

Best practices for the creation of and metadata for digital object identifiers in astronomy archives

Version 1.0

IVOA Note 2024-12-29

Interest Group

Data Curation and Preservation

This version

https://www.ivoa.net/documents/DOI4Archives/20241229

Latest version

https://www.ivoa.net/documents/DOI4Archives

Previous versions

This is a draft

Author(s)

August Muench, Gilles Landais, Raffaele D'ABrusco, Anne Raugh, Edwin Henneken, Baptiste Cecconi, to complete: Alberto Accomazzi?, ESA people?

Editor(s)

TBD

Abstract

Many astronomy archives are producing digital object identifiers (DOI) for datasets and services. This document aims to summarize current workflows for creating and using DOIs, diagnose issues in the metadata of extant DOIs, and develop best practices for workflows and metadata for future DOI deployment. This note is focused on archives in Astronomy, Planetary Science, and Heliophysics. Additional domains may be considered at a later time.

Status of this document

This is an IVOA Note expressing suggestions from and opinions of the authors. It is intended to share best practices, possible approaches, or other perspectives on interoperability with the Virtual Observatory. It should not be referenced or otherwise interpreted as a standard specification.

A list of current IVOA Recommendations and other technical documents can be found at https://www.ivoa.net/documents/.

Contents

1	Inti	duction	4
	1.1	General observations	4
	1.2	DOI landscape	4
	1.3	Use case	5
	1.4	Example of existing DOI	5
2	Rol	within the VO Architecture	5
	2.1	Status of DOI in the Virtual Observatory	6
	2.2	Comparison with the VO Registry schemas	6
3	Ext	nt use of Digital Object Identifiers in Archives	7
	3.1	Datasets	7
	3.2	Collections	8
	3.3	Services	9
	3.4	Knowledgebases	9
	3.5	Pathologies	10
4	Bes	Practices for DOI Workflows	L1
	4.1	Pre-requisite	11
		4.1.1 Providing metadata using the appropriate schema	11
		4.1.2 DOI syntax	12
	4.2	Citation requirements	13
		4.2.1 Generating BibTeX	13
		4.2.2 Evolving datasets	14
		4.2.3 Collections	15
		4.2.4 Service	15
	4.3	Landing pages	15
		4.3.1 Building a landing-page	15
			16
		4.3.3 Pathologies	16
	4.4	Linked Data	17

		4.4.1	Connect resources together	17
		4.4.2	Link resources within a DataCenter	18
		4.4.3	Link data to external resources	18
		4.4.4	Link other networks	20
		4.4.5	Linked Data for Services and knowledge base	20
	4.5	Versio	ning and evolving datasets	20
		4.5.1	Manage version	21
		4.5.2	Evolving datasets	21
	4.6	Tombs	stone page	21
5	Met	adata	list	22
	5.1	Choos	ing a resource type	22
	5.2	Autho	rs	23
	5.3	Keywo	ords	24
	5.4	Dates		25
	5.5	Title a	and description	25
	5.6	Licens	es	26
	5.7	Fundi	ng references	27
	5.8	Identif	fier for project	27
6	Rec	omme	ndation checklist	28
A	Cat	alog of	f Repositories and Archives issuing DOIs	29
	A.1	Domai	in Specific repositories	29
	A.2	Genera	alist repositories	30
В	Imp	ortant	DataCite Metadata Case Studies	30
	B.1	Chand	lra Data Archive	30
	B.2	VAMI	OC & Zenodo workflow	30
	B.3	ESA		31
	B.4	VizieR	8	31
\mathbf{C}	Woı	rkflows	3	31
D	Cha	nges f	rom Previous Versions	31
Re	efere	nces		33

Acknowledgments

 $\rm ESA$ (C.Arviset, M-H. Sarmiento, A.Masson), ADS (A.Accomazzi) and IVOA members active in DataCP sessions.

Conformance-related definitions

The words "MUST", "SHALL", "SHOULD", "MAY", "RECOMMENDED", and "OPTIONAL" (in upper or lower case) used in this document are to be interpreted as described in IETF standard RFC2119 (?).

The Virtual Observatory (VO) is a general term for a collection of federated resources that can be used to conduct astronomical research, education, and outreach. The International Virtual Observatory Alliance (IVOA) is a global collaboration of separately funded projects to develop standards and infrastructure that enable VO applications.

1 Introduction

1.1 General observations

Previously in 1.Introduction, items 1+2

We focus on roles of digital object identifiers (DOIs) rather than the full landscape of FAIR data (Wilkinson and Dumontier et al., 2016). It is beyond the scope of this document to address all aspects of FAIRness. It is also unreasonable we think for DOIs to be laden with the problems of enabling all aspects of FAIRness. Instead we aim for this document to guide archives with achieve compliance for specific aspects of enabling FAIR data.

In this document we are using DataCite Commons ¹. This document adopts DataCite Metadata Schema 4.5. We choose relevant examples from existing DOI taken in approximatively 75000 dataset DOIs in astronomy (See Table 1).

1.2 DOI landscape

New section (must be checked)

DOIs are part of the scientific article publication process. The DOI is a sustainable identifier applied to a web resource that emerges today among other identifiers such as the ORCID², for authors, the RoR³ for organization or the RAID⁴ for projects.

As it is unique, it enables a resource to be reliably identified, regardless of the professional network in which it is published. It improves traceability and citation with standard metadata that can be harvested and reused. For instance, BibTeX can be extracted from DOI. The DOI information may also includes references and related products that build up a graph of linked resources step by step.

¹https://commons.datacite.org

²https://orcid.org/

³https://ror.org/

⁴https://raid.org/

DOIs are widely used for data, and although their metadata is slightly different from articles, they work very well together.

Data Centers motivated for citation and interconnection, must curate relevant metadata. In this document, we will develop good practices to provide well citation, interconnections with related resources, including IVOA resources.

1.3 Use case

New section (must be checked)

- 1. Authors and Data Centers expect that the resources they created or provide will be included in the citations of each article or resources which used them. It needs well curated BibTeX, linking the Data. Users also expect the Data Center website to provide a way to cite the resource.
- 2. The Data consumer expects to get information about origin and rights. For access rights, existing license must be visible but also readable by software.
- 3. Data published are disseminated in networks like the VO registry, DatasetSearch or the EOSC EU node (see 4.1.1). The users as well as the Data Center expect that the entries are consistent.
- 4. The Data Center as well as authors needs reports about the usage activity of their work. They query dedicated services (eg: OpenCitation) that make reports and are capable to graph the citation of a specific resource.
- 5. A user expects sustainable access to a resource that he cited in an article or that he used in an experience. It expects that the experience is reproducible. If it uses a service or Knowledgebase, it expects that the protocols stay compatible with the original implementation. For Dataset, it could expect that data have not been altered.

