

CSCE 580: Introduction to Al

Week 6 - Lectures 11 and 12: Al Trust; Symbolic - Representation and Logic

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 23RD AND 25TH SEP 2025

Carolinian Creed: "I will practice personal and academic integrity."

Credits: Copyrights of all material reused acknowledged

Organization of Week 6 - Lectures 11, 12

- Introduction Section
 - Recap from Week 5 (Lectures 9 and 10)
 - Al news
- Main Section
 - L11: ML Trust Issues Explainability, Rating
 - L12: Symbolic Representation and Logic
- Concluding Section
 - About next week W7: Lectures 13, 14
 - Ask me anything

Recap of Week 5

- We talked about
 - Language models
 - LLMs
 - Using LLMs
 - AI/ LLM Trust
 - Exercise 1, Project A

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the <u>Trust Problem</u>
- Week 3: Machine Learning Supervised (Classification)
- Week 4: Machine Learning Unsupervised (Clustering) -
- Topic 5: Learning neural network, deep learning, <u>Adversarial attacks</u>
- Week 6: <u>Large Language Models</u> Representation and Usage issues
- Weeks 7-8: Search, Heuristics Decision Making
- Week 9: Constraints, Optimization Decision Making
- Topic 10: Markov Decision Processes, Hidden Markov models Decision making
- Topic 11-12: Planning, Reinforcement Learning Sequential decision making
- Week 13: <u>Trustworthy Decision Making</u>: <u>Explanation</u>, Al testing
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

Upcoming Evaluation Milestones

• Projects B: Sep 30 – Nov 20

• Quiz 2: Oct 7

• Quiz 3: Nov 11

• Paper presentation (grad students only): Nov 18

Al News

CSCE 581 - SPRING 2025 6

#1 NEWS - Discovering Plants Around Us (SC), Virtually!

• Link: https://herbarium.org/ - Initiative started by Dr. Andrew Charles Moore over a century back of dried plant specimens

Potential usage

- 1. Learn about plants
- 2. Learn how they change with location and time
- 3. How fall colors change over time

Example

 https://sernecportal.org/portal/collections/list.php?db=147&include othercatnum=1&hasimages=1&usethes=1&taxontype=2&associatio n-type=none&taxontype-association=2&usethesassociations=1&comingFrom=newsearch

Introduction Section

Lecture 11: Overcoming ML Trust Issues – Explainability, Rating

Lecture 11: Concluding Comments

We discussed

- Al trust and risk mitigation
- Explanability methods
- Rating methods

Lecture 12: Representation and Logic

Main Section

Intelligent Agent – Simple Knowledge Based

Logic – Basic Idea

- Starting with true assumptions, a knowledge-based system (automaton) to draw true conclusions
- Logic consists of three components
 - Syntax -- allowable sentences
 - Semantics -- determining truth of sentence given a model (assignment of values to sentences)
 - Inference Procedure -- rules to draw conclusion given a set of sentences

Formal Logic -1/3

- An automaton for manipulating symbols and drawing conclusions
- Consists of a knowledge base with:
 - a set of true statements (sentences).
 Sentences have
 - Syntax
 - Semantics compositional property
 - Proof theory: a set of rules for deducing the entailments / interpretations of the sentences

- Properties of sentences
 - Valid: A sentence is valid or necessarily true if and only if it is true under all possible interpretations in all possible worlds. Also called a tautology
 - **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Propositional Logic

- Sentences: assertions about the world
 - Atomic sentence: propositional symbol
 - ClassToday whether there is a class today: Yes, No
 - A -- any fact of interest: Yes, No
 - True -- always true
 - False -- always false

Propositional Logic - Syntax

Sentence — AtomicSentence ComplexSentence

Connective $- A \mid V \mid \Leftrightarrow \mid \Rightarrow$

BNF (Backus-Naur Form) grammar of sentences in propositional logic

Source: Russell & Norvig, AI: A Modern Approach

Propositional Logic - Semantics

Model of sentence: Any world in which a sentence is true (under a particular interpretation)

