第十二周作业参考

胡铁宁

2023年6月12日

目录

1	第十二次作业			
	1.1	5月30	0 日布置的作业	2
		1.1.1	教材习题 P221:16	2
		1.1.2	补充习题 1,2,3	2
	1.2	6月1	日布置的作业	3
		1.2.1	教材习题 P221-222:15,18(3)(4),P244:1,2	3
		1.2.2	补充习题 4,5,6	6

一点说明

- (i) 作业讲义部分题过程可能有省略。如对作业仍有疑问可以在群里或答疑课上讨论。
- (ii) 作业讲义会随时间更新。
- (iii) 请及时核对自己在 BB 系统里的分数,如有问题请向对应的助教反馈。
- (iv) 附录里的内容仅供有兴趣的同学参考,有可能涉及之后才会学习或课外的知识,不要求在现阶段掌握。
- (v) 讲义最好用电脑打开,文档内置了链接功能,复习或查看指定的作业很方便。 成绩说明:成绩公式为

$$score = \begin{cases} 10 - k \cdot \max\{n - n_0, 0\} & \text{ 未迟交} \\ 5 & \text{ 迟交} \end{cases}$$

其中 n 为错题数, n_0 为容忍度; k 为系数,取决于当周作业的题量。本周不考虑补充题 (一道小题算作一题) 共 11 题,n=11,考虑到一些同学出现了计算失误、笔误、抄错题目等等情况, $n_0=1$; k=0.5。对于一些不严格的证明,助教也会酌情给分。也意味着作业得到满分不代表作业没有问题,请认真查看自己的作业。

上述评分标准对每个助教都成立。

1 第十二次作业

1.1 5月30日布置的作业

1.1.1 教材习题 P221:16

习题 1 (教材习题 P221:16). 证明: 下面三个条件中只要有两个成立, 另一个也必成立.

(i) A 是对称的; (ii) A 是正交的; (iii) $A^2 = I$.

证明. (i)(ii) \Rightarrow (iii): $\mathbf{A}^2 = \mathbf{A}^T \mathbf{A} = \mathbf{I}$.

(ii)(iii)⇒(i): 由于 $A^{T} = A^{T}A^{T}A = (A^{2})^{T}A = A$, 所以 A 是对称的.

(iii)(i)⇒(ii): 由于 $A^{T}A = A^{2} = I$, 所以 A 是正交的.

1.1.2 补充习题 1,2,3

证明. 设 $\varepsilon_1, \dots, \varepsilon_n$ 是 V 的一组标准正交基, $\varepsilon_1' = \mathscr{A}\varepsilon_1, \dots, \varepsilon_n' = \mathscr{A}\varepsilon_n$. 由于 \mathscr{A} 是正交变换, 故 $\varepsilon_1', \dots, \varepsilon_n'$ 也是 V 的一组标准正交基. 从而对于 V 中的任意元素 $\alpha = \sum_{k=1}^n a_k \varepsilon_k'$,可以发现 $\mathscr{A}\left(\sum_{k=1}^n a_k \varepsilon_k\right) = \sum_{k=1}^n a_k \varepsilon_k' = \alpha$. 这说明 α 的原像存在. 设 α 还有一个原像 $\beta = \sum_{k=1}^n b_k \varepsilon_k$,则 $\sum_{k=1}^n a_k \varepsilon_k' = \alpha = \mathscr{A}\left(\sum_{k=1}^n b_k \varepsilon_k\right) = \sum_{k=1}^n b_k \varepsilon_k'$. 于是 $a_k = b_k$, $k = 1, \dots, n$. 因此 α 的原像也是唯一的.

习题 3 (补充习题 2). 设 \mathcal{A} 为 n 维欧氏空间 V 上的线性变换, 有 n 个实特征值 (不要求互不相同). 证明: 存在 V 的一组标准正交基, 使得 \mathcal{A} 在这组基下的矩阵为上三角阵.

