FCC PART 15 SUBPART C TEST REPORT

for

Wireless Digital Video Baby Monitor

Model No.: QBB-22

FCC ID: V94-QBB-22-A

of

Applicant: ABEL INDUSTRIES INT'L Co., Ltd.
Address: 318, SEC. 3, CHANG NAN RD, CHANGHUA,
TAIWAN, R.O.C.

Tested and Prepared

by

Worldwide Testing Services (Taiwan) Co., Ltd.

FCC Registration No.: 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

A2LA Accredited No.: 2732.01

Report No.: W6M21205-12430-C-1-T

6F, NO. 58, LANE 188, RUEY-KUANG RD., NEIHU TAIPEI 114, TAIWAN, R.O.C. TEL: 886-2-66068877 FAX: 886-2-66068879 E-mail: wts@wts-lab.com

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

TABLE OF CONTENTS

1	GENERAL INFORMATION	2
1.1	Notes	2
1.2	Testing laboratory	3
	1.2.1 Location	
	1.2.2 Details of accreditation status	3
1.3	Details of approval holder	3
1.4	Application details	4
1.5	General information of Test item	4
1.6	Test standards	5
2	TECHNICAL TEST	6
2.1	Summary of test results	6
2.2	Test environment	6
2.3	Test Equipment List	7
2.4	General Test Procedure	11
3	TEST RESULTS (ENCLOSURE)	13
3.1	Peak Output Power (transmitter)	14
3.2	RF Exposure Compliance Requirements	17
3.3	Out of Band Radiated Emissions	17
3.4	Transmitter Radiated Emissions in restricted Bands	18
3.5	Spurious emissions (tx)	19
3.6	Carrier Frequency Separation	23
3.7	Number of Hopping Frequencies	26
	3.7.1 Pseudorandom Frequency Hopping Sequence	27
3.9	20dB Bandwidth	32
3.10	Band-edge Compliance of RF Emissions	35
3.11	Radiated Emissions from Digital Part	38
3.12	Power Line Conducted Emission	39
App	endix	

FCC ID: V94-QBB-22-A

1 General Information

1.1 Notes

The purpose of conformity testing is to increase the probability of adherence to the essential requirements or conformity specifications, as appropriate.

The complexity of the technical specifications, however, means that full and thorough testing is impractical for both technical and economic reasons.

Furthermore, there is no guarantee that a test sample which has passed all the relevant tests conforms to a specification.

Neither is there any guarantee that such a test sample will interwork with other genuinely open systems. The existence of the tests nevertheless provides the confidence that the test sample possesses the qualities as maintained and that is performance generally conforms to representative cases of communications equipment.

The test results of this test report relate exclusively to the item tested as specified in 1.5.

The test report may only be reproduced or published in full.

Reproduction or publication of extracts from the report requires the prior written approval of the Worldwide Testing Services(Taiwan) Co., Ltd.

7	Cester	•

October 12, 2012 Robert Ren Low Korn Date WTS-Lab. Name Signature

Technical responsibility for area of testing:

October 12, 2012 Danny Sung

Date

WTS

Name

Danny Sung

Signature

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

1.2 Testing laboratory

1.2.1 Location

OATS

No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207,

Taiwan (R.O.C.)

3 meter semi-anechoic chamber

No.35, Aly. 21, Ln. 228, Ankang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.)

TEL:886-2-6613-0228 FAX:886-2-2791-5046

Company

Worldwide Testing Services(Taiwan) Co., Ltd. 6F, NO. 58, LANE 188, RUEY-KUANG RD. NEIHU, TAIPEI 114, TAIWAN R.O.C.

Tel : 886-2-66068877 Fax : 886-2-66068879

1.2.2 Details of accreditation status

Accredited testing laboratory

A2LA accredited number: 2732.01

FCC filed test laboratory Reg. No. 930600

Industry Canada filed test laboratory Reg. No. IC 5679A-1

Test location, where different from Worldwide Testing Services (Taiwan) Co., Ltd.:

Name:	./.
Accredited number:	./.
Street:	./.
Town:	./.
Country:	./.
Telephone:	./.
Fax:	./.

1.3 Details of approval holder

Name : ABEL INDUSTRIES INT'L Co., Ltd. Street : 318, SEC. 3, CHANG NAN RD,

Town : CHANGHUA, Country : TAIWAN, R.O.C. Telephone : +886-3-6583147 Fax : +886-3-6585674

FCC ID: V94-QBB-22-A

1.4 Application details

Date of receipt of test item: May 09, 2012

Date of test: from May 10, 2012 to October 09, 2012

1.5 General information of Test item

Type of test item: Wireless Digital Video Baby Monitor

Model Number: QBB-22

Brand Name: OEM

Multi-listing model number: ./.

Photos: see Annex

Technical data

Frequency band : 2407.5~2471.625 MHz

Frequency (ch A) : 2407.5 MHz
Frequency (ch B) : 2441.25 MHz
Frequency (ch C) : 2471.625 MHz

Transmitter Unom

Power (ch A): Conducted: 12.05 dBm Power (ch B): Conducted: 12.28 dBm Power (ch C): Conducted: 12.32 dBm

Power supply: Adaptor: (I/P: 100-240V~/0.3A / 60/50Hz

O/P: 7.5Vdc/800mA /6W Max)

Battery: 6Vdc (1.5Vdc*4)

Operation modes: duplex

Modulation Type: GFSK

Antenna Type: 1/4 wavelength single pole antenna

Antenna gain: 0 dBi

FCC ID: V94-QBB-22-A

Host device: none

Classification:

Fixed Device	
Mobile Device (Human Body distance > 20cm)	\boxtimes
Portable Device (Human Body distance < 20cm)	
Modular Radio Device	

Manufacturer: (if applicable)

Name: ./.
Street: ./.
Town: ./.
Country: ./.

Additional information: ./.

1.6 Test standards

Technical standard: FCC RULES PART 15 SUBPART C § 15.247 (2011-10)

FCC ID: V94-QBB-22-A

2 Technical test

2.1 Summary of test results

No deviations from the technical specification(s) were ascertained in the course of the tests performed.		
or		
The deviations as specified in 3 were ascertained in the course of the tests performed.		

