Asn		
His	Asn	Met	Pro 20	Asp	Asp	Ala	Trp	Cys 25	Ala	Ile	His	Gly	Thr 30	Val	Tyr		

Asp Ile Thr Lys Phe Ser Lys Val His Pro Gly Gly Asp Ile Ile Met 35

Leu Ala Ala Gly Lys Glu Ala Thr Ile Leu Phe Glu Thr Tyr His Ile 50 55 60

Lys Gly Val Pro Asp Ala Val Leu Arg Lys Tyr Lys Val Gly Lys Leu 65 70 75 80

Pro Gln Gly Lys Lys Gly Glu Thr Ser His Met Pro Thr Gly Leu Asp 85 90 95

Ser Ala Ser Tyr Tyr Ser Trp Asp Ser Glu Phe Tyr Arg Val Leu Arg 100 105 110

Glu Arg Val Ala Lys Lys Leu Ala Glu Pro Gly Leu Met Gln Arg Ala 115 120 125

Arg Met Glu Leu Trp Ala Lys Ala Ile Phe Leu Leu Ala Gly Phe Trp 130 135 140

Gly Ser Leu Tyr Ala Met Cys Val Leu Asp Pro His Gly Gly Ala Met 145 150 155 160

Val Ala Ala Val Thr Leu Gly Val Phe Ala Ala Phe Val Gly Thr Cys 165 170 175

Ile Gln His Asp Gly Ser His Gly Ala Phe Ser Lys Ser Arg Phe Met 180 185 190

Asn Lys Ala Ala Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Met 195 200 205

Thr Trp Glu Met Gln His Val Leu Gly His His Pro Tyr Thr Asn Leu 210 215 220

Ile Glu Met Glu Asn Gly Leu Ala Lys Val Lys Gly Ala Asp Val Asp 225 230 235 240

Pro Lys Lys Val Asp Gln Glu Ser Asp Pro Asp Val Phe Ser Thr Tyr 245 250 255

Pro Met Leu Arg Leu His Pro Trp His Arg Gln Arg Phe Tyr His Lys 260 265 270

Phe Gln His Leu Tyr Ala Pro Phe Ile Phe Gly Ser Met Thr Ile Asn 275 280 285

Lys Val Ile Ser Gln Asp Val Gly Val Val Leu Arg Lys Arg Leu Phe 290 295 300

Gln Ile Asp Ala Asn Cys Arg Tyr Gly Ser Pro Trp Tyr Val Ala Arg 305 310 315 320

Phe Trp Ile Met Lys Leu Euu Thr Thr Leu Tyr Met Val Ala Leu Pro 325 330 335

Met Tyr Met Gln Gly Pro Ala Gln Gly Leu Lys Leu Phe Phe Met Ala 340 345 350

His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile Val Asn His 355 360 365

Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val Lys Gly Val 370 375 380

Met Ala Pro Pro Arg Thr Val His Gly Val Thr Pro Met Gln Val Thr 385 390 395 400

Gln Lys Ala Leu Ser Ala Ala Glu Ser Ala Lys Ser Asp Ala Asp Lys 405 \(& 410 \)

Thr Thr Met Ile Pro Leu Asn Asp Trp Ala Ala Val Gln Cys Gln Thr 420 425 430

Ser Val Asn Trp Ala Val Gly Ser Trp Phe Trp Asn His Phe Ser Gly 435 440 445

Gly Leu Asn His Gln Ile Glu His His Cys Phe Pro Gln Asn Pro His 450 455 460

Thr Val Asn Val Tyr Ile Ser Gly Ile Val Lys Glu Thr Cys Glu Glu 465 470 475 480

Tyr Gly Val Pro Tyr Gln Ala Glu Ile Ser Leu Phe Ser Ala Tyr Phe 485 490 495

Lys Met Leu Ser His Leu Arg Thr Leu Gly Asn Glu Asp Leu Thr Ala 500 510

Trp Ser Thr 515

<210> 43

<211> 960

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(960)

<223> Delta-5-Elongase

																•	
<40 atg Met 1	0> 4 gtg Val	ttg Leu	tac Tyr	aat Asn 5	gtg Val	gcg Ala	caa Gln	gtg Val	ctg Leu 10	ctc Leu	aat Asn	gly aaa	tgg Trp	acg Thr 15	gtg Val		48
tat Tyr	gcg Ala	att Ile	gtg Val 20	gat Asp	gcg Ala	gtg Val	atg Met	aat Asn 25	aga Arg	gac Asp	cat His	ccg Pro	ttt Phe 30	att Ile	gga Gly		96
agt Ser	aga Arg	agt Ser 35	ttg Leu	gtt Val	Gly ggg	gcg Ala	gcg Ala 40	ttg Leu	cat His	agt Ser	gjå aaa	agc Ser 45	tcg Ser	tat Tyr	gcg Ala		144
gtg Val	tgg Trp 50	gtt Val	cat His	tat Tyr	tgt Cys	gat Asp 55	aag Lys	tat Tyr	ttg Leu	gag Glu	ttc Phe 60	ttt Phe	gat Asp	acg Thr	tat Tyr		192
ttt Phe 65	atg Met	gtg Val	ttg Leu	agg Arg	999 Gly 70	aaa Lys	atg Met	gac Asp	cag Gln	atg Met 75	gta Val	ctt Leu	ggt Gly	gaa Glu	gtt Val 80		240
ggt Gly	ggc Gly	agt Ser	gtg Val	tgg Trp 85	tgt Cys	ggc Gly	gtt Val	gga Gly	tat Tyr 90	atg Met	gat Asp	atg Met	gag Glu	aag Lys 95	atg Met		288
ata Ile	cta Leu	ctc Leu	agc Ser 100	ttt Phe	gga Gly	gtg Val	cat His	cgg Arg 105	tct Ser	gct Ala	cag Gln	gga Gly	acg Thr 110	gly aaa	aag Lys		336
gct Ala	ttc Phe	acc Thr 115	aac Asn	aac Asn	gtt Val	acc Thr	aat Asn 120	cca Pro	cat His	ctc Leu	acg Thr	ctt Leu 125	cca Pro	cct Pro	cat His		384
tct Ser	aca Thr 130	aaa Lys	aca Thr	aaa Lys	aaa Lys	cag Gln 135	gtc Val	tcc Ser	ttc Phe	ctc Leu	cac His 140	atc Ile	tac Tyr	cac His	cac His		432
acg Thr 145	acc Thr	ata Ile	gcg Ala	tgg Trp	gca Ala 150	tgg Trp	tgg Trp	atc Ile	gcc Ala	ctc Leu 155	cgc Arg	ttc Phe	tcc Ser	ccc Pro	ggt Gly 160		480
gga Gly	gac Asp	att Ile	tac Tyr	ttc Phe 165	glå aaa	gca Ala	ctc Leu	ctc Leu	aac Asn 170	tcc Ser	atc Ile	atc Ile	cac His	gtc Val 175	ctc Leu		528
atg Met	tat Tyr	tcc Ser	tac Tyr 180	tac Tyr	gcc Ala	ctt Leu	gcc Ala	cta Leu 185	ctc Leu	aag Lys	gtc Val	agt Ser	tgt Cys 190	cca Pro	tgg Trp	•	576
aaa Lys	cga Arg	tac Tyr 195	ctg Leu	act Thr	caa Gln	gct Ala	caa Gln 200	tta Leu	ttg Leu	caa Gln	ttc Phe	aca Thr 205	agt Ser	gtg Val	gtg Val		624
	tat Tyr 210																672
	gcg Ala																720
gga Gly	gtg Val	cag Gln	gtg Val	ttt Phe 245	gag Glu	atg Met	gtt Val	agt Ser	ttg Leu 250	ttt Phe	gta Val	ctc Leu	ttt Phe	tcc Ser 255	atc Ile		768
ttt	tat	aaa	cga	tcc	tat	tcg	aag	aag	aac	aag	tca	gga	gga	aag	gat		816

									78							
Phe	Tyr	Lys	Arg 260	Ser	Tyr	Ser	Lys	Lys 265	Asn	Lys	Ser	Gly	Gly 270	Lys	Asp ·	
agc Ser	aag Lys	aag Lys 275	aat Asn	gat Asp	gat Asp	gly aaa	aat Asn 280	aat Asn	gag Glu	gat Asp	caa Gln	tgt Cys 285	cac His	aag Lys	gct Ala	864
atg Met	aag Lys 290	gat Asp	ata Ile	tcg Ser	gag Glu	ggt Gly 295	gcg Ala	aag Lys	gag Glu	gtt Val	gtg Val 300	gjå aaa	cat His	gca Ala	gcg Ala	912
aag Lys 305	gat Asp	gct Ala	gga Gly ·	aag Lys	ttg Leu 310	gtg Val	gct Ala	acg Thr	aga Arg	gta. Val 315	agg Arg	tgt Cys	aag Lys	gtg Val	taa	960
<210)> -	44		-												
<211	L> :	319														
<212	2> :	PRT														•
<213	3 > '	Thala	issio	osira	a pse	eudoi	nana									
				-												
<400)>	44														
Met 1	Val	Leu	Tyr	Asn 5	Val	Ala	Gln	Val	Leu 10	Leu	Asn	Gly	Trp	Thr 15	Val	
Tyr	Ala	Ile	Val 20	Asp	Ala	Val		Asn 25	Arg	Asp	His	Pro	Phe 30	Ile	Gly	
Ser	Arg	Ser 35	Leu	Val	Gly	Ala	Ala 40	Leu	His	Ser	Gly	Ser 45	Ser	Tyr	Ala.	
Val	Trp 50	Val	His	Tyr	Cys	Asp 55	Lys	Tyr	Leu	Glu	Phe 60	Phe	Asp	Thr	Tyr	
Phe 65	Met	Val	Leu	Arg	Gly 70	Lys	Met	Asp	Gln	Met 75	Val	Leu	Gly	Glu	Val 80	
Gly	Gly	Ser	Val	Trp 85	Cys	Gly	Val	Gly	Tyr 90	Met	Asp	Met	Glu	Ъуз 95	Met .	
Ile	Leu	Leu	Ser 100	Phe	Gly	Val	His	Arg 105	Ser	Ala	Gln	Gly	Thr 110	Gly	Lys	
Ala	Phe	Thr 115	Asn	Asn	Val	Thr	Asn 120	Pro	His	Leu	Thr	Leu 125	Pro	Pro	His	
Ser	Thr 130	Lys	Thr	Lys	Lys	Gln 135	Val	Ser	Phe	Leu	His 140	Ile	Tyr	His	His	
Thr 145	Thr	Ile	Ala	Trp	Ala 150	Trp	Trp	Ile	Ala	Leu 155	Arg	Phe	Ser	Pro	Gly 160	

79

Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu 165 170 175

Met. Tyr Ser Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp 180 185

. Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val 195 200 205

Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His 210 215 220

Gly Ala Asp Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys 225 230 235

Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile 245 250 255

Phe Tyr Lys Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp 260 265 270

Ser Lys Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala 275 280 285

Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala 290 295 300

Lys Asp Ala Gly Lys Leu Val Ala Thr Arg Val Arg Cys Lys Val 305 310 315

<210> . 45

<211> 819

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(819)

<223> Delta-5-Elongase

<400> 45
atg gac gcc tac aac gct gca atg gat aag atc ggt gcc gcc atc atc
Met Asp Ala Tyr Asn Ala Ala Met Asp Lys Ile Gly Ala Ala Ile Ile
1 5 10 15

gat tgg tct gat ccc gat gga aag ttc cgt gcc gat aga gag gac tgg 96
Asp Trp Ser Asp Pro Asp Gly Lys Phe Arg Ala Asp Arg Glu Asp Trp
20 25 30

48

tgg Trp	ctc Leu	tgc Cys 35	gac Asp	ttc Phe	cgt Arg	agc Ser	gcc Ala 40	atc Ile	acc Thr	atc Ile	gcc Ala	ctc Leu 45	atc Ile	tac Tyr	atc Ile	144
gcc Ala	ttc Phe 50	gtc Val	atc Ile	ctc Leu	ggt Gly	tcc Ser 55	gcc Ala	gtc Val	atg Met	caa Gln	tcc Ser 60	ctc Leu	ccc Pro	gca Ala	atg Met	192
gat Asp 65	ccc Pro	tac Tyr	ccc Pro	atc Ile	aaa Lys 70	ttc Phe	ctc Leu	tac Tyr	aac Asn	gtc Val 75	tcc Ser	caa Gln	atc Ile	ttc Phe	ctt Leu 80	240
tgt Cys	gcc Ala	tac Tyr	atg Met	act Thr 85	gtc Val	gag Glu	gcg Ala	gga Gly	ttt Phe 90	ttg Leu	gcc Ala	tac Tyr	cgc Arg	aat Asn 95	gga Gly	288
tat Tyr	acc Thr	gtc Val	atg Met 100	cct Pro	tgc Cys	aat Asn	cat His	ttc Phe 105	aat Asn	gtg Val	aat Asn	gat Asp	cct Pro 110	ccc Pro	gtg Val	336
gcg Ala	aat Asn	ctt Leu 115	ctt Leu	tgg Trp	ttg Leu	ttt Phe	tat Tyr 120	att Ile	tcc Ser	aag Lys	gtg Val	tgg Trp 125	gac Asp	ttt Phe	tgg Trp	384
gat Asp	acc Thr 130	att Ile	ttc Phe	att Ile	gtg Val	ttg Leu 135	GJÅ aaa	aag Lys	aag Lys	tgg Trp	cgt Arg 140	caa Gln	tta Leu	tct Ser	ttc Phe	432
ttg Leu 145	cat His	gta Val	tac Tyr	cat His	cac His 150	acc Thr	acc Thr	atc Ile	ttt Phe	cta Leu 155	ttc Phe	tat Tyr	tgg Trp	ctg Leu	aat Asn 160	480
gcc Ala	aat Asn	gtc Val	ttg Leu	tac Tyr 165	gat Asp	ggt Gly	gac Asp	atc Ile	ttc Phe 170	ctt Leu	acc Thr	atc Ile	ttg Leu	ctc Leu 175	aat Asn	528
gga Gly	ttc Phe	atc Ile	cac His 180	acg Thr	gtg Val	atg Met	tac Tyr	acg Thr 185	tat Tyr	tac Tyr	ttc Phe	atc Ile	tgt Cys 190	atg Met	cat His	576
acc Thr	aaa Lys	gat Asp 195	tcc Ser	aag Lys	acg Thr	ggc Gly	aag Lys 200	agt Ser	ctt Leu	cct Pro	ata Ile	tgg Trp 205	tgg Trp	aag Lys	tcg Ser	624
agt Ser	ttg Leu 210	acg Thr	gcg Ala	ttt Phe	cag Gln	ttg Leu 215	ttg Leu	caa Gln	ttc Phe	act Thr	atc Ile 220	atg Met	atg Met	agt Ser	cag Gln	672
gct Ala 225	acc Thr	tac Tyr	ctt Leu	gtc Val	ttc Phe 230	cac His	Gly	tgt Cys	gat Asp	aag Lys 235	gtg Val	tcg Ser	ctt Leu	cgt Arg	atc Ile 240	720
acg Thr	att Ile	gtg Val	tac Tyr	ttt Phe 245	gtg Val	tcc Ser	ctt Leu	ttg Leu	agt Ser 250	ttg Leu	ttc Phe	ttc Phe	ctt Leu	ttt Phe 255	gct Ala	768
cag Gln	ttc Phe	ttt Phe	gtg Val 260	caa Gln	tca Ser	tac Tyr	atg Met	gca Ala 265	ccc Pro	aaa Lys	aag Lys	aag Lys	aag Lys 270	agt Ser	gct Ala	816
tag																819

<210> 46

<211> 272

<212> PRT

<213> Thalassiosira pseudonana

<400> 46

Met Asp Ala Tyr Asn Ala Ala Met Asp Lys Ile Gly Ala Ala Ile Ile 1 5 10 15

Asp Trp Ser Asp Pro Asp Gly Lys Phe Arg Ala Asp Arg Glu Asp Trp 20 25 . 30

Trp Leu Cys Asp Phe Arg Ser Ala Ile Thr Ile Ala Leu Ile Tyr Ile 35 40 45

Ala Phe Val Ile Leu Gly Ser Ala Val Met Gln Ser Leu Pro Ala Met 50 60

Asp Pro Tyr Pro Ile Lys Phe Leu Tyr Asn Val Ser Gln Ile Phe Leu 65 70 75 80

Cys Ala Tyr Met Thr Val Glu Ala Gly Phe Leu Ala Tyr Arg Asn Gly 85 90 95

Tyr Thr Val Met Pro Cys Asn His Phe Asn Val Asn Asp Pro Pro Val
100 105 110

Ala Asn Leu Leu Trp Leu Phe Tyr Ile Ser Lys Val Trp Asp Phe Trp 115 120 125

Asp Thr Ile Phe Ile Val Leu Gly Lys Lys Trp Arg Gln Leu Ser Phe 130 135 140

Leu His Val Tyr His His Thr Thr Ile Phe Leu Phe Tyr Trp Leu Asn 145 150 155 160

Ala Asn Val Leu Tyr Asp Gly Asp Ile Phe Leu Thr Ile Leu Leu Asn 165 170 175

Gly Phe Ile His Thr Val Met Tyr Thr Tyr Tyr Phe Ile Cys Met His 180 185 190

Thr Lys Asp Ser Lys Thr Gly Lys Ser Leu Pro Ile Trp Trp Lys Ser 195 200 205

Ser Leu Thr Ala Phe Gln Leu Leu Gln Phe Thr Ile Met Met Ser Gln 210 . 215 220

Ala Thr Tyr Leu Val Phe His Gly Cys Asp Lys Val Ser Leu Arg Ile 225 230 235 240

82

Thr Ile Val Tyr Phe Val Ser Leu Leu Ser Leu Phe Phe Leu Phe Ala 245 250 255

Gln Phe Phe Val Gln Ser Tyr Met Ala Pro Lys Lys Lys Ser Ala 260 265 270

<210> 47

<211> 936

<212> DNA

<213> Crypthecodinium cohnii

<220>

<221> CDS

<222> (1)..(936)

<223> Delta-5-Elongase

<400 atg Met 1)> 4 tct Ser	acc	ttc Phe	atg Met 5	act Thr	ctc Leu	cca Pro	cag Gln	gct Ala 10	ctc Leu	tcc Ser	gat Asp	gtg Val	acc Thr 15	tcg Ser	48
gcc Ala	ttg Leu	gtc Val	acg Thr 20	ctg Leu	gga Gly	aag Lys	gat Asp	gtc Val 25	tcc Ser	agc Ser	cct Pro	tca Ser	gct Ala 30	ttt Phe	caa Gln	96
gct Ala	gtc Val	act Thr 35	ggc Gly	ttc Phe	tgc Cys	agg Arg	gag Glu 40	cag Gln	tgg Trp	gjà aaa	att Ile	ccg Pro 45	aca Thr	gta Val	ttc Phe	144
tgc Cys	ctg Leu 50	ggc Gly	tac Tyr	ttg Leu	gcc Ala	atg Met 55	gtc Val	tac Tyr	gcg Ala	gcc Ala	aga Arg 60	aga Arg	ccc Pro	ctc Leu	ccg Pro	192
cag Gln 65	cac His	ggc	tac Tyr	atg Met	gtt Val 70	gcg Ala	gtg Val	gac Asp	cgt Arg	tgc Cys 75	ttc Phe	gct Ala	gct Ala	tgg Trp	aac Asn 80	240
ttg Leu	gct Ala	ctc Leu	tct Ser	gtc Val 85	ttc Phe	agc Ser	act Thr	tgg Trp	ggc Gly 90	ttc Phe	tac Tyr	cac His	atg Met	gct Ala 95	gtc Val	288
GJA aaa	ctc Leu	tac Tyr	aac Asn 100	atg Met	aca Thr	gag Glu	acg Thr	agg Arg 105	ggc	ttg Leu	caa Gln	ttc Phe	acc Thr 110	atc Ile	tgc Cys	336
ggt Gly	tcg Ser	act Thr 115	Gly ggg	gag Glu	ctc Leu	gtg Val	cag Gln 120	aac Asn	ctt Leu	cag Gln	act Thr	ggc Gly 125	cca Pro	acc Thr	gct Ala	384
ctg Leu	gcg Ala 130	ctc Leu	tgc Cys	ctc Leu	ttc Phe	tgc Cys 135	ttc Phe	agc Ser	aag Lys	atc Ile	ccc Pro 140	gag Glu	ttg Leu	atg Met	gac Asp	432
acg Thr 145	gtg Val	ttt Phe	ctc Leu	atc Ile	ctg Leu 150	aag Lys	gcc Ala	aag Lys	aag Lys	gtc Val 155	cgc Arg	ttc Phe	ttg Leu	cag Gln	tgg Trp 160	480

	tac Tyr	cac His	cat His	gcc Ala	aca Thr 165	gtc Val	atg Met	ctc Leu	ttc Phe	tgt Cys 170	tgg Trp	ctc Leu	gcc Ala	ctc Leu	gcg Ala 175	acg Thr	528
	gag Glu	tac Tyr	act Thr	cct Pro 180	ggc Gly	ttg Leu	tgg Trp	ttt Phe	gcg Ala 185	gcg Ala	acg Thr	aac Asn	tac Tyr	ttc Phe 190	gtg Val	cac His	576
•	tcc Ser	atc Ile	atg Met 195	tac Tyr	atg Met	tac Tyr	ttc Phe	ttc Phe 200	ctc Leu	atg Met	acc Thr	ttc Phe	aag Lys 205	tcg Ser	gcc Ala	gcg Ala	624
	aag Lys	gtg Val 210	gtg Val	aag Lys	ccc Pro	atc Ile	gcc Ala 215	cct Pro	ctc Leu	atc Ile	aca Thr	gtt Val 220	atc Ile	cag Gln	att Ile	gct Ala	672
	cag Gln 225	atg Met	gtc Val	tgg Trp	ggc Gly	ctc Leu 230	atc Ile	gtc Val	aac Asn	ggc Gly	atc Ile 235	gcc Ala	atc Ile	acc Thr	acc Thr	ttc Phe 240	720
	ttc Phe	acg Thr	act Thr	ggt Gly	gcc Ala 245	tgc Cys	cag Gln	atc Ile	cag Gln	tct Ser 250	gtg Val	act Thr	gtg Val	tat Tyr	tcg Ser 255	gcc Ala	768
	atc Ile	atc Ile	atg Met	tac Tyr 260	gct Ala	tcg Ser	tac Tyr	ttc Phe	tac Tyr 265	ctg Leu	ttc Phe	tcc Ser	cag Gln	ctc Leu 270	ttc Phe	ttc Phe	816
	gag Glu	gcc Ala	cat His 275	ggt Gly	gcc Ala	gct Ala	ggc Gly	aag Lys 280	aac Asn	aag Lys	aag Lys	aag Lys	ttg Leu 285	acc Thr	cgc Arg	gag Glu	864
	ctc Leu	tct Ser 290	cga Arg	aaa Lys	atc Ile	tcg Ser	gag Glu 295	gct Ala	ctc Leu	ctg Leu	aac Asn	acc Thr 300	ggt Gly	gac Asp	gag Glu	gtt Val	912
	tcc Ser 305	aag Lys	cac His	ctg Leu	aag Lys	gtg Val 310	aat Asn	tga						·			936
	<210)> 4	48		ř	•			•								
	<21	L> :	311														
	<212	2> 1	PRT														
	<213	3> (Cryp	thec	odin:	ium (cohn:	ii									
	<400)> 4	48								•						
	Met 1	Ser	Ala	Phe	Met 5	Thr	Leu	Pro	Gln	Ala 10	Leu	ser	Asp	Val	Thr 15	Ser	-
	Ala	Leu	Val	Thr 20	Leu	Gly	Lys	Asp	Val 25	Ser	Ser	Pro	Ser	Ala 30	Phe	Gln	
	Ala	Val	Thr 35	Gly	Phe	Cys	Arg	Glu 40	Gln	Trp	Gly	Ile	Pro 45	Thr	Val	Phe	

Cys Leu Gly Tyr Leu Ala Met Val Tyr Ala Ala Arg Arg Pro Leu Pro 50 60

Gln His Gly Tyr Met Val Ala Val Asp Arg Cys Phe Ala Ala Trp Asn 65 70 75 80

Leu Ala Leu Ser Val Phe Ser Thr Trp Gly Phe Tyr His Met Ala Val 85 90 95

Gly Leu Tyr Asn Met Thr Glu Thr Arg Gly Leu Gln Phe Thr Ile Cys 100 105 110

Gly Ser Thr Gly Glu Leu Val Gln Asn Leu Gln Thr Gly Pro Thr Ala 115 120 125

Leu Ala Leu Cys Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Met Asp 130 135 140

Thr Val Phe Leu Ile Leu Lys Ala Lys Lys Val Arg Phe Leu Gln Trp 145 150 155

Tyr His His Ala Thr Val Met Leu Phe Cys Trp Leu Ala Leu Ala Thr 165 170 175

Glu Tyr Thr Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His 180 185 190

Ser Ile Met Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Ser Ala Ala 195 200 205

Lys Val Val Lys Pro Ile Ala Pro Leu Ile Thr Val Ile Gln Ile Ala 210 215 220

Gln Met Val Trp Gly Leu Ile Val Asn Gly Ile Ala Ile Thr Thr Phe 225 230 235 240

Phe Thr Thr Gly Ala Cys Gln Ile Gln Ser Val Thr Val Tyr Ser Ala 245 250 255

Ile Ile Met Tyr Ala Ser Tyr Phe Tyr Leu Phe Ser Gln Leu Phe Phe 260 265 270

Glu Ala His Gly Ala Ala Gly Lys Asn Lys Lys Leu Thr Arg Glu 275 280 285

Leu Ser Arg Lys Ile Ser Glu Ala Leu Leu Asn Thr Gly Asp Glu Val \cdot 290 295 300

Ser Lys His Leu Lys Val Asn 305 310

144

192

240

288

336

WO 2005/083093 85 <211> 927 <212> DNA <213> Crypthecodinium cohnii , <220> <221> CDS (1)..(927) <222> <223> Delta-5-Elongase <400> 49 atg gct tcc tac caa caa gca ttc tcc gaa ttg gct aga gct ttg tcc Met Ala Ser Tyr Gln Gln Ala Phe Ser Glu Leu Ala Arg Ala Leu Ser act ttg aac cac gac ttc tcc agc gtc gag cca ttc aaa gtc gtg acg Thr Leu Asn His Asp Phe Ser Ser Val Glu Pro Phe Lys Val Val Thr 25 cag ttc tgc agg gac cag tgg gcg atc ccg aca gtc ttt tgc atc ggt Gln Phe Cys Arg Asp Gln Trp Ala Ile Pro Thr Val Phe Cys Ile Gly tac ttg gca atg gtc tac gcc acg cga aga cct atc gcg aag cac ccc Tyr Leu Ala Met Val Tyr Ala Thr Arg Arg Pro Ile Ala Lys His Pro 55 tac atg tot oto gtg gat ogo tgc ttt gcg gcc tgg aac ttg ggc ctc Tyr Met Ser Leu Val Asp Arg Cys Phe Ala Ala Trp Asn Leu Gly Leu tog ctc ttc agt tgc tgg ggc ttc tac cac atg gca gtg gga ctc tcc Ser Leu Phe Ser Cys Trp Gly Phe Tyr His Met Ala Val Gly Leu Ser cac acc act tgg aat ttc ggg ctc cag ttc acc atc tgc ggc agc acc His Thr Thr Trp Asn Phe Gly Leu Gln Phe Thr Ile Cys Gly Ser Thr 100 105 acg gag ctt gtg aat ggc ttc cag aag ggc ccg gcg gcc ctc gcc ctc Thr Glu Leu Val Asn Gly Phe Gln Lys Gly Pro Ala Ala Leu Ala Leu 120 115 atc ctg ttc tgc ttc tcc aag atc ccg gag ttg ggc gac acc gtc ttc Ile Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Gly Asp Thr Val Phe 130

384 432 ttg atc ttg aag gga aag aag gtc cgc ttc ttg cag tgg tac cac cac 480 Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln Trp Tyr His His 528 acg acc gtg atg ctc ttc tgt tgg atg gcc ttg gcg act gag tac act Thr Thr Val Met Leu Phe Cys Trp Met Ala Leu Ala Thr Glu Tyr Thr 170 cct gga ttg tgg ttc gcg gcc acg aac tac ttc gtg cac tcc atc atg 576 Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His Ser Ile Met 185 tac atg tac ttc ttc ctc atg acc ttc aag acg gcc gcc ggc atc atc 624

			•			
Tyr Met Tyr 195	Phe Phe Le	eu Met Thr 200	Phe Lys Th	r Ala Ala (205	Gly Ile	Ile
aag ccc atc Lys Pro Ile 210	gcg cct ct Ala Pro Le	tc atc acc eu Ile Thr 215	atc atc ca Ile Ile Gl	ng atc tcc n Ile Ser 220	cag atg	gtc 672 Val
tgg ggc ttg Trp Gly Leu 225	Val Val As	ac gcc atc sn Ala Ile 30	gcc gtc gg Ala Val Gl 23	y Thr Phe	Phe Thr	aca 720 Thr 240
ggc aac tgc Gly Asn Cys	cag atc ca Gln Ile G 245	ag gca gtg ln Ala Val	aca gtc ta Thr Val Ty 250	ac tcc gcc yr Ser Ala	atc gtg Ile Val 255	atg 768 Met
tac gcc tcc Tyr Ala Ser	tac ttc ta Tyr Phe Ty 260	ac ctc ttc yr Leu Phe	ggc cag ct Gly Gln Le 265	eu Phe Phe	gag gcc Glu Ala 270	cag 816 Gln
ggt tcg gct Gly Ser Ala 275	gga aag ga Gly Lys As	ac aag aag sp Lys Lys 280	aag ttg go Lys Leu Al	cc cga gag La Arg Glu 285	ctg agc Leu Ser	cga 864 Arg
aag gtc tcg Lys Val Ser 290	cgg gct c Arg Ala Le	tc aca gca eu Thr Ala 295	acg ggc ga Thr Gly Gl	aa gag gtg Lu Glu Val 300	tcg aag Ser Lys	cac 912 His
atg aag gtg Met Lys Val 305						927
<210> 50						
<211> 308						
<212> PRT						
<213> Cryp	thecodiniu	m cohnii				
<400> 50			. •			
Met Ala Ser		ln Ala Phe				Ser
Thr Leu Asn	His Asp P	he Ser Ser	Val Glu Pr 25	ro Phe Lys	Val Val 30	Thr .
Gln Phe Cys 35	Arg Asp G	ln Trp Ala 40	Ile Pro Th	hr Val Phe 45	Cys Ile	Gly
Tyr Leu Ala 50	Met Val T	yr Ala Thr 55	Arg Arg Pı	ro Ile Ala 60	Lys His	Pro
Tyr Met Ser 65	Leu Val A		Phe Ala Al		Leu Gly	Leu 80

87

His Thr Thr Trp Asn Phe Gly Leu Gln Phe Thr Ile Cys Gly Ser Thr 100 105 110

Thr Glu Leu Val Asn Gly Phe Gln Lys Gly Pro Ala Ala Leu Ala Leu 115 120 125

. Ile Leu Phe Cys Phe Ser Lys Ile Pro Glu Leu Gly Asp Thr Val Phe 130 135 140

Leu Ile Leu Lys Gly Lys Lys Val Arg Phe Leu Gln Trp Tyr His His 145 150 155 160

Thr Thr Val Met Leu Phe Cys Trp Met Ala Leu Ala Thr Glu Tyr Thr 165 170 175

Pro Gly Leu Trp Phe Ala Ala Thr Asn Tyr Phe Val His Ser Ile Met 180 185 190

Tyr Met Tyr Phe Phe Leu Met Thr Phe Lys Thr Ala Ala Gly Ile Ile 195 200 205

Lys Pro Ile Ala Pro Leu Ile Thr Ile Ile Gln Ile Ser Gln Met Val 210 215 220

Trp Gly Leu Val Val Asn Ala Ile Ala Val Gly Thr Phe Phe Thr Thr 225 230 235 240

Gly Asn Cys Gln Ile Gln Ala Val Thr Val Tyr Ser Ala Ile Val Met 245 250 255

Tyr Ala Ser Tyr Phe Tyr Leu Phe Gly Gln Leu Phe Phe Glu Ala Gln 260 265 270

Gly Ser Ala Gly Lys Asp Lys Lys Lys Leu Ala Arg Glu Leu Ser Arg 275 280 285

Lys Val Ser Arg Ala Leu Thr Ala Thr Gly Glu Glu Val Ser Lys His 290 295 300

Met Lys Val Asn 305

<210> 51

<211> 795

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS

<222> (1)..(795)

<223> Delta-5-Elongase

									*		-								
•	<400 atg Met 1	gct	tca Ser	aca Thr	tgg Trp 5	caa Gln	agc Ser	gtt Val	cag Gln	tcc Ser 10	atg Met	cgc Arg	cag Gln	tgg Trp	att Ile 15	tta Leu		48	
	gag Glu	aat Asn	gga Gly	gat Asp 20	aaa Lys	agg Arg	aca Thr	gac Asp	cca Pro 25	tgg Trp	cta Leu	ctg Leu	gtc Val	tac Tyr 30	tcc Ser	cct Pro	P	96	
						ata Ile												144	-
	Gly aaa	ccc Pro 50	aag Lys	ctg Leu	atg Met	aaa Lys	cgc Arg 55	agg Arg	gaa Glu	cca Pro	gtt Val	gat Asp 60	ctc Leu	aag Lys	gct Ala	gta Val	•	192	
	ctc Leu 65	att Ile	gtc Val	tac Tyr	aac Asn	ttc Phe 70	gcc Ala	atg Met	gtc Val	tgc Cys	ctg Leu 75	tct Ser	gtc Val	tac Tyr	atg Met	ttc Phe 80		240	
	cat His	gag Glu	ttc Phe	ttg Leu	gtc Val 85	acg Thr	tcc Ser	ttg Leu	ctg Leu	tct Ser 90	aac Asn	tac Tyr	agt Ser	tac Tyr	ctg Leu 95	tgt Cys		288	
	caa Gln	cct Pro	gtg Val	gat Asp 100	tac Tyr	agc Ser	act Thr	agt Ser	cca Pro 105	ctg Leu	gcg Ala	atg Met	agg Arg	atg Met 110	gcc	aaa Lys		336	
	Val	Cys	Trp 115	Trp	Phe	ttc Phe	Phe	Ser 120	Lys	Val	Ile	Glu	Leu 125	Ala	Asp	Thr		384	
	gtg Val	ttc Phe 130	ttc ['] Phe	atc Ile	ctg Leu	agg Arg	aag Lys 135	aag Lys	aac Asn	agt Ser	cag Gln	ctg Leu 140	act Thr	ttc Phe	ctg Leu	cat His		432	
	Val 145	Tyr	His	His	Gly	acc Thr 150	Met	Ile	Phe	Asn	Trp 155	Trp	Ala	Gly	Val	Lys 160		480	
	Tyr	Leu	Ala	Gly	Gly 165	caa Gln	Ser	Phe	Phe	Ile 170	Gly	Leu	Leu	Asn	Thr 175	Phe		528	
	Val	His	Ile	Val 180	Met	tac Tyr	Ser	Tyr	Tyr 185	Gly	Leu	Ala	Ala	Leu 190	Gly	Pro		576	
	His	Thr	Gln 195	Lys	Tyr	tta Leu	Trp	Trp 200	Lys	Arg	Tyr	Leu	Thr 205	Ser	Leu	Gln		624	
	Leu	Leu 210	Gln	Phe	Val	ctg Leu	Leu 215	Thr	Thr	His	Thr	Gly 220	Tyr	Asn	Leu	Phe		672	
						ccg Pro 230												720	

PCT/EP2005/001863

tgt gtc agt ctc att gct ctc ttc agc aac ttc tac tat cag agc tac Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 245

ctc aac agg aag agc aag aca taa

Cys Val Ser Lys Lys Thr

ctc aac agg aag agc aag aca taa

795

C210> 52

C211> 264

<212> PRT

<213> Oncorhynchus mykiss

<400> 52

Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu 1 5 10 15

Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro 20 25 30

Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala 35 40 45

Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val 50 55 60

Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 65 70 75 80

His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys 85 90 95

Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys 100 . 105 110

Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr 115 120 125

Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His 130 . 135 140

Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys 145 150 155 160

Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe 165 170 175

Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro 180 185 190 His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln 195 200 205

Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe 210 215 220

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 225 230 235 240

Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 245 250 255

Leu Asn Arg Lys Ser Lys Lys Thr 260

<210> 53

<211> 885

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS

<222> (1)..(885)

<223> Delta-5-Elongase

atg)> 5 gag Glu	act	ttt Phe	aat Asn 5	tat Tyr	aaa Lys	cta Leu	aac Asn	atg Met 10	tac Tyr	ata Ile	gac Asp	tca Ser	tgg Trp 15	atg Met		48
ggt Gly	ccc Pro	aga Arg	gat Asp 20	gag Glu	cgg Arg	gta Val	cag Gln	gga Gly 25	tgg Trp	ctg Leu	ctt Leu	ctg Leu	gac Asp 30	aac Asn	tac Tyr		96
cct Pro	cca Pro	acc Thr 35	ttt Phe	gca Ala	cta Leu	aca Thr	gtc Val 40	atg Met	tac Tyr	ctg Leu	ctg Leu	atc Ile 45	gta Val	tgg Trp	atg Met	1	.44
GJA aaa	ccc Pro 50	aag Lys	țac Tyr	atg Met	aga Arg	cac His 55	aga Arg	cag Gln	ccg Pro	gtg Val	tct Ser 60	tgc Cys	cgg Arg	ggt Gly	ctc Leu	1	.92
ctc Leu 65	ttg Leu	gtc Val	tac Tyr	aat Asn	ctg Leu 70	ggc	ctc Leu	acg Thr	atc Ile	ttg Leu 75	tcc Ser	ttc Phe	tat Tyr	atg Met	ttc Phe 80	2	40
tat Tyr	gag Glu	atg Met	gtg Val	tct Ser 85	gct Ala	gtg Val	tgg Trp	cac His	ao GJÀ aaa	gat Asp	tat Tyr	aac Asn	ttc Phe	ttt Phe 95	tgc Cys	2	88

caa gac aca cac agt gca gga gaa acc gat acc aag atc ata aat gtg 336

									91								
Gln	Asp	Thr	His 100	Ser	Ala	Gly	Glu	Thr 105	Asp	Thr	Lys	Ile	Ile 110	Asn	Val		
ctg Leu	tgg Trp	tgg Trp 115	tac Tyr	tac Tyr	ttc Phe	tcc Ser	aag Lys 120	ctc Leu	ata Ile	gag Glu	ttt Phe	atg Met 125	gat Asp	acc Thr	ttc Phe	38	34
ttc . Phe	ttc Phe 130	atc Ile	ctg Leu	cgg Arg	aag Lys	aac Asn 135	aac Asn	cat His	caa Gln	atc Ile	acg Thr 140	ttt Phe	ctg Leu	cac His	atc Ile	43	12
						ctc Leu										48	30
						tac Tyr										52	28
cat His	gtc Val	ctg Leu	atg Met 180	tac Tyr	tct Ser	tac Tyr	tat Tyr	ggg Gly 185	ctc Leu	tct Ser	gct Ala	gtc Val	ccg Pro 190	gcc Ala	ttg Leu	57	76
cgg Arg	ccc Pro	tat Tyr 195	cta Leu	tgg Trp	tgg Trp	aag Lys	aaa Lys 200	tac Tyr	atc Ile	aca Thr	caa Gln	gta Val 205	cag Gln	ctg Leu	att Ile	62	24
						tcc Ser 215										67	72
						tgg Trp										72	20
						tca Ser										76	8
						aag Lys										. 81	.6
						aat Asn										86	;4
				agg Arg													15
<210)> 5	54															
<211	L> 2	295														n.	
<212	2> I	PRT	•														
<213	3 > 0	Oncor	chyno	chus	myk	iss											

<400> 54

Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met 1 5 10 15

Gly Pro Arg Asp Glu Arg Val Gln Gly Trp Leu Leu Leu Asp Asn Tyr 20 25 30

Pro Pro Thr Phe Ala Leu Thr Val Met Tyr Leu Leu Ile Val Trp Met 35 40 45

. Gly Pro Lys Tyr Met Arg His Arg Gln Pro Val Ser Cys Arg Gly Leu 50 60

Leu Leu Val Tyr Asn Leu Gly Leu Thr Ile Leu Ser Phe Tyr Met Phe 65 70 75 80

Tyr Glu Met Val Ser Ala Val Trp His Gly Asp Tyr Asn Phe Phe Cys 85 90 95

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val 100 105 110

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe 115 120 125

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile 130: 135 140

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 145 150 155 160

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile 165 170 175

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu 180 185 190

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile 195 200 205

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro 210 215 220

Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile 225 230 235 240

Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys 245 250 255

His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala 260 265 270

Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 275 280 285

93

His Arg Lys Val Arg Gly Asp 290 295

<210> 55

<211> 6753

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS

<222> (513)..(1397)

<223> Delta-5-Elongase

<400> 55 acqqattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60 cetegteete aceggtegeg tteetgaaac geagatgtge etegegeege actgeteega 120 acaataaaga ttctacaata ctagctttta tggttatgaa gaggaaaaat tggcagtaac 180 ctggcccac aaaccttcaa atgaacgaat caaattaaca accataggat gataatgcga 240 ttagtttttt agccttattt ctggggtaat taatcagcga agcgatgatt tttgatctat 300 taacagatat ataaatgcaa aaactgcatt aaccacttta actaatactt tcaacatttt 360 cogtttotat tacttottat toaaatgtaa taaaagtato aacaaaaaat tgttaatata 420 cctctatact ttaacgtcaa ggagaaaaaa ccccggatcg gactactagc agctgtaata 480 cgactcacta tagggaatat taagcttaca ta atg gag act ttt aat tat aaa 533 Met Glu Thr Phe Asn Tyr Lys cta aac atg tac ata gac tca tgg atg ggt ccc aga gat gag cgg gta 581 Leu Asn Met Tyr Ile Asp Ser Trp Met Gly Pro Arg Asp Glu Arg Val 10 15 cag gga tgg ctg ctt ctg gac aac tac cct cca acc ttt gca cta aca 629 Gln Gly Trp Leu Leu Asp Asn Tyr Pro Pro Thr Phe Ala Leu Thr 677 gtc atg tac ctg ctg atc gta tgg atg ggg ccc aag tac atg aga cac Val Met Tyr Leu Leu Ile Val Trp Met Gly Pro Lys Tyr Met Arg His aga cag ccg gtg tct tgc cgg ggt ctc ctc ttg gtc tac aat ctg ggc 725 Arg Gln Pro Val Ser Cys Arg Gly Leu Leu Leu Val Tyr Asn Leu Gly ctc acg atc ttg tcc ttc tat atg ttc tat gag atg gtg tct gct gtg 773 Leu Thr Ile Leu Ser Phe Tyr Met Phe Tyr Glu Met Val Ser Ala Val tgg cac ggg gat tat aac ttc ttt tgc caa gac aca cac agt gca gga 821 Trp His Gly Asp Tyr Asn Phe Phe Cys Gln Asp Thr His Ser Ala Gly

gaa acc gat a Glu Thr Asp 7 105	acc aag atc Thr Lys Ile	ata aat gt Ile Asn Va 110	g ctg tgg l Leu Trp	tgg tac tac Trp Tyr Tyr 115	ttc tcc ?	869
aag ctc ata c Lys Leu Ile 0 120	gag ttt atg Glu Phe Met 125	gat acc tt Asp Thr Ph	c ttc ttc e Phe Phe 130	Ile Leu Arg	aag aac Lys Asn 135	917
aac cat caa a Asn His Gln 1	atc acg ttt Ile Thr Phe 140	ctg cac at Leu His Il	c tac cac e Tyr His 145	cat gct agc His Ala Ser	atg ctc Met Leu 150	965
aac atc tgg t Asn Ile Trp 1	tgg ttc gtc Trp Phe Val 155	atg aac tg Met Asn Tr 16	p Val Pro	tgt ggt cac Cys Gly His 165	tcc tac 1	013
ttt ggt gcc t Phe Gly Ala S 170	tcc ctg aac Ser Leu Asn	agc ttc at Ser Phe I1 175	c cat gtc e His Val	ctg atg tac Leu Met Tyr 180	tct tac 1	061
tat ggg ctc t Tyr Gly Leu S 185	tct gct gtc Ser Ala Val	ccg gcc tt Pro Ala Le 190	g cgg ccc u Arg Pro	tat cta tgg Tyr Leu Trp 195	tgg aag 1 Trp Lys	109
aaa tac atc a Lys Tyr Ile 1 200	aca caa gta Thr Gln Val 205	cag ctg at Gln Leu Il	t cag ttc e Gln Phe 210	ttt ttg acc Phe Leu Thr		157
cag acg ata t Gln Thr Ile (tgt gca gtc Cys Ala Val 220	att tgg co Ile Trp Pr	a tgt gat o Cys Asp 225	ttc ccc aga Phe Pro Arg	ggg tgg 1 Gly Trp 230	205
ctg tat ttc of Leu Tyr Phe C	cag ata ttc Gln Ile Phe 235	tat gtc at Tyr Val II 24	e Thr Leu	att gcc ctt Ile Ala Leu 245	ttc tca 1	253
aac ttc tac a Asn Phe Tyr 3 250	att cag act Ile Gln Thr	tac aag aa Tyr Lys Ly 255	a cac ctt s His Leu	gtt tca caa Val Ser.Gln 260	aag aag 1 Lys Lys	301
gag tat cat of Glu Tyr His of 265	cag aat ggc Gln Asn Gly	tct gtt gc Ser Val Al 270	t tca ttg a Ser Leu	aat ggc cat Asn Gly His 275	gtg aat 1 Val Asn	349
ggg gtg aca of Gly Val Thr 1 280						397
tgaaggatcc ac	ctagtaacg g	ccgccagtg t	gctggaatt	ctgcagatat	ccagcacagt 1	457
ggcggccgct cg	gagtctaga g	ggcccttcg a	aggtaagcc	tatccctaac	catatactag 1	517
gtctcgattc ta	acgcgtacc g	gtcatcatc a	.ccatcacca	ttgagtttaa	accegetgat 1	577
cctagagggc c	gcatcatgt a	attagttat g	tcacgctta	cattcacgcc	ctcccccac 1	637
atccgctcta ac	ccgaaaagg a	aggagttag a	.caacctgaa	gtctaggtcc	ctatttattt 1	697
ttttatagtt at	tgttagtat ta	aagaacgtt a	tttatattt	caaatttttc	tttttttct 1	757
gtacagacgc gt	tgtacgcat g	taacattat a	.ctgaaaacc	ttgcttgaga	aggttttggg 1	817
acgctcgaag go	ctttaattt g	caagetgeg g	ccctgcatt	aatgaatcgg	ccaacgcgcg 1	877
gggagaggcg gt	tttgcgtat t	gggcgctct t	ccgcttcct	cgctcactga	ctcgctgcgc 1	937
teggtegtte g	gctgcggcg a	gcggtatca g	ctcactcaa	aggcggtaat	acggttatcc 1	997

