Data-Driven Recipe Selection

Predicting High-traffic Content For Enhanced User Engagement

Challenge:

Currently, the recipes displayed on the homepage generate high traffic to the rest of the website around 60% of the time, and it's done through an arbitrary and manual process.

Objective:

Build a Machine Learning Algorithm that can correctly predict high-traffic recipes at least 80% of the time, while minimizing the likelihood of recommending unpopular recipes

Information About the Data

After cleaning and Validation, the Dataset contained **895** different recipes grouped into **10 different categories**.

Each recipe's traffic generation was classified as one of two options (classes):

'High' Class:

- Recipes that **increased traffic** on the website.

'Other' Class:

 Recipes that provided little to no increase of traffic on the website.

Exploratory Data Analysis: Recipe Categories

Distribution of Recipes by Category

'Chicken', 'Breakfast' and 'Beverages' are the most common recipe categories, representing around 40% of the entire dataset.

Percentage of High-traffic Recipes by Category

'Chicken', 'Breakfast' and 'Beverages' are the categories that performed worst amongst all.

'Vegetable', 'Potato' and 'Pork' are the **best performing** recipe categories.

Exploratory Data Analysis: Nutritional Features

Discovering Dietary Trends

Nutritional Cluster	Assigned Label	Calories	Carbs	Sugar	Protein
0	High Protein / High Calorie	718.73	9.91	8.09	49.1
1	Low Calorie / Moderate Carb	237.52	17.62	2.34	6.58
2	Balanced / High Protein	110.8	51.56	9.65	37.29
3	Sweet / Dessert-like	233.58	26.31	22.97	4.18
4	High Carb / High Calorie	762.64	71.36	5.53	22.43

Used K-Means Clustering to **Segment Recipes** by their nutritional profiles.

Allows us to **Uncover Patterns** in traffic ratios.
(High-traffic ratios by cluster)
Which can be exploited to increase predictive performance.

Can be used by marketing team to **analyze dietary trends** on top of already existing categories.

Interaction Features

Created additional features in order to capture undiscovered relationships that can provide deeper insights in recipe popularity, reflect on consumer preferences and enhance predictive power.

Features Created:

- High Traffic Ratio by Category:
 Highlights which categories are more likely to have high-traffic recipes.
- 2. **High Traffic Ratio by Cluster**: Shows how different nutritional clusters correlate with traffic patterns
- 3. **Average Calories by Category**: Provides context about typical calorie ranges within categories.
- 4. **Nutrition-based interaction features**: aim to capture nutritional density/balance of recipes:
 - a. Protein/Calorie Ratio
 - b. Sugar/Carb Ratio
 - c. Carb/Protein Ratio

Model Development

Logistic Regression, Random Forests and Stacking Classifier.

How are the models trained?

Original Dataset

 Contains the Raw Data after cleaning and validation

Engineered Dataset

Original Dataset + **Engineered** Features.

Evaluation Framework

Primary Metric:

- **F1-Score** for the "High" Class: Balances the trade-off between precision (avoiding false positives) and recall (avoiding false negatives)

Supporting Metrics:

- **Precision** for the "**High**" Class: Measures how many of the model's predicted positives are actually correct.
- **Recall** for the "**High**" Class: Measures the model's ability to detect true positives.
- **ROC AUC Score**: Provides a single value to evaluate the model's ability to distinguish between classes across all classification thresholds.
- Precision for "Other" Class: minimize the risk of falsely excluding potential high-traffic recipes.

Goal: correctly predict high-traffic recipes at least **80% of the time**, while minimizing the likelihood of recommending unpopular recipes

Thresholds:

- F1-Score, Precision and Recall for 'High' Class ≥ 0.8
- **ROC AUC** score: ≥ **0.8**
- Precision for 'Other' Class ≥
 0.65

Logistic Regression VS Random Forest

Performance:

Logistic Regression provides **balanced performance** across both classes, achieving better precision and recall for the "Other" class compared to Random Forest.

Random Forest shows a slight advantage in recall for high-traffic recipes, but its poor recall for the "Other" class makes it less suitable for avoiding unpopular recommendations.

Logistic Regression's higher ROC AUC score (0.84 vs. 0.82) demonstrates **stronger** overall discriminatory power between high- and low-traffic recipes.

Caveats:

Both models performed marginally better with the Engineered Dataset, however, overreliance on a single feature (High-traffic ratio by Category) raised serious concerns about overfitting.

Class imbalance led to favoring the majority ('High') class, which resulted in **sub-optimal performance** when identifying the minority ('Other') class.

Stacking Classifier

Metric	Performance Values	Comparison to Best-performing Model
Precision (High)	0.82	+ 0.02
Precision (Other)	0.72	0.00
Recall (High)	0.80	- 0.02
Recall (Other)	0.74	+ 0.05
F1-Score (High)	0.81	0.00
F1-Score (Other)	0.73	+ 0.02
Accuracy	0.78	+ 0.01
ROC AUC Score	0.84	0.00

Stacking Classifier combines the **strengths** of both the **Logistic Regression** and the **Random Forests** models, working as the base predictors. The meta-model (final predictor) was the Logistic Regression.

Trained on **Original Data**

Adjusted Class weights to **reduce class imbalance**.

Best performance overall, and is expected to <u>perform well with unseen data</u>.

Stacking Classifier Model Evaluation (Original Data)

Meta-model Evaluation: Confusion Matrix and ROC Curve (Stacking Classifier)

Key Recommendations and Monitoring Plan

Recommendations

1.- Deploy Stacking Classifier

- Best-performing model overall, meeting the requirements previously set.

