U.S.N.

BMS College of Engineering, Bangalore-560019

(Autonomous Institute, Affiliated to VTU, Belgaum)

July / August 2017 Supplementary Semester Examinations

Course: Theoretical Foundations of Computation

Course Code: 15IS3DCTFC/ 15IS3DCTFE

Duration: 3 hrs

Max Marks: 100

Date: 31.07.2017

Instructions: 1. Answer any five full questions choosing one from each unit.

2. Assume missing data (if any) suitably

UNIT 1

1. a) Construct DFA for the languages

10

i. $L=\{ w \mid w \text{ has an even number of a's and one or two b's} \}$

ii. L={ $w \mid w \in \{a,b,c\}^*$ and w contains the pattern "abac"}

iii. L={ w | w is a binary string divisible by 4 }

b) Convert the following NFA to its equivalent DFA.

10

10

10

UNIT 2

- 2. a) What is regular expression? Convert the regular expressions to its equivalent automata.
 - i. a(ba)*a*U a(ba)*b*
 - ii. (0+1)*(011+01010)(0+1)*
 - b) Obtain the regular expression for the following DFA using Kleene's theorem.

3.	a) b)	Show that $L=\{a^nb^lc^{n+l} n, l \ge 0\}$ is not regular. Minimize the following DFA using Table-filling algorithm.	04 10
	-,	$\delta \mid 0 \mid 1$	
		A B E	
		B C F	
		*C D H	
		D E H	
		E F I	
		*F G B	
		G H B	
		H I C	
		*I A E	
	c)	Show that regular languages are closed under Intersection and Reversal. UNIT 3	06
4.	a)	Obtain CFG to generate the following languages	06
		i. L={ $(1010)(0101)^n(1001)(1100)^n \mid n \ge 0$ }	
		ii. $L=\{0^m1^m2^n \mid m \ge 1, n \ge 0\}$	
	b)	Consider the CFG with the productions	09
		$S \rightarrow S+S \mid S-S \mid S*S \mid S/S \mid (S) \mid a$	
		Write the leftmost derivation, rightmost derivation and parse tree for the strings	
		i. $(a+(a+a)) + (a+a)$ ii.) $a+(a*a)/a-a$	
	c)	Explain the YACC Parser-Generator with an example. OR	05
5.	a)	Show that the following CFG is ambiguous.	10
		$S \rightarrow aB \mid bA$	
		$A \rightarrow aS \mid bAA \mid a$	
		$B \rightarrow bS \mid aBB \mid b$	
	• .	Also obtain the leftmost derivation for the string "a³b²ab³a".	0.4
	b)	Eliminate useless symbols from the given grammar	04
		$S \rightarrow aAa$ $A \rightarrow Sb \mid bCC \mid DaA$	
		$A \rightarrow Sb \mid bCC \mid DaA$ $C \rightarrow abb \mid DD$	
		$E \rightarrow aC$	
		$D \rightarrow aDA$	
	c)	Find the grammar in CNF equivalent to the grammar	06
		$S \rightarrow \sim S \mid [S \supset S] \mid p \mid q$	
		UNIT 4	
6.	a)	Design a PDA for the following grammar	06
	ω,	$S \rightarrow aA$	00
		$A \rightarrow aABC \mid bB \mid a$	
		$B \rightarrow b$	
		$C \rightarrow c$	
	b)	Define Pushdown Automata. Obtain a PDA to accept the language	08
		L= $\{w \mid w \in (a,b)^* \text{ and } n_a(w) > n_b(w) \}$ by a final state.	

06 Obtain CFG for the PDA given below: c) $\delta(q_0, a, Z) = (q_0, AZ)$ $\delta(q_0, b, A) = (q_0, AA)$ $\delta(q_0\;,\,a,\,A)=(q_1,\,\epsilon)$ UNIT 5 Obtain Turing Machine to accept the language L= { $ww^R \mid w \in (0,1) *$ } 7. a) **10** Explain Post Correspondence Problem. Let A= {11,100,111} and B= {111,001,11} b) **10** Does the pair (A, B) have PC-Solution? Does it have an MPC solution? *****