2.2 Test environment

Temperature: 23 °C

Relative humidity content: 20 ... 75 %

Air pressure: 86 ... 103 kPa

Details of power supply Adaptor: (I/P:100-240V~/0.3A / 60/50Hz

O/P: 7.5V/800mA /6W Max)

Battery: 6Vdc (1.5Vdc*4)

Extreme conditions parameters: test voltage : -- extreme

min : -- V max : -- V

 $Registration\ number:\ W6M21205\text{-}12430\text{-}C\text{-}1\text{-}T$

FCC ID: V94-QBB-22-A

2.3 Test Equipment List

No.	Test equipment	Type	Serial No.	Manufacturer	Cal. Date	Next Cal. Date	
ETSTW-CE 001	EMI TEST RECEIVER	ESHS10	842121/013	R&S	2012/9/5	2013/9/4	
ETSTW-CE 003	AC POWER SOURCE	APS-9102	D161137	GW	Function Test		
ETSTW-CE 004	ZWEILEITER-V- NETZNACHBILDUNG TWO-LINE V-NETWORK	ESH3-Z5	840731/011	R&S	2011/12/28	2012/12/27	
ETSTW-CE 005	Line-Impedance Stabilisation Network	NNBM 8126D	137	Schwarzbeck	2012/9/26	2013/9/25	
ETSTW-CE 006	IMPULSBEGRENZER PULSE LIMITER	ESH3-Z2	100226	R&S	2012/3/5	2013/3/4	
ETSTW-CE 007	SPECTRUM ANALYZER 5GHz	FSB	849670/001	R&S	Pre-te	st Use	
ETSTW-CE 008	HF-EICHLEITUNG RF STEP ATTENUATOR 139dB DPSP	334.6010.02	844581/024	R&S	Function	on Test	
ETSTW-CE 009	TEMP.&HUMIDITY CHAMBER	GTH-225-40-1P-U	MAA0305-009	GIANT FORCE	2012/7/3	2013/7/2	
ETSTW-CE 013	CISPR 22 TWO BALANCED TELECOM PAIRS IMPEDANCE STABILIZATION NETWORK	FCC-TLISN-T4-02	20242	FCC	2012/9/6	2013/9/5	
ETSTW-CE 024	IMPEDANCE STABILIZATION NETWORK	ISN T800	29454	TESEQ	2012/1/4	2013/1/3	
ETSTW-CS 004	COUPLING AND DECOUPLING NETWORK	CDN M016	20053	SCHAFFNER	2012/8/10	2013/8/09	
ETSTW-CS 005	RF Power Amplifier	100A250A	306547	AR	Function	on Test	
ETSTW-CS 010	6 dB Attenuator	SA3N1007-06	None	AISI	Functi	on test	
ETSTW-RE 003	EMI TEST RECEIVER	ESI 26	831438/001	R&S	2012/8/10	2013/8/09	
ETSTW-RE 004	EMI TEST RECEIVER	ESI 40	832427/004	R&S	2012/9/5	2013/9/4	
ETSTW-RE 005	EMI TEST RECEIVER	ESVS10	843207/020	R&S	2012/9/5	2013/9/4	
ETSTW-RE 010	ABSORBING CLAMP	MDS 21	3469	Schwarzbeck	2012/9/5	2013/9/4	
ETSTW-RE 012	TUNABLE BANDREJECT FILTER	D.C 0309	146	K&L	Function	on Test	
ETSTW-RE 013	TUNABLE BANDREJECT FILTER	D.C 0336	397	K&L	Function	on Test	
ETSTW-RE 018	MICROWAVE HORN ANTENNA	AT4560	27212	AR	2012/10/5	2013/10/4	
ETSTW-RE 019	MICROWAVE HORN ANTENNA	22240-25	121074	FM	2012/4/03	2013/4/02	
ETSTW-RE 020	MICROWAVE HORN ANTENNA	AT4002A	306915	AR	Function	on Test	
ETSTW-RE 027	Passive Loop Antenna	6512	00034563	ETS-Lindgren	2012/8/01	2013/7/31	
ETSTW-RE 028	Log-Periodic Dipole Array Antenna	3148	34429	EMCO	Function	on Test	
ETSTW-RE 029	Biconical Antenna	3109	33524	EMCO	Function	on Test	
ETSTW-RE 030	Double-Ridged Guide Horn Antenna	3117	00035224	EMCO	2012/2/21	2013/2/20	
ETSTW-RE 032	Millivoltmeter	URV 55	849086/013	R&S	2012/10/5	2013/10/4	
ETSTW-RE 033	WaveRunner 6000A Serise Oscilloscope	WAVERUNNER 6100A	LCRY0604P1450 8	LeCroy	Function	Function Test	
ETSTW-RE 034	Power Sensor	URV5-Z4	839313/006	R&S	2012/10/5	2013/10/4	
ETSTW-RE 042	Biconical Antenna	HK116	100172	R&S	2012/1/10	2013/1/9	

