Методы автоматического разрешения лексической многозначности

Семантический анализ текста

- Построение семантической интерпретации слов и конструкций
 - Разрешение многозначности слов

- Установление семантических отношений между элементами текста
 - Словари и правила
 - Машинное обучение по размеченным данным

Разрешение лексической многозначности

- Разрешение лексической многозначности выбор значения слова из набора значений, описанных в том или ином источнике
- Кластеризация (дискриминация) значений слова разделение употреблений слова на группы, соответствующие нескольким значениям безотносительно к предопределенному набору значений
- Конференция Senseval 1,2,3
- 2007 конференция SemEval

Основные классы методов

- Методы, основанные на ручных правилах
- Методы, основанные на лингвистических ресурсах
 - Машинные словари (метод Леска и модификации)
 - Тезаурусы
 - Модели управления
- Методы, основанные на обучении по размеченному корпусу обучение на примерах (обучение с учителем)
- Методы, основанные на неразмеченных корпусах, использование интернета
- Гибридные методы

История области

- * 40е зарождение машинного перевода
- Warren Weaver, «The "Translation" memorandum» (1949)
 - Yehoshua Bar-Hillel, скептик
- •70e WSD часть более крупных проектов
 - в основном, ручные правила
- * 80е появление электронных словарей
- Oxford Advanced Learner's Dictionary of Current English,
- ручное выписывание правил вытеснено автоматическим извлечением знаний из подобных источников

История области-2

- 90e "статистическая революция", обучение с учителем
- **00е** смещение в сторону:
- → coarse-grained senses
- → domain adaptation
- → semi-supervised system и обучения без учителя
- → смешанные методы, обработка баз знаний

Тестирование автоматического разрешения многозначности

- Корпус текстов или предложений
 - Размечается экспертами правильными значениями – семантически размеченный корпус

• Оценки

- Точность: число слов, размеченных правильно, по отношению к числу слов, обработанных системой
- Полнота: число слов, размеченных правильно, по отношению к числу слов в тестовом множестве

Трудности задачи

Differency of dictionaries

все словари разные и не эквивалентны друг другу

Part-of-speech tagging

в некоторых языках проблема определения части речи слова (part-of-speech tagging) может быть очень близко связана с проблемой разрешения многозначностей

• Inter-judge variance -человеческий фактор

 Системы разрешения лексической многозначности всегда оценивались сравнением результатов с результатом работы людей. А людям данная задача может оказаться не такой простой, как POS-tagging

Трудности задачи-2

- Sense inventory and algorithms' taskdependency:
 - для разных задач требуются и разные алгоритмы
 - для алгоритма разрешения лексической многозначности невозможно быть полностью уверенным, что он подойдёт под решение всех задач

Discreteness of senses

- Значения слов очень гибки, контекстно зависимы
- не всегда строго делятся на несколько подзначений

Простые методы

Использование машинных словарей: алгоритм Леска

- (Michael Lesk 1986): пересечение контекста употребления слова с его словарным толкованием
- Выбираются значения слов, толкования которых имеют больше пересечений между собой
- Классический пример: PINE CONE
- PINE
 - 1. kinds of evergreen tree with needle-shaped leaves
 - 2. waste away through sorrow or illness
- CONE
 - 1. solid body which narrows to a point
 - 2. something of this shape whether solid or hollow
 - 3. fruit of certain evergreen trees

```
Pine#1 \cap Cone#3 = 2
```

Алгоритм Леска для текста

- (Kilgarriff & Rosensweig 2000):
 - измеряется пересечение между толкованиями и контекстом слова
 - Могут использоваться примеры из слов. статей
 - На тех же основаниях может использоваться размеченный корпус
- Pine cones hanging in a tree
- Pine#1 ∩ Sentence = 1; Pine#2 ∩ Sentence = 0
- Senseval-1: Метод Леска:
 - по определениям– ок. 0.3
 - по определениям и примерам– ок. 0.55
 - по определениям, примерам и корпусу ок. 0.68

Учет наиболее частотного значения

- Определение наиболее частотного значения
 - Использование этого значения, если не удалось определить другим методом
 - Значение максимальной частотности по размеченному корпусу
 - Семантически размеченный корпус SemCor размечен по значениям WordNet
- SemCor: употребление в наиболее частотном значении:
 - существительные 85%
 - прилагательные 45%
 - глаголы 48%

