Coeficiente crítico dinámico

La cantidad de pasos de descorrelación τ es del orden de L^2 . Pero en una red finita $\xi \to L^D$. Entonces

$$\tau \sim \xi^{2D} = \xi^z \quad , \quad z > 2 \tag{1}$$

z es el coeficiente crítico dinámico. Para Ising se estima $z\approx 2.16$.

Recordemos que $\tau \sim \chi$. Entonces, $\chi \sim \xi^z$. $(z \ge \gamma/\nu = 2D - d)$.

Cuando nos acercamos al punto crítico aparece el "critical slowing down".

Solución al slowing down

La solución es, en lugar de hacer un muestreo secuencial, hacer uno simultáneo (invirtiendo simultáneamente varios spines).

Para que esto sea posible tengo que cumplir

- (a) Cumplir micro-reversibilidad.
- (b) Tomar "conglomerados representativos" de spines.

Algoritmo de Swendsen-Wang

- (1) Busco clusters de spines up y down. Unimos los spines del mismo tipo por "bonds" de probabilidad $p=1-\exp(-\beta J)$. Estos son los "conglomerados". Algunos clusters sse fragmentarán en clusters más chicos.
- (2) Invierto los spines de cada cluster formado por los "bonds".
- (3) Rompo los "bonds".

Se obtienen $\tau \sim \xi^z$ con $z \approx 0.35$.

El slowing down es menor a que el límite teórico $z=\gamma/nu$. Lo que ocurre es que estamos pasando a una universalidad distinta, que es la de "bond percolation".

Observaciones

- (a) Si $T \to \infty$ entonces $p \approx 0$. En este caso todos los bonds están rotos y por lo tanto el sistema se comporta como de spines independientes.
- (b) Si $T \to 0$ entonces $p \approx 1$. Todos los spines unidos por bonds. El sistema está formado por grandes clusters, típico de un sistema frío.

Algoritmo de Glauber

$$\frac{\omega(S_{i+1})}{\omega(S_i)} = e^{-\Delta \mathcal{H}} \quad \Rightarrow \quad \frac{\omega(S_i)}{\omega(S_{i+1})} = e^{\Delta \mathcal{H}}$$
 (2)

Observamos

(a) Si $s_i = +1 \rightarrow s_i = -1$. Entonces

$$P(i, i+1) = \frac{e^{-\Delta \mathcal{H}}}{e^{-\Delta \mathcal{H}} + e^{\Delta \mathcal{H}}} = \frac{1}{1 + e^{2\Delta \mathcal{H}}}$$
(3)

(b) Si $s_i = -1 \rightarrow s_i = +1$. Entonces

$$P(i, i+1) = \frac{e^{\Delta \mathcal{H}}}{e^{-\Delta \mathcal{H}} + e^{\Delta \mathcal{H}}} = \frac{1}{1 + e^{-2\Delta \mathcal{H}}}$$
(4)

Algoritmo de Glauber

Si llamamos

$$g = \frac{1}{1 + \exp(2\Delta \mathcal{H})} \tag{5}$$

- (a) Si paso de $+1 \rightarrow -1$, entonces $P = (1+g)^{-1}$.
- (b) Si paso de $+1 \rightarrow +1$, entonces $1-(1+g)^{-1}=g\,(1+g)^{-1}$.
- (c) Si paso de $-1 \rightarrow +1$, entonces $P = g(1+g)^{-1}$.
- (d) Si paso de $-1 \rightarrow -1$, entonces $1-g\,(1+g)^{-1}=(1+g)^{-1}$.

Algoritmo de Glauber

Vemos que si paso a $s_i = -1$ (independientemente del spin anterior) la probabilidad de transición es $(1+g)^{-1}$.

Vemos que si paso a $s_i=+1$ (independientemente del spin anterior) la probabilidad de transición es $g\,(1+g)^{-1}$.

Observar que esto cumple micro-reversibilidad:

$$\omega(S_i) \frac{\omega(S_{i+1})}{\omega(S_i) + \omega(S_{i+1})} = \omega(S_{i+1}) \frac{\omega(S_i)}{\omega(S_i) + \omega(S_{i+1})}$$
(6)