

Version/Revision History

	Date Revision C	ontent Initial release	Preparer/Reviser
Version	2023-4-18	2023-3-24	IT555
V1.00 V1.10	Modify standby EN v	vake-up;	IT555
		Added option to charge PDO	
		Gear	
V1.11	2023-4-24 Delete I2C	power reading function	IT555
		Description (Read is not supported	
		Battery Level)	
V1.12	2023-6-13 Added sta	ndby charging	IT555
		Power Wake-up Instructions	
V1.13	2023-6-26 Low voltag	je gear	IT555
		Low support to 2.5V	

1 Typical Application Description

1.1 I2C connection method

IP2366 can be used as a slave device. MCU can read or set the voltage, current, power and other information of IP2366 through I2C interface.

The I2C connection method is as follows

1.2 I2C Notes

ÿ 2C device address of IP2366: written as 0xEA, read as 0xEB. If you need to set it to another address, you can customize it;
ÿ The I2C communication voltage of IP2366 is 3.3V-If the voltage on the MCU side is 5V, a level conversion chip needs to be added to convert it to 3.3V;

ÿ IP2366 INT Application Description: IP2366 can be awakened by charging and EN when in sleep mode. After awakening, IP2366 actively pulls INT high for 100ms

After that, the MCU can perform I2C communication and read and write registers; before entering sleep mode, IP2366 will switch to high impedance input.

Detect the INT status. If it is high level, it is considered that the MCU does not allow IP2366 to enter sleep mode. If it is low level, IP2366 enters sleep mode.

Sleep: After the MCU detects that INT is low, it should stop accessing the IC within 16ms;

ÿ The I2C of IP2366 supports a maximum communication frequency of 250k. Considering the clock deviation, it is recommended that the I2C communication clock of MCU use 100k-200k;

ÿlf you want to modify the value of a register of IP2366, you need to read the value of the corresponding register first, and then compare the bit to be modified.

After the OR operation, the calculated value is written into the register. Other unopened registers cannot be modified at will.

The read value is the standard, and the default value of different ICs may be different;

ÿ IP2366 I2C communication is real-time data. After receiving the request, an interrupt is required to prepare the data. The preparation time is long, so the MCU

In I2C communication, it is necessary to determine whether ACK is received after sending the address and add a 50us delay (refer to the I2C application example); it is recommended to

Byte read, 100k I2C communication frequency, add 1ms delay between each byte;

ÿ At the end of I2C data reading, after reading the last byte, a NACK signal must be given, otherwise IP2366 will think that it is still continuing.

Continue to read data, the next clock will continue to output the next data, resulting in failure to receive the STOP signal, and finally a reading error;

V1.13 http://www.injoinic.com/ 2 / 18 Copyright © 2023, Injoinic Corp.

ÿ Reserved registers cannot be written to or changed at will, otherwise unexpected results may occur.

The operation must be performed in accordance with the read-modify-write method. Only the bits to be used are modified, and the values of other unused bits cannot be modified.

ÿThis document is only for IP2366_I2C model, other models are invalid;

1.3 I2C Application Examples

After the IP2366 INT pin is continuously high for 100ms, the MCU can perform I2C communication and initialize the registers first (the special

The register is modified only when a special function is used. If no modification is needed, the register can be omitted); then read the internal information of IP2366 (charge and discharge status);

Finally, special operations are performed (such as special indicator lights, charge and discharge management, and fast charge request management). After the MCU detects that INT is low, 16ms

You need to stop accessing I2C.

