Lecture 3: Aerospace Vehicles and Reference Frames

Dr. Jordan D. Larson

Textbook Sections 7.1 and 7.2

Vehicles

Intro •00

- Vehicle: dynamical system that transports payload, e.g., cargo, people, munitions, sensors
 - Typically classified by environment, i.e., ground, water, flying, or hybrids

Vehicles

•00

- Vehicle: dynamical system that transports payload, e.g., cargo, people, munitions, sensors
 - Typically classified by environment, i.e., ground, water, flying, or hybrids
- Flight vehicles: encompasses aircraft, spacecraft, projectiles, air/space hybrids
 - A.k.a. aerospace vehicles

Vehicles

•00

- Vehicle: dynamical system that transports payload, e.g., cargo, people, munitions, sensors
 - Typically classified by environment, i.e., ground, water, flying, or hybrids
- Flight vehicles: encompasses aircraft, spacecraft, projectiles, air/space hybrids
 - A.k.a. aerospace vehicles
 - Aerostats (balloons, airships)
 - Fixed-wing (gliders, airplanes)
 - Rotary-Wing (gyrogliders, helicopters, autodynes, gyrodynes)
 - Spacecraft (satellites, probes, starships)
 - Hybrid flight vehicles, air & space (launch vehicles, spaceplanes)

Vehicle Dynamics and Control

- Vehicle dynamics and control: study of changes in vehicle's motion due to forces and moments applied to and by that vehicle in environment
 - Motion of vehicle typically described by: position, orientation/attitude, velocity

Vehicle Dynamics and Control

- Vehicle dynamics and control: study of changes in vehicle's motion due to forces and moments applied to and by that vehicle in environment
 - Motion of vehicle typically described by: position, orientation/attitude, velocity
- Applied to flight vehicles → flight dynamics and control (FDC): subject of course
 - Differentiating factor in FDC: flight vehicles affected by three external forces: gravity, propulsion, and aerodynamics
 - · Ground vehicles experience ground forces
 - Water vehicles experience hydrodynamics

Pilot and Control

 Flying vehicles designed for operator of flight vehicle, a.k.a. pilot, affects aerodynamic and propulsive forces and moments imparted on flight vehicle

Pilot and Control

- Flying vehicles designed for operator of flight vehicle, a.k.a. pilot, affects aerodynamic and propulsive forces and moments imparted on flight vehicle
- Allows control, i.e. pilot directly affects vehicle's dynamics

Pilot and Control

- Flying vehicles designed for operator of flight vehicle, a.k.a. pilot, affects aerodynamic and propulsive forces and moments imparted on flight vehicle
- Allows control, i.e. pilot directly affects vehicle's dynamics
- Control of flight vehicle:
 - Manual control: completely performed by human
 - Automatic control: completely performed by computer
 - Semi-Automatic control: partially performed by human and computer
- Module: classical control theory reviewed and applied to control of flight vehicles
 - Later module: modern control theory introduced and applied to control of flight vehicles

Basic Components of Conventional Airplane

Powered fixed-wing aircraft

- Nose: front of airplane
 - Houses cockpit: pilot(s) and/or other operators located

- Nose: front of airplane
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: tubular structure of airplane
 - Houses payload, fuel/batteries, avionics (i.e. aviation electronics)

- Nose: front of airplane
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: tubular structure of airplane
 - Houses payload, fuel/batteries, avionics (i.e. aviation electronics)
- Main wings: extend horizontally out of fuselage
 - Generate majority of lift force to overcome vehicle's weight and fly
 - May have two wings:
 - Tandem wings: front-and-back wings
 - Biplane: stacked wings

- Nose: front of airplane
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: tubular structure of airplane
 - Houses payload, fuel/batteries, avionics (i.e. aviation electronics)
- Main wings: extend horizontally out of fuselage
 - Generate majority of lift force to overcome vehicle's weight and fly
 - May have two wings:
 - Tandem wings: front-and-back wings
 - Biplane: stacked wings
- Engine/motor produces thrust forces, controlled by pilot
 - Mounted on wings, empennage, or nose
 - Propeller: rotating airfoil-section blades creating swirling slipstream

Empennage Design

- Empennage: rear section of airplane
 - Creates aerodynamic effects to stabilize and steer airplane

