

Identifying sequential changes in mean and variance within more complex model structures

Rebecca Killick (r.killick@lancs.ac.uk)
Joint work with: Thomas Grundy, Ivan Svetunkov (Lancaster University)
and Zhao Liu, Shan Islam and Michael Taylor (Royal Mail)
CMAF Oct 2021

Motivation

CMAF Oct 2021

Motivation

- Multiple seasonal frequencies
- Regressors for holiday periods
- Explanatory series
- Lagged dependencies

Motivation

CMAF Oct 2021

Problems

Automatically identifying changes in data requiring complex modelling is problematic:

- Most methods need to be able to fit the model after the change . . .
- ... leading to delays in online detection
- ... poor model estimation in short segments
- ... identifiability issues with changepoints close together
- ... inability to fit long seasonal frequencies (e.g. yearly)
- Those that don't are often restricted to mean/linear trend series only.

Allied problem

Causes of Poor Forecasts

A change in the underlying process (data) could cause our forecasting model to behave poorly!

Intuitively:

- Mean change in raw data → forecasts become biased.
- Variance change in raw data \rightarrow prediction intervals become poor.
- Other changes in raw data \rightarrow potential combination of biased and inaccurate prediction intervals.

Our Aim

Aim: Create a framework for detecting changes in complex models which doesn't require fitting the model to the post-change data.

Intuitively, changes in the raw data = forecasts become poor.

Solution: Use sequential forecast errors.

Bonus: This also provides a framework for identifying changes in forecast performance.

Changepoints

A changepoint is an abrupt structural change in the data, e.g.

Online Changepoints

Aim to detect change in ordered data as new data becomes available.

- Balance two performance measures:
 - 1. Detect changes as quickly as possible.
 - 2. Minimise false alarms.
- Algorithms are split into 2 phases:
 - 1. Training period data is assumed stable/stationary and we estimate model parameters (e.g. the mean).
 - 2. Monitoring period new data is arrives and we compare these to the training data to see if statistically different (e.g. a different mean).

Detecting Changes

Detector:

- Measures the difference between mean in training period and mean in monitoring period.
- CUSUM Detector: $Q(m, k) = \sum_{t=m+1}^{k} y_t \frac{k}{m} \sum_{t=1}^{m} y_t$.
- Page's CUSUM: $D(m, k) = \max_{0 \le t \le k} |Q(m, k) Q(m, t)|$

Stopping Rule:

- Defines a rule for when to flag a change.
- Typically when the detector exceeds some threshold.
- Threshold controls false positive rate.
- $\tau = \min\{k \ge 1 : D(m, k) \ge c\hat{\sigma}_m g(m, k)\}.$

Example

Solution

What about the forecast errors?

$$e_t = Y_t - \hat{y}_t(1)$$
, $Q(m, k) = \sum_{t=m+1}^k e_t - \frac{k}{m} \sum_{t=1}^m e_t$

• Forecasting model accounts for data complexities.

Variance Changes

Variance change in errors = Mean change in squared errors.

$$Q(m,k) = \sum_{t=m+1}^{k} (e_t - \mu_m)^2 - \frac{k}{m} \sum_{t=1}^{m} (e_t - \mu_m)^2.$$

Theory & Simulations

Theory: Under certain assumptions,

- Mean change in raw data \rightarrow mean change in forecast errors.
- \bullet Mean and/or variance change in raw data \to mean change in squared forecast errors.

Simulations:

- Using forecast errors performs better than raw CUSUM.
- Can also be used to detect changes in,
 - Trend.
 - Dependence structure.
 - Error structure.

Which detector is best?

CUSUM of Raw Forecast Errors:

- First-order changes ONLY e.g.,
 - Mean changes.
 - Trend changes

CUSUM of Squared Forecast Errors:

- Potential second-order changes,
 - Variance changes.
 - Mean and Variance changes.
 - Dependence structure changes.

A&E Admissions

- A&E Admissions with Gallstone related pathology
- Predicting admissions helps to manage workload
- Elective surgeries can be scheduled for quieter periods

TTP Project

- Forecast the no. of parcels being delivered from each delivery office.
- In each year and delivery office the Xmas rush starts at different times.
- We can use this framework to detect when the Xmas rush begins.

TTP Project

Threshold Choice

In many scenarios, the theoretical threshold is too conservative.

Potential Solution:

- 1. Simulate from known forecasting model.
- 2. Run algorithm on simulated null data.
- 3. Take the 95% quantile of the max CUSUM statistics.

TTP Project

Conclusion

Summary:

- Created a framework for detecting when/if forecasts become poor.
- Shown using forecast errors is better than the raw data for detecting changes.

Future work:

- Extension to multivariate forecasts.
- Consider alternative online changepoint methods.