Linguagens de Programação

Paradigmas de Linguagens de Programação

Samuel da Silva Feitosa

Aula 3

Classificação das LPs

- Quanto ao grau de abstração
 - Baixo ou alto nível.
- Quanto ao paradigma
 - Imperativo, Orientado a objetos, Funcional e Lógico.
- Quanto a estrutura de tipos
 - Fortemente ou fracamente tipada.
 - Dinâmica ou estaticamente tipada.

Grau de abstração

Baixo nível

- Relacionada com a proximidade do hardware e seu código de máquina.
- Projetada pensando mais no acesso e controle ao hardware do que na facilidade de uso para o usuário.

Alto nível

- Projetada com foco no usuário.
- Foco na facilidade de escrita, legibilidade do código, capacidade de abstração e recursos.

LP Compilada ou Interpretada

Linguagem compilada

 Programas são traduzidos para código de máquina e depois executados diretamente pelo computador.

Linguagem interpretada

 Os programas são interpretados diretamente por outro software, chamado de interpretador.

Linguagem híbrida

 Traduz os programas em linguagem de alto nível para uma linguagem intermediária projetada para facilitar a interpretação.

How Compiler Works

How Interpreter Works

Definição de LP

Uma LP é uma linguagem destinada a ser usada por uma **pessoa** para expressar um **processo** através do qual um **computador** pode resolver um **problema**.

 Os quatro modelos (paradigmas) de LP correspondem aos pontos de vista dos quatro componentes citados.

O que é "paradigma"?

- Definição do dicionário:
 - Algo que serve de exemplo geral ou de modelo;
 - Modelo que serve de padrão;
 - Norma já estabelecida;

 Paradigma de programação é um meio de se classificar as linguagens de programação baseado em suas funcionalidades.

Linguagens Imperativas

- Principais características
 - Variáveis, atribuição e iteração.
 - Exemplos: C, Pascal.
- As linguagens imperativas são orientadas a ações, onde a computação é vista como uma sequência de instruções que manipulam valores de variáveis.
- Programas centrados no conceito de um estado (variáveis) e ações (comandos) que manipulam o estado.

Exemplo de código imperativo

```
Free Pascal IDE
                                                                      _ 🗆 ×
File Edit Search Run Compile Debug Tools Options Window Help
                            SimplePay.pas =
 PROGRAM SimplePay(INPUT.OUTPUT):
  (Simple pay in Pascal)
        hours, pay: INTEGER;
BEGIN
        Read(hours):
        IF hours <= 48 THEN
           pau := 18 × hours
        ELSE
           pay := 10 x 48 + 15 x (hours - 48);
        Writeln('Gross pay is RM', pay: 6):
END.
     = 12:35
F1 Help F2 Save F3 Open Alt+F9 Compile F9 Make Alt+F10 Local menu
```


Linguagens Orientadas a Objetos

- Principais características
 - Abstração de dados, objeto, mensagem, herança.
 - o Exemplos: Java, C++, Perl, Python.
- Tratam os elementos e conceitos associados ao problema como objetos.
- Objetos são entidades abstratas que embutem dentro de suas fronteiras as características e operações relacionadas com a entidade real.
- Uma aplicação é estruturada em classes que agrupam estados e operações.

Exemplo de código OO


```
1 #include "conio.h"
   #include "iostream"
   #include "string"
   using namespace std;
 5
 6 class Person
       public:
 9
            string name;
10
            int age;
11
            void speak(); //member function
12 - };
13 void Person::speak() //member function
14
15
                cout<<"Name= "<<name<<endl;
16
                cout<<"Age= "<<age<<endl;
```

Java

```
□ /**
  * Mauthor Mike
 public class Person
     private String name;
     /** Creates a new instance of Person */
     public Person (String n)
         name = n;
     //displays the name
     public void displayName()
         System.out.println(name);
```


Linguagens Lógicas

- Principais características
 - Relação e dedução, baseado em regras.
 - Exemplo: Prolog
- Programação é baseada em fatos, que podem ser relações (associações) entre coisas, e regras, que produzem fatos deduzidos a partir de outros.
- Foi muito usado em sistemas especialistas (IA) e também em bancos de dados.

Exemplo de código Prolog

Program Window

Linguagens Funcionais

Haskell LISP

- Principais características
 - Função, aplicação e avaliação.
 - Exemplos: Lisp, Scheme, Haskell.
- Sistemas são construídos através da definição, composição e aplicação de funções.
- Estilo declarativo: não há o conceito de estado nem comandos como atribuição.
- Conceitos sofisticados como polimorfismo, funções de alta ordem e avaliação sob demanda.

Exemplo de código funcional

LISP


```
quicksort1 :: (Ord a) => [a] -> [a]
quicksort1 [] = []
quicksort1 (x:xs) =
  let smallerSorted = quicksort1 [a | a <- xs, a <= x]
  biggerSorted = quicksort1 [a | a <- xs, a > x]
  in smallerSorted ++ [x] ++ biggerSorted
```


Estrutura de tipos

- Fracamente tipada
 - Tipo da variável muda dinamicamente conforme a situação. Exemplos: PHP,
 Smalltalk.
- Fortemente tipada
 - Uma vez atribuído o tipo, se mantém o mesmo até ser descartado. Exemplos:
 Java, Ruby, Python.
- Dinamicamente tipada
 - Tipo da variável definido em tempo de execução. Exemplos: Perl, Python, Javascript.
- Estaticamente tipada
 - Tipo da variável definido em tempo de compilação. Exemplos: Java, C, C++.

Comentários Finais

- Definição de paradigma e paradigmas de programação.
- Classificações das linguagens de programação
 - Quanto ao grau de abstração, paradigma, e estruturas de tipos.
- Processo de compilação e interpretação
- Visão geral de linguagens em diferentes paradigmas

