§1 线性空间的定义

定义 1.1 (线性空间). 设 P 是一个数域, V 是一个非空集合, 对 V 中的任意两个元素 α , β , 有唯一的元素与之对应, 记作 α 与 β 的和. 我们称在 V 中定义了加法 "+".

又对于 P 中任意一个数 k 与 V 中的任意一个元素 α , 有唯一的 V 中的元素与他们对应. 我们称为 k 与 α 的积. 记作 $k\alpha$. 我们称在 V 中定义了数量积 (纯量积).

并且这两种运算满足如下的八条性质:

- 1. 加法部分
 - (a) 加法交换律: $\forall \alpha, \beta \in V.\alpha + \beta = \beta + \alpha$.
 - (b) 加法结合律: $\forall \alpha, \beta, \gamma \in V.(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
 - (c) 存在零元: $\exists 0 \in V.0 + \alpha = \alpha, \forall \alpha \in V.$
 - (d) 存在负元: $\forall \alpha \in V.\exists -\alpha \in V.\alpha + (-\alpha) = 0.$
- 2. 乘法部分
 - (a) 存在单位元: $1 \cdot \alpha = \alpha, \forall \alpha \in V$.
 - (b) 数乘结合律: $k(l\alpha) = (kl)\alpha$
- 3. 加法与数乘
 - (a) $(k+l)\alpha = k\alpha + l\alpha, \forall k, l \in P, \alpha \in V$
 - (b) $k(\alpha + \beta) = k\alpha + k\beta, \forall k \in P, \alpha, \beta \in V.$

则称 V 是属于 P 上的线性空间 (向量空间), V 中的元素称为向量, P 为 V 的基域.

接下来考察线性空间的常见性质.

性质 1.1. 对于这个定义, 立即有以下的性质.

- 1. 零元是唯一的.
- 2. 对于 $\alpha \in V$, 负元唯一.
- 3. 有消去律, 也就是如果 $\alpha, \beta, \gamma \in V$, $\alpha + \beta = \alpha + \gamma \implies \beta = \gamma$.
- 4. $\forall k \in P, k \cdot 0 = 0; \forall \alpha \in V, 0 \cdot \alpha = 0, (-1) \cdot \alpha = -\alpha.$

Proof. 1. 设若有 $0' \in V$, 使得 $0' + \alpha = \alpha$, $\forall \alpha \in V$, 取 $\alpha = 0$, 那就是说 0' = 0' + 0 = 0 + 0' = 0. 因此 0 和 0' 实际上是一个东西.

2. 若 $\beta \in V$, 取 α 使得 $\alpha + \beta = 0$, 则

$$\beta = 0 + \beta = (\alpha + (-\alpha)) + \beta = (-\alpha) + (\alpha + \beta) = -\alpha.$$

3. 可以通过如下证明

$$\beta = 0 + \beta = -\alpha + \alpha + \beta = -\alpha + \alpha + \gamma = \gamma.$$

4. 使用分配率, 有 $0+k\cdot 0=k\cdot 0=k\cdot (0+0)=k\cdot 0+k\cdot 0$. 这就意味着 $k\cdot 0=0$. 另一方面, $0+0\cdot \alpha=0\cdot \alpha=(0+0)\alpha=0\cdot \alpha+0\cdot \alpha$. 因此得到 $0\cdot \alpha=0$.

由于 $0 \cdot \alpha = 0$ 知 $\alpha + (-1)\alpha = (1 + (-1))\alpha = 0 = \alpha + (-\alpha)$. 这就说明 $(-1)\alpha = -\alpha$.

5. 如果 $k \neq 0, \alpha = (k \frac{1}{h}) \alpha = \frac{1}{h} (k \alpha) = \frac{1}{h} \cdot 0 = 0$. 另一方面类似可以证明.

例子 1.1. 1. 行向量空间 $[x_1, x_2, \dots, x_n]$ 和列向量空间 $[x_1, x_2, \dots, x_n]'$.

2 子空间 2

2. P 上的一元多项式 P[x] 对多项式和多项式的加法,多项式和数的乘法封闭. 构成 P 上的线性空间.

3. 设 V 是所有收敛实数序列的集合 $V = \left\{ \alpha = (a_1, a_2, \cdots, a_n, \cdots) : \lim_{\substack{n \to \infty \\ n \to \infty}} a_n \text{ 存在} \right\}$, 则对数列的加法,数列与实数的乘法封闭. 也就是 V 构成 \mathbb{R} 上的线性空间.

