CX1104: Linear Algebra for Computing

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}}_{n \times n} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{m \times 1}$$

Chap. No: **8.4.2**

Lecture: Eigen and Singular Values

Topic: SVD & Pseudoinverse

Concept: Importance of SVD

Instructor: A/P Chng Eng Siong

TAs: Zhang Su, Vishal Choudhari

Rev: 24th July 2020

Importance of SVD

Why is SVD important?

- It gives us the dimensions of the fundamental subspaces
- It lets us compute various norms
- It tells about sensitivity of linear systems
- It gives us optimal solutions to least-squares linear systems
- It gives us the least-error rank-k decomposition
- Every matrix has one

DMM, summer 2017 Pauli Miettinen

What does rank the of a matrix A tell?

- 1. Number of non-zero singular values of A.
- 2. Number of independent rows or columns of A.

THEOREM 9.4.4 Singular Value Decomposition (Expanded Form)

If A is an $m \times n$ matrix of rank k, then A can be factored as

$$A = U \Sigma V^{T} = \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{k} \mid \mathbf{u}_{k+1} & \cdots & \mathbf{u}_{m} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 & \\ 0 & \sigma_{2} & \cdots & 0 & \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \cdots & \sigma_{k} & \\ \hline & O_{(m-k)\times k} & O_{(m-k)\times (n-k)} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \\ \hline \mathbf{v}_{k+1}^{T} \\ \vdots \\ \mathbf{v}_{n}^{T} \end{bmatrix}$$

in which U, Σ , and V have sizes $m \times m$, $m \times n$, and $n \times n$, respectively, and in which:

- (a) $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ orthogonally diagonalizes $A^T A$.
- (b) The nonzero diagonal entries of Σ are $\sigma_1 = \sqrt{\lambda_1}$, $\sigma_2 = \sqrt{\lambda_2}, \ldots, \sigma_k = \sqrt{\lambda_k}$, where $\lambda_1, \lambda_2, \ldots, \lambda_k$ are the nonzero eigenvalues of $A^T\!A$ corresponding to the column vectors of V.
- (c) The column vectors of V are ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k > 0$.

(d)
$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|} = \frac{1}{\sigma_i} A\mathbf{v}_i \qquad (i = 1, 2, \dots, k)$$

- (e) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is an orthonormal basis for $\operatorname{col}(A)$.
- (f) $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_m\}$ is an extension of $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ to an orthonormal basis for R^m .

Ref: https://www.mpi-inf.mpg.de/fileadmin/inf/d5/teaching/ss17_dmm/lectures/2017-05-08-lin alg and svd.pdf

SVD and the Four Fundamental Subspaces

Singular Value Decomposition

SVD is a decomposition of rectangular m imes n matrix A as

- ullet $A=U\Sigma V^T$ where
- ullet U is an m imes m orthogonal matrix with Eigenvectors of AA^T
- ullet Σ is an diagonal m imes n matrix with Eigenvalues of both A^TA and AA^T
- ullet V is an n imes n orthogonal matrix with Eigenvectors of A^TA
- Singular vectors $\mathbf{v}_1, \ldots, \mathbf{v}_r$ are in the row space of $A = C(A^T)$
- ullet applying A to \mathbf{v}_i gives $A\mathbf{v}_i = \sigma_i \mathbf{u}_i$
- $\mathbf{u}_1, \, \ldots \, , \mathbf{u}_r$ are in the column space of A
- Singular values $\sigma_1, \ldots, \sigma_r$ are all positive numbers
- ullet so V and U diagonalize A:
- $A\mathbf{v}_i = \sigma_i \mathbf{u}_i \Rightarrow AV = U\Sigma \implies A = U\Sigma V^{-1} = U\Sigma V^T$
- ullet The singular values σ_i in Σ are arranged in monotonic non-increasing order

Note: As V is an orthogonal matrix, $V^{-1} = V^T$.

Note: Rank of matrix A = r.

Orthogonal Basis for the Four Fundamental Subspaces

But it's not only a decomposition, but a way of finding the bases for the Four Fundamental Subspaces of A:

SVD and the Four Fundamental Subspaces

Gilbert Strang: Four Fundamental Subspaces of Linear Algebra

Subspace	Subspace of	Symbol	Dimension	Basis
column space	\mathbb{R}^m	$\operatorname{im}(A)$	r = rank	First r columns of \boldsymbol{U}
nullspace (kernel)	\mathbb{R}^n	$\ker(A)$	n-r	Last $n-r$ columns of ${\it V}$
row space	\mathbb{R}^n	$\operatorname{im}(A^T)$	r	First r columns of V
left nullspace (kernel)	\mathbb{R}^m	$\ker(A^T)$	m-r	Last $m-r$ columns of U

SVD and the Four Fundamental Subspaces

Gilbert Strang: Four Fundamental Subspaces of Linear Algebra

Differential Equations and Linear Algebra, 5.5: The Big Picture of Linear Algebra

Ref: https://ww2.mathworks.cn/en/videos/differential-equations-and-linear-algebra-55-the-big-picture-of-linear-algebra-117460.html

Ref: https://www.youtube.com/watch?v=YPe5OP7Clv4

Geometric Interpretation of SVD

Geometric interpretation

- Let $A = U\Sigma V^T$
- Any linear mapping y = Ax can be expressed as a rotation, stretching, and rotation operation
 - $y_1 = V^T x$ is the first rotation
 - $y_2 = \Sigma y_1$ is the stretching
 - $y = Uy_2$ is the final rotation

Properties of the Matrices U, Σ, V^T

Figure 2: The singular value decomposition (SVD). Each singular value in Σ has an associated left singular vector in \mathbf{U} , and right singular vector in \mathbf{V} .

Given a **tall and thin** matrix A of rank r:

- 1. U is a square matrix. Its first r columns span the column space of A.
- 2. W is a diagonal matrix, consisting of the singular values. Assume it has been ordered: $\sigma_1 \geq \sigma_2 \ldots \geq \sigma_r$.
- 3. V is a square matrix. Its first r columns span the row space of A.

Properties of the Matrices U, Σ, V^T

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}_{m \times n}$$

 $A \in \mathbb{R}^{m \times n}$

U, V are orthogonal matrices, i.e.,

•
$$UU^T = U^TU = I \implies U^{-1} = U^T$$

•
$$VV^T = V^TV = I \implies V^{-1} = V^T$$

 $A \in C^{m \times n}$

U, V are unitary matrices, i.e.,

$$\bullet \ UU^* = U^*U = I \implies U^{-1} = U^*$$

$$\bullet VV^* = V^*V = I \implies V^{-1} = V^*$$

Note: U^* is the conjugate transpose of U.