Boolean Function Oracles Introduction to Quantum Computing

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

May 24, 2025

Outline

Qubits and Boolean strings Multi-qubit Basis n-qubit operations revisited

The Toffoli gate Definitions The circuit picture

From classical gates to oracles The AND oracle Single bit oracles

Defining Boolean Oracles The XOR oracle General Boolean Oracles

Oracles as Quantum gates Some results A different oracle

Boolean Strings as Basis Vectors

- A single-qubit computational basis vector can be represented as $|x\rangle$, where $x \in \{0,1\}$.
- ▶ If there *n* such qubits, each with computational basis state $|x_i\rangle$ where $x_i \in \{0,1\}$ and $i \in [0,n-1]$.
- Computational basis vector for the *n*-qubit system can simply be defined as $|x_0\rangle \otimes |x_1\rangle \otimes \cdots \otimes |x_{n-2}\rangle \otimes |x_{n-1}\rangle$. There are 2^n such vectors.
- ► Each of these basis vectors can now be represented as $|x_0x_1...x_{n-1}\rangle \equiv |x\rangle$, where $x \in \{0,1\}^n$.
- ► This notation shall be adopted for defining multi-qubit basis vectors for all further discussions.

The X_n and H_n gates

▶ If the *X* gate is applied to each of the *n* qubits of the system. The combined operator can be represented as:

$$\underbrace{X \otimes X \otimes \cdots \otimes X}_{n\text{-times}} \equiv X^{\otimes n}$$

▶ When the *H* gate is applied to each of the *n* qubits of the system. The combined operator can be represented as:

$$\underbrace{H \otimes H \otimes \cdots \otimes H}_{n\text{-times}} \equiv H^{\otimes n}$$

▶ When these operators are applied to the *n*-qubit basis state $|0_n\rangle$ the results are as follows:

$$\begin{array}{l} X^{\otimes n} |0_n\rangle \, = \, |1_n\rangle \\ H^{\otimes n} |0_n\rangle \, = \, \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \end{array}$$

Toffoli gate: a formal introduction

► The Toffoli gate (CCX) is a three qubit gate and has the following actions on the three-qubit computational basis:

$$CCX |000\rangle = |000\rangle$$
; $CCX |100\rangle = |100\rangle$
 $CCX |001\rangle = |001\rangle$; $CCX |101\rangle = |101\rangle$
 $CCX |010\rangle = |010\rangle$; $CCX |110\rangle = |111\rangle$
 $CCX |011\rangle = |011\rangle$; $CCX |111\rangle = |110\rangle$

► The matrix form is given as:

$$CCX = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

The Toffoli Circuit

Combining the circuit conventions defined previously and the definitions of Boolean functions The circuit corresponding and the actions to the Toffoli gate is:

Figure 1: The Toffoli gate

- ▶ Here, each state $|x_i\rangle$ is a computational basis vector for the single-qubit state.
- ► Since there were no phase factors in the actions defined before, the circuit also defines the resultant states for the input state vectors.

A particular setup

Consider the Toffoli gate with a condition the target qubit is initially fixed in the $|0\rangle$ state:

Figure 2: The Toffoli gate

▶ The effect of the Toffoli gate on these initial states can be summarized as:

$$CCX |x_0\rangle |x_1\rangle |0\rangle = |x_0\rangle |x_1\rangle |x_0 \cdot x_1\rangle$$

The AND Oracle

- ► The *CCX* gate with the initial state as shown before transforms the target qubit from $|0\rangle$ to $|x_0 \cdot x_1\rangle$
- ▶ Therefore for any initial control state represented by by x_0x_1 the circuit transforms the input state into the output state $|x_0\rangle\,|x_1\rangle\,|x_0\cdot x_1\rangle$
- ► This circuit is referred to as the Quantum AND Oracle: The circuit transforms an input state corresponding to the inputs of a classical AND gate, with a target qubit set to |0⟩ into an output state where the AND operation is performed and stored in the target qubit.
- ► The two-bit classical AND gate now has an equivalent three-qubit quantum oracle.

Simpler Oracles

▶ If a two-bit classical gate has a three-qubit quantum oracle, then it maybe possible to define a single bit classical gate with a two-qubit oracle. Consider the following circuit:

Figure 3: A single bit oracle

This is the equivalent oracle for the single bit function F(x) = x. The other single bit oracle maybe defined as follows:

Figure 4:
$$F(x) = 0$$

Figure 5: F(x) = 1

Figure 6: $F(x) = \overline{x}$

Oracles with CNOT gates

As discussed before, the *CNOT* gate acts on a two-qubit basis state $|x_0\rangle\,|x_1\rangle$ as shown below

$$CNOT |x_0\rangle |x_1\rangle = |x_0\rangle |(x_0 + x_1)\rangle$$

- ▶ While this is equivalent to the XOR gate, it is not in the oracle form like the case with the CCX gate.
- ► However, consider the following circuit:

Figure 7: The XOR oracle

► This circuit is the three-qubit oracle equivalent to the classical XOR gate.

Oracles with CNOT gates

A general *n*-bit classical Boolean function has an equivalent (n+1)-qubit quantum oracle representation U_F that acts as follows.

$$U_F |x\rangle |0\rangle = |x\rangle |F(x)\rangle$$

here, $x \in \left\{0,1\right\}^n$ and $|x\rangle$ is an element of the *n*-qubit computational basis.

▶ The circuit representation of the same is as shown below. It should be noted that the upper bundle of qubit wires represent the *n*-qubit state.

Figure 8: The general quantum Boolean oracle

▶ It is possible to build any Boolean oracle with the CNOT, CCX and X gates.

Varying the inputs of the Oracles

- Since the oracle is a unitary transformation, they are transformations since the inverse of U_F is simply the adjoint, U_F^{\dagger} .
- ▶ If the target qubit of an oracle is fixed to the $|1\rangle$ state, then applying the oracle U_F on such a state yields the following:

$$U_F |x\rangle |1\rangle = |x\rangle |1 + F(x)\rangle$$

▶ The oracle is also, by its definition a linear transformation and so, if we consider a state $|x_1\rangle + |x_2\rangle$ (normalization is disregarded) where $x_1, x_2 \in \{0, 1\}^n$. Then, applying U_F on this state gives:

$$U_F(|x_1\rangle + |x_2\rangle)|0\rangle = |x_1\rangle|F(x_1)\rangle + |x_2\rangle|F(x_2)\rangle$$

note that the separable input state may not be separable after U_F is applied.

▶ This is ability of a quantum oracle to evaluate multiple instances of the same function is a result of the linearity of the oracle. This feature is famously know as *Quantum Parallelism* and it has no classical equivalent.

Varying the inputs of the Oracles

▶ If the target state of the qubit is set to the $|-\rangle$ state, the action of U_F yields the following:

$$U_F |x\rangle |-\rangle = U_F |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

= $|x\rangle \frac{1}{\sqrt{2}} (|0 + F(x)\rangle - |1 + F(x)\rangle)$

▶ The resultant target qubit is in the state $|-\rangle$ when F(x) = 0 and $-|-\rangle$ when F(x) = 1. The combined result can be written as,

$$U_F |x\rangle |-\rangle = (-1)^{F(x)} |x\rangle |-\rangle$$

In this case, it can be seen that the state of the target qubit is the same but the output sate gains a phase that corresponds to the value of F(x). This variation of the oracle is referred to as the Phase Oracle implementation of the Boolean function.