

COMMITMENT

WE ARE COMMITED TO OUR CORE VALUES AND CORPORATE MISSION:

- ✓ MAXIMIZE CLIENT VALUE BY
 ADOPTING THE LATEST
 TECHNOLOGIES AND INNOVATIONS.
- ✓ IMPROVE PROJECT EFFCIENCY BY STREAMLINING WORKFLOW AND PROVIDE HIGH QUALITY SERVICES.
- SAVE TIME BY USING A LARGE GLOBAL TEAM TO LEVERAGE TIME ZONE ADVANTAGE.
- ✓ REDUCE CLIENT COST BY HARNESSING A HIGHLY EXPERIENCED GLOBAL WORK FORCE.

INDEX

•	INTRODUCTION	02
•	BIM AND DESIGN SERVICES:	
*	ARCHITECTURE	03
*	STRUCTURE	04
*	INTERIOR DECORATION & 3D BIM MODELING	04
*	MECHANICAL, ELECTRICAL & PLUMBING	05
*	BIM COORDINATION & CLASH DETECTION	06
*	MECHANICAL&ELECTRICAL ROOM COORDINATED MODEL	07
*	POINT CLOUD	80
*	3D BIM RENDERING	09
*	DESIGN VALIDATION & VALUE ENGINEERING	10
*	BAR BENDING SCHEDULE (BBS)	17
*	QUANTITY TAKE-OFF	18
*	2D INSTALATION DRAWING	19
*	AS BUIT DRAWING	19
*	CAD SERVICES	20
•	QC PROCESS	22
•	WORK FLOW	23
•	WHY PASMEC	24
•	CONTACT US	25

PASMEC is an emerging BIM consultant company dedicated and sincere providing higher quality services to each of its clients with advance, innovative and customized solutions in the project. Our main focus is to assist our valuable clients right from pre-concept until the handover of the facility.

Our BIM Engineers are highly qualified with extensive experience in the construction industry. Each member of our team has his proven track record successful completion of various building projects(High Rise buildings, ResidentialTown, Educational institutions, Commercial buildings, Offices, Hospitals, and Healthcare, Sports Area, etc) of international repute in association with international consultant and contractors.

"SATISFIED CLIENT IS OUR ULTIMATE GOAL"

2 | Page

LILIBRADALA

BIM & DESIGN SERVICES:

***** ARCHITECTURE:-

Our BIM Services & 3D BIM Model allow Architectural, Structure, and Interior decoration to review design elements concerning the building systems and other services in the project.

Our BIM Services & 3D BIM Model make better design decision earlier in the process with insight into what your design represent through visualization, coordination, collaboration, and analysis tools.

By using our BIM Services & 3D BIM Model, you can plan and visualization the entire project during pre-construction, before the shovel hits the ground. Space use simulations and 3D BIM Model allow clients to experience what space will look like offering the ability to make a change before the construction start. Having a great overview from the beginning minimizes project costs and time-consuming.

STRUCTURE:-

Our BIM Services & 3D BIM Model allow Structural designer to review design elements concerning to the building systems and other services in the project.

Our BIM Services & 3D BIM Model make better design decision earlier in the process with insight into what your design represent through visualization, coordination, collaboration, and analysis tools.

By using our BIM Services & 3D BIM Model, you can plan and visualization the entire project during pre-construction, before the shovel hits the ground. Space use simulations and 3D BIM Model allow clients to experience what space will look like offering the ability to make a change before the construction start. Having a great overview from the beginning minimizes project costs and time-consuming.

INTERIOR DECORATION & 3D BIM MODELING:-

Our Interior design & 3D BIM Model allow contractors to review design elements concerning the building systems and other services in the project.

Our Interior design & 3D BIM Model make better design decision earlier in the process with insight into what your design represent through visualization, coordination, collaboration, and analysis tools.

By using Our Interior design & 3D BIM Model, you can plan and visualization the entire project during pre-construction, before the shovel hits the ground. Space use simulations and 3D BIM Model allow clients to experience what space will look like offering the ability to make a change

4 Page

before the construction start. Having a great overview from the beginning minimizes project costs and time-consuming.

• MECHANICAL, ELECTRICAL & PLUMBING:-

MEP means Mechanical, Electrical & Plumbing. While BIM which means building information modeling. MEP is one kind of part where the whole thing to be coordinated with each discipline and also coordinate architecture and structure too into the design. While BIM is representing a physical characteristic of a facility to give the design firm and construction industry.

Proper planning and coordination are the keys to the successful execution of the project in the construction industry. Building information modeling (BIM) allows us to create and examine the virtual representation of the Mechanical, Electrical, and Plumbing systems and other utilities. The simulated 3D construction can be used to show design intent to clients with greater visualization, make coordinated drawings for eliminating rework & save time, and also reduce the project cost.

• BIM COORDINATION& CLASH DETECTION:-

We are specialized in performing detection among various trade and services, coordination with other trade using input like project drawing layout, specification sheet.

This virtual coordination before initiation of installation at the site helps the client to rectify the errors & difficulties, help resource-saving and time, and proper mobilizing of the people working at the site.

• MECHANICAL & ELECTRICAL ROOM COORDINATED MODEL:-

We are specialized in performing detection among various trade and services, coordination with other trade using input like project drawing layout, specification sheet.

This virtual coordination before initiation of installation at the site helps the client to rectify the errors & difficulties, help resource-saving and time, and proper mobilizing of the people working at the site.

• POINT CLOUD:-

Our point cloud to BIM services creates accurate for as-built purposes as well as for refurbishment and renovation projects. Point cloud modeling is widely recognized to be more precise than the traditional survey that uses measuring tools.

The 3D laser scanning technology first captures the as-built environment, then we import the survey data and process it by using software Autodesk Revit.

Our BIM expert can accurately transform point cloud data into a virtual model which is helpful to 3D laser scanning companies a design-build contractor involved in the renovation of building structure with other MEP services.

8 Page

Our services are cost-effective to give better build cost estimates to reduce errors.

• 3D BIM RENDERING:-

PASMEC provides 3D BIM Rendering services to Architecture firms, Interior designers, Builders, and Real estate. We specialized create highly detailed, realistic 3D architecture rendering on projects around the world ranging from various industries by collaborating with architects, designers, developers, and builders.

We provide 3D rendering with the exact design, material, and lighting specification of your scheme, including people, vegetation, fixtures, fitting, furniture, etc. We have expertise in 3D MAX, VRay, Revit, and other rendering software.

- 1. 3D Exterior rendering & Interior rendering.
- 2. Photorealistic 3D Architectural rendering.
- 3.3D Architectural animation.
- 4. Architectural flyby and walkthrough.
- 5.Landscape designing.

9 Page

• DESIGN VALIDATION & VALUE ENGINEERING:-

• VALUE ENGINEERING:

Value engineering can be defined as an organized effort directed an analyzing designed building features, system, equipment, and material selection to achieve essential at the life cycle cost consistent with required performance, quality, reliability, and safety.

Our creative in-house brainstorming helps to re-design MEP layout and save time for contractor or design consultant. We make proper spacing and posting of hanger for maximum load-bearing and coast optimization.

• BENEFITS OF VALUE ENGINEERING:

- Improves system effective & constructability.
- Reduce the material &labour coast.
- Lower installation time.
- Solve constructability issues.

• DESIGN VALIDATION:-

We help clients from the design concept stage itself by providing various design calculations namely heat-load calculation, pressure drop calculation, pump head calculation, electrical lighting & power load calculation, etc. And parallel creating a virtual design 3D Model for consultant & designer review by maintaining all international & local standards.

• LOAD CALCULATION:-

Accurate load calculation has a direct impact on energy efficiency, Occupantcomfort, Indoor air quality, and building durability. The load calculation is the first step of the iterative HVAC design procedure as a full HVAC design involves much more than just the load calculation. The load modeled by the heating and cooling load calculation process will dictate the equipment selection and duct design to deliver conditioned air to the rooms of the house.

Our engineer using HAP & REVIT Software for calculation heating and cooling load.

