

® BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ® DE 199 15 178 A 1

(f) Int. Cl.⁷: C 12 N 5/10 C 12 N 7/01 A 61 K 48/00

DEUTSCHES PATENT- UND MARKENAMT (21) Aktenzeichen: Anmeldetag:

199 15 178.4 3. 4. 1999

(3) Offenlegungstag:

5. 10. 2000

(7) Anmelder:

Johannes-Gutenberg-Universität Mainz, 55122 Mainz, DE

(14) Vertreter:

Rudolph, U., Dipl.-Biol. Dr.rer.nat., Pat.-Anw., 69198 Schriesheim

(7) Erfinder:

Bartenschlager, Ralf, Dr., 55239 Gau-Odernheim,

66 Entgegenhaltungen:

J. gen. Virol. 78, S. 2397-2410, 1997; Virology 202, S. 606-614, 1994;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (4) Hepatitis C Virus Zellkultursystem
- Das erfindungsgemäße Hepatitis C Virus (HCV) Zellkultursystem besteht aus humanen Hepatomazellen, die mit einem HCV-RNA-Konstrukt transfiziert sind, das die HCVspezifischen RNA-Abschnitte 5'NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3'NTR und zudem wenigstens ein selektierbares Markergen (Selektionsgen) umfaßt.

Beschreibung

Die Erfindung betrifft ein Hepatitis C Virus (HCV) Zellkultursystem, das im wesentlichen eukaryontische Zellen umfaßt, die eingeschleustes HCV-spezifisches Genmaterial enthalten, d. h. die mit HCV-spezifischem Genmaterial transfiziert sind.

Das Hepatitis C Virus (HCV) ist eine der Hauptursachen chronischer und sporadischer Lebererkrankungen weltweit. Die meisten HCV-Infektionen verlaufen ohne erkennbare klinische Symptome, allerdings werden 80–90% der Infizierten dauerhafte Virusträger und bei 50% dieser dauerhaften Virusträger kommt es zu einer chronischen Leberentzündung mit unterschiedlichen Schweregraden. Ca. 20% der chronisch Infizierten entwickeln im Laufe von 10 bis 20 Jahren eine Leberzirrhose, auf deren Basis sich ein primäres Leberzellkarzinom entwickeln kann. Die chronische Hepatitis C ist heute die Hauptindikation für eine Lebertransplantation. Eine Kausaltherapie gibt es bisher noch nicht. Die einzige derzeit verfügbare Therapie ist die hochdosierte Verabreichung von Interferon-Alpha oder eine Kombination aus Interferon-Alpha und dem Purin-Nukleosidanalogon Ribavirin. Allerdings sprechen nur ca. 60% aller Behandelten auf diese Therapie an und bei diesen kommt es in mehr als der Hälfte aller Fälle nach dem Absetzen der Behandlung zu einer erneuten Virämie.

Aufgrund der hohen Prävalenz, gerade auch in den Industrieländern, den schwerwiegenden Folgen chronischer Infektionen und dem Fehlen einer Kausaltherapie ist die Entwicklung einer HCV-spezifischen Chemotherapie ein wesentliches Ziel der pharmazeutischen Forschung und Entwicklung. Hauptproblem hierbei ist bisher das Fehlen eines geeigneten Zellkultursystems, das ein Studium der Virus-Replikation und der Pathogenese in eukaryontischen Zellen ermöglicht.

Aufgrund der geringen Virusmengen im Blut bzw. Gewebe, dem Fehlen geeigneter Zellkultursysteme oder Tiermodelle (bis heute ist der Schimpanse das einzige mögliche Versuchstier) sowie dem Fehlen effizienter Systeme zur Produktion virus-ähnlicher Partikel, konnte die molekulare Zusammensetzung des HCV-Partikels bis heute noch nicht eingehend untersucht bzw. aufgeklärt werden. Die derzeit vorliegenden Ergebnisse lassen sich wie folgt zusammenfassen: Das HCV ist ein umhülltes Plusstrang RNA Virus mit einem Partikeldurchmesser von 50–60 nm und einer mittleren Dichte von 1,03–1,1 g/ml. Es wurde erstmals 1989 molekular kloniert und charakterisiert (Choo et al., 1989: Science, 244, 359–362). Die HCV-RNA hat eine Länge von ca. 9.6 kb (= 9600 Nukleotide), eine positive Polarität und besitzt ein einziges offenes Leseraster (ORF = open reading frame), das ein lineares Polyprotein von ca. 3010 Aminosäuren kodiert (siehe Rice 1996, in Virology, B. N. Fields, D. M. Knipe, P. M. Howley, Eds. (Lippincott-Raven, Philadelphia, PA, 1996), vol. 1, pp. 931–960; Clarke 1997, J. Gen. Virol. 78, 2397; und Bartenschlager 1997, Intervirology 40, 378 und vgl. Fig. 1A). Bei der Virusreplikation wird das Polyprotein durch zelluläre und virale Proteasen in die reifen und funktionell aktiven Proteine gespalten.

Innerhalb des Polyproteins sind die Proteine wie folgt angeordnet (vom Amino- zum Carboxyterminus): Core-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B. Das Core-Protein ist die Hauptkomponente des Nukleokapsids. Die Glykoproteine E1 und E2 sind Transmembranproteine und Hauptkomponenten der Virushülle. Sie spielen wahrscheinlich bei der Anheftung des Virus an die Wirtszelle eine wesentliche Rolle. Diese drei Proteine Core, E1 und E2 bauen den Viruspartikel auf und werden deshalb als Strukturproteine bezeichnet. Die Funktion des Proteins p7 ist noch unklar. Das Protein NS2 ist wahrscheinlich die katalytische Domäne der NS2-3 Protease, die für die Prozesierung zwischen den Proteinen NS2 und NS3 verantwortlich ist. Das Protein NS3 hat zwei Funktionen, nämlich in der aminoterminalen Domäne eine Proteaseaktivität, die für die Polyproteinprozessierung essentiell ist, und in der carboxyterminalen Domäne eine NTPase/Helikase-Funktion, die wahrscheinlich bei der Replikation der viralen RNA eine Rolle spielt. Das Protein NS4A ist ein Kofaktor der NS3-Protease. Die Funktion des Proteins NS4B ist unbekannt.

Das offene Leseraster ist an seinem 5 Ende von einer ca. 340 Nukleotide langen nichttranslatierten Region (NTR = non-translated region) flankiert, die als interne Ribosomenansatzstelle (IRES = internal ribosome entry site) fungiert, und an seinem 3 Ende von einer ca. 230 Nukleotide langen NTR, die höchstwahrscheinlich für die Genomreplikation von Bedeutung ist. Eine solche 3 NTR ist Gegenstand der Patentanmeldung PCT/US 96/14033. Die Strukturproteine in dem aminoterminalen Viertel des Polyproteins werden von der Signalpeptidase der Wirtszelle gespalten. Die Nicht-Strukturproteine (NS) 2 bis (NS) 5B werden von zwei viralen Enzymen prozessiert, nämlich von der NS2-3 und der NS3/4A Proteinase. Die NS3/4A Proteinase wird für alle Spaltungen jenseits des Carboxyterminus von NS3 benötigt. Die Rolle von NS4B ist nicht bekannt. NS5A, ein hoch phosphoryliertes Protein, scheint für die Interferon Resistenz verschiedener HCV-Genotypen verantwortlich zu sein (vgl. Enomoto et al. 1995, J. Clin. Invest. 96, 224; Enomoto et al. 1996, N. Engl. J. Med. 334, 77; Gale Jr. et al. 1997, Virology 230, 217; Kancko et al. 1994, Biochem. Biophys. Res. Commun. 205, 320; Reed et al., 1997, J. Virol. 71, 7187) und NS5B wurde als die RNA-abhängige RNA Polymerase identifiziert.

Anhand dieser Erkenntnisse wurden erste Diagnosesysteme entwickelt, die entweder auf dem Nachweis von HCV-spezifischen Antikörpern in Patientenserum oder auf dem Nachweis von HCV-spezifischer RNA mittels RT-PCR (= Reverse Transcription Polymerase Chain Reaction) beruhen, und die mittlerweile routine- und/oder vorschriftsmäßig bei allen Blutkonserven angewendet werden (müssen).

Seit der Erstbeschreibung des Genoms 1989 wurden mit Hilfe der PCR-Methode zahlreiche Teil- und Komplettsequenzen des HCV kloniert und charakterisiert. Ein Vergleich dieser Sequenzen zeigt eine hohe Variabilität des viralen Genoms, insbesondere im Bereich des NS5B-Gens, was letztendlich zu einer Einteilung in 6 Genotypen geführt hat, die selbst nochmals in Subtypen a, b, und c untergliedert sind. Die genomische Varianz ist nicht gleichmäßig über das Genom verteilt. So sind die 5'NIR und Teile der 3'NIR hoch konserviert, während bestimmte kodierende Sequenzen z. T. sehr stark variieren, vor allem die Hüllproteine E1 und E2.

Die klonierten und charakterisierten Teil- und Komplettsequenzen des HCV-Genoms wurden außerdem hinsichtlich geeigneter Angriffsziele für ein prospektives antivirales Therapeutikum untersucht. Dabei wurden drei virale Enzyme gefunden, die sich als solches Angriffsziel anbieten. Diese sind (1) der NS3/4A Proteasekomplex, (2) die NS3 Helikase und (3) die NS5B RNA-abhängige RNA Polymerase. Der NS3/4A Proteasekomplex und die NS3 Helikase konnten bereits kristallisiert und hinsichtlich ihrer dreidimensionalen Struktur aufgeklärt werden (Kim et al., 1996, Cell, 87,343;

Yem et al., 1998, Protein Science, 7, 837; Love et al., 1996, Cell, 87, 311; Kim et al., 1998, Structure, 6, 89; Yao et al., 1997, Nature Structural Biology, 4, 463, Cho et al., 1998, J. Biol. Chem., 273, 15045); bei der NS5B RNA-abhängigen RNA Polymerase ist dies bis heute noch nicht gelungen.

Obwohl mit diesen Enzymen bedeutsame Angriffsziele für eine Therapieentwicklung der chronischen HCV-Infektion definiert sind, und obwohl sowohl mit Hilfe von "rational drug design" als auch mit Hilfe von "high throughput screens" weltweit intensiv nach geeigneten Inhibitoren gesucht wird, leidet die Therapieentwicklung an einem großen Defizit, nämlich dem Fehlen von Zellkultursystemen oder einfachen Tiermodellen, die es erlauben, HCV-RNA oder HCV-Antigene direkt, zuverlässig und mit einfachen laborüblichen Methoden nachzuweisen. Das Fehlen solcher Zellkultursysteme ist auch der Hauptgrund dafür, daß das Verständnis der HCV-Replikation bis heute noch sehr lückenhaft und in weiten Teilen nur hypothetisch ist.

Obwohl nach Meinung der Fachwelt eine enge evolutionäre Beziehung zwischen HCV und den Flavi- und Pestiviren besteht und für diese autonom replizierende RNAs beschrieben sind, die in verschiedenen Zellinien ohne weiteres zur Replikation gebracht werden können und dabei relativ hohe Ausbeuten zeigen (siehe Khromykh et al., 1997, J. Virol. 71, 1497; Behrens et al., 1998, J. Virol. 72, 2364; Moser et al., 1998, J. Virol. 72, 5318), waren ähnliche Versuche mit HCV bisher nicht erfolgreich.

Zwar ist aus verschiedenen Publikationen bekannt, daß Zellinien oder primäre Zellkulturen mit HCV-haltigem, hochtitrigem Patientenserum infiziert werden können, (Lanford et al. 1994, Virology 202, 606; Shimizu et al. 1993, Procedings of the National Academy of Sciences, USA, 90, 6037–6041; Mizutani et al. 1996, Journal of Virology, 70, 7219–7223; M. Ikeda et al. 1998, Virus Res. 56, 157; Fournier et al. 1998, J. Gen. Virol. 79, 2376 und darin zitierte Literaturstellen, Ito et al. 1996, Journal of General Virology, 77, 1043–1054), diese virusinfizierten Zellinien oder Zellkulturen erlauben jedoch nicht den direkten Nachweis von HCV-RNA oder HCV-Antigenen. Die virale RNA in diesen Zelen ist weder in einem Northern-Blot (einem Standardverfahren zum quantitativen Nachweis von RNA) noch sind die viralen Protein in einem Western-Blot oder mittels Immunpräzipitation detektierbar. Nur mit sehr aufwendigen und indirekten Methoden ist es überhaupt gelungen, eine HCV-Replikation nachzuweisen. Diese nachteiligen Umstände zeigen klar, daß die Replikation in diesen bekannten virusinfizierten Zellinien oder Zellkulturen absolut unzureichend ist.

Desweiteren ist aus den Publikationen von Yoo et al. (1995, Journal of Virology, 69, 32–38) und von Dash et al., (1997, American Journal of Pathology, 151, 363–373) bekannt, daß Hepatomazellinien mit synthetischer HCV-RNA, die mittels in vitro Transkription von kloniertem HCV-Genom gewonnen wurde, transfiziert werden können. In beiden Publikationen gingen die Autoren von dem Grundgedanken aus, daß das virale HCV-Genom eine Plusstrang-RNA ist, die nach dem Einschleusen in die Zelle direkt als mRNA fungiert, an die sich Ribosomen anheften und im Zuge von Translationsprozessen Virusproteine bilden, aus denen sich letztendlich neue HCV-Partikel bilden (können). Diese Virusreplikation, d. h. diese neu gebildeten HCV-Viren bzw. deren RNA wurde mittels RT-PCR nachgewiesen. Die publizierten Ergebnisse der durchgeführten RT-PCR sprechen jedoch dafür, daß die Effizienz der HCV-Replikation in den beschriebenen HCV-transfizierten Hepatomazellen nur sehr gering ist und jedenfalls nicht ausreicht, um Schwankungen in der Replikationsrate nach gezielter Einwirkung mit prospektiven antiviralen Therapeutika auch nur qualitativ, geschweige denn quantitativ zu messen.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines HCV-Zellkultursystems, bei dem die virale RNA in den transfizierten Zellen autonom und mit so hoher Effizienz repliziert, daß Schwankungen in der Replikationsrate nach gezielter Einwirkung mit virus- und insbesondere HCV-spezifischen prospektiven antiviralen Therapeutika qualitativ und quantitativ und mit Hilfe gängiger, laborüblicher Meßverfahren gemessen werden können.

Eine Lösung dieser Aufgabe besteht in der Bereitstellung eines Zellkultursystems der eingangs genannten Art, bei dem die eukaryontischen Zellen humane Hepatomazellen sind, die vorzugsweise von einer handelsüblichen Hepatomazellinie abstammen, aber auch aus einer entsprechenden Primärzellkultur gewonnen sein können, und bei dem das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt ist, das die HCV-spezifischen RNA-Abschnitte 5'NTR, NS3, NS4A, NS5B, NS5A, NS5B und 3'NTR, vorzugsweise in der genannten Reihenfolge, und zudem wenigstens ein selektierbares Markergen (Selektionsgen) umfaßt.

"NIR" steht hier und im folgenden für "nicht translatierte Region" und ist dem einschlägigen Fachmann als Begriff bzw. Abkürzung bekannt und geläufig.

Der Begriff "HCV-RNA-Konstrukt" umfaßt hier und im folgenden sowohl Konstrukte, die das komplette HCV-Genom enthalten, als auch solche, die lediglich einen Teil davon, d. h. ein HCV-Subgenom enthalten.

50

Eine bevorzugte Variante des erfindungsgemäßen Zellkultursystems, die sich in der Praxis sehr gut bewährt hat, trägt ist unter der Nummer DSM ACC2394 (Laborbezeichnung HuBl 9-13) bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH in Braunschweig, Deutschland, hinterlegt.

Mit dem erfindungsgemäßen Zellkultursystem wird erstmals ein in-vitro-System bereit gestellt, in dem HCV-RNA intrazellulär, autonom und in ausreichend großen Mengen repliziert und exprimiert wird, so daß eine quantitative Bestimmung sowohl der HCV-RNA-Mengen als auch der HCV-spezifischen Proteine mit konventionellen und zuverlässig genauen biochemischen Meßmethoden durchgeführt werden kann. Das heißt: es steht erstmals ein annähernd authentisches zellgestütztes ("cell-based") HCV-Replikationssystem zur Verfügung, das für die Entwicklung und Erprobung von antiviralen Pharmazeutika dringend benötigt wird. Dieses Testsystem bietet nun die Möglichkeit, potentielle Angriffsziele für eine wirksame HCV-spezifische Therapie zu identifizieren und HCV-spezifische Chemotherapeutika zu entwickeln und zu evaluieren.

Die Erfindung basiert auf der überraschenden Erkenntnis, daß eine effiziente Replikation der HCV-RNA nur dann in Zellen stattfindet, wenn diese mit einem HCV-RNA-Konstrukt transfiziert wurden, das mindestens die 5' und die 3' nichttranslatierten Regionen (NTR) und die Nichtstrukturproteine (NS) 3 bis 5B umfaßt und zusätzlich ein selektierbares Markergen (Selektionsgen) aufweist. Offensichtlich sind die Strukturgene für den Ablauf der Replikation ohne wesentliche Bedeutung, während andererseits eine effiziente Replikation der HCV-RNA anscheinend nur dann stattfindet, wenn die transfizierten Zellen einem permanenten Selektionsdruck unterzogen werden, der durch das mit der HCV-RNA verbundene selektierbare Markergen (Selektionsgen) vermittelt wird. Das Markergen (Selektionsgen) scheint somit einer-

seits die Selektion derjenigen Zellen zu provozieren, in denen die HCV-RNA produktiv repliziert, und andererseits scheint es die Effizienz der RNA-Replikation wesentlich zu steigern.

Gegenstand der Erfindung ist auch ein zellfreies HCV-RNA-Konstrukt, das sich dadurch auszeichnet, daß es die HCV-spezifischen RNA-Abschnitte 5'NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3'NTR, vorzugsweise in der genannten Reihenfolge, und zudem ein selektierbares Markergen (Selektionsgen) umfaßt.

Der Begriff 5'NTR bzw. NS3 bzw. NS4B bzw. NS4B bzw. NS5B bzw. 3'NTR umfaßt im vorliegenden Zusammenhang jede Nukleotidsequenz, die im Stand der Technik als Nukleotidsequenz für den jeweils betreffenden funktionellen Abschnitt des HCV-Genoms beschrieben ist.

Die Bereitstellung eines solchen HCV-RNA-Konstrukts ermöglicht erstmals eine detaillierte Analyse der HCV-Replikation, -Pathogenesis und -Evolution in Zellkulturen. Die HCV-spezifische virale RNA kann – als vollständiges Genom oder als Subgenom – gezielt in beliebigen Mengen erzeugt werden, und es besteht die Möglichkeit, das RNA-Konstrukt zu manipulieren und damit die HCV-Funktionen auf genetischer Ebene zu untersuchen und aufzuklären.

Da alle zur Zeit als Hauptangriffsziel für eine Therapie untersuchten HCV-Enzyme, nämlich die NS3/4A Protease, die NS3 Helikase und die NS5B Polymerase, in dem erfindungsgemäßen HCV-RNA-Konstrukt enthalten sind, kann es für alle entsprechenden Untersuchungen benutzt werden.

Eine Ausführungsform des HCV-RNA-Konstrukts, die sich in der praktischen Anwendung sehr gut bewährt hat, zeichnet sich dadurch aus, daß sie die Nukleotidsequenz gemäß Sequenzprotokoll SEQ ID NO: 1 umfaßt.

Weitere Ausführungsvarianten mit vergleichbar guten Eigenschaften für den Einsatz in der Praxis sind dadurch gekennzeichnet, daß sie eine Nukleotidsequenz entweder gemäß Sequenzprotokoll SEQ ID NO: 2 oder gemäß Sequenzprotokoll SEQ ID NO: 3 oder gemäß Sequenzprotokoll SEQ ID NO: 4 oder gemäß Sequenzprotokoll SEQ ID NO: 5 umfassen.

Es besteht die Möglichkeit, das erfindungsgemäße HCV-Subgenom-Konstrukt mit einer 3'NTR zu versehen, die eine im Stand der Technik hierfür bisher unbekannte Nukleotidsequenz aufweist, nämlich eine Nukleotidsequenz, die aus der Gruppe der nachfolgend aufgelisteten Nukleotidsequenzen (a) bis (i) ausgewählt ist:

- (b) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTTTAGTCT TTTTTTTTC TTTTTTTTGA GAGAGAGAGT CTCACTCTGT
 TGCCCAGACT GGAGC
- (c) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTAATCTTT TTTTTTTCT TTTTTTTTGA GAGAGAGAGT CTCACTCTGT
 TGCCCAGACT GCAGC
- (d) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTTTTAGTC TTTTTTTTT TCTTTTTTTT TGAGAGAGAG AGTCTCACTC
 TGTTGCCCAG ACTGGAGT
- (e) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTTTAGTCT TTTTTTTTT TCTTTTTTTT TGAGAGAGAG AGTCTCACTC
 TGTTGCCCAG ACTGGAGT
- (f) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
 TTTTTAGTCT TTTTTTTTT TCTTTTTTTT TTGAGAGAGA GAGTCTCACT
 CTGTTGCCCA GACTGGAGT

60

35

40

45

50

Ś

65

(g) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
TTTTTAGTCT TTTTTTTTT CTTTTTTTTT GAGAGAGAGA
GTCTCACTCT GTTGCCCAGA CTGGAGT

1

5

(h) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT
TTTTTTAAT CTTTTTTTT TTTTTCCTTT TTTTGAGAGA
GAGAGTCTCA CTCTGTTGCC CAGACTGGAG T

10

(i) ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT TTTTTTAATC TTTTTTTTT TTTTCTTTTT TTTTTGAGAG AGAGAGTCTC ACTCTGTTGC CCAGACTGGA GT

15

35

Das in den erfindungsgemäßen HCV-RNA-Konstrukten enthaltene selektierbare Markergen (Selektionsgen) ist vorzugsweise ein Resistenzgen, insbesondere eine Antibiotikumresistenzgen.

Das hat den Vorteil, daß die mit diesem Konstrukt transfizierten Zellen leicht von den nicht transfizierten Zellen selektiert werden können, indem dem Zellkulturmedium z. B. im Fall eines Antibiotikumresistenzgens das betreffende Antibiotikum zugegeben wird. Unter "Antibiotikum" wird im vorliegenden Zusammenhang jede Substanz verstanden, die die nicht-transfizierten Wirtszellen oder die Zellen, in denen die HCV-RNA nur mit geringer Effizienz repliziert, am Leben oder Wachstum hindert, insbesondere Zellgifte wie z. B. Puromycin, Hygromycin, Zeocin, Bleomycin oder Blasticidin.

Ein bevorzugtes selektierbares Markergen (Selektionsgen) bzw. Resistenzgen, das sich in der Praxis sehr gut bewährt 25 hat, ist das Neomycinphosphotransferasegen.

Eine Alternative zu den Antibiotikumresistenzgenen ist z. B. das Thymidin-Kinase-Gen, mit dem eine HAT-Selektion durchgeführt werden kann.

Die Position des selektierbaren Markergens (Selektionsgens), bzw. des bevorzugten Resistenzgens bzw. des besonders bevorzugten Antibiotikumresistenzgens in dem HCV-RNA-Konstrukt liegt vorzugsweise hinter der HCV 5'NTR, d. h. strangabwärts der 5'NTR bzw. strangaufwärts des HCV-Leserasters. Denkbar ist aber auch eine Insertion im Bereich der 3'NTR oder an anderer Stelle des HCV-Genoms oder -Subgenoms, z. B. innerhalb des Polyproteins.

Bei einer alternativen Ausführungsform des erfindungsgemäßen HCV-RNA-Konstrukts ist das selektierbare Markergen (Selektionsgen), insbesondere ein Antibiotikumresistenzgen, über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA bzw. der HCV-Genom- oder -Subgenomsequenz verbunden.

Damit geht der Vorteil einher, daß nach erfolgter Selektion derjenigen Zellen, in denen die HCV-RNA produktiv repliziert, in den daraus gewonnenen Zellklonen das Resistenzgen durch ribozymvermittelte Spaltung von der HCV-Subgenomsequenz abgetrennt werden kann, nämlich durch Aktivierung des einklonierten Ribozyms oder, im Fall eines Konstrukts mit einer Erkennungsstelle für ein Ribozym, durch Einschleusen des Ribozyms in die Zellen (z. B. mittels Transfektion eines Ribozymkonstrukts oder Infektion mit einem viralen Expressionsvektor, in den das entsprechende Ribozym eingesetzt wurde). Auf diese Weise wird ein authentisches HCV-Genom-Konstrukt ohne Resistenzgen erhalten, das zur Bildung authentischer infektiöser Viruspartikel befähigt ist.

Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen HCV-RNA-Konstrukts zeichnet sich dadurch aus, daß das Konstrukt wenigstens ein integriertes Reportergen aufweist.

Unter Reportergen wird im folgenden jedes Gen verstanden, dessen Anwesenheit sich nach Überführung in einen Zielorganismus leicht und im allgemeinen mit einfachen biochemischen oder auch histochemischen Methoden nachweisen läßt, d. h. das für ein Protein kodiert, welches auch in geringen Mengen einfach und zuverlässig mit den laborüblichen Meßmethoden nachgewiesen und quantifiziert werden kann.

Diese Variante des HCV-RNA-Konstrukts hat den Vorteil, daß der Umfang der Replikation dieses Konstrukts anhand des Reportergenprodukts einfach und schnell mit laborüblichen Methoden gemessen werden kann.

Das Reportergen ist vorzugsweise ein Gen aus der Gruppe der Luziferasegene, dem CAT-Gen (Chloramphenicol-Acetyl-Transferase-Gen), dem lacZ-Gen (beta-Galaktosidasegen), dem GFP-Gen (green-fluorescence-protein-Gen), dem GUS-Gen (Glukuronidasegen) oder dem SEAP-Gen (Sezernerte-Alkalische-Phosphatase-Gen). Diese Reportergene bzw. deren Produkte, nämlich die entsprechenden Reporterproteine, können z. B. mittels Fluoreszenz, Chemilumineszenz, colorimetrisch oder mit Hilfe immunologischer Methoden (z. B. ELISA) bestimmt werden.