 $Registration\ number:\ W6M21205\text{--}12430\text{--}C\text{--}1\text{--}T$

FCC ID: V94-QBB-22-A

ETSTW-RE 043	Log-Periodic Dipole	HL223	100166	R&S	2012/4/13	2013/4/12
ETSTW-RE 044	Antenna Log-Periodic Antenna	HL050	100094	R&S	2012/4/06	2013/4/05
ETSTW-RE 045	ESA-E SERIES	E4404B	MY45111242	Agilent	Pre-te	
ETSTW-RE 048	SPECTRUM ANALYZER Triple Loop Antenna	HXYZ 9170	HXYZ 9170-134	Schwarzbeck	2012/8/28	2013/8/27
ETSTW-RE 049	TRILOG Super Broadband	VULB 9160	9160-3185	Schwarzbeck	2012/3/23	2013/3/22
	test Antenna					
ETSTW-RE 050	Attenuator 10dB	50HF-010-1	None	JFW	2012/3/3	2013/3/2
ETSTW-RE 051	Attenuator 6dB	50HF-006-1	None	JFW	2012/3/3	2013/3/2
ETSTW-RE 053	Attenuator 3dB	50HF-003-1	None	JFW	2012/3/3	2013/3/2
ETSTW-RE 055	SPECTRUM ANALYZER	FSU 26	200074	R&S	2012/5/29	2013/5/28
ETSTW-RE 060	Attenuator 30dB	5015-30	F651012z-01	ATM	2012/3/3	2013/3/2
ETSTW-RE 061	Amplifier Module	CHC 1	None	ETS	2012/5/17	2013/5/16
ETSTW-RE 062	Amplifier Module	CHC 2	None	KMIC	2011/11/29	2012/11/28
ETSTW-RE 064	Bluetooth Test Set	MT8852B-042	6K00005709	Anritsu	Function	on Test
ETSTW-RE 065	Amplifier	AMF-6F-18002650- 25-10P	941608	MITEQ	2012/4/6	2013/4/5
ETSTW-RE 069	Double-Ridged Guide Horn Antenna	3117	00069377	EMCO	Function	on Test
ETSTW-RE 072	CELL SITE TEST SET	8921A	3339A00375	HP	2012/10/5	2013/10/4
ETSTW-RE 073	Power Meter	N1911A	MY45100769	Agilent	2012/1/4	2013/1/3
ETSTW-RE 074	Power Sensor	N1921A	MY45241198	Agilent	2012/1/4	2013/1/3
ETSTW-RE 088	SOLID STATE AMPLIFIER	KMA180265A01	99057	KMIC	2012/10/12	2013/10/11
ETSTW-RE 099	DC Block	50DB-007-1	None	JFW	2012/3/5	2013/3/4
ETSTW-RE 105	2.4GHz Notch Filter	NO124411	39555	MICROWAVE CIRCUITS, INC.	2012/3/5	2013/3/4
ETSTW-RE 106	Humidity Temperature Meter	TES-1366	091011113	TES	2011/12/1	2012/11/30
ETSTW-RE 111	TRILOG Super Broadband test Antenna	VULB 9160	9160-3309	Schwarz beck	2011/12/27	2012/12/26
ETSTW-RE 112	AC POWER SOURCE	TFC-1005	None	T-Power	Functi	on test
ETSTW-RE 115	2.4GHz Notch Filter	N0124411	473874	MICROWAVE CIRCUITS	2012/1/12	2013/1/11
ETSTW-RE 120	RF Player	MP9200	MP9210-111022	ADIVIC	Functi	on test
ETSTW-RE 122	SIGNAL GENERATOR	SMF100A	102149	R&S	2012/7/3	2013/7/2
ETSTW-RE 125	5GHz Notch filter	5NSL11- 5200/E221.3-O/O	1	K&L Microwave	2012/8/18	2013/8/17
ETSTW-RE 126	5GHz Notch filter	5NSL11- 5800/E221.3-O/O	1	K&L Microwave	2012/8/18	2013/8/17
ETSTW-RE 127	RF Switch Box	RFS-01	None	WTS	2012/3/3	2013/3/2
ETSTW-EMI 001	HARMONICS 1000	HAR1000-1P	093	EMC-PARTNER	2012/8/10	2013/8/09
ETSTW-EMS 001	BASELSTRASSE 160 CH- 4242 LAUFEN	CN-EFT1000	354	EMC-PARTNER	Function Test	
ETSTW-EMS 002	Frequency Converter	YF-6020	0308014	None	Function	on Test
ETSTW-EMS 003	EMC Immunity Test System	TRA2000IN6	579	EMC-PARTNER	2011/11/2	2012/11/1
ETSTW-EMS 009	Magnetic Field Antenna	MF1000-1	104	EMC-PARTNER	Function	on Test

 $Registration\ number:\ W6M21205\text{--}12430\text{--}C\text{--}1\text{--}T$

FCC ID: V94-QBB-22-A

ETSTW-EMS 010	Coupling De-coupling Network	CDN-UTP8	014	EMC-PARTNER	Function	on Test
ETSTW-EMS 012	EM Injection Clamp	F-203I-23MM	476	FCC	2012/5/29	2013/5/28
ETSTW-EMS 016	EMF Tester	1390	071208732	TES	2012/10/5	2013/10/4
ETSTW-EMS 017	Multimeter	DM-1220	518614	HOLA	2012/8/10	2013/8/09
ETSTW-EMS 019	Electrostatic Discharge Simulator	ESS-2002	ESS06Y6300	NoiseKen	2012/10/5	2013/10/4
ETSTW-EMS 020	Humidity Temperature Meter	TES-1366	091011116	TES	2011/12/20	2012/12/19
ETSTW-RS 003	RF Power Amplifier	30S1G3	306933	AR	Function	on Test
ETSTW-RS 004	RF Power Amplifier	150W1000	307009	AR	Function	on Test
ETSTW-RS 006	SIGNAL GENERATOR	SML03	101551	R&S	2012/2/29	2013/2/28
ETSTW-RS 007	14" COLOR VIDEO MONITOR	HS-CM145A	0512011548	None	Function	on Test
ETSTW-RS 009	SIGNAL GENERATOR	8648C	3642U01656	НР	2012/2/20	2013/2/19
ETSTW-RS 010	Broadband Field Meter	NBM-520	C-0195	Narda	2012/9/7	2013/9/6
ETSTW-GSM 002	Universal Radio Communication Tester	CMU 200	109439	R&S	2012/10/5	2013/10/4
ETSTW-GSM 019	Band Reject Filter	WRCTF824/849- 822/851-40 /12+9SS	3	WI	2012/1/13	2013/1/12
ETSTW-GSM 020	Band Reject Filter	WRCD1747/1748- 1743/1752-32/5SS	1	WI	2012/1/13	2013/1/12
ETSTW-GSM 021	Band Reject Filter	WRCD1879.5/1880.5 -1875.5/1884.5- 32/5SS	3	WI	2012/1/13	2013/1/12
ETSTW-GSM 022	Band Reject Filter	WRCT901.9/903.1- 904.25-50/8SS	1	WI	2012/1/13	2013/1/12
ETSTW-GSM 023	Power Divider	4901.19.A	None	SUHNER	2012/9/18	2013/9/17
ETSTW-Cable 002	Microwave Cable	SUCOFLEX 104 (S Cable 7)	238093	HUBER+SUHNER	2012/5/17	2013/5/16
ETSTW-Cable 003	Microwave Cable	SUCOFLEX 104 (S Cable 11)	209953	HUBER+SUHNER	2012/5/17	2013/5/16
ETSTW-Cable 010	BNC Cable	5 M BNC Cable	None	JYE BAO CO.,LTD.	2012/3/5	2013/3/4
ETSTW-Cable 011	BNC Cable	BNC Cable 1	None	JYE BAO CO.,LTD.	Pre-test U	Jse NCR
ETSTW-Cable 012	N TYPE To SMA Cable	Cable 012	None	JYE BAO CO.,LTD.	2012/3/5	2013/3/4
ETSTW-Cable 013	Microwave Cable	SUCOFLEX 104 (S Cable 5)	232345	HUBER+SUHNER	Function	on Test
ETSTW-Cable 016	BNC Cable	Switch Box	B Cable 1	Schwarz beck	2012/3/3	2013/3/2
ETSTW-Cable 017	BNC Cable	X Cable	B Cable 2	Schwarz beck	2012/3/3	2013/3/2
ETSTW-Cable 018	BNC Cable	Y Cable	B Cable 3	Schwarz beck	2012/3/3	2013/3/2
ETSTW-Cable 019	BNC Cable	Z Cable	B Cable 4	Schwarz beck	2012/3/3	2013/3/2
ETSTW-Cable 022	N TYPE Cable	5006	0002	JYE BAO CO.,LTD.	2012/4/6	2013/4/5
ETSTW-Cable 026	Microwave Cable	SUCOFLEX 104	279075	HUBER+SUHNER	2012/3/5	2013/3/4
ETSTW-Cable 027	Microwave Cable	SUCOFLEX 104	279083	HUBER+SUHNER	2012/3/5	2013/3/4
ETSTW-Cable 028	Microwave Cable	FA147A0015M2020	30064-2	UTIFLEX	2012/10/12	2013/10/11
ETSTW-Cable 029	Microwave Cable	FA147A0015M2020	30064-3	UTIFLEX	2012/10/12	2013/10/11
ETSTW-Cable 030	Microwave Cable	SUCOFLEX 104 (S_Cable 9)	279067	HUBER+SUHNER	2012/3/5	2013/3/4
ETSTW-Cable 031	Microwave Cable	SUCOFLEX 104 (S_Cable 10)	238092	HUBER+SUHNER	2011/11/29	2012/11/28