LOAD CALCULATION USING REVIT

LOAD CALCULATION USING HAP

• MECHANICAL DUCTING:-

DUCT SIZING, DOUCT ROUTING, AND LAYOUT GENERATE:

Duct sizing will be done concerning the volumetric flow. We provide the duct size based on air follow with the help of McQuay duct sizer, routing& layout creation. Will be done placing air terminal and sizing duct.

EQUIPMENT SELECTION:-

Equipment selection based on load calculation & statics pressure loss.

AIR TERMINAL SELECTION:

Afterload calculation, we can select each space air terminal with the help of standard manuals like air master, etc.

■ RISER & SCHEMATIC DRAWING:

After duct sizing and duct layout creation. We can make riser or schematic drawing for flow balancing, every space maintain flow, etc. We can decide the help of riser or schematic drawing.

DETAIL, SECTION &ISOMETRIC DRAWINGS:

DETAIL SECTION

■ EXTERNAL STATIC PRESSURE CALCULATION (ESP):

External Static Pressure is the measurement of all the Resistance in the Duct system that the fan has to work against. Examples are Filters, Grils, A/C Coils, and the ductwork. It is the sum of the Suction Pressure (Negative) and Discharge Pressure (Positive) created by the equipment blower.

Our Engineer Calculate External Static Pressure by using Revit & Elite Software.