Empennage Design

- Empennage: rear section of airplane
 - · Creates aerodynamic effects to stabilize and steer airplane

- Horizontal tail: produces up or down lift force
 - Static horizontal stabilizer: maintain horizontal stability
 - Dynamic **elevator**: steer airplane

Empennage Design

- Empennage: rear section of airplane
 - Creates aerodynamic effects to stabilize and steer airplane

- Horizontal tail: produces up or down lift force
 - Static horizontal stabilizer: maintain horizontal stability
 - Dynamic elevator: steer airplane
- Vertical tail produces left or right side force to steer airplane
 - Static vertical stabilizer: maintain vertical stability
 - Dynamic **rudder**: steer airplane

- Some airplanes may be tailless: no other horozontal lifting surface besides main wing
 - I.e. no horizontal tail, canard or tandem wing
 - May have vertical tail

- Some airplanes may be tailless: no other horozontal lifting surface besides main wing
 - I.e. no horizontal tail, canard or tandem wing
 - May have vertical tail
- Tailless airplanes use compound ailerons/elevator control surfaces called elevons or tailerons

- Some airplanes may be tailless: no other horozontal lifting surface besides main wing
 - I.e. no horizontal tail, canard or tandem wing
 - May have vertical tail
- Tailless airplanes use compound ailerons/elevator control surfaces called elevons or tailerons
- Flying wing: tailless airplane without distinct fuselage

- Some airplanes may be tailless: no other horozontal lifting surface besides main wing
 - I.e. no horizontal tail, canard or tandem wing
 - May have vertical tail
- Tailless airplanes use compound ailerons/elevator control surfaces called elevons or tailerons
- Flying wing: tailless airplane without distinct fuselage
- Some airplanes allow entire horizontal tail to move: compound horizontal stabilizer/elevator called stabilator

- Some airplanes may be tailless: no other horozontal lifting surface besides main wing
 - I.e. no horizontal tail, canard or tandem wing
 - May have vertical tail
- Tailless airplanes use compound ailerons/elevator control surfaces called elevons or tailerons
- Flying wing: tailless airplane without distinct fuselage
- Some airplanes allow entire horizontal tail to move: compound horizontal stabilizer/elevator called stabilator
- Some airplanes may use canard, i.e. forward horizontal stabilizer and elevator, either in addition or instead of rear horizontal tail

Primary Control Surface: Elevator

- Elevator: mounted on trailing edge of horizontal tail
- Primary pitch angle, θ , control input
 - Deflection angle, δ_e : upwards pushes airplane's nose up

Primary Control Surface: Rudder

- Rudder: mounted on trailing edge of vertical tail
- Primary yaw angle, ψ , control input
 - Deflection angle, δ_r : right pushes airplane's nose right

Primary Control Surface: Ailerons

- Ailerons: mounted on trailing edge of wings near tips
 - Differential pair of surfaces, i.e. if one deflects up, other deflects down
- Primary roll angle, ϕ , control input
 - Deflection angle, δ_a : airplane rolls to side that deflects up

Other Empennage Configurations

T-tail:

Other Empennage Configurations

T-tail:

Cruciform tail

Other Empennage Configurations

T-tail:

Cruciform tail

- H-tail, a.k.a. twin tail
 - Twin tails may be mounted on: fuselage, two booms extending from wing, or wings themselves

V-tail:

V-tail:

Inverted V-tail

V-tail:

Inverted V-tail

X-tail

V-tail:

Inverted V-tail

X-tail

Y-tail

Compound Horizontal/Vertical Empennage (continued)

- A-tail
 - Typically mounted on twin booms

Compound Horizontal/Vertical Empennage (continued)

- A-tail
 - Typically mounted on twin booms

Empennage configurations use compound rudder and elevator control surfaces:
 ruddervator

Secondary Control Surfaces

- Spoilers: hinged flat plates attached to wing facing oncoming airflow
 - "Spoil" lift on wing when rotated up from surface of wing
 - Typically used as speed brake, sometimes for roll control with or without ailerons

Secondary Control Surfaces

- Spoilers: hinged flat plates attached to wing facing oncoming airflow
 - "Spoil" lift on wing when rotated up from surface of wing
 - Typically used as speed brake, sometimes for roll control with or without ailerons
- Slats & Flaps: mechanized leading & trailing edges of wings
 - Extended/retracted from nominal wing shape, changing airfoil cross-sectional shape and effectively increasing/decreasing lift potential of wing with higher/lower induced drag
 - Primarily extended during takeoff and landing, not dynamically active control surfaces

