▼Exam06_09_04(二分探索)

キーボードから探索するデータを入力させ、フローチャートをもとに二分探索を行うプログラムを作成してください。

配列 h

	[1]								
12	13	17	19	21	25	33	34	36	

実行例 1

探索する値を入力してください > 9 あり

実行例 2

探索する値を入力してください > 0 なし

▼Exam06 09 05 (バブルソート)

配列 a を昇順に並び替えて出力するプログラムを、バブルソートのアルゴリズムを使って作成してください。 ※一般的に変数名に大文字は使用しないので、説明中の A や N はそれぞれ a、n として使用してください。

[バブルソートの説明]

1次元配列 $A[0] \sim A[N-1]$ に N 個のデータが格納されている。このデータを、バブルソート法により昇順に整列する。バブルソート法とは、データを整列するためのアルゴリズムであり、次の手順 1 、手順 2 により整列する。

手順 1:配列の先頭から、隣接する要素を順次比較し、最大値を A[N-1]に求める。 図 1 に N=5 とした例を示す

図1 N=5とした手順1の例

手順2:Nを1ずつ減らしながら、手順1をN=1となるまで繰り返す。

実行結果

ソート前> 52714 ソート後> 12457

▼Exam06_09_06(基本交換法)

配列 a を昇順に並び替えて出力するプログラムを、基本交換法のアルゴリズムを使って作成してください。 尚、フローチャートの空欄はア〜エから選択し、プログラムを書くこと。

[プログラムの説明]

1次元配列Aに格納された数値($A[0] \sim A[n-1]$)を、降順に整列するプログラム selectionSort である。

なお、プログラム selectionSort では、A[0]、A[1]、 ・・・ と要素を順番に決定していく基本選択法で整列を行っている。

【プログラム実行前】

	[0]	[1]	[2]	[3]	[4]	[5]	[6]			
配列A	56	9	62	37	25	68	43	n [7	

【プログラム実行後】

						[5]				
配列A	68	62	56	43	37	25	9	n [7	

[プログラム]

- OselectionSort(整数型: A[],整数型: n)
- ○整数型: i, j, work

/* A[i]を決定する */

·work ← A[i] /* A[i]とA[j]を交換する */

aに関する解答群

$$\mathcal{F}$$
 j: 0, j < i, 1 \mathcal{F} j: 0, j < n - i, 1 \mathcal{F} j: i + 1, j < n, 1 \mathcal{F} j: i + 1, j < n - 1, 1

bに関する解答群

$$\mathcal{T} A[i] > A[j]$$
 $\mathcal{T} A[i] < A[j]$ $\mathcal{T} A[j] < A[j+1]$ $\mathcal{T} A[j] < A[j+1]$

実行結果

ソート前> 52714 ソート後> 12457

▼Exam06_09_07

配列 a に格納されている数値を 3 ケタの整数値として返却するプログラムを作成してください。

尚、フローチャートの空欄はア〜エから選択し、プログラムを書くこと。

[プログラムの説明]

文字型の1次元配列A (A[0] \sim A[2]) に格納されている3つの数字 ('0' \sim '9'の文字) を、3けたの数値に変換して返却するプログラム numChange である。

なお、配列Aには数字以外は格納されていない。また、数字('0'~'9')を数値 (0~9) に変換するため、各要素に数字を格納した配列Cを利用する。

	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	
配列C	' 0'	' 1'	' 2'	' 3'	' 4'	' 5'	' 6'	' 7'	' 8'	' 9'	

[プログラム]

- ○整数型: numChange(文字型: A[])
- ○文字型: C[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'}
- ○整数型: i, j, num

/* 1文字を数値に変換する */

numを返却する

/* 変換した数値を返却する */

aに関する解答群

$$P A[i] > C[j]$$
 $A[i] < C[j]$ $A[j] > C[i]$ $A[j] < C[i]$

bに関する解答群

実行結果

ソート前> 52714 ソート後> 12457