Statistinės duomenų analizės praktinės užduotys

3. Imčių generavimas.

```
library(knitr)
set.seed(42)
n <- 300
 (a) Sugeneruoti imtį X_1, \ldots, X_{300}, X_i \sim N(65, 11) (kintamasis norm1)
norm1 <- rnorm(n, mean=65, sd=11) # Dėstytojo sprendiniuose irgi imta 11, o ne srqt(11)
head(norm1)
## [1] 80.08054 58.78832 68.99441 71.96149 69.44695 63.83263
 (b) Su tuo pačiu generatoriumi sugeneruoti imtį Y_1, \ldots, Y_{300}, Y_i \sim N(65, 1) (kintamasis norm2). Palyginti
     empirines charakteristikas.
norm2 \leftarrow rnorm(n, mean=65, sd=1)
head(norm2)
## [1] 64.99538 65.76024 65.03899 65.73507 64.85353 64.94211
desc_df <- function(df) {</pre>
  # Calculates descriptive statistics, returns data frame
  std <- function(x) sd(x) / sqrt(length(x))</pre>
  do.call(data.frame,
          list(
                 mean = apply(df, 2, mean),
                 median = apply(df, 2, median),
                 std.deviation = apply(df, 2, sd),
                 variance = apply(df, 2, var),
                 min = apply(df, 2, min),
                 max = apply(df, 2, max),
                 s.e.mean = apply(df, 2, std),
                 n = apply(df, 2, length)
         )
}
kable(desc_df(data.frame(norm1=norm1, norm2=norm2)))
```

```
median
                              std.deviation
                                                 variance
           mean
                                                                min
                                                                           max
                                                                                   s.e.mean
norm1
        64.76043
                   64.73679
                                10.8598608
                                             117.9365771
                                                            32.07601
                                                                      94.72080
                                                                                 0.6269944
                                                                                             300
        64.97249
norm2
                   64.93875
                                 0.9885735
                                               0.9772775
                                                            62.53866
                                                                      68.22907
                                                                                 0.0570753
                                                                                             300
```

```
oldpar <- par(mfrow=c(1, 2))
hist(norm1)
hist(norm2)</pre>
```

Histogram of norm1

Histogram of norm2

par(oldpar)

eksp \leftarrow rexp(n, rate=1 / 65)

(c) Sugeneruoti dar šešias tūrio n=300 imtis (kintamieji eksp, tolyg, ber, bin, puas, geom) iš atitinkamai eksponentinio E(65), tolygaus U(54,76), Bernulio Bern(0.4), binominio Bin(10,0.4) bei Puasono P(65) skirstinių

```
head(eksp)
## [1] 84.54347 53.27114 43.98404 22.66498 46.21404 21.74191
tolyg <- runif(n, min=54, max=76)
head(tolyg)</pre>
```

[1] 73.73343 56.33967 72.45799 72.59813 54.59216 70.83766
ber <- rbinom(n, size=1, prob=0.4)
binominio a.d atvejis, kai size parametras lygus 1.

```
# binominio a.d atvejis, kai size parametras lygus 1.
head(ber)
## [1] 1 1 0 0 0 0
```

```
bin <- rbinom(n, size=10, prob=0.4)
#    size: number of trials (zero or more).
#    prob: probability of success on each trial.
head(bin)</pre>
```

```
## [1] 3 3 5 7 3 3
puas <- rpois(n, lambda=65)
# lambda: vector of (non-negative) means.
head(puas)</pre>
```

[1] 50 66 70 55 45 69

```
geom <- rgeom(n, prob=0.4) # Destytojas praleido šitą salygoje. L. p. parametrą.
# prob: probability of success in each trial. '0 < prob <= 1'.
head(geom)</pre>
```

[1] 1 7 0 4 1 1

(d) Visų skirstinių atveju palyginkite teorinius ir empirinius vidurkius bei dispersijas

```
df_dist <- data.frame(</pre>
                         norm1=norm1,
                         norm2=norm2,
                         eksp=eksp,
                         tolyg=tolyg,
                         ber=ber,
                         bin=bin,
                         puas=puas,
                         geom=geom
comparisons <- do.call(data.frame, list(</pre>
                    empiric.mean = apply(df_dist, 2, mean),
                    empiric.var = apply(df_dist, 2, var),
                    theor.mean = c(65, 65, 65, (54+76)/2, 0.4, 0.4 * 10, 65, 1/0.4),
                    theor.var = c(
                                   121,
                                   1,
                                   65^2,
                                   1/12 * (76-54)^2,
                                   0.4 * (1-0.4),
                                   10 * 0.4 * (1-0.4),
                                   65,
                                   (1-0.4)/0.4^2
                 ))
kable(comparisons)
```

	empiric.mean	empiric.var	theor.mean	theor.var
norm1	64.7604308	117.9365771	65.0	121.00000
norm2	64.9724898	0.9772775	65.0	1.00000
eksp	67.3080902	4576.0021214	65.0	4225.00000
tolyg	65.4629650	44.2780883	65.0	40.33333
ber	0.4166667	0.2438685	0.4	0.24000
bin	4.1633333	2.3444705	4.0	2.40000
puas	64.0366667	59.1391193	65.0	65.00000
geom	1.5266667	3.5076477	2.5	3.75000

Padaryta su R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu.