$$p_i(n) < C < p_c(n)$$

$$\frac{\mathtt{p_i(n)}}{2} < \pi < \frac{\mathtt{p_c(n)}}{2}$$

$$rac{\mathtt{nL_i(n)}}{2} < \pi < rac{\mathtt{nL_c(n)}}{2}$$

Si può fare di meglio: Algoritmo di archimede

$$\overline{PQ}_1 : \overline{HA} = \overline{OP} : \overline{OH}$$

$$\overline{HA}$$
 vale $L_i(n)/2$

OP vale 1

$$\overline{\mathtt{OH}} = \frac{\sqrt{4 - \mathtt{L_i(n)}}}{2}$$

Algoritmo

$$L_c(n) = \frac{2L_i(n)}{\sqrt{4 - L_i(n)}} \qquad L_i(2n) = \sqrt{2 - \sqrt{4 - L_i(n)^2}}$$

```
1 L_i, L_c = 2**0.5, 2
   iter_max, c = 10, 0
   n = 4
    while c < iter max:</pre>
        p_i, p_c = n*L_i/2, n*L_c/2
6
        print(n, p_i, p_c)
        L_i = (2 - (4-L_i**2)**0.5)**0.5
        L c = 2*L i/(4-L i**2)**0.5
        c += 1
10
        n *= 2
11
```

n	p_{i}	pc
4	2.8284271247461903	4.0
8	<u>3</u> .0614674589207187	<u>3</u> .313708498984761
16	<u>3.1</u> 21445152258053	<u>3.1</u> 825978780745285
32	<u>3.1</u> 365484905459406	<u>3.1</u> 517249074292573
64	<u>3.14</u> 0331156954739	<u>3.14</u> 41183852458905
128	<u>3.14</u> 1277250932757	<u>3.14</u> 2223629942441
256	<u>3.141</u> 5138011441455	<u>3.141</u> 750369168811
512	<u>3.141</u> 5729403678827	<u>3.141</u> 6320807039733
1024	<u>3.141</u> 587725279961	<u>3.141</u> 60251025961
2048	<u>3.14159</u> 1421504635	<u>3.14159</u> 51177430244

ovvero

esiste un numero che divide n che non sia 1 o lo stesso n?

Test di Primalità

n > 2 è primo?

$$n % d == 0$$

Algoritmo

Testare tutti i possibili divisori d

2 non divide
$$n$$

$$n = 2 \cdot \lfloor n/2 \rfloor + 1$$

$$\lfloor n/2 \rfloor \text{ non divide } n$$

$$(\lfloor n/2 \rfloor + 1)2 > n$$

$$\downarrow \qquad \qquad \downarrow$$

$$d \leq \lfloor n/2 \rfloor$$

Algoritmo

Si può fare di meglio? Se

$$\mathbf{n} = \mathbf{p_0} \mathbf{p_1} \dots \mathbf{p_k}$$

$$p_0 < p_1 < \dots < p_k$$

$$p_0 \leq \lfloor \sqrt{n} \rfloor$$

Implementazione in Python

```
1 n = 1231
3 d = 2
4 while d*d <= n and n%d != 0:
  d += 1
 6
7 if n%d == 0:
      print(False)
   else:
10 print(True)
```