ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ III КЛАССА, РАЗРЯДА 3 ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ

ОСНОВНЫЕ ПАРАМЕТРЫ ВИТКОВ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

ЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРУЖИНЫ ВИНТОВЫЕ ЦИЛИНДРИЧЕСКИЕ СЖАТИЯ III КЛАССА, РАЗРЯДА З ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ

Основные параметры витков

ГОСТ 13776—86

Cylindrical helical compression springs of III class and of 3 category made of round steel. Main parameters of coils

MKC 21.160 ОКСТУ 1243

Дата введения 01.07.88

Настоящий стандарт распространяется на пружины сжатия III класса, разряда 3 с силами при максимальной деформации пружины (F_3) от 6000 до 20000 H.

1. Основные параметры витков должны соответствовать указанным в таблице.

(Измененная редакция, Изм. № 1).

- 2. Пружины должны изготовляться из стали горячекатаной круглой по ГОСТ 2590 диаметром от 14 до 25 мм.

 3. Классификация пружин по ГОСТ 13764.

 - 4. Методика определения размеров пружин по ГОСТ 13765.

Номер позиции	Сила пружины при максимальной деформации F_3 , H	Диамстр проволоки <i>d</i> , мм	Наружный диаметр пружины D_1 , мм	Жесткость одного вигка c_1 , $H/мм$	Наибольший прогиб одного витка s_3' , мм
1	6000,0	14,0	180	82,38	72,82
2	6300,0 6700,0		170	99,38	63,39
3			160	121,1	55,34
4	7100,0		150	150,0	47,34
5	7100,0	16,0	210	88,05	80,63
6	- 7500,0	14,0	140	188,4	39,82
7		16,0	200	103,2	72,67
8	8000,0	14,0	130	241,4	33,14
9		16,0	190	121,8	65,66
10	8500,0	14,0	125	275,4	30,87
11		16,0	180	145,8	58,31
12	9000,0	14,0	120	316,6	28,43
13		16,0	170	176,0	51,12
14	9500,0	14,0	110	425,5	22,32
15		16,0	160	215,3	44,12
16		18,0	240	94,13	100,90
17	10000,0	14,0	105	500,1	19,99
18		16,0	150	267,2	37,43
19		18,0	220	125,0	80,01

Издание официальное

Перепечатка воспрещена

*

© Издательство стандартов, 1986 © ИПК Издательство стандартов, 2003

ГОСТ 13776—86 С. 2

Продолжение

Номер позиции	Сила пружины при максимальной деформации F_3 , Н	Диаметр проволоки d , мм	Наружный диаметр пружины D_1 , мм	Жесткость одного витка c_1 , $H/мм$	Наибольший прогиб одного витка s_3' , мм
20	10600,0	14,0	100	592,5	17,89
21		16,0	140	337,2	31,44
22		18,0	210	145,4	72,91
23	11200,0	14,0	95	709,2	15,79
24		16,0	130	434,9	25,75
25		18,0	200	170,9	65,54
26		20,0	260	113,5	99,69
27	11800,0	14,0	90	858,4	13,74
28		16,0	125	496,5	23,77
29		18,0	190	202,1	58,39
30		20,0	250	129,0	91,47
31		14,0	85	1054,0	11,87
32	12500,0	16,0	120	571,6	21,87
33		18,0	180	242,2	51,61
34	1	20,0	240	147,4	84,78
35	13200,0	14,0	80	1314,5	10,04
36		16,0	110	774,1	17,05
37		18,0	170	293,7	44,94
38	1	20,0	220	196,2	67,28
39		14,0	75	1657,0	8,45
40	14000,0	16,0	105	911,9	15,35
41	14000,0	18,0	100	359,6	38,92
42	1 [20,0	210	228,9	61,17
43		14,0	70	2146,0	6,989
44		16,0	100	1090,8	13,75
45	15000,0	18,0	150	447,7	33,50
46		20,0	200	269,1	55,66
47	1 Γ	22,0	280	133,6	112,20
48		16,0	95	1302,0	12,29
49	16000,0	18,0	140	566,5	28,24
50	10000,0	20,0	190	319,5	50,07
51		22,0	260	170,2	93,99
52		16,0	90	1591,0	10,68
53	17000,0	18,0	130	733,0	23,19
54		20,0	180	383,2	44,36
55	1	22,0	250	193,8	87,69
56		16,0	85	1960,0	9,18
57	18000,0	18,0	125	840,7	21,41
58	10000,0	20,0	170	465,0	38,71
59	7	22,0	240	221,5	81,28

Окончание

Номер позиции	Сила пружины при максимальной деформации F_3 , H	Диаметр проволоки <i>d</i> , мм	Наружный диаметр пружины D_1 , мм	Жесткость одного витка c_1 , $H/\text{мм}$	Наибольший прогиб одного витка s_3' , мм
60	19000,0	16,0	80	2453,0	7,747
61		18,0	120	970,5	19,58
62		20,0	160	572,0	33,21
63		22,0	220	295,8	64,25
64		25,0	320	149,3	127,20
65	20000,0	18,0	110	1323,0	15,19
66		20,0	150	714,5	27,99
67		22,0	210	346,1	57,78
68		25,0	300	184,2	108,60

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТЧИКИ

Б.А. Станкевич (руководитель темы); О.Н. Магницкий, д-р техн. наук; А.А. Косилов; Б.Н. Крю-ков; Е.А. Караштин, канд. техн. наук

- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 19.12.86 № 4019
- 3. Стандарт полностью соответствует СТ СЭВ 5616-86
- 4. **B3AMEH ΓOCT 13776-68**
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ΓΟCT 2590—88	2
ΓOCT 13764—86	3
ΓΟCT 13765—86	4

- 6. Ограничение срока действия снято по протоколу № 7—95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- 7. ИЗДАНИЕ (апрель 2003 г.) с Изменением № 1, утвержденным в ноябре 1988 г. (ИУС 2-89)

Редактор Р.С. Федорова Технический редактор О.Н. Власова Корректор Р.А. Ментова Компьютерная верстка Л.А. Круговой

Изд. лиц. № 02354 от 14.07.2000. Подписано в печать 15.05.2003. Усл. печ. л. 0,47. Уч.-изд. л. 0,40. Тираж 95 экз. С 10622. Зак. 137.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info@standards.ru Набрано и отпечатано в ИПК Издательство стандартов