Als Reportergen kommt aber auch ein Surrogatmarkergen in Betracht. Darunter sind in diesem Zusammenhang solche Gene zu verstehen, die für zelluläre Proteine, Nukleinsäuren oder – allgemein – für solche Funktionen kodieren, die einer von der Virusreplikation abhängigen Variation unterliegen, und die infolgedessen in denjenigen Zellen, in denen sich das HCV bzw. das HCV-RNA-Konstrukt vermehrt, entweder reprimiert oder aktiviert werden. Das heißt: die Reduktion bzw. Aktivierung dieser Funktion ist ein Ersatzmarker für die Virusreplikation bzw. die Replikation des HCV-RNA-Konstrukts.

Die Positionen von Reportergen und selektierbarem Markergen (Selektionsgen) können so gewählt sein, daß ein aus den beiden Genprodukten gebildetes Fusionsprotein exprimiert wird. Hierbei besteht die vorteilhafte Möglichkeit, daß diese beiden Gene so in dem HCV-RNA-Konstrukt angeordnet sind, daß ihre beiden exprimierten Proteine zunächst über eine Schnittstelle für eine Protease (z. B. Ubiquitin) oder über ein selbstspaltendes Peptid (z. B. das 2A-Protein der Picornaviren) fusioniert sind und erst später proteolytisch wieder getrennt werden.

Ebensogut können diese beiden Positionen aber auch derart getrennt voneinander liegen, daß beide Genprodukte separat exprimiert werden. (z. B. in der Reihenfolge: Marker- bzw. Resistenzgen – interne Ribosomenbindungsstelle – Re-

portergen).

10

15

20

25

30

35

40

45

50

55

60

65

ş

Im Fall des Reportergens hat sich eine Ausführungsvariante besonders bewährt, bei der das Reportergen in das offene Leseraster des HCV-Genoms oder -Subgenoms einkloniert ist, und zwar derart, daß es erst nach einer proteolytischen Prozessierung in eine aktive Form überführt wird.

- Das erfindungsgemäße Zellkultursystem in allen seinen Variationen kann für vielfältige Zwecke eingesetzt werden. Diese umfassen:
 - Das Auffinden antiviral wirksamer Substanzen. Dies können beispielsweise sein: organische Verbindungen, die unmittelbar oder mittelbar in die Virusvermehrung eingreifen (z. B. Inhibitoren der viralen Proteasen, der NS3-Helikase, der NS5B RNA-abhängigen RNA Polymerase), antisense Oligonukleotide, die an eine beliebige Zielsequenz innerhalb des HCV-RNA-Konstrukts (z. B. die 5'NTR) hybridisieren und unmittelbar oder mittelbar zu einer Beeinflussung der Virusvermehrung führen z. B. auf Grund einer Reduktion der Translation des HCV-Polyproteins oder Ribozyme, die eine beliebige HCV-RNA-Sequenz spalten und damit die Virusreplikation beeinträchtigen.
 - Die Evaluierung jeglicher Art antiviral wirksamer Substanzen in Zellkultur. Solche Substanzen k\u00f6nnen beispielsweise mittels "rational drug design" oder "high-throughput screening" am isolierten gereinigten Enzym gefunden werden. Unter Evaluierung sind vor allem die Bestimmung der inhibitorischen Eigenschaften der entsprechenden Substanz sowie deren Wirkungsmechanismus zu verstehen.
 - Die Identifikation neuer Angriffsziele, viralen oder zellulären Ursprungs, für eine HCV-spezifische antivirale Therapie. Ist beispielsweise ein zelluläres Protein essentiell für die Virusreplikation, kann mittels Hemmung dieses zellulären Proteins die Virusreplikation ebenfalls beeinflußt werden. Das Auffinden solcher auxiliären Faktoren ist mit dem erfindungsgemäßen System ebenfalls möglich.
 - Der Einsatz für die Resistenzbestimmung. Es ist anzunehmen, daß auf Grund der hohen Mutationsrate des HCV-Genoms Therapieresistenzen auftreten. Solche Resistenzen, die gerade bei der klinischen Zulassung einer Substanz von großer Bedeutung sind, lassen sich mit dem erfindungsgemäßen Zellkultursystem ermitteln. Zellinien in denen sich das HCV-RNA-Konstrukt bzw. das HCV-Genom oder -Subgenom repliziert, werden mit steigenden Konzentrationen der entsprechenden Substanz inkubiert und die Replikation der viralen RNA wird entweder anhand eines eingebrachten Reporters oder durch qualitative oder quantitative Bestimmung der viralen Nukleinsäuren oder Proteine bestimmt. Resistenz ist dann gegeben, wenn bei normaler Wirkstoffkonzentration keine Hemmung der Replikation zu beobachten ist. Durch Reklonierung der HCV-RNA (z. B. mittels RT-PCR) und Sequenzanalyse können die für Therapieresistenz verantwortlichen Nukleotid- bzw. Aminosäureaustausche ermittelt werden. Durch Einklonieren der/des entsprechenden Austausches in das Ursprungskonstrukt kann deren Kausalität für die Therapieresistenz bewiesen werden.
 - Die Produktion authentischer Virusproteine (Antigene) für die Entwicklung und/oder Evaluierung von Diagnostika. Das erfindungsgemäße Zellkultursystem erlaubt auch die Expression von HCV-Antigenen in Zellkulturen. Diese Antigene können prinzipiell auch für den Aufbau diagnostischer Nachweisverfahren eingesetzt werden.

Das erfindungsgemäße HCV-RNA-Konstrukt für sich genommen kann in allen seinen Variationen ebenfalls für vielfältige Zwecke eingesetzt werden. Dazu gehören vor allem:

- Die Konstruktion attenuierter Hepatitis C Viren bzw. HCV-ähnlicher Partikel und deren Produktion in Zellkulturen:
 - Durch zufällige oder gezielt hervorgerufene Mutationen, beispielsweise Punktmutationen, Deletionen oder Insertionen, können attenuierte HCV- oder HCVähnliche Partikel erzeugt werden, d. h. Viren bzw. virusähnliche Partikel mit voller Replikationskompetenz aber verringerter bzw. fehlender Pathogenität. Solche attenuierte HCV- oder HCV-ähnliche Partikel sind insbesondere als Impfstoff einsetzbar.
 - Die Konstruktion von HCV-RNA-Konstrukten mit integrierten Fremdgenen, beispielsweise zur Verwendung als leberzellspezifische Genfähren in der Gentherapie. Auf Grund des ausgeprägten Leberzelltropismus des HCV und der Möglichkeit, Teile des Genoms durch heterologe Sequenzen zu ersetzen, lassen sich HCV-RNA-Konstrukte herstellen, bei denen beispielsweise die Strukturproteine durch ein therapeutisch wirksames Gen ersetzt werden. Das so erhaltene HCV-RNA-Konstrukt wird in Zellen eingeschleust, vorzugsweise mittels Transfektion, die die fehlenden HCV-Funktionen, beispielsweise die Strukturproteine, konstitutiv oder induzierbar exprimieren. Durch diese dem Fachmann unter dem Begriff der "Transkomplementation" bekannte Technik lassen sich Viruspartikel erzeugen, in die das HCV-RNA-Konstrukt eingebaut wird. Die so erhaltenen Partikel können für die Infektion vorzugsweise von Leberzellen verwendet werden. In diesen wird das therapeutisch wirksame Fremdgen zur Expression gebracht und entfaltet damit seine therapeutische Wirkung.
 - Das Auffinden permissiver Zellen, d. h. Zellen, in denen eine produktive Virusvermehrung erfolgt. Zu diesem Zweck wird entweder eines der vorgenannten HCV-RNA-Genomkonstrukte verwendet, das zur Bildung kompletter infektiöser Viren befähigt ist, oder es wird eines der vorgenannten HCV-Subgenom-Konstrukte eingesetzt, das allerdings zunächst gemäß vorgenanntem Beispiel in eine Zellinie transfiziert wird, die die fehlenden Funktionen konstitutiv oder induzierbar exprimiert. In all diesen Fällen entstehen Viruspartikel, die zusätzlich zur HCV-Sequenz ein Resistenz- und/oder Reportergen tragen. Zum Auffinden von Zellen, in denen das HCV replizieren kann, werden diese Zellen mit den so hergestellten Viren infiziert und einer Antibiotikumselektion unterzogen oder, in Abhängigkeit vom HCV-RNA-Konstrukt, mittels Nachweis der Expression des Reportergens untersucht. Da eine Antibiotikumresistenz bzw. eine Expression des Reportergens nur dann nachweisbar ist, wenn das HCV-RNA-Konstrukt repliziert, müssen die so gefundenen Zellen permissiv sein. Auf diese Weise lassen sich nahezu beliebige Zellinien oder primäre Zellkulturen hinsichtlich der Permissivität testen und auffinden.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen und dazugehörigen Figuren näher erläutert. Es

zeigen

ŕ

Fig. 1A die Struktur eines erfindungsgemäßen HCV-RNA-Konstrukts Ganz oben ist eine schematische Darstellung der Struktur des kompletten parentalen HCV-Genoms gegeben mit den Positionen der Gene für die Spaltungsprodukte core, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A und NS5B innerhalb des Polyproteins, und den 5' und 3' nichttranslatierten Regionen (5'NTR und 3'NTR) – als Horizontalbalken dargestellt –, und mit den beiden für die Erzeugung der Subgenom-Konstrukte ausgewählten Positionen, nämlich der Position der "GDD-katalytischen Domäne" der NS5B RNA Polymerase (GDD) und der Position der 3'Grenze der HCV-IRES (Nukleotidpositionen 1 bis 377 bzw. 1 bis 389) – oberhalb des Genomschemas eingezeichnet –. Die Zahlen unterhalb des Genomschemas bezeichnen die entsprechenden Nukleotidpositionen.

Darunter sind schematische Darstellungen der Strukturen zweier erfindungsgemäßer, modifizierter HCV-RNA-Konstrukte (Subgenom) gezeigt, bestehend aus der 5'HCV-IRES, dem Neomycinphosphotransferasegen (Neo^R), der EMCV-IRES (E-I) und den HCV Sequenzen von NS2 bzw. NS3 bis zum authentischen 3'Ende. Die Position der das NS5B Polymerase GDD-Motiv umfassenden 10 Aminosäuren-Deletion ist jeweils mit einem Dreieck (Δ) markiert;

Fig. 1B das Ergebnis einer denaturierenden Formaldehyd-Agarose-Gelelektrophorese zum Nachweis von replizierter Plusstrang-RNA in transfizierten subpassagierten Huh-7 Zellklonen.

15

30

35

Die Positionen der HCV-spezifischen RNAs (Pfeile) und der 28S rRNA sind rechts von Spur 12 angegeben, die Größen (Anzahlen der Nukleotide) der RNA-Marker (M) sind links von Spur 1 angegeben;

Fig. 1C das Ergebnis eines PCR-Tests mit nachfolgendem Southern-Blot zum Nachweis der Abwesenheit von integrierter Replikon-DNA in den meisten der selektierten Zellklone.

Spuren 1 und 2 zeigen die Positivkontrollen, Spur 13 die Negativ-Kontrolle. Die Zahlenangaben links der Spur 1 bezeichnen die Größe der Nukleotid-Marker-Moleküle;

Fig. 2A das Ergebnis eines PCR-Tests mit nachfolgendem Southern-Blot zum sensitiven Ausschluß integrierter Replikon-DNA (Plasmid Moleküle I₃₇₇/NS3-3'/wt) in einem HCV-RNA-Konstrukt-haltigen Zellklon (9-13). Die Spuren 7 bis 11 repräsentieren das Ergebnis einer Titration von DNA-Molekülen des Konstrukts I₃₇₇/NS3-3'/wt ohne Zugabe von Gesamt-DNA des Zellklops 9-13 und die Spuren 2-6 repräsentieren die gleichen Plasmidmoleküle mit Zug-

Zugabe von Gesamt-DNA des Zellklons 9-13 und die Spuren 2-6 repräsentieren die gleichen Plasmidmoleküle mit Zugabe von jeweils 1 µg 9-13 DNA vor der PCR (zwecks Ausschluß eines Inhibitors der PCR in der DNA-Präparation). Spur 13 repräsentiert die Negativ-Kontrolle (PCR ohne DNA-Sonde). Spur 1 zeigt das Ergebnis, das mit einem µg Gesamt-DNA des Zellkons 9-13 erhalten wurde;

Fig. 2B das Ergebnis eines Northern-Blot-Tests zur Quantifizierung von HCV Plus- und Minusstrang RNA. Die Pfeile markieren die Positionen von Replikon-RNA.

Die "plus"- und "minus"-Abgaben bezeichnen die positive (plus) bzw. negative (minus) Polarität der RNA-Kontrollen, die auf das Gel aufgetragen wurden. "Minusstrand" und "Plusstrand" bezeichnen die Spezifität der radioaktiven RNA-Sonden:

Fig. 2C Ergebnis einer Formaldehyd-Agarose-Gelelektrophorese nach radioaktiver Markierung der intrazellulär replizierten HCV-RNA zum Nachweis der Resistenz der HCV-RNA-Replikation gegen Dactinomycin;

Fig. 3A Nachweis von HCV-spezifischen Antigenen in den selektierten Zellklonen mittels Immunopräzipitation nach metabolischer Radioaktivmarkierung.

Die Spuren 7-9 repräsentieren authentische Größenmarker (die nach transienter Expression eines HCV-RNA-Konstrukts in Huh-7-Zellen erhalten wurden); identifizierte HCV-Proteine sind am linken Rand von Spur 1 markiert, die Molekulargewichte (in Kilodalton) sind am rechten Rand von Spur 9 angegeben;

Fig. 3B Ergebnisse eines Immunfluoreszenztests zum Nachweis der subzellulären Lokalisation von HCV Antigenen; Fig. 4 schematische Darstellung der Struktur eines erfindungsgemäßen selektierbaren HCV-RNA-Konstrukts (komplettes Genom) bestehend aus der 5'HCV-IRES, dem Neomycinphosphotransferasegen (NeoR), einem heterologen IRES-Element, z. B. des Encephalomyocarditisvirus (E-I), dem vollständigen HCV-Leseraster und der authentischen 3'NTR:

Fig. 5 schematische Darstellung der Struktur von HCV-RNA-Konstrukten mit insertiertem Antibiotikumresistenzgen (A) innerhalb der für das Polyprotein kodierenden Nukleotidsequenz (monocistronische RNA), und (B) innerhalb der 3'NTR (bicistronische RNA);

Fig. 6 schematische Darstellung der Struktur von HCV-RNA-Konstrukten mit insertiertem Reportergen (A) als Teil eines HCV-Replikons von NS3 bis NS5B; – das Reporterprotein wird letztendlich durch virale oder durch zelluläre Proteasen aus dem Polyprotein gespalten und das selektierbare Markergen (Selektionsgen) bzw. das Resistenzgen durch Kontransfektion in die Zellen einschleust, (B) als Teil eines Fusionsgens aus Resistenz- und Reportergen (z. B. für die Neomycinphosphotransferase und green fluorescent Protein) (C) als Teil eines Replikons aus Resistenz- und Reportergen (z. B. für die Neomycinphosphotransferase und das green fluorescent Protein), die über eine Nukleotidsequenz verbunden sind, welche für eine Aminosäuresequenz kodiert (schraffierter Bereich), die von einer Protease gespalten werden kann oder die über eine selbstspaltende (autokatalytische) Aktivität verfügt, (Δ) als unabhängiges Gen (hier green fluorescent protein), das von einer eigenen internen Ribosomenbindungsstelle (IRES) aus exprimiert wird; – das Resistenzgen (hier: Neomycinphosphotransferase-Gen) wird davon unabhängig ebenfalls von einer eigenen internen Ribosomenbindungsstelle (IRES) aus exprimiert (polycistronisches Konstrukt);

Fig. 7 schematische Darstellung der Struktur eines HCV-RNA-Konstrukts bei dem das Resistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA-Sequenz verbunden ist.

Die dicken Linien stellen die HCV 5'- und 3'NTRs dar, E-I ist eine heterologe interne Ribosomenbindungsstelle, die für die Expression des Resistenzgens notwendig ist, und das graue Quadrat stellt das Ribozym bzw. eine Erkennungsstelle für ein Ribozym dar;

Fig. 8 schematische Darstellung der Struktur eines HCV-RNA-Konstrukts mit Resistenzgen und integriertem Fremdgen.

7

ť

Beispiel 1

Herstellung von HCV-RNA-Konstrukten

(A) Synthese und Klonierung eines vollständigen HCV-Konsensusgenoms mittels RT-PCR

Aus der Leber eines chronisch infizierten Patienten wurde das HCV-Genom, d. h. die HCV-RNA wie nachfolgend beschrieben isoliert:

Aus ca. 100 mg Leber wurde die komplette RNA gemäß dem Verfahren von Chomczynski und Sacci (1987, Anal. Biochem. 162, 156) isoliert. Mit 1 µg dieser isolierten RNA wurde eine reverse Transkription mit den Primern A6103. (GCTATCAGCCGGTTCATCCACTGC) oder A9413 (CAGGATGGCCTATTGG CCTGGAG) und dem "expand reverse transcriptase"-System (Bochringer Mannheim, Deutschland) nach den Vorschriften des Herstellers durchgeführt. Mit den Produkten dieser reversen Transkription (RT) wurde eine Polymerase-Kettenreaktion (PCR = polymerase chain reaction) durchgeführt, und zwar unter Verwendung des "expand long template"-Systems (Boehringer Mannheim, Deutschland), wobei der Puffer mit 2% Dimethylsulfoxid-Gehalt eingesetzt wurde. Nach einer Stunde bei 42°C wurde 1/8 dieses Reaktionsansatzes in einem ersten PCR-Durchgang mit den Primern A6103 und S59 (TGTCTTCACGCA-GAAAGCGTCTAG) oder A9413 und 54542 (GATGAGCT CGCCGCGAAGCTGTCC) eingesetzt. Nach 40 Zyklen wurde 1/10 dieses Reaktionsansatzes in einem zweiten PCR-Durchgang mit den Primern S59 und A4919 (AGCA-CAGCCCGCGTCATAGCACTCG) oder 54542 und A9386 (TTAGCTCCCCG TTCATCGGTTGG) eingesetzt. Nach 30 Zyklen wurden die PCR-Produkte mittels präparativer Agarose-Gel-Elektrophorese gereinigt und die dabei eluierten Fragmente wurden in den Vektor pCR2.1 (Invitrogen) oder pBSK II (Stratagene) ligiert. Vier Klone von jedem Fragment wurden analysiert und sequenziert, und es wurde eine Konsensus-Sequenz ermittelt. Zu diesem Zweck wurden die DNA-Sequenzen miteinander verglichen. Die Positionen, an denen sich die Sequenz eines der Fragmente von den übrigen unterschied, wurde als unerwünschte Mutation betrachtet. Im Fall von Mehrdeutigkeiten der Sequenz wurden kürzere sich überlappende PCR-Fragmente der betreffenden Region amplifiziert und mehrere Klone sequenziert. Auf diese Weise konnten zahlreiche potentielle Mutationen in jedem Fragment identifiziert und somit eine isolat-spezifische Konsensussequenz etabliert werden. Diese etablierte Konsensussequenz bzw. dieses Genom gehört zum weltweit verbreiteten Genotyp 1b. Die nicht translatierte Region am 3'-Ende (= 3'NTR) wurde mittels konventioneller PCR erhalten, wobei ein Antisense-Primer eingesetzt wurde, der die letzten 24 Nukleotide des im Stand der Technik bekannten "X-tails" (Tanaka et al., 1995, Biochem. Biophys. Res. Commun. 215, 744; und Rice, PCT/US 96/14033) abdeckt. Die authentische nicht translatierte Region am 5'-Ende (= 5'NTR) strangabwärts vom T7 Promotor wurde mittels PCR erzeugt, wobei zum einen ein Oligonukleotid verwendet wurde, das einem verkürzten T7 Promotor (TAA TAC GAC TCA CTA TAG) und den ersten 88 Nukleotiden von HCV entspricht, und zum anderen eines der vorgenannten Plasmide eingesetzt wurde, das eines der 5'Fragmente des Genoms trägt. Aus den subgenomischen Fragmenten mit der geringsten Anzahl an Nicht-Konsensus-Austauschen wurde ein komplettes HCV-Konsensusgenom zusammengesetzt und in einen modifizierten pBR322-Vektor insertiert. Abweichungen von der Konsensussequenz wurden mittels ortsgerichteter Mutagenese ("sitedirected mutagenesis") beseitigt. Um "run-off"-Transkripte mit einem authentischen 3 Ende herzustellen, wurde die 3'NTR der Isolate (mit dem Ende TGT) zu AGT modifiziert (gemäß der Sequenz vom Genotyp 3 = Klon "WS" nach Kolykhalov et al., 1996, J. Virol. 70, 3363) und außerdem wurde ein zusätzlicher Nukleotidaustausch an Position 9562 vorgenommen, um die A:T Basenpaarung in der Haarnadelstruktur am 3'Ende der 3'NTR (Kolyhalov et al. ibid.) beizubehalten. Um eine interne Restriktionsstelle für das Enzym Scal zu beseitigen, wurde ferner ein sog. stiller ("silent") Nukleotidaustausch vorgenommen. Nach dem Zusammenfügen des Vollängen-Genoms mit passenden 5'- und 3'NTRen wurde die komplette HCV-Sequenz überprüft. Dabei wurde kein ungewünschter Nukleotidaustausch gefunden.

Das auf diese Weise hergestellte HCV-Genom sollte per Definition hepatotrop sein.

45

(B) Synthese selektierbarer HCV-Subgenom-Konstrukte

Unter Verwendung des unter (A) beschriebenen Konsensusgenoms wurden HCV-Subgenom-Konstrukte hergestellt, die das Antibiotikumresistenzgen Neomycin-Phosphotransferase (NPT) und zwei Sequenzen von internen Ribosomenbindungsstellen (IRES) enthalten. Die hierfür angewendeten biochemischen Verfahrenstechniken sind dem Fachmann bekannt und geläufig (siehe: Sambrook, J., E. F. Fritsch, T. Maniatis, 1989, Molecularcloning: a laboratory manual, 2nd ed., Cold Spring Harbour Laboratory, Cold Spring Harbor, N. Y.; Ausubel et al. (eds.), 1994, Current Protocols in Molecular Biology, Vol. 1–3, John Wiley & Sons Inc., New York). Das Antibiotikumresistenzgen wurde unmittelbar hinter der 5'NTR insertiert, wodurch eine bicistronische RNA erhalten wurde (siehe Fig. 1A). Ebensogut kann das Antibiotikumresistenzgen aber auch an anderer Stelle des HCV-Subgenom-Konstrukts insertiert werden, beispielsweise innerhalb der für das Polyprotein kodierenden Nukleotidsequenz, wodurch eine monocistronische RNA erhalten wird (siehe Fig. 5A) oder in die 3'NTR (siehe Fig. 5B). Bei den IRES-Elementen handelt es sich zum einen um eine der beiden HCV-IRES-Varianten Nukleotide 1-377 oder Nukleotide 1-389, und zum anderen um die IRES des Enzephalomyocarditis Virus, die die Translation der HCV Sequenz strangabwärts von den Genen für NS2 oder NS3 bis zu dem authentischen 3'Ende des Geneuws steuert

Die beiden genannten HCV-IRES-Varianten wurden wie folgt ermittelt:

Auf der Basis von Deletionsanalysen der 3'Grenze der HCV-IRES (Reynolds et al. 1995, EMBO J. 14, 6010) wurden verschiedene Abschnitte der 5'NTR mit dem NPT Gen fusioniert und anhand von Kotransfektionen mit einem das T7 RNA Polymerase Gen enthaltenden Plasmid hinsichtlich der maximalen Anzahl gebildeter Kolonien analysiert. Die besten Ergebnisse wurden mit den HCV Sequenzen von 1-377 und 1-389 erhalten. Da sich das AUG-Startkodon des HCV Polyproteins an Position 342 befindet und somit in der IRES-Sequenz enthalten ist, kommt es zu einer Fusion von 12 bzw. 16 Aminosäuren des HCV-Kapsidproteins ("Core-Proteins") mit der Neomycin Phosphotransferase (siehe Fig. 1A). Diese modifizierten HCV-Subgenorn-Konstrukte erhielten dementsprechend die Bezeichnungen I₃₇₇/NS2-3' (oder

I₃₇₇/NS3-3') und I₃₈₉/NS2-3' (oder I₃₈₉/NS3-3'). Sie sind in Fig. 1A schematisch dargestellt.

Mit in-vitro-Transkripten dieser modifizierten parentalen HCV-Subgenom-Konstrukte I₃₇₇/NS2-3' (oder I₃₈₉/NS3-3) und I₃₈₉/NS3-3' (oder I₃₈₉/NS3-3') wurden verschiedene Zellinien und Primärzellkulturen von menschlichen Hepatocyten transfiziert.

Als parallele Negativ-Kontrolle zu allen Transfektionsexperimenten wurde zu jedem modifizierten parentalen HCV-Subgenom-Konstrukt ein entsprechend modifiziertes aber defektes Subgenom konstruiert, das sich von dem parentalen dadurch unterscheidet, daß es innerhalb des Leserasters eine Deletion von 10 Aminosäuren aufweist, die das aktive Zentrum der NS5B RNA Polymerase umfaßt (Behrens et al., 1996, EMBO J. 15, 12; und Lohmann et al., 19977 Virol. 71, 8416).

