Е.М. КАРЧЕВСКИЙ, М.М. КАРЧЕВСКИЙ

Лекции по линейной алгебре и аналитической геометрии

Учебное пособие

Казанский университет 2012

Публикуется по решению заседания учебно-методической комиссии института ВМиИТ Казанского федерального университета Протокол № 1 от 20 сентября 2012 г.

заседания кафедры прикладной математики Протокол N_2 1 от 29 августа 2012 г.

Научный редактор —

доктор физико-математических наук, профессор Н.Б. Плещинский

Излагаются все основные вопросы, включаемые в программу университетского курса линейной алгебры и аналитической геометрии.

Книга рассчитана на студентов младших курсов, обучающихся по специальности прикладная математики и информатика.

© Карчевский Е.М. Карчевский М.М., 2012

Оглавление

Предисловие	(
Глава 1. Комплексные числа	
§1. Комплексные числа, алгебраические операции над комплексны	
числами	
§ 2. Операция сопряжения, модуль комплексного числа	
§3. Геометрическая интерпретация. Тригонометрическая форма ко	
плексного числа	
§ 4. Извлечение корня из комплексного числа	12
Глава 2. Многочлены	17
§1. Алгебраические операции над многочленами	
§2. Корни многочленов	20
§ 3. Многочлены с действительными коэффициентами	24
Глава 3. Определители второго и третьего порядков	2
§ 1. Определители второго порядка	
§ 2. Определители третьего порядка	
§ 3. Свойства определителей третьего порядка	
Глава 4. Введение в аналитическую геометрию	
§ 1. Векторы. Алгебраические операции над векторами	
§ 2. Скалярное произведение векторов	
§ 3. Векторное произведение	
§ 4. Смешанное произведение векторов	
§ 5. Примеры задач, решаемых методами векторной алгебры § 6. Различные формы уравнения прямой на плоскости	
§ 7. Задачи о взаимном расположением прямых и точек на плоскост	
§8. Различные формы уравнения плоскости	
§ 9. Уравнения прямой в пространстве	
§ 10. Задачи о взаимном расположении точек, прямых, плоскостей в п	
странстве	
Глава 5. Системы линейных уравнений, матрицы, определите л § 1. Перестановки	
§ 1. Перестановки	
§ 3. Основные свойства определителей	
§ 4. Примеры вычисления определителей	
§ 5. Крамеровские системы линейных уравнений	
§ 6. Матрицы. Операции над матрицами	
§ 7. Обратная матрица	94
§8. Некоторые классы матриц	
§ 9. Метод Гаусса решения систем линейных алгебраических уравне	
§ 10. Определитель произведения матриц	
§11. Блочные матрицы	108

Оглавление

Глава	6. Векторные пространства	111
§ 1.	Пространство \mathbb{R}^n	111
§ 2.	Пространство \mathbb{C}^n	114
§ 3.	Общие линейные и евклидовы пространства	116
$\S 4$.	Неравенство Коши — Буняковского	119
$\S 5$.	Линейная зависимость векторов	121
§ 6.	Линейно независимые системы векторов	123
§ 7.	Ранг системы векторов	125
§ 8.	Ортогональные системы векторов. Матрица Грама	126
§ 9.	Процесс ортогонализации Грама — Шмидта	128
	Конечномерные линейные пространства. Базисы	130
	Замена базиса	133
	Разложение вектора по базису евклидова пространства	135
	Вычисление скалярного произведения	136
	Примеры базисов	136
8 1 5	Подпространства. Сумма и пересечение подпространств	140
	Размерность суммы подпространств	143
	Ортогональная проекция вектора на подпространство	$145 \\ 145$
	Ортогональная проекция вектора на подпространство	150
g 10.	Ортогональное разложение евклидова пространства	100
Глава	7. Линейные операторы и матрицы	152
§ 1.	Линейные операторы. Действия над операторами	152
§ 2.	Обратный оператор	154
§ 3.	Оператор разложения по базису	155
§ 4.	Изоморфизм конечномерных пространств	155
§ 5.	Линейные функционалы	157
§ 6.	Сопряженный оператор	157 157
§ 7.	Образ оператора. Ядро оператора	159
§ 7. § 8.		160
~	Матрица оператора	166
§ 9.	Вычисление матрицы оператора в евклидовом пространстве	160
§ 10.	Матрица обратного оператора	
	Ранг матрицы	168
§ 12.	Элементарный метод вычисления ранга матрицы	169
Гпава	8. Общие системы линейных алгебраических уравнений	179
§ 1.	Линейные операторные уравнения. Теорема Фредгольма	172 172
§ 2.	Общее решение линейного уравнения	$172 \\ 173$
	Системы линейных уравнений. Теорема Кронекера — Капелли	$173 \\ 174$
§ 3.	Построение частного решения системы линейных уравнений	174
$\S 4$.		
§ 5.	Фундаментальная система решений однородной системы уравнений	179
§ 6.	Псевдорешение	179
Гпава	9. Строение линейного оператора	181
§ 1.	Инвариантные подпространства	181
§ 2.	Собственные числа и собственные векторы	183
§ 2. § 3.	Характеристический полином и характеристические числа	185
	Признак линейной независимости собственных векторов	186
$\S 4.$	Геометрическая и алгебраическая кратности собственных чисел .	189
§ 5.	· · · · · · · · · · · · · · · · · · ·	190
§ 6.	Инварианты оператора	190
§ 7.	Инвариантные подпространства оператора в вещественном про-	192
0.2	странстве	
§8.	приведение матрицы оператора к треугольной форме	194

Оглавление 5

§ 9. § 10.	Структура базиса Жордана. Корневые и циклические подпро-	196
§ 11.	странства	204 205
Глава	10. Операторы в евклидовом пространстве	207
§ 1.	Самосопряженный и косоэрмитов операторы	207
$\S 2$.	Неотрицательный и положительно определенный операторы	209
§ 3.	Унитарный оператор	210
$\S 4. \\ \S 5.$	Нормальный оператор	211
\$ 6	ратора	$214 \\ 217$
$\S 6. \\ \S 7.$	Корень из самосопряженного неотрицательного оператора	221
§ 7. § 8.	Обобщенная проблема собственных значений	$\frac{221}{222}$
§ 9.	Сингулярные базисы и сингулярные числа оператора	223
	Полярное разложение оператора	$\frac{225}{227}$
g 10.	Tromphoe pastomente oneparopa	221
Глава	11. Операторы в вещественном евклидовом пространстве .	229
§ 1.	Общие сведения	229
$\S 2$.	Структура нормального оператора	230
§ 3.	Структура ортогонального оператора	232
$\S 4$.	Матрицы вращения и отражения	235
Глава	12. Квадратичные формы и квадратичные функции	237
§ 1.	Канонический вид квадратичной формы	237
$\S 2$.	Закон инерции квадратичных форм	240
§ 3.	Положительно определенные квадратичные формы	243
$\S 4$.	Квадратичная функция и ее инварианты	244
$\S 5$.	Приведенная форма квадратичной функции	246
Глава	13. Кривые второго порядка	252
§ 1.	Приведение к простейшему виду уравнения кривой второго по-	
	рядка	252
§ 2.	Геометрические свойства кривых второго порядка	256
Глава § 1.	14. Поверхности второго порядка	
0.0	порядка	264
§ 2. § 3.	Геометрические свойства поверхностей второго порядка Гиперповерхности второго порядка в пространстве \mathbb{R}^n и их клас-	266
	сификация	279
	15. Итерационные методы	282
§ 1.	Простейшие итерационные методы решения систем линейных урав-	000
0.0	нений	282
$\S 2$.	Элементы общей теории итерационных методов	286
§ 3.	Метод Якоби решения задач на собственные значения	293
§ 4.	Исследование сходимости метода Якоби	295
Предм	етный указатель	297
Литера	атура	302

Предисловие

Книга написана на основе лекций по алгебре и геометрии, которые читаются для студентов первого курса института вычислительной математики и информационных технологий КФУ, специализирующихся в области прикладной математики и информатики. Многие вопросы, затронутые в книге, активно обсуждались с сотрудниками кафедр прикладной и вычислительной математики КФУ. Авторы приносят им свою искреннюю признательность. Рукопись книги была прочитана Ю.А. Альпиным, Н.Б. Плещинским, Е.Л. Столовым, М.Р. Тимербаевым, Р.Р. Шагидуллиным. Авторы с благодарностью учли их замечания.

Мы благодарны всем читателям, приславшим свои отклики на первоначальный вариант книги. Особую признательность выражаем В.Б. Андрееву, А.В. Гулину, А.С. Ильинскому, Ю.Г. Смирнову, Е.Л. Столову, Е.В. Чижонкову, С.И. Соловьеву, М.Р. Тимербаеву, указавшим на ряд неточностей и недостатков, которые мы постарались устранить.

Глава 1

Комплексные числа

§ 1. Комплексные числа, алгебраические операции над комплексными числами

1. Из школьного курса математики известно, что не всякое квадратное уравнение имеет решение. Самый простой пример — уравнение

$$x^2 + 1 = 0. (1.1)$$

Очевидно, никакое вещественное x не может быть корнем этого уравнения. Ситуация меняется, если ввести в рассмотрение новое число, так называемую *мнимую единицу*. Будем обозначать ее через i и полагать, что

$$i^2 = -1$$
.

Тогда уравнение (1.1) будет иметь корень $\alpha_1 = i$. Естественно положить, что $(-i)^2 = (-1)^2 i^2 = -1$. Тогда и число $\alpha_2 = -i$ является корнем уравнения (1.1), т. е. уравнение (1.1), как и аналогичное уравнение

$$x^2 - 1 = 0$$
,

имеет два различных корня. Рассматривая уравнение

$$x^2 + q = 0,$$

где q>0, естественно принять, что оно имеет два корня

$$\alpha_1 = i\sqrt{q} \quad \text{и} \quad \alpha_2 = -i\sqrt{q}.$$

Числа вида ib, где b — вещественное число, называют *мнимыми*. Рассмотрим теперь общее квадратное уравнение, записывая его для удобства в приведенном виде:

$$x^2 - 2px + q = 0. (1.2)$$

Элементарные преобразования дают

$$(x-p)^2 + q - p^2 = 0.$$

Будем считать, что $q-p^2>0$, т. е. дискриминант уравнения (1.2) отрицателен.

Теперь естественно положить, что корнями уравнения (1.2) являются числа

$$\alpha_1 = p + i\sqrt{q - p^2}, \quad \alpha_2 = p - i\sqrt{q - p^2}.$$
 (1.3)

Это числа новой природы. Они имеют вид a+ib, где a и b — вещественные числа. Их называют комплексными числами. В частном случае, когда b=0, считают, что комплексное число a+ib совпадает с вещественным числом a, а при a=0 — с мнимым числом ib.

Как правило, комплексное число будем обозначать буквой z:

$$z = x + iy$$
.

Говорят, что x — вещественная часть комплексного числаz, а y — его мнимая часть.z Обозначим x через $\operatorname{Re} z$, а y — через $\operatorname{Im} z$. Таким образом, можно написать, что

$$z = \operatorname{Re} z + i \operatorname{Im} z$$
.

По определению два комплексных числа *равны*, если совпадают соответственно их вещественные и мнимые части.

2. Естественно теперь попытаться проверить, что числа α_1 , α_2 , определенные в (1.3), — корни уравнения (1.2), т. е. при подстановке их в равенство (1.2) последнее обращается в тождество. Для этого надо уметь выполнять алгебраические операции над комплексными числами. Дадим соответствующие определения.

Под суммой комплексных чисел $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ понимается комплексное число z = x + iy, где $x = x_1 + x_2$, $y = y_1 + y_2$:

$$\operatorname{Re}(z_1 + z_2) = \operatorname{Re}z_1 + \operatorname{Re}z_2,$$

$$\operatorname{Im}(z_1+z_2)=\operatorname{Im}z_1+\operatorname{Im}z_2.$$

Pазностью комплексных чисел z_1 и z_2 называется число

$$z = (x_1 - x_2) + i(y_1 - y_2).$$

Ясно, что если z — разность комплексных чисел z_1 и z_2 , то $z_2+z=z_1$.

Например, сумма комплексных чисел $z_1=1+i2$ и $z_2=3+i4$ равна числу

$$z = (1+i2) + (3+i4) = (1+3) + i(2+4) = 4+i6,$$

а их разность — числу

$$z = (1+i2) - (3+i4) = (1-3) + i(2-4) = -2 - i2.$$

Комплексное число вида $0+i\,0$ называется *нулевым*. Будем обозначать его символом 0. Для любого комплексного числа z справедливы равенства

$$z + 0 = z$$
, $0 + z = z$.

Определяя *произведение* комплексных чисел, будем действовать, как при перемножении обычных двучленов, учитывая при этом, что $i^2 = -1$. Получаем, таким образом,

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1 x_2 - y_1 y_2 + i(x_1 y_2 + x_2 y_1),$$

т. е. по определению

$$\operatorname{Re}(z_1 z_2) = \operatorname{Re} z_1 \operatorname{Re} z_2 - \operatorname{Im} z_1 \operatorname{Im} z_2,$$
 (1.4)

$$\operatorname{Im}(z_1 z_2) = \operatorname{Re} z_1 \operatorname{Im} z_2 + \operatorname{Re} z_2 \operatorname{Im} z_1.$$
 (1.5)

Вычислим, например, произведение чисел $z_1 = 1 + i2$ и $z_2 = 3 + i4$:

$$z_1 z_2 = (1+i2) \cdot (3+i4) = (1 \cdot 3 - 2 \cdot 4) + i(1 \cdot 4 + 3 \cdot 2) = -5 + i10.$$

Для любого комплексного числа z

$$z0 = 0z = 0$$
.

УПРАЖНЕНИЕ. Убедиться, что определенные выше операции сложения и умножения комплексных чисел обладают теми же свойствами, что и соответствующие операции над вещественными числами:

- $1) z_1 + z_2 = z_2 + z_1, z_1 z_2 = z_2 z_1 \kappa$ оммутативность, или перестановочность,
- $2) (z_1+z_2)+z_3=z_1+(z_2+z_3), (z_1z_2)z_3=z_1(z_2z_3)-accoupamue-ность,$ или сочетательность,
- $(z_1+z_2)z_3=z_1z_3+z_2z_3-\partial ucmpuбутивность,$ или pacnpede-numenьность.

По определению $z^n = zz \cdots z$ для натурального n, где сомножитель z повторяется n раз, $z^0 = 1$, $z^{-n} = (1/z)^n$.

УПРАЖНЕНИЕ. Непосредственной подстановкой показать, что формулы (1.3) дают корни уравнения (1.2).

Комплексное число z назовем частным от деления комплексного числа z_1 на z_2 , если

$$zz_2 = z_1. (1.6)$$

Покажем, что если $z_2 \neq 0$, то z как решение уравнения (1.6) существует и определяется единственным образом. В самом деле, используя формулы (1.4), (1.5), запишем (1.6) более подробно:

$$xx_2 - yy_2 + i(xy_2 + x_2y) = x_1 + iy_1. (1.7)$$

Приравнивая соответственно вещественные и мнимые части, получим

$$xx_2 - yy_2 = x_1, (1.8)$$

$$xy_2 + yx_2 = y_1. (1.9)$$

Единственно возможным решением этой системы уравнений будет

$$x = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2},\tag{1.10}$$

$$y = \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}. (1.11)$$

Формулы (1.10), (1.11) определяют правило *деления* комплексных чисел.

Разделим, например, комплексное число $z_1 = 1 + i2$ на $z_2 = 3 + i4$:

$$\frac{z_1}{z_2} = \frac{1+i2}{3+i4} = \frac{1\cdot 3 + 2\cdot 4}{3^2+4^2} + i\,\frac{3\cdot 2 - 1\cdot 4}{3^2+4^2} = \frac{11}{25} + i\,\frac{2}{25}.$$

Важно подчеркнуть, что все введенные нами операции в случае, когда операнды вещественны, совпадают с соответствующим операциями над вещественными числами (проверьте!).

Таким образом, множество комплексных чисел можно считать расширением множества вещественных чисел.

§ 2. Операция сопряжения, модуль комплексного числа

1. Число $\overline{z}=x-iy$ называют сопряженным по отношению к комплексному числу z=x+iy (часто говорят, что числа z и \overline{z} комплексно сопряжены). Ясно, что

$$\overline{\overline{z}} = z, \quad \overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2, \quad \overline{z_1 z_2} = \overline{z}_1 \overline{z}_2.$$
 (2.1)

Отметим также, что

$$z + \overline{z} = 2x$$
, $z - \overline{z} = i2y$, $z\overline{z} = x^2 + y^2$.

2. Вещественное неотрицательное число $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}$ называется *модулем* комплексного числа z = x + iy. Очевидно, что

если
$$|z|=0$$
, то $x=0,\ y=0,$ т. е. $z=0.$ (2.2)

Элементарные вычисления показывают, что для любых двух комплексных чисел $z_1,\ z_2$ справедливо равенство

$$|z_1 z_2| = |z_1||z_2|. (2.3)$$

Рис. 1. К неравенствам (2.4), (2.5)

Упражнение. Используя хорошо известное неравенство

$$2|xy| \leqslant (x^2 + y^2),$$

справедливое для любых вещественных чисел x,y, убедиться, что для любых комплексных чисел $z_1,\,z_2$ справедливо неравенство

$$|z_1 + z_2| \leqslant |z_1| + |z_2|. \tag{2.4}$$

Соотношения (2.2)-(2.4) показывают, что с модулем комплексного числа можно оперировать так же, как и с модулем вещественного числа.

Заметим, что $|z_1| = |z_1 - z_2 + z_2| \leqslant |z_1 - z_2| + |z_2|$, следовательно,

$$|z_1| - |z_2| \leqslant |z_1 - z_2|.$$

Точно так же

$$|z_2| - |z_1| \leqslant |z_1 - z_2|.$$

Таким образом,

$$||z_2| - |z_1|| \le |z_1 - z_2|. \tag{2.5}$$

§ 3. Геометрическая интерпретация. Тригонометрическая форма комплексного числа

1. Напомним, что с каждым вещественным числом x можно связать точку на числовой прямой. Аналогичная (но более сложная) геометрическая интерпретация полезна и для комплексных чисел.

Введем на плоскости декартову систему координат (x, y) и поставим в соответствие каждому комплексному числу z = x + iy точку с координатами (x, y).

При этом модуль комплексного числа — это расстояние от точки (x,y) до начала координат (сделайте рисунок!).

Рис. 2. К тригонометрической форме комплексного числа

Взаимносопряженные числа симметричны относительно оси x (сделайте рисунок!).

Напомним, что при сложении векторов их одноименные координаты складываются. Поэтому суммирование чисел $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ соответствует сложению векторов (x_1, y_1) и (x_2, y_2) (сделайте рисунок!).

Неравенства (2.4), (2.5) можно интерпретировать теперь как хорошо известные неравенства для сторон треугольника (см. рис. 1).

2. Каждое комплексное число (кроме нуля) можно однозначно охарактеризовать двумя параметрами: модулем и углом φ , отсчитываемым от положительного направления оси x против часовой стрелки (см. рис. 2). Угол φ меняется в пределах от 0 до 2π и называется аргументом комплексного числа z. Часто используют обозначения $\varphi = \arg z$,

$$\rho = |z|. \tag{3.1}$$

Получим явное выражение z через |z| и $\arg z$. Имеем

$$z = |z| \left(\frac{x}{|z|} + i \frac{y}{|z|} \right).$$

При этом (см. рис. 2)

$$\frac{x}{|z|} = \cos \varphi, \quad \frac{y}{|z|} = \sin \varphi, \tag{3.2}$$

т. е.

$$z = \rho(\cos\varphi + i\sin\varphi). \tag{3.3}$$

Соотношения (3.1) – (3.3) дают так называемое *тригонометрическое* представление комплексного числа.

3. Тригонометрическая запись комплексных чисел позволяет поновому взглянуть на алгебраические операции над ними и получить ряд полезных формул.

Рис. 3. К умножению комплексных чисел

Пусть $z_1 = \rho_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = \rho_2(\cos\varphi_2 + i\sin\varphi_2)$. Перемножая эти числа и используя известные тригонометрические соотношения, получим

$$z_1 z_2 = \rho_1 \rho_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right), \tag{3.4}$$

т. е. при умножении комплексных чисел их модули перемножаются, а аргументы складываются (см. рис. 3).

Вычислим, например, произведение чисел

$$z_1 = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 u $z_2 = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$.

По формуле (3.4) имеем

$$z_1 z_2 = 6 \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right).$$

Здесь нужно отметить, что число $\varphi_1 + \varphi_2$ может выйти из отрезка $[0,2\pi]$, но вследствие периодичности тригонометрических функций мы можем отождествлять их аргументы, отличающиеся на величину, кратную 2π . Это замечание дает возможность корректно определить аргумент произведения двух любых комплексных чисел. Аналогичное относится и к другим операциям над комплексными числами, представленными в тригонометрической форме.

Запишем уравнение (1.6), используя тригонометрическое представление комплексных чисел и формулу (3.4)

$$\rho \rho_2(\cos(\varphi + \varphi_2) + i\sin(\varphi + \varphi_2)) = \rho_1(\cos\varphi_1 + i\sin\varphi_1). \tag{3.5}$$

Отсюда

$$z = \frac{z_1}{z_2} = \frac{\rho_1}{\rho_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2)), \tag{3.6}$$

т. е. при делении комплексных чисел их модули делятся, а аргументы вычитаются.

Разделим, например, комплексное число

$$z_1 = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$
 на $z_2 = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$.

По формуле (3.6) имеем

$$\frac{z_1}{z_2} = \frac{3}{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right).$$

Получим формулу для вычисления степеней комплексного числа. Используя (3.4), непосредственно получаем, что

$$z^2 = zz = \rho^2(\cos 2\varphi + i\sin 2\varphi),$$

и, вообще, для любого целого числа n (включая нуль и отрицательные целые числа)

$$z^{n} = \rho^{n}(\cos n\varphi + i\sin n\varphi). \tag{3.7}$$

Формулу (3.7) называют формулой $Myaepa^{1)}$.

Возведем, например, комплексное число

$$z = 3\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

в третью степень:

$$z^{3} = \rho^{3} \left(\cos 3\varphi + i\sin 3\varphi\right) = 27 \left(\cos \frac{3\pi}{4} + i\sin \frac{3\pi}{4}\right).$$

§ 4. Извлечение корня из комплексного числа

Обратимся к задаче извлечения корня степени $n, n \ge 1$ — целое, из комплексного числа $z = \rho(\cos \varphi + i \sin \varphi)$, т. е. к отысканию такого числа $\tilde{z} = \tilde{\rho}(\cos \tilde{\varphi} + i \sin \tilde{\varphi})$, что

$$\tilde{z}^n = \tilde{\rho}^n(\cos n\tilde{\varphi} + i\sin n\tilde{\varphi}) = \rho(\cos \varphi + i\sin \varphi). \tag{4.1}$$

Понятно, что поставленная задача будет решена, если положить

$$\tilde{\rho} = \sqrt[n]{\rho}, \quad n\tilde{\varphi} = \varphi + 2\pi k, \quad k = 0, 1, \dots,$$

где под корнем из ρ понимается арифметическое значение корня из неотрицательного числа. Таким образом, показано, что числа

$$z_k = \sqrt[n]{\rho} \left(\cos \varphi_k + i \sin \varphi_k\right), \ \varphi_k = \frac{\varphi}{n} + \frac{2\pi k}{n}, \ k = 0, 1, \dots, n-1, \ (4.2)$$

 $^{^{1)}}$ Абрахам де Муавр (Abraham de Moivre; 1667 — 1754) — английский математик французского происхождения.

Рис. 4. К вычислению корня степени n из комплексного числа $z=\rho(\cos\varphi+i\sin\varphi)$. Здесь $n=4,\,z_k=\sqrt[4]{\rho}(\cos\varphi_k+i\sin\varphi_k),\,\varphi_k=\varphi/4+k\pi/2,\,k=0,1,2,3$

являются корнями степени n из числа z. Придавая k значения, большие, чем n-1, в силу периодичности тригонометрических функций мы будем повторять циклически уже найденные значения корней.

Например, корни четвертой степени из комплексного числа

$$z = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

вычисляются по формулам

$$z_k = \sqrt[4]{3}(\cos\varphi_k + i\sin\varphi_k), \quad \varphi_k = \frac{\pi}{8} + k\pi/2, \quad k = 0, 1, 2, 3.$$

Итак, у любого комплексного числа (кроме нуля) существует n различных корней степени $n \ge 1$. Все они расположены на окружности радиуса $\sqrt[n]{\rho}$ с центром в начале координат и делят ее на n равных частей (см. рис. 4).

Естественно поставить вопрос, можно ли указать корни из числа z, отличные от найденных. Ответ отрицательный. Чтобы убедиться в этом, надо обратиться к пункту 3, с. 23, трактуя при этом (4.1) как уравнение для отыскания корней полинома степени n.

Формулу (4.2) часто записывают в несколько иной форме. Положим

$$q_k = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, \quad k = 0, 1, 2, \dots, n - 1.$$

Очевидно, $q_k^n=1$ для $k=0,1,2,\ldots,n-1,$ т. е. q_k — корни степени n из единицы. Нетрудно проверить, что

$$z_k = z_0 q_k, \quad k = 0, 1, 2, \dots, n - 1.$$

Таким образом, вычислив корень

$$z_0 = \sqrt[n]{\rho} \left(\cos \varphi / n + i \sin \varphi / n\right),\,$$

все остальные можно получить последовательными сдвигами на угол $2\pi/n$ по окружности.

Глава 2

Многочлены

§ 1. Алгебраические операции над многочленами

1. Многочленом (полиномом) называют функцию вида

$$P_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n.$$
 (1.1)

Здесь a_0, \ldots, a_n — фиксированные комплексные числа, называемые коэффициентами многочлена. Если a_n не нуль, то целое число $n \ge 0$ называют порядком или степенью многочлена, a_n называется старшим коэффициентом многочлена, переменная z может принимать любые комплексные значения.

Многочлены $P_n(z)$, $Q_n(z)$ равны, когда все их коэффициенты при одинаковых степенях совпадают.

Многочлен равен нулю, если все его коэффициенты — нули. Иначе говоря, — это постоянная, равная нулю. Такому многочлену нельзя приписать никакой степени. Мы будем называть его нулевым и обозначать символом 0.

Сумма многочленов $P_n(z)+Q_m(z)$ — многочлен, причем степень его не больше максимального из чисел m и n, или — это нулевой многочлен.

Произведение многочленов $P_n(z)Q_m(z)$ — многочлен, степень которого есть сумма степеней, т. е. m+n.

Сложение любого многочлена с нулевым не меняет этого многочлена. Произведение двух многочленов — нулевой многочлен тогда и только тогда, когда один из сомножителей — нулевой многочлен.

Введем и исследуем операцию деления многочленов.

2. Теорема. Для любых двух многочленов P(z) и Q(z) можно найти многочлены q(z) и r(z), где r(z) имеет степень, меньшую степени многочлена Q(z), или является нулевым многочленом, такие, что

$$P(z) = Q(z)q(z) + r(z).$$
 (1.2)

Многочлены q(z) и r(z), удовлетворяющие указанным условиям, определяются по многочленам P(z), Q(z) однозначно.

ДОКАЗАТЕЛЬСТВО. Предположим сначала, что P(z) — нулевой многочлен или его степень меньше степени многочлена Q(z). В этом

случае равенство (1.2), очевидно, может быть выполнено лишь при условии, что q(z) — нулевой многочлен, а r(z) = P(z).

Положим теперь, что многочлен P(z) имеет степень n, многочлен Q(z) имеет степень m, причем $n \geqslant m$. Для упрощения записей будем считать, что старший коэффициент многочлена Q равен единице. Случай, когда этот коэффициент — произвольное ненулевое число, требует очевидных изменений в выписываемых ниже формулах. Итак, пусть

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0,$$

$$Q(z) = z^m + b_{m-1} z^{m-1} + \dots + b_0,$$

$$q(z) = c_{n-m} z^{n-m} + c_{n-m-1} z^{n-m-1} + \dots + c_0,$$

$$r(z) = d_{m-1} z^{m-1} + d_{m-2} z^{m-2} + \dots + d_0.$$

Коэффициенты многочленов P, Q даны, а коэффициенты многочленов q(z), r(z) требуется найти. Проводя элементарные выкладки, соберем коэффициенты при одинаковых степенях z в правой части (1.2) и приравняем их соответствующим коэффициентам многочлена P:

$$a_{n} = c_{n-m},$$

$$a_{n-1} = c_{n-m-1} + c_{n-m}b_{m-1},$$

$$a_{n-2} = c_{n-m-2} + c_{n-m-1}b_{m-1} + c_{n-m}b_{m-2},$$

$$\dots \dots$$

$$a_{m} = c_{0} + c_{1}b_{m-1} + c_{2}b_{m-2} + \dots + c_{m}b_{0},$$

$$a_{m-1} = d_{m-1} + c_{0}b_{m-1} + c_{1}b_{m-2} + \dots + c_{m-1}b_{0},$$

$$\dots \dots$$

$$a_{0} = d_{0} + c_{0}b_{0}.$$

Полученные соотношения представляют собой систему уравнений относительно коэффициентов многочленов q(z), r(z). Эта система легко решается. Сначала находятся коэффициенты c_j , последовательно, в порядке убывания индексов:

$$c_{n-m} = a_n,$$

$$c_{n-m-1} = a_{n-1} - c_{n-m}b_{m-1},$$

$$c_{n-m-2} = a_{n-2} - c_{n-m-1}b_{m-1} - c_{n-m}b_{m-2},$$

$$\cdots \cdots$$

$$c_0 = a_m - c_1b_{m-1} - c_2b_{m-2} - \cdots - c_mb_0.$$
(1.3)

Затем с использованием уже найденных значений c_j вычисляются коэффициенты d_i :

$$d_{m-1} = a_{m-1} - c_0 b_{m-1} - c_1 b_{m-2} - \dots - c_{m-1} b_0,$$

$$d_{m-2} = a_{m-2} - c_0 b_{m-2} - c_1 b_{m-3} - \dots - c_{m-2} b_0,$$

$$\dots \dots \dots$$

$$d_0 = a_0 - c_0 b_0.$$
(1.4)

Заметим, что c_{n-m} не равен нулю, поскольку a_n не равен нулю, коэффициенты полинома r(z), вообще говоря, могут быть нулями.

Здесь и далее символ 🗆 обозначает конец доказательства.

Описанный в ходе доказательства теоремы способ вычисления коэффициентов многочленов q, r называется $ext{cxemoй } ext{Горнера}^{1)}$. Она широко применяется на практике.

Формулу (1.2) интерпретируют как деление многочлена P на многочлен Q; q — частное от деления, r — остаток. В случае, когда многочлен r оказывается равным нулю, говорят, что многочлен P делится на многочлен Q (иногда говорят, что делится нацело).

Замечание. Из формул, полученных в ходе доказательства теоремы, очевидно, следует, что если P,Q являются многочленами с действительными коэффициентами, то коэффициенты многочленов q, r — действительные числа.

ПРИМЕР. В качестве примера применения схемы Горнера разделим

$$P_4(z) = 2z^4 - 3z^3 + 4z^2 - 5z + 6$$
 на $Q_2(z) = z^2 - 3z + 1$,

т. е. найдем такие многочлены

$$q_2(z) = c_2 z^2 + c_1 z + c_0$$
 и $r(z) = d_1 z + d_0$,

что выполняется равенство

$$P_4(z) = Q_2(z)q_2(z) + r(z).$$

В нашем примере n=4, а m=2. Сначала по формулам (1.3) вычислим коэффициенты c_2, c_1 и c_0 :

$$c_2 = a_4 = 2,$$

 $c_1 = a_3 - c_2b_1 = -3 - 2(-3) = 3,$
 $c_0 = a_2 - c_1b_1 - c_2b_0 = 4 - 3(-3) - 2 \cdot 1 = 11.$

Затем по формулам (1.4) найдем коэффициенты d_1 и d_0 :

$$d_1 = a_1 - c_0 b_1 - c_1 b_0 = -5 - 11(-3) - 3 \cdot 1 = 25,$$

 $d_0 = a_0 - c_0 b_0 = 6 - 11 \cdot 1 = -5.$

Таким образом,

$$q_2(z) = 2z^2 + 3z + 11, \quad r(z) = 25z - 5.$$

3. Естественно поставить вопрос: будут ли коэффициенты полиномов $P_n(z)$, $Q_n(z)$ совпадать, если значения этих полиномов совпадают при всех z, иными словами, будут ли все коэффициенты многочлена равны нулю, если сам многочлен тождественно равен нулю. Это действительно так, но доказательство удобно будет выполнить несколько позже. Как ни странно, наиболее просто оно проводится при изучении систем линейных алгебраических уравнений (см. §5, гл. 5, с. 85).

 $^{^{1)}}$ Уильям Джордж Горнер (William George Horner; 1786-1837) — английский математик.

§ 2. Корни многочленов

Корнем многочлена $P_n(z)$ называется такое число α , вообще говоря, комплексное, что $P_n(\alpha) = 0$.

1. Теорема Безу¹⁾. Пусть $n \ge 1$, $\alpha - n$ роизвольное комплексное число. Тогда многочлен $P_n(z) - P_n(\alpha)$ делится на $z - \alpha$.

ДОКАЗАТЕЛЬСТВО. По теореме 2, с. 17,

$$P_n(z) - P_n(\alpha) = q_{n-1}(z)(z - \alpha) + r,$$

где r — число (многочлен нулевой степени). Полагая в этом равенстве $z=\alpha$, получим, что r=0, т. е.

$$P_n(z) - P_n(\alpha) = q_{n-1}(z)(z - \alpha). \square$$

Из теоремы Безу очевидным образом вытекает

1.1. Следствие. Многочлен P_n тогда и только тогда делится на $z - \alpha$, когда α — корень этого многочлена.

Число α называется корнем *кратности* $k\geqslant 1$ многочлена $P_n,$ если $P_n(z)$ делится на $(z-\alpha)^k$:

$$P_n(z) = (z - \alpha)^k q_{n-k}(z),$$

а $q_{n-k}(z)$ не делится на $(z-\alpha)$, т. е. α не является корнем многочлена $q_{n-k}(z)$.

Если кратность корня равна единице, то корень называют npo-cmым.

2. Исследуя свойства корней полинома, для упрощения записей обычно переходят к *приведенному* (часто говорят *нормированному*) полиному, получающемуся делением всех коэффициентов исходного полинома на его старший коэффициент.

Очевидно, что любой корень исходного полинома является корнем приведенного полинома и, наоборот, любой корень приведенного полинома — корень исходного полинома.

2.1. Теорема (основная теорема алгебры). Всякий полином

$$P_n(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0, \quad n \geqslant 1,$$

имеет хотя бы один корень.

 $^{^{1)}}$ Этьен Безу (Etienne Bezout; 1730 - 1783) — французский математик.

ДОКАЗАТЕЛЬСТВО. Будем обозначать декартовы координаты точек на плоскости через x_1, x_2 . Пусть $x = (x_1, x_2)$ — точка на плоскости, $z = x_1 + ix_2$ — соответствующее ей комплексное число.

Равенство $f(x) = |P_n(z)|$ определяет функцию f двух вещественных переменных. Эта функция неотрицательна при всех x.

Если удастся доказать, что существует точка $x = (x_1, x_2)$ такая, что f(x) = 0, то число $z = x_1 + ix_2$ будет корнем полинома P_n .

Докажем, прежде всего, что функция f непрерывна на всей плоскости. Для любых двух точек x, \tilde{x} вследствие (2.5), с. 11, имеем

$$|f(\tilde{x}) - f(x)| = ||P_n(\tilde{z})| - |P_n(z)|| \le |P_n(\tilde{z}) - P_n(z)|.$$

Здесь $\tilde{z} = \tilde{x}_1 + i\tilde{x}_2$. Положим $h = \tilde{z} - z$. Тогда

$$P_n(\tilde{z}) = P_n(z+h) =$$

$$= (z+h)^n + a_{n-1}(z+h)^{n-1} + \dots + a_1(z+h) + a_0. \quad (2.1)$$

По формуле бинома Ньютона¹⁾ для любого целого $k \geqslant 1$

$$(z+h)^k = z^k + C_k^1 z^{k-1} h + \dots + C_k^{k-1} z h^{k-1} + h^k.$$

Приводя подобные в правой части (2.1), найдем, что

$$P_n(z+h) = P_n(z) + c_1h + c_2h^2 + \dots + c_{n-1}h^{n-1} + h^n, \tag{2.2}$$

причем коэффициенты c_1, \ldots, c_{n-1} зависят только от z и коэффициентов полинома P_n . Применяя (2.3), (2.4), с. 11, нетрудно получить, что

$$|f(\tilde{x}) - f(x)| = |P_n(z+h) - P_n(z)| \le L(|h| + |h|^2 + \dots + |h|^n), (2.3)$$

где L зависит только от |z|, и модулей коэффициентов полинома P_n . Выбирая точку \tilde{x} достаточно близкой к x, правую часть неравенства (2.3) можно сделать меньшей любого наперед заданного положительного числа. Это и означает непрерывность функции f.

Можно считать, что $f(0) = |a_0| > 0$. В противном случае нуль — корень полинома. Построим круг B_R радиуса R с центром в начале координат. Обозначим через S_R окружность, границу круга B_R . Пусть $x \in S_R$. Запишем f(x) в виде $f(x) = |z^n - (-a_{n-1}z^{n-1} - \cdots - a_0)|$. Вследствие (2.5), с. 11, отсюда вытекает, что

$$f(x) \ge |z|^n - |a_{n-1}||z|^{n-1} - \dots - |a_0| = R^n - |a_{n-1}|R^{n-1} - \dots - |a_0| = R^n$$

 $^{^{1)}}$ Исаак Ньютон (Isaac Newton, 1643-1727) — английский физик, математик и астроном.

$$= R^{n}(1 - |a_{n-1}|R^{-1} - \dots - |a_0|R^{-n}).$$

Правая часть полученного неравенства стремится к бесконечности при $R \to \infty$. Поэтому, выбирая R достаточно большим, можно добиться того, что

$$f(x) \geqslant 2f(0) \quad \forall x \in S_R. \tag{2.4}$$

По доказанному выше функция f непрерывна на всей плоскости, значит, по теореме Вейерштрасса¹⁾ она достигает минимального значения в некоторой точке x^1 на замыкании круга B_R . Очевидно, $f(x^1) \leq f(0)$, но тогда вследствие оценки (2.4) точка x^1 не может лежать на S_R , следовательно, она — внутренняя точка области B_R . Будем считать, что $f(x^1) > 0$. В противном случае точка x^1 соответствует корню полинома P_n .

Пусть $h = h_1 + ih_2$. Если |h| достаточно мал, то точка

$$x^2 = (x_1^1 + h_1, x_2^1 + h_2)$$

лежит внутри B_R . По определению $f(x^2) = |P_n(z^1 + h)|$. Используя (2.2), получим, что $P_n(z^1 + h) = P_n(z^1) + c_1h + c_2h^2 + \cdots + h^n$, причем коэффициенты c_1, \ldots, c_{n-1} зависят только от z^1 и коэффициентов полинома P_n . По предположению $P_n(z^1)$ не нуль, поэтому

$$\frac{P_n(z^1+h)}{P_n(z^1)} = 1 + d_1h + \dots + d_nh^n.$$

Среди чисел d_1, \ldots, d_n хотя бы одно не нуль, по крайне мере, последнее таково. Пусть $d_k \neq 0$, а все числа d_j с меньшими номерами — нули. Тогда для любого $c \neq 0$

$$\frac{P_n(z^1+h)}{P_n(z^1)} = 1 + \frac{d_k}{c^k}(ch)^k + \frac{d_{k+1}}{c^{k+1}}(ch)^{k+1} + \dots + \frac{d_n}{c^n}(ch)^n.$$
 (2.5)

Выберем c так, чтобы $c^k = -d_k$. Положим v = ch. Тогда

$$\frac{f(x^2)}{f(x^1)} = \frac{|P_n(z^1 + h)|}{|P_n(z^1)|} = |1 - v^k + v^k b(v)|,$$

где $b(v) = \frac{d_{k+1}}{c^{k+1}}v + \dots + \frac{d_n}{c^n}v^{n-k}$. Выберем теперь h так, что v — вещественное положительное число, меньшее единицы, а $|b(v)| \leq 1/2$. При таком v, очевидно,

$$\frac{f(x^2)}{f(x^1)} \leqslant 1 - \frac{v^k}{2} < 1,$$

 $^{^{1)}}$ См. курс математического анализа. Карл Теодор Вильгельм Вейерштрасс (Karl Theodor Wilhelm Weierstrass; 1815-1897) — немецкий математик.

а этого быть не может, так как x^1 — точка минимума функции f на замыкании B_R . Получили противоречие. Остается принять, что $f(x^1) = 0$, т. е. $z^1 = x_1^1 + ix_2^1$ — корень полинома P_n . \square

3. Пусть $P_n(z)=z^n+a_{n-1}z^{n-1}+\cdots+a_0,\ n\geqslant 1.$ По основной теореме алгебры полином P_n имеет корень. Обозначим его через α_1 . Пусть этот корень имеет кратность $k_1\geqslant 1$. Тогда

$$P_n(z) = (z - \alpha_1)^{k_1} q_{n-k_1}(z).$$

Если $k_1=n$, то, очевидно, $q_{n-k_1}=1$. В противном случае полином $q_{n-k_1}(z)$ имеет корень. Обозначим его через α_2 . Понятно, что α_2 является корнем полинома P_n , причем по построению отличным от α_1 . Пусть кратность α_2 (как корня полинома q_{n-k_1}) равна k_2 . Тогда

$$q_{n-k_1}(z) = (z - \alpha_2)^{k_2} q_{n-k_1-k_2}(z),$$

следовательно,

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} q_{n-k_1-k_2}(z).$$

Ясно, что k_2 — кратность α_2 как корня полинома P_n . Продолжая этот процесс, получим, что

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_m)^{k_m}, \qquad (2.6)$$

где $k_1,\ k_2,\ldots,k_m$ — целые числа, не меньшие единицы, и такие, что $k_1+k_2+\cdots+k_m=n.$

Таким образом, всякий полином степени n имеет n корней (с учетом их кратности).

3.1. Теорема. Полином P_n степени $n \geqslant 1$ не может иметь больше чем n корней.

