第七节 二阶常系数齐次线性微分方程

习 题 12-7

1. 求下列微分方程的通解:

- (1) y'' + 2y' 3y = 0;
- $(2) \quad \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + \frac{\mathrm{d}x}{\mathrm{d}t} = 0 \; ;$
- (3) y'' + 4y = 0;
- (3) y'' 6y' + 9y = 0;
- (5) y'' + 2y' + 5y = 0;
- (6) $y'' + 2ay' + b^2y = 0 \ (b > a > 0);$
- (7) y''' 3y'' + 9y' + 13y = 0; (8) $y^{(4)} y = 0$;
- (9) $y^{(5)} + 3y^{(4)} + 3y''' + y'' = 0;$ (10) $y^{(4)} + 2y'' + y = 0.$

解 (1) 特征方程为

$$r^2 + 2r - 3 = 0$$
,

其根为 $r_1=1$, $r_2=-3$, 所以微分方程的通解为

$$y = C_1 e^{-3x} + C_2 e^x.$$

(2) 特征方程为

$$r^2 + r = 0$$
.

其根为 $r_1=0$, $r_2=-1$, 所以微分方程的通解为

$$x = C_1 + C_2 e^{-t}$$
.

(3) 特征方程为

$$r^2 + 4 = 0$$
,

其根为 $r_1 = 2i$, $r_2 = -2i$, 所以微分方程的通解为

$$y = C_1 \cos 2x + C_2 \sin 2x.$$

(4) 特征方程为

$$r^2 - 6r + 9 = 0$$
,

其根为 $r_{1,2}=3$, 所以微分方程的通解为

$$y = (C_1 + C_2 x)e^{3x}$$
.

(5) 特征方程为

$$r^2 + 2r + 5 = 0$$
,

其根为 $r_1 = -1 + 2i$, $r_2 = -1 - 2i$, 所以微分方程的通解为

$$y = e^{-x} (C_1 \cos 2x + C_2 \sin 2x).$$

(6) 特征方程为

$$r^2 + 2ar + b^2 = 0$$
,

其根为 $r_1 = -a + \sqrt{b^2 - a^2}i$, $r_2 = -a - \sqrt{b^2 - a^2}i$, 所以微分方程的通解为

$$y = e^{-ax} (C_1 \cos \sqrt{b^2 - a^2} x + C_2 \sin \sqrt{b^2 - a^2} x).$$

(7) 特征方程为

$$r^3 - 3r^2 + 9r + 13 = 0$$
,

其根为 $r_1 = -1$, $r_2 = 2 + 3i$, $r_3 = 2 - 3i$, 所以微分方程的通解为

$$y = C_1 e^{-x} + e^{2x} (C_2 \cos 3x + C_3 \sin 3x)$$
.

(8) 特征方程为

$$r^4 - 1 = 0$$
,

其根为 $r_1=-1$, $r_2=1$, $r_3=-i$, $r_4=i$, 所以微分方程的通解为

$$y = C_1 e^x + C_2 e^{-x} + C_3 \cos x + C_4 \sin x$$
.

(9) 特征方程为

$$r^5 + 3r^4 + 3r^3 + r^2 = 0$$
.

其根为 $r_{1,2} = 0$, $r_{3,4,5} = -1$, 所以微分方程的通解为

$$y = C_1 + C_2 x + e^{-x} (C_3 + C_4 x + C_5 x^2).$$

(10) 特征方程为

$$r^4 + 2r^2 + 1 = 0$$
,

其根为 $r_{1,2} = i$, $r_{3,4} = -i$ 所以微分方程的通解为

$$y = (C_1 + C_2 x)\cos x + (C_3 + C_4 x)\sin x$$
.

2. 求下列微分方程初值问题的解:

(1)
$$y'' - y = 0$$
, $y|_{x=0} = 0$, $y'|_{x=0} = 1$;

(2)
$$y'' + 4y' + 13y = 0$$
, $y|_{x=0} = 0$, $y'|_{x=0} = 3$;

(3)
$$y'' + 4y' + 4y = 0$$
, $y|_{x=0} = 1$, $y'|_{x=0} = 1$;

(4)
$$y''' + 9y' = 0$$
, $y|_{x=0} = 1$, $y'|_{x=0} = 0$, $y''|_{x=0} = 0$;

(5)
$$y^{(4)} - a^4 y = 0 \ (a > 0), \ y \big|_{x=0} = 1, \ y' \big|_{x=0} = 0, \ y'' \big|_{x=0} = -a^2, \ y''' \big|_{x=0} = 0.$$

解 (1) 特征方程为

$$r^2 - 1 = 0$$
.

其根为 $r_1=1$, $r_2=-1$, 所以微分方程的通解为

$$y = C_1 e^{-x} + C_2 e^x$$
,

将初始条件代入, 得 $C_1 = -\frac{1}{2}$, $C_2 = \frac{1}{2}$, 初值问题的解为

$$y = \frac{1}{2}(e^x - e^{-x}).$$

(2) 特征方程为

$$r^2 + 4r + 13 = 0$$
.

其根为 $r_1 = -2 + 3i$, $r_2 = -2 - 3i$, 所以微分方程的通解为

$$y = (C_1 \cos 3x + C_2 \sin 3x)e^{-2x}$$
,

将初始条件代入, 得 $C_1 = 0$, $C_2 = 1$, 初值问题的解为

$$y = e^{-2x} \sin 3x.$$

(3) 特征方程为

$$r^2 + 4r + 4 = 0$$
,

其根为 $r_{1,2} = -2$,所以微分方程的通解为

$$y = (C_1 + C_2 x)e^{-2x}$$
,

将初始条件代入,得 $C_1 = 1$, $C_2 = 3$,初值问题的解为

$$y = (1 + 3x)e^{-2x}$$
.

(4) 特征方程为

$$r^3 + 9r = 0$$
,

其根为 $r_{1,2}=\pm 3i$, $r_3=0$,所以微分方程的通解为

$$y = C_1 + C_2 \cos 3x + C_3 \sin 3x ,$$

将初始条件代入,得 $C_1 = 1$, $C_2 = 0$, $C_3 = 0$,初值问题的解为

$$y = 1$$
.

(5) 特征方程为

$$r^4 - a^4 = 0$$
,

其根为 $r_{1,2}=\pm a$, $r_{3,4}=\pm ai$, 所以微分方程的通解

$$y = C_1 e^{-ax} + C_2 e^{ax} + C_3 \cos ax + C_4 \sin ax$$
,

将初始条件代入,得 $C_1 = C_2 = C_4 = 0$, $C_3 = 1$,初值问题的解为 $y = \cos ax .$