File Systems

Evolution of File System Data Processing

Manual File Systems

Accomplished through a system of file folders and filing cabinets

Computerized File Systems

Data processing (DP) specialist: Created a computer-based system that would track data and produce required reports

File System Redux: Modern End-User Productivity Tools

Includes spreadsheet programs such as Microsoft Excel

Basic File Terminology

TABLE 1.2

BASIC FILE TERMINOLOGY

TERM	DEFINITION
Data	Raw facts, such as a telephone number, a birth date, a customer name, and a year-to-date (YTD) sales value. Data have little meaning unless they have been organized in some logical manner.
Field	A character or group of characters (alphabetic or numeric) that has a specific meaning. A field is used to define and store data.
Record	A logically connected set of one or more fields that describes a person, place, or thing. For exam-ple, the fields that constitute a record for a customer might consist of the customer's name, address, phone number, date of birth, credit limit, and unpaid balance.
File	A collection of related records. For example, a file might contain data about the students currently enrolled at Gigantic University.

A Simple File System

Problems with File Systems

Problems with File System Data Processing

Lengthy development times Difficulty of getting quick answers Complex system administration Lack of security and limited data sharing Extensive programming

Structural and Data Dependence

A file system may exhibit:

- Structural dependence: Access to a file is dependent on its own structure
 - All file system programs are modified to conform to a new file structure
- Structural independence: File structure is changed without affecting the application's ability to access the data

Structural and Data Dependence

- Data dependence
 - Data access changes when data storage characteristics change
- Data independence
 - Data storage characteristics is changed without affecting the program's ability to access the data
- Practical significance of data dependence is difference between logical and physical format

Data Redundancy

- Unnecessarily storing same data at different places
- Islands of information: Scattered data locations
 - Increases the probability of having different versions of the same data

Data Redundancy Implications

- Poor data security
- Data inconsistency
- Increased likelihood of data-entry errors when complex entries are made in different files
- Data anomaly: Develops when not all of the required changes in the redundant data are made successfully

Types of Data Anomaly

Update Anomalies Insertion Anomalies Deletion Anomalies

Database Systems

Database Systems

- Logically related data stored in a single logical data repository
 - Physically distributed among multiple storage facilities
- DBMS eliminates most of file system's problems
- Current generation DBMS software:
 - Stores data structures, relationships between structures, and access paths
 - Defines, stores, and manages all access paths and components

Contrasting Database and File Systems

The Database System Environment

DBMS Functions

Data dictionary management

• Data dictionary: Stores definitions of the data elements and their relationships

Data storage management

• **Performance tuning**: Ensures efficient performance of the database in terms of storage and access speed

Data transformation and presentation

• Transforms entered data to conform to required data structures

Security management

• Enforces user security and data privacy

DBMS Functions

Multiuser access control

• Sophisticated algorithms ensure that multiple users can access the database concurrently without compromising its integrity

Backup and recovery management

• Enables recovery of the database after a failure

Data integrity management

• Minimizes redundancy and maximizes consistency

DBMS Functions

Database access languages and application programming interfaces

- Query language: Lets the user specify what must be done without having to specify how
- Structured Query Language (SQL): De facto query language and data access standard supported by the majority of DBMS vendors

Database communication interfaces

• Accept end-user requests via multiple, different network environments

Disadvantages of Database Systems

Increased costs Management complexity Maintaining currency Vendor dependence Frequent upgrade/replacement cycles

Database Career Opportunities

JOB TITLE	DESCRIPTION	SAMPLE SKILLS REQUIRED	
Database Developer	Create and maintain database-based applications	Programming, database fundamentals, SQL	
Database Designer	Design and maintain databases	Systems design, database design, SQL	
Database Administrator	Manage and maintain DBMS and databases	Database fundamentals, SQL, vendor courses	
Database Analyst	Develop databases for decision support reporting	SQL, query optimization, data warehouses	
Database Architect	Design and implementation of database environments (conceptual, logical, and physical)	DBMS fundamentals, data modeling, SQL, hardware knowledge, etc.	
Database Consultant	Help companies leverage database technologies to improve business processes and achieve specific goals	Database fundamentals, data modeling, database design, SQL, DBMS, hardware, vendor-specific technologies, etc.	
Database Security Officer	Implement security policies for data administration	DBMS fundamentals, database administration, SQL, data security technologies, etc.	
Cloud Computing Data Architect	Design and implement the infrastructure for next-generation cloud database systems	Internet technologies, cloud storage technologies, data security, performance tuning, large databases, etc.	

What Databases Look Like

CAT_ID	DESC
1	INSECT
2	BIRD
3	FISH
4	MAMMAL

ID	NAME	CAT_ID	LIFE_EXP
1	Cat	4	20
2	Elephant	4	70
3	Trout	3	5
4	Shark	3	25
5	Canary	2	20
6	Albatross	2	40
7	Swift	2	5

Entity-Relationship Diagram

Table Data

Group Exercise

• In groups of 4 or 5, discuss and sketch a database that stores salient information about countries of the world

Group Exercise

- (Optional!)
 - Take a picture of your group's sketch and share it on the course's Facebook page