

Limiting Index Sort

A New Non-Dominated Sorting Algorithm and its Comparison to the State-of-the-Art

Michael Mazurek

Canadian Forces Aerospace Warfare Centre OR Team Co-op Student

Slawomir Wesolkowski, Ph.D.

Canadian Forces Aerospace Warfare Centre OR Team

DRDC CORA TM 2010-097
May 2010

Defence R&D Canada
Centre for Operational Research and Analysis

National Defence Défense nationale

Canada

Limiting Index Sort

*A New Non-Dominated Sorting Algorithm and its Comparison to
the State-of-the-Art*

Michael Mazurek
Canadian Forces Aerospace Warfare Centre OR Team Co-op Student

Slawomir Wesolkowski, Ph.D.
Canadian Forces Aerospace Warfare Centre OR Team

Defence R&D Canada – CORA

Technical Memorandum
DRDC CORA TM 2010-097
May 2010

Principal Author

Original signed by Michael Mazurek

Slawomir Wesolkowski

Michael Mazurek

Slawomir Wesolkowski

Defence Research Assistant

Defence Scientist

Approved by

Original signed by D.M. Bergeron, Ph.D.

D.M. Bergeron, Ph.D.

Head Air Section

Approved for release by

Original signed by Paul Comeau

Paul Comeau, Chief Scientist

The information contained herein has been derived and determined through best practice and adherence to the highest levels of ethical, scientific and engineering investigative principles. The reported results, their interpretation, and any opinions expressed therein, remain those of the author and do not represent, or otherwise reflect, any official opinion or position of DND or the Government of Canada.

This research was sponsored by the Canadian Forces Aerospace Warfare Centre (CFAWC) as part of the multi-objective optimization work done for Project Yukon.

Defence R&D Canada – Centre for Operational Research and Analysis (CORA)

- © Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2010
- © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2010

Abstract

An important problem in the realm of evolutionary multi-objective optimization (MOO) is that of finding all non-dominated fronts (NDFs). We specifically address the computational efficiency of the non-dominated sorting algorithm for finding the non-dominated fronts for the non-dominated sorting genetic algorithm II (NSGA-II) algorithm. We introduce the Limiting Index Sort (LIS) algorithm which improves on the existing state-of-the-art algorithm for datasets which are positively correlated or uncorrelated. LIS indexes individuals based on their scores in each objective, and intelligently iterates through the index to limit the number of comparisons required between individuals. LIS also makes use of a stopping condition, allowing it to exclude some individuals from the skyline without comparing them to any other individuals. LIS was compared to two other state-of-the-art non-dominated sorting algorithms, the Sort and Limit Skyline Algorithm (SaLSa), and the Divide-and-Conquer (D&C) approach. LIS outperformed SaLSa in all tests, and it outperformed D&C when sorting individuals with positively correlated or uncorrelated objective scores, except for sorting large, uncorrelated, datasets on many objectives. LIS outperformed D&C for sorting small, negatively correlated datasets on three or five objectives. By understanding the appropriate non-dominated sorting algorithm to use in different situations, NSGA-II can be utilized more efficiently for MOO. This will allow optimizations to be run with larger population sizes, more objectives, or for more generations, which should ultimately increase the quality of solutions returned by the algorithm.

Résumé

Un problème important dans le domaine d'optimisation multi-objective (MOO) évolutive est de trouver tous les fronts non-dominés (NDFs). Nous abordons spécifiquement l'efficacité de l'algorithme de tri non-dominé pour trouver les fronts non-dominés pour l'algorithme génétique de triage non-dominé (NSGA-II). Nous introduisons l'algorithme Limiting Index Sort (LIS) et démontrons sa supériorité pour le tri des données positivement corrélés ou décorrélés. LIS indexe les solutions individuelles sur la base de leurs scores pour chaque objectif, et itère intelligemment à travers les indices pour limiter le nombre de comparaisons nécessaires entre les solutions individuelles. LIS également fait usage d'une condition d'arrêt, ce qui permet d'exclure certaines solutions de la ligne d'horizon, sans les comparer à d'autres solutions. LIS a été comparée à deux autres algorithmes de tri non-dominé de pointe, le Sort and Limit Skyline Algorithm (SaLSa) et l'algorithme Divide-and-Conquer (D&C). LIS a surclassé SaLSa dans tous les tests, et il surpassé D&C dans le tri des individus pour des objectifs à corrélation positive ou étant décorrélaté, sauf pour le tri d'un grand nombre d'individus avec un grand nombre d'objectifs décorrelées. LIS a surclassé D&C pour le tri d'un petit nombre d'individus sur trois ou cinq objectifs anti-corrélées. En comprenant les circonstances pendant lesquelles chacun des algorithmes pour le tri de vecteurs non-dominé est meilleur, NSGA-II peut être utilisé plus efficacement pour MOO. Cela permettra de faire des optimisations sur de plus grandes populations, sur plus objectifs, ou pour plus de générations, qui devrait, augmenter la qualité des solutions retournées par l'algorithme.

This page intentionally left blank.

Executive Summary

Limiting Index Sort: A New Non-Dominated Sorting Algorithm and its Comparison to the State-of-the-Art

Michael Mazurek; Slawomir Wesolkowski; DRDC CORA TM 2010-097; Defence R&D Canada – CORA; May 2010.

Introduction or background: Multi-objective optimization (MOO) is concerned with finding solutions that are optimal with respect to multiple and sometimes opposing objectives. An important problem in the realm of evolutionary multi-objective optimization is that of finding all non-dominated fronts (NDFs). We specifically address the computational efficiency of the non-dominated sorting algorithm for finding the non-dominated fronts for the non-dominated sorting genetic algorithm II (NSGA-II) algorithm.

We introduce the Limiting Index Sort (LIS) algorithm which improves on the existing state-of-the-art algorithm for datasets which are positively correlated or uncorrelated. LIS indexes individuals based on their scores in each objective, and intelligently iterates through the index to limit the number of comparisons required between individuals. LIS also makes use of a stopping condition, allowing it to exclude some individuals from the skyline without comparing them to any other individuals.

Results: LIS was compared to two other state-of-the-art non-dominated sorting algorithms, the Sort and Limit Skyline Algorithm (SaLSa), and the Divide-and-Conquer (D&C) approach. LIS outperformed SaLSa in all tests. LIS outperformed D&C on all tests when sorting individuals with positively correlated or uncorrelated objective scores, except for sorting uncorrelated datasets with more than 4000 individuals on nine objectives. D&C was the most efficient algorithm for sorting negatively correlated datasets, except when sorting datasets of up to about 4000 individuals on three or five objectives.

Significance: By understanding the appropriate non-dominated sorting algorithm to use in different situations, NSGA-II can be utilized more efficiently for MOO. This will allow optimizations to be run with larger population sizes, more objectives, or for more generations, which should ultimately increase the quality of solutions returned by the algorithm.

A variation on LIS, LIS_{half}, only sorts until the first few fronts, which contain at least half of the individuals in the dataset, are found. This is a faster variation which can be used with NSGA-II, because only the half of the combined parent and children population is chosen as parents for the next generation of the algorithm.

Future plans: In the future, a more precise assessment of the cases in which it is appropriate to use either LIS or D&C should be performed. In particular, if there are problems where it is desired to sort highly correlated datasets, LIS will be a very efficient choice of algorithm. D&C's performance worsens as the number of objectives increases, and also as the correlation between the objective scores increases. If the correlation between a large number of objectives in a dataset is high enough, there may be some cases where it would be more efficient to use LIS instead of

D&C, no matter what the population size of the dataset is. An empirical (or perhaps analytical) study to determine if these cases exist could be useful.

Sommaire

Limiting Index Sort: A New Non-Dominated Sorting Algorithm and its Comparison to the State-of-the-Art

Michael Mazurek; Sławomir Wesolkowski; DRDC CORA TM 2010-097; R & D pour la défense Canada – CARO; Mai 2010.

Introduction ou contexte: Le but de l'optimisation multi-objective (MOO) est la recherche de solutions optimales à l'égard de plusieurs objectifs qui sont parfois opposés. Un problème important dans le domaine d'optimisation multi-objective (MOO) évolutive est de trouver tous les fronts non-dominés (NDFs). Nous abordons spécifiquement l'efficacité de l'algorithme de tri non-dominé pour trouver les fronts non-dominés pour l'algorithme génétique de triage non-dominé (NSGA-II).

Nous introduisons l'algorithme Limiting Index Sort (LIS) et démontrons sa supériorité pour le tri des données positivement corrélées ou décorrélées. LIS indexe les solutions individuelles sur la base de leurs scores pour chaque objectif, et itère intelligemment à travers les indices pour limiter le nombre de comparaisons nécessaires entre les solutions individuelles. LIS également fait usage d'une condition d'arrêt, ce qui permet d'exclure certaines solutions de la ligne d'horizon, sans les comparer à d'autres solutions.

Résultats: LIS a été comparée à deux autres algorithmes de tri non-dominé de pointe, le Sort and Limit Skyline Algorithm (SaLSa) et l'algorithme Divide-and-Conquer (D&C). LIS a surclassé SaLSa dans tous les tests, et il surpassé D&C dans le tri des individus pour des objectifs à corrélation positive ou étant décorrélé, sauf pour le tri des données non corrélées avec plus de 4000 individus sur neuf objectifs. D&C est l'algorithme le plus efficace pour le tri de données négativement corrélées, sauf pour le tri de données sur 4000 ou moins d'individus pour trois ou cinq objectifs.

