

European Project n° 613817

2nd Annual Meeting

Yield forecast at EU level

Valentina Pagani, Tommaso Guarneri, Roberto Confalonieri (Cassandra lab, University of Milan) Tommy Klein, Pierluigi Calanca (WBF-Agroscope)

November 3-4, 2015

WP 5 Objectives

- Quantifying the reliability of crop yield forecasts produced using
 - Modelling solutions currently implemented in CGMS
 - Improved (for extreme events) solutions based on
 - process based models
 - (agro-)climatic indicators
- Define country- and crop-specific workflows for yield forecast

Introduction

- There's an **increasing demand** for crop yield forecasting system in both developed and developing countries
- ➤ Early warnings in case of poor crop harvests allow indeed governments and other stakeholders to
 - assure food imports
 - regulate agricultural markets

Introduction

- In the last years, a variety of forecasting systems were proposed, based on:
 - Field surveys
 - Crop models
 - Remote sensing
 - Integrated approaches
- However, in specific contexts where **yield fluctuations** are driven by **few main factors**, systems based on **agro-climatic indicators** proved their reliability (e.g. Balaghi et al., 2012)

Introduction

- Objectives of Task 5.2:
 - Evaluate the potential of forecasting systems based on temperature and drought indicators for winter and summer crops and for grasslands in Europe
 - Identify combinations crop × country where systems based on agro-climatic indicators present sufficient reliability

- > Agro-climatic indicators (WP1):
 - Heat
 - Tmaxcr (# days with Tmax > threshold)
 - Frost
 - Tmincr (# days with Tmin < threshold)
 - Drought
 - ARIDmean (mean Agricultural Reference Index [ARID; Woli et al., 2012] for drought) $ARID = 1 \frac{T_a}{T_n}$
 - ARIDcr (# days with ARID higher than a threshold)
 - Fu (Fu drought index; Fu, 1981) $FU = -\frac{\sum P}{\sum ET_0} + \left[1 + \left(\frac{\sum P}{\sum ET_0}\right)^w\right]^{(1/w)}$

- Crops (CGMS):
 - MaizePotatoesBarley
 - RiceSugar beetRyeGrassland
 - SunflowerWheatTriticale
- **Countries:**
 - Whole Europe
- Time series:
 - 1990-2013 (3 forecasting events per season)

Rapeseed

- ➤ Input data:
 - Weather data: E-OBS database (Haylock et al., 2008)
 - Official yield statistics: FAOSTAT database
 - Flowering-maturity: according to the MARS crop calendars
 - Crop masks: Monfreda et al. (2008)
 - cereals
 - other crops
 - grasslands

- Spatial level for analysis:
 - NUTSO
- Post processing (JRC-MARS operational chain):
 - Something is not explicitly considered by the system
 - This generates uncertainty and specific system behaviours under specific conditions (assumption)
 - The same behaviour will be reproduced under similar conditions

De-trending historical yield statistics

- De-trending historical yield statistics
 - Are there discontinuities in the series of official yields?
 (e.g. the dissolution of the Soviet Union let to the abandonment of irrigation systems in many areas)
 - No, but there's a trend
 - Technological (e.g. new varieties, machines)
 - Due to something the system should capture (e.g. climate change)
 - The analyst should understand case-by-case how the trend should be managed
 - If due to something that cannot be reproduced by the system, it should be eliminated

Multiple linear regression

2014 official yield = f(official[1990-2013], simulated[1990-2013, 2014])

- > Analysis performed in **two steps**:
 - Screening all the combinations crop × country × forecasting moment
 - Percentage of variance in yields explained by:
 - Trend
 - Regression model
 - Complete cross-validation where
 - Regression model was able to explain "in a reasonable way" the inter-annual variability in yields
 - Completely unsupervised

