Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Exercice 1: Matrice d'inertie d'un parallélépipède rectangle

Question 1: Déterminer les coordonnées du centre de gravité G du solide S dans le repère $(0, \overrightarrow{x_S}, \overrightarrow{y_S}, \overrightarrow{z_S})$

G est à l'intersection des 3 plans de symétrie du solide : $G\left(\frac{a}{2},\frac{b}{2},\frac{c}{2}\right)$

Question 2: Déterminer la matrice d'inertie I(G,S) de S en G

$$V=abc$$
 ; $m=
ho abc$; $dV=dxdydz$; Origine en G $I(G,S)=egin{bmatrix} A & -F & -E \ -F & B & -D \ -E & -D & C \end{bmatrix}_{G,\mathfrak{B}_S}=\cdots=egin{bmatrix} A & 0 & 0 \ 0 & B & 0 \ 0 & 0 & C \end{bmatrix}_{G,\mathfrak{B}_S}$

La matrice en G est diagonale car on a au moins deux plans de symétrie parmi $(G, \overrightarrow{x_S}, \overrightarrow{y_S})$, $(G, \overrightarrow{x_S}, \overrightarrow{z_S})$ et $(G, \overrightarrow{y_S}, \overrightarrow{z_S})$ (attention, le G est important, le point d'expression de la matrice sous forme simplifiée doit appartenir aux éléments de symétrie). Cela veut dire aussi D = E = F = 0

$$A = \int_{S} (y^{2} + z^{2}) dm = \int_{S} y^{2} \rho dV + \int_{S} z^{2} \rho dV$$

Attention : les bornes de l'intégrale doivent être centrées sur le point G.

$$A = \rho \int_{x=-\frac{a}{2}}^{\frac{a}{2}} \int_{y=-\frac{b}{2}}^{\frac{b}{2}} \int_{z=-\frac{c}{2}}^{\frac{c}{2}} y^{2} dx dy dz + \rho \int_{x=-\frac{a}{2}}^{\frac{a}{2}} \int_{y=-\frac{b}{2}}^{\frac{b}{2}} \int_{z=-\frac{c}{2}}^{\frac{c}{2}} z^{2} dx dy dz$$

$$A = \rho \int_{x=-\frac{a}{2}}^{\frac{a}{2}} dx \int_{y=-\frac{b}{2}}^{\frac{b}{2}} y^{2} dy \int_{z=-\frac{c}{2}}^{\frac{c}{2}} dz + \rho \int_{x=-\frac{a}{2}}^{\frac{a}{2}} dx \int_{y=-\frac{b}{2}}^{\frac{b}{2}} dy \int_{z=-\frac{c}{2}}^{\frac{c}{2}} z^{2} dz$$

$$A = \rho \frac{ac}{3} [y^{3}]_{-\frac{b}{2}}^{\frac{b}{2}} + \rho \frac{ab}{3} [z^{3}]_{-\frac{c}{2}}^{\frac{c}{2}} = \rho \frac{ac}{3} \frac{b^{3}}{4} + \rho \frac{ab}{3} \frac{c^{3}}{4} = \rho \frac{ab^{3}c}{12} + \rho \frac{abc^{3}}{12} = \frac{m}{12} (b^{2} + c^{2})$$

Par analogie:

$$B = \int_{S} (x^{2} + z^{2}) dm = \frac{m}{12} (a^{2} + c^{2}) \quad ; \quad C = \int_{S} (x^{2} + y^{2}) dm = \frac{m}{12} (a^{2} + b^{2})$$

$$I(G, S) = \begin{bmatrix} \frac{m}{12} (b^{2} + c^{2}) & 0 & 0\\ 0 & \frac{m}{12} (a^{2} + c^{2}) & 0\\ 0 & 0 & \frac{m}{12} (a^{2} + b^{2}) \end{bmatrix}_{G, \Re_{S}}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Question 3: Déterminer la matrice d'inertie $I({\bf 0},S)$ de S en ${\bf 0}$ en utilisant le théorème de Huygens généralisé

$$\overrightarrow{OG} = \begin{bmatrix} \frac{a}{2} \\ \frac{b}{2} \\ \frac{c}{2} \end{bmatrix}$$

