武汉大学泛函分析期中考试试卷

2022-2023 学年度第一学期,主讲老师:邱彦奇

-、(40 分)

- 1. (5 分) 叙述 Hilbert 空间中范数的平行四边形法则并给出证明
- 2. (6 分) 叙述 Hahn-Banach 定理的两个版本 (线性映射延拓和凸集分离两版本)
- 3. (5分) 叙述赋范空间之间闭算子的准确定义; 叙述闭图像定理
- 4. (5分) 叙述共鸣定理并给出简要证明
- 5. (6 分) 叙述赋范空间的商空间上的范数的定义;证明 Banach 空间的商空间是 Banach 空间
- 6. (8 分) 叙述 Banach 空间之间游街算子具有闭的像集的充要条件并简要说明证明思路
- 7. (5 分) 叙述 Banach 空间之间紧算子的定义

二、(10分)

- 1. (2分) 叙述赋范空间中范数等价的定义
- 2.(8 分) 给定一个有限维实线性空间 X,证明其上任意的两个范数等价

三、(12分)

- 1. (5 分) 给定一个赋范空间 X. 证明一个线性映射 $l: X \to \Re$
- 2. (5 分) 给定两个赋范空间 X,Y 并假设 $dim(Y) < \infty$. 证明一个线性算子: $T: X \to Y$ 有界当且仅当
- 3.(2 分) 若上述条件 $dim(Y) < \infty$ 去掉,结论是否还成立?若成立给出证明,不成立给出反例.

四、(8分)

令 X 为 Banach 空间. 定义 $B^{\times}(X)$ 为

$$B^{\times}(X) := \{ T \in B(X) \mid T$$
为可逆算子 \}

令 $I \in B(X)$ 为 X 到自身的恒等算子,即任意 $x \in X$ 都有 I(x) = x

- 1. (3 分) 对任意 $T \in B(X)$, 若 ||T|| < 1, 证明 $I + T \in B^{\times}(X)$ 。
- 2. (5 分) 证明 $B^{\times}(X)$ 是 B(X) 中的开集.

五、(8分)

假设 X 为一个固定的无穷维 Banach 空间, $T \in K(X)$ 为 X 到自身的紧算子, $A \in B(X)$ 为 X 到自身的一个可逆有界线性算子

- 1. (4 分) 证明 $dimker(A+T) < \infty$
- 2.(4 分)证明 Im(A+T) 为 X 的闭子空间

六、(10分)

记 C[0,1] 为 [0,1] 上所有连续实函数构成的线性空间并定义范数:

$$||f|| = \sup_{t \in [0,1]} |f|$$

对于任意 $f_1, f_2 \in C[0,1]$,若 $f_1(t) \leq f_2(t)$ 对任意 $t \in [0,1]$ 都成立,则我们记 $f_1 \leq f_2$. 假设给定一个线性 算子 $T: C[0,1] \to C[0,1]$,满足如下性质:对于任意 [0,1] 上连续的非负函数 f,都有 $Tf \geq 0$.

- 1. (3 分) 证明线性算子保序,即任意 $f,g \in C[0,1]$,若 $f \leq g$,则 $Tf \leq Tg$
- 2. (4 分) 证明 T 为有界线性算子
- 3. (3 分) 假设 P(s,t) 为二元非负系数多项式, 定义 $T_p: C[0,1] \to C[0,1]$ 如下:

$$(T_p f)(t) = \int_{[0,1]} P(t,s) f(s) ds$$

证明

$$||T_p|| = \sup_{t \in [0,1]} \int_{[0,1]} P(t,s) ds$$

七、(12分)

令 $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ 为复平面中的单位开圆盘,令 dA 是 \mathbb{D} 上的 Lebesgue 测度,定义:

$$L^1_a(\mathbb{D})\coloneqq \{f:\mathbb{D}\to\mathbb{C}\mid f$$
 全纯且 $\|f\|_1\coloneqq \int_{\mathbb{D}}|f|dA<\infty\}$

对任意 $z \in \mathbb{D}$, 定义线性泛函 $l_z : L^1_a(\mathbb{D}) \to \mathbb{C}$ 如下:

$$l_z = := f(z)$$

1. (5 分) 证明 l_z 是 $L^1_a(\mathbb{D})$ 上的有界线性算子,并且对于 \mathbb{D} 中任意紧子集 $Z \subset \mathbb{D}$,都有

$$\sup_{z\in Z}\|l_z\|<\infty$$

(提示,利用全纯函数的面积型平均值性质)

- 2. (5 分) 利用上述结论证明 $L_a^1\mathbb{D}$ 在范数 $\|\cdot\|_1$ 下完备
- 3. (2 分) 给定任意 $r \in (0,1)$. 定义线性算子 $P_r: L^1_a(\mathbb{D}) \to L^1_a(\mathbb{D})$ 如下:

$$(P_r f)(z) = f(rz) \quad \forall f \in L^1_a(\mathbb{D}), \forall z \in \mathbb{D}$$

证明 P_r 是紧算子。