证明. 由 Shur 定理, 存在 V 的一组基 $\alpha_1, \dots, \alpha_n$, 使得 $\mathscr A$ 在这组基下的矩阵为一个实上三角阵 A. 我们将这组基进行 Gram-Schmidt 正交化: 对 $k=1,\dots,n$, 令

$$\boldsymbol{\beta}_k = \boldsymbol{\alpha}_k - \sum_{j=1}^{k-1} \frac{(\boldsymbol{\alpha}_k, \boldsymbol{\beta}_j)}{(\boldsymbol{\beta}_j, \boldsymbol{\beta}_j)} \boldsymbol{\beta}_j, \quad \boldsymbol{\varepsilon}_k = \frac{\boldsymbol{\beta}_k}{\|\boldsymbol{\beta}_k\|},$$

则不难看出 $\boldsymbol{\varepsilon}_k$ 可以被 $\alpha_1, \dots, \alpha_k$ 线性表示. 也就是说, 存在上三角形方阵 \boldsymbol{B} (它的主对角元均大于 0, 从而 \boldsymbol{B} 可逆), 使得 $(\boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_n) = (\alpha_1, \dots, \alpha_n) \boldsymbol{B}$. 于是

$$\mathscr{A}(\boldsymbol{\varepsilon}_1,\cdots,\boldsymbol{\varepsilon}_n)=\mathscr{A}(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n)\boldsymbol{B}=(\boldsymbol{\alpha}_1,\cdots,\boldsymbol{\alpha}_n)\boldsymbol{A}\boldsymbol{B}=(\boldsymbol{\varepsilon}_1,\cdots,\boldsymbol{\varepsilon}_n)\boldsymbol{B}^{-1}\boldsymbol{A}\boldsymbol{B}.$$

因此, \mathscr{A} 在 V 的标准正交基 $\boldsymbol{\varepsilon}_1, \cdots, \boldsymbol{\varepsilon}_n$ 下的矩阵为 $\boldsymbol{B}^{-1} \boldsymbol{A} \boldsymbol{B}$, 是一个上三角矩阵.

习题 4 (补充习题 3). 设 a_1, \dots, a_n 与 b_1, \dots, b_n 是 n 维欧氏空间的两组基. 证明: 存在 V 上的正交变换 \mathscr{A} 使得 $\mathscr{A}(a_i) = b_i (i = 1, 2, \dots, n)$ 的充要条件是内积在这两组基下的度量矩阵相等.

证明. 先证必要性. 设有 V 上的一个正交变换 \mathscr{A} 使得 $\mathscr{A}(a_i) = b_i (i = 1, 2, \cdots, n)$. 则

$$(\boldsymbol{b}_i, \boldsymbol{b}_j) = (\mathcal{A}\boldsymbol{a}_i, \mathcal{A}\boldsymbol{a}_j) = (\boldsymbol{a}_i, \boldsymbol{a}_j), \quad i, j = 1, \dots, n.$$

故内积在这两组基下的度量矩阵相等.

再证充分性. 设内积在这两组基下的度量矩阵相等. 构造映射

$$\mathscr{A}: V \to V, \quad \sum_{k=1}^n \lambda_k \boldsymbol{a}_k \mapsto \sum_{k=1}^n \lambda_k \boldsymbol{b}_k.$$

不难验证 \mathscr{A} 是 V 上的线性变换, 且满足 $\mathscr{A}(\boldsymbol{a}_i) = \boldsymbol{b}_i (i = 1, 2, \dots, n)$. 进一步地, 对 V 中的任何两个向量 $\boldsymbol{\xi} = \sum_{i=1}^n x_i \boldsymbol{a}_i, \boldsymbol{\eta} = \sum_{i=1}^n y_i \boldsymbol{a}_i$, 有

$$(\mathcal{A}\boldsymbol{\xi}, \mathcal{A}\boldsymbol{\eta}) = \left(\mathcal{A} \left(\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i} \right), \mathcal{A} \left(\sum_{j=1}^{n} y_{j} \boldsymbol{a}_{j} \right) \right)$$

$$= \left(\sum_{i=1}^{n} x_{i} \boldsymbol{b}_{i}, \sum_{j=1}^{n} y_{j} \boldsymbol{b}_{j} \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} (\boldsymbol{b}_{i}, \boldsymbol{b}_{j})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} (\boldsymbol{a}_{i}, \boldsymbol{a}_{j})$$

$$= (\boldsymbol{\xi}, \boldsymbol{\eta}).$$

故 ♂ 是正交变换. 习题得证.

1.2 6月1日布置的作业

1.2.1 教材习题 P221-222:15,18(3)(4), P244:1,2

习题 5 (教材习题 P221:15). 设

$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{pmatrix}.$$

求正交矩阵 P, 使 $P^{-1}AP$ 为对角矩阵. 由此求 A^k , k 是正整数.

解. 首先计算 **A** 的特征多项式: $|\lambda I - A| = (\lambda - 5)(\lambda - 2)(\lambda + 1)$. 可以求得 **A** 的特征值为 5, 2, -1. 再分别解线性方程组 (5I - A)x = 0, (2I - A)x = 0, (-I - A)x = 0, 它们的一个解分别为 $x_1 = (1, -2, 2)^T$, $x_2 = (2, -1, -2)^T$, $x_3 = (2, 2, 1)^T$. 再进行归一化:

$$e_1 = \frac{x_1}{\|x_1\|} = \frac{1}{3}(1, -2, 2)^{\mathrm{T}}, e_2 = \frac{x_2}{\|x_2\|} = \frac{1}{3}(2, -1, -2)^{\mathrm{T}}, e_3 = \frac{x_3}{\|x_3\|} = \frac{1}{3}x_3 = (2, 2, 1)^{\mathrm{T}}.$$

只要我们令正交矩阵

$$\mathbf{P} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix},$$

就可以得到 $P^{-1}AP = diag(5, 2, -1)$. 从而

$$\begin{aligned} \boldsymbol{A}^k &= \left(\boldsymbol{P} \operatorname{diag}(5, 2, -1) \boldsymbol{P}^{-1} \right)^k \\ &= \boldsymbol{P} \operatorname{diag}(5^k, 2^k, (-1)^k) \boldsymbol{P}^{-1} \\ &= \frac{1}{9} \begin{pmatrix} 5^k + 4 \cdot 2^k + 4 \cdot (-1)^k & -2 \cdot 5^k - 2 \cdot 2^k + 4 \cdot (-1)^k & 2 \cdot 5^k - 4 \cdot 2^k + 2 \cdot (-1)^k \\ -2 \cdot 5^k - 2 \cdot 2^k + 4 \cdot (-1)^k & 4 \cdot 5^k + 2^k + 4 \cdot (-1)^k & -4 \cdot 5^k + 2 \cdot 2^k + 2 \cdot (-1)^k \\ 2 \cdot 5^k - 4 \cdot 2^k + 2 \cdot (-1)^k & -4 \cdot 5^k + 2 \cdot 2^k + 2 \cdot (-1)^k & 4 \cdot 5^k + 4 \cdot 2^k + (-1)^k \end{pmatrix}. \end{aligned}$$

习题 6 (教材习题 P221: 18(3)(4)). 求正交矩阵 T, 使 $T^{-1}AT$ 为对角矩阵.