$$I(O,S) = I(G,S) + m \begin{bmatrix} \frac{b^2 + c^2}{4} & -\frac{ab}{4} & -\frac{ac}{4} \\ -\frac{ab}{4} & \frac{a^2 + c^2}{4} & -\frac{bc}{4} \\ -\frac{ac}{4} & -\frac{bc}{4} & \frac{a^2 + b^2}{4} \end{bmatrix}_{\Re_S}$$

$$I(0,S) = \begin{bmatrix} \frac{m}{12}(b^2 + c^2) & 0 & 0\\ 0 & \frac{m}{12}(a^2 + c^2) & 0\\ 0 & 0 & \frac{m}{12}(a^2 + b^2) \end{bmatrix}_{G,\mathfrak{B}_S}$$

$$+ \begin{bmatrix} m\frac{b^2 + c^2}{4} & -\frac{m}{4}ab & -\frac{m}{4}ac\\ -\frac{m}{4}ab & m\frac{a^2 + c^2}{4} & -\frac{m}{4}bc\\ -\frac{m}{4}ac & -\frac{m}{4}bc & m\frac{a^2 + b^2}{4} \end{bmatrix}_{\mathfrak{B}_S}$$

$$\frac{m}{12} + \frac{m}{4} = \frac{4m}{12} = \frac{m}{3}$$

$$I(O,S) = \begin{bmatrix} \frac{m}{3}(b^2 + c^2) & -\frac{m}{4}ab & -\frac{m}{4}ac \\ -\frac{m}{4}ab & \frac{m}{3}(a^2 + c^2) & -\frac{m}{4}bc \\ -\frac{m}{4}ac & -\frac{m}{4}bc & \frac{m}{3}(a^2 + b^2) \end{bmatrix}_{O,\mathfrak{B}_S}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Question 4: Déterminer la matrice d'inertie I(0,S) de S en O par la méthode intégrale

On change l'origine du repère d'intégration, en ce point il est nécessaire de calculer tous les termes de la matrice (pas de symétrie passant par O) :

$$I(0,S) = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{0,\Re_S}$$

$$A = \int_S (y^2 + z^2) dm = \int_S y^2 \rho dV + \int_S z^2 \rho dV$$

$$A = \rho \int_{x=0}^a \int_{y=0}^b \int_{z=0}^c y^2 dx dy dz + \rho \int_{x=0}^a \int_{y=0}^b \int_{z=0}^c z^2 dx dy dz$$

$$A = \rho \int_{x=0}^a dx \int_{y=0}^b y^2 dy \int_{z=0}^c dz + \rho \int_{x=0}^a dx \int_{y=0}^b dy \int_{z=0}^c z^2 dz$$

$$A = \rho \frac{ab^3 c}{3} + \rho \frac{abc^3}{3} = \frac{m}{3} (b^2 + c^2)$$

Par analogie:

$$B = \frac{m}{3} (a^{2} + c^{2}) ; C = \frac{m}{3} (a^{2} + b^{2})$$

$$D = \int_{S} yzdm = \rho \int_{x=0}^{a} \int_{y=0}^{b} \int_{z=0}^{c} yzdxdydz = \rho \int_{x=0}^{a} dx \int_{y=0}^{b} ydy \int_{z=0}^{c} zdz$$

$$D = \rho a \frac{b^{2} c^{2}}{2} = \frac{m}{4} bc$$

Par analogie : $E = \frac{m}{4}ac$; $F = \frac{m}{4}ab$

Soit finalement:

$$I(O,S) = \begin{bmatrix} \frac{m}{3}(b^2 + c^2) & -\frac{m}{4}ab & -\frac{m}{4}ac \\ -\frac{m}{4}ab & \frac{m}{3}(a^2 + c^2) & -\frac{m}{4}bc \\ -\frac{m}{4}ac & -\frac{m}{4}bc & \frac{m}{3}(a^2 + b^2) \end{bmatrix}_{O,\mathfrak{B}_{S}}$$