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

ETSTW-Cable 032	Microwave Cable	SUCOFLEX 104 (S_Cable 12)	237301	HUBER+SUHNER	Function	on Test
ETSTW-Cable 039	Microwave Cable	SUCOFLEX 104 (S_Cable 19)	316739	HUBER+SUHNER	2012/5/17	2013/5/16
ETSTW-Cable 040	Microwave Cable	SUCOFLEX 104 (S_Cable 20)	316738	HUBER+SUHNER	Function	on Test
ETSTW-Cable 043	Microwave Cable	SUCOFLEX 104	317576	HUBER+SUHNER	2011/11/29	2012/11/28
ETSTW-Cable 047	Microwave Cable	SUCOFLEX 104	325518	HUBER+SUHNER	2011/11/29	2012/11/28
ETSTW-Cable 051	BNC Cable	BNC Cable 6	None	JYE BAO CO.,LTD.	2012/3/30	2013/3/29
ETSTW-Cable 052	BNC Cable	Clamp Cable	None	Schwarz beck	2012/3/30	2013/3/29
ETSTW-Cable 053	N TYPE To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2012/4/6	2013/4/5
ETSTW-Cable 054	BNC To SMA Cable	RG142	None	JYE BAO CO.,LTD.	2012/4/6	2013/4/5
ETSTW-Cable 055	NTYPE Cable	N30N30-JBY240- 80CM	20110621-1.1	JYE BAO CO.,LTD.	Function Test	
ETSTW-Cable 056	N TYPE Cable	N30N30-JBY240- 80CM	20110621-1.0	JYE BAO CO.,LTD.	Function Test	
ETSTW-Cable 057	N TYPE Cable	N30N30-JBY240- 80CM	20110621-1.1	JYE BAO CO.,LTD.	Function Test	
WTSTW-SW 001	EMI TEST SOFTWARE	Harmonics-1000	None	EMC PARTNER	HARCS Version 4.16 Firmware Version 2.18	
WTSTW-SW 002	EMI TEST SOFTWARE	EZ_EMC	None	Farad	Version ETS-03A1	
WTSTW-SW 003	EMS TEST SOFTWARE	i2	None	AUDIX	Version 3.2	2007-8-17b

FCC ID: V94-QBB-22-A

2.4 General Test Procedure

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-2009 5.2 using a 50µH LISN (if necessary). Both lines were observed. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed.

RADIATION INTERFERENCE: The test procedure used was according to ANSI STANDARD C63.4-2009 6.4 employing a spectrum analyzer. For investigated frequency is equal to or below 1GHz, the RBW and VBW of the spectrum analyzer was 100 kHz and 100kHz respectively with an appropriate sweep speed. For investigated frequency is above 1GHz, both of RBW and VBW of the spectrum analyzer were 1 MHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient, temperature of the UUT was 23°C with a humidity of 40 %.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of $dB\mu V$) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB.

Example:

Freq (MHz) METER READING + ACF + CABLE LOSS (to the receiver) = FS

The EUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m (non metallic table) and arranged according to ANSI C63.4-2009 6.3.1. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to the frequency specified as follows:

- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1)-(a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this Section, whichever is the higher frequency range of investigation.

For hand-held devices, a exploratory test was performed with three (3) orthogonal planes to determine the highest emissions.

Measurements were made by Worldwide Testing Services(Taiwan) Co., Ltd. at the registered open field test site located No.5-1, Lishui, Shuang Sing Village, Wanli Dist., New Taipei City 207, Taiwan (R.O.C.). The Registration Number: **930600**.

FCC ID: V94-QBB-22-A

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

The formula is as follows:

Average = Peak + Duty Factor

Duty Factor = 20 log (dwell time/T)

T = 100ms when the pulse train period is over 100 ms or the period of the pulse train.

Modified Limits for peak according to 15.35 (b) = Max Permitted average Limits + 20dB

ANSI STANDARD C63.4-2009 10.2.7: Any measurements that utilize special test software shall be indicated and referenced in the test report. During testing, test software 'EZ EMC' was used for setting up different operation modes.