For example:

Write data 0x5A to register 0x05

Figure 2 I2C Read 0x05

Actually read back data from register 0x31

Figure 3 I2C Read 0x31

2 Register list:

2.1 Read/Write Operation Register

(0x00) SYS_CTL0 (charge enable register)

I2C address 0XEA Register address = 0x00

Bit(s)	Name	Description	R/W	RESET
7	En_LOADOTP Power on wa	ke up and reset register value enable	R/W	1
		0: Do not reset register values		
		1: Reset register value		
		It is not recommended to change this bit to 0. If it needs to be changed, the software needs to be regularly		
		Reset register default value, such as VINOk VBUOk signal triggered		
6	En_RESETMCU	MCU reset register	R/W	0
		Write 1: reset the register to the default value. After reset, the bit will automatically return to the default value.		
		After reset, wait 2 seconds before reading or writing registers.		
5	En_INT_low When there is an	abnormality, INT is pulled down for 2MS to prompt the MCU that an abnormality has occurred	R/W	0
		1ÿEnable		
		0ÿdisable		
4	En_Vbus_SinkDPd	C port input DM DP fast charge enable	R/W	1
	М	1ÿEnable		
		0ÿdisable		
3	En _Vbus_SinkPd Port C in	out Pd fast charge enable 1ÿEnable 0ÿdisable	R/W	1
2	En_Vbus_SinkSCP C port in	put SCP fast charge enable	R/W	1
		1ÿEnable		
		0ÿdisable		
1	reserved		R/W	0
0	A_Charger	Charger charging enable (no charging after shutting down) 1ÿEnable	R/W	1
		0ÿdisable		

(0x02) SYS_CTL2 (Vset full voltage setting)

Bit(s)	Name	Description	R/W	RESET
7:0	Vset	Single battery full voltage	RW	
		Vset=N*10mV+2500mV (maximum 4.4V)		

(0x03) SYS_CTL3 (Iset charging power or current setting)

I2C address 0XEA Register address = 0x03

Bit(s)	Name	Description	R/W	RESET
7:0	Iset	Maximum battery current limit (cannot be configured to be less than the stop-charge current)	R/W 01100	0001
lset=l	N*100mA (maximum 9.7A)			

(0x06) SYS_CTL6 (Trickle charge current setting)

I2C address 0XEA Register address = 0x06

Bit(s)	Name	Description	R/W	RESET
7:0	Itk	Trickle charge current setting	R/W	00000100
		ltk=N*50mA		

(0x08) SYS_CTL8 (charging stop current and recharging threshold setting)

I2C address 0XEA Register address = 0x08

Bit(s)	Name	DescriptionStop	R/W	RESET
7:4	Stop	charging and charging current setting	R/W	0010
		Stop=N*50mA		
3:2	Тор	Recharge Threshold	R/W	10
		00: No recharging function after full charge		
		01ÿVTRGT – N*0.05		
		10ÿVTRGT – N*0.1		
		11ÿVTRGT – N*0.2		
		VTRGTFull charge voltage		
		NNumber of batteries in series		
1:0	Reserved			

(0x09) SYS_CTL9 (standby enable and low power voltage setting)

	120 dadress SALA Megistal dadress = SACS					
Bit(s)	Name	Description	R/W	RESET		
7	En_Standby Standby Enabl	е	R/W	1		
		1: Enable				
		0: Disable				
6	Standby	Write 1 to enter standby mode, valid once (bit7 must be enabled to write 1)	R/W	0		
		1: Enter standby mode immediately when not charging.				
		0: Normal process				

5	En_BAT_Low	5V low power shutdown enable	R/W	0
		0ÿdisable		
		1: Enable (After enabling, the shutdown voltage is fixed at 5V, with only software protection.		
		And the voltage will also change when the trickle current is converted to constant current)		
4:0	Reserved			

(0x0A) SYS_CTL10 (low battery voltage setting)

I2C address 0XEA Register address = 0x0A

Bit(s)	Name	DescriptionBattery	R/W	RESET
7:5,	Set_BATlow	low voltage setting (Trickle current to constant current voltage will change accordingly	R/W	010
2.7V	and below only have software l	pw power protection)		
		000: 2.50V*N		
		001: 2.60V*N		
		010: 2.70V*N		
		011: 2.80V*N		
		100: 2.90V*N		
		101: 3.00V*N		
		110: 3.10V*N		
		111: 3.20V*N		
		N: Number of batteries in series		
4:0	Reserved			