1.4 Example of existing DOI

Previously in 1.Introduction

Table 1 lists a short selection of assigned by Data Centers. The list is not exhaustive but shows different usage of DOI ____

complete the DOI table?

2 Role within the VO Architecture

New section (must be checked)

Archive	Prefix	DataCite Client	Yo	Count
Canadian Astronomy Data Centre	10.11570	nrc.cadc	-	80
Chandra Data Archive	10.25574	si.cda	-	29,449
ESO Science Archive Facility			-	
European Space Agency	10.5270		-	$28,\!858$
IPAC (26131 — 26135)	10.2613X	caltech.ipacdoi	-	622
Mikulski Archive for Space Telescopes	10.17909	stsci.mast	-	2,132
NASA Planetary Data System	10.17189	nasapds.nasapds	-	1,976
++Small Bodies Node of PDS	10.26007	sbn.archive	-	$4,\!837$
Strasbourg Astronomical Data Center	10.26093	inist.cds	-	17,383

Table 1: Example of organizations generating DOIs.

Note

Dataset DOIs do not lead to data, or what they do lead to is widely varied.

2.1 Status of DOI in the Virtual Observatory

The DOI is not a standard of the Virtual Observatory which uses the IVOID identifier (Demleitner and Plante et al., 2016).

At the time of writing, the DOI is not well integrated into VO standards. They are not part of the metadata of data-models or protocols created long before the advent of DOIs. However, it starts to appear in Notes or in standards as an alternate identifier.

- Data Origin (Landais and Muench et al., 2024) is a Note which includes DOI among the metadata that a service can provide in the result of a query.
- The registry (Dower and Demleitner et al., 2014) (VOResource 1.2) allows to specify DOI in any ResourceName such as alternate identifier or related resources.
- BibVO (Demleitner and Accomazzi, 2024) is a note that requires DOI to link Data and articles.

2.2 Comparison with the VO Registry schemas

A record in the VO registry has a unique identifier called IVOID. It includes a URL in the metadata, but the IVOID is not really resolvable such as DOI. However, its syntax which can be extended to a sub-part of the resource is commonly used in VO services. For instance, an IVOID of a tableset can be

completed to specify a particular record and then to be used to generate a Datalink.

The VO Registry is based on VODataService and VOResource. It includes Resources; Datasets and Services that can be linked with term Is-Servedby.

This relation allows to provide a strong interoperability in the Virtual Observatory. The absence of an equivalent term in DataCite makes it illusory to try and transcribe the same level of interoperability in DOI.

We propose in section 4.4.4 a method to facilitate link between DOI and registry record.

VO Registry and DataCite schemas are based on DublinCore terms extended with their own specifications. Despite a common basis, the vocabularies differ. The DataOrigin note provides in Appendix a mapping between DataCite and VOResource for a sub selection of terms. Note that the endorsement process of DataOrigin has not been initiated.

3 Extant use of Digital Object Identifiers in Archives

This section comes from the original

We observe four different uses for DOIs in astronomy-related archives. Identifiers are being assigned for individual datasets (at various levels of granularity); for collections of datasets; for services; and for what we will call "knowledgebases" or curated meta-collections of data and calculated results. These uses are described in more detail below.

3.1 Datasets

Dataset DOIs are the most common usage in astronomy-related repositories, and represent about »XX% of all such DOIs. Individual datasets are being assigned DOIs at various levels of granularity. At the most granular level, every observation in the Chandra Data Archive (CDA) is assigned an individual DOI. Similarly, the European Space Agency assigned DOIs to every individual Herschel, ISO, Planck and XMM-Newton observation. This list also includes every Hubble Space Telescope (HST) observation, which are also archived at the Mikulski Archive for Space Telescopes (MAST) but are not assigned DOIs individually by MAST.

Individual dataset DOIs are implemented mostly consistent with the usage of DOIs by institutional repositories, generalist repositories (e.g., Zenodo), etc. That is, the dataset DOI resolves to a landing page describing the

dataset. In some cases the landing pages are rich summaries of the dataset, often including much more information than could be gleaned from the DOI metadata alone (added by Gilles) (landing page are developed in section 4.3). In other cases the landing pages pop the user into a web user interface with very little (or almost no) contextual information about the DOI.

Dataset DOIs are also being minted for "High-Level Science Products" (HLSP). Such HLSP datasets are not static and can grow over time, accumulating both data revisions and additions. HLSP landing pages for DOIs have no set structure or content and change regularly as the linked data evolve.

None of these dataset DOIs are versioned. The data discovered by following a dataset DOI to an individual observation will change based upon the version of the archive pipeline used to create it, up real-time or on-demand reprocessing for some archives (added by Gilles) (the case of evolving dataset is treated in section 4.5.2).

The typical Resource type in DataCite is DataCite:dataset

3.2 Collections

Collection-type DOIs direct users to a collection of individual data records in a particular archive. Examples of collection-type DOIs include the DOI services provided by the Mikulski Archive for Space Telescopes (MAST)⁵ (Novacescu and Peek et al., 2018), Chandra Data Archive (CDA)⁶ (Rots and D'Abrusco et al., 2018), and the VAMDC Consortium⁷ Query Store service (Moreau and Zwolf et al., 2018). There is significant variation in the expected use cases for these Collection DOIs. There are also strong variations in the metadata of Collection-type DOIs.

Considering use-cases, both MAST and Chandra Collection DOIs collect dataset identifiers within their respective databases. In both cases there is no expectation that these Collection DOIs would ever themselves collect attribution (i.e., be cited in the reference list of a corresponding Journal article). However, VAMDC Collection DOIs, are intended to collect and distribute credit to the collection of database identifiers they contain. They attempt to distribute this citation/credit to the collection of resources by "citing" all the related resources in the saved VAMDC query record. Because this depends upon the capabilities of both the chosen DOI minting service (Zenodo) and the DataCite Schema, additional notes on the details and the outcomes of this effort is provided in one of our case studies in Appendix B.

Similarly the metadata of Collection DOIs vary between MAST and CDA examples. As described in D'Abrusco and DPAOps Team (2023),

⁵https://archive.stsci.edu

⁶https://cxc.harvard.edu/cda/

⁷https://vamdc.org

Chandra Data Collection DOIs create complete records of individual using relatedIdentifier tags and predicates. The metadata of MAST Collection DOIs do not provide detailed information on the individual MAST records collated in the collection.

added by Gilles See 4.2, 4.3, 4.4, 5.1, 5.2, 5.4
The typical Resource type in DataCite is DataCite:Collection

3.3 Services

Examples of DOIs for services include IRSA (DUST). Service DOIs lead to query tools. They may lead to query results – I would need examples.

