Übung 2

Philip Magnus

October 27, 2024

Aufgabe 1

Ausdruck	Landau	Erklärung	
$n^4 + 12n^3 + 17n$	$O(n^4)$	n^4 Term wächst am stärksten und dominiert das Wachstum der Funktion	
$n^3 + 2n^2 \log_2 n$	$O(n^3)$	(1) hieraus ergibt sich, wenn $O(n) = c \cdot g(n)$ angewendet: $c = 3 g(n) = n^3$	
$n^2 + 2^n$	$O(2^n)$	$2^n \ge n^2 \ \forall \ n > 4$	
$\frac{13n^4 + 7n + 31}{n^4 + 1}$	O(1)	(2)	

(1)
$$n^3 + 2n^2 \log_2 n \le n^3 + 2n^2 * n = n^3 + 2n^3 = 3n^3$$

(2)
$$13n^4 + 7n + 31 \le 13n^4 + n^4 + 31 \ \forall \ n \ge 3$$

 $14n^4 + 31 \le 31n^4 + 31 = 31(n^4 + 1)$
 $\frac{31(n^4 + 1)}{n^4 + 1} = 31$

Aufgabe 2

Ausdruck	Landau	Erklärung		
$3n^2 + 7n + 1$	$O(n^2)$	$3n^2 + 7n + 1 \le 3n^2 + n^2 + 1 \ \forall \ n \ge 4$		
$(n-1)(n^3-n^2)$	$O(n^4)$	$(n-1)(n^3 - n^2) = n^4 - n^3 - n^3 + n^2$		
$n^2 + \log_2(\log_2(n))$	$O(n^2)$	$log_2(log_2(n))$ wächst sehr langsam, n^2 dominiert das Wachstum		

Aufgabe 3

Ist korrekt, da:

$$f(n) = O(n^3), \ g(n) = O(n^2)$$
$$c \cdot n^3 \cdot c \cdot n^2 = c^2 \cdot n^3 \cdot n^2 = c^2 \cdot n^5$$
$$\Rightarrow O(n^5)$$

Aufgabe 4

a)

Q	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_1	q_2*
q_2*	q_1	q_0

b)

Aufgabe 5

a)