(0x0B) SYS_CTL11 (output enable register)

I2C address 0XEA Register address = 0x0B

Bit(s)	Name	Description	R/W	RESET
7	En_Dc-Dc_Output discharge	output enable (no output after closing)	R/W	1
		1: Enable		
		0: Disable		
6	En_Vbus_Src_DP	C port output DP/DM fast charge enable	R/W	1
	dM	1ÿEnable		
		0ÿdisable		
5	En _Vbus_SrcPd	Port C output Pd fast charge enable	R/W	1
		1ÿEnable		
		0ÿdisable		
4	En _Vbus_SrcSCP Port C o	utput SCP fast charge enable	R/W	1
		1ÿEnable		
		0ÿdisable		
3:0	Reserved			

(0x0C) SYS_CTL12 (output maximum power selection register)

Bit(s)	Name	Description	R/W	RESET

7:5 Vbus_	Src_Power Vbus1 output/inp	ut power selection:	R/W	101
		000ÿ30W		
		001ÿ45W		
		010ÿ60W		
		011ÿ65W		
		100ÿ100W		
		101ÿ140W		
4:0	Reserved			

(0x0D) SELECT_PDO (select charging PDO gear)

You need to read the corresponding gear of 0x35 before you can select it. The maximum PD gear of the adapter is selected by default.

The configuration becomes invalid after this, and the adapter position needs to be re-identified and reconfigured.

I2C address 0XEA Register address = 0X0D

Bit(s)	Name	Description	R/W	Reset
7:3	Reserved			
2:0	Pdo_select selects the	charging PDO gear 000; Default is the maximum gear of the adapter 001ÿ5V 010ÿ9V 011ÿ12V 100ÿ15V 101ÿ20V	Or	р.

(0x22) TypeC_CTL8 (TYPE-C mode control register)

I2C address 0XEA Register address = 0x22

Bit(s)	Name	Description	R/W	RESET
7:6	Vbus_Mode_Set Vbus CC	mode selection	R/W	11
		00: UFP		
		01ÿDFP		
		11ÿDRP		
5:0	Reserved			

(0x23) TypeC_CTL9 (output Pdo current setting register)

I2C address 0XEA Register address = 0x23

V1.13

9.1	99		20	
Bit(s)	Name	Description	R/W	RESET

7		F . F \ (D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		R/W	1
,		En_5VPdo_3A/2.4A 5VPdo d		R/VV	·
			1ÿ3A		
			0ÿ2.4A		
6		En_Pps2Pdo_Iset	Pps2 Pdo current setting enable	R/W	0
			1ÿEnable		
			0: disable		
			*After enabling, the output power and overcurrent are based on the set Pdo current	ent.	
			The current is 1.1 times the set Pdo current		
5		En_Pps1Pdo_lset	Pps1 Pdo current setting enable	R/W	0
			1ÿEnable		
			0: disable		
			*After enabling, the output power and overcurrent are based on the set Pdo current	ent.	
			The current is 1.1 times the set Pdo current		
4		En_20VPdo_lset	20VPdo current setting enable	R/W	0
			1ÿEnable		
			0: disable		
			*After enabling, the output power and overcurrent are based on the set Pdo current	ent.	
			The current is 1.1 times the set Pdo current		
3		En_15VPdo_lset	15VPdo current setting enable	R/W	0
			1ÿEnable		
			0: disable		
			*After enabling, the output power and overcurrent are based on the set Pdo curre	ent.	
			The current is 1.1 times the set Pdo current		
2		En_12VPdo_lset	12VPdo current setting enable	R/W	0
			1ÿEnable		
ш		1 1 (1	0: disable		
ш	1 7		*After enabling, the output power and overcurrent are based on the set Pdo current	ent.	_
		100	The current is 1.1 times the set Pdo current		
1		En_9VPdo_Iset	9VPdo current setting enable	R/W	0
			1ÿEnable		
			0: disable		
			*After enabling, the output power and overcurrent are based on the set Pdo curre	ent.	
			The current is 1.1 times the set Pdo current.		
0		En_5VPdo_Iset	5VPdo current setting enable	R/W	0
			1ÿEnable		
			0ÿdisable		

(0x24) TypeC_CTL10 (5VPdo current setting register)

Bit(s)	Name	Description	R/W	RESET
7:0	5VPdo_lset	5VPdo Current Setting	R/W	0x96
		5VPdo=20mA*N		

(0x25) TypeC_CTL11 (9VPdo current setting register)

I2C address 0XEA Register address = 0x25

Bit(s)	Name	Description	R/W	RESET
7:0	9VPdo_lset	9VPdo Current Setting	R/W	0x96
		9VPdo=20mA*N		

(0x26) TypeC_CTL12 (12VPdo current setting register)

I2C address 0XEA Register address = 0x26

Bit(s)	Name	Description	R/W	RESET
7:0	12VPdo_lset	12VPdo Current Setting	R/W	0x96
		12VPdo=20mA*N		

(0x27) TypeC_CTL13 (15VPdo current setting register)

I2C address 0XEA Register address = 0x27

(0x28) TypeC_CTL14 (20VPdo current setting register)

I2C address 0XEA Register address = 0x28

Bit(s)	Name	Description	R/W	RESET
7:0	20VPdo_lset	20VPdo current setting	R/W	0xFA
		20VPdo=20mA*N		

(0x29) TypeC_CTL23 (Pps1 Pdo current setting register)

Bit(s)	Name	Description	R/W	RESET
7:0	Pps1Pdo_lset	Pps1 Pdo current setting	R/W	0x3C
		Pps1 Pdo=50mA*N		

(0x2A) TypeC_CTL24 (Pps2 Pdo current setting register)

I2C address 0XEA Register address = 0x2A

Bit(s)	Name	Description	R/W	RESET
7:0	Pps2Pdo_Iset	Pps2 Pdo current setting	R/W	0x3C
		Pps2 Pdo=50mA*N		

(0x2B) TypeC_CTL17 (output PDO setting register)

Bit(s	s)	Name	Description	R/W	RESET
	7	Reserved		R/W	R
	6	En_Src_Pps2Pdo	Pps2 Pdo Enable 1ÿEnable 0ÿdisable	R/W	1
			* No Pps2 Pdo after disable		
	5	En_Src_Pps1Pdo	Pps1 Pdo Enable 1ÿEnable 0ÿdisable	R/W	1
			* No Pps1 Pdo after disable		
	4	En_Src_20VPdo	20VPdo Enable	R/W	1
L			1ÿEnable 0: disable * No 20V Pdo after disable	rn	
	3	En_Src_15VPdo	15VPdo Enable 1ÿEnable	R/W	■ ¹
			0: disable *	_	
			No 15V Pdo after disable		
	2	En_Src_12VPdo	12VPdo Enable 1ÿEnable 0: disable *	R/W	1
			No 12V Pdo after disable		
	1	En_Src_9VPdo	9VPdo Enable 1ÿEnable 0: disable * No 9V Pdo after disable	R/W	1
	0	Reserved	*****	R/W	R

(0x2C) TYPEC_CTL18 (PDO plus 10mA current enable, needs to be configured together with the current setting register)

I2C address 0XEA Register address = 0x2C

Bit(s)	Name	Description	R/W	RESET
7:5		Reserved	R/W	0
4	EN_20VPDO_ADD 20VPDO	add 10mA current enable 1ÿenable	R/W	0
		0ÿdisable		
3	EN _15VPDO_ADD 15VPDO	add 10mA current enable 1ÿenable 0ÿdisable	R/W	0
2	EN_12VPDO_ADD 12VPDO	add 10mA current enable 1ÿenable 0ÿdisable	R/W	0
1	EN_9VPDO_ADD 9VPDO ac	ld 10mA current enable 1ÿenable 0ÿdisable	R/W	0
0	EN_5VPDO_ADD 5VPDO ac	ld 10mA current enable 1ÿenable	R/W	0
		0ÿdisable		

2.2 Read-only status indication register A must read section!!!

Multiple registers represent the same state. Each read of the lower 8- bit register will update the upper 8- bit and lower 8- bit data.

To read the register, you must read the lower 8 bits first and then the upper 8 bits to ensure that the same data is read.

The order of the two registers of BAT terminal voltage should be to read 0x50 first and then 0x51.

(0x31) STATE_CTL0 (Charging status control register)

Bit(s)	Name	Description	R/W
7:6	Reserved		R
5	CHG_En	Charging flag 1: Charging status (VbusOk is considered charging status) 0: Not charging	R
4	CHG_End	Full status flag 1: Fully charged 0: Charging is not fully	R
3	Output_En	Discharge status flag 1: Discharging state and the output port is open, no abnormality 0: The discharge status output is not turned on or there is a discharge abnormality	R
2:0	Chg_state	Chg_state	R

	000: Standby	
	001: Trickle	
	010: Constant current charging	
	011: Constant voltage charging	
	100: Waiting for charging (including charging not started, etc.)	
	101: Full state	
	110: Charging timeout	

(0x32) STATE_CTL1 (Charging status control register)

I2C address 0XEA Register address = 0X32

Bit(s)	Name	Description	R/W
7:6	Chg_State	Chg_state	R
		00: 5V input charging	
		01: High voltage input fast charging	
5:0	Reserved		R

(0x33) STATE_CTL2 (Input Pd state control register)

I2C address 0XE	A Register address = 0X33		
Bit(s)	Name	Description	R/W
7	Vbus_Ok	Vbus_Ok 1: Vbus has power	R
		0: Vbus has no power	
6	Vbus_Ov	Vbus_Ov 1: Vbus input overvoltage	R
		0: Vbus input has no overvoltage	
5:3	Reserved		
2:0	Chg_Vbus	Charging voltage	R
		111: 28V charging	
		110: 20V charging	
		101: 15V charging	
		100: 12V charging	
		011: 9V charging	
		010: 7V charging	
		001: 5V charging	

(0x34) TypeC_STATE (system status indication register)

Bit(s)	Name	Description	R/W
7	Sink_Ok	TypeC Sink input connection flag	R
		1: Valid	

		0: Invalid	
6	Src_Ok	TypeC Src output connection flag	R
		1: Valid	
		0: Invalid	
5	Src_Pd_Ok	Src_Pd_Ok Output connection flag	R
		1: Valid	
		0: Invalid	
4	Sink_Pd_Ok	Sink_Pd_Ok Input connection flag	R
		1: Valid	
		0: Invalid	
3	Vbus_Sink_Qc_Ok Input fast of	harge valid flag Qc5V and Pd5V are not considered fast charge Ok	R
		1: Valid	
		0: Invalid	
2	Vbus_Src_Qc_Ok outputs the	fast charge valid flag Qc5V and Pd5V, which are not considered fast charge OK	R
		1: Valid	
		0: Invalid	
1:0	Reserved		

(0x35) RECEIVED_PDO (receive PDO gear)

I2C address 0XEA Register address = 0X35

Bit(s)	Name	Description	R/W
7:5	Reserved		rn
4	PDO_20V	The device receives PDO20V	R
		1: Yes	
		0: None	
3	PDO_15V	The device receives PDO15V	R
		1: Yes	
		0: None	
2	PDO_12V	The device receives PDO12V	R
		1: Yes	
		0: None	
1	PDO_9V	The device receives PDO9V	R
		1: Yes	
		0: None	
0	PDO_5V	The device receives PDO5V	R
		1: Yes	
		0: None	

