

ครั้งที่ 3 (28 ก.ค. 2549) การวิเคราะห์

การวิเคราะห์วงจรลอจิก (Designing Logic Circuits)

MAJOTJASONSSUADUWSIODS

- 1. จากวงจรลอจิกที่ให้มาเขียนสมการของวงจร
- 2. เขียนตารางความจริงจากสมการที่ได้
- 3. สรุปการทำงานของวงจร
 output มีค่า 1 ตามเงื่อนไขใดของอินพุต
 output มีค่า 0 ตามเงื่อนไขใดของอินพุต

<u>หมายเหตุ</u> หากวงจรลอจิกนั้นมีการนำ output ไปเชื่อมต่อกับ วงจรอื่น จะต้องพิจารณาด้วยว่า ผลของ output ที่เป็น 1 และ 0 นั้นส่งผลอย่างไรต่อวงจรนั้น ๆ ด้วย

- 1. จากโจทย์ (ความต้องการ) เขียนตารางความจริง (truth table)
 - หาจำนวน Input / Output
 - หาความสัมพันธ์ระหว่าง Input / Output ในทุกกรณี
 - เขียนตารางความจริง
- 2. เขียนสมการบูลลีนจากตารางความจริง
 - ใช้วิธีการ Sum of product / Product of sum
- 3. ลดรูปสมการให้สั้นลง (เพื่อลดจำนวนเกต)
 - ใช้วิธีการ Boolean Algebra / Karnaugh Map/Quine McCluskey
 - หรือเปลี่ยนรูปสมการไปตามชนิดของเกตที่มีใช้
- 4. เขียนวงจรเกตจากสมการที่ได้

จากที่ได้เรียนมาในครั้งที่ 2 เราสามารถเขียนสมการ ตรรกหรือเรียกกันว่า สมการบูลลีน จากตารางความจริงได้ โดยวิธีการ Sum Of Product แล้วนำสมการมาเขียนเป็นวงจร

สมการที่เขียนจากตารางความจริง โดยวิธีดังกล่าวนั้นยัง เป็นสมการพื้นฐานที่คิดจากค่า output ที่มีค่า 1 โดย พิจารณาแยกสำหรับแต่ละค่า ของ output ที่เป็น 1 ว่าเกิด จาก input ค่าพื้นฐานใด (ค่า 0 หรือ 1) แล้วนำค่าที่ได้มา AND กัน เมื่อได้ครบทุกเทอมสำหรับค่า output ที่เป็น 1 ให้ นำเทอมทั้งหมดมา OR กัน ก็จะได้สมการ

- หากพิจารณาดูสมการที่ได้มานั้น จะพบว่าใน บางกรณีเราสามารถที่จะรวมเทอมในสมการ เหล่านั้นเข้าด้วยกัน ทำให้สมการมีขนาดสั้นลง ได้
- ฉะนั้นสมการของตารางความจริงที่เราเขียนโดย วิธีการของ SOP จึงไม่ใช่สมการที่สั้นที่สุด หาก นำไปสร้างวงจรก็จะไม่เป็นวงจรที่ประหยัดที่สุด

- หากเราต้องการประหยัดอุปกรณ์ เราต้อง ทำการลดรูปสมการให้สั้นลงโดย
 - ให้มีจำนวนเทอมน้อยที่สุด หรือ
 - ให้ตัวแปรในเทอมมีจำนวนน้อยที่สุด หรือ
 - เปลี่ยนรูปสมการให้ได้รูปแบบที่ต้องการ

เราสามารถลดรูปสมการให้สั้นลงหรือเปลี่ยนรูป สมการได้ โดยใช้

1. วิธีการทางพีชคณิต โดย ใช้พีชคณิตบูลลิน (Boolean

Algebraหรือ

- 2. วิธีการของ แผนภาพคาร์นอจ์ (Karnaugh Map)
 - 3. วิธีการของ Quine McCluskey

การลดฐปโดยวิธีการทางพีชคณิต

• พีชคณิตที่นำมาใช้ในการลดรูปสมการ ตรรกนั้นเรียกชื่อตามผู้ที่คิดหลักการทาง พืชคณิตชื่อ George Boole ว่า พืชคณิตบูล ลืน (Boolean Algebra) ซึ่งประกอบด้วย ทฤษฎีที่เกี่ยวกับการลดรูป และ เปลี่ยนรูป เทอมทางตรรกให้อยู่ในรูปแบบที่ต้องการ

