CHAPTER 2

TRANSMISSION MEDIA

2.0 OBJECTIVES

At the end of this chapter, you should be able to:

- Identify the different types of wired (guided) and wireless (unguided) transmission media.
- Identify the different characteristics of wired (guided) and wireless (unguided) transmission media.

2.1 INTRODUCTION

- located below the physical layer and are directly controlled by the physical layer.
- anything carry information from a source to a destination.
- 2 categories WIRED and WIRELESS

Figure 2.1: Transmission medium and physical layer

- > computers and other telecommunication devices use signals to represent data.
- These signals are transmitted from one device to another in the form of electromagnetic energy, which is propagated through transmission media.
- 2 major categories of transmission media:
 - Wired or Conducted or Guided Media (1869).
 - Use a conductor such as a wire to move the signal from sender to receiver.
 - Has a physical boundaries.
 - E.g.: Twisted-pair, coaxial cable, fiber-optic cable.

2. Wireless or Unguided Media (1895).

- Use radio waves of different frequencies and do not need a wire or cable conductor to transmit signal.
- Has no physical boundaries.
- Radio, microwave & Infrared

Figure 2.2: Categories of Transmission media

2.2 GUIDED MEDIA: WIRED TRANSMISSION

2.21 TWISTED PAIR CABLE

Figure 2.3: Transmission medium and physical layer

Physical Description:

- Consists of **TWO** insulated copper wires arranged in regular spiral pattern to minimize the electromagnetic interference between adjacent pairs.
- Often used at customer facilities and also over distances to carry voice as well as data communications.
- Function of spiral: to minimize/reduce EMI

Physical Description (continue):

- Low frequency transmission media.
- Shielded twisted pair is added with foil shield to reduce interference and crosstalk.
- Two types of twisted-pair cable:

i. STP (Shielded Twisted Pair):

* The pair is wrapped with metallic foil or braid to insulate the pair from electromagnetic interference.

ii. UTP (Unshielded Twisted Pair):

* Each wire is insulated with plastic wrap, but the pair is encased in an outer covering.

Figure 2.4: UTP and STP

Twisted Pair Cable

Category	Specification	Data Rate (Mbps)	Use
1	Unshielded twisted-pair used in telephone	< 0.1	Telephone
2	Unshielded twisted-pair originally used in T lines	2	T-1 lines
3	Improved CAT 2 used in LANs	10	LANs
4	Improved CAT 3 used in Token Ring networks	20	LANs
5	Cable wire is normally 24 AWG with a jacket and outside sheath	100	LANs

Category	Specification	Data Rate (Mbps)	Use
5E	An extension to category 5 that includes extra features to minimize the crosstalk and electromagnetic interference	125	LANs
6	A new category with matched components coming from the same manufacturer. The cable must be tested at a 200-Mbps data rate.	200	LANs
7	Sometimes called SSTP (shielded screen twisted-pair). Each pair is individually wrapped in a helical metallic foil followed by a metallic foil shield in addition to the outside sheath. The shield decreases the effect of crosstalk and increases the data rate.	600	LANs

Table 2.1 Categories of unshielded twisted-pair cables

RJ-45 Male

Figure 2.5: UTP Connector

Transmission Characteristics:

- Can transmit both analog and digital signals.

Disadvantages

- Relatively low bandwidth
- Susceptible to interference and noise.
- Attenuation problem & Near End Cross Talk (NEXT).
 - For analog, amplifier is needed every 5 6 km.
 - For digital, repeater is needed every 2 3 km.

Advantages

- Inexpensive and readily available.
- Flexible and light weight.
- Easy to work with and install.

Application:

- RESEARCH by STUDENTS

2.22 COAXIAL CABLE (COAX)

Figure 2.6 : Coaxial Cable

- Has an inner conductor surrounded by a braided mesh.
- Both conductors share a common center axial, hence the term "co-axial".

Coaxial Cable

Figure 2.7: BNC Connector

Advantages

- Higher bandwidth; 400 to 600 MHz.
- Much less susceptible to interference than twisted pair.
- Better noise immunity.

Disadvantages

- High attenuation rate makes it expensive over long distance.
- Heavy
- Hard to install

- Application:
- RESEARCH by STUDENTS

2.23 OPTICAL FIBER CABLE

- Consists of three concentric section.

Fiber Construction

Figure 2.9: Fiber-optic cable connectors

Propagation Modes

Figure 2.10: Fiber-optic Propagation Modes

Multimode

Multimode is so named because **multiple beams** from a light source move through the core in different paths.

Single-Mode

Single-mode uses step-index fiber and a highly focused source of light that limits beams to a small range of angles, all close to the horizontal.

The **single-mode fiber** itself is manufactured with a much smaller diameter than that of multimode fiber, and with substantially lower density (index of refraction).

- **Multimode** types:

a. Multimode Step-Index Fiber (Constant Density)

- * The core density is constant and the light beam changes direction suddenly at the interface between the core and the cladding.
- * Step index: the suddenness of this change
- * The reflective walls of the fiber move the light pulses to the receiver.

a. Multimode, step index

b. Multimode Graded-Index Fiber (Varying Density)

- * The core density decreases with distance from the center. This causes a curving of the light beams.
- * Acts to refract the light toward the centre of the fiber by variations in the density.

b. Multimode, graded index

- Single-mode Fiber

- An optical fiber with an extremely small diameter (diameter of 8.3 to 10 microns)that limits beams to a few angles, resulting in an almost horizontal beam.
- The light is guided down the centre on an extremely narrow core.