Sometimes Collection DOIs act like Service DOIs but they are not. Collection DOIs may result from queries performed at a Service.

Warning: weeds.

Gilles: are there ambiguities between Service (query tool) and Service (Organization or Information System such as VizieR services)?

Gilles: (note sure) The "Service" definition of DataCite: "An organized system of apparatus, appliances, staff, etc., for supplying some function(s) required by end users."

We distinguish Query tools Service (ie: Web application leading query result such as a TAP server) and Organized System Service which includes the whole architecture, Staff query tools, datasets, etc.

Examples:

- the VizieR Service, doi: https://api.datacite.org/dois/application/vnd.datacite.datacite+xml/10. 26093/cds/vizier
- TOSS (Tübingen Oscillator Strengths Service, GAVO): https://api.datacite.org/dois/application/vnd.datacite.datacite+xml/10. 21938/3I01ISNUCODNH1ZJBCVUWA

added by Gilles See 4.3, 4.4, 5.1, 5.2, 5.4
The typical Resource type in DataCite is DataCite:Service

3.4 Knowledgebases

A knowledgebase is a collection of material collated from many discrete sources. All of the values contained in a knowledgebase have a provenance traced to other resources and have been curated into a single database for reuse. Examples include: Simbad (as originally described in, Wenger and Ochsenbein et al., 2000), NASA Exoplanet Archive (NEA) (NASA Exoplanet Science Institute, 2020) (as originally described in, Akeson and Chen et al., 2013), NASA Extragalactic Database (NED) (NASA/IPAC Extragalactic Database (NED), 2019) (as originally described in, Helou and Madore et al., 1991).

Current observations about DOIs for knowledgebases include:

- DOIs for knowledgebases lead users to interstitial landing pages rather than directly to the collated, curated resources.
- DOIs for knowledgebases do not lead to individual values, e.g., the results of a query against that knowledgebase.
- DOIs for knowledgebases never provide information in their metadata about the *state* of a knowledgebase: its current version; last update; etc. Nor is this information on the interstitial landing pages of knowledgebases.
- Services that return DOIs for queries against knowledgebase are considered Service DOIs (See Section 3.3).

added by Gilles See 4.3, 4.5.2, 5.1, 5.2, 5.4

Warning: weeds.

The typical Resource type in DataCite is DataCite: Dataset or DataCite: Service

Gilles: propose to move item in landingpage

Gilles: idem, is also in section landingpage,

3.5 **Pathologies**

The primary pathology evident in DOI creation today is a mismatch between the metadata created by an archive and the use case (intended to be) implemented by that DOI. Succinctly, the metadata supplied by astronomy archives is often insufficient to ensure the accurate citation of the datasets.

By detailing these pathologies and triaging their less-than-desirable outcomes we can aim to develop empirically-defined best practices to guide repositories forward with the use of identifiers. Here is a topical list of pathologies:

- 1. Incomplete metadata: missing or incorrectly formatted author data, generic or misstated titles, misunderstood dates
- 2. Inconsistent metadata: transmutations of metadata between systems lead to inconsistent metadata deposits. Example: transformation from schema.org to Crossref left ESA DOIs in a nasty state;
- 3. (Un)versioned data: versioning is mostly nonexistent and when provided it is ill defined and often opaquely transmitted;

4. Misconceptions: DOIs do not lead to data, or what they do lead to is widely varied.

4 Best Practices for DOI Workflows

New section (must be checked)

4.1 Pre-requisite

Ten Registration agencies are providing DOIs, Crossref⁸ usually used for article and DataCite⁹ for data are the best known. We strongly recommend the use of DataCite which offers the most appropriate metadata for recording data.

To create a DOI (DataCite), you must be a member of DataCite. Data publishers who are not members must contact a member organisation (in general, countries and universities have a contact point).

4.1.1 Providing metadata using the appropriate schema

DOI workflow requires metadata curation based on the DataCite schema¹⁰ which allows to improve the FAIRness of the datasets. Other workflows exist with their own semantic and metadata serialization. These are multiple, they overlap and are also specific.

For instance, the IVOA framework provides a registry with a high level of interoperability and point directly to the resources, whereas DataCite is specialized in data citation and link a human web page called "landing page".

Note DOI implies to maintain a sustainable mechanism to provide a URL. This requirement, even if also in usage in the IVOA registry, is mandatory for DOI.

Datasets distributed in diverse frameworks complement each other and are likely harvested by platforms or search engine such as ADS, EOSC, Google Dataset. These indexing services group together the information relating to the same resource, they merge the metadata which are both redundant and specific to each harvested network. This cross operation process (for instance OpenAire) is often a black box and depends on the indexing service's strategy. Note that DOI, as a unique identifier, facilitates the cross operations.

⁸https://www.crossref.org/

⁹https://datacite.org/

¹⁰https://datacite-metadata-schema.readthedocs.io/

The list of metadata tends to increase, but the most popular are DataCite schema, Dublin Core¹¹, VOResource ¹² (the registry of the Virtual Observatory), schema.org ¹³ (extends Dublin Core and is used by Google), DCAT¹⁴ (linked catalogues, datasets and services. DCAT is a concurrent of the VO registry), OpenCitation¹⁵ (a schema of linked citation), etc.

Note All are specific, and we highlight the importance for Data providers to disseminate consistent metadata (for instance list the whole authors in all output).

The importance, but also the specifities of the metadata have been discussed in IVOA DCP session (see the presention of H.Enke, Interop 2023, Bologna ¹⁶). In practice, it is better for implementers to think since the beginning about the different output in order to provide consistent workflow.

Note DataCite provides several serialization of the metadata, in particular "schema.org".

Note Maintain the disseminations workflows togethers

4.1.2 DOI syntax

Not sure it should be included in this note?..

The DOI syntax is composed with a prefix followed by a suffix. The prefix is assigned by DataCite or Crossref and is used for all resources provided by the DOI producer. The suffix is created by the producer to identify the resource.

For instance:

https://doi.org/10.3847/1538-4365/aab76a

- the prefix 10.3847 is the prefix attributed by Crossref to the AAS journals
- the suffix 1538-4365/aab76a defined the article

DOI-AIP-20230510.pdf

¹¹https://www.dublincore.org/

¹² https://ivoa.net/documents/VOResource/

¹³https://schema.org/

¹⁴https://www.w3.org/TR/vocab-dcat-3/

¹⁵https://opencitations.net/

¹⁶https://wiki.ivoa.net/internal/IVOA/InterOpMay2023RegistryDCP/

DataCite recommends using an opaque syntax. To remove any significance in a name avoids bad interpretation and is more sustainable. For example, the data center where the data are deposited may change and therefore should not be used in the syntax.

Note also the DOI usage in web pages for which it is recommended to provide clickable links. It is therefore up to the web maintainer whether or not to hide the DOI with appropriate text.