พืชคณิตบูลลืน (Boolean Algebra)

$$=$$
 $A = A$

$$A \cdot 0 = 0$$

$$A + 0 = A$$

$$A \cdot 1 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A \cdot A = A$$

$$A + \overline{A} = 1$$

$$A \cdot \overline{A} = 0$$

$$A \cdot B + A \cdot C = A(B + C)$$

$$A + \overline{AB} = A + B$$

พีชคณิตบูลลีนพื้นฐานจะประกอบไปด้วย
 ฐานจะประกอบไปด้วย

1.

A มีค่า 2 ค่า คือ
$$0^{\overline{A}}$$
 ชื่อ $1^{\overline{A}=0}$ ในกรณีที่ 1 ถ้า $A \stackrel{\overline{A}}{=} \overline{0}^0$ แล้ว $\overline{A}=1$ และ ในกรณีที่ 2 ว้า $A \stackrel{\overline{A}}{=} 1$ ว้า $\overline{A}=1$ และ

$$2. A \cdot 0 = 0$$

ค่า 0 นั้นจะส่งผลให้เอาท์พุตมีค่าเป็น 0 เสมอ

3.
$$A + 0 = A$$

ค่า 0 นั้นจะ Enable อินพุทของเกท ในกรณีที่ 1 ถ้า A = 1 จะได้เอาท์พุทเท่ากับ 1 ด้วย

ในกรณีที่ 2 ถ้า A = 0 จะได้เอาท์พุทเท่ากับ 0 ด้วย

เพราะฉะนั้น เอาท์พุ

สัค่าที่เหมือนกับ A

4. $A \cdot 1 = A$

ค่า 1 นั้นจะ Enable อินพุทของเกท ในกรณีที่ 1 ถ้า A = 1 จะได้เอาท์พุทเท่ากับ 1 ด้วย

ในกรณีที่ 2 ถ้า A=0 จะได้เอาท์พุทเท่ากับ 0 ด้วย

เพราะฉะนั้น เอาท์

ภ<mark>ัค่าที่เหมื</mark>อนกับ A

5.
$$A+1=1$$

ค่า 1 นั้นจะ Inhibit เกทและ "lock up" เอา ท์พุททิ้งไว้ที่ 1 เพราะฉะนั้นเอาท์พุทจะไม่มี การเปลี่ยนแปลงตามค่า A

$$6. A + A = A$$

ในกรณีที่ 1 ถ้า A = 0 แล้ว 0 + 0 = 0 ในกรณีที่ 2 ถ้า A = 1 แล้ว 1 + 1 = 1 ในแต่ละกรณีค่าเอาท์พุทจะขึ้นกับ A

7.
$$A \cdot A = A$$

ในกรณีที่ 1 ถ้า A = 0 จะทำให้เกิดค่า 0 เป็นอินพุท เข้าแอนด์เกททั้งสองค่า แล้วทำให้ได้เอาท์พุทเท่ากับ 0 ในกรณีที่ 2 ถ้า A = 1 จะทำให้เกิดค่า 1 เป็นอินพุท เข้าแอนด์เกททั้งสองค่า แล้วทำให้ได้เอาท์พุทเท่ากับ 1 ในแต่ละกรณี ค่าเอาท์พุทจะเหมือนกับอินพุท

8.
$$A + \overline{A} = 1$$

กรณีที่ 1 ถ้า A=1 แล้ว เอาท์พุทจะเท่ากับ 1 ด้วย

กรณีที่ 2 ถ้า A = 0 จะทำให้ แล้วเอาท์พุท จะเท่ากับ 1 เอาท์พุทเป็น 1 เสมอ

 $\frac{A}{A}$

$$9.A \cdot \overline{A} = 0$$

กรณีที่ 1 ถ้า A = 0 จะทำให้ ได้เอาท์พุทเท่ากับ 0

แล้วจะ

กรณีที่ 2 ถ้า A = 0 แล้วจะได้เอาท์พุทเท่ากับ 0 ในทั้งสองกรณี จะได้เอาท์พุทเท่ากับ 0