我们在给出一个定义之后,自然要考察其初步的性质,与它关联的结构,以及结构与结构之间有何种联系.下面我们来看这个结构和它满足某种条件的子集有什么联系.我们称为子空间.

设 $W \in \mathbb{P}$ 上的线性空间的子集, 如果对于任意 α, β , 都有 $\alpha + \beta \in W(W)$ 对加法封闭), 以及 $\forall k \in \mathbb{P}, \alpha \in W$, 有 $k\alpha \in W(W)$ 对纯量乘法封闭), 我们把这样的子集称为W 的子空间.

定义 1.2. 设 W 且数域 \mathbb{P} 上线性空间 V 的非空子集, 如果对于 V 的加法, 纯量乘法 W 也构成一个线性空间, 则称 W 是 V 的子空间. 简称子空间.

下面来考察初步的性质.

性质 1.2. 若 W 是线性空间 V 上的非空子集, 下列的三个命题等价

- 1. W 是 V 的子空间;
- 2. W 对 V 的加法, 数乘封闭;
- 3. $\forall k, l \in \mathbb{P}, \alpha, \beta \in W, k\alpha + l\beta \in W$.

§2 子空间

- 2.1. 子空间的更多性质.
- **1. 基的扩充** 设 W 是线性空间 V 的子空间,则 W 的基底 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 可以扩充为 V 的基底 $\alpha_1,\alpha_2,\cdots,\alpha_r,\alpha_{r+1},\cdots,\alpha_n$. 这是因为在 V 中取一组基 $\beta_1,\beta_2,\cdots,\beta_n$,根据替换定理,有 $\alpha_1,\alpha_2,\cdots,\alpha_r,\beta_{j_{r+1}},\cdots,\beta_{j_n}$ 与 $\beta_1,\beta_2,\cdots,\beta_n$ 等价并且线性无关.
- **2.** 子空间的交与和 如果 V_1, V_2, V_3 都是 V 的子空间, 那么对于交运算有
 - 交换律: $V_1 \cap V_2 = V_2 \cap V_1$;
 - 结合律: $V_1 \cap (V_2 \cap V_3) = (V_1 \cap V_2) \cap V_3$;
 - 封闭性: $V_1 \cap V_2 \cap \cdots \cup V_s = \bigcap_{i=1}^s V_i$ 也是 V 的子空间

对于和运算有

- 交換律: $V_1 + V_2 = V_2 + V_1$;
- 结合律: $V_1 + (V_2 + V_3) = (V_1 + V_2) + V_3$;
- 封闭性: $V_1 + V_2 + \cdots + V_s = \sum_{i=1}^s V_i$ 也是 V 的子空间
- **3. 子空间的等价条件** 设 V_1, V_2 都是 V 的子空间, 那么下面三个条件是等价的:
 - $V_1 \subset V_2$;
 - $V_1 + V_2 = V_2$;
 - $V_1 \cup V_2 = V_1$.

2 子空间 3

4. 子空间之间的关系 设 V_1, V_2 都是 V 的子空间, 那么

- 如果 $W \subset V_1, W \subset V_2,$ 那么 $W \subset V_1 \cap V_2;$
- 如果 $W \supset V_1, W \supset V_2, 那么 W \supset V_1 + V_2.$

2.2. 维数定理.

定理 2.1. 设 V_1, V_2 都是 V 的子空间, 那么有

$$\dim(V_1 \cap V_2) + \dim(V_1 + V_2) = \dim V_1 + \dim V_2.$$

Proof. 假设 dim $V_1 = s$, dim $V_2 = t$, dim $(V_1 \cup V_2) = r$. 先在 $V_1 \cap V_2$ 中取基底 $\alpha_1, \alpha_2, \dots, \alpha_r$. 然后把它扩充为 V_1 的基底 $\alpha_1, \alpha_2, \dots, \alpha_r \beta r + 1, \dots, \beta$. 然后对 $\alpha_1, \alpha_2, \dots, \alpha_r$ 又扩充 为 V_2 的基底 $\alpha_1, \alpha_2, \dots, \alpha_r \gamma_{r+1}, \dots, \gamma_t$.

