Getting Started

This project is to study the Titanic survival data, and then to make predictions about passenger survival.

```
In [1]: # Import libraries necessary for this project
import numpy as np
import pandas as pd
from IPython.display import display # Allows the use of display() for DataFram
es

# Pretty display for notebooks
%matplotlib inline

# Set a random seed
import random
random.seed(42)

# Load the dataset
in_file = 'titanic_data.csv'
full_data = pd.read_csv(in_file)

# Print the first few entries of the RMS Titanic data
display(full_data.head())
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.25(
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.28
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.92
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.10
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.050

Recall that these are the various features present for each passenger on the ship:

- **Survived**: Outcome of survival (0 = No; 1 = Yes)
- **Pclass**: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)
- Name: Name of passenger
- Sex: Sex of the passenger
- Age: Age of the passenger (Some entries contain NaN)
- SibSp: Number of siblings and spouses of the passenger aboard
- Parch: Number of parents and children of the passenger aboard
- Ticket: Ticket number of the passenger
- Fare: Fare paid by the passenger
- Cabin Cabin number of the passenger (Some entries contain NaN)
- **Embarked**: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)

Since we're interested in the outcome of survival for each passenger or crew member, we can remove the **Survived** feature from this dataset and store it as its own separate variable outcomes. We will use these outcomes as our prediction targets.

Run the code cell below to remove **Survived** as a feature of the dataset and store it in outcomes.

```
In [2]: # Store the 'Survived' feature in a new variable and remove it from the datase
t
    outcomes = full_data['Survived']
    features_raw = full_data.drop('Survived', axis = 1)

# Show the new dataset with 'Survived' removed
display(features_raw.head())
```

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN

The very same sample of the RMS Titanic data now shows the **Survived** feature removed from the DataFrame. Note that data (the passenger data) and outcomes (the outcomes of survival) are now *paired*. That means for any passenger data.loc[i], they have the survival outcome outcomes[i].

Preprocessing the data

Now, let's do some data preprocessing. First, we'll one-hot encode the features.

```
In [3]: features = pd.get_dummies(features_raw)
```

And now we'll fill in any blanks with zeroes.

```
In [4]: features = features.fillna(0.0)
    display(features.head())
```

	Passengerld	Pclass	Age	SibSp	Parch	Fare	Name_Abbing, Mr. Anthony	Name_Abbott, Mr. Rossmore Edward	Nam Mr: (R
0	1	3	22.0	1	0	7.2500	0	0	0
1	2	1	38.0	1	0	71.2833	0	0	0
2	3	3	26.0	0	0	7.9250	0	0	0
3	4	1	35.0	1	0	53.1000	0	0	0
4	5	3	35.0	0	0	8.0500	0	0	0

5 rows × 1730 columns

(TODO) Training the model

Now we're ready to train a model in sklearn. First, let's split the data into training and testing sets. Then we'll train the model on the training set.

Testing the model

Now, let's see how our model does, let's calculate the accuracy over both the training and the testing set.

```
In [8]: # Making predictions
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)

# Calculate the accuracy
    from sklearn.metrics import accuracy_score
    train_accuracy = accuracy_score(y_train, y_train_pred)
    test_accuracy = accuracy_score(y_test, y_test_pred)
    print('The training accuracy is', train_accuracy)
    print('The test accuracy is', test_accuracy)
```

The training accuracy is 1.0
The test accuracy is 0.804469273743

Exercise: Improving the model

Ok, high training accuracy and a lower testing accuracy. We may be overfitting a bit.

So now it's your turn to shine! Train a new model, and try to specify some parameters in order to improve the testing accuracy, such as:

- max depth
- min_samples_leaf
- min_samples_split

You can use your intuition, trial and error, or even better, feel free to use Grid Search!

```
In [26]: # TODO: Train the model
    model = DecisionTreeClassifier(max_depth = 6, min_samples_leaf = 5, min_sample
    s_split = 10)
    model.fit(X_train, y_train)
# TODO: Make predictions
    y_train_pred = model.predict(X_train)
    y_test_pred = model.predict(X_test)
# TODO: Calculate the accuracy
    train_accuracy = accuracy_score(y_train, y_train_pred)
    test_accuracy = accuracy_score(y_test, y_test_pred)
    print('The training accuracy is', train_accuracy)
    print('The test accuracy is', test_accuracy)
```

The training accuracy is 0.873595505618 The test accuracy is 0.854748603352