10.
$$A \cdot B + A \cdot C = A(B + C)$$

จากตารางให้มีอินพุทคือ A, B และ C เมื่อ หาใต่างครามจริงของ A(B+C)

				ລຸ	1989	A:01=	A(B)	+ <i>C</i>)	1A1 9/1
_	A	В	С	AB	AC AC	AB+AC	B+C	♣ (B+C)	/
เท่าก่	19	0	0	0	ทก	กรณ์	์ ดัง	นัน จึง	าสรป
ן ע א	0	0	1	0	0	0	1	0	9
เดวา	0	1	0	0	0	0	1	0	
	0	1	1	0	0	0	1	0	
	1	0	0	0	0	0	0	0	
	1	0	1	0	1	1	1	1	
http://www.co.legitl.co	1	1	0	1	0	1	1 010721	13 Digital Cir	cuit and Logic Design
http://www.ce.kmitl.ac http://www.kmitl.ac.th		sa/ 1	1	1	1	L jng N	longkut's	Institute of Te	chnology Ladkrabang

$$11A + \overline{A}B = A + B$$

เช่นเดียวกับทฤษฎีข้อที่ 10 จากตาราง ความจริงจะเห็นว่า สมกาซ้ายมือจะให้ค่า เอาท์พุทเท่ากับสมการทางขวามือ ทุกกรณี

A	В	$\frac{1}{A}$	$\overline{A} \cdot B$	$A + \overline{A} \cdot B$	A+B
0	0	1	0	0	0
0	1	1	1	1	1
1	0	0	0	1	1
1	1	0	0	1	1

ทฤษฎีของ De'Morgan

- ในพีชคณิตบูลลีนนั้นมีทฤษฎีที่สำคัญมากอยู่ ทฤษฎีหนึ่งคือ ทฤษฎีของดีมอร์แกน
- เป็นทฤษฎีที่ใช้เปลี่ยนรูปของสมการจากรูปแบบ การ NAND หรือ NOR ให้เป็นรูปแบบของ AND, OR และ NOT หรือในทางตรงกันข้ามในการ เปลี่ยนรูปแบบจาก AND, OR และ NOT เป็น NAND หรือ NOR ซึ่งมีประโยชน์ในกรณีที่เกตบาง ชนิดไม่สามารถหาได้

DeMorgan's Theory

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

ทฤษฎีของ De'Morgan

1.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

เรา ใช้ตารางความจริง ในการแสดงการเท่า กันของค่าทางด้านซ้ายมือและค่าทางด้าน

a l a	กมือ						
ม 1	1 2)	В	A ullet B	$\overline{A \cdot B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
	0	0	0	1	1	1	1
	0	1	0	1	1	0	1
	1	0	0	1	0	1	1
	1	1	1	0	0	0	0

ทฤษฎีของ De'Morgan

จากทฤษฎีนี้ แสดงให้เห็นว่าผลจากการ NAND กันของอินพุต 2 ตัว จะมีค่าเช่น เดียวกับการอินเวอร์ตค่าอินพุตทั้งสองแล้ว นำมา OR กัน ดังรูป

ทฤษฎีของ DeMorgan

$$2. \ \overline{A+B} = \overline{A \cdot B}$$

เรา ใช้ตารางความจริง ในการแสดงการเท่า กันของค่าทางด้านซ้ายมือและค่าทางด้าน ขวามือ

$\overline{A} \bullet \overline{B}$	\overline{B}	\overline{A}	$\overline{A+B}$	A + B	В	A
1	1	1	1	0	0	0
0	0	1	0	1	1	0
0	1	0	0	1	0	1
0	0	0	0	1	1	1