α	β	7	$\alpha \vee \beta$	¬β V 7	a V 7
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
False	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	True	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

Truth table to prove soundness of inference

Source: Russell & Norvig, AI: A Modern Approach

Inference Procedure

- Given a knowledge base (KB), generate new sentences α that are entailed by KB
 - KB |= α
- Given KB and α , report whether or not α is entailed by KB
 - KB |- α

Propositional Logic

Inference Procedures

Source: Russell & Norvig, AI: A Modern Approach

♦ Modus Ponens or Implication-Elimination: (From an implication and the premise of the implication, you can infer the conclusion.)

$$\frac{a \Rightarrow \beta, \qquad a}{\beta}$$

♦ **And-Elimination**: (From a conjunction, you can infer any of the conjuncts.)

$$\frac{\alpha_1 A \alpha_2 A \dots A \alpha_n}{\alpha_i}$$

♦ **And-Introduction**: (From a list of sentences, you can infer their conjunction.)

$$\frac{\alpha_1, \alpha_2, \dots, \alpha_n}{\alpha_1 A \alpha_2 A \dots A \alpha_n}$$

0 Or-Introduction: (From a sentence, you can infer its disjunction with anything else at all.)

$$\frac{\alpha_i}{\alpha_1 \vee \alpha_2 \vee \ldots \vee \alpha_n}$$

♦ Double-Negation Elimination: (From a doubly negated sentence, you can infer a positive sentence.)

$$\frac{\neg \neg a}{\alpha}$$

♦ **Unit Resolution:** (From a disjunction, if one of the disjuncts is false, then you can infer the other one is true.)

$$\frac{a \vee \beta, \quad \neg \beta}{a}$$

 \diamondsuit **Resolution:** (This is the most difficult. Because θ cannot be both true and false, one of the other disjuncts must be true in one of the premises. Or equivalently, implication is transitive.)

$$\frac{a \vee \beta, \quad \neg \beta \vee 7}{a \vee \gamma} \quad \text{or equivalently} \quad \frac{\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma}{\neg \alpha \Rightarrow \gamma}$$

KB Agent Procedure

return action

```
function KB-AGENT(percept) returns an action static: KB, a knowledge base t, a counter, initially 0, indicating time
```

```
TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t)) // Report (check) 
action — ASK(KB, MAKE-ACTION-QUERY(t)) // Generate (ask) 
TELL(KB, MAKE-ACTION-SENTENCE(action, t)) // Report (check) 
t \leftarrow t + 1
```

Source: Russell & Norvig, Al: A Modern Approach

Formal Logic -2/3

- Levels at which sentences are encoded
 - Epistemic (also called knowledge): what agents knows or believes
 - Logical: how sentences are encoded to allow inferencing. E.g., symbols
 - Executional: how sentences are encoded during execution. E.g., vectors, symbols
- Properties of sentences
 - Valid: A sentence is valid or necessarily true
 if and only if it is true under all possible
 interpretations in all possible worlds. Also called a tautology
 - **Satisfiable:** A sentence is satisfiable if and only if there is some interpretations in some possible worlds where it is true.

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Formal Logic -3/3

- Properties of Logic System
 - Soundness: if it produces only true statements
 - **Completeness**: if it produces all true statements
 - **Consistency**: if it does not produce a sentence and its negation

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts degree of truth	true/false/unknown true/false/unknown true/false/unknown degree of belief 01 degree of belief 01

Credits:

- Russell & Norvig, AI A Modern Approach
- Deepak Khemani A First Course in Al

Example: Course Selection

Example Situation – Course Selection

- A person wants to pass an academic program in two majors: A and B
- There are three subjects available: A, B and C, each with three levels (*1, *2, *3). There are thus 9 courses: A1, A2, A3, B1, B2, B3, C1, C2, C3
- To graduate, at least one course at beginner (*1) level is needed in major(s) of choice(s), and two courses at intermediate levels (*2) are needed
- Answer questions
 - Q1: How many minimum courses does the person have to take?
 - Q2: Can a person graduate in 2 majors studying 3 courses only?
 - ...

