数理逻辑基础 作业 1

练习 1. 1. 列出以下复合命题的真值表. (其中支命题 p,q,r,s 视为问题变元.)

$$7^{\circ} \ (\neg p \land q) \to (\neg q \land r)$$

$$8^{\circ} \ (p \to q) \to (p \to r)$$

 $9^{\circ} \neg (p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$

解: 7°

(¬	p	\wedge	q)	\rightarrow	(¬	q	\wedge	r)
1	0	0	0	l	1			
1	0	0	0	1				
1	0		1		0			0
1	0	1	1	0	0	1	0	1
0	1	0	0	1	1	0	0	0
0	1	0	0	1	1	0	1	1
0	1	0	1		0			0
0	1	0	1	1	0	1	0	1

8°

(p	\rightarrow	q)	\rightarrow	(p	\rightarrow	r)
0	1	0	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	0
0	1	1	1	0	1	1
1	0	0	1	1	0	0
1	0	0	1	1	1	1
1	1	1	0	1	0	0
1	1	1	1	1	1	1

9°

\neg	(p	V	(q	\wedge	r))	\longleftrightarrow	((p	V	q)	\wedge	(p	V	r))
1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	1	1	0	0	0	0
0	0	1	1	1	1	0	0	1	1	1	0	1	1
0	1	1	0	0	0	0	1	1	0	1	1	1	0
0	1	1	0	0	1	0	1	1	0	1	1	1	1
0	1	1	1	0	0	0	1	1	1	1	1	1	0
0	1	1	1	1	1	0	1	1	1	1	1	1	1

练习 2. 2. 写出由 $X_2 = \{x_1, x_2\}$ 生成的公式集 $L(X_2)$ 的三个层次: L_0 , L_1 和 L_2 .

解:

$$L_0 = X_2 = \{x_1, x_2\} \tag{2.1}$$

$$L_1 = \{ \neg x_1, \neg x_2, x_1 \to x_1, x_1 \to x_2, x_2 \to x_1, x_2 \to x_2 \}$$
(2.2)

$$L_{2} = \{ \neg (\neg x_{1}), \neg (\neg x_{2}), \\ \neg (x_{1} \to x_{1}), \neg (x_{1} \to x_{2}), \neg (x_{2} \to x_{1}), \neg (x_{2} \to x_{2}), \\ x_{1} \to (\neg x_{1}), x_{1} \to (\neg x_{2}), x_{2} \to (\neg x_{1}), x_{2} \to (\neg x_{2}), \\ (\neg x_{1}) \to x_{1}, (\neg x_{1}) \to x_{2}, (\neg x_{2}) \to x_{1}, (\neg x_{2}) \to x_{2}, \\ x_{1} \to (x_{1} \to x_{1}), x_{1} \to (x_{1} \to x_{2}), x_{1} \to (x_{2} \to x_{1}), x_{1} \to (x_{2} \to x_{2}), \\ x_{2} \to (x_{1} \to x_{1}), x_{2} \to (x_{1} \to x_{2}), x_{2} \to (x_{2} \to x_{1}), x_{2} \to (x_{2} \to x_{2}), \\ (x_{1} \to x_{1}) \to x_{1}, (x_{1} \to x_{2}) \to x_{1}, (x_{2} \to x_{1}) \to x_{1}, (x_{2} \to x_{2}) \to x_{1},$$

$$(2.3)$$

 $(x_1 \to x_1) \to x_2, (x_1 \to x_2) \to x_2, (x_2 \to x_1) \to x_2, (x_2 \to x_2) \to x_2$

练习 3. 2. 写出以下公式在 L 中的"证明"

$$1^{\circ} (x_1 \to x_2) \to ((\neg x_1 \to \neg x_2) \to (x_2 \to x_1))$$

$$2^{\circ} ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3))$$

解: 1°证明如下

$$(1) (\neg x_1 \rightarrow \neg x_2) \rightarrow (x_2 \rightarrow x_1) \tag{L3}$$

(2)
$$((\neg x_1 \to \neg x_2) \to (x_2 \to x_1)) \to ((x_1 \to x_2) \to ((\neg x_1 \to \neg x_2) \to (x_2 \to x_1)))$$
 (L1)

(3)
$$(x_1 \to x_2) \to ((\neg x_1 \to \neg x_2) \to (x_2 \to x_1))$$
 (1), (2), MP

2°证明如下

(1)
$$(x_1 \to (x_2 \to x_3)) \to ((x_1 \to x_2) \to (x_1 \to x_3))$$
 (L2)

