

Tumor Detection From Histopathological Slides

Names: Srila Maiti, Justin To, Hector Rincon, Chenyu Wang and Ifrah Javed

Overview

RESEARCH QUESTION

Motivation and Problem Statement

ALGORITHM

Proposed Approach and Baseline Model

Research Question

Motivation and Problem Statement

Background

Can we identify the presence of metastatic tumor from histopathological slides?

Dataset

Data Source, EDA and Transformations

Data

- Working with image data of pathological cells for cancer detection
- A version of the PCAM data set (https://github.com/basveeling/pcam)
- Cleaned from duplicates by Kaggle for the <u>Histopathologic Cancer Detection competition</u>
- Dataset contains 277,483 total images (220,025 train / 57,458 test)
- Positive label: center 32x32px (out of 96x96 image) region of a patch contains at least one pixel of tumor tissue

[1] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, M. Welling. "Rotation Equivariant CNNs for Digital Pathology". <u>arXiv:1806.03962</u>

[2] Ehteshami Bejnordi et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA: The Journal of the American Medical Association, 318(22), 2199–2210. doi:iama.2017.14585

Data

There is a slight class imbalance between the positive and negative labels in the train data. To remediate this, we will undersample from the negative label class

Data Preprocessing

- Images were:
 - Converted to grayscale
 - Resized randomly
 - Standardized brightness
 - Standardized contrast
 - o Rotated 90, 180, and 270 degrees
 - Randomly flipped
- In the train data there are:
 - 130,908 negative (59.5%)
 - 89,117 positive examples (40.5%)
- We will use a 60/20/20 split (train, validation, test)

Algorithm

Proposed Approaches

Logistic regression

CNN

Algorithm: Logistic Regression

<u>Problem category</u>: Image Classification.

Output y: 0 or 1 (indicating whether there is at least one pixel of tumor tissue)

Input x: $32*32 \rightarrow 1024$ total pixel.

Loss function: for logistic regression:

$$-rac{1}{|Y|}\sum_{y_i\in Y}y_ilog(\hat{y}_i)+(1-y_i)log(1-\hat{y}_i)$$

Algorithm: Convolutional Neural Network (CNN)

Test Accuracy is 81.8% in the initial run.

Evaluation

Metrics

Model Evaluation

As the task is one of classification...

Overall metric

- AUC under ROC
- general sense of model effectiveness
- yet to cater for use case
- Baseline: 50% (given lack of context)

False Positive Rate

Model Evaluation

As the task is one of classification...

Overall metric

- AUC under ROC
- general sense of model effectiveness
- yet to cater for use case
- Baseline: 50% (given lack of context)

Additional metrics

- Confusion matrix
- **Precision, recall**: for specific use cases
- F1, MCC: balanced estimate

	Positive	Negative
Positive	True Positives	False Positives
Negative	False Negatives	True Negatives

Predicted

Model Evaluation

As the task is one of classification...

Overall metric

- AUC under ROC
- general sense of model effectiveness
- yet to cater for use case
- Baseline: 50% (given lack of context)

Additional metrics

- Confusion matrix
- **Precision, recall**: for specific use cases
- **F1, MCC**: balanced estimates

Validation

- k-fold cross validation
- stretch goal: subject to computation time

	Positive	Negative
Positive	True Positives	False Positives
Negative	False Negatives	True Negatives

Predicted

Thank You

Questions?