Szenzormodalitások Féléves Feladat

Hordozható hőmérséklet és páratartalom mérő cross-platform mobilalkalmazással

Tóth Balázs - MWZX0D

Tartalomjegyzék

1 Alkatrészek

1.1 NCR18650B-PROT

Li-Ion akkumulátor 18650, 3.7V, 3300mAh, védelemmel

• Védelem: túltöltés, kisülés és túláram védelem

- Kisülési és túltöltési küszöbértékek: $2.75\mathrm{V}$ és $4.2\mathrm{V}$

Paraméter	Érték
Gyártói jelölés	34B-PCB
RoHS	igen
Gyártó	LIITO KALA
Tokozás	MR18650
Kapacitás	$3300 \mathrm{mAh}$
Külső méretek	\emptyset 18.65 x 69mm
Névleges feszültség	3.7V
Az akumulátor típusa	Li-Ion
Az akkumulátor tulajdonságai	PCB védelmek
Belső ellenállás	$30 \mathrm{m}\Omega$
Maximális folyamatos kisülési áram	4.875A
Pillanatnyi kisülési áram	5A

1.2 WEMOS-18650

WeMos D1 ESP-WROOM-02 modul, ESP8266, NodeMCU, 18650 Li-Ion

- ESP8266 alapú WeMos D1 firmware kompatibilis fejlesztői panel
- 18650 méretű Li-Ion akkumulátorral üzemeltethető
- Kapcsolóüzemű tápegység
- Jelző LED-ek
- 10 digitális IO (Interrupt, PWM, I2C, stb)
- 1 analóg bemenet (max. 3.3V)
- microUSB csatlakozással

1.3 DHT22-M

Hőmérséklet és páratartalom érzékelő modul (AM2302)

• Relatív páratartalom

- Felbontás: 16Bit

-Ismételhetőség: $\pm 1\%$ RH

- Pontosság: 25°C-nál $\pm 2\%$ RH

- Cserélhetőség: teljesen cserélhető

- Hiszterézis: $<\pm 0.3\%$ RH

- Hosszú távú stabilitás: $<\pm 0.5\%$ RH / év

• Hőmérséklet

- Felbontás: 16Bit

- Ismételhetőség: ± 0.2 °C

– Tartomány: 25°C-nál ± 2 °C – Válaszidő: 1 / e (63%) 10S

• Elektromos jellemzők

- Tápellátás: DC $3.5\ 5.5\mathrm{V}$

– Áramfelvétel: mérés 0.3mA, készenlét 60µA
– Mintavételi időszak: több mint 2 másodperc

Paraméter	Érték
RoHS	nem

1.4 D13-12864-I2C

1.3in 128x64 OLED, I2C interfész

• Meghajtó IC: SH1106

• Működési hőmérséklet: -40°C 70°C

Paraméter	Érték
Szín	kék
Fényerő	80 cd/m^2
Tápfeszültség	3.35V
Felbontás	128×64
Látószög	160°

1.5 130 R 1%

Fémréteg ellenállás 0.6W

Paraméter	Érték
RoHS	igen
Gyártó	ROYAL OHM
Teljesítmény	0.6W
Ellenállás	130Ω
Szerelés	THT
Tolerancia	$\pm 1\%$
Korpusz mérete	\emptyset 2.5 x 6.8mm
Ellenállás típusa	metal film
Max. üzemi feszültség	250V
Hőmérsékleti tényező	$50 \mathrm{ppm/^{\circ}C}$
Huzalkivezetés mérete	\emptyset 0.6 x 28mm
Kivezetések	tengelyirányú

2 Megvalósítás

2.1 Összeköttetés

2.2 Csomagok

Websockets

 $\bullet \ https://github.com/Links 2004/arduino Web Sockets$

DHT sensor

- https://github.com/adafruit/DHT-sensor-library
- $\bullet \ \ https://github.com/adafruit/Adafruit_Sensor$

GFX

- $\bullet \ \ https://github.com/adafruit/Adafruit-GFX-Library$
- $\bullet \ \ https://github.com/adafruit/Adafruit_BusIO$