Question 5: Pour chacune des situations proposées, donner l'expression de l'inertie J recherchée

$$J = \vec{z}.I(M,S)\vec{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{\mathfrak{B}_s}.\begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{\mathfrak{B}_s} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{\mathfrak{B}_s} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}^{\mathfrak{B}_s}.\begin{pmatrix} -E \\ -D \\ C \end{pmatrix}^{\mathfrak{B}_s} = C$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Question 6: Déterminer le moment d'inertie autour de cet axe

Exprimons le vecteur \overrightarrow{OA} dans \mathfrak{B}_s : $\overrightarrow{OA} = \begin{pmatrix} a \\ b \end{pmatrix}^{\mathfrak{B}_s}$

$$\vec{u} = \frac{1}{\sqrt{a^2 + b^2 + c^2}} \binom{a}{b}^{\mathfrak{B}_s}$$

Penser au fait que $\it G$ est sur la droite OA :

$$I = \vec{u}.I(G,S)\vec{u} = \vec{u}.I(A,S)\vec{u}$$

$$I = \frac{1}{\sqrt{a^2 + b^2 + c^2}} \binom{a}{b}^{\mathfrak{B}_s} \cdot \begin{bmatrix} \frac{m}{12} (b^2 + c^2) & 0 & 0\\ 0 & \frac{m}{12} (a^2 + c^2) & 0\\ 0 & 0 & \frac{m}{12} (a^2 + b^2) \end{bmatrix}_{0,\mathfrak{B}_s} \frac{1}{\sqrt{a^2 + b^2 + c^2}} \binom{a}{b}^{\mathfrak{B}_s}$$

$$I = \frac{1}{a^2 + b^2 + c^2} \binom{a}{b}^{\mathfrak{B}_s} \cdot \binom{\frac{m}{12}(b^2 + c^2)a}{\frac{m}{12}(a^2 + c^2)b}$$

$$I = \frac{1}{a^2 + b^2 + c^2} \cdot \left(\frac{m}{12} (b^2 + c^2) a^2 + \frac{m}{12} (a^2 + c^2) b^2 + \frac{m}{12} (a^2 + b^2) c^2 \right)$$
$$I = \frac{1}{a^2 + b^2 + c^2} \frac{m}{12} (2a^2b^2 + 2a^2c^2 + 2b^2c^2)$$

$$I = \frac{m}{6} \frac{a^2b^2 + a^2c^2 + b^2c^2}{a^2 + b^2 + c^2}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Sinon avec la matrice en $A \otimes$:

$$I = \frac{1}{\sqrt{a^2 + b^2 + c^2}} \binom{a}{b}^{\mathfrak{B}_5} \cdot \begin{bmatrix} \frac{m}{3} (b^2 + c^2) & -\frac{m}{4} ab & -\frac{m}{4} ac \\ -\frac{m}{4} ab & \frac{m}{3} (a^2 + c^2) & -\frac{m}{4} bc \\ -\frac{m}{4} ac & -\frac{m}{4} bc & \frac{m}{3} (a^2 + b^2) \end{bmatrix}_{o,\mathfrak{B}_5} \cdot \begin{bmatrix} 1 \\ \frac{m}{a^2 + b^2 + c^2} \binom{a}{b} \end{bmatrix}_{o,\mathfrak{B}_5}^{\mathfrak{B}_5} \cdot \begin{bmatrix} \frac{m}{3} (b^2 + c^2) a - \frac{m}{4} abb - \frac{m}{4} acc \\ -\frac{m}{4} aba + \frac{m}{3} (a^2 + c^2) b - \frac{m}{4} bcc \\ -\frac{m}{4} aca - \frac{m}{4} bcb + \frac{m}{3} (a^2 + b^2) c \end{bmatrix}$$

$$I = \frac{1}{a^2 + b^2 + c^2} \left(\frac{m}{3} (b^2 + c^2) a - \frac{m}{4} abb - \frac{m}{4} acc \right) a + \left(-\frac{m}{4} aba + \frac{m}{3} (a^2 + c^2) b - \frac{m}{4} bcc \right) b + \left(-\frac{m}{4} aca - \frac{m}{4} bcb + \frac{m}{3} (a^2 + b^2) c \right) c$$