4.2 Citation requirements

New section: needs to be discussed!

4.2.1 Generating BibTeX

DataCite schema includes the required metadata to generate citation in various formats: BibTeX, APA, etc. The citation quality is generally fixed by journals, ADS or Data publisher. It is possible to make a citation from DOI metadata when these are properly curated (BibTeX generated by ADS is more rich than those provided by DataCite). We will describe the mandatory items that cover the known citations and we will complete the metadata with added relevant information.

Note: Example of citation provided by DataCite in BibTeX format:

```
curl -LH "Accept: application/x-bibtex" https://doi.org/10.5270/esa-1ugzkg7
```

Full BibTeX template : the following example maps BibTeX with DataCite schema (see table 2).

We use the ADS BibTex type "@dataset". This term is specific to ADS and is not used by service such as DataCite which uses the generic term "@misc".

BibTeX	DataCite	Relevance for citation
authors	Authors	MUST, see 5.2
title	Title	MUST, see 5.5
year	Date:creation	MUST, see 5.4
month	Date: creation	
eid	alternate Identifier	MAY, see 4.4
url		SHOULD, use https://doi.org/{DOI}
keywords	Sujects	SHOULD, Please, see 5.3
publisher	Publisher	MUST
copyright	Rights	RECOMMENDED, see 5.6
DOI		MUST
$resource_type$	${\bf resource Type}$	MUST, see 5.1

Table 2: linking BibTeX and DataCite schema

Citation in APA style:

```
{authors} ({year}). {title} [resource_type]. {publisher}. {DOI} VizieR example: (catalogue J/MNRAS/320/451)
```

```
Beers, T. C., Rossi, S., O'Donoghue, D., Kilkenny, D., Stobie, R. S., Koen, C., & Wilhelm, R. (2006). A-G star metallicity [Data set]. Centre de Donnees Strasbourg (CDS). https://doi.org/10.26093/CDS/VIZIER.73200451
```

4.2.2 Evolving datasets

See DataCite evolving dataset guidance 17

We consider different citation for evolving datasets. The method depends on the data Center implementation.

- 1. Cite a snapshot of the Dataset. In this approach, the Data Center makes snapshots and adopts a DOI versioning mechanism (see 4.5).
- 2. Cite the dataset as to be an evolving Dataset. Example in APA style:

```
{authors} ({year}). {title} [evolving Data set]. {publisher}.
{DOI}. Accessed {date_of_access}
```

In the example date_of_access could be the 'update' date of the DOI record (assuming that the dataset and its DOI are well synchronized).

 $^{^{17} \}rm https://datacite-metadata-schema.readthedocs.io/en/4.6/guidance/dynamic-datasets/$

3. Cite a DataSet extraction resulting of a query.

The solution may become complex if we take or not the reproducibility aspect. A simple solution without reproducibility constraint consists to cite the access protocol (for example IVOA SCS, TAP), optionally completed with query details.

Example in APA style: (note that "protocol" is independent of the DOI record!

```
{authors} ({year}). {title} [evolving Data set]. {publisher}.
{DOI}. Accesses {date_of_access}, via {protocol}
```

An option taking into account the reproducibility has been adopted by the VAMDC Query Store¹⁸ where query and result are hosted with a DOI (giving details are not in the scope of this note).

Note see also the acknowledgment proposed in DataOrgin¹⁹ Appendix Citation, Template.

4.2.3 Collections

4.2.4 Service

We encourage Data publisher to provide a way to cite or acknowledge services used by authors in articles. The recommendation is in the Publisher discretion and should be visible in the landing page of the Service (see 4.3).

It is rather a common practice to acknowledge than cite a service in an article. For both, the Service DOI which includes the URL resolver has to be considered.

4.3 Landing pages

New section (must be checked)

4.3.1 Building a landing-page

Landing page is a human readable WEB page attached to the DOI. Datacite provides a documentation about good usage ²⁰.

Gilles: I don't know if there is something to add here? See 3.2: "[...]CollectionsDOIs. areintendedtocollectand distributecreditto the collection od databaseidentifier they contain/...

¹⁸https://cite.vamdc.eu/

¹⁹https://www.ivoa.net/documents/DataOrigin/

²⁰https://support.datacite.org/docs/landing-pages

Note The landing page is primarily dedicated for Human. The DOI metadata should be visible in the web page. In particular, the DOI, title, authors, licenses should be highlighted.

Additional information are often added. In particular links to access the data, but also any other information, specific to the data center or included in other workflows provided by the Data Center (BibTeX, schema.org ²¹, DCAT ²², etc)

Landing page for service of Knowledgebase The landing page of a service or a Knowledgebase is generally its web portal. It includes both service access and information (eg: contact, about, etc.)

Landing page for collection This page contains information that is common to every datasets in the collection. Each Dataset specificity is not shown on this page. The content depends of the nature of the collection: for instance the Organization, an abstract, the date of creation or the materials used to generate the individuals datasets.

The page should provide the way to access individual datasets.

4.3.2 Generate a machine-readable landing page

Search engines harvest landing page for indexation and expect some metadata serialized with a standard semantic. For instance "schema.org" or DCAT serialized in JSON-LD are needed by Google Datasets 23 .

The FAIRness of the landing page can be evaluated with validators:

- FAIRchecker ²⁴
- Google Search central ²⁵

4.3.3 Pathologies

• https://doi.org/10.17189/1519607 (NASA/PDS): there is a title, authors, DOI, summary... but there is no direct link to the data. The "Search/Access Data" link goes to a search interface, where the user should search again with some parameter (not specified, to be guessed)

Gilles:
may be
hide the
DOI
and
provide
anonymous
links?

²¹https://schema.org/

²²https://www.w3.org/TR/vocab-dcat-3/

²³https://datasetsearch.research.google.com/

²⁴https://fair-checker.france-bioinformatique.fr/

²⁵https://developers.google.com/search/docs/appearance/structured-data

- https://doi.org/10.48322/rgf7-3h67 (HPDE): there is everything about the citation, title, doi, summary, content... but the formatting is very close to the SPASE XML record. It's ok for user fluent with SPASE, not so much for outsiders. The SPASE record lists a number of related identifiers, not present in the DataCite metadata.
- https://doi.org/10.57780/esa-3xcjd4w (ESA): All required/recommended information is present, but the granuality (a single DOI for the full experience, not split with version ro processing levels...). And the data access goes to a search interface, where the user should search again for the products.
- https://doi.org/10.3334/ornldaac/2351. Besides having semantic information in the DOI, the biggest problem is the fact that metadata says that this is a collection DOI. However, the metadata is for a dataset that is in the collection. The collection itself is specified in the relatedI-dentifiers section with attribute IsPartOf, but the collection itself does not have a DOI.

