Week 3 Lecture

Topics: Vector equations of plane in 3D

Distance from a point to a plane in 3D

Equation of a Plane in 3D (Space):

A plane in space is determined by knowing a point on the plane and its "tilt" or orientation. This "tilt" is defined by specifying a vector that is perpendicular or normal to the plane.

Suppose that a plane M passes through a point $P_o\left(x_{o,}y_{o,}z_o\right)$ and is normal to the non-zero vector $\vec{n}=A\vec{\iota}+B\vec{\jmath}+C\vec{k}$, i.e. \vec{n} is a non-zero normal orthogonal vector. Then M is the set of all points P(x,y,z) for which $\overrightarrow{P_OP}$ is orthogonal to \vec{n} . Let us consider $\overrightarrow{P_OP}=\vec{u}$, such that

$$\vec{u} = \langle x - x_o, y - y_o, z - z_o \rangle$$
.

 \vec{n} is orthogonal to the plane thus it is orthogonal to every vector on

The plane. The vector \vec{u} lies on the plane.

Thus, the dot product $\vec{n} \cdot \vec{u} = 0$.

This equation is equivalent to

$$\left(A\vec{\imath}+B\vec{\jmath}+C\vec{k}\right).\left[(x-x_o)\vec{\imath}+(y-y_o)\vec{\jmath}+(z-z_o)\vec{k}\right]=0$$

$$A(x-x_o) + B(y-y_o) + C(z-z_o) = 0$$

Remark:

Another form of the equation of plane.

$$Ax - Ax_o + By - By_o + Cz - Cz_o = 0$$

$$Ax + By + Cz - (Ax_o + By_o + Cz_o) = 0$$

$$Ax + By + Cz = Ax_o + By_o + Cz_o$$

$$Ax + By + Cz = D$$
 where $D = Ax_o + By_o + Cz_o$

Example 1:

Find an equation for the plane passing through the point P(-3, 0, 7) and perpendicular to the unit normal vector $\vec{n} = 5\vec{i} + 2\vec{j} - \vec{k}$.

Solution: The equation of plane is

$$A(x - x_o) + B(y - y_o) + C(z - z_o) = 0$$
$$5(x - (-3)) + 2(y - 0) + (-1)(z - 7) = 0$$

$$5(x+3) + 2y - z + 7 = 0$$

$$5x + 15 + 2v - z + 7 = 0$$

$$5x + 2y - z + 22 = 0$$

$$5x + 2y - z = -22$$

Example 2: Find an equation for the plane passing through three points A (0, 0, 1), B (2, 0, 0) and C (0, 3, 0).

Solution: A vector normal to the plane is:

$$\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & -1 \\ 0 & 3 & -1 \end{vmatrix} = \vec{i} \begin{vmatrix} 0 & -1 \\ 3 & -1 \end{vmatrix} - \vec{j} \begin{vmatrix} 2 & -1 \\ 0 & -1 \end{vmatrix} + \vec{k} \begin{vmatrix} 2 & 0 \\ 0 & 3 \end{vmatrix}$$

$$= \vec{i} [(0 - (-3)] - \vec{j} (-2 - 0) + \vec{k} (6 - 0)]$$

$$\vec{n} = 3\vec{i} + 2\vec{j} + 6\vec{k}$$

Now the equation of plane is

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

$$3(x-0) + 2(y-0) + 6(z-1) = 0$$

$$3x + 2y + 6z = 6$$

Practice questions:

Thomas Calculus Ex. 12.5: 21-26

Find equations for the planes in Exercises 21-26.

- **21.** The plane through $P_0(0, 2, -1)$ normal to $\mathbf{n} = 3\mathbf{i} 2\mathbf{j} \mathbf{k}$
- **22.** The plane through (1, -1, 3) parallel to the plane

$$3x + y + z = 7$$

- **23.** The plane through (1, 1, -1), (2, 0, 2), and (0, -2, 1)
- **24.** The plane through (2, 4, 5), (1, 5, 7), and (-1, 6, 8)
- **25.** The plane through $P_0(2, 4, 5)$ perpendicular to the line

$$x = 5 + t$$
, $y = 1 + 3t$, $z = 4t$

26. The plane through A(1, −2, 1) perpendicular to the vector from the origin to A

Distance from a Point to a Plane in Space

Let \boldsymbol{P} be a point on the plane, and \boldsymbol{P}_0 be

any point in the space, then \vec{n} is the unit

normal vector to the point **P**. Let the vector $\overrightarrow{PP_0}$ be denoted by the vector \overrightarrow{u} , i.e.

$$\overrightarrow{PP_0} = \overrightarrow{u}$$

Now considering the shortest distance from the point P_0 to the plane is perpendicular to the plane, then

$$d = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{n}|}$$

Proof:

From the figure, we can write

$$cos(\theta) = \frac{Base}{Hypotenuse} = \frac{d}{|\vec{u}|}$$
$$cos(\theta) = \frac{d}{|\vec{u}|}$$
$$|\vec{u}| cos(\theta) = d$$

$$d = |\vec{u}| \cos(\theta)$$

$$d = \frac{|\vec{u}||\vec{n}| \cos(\theta)}{|\vec{n}|}$$

$$d = \frac{|\vec{u}||\vec{n}|}{|\vec{n}|}$$

Hence

$$d = \frac{|\vec{u} \cdot \vec{n}|}{|\vec{n}|}$$

Example:

Find the distance from the point S (1, 1, 3) to the plane 3x + 2y + 6z = 6.

