Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Currently amended) A composition comprising a synergistically effective amount of a compound of formula (I)

$$\begin{array}{c}
R - N \xrightarrow{(Z)} (I) \\
X - E
\end{array}$$

in which

R represents hydrogen, optionally substituted acyl, alkyl, aryl, aralkyl, heterocyclyl, heterocryl or heterocrylalkyl;

A represents a monofunctional group selected from the group consisting of hydrogen, acyl, alkyl, and aryl or represents a bifunctional group attached to Z;

E represents an electron-withdrawing radical;

X represents CH= or -N, where CH= may be attached to Z instead of an H atom;

Z represents a monofunctional group selected from the group consisting of alkyl, OR, SR, and N(R)₂,

where the R groups are identical or different and are as defined above, or represents a bifunctional group attached to A or X,

selected from the group consisting of

$$\begin{array}{c|c} CI & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline \\ CI & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

$$CI \longrightarrow \begin{array}{c} CH_2 \longrightarrow \begin{array}{c} CH_2 \longrightarrow \begin{array}{c} CH_3 \\ N-NO_2 \end{array} \end{array}$$

$$CI \longrightarrow \begin{array}{c} CH_2 \longrightarrow \begin{array}{c} CH_3 \\ N-NO_2 \end{array} \end{array}$$

$$CI \longrightarrow \begin{array}{c} CH_2 \longrightarrow \begin{array}{c} CH_3 \\ N-NO_2 \end{array} \end{array}$$

$$CI \longrightarrow \begin{array}{c} CH_2 \longrightarrow \begin{array}{c} CH_5 \\ N-CN \longrightarrow \\ CH_2 \longrightarrow \begin{array}{c} CH_2 \longrightarrow \\ N-CN \longrightarrow \\ CH_2 \longrightarrow \begin{array}{c} CH_2 \longrightarrow \\ N-CN \longrightarrow \\ N-CN \longrightarrow \\ CH_2 \longrightarrow \begin{array}{c} NO_2 \longrightarrow \\ N-CN \longrightarrow \\ N-CN \longrightarrow \\ N-CN \longrightarrow \\ N-CN \longrightarrow \\ N-CH_3 \longrightarrow \\ N-CH$$

and at least one compound of formula (II) (II-1)

Reply to Office Action of April 27, 2009

in which

- R² represents hydrogen or C₁-C₆-alkyl,
- R^3 represents C_1 - C_6 -alkyl which is optionally substituted by a radical R^6 ,
- R^4 represents C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy or halogen,
- R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of the others represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of the others represents O or NR¹⁸,
- R^7 represents C_1 - C_4 -haloalkyl or halogen,
- R^9 represents C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, $S(O)_pC_1$ - C_2 -haloalkyl or halogen,
- in each case independently of one another represent hydrogen or represent in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkyl-thio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl or C_1 - C_4 -haloalkylsulfonyl,
- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R¹⁹ in each case independently of one another represent hydrogen or C₁-C₆-alkyl,
- p independently of one another represents 0, 1, 2.

Reply to Office Action of April 27, 2009

$$\begin{array}{c|c}
R^{3} & R^{2} \\
\hline
R^{5} & A^{2} & R^{8} \\
\hline
R^{4} & X^{1} & R^{7} \\
\hline
R^{9} & & & & & & \\
\end{array}$$
(III)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

 R^4 —represents hydrogen or represents in each case optionally mono—or polysubstituted— C_1 — C_6 -alkyl,— C_2 — C_6 -alkenyl,— C_2 — C_6 -alkynyl—or— C_3 — C_6 -eycloalkyl, where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, eyano, nitro, hydroxyl, C_1 - C_4 -alkoxy,— C_1 - C_4 -alkylthio,— C_1 - C_4 -alkylsulfinyl,— C_1 - C_4 -alkylsulfonyl, C_2 - C_4 -alkoxycarbonyl,— C_1 - C_4 -alkylamino,— C_2 - C_8 -dialkylamino,— C_3 - C_6 -eycloalkylamino, C_1 - C_4 -alkyl) C_3 - C_6 -eycloalkylamino and R^{11} ,

R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-eycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-eycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

R³—represents hydrogen, R¹¹ or represents in each case optionally mono—or polysubstituted—C₁-C₆-alkyl,—C₂-C₆-alkenyl,—C₂-C₆-alkynyl,—C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl,—C₂-C₆-alkoxycarbonyl,—C₂-C₆-alkylcarbonyl,—C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals

W or one or more radicals R¹², or

R² and R³ may be attached to one another and form the ring M,

- 6 -

R⁴ represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆trialkylsilyl or represents in each case optionally mono- or polysubstituted phenyl, benzyl or phenoxy, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄alkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, C1-C4-haloalkyl, C2-C4haloalkenvl, C2-C4-haloalkvnvl, C2-C6-halocvcloalkvl, halogen, cvano. nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-alkylamino, C2-C8-dialkylamino, C3-C₆-cycloalkylamino, C₂-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C2-C6-alkoxycarbonyl, C2-C6-alkylaminocarbonyl, C3-C8-dialkylaminocarbonyl and C₃-C₆-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, OJ, OG, S(O)_p-J, S(O)_p-G, S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkythio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, eyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the

- substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹².
- in each case independently of one another represent a 5-or 6-membered nonaromatic carbocyclic or heterocyclic ring which optionally contains one or two ring members from the group consisting of C(=O), SO and S(=O)₂—and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy, or independently of one another represent C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₇-cycloalkyl, (cyano)C₃-C₇-cycloalkyl, (C₁-C₄-alkyl)C₃-C₆-cycloalkyl, (C₃-C₆-cycloalkyl)C₁-C₄-alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms,
- J in each case independently of one another represent an optionally substituted 5 or 6-membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²₅
- R⁶ independently of one another represent $C(=E^1)R^{19}$, $LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $-C(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, SO_2LR^{18} or LSO_2LR^{19} , where each E^1 independently of the others represents O, S, $N \cdot R^{15}$, $N \cdot OR^{15}$, $N \cdot N(R^{15})_2$, $N \cdot S = O$, $N \cdot CN$ or $N \cdot NO_2$,
- R⁷—represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl,
- R^9 represents C_1 - C_4 -haloalkyl, C_4 - C_4 -haloalkoxy, C_4 - C_4 -haloalkylsulfinyl or halogen,
- R¹⁰—represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, cyano-or C₁-C₄-haloalkoxy,
- R¹¹— in each case independently of one another represent in each case optionally mono to trisubstituted C₁-C₆-alkylthio, C₁-C₆-alkylsulfenyl,

C₁-C₆-haloalkythio, C₁-C₆-haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents independently of one another may be selected from the list consisting of W, S(O)_nN(R¹⁶)₂, C(=O)R¹³, L(C=O)R¹⁴, S(C=O)LR¹⁴, C(=O)LR¹³, S(O)_nNR¹³C(=O)R¹³, S(O)_nNR¹³C(=O)LR¹⁴ and S(O)_nNR¹³S(O)₂LR¹⁴;

L in each case independently of one another represent O, NR¹⁸ or S,

R¹² in each case independently of one another represent—B(OR¹⁷)₂, amino, SH, thiocyanato, C₃-C₈-trialkylsilyloxy, C₁-C₄-alkyl—disulfide, SF₅, -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -LC(=E¹)LR¹⁹, -DP(=Q)(OR¹⁹)₂, -SO₂LR¹⁹ or LSO₂LR¹⁹,

Q represents O or S,

- R¹³— in each case independently of one another represent hydrogen or represent in each case optionally mono or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-dialkylamino, C₃-C₆-cycloalkylamino and (C₁-C₄-alkyl)C₃-C₆-cycloalkylamino,
- R¹⁴—in each case independently of one another represent in each case mono—or polysubstituted—C₁-C₂₀-alkyl,—C₂-C₂₀-alkenyl,—C₂-C₂₀-alkynyl—or—C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy,—C₁-C₄-alkylsulfinyl,—C₁-C₄-alkylsulfonyl,—C₁-C₄-alkylamino,—C₂-C₈-dialkylamino,—C₃-C₆-cycloalkylamino—and—(C₁-C₄-alkyl)C₃-C₆-cycloalkylamino—or represent—optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- R¹⁵—in each case independently of one another represent hydrogen or represent in each case mono—or polysubstituted—C₁-C₆-haloalkyl—or—C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁

haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-dialkylamino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,

- R¹⁶ represents C₁-C₁₂-alkyl or C₁-C₁₂-haloalkyl, or N(R¹⁶)₂ represents a cycle which forms the ring M,
- R¹⁷ in each case independently of one another represent hydrogen or C₁-C₄-alkyl, or B(OR¹⁷)₂-represents a ring, where the two oxygen atoms are attached via a chain to two or three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C₂-C₆-alkoxycarbonyl,
- R^{18} in each case independently of one another represent hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl, or $N(R^{13})(R^{18})$ represents a cycle which forms the ring M,
- in each case independently of one another represent hydrogen or represent in each case optionally mono- or polysubstituted C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, —C₁-C₄-alkylsulfinyl, —C₁-C₄-alkylsulfonyl, —C₁-C₄-haloalkylthio, —C₁-C₄-haloalkylsulfinyl, —C₁-C₄-haloalkylsulfonyl, —C₁-C₄-alkylamino, —C₂-C₈-dialkylamino, —C₂-C₆-alkoxycarbonyl, —C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,
- in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom which is attached to the substituent pair R^{13} -and R^{18} , $(R^{15})_2$ or $(R^{16})_2$, contains two to six carbon atoms and

optionally additionally a further nitrogen, sulfur or oxygen atom, and where the substituents independently of one another may be selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy,

in each case independently of one another represent C₁-C₄-alkyl, C₂-C₄-alkynyl, —C₃-C₆-cycloalkyl, —C₁-C₄-haloalkyl, —C₂-C₄-haloalkynyl, —C₂-C₄-haloalkynyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, — (C₁-C₄-alkyl)C₃-C₆-cycloalkylamino, — C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₆-trialkylsilyl,

n in each case independently of one another represent 0 or 1,

p in each case independently of one another represent 0, 1 or 2.

where in the case that (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₆-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈-dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹-and R¹²-is present and (d), if R¹²-is not present, at least one R⁶-or R¹¹-is different from C₂-C₆-alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl

and wherein said compound of formula (I) and said compound of formula (II) are present in a ratio of from 250:1 to 1:50.

- 2. (Cancelled)
- 3. (Cancelled)

- 4. (Cancelled)
- 5. (Cancelled)
- 6. (Previously presented) A method of controlling animal pests comprising contacting the animal pests with a composition according to claim 1.
- 7. (Currently amended) A process for preparing pesticides, comprising mixing a compound of formula (I) as set forth in claim 1 or 2 and at least one compound of formula (II) as recited in claim 1 with extenders and/or surfactants, or combinations thereof.