4.4 Linked Data

New section (must be checked)

4.4.1 Connect resources together

Linked Data allows to connect resources together, it helps discovery and allows to generate a map of interconnected resources. Linked Data are expressed with DataCite:RelatedIdentifier in DataCite schema. They have been the subject of a supplementary section in the DataCite guidance.

We recommend to add at least one relation (for instance to link a dataset with a reference article).

DataCite provides a list of controlled vocabulary that allows to specify the relationship between resources. These relations may use DOI or any other sustainable identifier (eg: bibcode).

Note The relationship vocabulary is precise. Too often, providers give their own interpretation of the terms. If there's any doubt about the meaning of the vocabulary, it's better to put no relations than a misunderstood relationship.

See relation vocabulary and their definitions in the DataCite Schema²⁶.

 $^{^{26}} https://datacite-metadata-schema.readthedocs.io/_/downloads/en/4.5/pdf/, section 12$

Note Privilege DOI linking to any relations

DOI has to be privileged than any other identifier or URI. DOI facilitate the harvesting/merging jobs. For instance the EOSC EU Node portal displays related resources having DOI.

4.4.2 Link resources within a DataCenter

DataCenter may provides resources in different granularity. For instance Chandra provides catalogue of observations. Each observation is a Product having his own DOI. Then the products are linked to the catalogue which has a DOI too.

Particular interest for Collections In a case of Collection, DataCite provides terms to link a resource to its collection. DataCite:isPartOf seems to be appropriate to link an individual Dataset to a Collection. However, the verb used for linking depends of the Data Center architecture.

Include related identifiers linking the collection DOI to internal and if possible external identifiers for the dataset(s). This will make the DOIs broadly more useful and interoperable.esa

4.4.3 Link data to external resources

There are many reasons to link a resource with external products, we give just few examples:

- link the datasets that have been used to create a product
- link other copy DataCite:isIdenticalTo
- for a derived product, link the original data with a qualified terms such as DataCite:isVariantFormOf, DataCite:isDerivedFrom, ...
- cite a resource DataCite:Cites
- etc.

add Example

Linking Dataset to a publication DataCites provides terms to link Datasets with articles. For instance DataCite:Cites, DataCite:isSupplementTo, DataCite:isDescriebdedBy, DataCite:References, etc. Choosing the good term is specific to the Datasets.

Note the DataCite: Cites relations which makes an automated citation (the article is cited when the DOI of the dataset is created). Other terms like DataCite: References generates also statistics in DataCite.

Example: link a dataset with its reference article.

The above example provides a relations using bibcode (extract from https://doi.org/10.26093/cds/vizier.22640008).

```
{
    "relationType": "IsSupplementTo",
    "relatedIdentifier": "2023ApJS..264....8H",
    "relatedIdentifierType": "bibcode"
}
```

Linking Dataset with its original resource We distinguish a mirror copy and resource derived from an original resource. Both can have their own DOI. We encourage derived resource as well as copy mirror to link the original resource using DataCite relations.

There are lots of reasons why a DataCenter that provides a derived resource want to provide a DOI. Often, the derived product is the result of a curation that provides added values.

Before creating a DOI, we encourage the DataCenter to tell their DOI plan to the original archive. Some metadata of the original resources should be copied in the derived product, and other will be dedicated to the derived product.

- Authors: the full authors (creators and contributors) list should be replicated in the derived metadata. The list can be completed with contributors involved in the derived product curation.
- Dates: the creation and the modification dates are the dates of the DataCenter that provide the derived product
- Abstract: it is not needed to duplicate the original abstract, but the added curation should be explained
- relations: add link to the original product. You can Cite (relation type DataCite:Cites) the original resource that you can complete with a relation explaining the relationship between the original and the derived product.

Please: refer to DataCite:**relationType** vocabulary and do not extrapolate the semantic.

give Example

```
"relationType": "IsVariantFormOf",
"relatedIdentifier": "10.5270/esa-qa4lep3",
```

```
"relatedIdentifierType": "DOI"
},
{
    "relationType": "Cites",
    "relatedIdentifier": "10.5270/esa-qa4lep3",
    "relatedIdentifierType": "DOI"
}
```

4.4.4 Link other networks

Link an other network (see 4.1.1) is not a capability provided by DataCite. However, networks using a specific identifier can be exploited to link the DOI record

DataCite:alternateIdentifier is a term to specify an other identifier of the same resource. For instance the Usual Name used by the Data Center or the IVOID of the Virtual Observatory.

Note When it exists, we suggest to add the IVOID of the resource in DOI using DataCite:alternateIdentifier and to add the DOI in the VO Registry records using ALTIDENTIFIER.

4.4.5 Linked Data for Services and knowledgebase

It is again the role of the Data Center to choose relevant links. However, we suggest to limit links with a reference article.

For Query tool Service (or web Service) we haven't found any equivalent in DataCite of the SERVEDBY term of the VO registry to link datasets with services.

For Organized System Service, then terms like DataCite:**isSourceOf** DataCite:**isCompiledBy** can be envisaged.

4.5 Versioning and evolving datasets

New section (must be checked)

4.5.1 Manage version

Distinguish dataset versioning (the Data Center responsibility) and metadata versioning (automated versioning done by DataCite at each metadata update)

A good practice consists to follow a versioning mechanism for each data update. DataCite (version 4.5) recommends to create a new DOI for each major version and to stipulate the version number with DataCite: Version. It is recommended to adopt a version number following the pattern:

major_version.minor_version[.patch_version]

Different mechanisms exist:

- Zenodo ²⁷ method: makes a DOI collection of versions. Each version has its own DOI which are linked (related identifier) with the DOI collection.
- Make 1 DOI for version and link the DOI version together using related identifier DataCite:isNewVersionOf, DataCite:isPreviousVersionOf

4.5.2 Evolving datasets

Versioning is well adapted for data subject to planified update, such as survey releases. Versioning implying a DOI per version is preferable for reproducibility, However, there are datasets that evolves regularly and for which versioning is inappropriate. For instance logs of observations evolves regularly.

For those type of datasets, we suggest to add in the DOI DataCite:**Title** or in DataCite:**Description** the evolving nature of the datasets and to modify the "Update" date at each modification.

We recommend also to specify the evolving nature in the DataCite:**ResourceType** (see examples in 5.1).

4.6 Tombstone page

New section (must be checked)

DOI requires a mechanism that provide a sustainable URL. The URL itself can change (eg: the domain used by the data center evolved). In an

²⁷https://zenodo.org/

article, a citation with a DOI allows to link the landing page. The information as well as the datasets access are relevant for the article content. So, in principle, the datasets having DOI should be sustainable.