2057 acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca aaagcccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgccccc tgacgagcat 2117 cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag 2177 gegttteece etggaagete eetegtgege teteetgtte egaceetgee gettaeegga 2237 tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg 2297 tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt 2357 cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac 2417 2477 gacttatege caetggeage agecaetggt aacaggatta geagagegag gtatgtagge ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag gacagtattt 2537 2597 ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc 2657 ggcaaacaaa ccaccgctgg tagcggtggt tttttttgttt gcaagcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg 2717 2777 aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 2837 tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt 2897 2957 tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gcgcttacca 3017 tctggcccca gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc 3077 tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 3137 ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg 3197 getteattea geteeggtte eeaaegatea aggegagtta catgateece catgttgtge 3257 aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg 3317 3377 ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga 3437 3497 ccgagttgct cttgcccggc gtcaacacgg gataataccg cgccacatag cagaacttta aaagtgetea teattggaaa aegttetteg gggegaaaae teteaaggat ettacegetg 3557 ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc atcttttact 3617 3677 ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata 3737 agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt 3797 tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa 3857 ataggggtte egegeacatt teecegaaaa gtgecaectg aegtetaaga aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtct tcaagaaatt 3917 cggtcgaaaa aagaaaagga gagggccaag agggagggca ttggtgacta ttgagcacgt 3977 gagtatacgt gattaagcac acaaaggcag cttggagtat gtctgttatt aatttcacag 4037 WO 2005/083093

4097 gtagttctgg tccattggtg aaagtttgcg gcttgcagag cacagaggcc gcagaatgtg ctctagattc cgatgctgac ttgctgggta ttatatgtgt gcccaataga aagagaacaa 4157 ttgacccggt tattgcaagg aaaatttcaa gtcttgtaaa agcatataaa aatagttcag 4217 4277 gcactccgaa atacttggtt ggcgtgtttc gtaatcaacc taaggaggat gttttggctc tggtcaatga ttacggcatt gatatcgtcc aactgcacgg agatgagtcg tggcaagaat 4337 accaagagtt cctcggtttg ccagttatta aaagactcgt atttccaaaa gactgcaaca 4397 tactactcag tgcagcttca cagaaacctc attcgtttat tcccttgttt gattcagaag 4457 4517 caggtgggac aggtgaactt ttggattgga actcgatttc tgactgggtt ggaaggcaag agagccccga gagcttacat tttatgttag ctggtggact gacgccagaa aatgttggtg 4577 atgcgcttag attaaatggc gttattggtg ttgatgtaag cggaggtgtg gagacaaatg 4637 gtgtaaaaga ctctaacaaa atagcaaatt tcgtcaaaaa tgctaagaaa taggttatta 4697 ctgagtagta tttatttaag tattgtttgt gcacttgccc tagcttatcg atgataagct 4757 gtcaaagatg agaattaatt ccacggacta tagactatac tagatactcc gtctactgta 4817 4877 cgatacactt ccqctcaqqt ccttqtcctt taacgaggcc ttaccactct tttgttactc 4937 tattgatcca gctcagcaaa ggcagtgtga tctaagattc tatcttcgcg atgtagtaaa actagctaga ccgagaaaga gactagaaat gcaaaaggca cttctacaat ggctgccatc 4997 5057 attattatcc gatgtgacgc tgcagcttct caatgatatt cgaatacgct ttgaggagat acagcctaat atccgacaaa ctgttttaca gatttacgat cgtacttgtt acccatcatt 5117 gaattttgaa catccgaacc tgggagtttt ccctgaaaca gatagtatat ttgaacctgt 5177 ataataatat atagtotago gotttacgga agacaatgta tgtatttcgg ttcctggaga 5237 aactattgca totattgcat aggtaatott gcacgtcgca tccccggttc attttctgcg 5297 tttccatctt gcacttcaat agcatatctt tgttaacgaa gcatctgtgc ttcattttgt 5357 5417 agaacaaaaa tgcaacgcga gagcgctaat ttttcaaaca aagaatctga gctgcatttt 5477 tacagaacag aaatgcaacg cgaaagcgct attttaccaa cgaagaatct gtgcttcatt tttgtaaaac aaaaatgcaa cgcgacgaga gcgctaattt ttcaaacaaa gaatctgagc 5537 5597 tgcattttta cagaacagaa atgcaacgcg agagcgctat tttaccaaca aagaatctat 5657 acttettttt tgttetacaa aaatgeatee egagageget atttttetaa caaageatet 5717 tagattactt tittictcct tigtgcgctc tataatgcag tctcttgata actttttgca 5777 ctgtaggtcc gttaaggtta gaagaaggct actttggtgt ctattttctc ttccataaaa aaagcctgac tccacttccc gcgtttactg attactagcg aagctgcggg tgcatttttt 5837 caagataaag gcatccccga ttatattcta taccgatgtg gattgcgcat actttgtgaa 5897 cagaaagtga tagcgttgat gattcttcat tggtcagaaa attatgaacg gtttcttcta 5957 ttttgtctct atatactacg tataggaaat gtttacattt tcgtattgtt ttcgattcac 6017 tctatgaata gttcttacta caattttttt gtctaaagag taatactaga gataaacata 6077

aaaaatgtag	aggtcgagtt	tagatgcaag	ttcaaggagc	gaaaggtgga	tgggtaggtt	6137
atatagggat	atagcacaga	gatatatagc	aaagagatac	ttttgagcaa	tgtttgtgga	6197
agcggtattc	gcaatgggaa	gctccacccc	ggttgataat	cagaaaagcc	ccaaaaacag	6257
gaagattgta	taagcaaata	tttaaattgt	aaacgttaat	attttgttaa	aattcgcgtt	6317
aaatttttgt	taaatcagct	cattttttaa	cgaatagccc	gaaatcggca	aaatccctta	6377
taaatcaaaa	gaatagaccg	agatagggtt	gagtgttgtt	ccagtttcca	acaagagtcc	6437
actattaaag	aacgtggact	ccaacgtcaa	agggcgaaaa	agggtctatc	agggcgatgg	6497
cccactacgt	gaaccatcac	cctaatcaag	ttttttgggg	tcgaggtgcc	gtaaagcagt	6557
aaatcggaag	ggtaaacgga	tgcccccatt	tagagcttga	cggggaaagc	cggcgaacgt	6617
ggcgagaaag	gaagggaaga	aagcgaaagg	agcgggggct	agggcggtgg	gaagtgtagg	6677
ggtcacgctg	ggcgtaacca	ccacacccgc	cgcgcttaat	ggggcgctac	agggcgcgtg	6737
gggatgatcc	actagt					6753

<210> 56

·<211> 295

<212> PRT

<213> Oncorhynchus mykiss

<400> 56

Met Glu Thr Phe Asn Tyr Lys Leu Asn Met Tyr Ile Asp Ser Trp Met

1 10 15

Gly Pro Arg Asp Glu Arg Val Gln Gly Trp Leu Leu Leu Asp Asn Tyr 20 25 30

Pro Pro Thr Phe Ala Leu Thr Val Met Tyr Leu Leu Ile Val Trp Met 35 40 45

Gly Pro Lys Tyr Met Arg His Arg Gln Pro Val Ser Cys Arg Gly Leu 50 60

Leu Leu Val Tyr Asn Leu Gly Leu Thr Ile Leu Ser Phe Tyr Met Phe 65 70 75 80

Tyr Glu Met Val Ser Ala Val Trp His Gly Asp Tyr Asn Phe Phe Cys 85 90 95

Gln Asp Thr His Ser Ala Gly Glu Thr Asp Thr Lys Ile Ile Asn Val 100 105

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe 115 120 125

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Phe Leu His Ile 135 140

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp 150 155

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Ser Leu Asn Ser Phe Ile

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ala Val Pro Ala Leu 185

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Val Gln Leu Ile 195 200 205

Gln Phe Phe Leu Thr Met Ser Gln Thr Ile Cys Ala Val Ile Trp Pro 210 215 .

Cys Asp Phe Pro Arg Gly Trp Leu Tyr Phe Gln Ile Phe Tyr Val Ile 230 . 235 225

Thr Leu Ile Ala Leu Phe Ser Asn Phe Tyr Ile Gln Thr Tyr Lys Lys

His Leu Val Ser Gln Lys Lys Glu Tyr His Gln Asn Gly Ser Val Ala

Ser Leu Asn Gly His Val Asn Gly Val Thr Pro Thr Glu Thr Ile Thr 280

His Arg Lys Val Arg Gly Asp 290

<210> 57

<211> 6645

<212> DNA

<213> Oncorhynchus mykiss

<220>

<221> CDS

<222> (513)..(1304)

<223> Delta-5-Elongase

<400> 57 acggattaga agccgccgag cgggtgacag ccctccgaag gaagactctc ctccgtgcgt 60

cctcgtcctc accggtcg	gog ttootgaaac goagatgtgo	ctcgcgccgc actgctccga 120
acaataaaga ttctacaa	ta ctagctttta tggttatgaa	gaggaaaaat tggcagtaac 180
ctggccccac aaaccttc	aa atgaacgaat caaattaaca	accataggat gataatgcga 240
ttagtttttt agccttat	tt ctggggtaat taatcagcga	agcgatgatt tttgatctat 300
taacagatat ataaatgo	aa aaactgcatt aaccacttta	actaatactt tcaacatttt 360
cggtttgtat tacttctt	at tcaaatgtaa taaaagtatc	aacaaaaaat tgttaatata 420
cctctatact ttaacgto	aa ggagaaaaaa ccccggatcg	gactactage agetgtaata 480
cgactcacta tagggaat	at taagcttaca ta atg gct Met Ala . 1	tca aca tgg caa agc 533 Ser Thr Trp Gln Ser 5
	cag tgg att tta gag aat Gln Trp Ile Leu Glu Asn 15	
	ggtc tac tcc cct atg cca Nal Tyr Ser Pro Met Pro 30	
	gtg gtc tgg gct ggg ccc Val Val Trp Ala Gly Pro 45 50	
	ctc aag gct gta ctc att Leu Lys Ala Val Leu Ile 65	
	gtc tac atg ttc cat gag Val Tyr Met Phe His Glu . 80	
	agt tac ctg tgt caa cct Ser Tyr Leu Cys Gln Pro 95	
	agg atg gcc aaa gta tgc Arg Met Ala Lys Val Cys 110	
	ttg gct gac acg gtg ttc Leu Ala Asp Thr Val Phe 125	
	act ttc ctg cat gtc tat Thr Phe Leu His Val Tyr 145	
	gca ggg gtc aag tat ctg Ala Gly Val Lys Tyr Leu 160	
	ctc aat acc ttt gtg cac Leu Asn Thr Phe Val His 175	
	gcc ctg ggg cct cac acg Ala Leu Gly Pro His Thr 190	
tgg aag cgc tat ctg	acc tca ctg cag ctg ctc	cag ttt gtc ctg ttg 1157

			100			
Trp Lys Arg 200	Tyr Leu Th		Gln Leu Leu 210	Gln Phe Val	Leu Leu 215	
acc act cac Thr Thr His	act ggc ta Thr Gly Ty 220	c aac ctc r Asn Leu	ttc act gag Phe Thr Glu 225	tgt gac ttc Cys Asp Phe	ecg gac Pro Asp 230	1205
tcc atg aac Ser Met Asn	gct gtg gt Ala Val Va 235	g ttt gcc l Phe Ala	tac tgt gtc Tyr Cys Val 240	agt ctc att Ser Leu Ile 245	gct ctc Ala Leu	1253
ttc agc aac Phe Ser Asn 250	ttc tac ta Phe Tyr Ty	t cag agc r Gln Ser 255	tac ctc aac Tyr Leu Asn	agg aag agc Arg Lys Ser 260	aag aag Lys Lys	1301
aca taaggato Thr	cca ctagtaa	cgg ccgcca	ıgtgt gctgga	attc tgcagat	atc	1354
catcacactg (geggeegete	gagcatgcat	ctagagggcc	gcatcatgta	attagttatg	1414
tcacgcttac a	attcacgccc	tccccccaca	tccgctctaa	ccgaaaagga	aggagttaga	1474
caacctgaag	tctaggtccc	tatttattt	: tttatagtta	tgttagtatt	aagaacgtta	1534
tttatatttc a	aaatttttct	tttttttatg	tacagacgcg	tgtacgcatg	taacattata	1594
ctgaaaacct	tgcttgagaa	ggttttggga	a cgctcgaagg	ctttaatttg	cggccctgca	1654
ttaatgaatc (ggccaacgcg	cggggagagg	g cggtttgcgt	attgggcgct	cttccgcttc	1714
ctcgctcact	gactcgctgc	gctcggtcgt	teggetgegg	cgagcggtat	cagctcactc	1774
aaaggcggta	atacggttat	ccacagaato	aggggataac	gcaggaaaga	acatgtgagc	1834
aaaaggccag	caaaagccca	ggaaccgtaa	a aaaggccgcg	ttgctggcgt	ttttccatag	1894
geteegeeee	cctgacgagc	atcacaaaaa	a tcgacgctca	agtcagaggt	ggcgaaaccc	1954
gacaggacta	taaagatacc	aggcgtttc	c ccctggaagc	tecetegtge	gatataatgt	2014
tccgaccctg	ccgcttaccg	gatacctgto	c cgcctttctc	ccttcgggaa	gcgtggcgct	2074
ttctcatagc	tcacgctgta	ggtatctcag	g ttcggtgtag	gtcgttcgct	ccaagctggg	2134
ctgtgtgcac	gaaccccccg	ttcagcccg	a ccgctgcgcc	ttatccggta	actatcgtct	2194
tgagtccaac	ccggtaagac	acgacttate	c gccactggca	gcagccactg	gtaacaggat	2254
tagcagagcg	aggtatgtag	gcggtgcta	c agagttettg	aagtggtggc	ctaactacgg	23,14
ctacactaga	aggacagtat	ttggtatct	g cgctctgctg	aagccagtta	ccttcggaaa	2374
aagagttggt	agctcttgat	ccggcaaac	a aadcaccgct	ggtagcggtg	gtttttttgt	2434
ttgcaagcag	cągattacgc	gcagaaaaa	a aggatctcaa	gaagatcctt	tgatcttttc	2494
tacggggtct	gacgctcagt	ggaacgaaa	a ctcacgttaa	gggattttgg	tcatgagatt	2554
atcaaaaagg	atcttcacct	agatccttt	t aaattaaaaa	tgaagtttta	aatcaatcta	2614
aagtatatat	gagtaaactt	ggtctgaca	g ttaccaatgo	ttaatcagtg	aggcacctat	2674
ctcagcgatc	tgtctatttc	gttcatcca	t agttgcctga	ctccccgtcg	tgtagataac	2734
tacgatacgg	gagcgcttac	catctggcc	c cagtgctgca	atgataccgc	gagacccacg	2794
ctcaccggct	ccagatttat	cagcaataa	a ccagccagco	ggaagggccg	agcgcagaag	2854

tggtcctgca actttatccg cctccattca gtctattaat tgttgccggg aagctagagt 2914 aagtagttcg ccagttaata gtttgcgcaa cgttgttggc attgctacag gcatcgtggt 2974 gtcactctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt 3034 3094 tacatgatee eccatgttgt geaaaaaage ggttagetee tteggteete egategttgt cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct 3154 3214 tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatag 3274 tgtatcacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa 3334 actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa 3394 ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca 3454 aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct 3514 ttttcaatgg gtaataactg atataattaa attgaagctc taatttgtga gtttagtata 3574 catgcattta cttataatac agttttttag ttttgctggc cgcatcttct caaatatgct 3634 teccageetg ettttetgta aegtteacce tetacettag catecettee etttgcaaat 3694 agtcctcttc caacaataat aatgtcagat cctgtagaga ccacatcatc cacggttcta 3754 3814 tactgttgac ccaatgcgtc tcccttgtca tctaaaccca caccgggtgt cataatcaac 3874 caatcgtaac cttcatctct tccacccatg tctctttgag caataaagcc gataacaaaa tetttgtege tettegeaat gteaacagta ceettagtat attetecagt agatagggag 3934 cccttgcatg acaattctgc taacatcaaa aggcctctag gttcctttgt tacttcttct 3994 qccqcctqct tcaaaccgct aacaatacct gggcccacca caccgtgtgc attcgtaatg 4054 tctgcccatt ctgctattct gtatacaccc gcagagtact gcaatttgac tgtattacca 4114 atgtcagcaa attttctgtc ttcgaagagt aaaaaattgt acttggcgga taatgccttt 4174 4234 ageggettaa etgtgeeete catggaaaaa teagteaaga tateeacatg tgtttttagt aaacaaattt tgggacctaa tgcttcaact aactccagta attccttggt ggtacgaaca 4294 tccaatgaag cacacaagtt tgtttgcttt tcgtgcatga tattaaatag cttggcagca 4354 4414 acaggactag gatgagtagc agcacgttcc ttatatgtag ctttcgacat gatttatctt cgtttcctgc aggtttttgt tctgtgcagt tgggttaaga atactgggca atttcatgtt 4474 tcttcaacac tacatatgcg tatatatacc aatctaagtc tgtgctcctt ccttcgttct 4534 4594 tccttctgtt cggagattac cgaatcaaaa aaatttcaaa gaaaccgaaa tcaaaaaaaa gaataaaaaa aaaatgatga attgaattga aaagctagct tatcgatgat aagctgtcaa 4654 agatgagaat taattccacg gactatagac tatactagat actccgtcta ctgtacgata 4714 4774 cacttccgct caggtccttg tcctttaacg aggccttacc actcttttgt tactctattg atccagctca gcaaaggcag tgtgatctaa gattctatct tcgcgatgta gtaaaactag 4834 4894 ctagaccgag aaagagacta gaaatgcaaa aggcacttct acaatggctg ccatcattat

tatccgatgt	gacgctgcag	cttctcaatg	atattcgaat	acgctttgag	gagatacagc	4954
ctaatatccg	acaaactgtt	ttacagattt	acgatcgtac	ttgttaccca	tcattgaatt	5014
ttgaacatcc	gaacctggga	gttttccctg	aaacagatag	tatatttgaa	cctgtataat	5074
aatatatagt	ctagcgcttt	acggaagaca	atgtatgtat	ttcggttcct	ggagaaacta	5134
ttgcatctat	tgcataggta	atcttgcacg	tegeateece	ggttcatttt	ctgcgtttcc	5194
atcttgcact	tcaatagcat	atctttgtta	acgaagcatc	tgtgcttcat	tttgtagaac	5254
aaaaatgcaa	cgcgagagcg	ctaattttc	aaacaaagaa	tctgagctgc	atttttacag	5314
aacagaaatg	caacgcgaaa	gcgctatttt	accaacgaag	aatctgtgct	tcatttttgt	5374
aaaacaaaaa	tgcaacgcga	cgagagcgct	aatttttcaa	acaaagaatc	tgagctgcat	5434
ttttacagaa	cagaaatgca	acgcgagagc	gctattttac	caacaaagaa	tctatacttc	5494
ttttttgttc	tacaaaaatg	catcccgaga	gcgctatttt	tctaacaaag	catcttagat	5554
tactttttt	ctcctttgtg	cgctctataa	tgcagtctct	tgataacttt	ttgcactgta	5614
ggtccgttaa	ggttagaaga	aggctacttt	ggtgtctatt	ttctcttcca	taaaaaaagc	5674
ctgactccac	ttcccgcgtt	tactgattac	tagcgaagct	gcgggtgcat	tttttcaaga	5734
taaaggcatc	cccgattata	ttctataccg	atgtggattg	cgcatacttt	gtgaacagaa	5794
agtgatagcg	ttgatgattc	ttcattggtc	agaaaattat	gaacggtttc	ttctattttg	5854
tctctatata	ctacgtatag	gaaatgttta	cattttcgta	ttgttttcga	ttcactctat	5914
gaatagttct	tactacaatt	tttttgtcta	aagagtaata	ctagagataa	acataaaaaa	5974
tgtagaggtc	gagtttagat	gcaagttcaa	ggagcgaaag	gtggatgggt	aggttatata	6034
gggatatagc	acagagatat	atagcaaaga	gatacttttg	agcaatgttt	gtggaagcgg	6094
tattcgcaat	gggaagctcc	accccggttg	ataatcagaa	aagccccaaa	aacaggaaga	6154
ttgtataagc	aaatatttaa	attgtaaacg	ttaatatttt	gttaaaattc	gcgttaaatt	6214
tttgttaaat	cagctcattt	tttaacgaat	agcccgaaat	cggcaaaạtc	ccttataaat	6274
caaaagaata	gaccgagata	gggttgagtg	ttgttccagt	ttccaacaag	agtccactat	6334
taaagaacgt	ggactccaac	gtcaaagggc	gaaaaagggt	ctatcagggc	gatggcccac	6394
tacgtgaacc	atcaccctaa	tcaagttttt	tggggtcgag	gtgccgtaaa	gcagtaaatc	6454
ggaagggtaa	acggatgccc	ccatttagag	cttgacgggg	aaagccggcg	aacgtggcga	6514
gaaaggaagg	gạagaaagcg	aaaggagcgg	gggctagggc	ggtgggaagt	gtaggggtca	6574
cgctgggcgt	aaccaccaca	acagaagaga	ttaatggggc	gctacagggc	gcgtggggat	6634
gatccactag	t					6645

<210> 58

<211> 264

<212> PRT

<213> Oncorhynchus mykiss

<400> 58

Met Ala Ser Thr Trp Gln Ser Val Gln Ser Met Arg Gln Trp Ile Leu 1 5 10 15

Glu Asn Gly Asp Lys Arg Thr Asp Pro Trp Leu Leu Val Tyr Ser Pro 20 25 30

Met Pro Val Ala Ile Ile Phe Leu Leu Tyr Leu Gly Val Val Trp Ala 35 40 45

Gly Pro Lys Leu Met Lys Arg Arg Glu Pro Val Asp Leu Lys Ala Val 50 55 60

Leu Ile Val Tyr Asn Phe Ala Met Val Cys Leu Ser Val Tyr Met Phe 65 70 75 80

His Glu Phe Leu Val Thr Ser Leu Leu Ser Asn Tyr Ser Tyr Leu Cys 85 90 95

Gln Pro Val Asp Tyr Ser Thr Ser Pro Leu Ala Met Arg Met Ala Lys 100 105 110

Val Cys Trp Trp Phe Phe Phe Ser Lys Val Ile Glu Leu Ala Asp Thr 115 120 125

Val Phe Phe Ile Leu Arg Lys Lys Asn Ser Gln Leu Thr Phe Leu His 130 135 140

Val Tyr His His Gly Thr Met Ile Phe Asn Trp Trp Ala Gly Val Lys 145 150 155 160

Tyr Leu Ala Gly Gly Gln Ser Phe Phe Ile Gly Leu Leu Asn Thr Phe . 165 170 175

Val His Ile Val Met Tyr Ser Tyr Tyr Gly Leu Ala Ala Leu Gly Pro 180 185 190

His Thr Gln Lys Tyr Leu Trp Trp Lys Arg Tyr Leu Thr Ser Leu Gln
195 200 205

Leu Leu Gln Phe Val Leu Leu Thr Thr His Thr Gly Tyr Asn Leu Phe 210 215 220

Thr Glu Cys Asp Phe Pro Asp Ser Met Asn Ala Val Val Phe Ala Tyr 225 230 235 240

Cys Val Ser Leu Ile Ala Leu Phe Ser Asn Phe Tyr Tyr Gln Ser Tyr 245 250 255

Leu	Asn	Arg	Lys	Ser	Lys	Lys	Thr
			260				

<210> 59 <211> 1077 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS (1)..(1077) <222> <223> Delta-5-Elongase <400> 59 atg tgc tca tca ccg ccg tca caa tcc aaa aca tcc ctc cta gca 48 Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala cgg tac acc acc gcc gcc ctc ctc ctc ctc acc ctc aca aca tgg tgc 96 Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Trp Cys 25 cae tte gee tte cea gee gee ace gee aca eee gge ete ace gee gaa 144 His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 40 atq cac tee tac aaa gte eea ete ggt ete ace gta tte tae etg etg 192 Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag 240 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 70 288 tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 85 gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg 336 Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 384 gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 120 432 gcg gcg ttg cat agt ggg agc tcg tat gcg gtg tgg gtt cat tat tgt Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg 480 Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly

aaa atg gac cag gtc tcc ttc ctc cac atc tac cac cac acg acc ata

									105							
Lys	Met	Asp	Gln	Val 165	Ser	Phe	Leu	His	Ile 170	Tyr	His	His	Thr	Thr 175	Ile	
gcg Ala	tgg Trp	gca Ala	tgg Trp 180	tgg Trp	atc Ile	gcc Ala	ctc Leu	cgc Arg 185	ttc Phe	tcc Ser	ccc Pro	ggt Gly	gga Gly 190	gac Asp	att Ile	576
tac Tyr	ttc Phe	ggg Gly 195	gca Ala	ctc Leu	ctc Leu	aac Asn	tcc Ser 200	atc Ile	atc Ile	cac His	gtc Val	ctc Leu 205	atg Met	tat Tyr	tcc Ser	624
tac Tyr	tac Tyr 210	gcc Ala	ctt Leu	gcc Ala	cta Leu	ctc Leu 215	aag Lys	gtc Val	agt Ser	tgt Cys	cca Pro 220	tgg Trp	aaa Lys	cga Arg	tac Tyr	672
ctg Leu 225	act Thr	caa Gln	gct Ala	caa Gln	tta Leu 230	ttg Leu	caa Gln	ttc Phe	aca Thr	agt Ser 235	gtg Val	gtg Val	gtt Val	tat Tyr	acg Thr 240	720
gly aaa	tgt Cys	acg Thr	ggt Gly	tat Tyr 245	act Thr	cat His	tac Tyr	tat Tyr	cat His 250	acg Thr	aag Lys	cat His,	gga Gly	gcg Ala 255	gat Asp	768
gag Glu	aca Thr	cag Gln	cct Pro 260	agt Ser	tta Leu	gga Gly	acg Thr	tat Tyr 265	tat Tyr	ttc Phe	tgt Cys	tgt Cys	gga Gly 270	gtg Val	cag Gln	816
gtg Val	ttt Phe	gag Glu 275	atg Met	gtt Val	agt Ser	ttg Leu	ttt Phe 280	gta Val	ctc Leu	ttt Phe	tcc Ser	atc Ile 285	ttt Phe	tat Tyr	aaa Lys	864
cga Arg	tcc Ser 290	tat Tyr	tcg Ser	aag Lys	aag Lys	aac Asn 295	aag Lys	tca Ser	gga Gly	gga Gly	aag Lys 300	gat Asp	agc Ser	aag Lys	aag Lys	912
aat Asn 305	gat Asp	gat Asp	GJÀ aàa	aat Asn	aat Asn 310	gag Glu	gat Asp	caa Gln	tgt Cys	cac His 315	aag Lys	gct Ala	atg Met	aag Lys	gat Asp 320	960
ata Ile	tcg Ser	gag Glu	ggt Gly	gcg Ala 325	aag Lys	gag Glu	gtt Val	gtg Val	330 Gly aaa	cat His	gca Ala	gcg Ala	aag Lys	gat Asp 335	gct Ala	1008
gga Gly	aag Lys	ttg Leu	gtg Val 340	gct Ala	acg Thr	gcg Ala	agt Ser	aag Lys 345	gct Ala	gta Val	aag Lys	agg Arg	aag Lys 350	gga Gly	act Thr	1056
		act Thr 355				tag										1077
<21	0>	60														
<21	L> :	358														
<21	2> :	PRT	•													
<21	3> '	Thala	assi	osir	a pse	eudo	nana									

<400> 60

Met Cys Ser Ser Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 1 5 10 15

106

Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Trp Cys His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 55 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 100 105 Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 115 120 Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 150 155 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile 185 Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 200 · 205 195 Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 210 Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 245 Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 265 Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys

280

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 295 Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 315 310 . Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 345 Arg Val Thr Gly Ala Met 355 <210> 61 <211> 933 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS <222> (1)..(933) <223> Delta-5-Elongase atg cac tee tae aaa gte eea ete ggt ete ace gta tte tae etg etg 48 Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 96 agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 144 35 40 192 gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 240 gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 288 gcg gcg ttg cat agt ggg agc tcg tat gcg gtg tgg gtt cat tat tgt Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 85 90 gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg 336

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 105

		•															
aaa Lys	atg Met	gac Asp 115	cag Gln	gtc Val	tcc Ser	ttc Phe	ctc Leu 120	cac His	atc Ile	tac Tyr	cac His	cac His 125	acg Thr	acc Thr	ata Ile		384
gcg Ala	tgg Trp 130	gca Ala	tgg Trp	tgg Trp	atc Ile	gcc Ala 135	ctc Leu	cgc Arg	ttc Phe	tcc Ser	ccc Pro 140	ggt Gly	gga Gly	gac Asp	att		432
tac Tyr 145	ttc Phe	Gly aaa	gca Ala	ctc Leu	ctc Leu 150	aac Asn	tcc Ser	atc Ile	atc Ile	cac His 155	gtc Val	ctc Leu	atg Met	tat Tyr	tcc Ser 160		480
		gcc Ala															528
		caa Gln															576
		acg Thr 195															624
		cag Gln															672
		gag Glu															720
		tat Tyr															768
		gat Asp															816
		gag Glu 275						Val									864
	_	ttg Leu	_ =		. –		_	_		_	_						912
		act Thr				tag										·	933
<210)>	62															
<211		310	•														
<212	. <	PRT															

<213> Thalassiosira pseudonana

<400> 62

Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 1 10 15

PCT/EP2005/001863

Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 25 Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly 70 Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly

105 . 110

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 115 120

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 165 170

Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr

Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 200

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 210 215

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 250

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 265

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 295 Arg Val Thr Gly Ala Met <210> 63 <211> 933 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS <222> (1)..(933) <223> Delta-5-Elongase <400> 63 48 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 1.0 agt cta ccg tca cta aag tac gtt acg gac aac tac ctt gcc aaa aag 96 Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 25 tat gat atg aag tca ctc cta acg gaa tca atg gtg ttg tac aat gtg Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 144 gcg caa gtg ctg ctc aat ggg tgg acg gtg tat gcg att gtg gat gcg Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 192 50 55 240 gtg atg aat aga gac cat ccg ttt att gga agt aga agt ttg gtt ggg Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly gcg gcg ttg cat agt ggg agc tcg tat gcg gtg tgg gtt cat tat tgt 288 Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys gat aag tat ttg gag ttc ttt gat acg tat ttt atg gtg ttg agg ggg Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 336 105 aaa atg gac cag gtc tcc ttc ctc cac atc tac cac cac acg acc ata 384 Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile 120 gcg tgg gca tgg tgg atc gcc ctc cgc ttc tcc ccc ggt gga gac att 432 Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile tac ttc ggg gca ctc ctc aac tcc atc atc cac gtc ctc atg tat tcc 480

•									111								
Tyr 145	Phe	Gly	Ala	Leu	Leu 150	Asn	Ser	Ile	Ile	His 155	Val	Leu	Met	Tyr	Ser 160		
tac Tyr	tác Tyr	gcc Ala	ctt Leu	gcc Ala 165	cta Leu	ctc Leu	aag Lys	gtc Val	agt Ser 170	tgt Cys	cca Pro	tgg Trp	aaa Lys	cga Arg 175	tac Tyr	52	8
ctg Leu	act Thr	caa Gln	gct Ala 180	caa Gln	tta Leu	ttg Leu	caạ. Gln	ttc Phe 185	aca Thr	agt Ser	gtg Val	gtg Val	gtt Val 190	tat Tyr	acg Thr	57	6
ggg Gly	tgt Cys	acg Thr 195	ggt Gly	tat Tyr	act Thr	cat His	tac Tyr 200	tat Tyr	cat His	acg Thr	aag Lys	cat His 205	gga Gly	gcg Ala	gat Asp	62	4
gag Glu	aca Thr 210	cag Gln	cct Pro	agt Ser	tta Leu	gga Gly 215	acg Thr	tat Tyr	tat Tyr	ttc Phe	tgt Cys 220	tgt Cys	gga Gly	gtg Val	cag Gln	67	2
gtg Val 225	ttt Phe	gag Glu	atg Met	gtt Val	agt Ser 230	ttg Leu	ttt Phe	gta Val	ctc Leu	ttt Phe 235	tcc Ser	atc Ile	ttt Phe	tat Tyr	aaa Lys 240	72	0
cga Arg	tcc Ser	tat Tyr	tcg Ser	aag Lys 245	aag Lys	aac Asn	aag Lys	tca Ser	gga Gly 250	gga Gly	aag Lys	gat Asp	agc Ser	aag Lys 255	aag Lys	76	8
aat Asn	gat Asp	gat Asp	ggg Gly 260	aat Asn	aat Asn	gag Glu	gat Asp	caa Gln 265	tgt Cys	cac His	aag Lys	gct Ala	atg Met 270	aag Lys	gat Asp	81	.6
ata Ile	tcg Ser	gag Glu 275	ggt Gly	gcg Ala	aag Lys	gag Glu	gtt Val 280	gtg Val	gly aaa	cat His	Ala	gcg Ala 285	aag Lys	gat Asp	gct Ala	86	4
gga Gly	aag Lys 290	ttg Leu	gtg Val	gct Ala	acg Thr	gdg Ala 295	agt Ser	aag Lys	gct Ala	gta Val	aag Lys 300	agg Arg	aag Lys	gga Gly	act Thr	91	.2
cgt Arg 305	gtt Val	act Thr	ggt Gly	gcc Ala	atg Met 310	tag										93	3
<21	0>	64															
<21	1>	310		-													
<21	2>	PRT															
<21	3> '	Thal	assi	osira	a ps	eudo	nana	••									
<40	0>	64															
Met 1	His	Ser	Tyr	5 Lys	Val	Pro	Leu	Gly	Leu 10	Thr	Val	Phe	Tyr	Leu 15	Leu		
Ser	Leu	Pro	Ser 20	Leu	Lys	Tyr	Val	Thr 25	Asp	Asn	Tyr	Leu	Ala 30	Lys	Lys		

Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 35

112 Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 55 Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly . Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Thr Ile Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Gly Asp Ile Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 150 Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr Leu Thr Gln Ala Gln Leu Leu Gln Phe Thr Ser Val Val Val Tyr Thr 185 Gly Cys Thr Gly Tyr Thr His Tyr Tyr His Thr Lys His Gly Ala Asp 200 Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 225 230 235 Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr

Arg Val Thr Gly Ala Met

113 <210> 65 <211> 825 <212> DNA <213> Thraustochytrium aureum <220> <221> CDS <222> (1)..(825) <223> Delta-5-Elongase <400> 65 atg acg agc aac atg agc gcg tgg ggc gtc gcc gtc gac cag acg cag 48 Met Thr Ser Asn Met Ser Ala Trp Gly Val Ala Val Asp Gln Thr Gln cag gtc gtc gac cag atc atg ggc ggc gcc gag ccg tac aag ctg aca 96 Gln Val Val Asp Gln Ile Met Gly Gly Ala Glu Pro Tyr Lys Leu Thr gaa ggg cgc atg acg aac gtc gag acg atg ctg gcg atc gag tgc ggc 144 Glu Gly Arg Met Thr Asn Val Glu Thr Met Leu Ala Ile Glu Cys Gly tac gcc gcc atg ctg ctg ttc ctg acc ccg atc atg aag cag gcc gag 192 Tyr Ala Ala Met Leu Leu Phe Leu Thr Pro Ile Met Lys Gln Ala Glu aag ccc ttc gag ctc aag tcc ttc aag ctc gcc cac aac ctg ttc ctg 240 Lys Pro Phe Glu Leu Lys Ser Phe Lys Leu Ala His Asn Leu Phe Leu 70 288 tte gte etg tee gee tac atg tge ete gag ace gte ege eag gee tac Phe Val Leu Ser Ala Tyr Met Cys Leu Glu Thr Val Arg Gln Ala Tyr 336 ctt gcg ggc tac tcg gtg ttc ggc aac gac atg gag aag ggc agc gag Leu Ala Gly Tyr Ser Val Phe Gly Asn Asp Met Glu Lys Gly Ser Glu 100 ccg cac gcg cac ggc atg gcc caa atc gtg tgg atc ttt tac gtg tcc Pro His Ala His Gly Met Ala Gln Ile Val Trp Ile Phe Tyr Val Ser 384 115 120 432 aag gcg tac gag ttc gtg gac acg ctg atc atg atc ctg tgc aaa aag Lys Ala Tyr Glu Phe Val Asp Thr Leu Ile Met Ile Leu Cys Lys Lys ttc aac cag gtc tcc gtc ctg cac gtg tac cac cac gcc acc atc ttt 480 Phe Asn Gln Val Ser Val Leu His Val Tyr His His Ala Thr Ile Phe 150 gct atc tgg ttt atg atc gcc aag tac gcc ccg ggc ggc gac gca tac Ala Ile Trp Phe Met Ile Ala Lys Tyr Ala Pro Gly Gly Asp Ala Tyr 528 ttt age gtc atc ctg aac teg ttc gtg cac acc gtc atg tac geg tac 576 Phe Ser Val Ile Leu Asn Ser Phe Val His Thr Val Met Tyr Ala Tyr

					cag Gln											624
					cag Gln											672
					ctt Leu 230											720
					tac Tyr											768
					tac Tyr											816
_	gcc Ala	taa														825
<210)> 6	66														
<211	L> 2	274														
<212	2> 1	PRT														
<213	3> 5	Thrai	ıstoo	chyti	cium	aure	eum .									
<400)> 6	56					-									
Met 1	Thr	Ser	Asn	Met 5	Ser	Ala	Trp	Gly	Val 10	Ala	Val	Asp	Gln	Thr 15	Gln	
Gln	Val	Val	Asp 20	Gl'n	Ile	Met	Gly	Gly 25	Ala	Glu	Pro	Tyr	Lys 30	Leu	Thr	
Glu	Gly	Arg 35	Met	Thr	Asn	Val	Glu 40	Thr	Met	Leu	Ala	Ile 45	Gľu	Суз	Gly	
Tyr	Ala 50	Ala	Met	Leu	Leu	Phe 55	Leu	Thr	Pro	Ile	Met 60	Lys	Gln	Ala	Glu	
Lys 65	Pro	Phe	Glu	Leu	Lys 70	Ser	Phe	Lys	Leu	Ala 75	His	Asn	Leu	Phe	Leu 80	
Phe	Val	Leu	Ser	Ala 85	Tyr	Met	Cys	Leu	Glu 90	Thr	Val	Arg	Gln	Ala 95	Tyr	
Leu	Ala	Gly	Tyr 100	Ser	Val	Phe	Gly	Asn 105	Asp	Met	Glu	Lys	Gly 110	Ser	Glu	
Pro	His	Ala 115	His	Gly	Met	Ala	Gln 120	Ile	Val	Trp	Ile	Phe 125	Tyr	Val	Ser	

Lys Ala Tyr Glu Phe Val Asp Thr Leu Ile Met Ile Leu Cys Lys Lys 130 135 140

Phe Asn Gln Val Ser Val Leu His Val Tyr His His Ala Thr Ile Phe 145 150 155 160

Phe Ser Val Ile Leu Asn Ser Phe Val His Thr Val Met Tyr Ala Tyr 180 185 190

Tyr Phe Phe Ser Ser Gln Gly Phe Gly Phe Val Lys Pro Ile Lys Pro 195 200 205

Tyr Ile Thr Ser Leu Gln Met Thr Gln Phe Met Ala Met Leu Val Gln 210 215 220

Ser Leu Tyr Asp Tyr Leu Tyr Pro Cys Asp Tyr Pro Gln Gly Leu Val 225 230 235

Lys Leu Leu Gly Val Tyr Met Leu Thr Leu Leu Ala Leu Phe Gly Asn 245 250 255

Phe Phe Val Gln Ser Tyr Leu Lys Lys Ser Asn Lys Pro Lys Ala Lys 260 265 270

Ser Ala

<210> 67

<211> 903

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(903)

<223> Delta-5-Elongase

<400> 67
atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg ttc gcc gcg tac
Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr
1 5 10 15

48

96

geg tac geg acg tac gec tac gec ttt gag tgg teg cac geg aat ggc

									116							
Ala	Tyr	Ala	Thr 20	Tyr	Ala	Tyr	Ala	Phe 25	Glu	Trp	Ser	His	Ala 30	Asn	Gly	
							gag Glu 40									144
							atg Met									192
							gag Glu									240
							acg Thr									288
							gjå aaa									336
							aaa Lys 120									384
							tat Tyr									432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
							gcc Ala									576
							tcg Ser 200									624
							tac Tyr									672
ttc Phe 225							gcc Ala									720
							gcg Ala									768
							tac Tyr									816
							gtg Val 280									864
ccc	agc	gtg	cga	cgc	acg	cga	tct	cga	aaa	att	gac	taa				903

117

Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 290 295 300

<210> 68

<211> 300

. <212> PRT

<213> Ostreococcus tauri

<400> 68

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 55 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val

Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe
130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly

									110						-		
Ile	Arg 210	Cys	Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Gln	Ala 220	Gln	Met	Leu	Gln	•	
Phe 225	Val	Ile	Val	Phe	Ala 230	His	Ala	Val	Phe	Val 235	Leu	Arg	Gln	Lys	His 240		
Cys	Pro	Val	Thr	Leu 245	Pro	Trp	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met		
Leu	Val	Leu	Phe 260	Gly	Asn	Phe	Tyr	Leu 265	Lys	Ala	Tyr		Asn 270	Lys	Ser		
Arg	Gly	Asp 275	Gly	Ala	Ser	Ser	Val 280	Lys	Pro	Ala	Glu	Thr 285	Thr	Arg	Ala		
Pro	Ser 290	Val	Arg	Arg	Thr	Arg 295	Ser	Arg	Lys	Ile	Asp 300						
<210)> (59								-							
<211	.> 8	379															
<212	?> I	ANC				•											
<213	3> 0	stre	eoco	ccus	tauı	ci											
<220)>				•												
<221	.> (CDS															
<222	!>	(1)	. (879	∍)													
<223	> I	elta	a-6-1	Elong	jase												
-400		- a															
	agt				gca Ala											48	i
1	ber	Gry	пец	5	мта	FIO	ASII	FILE	10	птэ	Arg	FIIC	ııp	15	цув		
					tcc Ser											96	
	L	-4-	20			2		25			-1-		30				
					cca Pro											144	
	_	35		-			40					45					
					cca Pro											192	
					tat Tyr 70									Lys		240	
					tgg Trp											288	

														gcc Ala			336
gcg Ala	tat Tyr	cag Gln 115	aat Asn	gga Gly	tat Tyr	act Thr	tta Leu 120	tgg Trp	ggt Gly	aat Asn	gaa Glu	ttc Phe 125	aag Lys	gcc Ala	acg Thr		384
														aaa Lys			432
														ttg Leu			480
caa Gln	gta Val	agt Ser	ttc Phe	cta Leu 165	cac His	att Ile	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile		528
														ttc Phe			576
gcg Ala	gcc Ala	ttg Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	gtg Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu		624
tta Leu	tca Ser 210	acc Thr	ctt Leu	att Ile	gga Gly	aaa Lys 215	gaa Glu	gat Asp	cct Pro	aag Lys	cgt Arg 220	tcc Ser	aac Asn	tac Tyr	ctt Leu		672
tgg Trp 225	tgg Trp	ggt Gly	cgc Arg	cac His	cta Leu 230	acg Thr	caa Gln	atg Met	cag Gln	atg Met 235	ctt Leu	cag Gln	ttt Phe	ttc Phe	ttc Phe 240	_	720
														ccc Pro 255			768
														ggc Gly			816
														ctc Leu			864
		cag Gln		tga													879
<210)> '	70															
<213	L> :	292															
<212	2> 1	PRT															
<213	3> (Ostre	e000	ccus	tauı	ci											
			•														

