The University of New South Wales

ELEC2141: Digital Circuit Design

Tutorial Week 6 - Sequential Circuits Analysis

1. **(4-5)** A sequential circuit with a D flip-flop *A*, two inputs *X* and *Y*, and one output *Z* is specified by the following input equations

$$D_A = A\bar{Y} + XY\bar{A} + A\bar{X}, \quad Z = A$$

- a. Draw the logic diagram of the circuit
- b. Derive the state table
- c. Derive the state diagram
- d. Is this a Mealy or Moore machine
- 2. **(4-6)** A sequential circuit with two D flip-flops *A* and *B*, one input *X* and one output *Y* is specified by the following input equations:

$$Y = \bar{A} + B$$
, $D_A = X + B$, $D_B = X\bar{A}$

- a. Draw the logic diagram of the circuit
- b. Derive the state table
- c. Derive the state diagram
- d. Is this a Mealy or Moore machine
- 3. **(4-9)** Starting from state 00 in the following state diagram, determine the state transitions and output sequence that will be generated when an input sequence of 10011011110 is applied.

4. **(4-11)** A sequential circuit with two D flip-flops *A* and *B*, one input *X* and one output *Y*. The logic circuit is shown below. Derive the state table and state diagram of the circuit.

Where referenced, questions are taken from the textbook:

5. **(4-10)** Draw the state diagram of the sequential circuit specified by the state table given below

Present state		Inputs		Next state		Output
Α	В	X	Y	A	В	Z
0	0	0	0	1	0	0
0	0	0	1	1	1	1
0	0	1	0	1	1	0
0	0	1	1	1	1	1
0	1	0	0	0	1	1
0	1	0	1	0	0	0
0	1	1	0	0	0	1
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	0	1	0	1	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	0
1	1	0	1	0	1	0
1	1	1	0	1	0	1
1	1	1	1	1	1	1

6. Construct a state diagram for the counting sequence generated by the follow circuit.

7. Draw the state diagram for the sequential circuit specified by the state table below.

Current	Next State, Output					
State	XY = 00	XY = 01	XY = 10	XY = 11		
$\mathbf{q_1}\mathbf{q_0}$	Q_1Q_0 , Z	Q_1Q_0 , Z	Q_1Q_0 , Z	Q_1Q_0 , Z		
00	00,0	01, 0	10, 1	11, 1		
01	01, 1	10, 1	10, 0	00, 0		
10	11, 1	11, 0	11, 1	10, 0		
11	00.0	00, 1	00, 0	01, 0		

8. A sequential circuit has two JK flip-flops *A* and *B* and one input x. The circuit is described by the following flip-flop input equations:

$$J_A = X$$
 $K_A = \bar{B}$
 $J_B = X$ $K_B = A$

- a. Derive the state equations A(t+1) and B(t+1) by substituting the input equations for J and K variables
- b. Draw the state diagram of the circuit
- c. Obtain the flip-flop input equations for the equivalent sequential circuit using T flip-flops