If for any unfortunate reason, the datasets is no more available, provide a *tombstone page* explaining the reasons and a link to a copy of the archive if it exists.

Note Tombstone page must not be used for versioning.

5 Metadata list

New section (must be checked) We focused on a sub list of terms needing a special attention in curation.

5.1 Choosing a resource type

New section (must be checked)

The Resource type is specified with DataCite:ResourceTypeGeneral which uses a controlled vocabulary, completed with a DataCite:ResourceType which is a free text.

Examples: Choosing the good Resource type leads to the Data publisher. the following list is indicative only and does not constitute a rule of good practice:

	${\bf Resource Type General}$	${\bf Resource Type}$
table	Dataset	Dataset
spectrum	Dataset	Spectrum
image	Image	Image
logs of observations	Dataset	Evolving Dataset
Collection	Collection	Data files, Documents
Service VO	Service	IVOA Service
Service Web	Service	Web Service
Service/Project	Service or Project	
knowledgebase	Dataset	Evolving Dataset

Table β

Example:

```
"types": {
    "resourceType": "evolving Dataset",
    "resourceTypeGeneral": "Dataset"
},
"titles": [
    {
        "lang": "en",
        "title": "The Gemini Observation Log (evolving Dataset)"
    }
]
```

5.2 Authors

New section (must be checked)

Note for datasets. The good usage consists to add all authors and not only the first author.

All authors are indeed asked by journals for citations. We encourage also to add the authors ORCID with their affiliations. When possible inform the RoR.

```
Example of a unique author.
 "name": "Ochsenbein, Francois",
 "nameType": "Personal",
 "givenName": "Francois",
 "familyName": "Ochsenbein",
 "affiliation": [
     "name": "Observatoire astronomique de Strasbourg",
     "schemeUri": "https://ror.org",
     "affiliationIdentifier": "https://ror.org/04xsj2p07",
     "affiliationIdentifierScheme": "ROR"
   }
 ],
 "nameIdentifiers": [
     "schemeUri": "https://orcid.org/",
     "nameIdentifier": "0000-0003-4667-015X",
     "nameIdentifierScheme": "ORCID"
```

```
]
|
|}
```

Creators and contributors DataCite distinguishes Creators and Contributors. The authors are conceptually the same that the Datacite term Creators.

The DataCite:**creator** can be a DataCite:**Person** or an DataCite:**Organization**Contributors are persons or organizations that contributed to the development of the resources (sic DataCite Schema 4.5). A contributor has a role (eg: Editor, Supervisor, etc.) taken in a controlled vocabulary (see DataCite:**contributorType** term and the complete list in DataCite Schema).

In a way DataCite: **Contributors** is an alternative of DataCite: **Creators** For instance, Zenodo provides a way to add a role to creators in its upload form. However, DOI created by Zeonodo used only Creators term.

The usage of Contributor in citation has not been evaluated today.

Authors for Collection, Services, Knowledgebases Staff implied in this type of resource evolves. We recommend to specify the Organization (and the RoR if it exists) rather than contributors. Adding human (for instance the main Creator of the service) is in the leaves to the Data publisher discretion.

5.3 Keywords

New section (must be checked)

We encourage the usage of recognized keywords such as UAT²⁸, IVOA-UAT²⁹ or any keywords driven with a Web semantic.

The term in the DataCite schema is DataCite:subject

Example:

```
{
  "subject": "Sky surveys",
  "valueUri": "https://astrothesaurus.org/uat/1464",
  "schemeUri": "http://astrothesaurus.org",
  "subjectScheme": "UAT"
},
```

 $^{^{28} \}rm https://astrothesaurus.org/$

²⁹https://www.ivoa.net/documents/uat-as-upstream/

```
{
    "subject": "Earth (planet)",
    "valueUri": "https://astrothesaurus.org/uat/439",
    "schemeUri": "http://astrothesaurus.org",
    "subjectScheme": "UAT"
}
```

5.4 Dates

New section (must be checked)

DataCite provides a list of terms to qualify dates such as DataCite:**Created**DataCite:**Updated**, DataCite:**Validated**, etc.

The dates involve the publication in the data center only. For example, a dataset provided by a Data Center A may have been created months or even years ago and already published in a reference article or another Data Center B. The DataCite:Creation date of the resource published by A is the date of creation in A.

Note: dates have not to be used as versioning.

Dates for Services, Knowledgebase and Collection By nature, these type of resources may evolve. The frequency of updates may make inappropriate to use the update date. For changes in architecture or data model, versions should be used.

5.5 Title and description

New section (must be checked)

Titles is an important metadata, it describes the resource and is often exploited by search engine (such as ADS or VO-registry) in a text search process.

Assigning a title is specific to each dataset. It is a shot sentence that contains the most relevant aspects of the dataset but descriptive enough to be understandable/interpretable by non-experts. This would be in the light of supporting Open Science. For datasets derived or attached to a reference article, it is better to create a new description that describes the dataset.

Example: Reference article: ApJ (Draper Z.H, 2000), ³⁰ "Disk-loss and disk-renewal phases in classical Be stars. II. Contrasting with stable and variable disks"

 $^{^{30}}$ https://doi.org/10.1088/0004-637X/786/2/120

Dataset Title: VizieR, https://doi.org/10.26093/cds/vizier.17860120 "Spectropolarimetric survey of classical Be stars"

Making a good title is of course specific to the dataset. For instance, we can name the object or type studied, the facility used, the release version, or the measurement methods if it is spectroscopy or photometry, etc.

Description completes the title. The ADS would index this as the abstract for the dataset record. Just like the title, ADS hopes this is a descriptive text, understandable for non-experts. Note that, like title, description describes the data and not its reference, even when the data comes from an original resource.

Datacite provides a description qualifier (Abstract, Methods, ...) which depends on the resource.

Description for data derived from external resource When the data derived from an external resource is not a simple copy, it is recommended to adapt the original description. For example, in the case of data attached to a published article, rather than reproducing the abstract of the reference article (which may also be subject to the same license as the article), the description may focused on the dataset content with added information such as those useful to produce the datasets.

Another good practice consists of adding in the description a reference to the data origin.

Example: VizieR DOI description example -

"VizieR online Data Catalogue associated with article published in journal Monthly Notices of the Royal Astronomical Society with title ...