FCC ID: V94-QBB-22-A

3 Test results (enclosure)

TEST CASE	Para. Number	Required	Test passed	Test failed
Peak Output Power	15.247(b)	×	×	
Equivalent isotropically radiated Power	15.247(b)	×	×	
Spurious Emissions radiated – Transmitter operating	15.247(c)	×	×	
Spurious Emissions conducted – Transmitter operating	15.247			
Carrier Frequency Separation	15.247(a) (1)	×	×	
Number of Hopping Frequencies	15.247(a) (1)(i)	×	×	
Time of Occupancy (Dwell Time)	15.247(a) (1)(i)	×	×	
20 dB Bandwidth	15.247(a) (1)(i)	×	×	
Band-edge Compliance of RF Emission	15.247(d)	×	×	
Radiated Emission from Digital Part	15.109			
Power Line Conducted Emission	15.207(a)	×	×	

The follows is intended to leave blank.

FCC ID: V94-QBB-22-A

3.1 Peak Output Power (transmitter)

FCC Rule: 15.247

This measurement applies to equipment with an integral antenna and to equipment with an antenna connector and equipped with an antenna as declared by the applicant.

The power was measured with modulation (declared by the applicant).

MAX OUTPUT POWER 2407.5MHz
Date: 20.JUL.2012 06:11:17

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

MAX OUTPUT POWER 2441.25MHz Date: 20.JUL.2012 06:12:06

MAX OUTPUT POWER 2471.625MHz Date: 20.JUL.2012 06:12:55

FCC ID: V94-QBB-22-A

Maximum Peak Output Power

Limits:

Frequency	Number of hopping channels			
MHz	≥ 75	≥ 50	49 ≥ 25	74 ≥ 15
902-928		30 dBm	24 dBm	
2400-2483.5 MHz	30 dBm	-		21 dBm
5725-5850 MHz	30 dBm	-		

In case of employing transmitter antennas having antenna gain >6dBi and using fixed poin-to point operation consider §15.247 (b)(4)(i).

Test equipment used: ETSTW-RE 055, ETSTW-RE 050, ETSTW-RE 064

FCC ID: V94-QBB-22-A

3.2 RF Exposure Compliance Requirements

According to Supplement C, Edition 01-01 to OET Bulletin 65, Edition 97-01 this spread spectrum transmitter is categorically excluded from routine environmental evaluation because of the low power level, where there is a high likelihood of compliance with RF exposure standards.

3.3 Out of Band Radiated Emissions

FCC Rule: 15.247(c), 15.35

For out of band emissions that are close to or that exceed the 20 dB attenuation requirement described in the specification, radiated measurements were performed at a 3 m separation distance to determine whether these emissions complied with the general radiated emission requirement. Limits:

For frequencies below 1GHz:

Max. reading - 20 dB

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continuous operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty Cycle correction = 20 log (dwell time/100ms)

For frequencies above 1GHz (Peak measurements).

Limit = max. aver. reading-20dB +20dB(because Peak detector is used)

For frequencies above 1GHz (Average measurements).

Max. reading – 20 dB - duty cycle correction:

No duty cycle correction was added to the reading

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 111, ETSTW-RE 030, ETSTW-RE 064

Explanation: See attached diagrams in appendix.

FCC ID: V94-QBB-22-A

3.4 Transmitter Radiated Emissions in restricted Bands

FCC Rules: 15.247 (c), 15.205, 15.209, 15.35

Radiated emission measurements were performed from 30 MHz to 26000 MHz.

For radiated emission tests, the analyzer setting was as followings:

RES BW VID BW

Frequency <1 GHz 100 kHz 100 kHz (Peak measurements) Frequency >1 GHz 1 MHz 1 MHz (Peak measurements)

1 MHz 1 MHz (Average measurements)

Limits:

For frequencies below 1GHz:

Frequency of Emission (MHz)	Field strength (microvolts/meter)	Field Strength (dB microvolts/meter)
30 - 88	100	40.0
88 – 216	150	43.5
216 – 960	200	46.0
Above 960	500	54.0

For frequencies above 1GHz (Average measurements).

Guidance on Measurement of FHSS Systems:

"If the emission is pulsed, modify the unit for continues operation, use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation." Here the correction was added to the limit instead subtracted from the reading.

Duty cycle correction = $20 \log (dwell time/100ms)$

For frequencies above 1GHz (Average measurements).

Limit – duty cycle correction

No duty cycle correction was added to the reading.

 $54.0dB\mu V/m$

For frequencies above 1GHz (Peak measurements).

Limit + 20dB

 $54.0 dB \mu V/m + 20 dB = 74 dB \mu V/m$

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 111, ETSTW-RE 064

Explanation: See attached diagrams in appendix.

FCC ID: V94-QBB-22-A

3.5 Spurious emissions (tx)

Spurious emission was measured with modulation (declared by manufacturer).

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))

SAMPLE CALCULATION OF LIMIT. All results will be updated by an automatic measuring system in accordance to point 2.3.

Calculation of test results:

Such factors like antenna correction, cable loss, external attenuation etc. are already included in the provided measurement results. This is done by using validated test software and calibrated test system according the accreditation requirements.

The peak and average spurious emission plots was measured with the average limits.

In the Table being listed the critical peak and average value an exhibit the compliance with the above calculated Limits.

If in the column's correction factor states a value then the max. Field strength in the same row is corrected by a value gained from the "Marker-Delta-Method" or the "Duty-Cycle Correction Factor".

