第三单元 从微观结构看物质的多样性

第1课时 同素异形现象 同分异构现象

- 1. 以碳元素的几种单质为例,认识同素异形现象。
- 2. 以正丁烷和异丁烷、乙醇和二甲醚为例,认识 有机物的同分异构现象。
- 3. 学会同素异形体、同分异构体的判断方法。

- 1. 宏观辨识与微观探析:通过同分异构现象和同素 异形现象,认识物质的多样性与微观结构的关系。
- 2. 证据推理与模型认知:理解同素异形体、同分异构体的区别与联系,掌握判断"二同"的方法。

新知导学

----- 启迪思维 探究规律

一、同素异形现象

- 1. 同素异形现象和同素异形体
- (1)同一种元素能够形成几种不同的单质的现象叫做同素异形现象。
- (2)同一种元素可形成不同单质,这些单质互称为这种元素的同素异形体。

2. 常见的同素异形体

(1)碳的同素异形体

	金刚石	石墨	C ₆₀
结构特点	结构	结构	封闭分子,形似足球
成键特点	每个碳原子与相邻的 4个碳原子以 结合	层内碳原子间以 结合成平面六边 形,层间以 结合	60 个碳原子以结合
性质差异 原因	晶体中原子的和排列方式不同		

(2)氧的同素异形体

	O_2	O ₃	
性质区别	无色无味气体		
转化关系		3O2 2O3	
差异原因	分子中氧原子的个数和氧原子的成键方式不同		

(3)磷的同素异形体

物质	色态	毒性	稳定性	保存
白磷	白色蜡状固体	有剧毒	易自燃	冷水中
红磷	红棕色固体	无毒	加热或点燃可燃烧	直接存放在广口瓶中

■ 归纳总结 ■—

对同素异形体的理解

(1)组成元素:只含有一种元素。

(2)物质类别: 互为同素异形体的只能是单质。

(3)性质关系: 同素异形体之间的物理性质有差异, 但化学性质相似。

(4)相互转化:同素异形体之间的转化属于化学变化,因为转化过程中有化学键的断裂与形成。

(5)同素异形体之间的转化既有单质参加,又有单质生成,但由于没有涉及化合价的变化,一般认为这种转化属于非氧化还原反应。

【例 1】 意大利罗马大学的 Fulvio Cacace 等人获得了极具理论研究意义的 N_4 分子。 N_4 分子结构如图所示,下列说法正确的是()

- A. N₄属于一种新型化合物
- B. N₄转化为 N₂属于物理变化
- C. N₄的摩尔质量为 56
- D. N₄与 N₂互为同素异形体

【例 2】 下列关于碳元素的同素异形体的叙述正确的是()

- A. 碳元素形成的各种单质称为碳元素的同素异形体
- B. 碳元素的同素异形体结构虽然不同, 但性质差别不大
- C. 碳元素的同素异形体性质不同,其用途相同
- D. 碳元素的同素异形体只有金刚石、石墨和 C60
- 二、同分异构现象
- 1. 同分异构现象和同分异构体

(1)化合物具有相同的	,但具有不同	的现象,称为同分异构现象。

- (2)分子式相同而结构 的化合物互称为同分异构体。
- (3)同分异构现象主要表现在有机化合物中。
- 2. 实例

(1)正丁烷和异丁烷

名称		正丁烷		
分子式		C ₄ H ₁₀		
	结构式	H H H H	H H H	
分子结构	结构简式	CH ₃ CH ₂ CH ₂ CH ₃	CH ₃ CHCH ₃ CH ₃	
	球棍模型			
结论		分子结构不同		
沸点		−0.5 °C	−11.7 °C	
差异分析		原子的连接方法,	上学键的类型,物质类别	

(2)乙醇和二甲醚

名称		乙醇	二甲醚
分子式			
分子结构	结构式	H H H—C—C—O—H H H	H H
结论		分子结构	
沸点 性质		78 ℃ —23 ℃	
		物理性质,	七学性质

■ 归纳总结 ■

四角度认识同分异构体

- (1)从物质看: 互为同分异构体的物质只能是化合物。它们之间的转化属于化学变化, 若共存则为混合物。
- (2)从分子式看: 互为同分异构体的化合物,其分子式相同,相对分子质量也相同,但相对分子质量相同的化合物分子式不一定相同,如甲酸(HCOOH)和乙醇(CH₃CH₂OH)的相对分子质量均为46。
- (3)从结构看: 互为同分异构体的化合物, 空间结构不同。
- (4)从性质看: 互为同分异构体的化合物, 物理性质不同, 化学性质可能相似。

【例 3】 下列关于同分异构体的叙述正确的是()