ทฤษฎีบทของ DeMorgan

ทฤษฎีนี้แสดงให้เห็นว่าผลจากการ NOR กันของอินพุต 2 ตัว จะมีค่าเช่นเดียวกับ การอินเวอร์ตค่าอินพุตทั้งสองแล้วนำ มาAND กัน ดังรูป

การลดรูปสมการ

จากทฤษฏีบูลลีนที่กล่าวมาแล้ว เราสามารถนำมาใช้ใน สมการ

บูลลีน โดยเฉพาะในสมการที่เขียนจากตารางความจริงเพื่อ ปรับเปลี่ยนนิพจน์ในสมการที่สามารถทำให้สมการสั้นลง ทำให้วงจรที่จะสร้างจากสมการใช้เกตน้อยลง หรือเพื่อ เป็นการปรับเปลี่ยนรูปแบบของสมการได้

<u>ตัวอย่างที่ 1 การลดรูปสมการ</u>

<u>ตัวอย่างที่ 2 การลดรูปสมการ</u>

http://www.ce.kmitl.ac.th http://www.kmitl.ac.th/~ksjirasa/

ตัวอย่างที่ 3 การลดรูปสมการ

http://www.ce.kmitl.ac.th http://www.kmitl.ac.th/~ksjirasa/

<u>ตัวอย่างที่ 1 การออกแบบวงจร [ม].........</u>

	Input	Output	
C	В	A	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
ww.ee.km		1	1

Sum of Product

$$Y = \overline{C}BA + CB\overline{A} + CBA$$

CBA

CBA

CBA

ตัวอย่างที่ 1 การออกแบบวงจร

$$Y = \overline{C}BA + CB\overline{A} + CBA$$

$$= \overline{C}BA + CB(\overline{A} + A)$$

$$= \overline{C}BA + CB$$

$$= B(\overline{C}A + C)$$

$$= B(A + C)$$

		Input	Output	
	C	В	A	Y
	0	0	0	1
	0	0	1	1
	0	1	0	0
	0	1	1	1
	1	0	0	1
	1	0	1	0
	1	1	0	1
http://v	ww.ee.km	itl.ae.th	1	1

 $\overline{C} \overline{B} \overline{A}$ $\overline{C} \overline{B} A$ $\overline{C} B A$ $C \overline{B} \overline{A}$ $CB\overline{A}$

CBA

01072113 Digital Circuit and Logic Design King Mongkut's Institute of Technology Ladkrabang

http://www.kmitl.ac.th/~ksjirasa/

ตัวอย่างที่ 2 การออกแบบวงจร [<u>2</u>]

$$=\overline{B} \ \overline{C} + A B + \overline{A} C$$

http://www.ce.kmitl.ac.th http://www.kmitl.ac.th/~ksjirasa/

สรุปการใช้พืชคณิตบูลลีน

• จากการใช้ทฤษฏีบูลลีนในการลดรูปที่ผ่านมาจะพบว่า ผู้ที่ทำการลดรูปจะต้องจดจำทฤษฎีต่าง ๆ ให้ได้ก่อน จากนั้นจึงมองการใช้งานว่า จะใช้ทฤษฎีใดกับเทอม ใดในสมการเพื่อให้เกิดการลดรูปหรือเปลี่ยนรูปไปยัง ฐปแบบที่ต้องการ หากผู้ใช้จำทฤษฎีไม่ได้ก็ไม่สามารถ ใช้งานได้ หรือหากจำได้แต่มองไม่เห็นแนวทางในการ ลดรูปก็ไม่สามารถลดรูปได้ นอกจากนั้นในบางครั้ง การนำทฤษฎีไปใช้กลับทำให้สมการยาวขึ้นกว่าเดิม และผู้ใช้ต้องหาวิธีการทำให้สั้นลงใหม่

สรุปการใช้พืชคณิตบูลลีม

- เราอาจจะสรุปได้ว่าการใช้พีชคณิตนี้จะขึ้นอยู่กับ การจดจำทฤษฎีให้ได้ทั้งหมด และในการใช้ งานนั้นขึ้นกับประสบการณ์ของผู้ที่ทำการลดรูป หากเคยใช้มามากก็จะมีประสบการณ์มาก มอง หาแนวทางการใช้ทฤษฎีได้ง่ายและรวดเร็ว
- วิธีการในลักษณะนี้ทำให้ผลการลดรูปยังไม่ สามารถทำได้ง่ายและรวดเร็ว

