6. Thermochemische Speicher

Themenübersicht

6. Thermochemische Speicher (TCS)

- 6.1 Bedarf an thermischen Energiespeichern
- 6.2 Arten von thermischen Energiespeichern
- 6.3 Thermochemische Adsorptionsspeicher (TCS)
- 6.4 TCS-Anwendung und Stand der Technik

Bedarf an thermischen Energiespeichern

49 % des Endenergieverbrauchs in Deutschland in 2016 wird für die Wärmebereitstellung eingesetzt [1]

Strom

23 %

Wärme

49 %

Verkehr

28 %

- Der EE-Anteil dabei liegt bei ca.13 %.
- Entwicklung des EE-Anteils in Sektoren: [2]
 - Strombereich: 23,5 % (2012) → 38,2 % (2018)
 - Wärmesektor: 12,6 % (2012) → 13,1 % (2018)
- Ursachen f
 ür die stagnierende Entwicklung des EE-Anteils im W
 ärmesektor sind u.a.:
 - fehlende Wärmenetze zur Verteilung von dezentral erzeugter Wärme und
 - geeignete Speichersysteme, um zeitliche Wärmeüberschüsse zu speichern und bedarfsgerecht zur Verfügung zu stellen.

3 [1] AGEE-Stat 2016 [2] AGEE-Stat 2018

Arten von thermischen Energiespeichern

- Thermische Energiespeicherung kann nach unterschiedlichen Prinzipien physikalisch oder chemisch erfolgen.
- Thermische Energiespeichersysteme werden prinzipiell in drei einander sich unterscheidenden Kategorien eingeteilt.
 - Sensibler bzw. fühlbarer Wärmespeicher (SHS)
 - Latentwärmespeicher (LHS)
 - Thermochemischer Speicher (TCS)

Sensible Wärmespeicher

- Die Wärmespeicherung erfolgt durch das Aufwärmen eines festen oder flüssigen Materials, mit der Folge, dass sich dessen "fühlbare" Temperatur beim Lade- oder Entladevorgang verändert.
- Die Menge der gespeicherten Energie
 (ΔQ) hängt von der Temperatur änderung (ΔT), der spezifischen
 Wärmekapazität (c_p) und der Masse
 (m) des Speichermediums ab.

$$\Delta Q = m \cdot c_p \cdot \Delta T$$

 Als flüssiges Speichermedium fungiert hauptsächlich H₂O und als Feststoff kommen u. a. Beton, Keramik und Gesteine zum Einsatz.

Latentwärmespeicher (LHS)

- Beim LHS wird zusätzlich zur sensiblen Wärme auch die für einen Phasenwechsel notwendige Energie (latente Wärme) eines Speichermediums (PCM) zur Wärmespeicherung genutzt.
 - In der Praxis wird üblicherweise, auf Grund der geringeren
 Volumenänderung (< 10%), der Übergang: fest ⇔ flüssig genutzt.
 - In diesem Fall entspricht die latente Wärme der Schmelz- oder Kristallisationsenthalpie (ΔH_S) des PCMs.
- Die PCM weisen eine größere latente Wärme auf, als die Wärme, die sie aufgrund ihrer normalen spezifischen Wärmekapazität (ohne den Phasenumwandlungseffekt) speichern können.

Sensible und latente Wärme

Beispiel – Wasser

Q (bei
$$\Delta T$$
 von 50 K) = 209 kJ/kg $\Delta H_S = 333,5$ kJ/kg

Die gesamte im Latentspeicher gespeicherte Energie setzt sich aus:

- sensibler (fest),
- latenter (fest ⇔ flüssig) und
- sensibler (flüssig)

Wärme aus.

$$Q_{Gesamt} = \mathbf{m} \cdot \mathbf{c_p} \cdot (T_S - T_0)$$
$$+ \mathbf{m} \cdot \Delta H_S$$
$$+ \mathbf{m} \cdot \mathbf{c_p} \cdot (T_1 - T_S)$$

Latentwärmespeichermaterialien

- Die weit verbreiteten Latentwärmespeicher sind die sogenannten Wärmekissen.
- Das dafür verwendete Speichermaterial ist Natriumacetat-Trihydrat (CH₃COONa x 3 H₂O).
- Andere Speichermaterialien sind:
 - Salzhydrate (z.B. CaCl₂ x 6H₂O)
 - Salzmischungen
 - Eisspeicher
 - Salzschmelzen (Hochtemperatur geeignet)

Natriumacetat-Trihydrat im flüssigen und im kristallisierten Zustand

Latentwärmespeicher

Vorteile:

- höhere Speicherdichte als bei sensiblen Speichern
- können Wärme über einen längeren Zeitraum speichern

Nachteile:

- "komplexer" Wärmeübergang,
- "festgelegte Arbeitstemperatur"
- hohe Kosten
- unterliegen allerdings ebenfalls dem Problem der Selbstentladung durch Wärmeverlust

Thermochemische Adsorptionsspeicher (TCS)

Adsorption

 Adsorption ist die Anlagerung von Atomen oder Molekülen eines Stoffes (Adsorptiv) an der Oberfläche eines meist festen, porösen Stoffes (Adsorbent).

Adsorbent

- In Abhängigkeit von dem beteiligten Adsorptiv und Adsorbent kann die Adsorption durch zwei unterschiedliche Arten stattfinden:
 - chemische Bindungen (Chemisorption)
 - schwache elektrostatische Kräfte, ohne strukturelle Änderung des Stoffes (Physisorption)
- Die Physisorption wird als ein Grenzfall zwischen rein physikalischem und rein chemischem Vorgang betrachtet.