Transmission Characteristics:

- Use light wave: require a light source with injection laser diode (ILD) or light-emitting diodes (LED) technology.

ADVANTAGES

- Greater bandwidth
- Smaller size and lighter weight.
- Lower attenuation.
- Immunity to electromagnetic interference.
- Highly secure due to tap difficulty and lack of signal radiation.
- Resistance to corrosive materials.

DISADVANTAGES

- Requires highly skilled installers.
- Adding additional nodes is difficult.
- Expensive over short distance.
- fragile
- Unidirectional light propagation.

Application:

- RESEARCH by STUDENTS

2.3 UNGUIDED MEDIA: WIRELESS

- Wireless transmission involves electromagnetic waves & not require any physical connection.
- Appropriate for long distance transmission.
- Transmission and reception are achieved by means of an antenna:

i. Directional (point-to-point):

- Transmitting antenna puts out focused beam.
- Transmitter and receiver must be aligned.

ii. Omni-directional (broadcast):

Signal spreads out in all directions & can be received by many antennas.

Figure 2.10: Electromagnetic spectrum for wireless communication

2.31 PROPAGATION

Unguided signals can travel from the source to the destination in several ways:

- ➤ Ground propagation,
- Sky propagation,
- Line-of-sight propagation

2.32 RADIO WAVES

- Electromagnetic waves LOW/MEDIUM frequencies between 3 kHz and 1 GHz
- Omnidirectional
- Sending and receiving antennas do not have to be aligned
- Propagate in the sky mode (Susceptible to interference)
- Suitable for long-distance broadcasting
- Penetrate walls
- Used for multicast communications, such as AM radio and television, and paging systems.

2.33 MICROWAVE

- frequencies between 1 and 300 GHz
 - unidirectional
 - sending and receiving antennas need to be aligned
 - propagation line-of-sight
 - Very high-frequency microwaves cannot penetrate walls.
 - microwave band is relatively wide, almost 299
 GHz.
 - wider subbands can be assigned, and a high data rate is possible.

Physical Description:

- Transmitter is a parabolic dish, mounted as high as possible (10 feet in diameter).
- Requires unobstructed line of sight between source and receiver.

Figure 2.11: Microwave Transmission

- ➤ Microwaves need unidirectional antennas that send out signals in one direction.
- Two types of antennas are used for microwave communications: the parabolic dish and the horn.

Figure 2.12 : Unidirectional Antenna

- Microwaves antennas are usually located at substantial heights above ground level in order to extend range between antennas and to eliminate physical barrier
- Curvature of the earth requires stations (called repeaters) to be ~30 –50 miles apart.

Transmission Application:

RESEARCH by students

Example of Microwave application: SATELLITE COMMUNICATION

Physical Description:

- A communication satellite is, in effect, a microwave relay station in space.
- It uses to link two or more ground-based microwave transmitter or receiver.

- Can relay signals over long distances.
- Satellite Transmission Process:

- Earth stations communicate by sending signals to the satellite on uplink.
- The satellite then repeats those signals on a downlink.
- The broadcast nature of the downlink makes it attractive for services such as the distribution of television programming.

Uplink: The communication going from ground to a satellite Downlink: The communication going from a satellite to ground

- **Geostationary satellites**: Remain above the equator at a height of 22,300 miles (geosynchronous orbit) which travel around the earth in exactly the time the earth takes to rotate.

2.34 INFRARED

- ☐ Infrared communication is achieved using transmitter/receiver (transceiver) that modulate non-coherent infrared light.
- used for short-range communication.
- having high frequencies, cannot penetrate walls
- ☐ interference between one system and another.
- ☐ Transceiver must be in line of sight of each other, either directly or reflection from light colored surface.
- ☐ the sun's rays contain infrared waves that can interfere with the communication.

Infrared

2.3.1 GUIDED MEDIA IMPAIRMENTS

Attenuation:

- Refers to loss of signal strength (amplitude decreases) as signal travels along the transmission medium.

Distortion:

- Signal changes its form or shape.

Noise:

 Unwanted electromagnetic energy inserted somewhere between transmission and reception.

Noise:

Categories of noise:

i. Thermal noise

- Due to thermal as in electron movement in a conductor.
- Cannot be avoided.

ii. Crosstalk

 Caused by unwanted electrical coupling between adjacent line.

iii. Impulse noise

- Caused by impulses of high electrical energy associated with external activities in short period.
- Example: lightning discharge.

iv. Induced noise

Comes from sources such as motors and appliances.

2.3.2 UNGUIDED MEDIA IMPAIRMENTS

Free-Space Loss:

- Signal disperse with distance. Therefore will receive less signal power from the transmitting antenna.

Atmospheric Absorption:

- Atmospheric absorption [water vapor (rain, fog) and oxygen contributes to most attenuation].

Refraction:

 Radio wave refracted when they propagate through atmosphere.

Multipath:

- Multiple copies of signal are received by the receiver as signal may propagate through several paths with delays from reflected signal waves.

Thermal noise:

Thermal activities of devices and media.