Display

 $\bullet \ \ https://github.com/adafruit/Adafruit_SH110X$

2.3 BAUD

A szenzorból származó adatok kiolvasása és megjelenítése a soros monitoron a 115200 baudos kommunikációs sebesség használatával történik. Ez a baud érték azt jelenti, hogy a rendszer másodpercenként 115200 bit adatot képes továbbítani.

```
Output Serial Monitor ×
                                                                 Message (Enter to send message to 'LOLIN(WEMO...
                                           New Line
                                                           115200 baud
Humidity: 59.70% Temperature: 21.50°C
192.168.0.141
Humidity: 59.70% Temperature: 21.40°C
192.168.0.141
Humidity: 59.90% Temperature: 21.40°C
192.168.0.141
Humidity: 59.90% Temperature: 21.50°C
192.168.0.141
Humidity: 59.90% Temperature: 21.50°C
192.168.0.141
Humidity: 60.00% Temperature: 21.40°C
192.168.0.141
Humidity: 59.80% Temperature: 21.50°C
192.168.0.141
Humidity: 59.90% Temperature: 21.50°C
192.168.0.141
```

2.4 setup()

Cél: A rendszer hardver komponenseinek és kommunikációs protokolljainak inicializálása.

Leírás:

- A soros port inicializálása 115200 baud sebességgel a debug üzenetekhez.
- A DHT22 szenzor aktiválása, ami a hőmérséklet és páratartalom méréséért felelős.
- Az OLED kijelző beállítása, ellenőrzése, hogy a kijelző helyesen van-e csatlakoztatva. Ha nem, a rendszer leáll.
- A kijelzőn megjelenő kezdő szöveg megjelenítése, ami a rendszer állapotának elsődleges vizuális visszajelzése.

2.5 setupEEPROM()

Cél: Az EEPROM-ból való Wi-Fi hitelesítő adatok olvasása és a hálózathoz való csatlakozás kísérlete.

Leírás:

- Az EEPROM inicializálása és a korábban mentett Wi-Fi hitelesítő adatok (SSID és jelszó) olvasása.
- Wi-Fi hálózathoz való csatlakozás ezekkel az adatokkal.
- Ha a hálózati kapcsolat sikerült, a WebSocket szerver elindítása.
- Ha a kapcsolat nem jön létre, a rendszer hozzáférési pontként (AP módban) való indítása, hogy a felhasználók közvetlenül csatlakozhassanak és konfigurálhassák a hálózati beállításokat.

2.6 connectToWiFi(const char* ssid, const char* password)

Cél: Külön Wi-Fi hálózathoz való csatlakozás.

Leírás:

- Megpróbál csatlakozni a megadott SSID-hez és jelszóval.
- A csatlakozási kísérlet során a kapcsolat állapotát jelző üzenetek megjelenítése.
- A kapcsolat létrejötte esetén az IP-cím kiírása.

2.7 displayOledText(int x, int y, uint8_t textSize, uint16_t textColor, uint16_t backgroundColor, String text)

Cél: Szöveg megjelenítése az OLED kijelzőn.

Leírás:

- A megadott paraméterek alapján szöveg kiírása a kijelzőre.
- A szöveg méretének, színének és pozíciójának beállítása.

2.8 displayOledTextWrapped(int x, int &y, uint8_t textSize, uint16_t textColor, uint16_t background-Color, String text)

Cél: Többsoros szöveg megjelenítése az OLED kijelzőn.

Leírás:

- A szöveg megjelenítése több sorban, ha a szöveg hossza meghaladja a kijelző szélességét.
- Automatikus sortörés a szöveg megfelelő helyen történő tördelése érdekében.

2.9 testWifi()

Cél: Wi-Fi kapcsolat tesztelése.

Leírás:

- Ellenőrzi, hogy a Wi-Fi kapcsolat aktív-e egy adott időintervallumon belül.
- Visszaadja a teszt eredményét (sikerült vagy sem).

2.10 Értékek a kijelzőn

- A kijelző két részre lett bontva:
 - 1. Felső rész, avagy a **status bar**.
 - 2. Kijelző maradék része, **egyéb információk** kijelzése.