(0x38) STATE_CTL3 (system overcurrent indication register)

- VI			
Bit(s)	Name	Description	R/W

7:6	Reserved		R
5	Vsys_Oc	Vsys output overcurrent flag, need to write 1 to clear 0	R
		1: Vsys output triggers an overcurrent signal	
		0: Vsys output does not trigger overcurrent signal	
		If the system detects overcurrent status twice or more within 600mS,	
		The overcurrent is considered valid and this flag is set to 1. The external master reads this flag.	
		The flag bit can be used to determine whether an overcurrent abnormality occurs;	
		From birth to system sleep, the time is about 1.5s	
4	Vsys_Scdt	Vsys output short circuit flag, need to write 1 to clear 0	R
		1: Vsys output has a short-circuit trigger signal	
		0: Vsys output does not trigger a short circuit signal	
		If the system detects short circuit status more than twice within 600mS,	
		The short circuit is considered valid and this flag is set to 1. The external master reads this flag.	
		The flag bit can be used to determine whether a short circuit abnormality occurs;	
		From birth to system sleep, the time is about 1.5s	
3:0	Reserved		R

(0x50) BATVADC_DAT0 (VBAT voltage register)

I2C address 0XEA Register address = 0X50

Bit(s)	Name	Description	R/W
7:0	BATVADC[7:0] BATVAD	C data lower 8 bits	R
		VBATPIN voltage	
			1610

(0x51) BATVADC_DAT1 (VBAT voltage register)

I2C address 0XEA Register address = 0X51

Bit(s)	Name	Description	R/W
7:0	BATVADC[15:8] BATVAC	C data high 8 bits	R
		VBATPIN voltage	
		VBAT=BATVADC (mV)	

(0x52) VsysVADC_DAT0 (Vsys voltage register)

I2C address 0XEA Register address = 0X52

Bit(s)	Name	Description	R/W
7:0	VsysVADC[7:0] Vsys volt	age data lower 8 bits	R
		VsysPIN voltage	

(0x53) VsysVADC_DAT1 (Vsys voltage register)

Send I2C address 0XEA Register address = 0X53

V1.13 http://www.injoinic.com/ 14/18 Copyright © 2023, Injoinic Corp.

Bit(s)	Name	Description	R/W
7:0	VsysVADC[15:8] High 8	pits of Vsys voltage data	R
		VsysPIN voltage	
		Vsys= VsysVADC (mV)	

(0x69) TIMENODE1 (the first bit of the timestamp register) (the timestamp symbol is an ASCII character)

I2C address 0XEA Register address = 0x69

Bit(s)	Name	Description	R/W
7:0	TimeNode1 The first A	SCII symbol corresponds to the value	R

(0x6A) TIMENODE2 (second bit of timestamp register)

I2C address 0XEA Register address = 0x6A

Bit(s)	Name	Description	R/W
7:0	TimeNode2 The second	ASCII symbol corresponds to the value	R

(0x6B) TIMENODE3 (timestamp register third bit)

(0x6C) TIMENODE4 (the fourth bit of the timestamp register)

I2C address 0XEA Register address = 0x6C

Bit(s)	Name	Description	R/W
7:0	TimeNode4 The fourth A	SCII symbol corresponding to the value	R

(0x6D) TIMENODE5 (the fifth bit of the timestamp register)

Bit(s)	Name	Description	R/W
7:0	TimeNode5 The fifth AS	CII symbol corresponding value	R

(0x6E) IBATIADC_DAT0 (BAT terminal current register)

I2C address 0XEA Register address = 0x6E

2	Bit(s)	Name	Description	R/W
	7:0	IBATIADC[7:0] The low	ver 8 bits of the cell current IBATIADC data	R

(0x6F) IBATIADC_DAT1 (BAT terminal current register)