Solution:
$$\vec{n} = 3\vec{i} + 2\vec{j} + 6\vec{k}$$

 $S = (1, 1, 3)$
 $P = ?$

We find a point *P* in the plane and calculate the length of the vector projection

of \overrightarrow{PS} onto a vector \overrightarrow{n} normal to the plane. The point on plane easiest to find from the plane's equation are the intercepts.

If we take P to be the y-intercept (0,3,0) then

$$\overrightarrow{PS} = (1 - 0)\vec{i} + (1 - 3)\vec{j} + (3 - 0)\vec{k}$$
$$= \vec{i} - 2\vec{j} + 3\vec{k}$$

$$|\vec{n}| = \sqrt{(3)^2 + (2)^2 + (6)^2} = \sqrt{49} = 7$$

The distance from S to the plane is

$$d = \frac{|\overrightarrow{PS}.\overrightarrow{n}|}{|\overrightarrow{n}|}$$

$$= \left| \left(\vec{i} - 2\vec{j} + 3\vec{k} \right) \cdot \left(\frac{3}{7} \vec{i} + \frac{2}{7} \vec{j} + \frac{6}{7} \vec{k} \right) \right| = \left| \frac{3}{7} - \frac{4}{7} + \frac{18}{7} \right| = \frac{17}{7}$$

Practice Questions:

Thomas Calculus Ex. 12.5: 39-44, 45, 46

In Exercises 39–44, find the distance from the point to the plane.

39.
$$(2, -3, 4), x + 2y + 2z = 13$$

40.
$$(0,0,0)$$
, $3x + 2y + 6z = 6$

41.
$$(0, 1, 1), 4y + 3z = -12$$

42.
$$(2, 2, 3)$$
, $2x + y + 2z = 4$

43.
$$(0, -1, 0), 2x + y + 2z = 4$$

44.
$$(1, 0, -1), -4x + y + z = 4$$

- **45.** Find the distance from the plane x + 2y + 6z = 1 to the plane x + 2y + 6z = 10.
- **46.** Find the distance from the line x = 2 + t, y = 1 + t, z = -(1/2) (1/2)t to the plane x + 2y + 6z = 10.

Angle between Two Planes

The angle between two intersecting planes is defined to be the angle between their normal vectors.

$$\theta = Cos^{-1} \left(\frac{\overrightarrow{n_1}.\overrightarrow{n_2}}{|\overrightarrow{n_1}||\overrightarrow{n_2}|} \right)$$

Example:

Find the angle between the planes

$$3x - 6y - 2z = 15$$
 and $2x + y - 2z = 5$.

Solution:

$$\overrightarrow{n_1} = 3\overrightarrow{\imath} - 6$$
j- $2\overrightarrow{k}$

$$\overrightarrow{n_2} = 2\overrightarrow{i} + \overrightarrow{j} - 2\overrightarrow{k}$$

$$\overrightarrow{n_1}$$
 . $\overrightarrow{n_2}$ =6-6+4 =4

$$|\overrightarrow{n_1}| = \sqrt{(3)^2 + (-6)^2 + (-2)^2} = \sqrt{9 + 36 + 4} = 7$$

$$|\overrightarrow{n_2}| = \sqrt{(2)^2 + (1)^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3$$
So $\theta = Cos^{-1} \left(\frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| |\overrightarrow{n_2}|} \right)$

$$\theta = Cos^{-1} \left(\frac{4}{7*3} \right) = 79 \text{ degrees}$$

Practice Questions:

Thomas Calculus Ex. 12.5: 47-52

Angles

Find the angles between the planes in Exercises 47 and 48.

47.
$$x + y = 1$$
, $2x + y - 2z = 2$
48. $5x + y - z = 10$, $x - 2y + 3z = -1$

Use a calculator to find the acute angles between the planes in Exercises 49–52 to the nearest hundredth of a radian.

49.
$$2x + 2y + 2z = 3$$
, $2x - 2y - z = 5$

50.
$$x + y + z = 1$$
, $z = 0$ (the *xy*-plane)

51.
$$2x + 2y - z = 3$$
, $x + 2y + z = 2$

52.
$$4y + 3z = -12$$
, $3x + 2y + 6z = 6$