$$I = \frac{1}{a^2 + b^2 + c^2} \left(\frac{m}{3} (b^2 + c^2) a^2 - \frac{m}{4} ab^2 b^2 - \frac{m}{4} a^2 c^2 \right) + \left(-\frac{m}{4} a^2 b^2 + \frac{m}{3} (a^2 + c^2) b^2 - \frac{m}{4} b^2 c^2 \right) + \left(-\frac{m}{4} a^2 c^2 - \frac{m}{4} b^2 c^2 \right) + \left(-\frac{m}{4} a^2 b^2 + \frac{m}{3} (a^2 + c^2) b^2 - \frac{m}{4} b^2 c^2 \right) + \left(-\frac{m}{4} a^2 c^2 - \frac{m}{4} b^2 c^2 + 2a^2 c^2 + 2b^2 c^2 \right) - \frac{m}{4} (2a^2 b^2 + 2a^2 c^2 + 2b^2 c^2)$$

$$I = \frac{1}{a^2 + b^2 + c^2} \frac{m}{3} (2a^2 b^2 + 2a^2 c^2 + 2b^2 c^2) - \frac{m}{4} (2a^2 b^2 + 2a^2 c^2 + 2b^2 c^2) m$$

$$I = \frac{1}{a^2 + b^2 + c^2} \left(\frac{1}{6} - \frac{3}{6} \right) (a^2 b^2 + a^2 c^2 + b^2 c^2) m$$

$$I = \frac{m}{6} \frac{a^2 b^2 + a^2 c^2 + b^2 c^2}{a^2 + b^2 + c^2}$$

Il y aurait une solution lourde consistant à changer la matrice de base pour que \vec{u} soit l'un des 3 vecteurs de sa base... On prendrait alors le terme diagonal associé à ce vecteur.

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Exercice 2: Matrice d'inertie d'un cylindre

Question 1: Déterminer les coordonnées du centre de gravité G du solide S dans le repère $(O, \overrightarrow{x_s}, \overrightarrow{y_s}, \overrightarrow{z_s})$

G est à l'intersection des plans de symétrie verticaux et du plan médian horizontal du solide : $G\left(0,0,\frac{H}{2}\right)$

Question 2: Déterminer la matrice d'inertie I(G,S) de S en G

$$V = \pi R^2 H \quad ; \quad m = \rho \pi R^2 H \quad ; \quad dV = r dr d\theta dz$$
 Origine en G
$$x = r \cos \theta \quad ; \quad y = r \sin \theta$$

$$I(G,S) = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{G,\mathfrak{B}_S}$$

On a une symétrie de révolution autour de l'axe $(G, \overrightarrow{z_s})$:

$$A = B = \frac{C}{2} + \int_{S} z^{2} dm$$

$$C = \int_{S} (x^{2} + y^{2}) dm = \int_{S} r^{2} dm = \rho \int_{S} r^{2} dV = \rho \int_{r=0}^{R} r^{3} dr \int_{\theta=0}^{2\pi} d\theta \int_{z=-\frac{H}{2}}^{\frac{H}{2}} dz$$

$$C = \rho \frac{R^{4}}{4} 2\pi H = \rho \pi H R^{2} \frac{R^{2}}{2} = m \frac{R^{2}}{2}$$

$$\int_{S} z^{2} dm = \rho \int_{r=0}^{R} r dr \int_{\theta=0}^{2\pi} d\theta \int_{z=-\frac{H}{2}}^{\frac{H}{2}} z^{2} dz = \rho 2\pi \frac{R^{2}}{2} \left[\frac{z^{3}}{3} \right]_{-\frac{H}{2}}^{\frac{H}{2}} = \rho \pi \frac{R^{2}}{3} \frac{2H^{3}}{8} = \rho \pi R^{2} H \frac{H^{2}}{12} = m \frac{H^{2}}{12}$$

$$A = B = \frac{C}{2} + \int_{S} z^{2} dm = m \left(\frac{R^{2}}{4} + \frac{H^{2}}{12} \right)$$

$$0 \qquad 0$$

$$I(G,S) = \begin{bmatrix} m \left(\frac{R^{2}}{4} + \frac{H^{2}}{12} \right) & 0 & 0 \\ 0 & m \left(\frac{R^{2}}{4} + \frac{H^{2}}{12} \right) & 0 \\ 0 & 0 & m \frac{R^{2}}{2} \end{bmatrix}_{G,8}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Question 3: Donner la forme de la matrice I(A, S)