quipment	AHU -1	T-GE-B1-B1	I.1A																
ST	ATIC PRESSURE	CALCULATION	FOR AHU (01)		Flor	rate						Fittings						
S No.	Description	Size in mm (width)	Size in mm (height)	Equ. DIAM. in mm.	Area in M2	m3/hr	lls	velocity (m/s)	PD Per Meter	Length	PD x Length	90 Elbow	45 Elbow	Tee Main	Tee Branch	Other	Qty	coefficie nt factor	Total coeffic nt fact
								E-B1-B1											
								L/S (Discha											
1	Supply duct	4400	4400	4810	18.17	237600	66000	3.63	0.02	0.50	0.01					0.10	1	0.10	0.61
2	Supply duct	1100	600	878	0.61	15336	4260	7.03	0.54	21.02		0.52	0.74	0.04		0.04	1	1.34	
3	Supply duct	900	600	799	0.50	11952	3320	6.62	0.54	6.60				0.04		0.04	1	0.08	
5	Supply duct	800 600	550 350	722	0.41	8568 3456	2380	5.81 4.96	0.48	11.53		-		0.08		0.04	1	0.12	-
6	Supply duct Supply duct	350	350	496 383	0.19	1728	960 480	4.96	0.57	4.06		-		0.04		0.04	1	0.08	_
ь	Supply duct	350	350	383	0.11	1728	460	TOTAL DU		4.27	0.01		_	0.04			itting		0.61
				_									_			_	ittiilg	IS FD	0.01
								Supply Regi			10.00								
							Motor	ized Volum		PD (Pa)	10.00								
								Fire Damp			75.00			L	<u> </u>				
								Fitting	js PD		0.61								
					i .			Total PE	In (Da)		95.62								
								TOTAL PL	/III (Fa)		35.02								
					n Air Circuit										1	ttings			Total
S No.	Description	Size in mm (width)	Size in mm (height)	Retur Equ. DIAM. in mm.	n Air Circuit Area in M2	m3/hr	lls	velocity (m/s)	PD Per Meter	Length	PB x Length	90 Elbow	45 Elbow	Tee Main	Tee Branch	ttings Other	Qty	coefficie nt factor	coeffic
S No.	Description			Equ. DIAM.		m3/hr 2592	II s	velocity	PB Per	Length	PD x				Tee		Qty		coeffic
1 2	•	(width) 500 800	(height) 350 350	Equ. DIAM. in mm. 455.50 566.56	Area in M2 0.16 0.25	2592 8568	720 2380	velocity (m/s) 4,42 9,44	PB Per Meter 0.51 1.56	5.52 17.85	PD x Length 2.83 27.88		Elbow	0.04 0.08	Tee	0.04 0.04	Qty	0.08 0.12	nt fact 0.72 4.90
1 2 3	Return duct	(width) 500 800 900	(height) 350 350 600	Equ. DIAM. in mm. 455.50 566.56 799.22	Area in M2 0.16 0.25 0.50	2592 8568 11952	720 2380 3320	velocity (m/s) 4.42 9.44 6.62	PD Per Meter 0.51 1.56 0.54	5.52 17.85 2.15	PD x Length 2.83 27.88 1.16	Elbow		0.04 0.08 0.04	Tee	0.04 0.04 0.04	1	0.08 0.12 0.8	0.72 4.90
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260	velocity (m/s) 4.42 9.44 6.62 7.03	PD Per Meter 0.51 1.56 0.54 0.54	5.52 17.85 2.15 16.45	PD x Length 2.83 27.88 1.16 8.81	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04	1 1 1	0.08 0.12 0.8 1.12	0.72 4.90 16.07 25.42
1 2 3	Return duct Return duct Return duct	(width) 500 800 900	(height) 350 350 600	Equ. DIAM. in mm. 455.50 566.56 799.22	Area in M2 0.16 0.25 0.50	2592 8568 11952	720 2380 3320	velocity (m/s) 4.42 9.44 6.62 7.03 9.01	PD Per Meter 0.51 1.56 0.54 0.54 0.54	5.52 17.85 2.15	PD x Length 2.83 27.88 1.16 8.81 32.41	Elbow	Elbow	0.04 0.08 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (m/s) 4.42 9.44 6.62 7.03 9.01	PB Per Meter 0.51 1.56 0.54 0.54 0.54 CT PD (Pa)	5.52 17.85 2.15 16.45 59.78	PB x Length 2.83 27.88 1.16 8.81 32.41 73.08	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.57 0.54	5.52 17.85 2.15 16.45 59.78	PD n Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (m/s) 4.42 9.44 6.62 7.03 9.01	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.57 0.54	5.52 17.85 2.15 16.45 59.78	PB x Length 2.83 27.88 1.16 8.81 32.41 73.08	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 CT PD (Pa)	5.52 17.85 2.15 16.45 59.78	PD n Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (m/s) 4.42 9.44 6.62 7.03 9.01 TOTAL DUC Irrn Square E	PD Per Meter 0,51 1.56 0.54 0.54 0.54 0.54 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 8.81 32.41 32.41 10.00 20.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10	0.16 0.25 0.50 0.61	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (m/s) 4.42 9.44 6.62 7.03 9.01 TOTAL DUC irn Square E	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.59 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 32.41 73.08 10.00 20.00 75.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct Return duct	(width) 500 800 900 1100	(height) 350 350 600 600 1150	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10 1257.14	Area in M2 0.16 0.25 0.50 0.61 1.24	2592 8568 11952 15336	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG Irin Square E otorized Vol	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.59 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00 20.00 75.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct Return duct	(width) 500 800 900 1100 1150	(height) 350 350 600 600 1150	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10 1257.14	Area in M2 0.16 0.25 0.50 0.61 1.24	2592 8568 11952 15336 40248	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG Irin Square E otorized Vol	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.59 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00 20.00 75.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return duct Return duct Return duct Return duct	(width) 500 800 900 1100 1150	(height) 350 350 600 600 1150 CULATION FC	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10 1257.14	Area in M2 0.16 0.25 0.50 0.61 1.24	2592 8568 11952 15336 40248 IN Pascal 95.62	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG Irin Square E otorized Vol	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.59 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00 20.00 75.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09
1 2 3 4	Return duct Return fuct STATIC P	(width) 500 800 900 1100 1150 PRESSURE CAL Supply Return	(height) 350 350 600 600 1150 CULATION FF Duct + Fittin Duct + Fittin	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10 1257.14	Area in M2 0.16 0.25 0.50 0.61 1.24	2592 8568 11952 15336 40248 IN Pascal 95.62 277.27	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG Irin Square E otorized Vol	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.59 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00 20.00 75.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90
1 2 3 4	Return duct Return fuct STATIC P	(width) 500 800 900 11100 1150 PRESSURE CAL Supply Return Of Supply	(height) 350 350 600 600 1150 CULATION FF Duct + Fittin Duct + Fittin	Equ. DIAM. in mm. 455.50 566.56 799.22 878.10 1257.14	Area in M2 0.16 0.25 0.50 0.61 1.24	2592 8568 11952 15336 40248 IN Pascal 95.62	720 2380 3320 4260 11180	velocity (mts) 4.42 9.44 6.62 7.03 9.01 TOTAL DUG Irin Square E otorized Vol	PD Per Meter 0.51 1.56 0.54 0.54 0.54 0.54 0.59 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54	5.52 17.85 2.15 16.45 59.78	PD x Length 2.83 27.88 1.16 8.81 32.41 73.08 10.00 20.00 75.00	Elbow	Elbow	0.04 0.08 0.04 0.04	Tee	0.04 0.04 0.04 0.04	1 1 1 1 1	0.08 0.12 0.8 1.12 1.4	0.72 4.90 16.07 25.42 52.09