<400> 70

Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys 1 5 10 10 15

Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25 30

Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 40 45

Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 50 60

Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 75 80

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 95

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln
100 105 110

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135 140

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150 155 160

Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 195 200 205

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 220

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 225 230 235 240

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 245 250 255

Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 270

Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln 275 280 285

Lys Lys Gln Gln 290	
<210> 71	
<211> 1362	
<212> DNA	
<213> Primula farinosa	
<220>	
<221> CDS	
<222> (1)(1362)	
<223> Delta-6-Desaturase	
<400> 71 atg gct aac aaa tct cca cca aac ccc aaa aca ggt tac ata acc agc 48	3
Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 1 10 15	
tca gac ctg aaa tcc cac aac aag gca ggt gac cta tgg ata tca atc 96	5
Ser Asp Leu Lys Ser His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile 20 25 30	
cac ggc caa gtc tac gac gtg tcc tct tgg gcc gcc ctt cat ccg ggg 144	1
His Gly Gln Val Tyr Asp Val Ser Ser Trp Ala Ala Leu His Pro Gly 35 40 45	
ggc act gcc cct ctc atg gcc ctt gca gga cac gac gtg acc gat gct 192	2
Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala 50 55 60	
tte ete geg tae eat eee eet tee aet gee egt ete ete eet eet ete 240)
Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 65 70 75 80	
tot acc aac ctc ctt ctt caa aac cac tcc gtc tcc ccc acc tcc tca 288	3
Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 85 90 95	
gac tac cgc aaa ctc ctc gac aac ttc cat aaa cat ggc ctt ttc cgc 336	5
Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg 100 105 110	
gcc agg ggc cac act gct tac gcc acc ttc gtc ttc atg ata gcg atg 384 Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met	1
115 120 125	
ttt cta atg agc gtg act gga gtc ctt tgc agc gac agt gcg tgg gtc 432 Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val	2
130 135 140	
cat ttg gct agc ggc gga gca atg ggg ttc gcc tgg atc caa tgc gga 480 His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly	2
145 150 155 160	

tgg ata ggt cac gac tct ggg cat tac cgg att atg tct gac agg aaa

									122							
Trp	Ile	Gly	His	Asp 165	Ser	Gly	His	Tyr	Arg 170	Ile	Met	Ser	Asp	Arg 175	Lys	
tgg Trp	aac Asn	tgg Trp	ttc Phe 180	gcg Ala	caa Gln	atc Ile	cta Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	glà aaa	att Ile	576
agt Ser	atc Ile	ggg Gly 195	tgg Trp	tgg Trp	aag Lys	tgg Trp	aac Asn 200	His	aat Asn	gcg Ala	cac His	cac His 205	atc Ile	gct Ala	tgc Cys	624
						ccc Pro 215										672
gtc Val 225	tcc Ser	ccc Pro	aag Lys	ttc Phe	ttc Phe 230	aac Asn	tcc Ser	ctt Leu	act Thr	tct Ser 235	cgt Arg	ttc Phe	tac Tyr	gac Asp	aag Lys 240	720
aag Lys	ctg Leu	aac Asn	ttc Phe	gac Asp 245	ggc Gly	gtg Val	tcg Ser	agg Arg	ttt Phe 250	ctg Leu	gtt Val	tgc Cys	tac Tyr	cag Gln 255	cac His	768
tgg Trp	acg Thr	ttt Phe	tat Tyr 260	ccg Pro	gtc Val	atg Met	tgt Cys	gtc Val 265	gct Ala	agg Arg	ctg Leu	aac Asn	atg Met 270	ctc Leu	gcg Ala	816
						ttc Phe		Ser								864
caa Gln	gag Glu 290	gtt Val	ttc Phe	gga Gly	ctt Leu	gcc Ala 295	gtg Val	ttt Phe	tgg Trp	gtt Val	tgg Trp 300	ttt Phe	ccg Pro	ctt Leu	tta Leu	912
ctt Leu 305	tct Ser	tgt Cys	tta Leu	cct Pro	aat Asn 310	tgg Trp	ggc Gly	gag Glu	agg Arg	att Ile 315	atg Met	ttt Phe	ttg Leu	ctt Leu	gcg Ala 320	960
						ata Ile										1008
ttt Phe	tct Ser	tcg Ser	gac Asp 340	gtc Val	tat Tyr	gtg Val	ggc	ccg Pro 345	cca Pro	gta Val	ggt Gly	aat Asn	gac Asp 350	tgg Trp	ttc Phe	1056
aag Lys	aaa Lys	cag Gln 355	act Thr	gcc Ala	gjå aaa	aca Thr	ctt Leu 360	aac Asn	ata Ile	tcg Ser	tgc Cys	ccg Pro 365	gcg Ala	tgg Trp	atg Met	1104
gat Asp	tgg Trp 370	ttc Phe	cat His	ggc	gjå aaa	tta Leu 375	cag Gln	ttt Phe	cag Gln	gtc Val	gag Glu 380	cac His	cac His	,ttg Leu	ttt Phe	1152
ccg Pro 385	cgg Arg	atg Met	cat Pro	agg Arg	ggt Gly 390	cag Gln	ttt Phe	agg Arg	aag Lys	att Ile 395	tct Ser	cct Pro	ttt Phe	gtg Val	agg Arg 400	1200
gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atc Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
						ctt Leu										1296
gct	cgg	gac	ctc	tct	aat	ccg	ctc	cca	aag	aat	atg	gtg	tgg	gaa	gct	1344

123

Ala Arg Asp Leu Ser Asn Pro Leu Pro Lys Asn Met Val Trp Glu Ala 435 440 445

ctt aaa act ctc ggg tga Leu Lys Thr Leu Gly 450 1362

. <210> 72

<211> 453

<212> PRT

<213> Primula farinosa

<400> 72

Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 1 5 10 15

Ser Asp Leu Lys Ser His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile 20 25 30

His Gly Gln Val Tyr Asp Val Ser Ser Trp Ala Ala Leu His Pro Gly 35 40 45

Gly Thr Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala 50 55 60

Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 65 70 75 80

Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 85 90 95

Asp Tyr Arg Lys Leu Leu Asp Asn Phe His Lys His Gly Leu Phe Arg

Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Phe Met Ile Ala Met 115 120 125

Phe Leu Met Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 130 135 140

His Leu Ala Ser Gly Gly Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 145 150 155 160

Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 165 170 175

Trp Asn Trp Phe Ala Gln Ile Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190

Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200 205

Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 215 220

Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 235 240

Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 245 250 255

Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Leu Ala 260 265 270

Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Cys His Arg Ala 275 280 285

Gln Glu Val Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 290 295 300

Leu Ser Cys Leu Pro Asn Trp Gly Glu Arg Ile Met Phe Leu Leu Ala 305 310 315 320

Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335

Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Gly Asn Asp Trp Phe 340 345 350

Lys Lys Gln Thr Ala Gly Thr Leu Asn Ile Ser Cys Pro Ala Trp Met 355 360 365

Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 370 375 380 ·

Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395 400

Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415

Lys Ala Asn Val Phe Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430

Ala Arg Asp Leu Ser Asn Pro Leu Pro Lys Asn Met Val Trp Glu Ala 435 . 440 445

Leu Lys Thr Leu Gly 450

<210> 73

<211> 1362

<212> DNA

<213> Primula vialii

<220>

<221> CDS

<222> (1)..(1362)

<223> Delta-6-Desaturase

<400) > 5	73															
ato	act	aac	aaa Lys	tct Ser 5	cca Pro	cca Pro	aac Asn	ccc Pro	aaa Lys 10	aca Thr	ggt Gly	tac Tyr	att Ile	acc Thr 15	agc Ser		48
tca Ser	gac Asp	ctg Leu	aaa Lys 20	GJA aaa	cac His	aac Asn	aaa Lys	gca Ala 25	gga Gly	gac Asp	cta Leu	tgg Trp	ata Ile 30	tca Ser	atc Ile		96
cac His	gjå aaa	gag Glu 35	gta Val	tac Tyr	gac Asp	gtg Val	tcc Ser 40	tcg .Ser	tgg Trp	gcc Ala	ggc	ctt Leu 45	cac His	ccg Pro	gly aaa		144
ggc Gly	agt Ser 50	gcc Ala	ccc Pro	ctc Leu	atg Met	gcc Ala 55	ctc Leu	gca Ala	gga Gly	cac His	gac Asp 60	gta Val	acc Thr	gac Asp	gct Ala		192
ttt Phe 65	cta Leu	gcg Ala	tat Tyr	His	cct Pro 70	cct Pro	tct Ser	acc Thr	gcc Ala	cgc Arg 75	ctc Leu	ctc Leu	cct Pro	ccc Pro	ctc Leu 80	•	240
tcc Ser	acc Thr	aac Asn	ctc Leu	ctc Leu 85	ctt Leu	caa Gln	aac Asn	cac His	tcc Ser 90	gtc Val	tcc Ser	ccc Pro	acc Thr	tcc Ser 95	tct Ser		288
gac Asp	tac Tyr	cgc Arg	aaa Lys 100	ctc Leu	ctc Leu	cac His	aac Asn	ttc Phe 105	cat His	aaa Lys	att Ile	ggt Gly	atg Met 110	ttc Phe	cgc Arg		336
gcc Ala	agg Arg	ggc Gly 115	cac His	act Thr	gct Ala	tac Tyr	gcc Ala 120	acc Thr	ttc Phe	gtc Val	atc Ile	atg Met 125	ata Ile	gtg Val	atg Met		384
ttt Phe	cta Leu 130	acg Thr	agc Ser	gtg Val	acc Thr	gga Gly 135	gtc Val	ctt Leu	tgc Cys	agc Ser	gac Asp 140	agt Ser	gcg Ala	tgg Trp	gtc Val		432
cat His 145	ctg Leu	gct Ala	agc Ser	ggc Gly	gca Ala 150	gca Ala	atg Met	Gly aaa	ttc Phe	gcc Ala 155	tgg Trp	atc Ile	cag Gln	tgc Cys	gga Gly 160		480
tgg Trp	ata Ile	ggt Gly	cac His	gac Asp 165	tct Ser	Gly aaa	cat His	tac Tyr	cgg Arg 170	att Ile	atg Met	tct Ser	gac Asp	agg Arg 175	aaa Lys		528
tgg Trp	aac Asn	tgg Trp	ttc Phe 180	gcg Ala	cag Gln	gtc Val	ctg Leu	agc Ser 185	aca Thr	aac Asn	tgc Cys	ctc Leu	cag Gln 190	gjå aaa	atc Ile		576

agt Ser	atc Ile	999 Gly 195	tgg Trp	tgg Trp	aag Lys	tgg Trp	aac Asn 200	cat His	aac Asn	gcc Ala	cac His	cac His 205	att Ile	gct Ala	tgc Cys	624
aat Asn	agc Ser 210	ctg	gac Asp	tac Tyr	gac Asp	ccc Pro 215	gac	ctc Leu	cag Gln	tat Tyr	atc Ile 220	cct	ttg Leu	ctc Leu	gtg Val	672
gtc Val 225	tcc Ser	ccc Pro	aag Lys	ttc Phe	ttc Phe 230	aac	tcc Ser	ctt Leu	act Thr	tct Ser 235	cgt Arg	ttc Phe	tac Tyr	gac Asp	aag Lys 240	720
aag Lys	ctg Leu	aat Asn	ttc Phe	gac Asp 245	ggc Gly	gtg Val	tca Ser	agg Arg	ttt Phe 250	ctg Leu	gtt Val	tgc Cys	tac Tyr	cag Gln 255	cac His	768
	acg Thr															816
cag Gln	tcg Ser	ttt Phe 275	ata Ile	acg Thr	ctt Leu	ttc Phe	tcg Ser 280	agc Ser	agg Arg	gag Glu	gtg Val	ggt Gly 285	cat His	agg Arg	gcg Ala	864
caa Gln	gag Glu 290	att Ile	ttc Phe	gga Gly	ctt Leu	gct Ala 295	gtg Val	ttt Phe	tgg Trp	gtt Val	tgg Trp 300	ttt Phe	ccg Pro	ctc Leu	ctg Leu	912
ctc Leu 305	tct Ser	tgc Cys	tta Leu	cct Pro	aat Asn 310	tgg Trp	agc Ser	gag Glu	agg Arg	att Ile 315	atg Met	ttt Phe	ctg Leu	cta Leu	gcg Ala 320	960
	tat Tyr															1008
	tct Ser															1056
aag Lys	aaa Lys	cag Gln 355	act Thr	gct Ala	Gly ggg	aca Thr	ctt Leu 360	aac Asn	ata Ile	tcg Ser	tgc Cys	ccg Pro 365	gcg Ala	tgg Trp	atg Met	1104
gac Asp	tgg Trp 370	ttc Phe	cat His	ggc Gly	gjå aaa	ttg Leu 375	cag Gln	ttt Phe	cag Gln	gtc Val	gag Glu 380	cac His	cac His	ttg Leu	ttt Phe	1152
	cgg Arg															1200
gat Asp	ttg Leu	tgt Cys	aag Lys	aaa Lys 405	cac His	aac Asn	ttg Leu	cct Pro	tac Tyr 410	aat Asn	atc Ile	gcg Ala	tct Ser	ttt Phe 415	act Thr	1248
aaa Lys	gca Ala	aac Asn	gtg Val 420	ttg Leu	acg Thr	ctt Leu	aag Lys	acg Thr 425	ctg Leu	aga Arg	aat Asn	acg Thr	gcc Ala 430	att Ile	gag Glu	1296
	cgg Arg															1344
	cac His 450				tag				•							1362

<210> 74

<211> 453

<212> PRT

. <213> Primula vialii

<400> 74

Met Ala Asn Lys Ser Pro Pro Asn Pro Lys Thr Gly Tyr Ile Thr Ser 1 5 10 15

Ser Asp Leu Lys Gly His Asn Lys Ala Gly Asp Leu Trp Ile Ser Ile 20 25 30

His Gly Glu Val Tyr Asp Val Ser Ser Trp Ala Gly Leu His Pro Gly 35 40 45

Gly Ser Ala Pro Leu Met Ala Leu Ala Gly His Asp Val Thr Asp Ala 50 60

Phe Leu Ala Tyr His Pro Pro Ser Thr Ala Arg Leu Leu Pro Pro Leu 65 70 75 80

Ser Thr Asn Leu Leu Gln Asn His Ser Val Ser Pro Thr Ser Ser 85 90 95

Asp Tyr Arg Lys Leu Leu His Asn Phe His Lys Ile Gly Met Phe Arg 100 105 110

Ala Arg Gly His Thr Ala Tyr Ala Thr Phe Val Ile Met Ile Val Met 115 120 125

Phe Leu Thr Ser Val Thr Gly Val Leu Cys Ser Asp Ser Ala Trp Val 130 135 140

His Leu Ala Ser Gly Ala Ala Met Gly Phe Ala Trp Ile Gln Cys Gly 145 150 155 160

Trp Ile Gly His Asp Ser Gly His Tyr Arg Ile Met Ser Asp Arg Lys 165 170 175

Trp Asn Trp Phe Ala Gln Val Leu Ser Thr Asn Cys Leu Gln Gly Ile 180 185 190

Ser Ile Gly Trp Trp Lys Trp Asn His Asn Ala His His Ile Ala Cys 195 200 205

Asn Ser Leu Asp Tyr Asp Pro Asp Leu Gln Tyr Ile Pro Leu Leu Val 210 220 Val Ser Pro Lys Phe Phe Asn Ser Leu Thr Ser Arg Phe Tyr Asp Lys 225 230 235 240

Lys Leu Asn Phe Asp Gly Val Ser Arg Phe Leu Val Cys Tyr Gln His 245 250 255

Trp Thr Phe Tyr Pro Val Met Cys Val Ala Arg Leu Asn Met Ile Ala 260 265 270

Gln Ser Phe Ile Thr Leu Phe Ser Ser Arg Glu Val Gly His Arg Ala 275 280 285

Gln Glu Ile Phe Gly Leu Ala Val Phe Trp Val Trp Phe Pro Leu Leu 290 295 300

Leu Ser Cys Leu Pro Asn Trp Ser Glu Arg Ile Met Phe Leu Leu Ala 305 310 315

Ser Tyr Ser Val Thr Gly Ile Gln His Val Gln Phe Ser Leu Asn His 325 330 335

Phe Ser Ser Asp Val Tyr Val Gly Pro Pro Val Ala Asn Asp Trp Phe 340 345 350

Asp Trp Phe His Gly Gly Leu Gln Phe Gln Val Glu His His Leu Phe 370 375 380

Pro Arg Met Pro Arg Gly Gln Phe Arg Lys Ile Ser Pro Phe Val Arg 385 390 395

Asp Leu Cys Lys Lys His Asn Leu Pro Tyr Asn Ile Ala Ser Phe Thr 405 410 415

Lys Ala Asn Val Leu Thr Leu Lys Thr Leu Arg Asn Thr Ala Ile Glu 420 425 430

Ala Arg Asp Leu Ser Asn Pro Thr Pro Lys Asn Met Val Trp Glu Ala 435 440 445

Val His Thr His Gly 450

<210> 75

<211> 903

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

(222> (1)..(903)

<223> Delta-5-Elongase

	_															
atg		gcc			gcg Ala											48
					gcc Ala											96
atc Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
					aag Lys 70											240
					tat Tyr											288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	Gly ggg	ctg Leu 105	gly aaa	cag Gln	ccc Pro	gtg Val	tgg Trp 110	glà aaa	tca Ser	336
					gat Asp											384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432
					aag Lys 150											480
					atc Ile											528
					atc Ile											576
					atg Met											624
att	cga	tgc	ccg	tgg	aag	cga	tac	atc	acc	cag	gct	caa	atg	ctc	caa	672

TIO									130								
TT6	Arg 210	Cys	Pro	Trp	Lys	Arg 215	Tyr	Ile	Thr	Gln	Ala 220	Gln	Met	Leu	Gln		
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240		720
tgc . Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met		768
ctc Leu	gtg Val	ctc Leu	ttc Phe 260	gly aaa	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	aag Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn 270	aag Lys	tcg Ser		816
cgc Arg	ggc Gly	gac Asp 275	ggc Gly	gcg Ala	agt Ser	tcc Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg Ala		864
ccc Pro	agc Ser 290	gtg Val	cga Arg	cgc Arg	acg Thr	cga Arg 295	tct Ser	cga Arg	aaa Lys	att Ile	gac Asp 300	taa					903
<210)> '	76															
<21	L> :	300															
<212	2>]	PRT															
<213	3> (Ostre	e000	ccus	tauı	ri											
<400	0> '	76															
			Ser	Gly 5	Ala	Leu	Leu	Pro	Ala 10	Ile	Ala	Ser	Ala	Ala 15	Tyr		
Met 1	Ser	Ala		5				Pro Phe 25	10					15			
Met 1 Ala	Ser Tyr	Ala Ala	Thr 20	5 Tyr	Ala	Tyr	Ala	Phe	10 Glu	Trp	Ser	His	Ala 30	15 Asn	Gly		
Met 1 Ala Ile	Ser Tyr Asp	Ala Ala Asn 35	Thr 20 Val	5 Tyr Asp	Ala	Tyr Arg	Ala Glu 40	Phe 25	Glu	Trp	Ser Ala	His Leu 45	Ala 30	15 Asn Leu	Gly Arg		
Met 1 Ala Ile Leu	Tyr Asp	Ala Ala Asn 35	Thr 20 Val Ile	Tyr Asp	Ala Ala Thr	Tyr Arg Thr	Ala Glu 40 Met	Phe 25 Trp	Glu Ile Leu	Trp Gly Leu	Ser Ala Phe	His Leu 45 Cys	Ala 30 Ser	Asn Leu Val	Gly Arg Gly		
Met 1 Ala Ile Leu	Tyr Asp Pro 50 Arg	Ala Asn 35 Ala Leu	Thr 20 Val Ile Met	Tyr Asp Ala Ala	Ala Ala Thr Lys 70	Tyr Arg Thr 55	Ala Glu 40 Met	Phe 25 Trp Tyr	Glu Ile Leu Phe	Trp Gly Leu Asp 75	Ser Ala Phe 60	His Leu 45 Cys	Ala 30 Ser Leu Gly	Asn Leu Val	Gly Arg Gly Met	•	
Met 1 Ala Ile Leu Pro 65	Ser Tyr Asp Pro 50 Arg	Ala Asn 35 Ala Leu	Thr 20 Val Ile Met	Tyr Asp Ala Ala Ala 85	Ala Ala Thr Lys 70	Tyr Arg Thr 55 Arg	Ala Glu 40 Met Glu Thr	Phe 25 Trp Tyr	Glu Ile Leu Phe Phe 90	Trp Gly Leu Asp 75	Ser Ala Phe 60 Pro	His Leu 45 Cys Lys Val	Ala 30 Ser Leu Gly	Asn Leu Val Phe Leu 95	Gly Arg Gly Met 80		

131

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 : 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly
195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 255

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270

Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 275 280 285

Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 290 295 300

<210> 77

<211> 903

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(903)

<223> Delta-5-Elongase

<400> 77
atg agc gcc tcc ggt gcg ctg ctg ccc gcg atc gcg ttc gcc gcg tac
Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr
1 5 10 15

PCT/EP2005/001863

gcg Ala	tac Tyr	gcg Ala	acg Thr 20	tac Tyr	gcc Ala	tac Tyr	gcc Ala	ttt Phe 25	gag Glu	tgg Trp	tcg Ser	cac His	gcg Ala 30	aat Asn	ggc Gly	96
atc Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg	144
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	tgc Cys	ctg Leu	gtc Val	gga Gly	192
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	glà aaa	ttc Phe	atg Met 80	240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	gly aaa	288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	ely aaa	ctg Leu 105	eja aaa	cag Gln	ccc Pro	gtg Val	tgg Trp 110	Gly aaa	tca Ser	336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	Gly aaa	gtg Val	384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met	528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc Gly	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
					atg Met											624
att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln	672
ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
tgc Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	cct Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	ttc Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met	768
					aac Asn											816
cgc Arg	ggc	gac Asp 275	gly	gcg Ala	agt Ser	tcc Ser	gtg Val 280	aaa Lys	cca Pro	gcc Ala	gag Glu	acc Thr 285	acg Thr	cgc Arg	gcg Ala	864

ccc agc gtg cga cgc acg cga tct cga aaa att gac taa Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 290 295 300 903

<210> 78

. <211> 300

<212> PRT

<213> Ostreococcus tauri

<400> 78

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 . 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 . 170 . 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly
195 200 205

134

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 215 Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 <210> 79 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase atg age gee tee ggt geg etg etg eee geg ate geg tee gee geg tae Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr geg tac geg acg tac gec tac gec ttt gag tgg teg cac geg aat ggc 96 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly atc gac aac gtc gac gcg cgc gag tgg atc ggt gcg ctg tcg ttg agg 144 Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg ctc ccg gcg atc gcg acg atg tac ctg ttg ttc tgc ctg gtc gga 192 Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 55 ccg agg ttg atg gcg aag cgc gag gcg ttc gac ccg aag ggg ttc atg 240 Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met

ctg gcg tac aat gcg tat cag acg gcg ttc aac gtc gtc gtg ctc ggg

										135							
	Leu	Ala	Tyr	Asn	Ala 85	Tyr	Gln	Thr	Ala	Phe 90	Asn	Val	Val	Val	Leu 95	Gly	
	atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	gjà aaa	ctg Leu 105	gjå aaa	cag Gln	ccc Pro	gtg Val	tgg Trp 110	Gly 333	tca Ser	336
•	acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	Gly aaa	gtg Val	384
						aac Asn											432
	atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160	480
						atc Ile											528
	gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc Gly	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser	576
						atg Met											624
	att Ile	cga Arg 210	tgc Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	tac Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln	672
	ttc Phe 225	gtc Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	cac His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	ctg Leu	cgt Arg	cag Gln	aag Lys	cac His 240	720
						cct Pro											768
			Leu		Gly	aac Asn	Phe		Leu	Lys			Ser		Lys		816
						agt Ser											864
						acg Thr							taa				903

<210> 80

<211> 300

<212> PRT

<213> Ostreococcus tauri

<400> 80

136

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Ser Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 20 25 30

. Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg
35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val

Trp Leu His Tyr Asn Asn Gln Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly
195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met
245 250 255

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270

137 Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 275 Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 295 . <210> 81 <211> 879 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(879)<223> Delta-6-Elongase <400> 81 atg agt ggc tta cgt gca ccc aac ttt tta cac aga ttc tgg aca aag 48 Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys tgg gac tac gcg att tcc aaa gtc gtc ttc acg tgt gcc gac agt ttt Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 96 cag tgg gac atc ggg cca gtg agt tcg agt acg gcg cat tta ccc gcc 144 Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala att gaa tcc cct acc cca ctg gtg act agc ctc ttg ttc tac tta gtc 192 Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val 55 aca gtt ttc ttg tgg tat ggt cgt tta acc agg agt tca gac aag aaa 240 Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 288 att aga gag cct acg tgg tta aga aga ttc ata ata tgt cat aat gcg Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala ttc ttg ata gtc ctc agt ctt tac atg tgc ctt ggt tgt gtg gcc caa 336 Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln gcg tat cag aat gga tat act tta tgg ggt aat gaa ttc aag gcc acg 384 Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr gaa act cag ctt gct ctc tac att tac att ttt tac gta agt aaa ata 432 Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 135

tac gag ttt gta gat act tac att atg ctt ctc aag aat aac ttg cgg

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg

155

caa gt Gln Va	a aga l Arg	ttc Phe	cta Leu 165	cac His	act Thr	tat Tyr	cac His	cac His 170	agc Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	att Ile		528
tgg tg Trp Tr	g atc p Ile	att Ile 180	gct Ala	cgg Arg	agg Arg	gct Ala	ccg Pro 185	ggt Gly	ggt Gly	gat Asp	gct Ala	tac Tyr 190	ttc Phe	agc Ser		576
gcg gc Ala Al	c ttg a Leu 195	aac Asn	tca Ser	tgg Trp	gta Val	cac His 200	gtg Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	tat Tyr	tat Tyr	cta Leu	,	624
tta tc Leu Se 21	r Thr															672
tgg tg Trp Tr 225	g ggt p Gly	cgc Arg	cac His	cta Leu 230	acg Thr	caa Gln	atg Met	cag Gln	atg Met 235	ctt Leu	cag Gln	ttt Phe	ttc Phe	ttc Phe 240		720
aac gt Asn Va	a ctt l Leu	caa Gln	gcg Ala 245	ttg Leu	tac Tyr	tgc Cys	gct Ala	tcg Ser 250	ttc Phe	tct Ser	acg Thr	tat Tyr	ccc Pro 255	aag Lys		768
ttt tt Phe Le	g tcc u Ser	aaa Lys 260	att Ile	ctg Leu	ctc Leu	gtc Val	tat Tyr 265	atg Met	atg Met	agc Ser	ctt Leu	ctc Leu 270	ggc Gly	ttg Leu		816
ttt gg Phe Gl	g cat y His 275	ttc Phe	tac Tyr	tat Tyr	tcc Ser	aag Lys 280	cac His	ata Ile	gca Ala	gca Ala	gct Ala 285	aag Lys	ctc Leu	cag Gln		864
aaa aa Lys Ly 29	s Gln		tga													879
<210>	82										n.					
<211>	292															
<212>	PRT	,								•						
<213>	Ostr	eoco	ccus	tau	ri										•	
<400>	82															
Met Se 1		Leu	Arg 5	Ala	Pro	Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys		
Trp As	p Tyr	Ala 20	Ile	Ser	Lys	Val	Val 25	Phe	Thr	Суз	Ala	Asp 30	Ser	Phe		
Gln Tr	p Asp 35	Ile	Gly	Pro	Val	Ser	Ser	Ser	Thr	Ala	His 45	Leu	Pro	Ala		
Ile Gl	u Ser	Pro	Thr	Pro	Leu 55	Val	Thr	Ser	Leu	Leu 60	Phe	Tyr	Leu	Val		
Thr Va 65	l Phe	Leu	Trp	Tyr 70	Gly	Arg	Leu	Thr	Arg 75	Ser	Ser	Asp	Lys	Lys 80		

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 95

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln 100 105 110

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 125

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135 140

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 145 150 155 160

Gln Val Arg Phe Leu His Thr Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 195 200 205

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 220

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 225 230 235 240

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 245 250 255

Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 270

Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Lys Leu Gln 275 280 285

. Lys Lys Gln Gln 290

<210> 83

<211> 831

<212> DNA

<213> Thraustochytrium sp.

<220>

<221> CDS

<222> (1)..(831)

<223> Delta-5-Elongase

<400	_ 8	3														
atg Met 1	qac	qtc	gtc Val	gag Glu 5	cag Gln	caa Gln	tgg Trp	cgc Arg	cgc Arg 10	ttc Phe	gtg Val	gac Asp	gcc Ala	gtg Val 15	gac Asp	48
aac Asn	gga Gly	atc Ile	gtg Val 20	gag Glu	ttc Phe	atg Met	gag Glu	cat His 25	gag Glu	aag Lys	ccc Pro	aac Asn	aag Lys 30	ctg Leu	aac Asn	96
gag Glu	ggc Gly	aag Lys 35	ctc Leu	ttc Phe	acc Thr	tcg Ser	acc Thr 40	gag Glu	gag Glu	atg Met	atg Met	gcg Ala 45	ctt Leu	atc Ile	gtc Val	144
Gly ggc	tac Tyr 50	ctg Leu	gcg Ala	ttc Phe	gtg Val	gtc Val 55	ctc Leu	Gly ggg	tcc Ser	gcc Ala	ttc Phe 60	atg Met	aag Lys	gcc Ala	ttt Phe	192
gtc Val 65	gat Asp	aag Lys	cct Pro	ttc Phe	gag Glu 70	ctc Leu	aag Lys	ttc Phe	ctc Leu	aag Lys 75	ctc Leu	gtg Val	cac His	aac Asn	atc Ile 80	240
ttc Phe	ctc Leu	acc Thr	ggt Gly	ctg Leu 85	tcc Ser	atg Met	tac Tyr	atg Met	gcc Ala 90	acc Thr	gag Glu	tgc Cys	gcg Ala	cgc Arg 95	cag Gln	288
gca Ala	tac Tyr	ctc Leu	ggc Gly 100	ggc Gly	tac Tyr	aag Lys	ctc Leu	ttt Phe 105	ggc Gly	aac Asn	ccg Pro	atg Met	gag Glu 110	aag Lys	ggc Gly	336
acc Thr	gag Glu	tcg Ser 115	cac His	gcc Ala	ccg Pro	ggc Gly	atg Met 120	gcc Ala	aac Asn	atc Ile	atc Ile	tac Tyr 125	atc Ile	ttc Phe	tac Tyr	384
gtg Val	agc Ser 130	aag Lys	ttc Phe	ctc Leu	gaa Glu	ttc Phe 135	ctc Leu	gac Asp	acc Thr	gtc Val	ttc Phe 140	atg Met	atc Ile	ctc Leu	ggc	432
aag Lys 145	aag Lys	tgg Trp	aag Lys	cag Gln	ctc Leu 150	agc Ser	ttt Phe	ctc Leu	cac His	gtc Val 155	tac Tyr	cac His	cac His	gcg Ala	agc Ser 160	480
atc Ile	agc Ser	ttc Phe	atc Ile	tgg Trp 165	ggc Gly	atc Ile	atc Ile	gcc Ala	cgc Arg 170	ttc Phe	gcg Ala	ccc Pro	ggt Gly	ggc Gly 175	gac Asp	528
gcc Ala	tac Tyr	ttc Phe	țct Ser 180	acc Thr	atc Ile	ctc Leu	aac Asn	agc Ser 185	agc Ser	gtg Val	cat His	gtc Val	gtg Val 190	ctc Leu	tac Tyr	576
GJ Y ggc	tac Tyr	tac Tyr 195	Ala	tcg Ser	acc Thr	acc Thr	ctc Leu 200	ggc Gly	tac Tyr	acc Thr	ttc Phe	atg Met 205	cgc Arg	ccg Pro	ctg Leu	624
cgc Arg	ccg Pro 210	tac Tyr	att Ile	acc Thr	acc Thr	att Ile 215	cag Gln	ctc Leu	acg Thr	cag Gln	ttc Phe 220	atg Met	gcc Ala	atg Met	gtc Val	672
gtc	cag	tcc	gtc	tat	gac	tac	tac	aac	ccc	tgc	gac	tac	ccg	cag	ccc	720

141

Val Gln Ser Val Tyr Asp Tyr Tyr Asn Pro Cys Asp Tyr Pro Gln Pro 230 ctc gtc aag ctg ctc ttc tgg tac atg ctc acc atg ctc ggc ctc ttc Leu Val Lys Leu Phe Trp Tyr Met Leu Thr Met Leu Gly Leu Phe 768 250 245 816 ggc aac ttc ttc gtg cag cag tac ctc aag ccc aag gcg ccc aag aag . Gly Asn Phe Phe Val Gln Gln Tyr Leu Lys Pro Lys Ala Pro Lys Lys 265 831 cag aag acc atc taa Gln Lys Thr Ile 275 <210> 84 <211> 276 <212> PRT <213> Thraustochytrium sp. <400> 84 Met Asp Val Val Glu Gln Gln Trp Arg Arg Phe Val Asp Ala Val Asp Asn Gly Ile Val Glu Phe Met Glu His Glu Lys Pro Asn Lys Leu Asn Glu Gly Lys Leu Phe Thr Ser Thr Glu Glu Met Met Ala Leu Ile Val Gly Tyr Leu Ala Phe Val Val Leu Gly Ser Ala Phe Met Lys Ala Phe Val Asp Lys Pro Phe Glu Leu Lys Phe Leu Lys Leu Val His Asn Ile 70 75 Phe Leu Thr Gly Leu Ser Met Tyr Met Ala Thr Glu Cys Ala Arg Gln Ala Tyr Leu Gly Gly Tyr Lys Leu Phe Gly Asn Pro Met Glu Lys Gly Thr Glu Ser His Ala Pro Gly Met Ala Asn Ile Ile Tyr Ile Phe Tyr 115 120 Val Ser Lys Phe Leu Glu Phe Leu Asp Thr Val Phe Met Ile Leu Gly 135 Lys Lys Trp Lys Gln Leu Ser Phe Leu His Val Tyr His His Ala Ser

142

Ile Ser Phe Ile Trp Gly Ile Ile Ala Arg Phe Ala Pro Gly Gly Asp 170 165 Ala Tyr Phe Ser Thr Ile Leu Asn Ser Ser Val His Val Val Leu Tyr . Gly Tyr Tyr Ala Ser Thr Thr Leu Gly Tyr Thr Phe Met Arg Pro Leu Arg Pro Tyr Ile Thr Thr Ile Gln Leu Thr Gln Phe Met Ala Met Val 215 Val Gln Ser Val Tyr Asp Tyr Tyr Asn Pro Cys Asp Tyr Pro Gln Pro 230 . 235 Leu Val Lys Leu Leu Phe Trp Tyr Met Leu Thr Met Leu Gly Leu Phe 245 250 Gly Asn Phe Phe Val Gln Gln Tyr Leu Lys Pro Lys Ala Pro Lys Lys 265 Gln Lys Thr Ile 275 <210> 85 <211> 1077 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS <222> (1)..(1077) <223> Delta-5-Elongase <400> 85 atg tgc tca cca ccg ccg tca caa tcc aaa aca aca tcc ctc cta gca 48 Met Cys Ser Pro Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 96 egg tac acc acc gcc gcc ctc ctc ctc acc ctc aca acg tgg tgc Arg Tyr Thr Thr Ala Ala Leu Leu Leu Thr Leu Thr Thr Trp Cys 25 cac tto god tto coa god god acc god aca coc ggo etc acc god gaa 144 His Phe Āla Phe Pro Āla Āla Thr Āla Thr Pro GĪy Leu Thr Āla Glu 40 atg cac tcc tac aaa gtc cca ctc ggt ctc acc gta ttc tac ctg ctg 192 Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu

agt Ser 65	cta Leu	ccg Pro	tca Ser	cta Leu	aag Lys 70	tac Tyr	gtt Val	acg Thr	gac Asp	aac Asn 75	tac Tyr	ctt Leu	gcc Ala	aaa Lys	aag Lys 80	240
tat Tyr	gat Asp	atg Met	aag Lys	tca Ser 85	ctc Leu	ctg Leu	acg Thr	gaa Glu	tca Ser 90	atg Met	gtg Val	ttg Leu	tạc Tyr	aat Asn 95	gtg Val	288
gcg Ala	caa Gln	gtg Val	ctg Leu 100	ctc Leu	aat Asn	gly aaa	tgg Trp	acg Thr 105	gtg Val	tat Tyr	gcg Ala	att Ile	gtg Val 110	gat Asp	gcg Ala	336
gtg Val	atg Met	aat Asn 115	aga Arg	gac Asp	cat His	cct Pro	ttt Phe 120	att Ile	gga Gly	agt Ser	aga Arg	agt Ser 125	ttg Leu	gtt Val	gly ggg	384
gcg Ala	gcg Ala 130	ttg Leu	cat His	agt Ser	Gly 333	agc Ser 135	tcg Ser	tat Tyr	gcg Ala	gtg Val	tgg Trp 140	gtt Val	cat His	tat Tyr	tgt Cys	432
gat Asp 145	aag Lys	tat Tyr	ttg Leu	gag Glu	ttc Phe 150	ttt Phe	gat Asp	acg Thr	tat Tyr	ttt Phe 155	atg Met	gtg Val	ttg Leu	agg Arg	ggg Gly 160	480
aaa Lys	atg Met	gac Asp	cag Gln	gtc Val 165	tcc Ser	ttc Phe	ctc Leu	cac His	atc Ile 170	tac Tyr	cac His	cac His	acg Thr	acc Thr 175	ata Ile	528
gcg Ala	tgg Trp	gca Ala	tgg Trp 180	tgg Trp	atc Ile	gcc Ala	ctc Leu	cgc Arg 185	ttc Phe	tcc Ser	ccc Pro	ggc	gga Gly 190	gac Asp	att Ile	576
tac Tyr	ttc Phe	999 Gly 195	gca Ala	ctc Leu	ctc Leu	aac Asn	tcc Ser 200	atc Ile	atc Ile	cac His	gtc Val	ctc Leu 205	atg Met	tat Tyr	tcc Ser	624
tac Tyr	tac Tyr 210	gcc Ala	ctt Leu	gcc Ala	cta Leu	ctc Leu 215	aag Lys	gtc Val	agt Ser	tgt Cys	cca Pro 220	tgg Trp	aaa Lys	cga Arg	tac Tyr	672
ttg Leu 225	act Thr	caa Gln	gct Ala	caa Gln	tta Leu 230	ttg Leu	caa Gln	ttc Phe	aca Thr	agt Ser 235	gtg Val	gtg Val	gtt Val	tat Tyr	acg Thr 240	720
gjå aaa	tgt Cys	acg Thr	ggt Gly	tat Tyr 245	act Thr	cat His	tac Tyr	tat Tyr	cat His 250	acg Thr	aag Lys	cat His	gga Gly	gcg Ala 255	gat Asp	768
gag Glu	aca Thr	cag Gln	cct Pro 260	agt Ser	tta Leu	gga Gly	acg Thr	tat Tyr 265	tat Tyr	ttc Phe	tgt Cys	tgt Cys	gga Gly 270	gtg Val	cag Gln	816
gtg Val	ttt Phe	gag Glu 275	atg Met	gtt Val	agt Ser	ttg Leu	ttt Phe 280	gta Val	ctc Leu	ttt Phe	tcc Ser	atc Ile 285	ttt Phe	tat Tyr	aaa Lys	864
cga Arg	tcc Ser 290	tat Tyr	tcg Ser	aag Lys	aag Lys	aac Asn 295	aag Lys	tca Ser	gga Gly	gga Gly	aag Lys 300	gat Asp	agc Ser	aag Lys	aag Lys	912
aat Asn 305	gat Asp	gat Asp	GJA aaa	aat Asn	aat Asn 310	gag Glu	gat Asp	caa Gln	tgt Cys	cac His 315	aag Lys	gct Ala	atg Met	aag Lys	gat Asp 320	960
ata Ile	tcg Ser	gag Glu	ggt Gly	gcg Ala 325	aag Lys	gag Glu	gtt Val	gtg Val	330 GJA aaa	cat His	gca Ala	gcg Ala	aag Lys	gat Asp 335	gct Ala	1008

gga aag ttg gtg gct acg gcg agt aag gct gta aag agg aag gga act 1056 Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 340 345 350

cgt gtt act ggt gcc atg tag Arg Val Thr Gly Ala Met 355 1077

<210> 86

<211> 358

<212> PRT

<213> Thalassiosira pseudonana

<400> 86

Met Cys Ser Pro Pro Pro Ser Gln Ser Lys Thr Thr Ser Leu Leu Ala 1 5 10 15

Arg Tyr Thr Thr Ala Ala Leu Leu Leu Leu Thr Leu Thr Thr Trp Cys 20 25 30

His Phe Ala Phe Pro Ala Ala Thr Ala Thr Pro Gly Leu Thr Ala Glu 35 40 45

Met His Ser Tyr Lys Val Pro Leu Gly Leu Thr Val Phe Tyr Leu Leu 50 55 60

Ser Leu Pro Ser Leu Lys Tyr Val Thr Asp Asn Tyr Leu Ala Lys Lys 65 70 75 80

Tyr Asp Met Lys Ser Leu Leu Thr Glu Ser Met Val Leu Tyr Asn Val 85 90 95

Ala Gln Val Leu Leu Asn Gly Trp Thr Val Tyr Ala Ile Val Asp Ala 100 105 110

Val Met Asn Arg Asp His Pro Phe Ile Gly Ser Arg Ser Leu Val Gly
115 120 125

Ala Ala Leu His Ser Gly Ser Ser Tyr Ala Val Trp Val His Tyr Cys 130 . 135 140

Asp Lys Tyr Leu Glu Phe Phe Asp Thr Tyr Phe Met Val Leu Arg Gly 145 150 155

Lys Met Asp Gln Val Ser Phe Leu His Ile Tyr His His Thr Ile 165 170 175

Ala Trp Ala Trp Trp Ile Ala Leu Arg Phe Ser Pro Gly Asp Ile 180 180 185

Tyr Phe Gly Ala Leu Leu Asn Ser Ile Ile His Val Leu Met Tyr Ser 195 200 205

Tyr Tyr Ala Leu Ala Leu Leu Lys Val Ser Cys Pro Trp Lys Arg Tyr 210 215 220

Leu Thr Gln Ala Gln Leu Gln Phe Thr Ser Val Val Val Tyr Thr 225 230 235 240

Gly Cys Thr Gly Tyr Thr His Tyr His Thr Lys His Gly Ala Asp 245 250 255

Glu Thr Gln Pro Ser Leu Gly Thr Tyr Tyr Phe Cys Cys Gly Val Gln 260 265 270

Val Phe Glu Met Val Ser Leu Phe Val Leu Phe Ser Ile Phe Tyr Lys 275 280 285

Arg Ser Tyr Ser Lys Lys Asn Lys Ser Gly Gly Lys Asp Ser Lys Lys 290 295 300

Asn Asp Asp Gly Asn Asn Glu Asp Gln Cys His Lys Ala Met Lys Asp 305 310 315 320

Ile Ser Glu Gly Ala Lys Glu Val Val Gly His Ala Ala Lys Asp Ala 325 330 335

Gly Lys Leu Val Ala Thr Ala Ser Lys Ala Val Lys Arg Lys Gly Thr 340 345 350

Arg Val Thr Gly Ala Met 355

<210> 87

<211> 1086

<212> DNA

<213> Phytophthora infestans

<220>

<221> CDS .

