

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТІ	ЕТ Фундаментальные науки
КАФЕДРА	Прикладная математика
	ДОМАШНЯЯ РАБОТА ПО КУРСУ
7. 6	
«Mame »	матические модели прикладной механиких
	Ranuaum 8

Вариант 8

Студент	Φ H2-81Б		В.Г. Пиневич		
	(Группа)	(Подпись, дата)	(И.О. Фамилия)		
Преподаватель			И. Ю. Савельева		
1 "		(Подпись, дата)	(И.О. Фамилия)		

Оглавление 2

Оглавление

Сп	исок условных обозначений	3
1.	Постановка задачи	4
2.	Решение	4
	2.1. Поиск суммарного значения теплового потока при отсутствии экрана .	5
	2.2. Поиск суммарного значения теплового потока при наличии экрана	6

Список условных обозначений

 Q_k — суммарный тепловой поток на k-ую поверхность

 \overline{q}_k — плотность результирующего потока

 $q_{\Pi,k}$ — плотность падающего потока

 S_k — плотность k-ой поверхности

1. Постановка задачи

В зазоре между двумя концентрическими круговыми цилиндрическими поверхностями, длина которых существенно превышает их диаметры D_1 и $D_2 > D_1$, установлен тонкий круговой цилиндрический металлический экран диаметром D_0 . Температура цилиндрических поверхностей T_1 и $T_2 > T_1$, коэффициенты излучения e_1 и e_2 соответственно, а коэффициенты излучения обеих поверхностей экрана одинаковы и равны e_0 . Свойства всех указанных поверхностей отвечают модели серого тела. Сравнить суммарные значения теплового потока, передаваемого излучением от более нагретой поверхности к менее нагретой при наличии и отсутствии экрана в предположении, что температуру экрана можно считать однородной по его толщине.

2. Решение

Рассмотрим замкнутую систему, состоящую из N поверхностей, и проанализируем теплообмен излучением между ними. Уравнение теплового баланса на k-ой поверхности

$$Q_k = \overline{q}_k S_k = (q_K^* - q_{\Pi,k}), \qquad (1)$$

где Q_k — суммарный тепловой поток на k-ую поверхность, \overline{q}_k — плотность результирующего потока, $q_{\Pi,k}$ — плотность падающего потока, S_k — плотность k-ой поверхности.

$$q_k^* = \varepsilon_k \sigma_0 T_k^4 + (1 + A_k) q_{\Pi,k}, \tag{2}$$

$$q_{\Pi,k} = S_1 q_1^* \phi_{1-k} + \dots + S_N q_N^* \phi_{N-k}, \tag{3}$$

где ϕ_{N-k} угловые коэффициенты, характеризуют долю плотности энергии выпускаемое і-ой поверхностью и падающую на k-ую поверхность. Свойство угловых коэффициентов: $\phi_{1-k}S_1 = \phi_{k-1}S_k$.

Воспользуемся им для в соотношении (3) и получим:

$$q_{\Pi,k} = \sum_{j=1}^{N} q_j^* \phi_{k-j} \tag{4}$$

Также используем подстановку (4) в (1).

После этого выразим из (2) $q_{\Pi,k}$ и подставим в (1).

2. Решение 5

Итого имеем систему

$$\begin{cases}
Q_k = \left(q_k^* - \sum_{j=1}^N q_j^* \phi_{k-j}\right) S_k, \\
Q_k = \left(\frac{\varepsilon_k}{1 - A_k} \sigma_0 T_k^4 - \frac{A_k}{1 - A_k} q_k^*\right)
\end{cases}$$
(5)