(C) Synthese selektierbarer HCV-Genom-Konstrukte

Ein NS2-3'Subgenomkonstrukt, das am 5'Ende mit einem Fragment des Luziferasegens und der vollständigen EMCV-IRES verbunden ist, wurde mitNcoI und SpeI restringiert und mittels präparativer Agarosegelelektrophorese gereinigt. Der so erhaltene Vektor wurde in einer 3-Faktor Ligation mit einem NcoI/NotI-HCV-Fragment, entsprechend den Nukleotidpositionen 342 bis 1968 des HCV-Genoms und mit einem NotI/SpeI-Fragment, entsprechend den Nukleotidpositionen 1968-9605 ligiert. Das entstandene Konstrukt, bei dem das vollständige HCV-Leseraster und die 3'NTR stromabwärts dem Luziferasegenfragment und der EMCV-IRES liegen, wurde danach mit PmeI und SpeI restringiert und mit dem analog restringierten I₃₈₉/NS3-3'/wt-Subgenomkonstrukt-Vektor ligiert. Dieses selektionierbare HCV-Genomkonstrukt ist in Fig. 4 dargestellt.

(D) Herstellung von den HCV-RNA-Konstrukten entsprechenden in-vitro-Transkripten

Die vorstehend beschriebenen gereinigten Plasmid DNAs wurden mit Scal linearisiert und nach Phenol/Chloroform-Extraktion und Isopropanol-Präzipitation in eine In-vitro-Transkriptionsreaktion eingesetzt unter Verwendung der folgenden Komponenten: 80 mM HEPES, pH 7,5, 12,5 mM MgCl₂, 2 mM Spermidin, 40 mM Dithiothreitol, 2 mM von jedem NTP, 1 Einheit RNasin/μl, 50 μg/ml restringierte DNA und ca. 2 Einheiten/μl T7 RNA Polymerase. Nach 2 Std. bei 37°C wurde die Hälfte der Menge an T7 Polymerase zugegeben und der Reaktionssanstz weitere 2 h inkubiert. Zur Entfernung von DNA wurde die Mischung mit saurem Phenol extrahiert (U. Kedzierski, J. C. Porte, 1991, Bio Techniques 10, 210), mit Isopropanol präzipitiert, das Pellet in Wasser gelöst und mit DNase (2 Einheiten pro μg DNA) für 60 Min. bei 37°C inkubiert. Nach anschließender Extraktion mit saurem Phenol, saurem Phenol/Chloroform und Chloroform und Isopropanol-Präzipitation wurde die gelöste RNA mittel optischer Dichtemessungen quantifiziert und ihre Unversehrtheit mittels Formaldehyd-Agarose-Gelelektrophorese überprüft.

Beispiel 2 35

10

20

55

Transfektionsexperimente mit der Hepatomazellinie Huh-7

Bei sämtlichen Transfektionsexperimenten wurde sorgfältig darauf geachtet, daß jegliche Matrizen-DNA zuvor entfernt worden war, um zu vermeiden, daß solche DNA in transfizierte Zellen integrieren und diesen unabhängig von einer HCV-Replikation eine Neomycin-Resistenz vermitteln konnte. Deshalb wurde im Anschluß an die in-vitro-Transkription (Beispiel 1D) die Reaktionsmischung mit 2 Einheiten DNase pro µg DNA für 60 Min. bei 37°C behandelt und mit saurem Phenol, saurem Phenol/Chloroform und Chloroform extrahiert. Vor der Verwendung für die Transfektion wurde die präzipitierte RNA mittels Formaldehyd Agarose Gel Elektrophorese analysiert.

Es wurden drei separate Transfektionsexperimente mit der hoch differenzierten humanen Hepatomazellinie Huh-7 (gemäß Nakabayashi et al. 1982, Cancer Res. 42, 3858) durchgeführt. Dabei wurde jeweils 15 μg RNA in 8 × 10⁶ Huh-7-Zellen mit Hilfe der Elektroporation eingebracht und diese Zellen anschließend in Kulturschalen von 10 cm Durchmesser ausgesät. 24 Stunden nach der Aussaat wurde Neomycin (= G418) in einer Endkonzentration von 1 mg/ml zugegeben. Das Kulturmedium wurde zweimal pro Woche gewechselt. Nach 3–5 Wochen waren kleine Kolonien erkennbar, die isoliert und unter den gleichen Kulturbedingungen passagiert wurden.

Die Zellklone, die im Verlauf des ersten Experiments erhalten wurden, wurden isoliert und subpassagiert. Während dieser Prozedur starben die meisten Klone und die Endausbeute betrug nur noch 9 Klone von Zellen, die mit den parentalen HCV-Subgenom-Konstrukten transfiziert worden waren und 1 Klon (Klone 8-1) von Zellen, die mit einem defekten HCV-Genom-Konstrukt, nämlich einer defekten NS2-3'HCV-RNA transfiziert worden waren. Außer einer verkürzten Verdopplungszeit und dem gelegentlichen Auftreten von irregulär geformten Zellen wurden keine beständigen morphologischen Unterschiede zwischen diesen 9 Zellklonen und dem einen Zellklon (Klon 8-1) oder den parentalen Huh-7 Zellen gefunden.

Die Hauptkriterien für funktionierende HCV-Genomkonstrukte sind die Bildung von viraler RNA mit korrekter Größe und die Abwesenheit von (integrierter) Plasmid DNA, die eine G418-Resistenz übertragen bzw. vermitteln könnte.

Um die HCV-RNA in den Huh-7-Zellen zu bestimmen, wurde die Gesamt-RNA isoliert und mittels des gängigen Northern-Blot Verfahrens unter Verwendung einer Plusstrang-spezifischen Ribosonde (= RNA-Sonde) analysiert. Hierfür wurde von den jeweiligen Zellklonen Gesamt-RNA nach der Methode von Chomczynski und Sacchi 1987, Anal. Biochem. 162, 156 isoliert, und 10 µg RNA, was dem Gesamt-RNA-Gehalt von 0,5-1×10⁶ Zellen entspricht, mittels denaturierender Formaldehyd-Agarose-Gelelektrophorese aufgetrennt (Spuren 3 bis 12 der Fig. 1B). Als Größenmarker mit authentischer Sequenz wurden gleichzeitig 109 in-vitro-Transkripte (ivtr.), die zu den I₃₈₉/NS2-3'/wt oder den I₃₈₉/NS3-3'/wt Replikon-RNAs korrespondieren, mit aufgetrennt (Spur 1 bzw. Spur 2). Die aufgetrennte RNA wurde auf Nylon-Membranen transferiert und mit radioaktiv markierter Plusstrang-spezifischer RNA-Sonde, die komplementär zu dem kompletten NPT-Gen und der HCV-IRES von Nukleotid 377 bis Nukleotid 1 war, hybridisiert. Die Positionen der

HCV-spezifischen RNAs (Pfeile) und der 28S rRNA sind rechts von Spur 12 angegeben, die Größen (Anzahlen der Nukleotide) der RNA-Marker sind links von Spur 1 angegeben. Die RNA Marker-Fragmente enthalten HCV-Sequenzen und hybridisieren deshalb mit der Ribosonde (= RNA-Sonde). Die Ergebnisse dieser Analyse sind in Fig. 1B dargestellt.

Mit Ausnahme des mit dem defekten HCV-Genom-Konstrukt transfizierten Klons 8-1, lieferten alle Zellklone homogene HCV-RNAs korrekter Länge (ca. 8640 Nukleotide im Fall des NS2-3' und ca. 7970 Nukleotide im Fall des NS3-3'Replikons). Dieser Befund ist ein Indiz dafür, daß die funktionalen Replikons bzw. die funktionalen HCV-Genom-Konstrukte die G418 Resistenz übertragen. Um auszuschließen, daß die G418 Resistenz auf eine Plasmid-DNA zurückzuführen ist, die in das Genom der Huh-7 Wirtszelle integriert ist und unter der Kontrolle eines zellulären Promotors transkribiert wird, wurde von jedem Klon die DNA mittels einer NPT-Gen-spezifischen PCR untersucht. Hierbei wurde aus den selektierten Huh-7-Zellklonen die DNA mittels Verdau mit Proteinase K (40 µg/ml, 1 h, 37°C) in 10 mM Tris, pH 7,5, 1 mM EDTA, 0,5% SDS und anschließender Extraktion mit Phenol, Phenol/Chloroform- und Isopropanolpräzipitation isoliert. Das DNA-Präzipitat wurde in 10 mM Tris (pH 7,5) und 1 mM EDTA gelöst und 1 Stunde mit Rnase A inkubiert. Im Anschluß an eine Phenol/Chloroform Extraktion und Ethanol Präzipitation wurde 1 µg DNA, entsprechend 4-8 × 10⁴ Zellen, mittels PCR unter Einsatz NPT-Gen-spezifischer Primer (5'-TCAAGACCGACCTG TCCGGTGCCC-3' und 5'-CTTGAGCCTGGCGAACAGTTCGGC-3') analysiert und ein DNA-Fragment bestehend aus 379 Nukleotiden erzeugt. Die Spezifität des PCR-Produkts wurde mittels Southern Blot Verfahren nachgewiesen, wobei ein Digoxigeninmarkiertes DNA Fragment eingesetzt wurde, das zu dem NPT-Gen korrespondiert. Als Positiv-Kontrollen (zum Nachweis etwa vorhandener kontaminierender Nukleinsäuren) wurde das PCR-Verfahren mit 10⁷ Plasmid Molekülen oder 1 µg DNA aus einer BHK Zellinie, die stabil mit einem Neomycin-Resistenz-Gen transfiziert war, durchgeführt, und als Negativ-Kontrolle wurde die PCR mit denselben Reagenzien aber ohne zugesetzte DNA durchgeführt.

Die Ergebnisse dieser Untersuchung sind in Fig. 1C dargestellt. Die Spuren 1 und 2 repräsentieren die Positiv-Kontrollen, Spur 13 repräsentiert die Negativ-Kontrolle. Die Zahlenangaben links der Spur 1 bezeichnen die Größe der Nukleotid-Marker-Moleküle. Außer in Klon 7-3 (Fig. 1C, Spur 3), der von Zellen nach Transfektion mit einem NS2-3'-Replikon/NS2-3'HCV-Genom-Konstrukt stammt, und in Klon 8-1 (Fig. 1C, Spur 12), der von Zellen nach Transfektion mit einem defekten HCV-Genom-Konstrukt stammt, war in keinem Zellklon eine NPT-DNA nachweisbar. Dieser Befünd ist ein weiteres Indiz dafür, daß die G418 Resistenz der meisten Klone durch die replizierende HCV-RNA vermittelt wurde. Aber auch unabhängig von diesen Ergebnissen ist es unwahrscheinlich, daß HCV-RNAs mit korrekter Größe von integrierter Plasmid DNA erzeugt wird, denn die für die in-vitro-Transkription verwendeten Plasmide enthalten weder einen eukaryontischen Promotor noch ein Polyadenylierungssignal. Im Fall des Klons 7-3 ist die Resistenz deshalb höchst wahrscheinlich sowohl durch das HCV-RNA-Konstrukt bzw. die replizierende HCV-RNA als auch durch eine integrierte NPT-DNA Sequenz vermittelt worden, während die Resistenz der Zellen von Klon 8-1 ausschließlich auf die integrierte Plasmid DNA zurückzuführen ist.

Um zu bestätigen, daß die G418 Resistenz von einer autonom replizierenden HCV-RNA vermittelt ist, wurde der Klon 9-13 (Fig. 1B, Spur 11) weiteren Tests unterworfen. Klon 8-1, der integrierte Kopien des NPT-Gens trägt, wurde überall als Negativkontrolle eingesetzt. Mit dem Ziel, die Anwesenheit von NPT-DNA im Klon 9-13 rigoros auszuschließen, wurde eine PCR durchgeführt, die den Nachweis von < 1000 NPT-Gen-Kopien in 40.000 Zellen erlaubt. Das Ergebnis dieser PCR ist in Fig. 2A dargestellt. Im einzelnen wurde bei dieser PCR wie folgt verfahren:

Es wurden jeweils 10⁶–10² Plasmid Moleküle (I₃₇₇/NS3-3'/wt) entweder direkt (Spuren 7–11) oder nach Zugabe von jeweils 1 μg 9-13 DNA (Spuren 2–6) in dem Test eingesetzt. Die Spezifität der amplifizierten DNA Fragment wurde mittels Southern Blot unter Verwendung einer NPT-spezifischen Sonde bestimmt. Eine PCR ohne DNA-Sonde wurde als Negativ-Kontrolle durchgeführt (Spur 12).

Selbst mit dieser sensitiven Methode wurde in einem µg DNA des Zellklons 9-13 keine Plasmid DNA gefunden (Spur 1). Um die Menge an HCV Plus- und Minusstrang RNAs in diesen Zellen abzuschätzen, wurde eine Verdünnungsreihe von Gesamt-RNA mit dem Northern-Blot-Verfahren unter Verwendung einer Plus- oder Minusstrang-spezifischen radio-aktiv markierten Ribosonde (= RNA-Sonde) analysiert. Hierfür wurden jeweils 8, 4 oder 2 µg Gesamt-RNA, die aus den Zellklonen 9-13 und 8-1 isoliert worden waren, parallel zu bekannten Mengen analoger in-vitro-Transkripte mit Plus-oder Minusstrang-Polarität (Kontroll-RNAs) im Northern-Blot-Verfahren analysiert und anschließend einer Hybridisierung unterworfen. Die Hybridisierung wurde mit einer Plusstrang-spezifischen Ribosonde, die das komplette NPT-Gen und die HCV-IRES abdeckte ("plusstrand", obere Bildtafel), oder mit einer Minusstrang-spezifischen RNA-Sonde, die zu der NS3-Sequenz komplementär war ("minusstrand", untere Bildtafel) durchgeführt. Die Pfeile markieren die Positionen von Replikon-RNA. Die Ergebnisse dieser Analyse sind in Fig. 2B dargestellt.

Im Fall des Plusstrangs wurden ca. 10⁸ Kopien/µg Gesamt-RNA nachgewiesen, was 1000–5000 HCV-RNA-Molekülen pro Zelle entspricht, während die Menge an Minusstrang-RNA 5- bis 10-fach niedriger war. Dieses Ergebnis stimmt mit der Annahme überein, daß die Minusstrang RNA die replikative Zwischenform bzw. Zwischenkopie ist, die als Vorlage für die Synthese der Plusstrang Moleküle dient.

Da die Reaktion im wesentlichen von der viralen RNA-abhängigen RNA Polymerase katalysiert wird, sollte die Synthese der HCV-RNAs resistent gegen Dactinomycin sein, einem Antibiotikum, das selektiv die RNA-Synthese von DNA-Matrizen inhibiert, nicht jedoch die RNA-Synthese von RNA-Matrizen. Um diese Vermutung zu bestätigen, wurden Zellen mit [3 H] Uridin in Anwesenheit von Dactinomycin inkubiert, die radioaktiv markierten RNAs extrahiert, mittels denaturierender Agarose-Gel-Elektrophorese aufgetrennt und mit Hilfe eines handelsüblichen Bio-Imagers unter Verwendung einer [3 H]-sensitiven Bildplatte analysiert. Hierfür wurden jeweils ca. 5×10^5 Zellen der Klone 9-13 und 8-1 mit $100 \,\mu$ Ci [3 H]Uridin für $16 \,$ Std. in Abwesenheit (-) oder Gegenwart (+) von 4 μ g/ml Dactinomycin (Dact) inkubiert. Im Anschluß an diese Markierungsreaktion wurde die Gesamt-RNA präpariert und mittels Formaldehyd-Agarose-Gel-Elektrophorese analysiert. In den beiden ersten Spuren ist nur $1/10 \,$ der Gesamt-RNA dargestellt. Die radioaktiv markierte RNA wurden mit einem BAS-2500 Bio-Imager (Firma Fuji) sichtbar gemacht.

Die Ergebnisse dieser Analyse sind in Fig. 2C dargestellt. In Übereinstimmung mit dem Inhibitor-Profil der NSSB Polymerase (Behrens et al., 1996, EMBOJ. 15, 12 und Lohmann et al., 1997, J. Virol. 71, 8416) war die Replikation der HCV-RNA nicht durch Dactinomycin beeinflußt worden, während die Synthese von zellulärer RNA gehemmt worden

war. Um die Identität der viralen RNA zu bestätigen, wurde eine RT-PCR zur Reklonierung der replizierten Sequenzen durchgeführt. Die Sequenzanalyse der reklonierten RNA zeigte, daß die RNA in dem Klon 9-13 HCV-spezifisch ist und mit dem transfizierten Transkript des HCV-Konstrukts I₃₇₇/NS3-3'/wt übereinstimmt.

Zur Analyse der viralen Proteine wurden die betreffenden Zellen zunächst metabolisch mit [35S] Methionin/Cystein radioaktiv markiert, anschließend lysiert und danach die HCV-spezifischen Proteine mittels Immunopräzipitation aus den Zell-Lysaten isoliert. Die Ergebnisse dieser Analysen sind in Fig. 3 A dargestellt. Im einzelnen wurde dabei wie folgt verfahren: Zellen der Zellklone 9–13 (wt) und 8-1 (Δ) waren durch Behandlung für 16 Stunden mit einer dem Fachmann geläufigen und im Handel erhältlichen Protein-Markierungs-Mischung (z. B. NEN Life Science) metabolisch radioaktiv markiert worden. Mittels Immunopräzipitation (IP) unter nichtdenaturierenden Bedingungen (z. B. nach Bartenschlager et al., 1995, 1 Virol. 69, 7519) und unter Verwendung von drei verschiedenen Antiseren (3/4, 5A, 5B, gemäß Markierung am oberen Ende der Spuren 1 bis 12) waren die HCV-spezifischen Proteine vom Zell-Lysat abgetrennt worden. Die Immunokomplexe wurden mittels Tricine SDS-PAGE analysiert und mittels Autoradiographie sichtbar gemacht. Um authentische Größenmarker zu erhalten, wurde das homologe Replikonkonstrukt I₃₇₇/NS3-3'/wt einer transienten Expresion mit dem Vaccinia Virus T7-Hybrid System in Huh-7 Zellen unterworfen. Die dabei erhaltenen Produkte waren als Größenmarker (Spuren 7–9) parallel zu den Zellen der Klone 9–13 und 8-1 behandelt worden. Identifizierte HCV-Proteine sind am linken Rand von Spur 1 markiert, die Molekulargewichte (in Kilodalton) sind am rechten Rand von Spur 9 angegeben. Es ist anzumerken, daß das verwendete NS3/4-spezifische Antiserum ("3/4") bevorzugt mit NS4A und NS4B reagiert, was zu einer Unterrepräsentation von NS3 führt.

Alle viralen Antigene waren eindeutig nachweisbar und ihre apparenten Molekulargewichte zeigten keine Abweichungen gegenüber denjenigen, die nach transienter Expression desselben bicistronischen HCV-RNA-Konstrukts in den ursprünglichen Huh-7 Zellen ermittelt wurden. Um die subzelluläre Verteilung der viralen Antigene zu bestimmen, wurde eine Immunofluoreszenz-Nachweisreaktion unter Einsatz von NS3- und NS5A-spezifischen Antiseren durchgeführt (z. B. nach Bartenschlager et al., 1995, J. Virol. 69, 7519). Hierfür wurden Zellen der Klone 9-13 (wt) und 8-1 (Δ) 24 Std. nach dem Aussäen auf Deckgläsern mit Methanol/Azeton fixiert und mit polyklonalen NS3- oder NS5A-spezifischen Antiseren inkubiert. Die gebundenen Antikörper wurden mit einem kommerziell erhältlichen FITC-konjugierten Anti-Kaninchen-Antiserum sichtbar gemacht. Zur Unterdrückung unspezifischer Fluoreszenzsignale wurden die Zellen mit dem Farbstoff "Evans Blue" gegengefärbt.

Die Ergebnisse dieses Nachweistests sind in Fig. 3 B dargestellt. Mit beiden Antiseren war eine starke Fluoreszenz im Zytoplasma nachweisbar. Die NS5A-spezifischen Antiseren führten außerdem zu einer schwachen Zellkern-Fluoreszenz, was darauf hindeutet, daß zumindest kleine Mengen dieses Antigens auch zum Zellkern gelangen. Die generell dominierende Präsenz der viralen Antigene im Zytoplasma ist jedoch ein starkes Indiz dafür, daß die HCV-RNA Replikation im Zytoplasma stattfindet – so wie das bei den meisten RNA-Viren der Fall ist.

Diese Ergebnisse belegen klar, daß mit dem hier beschriebenen Versuchsansatz der Aufbau eines Zellkultursystems für das HCV gelungen ist, dessen Effizienz alles bisher bekannte um Größenordnungen übersteigt und erstmalig den Nachweis viraler Nukleinsäuren und Proteine mit konventionellen und bewährten biochemischen Methoden erlaubt. Erst diese Effizienz erlaubt überhaupt detaillierte Untersuchungen der HCV-Pathogenese, genetische Analysen verschiedener HCV-Funktionen und ein genaues Studium der Virus-/Wirtszellwechselwirkungen, wodurch sich neue Ansatzpunkte für die Entwicklung einer antiviralen Therapie definieren lassen.

Beispiel 3 40

30

35

60

Transfektion von Huh-7 Zellen mit HCV-Genomkonstrukten

Huh-7 Zellen werden wie in Beispiel 2 beschrieben transfiziert und selektioniert, wobei hier jedoch selektionierbare Konstrukte verwendet werden, die das vollständige Virusgenom enthalten. Die erhaltenen Zellklone werden analog dem Beispiel 2 mittels PCR auf Abwesenheit von HCV-DNA untersucht und die produktive Replikation der HCV-RNA wird danach mittels Northern Blot, [3H]Uridinmarkiening in Anwesenheit von Dactinomycin, Nachweis der viralen Proteine bzw. Antigene vorzugsweise mit Hilfe des Western Blots, der Immunopräzipitation oder der Immunfluoreszenz nachgewiesen. Im Gegensatz zu den im Beispiel 2 beschriebenen Ansätzen lassen sich mit dem hier beschriebenen Konstrukt außerdem vollständige und sehr wahrscheinlich infektiöse Viren erhalten, was bei den dort (in Beispiel 2) beschriebenen Subgenomkonstrukten nicht der Fall ist. Diese Viren, die in der Zelle und dem Zellkulturüberstand vorhanden sind, werden beispielsweise mittels Ultrazentrifugation, Immunpräzipitation oder Fällung mit Polyethylenglykol konzentriert und alle exogenen, d. h. nicht im Viruspartikel eingebauten Nukleinsäuren werden mittels Inkubation mit Nukleasen (RNase, DNase, Mikrococusnuklease) verdaut. Auf diese Weise lassen sich alle kontaminierenden Nukleinsäuren, die nicht im schützenden Viruspartikel enthalten sind, entfernen. Die geschützte virale RNA wird nach Inaktivierung der Nukleasen, beispielsweise mittels Inkubation mit Proteinase K in einem SDS-haltigen Puffer durch Extraktion mit Phenol und Phenol/Chloroform isoliert und mittels Northern Blot oder RT-PCR unter Verwendung HCV-spezifischer Primer nachgewiesen. Auch in diesem Versuchsansatz ist die Kombination des beschriebenen HCV-Konsensusgenoms mit einem Selektionsmarker entscheidend für die effiziente Produktion von viraler RNA, viralem Protein und damit von HCV-Partikeln.

Beispiel 4

Herstellung und Anwendung eines HCV-RNA Konstrukts, bei dem das Resistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-Subgenom-Sequenz verbunden ist

Es wird ein HCV-RNA-Konstrukt gemäß Beispiel 1 oder Beispiel 3 hergestellt, bei dem ein Antibiotikumresistenzgen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA-Sequenz verbunden ist. Solche Konstrukte sind in Fig. 7 schematisch dargestellt. Huh-7 Zellen werden wie in Beispiel 2 beschrieben mit diesem HCV-RNA-

Konstrukt transfiziert. Nach der Transfektion in die Zellen erfolgt zunächst die Selektion mit dem entsprechenden Antibiotikum. In den dabei erhaltenen Zellklonen wird das einklonierte Ribozym aktiviert oder, im Fall eines Konstrukts, das eine Erkennungsstelle für ein Ribozym trägt, wird das Ribozym in die Zelle eingeschleust (z. B. mittels Transfektion eines Ribozymkonstrukts oder Infektion mit einem viralen Expressionsvektor, in den das entsprechende Ribozym eingesetzt wurde). In beiden Fällen wird durch die ribozymvermittelte Spaltung das Resistenzgen von der HCV-RNA-Sequenz abgetrennt. Das Ergebnis ist im Fall des HCV-Genom-Konstrukts ein authentisches HCV-Genom ohne Resistenzgen, das zur Bildung authentischer infektiöser Viruspartikel befähigt ist. Im Fall des HCV-Subgenom-Konstrukts entsteht ein HCV-Replikon ohne Resistenzgen.

Beispiel 5

Kotransfektion eines HCV-RNA-Konstrukts mit einem separaten Luziferase-Transfektionskonstrukt

Es wird ein HCV-RNA-Konstrukt gemäß Beispiel 1(A) oder Beispiel 3 oder Beispiel 4 hergestellt. Parallel dazu wird ein Transfektionskonstrukt hergestellt, welches das Luziferasegen umfaßt, wobei dieses Luziferasegen vermittels einer ersten Nukleotidsequenz, die für eine HCV-Protease- (z. B. NS3-Protease-)Spaltungsstelle kodiert, mit einer zweiten Nukleotidsequenz, die für ein anderes Protein oder einen Teil eines anderen Proteins kodiert, verbunden ist. HCV-RNA-Konstrukt und Transfektionskonstrukt werden in beliebige Wirtszellen, vorzugsweise Hepatomazellen, insbesondere Huh-7-Zellen, eingeschleust. Dies kann auf die in Beispiel 2 beschriebene Art und Weise geschehen. Das Produkt des modifizierten Luziferasegens ist ein Luziferase-Fusionsprotein, in dem die Luziferase auf Grund der Fusion mit dem Fremdanteil inaktiv ist. In transfizierten Zellen mit hoher HCV-Replikation wird das Fusionsprotein, das ja eine Schnittstelle für eine HCV-Protease enthält, gespalten und damit die aktive Form der Luziferase freigesetzt, die sich durch luminometrische Messung bestimmen läßt. Wird die Replikation des HCV-RNA-Konstrukts gehemmt, wird das Fusionsprotein nicht gespalten und keine aktive Luziferase freigesetzt. Infolgedessen ist die quantitative Bestimmung der Luziferase ein Maß für die Replikation des HCV-Subgenom-Konstrukts, Anstelle des Luziferasegens kann ebensogut ein anderes Reportergen verwendet werden, das in analoger Weise modifiziert ist, so daß seine Expression von der Virusreplikation abhängt, obwohl dieses Reportergen nicht Bestandteil des HCV-Subgenom-Konstrukts ist. Es kann auch ein zelluläres Protein, welches durch die HCV-Proteine oder Nukleinsäure inaktiviert oder aktiviert wird, als sogenannter Surrogatmarker verwendet werden. In diesem Fall ist die Expression bzw. Aktivität dieses Surrogatmarkers ein Maß für die Replikation der viralen DNA.

