Boolean function simplification using k-map

• gray code is used to numbers the rows and columns of a k-map. Consider a 3-variable k-map.

C^{AI}	3 00	01	11	10
0	0	2	6	4
1	1	3	7	5

Box numbers are entered in the boxes

- A box which can not be combined with any other box is circled as a single box combination
- 2-box combinations for box-0
- i. 0-2 (physically touching horizontally)
- ii. 0-1 (,, vertically as well as mirror image)
- iii. 0-4 (Mirror image)

For box -6

- i. 6-4 (physically touching horizontally)
- ii. 6-2 (,, ,, as well as mirror image)
- iii. 6-7 (,, ,, vertically)
- 4 box combination <u>for box-0</u>
- i. 0-2-1-3 [1-3 is mirror image of 0-2]
- ii. 0-2-6-4 [6-4 ,, ,, ,,]
- iii. 0-1-4-5 [4-5 ,, ,, 0-1]

For box -6

i. 6-4-7-5

ii. 6-2-3-7

iii. 6-4-2-0

• Only one 8-box combination 0-1-2-3-4-5-6-7

CD\AH	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

4- variable k-map

- A box which con not be combined with any other box is considered as <u>single</u>—box combination.
- 2-box combinations

For box 0		For box-7		
i.	0-4	7-15		
ii.	0-1	7-5		
iii.	0-8	7-6		
iv.	0-2	7-3		

4-box combinations

For box-0

for box-7

(1) 0-4-2-6

(1) 7-15-6-14

(2) 0-1-8-9

(2) 7-15-11-3

(3) 0-8-2-10

(3) 7-15-5-13

(4) 0-4-1-5

(4) 7-6-5-4

(5) 0-4-12-8

(5) 7-3-15-11

(6) 0-1-3-2

- (6) 7-3-1-5
- 8-box combinations

For box-0

- (1) 0-4-12-8-1-5-13-9
- (2) 0-4-12-8-2-6-14-10
- (3) 0-4-1-5-3-7-2-6
- (4) 0-1-3-2-8-9-11-10
- only one 16-box combination

For box-7

- (1) 7-3-15-11-2-6-14-10
- (2) 7-5-6-4-0-1-2-3
- (3) 7-3-15-11-1-5-13-9
- (4) 7-4-5-6-12-13-14-15

Ex:- Simplify the following Boolean function using k-map

$$F(A,B,C) = AB + \overline{AC} + BC$$
$$= \sum m(1,3,6,7)$$

Sol:-

C^{AI}	00	01	11	10
0			1	
1	1	\Box		

Grouping rules:

- i. All single box combinations
- ii. 2-box single way combination
- iii. 4-box ", ",
- iv. 8-box ,, ,, ,,
- v. 16-box ,, ,, ,,
- vi. If any minterms are left, combine those minterms with max possible number of boxes.
- \therefore The simplified Boolean expression $f(A, B, C) = AB + \overline{AC}$

Ex. : Simplify the <u>following Boolean functions using k-map</u>. $f(A,B,C,D)=AB\overline{C}+BCD+B$

Sol. The given Boolean function can be expressed as sum of minterms as follows:

$$\therefore f(A, B, C, D) = \sum m(4, 5, 6, 7, 12, 13, 14, 15)$$

CD AB 00	01	11	10
00	(1	<u> </u>	388
01	1	1	
11	1	1	5 3 20 5320
10	I	1)	

 \therefore The simplified Boolean expression f(A, B, C, D) = B