MECHANICAL PIPING:

We prove to our clients below mention Calculation for Mechanical Piping.

- 1. Pump Head Calculation.
- 2. Pipe Sizzling and layout creation.
- 3. The riser of Schematic Drawing.
- 4. Detail, Section & Isometric Drawings.

								PFU-T-80-GR-01	(1 DUTY + 1 STAND 8 1.2 l/s. Fluid - DRSEL	Y) ROTARY GLAR PUMP							
REFERENCE	Pige Section	Flow	rate	Pipe size	Inner pipe diameter	Pipe Len	gth	Friction loss	F=L*f/100		Qily	k-factor	velocity	Fitting pressure drop	Total friction (Pipe+Fittings+Valves etc)	Total friction (Pipe+Fittings+Valves etc)	
a bana	7 gr attac	L/S	СРМ	INCH	INCH	METER	FEET	R/100R	FEET	Fitting	NOS		241	FEET	FEET	METER	Fitting P.D reference
	Pump Suction Side	1.2	19.02	2	1.94	2.26				90° Standard Elbow	1	0.38	2.07	0.025	0.025	0.0077	Attachment-1
		1.2	19.02	2	1.94	0.00	0.000	1.383	0.000	Plug Cock with Handle	2		2.07	0.037	0.097	0.0134	Ky=128 from Attachm
		1.2	19.02	3	2.90	1.80	5.905	0.196	0.012	90* Standard Elbow	- 4	0.34	0.92	0.018	0,030	0.0090	Attachment-1
1-2		1.2	19.02	3	2.90	0.00	0.000	0.196	0.000	Gate Valve	1		0.92	0.002	0.002	0.0005	Kv=635.13 from Attachn
	Static Suction Height	1.2	19.02	3	2.90	2.64	8.661	0.196	0.017	Static Height			0.92	9.580	9.597	2.9251	2.92m
	Pump Discharge Side	1.2	19.62	3	2.90	64.87	212 827	0.196	0.416	90° Standard Elbow	12	0.34	0.92	0.054	0.470	0.3434	Attachment-1
		1.2	19.02	3	2.90	0.00	0.000	0.196	0.000	Check valve	- 1		0.92	0.009	0.009	0.0029	Ky=254.05 from Attachi
		1.2	19.02	3	2.90	0.00	0.000	0.196	0.000	Gate Valve	- 5		0.92	0.002	0.002	0.0005	Kv=635.13 from Attachn
2-3		1.2	19.02	3	2.90	0.00	0.000	0.196	0.000	V-Strainer	1		0.92	0.696	0.0%	0.0109	Attachment-1
		1.2	19.62	3	2.90	0.00	0.000	0.196	0.000	Fire Quick Relates Valve	2		0.92	0.009	0.009	0.0029	Attachment-1
	Static Discharge Height	1.2	19.02	3	2.90	1.40	4.593	0.196	0.009				0.92	9.640	9,649	2.9430	2.94m
															19.856	6.055	
											Total P	ressure drop insi	de (m)			6.06	
										Total Pressure drop	with 20% saf	ety factor, m (Ba	sed on Actual I	nstallation at Site)		7.27	
											Residual P	ressure at the da	ily tank(m)			5.00	
											Calcu	lated Pump Hea	d (m)			12.27	
											Pump H	lead as per Schei	fule (m)			10	
											Sale	cted Pump Head	(m)			12.50	1

• BAR BENDING SCHEDULE (BBS):-

Bar Bending Schedule or Schedule of Bars (BBS) is a list of Reinforcement Bars for a given Reinforced Concrete work item and is presented in a Tabular Form for easy Visual Reference.

