Measure Theory for Probabilists 2. Semi-rings, rings and σ -fields

Peter Pfaffelhuber

January 1, 2024

Definition of some set-systems

 $ightharpoonup \mathcal{C} \subseteq 2^{\Omega}$

$$\mathcal{C} \ \sigma$$
-field \implies $\mathcal{C} \ \text{ring} \implies$ $\mathcal{C} \ \text{semi-ring}.$

- ▶ Definition 1.1: Ω set, $\emptyset \neq \mathcal{H}, \mathcal{R}, \mathcal{F} \subseteq 2^{\Omega}$.
 - ▶ $\mathcal{H} \cap \text{-stable}$, if $(A, B \in \mathcal{H} \Rightarrow A \cap B \in \mathcal{H})$.
 - $\vdash \mathcal{H} \ \sigma \cap \text{-stable, if } (A_1, A_2, ... \in \mathcal{H} \Rightarrow \bigcap_{i=n}^{\infty} A_i \in \mathcal{H}).$
 - ▶ \mathcal{H} ∪-stable, if $(A, B \in \mathcal{H} \Rightarrow A \cup B \in \mathcal{H})$.
 - ▶ \mathcal{H} σ \cup -stable, if $(A_1, A_2, ... \in \mathcal{H} \Rightarrow \bigcup_{i=n}^{\infty} A_i \in \mathcal{H})$.
 - ▶ \mathcal{H} complement-stable, if $A \in \mathcal{H} \Rightarrow A^c \in \mathcal{H}$.
 - ▶ \mathcal{H} set-difference-stable, if $(A, B \in \mathcal{H} \Rightarrow B \setminus A \in \mathcal{H})$.

Definition of some set-systems

- ▶ We write $A \uplus B$ for $A \cup B$ if $A \cap B = \emptyset$.
- ▶ Definition 1.1: Ω set, $\emptyset \neq \mathcal{H}, \mathcal{R}, \mathcal{F} \subseteq 2^{\Omega}$.
 - ▶ \mathcal{H} is a *semi-ring*, if it is (i) \cap -stable and (ii) $\forall A, B \in \mathcal{H} \exists C_1, \dots, C_n \in \mathcal{H}$ with $B \setminus A = \biguplus_{i=1}^n C_i$.
 - $ightharpoonup \mathcal{R}$ is a *ring*, if it is \cup -stable and set-difference-stable.
 - ▶ \mathcal{F} is a σ -field, if $\Omega \in \mathcal{F}$, it is complement-stable and σ - \cup -stable. Then, (Ω, \mathcal{F}) is called *measurable space*.

Connections between set-systems

	${\cal C}$ semi-ring	$\mathcal C$ ring	${\cal C}$ σ -field
${\mathcal C}$ is \cap -stable	•	0	0
$\mathcal C$ is $\sigma ext{-}\cap ext{-stable}$			0
${\mathcal C}$ is \cup -stable		•	0
${\cal C}$ is $\sigma ext{-}U ext{-}$ stable			•
${\cal C}$ is set-difference-stable		•	0
${\cal C}$ is complement-stable			•
$B \setminus A = \biguplus_{i=1}^n C_i$	•	0	0
$\Omega \in \mathcal{C}$			•

Examples

▶ Semi-ring: Let $\Omega = \mathbb{R}$. Then,

$$\mathcal{H} := \{(a, b] : a, b \in \mathbb{Q}, a \leq b\}$$
 is a semi-ring.

▶ σ-algebras: Trivial examples are $\{\emptyset, \Omega\}$ and 2^{Ω} . If \mathcal{F}' is a σ-field on Ω' , and $f: \Omega \to \Omega'$. Then,

$$\sigma(f) := \{f^{-1}(A') : A' \in \mathcal{F}'\}$$
 is a σ -field on Ω .

Indeed: If
$$A', A'_1, A'_2, \ldots \in \sigma(f)$$
, then $(f^{-1}(A'))^c = f^{-1}((A')^c) \in \sigma(f)$ and $\bigcup_{n=1}^{\infty} f^{-1}(A'_n) = f^{-1}(\bigcup_{n=1}^{\infty} A'_n) \in \sigma(f)$.