5.6 Licenses

New section (must be checked)

License is one of the metadata required by FAIR principles³¹

Institutes as well as countries encourage the usage of licenses for the datasets. For instance:

- NASA encourages CC0 licence (see SPD-41)
- French government imposes LO/OL or CC-by licenses (see Etalab)

Note Use machine readable licences

³¹https://www.go-fair.org/fair-principles/

It is highly recommended to use machine-readable licences using the official term or the URL link:

- SPDX licenses https://spdx.org/licenses/
- Creative Common https://creativecommons.org

Datacite metadata (see "Rights" in the DOI metadata schema)

5.7 Funding references

New section (must be checked)

Financial support can be attached to a DOI using DataCite:fundingReferences

Funds information is expressed with a reference to the organism, generally using a Crossref Funder ID (OFR, Open Funder Registry)³² or a RoR, and an award reference (see DataCite guidance)

Example: DOI generated by NASA Planetary Data System: https://api.datacite.org/dois/application/vnd.datacite.datacite+xml/10.26007/97r3-1e19

5.8 Identifier for project

New section (must be checked) - not sure it is relevant here?

At the time of writing, RAID (Research Activity Identifier) is new in the open DATA scene. We do not have feedback to provide any best practice. However, an agreement between the RAID maintenance organisation (Australian Research Data Commons³³) and DataCite makes possible to generate such identifiers from DOIs (using DataCite:resourceTypeGeneral "Project")

³²https://www.crossref.org/services/funder-registry/

 $^{^{33} {\}rm Australian Research Data Commons}$

6 Recommendation checklist

New section (must be checked)

- 1. Choose the good **granularity**. The granularity depends of parameters such as citation, discoverability, traceability. Consider also that DOI need maintenance for the long term (see 4.1.1)
- 2. Select the **Resource type** and adopt the usage specific to the chosen category (see 5.1).
- 3. Landing page (see 4.3)
 - Check if DOI metadata are displayed in the landing page
 - Complete the landing page with added information such as links to datasets and any other metadata used in other dissemination workflows
 - Check if the landing-page is machine-readable
- 4. Provide curated metadata, in particular:
 - List all authors with ORCID and affiliation when they are known (see 5.2)
 - Add machine readable licence (see 5.6)
 - Add the publication date in the Data Center (see 5.4)
 - Choose title matching with the Content and the type of the resource (see 5.5)
- 5. Check if metadata allows to generate citations (see 4.2).

For ADS indexing, it would be desirable to have a description (abstract) and keywords in addition to the BibTex metadata.

- 6. Link your Datasets with resources (see 4.4)
 - Do not misinterpret the meaning of a semantic. The relations semantic is precise, in case of doubt it is better to put nothing. The IVOA DCP working group can also help you³⁴
 - Link the DOI with resources which are used to generate the dataset. For instance datasets attached to an article, or when they come from an original archive.
 - add Alternate identifiers. In particular add IVOID if it exists (see 4.4.4)

³⁴mailto:datacp@ivoa.net

- 7. Ensure the maintenance of the DOI Ensure that all your dissemination workflows are consistent, in particular, with IVOA registry and with "schema.org" (see 4.1.1)
- 8. Use a **versioning mechanism** each time your datasets evolved distinguish dataset versioning (the Data Center responsibility) and metadata versioning (automated versioning done by DataCite at each update) (see 4.5)
- 9. Ensure the sustainability of the landing pages.

 If for any unfortunate reason, the datasets is no more available, provide a Tombstone page explaining the reasons (see 4.6)

A Catalog of Repositories and Archives issuing DOIs

This is not an update of the Chen and Schmitz et al. (2022) appendix. This is meant to also provide additional information about what kinds of DOIs are minted and what types of deposits the archive will accept.

Needs a lot of work to document these

A.1 Domain Specific repositories

TODO add brief descriptions

- 1. CADC
- 2. CDA
- 3. China-VO
- 4. ESA
- 5. ESO
- 6. IPAC
- 7. MAST
- 8. NEA
- 9. PDS

A.2 Generalist repositories

- Dataverse: Open source research data repository software.
 Dataverse includes data management from input to the output, provides DOI, OAI-PMH.
- 2. Dryad: Open data publishing platform for authors.
- 3. Zenodo: Zenodo is a popular platform for authors. Zenodo uses the DataCite and generates DOI. The curation leads to authors. Zenodo developed by the CERN provides Invenio (Open Software) which is an alternative to Dataverse
- 4. Other? (added by Gilles) FAIRsharing FAIRsharing Team (2018): A curated, informative and educational resource on data and metadata standards, inter-related to databases and data policies. The Standards and endorsed notes provided by the IVOA have a DOI created by FAIRsharing

B Important DataCite Metadata Case Studies

This section describes case studies around the metadata created by three archives. These case studies let us break out specific DataCite metadata recommendations and JSON snippets

B.1 Chandra Data Archive

CDA is doing cool things with related identifiers.

See (D'Abrusco and DPAOps Team, 2023), (Rots and D'Abrusco et al., 2018).

B.2 VAMDC & Zenodo workflow

The good and the bad of transitory data citation.

See (Moreau and Zwolf et al., 2018).

The VAMDC Consortium is a consortium of Institutes and Research Institutions that share a common technical and political framework for the distribution and curation of atomic and molecular data. VAMDC provides a Query Store including data storage for query result with possible DOI generation based on Zenodo

Example:

VAMDC query Store record: https://cite.vamdc.eu/references.html?uuid=a819e879-760d-4ede-831a-38d359b5864c

Landing page: https://zenodo.org/records/11243136

B.3 ESA

add ESA?

Example:

Landing page: https://doi.org/10.5270/esa-qa4lep3

(JSON) DOI: https://api.datacite.org/dois/10.5270/esa-qa4lep3

B.4 VizieR

VizieR produces some awesome DataCite metadata.

```
added by Gilles -
```

The VizieR catalogue service is a CDS service for data published in journals or by space / base-ground agencies. The data are curated by CDS with added-values such as cross-correlations, links and metadata required for the Virtual Observatory. It is a POST publication data flow that generates DOI, landing page, and which disseminate metadata, especially in the Registry of the Virtual Observatory.

Example:

Landing page: https://cdsarc.cds.unistra.fr/viz-bin/cat/J/AJ/167/89

IVOA record: https://cds.unistra.fr/registry/?verb=GetRecord&metadataPrefix=

ivo vor&identifier=ivo://cds.vizier/J/AJ/167/89

(JSON) DOI: https://api.datacite.org/dois/10.26093/cds/vizier.51670089

C Workflows

added by Gilles - TODO: discuss the relevance

Figure 1 represents a simplified view of Data dissemination. In particular, we see the importance of the IVOA registry harvested by EUDAT³⁵ and then EOSC³⁶ which cross records with DataCite.

Figure 2 proposes relations ships. This diagram had been proposed in a report feedback of the IVOA (A.Schaaff et al.)

D Changes from Previous Versions

No previous versions yet.

 $^{^{35} \}rm https://www.eudat.eu/$

³⁶https://eosc.eu/

Figure 1: Dissemination workflow

Figure 2: DOI schema

Note

All dataset citations in this document were created using BibTeX. The BibTeX for the data/service/collection DOIs is based upon the verbatim metadata supplied by the archive to their choice of DOI registration services as expressed by the doi2bib service^a. The doi2bib service was selected because it does the best job protecting unfielded "author" names from complete BibTeX annihilation. Every other reference BibTeX came from NASA ADS^b.