- A. 相对分子质量相同而结构不同的化合物互称为同分异构体
- B. 分子式相同而结构不同的化合物互称为同分异构体
- C. 同分异构体之间由于分子组成相同, 所以它们的性质相同
- D. 只有少数的有机物之间存在同分异构现象

思维启迪

- (1)两化合物互为同分异构体,则两化合物的相对分子质量及各元素的组成(含量)必然相同。
- (2)相对分子质量相同的两化合物不一定互为同分异构体(如 CO 和 C₂H₄不互为同分异构体)。

【例 4】 下列各组物质中,属于同分异构体的是()

- A. 白磷和红磷
- B. 干冰和 CO₂

● 学习小结

上 达标检测

- 检测评价 达标过关

- 1. 美国和墨西哥研究人员将普通纳米银微粒分散到纳米泡沫碳(碳的第五种单质形态)中,得到不同形状的纳米银微粒,该纳米银微粒能有效杀死艾滋病病毒。纳米泡沫碳与金刚石的关系是()
- A. 同素异形体

B. 同分异构体

C. 同一种物质

- D. 同位素
- 2. 造成金刚石和石墨性质差异的主要原因是()
- A. 碳原子种类不同
- B. 同体积两种物质中碳原子个数不同
- C. 碳原子成键方式不同
- D. 物质状态不同
- 3. (2018·温州市十五校联合体高一下学期期中)下列说法正确的是()
- A.126C 和 146C 是一种核素
- B. 氕、氘、氚互为同位素,中子数都是 1
- C. 乙醇和二甲醚互为同分异构体

- D. 金刚石和石墨互为同素异形体,两者之间不能相互转化
- 4. (2019·余姚中学质检)下列说法正确的是()
- A. 互为同素异形体的物质必然具有相似的性质
- B. 碳酸钠固体中不存在阴、阳离子
- C. 氢化锂三兄弟—LiH、LiD、LiT 三种物质的质子数之比为 4:5:6
- D. 同分异构体之间的相互转化一定是化学变化
- 5. 下列物质中, 互为同分异构体的有_____(填序号, 下同); 互为同素异形体的有_____; 属于同位素的有_____; 属于同一种物质的有_____。
- ①二氧化碳 ②金刚石 ③干冰 ④氢溴酸 ⑤溴水 ⑥液溴 ⑦12C ⑧石墨 ⑨14C

第2课时 不同类型的晶体

- 1. 熟知晶体的类型及其分类依据,学会判断晶体类型的方法。
- 2. 知道晶体类型与物质性质的关系,会比较晶体的熔、沸点。

- 1. 宏观辨识与微观探析: 能从宏观与微观结合的视角 对物质进行分类。
- 2. 证据推理与模型认知:能依据构成微粒及微粒间作用,判断晶体类型,并解决相应问题。

空后	ΔΠ	ㄹ	4
示川	闭	귝	

------ 启迪思维 探究规律

一、不同类型的晶体结构

1. 晶体

- (1)晶体具有 的几何外形,构成晶体的微粒有 、 、 、 、 、 。
- (2)常见的晶体类型有_____晶体、_____晶体、_____晶体和____晶体。
- (3)晶体___固定的熔、沸点。

2. 离子晶体

如图为氯化钠晶体结构示意图,回答下列问题:

- (1)构成氯化钠晶体的微粒是______,微粒间的相互作用力是_____,晶体类型是 。
- (2)氯化钠晶体中不存在氯化钠分子,所以 NaCl 不表示氯化钠的分子式,仅表示在 NaCl 晶体中钠离子与氯离子的个数比是____。

3. 分子晶体

右图为干冰晶体结构示意图。回答下列问题:

- (1)构成干冰晶体的微粒是______,微粒间的相互作用力是______,晶体类型是_____。
- (2)干冰汽化时只需克服______,对其分子内的共价键_____。

4. 原子晶体

如图为石英晶体结构示意图。回答下列问题:

(1)构成石英晶体的微粒是	。微粒间的相互作用力是,晶体类型
是。	
(2)在石英晶体中,每个硅原子与个氧	原子结合,每个氧原子形成个 Si—O 键。
(3)石英晶体的空间结构是	•
(4)在石英晶体中,不存在分子,\$	GiO_2 表示的意义是晶体中硅原子与氧原子的个数比
为。	
■ 归纳总结 ■	
四种	晶体的判断方法
(1)根据晶体的概念判断	
(2)根据物质类别判断	
①离子化合物(强碱和大多数盐)都是离子	晶体;
②共价分子(单质或化合物)是分子晶体;	
③常见的原子晶体,如二氧化硅、碳化石	走、金刚石、晶体硅等。
(3)根据微粒间作用力判断	
①离子晶体一定有离子键, 可能有共价键	ŧ,如 Na ₂ O ₂ 、NaOH 等。
②分子晶体一定有分子间作用力(包括氢铅	建),一定无离子键,有些可能在分子内存在共价键,
如干冰。	
③原子晶体一定有共价键,一定没有离子	·键。
④金属晶体一定有金属键,一定没有离子	- 键。
【例 1】 (2018·温州下学期期末)下列各组特	勿质的晶体中,化学键类型相同、晶体类型也相同的
是()	
A. CO ₂ 和 SiO ₂	B. MgCl ₂ 和 NaOH
C. 金刚石和 SiO ₂	D. 氩和 H ₂ O
【例 2】 (2018·浙江诸暨段考)下列化学式的	
A. NaOH B. CO ₂ C. C D. SiO ₂	

二、不同类型晶体的特征

1. 几种常见晶体的物理性质

请分析下表中所列的几种晶体的熔点、硬度,指出它们各属于哪一类晶体,并归纳出各类晶

体性质的特点。

晶体	氯化钠	氯化钡	金刚石	二氧化硅	硫	白磷
熔点/℃	801	1 560	>3 550	1 723	112.8	44.1
硬度	较硬	较硬	很硬	硬而脆	脆	软
晶体类型						
晶体特性	熔	点	熔	点	熔	点
HH11 14 177	硬	度	硬	度	硬	度

2.金属晶体的物理性质

金属晶体有共同的物理性质,如有金属光泽、能____和__、具有___性等。不同金属的___、 ______差异大。

■ 归纳总结 =—

晶体熔、沸点的比较

- (1)若晶体类型不同时,一般为原子晶体>离子晶体>分子晶体。
- (2)若晶体类型相同时:
- ①离子晶体中,离子半径越小,离子所带电荷数越多,熔、沸点越高。
- ②原子晶体中,原子的半径越小,共价键的键长越短,熔、沸点越高。
- ③分子晶体中若分子结构相似,相对分子质量越大,熔、沸点越高(若形成氢键,其熔、沸点 反常高)。

【例 3】 (2019·衢州市月考)碳化硅(SiC)是一种新型的耐高温耐磨材料,有广泛用途,它属于()

A. 分子晶体

B. 原子晶体

C. 金属晶体

D. 离子晶体

【例 4】 下列化合物,按其晶体的熔点由高到低排列正确的是()

- A. SiO₂ CsCl I₂ Br₂
- B. SiO₂ CsCl Br₂ I₂
- C. CsCl SiO₂ I₂ Br₂
- D. Br₂ I₂ CsCl SiO₂

◎ 学习小结

- 1. (2018·温州市十五校联合体高一下学期期中)下列物质中,属于分子晶体的化合物是()
- A. 石英 B. 白磷 C. 干冰 D. 食盐
- 2. 下列关于几种常见晶体的说法中错误的是()
- A. 分子晶体中一定含有分子间作用力,但不一定含有共价键
- B. 离子晶体中一定含有离子键, 但不一定含有共价键
- C. 原子晶体中一定含有共价键, 硬度大, 熔、沸点高
- D. 原子晶体都不导电
- 3. (2019·浙江省学考模拟)下列说法不正确的是()
- A. 硅晶体和二氧化硅晶体中都含共价键
- B. 冰和干冰熔化时克服的作用力均为分子间作用力
- C. 硫晶体和硫酸钠晶体均属于离子晶体
- D. 氯气和四氯化碳分子中每个原子的最外电子层都形成了具有 8 个电子的稳定结构

4. 单质硅的晶体结构如图所示。

下列关于单质硅晶体的说法不正确的是()

- A. 是一种空间网状结构的晶体
- B. 晶体中每个硅原子与 4 个硅原子相连
- C. 晶体中最小环上的原子数目为8
- D. 晶体中最小环上的原子数目为 6
- 5. 下列各晶体中,含有的化学键类型相同且晶体类型也相同的一组是()
- A. SiO₂和 SO₂ B. SiO₂和 NaCl C. NaCl 和 HCl D. CCl₄和 CH₄
- 6. (2019· 余姚中学质检)现有①CaCl₂ ②金刚石 ③NH₄Cl ④Na₂SO₄ ⑤干冰 ⑥MgO ⑦CH₄ ⑧SiO₂ 八种物质,按要求回答下列问题(填序号):

(1)属于原子晶体的化合物是	, 只有离子键的物质是	

(2)含有共价键的离子化合物是,晶	冒体微粒以分子间作用力结合的是
-------------------	-----------------

(3)①的电子式是	_

⑤的电子式是_____。