Teoretyczne podstawy informatyki

zadanie 37

Jarosław Socha

15 kwietnia 2024

1 Treść zadania

Zadanie 37

Zdefiniuj funkcję Fib : $N \to N$ obliczającą n-tą liczbę Fibbonaciego jako arytmetyczną funkcję rekurencyjną.

2 Rozwiązanie

Aby stworzyć taką funkcję potrzebujemy dwóch funkcji pomocniczych. Weźmy ciąg $(x) = (x_0, x_1, ..., x_{n-1})$. Dla takiego ciągu mamy dwie funkcje:

- lh(x) = n funkcja zwraca długość ciągu
- $(x)_i = x_i$, $\forall i < n$ funkcja zwraca i-ty element ciągu dla poprawnych wartości i, dla pozostałych zwraca cokolwiek

Z formalnego punktu widzenia powyższe funkcje nie przyjmują jako argument ciągu, a liczbę. Dla każdego ciągu (x) istnieje liczba x, dla której te funkcje dają odpowiednie wyniki. Jeśli istnieje więcej niż jedna taka liczba to możemy wziąć dowolną, więc bierzemy najmniejszą.

$$(x) \sim x = \min_{x} (lh(x) = n \land \forall_{i < n}(x)_i = x_i)$$

Aby stworzyć funkcję zwracającą n-tą liczbę Fibbonaciego, na początku stworzymy ciąg Fibbonaciego o pierwszych n elementach (Fib_n) , a następnie weźmiemy jego n-ty element.

$$Fib(n) = (Fib_n)_n = \left(\min_x (lh(x) = n \land \forall_{i < n} (x)_i = (Fib_n)_n)\right)_n$$

Warunek dla ciągu $\forall_{i < n}(x)_i = (Fib_n)_n$ można zapisać rekurencyjnie jako $(x)_0 = 0 \land (x)_1 = 1 \land \forall_{i < n}(x)_{i+2} = (x)_{i+1} + (x)_i$. Otrzymamy wtedy

$$Fib(n) = \left(\min_{x} (lh(x) = n + 2 \land (x)_0 = 0 \land (x)_1 = 1 \land \forall_{i < n} (x)_{i+2} = (x)_{i+1} + (x)_i\right)_n$$

TPI zadanie 37 Jarosław Socha

Definicja ta zadziała dla wszystkich liczb n>1. Dla n=1 warunek liczby fibbonaciego musi mieć przynajmniej 3 liczby w ciągu, stąd zwiększyliśmy ciąg do długości n+2 (lh(x)=n+2). Dla n=0 warunek nawet nie będzie sprawdzony. Tym samym otrzymamy liczby 0,1,1,2,3...