References

Akeson, R. L., Chen, X., Ciardi, D., Crane, M., Good, J., Harbut, M., Jackson, E., Kane, S. R., Laity, A. C., Leifer, S., Lynn, M., McElroy, D. L., Papin, M., Plavchan, P., Ramírez, S. V., Rey, R., von Braun, K., Wittman, M., Abajian, M., Ali, B., Beichman, C., Beekley, A., Berriman, G. B., Berukoff, S., Bryden, G., Chan, B., Groom, S., Lau, C., Payne, A. N., Regelson, M., Saucedo, M., Schmitz, M., Stauffer, J., Wyatt, P. and Zhang, A. (2013), 'The NASA Exoplanet Archive: Data and Tools for Exoplanet Research', PASP 125(930), 989, arXiv:1307.2944. doi:10.1086/672273, https://ui.adsabs.harvard.edu/abs/2013PASP..125..989A.

Chen, T. X., Schmitz, M., Mazzarella, J. M., Wu, X., van Eyken, J. C., Accomazzi, A., Akeson, R. L., Allen, M., Beaton, R., Berriman, G. B., Boyle, A. W., Brouty, M., Chan, B. H. P., Christiansen, J. L., Ciardi, D. R., Cook, D., D'Abrusco, R., Ebert, R., Frayer, C., Fulton, B. J., Gelino, C., Helou, G., Henderson, C. B., Howell, J., Kim, J., Landais, G., Lo, T., Loup, C., Madore, B., Monari, G., Muench, A., Oberto, A., Ocvirk, P., Peek, J. E. G., Perret, E., Pevunova, O., Ramirez, S. V., Rebull, L., Shemmer, O., Smale, A., Tam, R., Terek, S., Van Orsow, D., Vannier, P. and Wang, S.-Y. (2022), 'Best Practices for Data Publication in the Astronomical Literature', ApJS 260(1), 5, arXiv:2106.01477. doi:10.3847/1538-4365/ac6268, https://ui.adsabs.harvard.edu/abs/2022ApJS..260....5C.

D'Abrusco, R. and DPAOps Team (2023), 'A New Way to Cite Chandra Data', *Chandra News* **34**, 5. https://ui.adsabs.harvard.edu/abs/2023ChNew..34....5D.

Demleitner, M. and Accomazzi, A. (2024), 'Bibliographic interfaces in the virtual observatory'. https://www.ivoa.net/documents/Notes/BibVO/.

^ahttps://doi2bib.org

^bhttps://ui.adsabs.harvard.edu/

- Demleitner, M., Plante, R., Linde, T., Williams, R., Noddle, K. and the IVOA Registry Working Group (2016), 'Ivoa identifiers'. https://www.ivoa.net/documents/IVOAIdentifiers/.
- Dower, T., Demleitner, M., Benson, K., Plante, R., Auden, E., Graham, M., Greene, G., Hill, M., Linde, T., Morris, D., O'Mullane, W., Rixon, G., Stébé, A. and Andrews, K. (2014), 'Registry interfaces'. https://www.ivoa.net/documents/RegistryInterface/.
- FAIRsharing Team (2018), 'Fairsharing record for: Simbad astronomical database'. doi:10.25504/FAIRSHARING.RD6GXR, https://fairsharing.org/FAIRsharing.rd6gxr.
- Helou, G., Madore, B. F., Schmitz, M., Bicay, M. D., Wu, X. and Bennett, J. (1991), The NASA/IPAC extragalactic database., in M. A. Albrecht and D. Egret, eds, 'Databases and On-line Data in Astronomy', Vol. 171 of Astrophysics and Space Science Library, Springer, Dordrecht, pp. 89–106. doi:10.1007/978-94-011-3250-3_10, https://ui.adsabs.harvard.edu/abs/1991ASSL..171...89H.
- Landais, G., Muench, A., Demleitner, M. and Savalle, R. (2024), 'Data origin in the vo'. https://www.ivoa.net/documents/DataOrigin/.
- Moreau, N., Zwolf, C.-M., Ba, Y.-A., Richard, C., Boudon, V. and Dubernet, M.-L. (2018), 'The VAMDC Portal as a Major Enabler of Atomic and Molecular Data Citation', *Galaxies* **6**(4), 105. doi:10. 3390/galaxies6040105, https://ui.adsabs.harvard.edu/abs/2018Galax...6. .105M.
- NASA Exoplanet Science Institute (2020), 'Planetary systems table'. doi:10.26133/NEA12, https://catcopy.ipac.caltech.edu/dois/doi.php?id=10.26133/NEA12.
- NASA/IPAC Extragalactic Database (NED) (2019), 'Nasa/ipac extragalactic database (ned)'. doi:10.26132/NED1, https://catcopy.ipac.caltech.edu/dois/doi.php?id=10.26132/NED1.
- Novacescu, J., Peek, J. E. G., Weissman, S., Fleming, S. W., Levay, K. and Fraser, E. (2018), 'A Model for Data Citation in Astronomical Research Using Digital Object Identifiers (DOIs)', ApJS **236**(1), 20, arXiv:1801.00004. doi:10.3847/1538-4365/aab76a, https://ui.adsabs.harvard.edu/abs/2018ApJS..236...20N.
- Rots, A., D'Abrusco, R. and Winkelman, S. (2018), A Model for Using DataCite DOIs in Observatory Bibliographies, in 'European Physical Journal Web of Conferences', Vol. 186 of European Physical Journal Web of Conferences, p. 12011. doi:10.1051/epjconf/201818612011, https://ui.adsabs.harvard.edu/abs/2018EPJWC.18612011R.

Wenger, M., Ochsenbein, F., Egret, D., Dubois, P., Bonnarel, F., Borde, S., Genova, F., Jasniewicz, G., Laloë, S., Lesteven, S. and Monier, R. (2000), 'The SIMBAD astronomical database. The CDS reference database for astronomical objects', A&AS 143, 9–22, arXiv:astro-ph/0002110. doi:10. 1051/aas:2000332, https://ui.adsabs.harvard.edu/abs/2000A%26AS..143. ...9W.

Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J., da Silva Santos, L., Bourne, P., Bouwman, J., Brookes, A., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C., Finkers, R., Gonzalez-Beltran, A., Gray, A., Groth, P., Goble, C., Grethe, J., Heringa, J., t Hoen, P., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S., Martone, M., Mons, A., Packer, A., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J. and Mons, B. (2016), 'The fair guiding principles for scientific data management and stewardship'. doi:10.1038/sdata.2016.18.