

Technologies d'élaboration & MEMS (TELEMS)

TELEMS

Technologies d'élaboration des matériaux et composants semi-conducteurs

- I Introduction Généralités
- II Elaboration des substrats semi-conducteurs (SC)
- III Croissance de couches minces monocristallines par épitaxie
- III Techniques de dopage : Diffusion thermique Implantation ionique
- IV Oxydation du silicium
- V Dépôts de couches minces SC, diélectriques et couches métalliques
- VI Technique de transfert : Photolithogravure
- VII Réalisations technologiques

TELEMS

Objectifs du cours en compétences et connaissances

Sciences pour l'Ingénieur

Résoudre les questions posées par un problème scientifique en étant conscient des limites Mettre en œuvre une démarche scientifique Identifier, formuler et résoudre un problème d'ingénierie complexe

Science de la Matière

Connaitre et pouvoir établir les relations Structures-Propriétés des Matériaux Identifier et mettre en œuvre les méthodes d'élaboration des matériaux Mettre en application les matériaux Modéliser et prédire le comportement des matériaux

Compétence en humanité, documentation

Travailler, apprendre, évoluer de manière autonome

Objectifs du Cours

- Connaitre les propriétés physiques spécifiques des matériaux
 - ✓ Semi-conducteurs
 - ✓ Diélectriques
 - ✓ Métaux
- Connaitre les principales techniques d'élaboration
- Connaître les différents domaines d'applications
- Identifier les briques technologiques
- > Savoir choisir les procédés adaptés en fonction du cahier des charges
- Etre former à la R&D et à la recherche académique

Technologies d'élaboration des matériaux et composants

matériau.....

....aux composants

Technologie ≡ maîtrise des procédés élémentaires :

- fabrication du cristal et des plaquettes
- croissance matériau en couche mince, dopage n ou p
- oxydation thermique (SiO₂)
- prise de contacts ohmiques, contact Schottky
- passivation par diélectrique
- photolithogravure (transfert des motifs)
- ☐ intégration des briques élémentaires

Filière technologique

1947 : premier transistor

(Lilienfeld et Heil)

В

Cours Matériaux et technologies Semi-conducteurs - M. Lemiti

1958 : premier Circuit intégré (C.I)

1958
Jack Kilby, Texas Instruments
first IC (<u>Integrated</u> Circuit)

Premier inverseur CMOS (Fairchild)

1961 FIRST MONOLITHIC IC BY R. N. NOYCE (US Patent 2,981,877 filed July 1959, granted 1961)

Premier μ processeur: des milliers de transistors

Intel anounces the i4004 microprocessor
"a new era of integrated electronics"
2250 transistors, 10μm technology, 108kHz

Quelques milliers de transistors par puce (intégration large échelle : LSI Cours Matériaux et technologies Semi-conducteurs - M. Lemiti Large Scale Integration)

1981 Intel i8088 29000 transistors, 3µm technology, 8MHz

invention of the PC (personal computer) IBM, A.Child, B.Gates

Quelques millions de transistors par puce (intégration très large échelle :VLSI)

PENTIUM D: 410 millions de transistors

45 nm 2 milliards components 1.8 GHz

Plusieurs centaines de millions de transistors par puce (intégration à ultra large échelle : ULSI)

Evolution de la technologie silicium

La Loi de Moore

Gordon Moore

In 1965, Gordon Moore avait prédit que tous les 3 ans:

Surface de puce: x 3	Longueur minimale: réduction de 30 %		
Nombre de composants par puce: x 4	Fréquence d'horloge: x 1,5		
Coût par transistor: réduction de 50 %	Coût d'une unité de production: x 2		

2 grandes périodes de développement :

b de 1950 à 1960 : composants discrets

de 1960 à nos jours : méthode planar

Avant : développement de composants simples

→ diodes, transistors, capacités, résistances avec Si et Ge

a) - Méthode par tirage

diode p-n avec ses 2 contacts

b) - Jonctions diffusées mésa

Après : Technologie planar

composant plan où l'on utilise SiO₂ comme

masque naturel de diffusion

isolant

Ce qui a permis :

Transistor unique \rightarrow C.I. ULSI (Ultra Large Scale Integration)

Transistor bipolaire NPN en technologie planar

Rodage et po	lissage de	la plaquette
--------------	------------	--------------

Si type n

1ère oxydation

n

Photogravure de la zone de base

n

Diffusion de base

n

2^{ème} oxydation : Photogravure de base et diffusion de l'émetteur

n p

Photogravure et évaporation des contacts métalliques

Découpage de la plaquette en pastille et montage sur support

Eléments intégrables

Transistor NMOS

- ✓ Si type p
- ✓ oxydation
 —
- ✓ photogravure , dopage type n
- ✓ dépôt grille Si poly. métallisation ■
- ✓ prise de contact

Réalisation technologique Transistor NMOS

https://www.youtube.com/watch?v=tz62t-q_KEc

3. Trous de contacts : alignement avec le 1er niveau

4. Métallisation : alignement avec le 2ème niveau

Etapes de fabrication d'un C.I.

