Lecture 10: PCA, Model Selection

Nancy R. Zhang

Statistics 203, Stanford University

February 11, 2010

European Jobs Data

Percentage of jobs for 26 European countries in following industries:

- Oountry: Name of country
- 2 Agr: agriculture
- Min: mining
- Man: manufacturing
- PS: power supply industries
- Con: constructionSI: service industries
- Fin: finance
- SPS: social and personal services
- TC: transport and communications

Data collected in 1979.

Handwritten Digits

Handwritten digits, automatically scanned from envelopes by the U.S. Postal Service in 16 x 16 grayscale images (Le Cun et al., 1990) Here is a sampling of 130 3's. A total of 638 3's analyzed.

Principal Components

Principal components is a useful way to explore high dimensional data.

- Does not distinguish between "predictor" and "response".
- Look for "meaningful" linear projections of the data.

What do we mean by "meaningful"?

• "best fitting hyperplane":

$$\min_{\mu,\{\beta_i\},V_k} \sum_{i=1}^N \|x_i - \mu - V_k \beta_i\|^2.$$

• Direction of maximum variation (more on next slide).

Direction of maximum variation

Your data is $n \times p$ matrix X, containing n data points of dimension p. (For example, European jobs data has p = 9, n = 26. X must first be centered to have columns of mean 0. Find $v \in \Re^p$, such that:

$$||v||=1$$
,

and

$$Var(Xv)$$
 is maximized.

The vector that satisfies the above is called the first principal component. Since

$$Var(Xv) = v'(X - \bar{X})'(X - \bar{X})v$$

= $v'\Sigma_X v$,

where Σ_X is the sample covariance matrix of X, then the first principal component is simply the eigenvector of Σ_X corresponding to its largest eigenvalue.

The first k principal components

You may want to find the k directions of maximum variation. Let

$$v_1 = \operatorname{argmax}_{\|v\|=1} Var(Xv)$$

be the first principal component. The second principal component is defined as:

$$v_2 = \operatorname{argmax}_{\|v\|=1, v'v_1=0} Var(Xv),$$

that is, the direction of maximal variation that is orthogonal to v_1 .

The $3, 4, \ldots, k$ principal components can be defined recursively in this way. They correspond to the k eigenvectors corresponding to the k largest eigenvalues of Σ_X .

Practical Implementation

In \mathbb{R} , and most other software, principal components are computed by the Singular Value Decomposition (SVD) of X, which gives:

$$X = UDV'$$

where

$$U: \quad n \times p \quad \text{orthonormal columns}$$

$$D: \quad p \times p \quad \text{diagonal},$$

$$V: \quad p \times p \quad \text{orthonormal}.$$

The columns of V are the principal component vectors, also called "loadings". The columns of U are sometimes called "scores". The magnitude of projection of X on V are in the columns of UD. The diagonal elements of D are the variances along the principal component vectors.

Every $n \times p$ matrix X can be decomposed in this way. What is the maximum number of principal components?

Interpretation of Principal components

- If the variances of the principal components drop off quickly, then X is highly colinear.
- 2 To reduce the dimensionality of the data, we keep only the principal components with highest d_i .
- The principal vectors are derived projections of the data, and may not have a specific meaning.

The scree plot, which shows d_i versus i, is useful:

Some measures of collinearity

Important: must first scale X so that all columns have variance 1. Why?

Condition number

$$\kappa = \sqrt{\frac{d_1}{d_p}},$$

large κ means strong collinearity.

2 Less used: $\sum_{j=1}^{p} \frac{1}{d_j}$, large sum means strong collinearity.

Another measure (more details in book):

$$VIF_j = \frac{1}{1 - R_j^2},$$

where R_j is the multiple correlation coefficient from regressing X_j on all other variables.

European Jobs Data

PC1: $0.89 \times AGR - 0.27 \times Man - 0.192 \times SI - 0.298 \times SPS$ PC2: $0.77 \times Man - 0.234 \times SI - 0.13 \times FIN - 0.567 \times SPS$

Handwritten Digits

n=638, p=256 for 638 gray scale images, each of size 16×16 . Here are the first 2 principal components.

Model Selection Outline

- How to compare two non-nested models?
 - Bias variance trade-off
 - 2 C_p
 - AIC
 - Oross-validation
 - BIC
- 4 How to search the space of possible models?
 - Step-wise search
 - Best subsets
 - LASSO
 - Bayesian methods

Training versus Test Performance

Given $n \times p$ matrix X and response Y, we obtain a fitted model:

$$\hat{Y}=\hat{f}_{X,Y}(X).$$

For example, in the linear regression models we have been studying,

$$\hat{f}_{X,Y}(X) = X\hat{\beta}_{X,Y} = X(X'X)^{-1}X'Y.$$

The predicted values for Y are based on regression parameters that were fit using X, Y.