Plan de symétrie (A, \vec{y}, \vec{z}) , donc :

$$I(A,S) = \begin{bmatrix} A & 0 & 0 \\ 0 & B & -D \\ 0 & -D & C \end{bmatrix}_{0,\mathfrak{B}_{S}}$$

Question 4: Déterminer la matrice d'inertie I(A,S) de S en A en utilisant le théorème de Huygens généralisé

$$\overrightarrow{GA} = \begin{bmatrix} 0 \\ -R \\ \frac{H}{2} \end{bmatrix}^{\mathfrak{B}_{S}} ; \quad I(A,S) = I(G,S) + m \begin{bmatrix} R^{2} + \frac{H^{2}}{4} & 0 & 0 \\ 0 & \frac{H^{2}}{4} & -\frac{RH}{2} \\ 0 & -\frac{RH}{2} & R^{2} \end{bmatrix}_{\mathfrak{B}_{S}}$$

$$I(A,S) = \begin{bmatrix} m\left(\frac{R^{2}}{4} + \frac{H^{2}}{12}\right) & 0 & 0 \\ 0 & m\left(\frac{R^{2}}{4} + \frac{H^{2}}{12}\right) & 0 \\ 0 & 0 & m\frac{R^{2}}{2} \end{bmatrix}_{G,\mathfrak{B}_{S}} + m \begin{bmatrix} R^{2} + \frac{H^{2}}{4} & 0 & 0 \\ 0 & \frac{H^{2}}{4} & -\frac{RH}{2} \\ 0 & -\frac{RH}{2} & R^{2} \end{bmatrix}_{\mathfrak{B}_{S}}$$

$$I(A,S) = \begin{bmatrix} m\left(\frac{R^{2}}{4} + \frac{H^{2}}{12} + R^{2} + \frac{H^{2}}{4}\right) & 0 & 0 \\ 0 & m\left(\frac{R^{2}}{4} + \frac{H^{2}}{12} + \frac{H^{2}}{4}\right) & -m\frac{RH}{2} \\ 0 & -m\frac{RH}{2} & m\left(\frac{R^{2}}{2} + R^{2}\right) \end{bmatrix}_{O,\mathfrak{B}_{S}}$$

$$I(A,S) = \begin{bmatrix} m\left(\frac{5}{4}R^{2} + \frac{H^{2}}{3}\right) & 0 & 0 \\ 0 & m\left(\frac{R^{2}}{4} + \frac{H^{2}}{3}\right) & -m\frac{RH}{2} \\ 0 & -m\frac{RH}{2} & m\frac{3}{2}R^{2} \end{bmatrix}_{O,\mathfrak{B}_{S}}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Question 5: Que pensez-vous de la méthode de calcul intégral pour déterminer I(A,S)

Le calcul de I(A,S) par méthode intégrale va nécessiter de placer le centre du repère en A, ce qui rend les bornes complexes...

$$\int_{S} dm = \rho \int_{\theta = -\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{r=0}^{f(\theta)} r dr \, d\theta \int_{z=-\frac{H}{2}}^{\frac{H}{2}} dz \quad ; \quad f(\theta) = ???$$

$$\int_{S} dm = \rho \int_{x=0}^{2R} \int_{y=0-f(x)}^{f(x)} y dy \, d\theta \int_{z=-\frac{H}{2}}^{\frac{H}{2}} dz \quad ; \quad f(x) = \sqrt{R^{2} - (R-x)^{2}}$$

Question 6: Pour chacune des situations proposées, donner l'expression de l'inertie J recherchée

Question 7: Donner finalement la matrice d'inertie I(G,S) d'un cylindre S de CDG G de révolution d'axe (G,x)