Table of Bar Bending Schedule Summarizes all the needed particulars of bars Diameter, Shape of Bending, Length of each bent and straight Portions, Angles of Bending, Total Length of each Bar, and Number of each type of Bar. This Information is a great help in preparing an estimate of quantities.

Bar Bending Schedule is when used along with Reinforcement detailed drawing improves the quality of construction, cost, and time-saving for concrete construction works.

Our Bar Bending Schedule (BBS) help all project stakeholders to enhance productivity and carry out constructability analysis.

TYPE-A			type-c	F	0-34 PE-0			me-r	TYPE	= 1	P Type	<u>-</u> H	- B	A PE	A.	rype-J		4	-	PE-L		\$ 100 - W		C my	14	0-34v	1	_17	THE -		7476-1
ing																Pi	pared By	_			=		_				_				
No																	ecked By														
ing Reference											emund e					Rev					month to										
							BAR	BENDIN	SCHEDU	_	OTING\P	EDESTAL		3,F4,F5,F			FOUND	ATION	TO BAS	E MENT L	EVEL)	ZONE-2									
NAME OF		SHAPE	BAR	BAR		NOS. OF	NOS. OF	TOTAL	TOTAL	TOTAL LENGTH			_	JIMENSICA	N (mm)		-	-		BEND	LENGTH OF BAR DIA WISE IN METRE						TOTAL				
TRUCTURAL ELEMENT	BAR MARK		POSITION	LOCATIO		ELEMENT		OF BARS	IN M.	OF PER UNIT IN MM.	a	b	¢	d	٠	1 0	h	i		ALLOW	6	1	10	12	14	16	29	25	12	WEIGHT (MT)	REMARK
		С	81	XAXIS	20	29	20	560	2010.400	3590	430	2950	430							120							2010			4.955	
00TING F-03	2	C	82	Y-AXIS	20	28	.17	476	1708.840	3590	430	2950	430							120							1709			4.212	
	3	C	TI	XAXIS	20	28	15	420	1507.800	3590	430	2950	430							120							1508			2.717	
	4	c	72	Y-AXIS	20	28	27	588	2110.920	3590	430	2950	430					L		120							2111			5.203	
	1	l c	81	XAXIS	25	10	20	200	952.000	4760	530	3850	530			_		_		150				_	-			952		3.867	
	2	0	82	YAXIS	25	10	20	200	952.000	4760	530	3850	530			-	+	+	\vdash	150				-	-	-		982		3.667	
OOTING F-04	3	0	TI	XAXS	16	10	20	200	962.800	4814	530	3850	530					+		98				\rightarrow		963		***		1.519	
	4	0	72	YAXIS	16	10	20	200	982.800	4814	530	3850	530			_				96				\rightarrow		985				1,519	
		-	-			-	-	-	1112111	4.1								_	_					_	_	***					
	1.	C	81	XAXIS	25	14	29	406	2013.760	4960	630	3850	630			1		Т		150							- 1	2014		7,756	
000mm F 44	2	C	81	YAXS	25	. 14	29	406	2013.760	4960	630	3850	530							150				\neg				2014	- 4	7,758	
OOTING F-65	3	С	TI	XAXIS	16	14	29	406	2005.684	5014	630	3850	630							98						2038				3.211	
	4	С	12	YAXS	16	14	29	400	2035.694	5014	630	3850	630							96						2030				3.211	
	- 1	C.	81	XAXIS	25	3	52	156	820.560	5260	530	4350	530							150								821		3.160	
OOTING F-06	2	¢	82	YAXS	25	3	30	90	770.400	8560	530	7650	530				_	\perp	_	150				_	_		_	770		2.967	
	- 3	0	TI	XAXIS	15	-	52	158	825.964	_	530	4350	530		\Box	-	-	+	-	96	_	_		_	_	829	_			1.308	
	4	c	12	YAXS	16	1	30	90	775.260	8614	530	7650	530	_	Ш		_	4	_	96	_	_	Щ	_	_	775	_			1,223	
	1	c	- 01	vave	-	1	- 52	- 42	351.520	6760	530	#340	530				_	_	_	150							_	352		1.354	
	2	0	81	XAXIS Y-AXIS	25	1	40	52	342.400	6760 8560	530	5850 7650	530			-	-	+	-	150		-		-		-	_	302		1.319	
00TNG F-12	1	0	T1	XAXIS	16	-	52	52	354.328	6814	530	5850	530		Н	-	-	+	-	96	\vdash		Н	\dashv	_	354				0.559	
	4	0	12	Y-AXIS	16	1	40	40	344,560	8614	530	7650	530			_		+	-	96	\vdash			\dashv		345				0.544	
																_								_		1 7					
	1	С	81	XAXIS	16	3	62	156	719.754	4614	430	3850	430					Т	П	98				П		720				1.135	
FOOTING-F9	2	0	82	XAXIS	16	3	30	90	757.260	8414	430	7650	430							96						757				1,195	
William.	3	C	TI	XAXS	16	3	82	156	719,764	4514	430	3850	430							96						720				1.135	
	4	c	12	XAXIS	16	3	30	90	757.260	8414	430	7650	430							96						757				1,195	
								_					_	_				-	_		_										
		С	81	XAXS	16	-	20	60	216.640	3614	430	2950	430							96					\rightarrow	217				0.342	
FOOTING F7	2	0	82	XAXS	16	3	20	60	216.840	3614	430	2950	430			-	-	+	-	96				_	_	217				0.342	
	3	c	11	XAXS	18	3	20	60	216.840	3614	430	2950	430		\vdash	-		1		96				-	-	217				0.342	
	4	C	12	XAXIS	16	3	20	60	216.840	3614	430	2950	430							96				_		217				0.342	
																		101	W LEW	GTH IN M						12122	7338	H216		_	
																		101	@ Kg		0.22	0.39	0.62	0.89			2.46		6.31		
																			WEIGHT							13.122	18,087	31,645		20.024	
																		1 0	TOTAL W	T (MT)	1									68.854	-

