I. BASIS

Let the wavefunction for a state in the coordinate representation be $\psi(\mathbf{r})$. Expand this wavefunction using an orthornormal basis that consists of

- i. functions $u_i(\mathbf{r})$ labeled by an integer index i,
- ii. plane waves indexed by a wavevector \mathbf{k} ,
- iii. delta functions centered at position \mathbf{r}' ,
- iv. functions $w_{\alpha}(\mathbf{r})$ labeled by a real index α .

For each basis above use the orthonormality relations to express the expansion coefficients and amplitudes as overlap integrals (inner products).

Solution.

i. Let
$$|\psi\rangle \doteq \int d^3r \, |\mathbf{r}\rangle \, \langle \mathbf{r}|\psi\rangle = \int d^3r \, \psi(\mathbf{r}) \, |\mathbf{r}\rangle$$
. Now,

$$|\psi\rangle = \sum_i |u_i\rangle \, \langle u_i|\psi\rangle \doteq \sum_i \int d^3r \, |\mathbf{r}\rangle \, \langle \mathbf{r}|u_i\rangle \, \langle u_i|\psi\rangle = \int d^3r \sum_i c_i \, u_i(\mathbf{r}) \, |\mathbf{r}\rangle \,,$$

where $c_i := \langle u_i | \psi \rangle$ and $u_i(\mathbf{r}) := \langle \mathbf{r} | u_i \rangle$. Clearly, $\psi(\mathbf{r}) = \sum_i c_i u_i(\mathbf{r})$, with

$$c_i = \langle u_i | \psi \rangle \stackrel{\cdot}{=} \int \mathrm{d}^3 r \, \langle u_i | \mathbf{r} \rangle \, \langle \mathbf{r} | \psi \rangle = \int \mathrm{d}^3 r \, u_i^*(\mathbf{r}) \psi(\mathbf{r}).$$

ii. Observe that

$$|\psi\rangle \doteq \int d^3r \, \psi(\mathbf{r}) \, |\mathbf{r}\rangle := \int d^3r \, |\mathbf{r}\rangle \, \langle \mathbf{r}|\psi\rangle = \int d^3r \, \int d^3k \, |\mathbf{r}\rangle \, \langle \mathbf{r}|\mathbf{k}\rangle \, \langle \mathbf{k}|\psi\rangle$$
$$= \int d^3r \, |\mathbf{r}\rangle \int d^3k \, \langle \mathbf{r}|\mathbf{k}\rangle \, \psi(\mathbf{k}).$$

Therefore, $\psi(\mathbf{r}) = \int d^3k \langle \mathbf{r} | \mathbf{k} \rangle \psi(\mathbf{k})$, where $\psi(\mathbf{k}) := \langle \mathbf{k} | \psi \rangle$ and $\langle \mathbf{r} | \mathbf{k} \rangle = \frac{1}{(2\pi)^{3/2}} e^{i\mathbf{k}\cdot\mathbf{r}}$. If we use the $\langle \mathbf{r} | \mathbf{k} \rangle$ plane waves as an orthonormal basis, we find that the expansion coefficients are simply $\psi(\mathbf{k}) = \int d^3r \langle \mathbf{k} | \mathbf{r} \rangle \psi(\mathbf{r}) = \int d^3r \langle \mathbf{r} | \mathbf{k} \rangle^* \psi(\mathbf{r})$, which we obtain by interchanging r and k in the previous arguments.

iii. Clearly, $\psi(\mathbf{r}) = \int d^3r' \, \delta^3 (\mathbf{r} - \mathbf{r}') \, \psi(\mathbf{r}')$, where the expansion coefficients are simply given by $\psi(\mathbf{r}') = \int d^3r \, \delta^3 (\mathbf{r} - \mathbf{r}') \, \psi(\mathbf{r})$.

