Técnicas de Inteligência Artificial para diagnóstico de Acidente Vascular Cerebral através de imagens e dados textuais sobre possíveis vítimas

Vinícius de Paula Pilan (RA:191025399)

Orientador: Prof. Dr. Clayton Reginaldo Pereira

Conteúdo da apresentação

- 1. Problema e Justificativa
- 2. Introdução
- 3. Ferramentas e bases de dados utilizadas
- 4. Desenvolvimento
- 5. Resultados
- 6. Conclusão

Referências Bibliográficas

1. Problema e Justificativa

Problema e Justificativa

Problema:

- Acidente Vascular Cerebral é uma das doenças que mais causa mortes, incapacitações e internações no mundo
- Quanto mais tardio é realizado o diagnóstico e tratamento maiores são os prejuízos e sequelas para a vítima

Problema e Justificativa

Justificativa:

- É de grande importância facilitar e agilizar o diagnóstico da doença
 - Minimiza consequências e sequelas, facilitando muito no processo de reabilitação
 - Reduz quantidade de casos com maior gravidade e até mesmo casos de óbitos
- É possível desenvolver formas de auxílio para o diagnóstico utilizando técnicas da Inteligência Artificial (reconhecimento de padrões)

2. Introdução

Introdução – Acidente Vascular Cerebral (AVC)

- Doença causada pela alteração do fluxo sanguíneo na região cerebral
 - AVC Isquêmico (AVCi): Obstrução total ou parcial de vaso sanguíneo
 - AVC Hemorrágico (AVCh): Rompimento de vaso sanguíneo

- Causa morte de células do cérebro
 - Falta de nutrientes e oxigênio

Quadro pode ser identificado via Tomografia Computadorizada (TC)

Introdução – Acidente Vascular Cerebral (AVC)

Fatores de risco do AVC genéticos e fisiológicos:

- Envelhecimento
- Histórico familiar
- Sexo (masculino)

Fatores de risco do AVC relacionados a estilo de vida:

- Tabagismo
- Estresse
- Sedentarismo
- Consumo excessivo e frequente de álcool e drogas

Introdução – Acidente Vascular Cerebral (AVC)

Fatores de risco do AVC relacionados a patologias:

- Hipertensão
- Diabetes
- Obesidade
- Colesterol elevado
- Doenças cardiovasculares (principalmente as que produzem arritmia cardíaca)
- Doenças do sangue (ex: trombose)

Introdução – Aprendizado de Máquina

- Subárea da Inteligência Artificial (IA)
- Sistemas capazes de aprender comportamentos, reconhecer padrões e especular resultados
 - estimar valores
 - fazer classificações preditivas

Basicamente, três tipos de aprendizado:

- 1. supervisionado
- 2. não supervisionado
- 3. por reforço

Utiliza dados rotulados no treinamento do modelo

- Principais modelos:
 - regressão linear, **regressão logística**, máquina de suporte vetorial, árvores de decisão, k-vizinhos mais próximos, **floresta aleatória**, entre outros...

Modelo de Regressão Logística:

- Estimar probabilidade de um evento acontecer a partir da combinação linear de variáveis independentes entre si (x * θ)
- Regressão que utiliza a função logística

Floresta Aleatória:

Árvore de Decisão:

Introdução – Aprendizagem profunda

Rede Neural Artificial (Artificial Neural Network - ANN):

Fonte: (NURFIKRI, 2020).

Introdução – Aprendizagem profunda

Redes Neurais Convolucionais (Convolutional Neural Network - CNN):

- Utilizadas para identificação de objetos, reconhecimento de características e classificação de imagens
- Valorizam detalhes da imagem relevantes para a classificação
- Três tipos principais de camadas em sua estrutura:
 - convolução (convolution): realce das características via aplicação do kernel
 - agrupamento (pooling): redução do número de valores recebidos mantendo as características realçadas pelos filtros da convolução
 - totalmente conectadas (fully connecteds): neurônios totalmente conectados que aplicam alguma função de ativação nos valores recebidos

Introdução – Aprendizagem profunda

Redes Neurais Convolucionais (Convolutional Neural Network - CNN)

VGG-16:

Fonte: (FERGUSON et al., 2017).

