Sabbir Ahmed

DATE: February 26, 2018

CMPE 320 HW 03

1. With 3 n-sided rolls, there are n^3 possibilities.

The probability that either of the pair of persons roll the same face of the die is therefore $n/n^3 = 1/n^2$.

Therefore

8.

$$P(A_{12}) = P(A_{13}) = P(A_{23}) = \frac{n}{n^3}$$

= $\frac{1}{n^2}$

But if both the events A_{12} and A_{13} takes place, that is both persons 1 and 2 and persons 1 and 3 roll the same face, then that yields A_{23} .

That is, if both persons 1 and 2 and persons 1 and 3 roll the same face, then that implies persons 1 and 3 rolled the same face.

But the outcome of person 3's roll is not dependent on the other persons.

That is, pairwise A_{12} and A_{13} , A_{12} and A_{23} , and A_{13} and A_{23} are independent.

But if considered individually, they are dependent.

2.		
3.		
4.		
5.		
6.		
7.		

9.

10. The permutations of a word is given by:

$$\frac{(\text{length of word})!}{(\text{repetitions of A})!(\text{repetitions of B})!\dots(\text{repetitions of Z})!}$$

(a) Since there are no repeating characters, the permutation is simply:

permutations =
$$length(children)!$$
 = $8!$ = 40320

(b) Since the characters o repeats 2 times, k repeats 2 times, and e repeats 3 times:

$$\begin{aligned} \text{permutations} &= \frac{length(\text{bookkeeper})!}{(\text{repetitions of o})!(\text{repetitions of k})!(\text{repetitions of e})!} \\ &= \frac{10!}{2!2!3!} \\ &= 151200 \end{aligned}$$