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has studied courseA1: yes student has taken course; no student has not taken
 - has studied courseA2
 - has_studied_courseA3
 - has studied courseB1
 - has studied courseB2
 - has_studied_courseB3
 - has_studied_courseC1
 - has studied courseC2
 - has_studied_courseC3

Issue: What about hierarchy among courses?

Representation - Example

- Domain Description: "There are three subjects: A, B and C, each with three levels (*1, *2, *3)."
- Representation
 - has_studied_courseA1: yes student has taken course; no student has not taken
 - has studied courseA2
 - has studied courseA3
 - has studied courseB1
 - has_studied_courseB2
 - has_studied_courseB3
 - has_studied_courseC1
 - has studied courseC2
 - has studied courseC3

LowerThan_Course_A1_CourseA2 LowerThan_Course_A2_CourseA3 LowerThan_Course_B1_CourseB2 LowerThan_Course_B2_CourseB3 LowerThan_Course_C1_CourseC2 LowerThan_Course_AC_CourseC3

• Previous/above (slide) statements set did not capture hierarchy between levels; new sentences would not have followed the reality in the world. Needed more statements – LowerThan as shown.

How to Tackle Course Selection Problem?

- Represent the world as sentences in KB
 - Update KB based on scenarios
- Solve problems about courses selection scenarios
 - Pose problems as queries to KB
 - Interpret answers // reason with the world

Source: Russell & Norvig, AI: A Modern Approach

Exercise: Carry-over in Addition

How may carry are needed when adding a number?

• inputs: two numbers

output: carry count

Problem 1

Input: n = 1234, k = 5678 Output: 2

4+8 = 2 and carry 1; carry+3+7 = carry 1;

carry+2+6 = 9, carry 0; carry+1+5 = 6, carry 0

Problem 2

Input: n = 555, k = 555 Output: 3

What is easy – specifying or learning a (set of) rules for carry prediction?

Credit: https://www.geeksforgeeks.org/dsa/count-the-number-of-carry-operations-required-to-add-two-numbers/

Exercise: Carry-over in Addition

How may carry are needed when adding a number?

• inputs: two numbers

output: carry count

Problem 1

```
Input: n = 1234, k = 5678 Output: 2
4+8 = 2 and carry 1; carry+3+7 = carry 1;
carry+2+6 = 9, carry 0; carry+1+5 = 6, carry 0
```

Problem 2

Input: n = 555, k = 555 Output: 3

```
Credit: https://www.geeksforgeeks.org/dsa/count-the-number-of-carry-operations-required-to-add-two-numbers/
```

Function to count the number # of carry operations def count_carry(a, b): # Initialize the value of # carry to 0 carry = 0; # Counts the number of carry # operations count = 0; # Initialize len_a and len_b # with the sizes of strings len a = len(a); len b = len(b); while (len a != 0 or len b != 0): # Assigning the ascii value # of the character x = 0; y = 0;if (len_a > 0): x = int(a[len_a - 1]) + int('0'); len_a -= 1; if (len_b > 0): y = int(b[len_b - 1]) + int('0'); len_b -= 1; # Add both numbers/digits sum = x + y + carry;# If sum > 0. increment count # and set carry to 1 if (sum >= 10): carry = 1; count += 1; # Else, set carry to 0 carry = 0; return count;

Major Types of Reasoning

- Inference: From premises to conclusions
 - Major types
 - **Deduction**: deriving logical conclusions from premises known or assumed to be true
 - Induction: deriving from particular premises to a universal conclusion.
 - Abduction: from an observation, find the most likely conclusion from the observations
- Usage
 - Deduction is useful to build knowledge bases from parts
 - Induction: to generalize
 - Abduction is a good source for hypothesis / priors in Bayesian learning

