A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Systemy aktywnego zawieszenia
Data ćwiczenia:	2019-04-10
Czas ćwiczenia:	09:30 - 11:00
Zespół realizujący ćwiczenie:	 Sonia Wittek Anna Gęca Barbara Kaczorowska Małgorzata Śliwińska

B. Sformułowanie problemu

Zadanie polegało na zamodelowaniu zawieszenia samochodu za pomocą modelu dwumasowego. Wytrącenie samochodu ze stanu równowagi przez nierówności drogi wywołuje drgania nadwozia o dużej amplitudzie i małej częstotliwości oraz drgania zawieszenia o niewielkiej amplitudzie i dużej częstotliwości. Równania ruchu dla tego modelu mają postać:

$$m_{\rm c}\ddot{x}_{\rm c}(t) + d_{\rm c}(\dot{x}_{\rm c}(t) - \dot{x}_{\rm w}(t)) + c_{\rm c}(x_{\rm c}(t) - x_{\rm w}(t)) = F(t)$$

$$m_{w}\ddot{x}_{w}(t) - d_{c}(\dot{x}_{c}(t) - \dot{x}_{w}(t)) + d_{w}(\dot{x}_{w}(t) - \dot{x}_{g}(t)) - c_{c}(x_{c}(t) - x_{w}(t)) + c_{w}(x_{w}(t) - x_{g}(t)) = -F(t),$$

gdzie m_c jest masą nadwozia przypadającą na jedno koło, m_w jest masą nieresorowaną związaną z kołem, c_c jest współczynnikiem sztywności zawieszenia, c_w jest współczynnikiem sztywności promieniowej opony, d_c jest współczynnikiem tłumienia zawieszenia, d_w jest współczynnikiem tłumienia opony, $x_c(t)$ oznacza przemieszczenie pionowe nadwozia, $x_w(t)$ oznacza przemieszczenie pionowe koła, $x_g(t)$ jest wymuszeniem związanym z nierównościami drogi, F(t) jest zmienną (aktywną) siłą tłumienia, $t \ge 0$ oznacza czas.

C. Sposób rozwiązania problemu

Aby zamodelować zawieszenie utworzyłyśmy w programie Simulink model symulujący zachowanie się koła (xw) i nadwozia (xc) w zależności od drogi samochodu (xg), dołączyłyśmy do niego regulator dodatkowej siły tłumiącej F i ustawiłyśmy jego parametry tak, aby uzyskać jak najlepszą amortyzację nadwozia.

D. Wyniki
Pierwszy wykres przedstawia wyniki symulacji dla prostej drogi o pewnych określonych warunkach początkowych, drugi wykres przedstawia drogę sinusoidalną. Natomiast trzeci rysunek to wykres dla regulatora.

E. Wnioski

Podczas laboratorium udało nam się zrealizować ćwiczenie bez problemów. Wykonałyśmy model zawieszenia samochodu w Simulinku, rozważyłyśmy różne przypadki testowe dotyczące ruchu samochodu, a następnie dobrałyśmy parametry regulatora tak, aby najbardziej tłumił oscylacje. Podczas utrwaliłyśmy swoją wiedzę z zakresu tworzenia modeli w Simulinku oraz poznałyśmy matematyczny model zawieszenia samochodu.