Cryptographic Hash Functions

Message Digests

- Input to a hash function is called a pre-image
- Output of a hash function is a message digests, also known as hash codes or hash values
 - Sort of like a message fingerprint/footprint
- Hash functions are ONE-way
- They cannot be inverted

Properties of a Hash Function (H)

- 1. H can be applied to a block of data of any size
- 2. H produces a fixed-length output
- 3. H(x) is relatively easy to compute for any given x
- 4. For any given value h, it is computationally infeasible to find x such that H(x) = h (one-way)
- 5. For any given block x, it is computationally infeasible to find $y \neq x$ with H(y) = H(x) (weak collision resistance)

It is computationally infeasible to find any pair (x, y) such that

H(x) = H(y)

(strong collision resistance)

Attacks on Hash Functions

- First pre-image attack
 - O Given a hash h, find a message m such that H(m) = h
 - Think property #4
- Second pre-image attack
 - O Given a message m_1 , find a different message m_2 such that $H(m_2) = H(m_1)$
 - Cost: 2ⁿ where n = # of digest bits
 - Think property #5
- Collisions
 - Two messages both hash to the same value
 - Birthday Attack
 - o Given *n*-bit digest, birthday attack says that we'll find a match after $2^{n/2}$ attempts
 - Think property #6

253 people in a room

- Odds are good that one of them shares a birthday with you
 23 people in a room
- Odds are good that two people share a birthday

Useful Applications of Hashes

- Human-readable method to compare/verify data
 - File downloads
 - Testing/passing off Lab #1
- Chaining events together
- Digital signatures
- Fundamental building block of many secure protocols
 - Schneier (Secrets and Lies) "They are probably the single most useful tool in a cryptographer's toolbox"

Figure 3.4 Message Digest Generation Using SHA-1