Importance: En comprenant les circonstances pendant lesquelles chacun des algorithmes pour le tri de vecteurs non-dominé est meilleur, NSGA-II peut être utilisé plus efficacement pour MOO. Cela permettra de faire des optimisations sur de plus grandes populations, sur plus d'objectifs, ou pour plus de générations, qui devrait, augmenter la qualité des solutions retournées par l'algorithme.

Une variation sur LIS, LIS_{half}, tri seulement les premiers quelques fronts qui comportent au moins la moitié des individus dans la base de données. Il s'agit d'une variation plus rapide qui peut être utilisé avec NSGA-II, parce que seule la moitié de l'ensemble des parents et des enfants de la population est choisi en tant que parents pour la prochaine génération de l'algorithme.

Perspectives: À l'avenir, une évaluation plus précise des cas dans lesquels il est approprié d'utiliser la LIS ou la D&C doit être effectuée. En particulier, s'il y a des problèmes où il est souhaitable de trier des données avec une forte corrélation, LIS sera le choix le plus efficace. La performance de D&C se dégrade au fur et à mesure que le nombre d'objectifs augmente, et que la corrélation entre les objectifs augmente. Si la corrélation entre un grand nombre d'objectifs dans un ensemble de données est suffisamment élevée, ca se peut qu'il serait plus efficace d'utiliser

LIS au lieu de D & C, quelle que soit la taille de la population. Une analyse empirique (ou peut-être analytique) pourrait être utile afin de déterminer si ces cas existent.

Table of Contents

Abstract	i
Résumé	i
Executive Summary.....	iii
Sommaire	v
Table of Contents	vii
List of Figures	ix
List of Tables.....	x
Acknowledgements	xii
1 Introduction.....	1
2 Previous Work	3
2.1 Two-objective Case	3
2.2 Skyline Algorithms.....	4
2.2.1 Block-Nested Loops.....	4
2.2.2 Sort Filter Skyline	4
2.2.3 Sort and Limit Skyline algorithm.....	5
2.3 Divide and Conquer Algorithms	7
2.3.1 Divide & Conquer Non-Dominated Sorting Algorithm.....	7
3 Limiting Index Sort.....	9
3.1 Limiting Index Sort - Skyline.....	9
3.2 Variations	11
4 Experiments and Results.....	12
4.1 Experimental Setup	12
4.2 Results	13
5 Conclusions.....	18
References	19
Annex A .. Sorting on 3, 7, and 9 Objectives	21
A.1 Anti-Correlated Data	21
A.2 Independent Data.....	22
A.3 Positively Correlated Data.....	23
Annex B .. Mean Number of Comparisons Required for All Tests.....	27
B.1 Anti-correlated Data	27
B.2 Independent Data.....	29
B.3 Positively Correlated Data.....	31
Annex C .. Standard Deviation of Number of Comparisons Required for All Tests.....	33
C.1 Anti-correlated Data	33

C.2	Independent Data.....	35
C.3	Positively Correlated Data.....	37
	List of Abbreviations/Acronyms	39

List of Figures

Figure 1: Correlated Dataset.....	12
Figure 2: Independent Dataset.....	12
Figure 3: Anti-correlated Dataset	13
Figure 4: Number of comparisons required for sorting anti-correlated data on 5 objectives	14
Figure 5: Number of comparisons required for sorting independent data on 5 objectives.....	14
Figure 6: Number of comparisons required for sorting positively correlated data on 5 objectives.....	15
Figure 7: Number of comparisons required for sorting anti-correlated data on 3 objectives	21
Figure 8: Number of comparisons required for sorting anti-correlated data on 7 objectives	21
Figure 9: Number of comparisons required for sorting anti-correlated data on 9 objectives	22
Figure 10: Number of comparisons required for sorting independent data on 3 objectives.....	22
Figure 11: Number of comparisons required for sorting independent data on 7 objectives.....	23
Figure 12: Number of comparisons required for sorting independent data on 9 objectives.....	23
Figure 13: Number of comparisons required for sorting positively correlated data on 3 objectives.....	24
Figure 14: Number of comparisons required for sorting positively correlated data on 7 objectives.....	24
Figure 15: Number of comparisons required for sorting positively correlated data on 9 objectives.....	25

List of Tables

Table 1: Example Set of Tuples	6
Table 2: Sorting with SaLSa (max)	6
Table 3: Sorting with LIS	10
Table 4: Highest performing algorithm (mean number of comparisons) on the anti-correlated data set.....	15
Table 5: Highest performing algorithm (mean number of comparisons) on the independent data set.....	16
Table 6: Highest performing algorithm (mean number of comparisons) on the positively correlated data set.....	16
Table 7: Mean, Anti-correlated, 3 objectives	27
Table 8: Mean, Anti-correlated, 5 objectives	27
Table 9: Mean, Anti-correlated, 7 objectives	28
Table 10: Mean, Anti-correlated, 9 objectives	28
Table 11: Mean, Independent, 3 objectives	29
Table 12: Mean, Independent, 5 objectives	29
Table 13: Mean, Independent, 7 objectives	30
Table 14: Mean, Independent, 9 objectives	30
Table 15: Mean, Positively correlated, 3 objectives.....	31
Table 16: Mean, Positively correlated, 5 objectives.....	31
Table 17: Mean, Positively correlated, 7 objectives.....	32
Table 18: Mean, Positively correlated, 9 objectives.....	32
Table 19: Standard deviation, anti-correlated, 3 objectives	33
Table 20: Standard deviation, anti-correlated, 5 objectives	33
Table 21: Standard deviation, anti-correlated, 7 objectives	34
Table 22: Standard deviation, anti-correlated, 9 objectives	34
Table 23: Standard deviation, independent, 3 objectives	35
Table 24: Standard deviation, independent, 5 objectives	35
Table 25: Standard deviation, independent, 7 objectives	36
Table 26: Standard deviation, independent, 9 objectives	36
Table 27: Standard deviation, positively correlated, 3 objectives	37
Table 28: Standard deviation, positively correlated, 5 objectives	37

Table 29: Standard deviation, positively correlated, 7 objectives	38
Table 30: Standard deviation, positively correlated, 9 objectives	38

Acknowledgements

The authors thank Irene Collin for improving the readability and presentation of this technical memorandum, as well as the reviewer, Bohdan Kaluzny, for providing helpful comments.

1 Introduction

Multi-objective optimization (MOO) is concerned with finding solutions that are optimal with respect to multiple and sometimes opposing objectives [1]. An important problem in the realm of evolutionary multi-objective optimization [1], [2] is that of finding all non-dominated fronts (NDFs). We specifically address the computational efficiency of the non-dominated sorting algorithm for finding the non-dominated fronts for the NSGA-II algorithm. A similar problem to performing a non-dominated sort is to find just the first non-dominated front, or *skyline* of a dataset [3]. This problem has many applications with database searching applications, and multiple approaches have been taken to solve this problem [3], [4], [5], [6]. One easy way to sort a dataset into NDFs is to find the set's skyline, save these points as the first NDF, remove these points from the dataset, and then find the reduced dataset's skyline, which is then the second NDF of the dataset. This process is repeated for subsequent fronts, until the reduced dataset is empty, and every point in the original dataset has been assigned to a front. The non-dominated sorting algorithm suggested for use with the non-dominated sorting genetic algorithm II (NSGA-II) [2] uses exactly this method, although with a suboptimal skyline algorithm. Three skyline algorithms, block-nested loops [3], sort-filter skyline [4], and the sort-and-limit skyline algorithm [5], [6], are presented and discussed below.

An important concept in MOO is that of solution dominance. In a set of solutions with any number of objectives, a solution A is said to dominate solution B (written $A \succ B$) if and only if A performs equally as well or better than B in all objectives, and A performs strictly better than B in at least one objective. Two solutions A and B are incomparable (written $A \sim B$) if neither one dominates the other (i.e. A performs better than B in some objectives, and B performs better than A in others). The non-dominated front of a dataset of individuals is the subset of individuals which are not dominated by any others in the dataset. If individuals A and B are evaluated over M objectives, and have objective scores (a_1, \dots, a_M) and (b_1, \dots, b_M) , respectively, and if a maximum objective score is optimal, then the definition of dominance is as follows:

$$A \succ B \Leftrightarrow (\forall i \in (1, \dots, M): a_i \geq b_i) \wedge (\exists i \in (1, \dots, M): a_i > b_i) \quad (1)$$

A very well known evolutionary multi-objective algorithm, NSGA-II [2], uses the concept of non-dominated sorting of data into multiple fronts. We will focus our comparisons to NSGA-II, which is an elitist, evolutionary, and multi-objective algorithm [2]. It introduces the idea of choosing individuals for successive generations based on the NDF they belong to. The first non-dominated front of a population of individuals is simply the skyline of the group. The second front contains individuals which are only dominated by members of the first front, and, in general, the k^{th} front of a dataset is the set of individuals which are only dominated by members of the first $k-1$ fronts. Improving the non-dominated sorting speed for NSGA-II is crucial for many applications which use a large population and a large number of fronts such as military fleet mix problems [7].