2.- Address Class imbalance

- Try Oversampling, undersampling or cost-sensitive learning.

3.- Scale and Validate the Model

Test on new / external data to validate performance and ensure robustness

4.- Continuous Monitoring and Feedback

- Implement monitoring system to track performance.
- Stay up-to-date with seasonal trends.
- Incorporate user feedback to refine model.

5.- Strategic Model Integration

- Expand model to enhance recommendations for subscribers.
- Integrate prediction system into marketing campaigns.

Monitoring Plan

Monitoring Process:

- Daily Metrics Review: Track recall for high-traffic recipes daily to ensure robust performance.
- Recipe Performance Tracking: Analyze user engagement (e.g. clicks, time spent on website, new subscriptions) for recipes displayed at the homepage to better quantify the effect of a high-traffic recipe and improve the model.
- Periodic Model Reevaluation: Perform monthly checks to ensure models predictions remain as intended.

Metrics to Follow:

- Recall for "High" Class.
- Precision for "High" Class.
- F1-Score for "High" Class.
- Precision for "Other" Class

Metric Thresholds

Good Performance:

- **Prediction Accuracy:** Between 70%-80%
- Precision, Recall and F1-Score for "High" Class: between 0.7-0.8.
- **Precision for "Other" Class:** Above 68%

Optimal Performance:

- **Prediction Accuracy:** Above 80%
- Precision, Recall and F1-Score for "High" Class: Above 0.8.
- **Precision for "Other" Class:** Above 68%

How Are The Metrics Calculated?

$$Precision = rac{True\ Positives\ (TP)}{True\ Positives\ (TP)\ +\ False\ Positives\ (FP)}$$

$$Recall = rac{True\ Positives\ (TP)}{True\ Positives\ (TP)\ +\ False\ Negatives\ (FN)}$$

$$F1-Score = \; 2 \; \cdot \; rac{Precision \; \cdot \; Recall}{Precision \; + \; Recall}$$

Predicted Values

Thank you!

Support slides

Project Overview and Business Goals

Challenge:

- Recipe selection relies on a manual and subjective process, leading to inconsistent traffic outcomes.

- Opportunity:

 Replace manual selection (60% accuracy) with a predictive model that can enhance traffic on website, leading to an increase in new subscriptions.

- Goal:

 Develop a data-driven model to predict which high-traffic recipes, maximizing user engagement and increasing subscriptions.

Nutritional Features and Correlation with Target

Box-cox transformations were applied to reduce skewness and normalize the nutritional features.

There is Little to no <u>linear</u> relationship between nutritional features and target label, even after transformations.

Feature Engineering

Other Interaction Features

Purpose:

- **Capture relationships** between nutritional components.

Value:

- Provide deeper insights into recipe popularity.
- Reflect consumer preferences.
- Enhance predictive power.

Engineered Features:

- High-Traffic by category Ratio
- High-Traffic by cluster Ratio
- Protein-Calorie Ratio
- Sugar-Carbohydrate Ratio
- Carbohydrate-Protein Ratio

Correlation Between New Features and Target

- High-Traffic Ratio by Category
 has the strongest linear
 relationship with the target
 label. (Correlation coefficient =
 ~0.6)
- Despite other engineered features exhibiting weak linear relationships, they can still capture nonlinear patterns that advanced models can exploit.

Logistic Regression Model Evaluation

Metric	Original Data	Engineered Data	
Precision (High)	0.80	0.81 + 0.01	
Precision (Other)	0.72	0.73 + 0.01	
Recall (High)	0.82	0.82 + 0.00	
Recall (Other)	0.69	0.71 + 0.02	
F1-Score (High)	0.81	0.81 + 0.00	
F1-Score (Other)	0.71	0.72 + 0.01	
Accuracy	0.77	0.78 + 0.01	
ROC AUC Score	0.84	0.84 + 0.00	

- Slightly better performance for the model trained on the Engineered Data. However, over reliance on a single feature (High-traffic ratio by category), which raised concerns of overfitting.
- Model Trained on the Original Data provided better reliability and has the potential of working best with unseen data.
- Lower Performance overall for "Other"
 Class raised concerns of class imbalance.

Logistic Regression Model Evaluation (original Data)

Model Evaluation: Confusion Matrix and ROC Curve - LR with Original Data

Random Forest Model Evaluation

Metric	Original Data	Engineered Data	
Precision (High)	0.73	0.76 + 0.03	
Precision (Other)	0.69	0.71 + 0.02	
Recall (High)	0.84	0.83 - 0.01	
Recall (Other)	0.53	0.61 + 0.08	
F1-Score (High)	0.78	0.79 + 0.01	
F1-Score (Other)	0.6	0.66 + 0.06	
Accuracy	0.72	0.74 + 0.02	
ROC AUC Score	0.82	0.81 - 0.02	

- on **Engineered Data**. Considerable increase in Recall and F1-Score for "Other" Class.
- Lower performance on "Other" class
 (compared to the "High" class) continues to
 raise concerns about class imbalance.
 Despite of bootstrapping efforts.
- Similar to the Logistic Regression model, over reliance on "High-traffic ratio by category" (18.7% importance) indicates the potential of performing poorly on unseen data.

Random Forest Model Evaluation (Original Data)

Model Evaluation: Confusion Matrix and ROC Curve - RF with Original Data