ДОКАЗАТЕЛЬСТВО. В самом деле, пусть $P_n(\alpha) = 0$ и α не совпадает ни с одним из чисел $\alpha_1, \ldots, \alpha_m$, определенных в предыдущем пункте. По следствию из теоремы Безу имеем $P_n(z) = (z - \alpha)q_{n-1}(z)$, откуда на основании (2.6) получаем, что

$$(z-\alpha_1)^{k_1}(z-\alpha_2)^{k_2}\cdots(z-\alpha_m)^{k_m}=(z-\alpha)q_{n-1}(z).$$

Правая часть этого равенства при $z = \alpha$ равна нулю, а левая не равна нулю. Полученное противоречие означает, что никакое число, отличное от $\alpha_1, \ldots, \alpha_m$, не может быть корнем полинома P_n . \square

- 4. Пусть $Q_n(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$ произвольный полином степени $n, \alpha_1, \dots, \alpha_m$ корни полинома $Q_n, k_1, k_2, \dots, k_m$ их кратности, причем $k_1 + k_2 + \dots + k_m = n$. Вследствие результатов, полученных в пункте 3, полином Q_n можно представить в виде $Q_n(z) = A(z \alpha_1)^{k_1}(z \alpha_2)^{k_2} \cdots (z \alpha_m)^{k_m}$, где A некоторая постоянная.
- 5. Занумеруем корни полинома P_n целыми числами от 1 до n, повторяя каждый корень столько раз, какова его кратность, и запишем (2.6) в виде $P_n(z) = (z \alpha_1)(z \alpha_2) \cdots (z \alpha_n)$. Раскрывая скобки в правой части равенства, приводя подобные и приравнивая коэффициенты при степенях z соответствующим коэффициентам в левой части, получим формулы, выражающие коэффициенты полинома P_n через его корни:

Закономерность образования этих формул очевидна: в каждой последующей строке количество сомножителей увеличивается на единицу, складываются всевозможные произведения различных сомножителей.

Полученные формулы называются формулами Въета (часто пишут Виета) $^{1)}$.

§ 3. Многочлены с действительными коэффициентами

1. Пусть все коэффициенты полинома

$$P_n(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$$

есть вещественные числа, тогда если α — корень этого полинома, то и сопряженное число $\overline{\alpha}$ — корень полинома P_n .

Доказательство этого утверждения сразу вытекает из формулы

$$\overline{P}_n(z) = \overline{z}^n + a_{n-1}\overline{z}^{n-1} + \dots + a_0,$$

получающейся непосредственным применением соотношений (2.1), с. 10, и того очевидного факта, что если $P_n(\alpha) = 0$, то и $\overline{P_n(\alpha)} = 0$.

 $^{^{1)}}$ Франсуа Виет (Francois Viete; 1540-1603) — французский математик, основоположник символической алгебры. По образованию и основной профессии — юрист.

Пусть теперь $\alpha_1, \alpha_2, \ldots, \alpha_s$ — все вещественные корни полинома P_n . Обозначим через k_1, k_2, \ldots, k_s их кратности. Положим

$$r = k_1 + k_2 + \dots + k_s$$
, $Q_r(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \dots (z - \alpha_s)^{k_s}$.

Тогда

$$P_n(z) = Q_r(z)R_{n-r}(z).$$
 (3.1)

Очевидно, что все коэффициенты многочлена Q_r вещественны, поэтому и все коэффициенты многочлена R_{n-r} вещественны (см. замечание на с. 19). По построению многочлен R_{n-r} может иметь только комплексные корни. Заметим, что при любых z, α

$$(z - \alpha)(z - \overline{\alpha}) = z^2 + pz + q,$$

где $p = -\alpha - \overline{\alpha} = -2 \operatorname{Re} \alpha$, $q = \alpha \overline{\alpha} = |\alpha|^2$ — вещественные числа. Поэтому, если α — комплексный корень полинома P_n , а следовательно, и корень полинома R_{n-r} , то из (3.1) вытекает равенство

$$P_n(z) = Q_r(z)(z^2 + pz + q)R_{n-r-2}(z),$$

причем числа p,q вещественны, значит, полином R_{n-r-2} имеет только вещественные коэффициенты. Продолжая этот процесс, получим, что

$$P_n(z) = (z - \alpha_1)^{k_1} (z - \alpha_2)^{k_2} \cdots (z - \alpha_s)^{k_s} (z^2 + p_1 z + q_1) \cdots \cdots (z^2 + p_t z + q_t).$$
 (3.2)

Здесь s — количество различных вещественных корней полинома P_n , а t — количество пар комплексно сопряженных корней этого полинома.

Из представления (3.2) сразу же вытекает, что у полинома с вещественным коэффициентами **нечетного** порядка существует по крайней один вещественный корень.

Полагая, что z в равенстве (3.2) — вещественное число, можно сказать, что полином с вещественными коэффициентами допускает представление в виде произведения линейных и квадратичных вещественных сомножителей.

ПРИМЕР. Нетрудно видеть, что одним из корней полинома

$$P_3(z) = a_3 z^3 + a_2 z^2 + a_1 z + a_0 = z^3 - 6z + 9$$

является число $\alpha = -3$. Разделим многочлен $P_3(z)$ на

$$Q_1(z) = z + b_0 = z + 3,$$

т. е. найдем такой многочлен

$$q_2(z) = c_2 z^2 + c_1 z + c_0,$$

что выполняется равенство

$$P_3(z) = Q_1(z)q_2(z).$$

Вычисления проведем с помощью схемы Горнера. Их удобно оформить в виде таблицы:

	$a_3 = 1$	$a_2 = 0$	$a_1 = -6$	$a_0 = 9$
$b_0 = 3$		$c_2b_0 =$	$c_1b_0 =$	$c_0 b_0 =$
		$=1\cdot 3=3$	=(-3)3=-9	$= 3 \cdot 3 = 9$
	$c_2 = a_3 =$	$c_1 = a_2 - c_2 b_0 =$	$c_0 = a_1 - c_1 b_0 =$	$r_0 = a_0 - c_0 b_0 =$
	=1	=-3	=3	=0

Итак,

$$q_2(z) = z^2 - 3z + 3,$$

а остаток r_0 равен нулю, поскольку многочлен $P_3(z)$ нацело делится на z+3:

$$P_3(z) = (z+3)(z^2 - 3z + 3).$$

Очевидно, число $\alpha=-3$ не является корнем полинома $q_2(z)$. Поэтому α — простой корень полинома $P_3(z)$. Для того, чтобы найти оставшиеся два его корня, надо решить квадратное уравнение

$$z^2 - 3z + 3 = 0.$$

Дискриминант этого уравнения равен -3, следовательно, оно не имеет вещественных корней. Таким образом, полином третьего порядка $P_3(z)$ с вещественными коэффициентами мы представили в виде произведения линейного и квадратичного вещественных сомножителей.

Глава 3

Определители второго и третьего порядков

§ 1. Определители второго порядка

Рассмотрим систему двух уравнений с двумя неизвестными

$$a_{11}x_1 + a_{12}x_2 = b_1, a_{21}x_1 + a_{22}x_2 = b_2.$$
(1.1)

Здесь a_{11} , a_{12} , a_{21} , a_{22} , b_1 , b_2 — заданные, вообще говоря, комплексные числа, x_1 , x_2 требуется найти.

Решим эту систему, используя метод исключения неизвестных. Этот метод обычно называют методом $\Gamma aycca^{1}$. Поделим обе части первого уравнения на a_{11} :

$$x_1 + \frac{a_{12}}{a_{11}}x_2 = \frac{b_1}{a_{11}}.$$

Затем умножим полученное уравнение на a_{21} и вычтем почленно это уравнение из второго уравнения системы:

$$\left(a_{22} - \frac{a_{12}}{a_{11}}a_{21}\right)x_2 = b_2 - \frac{b_1}{a_{11}}a_{21}.$$

Отсюда

$$x_2 = \frac{b_2 a_{11} - a_{21} b_1}{a_{22} a_{11} - a_{12} a_{21}}. (1.2)$$

Подставляя найденное выражение для x_2 в первое уравнение системы (1.1), легко найти выражение для x_1 :

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{22} a_{11} - a_{12} a_{21}}. (1.3)$$

Понятно, что формулы (1.2), (1.3) имеют смысл, если

$$a_{11}a_{22} - a_{12}a_{21} \neq 0.$$

Формулы (1.2), (1.3) полезно записать в несколько ином виде. Введем соответствующие определения и обозначения.

 $^{^{1)}}$ Иоганн Карл Фридрих Гаусс (Johann Carl Friedrich Gauss; 1777 — 1855) — немецкий математик, астроном и физик.

Таблицу

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \tag{1.4}$$

называют матрицей второго порядка. Величину

$$\Delta = a_{11}a_{22} - a_{12}a_{21} \tag{1.5}$$

называют определителем матрицы A. Для определителя используют следующие обозначения:

$$\det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \Delta.$$

Равенства (1.2), (1.3) теперь можно записать в виде

$$x_1 = \frac{\Delta_1}{\Lambda}, \quad x_2 = \frac{\Delta_2}{\Lambda},$$

где

$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}.$$

Полученные формулы называют формулами $Крамера^{1)}$. Формулы (1.2), (1.3) не имеют смысла, когда

$$|A| = a_{11}a_{22} - a_{12}a_{21} = 0,$$

или

$$\frac{a_{11}}{a_{21}} = \frac{a_{12}}{a_{22}},$$

т. е. строки определителя |A| пропорциональны. Если при этом и

$$\frac{b_1}{b_2} = \frac{a_{12}}{a_{22}},$$

то первое и второе уравнения системы (1.1), фактически, совпадают, и она имеет бесконечное множество решений. Если |A| = 0, но

$$\frac{b_1}{b_2} \neq \frac{a_{12}}{a_{22}},$$

то уравнения системы (1.1) противоречивы, система несовместна, не имеет ни одного решения.

 $[\]overline{}^{1)}$ Габриэль Крамер (Gabriel Cramer; 1704-1752) — швейцарский математик, один из создателей линейной алгебры.

ПРИМЕРЫ. 1) Определитель матрицы системы

$$x_1 + 2x_2 = 5,$$

 $3x_1 + 4x_2 = 6,$

равен

$$\Delta = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4 - 6 = -2.$$

Система имеет единственное решение

$$x_1 = \frac{\begin{vmatrix} 5 & 2 \\ 6 & 4 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}} = \frac{20 - 12}{-2} = -4, \quad x_2 = \frac{\begin{vmatrix} 1 & 5 \\ 3 & 6 \end{vmatrix}}{\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}} = \frac{6 - 15}{-2} = \frac{9}{2}.$$

2) Определитель матрицы системы

$$\begin{aligned}
 x_1 + 2x_2 &= 3, \\
 2x_1 + 4x_2 &= 6,
 \end{aligned}$$

равен

$$\Delta = \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} = 4 - 4 = 0.$$

При этом

$$\frac{b_1}{b_2} = \frac{a_{12}}{a_{22}} = \frac{3}{6} = \frac{2}{4}.$$

Уравнения системы, фактически, совпадают. Система имеет бесчисленное множество решений.

3) Система

$$\begin{aligned}
 x_1 + 2x_2 &= 2, \\
 2x_1 + 4x_2 &= 6,
 \end{aligned}$$

не имеет решений, так как ее определитель равен нулю, но $b_1/b_2 \neq a_{12}/a_{22}$.

§ 2. Определители третьего порядка

1. Обратимся к системе трех уравнений с тремя неизвестными

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, (2.1)$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, (2.2)$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3. (2.3)$$

Из ее коэффициентов можно составить матрицу третьего порядка

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}. \tag{2.4}$$

Получим формулы для решения системы, вновь используя метод Гаусса. Поделим обе части уравнения (2.1) на a_{11} . Полученное уравнение умножим на a_{21} и вычтем почленно из уравнения (2.2). Аналогично поступим с уравнением (2.3). В результате система (2.1) - (2.3) преобразуется к виду

$$x_1 + \frac{a_{12}}{a_{11}}x_2 + \frac{a_{13}}{a_{11}}x_3 = \frac{b_1}{a_{11}},\tag{2.5}$$

$$\left(a_{22} - \frac{a_{12}}{a_{11}}a_{21}\right)x_2 + \left(a_{23} - \frac{a_{13}}{a_{11}}a_{21}\right)x_3 = b_2 - \frac{b_1}{a_{11}}a_{21},$$
(2.6)

$$\left(a_{32} - \frac{a_{12}}{a_{11}}a_{31}\right)x_2 + \left(a_{33} - \frac{a_{13}}{a_{11}}a_{31}\right)x_3 = b_3 - \frac{b_1}{a_{11}}a_{31}.$$
(2.7)

Теперь из уравнений (2.6), (2.7) исключим неизвестную x_2 по аналогии с тем, как мы исключали неизвестную x_1 из системы (1.1). После элементарных преобразований получим

$$x_{3} = \frac{b_{1} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - b_{2} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + b_{3} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}{a_{21} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$
 (2.8)

Упражнение. Вывести равенство (2.8).

Знаменатель полученной дроби называют onpedenumenem матрицы A, т. е. по определению

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} - a_{23} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} + a_{33} \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}. (2.9)$$

Заметим, что числитель дроби в правой части (2.8) аналогичен знаменателю, а именно, множители при определителях второго порядка заменены на b_1 , b_2 , b_3 соответственно. Формуле (2.8) поэтому можно придать вид

$$x_{3} = \frac{\begin{vmatrix} a_{11} & a_{12} & b_{1} \\ a_{21} & a_{22} & b_{2} \\ a_{31} & a_{32} & b_{3} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}}.$$
 (2.10)

Зная выражение для x_3 , из уравнения (2.6) найдем выражение для x_2 , а затем при помощи уравнения (2.5) — для x_1 . Можно избежать этих громоздких вычислений, действуя следующим образом. Запишем систему (2.1) — (2.3) в виде

$$a_{11}x_1 + a_{13}x_3 + a_{12}x_2 = b_1,$$

 $a_{21}x_1 + a_{23}x_3 + a_{22}x_2 = b_2,$
 $a_{31}x_1 + a_{33}x_3 + a_{32}x_2 = b_3.$

Теперь, фактически, вновь используя формулу (2.10), получим

$$x_{2} = \frac{\begin{vmatrix} a_{11} & a_{13} & b_{1} \\ a_{21} & a_{23} & b_{2} \\ a_{31} & a_{33} & b_{3} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{13} & a_{12} \\ a_{21} & a_{23} & a_{22} \\ a_{31} & a_{33} & a_{32} \end{vmatrix}}.$$
 (2.11)

Аналогично,

$$x_{1} = \frac{\begin{vmatrix} a_{12} & a_{13} & b_{1} \\ a_{22} & a_{23} & b_{2} \\ a_{32} & a_{33} & b_{3} \end{vmatrix}}{\begin{vmatrix} a_{12} & a_{13} & a_{11} \\ a_{22} & a_{23} & a_{21} \\ a_{32} & a_{33} & a_{31} \end{vmatrix}}.$$
 (2.12)

Формулы (2.10) – (2.12) имеют смысл, если определитель матрицы A не равен нулю. Полное исследование разрешимости линейных систем с тремя неизвестными в случае, когда определитель |A| равен нулю, довольно сложно. Позже мы рассмотрим этот вопрос применительно к системам с произвольным числом неизвестных.

2. Формулам (2.10)-(2.12) мы придадим в дальнейшем более симметричный вид, но сначала представим определитель в более удобной для дальнейших исследований форме.

Вычислим входящие в (2.9) определители второго порядка, раскроем скобки и соберем вместе слагаемые с одинаковыми знаками. Получим:

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$
(2.13)

Для того, чтобы подметить закономерность расстановки знаков в этой сумме, нам полезно будет ввести некоторые новые понятия и обозначения.

Три целых числа 1, 2, 3 можно расположить шестью различными способами:

$$123, 231, 312, 321, 213, 132.$$
 (2.14)

Иначе говоря, из трех чисел, можно составить шесть различных ne-pecmahosok.

В дальнейшем будет удобно записывать перестановки в виде $n_1n_2n_3$, подразумевая под n_i одно из чисел 1,2,3. Причем, конечно, все числа $n_1,\,n_2,\,n_3$ считаются различными.

Рассмотрим некоторую конкретную перестановку $n_1n_2n_3$ и составим все пары чисел n_in_j , где i < j. Понятно, что таких пар всего три: n_1n_2 , n_1n_3 и n_2n_3 . Говорят, что пара чисел n_in_j , где i < j, образует инверсию, если $n_i > n_j$. Каждой перестановке соответствует определенное количество инверсий, а именно, 0, 1, 2, или 3. Количество инверсий в перестановке $n_1n_2n_3$ будем обозначать через $\sigma(n_1, n_2, n_3)$.

Перестановку $n_1n_2n_3$ будем называть *четной*, если ей соответствует четное количество инверсий (нуль считается четным числом). В противном случае перестановка называется *нечетной*.

Нетрудно убедиться, что первые три из перестановок (2.14) четные, а остальные нечетные.

Каждое слагаемое в выражении определителя (2.13) имеет вид

$$\pm a_{1n_1}a_{2n_2}a_{3n_3}$$
,

причем знак плюс ставится в том случае, когда перестановка $n_1n_2n_3$ четная. В противном случае ставится знак минус. Равенство (2.13) с использованием введенных обозначений можно записать в виде

$$|A| = \sum_{n_1 n_2 n_3} (-1)^{\sigma(n_1 n_2 n_3)} a_{1n_1} a_{2n_2} a_{3n_3}, \tag{2.15}$$

где символ $\sum_{n_1n_2n_3}$ означает суммирование, которое распространяется на всевозможные перестановки $n_1n_2n_3$.

Для запоминания способа расстановки знаков в (2.13) полезно использовать схему, представленную на рис. 1.

Пример.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 3 \cdot 5 \cdot 7 - 4 \cdot 2 \cdot 9 - 1 \cdot 8 \cdot 6 =$$

$$= 45 + 84 + 96 - 105 - 72 - 48 = 225 - 225 = 0.$$

Рис. 1. Правило расстановки знаков в определителе третьего порядка

§ 3. Свойства определителей третьего порядка

1. Матрица

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

называется матрицей, mpancnohupoвahhoй по отношению к матрице A.

Матрица A^T состоит из тех же элементов, что и матрица A, но расположенных в другом порядке. Первый столбец матрицы A^T состоит из элементов первой строки матрицы A. Аналогичное справедливо и для последующих столбцов матрицы A^T .

Вычисляя по формуле (2.13) определитель матрицы A^T , получим

$$|A^{T}| = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13} - a_{21}a_{12}a_{33} - a_{11}a_{32}a_{23}.$$
(3.1)

Сравнивая $|A^T|$ и |A|, легко заметить, что они различаются только порядком следования сомножителей в соответствующих слагаемых и порядком расположения этих слагаемых.

Таким образом, определитель не меняется при транспонировании матрицы.

Все дальнейшие свойства определителей формулируются в терминах их строк. По только что доказанному свойству 1 они будут справедливы и для столбцов.

- **2.** Непосредственно из формулы (2.15) вытекает, что если все элементы некоторой строки определителя нули, то определитель равен нулю.
- **3.** Если элементы некоторой строки определителя представлены в виде суммы двух слагаемых, то определитель представляется в виде суммы определителей. Запишем соответствующую формулу

применительно к первой строке:

$$\begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Справедливость данного свойства проверяется непосредственным использованием формулы (2.15):

$$\sum_{n_1 n_2 n_3} (-1)^{\sigma(n_1 n_2 n_3)} (a_{1n_1} + b_{1n_1}) a_{2n_2} a_{3n_3} = \sum_{n_1 n_2 n_3} (-1)^{\sigma(n_1 n_2 n_3)} a_{1n_1} a_{2n_2} a_{3n_3} + \sum_{n_1 n_2 n_3} (-1)^{\sigma(n_1 n_2 n_3)} b_{1n_1} a_{2n_2} a_{3n_3}.$$

Аналогично доказывается, что общий множителей элементов строки можно вынести за знак определителя:

$$\begin{vmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \alpha \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$

и, вообще,

$$\begin{vmatrix} \alpha a_{11} + \beta b_{11} & \alpha a_{12} + \beta b_{12} & \alpha a_{13} + \beta b_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= \alpha \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \beta \begin{vmatrix} b_{11} & b_{12} & b_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Это свойство часто формулируют так: определитель линеен по каждой строке.

4. Если в определителе две строки совпадают, то он равен нулю. Будем считать, что совпадают две первые строки. Для других пар строк выкладки полностью аналогичны. Запишем равенство (2.13), заменяя элементы второй строки на равные им элементы первой строки:

$$|A| = a_{11}a_{12}a_{33} + a_{12}a_{13}a_{31} + a_{13}a_{11}a_{32} - a_{13}a_{12}a_{31} - a_{12}a_{11}a_{33} - a_{11}a_{13}a_{32}.$$
(3.2)

Легко заметить, что для каждого слагаемого со знаком плюс находится одно слагаемое, состоящее из тех же сомножителей, но со знаком минус, значит, |A| = 0.

5. Если в определителе поменять местами две строки, то знак его изменится на противоположный, например,

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$
(3.3)

Действительно, в силу только что доказанного свойства 4 имеем, что

$$\begin{vmatrix} a_{11} + a_{21} & a_{12} + a_{22} & a_{13} + a_{23} \\ a_{11} + a_{21} & a_{12} + a_{22} & a_{13} + a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0.$$

Последовательно используя свойство 3, левую часть этого равенства можно записать в виде суммы четырех слагаемых:

$$\begin{vmatrix} a_{11} + a_{21} & a_{12} + a_{22} & a_{13} + a_{23} \\ a_{11} + a_{21} & a_{12} + a_{22} & a_{13} + a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} + a_{21} & a_{12} + a_{22} & a_{13} + a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} + a_{21} & a_{12} + a_{22} & a_{13} + a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Вследствие свойства 4 первое и последнее слагаемые этой суммы равны нулю, поэтому

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0,$$

т. е. равенство (3.3) справедливо.

Переставляя столбцы определителей, (2.11), (2.12) можно записать в виде

$$x_{2} = \frac{\begin{vmatrix} a_{11} & b_{1} & a_{13} \\ a_{21} & b_{2} & a_{23} \\ a_{31} & b_{3} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}}, \quad x_{1} = \frac{\begin{vmatrix} b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}}.$$
 (3.4)

Формулам, дающим решение системы (2.1)-(2.3), можно придать теперь компактный вид

$$x_i = \frac{\Delta_i}{\Delta}, \ i = 1, 2, 3,$$
 (3.5)

где $\Delta = |A|$, а Δ_i получается из |A| заменой i-того столбца столбцом правой части системы (2.1)-(2.3). Формулы (3.5) называют формулами Крамера.

Продолжим изучение свойств определителей третьего порядка.

6. Определитель не изменится, если к некоторой его строке добавить другую, умноженную на произвольное число. Опять проведем доказательство, рассматривая первую и вторую строки. Используя свойство 3, получим

$$\begin{vmatrix} a_{11} + \alpha a_{21} & a_{12} + \alpha a_{22} & a_{13} + \alpha a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \alpha \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Последний определитель равен нулю, так как его первая и вторая строки совпадают.

7. Получим необходимое и достаточное условие равенства определителя |A| нулю. Будем говорить, что строки определителя линейно зависимы, если существуют числа α , β , γ , не все равные нулю, и такие, что

$$\alpha a_{1j} + \beta a_{2j} + \gamma a_{3j} = 0, \ j = 1, 2, 3.$$

В дальнейшем будем для определенности считать, что $\alpha \neq 0$. Тогда

$$a_{1j} = c_1 a_{2j} + c_2 a_{3j}, \ j = 1, 2, 3,$$
 (3.6)

где $c_1 = -\beta/\alpha$, $c_2 = -\gamma/\alpha$. Говорят, что в этом случае первая строка есть линейная комбинация второй и третьей строк.

Покажем, что определитель |A| равен нулю тогда и только тогда, когда его строки линейно зависимы.

Пусть для строк определителя выполнено условие (3.6). Умножим вторую строку определителя на $-c_1$ и прибавим к первой. Величина определителя не изменится. Умножим третью строку на $-c_2$ и прибавим к первой строке преобразованного определителя. Вновь величина

определителя не изменится, но первая строка определителя, очевидно, будет содержать только нулевые элементы и потому определитель будет равен нулю.

Пусть определитель |A| равен нулю. Рассмотрим все определители второго порядка, получающиеся из |A| вычеркиванием одного столбца и одной строки, например,

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|.$$

Если не все элементы определителя |A| равны нулю (в такой ситуации доказываемое утверждение выполняется тривиальным образом), то возможны два случая: 1) все эти определители второго порядка равны нулю, 2) хотя бы один из них отличен от нуля.

Рассмотрим второй случай. Первый рассматривается аналогично, причем рассуждения оказываются более простыми. Будем считать, что определитель

$$\left| \begin{array}{cc} a_{21} & a_{22} \\ a_{31} & a_{32} \end{array} \right|$$

не равен нулю, что не снижает общности рассуждений, так как этого всегда можно добиться, переставляя строки и столбцы и не меняя при этом величины определителя A. Действительно, такие перестановки могут изменить лишь знак определителя, а он, как мы полагаем, равен нулю.

Воспользовавшись формулой (2.9), отсюда получим, что

$$a_{13} = c_1 a_{23} + c_2 a_{33}, (3.7)$$

где

$$c_1 = \frac{\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}}{\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}}, \quad c_2 = -\frac{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}}.$$

Далее, определитель

$$\begin{vmatrix} a_{11} & a_{12} & a_{12} \\ a_{21} & a_{22} & a_{22} \\ a_{31} & a_{32} & a_{32} \end{vmatrix}$$

равен нулю, так как у него два последних столбца совпадают. Записывая этот определитель по формуле (2.9), получим как и раньше, что

$$a_{12} = c_1 a_{22} + c_2 a_{32}. (3.8)$$

Наконец, рассматривая нулевой определитель

$$\left|\begin{array}{cccc} a_{11} & a_{12} & a_{11} \\ a_{21} & a_{22} & a_{21} \\ a_{31} & a_{32} & a_{31} \end{array}\right|,$$

получим, что

$$a_{11} = c_1 a_{21} + c_2 a_{31}. (3.9)$$

Равенства (3.7) - (3.9) означают, что первая строка определителя есть линейная комбинация второй и третьей строк.

8. Получим так называемую формулу разложения определителя по строке. Используя свойство 4), запишем следующие равенства:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & 0 & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} 1 & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + a_{12} \begin{vmatrix} 0 & 1 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} 0 & 0 & 1 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Обозначив через A_{1j} множители при соответствующих элементах первой строки определителя |A|, можем написать

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}. (3.10)$$

Преобразуем определители A_{1j} , j=1,2,3. Умножим первую строку A_{11} на a_{21} и вычтем из второй, затем умножим первую строку на a_{31} и вычтем из третьей. Получим в результате

$$A_{11} = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{array} \right|.$$

Аналогично,

$$A_{12} = \left| egin{array}{ccc} 0 & 1 & 0 \\ a_{21} & 0 & a_{23} \\ a_{31} & 0 & a_{33} \end{array} \right|, \quad A_{13} = \left| egin{array}{ccc} 0 & 0 & 1 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & 0 \end{array} \right|.$$

Определитель A_{1j} называется алгебраическим дополнением элемента a_{1j} .

Определитель M_{1j} второго порядка, получающийся из A_{1j} вычеркиванием первой строки и j-того столбца, называется минором, соответствующим элементу a_{1j} определителя |A|.

Вообще, алгебраическое дополнение A_{ij} элемента a_{ij} определителя |A| получается заменой в |A| элемента a_{ij} единицей, всех остальных элементов i-той строки и j-того столбца нулями.

Минор M_{ij} элемента a_{ij} определителя |A| — определитель второго порядка, получающийся из |A| вычеркиванием i-той строки и j-того столбца.

Установим связь между алгебраическим дополнениями и минорами. Меняя местами первый и второй столбец, получим, что

$$A_{12} = - \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{23} \\ 0 & a_{31} & a_{33} \end{vmatrix}.$$
 (3.11)

Аналогично, выполняя две перестановки столбцов и потому не меняя знака, получим, что

$$A_{13} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{21} & a_{22} \\ 0 & a_{31} & a_{32} \end{vmatrix}. \tag{3.12}$$

Теперь, понятно, что достаточно научиться вычислять определитель A_{11} . Используя формулу (2.13), получим

$$A_{11} = \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right| = M_{11}.$$

Вследствие (3.11), (3.12) будем иметь, что $A_{12}=-M_{12},\ A_{13}=M_{13}.$ Формуле (3.10) можно придать вид

$$|A| = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}.$$

Нетрудно сообразить, что справедливы общие формулы

$$|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + a_{i3}A_{i3}, (3.13)$$

$$|A| = a_{i1}(-1)^{i+1}M_{i1} + a_{i2}(-1)^{i+2}M_{i2} + a_{i3}(-1)^{i+3}M_{i3}$$
 (3.14)

разложения определителя по i-той строке, где i = 1, 2, 3.

Можно написать и аналогичную формулу разложения определителя по столбцу

$$|A| = a_{1i}(-1)^{i+1}M_{1i} + a_{2i}(-1)^{i+2}M_{2i} + a_{3i}(-1)^{i+3}M_{3i}, (3.15)$$

где i = 1, 2, 3.

Подчеркнем, что знаки в формулах (3.14), (3.15) определяются количеством перестановок строк и столбцов в алгебраическом дополнении A_{ij} , необходимых для того, чтобы переместить единицу на позицию первого элемента первой строки.

ПРИМЕР. Вычислим определитель разложением по первому столбцу:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 4 \cdot \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 7 \cdot \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3 - 4(-6) + 7(-3) = 0.$$

Тот же определитель вычислим разложением по второй строке:

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = -4 \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 5 \cdot \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} - 6 \cdot \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = -4(-6) + 5(-12) - 6(-6) = 0.$$

Используем теперь свойство 7) для вычисления того же определителя. Умножим сначала первый столбец на два и вычтем из второго столбца. Придем к равенству

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 3 \\ 4 & -3 & 6 \\ 7 & -6 & 9 \end{vmatrix}.$$

Затем умножим первый столбец на три и вычтем из третьего столбца. Получим

$$\begin{vmatrix} 1 & 0 & 3 \\ 4 & -3 & 6 \\ 7 & -6 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 4 & -3 & -6 \\ 7 & -6 & -12 \end{vmatrix}.$$

Разлагая последний определитель по первой строке, найдем его значение:

$$\begin{vmatrix} 1 & 0 & 0 \\ 4 & -3 & -6 \\ 7 & -6 & -12 \end{vmatrix} = 1 \cdot \begin{vmatrix} -3 & -6 \\ -6 & -12 \end{vmatrix} = 0.$$

Отметим, что на формулу (2.9) можно смотреть теперь как на разложение определителя по третьему столбцу.

9. Пусть $i \neq k$. Тогда

$$a_{i1}A_{k1} + a_{i2}A_{k2} + a_{i3}A_{k3} = 0. (3.16)$$

Действительно, выражение в левой части (3.16) можно интерпретировать, как разложение определителя по k-той строке, которая состоит из элементов i-той строки. Определитель с двумя равными строками равен нулю.

Соотношениям (3.13), (3.16) полезно придать общую форму

$$a_{i1}A_{k1} + a_{i2}A_{k2} + a_{i3}A_{k3} = |A|\delta_{ik}, \quad i, k = 1, 2, 3,$$
 (3.17)

где

$$\delta_{ik} = \begin{cases} 0, & i \neq k, \\ 1, & i = k, \end{cases}$$
 (3.18)

так называемый $символ \ Кронекера^{1)}.$

 $[\]overline{\ \ ^{1)}}$ Леопольд Кронекер (Leopold Kronecker; 1823 — 1891) — немецкий математик.

Глава 4

Введение в аналитическую геометрию

§ 1. Векторы. Алгебраические операции над векторами

1. В этой главе мы будем использовать только вещественные числа. Рассматривается трехмерное евклидово¹⁾ пространство. Вводится декартова²⁾ система координат. Это означает следующее. Фиксируется некоторая точка пространства (в дальнйшем она всегда будет обозначатся символом 0 (ноль)). Она называется началом системы координат. Задаются три попарно ортогональные прямые, проходящие через точку 0. Задается единица длины и направление отсчета от точки 0 на каждой прямой.

Положение точек на этих прямых будем определять вещественными числами x_1, x_2, x_3 (т. е. будем интерпретировать эти прямые как вещественные оси). Будем называть их в дальнейшем ocsmu koopdu-ham.

Понятно, что теперь положение каждой точки в пространстве взаимнооднозначно определяется заданием трех чисел x_1, x_2, x_3 , называемых $кoopduнamamu\ moчku$ (геометрический смысл координат поясняется на рис. 1, a).

Точки пространства будем обозначать малыми латинскими буквами: x, y, z, \ldots Будут использоваться и обозначения с явным указанием координат, например $x = (x_1, x_2, x_3)$. Иногда нам придется нумеровать различные точки пространства. В этом случае номер (индекс) будем писать сверху, например, $x^1 = (x_1^1, x_2^1, x_3^1)$.

Как обычно, направленные отрезки будем называть векторами. На рисунках (при необходимости) направление вектора будем указывать стрелкой. Векторы, имеющие равные длины и одинаковые направления, считаются равными (см. рис. 2, a). С каждой точкой x пространства взаимнооднозначно связан вектор, соединяющий ее с началом координат (см. рис. 1, b). Концом этого вектора считается точка x.

Вектор, соответствующий точке 0, будем называть нулевым.

¹⁾ Евклид или Эвклид (ок. 300 г. до н. э.) — древнегреческий математик. Мировую известность приобрел благодаря сочинению по основам математики «Начала».

 $^{^{2)}}$ Рене Декарт (Rene Descartes; лат. Renatus Cartesius — Картезий; 1596 — 1650) — французский математик, философ, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики.

Рис. 1. Декартовы координаты точки $x = (x_1, x_2, x_3)$ (a). Вектор x (b)

Векторы будем обозначать теми же символами, что и соответствующие им точки пространства.

Координаты точки x будем называть декартовыми координатами вектора x. Геометрический смысл декартовых координат вектора очевиден. Это длины проекций вектора x (с учетом знака) на соответствующие оси координат.

Длину вектора x часто называют modynem и обозначают через |x|. Лишь один вектор имеет нулевую длину. Это вектор 0. Из теоремы Пифагора сразу же вытекает, что для любого вектора $x=(x_1,x_2,x_3)$

$$|x| = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

- **2.** Определим теперь так называемые *алгебраические операции* над векторами. Будем опираться при этом на знакомые из школьного курса физики правила действия с силами, приложенными к материальной точке.
- 1) Умножение вектора на число. Пусть заданы вещественное число α и вектор x. Вектор y называется произведением α и x (пишет-

Рис. 2. Равные векторы (a). Коллинеарные векторы, $\alpha>0,\ \beta<0$ (b)

Рис. 3. Сложение векторов. Правило параллелограмма (a) и правило треугольника (b)

ся $y=\alpha x)$, если $|y|=|\alpha||x|$, а направление y совпадает с направление ем вектора x при положительном α и противоположно направлению x при отрицательном α .

Поясним, что умножение любого вектора на нуль дает нулевой вектор, умножение любого числа на нулевой вектор также дает нулевой вектор.

Векторы, лежащие на одной прямой, называют коллинеарными (см. рис. 2, b). Понятно, при любых α и x векторы $y = \alpha x$ и x коллинеарны. Наоборот, если векторы x, y коллинеарны, и хотя бы один из них не нуль (например, x), то найдется такое число α , что $y = \alpha x$.

2) Сложение векторов. Вектор z называется суммой векторов x и y (пишется z=x+y), если он образует диагональ параллелограмма, построенного на векторах x, y (см. рис. 3, a).

Нетрудно видеть, что x + y = y + x, т. е., как говорят, операция сложения векторов коммутативна (перестановочна).

УПРАЖНЕНИЕ. Интерпретируйте правило сложения векторов в предельном случае, когда слагаемые коллинеарны.

Иногда удобнее описывать то же самое правило сложения век-

Рис. 4. Сложение векторов: (a) сумма трех векторов; (b) к правилу ассоциативности w=x+y+z=(x+y)+z=x+(y+z); (c) вычитание векторов, x+(-y)=x-y, x=y+(x-y)

Рис. 5. К дистрибутивности умножения на скаляр (a) и по сложению векторов (b)

торов иначе: от конца вектора x откладывается вектор y, вектор z замыкает треугольник (см. рис. 3, b).

Аналогично можно описать правило сложения нескольких векторов (см. рис. 4, a).

Нетрудно видеть, что операция сложения векторов *ассоциативна* (см. рис. 4, b), т. е. (x + y) + z = x + (y + z).

Вектор z называется pазностью векторов x и y (см. рис. 4, c), если x=z+y. Понятно, что z=x+(-1)y=x+(-y).

Из рис. 5 сразу усматриваются следующие свойства, связывающие операции сложения векторов и умножения вектора на число:

$$(\alpha + \beta)x = \alpha x + \beta x,$$

 $\alpha(x+y) = \alpha x + \alpha y.$

Эти свойства называют свойствами $\partial u cmpu by mu b ho cmu$ (pa cnpe d e h u - m e h ho cmu).

3. *Базис. Разложение вектора по базису.* Будем говорить, что векторы *компланарны*, если они лежат в одной плоскости. Фиксируем

Рис. 6. Разложение вектора по базису, $x = x_1e^1 + x_2e^2 + x_3e^3$

Рис. 7. К доказательству единственности разложения вектора по неортогональному базису (a). Декартов базис (b)

произвольным образом три некомпланарных вектора. Обозначим их через e^1, e^2, e^3 . Очевидно, что любой вектор x можно представить в виде (см. рис. 6)

$$x = x_1 e^1 + x_2 e^2 + x_3 e^3.$$

Будем писать также $x = (x_1, x_2, x_3)$.

Говорят, что векторы e^1, e^2, e^3 образуют базис пространства. Числа x_1, x_2, x_3 называют координатами вектора в этом базисе. Они однозначно определяются вектором x (если базис фиксирован). Действительно, если предположить, что возможно еще одно разложение

$$x = \hat{x}_1 e^1 + \hat{x}_2 e^2 + \hat{x}_3 e^3$$

TO

$$(\widehat{x}_1 - x_1)e^1 + (\widehat{x}_2 - x_2)e^2 + (\widehat{x}_3 - x_3)e^3 = 0.$$

Следовательно, векторы $(\widehat{x}_1 - x_1)e^1$, $(\widehat{x}_2 - x_2)e^2$, $(\widehat{x}_3 - x_3)e^3$ образуют треугольник и, значит, лежат в одной плоскости (см. рис. 7, a), чего не может быть, так как по условию векторы e^1 , e^2 , e^3 некомпланарны.

Особую роль играет базис, составленный из трех попарно ортогональных векторов единичной длины (см. рис. 7, b). Они образуют так называемый $dekapmos\ based$ Мы будем обозначать его через i^1, i^2, i^3 . Координаты вектора в этом базисе есть его декартовы координаты.

Базис, составленный из трех произвольных некомпланарных векторов, иногда называют *обобщенным декартовым базисом*.

Далее в этом параграфе под координатами вектора понимаются обобщенные декартовы координаты. Случаи, когда используются декартовы координаты, оговариваются особо.

Рис. 8. Угол φ_1 между векторами x и y (a). Угол $\psi = \pi - \varphi_1$ между векторами x и -y (b)

4. Представление алгебраических операций через координаты. Пусть α — произвольное число. Используя свойство дистрибутивности, получим

$$\alpha x = (\alpha x_1)e^1 + (\alpha x_2)e^2 + (\alpha x_3)e^3,$$

т. е. при умножении вектора на число координаты вектора умножаются на это же число. Будем также писать

$$\alpha x = (\alpha x_1, \alpha x_2, \alpha x_3).$$

Далее, пусть $x = x_1e^1 + x_2e^2 + x_3e^3$, $y = y_1e^1 + y_2e^2 + y_3e^3$. Тогда, опираясь на свойства ассоциативности и дистрибутивности, получим

$$x + y = (x_1 + y_1)e^1 + (x_2 + y_2)e^2 + (x_3 + y_3)e^3,$$

т. е. при сложении векторов их компоненты складываются.

Будем также писать

$$x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3),$$

и, вообще,

$$\alpha x + \beta y = (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \alpha x_3 + \beta y_3).$$

Например, даны векторы $x=(1,2,4),\ y=(5,6,7).$ Вычислим координаты вектора z=2x-y. Получим z=(2-5,4-6,8-7)=(-3,-2,1).

§ 2. Скалярное произведение векторов

1. Скалярным произведением векторов x и y называется число

$$(x,y) = |x||y|\cos(x,y).$$

Здесь $\cos(x,y)$ — косинус угла между векторами x,y. Под углом между двумя векторами подразумевают тот угол, который не превосходит π (см. рис. 8,a).

Рис. 9. Проекция вектора (a). K доказательству аддитивности скалярного произведения (b)

Понятие скалярного произведения векторов возникает, например, в физике при проектировании силы на заданное направление.

Длина $npoe\kappa uuu$ (с учетом знака) вектора x на прямую, параллельную вектору e единичной длинны, равна скалярному произведению (x,e) (см. рис. 9,a):

$$(x,e) = |x||e|\cos(x,e) = |x||e|\cos\alpha = |x|\cos\alpha.$$

Очевидно, что для opmoгoнaльности двух ненулевых векторов необходимо и достаточно, чтобы их скалярное произведение равнялось нулю.

Если один из сомножителей — нуль, то и скалярное произведение равно нулю.

Скалярное произведение обладает следующими свойствами:

- 1) (x,y) = (y,x) для любых векторов x,y-cимметрия,
- 2) $(\alpha x, y) = \alpha(x, y)$ для любых векторов x, y и для любого вещественного числа $\alpha o\partial hopo\partial hocmb$,
- 3) (x+y,z) = (x,z) + (y,z) для любых векторов $x,y,z-a\partial\partial u$ -*тивность*,
- 4) $(x,x)=|x|^2\geqslant 0$ для любого вектора x, и если (x,x)=0, то x=0- положительная определенность.

Заметим, что из свойств 2), 3) вытекает, что

$$(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$$

для любых векторов x, y, z и для любых вещественных чисел α, β . Это свойство часто называют свойством *линейности* скалярного произведения векторов по первому аргументу.

Убедимся в справедливости свойств 1)-4).

Свойство 1) — непосредственное следствие определения.

Свойство 2) при $\alpha \geqslant 0$ очевидно, а при $\alpha < 0$ надо заметить, что умножение одного вектора на отрицательное число превращает угол между векторами в дополнительный до π и, стало быть, меняет знак косинуса угла (см. рис. 8, b).

Если z=0, то свойство 3), очевидно, выполняется для любых x и y. Если $z\neq 0$, то, используя свойство 2), получим

$$(x+y,z) = |z|(x+y,e),$$

где $e = |z|^{-1}z$, причем, очевидно, |e| = 1. Теперь достаточно доказать равенство

$$(x + y, e) = (x, e) + (y, e).$$

Слева в этом равенстве — проекция вектора x + y на прямую, параллельную вектору e, а справа — сумма проекций векторов x и y на эту же прямую (см. рис. 9, b). Понятно, что две эти величины совпадают.