Thermochemische Adsorptionsspeicher (TCS)

 Die adsorptive TCS nutzt die Energie der reversiblen Physisorption des Adsorptivs B (meistens Wasser) an der Oberfläche des Adsorbents A.

- Die Energie wird dabei nicht in Form von Wärme, sondern als potentielle Energie gespeichert.
 - treten keine thermischen Verluste während der Speicherperiode auf.
 - ermöglicht eine sehr lange Speicherdauer.
- Der Aufbau der adsorptiven Wärmespeicher lässt sich grob in offene und geschlossene thermodynamische Systeme unterteilen.

Funktionsprinzip eines offenen Systems

Offene Systeme arbeiten unter Umgebungsdruck

<u>Ladevorgang – Desorptionsphase</u>

- Zum Laden wird dem mit Adsorbent befülltem Speicher ein trockener und heißer Luftstrom (z.B. für Zeolithe ΔQ₁ mit T_D = 150 – 400 °C) zugeführt.
- Dieser erzeugt einen endothermischen Vorgang im Speicher, wodurch das dort angelagerte Wasser ausgetrieben und verdampft (desorbiert) wird.
 - Somit wird der Adsorbent energetisch beladen.

<u>Entladevorgang – Adsorptionsphase</u>

- Beim Entladevorgang wird die mit Wasserdampf beladene Luft durch den Speicher geleitet.
- Im Speicher wird der in der Luft enthaltene Wasserdampf am Adsorbent angelagert.
 - → dieser Vorgang ist exotherm.
- Durch die dabei freigesetzte Wärme wird der Adsorbent und die Luft aufgeheizt.
- Die heiße Luft verlässt den Speicher und kann für verschiedene Zwecke, u.a. für die Raumheizung und für industrielle Trocknungsprozesse genutzt werden.

Geschlossene adsorptive TCS-Systeme

Geschlossene Systeme sind i.d.R. evakuierte (luftfreie) Systeme.

 Bei solchen Systemen wird das Wasser in einem separaten Behälter gelagert und hat somit keinen Kontakt zur Umgebung.

P_R – Druck im Speicher

HV - Hauptventil

P_{V/K} – Druck im Verdampfer/Kondensator

 $p_V > p_R$

Das System ist vollständig entladen

 $\mathbf{P}_{\mathbf{V}/\mathbf{K}}$

-HV

Speichermaterialien

- Als Speichermaterial f
 ür Adsorptionsspeicher (TCM) kommen verschiedenste por
 öse Feststoffe zum Einsatz.
- Beispiele für handelsübliche und neue Speichermaterialien inklusiv der Lade- bzw. Desorptionstemperaturen sind u.a.:

•	Zeolithe	150 – 400 °C
•	Silikagele	120 – 150 °C
•	Aktivkohle/Salzhydrate-Komposite	80 – 110
•	MOFs	40 – 250 °C

- Als wesentliche Bewertungskriterien für die Eignung eines Stoffes als Speichermittel sind u.a.:
 - die gravimetrische- und volumetrische Speicherkapazität
 - Arbeitsbedingungen (T, p und Kinetik) sowie
 - Anzahl der Be- und Entladezyklen (Lebensdauer)

Zeolithe

- bestehen aus miteinander verknüpften AlO₄ und SiO₄
 Tetraedern und Alkali- oder Erdalkalikationen (Me^{z+}).
- bilden 3D-Gerüste mit verknüpften Kanälen.
- weisen sehr hohe Porosität (bis nm) und außergewöhnlich hohe spezifische Oberflächen (bis 1500 m²/g), sowie hohe thermo-chemische Stabilität auf.
- 170 verschiedene synthetisch hergestellte und 48 natürlich vorkommende Zeolithe sind bisher bekannt.
 - Ionenaustauscher
 - Gasaufbereitung sowie als Trockenmittel

Silikagele

- bestehen zu 99 % aus SiO₂
- besitzen innere Oberfläche von ca. 600 m²/g
- weisen hydrophyle Eigenschaften auf
- werden meist als Trocken- und Kühlmittel eingesetzt

Weshalb wird Wasser als ideales Arbeitsmedium (adsorptiv) für die TC-Adsorptionsspeicher angesehen?

Vorteile der adsorptiven TCS-Systeme

Die Stärken von adsorptiven TCS gegenüber konventionellen Warmwasserspeichern liegen:

- in ihrer höheren spezifischen Speicherdichte von 200 bis 300 kWh/m³ gegenüber nur etwa 60 kWh/m³ bei Wasser,
- viel kompakter (ca. 5 bis 15-fach kleineren Volumen)
- kaum sensible Wärmeverluste → die Energie kann mittel- bis langfristig verlustfrei gespeichert werden.
- variable Temperaturen (abhängig von den verwendeten Materialien und Prozessparametern) sind möglich.
- Wärme- und Kältetransport ist möglich

Schwächen:

 komplexe Technologie (Prozessparameter, Reaktordesign, Wärme- und Stofftransport...)

Herausforderungen:

- die starke Abhängigkeit von Umgebungsbedingungen,
- hydrothermale Stabilität der meisten Speichermaterialen

Vergleich thermischer Energiespeichersysteme

Aktueller Stand der Forschung und Entwicklung

 Die verschiedenen Arten thermische Energie zu speichern – sensibel, latent und thermochemisch – sind unterschiedlich weit entwickelt.

---- Ende ---(WS 21/22)