2.1. Поиск суммарного значения теплового потока при отсутствии экрана

Определим угловые коэффициенты для замкнутой системы для 2-х концентрических круговых цилиндрических поверхностей, длина которых существенно превышает их диаметры:

$$\begin{cases} \phi_{1-1} = 0, \\ \phi_{1_1} + \phi_{1-2} = 1, \\ \phi_{2-1} + \phi_{2-2} = 1, \\ \phi_{1-2}S_1 = \phi_{2-1}S_2 \end{cases}$$

$$\begin{cases} \phi_{1-2}S_1 - \phi_{2-1}S_2 \\ \phi_{1-1} = 0, \\ \phi_{1-2} = 1, \\ \phi_{2-1} = \frac{S_1}{S_2} = \frac{D_1}{D_2}, \\ \phi_{2-2} = 1 - \frac{S_1}{S_2} = 1 - \frac{D_1}{D_2}, \end{cases}$$

$$(6)$$

где $S_i = \pi D_i h$ — площадь і-ого цилиндра. Запишем систему (5) для этих поверхностей:

$$\begin{cases}
Q_{1} = (q_{1}^{*} - q_{1}^{*}\phi_{1-1} - q_{2}^{*}\phi_{1-2}), \\
Q_{2} = (q_{2}^{*} - q_{1}^{*}\phi_{2-1} - q_{2}^{*}\phi_{2-2}), \\
Q_{1} = \left(\frac{\varepsilon_{1}}{1-A_{1}}\sigma_{0}T_{1}^{4} - \frac{A_{1}}{1-A_{1}}q_{1}^{*}\right)S_{1}, \\
Q_{2} = \left(\frac{\varepsilon_{2}}{1-A_{2}}\sigma_{0}T_{2}^{4} - \frac{A_{2}}{1-A_{2}}q_{2}^{*}\right)S_{2}
\end{cases}$$
(7)

Так свойствах всех поверхностей отвечают моделям серого тела ($\varepsilon_k = A_k$), преобразуем систему (7)

$$\begin{cases}
Q_{1} = (q_{1}^{*} - q_{1}^{*}\phi_{1-1} - q_{2}^{*}\phi_{1-2}), \\
Q_{2} = (q_{2}^{*} - q_{1}^{*}\phi_{2-1} - q_{2}^{*}\phi_{2-2}), \\
Q_{1} = \left(\frac{\varepsilon_{1}}{1-\varepsilon_{k}}\sigma_{0}T_{1}^{4} - \frac{A_{1}}{1-\varepsilon_{k}}q_{1}^{*}\right)S_{1}, \\
Q_{2} = \left(\frac{\varepsilon_{2}}{1-\varepsilon_{k}}\sigma_{0}T_{2}^{4} - \frac{A_{2}}{1-\varepsilon_{k}}q_{2}^{*}\right)S_{2}
\end{cases}$$
(8)

2. Решение 6

Подставим значение угловых коэффициентов (6) в систему (8) и решим ее. Получим следующее соотношения:

$$\begin{cases} Q_1 = \frac{S_1 S_2 (T_2^4 - T_1^4) \varepsilon_1 \varepsilon_2 \sigma_0}{S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2}, \\ Q_2 = \frac{S_1 S_2 (T_1^4 - T_2^4) \varepsilon_1 \varepsilon_2 \sigma_0}{S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2}, \\ q_1^* = \frac{(S_1 T_1^4 \varepsilon_1 (\varepsilon_2 - 1) + S_2 (T_2^4 (\varepsilon_1 - 1) - T_1^4 \varepsilon_1) \varepsilon_2) \sigma}{S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2}, \\ q_2^* = \frac{(S_1 T_1^4 (\varepsilon_1 - 1) - S_2 T_2^4 \varepsilon_2) \sigma}{S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2} \end{cases}$$

Тогда суммарный тепловой поток, передаваемый от тела с большей температурой будет равен

$$Q_2 = \frac{S_1 S_2 (T_1^4 - T_2^4) \varepsilon_1 \varepsilon_2 \sigma_0}{S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2}$$

2.2. Поиск суммарного значения теплового потока при наличии экрана

Рассмотрим две системы уравнений: внешний цилиндр и экран и экран и внутренний цилиндр.