<222> (1)..(1086)

<223> Omega-3-Desaturase

<400> 87
atg gcg acg aag gag gcg tat gtg ttc ccc act ctg acg gag atc aag

									146								
Met 1	Ala	Thr	Lys	Glu 5	Ala	Tyr	Val	Phe	Pro 10	Thr	Leu	Thr	Glu	Ile 15	Lys		
											gtg Val						96
											gct Ala						144
											agc Ser 60						192
											cag Gln					:	240
											cac His					:	288
											ttc Phe					:	336
											cac His					:	384
											ttc Phe 140					,	432
											att Ile						480
											cct Pro					!	528
											cgt Arg					!	576
											gcc Ala						624
											gca Ala 220					•	672
											att Ile					•	720
											gac Asp					•	768
											tcg Ser						816
att	gac	aac	ctg	agc	cac	aac	atc	ggc	acg	cac	cag	atc	cac	cac	ctt	1	864

									147							
Ile	Asp	Asn 275	Leu	Ser	His	Asn	Ile 280	Gly	Thr	His	Gln	Ile 285	His	His	Leu	
			att Ile													912
			ttc Phe													960
aag Lys	gct Ala	ttc Phe	ttc Phe	cgg Arg 325	gtt Val	gga Gly	cgt Arg	ctc Leu	tac Tyr 330	gca Ala	aac Asn	tac Tyr	Gly ggc	gtt Val 335	gtg Val	1008
gac Asp	cag Gln	gag Glu	gcg Ala 340	aag Lys	ctc Leu	ttc Phe	acg Thr	cta Leu 345	aag Lys	gaa Glu	gcc Ala	aag Lys	gcg Ala 350	gcg Ala	acc Thr	1056
			gcc Ala						taa							1086
<210)> {	38														
<211	L> 3	361														
<212	2> I	PRT				•										
<213> Phytophthora infestans																
<400)> 8	38		•												
Met 1	Ala	Thr	Lys	Glu 5	Ala	Tyr	Val	Phe	Pro 10	Thr	Leu	Thr	Glu	Ile 15	Lys	
Arg	Ser	Leu	Pro 20	Lys	Asp	Cys	`Phe	Glu 25	Ala	Ser	Val	Pro	Leu 30	Ser	Leu	
Tyr	Tyr	Thr 35	Val	Arg	Cys	Leu	Val 40	Ile	Ala	Val	Ala	Leu 45	Thr	Phe	Gly	
Leu	Asn 50	Tyr	Ala	Arg	Ala	Leu 55	Pro	Glu	Val	Glu	Ser 60	Phe	Trp	Ala	Leu	·
Asp 65	Ala	Ala	Leu	Cys	Thr 70	Gly	Tyr	Ile	Leu	Leu 75	Gln	Gly	Ile	Val	Phe 80	
Trp	Gly	Phe	Phe	Thr 85	Val	Gly	His	Asp	Ala 90	Gly	His	Gly	Ala	Phe 95	Ser	
Arg	Tyr	His	Leu 100	Leu	Asn	Phe	Val	Val 105	Gly	Thr	Phe	Met	His 110	Ser	Leu	

148

Lys Asn Thr Gly Asn Ile Asp Arg Asp Glu Val Phe Tyr Pro Gln Arg 130 135 140

Lys Ala Asp Asp His Pro Leu Ser Arg Asn Leu Ile Leu Ala Leu Gly 145 150 155

. Ala Ala Trp Leu Ala Tyr Leu Val Glu Gly Phe Pro Pro Arg Lys Val

Asn His Phe Asn Pro Phe Glu Pro Leu Phe Val Arg Gln Val Ser Ala 180 185 190

Val Val Ile Ser Leu Leu Ala His Phe Phe Val Ala Gly Leu Ser Ile 195 200 205

Tyr Leu Ser Leu Gln Leu Gly Leu Lys Thr Met Ala Ile Tyr Tyr 210 215 220

Gly Pro Val Phe Val Phe Gly Ser Met Leu Val Ile Thr Thr Phe Leu 225 230 235 240

His His Asn Asp Glu Glu Thr Pro Trp Tyr Ala Asp Ser Glu Trp Thr 245 250 255

Tyr Val Lys Gly Asn Leu Ser Ser Val Asp Arg Ser Tyr Gly Ala Leu 260 265 270

Ile Asp Asn Leu Ser His Asn Ile Gly Thr His Gln Ile His His Leu 275 280 285

Phe Pro Ile Ile Pro His Tyr Lys Leu Lys Lys Ala Thr Ala Ala Phe 290 295 300

His Gln Ala Phe Pro Glu Leu Val Arg Lys Ser Asp Glu Pro Ile Ile 305 310 315

Lys Ala Phe Phe Arg Val Gly Arg Leu Tyr Ala Asn Tyr Gly Val Val 325 330 335

Asp Gln Glu Ala Lys Leu Phe Thr Leu Lys Glu Ala Lys Ala Ala Thr 340 . 345 350

Glu Ala Ala Ala Lys Thr Lys Ser Thr 355 360

<210> 89

<211> 1371

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(1371)

. <223> Delta-6-Desaturase

<400 atg Met 1	tac	9 gtg Val	gag Glu	acg Thr 5	gaa Glu	aat Asn	aac Asn	gat Asp	10 Gly ggg	atc Ile	ccc Pro	acg Thr	gtg Val	gag Glu 15	atc Ile	. 4	18
gcg Ala	ttc Phe	gac Asp	ggt Gly 20	gag Glu	cgc Arg	gag Glu	cgg Arg	gcg Ala 25	gag Glu	gca Ala	aac Asn	gtg Val	aag Lys 30	ctg Leu	tcc Ser		96
gcg Ala	gag Glu	aag Lys 35	atg Met	gag Glu	ccg Pro	gcg Ala	gcg Ala 40	ctg Leu	gcg Ala	aag Lys	acg Thr	ttc Phe 45	gcg Ala	agg Arg	cgg Arg	14	14
tac Tyr	gtc Val 50	gtg Val	atc Ile	gag Glu	gjå aaa	gtg Val 55	gag Glu	tac Tyr	gat Asp	gtg Val	acg Thr 60	gat Asp	ttt Phe	aag Lys	cac His	19	92
ccg Pro 65	gga Gly	gga Gly	acg Thr	gtt Val	att Ile 70	ttc Phe	tat Tyr	gcg Ala	ttg Leu	tca Ser 75	aac Asn	acc Thr	Gly	gcg Ala	gac Asp 80	24	40
gcg Ala	acg Thr	gaa Glu	gcg Ala	ttc Phe 85	aag Lys	gag Glu	ttt Phe	cat His	cat His 90	cgg Arg	tcg Ser	aga Arg	aag Lys	gcg Ala 95	agg Arg	28	88
aaa Lys	gcc Ala	ttg Leu	gcg Ala 100	gcg Ala	ctc Leu	ccg Pro	tct Ser	cga Arg 105	Pro	gcc Ala	aag Lys	acg Thr	gcc Ala 110	aag Lys	gtg Val	3:	36
gac Asp	gac Asp	gcg Ala 115	gag Glu	atg Met	ctc Leu	caa Gln	gat Asp 120	ttc Phe	gcc Ala	aag Lys	tgg Trp	cgg Arg 125	aaa Lys	gaa Glu	ttg Leu	31	84
gag Glu	aga Arg 130	gat Asp	gga Gly	ttc Phe	ttc Phe	aag Lys 135	ccc Pro	tct Ser	ccg Pro	gcg Ala	cac His 140	gtg Val	gcg Ala	tat Tyr	cgc Arg	4:	32
ttc Phe 145	gcc Ala	gag Glu	ctc Leu	gcg Ala	gcg Ala 150	atg Met	tac Tyr	gct Ala	ctc Leu	ggg Gly 155	acg Thr	tac Tyr	ctg Leu	atg Met	tac Tyr 160	4:	80
gct Ala	cga Arg	tac Tyr	gtc Val	gtc Val 165	tcc Ser	tcg Ser	gtg Val	ctc Leu	gtg Val 170	tac Tyr	gct Ala	Cys Cys	ttt Phe	ttc Phe 175	ggc Gly	5:	28
gcc Ala	cga Arg	tgc Cys	ggt Gly 180	tgg Trp	gtg Val	cag Gln	cac His	gag Glu 185	ggc	gga Gly	cac His	agc Ser	tcg Ser 190	ctg Leu	acg Thr	5	76
ggc Gly	aac Asn	att Ile 195	tgg Trp	tgg Trp	gac Asp	aag Lys	cgc Arg 200	atc Ile	cag Gln	gcc Ala	ttc Phe	aca Thr 205	gcc Ala	glà aaa	ttc Phe	6	24
ggt Gly	ctc Leu 210	gcc Ala	ggt Gly	agc Ser	Gly	gac Asp 215	atg Met	tgg Trp	aac Asn	tcg Ser	atg Met 220	His	aac Asn	aag Lys	cat His	6	72

cac His 225	gcg Ala	acg Thr	cct Pro	caa Gln	aag Lys 230	gtt Val	cgt Arg	cac His	gac Asp	atg Met 235	gat Asp	ctg Leu	gac Asp	acc Thr	acc Thr 240	720
ccc Pro	gcg Ala	gtg Val	gcg Ala	ttc Phe 245	ttc Phe	aac Asn	acc Thr	gcg Ala	gtg Val 250	gaa Glu	gac Asp	aat Asn	cgt Arg	ccc Pro 255	cgt Arg	768
ggc Gly	ttt Phe	agc Ser	aag Lys 260	tac Tyr	tgg Trp	ttg Leu	cgc Arg	ctt Leu 265	cag Gln	gcg Ala	tgg Trp	acc Thr	ttc Phe 270	atc Ile	ccc Pro	816
gtg Val	acg Thr	tcc Ser 275	ggc Gly	ttg Leu	gtg Val	ctc Leu	ctt Leu 280	ttc Phe	tgg Trp	atg Met	ttt Phe	ttc Phe 285	ctc Leu	cac His	ccc Pro	864
tcc Ser	aag Lys 290	gct Ala	ttg Leu	aag Lys	ggt Gly	ggc Gly 295	aag Lys	tac Tyr	gaa Glu	gag Glu	ttg Leu 300	gtg Val	tgg Trp	atg Met	ctc Leu	912
gcc Ala 305	gcg Ala	cac His	gtc Val	atc Ile	cgc Arg 310	acg Thr	tgg Trp	acg Thr	atc Ile	aag Lys 315	gcg Ala	gtg Val	acc Thr	gga Gly	ttc Phe 320	960
										gcg Ala						1008
ggc Gly	tgc Cys	tat Tyr	ctg Leu 340	ttt Phe	gca Ala	cac His	ttc Phe	tcc Ser 345	acg Thr	tcg Ser	cac His	acg Thr	cac His 350	ctg Leu	gat Asp	1056
gtg Val	gtg Val	ccc Pro 355	gcg Ala	gac Asp	gag Glu	cat His	ctc Leu 360	tcc Ser	tgg Trp	gtt Val	cga Arg	tac Tyr 365	gcc Ala	gtc Val	gat Asp	1104
										tgg Trp						1152
										ctc Leu 395						1200
										ttc Phe						1248
aag Lys	tgg Trp	aac Asn	ctc Leu 420	aac Asn	tac Tyr	aag Lys	gtc Val	atg Met 425	acc Thr	tac Tyr	gcc Ala	ggt Gly	gcg Ala 430	tgg Trp	aag Lys	1296
										aag Lys						1344
	caa Gln 450							taa								1371

<210> 90

<211> 456

<212> PRT

<213> Ostreococcus tauri

<400> 90

Met Cys Val Glu Thr Glu Asn Asn Asp Gly Ile Pro Thr Val Glu Ile 1 5 10 15

Ala Phe Asp Gly Glu Arg Glu Arg Ala Glu Ala Asn Val Lys Leu Ser 20 25 30

Ala Glu Lys Met Glu Pro Ala Ala Leu Ala Lys Thr Phe Ala Arg Arg 35 40 45

Tyr Val Val Ile Glu Gly Val Glu Tyr Asp Val Thr Asp Phe Lys His 50 55 60

Pro Gly Gly Thr Val Ile Phe Tyr Ala Leu Ser Asn Thr Gly Ala Asp 65 70 75 80

Ala Thr Glu Ala Phe Lys Glu Phe His His Arg Ser Arg Lys Ala Arg 85 90 95

Asp Asp Ala Glu Met Leu Gln Asp Phe Ala Lys Trp Arg Lys Glu Leu 115 120 125

Glu Arg Asp Gly Phe Phe Lys Pro Ser Pro Ala His Val Ala Tyr Arg 130 135 140

Phe Ala Glu Leu Ala Ala Met Tyr Ala Leu Gly Thr Tyr Leu Met Tyr 145 150 155 160

Ala Arg Tyr Val Val Ser Ser Val Leu Val Tyr Ala Cys Phe Phe Gly 165 170 175

Ala Arg Cys Gly Trp Val Gln His Glu Gly Gly His Ser Ser Leu Thr 180 185 190

Gly Asn Ile Trp Trp Asp Lys Arg Ile Gln Ala Phe Thr Ala Gly Phe 195 200 205

Gly Leu Ala Gly Ser Gly Asp Met Trp Asn Ser Met His Asn Lys His 210 215 220

His Ala Thr Pro Gln Lys Val Arg His Asp Met Asp Leu Asp Thr Thr 225 230 235

Pro Ala Val Ala Phe Phe Asn Thr Ala Val Glu Asp Asn Arg Pro Arg 245 250 255

WO 2005/083093

152

PCT/EP2005/001863

Gly Phe Ser Lys Tyr Trp Leu Arg Leu Gln Ala Trp Thr Phe Ile Pro 260 265 270

Val Thr Ser Gly Leu Val Leu Leu Phe Trp Met Phe Phe Leu His Pro 275 280 285

Ser Lys Ala Leu Lys Gly Gly Lys Tyr Glu Glu Leu Val Trp Met Leu 290 295 300

Ala Ala His Val Ile Arg Thr Trp Thr Ile Lys Ala Val Thr Gly Phe 305 310 315 320

Thr Ala Met Gln Ser Tyr Gly Leu Phe Leu Ala Thr Ser Trp Val Ser 325 330 335

Gly Cys Tyr Leu Phe Ala His Phe Ser Thr Ser His Thr His Leu Asp 340 345 350

Val Val Pro Ala Asp Glu His Leu Ser Trp Val Arg Tyr Ala Val Asp 355 360 365

His Thr Ile Asp Ile Asp Pro Ser Gln Gly Trp Val Asn Trp Leu Met 370 380

Gly Tyr Leu Asn Cys Gln Val Ile His His Leu Phe Pro Ser Met Pro 385 390 395 400

Gln Phe Arg Gln Pro Glu Val Ser Arg Arg Phe Val Ala Phe Ala Lys 405 410

Lys Trp Asn Leu Asn Tyr Lys Val Met Thr Tyr Ala Gly Ala Trp Lys 420 425 430

Ala Thr Leu Gly Asn Leu Asp Asn Val Gly Lys His Tyr Tyr Val His 435 440 445

Gly Gln His Ser Gly Lys Thr Ala 450 455

<210> 91

<211> 606

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(606)

<223> Delta-5-Desaturase

<400 atg Met 1)> S tac Tyr	ggt Gly	ttg Leu	cta Leu 5	tcg Ser	ctc Leu	aag Lys	tcg Ser	tgc Cys 10	ttc Phe	gtc Val	gac Asp	gat Asp	ttc Phe 15	aac Asn	48
gcc Ala	tac Tyr	ttc Phe	tcc Ser 20	gga Gly	cgc Arg	atc Ile	ggc	tgg Trp 25	gtc Val	aag Lys	gtg Val	atg Met	aag Lys 30	ttc Phe	acc Thr	96
cgc Arg	ggc Gly	gag Glu 35	gcg Ala	atc Ile	gca Ala	ttt Phe	tgg Trp 40	ggc Gly	acc Thr	aag Lys	ctc Leu	ttg Leu 45	tgg Trp	gcc Ala	gcg Ala	144
tat Tyr	tac Tyr 50	ctc Leu	gcg Ala	ttg Leu	Pro	cta Leu 55	aag Lys	atg Met	tcg Ser	cat His	cgg Arg 60	ccg Pro	ctc Leu	gga Gly	gaa Glu	192
ctc Leu 65	ctc Leu	gca Ala	ctc Leu	tgg Trp	gcc Ala 70	gtc Val	acc Thr	gag Glu	ttc Phe	gtc Val 75	acc Thr	gga Gly	tgg Trp	ctg Leu	ttg Leu 80	240
gcg Ala	ttc Phe	atg Met	ttc Phe	caa Gln 85	gtc Val	gcc Ala	cac His	gtc Val	gtc Val 90	ggc Gly	gag Glu	gtt Val	cac His	ttc Phe 95	ttc Phe	288
acc Thr	ctc Leu	gac Asp	gcg Ala 100	aag Lys	aac Asn	cgc Arg	gtg Val	aac Asn 105	ttg Leu	gga Gly	tgg Trp	gga Gly	gag Glu 110	gca Ala	cag Gln	336
ctc Leu	atg Met	tcg Ser 115	agc Ser	gcg Ala	gat Asp	ttc Phe	gcc Ala 120	cac His	gga Gly	tcc Ser	aag Lys	ttt Phe 125	tgg Trp	acg Thr	cac His	384
ttc Phe	tcc Ser 130	gga Gly	ggc Gly	tta Leu	aac Asn	tac Tyr 135	caa Gln	gtc Val	gtc Val	cac His	cat His 140	ctc Leu	ttc Phe	ccg Pro	ggc Gly	432
gtc Val 145	tgc Cys	cac His	gtg Val	cac His	tat Tyr 150	ccc Pro	gcg Ala	ctc Leu	gcg Ala	cca Pro 155	att Ile	att Ile	aag Lys	gcg Ala	gca Ala 160	480
	gag Glu															528
gcc Ala	ctg Leu	cgc Arg	gcg Ala 180	cac His	ttc Phe	cgg Arg	cac His	ctc Leu 185	gcc Ala	aac Asn	gtc Val	ggc Gly	cgc Arg 190	gcc Ala	gcg Ala	576
	gta Val	_					_		tga							606

<210> 92

<211> 201

<212> PRT

<213> Ostreococcus tauri

<400> 92

Met Tyr Gly Leu Leu Ser Leu Lys Ser Cys Phe Val Asp Asp Phe Asn 1 5 10 15

. Ala Tyr Phe Ser Gly Arg Ile Gly Trp Val Lys Val Met Lys Phe Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Arg Gly Glu Ala Ile Ala Phe Trp Gly Thr Lys Leu Leu Trp Ala Ala 35 40 45

Tyr Tyr Leu Ala Leu Pro Leu Lys Met Ser His Arg Pro Leu Gly Glu 50 55 60

Leu Leu Ala Leu Trp Ala Val Thr Glu Phe Val Thr Gly Trp Leu Leu 65 70 75 80

Ala Phe Met Phe Gln Val Ala His Val Val Gly Glu Val His Phe Phe 85 90 95

Thr Leu Asp Ala Lys Asn Arg Val Asn Leu Gly Trp Gly Glu Ala Gln
100 105 110

Leu Met Ser Ser Ala Asp Phe Ala His Gly Ser Lys Phe Trp Thr His 115 120 125

Phe Ser Gly Gly Leu Asn Tyr Gln Val Val His His Leu Phe Pro Gly 130 135 140

Val Cys His Val His Tyr Pro Ala Leu Ala Pro Ile Ile Lys Ala Ala 145 150 160

Ala Glu Lys His Gly Leu His Tyr Gln Ile Tyr Pro Thr Phe Trp Ser 165 170 175

Ala Leu Arg Ala His Phe Arg His Leu Ala Asn Val Gly Arg Ala Ala 180 185 190

Tyr Val Pro Ser Leu Gln Thr Val Gly 195 200

<210> 93

<211> 714

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(714)

<223> Delta-5-Desaturase

<400		93														
atg Met 1	gtg Val	agc Ser	cat His	cac His 5	tcg Ser	tac Tyr	tgt Cys	aac Asn	gac Asp 10	gcg Ala	gat Asp	ttg Leu	gat Asp	cag Gln 15	gat Asp	48
gtg Val	tac Tyr	acc Thr	gca Ala 20	ctg Leu	ccg Pro	ctc Leu	ctg Leu	cgc Arg 25	ctg Leu	gac Asp	ccg Pro	tct Ser	cag Gln 30	gag Glu	ttg Leu	96
aag Lys	tgg Trp	ttt Phe 35	cat His	cga Arg	tac Tyr	cag Gln	gcg Ala 40	ttt Phe	tac Tyr	gcc Ala	ccg Pro	ctc Leu 45	atg Met	tgg Trp	ccg Pro	144
ttt Phe	ttg Leu 50	tgg Trp	ctc Leu	gcg Ala	gcg Ala	cag Gln 55	ttt Phe	ggc Gly	gac Asp	gcg Ala	cag Gln 60	aac Asn	atc Ile	ctg Leu	atc Ile	192
gac Asp 65	cga Arg	gcg Ala	tcg Ser	ccg Pro	ggc Gly 70	gtc Val	gcg Ala	tac Tyr	aag Lys	gga Gly 75	ttg Leu	atg Met	gcg Ala	aac Asn	gag Glu 80	240
gtc Val	gcg Ala	ctg Leu	tac Tyr	gtt Val 85	ctc Leu	ggt Gly	aag Lys	gtt Val	tta Leu 90	cac His	ttt Phe	ggt Gly	ctt Leu	ctc Leu 95	ctc Leu	288
ggc Gly	gtt Val	cct Pro	gcg Ala 100	tac Tyr	ttg Leu	cac His	gga Gly	ttg Leu 105	tcc Ser	aac Asn	gcg Ala	atc Ile	gtt Val 110	cca Pro	ttc Phe	336
ttg Leu	gcg Ala	tac Tyr 115	ggc	gca Ala	ttc Phe	ggc Gly	tcc Ser 120	ttc Phe	gtc Val	ctg Leu	tgc Cys	tgg Trp 125	ttc Phe	ttc Phe	atc Ile	384
gtc Val	agc Ser 130	cat His	aac Asn	ctc Leu	gaa Glu	gcg Ala 135	ctg Leu	aca Thr	ccc Pro	gtt Val	aac Asn 140	ctt Leu	aac Asn	aag Lys	tcc Ser	432
acg Thr 145	aag Lys	aac Asn	gac Asp	tgg Trp	999 Gly 150	gcg Ala	tgg Trp	cag Gln	atc Ile	gag Glu 155	aca Thr	tcg Ser	gcg Ala	tct Ser	tgg Trp 160	480
ggc	aac Asn	gcg Ala	ttc Phe	tgg Trp 165	agc Ser	ttc Phe	ttc Phe	tct Ser	gga Gly 170	ggt Gly	ctg Leu	aac Asn	ctg Leu	caa Gln 175	atc Ile	528
gag Glu	cac His	cac His	ctc Leu 180	ttc Phe	ccg Pro	ggc Gly	atg Met	gcg Ala 185	cac His	aac Asn	ctg Leu	tac Tyr	ccg Pro 190	Lys	atg Met	576
gtg Val	ccg Pro	atc Ile 195	atc Ile	aag Lys	gac Asp	gag Glu	tgt Cys 200	gcg Ala	aaa Lys	gcg Ala	ggc Gly	gtt Val 205	cgc Arg	tac Tyr	acc Thr	624
ggt Gly	tac Tyr 210	ggt Gly	ggc	tac Tyr	acc Thr	ggc Gly 215	ctg Leu	ctc Leu	ccg Pro	atc Ile	acc Thr 220	cgc Arg	gac Asp	atg Met	ttc Phe	672
						ggc										714

<210> 94

<211> 237

<212> PRT

. <213> Ostreococcus tauri

<400> 94

Met Val Ser His His Ser Tyr Cys Asn Asp Ala Asp Leu Asp Gln Asp 1 10 15

Val Tyr Thr Ala Leu Pro Leu Leu Arg Leu Asp Pro Ser Gln Glu Leu 20 25 30

Lys Trp Phe His Arg Tyr Gln Ala Phe Tyr Ala Pro Leu Met Trp Pro 35 40 45

Phe Leu Trp Leu Ala Ala Gln Phe Gly Asp Ala Gln Asn Ile Leu Ile 50 55 60

Asp Arg Ala Ser Pro Gly Val Ala Tyr Lys Gly Leu Met Ala Asn Glu 65 , 70 75 80

Val Ala Leu Tyr Val Leu Gly Lys Val Leu His Phe Gly Leu Leu Leu 85 90 95

Gly Val Pro Ala Tyr Leu His Gly Leu Ser Asn Ala Ile Val Pro Phe 100 105 110

Leu Ala Tyr Gly Ala Phe Gly Ser Phe Val Leu Cys Trp Phe Phe Ile 115 120 125

Val Ser His Asn Leu Glu Ala Leu Thr Pro Val Asn Leu Asn Lys Ser 130 135 140

Thr Lys Asn Asp Trp Gly Ala Trp Gln Ile Glu Thr Ser Ala Ser Trp 145 150 155 160

Gly Asn Ala Phe Trp Ser Phe Phe Ser Gly Gly Leu Asn Leu Gln Ile . 165 170 175

Glu His His Leu Phe Pro Gly Met Ala His Asn Leu Tyr Pro Lys Met 180 185 190

Val Pro Ile Ile Lys Asp Glu Cys Ala Lys Ala Gly Val Arg Tyr Thr 195 200 205

Gly Tyr Gly Gly Tyr Thr Gly Leu Leu Pro Ile Thr Arg Asp Met Phe 210 215 220

Ser Tyr Leu His Lys Cys Gly Arg Thr Ala Lys Leu Ala 230 <210> 95 . <211> 1611 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(1611) <223> Delta-4-Desaturase 48 atg tac ctc gga cgc ggc cgt ctc gag agc ggg acg acg cga ggg atg Met Tyr Leu Gly Arg Gly Arg Leu Glu Ser Gly Thr Thr Arg Gly Met 10 atg cgg acg cac gcg cgg cga ccg tcg acg tcg aat ccg tgc gcg 96 Met Arg Thr His Ala Arg Arg Pro Ser Thr Thr Ser Asn Pro Cys Ala 144 cgg tca cgc gtg cgt aag acg acg gag cga tcg ctc gcg cga gtg cga Arg Ser Arg Val Arg Lys Thr Thr Glu Arg Ser Leu Ala Arg Val Arg 192 cga tcg acg agt gag aag gga agc gcg ctc gtg ctc gag cga gag agc Arg Ser Thr Ser Glu Lys Gly Ser Ala Leu Val Leu Glu Arg Glu Ser 55 gaa cgg gag aag gag gga ggg aaa gcg cga gcg gag gga ttg cga 240 Glu Arg Glu Lys Glu Glu Gly Gly Lys Ala Arg Ala Glu Gly Leu Arg ttc caa cgc ccg gac gtc gcc gcg ccg ggg gga gcg gat cct tgg aac 288 Phe Gln Arg Pro Asp Val Ala Ala Pro Gly Gly Ala Asp Pro Trp Asn gac gag aag tgg aca aag acc aag tgg acg gta ttc aga gac gtc gcg Asp Glu Lys Trp Thr Lys Thr Lys Trp Thr Val Phe Arg Asp Val Ala 336 105 384 tac gat ctc gat cct ttc ttc gct cga cac ccc gga gga gac tgg ctc Tyr Asp Leu Asp Pro Phe Phe Ala Arg His Pro Gly Gly Asp Trp Leu ctg aac ttg gcc gtg gga cga gac tgc acc gcg ctc atc gaa tcc tat 432 Leu Asn Leu Ala Val Gly Arg Asp Cys Thr Ala Leu Ile Glu Ser Tyr 135 480 cac ttg cga cca gag gtg gcg acg gct cgt ttc aga atg ctg ccc aaa His Leu Arg Pro Glu Val Ala Thr Ala Arg Phe Arg Met Leu Pro Lys 155 150 528 ctc gag gat ttt ccc gtc gag gcc gtg ccc aag tcc ccg aga ccg aac

										100							
	Leu	Glu	Asp	Phe	Pro 165	Val	Glu	Ala	Val	Pro 170	Lys	Ser	Pro	Arg	Pro 175	Asn	
	gat Asp	tcg Ser	ccg Pro	tta Leu 180	tac Tyr	aac Asn	aac Asn	att Ile	cgc Arg 185	aac Asn	cga Arg	gtc Val	cgc Arg	gaa Glu 190	gag Glu	ctc Leu	576
-	ttc Phe	cca Pro	gag Glu 195	gag Glu	gga Gly	aag Lys	aat Asn	atg Met 200	cac His	aga Arg	cag Gln	ggc Gly	ggc Gly 205	gac Asp	cac His	ggc Gly	624
	gac Asp	ggt Gly 210	gac Asp	gat Asp	tct Ser	gly.	ttt Phe 215	cgc Arg	cgc Arg	ctt Leu	ttg Leu	ctt Leu 220	atg Met	ccg Pro	tgt Cys	acc Thr	672
	tat Tyr 225	tcc Ser	ctt Leu	ccg Pro	Glà aaa	gtt Val 230	cct Pro	ttc Phe	cgg Arg	ctg Leu	cct Pro 235	cct Pro	cgg Arg	gtc Val	tcg Ser	cgg Arg 240	720
	Glà aaa	cgt Arg	gga Gly	ttg Leu	gtc Val 245	tca Ser	cga Arg	ttc Phe	agg Arg	cac His 250	tgc Cys	gcc Ala	aac Asn	cac His	ggc Gly 255	gcg Ala	768
	atg Met	tct Ser	cct Pro	tcg Ser 260	ccg Pro	gcc Ala	gtt Val	aac Asn	ggc Gly 265	gtc Val	ctc Leu	ggt Gly	ttg Leu	acg Thr 270	aac Asn	gat Asp	816
	ctc Leu	atc Ile	ggc Gly 275	Gly	tcg Ser	tcc Ser	ttg Leu	atg Met 280	tgg Trp	aga Arg	tat Tyr	cac His	cac His 285	caa Gln	gtc Val	agc Ser	864
	cac His	cac His 290	att Ile	cat His	tgc Cys	aac Asn	gac Asp 295	aac Asn	gcc Ala	atg Met	gat Asp	caa Gln 300	gac Asp	gtg Val	tac Tyr	acg Thr	912
	gcg Ala 305	atg Met	cca Pro	tta Leu	ttg Leu	cgt Arg 310	ttc Phe	gac Asp	gct Ala	cgc Arg	cgg Arg 315	ccc Pro	aag Lys	tcc Ser	tgg Trp	tac Tyr 320	960
	cat His	cgc Arg	ttc Phe	cag Gln	cag Gln 325	tgg Trp	tac Tyr	atg Met	ttt Phe	tta Leu 330	gcg Ala	ttc Phe	ccg Pro	ttg Leu	ttg Leu 335	cag Gln	1008
	gtt Val	gcc Ala	ttc Phe	caa Gln 340	gtc Val	Gly	Asp	Ile	Ala	Ala	Leu	ttc Phe	Thr	Arg	Asp	acc Thr	1056
	gaa Glu	ggc Gly	gct Ala 355	aag Lys	ctt Leu	cac His	gly aaa	gcg Ala 360	acg Thr	acg Thr	tgg Trp	gag Glu	ctt Leu 365	acc Thr	acg Thr	gtt Val	1104
	gtc Val	ctc Leu 370	ggt Gly	aag Lys	att Ile	gtg Val	cac His 375	ttc Phe	ggt Gly	ctt Leu	ttg Leu	ttg Leu 380	gly aaa	ccg Pro	ttg Leu	atg Met	1152
	aac Asn 385	cac His	gcg Ala	gtg Val	agt Ser	tct Ser 390	gtt Val	ttg Leu	ctg Leu	GJÀ aaa	atc Ile 395	gtc Val	ggt Gly	ttc Phe	atg Met	gcg Ala 400	1200
	tgc Cys	caa Gln	ggt Gly	ata Ile	gtt Val 405	ctg Leu	gcg Ala	tgc Cys	acg Thr	ttt Phe 410	gct Ala	gtg Val	agt Ser	cac His	aat Asn 415	gtc Val	1248
	gcg Ala	gag Glu	gcg Ala	aag Lys 420	ata Ile	cct Pro	gag Glu	gac Asp	acc Thr 425	gga Gly	gga Gly	gaa Glu	gcc Ala	tgg Trp 430	gag Glu	aga Arg	1296
	gat	tgg	ggt	gtc	cag	cag	ttg	gtg	act	agc	gcc	gac	tgg	ggt	gga	aag	1344

									159							
Asp	Trp	Gly 435	Val	Gln	Gln	Leu	Val 440	Thr	Ser	Ala	Asp	Trp 445	Gly	Gly	Lys	
ata Ile	ggt Gly 450	aac Asn	ttc Phe	ttc Phe	acg Thr	ggt Gly 455	ggc Gly	ctc Leu	aac Asn	ttg Leu	caa Gln 460	gtt Val	gag Glu	cac His	cac His	1392
ttg Leu 465	ttt Phe	ccg Pro	gcg Ala	att Ile	tgc Cys 470	ttc Phe	gtc Val	cac His	tac Tyr	ccg Pro 475	gac Asp	atc Ile	gcg Ala	aag Lys	atc Ile 480	1440
gtg Val	aag Lys	gaa Glu	gaa Glu	gcg Ala 485	gcc Ala	aag Lys	ctc Leu	aac Asn	atc Ile 490	cct Pro	tac Tyr	gcg Ala	tct Ser	tac Tyr 495	agg Arg	1488
act Thr	ctt Leu	cct Pro	ggt Gly 500	att Ile	ttc Phe	gtc Val	caa Gln	ttc Phe 505	tgg Trp	aga Arg	ttt Phe	atg Met	aag Lys 510	gac Asp	atg Met	1536
ggc Gly	acg Thr	gct Ala 515	gag Glu	caa Gln	att Ile	ggt Gly	gaa Glu 520	gtt Val	cca Pro	ttg Leu	ccg Pro	aag Lys 525	att Ile	ccc Pro	aac Asn	1584
		ctc Leu						tag	ě							1611
<210)>	96														
<21		536														
<212		PRT														
		Ostre	2000	ccus	tau:	ri										
~ 22 22 2							•									
<400		96														
Met 1	Tyr	Leu	Gly	Arg 5	Gly	Arg	Leu	Glu	Ser 10	Gly	Thr	Thr	Arg	Gly 15	Met	
Met	Arg	Thr	His 20	Ala	Arg	Arg	Pro	Ser 25	Thr	Thr	Ser	Asn	Pro 30	Cys	Ala	
Arg	Ser	Arg 35	Val	Arg	Lys	Thr	Thr 40	Glu	Arg	Ser	Leu	Ala 45	Arg	Val	Arg	
Arg	Ser 50	Thr	Ser	Glu	Lys	Gly 55	Ser	Ala	Leu	Val	Leu 60	Glu	Arg	Glu	Ser	
Glu 65	Arg	Glu	Ĺys	Glu	Glu 70	Gly	Gly	Lys	Ala	Arg 75	Ala	Glu	Gly	Leu	Arg 80	
Phe	Gln	. Arg	Pro	Asp 85	Val	Ala	Ala	Pro	Gly 90	Gly	Ala	Asp	Pro	Trp 95	Asn	
_	G 7	T	m	· Wha	Tara	Thr	T ***	III www	mb w	**- 7	Dho	እ ፖ ርፕ	Λαn	77a 1	בות	

160

Tyr Asp Leu Asp Pro Phe Phe Ala Arg His Pro Gly Gly Asp Trp Leu 115 120 125

Leu Asn Leu Ala Val Gly Arg Asp Cys Thr Ala Leu Ile Glu Ser Tyr 130 135 140

His Leu Arg Pro Glu Val Ala Thr Ala Arg Phe Arg Met Leu Pro Lys 145 150 155 160

Leu Glu Asp Phe Pro Val Glu Ala Val Pro Lys Ser Pro Arg Pro Asn 165 170 175

Asp Ser Pro Leu Tyr Asn Asn Ile Arg Asn Arg Val Arg Glu Glu Leu 180 185 190

Phe Pro Glu Glu Gly Lys Asn Met His Arg Gln Gly Gly Asp His Gly 195 200 205

Asp Gly Asp Asp Ser Gly Phe Arg Arg Leu Leu Leu Met Pro Cys Thr 210 215 220

Tyr Ser Leu Pro Gly Val Pro Phe Arg Leu Pro Pro Arg Val Ser Arg 225 230 235

Gly Arg Gly Leu Val Ser Arg Phe Arg His Cys Ala Asn His Gly Ala 245 250 255

Met Ser Pro Ser Pro Ala Val Asn Gly Val Leu Gly Leu Thr Asn Asp 260 265 270

Leu Ile Gly Gly Ser Ser Leu Met Trp Arg Tyr His His Gln Val Ser 275 280 285

His His Ile His Cys Asn Asp Asn Ala Met Asp Gln Asp Val Tyr Thr 290 295 300

Ala Met Pro Leu Leu Arg Phe Asp Ala Arg Arg Pro Lys Ser Trp Tyr 305 310 315

His Arg Phe Gln Gln Trp Tyr Met Phe Leu Ala Phe Pro Leu Leu Gln 325 330 335

Val Ala Phe Gln Val Gly Asp Ile Ala Ala Leu Phe Thr Arg Asp Thr 340 345 350

Glu Gly Ala Lys Leu His Gly Ala Thr Thr Trp Glu Leu Thr Thr Val 355 . 365

Val Leu Gly Lys Ile Val His Phe Gly Leu Leu Gly Pro Leu Met

161

Asn His Ala Val Ser Ser Val Leu Leu Gly Ile Val Gly Phe Met Ala 385 390 400

Cys Gln Gly Ile Val Leu Ala Cys Thr Phe Ala Val Ser His Asn Val $405 \hspace{1.5cm} 410 \hspace{1.5cm} 415 \hspace{1.5cm}$

. Ala Glu Ala Lys Ile Pro Glu Asp Thr Gly Gly Glu Ala Trp Glu Arg 420 425 430

Asp Trp Gly Val Gln Gln Leu Val Thr Ser Ala Asp Trp Gly Gly Lys
435
440

Ile Gly Asn Phe Phe Thr Gly Gly Leu Asn Leu Gln Val Glu His His 450 455 460

Leu Phe Pro Ala Ile Cys Phe Val His Tyr Pro Asp Ile Ala Lys Ile 465 470 475 480

Val Lys Glu Glu Ala Ala Lys Leu Asn Ile Pro Tyr Ala Ser Tyr Arg 485 490 495

Thr Leu Pro Gly Ile Phe Val Gln Phe Trp Arg Phe Met Lys Asp Met 500 505 510

Gly Thr Ala Glu Gln Ile Gly Glu Val Pro Leu Pro Lys Ile Pro Asn 515 520 525

Pro Gln Leu Ala Pro Lys Leu Ala 530 535

<210> 97

<211> 1455

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(1455)

<223> Delta-6-Desaturase

48

96

ttg aaa ttg gcg gag aag ccg cag aag tac act tgg cag gag gtg aag Leu Lys Leu Ala Glu Lys Pro Gln Lys Tyr Thr Trp Gln Glu Val Lys 20 25 30

PCT/EP2005/001863

									162							
aag Lys	cac His	atc Ile 35	acc Thr	ccc Pro	gac Asp	gat Asp	gcc Ala 40	tgg Trp	gta Val	gtc Val	cac His	caa Gln 45	aac Asn	aaa Lys	gtc Val	144
tac Tyr	gac Asp 50	gtc Val	tcc Ser	aac Asn	tgg Trp	tac Tyr 55	gac Asp	cac His	ccc Pro	ggt Gly	gga Gly 60	gcc Ala	gtg Val	gtg Val	ttc Phe	192
acc Thr 65	cac His	gcc Ala	gga Gly	gac Asp	gac Asp 70	atg Met	acg Thr	gac Asp	atc Ile	ttc Phe 75	gcc Ala	gcc Ala	ttc Phe	cac His	gcc Ala 80	240
caa Gln	ggc Gly	tct Ser	cag Gln	gcc Ala 85	atg Met	atg Met	aag Lys	aag Lys	ttt Phe 90	tac Tyr	att Ile	gga Gly	gat Asp	ttg Leu 95	att Ile	288
ccg Pro	gag Glu	agt Ser	gtg Val 100	gag Glu	cat His	aag Lys	gat Asp	caa Gln 105	aga Arg	cag Gln	ttg Leu	gat Asp	ttc Phe 110	gag Glu	aag Lys	336
gga Gly	tat Tyr	cgt Arg 115	gat Asp	tta Leu	cgg Arg	gcc Ala	aag Lys 120	ctt Leu	gtc Val	atg Met	atg Met	999 Gly 125	atg Met	ttc Phe	aag Lys	384
tcg Ser	agt Ser 130	aag Lys	atg Met	tat Tyr	tat Tyr	gca Ala 135	tac Tyr	aag Lys	tgc Cys	tcg Ser	ttc Phe 140	aat Asn	atg Met	tgc Cys	atg Met	432
tgg Trp 145	ttg Leu	gtg Val	gcg Ala	gtg Val	gcc Ala 150	atg Met	gtg Val	tac Tyr	tac Tyr	tcg Ser 155	gac Asp	agt Ser	ttg Leu	gca Ala	atg Met 160	480
cac His	att Ile	gga Gly	tcg Ser	gct Ala 165	ctc Leu	ttg Leu	ttg Leu	gga Gly	ttg Leu 170	ttc Phe	tgg Trp	cag Gln	cag Gln	tgt Cys 175	gga Gly	528
tgg Trp	ctt Leu	gcg Ala	cac His 180	gac Asp	ttt Phe	ctt Leu	cac His	cac His 185	caa Gln	gtc Val	ttt Phe	aag Lys	caa Gln 190	cga Arg	aag Lys	576
tac Tyr	gga Gly	gat Asp 195	ctc Leu	gtt Val	ggc Gly	atc Ile	ttt Phe 200	tgg Trp	gga Gly	gat Asp	ctc Leu	atg Met 205	cag Gln	GJÀ aaa	ttc Phe	624
tcg Ser	atg Met 210	cag Gln	tgg Trp	tgg Trp	aag Lys	aac Asn 215	aag Lys	cac His	aat Asn	Gly	cac His 220	cat His	gct Ala	gtt Val	ccc Pro	672
aac Asn 225	ttg Leu	cac His	aac Asn	tct Ser	tcc Ser 230	ttg Leu	gac Asp	agt Ser	cag Gln	gat Asp 235	ggt Gly	gat Asp	ccc Pro	gat Asp	att Ile 240	720
gat Asp	acc Thr	atg Met	cca Pro	ctc Leu 245	ctt Leu	gct Ala	tgg Trp	agt Ser	ctc Leu 250	aag Lys	cag Gln	gct Ala	cag Gln	agt Ser 255	ttc Phe	768
aga Arg	gag Glu	atc Ile	aat Asn 260	aag Lys	gga Gly	aag Lys	gac Asp	agt Ser 265	acc Thr	ttc Phe	gtc Val	aag Lys	tac Tyr 270	gct Ala	atc Ile	816
aaa Lys	ttc Phe	cag Gln 275	gca Ala	ttc Phe	aca Thr	tac Tyr	ttc Phe 280	ccc Pro	atc Ile	ctc Leu	ctc Leu	ttg Leu 285	gct Ala	cgc Arg	atc Ile	864
tct Ser	tgg Trp 290	ttg Leu	aat Asn	gaa Glu	tcc Ser	ttc Phe 295	aaa Lys	act Thr	gca Ala	ttc Phe	gga Gly 300	ctc Leu	gga Gly	gct Ala	gcc Ala	912

tcg Ser 305	gag Glu	aat Asn	gcc Ala	aag Lys	ttg Leu 310	gag Glu	ttg Leu	gag Glu	aag Lys	cgt Arg 315	gga Gly	ctt Leu	cag Gln	tac Tyr	cca Pro 320	91	60
ctt Leu	ttg Leu	gag Glu	aag Lys	ctt Leu 325	gga Gly	atc Ile	acc Thr	ctt Leu	cat His 330	tac Tyr	act Thr	tgg Trp	atg Met	ttc Phe 335	gtc Val	10	80
ctc Leu	tct Ser	tcc Ser	gga Gly 340	ttt Phe	gga Gly	agg Arg	tgg Trp	tct Ser 345	ctt Leu	cca Pro	tat Tyr	tcc Ser	atc Ile 350	atg Met	tat Tyr	10	56
ttc Phe	ttc Phe	act Thr 355	gcc Ala	aca Thr	tgc Cys	tcc Ser	tcg Ser 360	gga Gly	ctt Leu	ttc Phe	ctc Leu	gca Ala 365	ttg Leu	gtc Val	ttt Phe	11	04
gga Gly	ttg Leu 370	gga Gly	cac His	aac Asn	ggt Gly	atg Met 375	tca Ser	gtg Val	tac Tyr	gat Asp	gcc Ala 380	acc Thr	acc Thr	cga Arg	cct Pro	11	52
gac Asp 385	ttc Phe	tgg Trp	caa Gln	ctc Leu	caa Gln 390	gtc Val	acc Thr	act Thr	aca Thr	cgt Arg 395	aac Asn	atc Ile	att Ile	ggt Gly	gga Gly 400	12	00
cac His	ggc	att Ile	ccc Pro	caa Gln 405	ttc Phe	ttt Phe	gtg Val	gat Asp	tgg Trp 410	ttc Phe	tga Cys	ggt Gly	gga Gly	ttg Leu 415	caa Gln	12	48
tac Tyr	caa Gln	gt ⁱ g Val	gat Asp 420	cac His	cac His	ctc Leu	ttc Phe	ccc Pro 425	atg Met	atg Met	cct	aga Arg	aac Asn 430	aat Asn	atc Ile	12	96
gcg Ala	aaa Lys	tgc Cys 435	cac His	aag Lys	ctt Leu	gtg Val	gag Glu 440	Ser	ttc Phe	tgt Cys	aag Lys	gag Glu 445	tgg Trp	ggt Gly	gtg Val	13	44
aag Lys	tac Tyr 450	cat His	gag Glu	gcc Ala	gat Asp	atg Met 455	tgg Trp	gat Asp	ggt Gly	acc Thr	gtg Val 460	gaa Glu	gtg Val	ttg Leu	caa Gln	13	92
cat His 465	ctc Leu	tcc Ser	aag Lys	gtg Val	tcg Ser 470	gat. Asp	gat Asp	ttc Phe	ctt Leu	gtg Val 475	gag Glu	atg Met	gtg Val	aag Lys	gat Asp 480	14	40
		_	atg Met	taa												14	55

<210> 98

<211> 484

<212> PRT

<213> Thalassiosira pseudonana

<400> 98

Met Gly Lys Gly Gly Asp Ala Ala Ala Ala Thr Lys Arg Ser Gly Ala 1 5 10 15

Leu Lys Leu Ala Glu Lys Pro Gln Lys Tyr Thr Trp Gln Glu Val Lys 20 25 30

Lys His Ile Thr Pro Asp Asp Ala Trp Val Val His Gln Asn Lys Val 35 40 45

Tyr Asp Val Ser Asn Trp Tyr Asp His Pro Gly Gly Ala Val Val Phe 50 55

Thr His Ala Gly Asp Asp Met Thr Asp Ile Phe Ala Ala Phe His Ala 65 70 75 80

Gln Gly Ser Gln Ala Met Met Lys Lys Phe Tyr Ile Gly Asp Leu Ile 85 90 95

Pro Glu Ser Val Glu His Lys Asp Gln Arg Gln Leu Asp Phe Glu Lys
100 105 110

Gly Tyr Arg Asp Leu Arg Ala Lys Leu Val Met Met Gly Met Phe Lys 115 120 125

Ser Ser Lys Met Tyr Tyr Ala Tyr Lys Cys Ser Phe Asn Met Cys Met 130 135 140

Trp Leu Val Ala Val Ala Met Val Tyr Tyr Ser Asp Ser Leu Ala Met 145 150 155 160

His Ile Gly Ser Ala Leu Leu Gly Leu Phe Trp Gln Gln Cys Gly
165 170 175

Trp Leu Ala His Asp Phe Leu His His Gln Val Phe Lys Gln Arg Lys 180 185 190

Tyr Gly Asp Leu Val Gly Ile Phe Trp Gly Asp Leu Met Gln Gly Phe 195 200 205

Ser Met Gln Trp Trp Lys Asn Lys His Asn Gly His His Ala Val Pro 210 215 220

Asn Leu His Asn Ser Ser Leu Asp Ser Gln Asp Gly Asp Pro Asp Ile 225 230 235 240

Asp Thr Met Pro Leu Leu Ala Trp Ser Leu Lys Gln Ala Gln Ser Phe 245 250 255

Arg Glu Ile Asn Lys Gly Lys Asp Ser Thr Phe Val Lys Tyr Ala Ile 260 265 270

Lys Phe Gln Ala Phe Thr Tyr Phe Pro Ile Leu Leu Leu Ala Arg Ile 275 280 285

Ser Trp Leu Asn Glu Ser Phe Lys Thr Ala Phe Gly Leu Gly Ala Ala 290 295 300

WO 2005/083093

PCT/EP2005/001863

165

Ser Glu Asn Ala Lys Leu Glu Leu Glu Lys Arg Gly Leu Gln Tyr Pro 305 310 315 320

Leu Leu Glu Lys Leu Gly Ile Thr Leu His Tyr Thr Trp Met Phe Val 325 330 335

Leu Ser Ser Gly Phe Gly Arg Trp Ser Leu Pro Tyr Ser Ile Met Tyr 340 345 350

Phe Phe Thr Ala Thr Cys Ser Ser Gly Leu Phe Leu Ala Leu Val Phe 355 360 365

Gly Leu Gly His Asn Gly Met Ser Val Tyr Asp Ala Thr Thr Arg Pro 370 380

Asp Phe Trp Gln Leu Gln Val Thr Thr Arg Asn Ile Ile Gly Gly 385 390 395

His Gly Ile Pro Gln Phe Phe Val Asp Trp Phe Cys Gly Gly Leu Gln 405 410 415

Tyr Gln Val Asp His His Leu Phe Pro Met Met Pro Arg Asn Asn Ile 420 425 430

Ala Lys Cys His Lys Leu Val Glu Ser Phe Cys Lys Glu Trp Gly Val 435 440 445

Lys Tyr His Glu Ala Asp Met Trp Asp Gly Thr Val Glu Val Leu Gln 450 455 460

His Leu Ser Lys Val Ser Asp Asp Phe Leu Val Glu Met Val Lys Asp 465 470 480

Phe Pro Ala Met

<210> 99

<211> 1431

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(1431)