The complexity of the sorting algorithm in NSGA-II, is $O(MN^2)$ ¹ where N is the number of solutions (individuals) to be sorted. This complexity can be improved by using the Divide and Conquer (D&C) algorithm [8], [9] to obtain a complexity of $O(N \cdot \log^{M-1} N)$. We introduce the Limiting Index Sort (LIS) algorithm which is shown to be experimentally better than the D&C algorithm for datasets which are positively correlated or uncorrelated (D&C excels at sorting anti-correlated data). LIS is a skyline algorithm which indexes individuals based on their scores in each objective, and intelligently iterates through the index to limit the number of comparisons required between individuals. LIS also makes use of a stopping condition [5], [6], so it can exclude some individuals from the skyline without comparing them to any other individuals. While LIS has a worst case complexity of $O(MN^2)$, we show that it outperforms on average all other non-dominated sorting algorithms on positively correlated or uncorrelated datasets. We have also found LIS to be superior or comparable to D&C in a few special cases of sorting solutions from anti-correlated objectives. In this paper, we present the new algorithm and detailed experimental results which validate our findings.

The paper is organized as follows. The second section summarizes the prior art. The third section introduces and describes the Limiting Index Sort algorithm. The results are described in the fourth section. The technical memorandum concludes with the fifth section. Annex A presents figures for sorting results on 3, 7, and 9 objectives. Annex B and C contain respectively the mean and standard deviation numbers of the required number of comparisons for all tests.

¹ Big O notation allows us to characterize the execution parameters of an algorithm in theory (in this case the time needed but it can also refer to memory requirements or specific numbers of additions or multiplications, etc.), given the problem size. Therefore, in the case of $O(MN^2)$ the complexity depends on the number of objectives M and the square of the number of solutions N.

2 Previous Work

A similar problem to performing a non-dominated sort is to find just the first non-dominated front, or *skyline* of a dataset [3]. This problem has many applications with database searching applications, and multiple approaches have been taken to solve this problem [3], [4], [5], [6]. While an optimal non-dominated sorting algorithm exists for sorting a dataset on two objectives [9], finding an optimal algorithm for sorting on three or more objectives remains an open problem.

One easy way to sort a dataset into NDFs is to find the set's skyline, save these points as the first NDF, remove these points from the dataset, and then find the reduced dataset's skyline, which is then the second NDF of the dataset. This process is repeated for subsequent fronts, until the reduced dataset is empty, and every point in the original dataset has been assigned to a front. The non-dominated sorting algorithm suggested for use with NSGA-II [2] uses exactly this method, although with a suboptimal skyline algorithm. Three skyline algorithms, *block-nested loops* [1], *sort-filter skyline* [4], and the *sort-and-limit skyline algorithm* [5], [6], are presented and discussed in section 2.2.

2.1 Two-objective Case

An optimal non-dominated sorting algorithm which sorts a set of N individuals on $M=2$ objectives is described by Jensen [9]. As a first step, the individuals are sorted by their first objective scores, in decreasing order, and to break any ties, the second objective is considered. This results in an order in which no individual can be dominated by another one that comes after it in the order. As a result, the first individual in this list (i.e. the individual with the highest first objective score) is the first member of the first non-dominated front. The second individual is compared to the first; if the two points are incomparable, the second point is added to the first front, and otherwise it becomes the first member of the second front. Subsequent individuals are compared to all fronts, and assigned to the first front they are not dominated by. For example, if an individual p is dominated by a member of the third front, but not the fourth, p will be assigned to the fourth front.

Since the set is only being sorted on two objectives, the individual with the highest first-objective score in any front must also have the lowest second-objective score among all members of the front [9]. Because of this, and the fact that each new individual being compared to the fronts has a higher first-objective score than every individual which has already been assigned a front, new individuals only need to be compared to the newest member of a front (and only in the second objective) to determine whether or not they are dominated by the front. By implementing a binary search to find the front a new individual belongs to, as opposed to comparing to each front in order, this algorithm requires no more than $O(N \log N)$ comparisons to sort the entire dataset [9] and thus it should be used in the two-objective sorting case (no better algorithm is known).

2.2 Skyline Algorithms

2.2.1 Block-Nested Loops

A simple way to find the skyline is to use the *block-nested loops* (BNL) algorithm [3], which is the algorithm suggested for use with NSGA-II [3]. In a dataset with N -tuples², or individuals, a tuple is chosen and assigned as the only member of a *non-dominated set* (NDS). Each remaining tuple is then compared with each of the tuples in the NDS, which is updated after every comparison. Any NDS member which is dominated by a tuple is removed from the set, while tuples not dominated by any NDS member are added to the NDS, and tuples which are dominated by an NDS member are discarded. After every individual has been compared with the NDS, the NDS is the dataset's skyline.

In the best case for BNL, the skyline will consist of a single point, and it will be the first point to be added to the NDS. Every subsequent tuple will be compared to the single NDS member (and subsequently discarded), for a total of N comparisons. If the tuples are being compared on M objectives, each dominance test requires M objective-value comparisons, for a total best-case complexity of $O(MN)$. In the worst case, when every dataset member is also a skyline member, $N(N-1)/2$ dominance tests are required, for a worst-case computational complexity of $O(MN^2)$.

2.2.2 Sort Filter Skyline

The *sort filter skyline* (SFS) algorithm [4] is a variation on BNL that first introduces the idea of initially ordering the individuals by a monotonically increasing scoring function, then considering them for skyline inclusion in this order. The result is an order in which no tuple can dominate any other one which comes before it in the order, because the order “*is a topological sort with respect to the skyline dominance partial relation*” [4].

Using this information, the first individual in the order must be part of the skyline, since it cannot be dominated by any other individual. The second individual only has to be compared to the first to determine its inclusion in the skyline; if the first does not dominate the second, then the second is a skyline member, otherwise, it is not. The remaining individuals only need to be compared with any skyline members that occur before them in the order. Thus, an individual is added to the skyline if and only if it is not dominated by these skyline members.

When using BNL, it is possible for two non-skyline tuples to be compared with each other. However, since both of those tuples will eventually be discarded, the comparison between them does not offer any useful information, and therefore is a wasted computation. By first sorting the dataset by an appropriate scoring function, SFS guarantees that every comparison between tuples involves at least one skyline member. This eliminates the wasted comparisons which may occur with BNL.

SFS has the same best- and worst-case scenarios as BNL, however there is an overhead of $O(N \cdot \log N)$ required to initially sort the dataset. So the computational complexities of SFS in the best and worst case are $O(N \cdot \log N + MN)$ and $O(N \cdot \log N + MN^2)$, respectively. Although SFS

² In mathematics, a tuple is a sequence (or ordered list) of finite length. An N -tuple is a sequence of N elements.

requires this $O(N \log N)$ overhead, making it appear to have worse performance than BNL, empirical studies show that SFS significantly outperforms BNL [4]. This is because the time saved by eliminating the wasted comparisons which occur in BNL outweighs the cost of the overhead in SFS.

2.2.3 Sort and Limit Skyline algorithm

The latest skyline algorithm to be developed is the *sort and limit skyline algorithm* (SaLSa) [5], [6]. SaLSa works by first sorting the individuals by a monotonic scoring function (as in the case of SFS), then considering them for inclusion in the skyline in this order. The main improvement over SFS is that a limiting condition is defined, where the algorithm can be terminated without necessarily considering every individual for inclusion in the skyline. If the limiting condition is chosen appropriately, then a large number of individuals could potentially be excluded from the non-dominated front without having to perform any dominance tests between these individuals and the skyline members. By considering a limiting condition, SaLSa will never need to perform more comparisons than SFS if they are both applied to sort the same dataset.

Bartolini *et al.* propose three symmetric monotonic scoring functions (and three corresponding limiting conditions) to be used to pre-sort the individuals [5]. The individuals are each assigned a score based on the scoring function chosen, and then they are ordered by these scores, from highest to lowest. The individuals are considered for inclusion in the skyline in this order, since for these three functions, no individual may dominate any individual that comes before it in these orders.

The three scoring functions score the individuals by the sum of their objective scores, the product of their objective scores, or by the maximum of their objective scores. For brevity, only the function which scores individuals by their maximum objective score, F_{max} , will be discussed in detail in this paper:

$$F_{max}(A_i) = \max_{j \in \{1, \dots, M\}} a_{ij}. \quad (2)$$

The reader is referred to Bartolini *et al.* [5] for a description of the other two functions.

F_{max} scores each individual by its maximum objective value. If the tuples are ordered in this way, no tuple can dominate any which comes before it in the order; as a consequence, tuples only need to be compared to those which come before them in the order to determine non-dominance.

The other aspect of SaLSa is that it maintains a *stopping value*, v_{stop} , when searching for the skyline. If the algorithm reaches a point where it can be proven that every unread individual is dominated by at least one skyline member, then SaLSa can stop without explicitly considering every individual for inclusion in the skyline. This limiting feature of SaLSa can lead to a major decrease in the number of comparisons needed to find the skyline. The stopping value is simply the maximum value of the skyline members' minimum objective scores. It is easy to update the stopping value; each time a skyline member is added to the front, its minimum objective score is compared to v_{stop} , and the maximum of the two numbers becomes the new v_{stop} . This is an important concept that is also used in our limiting index sort algorithm.

The SaLSa algorithm is summarized as follows. Let $M = F_{max}(A) = d_{max}$, where M is A 's maximum objective score. While iterating through the tuples (to consider them for inclusion in the skyline), if at any point the maximum objective score, M_i , of the i -th individual, X_i , is less than v_{stop} , then the stopping individual, X_{stop} , (the tuple which corresponds to v_{stop}), must dominate X_i , and every other tuple which comes after X_i in the order. Since $M_i < v_{stop}$, the minimum objective of X_{stop} must be greater than the maximum possible objective of X_i , therefore, every objective of X_{stop} is greater than every objective of X_i , and X_{stop} dominates X_i . If $X_{stop} \succ X_{stop+1}$, then X_{stop} must dominate every tuple in the dataset that has not yet been considered for inclusion in the skyline; when this condition is satisfied, SaLSa has found the entire skyline, and it can stop.

In order to illustrate how SaLSa functions, consider the example dataset of five tuples p_1, \dots, p_5 in Table 1. The tuples each have scores in objective functions f_1, f_2 , and f_3 . The tuples marked with an asterisk (*), are part of the skyline.

Table 2 displays how the tuples in Table 1 would be sorted by using SaLSa with the max limiting function. First, the tuples are sorted by their maximum objective scores. Point p_5 is added to the skyline, as it is the first individual in the list. Point p_2 is then compared with p_5 , and added to the skyline, for a total of one dominance test at this point. After two more comparisons, it is known that p_3 is incomparable with p_5 , but dominated by p_2 , so p_3 is not a skyline member. p_4 is incomparable with both p_5 and p_2 , so it is added to the skyline. Since p_4 's minimum objective function score is 0.5, and p_1 's maximum objective score is 0.3, p_4 must dominate every remaining tuple in the sorted list, so the algorithm can stop, and no dominance tests involving p_1 are performed. SaLSa has effectively found the skyline with a total of five dominance tests.

Table 1: Example Set of Tuples

Tuple	f_1	f_2	f_3
p_1	0.1	0.2	0.3
p_2^*	0.8	0.4	0.7
p_3	0.5	0.2	0.6
p_4^*	0.5	0.5	0.5
p_5^*	0.4	0.3	0.9

Table 2: Sorting with SaLSa (max)

Tuple	f_1	f_2	f_3
p_5^*	0.4	0.3	0.9
p_2^*	0.8	0.4	0.7
p_3	0.5	0.2	0.6
p_4^*	0.5	0.5	0.5
p_1	0.1	0.2	0.3

By utilizing a monotonic scoring function to pre-sort the individuals, as well as a stopping value, SaLSa can efficiently find a skyline from a dataset, without necessarily performing dominance tests on every individual in the set. SaLSa is similar to SFS, the main difference between the two algorithms being SaLSa's consideration of a stopping condition. Hence, the two algorithms have the same computational complexity of $O(N \cdot \log N + MN^2)$ in the worst-case scenario. In the best case, the skyline will only contain one point, and the algorithm will stop after this point is found. Because of the overhead of the initial sort, SaLSa's best-case computational complexity is

$O(N \log N + MN)$. Because of the stopping condition, the number of dominance tests SaLSa requires to find a skyline must always be less than or equal to the number performed by SFS, so it will always outperform SFS [5].

2.3 Divide and Conquer Algorithms

The three previously discussed algorithms, BNL, SFS, and SaLSa are fairly similar to each other, and all have a worst-case computational complexity of $O(MN^2)$. An improved worst-case complexity of $O(N \log^{M-2} N)$ can be achieved by using a Skyline Divide and Conquer (SD&C) method developed by Kung, Luccio, and Preparata [8]. For brevity, their algorithm is not discussed in detail in this paper. However, an algorithm presented by Jensen [9] based on the SD&C is discussed below.

2.3.1 Divide & Conquer Non-Dominated Sorting Algorithm

A divide-and-conquer non-dominated sorting algorithm (D&C) is described by Jensen [9]. This algorithm is based on SD&C; however, it assigns every individual to the proper front after one pass, instead of just finding the skyline. The basic idea of D&C is as follows: a dataset of individuals, S , to be sorted on M objectives is divided into sets L and H , such that every individual in L has a lower M -th objective score than all individuals in H . Initially, every individual in S is assigned to the first non-dominated front. The set H is then sorted recursively, so that every member of H is assigned the correct front number. The members of L are then compared to H , and the front numbers of L are updated based on which members of H they are dominated by. Finally, after L has been sorted according to the front numbers in H , the members of L need to be compared to each other, and this is done by recursively calling the D&C algorithm on L , while respecting the front numbers of L as they have been affected by H .

D&C calls two functions recursively, nd-helperA (ndhA) and nd-helperB (ndhB), which will be detailed below. ndhA recursively divides the set of tuples into much smaller sets, and sorts these smaller sets into non-dominated fronts. ndhB is then used to “merge” these sets back together, until the entire dataset has been merged, and every individual has been assigned to the correct NDF.

Initially, ndhA is called on S , over the first M objectives. If S only contains 2 individuals, (i.e. if $|S| = 2$), then they can just be directly compared, and if one dominates the other, their front numbers can be updated. For example, let S contain the individuals s_1 and s_2 , with front numbers $f[s_1]$ and $f[s_2]$. Say s_1 dominates s_2 , then $f[s_2]$ will be set to $\max(f[s_1]+1, f[s_2])$. If the two individuals are incomparable, their front numbers are not changed. If $|S| > 2$, S is split into sets L and H , as described above. ndhA is called recursively on H , so that the individuals in H are all assigned the correct front numbers.

Next, ndhB is called on L and H , which updates the front numbers in L depending on the individuals in H that dominate them. For example, if $l \in L$ is dominated by individuals $h_1, h_2, h_3 \in H$, then, after the completion of ndhB, $f[l]$ will be set to $\max(f[h_1]+1, f[h_2]+1, f[h_3]+1, f[l])$. Since individuals in L have lower M -th objective scores than those in H , when ndhB is called on L and H , only the first $M-1$ objectives need to be considered. When ndhB is called, if $|L|=1$ or $|H|=1$, the set with the single element is directly compared to every element of the other set. The front numbers of members of L which are dominated by members of H are then updated. If both sets

contain more than one individual, and if the two sets are only being compared on $M=2$ objectives, then L is sorted with respect to H in a way similar to the optimal two-objective sweep-line algorithm described in Section 2.1.

If $M>2$, other properties of L and H are checked. If ndhB is comparing L and H on M objectives, and if $\max(x_M(l)) \leq \min(x_M(h)), \forall l \in L, h \in H$, then objective M can be ignored, since the M -th objective scores of all elements of L are less than the scores of all elements of H , and ndhB can be recursively called on L and H , but this time on $M-1$ objectives. Similarly, if $\min(x_M(l)) > \max(x_M(h)), \forall l \in L, h \in H$ nothing else needs to be done, since no elements of L can be dominated by any points in H . If none of the previous conditions hold, the element which has the median M -th objective score of the larger of L and H is found. L and H are then split into L_1 , L_2 , H_1 , and H_2 , such that elements in L_1 and H_1 have lower M -th objective scores than elements in L_2 and H_2 . ndhB is then called recursively on these sets. L_1 and H_1 are compared over M objectives, L_2 and H_2 only need to be compared over $M-1$ objectives, and L_2 and H_2 need to be compared in all M objectives. Elements in L_2 are guaranteed to be incomparable with members of H_1 , so ndhB does not have to be called on these two sets.

Jensen shows that the running time of the D&C algorithm is bounded above by $O(N \cdot \log^{M-1} N)$ time [9]. This is a factor of $\log N$ slower than SD&C, however, Jensen's algorithm has the advantage of sorting the entire dataset at once, as opposed to finding just the skyline. If SD&C was repeatedly applied to find each front of a dataset, this could lead to $O(N^2 \cdot \log^{M-2} N)$ time, if each individual in the dataset was in its own front [9].

3 Limiting Index Sort

Like SaLSa, the *limiting index sort* (LIS) method uses the ideas of pre-arranging the individuals before sorting, as well as including a stopping condition. However, instead of pre-sorting the individuals only once, as do SFS and SaLSa, LIS creates M separate orders of the tuples. With a small variation, LIS can be implemented as either a skyline algorithm, or a non-dominated sorting algorithm. The skyline version is presented first.

3.1 Limiting Index Sort - Skyline

If the skyline of a group of N individuals, each with M objectives, needs to be found, then as a first step the tuples are sorted into M lists, l_1, \dots, l_M , based on their scores in objectives f_1, \dots, f_M , respectively. In the case where there is a tie between two or more individuals' scores in an objective, the individuals can just be compared in a different objective (i.e. this is a lexicographic sort). It is easy to see that if the individuals are sorted by their scores in any one objective (from highest to lowest), then a tuple cannot be dominated by any ones which come after it in this list. The M orders, l_1, \dots, l_M , will (in general) be unique.

After the M orders have been created, they can be iterated through in an intelligent way to reduce the total number of comparisons needed to determine the non-dominated front. Clearly, the individuals at the beginning of every order (denoted $l_1(1), \dots, l_M(1)$) must be part of the skyline, since they cannot be dominated by any other individual. In this way, up to M (if $l_1(1), \dots, l_M(1)$ are unique) individuals can be added to the skyline, without doing a single comparison between any individuals. Next, the second individual in each order is considered. Starting with l_1 , it must be determined whether or not $l_1(2)$ is part of the skyline. If it has already been considered for inclusion (i.e. if $l_1(2) = l_2(2) \wedge \dots \wedge l_M(2)$), then it's already known whether or not it is part of the skyline, and no dominance tests are necessary. However, if it has not yet been considered, then it needs to be determined through dominance tests whether or not any member of the skyline dominates it. The naïve way to determine this would be to simply compare $l_1(2)$ with every skyline member. However, since it is only the second point in l_1 which is being considered, the only point that could possibly dominate it is $l_1(1)$, hence only one comparison needs to be made. Next, $l_2(2)$ is considered, and, if this individual has not yet been considered, it must be compared to $l_2(1)$. The tuples are iterated through in this way, and each tuple which has not been previously considered is only compared to skyline members which come before it in the current list.

Like for SaLSa, there is also a stopping condition in LIS which can allow the skyline search to stop before performing comparisons on every individual. Each individual has a position in each of the M orders, and it is easy to determine an individual's maximum position, p_{max} , of these M orders (i.e. the individual's position in the order where it is furthest from the beginning of the list). A minimum order-position, p_{min} can be defined similarly; p_{min} is simply the minimum position of the individual over l_1, \dots, l_M . Since each order is based on the individuals' scores in one of the M objectives, if an individual A 's maximum order-position is k , then clearly any individuals with $p_{min} > k$ are dominated by A . When searching for the skyline, if the minimum maximum order-position of all current skyline members is $p_{minimax}$, then only the individuals with $p_{min} \leq p_{minimax}$ need to be explicitly compared with skyline members to determine their inclusion in the skyline, as all individuals with $p_{min} > p_{minimax}$ are definitely not in the front. Each time an individual is added to the front, it is easy to update $p_{minimax}$, by simply assigning the minimum of

$p_{minimax}$ and the newly added individual's p_{max} as the new $p_{minimax}$. When iterating through the individuals, once the order-position greater than $p_{minimax}$ is reached, the algorithm can stop with the guarantee that the entire skyline has been found, since the individual corresponding to $p_{minimax}$ dominates every unconsidered tuple in the dataset.

Table 3: Sorting with LIS

l_1	l_2	l_3
p_2^*	p_4^*	p_5^*
p_4^*	p_2^*	p_2^*
p_3	p_5^*	p_3
p_5^*	p_3	p_4^*
p_1	p_1	p_1

In Table 3, the skyline of the tuples from Table 1 are found using LIS. As a first step, the individuals are sorted into three different lists, l_1 , l_2 , and l_3 , based on their scores in objectives f_1 , f_2 , and f_3 , respectively. These lists are then iterated through from left-to-right, and top-to-bottom. The tuples in the first row, p_2 , p_4 , and p_5 are immediately added to the skyline without performing any dominance tests, since they are at the beginning of the three lists. The second row is now considered; points p_4 and p_2 fill the second row, however, since they are both also in the first row, they have already been considered for skyline inclusion, and no action is taken. Since point p_2 is entirely contained in the first two positions of the three lists, it must dominate all remaining tuples which have not yet been considered for skyline inclusion (i.e. p_2 dominates p_1 and p_3). The algorithm can stop at this point, and the entire skyline has been found without performing any dominance tests, and the limiting condition prevents any dominance tests involving tuples p_1 and p_3 .

To perform the M initial sorts, the proposed algorithm requires an overhead of $O(MN \cdot \log N)$. In the best case, there will be one point which is optimal in every objective, in which case the algorithm adds the first point to the skyline, then terminates due to the stopping condition. The worst case is slightly more complicated. In the worst case, the scores in $M-1$ objectives are perfectly positively correlated (i.e. all have a correlation of 1 with respect to each other), and the scores in the M -th objective have a correlation of -1 with every other objective. Since two of the objectives are perfectly anti-correlated, the algorithm will compare the first $N/2$ individuals in the first objective list, and the remaining $N/2$ individuals in the anti-correlated objective's list, for a total of $[(N/2)(N/2-1)]/2 + [(N/2)(N/2-1)]/2 \approx N^2/4$ dominance tests. Therefore, in the best-case scenario, the proposed algorithm has computational complexity $O(MN \cdot \log N)$, and in the worst-case, it has complexity $O(MN \cdot \log N + MN^2/4)$. The overhead cost can be significant if one is only looking for a dataset's skyline, but when sorting an entire set of tuples into non-dominated fronts, the original sorted orders can be preserved, reducing the importance of the initial sorting.

By keeping track of the skyline's minimum-maximum order-position, a stopping condition is defined which can rule out a potentially large number of individuals from the skyline, without having to perform any comparisons on the ruled-out individuals. To sort an entire dataset into non-dominated fronts, skylines can be repeatedly found and then removed from the dataset, until the dataset is empty.

3.2 Variations

There are a couple of variations on LIS which might make it more efficient at sorting larger datasets. The first is to implement LIS as a non-dominated sorting algorithm (as opposed to a skyline algorithm), to allow it to sort a dataset in a single pass, instead of repeatedly finding and removing the skyline. Consider the following: if $I_l(2)$ is dominated by $I_l(1)$, then $I_l(2)$ is not in the skyline, but since it cannot be dominated by $I_l(3), \dots, I_l(N)$, it must be part of the second non-dominated front, and it can be added to the front at this point, instead of ignoring it until the entire skyline has been found. This logic can be used for any number of fronts. If any individual is dominated by members of the first k fronts, then it can be compared to the $(k+1)$ -th front. Individual stopping criteria can be maintained for each front, so any individual will have a range of fronts that it is potentially a member of. If an individual is compared to each front in this range, in order, then this variation is equivalent to repeatedly applying LIS to find the skyline. However, if a binary search among the possible fronts is implemented, individuals might have to be compared to a fewer number of fronts to determine in which front they belong. This variation is known as LIS_{bin} .

The second variation is applicable for the specific application of non-dominated sorting within NSGA-II, although it could be used in any problem where only a portion of a dataset needs to be sorted. In NSGA-II, the parent and child populations, both of size N , are combined into a set of size $2N$, sorted into non-dominated fronts, and then the top N individuals are chosen as parents for the next generation. Clearly, it is not necessary to sort the entire dataset into fronts, and only the first fronts that collectively contain at least N individuals are needed. With the repeated application of a skyline algorithm, it is easy to keep track of the total number of individuals assigned to a front after each new front is found, and stop the sort when this total number is at least N . By stopping the sorting earlier, this variation should always provide some improvement. This variation can only be applied to non-dominated sorting methods which use a skyline algorithm (meaning it cannot be used with Jensen's D&C method). In this paper, this variation will be referred to as LIS_{half} .

4 Experiments and Results

Since D&C and LIS are very different algorithms, LIS is expected to perform better than D&C in some cases, and worse in others. LIS and SaLSa are fairly similar, so they are both expected to realize their best and worst performance in similar cases. A variety of experiments were performed on these three algorithms in an attempt to determine in which cases each performs the best.

4.1 Experimental Setup

Three different types of datasets were randomly generated for sorting into non-dominated fronts: correlated, independent, and anti-correlated. Correlated datasets were generated such that all the objective scores had correlations of approximately 0.8 with each other. Objective scores in an independent dataset were drawn randomly and independently of each other. For anti-correlated datasets, lists of objective scores with correlations of about -0.8 were generated in pairs, and the pairs of lists were combined to create a dataset with the desired number of objectives. If an odd number of objectives is needed, the scores for each tuple's final objective are drawn independently of the other scores.

Figure 1: Correlated Dataset

Figure 2: Independent Dataset

Figure 3: Anti-correlated Dataset

Figure 1, Figure 2, and Figure 3 provide examples of correlated, independent, and anti-correlated datasets, respectively, all with two objectives.

Experiments were run on datasets with 3, 5, 7 and 9 objectives. For each number of objectives, 100 of each type of dataset was randomly generated, each containing 2^{13} (8192) tuples. Subsets of each dataset were sorted into non-dominated fronts; the populations of each of these subsets were 256, 512, 1024, 2048, 4096, and 8192. Every set was sorted with SaLSa, using three different sorting functions, Jensen's D&C method, and three variants of LIS (LIS, LIS_{bin}, and LIS_{half}). The overhead sorting required by the SaLSa and LIS variants was performed using Hoare's quicksort [10], and the split operator used by D&C was achieved using Hoare's find algorithm [11]. The numbers of comparisons required by each algorithm to sort each dataset were counted, including comparisons performed in any overhead sorting, D&C's split operator, and dominance tests. One dominance test between two individuals on M objectives would be counted as M comparisons.

4.2 Results

The numbers of comparisons required by each algorithm to sort each different dataset type on five objectives were averaged over the 100 tests. Figure 4, Figure 5, and Figure 6 plot the average number of comparisons required for sorting on five objectives vs. the size of the dataset for anti-correlated, independent, and correlated datasets, respectively. Similar figures displaying the algorithms' performances when sorting on three, seven, and nine objectives can be seen in Annex A. Tables with the average number of comparisons when sorting on each number of dimensions are in Annex B, and their standard deviations are in Annex C. Finally, Table 4, Table 5, and Table 6 list respectively the best performing algorithm on anti-correlated, independent and positively correlated data with respect to the population size and the number of objectives based on the data in Annex B.