$$\begin{cases} \phi_{0-0} = 0, \\ \phi_{0-2} = 1, \\ \phi_{2-0} = \frac{S_0}{S_2}, \\ \phi_{2-2} = 1 - \frac{S_0}{S_2}, \\ Q_0 = (q_0^* - q_0^* \phi_{0-0} - q_2^* \phi_{0-2}) S_0, \\ Q_2 = (q_2^* - q_0^* \phi_{2-0} - q_2^* \phi_{2-2}) S_2, \\ Q_0 = (\frac{\varepsilon_0}{1-\varepsilon_0} \sigma_0 T_0^4 - \frac{\varepsilon_0}{1-\varepsilon_0} q_0^*) S_0, \\ Q_2 = (\frac{\varepsilon_2}{1-\varepsilon_2} \sigma_0 T_2^4 - \frac{\varepsilon_2}{1-\varepsilon_2} q_2^*) S_2 \end{cases}$$

$$\begin{cases} \phi_{1-1} = 0, \\ \phi_{1-0} = 1, \\ \phi_{0-1} = \frac{S_1}{S_0}, \\ Q_1 = (q_1^* - q_1^* \phi_{1-1} - q_0^* \phi_{1-0}) S_1, \\ Q_0 = (q_0^* - q_1^* \phi_{0-1} - q_0^* \phi_{0-0}) S_0, \\ Q_1 = (\frac{\varepsilon_1}{1-\varepsilon_1} \sigma_0 T_1^4 - \frac{\varepsilon_1}{1-\varepsilon_1} q_1^*) S_1, \\ Q_0 = (\frac{\varepsilon_0}{1-\varepsilon_0} \sigma_0 T_0^4 - \frac{\varepsilon_0}{1-\varepsilon_0} q_0^*) S_0 \end{cases}$$

2. Решение 7

Решение данных систем аналогично решению системы из предыдущего пункта. Найдем плотность результирующего потока для этих систем:

$$\overline{q}_{2,0} = \frac{S_0(T_0^4 - T_2^4)\varepsilon_1\varepsilon_2\sigma_0}{S_2\varepsilon_2 + S_1\varepsilon_1(1 - \varepsilon_2)}$$

$$\overline{q}_{0,1} = \frac{S_1(T_1^4 - T_0^4)\varepsilon_1\varepsilon_0\sigma_0}{S_1\varepsilon_1(\varepsilon_0 - 1) - S_0\varepsilon_0}$$

Так как исходная система «внешний цилиндр - экран - внутренний цилиндр» является замкнутой, то должно выполняться условие $\overline{q}_{2,0}=\overline{q}_{0,1}$. Выразим из данного условия температуру T_0^4 :

$$T_0^4 = \frac{\varepsilon_0 S_0(\varepsilon_1(\varepsilon_2 - 1)S_1 T_1^4 - \varepsilon_2 S_2 T_2^4) - \varepsilon_1 \varepsilon_2 S_1 S_2(T_1^4 - (\varepsilon_0 - 1)T_2^4)}{S_1 S_2(\varepsilon_0 - 2)\varepsilon_1 \varepsilon_2 + S_0 \varepsilon_0(S_1 \varepsilon_1(\varepsilon_2 - 1)S_2 \varepsilon_2)}$$

Подставим полученное значение температуры T_0^4 в значение суммарного потока для системы «внешний цилиндр – экран»:

$$Q_2 = \frac{S_0 S_2 (T_0^4 - T_2^4) \varepsilon_0 \varepsilon_2 \sigma_0}{S_0 \varepsilon_0 (\varepsilon_2 - 1) - S_2 \varepsilon_2} = \frac{S_0 S_1 S_2 (T_1^4 - T_2^4) \varepsilon_0 \varepsilon_1 \varepsilon_2 \sigma_0}{S_1 S_2 (\varepsilon_0 - 2) \varepsilon_1 \varepsilon_2 + S_0 \varepsilon_0 (S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2)}$$

Сравним полученные суммарные значения теплового потока при наличии и отсутствии экрана:

$$\frac{Q_2}{Q_2'} - 1 = \frac{S_1 S_2(\varepsilon_0 - 2)\varepsilon_1 \varepsilon_2}{S_0 \varepsilon_0 (S_1 \varepsilon_1 (\varepsilon_2 - 1) - S_2 \varepsilon_2)} > 0,$$

где Q_2 — суммарное значение теплового потока при отстутствии экрана, Q_2' — суммарное значение теплового потока при наличии экрана. Таким образом получаем, что суммарное значение теплового потока при отсутствии экрана больше, чем при его наличии.