Basic Components of Conventional Helicopter

• Powered rotary-wing aircraft without propellers:

- Nose: front of helicopter
 - Houses cockpit: pilot(s) and/or other operators located

- Nose: front of helicopter
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: structure of helicopter beneath main rotor
 - · Houses payload, fuel/batteries, and avionics

- Nose: front of helicopter
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: structure of helicopter beneath main rotor
 - Houses payload, fuel/batteries, and avionics
- Main rotor: rotating blades
 - Provides lift to overcome vehicle's weight and fly
 - Lift changed by rotor's angular velocity
 Or rotor's angle of attack: collectively or cyclically, i.e. at different parts of rotation cycle

- Nose: front of helicopter
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: structure of helicopter beneath main rotor
 - Houses payload, fuel/batteries, and avionics
- Main rotor: rotating blades
 - Provides lift to overcome vehicle's weight and fly
 - Lift changed by rotor's angular velocity
 Or rotor's angle of attack: collectively or cyclically, i.e. at different parts of rotation cycle
- Angle of attack acutated through swashplate mounted on rotor mast or through rotor servo flaps
 - Adjustment to relative blade angle of attack allows for forward and lateral movement of helicopter

- Nose: front of helicopter
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: structure of helicopter beneath main rotor
 - · Houses payload, fuel/batteries, and avionics
- Main rotor: rotating blades
 - Provides lift to overcome vehicle's weight and fly
 - Lift changed by rotor's angular velocity
 Or rotor's angle of attack: collectively or cyclically, i.e. at different parts of rotation cycle
- Angle of attack acutated through swashplate mounted on rotor mast or through rotor servo flaps
 - Adjustment to relative blade angle of attack allows for forward and lateral movement of helicopter
- Optional stabilizer bar sits above and across main rotor blade
 - Dampens unwanted vibrations in main rotor, helping to stabilize helicopter in all flight conditions

ixed-Wing Aircraft Rotary-Wing Aircraft Launch Vehicle Artificial Satellite Phases of Flight Celestial and Earth Frames Vehicle Fram

Basic Components of Conventional Helicopter (continued)

- Nose: front of helicopter
 - Houses cockpit: pilot(s) and/or other operators located
- Fuselage: structure of helicopter beneath main rotor
 - Houses payload, fuel/batteries, and avionics
- Main rotor: rotating blades
 - Provides lift to overcome vehicle's weight and fly
 - Lift changed by rotor's angular velocity

Or rotor's angle of attack: **collectively** or **cyclically**, i.e. at different parts of rotation cycle

- Angle of attack acutated through swashplate mounted on rotor mast or through rotor servo flaps
 - Adjustment to relative blade angle of attack allows for forward and lateral movement of helicopter
- Optional **stabilizer bar** sits above and across main rotor blade
 - Dampens unwanted vibrations in main rotor, helping to stabilize helicopter in all flight conditions
- Second tail rotor allows for directional control of helicopter
 - Required to negate angular momentum produced by main rotor blades on helicopter

Other Helicopter Configuration

 Helicopters designed to cancel out rotary-wing angular momentum through tail rotors as shown

Or **counter-rotating rotors**, i.e. pairs of rotors which rotate in opposite directions to counter each other's angular momentum

Other Helicopter Configuration

- Helicopters designed to cancel out rotary-wing angular momentum through tail rotors as shown
 - Or **counter-rotating rotors**, i.e. pairs of rotors which rotate in opposite directions to counter each other's angular momentum
- Tandem rotor configuration:

Other Helicopter Configuration

 Helicopters designed to cancel out rotary-wing angular momentum through tail rotors as shown

Or **counter-rotating rotors**, i.e. pairs of rotors which rotate in opposite directions to counter each other's angular momentum

Tandem rotor configuration:

Coaxial rotors configuration:

Other Helicopter Configuration (continued)

Multirotor (≥ 3) configurations, e.g., quadrotor

Other Helicopter Configuration (continued)

Multirotor (≥ 3) configurations, e.g., quadrotor

- With > 4 rotors: do not require any rotor angle of attack control
 - Angular velocities of each rotor allow for total motion control