วิธีการของ Karnaugh Map

แผนภาพคาร์นอจ์ เป็นแผนภาพที่เขียนจาก ตารางความจริง (หรือจากสมการก็ได้) โดย การนำตารางความจริงมาเขียนในรูปแบบใหม่ โดยการจัดวางให้ความสัมพันธ์ระหว่างนิพจน์ที่ อยู่ข้างเคียงกัน (ทางตรรก) ทั้งในแนวนอนและ แนวตั้งสามารถลดรูปได้ แผนภาพนี้มีขนาด ตามขนาดของตารางความจริง (จำนวน input)

Karnaugh Map CE MADIO MA

แผนภาพคาร์นอจ์มีอยู่หลายขนาดขึ้นอยู่กับตัวแปรใน สมการ ซึ่งขนาดของแผนภาพคาร์นอจ์มีความสัมพันธ์กับ ตัวแปร คือ ขนาดของแผนภาพคาร์นอจ์เท่ากับ 2ⁿ โดยที่ n คือจำนวนของตัวแปรในสมการและ n มีค่ามากกว่า 1 ดังนั้น

ถ้ามีตัวแปรอยู่ 2 ขนาดของแผนภาพก็คือ $2^2 = 4$ ช่อง นั่นเอง

ถ้ามีตัวแปรอยู่ 3 ขนาดของแผนภาพก็คือ $2^3 = 8$ ช่อง นั่นเอง

Karnaugh Map Carpon majorian sun augusti majorian s

	\overline{A}	A		
\overline{B}	$\overline{B}\overline{A}$	$\overline{B}A$		
В	$B\overline{A}$	BA		
•			•	
	$\overline{B}\overline{A}$	$\overline{B}A$	BA	$B\overline{A}$
\overline{C}	\overline{CBA}	\overline{CBA}	$\overline{C}BA$	$\overline{C}B\overline{A}$
C	$C\overline{B}\overline{A}$	\overline{CBA}	СВА	$CB\overline{A}$

	$\overline{B}\overline{A}$	$\overline{B}A$	BA	$B\overline{A}$
\overline{DC}	\overline{DCBA}	$\overline{DCB}A$	DCBA	\overline{DCBA}
$\overline{D}C$	$\overline{D}C\overline{B}\overline{A}$	\overline{DCBA}	$\overline{D}CBA$	$\overline{D}CB\overline{A}$
DC	$DC\overline{B}A$	$DC\overline{B}A$	DCBA	$DCB\overline{A}$
$D\overline{C}$	$D\overline{C}\overline{B}\overline{A}$	$D\overline{CB}A$	D C BA	\overline{DCBA}

ตัวอย่างที่ 1 (ต่อ)

		Input	Output	
	C	В	A	Y
	0	0	0	0
	0	0	1	0
	0	1	0	1
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
http://v		itl.ac.th	1	1
http://w	ww.kmitl	ac.th/~ksj	ırasa/	

01072113 Digital Circuit and Logic Design King Mongkut's Institute of Technology Ladkrabang

ตัวอย่างที่ 2 การใช้ Karnaugh 🄉

	Input			Output
	C	В	A	Y
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	1
	1	0	1	0
	1	1	0	1
http://v	ww.ee.km	itl.ae.th	1	1

$$Y = AB + \overline{A}C$$

01072113 Digital Circuit and Logic Design King Mongkut's Institute of Technology Ladkrabang

http://www.kmitl.ac.th/~ksjirasa/

ตัวอย่างที่ 3 การใช้ Karnaugh Map

		Ing	put		Output		
	D	С	В	А	Y		
	0	0	0	0	1 /		
	0	0	0	1	0 /		
	0	0	1	0	1		
	0	0	1	1	1 /		
	0	1	0	0	0 /		
	0	1	0	1	1 ,		
	0	1	1	0	0		
	0	1	1	1	1		
	1	0	0	0	1		
	1	0	0	1	0		
	1	0	1	0	1		
	1	0	1	1	1		
	1	1	0	0	0		
		e.kmlitl.ac		1	0		
htt	p://www.l	kmitl _e ac.th	/∼ksjirasa/	0	Λ		

