${f Exercício~1}$ Nos itens a seguir, preencha os fluxos de aresta em branco para que o resultado seja um fluxo na rede dada. Determine o valor dos fluxos.

Exercício 2 O grafo a seguir representa uma rede de bombeamento na qual petróleo para três refinarias, A, B, C, é entregue a partir de três poços, w_1 , w_2 e w_3 . As capacidades dos sistemas intermediários estão mostrados nas arestas. Os vértices b, c, d, e e f representam estações de bombeamento intermediárias. Modele esse sistema como uma rede.

Exercício 3 Existem duas estradas da cidade A para a cidade D. Uma estrada passa pela cidade B e a outra estrada passa pela cidade C. Durante o período de 7h00 da manhã às 8h00 da manhã, os tempos médios de viagem são

A to B	30 minutes
A to C	15 minutes
B to D	15 minutes
C to D	15 minutes

As capacidades máximas das estradas são

A to B	1000 vehicles
A to C	3000 vehicles
B to D	4000 vehicles
C to D	2000 vehicles.

Represente o fluxo de tráfego de A a D durante o período das 7h00 às 8h00 como uma rede.

 ${\bf Exercício~5}$ Nos itens a seguir, use o Algoritmo de Ford-Fulkerson para encontrar o fluxo máximo para cada rede. (a) b ∞ ∞ w₂ d 3 В (b) 1 2 (c) 10 14 14 10 12 10 12 11 6 10 12 12

Exercício 6 No grafo do Exercício 5(a), encontre o fluxo máximo da rede com o fluxo inicial dado.				
$F_{a,w_1} = 2,$ $F_{Az} = 0,$ $F_{CB} = 4,$	$F_{w_1,b} = 2,$ $F_{a,w_2} = 0,$	$F_{bA} = 0,$ $F_{w_2,b} = 0,$	$F_{cA} = 0,$ $F_{bc} = 2,$	
$F_{cB} = 4,$ $F_{dc} = 2.$	$F_{Bz}=4$,	$F_{a,w_3}=2,$	$F_{w_3,d}=2,$	

Exercício mina.	7 Mostre que o algoritmo para fluxo máximo de Ford-Fulkerson sempre ter-

Exercício 9 Nos itens a seguir, encontre um corte minimal em cada rede. (a) Rede do Exercício 2 (b) (c) Rede construída no Exercício 3

Exercício 10 Este exercício se refere a uma rede que, além de ter capacidades inteiras não negativas C_{ij} , tem requisitos de fluxo mínimo nas arestas m_{ij} . Ou seja, um fluxo Fdeve satisfazer

$$m_{ij} \le F_{ij} \le C_{ij}$$

para todas as arestas (i, j).

Dê um exemplo de uma rede G na qual $m_{ij} \le C_{ij}$ para todas as arestas (i, j) tal que não existe nenhum fluxo.

Exercício 11 Mostre que o fluxo na rede a seguir é maximal exibindo um corte mínimo cuja capacidade é 3.

Exercício 13 O grafo abaixo representa quatro candidatos A, B, C e D e 5 trabalhos J_1 , J_2 , J_3 , J_4 e J_5 , onde uma aresta conecta um candidato a um trabalho para o qual ele é qualificado.

Os itens abaixo se referem ao grafo acima, com uma mudança: todas as arestas terão sua direção revertida, de forma que elas fiquem direcionadas dos trabalhos para os candidatos.

- (a) O que um matching representa?
- (b) O que um matching maximal representa?
- (c) Mostre um matching maximal.
- (d) O que um matching completo representa?
- (e) Existe um matching completo? Se sim, mostre um. Se não, explique por que não existe nenhum.

Exercício 14 O candidato A está qualificado para os trabalhos J_1 e J_4 ; B está qualificado para os trabalhos J_2 , J_3 e J_6 ; C está qualificado para os trabalhos J_1 , J_3 , J_5 e J_6 ; D está qualificado para os trabalhos J_1 , J_3 e J_4 ; E está qualificado para os trabalhos J_1 , J_3 e J_6 .	
(a) Modele essa situação como uma rede de matching.	
(b) Use o Algoritmo de Ford-Fulkerson para encontrar um matching maximal.	
(c) Existe um matching completo?	

Exercício 15 Cinco estudantes, V, W, X, Y e Z, são membros de quatro comitês, C ₁ , C ₂ , C ₃ e C ₄ . Os membros de C ₁ são V, X e Y; Os membros de C ₂ são X e Z; Os membros de C ₃ são V, Y e Z; Os membros de C ₄ são V, W, X e Z. Cada comitê deve mandar um representante para a administração. Nenhum estudante pode representar dois comitês.	
(a) Modele essa situação como uma rede de matching.	
(b) Qual é a interpretação de um matching maximal?	
(c) Qual é a interpretação de um matching completo?	
(d) Use o Algoritmo de Ford-Fulkerson para encontrar um matching maximal.	
(e) Existe um matching completo?	

Definição. Seja G um grafo direcionado bipartido com conjuntos de vértices disjuntos V e W nos quais as arestas são deirecionadas dos vértices de V para os vértices de W. (Todo vértice de G está em V ou em W.) Definimos a deficiência de G como

$$\delta(G) = max\{|S| - |R(S)| \mid S \subseteq V\}$$

onde R(S), para $S \subseteq V$, é definido como

$$R(S) = \{w \in W \mid v \in S, (v, w) \in E\}$$

Exercício 16 Mostre que G tem um matching completo se, e somente se, $\delta(G) = 0$

Teorema de Hall: Ocorre um matching completo se, e só se, |R(S)|>=|S| para todo S c= V. Logo, |R(S)|-|S|>=0. Como, para haver um matching completo, |R(S)-|S|<=0, então delta_G=0.

Exercício 17 Verdadeiro ou falso? Todo matching está contido em um matching maximal. Se for verdade, prove; Se não, dê um contraexemplo.

Falso. Se existirem dois matchings maximais, a afirmação é falsa. Tome o exemplo:

