

Η κίνηση που κάνει το αυτοκίνητο καθώς στρίβει περιορίζεται σε ένα οριζόντιο επίπεδο x-y

Η αλλαγή στο διάνυσμα θέσης δίνεται από τη διανυσματική διαφορά των διανυσμάτων θέσης στις 2 χρονικές στιγμές t_f και t_i

$$\Delta \vec{r}(t) = \vec{r}_f - \vec{r}_i = \vec{r}(t + \Delta t) - \vec{r}(t) \Rightarrow$$

$$\Delta \vec{r}(t) = \left[x(t + \Delta t) - x(t) \right] \hat{i} + \left[y(t + \Delta t) - y(t) \right] \hat{j}$$

Έστω ένα κινούμενο σώμα που περιγράφεται από το διάνυσμα θέσης r που γράφεται

θέσης r που γράφεται
$$\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j} \Rightarrow \vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + x\left(\frac{d}{dt}\hat{i}\right) + \frac{dy}{dt}\hat{j} + y\left(\frac{d}{dt}\hat{j}\right)$$
$$\Rightarrow \vec{v} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} \Rightarrow \vec{v} = v_x\hat{i} + v_y\hat{j}$$

□ Αν το σώμα κινείται με επιτάχυνση α(t) τότε μπορούμε να γράψουμε

$$\vec{a}(t) = a_x \hat{i} + a_y \hat{j} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} \Rightarrow a_x = \frac{dv_x}{dt} \quad \kappa \alpha i \quad a_y = \frac{dv_y}{dt}$$

Με ολοκλήρωση θα πάρουμε

$$dv_{x} = a_{x}dt \Rightarrow v_{x} = \int a_{x} dt \quad \text{ και ανάλογα} \quad v_{y} = \int a_{y} dt$$

ightharpoonup Αν η επιτάχυνση είναι σταθερή (μέτρο και διεύθυνση) τότε $\alpha_{\rm x}$ =σταθ. και $\alpha_{\rm v}$ =σταθ. και έχουμε

$$\mathbf{v}_{\mathbf{x}} = a_{\mathbf{x}} \int dt = a_{\mathbf{x}} t + \mathbf{c}_{1} \qquad \mathbf{v}_{\mathbf{y}} = a_{\mathbf{y}} \int dt = a_{\mathbf{y}} t + \mathbf{c}_{2} \qquad \mathbf{v}_{0\mathbf{y}}$$

Αντικαθιστώντας στα προηγούμενα έχουμε

$$\vec{v} = v_x \hat{i} + v_y \hat{j} = (a_x t + v_{0x}) \hat{i} + (a_y t + v_{0y}) \hat{j}$$

$$= (v_{0x} \hat{i} + v_{0y} \hat{j}) + (a_x \hat{i} + a_y \hat{j}) t \implies \vec{v} = \vec{v}_0 + \vec{a}t$$

Η ταχύτητα ενός σώματος κατά τη στιγμή t είναι το διανυσματικό άθροισμα της ταχύτητας v_0 και της πρόσθετης ταχύτητας αt που απέκτησε κατά το διάστημα t

Ανεξαρτησία κάθετων μεταξύ των κινήσεων

Εξαρτώνται οι τιμές των $\alpha_{\rm x}$, ${\rm v}_{\rm x}$ και ${\rm x}$ από τις τιμές των $\alpha_{\rm y}$, ${\rm v}_{\rm y}$ και ${\rm y}$ την ίδια ή κάποια άλλη χρονική στιγμή?

Το ερώτημα που τίθεται είναι κατά πόσο η κίνηση στην μια κάθετη διεύθυνση επηρεάζει την κίνηση στην άλλη κάθετη διεύθυνση.