Summary table with radiated data of the test plots

Model:	QBB-22			Date:	2012/10/4			
Mode:	TX -2407.5	5 MHz		Temperature:	24	°C	Engineer:	Leon
Polarization:	Horizontal			Humidity:	60	%		
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
142.7453	15.14	peak	14.88	30.02	43.50	-13.48	145	100
259.3788	11.78	peak	14.19	25.97	46.00	-20.03	190	100
624.8297	11.24	peak	22.85	34.09	46.00	-11.91	55	100
673.4270	11.81	peak	23.41	35.22	46.00	-10.78	310	100
768.6774	10.43	peak	24.94	35.37	46.00	-10.63	250	100
863.9280	7.96	peak	26.07	34.03	46.00	-11.97	130	100

Frequency	Read (dB)		Factor (dB)		: @3m V/m)	Limit (dBu	@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peàk	Áve.	Corr.	Peak	Áve.	Peak	Áve.	(dB)	(Deg.)	(cm)
1847.6950	50.41		-7.48	42.93		74.00	54.00	-31.07	200	100
3212.4250	50.64		-3.69	46.95		74.00	54.00	-27.05	145	100
4809.6190	60.07	52.30	-1.36	58.71	50.94	74.00	54.00	-3.06	220	100
7230.4610	48.65	43.61	4.19	52.84	47.80	74.00	54.00	-6.20	150	100

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Polarization: Vertical

i dianzation.	Vortioai							
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
43.6072	12.63	peak	13.91	26.54	40.00	-13.46	175	100
142.7455	16.85	peak	14.88	31.73	43.50	-11.77	140	100
432.3848	9.42	peak	19.13	28.55	46.00	-17.45	280	100
576.2325	11.06	peak	21.73	32.79	46.00	-13.21	215	100
673.4270	8.93	peak	23.41	32.34	46.00	-13.66	230	100
768.6774	6.93	peak	24.94	31.87	46.00	-14.13	100	100

Frequency	Rea (dB		Factor (dB)		: @3m V/m)	Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peàk	Áve.	Corr.	Peak	Áve.	Peak		(dB)	(Deg.)	(cm)
1847.6950	48.90		-7.48	41.42		74.00	54.00	-32.58	145	100
3212.4250	53.50		-3.69	49.81		74.00	54.00	-24.19	230	100
4817.6350	61.38	53.93	-1.33	60.05	52.60	74.00	54.00	-1.40	145	100
7222.4450	43.69		4.18	47.87		74.00	54.00	-26.13	250	100

Mode: TX-2441.25MHz Polarization: Horizontal

Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
49.4388	6.14	peak	14.12	20.26	40.00	-19.74	240	100
142.7453	14.79	peak	14.88	29.67	43.50	-13.83	130	100
251.6031	13.06	peak	14.03	27.09	46.00	-18.91	270	100
624.8297	11.72	peak	22.85	34.57	46.00	-11.43	115	100
673.4270	12.46	peak	23.41	35.87	46.00	-10.13	320	100
768.6774	8.79	peak	24.94	33.73	46.00	-12.27	345	100

Frequency	Read (dB)		Factor (dB)		: @3m V/m)		Limit @3m (dBuV/m)		Table Degree	Ant. High
(MHz)	Peàk	Áve.	Corr.	Peak	Áve.	Peak	Áve.	(dB)	(Deg.)	(cm)
1847.6950	47.20		-7.48	39.72		74.00	54.00	-34.28	130	100
3254.5090	48.47		-3.68	44.79		74.00	54.00	-29.21	245	100
4881.7640	53.49		-1.13	52.36		74.00	54.00	-21.64	120	100
7326.6530	47.58		4.40	51.98		74.00	54.00	-22.02	260	100

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Polarization: Vertical

1 Oldrization:	v or trour							
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
43.6072	13.46	peak	13.91	27.37	40.00	-12.63	280	100
142.7455	17.25	peak	14.88	32.13	43.50	-11.37	130	100
239.9400	9.76	peak	13.69	23.45	46.00	-22.55	140	100
432.3848	9.19	peak	19.13	28.32	46.00	-17.68	165	100
576.2325	10.35	peak	21.73	32.08	46.00	-13.92	110	100
673.4270	8.92	peak	23.41	32.33	46.00	-13.67	255	100

Frequency	Rea (dB		Factor (dB)				@3m V/m)	Margin	Table Degree	Ant. High
(MHz)	Peàk	Áve.	Čorŕ.	Peak	Áve.	Peak	Áve.	(dB)	(Deg.)	(cm) ̈
1847.6950	47.01		-7.48	39.53		74.00	54.00	-34.47	235	100
3254.5090	53.39		-3.68	49.71		74.00	54.00	-24.29	175	100
4881.7640	56.85	49.70	-1.13	55.72	48.57	74.00	54.00	-5.43	145	100
7326.6530	43.83		4.40	48.23		74.00	54.00	-25.77	230	100

Mode: TX-2471.625 MHz

Polarization: Horizontal

	quency MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
142	2.7453	14.89	peak	14.88	29.77	43.50	-13.73	145	100
25!	5.4910	12.12	peak	14.11	26.23	46.00	-19.77	270	100
624	4.8297	10.57	peak	22.85	33.42	46.00	-12.58	180	100
673	3.4270	12.13	peak	23.41	35.54	46.00	-10.46	135	100
768	8.6774	8.88	peak	24.94	33.82	46.00	-12.18	260	100
863	3.9280	9.12	peak	26.07	35.19	46.00	-10.81	310	100

Frequency	Read (dB)		Factor (dB)			Limit @3m (dBuV/m)		Margin	Table Degree	Ant. High
(MHz)	Peàk	Áve.	Corr.	Peak	Áve.	Peak	Áve.	(dB)	(Deg.)	(cm)
1883.7670	44.75		-7.09	37.66		74.00	54.00	-36.34	280	100
3296.5930	48.51		-3.67	44.84	-	74.00	54.00	-29.16	160	100
4945.8920	49.94		-0.89	49.05		74.00	54.00	-24.95	245	100
7422.8460	46.72		4.61	51.33		74.00	54.00	-22.67	120	100

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Polarization: Vertical

1 Glarization:								
Frequency (MHz)	Reading (dBuV)	Detector	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Table Degree (Deg.)	Ant. High (cm)
43.6072	12.80	peak	13.91	26.71	40.00	-13.29	265	100
142.7455	15.99	peak	14.88	30.87	43.50	-12.63	210	100
432.3848	10.39	peak	19.13	29.52	46.00	-16.48	170	100
576.2325	10.51	peak	21.73	32.24	46.00	-13.76	120	100
673.4270	10.13	peak	23.41	33.54	46.00	-12.46	160	100
768.6774	7.71	peak	24.94	32.65	46.00	-13.35	115	100

