Prescriptive Modeling – Market Basket Analysis

Introduction

In today's competitive retail landscape, understanding customer buying patterns is essential for driving sales and enhancing the shopping experience. Market Basket Analysis, a form of prescriptive modeling, reveals product combinations frequently purchased together, offering actionable insights. Retailers can use these insights to optimize store layouts, improve promotions, and boost cross-selling efforts—ultimately increasing customer satisfaction and revenue.

Let's take a deep dive into the data

Import necessary libraries

```
In [6]: import pandas as pd
import os
import glob

In [7]: folder_path = r"C:\Monthly_Sales"

# Retrieve all CSV files from the folder using glob
all_files = glob.glob(os.path.join(folder_path, "*.csv"))

# All CSV files combined as one DataFrame
all_data = pd.concat([pd.read_csv(file) for file in all_files], ignore_index=True)

# Merged DataFrame saved into a new CSV
output_file = os.path.join(folder_path, "all_data.csv")
all_data.to_csv(output_file, index=False)

print("All files integrated into:", output_file)
```

All files integrated into: C:\Monthly_Sales\all_data.csv

Load the updated DataFrame

```
In [9]: # Skip Blank Rows if present in the dataset

df = pd.read_csv(r'C:\Monthly_Sales\all_data.csv', skip_blank_lines=True)
    df.head()
```

Out[9]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
	0	175667	iPhone	1	700.0	04/24/24 19:12	135 Meadow St, Boston, MA 02215
	1	175668	AA Batteries (4- pack)	1	5.84	04/20/24 13:45	592 4th St, San Francisco, CA 94016
	2	175669	AA Batteries (4- pack)	1	5.84	04/28/24 09:17	632 Park St, Dallas, TX 75001
	3	175670	AA Batteries (4- pack)	2	5.84	04/23/24 14:06	131 Pine St, San Francisco, CA 94016
	4	175671	Samsung Odyssey Monitor	1	409.99	04/23/24 12:13	836 Forest St, Boston, MA 02215

Data Cleaning Process

Thoroughly clean and standardize the data to eliminate errors, ensure consistency, and build a solid foundation for meaningful insights.

Find and remove rows with NaN values

```
In [12]: df.isna().sum()
Out[12]: Order ID
                              19712
          Product Name
                              19712
          Units Purchased
                              19714
          Unit Price
                              19714
          Order Date
                              19715
          Delivery Address
                              19716
          dtype: int64
In [13]: # If Nan value is present in Order ID and Unit Purchased, it will be impossible to
         # Therefore, drop Nan values in Order ID and Units Purchased.
         df.dropna(subset=['Order ID', 'Units Purchased'], inplace=True)
         # Check if Nan value is present
         df.isna().sum()
Out[13]: Order ID
                              0
          Product Name
          Units Purchased
          Unit Price
          Order Date
                              1
          Delivery Address
          dtype: int64
In [14]: # Further check if any NaN values or blank rows are present
```

```
blank_rows_na = df[df.isnull().any(axis=1)]
blank_rows_na
```

Out[14]:

•		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address
	2195228	Charging Cable	1	14.95	05/24/24 07:04	852 Hickory St, San Francisco, CA 94016	NaN
	3001506	150766	iPhone	1	7	NaN	NaN

Find and remove rows with duplicate values

```
In [16]: # Find duplicate values
         df.duplicated()
Out[16]: 0
                     False
                     False
                     False
          3
                     False
                     False
          7591361
                      True
          7591362
                      True
          7591363
                      True
          7591364
                      True
          7591365
                      True
          Length: 7571652, dtype: bool
In [17]: # Check again for duplicated values
         df.drop_duplicates(inplace = True)
         # Check again for duplicated values
         df.duplicated()
Out[17]: 0
                     False
          1
                     False
                     False
          3
                     False
                     False
          172530
                     False
          2195228
                     False
          3001506
                     False
          6370083
                     False
          6403571
                     False
          Length: 171546, dtype: bool
```

Verify and fix incorrect data types in the dataset

```
In [19]: # check for data types
         df.dtypes
Out[19]: Order ID
                             object
         Product Name
                             object
         Units Purchased object
         Unit Price
                             object
         Order Date
                             object
                             object
         Delivery Address
         dtype: object
         Fix incorrect data types
In [21]: | df['Order Date'] = pd.to_datetime(df['Order Date'], format='%m/%d/%y %H:%M', errors
         df['Units Purchased'] = pd. to_numeric(df['Units Purchased'], errors='coerce')
         df['Unit Price'] = pd. to_numeric(df['Unit Price'], errors='coerce')
In [22]: # Verify the presence of NaN values remaining in the columns as a result of using e
         df.isna().sum()
Out[22]: Order ID
                             0
         Product Name
         Units Purchased
                             1
         Unit Price
         Order Date
                             3
         Delivery Address
         dtype: int64
In [23]: df = df.dropna()
```