(3)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 4 \\ 2 & -2 & 2 \\ 4 & 2 & 1 \end{pmatrix};$$
 (4) $\mathbf{A} = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 1 \end{pmatrix}.$

解. (3) 特征多项式为 $|\lambda I - A| = (\lambda - 6)(\lambda + 3)^2$. 特征值为 $\lambda_1 = 6(-1)$, $\lambda_2 = -3(-1)$. 特征值 $\lambda_1 = 6$ 对应线性无关的特征向量 $x_1 = (2, 1, 2)^T$, 特征值 $\lambda_2 = -3$ 对应线性无关的特征向量 $x_2 = (1, -2, 0)^T$, $x_3 = (0, -2, 1)^T$. 由 Gram-Schmidt 正交化可得到

$$\boldsymbol{e}_1 = \frac{\boldsymbol{x}_1}{\|\boldsymbol{x}_1\|} = \frac{1}{3}(2, 1, 2)^{\mathrm{T}}, \boldsymbol{e}_2 = \frac{\boldsymbol{x}_2}{\|\boldsymbol{x}_2\|} = \frac{1}{\sqrt{5}}(1, -2, 0)^{\mathrm{T}},$$
$$\boldsymbol{\beta}_3 = \boldsymbol{x}_3 - \frac{(\boldsymbol{x}_2, \boldsymbol{x}_3)}{(\boldsymbol{x}_3, \boldsymbol{x}_3)} \boldsymbol{x}_2 = \frac{1}{5}(-4, -2, 5)^{\mathrm{T}}, \boldsymbol{e}_3 = \frac{\boldsymbol{\beta}_3}{\|\boldsymbol{\beta}_3\|} = \frac{1}{3\sqrt{5}}(-4, -2, 5)^{\mathrm{T}}.$$

令正交矩阵

$$T = (e_1, e_2, e_3) = \begin{pmatrix} \frac{2}{3} & \frac{1}{\sqrt{5}} & -\frac{4}{3\sqrt{5}} \\ \frac{1}{3} & -\frac{2}{\sqrt{5}} & -\frac{2}{3\sqrt{5}} \\ \frac{2}{3} & 0 & \frac{5}{3\sqrt{5}} \end{pmatrix},$$

则 $T^{-1}AT = diag(6, -3, -3).$

(4) 特征多项式为 $|\lambda \mathbf{I} - \mathbf{A}| = (\lambda - 5)(\lambda - 2)(\lambda + 1)$. 特征值为 $\lambda_1 = 5, \lambda_2 = 2, \lambda_3 = -1$. 分别对应特征向量 $\mathbf{x}_1 = (2, -2, 1)^T, \mathbf{x}_2 = (2, 1, -2)^T, \mathbf{x}_3 = (1, 2, 2)^T$. 归一化得

$$\boldsymbol{e}_1 = \frac{1}{3}\boldsymbol{x}_1 = (2, -2, 1)^{\mathrm{T}}, \boldsymbol{e}_2 = \frac{1}{3}(2, 1, -2)^{\mathrm{T}}, \boldsymbol{e}_3 = \frac{1}{3}(1, 2, 2)^{\mathrm{T}}.$$

令正交矩阵

$$T = (e_1, e_2, e_3) = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix},$$

则 $T^{-1}AT = \text{diag}(5, 2, -1).$

习题 7 (教材习题 P244:1). 将下列二次型表示成矩阵形式:

(i)
$$Q(x_1, x_2, x_3) = -x_1^2 + x_2^2 + 2x_3^2 + 4x_1x_2 + 3x_1x_3 + 4x_2x_3$$
;

(ii)
$$Q(x_1, x_2, x_3) = 2x_1^2 + 2x_1x_2 - x_2x_3$$
;

(iii)
$$Q(x_1, x_2, x_3, x_4) = x_1x_2 + 3x_1x_3 + 5x_1x_4 + 6x_2x_3 + 7x_2x_4 + 10x_3x_4$$
;

(iv)
$$Q(x_1, x_2, \dots, x_n) = \sum_{i=1}^{n-2} (x_i - x_{i+2})^2$$
.

