Ортогональное дополнение \mathcal{E}'^\perp подпространства $\mathcal{E}'\subset\mathcal{E}$ - это подпространство, содержащее все векторы из \mathcal{E} такие, которые ортогональны каждому вектору из \mathcal{E}' .

То, что \mathcal{E}'^{\perp} является линейным подпространством \mathcal{E} , следует из линейности скалярного произведения. Для любых $x,y\in\mathcal{E}'^{\perp}$ и $z\in\mathcal{E}'$ по определению выполняется:

$$(x,z) = (y,z) = 0$$

Тогда выполняется и для любого вектора $\alpha x + \beta y$:

$$(lpha x + eta y, z) = lpha(x,z) + eta(y,z) = 0$$

Для ортогонального дополнения выполняется уравнение:

$$\dim \mathcal{E}'^{\perp} + \dim \mathcal{E}' = \dim \mathcal{E}$$

Пусть $\dim \mathcal{E}' = k \leq n = \dim \mathcal{E}$. Возьмем в \mathcal{E} базис (e_1, e_2, \ldots, e_n) такой, что в \mathcal{E}' система $e = (e_1, e_2, \ldots, e_k)$ была базисом. Возьмем случайный вектор $x \in \mathcal{E}$ и разложим его по базисным векторам:

$$x = x_1e_1 + x_2e_2 + \ldots + x_ne_n$$

Чтобы вектор x так же принадлежал подпространству \mathcal{E}'^{\perp} , он должен быть перпендикулярен любому вектору из подпространства \mathcal{E}' . Но достаточное условие - перпендикулярность всем базисным векторам: если он перпендикулярен им, то он будет перпендикулярен и любой их линейной комбинации.

$$egin{cases} (x,e_1)=0\ (x,e_2)=0\ \ldots\ (x,e_k)=0 \end{cases}$$

Подставляя разложение x по базисным векторам, как мы делали с матрицей Грама, получаем систему уравнений:

$$egin{cases} g_{11}x_1+g_{12}x_2+\ldots+g_{1n}x_n=0\ g_{21}x_1+g_{22}x_2+\ldots+g_{2n}x_n=0\ \ldots\ g_{k1}x_1+g_{k2}x_2+\ldots+g_{kn}x_n=0 \end{cases}$$

Так как матрица коэффициентов A этой системы уравнений состоит из первых k строк матрицы Грама для базисных векторов (e_1,e_2,\ldots,e_n) , то мы можем утвержать, что все строки этой системы линейно независимы (будь это не так, эти же строки были линейно зависимы в системе Грама, что противоречит невырожденности матрицы Грама). Т.к. k < n, ранг матрицы коэффициентов $\operatorname{Rg} A = k$. Получается, что размерность пространства решений этой системы будет равна n-k:

$$\dim \mathcal{E}'^{\perp} = n - k = \dim \mathcal{E} - \dim \mathcal{E}'$$

Для ортогонального дополнения так же выполняется $(\mathcal{E}'^\perp)^\perp=\mathcal{E}'$. Понятно, что как минимум \mathcal{E}' является подпространством $(\mathcal{E}'^\perp)^\perp$: если $x\in\mathcal{E}'$, то для $y\in\mathcal{E}'^\perp$ выполняется (x,y)=0. Но тогда $x\in(\mathcal{E}'^\perp)^\perp$.

Параллельно с этим выполняется

$$\dim(\mathcal{E}'^{\perp})^{\perp} = n - \dim \mathcal{E}'^{\perp} = n - (n-k) = k = \dim \mathcal{E}'$$

Из-за того, что совпадают размерности подпространства и пространства, мы заключаем, что совпадают и они сами: $(\mathcal{E}'^{\perp})^{\perp} = \mathcal{E}'$.

Проекция и составляющая

Любой вектор $x \in \mathcal{E}$ возможно разбить в сумму двух векторов:

$$x = x_1 + x_2$$

где
$$x_1 \in \mathcal{E}'$$
, а $x_2 \in \mathcal{E}'^{\perp}$.

 x_1 в таком случае называется *ортогональной проекцией*, и обозначается как $\operatorname{pr}_{\mathcal{E}'} x$, а x_2 - *ортогональной составляющей* вектора относительно \mathcal{E}' , и обозначается как $\operatorname{ort}_{\mathcal{E}'} x$.

Так же отметим, что раз x_2 является ортогональной составляющей вектора

относительно \mathcal{E}' , то если их поменять местами, x_1 станет ортогональной составляющей, но относительно уже \mathcal{E}'^\perp .

Расстояние между векторами

Расстоянием между двумя векторами называют длину разности векторов:

$$d(x,y) = |x-y| \ge 0$$

Расстояние симметрично, и для него выполняется неравенство треугольника - все наследуется от скалярного произведения.

На основе этого вводят понятие расстояние от вектора x до подмножества X: наименьшее расстояние от x до всех векторов этого подмножества.

$$d(x,X) = \inf_{y \in X} d(x,y)$$

Для любого вектора $x\in\mathcal{E}$, ближайшим вектором в \mathcal{E}' является его ортогональная проекция $x_1=\operatorname{pr}_{\mathcal{E}'}x$, и эта длина равна длине ортогональной составляющей $x_2=\operatorname{ort}_{\mathcal{E}'}x$.

Доказательство: берем произвольный вектор $y \in \mathcal{E}'$:

$$|x-y|^2 = |(x_1+x_2)-y|^2 = |x_2+(x_1-y)|^2 =$$

В силу того, что x_1 и x_2 ортогональны, а x_1 и y лежат в одном подпространстве, поэтому ортогональны x_2 и x_1-y , воспользуемся теоремой Пифагора:

$$=|x_2|^2+|x_1-y|^2$$

Отсюда видно, что минимума расстояние достигает при $y=x_1=\mathrm{pr}_{\mathcal{E}'}\,x$, и тогда оно равно $d(x,\mathcal{E}')=x_2=\mathrm{ort}_{\mathcal{E}'}\,x$.