Change the data type to optimize memory usage (Optional)

```
In [25]: df['Order ID'] = pd.to_numeric(df['Order ID'], downcast='integer')
    df['Product Name'] = df['Product Name'].astype('category')
    df['Units Purchased'] = df['Units Purchased']. astype('int8')
    df['Unit Price'] = pd.to_numeric(df['Unit Price'], downcast='float')
    df['Delivery Address'] = df['Delivery Address'].astype('category')
```

Expand the dataset with supplementary columns

```
In [27]: # Add Month and Year
    df['Month'] = df['Order Date'].dt.month
    df['Year'] = df['Order Date'].dt.year
    df
```

Out[27]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Year
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	2024
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	2024
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	2024
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	2024
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	2024
	•••								
	172528	248378	Google Phone	1	600.00000	2024-09-02 08:53:00	668 Wilson St, Boston, MA 02215	9	2024
	172529	248379	Alienware Monitor	1	400.98999	2024-09-04 22:58:00	466 2nd St, Boston, MA 02215	9	2024
	172530	248380	AAA Batteries (4- pack)	1	4.99000	2024-09-04 13:09:00	133 Walnut St, Seattle, WA 98101	9	2024
	6370083	252436	Apple Airpods Headphones	1	150.00000	2024-10-14 16:44:00	740 Dogwood St, Boston, \rA 02215	10	2024

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Year
6403571	233092	USB-C Charging Cable	1	11.95000	2024-08-28 12:39:00	740 Dogwood St, Boston, \rA 02215	8	2024

171543 rows × 8 columns

Out[28]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Year	Total Sales
	0	175667	iPhone	1	700.00000	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	2024	700.00000
	1	175668	AA Batteries (4-pack)	1	5.84000	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	2024	5.84000
	2	175669	AA Batteries (4-pack)	1	5.84000	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	2024	5.84000
	3	175670	AA Batteries (4-pack)	2	5.84000	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	2024	11.68000
	4	175671	Samsung Odyssey Monitor	1	409.98999	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	2024	409.98999

Format Unit Price and Total Sales to 2 decimal places

```
In [30]: df['Unit Price'] = df['Unit Price'].apply(lambda x: "%.2f" % x)

df['Total Sales'] = df['Total Sales'].apply(lambda x: "%.2f" % x)

df.head()
```

Out[30]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Year	Total Sales
	0	175667	iPhone	1	700.00	2024-04-24 19:12:00	135 Meadow St, Boston, MA 02215	4	2024	700.00
	1	175668	AA Batteries (4-pack)	1	5.84	2024-04-20 13:45:00	592 4th St, San Francisco, CA 94016	4	2024	5.84
	2	175669	AA Batteries (4-pack)	1	5.84	2024-04-28 09:17:00	632 Park St, Dallas, TX 75001	4	2024	5.84
	3	175670	AA Batteries (4-pack)	2	5.84	2024-04-23 14:06:00	131 Pine St, San Francisco, CA 94016	4	2024	11.68
	4	175671	Samsung Odyssey Monitor	1	409.99	2024-04-23 12:13:00	836 Forest St, Boston, MA 02215	4	2024	409.99
In [31]:	df	['Unit P	rice'] = p		ic(df['U	Unit Price'] Total Sales				
In [32]:	df	.dtypes								
Out[32]:	Pr Un Or De Mo Ye	der ID oduct Na its Purc it Price der Date livery A nth ar tal Sale	hased ddress	cate flo datetime64 cate i i	int8 at64 [ns]					
	0	rganiz	e Data b	y Order	Date (Chronolog	gically ar	nd Reir	ndex	
In [34]:				by = 'Order drop=True)	r Date')					
	df									

7 of 10

Out[34]:		Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Year	To ¹ Sal
	0	160155	Alienware Monitor	1	400.99	2024-01-01 05:04:00	765 Ridge St, Portland, OR 97035	1	2024	400.
	1	151041	AAA Batteries (4- pack)	1	4.99	2024-01-01 05:04:00	964 Lakeview St, Atlanta, GA 30301	1	2024	4.
	2	146765	AAA Batteries (4- pack)	1	4.99	2024-01-01 05:20:00	546 10th St, San Francisco, CA 94016	1	2024	4.
	3	145617	Amana Washing Machine	1	600.00	2024-01-01 05:24:00	961 Meadow St, Portland, OR 97035	1	2024	600.
	4	156535	iPhone	1	700.00	2024-01-01 05:45:00	451 Elm St, Los Angeles, CA 90001	1	2024	700.
	•••		•••							
1	171538	297748	iPhone	1	700.00	2025-01-01 02:37:00	258 Forest St, Los Angeles, CA 90001	1	2025	700.
1	171539	284606	Bose SoundSport Headphones	1	99.99	2025-01-01 02:50:00	211 Johnson St, Boston, MA 02215	1	2025	99.
,	171540	302330	AA Batteries (4-pack)	1	5.84	2025-01-01 03:03:00	665 6th St, San Francisco, CA 94016	1	2025	5.
,	171541	284711	AA Batteries (4-pack)	1	5.84	2025-01-01 03:19:00	250 8th St, San Francisco, CA 94016	1	2025	5.