Свойство 4) выполняется очевидным образом.

Отметим еще, что для любых x, y справедливо неравенство

$$|(x,y)| \leqslant |x||y|.$$

Это неравенство называют *неравенством Коши*¹⁾. Очевидно также, что для любых x,y справедливо неравенство

$$|x+y| \leqslant |x| + |y|,$$

называемое *неравенством треугольника* (см. рис. 3, b).

2. Укажем формулу вычисления скалярного произведения векторов $x=(x_1,x_2,x_3),\ y=(y_1,y_2,y_3)$ через их координаты. Воспользовавшись установленными только что свойствами скалярного произведения, получим

$$(x,y) = (x_1e^1 + x_2e^2 + x_3e^3, y_1e^1 + y_2e^2 + y_3e^3) = \sum_{k,l=1}^{3} x_k y_l(e^k, e^l).$$
 (2.1)

Использованные здесь символы означают суммирование по всем значениям индексов k, l=1,2,3 (всего — девять слагаемых).

Полученная формула показывает, что для вычисления скалярного произведения двух любых векторов надо знать скалярные произведения всех (шести) пар базисных векторов.

 $^{^{1)}}$ Огюстен Луи Коши (Augustin Louis Cauchy; 1789 — 1857) — французский математик.

Проще всего вычисляется скалярное произведение векторов по их декартовым координатам. Действительно, в этом случае $(e^k, e^l) = \delta_{kl}$, следовательно,

$$(x,y) = x_1 y_1 + x_2 y_2 + x_3 y_3. (2.2)$$

Приведем в заключение очевидную, но полезную, формулу, выражающую косинус угла между векторами через их декартовы координаты:

$$\cos(x,y) = \frac{(x,y)}{|x||y|} = \frac{x_1y_1 + x_2y_2 + x_3y_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}\sqrt{y_1^2 + y_2^2 + y_3^2}}.$$

ПРИМЕР. Треугольник xyz задан декартовыми координатами вершин (сделайте рисунок!):

$$x = (2, 1, -1), \quad y = (3, 2, -1), \quad z = (3, 1, 0).$$
 (2.3)

Требуется найти угол α при вершине x. Сначала находим векторы

$$y - x = (1, 1, 0)$$
 и $z - x = (1, 0, 1)$.

Затем вычисляем их длины $|y-x|=\sqrt{1^2+1^2}=\sqrt{2}, |z-x|=\sqrt{1^2+1^2}=\sqrt{2},$ скалярное произведение $(y-x,z-x)=1\cdot 1+1\cdot 0+0\cdot 1=1$ и, наконец, косинус угла при вершине x:

$$\cos \alpha = \frac{(y - x, z - x)}{|y - x||z - x|} = \frac{1}{2},$$

следовательно, $\alpha = \pi/3$.

§ 3. Векторное произведение

1. Векторное произведение векторов естественным образом возникает в физике, например, при введении понятия момента силы относительно данной точки.

Пусть в пространстве фиксирована некоторая базисная система векторов e^1, e^2, e^3 . Введем понятие *ориентации базиса*. Будем говорить, что тройка базисных векторов e^1, e^2, e^3 имеет *правую ориентацию*, если с конца вектора e^3 кратчайший поворот от e^1 к e^2 совершается против часовой стрелки. В противном случае тройка имеет *левую ориентацию* (см. рис. 10, a).

Векторным произведением вектора x на вектор y называется вектор z, удовлетворяющий следующим трем условиям:

- 1) $|z| = |x||y|\sin(x,y)^{1}$,
- 2) вектор z ортогонален каждому из векторов x и y,

 $^{^{1)}\}Pi$ оследний множитель — синус угла (минимального) между векторами x и y.

Рис. 10. К определению векторного произведения: левый базис (a), z = [x, y] (b)

3) вектор z направлен так, что тройка векторов x,y,z имеет ту же ориентацию, что и фиксированный выше базис пространства (см. рис. 10, b).

Векторное произведение векторов x, y будем обозначать через [x,y].

Отметим, что |[x,y]| равен площади параллелограмма, построенного на векторах x,y (см. рис. 10, b).

Ясно, что необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения.

Векторное произведение обладает следующими свойствами:

- 1) [x,y] = -[y,x] для любых векторов x,y- антисимметричность (кососимметричность),
- 2) $[\alpha x, y] = \alpha[x, y]$ для любых векторов x, y и любого вещественного числа $\alpha o\partial nopo\partial nocmb$ по первому аргументу,
- 3) [x+y,z] = [x,z] + [y,z] для любых векторов $x,y-a\partial \partial umue-$ ность по первому аргументу.

Убедимся в справедливости свойств 1)–3). Проверка свойств 1), 2) аналогична проверке свойств 1), 2) скалярного произведения. При этом надо учесть, что если в тройке векторов поменять местами первые два вектора, то тройка меняет ориентацию на противоположную; если умножить первый вектор на отрицательное число, то тройка также меняет ориентацию на противоположную.

Для проверки третьего свойства заметим, что при z=0 оно выполняется тривиальным образом. Если $z\neq 0$, то, поделив равенство 3) на |z| и используя затем свойство 2), нетрудно убедиться, что достаточно доказать справедливость равенства

$$[x+y,e] = [x,e] + [y,e],$$
 (3.1)

где e — произвольный вектор единичной длины. Построение векторного произведения [x,e] можно описать следующим образом. Сначала вектор x проектируется на плоскость, ортогональную вектору e. Затем полученный вектор поворачивается в этой плоскости так, чтобы он стал ортогональным вектору x и при этом получилась тройка

Рис. 11. К доказательству аддитивности векторного произведения. Произведение вектора x на вектор e единичной длины, $z=[x,e], |z|=|x|\sin\alpha=|x|\cos(\pi/2-\alpha)$ (a). К доказательству равенства [x+y,e]=[x,e]+[y,e] (b)

нужной ориентации (см. рис. 11, a). Заметим, что возможность такого описания построения векторного произведения обеспечивается хорошо известным равенством $\sin \alpha = \cos(\pi/2 - \alpha)$. После выполнения указанных геометрических построений равенство (3.1) становится очевидным (см. рис. 11, b).

2. Получим теперь выражение для векторного произведения векторов $x = x_1e^1 + x_2e^2 + x_3e^3$, $y = y_1e^1 + y_2e^2 + y_3e^3$ через их координаты. Последовательно используя свойства 1)–3) и учитывая, что [z,z]=0 для любого вектора z, можно написать

$$[x,y] = x_1[e^1, y_1e^1 + y_2e^2 + y_3e^3] + x_2[e^2, y_1e^1 + y_2e^2 + y_3e^3] + + x_3[e^3, y_1e^1 + y_2e^2 + y_3e^3] = -x_1[y_1e^1 + y_2e^2 + y_3e^3, e^1] - - x_2[y_1e^1 + y_2e^2 + y_3e^3, e^2] - x_3[y_1e^1 + y_2e^2 + y_3e^3, e^3] = = (x_1y_2 - x_2y_1)[e^1, e^2] + (x_1y_3 - x_3y_1)[e^1, e^3] + + (x_2y_3 - x_3y_2)[e^2, e^3]. (3.2)$$

Таким образом, для того, чтобы вычислить векторное произведение произвольных векторов, нужно уметь строить векторные произведения векторов базиса.

Проще всего вычисляются векторные произведения векторов декартова базиса. Непосредственно из определения вытекает (см. рис. 7, b), что $[i^1, i^2] = i^3$, $[i^1, i^3] = -i^2$, $[i^2, i^3] = i^1$, следовательно, в декартовых координатах

$$[x,y] = (x_2y_3 - x_3y_2)i^1 - (x_1y_3 - x_3y_1)i^2 + (x_1y_2 - x_2y_1)i^3.$$
 (3.3)

Рис. 12. Смешанное произведение векторов (x, y, z). Угол α между векторами [x, y] и z острый (a), тупой (b)

Для запоминания этого равенства полезна следующая запись:

$$[x,y] = \begin{vmatrix} i^1 & i^2 & i^3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}.$$
 (3.4)

Если (формально) разложить этот определитель по первой строке, получим (3.3).

ПРИМЕР. Декартовы координаты векторов x, y, z заданы равенствами (2.3). Найдем векторное произведение векторов y-x, z-x (сделайте рисунок!). По формуле (3.4)

$$[y-x,z-x] = \begin{vmatrix} i^1 & i^2 & i^3 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = i^1 - i^2 - i^3,$$

или [y-x,z-x]=(1,-1,-1).

§ 4. Смешанное произведение векторов

1. Смешанным произведением векторов x, y, z называется число (x, y, z) = ([x, y], z). Поясним, что сначала строится вектор [x, y], затем этот вектор скалярно умножается на вектор z.

Смешанное произведение векторов имеет отчетливый геометрический смысл. Если векторы [x,y] и z образуют острый угол, это — объем параллелепипеда, построенного на векторах x,y,z. В противном случае — это объем параллелепипеда, построенного на векторах x,y,z, взятый со знаком минус (см. рис. 12).

Отсюда сразу вытекает, что при перестановке любых двух сомножителей в смешанном произведении абсолютная величина его не меняется, а знак меняется на противоположный, например,

$$(x, y, z) = -(y, x, z), \quad (x, y, z) = -(x, z, y).$$

Ясно, что необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения.

2. Получим выражение для смешанного произведения векторов $x = x_1e^1 + x_2e^2 + x_3e^3$, $y = y_1e^1 + y_2e^2 + y_3e^3$, $z = z_1e^1 + z_2e^2 + z_3e^3$ через их координаты. Используя формулу (3.2), можем написать

$$(x, y, z) = ((x_1y_2 - x_2y_1)[e^1, e^2] + (x_1y_3 - x_3y_1)[e^1, e^3] + (x_2y_3 - x_3y_2)[e^2, e^3], z_1e^1 + z_2e^2 + z_3e^3).$$

Раскроем здесь скобки, используя линейность и симметрию скалярного произведения, описанное выше правило изменения знака смешанного произведения, а также тот очевидный факт, что если два сомножителя в смешанном произведении совпадают, то оно равно нулю. Получим

$$(x, y, z) = \{(x_1y_2 - x_2y_1)z_3 - (x_1y_3 - x_3y_1)z_2 + + (x_2y_3 - x_3y_2)z_1)\}(e^1, e^2, e^3).$$

Выражение в фигурных скобках — разложение определителя третьего порядка по последней строке. Поэтому

$$(x,y,z) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} (e^1, e^2, e^3).$$

Поскольку $(e^1,e^2,e^3) \neq 0$ (векторы базиса некомпланарны), то отсюда сразу вытекает, что необходимое и достаточное условие компланарности векторов x, y, z есть равенство нулю определителя

$$\left|\begin{array}{ccc} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{array}\right|,$$

составленного из компонент векторов относительно любого базиса.

Если базис декартов, то, очевидно, $(e^1,e^2,e^3)=1$, т. е. в декартовых координатах

$$(x,y,z) = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}.$$
 (4.1)

Вычислим, например, смешанное произведение векторов x, y, z, декартовы кооординаты которых заданы равенствами (2.3), с. 50. Имеем (сделайте рисунок!)

$$(x,y,z) = \begin{vmatrix} 2 & 1 & -1 \\ 3 & 2 & -1 \\ 3 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 3 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{vmatrix} = 2.$$

УПРАЖНЕНИЕ. Пусть векторы e^1, e^2, e^3 некомпланарны. Положим $Q=(e^1, e^2, e^3),$

$$e_1 = Q^{-1}[e^2, e^3], \quad e_2 = -Q^{-1}[e^1, e^3], \quad e_3 = Q^{-1}[e^1, e^2].$$

Показать, что векторы e_1, e_2, e_3 некомпланарны, причем $(e_k, e^l) = \delta_{kl}$.

Говорят, что векторы e_1 , e_2 , e_3 образуют взаимный базис. Базис e^1 , e^2 , e^3 называют при этом основным. Равенство (3.2), фактически, дает правило вычисления компонент вектора [x,y] при разложении его по взаимному базису, если известны компоненты векторов x, y при разложении их по основному базису.

УПРАЖНЕНИЕ. Вычислить скалярное произведение (x, y), разлагая вектор x по основному базису, а y — по взаимному.

§ 5. Примеры задач, решаемых методами векторной алгебры

1. Расстояние между двумя точками. Даны точки

$$x = (x_1, x_2, x_3)$$
 и $y = (y_1, y_2, y_3)$.

Найти расстояние между ними.

Искомое расстояние равно длине вектора y-x. Но, как мы знаем, $y-x=(y_1-x_1,y_2-x_2,y_3-x_3)$, и по формуле (2.1) получаем

$$|y - x| = \sqrt{(x - y, x - y)} = \sqrt{\sum_{k,l=1}^{3} (x_k - y_k)(x_l - y_l)(e^k, e^l)}.$$
 (5.1)

В декартовых координатах

$$|y-x| = \sqrt{(x_1-y_1)^2 + (x_2-y_2)^2 + (x_3-y_3)^2}.$$

Рис. 13. К уравнению отрезка прямой, $z=x+\theta(y-x)$ (a). К вычислению площади треугольника xyz (b)

2. Уравнение сферы. Написать уравнение сферы радиуса R с центром в точке $x^0=(x_1^0,x_3^0,x_3^0).$

По определению сфера — это множество всех точек пространства, равноудаленных от данной. Следовательно, для любой точки x, лежащей на сфере

$$|x - x^0|^2 = R^2.$$

Это и есть уравнение сферы. Запишем его в координатной форме. Используя формулу (5.1), получаем

$$\sum_{k,l=1}^{3} (x_k - x_k^0)(x_l - x_l^0)(e^k, e^l) = R^2.$$

В декартовых координатах

$$(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2 + (x_3 - x_3^0)^2 = R^2.$$

3. Уравнение отрезка прямой. Деление отрезка в данном отношении. Рассмотрим две точки $x=(x_1,x_2,x_3),\ y=(y_1,y_2,y_3).$ Положим

$$z = x + \theta(y - x), \quad 0 \leqslant \theta \leqslant 1. \tag{5.2}$$

Нетрудно видеть, что при изменении θ от нуля до единицы, точка z пробегает отрезок прямой, соединяющий точки x и y (см. рис. 13, a). Говорят, что (5.2) — уравнение отрезка прямой (в пространстве).

Ясно, что $|z-x|=\theta|y-x|$, т. е. точка z (при данном θ) делит отрезок в отношении $\theta:(1-\theta)$. В частности, при $\theta=1/2$ отрезок делится пополам. Запишем уравнение (5.2) в координатной форме

$$z_i = x_i + \theta(y_i - x_i), \quad i = 1, 2, 3, \quad 0 \le \theta \le 1.$$

При $\theta = 1/2$ получаем координаты середины отрезка

$$z_i = (x_i + y_i)/2, \quad i = 1, 2, 3.$$

4. Площадь треугольника. Рассмотрим плоскость, отнесенную к декартовой системе координат x_1, x_2 , и на этой плоскости треугольник с вершинами $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2)$ (см. рис. 13, b).

Поставим задачу, выразить площадь треугольника через координаты его вершин. Нам будет удобно трактовать плоскость x_1, x_2 как координатную плоскость $x_3 = 0$ трехмерной декартовой системы координат x_1, x_2, x_3 .

Построим векторы x-z, y-z (см. рис. 13, b) и составим их векторное произведение. Получим вектор, направленный вдоль оси x_3 . Длина этого вектора будет равна удвоенной площади треугольника xyz. Координаты вектора [x-z,y-z] определим по формуле (3.3). Понятно, что среди них только одна, третья, будет отлична от нуля. Она, очевидно, будет равна

$$\left| \begin{array}{cc} x_1 - z_1 & x_2 - z_2 \\ y_1 - z_1 & y_2 - z_2 \end{array} \right|.$$

Следовательно, с точностью до знака |[x-z,y-z]| совпадет с величиной этого определителя. Отсюда вытекает, что с точностью до знака площадь треугольника равна

$$S = \frac{1}{2} \begin{vmatrix} x_1 - z_1 & x_2 - z_2 \\ y_1 - z_1 & y_2 - z_2 \end{vmatrix}.$$
 (5.3)

Часто используют и такую форму записи:

$$S = \frac{1}{2} \begin{vmatrix} x_1 & x_2 & 1 \\ y_1 & y_2 & 1 \\ z_1 & z_2 & 1 \end{vmatrix}.$$
 (5.4)

ПРИМЕР. Вычислить площадь треугольника с вершинами в точках x=(1,1), y=(2,2), z=(-1,3). Используем формулу (5.4), а затем выполним очевидные элементарные преобразования определителя:

$$S = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ -1 & 3 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 0 & -1 \\ 0 & 4 & 2 \end{vmatrix} = 4/2 = 2.$$

УПРАЖНЕНИЕ. Покажите, что определители (5.3), (5.4) совпадают.

4.1. Для любых векторов x, y положим

$$G(x,y) = \begin{vmatrix} (x,x) & (x,y) \\ (y,x) & (y,y) \end{vmatrix}.$$

Упражнение. Докажите, что

$$G(x,y) = S^2, (5.5)$$

где S — площадь параллелограмма, построенного на векторах x,y.

Из (5.5) вытекает, что $G(x,y)\geqslant 0$ для любых векторов x,y; G(x,y)=0 тогда и только тогда, когда векторы x,y коллинеарны.

Рис. 14. Декартовы координаты точки $x = (x_1, x_2)$ и вектор x (a). К уравнению прямой, проходящей через точку x^0 параллельно вектору e (b)

§ 6. Различные формы уравнения прямой на плоскости

Отнесем плоскость к декартовой системе координат x_1, x_2 . Как и ранее, точки $x = (x_1, x_2)$ будут отождествляться с векторами (см. рис. 14, a).

1. Прямую l, проходящую через точку $x^0 = (x_1^0, x_2^0)$ параллельно вектору $e = (e_1, e_2)$, зададим уравнением (см. рис. 14, b)

$$x = x^0 + \theta e, \quad -\infty < \theta < \infty. \tag{6.1}$$

2. В каком-то смысле альтернативный способ описания: прямая — это множество всех векторов, ортогональных данному вектору p (прямая, проходящая через начало координат), сдвинутое параллельно p на расстояние d от начала координат (см. рис. 15), т. е. для точек прямой выполнено уравнение

$$(x,p) - d = 0,$$
 (6.2)

Рис. 15. К нормальному уравнению прямой: d>0, угол α между векторами p и x острый (a); d<0, угол α между векторами p и x тупой (b)

где $p = (p_1, p_2)$ — заданный вектор единичной длины. Поясним, что d — проекция x на направление p, одна и та же для всех точек прямой. Знак d показывает, в какую сторону (по отношению к p) выполняется сдвиг (см. рис. 15). Уравнение (6.2) называют нормальной формой уравнения прямой. Нужно напомнить, что поскольку мы пользуемся декартовыми координатами, то $(x, p) = p_1x_1 + p_2x_2$.

3. Записывая уравнения (6.1), (6.2) в координатах, получаем уравнения прямой в формах, знакомых из школьной математики:

$$(x_2 - x_2^0) = k(x_1 - x_1^0), \quad k = e_2/e_1,$$
 (6.3)

$$ax_1 + bx_2 + c = 0, (6.4)$$

$$x_2 = kx_1 + b. (6.5)$$

Геометрический смысл участвующих в (6.3)–(6.5) коэффициентов также хорошо знаком читателю. Напомним только, что k — тангенс угла наклона прямой к оси x_1 .

4. Из уравнения прямой в любой из форм (6.3)-(6.5) элементарными эквивалентными преобразованиями нетрудно получить уравнение в форме (6.1) или (6.2). Получим, например, нормальное уравнение прямой из уравнения в + так называемой общей форме (6.4). Для этого поделим обе части уравнения (6.4) на $\sqrt{a^2+b^2}$ и положим

$$p_1 = a/\sqrt{a^2 + b^2}, \quad p_2 = b/\sqrt{a^2 + b^2}, \quad d = -c/\sqrt{a^2 + b^2}.$$

Поскольку $p_1^2 + p_2^2 = 1$, то полученная форма записи уравнения прямой будет нормальной.

Рис. 16. К вычислению расстояния от точки до прямой: d > 0 (a), d < 0 (b)

§ 7. Задачи о взаимном расположением прямых и точек на плоскости

1. Определим расстояние от точки $x^0=(x_1^0,x_2^0)$ до прямой l. Проще всего эта задача решается, когда прямая l задана нормальным уравнением (6.2). Действительно, поскольку |p|=1, то (x^0,p) — величина проекции вектора x^0 на прямую, параллельную p, следовательно, величина $\delta=(x^0,p)-d$ есть отклонение точки x^0 от прямой l (см. рис. 16). Причем знак δ показывает, по какую сторону от прямой l расположена точка x^0 . Расстояние от точки x^0 до прямой l равно $|(x^0,p)-d|$.

ПРИМЕР. Найти расстояние от точки $x^0=(1,-2)$ до прямой $3x_1-4x_2-26=0$ (сделайте рисунок!). Сначала приведем прямую к нормальному виду: $\frac{3}{5}x_1-\frac{4}{5}x_2-\frac{26}{5}=0$, т. е. $p=(3/5,-4/5),\ d=26/5$. Теперь вычислим $\delta=3/5+8/5-26/5=-3$. Расстояние точки от прямой равно трем.

2. Даны две прямые l_1 и l_2 , определяемые уравнениями

$$a_{11}x_1 + a_{12}x_2 = b_1, a_{21}x_1 + a_{22}x_2 = b_2.$$
(7.1)

Требуется исследовать взаимное расположение этих прямых, т. е. выяснить, пересекаются ли эти прямые, и указать точку их пересечения.

Эта задача была нами полностью решена в 1, с. 27. Действительно, фактически, поставленная задача эквивалентна исследованию условий разрешимости системы линейных уравнений (7.1). Здесь надо различать три случая.

1) Определитель

$$\Delta = \left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right|$$

не равен нулю. Тогда система уравнений (7.1) имеет единственное решение x_1, x_2 при любых b_1, b_2 . Точка $x = (x_1, x_2)$ — точка пересечения прямых.

2) Определитель Δ равен нулю, но определитель

$$\Delta_1 = \left| \begin{array}{cc} b_1 & a_{12} \\ b_2 & a_{22} \end{array} \right|,$$

а следовательно, и определитель

$$\Delta_2 = \left| \begin{array}{cc} a_{11} & b_1 \\ a_{21} & b_2 \end{array} \right|$$

отличны от нуля. Тогда система (7.1) не имеет решений, т. е. прямые l_1 , l_2 параллельны.

3) Все три определителя Δ , Δ_1 , Δ_2 — нули. Это условие эквивалентно существованию числа $\alpha \neq 0$ такого, что

$$a_{21} = \alpha a_{11}, \quad a_{22} = \alpha a_{12}, \quad b_2 = \alpha b_1$$

Система (7.1) имеет бесконечное множество решений (фактически, уравнения системы совпадают). Прямые l_1 , l_2 совпадают.

3. Найдем угол между прямыми $y = k_1x + b_1$ и $y = k_2x + b_2$ (см. рис. 17). Так как $\varphi = \alpha_2 - \alpha_1$, $\operatorname{tg}\alpha_1 = k_1$, $\operatorname{tg}\alpha_2 = k_2$, то

$$tg\varphi = tg(\alpha_2 - \alpha_1) = \frac{tg\alpha_2 - tg\alpha_1}{1 + tg\alpha_2 tg\alpha_1} = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

Рис. 17. Угол между прямыми

Рис. 18. К уравнению плоскости, проходящей через точку x^0 , натянутой на векторы e^1 и e^2 ; а также к нормальному уравнению плоскости (x,p)-q=0

Упражнения.

- 1) Найдите косинус угла между двумя прямыми, заданными уравнениями вида (6.1).
- 2) Найдите косинус угла между двумя прямыми, заданными уравнениями вида (6.2).
- 3) Используя выражение для тангенса угла между прямыми, покажите, что при $k_1=k_2$ прямые параллельны, при $k_1k_2=-1$ ортогональны.

§ 8. Различные формы уравнения плоскости

Рассматривается трехмерное евклидово пространство. Пусть e^1 и e^2 — неколлинеарные векторы в трехмерном пространстве, а x^0 — произвольный вектор. Уравнение

$$x = x^{0} + \alpha_{1}e^{1} + \alpha_{2}e^{2}, \quad -\infty < \alpha_{1}, \alpha_{2} < \infty,$$
 (8.1)

определяет nлоскость π , nроходящую через точку x_0 . Говорят, что эта плоскость натянута на векторы e^1 , e^2 (см. рис. 18).

Пусть p — единичный вектор. Уравнение

$$(x,p) - q = 0 \tag{8.2}$$

определяет множество векторов, концы которых принадлежат плоскости, ортогональной вектору p и отстоящей от начала координат на расстояние q (см. рис. 18). Знак q определяет направление сдвига плоскости (по отношению к направлению вектора p). Уравнение (8.2) называют нормальным уравнением плоскости. Напомним, что нормальное уравнение прямой (6.2) имеет аналогичный вид.

Запишем уравнение (8.1) в координатной форме (здесь и далее до конца главы используются только декартовы координаты)

$$x_1 - x_1^0 = \alpha_1 e_1^1 + \alpha_2 e_1^2, \tag{8.3}$$

$$x_2 - x_2^0 = \alpha_1 e_2^1 + \alpha_2 e_2^2, (8.4)$$

$$x_3 - x_3^0 = \alpha_1 e_3^1 + \alpha_2 e_3^2. (8.5)$$

Полагая, что $x \neq x^0$, рассмотрим определитель

$$\Delta(x) = \begin{vmatrix} x_1 - x_1^0 & e_1^1 & e_1^2 \\ x_2 - x_2^0 & e_2^1 & e_2^2 \\ x_3 - x_3^0 & e_3^1 & e_3^2 \end{vmatrix}.$$

Равенства (8.3)-(8.5) означают, что если точка x принадлежит плоскости π , то столбцы этого определителя линейно зависимы, следовательно, он равен нулю. Наоборот, равенство нулю этого определителя означает, что его столбцы линейно зависимы и, поскольку векторы e^1, e^2 линейно независимы, то выполнены равенства (8.3)-(8.5).

Таким образом, уравнение

$$\begin{vmatrix} x_1 - x_1^0 & e_1^1 & e_1^2 \\ x_2 - x_2^0 & e_2^1 & e_2^2 \\ x_3 - x_3^0 & e_3^1 & e_3^2 \end{vmatrix} = 0$$
(8.6)

есть уравнение плоскости (в координатной форме), проходящей через точку x^0 и натянутой на векторы e^1, e^2 . Раскрывая определитель $\Delta(x)$ (например, по первому столбцу), запишем уравнение плоскости π в виде

$$ax_1 + bx_2 + cx_3 + d = 0. (8.7)$$

Здесь числа a,b,c,d очевидным образом выражаются через координаты векторов e^1,e^2,x^0 . Уравнение вида (8.7) называют *общим уравнение плоскости*.

Аналогично уравнению прямой уравнения (8.1), (8.2), (8.7) можно эквивалентно преобразовывать из одной формы в другую.

Упражнения.

1) Преобразовать уравнение (8.7) к нормальному виду. Ответ:

$$p = \frac{1}{\sqrt{a^2 + b^2 + c^2}}(a, b, c), \quad q = -\frac{d}{\sqrt{a^2 + b^2 + c^2}}.$$

2) Показать, анализируя общее уравнение плоскости, что:

Рис. 19. Точки пересечения плоскости с осями координат

если $a=0,\,b=0,\,$ то плоскость параллельна координатной плоскости $x_1,x_2;$

если a = 0, то плоскость параллельна оси x_1 ;

если d = 0, то плоскость проходит через начало координат.

- 3) Показать, что $\alpha = -d/a$, $\beta = -d/b$, $\gamma = -d/c$ координаты точек пересечения плоскости с осями x_1, x_2, x_3 (см. рис. 19), проанализировать случаи, когда соответствующие знаменатели нули.
- 4) Показать, что косинус угла φ между плоскостями, задаваемыми уравнениями

$$a_1x_1 + b_1x_2 + c_1x_3 + d_1 = 0$$
, $a_2x_1 + b_2x_2 + c_2x_3 + d_2 = 0$,

можно вычислить по формуле

$$\cos \varphi = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}.$$
 (8.8)

- 5) Используя уравнение (8.6), написать уравнение плоскости, проходящей через три заданные точки. Проанализировать случай, когда эти точки лежат на одной прямой.
- 6) Используя нормальное уравнение плоскости (8.2), найти отклонение данной точки x^0 от плоскости.

ПРИМЕР. Даны плоскости π_1 и π_2 , описываемые уравнениями

$$2x_1 - x_2 + 2x_3 - 3 = 0, (8.9)$$

$$6x_1 + 2x_2 - 3x_3 + 8 = 0, (8.10)$$

и точка $x^0=(1,1,8)$. Определить величину того угла между плоскостями $\pi_1,\,\pi_2,\,$ которому принадлежит точка $x^0.$

Приведем уравнения (8.9), (8.10) к нормальному виду. Имеем

$$\sqrt{2^2 + 1^2 + 2^2} = 3$$
, $\sqrt{6^2 + 2^2 + 3^2} = 7$,

следовательно, нормальный вид уравнения (8.9) есть

$$(p^1, x) - q_1 = 0,$$

Рис. 20. Плоскости π_1 , π_2

где $p^1 = \frac{1}{3}(2, -1, 2), q_1 = 1$, а для уравнения (8.10) получаем

$$(p^2, x) - q_2 = 0,$$

где $p^2 = \frac{1}{7}(6,2,-3), q_2 = -8/7$. Заметим далее, что

$$(p^1, x^0) - q_1 = \frac{1}{3}(2 \cdot 1 - 1 \cdot 1 + 2 \cdot 8 - 3) = 14/3 > 0,$$

$$(p^2, x^0) - q_2 = \frac{1}{7}(6 \cdot 1 + 2 \cdot 1 - 3 \cdot 8 + 8) = -8/7 < 0.$$

Поэтому конец вектора p^1 и точка x^0 лежат по одну сторону от плоскости π_1 , а конец вектора p^2 и точка x^0 лежат по разные стороны от плоскости π_2 и, следовательно, точка принадлежит углу φ (см. рис. 20). Угол φ равен углу между векторами p^1 , p^2 . Используя формулу (8.8), получим

$$\cos \varphi = \frac{2 \cdot 6 - 1 \cdot 2 - 2 \cdot 3}{3 \cdot 7} = \frac{4}{21}, \quad \varphi \approx 0,44\pi.$$

§ 9. Уравнения прямой в пространстве

Уравнение

$$x = x^0 + \theta e, \quad -\infty < \theta < \infty, \tag{9.1}$$

определяет прямую, проходящую через точку x^0 параллельно вектору $e=(e_1,e_2,e_3)$ (см. рис. 21).

Запишем уравнение (9.1) в координатах

$$x_1 - x_1^0 = \theta e_1, \tag{9.2}$$

$$x_2 - x_2^0 = \theta e_2, (9.3)$$

$$x_3 - x_3^0 = \theta e_3. (9.4)$$

Рис. 21. Прямая в пространстве

Исключая из этих уравнений параметр θ , получим

$$\frac{x_1 - x_1^0}{e_1} = \frac{x_2 - x_2^0}{e_2} = \frac{x_3 - x_3^0}{e_3}. (9.5)$$

Множество всех точек $x = (x_1, x_2, x_2)$, координаты которых удовлетворяют уравнениям (9.5), образуют прямую, проходящую через точку x^0 параллельно вектору e. Уравнения (9.5) называют каноническими уравнениями прямой.

УПРАЖНЕНИЕ. Интерпретируйте случай, когда какой-либо знаменатель в (9.5) обращается в нуль.

§ 10. Задачи о взаимном расположении точек, прямых, плоскостей в пространстве

1. Найти расстояние d от прямой l, заданной уравнением (9.1), до точки $x^1=(x_1^1,x_2^1,x_3^1)$.

Искомым расстоянием является длина перпендикуляра, опущенного из точки x^1 на прямую l (см. рис. 22, a). Рассмотрим параллелограмм, построенный на векторах e и x^1-x^0 . Площадь этого параллелограмма равна $|[e,x^1-x^0]|$, следовательно, $d=|[e,x^1-x^0]|/|e|$. Для того, чтобы выразить входящие сюда величины через координаты точек x^0, x^1 и компоненты вектора e, нужно, в частности, воспользоваться формулой (3.3), с. 52, для компонент векторного произведения.

2. Найти расстояние d между непараллельными прямыми l_1 и l_2 , заданными уравнениями

$$x = x^{1} + \theta e^{1}, \quad -\infty < \theta < \infty,$$

 $x = x^{2} + \theta e^{2}, \quad -\infty < \theta < \infty.$

Рис. 22. K вычислению расстояния от точки до прямой (a) и между прямыми (b)

Искомое расстояние, очевидно, есть длина отрезка прямой, который ортогонален l_1 и l_2 , концы его лежат на l_1 и l_2 (см. рис. 22, b). Построим параллелепипед на векторах e^1 , e^2 и x^2-x^1 . Понятно, что d — высота этого параллелепипеда и, следовательно, d есть отношение его объема к площади основания.

Таким образом, $d = |(e^1, e^2, x^2 - x^1)|/|[e^1, e^2]|$. Осталось выразить все входящие в эту формулу величины через координаты точек x^1, x^2 и компоненты векторов e^1, e^2 (см. (3.3), с. 52, и (4.1), с. 54).

3. Найти угол φ между прямой l, заданной уравнением (9.1), и плоскостью π , заданной нормальным уравнением (8.2).

Угол φ является дополнительным к углу ψ между направляющим вектором прямой e и нормальным вектором плоскости p, следовательно,

$$\sin \varphi = \cos \psi = \cos(e, p) = \frac{(e, p)}{|e||p|} = \frac{e_1 p_1 + e_2 p_2 + e_3 p_3}{\sqrt{e_1^2 + e_2^2 + e_3^2} \sqrt{p_1^2 + p_2^2 + p_3^2}}.$$

4. Определить общие точки прямой l, заданной уравнением (9.1), и плоскости π , заданной уравнением (8.7).

Подставим значения x_1 , x_2 , x_3 из (9.2)-(9.4) в уравнение (8.7). После элементарных преобразований получим

$$ax_1^0 + bx_2^0 + cx_3^0 + d + \theta(ae_1 + be_2 + ce_3) = 0. (10.1)$$

Возможны следующие случаи.

1) $ae_1+be_2+ce_3\neq 0$. Это означает, что прямая l не параллельна плоскости π (почему?). Из уравнения (10.1) находим

$$\theta = \theta_1 = -\frac{ax_1^0 + bx_2^0 + cx_3^0 + d}{ae_1 + be_2 + ce_3}.$$

Рис. 23. К определению точки пересечения прямой и плоскости (a). Прямая l, параллельная плоскости π (b)

Точка $x^1 = x^0 + \theta_1 e$ — точка пересечения прямой и плоскости (см. рис. 23, a).

- 2) $ae_1 + be_2 + ce_3 = 0$, но $ax_1^0 + bx_2^0 + cx_3^0 + d \neq 0$. Уравнение (10.1) не имеет решений. Прямая l проходит через точку x^0 , не принадлежащую плоскости π , параллельно плоскости π (см. рис. 23, b).
- 3) $ae_1+be_2+ce_3=0$, $ax_1^0+bx_2^0+cx_3^0+d=0$. Любое $\theta\in(-\infty,\infty)$ решение уравнения (10.1). Прямая l лежит в плоскости π .
- **5.** Выяснить условия, при которых две прямые l_1 и l_2 , задаваемые уравнениями

$$x = x^1 + \theta e^1, \quad \theta \in (-\infty, \infty),$$

 $x = x^2 + \theta e^2, \quad \theta \in (-\infty, \infty),$

лежат в одной плоскости.

Если прямые l_1 и l_2 лежат в одной плоскости, то векторы x^2-x^1 , e^1 , e^2 лежат в одной плоскости (см. рис. 24, a), иначе говоря, компланарны. Обратно, если векторы x^2-x^1 , e^1 , e^2 компланарны, то прямые l_1 , l_2 лежат в одной плоскости. Используя результаты $\S 4$, непосредственно получаем, что для принадлежности прямых l_1 , l_2 одной и той же плоскости необходимо и достаточно, чтобы смешанное произведение (x^2-x^1,e^1,e^2) равнялось нулю.

6. Написать уравнение прямой l, являющейся пересечением двух различных и не параллельных плоскостей $\pi_1, \pi_2,$ задаваемых уравнениями

$$a_1x_1 + b_1x_2 + c_1x_3 + d_1 = 0, \quad a_2x_1 + b_2x_2 + c_2x_3 + d_2 = 0.$$
 (10.2)

Рис. 24. К компланарности прямых l_1 и l_2 (a). К построению уравнения прямой, по которой пересекаются две плоскости (b)

Найдем сначала какую-либо точку, принадлежащую обеим плоскостям (см. рис. 24, b). Иными словами, найдем какое-то решение x_1, x_2, x_3 системы уравнений (10.2). По условию плоскости не параллельны, следовательно, векторы

$$a^1 = (a_1, b_1, c_1)$$
 и $a^2 = (a_2, b_2, c_2),$

нормальные к ним, не коллинеарны. Значит не выполняется хотя бы одно из равенств

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}.$$

Примем для определенности, что $a_1b_2 - a_2b_1 \neq 0$. Положим $x_3 = 0$, тогда из (10.2) получаем

$$a_1x_1 + b_1x_2 = -d_1,$$

$$a_2x_1 + b_2x_2 = -d_2.$$

Решая эту систему, приходим к выводу, что точка

$$x^{0} = \left(\frac{b_{1}d_{2} - b_{2}d_{1}}{a_{1}b_{2} - a_{2}b_{1}}, \frac{a_{2}d_{1} - a_{1}d_{2}}{a_{1}b_{2} - a_{2}b_{1}}, 0\right)$$

принадлежит прямой l, по которой пересекаются плоскости π_1, π_2 .

Найдем теперь направляющий вектор e этой прямой. Вектор e ортогонален каждому из векторов a^1 и a^2 , следовательно, можно взять вектор e, равным их векторному произведению:

$$e = [a^{1}, a^{2}] = \begin{vmatrix} i^{1} & i^{2} & i^{3} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix}.$$
 (10.3)

Рис. 25. К выводу уравнения прямой, по которой пересекаются плоскости π_1, π_2

Таким образом, найдены точка x^0 , принадлежащая прямой l и вектор e, параллельный этой прямой, следовательно, уравнение прямой l можно записать, например, в виде (9.1).

ПРИМЕР. Найдем уравнение прямой, по которой пересекаются плоскости π_1 , π_2 , определяемые уравнениями (8.9), (8.10) (см. рис. 25).

Положим $x_3 = 0$ в уравнениях (8.9), (8.10), получим систему уравнения для отыскания первых двух координат точки, принадлежащей пересечению плоскостей π_1 , π_2 :

$$2x_1 - x_2 - 3 = 0,$$

$$6x_1 + 2x_2 + 8 = 0.$$

Решение этой системы: $x_1 = -1/5$, $x_2 = -17/5$, т. е. точка $x^1 = (-1/5, -17/5, 0)$ принадлежит пересечению плоскостей (8.9), (8.10). Вектор e, параллельный искомой прямой, определим по формуле

$$e = \begin{vmatrix} i^1 & i^2 & i^3 \\ 2 & -1 & 2 \\ 6 & 2 & -3 \end{vmatrix} = -i^1 + 18i^2 + 10i^3,$$
 (10.4)

или e=(-1,18,10). По формуле (9.1) множество точек искомой прямой описывается уравнением $x=(-1/5,-17/5,0)+\theta(-1,18,10),\ \theta\in(-\infty,\infty)$. Более подробно,

$$x_1 = -1/5 - \theta$$
, $x_2 = -17/5 + 18\theta$, $x_3 = 10\theta$, $\theta \in (-\infty, \infty)$.

Глава 5

Системы линейных уравнений, матрицы, определители

§ 1. Перестановки

1. Рассмотрим множество n целых чисел: $M_n = \{1, 2, 3, \ldots, n\}$. Эти числа можно располагать в различном порядке. Каждое такое расположение называют nepecmanoskoŭ. Например, возможны перестановки:

$$1, 2, 3, \ldots, n,$$
 (1.1)

$$2, 1, 3, \ldots, n.$$
 (1.2)

Вообще, перестановку будем записывать в виде

$$n_1, n_2, \dots, n_n. \tag{1.3}$$

Каждая перестановка определяет взаимнооднозначное отображение множества M_n на себя. При этом отображении числу 1 соответствует число n_1 , числу 2 соотвествуе n_2 и т. д.

Можно построить график такого отображения. Он будет представлять собой n точек, расположенных в узлах целочисленной решетки. Причем на каждой вертикальной линии этой решетки лежит ровно одна точка графика, и на каждой горизонтальной линии этой решетки лежит ровно одна точка графика (см. рис. 1, a). Понятно, что перестановка однозначно определяется ее графиком и, наоборот, задание графика однозначно определяет перестановку (запишите перестановку, изображенную на рис. 1, a!).

Количество всех перестановок множества M_n принято обозначать символом P_n . Покажем, что

$$P_n = 123 \cdots n. \tag{1.4}$$

Здесь записано произведение всех первых n членов натурального ряда. Принято обозначение $123 \cdots n = n!$ (читается n- ϕ акториал).

Для n=1 и n=2 формула (1.4), очевидно, справедлива. Воспользуемся методом математической индукции. Предположим, что равенство $P_{n-1}=(n-1)!$ верно. Возьмем теперь некоторую перестановку множества M_{n-1} и добавим к ней элемент n. Его можно

Рис. 1. Пример перестановки из десяти элементов (a). Перестановка b получена из перестановки a транспозицией (4,8)

поставить первым, вторым, и, наконец, последним, т. е. n-ым. Понятно, что таким образом можно создать n перестановок по каждой перестановке множества M_{n-1} , и, поскольку по индуктивному предположению $P_{n-1} = (n-1)!$, то формула (1.4) доказана.

2. Будем говорить, что элементы n_i , n_j , i < j, перестановки (1.3) образуют *инверсию*, если $n_i > n_j$. Например, в перестановке (1.1) нет инверсий, а в перестановке (1.2) только одна инверсия, ее образуют элементы n_1 , n_2 . Полезно отметить, что если соединить отрезком на графике перестановки точки (i, n_i) и (j, n_j) , то он будет иметь отрицательный наклон для точек, образующих инверсию.

Количество всех инверсий данной перестановки будем обозначать через

$$\sigma(n_1, n_2, \ldots, n_n)$$

и называть сигнатурой перестановки.