<223> Delta-5-Desaturase

	_															
<400 atg Met 1	0> 9 ccc Pro	occ Pro	aac Asn	gcc Ala 5	gat Asp	atc Ile	tcc Ser	cgc Arg	atc Ile 10	cgc Arg	aac Asn	cgc Arg	atc Ile	ccc Pro 15	acc Thr	48
aaa Lys	aca Thr	ggt Gly	acc Thr 20	gtt Val	gcc Ala	tct Ser	gcc Ala	gac Asp 25	aac Asn	aac Asn	gac Asp	ccc Pro	gcc Ala 30	acc Thr	caa Gln	96
tcc Ser	gtc Val	cga Arg 35	acc Thr	ctc Leu	aaa Lys	tct Ser	ctc Leu 40	aag Lys	Gly ggc	aac Asn	gag Glu	gtc Val 45	gtc Val	atc Ile	aac Asn	144
ggc	aca Thr 50	Ile	tat Tyr	gac Asp	att Ile	gct Ala 55	gac Asp	ttt Phe	gtc Val	cat His	cct Pro 60	gga Gly	gga Gly	gag Glu	gtt Val	192
gtc Val 65	aag Lys	ttc Phe	ttt Phe	ggt Gly	ggg Gly 70	aat Asn	gat Asp	gtt Val	act Thr	att Ile 75	cag Gln	tat Tyr	aat Asn	atg Met	att Ile 80	240
cat His	ccg Pro	tat Tyr	cat His	acg Thr 85	gly ggg	aaa Lys	cat His	ctg Leu	gag Glu 90	aag Lys	atg Met	aag Lys	gct Ala	gtt Val 95	gga Gly	288
aag Lys	gtt Val	gta Val	gat Asp 100	tgg Trp	cag Gln	tcg Ser	gac Asp	tac Tyr 105	aag Lys	ttc Phe	gac Asp	acc Thr	ccc Pro 110	ttt Phe	gaa Glu	336
cga Arg	gag Glu	atc Ile 115	aaa Lys	tca Ser	gaa Glu	gtg Val	ttc Phe 120	aag Lys	atc Ile	gta Val	cgt Arg	cgc Arg 125	ggg ggg	cgt Arg	gag Glu	384
ttc Phe	ggc Gly 130	aca Thr	aca Thr	ggc Gly	tac Tyr	ttc Phe 135	ctc Leu	cgt Arg	gcc Ala	ttt Phe	ttc Phe 140	tac Tyr	atc Ile	gct Ala	ctc Leu	432
ttc Phe 145	ttc Phe	acc Thr	atg Met	caa Gln	tac Tyr 150	act Thr	ttc Phe	gcc Ala	aca Thr	tgc Cys 155	acc Thr	acc Thr	ttc Phe	acc Thr	acc Thr 160	480
tac Tyr	gat Asp	cac His	tgg Trp	tat Tyr 165	cag Gln	agt Ser	ggt	gta Val	ttc Phe 170	atc Ile	gca Ala	att Ile	gtg Val	ttt Phe 175	ggt Gly	528
att Ile	tca Ser	cag Gln	gca Ala 180	ttc Phe	att Ile	GJÀ aaa	ttg Leu	aat Asn 185	gtc Val	cag Gln	cac His	gat Asp	gcc Ala 190	aat Asn	cac His	576
gga Gly	gct Ala	gcc Ala 195	agt Ser	aag Lys	cgt Arg	ccc Pro	tgg Trp 200	Val	aat Asn	gac Asp	ttg Leu	ttg Leu 205	Gly	ttt Phe	gga Gly	624
acg Thr	gat Asp 210	Leu	att Ile	gga Gly	tct Ser	aac Asn 215	Lys	tgg Trp	aat Asn	tgg Trp	atg Met 220	Ala	cag Gln	cat His	tgg Trp	672
act Thr 225	cat His	cac His	gct Ala	tac Tyr	act Thr 230	aac Asn	cat His	agt Ser	gag Glu	aag Lys 235	Asp	ccc Pro	gat Asp	agc Ser	ttc Phe 240	720
ago Ser	tcg Ser	gaa Glu	cct	atg Met 245	Phe	gca Ala	ttc Phe	aat Asn	gac Asp 250	Tyr	ccc Pro	att Ile	gga Gly	cac His 255	Pro	768
aag	, aga	aag	tgg	tgg	cat	agg	ttc	cag	gga	999	tac	ttc	cto	ttc	atg	816

167

									167							
Ьy	s Arg	Lys	Trp 260	Trp	His	Arg	Phe	Gln 265	Gly	Gly	Tyr	Phe	Leu 270	Phe	Met	
ct Le	t gga u Gly	ctt Leu 275	tac Tyr	tgg Trp	ctc Leu	tcg Ser	act Thr 280	gta Val	ttc Phe	aat Asn	ccg Pro	caa Gln 285	ttc Phe	att Ile	gat Asp	864
ct . Le	t cgt u Arg 290	, Gln	cgt Arg	Gly ggg	gct Ala	cag Gln 295	tac Tyr	gtc Val	gga Gly	att Ile	caa Gln 300	atg Met	gag Glu	aat Asn	gat Asp	912
tt Ph 30	c att e Ile 5	gtc Val	aag Lys	agg Arg	agg Arg 310	aag Lys	tac Tyr	gcc Ala	gtt Val	gca Ala 315	ttg Leu	agg Arg	atg Met	atg Met	tac Tyr 320	960
at Il	t tad e Ty	ttg Leu	aac Asn	att Ile 325	gtc Val	agc Ser	ccc Pro	ttc Phe	atg Met 330	aac Asn	aat Asn	ggt Gly	ttg Leu	agc Ser 335	tgg Trp	1008
to Se	t acc	ttt Phe	gga Gly 340	atc Ile	atc Ile	atg Met	ttg Leu	atg Met 345	gga Gly	atc Ile	agc Ser	gag Glu	agt Ser 350	ctc Leu	act Thr	1056
ct Le	c agi u Se:	gtg Val	Leu	ttc Phe	tcg Ser	ttg Leu	tct Ser 360	His	aac Asn	ttc Phe	atc Ile	aat Asn 365	tcg Ser	gat Asp	cgt Arg	1104
ga As	t cci p Pro 37	Thr	gct Ala	gac Asp	ttc Phe	aaa Lys 375	aag Lys	acc Thr	gga Gly	gaa Glu	caa Gln 380	gtg Val	tgc Cys	tgg Trp	ttc Phe	1152
аа L y 38	g to s Se: 5	g cag r Gln	gtg Val	gag Glu	act Thr 390	tcg Ser	tct Ser	acc Thr	tat Tyr	395 395	ggt Gly	ttt Phe	att Ile	tcc Ser	gga Gly 400	1200
tg Cy	rt ct [.] rs Le	acg 1 Thr	gga Gly	gga Gly 405	ctc Leu	aac Asn	ttt Phe	cag Gln	gtg Val 410	Glu	cat	cat His	ctc Leu	ttt Phe 415	ccc Pro	1248
cg Ar	t ate	g ago : Ser	agt Ser 420	Ala	tgg Trp	tat Tyr	cct Pro	tac Tyr 425	Ile	gca Ala	cct Pro	acg Thr	gtt Val 430	cgt Arg	gag Glu	1296
gt Va	t tg	c aag s Lys 435	Lys	cac His	gjà aaa	gtg Val	aac Asn 440	Tyr	gct Ala	tat Tyr	tat Tyr	cct Pro 445	tgg Trp	att Ile	Gly aaa	1344
ca Gl	ig aa .n As: 45	ı Let	gta Val	tca Ser	aca Thr	ttc Phe 455	aaa Lys	tac Tyr	atg Met	cat His	cgc Arg 460	Ala	ggt Gly	agt Ser	gga Gly	1392
gc Al 46	c aa a As: 55	c tgg n Tr <u>r</u>	gag Glu	ctc Leu	aag Lys 470	Pro	ttg Leu	tct Ser	gga Gly	agt Ser 475	gcc Ala	taa				1431

<210> 100

<211> 476

<212> PRT

<213> Thalassiosira pseudonana

<400> 100

168

Met Pro Pro Asn Ala Asp Ile Ser Arg Ile Arg Asn Arg Ile Pro Thr 1 5 10 15

Lys Thr Gly Thr Val Ala Ser Ala Asp Asn Asn Asp Pro Ala Thr Gln 20 25 30

Ser Val Arg Thr Leu Lys Ser Leu Lys Gly Asn Glu Val Val Ile Asn 35 40 45

Gly Thr Ile Tyr Asp Ile Ala Asp Phe Val His Pro Gly Gly Glu Val 50 55 60

Val Lys Phe Phe Gly Gly Asn Asp Val Thr Ile Gln Tyr Asn Met Ile 65 70 75 80

His Pro Tyr His Thr Gly Lys His Leu Glu Lys Met Lys Ala Val Gly 85 90 95

Lys Val Val Asp Trp Gln Ser Asp Tyr Lys Phe Asp Thr Pro Phe Glu 100 105 110

Arg Glu Ile Lys Ser Glu Val Phe Lys Ile Val Arg Arg Gly Arg Glu 115 120 125

Phe Gly Thr Thr Gly Tyr Phe Leu Arg Ala Phe Phe Tyr Ile Ala Leu 130 135 140

Phe Phe Thr Met Gln Tyr Thr Phe Ala Thr Cys Thr Thr Phe Thr Thr 145 150 150 160

Tyr Asp His Trp Tyr Gln Ser Gly Val Phe Ile Ala Ile Val Phe Gly 165 170 175

Ile Ser Gln Ala Phe Ile Gly Leu Asn Val Gln His Asp Ala Asn His
180 185 190

Gly Ala Ala Ser Lys Arg Pro Trp Val Asn Asp Leu Leu Gly Phe Gly 195 200 205 .

Thr Asp Leu Ile Gly Ser Asn Lys Trp Asn Trp Met Ala Gln His Trp 210 220

Thr His His Ala Tyr Thr Asn His Ser Glu Lys Asp Pro Asp Ser Phe 225 230 235 240

Ser Ser Glu Pro Met Phe Ala Phe Asn Asp Tyr Pro Ile Gly His Pro 245 250 255

Lys Arg Lys Trp Trp His Arg Phe Gln Gly Gly Tyr Phe Leu Phe Met 260 265 270

169

Leu Gly Leu Tyr Trp Leu Ser Thr Val Phe Asn Pro Gln Phe Ile Asp 275 280 285

Leu Arg Gln Arg Gly Ala Gln Tyr Val Gly Ile Gln Met Glu Asn Asp 290 295 300

Phe Ile Val Lys Arg Arg Lys Tyr Ala Val Ala Leu Arg Met Met Tyr 305 310 315 320

Ile Tyr Leu Asn Ile Val Ser Pro Phe Met Asn Asn Gly Leu Ser Trp 325 330 335

Ser Thr Phe Gly Ile Ile Met Leu Met Gly Ile Ser Glu Ser Leu Thr 340 345 350

Leu Ser Val Leu Phe Ser Leu Ser His Asn Phe Ile Asn Ser Asp Arg 355 360 365

Asp Pro Thr Ala Asp Phe Lys Lys Thr Gly Glu Gln Val Cys Trp Phe 370 375 380

Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr Gly Gly Phe Ile Ser Gly 385 390 395

Cys Leu Thr Gly Gly Leu Asn Phe Gln Val Glu His His Leu Phe Pro 405 410 415

Arg Met Ser Ser Ala Trp Tyr Pro Tyr Ile Ala Pro Thr Val Arg Glu 420 425 430

Val Cys Lys Lys His Gly Val Asn Tyr Ala Tyr Tyr Pro Trp Ile Gly
435 440 445

Gln Asn Leu Val Ser Thr Phe Lys Tyr Met His Arg Ala Gly Ser Gly
450 455 460

Ala Asn Trp Glu Leu Lys Pro Leu Ser Gly Ser Ala 465 470 475

<210> 101

<211> 1449

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(1449)

<223> Delta-5-Desaturase

	<400 atg Met 1	cca	.01 ccc Pro	aac Asn	gcc Ala 5	gag Glu	gtc Val	aaa Lys	aac Asn	ctc Leu 10	cgt Arg	tca Ser	cgt Arg	tcc Ser	atc Ile 15	cca Pro	4	:8
•	acg Thr	aag Lys	aag Lys	tcc Ser 20	agt Ser	tca Ser	tcg Ser	tca Ser	tcc Ser 25	acc Thr	gcg Ala	aac Asn	gac Asp	gat Asp 30	ccg Pro	gct Ala	^	6
	acc Thr	caa Gln	tcc Ser 35	acc Thr	tca Ser	cct Pro	gtg Val	aac Asn 40	cga Arg	acc Thr	ctc Leu	aag Lys	tct Ser 45	ttg Leu	aat Asn	gga Gly	14	: 4
	aac Asn	gaa Glu 50	ata Ile	gct Ala	att Ile	gac Asp	ggt Gly 55	gtc Val	atc Ile	tat Tyr	gat Asp	att Ile 60	gat Asp	ggc	ttt Phe	gtc Val	19	12
	cat His 65	cct Pro	gga Gly	gga Gly	gag Glu	gtt Val 70	att Ile	agc Ser	ttc Phe	ttt Phe	gga Gly 75	ggc Gly	aac Asn	gat Asp	gtg Val	act Thr 80	24	:0
	gta Val	cag Gln	tac Tyr	aaa Lys	atg Met 85	att Ile	cat His	ccg Pro	tat Tyr	cat His 90	aat Asn	agt Ser	aag Lys	cat His	ctc Leu 95	gag Glu	28	18
	aag Lys	atg Met	aga Arg	gcc Ala 100	gtt Val	gga Gly	aag Lys	att Ile	gca Ala 105	gac Asp	tac Tyr	tcc Ser	aca Thr	gag Glu 110	tac Tyr	aag Lys	33	6
	ttc Phe	gac Asp	aca Thr 115	pro	ttt Phe	gaa Glu	cga Arg	gag Glu 120	atc Ile	aaa Lys	tcc Ser	gaa Glu	gtg Val 125	ttc Phe	aaa Lys	atc Ile	38	}4
	gtc Val	cgt Arg 130	cga Arg	gga Gly	cgt Arg	gaa Glu	ttc Phe 135	ggt Gly	aca Thr	aca Thr	gga Gly	tat Tyr 140	ttc Phe	ctc Leu	cgt Arg	gcc Ala	43	12
	ttc Phe 145	ttc Phe	tac Tyr	att Ile	gct Ala	ctc Leu 150	ttc Phe	ttc Phe	acc Thr	atg Met	caa Gln 155	tac Tyr	acc Thr	ttc Phe	gcc Ala	aca Thr 160	4.8	30
	tgc Cys	act Thr	acc Thr	ttc Phe	acc Thr 165	acc Thr	tac Tyr	gat Asp	cat His	tgg Trp 170	tat Tyr	caa Gln	agt Ser	ggt Gly	gta Val 175	ttc Phe	. 52	8 2
	atc Ile	gcc Ala	att Ile	gtg Val 180	ttt Phe	ggt Gly	atc Ile	tca Ser	caa Gln 185	gct Ala	ttc Phe	att Ile	Gl ^A aaa	ttg Leu 190	aat Asn	gta Val	57	76
	caa Gln	cat His	gat Asp 195	gcc Ala	aat Asn	cac His	gga Gly	gct Ala 200	gct Ala	agc Ser	aaa Lys	ċga Arg	cct Pro 205	tgg Trp	gtg Val	aat Asn	62	24
	gat Asp	ctc Leu 210	ctt Leu	gga Gly	tct Ser	gga Gly	gct Ala 215	gat Asp	ctc Leu	atc Ile	ggt Gly	gga Gly 220	tgc Cys	aaa Lys	tgg Trp	aac Asn	67	72
	tgg Trp 225	ttg Leu	gct Ala	cag Gln	cat His	tgg Trp 230	act Thr	cat His	cat His	gcg Ala	tat Tyr 235	acc Thr	aat Asn	cac His	gct Ala	gat Asp 240	72	20
	aaa Lys	gat Asp	cct Pro	gat Asp	agc Ser 245	ttt Phe	agt Ser	tcc Ser	gag Glu	ccg Pro 250	gtc Val	ttc Phe	aac Asn	ttt Phe	aac Asn 255	gat Asp	76	8

tat Tyr	ccc Pro	att Ile	ggt Gly 260	cac His	ccc Pro	aaa Lys	aga Arg	aag Lys 265	tgg Trp	tgg Trp	cat His	agg Arg	ttc Phe 270	caa Gln	Gly 999	816
ctc Leu	tac Tyr	ttc Phe 275	cta Leu	atc Ile	atg Met	ctg Leu	agt Ser 280	ttc Phe	tat Tyr	tgg Trp	gta Val	tcg Ser 285	Met	gta Val	ttc Phe	864
aac Asn	cca Pro 290	caa Gln	gtt Val	atc Ile	gac Asp	ctc Leu 295	cgt Arg	cat His	gct Ala	gga Gly	gct Ala 300	gcc Ala	tac Tyr	gtt Val	gga Gly	912
ttt Phe 305	cag Gln	atg Met	gag Glu	aac Asn	gac Asp 310	ttt Phe	atc Ile	gtc Val	aaa Lys	cgg Arg 315	aga Arg	aag Lys	tat Tyr	gca Ala	atg Met 320	960
gca Ala	ctt Leu	cgt Arg	gca Ala	atg Met 325	tac Tyr	ttc Phe	tat Tyr	ttc Phe	aac Asn 330	atc Ile	tat Tyr	tgt Cys	ccg Pro	att Ile 335	gtc Val	1008
aac Asn	aat Asn	gga Gly	ttg Leu 340	act Thr	tgg Trp	tcg Ser	aca Thr	gtt Val 345	gga Gly	atc Ile	atc Ile	ctc Leu	tta Leu 350	atg Met	gga Gly	1056
gtt Val	agc Ser	gaa Glu 355	agc Ser	ttc Phe	atg Met	ctc Leu	tcc Ser 360	ggt Gly	cta Leu	ttc Phe	gta Val	ctc Leu 365	tca Ser	cac His	aac Asn	1104
ttt Phe	gaa Glu 370	aat Asn	tcc Ser	gaa Glu	cgt Arg	gat Asp 375	cct Pro	acc Thr	tct Ser	gag Glu	tat Tyr 380	cgc Arg	aag Lys	act Thr	ggt Gly	1152
gag Glu 385	caa Gln	gta Val	tgt Cys	tgg Trp	ttc Phe 390	aag Lys	tct Ser	caa Gln	gtg Val	gag Glu 395	act Thr	tct Ser	tct Ser	acc Thr	tac Tyr 400	1200
gga Gly	ggt Gly	atc Ile	gtt Val	gct Ala 405	glà aaa	tgt Cys	ctc Leu	act Thr	ggt Gly 410	gga Gly	ctc Leu	aac Asn	ttt Phe	caa Gln 415	gtg Val	1248
gag Glu	cat His	cat His	ttg Leu 420	ttc Phe	ccg Pro	agg Arg	atg Met	agc Ser 425	agt Ser	gct Ala	tgg Trp	tat Tyr	cct Pro 430	ttc Phe	atc Ile	1296
gcg Ala	ccg Pro	aag Lys 435	gtt Val	aga Arg	gag Glu	att Ile	tgt Cys 440	aag Lys	aag Lys	cat His	gga Gly	gtt Val 445	aga Arg	tac Tyr	gct Ala	1344
tac Tyr	tat Tyr 450	Pro	tac Tyr	atc Ile	tgg Trp	cag Gln 455	aac Asn	ttg Leu	cat His	tct Ser	acc Thr 460	gtg Val	agt Ser	tac Tyr	atg Met	1392
cat His 465	Gly	acg Thr	gga Gly	acg Thr	gga Gly 470	gct Ala	aga Arg	tgg Trp	gag Glu	ctt Leu 475	cag Gln	ccg Pro	ttg Leu	tct Ser	gga Gly 480	1440
	gcg Ala															1449

<210> 102

<211> 482

<212> PRT

<213> Thalassiosira pseudonana

<400> 102

Met Pro Pro Asn Ala Glu Val Lys Asn Leu Arg Ser Arg Ser Ile Pro 1 5 10 15

Thr Lys Lys Ser Ser Ser Ser Ser Ser Thr Ala Asn Asp Asp Pro Ala 20 25 30

Thr Gln Ser Thr Ser Pro Val Asn Arg Thr Leu Lys Ser Leu Asn Gly 35 40 45

Asn Glu Ile Ala Ile Asp Gly Val Ile Tyr Asp Ile Asp Gly Phe Val 50 55 60

His Pro Gly Gly Glu Val Ile Ser Phe Phe Gly Gly Asn Asp Val Thr 65 70 75 80

Val Gln Tyr Lys Met Ile His Pro Tyr His Asn Ser Lys His Leu Glu 85 90 95

Lys Met Arg Ala Val Gly Lys Ile Ala Asp Tyr Ser Thr Glu Tyr Lys
100 105 110

Phe Asp Thr Pro Phe Glu Arg Glu Ile Lys Ser Glu Val Phe Lys Ile 115 120 125

Val Arg Arg Gly Arg Glu Phe Gly Thr Thr Gly Tyr Phe Leu Arg Ala 130 135 140

Phe Phe Tyr Ile Ala Leu Phe Phe Thr Met Gln Tyr Thr Phe Ala Thr 145 150 155 . 160

Cys Thr Thr Phe Thr Thr Tyr Asp His Trp Tyr Gln Ser Gly Val Phe 165 170 175

Ile Ala Ile Val Phe Gly Ile Ser Gln Ala Phe Ile Gly Leu Asn Val 180 185 190

Gln His Asp Ala Asn His Gly Ala Ala Ser Lys Arg Pro Trp Val Asn 195 200 205

Asp Leu Leu Gly Ser Gly Ala Asp Leu Ile Gly Gly Cys Lys Trp Asn 210 225

Trp Leu Ala Gln His Trp Thr His His Ala Tyr Thr Asn His Ala Asp 225 230 235 240

Lys Asp Pro Asp Ser Phe Ser Ser Glu Pro Val Phe Asn Phe Asn Asp 245 250 \cdot 255

Tyr Pro Ile Gly His Pro Lys Arg Lys Trp Trp His Arg Phe Gln Gly 260 265 270

Leu Tyr Phe Leu Ile Met Leu Ser Phe Tyr Trp Val Ser Met Val Phe 275 280 285

Asn Pro Gln Val Ile Asp Leu Arg His Ala Gly Ala Ala Tyr Val Gly 290 295 300

Phe Gln Met Glu Asn Asp Phe Ile Val Lys Arg Arg Lys Tyr Ala Met 305 310 315

Ala Leu Arg Ala Met Tyr Phe Tyr Phe Asn Ile Tyr Cys Pro Ile Val 325 330 335

Asn Asn Gly Leu Thr Trp Ser Thr Val Gly Ile Ile Leu Leu Met Gly 340 345 350

Val Ser Glu Ser Phe Met Leu Ser Gly Leu Phe Val Leu Ser His Asn 355 360 365

Phe Glu Asn Ser Glu Arg Asp Pro Thr Ser Glu Tyr Arg Lys Thr Gly 370 375 380

Glu Gln Val Cys Trp Phe Lys Ser Gln Val Glu Thr Ser Ser Thr Tyr 385 390 395 400

Gly Gly Ile Val Ala Gly Cys Leu Thr Gly Gly Leu Asn Phe Gln Val 405 410 415

Glu His His Leu Phe Pro Arg Met Ser Ser Ala Trp Tyr Pro Phe Ile 420 425 430

Ala Pro Lys Val Arg Glu Ile Cys Lys Lys His Gly Val Arg Tyr Ala 435 440 445

Tyr Tyr Pro Tyr Ile Trp Gln Asn Leu His Ser Thr Val Ser Tyr Met 450 455 460

His Gly Thr Gly Thr Gly Ala Arg Trp Glu Leu Gln Pro Leu Ser Gly 465 470 475 480

Arg Ala

<210> 103

<211> 1512

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

·<222> (1)..(1512)

<223> Delta-4-Desaturase

<400 atg Met	tgc	L03 aac Asn	ggc Glv	aac Asn	ctc Leu	cca Pro	gca Ala	tcc Ser	acc Thr	gca Ala	cag Gln	ctc Leu	aag Lys	tcc Ser	acc Thr	48
1				5					10					15		96
tcg Ser	aag Lys	ccc Pro	cag Gln 20	cag Gln	caa Gln	cat His	gag Glu	cat His 25	aga Arg	acc	Ile	Ser	aag Lys 30	Ser	gag Glu	96
ctc Leu	gcc Ala	caa Gln 35	cac His	aac Asn	acg Thr	ccc Pro	aaa Lys 40	tca Ser	gca Ala	tgg Trp	tgt Cys	gcc Ala 45	gtc Val	cac His	tcc Ser	144
act Tḥr	ccc Pro 50	gcc Ala	acc Thr	gac Asp	cca Pro	tcc Ser 55	cac His	tcc Ser	aac Asn	aac Asn	aaa Lys 60	caa Gln	cac His	gca Ala	cac His	192
cta Leu 65	gtc Val	ctc Leu	gac Asp	att Ile	acc Thr 70	gac Asp	ttt Phe	gcg Ala	tcc Ser	cgc Arg 75	cat His	cca Pro	gly aaa	gga Gly	gac Asp 80	240
ctc Leu	atc Ile	ctc Leu	ctc Leu	gct Ala 85	tcc Ser	ggc Gly	aaa Lys	gac Asp	gcc Ala 90	tcg Ser	gtg Val	ctg Leu	ttt Phe	gaa Glu 95	aca Thr	288
tac Tyr	cat His	cca Pro	cgt Arg 100	gga Gly	gtt Val	ccg Pro	acg Thr	tct Ser 105	ctc Leu	att Ile	caa Gln	aag Lys	ctg Leu 110	cag Gln	att Ile	336
gga Gly	gtg Val	atg Met 115	gag Glu	gag Glu	gag Glu	gcg Ala	ttt Phe 120	cgg Arg	gat Asp	tcg Ser	ttt Phe	tac Tyr 125	agt Ser	tgg Trp	act Thr	384
gat Asp	tct Ser 130	gac Asp	ttt Phe	tat Tyr	act Thr	gtg Val 135	ttg Leu	aag Lys	agg Arg	agg Arg	gtt Val 140	gtg Val	gag Glu	cgg Arg	ttg Leu	432
gag Glu 145	gag Glu	agg Arg	gly aaa	ttg Leu	gac Asp 150	agg Arg	agg Arg	gga Gly	tcg Ser	aaa Lys 155	gag Glu	att Ile	tgg Trp	atc Ile	aag Lys 160	480
					gtt Val											528
act Thr	acg Thr	tcg Ser	gat Asp 180	atc Ile	gat Asp	cag Gln	tac Tyr	ggt Gly 185	att Ile	gcc Ala	att Ile	gcc Ala	tat Tyr 190	tct Ser	att Ile	576
					gcg Ala											624
gga	aat	cac	ggt	gca	ttc	gct	cag	aac	aag	tta	ctc	aac	aag	ttg	gat	672

									1/5							
Gly	Asn 210	His	Gly	Ala	Phe	Ala 215	Gln '	Asn	Lys	Leu	Leu 220	Asn	ГЛЗ	Leu	Ala	
ggg Gly 225	tgg Trp	acg Thr	ttg Leu	gat Asp	atg Met 230	att Ile	ggt Gly	gcg Ala	agt Ser	gcg Ala 235	ttt Phe	acg Thr	tgg Trp	gag Glu	ctt Leu 240	720
cag .Gln	cac His	atg Met	ctg Leu	ggg Gly 245	cat His	cat His	cca Pro	tat Tyr	acg Thr 250	aat Asn	gtg Val	ttg Leu	gat Asp	ggg Gly 255	gtg Val	768
gag Glu	gag Glu	gag Glu	agg Arg 260	aag Lys	gag Glu	agg Arg	gj aaa	gag Glu 265	gat Asp	gtt Val	gct Ala	ttg Leu	gaa Glu 270	gaa Glu	aag Lys	816
gat Asp	cag Gln	gat Asp 275	ttt Phe	gaa Glu	gtt Val	gcc Ala	aca Thr 280	tcc Ser	gga Gly	cga Arg	tta Leu	tat Tyr 285	cat His	att Ile	gat Asp	864
gcc Ala	aat Asn 290	gta Val	cgt Arg	tat Tyr	ggt Gly	tcg Ser 295	gta Val	tgg Trp	aat Asn	gtc Val	atg Met 300	agg Arg	ttt Phe	tgg Trp	gct Ala	912
atg Met 305	aag Lys	gtc Val	att Ile	acg Thr	atg Met 310	gga Gly	tat Tyr	atg Met	atg Met	gga Gly 315	tta Leu	cca Pro	atc Ile	tac Tyr	ttt Phe 320	960
cat His	gga Gly	gta Val	ctg Leu	agg Arg 325	gga Gly	gtt Val	gga Gly	ttg Leu	ttt Phe 330	gtt Val	att Ile	gjå aaa	cat His	ttg Leu 335	gcg Ala	1008
tgt Cys	gga Gly	gag Glu	ttg Leu 340	ttg Leu	gcg Ala	acg Thr	atg Met	ttt Phe 345	att Ile	gtg Val	aat Asn	cac His	gtc Val 350	att Ile	gag Glu	1056
ggt Gly	gtg Val	agt Ser 355	tat Tyr	gga Gly	acg Thr	aag Lys	gat Asp 360	ttg Leu	gtt Val	ggt Gly	ggt Gly	gcg Ala 365	agt Ser	cat His	gta Val	1104
gat Asp	gag Glu 370	aag Lys	aag Lys	att Ile	gtc Val	aag Lys 375	cca Pro	acg Thr	act Thr	gta Val	ttg Leu 380	gga Gly	gat Asp	aca Thr	cca Pro	1152
atg Met 385	gta Val	aag Lys	act Thr	cgc Arg	gag Glu 390	gag Glu	gca Ala	ttg Leu	aaa Lys	agc Ser 395	aac Asn	agc Ser	aat Asn	aac Asn	aac Asn 400	1200
aag Lys	aag Lys	aag Lys	gga Gly	gag Glu 405	aag Lys	aac Asn	tcg Ser	gta Val	cca Pro 410	tcc Ser	gtt Val	cca Pro	ttc Phe	aac Asn 415	gac Asp	1248
tgg Trp	gca Ala	gca Ala	gtc Val 420	caa Gln	tgc Cys	cag Gln	acc Thr	tcc Ser 425	gtg Val	aat Asn	tgg Trp	tct Ser	cca Pro 430	Gly	tca Ser	1296
tgg Trp	ttc Phe	tgg Trp 435	Asn	cac His	ttt Phe	tct Ser	999 Gly 440	gga Gly	ctc Leu	tct Ser	cat His	cag Gln 445	Ile	gag Glu	cat His	1344
cac His	ttg Leu 450	ttc Phe	ccc Pro	agc Ser	att Ile	tgt Cys 455	cat His	aca Thr	aac Asn	tac Tyr	tgt Cys 460	His	atc Ile	cag Gln	gat Asp	1392
gtt Val 465	gtg Val	gag Glu	agt Ser	acg Thr	tgt Cys 470	gct Ala	gag Glu	tac Tyr	gga Gly	gtt Val 475	Pro	tat Tyr	cag Gln	agt Ser	gag Glu 480	1440
agt	aat	ttg	ttt	gtt	gct	tat	gga	aag	atg	att	agt	cat	ttg	aag	ttt	1488

176

Ser Asn Leu Phe Val Ala Tyr Gly Lys Met Ile Ser His Leu Lys Phe
485
490
495

ttg ggt aaa gcc aag tgt gag tag Leu Gly Lys Ala Lys Cys Glu 500 1512

.<210> 104

<211> 503

<212> PRT

<213> Thalassiosira pseudonana

<400> 104

Met Cys Asn Gly Asn Leu Pro Ala Ser Thr Ala Gln Leu Lys Ser Thr 1 5 10 15

Ser Lys Pro Gln Gln Gln His Glu His Arg Thr Ile Ser Lys Ser Glu 20 25 30

Leu Ala Gln His Asn Thr Pro Lys Ser Ala Trp Cys Ala Val His Ser 35 40 45

Thr Pro Ala Thr Asp Pro Ser His Ser Asn Asn Lys Gln His Ala His 50 55 60

Leu Val Leu Asp Ile Thr Asp Phe Ala Ser Arg His Pro Gly Gly Asp 65 70 75 80

Leu Ile Leu Leu Ala Ser Gly Lys Asp Ala Ser Val Leu Phe Glu Thr 85 90 95

Tyr His Pro Arg Gly Val Pro Thr Ser Leu Ile Gln Lys Leu Gln Ile 100 105 110

Gly Val Met Glu Glu Glu Ala Phe Arg Asp Ser Phe Tyr Ser Trp Thr

Asp Ser Asp Phe Tyr Thr Val Leu Lys Arg Arg Val Val Glu Arg Leu 130 140

Glu Glu Arg Gly Leu Asp Arg Arg Gly Ser Lys Glu Ile Trp Ile Lys 145 150 150

Ala Leu Phe Leu Leu Val Gly Phe Trp Tyr Cys Leu Tyr Lys Met Tyr
165 170 175

Thr Thr Ser Asp Ile Asp Gln Tyr Gly Ile Ala Ile Ala Tyr Ser Ile 180 185 190 PCT/EP2005/001863

WO 2005/083093 177 Gly Met Gly Thr Phe Ala Ala Phe Ile Gly Thr Cys Ile Gln His Asp 195 Gly Asn His Gly Ala Phe Ala Gln Asn Lys Leu Leu Asn Lys Leu Ala Gly Trp Thr Leu Asp Met Ile Gly Ala Ser Ala Phe Thr Trp Glu Leu Gln His Met Leu Gly His His Pro Tyr Thr Asn Val Leu Asp Gly Val Glu Glu Glu Arg Lys Glu Arg Gly Glu Asp Val Ala Leu Glu Glu Lys Asp Gln Asp Phe Glu Val Ala Thr Ser Gly Arg Leu Tyr His Ile Asp Ala Asn Val Arg Tyr Gly Ser Val Trp Asn Val Met Arg Phe Trp Ala

Met Lys Val Ile Thr Met Gly Tyr Met Met Gly Leu Pro Ile Tyr Phe 315

His Gly Val Leu Arg Gly Val Gly Leu Phe Val Ile Gly His Leu Ala

Cys Gly Glu Leu Leu Ala Thr Met Phe Ile Val Asn His Val Ile Glu

Gly Val Ser Tyr Gly Thr Lys Asp Leu Val Gly Gly Ala Ser His Val 360

Asp Glu Lys Lys Ile Val Lys Pro Thr Thr Val Leu Gly Asp Thr Pro 375

Met Val Lys Thr Arg Glu Glu Ala Leu Lys Ser Asn Ser Asn Asn Asn 385

Lys Lys Lys Gly Glu Lys Asn Ser Val Pro Ser Val Pro Phe Asn Asp 405 410

Trp Ala Ala Val Gln Cys Gln Thr Ser Val Asn Trp Ser Pro Gly Ser

Trp Phe Trp Asn His Phe Ser Gly Gly Leu Ser His Gln Ile Glu His

His Leu Phe Pro Ser Ile Cys His Thr Asn Tyr Cys His Ile Gln Asp 460 455

Val Val Glu Ser Thr Cys Ala Glu Tyr Gly Val Pro Tyr Gln Ser Glu 470 475 Ser Asn Leu Phe Val Ala Tyr Gly Lys Met Ile Ser His Leu Lys Phe 490 Leu Gly Lys Ala Lys Cys Glu 500 <210> 105 <211> 1257 <212> DNA <213> Thalassiosira pseudonana <220> <221> CDS <222> (1)..(1257) <223> Omega-3-Desaturase <400> 105 atg tac aga tta aca tcc acc ttc ctc atc gca ttg gca ttc tcc tcc 48 Met Tyr Arg Leu Thr Ser Thr Phe Leu Ile Ala Leu Ala Phe Ser Ser tcc atc aat gcc ttc tct cca caa cgg cca cca cgt act atc acc aaa 96 Ser Ile Asn Ala Phe Ser Pro Gln Arg Pro Pro Arg Thr Ile Thr Lys agt aaa gtc caa agc acc gtg cta ccc ata ccg acc aag gat gat ctg 144 Ser Lys Val Gln Ser Thr Val Leu Pro Ile Pro Thr Lys Asp Asp Leu 35 40 192 aac ttt ctc caa cca caa ctc gat gag aat gat ctc tac ctc gac gat Asn Phe Leu Gln Pro Gln Leu Asp Glu Asn Asp Leu Tyr Leu Asp Asp 50 gtc aac act cca cca aga gca ggt acc atc atg aag atg ttg ccg aag 240 Val Asn Thr Pro Pro Arg Ala Gly Thr Ile Met Lys Met Leu Pro Lys gaa acg ttc aac att gat aca gca act tca ttg ggt tac ttt ggt atg 288 Glu Thr Phe Asn Ile Asp Thr Ala Thr Ser Leu Gly Tyr Phe Gly Met gat atg gca gcg gtt gta tcg tcc atg acg ttg cta aat gct att gta Asp Met Ala Ala Val Val Ser Ser Met Thr Leu Leu Asn Ala Ile Val 336 105 act tog gat cag tac cat got ott coa ott cot ctc caa goa goa aca 384 Thr Ser Asp Gln Tyr His Ala Leu Pro Leu Pro Leu Gln Ala Ala Thr gtg att ccc ttt cag cta ttg gct ggg ttc gcc atg tgg tgt atg tgg Val Ile Pro Phe Gln Leu Leu Ala Gly Phe Ala Met Trp Cys Met Trp 432

135

tgc Cys 145	att Ile	gga Gly	cac His	gat Asp	gct Ala 150	gga Gly	cat His	tct Ser	act Thr	gtt Val 155	tcg Ser	aag Lys	aca Thr	aag Lys	tgg Trp 160	480
atc Ile	aac Asn	cga Arg	gtc Val	gtt Val 165	ggt Gly	gaa Glu	gtg Val	Ala	cat His 170	tct Ser	gtt Val	gtt Val	tgt Cys	ctc Leu 175	acg Thr	528
ccg Pro	ttc Phe	gtg Val	cct Pro 180	tgg Trp	cag Gln	atg Met	tcg Ser	cat His 185	agg Arg	aaa Lys	cac His	cat His	ttg Leu 190	aat Asn	cac His	576
aat Asn	cat His	att Ile 195	gaa Glu	aag Lys	gac Asp	tac Tyr	tct Ser 200	cat His	aag Lys	tgg Trp	tac Tyr	agt Ser 205	cgc Arg	gac Asp	gag Glu	624
ttt Phe	gat Asp 210	gat Asp	atc Ile	cca Pro	caa Gln	ctc Leu 215	tat Tyr	aag Lys	aca Thr	ttt Phe	ggc Gly 220	tac Tyr	aac Asn	cca Pro	aga Arg	672
atg Met 225	atg Met	caa Gln	ctt Leu	cca Pro	ttc Phe 230	ctc Leu	tac Tyr	ttc Phe	atg Met	tat Tyr 235	ctt Leu	gca Ala	ttg Leu	gga Gly	att Ile 240	720
cca Pro	gat Asp	ggt Gly	Gly 999	cat His 245	gtt Val	gtg Val	ttc Phe	tac Tyr	gga Gly 250	aga Arg	atg Met	tgg Trp	gaa Glu	gga Gly 255	gtg Val	768
tca Ser	ttg Leu	cag Gln	aag Lys 260	aag Lys	ttt Phe	gat Asp	gct Ala	gct Ala 265	att Ile	tct Ser	gtg Val	gcc Ala	gta Val 270	tca Ser	tgt Cys	816
gca Ala	act Thr	gct Ala 275	gga Gly	tcg Ser	ctt Leu	tgg Trp	atg Met 280	aat Asn	atg Met	ggt Gly	aca Thr	gca Ala 285	gac Asp	ttc Phe	acg Thr	864
gtg Val	gta Val 290	tgc Cys	atg Met	gtt Val	cct Pro	Trp	cta Leu	٧al	cta Leu	tcg Ser	tgg Trp 300	tgg Trp	ctc Leu	ttc Phe	atg Met	912
gta Val 305	aca Thr	tac Tyr	ctt Leu	cag Gln	cat His 310	cat His	tca Ser	gaa Glu	gac Asp	gga Gly 315	aag Lys	cta Leu	tac Tyr	act Thr	gat Asp 320	960
gaa Glu	acg Thr	ttt Phe	aca Thr	ttt Phe 325	Glu	aag Lys	gga Gly	gcc Ala	ttc Phe 330	Glu	acc Thr	gtg Val	gat Asp	cgt Arg 335	ser	1008
tac Tyr	ggc	aag Lys	ttg Leu 340	atc Ile	aac Asn	cga Arg	atg Met	tcg Ser 345	His	cac His	atg Met	atg Met	gac Asp 350	GTA	cac His	1056
gtg Val	gtg Val	cac His		ttg Leu	ttc Phe	ttt Phe	gaa Glu 360	Arg	gta Val	cct Pro	cac His	tac Tyr 365	Arg	tta Leu	gag Glu	1104
gca Ala	gct Ala 370	Thr	gaa Glu	gct Ala	ctt Leu	gtg Val 375	Lys	gga Gly	. atg Met	gat Asp	gaa Glu 380	Thr	gga Gly	. cag Gln	aaa Lys	1152
cat His 385	Leu	tac Tyr	aaa Lys	tac Tyr	att Ile 390	: Asp	act Thr	cct Pro	gat Asp	ttc Phe 395	: Asn	gcc Ala	gag Gļu	att Ile	gtc Val 400	1200
aac Asn	gga Gly	ttt Phe	cgc Arg	gac Asp 405	Asn	tgg Trp	tto Phe	ctt Leu	gtt Val	. Glu	gag Glu	gag Glu	aac Asr	ato 1 Ile 415	aaa Lys	1248

WO 2005/083093

180

1257 agg gag tag Arg Glu · <210> 106 <211> 418 <212> PRT <213> Thalassiosira pseudonana <400> 106 Met Tyr Arg Leu Thr Ser Thr Phe Leu Ile Ala Leu Ala Phe Ser Ser Ser Ile Asn Ala Phe Ser Pro Gln Arg Pro Pro Arg Thr Ile Thr Lys 25 20 Ser Lys Val Gln Ser Thr Val Leu Pro Ile Pro Thr Lys Asp Asp Leu Asn Phe Leu Gln Pro Gln Leu Asp Glu Asn Asp Leu Tyr Leu Asp Asp 55 Val Asn Thr Pro Pro Arg Ala Gly Thr Ile Met Lys Met Leu Pro Lys Glu Thr Phe Asn Ile Asp Thr Ala Thr Ser Leu Gly Tyr Phe Gly Met Asp Met Ala Ala Val Val Ser Ser Met Thr Leu Leu Asn Ala Ile Val

Thr Ser Asp Gln Tyr His Ala Leu Pro Leu Pro Leu Gln Ala Ala Thr 115 120 125

Val Ile Pro Phe Gln Leu Leu Ala Gly Phe Ala Met Trp Cys Met Trp 130 135 140

Cys Ile Gly His Asp Ala Gly His Ser Thr Val Ser Lys Thr Lys Trp 145 150 155 160

Ile Asn Arg Val Val Gly Glu Val Ala His Ser Val Val Cys Leu Thr 165 170 175

Pro Phe Val Pro Trp Gln Met Ser His Arg Lys His His Leu Asn His 180 185 190

Asn His Ile Glu Lys Asp Tyr Ser His Lys Trp Tyr Ser Arg Asp Glu 195 200 205

Phe Asp Asp Ile Pro Gln Leu Tyr Lys Thr Phe Gly Tyr Asn Pro Arg 210 215 220

Met Met Gln Leu Pro Phe Leu Tyr Phe Met Tyr Leu Ala Leu Gly Ile 225 230 235 240

Pro Asp Gly Gly His Val Val Phe Tyr Gly Arg Met Trp Glu Gly Val 245 250 255

Ser Leu Gln Lys Lys Phe Asp Ala Ala Ile Ser Val Ala Val Ser Cys 260 265 270

Ala Thr Ala Gly Ser Leu Trp Met Asn Met Gly Thr Ala Asp Phe Thr 275 280 285

Val Val Cys Met Val Pro Trp Leu Val Leu Ser Trp Trp Leu Phe Met 290 295 300

Val Thr Tyr Leu Gln His His Ser Glu Asp Gly Lys Leu Tyr Thr Asp 305 310 . 315 320