Как определить наиболее частотное значение без размеченного корпуса

- (McCarthy et al. 2004) ACL 2004 Best Paper
- Синтаксический анализ корпуса, извлечение троек (R, W1,W2)
- Для каждого W можно определить список наиболее похожих по синтаксическому поведению слов {Wi}, i=1,k с некоторыми весами: star=(superstar, player, teammate, actor, galaxy, sun, planet, ...)
- Для каждого wi определяется близость к одному из значений w (метод Леска, по структуре WordNet)
- Для каждого значения насчитывается сумма
- Исходный вес* коэффициент близости
- Результат : 54% угаданных частотных значений из 2595 SemCor

Одно значение на документ

- Гипотеза: большинство слов документа употребляются в ОДНОМ И ТОМ ЖЕ ЗНАЧЕНИИ
- Проверка по размеченному корпусу
- 8 слов с 2 основными значениями: plant, crane
- 98% вхождение слов имеют то же значение
- (Krovetz 1998)
- Точность разрешения многозначности, основанная на принципе одно значение на документ 70% на корпусе SemCor

Одно значение на словосочетание

- Предположение: слово, чаще всего, сохраняет свое значение в словосочетании
- Plant industrial plant
- 97% слов с двумя значениями
- (Martinez and Agirre 2000)
 - значения WordNet
 - SemCor 70%

Использование структуры тезауруса

Смотрим, насколько близки слова из контекста по тезаурусу значениям многозначного слова

Вычисление семантической близости – учет пути

- Вход: два понятия. Результат: мера близости
- (Leacock and Chodorow 1998)
- Similarity (C1, C2)= log (path (C1,C2)/2D),
- D глубина таксономии
- Similarity(wolf, dog) = 0.60 Similarity(wolf, bear) = 0.42

Вычисление семантической близости – учет пути-2

- (Hirst and St.Onge, 1998)
 - Вес пути = С длина_пути k^* (число поворотов пути)
 - -C=8, K=1
 - Максимальный рассматриваемый путь – 5 шагов

(Hirst, St.Onge):

а) неразрешенные пути б) разрешенные пути

Вычисление семантической близости

- (Resnik 1995): Информационное содержание
 - P(c) вероятность нахождения понятия С в большом корпусе
 - если С1 вид для С2, то P(С1) =< P(С2); P(Тор)=1
 - Информационное содержание: IC(C) = -log P(C)
- Чем более абстрактным является понятие, тем меньше величина его информационного содержания.
- LCS наименьший родовой концепт
 Similarity (C1, C2) = IC (LCS (C1, C2)
- (Jiang and Conrath 1997)
 Similarity (C1, C2) = 2*IC (LCS (C1,C2)) (IC(C1)+IC(C2))

Эксперимент

- Разрешение многозначности слов на основе ближайшего соседа (для существительных)
 - (Patwardhan, Banerjee, Pedersen 2002)
 - Сравнение 5 метрик сходства WordNet
- "Plant with flowers"
 - Plant, industrial plant
 - Plant, flora
- Similarity (plant, flower)
- 1723 вхождения многозначных существительных Senseval – 2
- (Jiang and Conrath 1997) 39%

Учет глобального контекста

Лексические цепочки

- (Hirst and St-Onge 1988), (Haliday and Hassan 1976)
- Лексические цепочки последовательность близких по смыслу слов, в которых проявляется лексическая связность связного текста
- Алгоритм создания лексических цепочек
 - 1. Извлечение слов из текста, между которыми может быть определена мера семантической близости
 - 2. Двигаясь сначала текста, для каждого очередного слова просматриваются имеющиеся цепочки
 - 3. Если есть цепочка, то слово присоединяется
 - 4. Если несколько, то цепочка, в которой близость больше
 - 5. Обычно есть ограничения на расстояние (предложение, абзац) до последнего слова цепочки

Пример: лексические цепочки и разрешение многозначности

A very long **train traveling** along the **rails** with a constant **velocity** v in a certain **direction** ...

Лексические цепочки для разрешения многозначности: Оценки

- Если слово многозначное, то выбирается значение, на основе которого произошло присоединение к цепочке
- (Galley and McKeown 2003):
 74 текстов SemCor, 35000 сущ., 62.09
- Этапы обработки:
 - сопоставление с WordNet, отмечаются все возможные значения
 - находятся отношения между значениями синонимы, гипонимы, гиперонимы, понятия- «сестры»
- Предположение: одно значение на документ
- Подсчет весов, полученных по всему документу: зависимость от типа связи, расстояние (1 предложение, 3 предложения, абзац)

Обучение на примерах с учителем (supervised learning)

Обучение с учителем

- Набор совокупности примеров, которые иллюстрируют различные возможные классификации
- Идентификация образцов, соответствующих каждому классу
- Обобщение образцов в правила
- Применение правила для классификации нового примера

Разрешение многозначности на основе обучения с учителем

- Ресурсы
 - Размеченный корпус
 - Набор значений словаря
 - Синтаксический анализ
- Результат
 - Обычно одно целевое слово
- Задача разрешения лексической многозначности как задача автоматической классификации по заданному набору классов (=значений)

Примеры, размеченные по значениям

Bonnie and Clyde are two really famous criminals, I think they were **bank/1** robbers

My bank/1 charges too much for an overdraft.

