4-5 Summary

Methods on Solving:

1. Homogeneous Equations

Condition: Given an inseparable FOODE in the form

$$M(x,y) dx + N(x,y) dy = 0$$

where M(x,y) and N(x,y) are <u>homogeneous functions</u> of the same degree.

Steps:

- 1. Use the substitution y = vx or $v = \frac{y}{x}$.
- 2. Using the substitution in Step 1, find that dy = v dx + x dv (through the product rule).
- 3. Substitute dy and y with the equations that we found in Steps 1 and 2.
- 4. If the condition is met, certain terms should cancel out such that we get a separable equation.

2. Linear Equation

Condition: Given a linear FOODE that we can write in the form

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where P(x) and Q(x) are functions solely in terms of x.

Steps:

- 1. Find the integrating factor, $\mu(x) = e^{\int P(x) dx}$.
- 2. Multiply both sides by $\mu(x)$.
- 3. The LHS can then be written as an exact derivative $\frac{d}{dx}(\mu(x)y)$ (thanks to the product rule).
- 4. Integrate both sides.

3. Functions of 2 Variables

Condition: Given a FOODE in the form

$$M(x,y) dx + N(x,y) dy = 0$$

there should exist a f(x, y) such that when

$$rac{\delta f}{\delta x} = M(x,y)\,; rac{\delta f}{\delta y} = N(x,y)$$

then

$$\frac{\delta M}{\delta u} = \frac{\delta N}{\delta x}$$

Steps (Method 1):

- 1. Integrate $\frac{\delta f}{\delta x}=M(x,y)$ (with respect to x) and $\frac{\delta f}{\delta y}=N(x,y)$ (with respect to y) to get $f(x,y)=\int M(x,y)+C(x)$ and $f(x,y)=\int M(x,y)\,dx+C(x)$ and $f(x,y)=\int N(x,y)\,dy+D(y)$.
- 2. There should be common terms and uncommon terms. The uncommon terms should be the values of C(x) and D(y).

- 3. Construct the final expression using these terms.
- 4. Since M(x,y) dx + N(x,y) dy = 0 should be interpreted as df = 0, then simply equate the final expression to C.

Steps (Method 2):

- 1. Integrate $rac{\delta f}{\delta x}=M(x,y)$ (with respect to x) to get $f(x,y)=\int M(x,y)\,dx+C(x).$
- 2. We can then differentiate both sides to get $rac{\delta f}{\delta x}=M(x,y)+rac{dC}{dy}.$
- 3. We can then equate the equation found in Step 2 with $\frac{\delta f}{\delta y} = N(x,y).$
- 4. Find C(y) and then construct the final equation found from Step 1.
- 5. Since M(x,y) dx + N(x,y) dy = 0 should be interpreted as df = 0, then simply equate the final expression to C.