How would the model perform on unseen data?

$$EPE \equiv E[Y_{new} - \hat{Y}_{new}]^2$$
 ?

The expectation is taken over everything that is random:

$$X, Y, X_{new}, Y_{new}$$
.

Good training performance does not imply good test performance.

Bias-Variance Trade-off

X, Y used to fit the model are called "training data", and "unseen" data used to estimate prediction error are called "test data".

Truth:
$$y = f(x) + \epsilon$$
, $Var(\epsilon) = \sigma^2$.
Estimate $f(\cdot)$ using $\hat{f}_{X,Y}$.

$$\begin{split} \textit{EPE} & \equiv & E[Y_{\text{new}} - \hat{Y}_{\text{new}}]^2 \\ & = & E[Y_{\text{new}} - \hat{f}_{X,Y}(X_{\text{new}})]^2 \\ & = & E[(Y_{\text{new}} - f(X_{\text{new}})) + (f(X_{\text{new}}) - E\hat{f}_{X,Y}(X_{\text{new}})) + (E\hat{f}_{X,Y}(X_{\text{new}}) - \hat{f}_{X,Y}(X_{\text{new}}))]^2 \\ & = & E[Y_{\text{new}} - f(X_{\text{new}})]^2 + E[f(X_{\text{new}}) - E\hat{f}_{X,Y}(X_{\text{new}})]^2 \\ & + E[E\hat{f}_{X,Y}(X_{\text{new}}) - \hat{f}_{X,Y}(X_{\text{new}})]^2 \\ & = & \sigma^2 + (\mathsf{Model bias})^2 + \mathsf{Model variance} \end{split}$$

As model complexity increases, bias *decreases* while variance *increases*. How to achieve a balance?

Bias-Variance Trade-off

If you care more about $\hat{\beta}$:

$$MSE \equiv E[\beta - \hat{\beta}]^{2} = [E(\hat{\beta}) - \beta]^{2} + E[\hat{\beta} - E(\hat{\beta})]^{2}$$
$$= Bias(\hat{\beta})^{2} + Var(\hat{\beta}).$$

For linear regression, assuming that you've got the correct model, the least squares estimates had 0 bias:

$$E[\hat{\beta}] = \beta,$$

SO

$$MSE = Var(\hat{\beta}).$$

In a multiple regression, for any $\hat{\beta}_i$:

$$MSE(\hat{\beta}_i) = Var(\hat{\beta}_i) = \frac{\sigma^2}{\|r_{i,\ i}\|^2},$$

where $r_{i,i}$ are the residuals of regression X_i on all other predictors.

Estimating the prediction error

- Asymptotic approximations
 - ▶ Mallows *C_p*:

$$C_p = SSE + 2p\hat{\sigma}^2,$$

where p is the number of predictors. This is an unbiased estimate for EPE.

Akaike's Information Criterion:

$$AIC = -2loglik + 2p.$$

Reduces to C_p for linear models. Will be useful later for non-linear models.

Cross-validation (next slide)

Select the model that *minimizes* the C_p or AIC.

The BIC is another useful model selection criterion, but is *not* based on prediction error (more later).

Cross-Validation

Idea: Use a part of the data for training, the other part for testing.

More on the C_p

$$C_p = SSE + 2p\hat{\sigma}^2.$$

Sometimes also written as:

$$C_p = SSE + 2p\hat{\sigma}^2 - n\hat{\sigma}^2,$$

but the last term doesn't change across models.

- \circ $\hat{\sigma}^2$ is usually estimated from the largest model.
- ② Usual practice: plot C_p versus p, choose model with minimum.

Exploring the model space

Property values data:

Y: Sales price

X₁: Local taxes

 X_2 : # bathrooms X_3 : Lot size

 X_4 : Living space

X₅: Garage

 X_6 : # rooms X_7 : # bedrooms

 X_8 : Property age

 X_9 : # fireplaces

 $2^9 = 512$ possible models!

Exploring the model space

- Forward selection:
 - Start with null model.
 - 2 Repeat: add variable with the most significant F-test.
 - **3** End when no variable has F-test p-value $< \alpha$.
- Backward elimination:
 - Start with full model.
 - 2 Repeat: delete variable with the least significant F-test.
 - **3** End when all variables have F-test p-value $< \alpha$.
- Forward + Backward: Same as forward procedure, with option of deleting a variable at each step.
- 4 All subsets: possible when number of possible predictors is small (< 20).</p>