# Log-Gaussian Cox Process for London crime data

Jan Povala

May 3, 2018

### **Outline**

Motivation

Methodology

Results

Current work, Next steps

## Aims and Objectives

- Modelling of crime and short-term forecasting.
- ► Two stages involved:
  - 1. inference what is the underlying process that generated the observations?
  - prediction use the inferred process's properties to forecast future values.

# **Burglary**

# Theft from the person

### **Outline**

Motivation

Methodology

Results

Current work, Next steps

Methodology 6

#### Cox Process

Cox process is a natural choice for an environmentally driven point process (Diggle et al., 2013).

### Definition

Cox process Y(x) is defined by two postulates:

- 1.  $\Lambda(x)$  is a nonnegative-valued stochastic process;
- 2. conditional on the realisation  $\lambda(x)$  of the process  $\Lambda(x)$ , the point process Y(x) is an inhomogeneous Poisson process with intensity  $\lambda(x)$ .

Methodology 7

### Log-Gaussian Cox Process

ightharpoonup Cox process with intensity driven by a Gaussian Process f(x):

$$\Lambda(\boldsymbol{x}) = \exp\left(f(\boldsymbol{x})\right).$$

▶ The latent surface *f* is modelled by placing a GP prior:

$$f(\boldsymbol{x}) \sim \mathcal{GP}(0, k_{\theta}(\cdot, \cdot)).$$

Discretised version of the model over a regular grid on the observation window is:

$$y_i | f(\boldsymbol{x}_i) \sim \text{Poisson}(\exp[f(\boldsymbol{x}_i)]).$$

### Field inference

Given the observations y on the grid X, our goal is to find the distribution of the latent field f:

$$p(\mathbf{f}|\mathbf{y}, X, \boldsymbol{\theta}) = \frac{p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta})p(\mathbf{f}|X, \boldsymbol{\theta})}{p(\mathbf{y}|X, \boldsymbol{\theta})},$$

where

$$p(\mathbf{y}|X, \boldsymbol{\theta}) = \int p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta}) p(\mathbf{f}|X, \boldsymbol{\theta}) d\mathbf{f}$$

which is intractable.

### **Laplace Approximation**

Flaxman et al. (2015)

- ▶ One approach to overcome intractability is *Laplace approximation*.
- ▶ Approximate the posterior distribution of the Gaussian Process by:

$$p(\mathbf{f}|\mathbf{y}, X, \boldsymbol{\theta}) \approx \mathcal{N}\left(\hat{\mathbf{f}}, -\left(\nabla \nabla \Psi(\mathbf{f})|_{\hat{\mathbf{f}}}\right)^{-1}\right),$$

where  $\Psi(\mathbf{f}) := \log p(\mathbf{f}|\mathbf{y}, X, \boldsymbol{\theta}) \stackrel{\text{const}}{=} \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta}) + \log p(\mathbf{f}|X, \boldsymbol{\theta})$  is unormalised log posterior, and  $\hat{\mathbf{f}}$  is the mode of the distribution.

Newton's method to find  $\hat{\mathbf{f}}$ .

Methodology 10

### Hyperparameters - Marginal Likelihood

Flaxman et al. (2015)

- $\triangleright$  Accurate inferences/predictions require knowing  $\theta$ .
- Marginal log-likelihood:

$$\log p(\mathbf{y}|X, \boldsymbol{\theta}) = \log \int \exp \left[\Psi(\mathbf{f})\right] d\mathbf{f}$$

$$\approx \log p(\mathbf{y}|\hat{\mathbf{f}}) - \frac{1}{2} \mathbf{f}^{\top} \boldsymbol{K}^{-1} \mathbf{f} - \frac{1}{2} \log |\boldsymbol{I} + \boldsymbol{K} \boldsymbol{W}|,$$

where  $K_{ij} = k_{\theta}(\boldsymbol{x}_i, \boldsymbol{x}_j)$  describes covariance between pairwise locations, and  $\boldsymbol{W} \coloneqq -\nabla\nabla \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta})$ .

Methodology 11

### Computation I

Flaxman et al. (2015)

- ▶ The calculations above require  $\mathcal{O}(n^3)$  operations and  $\mathcal{O}(n^2)$  space.
- ▶ Cheaper linear algebra available if separable kernel functions are assumed, e.g. in D=2 dimensions:

$$k((x_1, x_2), (x'_1, y'_2)) = k_1(x_1, x'_1)k_2(x_2, x'_2)$$

implies that  $K = K_1 \otimes K_2$ .