3. Ferramentas e bases de dados utilizadas

Ferramentas

- Python:
 - linguagem de programação de alto nível com alta disponibilidade de bibliotecas e recursos para Ciência de Dados e Aprendizado de Máquina

Google Colab

Ferramentas

- Bibliotecas e Frameworks Python:
 - Numpy e Pandas: análise e gerenciamento de valores (vetores, matrizes, etc.) e conjuntos de dados (datasets)
 - Matplotlib e Seaborn: visualização gráfica de dados
 - Scikit-learn: biblioteca de implementações de modelos de Aprendizado de Máquina e métricas de avaliação de desempenho
 - Tensor Flow: plataforma de código aberta que facilita a criação de modelos de Aprendizagem de Máquina e Aprendizagem profunda

Base de dados fatores de risco

• Conjuntos de dados disponibilizados para propósitos educacionais da plataforma *Kaggle*

- 5110 registros rotulados de vítimas de AVC ou de condição normal
 - AVC: 249 elementos
 - Não AVC: 4861 elementos

Base de dados fatores de risco - Variáveis categóricas

- 1. Sexo
- 2. Hipertensão
- 3. Doença cardíaca
- 4. É / já foi casado (pode estar ligada a estilo de vida e estresse)
- **5. Tipo de residência:** Urbana ou rural (ligada a estilo de vida)
- 6. Tipo de emprego: privado, funcionário público (governo), empreendedor ou nenhum
- 7. Status com relação a tabagismo: indivíduo nunca fumou, fuma formalmente, regularmente ou situação desconhecida
- **8. Vítima de AVC** (variável alvo do trabalho)

Base de dados fatores de risco - Variáveis quantitativas

- 1. Idade
- 2. Nível de glicose
- 3. BMI: Índice de massa corpórea IMC
- **4. Id:** Identificação de cada registro (variável desconsiderada por não ter impacto na variável alvo)

Base de dados fatores de risco

Exemplos retirados da base de dados utilizada

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1
7	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
8	27419	Female	59.0	0	0	Yes	Private	Rural	76.15	NaN	Unknown	1
9	60491	Female	78.0	0	0	Yes	Private	Urban	58.57	24.2	Unknown	1

Base de imagens de Tomografia Computadorizada

- Conjunto de dados com 473 imagens, divididas em três classes diferentes:
 - AVC Isquêmico
 - AVC Hemorrágico
 - Condição normal (não AVC)

- No presente trabalho, conjunto foi redistribuído para apenas duas classes:
 - AVC (AVCi + AVCh): 299 imagens
 - Condição normal (não AVC): 174 imagens

Base de imagens de Tomografia Computadorizada

Exemplos retirados da base de dados utilizada

4. Desenvolvimento

- Balanceamento do conjunto de dados (para 525 registros no total):
 - AVC: 249 \rightarrow 249 elementos
 - Não AVC: 4861 → 276 elementos (subamostragem aleatória)

Atributo	Distribuição dos valores
Gênero	Masculino: 41.71%
Genero	Feminino: 58.29%
Hipertensão	0: 82.48%
riipertensao	1: 17.52%
Doones cardíaca	0: 88.76%
Doença cardíaca	1: 11.24%
۲ / : ۵ fo: مورونا م	Sim: 80%
É / já foi casado	Não: 20%