• QUANTITY TAKE-OFF (QTO):-

Quantity take-off (QTO) is a detailed measurement of materials and labor needed to complete Construction Projects. This process includes breaking the project down into smaller and more manageable units that are easier to measure or Estimate. The level of detail required for measurement may vary. These measurements are used to format a BID on the scope of construction. PASMEC review Drawings, specifications, and models are to find these quantities. With BIM quantity take-off can be conducted almost automatically given that the type of material, their quantity and price is included in the model. It is known that construction projects often run over time and budget and one of the reasons is lack of accuracy is quantity takeoff and estimates.

Quantities can be generated for a specific period or project area (4D/5D) to help manage material procurement and save inventory costs. Quantity take-off covers all DUCT, DUCT-FITTING, EQUIPMENT, HANGER, etc.

SI.No.	Damper Type	Size (in mm)	Quantity
1	to cold	200×140-200×140	1
2	E	250×150-250×150	1
3	Fire Damper	450x550-450x550	1
4		500x500-500x500	2
5		200×100-200×100	2
6		200×140-200×140	2
7		200×150-200×150	2
8		200×200-200×200	1
9		250×150-250×150	2
10		300×200-300×200	4
11		300x300-300x300	1
12		350x350-350x350	4
13		450×200-450×200	6
14		450×250-450×250	2
15		450x300-450x300	10
16	Volume control Damper	450x350-450x350	1
17		450×400-450×400	2
18		450x450-450x450	3
19		450×550-450×550	1
20		500×400-500×400	3
21		500×500-500×500	1
22		600x450-600x450	1
23		650×450-650×450	1
24		700×400-700×400	1
25		750x550-750x550	2
	Grand Total		57

• 2D INSTALLATION DRAWING:-

PASMEC specialized in preparing actual 2d installation drawings after coordinating with other trades. Showing elevation of the systems, tagging of systems & elements size & type, dimension and annotating, section and call out is shown on the drawings for congested area/part. Isometric and Riser drawings whole systems and buildings are prepared separately for engineer's reviews at the site for overall understanding of the project design systems.