▶ Determinant approximation due to Fiedler (1971):

$$\log |\boldsymbol{I} + \boldsymbol{K} \boldsymbol{W}| = \log (|\boldsymbol{K} + \boldsymbol{W}^{-1}||\boldsymbol{W}|)$$

$$\leq \log \left\{ \prod_{i} (e_i + W_{ii}^{-1}) \prod_{i} W_{ii} \right\}$$

$$= \sum_{i} \log (1 + e_i W_{ii}),$$

where  $e_1, \ldots, e_n$  are sorted eigenvalues of K.

### Computation II

Flaxman et al. (2015)

Applying the above properties, the inference and predictions can be computed using  $\mathcal{O}\Big(Dn^{\frac{D+1}{D}}\Big)$  operations and  $\mathcal{O}\Big(Dn^{\frac{2}{D}}\Big)$  space thanks to:

- ▶ Conjugate gradient for solving  $K^{-1}b = x$ , where matrix-vector multiplication is effificent due to Kronecker structure.
- ► Eigendecomposition utilising Kronecker structure.

Methodology 13

### **Outline**

Motivation

Methodology

### Results

Current work, Next steps

## **Experiment**

Spatial model with isotropic Matérn covariance function:

- ▶ Dataset used: 2016 data
- ► Crime types: Burglary, Theft from the person
- ▶ Grid: 117x91, one cell is an area of 500m by 500m.
- Missing locations were treated as imaginary with a special noise model.
- ▶ Two hyperparameters inferred: lengthscale( $\ell$ ), marginal variance ( $\sigma^2$ )

## Burglary - inferred hyperparameters

Inferred hyperparameters:  $\ell = 1.41$ , and  $\sigma^2 = 4.16$ 



# **Burglary** - counts



# Burglary - latent field



## Theft from the person - inferred hyperparameters

Inferred hyperparameters:  $\ell = 1.16$ , and  $\sigma^2 = 3.84$ 



# Theft from the person - counts



# Theft from the person - latent field



#### Comments

- ► The inference confirmed that number of occurences in a cell influences neighbouring locations.
- ► The process driving Burglary is 'smoother' than the process driving Theft from the person.

### **Outline**

Motivation

Methodology

Results

Current work, Next steps

### Forecasting

The domain will now be  $X_1 \times X_2 \times T$  and the kernel will be of the form

$$k((x_1, x_2, t), (x'_1, y'_2, t')) = k_1(x_1, x'_1)k_2(x_2, x'_2)k_t(|t - t'|)$$

with  $k_1(\cdot,\cdot)$ ,  $k_2(\cdot,\cdot)$  as before and  $k_t(\cdot)$  as one of the below:

► A kernel with period of 12 months for seasonal variation (Flaxman, 2014):

$$k_t(\tau) = \exp\left(-\frac{2\sin^2\left(\frac{\tau\pi}{12}\right)}{\ell^2}\right)$$

ightharpoonup Spectral mixture kernel with Q components (Flaxman et al., 2015):

$$k_t(\tau) = \sum_{q=1}^{Q} w_q \exp\left(-2\pi^2 \tau^2 v_q\right) \cos\left(2\pi\tau\mu_q\right)$$

### Stochastic PDEs

Another computationally tractable, and more mechanistic, approach is describing the latent Gaussian field using stochastic PDEs:

- ► Finite Element Method to solve SPDEs as described in Lindgren, Rue, and Lindström (2011).
- Sigrist, Künsch, and Stahel (2015) solve transport-diffusion SPDE using spectral methods on a grid.

### Bibliography I



Fiedler, Miroslav (1971). "Bounds for the Determinant of the Sum of Hermitian Matrices". In: *Proceedings of the American Mathematical Society* 30.1, p. 27. ISSN: 00029939. DOI: 10.2307/2038212. URL: http://www.jstor.org/stable/2038212?origin=crossref.

Flaxman, Seth et al. (2015). "Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods". In: Proceedings of the 32nd International Conference on International Conference on Machine Learning. Vol. 37. ICML'15. Lille, France: JMLR.org, pp. 607–616.

Bibliography 26

## Bibliography II

- Flaxman, Seth R. (2014). A General Approach to Prediction and Forecasting Crime Rates with Gaussian Processes. Tech. rep. Heinz College Technical Report, 2014. URL https://www.ml. cmu. edu/research/dap-papers/dap\_flaxman.pdf.
- Lindgren, Finn, Håvard Rue, and Johan Lindström (2011). "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach". en. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.4, pp. 423–498. ISSN: 1467-9868. DOI: 10.1111/j.1467-9868.2011.00777.x. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.00777.x/abstract.
- Saatçi, Yunus (2012). "Scalable inference for structured Gaussian process models". PhD Thesis. Citeseer.