Frequency	Read (dB)		Factor (dB)		Result @3m (dBuV/m)		Limit @3m (dBuV/m)		Table Degree	Ant. High
(MHz)	Peak	Áve.	Corr.	Peak	Äve.	Peak	Ave.	(dB)	(Deg.)	(cm)
1847.6950	46.21		-7.48	38.73		74.00	54.00	-35.27	250	100
3296.5930	52.31		-3.67	48.64		74.00	54.00	-25.36	135	100
4945.8920	52.73		-0.89	51.84		74.00	54.00	-22.16	165	100
7414.8300	43.16		4.64	47.80		74.00	54.00	-26.20	140	100

Note

- 1. Correction Factor = Antenna factor + Cable loss Preamplifier
- 2. The formula of measured value as: Test Result = Reading + Correction Factor
- 3. Detector function in the form: PK = Peak, OP = Quasi Peak, AV = Average
- 4. All not in the table noted test results are more than 20 dB below the relevant limits.
- 5. Measurement uncertainty above 1GHz: $30-1000 \text{ MHz} = \pm 3.72 \text{ dB}$, $1-18 \text{ GHz} = \pm 5.56 \text{ dB}$, $18-40 \text{ GHz} = \pm 3.46 \text{ dB}$; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 6. Up Line: PK Limit Line, Down Line: Ave Limit Line.
- 7. See attached diagrams in appendix.

All other not noted test plots do not contain significant test results in relation to the limits.

TEST RESULT (**Transmitter**): The unit DOES meet the FCC requirements.

Test equipment used: ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030, ETSTW-RE 111,ETSTW-RE 064 ETSTW-RE 088, ETSTW-RE 018

FCC ID: V94-QBB-22-A

3.6 Carrier Frequency Separation

Carrier Frequency Separation was measured with modulation (declared by manufacturer).

According to FCC rules part 15 subpart C §15.247 frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or 20 dB bandwidth of the hopping channel, whichever is greater.

FREQUENCY SEPARATION 2407.5MHz

Date: 2.OCT.2012 16:08:37

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

FREQUENCY SEPARATION 2441.25MHz Date: 2.OCT.2012 16:10:43

FREQUENCY SEPARATION 2471.625MHz Date: 2.OCT.2012 16:13:04

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Limits:

Frequency Range	Limits		
MHz	20 dB bandwidth < 25 kHz	20 dB bandwidth > 25 kHz	
902-928	25 kHz	20 dB bandwidth	
2400-2483.5 5725-5850.0	25 kHz	20 dB bandwidth	

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

FCC ID: V94-QBB-22-A

3.7 Number of Hopping Frequencies

According to FCC rules part 15 subpart C §15.247 frequency hopping systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping frequencies. Frequency hopping systems in 5725-5850 MHz bands shall use least 75 hopping frequencies.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies; if the 20dB bandwidth of the hopping channel 250 kHz or greater, the system shall use at least 25 hopping frequencies.

NUMBER OF HOPPING

Date: 2.OCT.2012 16:18:55

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Limits:

Frequency Range MHz	Limit		
	20dB Bandwidth	Number of Channels	
902-928 MHz	Bandwidth < 250 kHz	≥ 50	
	Bandwidth ≥ 250 kHz	≥ 25	
2400-2483.5	not defined	15	
5725-5850.0 MHz	1 MHz	75	

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

3.7.1 Pseudorandom Frequency Hopping Sequence

A 2.4GHz transceiver (A7121) with power amplifier (AP1110) and LNA is employed. A 18MHz crystal is used for the time base. On Tx cycle, data packet is transmit by 2.4GHz carrier and GFSK modulation. On Rx cycle, acknowledge data will be received.

Channel Frequency Table

Channel	TX Channel(MHz)	RX Channel(MHZ)
1	2407.500	2407.500
2	2410.875	2410.875
3	2414.250	2414.250
4	2417.625	2417.625
5	2421.000	2421.000
6	2424.375	2424.375
7	2427.750	2427.750
8	2431.125	2431.125
9	2434.500	2434.500
10	2437.875	2437.875
11	2441.250	2441.250
12	2444.625	2444.625
13	2448.000	2448.000
14	2451.375	2451.375
15	2454.750	2454.750
16	2458.125	2458.125
17	2461.500	2461.500
18	2464.875	2464.875
19	2468.250	2468.250
20	2471.625	2471.625
*21	2475.000	2475.000
	TEN CI	104 (04553577) 111

The Channel 21 (2475 MHz) will not be used.

FCC ID: V94-QBB-22-A

3.8 Time of Occupancy (Dwell Time)

Frequency hopping systems operating in the 5725-5850 MHz band shall use an average time of occupancy on any frequency not greater than 0.4 seconds within a 30 second period.

In 2400-2483.5 MHz band the average time of occupancy on any channel shall not be greater than 0.4 seconds multiplied by the number of hopping channels employed.

For frequency hopping systems operating in the 902-928 MHz band: if the 20dB bandwidth of the hopping channel is less than 250 kHz, the average time of occupancy on any frequency shall not greater than 0.4 seconds within a 20 second period; if the 20dB bandwidth of the hopping channel is 250 kHz or greater, the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period.

DWELL TIME 0.505ms * 10 * 10 = 50.5ms

Date: 2.OCT.2012 18:25:24

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

DWELL TIME 0.504ms * 16 * 10 = 80ms

Date: 2.OCT.2012 18:35:33

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

DWELL TIME 504ms * 6 * 10 = 30.24ms

Date: 2.OCT.2012 18:43:20

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

DWELL TIME

Date: 2.OCT.2012 18:38:30

Limits and measurement periods:

Frequency MHz	Number of channels	Measurement Periode	Limit
902 – 928	≥50	20 s	0.4 s
	49 ≥ 25	10 s	0.4 s
2400 – 2483.5	≥ 15	0.4 s * number of used channels	0.4 s
5725- 5850	≥ 75	30 s	0.4s

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

FCC ID: V94-QBB-22-A

3.9 20dB Bandwidth

Frequency hopping systems operating in the 5725-5850 MHz bands shall use a maximum 20dB bandwidth of 1 MHz.

The 20dB bandwidth is measured on the lowest, middle and highest hopping channel.

For frequency hopping systems operating in the 902-928 MHz band the maximum 20dB bandwidth of the hopping channel is 500 kHz.