iv. Again, let
$$|\psi\rangle \doteq \int d^3r \, |\mathbf{r}\rangle \, \langle \mathbf{r}|\psi\rangle = \int d^3r \, \psi(\mathbf{r}) \, |\mathbf{r}\rangle$$
. Now,
 $|\psi\rangle = \int d\alpha \, |w_{\alpha}\rangle \, \langle w_{\alpha}|\psi\rangle \doteq \int d\alpha \int d^3r \, |\mathbf{r}\rangle \, \langle \mathbf{r}|w_{\alpha}\rangle \, \langle w_{\alpha}|\psi\rangle = \int d^3r \, |\mathbf{r}\rangle \int d\alpha \, c_{\alpha}w_{\alpha}(\mathbf{r}),$
where $c_{\alpha} := \langle w_{\alpha}|\psi\rangle$ and $w_{\alpha}(\mathbf{r}) = \langle \mathbf{r}|w_{\alpha}\rangle$. Clearly, $\psi(\mathbf{r}) = \int d\alpha \, c_{\alpha} \, w_{\alpha}(\mathbf{r})$, with
$$c_{\alpha} = \langle w_{\alpha}|\psi\rangle \doteq \int d^3r \, \langle w_{\alpha}|\mathbf{r}\rangle \, \langle \mathbf{r}|\psi\rangle = \int d^3r \, w_{\alpha}^*(\mathbf{r})\psi(\mathbf{r}).$$

II. NORMALIZATION

Let the state vector for a physical state be $|\psi\rangle$. Demonstrate Parseval's relation using the coordinate basis $|\mathbf{r}\rangle$ and plane wave basis $|\mathbf{k}\rangle$.

Solution.

$$\langle \psi | \psi \rangle = \int d^{3}r \int d^{3}r' \langle \psi | \mathbf{r} \rangle \langle \mathbf{r} | \mathbf{r}' \rangle \langle \mathbf{r}' | \psi \rangle$$

$$= \int d^{3}r \int d^{3}r' \psi^{*}(\mathbf{r}) \psi(\mathbf{r}') \delta^{3}(\mathbf{r} - \mathbf{r}')$$

$$= \int d^{3}r \psi^{*}(\mathbf{r}) \psi(\mathbf{r})$$

$$\int d^{3}r \psi^{*}(\mathbf{r}) \psi(\mathbf{r}) = \int d^{3}r \int d^{3}r' \int d^{3}k \int d^{3}k' \langle \psi | \mathbf{k} \rangle \langle \mathbf{k} | \mathbf{r} \rangle \langle \mathbf{r} | \mathbf{r}' \rangle \langle \mathbf{r}' | \mathbf{k}' \rangle \langle \mathbf{k}' | \psi \rangle$$

$$= \int d^{3}k \int d^{3}k' \langle \psi | \mathbf{k} \rangle \langle \mathbf{k} | \mathbf{k}' \rangle \langle \mathbf{k}' | \psi \rangle$$

$$= \int d^{3}k \int d^{3}k' \psi^{*}(\mathbf{k}) \psi(\mathbf{k}') \delta^{3}(\mathbf{k} - \mathbf{k}')$$

$$= \int d^{3}k \psi^{*}(\mathbf{k}) \psi(\mathbf{k}).$$

III. COMMUTATOR I

Evaluate the commutator $[\mathbf{r}, \mathbf{p}]$, with $\mathbf{p} = -i\hbar\nabla$.

Solution. Note that in Cartesian coordinates,

$$\begin{bmatrix} x_i, \frac{\partial}{\partial x_j} \end{bmatrix} = x_i \circ \frac{\partial}{\partial x_j} - \frac{\partial}{\partial x_j} \circ x_i = x_i \frac{\partial}{\partial x_j} - \left(\frac{\partial x_i}{\partial x_j} + x_i \frac{\partial}{\partial x_j} \right) = -\delta_{ij}.$$
Now, $\mathbf{r} = (x_1, x_2, x_3)$ and $\mathbf{p} = -i\hbar \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3} \right)$. Therefore,
$$[x_i, p_j] = -i\hbar \left[x_i, \frac{\partial}{\partial x_j} \right] = i\hbar \delta_{ij}.$$

IV. COMMUTATOR II

Evaluate the commutator $[\mathbf{r}, \mathbf{L}]$, with $\mathbf{L} = \mathbf{r} \times \mathbf{p}$.

Solution. In Cartesian coordinates, $L_k = \epsilon_{kij} x_i p_j$.

$$[x_l, L_k] = \epsilon_{kij} [x_l, x_i p_j] = \epsilon_{kij} (x_l \circ x_i \circ p_j - x_i \circ p_j \circ x_l).$$

Since $[x_i, x_l] = 0$,

$$[x_l, L_k] = \epsilon_{kij} (x_i \circ x_l \circ p_j - x_i \circ p_j \circ x_l) = \epsilon_{kij} x_i \circ [x_l, p_j] = i\hbar \delta_{lj} \epsilon_{kij} x_i = i\hbar \epsilon_{ilk} x_i.$$