Πειραματικά:

Κάθετες κινήσεις είναι ανεξάρτητες μεταξύ τους

Οι κατακόρυφες κινήσεις των 2 μπαλών είναι πανομοιότυπες
 Φθάνουν στο έδαφος την ίδια χρονική στιγμή __

Μπορούμε επομένως να αναλύσουμε την κίνηση σε κάθε άξονα ξεχωριστά

Κίνηση σε 2 διαστάσεις-κίνηση βλήματος

Ταχύτητα εφαπτόμενη της τροχιάς σε κάθε σημείο της τροχιάς

Αν το διάνυσμα της επιτάχυνσης είναι σταθερό, διαλέγουμε ένα από τους άξονες συντεταγμένων να είναι η γραμμή που περιέχει το διάνυσμα της επιτάχυνσης ή κάποια παράλληλη διεύθυνση

Διαλέγουμε την κατακόρυφη διεύθυνση (y//g)

(A) $\alpha_{\rm x}$ = 0 (έλλειψη επιτάχυνσης στο x) $\alpha_{\rm y}$ =-g (επιτάχυνσης βαρύτητας)

$$\mathbf{v}_{x} = \mathbf{v}_{0x} + a_{x}t = \mathbf{v}_{0x}$$

 $\mathbf{v}_{y} = \mathbf{v}_{0y} + a_{y}t = \mathbf{v}_{0y} - gt$

(Β) Οι αρχικές συνθήκες:

$$\theta_i = \theta_0 \quad x_0 = y_0 = 0 \quad v_i = v_0 \quad a_x = 0$$

$$\cos \theta_0 = \frac{v_{0x}}{v_0} \quad \sin \theta_0 = \frac{v_{0y}}{v_0} \quad a_y = -g$$

$$(Γ) \quad \mathbf{v}_{x} = \mathbf{v}_{0x} = \mathbf{v}_{0} \cos \theta_{0} = \sigma \tau \alpha \theta.$$

$$\mathbf{v}_{y} = \mathbf{v}_{0y} - gt = \mathbf{v}_{0} \sin \theta - gt$$

$$x = x_{0} + \mathbf{v}_{0x} t + \frac{1}{2} a_{x} t^{2}$$

$$y = y_{0} + \mathbf{v}_{0y} t + \frac{1}{2} a_{y} t^{2}$$

$$x = \mathbf{v}_{0x} t = (\mathbf{v}_{0} \cos \theta_{0}) t$$

$$y = \mathbf{v}_{0} \sin \theta_{0} t - \frac{1}{2} g t^{2}$$

$$Tαραμετρικές$$

$$εξισώσεις κίνησης$$

Εξίσωση τροχιάς y(x)

Απαλοιφή του χρόνου από τις δύο παραμετρικές εξισώσεις των συντεταγμένων

$$x = (v_0 \cos \theta_0)t \Rightarrow t = \frac{x}{v_0 \cos \theta_0} \qquad \Rightarrow y = x \tan \theta_0 - \frac{1}{2}g \frac{x^2}{v_0^2 \cos^2 \theta_0}$$

Η εξίσωση της τροχιάς είναι $2^{ου}$ βαθμού ως προς x, δηλαδή η διαδρομή του σώματος στο χώρο είναι παραβολική $y=ax+bx^2$

Κίνηση βλήματος

Πόσο χρόνο χρειάζεται το βλήμα να φτάσει στο μέγιστο ύψος του και ποιο είναι το ύψος αυτό? (κίνηση στον y-άξονα)

Όταν
$$y = h_{\text{max}}$$
, $v_y = 0 \implies 0 = v_{0_y} - gt \implies t_{h_{\text{max}}} = \frac{v_{0_y}}{g} \implies t_{h_{\text{max}}} = \frac{v_0 \sin \theta}{g}$

Αντικαθιστώντας στη εξίσωση y(t)

$$y(t_{\text{max}}) = h_{\text{max}} = y_0^{-1} v_{0_y} t_{\text{max}} - \frac{1}{2}gt_{\text{max}}^2 = (v_0 \sin \theta) \frac{v_0 \sin \theta}{g} - \frac{1}{2}g \left(\frac{v_0 \sin \theta}{g}\right)^2 \Rightarrow h_{\text{max}} = \frac{(v_0 \sin \theta)^2}{2g}$$

Πόσο μακριά θα πάει το βλήμα στο επίπεδο του εδάφους και πόσο χρόνο κάνει? (κίνηση στον x-άξονα)

Στο x_{max} το σώμα έχει επιστρέψει και πάλι στη θέση $h=y_0=0$

$$y = 0 = y_0^{-1} + v_{0_y} t - \frac{1}{2} g t^2 = (v_0 \sin \theta) t - \frac{1}{2} g t^2 \Rightarrow \begin{cases} t_1 = 0 & \text{προφανής} \\ t_2 = \frac{2v_0 \sin \theta}{g} & t_2 = 2(t_{h_{\text{max}}}) \end{cases}$$

