Universidade do Sul de Santa Catarina

Disciplina: Comunicação de Dados

Prof^a.: Ana Lúcia Rodrigues Wiggers

Requisitos para conexão com à Internet

The requirements for Internet connection include the following:

- Physical connection
- Logical connection
- Applications that interpret the data and display the information

Physycal Conection – Conexão física (dispositivos de rede – ex.:NIC) Logical Conection – Conexão lógica (protocolos) Applications (navegadores-browsers, plug-in, ftp, ...)

Componentes básicos do computador

Componentes básicos que fazem parte de um computador:

- componentes pequenos discretos: Transistor; Circuito integrado; Resistor; Capacitor; Conector; Diodo emissor de luz.

Subsistemas de um Computador Pessoal (PC): Placa de circuito impresso; CD-ROM; CPU; Unidade de disco flexível; Unidade de disco rígido; Microprocessador; Placa-mãe.

Subsistemas de um Computador Pessoal (PC): Barramento; Memória de acesso aleatório (RAM); Memória apenas de leitura (ROM); Unidade do sistema (system unit); Slot de expansão; Fonte de alimentação.

Componentes de backplane: Backplane; Placa de rede (NIC); Placa de vídeo; Placa de áudio; Porta paralela; Porta serial; Porta USB-Universal Serial Bus; Firewire; Porta do mouse; Cabo de alimentação.

Network Interface Cards - NIC

Internal network interface card

PCMCIA Network interface card

- Uma placa de rede (NIC), ou adaptador de rede, oferece capacidades de comunicações nos dois sentidos entre a rede e um computador pessoal.
- A placa de rede utiliza um pedido de interrupção (IRQ-Interrupt Request), um endereço de I/O e um espaço na memória superior para interagir com o sistema operacional. Um valor de IRQ (requisição de interrupção) é um local designado onde o computador sabe que um dispositivo em particular pode interrompê-lo, quando o dispositivo enviar ao computador sinais sobre sua operação.

Network Interface Cards - NIC

Ao adquirir uma placa de rede, considere os seguintes fatores:

- Protocolos Ethernet, Token Ring, ou FDDI
- Tipos de meios Par trançado, coaxial, wireless, ou fibra óptica
- Tipo de barramento do sistema PCI ou ISA

Situações que requerem a instalação de uma placa de rede incluem as seguintes:

- A instalação de uma placa de rede em um PC que não tem uma já instalada
- A substituição de uma placa de rede defeituosa ou danificada
- Atualização de uma placa de rede de 10-Mbps para uma placa de rede de 10/100/1000-Mbps
- A mudança para uma placa de rede diferente, como uma sem fio
- A instalação de uma placa de rede secundária, ou backup, por razões de segurança de redes

Visão geral da conectividade

- No início da década de 60, foram introduzidos modems para proporcionar a conectividade de terminais burros com um computador central.
- Nos anos 70, começaram a aparecer sistemas de quadro de avisos (BBS-Bulletin Board Systems).
- No início da década de 80, iniciou-se a utilização a transferência de grandes arquivos e gráficos.
- Nos anos 90, os modems já rodavam a 9600 bps e até 1998, atingiram o padrão atual de 56 kbps (56.000 bps).
- No ano de 2000, os serviços de alta velocidade utilizados no ambiente corporativo, tais como Digital Subscriber Line (DSL) e acesso por cable modem, entraram no mercado consumidor

TCP/IP - descrição

- O Transmission Control Protocol/Internet Protocol (TCP/IP) é um conjunto de protocolos ou regras desenvolvidas para a cooperação entre computadores para que compartilhem recursos através de uma rede.
- A configuração do TCP/IP em uma estação de trabalho (work station) é feita através das ferramentas do sistema operacional.
- O processo é bastante semelhante independentemente da utilização de um sistema operacional Windows ou Mac
- A configuração do TCP/IP pode ser visualizada no prompt através dos comandos winipcfg (windos98), ipconfig (win2000, winXP) e ifconfig (linux).

Testando a conectividade da rede

A conectividade da rede pode ser testada no prompt através dos comandos:

• O comando ping é utilizado para testar a função de transmissão/recepção da placa de rede, a configuração do TCP/IP e a conectividade na rede. O comando ping funciona enviando vários pacotes IP, chamados datagramas ICMP de Requisição de Eco, a um destino específico.

