Binary operations

Casey Blacker Math 300 Properties of operations

2 Identity elements

Inverse elements

Section 1

Properties of operations

Let $*: A \times A \rightarrow A$ be a binary operation on A.

Definition

We say that * is

• commutative when

$$\forall a, b \in A : a * b = b * a$$

• associative when

$$\forall a, b, c \in A : (a * b) * c = a * (b * c)$$

i. Addition

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

is commutative and associative.

ii. Multiplication

$$\cdot: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

is commutative and associative.

iii. Subtraction

$$-: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

is neither commutative nor associative.

iv. The partial operation

$$\div: \mathbb{R} \times (\mathbb{R} \setminus \{0\}) \to \mathbb{R}$$

is neither commutative nor associative.

- v. The cross product $\times:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}^3$ is neither commutative nor associative.
- vi. Union, intersection, and symmetric difference $\cup, \cap, \Delta: \mathcal{P}(A) \times \mathcal{P}(A) \to \mathcal{P}(A)$ are commutative and associative for any set A.
- vii. When $n \geq 2$, we have that $n \times n$ matrix multiplication $\operatorname{Mat}_{n,n}(\mathbb{R}) \times \operatorname{Mat}_{n,n}(\mathbb{R}) \to \operatorname{Mat}_{n,n}(\mathbb{R})$ is associative but *not* commutative.
- viii. The midpoint operator $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, given by

$$x * y = \frac{x + y}{2}$$

is commutative but not associative.

Definition

The magma (A, *) is called a *semigroup* when * is associative.

Definition

If (A, *) is such that * is associative and commutative, then (A, *) is called a *commutative semigroup*.

Section 2

Identity elements

Definition

We say that $e \in A$ is an *identity element* for $*: A \times A \rightarrow A$ when

$$\forall a \in A : a * e = a = e * a.$$

Remarks

- i. The element e is also called a *neutral element*, or simply an *identity*.
- ii. When * is considered as a multiplication opperation, e is sometimes written $1 \in A$. When it is considered as an addition operation, it is sometimes written $0 \in A$.
- iii. If e satisfies

$$\forall a \in A : a * e = a$$
,

then it is called a right identity. It is called a left identity if

$$\forall a \in A : e * a = a$$
.

- i. $0 \in \mathbb{R}$ is an identity for $(\mathbb{R}, +)$
- ii. $1 \in \mathbb{R}$ is an identity for (\mathbb{R}, \cdot)
- iii. Subtraction $-: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ does not admit an identity element $e \in \mathbb{R}$
- iv. $\varnothing \in \mathcal{P}(A)$ is an identity for $(\mathcal{P}(A), \cup)$
- v. $\varnothing \in \mathcal{P}(A)$ is also an identity for $(\mathcal{P}(A), \Delta)$
- vi. $A \in \mathcal{P}(A)$ is an identity for $(\mathcal{P}(A), \cap)$
- vii. The $n \times n$ identity matrix $I_n \in \operatorname{Mat}_{n,n}(\mathbb{R})$ is an identity for $(\operatorname{Mat}_{n,n}(\mathbb{R}),\cdot)$
- viii. The midpoint operator on $\mathbb R$ does not admit an identity element $e \in \mathbb R$

Proposition

If $e \in A$ is an identity element for a binary operation $*: A \times A \rightarrow A$, then it is unique with this property.

Proof.

If $e, e' \in A$ are both identities for *, then

$$e = e * e' = e'$$
.

Definition

A semigroup (A, *) that admits an identity element $e \in A$ is called a *monoid*.

Section 3

Inverse elements

Let * be a binary operation on A, and let $e \in A$ be an identity element.

Definition

Fix an element $a \in A$. If $b \in A$ satisfies

$$a * b = e = b * a$$

then b is called an *inverse element* of a, and we write $b = a^{-1}$.

Remark

If b satisfies a * b = e (resp. b * a = e), then b is called a *right* (resp. left) inverse of a.

Proposition

Let (A,*) be a semigroup. If $b \in A$ is an inverse of $a \in A$, then b is unique with this property.

Proof.

If $b, b' \in A$ are inverses of a, then

$$b = e * b$$
= $(b' * a) * b$
= $b' * (a * b)$
= $b' * e$
= b' .

- i. In $(\mathbb{R}, +)$, the inverse of $x \in \mathbb{R}$ is -x.
- ii. In (\mathbb{R}, \cdot) , the inverse of $x \in \mathbb{R} \setminus \{0\}$ is $\frac{1}{x}$. The element $0 \in \mathbb{R}$ does not have an inverse.
- iii. In $(\mathcal{P}(A), \cup)$, only $\emptyset \in \mathcal{P}(A)$ has an inverse.
- iv. Likewise, in $(\mathcal{P}(A), \cap)$, only $A \in \mathcal{P}(A)$ has an inverse.
- v. In $(\mathcal{P}(A), \Delta)$, the inverse of $S \in \mathcal{P}(A)$ is itself.

Definition

The semigroup (A, *) is called a *group* when every $a \in A$ has an inverse $a^{-1} \in A$.

Definition

If (A, *) is a group, and if * is commutative, then (A, *) is called an *abelian group*.

Examples

The following are abelian groups.

i.
$$(A, +)$$
 for $A = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$

ii.
$$(A \setminus \{0\}, \cdot)$$
 for $A = \mathbb{Q}, \mathbb{R}, \mathbb{C}$

iii.
$$(\mathcal{P}(A), \Delta)$$
 for any set A