Cours Matériaux et technologies Semi-conducteurs - M. Lemiti

Fabrication du cristal

Méthode Czochralski

Méthode de la fusion de zone (destinée aux cristaux de grande dimension)

Fabrication des wafers

Etapes technologiques

- Oxydation
- Diffusion
- Implantation
- Dépôt
- Evaporation

Photomasquage

Enrobage

Opération qui consiste à recouvrir les puces d'une couche de laque pour les protéger contre les agressions extérieures

Découpage

Opération de sciage de la plaquette selon les lignes selon les lignes de découpe afin d'obtenir les circuits intégrés élémentaires

Circuit intégré

Puce (chip) : substrat de matériau semi-conducteur contenant un circuit intégré élémentaire

Circuit intégré

Structure d'une cellule photovoltaïque Si

Exemple de réalisation d'une structure MEMS (micro-poutres)

Sample process for fabricating a micro-cantilever using Surface Micromachining Techniques

Final product: micro-cantilever on a chip

Silicon Bulk Etching

- Anisotropic Etching
- Isotropic etching

Travail en atmosphère contrôlée : salle blanche

Travail en salle blanche

En présence de poussières plusieurs défauts peuvent apparaitre

- Contamination du masque par des particules
- Présente dans l'oxyde de grille
- De grosses particules

Defect Causing a Short A large, conducting defect shorts out four wires in the circuit.

ISO norm 14644						OLD CLASS D 209E	
Maximum Number of Particles in Air							CLASTO 20
Class	(particles in each cubic meter equal to or greater than the specified size) Particle size					210,0 5,	
Class						O SEC.	
	> 0.1 µm	> 0.2 µm	> 0.3 µm	> 0.5 µm	> 1 µm	> 5 μm	
ISO Class 1	10	2					
ISO Class 2	100	24	10	4			
ISO Class 3	1000	237	102	35	8		1
ISO Class 4	10000	2370	1020	352	83		10
ISO Class 5	100000	23700	10.200	3520	832	29	100
ISO Class 6	1000000	237000	102000	35200	8320	293	1.000
ISO Class 7				352000	83200	2930	10.000
ISO Class 8				3.520.000	832000	29.300	100.000
ISO Class 9				35.200.000	8.320.000	293.000	1.000.000

Les divers matériaux semiconducteurs - Propriétés importantes

II	Ш	IV	V	VI
	В	С	N	О
	Al	Si	P	S
Zn (4s ² 4p)	Ga (4s ² 4p ¹)	Ge (4s ² 4p ²)	As $(4s^2 4p^3)$	Se (4s ² 4p ⁴)
Cd	In	Sn	Sb	Те
Hg				

Tout est dans cette partie du tableau de Mendeleiv

On distingue:

- a) les SC simples : colonnes IV
 Si (microélectronique)
 Ge
- b) Les semiconducteurs binaires : (A-B)

IV-IV: SiGe, SiC

III-V: GaAs, InP, GaP, InAs, InSb, ...

II-VI: ZnSe, CdTe, CdS, CdSe

Utilité :

Si = 93%

III-V = 6%

II-VI = 1%

c) Les semiconducteurs alliages ternaires et quaternaires

III-V: Ga1-x Alx As, GaAs1-x Px, ...

II-VI: Hgx Cd1-x Te, ...

⇒ Possibilités très grandes

reportage-procede-de-fabrication-du-silicium-micro-possesseur.mp4

Diverses applications

Utilité

```
Si = 93%
III-V = 6%
II-VI = 1%
```

Si: Microélectronique, CI, Puissance, cellules solaires, photodétecteurs

GaAs: Emetteurs Opto, détection, Composants hyperfréquences, CI très rapides

II-VI: Détecteurs IR

Télécommunications :

Télévision haute définition - Ecrans plats

Téléphone portable - Liaisons par fibres optiques

TV satellite - CD ROM

Domotique :

Maison "intelligente"

Automobile :

Voiture "intelligente" (détecteur collision, ordinateur de bord)

Robotique - intelligence artificielle :

Capteurs, microsystèmes