David Nallapu (001530978)

## Program Structures & Algorithms Spring 2021

## Assignment No. 1

- Task: Deducing the relationship between distance(d) and steps taken(n) for the Random Walk algorithm in 2D space.
- Output



• Relationship Conclusion: From my analysis I believe distance(d) tends to  $\sqrt{n}$  as the number of experiments increases. It does seem to go above and below  $\sqrt{n}$  but mostly revolves around this value.

$$d \approx \sqrt{n}$$

• Evidence to support the conclusion: I have tabulated the value of distance from  $\operatorname{origin}(d)$ , total steps  $\operatorname{taken}(n)$ ,  $\sqrt{n}$  and number of experiments to see the trend to establish that  $d{\approx}\sqrt{n}$ 

|   | no of steps | d          | sqrt(n)    | no of experiments |
|---|-------------|------------|------------|-------------------|
| 0 | 10000       | 87.599381  | 100.000000 | 10                |
| 1 | 20000       | 130.640500 | 141.421356 | 10                |
| 2 | 30000       | 156.844697 | 173.205081 | 10                |
| 3 | 40000       | 197.418640 | 200.000000 | 10                |
| 4 | 50000       | 240.325248 | 223.606798 | 10                |
| 5 | 60000       | 169.398240 | 244.948974 | 10                |

|     | no of steps             | d                                     | sqrt(n)                                              | no of experiments |
|-----|-------------------------|---------------------------------------|------------------------------------------------------|-------------------|
| 0   | 10000                   | 83.175622                             | 100.000000                                           | 20                |
| 1   | 20000                   | 128.531647                            | 141.421356                                           | 20                |
| 2   | 30000                   | 141.909917                            | 173.205081                                           | 20                |
| 3   | 40000                   | 147.448028                            | 200.000000                                           | 20                |
| 4   | 50000                   | 219.317182                            | 223.606798                                           | 20                |
|     |                         |                                       |                                                      |                   |
|     | no of steps             | d                                     | sqrt(n)                                              | no of experiments |
| 0   | no of steps             | 87.346398                             | sqrt(n)<br>100.000000                                | no of experiments |
| 0   |                         |                                       | 100.000000                                           | •                 |
|     | 10000                   | 87.346398                             | 100.000000<br>141.421356                             | 50                |
| 1   | 10000                   | 87.346398<br>129.753245               | 100.000000<br>141.421356                             | 50<br>50          |
| 1 2 | 10000<br>20000<br>30000 | 87.346398<br>129.753245<br>162.818828 | 100.000000<br>141.421356<br>173.205081<br>200.000000 | 50<br>50<br>50    |

• Graphical representation: We can get a better idea from the graphs that the  $d \approx \sqrt{n}$ . This is clearer when the number of experiments increases







## · Unit tests result:

