Theorem

Suppose $S \subseteq R$. $S \leq R$ is a subring if

- (i) $0_R \in S$ or check $S \neq \emptyset$ if we use it in junction with the negation axiom.
- (ii) Closed under +.
- (iii) Closed under or negation: if $a, b \in S$ then $a b \in S$. Or if $a \in S$ then $-a \in S$.
- (iv) Closed under \times : if $a, b \in S$ then $a \times b \in S$.

Note. The first three proves that S is a subgroup.

Example (integral domain). \mathbb{Z} is an integral domain (but not a field). Having inverses doesn't mean an element is not a zero divisor.

In a group, recall the cancellation laws: $ab = ac \Rightarrow b = c, ba = ca \Rightarrow b = c$.

In \mathbb{Z} , if 3x = 3y, then x = y. If ab = ac, then a = 0 or b = c.

Proof

Suppose ab = ac. Then

$$ab - ac = 0$$

$$a(b-c) = 0$$

a = 0 or b - c = 0 since no zero divisors

$$a = 0$$
 or $b = c$

Theorem

If R is an integral domain and ab = ac, then a = 0 or b = c. The other direction follows from commutativity.

Example (bad). \mathbb{Z}_{12} is not an integral domain. It is commutative, has identity 1, but has zero divisors like $3 \times 4 = 0$. In general, any composite (non-prime) order of \mathbb{Z}_n is not an integral domain.

Consider $x^2 - 5x + 6 = 0$ in \mathbb{Z}_{12} . 2,3,6,11 are all solutions.

$$(6-2)(6-3) = 4 \times 3 = 0.$$

So what are the zero divisors of \mathbb{Z}_{12} ?

It's 2,3,4,6,8,9,10. It happens that the non-zero divisors 1,5,7,11 are units. Their inverses are themselves. They form a group isomorphic to V_4 .

Proposition

In \mathbb{Z}_n , any nonzero element is either a zero divisor or a unit.

Note. In \mathbb{Z} , this is not true. Units are $\{\pm 1\}$ but there is no zero divisors.

Proof

If a is a zero divisor then ab=0 for $a\neq 0, b\neq 0$. If a is a unit, then there exists $c\in R: ac=ca=1$.

$$ab = 0$$

$$(ca)b = c0$$

$$1b = 0$$

$$b = 0$$

which is a contradiction.

Theorem

Any field is an integral domain.

Proof

- (i) F is commutative by definition of field.
- (ii) F has identity by definition of division ring.
- (iii) F has no zero divisors. Suppose $ab=0, a\neq 0, b\neq 0$. Then a is a unit and cannot be a zero divisor. Division ring forces all nonzero elements units.

Is every integral domain a field? No. \mathbb{Z} .

Theorem

Every finite integral domain is a field.

Example (zero divisors in \mathbb{Z}_{12}). Immediately we can say 2,3,4,6 are zero divisors because they are factors of 12.

All multiples of these are zero divisors too. 8,9,10 are such multiples.

Therefore, as long as $gcd(a, n) \neq 1$, a is a zero divisor.

Note. In \mathbb{Z} , the gcd of a and b is of the form ra+sb where $r,s\in\mathbb{Z}$.

So 5 is coprime to 12 means $\gcd(5,12)=1\Rightarrow 5r+12s=1$ in integers. Let r=5, s=-2 so it works.