(2)
$$(x_1 \to (x_2 \to x_3)) \to ((x_1 \to x_2) \to (x_1 \to x_3)) \to (((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3)))$$
 (L2)

$$(3) ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_2)) \to ((x_1 \to (x_2 \to x_3)) \to (x_1 \to x_3))$$

$$(1), (2), MP$$

练习 3. 3. 证明下面的结论

$$2^{\circ} \{\neg \neg p\} \vdash p$$

$$3^{\circ} \ \{p \rightarrow q, \neg (q \rightarrow r) \rightarrow \neg p\} \vdash p \rightarrow r$$

$$4^{\circ} \{p \to (q \to r)\} \vdash q \to (p \to r)$$

解: 2° 证明如下

(1) ¬¬p 假定

$$(2) \neg \neg p \to (\neg \neg \neg \neg p \to \neg \neg p) \tag{L1}$$

(3) $\neg\neg\neg\neg p \rightarrow \neg\neg p$

$$(4) (\neg\neg\neg\neg p \to \neg\neg p) \to (\neg p \to \neg\neg\neg p) \tag{L3}$$

(5) $\neg p \rightarrow \neg \neg \neg p$

$$(6) (\neg p \to \neg \neg \neg p) \to (\neg \neg p \to p) \tag{L3}$$

(7) $\neg \neg p \rightarrow p$

(8) p (1), (7), MP

3°证明如下

(1) $\neg (q \to r) \to \neg p$ 假定

$$(2) (\neg (q \to r) \to \neg p) \to (p \to (q \to r)) \tag{L3}$$

(3) $p \rightarrow (q \rightarrow r)$

$$(4) \quad (p \to (q \to r)) \to ((p \to q) \to (p \to r)) \tag{L2}$$

 $(5) (p \to q) \to (p \to r) \tag{3}, (4), MP$

(6) $p \to q$ 假定

(7)
$$p \to r$$

4°证明如下

(1) $p \to (q \to r)$ 假定

$$(2) \quad (p \to (q \to r)) \to ((p \to q) \to (p \to r)) \tag{L2}$$

 $(3) (p \rightarrow q) \rightarrow (p \rightarrow r)$ (1), (2), MP

$$(4) ((p \to q) \to (p \to r)) \to (q \to ((p \to q) \to (p \to r)))$$
(L1)

(5)
$$q \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$
 (3), (4), MP

$$(6) (q \to ((p \to q) \to (p \to r))) \to (q \to (p \to q)) \to (q \to (p \to r))$$
(L2)

$$(7) \quad (q \to (p \to q)) \to (q \to (p \to r)) \tag{5}, (6), MP$$

$$(8) q \to (p \to q)$$
 (L1)

(9)
$$q \to (p \to r)$$

练习 4. 2. 利用演绎定律证明以下公式是 L 的定理.

$$2^{\circ} (q \to p) \to (\neg p \to \neg q).$$
 (换位律)

$$3^{\circ}$$
 $((p \to q) \to p) \to p$. (Peirce 律)

解: 2° 根据演绎定理, 只需要证明 $\{q \to p\} \vdash \neg p \to \neg q$. 下面是 $\neg p \to \neg q$ 从 $\{q \to p\}$ 的证明:

$$(1)$$
 $q \to p$ 假定

$$(2)$$
 $\neg \neg q \rightarrow q$ 双重否定律

(3)
$$\neg \neg q \rightarrow p$$

$$(4)$$
 $p \rightarrow \neg \neg p$ 第二双重否定律

(5)
$$\neg \neg q \rightarrow \neg \neg p$$

$$(6) (\neg \neg q \to \neg \neg p) \to (\neg p \to \neg q) \tag{L3}$$

(7)
$$\neg p \rightarrow \neg q$$

3° 根据演绎定理, 只需要证明 $\{(p \to q) \to p\} \vdash p$. 下面是 $p \notin \{(p \to q) \to p\}$ 的证明:

$$(1)$$
 $(p \to q) \to p$ 假定

$$(2)$$
 $\neg p \rightarrow (p \rightarrow q)$ 否定前件律

(3)
$$\neg p \rightarrow p$$

$$(4)$$
 $(\neg p \rightarrow p) \rightarrow p$ 否定肯定律

(5)
$$p$$
 (3), (4), MP

练习 5. 1. 证明

$$2^{\circ} \vdash (\neg p \to q) \to (\neg q \to p)$$

$$3^{\circ} \vdash \neg(p \to q) \to \neg q$$

解: 2° 由演绎定律, 只需要证明 $\{\neg p \to q, \neg q\} \vdash p$. 用反证律, 把 $\neg p$ 作为新假定. 以下公式从 $\{\neg p \to q, \neg q, \neg p\}$ 都是可证的.

(1) ¬p 新假定

(2) $\neg p \rightarrow q$ 假定

(3) q (1), (2), MP

(4) ¬q 假定

由 (3), (4) 用反证律即得 $\{\neg p \rightarrow q, \neg q\} \vdash p$.

 3° 由演绎定律,只需要证明 $\{\neg(p \to q)\} \vdash \neg q$. 用归谬律,把 q 作为新假定. 以下公式从 $\{\neg(p \to q), q\}$ 都是可证的.

(1) q 新假定

$$(2) \quad q \to (p \to q) \tag{L1}$$

(3) $p \rightarrow q$

(4) $\neg(p \rightarrow q)$ 假定

由 (3), (4) 用归谬律即得 $\{\neg(p \rightarrow q)\} \vdash \neg q$.