Il suffit d'adapter la diagonale :

$$I(G,S) = \begin{bmatrix} m\frac{R^2}{2} & 0 & 0\\ 0 & m\left(\frac{R^2}{4} + \frac{H^2}{12}\right) & 0\\ 0 & 0 & m\left(\frac{R^2}{4} + \frac{H^2}{12}\right) \end{bmatrix}_{G,\mathfrak{B}_S}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Exercice 3: Matrice d'inertie d'une sphère

Question 1: Déterminer les coordonnées du centre de gravité G du solide S dans le repère $(O, \overrightarrow{x_s}, \overrightarrow{y_s}, \overrightarrow{z_s})$

G est à l'intersection d'une infinité de plans de symétrie passant par O: G = 0(0,0,0)

Question 2: Déterminer la matrice d'inertie I(G,S) de S en G

$$V = \frac{4}{3}\pi R^3 \quad ; \quad m = \rho \frac{4}{3}\pi R^3 \quad ; \quad dV = r^2 \sin\psi \, dr d\theta d\psi$$
 Origine en G
$$x = r \sin\psi \cos\theta \quad ; \quad y = r \sin\psi \sin\theta \quad ; \quad z = r \cos\psi$$

$$I(G,S) = \begin{bmatrix} A & -F & -E \\ -F & B & -D \\ -E & -D & C \end{bmatrix}_{G,\mathfrak{B}_S}$$

On a une symétrie sphérique autour du point G:

$$D = E = F = 0$$

$$A = B = C = \frac{2}{3}I_G = \frac{2}{3}\int_S (x^2 + y^2 + z^2)dm = \frac{2}{3}\int_S r^2dm$$

$$I_G = \int_S r^2 dm = \rho \int_{r=0}^R r^4 dr \int_{\theta=0}^{2\pi} d\theta \int_{\psi=0}^{\pi} d\psi = \rho \int_S r^4 \sin\psi \, dr d\theta d\psi$$

$$I_G = \rho \int_0^R r^4 dr \int_0^{\pi} \sin\psi \, d\psi \int_0^{2\pi} d\theta$$

$$I_G = \rho \frac{R^5}{5} [-\cos\psi]_0^{\pi} 2\pi = \rho \frac{4}{5}\pi R^5 = \frac{3}{5}\rho \frac{4}{3}\pi R^3 R^2 = \frac{3}{5}mR^2$$

$$A = B = C = \frac{2}{3}I_G = \frac{23}{35}mR^2 = \frac{2}{5}mR^2$$

$$I(G,S) = \begin{bmatrix} \frac{2}{5}mR^2 & 0 & 0 \\ 0 & \frac{2}{5}mR^2 & 0 \\ 0 & 0 & \frac{2}{5}mR^2 \end{bmatrix}_{G,\mathfrak{B}_S}$$

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Mauvaise méthode:

$$A = B = C = \int_{S} (x^{2} + y^{2}) dm = \int_{S} r^{2} \sin^{2} \psi \, dm = \rho \int_{S} r^{2} \sin^{2} \psi \, r^{2} \sin \psi \, dr d\theta d\phi$$

$$= \rho \int_{S} r^{4} \sin^{3} \psi \, dr d\theta d\psi = \rho \int_{r=0}^{R} r^{4} dr \int_{\theta=0}^{2\pi} d\theta \int_{\psi=0}^{\pi} \sin^{3} \psi \, d\psi = \rho 2\pi \frac{R^{5}}{5} \int_{0}^{\pi} \sin^{3} \psi \, d\psi$$

$$\int_{0}^{\pi} \sin^{3} \psi \, d\psi = \int_{0}^{\pi} \sin \psi \sin^{2} \psi \, d\psi = \int_{0}^{\pi} \sin \psi \, (1 - \cos^{2} \psi) d\psi$$

$$u = \cos \psi \; ; \; du = -\sin \psi \, d\psi$$

$$\int_{0}^{\pi} \sin^{3} \psi \, d\psi = -\int_{1}^{-1} (1 - u^{2}) du = \int_{1}^{-1} (u^{2} - 1) du = \left[u - \frac{u^{3}}{3} \right]_{-1}^{1} = 1 - \frac{1}{3} + 1 - \frac{1}{3} = 2 - \frac{2}{3} = \frac{4}{3}$$

$$A = B = C = \rho \frac{4}{3} \pi R^{3} 2 \frac{R^{2}}{5} = \frac{2}{5} m R^{2}$$