\ D A		7 A	8 8	rEngineering	HE N
DC	$\int_{\mathcal{S}} \int_{\mathcal{V}} \int$	01		10	
00	7	0	$\sqrt{1}$	1,	_
01	0	(1)		$\sqrt{0}$	
11	0	\mathbf{O}	1	0	
10	1	0	1	1	<u> </u>
	20 FZ				
1		+AC	+ A C	(D)	
	_	V			
E D	91072 Monabut	2113 Digit 's Institute	al Circuit	and Logic	Design brahana
1\frac{1}{2} \frac{1}{2} \frac	ntongiai	3 111311111111	oj reenn	orogy Buu	Juvang

XOR & XNOR Gates

$$Y1 = A \oplus B$$
$$= A \cdot \overline{B} + \overline{A} \cdot B$$

$$Y2 = \overline{A \oplus B}$$

$$= \overline{A \cdot \overline{B} + \overline{A} \cdot B}$$

$$= \overline{(A \cdot \overline{B}) \cdot (\overline{A} \cdot B)}$$

$$= (\overline{A} + B) \cdot (A + \overline{B})$$

$$= (\overline{A} + B) \cdot A + (\overline{A} + B) \cdot \overline{B}$$

$$= \overline{A}A + AB + \overline{A}B + B\overline{B}$$

$$= \overline{A}B + AB$$

XOR & XNOR Gates medicine

$$Y = A \oplus B$$

$$Y = \overline{A \oplus B}$$

Inj	out	Output
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$\overline{A} \cdot \underline{B}$$
 $A \cdot \overline{B}$

Input		Output
A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

$$\overline{A} \cdot \overline{B}$$

$$A \cdot B$$

$$Y = \overline{AB} + A\overline{B}$$

การสร้างวงจร Half-Adder [1] minioninon

 $C_{\alpha} = A \cdot B$

Inp	out	Output		
A	В	C_{O}	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

$$Sum = A \oplus B$$

$$= \overline{\overline{A} \oplus B}$$

$$= \overline{\overline{A} \overline{B} + AB}$$

$$= \overline{\overline{A} \overline{B} + AB}$$

$$= \overline{\overline{A} \overline{B} + AB}$$

$$= \overline{\overline{A} + B} + AB$$

01072113 Digital Circuit and Logic Design King Mongkut's Institute of Technology Ladkrabang

การสร้างวงจร Half-Adder [2] การีขรับของเขา

การสร้างวงจร Full-Adder [1

	Input	Output		
C_{in}	A	В	C_{o}	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1 tp://www.e	1 ce.kmitl.ac		1	1

01072113 Digital Circuit and Logic Design King Mongkut's Institute of Technology Ladkrabang

http://www.kmitl.ac.th/~ksjirasa/

$$Sum = A\overline{B}\overline{C}_{in} + \overline{A}B\overline{C}_{in} + \overline{A}B\overline{C}_{in} + ABC_{in}$$

$$= (A\overline{B} + \overline{A}B)\overline{C}_{in} + (\overline{A}\overline{B} + AB)C_{in}$$

$$= (A \oplus B)\overline{C}_{in} + (\overline{A} \oplus B)C_{in}$$

$$= (A \oplus B) \oplus C_{in}$$

$$= (A \oplus B) \oplus C_{in}$$

$$C_O = \overline{A}BC_{ln} + A\overline{B}C_{ln} + AB\overline{C}_{ln} + ABC_{ln}$$