M. (i)
$$Q(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} -1 & 2 & \frac{3}{2} \\ 2 & 1 & 2 \\ \frac{3}{2} & 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
;

(ii)
$$Q(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & -\frac{1}{2} \\ 0 & -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix};$$

(iii)
$$Q(x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, x_4) \begin{pmatrix} 0 & \frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\ \frac{1}{2} & 0 & 3 & \frac{7}{2} \\ \frac{3}{2} & 3 & 0 & 5 \\ \frac{5}{2} & \frac{7}{2} & 5 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix};$$

(iv) 当 n > 3 时,

$$Q(x_{1}, x_{2}, \dots, x_{n}) = (x_{1}, x_{2}, \dots, x_{n}) \begin{pmatrix} 1 & 0 & -1 & & & \\ 0 & 1 & 0 & -1 & & & \\ -1 & 0 & 2 & \ddots & \ddots & & \\ & -1 & \ddots & \ddots & \ddots & -1 & & \\ & & \ddots & \ddots & 2 & 0 & -1 \\ & & & -1 & 0 & 1 & 0 \\ & & & & -1 & 0 & 1 \end{pmatrix}_{n \times n} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix};$$

当 n=3 时,

$$Q(x_1, x_2, x_3) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

5

习题 8 (教材习题 P244:2). 写出下列对称矩阵对应的二次型:

(i)
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 5 \\ 3 & 2 & 6 \\ 5 & 6 & 4 \end{pmatrix}$$
; (ii) $\mathbf{A} = \begin{pmatrix} a & b & 0 \\ b & a & b \\ 0 & b & a \end{pmatrix}$;

(iii)
$$\mathbf{A} = \begin{pmatrix} 0 & -1 & 2 & -3 \\ -1 & 0 & 3 & -2 \\ 2 & 3 & 0 & 2 \\ -3 & -2 & 2 & 0 \end{pmatrix}$$
.

M. (i) $Q(x_1, x_2, x_3) = x_1^2 + 2x_2^2 + 4x_3^2 + 6x_1x_2 + 10x_1x_3 + 12x_2x_3$;

- (ii) $Q(x_1, x_2, x_3) = ax_1^2 + ax_2^2 + ax_3^2 + 2bx_1x_2 + 2bx_2x_3$;
- (iii) $Q(x_1, x_2, x_3, x_4) = -2x_1x_2 + 4x_1x_3 6x_1x_4 + 6x_2x_3 4x_2x_4 + 4x_3x_4$.

1.2.2 补充习题 4,5,6

习题 9 (补充习题 4). 设 $W = \langle w_1, \dots, w_n \rangle$ 是欧氏空间 V 的一个子空间.

(i) 证明向量 $z \in V$ 属于 W^{\perp} 的充要条件是 z 与生成 W 的任一向量 w_i 都正交.

- (ii) 证明 W^{\perp} 是 V 的一个子空间.
- (iii) 证明 $V = W \oplus W^{\perp}$, 即, $W \cap W^{\perp} = \{0\}$, 且对任意的 $z \in V$, 都存在 $z_1 \in W$ 以及 $z_2 \in W^{\perp}$ 使得 $z = z_1 + z_2$.

证明. ¹

- (i) 根据定义,我们可以知道 $W^{\perp} = \{z \in V : z \perp w, \forall w \in W\}$. 必要性显然,下面仅证明充分性. 设 z 与生成 W 的任一向量 w_i 都正交. 则对任意 $w \in W$, w 可以被 w_1, \dots, w_p 线性表示: $w = \sum_{i=1}^p \lambda_i w_i$. 所以由 z 与任一 w_i 正交可得 z 与 $w = \sum_{i=1}^p \lambda_i w_i$ 正交. 因此, $z \in W^{\perp}$.
- (ii) 任取 $z_1, z_2 \in W^{\perp}, \lambda_1, \lambda_2 \in \mathbb{R}$. 于是对每一个 $w \in W$, 都有 $z_1 \perp w, z_2 \perp w$, 从而 $(\lambda_1 z_1 + \lambda_2 z_2) \perp w$. 故 $\lambda_1 z_1 + \lambda_2 z_2 \in W^{\perp}$. 因此, W^{\perp} 是 V 的一个子空间.
- (iii) 显然 $\mathbf{0} \in W \cap W^{\perp}$. 此外, 任取 $\mathbf{x} \in W \cap W^{\perp}$, 则 $\mathbf{x} \perp \mathbf{x}$, 即 $(\mathbf{x}, \mathbf{x}) = 0$, 故必有 $\mathbf{x} = \mathbf{0}$. 因 此 $W \cap W^{\perp} = \{\mathbf{0}\}$. 现在考虑任意的 $\mathbf{z} \in V$. 我们取 W 的一组标准正交基 $\mathbf{e}_1, \dots, \mathbf{e}_r$. 令