Other Helicopter Configuration (continued)

• Multirotor (\geq 3) configurations, e.g., quadrotor

- With ≥ 4 rotors: do not require any rotor angle of attack control
 - Angular velocities of each rotor allow for total motion control
- Tricopter: 3-rotor configuration, one rotor allowed to rotate about arm to provide thrust force with some horizontal component

Basic Components of Launch Vehicle

- Nose cone: front of launch vehicle
 - Houses fairing
 - Typically for payload, may include crew

- Nose cone: front of launch vehicle
 - Houses fairing
 - Typically for payload, may include crew
- Fuselage: tubular structure of launch vehicle
 - Houses avionics, fuel, oxidizer, rocket engine

- Nose cone: front of launch vehicle
 - Houses fairing
 - Typically for payload, may include crew
- Fuselage: tubular structure of launch vehicle
 - · Houses avionics, fuel, oxidizer, rocket engine
- Fins: both stabilizing and tail, produce up or down lift force to steer launch vehicle
 - Some may have only tail fins
 - Some may have control surfaces: rudders

- Nose cone: front of launch vehicle
 - Houses fairing
 - · Typically for payload, may include crew
- Fuselage: tubular structure of launch vehicle
 - · Houses avionics, fuel, oxidizer, rocket engine
- Fins: both stabilizing and tail, produce up or down lift force to steer launch vehicle
 - Some may have only tail fins
 - Some may have control surfaces: rudders
- Rocket engine projects reaction mass through nozzle to produce thrust force to overcome vehicle's weight and fly
 - May have thrust vectoring capabilities for control

Basic Components of Artificial Satellite

Basic Components of Artificial Satellite (continued)

Housing:

- Rocket engine
- Fuel tanks
- Thermal controller
- Flight computer
- Radio: communicates between satellite and ground control station and/or other satellites
- Antenna converts radio's electrical signal to radio waves and vice versa

Basic Components of Artificial Satellite (continued)

- Housing:
 - Rocket engine
 - Fuel tanks
 - Thermal controller
 - Flight computer
 - Radio: communicates between satellite and ground control station and/or other satellites
 - Antenna converts radio's electrical signal to radio waves and vice versa
- Reaction wheels or thrusters are placed strategically on the satellite housing to provide control inputs for maintaining orbit stabilization

Basic Components of Artificial Satellite (continued)

- Housing:
 - Rocket engine
 - Fuel tanks
 - Thermal controller
 - Flight computer
 - Radio: communicates between satellite and ground control station and/or other satellites
 - Antenna converts radio's electrical signal to radio waves and vice versa
- Reaction wheels or thrusters are placed strategically on the satellite housing to provide control inputs for maintaining orbit stabilization
- Powered using batteries and solar cells mounted on satellite

Aircraft Flight Phases

- Five phases of flight: takeoff, climb, cruise, descent, landing
 - Each phase: different flight conditions including potential turns during climb, cruise, and/or descent
 - Aircraft may be configured differently at each phase, directly impacts aerodynamic forces and moments
 - E.g., for airplane takeoff/landing: flaps may be deployed and landing gear extended down

Spacecraft Flight Phases

Four phases of flight: boost, orbit(s), reentry, optional landing

Spacecraft Flight Phases

- Four phases of flight: boost, orbit(s), reentry, optional landing
- Types of orbits: ascent orbit, transfer orbit, stable orbit, descent orbit
 - Orbit changes: **orbit injection**, a.k.a. **orbit insertion**, type of orbital maneuver
 - Orbital maneuver, a.k.a burn, use of propulsion system to change orbit of spacecraft
 - Not undergoing orbital maneuver, spacecraft in coast

Types of Orbital Maneuvers

- ullet Orbital maneuvers cause some amount of change in velocity: Δv
 - Impulsive manuever: use burn to generate particular Δv almost instantaneously
 - E.g., **Oberth maneuver**: use burn close to gravitational bodies to increase final velocity
 - Non-impulsive maneuver, a.k.a. finite burn: momentum changing slowly over long time
 - Gravity assist maneuver: use gravitational bodies to accelerate vehicle instad of burn