Glu Thr Phe Thr Phe Glu Lys Gly Ala Phe Glu Thr Val Asp Arg Ser 325 330 335

Tyr Gly Lys Leu Ile Asn Arg Met Ser His His Met Met Asp Gly His 340 345 350

Val Val His His Leu Phe Phe Glu Arg Val Pro His Tyr Arg Leu Glu 355 360 365

Ala Ala Thr Glu Ala Leu Val Lys Gly Met Asp Glu Thr Gly Gln Lys 370 375 380

His Leu Tyr Lys Tyr Ile Asp Thr Pro Asp Phe Asn Ala Glu Ile Val 385 390 395 400

Asn Gly Phe Arg Asp Asn Trp Phe Leu Val Glu Glu Glu Asn Ile Lys 405 410 415

Arg Glu

<210> 107

<211> 1086

<212> DNA

<213> Ostreococcus tauri

182

<220>

<221> CDS

<222> (1)..(1086)

<223> Delta-12-Desaturase

•																	
<400>		.07															
atg c Met G 1																	48
cat c His L																	96
tcg a Ser A																	144
tgg c Trp P																;	192
ggg t Gly C 65																:	240
aac a Asn I	aag Lys	acg Thr	ttg Leu	caa Gln 85	gat Asp	gcg Ala	gtt Val	gga Gly	tac Tyr 90	gtg Val	ttg Leu	cac His	tcg Ser	ttg Leu 95	ctc Leu		288
ttg g Leu V																:	336
agg a Arg I																:	384
ggg a Gly 1	acg Thr L30	gaa Glu	gac Asp	gcc Ala	aac Asn	gtc Val 135	gtg Val	ttc Phe	aag Lys	ctt Leu	cgc Arg 140	gaa Glu	ttg Leu	atc Ile	ggt Gly		432
gaa g Glu G 145																	480
tgg c Trp F																	528
aac a Asn T																	576
ctg t Leu F	tc Phe	ccg Pro 195	ggt Gly	aag Lys	tgg Trp	gcg Ala	aag Lys 200	aag Lys	gtg Val	tgg Trp	cag Gln	tct Ser 205	gac Asp	atc Ile	ggc Gly		624
gtt g Val V																	672
att g	gcc	aca	gtg	atg	gca	ctc	tac	gtc	ggc	ccg	tac	atg	gtg	acc	aac		720

183																
Ile <i>P</i> 225	Ala	Thr	Val	Met	Ala 230	Leu	Tyr	Val	Gly	Pro 235	Tyr	Met	Val	Thr	Asn 240	
ttt t Phe 1	gg Trp	ctc Leu	gtc Val	ttg Leu 245	tac Tyr	acg Thr	tgg Trp	tta Leu	cag Gln 250	cac His	acc Thr	gac Asp	gtt Val	gac Asp 255	gtg Val	768
ccg o	cac His	ttc Phe	gag Glu 260	ggc	gac Asp	gat Asp	tgg Trp	aac Asn 265	ttg Leu	gtc Val	aag Lys	GJÀ 333	gca Ala 270	ttc Phe	atg Met	816
acg a	atc Ile	gat Asp 275	cgc Arg	ccg Pro	tac Tyr	ggc Gly	cca Pro 280	gtt Val	ttt Phe	gat Asp	ttc Phe	ttg Leu 285	cac His	cac His	cgc Arg	864
atc q Ile (ggc Gly 290	agc Ser	acg Thr	cac His	gtc Val	gcg Ala 295	cac His	cac His	atc Ile	aac Asn	aca Thr 300	cca Pro	ttc Phe	ccg Pro	cat His	912
tac a Tyr 1 305	aag Lys	gct Ala	caa Gln	atg Met	gcg Ala 310	acg Thr	gat Asp	gcg Ala	cta Leu	aag Lys 315	gag Glu	gcg Ala	tat Tyr	ccc Pro	gac Asp 320	960
ctc : Leu :	tac Tyr	ctt Leu	tac Tyr	gat Asp 325	cca Pro	act Thr	ccg Pro	atc Ile	gcg Ala 330	acc Thr	gct Ala	acg Thr	tgg Trp	cgc Arg 335	gtg Val	1008
Gly g	agc Ser	aag Lys	tgc Cys 340	atc Ile	gcc Ala	gtc Val	gtg Val	aag Lys 345	aag Lys	gga Gly	gac Asp	'gaa Glu	tgg Trp 350	gtg Val	ttc Phe	1056
acg Thr	gat Asp	aag Lys 355	caa Gln	ctc Leu	ccg Pro	gtc Val	gcg Ala 360	gcg Ala	tga							1086
<210	> :	108														
<211	.>	361														
<212	>	PRT														
<213	>	Ostr	eoco	ccus	tau	ri		-								
<400)>	108														
Met 1	Gln	. Glu	Gly	Val 5	Arg	Asn ·	. Ile	Pro	Asn 10	. Glu	Cys	Phe	Glu	Thr 15	. Glà	
His	Leu	. Glu	Arg 20	Pro	Trp	Arg	Ser	Gly 25	Arg	Cys	: Gly	Arg	Asp 30	Pro	Gly	
Ser	Asn	Trp 35	Gİy	Ala	. Gly	Phe	Arg 40	, Phe	. Phe	e Ser	Leu	Lys 45	Gly	Phe	Trp	
Trp	Pro	Ala	Trp	Trp	Ala	Tyr 55	Ala	. Phe	. Val	. Thi	Gly 60	7 Thi	: Ala	a Ala	Thr	

Gly Cys Trp Val Ala Ala His Glu Cys Gly His Gly Ala Phe Ser Asp 65 70 75 80

									184						
Asn	Lys	Thr	Leu	Gln 85	Asp	Ala	Val	Gly	Tyr 90	Val	Leu	His	Ser	Leu 95	Leu
Leu	Val	Pro	Tyr 100	Phe	Ser	Trp	Gln	Arg 105	Ser	His	Ala	Val	His 110	His	Ser
Arg	Thr	Asn 115	His	Val	Leu	Glu	Gly 120	Glu	Thr	His	Val	Pro 125	Ala	Arg	Leu
Gly	Thr 130	Glu	Asp	Ala	Asn	Val 135	Val	Phe	Lys	Leu	Arg 140	Glu	Leu	Ile	Gly
Glu 145	Gly	Pro	Phe	Thr	Phe 150	Phe	Asn	Leu	Val	Gly 155	Val	Phe	Ala	Leu	Gly 160
Trp	Pro	Ile	Tyr	Leu 165	Leu	Thr	Gly	Ala	Ser 170	Gly	Gly	Pro	Val	Arg 175	Gly
Asn	Thr	Asn	His 180	Phe	Leu	Pro	Phe	Met 185	Gly	Glu	Lys	Gly	Lys 190	His	Ala
Leu	Phe	Pro 195	Gly	Lys	Trp	Ala	Lys 200	Lys	Val	Trp	Gln -	Ser 205	Asp	Ile	Gly
Val	Val 210	Ala	Val	Leu	Gly	Ala 215	Leu	Ala	Ala	Trp	Ala 220	Ala	His	Ser	ĠĮĀ
Ile 225	Ala	Thr	Val	Met	Ala 230	Leu	Tyr	Val	Gly	Pro 235	Tyr	Met	Val	Thr	Asn 240
Phe	Trp	Leu	Val	Leu 245	Tyr	Thr	Trp	Leu	Gln 250	His	Thr	Asp	Val	Asp 255	Val
Pro	His	Phe	Glu 260	Gly	Asp	Asp	Trp	Asn 265	Leu	Val	Lys	Gly	Ala 270	Phe	Met
Thr	Ile	Asp 275	Arg	Pro	Tyr	Gly	Pro 280	Val	Phe	Asp	Phe	Leu 285	His	His	Arg
Ile	Gly 290		Thr	His	Val	Ala 295	His	His	Ile	Asn	Thr 300	Pro	Phe	Pro	His
Tyr 305		Ala	Gİn	Met	Ala 310	Thr	Asp	Ala	Leu	Lys 315		Ala	Tyr	Pro	Asp 320
Leu	Tyr	Leu	Tyr	Asp 325		Thr	Pro	Ile	Ala 330		Ala	Thr	Trp	Arg 335	Val
Gly	Ser	Lys	Cys 340		Ala	Val	Val	Lys 345		Gly	Asp	Glu	Trp 350		Phe

Thr Asp Lys Gln Leu Pro Val Ala Ala 355

<210> 109

<211> 1305

<212> DNA

<213> Thalassiosira pseudonana

<220>

<221> CDS

<222> (1)..(1305)

<223> Delta-12-Desaturase

<400 atg Met 1	σσα	aaq	gga Gly	gga Gly 5	aga Arg	tca Ser	gta Val	acc Thr	cgc Arg 10	gct Ala	caa Gln	aca Thr	gca Ala	gaa Glu 15	aag Lys	48
tca Ser	gca Ala	cac His	acc Thr 20	atc Ile	caa Gln	acc Thr	ttc Phe	acc Thr 25	gac Asp	ggc	cga Arg	tgg Trp	gtc Val 30	tcc Ser	ccc Pro	96
tac Tyr	aac Asn	ccc Pro 35	ctc Leu	gca Ala	aaa Lys	gat Asp	gca Ala 40	cct Pro	gaa Glu	ctc Leu	aca Pro	tcc Ser 45	aag Lys	ggt Gly	gaa Glu	144
atc Ile	aag Lys 50	gcg Ala	gtc Val	atc Ile	ccc Pro	aaa Lys 55	gag Glu	tgc Cys	ttc Phe	gaa Glu	cga Arg 60	agc Ser	tac Tyr	ctc Leu	cac His	1.92
tcc Ser 65	atg Met	tac Tyr	ttc Phe	gtc Val	ctc Leu 70	cgt Arg	gac Asp	acc Thr	gtc Val	atg Met 75	gcc Ala	gtg Val	gcc Ala	tgc Cys	gcc Ala 80	240
tac Tyr	atc Ile	gcc Ala	cac His	tca Ser 85	acg Thr	ctc Leu	tcc Ser	acc Thr	gat Asp 90	att Ile	ccc Pro	tcc Ser	gag Glu	tta Leu 95	ctg Leu	288
agc Ser	gtg Val	gac Asp	gca Ala 100	ctc Leu	aaa Lys	tgg Trp	ttc Phe	ctc Leu 105	gga Gly	tgg Trp	aac Asn	acc Thr	tac Tyr 110	gcc Ala	ttt Phe	336
tgg Trp	atg Met	999 Gly 115	tgc Cys	att Ile	ctc Leu	acc Thr	gga Gly 120	cac His	tgg Trp	gtc Val	cta Leu	gcc Ala 125	cat His	gaa Glu	tgt Cys	384
gga Gly	cat His 130	ggt Gly	gca Ala	ttc Phe	tct Ser	ccc Pro 135	tct Ser	cag Gln	acg Thr	ttt Phe	aat Asn 140	gac Asp	ttt Phe	tgg Trp	GJA aaa	432
ttc Phe 145	att Ile	atg Met	cat His	cag Gln	gcg Ala 150	gtg Val	ttg Leu	gtt Val	ccg Pro	tat Tyr 155	ttc Phe	gcc Ala	tgg Trp	cag Gln	tac Tyr 160	480
tct Ser	cat His	gcg Ala	aag Lys	cat His 165	His	cga Arg	cgt Arg	acc Thr	aac Asn 170	Asn	att Ile	atg Met	gat Asp	999 Gly 175	gag Glu	528

agc Ser	cat His	gtg Val	ccc Pro 180	aat Asn	atc Ile	gcc Ala	aag Lys	gaa Glu 185	atg Met	gga Gly	ttg Leu	aac Asn	gag Glu 190	aag Lys	aat Asn	576
gag Glu	cgc Arg	agt Ser 195	gga Gly	gga Gly	tat Tyr	gcc Ala	gcc Ala 200	att Ile	cat His	gag Glu	gct Ala	att Ile 205	gga Gly	gat Asp	gga Gly	624
ccc Pro	ttt Phe 210	gcg Ala	atg Met	ttt Phe	caa Gln	atc Ile 215	ttt Phe	gct Ala	cac His	ttg Leu	gtg Val 220	atc Ile	gjà aaa	tgg Trp	cct Pro	672
att Ile 225	tac Tyr	ttg Leu	atg Met	gga Gly	ttt Phe 230	gct Ala	tcc Ser	act Thr	gga Gly	cgt Arg 235	ctc Leu	ggt Gly	cag Gln	gat Asp	999 Gly 240	720
aag Lys	gaa Glu	ctt Leu	cag Gln	gct Ala 245	gga Gly	gag Glu	atc Ile	atc Ile	gac Asp 250	cat His	tac Tyr	cgt Arg	cct Pro	tgg Trp 255	agt Ser	768
aag Lys	atg Met	ttc Phe	ccc Pro 260	acc Thr	aag Lys	ttg Leu	cga Arg	ttc Phe 265	aaa Lys	att Ile	gct Ala	ctt Leu	tcg Ser 270	aca Thr	ctt Leu	816
gga Gly	gtg Val	att Ile 275	gcc Ala	gcc Ala	tgg Trp	gtt Val	ggg Gly 280	ttg Leu	tac Tyr	ttt Phe	gct Ala	gca Ala 285	caa Gln	gag Glu	tat Tyr	864
gga Gly	gtc Val 290	ttg Leu	ccc Pro	gtg Val	gtt Val	ctt Leu 295	tgg Trp	tac Tyr	att Ile	ggc Gly	cca Pro 300	ctc Leu	atg Met	tgg Trp	aat Asn	912
cag Gln 305	gcg Ala	tgg Trp	ctt Leu	gtg Val	ctc Leu 310	tac Tyr	act Thr	tgg Trp	ctt Leu	cag Gln 315	His	aat Asn	gat Asp	Prọ CCC	tcc Ser 320	960
gtg Val	cct Pro	caa Gln	tat Tyr	gga Gly 325	agt Ser	gac Asp	gaa Glu	tgg Trp	aca Thr 330	tgg Trp	gtc Val	aag Lys	gga Gly	gct Ala 335	ttg Leu	1008
tcg Ser	acg Thr	att Ile	gat Asp 340	cgc Arg	ccg Pro	tat Tyr	ggt Gly	atc Ile 345	ttt Phe	gac Asp	ttc Phe	ttc Phe	cat His 350	cac His	aag Lys	1056
att Ile	gga Gly	agc Ser 355	act Thr	cac His	gta Val	gct Ala	cat His 360	His	ttg Leu	ttc Phe	cac His	gag Glu 365	Met	cca Pro	ttt Phe	1104
tac Tyr	aag Lys 370	gcg Ala	gat Asp	gtg Val	gct Ala	act Thr 375	gcg Ala	tcg Ser	atc Ile	aag Lys	ggt Gly 380	Phe	ttg Leu	gag Glu	ccg Pro	1152
aag Lys 385	Gly	ctt Leu	tac Tyr	aac Asn	tat Tyr 390	gat Asp	cca Pro	acg Thr	cct	tgg Trp 395	Tyr	gtg Val	gcc Ala	atg Met	tgg Trp 400	1200
agg Arg	gtg Val	gcc Ala	aag Lys	act Thr 405	tgt Cys	cat His	tat Tyr	att Ile	gag Glu 410	. Asp	gtg Val	gat Asp	gga Gly	gtt Val 415	cag Gln	1248
tat Tyr	tat Tyr	aag Lys	agt Ser 420	Leu	gag Glu	gat Asp	gtg Val	cct Pro 425	Leu	aag Lys	aag Lys	gat Asp	gcc Ala 430	. Lys	aag Lys	1296
	gat Asp	_	•													1305

<210> 110

<211> 434

<212> PRT

<213> Thalassiosira pseudonana

<400> 110

Met Gly Lys Gly Gly Arg Ser Val Thr Arg Ala Gln Thr Ala Glu Lys
1 5 10 15

Ser Ala His Thr Ile Gln Thr Phe Thr Asp Gly Arg Trp Val Ser Pro 20 25 30

Tyr Asn Pro Leu Ala Lys Asp Ala Pro Glu Leu Pro Ser Lys Gly Glu 35 40 45

Ile Lys Ala Val Ile Pro Lys Glu Cys Phe Glu Arg Ser Tyr Leu His 50 55 60

Ser Met Tyr Phe Val Leu Arg Asp Thr Val Met Ala Val Ala Cys Ala 65 70 75 80

Tyr Ile Ala His Ser Thr Leu Ser Thr Asp Ile Pro Ser Glu Leu Leu 85 90 95

Ser Val Asp Ala Leu Lys Trp Phe Leu Gly Trp Asn Thr Tyr Ala Phe 100 105 110

Trp Met Gly Cys Ile Leu Thr Gly His Trp Val Leu Ala His Glu Cys 115 120 125

Gly His Gly Ala Phe Ser Pro Ser Gln Thr Phe Asn Asp Phe Trp Gly 130 135 140

Phe Ile Met His Gln Ala Val Leu Val Pro Tyr Phe Ala Trp Gln Tyr 145 150 155 160

Ser His Ala Lys His His Arg Arg Thr Asn Asn Ile Met Asp Gly Glu 165 170 175

Ser His Val Pro Asn Ile Ala Lys Glu Met Gly Leu Asn Glu Lys Asn 180 185 190

Glu Arg Ser Gly Gly Tyr Ala Ala Ile His Glu Ala Ile Gly Asp Gly
195 200 205

Pro Phe Ala Met Phe Gln Ile Phe Ala His Leu Val Ile Gly Trp Pro 210 225

Ile Tyr Leu Met Gly Phe Ala Ser Thr Gly Arg Leu Gly Gln Asp Gly 225 230 235

Lys Glu Leu Gln Ala Gly Glu Ile Ile Asp His Tyr Arg Pro Trp Ser 245 250 255

Lys Met Phe Pro Thr Lys Leu Arg Phe Lys Ile Ala Leu Ser Thr Leu 260 265 270

Gly Val Ile Ala Ala Trp Val Gly Leu Tyr Phe Ala Ala Gln Glu Tyr 275 280 285

Gly Val Leu Pro Val Val Leu Trp Tyr Ile Gly Pro Leu Met Trp Asn 290 295 300

Gln Ala Trp Leu Val Leu Tyr Thr Trp Leu Gln His Asn Asp Pro Ser 305 310 315 320

Val Pro Gln Tyr Gly Ser Asp Glu Trp Thr Trp Val Lys Gly Ala Leu 325 330 335

Ser Thr Ile Asp Arg Pro Tyr Gly Ile Phe Asp Phe Phe His His Lys 340 345 350

Ile Gly Ser Thr His Val Ala His His Leu Phe His Glu Met Pro Phe 355 360 365

Tyr Lys Ala Asp Val Ala Thr Ala Ser Ile Lys Gly Phe Leu Glu Pro 370 375 380

Lys Gly Leu Tyr Asn Tyr Asp Pro Thr Pro Trp Tyr Val Ala Met Trp 385 390 395 400

Arg Val Ala Lys Thr Cys His Tyr Ile Glu Asp Val Asp Gly Val Gln 405 410 415

Tyr Tyr Lys Ser Leu Glu Asp Val Pro Leu Lys Lys Asp Ala Lys Lys 420 425 430

Ser Asp

<210> 111

<211> 879

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(879)

<223> Delta-6-Elongase

•																	
<400 atg Met 1	agt	aac	tta Leu	cgt Arg 5	gca Ala	ccc Pro	aac Asn	ttt Phe	tta Leu 10	cac His	aga Arg	ttc Phe	tgg Trp	aca Thr 15	aag Lys		48
tgg Trp	gac Asp	tac Tyr	gcg Ala 20	att Ile	tcc Ser	aaa Lys	gtc Val	gtc Val 25	ttc Phe	acg Thr	tgt Cys	gcc Ala	gac Asp 30	agt Ser	ttt Phe		96
cag Gln	tgg Trp	gac Asp 35	atc Ile	Gly ggg	cca Pro	gtg Val	agt Ser 40	tcg Ser	agt Ser	acg Thr	gcg Ala	cat His 45	tta Leu	ccc Pro	gcc Ala	1	44
att Ile	gaa Glu 50	tcc Ser	cct Pro	acc Thr	cca Pro	ctg Leu 55	gtg Val	act Thr	agc Ser	ctc Leu	ttg Leu 60	ttc Phe	tac Tyr	tta Leu	gtc Val	1	.92
aca Thr 65	gtt Val	ttc Phe	ttg Leu	tgg Trp	tat Tyr 70	ggt Gly	cgt Arg	tta Leu	acc Thr	agg Arg 75	agt Ser	tca Ser	gac Asp	aag Lys	aaa Lys 80	2	40
att Ile	aga Arg	gag Glu	cct Pro	acg Thr 85	tgg Trp	tta Leu	aga Arg	aga Arg	ttc Phe 90	ata Ile	ata Ile	tgt Cys	cat His	aat Asn 95	gcg Ala	2	88
ttc Phe	ttg Leu	ata Ile	gtc Val 100	ctc Leu	agt Ser	ctt Leu	tac Tyr	atg Met 105	tgc Cys	ctt Leu	ggt Gly	tgt Cys	gtg Val 110	gcc Ala	caa Gln	3	36
gcg Ala	tat Tyr	cag Gln 115	aat Asn	gga Gly	tat Tyr	act Thr	tta Leu 120	tgg Trp	ggt Gly	aat Asn	gaa Glu	ttc Phe 125	aag Lys	gcc Ala	acg Thr	3	
gaa Glu	act Thr 130	cag Gln	ctt Leu	gct Ala	ctc Leu	tac Tyr 135	att Ile	tac Tyr	att Ile	ttt Phe	tac Tyr 140	gta Val	agt Ser	aaa Lys	ata Ile	4	132
tac Tyr 145	gag Glu	ttt Phe	gta Val	gat Asp	act Thr 150	tac Tyr	att Ile	atg Met	ctt Leu	ctc Leu 155	Lys	aat Asn	aac Asn	ttg Leu	cgg Arg 160		180
caa Gln	gta Val	agt Ser	ttc Phe	cta Leu 165	cac His	att Ile	tat Tyr	cac His	cac His 170	Ser	acg Thr	att Ile	tcc Ser	ttt Phe 175	тте	į	528
tgg Trp	tgg Trp	atc Ile	att Ile 180	Ala	cgg Arg	agg Arg	gct Ala	ccg Pro 185	GTĀ	ggt Gly	gat Asp	gct Ala	tac Tyr 190	Pile	agc Ser	!	576
gcg Ala	gcc Ala	ttg Leu 195	. Asn	tca Ser	tgg Trp	gta Val	cac His 200	Val	tgc Cys	atg Met	tac Tyr	acc Thr 205	. Tyr	tat Tyr	cta Leu	(624
tta Leu	tca Ser 210	Thr	ctt Leu	att Ile	gga Gly	aaa Lys 215	Glu	gat Asp	cct Pro	aag Lys	g cgt Arg 220	, Ser	aac Asr	tac Tyr	ctt Leu	1	672
tgg	tgg	ggt	. cgc	cac	: cta	acg	r caa	ato	cag	g atg	g ctt	cag	ttt	ttc	ttc		720

						•		•	190							
Trp 225	Trp	Gly	Arg	His	Leu 230	Thr	Gln	Met	Gln	Met 235	Leu	Gln	Phe	Phe	Phe 240	
aac Asn	gta Val	ctt Leu	caa Gln	gcg Ala 245	ttg Leu	tac Tyr	tgc Cys	gct Ala	tcg Ser 250	ttc Phe	tct Ser	acg Thr	tat Tyr	ccc Pro 255	aag Lys	768
ttt Phe	ttg Leu	tcc Ser	aaa Lys 260	att Ile	ctg Leu	ctc Leu	gtc Val	tat Tyr 265	atg Met	atg Met	agc Ser	ctt Leu	ctc Leu 270	ggc	ttg Leu	816
ttt Phe	gly aaa	cat His 275	ttc Phe	tac Tyr	tat Tyr	tcc Ser	aag Lys 280	cac His	ata Ile	gca Ala	gca Ala	gct Ala 285	aag Lys	ctc Leu	cag Gln	864
aaa Lys		cag Gln		tga												879
<210)> :	112														
<211	-> :	292														
<212	2> :	PRT														
<213	}> (Ostr	e000	ccus	tauı	ci										
<400)>	112														
Met 1	Ser	Gly	Leu	Arg 5	Ala	Pro	Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
Trp	Asp	Tyr	Ala 20	Ile	Ser	Lys	Val	Val 25	Phe	Thr	Cys	Ala	Asp 30	Ser	Phe	
Gln	Trp	Asp 35	Ile	Gly	Pro	Val	Ser 40	Ser	Ser	Thr	Ala	His 45	Leu	Pro	Ala	
Ile	Glu 50	Ser	Pro	Thr	Pro	Leu 55	Val	Thr	Ser	Leu	Leu 60	Phe	Tyr	Leu	Val	
Thr 65	Val	Phe	Leu	Trp	Tyr 70	Gly	Arg	Leu	Thr	Arg 75	Ser	Ser	Asp	Lys	Lys	
Ile	Arg	Glu	Pro	Thr 85	Trp	Leu	Arg	Arg	Phe 90	Ile	: Ile	Cys	His	Asn 95	Ala	
Phe	Leu	ı Ile	val 100		. Ser	Leu	Tyr	Met 105		Leu	ı Gly	Cys	Val	Ala	Gln	
Ala	Туг	Glr.		. Gly	Tyr	Thr	Leu 120	ı Trp	Gly	Asn	ı Glu	Phe 125	Lys	Ala	. Thr	
Glu	Thr 130		ı Lev	ı Ala	. Leu	Tyr 135		. Tyr	Ile	Phe	Tyr 140	val	. Ser	Lys	ı Ile	

191 Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Leu Lys Asn Asn Leu Arg 150 1.55 Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 170 Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 1.80 Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 200 Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 230 225 Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 245 250 Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln 275 280 Lys Lys Gln Gln 290 <210> 113 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 113 atg age gee tee ggt geg etg etg eec geg ate geg tte gee geg tae 48

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr geg tac geg acg tac gec tac gec ttt gag tgg teg cac geg aat ggc Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly

atc Ile	gac Asp	aac Asn 35	gtc Val	gac Asp	gcg Ala	cgc Arg	gag Glu 40	tgg Trp	atc Ile	ggt Gly	gcg Ala	ctg Leu 45	tcg Ser	ttg Leu	agg Arg		144
ctc Leu	ccg Pro 50	gcg Ala	atc Ile	gcg Ala	acg Thr	acg Thr 55	atg Met	tac Tyr	ctg Leu	ttg Leu	ttc Phe 60	cys . Cys .	ctg Leu	gtc Val	gga Gly	•	192
ccg Pro 65	agg Arg	ttg Leu	atg Met	gcg Ala	aag Lys 70	cgc Arg	gag Glu	gcg Ala	ttc Phe	gac Asp 75	ccg Pro	aag Lys	glà aaa	ttc Phe	atg Met 80		240
ctg Leu	gcg Ala	tac Tyr	aat Asn	gcg Ala 85	tat Tyr	cag Gln	acg Thr	gcg Ala	ttc Phe 90	aac Asn	gtc Val	gtc Val	gtg Val	ctc Leu 95	gly aaa		288
atg Met	ttc Phe	gcg Ala	cga Arg 100	gag Glu	atc Ile	tcg Ser	GJÀ 333	ctg Leu 105	gl gaa	cag Gln	ccc Pro	gtg Val	tgg Trp 110	ejà aaa	tca Ser		336
acc Thr	atg Met	ccg Pro 115	tgg Trp	agc Ser	gat Asp	aga Arg	aaa Lys 120	tcg Ser	ttt Phe	aag Lys	atc Ile	ctc Leu 125	ctc Leu	Gly 333	gtg Val		384
tgg Trp	ttg Leu 130	cac His	tac Tyr	aac Asn	aac Asn	aaa Lys 135	tat Tyr	ttg Leu	gag Glu	cta Leu	ttg Leu 140	gac Asp	act Thr	gtg Val	ttc Phe		432
atg Met 145	gtt Val	gcg Ala	cgc Arg	aag Lys	aag Lys 150	acg Thr	aag Lys	cag Gln	ttg Leu	agc Ser 155	ttc Phe	ttg Leu	cac His	gtt Val	tat Tyr 160		480
cat His	cac His	gcc Ala	ctg Leu	ttg Leu 165	atc Ile	tgg Trp	gcg Ala	tgg Trp	tgg Trp 170	ttg Leu	gtg Val	tgt Cys	cac His	ttg Leu 175	atg Met		528
gcc Ala	acg Thr	aac Asn	gat Asp 180	tgt Cys	atc Ile	gat Asp	gcc Ala	tac Tyr 185	ttc Phe	ggc	gcg Ala	gcg Ala	tgc Cys 190	aac Asn	tcg Ser		576
ttc Phe	att Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcg Ser 200	tat Tyr	tat Tyr	ctc Leu	atg Met	tcg Ser 205	gcg Ala	ctc Leu	ggc Gly		624
att Ile	cga Arg 210	Cys	ccg Pro	tgg Trp	aag Lys	cga Arg 215	Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	caa Gln	atg Met	ctc Leu	caa Gln		672
ttc Phe 225	Val	att Ile	gtc Val	ttc Phe	gcg Ala 230	His	gcc Ala	gtg Val	ttc Phe	gtg Val 235	Leu	cgt Arg	cag Gln	aag Lys	cac His 240		720
tgc Cys	ccg Pro	gtc Val	acc Thr	ctt Leu 245	Pro	tgg Trp	gcg Ala	caa Gln	atg Met 250	Phe	gtc Val	atg Met	acg Thr	aac Asn 255	atg Met		768
ctc Leu	gtg Val	ctc Leu	ttc Phe 260	Gly	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	. Lys	gcg Ala	tac Tyr	tcg Ser	aac Asn 270	. Гуз	tcg Ser		816
cgc Arg	: Gly	gac Asp 275	Gly	gcg Ala	agt Ser	tcc Ser	gtg Val 280	. Lys	. cca Pro	gco Ala	gag Glu	acc Thr 285	Thr	cgc Arg	gcg Ala		864
ccc	ago Ser 290	. Val	r cga . Arg	ago Arg	acg Thr	cga Arg 295	Ser	cga Arg	aaa Lys	att Ile	gac Asp 300)					903

<210> 114

<211> 300

<212> PRT

<213> Ostreococcus tauri

<400> 114

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 55.

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 150

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 170

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly 195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 255

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270

Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 275 280 285

Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 290 295 300

<210> 115

<211> 13

<212> PRT

<213> Konsensus

<220>

<221> MISC FEATURE

<222> (1)..(13)

<223> Xaa in der Sequenz an der Position 2, 3, 4, 6, 7, 8 und 9 hat die in Tabelle A wiedergegebene Bedeutung.

<400> 115

Asn Xaa Xaa Xaa His Xaa Xaa Met Tyr Xaa Tyr Tyr Xaa 1 5 10

<210> 116

<211> 10

<212> PRT

<213> Konsensus

<220>

<221> MISC_FEATURE

<222> (1)..(10)

<223> Xaa an der Position 3, 4, 5 und 6 in der Sequenz hat die in Tabel le A wiedergegebene Bedeutung.

<400> 116 His His Xaa Xaa Xaa Trp Ala Trp Trp <210> 117 <211> 909 <212> DNA <213> Xenopus laevis <220> <221> CDS <222> (1)..(909) <223> Delta-5-Elongase <400> 117 atg gcc ttc aag gag ctc aca tca agg gca gtg ctc ctg tat gat gaa 48 Met Ala Phe Lys Glu Leu Thr Ser Arg Ala Val Leu Leu Tyr Asp Glu tgg att aaa gat gct gat cct agg gtt gaa gac tgg cca ctc atg tcc 96 Trp Ile Lys Asp Ala Asp Pro Arg Val Glu Asp Trp Pro Leu Met Ser tct cct atc cta caa acc atc atc ggc gct tac atc tac ttt gtc Ser Pro Ile Leu Gln Thr Ile Ile Ile Gly Ala Tyr Ile Tyr Phe Val 144 40 192 aca tca ttg ggc cca agg atc atg gag aac agg aag ccg ttt gct ctg Thr Ser Leu Gly Pro Arg Ile Met Glu Asn Arg Lys Pro Phe Ala Leu aag gag atc atg gca tgt tac aac tta ttc atg gtt ctg ttt tct gtg 240 Lys Glu Ile Met Ala Cys Tyr Asn Leu Phe Met Val Leu Phe Ser Val 65 tac atg tgc tat gag ttt ctc atg tcg ggc tgg gct act gga tat tcc Tyr Met Cys Tyr Glu Phe Leu Met Ser Gly Trp Ala Thr Gly Tyr Ser 288 336 ttt aga tgt gac att gtt gac tac tct cag tca cct cag gcg tta cgg Phe Arg Cys Asp Ile Val Asp Tyr Ser Gln Ser Pro Gln Ala Leu Arg atg gcc tgg acc tgc tgg ctc ttc tat ttt tca aag ttc att gaa tta 384 Met Ala Trp Thr Cys Trp Leu Phe Tyr Phe Ser Lys Phe Ile Glu Leu 432 tta gac act gtt ttc ttt gtg ctg cgt aag aag aac agc cag att aca Leu Asp Thr Val Phe Phe Val Leu Arg Lys Lys Asn Ser Gln Ile Thr 135 480 ttc ctg cac gtc tat cac cac tcc att atg cct tgg acg tgg tgt Phe Leu His Val Tyr His His Ser Ile Met Pro Trp Thr Trp Phe

				•				ı	196							
gga g Gly V	tc a al I	aaa Lys	ttt Phe	gct Ala 165	cca Pro	ggt Gly	ggt Gly	ttg Leu	ggc Gly 170	aca Thr	ttc Phe	cat His	gca Ala	ctg Leu 175	gtg Val	528
aac t Asn C	gt g ys V	/al	gtc Val 180	cat His	gtt Val	atc Ile	atg Met	tac Tyr 185	Ser	tac Tyr	tac Tyr	ggc Gly	ctg Leu 190	tca Ser	gcc Ala	576
ttg g Leu G	ly I	cct Pro 195	gcc Ala	tac Tyr	cag Gln	aag Lys	tac Tyr 200	ctg Leu	tgg Trp	tgg Trp	aaa Lys	aag Lys 205	tac Tyr	atg Met	acg Thr	624
tct a Ser I 2	tc (le (caa Gln	ctg Leu	acc Thr	cag Gln	ttc Phe 215	ttg Leu	atg Met	gtt Val	act Thr	ttt Phe 220	cac His	atc Ile	ggc	cag Gln	672
ttc t Phe P 225	tc the	ttc Phe	atg Met	gag Glu	aat Asn 230	tgc Cys	ccg Pro	tac Tyr	cag Gln	tat Tyr 235	ccc Pro	gtc Val	ttc Phe	ttg Leu	tat Tyr 240	720
gtc a Val I	itt :le '	tgg Trp	ctg Leu	tac Tyr 245	GJÀ aaa	ttc	gtt Val	ttc Phe	tta Leu 250	atc Ile	ttg Leu	ttc Phe	ctc Leu	aac Asn 255	ttc Phe	768
tgg t Trp F	tc he	cać His	gct Ala 260	tac Tyr	atc Ile	aaa Lys	gga Gly	cag Gln 265	agg Arg	ctg Leu	ccg Pro	aaa Lys	gcc Ala 270	gtc Val	caa Gln	816
aat g Asn G	3ly	cac His 275	tgc Cys	aag Lys	aac Asn	aac Asn	aac Asn 280	aac Asn	caa Gln	gaa Glu	aac Asn	act Thr 285	tgg Trp	tgc Cys	aag Lys	864
aac a Asn I	aaa Lys 290	aac Asn	cag Gln	aaa Lys	aac Asn	ggt Gly 295	gca Ala	ttg Leu	aaa Lys	agc Ser	aaa Lys 300	aac Asn	cat His	·tga	-	909
<210	> 1	.18		-												
<211:	> 3	02														
<212	> F	RT														
<213	> X	(eno	pus	laev	ris											
	-	1.0														

<400> 118

Met Ala Phe Lys Glu Leu Thr Ser Arg Ala Val Leu Leu Tyr Asp Glu 1 5 10 15

Trp Ile Lys Asp Ala Asp Pro Arg Val Glu Asp Trp Pro Leu Met Ser 20 25 30

Ser Pro Ile Leu Gln Thr Ile Ile Ile Gly Ala Tyr Ile Tyr Phe Val

Thr Ser Leu Gly Pro Arg Ile Met Glu Asn Arg Lys Pro Phe Ala Leu 50 55 60

Lys Glu Ile Met Ala Cys Tyr Asn Leu Phe Met Val Leu Phe Ser Val 65 70 75 80

Tyr Met Cys Tyr Glu Phe Leu Met Ser Gly Trp Ala Thr Gly Tyr Ser 85 90 95

Phe Arg Cys Asp Ile Val Asp Tyr Ser Gln Ser Pro Gln Ala Leu Arg

Met Ala Trp Thr Cys Trp Leu Phe Tyr Phe Ser Lys Phe Ile Glu Leu 115 120 125

Leu Asp Thr Val Phe Phe Val Leu Arg Lys Lys Asn Ser Gln Ile Thr 130 135 140

Phe Leu His Val Tyr His His Ser Ile Met Pro Trp Thr Trp Phe 145 150 155

Gly Val Lys Phe Ala Pro Gly Gly Leu Gly Thr Phe His Ala Leu Val 165 170 175

Asn Cys Val Val His Val Ile Met Tyr Ser Tyr Tyr Gly Leu Ser Ala 180 185 190

Leu Gly Pro Ala Tyr Gln Lys Tyr Leu Trp Trp Lys Lys Tyr Met Thr
195 200 205

Ser Ile Gln Leu Thr Gln Phe Leu Met Val Thr Phe His Ile Gly Gln 210 215 220

Phe Phe Phe Met Glu Asn Cys Pro Tyr Gln Tyr Pro Val Phe Leu Tyr 225 230 235 240

Val Ile Trp Leu Tyr Gly Phe Val Phe Leu Ile Leu Phe Leu Asn Phe 245 250 255

Trp Phe His Ala Tyr Ile Lys Gly Gln Arg Leu Pro Lys Ala Val Gln 260 265 270

Asn Gly His Cys Lys Asn Asn Asn Gln Glu Asn Thr Trp Cys Lys 275 280 280

Asn Lys Asn Gln Lys Asn Gly Ala Leu Lys Ser Lys Asn His 290 295 300

<210> 119

<211> 870

<212> DNA

<213> Ciona intestinalis

<220>

<221> CDS

<222> (1)..(870)

<223> Delta-5-Elongase

<400 atg Met 1	gac	.19 gta Val	ctt Leu	cat His 5	cgt Arg	ttc Phe	tta Leu	gga Gly	ttc Phe 10	tac Tyr	gaa Glu	tgg Trp	acg Thr	ctg Leu 15	act Thr	48	
ttc Phe	gcg Ala	gac Asp	ccc Pro 20	cga Arg	gtg Val	gca Ala	aaa Lys	tgg Trp 25	cct Pro	tta Leu	ata Ile	gaa Glu	aac Asn 30	ccc Pro	ctt Leu	96	
cct Pro	aca Thr	att Ile 35	gct Ala	att Ile	gtg Val	ttg Leu	ctg Leu 40	tac Tyr	ctg Leu	gcg Ala	ttt Phe	gtt Val 45	ctg Leu	tat Tyr	att Ile	144	•
glà aaa	ccg Pro 50	cgt Arg	ttt Phe	atg Met	cga Arg	aaa Lys 55	aga Arg	gca Ala	cca Pro	gtt Val	gac Asp 60	ttt Phe	ggt Gly	tta Leu	ttc Phe	192	
ctc Leu 65	cct Pro	gga Gly	tat Tyr	aac Asn	ttt Phe 70	gct Ala	ttg Leu	gtt Val	gca Ala	tta Leu 75	aat Asn	tat Tyr	tat Tyr	atc Ile	ctg Leu 80	240	
caa Gln	gaa Glu	gtg Val	gtc Val	act Thr 85	gjå aaa	agt Ser	tat Tyr	ggg ggg	gct Ala 90	Gly ggg	tat Tyr	gat Asp	ttg Leu	gtt Val 95	tgc Cys	288	
aca Thr	cca Pro	ctt Leu	cga Arg 100	Ser	gat Asp	tcc Ser	tac Tyr	gat Asp 105	ccc Pro	aat Asn	gaa Glu	atg Met	aag Lys 110	gtt Val	gca Ala	336	
aac Asn	gct Ala	gta Val 115	tgg Trp	tgg Trp	tat Tyr	tat Tyr	gta Val 120	tcc Ser	aag Lys	ata Ile	ata Ile	gag Glu 125	ttg Leu	ttt Phe	gat Asp	384	
act Thr	gtg Val 130	ttg Leu	ttc Phe	act Thr	cta Leu	cgc Arg 135	aaa Lys	cga Arg	gac Asp	cga Arg	caa Gln 140	Val	act Thr	ttc Phe	ctt Leu	432	
cat His 145	gtt Val	tat Tyr	cac His	cat His	tct Ser 150	acc Thr	atg Met	ccc Pro	ctg Leu	ttg Leu 155	Trp	tgg Trp	att Ile	elà aaa	gca Ala 160	480	
aag Lys	tgg Trp	gtg Val	cct Pro	ggt Gly 165	ej aaa	caa Gln	tca Ser	ttt Phe	gtt Val 170	GTA	ato Ile	ata Ile	ctg Leu	aac Asn 175	ser	528	
agt Ser	gtt Val	cat His	gtt Väl 180	Ile	atg Met	tat Tyr	acg Thr	tac Tyr 185	Tyr	gga	. ttg Leu	tca Ser	gcc Ala 190	. Leu	. Gly	576	;
cct Pro	cac His	atg Met 195	Gln	aag Lys	ttt Phe	cta Leu	tgg Trp 200	Trp	aag Lys	aaa Lys	tat Tyr	ato Ile 205	rnr	atg Met	ttg Leu	624	Ŀ
caa Gln	ctg Leu 210	. Val	caa Gln	ttt Phe	gtt Val	ctt Leu 215	. Ala	ato	tac Tyr	cat His	act Thr 220	Ala	cga Arg	tca Ser	ttg Leu	672	2
tac	gtt	aaa	. tgt	: ccc	tcg:	cct	gtt	tgg	, atg	cac	tgg	gca	ctt	: atc	ttg:	720)

								•	199							
Tyr 225	Val	Lys	Cys	Pro	Ser 230	Pro	Val	Trp	Met	His 235	Trp	Ala	Leu	Ile	Leu 240	
tac Tyr	gct Ala	ttc Phe	tca Ser	ttc Phe 245	att Ile	ttg Leu	ctt Leu	ttc Phe	tca Ser 250	aac Asn	ttc Phe	tac Tyr	atg Met	cat His 255	gcc Ala	768
tat Tyr	atc Ile	aag Lys	aaa Lys 260	tca Ser	aga Arg 	aaa Lys	gjå aaa	aaa Lys 265	gag Glu	aat Asn	ggc Gly	agt Ser	cga Arg 270	gga Gly	aaa Lys	816
ggt Gly	ggt Gly	gta Val 275	agt Ser	aat Asn	gga Gly	aag Lys	gaa Glu 280	aag Lys	ctg Leu	cac His	gct Ala	aat Asn 285	ggt Gly	aaa Lys	acc Thr	864
gat Asp	taa		,													870
<210	0> :	120														
<21	1> :	289				*										
<21	2> :	PRT														
<213	3> (Ciona	a int	test	inali	ls										
<40	0>	120														
Met 1	Asp	Val	Leu	His 5	Arg	Phe	Leu	Gly	Phe 10	Tyr	Glu	Trp	Thr	Leu 15	Thr	
Phe	Ala	Asp	Pro 20	Arg	Val	Ala	Lys	Trp 25	Pro	Leu	Ile	Glu	Asn 30	Pro	Leu	-
Pro	Thr	Ile 35	Ala	Ile	Val	Leu	Leu 40	Tyr	Leu	Ala	Phe	Val 45	Leu	Tyr	Ile	
Gly	Pro	Arg	Phe	Met	Arg	Lys 55	Arg	Ala	Pro	Val	Asp 60	Phe	Gly	Leu	Phe	
Leu 65	. Pro	Gly	Tyr	Asn	Phe 70	Ala	Leu	Val	Ala	Leu 75	Asn	Tyr	Tyr	Ile	Leu 80	
Gln	. Glu	ı Val	. Val	Thr 85	Gly	Ser	Tyr	Gly	Ala 90	. Gly	Tyr	Asp	Leu	. Val 95	Cys	
Thr	Pro	Leu	Aŕg 100		Asp	Ser	Tyr	Asp 105		Asn	. Glu	. Met	Lys 110	Val	Ala	
Asn	n Ala	val 115		Trp	Tyr	Tyr	Val 120	. Ser	Lys	: Ile	: Ile	Glu 125	Leu ;	ı Ph∈	e Asp	

