Topology vector spaces

xuascaler

May 13, 2025

1. Topology spaces

We have seen many important example of Banach spaces, or more generally examples of vector spaces with a metric structure. However, there are also examples of important spaces whose natural structure does not follow from a complete metric.

Example. $X=C_0^0(\mathbb{R})=\{\text{compactly supported continuous function on }\mathbb{R}\}$ If we let

$$X_n = C_0^0([-n, n]) = \{ f \in C_0^0(\mathbb{R}) : supp(f) \subset [-n, n] \},$$

 $supp(f) = \overline{\{ x \mid f(x) \neq 0 \}}$

- $X = \bigcap_{n=1}^{\infty} X_n$
- $X_n \subset C^0([-n,n])$ is closed.(Banach space)
- X_n is nowhere dense in $C^0(-n,n)$ (and in $C^0([-m,m])$ for $m \ge n$).

Of course any reasonable structure in $C_0^0(\mathbb{R})$ should give the subsapce $C_0^0([-n,n])$ natural Banach space structure.