因为 $\alpha \in V_1 + V_2$, 那么有 $\beta \in V_1$, $\gamma \in V_2$, 使得 $\alpha = \beta + \gamma$. 由于 β, γ 可以被上面的两个扩充的基底表示,自然, α 可以被 $\alpha_1, \alpha_2, \dots, \alpha_r, \beta_{r+1}, \dots, \beta_t, \gamma_{r+1}, \dots, \gamma_t$ 表示,也就是

$$V_1 + V_2 = L(\alpha_1, \cdots, \alpha_r, \beta_{r+1}, \cdots, \beta_s, \gamma_{r+1}, \gamma_t).$$

设有 $x_1, \dots, x_r, y_{r+1}, \dots, y_s, z_{r+1}, \dots, z_t \in P$ 使得

$$\sum_{i=1}^{r} x_i \alpha_i + \sum_{j=r+1}^{s} y_j \beta_j + \sum_{k=r+1}^{t} z_k \gamma_k = 0$$

因此

$$\sum_{j=r+1}^{s} y_j \beta_j = -\sum_{i=1}^{r} x_i \alpha_i - \sum_{k=r+1}^{t} z_k \gamma_k$$

由于等式左侧是 V_1 中的元素,右侧是 $V_1 \cap V_2$ 的元素减去 V_2 中的元素,所以我们断定, $\sum_{i=r+1}^s y_i \beta_j$ 一定属于 $V_1 \cap V_2$. 又因为 $V_1 \cap V_2$ 的基为 $\alpha_1, \dots, \alpha_r$,于是一定有

$$\sum_{i=r+1}^{s} y_j \beta_j = \sum_{i=1}^{r} x_i' \alpha_i.$$

由于 $\alpha_1, \dots, \alpha_r, \beta_{r+1}, \dots, \beta_s$ 线性无关, 直到

$$y_{r+1} = \dots = y_s = -x_1' = \dots = -x_r' = 0.$$

于是

$$\sum_{i=1}^{r} x_i \alpha_i + \sum_{k=r+1}^{t} z_k \gamma_k = 0.$$

因此 $\alpha_1, \dots, \alpha_r, \beta_{r+1}, \dots, \beta_s, \gamma_{r+1}, \dots, \gamma_t$ 线性无关且为 $V_1 + V_2$ 的基. 于是

$$\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2).$$

推论 2.2. 如果 $\dim V_1 + \dim V_2 > \dim V$, 那么 $V_1 \cup V_2 \neq \{0\}$.

3 商空间 4

2.3. 直和.

定理 2.3 (直和的等价定义). 设 V_1, V_2 都是 V 的子空间,则下列条件等价:

- 1. $V_1 \cap V_2 = \{0\};$
- 2. $\dim(V_1 + V_2) = \dim V_1 + \dim V_2$;
- 3. $\forall \alpha \in V_1 + V_2, \alpha_1 \in V_1, \alpha_2 \in V_2, \alpha$ 的分解式唯一.
- 4. $\beta \in V_1, \gamma \in V_2, \alpha$ 若 $\beta + \gamma = 0$, 那么 $\beta = \gamma = 0$.

若 V_1, V_2 满足上述五条的任何一条, 则称 $V_1 + V_2$ 是 $V_1 + V_2$ 的直和, 通常记作 $V_1 \oplus V_2$.

Proof. (1) \iff (2) 根据上述定理可知.

 $(1) \implies (3)$ 设 $\alpha = \beta + \gamma = \beta_1 + \gamma_1, \beta, \beta_1 \in V_1, \gamma, \gamma_1 \in V_2$. 两边相减就有

$$\beta - \beta_1 = \gamma - \gamma_1 \in V_1 \cap V_2 = \{0\}.$$

由此说明 $\beta = \beta_1, \gamma = \gamma_1$, 分解唯一.

- (3) \Longrightarrow (4) $0 = \beta + \gamma, \beta \in V_1, \gamma \in V_2$, 又因为 $0 = 0 + 0, 0 \in V_1, 0 \in V_2$. 由于分解的唯一性知 $\beta = \gamma = 0$.
- (4) \implies (1) 设 $\beta = V_1 \cap V_2$, 因此 $-\beta \in V_1 \cup V_2$, 而 $0 = \beta + (-\beta)$, $\beta \in V_1$, $-\beta \in V_2$, 于是 $\beta = -\beta = 0$, 因此 $V_1 \cup V_2 = \{0\}$.

定义 2.1 (直和). 设 V_1, V_2, \ldots, V_s 都是线性空间 V 的子空间. 又 $W = V_1 + V_2 + \cdots + V_s$. 如果 $\alpha \in W$ 的分解

$$\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_s, \alpha_i \in V_i, 1 \le i \le s$$

是唯一的,则称 $W \in V_1, V_2, \ldots, V_s$ 的直和. 记为

$$W = V_1 \oplus V_2 \oplus \cdots \oplus V_s$$

定理 2.4. 设 V_1, V_2, \ldots, V_s 为线性空间 V 的子空间. 又 $W = V_1 + V_2 + \cdots + V_s$ 则下面四个条件等价.