Thr Val Leu Phe Thr Leu Arg Lys Arg Asp Arg Gln Val Thr Phe Leu 130 135 140

200

His Val Tyr His His Ser Thr Met Pro Leu Leu Trp Trp Ile Gly Ala 155 145

Lys Trp Val Pro Gly Gly Gln Ser Phe Val Gly Ile Ile Leu Asn Ser 165 170

Ser Val His Val Ile Met Tyr Thr Tyr Tyr Gly Leu Ser Ala Leu Gly 180

Pro His Met Gln Lys Phe Leu Trp Trp Lys Lys Tyr Ile Thr Met Leu 200

Gln Leu Val Gln Phe Val Leu Ala Ile Tyr His Thr Ala Arg Ser Leu

Tyr Val Lys Cys Pro Ser Pro Val Trp Met His Trp Ala Leu Ile Leu 230 225

Tyr Ala Phe Ser Phe Ile Leu Leu Phe Ser Asn Phe Tyr Met His Ala 245 250

Tyr Ile Lys Lys Ser Arg Lys Gly Lys Glu Asn Gly Ser Arg Gly Lys 265

Gly Gly Val Ser Asn Gly Lys Glu Lys Leu His Ala Asn Gly Lys Thr 280 275

30

qzA

<210> 121

<211> 30

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(30)

<223>

<400> 121

aggatecatg geetteaagg ageteacate

<210> 122

<211> 35

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(35)

<223>

<400> 122

cctcgagtca atggtttttg cttttcaatg caccg

35

<210> 123

<211> 25

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(25)

<223>

<400> 123

taagcttatg gacgtacttc atcgt

25

<210> 124

<211> 26

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(26)

<223>

<400> 124

tcagatcttt aatcggtttt accatt

```
<210> 125
```

<211> 34

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(34)

<223>

<400> 125 gcggccgcac catggccttc aaggagctca catc

34

<210> 126

<211> 38

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(38)

<223>

<400> 126
geggeegeet teaatggttt ttgettttea atgeaceg

38

<210> 127

<211> 29

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(29)

<223>

```
<400> 127
                                                                  29
geggeegeac catggaegta etteategt
<210> 128
<211> 27
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(27)
<223>
<400> 128
                                                                  27
gcggccgctt taatcggttt taccatt
<210> 129
<211> 60
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
<223>
gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa 60
<210> 130
<211> 60
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
```

<223>

<400 gtcg	> 1 accc	gc <u>g</u>	gact	agtg	g gc	cctc	taga	ccc	aaaa	gat ·	ccgg	atct	gc t	ggct	atgaa		60
<210	> 1	31															
<211	> 7	89								7							
<212	> D	NA															
<213	> E	ugle	na g	raci	lis												
<220	>																
<221	> C	DS															
<222	> (1)	(789)													
<223	> [elta	-5-E	long	ase												
<400 atg Met 1	cta	.31 ggg Gly	gcc Ala	atc Ile 5	gcg Ala	gac Asp	gtc Val	gtg Val	ctc Leu 10	cgg Arg	glà aaa	ccc Pro	gcc Ala	gca Ala 15	ttc Phe		48
cac His	tgg Trp	gac Asp	cct Pro 20	gcc Ala	acc Thr	acc Thr	ccg Pro	ctc Leu 25	gca Ala	tcg Ser	atc Ile	gtc Val	agc Ser 30	ccc Pro	tgt Cys		96
gtg Val	gcc Ala	tcc Ser 35	gtg Val	gcg Ala	tac Tyr	ctg Leu	ggg Gly 40	gcc Ala	atc Ile	gly aaa	ctg Leu	ctg Leu 45	aag Lys	cgc Arg	cgc Arg	:	144
act Thr	gga Gly 50	ccg Pro	gag Glu	gtc Val	cgc Arg	tcc Ser 55	aag Lys	ccc Pro	ttc Phe	gag Glu	ctg Leu 60	cta Leu	cac His	aac Asn	gly aaa		192
ctg Leu 65	ctg Leu	gtg Val	ggc Gly	tgg Trp	tcc Ser 70	ctc Leu	gtg Val	gtg Val	ctg Leu	ctc Leu 75	GJA 333	acg Thr	ctg Leu	tac Tyr	ggc 80		240
gcg Ala	ttc Phe	cag Gln	cgc Arg	gtg Val 85	cag Gln	gag Glu	gac Asp	ggc	cgg Arg 90	Gly ggg	gtg Val	cag Gln	gcc Ala	ctc Leu 95	ctg Leu	,	288
tgc Cys	acc Thr	cag Gln	cgg Arg 100	cca Pro	cca Pro	tct Ser	cag Gln	atc Ile 105	tgg Trp	gac Asp	ggc Gly	·ccg Pro	gtg Val 110	elà aaa	tac Tyr		336
ttc Phe	acg Thr	tac Tyr 115	ctc Leu	ttc Phe	tac Tyr	ctc Leu	gcg Ala 120	aag Lys	tac Tyr	tgg Trp	gag Glu	ctg Leu 125	gcg Ala	gac Asp	act Thr		384
gtc Val	atç Ile 130	ctc Leu	gcc Ala	ctc Leu	cgc Arg	cag Gln 135	aag Lys	ccc Pro	acc Thr	atc Ile	ccc Pro 140	ctc Leu	cac His	gtc Val	tac Tyr		432
cat His 145	cac His	gcc Ala	gtc Val	atg Met	ctg Leu 150	ttc Phe	atc Ile	gtg Val	tgg Trp	tcg Ser 155	tgg Trp	ttc Phe	gcg Ala	cac His	ccc Pro 160		480

								;	205								
tgg Trp	ctc Leu	gag Glu	gly aaa	agc Ser 165	tgg Trp	tgg Trp	tgc Cys	tcc Ser	ctg Leu 170	gtc Val	aac Asn	tct Ser	ttc Phe	atc Ile 175	cac His	52	28
acg Thr	gtg Val	atg Met	tac Tyr 180	tcg Ser	tac Tyr	tac Tyr	acc Thr	ctg Leu 185	Thr	gtg Val	gtt Val	ggc Gly	atc Ile 190	aac Asn	cct Pro	5'	76
tgg Trp	tgg Trp	aag Lys 195	aag Lys	tgg Trp	atg Met	acc Thr	acc Thr 200	atg Met	cag Gln	atc Ile	atc Ile	cag Gln 205	ttc Phe	atc Ile	acg Thr	6:	24
ggc Gly	tgc Cys 210	gtg Val	tac Tyr	gtc Val	atg Met	gcg Ala 215	ttc Phe	ttc Phe	ggc ggc	cta Leu	tat Tyr 220	tat Tyr	gcc Ala	gjà aaa	gcg Ala	6	72
ggc Gly 225	tgc Cys	acc Thr	tcc Ser	aac Asn	gtg Val 230	tac Tyr	act Thr	gcc Ala	tgg Trp	ttc Phe 235	tcg Ser	atg Met	Gly aaa	gtc Val	aac Asn 240	7	20
ctc Leu	agc Ser	ttt Phe	ctg Leu	tgg Trp 245	ctc Leu	ttc Phe	gct Ala	ctt Leu	ttc Phe 250	ttc Phe	cgc Arg	cgg Arg	tca Ser	tac Tyr 255	agc Ser	7	68
		_	cgg Arg 260		gag Glu	tag										7	89
<21	0 > 3	132															
<21	1> :	262															
<21	2> :	PRT															
<21	3> :	Eugl	ena 🤄	grac	ilis												
<40		132		_		_	.		_	.	~ 3	D	70.7	77.0	Dho		
Met 1	Leu	Gly	Ala	Ile 5	Ala	Asp	Val	Val	Leu 10	Arg	GTĀ	Pro	Ala	15	Fire		
His	Trp	Asp	Pro 20	Ala	Thr	Thr	Pro	Leu 25	Ala	Ser	Ile	Val	Ser 30	Pro	Cys		
Val	Ala	Ser 35	Val	Ala	Tyr	Leu	Gly 40	Ala	Ile	Gly	Leu	Leu 45	. Lys	Arg	Arg		
Thr	Gly	Pro	Glu	. Val	Arg	Ser 55	Lys	Pro	Phe	. Glu	Leu 60	. Leu	His	Asn	Gly		

Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly 70

Ala Phe Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu 85 90 95

Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr 100 105 110

Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Ala Asp. Thr 115 120 125

Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr 130 135 140

His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro 145 150 155 160

Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His 165 170 175

Thr Val Met Tyr Ser Tyr Tyr Thr Leu Thr Val Val Gly Ile Asn Pro 180 185 190

Trp Trp Lys Lys Trp Met Thr Thr Met Gln Ile Ile Gln Phe Ile Thr 195 200 205

Gly Cys Val Tyr Val Met Ala Phe Phe Gly Leu Tyr Tyr Ala Gly Ala 210 215 220

Gly Cys Thr Ser Asn Val Tyr Thr Ala Trp Phe Ser Met Gly Val Asn 225 230 235 240

Leu Ser Phe Leu Trp Leu Phe Ala Leu Phe Phe Arg Arg Ser Tyr Ser 245 250 255

Lys Pro Ser Arg Lys Glu 260

<210> 133

<211> 789

<212> DNA

<213> Euglena gracilis

<220>

<221> CDS

<222> (1)..(789)

<223> Delta-5-Elongase

atg ctg ggg gcc atc gcg gac gtc gtg ctc cgg ggg ccc gcc gca ttc Met Leu Gly Ala Ile Ala Asp Val Val Leu Arg Gly Pro Ala Ala Phe 1 5 10 15

48

cac tgg gac cct gcc acc acc ccg ctc gca tcg atc gtc agc ccc tgt 96

207

uia	TT-V-T-	λen	Dro	7.1.3	Thr	Thr	Pro	T.e.11	Δla	Ser	Tle	Val	Ser	Pro	Cys	
			20					25					30			
Val	Ala	Ser 35	Val	Ala	Tyr	Leu	Gly 40	Ala ·	Ile	Gly	Leu	Leu 45	aag Lys	Arg	Arg	144
act Thr	gga Gly 50	ccg Pro	gag Glu	gtc Val	cgc Arg	tcc Ser 55	aag Lys	ccc Pro	ttc Phe	gag Glu	ctg Leu 60	cta Leu	cac His	aac Asn	GJA 333	192
ctg Leu 65	ctg Leu	gtg Val	ggc Gly	tgg Trp	tcc Ser 70	ctc Leu	gtg Val	gtg Val	ctg Leu	ctc Leu 75	gjå aaa	acg Thr	ctg Leu	tac Tyr	80 Gly ggc	240
gcg Ala	tac Tyr	cag Gln	cgc Arg	gtg Val 85	cag Gln	gag Glu	gac Asp	gly ggc	cgg Arg 90	gjå aaa	gtg Val	cag Gln	gcc Ala	ctg Leu 95	ctg Leu	288
tgc Cys	acc Thr	cag Gln	cgg Arg 100	cca Pro	cca Pro	tct Ser	cag Gln	atc Ile 105	tgg Trp	gac Asp	ggc	ccg Pro	gtg Val 110	GJÀ 333	tac Tyr	336
ttc Phe	acg Thr	tac Tyr 115	ctt Leu	ttc Phe	tac Tyr	ctc Leu	gcg Ala 120	aag Lys	tac Tyr	tgg Trp	gag Glu	ctg Leu 125	gtg Val	gac Asp	act Thr	384
gtc Val	atc Ile 130	ctc Leu	gcc Ala	ctc Leu	cgc Arg	cag Gln 135	aag Lys	ccc Pro	acc Thr	atc Ile	ccc Pro 140	ctc Leu	cac His	gtc Val	tac Tyr	432
cat His 145	cac His	gcc Ala	gtc Val	atg Met	ctg Leu 150	ttc Phe	att Ile	gtg Val	tgg Trp	tcg Ser 155	tgg Trp	ttc Phe	gcg Ala	cac His	ccc Pro 160	480
tgg Trp	ctc Leu	gag Glu	glà aaa	agc Ser 165	tgg Trp	tgg Trp	tgc .Cys	tcc Ser	ctg Leu 170	gtc Val	aac Asn	tct Ser	ttc Phe	atc Ile 175	cac His	528
acg Thr	gtg Val	atg Met	tac Tyr 180	tcg Ser	tat Tyr	tac Tyr	acc Thr	ctg Leu 185	acg Thr	gtg Val	gtt Val	ggc	atc Ile 190	aac Asn	cct Pro	576
tgg Trp	tgg Trp	aag Lys 195	aag Lys	tgg Trp	atg Met	Thr	acc Thr 200	Met	cag Gln	atc Ile	atc Ile	cag Gln 205	ttc Phe	atc Ile	acg Thr	624
Gly	tgc Cys 210	Val	tac Tyr	gtc Val	acg Thr	gcg Ala 215	Phe	ttc Phe	Gly	cta Leu	tac Tyr 220	Tyr	gcc Ala	gl ^à aaa	gcg Ala	672
ggc Gly 225	Cys	acc Thr	tcc Ser	aac Asn	gtg Val 230	Tyr	act Thr	gcc Ala	tgg Trp	ttc Phe 235	Ser	atg Met	Gly ggg	gtc Val	aac Asn 240	720
ctc Leu	ago Ser	ttt Phe	ctg Leu	tgg Trp 245	Leu	ttc Phe	gct Ala	ctt Leu	ttc Phe 250	Phe	cgc Arg	cgg Arg	tcg Ser	tac Tyr 255	agc Ser	768
		ago Ser		Lys			·									789

<210> 134

<211> 262

<212> PRT

<213> Euglena gracilis

<400> 1:34

Met Leu Gly Ala Ile Ala Asp Val Val Leu Arg Gly Pro Ala Ala Phe 1 5 10 15

His Trp Asp Pro Ala Thr Thr Pro Leu Ala Ser Ile Val Ser Pro Cys 20 25 30

Val Ala Ser Val Ala Tyr Leu Gly Ala Ile Gly Leu Leu Lys Arg Arg 35 40 45

Thr Gly Pro Glu Val Arg Ser Lys Pro Phe Glu Leu Leu His Asn Gly 50 55 60

Leu Leu Val Gly Trp Ser Leu Val Val Leu Leu Gly Thr Leu Tyr Gly 65 70 75 80

Ala Tyr Gln Arg Val Gln Glu Asp Gly Arg Gly Val Gln Ala Leu Leu 85 90 95

Cys Thr Gln Arg Pro Pro Ser Gln Ile Trp Asp Gly Pro Val Gly Tyr 100 105 110

Phe Thr Tyr Leu Phe Tyr Leu Ala Lys Tyr Trp Glu Leu Val Asp Thr 115 120 125

Val Ile Leu Ala Leu Arg Gln Lys Pro Thr Ile Pro Leu His Val Tyr 130 135 140

His His Ala Val Met Leu Phe Ile Val Trp Ser Trp Phe Ala His Pro 145 150 155 160

Trp Leu Glu Gly Ser Trp Trp Cys Ser Leu Val Asn Ser Phe Ile His 165 170 175

Thr Val Met Tyr Ser Tyr Tyr Thr Leu Thr Val Val Gly Ile Asn Pro 180 185 190

Trp Trp Lys Lys Trp Met Thr Thr Met Gln Ile Ile Gln Phe Ile Thr 195 200 205

Gly Cys Val Tyr Val Thr Ala Phe Phe Gly Leu Tyr Tyr Ala Gly Ala 210 215 220

Gly Cys Thr Ser Asn Val Tyr Thr Ala Trp Phe Ser Met Gly Val Asn 225 230 235

Leu	Ser	Phe	Leu	Trp 245	Leu	Phe	Ala	Leu	Phe 250	Phe	Arg	Arg	Ser	Tyr 255	Ser
Lys	Pro	Ser	Arg 260	Lys	Glu										

<210> 135

<211> 897

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(897)

<223> Delta-5-Elongase

atα	> 1 gca Ala	tct	gtt Val	tac Tyr 5	tcc Ser	acc Thr	cta Leu	acc Thr	tac Tyr 10	tgg Trp	ctc Leu	gtc Val	cac His	cac His 15	ccc Pro		48
tac Tyr	att Ile	gcc Ala	aac Asn 20	ttc Phe	acg Thr	tgg Trp	acc Thr	gaa Glu 25	ggt Gly	gaa Glu	aca Thr	cta Leu	ggc 30	tcc Ser	acc Thr		96
gtt Val	ttc Phe	ttt Phe 35	gtc Val	ttt Phe	gtc Val	gtc Vạl	gtc Val 40	tcc Ser	ctt Leu	tac Tyr	ctc Leu	tcc Ser 45	gcc Ala	aca Thr	ttc Phe	:	144
ctc Leu	ctc Leu 50	cga Arg	tac Tyr	acc Thr	gtc Val	gat Asp 55	tca Ser	ctc Leu	ccc Pro	aca Thr	ctc Leu 60	ggt Gly	ccc Pro	cgc Arg	att Ile	:	192
ctc Leu 65	aaa Lys	cca Pro	atc Ile	aca Thr	gcc Ala 70	gtt Val	cac His	agc Ser	ctc Leu	att Ile 75	ctc Leu	ttc Phe	ctc Leu	ctc Leu	tcc Ser 80	;	240
tta Leu	acc Thr	atg Met	gcc Ala	gtt Val 85	ggt Gly	tgc Cys	act Thr	ctc Leu	tcc Ser 90	cta Leu	atc Ile	tct Ser	tcc Ser	tcg Ser 95	gac Asp	•	288
ccg Pro	aag Lys	gcg Ala	cgt Arg 100	ctc Leu	ttc Phe	gac Asp	gcc Ala	gtt Val 105	tgt Cys	ttc Phe	ccc Pro	ctc Leu	gac Asp 110	gtg Val	aaa Lys	٠	336
cct Pro	aag Lys	gga Gly 115	ccg Pro	ctt Leu	ttc Phe	ttt Phe	tgg Trp 120	gct Ala	caa Gln	gtc Val	ttt Phe	tac Tyr 125	ctc Leu	tcg Ser	aag Lys		384
atc Ile	ctt Leu 130	gag Glu	ttc Phe	gta Val	gac Asp	aca Thr 135	ctt Leu	ctc Leu	atc Ile	ata Ile	ctc Leu 140	aac Asn	aaa Lys	tca Ser	atc Ile		432
caa Gln 145	cgg Arg	ctc Leu	tcg Ser	ttc Phe	ctc Leu 150	cac His	gtc Val	tac Tyr	cac His	cac His 155	gca Ala	acg Thr	gtt Val	gtg Val	att Ile 160		480

ttg Leu	tgc Cys	tac Tyr	ctc Leu	tgg Trp 165	tta Leu	cga Arg	aca Thr	cgt Arg	caa Gln 170	tcg Ser	atg Met	ttt Phe	cct Pro	gtt Val 175	Gly ggg	528
ctc Leu	gtg Val	ttg Leu	aac Asn 180	tcg Ser	acg Thr	gtc Val	cat His	gtg Val 185	Ile	atg Met	tac Tyr	gly ggg	tac Tyr 190	tat Tyr	ttc Phe	576
ctc Leu	tgc Cys	gct Ala 195	atc Ile	gga Gly	tcg Ser	agg Arg	ccc Pro 200	aag Lys	tgg Trp	aag Lys	aag Lys	ttg Leu 205	gtg Val	acg Thr	aat Asn	624
ttt Phe	caa Gln 210	atg Met	gtt Val	cag Gln	ttt Phe	gct Ala 215	ttc Phe	ggc	atg Met	Gly 333	tta Leu 220	gga Gly	gcc Ala	gct Ala	tgg Trp	672
atg Met 225	ctc Leu	cca Pro	gag Glu	cat His	tat Tyr 230	ttc Phe	Gly 999	tcg Ser	ggt Gly	tgc Cys 235	gcc Ala	elà aaa	att Ile	tgg Trp	aca Thr 240	720
gtt Val	tat Tyr	ttc Phe	aat Asn	ggt Gly 245	gtg Val	ttt Phe	act Thr	gct Ala	tct Ser 250	cta Leu	ttg Leu	gct Ala	ctc Leu	ttc Phe 255	tac Tyr	768
aac Asn	ttc Phe	cac His	tcc Ser 260	Lys	aac Asn	tat Tyr	gag Glu	aag Lys 265	act Thr	aca Thr	acg Thr	tcg Ser	cct Pro 270	ttg Leu	tat Tyr	816
aag Lys	atc Ile	gaa Glu 275	Ser	ttt Phe	ata Ile	ttt Phe	att Ile 280	cac His	gga Gly	gag Glu	agg Arg	tgg Trp 285	gca Ala	aat Asn	aaa Lys	864
gcg Ala	att Ile 290	Thr	tta Leu	ttt Phe	tcc Ser	aag Lys 295	aaa Lys	aac Asn	gat Asp	taa			•			897
<21	0 >	136								•						
<21	1>	298														
<21	2>	PRT														
<21	3>	Arab	idop	sis	thal	iana.					-81					
<40	0>	136														
Met 1	Ala	. Ser	· Val	. Tyr 5	Ser	Thr	Leu	t Thr	10	Trp	Leu	. Val	. His	His 15	Pro	
Tyr	· Ile	a Ala	a Ası 20	ı Phe	e Thr	Trp	Thr	Glu 25	ı Gly	glu	ı Thr	Leu	30 30	y Ser	Thr	
Val	. Phe	Phe 35	e Val	L Phe	e Val	. Val	Val	. Ser	r Lev	ι Туз	: Leu	ı Sei 45	: Ala	a Thr	. Phe	
Leu	ı Leı 50	ı Arç	Ty:	r Thi	. Val	L Asp 55	Sei	r Leu	ı Pro	Th:	r Leu 60	ı Gly	y Pro	o Arg	, Ile	
Leu 65	ı Lys	s Pro	o Ile	e Thi	r Ala 70	a Val	L His	s Sei	c Lei	ı Ile 75	e Lei	ı Phe	e Le	u Let	ı Ser 80	

Leu Thr Met Ala Val Gly Cys Thr Leu Ser Leu Ile Ser Ser Ser Asp 85 90 95

Pro Lys Ala Arg Leu Phe Asp Ala Val Cys Phe Pro Leu Asp Val Lys
100 105 110

Pro Lys Gly Pro Leu Phe Phe Trp Ala Gln Val Phe Tyr Leu Ser Lys 115 120 125

Ile Leu Glu Phe Val Asp Thr Leu Leu Ile Ile Leu Asn Lys Ser Ile 130 135 140

Gln Arg Leu Ser Phe Leu His Val Tyr His His Ala Thr Val Val Ile 145 150 150 155

Leu Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe Pro Val Gly
165 170 175

Leu Val Leu Asn Ser Thr Val His Val Ile Met Tyr Gly Tyr Tyr Phe 180 185 190

Leu Cys Ala Ile Gly Ser Arg Pro Lys Trp Lys Lys Leu Val Thr Asn . 195 200 205

Phe Gln Met Val Gln Phe Ala Phe Gly Met Gly Leu Gly Ala Ala Trp 210 215 220

Met Leu Pro Glu His Tyr Phe Gly Ser Gly Cys Ala Gly Ile Trp Thr 225 230 235 240

Val Tyr Phe Asn Gly Val Phe Thr Ala Ser Leu Leu Ala Leu Phe Tyr 245 250 255

Asn Phe His Ser Lys Asn Tyr Glu Lys Thr Thr Thr Ser Pro Leu Tyr 260 265 270

Lys Ile Glu Ser Phe Ile Phe Ile His Gly Glu Arg Trp Ala Asn Lys 275 280 285

Ala Ile Thr Leu Phe Ser Lys Lys Asn Asp 290 295

<210> 137

<211> 837

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)..(837)

<223> Delta-5-Elongase

ato)> 1 gca Ala	tca	att Ile	tac Tyr 5	tcc Ser	tct Ser	tta Leu	acc Thr	tac Tyr 10	tgg Trp	ctc Leu	gtt Val	aac Asn	cac His 15	ccc Pro	48
tac Tyr	atc Ile	tcc Ser	aat Asn 20	ttt Phe	act Thr	tgg Trp	atc [.] Ile	gaa Glu 25	ggt Gly	gaa Glu	acc Thr	cta Leu	ggc ggc	tcc Ser	acc Thr	96
gtc Val	ttt Phe	ttc Phe 35	gta Val	tcc Ser	gtc Val	gta Val	gtc Val 40	tcc Ser	gtt Val	tac Tyr	ctc Leu	tcc Ser 45	gcc Ala	acg Thr	ttc Phe	144
ctc Leu	ctc Leu 50	cga Arg	tcc Ser	gcc Ala	atc Ile	gat Asp 55	tca Ser	ctc Leu	cca Pro	tca Ser	ctc Leu 60	agt Ser	cca Pro	cgt Arg	atc Ile	192
ctc Leu 65	aaa Lys	ccg Pro	atc Ile	aca Thr	gcc Ala 70	gtc Val	cac His	agc Ser	cta Leu	atc Ile 75	ctc Leu	tgt Cys	ctc Leu	ctc Leu	tcc Ser 80	240
tta Leu	gtc Val	atg Met	gcc Ala	gtc Val 85	ggt Gly	tgc Cys	act Thr	ctc Leu	tca Ser 90	ata Ile	acc Thr	tca Ser	tct Ser	cac His 95	gcg Ala	288
tct Ser	tca Ser	gat Asp	ccg Pro 100	atg Met	gcg Ala	cgt Arg	ttc Phe	ctt Leu 105	cac His	gcg Ala	att Ile	tgc Cys	ttt Phe 110	ccc Pro	gtc Val	336
gac Asp	gtt Val	aaa Lys 115	cct Pro	aac Asn	gga Gly	ccg Pro	ctt Leu 120	ttc Phe	ttc Phe	tgg Trp	gct Ala	caa Gln 125	gtc Val	ttc Phe	tac Tyr	384
ctc Leu	tcg Ser 130	aag Lys	atc Ile	ctc Leu	gag Glu	ttc Phe 135	Gly	gac Asp	acg Thr	atc Ile	ctc Leu 140	atc Ile	ata Ile	ctc Leu	Gly	432
aaa Lys 145	tca Ser	atc Ile	caa Gln	cgg Arg	cta Leu 150	tcc Ser	ttc Phe	ctc Leu	cac His	gtg Val 155	tac Tyr	cac His	cac His	gcg Ala	acg Thr 160	480
gtt Val	gtg Val	gtc Val	atg Met	tgt Cys 165	tat Tyr	ctc Leu	tgg Trp	ctc Leu	cga Arg 170	act Thr	cgc Arg	caa Gln	tcg Ser	atg Met 175	ttt Phe	528
ccg Pro	att Ile	gcg Ala	ctc Leu 180	gtg Val	acg Thr	aat Asn	tcg Ser	acg Thr 185	gta Val	cac His	gtc Val	atc Ile	atg Met 190	TYT	ggt Gly	576
tac Tyr	tac Tyr	ttc Phe 195	Leu	tgc Cys	gcc Ala	gtt Val	gga Gly 200	Ser	agg Arg	ccc Pro	aag Lys	tgg Trp 205	rys	aga Arg	ttg Leu	624
gtg Val	acg Thr 210	Asp	tgt Cys	cag Gln	att Ile	gtt Val 215	Gln	ttt Phe	gtt Val	ttc Phe	agt Ser 220	Phe	Gly	tta Leu	tcc Ser	672
ggt	tgg	atg	ctc	cga	gag	cac	tta	. ttc	999	tcg	ggt	tgc	acc	. 333	att	720

W O 20	705/0	05075	•						213					10	1/121 2	003/001003
Gly '	Trp	Met	Leu	Arg	Glu 230	His	Leu			Ser 235	Gly	Cys	Thr	Gly	Ile 240	
tgg Trp	gga Gly	tgg Trp	tgt Cys	ttc Phe 245	aac Asn	gct Ala	gca Ala	ttt Phe	aat Asn 250	gct Ala	tct Ser	ctt Leu	ttg Leu	gct Ala 255	ctc Leu	768
ttt Phe	tcc Ser	aac Asn	ttc Phe 260	cat His	tca Ser	aag Lys	aat Asn	tat Tyr 265	gtc Val	aag Lys	aag Lys	cca Pro	acg Thr 270	aga Arg	gag Glu	816
gat Asp	ggc Gly	aaa Lys 275	aaa Lys	agc Ser	gat Asp	tag										837
<210	> :	138														
<211	.> 2	278														
<212	;>]	PRT														
<213	> 2	Arab:	idops	sis 1	hali	lana										
				٠												
<400)> :	138														
Met 1	Ala	Ser	Ile	Tyr 5	Ser	ser	Leu	Thr	Tyr 10	Trp	Leu	Val	Asn	His 15	Pro	
Tyr	Ile	Ser	Asn 20	Phe	Thr	Trp	Ile	Glu 25	Gly	Glu	Thr	Leu	Gly 30	Ser	Thr	
Val	Phe	Phe 35	Val	Ser	Val	Val	.Val 40	Ser	Val	Tyr	Leu	Ser 45	Ala	Thr	Phe	
Leu	Leu 50	Arg	Ser	Ala	Ile	Asp 55	Ser	Leu	Pro	Ser	Leu 60	Ser	Pro	Arg	Ile	
Leu 65	Lys	Pro	Ile	Thr	Ala 70	Val	His	Ser	Leu	. Ile 75	Leu	. Cys	Leu	Leu	. Ser 80	
Leu	Val	Met	Ala	Val 85	Gly	Суз	Thr	Leu	Ser 90	·Ile	Thr	Ser	Ser	His	Ala	
Ser	Ser	Asp	Pro		Ala	Arg	Phe	Leu 105	His	ı Ala	ıIl∈	. Cys	Phe 110	Pro	Val	
Asp	Val	. Lys 115		Asn	Gly	Pro	Leu 120		. Phe	Trp	Ala	Glr 125	ı Val	. Ph∈	. Tyr	
Leu	Ser		ı Il∈		ı Glu	Phe 135		, Ast	Thi	: Ile	Let 140	ı Il∈)	e Ile	e Lev	ı Gly	
Lys 145		: Ile	e Glr	ı Arg	150		: Phe	e Lei	ı His	5 Val	L Ty:	r His	s His	s Ala	Thr 160	

214

Val Val Wet Cys Tyr Leu Trp Leu Arg Thr Arg Gln Ser Met Phe 165 170 : 175

Pro Ile Ala Leu Val Thr Asn Ser Thr Val His Val Ile Met Tyr Gly 180 185 190

Tyr Tyr Phe Leu Cys Ala Val Gly Ser Arg Pro Lys Trp Lys Arg Leu 195 200 205

Val Thr Asp Cys Gln Ile Val Gln Phe Val Phe Ser Phe Gly Leu Ser 210 220

Gly Trp Met Leu Arg Glu His Leu Phe Gly Ser Gly Cys Thr Gly Ile 225 230 235

Trp Gly Trp Cys Phe Asn Ala Ala Phe Asn Ala Ser Leu Leu Ala Leu 245 250 255

Phe Ser Asn Phe His Ser Lys Asn Tyr Val Lys Lys Pro Thr Arg Glu 260 265 270

Asp Gly Lys Lys Ser Asp 275

<210> 139

<211> 6

<212> PRT

<213> Konsensus

<220>

<221> MISC FEATURE

<222> (1)..(6)

<223> Xaa in der Position 3 und 4 in der Sequenz hat die in Tabelle A w iedergegebene Bedeutung.

<400> 139

Leu His Xaa Xaa His His 1 5

<210> 140

<211> 8

<212> PRT

<213> Konsensus

```
<220>
<221> MISC_FEATURE
<222> (1)..(8)
<223> Xaa an der Position 2, 3, 5 und 6 in der Sequenz hat die in Tabel
       le A wiedergegebene Bedeutung.
<400> 140
Thr Xaa Xaa Gln Xaa Xaa Gln Phe
<210> 141
<211> 6
<212> PRT
<213> Konsensus
<220>
<221> MISC_FEATURE
<222> (1)..(6)
<223> Xaa an Postion 3 in der Sequenz hat die in Tabelle A wiedergegebe
       ne Bedeutung.
<400> 141
Asp Thr Xaa Phe Met Val
         . 5
<210> 142
<211> 8
<212> PRT
<213> Konsensus
<220>
 <221> MISC_FEATURE
 <222> (1)..(8)
 <223> Xaa an Postion 5 und 6 in der Sequenz hat die in Tabelle A wieder
```

<400> 142

gegebene Bedeutung.

```
Thr Gln Ala Gln Xaa Xaa Gln Phe
<210> 143
<211> 60
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
<223>
gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                    60
<210> 144
<211> 60
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
<223>
gtcgaccegc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                     60
<210> 145
<211> 36
<212> DNA
<213> Primer
<220>
<221> misc_feature
```

WO 2005/083093 PCT/EP2005/001863 **217**

<222> (1)..(36)

<223>

<400> 145
ggtaccacat aatgtgcgtg gagacggaaa ataacg 36

<210> 146

<211> 33

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(33)

<223>

<400> 146
ctcgagttac gccgtctttc cggagtgttg gcc 33

<210> 147

<211> 24

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(24)

<223>

<400> 147
geggeegett aegtggaett ggte 24

<210> 148

<211> 24

<212> DNA

<213> Primer

<221> misc_feature

<222> (1)..(24)

<223>

<220>

<400> 148

gcggccgcat ggcgacgaag gagg

<210> 149

<211> 25

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(25)

<223>

<400> 149

taagcttaca tggcgacgaa ggagg

<210> 150

<211> 24

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(24)

<223>

<400> 150 tggatccact tacgtggact tggt

<210> 151

<211> 60

<212> DNA

24

25

```
<213> Primer
<220>
<221> misc_feature
<222> (1)..(60)
<223>
gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa 60
<210> . 152
<211> 31
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1):.(31)
<223>
<400> 152
                                                                   31
gcggccgcac catgtgctca ccaccgccgt c
<210> 153
<211> 26
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(26)
<223>
 <400> 153
                                                                   26
 gcggccgcct acatggcacc agtaac
```

<210> 154

<211> 31

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(31)

<223>

<400> 154

31 geggeegeac catgtgetea teacegeegt c

<210> 155

<211> 26

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(26)

<223>

<400> 155 gcggccgcct acatggcacc agtaac

26

31

<210> 156

<211> 31

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(31)

<223>

<400> 156 gcggccgcac catggacgcc tacaacgctg c

WO 2005/083093 PCT/EP2005/001863

<210> 157

<211> 27

· <212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(27)

<223>

<400> 157 gcggccgcct aagcactctt cttcttt

27

23

<210> 158

<211> 23

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(23)

<223>

<400> 158

accatgtgct caccaccgcc gtc

<210> 159

<211> 18

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(18)

<223>

<400> 159 ctacatggca ccagtaac

18

<210> 160

<211> 23

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(23)

<223>

<400> 160 accatgtgct catcaccgcc gtc

23

<210> 161

<211> 18

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(18)

<223>

<400> 161 ctacatggca ccagtaac

18

<210> 162

<211> 23

<212> DNA

<213> Primer

<220>

<221> misc_feature

WO 2005/083093 PCT/EP2005/001863 223

<222> (1)..(23)

<223>

<400> 162 ' 23 accatggacg cctacaacgc tgc

<210> 163

<211> 19

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(19)

<223>

<400> 163 19 ctaagcactc ttcttcttt

<210> 164

<211> 60

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(60)

<223>

<400> 164 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa 60

<210> 165

<212> DNA

<213> Primer

WO 2005/083093

```
PCT/EP2005/001863
                                  224
<220>
<221> misc_feature
<222> (1)..(60)
<223>
<400> 165
gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                    60
<210> 166
<211> 29
<212> DNA
<213> Primer
<220>
<221> misc_feature
<222> (1)..(29)
<223>
<400> 166
                                                                     29
gcggccgcat aatgacgagc aacatgagc
<210> 167
<211> 29
<212> DNA
<213> Primer
<220>
<221> misc_feature
 <222> (1)..(29)
 <223>
```

<400> 167 29 gcggccgctt aggccgactt ggccttggg

<210> 168

<211> 34

<212> DNA

WO 2005/083093 PCT/EP2005/001863 225

<213> Primer

<220>

<221> misc_feature

<222> (1)..(34)

<223>

<400> 168 gcggccgcac catggacgtc gtcgagcagc aatg

34

<210> 169

<211> 36

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(36)

<223>

gcggccgctt agatggtctt ctgcttcttg ggcgcc

36

<210> 170

<211> 23

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(23)

<223>

<400> 170 gacataatga cgagcaacat gag

23

<210> 171

<211> 25

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(25)

<223>

<400> 171 cggcttaggc cgacttggcc ttggg

25

<210> 172

<211> 30

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(30)

<223>

<400> 172 agacataatg gacgtcgtcg agcagcaatg

30

<210> 173

<211> 28

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(28)

<223>

<400> 173 ttagatggtc ttctgcttct tgggcgcc

<223>

```
<210> 174
 <211> 60
 <212> DNA
 <213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(60)
 <223>
 <400> 174
 gtcgacccgc ggactagtgg gccctctaga cccgggggat ccggatctgc tggctatgaa
                                                                     60
 <210> 175
 <211> 29
 <212> DNA
<213> Primer
 <220>
 <221> misc_feature
 <222> (1)..(29)
 <223>
 <400> 175
                                                                     29
 gcggccgcat aatggcttca acatggcaa
 <210> 176
  <211> 32
  <212> DNA
  <213> Primer
  <220>
  <221> misc_feature
  <222> (1)..(32)
```

<400> 176 32 geggeegett atgtettett getetteetg tt · <210> 177 <211> 26 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(26) <223> <400> 177 26 gcggccgcat aatggagact tttaat <210> 178 <211> 28 <212> DNA <213> Primer <220> <221> misc_feature <222> (1)..(28) <223> <400> 178 28 geggeegete agtececet eactitee <210> 179 <211> 29 <212> DNA <213> Primer <220> <221> misc_feature

WO 2005/083093 PCT/EP2005/001863

229

29

<222> (1)..(29)

<223>

<400> 179
aagettacat aatggettea acatggeaa

<210> 180

<211> 30

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(30)

<223>

<400> 180
ggatccttat gtcttcttgc tcttcctgtt

<210> 181

<211> 26

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(26)

<223>

<400> 181
aagcttacat aatggagact tttaat 26

<210> 182

<211> 27

<212> DNA

<213> Primer

<220> <221> misc_feature <222> (1)..(27) <223> <400> 182 27 ggatccttca gtccccctc actttcc <210> 183 993 <211> <212> DNA <213> Phaeodactylum tricornutum <220> <221> CDS <222> (103)..(939) <223> Delta-6-Elongase <400> 183 ggtcttttgt ggtagctatc gtcatcacac gcaggtcgtt gctcactatc gtgatccgta 60 tattgaccgt gcacttgtgt aaaacagaga tatttcaaga gt atg gta cct 114 Met Met Val Pro tca agt tat gac gag tat atc gtc atg gtc aac gac ctt ggc gac tct 162 Ser Ser Tyr Asp Glu Tyr Ile Val Met Val Asn Asp Leu Gly Asp Ser 1.0 210 att ctg agc tgg gcc gac cct gat cac tat cgt gga cat acc gag gga Ile Leu Ser Trp Ala Asp Pro Asp His Tyr Arg Gly His Thr Glu Gly 258 tgg gag ttc act gac ttt tct gct gct ttt agc att gcc gtc gcg tac Trp Glu Phe Thr Asp Phe Ser Ala Ala Phe Ser Ile Ala Val Ala Tyr ctc ctg ttt gtc ttt gtt gga tct ctc att atg agt atg gga gtc ccc 306 Leu Leu Phe Val Phe Val Gly Ser Leu Ile Met Ser Met Gly Val Pro 60 354 gca att gac cct tat ccg ctc aag ttt gtc tac aat gtt tca cag att Ala Ile Asp Pro Tyr Pro Leu Lys Phe Val Tyr Asn Val Ser Gln Ile 75 402 atg ctt tgt gct tac atg acc att gaa gcc agt ctt cta gct tat cgt Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu Leu Ala Tyr Arg aac ggc tac aca ttc tgg cct tgc aac gat tgg gac ttt gaa aag ccg 450 Asn Gly Tyr Thr Phe Trp Pro Cys Asn Asp Trp Asp Phe Glu Lys Pro 110

cct Pro	atc Ile	gct Ala	aag Lys 120	ctc Leu	ctc Leu	tgg Trp	ctc Leu	ttt Phe 125	tac Tyr	gtt Val	tcc Ser	aaa Lys	att Ile 130	tgg Trp	gat Asp	498
ttt Phe	tgg Trp	gac Asp 135	acc Thr	atc Ile	ttt Phe	att Ile	gtt Val 140	ctc Leu	gly aaa	aag Lys	aag Lys	tgg Trp 145	cgt Arg	caa Gln	ctt Leu	546
tcc Ser	ttc Phe 150	ctg Leu	cac His	gtc Val	tac Tyr	cat His 155	cac His	acc Thr	acc Thr	atc Ile	ttt Phe 160	ctc Leu	ttc Phe	tac Tyr	tgg Trp	594
ttg Leu 165	aat Asn	gca Ala	cat His	gta Val	aac Asn 170	ttt Phe	gat Asp	ggt Gly	gat Asp	att Ile 175	ttc Phe	ctc Leu	acc Thr	atc Ile	gtc Val 180	642
ttg Leu	aac Asn	ggt Gly	ttc Phe	atc Ile 185	cac His	acc Thr	gtc Val	atg Met	tac Tyr 190	acg Thr	tac Tyr	tac Tyr	ttc Phe	att Ile 195	tgc Cys	690
atg Met	cac His	acc Thr	aag Lys 200	gtc Val	cca Pro	gag Glu	acc Thr	ggc Gly 205	aaa Lys	tcc Ser	ttg Leu	ccc Pro	att Ile 210	tgg Trp	tgg Trp	738
aaa Lys	tct Ser	agt Ser 215	Leu	aca Thr	agc Ser	Met	cag Gln 220	ctg Leu	gtg Val	cag Gln	ttc Phe	atc Ile 225	acg Thr	atg Met	atg Met	786
acg Thr	cag Gln 230	Ala	atc Ile	atg Met	atc Ile	ttg Leu 235	tac Tyr	aag Lys	Gly	tgt Cys	gct Ala 240	gct Ala	ccc Pro	cat His	agc Ser	834
cgg Arg 245	gtg Val	gtg Val	aca Thr	tcg Ser	tac Tyr 250	ttg Leu	gtt Val	tac Tyr	att Ile	ttg Leu 255	tcg Ser	ctc Leu	ttt Phe	att Ile	ttg Leu 260	882
ttc Phe	gcc Ala	cag Gln	ttc Phe	ttt Phe 265	Val	agc Ser	tca Ser	tac Tyr	ctc Leu 270	Lys	ccg Pro	aag Lys	aag Lys	aag Lys 275	Lys	930
	gct Ala		. gcg	aaat	ttg	ggtc	tacg	tt a	aaac	aatt	a cg	ttac	aaaa			979
aaa	aaaa	aaa	aaaa													993
<21	0 >	184														
<21	1>	278														
<21	2>	PRT														
<21	3>	Phae	eodac	tylu	ım tr	cicor	nutu	ım								
<40	0>	184														
Met	Met	. Val	L Pro	Sei	s Ser	туз	: Asp	, Glu	1 Ty:	: Ile	val	. Met	: Val	. Asr 15	a Asp	

10 15

Leu Gly Asp Ser Ile Leu Ser Trp Ala Asp Pro Asp His Tyr Arg Gly 20 25 30

His Thr Glu Gly Trp Glu Phe Thr Asp Phe Ser Ala Ala Phe Ser Ile 35 40 45

Ala Val Ala Tyr Leu Leu Phe Val Phe Val Gly Ser Leu Ile Met Ser 50 55 60

Met Gly Val Pro Ala Ile Asp Pro Tyr Pro Leu Lys Phe Val Tyr Asn 65 70 75 80

Val Ser Gln Ile Met Leu Cys Ala Tyr Met Thr Ile Glu Ala Ser Leu 85 90 95

Leu Ala Tyr Arg Asn Gly Tyr Thr Phe Trp Pro Cys Asn Asp Trp Asp 100 105 110

Phe Glu Lys Pro Pro Ile Ala Lys Leu Leu Trp Leu Phe Tyr Val Ser 115 120 125

Lys Ile Trp Asp Phe Trp Asp Thr Ile Phe Ile Val Leu Gly Lys Lys 130 135 140

Trp Arg Gln Leu Ser Phe Leu His Val Tyr His His Thr Thr Ile Phe 145 150 155 160

Leu Phe Tyr Trp Leu Asn Ala His Val Asn Phe Asp Gly Asp Ile Phe 165 170 175

Leu Thr Ile Val Leu Asn Gly Phe Ile His Thr Val Met Tyr Thr Tyr 180 185 190

Tyr Phe Ile Cys Met His Thr Lys Val Pro Glu Thr Gly Lys Ser Leu 195 200 205

Pro Ile Trp Trp Lys Ser Ser Leu Thr Ser Met Gln Leu Val Gln Phe 210 215 220

Ile Thr Met Met Thr Gln Ala Ile Met Ile Leu Tyr Lys Gly Cys Ala 225 230 235 240

Ala Pro His Ser Arg Val Val Thr Ser Tyr Leu Val Tyr Ile Leu Ser 245 250 255

Leu Phe Ile Leu Phe Ala Gln Phe Phe Val Ser Ser Tyr Leu Lys Pro 260 265 270

Lys Lys Lys Thr Ala 275

<210> 185

<211> 20

WO 2005/083093 PCT/EP2005/001863

233

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(20)

<223> N in den Positionen 3 und 18 bedeutet C oder T.

<400> 185

20 aanctuctut ggctuttnta

<210> 186

<211> 23

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(23)

<223> N in den Positionen 3 und 15 bedeutet C oder T. N in den Position en 9, 12 und 21 bedeutet A oder G.