Setting Up for AIMA Code

- Al resources https://github.com/biplav-s/course-ai-tai-f23/blob/main/sample-code/Al-Resources.md
- Setting up for Python code from AIMA book https://github.com/biplav-s/course-ai-tai-f23/tree/main/sample-code/ai-book-samples

Exercise and Code

- Logical Reasoning
 - From Book: AI A Modern Approach, <u>https://github.com/aimacode/aima-</u> python/blob/master/logic.ipynb

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
	,		
1,2,— S	2,2	3,2	4,2
S OK	OK		
1,1	2,1 B	3,1 P!	4,1
V	V		
OK	OK		

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus

Source: Russell & Norvig, AI: A Modern Approach

Examples of Agents

Agent Type	Percepts	Actions	Goals	Environment
Medical diagnosis	Symptoms, findings,	Questions, tests,	Healthy patient,	
system	patient's answers	treatments	minimize costs	Patient, hospital
Satellite image analysis	, ,	Print a categorization of		Images from
system	intensity, color	scene	categorization	orbiting satellite
	Pixels of varying	Pick up parts and sort	Place parts in	Conveyor belt
Part-picking robot	intensity	into bins	correct bins	with parts
	Temperature,	Open, close valves;	Maximize purity,	
Refinery controller	pressure readings	adjust temperature	yield, safety	Refinery
			Maximize	
Interactive English		Print exercises,	student's score	
tutor	Typed words	suggestions, corrections	on test	Set of students

Source: Russell & Norvig, AI: A Modern Approach

Lecture 12: Summary

- We talked about
 - Knowledge-based agents
 - Logic (Propositional)
 - Inferencing (Propositional)

Week 6: Concluding Comments

We talked about

- AI/ ML Trust
 - Explainability
 - Trust ratings
- Representation and Logic
 - Propositional

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2-3: Data: Formats, Representation and the <u>Trust Problem</u>
- Week 3: Machine Learning Supervised (Classification)
- Week 4: Machine Learning Unsupervised (Clustering) -
- Topic 5: Learning neural network, deep learning, <u>Adversarial attacks</u>
- Week 6: <u>Large Language Models</u> Representation and Usage issues
- Weeks 7-8: Search, Heuristics Decision Making
- Week 9: Constraints, Optimization Decision Making
- Topic 10: Markov Decision Processes, Hidden Markov models -Decision making
- Topic 11-12: Planning, Reinforcement Learning Sequential decision making
- Week 13: Trustworthy Decision Making: Explanation, AI testing
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 Safe AI/ Chatbots

About Week 7 – Lectures 13 and 14

Week 7 – Lectures 13 and 14

- L13: Logic and Inference First Order
- L12: Search, Search Uninformed

- Week 1: Introduction, Aim: Chatbot / Intelligence Agent
- Weeks 2: Data: Formats, Representation, ML Basics
- Week 3: Machine Learning Supervised (Classification)
- Week 4: Machine Learning Unsupervised (Clustering) -
- Topic 5: Learning neural network, deep learning, Adversarial attacks
- Week 6: <u>Large Language Models</u> Representation and Usage issues
- Weeks 7-8: Search, Heuristics Decision Making
- Week 9: Constraints, Optimization Decision Making
- Topic 10: Markov Decision Processes, Hidden Markov models Decision making
- Topic 11-12: Planning, Reinforcement Learning Sequential decision making
- Week 13: <u>Trustworthy Decision Making</u>: <u>Explanation</u>, AI testing
- Week 14: <u>AI for Real World: Tools, Emerging Standards and Laws;</u>
 <u>Safe AI/ Chatbots</u>

Note: exact schedule changes slightly to accommodate for exams and holidays.