Figure 4: Number of comparisons required for sorting anti-correlated data on 5 objectives

Figure 5: Number of comparisons required for sorting independent data on 5 objectives

Figure 6: Number of comparisons required for sorting positively correlated data on 5 objectives

Table 4: Highest performing algorithm (mean number of comparisons) on the anti-correlated data set

Population	Number of Objectives			
	3	5	7	9
256	LIS _{half}	LIS _{half}	D&C	D&C
512	LIS _{half}	LIS _{half}	D&C	D&C
1024	LIS _{half}	LIS _{half}	D&C	D&C
2048	LIS _{half}	LIS _{half}	D&C	D&C
4096	D&C	LIS _{half}	D&C	D&C
8192	D&C	D&C	D&C	D&C

Table 5: Highest performing algorithm (mean number of comparisons) on the independent data set

Population	Number of Objectives			
	3	5	7	9
256	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
512	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
1024	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
2048	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
4096	LIS _{half}	LIS _{half}	LIS _{half}	D&C
8192	LIS _{half}	LIS _{half}	LIS _{half}	D&C

Table 6: Highest performing algorithm (mean number of comparisons) on the positively correlated data set

Population	Number of Objectives			
	3	5	7	9
256	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
512	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
1024	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
2048	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
4096	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}
8192	LIS _{half}	LIS _{half}	LIS _{half}	LIS _{half}

In all cases, the three LIS variants are clearly better than all SaLSa variants. Furthermore, somewhat surprisingly, LIS_{bin} is slower than LIS in all cases. Since comparing an individual to fronts in order is faster than doing a binary search among the range of fronts it might belong to, most individuals likely belong to one of the first few fronts in their range of possible fronts. This is due to the efficiency of the stopping condition in LIS. LIS_{half} outperformed LIS in all cases, which is obviously due to the fact that LIS_{half} sorts less of the dataset than LIS.

On anti-correlated data, D&C is the winner in most cases (see Table 4). When sorting the anti-correlated data on three objectives for populations up to 2048, and on five objectives for populations up to 4096, LIS_{half} is more efficient than D&C, however, for larger populations or when sorting on more objectives, D&C is the better choice. On the independent and correlated datasets (Table 5 and Table 6 respectively), LIS_{half} was the most efficient algorithm in all tests, except when sorting independent datasets on nine objectives, for populations of 4096 and 8192.

LIS's worst-case scenario is when there is only one front in the dataset (i.e. no individuals are dominated by any others), and its best case scenario is when each individual is in a different front. As individuals' objective scores become more anti-correlated, or if the number of objectives increases, the number of fronts will decrease, as it will become less likely for any one individual to dominate another. Therefore, it is not surprising that LIS requires the fewest comparisons when sorting positively correlated data on three objectives, and it is least efficient when sorting the anti-correlated data on nine objectives. D&C, on the other hand, requires the fewest comparisons to sort anti-correlated data, and the most to sort positively correlated datasets.

In the context of NSGA-II, it is likely that when sorting the combined parent and child populations the objective scores will be anti-correlated. If a very large population and/or number of objectives is being used, D&C should be used. However, when sorting on five objectives or fewer, for datasets of up to 4000 tuples, LIS_{half} may be the better choice. Deb [1] suggested that for a problem with five objectives, a population size of about 250 is sufficient, and for three or four objectives, a population of about 100 is large enough. When running NSGA-II with parameters similar to these, LIS_{half} should be used for non-dominated sorting. In fact, LIS_{half} may outperform D&C in the context of NSGA-II for population sizes of up to 2000 (remember that if the population is N , the combined parents and children create a dataset of size $2N$), for optimizations on up to five objectives.

5 Conclusions

Non-dominated sorting is an important application of multi-objective optimization problems. Various non-dominated sorting algorithms (for sorting on three or more objectives) were discussed, and their performance was analyzed. An efficient skyline algorithm, SaLSa, was applied as a non-dominated sorting algorithm, however, it was outperformed by a more efficient divide-and-conquer approach.

A new non-dominated sorting algorithm, LIS, was presented, which uses multiple sorted lists to effectively limit the number of dominance tests required to sort a set of individuals into non-dominated fronts. LIS performs the best on datasets which are highly correlated, but outperforms D&C in some situations where the objective scores in a dataset are anti-correlated. When using NSGA-II to solve an optimization problem with up to five objectives, with populations of up to about 2000 individuals (realistic parameters for use with NSGA-II), a variation on LIS, LIS_{half}, should be used for non-dominated sorting.

In the future, a more precise assessment of the cases in which it is appropriate to use either LIS or D&C should be performed. In particular, if there are problems where it is desired to sort highly correlated datasets, LIS will be a very efficient choice of algorithm. D&C's performance worsens as the number of objectives increases, and also as the correlation between the objective scores increases. If the correlation between a large number of objectives in a dataset is high enough, there may be some cases where it would be more efficient to use LIS instead of D&C, no matter what the population size of the dataset is. An empirical (or perhaps analytical) study to determine if these cases exist could be useful.

References

- [1] Deb, K., (2001) *Multi-objective Optimization Using Evolutionary Algorithms*. New York: Wiley, 2001.
- [2] Deb, K., Pratab, A., Agarwal, S., and Meyarivan, T., (2002) "A fast and elitist multi-objective genetic algorithm: NSGA-II," *IEEE Trans. Evol. Comput.*, vol. 6, pp. 182-197, Apr. 2002.
- [3] Borzsonyi, S., Kossmann, D., Stocker, K., (2001) "The Skyline operator," *17th International Conference on Data Engineering*, pp.421-430, 2001.
- [4] Chomicki, J., Godfrey, P., Gryz, J., Liang, D., (2003) "Skyline with presorting," *19th International Conference on Data Engineering*, pp. 717-719, 5-8 March 2003.
- [5] Bartolini, I., Ciaccia, P., and Patella, M. (2006), "SaLSa: computing the skyline without scanning the whole sky," *15th ACM international Conference on information and Knowledge Management*, pp. 405-414, Arlington, Virginia, USA, November 06 - 11, 2006.
- [6] Bartolini, I., Ciaccia, P., and Patella, M., (2008) "Efficient sort-based skyline evaluation," *ACM Trans. Database Systems*, vol. 33, no. 4.
- [7] Mazurek, M., Wesolkowski, S., (2009) "Fleet Mix Computation Using Evolutionary Multiobjective Optimization," *IEEE Computational Intelligence Symposium on Multi-criteria Decision Making*, Nashville, TN, 2009.
- [8] Kung, H. T., Luccio, F., and Preparata, F. P., (1975) "On Finding the Maxima of a Set of Vectors," *J. ACM* 22, 4 (Oct. 1975), pp. 469-476.
- [9] Jensen, M.T., (2003) "Reducing the run-time complexity of multi-objective EAs: The NSGA-II and other algorithms," *IEEE Transactions on Evolutionary Computation*, vol.7, no.5, pp. 503-515, Oct. 2003.
- [10] Hoare, C.A., "Algorithm 64: Quicksort," *Commun. ACM* 4, 7 (Jul. 1961), 321.
- [11] Hoare, C.A., "Algorithm 65: find," *Commun. ACM* 4, 7 (Jul. 1961), 321-322.

This page intentionally left blank.

Annex A Sorting on 3, 7, and 9 Objectives

A.1 Anti-Correlated Data

Figures 7, 8 and 9 compare the performance of all the algorithms on 3, 7, and 9 objective anti-correlated data sorting problems.

Figure 7: Number of comparisons required for sorting anti-correlated data on 3 objectives

Figure 8: Number of comparisons required for sorting anti-correlated data on 7 objectives

Figure 9: Number of comparisons required for sorting anti-correlated data on 9 objectives

A.2 Independent Data

Figures 10, 11, and 12 compare the performance of all the algorithms on 3, 7, and 9 objective independent (non-correlated) data sorting problems.

Figure 10: Number of comparisons required for sorting independent data on 3 objectives

Figure 11: Number of comparisons required for sorting independent data on 7 objectives

Figure 12: Number of comparisons required for sorting independent data on 9 objectives

A.3 Positively Correlated Data

Figures 13, 14, and 15 compare the performance of all the algorithms on 3, 7, and 9 objective positively correlated data sorting problems.

Figure 13: Number of comparisons required for sorting positively correlated data on 3 objectives

Figure 14: Number of comparisons required for sorting positively correlated data on 7 objectives

Figure 15: Number of comparisons required for sorting positively correlated data on 9 objectives

This page intentionally left blank.

Annex B Mean Number of Comparisons Required for All Tests

B.1 Anti-correlated Data

Table 7: Mean, Anti-correlated, 3 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	15095.63	13801.43	12788.67	11068.56	30076.73	29920.8	42208.13
512	36957.53	38250.5	34061.11	28679.64	101459	100253.1	152104.4
1024	88148.31	109588.7	91002.78	73323.2	352888.5	345593.2	553951.9
2048	208521	320217	249499.3	194377.4	1267846	1227993	2078930
4096	484887.4	940734.1	687741.7	507618.7	4644427	4451664	7867875
8192	1117731	2989010	1941968	1374394	17427899	16604696	29981751

Table 8: Mean, Anti-correlated, 5 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	36703.48	34205.52	31783.39	27692.06	87492.01	87539.92	111278.5
512	105448.9	106854.8	95727.61	84142.28	297423.2	296789.7	401818.1
1024	294379.1	347697.3	294651.9	274611.7	1027767	1023097	1468526
2048	803675.2	1126017	916635.7	773757.7	3552324	3522361	5399405
4096	2149750	3612074	2898802	2089395	12466442	12294477	20066218
8192	5644448	11773364	9325866	7779537	44389173	43483844	75083085

Table 9: Mean, Anti-correlated, 7 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	43506.7	55049.11	53979.97	53710.03	197510.2	197732.4	210954.3
512	127672.7	184020	177950.2	174813.3	722809	723474.1	796895.2
1024	369915.5	621403.3	586021.1	559982.8	2545642	2546921	2952255
2048	1064995	2130295	1953207	1761743	8869564	8863940	10852466
4096	3044211	7394572	6550984	5355010	30880919	30819282	39807217
8192	8641864	26130603	22181337	15728741	1.08E+08	1.08E+08	1.46E+08