Перестановка называется *четной*, если ее сингнатура — четное число (нуль, как обычно, полагаем четным числом). В противном случае перестановка называется *нечетной*.

Таким образом, все перестановки разбиваются на два непустых класса: четные перестановки и нечетные перестановки. Например, перестановка (1.1) четная, а перестановка (1.2) нечетная.

Говорят, что в перестановке выполнена *транспозиция*, если поменяли местами два ее элемента. Для того, чтобы определить транспозицию данной перестановки, нужно задать номера двух переставляемых элементов. Например, можно сказать, что перестановка (1.2) получена из перестановки (1.1) транспозицией (1,2). Еще один пример транспозиции показан на рис. 1.

2.1. Теорема. Всякая транспозиция меняет четность перестановки.

ДОКАЗАТЕЛЬСТВО. Рассмотрим сначала случай, когда выполняется транспозиция соседних элементов перестановки. Обозначим их n_i и n_{i+1} . Очевидно, что пары, содержащие один из элементов n_i или n_{i+1} , в совокупности не приобретут и не потеряют инверсии при такой транспозиции (она сможет лишь перейти от одной пары такого сорта к другой). Инверсия для пар, не содержащих ни n_i ни n_{i+1} , измениться вообще не сможет. Пара n_i, n_{i+1} обязательно либо приобретет, либо потеряет инверсию. Это означает, что сигнатура перестановки при транспозиции соседних элементов изменится ровно на единицу.

Пусть теперь выполняется транспозиция двух произвольных элементов. Для простоты записей можно считать, что меняются местами элементы n_1 и n_k , k>2. Эту транспозицию можно, очевидно, реализовать путем последовательных транспозиций соседних элементов. Сначала переместим первый элемент на k+1 место, меняя его местами последовательно со вторым, с третьим и т. д. элементами. Это можно сделать за k-1 шагов. Затем переместим k-й элемент на первое место, переставляя его с k-1, k-2 и т. д., со вторым элементом. Это потребует k-2 шагов. Итак, выполнив 2k-3=2(k-1)-1 (нечетное количество) транспозиций соседних элементов, мы поменяем местами элементы n_1 и n_k .

Таким образом, сигнатура перестановки при любой транспозиции (i,k) меняется на нечетное число, и потому четность перестановки меняется. \square

2.2. Теорема. При любом n количества четных u нечетных перестановок совпадают.

ДОКАЗАТЕЛЬСТВО. Из предыдущей теоремы вытекает, что всякую четную перестановку можно превратить в нечетную, поменяв местами каких-либо два ее элемента. Справедливо и обратное. Это означает, что между множеством всех четных перестановок и множеством всех нечетных перестановок (множества M_n) можно установить взаимнооднозначное соответствие. Эти два множества конечны, поэтому имеют равные количества элементов. \square

§ 2. Определители произвольного порядка

1. Kвадратной матрицей порядка n называется таблица, состоящая из n строк и n столбцов

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}. \tag{2.1}$$

Здесь a_{ij} , $i, j = 1, 2, \ldots, n$, — числа, вообще говоря, комплексные.

Определитель матрицы порядка n может быть введен по аналогии с определителями второго и третьего порядка в ходе решения системы линейных уравнений с n неизвестными. Однако нам будет удобнее опираться непосредственно на обобщение формулы (2.15), с. 32.

Onpedenumeлем матрицы A назовем величину

$$|A| = \sum_{n_1 n_2 \dots n_n} (-1)^{\sigma(n_1, n_2, \dots, n_n)} a_{1n_1} a_{2n_2} \cdots a_{nn_n}.$$
 (2.2)

Будем использовать следующие обозначения:

$$\Delta = \det(A) = |A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$
 (2.3)

Поясним, что определителем матрицы порядка n является сумма n! слагаемых, составленная следующим образом: слагаемыми служат всевозможные произведения n элементов матрицы, взятых по одному из каждой строки и из каждого столбца, причем слагаемое берется со знаком плюс, если перестановка n_1, n_2, \ldots, n_n четная, и со знаком минус — в противоположном случае.

Вследствие теоремы 2.2 количество слагаемых в (2.2) со знаком плюс равно количеству слагаемых со знаком минус.

Отметим также, что элементы матрицы, участвующие в слагаемом определителя, соответствующем перестановке n_1, n_2, \ldots, n_n , изображаются точками графика этой перестановки (см. рис. 1, с. 72).

Говорят, что элементы $a_{1n_1}, a_{2n_2}, \ldots, a_{nn_n}$ составляют *диагональ* матрицы. Диагональ называется *четной*, если перестановка n_1, \ldots, n_n четная и *нечетной* — в противном случае.

Упражнение. Докажите равенство

$$\begin{vmatrix} 1 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ a_{32} & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots \\ a_{n2} & a_{n3} & \dots & a_{nn} \end{vmatrix}.$$
 (2.4)

Поясним, что слева — определитель порядка n, а справа — порядка n-1.

§ 3. Основные свойства определителей

Переходим к изучению основных свойств определителей. Все они являются обобщением свойств определителей третьего порядка, и их доказательства зачастую не требуют дополнительных сколько-нибудь сложных рассуждений. В этих случаях мы ограничиваемся только формулировками соответствующих утверждений.

- 1. Если одна из строк (или один из столбцов) определителя состоит только из нулей, то этот определитель равен нулю. Доказательство сразу же следует из того, что каждая диагональ матрицы A содержит в этом случае нулевой элемент.
 - 2. Определитель линеен по каждой строке (по каждому столбцу).
- 3. Если в определителе две строки (или два столбца) совпадают, то он равен нулю. Пусть совпадают строки с номерами k и l, k < l. Множество всех диагоналей матрицы A можно представить в виде объединения множества пар

$$a_{1n_1}, a_{2n_2}, \ldots, a_{kn_k}, \ldots, a_{ln_l}, \ldots, a_{nn_n},$$

$$a_{1n_1}, a_{2n_2}, \ldots, a_{kn_l}, \ldots, a_{ln_k}, \ldots, a_{nn_n}.$$

Диагонали каждой такой пары имеют противоположные четности, так как соответствующие им перестановки получены одна из другой при помощи транспозиции (n_k, n_l) . Произведения же элементов этих диагоналей совпадают, так как по предположению

$$a_{kn_k} = a_{ln_k}, \quad a_{kn_l} = a_{ln_l}.$$

Это означает, что слагаемые в (2.2), отвечающие каждой такой паре, в сумме дают нуль, следовательно, |A|=0. Доказательство равенства нулю определителя, у которого два столбца совпадают, проводится аналогично.

- **4.** При перестановке двух строк (столбцов) определитель меняет знак.
- **5.** Определитель не изменится, если к некоторой его строке добавить другую, умноженную на произвольное число. То же самое справедливо и для столбцов определителя.
- 6. Введенные ранее понятия алгебраических дополнений и миноров дословно переносятся на случай определителей произвольного порядка. Без каких либо изменений проходит и доказательство формулы, аналогичной формуле (3.17), с. 40. При этом нужно использовать равенство (2.4). Таким образом, для любого определителя |A|

$$a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = |A|\delta_{ik}, \quad i, k = 1, 2, \dots, n,$$
 (3.1)

где δ_{ik} — символ Кронекера.

Справедлива и формула разложения определителя по столбцу:

$$a_{1i}A_{1k} + a_{2i}A_{2k} + \dots + a_{ni}A_{nk} = |A|\delta_{ik}, \quad i, k = 1, 2, \dots, n.$$
 (3.2)

ПРИМЕР. Вычислим определитель пятого порядка

$$\Delta = \begin{vmatrix} -2 & 5 & 0 & -1 & 3 \\ 1 & 0 & 3 & 7 & -2 \\ 3 & -1 & 0 & 5 & -5 \\ 2 & 6 & -4 & 1 & 2 \\ 0 & -3 & -1 & 2 & 3 \end{vmatrix}.$$

Сначала добьемся того, чтобы все элементы третьего столбца, кроме последнего, были нулями. Для этого умножим последнюю строку на три и прибавим ко второй, а затем умножим последнюю строку на четыре и вычтем из четвертой строки. Получим

$$\Delta = \begin{vmatrix} -2 & 5 & 0 & -1 & 3 \\ 1 & -9 & 0 & 13 & 7 \\ 3 & -1 & 0 & 5 & -5 \\ 2 & 18 & 0 & -7 & -10 \\ 0 & -3 & -1 & 2 & 3 \end{vmatrix}.$$

Разлагая этот определитель по третьему столбцу, получим

$$\Delta = (-1)^{3+5}(-1) \begin{vmatrix} -2 & 5 & -1 & 3\\ 1 & -9 & 13 & 7\\ 3 & -1 & 5 & -5\\ 2 & 18 & -7 & -10 \end{vmatrix}.$$

Преобразуем теперь определитель так, чтобы все элементы первого столбца, кроме второго, были нулями. С этой целью умножим вторую строку на два и прибавим к первой, затем умножим вторую строку на три и вычтем из третьей и, наконец, умножим вторую строку на два и вычтем из последней, получим:

$$\Delta = - \begin{vmatrix} 0 & -13 & 25 & 17 \\ 1 & -9 & 13 & 7 \\ 0 & 26 & -34 & -26 \\ 0 & 36 & -33 & -24 \end{vmatrix}.$$

Разлагая этот определитель по первому столбцу, будем иметь

$$\Delta = -(-1)^{2+1} \begin{vmatrix} -13 & 25 & 17 \\ 26 & -34 & -26 \\ 36 & -33 & -24 \end{vmatrix} = \begin{vmatrix} -13 & 25 & 17 \\ 26 & -34 & -26 \\ 36 & -33 & -24 \end{vmatrix}.$$

Вычислим определитель третьего порядка, разложив его по третьей строке:

$$\Delta = 36 \begin{vmatrix} 25 & 17 \\ -34 & -26 \end{vmatrix} - (-33) \begin{vmatrix} -13 & 17 \\ 26 & -26 \end{vmatrix} + (-24) \begin{vmatrix} -13 & 25 \\ 26 & -34 \end{vmatrix} =$$

$$= 36(-72) - (-33)(-104) + (-24)(-208) = -1032.$$

7. Матрица

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix}$$
(3.3)

называется матрицей, mpancnohupoвahhoй по отношению к А. Поясним, что матрицы A и A^T состоят из одних и тех же элементов. Первая строка матрицы A^T составлена из элементов первого столбца матрицы A, вторая строка — из элементов второго столбца матрицы A и т. д.

Определители матриц A и A^{T} совпадают.

Докажем это утверждение индукцией по порядку определителя. Для определителя второго порядка равенство $|A| = |A^T|$ выполняется очевидным образом. Предположим справедливость этого равенства для произвольного определителя порядка n-1 и покажем, что тогда оно верно и для произвольного определителя порядка n. Представим |A| в виде разложения по первой строке:

$$|A| = a_{11}M_{11} - a_{12}M_{12} + \dots + (-1)^{n+1}a_{1n}M_{1n}. \tag{3.4}$$

Определитель $|A^T|$ разложим по первому столбцу:

$$|A^{T}| = a_{11}M_{11}^{T} - a_{12}M_{21}^{T} + \dots + (-1)^{n+1}a_{1n}M_{n1}^{T}.$$
 (3.5)

Здесь M_{ij}^T — минор определителя $|A^T|$, соответствующий элементу этого определителя, находящегося в позиции i,j. По предположению индукции имеем, что $M_{ij}^T = M_{ji}$, следовательно, $|A^T| = |A|$.

8. Будем говорить, что строки матрицы A линейно зависимы, если существуют числа $\alpha_1, \alpha_2, \ldots, \alpha_n$, не все одновременно равные нулю и такие, что

$$\alpha_1 a_{1j} + \alpha_2 a_{2j} + \dots + \alpha_n a_{nj} = 0, \quad j = 1, 2, \dots, n.$$

Для того, чтобы определитель матрицы A был равен нулю, необходимо и достаточно, чтобы ее строки были линейно зависимы.

To, что из линейной зависимости строк вытекает равенство нулю определителя, доказывается точно так же, как и для определителя третьего порядка.

Докажем обратное утверждение. Пусть |A|=0. Рассмотрим все определители порядка n-1, которые получаются вычеркиванием одной строки и одного столбца из матрицы A.

Если все они окажутся равными нулю, перейдем к определителям порядка n-2 и т. д. В конце концов, либо все элементы матрицы A окажутся равными нулю, и тогда доказываемое утверждение будет выполнено тривиальным образом, либо найдется определитель порядка $k \geqslant 1$, отличный от нуля и полученный вычеркиванием n-k строк и столбцов матрицы A, а все определители большего порядка будут нулями. Поскольку при перестановке строк и при перестановке столбцов меняется лишь знак определителя, то, не ограничивая общности рассуждений, можно считать, что этот определитель (обозначим его через d_k) составлен из элементов первых k строк и первых k столбцов матрицы A.

Рассмотрим определитель d_{k+1} , составленный из первых k+1 строк и первых k+1 столбцов матрицы A. По предположению он равен нулю. Разложив этот определитель по элементам последнего столбца, получим, что

$$\alpha_1 a_{1k+1} + \alpha_2 a_{2k+1} + \dots + \alpha_k a_{kk+1} + d_k a_{k+1k+1} = 0.$$
 (3.6)

Подчеркием, что $d_k \neq 0$, а числа $\alpha_1, \ldots, \alpha_k$ — алгебраические дополнения соответствующих элементов последнего столбца определителя d_{k+1} . Важно отметить, что они зависят только от элементов первых k столбцов определителя d_{k+1} .

Переставляя столбцы определителя |A|, мы можем составить последний столбец определителя d_{k+1} из элементов

$$a_{1j}, a_{2j}, \ldots, a_{kj}, a_{k+1j}, j = k+2, k+3, \ldots, n.$$

По предположению этот определитель равен нулю. Выполняя разложение по его последнему столбцу, получим, что

$$\alpha_1 a_{1j} + \alpha_2 a_{2j} + \dots + \alpha_k a_{kj} + d_k a_{k+1j} = 0, \quad j = k+2, k+3, \dots, n.$$
 (3.7)

Наконец, поместив на место k+1 столбца определителя |A| его же столбец с номером $j \leqslant k$, мы получим нулевой определитель (как определитель с равными столбцами). По той же причине и определитель d_{k+1} будет равен нулю. Вновь выполняя разложение по последнему столбцу этого определителя, получим, что

$$\alpha_1 a_{1j} + \alpha_2 a_{2j} + \dots + \alpha_k a_{kj} + d_k a_{k+1j} = 0, \quad j = 1, 2, \dots, k.$$
 (3.8)

Теперь можно написать:

$$\alpha_1 a_{1j} + \alpha_2 a_{2j} + \dots + \alpha_k a_{kj} + d_k a_{k+1j} + 0 \cdot a_{k+2j} + \dots + 0 \cdot a_{nj} = 0,$$

где $j=1,\,2,\,\ldots,\,n;\,d_k\neq 0,\,$ т. е. строки матрицы A линейно зависимы.

Замечание. Поскольку $|A^T| = |A|$, то, очевидно, для того, чтобы определитель матрицы A был равен нулю, необходимо и достаточно, чтобы ее столбцы были линейно зависимы.

§ 4. Примеры вычисления определителей

Приведем примеры вычисления определителей, часто возникающих в различных разделах алгебры.

1. Определитель треугольной матрицы. Матрицу A называют верхней треугольной, если $a_{ij} = 0$ при i > j. Матрицу A называют ниженей треугольной, если $a_{ij} = 0$ при i < j.

Если матрица A треугольная, то

$$|A| = a_{11}a_{22}\cdots a_{nn}. (4.1)$$

Докажем это утверждение применительно к верхней треугольной матрице. Справедливость формулы (4.1) для нижней треугольной матрицы A сразу вытекает из того, что $|A| = |A^T|$ и A^T — верхняя треугольная матрица.

Для матриц первого и второго порядков формула (4.1), очевидно, справедлива. Для доказательства этой формулы при произвольном n используем метод математической индукции, т. е. предположим, что для определителей (n-1)-го порядка она уже доказана, и рассмотрим определитель

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix}.$$

Разлагая определитель |A| по первому столбцу, получим

$$|A| = a_{11} \begin{vmatrix} a_{22} & a_{23} & \dots & a_{2n} \\ 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{vmatrix}.$$

К определителю, стоящему в правой части, применимо предположение индукции, т. е. он равен произведению $a_{22}a_{33}\ldots a_{nn}$, поэтому

$$|A| = a_{11}a_{22}a_{33}\dots a_{nn}.$$

2. *Определитель Вандермонда*¹⁾. Так называют определитель вида

$$d = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ a_1 & a_2 & a_3 & \dots & a_n \\ a_1^2 & a_2^2 & a_3^2 & \dots & a_n^2 \\ \dots & \dots & \dots & \dots & \dots \\ a_1^{n-1} & a_2^{n-1} & a_3^{n-1} & \dots & a_n^{n-1} \end{vmatrix}.$$

Покажем, что при любом $n \geqslant 2$ определитель Вандермонда равен произведению всевозможных разностей $a_i - a_j$, где $1 \leqslant j < i \leqslant n$:

$$d = \prod_{1 \le j < i \le n} (a_i - a_j).$$

Доказываемая формула, очевидно, справедлива при n=2. Воспользуемся методом математической индукции. Предположим, что для определителей (n-1)-го порядка формула уже доказана, т. е.

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ a_2 & a_3 & \dots & a_n \\ \dots & \dots & \dots & \dots \\ a_2^{n-2} & a_3^{n-2} & \dots & a_n^{n-2} \end{vmatrix} = \prod_{2 \leqslant j < i \leqslant n} (a_i - a_j).$$

Рассмотрим определитель d. Умножим предпоследнюю строку на a_1 и вычтем из последней. Затем вычтем из (n-1)-й строки строку с номером (n-2), умноженную на a_1 , и так далее. Наконец, умножим первую строку на a_1 и вычтем из второй. В результате такой последовательности преобразований получим

$$d = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & a_2 - a_1 & a_3 - a_1 & \dots & a_n - a_1 \\ 0 & a_2^2 - a_1 a_2 & a_3^2 - a_1 a_3 & \dots & a_n^2 - a_1 a_n \\ \dots & \dots & \dots & \dots & \dots \\ 0 & a_2^{n-1} - a_1 a_2^{n-2} & a_3^{n-1} - a_1 a_3^{n-2} & \dots & a_n^{n-1} - a_1 a_n^{n-2} \end{vmatrix}.$$

 $^{^{1)}}$ Александр Теофил Вандермонд (Alexandre-Theophile Vandermonde; 1735 — 1796) — французский музыкант и математик.

Разлагая определитель d по первому столбцу, получим определитель (n-1)-го порядка:

$$d = \begin{vmatrix} a_2 - a_1 & a_3 - a_1 & \dots & a_n - a_1 \\ a_2^2 - a_1 a_2 & a_3^2 - a_1 a_3 & \dots & a_n^2 - a_1 a_n \\ \dots & \dots & \dots & \dots \\ a_2^{n-1} - a_1 a_2^{n-2} & a_3^{n-1} - a_1 a_3^{n-2} & \dots & a_n^{n-1} - a_1 a_n^{n-2} \end{vmatrix}.$$

Заметим, что общим множителем всех элементов первого столбца является a_2-a_1 , общим множителем всех элементов второго столбца является a_3-a_1 и т. д. Поэтому

$$d = (a_2 - a_1) (a_3 - a_1) \dots (a_n - a_1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ a_2 & a_3 & \dots & a_n \\ \dots & \dots & \dots & \dots \\ a_2^{n-2} & a_3^{n-2} & \dots & a_n^{n-2} \end{vmatrix},$$

где последний множитель — определитель Вандермонда (n-1)-го порядка. Следовательно,

$$d = (a_2 - a_1)(a_3 - a_1)\dots(a_n - a_1)\prod_{2 \le j < i \le n} (a_i - a_j) = \prod_{1 \le j < i \le n} (a_i - a_j).$$

§ 5. Крамеровские системы линейных уравнений

1. В этом параграфе будем рассматривать системы линейных уравнений, у которых количество неизвестных равно числу уравнений:

Матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \tag{5.2}$$

составленная из коэффициентов уравнений, называется матрицей системы (5.1). Будем предполагать, что $|A| \neq 0$. В этом случае систему уравнений (5.1) называют крамеровской. Набор чисел b_1, b_2, \ldots, b_n называют столбцом правой части (или просто правой частью) системы (5.1). Если правая часть системы нулевая, т. е. $b_i = 0$ для

всех $i=1, 2, \ldots, n$, то система называется однородной. Однородная система уравнений всегда имеет решение. Например, можно положить $x_1, x_2, \ldots, x_n = 0$. Такое решение называют *тривиальным*.

1.1. Теорема. Однородная крамеровская система уравнений может иметь только тривиальное решение.

ДОКАЗАТЕЛЬСТВО. Предположим противное. Тогда для некоторого набора чисел x_1, x_2, \ldots, x_n , среди которых по крайней мере одно не равно нулю, справедливы равенства

Это показывает, что столбцы матрицы A линейно зависимы, т. е. ее определитель равен нулю, но по условию теоремы определитель |A| не равен нулю. Значит, предположение о наличии нетривиального решения у однородной крамеровской системы уравнений неверно. \square

- **1.2.** Для того, чтобы система (5.3) имела нетривиальное решение, необходимо и достаточно, чтобы определитель матрицы A был равен нулю. Справедливость этого утверждения непосредственно вытекает из замечания на с. 79.
- **1.3. Теорема.** При любой правой части крамеровская система уравнений не может иметь двух различных решений.

ДОКАЗАТЕЛЬСТВО. Предположим противное и пусть

$$x_1^1, x_2^1, \ldots, x_n^1$$

И

$$x_1^2, x_2^2, \ldots, x_n^2$$

представляют собой два различных решения системы (5.1), т. е.

И

Положим

$$x_1 = x_1^1 - x_1^2$$
, $x_2 = x_2^1 - x_2^2$, ..., $x_n = x_n^1 - x_n^2$

и вычтем почленно одноименные уравнения систем (5.4), (5.5). В результате получим, что x_1, x_2, \ldots, x_n — решение однородной системы (5.3). Но тогда по теореме 1.1 имеем, что $x_1 = x_2 = \ldots = x_n = 0$, т. е. предположение о наличии двух различных решений системы (5.1) неверно. \square

1.4. Теорема. Крамеровская система уравнений при любой правой части имеет решение.

ДОКАЗАТЕЛЬСТВО. Фактически, мы сконструируем решение системы (5.1), опираясь на формулу (3.1), с. 76. Будем разыскивать решение системы (5.1) в виде

$$x_i = c_{i1}b_1 + c_{i2}b_2 + \dots + c_{in}b_n, \quad i = 1, 2, \dots, n,$$
 (5.6)

где коэффициенты c_{ik} , i, k = 1, 2, ..., n, подлежат определению. Подставляя выражения (5.6) в уравнения системы (5.1) и собирая в левых частях этих уравнений коэффициенты при одинаковых b_i , получим

$$b_{1}(a_{i1}c_{11} + a_{i2}c_{21} + \dots + a_{in}c_{n1}) + b_{2}(a_{i1}c_{12} + a_{i2}c_{22} + \dots + a_{in}c_{n2}) + \dots \\ \dots + b_{i}(a_{i1}c_{1i} + a_{i2}c_{2i} + \dots + a_{in}c_{ni}) + \dots \\ \dots + b_{n}(a_{i1}c_{1n} + a_{i2}c_{2n} + \dots + a_{in}c_{nn}) = b_{i} \quad (5.7)$$

для $i=1,\,2,\,\ldots,\,n$. Понятно, что если выбрать коэффициенты c_{ik} так, чтобы выполнялись условия

$$a_{i1}c_{1k} + a_{i2}c_{2k} + \dots + a_{in}c_{nk} = \delta_{ik},$$
 (5.8)

где $i, k = 1, 2, \ldots, n, \delta_{ik}$ — символ Кронекера, то формулы (5.6) будут давать решение системы (5.1). Сравнивая соотношения (5.8) с формулами (3.1), с. 76, нетрудно заметить, что если положить

$$c_{ik} = \frac{A_{ki}}{|A|}, \quad i, k = 1, 2, \dots, n,$$
 (5.9)

то условия (5.8) будут выполнены. Подставляя найденные выражения для c_{ik} в (5.6), получим следующие формулы для решения системы (5.1):

$$x_i = (A_{1i}b_1 + A_{2i}b_2 + \dots + A_{ni}b_n)/|A|, \quad i = 1, 2, \dots, n.$$
 (5.10)

Используя разложение определителя по столбцу, соотношения (5.10) можно переписать в более компактном виде:

$$x_i = \frac{\Delta_i}{\Lambda}, \quad i = 1, 2, \dots, n.$$
 (5.11)

Здесь $\Delta = |A|$, Δ_i — определитель, который получается заменой *i*-го столбца определителя Δ правой частью системы (5.1). \square

Формулы (5.11) называют формулами Крамера.

ПРИМЕР. Решим при помощи формул Крамера систему уравнений

$$x_1 + x_2 + x_3 = -2,$$

$$x_1 + 3x_2 - 2x_4 = -4,$$

$$2x_1 + x_3 - x_4 = -1,$$

$$2x_2 - x_3 - 3x_4 = -3.$$

Подсчитаем соответствующие определители:

$$\Delta = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 3 & 0 & -2 \\ 2 & 0 & 1 & -1 \\ 0 & 2 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & 0 \\ 1 & 3 & 0 & -2 \\ 1 & -1 & 0 & -1 \\ 1 & 3 & 0 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -2 \\ 1 & -1 & -1 \\ 1 & 3 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 4 & -1 \\ 1 & 0 & 0 \\ 1 & 4 & -2 \end{vmatrix} = - \begin{vmatrix} 4 & -1 \\ 4 & -2 \end{vmatrix} = 4,$$

$$\Delta_1 = \begin{vmatrix} -2 & 1 & 1 & 0 \\ -4 & 3 & 0 & -2 \\ -1 & 0 & 1 & -1 \\ -3 & 2 & -1 & -3 \end{vmatrix} = \begin{vmatrix} -2 & 1 & 1 & 0 \\ -4 & 3 & 0 & -2 \\ 1 & -1 & 0 & -1 \\ -5 & 3 & 0 & -3 \end{vmatrix} = \begin{vmatrix} -4 & 3 & -2 \\ 1 & -1 & -1 \\ -5 & 3 & -3 \end{vmatrix} = \begin{vmatrix} -4 & -1 & -6 \\ 1 & 0 & 0 \\ -5 & -2 & -8 \end{vmatrix} = 4,$$

$$\Delta_2 = \begin{vmatrix} 1 & -2 & 1 & 0 \\ 1 & -4 & 0 & -2 \\ 2 & -1 & 1 & -1 \\ 0 & -3 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 1 & 0 \\ 1 & -4 & 0 & -2 \\ 1 & 1 & 0 & -1 \\ 1 & -5 & 0 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -4 & -2 \\ 1 & 1 & -1 \\ 1 & -5 & -3 \end{vmatrix} = \begin{vmatrix} 1 & -5 & -1 \\ 1 & 0 & 0 \\ 1 & -6 & -2 \end{vmatrix} = -4,$$

$$\Delta_3 = \begin{vmatrix} 1 & 1 & -2 & 0 \\ 1 & 3 & -4 & -2 \\ 2 & 0 & -1 & -1 \\ 0 & 2 & -3 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & -2 & -2 \\ 2 & -2 & 3 & -1 \\ 0 & 2 & -3 & -3 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 0 \\ -2 & 1 & -3 \\ 2 & -1 & -1 \end{vmatrix} = -8,$$

$$\Delta_4 = \begin{vmatrix} 1 & 1 & 1 & -2 \\ 1 & 3 & 0 & -4 \\ 2 & 0 & 1 & -1 \\ 0 & 2 & -1 & -3 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & -2 \\ 1 & 3 & 0 & -4 \\ 1 & -1 & 0 & 1 \\ 1 & 3 & 0 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 1 & -1 & 1 \\ 1 & 3 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 3 & -4 \\ 0 & -4 & 5 \\ 0 & 0 & -1 \end{vmatrix} = 4.$$

По формулам Крамера

$$x_1 = \Delta_1/\Delta = 1$$
, $x_2 = \Delta_2/\Delta = -1$, $x_3 = \Delta_3/\Delta = -2$, $x_4 = \Delta_4/\Delta = 1$.

ЗАМЕЧАНИЕ. В вычислительной практике формулы Крамера используются очень редко. Чаще для решения систем линейных алгебраических уравнений применяются различные варианты метода исключения неизвестных (метода Гаусса) или итерационные методы. Подробнее по этому поводу см. с. 100, с. 282.

- **2.** В качестве примера применения теории крамеровских систем построим так называемую интерполяционную формулу Лагранжа.
- **2.1. Теорема.** Пусть z_0, z_1, \ldots, z_n попарно различные числа, h_0, h_1, \ldots, h_n произвольные числа. Тогда существует, и при том только один, полином $P_n(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n$ такой, что

$$P_n(z_j) = h_j, \ j = 0, 1, \dots, n.$$
 (5.12)

ДОКАЗАТЕЛЬСТВО. Условия (5.12) представляют собой систему линейных уравнений относительно коэффициентов полинома P_n . Определитель этой системы — определитель Вандермонда (см. с. 80). Он, очевидно, не равен нулю, поэтому система уравнений (5.12) имеет единственное решение при любой правой части. \square

- **2.2.** Теперь ясно, что если полином степени n всюду (на самом деле, по крайней мере в n+1 различных точках) равен нулю, то все его коэффициенты нули.
- **2.3.** Нетрудно построить в явном виде полином, удовлетворяющий условиям (5.12), а именно, решение задачи дает интерполяционная формула Лагранжа¹⁾

$$P_n(z) = h_0 \Phi_0(z) + h_1 \Phi_1(z) + \dots + h_n \Phi_n(z), \tag{5.13}$$

где Φ_i — полином степени n, удовлетворяющий условиям

$$\Phi_i(z_k) = 0, \quad k = 0, 1, \dots, j - 1, j + 1, \dots, n,$$
 (5.14)

$$\Phi_j(z_j) = 1, \tag{5.15}$$

для $j = 0, 1, 2 \dots, n$.

Как показано в п. 3, с. 23, полином своими корнями определяется с точностью до постоянного множителя, следовательно,

$$\Phi_j(z) = A_j(z - z_0)(z - z_1) \cdots (z - z_{j-1})(z - z_{j+1}) \cdots (z - z_n).$$

Используя (5.15), найдем значение постоянной:

$$A_j = \frac{1}{(z_j - z_0)(z_j - z_1) \cdots (z_j - z_{j-1})(z_j - z_{j+1}) \cdots (z_j - z_n)},$$

т. е.

$$\Phi_j(z) = \frac{(z-z_0)(z-z_1)\cdots(z-z_{j-1})(z-z_{j+1})\cdots(z-z_n)}{(z_j-z_0)(z_j-z_1)\cdots(z_j-z_{j-1})(z_j-z_{j+1})\cdots(z_j-z_n)},$$

где $j = 0, 1, 2, \ldots, n$.

 $^{^{1)}}$ Жозеф Луи Лагранж (Joseph Louis Lagrange; 1736 — 1813) — французский математик, астроном и механик итальянского происхождения.

§ 6. Матрицы. Операции над матрицами

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$
 (6.1)

Элементами таблицы служат числа a_{ij} (вообще говоря, комплексные). Иногда будем явно указывать размеры матрицы A и обозначать ее через A(m,n).

Отметим некоторые частные случаи. При m=n получаем $\kappa \epsilon a \partial pamную матрицу. Ее размер (говорят также <math>nopяdo\kappa$) будем обозначать одной буквой n.

Если m=1, а n произвольно, получаем матрицу-строку (или, просто, строку)

$$x = (x_1, x_2, \dots, x_n).$$
 (6.2)

Говорят, что эта строка имеет $\partial лину n$.

Если n=1, а m произвольно, получаем матрицу-столбец (или, просто, столбец)

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}. \tag{6.3}$$

Говорят, что этот столбец имеет $\partial \Lambda u h y m$. Подчеркнем, что при записи строк и столбцов второй индекс обычно не пишут. Столбцы или строки часто будем называть $\theta e \kappa mopamu$.

Матрица называется нулевой, если все ее элементы — нули. Нулевая матрица обозначается символом 0.

- 2. Опишем некоторые специальные виды квадратных матриц.
- **2.1.** Говорят, что элементы $a_{11}, a_{22}, \ldots, a_{nn}$ образуют *главную* диагональ квадратной матрицы A. Квадратная матрица D называется диагональной, если $d_{ij} = 0$ при $i \neq j$, или, подробнее,

$$D = \begin{pmatrix} d_{11} & 0 & \dots & 0 \\ 0 & d_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & d_{nn} \end{pmatrix}. \tag{6.4}$$

Для диагональной матрицы будем использовать также обозначение

$$D = \operatorname{diag}(d_{11}, d_{22}, \dots, d_{nn}).$$

Диагональная матрица называется $e \partial u h u u h o \ddot{u}$, если $d_{ii} = 1$ для всех $i = 1, \ldots, n$. Единичную матрицу будем обозначать буквой I:

$$I = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}. \tag{6.5}$$

2.2. Матрица P_{ik} называется матрицей перестановки, если она получена из единичной матрицы перестановкой строк с номерами i, k. Например, матрицами перестановок третьего порядка являются матрицы

$$P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad P_{23} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

2.3. Напомним, что квадратная матрица L называется нижней треугольной, если все ее элементы, стоящие выше главной диагонали, равны нулю:

$$L = \begin{pmatrix} l_{11} & 0 & \dots & 0 \\ l_{21} & l_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nn} \end{pmatrix}, \tag{6.6}$$

квадратная матрица U называется верхней треугольной, если все ее элементы, стоящие ниже главной диагонали, равны нулю:

$$U = \begin{pmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & u_{nn} \end{pmatrix}.$$
(6.7)

2.4. Квадратная матрица

$$L_{k} = \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & l_{k,k} & 0 & \cdots & 0 \\ 0 & \cdots & l_{k+1,k} & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & l_{n,k} & 0 & \cdots & 1 \end{pmatrix}$$

$$(6.8)$$

называется элементарной нижней треугольной. Поясним, что эта матрица отличается от единичной матрицы лишь элементами k-го столбца.

3. Умножение матрицы на число, сложение матриц. *Произведением матрицы A и числа* α называется матрица

$$\alpha A = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha a_{m1} & \alpha a_{m2} & \dots & \alpha a_{mn} \end{pmatrix}$$

(все элементы матрицы A умножаются на число α).

Суммой двух матриц A, B одинаковых размеров называется матрица C того же размера с элементами $c_{ij} = a_{ij} + b_{ij}$. Пишут: C = A + B.

Упражнение. Убедиться, что введенные операции обладают следующим свойствами:

- 1) A + 0 = A,
- 2) (A+B)+C=A+(B+C),
- 3) A + B = B + A.
- 4) $(\alpha + \beta)A = \alpha A + \beta A$.

Отметим, что сумма двух нижних (верхних) треугольных матриц — нижняя (верхняя) треугольная матрица.

4. Умножение строки на столбец. По определению *произведение* строки x и столбиа y одинаковой длины n есть число

$$(x_1, x_2, \dots, x_n) \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \sum_{k=1}^n x_k y_k.$$
 (6.9)

Пример.

$$(5 -1 3 1) \begin{pmatrix} -1 \\ -2 \\ 3 \\ 4 \end{pmatrix} = 5 \cdot (-1) + (-1) \cdot (-2) + 3 \cdot 3 + 1 \cdot 4 = 10.$$

5. Умножение матрицы на вектор. *Произведением матрицы А* размера $m \times n$ *и вектора х* длины n называется вектор y длины m с элементами

$$y_i = \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, m.$$

Символически это записывают так:

$$y = Ax$$
.

Иногда будем применять более подробную запись:

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Поясним, что умножение матрицы на вектор выполняется следующим образом: столбец x последовательно накладывается на строки матрицы A, соответствующие элементы попарно перемножаются, а затем полученные n величин суммируются. В результате получаются элементы вектора y.

Пример.

$$\begin{pmatrix} 0 & -3 & 1 \\ 2 & 1 & 5 \\ -4 & 0 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \\ -16 \end{pmatrix}.$$

Непосредственно из определения вытекает, что для любых чисел α , β и для любых векторов x, y (подходящей длины) справедливо равенство

$$A(\alpha x + \beta y) = \alpha Ax + \beta Ay. \tag{6.10}$$

Говорят поэтому, что операция умножения матрицы на вектор $\mathit{nuhe}\ddot{u}$ - $\mathit{ha}.$

6. Умножение строки на матрицу. *Произведением строки х* длины m и матрицы A размера $m \times n$ называется строка y длины n с элементами

$$y_j = \sum_{i=1}^m a_{ij} x_i, \quad j = 1, \dots, n.$$

Символически это записывают так:

$$y = xA$$
.

Иногда будем применять более подробную запись:

$$(y_1, y_2, \dots, y_n) = (x_1, x_2, \dots, x_m) \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Умножение строки на матрицу выполняется следующим образом: столбцы матрицы A последовательно накладываются на строку x, соответствующие элементы попарно перемножаются, а затем полученные m величин суммируются. В результате получаются элементы строки y.

Пример.

$$\begin{pmatrix} 5 & 1 & 0 & -3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & -4 \\ 3 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 11 & -1 \end{pmatrix}.$$

Непосредственно из определения вытекает, что для любых чисел α , β и для любых строк x, y (подходящей длины) справедливо равенство

$$(\alpha x + \beta y)A = \alpha xA + \beta yA. \tag{6.11}$$

Говорят поэтому, что операция умножения строки на матрицу *линей*на.

7. С использованием введенных операций система n линейных уравнений с n неизвестными (5.1) может быть записана так:

$$Ax = b, (6.12)$$

где A — заданная квадратная матрица, b — заданный вектор, x — искомый вектор, или в виде

$$xA = b, (6.13)$$

где b — заданная строка, x — искомая строка. В дальнейшем мы чаще будем пользоваться формой записи (6.12).

8. Умножение прямоугольных матриц. Пусть A — матрица размера $m \times n$, B — матрица размера $n \times p$. Матрица C размера $m \times p$ называется npouseedenuem mampuu, A, B, если ее элементы определяются по правилу

$$c_{ij} = \sum_{q=1}^{n} a_{iq} b_{qj}, \quad i = 1, \dots, m, \ j = 1, \dots, p.$$
 (6.14)

Пишут C = AB, или, более подробно,

$$\begin{pmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \dots & \dots & \dots & \dots \\ c_{m1} & c_{m2} & \dots & c_{mp} \end{pmatrix} =$$

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{pmatrix} . (6.15)$$

Полезно пояснить, что элементы каждого столбца матрицы C вычисляются как результат умножения матрицы A на соответствующий столбец матрицы B. Точно так же элементы каждой строки матрицы C получаются как результат умножения соответствующей строки матрицы A на матрицу B. Отметим также, что элемент c_{ij} есть результат умножения i-й строки матрицы A на j-й столбец матрицы B.

Пример:

$$\begin{pmatrix} 5 & -1 & 3 & 1 \\ 2 & 0 & -1 & 4 \end{pmatrix} \begin{pmatrix} -1 & 3 & 0 \\ -2 & 1 & 1 \\ 3 & 0 & -2 \\ 4 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 10 & 15 & -5 \\ 11 & 10 & 10 \end{pmatrix}.$$

Произведение матриц зависит от порядка сомножителей. Например,

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 5 & 8 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 7 & 6 \\ 4 & 4 \end{pmatrix}.$$

Матрицы A, B называют *перестановочными*, если AB = BA. Перестановочные матрицы существуют. Например,

$$\begin{pmatrix} 7 & -12 \\ -4 & 7 \end{pmatrix} \begin{pmatrix} 26 & 45 \\ 15 & 26 \end{pmatrix} = \begin{pmatrix} 26 & 45 \\ 15 & 26 \end{pmatrix} \begin{pmatrix} 7 & -12 \\ -4 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}.$$

Для любой квадратной матрицы A

$$AI = IA = A$$
.

Отметим следующие свойства операции умножения матриц:

- 1) (A+B)C = AC + BC,
- (2) C(A+B) = CA+CB,
- 3) A(BC) = (AB)C.

Понятно, что размеры участвующих здесь матриц должны быть согласованы так, чтобы все операции имели смысл.

Элементарно проверяется, что 1), 2) следуют из (6.11), (6.10) соответственно. Для доказательства свойства 3) заметим, что элементы матрицы D = A(BC) есть числа вида $d_{ij} = a_i(Bc_j)$, где $a_i - i$ -ая строка матрицы $A, c_j - j$ -й столбец матрицы C. Элементы матрицы F = (AB)C — это числа $f_{ij} = (a_iB)c_j$. Поэтому достаточно доказать, что x(By) = (xB)y для любой строки x и любого столбца y.

Понятно, что их длины должны быть согласованы с размерами матрицы B. Будем полагать, что матрица B имеет m строк и n столбцов. Элементарные вычисления дают

$$x(By) = \sum_{i=1}^{m} x_i \sum_{j=1}^{n} b_{ij} y_j = \sum_{i=1}^{m} \sum_{j=1}^{n} b_{ij} x_i y_j,$$
 (6.16)

аналогично,

$$(xB)y = \sum_{j=1}^{n} y_j \sum_{i=1}^{m} b_{ij} x_i = \sum_{j=1}^{n} \sum_{i=1}^{m} b_{ij} x_i y_j.$$
 (6.17)

Суммы (6.16), (6.17) отличаются лишь порядком следования слагаемых и потому совпадают.

Упражнения.

- 1) Пусть $P_{ik}x$ матрица перестановки (см. с. 87). Показать, что вектор $P_{ik}x$ получается из вектора x перестановкой элементов с номерами i, k.
- 2) Как следствие показать, что матрица $P_{ik}A$ получается из матрицы A перестановкой строк с номерами i, k.
- 3) Показать, что если L, M нижние треугольные матрицы, то матрица LM нижняя треугольная. Показать, что аналогичное верно и для верхних треугольных матриц.
- 4) Показать, что нижняя треугольная матрица L равна произведению элементарных нижних треугольных матриц L_k (см. (6.8)), т. е. $L = L_1 L_2 \cdots L_{n-1} L_n$.

УКАЗАНИЕ. Проведите вычисления в соответствии со следующей расстановкой скобок: $L = L_1(L_2 \cdots (L_{n-2}(L_{n-1}L_n) \dots))$, т. е. сначала перемножьте $L_{n-1}L_n$, результат умножьте слева на L_{n-2} и т. д.