• O comando tracert (trace route) faz o rastreamento da rota percorrida pelo

pacote.

```
Microsoft Windows 2000 [Version 5.00.2195]

<C> Copyright 1985-2000 Microsoft Corp.

C:\> ping 127.0.0.1

Pinging 127.0.0.1 with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<10ms TTL=128

Ping statistics for 127.0.0.1:

Packets: Sent = 4, Recieived = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```

Navegador Web(browser) e Plug-Ins

Um navegador Web realiza as seguintes funções

- Faz contato com um servidor da Web
- Solicita informações
- Recebe informações
- Exibe os resultados na tela

Um navegador Web é um software que interpreta a linguagem de marcação de hipertexto (HTML-Hypertext Markup Language),

Exemplos: Internet explorer, Nestscape Comunicator, mozila Firefox, etc...

Navegador Web(browser) e Plug-Ins

Alguns navegadores Web normais necessitam de configuração para exibir determinados arquivos.

Estes arquivos são denominados de plug-in. Estes aplicativos trabalham em conjunto com o navegador para iniciar o programa requerido para visualizar os seguintes tipos de arquivos:

- Flash toca arquivos de multimídia e foi criado pelo Macromedia
 Flash
- Quicktime toca arquivos de vídeo e foi criado pela Apple
- Real Player toca arquivos de áudio

Resolução de problemas c/conexão na Internet

Passos para resolução de problemas com a conexão para internet:

- 1) Definir o problema;
- 2) Juntar os fatos;
- 3) Considerar as possibilidades;
- 4) Criar um plano de ação;
- 5) Implementar o plano;
- 6) Observar os resultados;
- 7) Documentar os resultados;
- 8) Introduzir problemas e resolver.

Sistema de Numeração Bínário

Keyboard	Binary Code
Α	01000001
В	01000010
С	01000011
D	01000100
E	01000101
F	01000110
G	01000111
Н	01001000

Bits and Bytes

Units	Definition	Bytes*	Bits*	Examples
Bit (b)	Binary digit, a 1 or 0	1 bit	1 bit	On/Off; Open/Closed +5 Volts or 0 Volts
Byte (B)	Usually 8 bits	1 byte	8 bits	Represent the letter "X" as ASCII code
Kilobyte (KB)	1 kilobyte = 1024 bytes	1000 bytes	8,000 bits	Typical Email = 2 KB 10-page report = 10 KB Early PCs = 64 KB of RAM
Megabyte (MB)	1 megabyte = 1024 kilobytes = 1,048,576 bytes	1 million bytes	8 million bits	Floppy disks = 1.44 MB Typical RAM = 32 MB CDROM = 650 MB
Gigabyte (GB)	1 gigabyte = 1024 megabytes =1,073741,824 bytes	1 billion bytes	8 billion bits	Typical Hard Drive = 4 GB
Terabyte (TB)	1 terabyte = 1024 gigabytes = 1,099,511,627,778 bytes	1 trillion bytes	8 trillion bits	Amount of data theoreti- cally transmittable in optical fiber in one second

^{*} Common or approximate bytes or bits

Numeração de Base 10 - Decimal

Place Value	1000's 100's 10's 1's
Base Exponent	$10^3 = 1000$ $10^2 = 100$ $10^1 = 10$ $10^0 = 1$
Number of Symbols	10
Symbols	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Rationale	Typical number of fingers equals 10.

Numeração de Base 2 - Binário

Place Value	1000 100 10 1	
Base Exponent	$10^{3} = 1000$ $10^{2} = 100$ $10^{1} = 10$ $10^{0} = 1$	
Number of Symbols	10	
Symbols	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	
Rationale	Typical number of fingers equals ten	

Representação endereço IP

```
      200
      .
      114
      .
      6
      .
      51
      = notação decimal por pontos

      11001000
      .
      01110010
      .
      00000110
      .
      00110011
      = notação binária

      8
      .
      8
      .
      8
      = 4 octetos 32 bits
```

Numeração de base 16 - Hexadecimal

A conversão em hexadecimal reduz um número de oito bits para apenas dois dígitos hex. Lembre-se que hexadecimal é às vezes abreviado como 0x de modo que hex 5D pode ser escrito como "0x5D"

Decimal	Binary	Hexadecimal
0	00000000	00
1	0000001	01
2	00000010	02
3	00000011	03
4	00000100	04
5	00000101	05
6	00000110	06
7	00000111	07
8	00001000	08
9	00001001	09
10	00001010	0A
11	00001011	0B
12	00001100	0C
13	00001101	0D
14	00001110	0E
15	00001111	0F
16	00010000	10
32	00100000	20
64	01000000	40
128	10000000	80
255	11111111	FF

Boolean or Binary Logic

IP Addresses and Network Masks

Classe de endereço	Intervalo decimal do 1º octeto	Bits de ordem superior do 1º octeto	ID de rede/host (N = Rede, H = Host)	Máscara de sub-rede padrão	Quantidade de redes	Hosts por rede (endereços utilizáveis)
A	1 – 126 *	0	N.H.H.H	255.0.0.0	126 (2 ⁷ – 2)	16.777.214 (2 ²⁴ – 2)
В	128 – 191	10	N.N.H.H	255.255.0.0	16.382 (2 ¹⁴ – 2)	65.534 (2 ¹⁶ – 2)
С	192 – 223	110	N.N.N.H	255.255.255.0	2.097.150 (2 ²¹ – 2)	254 (2 ⁸ – 2)
D	224 – 239	1110	Reservado para multicasting			
E	240 – 254	11110	Experimental, usado para pesquisas			

^{*} O endereço 127 para classe A não pode ser usado e é reservado para as funções de loopback e de diagnóstico.

IP Addresses and Network Masks