Table 10: Mean, Anti-correlated, 9 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	50298.72	67274.4	67032.62	67100.51	289900.8	289990.3	292788
512	147294.8	232150.9	231132.2	230823.3	1134459	1134873	1155907
1024	427239.3	831770	823977.4	822991.3	4386825	4388879	4533957
2048	1230478	3038389	2986364	2974163	16721367	16730002	17614512
4096	3523587	11180424	10844525	10727977	62370018	62393298	67527561
8192	10036780	41075264	39113044	38110644	2.28E+08	2.28E+08	2.55E+08

B.2 Independent Data

Table 11: Mean, Independent, 3 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	15062.29	11447.93	11138.29	9841.72	21305.22	21158.21	28195.41
512	36882.5	30069.48	28652.28	24372.02	68643.3	67907.82	98241.26
1024	88366.08	80720.05	74080.23	60542.21	223767.9	220440.2	346426
2048	209363.9	227932.5	194035	151479	763925	750704.6	1250399
4096	486764.5	644801.5	519129.2	386004.8	2690099	2635631	4601640
8192	1114861	1938667	1420164	1008026	9846186	9634397	17219746

Table 12: Mean, Independent, 5 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	41611.87	26080.56	25086.97	22691.09	56140.02	56096.59	75049.92
512	118014.8	75981.97	71098.03	59463.89	187430.2	187228.1	267601.1
1024	326754.4	223780.1	204620.8	175227.3	630047.9	628465.5	958921.1
2048	883343.5	681705.5	605165.4	460833.8	2164638	2155164	3512026
4096	2334598	2116231	1828034	1408854	7514123	7467580	12924191
8192	6068341	6932049	5729010	4178063	26705807	26482204	48241120

Table 13: Mean, Independent, 7 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	53774.13	42826.34	41319.49	35919.08	114739.6	114850.9	136758.7
512	161761.2	129680.9	123430.5	109606.8	398043.2	398248.6	491757
1024	479404.3	410801.1	381392.8	363311.2	1388044	1388015	1779739
2048	1400131	1330550	1197326	1056096	4872585	4871089	6554657
4096	4037304	4437047	3877255	3021943	17319662	17301804	24264761
8192	11467694	14923529	12758678	9674789	61837792	61735908	90099286

Table 14: Mean, Independent, 9 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	63260.47	59788.14	58677.38	57167.53	212089	212237.2	230590.9
512	190446.9	189935.8	183487.9	172563.9	745922.3	746290.4	833223.4
1024	571873	616198.1	583802.9	511652.7	2591675	2592556	2985730
2048	1698691	2044348	1907915	1502929	9127992	9129821	10843044
4096	5013593	6913896	6325377	5811171	32183892	32185571	39474446
8192	14722117	24167226	21529895	20594539	1.16E+08	1.16E+08	2.55E+08

B.3 Positively Correlated Data

Table 15: Mean, Positively correlated, 3 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	15076.54	8860.47	8890.5	8046.16	12976.78	12518.38	9957.04
512	36818.09	21933.18	21899	19349.15	38626.67	37364.93	33505.31
1024	88089.16	54426.27	53627.16	46090.17	117040.5	113398	116247.7
2048	208259	138984.2	133878.2	109983.4	365839.9	355568.5	417570.6
4096	483913.9	369042.9	334730.1	263602.5	1168823	1138613	1489270
8192	1114347	1008985	864284.1	645302.9	3867333	3772894	5490102

Table 16: Mean, Positively correlated, 5 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	49310.42	16546.07	16672.27	14734.66	23615.6	23381.6	23185.1
512	139002	42577.37	42518.13	36235.8	73323.15	72673.7	80876.15
1024	382071.9	111608.2	109980.7	89979.77	232112.9	230415	290877.7
2048	1026001	300777.5	290355.2	224131.7	746785.3	741850	1036275
4096	2694175	853867.5	799490.1	581787.6	2474883	2460167	3768908
8192	6956555	2486809	2250321	1549156	8294801	8245443	13726610

Table 17: Mean, Positively correlated, 7 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	80537.95	24560.06	24713.17	21711.89	37057.17	36891.9	37900.39
512	252655.7	64477.5	64450.56	54847.11	120890.6	120480	134656.9
1024	751849.9	173280	172433.8	138993.6	401834.9	400897.5	488915.7
2048	2185598	485599.9	472942.3	360380.2	1344614	1342085	1752506
4096	6250608	1410698	1342255	968615.4	4582514	4575344	6382065
8192	17557001	4282987	3963309	2708908	15911738	15886905	23612766

Table 18: Mean, Positively correlated, 9 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	89030.43	32893.51	33147.36	29120.88	53036.23	52915.72	54764.23
512	318297.9	87088.19	87373.77	74532.94	176695.1	176445.8	194158.1
1024	1101836	236921.7	236689.5	191737.7	601462.5	600990.4	700400.8
2048	3529162	676692.6	665096.3	506273.8	2094247	2093259	2579344
4096	10707085	2007351	1927649	1397165	7316897	7314303	9474684
8192	31805284	6187938	5813843	3968006	25852528	25844011	34831803

Annex C Standard Deviation of Number of Comparisons Required for All Tests

C.1 Anti-correlated Data

Table 19: Standard deviation, anti-correlated, 3 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	339.918	634.2964	460.7974	473.7056	2019.53	1998.357	2950.351
512	731.9588	1673.007	1094.186	1344.075	6187.235	6152.341	9075.243
1024	1376.468	4186.661	2142.741	2655.821	18592.51	18401.48	32013.25
2048	2377.313	9762.178	5380.751	6834.808	57206.08	58466.32	99907.63
4096	6339.695	30829.48	12746.41	15718.61	225218.3	215122.3	289733.7
8192	11719.02	96422.73	37307.06	39397.55	764041.4	717585.9	839528.7

Table 20: Standard deviation, anti-correlated, 5 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	862.4452	1420.085	1278.895	1756.498	5964.796	6097.542	6286.959
512	1766.507	4732.886	3411.784	8366.699	16774.57	17051.36	19353.13
1024	3114.359	14934.17	8674.254	11619.57	46020.23	45724.92	62434.97
2048	5505.28	47834.88	25625.49	37935.53	147191.4	144939.1	205317.9
4096	10118.67	130161.5	70431.4	122389.6	384421	377112.5	654959.1
8192	18707.02	337354.2	197711.5	264189.6	959546.5	920342.7	2220051

Table 21: Standard deviation, anti-correlated, 7 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	1326.76	1918.521	1919.832	2009.744	8831.702	8828.204	5718.296
512	2587.686	5915.159	6054.771	6838.108	29848.57	29866.62	21661.66
1024	5463.152	17136.15	16151.12	20209.68	82768.23	83248.4	67342.09
2048	11131.27	57595.83	51337.63	70346.22	287454	288662.2	250970.6
4096	22346.07	157346.8	129604.5	200076.6	752444.9	753739.2	778867.5
8192	49271.76	508350.3	381014.5	959983.7	2325600	2308190	2733797

Table 22: Standard deviation, anti-correlated, 9 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	1399.673	1442.976	1624.45	1609.745	3968.5	3899.229	2267.548
512	2922.099	4462.149	4487.79	4544.556	17762.95	17698.56	11785.55
1024	5667.048	14982.52	14949.7	15380.85	71500.69	71299.26	48351.31
2048	12880.15	50149.91	50875.62	53501.85	289357.7	289699.2	204317
4096	29751.8	158395.9	164275.6	178521.1	961632.7	964516.1	783622.5
8192	50016.27	553874.4	554636.1	649000.8	3489156	3510561	2909973

C.2 Independent Data

Table 23: Standard deviation, independent, 3 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	351.6455	545.5887	483.3572	450.0527	1475.854	1416.551	2527.808
512	631.5915	1185.484	1011.88	1202.55	3913.26	3733.01	6739.389
1024	1286.89	3279.843	2611.68	2630.654	12144.19	11194.72	20368.49
2048	2716.553	7624.354	5492.376	5454.612	36908.81	34159.06	58803.05
4096	6242.771	19899.36	14950.39	12961.23	114071.4	104137.9	190307.5
8192	10454.16	64259.07	36051.16	29900.99	364037.7	348818.2	579061.8

Table 24: Standard deviation, independent, 5 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	880.076	1279.47	1143.497	1658.053	3815.954	3835.58	5211.271
512	1720.915	3673.452	2727.516	3920.11	11632.55	11532.68	16458.98
1024	3082.392	12107.61	8989.995	11837.61	37001.03	36397.57	48935.62
2048	6417.672	28517.37	19971.81	30213.15	95300.32	93185.9	142909.6
4096	10344.1	97770.99	71662.06	112443.7	328824.3	316013.1	449278.9
8192	20605.88	292394	218207.6	331087.2	970264.9	916733.5	1462187

Table 25: Standard deviation, independent, 7 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	1285.741	2281.039	1904.676	2702.267	9072.434	9096.585	10954.55
512	2866.427	6547.897	5605.231	10765.51	25885.53	25952.69	32592.94
1024	6768.354	16331.53	12572.95	16875.56	65689.23	65772.9	87122.11
2048	13857.12	48604.89	35357.79	61362.06	197405.2	197011.6	269404.6
4096	26426.57	169596.5	121978.5	186513.4	606281	604013.4	759070.2
8192	54856.7	610665.1	433083.8	1425477	2116481	2098318	2606316