20DB BANDWIDTH 2407.5MHz
Date: 20.JUL.2012 06:18:49

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

20DB BANDWIDTH 2441.25MHz Date: 20.JUL.2012 06:19:16

20DB BANDWIDTH 2471.625MHz Date: 20.JUL.2012 06:18:12

FCC ID: V94-QBB-22-A

Limits:

Frequency Range / MHz	Limit
902-928	≤ 500 kHz
2400-2483.5	not defined
5725-5850	≤ 1 MHz

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

FCC ID: V94-QBB-22-A

3.10 Band-edge Compliance of RF Emissions

According to FCC rules part 15 subpart C §15.247(c) in any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required.

In addition radiated emission which fall in the restricted bands, as defined in section 15.205(a), must also with the radiated emission limits.

BANDEDGE 2407.5MHz

Date: 20.JUL.2012 06:23:54

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

BANDEDGE 2471.625MHz
Date: 20.JUL.2012 06:23:14

BANDEDGE 2407.5MHz

Date: 2.OCT.2012 16:03:50

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

BANDEDGE 2471.625MHz Date: 2.0CT.2012 16:05:14

Limits:

Frequency Range / MHz	Limit		
902 –928			
2400 – 2483.5	- 20 dB		
5725 - 5850			

Test equipment used: ETSTW-RE 055, ETSTW-RE 064

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

3.11 Radiated Emissions from Digital Part

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission	Field Strength	Field Strength		
(MHz)	(microvolts/meter)	(dBmicrovolts/meter)		
30 - 88	100	40.0		
88 – 216	150	43.5		
216 – 960	200	46.0		
Above 960	500	54.0		

Test equipment used: ETSTW-RE 055, ETSTW-RE 064, ETSTW-RE 003, ETSTW-RE 004, ETSTW-RE 030 ETSTW-RE 111

Explanation: The test results of digital part are listed in test report no.: W6M21205-12430-P-15B-T

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

3.12 Power Line Conducted Emission

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the table bellows with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

This measurement was transact first with instrumentation using an average and peak detector and a 10 kHz bandwidth. If the peak detector achieves a calculated level, the measurement is repeated by an instrumentation using a quasi-peak detector.

Site: Chamber_03

Condition: FCC Part 15 Class B Conduction (QP)

Phase: //
Power: 110VAC

EUT: W6M21205-12430

M/N: QBB-22

Test Mode: Adaptor (Baby unit)

Mk.	Frequency (MHz)	Reading (dBuV)	Detector	Corrected factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Comment
	0.5270	23.07	QP	10.00	33.07	56.00	-22.93	
	0.5270	12.28	AVG	10.00	22.28	46.00	-23.72	
	1.0602	19.99	QP	9.96	29.95	56.00	-26.05	
	1.0602	6.23	AVG	9.96	16.19	46.00	-29.81	
	1.6970	22.04	QP	9.98	32.02	56.00	-23.98	
	1.6970	7.49	AVG	9.98	17.47	46.00	-28.53	
	2.0457	24.26	QP	9.99	34.25	56.00	-21.75	
	2.0457	10.25	AVG	9.99	20.24	46.00	-25.76	
*	2.7725	26.35	QP	10.01	36.36	56.00	-19.64	
	2.7725	15.11	AVG	10.01	25.12	46.00	-20.88	
	3.0065	26.33	QP	10.02	36.35	56.00	-19.65	
	3.0065	12.72	AVG	10.02	22.74	46.00	-23.26	

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Site: Chamber_03

Condition: FCC Part 15 Class B Conduction (QP)

Phase:

EUT: W6M21205-12430

Power: 110VAC

M/N: QBB-22

Test Mode: Adaptor (Baby unit)

Note:

Mk.	Frequency (MHz)	Reading (dBuV)	Detector	Corrected factor(dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Comment
	0.8105	20.60	QP	10.13	30.73	56.00	-25.27	
	0.8105	4.43	AVG	10.13	14.56	46.00	-31.44	
П	1.7915	23.80	QP	10.19	33.99	56.00	-22.01	
	1.7915	7.42	AVG	10.19	17.61	46.00	-28.39	
	2.0210	23.88	QP	10.20	34.08	56.00	-21.92	
	2.0210	8.64	AVG	10.20	18.84	46.00	-27.16	
*	2.6938	24.02	QP	10.23	34.25	56.00	-21.75	
	2.6938	11.75	AVG	10.23	21.98	46.00	-24.02	
	2.9210	22.92	QP	10.25	33.17	56.00	-22.83	
	2.9210	10.82	AVG	10.25	21.07	46.00	-24.93	
	3.1505	21.13	QP	10.26	31.39	56.00	-24.61	
	3.1505	8.82	AVG	10.26	19.08	46.00	-26.92	

Note: 1.The formula of measured value as: Test Result = Reading + Correction Factor

2.The Correction Factor = Cable Loss + LISN Insertion Loss + Pulse Limit Loss

3.Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average

4.All not in the table noted test results are more than 20 dB below the relevant limits.

5.Measurement uncertainty = ± 1.10 dB; Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

6.Up Line: QP Limit Line, Down Line: Ave Limit Line.

Test equipment used: ETSTW-CE 001, ETSTW-CE 004, ETSTW-CE 006, ETSTW-RE 045, ETSTW-RE 064

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Appendix

Measurement diagrams

Spurious Emissions radiated

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Spurious Emissions radiated_ Transmitter TX-2407.5 MHz

Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

Note: 1 Th

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Antenna Polarization V

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

TX-2441.25 MHz

Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Antenna Polarization V

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

TX-2471.625 MHz

Antenna Polarization H

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Up Line: Peak Limit Line Down Line: Ave Limit Line Note:

Note: 1 The ett

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Antenna Polarization V

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.

Registration number: W6M21205-12430-C-1-T

FCC ID: V94-QBB-22-A

Up Line: Peak Limit Line Down Line: Ave Limit Line

- 1. The attached measurement plots are preliminarily pre-scanned with peak detector for determining the final checking frequencies and are for reference only.
- 2. The some frequencies may exceed the limit line without the specified detectors, but that cannot present the results are failed to the specification of test standard.
- 3. For corrected test results are listed in the relevant table of radiated test data of this test report.