Η μέγιστη απόσταση στον χ-άξονα (βεληνεκές) θα είναι:

$$x_{\text{max}} = x_0^0 + v_{0_x} t_{x_{\text{max}}} = v_0 \cos \theta \left(\frac{2v_0 \sin \theta}{g} \right) \Rightarrow x_{\text{max}} = \frac{v_0^2 \sin 2\theta}{g}$$

Βεληνεκές βλήματος

$$x_{\text{max}} = \frac{v_0^2 \sin 2\theta}{g}$$

Όταν θ =450 τότε $\sin 2\theta$ =1 και έχουμε μέγιστο βεληνεκές Για συμπληρωματικές γωνίες το βεληνεκές είναι ίδιο (π.χ. θ =30° και θ =60°)

- Η κίνηση στους άξονες Χ και Υ είναι ανεξάρτητη η μια από την άλλη.
- ★ Χωρίζουμε την κίνηση σε 2 άξονες και μελετούμε την κίνηση σε κάθε άξονα ξεχωριστά σα να έχουμε μονοδιάστατη κίνηση

Διανύσματα θέσης, ταχύτητας και επιτάχυνσης

$$\vec{v}_{av} = \frac{\vec{r}_f - \vec{r}_0}{t_f - t_0}$$

$$\vec{a}_{av} = \frac{\vec{v}_f - \vec{v}_0}{t_f - t_0}$$

$$\vec{v}_{av.x} = \frac{\vec{x}_f - \vec{x}_0}{t_f - t_0}$$

$$\vec{a}_{av} = \frac{\vec{v}_f - \vec{v}_0}{t_f - t_0} \qquad \vec{a}_{av.x} = \frac{\vec{v}_{fx} - \vec{v}_{0x}}{t_f - t_0} \qquad \vec{a}_{av.y} = \frac{\vec{v}_{fy} - \vec{v}_{0y}}{t_f - t_0} \qquad |\vec{a}_{av}| = \sqrt{a_{av.x}^2 + a_{av.y}^2}$$

$$x(t) = x_0 + v_{ox}t + \frac{1}{2}a_xt^2$$
 $y(t) = y_0 + v_{oy}t + \frac{1}{2}a_yt^2$

$$v_x(t) = v_{ox} + a_x t$$

$$v_x^2(t) = v_{ox}^2 + 2a_x \Delta x$$

γ-διεύθυνση

$$\vec{v}_{av.x} = \frac{\vec{x}_f - \vec{x}_0}{t_f - t_0} \qquad \vec{v}_{av.y} = \frac{\vec{y}_f - \vec{y}_0}{t_f - t_0} \qquad |\vec{v}_{av}| = \sqrt{v_{av.x}^2 + v_{av.y}^2}$$

$$\vec{a}_{av.y} = \frac{\vec{v}_{fy} - \vec{v}_{0y}}{t_f - t_0}$$

$$a_{av.y} = \frac{1}{t_f - t_0}$$

$$y(t) = y_0 + v_{oy}t + \frac{1}{2}a_yt^2$$

$$v_{v}(t) = v_{ov} + a_{x}t$$

$$\upsilon_x^2(t) = \upsilon_{ox}^2 + 2a_x \Delta x \qquad \upsilon_y^2(t) = \upsilon_{oy}^2 + 2a_y \Delta y$$

$$\frac{1}{2}a_{y}t^{2}$$

$$v_x(t) = v_{ox} + a_x t \qquad v_y(t) = v_{oy} + a_x t \qquad |\vec{v}| = \sqrt{v_x^2 + v_y^2}$$

Μια μπάλα κυλά σε οριζόντιο δάπεδο με 5m/s. Κατόπιν συναντά κεκλιμένο επίπεδο γωνίας 25°. Μετά από 0.5sec η μπάλα έχει ταχύτητα 3m/s.

Ποιό είναι το μέτρο της αλλαγής της ταχύτητας.

Ποιά είναι η μέση επιτάχυνση

Μπάλα σε καρότσι σε κεκλιμένο επίπεδο

Μπάλα εκτοξεύεται προς τα επάνω σε ορθή γωνία μέσα από καρότσι που αφήνεται να γλυστρήσει προς τη βάση κεκλιμένου επιπέδου. Η μπάλα μετά πέφτει.