• AS-BUILT DRAWING:-

An As-built drawing is a revised drawing created and submitted by a contractor after a construction project finished. They Contain any changes made from the initial drawing during the construction process and provide an exact rendering of the building and property as it appears upon completion.

PASMEC specialized in preparing actual As-built 3D model and As-built drawing from scanned paper drawings, survey data, or laser scan data.

• CAD SERVICES:-

2D drawing essential for communicating ideas in industry and engineering. To make the drawing easier to understand, people use familiar symbols, perspectives, units of measurement, notation systems, visual styles, and page layout.

In cad services, we offer the below-mentioned services.

1.RASTER IMAGE TO CAD CONVERSION:

We specialized in the conversion of legacy paper drawings into accurate CAD drawings as per client CAD standards or as per the prevalent International Standards.

Input Format: TIF, PDF, CAL, JPEG

OUTPUT FORMAT: AUTOCAD

2.FILE FORMAT CONVERSION:

- A. We convert DWG files DGN files and Vice Versa.
- B. We convert DWG & DGN files to plot & PDF files.
- 3. Standardization of Drawing.
- 4. Redline mark UPS update.
- 5. Design Hand Sketch to CAD conversion.

• QUALITY CONTROL PROCESS:-

Our QC process is managed by an independent QC team. We have implemented the Environment Management System.

The main objective of the quality control (QC) process is to detect errors and rectify them. Ensuring quality is a group effort and our dedicated QC team is led by a highly qualified and experienced Manager in M&E Coordination and Quality Control.

The entire QC process is handled in three phases:

• Work Process Flow Chart:-

• Why PASMEC?

PASMEC is providing innovative BIM services. Our in-house team of more than 50+ experienced Architects, Engineers, and BIM professionals help us provide end-to-end solutions to discerning clients around the world.

Quality Output

Our Quality Control Team is led by employees who have more than 10 years of experience. Our process orientation & quality control is as per International standards. Our Pre-construction & Prefabrication reviews with RFI generation help clients make better use of manpower and improve the quality of construction, reducing rework and wastage. Detailed Material BOQ & Shop Drawings with 3D visualization enable a better look at "The Big Picture" and aid in the review, scheduling, and monitoring of each project.

Fast Turnaround

Our skilled team of professionals can provide quick turnarounds on complex projects. PASMEC has completed several large-scale projects across the world.

Less Expensive

Clients rely on us for our top-of-the-line services at reasonable rates. We help clients assemble projects in a virtual environment for identifying and correcting potential problems before construction. We offer a cutting-edge advantage in terms of Building Information Modeling services, facilitating project coordination, collaboration, asset management, risk mitigation, logistic planning, and cost optimization.

Technical Strengths

Our professionals use the latest BIM software: Autodesk Revit, AutoCAD Architecture, Navisworks, Inventor, AutoCAD Civil 3D, 3DS Max, Sketchup, SolidWorks, Autodesk Fabrication,V-Ray etc.... As we have a deep understanding of global and regional codes and standards.

Global Presence

PASMEC has offices in INDIA (Kolkata).

Communication

PASMECProject Management team is available to clients through several communication channels including:

- 1. Global telephone networks for instant communication.
- 2.Email (on Google server) for reports and interactions.

7C, Dr MN Chatterjee Sarani, Narkeldanga, Raja bazar Kol-700009, Usman Place West Bengal, India

Email- info@pasmecbim.com Visit us: <u>www.pasmecbim.com</u>

+91 9118247461

<u>TURKEY</u>

+90 5442236441

SAUDI ARABIA

+966-544314576 +966-566716810