Beispiel 6

Herstellung von HCV-Subgenom-Konstrukten mit integrierten Fremdgenen zur Verwendung als leberzellspezifische Genfähren für die Gentherapie

Diese rekombinanten und selektionierbaren HCV-Subgenom-Konstrukte werden in trans-komplementierende Helferzellinien transfiziert, d. h. in Zellinien, die induzierbar oder konstitutiv die fehlenden Funktionen (beispielsweise die Strukturproteine) exprimieren. Zellklone, die ein funktionelles HCV-Subgenom-Konstrukt enthalten, lassen sich durch entsprechende Selektion etablieren. Die von der Wirtszelle exprimierten Virus-Strukturproteine erlauben die Bildung von Viruspartikeln, in die die RNA der HCV-Subgenom-Konstrukte eingeschleust wird. Das Ergebnis sind also virus-ähnliche Partikel, die ein erfindungsgemäßes HCV-Subgenom-Konstrukt einschließlich des einklonierten Fremdgens enthalten und die dieses mittels Infektion auf andere Zellen übertragen können. Ein Beispiel für ein solches Konstrukt ist in Fig. 8 dargestellt. Es besteht auch die Möglichkeit, das hier beschriebene erfindungsgemäße HCV-Subgenom-Konstrukt mit integriertem Fremdgen direkt als Expressionsvektor einzusetzen. Dabei wird analog dem vorgenannten Verfahren vorgegangen, allerdings mit dem Unterschied, daß Zellinien transfiziert werden, die keine transkomplementierenden Faktoren exprimieren. In diesem Fall dient das HCV-Konstrukt also lediglich als Expressionsvektor.

50

10

55

60

65

SEQUENZPROTOKOLL

ALLGEMEINE AN	IGA	BEN:
---------------	-----	------

ANMELDER:	•
NAME: Universität Mainz	
STRASSE: Obere Zahlbacher Str. 67	
ORT: Mainz	10
BUNDESLAND: Rheinland-Pfalz	
LAND: Deutschland	
POSTLEITZAHL: 55101	15
VERTRETER:	
NAME: Dr. Ulrike Rudolph	
STRASSE: In der Schanz 10	20
ORT: Schriesheim	20
BUNDESLAND: Baden-Württemberg	
LAND: Deutschland	
POSTLEITZAHL: 69198	25
VERTRETERNUMMER: 246 263	
AKTENZEICHEN:	
	30
TELEKOMMUNIKATION:	
TELEFON: 06203-61348	
TELEFAX: 06203-64196	35
BEZEICHNUNG DER ERFINDUNG:	
Hepatitis C Virus Zellkultursystem	40
	45
ANZAHL DER SEQUENZEN: 5	43
COMPUTERLESBARE FASSUNG:	50
DATENTRÄGER: Diskette	
COMPUTER: PC	
BETRIEBSSYSTEM: MS DOS	
SOFTWARE: Word 6.0 für windows 95	55
	60
	65

ANGABEN ZU SEQ ID-NO:1:

1

10	LÄNGE: 11076 Basenpaare ART: Nukleinsäure STRANGFORM: Einzelstrang TOPOLOGIE: linear	
	ART DES MOLEKÜLS: Genom-RNA	
15	HYPOTHETISCH: Nein	
	ANTI-SENSE: nein	
20	URSPRÜNGLICHE HERKUNFT: ORGANISMUS: Hepatitis C Virus	
25	STAMM: Genotyp 1b ENTWICKLUNGSSTADIUM: — ZELLTYP: —	
30	UNMITTELBARE HERKUNFT: Isolat aus humanen Leberzellen	
35	MERKMAL: NAME/SCHLÜSSEL: kodierende Sequenz für Viruspartikel LAGE: — ERMITTLUNGSMETHODE: experimentell	
40		
45	SEQUENZBESCHREIBUNG: SEQ ID-NO: 1	
	I ₃₈₉ /Core-3'/wt: 11076 bp	
50	GCCAGCCCC GATTGGGGGC GACACTCCAC CATAGATCAC TCCCCTGTGA	50
	GGAACTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG	100
55	TGTCGTGCAG CCTCCAGGAC CCCCCTCCC GGGAGAGCCA TAGTGGTCTG	150
33	CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG	200
	GATCAACCCG CTCAATGCCT GGAGATTTGG GCGTGCCCCC GCGAGACTGC	250
60	TAGCCGAGTA GTGTTGGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG	300
	GTGCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACG	350
۲5	AATCCTAAAC CTCAAAGAAA AACCAAACGT AACACCAACG GGCGCGCCAT	400

GATTGAACAA GATGGATTGC ACGCAGGTTC TCCGGCCGCT TGGGTGGAGA

450

GGCTATTCGG	CTATGACTGG	GCACAACAGA	CAATCGGCTG	CTCTGATGCC	500	
GCCGTGTTCC	GGCTGTCAGC	GCAGGGGCGC	CCGGTTCTTT	TTGTCAAGAC	550	_
CGACCTGTCC	GGTGCCCTGA	ATGAACTGCA	GGACGAGGCA	GCGCGGCTAT	600	5
CGTGGCTGGC	CACGACGGGC	GTTCCTTGCG	CAGCTGTGCT	CGACGTTGTC	650	
ACTGAAGCGG	GAAGGGACTG	GCTGCTATTG	GGCGAAGTGC	CGGGGCAGGA	700	10
TCTCCTGTCA	TCTCACCTTG	CTCCTGCCGA	GAAAGTATCC	ATCATGGCTG	750	
ATGCAATGCG	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	CCCATTCGAC	800	15
CACCAAGCGA	AACATCGCAT	CGAGCGAGCA	CGTACTCGGA	TGGAAGCCGG	850	
TCTTGTCGAT	CAGGATGATC	TGGACGAAGA	GCATCAGGGG	CTCGCGCCAG	900	20
CCGAACTGTT	CGCCAGGCTC	AAGGCGCGCA	TGCCCGACGG	CGAGGATCTC	950	20
GTCGTGACCC	ATGGCGATGC	CTGCTTGCCG	AATATCATGG	TGGAAAATGG	1000	
CCGCTTTTCT	GGATTCATCG	ACTGTGGCCG	GCTGGGTGTG	GCGGACCGCT	1050	25
ATCAGGACAT	AGCGTTGGCT	ACCCGTGATA	TTGCTGAAGA	GCTTGGCGGC	1100	
GAATGGGCTG	ACCGCTTCCT	CGTGCTTTAC	GGTATCGCCG	CTCCCGATTC	1150	30
ĢCAGCGCATC	GCCTTCTATC	GCCTTCTTGA	CGAGTTCTTC	TGAGTTTAAA	1200	
CAGACCACAA	CGGTTTCCCT	CTAGCGGGAT	CAATTCCGCC	CCTCTCCCTC	1250	35
CCCCCCCCT	AACGTTACTG	GCCGAAGCCG	CTTGGAATAA	GGCCGGTGTG	1300	
CGTTTGTCTA	TATGTTATTT	TCCACCATAT	TGCCGTCTTT	TGGCAATGTG	1350	40
AGGGCCCGGA	AACCTGGCCC	TGTCTTCTTG	ACGAGCATTC	CTAGGGGTCT	1400	
TTCCCCTCTC	GCCAAAGGAA	TGCAAGGTCT	GTTGAATGTC	GTGAAGGAAG	1450	
CAGTTCCTCT	GGAAGCTTCT	TGAAGACAAA	CAACGTCTGT	AGCGACCCTT	1500	45
TGCAGGCAGC	GGAACCCCCC	ACCTGGCGAC	AGGTGCCTCT	GCGGCCAAAA	1550	
GCCACGTGTA	TAAGATACAC	CTGCAAAGGC	GGCACAACCC	CAGTGCCACG	1600	50
TTGTGAGTTG	GATAGTTGTG	GAAAGAGTCA	AATGGCTCTC	CTCAAGCGTA	1650	
TTCAACAAGG	GGCTGAAGGA	TGCCCAGAAG	GTACCCCATT	GTATGGGATC	1700	55
TGATCTGGGG	CCTCGGTGCA	CATGCTTTAC	ATGTGTTTAG	TCGAGGTTAA	1750	
AAAACGTCTA	GGCCCCCGA	ACCACGGGGA	CGTGGTTTTC	CTTTGAAAAA	1800	60
CACGATAATA	CCATGGGCAC	GAATCCTAAA	CCTCAAAGAA	AAACCAAACG	1850	30
TAACACCAAC	CGCCGCCCAC	AGGACGTCAA	GTTCCCGGGC	GGTGGTCAGA	1900	
TCGTCGGTGG	AGTTTACCTG	TTGCCGCGCA	GGGGCCCCAG	GTTGGGTGTG	1950	65

	CGCGCGACIA	GGAAGACTIC	CGAGCGGTCG	CAACCICGIG	GAAGGCGACA	2000
	ACCTATCCCC	AAGGCTCGCC	AGCCCGAGGG	TAGGGCCTGG	GCTCAGCCCG	2050
5	GGTACCCCTG	GCCCCTCTAT	GGCAATGAGG	GCTTGGGGTG	GGCAGGATGG	2100
	CTCCTGTCAC	CCCGTGGCTC	TCGGCCTAGT	TGGGGCCCCA	CGGACCCCCG	2150
.0	GCGTAGGTCG	CGCAATTTGG	GTAAGGTCAT	CGATACCCTC	ACGTGCGGCT	2200
	TCGCCGATCT	CATGGGGTAC	ATTCCGCTCG	TCGGCGCCCC	CCTAGGGGGC	2250
5	GCTGCCAGGG	CCCTGGCGCA	TGGCGTCCGG	GTTCTGGAGG	ACGGCGTGAA	2300
	CTATGCAACA	GGGAATCTGC	CCGGTTGCTC	CTTTTCTATC	TTCCTTTTGG	2350
20	CTTTGCTGTC	CTGTTTGACC	ATCCCAGCTT	CCGCTTATGA	AGTGCGCAAC	2400
	GTATCCGGAG	TGTACCATGT	CACGAACGAC	TGCTCCAACG	CAAGCATTGT	2450
_	GTATGAGGCA	GCGGACATGA	TCATGCATAC	CCCCGGGTGC	GTGCCCTGCG	2500
25	TTCGGGAGAA	CAACTCCTCC	CGCTGCTGGG	TAGCGCTCAC	TCCCACGCTC	2550
	GCGGCCAGGA	ACGCTAGCGT	CCCCACTACG	ACGATACGAC	GCCATGTCGA	2600
30	TTTGCTCGTT	GGGGCGGCTG	CTCTCTGCTC	CGCTATGTAC	GTGGGAGATC	2650
	TCTGCGGATC	TGTTTTCCTC	GTCGCCCAGC	TGTTCACCTT	CTCGCCTCGC	2700
35	CGGCACGAGA	CAGTACAGGA	CTGCAATTGC	TCAATATATC	CCGGCCACGT	2750
	GACAGGTCAC	CGTATGGCTT	GGGATATGAT	GATGAACTGG	TCACCTACAG	2800
10	CAGCCCTAGT	GGTATCGCAG	TTACTCCGGA	TCCCACAAGC	TGTCGTGGAT	2850
	ATGGTGGCGG	GGGCCCATTG	GGGAGTCCTA	GCGGGCCTTG	CCTACTATTC	2900
	CATGGTGGGG	AACTGGGCTA	AGGTTCTGAT	TGTGATGCTA	CTCTTTGCCG	2950
15	GCGTTGACGG	GGGAACCTAT	GTGACAGGGG	GGACGATGGC	CAAAAACACC	3000
	CTCGGGATTA	CGTCCCTCTT	TTCACCCGGG	TCATCCCAGA	AAATCCAGCT	3050
50	TGTAAACACC	AACGGCAGCT	GGCACATCAA	CAGGACTGCC	CTGAACTGCA	3100
	ATGACTCCCT	CAACACTGGG	TTCCTTGCTG	CGCTGTTCTA	CGTGCACAAG	3150
55	TTCAACTCAT	CTGGATGCCC	AGAGCGCATG	GCCAGCTGCA	GCCCCATCGA	3200
	CGCGTTCGCT	CAGGGGTGGG	GGCCCATCAC	TTACAATGAG	TCACACAGCT	3250
50	CGGACCAGAG	GCCTTATTGT	TGGCACTACG	CACCCGGCC	GTGCGGTATC	3300
	GTACCCGCGG	CGCAGGTGTG	TGGTCCAGTG	TACTGCTTCA	CCCCAAGCCC	3350
	TGTCGTGGTG	GGGACGACCG	ACCGGTTCGG	CGTCCCTACG	TACAGTTGGG	3400
65	CCCACAAMCA	CACCCACCEC	CECCEECEE	ACA ACACCCC	CCCCCCCAA	2450

GGCAACTGGT	TTGGCTGTAC	ATGGATGAAT	AGCACTGGGT	TCACCAAGAC	3500	
GTGCGGGGGC	CCCCGTGTA	ACATCGGGGG	GATCGGCAAT	AAAACCTTGA	3550	
CCTGCCCCAC	GGACTGCTTC	CGGAAGCACC	CCGAGGCCAC	TTACACCAAG	3600	5
TGTGGTTCGG	GGCCTTGGTT	GACACCCAGA	TGCTTGGTCC	ACTACCCATA	3650	
CAGGCTTTGG	CACTACCCCT	GCACTGTCAA	CTTTACCATC	TTCAAGGTTA	3700	10
GGATGTACGT	GGGGGGAGTG	GAGCACAGGC	TCGAAGCCGC	ATGCAATTGG	3750	
ACTCGAGGAG	AGCGTTGTAA	CCTGGAGGAC	AGGGACAGAT	CAGAGCTTAG	3800	15
CCCGCTGCTG	CTGTCTACAA	CGGAGTGGCA	GGTATTGCCC	TGTTCCTTCA	3850	
CCACCCTACC	GGCTCTGTCC	ACTGGTTTGA	TCCATCTCCA	TCAGAACGTC	3900	20
GTGGACGTAC	AATACCTGTA	CGGTATAGGG	TCGGCGGTTG	TCTCCTTTGC	3950	
AATCAAATGG	GAGTATGTCC	TGTTGCTCTT	CCTTCTTCTG	GCGGACGCGC	4000	
GCGTCTGTGC	CTGCTTGTGG	ATGATGCTGC	TGATAGCTCA	AGCTGAGGCC	4050	25
GCCCTAGAGA	ACCTGGTGGT	CCTCAACGCG	GCATCCGTGG	CCGGGGCGCA	4100	
TGGCATTCTC	TCCTTCCTCG	TGTTCTTCTG	TGCTGCCTGG	TACATCAAGG	4150	30
GCAGGCTGGT	CCCTGGGGCG	GCATATGCCC	TCTACGGCGT	ATGGCCGCTA	4200	
CTCCTGCTCC	TGCTGGCGTT	ACCACCACGA	GCATACGCCA	TGGACCGGGA	4250	35
GATGGCAGCA	TCGTGCGGAG	GCGCGGTTTT	CGTAGGTCTG	ATACTCTTGA	4300	
CCTTGTCACC	GCACTATAAG	CTGTTCCTCG	CTAGGCTCAT	ATGGTGGTTA	4350	40
CAATATTTTA	TCACCAGGGC	CGAGGCACAC	TTGCAAGTGT	GGATCCCCCC	4400	
CCTCAACGTT	CGGGGGGCC	GCGATGCCGT	CATCCTCCTC	ACGTGCGCGA	4450	
TCCACCCAGA	GCTAATCTTT	ACCATCACCA	AAATCTTGCT	CGCCATACTC	4500	45
GGTCCACTCA	TGGTGCTCCA	GGCTGGTATA	ACCAAAGTGC	CGTACTTCGT	4550	
GCGCGCACAC	GGGCTCATTC	GTGCATGCAT	GCTGGTGCGG	AAGGTTGCTG	4600	50
GGGGTCATTA	TGTCCAAATG	GCTCTCATGA	AGTTGGCCGC	ACTGACAGGT	4650	
ACGTACGTTT	ATGACCATCT	CACCCCACTG	CGGGACTGGG	CCCACGCGGG	4700	55
CCTACGAGAC	CTTGCGGTGG	CAGTTGAGCC	CGTCGTCTTC	TCTGATATGG	4750	
AGACCAAGGT	TATCACCTGG	GGGGCAGACA	CCGCGGCGTG	TGGGGACATC	4800	60
ATCTTGGGCC	TGCCCGTCTC	CGCCCGCAGG	GGGAGGGAGA	TACATCTGGG	4850	
ACCGGCAGAC	AGCCTTGAAG	GGCAGGGGTG	GCGACTCCTC	GCGCCTATTA	4900	
CGGCCTACTC	CCAACAGACG	CGAGGCCTAC	TTGGCTGCAT	CATCACTAGC	4950	65

	CTCACAGGCC	GGGACAGGAA	CCAGGTCGAG	GGGGAGGTCC	AAGTGGTCTC	5000
	CACCGCAACA	CAATCTTTCC	TGGCGACCTG	CGTCAATGGC	GTGTGTTGGA	5050
5	CTGTCTATCA	TGGTGCCGGC	TCAAAGACCC	TTGCCGGCCC	AAAGGGCCCA	510
	ATCACCCAAA	TGTACACCAA	TGTGGACCAG	GACCTCGTCG	GCTGGCAAGC	515
10	GCCCCCGGG	GCGCGTTCCT	TGACACCATG	CACCTGCGGC	AGCTCGGACC	520
	TTTACTTGGT	CACGAGGCAT	GCCGATGTCA	TTCCGGTGCG	CCGGCGGGGC	525
15	GACAGCAGGG	GGAGCCTACT	CTCCCCAGG	CCCGTCTCCT	ACTTGAAGGG	5300
	CTCTTCGGGC	GGTCCACTGC	TCTGCCCCTC	GGGGCACGCT	GTGGGCATCT	535
20	TTCGGGCTGC	CGTGTGCACC	CGAGGGGTTG	CGAAGGCGGT	GGACTTTGTA	5400
	CCCGTCGAGT	CTATGGAAAC	CACTATGCGG	TCCCCGGTCT	TCACGGACAA	5450
	CTCGTCCCCT	CCGGCCGTAC	CGCAGACATT	CCAGGTGGCC	CATCTACACG	5500
25	CCCCTACTGG	TAGCGGCAAG	AGCACTAAGG	TGCCGGCTGC	GTATGCAGCC	5550
	CAAGGGTATA	AGGTGCTTGT	CCTGAACCCG	TCCGTCGCCG	CCACCCTAGG	5600
30	TTTÇGGGGCG	TATATGTCTA	AGGCACATGG	TATCGACCCT	AACATCAGAA	5650
	CCGGGGTAAG	GACCATCACC	ACGGGTGCCC	CCATCACGTA	CTCCACCTAT	5700
35	GGCAAGTTTC	TTGCCGACGG	TGGTTGCTCT	GGGGGCGCCT	ATGACATCAT	5750
	AATATGTGAT	GAGTGCCACT	CAACTGACTC	GACCACTATC	CTGGGCATCG	5800
40	GCACAGTCCT	GGACCAAGCG	GAGACGGCTG	GAGCGCGACT	CGTCGTGCTC	5850
	GCCACCGCTA	CGCCTCCGGG	ATCGGTCACC	GTGCCACATC	CAAACATCGA	5900
	GGAGGTGGCT	CTGTCCAGCA	CTGGAGAAAT	CCCCTTTTAT	GGCAAAGCCA	5950
45	TCCCCATCGA	GACCATCAAG	GGGGGGAGGC	ACCTCATTTT	CTGCCATTCC	6000
	AAGAAGAAAT	GTGATGAGCT	CGCCGCGAAG	CTGTCCGGCC	TCGGACTCAA	6050
50	TGCTGTAGCA	TATTACCGGG	GCCTTGATGT	ATCCGTCATA	CCAACTAGCG	6100
	GAGACGTCAT	TGTCGTAGCA	ACGGACGCTC	TAATGACGGG	CTTTACCGGC	6150
55	GATTTCGACT	CAGTGATCGA	CTGCAATACA	TGTGTCACCC	AGACAGTCGA	6200
	CTTCAGCCTG	GACCCGACCT	TCACCATTGA	GACGACGACC	GTGCCACAAG	6250
60	ACGCGGTGTC	ACGCTCGCAG	CGGCGAGGCA	GGACTGGTAG	GGGCAGGATG	6300
	GGCATTTACA	GGTTTGTGAC	TCCAGGAGAA	CGGCCCTCGG	GCATGTTCGA	6350
c e	TTCCTCGGTT	CTGTGCGAGT	GCTATGACGC	GGGCTGTGCT	TGGTACGAGC	6400
65	TCACGCCCGC	CGAGACCTCA	GTTAGGTTGC	GGGCTTACCT	AAACACACCA	6450

000110000	TCTGCCAGGA	CCATCTGGAG	TTCTGGGAGA	GCGTCTTTAC	6500	
AGGCCTCACC	CACATAGACG	CCCATTTCTT	GTCCCAGACT	AAGCAGGCAG	6550	_
GAGACAACTT	CCCCTACCTG	GTAGCATACC	AGGCTACGGT	GTGCGCCAGG	6600	5
GCTCAGGCTC	CACCTCCATC	GTGGGACCAA	ATGTGGAAGT	GTCTCATACG	6650	
GCTAAAGCCT	ACGCTGCACG	GGCCAACGCC	CCTGCTGTAT	AGGCTGGGAG	6700	10
CCGTTCAAAA	CGAGGTTACT	ACCACACACC	CCATAACCAA	ATACATCATG	6750	
GCATGCATGT	CGGCTGACCT	GGAGGTCGTC	ACGAGCACCT	GGGTGCTGGT	6800	15
AGGCGGAGTC	CTAGCAGCTC	TGGCCGCGTA	TTGCCTGACA	ACAGGCAGCG	6850	
TGGTCATTGT	GGGCAGGATC	ATCTTGTCCG	GAAAGCCGGC	CATCATTCCC	6900	20
GACAGGGAAG	TCCTTTACCG	GGAGTTCGAT	GAGATGGAAG	AGTGCGCCTC	6950	
ACACCTCCCT	TACATCGAAC	AGGGAATGCA	GCTCGCCGAA	CAATTCAAAC	7000	
AGAAGGCAAT	CGGGTTGCTG	CAAACAGCCA	CCAAGCAAGC	GGAGGCTGCT	7050	25
GCTCCCGTGG	TGGAATCCAA	GTGGCGGACC	CTCGAAGCCT	TCTGGGCGAA	7100	
GCATATGTGG	AATTTCATCA	GCGGGATACA	ATAŢTTAGCA	GGCTTGTCCA	7150	30
CTCTGCCTGG	CAACCCCGCG	ATAGCATCAC	TGATGGCATT	CACAGCCTCT	7200	
ATCACCAGCC	CGCTCACCAC	CCAACATACC	CTCCTGTTTA	ACATCCTGGG	7250	35
GGGATGGGTG	GCCGCCCAAC	TTGCTCCTCC	CAGCGCTGCT	TCTGCTTTCG	7300	
TAGGCGCCGG	CATCGCTGGA	GCGGCTGTTG	GCAGCATAGG	CCTTGGGAAG	7350	40
GTGCTTGTGG	ATATTTTGGC	AGGTTATGGA	GCAGGGGTGG	CAGGCGCGCT	7400	
CGTGGCCTTT	AAGGTCATGA	GCGGCGAGAT	GCCCTCCACC	GAGGACCTGG	7450	
TTAACCTACT	CCCTGCTATC	CTCTCCCCTG	GCGCCCTAGT	CGTCGGGGTC	7500	45
GTGTGCGCAG	CGATACTGCG	TCGGCACGTG	GGCCCAGGGG	AGGGGGCTGT	7550	
GCAGTGGATG	AACCGGCTGA	TAGCGTTCGC	TTCGCGGGGT	AACCACGTCT	7600	50
CCCCCACGCA	CTATGTGCCT	GAGAGCGACG	CTGCAGCACG	TGTCACTCAG	7650	
ATCCTCTCTA	GTCTTACCAT	CACTCAGCTG	CTGAAGAGGC	TTCACCAGTG	7700	55
GATCAACGAG	GACTGCTCCA	CGCCATGCTC	CGGCTCGTGG	CTAAGAGATG	7750	
TTTGGGATTG	GATATGCACG	GTGTTGACTG	ATTTCAAGAC	CTGGCTCCAG	7800	60
TCCAAGCTCC	TGCCGCGATT	GCCGGGAGTC	CCCTTCTTCT	CATGTCAACG	7850	
TGGGTACAAG	GGAGTCTGGC	GGGGCGACGG	CATCATGCAA	ACCACCTGCC	7900	
CATGTGGAGC	ACAGATCACC	GGACATGTGA	AAAACGGTTC	CATGAGGATC	7950	65