Ξαναπέφτει μέσα στο καρότσι?

Α' Μέθοδος

gsinθ Θεωρούμε το σύστημα συντεταγμένων του οποίου οι άξονες είναι παράλληλος προς το κεκλιμένο επίπεδο και κάθετος σ' αυτό.

Αναλύουμε το διάνυσμα της επιτάχυνσης της βαρύτητας **g** σε 2 συνιστώσες ως προς τους 2 άξονες x΄ και y΄.

Η μπάλα και το καρότσι ξεκινούν με ταχύτητα $\mathbf{v}_{\mathbf{x}} = \mathbf{0}$ στη διεύθυνση \mathbf{x} και δέχονται την ίδια επιτάχυνση $\mathbf{g} \sin \mathbf{\theta}$ στην \mathbf{x} διεύθυνση

$$x'_{\kappa\alpha\rho} = x_0 + \frac{1}{2}g\sin\theta \ t^2$$

$$y'_{\kappa\alpha\rho} = 0$$

$$x'_{\mu\pi} = x_0 + \frac{1}{2}g\sin\theta \ t^2$$

$$y'_{\mu\pi} = 0$$

Ίδια και άρα η μπάλα πέφτει ξανά στο καρότσι

Μπάλα-καρότσι – Β΄ Μέθοδος

Οι συντεταγμένες της μπάλας δίνονται από

$$x(t) = (\upsilon \sin \theta)t \quad y(t) = (\upsilon \cos \theta)t - \frac{1}{2}gt^2$$

Η μπάλα χτυπά ξανά στο επίπεδο τη χρονική στιγμή

$$\tan \theta = \frac{-y(t)}{x(t)} \Rightarrow -\tan \theta = \frac{(v \cos \theta)t - \frac{1}{2}gt^2}{(v \sin \theta)t} \Rightarrow -\frac{\sin \theta}{\cos \theta} = \frac{\cos \theta}{\sin \theta} - \frac{gt}{2v \sin \theta}$$

$$\Rightarrow \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} = \frac{gt}{2v\sin\theta} \Rightarrow \frac{1}{\sin\theta\cos\theta} = \frac{gt}{2v\sin\theta} \Rightarrow t = \frac{2v}{g\cos\theta}$$
 (1)

Την στιγμή επαφής της με το επίπεδο έχει οριζόντια μετατόπιση x(t):

$$x(t) = (\upsilon \sin \theta) \left(\frac{2\upsilon}{g\cos \theta}\right) = \frac{2\upsilon^2}{g} \tan \theta \quad \text{που αντιστοιχεί στη θέση:} \quad x' = \frac{x(t)}{\cos \theta} = \frac{2\upsilon^2 \sin \theta}{g\cos^2 \theta}$$

Το καρότσι κινείται στο κεκλιμένο επίπεδο εξαιτίας της g_x:

$$d = \frac{1}{2}(g\sin\theta)t^2 = \frac{1}{2}(g\sin\theta)\left(\frac{2v}{g\cos\theta}\right)^2 \Rightarrow d = \frac{2v^2\sin\theta}{g\cos^2\theta}$$
 Ακριβώς ίδιες

Παράδειγμα οριζόντιας βολής

Βλήμα βάλλεται με ταχύτητα $\vec{v}_0 = v_0 \hat{x}$ από την ταράτσα ενός κτιρίου ύψους h και πρέπει να περάσει μέσα από την τρύπα πού βρίσκεται σε ύψος d από το x=0 και απόσταση x_s από y=0.

Ποια είναι η ν₀

Μπορούμε να χρησιμοποιήσουμε τις παραπάνω συνθήκες για να φτιάξουμε μια μονοχρωματική δέσμη ατόμων π.χ. άτομα με ίδια ταχύτητα ν₀

