

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2009 DIGITAL ELECTRONIC CIRCUITS

Time : 2 Hours 1		 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			I Evell Morley . 70
Time: 3 Hours]			V		[Full Marks: 70

		(mutiple (Choice Type (ruescions)	
Cho	ose th	ne correct alternatives fo	r any ten of th	e following :	$10\times1=10$
i)	Gra	y code of 1011 (binary) =		
	a)	0101	b)	1101	
	c)	1110	d)	none of these.	
ii)	An	example of reflected cod	e 1s		
	a)	BCD	b)	ASCII	
	c)	GRAY	d)	Hamming code.	
iii)	If (212) _x = (23) ₁₀ where	x is base (+ u	e integer) then the va	lue of x is
*	a)	2	b)	3	
	c)	4	d)	5.	
iv)	Exc	ess-3 code 3d represent	tation of (19)	10 ts	
	a)	10011	b)	00011001	
	c)	01001100	d)	11000100.	
v)	The	e decimal equivalent of t	he binary num	ber (101111.1101) ₂	is
	a)	(46·8125) ₁₀	b)	(47-8125)	
	c)	(47·8155) ₁₀	d)	(47·8145) ₁₀ .	

'n	
	4

- †	The	output frequency will be		
	a)	10 kHz	b)	2·5 kHz
. 4 F	c)	5 kHz	d)	25 kHz.
11)	A 4-	stage ripple counter counts up	to.	
	a)	12	b)	15
20 30 S	c)		d)	4.
111) _	Whi	ch family has the better noise	margin	?
5	a)	ECL	b)	MOS
	c)	DTL *	d)	TTL.
x)	A 4	-variable logic expression can l	oe realiz	zed by using only one
	a)	4-input NOR gate	b)	4: 1 demultiplexer
	c)	16: 1 multiplexer	d)	none of these.
)	D fl	ip-flop can be used as a		
	a)	divider circuit	b)	delay switch
	c)	differentiator	d)	none of these.
d)	Mas	ster-slave configuration is used	l in flip-	-flops to
	a)	increase its clocking rate		
	b)	reduce power dissipation		
•	c)	eliminate race around condit	ion	
	d)	improve its reliability.		

CS	/B.TECH	PCRN !	/SEM_4	/EC-402/09
			/ June -	16C-104/UB

5

		1
j		ł
٠	Hoob	1
Ĭ.	Olingen	1
٦	\ ~ /	1
ı		1

	a)	50 kHz	b }	500 kHz
	c)	5 kHz	d)	25 kHz.
xiii)	The	e number of D flip-flops required	l to des	sign a mod-10 Ring counter is
	a)	5	b)	10
	c)	9	d)	8.
xiv)	The	power consumption of the dyna	amic R	AM is
	a)	equal to that of static RAM	b)	more than that of static RAM
	c)	less than that of static RAM	d)	almost zero.
xv)	The	hexadecimal equivalent numbe	r of (7	/324·456) ₈ is
	a)	ED 4.87	b)	ED 4.47
	c)	ED 4.57	d)	ED 4.97.
		GROU	P – B	
		(Short Answer T	Abe 8	uestions)
		Answer any three of th	e follow	wing questions. $3 \times 5 = 1$

- 2. Design a logic diagram, using logic gates, for addition / subtraction circuit, using a control variable P such that this operates as full adder when P = 0, and full subtractor for P = 1.
- 3. Design a J-K F/F using a D F/F, a 2: 1 MUX and one inverter.
- 4. Design a 2-input NAND gate using MOS inverter.
- 5. Implement the following function using 4:1 MUX only:

 $F = \sum m$ (0, 2, 3, 6, 8, 9, 12, 14)

6. Implement the full-adder circuit using a 3 to 8 decoder with all active low output and additional logic gates, if required.

6

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) Draw and explain the circuit of BCD adder using commercially available adder IC 748-3 and other necessary logic gates.
 - b) Simplify the following using Quine McClusky method:

$$F(W, X, Y, Z) = \sum (0, 1, 2, 5, 8, 14) + \sum d(4, 10, 13).$$
 8

- 8. a) What is CLA adder? Define the terms 'carry propagate' and 'carry generate'. The propagation delay of EX-OR gate is 20ns and that of OR and AND gate is 10ns.

 Find the propagation delay of a CLA adder.

 2 + 3 + 2
 - b) "Excess-3 code is self-complementing." Explain the statement and write its application.
 - c) Implement the following function using a $3 \times 4 \times 2$ PLA:

$$F_1(A, B, C) = \sum (3, 5, 6, 7)$$

$$F_2(A, B, C) = \sum (0, 2, 4, 7).$$

- 9. a) With the help of necessary circuit diagram, explain the operation of dual slopeADC.
 - b) A 4-bit binary ladder D/A converter with $R = 10 \text{ k}\Omega$ uses a reference of 5 V. Find the following :
 - i) Ideal scale factor in V/step
 - ii) Analog output corresponding to the binary input 0110
 - iii) Resolution in %
 - iv) Full scale output
 - v) Maximum deviation in volts from the best straight line in order to meet standard linearity.

4463 (08/06)

4

CS/B.TECH (ECE-N)/SEM-4/EC-402/09

7

10. a) Design a sequential circuit that implement the following state diagram. Use all D-type F/F for the design.

- b) Draw and explain the 4 bit bi-directional Shift Register using mode control (M),
 when M is logic zero then left shift an right shift for M is logic one.
- 11. Write short notes on any three of the following:

 3×5

- a) D.C. noise margin and A.C. noise margin
- b) Hold time and set-up time related to FF
- c) Parity generator and checker
- d) Tri-state gates in TTL family
- e) EPROM.

END