I went to the **bank/1** to deposit my check and get a new ATM card.

The University of Minnesota has an East and a West **Bank/2** campus right on the Mississippi River.

My grandfather planted his pole in the **bank/2** and got a great big catfish!

The **bank/2** is pretty muddy, I can't walk there.

Контексты слова *bank*

FINANCIAL_BANK_BAG:

a an and are ATM Bonnie card charges check Clyde criminals deposit famous for get I much My new overdraft really robbers the they think to too two went were

RIVER_BANK_BAG:

a an and big campus cant catfish East got grandfather great has his I in is Minnesota Mississippi muddy My of on planted pole pretty right River The the there University walk West

Примитивный алгоритм: проверять вхождение слова в списки, добавлять 1 к счетчику, выбирать наибольшее

Подходы, основанные на машинном обучении

- Создание обучающей выборки, в которой целевое слово вручную размечено значениями из списка
 - Одно размеченное слово на пример
- Признаки для представления контекста
 - Соседние слова, коллокации, части речи, синтаксические отношения и др
- Применяемые методы машинного обучения
 - Метод опорных векторов, KNN
 - Деревья решений, Списки решений (Decision Lists)
 - Наивный байесовский классификатор
 - Персептроны, Нейронные сети

От текста к векторам признаков

- My/pronoun grandfather/noun used/verb to/prep fish/verb along/adv the/det banks/SHORE of/prep the/det Mississippi/noun River/noun. (S1)
- The/det bank/FINANCE issued/verb a/det check/noun for/prep the/det amount/noun of/prep interest/noun. (S2)

	<u>P-2</u>	<u>P-1</u>	<u>P+1</u>	<u>P+2</u>	fish	<u>check</u>	river	interest	SENSE TAG
S1	adv	det	prep	det	Y	N	Y	N	SHORE
S2		det	verb	det	N	Y	N	Y	FINANCE

Байесовский классификатор

$$p(S \mid F1, F2, F3,...,Fn) = \frac{p(F1,F2,F3,...,Fn|S)*p(S)}{p(F1,F2,F3,...,Fn)}$$

- •Оценка вероятности встретить значение р (S)
- •Оценка вероятности встречаемости признаков при условии заданного значения
- •Знаменатель не влияет на результат

Наивная байесовская модель

$$P(F1, F2,..., Fn \mid S) = p(F1 \mid S) * p(F2 \mid S) * ... * p(Fn \mid S)$$

Decision Lists and Trees

- Представляют проблему разрешения многозначности как серию вопросов, на которые нужно ответить
 - Список выбирает между двумя значениями после одного позитивного ответа
 - деревья позволяют сделать выбор между несколькими значениями после серии ответов
- Обычно меньший набор признаков, чем при мешке слов или методе Байеса
 - Легче интерпретировать

Список решений для выбора значений (Yarowsky, 1994)

- Используется встречаемость слов в контексте
- Слова непосредственно слева или справа:
 - I have my bank/1 statement.
 - The river bank/2 is muddy.
- Или слова, найденные в k позициях слева или справа (k=10-50):
 - My credit is just horrible because my bank/1 has made several mistakes with my account and the balance is very low.

Построение списка решений

- •Сортировка контекстных слов на основе логарифма условных вероятностей
- •Слова, которые наиболее связаны с одним из значний, и не встречающиеся с другим, получают высокий ранг

$$Abs(\log \frac{p(S=1|F_i=Collocation_i)}{p(S=2|F_i=Collocation_i)})$$

Вычисление DL ранга

- 2,000 примеров "bank", 1,500 bank/1 (финансы) и 500 r bank/2 (река)
 - P(S=1) = 1,500/2,000 = .75
 - P(S=2) = 500/2,000 = .25
- "credit" встречается 200 раз с bank/1 and 4 раза с bank/2.
 - P(F1="credit") = 204/2,000 = .102
 - P(F1="credit"|S=1) = 200/1,500 = .133
 - P(F1="credit"|S=2) = 4/500 = .008
- Правило Байеса...
 - P(S=1|F1="credit") = .133*.75/.102 = .978
 - P(S=2|F1="credit") = .008*.25/.102 = .020
- DL Score = abs (log (.978/.020)) = 3.89

