

ELEC-H415

Modeling A Vehicle-to-Vehicle Communication Channel in an Urban Environment

Author(s):

Cédric Sipakam

Teacher(s):

Philippe de Doncker

Contents

In	Introduction	
1	Step 1: Theoretical Preliminaries	2
2	Chapter 2	3
3	Step 3: Full Channel, Narrowband Analysis (Including Reflections)	4
4	Step 4: Line-of-Sight (LOS) Channel, Wideband Analysis	5
5	Step 5: Full Channel, Wideband Analysis	6
6	Conclusion	7

List of Figures

List of Tables

Abstract

content...

Introduction

- 1.1. Problem Statement and Scenario Definition
- 1.2. Project Objectives
- 1.3. Methodology Overview
- 1.4. Report Structure

Step 1: Theoretical Preliminaries

- 2.1. System Parameters
- 2.2. Equivalent Circuits (TX and RX)
- 2.3. Antenna Equivalent Height ($\lambda/2$ Dipole)
- 2.4. Emitted Electric Field in Free Space
- 2.5. Received Signal in Free Space $(V_{RX} \mbox{ vs } V_{TX})$

The equivalent circuit of the Antenna is shown on figure \dots

2

Chapter 2

- 3.1. Channel Impulse Response $h(\tau)$
- 3.2. Channel Transfer Function $\mathcal{H}(f)$
- 3.3. Narrowband Complex Gain \boldsymbol{h}_{NB}
- 3.4. Received Power \mathcal{P}_{RX} and Comparison to Friis Formula
- 3.5. Interpretation of LOS Narrowband Results

Step 3: Full Channel, Narrowband Analysis (Including Reflections)

- 4.1. Multipath Component (MPC) Geometry (Image Theory Approach)
- 4.2. Total Received Voltage (Coherent Sum)
- 4.3. Total Received Power P_{RX} vs Distance d
- 4.4. Rician K Factor Analysis (*K* vs Distance *d*)
- 4.5. Path Loss Model Fitting (Local Average Power)
- 4.5.1. Averaging Methodology
- 4.5.2. Path Loss Exponent (n) Determination
- 4.6. Shadowing Variability (σ_L) Calculation
- 4.7. Fade Margin and Coverage Range Analysis (50%, 95%, 99% Reliability)
- 4.8. Interpretation of Full Narrowband Results

Step 4: Line-of-Sight (LOS) Channel, Wideband Analysis

5

Step 5: Full Channel, Wideband Analysis

- 6.1. Physical Impulse Response $h(\tau)$ (Including MPCs)
- 6.2. Wideband Transfer Function H(f) and Frequency Selectivity Analysis
- 6.3. Tapped Delay Line (TDL) Model and Power Delay Profile (PDP)
- 6.4. Interpretation (Delay Spread, Coherence Bandwidth, Comparison to LOS)

Conclusion

- 8.1. Summary of Key Findings and Model Parameters
- 8.2. Discussion on V2V Channel Characteristics
- 8.3. Limitations of the Model
- 8.4. Potential Future Work