Types of Orbital Maneuvers

- Orbital maneuvers cause some amount of change in velocity: Δv
 - Impulsive manuever: use burn to generate particular Δv almost instantaneously
 - E.g., **Oberth maneuver**: use burn close to gravitational bodies to increase final velocity
 - Non-impulsive maneuver, a.k.a. finite burn: momentum changing slowly over long time
 - Gravity assist maneuver: use gravitational bodies to accelerate vehicle instad of burn
- Orbital parameter changes
 - E.g., Orbit inclination manuever: change spacecraft's inclination
 - E.g., Orbit phasing maneuver: change spacecraft's true anomaly

Types of Orbital Maneuvers

- Orbital maneuvers cause some amount of change in velocity: Δv
 - Impulsive manuever: use burn to generate particular Δv almost instantaneously
 - E.g., **Oberth maneuver**: use burn close to gravitational bodies to increase final velocity
 - Non-impulsive maneuver, a.k.a. finite burn: momentum changing slowly over long time
 - Gravity assist maneuver: use gravitational bodies to accelerate vehicle instad of burn
- Orbital parameter changes
 - E.g., Orbit inclination manuever: change spacecraft's inclination
 - E.g., Orbit phasing maneuver: change spacecraft's true anomaly
- Rendezvous maneuver: coordination of two spacecraft called the "chaser" and "target" arriving at same orbit and approaching to very close relative distance
 - Often accompanied by other maneuvers, e.g., coordinated operations in close proximity, docking, undocking: rendezvous, proximity operations, docking, and undocking (RPODU) procedures
 - Low-thrust relative transfer: chaser covers specific distance relative to target using continuous low-thrust propulsion

Missile Flight Phases

 Missiles typically have some combination of flight phases similar to aircraft and spacecraft depending on the trajectory design

Missile Flight Phases

- Missiles typically have some combination of flight phases similar to aircraft and spacecraft depending on the trajectory design
- Cruise missiles: achieve flight through aerodynamic lift for majority of flight plan
 - Flight phases: **boost**, cruise, and terminal

Missile Flight Phases

- Missiles typically have some combination of flight phases similar to aircraft and spacecraft depending on the trajectory design
- Cruise missiles: achieve flight through aerodynamic lift for majority of flight plan
 - Flight phases: **boost**, cruise, and terminal
- Ballistic missiles: unpowered during the majority of their flight plan
 - Flight phases: boost, coast, reentry if it entered space, and terminal

Missile Flight Phases

- Missiles typically have some combination of flight phases similar to aircraft and spacecraft depending on the trajectory design
- Cruise missiles: achieve flight through aerodynamic lift for majority of flight plan
 - Flight phases: **boost**, cruise, and terminal
- Ballistic missiles: unpowered during the majority of their flight plan
 - Flight phases: boost, coast, reentry if it entered space, and terminal
- Modern missile systems: exhibit more elaborate flight plans
 - Skip phase: additional atmospheric exit and reentry
 - Glide phase: Long duration of unpowered atmospheric flight

- Flight vehicles operate either in or outside of atmospheres of celestial bodies
 - Each has own gravitational motion

- Flight vehicles operate either in or outside of atmospheres of celestial bodies
 - Each has own gravitational motion
- General relativity implies no true inertial frames around gravitating bodies: use of International Celestial Reference Frame (ICRF) allows definition of positions of astronomical objects
 - ICRF based on hundreds of extra-galactic radio sources, mostly quasars, distributed around entire sky

- Flight vehicles operate either in or outside of atmospheres of celestial bodies
 - Each has own gravitational motion
- General relativity implies no true inertial frames around gravitating bodies: use of International Celestial Reference Frame (ICRF) allows definition of positions of astronomical objects
 - ICRF based on hundreds of extra-galactic radio sources, mostly quasars, distributed around entire sky
- ICRF does not exhibit any measurable angular rotation since extragalactic sources used to define ICRF so far away and appear stationary to any sensing technology
 - Positions can be measured very accurately by Very Long Baseline Interferometry (VLBI)
 - Positions of most known to 1 milliarcsecond or better

Fixed-Wing Aircraft Rotary-Wing Aircraft Launch Vehicle Artificial Satellite Phases of Flight Celestial and Earth Frames Vehicle Frames E