Использование списка решений

• Сортировка по DL рангу, первое совпадение проставляет значение

DL-score	Feature	Sense
3.89	<i>credit</i> within bank	Bank/1 financial
2.20	bank is muddy	Bank/2 river
1.09	pole within bank	Bank/2 river
0.00	of the bank	N/A

Применение списка решений

Минимизация обучающего множества

Основные принципы

- Имеется
 - Некоторый объем размеченных данных
 - Большие объемы неразмеченных данных
 - Один или больше базовых классификаторов
- Результат
 - Классификатор, улучшающий работу базового классификатора

Базовый алгоритм

• Дано:

- Множество L размеченных примеров
- Множество U неразмеченных примеров
- Классификаторы

• Основные шаги:

- Создать множество примеров U1 подмножество U (Р число примеров U1)
- Цикл I итераций
- Натренировать классификаторы на множестве L
- Применить для разметки примеров в U1
- Выбрать наиболее «надежные» примеры (G)и добавить в L
- Дополнить U1 примерами из U (P=const)

• Проблемы:

- Непонятно, какие принципы выбора параметров: P, G, I

Эксперименты

- Тестовые данные
 - существительные Senseval-2 29
 - Размер размеченного корпуса: 95 тренировочных примеров,48 тестовых примеров
- Неразмеченные данные
 - Британский национальный корпус
 - Средний размер множества примеров: 7085
- Прогоны на наборах параметров
 - $-P = \{1, 100, 500, 1000, 1500, 2000, 5000\}$
 - $-G = \{1, 10, 20, 30, 40, 50, 100, 150, 200\}$
 - $-I = \{1, ..., 40\}$

Результаты: исходный классификатор: 53.84%, результирующий классификатор – 65.61

Интернет-как корпус

- Построить размеченный корпус, пользуясь однозначными близкими по смыслу конструкциями
- Однозначные синонимы
- Фрагмент определения: produce#5- bring onto the market
- Выражение, порожденное из определения,
- produce#6 синсет {grow, raise, farm, produce},
 толкование "cultivate by growing"

SP = cultivate NEAR growing AND (grow OR raise OR farm OR produce)

Конференция Senseval

Тестирование систем: Senseval

- Задачи
 - Разрешение многозначности для набора слов (40)
 - Разрешение многозначности для всех слов текста
- Оценки
 - Точность: число слов, размеченных правильно, по отношению к числу слов, обработанных системой
 - Полнота: число слов, размеченных правильно, по отношению к числу слов в тестовом множестве

Пример:

```
В тестовом множестве -100 слов
Система работала с 75 словами
Правильно -50 слов
Точность =50/75=0.66;
Полнота =50/100=0.50
```

Особенности тестирования: набор слов

- Решетка: часть речи, количество значений, частотность generous, onion
- Выдаются размеченные примеры 1, 2 предложения
- Тренировочное задание, основное задание
- Уровни гранулярности:
- Подробный, обобщенный, смешанный
- Результаты Senseval-3:
 - 72% подробный уровень
 - 79% обобщенный уровень
 - Выбор самого частотного значения: 55.2 для подробного уровня, 64,5 обобщенный уровень

Особенности тестирования: все слова текста. Senseval-3

- 2 статьи Wall Street Journal и фрагмент Брауновского корпуса
- 2081 слов для тестирования
- Разметка по набору значений WordNet.
- Согласие между аннотаторами 72.5%
 - Особые метки: нет значения, несколько значений
- U нет значения.
 - Система должна также выдавать U
 - Максимальная точность 65.2, средняя точность по системам –52.2
 - Базовый уровень выбор первого значений WordNet –
 60.9

Тестирование в приложениях. Информационный поиск

- SemEval (ACL 2007)
- Заданы: система поиска, система перевода /расширения запроса
- Участники должны выбрать наилучшую стратегию разрешения многозначности
- Языки запроса: английский, испанский
- Язык документа: английский
- Подзадания:
 - разрешить многозначность в корпусе, расширить синонимами и переводами, измерить эффективность поиска
 - Разрешить многозначность запросов, расширить синонимами и переводами, измерить эффективность поиска
 - 250 запросов конференции CLEF

Задание

- Написать метод разрешения многозначности (Kilgariff, 2000) – пересечение предложения с толкованиями
 - Ввод значений слова и лемматизация
 - Ввод предложений с многозначным словом и лемматизация
 - Вычисление пересечения лемм предложения и лемм каждого из значений
 - Выдача лучшего значения,
 - Тестирование на 5 многозначных сущ.,
 отчет