> Sample results for the regression models

Эe	neral	Whesi deratioกร ^{รรม}			h period	13th riod 10-dav period		11th 10-day period			
	Country	Maize			27th		24th n-day period te		20th en-day period		
	Foreca: Belgium	Stilling ca	paga	Yrend	⊘ Vode	D-CIULII	1a _{Mod}	el III Foldi	a wad	es Wrotas	
	higher	in cent	1990-201	jd Zou	1+48	rn Fu	0.18	0.9	0.05	0.77	
	Croatia	Belgium	2000-201	3000	0.74	0.74	0.76	0.76	0.7	0.7	
	Denmark	Bulgaria	1990-201		0.49	0.49	0.58	0.58	0.49	0.49	
	Except.	IONS WE		368481	1 ean	n Ger	mar			tatoes	
	Estonia	Czech R.	1993-201		0.22	0.71	0.23	0.72	0.21	0.7	
	Finland 110	France	1990-201		0.37	0.88	0.38	0.89	0.16	0.67	
	France	Greece	1990-201		0.17	0.67	0.15	0.65	0.13	0.63	
	Proficat Germany	ors sele	cted	ˈb̪ˈvth	e 51	ep-wi		oroçe	dufê	wege	
	mostly	Hall atod	1999-20	13, 0,38	941	1 081r	444	on\$.82	0.44	0.82	
	Ireland	Netherlands	1992-201	3 0.54	n/di	0.61	0.06	0.6	0.08	0.62	
	Italy Of	Poland	1990-201		0.32	0.8	0.34	0.82	0.39	0.87	
	Latvia OTT	Statulari e a			cou	ntimes		0.84	0.05	0.83	
	Lithuania	Romania	1990-201	3 0	0.53	0.53	0.67	0.67	0.45	0.45	
	Netherlands	Slovenia Slovenia	er\$99a791	d mil	d/fa	inv [®] .	inte	rs ^{0.58}	0.6	0.6	
	Poland	Slovenia	1992-201	3 0.46	0.38	0.84	0.38	0.84	0.2	0.66	
	Portugal	Spain	1990-201	3 0.88	0.02	0.9	0.03	0.91	0.01	0.89	
	Romania	1990-2013	0	0.34	0.34	0.27	0.27	0.09	0.09		
	Slovakia	1993-2013	0	0.56	0.56	0.44	0.44	0.05	0.05		
	Slovenia	1992-2013	0.24	0.57	0.81	0.24	0.48	0.12	0.36		
	Spain	1990-2013	0.31	0.58	0.89	0.5	0.81	0.37	0.68	CANDOLLA MILL	1
A	Sweden	1990-2013	0	0.18	0.18	0.21	0.21	0.29	0.29	Sha A	É P

0.43

0.05

0.43

0.01

0.39

0.05

ModExtreme 2nd Annual Meeting

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - In general:
 - Good results achieved for each of the 11 crops in one or two countries
 - Exception was rice, for which no satisfactory results were achieved
 - Flooded
 - Macrothermal crop originated in the tropics
 - No conditions characterized by heat and drought (differently from other crops)

Results for the step 2 (complete cross validation on combinations crop × country screened)

```
ARIDER (# days with ARID Mean, ARID FE Inc. 1) 9We 16 the 1 0.67 indicators selected more frequently 3.42 regressions 0.84 regressions 0.85
```

- No relevant impact of low temperatures: of 1000 temperatures: of 1
- In most cases 2 or 3 in dicators were selected: the of our the one usually did not lially increase the fore cases to be a solution one usually did not lially increase the fore cases to be a solution of the original of the

(low	rPstktoof	Poland ARIDmean, ARIDcr, Tmaxcr		9.82	0.52	-0.01	0.53
(1011		Poland	ARIDmean, ARIDcr, Tmaxcr	8.04	0.66	0.00	0.68
	Sugar beet	Italy	ARID _{cr} , T _{mincr}	7.02	0.69	0.00	0.69
		Croatia	ARID _{cr} , Fu	10.78	0.73	0.00	0.74
	Mown Grasslands	Germany	ARID _{mean} , ARID _{cr} , T _{mincr}	4.49	0.47	0.00	0.59

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - Best results achieved for wheat, barley and rye in Spain (82%, 85% and 76% of yields variability explained)
 - Good results also for sunflower in Bulgaria and sugar beet in Croatia (81% and 74%), the latter mainly because of technological innovations
 - Poor results for triticale in Romania, mainly because of the short historical series (regression model not robust)

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - Examples for:
 - Wheat

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - Examples for:
 - Barley

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - Examples for:
 - Maize

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - Examples for:
 - Sunflower

- Results for the step 2 (complete cross validation on combinations crop × country screened)
 - Examples for:
 - Sugar beet

Conclusions

- Good results in countries where production is mainly driven by the occurrence of extreme conditions, especially drought and heat
- ➢ It will be interesting to test hybrid approaches (dynamic models + agro-climatic indicators)
- > Ideas for the future:
 - Perform the test at NUTS2 (or NUTS3...) level
 (Extreme events can be local)
 - Crop masks changing during the time series (?)

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