- Flight vehicles operate either in or outside of atmospheres of celestial bodies
 - Each has own gravitational motion
- General relativity implies no true inertial frames around gravitating bodies: use of International Celestial Reference Frame (ICRF) allows definition of positions of astronomical objects
 - ICRF based on hundreds of extra-galactic radio sources, mostly quasars, distributed around entire sky
- ICRF does not exhibit any measurable angular rotation since extragalactic sources used to define ICRF so far away and appear stationary to any sensing technology
 - Positions can be measured very accurately by Very Long Baseline Interferometry (VLBI)
 - Positions of most known to 1 milliarcsecond or better
- ICRF origin: barycenter of Solar System, not center of sun
- ICRF axes: "show no global rotation with respect to set of distant extragalactic objects"

- In flight dynamics: understand vehicle's motion relative to celestial body whose gravitational force forcing orbit or resisting flight on vehicle
 - E.g., sun-centered frame, a.k.a. heliocentric, moon-centered

- In flight dynamics: understand vehicle's motion relative to celestial body whose gravitational force forcing orbit or resisting flight on vehicle
 - E.g., sun-centered frame, a.k.a. heliocentric, moon-centered
- Earth most orbited celestial body, course consider Earth-centered frames
 - Two different types

- In flight dynamics: understand vehicle's motion relative to celestial body whose gravitational force forcing orbit or resisting flight on vehicle
 - E.g., sun-centered frame, a.k.a. heliocentric, moon-centered
- Earth most orbited celestial body, course consider Earth-centered frames
 - Two different types
- (1) Earth-Centered Inertial (ECI) frame (subscript I):
 - For spacecraft orbiting around Earth where Sun's gravity negligible and high fidelity dynamic models of aircraft traveling long distances

- In flight dynamics: understand vehicle's motion relative to celestial body whose gravitational force forcing orbit or resisting flight on vehicle
 - E.g., sun-centered frame, a.k.a. heliocentric, moon-centered
- Earth most orbited celestial body, course consider Earth-centered frames
 - Two different types
- (1) Earth-Centered Inertial (ECI) frame (subscript I):
 - For spacecraft orbiting around Earth where Sun's gravity negligible and high fidelity dynamic models of aircraft traveling long distances
 - Origin: Earth's center of mass
 - x_{l} -, y_{l} -, z_{l} -axes: same as ICRF

Earth-Centered, Earth-Fixed Frame

- (2) Earth-Centered, Earth-Fixed (ECEF) frame (subscript E): attached to Earth's surface:
 - Rotates with Earth's surface, i.e. coordinates of point on surface of Earth do not change

Earth-Centered, Earth-Fixed Frame

- (2) Earth-Centered, Earth-Fixed (ECEF) frame (subscript E): attached to Earth's surface:
 - Rotates with Earth's surface, i.e. coordinates of point on surface of Earth do not change
 - Origin: Earth's center of mass
 - x_E-axis passes through intersection of prime meridian and equator
 - Located just south of west Africa
 - y_E -axis: orthogonal to both x_E and z_E -axes according to right-hand-rule located just south of India along the equator.
 - z_E-axis passes through true north
 - Does not coincide with Earth's instantaneous rotational axis because of Earth's wobble, but average

- Important detail discussing Earth frames: surface of Earth not perfectly spherical
 - Not fully geometrically realizable shape at all

- Important detail discussing Earth frames: surface of Earth not perfectly spherical
 - Not fully geometrically realizable shape at all
- Earth's center of mass and surface change with time

- Important detail discussing Earth frames: surface of Earth not perfectly spherical
 - Not fully geometrically realizable shape at all
- Earth's center of mass and surface change with time
- Discipline of geodesy: study of Earth's shape and center of mass

- Important detail discussing Earth frames: surface of Earth not perfectly spherical
- Not fully geometrically realizable shape at all
- Earth's center of mass and surface change with time
- Discipline of geodesy: study of Earth's shape and center of mass
- Typically uses two different approximations for Earth's shape: geoid and reference ellipsoid

- Important detail discussing Earth frames: surface of Earth not perfectly spherical
 - Not fully geometrically realizable shape at all
- · Earth's center of mass and surface change with time
- Discipline of geodesy: study of Earth's shape and center of mass
- Typically uses two different approximations for Earth's shape: geoid and reference ellipsoid
- Geoid: idealized equilibrium surface of Earth's gravitational potential
 - Varies according to crust formation
 - A.k.a. International Terrestrial Reference Frame (ITRF)