Table 26: Standard deviation, independent, 9 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	1734.064	2321.772	2386.648	3091.693	16522.13	16611.66	14475.29
512	3788.913	7054.398	7170.973	10073.17	49665.47	49822.72	43845.52
1024	9217.546	22151.86	19967.52	30824.75	127520.2	128119.8	127358.6
2048	18532.49	78011.62	67311.81	111260.2	461198.6	462274.2	419227.5
4096	46682.08	259495.2	215045.9	688679.6	1301883	1301902	1279604
8192	94197.35	708930.6	560283.6	758886	3548287	3551203	4247243

C.3 Positively Correlated Data

Table 27: Standard deviation, positively correlated, 3 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	358.4789	308.5008	296.0121	274.4543	545.0924	523.1614	767.4425
512	667.6598	736.1475	741.4397	695.3863	1410.255	1396.135	2150.031
1024	1283.916	1321.363	1394.34	1356.49	3520.087	3438.049	5393.545
2048	2969.135	4008.121	3447.346	2999.592	9422.429	9324.87	17938.43
4096	6072.295	8563.753	7005.678	6508.38	29218.44	29534.44	56666.15
8192	11041.15	19395.56	16909.23	15040.87	88563.01	90106.14	177265.4

Table 28: Standard deviation, positively correlated, 5 objectives

Population	D&C	LIS _{bin}	LIS	LIS _{half}	SaLSa ₁	SaLSa ₂	SaLSa ₃
256	733.2873	545.238	524.6377	582.4195	1180.031	1193.817	1777.813
512	1818.418	1306.325	1311.796	1288.23	2694.686	2731.873	4982.74
1024	3393.584	3226.251	3094.674	3236.142	8039.497	8183.072	12411.1
2048	6577.033	7891.273	7026.954	7468.203	24011.65	24127.24	40493.85
4096	12816.32	20836.24	18046.68	19524.4	59588.95	59715.8	119559.7
8192	24819.33	62405.61	50463.04	48699.42	196891.7	196180.6	335805.3

Table 29: Standard deviation, positively correlated, 7 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	2327.974	754.6573	684.0627	847.7003	1751.337	1776.13	2343.949
512	3246.837	1731.975	1960.995	2256.497	4991.095	5036.946	7401.988
1024	5517.548	5081.598	4248.892	5579.636	16750.58	16853.53	23676.27
2048	11322.89	12617.86	10972.94	15832.19	46757.67	46843.64	65286.94
4096	23281.92	36904.87	31131.73	39594.23	139485.1	140015.9	234946.2
8192	48215.66	99200.68	85348.84	113057.3	361027.9	360819.4	588417

Table 30: Standard deviation, positively correlated, 9 objectives

Population	D&C	LIS_{bin}	LIS	LIS_{half}	SaLSa₁	SaLSa₂	SaLSa₃
256	2980.667	1021.234	982.6211	1231.465	2973.516	2996.687	3568.975
512	7877.694	2472.928	2634.772	3289.258	8394.96	8429.754	11837.33
1024	16193.1	6148.458	6449.706	8920.278	23918.75	23997.73	32226.9
2048	25489.52	19039.52	18551.06	24392.92	81610.14	81929.13	99056.08
4096	42939.96	50373.75	44228.21	70755.93	228812.1	229654.5	294115
8192	92821.2	159994	140672.9	218831.3	734706.4	735651.7	936938.5

List of Abbreviations/Acronyms

BNL	Block-Nested Loops (skyline algorithm)
D&C	Divide and Conquer (non-dominated sorting algorithm)
DND	Department of National Defence
DRDC	Defence Research & Development Canada
DRDKIM	Director Research and Development Knowledge and Information Management
LIS	Limiting Index Sort
MOO	Multi-objective Optimization
ndhA	ndhelper_A (helper function for D&C)
ndhB	ndhelper_B (helper function for D&C)
NDF	Non-dominated front
NDS	Non-dominated set
NSGA-II	Non-dominated Sorting Genetic Algorithm II
R&D	Research & Development
SaLSa	Sort-and-Limit Skyline algorithm (skyline algorithm)
SD&C	Skyline Divide & Conquer (skyline algorithm)
SFS	Sort-Filter Skyline (skyline algorithm)

Distribution list

Document No.: DRDC CORA TM 2010-097

Print email LIST PART 1: Internal Distribution by Centre

1	Air SH	
1	DASOR	
1	CFAWC OR	
1	ORAD (1 CAD OR Team)	
1	DRDC CORA Library (CD)	
2	Authors	
3	6	<hr/>

LIST PART 2: External Distribution by DRDKIM

1	DRDKIM	
0	1	<hr/>

3 7 TOTAL COPIES REQUIRED

DOCUMENT CONTROL DATA

(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (The name and address of the organization preparing the document. Organizations for whom the document was prepared, e.g. Centre sponsoring a contractor's report, or tasking agency, are entered in section 8.) Canadian Forces Aerospace Warfare Centre (CFAWC) OR Team Centre for Operational Research and Analysis Defence R&D Canada 3701 Carling Avenue Ottawa, ON K1A 0K2 Canada		2. SECURITY CLASSIFICATION (Overall security classification of the document including special warning terms if applicable.) UNCLASSIFIED
3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U) in parentheses after the title.) Limiting Index Sort: A New Non-Dominated Sorting Algorithm and its Comparison to the State-of-the-Art		
4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used) Mazurek, M.; Wesolkowski, S.B.		
5. DATE OF PUBLICATION (Month and year of publication of document.) May 2010	6a. NO. OF PAGES (Total containing information, including Annexes, Appendices, etc.) 55	6b. NO. OF REFS (Total cited in document.) 11
7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.) Technical Memorandum		
8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.) Canadian Forces Aerospace Warfare Centre (CFAWC) Trenton CFB P.O. Box 1000 Station Forces Astra, ON K0K 3W0		
9a. PROJECT OR GRANT NO. (If appropriate, the applicable research and development project or grant number under which the document was written. Please specify whether project or grant.) DRDC CORA TM 2010-097	9b. CONTRACT NO. (If appropriate, the applicable number under which the document was written.)	
10a. ORIGINATOR'S DOCUMENT NUMBER (The official document number by which the document is identified by the originating activity. This number must be unique to this document.) DRDC CORA TM 2010-097	10b. OTHER DOCUMENT NO(s). (Any other numbers which may be assigned this document either by the originator or by the sponsor.)	
11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.) Unlimited		
12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement audience may be selected.) Unlimited		

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual.)

An important problem in the realm of evolutionary multi-objective optimization (MOO) is that of finding all non-dominated fronts (NDFs). We specifically address the computational efficiency of the non-dominated sorting algorithm for finding the non-dominated fronts for the NSGA-II algorithm. We introduce the Limiting Index Sort (LIS) algorithm which improves on the existing state-of-the-art algorithm for datasets which are positively correlated or uncorrelated. LIS indexes individuals based on their scores in each objective, and intelligently iterates through the index to limit the number of comparisons required between individuals. LIS also makes use of a stopping condition, allowing it to exclude some individuals from the skyline without comparing them to any other individuals. LIS was compared to two other state-of-the-art non-dominated sorting algorithms, the Sort and Limit Skyline Algorithm (SaLSa), and the Divide-and-Conquer (D&C) approach. LIS outperformed SaLSa in all tests, and it outperformed D&C when sorting individuals with positively correlated or uncorrelated objective scores, except for sorting large, uncorrelated, datasets on many objectives. LIS outperformed D&C for sorting small, negatively correlated datasets on three or five objectives. By understanding the appropriate non-dominated sorting algorithm to use in different situations, NSGA-II can be utilized more efficiently for MOO. This will allow optimizations to be run with larger population sizes, more objectives, or for more generations, which should ultimately increase the quality of solutions returned by the algorithm.

Un problème important dans le domaine d'optimisation multi-objective (MOO) évolutive est de trouver tous les fronts non-dominés (NDFs). Nous abordons spécifiquement l'efficacité de l'algorithme de tri non-dominé pour trouver les fronts non-dominés pour l'algorithme NSGA-II. Nous introduisons l'algorithme Limiting Index Sort (LIS) et démontrons sa supériorité pour le tri des données positivement corrélés ou décorrélés. LIS indexe les solutions individuelles sur la base de leurs scores pour chaque objectif, et itère intelligemment à travers les indices pour limiter le nombre de comparaisons nécessaires entre les solutions individuelles. LIS également fait usage d'une condition d'arrêt, ce qui permet d'exclure certaines solutions de la ligne d'horizon, sans les comparer à d'autres solutions. LIS a été comparée à deux autres algorithmes de tri non-dominée de pointe, le Sort and Limit Skyline Algorithm (SaLSa) et l'algorithme Divide-and-Conquer (D&C). LIS a surclassé SaLSa dans tous les tests, et il surpassé D&C dans le tri des individus pour des objectifs à corrélation positive ou étant décorrélé, sauf pour le tri d'un grand nombre d'individus avec un grand nombre d'objectifs décorrélées. LIS a surclassé D&C pour le tri d'un petit nombre d'individus sur trois ou cinq objectifs anti-correlées. En comprenant les circonstances pendant lesquelles chacun des algorithmes pour le tri de vecteurs non-dominé est meilleur, NSGA-II peut être utilisé plus efficacement pour MOO. Cela permettra de faire des optimisations sur de plus grandes populations, sur plus objectifs, ou pour plus de générations, qui devrait, augmenter la qualité des solutions retournées par l'algorithme.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Non-dominated Sorting; LIS; Limiting; Index; Sort; Multi-objective Optimization; NSGA-II

Defence R&D Canada

Canada's Leader in Defence
and National Security
Science and Technology

R & D pour la défense Canada

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