8 of 10

	Order ID	Product Name	Units Purchased	Unit Price	Order Date	Delivery Address	Month	Year	To [†] Sal
171542	303626	USB-C Charging Cable	3	11.95	2025-01-01 04:43:00	651 Lakeview St, Dallas, TX 75001	1	2025	35.

171543 rows × 9 columns

Market Basket Analysis (Customer Purchase Behavior)

QUESTION: What products are frequently bought together?

```
In [37]:
         # Filter rows with the same Order ID and add .copy() to avoid settingwithcopyWarnin
         df2 = df[df['Order ID'].duplicated(keep=False)].copy()
         # Group Product Name with same Order ID
         df2['Grouped'] = df2.groupby('Order ID')['Product Name'].transform(lambda x: ','.jo
         # Drop any duplicates that may occur as a result of the grouping
         df3 = df2[['Order ID', 'Grouped']].drop_duplicates()
         df3.head(10)
         # Top 20 product pairs most frequently ordered together
         from itertools import combinations
         from collections import Counter
         count = Counter()
         for row in df3['Grouped']:
             row_list = row.split(',')
             count.update(Counter(combinations(row_list, 2)))
         top_combinations = count.most_common(20)
         top_combinations
```

```
Out[37]: [(('iPhone', 'Lightning Charging Cable'), 473),
           (('USB-C Charging Cable', 'Google Phone'), 469),
           (('Google Phone', 'USB-C Charging Cable'), 465),
           (('Lightning Charging Cable', 'iPhone'), 443),
           (('iPhone', 'Galaxy buds Headphones'), 240),
           (('Galaxy buds Headphones', 'iPhone'), 216),
           (('Google Phone', 'Galaxy buds Headphones'), 195),
           (('Galaxy buds Headphones', 'Google Phone'), 178),
           (('Samsung Galaxy Phone', 'USB-C Charging Cable'), 177),
           (('iPhone', 'Apple Airpods Headphones'), 173),
           (('USB-C Charging Cable', 'Samsung Galaxy Phone'), 168),
           (('Apple Airpods Headphones', 'iPhone'), 147),
           (('Bose SoundSport Headphones', 'Google Phone'), 111),
           (('Google Phone', 'Bose SoundSport Headphones'), 94),
           (('USB-C Charging Cable', 'Galaxy buds Headphones'), 86),
           (('Galaxy buds Headphones', 'USB-C Charging Cable'), 82),
           (('Galaxy buds Headphones', 'Samsung Galaxy Phone'), 69),
           (('Lightning Charging Cable', 'Galaxy buds Headphones'), 66),
           (('Galaxy buds Headphones', 'Lightning Charging Cable'), 66),
           (('Samsung Galaxy Phone', 'Galaxy buds Headphones'), 65)]
In [38]:
         # Top 10 sets of three (3) products most commonly ordered together
         from itertools import combinations
         from collections import Counter
         count = Counter()
         for row in df3['Grouped']:
             row_list = row.split(',')
             count.update(Counter(combinations(row_list, 3)))
         # Collect top 10 most common combinations
         top combinations = count.most common(10)
         # Display results
         top_combinations
Out[38]: [(('Google Phone', 'USB-C Charging Cable', 'Galaxy buds Headphones'), 22),
           (('iPhone', 'Lightning Charging Cable', 'Galaxy buds Headphones'), 17),
           (('Galaxy buds Headphones', 'USB-C Charging Cable', 'Google Phone'), 17),
           (('iPhone', 'Lightning Charging Cable', 'Apple Airpods Headphones'), 15),
           (('Galaxy buds Headphones', 'Lightning Charging Cable', 'iPhone'), 11),
           (('Google Phone', 'USB-C Charging Cable', 'Bose SoundSport Headphones'), 10),
           (('Lightning Charging Cable', 'iPhone', 'Galaxy buds Headphones'), 10),
           (('iPhone', 'Galaxy buds Headphones', 'Lightning Charging Cable'), 10),
           (('USB-C Charging Cable', 'Google Phone', 'Galaxy buds Headphones'), 9),
           (('Bose SoundSport Headphones', 'USB-C Charging Cable', 'Google Phone'), 9)]
```