$$= C_{ln}(\overline{A}B + A\overline{B}) + AB(\overline{C}_{ln} + C_{ln})$$

$$= C_{ln}(A \oplus B) + AB$$

การสร้างวงจร Full-Adder [3] การของเกิดเกริงเกิดเกริงเกิดเกริง

$$Sum = (A \oplus B) \oplus C_{in}$$

$$C_O = C_{In}(A \oplus B) + AB$$

การสร้างวงจร Full-Adder [4] การสร้างวงจร Full-Adder

$$Sum = (A \oplus B) \oplus C_{in}$$

$$C_O = C_{In}(A \oplus B) + AB$$

การสร้างวงจร Full-Adder [5] การของการรมคอนข้ากอง

http://www.ce.kmitl.ac.th http://www.kmitl.ac.th/~ksjirasa/ 01072113 Digital Circuit and Logic Design King Mongkut's Institute of Technology Ladkrabang

• เราได้เรียนถึงวิธีการลดรูปสมการโดยใช้พีชคณิตบูลลีน และวิธีการของแผนภาพคาร์นอจ์มาแล้ว จากวิธีการทั้ง สองจะพบว่า หากสมการมีตัวแปรจำนวนมาก การลด รูปจะยุ่งยากและซับซ้อนขึ้น ทำให้ยากต่อการลดรูป ้และในปัจจุบันนี้เราสามารถใช้คอมพิวเตอร์ช่วยในการ ลดรูปสมการโดยการเขียนเป็นโปรแกรมคอมพิวเตอร์ จึงได้มีผู้คิดวิธีการลดรูปในอีกลักษณะหนึ่วเรียกว่า วิธี การ Prime Implicant แต่นิยมเรียกตามชื่อเจ้าของวิธี การว่า Quine McCluskey

- หลักการของวิธีการนี้คือ การเปรียบเทียบระหว่างเทอมของสมการไปเรื่อย ๆ จนพบคู่ที่ลดรูปกันแล้วนำมาลดรูป และนำผลที่ลดรูปได้มาเปรียบเทียบกันอีก ทำไปเรื่อย ๆ จนกระทั่งลดรูปไม่ได้อีกแล้ว
- ในการเปรียบเทียบนั้น หากเป็นการเปรียบเทียบ โดยตรงแล้วจะพบว่ามีจำนวนเทอมที่จะเปรียบเทียบกัน จำนวนมาก จึงต้องหาวิธีการจำแนกเทอมที่มีอยู่ออก เป็นกลุ่ม

- การจัดกลุ่มของเทอมในสมการ
 - 1. กลุ่มที่สมาชิกในกลุ่มไม่ต้องนำมาเปรียบเทียบกัน
 - 2. กลุ่มที่สมาชิกในกลุ่มต้องนำมาเปรียบเทียบกัน
- ในการจัดกลุ่มนั้นเพื่อให้ง่ายต่อการลดรูป เราจะใช้เลข ค่า 0 และ 1 เขียนแทนค่าในเทอมของสมการ โดยใช้ค่า 0 แทนค่าตัวแปรที่มีค่า invert และ1 แทนค่าตัวแปรที่เป็น ค่าปกติ และใช้ตำแหน่งของค่าที่เขียนแสดงถึงชื่อตัวแปร

Minterms	ABCD	
2	0010	
4	0100	Group 1 (a single 1)
8	1000	
6 ·	0110	•
9	1001	Group 2 (two 1's)
10	1010	<u>-</u> , , ,
12	1100	•
13	1101	Group 3 (three 1's)
15	1111	Group 4 (four 1's)

Lis	t 1		List	2		List	3	
Minterm	ABCD		Minterms	ABCD		Minterms	ABCD	
2	0010	√	2, 6	0-10	PI_2	8, 9, 12, 13	1-0-	PI ₁
. 4	0100	\checkmark	2, 10	-010	PI_3			•
8	1000	√	4, 6	01-0	PI ₄			
6	0110	√	4, 12	-100	PI ₅			
9	1001	\checkmark	8, 9	100-	$\sqrt{}$			
10	1010	\checkmark	8, 10	10-0	PI_6			
12	1100	√	8, 12	1-00	√	*		
13	1101	√	9, 13	1-01	√			
15	1111	√	12, 13	110-	√			
			13, 15	11-1	PI ₇			