Bibliography 27

## Bibliography III



Sigrist, Fabio, Hans R. Künsch, and Werner A. Stahel (2015). "Stochastic partial differential equation based modelling of large space-time data sets". en. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 77.1, pp. 3–33. ISSN: 13697412. DOI: 10.1111/rssb.12061. URL: http://doi.wiley.com/10.1111/rssb.12061.



Wilson, Andrew Gordon et al. (2014). "Fast Kernel Learning for Multidimensional Pattern Extrapolation". In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. NIPS'14. Cambridge, MA, USA: MIT Press, pp. 3626–3634. URL: http://dl.acm.org/citation.cfm?id=2969033.2969231.

Bibliography 28

### Matérn Covariance Function

$$k(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{\ell}\right)$$

We fix  $\nu=2.5$  as it is difficult to jointly estimate  $\ell$  and  $\nu$  due to identifiability issues.

Extra slides 29

### Kronecker Algebra

Saatçi (2012)

- ▶ Matrix-vector multiplication  $(\otimes_d \mathbf{A}_d) \mathbf{b}$  in  $\mathcal{O}(n)$  time and space.
- ▶ Matrix inverse:  $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$
- Let  $K_d = Q_d \Lambda_d Q_d^{\top}$  be the eigendecomposition of  $K_d$ . Then, the eigendecomposition of  $K = \otimes_d K_d$  is given by  $Q \Lambda Q^{\top}$ , where  $Q = \otimes_d Q_d$ , and  $\Lambda = \otimes_d \Lambda_d$ . The number of steps required is  $\mathcal{O}\left(Dn^{\frac{3}{D}}\right)$ .

Extra slides 30

### Field inference - Newton Optimisation

Flaxman et al. (2015)

► The Newton optimisation step:

$$\mathbf{f}^{\mathsf{new}} \leftarrow \mathbf{f}^{\mathsf{old}} - (\nabla \nabla \Psi)^{-1} \nabla \Psi.$$

 $\blacktriangleright$   $\nabla\nabla\Psi$  and  $\nabla\Psi$  require inverting the covariance matrix of the GP:

$$\nabla \Psi(\mathbf{f}) = \nabla \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta}) - K^{-1}\mathbf{f}$$
$$\nabla \nabla \Psi(\mathbf{f}) = -\mathbf{W} - \mathbf{K}^{-1},$$

where  $W := -\nabla \nabla \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta})$ .

## Incomplete grids

Wilson et al. (2014)

We have that  $y_i \sim \operatorname{Poisson}(\exp(f_i))$ . For the points of the grid that are not in the domain, we let  $y_i \sim \mathcal{N}(f_i, \epsilon^{-1})$  and  $\epsilon \to 0$ . Hence,

$$p(\mathbf{y}|\mathbf{f}) = \prod_{i \in \mathcal{D}} \frac{\left(e^{\mathbf{f}_i}\right)^{\mathbf{y}_i} e^{-e^{\mathbf{f}_i}}}{\mathbf{y}_i!} \prod_{i \notin \mathcal{D}} \frac{1}{\sqrt{2\pi\epsilon^{-1}}} e^{\frac{-\epsilon(\mathbf{y}_i - \mathbf{f}_i)^2}{2}}$$

The log-likelihood is thus:

$$\sum_{i \in \mathcal{D}} \left[ \mathsf{y}_i \mathsf{f}_i - \exp(f_i) + \mathsf{const} \right] - \frac{1}{2} \sum_{i \notin \mathcal{D}} \epsilon(\mathsf{y}_i - \mathsf{f}_i)^2$$

We now take the gradient of the log-likelihood as

$$\nabla \log p(\mathbf{y}|\mathbf{f})_i = \begin{cases} \mathbf{y}_i - \exp(\mathbf{f}_i), & \text{if } i \in \mathcal{D} \\ \epsilon(\mathbf{y}_i - \mathbf{f}_i), & \text{if } i \notin \mathcal{D} \end{cases}$$

and the hessian of the log-likelihood as

$$\nabla\nabla \log p(\mathbf{y}|\mathbf{f})_{ii} = \begin{cases} -\exp(\mathsf{f}_i), & \text{if } i \in \mathcal{D} \\ -\epsilon & \text{if } i \notin \mathcal{D} \end{cases}.$$