<u>Задача 1</u>

Обладнання індивідуальне:

- світлодіод з номінальним робочим струмом 350 мА з припаяними провідниками (жовтий «+», білий «-»)
- реостат шкільний
- амперметр
- батарейка
- термометр
- два пластикових стаканчики різного розміру
- штатив з лапкою.

Обладнання групове:

- вода дистильована
- мензурка
- ізоляційна чорна стрічка
- годинник з секундною стрілкою
- серветки для витирання калюж
- відро для зливу використаної води

Завдання

Визначте номінальну електричну потужність світлодіода. Введіть поняття коефіцієнта корисної дії світлодіода у вашому експерименті та визначте його величину.

Застереження

Струм через світлодіод не повинен перевищувати 350 мА!!!

Не дивіться довго на ввімкнений світлодіод, щоб запобігти ушкодженню зору.

Перед першим включенням необхідно щоб електричне коло перевірив черговий викладач.

Розв'язок

Складаємо електричне коло за схемою:

З двох стаканчиків виготовляємо калориметр, наливаємо у нього близько 30-50 мл води. Кількість води має бути мінімально необхідною, щоб повністю занурити у неї світлодіод та термометр. Визначаємо початкову температуру води, світлодіод занурюємо у воду, вмикаємо струм. Заміряємо час, необхідний для нагрівання води в калориметрі на кілька градусів. Воду періодично перемішуємо для точного визначення температури. Слідкуємо, щоб сила струму у світлодіоді залишалася 350 мА. Визначаємо теплову потужність світлодіода (без врахування втрат у навколишнє середовище):

$$P_{\text{тепл}} = \frac{cm\Delta t}{\tau_1}, \qquad P_{\text{тепл}} = \frac{4200 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}} \cdot 0,05 \text{ кг} \cdot 3^{\circ}\text{C}}{940 \text{ c}} = 0,67 \text{ Bt}.$$

Замотуємо світлодіод в непрозору ізоляційну стрічку і повторюємо експеримент, замінивши воду холодною (кімнатної температури), щоб забезпечити однакові теплові втрати в навколишнє середовище. Тепер за результатами експерименту можна визначити повну потужність світлодіода (без врахування втрат), оскільки світлова енергія також перетворюється в тепло.

$$P_{\text{повн.}} = \frac{cm\Delta t}{\tau_2}, \qquad P_{\text{повн.}} = \frac{4200 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}} \cdot 0,05 \text{ кг} \cdot 3^{\circ}\text{C}}{780 \text{ c}} = 0,81 \text{ BT}$$

Вимикаємо струм, чекаємо доки вода охолодиться на 1–2°C в середині вимірюваного діапазону температур, визначаємо середню потужність теплових втрат.

$$P_{\text{втр.}} = \frac{cm\Delta t}{\tau_3}, \qquad P_{\text{втр.}} = \frac{4200 \frac{\text{Дж}}{\text{кг}^{\circ}\text{C}} \cdot 0.05 \text{ кг} \cdot 1^{\circ}\text{C}}{1200 \text{ c}} = 0.18 \text{ Bt.}$$

Обчислюємо номінальну потужність світлодіода ($P_{\text{повн.}}$ разом з втратами $P_{\text{втр.}}$)

$$P_{\text{HOM.}} = P_{\text{ПОВН.}} + P_{\text{ВТР.}}, \qquad P_{\text{HOM.}} = 0.81 \,\text{BT} + 0.18 \,\text{BT} = 0.99 \,\text{BT.}$$

Обчислюємо відношення η потужності, що перетворюється на світло ($P_{\text{повн.}} - P_{\text{тепл.}}$), до повної номінальної потужності ($P_{\text{повн.}} + P_{\text{втр.}}$):

$$\eta = \frac{P_{\text{повн.}} - P_{\text{тепл.}}}{P_{\text{повн.}} + P_{\text{втр.}}}, \qquad \eta = \frac{0.81 \text{ Bt} - 0.67 \text{ Bt}}{0.81 \text{ Bt} + 0.18 \text{ Bt}} = 0.14 \text{ Bt}.$$

Таким чином, $P_{\text{ном.}} = 0.99 \text{ Bt}, \eta = 0.14.$