- Reference ellipsoid approximates geoid
 - Equatorial radius, R_e , longer than polar radius, R_p
 - A.k.a. oblate spheroid

- Reference ellipsoid approximates geoid
 - Equatorial radius, R_e , longer than polar radius, R_p
 - A.k.a. oblate spheroid
- Common model: World Geodetic System (WGS)
 - Traditional coordinates used for reference ellipsoid are latitude, longitude, and altitude, (LLA) which are also called geodetic coordinates

- Reference ellipsoid approximates geoid
 - Equatorial radius, R_e , longer than polar radius, R_p
 - A.k.a. oblate spheroid
- Common model: World Geodetic System (WGS)
 - Traditional coordinates used for reference ellipsoid are latitude, longitude, and altitude, (LLA) which are also called geodetic coordinates
 - Zero longitude: prime meridian
 - Zero latitude: equator
 - Zero altitude: mean sea level (MSL)
 - Ideal continuous surface of ocean in absence of currents and air pressure variations, surface continues under continental masses

- Reference ellipsoid approximates geoid
 - Equatorial radius, R_e , longer than polar radius, R_p
 - A.k.a. oblate spheroid
- Common model: World Geodetic System (WGS)
 - Traditional coordinates used for reference ellipsoid are latitude, longitude, and altitude, (LLA) which are also called geodetic coordinates
 - Zero longitude: prime meridian
 - Zero latitude: equator
 - Zero altitude: mean sea level (MSL)
 - Ideal continuous surface of ocean in absence of currents and air pressure variations, surface continues under continental masses
- Geodetic coordinates = ellipsoidal coordinates, require ellipsoidal trigonometry
 - Latitude angle does not define angle between Earth's center and point on surface
 - Altitude does not align with Earth's center unless at equator or pole
 - Both have analytical offset

Local Tangent Plane

- Local tangent plane (LTP), a.k.a. topocentric frame, (subscript T): tangent to reference ellipsoid,
 - Describes aircraft's immediate motion relative to Earth's surface

Local Tangent Plane

- Local tangent plane (LTP), a.k.a. topocentric frame, (subscript T): tangent to reference ellipsoid,
 - Describes aircraft's immediate motion relative to Earth's surface
 - Origin: tangent point with ECEF at specified latitude, ℓ , longitude, λ , and altitude, h
 - East-west axis, i.e. tangent to latitude parallels
 - North-south axis, i.e. tangent to longitudinal meridians
 - Up-down axis, i.e. normal to reference ellipsoid

Local Tangent Plane

- Local tangent plane (LTP), a.k.a. topocentric frame, (subscript T): tangent to reference ellipsoid,
 - Describes aircraft's immediate motion relative to Earth's surface
 - Origin: tangent point with ECEF at specified latitude, ℓ , longitude, λ , and altitude, h
 - East-west axis, i.e. tangent to latitude parallels
 - North-south axis, i.e. tangent to longitudinal meridians
 - Up-down axis, i.e. normal to reference ellipsoid
- Two common right-handed LTP axes:
 - East-North-Up (ENU) frame
 - North-East-Down (NED) frame

Relationship between ECEF, LLA, LTP

- Navigation frame (subscript N):
 - Describing long-term motion of flight vehicle

- Navigation frame (subscript N):
 - Describing long-term motion of flight vehicle
 - Origin: flying vehicle's center of mass G
 - x_{N^-} , y_{N^-} , z_{N^-} axes: same as instantaneous LTP

- Navigation frame (subscript N):
 - Describing long-term motion of flight vehicle
 - Origin: flying vehicle's center of mass G
 - x_N-, y_N-, z_N-axes: same as instantaneous LTP
 - Can be ENU or NED: NED traditionally used for flight vehicles as objects of interest typically below

- Navigation frame (subscript N):
 - Describing long-term motion of flight vehicle
 - Origin: flying vehicle's center of mass G
 - x_N -, y_N -, z_N -axes: same as instantaneous LTP
 - Can be ENU or NED: NED traditionally used for flight vehicles as objects of interest typically below
- Alternative for orbiting satellites: local vertical local-horizontal (LVLH) frame (subscript L)
 - Origin: flying vehicle's center of mass G
 - x_L -axis, a.k.a. **local vertical axis**: directed towards center of Earth
 - y_L -axis, a.k.a. **local horizontal axis**: orthogonal to y_L and z_L -axes forming right-handed coordinate frame
 - z_L-axis directed along angular momentum vector of flight vehicle, e.g., orthogonal to orbital plane

