Teilbarkeitslehre

27. November 2018

Teilbarkeit

R kommutativer Ring

Definition

 $a,b\in R$

$$a \mid b :\Leftrightarrow a \text{ teilt } b$$

 $:\Leftrightarrow\quad \text{es gibt }q\in R:\quad b=qa$

- $ightharpoonup R = \mathbb{Z}$:
 - **▶** 3 | 6
 - 4 ∤ 6
- ightharpoonup R = Rationals[X]:
 - $X 1 \mid X^2 1$
 - $\rightarrow X \qquad \nmid X^2 1$

Teilbarkeit (Forts.)

R kommutativer Ring

Proposition

| ist Präordnung auf R

Proposition

▶ für $a, b, c \in R$: $a \mid b \text{ und } a \mid c \Rightarrow a \mid b + c$

 $\Rightarrow a \mid cb$

- ▶ für $a \in R$: $a \mid 0$
- ▶ für $a, b, c \in R$: $a \mid b$

Assoziiertheit

R kommutativer Ring

Definition

 $a, b \in R$

a assoziiert zu $b :\Leftrightarrow$ es existiert $u \in R^{\times}$ mit b = ua

- ► $R = \mathbb{Z}$: 3 assoziiert zu -3
- $ightharpoonup R=\mathbb{Q}[X]$: X-1 assoziiert zu 2X-2

Assoziiertheit (Forts.)

Proposition

Sei R Integritätsbereich, $a, b \in R$.

Dann sind äquivalent:

- ► a assoziiert zu b
- $ightharpoonup a \mid b \text{ und } b \mid a$

- ▶ im Fall $R = \mathbb{Z}$: |a| = |b|
- ▶ im Fall R = K[X]: a = b = 0 oder L.k. $(a)^{-1}a = L.k.(b)^{-1}b$

Ideale

R kommutativer Ring

Definition

 $I \subseteq R$ heißt *Ideal* von R, falls gilt:

- ▶ $a + b \in I$ für alle $a, b \in I$
- ▶ $ra \in I$ für alle $r \in R$, $a \in I$

- ▶ Für $a \in R$ ist $(a) := aR := \{ar \mid r \in R\}$ ein Ideal. Ideale dieser Form heißen Hauptideale
- ► Für $a, b \in R$ ist $(a, b) := \{\lambda a + \mu b \mid \lambda, \mu \in R\}$ ein Ideal, das kleinste Ideal von R, das a und b enthält.

Ideale (Forts.)

Beispiele

- $R = \mathbb{Z} : 3\mathbb{Z} = \{3z \mid z \in \mathbb{Z}\}$
- ► $R = \mathbb{Z}$: (2,3) = \mathbb{Z}
- ► $R = \mathbb{Z}$: (6,9) = (3)
- ► R = K[X]: $XK[X] = \{f \in K[X] \mid X \text{ teilt } f\}$

Bemerkung

Sei R kommutativer Ring und $a, b \in R$

- ▶ $a \mid b \Leftrightarrow (b) \subseteq (a)$.
- ▶ Ist R Integritätsbereich, dann gilt: a assoziiert zu $b \Leftrightarrow (a) = (b)$.

Division mit Rest

Division mit Rest

▶ $a \in \mathbb{Z}$, $b \in \mathbb{Z} \setminus \{0\}$

Dann existieren eindeutige $q, r \in \mathbb{Z}$, $0 \le r < |b|$ mit

$$a = qb + r$$

▶ K Körper, $f \in K[X]$, $g \in K[X] \setminus \{0\}$

Dann existieren eindeutige $q, r \in K[X]$, deg $r < \deg g$ mit

$$f = qg + r$$

Division mit Rest (Forts.)

$$f = 2X^3 - 9X^2 + 4X, g = X^2 - 3X - 4 \in \mathbb{Q}[X].$$

Teilbarkeit und Nullstellen von Polynomen

Definition

K Körper, $f \in K[X]$

- ▶ Nullstelle von f: $a \in K$ mit f(a) = 0
- ▶ Linearfaktor von f: $d \in K[X]$ linear mit $d \mid f$

Proposition

K Körper, $f \in K[X]$, $a \in K$

a ist Nullstelle von $f \Leftrightarrow X - a$ ist Linearfaktor von f

Vielfachheiten von Nullstellen

Definition

K Körper, $f \in K[X] \setminus \{0\}$

$$m_a(f) = \max\{k \in \mathbb{N}_0 \mid (X - a)^k \text{ teilt } f\}$$

heißt Vielfachheit von a als Nullstelle von f.

Beispiel

$$\mathrm{m}_a(2X^2-2) = \left\{ \begin{array}{cc} & \text{für } a \in \{ \\ & \text{für } a \in \mathbb{Q} \setminus \{ \\ \end{array} \right. \right\}$$

Bemerkung

$$K$$
 Körper, $f \in K[X] \setminus \{0\}$, $a \in K$

a Nullstelle von $f \Leftrightarrow \mathrm{m}_a(f) \geq 1$

Vielfachheiten von Nullstellen (Forts.)

Sei K ein Körper, $0 \neq f \in K[X]$ und a_1, \ldots, a_l paarweise verschiedene Nullstellen von f der Vielfachheiten m_1, \ldots, m_l .

Satz

Es existiert $0 \neq g \in K[X]$ mit $g(a_i) \neq 0$ für alle $1 \leq i \leq I$ und

$$f = (X - a_1)^{m_1}(X - a_2)^{m_2} \cdots (X - a_l)^{m_l} g.$$

Folgerung

$$\sum_{i=1}^{l} m_i \leq \deg f$$
.

Die Anzahl der Nullstellen von f, mit Vielfachheiten gezählt, ist kleiner oder gleich deg f.

Vielfachheiten von Nullstellen (Forts.)

Sei K ein Körper, $0 \neq f \in K[X]$.

Folgerung

Äquivalent sind:

- ► Es existieren paarweise verschiedene Nullstellen a_1, \ldots, a_l von f mit Vielfachheiten m_1, \ldots, m_l , so dass gilt: $\sum_{i=1}^{l} m_i = \deg f$,
- ► Es existieren paarweise verschiedene $a_1, \ldots, a_l \in K$, $c \in K$ und $m_1, \ldots, m_l \in \mathbb{N}$ mit

$$f = c(X - a_1)^{m_1}(X - a_2)^{m_2} \cdots (X - a_l)^{m_l}.$$

Vielfachheiten von Nullstellen (Forts.)

Sei K ein Körper, $0 \neq f \in K[X]$.

Definition

Wir sagen: f zerfällt (vollständig) in Linearfaktoren, wenn eine der beiden obigen Bedingungen erfüllt ist.

- ▶ $X^2 1 \in K[X]$ zerfällt in Linearfaktoren
- $lacktriangledown X^2 + 1 \in \mathbb{Q}[X]$ zerfällt nicht in Linearfaktoren

Der Fundamentalsatz der Algebra

Definition

Ein Körper K heißt algebraisch abgeschlossen, wenn jedes $0 \neq f \in K[X]$ in Linearfaktoren zerfällt.

Fundamentalsatz der Algebra

 ${\mathbb C}$ ist algebraisch abgeschlossen.

Beispiel

$$X^4 - 1 = (x^2 - 1)(X^2 + 1)$$

= $(X - 1)(X + 1)(X - i)(X + i)$

für $i \in \mathbb{C}$ mit $i^2 = -1$.