	GIGGGGCCIA	GGACCIGIAG	IMACACGIGG	CAIGGAACAI	ICCCCATTAA	8000
	CGCGTACACC	ACGGGCCCCT	GCACGCCCTC	CCCGGCGCCA	AATTATTCTA	8050
5	GGGCGCTGTG	GCGGGTGGCT	GCTGAGGAGT	ACGTGGAGGT	TACGCGGGTG	8100
	GGGGATTTCC	ACTACGTGAC	GGGCATGACC	ACTGACAACG	TAAAGTGCCC	8150
0	GTGTCAGGTT	CCGGCCCCCG	AATTCTTCAC	AGAAGTGGAT	GGGGTGCGGT	8200
	TGCACAGGTA	CGCTCCAGCG	TGCAAACCCC	TCCTACGGGA	GGAGGTCACA	8250
5	TTCCTGGTCG	GGCTCAATCA	ATACCTGGTT	GGGTCACAGC	TCCCATGCGA	8300
	GCCCGAACCG	GACGTAGCAG	TGCTCACTTC	CATGCTCACC	GACCCCTCCC	8350
:0	ACATTACGGC	GGAGACGGCT	AAGCGTAGGC	TGGCCAGGGG	ATCTCCCCCC	8400
	TCCTTGGCCA	GCTCATCAGC	TAGCCAGCTG	TCTGCGCCTT	CCTTGAAGGC	8450
	AACATGCACT	ACCCGTCATG	ACTCCCCGGA	CGCTGACCTC	ATCGAGGCCA	8500
25	ACCTCCTGTG	GCGGCAGGAG	ATGGGCGGGA	ACATCACCCG	CGTGGAGTCA	8550
	GAAAATAAGG	TAGTAATTTT	GGACTCTTTC	GAGCCGCTCC	AAGCGGAGGA	8600
80	GGATGAGAGG	GAAGTATCCG	TTCCGGCGGA	GATCCTGCGG	AGGTCCAGGA	8650
	AATTCCCTCG	AGCGATGCCC	ATATGGGCAC	GCCCGGATTA	CAACCCTCCA	8700
35	CTGTTAGAGT	CCTGGAAGGA	CCCGGACTAC	GTCCCTCCAG	TGGTACACGG	8750
	GTGTCCATTG	CCGCCTGCCA	AGGCCCCTCC	GATACCACCT	CCACGGAGGA	8800
10	AGAGGACGGT	TGTCCTGTCA	GAATCTACCG	TGTCTTCTGC	CTTGGCGGAG	8850
	CTCGCCACAA	AGACCTTCGG	CAGCTCCGAA	TCGTCGGCCG	TCGACAGCGG	8900
	CACGGCAACG	GCCTCTCCTG	ACCAGCCCTC	CGACGACGGC	GACGCGGGAT	8950
15	CCGACGTTGA	GTCGTACTCC	TCCATGCCCC	CCCTTGAGGG	GGAGCCGGGG	9000
	GATCCCGATC	TCAGCGACGG	GTCTTGGTCT	ACCGTAAGCG	AGGAGGCTAG	9050
50	TGAGGACGTC	GTCTGCTGCT	CGATGTCCTA	CACATGGACA	GGCGCCCTGA	9100
	TCACGCCATG	CGCTGCGGAG	GAAACCAAGC	TGCCCATCAA	TGCACTGAGC	9150
55	AACTCTTTGC	TCCGTCACCA	CAACTTGGTC	TATGCTACAA	CATCTCGCAG	9200
	CGCAAGCCTG	CGGCAGAAGA	AGGTCACCTT	TGACAGACTG	CAGGTCCTGG	9250
50	ACGACCACTA	CCGGGACGTG	CTCAAGGAGA	TGAAGGCGAA	GGCGTCCACA	9300
	GTTAAGGCTA	AACTTCTATC	CGTGGAGGAA	GCCTGTAAGC	TGACGCCCCC	9350
	ACATTCGGCC	AGATCTAAAT	TTGGCTATGG	GGCAAAGGAC	GTCCGGAACC	9400
55	ТЪТССЪССЪЪ	CCCCCTTDAC	CACATCCCCT	CCCTCTCCAA	CCACOOCCOC	0450

GAAGACACTG	AGACACCAAT	TGACACCACC	ATCATGGCAA	AAAATGAGGT	9500	
TTTCTGCGTC	CAACCAGAGA	AGGGGGGCCG	CAAGCCAGCT	CGCCTTATCG	9550	
TATTCCCAGA	TTTGGGGGTT	CGTGTGTGCG	AGAAAATGGC	CCTTTACGAT	9600	5
GTGGTCTCCA	CCCTCCCTCA	GGCCGTGATG	GGCTCTTCAT	ACGGATTCCA	9650	
ATACTCTCCT	GGACAGCGGG	TCGAGTTCCT	GGTGAATGCC	TGGAAAGCGA	9700	10
AGAAATGCCC	TATGGGCTTC	GCATATGACA	CCCGCTGTTT	TGACTCAACG	9750	
GTCACTGAGA	ATGACATCCG	TGTTGAGGAG	TCAATCTACC	AATGTTGTGA	9800	15
CTTGGCCCCC	GAAGCCAGAC	AGGCCATAAG	GTCGCTCACA	GAGCGGCTTT	9850	
ACATCGGGGG	CCCCTGACT	AATTCTAAAG	GGCAGAACTG	CGGCTATCGC	9900	20
CGGTGCCGCG	CGAGCGGTGT	ACTGACGACC	AGCTGCGGTA	ATACCCTCAC	9950	
ATGTTACTTG	AAGGCCGCTG	CGGCCTGTCG	AGCTGCGAAG	CTCCAGGACT	10000	_
GCACGATGCT	CGTATGCGGA	GACGACCTTG	TCGTTATCTG	TGAAAGCGCG	10050	25
GGGACCCAAG	AGGACGAGGC	GAGCCTACGG	GCCTTCACGG	AGGCTATGAC	10100	
TAGATACTCT	GCCCCCCTG	GGGACCCGCC	CAAACCAGAA	TACGACTTGG	10150	30
AGTTGATAAC	ATCATGCTCC	TCCAATGTGT	CAGTCGCGCA	CGATGCATCT	10200	
GGCAAAAGGG	TGTACTATCT	CACCCGTGAC	CCCACCACCC	CCCTTGCGCG	10250	35
GGCTGCGTGG	GAGACAGCTA	GACACACTCC	AGTCAATTCC	TGGCTAGGCA	10300	
ACATCATCAT	GTATGCGCCC	ACCTTGTGGG	CAAGGATGAT	CCTGATGACT	10350	40
CATTTCTTCT	CCATCCTTCT	AGCTCAGGAA	CAACTTGAAA	AAGCCCTAGA	10400	
TTGTCAGATC	TACGGGGCCT	GTTACTCCAT	TGAGCCACTT	GACCTACCTC	10450 .	
AGATCATTCA	ACGACTCCAT	GGCCTTAGCG	CATTTTCACT	CCATAGTTAC	10500	45
TCTCCAGGTG	AGATCAATAG	GGTGGCTTCA	TGCCTCAGGA	AACTTGGGGT	10550	
ACCGCCCTTG	CGAGTCTGGA	GACATCGGGC	CAGAAGTGTC	CGCGCTAGGC	10600	50
TACTGTCCCA	GGGGGGAGG	GCTGCCACTT	GTGGCAAGTA	CCTCTTCAAC	10650	
TGGGCAGTAA	GGACCAAGCT	CAAACTCACT	CCAATCCCGG	CTGCGTCCCA	10700	55
GTTGGATTTA	TCCAGCTGGT	TCGTTGCTGG	TTACAGCGGG	GGAGACATAT	10750	
ATCACAGCCT	GTCTCGTGCC	CGACCCCGCT	GGTTCATGTG	GTGCCTACTC	10800	60
CTACTTTCTG	TAGGGGTAGG	CATCTATCTA	CTCCCCAACC	GATGAACGGG	10850	
GAGCTAAACA	CTCCAGGCCA	ATAGGCCATC	CTGTTTTTT	CCCTTTTTTT	10900	
ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ ԱՄՆ 	Մարդարարարարարարարարարարարար	փափափափակա	փանափանար	Պ ՀՀՊՊՊՊՊՊՊՊ	10050	65

TTCCTCTTT TTTCCTTTC TTTCCTTTGG TGGCTCCATC TTAGCCCTAG 11000

TCACGGCTAG CTGTGAAAGG TCCGTGAGCC GCTTGACTGC AGAGAGTGCT 11050

GATACTGGCC TCTCTGCAGA TCAAGT

ANGABEN ZU SEQ ID-NO:2:

SEQUENZCHARAKTERISTIKA: LÄNGE: 8637 Basenpaare ART: Nukleinsäure STRANGFORM: Einzelstrang		5
TOPOLOGIE: linear ART DES MOLEKÜLS: Subgenom-RNA		10
HYPOTHETISCH: Nein		15
		13
ANTI-SENSE: nein		
URSPRÜNGLICHE HERKUNFT: ORGANISMUS: Hepatitis C Virus		20
STAMM: Genotyp 1b ENTWICKLUNGSSTADIUM: — ZELLTYP: —		25
UNMITTELBARE HERKUNFT: Isolat aus humanen Leberzellen		30
MERKMAL: NAME/SCHLÜSSEL: kodierende Sequenz für Virusproteine LAGE: — ERMITTLUNGSMETHODE: . experimentell		35
•		40
SEQUENZBESCHREIBUNG: SEQ ID-NO: 2		45
I ₁₋₃₇₇ /NS2-3'/wt: 8637 bp	•	
GCCAGCCCC GATTGGGGGC GACACTCCAC CATAGATCAC TCCCCTGTGA	50	50
GGAACTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG	100	
TGTCGTGCAG CCTCCAGGAC CCCCCCTCCC GGGAGAGCCA TAGTGGTCTG	150	
CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG		55
GATCAACCCG CTCAATGCCT GGAGATTTGG GCGTGCCCCC GCGAGACTGC	250	
TAGCCGAGTA GTGTTGGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG	300	60
GTGCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACG	350	
AATCCTAAAC CTCAAAGAAA AACCAAAGGG CGCGCCATGA TTGAACAAGA	400	65
TGGATTGCAC GCAGGTTCTC CGGCCGCTTG GGTGGAGAGG CTATTCGGCT	450	

	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT	CTGATGCCGC	CGTGTTCCGG	500
_	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	GTCAAGACCG	ACCTGTCCGG	550
5	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	TGGCTGGCCA	600
	CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	650
10	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	700
	TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	750
15	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	CATTCGACCA	CCAAGCGAAA	800
	CATCGCATCG	AGCGAGCACG	TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	850
20	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	GAACTGTTCG	900
	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	950
	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	1000
25	ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	1050
	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	ATGGGCTGAC	1100
30	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	1150
	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGTTTAAACA	GACCACAACG	1200
35	GTTTCCCTCT	AGCGGGATCA	ATTCCGCCCC	TCTCCCTCCC	CCCCCCTAA	1250
	CGTTACTGGC	CGAAGCCGCT	TGGAATAAGG	CCGGTGTGCG	TTTGTCTATA	1300
40	TGTTATTTTC	CACCATATTG	CCGTCTTTTG	GCAATGTGAG	GGCCCGGAAA	1350
	CCTGGCCCTG	TCTTCTTGAC	GAGCATTCCT	AGGGGTCTTT	CCCCTCTCGC	1400
	CAAAGGAATG	CAAGGTCTGT	TGAATGTCGT	GAAGGAAGCA	GTTCCTCTGG	1450
45	AAGCTTCTTG	AAGACAAACA	ACGTCTGTAG	CGACCCTTTG	CAGGCAGCGG	1500
	AACCCCCCAC	CTGGCGACAG	GTGCCTCTGC	GGCCAAAAGC	CACGTGTATA	1550
50	AGATACACCT	GCAAAGGCGG	CACAACCCCA	GTGCCACGTT	GTGAGTTGGA	1600
	TAGTTGTGGA	AAGAGTCAAA	TGGCTCTCCT	CAAGCGTATT	CAACAAGGGG	1650
55	CTGAAGGATG	CCCAGAAGGT	ACCCCATTGT	ATGGGATCTG	ATCTGGGGCC	1700
	TCGGTGCACA	TGCTTTACAT	GTGTTTAGTC	GAGGTTAAAA	AACGTCTAGG	1750
60	CCCCCGAAC	CACGGGGACG	TGGTTTTCCT	TTGAAAAACA	CGATAATACC	1800
	ATGGACCGGG	AGATGGCAGC	ATCGTGCGGA	GGCGCGGTTT	TCGTAGGTCT	1850
	GATACTCTTG	ACCTTGTCAC	CGCACTATAA	GCTGTTCCTC	GCTAGGCTCA	1900
65	TATGGTGGTT	ACAATATTTT	ATCACCAGGG	CCGAGGCACA	CTTGCAAGTG	1950

TGGATCCCCC CCCTCAACGT TCGGGGGGGC CGCGATGCCG TCATCCTCCT	2000	
CACGTGCGCG ATCCACCCAG AGCTAATCTT TACCATCACC AAAATCTTGC	2050	
TCGCCATACT CGGTCCACTC ATGGTGCTCC AGGCTGGTAT AACCAAAGTG	2100	5
CCGTACTTCG TGCGCGCACA CGGGCTCATT CGTGCATGCA TGCTGGTGCG	2150	
GAAGGTTGCT GGGGGTCATT ATGTCCAAAT GGCTCTCATG AAGTTGGCCG	2200	10
CACTGACAGG TACGTACGTT TATGACCATC TCACCCCACT GCGGGACTGG	2250	
GCCCACGCGG GCCTACGAGA CCTTGCGGTG GCAGTTGAGC CCGTCGTCTT	2300	15
CTCTGATATG GAGACCAAGG TTATCACCTG GGGGGCAGAC ACCGCGGCGT	2350	
GTGGGGACAT CATCTTGGGC CTGCCCGTCT CCGCCCGCAG GGGGAGGGAG	2400	20
ATACATCTGG GACCGGCAGA CAGCCTTGAA GGGCAGGGGT GGCGACTCCT	2450	
CGCGCCTATT ACGGCCTACT CCCAACAGAC GCGAGGCCTA CTTGGCTGCA	2500	
TCATCACTAG CCTCACAGGC CGGGACAGGA ACCAGGTCGA GGGGGAGGTC	2550	25
CAAGTGGTCT CCACCGCAAC ACAATCTTTC CTGGCGACCT GCGTCAATGG	2600	
CGTGTGTTGG ACTGTCTATC ATGGTGCCGG CTCAAAGACC CTTGCCGGCC	2650	30
CAAAGGGCCC AATCACCCAA ATGTACACCA ATGTGGACCA GGACCTCGTC	2700	
GGCTGGCAAG CGCCCCCGG GGCGCGTTCC TTGACACCAT GCACCTGCGG	2750	35
CAGCTCGGAC CTTTACTTGG TCACGAGGCA TGCCGATGTC ATTCCGGTGC	2800	
GCCGGCGGG CGACAGCAGG GGGAGCCTAC TCTCCCCCAG GCCCGTCTCC	2850	40
TACTTGAAGG GCTCTTCGGG CGGTCCACTG CTCTGCCCCT CGGGGCACGC	2900	
TGTGGGCATC TTTCGGGCTG CCGTGTGCAC CCGAGGGGTT GCGAAGGCGG	2950	
TGGACTTTGT ACCCGTCGAG TCTATGGAAA CCACTATGCG GTCCCCGGTC	3000	45
TTCACGGACA ACTCGTCCCC TCCGGCCGTA CCGCAGACAT TCCAGGTGGC	3050	
CCATCTACAC GCCCCTACTG GTAGCGGCAA GAGCACTAAG GTGCCGGCTG	3100	50
CGTATGCAGC CCAAGGGTAT AAGGTGCTTG TCCTGAACCC GTCCGTCGCC	3150	
GCCACCCTAG GTTTCGGGGC GTATATGTCT AAGGCACATG GTATCGACCC	3200	55
TAACATCAGA ACCGGGGTAA GGACCATCAC CACGGGTGCC CCCATCACGT	3250	
ACTCCACCTA TGGCAAGTTT CTTGCCGACG GTGGTTGCTC TGGGGGCGCC	3300	60
TATGACATCA TAATATGTGA TGAGTGCCAC TCAACTGACT CGACCACTAT	3350	
CCTGGGCATC GGCACAGTCC TGGACCAAGC GGAGACGGCT GGAGCGCGAC	3400	
TCGTCGTGCT CGCCACCGCT ACGCCTCCGG GATCGGTCAC CGTGCCACAT	3450	65

	CCAAACATCG	AGGAGGTGGC	TCTGTCCAGC	ACTGGAGAAA	TCCCCTTTTA	3500
	TGGCAAAGCC	ATCCCCATCG	AGACCATCAA	GGGGGGGAGG	CACCTCATTT	3550
5	TCTGCCATTC	CAAGAAGAAA	TGTGATGAGC	TCGCCGCGAA	GCTGTCCGGC	3600
	CTCGGACTCA	ATGCTGTAGC	ATATTACCGG	GGCCTTGATG	TATCCGTCAT	3650
10	ACCAACTAGC	GGAGACGTCA	TTGTCGTAGC	AACGGACGCT	CTAATGACGG	3700
	GCTTTACCGG	CGATTTCGAC	TCAGTGATCG	ACTGCAATAC	ATGTGTCACC	3750
15	CAGACAGTCG	ACTTCAGCCT	GGACCCGACC	TTCACCATTG	AGACGACGAC	3800
	CGTGCCACAA	GACGCGGTGT	CACGCTCGCA	GCGGCGAGGC	AGGACTGGTA	3850
20	GGGGCAGGAT	GGGCATTTAC	AGGTTTGTGA	CTCCAGGAGA	ACGGCCCTCG	3900
	GGCATGTTCG	ATTCCTCGGT	TCTGTGCGAG	TGCTATGACG	CGGGCTGTGC	3950
	TTGGTACGAG	CTCACGCCCG	CCGAGACCTC	AGTTAGGTTG	CGGGCTTACC	4000
25	TAAACACACC	AGGGTTGCCC	GTCTGCCAGG	ACCATCTGGA	GTTCTGGGAG	4050
	AGCGTCTTTA	CAGGCCTCAC	CCACATAGAC	GCCCATTTCT	TGTCCCAGAC	4100
30	TAAGCAGGCA	GGAGACAACT	TCCCCTACCT	GGTAGCATAC	CAGGCTACGG	4150
	TGTGCGCCAG	GGCTCAGGCT	CCACCTCCAT	CGTGGĢACCA	AATGTGGAAG	4200
35	TGTCTCATAC	GGCTAAAGCC	TACGCTGCAC	GGGCCAACGC	CCCTGCTGTA	4250
	TAGGCTGGGA	GCCGTTCAAA	ACGAGGTTAC	TACCACACAC	CCCATAACCA	4300
40	AATACATCAT	GGCATGCATG	TCGGCTGACC	TGGAGGTCGT	CACGAGCACC	4350
	TGGGTGCTGG	TAGGCGGAGT	CCTAGCAGCT	CTGGCCGCGT	ATTGCCTGAC	4400
	AACAGGCAGC	GTGGTCATTG	TGGGCAGGAT	CATCTTGTCC	GGAAAGCCGG	4450
45	CCATCATTCC	CGACAGGGAA	GTCCTTTACC	GGGAGTTCGA	TGAGATGGAA	4500
	GAGTGCGCCT	CACACCTCCC	TTACATCGAA	CAGGGAATGC	AGCTCGCCGA	4550
50	ACAATTCAAA	CAGAAGGCAA	TCGGGTTGCT	GCAAACAGCC	ACCAAGCAAG	4600
	CGGAGGCTGC	TGCTCCCGTG	GTGGAATCCA	AGTGGCGGAC	CCTCGAAGCC	4650
55	TTCTGGGCGA	AGCATATGTG	GAATTTCATC	AGCGGGATAC	AATATTTAGC	4700
	AGGCTTGTCC	ACTCTGCCTG	GCAACCCCGC	GATAGCATCA	CTGATGGCAT	4750
60	TCACAGCCTC	TATCACCAGC	CCGCTCACCA	CCCAACATAC	CCTCCTGTTT	4800
	AACATCCTGG	GGGGATGGGT	GGCCGCCCAA	CTTGCTCCTC	CCAGCGCTGC	4850
	TTCTGCTTTC	GTAGGCGCCG	GCATCGCTGG	AGCGGCTGTT	GGCAGCATAG	4900
65	GCCTTGGGAA	GGTGCTTGTG	GATATTTTGG	CAGGTTATGG	AGCAGGGGTG	4950

GCAGGCGCGC	TCGTGGCCTT	TAAGGTCATG	AGCGGCGAGA	TGCCCTCCAC	5000	
CGAGGACCTG	GTTAACCTAC	TCCCTGCTAT	CCTCTCCCCT	GGCGCCCTAG	5050	_
TCGTCGGGGT	CGTGTGCGCA	GCGATACTGC	GTCGGCACGT	GGGCCCAGGG	5100	5
GAGGGGGCTG	TGCAGTGGAT	GAACCGGCTG	ATAGCGTTCG	CTTCGCGGGG	5150	
TAACCACGTC	TCCCCCACGC	ACTATGTGCC	TGAGAGCGAC	GCTGCAGCAC	5200	10
GTGTCACTCA	GATCCTCTCT	AGTCTTACCA	TCACTCAGCT	GCTGAAGAGG	5250	
CTTCACCAGT	GGATCAACGA	GGACTGCTCC	ACGCCATGCT	CCGGCTCGTG	5300	15
GCTAAGAGAT	GTTTGGGATT	GGATATGCAC	GGTGTTGACT	GATTTCAAGA	5350	
CCTGGCTCCA	GTCCAAGCTC	CTGCCGCGAT	TGCCGGGAGT	CCCCTTCTTC	5400	20
TCATGTCAAC	GTGGGTACAA	GGGAGTCTGG	CGGGGCGACG	GCATCATGCA	5450	
AACCACCTGC	CCATGTGGAG	CACAGATCAC	CGGACATGTG	AAAAACGGTT	5500	
CCATGAGGAT	CGTGGGGCCT	AGGACCTGTA	GTAACACGTG	GCATGGAACA	5550	25
TTCCCCATTA	ACGCGTACAC	CACGGGCCCC	TGCACGCCCT	CCCCGGCGCC	5600	
AAATTATTCT	AGGGCGCTGT	GCCGGGTGGC	TGCTGAGGAG	TACGTGGAGG	5650	30
TTACGCGGGT	GGGGGATTTC	CACTACGTGA	CGGGCATGAC	CACTGACAAC	5700	
GTAAAGTGCC	CGTGTCAGGT	TCCGGCCCCC	GAATTCTTCA	CAGAAGTGGA	5750	35
TGGGGTGCGG	TTGCACAGGT	ACGCTCCAGC	GTGCAAACCC	CTCCTACGGG	5800	
AGGAGGTCAC	ATTCCTGGTC	GGGCTCAATC	AATACCTGGT	TGGGTCACAG	5850	40
CTCCCATGCG	AGCCCGAACC	GGACGTAGCA	GTGCTCACTT	CCATGCTCAC	5900	
CGACCCCTCC	CACATTACGG	CGGAGACGGC	TAAGCGTAGG	CTGGCCAGGG	5950	
GATCTCCCCC	CTCCTTGGCC	AGCTCATCAG	CTAGCCAGCT	GTCTGCGCCT	6000	45
TCCTTGAAGG	CAACATGCAC	TACCCGTCAT	GACTCCCCGG	ACGCTGACCT	6050	
CATCGAGGCC	AACCTCCTGT	GGCGGCAGGA	GATGGGCGGG	AACATCACCC	6100	50
GCGTGGAGTC	AGAAAATAAG	GTAGTAATTT	TGGACTCTTT	CGAGCCGCTC	6150	
CAAGCGGAGG	AGGATGAGAG	GGAAGTATCC	GTTCCGGCGG	AGATCCTGCG	6200	55
GAGGTCCAGG	AAATTCCCTC	GAGCGATGCC	CATATGGGCA	CGCCCGGATT	6250	
ACAACCCTCC	ACTGTTAGAG	TCCTGGAAGG	ACCCGGACTA	CGTCCCTCCA	6300	60
GTGGTACACG	GGTGTCCATT	GCCGCCTGCC	AAGGCCCCTC	CGATACCACC	6350	00
TCCACGGAGG	AAGAGGACGG	TTGTCCTGTC	AGAATCTACC	GTGTCTTCTG	6400	
CCTTGGCGGA	GCTCGCCACA	AAGACCTTCG	GCAGCTCCGA	ATCGTCGGCC	6450	65

	GTCGACAGCG	GCACGGCAAC	GGCCTCTCCT	GACCAGCCCT	CCGACGACGG	6500
_	CGACGCGGGA	TCCGACGTTG	AGTCGTACTC	CTCCATGCCC	CCCCTTGAGG	6550
5	GGGAGCCGGG	GGATCCCGAT	CTCAGCGACG	GGTCTTGGTC	TACCGTAAGC	6600
	GAGGAGGCTA	GTGAGGACGT	CGTCTGCTGC	TCGATGTCCT	ACACATGGAC	6650
10	AGGCGCCCTG	ATCACGCCAT	GCGCTGCGGA	GGAAACCAAG	CTGCCCATCA	6700
	ATGCACTGAG	CAACTCTTTG	CTCCGTCACC	ACAACTTGGT	CTATGCTACA	6750
15	ACATCTCGCA	GCGCAAGCCT	GCGGCAGAAG	AAGGTCACCT	TTGACAGACT	6800
	GCAGGTCCTG	GACGACCACT	ACCGGGACGT	GCTCAAGGAG	ATGAAGGCGA	6850
20	AGGCGTCCAC	AGTTAAGGCT	AAACTTCTAT	CCGTGGAGGA	AGCCTGTAAG	6900
	CTGACGCCCC	CACATTCGGC	CAGATCTAAA	TTTGGCTATG	GGGCAAAGGA	6950
25	CGTCCGGAAC	CTATCCAGCA	AGGCCGTTAA	CCACATCCGC	TCCGTGTGGA	7000
23	AGGACTTGCT	GGAAGACACT	GAGACACCAA	TTGACACCAC	CATCATGGCA	7050
	AAAAATGAGG	TTTTCTGCGT	CCAACCAGAG	AAGGGGGCC	GCAAGCCAGC	7100
30	TCGCCTTATC	GTATTCCCAG	ATTTGGGGGT	TCGTGTGTGC	GAGAAAATGG	7150
	CCCTTTACGA	TGTGGTCTCC	ACCCTCCCTC	AGGCCGTGAT	GGGCTCTTCA	7200
35	TACGGATTCC	AATACTCTCC	TGGACAGCGG	GTCGAGTTCC	TGGTGAATGC	7250
	CTGGAAAGCG	AAGAAATGCC	CTATGGGCTT	CGCATATGAC	ACCCGCTGTT	7300
40	TTGACTCAAC	GGTCACTGAG	AATGACATCC	GTGTTGAGGA	GTCAATCTAC	7350
	CAATGTTGTG	ACTTGGCCCC	CGAAGCCAGA	CAGGCCATAA	GGTCGCTCAC	7400
45	AGAGCGGCTT	TACATCGGGG	GCCCCTGAC	TAATTCTAAA	GGGCAGAACT	7450
45	GCGGCTATCG	CCGGTGCCGC	GCGAGCGGTG	TACTGACGAC	CAGCTGCGGT	7500
	AATACCCTCA	CATGTTACTT	GAAGGCCGCT	GCGGCCTGTC	GAGCTGCGAA	7550
50	GCTCCAGGAC	TGCACGATGC	TCGTATGCGG	AGACGACCTT	GTCGTTATCT	7600
	GTGAAAGCGC	GGGGACCCAA	GAGGACGAGG	CGAGCCTACG	GGCCTTCACG	7650
55	GAGGCTATGA	CTAGATACTC	TGCCCCCCT	GGGGACCCGC	CCAAACCAGA	7700
	ATACGACTTG	GAGTTGATAA	CATCATGCTC	CTCCAATGTG	TCAGTCGCGC	7750
60	ACGATGCATC	TGGCAAAAGG	GTGTACTATC	TCACCCGTGA	CCCCACCACC	7800
	CCCCTTGCGC	GGGCTGCGTG	GGAGACAGCT	AGACACACTC	CAGTCAATTC	7850
	CTGGCTAGGC	AACATCATCA	TGTATGCGCC	CACCTTGTGG	GCAAGGATGA	7900
65	TCCTGATGAC	TCATTTCTTC	TCCATCCTTC	TAGCTCAGGA	ACAACTTGAA	7950

AAAGCCCTAG	ATTGTCAGAT	CTACGGGGCC	TGTTACTCCA	TTGAGCCACT	8000	
TGACCTACCT	CAGATCATTC	AACGACTCCA	TGGCCTTAGC	GCATTTTCAC	8050	
TCCATAGTTA	CTCTCCAGGT	GAGATCAATA	GGGTGGCTTC	ATGCCTCAGG	8100	3
AAACTTGGGG	TACCGCCCTT	GCGAGTCTGG	AGACATCGGG	CCAGAAGTGT	8150	
CCGCGCTAGG	CTACTGTCCC	AGGGGGGGAG	GGCTGCCACT	TGTGGCAAGT	8200	10
ACCTCTTCAA	CTGGGCAGTA	AGGACCAAGC	TCAAACTCAC	TCCAATCCCG	8250	
GCTGCGTCCC	AGTTGGATTT	ATCCAGCTGG	TTCGTTGCTG	GTTACAGCGG	8300	15
GGGAGACATA	TATCACAGCC	TGTCTCGTGC	CCGACCCCGC	TGGTTCATGT	8350	
GGTGCCTACT	CCTACTTTCT	GTAGGGGTAG	GCATCTATCT	ACTCCCCAAC	8400	20
CGATGAACGG	GGAGCTAAAC	ACTCCAGGCC	AATAGGCCAT	CCTGTTTTTT	8450	
TCCCTTTTTT	TTTTTCTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	8500	2.5
CTCCTTTTTT	TTTCCTCTTT	TTTTCCTTTT	CTTTCCTTTG	GTGGCTCCAT	8550	25
CTTAGCCCTA	GTCACGGCTA	GCTGTGAAAG	GTCCGTGAGC	CGCTTGACTG	8600	
CAGAGAGTGC	ТСАТАСТССС	СТСТСТССАС	ATCAAGT			30

ANGABEN ZU SEQ ID-NO:3:

SEQUENZCHARAKTERISTIKA:

5	LÄNGE: 8001 Basenpaare ART: Nukleinsäure STRANGFORM: Einzelstrang TOPOLOGIE: linear	
	ART DES MOLEKÜLS: Subgenom-RNA	
15	HYPOTHETISCH: Nein	
	ANTI-SENSE: nein	
20	URSPRÜNGLICHE HERKUNFT: ORGANISMUS: Hepatitis C Virus STAMM: Genotyp 1b ENTWICKLUNGSSTADIUM: — ZELLTYP: —	
30	UNMITTELBARE HERKUNFT: Isolat aus humanen Leberzellen	
35	MERKMAL: NAME/SCHLÜSSEL: kodierende Sequenz für Virusproteine LAGE: — ERMITTLUNGSMETHODE: experimentell	
40		
45	SEQUENZBESCHREIBUNG: SEQ ID-NO: 3	
50	I ₃₈₉ /NS3-3'/wt: 8001 bp	
50	GCCAGCCCCC GATTGGGGGC GACACTCCAC CATAGATCAC TCCCCTGTGA	50
	GGAACTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG	100
55	TGTCGTGCAG CCTCCAGGAC CCCCCTCCC GGGAGAGCCA TAGTGGTCTG	150
	CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG	200
60	GATCAACCCG CTCAATGCCT GGAGATTTGG GCGTGCCCCC GCGAGACTGC	250
	TAGCCGAGTA GTGTTGGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG	300
65	GTGCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACG	350
	AATCCTAAAC CTCAAAGAAA AACCAAACGT AACACCAACG GGCGCGCCAT	400

GATTGAACAA	GATGGATTGC	ACGCAGGTTC	TCCGGCCGCT	TGGGTGGAGA	450	
GGCTATTCGG	CTATGACTGG	GCACAACAGA	CAATCGGCTG	CTCTGATGCC	500	_
GCCGTGTTCC	GGCTGTCAGC	GCAGGGGCGC	CCGGTTCTTT	TTGTCAAGAC	550	5
CGACCTGTCC	GGTGCCCTGA	ATGAACTGCA	GGACGAGGCA	GCGCGGCTAT	600	
CGTGGCTGGC	CACGACGGGC	GTTCCTTGCG	CAGCTGTGCT	CGACGTTGTC	650	10
ACTGAAGCGG	GAAGGGACTG	GCTGCTATTG	GGCGAAGTGC	CGGGGCAGGA	700	
TCTCCTGTCA	TCTCACCTTG	CTCCTGCCGA	GAAAGTATCC	ATCATGGCTG	750	15
ATGCAATGCG	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	CCCATTCGAC	800	
CACCAAGCGA	AACATCCCAT	CGAGCGAGCA	CGTACTCGGA	TGGAAGCCGG	850	20
TCTTGTCGAT	CAGGATGATC	TGGACGAAGA	GCATCAGGGG	CTCGCGCCAG	900	
CCGAACTGTT	CGCCAGGCTC	AAGGCGCGCA	TGCCCGACGG	CGAGGATCTC	950	
GTCGTGACCC	ATGGCGATGC	CTGCTTGCCG	AATATCATGG	TGGAAAATGG	1000	25
CCGCTTTTCT	GGATTCATCG	ACTGTGGCCG	GCTGGGTGTG	GCGGACCGCT	1050	
ATCAGGACAT	AGCGTTGGCT	ACCCGTGATA	TTGCTGAAGA	GCTTGGCGGC	1100	30
GAATGGGCTG	ACCGCTTCCT	CGTGCTTTAC	GGTATCGCCG	CTCCCGATTC	1150	
GCAGCGCATC	GCCTTCTATC	GCCTTCTTGA	CGAGTTCTTC	TGAGTTTAAA	1200	35
CAGACCACAA	CGGTTTCCCT	CTAGCGGGAT	CAATTCCGCC	CCTCTCCCTC	1250	
CCCCCCCT	AACGTTACTG	GCCGAAGCCG	CTTGGAATAA	GGCCGGTGTG	1300	40
CGTTTGTCTA	TATGTTATTT	TCCACCATAT	TGCCGTCTTT	TGGCAATGTG	1350	
AGGGCCCGGA	AACCTGGCCC	TGTCTTCTTG	ACGAGCATTC	CTAGGGGTCT	1400	
TTCCCCTCTC	GCCAAAGGAA	TGCAAGGTCT	GTTGAATGTC	GTGAAGGAAG	1450	45
CAGTTCCTCT	GGAAGCTTCT	TGAAGACAAA	CAACGTCTGT	AGCGACCCTT	1500	
TGCAGGCAGC	GGAACCCCCC	ACCTGGCGAC	AGGTGCCTCT	GCGGCCAAAA	1550	50
GCCACGTGTA	TAAGATACAC	CTGCAAAGGC	GGCACAACCC	CAGTGCCACG	1600	
TTGTGAGTTG	GATAGTTGTG	GAAAGAGTCA	AATGGCTCTC	CTCAAGCGTA	1650	55
TTCAACAAGG	GGCTGAAGGA	TGCCCAGAAG	GTACCCCATT	GTATGGGATC	1700	
TGATCTGGGG	CCTCGGTGCA	CATGCTTTAC	ATGTGTTTAG	TCGAGGTTAA	1750	60
AAAACGTCTA	GGCCCCCGA	ACCACGGGGA	CGTGGTTTTC	CTTTGAAAAA	1800	
CACGATAATA	CCATGGCGCC	TATTACGGCC	TACTCCCAAC	AGACGCGAGG	1850	
CCTACTTCCC	ጥርር አጥር አጥር አ	CTACCCTCAC	ACCCCCCAC	ACCAACCACC	1000	65

	TCGAGGGGGA	GGTCCAAGTG	GTCTCCACCG	CAACACAATC	TTTCCTGGCG	1950
	ACCTGCGTCA	ATGGCGTGTG	TTGGACTGTC	TATCATGGTG	CCGGCTCAAA	2000
5	GACCCTTGCC	GGCCCAAAGG	GCCCAATCAC	CCAAATGTAC	ACCAATGTGG	2050
	ACCAGGACCT	CGTCGGCTGG	CAAGCGCCCC	CCGGGGCGCG	TTCCTTGACA	2100
10	CCATGCACCT	GCGGCAGCTC	GGACCTTTAC	TTGGTCACGA	GGCATGCCGA	2150
	TGTCATTCCG	GTGCGCCGGC	GGGGCGACAG	CAGGGGGAGC	CTACTCTCCC	2200
15	CCAGGCCCGT	CTCCTACTTG	AAGGGCTCTT	CGGGCGGTCC	ACTGCTCTGC	2250
	CCCTCGGGGC	ACGCTGTGGG	CATCTTTCGG	GCTGCCGTGT	GCACCCGAGG	2300
20	GGTTGCGAAG	GCGGTGGACT	TTGTACCCGT	CGAGTCTATG	GAAACCACTA	2350
	TGCGGTCCCC	GGTCTTCACG	GACAACTCGT	CCCCTCCGGC	CGTACCGCAG	2400
	ACATTCCAGG	TGGCCCATCT	ACACGCCCCT	ACTGGTAGCG	GCAAGAGCAC	2450
25	TAAGGTGCCG	GCTGCGTATG	CAGCCCAAGG	GTATAAGGTG	CTTGTCCTGA	2500
	ACCCGTCCGT	CGCCGCCACC	CTAGGTTTCG	GGGCGTATAT	GTCTAAGGCA	2550
30	CATGGTATCG	ACCCTAACAT	CAGAACCGGG	GTAAGGACCA	TCACCACGGG	2600
	TGCCCCCATC	ACGTACTCCA	CCTATGGCAA	GTTTCTTGCC	GACGGTGGTT	2650
35	GCTCTGGGGG	CGCCTATGAC	ATCATAATAT	GTGATGAGTG	CCACTCAACT	2700
	GACTCGACCA	CTATCCTGGG	CATCGGCACA	GTCCTGGACC	AAGCGGAGAC	2750
40	GGCTGGAGCG	CGACTCGTCG	TGCTCGCCAC	CGCTACGCCT	CCGGGATCGG	2800
	TCACCGTGCC	ACATCCAAAC	ATCGAGGAGG	TGGCTCTGTC	CAGCACTGGA	2850
45	GAAATCCCCT	TTTATGGCAA	AGCCATCCCC	ATCGAGACCA	TCAAGGGGGG	2900
45	GAGGCACCTC	ATTTTCTGCC	ATTCCAAGAA	GAAATGTGAT	GAGCTCGCCG	2950
	CGAAGCTGTC	CGGCCTCGGA	CTCAATGCTG	TAGCATATTA	CCGGGGCCTT	3000
50	GATGTATCCG	TCATACCAAC	TAGCGGAGAC	GTCATTGTCG	TAGCAACGGA	3050
	CGCTCTAATG	ACGGGCTTTA	CCGGCGATTT	CGACTCAGTG	ATCGACTGCA	3100
55	ATACATGTGT	CACCCAGACA	GTCGACTTCA	GCCTGGACCC	GACCTTCACC	3150
	ATTGAGACGA	CGACCGTGCC	ACAAGACGCG	GTGTCACGCT	CGCAGCGGCG	3200
60	AGGCAGGACT	GGTAGGGGCA	GGATGGGCAT	TTACAGGTTT	GTGACTCCAG	3250
	GAGAACGGCC	CTCGGGCATG	TTCGATTCCT	CGGTTCTGTG	CGAGTGCTAT	3300
65	•				CCTCAGTTAG	3350
65	GTTCCCCCCT	ΤΑΓΓΤΑΑΑΓΑ	CACCAGGGTT	CCCCCTCTCC	CACCACCAMC	2400

IGGAGIICIG	GGAGAGCGIC	TTTACAGGCC	ICACCCACAI	AGACGCCCAI	2420	
TTCTTGTCCC	AGACTAAGCA	GGCAGGAGAC	AACTTCCCCT	ACCTGGTAGC	3500	
ATACCAGGCT	ACGGTGTGCG	CCAGGGCTCA	GGCTCCACCT	CCATCGTGGG	3550	5
ACCAAATGTG	GAAGTGTCTC	ATACGGCTAA	AGCCTACGCT	GCACGGGCCA	3600	
ACGCCCCTGC	TGTATAGGCT	GGGAGCCGTT	CAAAACGAGG	TTACTACCAC	3650	10
ACACCCCATA	ACCAAATACA	TCATGGCATG	CATGTCGGCT	GACCTGGAGG	3700	
TCGTCACGAG	CACCTGGGTG	CTGGTAGGCG	GAGTCCTAGC	AGCTCTGGCC	3750	15
GCGTATTGCC	TGACAACAGG	CAGCGTGGTC	ATTGTGGGCA	GGATCATCTT	3800	
GTCCGGAAAG	CCGGCCATCA	TTCCCGACAG	GGAAGTCCTT	TACCGGGAGT	3850	20
TCGATGAGAT	GGAAGAGTGC	GCCTCACACC	TCCCTTACAT	CGAACAGGGA	3900	20
ATGCAGCTCG	CCGAACAATT	CAAACAGAAG	GCAATCGGGT	TGCTGCAAAC	3950	
AGCCACCAAG	CAAGCGGAGG	CTGCTGCTCC	CGTGGTGGAA	TCCAAGTGGC	4000	25
GGACCCTCGA	AGCCTTCTGG	GCGAAGCATA	TGTGGAATTT	CATCAGCGGG	4050	
ATACAATATT	TAGCAGGCTT	GTCCACTCTG	CCTGGCAACC	CCGCGATAGC	4100	30
ATCACTGATG	GCATTCACAG	CCTCTATCAC	CAGCCCGCTC	ACCACCCAAC	4150	
ATACCCTCCT	GTTTAACATC	CTGGGGGGAT	GGGTGGCCGC	CCAACTTGCT	4200	35
CCTCCCAGCG	CTGCTTCTGC	TTTCGTAGGC	GCCGGCATCG	CTGGAGCGGC	4250	
TGTTGGCAGC	ATAGGCCTTG	GGAAGGTGCT	TGTGGATATT	TTGGCAGGTT	4300	40
ATGGAGCAGG	GGTGGCAGGC	GCGCTCGTGG	CCTTTAAGGT	CATGAGCGGC	4350	
GAGATGCCCT	CCACCGAGGA	CCTGGTTAAC	CTACTCCCTG	CTATCCTCTC	4400	
CCCTGGCGCC	CTAGTCGTCG	GGGTCGTGTG	CGCAGCGATA	CTGCGTCGGC	4450	45
ACGTGGGCCC	AGGGGAGGG	GCTGTGCAGT	GGATGAACCG	GCTGATAGCG	4500	
TTCGCTTCGC	GGGGTAACCA	CGTCTCCCCC	ACGCACTATG	TGCCTGAGAG	4550	50
CGACGCTGCA	GCACGTGTCA	CTCAGATCCT	CTCTAGTCTT	ACCATCACTC	4600	
AGCTGCTGAA	GAGGCTTCAC	CAGTGGATCA	ACGAGGACTG	CTCCACGCCA	4650	55
TGCTCCGGCT	CGTGGCTAAG	AGATGTTTGG	GATTGGATAT	GCACGGTGTT	4700	
GACTGATTTC	AAGACCTGGC	TCCAGTCCAA	GCTCCTGCCG	CGATTGCCGG	4750	60
GAGTCCCCTT	CTTCTCATGT	CAACGTGGGT	ACAAGGGAGT	CTGGCGGGGC	4800	50
GACGGCATCA	TGCAAACCAC	CTGCCCATGT	GGAGCACAGA	TCACCGGACA	4850	
TGTGAAAAAC	GGTTCCATGA	GGATCGTGGG	GCCTAGGACC	TGTAGTAACA	4900	65

	CGTGGCATGG	AACATTCCCC	ATTAACGCGI	ACACCACGGG	CCCCIGCACG	4930
	CCCTCCCCGG	CGCCAAATTA	TTCTAGGGCG	CTGTGGCGGG	TGGCTGCTGA	5000
5	GGAGTACGTG	GAGGTTACGC	GGGTGGGGGA	TTTCCACTAC	GTGACGGGCA	5050
	TGACCACTGA	CAACGTAAAG	TGCCCGTGTC	AGGTTCCGGC	CCCCGAATTC	5100
10	TTCACAGAAG	TGGATGGGGT	GCGGTTGCAC	AGGTACGCTC	CAGCGTGCAA	5150
	ACCCCTCCTA	CGGGAGGAGG	TCACATTCCT	GGTCGGGCTC	AATCAATACC	5200
15	TGGTTGGGTC	ACAGCTCCCA	TGCGAGCCCG	AACCGGACGT	AGCAGTGCTC	5250
	ACTTCCATGC	TCACCGACCC	CTCCCACATT	ACGGCGGAGA	CGGCTAAGCG	5300
20	TAGGCTGGCC	AGGGGATCTC	CCCCCTCCTT	GGCCAGCTCA	TCAGCTAGCC	5350
	AGCTGTCTGC	GCCTTCCTTG	AAGGCAACAT	GCACTACCCG	TCATGACTCC	5400
	CCGGACGCTG	ACCTCATCGA	GGCCAACCTC	CTGTGGCGGC	AGGAGATGGG	5450
25	CGGGAACATC	ACCCGCGTGG	AGTCAGAAAA	TAAGGTAGTA	ATTTTGGACT	5500
	CTTTCGAGCC	GCTCCAAGCG	GAGGAGGATG	AGAGGGAAGT	ATCCGTTCCG	5550
30	GCGGAGATCC	TGCGGAGGTC	CAGGAAATTC	CCTCGAGCGA	TGCCCATATG	5600
	GGCACGCCCG	GATTACAACC	CTCCACTGTT	AGAGTCCTGG	AAGGACCCGG	5650
35	ACTACGTCCC	TCCAGTGGTA	CACGGGTGTC	CATTGCCGCC	TGCCAAGGCC	5700
	CCTCCGATAC	CACCTCCACG	GAGGAAGAGG	ACGGTTGTCC	TGTCAGAATC	5750
40	TACCGTGTCT	TCTGCCTTGG	CGGAGCTCGC	CACAAAGACC	TTCGGCAGCT	5800
	CCGAATCGTC	GGCCGTCGAC	AGCGGCACGG	CAACGGCCTC	TCCTGACCAG	5850
	CCCTCCGACG	ACGGCGACGC	GGGATCCGAC	GTTGAGTCGT	ACTCCTCCAT	5900
45	GCCCCCCTT	GAGGGGGAGC	CGGGGGATCC	CGATCTCAGC	GACGGGTCTT	5950
	GGTCTACCGT	AAGCGAGGAG	GCTAGTGAGG	ACGTCGTCTG	CTGCTCGATG	6000
50	TCCTACACAT	GGACAGGCGC	CCTGATCACG	CCATGCGCTG	CGGAGGAAAC	6050
	CAAGCTGCCC	ATCAATGCAC	TGAGCAACTC	TTTGCTCCGT	CACCACAACT	6100
55	TGGTCTATGC	TACAACATCT	CGCAGCGCAA	GCCTGCGGCA	GAAGAAGGTC	6150
	ACCTTTGACA	GACTGCAGGT	CCTGGACGAC	CACTACCGGG	ACGTGCTCAA	6200
60	GGAGATGAAG	GCGAAGGCGT	CCACAGTTAA	GGCTAAACTT	CTATCCGTGG	6250
	AGGAAGCCTG	TAAGCTGACG	CCCCACATŢ	CGGCCAGATC	TAAATTTGGC	6300
	TATGGGGCAA	AGGACGTCCG	GAACCTATCC	AGCAAGGCCG	TTAACCACAT	6350
65	~~~~~~			~~ ~~~ ~~	CCARMOCACA	

CCACCATCAT	GGCAAAAAAT	GAGGTTTTCT	GCGTCCAACC	AGAGAAGGGG	6450	
GGCCGCAAGC	CAGCTCGCCT	TATCGTATTC	CCAGATTTGG	GGGTTCGTGT	6500	_
GTGCGAGAAA	ATGGCCCTTT.	ACGATGTGGT	CTCCACCCTC	CCTCAGGCCG	6550	5
TGATGGGCTC	TTCATACGGA	TTCCAATACT	CTCCTGGACA	GCGGGTCGAG	6600	
TTCCTGGTGA	ATGCCTGGAA	AGCGAAGAAA	TGCCCTATGG	GCTTCGCATA	6650	10
TGACACCCGC	TGTTTTGACT	CAACGGTCAC	TGAGAATGAC	ATCCGTGTTG	6700	
AGGAGTCAAT	CTACCAATGT	TGTGACTTGG	CCCCGAAGC	CAGACAGGCC	6750	15
ATAAGGTCGC	TCACAGAGCG	GCTTTACATC	GGGGCCCCC	TGACTAATTC	6800	
TAAAGGCAG	AACTGCGGCT	ATCGCCGGTG	CCGCGCGAGC	GGTGTACTGA	6850	20
CGACCAGCTG	CGGTAATACC	CTCACATGTT	ACTTGAAGGC	CGCTGCGGCC	6900	
TGTCGAGCTG	CGAAGCTCCA	GGACTGCACG	ATGCTCGTAT	GCGGAGACGA	6950	
CCTTGTCGTT	ATCTGTGAAA	GCGCGGGGAC	CCAAGAGGAC	GAGGCGAGCC	7000	25
TACGGGCCTT	CACGGAGGCT	ATGACTAGAT	ACTCTGCCCC	CCCTGGGGAC	7050	
CCGCCCAAAC	CAGAATACGA	CTTGGAGTTG	ATAACATCAT	GCTCCTCCAA	7100	30
TGTGTCAGTC	GCGCACGATG	CATCTGGCAA	AAGGGTGTAC	TATCTCACCC	7150	
GTGACCCCAC	CACCCCCTT	GCGCGGGCTG	CGTGGGAGAC	AGCTAGACAC	7200	35
ACTCCAGTCA	ATTCCTGGCT	AGGCAACATC	ATCATGTATG	CGCCCACCTT	7250	
GTGGGCAAGG	ATGATCCTGA	TGACTCATTT	CTTCTCCATC	CTTCTAGCTC	7300	40
AGGAACAACT	TGAAAAAGCC	CTAGATTGTC	AGATCTACGG	GGCCTGTTAC	7350	
TCCATTGAGC	CACTTGACCT	ACCTCAGATC	ATTCAACGAC	TCCATGGCCT	7400	
TAGCGCATTT	TCACTCCATA	GTTACTCTCC	AGGTGAGATC	AATAGGGTGG	7450	45
CTTCATGCCT	CAGGAAACTT	GGGGTACCGC	CCTTGCGAGT	CTGGAGACAT	7500	
CGGGCCAGAA	GTGTCCGCGC	TAGGCTACTG	TCCCAGGGGG	GGAGGGCTGC	7550	50
CACTTGTGGC	AAGTACCTCT	TCAACTGGGC	AGTAAGGACC	AAGCTCAAAC	7600	
TCACTCCAAT	CCCGGCTGCG	TCCCAGTTGG	ATTTATCCAG	CTGGTTCGTT	7650	. 55
GCTGGTTACA	GCGGGGGAGA	CATATATCAC	AGCCTGTCTC	GTGCCCGACC	7700	
CCGCTGGTTC	ATGTGGTGCC	TACTCCTACT	TTCTGTAGGG	GTAGGCATCT	7750	60
ATCTACTCCC	CAACCGATGA	ACGGGGAGCT	AAACACTCCA	GGCCAATAGG	7800	
CCATCCTGTT	TTTTTCCCTT	TTTTTTTTC	TTTTTTTTT	TTTTTTTTT	7850	
TTTTTTTTT	TTTTCTCCTT	TTTTTTTCCT	CTTTTTTTCC	TTTTCTTTCC	7900	65

	TTTGGTGGCT	CCATCTTAGC	CCTAGTCACG	GCTAGCTGTG	AAAGGTCCGT	7950
_	GAGCCGCTTG	ACTGCAGAGA	GTGCTGATAC	TGGCCTCTCT	GCAGATCAAG	8000
5	T					
10						
15						
20						
25						
30						
35						
<i>.</i>						
40						
45						
50						
55						
60						

ANGABEN ZU SEQ ID-NO:4:

SEQUENZCHARAKTERISTIKA: LÄNGE: 7989 Basenpaare ART: Nukleinsäure STRANGFORM: Einzelstrang		5
TOPOLOGIE: linear		10
ART DES MOLEKÜLS: Subgenom-RNA		
HYPOTHETISCH: Nein		15
ANTI-SENSE: nein		
URSPRÜNGLICHE HERKUNFT: ORGANISMUS: Hepatitis C Virus STAMM: Genotyp 1b		20
ENTWICKLUNGSSTADIUM: — ZELLTYP: —		25
UNMITTELBARE HERKUNFT: Isolat aus humanen Leberzellen		30
MERKMAL: NAME/SCHLÜSSEL: kodierende Sequenz für Virusproteine LAGE: — ERMITTLUNGSMETHODE: . experimentell		35
		40
SEQUENZBESCHREIBUNG: SEQ ID-NO: 4		45
I ₃₇₇ /NS3-3'/wt: 7989 bp		
GCCAGCCCC GATTGGGGGC GACACTCCAC CATAGATCAC TCCCCTGTGA	50	50
GGAACTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG	100	
TGTCGTGCAG CCTCCAGGAC CCCCCCTCCC GGGAGAGCCA TAGTGGTCTG	150	55
CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG	200	
GATCAACCCG CTCAATGCCT GGAGATTTGG GCGTGCCCCC GCGAGACTGC	250	60
TAGCCGAGTA GTGTTGGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG	300	
GTGCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACG	350	
AATCCTAAAC CTCAAAGAAA AACCAAAGGG CGCGCCATGA TTGAACAAGA	400	65

	TGGATTGCAC	GCAGGTTCTC	CGGCCGCTTG	GGTGGAGAGG	CTATTCGGCT	450
	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT	CTGATGCCGC	CGTGTTCCGG	500
5	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	GTCAAGACCG	ACCTGTCCGG	550
	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	TGGCTGGCCA	600
10	CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	650
	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	700
15	TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	750
	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	CATTCGACCA	CCAAGCGAAA	800
20	CATCGCATCG	AGCGAGCACG	TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	850
	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	GAACTGTTCG	900
	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	950
25	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	1000
	ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	1050
30	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	ATGGGCTGAC	1100
	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	1150
35	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGTTTAAACA	GACCACAACG	1200
	GTTTCCCTCT	AGCGGGATCA	ATTCCGCCCC	TCTCCCTCCC	CCCCCCTAA	1250
40	CGTTACTGGC	CGAAGCCGCT	TGGAATAAGG	CCGGTGTGCG	TTTGTCTATA	1300
	TGTTATTTTC	CACCATATTG	CCGTCTTTTG	GCAATGTGAG	GGCCCGGAAA	1350
45	CCTGGCCCTG	TCTTCTTGAC	GAGCATTCCT	AGGGGTCTTT	CCCCTCTCGC	1400
45	CAAAGGAATG	CAAGGTCTGT	TGAATGTCGT	GAAGGAAGCA	GTTCCTCTGG	1450
	AAGCTTCTTG	AAGACAAACA	ACGTCTGTAG	CGACCCTTTG	CAGGCAGCGG	1500
50	AACCCCCCAC	CTGGCGACAG	GTGCCTCTGC	GGCCAAAAGC	CACGTGTATA	1550
	AGATACACCT	GCAAAGGCGG	CACAACCCCA	GTGCCACGTT	GTGAGTTGGA	1600
55	TAGTTGTGGA	AAGAGTCAAA	TGGCTCTCCT	CAAGCGTATT	CAACAAGGGG	1650
	CTGAAGGATG	CCCAGAAGGT	ACCCCATTGT	ATGGGATCTG	ATCTGGGGCC	1700
60	TCGGTGCACA	TGCTTTACAT	GTGTTTAGTC	GAGGTTAAAA	AACGTCTAGG	1750
	CCCCCGAAC	CACGGGGACG	TGGTTTTCCT	TTGAAAAACA	CGATAATACC	1800
۷,		TTACGGCCTA				1850
65	CATCATCACT	AGCCTCACAG	GCCGGGACAG	GAACCAGGTC	GAGGGGGAGG	1900

TCCAAGTGGT	CTCCACCGCA	ACACAATCTT	TCCTGGCGAC	CTGCGTCAAT	1950	
GGCGTGTGTT	GGACTGTCTA	TCATGGTGCC	GGCTCAAAGA	CCCTTGCCGG	2000	_
CCCAAAGGGC	CCAATCACCC	AAATGTACAC	CAATGTGGAC	CAGGACCTCG	2050	5
TCGGCTGGCA	AGCGCCCCC	GGGGCGCGTT	CCTTGACACC	ATGCACCTGC	2100	
GGCAGCTCGG	ACCTTTACTT	GGTCACGAGG	CATGCCGATG	TCATTCCGGT	2150	10
GCGCCGGCGG	GGCGACAGCA	GGGGGAGCCT	ACTCTCCCCC	AGGCCCGTCT	2200	
CCTACTTGAA	GGGCTCTTCG	GGCGGTCCAC	TGCTCTGCCC	CTCGGGGCAC	2250	15
GCTGTGGGCA	TCTTTCGGGC	TGCCGTGTGC	ACCCGAGGGG	TTGCGAAGGC	2300	
GGTGGACTTT	GTACCCGTCG	AGTCTATGGA	AACCACTATG	CGGTCCCCGG	2350	20
TCTTCACGGA	CAACTCGTCC	CCTCCGGCCG	TACCGCAGAC	ATTCCAGGTG	2400	
GCCCATCTAC	ACGCCCCTAC	TGGTAGCGGC	AAGAGCACTA	AGGTGCCGGC	2450	
TGCGTATGCA	GCCCAAGGGT	ATAAGGTGCT	TGTCCTGAAC	CCGTCCGTCG	2500	25
CCGCCACCCT	AGGTTTCGGG	GCGTATATGT	CTAAGGCACA	TGGTATCGAC	2550	
CCTAACATCA	GAACCGGGGT	AAGGACCATC	ACCACGGGTG	CCCCCATCAC	2600	30
GTACTCCACC	TATGGCAAGT	TTCTTGCCGA	CGGTGGTTGC	TCTGGGGGCG	2650	
CCTATGACAT	CATAATATGT	GATGAGTGCC	ACTCAACTGA	CTCGACCACT	2700	35
ATCCTGGGCA	TCGGCACAGT	CCTGGACCAA	GCGGAGACGG	CTGGAGCGCG	2750	
ACTCGTCGTG	CTCGCCACCG	CTACGCCTCC	GGGATCGGTC	ACCGTGCCAC	2800	40
ATCCAAACAT	CGAGGAGGTG	GCTCTGTCCA	GCACTGGAGA	AATCCCCTTT	2850	
TATGGCAAAG	CCATCCCCAT	CGAGACCATC	AAGGGGGGA	GGCACCTCAT	2900	
TTTCTGCCAT	TCCAAGAAGA	AATGTGATGA	GCTCGCCGCG	AAGCTGTCCG	2950	45
GCCTCGGACT	CAATGCTGTA	GCATATTACC	GGGGCCTTGA	TGTATCCGTC	3000	
ATACCAÁCTA	GCGGAGACGT	CATTGTCGTA	GCAACGGACG	CTCTAATGAC	3050	50
GGGCTTTACC	GGCGATTTCG	ACTCAGTGAT	CGACTGCAAT	ACATGTGTCA	3100	
CCCAGACAGT	CGACTTCAGC	CTGGACCCGA	CCTTCACCAT	TGAGACGACG	3150	55
ACCGTGCCAC	AAGACGCGGT	GTCACGCTCG	CAGCGGCGAG	GCAGGACTGG	3200	
TAGGGGCAGG	ATGGGCATTT	ACAGGTTTGT	GACTCCAGGA	GAACGGCCCT	3250	60
CGGGCATGTT	CGATTCCTCG	GTTCTGTGCG	AGTGCTATGA	CGCGGGCTGT	3300	50
GCTTGGTACG	AGCTCACGCC	CGCCGAGACC	TCAGTTAGGT	TGCGGGCTTA	3350	
CCTAAACACA	CCAGGGTTGC	CCGTCTGCCA	GGACCATCTG	GAGTTCTGGG	3400	65

	AGAGCGICII	IACAGGCCIC	ACCCACATAG	ACGCCCATTT	CTTGTCCCAG	3430
	ACTAAGCAGG	CAGGAGACAA	CTTCCCCTAC	CTGGTAGCAT	ACCAGGCTAC	3500
5	GGTGTGCGCC	AGGGCTCAGG	CTCCACCTCC	ATCGTGGGAC	CAAATGTGGA	3550
	AGTGTCTCAT	ACGGCTAAAG	CCTACGCTGC	ACGGGCCAAC	GCCCCTGCTG	3600
10	TATAGGCTGG	GAGCCGTTCA	AAACGAGGTT	ACTACCACAC	ACCCCATAAC	3650
	CAAATACATC	ATGGCATGCA	TGTCGGCTGA	CCTGGAGGTC	GTCACGAGCA	3700
15	CCTGGGTGCT	GGTAGGCGGA	GTCCTAGCAG	CTCTGGCCGC	GTATTGCCTG	3750
	ACAACAGGCA	GCGTGGTCAT	TGTGGGCAGG	ATCATCTTGT	CCGGAAAGCC	3800
20	GGCCATCATT	CCCGACAGGG	AAGTCCTTTA	CCGGGAGTTC	GATGAGATGG	3850
	AAGAGTGCGC	CTCACACCTC	CCTTACATCG	AACAGGGAAT	GCAGCTCGCC	3900
26	GAACAATTCA	AACAGAAGGC	AATCGGGTTG	CTGCAAACAG	CCACCAAGCA	3950
25	AGCGGAGGCT	GCTGCTCCCG	TGGTGGAATC	CAAGTGGCGG	ACCCTCGAAG	4000
	CCTTCTGGGC	GAAGCATATG	TGGAATTTCA	TCAGCGGGAT	ACAATATTTA	4050
30	GCAGGCTTGT	CCACTCTGCC	TGGCAACCCC	GCGATAGCAT	CACTGATGGC	4100
	ATTCACAGCC	TCTATCACCA	GCCCGCTCAC	CACCCAACAT	ACCCTCCTGT	4150
35	TTAACATCCT	GGGGGGATGG	GTGGCCGCCC	AACTTGCTCC	TCCCAGCGCT	4200
	GCTTCTGCTT	TCGTAGGCGC	CGGCATCGCT	GGAGCGGCTG	TTGGCAGCAT	4250
40	AGGCCTTGGG	AAGGTGCTTG	TGGATATTTT	GGCAGGTTAT	GGAGCAGGGG	4300
	TGGCAGGCGC	GCTCGTGGCC	TTTAAGGTCA	TGAGCGGCGA	GATGCCCTCC	4350
45	ACCGAGGACC	TGGTTAACCT	ACTCCCTGCT	ATCCTCTCCC	CTGGCGCCCT	4400
43	AGTCGTCGGG	GTCGTGTGCG	CAGCGATACT	GCGTCGGCAC	GTGGGCCCAG	4450
	GGGAGGGGC	TGTGCAGTGG	ATGAACCGGC	TGATAGCGTT	CGCTTCGCGG	4500
50	GGTAACCACG	TCTCCCCCAC	GCACTATGTG	CCTGAGAGCG	ACGCTGCAGC	4550
					CTGCTGAAGA	4600
55					CTCCGGCTCG	4650
					CTGATTTCAA	4700
60					GTCCCCTTCT	4750
					CGGCATCATG	4800
65					TGAAAAACGG	4850
	TTCCATGAGG	ATCGTGGGGC	CTAGGACCTG	TAGTAACACG	TGGCATGGAA	4900

•

CATTCCCCAT TAACGCGTAG	ACCACGGGCC	CCTGCACGCC	CTCCCCGGCG	4950	
CCAAATTATT CTAGGGCGCC	CTGGCGGGTG	GCTGCTGAGG	AGTACGTGGA	5000	_
GGTTACGCGG GTGGGGGATT	TCCACTACGT	GACGGGCATG	ACCACTGACA	5050	5
ACGTAAAGTG CCCGTGTCAG	GTTCCGGCCC	CCGAATTCTT	CACAGAAGTG	5100	
GATGGGGTGC GGTTGCACAC	GTACGCTCCA	GCGTGCAAAC	CCCTCCTACG	5150	10
GGAGGAGGTC ACATTCCTGG	TCGGGCTCAA	TCAATACCTG	GTTGGGTCAC	5200	
AGCTCCCATG CGAGCCCGA	CCGGACGTAG	CAGTGCTCAC	TTCCATGCTC	5250	15
ACCGACCCCT CCCACATTAC	GGCGGAGACG	GCTAAGCGTA	GGCTGGCCAG	5300	
GGGATCTCCC CCCTCCTTGC	CCAGCTCATC	AGCTAGCCAG	CTGTCTGCGC	5350	20
CTTCCTTGAA GGCAACATGO	ACTACCCGTC	ATGACTCCCC	GGACGCTGAC	5400	
CTCATCGAGG CCAACCTCCT	GTGGCGGCAG	GAGATGGGCG	GGAACATCAC	5450	
CCGCGTGGAG TCAGAAAATA	AGGTAGTAAT	TTTGGACTCT	TTCGAGCCGC	5500	25
TCCAAGCGGA GGAGGATGAC	AGGGAAGTAT	CCGTTCCGGC	GGAGATCCTG	5550	
CGGAGGTCCA GGAAATTCCC	TCGAGCGATG	CCCATATGGG	CACGCCCGGA	5600	30
TTACAACCCT CCACTGTTAG	AGTCCTGGAA	GGACCCGGAC	TACGTCCCTC	5650	
CAGTGGTACA CGGGTGTCC	TTGCCGCCTG	CCAAGGCCCC	TCCGATACCA	5700	35
CCTCCACGGA GGAAGAGGAC	GGTTGTCCTG	TCAGAATCTA	CCGTGTCTTC	5750	
TGCCTTGGCG GAGCTCGCCA	CAAAGACCTT	CGGCAGCTCC	GAATCGTCGG	5800	40
CCGTCGACAG CGGCACGGCA	ACGGCCTCTC	CTGACCAGCC	CTCCGACGAC	5850	
GGCGACGCGG GATCCGACGT	TGAGTCGTAC	TCCTCCATGC	CCCCCTTGA	5900	
GGGGGAGCCG GGGGATCCCG	ATCTCAGCGA	CGGGTCTTGG	TCTACCGTAA	5950	45
GCGAGGAGGC TAGTGAGGAC	GTCGTCTGCT	GCTCGATGTC	CTACACATGG	6000	
ACAGGCGCCC TGATCACGCC	ATGCGCTGCG	GAGGAAACCA	AGCTGCCCAT	6050	50
CAATGCACTG AGCAACTCTT	TGCTCCGTCA	CCACAACTTG	GTCTATGCTA	6100	
CAACATCTCG CAGCGCAAGC	CTGCGGCAGA	AGAAGGTCAC	CTTTGACAGA	6150	55
CTGCAGGTCC TGGACGACCA	CTACCGGGAC	GTGCTCAAGG	AGATGAAGGC	6200	
GAAGGCGTCC ACAGTTAAGG	CTAAACTTCT	ATCCGTGGAG	GAAGCCTGTA	6250	60
AGCTGACGCC CCCACATTCG	GCCAGATCTA	AATTTGGCTA	TGGGGCAAAG	6300	
GACGTCCGGA ACCTATCCAG	CAAGGCCGTT	AACCACATCC	GCTCCGTGTG	6350	
GAAGGACTTG CTGGAAGACA	CTGAGACACC	AATTGACACC	ACCATCATGG	6400	65

	CAAAAAATGA	GGTTTTCTGC	GTCCAACCAG	AGAAGGGGG	CCGCAAGCCA	6450
_	GCTCGCCTTA	TCGTATTCCC	AGATTTGGGG	GTTCGTGTGT	GCGAGAAAAT	6500
5	GGCCCTTTAC	GATGTGGTCT	CCACCCTCCC	TCAGGCCGTG	ATGGGCTCTT	6550
	CATACGGATT	CCAATACTCT	CCTGGACAGC	GGGTCGAGTT	CCTGGTGAAT	6600
10	GCCTGGAAAG	CGAAGAAATG	CCCTATGGGC	TTCGCATATG	ACACCCGCTG	6650
	TTTTGACTCA	ACGGTCACTG	AGAATGACAT	CCGTGTTGAG	GAGTCAATCT	6700
15	ACCAATGTTG	TGACTTGGCC	CCCGAAGCCA	GACAGGCCAT	AAGGTCGCTC	6750
	ACAGAGCGGC	TTTACATCGG	GGGCCCCCTG	ACTAATTCTA	AAGGGCAGAA	6800
20	CTGCGGCTAT	CGCCGGTGCC	GCGCGAGCGG	TGTACTGACG	ACCAGCTGCG	6850
-	GTAATACCCT	CACATGTTAC	TTGAAGGCCG	CTGCGGCCTG	TCGAGCTGCG	6900
	AAGCTCCAGG	ACTGCACGAT	GCTCGTATGC	GGAGACGACC	TTGTCGTTAT	6950
25	CTGTGAAAGC	GCGGGGACCC	AAGAGGACGA	GGCGAGCCTA	CGGGCCTTCA	7000
	CGGAGGCTAT	GACTAGATAC	TCTGCCCCCC	CTGGGGACCC	GCCCAAACCA	7050
30	GAATACGACT	TGGAGTTGAT	AACATCATGC	TCCTCCAATG	TGTCAGTCGC	7100
	GCACGATGCA	TCTGGCAAAA	GGGTGTACTA	TCTCACCCGT	GACCCCACCA	7150
35	CCCCCTTGC	GCGGGCTGCG	TGGGAGACAG	CTAGACACAC	TCCAGTCAAT	7200
	TCCTGGCTAG	GCAACATCAT	CATGTATGCG	CCCACCTTGT	GGGCAAGGAT	7250
40	GATCCTGATG	ACTCATTTCT	TCTCCATCCT	TCTAGCTCAG	GAACAACTTG	7300
	AAAAAGCCCT	AGATTGTCAG	ATCTACGGGG	CCTGTTACTC	CATTGAGCCA	7350
	CTTGACCTAC	CTCAGATCAT	TCAACGACTC	CATGGCCTTA	GCGCATTTTC	7400
45	ACTCCATAGT	TACTCTCCAG	GTGAGATCAA	TAGGGTGGCT	TCATGCCTCA	7450
	GGAAACTTGG	GGTACCGCCC	TTGCGAGTCT	GGAGACATCG	GGCCAGAAGT	7500
50	GTCCGCGCTA	GGCTACTGTC	CCAGGGGGG	AGGGCTGCCA	CTTGTGGCAA	7550
	GTACCTCTTC	AACTGGGCAG	TAAGGACCAA	GCTCAAACTC	ACTCCAATCC	7600
55	CGGCTGCGTC	CCAGTTGGAT	TTATCCAGCT	GGTTCGTTGC	TGGTTACAGC	7650
	GGGGGAGACA	TATATCACAG	CCTGTCTCGT	GCCCGACCCC	GCTGGTTCAT	7700
60	GTGGTGCCTA	CTCCTACTTT	CTGTAGGGGT	AGGCATCTAT	CTACTCCCCA	7750
w	ACCGATGAAC	GGGGAGCTAA	ACACTCCAGG	CCAATAGGCC	ATCCTGTTTT	7800
	TTTCCCTTTT	TTTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTT	7850
65	TTCTCCTTTT	TTTTTCCTCT	TTTTTTCCTT	TTCTTTCCTT	TGGTGGCTCC	7900

ATCTTAGCCC	TAGTCACGGC	TAGCTGTGAA	AGGTCCGTGA	GCCGCTTGAC	7950
TGCAGAGAGT	GCTGATACTG	GCCTCTCTGC	AGATCAAGT		

55 ,

ANGABEN ZU SEQ ID-NO:5:

5	SEQUENZCHARAKTERISTIKA: LÄNGE: 8649 Basenpaare ART: Nukleinsäure STRANGFORM: Einzelstrang TOPOLOGIE: linear	
	ART DES MOLEKÜLS: Subgenom-RNA	
15	HYPOTHETISCH: Nein	
	ANTI-SENSE: nein	
20	URSPRÜNGLICHE HERKUNFT: ORGANISMUS: Hepatitis C Virus STAMM: Genotyp 1b ENTWICKLUNGSSTADIUM: — ZELLTYP: —	
30	UNMITTELBARE HERKUNFT: Isolat aus humanen Leberzellen	
35	MERKMAL: NAME/SCHLÜSSEL: kodierende Sequenz für Virusproteine LAGE: — ERMITTLUNGSMETHODE: experimentell	
40		
45	SEQUENZBESCHREIBUNG: SEQ ID-NO: 5	
	I ₃₈₉ /NS2-3'/wt: 8649 bp	
50	GCCAGCCCC GATTGGGGGC GACACTCCAC CATAGATCAC TCCCCTGTGA	50
	GGAACTACTG TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG	100
55	TGTCGTGCAG CCTCCAGGAC CCCCCTCCC GGGAGAGCCA TAGTGGTCTG	150
	CGGAACCGGT GAGTACACCG GAATTGCCAG GACGACCGGG TCCTTTCTTG	200
60	GATCAACCCG CTCAATGCCT GGAGATTTGG GCGTGCCCCC GCGAGACTGC	·250
	TAGCCGAGTA GTGTTGGGTC GCGAAAGGCC TTGTGGTACT GCCTGATAGG	300

GTGCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAC CATGAGCACG

AATCCTAAAC CTCAAAGAAA AACCAAACGT AACACCAACG GGCGCGCCAT

350

GATIGAACAA	GAIGGAIIGC	ACGCAGGTTC	TCCGGCCGCT	TGGGTGGAGA	450	
GGCTATTCGG	CTATGACTGG	GCACAACAGA	CAATCGGCTG	CTCTGATGCC	500	
GCCGTGTTCC	GGCTGTCAGC	GCAGGGGCGC	CCGGTTCTTT	TTGTCAAGAC	550	5
CGACCTGTCC	GGTGCCCTGA	ATGAACTGCA	GGACGAGGCA	GCGCGGCTAT	600	
CGTGGCTGGC	CACGACGGGC	GTTCCTTGCG	CAGCTGTGCT	CGACGTTGTC	650	10
ACTGAAGCGG	GAAGGGACTG	GCTGCTATTG	GGCGAAGTGC	CGGGGCAGGA	700	
TCTCCTGTCA	TCTCACCTTG	CTCCTGCCGA	GAAAGTATCC	ATCATGGCTG	750	15
ATGCAATGCG	GCGGCTGCAT	ACGCTTGATC	CGGCTACCTG	CCCATTCGAC	800	
CACCAAGCGA	AACATCGCAT	CGAGCGAGCA	CGTACTCGGA	TGGAAGCCGG	850	20
TCTTGTCGAT	CAGGATGATC	TGGACGAAGA	GCATCAGGGG	CTCGCGCCAG	900	20
CCGAACTGTT	CGCCAGGCTC	AAGGCGCGCA	TGCCCGACGG	CGAGGATCTC	950	
GTCGTGACCC	ATGGCGATGC	CTGCTTGCCG	AATATCATGG	TGGAAAATGG	1000	25
CCGCTTTTCT	GGATTCATCG	ACTGTGGCCG	GCTGGGTGTG	GCGGACCGCT	1050	
ATCAGGACAT	AGCGTTGGCT	ACCCGTGATA	TTGCTGAAGA	GCTTGGCGGC	1100	30
GAATGGGCTG	ACCGCTTCCT	CGTGCTTTAC	GGTATCGCCG	CTCCCGATTC	1150	
GCAGCGCATC	GCCTTCTATC	GCCTTCTTGA	CGAGTTCTTC	TGAĠTTTAAA	1200	35
CAGACCACAA	CGGTTTCCCT	CTAGCGGGAT	CAATTCCGCC	CCTCTCCCTC	1250	
CCCCCCCCT	AACGTTACTG	GCCGAAGCCG	CTTGGAATAA	GGCCGGTGTG	1300	40
CGTTTGTCTA	TATGTTATTT	TCCACCATAT	TGCCGTCTTT	TGGCAATGTG	1350	
AGGGCCCGGA	AACCTGGCCC	TGTCTTCTTG	ACGAGCATTC	CTAGGGGTCT	1400	
TTCCCCTCTC	GCCAAAGGAA	TGCAAGGTCT	GTTGAATGTC	GTGAAGGAAG	1450	45
CAGTTCCTCT	GGAAGCTTCT	TGAAGACAAA	CAACGTCTGT	AGCGACCCTT	1500	
TGCAGGCAGC	GGAACCCCCC	ACCTGGCGAC	AGGTGCCTCT	GCGGCCAAAA	1550	50
GCCACGTGTA	TAAGATACAC	CTGCAAAGGC	GGCACAACCC	CAGTGCCACG	1600	
TTGTGAGTTG	GATAGTTGTG	GAAAGAGTCA	AATGGCTCTC	CTCAAGCGTA	1650	5.5
TTCAACAAGG	GGCTGAAGGA	TGCCCAGAAG	GTACCCCATT	GTATGGGATC	1700	
TGATCTGGGG	CCTCGGTGCA	CATGCTTTAC	ATGTGTTTAG	TCGAGGTTAA	1750	60
AAAACGTCTA	GGCCCCCGA	ACCACGGGGA	CGTGGTTTTC	CTTTGAAAAA	1800	00
CACGATAATA	CCATGGACCG	GGAGATGGCA	GCATCGTGCG	GAGGCGCGGT	1850	
TTTCGTAGGT	CTGATACTCT	TGACCTTGTC	ACCGCACTAT	AAGCTGTTCC	1900	65

	TCGCTAGGCT	CATATGGTGG	TTACAATATT	TTATCACCAG	GGCCGAGGCA	1950
	CACTTGCAAG	TGTGGATCCC	CCCCTCAAC	GTTCGGGGGG	GCCGCGATGC	2000
5	CGTCATCCTC	CTCACGTGCG	CGATCCACCC	AGAGCTAATC	TTTACCATCA	2050
	CCAAAATCTT	GCTCGCCATA	CTCGGTCCAC	TCATGGTGCT	CCAGGCTGGT	2100
10	ATAACCAAAG	TGCCGTACTT	CGTGCGCGCA	CACGGGCTCA	TTCGTGCATG	2150
	CATGCTGGTG	CGGAAGGTTG	CTGGGGGTCA	TTATGTCCAA	ATGGCTCTCA	2200
15	TGAAGTTGGC	CGCACTGACA	GGTACGTACG	TTTATGACCA	TCTCACCCCA	2250
	CTGCGGGACT	GGGCCCACGC	GGGCCTACGA	GACCTTGCGG	TGGCAGTTGA	2300
20	GCCCGTCGTC	TTCTCTGATA	TGGAGACCAA	GGTTATCACC	TGGGGGGCAG	2350
	ACACCGCGGC	GTGTGGGGAC	ATCATCTTGG	GCCTGCCCGT	CTCCGCCCGC	2400
	AGGGGGAGGG	AGATACATCT	GGGACCGGCA	GACAGCCTTG	AAGGGCAGGG	2450
25	GTGGCGACTC	CTCGCGCCTA	TTACGGCCTA	CTCCCAACAG	ACGCGAGGCC	2500
	TACTTGGCTG	CATCATCACT	AGCCTCACAG	GCCGGGACAG	GAACCAGGTC	2550
30	GAGGGGGAGG	TCCAAGTGGT	CTCCACCGCA	ACACAATCTT	TCCTGGCGAC	2600
	CTGCGTCAAT	GGCGTGTGTT	GGACTGTCTA	TCATGGTGCC	GGCTCAAAGA	2650
35	CCCTTGCCGG	CCCAAAGGGC	CCAATCACCC	AAATGTACAC	CAATGTGGAC	2700
	CAGGACCTCG	TCGGCTGGCA	AGCGCCCCC	GGGGCGCGTT	CCTTGACACC	2750
40	ATGCACCTGC	GGCAGCTCGG	ACCTTTACTT	GGTCACGAGG	CATGCCGATG	2800
	TCATTCCGGT	GCGCCGGCGG	GGCGACAGCA	GGGGGAGCCT	ACTCTCCCCC	2850
	AGGCCCGTCT	CCTACTTGAA	GGGCTCTTCG	GGCGGTCCAC	TGCTCTGCCC	2900
45	CTCGGGGCAC	GCTGTGGGCA	TCTTTCGGGC	TGCCGTGTGC	ACCCGAGGGG	2950
	TTGCGAAGGC	GGTGGACTTT	GTACCCGTCG	AGTCTATGGA	AACCACTATG	3000
50	CGGTCCCCGG	TCTTCACGGA	CAACTCGTCC	CCTCCGGCCG	TACCGCAGAC	3050
	ATTCCAGGTG	GCCCATCTAC	ACGCCCCTAC	TGGTAGCGGC	AAGAGCACTA	3100
55	AGGTGCCGGC	TGCGTATGCA	GCCCAAGGGT	ATAAGGTGCT	TGTCCTGAAC	3150
	CCGTCCGTCG	CCGCCACCCT	AGGTTTCGGG	GCGTATATGT	CTAAGGCACA	3200
60	TGGTATCGAC	CCTAACATCA	GAACCGGGGT	AAGGACCATC	ACCACGGGTG	3250
	CCCCCATCAC	GTACTCCACC	TATGGCAAGT	TTCTTGCCGA	CGGTGGTTGC	3300
	TCTGGGGGCG	CCTATGACAT	CATAATATGT	GATGAGTGCC	ACTCAACTGA	3350
65	CTCGACCACT	ATCCTGGGCA	TCGGCACAGT	CCTGGACCAA	GCGGAGACGG	3400

CIGGAGCGCG	ACICGICGIG	CICGCCACCG	CIACGCCICC	GGGAICGGIC	3430	
ACCGTGCCAC	ATCCAAACAT	CGAGGAGGTG	GCTCTGTCCA	GCACTGGAGA	3500	_
AATCCCCTTT	TATGGCAAAG	CCATCCCCAT	CGAGACCATC	AAGGGGGGA	3550	5
GGCACCTCAT	TTTCTGCCAT	TCCAAGAAGA	AATGTGATGA	GCTCGCCGCG	3600	
AAGCTGTCCG	GCCTCGGACT	CAATGCTGTA	GCATATTACC	GGGCCTTGA	3650	10
TGTATCCGTC	ATACCAACTA	GCGGAGACGT	CATTGTCGTA	GCAACGGACG	3700	
CTCTAATGAC	GGGCTTTACC	GGCGATTTCG	ACTCAGTGAT	CGACTGCAAT	3750	15
ACATGTGTCA	CCCAGACAGT	CGACTTCAGC	CTGGACCCGA	CCTTCACCAT	3800	
TGAGACGACG	ACCGTGCCAC	AAGACGCGGT	GTCACGCTCG	CAGCGGCGAG	3850	20
GCAGGACTGG	TAGGGGCAGG	ATGGGCATTT	ACAGGTTTGT	GACTCCAGGA	3900	
GAACGGCCCT	CGGGCATGTT	CGATTCCTCG	GTTCTGTGCG	AGTGCTATGA	3950	
CGCGGGCTGT	GCTTGGTACG	AGCTCACGCC	CGCCGAGACC	TCAGTTAGGT	4000	25
TGCGGGCTTA	CCTAAACACA	CCAGGGTTGC	CCGTCTGCCA	GGACCATCTG	4050	
GAGTTCTGGG	AGAGCGTCTT	TACAGGCCTC	ACCCACATAG	ACGCCCATTT	4100	30
CTTGTCCCAG	ACTAAGCAGG	CAGGAGACAA	CTTCCCCTAC	CTGGTAGCAT	4150	
ACCAGGCTAC	GGTGTGCGCC	AGGGCTCAGG	CTCCACCTCC	ÁTCGTGGGAC	4200	35
CAAATGTGGA	AGTGTCTCAT	ACGGCTAAAG	CCTACGCTGC	ACGGGCCAAC	4250	
GCCCCTGCTG	TATAGGCTGG	GAGCCGTTCA	AAACGAGGTT	ACTACCACAC	4300	40
ACCCCATAAC	CAAATACATC	ATGGCATGCA	TGTCGGCTGA	CCTGGAGGTC	4350	
GTCACGAGCA	CCTGGGTGCT	GGTAGGCGGA	GTCCTAGCAG	CTCTGGCCGC	4400	
GTATTGCCTG	ACAACAGGCA	GCGTGGTCAT	TGTGGGCAGG	ATCATCTTGT	4450	45
CCGGAAAGCC	GGCCATCATT	CCCGACAGGG	AAGTCCTTTA	CCGGGAGTTC	4500	
GATGAGATGG	AAGAGTGCGC	CTCACACCTC	CCTTACATCG	AACAGGGAAT	4550	50
GCAGCTCGCC	GAACAATTCA	AACAGAAGGC	AATCGGGTTG	CTGCAAACAG	4600	
CCACCAAGCA	AGCGGAGGCT	GCTGCTCCCG	TGGTGGAATC	CAAGTGGCGG	4650	55
ACCCTCGAAG	CCTTCTGGGC	GAAGCATATG	TGGAATTTCA	TCAGCGGGAT	4700	
ACAATATTTA	GCAGGCTTGT	CCACTCTGCC	TGGCAACCCC	GCGATAGCAT	4750	60
CACTGATGGC	ATTCACAGCC	TCTATCACCA	GCCCGCTCAC	CACCCAACAT	4800	
ACCCTCCTGT	TTAACATCCT	GGGGGGATGG	GTGGCCGCCC	AACTTGCTCC	4850	65
MCCCACCCCM	CCMMCMCCMM	TOOTACCCCC	CCCCAMCCCM	CCACCCCCTC	4900	U)

	TTGGCAGCAT	AGGCCTTGGG	AAGGTGCTTG	TGGATATTTT	GGCAGGTTAT	4950
	GGAGCAGGGG	TGGCAGGCGC	GCTCGTGGCC	TTTAAGGTCA	TGAGCGGCGA	5000
5	GATGCCCTCC	ACCGAGGACC	TGGTTAACCT	ACTCCCTGCT	ATCCTCTCCC	5050
	CTGGCGCCCT	AGTCGTCGGG	GTCGTGTGCG	CAGCGATACT	GCGTCGGCAC	5100
10	GTGGGCCCAG	GGGAGGGGC	TGTGCAGTGG	ATGAACCGGC	TGATAGCGTT	5150
	CGCTTCGCGG	GGTAACCACG	TCTCCCCCAC	GCACTATGTG	CCTGAGAGCG	5200
15	ACGCTGCAGC	ACGTGTCACT	CAGATCCTCT	CTAGTCTTAC	CATCACTCAG	5250
	CTGCTGAAGA	GGCTTCACCA	GTGGATCAAC	GAGGACTGCT	CCACGCCATG	5300
20	CTCCGGCTCG	TGGCTAAGAG	ATGTTTGGGA	TTGGATATGC	ACGGTGTTGA	5350
	CTGATTTCAA	GACCTGGCTC	CAGTCCAAGC	TCCTGCCGCG	ATTGCCGGGA	5400
	GTCCCCTTCT	TCTCATGTCA	ACGTGGGTAC	AAGGGAGTCT	GGCGGGGCGA	5450
25	CGGCATCATG	CAAACCACCT	GCCCATGTGG	AGCACAGATC	ACCGGACATG	5500
	TGAAAAACGG	TTCCATGAGG	ATCGTGGGGC	CTAGGACCTG	TAGTAACACG	5550
30	TGGCATGGAA	CATTCCCCAT	TAACGCGTAC	ACCACGGGCC	CCTGCACGCC	5600
	CTCCCGGCG	CCAAATTATT	CTAGGGCGCT	GTGGCGGGTG	GCTGCTGAGG	5650
35	AGTACGTGGA	GGTTACGCGG	GTGGGGGATT	TCCACTACGT	GACGGGCATG	5700
	ACCACTGACA	ACGTAAAGTG	CCCGTGTCAG	GTTCCGGCCC	CCGAATTCTT	5750
40	CACAGAAGTG	GATGGGGTGC	GGTTGCACAG	GTACGCTCCA	GCGTGCAAAC	5800
	CCCTCCTACG	GGAGGAGGTC	ACATTCCTGG	TCGGGCTCAA	TCAATACCTG	5850
	GTTGGGTCAC	AGCTCCCATG	CGAGCCCGAA	CCGGACGTAG	CAGTGCTCAC	5900
45	TTCCATGCTC	ACCGACCCCT	CCCACATTAC	GGCGGAGACG	GCTAAGCGTA	5950
	GGCTGGCCAG	GGGATCTCCC	CCCTCCTTGG	CCAGCTCATC	AGCTAGCCAG	6000
50	CTGTCTGCGC	CTTCCTTGAA	GGCAACATGC	ACTACCCGTC	ATGACTCCCC	6050
	GGACGCTGAC	CTCATCGAGG	CCAACCTCCT	GTGGCGGCAG	GAGATGGGCG	6100
55	GGAACATCAC	CCGCGTGGAG	TCAGAAAATA	AGGTAGTAAT	TTTGGACTCT	6150
	TTCGAGCCGC	TCCAAGCGGA	GGAGGATGAG	AGGGAAGTAT	CCGTTCCGGC	6200
60	GGAGATCCTG	CGGAGGTCCA	GGAAATTCCC	TCGAGCGATG	CCCATATGGG	6250
	CACGCCCGGA	TTACAACCCT	CCACTGTTAG	AGTCCTGGAA	GGACCCGGAC	6300
	TACGTCCCTC	CAGTGGTACA	CGGGTGTCCA	TTGCCGCCTG	CCAAGGCCCC	6350
65	TCCGATACCA	CCTCCACGGA	GGAAGAGGAC	GGTTGTCCTG	TCAGAATCTA	6400

CCGTGTCTTC	TGCCTTGGCG	GAGCTCGCCA	CAAAGACCTT	CGGCAGCTCC	6450		
GAATCGTCGG	CCGTCGACAG	CGGCACGGCA	ACGGCCTCTC	CTGACCAGCC	6500	_	
CTCCGACGAC	GGCGACGCGG	GATCCGACGT	TGAGTCGTAC	TCCTCCATGC	6550	5	
CCCCCTTGA	GGGGGAGCCG	GGGGATCCCG	ATCTCAGCGA	CGGGTCTTGG	6600		
TCTACCGTAA	GCGAGGAGGC	TAGTGAGGAC	GTCGTCTGCT	GCTCGATGTC	6650	10	
CTACACATGG	ACAGGCGCCC	TGATCACGCC	ATGCGCTGCG	GAGGAAACCA	6700		
AGCTGCCCAT	CAATGCACTG	AGCAACTCTT	TGCTCCGTCA	CCACAACTTG	6750	15	
GTCTATGCTA	CAACATCTCG	CAGCGCAAGC	CTGCGGCAGA	AGAAGGTCAC	6800		
CTTTGACAGA	CTGCAGGTCC	TGGACGACCA	CTACCGGGAC	GTGCTCAAGG	6850	20	
AGATGAAGGC	GAAGGCGTCC	ACAGTTAAGG	CTAAACTTCT	ATCCGTGGAG	6900		
GAAGCCTGTA	AGCTGACGCC	CCCACATTCG	GCCAGATCTA	AATTTGGCTA	6950		
TGGGGCAAAG	GACGTCCGGA	ACCTATCCAG	CAAGGCCGTT	AACCACATCC	7000	25	
GCTCCGTGTG	GAAGGACTTG	CTGGAAGACA	CTGAGACACC	AATTGACACC	7050		
ACCATCATGG	CAAAAAATGA	GGTTTTCTGC	GTCCAACCAG	AGAAGGGGGG	7100	30	
CCGCAAGCCA	GCTCGCCTTA	TCGTATTCCC	AGATTTGGGG	GTTCGTGTGT	7150		
GCGAGAAAAT	GGCCCTTTAC	GATGTGGTCT	CCÁCCCTCCC	TCAGGCCGTG	7200	35	
ATGGGCTCTT	CATACGGATT	CCAATACTCT	CCTGGACAGC	GGGTCGAGTT	7250		
CCTGGTGAAT	GCCTGGAAAG	CGAAGAAATG	CCCTATGGGC	TTCGCATATG	7300	40	
ACACCCGCTG	TTTTGACTCA	ACGGTCACTG	AGAATGACAT	CCGTGTTGAG	7350		
GAGTCAATCT .	ACCAATGTTG	TGACTTGGCC	CCCGAAGCCA	GACAGGCCAT	7400		
AAGGTCGCTC .	ACAGAGCGGC	TTTACATCGG	GGGCCCCCTG	ACTAATTCTA	7450	45	
AAGGGCAGAA	CTGCGGCTAT	CGCCGGTGCC	GCGCGAGCGG	TGTACTGACG	7500		
ACCAGCTGCG	GTAATACCCT	CACATGTTAC	TTGAAGGCCG	CTGCGGCCTG	7550	50	
TCGAGCTGCG	AAGCTCCAGG	ACTGCACGAT	GCTCGTATGC	GGAGACGACC	7600		
TTGTCGTTAT	CTGTGAAAGC	GCGGGGACCC	AAGAGGACGA	GGCGAGCCTA	7650	55	
CGGGCCTTCA	CGGAGGCTAT	GACTAGATAC	TCTGCCCCCC	CTGGGGACCC	7700		
GCCCAAACCA	GAATACGACT	TGGAGTTGAT	AACATCATGC	TCCTCCAATG	7750	60	
TGTCAGTCGC	GCACGATGCA	TCTGGCAAAA	GGGTGTACTA	TCTCACCCGT	7800		
GACCCCACCA	CCCCCTTGC	GCGGGCTGCG	TGGGAGACAG	CTAGACACAC	7850		
TCCAGTCAAT	TCCTGGCTAG	GCAACATCAT	CATGTATGCG	CCCACCTTGT	7900	65	

	GGGCAAGGAT	GATCCTGATG	ACTCATTTCT	TCTCCATCCT	TCTAGCTCAG	7950
5	GAACAACTTG	AAAAAGCCCT	AGATTGTCAG	ATCTACGGGG	CCTGTTACTC	8000
	CATTGAGCCA	CTTGACCTAC	CTCAGATCAT	TCAACGACTC	CATGGCCTTA	8050
	GCGCATTTTC	ACTCCATAGT	TACTCTCCAG	GTGAGATCAA	TAGGGTGGCT	8100
0	TCATGCCTCA	GGAAACTTGG	GGTACCGCCC	TTGCGAGTCT	GGAGACATCG	8150
	GGCCAGAAGT	GTCCGCGCTA	GGCTACTGTC	CCAGGGGGG	AGGGCTGCCA	8200
.5	CTTGTGGCAA	GTACCTCTTC	AACTGGGCAG	TAAGGACCAA	GCTCAAACTC	8250
	ACTCCAATCC	CGGCTGCGTC	CCAGTTGGAT	TTATCCAGCT	GGTTCGTTGC	8300
20	TGGTTACAGC	GGGGGAGACA	TATATCACAG	CCTGTCTCGT	GCCCGACCCC	8350
	GCTGGTTCAT	GTGGTGCCTA	CTCCTACTTT	CTGTAGGGGT	AGGCATCTAT	8400
	CTACTCCCCA	ACCGATGAAC	GGGGAGCTAA	ACACTCCAGG	CCAATAGGCC	8450
25	ATCCTGTTTT	TTTCCCTTTT	TTTTTTTCTT	TTTTTTTTT	TTTTTTTTT	8500
	TTTTTTTTT	TTCTCCTTTT	TTTTTCCTCT	TTTTTTCCTT	TTCTTTCCTT	8550
30	TGGTGGCTCC	ATCTTAGCCC	TAGTCACGGC	TAGCTGTGAA	AGGTCCGTGA	8600
	GCCGCTTGAC	TGCAGAGAGT	GCTGATACTG	GCCTCTCTGC	AGATCAAGT	

35 Patentansprüche

1. Hepatitis C Virus (HCV) Zellkultursystem, das im wesentlichen eukaryontische Zellen umfaßt, die eingeschleustes HCV-spezifisches Genmaterial enthalten, dadurch gekennzeichnet, daß die eukaryontischen Zellen humane Hepatomazellen sind und daß das eingeschleuste HCV-spezifische Genmaterial ein HCV-RNA-Konstrukt ist, das die HCV-spezifischen RNA-Abschnitte 5'NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3'NTR und zusätzlich ein selektierbares Markergen (Selektionsgen) umfaßt.

2. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet, daß die Hepatomazellen von einer handelsüblichen Hepatomazellinie abstammen.

3. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet, daß die Hepatomazellen aus einer Hepatomaprimärzellkultur gewonnen sind.

4. HCV-RNA-Konstrukt, dadurch gekennzeichnet, daß es die HCV-spezifischen RNA-Abschnitte 5'NTR, NS3, NS4A, NS4B, NS5A, NS5B und 3'NTR umfaßt.

5. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet, daß es die in Sequenzprotokoll SEQ ID NO: 1 dargestellte Nukleotidsequenz umfaßt.

6. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet, daß es die in Sequenzprotokoll SEQ ID NO: 2 dargestellte Nukleotidsequenz umfaßt.

7. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet, daß es die in Sequenzprotokoll SEQ ID NO: 3 dargestellte Nukleotidsequenz umfaßt.

8. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet, daß es die in Sequenzprotokoll SEQ ID NO: 4 dargestellte Nukleotidsequenz umfaßt.

9. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet, daß es die in Sequenzprotokoll SEQ ID NO: 5 dargestellte Nukleotidsequenz umfaßt.

10. HCV-RNA-Konstrukt nach Anspruch 4, dadurch gekennzeichnet, daß die 3'NTR eine Nukleotidsequenz aufweist, die aus der Gruppe der nachfolgend aufgelisteten Nukleotidsequenzen (a) bis (i) ausgewählt ist:

65

60

40

45

50

(a)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTTTT	
	TIGCCCAGACTGGAGT	
(b)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
	TTTTTAGTCT TTTTTTTC TTTTTTTGA GAGAGAGAGT	
	CTCACTCTGT TGCCCAGACT GGAGC	1
(c)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
(0)	TTTAATCTTT TTTTTTTCT TTTTTTTTGA GAGAGAGAGT	
	CTCACTCTGT TGCCCAGACT GCAGC	1
(d)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
	TTTTTTAGTC TTTTTTTT TCTTTTTTT TGAGAGAGAG	_
	AGTCTCACTC TGTTGCCCAG ACTGGAGT	2
(e)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
(0)	TTTTTAGTCT TTTTTTTTT TCTTTTTTT TGAGAGAGAG	
	AGTCTCACTC TGTTGCCCAG ACTGGAGT	2
	note to her out to condition of the first to	
(f)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
	TTTTTAGTCT TTTTTTTTT TCTTTTTTTT TTGAGAGAGA	3
	GAGTCTCACT CTGTTGCCCA GACTGGAGT	-
(a)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
(5)	TTTTTAGTCT TTTTTTTTT CATTTTTTTT GAGAGAGAGA	2
	GTCTCACTCT GTTGCCCAGA CTGGAGT	3
(L)		
(n)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
	TTTTTTTAAT CTTTTTTTT TTTTTCCTTT TTTTGAGAGA GAGAGTCTCA CTCTGTTGCC CAGACTGGAG T	4
	GAGAGICICA CICIGITOCC CAGACIOGAG I	
(i)	ACGGGGAGCTAAACACTCCAGGCCAATAGGCCATCCTGTTTTTT	
	TTTTTTAATC TTTTTTTTT TTTTCTTTTT TTTTTGAGAG	4
	AGAGAGTCTC ACTCTGTTGC CCAGACTGGA GT	
11.	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, daß das selektierbare Mar-	
	gen ein Resistenzgen und insbesondere eine Antibiotikaresistenzgen ist.	
	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, daß das selektierbare Margen ein Neomycinphosphotransferasegen ist.	5
	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, daß das selektierbare Mar-	
	gen strangabwärts der 5'NTR in die HCV-RNA integriert ist.	
kers	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 13, dadurch gekennzeichnet, daß das selektierbare Margen über ein Ribozym bzw. eine Erkennungsstelle für ein Ribozym mit der HCV-RNA verbunden ist.	5
15.	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 14, dadurch gekennzeichnet, daß es ein integriertes Re-	
•	tergen aufweist. HCV-RNA-Konstrukt nach Anspruch 15, dadurch gekennzeichnet, daß das Reportergen ein Gen aus der	
Gru	ppe der Luziferasegene, dem CAT-Gen (Chloramphenicol-Acetayl-Transferase-Gen), dem lacZ-Gen (beta-Ga-	
	osidasegen), der GFP-Gene (green-fluorescence-protein-Gene), dem GUS-Gen (Glukuronidasegen) und dem AP-Gen (Sezernierte-Alkalische-Phosphatase-Gen) ist.	6
	HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, daß deren Replikation die	
Exp	pression eines (zellulären) Surrogatmarkergens beeinflußt.	
	HCV-RNA-Konstrukt nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß das Resistenzgen art in das offene Leseraster der HCV-RNA einidoniert ist, daß es erst nach einer proteolytischen Prozessierung in	,
	e aktive Form überführbar ist.	Ċ
19.	HCV-RNA-Konstrukt nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß das Reportergen und	
das	selektierbare Markergen derart räumlich in dem Konstrukt angeordnet sind, daß sie gemeinsam ein Fusionspro-	

tein exprimieren.

- 20. Zellkultursystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das HCV-RNA-Konstrukt ein Konstrukt gemäß wenigstens einem der Ansprüche 4 bis 19 ist.
- 21. Zellkultursystem nach Anspruch 1, dadurch gekennzeichnet, daß die das HCV-RNA-Konstrukt enthaltenden Zellen bei der DSMZ, Braunschweig, BRD, unter der Hinterlegungsnummer DSM ACC2394 (Laborbezeichnung HuBI 9-13) hinterlegt sind.
 - 22. Verwendung eines Zellkultursystems nach einem der Ansprüche 1 bis 3 oder 20 bis 21 und/oder eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 19 zur Herstellung und/oder Evaluierung und/oder Testung von Therapeutika und/oder Diagnostika zur Behandlung von insbesondere HCV-Infektionen.
- 23. Verwendung eines Zellkultursystems nach einem der Ansprüche 1 bis 3 oder 20 bis 21 und/oder eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 19 zur Herstellung eines Impfstoffes gegen HCV-Infektionen.
 24. Verwendung eines HCV-RNA-Konstrukts nach einem der Ansprüche 4 bis 19 zur Herstellung einer leberzellspezifischen Genfähre für die Gentherapie.
- 25. HCV-RNA-Konstrukt nach einem der Ansprüche 4 bis 19, dadurch gekennzeichnet, daß es ein integriertes
 Fremdgen aufweist und dazu geeignet ist, dieses Fremdgen in eine Zielzelle einzuschleusen, die zur Expression dieses Fremdgens geeignet ist.

Hierzu 6 Seite(n) Zeichnungen

Ü

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 15 178 A1 C 12 N 5/10 5. Oktober 2000

3200 -1 2 8 9 5 6 377/NS3-3/W1/9-13 E 11 12 7 I₃₈₉/NS3-3'/wt/5-15 1389/NS3-31/wt/5-17 1377/NS3-31/wt/9-12 1389/NS2-3'/wt/7-3 l₃₇₇/NS2-3'/wt/11-7 1389/NS3-31/wt/5-5 1389/NS3-31/WV5-9 1389/NS3-31/Wt/5-1 C 389/NS2-31/Δ/8-1 107 Plasmid * BHK-neo - control 500 404 331 242 1 2 3 5 6 7 8 9 10 11 12 13

Fig. 1

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 15 178 A1 C 12 N 5/10 5. Oktober 2000

Fig. 2

Nummer: Int. Cl.⁷: Offenlegungstag: DE 199 15 178 A1 C 12 N 5/10 5. Oktober 2000

、~

Nummer: Int. Cl.⁷: DE 199 15 178 A1

Offenlegungstag:

C 12 N 5/10 5. Oktober 2000

Fig. 4

Fig. 5

Nummer:

DE 199 15 178 A1

Int. Cl.⁷: Offenlegungstag: C 12 N 5/10 5. Oktober 2000

Fig. 6

Nummer: Int. Cl.⁷: DE 199 15 178 A1

Offenlegungstag:

C 12 N 5/10 5. Oktober 2000

Fig. 7

Fig. 8