5) Показать, что для любой квадратной матрицы A

$$\det(P_{ik}A) = \det P_{ik} \det A = -\det A.$$

6) Показать, что для любой квадратной матрицы A и элементарной нижней треугольной матрицы L_k

$$\det(L_k A) = l_{kk} \det A. \tag{6.18}$$

РЕШЕНИЕ. Пусть $a = (a_1, a_2, \ldots, a_n)$ — вектор. Элементарные

вычисления дают

$$L_k a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_{k-1} \\ l_{k,k} a_k \\ l_{k+1,k} a_k + a_{k+1} \\ l_{k+2,k} a_k + a_{k+2} \\ \vdots \\ l_{n,k} a_k + a_n \end{pmatrix}.$$

Такой вид будут иметь столбцы матрицы L_kA . Полученное равенство показывает, что определитель $\det(L_kA)$ можно преобразовать следующим образом: из k-ой строки вынести общий множитель l_{kk} , затем умножить эту строку на l_{jk} и вычесть из j-ой строки последовательно для всех $j=k+1,\ k+2,\ \ldots,\ n$. В результате, получим равенство (6.18).

7) Опираясь на предыдущие упражнения и правило вычисления определителя треугольной матрицы (см. с. 79), показать, что для любой квадратной матрицы A и любой нижней треугольной матрицы L

$$\det(LA) = \det L \det A. \tag{6.19}$$

Показать, что если R — верхняя треугольная матрица, то

$$\det(RA) = \det R \, \det A. \tag{6.20}$$

9. *Транспонирование матриц.* Определенная на с. 77 операция транспонирования квадратных матриц естественным образом распространяется на прямоугольные матрицы.

Понятно, что при транспонировании размеры матрицы меняются местами. В частности, матрица-строка становится матрицейстолбцом.

Отметим основные свойства операции транспонирования.

- 1) Для любой матрицы A справедливо равенство $(A^T)^T = A$.
- 2) Для любых чисел α , β и любых матриц A,B одинаковых размеров

 $(\alpha A + \beta B)^T = \alpha A^T + \beta B^T$

(поэтому говорят, что операция транспонирования линейна).

3) Если операция умножения матриц AB имеет смысл, то: а) операция умножения B^TA^T также имеет смысл; б) $(AB)^T = B^TA^T$.

Все сформулированные здесь утверждения, кроме утверждения 3, б), непосредственно вытекают из определений, и их проверка предлагается читателю.

Докажем утверждение 3, б). Элемент с номерами i,j матрицы $(AB)^T$ — это результат умножения j-й строки матрицы A на i-й столбец матрицы B. Элемент с номерами i,j матрицы B^TA^T — это результат умножения i-й строки матрицы B^T и j-го столбца матрицы A^T . Элементы i-й строки матрицы B^T совпадают с элементами i-го столбца матрицы A^T совпадают с элементам j-ой строки матрицы A. Последнее замечание завершает доказательство утверждения 3, б).

§ 7. Обратная матрица

В этом параграфе мы будем широко использовать результаты теории крамеровских систем (см. 5, с. 81).

1. Квадратная матрица A называется вырожденной, если ее определитель равен нулю. В противном случае матрица A называется невырожденной.

При обосновании двух последующих утверждений будем опираться на п. 1.2, с. 82.

2. Если A, B — невырожденные матрицы, матрица C = AB также невырождена. Для того, чтобы в этом убедиться, достаточно показать, что однородная система линейных уравнений

$$ABx = 0 (7.1)$$

имеет только тривиальное решение. Последнее верно, так как, поскольку матрица A невырождена, то Bx=0, а поскольку B невырождена, то x=0.

3. Если одна из матриц A, B вырождена, то матрица C = AB также вырождена. Действительно, в этом случае достаточно установить, что система (7.1) имеет нетривиальное решение. Пусть матрица B вырождена. Тогда существует вектор $x \neq 0$ такой, что Bx = 0, значит ABx = 0.

Пусть теперь A вырождена, а B невырождена. Существует вектор $y \neq 0$ такой, что Ay = 0. Так как B невырождена, существует единственный вектор x такой, что Bx = y, причем x не равен нулю, так как $y \neq 0$. Вновь получаем, что ABx = 0 при $x \neq 0$.

4. Матрица X называется npaвoй обратной к квадратной матрице A, если

$$AX = I. (7.2)$$

Матрица Y называется *левой обратной* к квадратной матрице A, если

$$YA = I. (7.3)$$

Вырожденная матрица не имеет правой обратной матрицы. Действительно, если правая обратная матрица X существует, то

$$\det(AX) = \det(I) = 1.$$

С другой стороны, $\det(AX) = 0$, так как A вырождена. Точно так же доказывается невозможность существования левой обратной у вырожденной матрицы.

5. Если $\det(A) \neq 0$, то правая обратная к матрице A существует и определяется единственным образом. Действительно, обозначим через x^k столбцы матрицы X, а через i^k — столбцы матрицы I. Уравнение (7.2) распадается на совокупность систем уравнений

$$Ax^k = i^k, \quad k = 1, 2, \dots, n.$$
 (7.4)

Поскольку матрица A невырождена, каждая из этих систем имеет единственное решение.

Точно так же доказывается существование и единственность левой обратной матрицы.

- **6.** На самом деле, правая и левая обратные матрицы совпадают. Действительно, если YA = I, то YAX = X, но AX = I, т. е. Y = X.
- 7. В соответствии с вышесказанным матрицу X будем называть обратной матрицей к матрице A, если AX = XA = I. Обратную матрицу к матрице A обозначают через A^{-1} .
- 8. Укажем явный вид матрицы A^{-1} . Введем в рассмотрение так называемую присоединенную к матрице A матрицу

$$\tilde{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \dots & \dots & \dots & \dots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}.$$

Здесь A_{ij} — алгебраическое дополнение элемента a_{ij} матрицы A. Формулы (3.1), с. 76, можно записать в матричном виде

$$A\tilde{A} = |A|I. \tag{7.5}$$

Отсюда вытекает, что если $|A| \neq 0$, то

$$A^{-1} = |A|^{-1}\tilde{A} \tag{7.6}$$

есть матрица, обратная матрице A.

ПРИМЕР. Построим матрицу, обратную к матрице

$$A = \begin{pmatrix} 3 & -1 & 0 \\ -2 & 1 & 1 \\ 2 & -1 & 4 \end{pmatrix}.$$

Вычислим сначала определитель матрицы А, разлагая его по первой строке:

$$|A| = 3 \begin{vmatrix} 1 & 1 \\ -1 & 4 \end{vmatrix} + \begin{vmatrix} -2 & 1 \\ 2 & 4 \end{vmatrix} = 5.$$

Теперь подсчитаем алгебраические дополнения элементов матрицы А:

$$A_{11} = \begin{vmatrix} 1 & 1 \\ -1 & 4 \end{vmatrix} = 5, \ A_{12} = -\begin{vmatrix} -2 & 1 \\ 2 & 4 \end{vmatrix} = 10, \ A_{13} = \begin{vmatrix} -2 & 1 \\ 2 & -1 \end{vmatrix} = 0,$$

$$A_{21} = -\begin{vmatrix} -1 & 0 \\ -1 & 4 \end{vmatrix} = 4, \ A_{22} = \begin{vmatrix} 3 & 0 \\ 2 & 4 \end{vmatrix} = 12, \ A_{23} = -\begin{vmatrix} 3 & -1 \\ 2 & -1 \end{vmatrix} = 1,$$

$$A_{31} = \begin{vmatrix} -1 & 0 \\ 1 & 1 \end{vmatrix} = -1, \ A_{32} = -\begin{vmatrix} 3 & 0 \\ -2 & 1 \end{vmatrix} = -3, \ A_{33} = \begin{vmatrix} 3 & -1 \\ -2 & 1 \end{vmatrix} = 1.$$

По формуле (7.6)

$$A^{-1} = \frac{1}{|A|} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} 1 & 4/5 & -1/5 \\ 2 & 12/5 & -3/5 \\ 0 & 1/5 & 1/5 \end{pmatrix}.$$

- 9. Отметим некоторые свойства обратной матрицы.
- 1) Матрица A^{-1} невырождена, $(A^{-1})^{-1} = A$. Это утверждение очевидное следствие равенства $AA^{-1} = I$.
 - 2) Если матрицы A, B невырождены, то

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Действительно, $AB(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$.

3) Если матрица A невырождена, то матрица A^T невырождена и

$$(A^T)^{-1} = (A^{-1})^T.$$

Невырожденность матрицы A^T — следствие равенства $|A^T| = |A|$. Используя свойство 3 б), с. 93, можем написать

$$(A^T)(A^{-1})^T = (A^{-1}A)^T = I^T = I,$$

т. е. матрица $(A^{-1})^T$ обратна к A^T .

Упражнения.

- 1) Пусть матрицы $A_1,\,A_2,\ldots,\,A_p$ невырождены. Показать, что $(A_1 A_2 \cdots A_p)^{-1} = A_n^{-1} A_{n-1}^{-1} \cdots A_1^{-1}.$
- 2) Пусть P_{ik} матрица перестановки. Показать, что $P_{ik}^{-1} = P_{ik}$. 3) Пусть L_k есть элементарная нижняя треугольная матрица и $l_{kk} \neq 0$. Показать, что

$$L_k^{-1} = \begin{pmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1/l_{k,k} & 0 & \dots & 0 \\ 0 & \dots & -l_{k+1,k}/l_{k,k} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & -l_{n,k}/l_{k,k} & 0 & \dots & 1 \end{pmatrix}.$$

- 4) Пусть L нижняя треугольная матрица, у которой все элементы главной диагонали отличны от нуля. Показать, что матрица L^{-1} существует и является нижней треугольной матрицей. Показать, что аналогичное верно и для верхней треугольной матрицы.
- 5) Пусть квадратная матрица A имеет обратную, B произвольная квадратная матрица того же порядка. Показать, что существует $\varepsilon_0 > 0$ такое, что для всех $\varepsilon \in (0, \varepsilon_0]$ матрица $A + \varepsilon B$ также имеет обратную.

Решение. Пусть x — решение системы уравнений

$$Ax + \varepsilon Bx = 0. (7.7)$$

Тогда x — решение системы уравнений

$$x = -\varepsilon A^{-1}Bx. (7.8)$$

Пусть $x \neq 0$ и $|x_i| = \max_{1 \leqslant k \leqslant n} |x_k|$, где n — порядок матрицы A. Положим $C = \{c_{ij}\}_{i,j=1}^n = A^{-1}B$. Из (7.8) очевидным образом получаем

$$|x_i| \leqslant |x_i| \varepsilon \max_{1 \leqslant k \leqslant n} \sum_{j=1}^n |c_{kj}|.$$

Пусть ε выбрано так, что

$$\varepsilon \max_{1 \leqslant k \leqslant n} \sum_{j=1}^{n} |c_{kj}| < 1. \tag{7.9}$$

Тогда $|x_i| < |x_i|$, что нелепо. Значит, при выполнении условия (7.9) система (7.7) может иметь лишь тривиальное решение, следовательно, матрица $A + \varepsilon B$ невырождена для всех достаточно малых ε .

§ 8. Некоторые классы матриц

В этом параграфе будут описаны классы матриц, часто возникающих в различных задачах линейной алгебры. Мы приведем и некоторые простейшие свойства этих матриц. Более подробное исследование различных классов квадратных матриц будет проведено в гл. 10.

1. Пусть A — прямоугольная матрица. Матрица $A^* = (\bar{A})^T$ называется conpяженной по отношению к матрице A. Поясним, что элементы матрицы \bar{A} комплексно сопряжены по отношению к элементам матрицы A. Нетрудно видеть, что

$$(A^*)^* = A, \quad (\alpha A)^* = \bar{\alpha} A^*, \quad (A+B)^* = A^* + B^*.$$

2. Квадратная матрица A называется эрмитовой (самосопряженной), если $A = A^*$. Квадратная матрица A называется косоэрмитовой, если $A = -A^*$.

Определитель эрмитовой матрицы — вещественное число. В самом деле, поскольку $\det(A^*) = \det(\overline{A})^T = \det(\overline{A}) = \overline{\det(A)}$, то для эрмитовой матрицы $\det(A) = \overline{\det(A)}$.

3. Любая квадратная матрица A представима в виде

$$A = H_1 + iH_2, (8.1)$$

здесь H_1 , H_2 — эрмитовы матрицы, i — мнимая единица. Матрицы H_1 , H_2 однозначно определяются матрицей A. Возможность представления (8.1) вытекает из очевидного тождества

$$A = \frac{1}{2}(A + A^*) + i\frac{1}{2i}(A - A^*)$$

и легко проверяемых соотношений

$$(A+A^*)^* = A+A^*, \quad \left(\frac{1}{i}(A-A^*)\right)^* = \frac{1}{i}(A-A^*).$$

Если предположить, что наряду с (8.1) возможно представление

$$A = \widetilde{H}_1 + i\widetilde{H}_2$$

с эрмитовыми матрицами $\widetilde{H}_1,\ \widetilde{H}_2,$ то

$$(H_1 - \widetilde{H}_1) + i(H_2 - \widetilde{H}_2) = 0.$$

 $^{^{1)}}$ Шарль Эрмит (Charles Hermite; 1822 — 1901) — французский математик.

Переходя к сопряженным матрицам, получим

$$(H_1 - \widetilde{H}_1) - i(H_2 - \widetilde{H}_2) = 0.$$

Складывая почленно два последних равенства, будем иметь, что $H_1 = \widetilde{H}_1$, но тогда и $H_2 = \widetilde{H}_2$, т. е. представление (8.1) однозначно.

4. Матрицы, у которых все элементы вещественны, называют вещественными матрицами.

Вещественная эрмитова матрица A называется $\mathit{симметричной}.$ Для такой матрицы $A=A^T.$

Вещественная матрица A называется $\kappa ococummem puчной$, если $A=-A^T.$

5. Для любой квадратной вещественной матрицы справедливо представление

$$A = A_1 + A_2, (8.2)$$

где A_1 — симметричная, A_2 — кососимметричная матрицы. Такое представление единственно,

$$A_1 = \frac{1}{2}(A + A^T), \quad A_2 = \frac{1}{2}(A - A^T).$$

6. Квадратная матрица A называется унитарной, если $AA^* = I$, $A^*A = I$, иными словами, если $A^{-1} = A^*$. Из этого определения сразу следует, что определитель унитарной матрицы по модулю равен единице. Произведение унитарных матриц является унитарной матрицей (докажите!).

Важным примером унитарной матрицы является диагональная матрица, диагональ которой состоит из чисел q_1, q_2, \ldots, q_n , равных единице по модулю, n — порядок матрицы. Проверка унитарности этой матрицы элементарна и поручается читателю.

7. Вещественная унитарная матрица называется ортогональной матрицей. Определитель ортогональной матрицы может быть равен только плюс единице или минус единице. Примеры ортогональных матриц: матрица перестановки P_{kl} , матрица второго порядка

$$Q_2(\varphi) = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix},$$

где φ — любое вещественное число.

8. Квадратная матрица A называется *нормальной*, если она перестановочна с матрицей A^* , т. е. $AA^* = A^*A$. Нетрудно убедиться, что эрмитовы, косоэрмитовы и унитарные матрицы — нормальные матрицы.

ПРИМЕР. Матрица $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ является нормальной, но не принадлежит ни к одному из перечисленных выше классов.

§ 9. Метод Гаусса решения систем линейных алгебраических уравнений

1. В основе метода Гаусса, как, впрочем, и многих других методов решения систем линейных алгебраических уравнений

$$Ax = b, (9.1)$$

лежит следующее утверждение.

Пусть матрица B невырождена. Тогда система уравнений

$$BAx = Bb (9.2)$$

эквивалентна системе (9.1), т. е. решение системы (9.2) — решение системы (9.1) и, наоборот, решение системы (9.1) — решение системы (9.2).

Действительно, пусть x — решение системы (9.2). Тогда

$$B(Ax - b) = 0,$$

но матрица B невырождена, следовательно, Ax - b = 0. Обратное утверждение очевидно.

Матрица B выбирается так, чтобы матрица BA была проще матрицы A и решение системы (9.2) находилось легче, чем решение системы (9.1).

В методе Гаусса матрица B конструируется при помощи элементарных нижних треугольных матриц так, чтобы матрица BA была верхней треугольной. Тогда решение системы (9.2) становится тривиальной задачей.

2. Переходим к описанию *метода Гаусса* решения крамеровских систем. Выберем среди элементов первого столбца матрицы A максимальный по модулю. Пусть это есть элемент a_{i1} . Он не может оказаться равным нулю, так как тогда все элементы первого столбца

матрицы A — нули и, значит, |A| = 0, но система по предположению крамеровская, т. е. определитель матрицы A не нуль.

Умножим обе части уравнения на матрицу перестановки P_{i1} . В дальнейшем будем обозначать эту матрицу через P_1 (заметим, что она равна единичной, если максимальный по модулю элемент первого столбца матрицы A есть a_{11}). Получим

$$A_1 x = b^1, (9.3)$$

где $A_1=P_1A,\ b^1=P_1b.$ Поясним, что матрица A_1 получается из матрицы A перестановкой первой и i-й строк, столбец b^1 получается из столбца b перестановкой первого и i-го элементов. Элементы матрицы A_1 обозначим через $a_{kl}^{(1)},$ элементы столбца b^1 — через b_k^1 . По построению $a_{11}^{(1)}\neq 0$.

Умножим обе части уравнения (9.3) на элементарную нижнюю треугольную матрицу

$$L_{1} = \begin{pmatrix} l_{1,1} & 0 & 0 & \dots & 0 & 0 \\ l_{2,1} & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ l_{n-1,1} & 0 & 0 & \dots & 1 & 0 \\ l_{n,1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$
(9.4)

где
$$l_{11}=1/a_{11}^{(1)},\ l_{21}=-a_{21}^{(1)}/a_{11}^{(1)},\ \dots,\ l_{n1}=-a_{n1}^{(1)}/a_{11}^{(1)}.$$
 Получим
$$A_2x=b^2, \tag{9.5}$$

где $A_2 = L_1 A_1$, $b^2 = L_1 b^1$. Вычисляя произведение $L_1 A_1$, найдем, что

$$A_{2} = \begin{pmatrix} 1 & a_{12}^{(2)} & a_{13}^{(2)} & \dots & a_{1n}^{(2)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & a_{n2}^{(2)} & a_{n3}^{(2)} & \dots & a_{nn}^{(2)} \end{pmatrix}. \tag{9.6}$$

Умножение L_1 на A_1 равносильно следующему преобразованию матрицы A_1 : все элементы первой строки матрицы A_1 делятся на $a_{11}^{(1)}$, затем для всех $i=2,\ldots,n$ первая стока умножается на $a_{i1}^{(1)}$ и вычитается из i-й строки матрицы A_1 . Аналогично, элементы столбца b^2 вычисляются по формулам $b_1^2=b_1^1/a_{11}^{(1)},\,b_i^2=b_i^1-b_1^2a_{i1}^{(1)},\,$ где $i=2,\ldots,n$.

Подчеркием, что все элементы первого столбца матрицы A_2 , кроме первого, оказываются при этом равными нулю.

Выберем среди элементов $a_{22}^{(2)}, a_{22}^{(2)}, \ldots, a_{n2}^{(2)}$ максимальный по модулю. Пусть этот элемент есть $a_{i2}^{(2)}$. Он не может равняться нулю. Действительно, если он равен нулю, то все числа $a_{22}^{(2)}, a_{22}^{(2)}, \ldots, a_{n2}^{(2)}$ нули и тогда, вычисляя $\det(A_2)$ разложением по первому столбцу, получим, что $\det(A_2) = 0$. С другой стороны, используя то, что L_1 элементарная нижняя треугольная матрица, а P_1 — либо единичная матрица, либо матрица перестановки, можем написать, что

$$\det(A_2) = l_{11} \det(P_1 A) = \det(P_1 A) / a_{11}^{(1)} = \pm \det(A) / a_{11}^{(1)} \neq 0.$$

Умножим обе части уравнения (9.5) на матрицу $P_2 = P_{2i}$, т. е. поменяем местами вторую и i-ю строки матрицы A_2 . Получим

$$\tilde{A}_2 x = P_2 L_1 P_1 b, \tag{9.7}$$

где

$$\tilde{A}_2 = P_2 A_2 = \begin{pmatrix} 1 & a_{12}^{(2)} & a_{13}^{(2)} & \dots & a_{1n}^{(2)} \\ 0 & \tilde{a}_{22}^{(2)} & \tilde{a}_{23}^{(2)} & \dots & \tilde{a}_{2n}^{(2)} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \tilde{a}_{n2}^{(2)} & \tilde{a}_{n3}^{(2)} & \dots & \tilde{a}_{nn}^{(2)} \end{pmatrix}.$$

Умножим обе части уравнения (9.7) на элементарную нижнюю треугольную матрицу

$$L_2 = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & l_{2,2} & 0 & 0 & \dots & 0 & 0 \\ 0 & l_{3,2} & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & l_{n-1,2} & 0 & 0 & \dots & 1 & 0 \\ 0 & l_{n,2} & 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

где $l_{22}=1/\tilde{a}_{22}^{(2)},\, l_{32}=-\tilde{a}_{32}^{(2)}/\tilde{a}_{22}^{(2)},\,\,\ldots,\, l_{n2}=-\tilde{a}_{n2}^{(2)}/\tilde{a}_{22}^{(2)}.$ Получим

$$A_3x = L_2P_2L_1P_1b,$$

где $A_3 = L_2 \tilde{A}_2 = L_2 P_2 L_1 P_1 A$. Нетрудно убедиться, что

$$A_{3} = \begin{pmatrix} 1 & a_{12}^{(2)} & a_{13}^{(2)} & \dots & a_{1n}^{(2)} \\ 0 & 1 & a_{23}^{(3)} & \dots & a_{2n}^{(3)} \\ 0 & 0 & a_{33}^{(3)} & \dots & a_{3n}^{(3)} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & a_{n3}^{(3)} & \dots & a_{nn}^{(3)} \end{pmatrix}.$$

Важно подчеркнуть, что все элементы второго столбца матрицы A_3 , кроме первых двух, — нули.

Продолжая этот процесс, в конце концов, получим систему уравнений

$$Ux = f (9.8)$$

(очевидно, эквивалентную исходной), где

$$U = L_n P_n L_{n-1} P_{n-1} \cdots L_1 P_1 A,$$

$$f = L_n P_n L_{n-1} P_{n-1} \cdots L_1 P_1 b,$$
(9.9)

причем

$$U = \begin{pmatrix} 1 & a_{12}^{(2)} & a_{13}^{(2)} & \dots & a_{1n-1}^{(2)} & a_{1n}^{(2)} \\ 0 & 1 & a_{23}^{(3)} & \dots & a_{2n-1}^{(3)} & a_{2n}^{(3)} \\ 0 & 0 & 1 & \dots & a_{3n-1}^{(4)} & a_{3n}^{(4)} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 & a_{n-1,n}^{(n)} \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$
(9.10)

есть верхняя треугольная матрица с единицами на главной диагонали.

Решение системы (9.8) не вызывает затруднений. Из последнего уравнения этой системы находим $x_n=f_n$, из предпоследнего получаем

$$x_{n-1} = f_{n-1} - a_{n-1,n}^{(n)} x_n (9.11)$$

и так далее, наконец, из первого уравнения находим

$$x_1 = f_1 - a_{1,2}^{(2)} x_2 - a_{1,3}^{(2)} x_3 - \dots - a_{1,n}^{(2)} x_n.$$
 (9.12)

Таким образом, реализация метода Гаусса состоит из двух этапов. На первом этапе, называемым *прямым ходом метода Гаусса*, исходная система преобразуется к системе с треугольной матрицей. На втором этапе, называемым *обратным ходом метода Гаусса*, решается система с треугольной матрицей.

ЗАМЕЧАНИЕ. Выбор максимального по модулю элемента столбца при выполнении прямого хода метода Гаусса минимизирует влияние ошибок округления в расчетах на компьютере. Если не заботиться об ошибках округления, то на очередном шаге прямого хода метода Гаусса можно выбирать любой ненулевой элемент столбца.

3. Вычисление определителя методом Гаусса. Из (9.9), используя формулы из упражнений на с. 97, получаем

$$A = P_1 L_1^{-1} P_2 L_1^{-1} \cdots P_n L_n^{-1} U, \tag{9.13}$$

откуда, используя формулы из упражнений на с. 92, будем иметь

$$\det A = \det(P_1 L_1^{-1} P_2 L_1^{-1} \cdots P_n L_n^{-1} U) = \prod_{i=1}^n \det P_i \prod_{i=1}^n \det L_i^{-1} =$$

$$= \pm \prod_{i=1}^n \det L_i^{-1}. \quad (9.14)$$

При этом мы учли, что $\det U = 1$. Нетрудно убедиться (см. упражнение 3 на с. 97), что

$$\det L_i^{-1} = \tilde{a}_{ii}^{(i)},$$

следовательно,

$$\det A = \pm a_{11}^{(1)} \tilde{a}_{22}^{(2)} \cdots \tilde{a}_{nn}^{(n)}. \tag{9.15}$$

Знак здесь определяется количеством перестановок строк, выполненных в ходе реализации прямого хода метода Гаусса. Если оно четно, выбирается знак плюс. В противном случае — минус. Таким образом, определитель матрицы A может быть вычислен в ходе реализации метода Гаусса.

4. Оценим количество арифметических операций, требуемых для решения системы уравнений методом Гаусса.

На первом шаге прямого хода метода Гаусса строится матрица L_1 . Это требует выполнения n операций. Затем матрица L_1 умножается на матрицу A_1 . Нетрудно проверить, что умножение матрицы L_1 на столбец требует 2(n-1)+1=2n-1 операций. Всего столбцов n. Значит, умножение матрицы L_1 на A_1 требует $2n^2-n$ операций.

Кроме того, матрица L_1 умножается на столбец P_1b .

Таким образом, реализация первого шага прямого хода метода Гаусса требует $2n^2+n-1$ операций.

На втором шаге, т. е. при умножении матриц L_2 , \tilde{A}_2 , как нетрудно убедиться, мы фактически имеем дело с матрицами порядка n-1. Поэтому реализация второго шага прямого хода метода Гаусса требует

$$2(n-1)^2 + (n-2)$$

операций.

Это означает, что реализация прямого хода метода Гаусса требует $2(1^2+2^2+\ldots n^2)+(1+2+\ldots+(n-2))$ операций. Хорошо известно, что

$$1 + 2 + \dots + n - 2 = (n - 1)(n - 2)/2,$$

$$1^{2} + 2^{2} + \dots + n^{2} = n(n + 1)(2n + 1)/6.$$

Таким образом, прямой ход метода Гаусса можно выполнить, затратив

$$n(n+1)(2n+1)/3 + (n-1)(n-2)/2 \approx 2n^3/3$$

арифметических операций (мы пренебрегаем слагаемыми порядка n^2 , считая n достаточно большим).

Нетрудно также видеть, что вычисления по формулам (9.11)— (9.12) требуют

$$2(n-1)+2(n-2)+\ldots+2=2(1+\ldots+n-1)=n(n-1)\approx n^2$$
 операций.

Итак, решение системы линейных уравнений с n неизвестными методом Гаусса требует порядка $2n^3/3$ операций. Это существенно меньше, чем при использовании формул Крамера. Их непосредственное применение требует, очевидно, $n^2n!$ арифметических операций. Нетрудно подсчитать, что если, например, n=20, то $n^2n!\approx 9,7\cdot 10^{20}$, а $2n^3/3\approx 5,3\cdot 10^3$.

ПРИМЕР. Решим методом Гаусса систему уравнений

$$3x_1 + 6x_2 + 15x_3 = 60,$$

 $3x_1 + 2x_2 + 9x_3 = 34,$
 $9x_1 + 6x_2 - 3x_3 = 12.$

Выпишем матрицу системы уравнений и столбец правой части

$$A = \begin{pmatrix} 3 & 6 & 15 \\ 3 & 2 & 9 \\ 9 & 6 & -3 \end{pmatrix}, \quad b = \begin{pmatrix} 60 \\ 34 \\ 12 \end{pmatrix}.$$

Максимальный элемент первого столбца матрицы A есть $a_{31}=9$. В соответствии с описанным выше алгоритмом матрица A_1 и столбец b^1 равны соответственно

$$A_1 = \begin{pmatrix} 9 & 6 & -3 \\ 3 & 2 & 9 \\ 3 & 6 & 15 \end{pmatrix}, \quad b^1 = \begin{pmatrix} 12 \\ 34 \\ 60 \end{pmatrix}$$

(поменяли местами первую и третью строки матрицы A, первый и последний элементы столбца b). Делим первую строку матрицы A_1 на 9, умножаем ее на 3 и вычитаем из второй и третьей срок; делим первый элемент столбца b^1 на 9, затем умножаем его на 3 и вычитаем из второго и третьего элементов столбца b^1 . В результате получаем

$$A_2 = \begin{pmatrix} 1 & 2/3 & -1/3 \\ 0 & 0 & 10 \\ 0 & 4 & 16 \end{pmatrix}, \quad b^2 = \begin{pmatrix} 4/3 \\ 30 \\ 56 \end{pmatrix}.$$

Максимальным из чисел $a_{22}^{(2)},\ a_{32}^{(2)}$ является $a_{32}^{(2)},\$ поэтому меняем местами вторую и третью строки матрицы $A^2,$ а также второй и третий элемент столбца $b^2.$ Получим

$$\tilde{A}_2 = \begin{pmatrix} 1 & 2/3 & -1/3 \\ 0 & 4 & 16 \\ 0 & 0 & 10 \end{pmatrix}, \quad \tilde{b}^2 = \begin{pmatrix} 4/3 \\ 56 \\ 30 \end{pmatrix}.$$

Делим вторую строку матрицы \tilde{A}_2 и второй элемент столбца \tilde{b}^2 на 4. Получаем

$$\tilde{\tilde{A}}_2 = \begin{pmatrix} 1 & 2/3 & -1/3 \\ 0 & 1 & 4 \\ 0 & 0 & 10 \end{pmatrix}, \quad \tilde{\tilde{b}}^2 = \begin{pmatrix} 4/3 \\ 14 \\ 30 \end{pmatrix}.$$

Наконец, делим последнюю строку матрицы $\tilde{\tilde{A}}_2$ и последний элемент столбца $\tilde{\tilde{b}}^2$ на 10. Получаем

$$A_3 = \begin{pmatrix} 1 & 2/3 & -1/3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}, \quad b^3 = \begin{pmatrix} 4/3 \\ 14 \\ 3 \end{pmatrix}.$$

Прямой ход метода Гаусса закончен. Теперь выполняем обратный ход метода Гаусса. Последовательно находим $x_3=3, x_2=14-3\cdot 4=2, x_1=4/3-(2/3)\cdot 2+(1/3)\cdot 3=1.$

В ходе реализации метода Гаусса мы, фактически, подсчитали и определитель матрицы A. По формуле (9.15) его абсолютная величина равна произведению ведущих элементов метода Гаусса, т. е. тех чисел, на которые приходилось выполнять деление при приведении матрицы A к треугольному виду. В рассматриваемом примере — это 9,4,10. Было выполнено две перестановки строк, следовательно, определитель равен произведению ведущих элементов: $\det(A) = 360$.

- **5.** Задачи.
- 1) Пусть A квадратная матрица. Определители

$$\Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_n = |A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

называются главными минорами матрицы A. Показать, что если

все главные миноры матрицы
$$A$$
 отличны от нуля, (9.16)

то, реализуя метод Гаусса, можно полагать все матрицы P_1, \ldots, P_n равными единичной матрице, т. е. опускать операцию поиска максимального по модулю элемента в соответствующих столбцах.

2) Показать, что если выполнено условие (9.16), то матрица A представима в виде

$$A = LU, (9.17)$$

где L — нижняя треугольная матрица с ненулевыми элементами на главной диагонали, U — верхняя треугольная матрица с единицами на главной диагонали.

Равенство (9.17) определяет так называемое *треугольное разложение* матрицы A.

- 3) Показать, что матрицы L, U с указанными свойствами определяются равенством (9.17) однозначно.
- 4) Показать, что условие (9.16) необходимо для того, чтобы матрицу A можно было представить в виде (9.17).

§ 10. Определитель произведения матриц

1. Теорема. Определитель произведения произвольных квадратных матриц A и B равен произведению их определителей:

$$\det(AB) = \det A \det B. \tag{10.1}$$

ДОКАЗАТЕЛЬСТВО. Если матрица A вырождена, то, как было установлено выше (см. п. 3, с. 94), матрица AB также вырождена, и в этом случае равенство (10.1) тривиально выполняется. Если матрица A невырождена, то, применяя (9.13), получим

$$AB = P_1 L_1^{-1} P_2 L_1^{-1} \cdots P_n L_n^{-1} UB.$$

В этом произведении каждый сомножитель, кроме B, есть либо матрица перестановки, либо треугольная матрица, следовательно,

$$\det(AB) = \prod_{i=1}^{n} \det P_i \prod_{i=1}^{n} \det L_i^{-1} \det(U) \det B =$$

$$= \prod_{i=1}^{n} \det P_i \prod_{i=1}^{n} \det L_i^{-1} \det B, \quad (10.2)$$

но (см. (9.14))
$$\prod_{i=1}^n \det P_i \prod_{i=1}^n \det L_i^{-1} = \det A,$$

т. е. равенство (10.1) доказано. \square

Если

§ 11. Блочные матрицы

1. Во многих случаях оказывается полезным «разрезать» матрицу на блоки, т. е. представить ее в виде

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix},$$
(11.1)

где элементы A_{ij} , в свою очередь, являются матрицами.

Размеры блоков предполагаются согласованными, т. е. все блоки, стоящие в одной строке, должны иметь одинаковое число строк, все блоки, стоящие в одном столбце, должны иметь одинаковое число столбцов. Одна и та же матрица может быть разбита на блоки различными способами (см. рис. 2).

$$\begin{pmatrix}
1 & 8 & 7 & 6 \\
3 & 5 & 0 & 2 \\
1 & 4 & 9 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 8 & 7 & 6 \\
3 & 5 & 0 & 2 \\
1 & 4 & 9 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 8 & 7 & 6 \\
3 & 5 & 0 & 2 \\
1 & 4 & 9 & 3
\end{pmatrix}$$

Рис. 2. Примеры разбиения матрицы на блоки

Нетрудно убедиться, что с блочными матрицами можно действовать по тем же формальным правилам, что и с обычными. Так, если наряду с матрицей (11.1) ввести в рассмотрение матрицу

$$B = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1n} \\ B_{21} & B_{22} & \dots & B_{2n} \\ \dots & \dots & \dots & \dots \\ B_{m1} & B_{m2} & \dots & B_{mn} \end{pmatrix},$$
(11.2)

причем такую, что для любой пары индексов i,j размеры блоков A_{ij}, B_{ij} совпадают, то матрица C = A + B может быть представлена как блочная с блоками $C_{ij} = A_{ij} + B_{ij}, i = 1, \ldots, m, j = 1, \ldots, n$.

 $B = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1p} \\ B_{21} & B_{22} & \dots & B_{2p} \\ \dots & \dots & \dots & \dots \\ B_{n1} & B_{n2} & \dots & B_{np} \end{pmatrix},$ (11.3)

то матрица C = AB может быть представлена как блочная с блоками

$$C_{ij} = \sum_{q=1}^{n} A_{iq} B_{qj}, \quad i = 1, 2, \dots, m, \ j = 1, 2, \dots, p.$$
 (11.4)

При этом, конечно, требуется, чтобы все произведения $A_{iq}B_{qj}$ имели смысл, т. е. горизонтальные и вертикальные размеры перемножаемых блоков должны быть согласованы.

- **2.** Получим некоторые полезные формулы для вычисления определителей блочных матриц.
 - 2.1. Рассмотрим сначала самый простой случай. Пусть

$$A = \begin{pmatrix} I & A_{12} \\ 0 & A_{22} \end{pmatrix} \tag{11.5}$$

есть блочная 2×2 матрица, I — единичная матрица, A_{22} — квадратная матрица, A_{12} — прямоугольная, вообще говоря, матрица. Тогда

$$|A| = |A_{22}|. (11.6)$$

Справедливость равенства (11.6) легко устанавливается разложением по первому столбцу. Аналогично, если

$$A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & I \end{pmatrix}, \tag{11.7}$$

где A_{11} — квадратная матрица, то $|A| = |A_{11}|$.

2.2. Теорема. *Пусть*

$$A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}, \tag{11.8}$$

 $\epsilon \partial e \ A_{11}, \ A_{22} - \kappa e a \partial p a m н ы e \ матрицы. \ Tor \partial a$

$$|A| = |A_{11}||A_{22}|. (11.9)$$

ДОКАЗАТЕЛЬСТВО. Покажем сначала, что если матрица A_{11} вырождена, то |A|=0. Обозначим через n_1 порядок матрицы A_{11} , через n_2 — порядок матрицы A_{22} . Если $|A_{11}|=0$, то существует вектор x^1 длины n_1 , не равный нулю, и такой, что $A_{11}x^1=0$. Тогда для ненулевого вектора $x=(x^1,0,\ldots,0)$ длины n_1+n_2 , очевидно, имеем Ax=0, следовательно, |A|=0. Таким образом, показано, что

если $|A_{11}|=0$, то равенство (11.9) выполняется тривиальным образом. Пусть теперь $|A_{11}|\neq 0$. Нетрудно убедиться, что справедливо равенство

$$\begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} I & A_{11}^{-1} A_{12} \\ 0 & A_{22} \end{pmatrix}$$
(11.10)

и, следовательно,

$$|A| = \begin{vmatrix} A_{11} & 0 \\ 0 & I \end{vmatrix} \begin{vmatrix} I & A_{11}^{-1} A_{12} \\ 0 & A_{22} \end{vmatrix}.$$

Для завершения доказательства достаточно воспользоваться результатами предыдущего пункта. \square

Упражнения.

1) Пусть

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} & \dots & A_{1n} \\ 0 & A_{22} & A_{23} & \dots & A_{2n} \\ 0 & 0 & A_{33} & \dots & A_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & A_{nn} \end{pmatrix}$$

есть блочно треугольная матрица, A_{ii} , $i=1,2,\ldots,n,$ произвольные квадратные матрицы. Доказать, что $|A|=|A_{11}||A_{22}|\cdots|A_{nn}|$.

2) Пусть

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

есть блочная матрица, A_{11} , A_{22} — квадратные матрицы, причем $|A_{11}| \neq 0$. Показать, что

$$|A| = |A_{11}||A_{22} - A_{21}A_{11}^{-1}A_{12}|. (11.11)$$

УКАЗАНИЕ. Вычислить произведение матриц

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & -A_{11}^{-1}A_{12} \\ 0 & I \end{pmatrix}.$$

ЗАМЕЧАНИЕ. Равенство (11.11) можно рассматривать как обобщение формулы для вычисления определителя второго порядка.

Глава 6 **Векторные пространства**

При изучении операций над векторами трехмерного евклидова пространства (см. § 1, гл. 4) было показано, что, фиксируя в пространстве некоторый базис, можно установить взаимнооднозначное соответствие между векторами и упорядоченными тройками вещественных чисел (координатами вектора в этом базисе). При этом операции над векторами могут быть, фактически, заменены операциями над их координатами.

Аналогичная ситуация возникает и во многих других разделах математики и ее приложений, когда приходится иметь дело с объектами, описываемыми конечными наборами вещественных, а зачатую и комплексных, чисел. При этом естественным образом возникает понятие многомерного координатного пространства как множества упорядоченных наборов чисел с введенными на этом множестве алгебраическими операциями.

В этой главе мы будем систематически заниматься конструированием и изучением такого рода пространств. Сначала будет введено пространство \mathbb{R}^n , представляющее собой множество упорядоченных наборов из n вещественных чисел, потом пространство \mathbb{C}^n , состоящее из упорядоченных наборов комплексных чисел. Мы ограничимся при этом лишь определениями и описанием простейших свойств этих пространств, поскольку в дальнейшем будут введены и изучены более общие линейные пространства. Результаты, которые будут получены для этих пространств, распространяются и на пространства \mathbb{R}^n , \mathbb{C}^n .

§ 1. Пространство \mathbb{R}^n

1. Пространство \mathbb{R}^n — это множество всех упорядоченных наборов $x = (x_1, x_2, \dots, x_n)$ вещественных чисел, $n \geqslant 1$ — фиксированное целое число. Элементы пространства \mathbb{R}^n будем называть векторами, или точками, числа x_k , $k = 1, 2, \dots, n$, — компонентами вектора x.

Два вектора $x, y \in \mathbb{R}^n$ будем считать *равными* тогда и только тогда, когда $x_k = y_k$ для всех $k = 1, 2, \dots, n$. Вектор, у которого все компоненты равны нулю, будем называть *нулевым* и обозначать символом 0.

Вектор

$$i^k = (\underbrace{0, \dots, 0}_{k-1}, 1, \underbrace{0, \dots, 0}_{n-k}),$$

у которого компонента с номером k равна единице, а все остальные компоненты — нули, будем называть e d u n u u n u n. В пространстве \mathbb{R}^n есть ровно n единичных векторов: i^1, i^2, \ldots, i^n .

На пространстве \mathbb{R}^n вводятся линейные операции: *умножение* векторов на вещественные числа (скаляры) и сложение векторов.

Именно, по определению для любого вещественного числа α и любого $x \in \mathbb{R}^n$ положим

$$\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Для любых $x,y\in\mathbb{R}^n$ по определению

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Отметим следующие свойства введенных операций. Для любых $x,y,z\in\mathbb{R}^n$ и для любых вещественных чисел α,β :

- 1) $x + y = y + x \kappa o m m y m a m u в н o c m ь o перации сложения;$
- (x+y)+z=x+(y+z)-accoulamueность операции сложения;
- 3) x + 0 = x нейтральность нулевого вектора;
- 4) x+(-x)=0, где по определению -x=(-1)x, существование для каждого вектора *противоположеного*;
- 5) $\alpha(x+y) = \alpha x + \alpha y \partial u c m p u б y m u в но сложению векторов;$
- 6) $(\alpha + \beta)x = \alpha x + \beta x \partial u c m p u б y m u в но с тожению скаляров;$
 - $(7) (\alpha \beta) x = \alpha(\beta x) accoulamus + accou$
 - 8) 1x = x нейтральность единичного скаляра.

Тождества 1)-8) называются *аксиомами линейного пространства*. Их справедливость очевидным образом вытекает из определения линейных операций над элементами \mathbb{R}^n .

Нетрудно заметить, что аксиомы 1)-8) в точности соответствуют свойствам линейных операций над векторами трехмерного евклидова пространства (см. $\S 1$, гл. 4).

Важно иметь в виду, что \mathbb{R}^1 одновременно является и линейным пространством, и множеством всех скаляров. В дальнейшем будем обозначать \mathbb{R}^1 через \mathbb{R} .