Atributo	Distribuição dos valores		
	Setor privado: 62.86%		
Tino do amprogo	Autônomo: 22.09%		
Tipo de emprego	Cargo público: 14.29%		
	Nunca trabalhou: 0.76%		
Tipo de residência	Urbano: 50.86%		
ripo de residencia	Rural: 49.14%		
	Nunca fumou: 37.33%		
Tala a si ama a	Fuma formalmente: 24.57%		
Tabagismo	Fuma constantemente: 22.48%		
	Situação desconhecida: 15.62%		
A) (C	0: 52.57%		
AVC	1: 47.43%		

Correções formato das variáveis

Até dois possíveis valores – substituição das classes por 0 e 1

Gênero		Masculino
Masculino		1
Masculino		1
Feminino	_	0
Feminino	,	0
Feminino		0
Masculino		1
Feminino		0

Fonte: Elaborado pelo autor.

Tipo de emprego	
Privado	
Privado	
Autônomo	One-Hot Encodin
Privado	
Criança	
Cargo público	
Autônomo	

	Privado	Autônomo	Cargo público	Criança	
	1	0	0	0	
	1	0	0	0	
ng	0	1	0	0	
	1	0	0	0	
	0	0	0	1	
	0	0	1	0	
	0	1	0	0	

Mais de dois possíveis valores – criação de colunas binárias para cada valor

Dados nulos

- Única coluna com eles foi BMI: 7.6% (40 elementos em um total de 525 registros)
- Correção: substituição desses valores pela mediana da coluna
- A mediana foi escolhida pois gerou melhores resultados em comparação com a substituição pela média da coluna

Distribuição dos valores quantitativos e anômalos

- IQR (Interquartile range): avaliar o grau de dispersão dos valores em torno da medida de centralidade do conjunto
 - IQR = 3° quartil 1° quartil
 - Limite superior = Mediana + 1.5 x IQR
 - Limite inferior = Mediana 1.5 x IQR

Distribuição dos valores quantitativos corrigidos

Normalização dos dados

- sklearn.preprocessing.MinMaxScaler()
- padrão de escala ficou entre 0 e 1

Classificador fatores de risco – modelagem

Criação do classificador

Validação cruzada: 05 dobras

Classificador fatores de risco – modelagem

Criação do classificador

- Modelo com Regressão Logística (seed = 7)
- Modelo com Floresta Aleatória (seed = 7, n_arvores=200)

Redimensionamento dos valores

- Camada inicial na rede do tipo *Rescaling* com valor para divisão de 255
- Redimensionamento do intervalo dos valores de cada canal de cor: de 0 a 255 para valores de 0 a 1

Aumento dos dados do conjunto de dados original

 técnicas de aumento dos dados (data augmentation)

Alteração aplicada	Fator	Método utilizado	
Inversão (flip)	Horizontal/ vertical	tensorflow.keras.layers.RandomFlip("horizontal_and_vertical", seed=10)	
Rotação	0.2	tensorflow.tf.keras.layers.RandomRotation(0.2, seed=7)	
Contraste	Valor entre [0.3, 0.5]	tensorflow.keras.layers.RandomContrast(factor=(0.3, 0.5), seed=(7,17))	

Estrutura da rede neural criada

	Componente da rede	Função	Tamanho da saída gerada
1	Camada de entrada e redimensionamento	Redimensionar os canais de cores de 0 a 255 para 0 a 1	(512, 512, 3)
2	Camada de inversão	Inversão aleatória (horizontal/vertical)	(512, 512, 3)
3	Camada de rotação	Rotação de 0.2 com sentido aleatório	(512, 512, 3)
4	Camada de contraste	Contraste aleatório com fator entre 0.3 a 0.5	(512, 512, 3)

Estrutura da rede neural criada

	Componente da rede	Função	Tamanho da saída gerada
5	Camadas de convolução e agrupamento VGG-16	Transferência de aprendizado de uma CNN VGG (pesos fixos gerados a partir do conjunto <i>imagenet</i>)	(16, 16, 512)
6	Camada de achatamento	Redimensiona a saída para apenas um valor	(131072)
7	Camada densa de neurônios	64 neurônios com função de ativação ReLU	(64)
8	Camada densa de neurônios	32 neurônios com função de ativação ReLU	(32)
9	Camada densa de neurônios	Apenas 1 neurônio com função de ativação sigmoid	(1)