- 1. 1) $W = V_1 + V_2 + \cdots + V_s$.
- 2. $\alpha_i \in V_i, 1 \le i \le s$, $\exists \sum_{i=1}^s \alpha_i = 0$. $\exists i \le s$.
- 3. $V_j \cap \sum_{i \neq j} V_j = (0), 1 \le i \le s$.
- 4. dim $W = \sum_{i=1}^{s} \dim V_i$.

§3 商空间

定义 3.1 (商空间). 设 V 是数域 P 上的线性空间. W 是 V 的子空间. 设 $\alpha, \beta \in V$, 且 $\alpha - \beta \in W$; 则称 α, β 模 W 同余, 记为

$$\alpha \equiv \beta \pmod{W}$$
.

$$\bar{\alpha} = \{\beta\}, \beta \equiv \alpha(\bmod W)\}$$

3 商空间 5

称为 α 模 W 的同余类. 类中的任一向量称为此类的代表.

例子 3.1 (多项式同余). 对于多项式的同余, 设 $V = P[x], g(x) \neq 0$. 令 $W = \langle g(x) \rangle = \{h(x) \in P[x] | g(x) | h(x) \}$ 模 V 的子空间. 自然 $\alpha, \beta \in V, \alpha \equiv \beta (\text{mod} g(x))$ 当且仅当 $\alpha \equiv \beta (\text{mod} W)$,且 $\{\beta \mid \beta \equiv \alpha (\text{mod} g(x))\} = \{\beta \mid \beta \equiv \alpha (\text{mod} W)\}$

例子 3.2 (空间坐标的同余). 在空间中取定标架 $\{O; \alpha, \beta, \gamma\}$. 于是 XOY 平面 π 可看

成
$$\mathbf{R}^{3\times 1}$$
 中子空间 $W = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \right\}$. 则

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \equiv \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} \pmod{W}$$

当且仅当 $c=c_1$. 因而 $\alpha=\begin{pmatrix}a\\b\\c\end{pmatrix}$ 的模 W 的同余类 $\bar{\alpha}$ 的图形是通过 $\begin{pmatrix}0\\0\\c\end{pmatrix}$ 平

行 π 的平面 π_1 .

我们构造这样的商空间,主要是用来进行更好地对研究对象进行分类.例如,我们可以把相同余数的多项式分为一类,亦可以将相同的高度的坐标分为一类.实际上,同余也是一个等价关系.

- 1. (自反性). $\alpha \equiv \alpha \pmod{W}$
- 2. (对称性). 若 $\alpha \equiv \beta \pmod{W}$, 则 $\beta \equiv \alpha \pmod{W}$.
- 3. (传递性). 若 $\alpha \equiv \beta(\text{mod}W), \beta \equiv \gamma(\text{mod}W), 则 \alpha \equiv \gamma(\text{mod}W).$ 实际上, 我们还会发现, 我们的两个同余类或者相等, 或者不相交.
- 4. $\alpha, \beta \in V.\bar{\alpha} = \bar{\beta}$ 当且仅当 $\bar{\alpha} \cap \bar{\beta} \neq \emptyset$ 当且仅当 $\alpha \equiv \beta \pmod{W}$. 我们接下来说明商空间也是线性空间.

定理 3.1. 设 W 是 V 的子空间. 又 $\alpha_1, \beta_1, \alpha_2, \beta_2 \in V, k \in P$. 且 $\alpha_i \equiv \beta_i (\text{mod} W), i = 1, 2$. 则

$$\alpha_1 + \alpha_2 \equiv \beta_1 + \beta_2 \pmod{W}.$$

 $k\alpha_1 \equiv k\beta_1 \pmod{W}.$

定理 3.2. 设 V 是数域 P 上的线性空间. W 是 V 的一个子空间. 以 V/W 表示 V 中元素模 W 的同余类的集合. 在: V/W 中定义加法和纯量乘法如下:

$$\bar{\alpha} + \bar{\beta} = \overline{\alpha + \beta}, \forall \bar{\alpha}, \bar{\beta} \in V/W, \\ k \cdot \bar{\alpha} = \overline{k\alpha}, \forall \bar{\alpha} \in V/W, k \in P.$$

则 V/W 构成数域 P 上的线性空间, 称为 V 对 W 的商空间.