2. Вещественное евклидово пространство \mathbb{R}^n . Будем говорить, что на пространстве \mathbb{R}^n задано *скалярное произведение*, если каждой

паре векторов $x, y \in \mathbb{R}^n$ поставлено в соответствие вещественное число (x,y) и при этом выполнены так называемые аксиомы скалярного произведения (соответствующие свойствам скалярного произведения векторов трехмерного евклидова пространства):

- $(x,x)\geqslant 0$ для любого $x\in\mathbb{R}^n$, равенства (x,x)=0 и x=0 эквивалентны;
 - 2) (x,y) = (y,x) для любых $x,y \in \mathbb{R}^n$;
- 3) $(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ для любых $x, y, z \in \mathbb{R}^n$ и любых $\alpha, \beta \in \mathbb{R}$.

Из 2), 3) очевидным образом вытекает, что

4) $(x, \alpha y + \beta z) = \alpha(x, y) + \beta(x, z)$ для любых $x, y, z \in \mathbb{R}^n$ и любых $\alpha, \beta \in \mathbb{R}$.

Если на пространстве \mathbb{R}^n введено скалярное произведение, то его называют вещественным евклидовым пространством.

Можно указать бесчисленное множество способов введения скалярного произведения на пространстве \mathbb{R}^n , например, можно положить

$$(x,y) = \sum_{k=1}^{n} x_k y_k.$$

Такое скалярное произведение на \mathbb{R}^n называют *стандартным*. Проверка аксиом 1)-3) для стандартного скалярного произведения не вызывает никаких затруднений.

Укажем еще целый класс скалярных произведений. Фиксируем n положительных чисел $\rho_1, \, \rho_2, \, \dots, \, \rho_n$ и положим

$$(x,y) = \sum_{k=1}^{n} \rho_k x_k y_k.$$
 (1.1)

Справедливость аксиом 1)-3) очевидна. Меняя числа $\rho_1, \rho_2, \ldots, \rho_n$, получаем различные скалярные произведения.

Можно показать, что если определить $\partial nuny$ (modynb) вектора |x| при помощи соотношения $|x| = \sqrt{(x,x)}$, то длина вектора из \mathbb{R}^n будет обладать свойствами, аналогичными свойствам длины вектора в трехмерном евклидовом пространстве, а именно¹⁾:

- 1) $|x| \ge 0$ для любого вектора $x \in \mathbb{R}^n$, равенство |x| = 0 эквивалентно равенству x = 0;
 - 2) $|\alpha x| = |\alpha||x|$ для любых $x \in \mathbb{R}^n$ и $\alpha \in \mathbb{R}$;
 - $|x+y| \leq |x| + |y|$ для любых $x, y \in \mathbb{R}^n$.

 $^{^{1)}}$ Обоснование неравенства 3) проведено в п. 4 на с. 120.

Неравенство 3) называют неравенством треугольника (неравенством Mинковского²⁾).

Важно понимать, что, определяя различными способами скалярное произведение на \mathbb{R}^n , мы получаем различные вещественные евклидовы пространства.

Пространство \mathbb{R}^n со стандартным скалярным произведением часто называют n-мерным арифметическим пространством. Это пространство играет важную роль во многих разделах математики. Например, оно систематически используется в математическом анализе при изучении функций многих вещественных переменных.

§ 2. Пространство \mathbb{C}^n

1. Пространство \mathbb{C}^n — это множество всех упорядоченных наборов $x=(x_1,x_2,\ldots,x_n)$ комплексных чисел, $n\geqslant 1$ — фиксированное целое число.

Элементы пространства \mathbb{C}^n будем называть векторами, или точками, числа $x_k, k=1,2,\ldots,n,-$ компонентами вектора x.

Два вектора $x,y \in \mathbb{C}^n$ будем считать *равными* тогда и только тогда, когда $x_k = y_k$ для всех $k = 1, 2, \ldots, n$. Вектор, у которого все компоненты равны нулю, будем называть *нулевым* и обозначать символом 0.

Вектор i^k , у которого компонента с номером k равна единице, а все остальные компоненты — нули, будем называть $e\partial$ иничным. В пространстве \mathbb{C}^n есть ровно n единичных векторов: i^1, i^2, \ldots, i^n .

На пространстве \mathbb{C}^n вводятся линейные операции: *умножение* векторов на комплексные числа (скаляры) и сложение векторов.

Именно, по определению для любого комплексного числа α и любого $x \in \mathbb{C}^n$ положим

$$\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

Для любых $x,y\in\mathbb{C}^n$ по определению

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Отметим, что, фактически, мы уже встречались с таким линейным пространством, а именно, множество всех матриц размера $m \times n$ с введенными на нем операциями умножения матрицы на число и сложения двух матриц (см. п. 3, с. 88) естественно интерпретировать как пространство \mathbb{C}^{mn} векторов длины mn. Векторы записывались в

 $^{^{2)} \}Gamma$ ерман Минковский (Hermann Minkowski; 1864 — 1909) — немецкий математик.

виде прямоугольных таблиц, но, с точки зрения выполнения операций умножения вектора на число и сложения векторов, это не имеет значения.

Для линейных операций, введенных на пространстве \mathbb{C}^n , также справедливы свойства, выраженные равенствами 1)-8) с. 112.

Важно иметь в виду, что \mathbb{C}^1 одновременно является и линейным пространством, и множеством всех скаляров. В дальнейшем будем обозначать \mathbb{C}^1 через \mathbb{C} .

- **2.** Комплексное евклидово пространство \mathbb{C}^n . Будем говорить, что на пространстве \mathbb{C}^n задано *скалярное произведение*, если каждой паре векторов $x, y \in \mathbb{C}^n$ поставлено в соответствие число (x, y), вообще говоря, комплексное, и при этом выполнены *аксиомы скалярного произведения*:
- $1)\;(x,x)\geqslant 0$ для любого $x\in\mathbb{C}^n,$ равенства (x,x)=0 и x=0 эквивалентны;
- 2) $(x,y) = \overline{(y,x)}$ для любых $x,y \in \mathbb{C}^n$, напомним, что черта означает переход к комплексно сопряженному числу, и отметим, что в отличие от вещественного евклидова пространства скалярное произведение в комплексном евклидовом пространстве некоммутативно;
- 3) $(\alpha x+\beta y,z)=\alpha(x,z)+\beta(y,z)$ для любых $x,y,z\in\mathbb{C}^n$ и любых $\alpha,\beta\in\mathbb{C}$.
 - Из 2), 3) очевидным образом вытекает, что
- 4) $(x, \alpha y + \beta z) = \overline{\alpha}(x, y) + \overline{\beta}(x, z)$ для любых $x, y, z \in \mathbb{C}^n$ и любых $\alpha, \beta \in \mathbb{C}$.

Если на пространстве \mathbb{C}^n введено скалярное произведение, то его называют комплексным евклидовым пространством (часто говорят также: унитарное пространство).

Можно указать бесчисленное множество способов введения скалярного произведения на пространстве \mathbb{C}^n , например, можно положить

$$(x,y) = \sum_{k=1}^{n} x_k \overline{y}_k.$$

Такое скалярное произведение на \mathbb{C}^n называют *стандартным*. Проверка аксиом 1)-3) не вызывает никаких затруднений. На \mathbb{C}^n также можно ввести скалярное произведение, аналогичное (1.1).

 \mathcal{L}_{Λ} ину (модуль) вектора |x| определяют при помощи соотношения $|x| = \sqrt{(x,x)}$. При этом выполняются свойства 1) – 3) с. 113.

§ 3. Общие линейные и евклидовы пространства

1. Во многих разделах математики широко используются более общие конструкции, чем пространства \mathbb{R}^n и \mathbb{C}^n .

Говорят, что множество ${\bf X}$ является линейным пространством над полем вещественных чисел, или просто вещественным линейным пространством, если для любых элементов $x,y\in {\bf X}$ определена операция сложения, т. е. определен элемент $z=x+y\in {\bf X}$, называемый суммой элементов x,y; для любого элемента $x\in {\bf X}$ и любого вещественного числа α определен элемент $\alpha x\in {\bf X}$, называемый произведением α и x.

Предполагается, что для этих двух операций выполнены *аксиомы* линейного пространства, аналогичные свойствам пространства \mathbb{R}^n (см. 1) – 8) с. 112):

- 1) $x + y = y + x \kappa M My Mamueность операции сложения;$
- (x+y)+z=x+(y+z)-accoulamueность операции сложения;
- 3) существует единственный элемент $0 \in \mathbf{X}$ такой, что x+0=x для любого элемента $x \in \mathbf{X}$; элемент 0 называют *нулевым элементом* пространства \mathbf{X} ;
- 4) для любого элемента $x \in \mathbf{X}$ существует единственный элемент x' такой, что x+x'=0; элемент x' называют npomueonoложным элементу x;
- 5) $\alpha(x+y) = \alpha x + \alpha y \partial u c m p u б y m u в н о c ложению векторов;$
- 6) $(\alpha + \beta)x = \alpha x + \beta x \partial u c m p u б y m u в но с тожению скаляров;$
 - (7) $(\alpha\beta)x = \alpha(\beta x) accoulamue$ ность по умножению скаляров;
 - 8) 1x = x нейтральность единичного скаляра.

Если при определении пространства \mathbf{X} допускается умножение на комплексные числа, то \mathbf{X} называется линейным пространством над полем комплексных чисел, или комплексным линейным пространством. При этом предполагается, что выполняются аксиомы 1)-8).

Элементы линейного пространства ${\bf X}$ часто будем называть ${\it ee\kappa}$ - ${\it mopamu}$, а само пространство — ${\it ee\kappa}$ - ${\it mopamu}$.

В дальнейшем на протяжении всей книги буквам $\mathbf{X},\,\mathbf{Y},\,\mathbf{Z}$ будем обозначать линейные пространства. Если не оговорено противное, пространства будут предполагаться комплексными.

1.1. Упражнение. Проверить, что вводимые ниже множества являются линейными пространствами, т. е. для определенных на них операций выполняются аксиомы 1)-8). В некоторых случаях делаются необходимые указания.

- 1) Множество всех векторов трехмерного евклидова пространства с введенными обычным образом операциями умножения вектора на число и сложения векторов (см. § 1, гл. 4).
- 2) Множество всех вещественных функций вещественного переменного, определенных на интервале (a,b) вещественной оси, является вещественным линейным пространством, если определить обычным образом понятие суммы двух функций и умножение функции на вещественное число.
- 3) Множество всех вещественных функций, определенных и непрерывных на замкнутом отрезке [a,b] вещественной оси, является вещественным линейным пространством. Это пространство обозначают через C[a,b]. При проверке того, что C[a,b] линейное пространство, надо иметь в виду, что сумма двух непрерывных функций есть непрерывная функция, при умножении функции на любое число непрерывность функции также сохраняется.
- 4) Множество всех функций из пространства C[a,b], равных нулю в некоторой фиксированной точке c из отрезка [a,b], вещественное линейное пространство.
- 5) Множество всех полиномов с комплексными коэффициентами, на котором обычным образом определены операции сложения двух полиномов и умножения полинома на число, является комплексным линейным пространством.
- 6) Множество \mathbf{Q}_n , состоящее из всех полиномов степени не выше n, где $n \geqslant 0$, есть фиксированное целое число, и нулевого многочлена, является комплексным линейным пространством. Здесь надо иметь в виду, что сумма полиномов есть полином, степень которого не превосходит максимальной степени слагаемых.

1.2. Упражнения.

- 1) Рассмотрим множество всех положительных функций, определенных на вещественной оси. Определим на этом множестве операцию сложения функций f и g как их произведение, а операцию умножения функции f на число α как возведение ее в степень α . Будет ли описанное нами множество линейным пространством?
- 2) Рассмотрим множество всех четных функций, определенных на отрезке [-1,1]. Определим на этом множестве операцию сложения двух функций как их произведение, а операцию умножения функции на число будем понимать обычным образом. Будет ли описанное нами множество линейным пространством?
- **2.** Будем говорить, что на вещественном линейном пространстве \mathbf{X} введено *скалярное произведение*, если каждой паре элемен-

тов x, y этого пространства поставлено в соответствие вещественное число (x, y), и при этом выполнены *аксиомы скалярного произведения*, задаваемые соотношениями вида 1)-3) с. 113. Если на линейном вещественном пространстве \mathbf{X} введено скалярное произведение, его называют *вещественным евклидовым пространством*.

- 3. Будем говорить, что на комплексном линейном пространстве \mathbf{X} введено *скалярное произведение*, если каждой паре элементов x,y этого пространства поставлено в соответствие, вообще говоря, комплексное число (x,y), и при этом выполнены *аксиомы скалярного произведения*, задаваемые соотношениями вида 1)-3) с. 115. Если на линейном комплексном пространстве \mathbf{X} введено скалярное произведение, его называют *комплексным евклидовым* (унитарным) пространством.
- **4.** Упражнение. Проверить, что в рассматриваемых ниже примерах аксиомы скалярного произведения выполнены.
- 1) Множество всех векторов трехмерного пространства с введенными обычным образом линейными операциями и скалярным произведением (см. § 2, гл. 4) вещественное евклидово пространство. В дальнейшем будем обозначать это пространство через \mathbf{V}_3 .
- 2) Пусть p интегрируемая положительная на интервале (a,b) вещественной оси вещественная функция. Пространство C[a,b] превращается в вещественное евклидово пространство, если определить скалярное произведение элементов f и g пространства C[a,b] по формуле

$$(f,g) = \int_{a}^{b} p(x)f(x)g(x)dx. \tag{3.1}$$

3) Для любой пары

$$P_n(z) = a_0 + a_1 z + \dots + a_n z^n, \quad Q_n(z) = b_0 + b_1 z + \dots + b_n z^n$$

элементов пространства \mathbf{Q}_n определим скалярное произведение по формуле

$$(P_n, Q_n) = \sum_{j=0}^{n} \rho_j a_j \overline{b}_j,$$

где $\rho_0, \rho_1, \ldots, \rho_n$ — заданные положительные числа. После введения таким образом скалярного произведения пространство \mathbf{Q}_n становится комплексным евклидовым пространством.

§ 4. Неравенство Коши — Буняковского

1. Тождество Пифагора¹⁾. Пусть a, b — векторы трехмерного евклидова пространства \mathbf{V}_3 , причем векторы a-b и b ортогональны, т. е. $(a-b,b)=0^{2)}$. Тогда по теореме Пифагора

$$|a|^2 = |a - b|^2 + |b|^2. (4.1)$$

Пусть теперь a, b — векторы произвольного евклидова пространства \mathbf{X} такие, что (a-b,b)=0. Тождество (4.1) (тоэнсдество Пифагора) справедливо и в этом случае, если положить, что $|v|=\sqrt{(v,v)}$ для любого вектора $v\in\mathbf{X}$. Действительно, проводя элементарные выкладки, будем иметь

$$|a|^{2} = (a, a) = (a - b + b, a - b + b) =$$

$$= (a - b, a - b) + (b, b) + (a - b, b) + (b, a - b) =$$

$$= (a - b, a - b) + (b, b) + (a - b, b) + \overline{(a - b, b)} =$$

$$= (a - b, a - b) + (b, b) = |a - b|^{2} + |b|^{2}.$$

2. Векторы a, b из линейного пространства **X** будем называть коллинеарными (пропорциональными, линейно зависимыми), если существуют числа α, β , не равные одновременно нулю, такие, что

$$\alpha a + \beta b = 0.$$

Понятно, что в этом случае либо $a=\gamma b$, либо $b=\delta a$, где $\gamma,\ \delta$ — некоторые числа.

Примеры.

- 1) Единичные векторы i^k, i^l пространства \mathbb{C}^n при $k \neq l$ неколлинеарны (докажите).
- 2) Векторы $x^1=(1+i,3,2-i,5),$ $x^2=(2,3-3i,1-3i,5-5i)\in\mathbb{C}^4$ пропорциональны, так как 2/(1+i)=(3-3i)/3=(1-3i)/(2-i)=(5-5i)/5=1-i.
- **3.** Теорема. Пусть X eвклидово пространство. Для любых векторов $x, y \in X$ справедливо неравенство

$$|(x,y)|^2 \le (x,x)(y,y).$$
 (4.2)

Равенство в (4.2) достигается тогда и только тогда, когда векторы x, y пропорциональны.

Неравенство (4.2) называют неравенством Коши — Буняковского³⁾.

 $^{^{1)}}$ Пифагор Самосский (570 — 490 гг. до н. э.) — древнегреческий философ и математик.

 $^{^{2)}}$ Можно сказать, что вектор b получен проектированием вектора a на прямую, параллельную вектору b.

 $^{^{3)}}$ Виктор Яковлевич Буняковский (1804 — 1889) — русский математик

ДОКАЗАТЕЛЬСТВО. Если y=0, то неравенство (4.2) превращается в тривиальное равенство, и при любом $x\in \mathbf{X}$ векторы x,y пропорциональны, так как 0x+y=0. Поэтому в дальнейшем считаем, что $y\neq 0$. Положим $e=|y|^{-1}y$. Очевидно, что (e,e)=1, а (x-(x,e)e,(x,e)e)=0, значит, в тождестве (4.1) можно положить a=x,b=(x,e)e и получить, что $|x|^2=|x-(x,e)e|^2+|(x,e)|^2$. Отсюда следует, что $|x|^2\geqslant |(x,e)|^2$. Последнее неравенство эквивалентно (4.2). Пусть $|x|^2=|(x,e)|^2$, т. е. неравенство (4.2) превращается в равенство. Тогда $|x-(x,e)e|^2=0$, откуда вытекает, что x=(x,e)e, или $x=((x,y)/|y|^2)y$, следовательно, векторы x,y пропорциональны. Обратно, если векторы x,y пропорциональны, то, как нетрудно убедиться, левая и правая части (4.2) совпадают. \square

4. Величина $|x| = \sqrt{(x,x)}$ называется длиной (модулем) вектора x. Неравенство (4.2) часто записывают в виде

$$|(x,y)| \leqslant |x||y| \quad \forall x, y \in \mathbf{X}. \tag{4.3}$$

Введенное понятие длины обладает свойствами, аналогичными свойствам длины вектора в трехмерном евклидовом пространстве, а именно:

- 1) $|x| \ge 0$ для любого вектора $x \in \mathbf{X}$, равенство |x| = 0 эквивалентно равенству x = 0;
 - 2) $|\alpha x| = |\alpha||x|$ для любых $x \in \mathbf{X}$ и $\alpha \in \mathbb{C}$;
 - 3) $|x + y| \le |x| + |y|$ для любых $x, y \in \mathbf{X}$.

Неравенство 3) называют *неравенством треугольника* (*неравенством Минковского*).

Справедливость утверждений 1), 2) очевидна. Покажем, что неравенство треугольника вытекает из неравенства Коши — Буняковского. В самом деле,

$$|x+y|^2 = (x+y, x+y) = |x|^2 + 2\operatorname{Re}(x,y) + |y|^2.$$

Вследствие (4.3) справедливо неравенство $|\operatorname{Re}(x,y)| \leq |x||y|$, откуда получаем, что

$$|x+y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2.$$

Последнее неравенство эквивалентно неравенству 3).

5. По аналогии с трехмерным евклидовым пространством \mathbf{V}_3 векторы x,y естественно называть *ортогональными*, если (x,y)=0.

ПРИМЕР. Векторы $i^k, i^l \in \mathbb{C}^n$ при $k \neq l$ ортогональны относительно стандартного скалярного произведения.

6. Из неравенства (4.3) вытекает, что если \mathbf{X} — вещественное евклидово пространство, то $(x,y)/|x||y| \in [-1,1]$ для любых не равных нулю векторов $x,y \in \mathbf{X}$. Это дает возможность ввести понятие yгла межеду векторами x,y, а именно, принимают, что $\cos(x,y) = (x,y)/|x||y|$.

§ 5. Линейная зависимость векторов

1. В предыдущем параграфе было введено понятие линейной зависимости двух векторов пространства **X**. Обобщая это понятие, будем говорить, что система векторов $\{a^i\}_{i=1}^m = \{a^1, a^2, \dots, a^m\}, m \geqslant 1,$ линейно зависима, если существуют числа x_1, x_2, \dots, x_m , среди которых хотя бы одно отлично от нуля, такие, что

$$x_1 a^1 + x_2 a^2 + \dots + x_m a^m = 0. (5.1)$$

ПРИМЕР. Система векторов

$$a^1 = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}, \quad a^2 = \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix}, \quad a^3 = \begin{pmatrix} 9 \\ 7 \\ 5 \end{pmatrix}, \quad a^4 = \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix}$$

из пространства \mathbb{R}^3 линейно зависима, так как, положив

$$x_1 = 4$$
, $x_2 = -1$, $x_3 = -3$, $x_4 = 2$,

получим

$$x_1 a^1 + x_2 a^2 + x_3 a^3 + x_4 a^4 = 4 \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 9 \\ 7 \\ 5 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 8 \\ 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0.$$

Полезно отметить, что это не единственный набор коэффициентов x_1, x_2, x_3, x_4 , при котором линейная комбинация $x_1a^1+x_2a^2+x_3a^3+x_4a^4$ обращается в нуль. Например,

$$2a^{1} + a^{2} - a^{3} = 2\begin{pmatrix} 5\\2\\1 \end{pmatrix} + \begin{pmatrix} -1\\3\\3 \end{pmatrix} - \begin{pmatrix} 9\\7\\5 \end{pmatrix} = 0,$$

$$3a^{2} + a^{3} - 2a^{4} = 3\begin{pmatrix} -1\\3\\3 \end{pmatrix} + \begin{pmatrix} 9\\7\\5 \end{pmatrix} - 2\begin{pmatrix} 3\\8\\7 \end{pmatrix} = 0.$$

Определению линейной зависимости векторов удобно придать матричную формулировку. Будем использовать следующие обозначения: $\mathcal{A}_m = \{a^1, a^2, \dots, a^m\}$ — упорядоченный набор векторов из пространства \mathbf{X} ; для $x \in \mathbb{C}^m$ положим

$$A_m x = x_1 a^1 + x_2 a^2 + \dots + x_m a^m.$$

Можно сказать тогда, что векторы a^1, a^2, \ldots, a^m линейно зависимы, если существует ненулевой вектор $x \in \mathbb{C}^m$ такой, что

$$\mathcal{A}_m x = 0.$$

Будем говорить, что вектор $a \in \mathbf{X}$ линейно выражается через векторы $b^1, b^2, \ldots, b^p, p \geqslant 1$ (является линейной комбинацией этих векторов), если существует вектор $x \in \mathbb{C}^p$ такой, что

$$a = x_1 b^1 + x_2 b^2 + \dots + x_p b^p,$$

в матричной записи:

$$a = \mathcal{B}_p x$$
.

Упражнения.

- 1) Доказать, что система векторов линейно зависима, если она содержит линейно зависимую подсистему, в частности, если она содержит нулевой вектор.
- 2) Доказать, что для того, чтобы система векторов $\{a^i\}_{i=1}^m$ была линейно зависимой, необходимо и достаточно, чтобы она содержала вектор a^k , который линейно выражается через остальные.
- **2.** Говорят, что система векторов $\{a^i\}_{i=1}^m$ линейно выражается через систему векторов $\{b^i\}_{i=1}^p$, если существует матрица X(p,m) такая, что

$$\mathcal{A}_m = \mathcal{B}_p X(p, m). \tag{5.2}$$

В более подробной записи это означает, что

$$a^k = \sum_{j=1}^p x_{j,k} b^j, \quad k = 1, 2, \dots, m.$$

2.1. Свойство *транзитивности*: если система векторов $\{a^i\}_{i=1}^m$ линейно выражаются через систему векторов $\{b^i\}_{i=1}^p$, а та, в свою очередь, — через систему векторов $\{c^i\}_{i=1}^q$, то система векторов $\{a^i\}_{i=1}^m$ линейно выражается через систему векторов $\{c^i\}_{i=1}^q$.

Действительно, по определению имеем

$$\mathcal{A}_m = \mathcal{B}_p X(p, m), \quad \mathcal{B}_p = \mathcal{C}_q Y(q, p).$$

Подставляя в первое из этих равенств выражение для \mathcal{B}_p , получим

$$\mathcal{A}_m = \mathcal{C}_q Z(q, m),$$

где

$$Z(q,m) = Y(q,p)X(p,m).$$

2.2. Системы векторов $\{a^i\}_{i=1}^m$ и $\{b^i\}_{i=1}^p$ называются эквивалентными, если существуют матрицы $X(p,m),\,Y(m,p)$ такие, что

$$\mathcal{A}_m = \mathcal{B}_p X(p, m), \quad \mathcal{B}_p = \mathcal{A}_m Y(m, p),$$
 (5.3)

т. е. каждый вектор одной системы линейно выражается через векторы другой системы.

УПРАЖНЕНИЕ. Используя свойство транзитивности, показать, что если вектор $x \in \mathbf{X}$ линейно выражается через систему векторов $\{a^i\}_{i=1}^m$, то он линейно выражается и через эквивалентную систему векторов $\{b^i\}_{i=1}^p$.

§ 6. Линейно независимые системы векторов

1. Будем говорить, что система векторов $\mathcal{A}_m = \{a^i\}_{i=1}^m$ линейно независима, если из равенства $\mathcal{A}_m x = 0$ вытекает, что x = 0.

Линейно независимые системы векторов существуют. Приведем простые примеры.

- 1) Любой вектор $a \neq 0$ образует линейно независимую систему, состоящую из одного вектора.
- 2) Единичные векторы $i^1, i^2, \ldots, i^m \in \mathbb{C}^n, m \leqslant n$, линейно независимы. Это утверждение сразу же вытекает из того, что для любого вектора $x \in \mathbb{C}^m$ вектор $x_1 i^1 + x_2 i^2 + \cdots + x_m i^m \in \mathbb{C}^n$ имеет вид

$$(x_1,x_2,\ldots,x_m,0,\ldots,0)$$

и, следовательно, равен нулю тогда и только тогда, когда x=0.

3) Система векторов $\varphi_0(z) \equiv 1, \varphi_1(z) = z, \ldots, \varphi_k(z) = z^k$, где z — комплексная переменная, $k \geqslant 0$ — целое число, линейно независима в пространстве полиномов. Для доказательства этого утверждения достаточно вспомнить, что если полином равен нулю, то все его коэффициенты — нули (см. п. 2.2, с. 85).

Непосредственно из упражнения 1), с. 122 вытекает

- **2.** Теорема. Любая подсистема линейно независимой системы векторов $\{a^i\}_{i=1}^m$ линейно независима.
- **3.** Теорема. Любая система $a^1, a^2, \ldots, a^n, b \in \mathbb{C}^n$ из n+1 вектора линейно зависима.

ДОКАЗАТЕЛЬСТВО. Пусть система векторов $\{a^i\}_{i=1}^n$ линейно зависима. Тогда доказываемое утверждение верно. Если векторы $\{a^i\}_{i=1}^n$ линейно независимы, то система уравнений

$$Ax = b, (6.1)$$

где A — матрица, столбцами которой являются компоненты векторов $a^k, k=1,2,\ldots,n$, крамеровская, и потому имеет решение x при любой правой части b, значит,

$$x_1a^1 + \dots + x_na^n = b,$$

т. е. система векторов $a^1,\,a^2,\,\ldots,\,a^n,\,b$ линейно зависима. \square

- **4.** Как очевидное следствие только что доказанного утверждения получаем, что любая система векторов $\{a^i\}_{i=1}^m \in \mathbb{C}^n, \ m>n,$ линейно зависима.
- **5.** Теорема. Пусть система векторов $\mathcal{A}_m = \{a^i\}_{i=1}^m$ пространства \mathbf{X} линейно независима и линейно выражается через систему $\mathcal{B}_p = \{b^i\}_{i=1}^p$. Тогда $m \leq p$.

ДОКАЗАТЕЛЬСТВО. Предположим противное, т. е. пусть m > p. По определению существует матрица X размера $p \times m$ такая, что $\mathcal{A}_m = \mathcal{B}_p X$. Как следствие, для любого вектора $y \in \mathbb{C}^m$ имеем $\mathcal{A}_m y = \mathcal{B}_p X y$. Столбцы матрицы X — векторы из пространства \mathbb{C}^p . Их количество m > p, следовательно, они линейно зависимы. Поэтому существует вектор $y \in \mathbb{C}^m$, не равный нулю и такой, что Xy = 0, но тогда и $\mathcal{A}_m y = 0$, т. е. вопреки предположению векторы a^1, a^2, \ldots, a^m линейно зависимы. \square

- **6.** Следствие. Любые две эквивалентные линейно независимые системы векторов имеют равные количества векторов.
- 7. Теорема. Пусть $\{a^k\}_{k=1}^m$ линейно независимые векторы. Пусть система векторов $\{b^k\}_{k=1}^m$ линейно выражается через систему векторов $\{a^k\}_{k=1}^m$, т. е. существует квадратная матрица X порядка т такая, что $\mathcal{B}_m = \mathcal{A}_m X$. Для того, чтобы система векторов $\{b^k\}_{k=1}^m$ была линейно независимой, необходимо и достаточно, чтобы матрица X была невырожденной.

УПРАЖНЕНИЕ. Следуя рассуждениям пункта 5, доказать теорему 7.

8. Важно отметить, что матрица X, фигурирующая в теореме 7, однозначно определяется по системам векторов \mathcal{A}_m , \mathcal{B}_m . В самом деле, если существует матрица $\widetilde{X} \neq X$ такая, что $\mathcal{B}_m = \mathcal{A}_m \widetilde{X}$, то $\mathcal{A}_m(\widetilde{X} - X) = 0$, но это вследствие линейной независимости системы векторов \mathcal{A}_m невозможно, если $\widetilde{X} \neq X$.

§ 7. Ранг системы векторов

1. Фиксируем в пространстве X некоторую систему векторов $\{a^i\}_{i=1}^m$. Будем считать, что не все векторы этой системы нулевые. Тогда указанная система обязательно содержит линейно независимую подсистему векторов. В частности, она сама может быть линейно независимой.

Подсистема $\{a^{i_k}\}_{k=1}^r \subset \{a^i\}_{i=1}^m$, состоящая из линейно независимых векторов, называется \max максимальной, если добавление к ней любого нового вектора из $\{a^i\}_{i=1}^m$ приводит к линейно зависимой системе.

ПРИМЕР. Рассмотрим систему векторов

$$a_1 = \begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 1 \\ 9 \\ 3 \end{pmatrix}, \quad a_3 = \begin{pmatrix} -2 \\ -4 \\ 1 \end{pmatrix}, \quad a_4 = \begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix}$$

пространства \mathbb{R}^3 . Векторы a_1, a_2 , очевидно, линейно независимы и образуют максимальную линейно независимую подсистему, так как определители

$$\begin{vmatrix} 2 & 1 & -2 \\ -2 & 9 & -4 \\ -4 & 3 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 10 & -6 \\ -2 & 9 & -4 \\ 0 & -15 & 9 \end{vmatrix},$$

$$\begin{vmatrix} 2 & 1 & 3 \\ -2 & 9 & 7 \\ -4 & 3 & -1 \end{vmatrix} = \begin{vmatrix} 0 & 10 & 10 \\ -2 & 9 & 7 \\ -0 & -15 & -15 \end{vmatrix},$$

составленные из компонент векторов a_1, a_2, a_3 и a_1, a_2, a_4 соответственно, равны нулю, и, следовательно, векторы a_1, a_2, a_3 и a_1, a_2, a_4 линейно зависимы.

Вообще говоря, система $\{a^i\}_{i=1}^m$ может содержать несколько максимальных линейно независимых подсистем, однако, справедлива

2. Теорема. Любые две максимальные линейно независимые подсистемы системы $\{a^i\}_{i=1}^m$ содержат одно и то же количество векторов.

ДОКАЗАТЕЛЬСТВО. Заметим, что из определения максимальной линейно независимой подсистемы непосредственно вытекает, что любой вектор из $\{a^i\}_{i=1}^m$ линейно выражается через векторы ее максимальной линейно независимой подсистемы $\{a^{i_k}\}_{k=1}^r$. Вследствие очевидного равенства

$$a^{i_k} = a^{i_k} + \sum_{i=1, i \neq i_k}^m 0a^i$$

справедливо и обратное, т. е. система $\{a^i\}_{i=1}^m$ и любая ее максимальная линейно независимая подсистема эквивалентны. Но тогда, очевидно,

эквивалентны и любые две максимальные линейно независимые подсистемы системы $\{a^i\}_{i=1}^m$. Отсюда в силу следствия 6, с. 124, вытекает, что любые две максимальные линейно независимые подсистемы системы $\{a^i\}_{i=1}^m$ имеют равные количества векторов. \square

3. Полученный результат позволяет ввести следующее определение. Pангом системы векторов пространства \mathbf{X} называется количество векторов ее максимальной линейно независимой подсистемы.

Например, ранг системы векторов a_1 , a_2 , a_3 , a_4 , приведенной на с. 125, равен двум.

Количество линейно независимых векторов пространства \mathbb{C}^n не превосходит n. Поэтому ранг любой системы векторов из \mathbb{C}^n не превосходит n.

Ясно, что система векторов $\{a^i\}_{i=1}^m$ любого линейного пространства ${\bf X}$ линейно независима тогда и только тогда, когда ее ранг равен m.

§ 8. Ортогональные системы векторов. Матрица Грама

1. Приведем во многих случаях удобный критерий линейной независимости векторов евклидова пространства.

Пусть дана система векторов $\{a^i\}_{i=1}^m$ евклидова пространства \mathbf{X} . Построим квадратную матрицу

$$G = \begin{pmatrix} (a^{1}, a^{1}) & (a^{2}, a^{1}) & \dots & (a^{m}, a^{1}) \\ (a^{1}, a^{2}) & (a^{2}, a^{2}) & \dots & (a^{m}, a^{2}) \\ \dots & \dots & \dots & \dots & \dots \\ (a^{1}, a^{m}) & (a^{2}, a^{m}) & \dots & (a^{m}, a^{m}) \end{pmatrix}$$
(8.1)

порядка m. Матрица G называется $\mathit{матрицей}\ \mathit{Грамa}^{(1)}$ системы векторов $\{a^i\}_{i=1}^m$.

Отметим, что поскольку $(a^k,a^l)=\overline{(a^l,a^k)}$, то матрица Грама любой системы векторов — эрмитова матрица (см. с. 98).

1.1. Теорема. Для того, чтобы система векторов $\{a^i\}_{i=1}^m$ была линейно независимой, необходимо и достаточно, чтобы ее матрица Грама была невырожденной.

ДОКАЗАТЕЛЬСТВО. Пусть матрица Грама G невырождена. Тогда система векторов $\{a^i\}_{i=1}^m$ линейно независима. Действительно, если

$$x_1 a^1 + x_2 a^2 + \dots + x_m a^m = 0,$$

 $^{^{1)}}$ Йорген Педерсен Грам (Jorgen Pedersen Gram; 1850 — 1916) — датский математик

TO

$$(x_1a^1 + x_2a^2 + \dots + x_ma^m, a^k) = 0, \quad k = 1, \dots, m.$$

Записывая эти равенства более подробно, получаем

$$x_1(a^1, a^k) + x_2(a^2, a^k) + \dots + x_m(a^m, a^k) = 0, \quad k = 1, \dots, m.$$
 (8.2)

Система (8.2) — однородная система уравнений относительно неизвестных x_1, x_2, \ldots, x_m с матрицей G. Поскольку матрица Грама G невырождена, система имеет только тривиальное решение, следовательно, $x_1, x_2, \ldots, x_m = 0$. Обратно, пусть система векторов $\{a^i\}_{i=1}^m$ линейно независима. Составим линейную комбинацию столбцов матрицы G с некоторым коэффициентами x_1, x_2, \ldots, x_m . Приравнивая эту линейную комбинацию нулю, получим

$$x_1(a^1, a^k) + x_2(a^2, a^k) + \dots + x_m(a^m, a^k) = 0, \quad k = 1, \dots, m.$$
 (8.3)

Умножим почленно равенство с номером k на \overline{x}_k , затем сложим почленно полученные равенства. После элементарных преобразований сможем написать, что

$$\left(\sum_{k=1}^{m} x_k a^k, \sum_{k=1}^{m} x_k a^k\right) = 0,$$

следовательно,

$$x_1 a^1 + x_2 a^2 + \dots + x_m a^m = 0.$$
 (8.4)

Поскольку система векторов $\{a^i\}_{i=1}^m$ линейно независима, то из (8.4) вытекает, что $x_1, x_2, \ldots, x_m = 0$. Таким образом, мы получили, что если линейная комбинация столбцов матрицы G обращается в нуль, то все коэффициенты этой линейной комбинации равны нулю. Это означает, что столбцы матрицы G линейно независимы, т. е. матрица G невырождена. \square

ПРИМЕР. Исследуем на линейную зависимость векторы

$$x^{1} = (1, 3, 3, 1, -2), \quad x^{2} = (3, 3, 1, -3, 2), \quad x^{3} = (1, 3, -1, 1, 3)$$

пространства \mathbb{R}^5 . Введем на этом пространстве стандартное скалярное произведение и составим матрицу Грама третьего порядка $G=\{(x^i,x^j)\}_{i,j=1}^3$. Выполняя элементарные вычисления, получим

$$G = \begin{pmatrix} 24 & 8 & 2 \\ 8 & 32 & 14 \\ 2 & 14 & 21 \end{pmatrix}, \quad \det(G) = 2^4 \begin{vmatrix} 6 & 2 & 1 \\ 2 & 8 & 7 \\ 1 & 7 & 21 \end{vmatrix} = 2^4 \begin{vmatrix} 0 & -40 & -125 \\ 0 & -6 & -35 \\ 1 & 7 & 21 \end{vmatrix} = 2^4 \cdot 650,$$

т. е. векторы x^1, x^2, x^3 линейно независимы.

2. Система векторов $\{a^i\}_{i=1}^m$ называется *ортогональной*, если все векторы $a^i, i = 1, 2, \ldots, m$, не нули и $(a^i, a^k) = 0$ при $i \neq k$.

Матрица Грама ортогональной системы— диагональная невырожденная матрица. Очевидно, ортогональная система линейно независима.

Система векторов $\{a^i\}_{i=1}^m$ называется *ортонормированной*, если $(a^i,a^k)=\delta_{ik}$ для $i,k=1,2,\ldots,m$.

Матрица Грама ортонормированной системы— единичная матрица. Все векторы ортонормированной системы имеют длину, равную единице.

§ 9. Процесс ортогонализации Грама — Шмидта

1. Теорема Грама — Шмидта¹⁾. Всякая линейно независимая система $\{a^i\}_{i=1}^m$ эквивалентна некоторой ортонормированной системе $\{b^i\}_{i=1}^m$, причем вектор b^1 можно выбрать пропорциональным вектору a^1 .

ДОКАЗАТЕЛЬСТВО. Положим $h^1=a^1,\,h^2=x_{2,1}h^1+a^2$. Вектор h^1 не нуль, поскольку вектор a^1 как элемент линейно независимой системы не нуль. При любом значении $x_{2,1}$ вектор h^2 также не нуль, поскольку h^2 — линейная комбинация линейно независимых векторов, причем один из коэффициентов этой линейной комбинации не равен нулю (он равен единице).

Выберем теперь число $x_{2,1}$ так, чтобы вектор h^2 был ортогонален вектору h^1 . Записывая это условие, получим $0=x_{2,1}(h^1,h^1)+(a^2,h^1)$, откуда $x_{2,1}=-(a^2,h^1)/(h^1,h^1)$. Итак, построены векторы h^1 , h^2 такие, что $(h^1,h^2)=0$, h^1 , $h^2\neq 0$.

Предположим теперь, что построены векторы h^1, h^2, \ldots, h^k такие, что $h^1, h^2, \ldots, h^k \neq 0$ и $(h^i, h^j) = 0$ для $i \neq j, i, j = 1, \ldots, k$. Будем разыскивать вектор h^{k+1} в виде

$$h^{k+1} = x_{k+1,1}h^1 + x_{k+1,2}h^2 + \dots + x_{k+1,k}h^k + a^{k+1}.$$
 (9.1)

При любых значениях коэффициентов $x_{k+1,1}, \ldots, x_{k+1,k}$ вектор h^{k+1} не нуль. В самом деле, по построению векторы h^1, h^2, \ldots, h^k линейно выражаются через векторы системы $\{a^i\}_{i=1}^m$, причем так, что в выражение для вектора h^j входят векторы системы $\{a^i\}_{i=1}^m$ с номерами, не превосходящими j. Отсюда вытекает, что вектор h^{k+1} есть линейная комбинация линейно независимых векторов $a^1, a^2, \ldots, a^{k+1}$,

 $^{^{1)}}$ Эрхард Шмидт (Erhard Schmidt; 1876 — 1959) — немецкий математик.

причем вектор a^{k+1} входит в эту линейную комбинацию с коэффициентом, равным единице.

Выберем числа $x_{k+1,1}, x_{k+1,2}, \ldots, x_{k+1,k}$ так, чтобы вектор h^{k+1} был ортогонален уже построенным векторам h^1, h^2, \ldots, h^k . Последовательно выполняя эти условия, найдем $x_{k+1,1} = -(a^{k+1}, h^1)/(h^1, h^1),$ $x_{k+1,2} = -(a^{k+1}, h^2)/(h^2, h^2), \ldots, x_{k+1,k} = -(a^{k+1}, h^k)/(h^k, h^k).$

Продолжая описанный процесс, построим ортогональную систему ненулевых векторов $\{h^i\}_{i=1}^m$. Полагая затем

$$b^{i} = (|h^{i}|)^{-1}h^{i}, \quad i = 1, \dots, m,$$
 (9.2)

получим ортонормированную систему векторов $\{b^i\}_{i=1}^m$.

Как было установлено выше, система векторов $\{h^i\}_{i=1}^m$ линейно выражается через систему векторов $\{a^i\}_{i=1}^m$. Формула (9.1) показывает, что система векторов $\{a^i\}_{i=1}^m$ линейно выражается через систему векторов $\{h^i\}_{i=1}^m$, формула (9.2) показывает, что системы $\{b^i\}_{i=1}^m$, $\{h^i\}_{i=1}^m$ эквивалентны. Таким образом, все три рассматриваемые системы векторов попарно эквивалентны.

Заметим, наконец, что векторы a^1 , b^1 пропорциональны, так как по построению $b^1=(|a^1|)^{-1}a^1$. \square

ЗАМЕЧАНИЕ. Доказательство теоремы 1 конструктивно. Оно содержит описание способа построения по любой линейно независимой системе эквивалентной ортонормированной системы. Этот метод называется процессом ортогонализации Грама — Шмидта. Следует, однако, иметь в виду, что в вычислительной практике процесс ортогонализации Грама — Шмидта используется очень редко, так как обычно он подвержен сильному влиянию погрешностей округления.

