7. CÁLCULO INTEGRAL (SOLUÇÕES)

7.1. $s_P = 0,213 \text{ e } S_P = 0,487.$

7.2. $s_P = 6,375$.

7.3. *a*)

Figure 4: Gráfico da função $f\left(x\right)=\left(x-4\right)^{2}$.

b) $s_P = 14 \text{ e } S_P = 30.$

7.4. a) c(b-a); b) $\frac{b^2-a^2}{2}$; c) $k\frac{b^2-a^2}{2}$.

7.5. $\frac{1}{3}$.

7.6. e-1.

7.7. a) $\int_{0}^{1} \sqrt{x} dx \ge \int_{0}^{1} x^{3} dx;$

 $b) \int_{0}^{\frac{\pi}{2}} \cos x dx = \int_{0}^{\frac{\pi}{2}} senx dx.$

7.9. a) $f(x) = \frac{e^{\sqrt{x}}}{2}$;

7.10. a) $F'(x) = \frac{e^x + \ln x}{x^2}$;

b) $G'(x) = 6x \ln(3x^2)$;

c) $H'(x) = \frac{1}{x^2} \cos\left(\frac{1}{x}\right)^2 + e^x \cos(e^x)^2$.

7.11. a) $\frac{1}{4}$;

b) 0; $c) +\infty$.

7.12. cf(c).

7.13.

- a) $D_F = \mathbb{R}, \ F(x)$ é monótona crescente em $]-\infty, 2[\ \cup\]4, +\infty[$ e é monótona decrescente em]2,4[,(2,F(2)) é máximo local e (4,F(4)) é mínimo local.
- b) $D_G =]0, +\infty[$ G(x) é monótona decrescente em]0, 1[e é monótona crescente em $]1, +\infty[$, (1,0) é um mínimo local.
- c) $D_H = \mathbb{R}$, H(x) é monótona decrescente em \mathbb{R} e não tem extremos locais.
- $d) \ D_I =]0, +\infty[\ I(x)$ é monótona crescente em $]0, +\infty[$ e não tem extremos locais.

7.14.

a) $\frac{7}{8}$; b) $\frac{4}{3}$; c) $\frac{\pi^2}{32}$; d) 1; e) $\ln \frac{3}{2\sqrt{2}}$;

f) 1, $g(3) = \frac{4}{3}$; $g(3) = \frac{4}{3}$; g(3)

7.15. $\frac{\pi}{6} \le \int_{1}^{\frac{3}{4}} f(x) dx \le \frac{\pi}{3}.$

7.16.

a) $\frac{1}{4} - \frac{3}{4e^2}$;

b) $\frac{3}{5}(e^{\pi}-1);$

c) 1;

d) $\frac{\sqrt{2}}{2} \left(arctg \frac{\sqrt{2}}{2} - arctg \frac{\sqrt{6}}{6} \right);$

 $e) \frac{468}{7};$

 $f) \frac{1}{2} (e^4 - 1),$

g) π ;

h) $2 - \frac{\pi}{2}$; i) $2(\sqrt{2} - 1)$;

 $j) \ arctg \frac{3}{4}$.

- **7.20.** a) 0; b) $2\int_{0}^{1} [g(x)]^{2} dx;$ c) 0; d) 0.