<400> 186 gantguacna anaantgugc naa

23

<210> 187

<211> 446

<212> DNA

<213> PCR-Fragment

<220>

<221> misc_feature

<222> (1)..(446)

<223> PCR-Fragment

<400> 187

WO 2005/083093		PCT/EP2005/001863
	234	

gttctcggga	agaagtggcg	tcaactttcc	ttcctgcacg	tctaccatca	caccaccatc	120
tttctcttct	actggttgaa	tgcacatgta	aactttgatg	gtgatatttt	cctcaccatc	180
gtcttgaacg	gtttcatcca	caccgtcatg	tacacgtact	acttcatttg	catgcacacc	240
aaggtcccag	agaccggcaa	atccttgccc	atttggtgga	aatctagttt	gacaagcatg	300
cagctggtgc	agttcatcac	gatgatgacg	caggctatca	tgatcttgta	caagggctgt	360
gctgctcccc	atagccgggt	ggtgacatcg	tacttggttt	acattttgtc	gctctttatt	420
ttgttcgccc	agttctttgt	cagctc				446

<210> 188

<211> 30

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(30)

<223>

<400> 188 geggeegeac ataatgatgg tacetteaag

30

<210> 189

<211> 22

<212> DNA

<213> Primer

<220>

<221> misc_feature

<222> (1)..(22)

<223>

<400> 189 gaagacagct taatagacta gt

22

<210> 190

<211> 31

WO 2005/	083093		PCT/EP2005/001863
		235	
<212>	DNA		
<213>	Primer		
<220>			
<221>	misc_feature		
<222>	(1)(31)		
<223>			
<400>	190 gcac catgatggta ccttcaagtt a		31
5-55			
<210>	191		
<211>	24		
<212>	DNA		
<213>	Primer		
<220>			
<221>	misc_feature		
<222>	(1)(24)		
<223>			
<400> gaagac	191 agct taataggcgg ccgc		24
<210>	192		
<211>	859		
<212>	DNA		
<213>	PCR-Produkt		

<400> 192
gcggccgcac ataatgatgg taccttcaag ttatgacgag tatatcgtca tggtcaacga 60
ccttggcgac tctattctga gctgggccga ccctgatcac tatcgtggac ataccgaggg 120
atgggagttc actgactttt ctgctgcttt tagcattgcc gtcgcgtacc tcctgtttgt 180
ctttgttgga tctctcatta tgagtatggg agtccccgca attgaccctt atccgctcaa 240
gtttgtctac aatgtttcac agattatgct ttgtgcttac atgaccattg aagccagtct 300
tctagcttat cgtaacggct acacattctg gccttgcaac gattgggact ttgaaaagcc 360
gcctatcgct aagctcctct ggctcttta cgtttccaaa atttgggatt tttgggacac 420

catctttatt gttctcggga agaagtggcg tcaactttcc ttcctgcacg tctaccatca 480 540 caccaccate titetettet actqgttgaa tgcacatgta aactitgatg gtgatatitt cctcaccatc gtcttgaacg gtttcatcca caccgtcatg tacacgtact acttcatttg 600 660 catgcacacc aaggtcccag agaccggcaa atccttgccc atttggtgga aatctagttt gacaagcatg cagctggtgc agttcatcac gatgatgacg caggctatca tgatcttgta 720 caagggetgt getgeteece atageegggt ggtgacateg taettggttt acattttgte 780 840 qctctttatt ttgttcgccc agttctttgt cagctcatac ctcaagccga agaagaagaa 859 gacagcttaa tagactagt

<210> 193

<211> 1380

<212> DNA

<213> Phytium irregulare

<220>

<221> CDS

<400> 193

<222> (1)..(1380)

<223> Delta-6-Desaturase

atg gtg gac ctc aag cct gga gtg aag cgc ctg gtg agc tgg aag gag Met Val Asp Leu Lys Pro Gly Val Lys Arg Leu Val Ser Trp Lys Glu 96 atc cgc gag cac gcg acg ccc gcg acc gcg tgg atc gtg att cac cac Ile Arg Glu His Ala Thr Pro Ala Thr Ala Trp Ile Val Ile His His 20 aag gtc tac gac atc tcc aag tgg gac tcg cac ccg ggt ggc tcc gtg 144 Lys Val Tyr Asp Ile Ser Lys Trp Asp Ser His Pro Gly Gly Ser Val 40 1.92 atg ctc acg cag gcc ggc gag gac gcc acg gac gcc ttc gcg gtc ttc Met Leu Thr Gln Ala Gly Glu Asp Ala Thr Asp Ala Phe Ala Val Phe 240 cac ccg tcc tcg gcg ctc aag ctg ctc gag cag ttc tac gtc ggc gac His Pro Ser Ser Ala Leu Lys Leu Leu Glu Gln Phe Tyr Val Gly Asp gtg gac gaa acc tcc aag gcc gag atc gag ggg gag ccg gcg agc gac 288 Val Asp Glu Thr Ser Lys Ala Glu Ile Glu Gly Glu Pro Ala Ser Asp 90 gag gag ege geg ege ege gag ege ate aac gag tte ate geg tee tac 336 Glu Glu Arg Ala Arg Arg Glu Arg Ile Asn Glu Phe Ile Ala Ser Tyr 384 cgc cgt ctg cgc gtc aag gtc aag ggc atg ggg ctc tac gac gcc agc

									237							
Arg	Arg	Leu 115	Arg	Val	Lys	Val	Lys 120	Gly	Met	Gly	Leu	Tyr 125	Asp	Ala	Ser	
gcg Ala	ctc Leu 130	tac Tyr	tac Tyr	gcg Ala	tgg Trp	aag Lys 135	ctc Leu	gtg Val	agc Ser	acg Thr	ttc Phe 140	ggc	atc Ile	gcg Ala	gtg Val	432
ctc Leu 145	tcg Ser	atg Met	gcg Ala	atc Ile	tgc Cys 150	ttc Phe	ttc Phe	ttc Phe	aac Asn	agt Ser 155	ttc Phe	gcc Ala	atg Met	tac Tyr	atg Met 160	480
gtc Val	gcc Ala	ggc Gly	gtg Val	att Ile 165	atg Met	Gly aaa	ctc Leu	ttc Phe	tac Tyr 170	cag Gln	cag Gln	tcc Ser	gga Gly	tgg Trp 175	ctg Leu	528
gcg Ala	cac His	gac Asp	ttc Phe 180	ttg Leu	cac His	aac Asn	cag Gln	gtg Val 185	tgc Cys	gag Glu	aac Asn	cgc Arg	acg Thr 190	ctc Leu	ggc Gly	576
aac Asn	ctt Leu	atc Ile 195	ggc Gly	tgc Cys	ctc Leu	gtg Val	ggc Gly 200	aac Asn	gcc Ala	tgg Trp	cag Gln	ggc Gly 205	ttc Phe	agc Ser	atg Met	624
cag Gln	tgg Trp 210	tgg Trp	aag Lys	aac Asn	aag Lys	cac His 215	aac Asn	ctg Leu	cac His	cac His	gcg Ala 220	gtg Val	ccg Pro	aac Asn	ctg Leu	672
cac His 225	agc Ser	gcc Ala	aag Lys	gac Asp	gag Glu 230	ggc Gly	ttc Phe	atc Ile	ggc Gly	gac Asp 235	ccg Pro	gac Asp	atc Ile	gac Asp	acc Thr 240	720
atg Met	ccg Pro	ctg Leu	ctg Leu	gcg Ala 245	tgg Trp	tct Ser	aag Lys	gag Glu	atg Met 250	gcg Ala	cgc Arg	aag Lys	gcg Ala	ttc Phe 255	gag Glu	768
tcg Ser	gcg Ala	cac His	ggc Gly 260	ccg Pro	ttc Phe	ttc Phe	atc Ile	cgc Arg 265	aac Asn	cag Gln	gcg Ala	ttc Phe	cta Leu 270	tac Tyr	ttc Phe	816
ccg Pro	ctg Leu	ctg Leu 275	Ļeu	ctc Leu	gcg Ala	cgc Arg	ctg Leu 280	agc Ser	tgg Trp	ctc Leu	gcg Ala	cag Gln 285	tcg Ser	ttc Phe	ttc Phe	864
tac Tyr	gtg Val 290	ttc Phe	acc Thr	gag Glu	ttc Phe	tcg Ser 295	ttc Phe	ggc	atc Ile	ttc Phe	gac Asp 300	Lys	gtc Val	gag Glu	ttc Phe	912
gac Asp 305	Gly	ccg	gag Glu	aag Lýs	gcg Ala 310	.ggt	ctg Leu	atc Ile	gtg Val	cac His 315	tac Tyr	atc Ile	tgg Trp	cag Gln	ctc Leu 320	960
gcg Ala	atc Ile	ccg	tac Tyr	ttc Phe 325	Cys	aac Asn	atg Met	agc Ser	ctg Leu 330	Phe	gag Glu	ggc Gly	gtg Val	gca Ala 335	tac Tyr	1008
ttc Phe	ctc Leu	atg Met	ggc Gly 340	Gln	gcg Ala	tcc Ser	tgc Cys	ggc Gly 345	Leu	ctc Leu	ctg Leu	gcg Ala	ctg Leu 350	. vaı	ttc Phe	1056
agt Ser	att Ile	ggc Gly 355	His	aac	ggc Gly	atg Met	tcg Ser 360	· Val	tac Tyr	gag Glu	cgc Arg	gaa Glu 365	. Thr	aag Lys	ccg Pro	1104
gac Asp	tto Phe 370	Tr	cag Gln	ctg Lev	r cag . Gln	gtg Val 375	Thr	acg Thr	acg Thr	r cgc	aac Asr 380	rITe	e ago	gcg Ala	tcg Ser	1152
gta	ttc	ato	gac	tgg	tto	acc	ggt	ggc	: ttg	aac	tac	cag	ato	gac	cat	1200

								- 1	238							
Val 385	Phe	Met	Asp	Trp	Phe 390	Thr	Gly	Gly	Leu	Asn 395	Tyr	Gln	Ile	Asp	His 400	
cac His	ctg Leu	ttc Phe	ccg Pro	ctc Leu 405	gtg Val	ccg Pro	cgc Arg	cac His	aac Asn 410	ttg Leu	cca Pro	aag Lys	gtc Val	aac Asn 415	gtg Val	1248
ctc Leu	atc Ile	aag Lys	tcg Ser 420	cta Leu	tgc Cys	aag Lys	gag Glu	ttc Phe 425	gac Asp	atc Ile	ccg Pro	ttc Phe	cac His 430	gag Glu	acc Thr	1296
ggc Gly	ttc Phe	tgg Trp 435	gag Glu	ggc Gly	atc Ile	tac Tyr	gag Glu 440	gtc Val	gtg Val	gac Asp	cac His	ctg Leu 445	gcg Ala	gac Asp	atc Ile	1344
agc Ser	aag Lys 450	gaa Glu	ttt Phe	atc Ile	acc Thr	gag Glu 455	ttc Phe	cca Pro	gcg Ala	atg Met	taa					1380
<210)> :	194														
<21	L> ·	459					,									
<212	2>	PRT														
<21	3>	Phyt:	ium :	irre	gulai	re										
<40	0 >	194														
Met 1	Val	Asp	Leu	Lys 5	Pro	Gly	Val	Lys	Arg 10	Leu	Val	Ser	Trp	Lys 15	Glu	
Ile	Arg	Glu	His 20	Ala	Thr	Pro	Ala	Thr 25	Ala	Trp	Ile	Val	Ile 30	His	His	
Lys	Val	Tyr 35	Asp	Ile	Ser	Lys	Trp 40	Asp	Ser	His	Pro	Gly 45	Gly	Ser	Val	
Met	Leu 50	Thr	Gln	Ala	Gly	Glu 55	Asp	Ala	Thr	Asp	Ala 60	Phe	Ala	Val	Phe	
His 65	Pro	Ser	Ser	Ala	Leu 70	Lys	Leu	. Leu	Glu	Gln 75	. Phe	Tyr	Val	Gly	Asp 80	
۷al	Asr	Glu	. Thr	Ser 85	Lys	Ala	Glu	. Ile	Glu 90	Gly	Glu	Pro	Ala	Ser 95	Asp	
Glu	. Glu	ı Arg	· Ala		Arg	Glu	. Arg	Ile 105		. Glu	ı Phe	Ile	Ala 110	Ser	Tyr	
Arg	Arg	Leu 115		val	. Lys	Val	Lys 120		Met	: Gly	, Leu	Tyr 125	Asp	Ala	a Ser	
Ala	Le:		туг	Ala	ı Trp	Lys 135		ı Val	. Ser	Thr	Phe 140	Gly	7 Il∈	. Ala	a Val	

Leu Ser Met Ala Ile Cys Phe Phe Phe Asn Ser Phe Ala Met Tyr Met 155 Val Ala Gly Val Ile Met Gly Leu Phe Tyr Gln Gln Ser Gly Trp Leu 170 Ala His Asp Phe Leu His Asn Gln Val Cys Glu Asn Arg Thr Leu Gly 180 Asn Leu Ile Gly Cys Leu Val Gly Asn Ala Trp Gln Gly Phe Ser Met 200 205 Gln Trp Trp Lys Asn Lys His Asn Leu His His Ala Val Pro Asn Leu His Ser Ala Lys Asp Glu Gly Phe Ile Gly Asp Pro Asp Ile Asp Thr 230 Met Pro Leu Leu Ala Trp Ser Lys Glu Met Ala Arg Lys Ala Phe Glu 245 250 Ser Ala His Gly Pro Phe Phe Ile Arg Asn Gln Ala Phe Leu Tyr Phe 265 Pro Leu Leu Leu Ala Arg Leu Ser Trp Leu Ala Gln Ser Phe Phe 280 275 Tyr Val Phe Thr Glu Phe Ser Phe Gly Ile Phe Asp Lys Val Glu Phe 300 Asp Gly Pro Glu Lys Ala Gly Leu Ile Val His Tyr Ile Trp Gln Leu Ala Ile Pro Tyr Phe Cys Asn Met Ser Leu Phe Glu Gly Val Ala Tyr 325 330 Phe Leu Met Gly Gln Ala Ser Cys Gly Leu Leu Leu Ala Leu Val Phe 345 340 Ser Ile Gly His Asn Gly Met Ser Val Tyr Glu Arg Glu Thr Lys Pro Asp Phe Trp Gin Leu Gln Val Thr Thr Thr Arg Asn Ile Arg Ala Ser 370 375 Val Phe Met Asp Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Asp His 395

His Leu Phe Pro Leu Val Pro Arg His Asn Leu Pro Lys Val Asn Val

Leu Ile Lys Ser Leu Cys Lys Glu Phe Asp Ile Pro Phe His Glu Thr 425 420 Gly Phe Trp Glu Gly Ile Tyr Glu Val Val Asp His Leu Ala Asp Ile Ser Lys Glu Phe Ile Thr Glu Phe Pro Ala Met 455 <210> 195 <211> 1152 <212> DNA <213> Calendula officinalis <220> <221> CDS <222> (1)..(1152) <223> Delta-12-Desaturase <400> 195 48 atg ggt gca ggc ggt cga atg caa gat ccc acc aac ggt ggc aac aaa Met Gly Ala Gly Gly Arg Met Gln Asp Pro Thr Asn Gly Gly Asn Lys acc gag ccc gaa cca atc caa cgg gtc cca cat gaa aaa ccc cca ttc 96 Thr Glu Pro Glu Pro Ile Gln Arg Val Pro His Glu Lys Pro Pro Phe aca gtt gga gac atc aag aaa gcg atc cca cct cat tgt ttc aac cga 144 Thr Val Gly Asp Ile Lys Lys Ala Ile Pro Pro His Cys Phe Asn Arg 35 192 tcq qta att cqt tca ttt tca tac gtc ttt tac gac ctc aca atc gcg Ser Val Ile Arg Ser Phe Ser Tyr Val Phe Tyr Asp Leu Thr Ile Ala tca atc ttg tac tac att gcc aac aat tac atc tct acc ctc cct agc 240 Ser Ile Leu Tyr Tyr Ile Ala Asn Asn Tyr Ile Ser Thr Leu Pro Ser ccg ctc gcc tac gtg gca tgg ccc gtt tac tgg gcc gtc caa ggg tgc 288 Pro Leu Ala Tyr Val Ala Trp Pro Val Tyr Trp Ala Val Gln Gly Cys 336 gtc tta acc ggg gtg tgg gtc ata gcc cac gaa tgt ggc cat cat gct Val Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala 105 ttt agc gac cac caa tgg ctc gat gac acc gtg ggt ctc gtc ttg cac 384 Phe Ser Asp His Gln Trp Leu Asp Asp Thr Val Gly Leu Val Leu His tcg ttc cta ctc gtg ccc tac ttt tcg tgg aaa tat agc cac cgt agg 432 Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg

135

cac His 145	cac His	tcg Ser	aac Asn	acg Thr	ggc Gly 150	tcg Ser	atc Ile	gag Glu	cac His	gat Asp 155	gag Glu	gtt Val	ttc Phe	gtc Val	ccg Pro 160	480
								acc Thr								528
ccg Pro	ggc Gly	cga Arg	atc Ile 180	ttg Leu	acc Thr	cta Leu	ctc Leu	gta Val 185	acc Thr	cta Leu	acc Thr	ctc Leu	ggt Gly 190	tgg Trp	cct Pro	576
cta Leu	tac Tyr	ctc Leu 195	acg Thr	ttc Phe	aac Asn	gtt Val	tcg Ser 200	ggc	cgt Arg	tac Tyr	tac Tyr	gac Asp 205	cgg Arg	ttc Phe	gcg Ala	624
tgc Cys	cat His 210	ttc Phe	gac Asp	ccg Pro	aat Asn	agc Ser 215	ccg Pro	atc Ile	tac Tyr	tcg Ser	aag Lys 220	cgc Arg	gaa Glu	cgg Arg	gct Ala	672
caa Gln 225	atc Ile	ttc Phe	ata Ile	tcc Ser	gac Asp 230	gcc Ala	Gly 333	atc Ile	tta Leu	gcc Ala 235	gta Val	gtc Val	ttc Phe	gta Val	ctc Leu 240	720
ttc Phe	cga Arg	ctc Leu	gca Ala	atg Met 245	acc Thr	aaa Lys	Gly aaa	ctc Leu	acg Thr 250	tgg Trp	gtc Val	cta Leu	acc Thr	atg Met 255	tac Tyr	768
ggt Gly	ggc Gly	ccg Pro	tta Leu 260	ctc Leu	gtg Val	gtc Val	aac Asn	ggt Gly 265	ttc Phe	cta Leu	gtc Val	ttg Leu	atc Ile 270	aca Thr	ttc Phe	816
cta Leu	caa Gln	cac His 275	act Thr	cac His	cct Pro	tcg Ser	ctc Leu 280	ccg Pro	cac His	tat Tyr	gac Asp	tca Ser 285	acc Thr	gaa Glu	tgg Trp	864
gat Asp	tgg Trp 290	tta Leu	cgt Arg	Gly 333	gcc Ala	ctc Leu 295	acc Thr	aca Thr	atc Ile	gac Asp	cgt Arg 300	gat Asp	tac Tyr	Gly 333	atc Ile	912
cta Leu 305	aac Asn	aaa Lys	gtg Val	ttc Phe	cat His 310	aac Asn	ata Ile	acc Thr	gac Asp	act Thr 315	cac His	gtg Val	gcc Ala	cac His	cat His 320	960
								cat His								1008
atc Ile	aaa Lys	ccg Pro	att Ile 340	ttg Leu	ggc Gly	gat Asp	tat Tyr	tat Tyr 345	cag Gln	ttt Phe	gac Asp	glà aaa	acc Thr 350	tcg Ser	att Ile	1056
ttt Phe	aag Lys	gcg Ala 355	atg Met	tat Tyr	cgg Arg	gaa Glu	aca Thr 360	aag Lys	gag Glu	tgc Cys	att Ile	tat Tyr 365	gtt Val	gat Asp	aag Lys	1104
gat Asp	gag Glu 370	gag Glu	gtg Val	aaa Lys	gat Asp	ggt Gly 375	gtt Val	tat Tyr	tgg Trp	tat Tyr	cgt Arg 380	aat Asn	aag Lys	att Ile	taa	1152

<210> 196

<211> 383

<212> PRT

WO 2005/083093 PCT/EP2005/001863

<213> Calendula officinalis

<400> 196

Met Gly Ala Gly Gly Arg Met Gln Asp Pro Thr Asn Gly Gly Asn Lys

1 10 15

Thr Glu Pro Glu Pro Ile Gln Arg Val Pro His Glu Lys Pro Pro Phe 20 25 30

Thr Val Gly Asp Ile Lys Lys Ala Ile Pro Pro His Cys Phe Asn Arg 35 40 45

Ser Val Ile Arg Ser Phe Ser Tyr Val Phe Tyr Asp Leu Thr Ile Ala 50 55 60

Ser Ile Leu Tyr Tyr Île Ala Asn Asn Tyr Ile Ser Thr Leu Pro Ser 65 70 75 80

Pro Leu Ala Tyr Val Ala Trp Pro Val Tyr Trp Ala Val Gln Gly Cys 85 90 95

Val Leu Thr Gly Val Trp Val Ile Ala His Glu Cys Gly His His Ala 100 105 110

Phe Ser Asp His Gln Trp Leu Asp Asp Thr Val Gly Leu Val Leu His
115 120 125

Ser Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg 130 135 140

His His Ser Asn Thr Gly Ser Ile Glu His Asp Glu Val Phe Val Pro 145 150 155 160

Lys Leu Lys Ser Gly Val Arg Ser Thr Ala Arg Tyr Leu Asn Asn Pro 165 170 175

Pro Gly Arg Ile Leu Thr Leu Leu Val Thr Leu Thr Leu Gly Trp Pro 180 185 190

Leu Tyr Leu Thr Phe Asn Val Ser Gly Arg Tyr Tyr Asp Arg Phe Ala 195 200 205

Cys His Phe Asp Pro Asn Ser Pro Ile Tyr Ser Lys Arg Glu Arg Ala 210 215 220

Gln Ile Phe Ile Ser Asp Ala Gly Ile Leu Ala Val Val Phe Val Leu 225 230 235 240

Phe Arg Leu Ala Met Thr Lys Gly Leu Thr Trp Val Leu Thr Met Tyr 245 250 255

Gly Gly Pro Leu Leu Val Val Asn Gly Phe Leu Val Leu Ile Thr Phe 265 Leu Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Thr Glu Trp 280 Asp Trp Leu Arg Gly Ala Leu Thr Thr Ile Asp Arg Asp Tyr Gly Ile Leu Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu Phe Ser Thr Met Pro His Tyr His Ala Met Glu Ala Thr Lys Val 330 325 Ile Lys Pro Ile Leu Gly Asp Tyr Tyr Gln Phe Asp Gly Thr Ser Ile Phe Lys Ala Met Tyr Arg Glu Thr Lys Glu Cys Ile Tyr Val Asp Lys Asp Glu Glu Val Lys Asp Gly Val Tyr Trp Tyr Arg Asn Lys Ile 375 370 <210> 197 <211> 903 <212> DNA <213> Ostreococcus tauri <220> <221> CDS <222> (1)..(903) <223> Delta-5-Elongase <400> 197 atg tot got tot gga got ttg ttg cot got att got ttc got got tac 48 Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 96 gct tac gct acc tac gct tat gct ttc gag tgg tct cat gct aac gga Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly 25 144 atc gat aac gtg gat gct aga gag tgg att gga gct ttg tct ttg aga Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg

ctc cct qca att qct acc acc atg tac ctc ttg ttc tgc ctt gtg gga

WO 20	05/08	3093												PCT	T/EP20	05/001863
									244							
Leu	Pro 50	Ala	Ile	Ala	Thr	Thr 55	Met	Tyr	Leu	Leu	Phe 60	Cys	Leu	Val	Gly	
cct Pro 65	aga Arg	ttg Leu	atg Met	gct Ala	aag Lys 70	agg Arg	gag Glu	gct Ala	ttt Phe	gat Asp 75	cct Pro	aag Lys	gga Gly	ttc Phe	atg Met 80	240
ctc Leu	gct Ala	tac Tyr	aac Asn	gct Ala 85	tac Tyr	caa Gln	acc Thr	gct Ala	ttc Phe 90	aac Asn	gtt Val	gtg Val	gtg Val	ctc Leu 95	gga Gly	288
atg Met	ttc Phe	gct Ala	aga Arg 100	gag Glu	atc Ile	tct Ser	gga Gly	ttg Leu 105	gga Gly	caa Gln	cct Pro	gtt Val	tgg Trp 110	gga Gly	tct Ser	336
act Thr	atg Met	cct Pro 115	tgg Trp	agc Ser	gat Asp	agg Arg	aag Lys 120	tcc Ser	ttc Phe	aag Lys	att Ile	ttg Leu 125	ttg Leu	gga Gly	gtg Val	384
tgg Trp	ctc Leu 130	cat His	tac Tyr	aac Asn	aat Asn	aag Lys 135	tac Tyr	ctc Leu	gag Glu	ttg Leu	ttg Leu 140	gat Asp	act Thr	gtg Val	ttc Phe	432
atg Met 145	gtg Val	gct Ala	agg Arg	aaa Lys	aag Lys 150	acc Thr	aag Lys	cag Gln	ctc Leu	tct Ser 155	ttc Phe	ttg Leu	cat His	gtg Val	tac Tyr 160	480
cat His	cat His	gct Ala	ttg Leu	ttg Leu 165	att Ile	tgg Trp	gct Ala	tgg Trp	tgg Trp 170	ctt Leu	gtt Val	tgt Cys	cat His	ctc Leu 175	atg Met	528
gct Ala	acc Thr	aac Asn	gat Asp 180	tgc Cys	atc Ile	gat Asp	gct Ala	tat Tyr 185	ttc Phe	gga Gly	gct Ala	gct Ala	tgc Cys 190	aac Asn	tct Ser	576
ttc Phe	atc Ile	cac His 195	atc Ile	gtg Val	atg Met	tac Tyr	tcc Ser 200	tac Tyr	tac Tyr	ctc Leu	atg Met	tct Ser 205	gct Ala	ttg Leu	gga Gly	624
att Ile	aga Arg 210	tgc Cys	cct Pro	tgg Trp	aag Lys	aga Arg 215	tat Tyr	atc Ile	acc Thr	cag Gln	gct Ala 220	cag Gln	atg Met	ttg Leu	caa Gln	672
ttc Phe 225	gtg Val	atc Ile	gtg Val	ttc Phe	gct Ala 230	cat His	gct Ala	gtt Val	ttc Phe	gtg Val 235	ctc Leu	aga Arg	caa Gln	aag Lys	cac His 240	720
tgc Cys	cct Pro	gtt Val	act Thr	ttg Leu 245	cct Pro	tgg Trp	gca Ala	caa Gln	atg Met 250	ttc Phe	gtg Val	atg Met	aca Thr	aat Asn 255	atg Met	768
ttg Leu	gtg Val	ctc Leu	ttc Phe 260	gga Gly	aac Asn	ttc Phe	tac Tyr	ctc Leu 265	aag Lys	gct Ala	tac Tyr	tct Ser	aac Asn 270	aag Lys	tct Ser	816
agg Arg	gga Gly	gat Asp 275	gga Gly	gct Ala	tct Ser	tct Ser	gtt Val 280	aag Lys	cct Pro	gct Ala	gag Glu	act Thr 285	act Thr	aga Arg	gca Ala	864
					acc Thr							tga				903

<210> 198

<211> 300

WO 2005/083093 PCT/EP2005/001863

<212> PRT

<213> Ostreococcus tauri

<400> 198

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala Ala Tyr 1 5 10 15

Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala Asn Gly
20 25 30

Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser Leu Arg 35 40 45

Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu Val Gly 50 55 60

Pro Arg Leu Met Ala Lys Arg Glu Ala Phe Asp Pro Lys Gly Phe Met 65 70 75 80

Leu Ala Tyr Asn Ala Tyr Gln Thr Ala Phe Asn Val Val Val Leu Gly 85 90 95

Met Phe Ala Arg Glu Ile Ser Gly Leu Gly Gln Pro Val Trp Gly Ser 100 105 110

Thr Met Pro Trp Ser Asp Arg Lys Ser Phe Lys Ile Leu Leu Gly Val 115 120 125

Trp Leu His Tyr Asn Asn Lys Tyr Leu Glu Leu Leu Asp Thr Val Phe 130 135 140

Met Val Ala Arg Lys Lys Thr Lys Gln Leu Ser Phe Leu His Val Tyr 145 150 155 160

His His Ala Leu Leu Ile Trp Ala Trp Trp Leu Val Cys His Leu Met 165 170 175

Ala Thr Asn Asp Cys Ile Asp Ala Tyr Phe Gly Ala Ala Cys Asn Ser 180 185 190

Phe Ile His Ile Val Met Tyr Ser Tyr Tyr Leu Met Ser Ala Leu Gly
195 200 205

Ile Arg Cys Pro Trp Lys Arg Tyr Ile Thr Gln Ala Gln Met Leu Gln 210 215 220

Phe Val Ile Val Phe Ala His Ala Val Phe Val Leu Arg Gln Lys His 225 230 235 240

-	-	•
~)	л	-
_	-	u

Cys Pro Val Thr Leu Pro Trp Ala Gln Met Phe Val Met Thr Asn Met 245 250 255

Leu Val Leu Phe Gly Asn Phe Tyr Leu Lys Ala Tyr Ser Asn Lys Ser 260 265 270

Arg Gly Asp Gly Ala Ser Ser Val Lys Pro Ala Glu Thr Thr Arg Ala 275 280 285

Pro Ser Val Arg Arg Thr Arg Ser Arg Lys Ile Asp 290 295 300

<210> 199

<211> 879

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (1)..(879)

<223> Delta-6-Elongase

<400> 199 atg tct gga ttg agg gct cct aac ttc ttg cat agg ttc tgg acc aag 48 Met Ser Gly Leu Arg Ala Pro Asn Phe Leu His Arg Phe Trp Thr Lys tgg gat tac gct atc tct aag gtg gtg ttc act tgc gct gat tct ttc Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 96 cag tgg gat atc gga cct gtt tct tct tct acc gct cat ttg cct gct 144 Gln Trp Asp Ile Gly Pro Val Ser Ser Thr Ala His Leu Pro Ala att gag tot oot act cot ttg gtg acc tot ttg ctc ttc tac ttg gtg 192 Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val act gtg ttc ttg tgg tac gga aga ttg acc aga tcc tcc gat aag aag 240 Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys atc aga gag cct acc tgg ttg agg aga ttc atc atc tgc cac aac gct 288 Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 90 ttc ttg att gtg ctc tcc ttg tac atg tgt ttg gga tgc gtt gct caa 336 Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln gct tac caa aac gga tac acc ttg tgg gga aac gag ttc aag gct act Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 384

			_	-		tac Tyr 135								_		432
						tac Tyr										480
caa Gln	gtg Val	tct Ser	ttc Phe	ttg Leu 165	cac His	atc Ile	tac Tyr	cac His	cac His 170	tct Ser	acc Thr	atc Ile	tct Ser	ttc Phe 175	atc Ile	528
						aga Arg										576
						gtt Val										624
						aag Lys 215										672
						acc Thr										720
						tat Tyr										768
ttc Phe	ctc Leu	tcc Ser	aag Lys 260	atc Ile	ttg Leu	ctc Leu	gtg Val	tac Tyr 265	atg Met	atg Met	tct Ser	ttg Leu	ctc Leu 270	gga Gly	ctt Leu	816
						tct Ser										864
		cag Gln		tga												879
<210	0> :	200								-						
<21	L> :	292														
<212	2>]	PRT														
<213	3> (Ostre	3 000	ccus	tauı	ri										
<400	0> :	200														
Met 1	Ser	Gly	Leu	Arg 5	Ala	Pro	Asn	Phe	Leu 10	His	Arg	Phe	Trp	Thr 15	Lys	
Trp	Asp	Tvr	Ala	Ile	Ser	Lvs	Val	Val	Phe	Thr	Cys	Ala	Asp	Ser	Phe	

Trp Asp Tyr Ala Ile Ser Lys Val Val Phe Thr Cys Ala Asp Ser Phe 20 25 30

Gln Trp Asp Ile Gly Pro Val Ser Ser Ser Thr Ala His Leu Pro Ala 35 40 45

Ile Glu Ser Pro Thr Pro Leu Val Thr Ser Leu Leu Phe Tyr Leu Val

Thr Val Phe Leu Trp Tyr Gly Arg Leu Thr Arg Ser Ser Asp Lys Lys 65 70 75 80

Ile Arg Glu Pro Thr Trp Leu Arg Arg Phe Ile Ile Cys His Asn Ala 85 90 95

Phe Leu Ile Val Leu Ser Leu Tyr Met Cys Leu Gly Cys Val Ala Gln
100 105 110

Ala Tyr Gln Asn Gly Tyr Thr Leu Trp Gly Asn Glu Phe Lys Ala Thr 115 120 . 125

Glu Thr Gln Leu Ala Leu Tyr Ile Tyr Ile Phe Tyr Val Ser Lys Ile 130 135 140

Tyr Glu Phe Val Asp Thr Tyr Ile Met Leu Lys Asn Asn Leu Arg 145 150 155 160

Gln Val Ser Phe Leu His Ile Tyr His His Ser Thr Ile Ser Phe Ile 165 170 175

Trp Trp Ile Ile Ala Arg Arg Ala Pro Gly Gly Asp Ala Tyr Phe Ser 180 185 190

Ala Ala Leu Asn Ser Trp Val His Val Cys Met Tyr Thr Tyr Tyr Leu 195 200 205

Leu Ser Thr Leu Ile Gly Lys Glu Asp Pro Lys Arg Ser Asn Tyr Leu 210 215 220

Trp Trp Gly Arg His Leu Thr Gln Met Gln Met Leu Gln Phe Phe 225 230 235 240

Asn Val Leu Gln Ala Leu Tyr Cys Ala Ser Phe Ser Thr Tyr Pro Lys 245 250 255

Phe Leu Ser Lys Ile Leu Leu Val Tyr Met Met Ser Leu Leu Gly Leu 260 265 270

Phe Gly His Phe Tyr Tyr Ser Lys His Ile Ala Ala Ala Lys Leu Gln 275 280 285

Lys Lys Gln Gln 290

<210> 201

WO 2005/083093 PCT/EP2005/001863

<211> 1421

<212> DNA

<213> Ostreococcus tauri

<220>

<221> CDS

<222> (26)..(1399)

<223> Delta-6-Desaturase

<400 ggat)> 2 :cctt	:01 :aa t	taag	lacac	g cc	aaa ̂	atg Met 1	tgt Cys	gtt Val	gag Glu	acc Thr 5	gag Glu	aac Asn	aac Asn	gat Asp		52
gga Gly 10	atc Ile	cct Pro	act Thr	gtg Val	gag Glu 15	atc Ile	gct Ala	ttc Phe	gat Asp	gga Gly 20	gag Glu	aga Arg	gaa Glu	aga Arg	gct Ala 25		100
gag Glu	gct Ala	aac Asn	gtg Val	aag Lys 30	ttg Leu	tct Ser	gct Ala	gag Glu	aag Lys 35	atg Met	gaa Glu	cct Pro	gct Ala	gct Ala 40	ttg Leu		148
gct Ala	aag Lys	acc Thr	ttc Phe 45	gct Ala	aga Arg	aga Arg	tac Tyr	gtg Val 50	gtt Val	atc Ile	gag Glu	gga Gly	gtt Val 55	gag Glu	tac Tyr	·	196
gat Asp	gtg Val	acc Thr 60	gat Asp	ttc Phe	aaa Lys	cat His	cct Pro 65	gga Gly	gga Gly	acc Thr	gtg Val	att Ile 70	ttc Phe	tac Tyr	gct Ala		244
ctc Leu	tct Ser 75	aac Asn	act Thr	gga Gly	gct Ala	gat Asp 80	gct Ala	act Thr	gag Glu	gct Ala	ttc Phe 85	aag Lys	gag Gl.u	ttc Phe	cac His		.292
cac His 90	aga Arg	tct Ser	aga Arg	aag Lys	gct Ala 95	agg Arg	aag Lys	gct Ala	ttg Leu	gct Ala 100	gct Ala	ttg Leu	cct Pro	tct Ser	aga Arg 105		340
cct Pro	gct Ala	aag Lys	acc Thr	gct Ala 110	aaa Lys	gtg Val	gat Asp	gat Asp	gct Ala 115	gag Glu	atg Met	ctc Leu	cag Gln	gat Asp 120	ttc Phe		388
gct Ala	aag Lys	tgg Trp	aga Arg 125	aag Lys	gag Glu	ttg Leu	gag Glu	agg Arg 130	gac Asp	gga Gly	ttc Phe	ttc Phe	aag Lys 135	cct Pro	tct Ser		436
cct Pro	gct Ala	cat His 140	gtt Val	gct Ala	tac Tyr	aga Arg	ttc Phe 145	gct Ala	gag Glu	ttg Leu	gct Ala	gct Ala 150	atg Met	tac Tyr	gct Ala		484
ttg Leu	gga Gly 155	acc Thr	tac Tyr	ttg Leu	atg Met	tac Tyr 160	gct Ala	aga Arg	tac Tyr	gtt Val	gtg Val 165	tcc Ser	tct Ser	gtg Val	ttg Leu		532
gtt Val 170	tac Tyr	gct Ala	tgc Cys	ttc Phe	ttc Phe 175	gga Gly	gct Ala	aga Arg	tgt Cys	gga Gly 180	tgg Trp	gtt Val	caa Gln	cat His	gag Glu 185		580
gga	gga	cat	tct	tct	ttg	acc	gga	aac	atc	tgg	tgg	gat	aag	aga	atc		628

WO 20	005/08	3093												PCT	Γ/EP2(005/001863
									250							
Gly	Gly	His	Ser	Ser 190	Leu	Thr	Gly	Asn	Ile 195	Trp	Trp	Asp	Lys	Arg 200	Ile	
caa Gln	gct Ala	ttc Phe	act Thr 205	gct Ala	gga Gly	ttc Phe	gga Gly	ttg Leu 210	gct Ala	gga Gly	tct Ser	gga Gly	gat Asp 215	atg Met	tgg Trp	676
aac Asn	tcc Ser	atg Met 220	cac His	aac Asn	aag Lys	cac His	cat His 225	gct Ala	act Thr	cct Pro	caa Gln	aaa Lys 230	gtg Val	agg Arg	cac His	724
gat Asp	atg Met 235	gat Asp	ttg Leu	gat Asp	acc Thr	act Thr 240	cct Pro	gct Ala	gtt Val	gct Ala	ttc Phe 245	ttc Phe	aac Asn	acc Thr	gct Ala	772
gtg Val 250	gag Glu	gat Asp	aat Asn	aga Arg	cct Pro 255	agg Arg	gga Gly	ttc Phe	tct Ser	aag Lys 260	tac Tyr	tgg Trp	ctc Leu	aga Arg	ttg Leu 265	820
caa Gln	gct Ala	tgg Trp	acc Thr	ttc Phe 270	att Ile	cct Pro	gtg Val	act Thr	tct Ser 275	gga Gly	ttg Leu	gtg Val	ttg Leu	ctc Leu 280	ttc Phe	868
tgg Trp	atg Met	ttc Phe	ttc Phe 285	ctc Leu	cat His	cct Pro	tct Ser	aag Lys 290	gct Ala	ttg Leu	aag Lys	gga Gly	gga Gly 295	aag Lys	tac Tyr	916
gag Glu	gag Glu	ctt Leu 300	gtg Val	tgg Trp	atg Met	ttg Leu	gct Ala 305	gct Ala	cat His	gtg Val	att Ile	aga Arg 310	acc Thr	tgg Trp	acc Thr	964
att Ile	aag Lys 315	gct Ala	gtt Val	act Thr	gga Gly	ttc Phe 320	acc Thr	gct Ala	atg Met	caa Gln	tcc Ser 325	tac Tyr	gga Gly	ctc Leu	ttc Phe	1012
ttg Leu 330	gct Ala	act Thr	tct Ser "	tgg Trp	gtt Val 335	tcc Ser	gga Gly	tgc Cys	tac Tyr	ttg Leu 340	ttc Phe	gct Ala	cac His	ttc Phe	tct Ser 345	1060
act Thr	tct Ser	cac His	acc Thr	cat His 350	ttg Leu	gat Asp	gtt Val	gtt Val	cct Pro 355	gct Ala	gat Asp	gag Glu	cat His	ttg Leu 360	tct Ser	1108
tgg Trp	gtt Val	agg Arg	tac Tyr 365	gct Ala	gtg Val	gat Asp	cac His	acc Thr 370	att Ile	gat Asp	atc Ile	gat Asp	cct Pro 375	tct Ser	cag Gln	1156
gga Gly	tgg Trp	gtt Val 380	aac Asn	tgg Trp	ttg Leu	atg Met	gga Gly 385	Tyr	ttg Leu	aac Asn	tgc Cys	caa Gln 390	gtg Val	att Ile	cat His	1204
cac His	ctc Leu 395	ttc Phe	cct Pro	tct Ser	atg Met	cct Pro 400	caa Gln	ttc Phe	aga Arg	caa Gln	cct Pro 405	gag Glu	gtg Val	tcc Ser	aga Arg	1252
aga Arg 410	ttc Phe	gtt Val	gct Ala	ttc Phe	gct Ala 415	aag Lys	aag Lys	tgg Trp	aac Asn	ctc Leu 420	aac Asn	tac Tyr	aag Lys	gtg Val	atg Met 425	1300
act Thr	tat Tyr	gct Ala	gga Gly	gct Ala 430	Trp	aag Lys	gct Ala	act Thr	ttg Leu 435	Gly	aac Asn	ctc Leu	gat Asp	aat Asn 440	Val	1348
gga Gly	aag Lys	cac His	tac Tyr 445	Tyr	gtg Val	cac His	gga Gly	caa Gln 450	His	tct Ser	gga Gly	. aag . Lys	acc Thr 455	Ala	tga	1396
taa	. tta	atta	agg	cgcg	ccga	at t	c									1421

WO 2005/083093 PCT/EP2005/001863

<210> 202

<211> 456

<212> PRT '

<213> Ostreococcus tauri

<400> 202

Met Cys Val Glu Thr Glu Asn Asn Asp Gly Ile Pro Thr Val Glu Ile 1 5 10 15

Ala Phe Asp Gly Glu Arg Glu Arg Ala Glu Ala Asn Val Lys Leu Ser 20 25 30

Ala Glu Lys Met Glu Pro Ala Ala Leu Ala Lys Thr Phe Ala Arg Arg 35 40 45

Tyr Val Val Ile Glu Gly Val Glu Tyr Asp Val Thr Asp Phe Lys His 50 55 60

Pro Gly Gly Thr Val Ile Phe Tyr Ala Leu Ser Asn Thr Gly Ala Asp 65 70 75 80

Ala Thr Glu Ala Phe Lys Glu Phe His His Arg Ser Arg Lys Ala Arg 85 90 95

Lys Ala Leu Ala Ala Leu Pro Ser Arg Pro Ala Lys Thr Ala Lys Val

Asp Asp Ala Glu Met Leu Gln Asp Phe Ala Lys Trp Arg Lys Glu Leu 115 120 125

Glu Arg Asp Gly Phe Phe Lys Pro Ser Pro Ala His Val Ala Tyr Arg 130 135 140

Phe Ala Glu Leu Ala Ala Met Tyr Ala Leu Gly Thr Tyr Leu Met Tyr 145 150 155 160

Ala Arg Tyr Val Val Ser Ser Val Leu Val Tyr Ala Cys Phe Phe Gly 165 170 175

Ala Arg Cys Gly Trp Val Gln His Glu Gly Gly His Ser Ser Leu Thr 180 185 190

Gly Asn Ile Trp Trp Asp Lys Arg Ile Gln Ala Phe Thr Ala Gly Phe
195 200 205

Gly Leu Ala Gly Ser Gly Asp Met Trp Asn Ser Met His Asn Lys His 210 215 220

WO 2005/083093 PCT/EP2005/001863

His 225	Ala	Thr	Pro	Gln	Lys 230	Val	Arg	His	Asp	Met 235	Asp	Leu	Asp	Thr	Thr 240	
Pro	Ala	Val	Ala	Phe 245	Phe	Asn	Thr	Ala	Val 250	Glu	Asp	Asn	Arg	Pro 255	Arg	
Gly	Phe	Ser	Lys 260	Tyr	Trp	Leu	Arg	Leu 265	Gln	Ala	Trp	Thr	Phe 270	Ile	Pro	
Val	Thr	Ser 275	Gly	Leu	Val	Leu	Leu 280	Phe	Trp	Met	Phe	Phe 285	Leu	His	Pro	
Ser	Lys 290	Ala	Leu	Lys	Gly	Gly 295	Lys	Tyr	Glu	Glu	Leu 300	Val	Trp	Met	Leu	
Ala 305	Ala	His	Val	Ile	Arg 310	Thr	Trp	Thr	Ile	Lys 315	Ala	Val	Thr	Gly	Phe 320	
Thr	Ala	Met	Gln	Ser 325	Tyr	Gly	Leu	Phe	Leu 330	Ala	Thr	Ser	Trp	Val 335	Ser	
Gly	Cys	Tyr	Leu 340	Phe	Ala	His	Phe	Ser 345	Thr	Ser	His	Thr	His 350	Leu	Asp	
Val	Val	Pro 355	Ala	Asp	Glu		Leu 360	Ser	Trp	Val		Tyr 365	Ala	Val	Asp	
His	Thr 370	Ile	Asp	Ile	Asp	Pro 375	Ser	Gln	Gly	Trp	Val 380	Asn	Trp	Leu	Met	
Gly 385	Tyr	Leu	Asn	Cys	Gln 390		Ile	His	His	Leu 395	Phe	Pro	Ser		Pro 400	
Gln	Phe	Arg	Gln	Pro 405	Glu	Val	Ser	Arg	Arg 410		Val	Ala	Phe	Ala 415	Lys	
Lys	Trp	Asn	Leu 420	Asn	Tyr	Lys	Val	Met 425	Thr	Tyr	Ala	Gly	Ala 430		Lys	
Ala	Thr	Leu 435	Gly	Asn	Leu	. Asp	Asn 440		Gly	· Lys	His	Tyr 445		Val	His	
Gly	Gln 450	His	Ser	Gly	Lys	Thr 455		•								