Пример. Даны полиномы $Q_0(x) \equiv 1$, $Q_1(x) = x$, $Q_2(x) = x^2$ вещественной переменой x. Используя метод ортогонализации Грама — Шмидта, построим полиномы P_0 , P_1 , P_2 нулевой первой и второй степени, соответственно, ортонормированные в смысле скалярного произведения, определяемого формулой

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx.$$

Проводя вычисления в соответствии с методом Грама — Шмидта, получим $\tilde{P}_0 = Q_0 \equiv 1$,

$$\tilde{P}_1(x) = Q_1(x) - \tilde{P}_0(x) \int_{-1}^{1} Q_1(x) \tilde{P}_0 dx \left(\int_{-1}^{1} \tilde{P}_0^2(x) dx \right)^{-1} = x,$$

$$\tilde{P}_2(x) = Q_2(x) - \tilde{P}_0(x) \int_{-1}^{1} Q_2(x) \tilde{P}_0 dx \left(\int_{-1}^{1} \tilde{P}_0^2(x) dx \right)^{-1} -$$

$$-\tilde{P}_1(x)\int_{-1}^1 Q_2(x)\tilde{P}_1dx \left(\int_{-1}^1 \tilde{P}_1^2(x)dx\right)^{-1} = x^2 - 1/3,$$

$$P_0(x) = \tilde{P}_0(x)\left(\int_{-1}^1 \tilde{P}_0^2(x)\right)^{-1/2} = 1/\sqrt{2}, \quad P_1(x) = \tilde{P}_1(x)\left(\int_{-1}^1 \tilde{P}_1^2(x)\right)^{-1/2} = x\sqrt{3/2},$$

$$P_2(x) = \tilde{P}_2(x)\left(\int_{-1}^1 \tilde{P}_2^2(x)\right)^{-1/2} = \frac{1}{2}\sqrt{\frac{5}{2}}(3x^2 - 1).$$

Аналогично, можно строить полиномы более высоких степеней $P_3(x), \ldots, P_n(x)$, применяя процесс ортогонализации Грама — Шмидта к полиномам $1, x, x^2, \ldots, x^n$ при произвольном целом положительном n. Полиномы $P_0(x), P_1(x), \ldots, P_n(x), \ldots$ называют полиномами Лежандра¹). Справедлива так называемая формула $Podpuza^2$

$$P_k(x) = \sqrt{\frac{2k+1}{2}} \frac{1}{k!2^k} \frac{d^k}{dx^k} (x^2 - 1)^k, \quad k = 0, 1, \dots$$
 (9.3)

Упражнение. Используя формулу Родрига и формулу интегрирования по частям, показать, что

$$\int_{-1}^{1} P_k(x)P_l(x)dx = 0 \quad \text{при} \quad k \neq l, \ k, l = 0, 1, 2, \dots$$
 (9.4)

§ 10. Конечномерные линейные пространства. Базисы

1. Базисы в пространстве \mathbb{C}^n . Всякая линейно независимая система $\{e^k\}_{k=1}^n$ (состоящая из n векторов) называется базисом пространства \mathbb{C}^n . Единичные векторы $\{i^k\}_{k=1}^n$ образуют так называемый естественный базис пространства \mathbb{C}^n .

Из свойства 8 определителей (см. с. 78) вытекает, что для того, чтобы система $\{e^k\}_{k=1}^n \subset \mathbb{C}^n$ была базисом, необходимо и достаточно, чтобы матрица, столбцами которой служат векторы e^1, e^2, \ldots, e^n , была невырожденной.

Если в пространстве \mathbb{C}^n введено скалярное произведение, то можно пользоваться следующим критерием: для того, чтобы система n векторов была базисом, необходимо и достаточно, чтобы матрица Грама этой системы была невырожденной.

 $^{^{1)}}$ Адриен Мари Лежандр (Adrien-Marie Legendre; 1752 — 1833) — французский математик.

 $^{^{2)}}$ Бенжамен Оленд Родриг (Benjamin Olinde Rodrigues; 1794 — 1851) — французский математик.

В пункте 3, § 6, с. 123, фактически, было показано, что если $\mathcal{E}_n = \{e^k\}_{k=1}^n$ есть базис пространства \mathbb{C}^n , то любой вектор $x \in \mathbb{C}^n$ может быть представлен в виде линейной комбинации

$$x = \xi_1 e^1 + \xi_2 e^2 + \dots + \xi_n e^n. \tag{10.1}$$

Коэффициенты линейной комбинации (10.1) однозначно определяются по вектору x и удовлетворяют крамеровской системе линейных алгебраических уравнений

$$\mathcal{E}_n \xi = x. \tag{10.2}$$

Здесь $\xi = (\xi_1, \xi_2, \dots, \xi_n)$ — столбец коэффициентов разложения вектора x по базису $\{e^k\}_{k=1}^n$.

2. Конечномерные пространства. Линейное пространство \mathbf{X} называется *конечномерным*, если существуют векторы

$$\mathcal{E}_n = \{e^1, e^2, \dots, e^n\},\tag{10.3}$$

образующие линейно независимую систему в пространстве \mathbf{X} , и такие, что любой вектор $x \in \mathbf{X}$ представим в виде линейной комбинации

$$x = \sum_{k=1}^{n} \xi_k e^k = \mathcal{E}_n \xi, \quad \xi \in \mathbb{C}^n.$$
 (10.4)

Говорят в этом случае, что векторы $\{e^k\}_{k=1}^n$ образуют базис пространства \mathbf{X} . Число n называют размерностью пространства \mathbf{X} . Линейное пространство \mathbf{X} размерности n будем обозначать через \mathbf{X}_n . Коэффициенты разложения $\xi_1, \xi_2, \ldots, \xi_n$ называют координатами вектора x в базисе $\{e^k\}_{k=1}^n$.

- **2.1.** Координаты любого вектора $x \in \mathbf{X}_n$ однозначно определяются по базису $\{e^k\}_{k=1}^n$. Действительно, пусть наряду с разложением (10.4) существует разложение $x = \mathcal{E}_n \tilde{\xi}$, тогда, очевидно, $\mathcal{E}_n(\xi \tilde{\xi}) = 0$, откуда вследствие линейной независимости системы векторов $\{e^k\}_{k=1}^n$ получаем, что $\xi = \tilde{\xi}$.
- **2.2. Теорема.** В n-мерном линейном пространстве \mathbf{X}_n любая система $\tilde{\mathcal{E}}_n = \{\tilde{e}^k\}_{k=1}^n$, состоящая из n линейно независимых векторов, является базисом.

ДОКАЗАТЕЛЬСТВО. Достаточно убедиться, что любой вектор $x \in \mathbf{X}_n$ представим в виде линейной комбинации

$$x = \tilde{\mathcal{E}}_n \tilde{\xi}. \tag{10.5}$$

По определению n-мерного пространства в нем существует базис \mathcal{E}_n . Следовательно, любой вектор из $\tilde{\mathcal{E}}_n$ представим в виде линейной комбинации векторов базиса \mathcal{E}_n , иными словами, существует квадратная матрица T порядка n такая, что $\tilde{\mathcal{E}}_n = \mathcal{E}_n T$. Матрица T невырождена (см. п. 7, с. 124). Поскольку \mathcal{E}_n — базис, существует вектор $\xi \in \mathbb{C}^n$ такой, что $x = \mathcal{E}_n \xi$. Поскольку матрица T невырождена, можно найти вектор $\tilde{\xi} \in \mathbb{C}^n$ такой, что $\xi = T\tilde{\xi}$. В результате, получим соотношение $x = \mathcal{E}_n T \tilde{\xi} = \tilde{\mathcal{E}}_n \tilde{\xi}$ вида (10.5). \square

- **3.** Если пространство не является конечномерным, его называют *бесконечномерным*.
- 4. Любое конечномерное линейное пространство \mathbf{X}_n можно превратить в евклидово пространство. Действительно, пусть $\{e^k\}_{k=1}^n$ базис пространства \mathbf{X}_n , $x = \sum_{k=1}^n \xi_k e^k$, $y = \sum_{k=1}^n \eta_k e^k$ элементы пространства \mathbf{X}_n . Примем в качестве скалярного произведения элементов x, y величину

$$(x,y) = \sum_{k=1}^{n} \xi_k \bar{\eta}_k.$$
 (10.6)

Нетрудно убедиться, что все аксиомы скалярного произведения при этом будут выполнены.

- 5. Пусть e произвольный ненулевой вектор евклидова пространства $\mathbf{X}_n, n > 1$. Понятно, что существует некоторый вектор f_2 , непропорциональный e, затем можно указать вектор f_3 так, чтобы векторы e, f_2 , f_3 были линейно независимы. Продолжая этот процесс, получим базис пространства \mathbf{X}_n , включающий в себя вектор e. Применяя затем процесс ортогонализации Грама Шмидта, можно построить ортогональный базис пространства \mathbf{X}_n , содержащий вектор e.
- 6. Отметим, что в пространстве \mathbf{X}_n существует сколько угодно базисов. Действительно, если \mathcal{E}_n базис, то система векторов $\tilde{\mathcal{E}}_n = \mathcal{E}_n T$, где T произвольная невырожденная матрица, также является базисом (см. теорему 7, с. 124).
- **7.** Приведем примеры конечномерных и бесконечномерных пространств.
- 1) Любые три некомпланарных вектора пространства \mathbf{V}_3 образуют базис (см. § 1, гл. 4). Пространство \mathbf{V}_3 трехмерно.

- 2) Пространства \mathbb{C}^n , \mathbb{R}^n , очевидно, конечномерны. Их размерность равна n.
- 3) Пространство \mathbf{Q}_n всех полиномов степени не выше n конечномерно. Его размерность равна n+1. Базисом в пространстве полиномов степени не выше n является, например, система векторов $\{1, z, \ldots, z^n\}$, где z комплексная переменная.
- 4) Пространство всех полиномов бесконечномерно. Действительно, в нем линейно независима система векторов $\{1, z, \ldots, z^k\}$ при любом, сколь угодно большом, целом k.
- 5) Пространство C[a,b] бесконечномерно, так как содержит полиномы с вещественными коэффициентами любого порядка.

§ 11. Замена базиса

1. Пусть $\mathcal{E}_n = \{e^k\}_{k=1}^n$, $\tilde{\mathcal{E}}_n = \{\tilde{e}^k\}_{k=1}^n$ — базисы пространства \mathbf{X}_n . Как уже говорилось, \mathcal{E}_n , $\tilde{\mathcal{E}}_n$ — эквивалентные системы векторов, существуют квадратные матрицы T, \widetilde{T} порядка n такие, что

$$\mathcal{E}_n = \widetilde{\mathcal{E}}_n \widetilde{T}, \quad \widetilde{\mathcal{E}}_n = \mathcal{E}_n T.$$
 (11.1)

Матрицу T называют матрицей перехода от базиса \mathcal{E}_n к базису $\widetilde{\mathcal{E}}_n$. Матрицы T и \widetilde{T} взаимно обратны. Действительно, подставляя выражение для $\widetilde{\mathcal{E}}_n$ из второго равенства (11.1) в первое, получим, что $\mathcal{E}_n = \mathcal{E}_n T \widetilde{T}$. Отсюда вследствие линейной независимости векторов базиса вытекает (см. п. 8, с. 124), что

$$T\widetilde{T} = I. \tag{11.2}$$

Пусть известны коэффициенты ξ разложения некоторого вектора $x \in \mathbf{X}_n$ по базису $\{e^k\}_{k=1}^n$, и пусть задана матрица перехода T к базису $\{\tilde{e}^k\}_{k=1}^n$. Получим формулу для вычисления коэффициентов $\tilde{\xi}$ разложения того же вектора x по базису $\{\tilde{e}^k\}_{k=1}^n$. В соответствии с (10.4) имеем $x = \mathcal{E}_n \xi$, но $\mathcal{E}_n = \widetilde{\mathcal{E}}_n \widetilde{T} = \widetilde{\mathcal{E}}_n T^{-1}$ (см. (11.1), (11.2)), следовательно, $x = \widetilde{\mathcal{E}}_n T^{-1} \xi$, а это означает, что

$$\tilde{\xi} = T^{-1}\xi. \tag{11.3}$$

ПРИМЕР. Пусть векторы e^1, e^2, e^3 образуют базис в трехмерном пространстве ${\bf X}_3.$ Рассмотрим векторы

$$\tilde{e}^1 = 5e^1 - e^2 - 2e^3,$$

 $\tilde{e}^2 = 2e^1 + 3e^2,$

$$\tilde{e}^3 = -2e^1 + e^2 + e^3.$$

Записывая эти равенства в матричном виде, получим $\tilde{\mathcal{E}}=\mathcal{E}T$, где $\tilde{\mathcal{E}}=\{\tilde{e}^1,\tilde{e}^2,\tilde{e}^3\}$, $\mathcal{E}=\{e^1,e^2,e^3\}$,

$$T = \begin{pmatrix} 5 & 2 & -2 \\ -1 & 3 & 1 \\ -2 & 0 & 1 \end{pmatrix}.$$

Нетрудно видеть, что

$$\det T = \begin{vmatrix} 5 & 2 & -2 \\ -1 & 3 & 1 \\ -2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -2 \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 1,$$

следовательно, матрица T невырождена. Поэтому векторы $\tilde{e}^1, \tilde{e}^2, \tilde{e}^3$ также образуют базис пространства \mathbf{X}_3 . Рассмотрим вектор $a=e^1+4e^2-e^3$. Координатами этого вектора в базисе \mathcal{E} являются числа $\xi_1=1, \xi_2=4, \xi_3=-1,$ т. е. $a=\mathcal{E}\xi,$ где $\xi=(\xi_1,\xi_2,\xi_3).$ Найдем координаты того же вектора, но в базисе $\tilde{\mathcal{E}}$. Вычислим матрицу T^{-1} . Получим

$$T^{-1} = \begin{pmatrix} 3 & -2 & 8 \\ -1 & 1 & -3 \\ 6 & -4 & 17 \end{pmatrix},$$

и, следовательно,

$$\tilde{\xi} = T^{-1}\xi = \begin{pmatrix} 3 & -2 & 8 \\ -1 & 1 & -3 \\ 6 & -4 & 17 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix} = \begin{pmatrix} -13 \\ 6 \\ -27 \end{pmatrix},$$

т. е. $a=-13 \tilde{e}^1+6 \tilde{e}^2-27 \tilde{e}^3$. Мы нашли, таким образом, представление вектора a в базисе $\tilde{\mathcal{E}}$.

2. Матрица T перехода от любого ортонормированного базиса $\{e^k\}_{k=1}^n$ к другому ортонормированному базису $\{\tilde{e}^k\}_{k=1}^n$ евклидова пространства \mathbf{X}_n является унитарной. В самом деле, записывая второе равенство (11.1) более подробно, получим $\tilde{e}^k = \sum_{j=1}^n t_{jk} e^j$, $k=1,2,\ldots,n$. Вследствие ортонормированности базиса $\tilde{\mathcal{E}}_n$ отсюда получаем, что

$$\left(\sum_{j=1}^{n} t_{jk} e^{j}, \sum_{j=1}^{n} t_{jl} e^{j}\right) = (\tilde{e}^{k}, \tilde{e}^{l}) = \delta_{kl}, \quad k, l = 1, 2, \dots, n.$$

Преобразуя левую часть последнего равенства с учетом ортонормированности базиса \mathcal{E}_n , будем иметь, что

$$\sum_{j=1}^{n} t_{jk} \bar{t}_{jl} = \delta_{kl}, \quad k, l = 1, 2, \dots, n,$$

а это и означает, что матрица T унитарна (см. с. 99).

Важно отметить, что, как следует из только что выполненных выкладок, справедливо и обратное утверждение, а именно, если базис \mathcal{E}_n ортонормирован, а матрица T унитарна, то базис $\widetilde{\mathcal{E}}_n = \mathcal{E}_n T$ также ортонормирован.

§ 12. Разложение вектора по базису евклидова пространства

В евклидовом пространстве \mathbf{X}_n вычисление коэффициентов разложения вектора $x \in \mathbf{X}_n$ по любому базису $\{e^k\}_{k=1}^n$ можно свести к решению крамеровской системы линейных алгебраических уравнений с эрмитовой матрицей. Действительно, умножим обе части равенства

$$\xi_1 e^1 + \xi_2 e^2 + \dots + \xi_n e^n = x$$

скалярно на вектор e^1 , затем на вектор e^2 и т. д. и, наконец, на вектор e^n . Получим систему уравнений

матрицей которой служит матрица Грама базиса $\{e^k\}_{k=1}^n$. Наиболее просто эта система решается в случае, когда базис ортогонален, т. е. когда матрица Грама диагональна. В этом случае получаем

$$\xi_k = (x, e^k)/(e^k, e^k), \quad k = 1, 2, \dots, n.$$
 (12.1)

Коэффициенты (12.1) называются коэффициентами $\Phi ypbe^{1)}$ вектора x относительно ортогональной системы $\{e^k\}_{k=1}^n$. Отметим, что если базис $\{e^k\}_{k=1}^n$ ортонормирован, то для любого вектора $x \in \mathbf{X}_n$ справедливо разложение

$$x = \sum_{k=1}^{n} (x, e^k)e^k.$$
 (12.2)

 $^{^{1)}}$ Жан Батист Жозеф Фурье (Jean Baptiste Joseph Fourier; 1768 — 1830) — французский математик и физик.

§ 13. Вычисление скалярного произведения

1. Пусть x, y — векторы евклидова пространства \mathbf{X}_n , и пусть известны векторы $\xi, \eta \in \mathbb{C}^n$ коэффициентов разложений x, y по базису \mathcal{E}_n , т. е. $x = \mathcal{E}_n \xi, y = \mathcal{E}_n \eta$. Тогда

$$(x,y) = \left(\sum_{k=1}^{n} \xi_k e^k, \sum_{k=1}^{n} \eta_k e^k\right) = \sum_{k,l=1}^{n} \xi_k \overline{\eta}_l(e^k, e^l) = (G\xi, \eta), \quad (13.1)$$

где G — матрица Грама базиса \mathcal{E}_n , скобками в правой части равенства обозначено стандартное скалярное произведение в пространстве \mathbb{C}^n , следовательно, для вычисления скалярного произведения (x,y) достаточно знать коэффициенты разложения векторов x,y по базису и матрицу Грама этого базиса.

2. В случае, когда базис ортонормирован, получаем

$$(x,y) = \sum_{k=1}^{n} \xi_k \overline{\eta}_k. \tag{13.2}$$

Таким образом, скалярное произведение векторов можно подсчитать как стандартное скалярное произведение коэффициентов разложения этих векторов по любому ортонормированному базису.

§ 14. Примеры базисов

- **1.** Примеры ортогональных базисов в пространстве \mathbb{C}^{n} .
- 1) Естественный базис $\{i^k\}_{k=1}^n$. Он ортонормирован относительно стандартного скалярного произведения (докажите!).
- 2) $\it Fasuc\ \Phi \it ypbe$. Нам удобно будет нумеровать сейчас компоненты вектора и базисные векторы от 0 до n-1. Пусть

$$q_k = \left(\cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}\right), \quad k = 0, 1, \dots, n - 1,$$

есть корни степени k из единицы, i — мнимая единица (см. § 1, гл. 3). Введем в рассмотрение систему векторов $\{\varphi^k\}_{k=0}^{n-1}$, компоненты которых вычисляются по формулам

$$\varphi_j^k = q_k^j, \quad j = 0, 1, \dots, n - 1,$$
 (14.1)

 $k = 0, 1, \dots, n - 1.$

Покажем, что векторы $\{\varphi^k\}_{k=1}^n$ образуют ортогональную систему относительно стандартного скалярного произведения в пространстве \mathbb{C}^n . Заметим прежде всего, что $q_k=q_1^k,\ \overline{q}_k=q_1^{-k}$. Поэтому, вычисляя скалярное произведение (φ^k,φ^l) , получим

$$(\varphi^k, \varphi^l) = \sum_{j=0}^{n-1} q_1^{(k-l)j} = 1 + (q_1^p) + (q_1^p)^2 + \dots + (q_1^p)^{n-1}, \qquad (14.2)$$

где p=k-l. При k=l, т. е. при p=0, справедливо равенство $(\varphi^k,\varphi^k)=n$. Если $p\neq 0$, то сумма в правой части (14.2) есть геометрическая прогрессия со знаменателем q_1^p . Причем, поскольку |p|=|k-l|< n, то $q_1^p\neq 1$. Используя формулу для суммы первых n членов геометрической прогрессии, получим

$$\sum_{j=0}^{n-1} (q_1^p)^j = \frac{(q_1^p)^n - 1}{q_1^p - 1},\tag{14.3}$$

но $(q_1^n)^p = q_1^{pn} = 1$, следовательно, $(\varphi^k, \varphi^l) = 0$ при $k \neq l$.

Коэффициенты Фурье ξ разложения любого вектора $x \in \mathbb{C}^n$ по базису (14.1),

$$x_j = \sum_{k=0}^{n-1} \xi_k q_k^j, \quad j = 0, 1, \dots, n-1,$$
 (14.4)

в соответствии с (12.1) вычисляются, таким образом, по формулам

$$\xi_k = (x, \varphi_k)/(\varphi_k, \varphi_k) = \frac{1}{n} \sum_{j=0}^{n-1} x_j q_k^{-j}, \quad k = 0, 1, \dots, n-1.$$
 (14.5)

Базис $\{\varphi^k\}_{k=0}^{n-1}$ принято называть *базисом Фурье*. Он широко используется, например, при цифровой обработке сигналов (звуковых, видео).

В реальных задачах n (это длина обрабатываемого сигнала) велико, в связи с чем используются специальные приемы экономного вычисления сумм вида (14.4), (14.5), называемые алгоритмами быстрого дискретного преобразования Фурье (FFT, Fast Fourier Transformation).

- **2.** Примеры базисов в пространстве \mathbf{Q}_n полиномов с комплексными коэффициентами степени не выше n.
- 1) Естественным базисом в этом пространстве называют базис, составленный из степеней независимой переменной $\{1, z, \ldots, z^n\}$.

2) Как показано на с. 85, полиномы

$$\Phi_j(z) = \frac{(z-z_0)(z-z_1)\cdots(z-z_{j-1})(z-z_{j+1})\cdots(z-z_n)}{(z_j-z_0)(z_j-z_1)\cdots(z_j-z_{j-1})(z_j-z_{j+1})\cdots(z_j-z_n)},$$

 $j=0,1,2,\ldots,n$, где z_0, z_1, \ldots, z_n — произвольные попарно различные комплексные числа, также образуют базис в пространстве полиномов. Этот базис принято называть базисом Лагранэнса.

3) Покажем, что полиномы

$$\varphi_0(z) \equiv 1, \ \varphi_1(z) = (z - z_0), \ \varphi_2(z) = (z - z_0)(z - z_1), \dots,
\varphi_n(z) = (z - z_0)(z - z_1) \cdots (z - z_{n-1}), \ (14.6)$$

где z_0, z_1, \ldots, z_n — произвольные попарно различные числа, образуют базис. Как и в случае базиса Лагранжа, достаточно установить, что система уравнений

$$c_0\varphi_0(z_j) + c_1\varphi_1(z_j) + \dots + c_n\varphi_0(z_j) = h_j, \quad j = 0, 1, 2, \dots, n, \quad (14.7)$$

имеет единственное решение при любых $h_1, h_2, \dots h_n$, но это очевидно, так как система (14.7) треугольна:

$$c_0 + c_1(z_n - z_0) + \cdots + c_n(z_n - z_0)(z_n - z_1) \cdots (z_n - z_{n-1}) = h_n,$$

причем коэффициенты, стоящие на диагонали, отличны от нуля. Базис (14.6) называют *базисом Ньютона*.

- 3. Примеры ортогональных базисов в пространстве \mathbf{P}_n полиномов с вещественными коэффициентами. Рассматривается множество всех полиномов вида $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$, где коэффициенты a_0, a_0, \ldots, a_n произвольные вещественные числа, x может принимать произвольные вещественные значения, $n \geqslant 0$ фиксированное целое число. Очевидно, что указанное множество полиномов есть вещественное линейное пространство, если понимать операции сложения двух полиномов и умножения полинома на число обычным образом.
- **3.1.** Полиномы Лежандра. Определим в пространстве \mathbf{P}_n скалярное произведение по формуле

$$(f,g) = \int_{-1}^{1} f(x)g(x) dx \quad \forall f, g \in \mathbf{P}_n.$$
 (14.9)

Тогда полиномы Лежандра P_0, P_1, \ldots, P_n (см. (9.3), (9.4), с. 130) образуют ортогональный базис в пространстве \mathbf{P}_n .

3.2. Полиномы Чебышева¹⁾. Определим теперь скалярное произведение в пространстве \mathbf{P}_n при помощи соотношения

$$(f,g) = \int_{-1}^{1} f(x)g(x) \frac{1}{\sqrt{1-x^2}} dx \quad \forall f, g \in \mathbf{P}_n.$$
 (14.10)

Введем в рассмотрение *полиномы Чебышева*, Так называют полиномы, вычисляемые при помощи следующих рекуррентных формул:

$$T_0(x) \equiv 1, \ T_1(x) = x,$$
 (14.11)

$$T_{k+1} = 2xT_k(x) - T_{k-1}(x), \ k = 1, 2, \dots$$
 (14.12)

Здесь k — степень полинома.

Нам потребуется явная формула для полиномов Чебышева. Будем разыскивать значение $T_k(x)$ в виде $T_k(x) = \lambda^k$. Используя это представление в рекуррентной формуле (14.12), получим

$$\lambda^{k+1} = 2x\lambda^k - \lambda^{k-1}.$$

откуда, предполагая, что $\lambda \neq 0$, приходим к квадратному уравнению

$$\lambda^2 - 2x\lambda + 1 = 0$$

для определения λ . Корни этого уравнения

$$\lambda_{1,2} = x \pm \sqrt{x^2 - 1},$$

поэтому функции $T_k^{(1)}(x)=(x+\sqrt{x^2-1})^k,$ $T_k^{(2)}(x)=(x-\sqrt{x^2-1})^k,$ а следовательно, и функции

$$T_k(x) = c_1 T_k^{(1)}(x) + c_2 T_k^{(2)}(x),$$

 $k = 0, 1, \ldots$, где c_1 , c_2 — произвольные постоянные, удовлетворяют рекуррентному соотношению (14.12). Выберем c_1 , c_2 так, чтобы были выполнены условия (14.11):

$$c_1 + c_2 = 1,$$

 $(c_1 + c_2)x + (c_1 - c_2)\sqrt{x^2 - 1} = x.$

 $^{^{1)}}$ Пафнутий Львович Чебышев (произносится как «Чебышёв»; 1821 — 1894) — русский математик и механик.

Отсюда получаем $c_1 = c_2 = 1/2$, т. е. полиномы

$$T_k(x) = \frac{1}{2} \left(x + \sqrt{x^2 - 1} \right)^k + \frac{1}{2} \left(x - \sqrt{x^2 - 1} \right)^k, \quad k = 0, 1, 2, \dots$$

удовлетворяют рекуррентному соотношению (14.12) и условиям (14.11). При $|x| \leq 1$ полиномам Чебышева можно придать более компактный вид. Положим в этом случае $x = \cos \varphi$. Тогда

$$T_k(x) = \frac{1}{2} (\cos \varphi + i \sin \varphi)^k + \frac{1}{2} (\cos \varphi - i \sin \varphi)^k,$$

откуда, используя формулу Муавра (см. (3.7), с. 14), получим, что $T_k(x)=\cos k\varphi$, или

$$T_k(x) = \cos(k \arccos x). \tag{14.13}$$

Полиномы Чебышева ортогональны в смысле скалярного произведения (14.10). Действительно, используя представление (14.13), можем написать, что

$$(T_k, T_l) = \int_{-1}^{1} \frac{\cos(k \arccos x) \cos(l \arccos x)}{\sqrt{1 - x^2}} dx.$$

Полагая $x = \cos \varphi$, нетрудно подсчитать, что

$$(T_k, T_l) = \int_0^{\pi} \cos k\varphi \cos l\varphi \, d\varphi = \frac{1}{2} \int_0^{\pi} (\cos(k+l)\varphi + \cos(k-l)\varphi) \, d\varphi = 0$$

при $k \neq l$.

Таким образом, полиномы Чебышева T_0, T_1, \ldots, T_n образуют ортогональный базис в смысле скалярного произведения (14.10) в пространстве \mathbf{P}_n полиномов с вещественными коэффициентами.

§ 15. Подпространства. Сумма и пересечение подпространств

1. Множество L векторов линейного пространства \mathbf{X} называется *подпространством*, если из того, что векторы x,y принадлежат L, вытекает, что вектор $\alpha x + \beta y$ при любых комплексных числах α,β также принадлежит множеству L.

Tривиальные примеры подпространств: все пространство \mathbf{X} является подпространством; множество, состоящее только из одного вектора, равного нулю, является подпространством.

Поскольку по определению наряду с вектором x подпространству должен принадлежать и вектор 0x, то всякое подпространство содержит нулевой вектор.

Упражнения.

- 1) Пусть $a^1, a^2, \ldots, a^m, m \geqslant 1$, произвольным образом фиксированные векторы пространства **X**. Докажите, что множество всех линейных комбинаций $x_1a^1 + x_2a^2 + \cdots + x_ma^m$ подпространство. Говорят, что это подпространство натянуто на векторы a^1, a^2, \ldots, a^m .
- 2) Пусть a^1 , a^2 векторы пространства **X**. Множество L векторов вида $a^1 + \alpha a^2$, где α пробегает множество всех комплексных чисел, называется npsmoй, проходящей через точку a^1 в направлении вектора a^2 . Показать, что множество L является подпространством тогда и только тогда, когда векторы a^1 , a^2 линейно зависимы.
- **2.** Пусть L_1 , L_2 подпространства пространства **X**. Множество L всех векторов вида a^1+a^2 , где $a^1 \in L_1$, $a^2 \in L_2$ называется cym-мой подпространстве L_1 , L_2 . Используют обозначение: $L = L_1 + L_2$.

Так определенное множество L — подпространство. Действительно, пусть векторы $x, y \in L$. Это означает, что существуют векторы $a^1, b^1 \in L_1, a^2, b^2 \in L_2$ такие, что $x = a^1 + a^2, y = b^1 + b^2$. Пусть α, β — произвольные комплексные числа. Тогда

$$\alpha x + \beta y = \alpha (a^1 + a^2) + \beta (b^1 + b^2) = (\alpha a^1 + \beta b^1) + (\alpha a^2 + \beta b^2).$$

Поскольку L_1 — подпространство, вектор $\alpha a^1 + \beta b^1$ принадлежит L_1 . Точно так же, вектор $\alpha a^2 + \beta b^2$ принадлежит L_2 , следовательно, вектор $\alpha x + \beta y$ принадлежит L.

- 3. Пересечение подпространств L_1 , L_2 , т. е. множество всех векторов, принадлежащих как L_1 , так и L_2 , также является подпространством. Действительно, пусть векторы $x,y\in L_1\cap L_2$. Для любого комплексного числа α вектор αx принадлежит как L_1 , так и L_2 , т. е. $\alpha x\in L_1\cap L_2$. Аналогично, для любого β вектор $\beta y\in L_1\cap L_2$, но тогда, очевидно, и $\alpha x+\beta y\in L_1\cap L_2$.
- 4. Система векторов $\{e^k\}_{k=1}^m \subset L$ называется базисом подпространства L, если она линейно независима и любой вектор $x \in L$ представим в виде линейной комбинации векторов из $\{e^k\}_{k=1}^m$. Число m при этом будем назвать размерностью подпространства. Размерность подпространства L обозначают через $\dim(L)$.

Подпространству, состоящему только из нулевого вектора, будем приписывать размерность, равную нулю. Это подпространство будем обозначать через {0} и называть *нулевым подпространством*.

УПРАЖНЕНИЕ. Описать суммы и пересечения всевозможных подпространств пространства \mathbf{V}_3 .

- 5. Для того, чтобы подпространство L конечномерного пространства \mathbf{X}_n совпадало с \mathbf{X}_n , необходимо и достаточно выполнения равенства $\dim(L) = n$. Справедливость этого утверждения сразу следует из того, что любые n линейно независимых векторов пространства \mathbf{X}_n образуют его базис (см. теорему 2.2, с. 131).
- **6.** Очевидно, что базис $\{e^k\}_{k=1}^m$ любого подпространства L из \mathbf{X}_n можно дополнить до базиса $\{e^k\}_{k=1}^n$ всего пространства \mathbf{X}_n . Точно так же, если L_1 и L_2 подпространства и $L_1 \subset L_2$, то $\dim(L_1) \leqslant \dim(L_2)$, и базис подпространства L_1 можно дополнить до базиса подпространства L_2 .
- 7. Сумма подпространств L_1 и L_2 называется nрямой, если для любого вектора $x=x^1+x^2\in (L_1+L_2)$ его составляющие $x^1\in L_1$ и $x^2\in L_2$ определяются однозначно. Прямая сумма подпространств L_1 и L_2 обозначается через $L_1\dotplus L_2$.
- **7.1. Теорема.** Для того, чтобы сумма подпространств L_1 , L_2 была прямой, необходимо и достаточно, чтобы из равенства

$$x^1 + x^2 = 0$$

для $x^1 \in L_1, x^2 \in L_2$ вытекало, что $x^1 = 0, x^2 = 0.$

ДОКАЗАТЕЛЬСТВО. Пусть из равенства $x^1+x^2=0$ для $x^1\in L_1$, $x^2\in L_2$ следует, что $x^1=0$, $x^2=0$. Покажем, что тогда для любого $x=x^1+x^2\in (L_1+L_2)$ составляющие $x^1\in L_1$, $x^2\in L_2$ определяются однозначно. Предположим, что существует еще одно разложение вектора x, т. е. $x=\tilde{x}^1+\tilde{x}^2$, $\tilde{x}_1\in L_1$, $\tilde{x}_2\in L_2$. Тогда, очевидно, $(x^1-\tilde{x}^1)+(x^2-\tilde{x}^2)=0$. Поскольку $x^1-\tilde{x}^1\in L_1$, $x^2-\tilde{x}^2\in L_2$, то $x^1-\tilde{x}^1=0$, $x^2-\tilde{x}^2=0$, следовательно, $x^1=\tilde{x}^1$, $x^2=\tilde{x}^2$. Обратно, пусть составляющие любого вектора $x=x^1+x^2\in (L_1+L_2)$ определяются однозначно, и пусть $x^1+x^2=0$ для каких-то $x^1\in L_1$, $x^2\in L_2$. Поскольку $x^1=0$ 0, то отсюда вытекает, что $x^1=0$ 1.

7.2. Теорема. Для того, чтобы сумма подпространств L_1 , L_2 была прямой, необходимо и достаточно, чтобы $L_1 \cap L_2 = \{0\}$.

ДОКАЗАТЕЛЬСТВО. Пусть $L_1 \cap L_2 = \{0\}$, $x^1 + x^2 = 0$, $x^1 \in L_1$, $x^2 \in L_2$. Поскольку $x^1 = -x^2$, то $x^1 \in L_2$, значит, $x^1 \in L_1 \cap L_2$, следовательно, $x^1 = 0$, но тогда, очевидно, и $x^2 = 0$. Обратно, пусть $x \in L_1 \cap L_2$. Тогда $x \in L_1$, $x \in L_2$, кроме того, очевидно, x + (-x) = 0, а так как сумма L_1 и L_2 прямая, то вследствие теоремы 7.1 получаем, что x = 0, следовательно, $L_1 \cap L_2 = \{0\}$. \square

8. Будем говорить, что подпространства L_1 и L_2 евклидова пространства ортогональны (пишут $L_1\bot L_2$), если (x,y)=0 для всех $x\in L_1,\ y\in L_2$. Сумму ортогональных подпространств будем называть ортогональной и обозначать через $L_1\oplus L_2$.

Ортогональная сумма является прямой. В самом деле, пусть $L_1 \perp L_2, x^1 \in L_1, x^2 \in L_2$ и $x^1 + x^2 = 0$. В силу ортогональности x^1, x^2 , очевидно, $|x^1 + x^2|^2 = |x^1|^2 + |x^2|^2$, поэтому $|x^1|^2 + |x^2|^2 = 0$, следовательно, $x^1 = x^2 = 0$.

9. Понятия прямой и ортогональной сумм естественным образом переносятся на случай любого конечного числа подпространств. Так, сумма подпространств L_1, L_2, \ldots, L_k называется ортогональной, если она есть множество всех элементов вида $x = x^1 + x^2 + \cdots + x^k, x^j \in L_j,$ $j = 1, 2, \ldots, k$, и $L_i \bot L_j$ для $i \neq j, i, j = 1, 2, \ldots, k$. Теорема 7.1 легко обобщается на случай любого конечного числа подпространств.

Упражнения.

- 1) Покажите, что ортогональная сумма любого числа подпространств является прямой, т. е. составляющие $x^j \in L_j, j = 1, 2, \ldots, k$, определяются по любому x однозначно.
- 2) Верно ли утверждение: сумма подпространств $L_1 + L_2 + \cdots + L_k$, k > 2, является прямой, если их пересечение нулевое подпространство?

§ 16. Размерность суммы подпространств

1. Теорема. Пусть $L = L_1 \dotplus L_2 \dotplus \dots \dotplus L_k - n$ рямая сумма конечномерных подпространств L_1, L_2, \dots, L_k линейного пространства \mathbf{X} . Тогда

$$\dim(L) = \dim(L_1) + \dim(L_2) + \dots + \dim(L_k).$$
 (16.1)

ДОКАЗАТЕЛЬСТВО. Проведем его для случая k=2. Для произвольного k рассуждения полностью аналогичны. Пусть

$$f^1, f^2, \dots, f^p; \quad g^1, g^2, \dots, g^q$$
 (16.2)

Рис. 1. К теореме 2

есть базисы подпространств L_1 и L_2 , соответственно. Тогда объединение этих систем векторов есть базис подпространства $L_1 \dotplus L_2$. Действительно, для любого $x \in L_1 \dotplus L_2$ справедливо представление $x = x^1 + x^2$, где

$$x^{1} = \alpha_{1}f^{1} + \alpha_{2}f^{2} + \dots + \alpha_{p}f^{p} \in L_{1}, \quad x^{2} = \beta_{1}g^{1} + \beta_{2}g^{2} + \dots + \beta_{q}g^{q} \in L_{2},$$

причем, если x=0, то $x^1=0$, $x^2=0$, поскольку сумма $L_1\dotplus L_2$ прямая. Вследствие того, что $\{f^k\}_{k=1}^p$, $\{g^k\}_{k=1}^q$ — базисы, отсюда вытекает, что все числа $\alpha_1,\alpha_2,\ldots,\alpha_p,\beta_1,\beta_2,\ldots,\beta_q$ — нули. Таким образом, система векторов (16.2) линейно независима. Теперь совершенно ясно, что $\dim(L_1\dotplus L_2)=p+q$. \square

2. Теорема. Пусть L_1 , L_2 — произвольные конечномерные подпространства линейного пространства \mathbf{X} . Тогда

$$\dim(L_1 + L_2) = \dim(L_1) + \dim(L_2) - \dim(L_1 \cap L_2). \tag{16.3}$$

ДОКАЗАТЕЛЬСТВО. Пространство $G = L_1 \cap L_2$, очевидно, конечномерно. Пусть $\mathcal{G}_l = \{g^i\}_{i=1}^l$ — базис G, и пусть векторы $\mathcal{F}_k = \{f^i\}_{i=1}^k$ дополняют его до базиса пространства L_1 , а векторы $\mathcal{H}_m = \{h^i\}_{i=1}^m$ — до базиса пространства L_2 . Обозначим через F подпространство пространства \mathbf{X} , натянутое на векторы \mathcal{F}_k , а через H — натянутое на векторы \mathcal{H}_m . Покажем, что

$$L_1 + L_2 = F + G + H. (16.4)$$

Действительно, если $x \in L_1 + L_2$, то $x = x^1 + x^2$, где $x^1 \in L_1$, $x^2 \in L_2$. Ясно, что $x^1 = f + g^-$, $x^2 = h + g^+$, где $f \in F$, $h \in H$, $g^+, g^- \in G$, следовательно, x = f + g + h, где $g = g^+ + g^- \in G$. Таким образом,

 $x \in F + G + H$. Еще проще доказывается, что если $x \in F + G + H$, то $x \in L_1 + L_2$. Сумма в правой части равенства (16.4) прямая. В самом деле, пусть f + g + h = 0, где $f \in F$, $g \in G$, $h \in H$. Покажем, что тогда f, g, h = 0. Имеем f + g = -h. Ясно, что $-h \in L_2$, а $f + g \in L_1$, следовательно, $f + g \in G$, $h \in G$. Положим $h + g = \widetilde{g}$. Получаем $f + \widetilde{g} = 0$, причем $\widetilde{g} \in G$. Поскольку система векторов $\mathcal{F}_k \cup \mathcal{G}_l$ линейно независима, отсюда вытекает, что f = 0, $\widetilde{g} = 0$. Совершенно аналогичные рассуждения показывают, что h = 0, g = 0. По теореме 1 теперь имеем, что $\dim(L_1 + L_2) = \dim(F \dotplus G \dotplus H) = k + l + m$, но $\dim L_1 = k + l$, $\dim L_2 = l + m$, $\dim(L_1 \cap L_2) = l$. Остается заметить, что k + l + m = (k + l) + (l + m) - l. \square

3. Следствие. Пусть L_1 , $L_2 - nodnpocmpaнства <math>n$ -мерного пространства \mathbf{X}_n , причем $\dim L_1 + \dim L_2 > n$. Тогда $L_1 \cap L_2 \neq \{0\}$.

ДОКАЗАТЕЛЬСТВО. Поскольку $L_1 + L_2$ — подпространство пространства \mathbf{X}_n , то $\dim(L_1 + L_2) \leqslant n$, но тогда (см. (16.3))

$$\dim(L_1 \cap L_2) = \dim(L_1) + \dim(L_2) - \dim(L_1 + L_2) \geqslant 1. \square$$

§ 17. Ортогональная проекция вектора на подпространство

1. Пусть L — подпространство евклидова пространства \mathbf{X}, x — вектор из \mathbf{X} . Вектор $y \in L$ назовем наилучшим приближением к вектору x, если

$$|x - y| \le |x - z|$$
 для любого $z \in L$. (17.1)

2. Теорема. Для любого $x \in \mathbf{X}$ и любого конечномерного подпространства $L \subset \mathbf{X}$ существует единственное наилучшее приближение.

