Department of Computer Science and Engineering Khulna University of Engineering & Technology

1st Year 1st Term, Session: 2014-2015 Assignment on CSE-1100

- 1. Why do you study the binary number system? Explain in brief (200-300 words).
- 2. What is the range of a binary number of 64 bits? If the number is signed or unsigned?
- 3. What number do you get when you attach a zero at the right end of a binary number (such as 10100_2). What number do you get when you attach 2 zeros at the right end? In general, what number do you get when you attach n zeros at the right end? Explain your answer.
- 4. The decimal expansion of 11/16 is 0.6875. Find the binary expansion of the fraction 11/16. Do not stop until you are certain you know the EXACT expansion.
- 5. Find the base k, if $(543)_6 = (317)_k$. k is a positive integer.
- 6. If $(19257)_{10}$ is written as $(110100)_k$. Find the value of k. k is a positive integer.
- 7. Convert the following hexadecimal numbers to decimal.

 71_{8} , 71_{16} , $DE0_{16}$, 11011_{8} , ABC_{16} , 1001_{16} , 70.7_{8} , $A1.F_{16}$

- 8. Convert the following binary numbers to decimal. 110011.1101₂, 1100111101₂, 110111.11101₂ and 110111₂.
- 9. Convert the following octal numbers to decimal. 123.23₈, 23456.236₈, 756734₈ and 34243.753₈
- 10. Convert the following numbers with the indicated base to decimal number. 12121₃, 12343₅, 15435₆, 198₁₂, 345678₉ and 123₄
- 11. Convert the following decimal numbers to the indicated base.
 - 1. 7684.245 to octal.
 - 2. 45682.783 to hexadecimal.
 - 3. 2345.126 to binary.
- 12. Evaluate the followings
 - a) 101 + 11
 - b) 111 + 111
 - c) 1010 + 1010
 - d) 11101 + 1010
 - e) 111111 + 111111
 - f) 10 10
 - g) 101 11
 - h) 1001 11
 - i) 1101 11
 - j) 10001 100
 - k) 10 x 10
 - 1) 100 x 11
 - m) 101 x 10
 - n) 1011 x 11
 - o) 11011 x 101
 - p) 100 / 10
 - q) 111/11
 - r) 1010 / 100
 - s) 1101 / 11

10111 / 10

- (i) 110.11 + 10.011
- (ii) 1010.01 + 1101.11
- (iii)1111.110 1010.001
- (iv) 1101.11-101.01
- (v) 1011 10.01
- (vi) 100-11.1
- (vii) 11.11 10.10
- (viii) 0.1101 0.1001

13. Evaluate the followings (hexadecimal numbers)
(B A 3)₁₆ + (5 D E)₁₆
1A + 2E
BEAD - 4321
BEAD + 4321

14. Find 1's and 2's complement

10000 - 1

(a) 11001 (b) 0.1100111 (c) 0011001 (d) 10100.11001

- 15. Encode the following decimal numbers in BCD code: (a) 45 (b) 273.98 (c) 62.905
- 16. Write down the decimal numbers represented by the following BCD codes:
 - (a) 100101001 (b) 100010010011 (c) 01110001001.10010010
- 17. Encode the following decimal numbers to Excess-3 code: (a) 38 (b) 471.78 (c) 23.105
- 18. Express the following Excess-3 codes as decimal numbers:
 (a) 0101 1011 1100 0111 (b) 0011 1000 1010 0100 (c) 0101 1001 0011
- 19. Encode the following decimal numbers to Gray codes: (a) 61 (b) 83 (c) 324 (d) 456
- 20. Express the following binary numbers as Gray codes:
 - (a) 10110 (b) 0110111 (c) 101010011
 - (d) 101011100 (e) 110110001 (f) 10001110110