Question 3: Déterminer la matrice d'inertie I(A,S) de S en A en utilisant le théorème de Huygens généralisé

$$\overrightarrow{GA} = \begin{bmatrix} 0 \\ -R \\ 0 \end{bmatrix}^{\mathfrak{B}_{S}} ; \quad I(O,S) = I(G,S) + m \begin{bmatrix} R^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & R^{2} \end{bmatrix}_{\mathfrak{B}_{S}}$$

$$I(A,S) = \begin{bmatrix} \frac{2}{5}mR^{2} & 0 & 0 \\ 0 & \frac{2}{5}mR^{2} & 0 \\ 0 & 0 & \frac{2}{5}mR^{2} \end{bmatrix}_{G,\mathfrak{B}_{S}} + m \begin{bmatrix} R^{2} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & R^{2} \end{bmatrix}_{\mathfrak{B}_{S}}$$

$$I(A,S) = \begin{bmatrix} \frac{7}{5}mR^{2} & 0 & 0 \\ 0 & \frac{2}{5}mR^{2} & 0 \\ 0 & 0 & \frac{7}{5}mR^{2} \end{bmatrix}_{O,\mathfrak{B}_{S}}$$

Question 4: Que pensez-vous de la méthode de calcul intégral pour déterminer I(A,S)

Le calcul de I(A,S) par méthode intégrale va nécessiter de placer le centre du repère en A, ce qui rend les bornes complexes...

Question 5: Pour chacune des situations proposées, donner l'expression de l'inertie J recherchée

Dernière mise à jour	MECA 2	Denis DEFAUCHY
16/11/2022	Dynamique	TD1 - Correction

Exercice 4: Questions de concours

Question 1: X-ENS PSI 2018 - Questions 23-24

Question 23:

On a un seul plan de symétrie, celui de la coupe de la figure, soit $(0, \vec{x}, \vec{z})$ de normale \vec{y} , donc :

$$I(A,S) = \begin{bmatrix} A & \mathbf{0} & -E \\ \mathbf{0} & B & \mathbf{0} \\ -E & \mathbf{0} & C \end{bmatrix}_{O.85c}$$

Question 24:

Si on néglige l'excentricité R_{orb} (il vaut 8mm, ce qui effectivement donnera un terme E faible), on a un nouveau plan de symétrie (O, \vec{y}, \vec{z}) , la matrice est diagonale.

Quelques éléments numériques : $E = \int_S xzdm = \int_{x>0} xzdm + \int_{x<0} xzdm$. Ces deux intégrales seraient opposées si X_{G_1} était nul et E serait nul. Compte tenu des dimensions, E sera petit devant les autres termes.

Question 2: Justifier mathématiquement l'hypothèse de considérer le centre de gravité sur l'axe

J'appelle 1 la partie de gauche (cylindre diamètre D1 + bobinage) de symétrie de révolution dont le $X_{G_1} = 0$ (CDG sur l'axe), et 2 la partie excentrée :

$$X_G = \frac{m_1 X_{G_1} + m_2 X_{G_1}}{m_1 + m_2} = \frac{m_2}{m_1 + m_2} R_{orb}$$

A la fois $\frac{m_2}{m_1+m_2}$ est petit devant 1, et $X_{G_1}=R_{orb}=8mm$, donc $X_G\approx 0$

Question 3: E3A PSI 2017- Question I4

Dans l'ordre:

- Plans de symétrie (A, \vec{x}, \vec{y}) et (A, \vec{y}, \vec{z}) donc matrice diagonale. Les termes hors diagonaux sont donc nuls
- Symétrie de révolution autour de (A, \vec{z}) donc « A = B »
- Dans toute base contenant \vec{z} , mais la question est mal posée, car il faut que la matrice soit exprimée en un point de l'axe de révolution

Attention: ne pas utiliser le mot « rotation », mais bien « révolution ».