$$z_1 = \sum_{i=1}^r (z, e_i) e_i \in W, \quad z_2 = z - z_1.$$

¹设 W 是欧氏空间 V 的一个子空间. 如果向量 $z \in V$ 与 W 中的任意向量都正交, 则称 z 正交于 W. V 中与 W 正交的向量的全体称为 W 的正交补, 并记作 W^{\perp} .

于是对 $j = 1, \dots, r$, 有

$$(z_2, e_j) = \left(z - \sum_{i=1}^r (z, e_i)e_i, e_j\right) = (z, e_j) - \sum_{i=1}^r (z, e_i)(e_i, e_j) = (z, e_j) - (z, e_j) = 0.$$

这说明 z_2 与 W 的这组标准正交基正交. 由 (i) 可得 $z_2 \in W^{\perp}$. 于是上面构造的 z_1, z_2 即为所求.

习题 10 (补充习题 5). 设 $A \in m \times n$ 的实矩阵, 在标准内积下, 验证 A 的行空间的正交补是 A 的零空间 $(\mathbb{P} \{x \in \mathbb{R}^n : Ax = 0\})$.

证明. 设 A 的所有行向量为 $\alpha_1^{\mathrm{T}}, \dots, \alpha_m^{\mathrm{T}}$. 于是

$$\langle \boldsymbol{\alpha}_{1}, \cdots, \boldsymbol{\alpha}_{m} \rangle^{\perp} = \left\{ \boldsymbol{x} \in \mathbb{R}^{n \times 1} : \boldsymbol{\alpha}_{1}^{\mathrm{T}} \boldsymbol{x} = 0, \cdots, \boldsymbol{\alpha}_{m}^{\mathrm{T}} \boldsymbol{x} = 0 \right\}$$

$$= \left\{ \boldsymbol{x} \in \mathbb{R}^{n \times 1} : \begin{pmatrix} \boldsymbol{\alpha}_{1}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{\alpha}_{m}^{\mathrm{T}} \end{pmatrix} \boldsymbol{x} = \boldsymbol{0} \right\}$$

$$= \left\{ \boldsymbol{x} \in \mathbb{R}^{n \times 1} : \boldsymbol{A} \boldsymbol{x} = \boldsymbol{0} \right\}.$$

这就说明 A 的行空间的正交补是 A 的零空间.

习题 11 (补充习题 6). 若 W 是有限维欧氏空间 V 的一个子空间, 证明 V 中的任意一个向量 y 都可以唯一地表示为 $y=\hat{y}+z$, 其中 \hat{y} 属于 W, 而 z 属于 W^{\perp} . 事实上, 如果 $\{w_1,\cdots,w_p\}$ 是 W 的一组正交的基, 那么

$$\hat{\mathbf{y}} = \sum_{i=1}^{p} \frac{(\mathbf{y}, \mathbf{w}_i)}{(\mathbf{w}_i, \mathbf{w}_i)} \mathbf{w}_i,$$

而 $z = y - \hat{y}$.

证明. 由习题 9, 我们知道 $V = W \oplus W^{\perp}$. 参考教材章节 5.7.3 子空间的直和, V 中的任意 一个向量 y 都可以唯一地表示为 $y = \hat{y} + z$, 其中 $\hat{y} \in W$, 而 $z \in W^{\perp}$. 本题中的 \hat{y}, z 与习题 9 中的 z_1, z_2 本质上是一样的, 此处不再赘述.