I2C address 0XEA Register address = 0x6F

Bit(s)	Name	Description	R/W
7:0	IBATIADC[15:8] High 8	bits of the cell current BATIADC data	R
	4	IBAT= IBATIADC(mA)	

(0x70) ISYS_IADC_DAT0 (Isys terminal current register)

I2C address 0XEA Register address = 0x70

Bit(s)	Name	Description	R/W
7:0	ISYSIADC[7:0]	IVsys terminal current VsysIADC data lower 8 bits	R

(0x71) Isys_IADC_DAT1 (Isys terminal current register)

I2C address 0XEA Register address = 0x71

Bit(s)	Name	Description	R/W
7:0	IVsysIADC[15:8] IVsys	terminal current VsysIADC data high 8 bits	R
		IVsys = VsysIADC(mA)	

(0x74) Vsys_POW_DAT0 (Vsys power register)

I2C address 0XEA Register address = 0X74

Bit(s)	Name	Description	R/W
7:0	Vsys_POW_ADC	The lower 8 bits of the Vsys power ADC data	R
	[7:0]		

(0x75) Vsys_POW _DAT1 (Vsys power register)

Bit(s) Name	Description	R/W
-------------	-------------	-----

7:0	Vsys_POW_ADC[1	High 8 bits of Vsys power ADC data	R	
	5:8]	Vsys_POW= Vsys_POW_ADC(10mW)		

(0x77) INTC_IADC _DAT0 (NTC output current register)

I2C address 0XEA Register address = 0X77

Bit(s)	Name	Description	R/W
	NTC_IADC_DAT 0: outp	ut 20uA	R
7 1: Out	put 80uA		
6:0	Reserved		

(0x78) VGPIO0_NTC_DAT0 (VGPIO0_NTC_ADC voltage register)

I2C address 0XEA Register address = 0X78

Bit(s)	Name	Description	R/W
	VGPIO0_DAT0	VGPIO0_ADC data lower 8 bits 7:0	R
	[7:0]		

(0x79) VGPIO0_NTC_DAT1 (VGPIO0_NTC_ADC voltage register)

17 / 18

Liability and Copyright Statement

Yingjixin Technology Co., Ltd. reserves the right to make corrections, modifications, enhancements, improvements or other changes to the products and services provided.

Before placing an order, you should obtain the latest relevant information and verify that the information is complete and up to date. All products are sold subject to the order confirmation.

Terms and conditions of sale provided.

Ingenics Technologies Ltd. assumes no responsibility for application assistance or customer product design. Customers should assume all responsibility for their use of Ingenics products.

To minimize the risks associated with customer products and applications, customers should provide adequate design and operational safety verification.

Customer acknowledges and agrees that, although any application-related information or support may still be provided by Ingenic, they will be solely responsible for satisfying

All legal, regulatory and safety-related requirements related to its products and the use of Ingenics products in its applications. Customers declare and agree that they have

All the expertise and knowledge required to develop and implement safety measures to foresee the dangerous consequences of failures, monitor failures and their consequences, and reduce the risk of

The customer will fully indemnify the customer for any damages caused by use of the product in such critical applications.

Any losses caused to Yingjixin and its agents due to Yingjixin products.

For the product manuals or data sheets of Ingenic, only if the contents are not tampered with and with the relevant authorizations, conditions, restrictions and

Reproduction is permitted only with notice. Ingenics assumes no responsibility or liability for such tampered documents.

Additional restrictions may apply.

Vingjixin will update the contents of this document from time to time. The actual parameters of the product may vary due to different models or other factors.

No warranties or warranties, express or implied, are given.

When reselling an Ingenic product, if the description of the product parameters is different from or false to the parameters indicated by Ingenic,

You will lose all express or implied warranties for the relevant Ingenics products and this is an unfair and fraudulent business practice. Ingenics will not be responsible for any such

No responsibility or liability is assumed for any false statements.