Treinamento da rede estruturada

- Compilação do modelo: cálculo do erro como entropia cruzada binária e taxa de aprendizado de 0.001
- Função call-back para interromper o treinamento se acurácia de validação >= 95% e AUC ROC de validação >= 0.9
- Utilizando o conjunto de dados de treino (65% do conjunto 307 imagens)

Treinamento da rede estruturada

- 12 épocas (iterações que percorrem todo o conjunto de dados)
- Tamanho do lote (batch size) de 32 imagens por iteração do treinamento de cada época
- As camadas da rede VGG-16 não tiveram seus pesos alterados durante o treinamento feito

5. Resultados

Acurácia:

Acurácia do classificador	Regressão Logística	Média: 73.33% Desvio padrão: 2.48%
	Floresta Aleatória	Média: 73.14% Desvio padrão: 1.40%

Matriz de Confusão - modelo de Regressão Logística:

Matriz de Confusão - modelo de Floresta Aleatória:

Taxa de Verdadeiro Positivo (*True Positive Rate* – TPR):

TPR	Regressão Logística	Média: 74.53% Desvio padrão: 4.10%
	Floresta Aleatória	Média: 72.95% Desvio padrão: 4.11%

Taxa de Falso Positivo (*False Positive Rate* – FPR):

FPR	Regressão Logística	Média: 27.28% Desvio padrão: 5.27%
	Floresta Aleatória	Média: 26.23% Desvio padrão: 3.99%

Área da Curva de Característica de Operação do Receptor (curva ROC):

AUC ROC	Regressão Logística	Média: 0.8029 Desvio padrão: 0.0506
	Floresta Aleatória	Média: 0.7982 Desvio padrão: 0.0349

Acurácia:

Acurácia da Rede	Dados de treino	93.06%
	Dados de validação	97.39%

Matriz de confusão para dados de treino:

Matriz de confusão para dados de teste:

Taxa de Verdadeiro Positivo (*True Positive Rate* – TPR):

TPR	Dados de treino	88.24%
	Dados de validação	96.36%

Taxa de Falso Positivo (*False Positive Rate* – FPR):

FPR	Dados de treino	2.63%
	Dados de validação	1.67%

Área da Curva de Característica de Operação do Receptor (curva ROC):

AUC ROC	Dados de treino	0.9802
	Dados de validação	0.9944

6. Conclusão

Conclusão

 Técnicas da Inteligência Artificial foram utilizadas (das subáreas Aprendizagem de Máquina e Aprendizagem Profunda)

Modelos tiveram desempenhos satisfatórios

Conclusão

- Os classificadores desenvolvidos são apenas demonstrações de formas de diagnóstico da doença abordada
 - Fins demonstrativos e não soluções do problema em si

- AVC é ligado diretamente a questões de medicina e saúde
 - Os classificadores criados **não são soluções para autodiagnostico** da doença e nem são substitutos de profissionais da saúde
 - Em caso de qualquer suspeita procurar assistência médica e não negligenciar a situação para minimizar problemas e prejuízos

Referências Bibliográficas

Referências Bibliográficas

NURFIKRI, F. An Illustrated Guide to Artificial Neural Networks. 2020. Disponível em: https://towardsdatascience.com/an-illustrated-guide-to-artificial-neural-networks-f149a549ba74. Acesso em: 28 novembro 2022.

FERGUSON, M.; AK, R.; LEE, Y.-T.; LAW, K. Automatic localization of casting defects with convolutional neural networks. In: . [S.l.: s.n.], 2017. p. 1726–1735.

Obrigado pela atenção!

Vinícius de Paula Pilan (RA: 191025399)

Orientador: Prof. Dr. Clayton Reginaldo Pereira