- Navigation frame (subscript N):
 - Describing long-term motion of flight vehicle
 - Origin: flying vehicle's center of mass G
 - x_N -, y_N -, z_N -axes: same as instantaneous LTP
 - Can be ENU or NED: NED traditionally used for flight vehicles as objects of interest typically below
- Alternative for orbiting satellites: local vertical local-horizontal (LVLH) frame (subscript L)
 - Origin: flying vehicle's center of mass G
 - x_L -axis, a.k.a. **local vertical axis**: directed towards center of Earth
 - y_L -axis, a.k.a. **local horizontal axis**: orthogonal to y_L and z_L -axes forming right-handed coordinate frame
 - z_L-axis directed along angular momentum vector of flight vehicle, e.g., orthogonal to orbital plane
 - Vertical axes of navigation and LVLH frames differ because down for LTP does not always intersect Earth's center of mass

Body-Fixed Frame

- Body-fixed frame (subscript B): attached to flying vehicle's body structure
 - 1 Origin: flying vehicle's center of gravity G
 - 2 x_B axis: points out front of flying vehicle, typically "along" the nominal path of travel, a.k.a. longitudinal axis
 - y_B axis: points out the right side of flying vehicle, a.k.a. **lateral axis**
 - z_B axis: points straight beneath flying vehicle, a.k.a. vertical axis
 - Ideal for geometric configuration and structural modeling

Wind Frame

- Wind frame (subscript W): relates free-stream airflow that aircraft encounters as it flys
 - 1 Origin: aircraft's center of gravity G
 - 2 x_W axis: colinear with free-stream airflow \vec{v}_{∞}
 - 3 z_W axis: plane of symmetry of aircraft, positive below aircraft
 - \mathbf{q} y_W axis: perpendicular to both
 - 5 Ideal for aerodynamics modeling (particular to aircraft dynamics and control)

Wind Frame and Speed Vectors

- Aircraft velocity: \vec{v}_{∞}
 - Velocity relative to air mass aircraft traveling through
 - I.e. free-stream airspeed vector

Wind Frame and Speed Vectors

- Aircraft velocity: \vec{v}_{∞}
 - Velocity relative to air mass aircraft traveling through
 - I.e. free-stream airspeed vector
- Different than velocity of aircraft w.r.t. planet's surface, i.e. ground speed vector: \vec{v}_g

Wind Frame and Speed Vectors

- Aircraft velocity: \vec{v}_{∞}
 - Velocity relative to air mass aircraft traveling through
 - I.e. free-stream airspeed vector
- Different than velocity of aircraft w.r.t. planet's surface, i.e. **ground speed** vector: \vec{v}_g
- Velocity vectors related through wind speed vector, \vec{v}_w :

$$\vec{\mathbf{v}}_g = \vec{\mathbf{v}}_{\infty} + \vec{\mathbf{v}}_{w} \tag{1}$$

- A.k.a. wind triangle
- \vec{v}_w : velocity of air mass relative to ground

- Many different aerospace vehicles
 - Aircraft
 - Spacecraft
 - Airborne/spaceborne projectiles
 - Hybrids

- Many different aerospace vehicles
 - Aircraft
 - Spacecraft
 - Airborne/spaceborne projectiles
 - Hybrids
- Many different designs and components
 - Affects plant modeling and control/acuation inputs

- Many different aerospace vehicles
 - Aircraft
 - Spacecraft
 - Airborne/spaceborne projectiles
 - Hybrids
- Many different designs and components
 - Affects plant modeling and control/acuation inputs
- Influenced by:
 - Gravity
 - Propulsion
 - Aerodynamics

- Many different aerospace vehicles
 - Aircraft
 - Spacecraft
 - Airborne/spaceborne projectiles
 - Hybrids
- Many different designs and components
 - Affects plant modeling and control/acuation inputs
- Influenced by:
 - Gravity
 - Propulsion
 - Aerodynamics
- Aerospace vehicles operate in many different frames
 - Celestial "inertial" frame
 - Earth-centered frames
 - Reference ellipsoid
 - Local vehicle-centered frames