Αρχικές συνθήκες: $\vec{v}_0 = v_0 \hat{x}$ $y_0 = h$ $x_0 = 0$

Βρίσκουμε το χρόνο t όταν το βλήμα βρίσκεται σε θέση $x_{\beta\lambda\eta\mu}$ = x_s

$$x_{\beta}(t) = v_0 t \implies t = \frac{x_{\beta}}{v_0} = \frac{x_s}{v_0}$$

Τη στιγμή αυτή το ύψος του βλήματος πρέπει να είναι ίσο με το ύψος στο οποίο βρίσκεται η τρύπα

$$y_{\beta}(t) = d = h - \frac{1}{2}gt^2 = h - \frac{1}{2}g\left(\frac{x_s}{v_0}\right)^2 \Rightarrow (h - d) = \frac{1}{2}g\left(\frac{x_s}{v_0}\right)^2 \Rightarrow \frac{2(h - d)}{g} = \left(\frac{x_s}{v_0}\right)^2 \Rightarrow v_0 = x_s\sqrt{\frac{g}{2(h - d)}}$$

Ας εξετάσουμε μερικές ακραίες τιμές:

$$\begin{cases} d = h \rightarrow v_0 = \infty \\ x_s = 0 \rightarrow v_0 = 0 \end{cases}$$

Σκιέρ: Αλμα με σκί

Σκιέρ αφήνει την πλαγιά με ν_i=11m/s και γωνία θ₁=23° ως προς τον ορίζοντα και μετά προσγειώνεται στην πλαγία που έχει κλίση θ_2 =55°.

Πού και πότε προσγειώνεται

Λύση

Διαλέγουμε πρώτα ένα σύστημα συντεταγμένων και αναλύουμε την ν_i

Ο χρόνος που κινείται η σκιέρ στο χ-άξονα είναι ίδιος με αυτό στο y-άξονα:

$$x_{\Sigma} = (v_i \cos \theta_1)t \Rightarrow t = \frac{x_{\Sigma}}{v_i \cos \theta_1}$$
 (1)

Στο σημείο προσγείωσης οι συντεταγμένες της τροχιάς της σκιέρ (x_{Σ},y_{Σ}) και οι συντεταγμένες του σημείου της πλαγιάς $(x_{\pi\lambda},y_{\pi\lambda})$ είναι ίδιες:

$$x_{\Sigma} = x_{\pi\lambda} \equiv x$$
 $y_{\Sigma} = y_{\pi\lambda} \equiv y$ (2)

Από τη κλίση της πλαγιάς έχουμε $y_{\pi\lambda} = x_{\pi\lambda} \tan \theta_2$ (3)

$$y_{\pi\lambda} = x_{\pi\lambda} \tan \theta_2 \qquad (3)$$

Η εξίσωση θέσης της σκιέρ στην y-διεύθυνση δίνει (από 1 & 2 & 3)

$$y_{\Sigma} = v_{i_{y}} t - \frac{1}{2} g t^{2} = \frac{x_{i} \sin \theta_{1} x}{x_{i} \cos \theta_{1}} - \frac{1}{2} g \frac{x^{2}}{v_{i}^{2} \cos^{2} \theta_{1}} = x \tan \theta_{2} = \tan \theta_{1} - \frac{1}{2} g \frac{x}{v_{i}^{2} \cos^{2} \theta_{1}}$$

Λύνουμε την τελευταία ως προς x και αντικαθιστούμε στην (3) για y

Ελεύθερη πτώση

Ο Γιώργος και η Μαρία στέκονται στην άκρη ενός λόφου. Ο Γιώργος ρίχνει μια μπάλα κατακόρυφα προς τα πάνω ενώ την ίδια στιγμή η Μαρία ρίχνει μια μπάλα με την ίδια ταχύτητα κατακόρυφα προς τα κάτω.

- ➡Ποιά μπάλα φθάνει στο έδαφος πρώτη
 - (Α) Του Γιώργου (Β) Της Μαρίας (Γ) Ίδιος χρόνος

$$y = y_0 + v_0 t + \frac{1}{2} a t^2$$

Γιώργος:
$$0 = H + v_0 t - \frac{1}{2} g t^2$$

Mαρία:
$$0 = H - v_0 t - \frac{1}{2} g t^2$$

- ➡Ποιά μπάλα φθάνει με τη μεγαλύτερη ταχύτητα
 - (Α) Του Γιώργου (Β) Της Μαρίας (Γ) Ίδια ταχύτητα

$$v_f^2 - v_i^2 = 2g\Delta y \Rightarrow v_f^2 - v_i^2 = 2gH$$
$$\Rightarrow v_f^2 = v_i^2 + 2gH$$