ДОКАЗАТЕЛЬСТВО. Если $L=\{0\}$, единственным наилучшим приближением к x будет нулевой вектор. Поэтому далее полагаем, что $L\neq\{0\}$. Пусть y,z — два произвольных вектора из L. Положим h=y-z. Ясно, что $h\in L$, причем

$$(x-z, x-z) = (x-z-h+h, x-z-h+h) =$$

$$= (x-y+h, x-y+h) =$$

$$= (x-y, x-y) + 2\operatorname{Re}(x-y, h) + (h, h), (17.2)$$

что можно записать так:

$$|x - z|^2 = |x - y|^2 + 2\operatorname{Re}(x - y, h) + |h|^2.$$
 (17.3)

Рис. 2. К доказательству теоремы 2

Неравенство $|x-y| \leqslant |x-z|$ эквивалентно неравенству

$$2\operatorname{Re}(x - y, h) + |h|^2 \geqslant 0. \tag{17.4}$$

Таким образом, для того, чтобы вектор $y \in L$ был наилучшим приближением к вектору $x \in \mathbf{X}$, необходимо и достаточно, чтобы для любого вектора $h \in L$ выполнялось неравенство (17.4). Неравенство (17.4) выполнено для всех $h \in L$, следовательно, оно сохраняется при замене h на th_1 , где $h_1 = (x - y, h)h$, а t — вещественное число. При такой замене неравенство (17.4) принимает вид

$$2t|(x-y,h)|^2 + t^2|h_1|^2 \geqslant 0. (17.5)$$

Неравенство (17.5) может быть выполнено для всех вещественных t лишь при условии, что дискриминант квадратного трехчлена в его левой части неположителен. Это эквивалентно тому, что (x-y,h)=0. Итак, для того чтобы вектор $y\in L$ был наилучшим приближением к вектору $x\in \mathbf{X}$, необходимо и достаточно, чтобы

$$(x-y,h)=0$$
 для любого $h \in L,$ (17.6)

иными словами, вектор x-y должен быть ортогонален подпространству L. Геометрически этот вывод вполне очевиден (см. рис. 2).

Вектор y, удовлетворяющий условию (17.6), однозначно определяется по вектору x. В самом деле, пусть существует еще один вектор $\tilde{y} \in L$ такой, что $(x - \tilde{y}, h) = 0$ для любого $h \in L$. Тогда $(y - \tilde{y}, h) = 0$ для любого $h \in L$. Полагая $h = y - \tilde{y}$, получим, что $y = \tilde{y}$.

Докажем теперь, что существует вектор $y \in L$, удовлетворяющий условию (17.6). Пусть $\{e^k\}_{k=1}^m$ — базис подпространства L. Условие (17.6) эквивалентно тому, что

$$(x - y, e^k) = 0, \quad k = 1, 2, \dots, m.$$
 (17.7)

Будем искать y в виде разложения по базису: $y = \sum_{i=1}^m \eta_i e^i$. Тогда из (17.7) получаем, что

$$\left(\sum_{i=1}^{m} \eta_i e^i, e^k\right) = (x, e^k), \quad k = 1, 2, \dots, m.$$

Более подробная запись этих условий дает систему линейных уравнений

$$\sum_{i=1}^{m} \eta_i(e^i, e^k) = (x, e^k), \quad k = 1, 2, \dots, m,$$
(17.8)

для отыскания $\eta_1, \eta_2, \ldots, \eta_m$. Матрица этой системы — матрица Грама, соответствующая базису $\{e^k\}_{k=1}^m$. Эта матрица невырождена (см. теорему 1.1, с. 126), следовательно, система (17.8) однозначно разрешима при любом $x \in \mathbf{X}$, т. е. условие (17.6) позволяет построить вектор y. \square

Замечание. Вектор y вычисляется наиболее просто, когда базис $\{e^k\}_{k=1}^m$ подпространства L ортонормирован, а именно, в этом случае $y=\sum\limits_{k=1}^m (x,e^k)e^k.$

3. Вектор y, удовлетворяющий условию (17.6), естественно назвать ортогональной проекцией вектора x на подпространство L, вектор z = x - y - nepnehdukyляром, опущенным из точки x на подпространство L (см. рис. 2).

Заметим, что (x-y,y)=0, поскольку $y\in L$, следовательно, справедливо тождество Пифагора (см. п. 1, с. 119)

$$|x|^2 = |x - y|^2 + |y|^2. (17.9)$$

Из (17.9) следует, что $|y|^2 \leq |x|^2$. Это — так называемое *неравенство Бесселя*¹⁾, показывающее, что длина проекции вектора не превосходит длины вектора (см. рис. 2).

4. Если система векторов $\{e^k\}_{k=1}^m$ ортонормирована, то неравенство Бесселя принимает вид

$$\sum_{k=1}^{m} |(x, e^k)|^2 \leqslant |x|^2 \quad \forall \, x \in \mathbf{X}. \tag{17.10}$$

 $^{^{1)}}$ Фридрих Вильгельм Бессель (Friedrich Wilhelm Bessel; 1784–1846) — немецкий математик и астроном.

Равенство в (17.10) достигается тогда и только тогда, когда $x \in L$, т. е. когда $x = \sum_{k=1}^m (x, e^k) e^k$.

Отметим, что неравенство Коши — Буняковского (4.2), с. 119, можно трактовать как частный случай неравенства Бесселя (17.10), когда ортонормированная система векторов состоит только из одного вектора $e^1 = |y|^{-1}y$, $y \neq 0$.

ПРИМЕР. Пусть L — подпространство арифметического пространства \mathbb{R}^4 , натянутое на векторы $a^1=(-3,0,7,6),\,a^2=(1,4,3,2),\,a^3=(2,2,-2,-2).$ Найдем ортогональную проекцию вектора x=(14,-3,-6,-7) на подпространство L и перпендикуляр, опущенный из точки x на подпространство L.

Векторы a^1 , a^2 линейно независимы (не пропорциональны), вектор a^3 — линейная комбинация векторов a^1 , a^2 , а именно, $a^3 = (-1/2)a^1 + (1/2)a^2$. Поэтому векторы a^1 , a^2 можно принять за базис подпространства L. Компоненты η_1 , η_2 вектора y — проекции вектора x на L в базисе a^1 , a^2 — могут быть найдены как решение системы уравнений

$$\eta_1(a^1, a^1) + \eta_2(a^2, a^1) = (x, a^1),$$
(17.11)

$$\eta_1(a^1, a^2) + \eta_2(a^2, a^2) = (x, a^2).$$
(17.12)

Вычисляя скалярные произведения, получим $(a^1,a^1)=9+49+36=94, (a^2,a^1)=30, (a^2,a^2)=30, (x,a^1)=-126, (x,a^2)=-30.$ Решая систему (17.11), (17.12), найдем, что $\eta_1=-3/2, \ \eta_2=1/2, \ \text{т. e.} \ y=(-3/2)a^1+(1/2)a^2=(5,2,-9,-8)$ — ортогональная проекция вектора x на подпространство L, z=x-y=(9,-5,3,1) — перпендикуляр, опущенный из точки x на подпространство L.

5. Неудачный выбор базиса может вызвать большие вычислительные трудности при фактическом построении элемента наилучшего приближения.

Приведем соответствующий пример. В пространстве функций C[0,1] введем скалярное произведение по формуле (3.1), с. 118, полагая, что $p(x)\equiv 1$. Рассмотрим в этом пространстве пятимерное подпространство, натянутое на базис, образованный функциями $\varphi_0(x)\equiv 1,\ \varphi_1(x)=x,\ \varphi_2(x)=x^2,\ \varphi_3(x)=x^3,\ \varphi_4(x)=x^4,$ и найдем наилучшее приближение к функции $\varphi(x)=x^5$.

Матрица Грама в этом случае вычисляется элементарно:

$$\int_{0}^{1} \varphi_k(x)\varphi_l(x)dx = 1/(k+l+1). \tag{17.13}$$

Столбец правой части системы (17.8), очевидно, состоит из чисел 1/6, 1/7, 1/8, 1/9, 1/10.

Будем считать, что при вычислении последнего элемента столбца правой части допущена ошибка, и заменим число 1/10 на $(1/10) + \varepsilon$.

На рис. 3 показаны графики функции $\varphi(x)$ и приближающего ее полинома $P_4(x) = 1 + \eta_1 x + \eta_2 x^2 + \eta_3 x^3 + \eta_4 x^4$ при различных значениях ε . Видно, что малым погрешностям, допущенным при вычислении

Рис. 3. К примеру почти линейно зависимого базиса: сплошная линия — функция φ , символом "+" помечен график приближающего полинома при $\varepsilon=5\cdot 10^{-4}$, символом "*" — при $\varepsilon=2\cdot 10^{-4}$

правой части (неизбежным на практике), соответствуют значительные погрешности приближения функции φ .

Причина кроется в том, что выбранный нами базис степеней независимой переменной на самом деле состоит из функций, почти линейно зависимых. Для того, чтобы убедиться в этом, достаточно взглянуть на графики функций $x^p,\ p=1,2,\ldots$ на отрезке [0,1]. Даже при не очень больших p эти графики близки. Поэтому матрица системы (17.8) оказалась в данном случае близкой к вырожденной или, как говорят, плохо обусловленной.

Матрица с элементами (17.13), т. е. матрица вида

$$H_n = \left\{ \frac{1}{i+j-1} \right\}_{i,j=1}^n$$

называется матрицей Гильберта $^{1)}$. Она часто встречается в различных разделах математики. Уже при n>10 эта матрица оказывается настолько плохо обусловленной, что решить на компьютере систему линейных уравнений с такой матрицей, практически, невозможно.

ЗАМЕЧАНИЕ. Обычно, приближая функции полиномами, используют ортогональные базисы, например, полиномы Лежандра или Чебышева (см. с. 130, с. 138). В этом случае система (17.8) становится диагональной.

 $^{^{(1)}}$ Давид Гильберт (David Hilbert; 1862-1943) — немецкий математик.

§ 18. Ортогональное разложение евклидова пространства

1. Пусть L — подпространство евклидова пространства ${\bf X}$. Множество всех векторов из ${\bf X}$, ортогональных L, называется ортогональным дополнением подпространства L и обозначается через L^{\perp} . Понятно, что $(L^{\perp})^{\perp} = L$.

Упражнение. Докажите, что L^{\perp} — подпространство пространства ${\bf X}$.

2. Теорема (об ортогональном разложении). Пусть L- конечномерное подпространство евклидова пространства $\mathbf{X},\ L^{\perp}-$ ортогональное дополнение подпространства L. Тогда

$$\mathbf{X} = L \oplus L^{\perp}.\tag{18.1}$$

ДОКАЗАТЕЛЬСТВО. По теореме 2, с. 145, для любого $x \in \mathbf{X}$ существует $y \in L$ такой, что (x-y,h)=0 для любого $h \in L$, следовательно, $z=x-y \in L^\perp$ и x=y+z, что означает (см. п. 8, с. 143) справедливость (18.1). \square

Пусть $e \in \mathbf{X}$, $e \neq 0$. Обозначим через π_e множество всех векторов пространства \mathbf{X} , ортогональных e. Нетрудно убедиться, что π_e подпространство пространства \mathbf{X} . Это подпространство называют \mathfrak{su} -перплоскостью, ортогональной вектору e.

Рис. 4. К теореме 3

3. Теорема. Пусть x- произвольный, e- ненулевой векторы евклидова пространства \mathbf{X}_n . Существуют вектор $y \in \pi_e$ и число μ такие, что

$$x = \mu e + y, \tag{18.2}$$

nричем μ и y однозначно определяются по вектору x. Кроме того,

$$|x-y| \leqslant |x-z|$$
 для любого $z \in \pi_e$, (18.3)

 $m.\ e.\ y$ — элемент наилучшего приближения κ вектору x из подпространства π_e (см. рис. 4).

Упражнение. Следуя доказательству теоремы 2, докажите теорему 3.

Глава 7

Линейные операторы и матрицы

§ 1. Линейные операторы. Действия над операторами

1. Пусть \mathbf{X} , \mathbf{Y} — линейные пространства. Будем говорить, что задано *отображение* φ пространства \mathbf{X} в пространство \mathbf{Y} (пишут $\varphi: \mathbf{X} \to \mathbf{Y}$), если каждому вектору x из \mathbf{X} поставлен однозначно в соответствие вектор $\varphi(x)$ из \mathbf{Y} . Говорят также в этом случае, что на пространстве \mathbf{X} задана функция φ со значениями в пространстве \mathbf{Y} . Подчеркнем, что при этом, вообще говоря, не каждый вектор из \mathbf{Y} должен быть результатом отображения некоторого вектора x из \mathbf{X} .

Отображение φ называется линейным, если для любых $x,y\in \mathbf{X}$ и любых $\alpha,\,\beta\in\mathbb{C}$

$$\varphi(\alpha x + \beta y) = \alpha \varphi(x) + \beta \varphi(y). \tag{1.1}$$

В линейной алгебре, почти исключительно, рассматриваются линейные отображения. Обычно, их называют линейными операторами (или просто операторами) и обозначают большими латинским буквами. Скобки в обозначениях действия оператора на вектор, если это не приводит к недоразумениям, не пишут. Так, равенство (1.1) применительно к оператору $\mathcal A$ запишется в виде

$$\mathcal{A}(\alpha x + \beta y) = \alpha \mathcal{A}x + \beta \mathcal{A}y.$$

Из определения линейного отображения сразу вытекает, что

$$A0 = 0$$

для любого оператора \mathcal{A} .

Если оператор действует из пространства \mathbf{X} в пространство \mathbf{X} , то говорят, что он действует в пространстве \mathbf{X} или является *преобразованием* пространства \mathbf{X} .

Приведем примеры операторов.

- 1) Нулевой оператор. Этот оператор переводит все векторы пространства \mathbf{X} в нулевой вектор пространства \mathbf{Y} . Нулевой оператор обозначают символом 0, так что 0x = 0 для всех $x \in \mathbf{X}$.
- 2) Единичный (тождественный) оператор. Оператор, действующий в пространстве \mathbf{X} , называется $e\partial u h u u h u m$, если он оставляет без

изменения все векторы пространства \mathbf{X} . Единичный оператор будем обозначать через I.

3) Оператор проектирования. Пусть линейное пространство \mathbf{X} есть прямая сумма подпространств L_1 и L_2 . Тогда каждый вектор $x \in \mathbf{X}$ представим в виде $x = x^1 + x^2$, $x^1 \in L_1$, $x^2 \in L_2$, причем векторы x^1 , x^2 однозначно определяются по вектору x. Определим оператор \mathcal{P} , действующий из \mathbf{X} в L_1 , полагая $\mathcal{P}x = x^1$. Говорят, что оператор \mathcal{P} есть оператор проектирования пространства \mathbf{X} на подпространство L_1 (параллельно подпространству L_2). Если \mathbf{X} — евклидово пространство и оно представлено как ортогональная сумма подпространств L_1 и L_2 , то оператор \mathcal{P} называют оператором ортогонального проектирования. Докажем. что оператор \mathcal{P} линеен. Пусть $x, y \in \mathbf{X}$ и $x = \mathcal{P}x + x^2$, (здесь $x^2, y^2 \in L_2$). Тогда для любых чисел α , β , очевидно, справедливо равенство

$$\alpha x + \beta y = \alpha \mathcal{P} x + \beta \mathcal{P} y + \alpha x^2 + \beta y^2.$$

Вследствие того, что L_1, L_2 есть подпространства, получаем, что $\alpha \mathcal{P}x + \beta \mathcal{P}y \in L_1$, $\alpha x^2 + \beta y^2 \in L_2$, поэтому $\mathcal{P}(\alpha x + \beta y) = \alpha \mathcal{P}x + \beta \mathcal{P}y$.

4) Умножение матрицы на вектор. Пусть A(m,n) — прямоугольная матрица. Поставим в соответствие каждому вектору $x \in \mathbb{C}^n$ вектор $y \in \mathbb{C}^m$ при помощи равенства (см. п. 5, с. 88)

$$y = Ax. (1.2)$$

Операция умножения матрицы на вектор — линейная операция, поэтому соотношение (1.2) определяет линейный оператор, действующий из \mathbb{C}^n в \mathbb{C}^m .

- **2.** Полезно отметить, что если в пространстве \mathbf{X}_n фиксирован некоторый базис $\{e^j\}_{j=1}^n$, то определяя линейный оператор \mathcal{A} , достаточно описать его действие на векторы базиса, так как для любого вектора $x = \sum_{j=1}^n \xi_j e^j$ имеем $\mathcal{A}x = \sum_{j=1}^n \xi_j \mathcal{A}e^j$.
- **3.** Действия над операторами. Пусть $\mathcal{A}, \mathcal{B}: \mathbf{X} \to \mathbf{Y}$ линейные операторы; α, β числа. Оператор $\alpha \mathcal{A} + \beta \mathcal{B}: \mathbf{X} \to \mathbf{Y}$, называемый линейной комбинацией операторов \mathcal{A}, \mathcal{B} , определяется соотношением

$$(\alpha \mathcal{A} + \beta \mathcal{B})x = \alpha(\mathcal{A}x) + \beta(\mathcal{B}x) \quad \forall x \in \mathbf{X}. \tag{1.3}$$

Пусть $\mathcal{A}: \mathbf{X} \to \mathbf{Y}, \, \mathcal{B}: \mathbf{Y} \to \mathbf{Z}, \, \mathcal{A}, \mathcal{B}$ — линейные операторы. Оператор $\mathcal{B}\mathcal{A}: \mathbf{X} \to \mathbf{Z},$ определяемый соотношением

$$\mathcal{B}\mathcal{A}x = \mathcal{B}(\mathcal{A}x) \quad \forall x \in \mathbf{X},$$
 (1.4)

называется npoussedeнueм onepamopos \mathcal{A} , \mathcal{B} .

УПРАЖНЕНИЕ. Показать, что отображения $\alpha \mathcal{A} + \beta \mathcal{B}$, $\mathcal{B} \mathcal{A}$ — линейные операторы.

§ 2. Обратный оператор

Будем говорить, что линейный оператор $\mathcal{A}: \mathbf{X} \to \mathbf{Y}$ имеет *обратный*, если существует такой оператор $\mathcal{B}: \mathbf{Y} \to \mathbf{X}$, что

$$\mathcal{B}\mathcal{A}x = x \quad \forall \, x \in \mathbf{X},\tag{2.1}$$

$$\mathcal{A}\mathcal{B}y = y \quad \forall y \in \mathbf{Y}. \tag{2.2}$$

Обратный оператор, если он существует, также является линейным оператором. В самом деле, пусть $y^1, y^2 \in \mathbf{Y}, \alpha, \beta \in \mathbb{C}$. Положим $x^1 = \mathcal{B}y^1, x^2 = \mathcal{B}y^2$. Тогда $\mathcal{A}x^1 = \mathcal{A}\mathcal{B}y^1 = y^1, \mathcal{A}x^2 = \mathcal{A}\mathcal{B}y^2 = y^2$. Отсюда

$$\mathcal{B}(\alpha y^1 + \beta y^2) = \mathcal{B}(\alpha \mathcal{A}x^1 + \beta \mathcal{A}x^2) =$$

$$= \mathcal{B}\mathcal{A}(\alpha x^1 + \beta x^2) = \alpha x^1 + \beta x^2 = \alpha \mathcal{B}y^1 + \beta \mathcal{B}y^2.$$

Если оператор \mathcal{A} имеет обратный, то он осуществляет взаимнооднозначное отображение пространства \mathbf{X} на пространство \mathbf{Y} . Действительно, пусть $x^1, x^2 \in \mathbf{X}, x^1 \neq x^2$. Тогда и $\mathcal{A}x^1 \neq \mathcal{A}x^2$. В самом деле, если предположить, что $\mathcal{A}x^1 = \mathcal{A}x^2$, то $\mathcal{B}\mathcal{A}x^1 = \mathcal{B}\mathcal{A}x^2$ и, значит, $x^1 = x^2$. Далее, если $y \in \mathbf{Y}$, то, полагая $x = \mathcal{B}y$, получим, что $\mathcal{A}x = \mathcal{A}\mathcal{B}y = y$, т. е. всякий вектор из \mathbf{Y} является результатом действия оператора \mathcal{A} на некоторый вектор из \mathbf{X} .

Упражнение. Покажите, что линейный оператор не может иметь двух различных обратных операторов.

Обратный к оператору \mathcal{A} будем обозначать через \mathcal{A}^{-1} . Непосредственно из определения вытекает, что если оператор \mathcal{A}^{-1} существует, то $(\mathcal{A}^{-1})^{-1} = \mathcal{A}$. Оператор, имеющий обратный, будем называть обратимым.

Примеры.

- 1) Единичный оператор имеет обратный, причем $I^{-1} = I$.
- 2) Нулевой оператор, очевидно, не имеет обратного.
- 3) Оператор проектирования \mathcal{P} на подпространство L при условии, что подпространство L не совпадает со всем пространством \mathbf{X} , не имеет обратного (докажите!).

4) Всякая квадратная матрица A порядка n определяет линейный оператор, действующий в пространстве \mathbb{C}^n . Если матрица A невырождена, то этот оператор имеет обратный и он порождается матрицей A^{-1} (см. § 7, с. 94).

§ 3. Оператор разложения по базису

Пусть $\mathcal{E}_n = \{e^k\}_{k=1}^n$ — базис пространства \mathbf{X}_n . Определим оператор, действующий из \mathbb{C}^n в \mathbf{X}_n , при помощи соотношения

$$x = \mathcal{E}_n \xi, \quad \xi \in \mathbb{C}^n.$$
 (3.1)

Очевидно, что так определенный оператор линеен. Будем обозначать этот оператор через \mathcal{E} .

Поскольку $\{e^k\}_{k=1}^n$ — базис, то каждому $x \in \mathbf{X}_n$ однозначно соотответствует элемент $\xi \in \mathbb{C}^n$ такой, что $x = \sum_{k=1}^n \xi_k e^k$. Указанное соответствие порождает *оператор разложения по базису*, действующий из \mathbf{X}_n в \mathbb{C}^n . Обозначим этот оператор через \mathcal{E}^{-1} .

Непосредственно из определения операторов \mathcal{E} и \mathcal{E}^{-1} вытекает, что

$$\mathcal{E}^{-1}\mathcal{E}\xi = \xi \quad \forall \, \xi \in \mathbb{C}^n, \quad \mathcal{E}\mathcal{E}^{-1}x = x \quad \forall \, x \in \mathbf{X}_n,$$

т. е. операторы $\mathcal{E},\,\mathcal{E}^{-1}$ взаимно обратны.

ЗАМЕЧАНИЕ. Вычисление коэффициентов разложения вектора по базису часто приводит к необходимости решения крамеровских систем линейных алгебраических уравнений (см. примеры на с. 130, 135, 138). Наиболее просто коэффициенты разложения вектора вычисляются для ортонормированных базисов в евклидовых пространствах (см. примеры на с. 136, 138).

§ 4. Изоморфизм конечномерных пространств

1. Линейные пространства X, Y называются uзомор ϕ нымu, если существует обратимый линейный оператор $\mathcal{A}: X \to Y$. Иными словами, линейные пространства изомор ϕ ны, если между ними можно установить линейное взаимнооднозначное соответствие.

Понятно, что отношение изоморфизма обладает свойством транзитивности, и, значит, если пространства \mathbf{X} , \mathbf{Y} изоморфны пространству \mathbf{Z} , то они изоморфны друг другу.

2. Теорема. Все конечномерные линейные комплексные пространства одной и той же размерности изоморфны.

ДОКАЗАТЕЛЬСТВО. Отношение изоморфизма транзитивно. Поэтому достаточно установить, что любое комплексное линейное пространство \mathbf{X}_n изоморфно пространству \mathbb{C}^n . Как следует из п. 3, § 1, линейное взаимнооднозначное соответствие пространств \mathbf{X}_n и \mathbb{C}^n осуществляет оператор разложения по любому фиксированному базису \mathcal{E}_n пространства \mathbf{X}_n . \square

Точно так же доказывается, что все вещественные линейные пространства \mathbf{X}_n изоморфны пространству \mathbb{R}^n .

3. Теорема. Если конечномерные пространства X, Y изоморфны, то их размерности совпадают.

ДОКАЗАТЕЛЬСТВО. Пусть $\{e^k\}_{k=1}^n$ — базис пространства \mathbf{X} , а линейный оператор \mathcal{A} осуществляет взаимнооднозначное отображение пространства \mathbf{X} на пространство \mathbf{Y} . Из равенства $\sum_{k=1}^n \alpha_k \mathcal{A} e^k = 0$ вы-

текает, что $\mathcal{A}\sum_{k=1}^{n}\alpha_{k}e^{k}=0$. Действуя на обе части последнего равен-

ства оператором \mathcal{A}^{-1} , будем иметь $\sum\limits_{k=1}^{n} \alpha_k e^k = 0$, откуда получаем,

что $\alpha_1, \alpha_2, \ldots, \alpha_n = 0$, т. е. векторы $\{\mathcal{A}e^k\}_{k=1}^n$ линейно независимы, и размерность пространства \mathbf{Y} не меньше чем n. Меняя в этом рассуждении местами пространства \mathbf{X} и \mathbf{Y} , приходим к тому, что их размерности совпадают. \square

Таким образом, справедлива

- **4. Теорема.** Для того, чтобы конечномерные комплексные (или вещественные) пространства были изоморфны, необходимо и достаточно, чтобы их размерности совпадали.
- 5. Если установлен изоморфизм пространств X и Y, то с точки зрения выполнения линейных операций над их элементами они оказываются эквивалентными. Так, линейные операции над элементами любого конечномерного пространства путем введения какого-либо базиса всегда можно свести к линейным операциям на пространством числовых строк (\mathbb{R}^n или \mathbb{C}^n). Такой подход, фактически, нами уже применялся в § 1 гл. 4, где было установлено взаимнооднозначное соответствие между векторами (направленными отрезками) и их координатами и показано, что линейные операции над векторами эквиваленты операциям над их координатами.

§ 5. Линейные функционалы

- 1. Линейное отображение пространства \mathbf{X} в одномерное пространство $\mathbf{Y} = \mathbb{C}$ называется линейным функционалом (линейной формой). Подчеркнем, что линейный функционал ставит в соответствие каждому вектору $x \in \mathbf{X}$ число.
- **2.** Теорема Рисса¹⁾. Пусть l линейный функционал, заданный на конечномерном евклидовом пространстве \mathbf{X}_n . Тогда существует и при том только один вектор $u \in \mathbf{X}_n$ такой, что

$$l(x) = (x, u) \quad \forall x \in \mathbf{X}_n. \tag{5.1}$$

ДОКАЗАТЕЛЬСТВО. Убедимся сначала, что вектор u определяется по функционалу l однозначно. Действительно, если предположить, что существует еще один вектор $u^1 \in \mathbf{X}_n$ такой, что

$$l(x) = (x, u^1) \quad \forall x \in \mathbf{X}_n, \tag{5.2}$$

то, вычитая равенства (5.1), (5.2) почленно, получим, что

$$(x, u^1 - u) = 0 \quad \forall x \in \mathbf{X}_n.$$

В частности, в последнем равенстве можно положить $x=u^1-u$ и тогда $(u^1-u,u^1-u)=0$, т. е. $u^1=u$.

Для доказательства существования вектора u, определяемого тождеством (5.1), фиксируем в пространстве \mathbf{X}_n некоторый ортонормированный базис $\{e^k\}_{k=1}^n$ и пусть $x=\sum_{k=1}^n \xi_k e^k$. Тогда вследствие линейности функционал l получаем

$$l(x) = \sum_{k=1}^{n} \xi_k l(e^k).$$
 (5.3)

Положим $u=\sum_{k=1}^n\overline{l(e^k)}e^k$. Применяя формулу (13.2), с. 136, будем иметь, что l(x)=(x,u) для любого $x\in \mathbf{X}_n$. \square

§ 6. Сопряженный оператор

1. Пусть \mathbf{X}_n , \mathbf{Y}_m — евклидовы пространства, $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$ — линейный оператор. Оператор $\mathcal{A}^*: \mathbf{Y}_m \to \mathbf{X}_n$ называется сопряженным к оператору \mathcal{A} , если

$$(\mathcal{A}x, y) = (x, \mathcal{A}^*y)$$
 для любых $x \in \mathbf{X}_n$ и $y \in \mathbf{Y}_m$. (6.1)

 $[\]overline{\ ^{1)}}$ Рисс Фридьеш (Riesz Frigyes; 1880-1956) — венгерский математик.

Конечно, в левой части здесь имеется в виду скалярное произведение в пространстве \mathbf{Y}_m , а в правой части — в пространстве \mathbf{X}_n .

2. Для любого оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$ сопряженный оператор существует. В самом деле, фиксируем вектор $y \in \mathbf{Y}_m$ и будем рассматривать скалярное произведение $(\mathcal{A}x, y)$ как функционал на пространстве \mathbf{X}_n . Из линейности оператора \mathcal{A} и линейности скалярного произведения по первому аргументу вытекает, что этот функционал линеен. Значит, по теореме Рисса существует и при том только один вектор $g \in \mathbf{X}_n$ такой, что

$$(\mathcal{A}x, y) = (x, g) \quad \forall x \in \mathbf{X}_n.$$

Таким образом, определено отображение, ставящее в соответствие каждому вектору $y \in \mathbf{Y}_m$ вектор $g \in \mathbf{X}_n$. Обозначим это отображение через \mathcal{A}^* . Тогда можно написать, что

$$(\mathcal{A}x, y) = (x, \mathcal{A}^*y) \quad \forall x \in \mathbf{X}_n, \ y \in \mathbf{Y}_m. \tag{6.2}$$

Осталось доказать, что отображение \mathcal{A}^* линейно. Пусть $y^1, y^2 \in \mathbf{Y}_m$, $\alpha, \beta \in \mathbb{C}$. Тогда

$$(\mathcal{A}x, \alpha y^1 + \beta y^2) = \bar{\alpha}(\mathcal{A}x, y^1) + \bar{\beta}(\mathcal{A}x, y^2) =$$

$$= \bar{\alpha}(x, \mathcal{A}^*y^1) + \bar{\beta}(x, \mathcal{A}^*y^2) = (x, \alpha \mathcal{A}^*y^1 + \beta \mathcal{A}^*y^2). \quad (6.3)$$

C другой стороны, по определению отображения \mathcal{A}^* имеем

$$(\mathcal{A}x, \alpha y^1 + \beta y^2) = (x, \mathcal{A}^*(\alpha y^1 + \beta y^2)). \tag{6.4}$$

Сравнивая (6.3), (6.4) и используя произвольность вектора $x \in \mathbf{X}_n$, получаем

$$\mathcal{A}^*(\alpha y^1 + \beta y^2) = \alpha \mathcal{A}^* y^1 + \beta \mathcal{A}^* y^2.$$

Из определения сопряженного оператора, очевидно, вытекает, что $(\mathcal{A}^*)^* = \mathcal{A}$.

Упражнения.

- 1) Докажите, что каждому оператору соответствует только один сопряженный оператор.
- 2) Докажите, что если $\mathcal{A}, \mathcal{B}: \mathbf{X}_n \to \mathbf{Y}_m$ линейные операторы, то $(\alpha \mathcal{A} + \beta \mathcal{B})^* = \bar{\alpha} \mathcal{A}^* + \bar{\beta} \mathcal{B}^*$ для любых $\alpha, \beta \in \mathbb{C}$.
 - 3) Покажите, что $(\mathcal{AB})^* = \mathcal{B}^* \mathcal{A}^*$ для любых операторов \mathcal{A}, \mathcal{B} .
- 4) Докажите, что если линейный оператор $\mathcal{A}^*: \mathbf{X}_n \to \mathbf{Y}_m$ обратим, то оператор \mathcal{A}^{-1} также обратим, причем $(\mathcal{A}^*)^{-1} = (\mathcal{A}^{-1})^*$.

§ 7. Образ оператора. Ядро оператора

1. Пусть \mathcal{A} — линейный оператор, действующий из линейного пространства \mathbf{X} в линейное пространство \mathbf{Y} .

Множество всех векторов y из пространства \mathbf{Y} таких, что $y = \mathcal{A}x$ для некоторого $x \in \mathbf{X}$, называется областью значений или образом оператора и обозначается через $\operatorname{Im}(\mathcal{A})$.

Множество всех векторов $x \in \mathbf{X}$ таких, что $\mathcal{A}x = 0$, называется ядром оператора \mathcal{A} и обозначается через $\mathrm{Ker}(\mathcal{A})$.

2. Теорема. Множество $\operatorname{Im}(\mathcal{A})$ — линейное подпространство пространства \mathbf{Y} .

ДОКАЗАТЕЛЬСТВО. Пусть $y^1, y^2 \in \text{Im}(\mathcal{A})$. Тогда существуют $x^1, x^2 \in \mathbf{X}$ такие, что $y^1 = \mathcal{A}x^1, y^2 = \mathcal{A}x^2$. Для любых $\alpha, \beta \in \mathbb{C}$ отсюда получаем, что $\alpha y^1 + \beta y^2 = \alpha \mathcal{A}x^1 + \beta \mathcal{A}x^2$. Оператор \mathcal{A} линеен, следовательно, $\alpha y^1 + \beta y^2 = \mathcal{A}(\alpha x^1 + \beta x^2)$, потому $\alpha y^1 + \beta y^2 \in \text{Im}(\mathcal{A})$. \square

УПРАЖНЕНИЕ. Покажите, что $\mathrm{Ker}(\mathcal{A})$ — линейное подпространство пространства \mathbf{X} .

3. Теорема. Пусть $\mathbf{X}_n, \mathbf{Y}_m$ — евклидовы пространства. Для любого линейного оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$ пространство \mathbf{Y}_m допускает следующее ортогональное разложение:

$$\mathbf{Y}_m = \mathrm{Ker}(\mathcal{A}^*) \oplus \mathrm{Im}(\mathcal{A}). \tag{7.1}$$

ДОКАЗАТЕЛЬСТВО. Пусть $y \in \text{Im}(\mathcal{A}), y^1 \in \text{Ker}(\mathcal{A}^*)$. Тогда существует $x \in \mathbf{X}_n$ такой, что $y = \mathcal{A}x$, следовательно,

$$(y, y^1) = (Ax, y^1) = (x, A^*y^1) = 0,$$

т. е. y ортогонален $\mathrm{Ker}(\mathcal{A}^*)$. Если же вектор $y \in \mathbf{Y}_m$ ортогонален $\mathrm{Im}(\mathcal{A})$, то $(y, \mathcal{A}x) = 0$ для любого $x \in \mathbf{X}_n$, и тогда $(\mathcal{A}^*y, x) = 0$ для любого $x \in \mathbf{X}_n$, поэтому $\mathcal{A}^*y = 0$, т. е. $y \in \mathrm{Ker}(\mathcal{A}^*)$. Эти рассуждения показывают, что $\mathrm{Im}(\mathcal{A})$ — ортогональное дополнение $\mathrm{Ker}(\mathcal{A}^*)$, следовательно, по теореме 2, с. 150, равенство (7.1) выполнено. \square

Очевидно, что имеет место и следующее представление:

$$\mathbf{X}_n = \operatorname{Ker}(\mathcal{A}) \oplus \operatorname{Im}(\mathcal{A}^*). \tag{7.2}$$

4. Размерность подпространства $\operatorname{Im}(\mathcal{A}) \subset \mathbf{Y}_m$ называется pan -гом оператора \mathcal{A} и обозначается через $\operatorname{rank}(\mathcal{A})$.

Размерность ядра оператора \mathcal{A} называется $\partial e \phi e \kappa mo M$ оператора \mathcal{A} и обозначается через $\operatorname{def}(\mathcal{A})$.

5. Теорема. Пусть оператор \mathcal{A} действует из конечномерного евклидова пространства \mathbf{X}_n в конечномерное евклидово пространство \mathbf{Y}_m . Тогда

$$rank(\mathcal{A}) = rank(\mathcal{A}^*). \tag{7.3}$$

ДОКАЗАТЕЛЬСТВО. Оператор \mathcal{A} осуществляет изоморфизм пространств $\operatorname{Im}(\mathcal{A}^*)$ и $\operatorname{Im}(\mathcal{A})$. Действительно, вследствие (7.2) для любого $x \in \mathbf{X}_n$ имеем $\mathcal{A}x = \mathcal{A}x^1$, где $x^1 \in \operatorname{Im}(\mathcal{A}^*)$, т. е. любой элемент $\operatorname{Im}(\mathcal{A})$ — образ некоторого элемента из $\operatorname{Im}(\mathcal{A}^*)$. Предполагая, что $\mathcal{A}x' = \mathcal{A}x''$ для несовпадающих x', x'' из $\operatorname{Im}(\mathcal{A}^*)$, получим, что $\mathcal{A}(x'-x'')=0$, следовательно, $(x'-x'')\in \operatorname{Ker}(\mathcal{A})$. Поскольку $\operatorname{Im}(\mathcal{A}^*)$ — линейное подпространство, то $(x'-x'')\in \operatorname{Im}(\mathcal{A}^*)$. Вновь используя (7.2), получаем, что x'-x''=0. Таким образом, конечномерные пространства $\operatorname{Im}(\mathcal{A})$ и $\operatorname{Im}(\mathcal{A}^*)$ изоморфны, поэтому (см. теорему 3, с. 156) их размерности совпадают. \square

Из равенств (7.3), (7.2) (см. также п. 8, с. 143, теорему 1, с. 143) немедленно вытекает

6. Следствие. Для любого оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$

$$def(\mathcal{A}) = n - rank(\mathcal{A}). \tag{7.4}$$

§ 8. Матрица оператора

1. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$ — линейный оператор. Фиксируем в пространстве \mathbf{X}_n базис $\mathcal{E}_n = \{e^k\}_{k=1}^n$, а в пространстве \mathbf{Y}_m — базис $\mathcal{Q}_m = \{q^k\}_{k=1}^m$.

Представим каждый вектор $\mathcal{A}e^i,\ i=1,2,\ldots,n,$ в виде разложения по базису \mathcal{Q}_m :

$$\mathcal{A}e^{i} = \sum_{j=1}^{m} a_{ji}^{(eq)} q^{j}, \quad i = 1, 2, \dots, n.$$
 (8.1)

Введем в рассмотрение матрицу

$$A_{eq} = \begin{pmatrix} a_{11}^{(eq)} & a_{12}^{(eq)} & \dots & a_{1n}^{(eq)} \\ a_{21}^{(eq)} & a_{22}^{(eq)} & \dots & a_{2n}^{(eq)} \\ \dots & \dots & \dots & \dots \\ a_{m1}^{(eq)} & a_{m2}^{(eq)} & \dots & a_{mn}^{(eq)} \end{pmatrix}$$
(8.2)

(коэффициенты разложения вектора $\mathcal{A}e^i$ по базису \mathcal{Q}_m образуют i-й столбец матрицы A_{eq}). Матрицу A_{eq} называют матрицей оператора \mathcal{A} . Она однозначно определяется оператором \mathcal{A} и базисами \mathcal{E}_n , \mathcal{Q}_m .

Оператор и соответствующую ему матрицу будем обозначать одной и той же буквой, но набранной в разных шрифтах. Нижние индексы в обозначении матрицы оператора указывают на базисы, использованные для ее построения.

Соотношения (8.1) можно записать более кратко:

$$\mathcal{A}\mathcal{E}_n = \mathcal{Q}_m A_{eq}. \tag{8.3}$$

2. Пусть $x = \mathcal{E}_n \xi \in \mathbf{X}_n$, $\xi \in \mathbb{C}^n$. Представим $\mathcal{A}x$ в виде разложения по базису: $\mathcal{A}x = \mathcal{Q}_m \eta$, $\eta \in \mathbb{C}^m$. Тогда, используя (8.3), получим

$$Q_m \eta = \mathcal{A}x = \mathcal{A}\mathcal{E}_n \xi = Q_m A_{eq} \xi,$$

следовательно,

$$\eta = A_{eq}\xi. \tag{8.4}$$

Формула (8.4) показывает, как связаны коэффициенты разложения векторов x и $\mathcal{A}x$ по базисам пространств \mathbf{X}_n , \mathbf{Y}_m , соответственно.

Из (8.4) вытекает, что если матрица A_{eq} оператора \mathcal{A} известна, то по заданному вектору $x \in \mathbf{X}_n$ вектор $\mathcal{A}x \in \mathbf{Y}_m$ можно построить следующим образом.

- 1) Найти вектор $\xi \in \mathbb{C}^n$ коэффициентов разложения x по базису \mathcal{E}_n . Это можно представить в операторном виде: $\xi = \mathcal{E}^{-1}x$.
- 2) Умножив матрицу A_{eq} на вектор ξ , получить вектор $\eta \in \mathbb{C}^m$ коэффициентов разложения элемента $y = \mathcal{A}x \in \mathbf{Y}_m$ по базису \mathcal{Q}_m .
- 3) Вычислить элемент y по найденному вектору η , что опять можно записать в операторной форме: $y = Q\eta$.
- **3.** Сказанное выше означает, что, используя операторы \mathcal{E} , \mathcal{Q} , порожденные базисами \mathcal{E}_n , \mathcal{Q}_m , соотношение (8.3) можно представить в следующих эквивалентных формах:

$$A_{eq} = \mathcal{Q}^{-1} \mathcal{A} \mathcal{E},$$
 или $\mathcal{A} = \mathcal{Q} A_{eq} \mathcal{E}^{-1}.$ (8.5)

Поясним, что

$$A_{eq}\xi = \mathcal{Q}^{-1}\mathcal{A}\mathcal{E}\xi \quad \forall \xi \in \mathbb{C}^n, \qquad \mathcal{A}x = \mathcal{Q}A_{eq}\mathcal{E}^{-1}x \quad \forall x \in \mathbf{X}_n.$$
 (8.6)

Равенства (8.5), (8.6) иллюстрируют следующие диаграммы:

Таким образом, если в пространствах \mathbf{X}_n , \mathbf{Y}_m фиксированы некоторые базисы \mathcal{E}_n , \mathcal{Q}_m , то всякому линейному оператору \mathcal{A} , действующему из \mathbf{X}_n в \mathbf{Y}_m , однозначно соответствует линейный оператор, действующий из \mathbb{C}^n в \mathbb{C}^m (оператор умножения на матрицу A_{eq} оператора \mathcal{A} в этих базисах), и, наоборот, всякой матрице A размера $m \times n$ однозначно соответствует оператор \mathcal{A} , действующий из \mathbf{X}_n в \mathbf{Y}_m и определяемый по формуле $\mathcal{A} = \mathcal{Q}A\mathcal{E}^{-1}$.

4. Если $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$, то

$$\mathcal{A}\mathcal{E}_n = \mathcal{E}_n A_e, \tag{8.7}$$

или $A_e = \mathcal{E}^{-1} \mathcal{A} \mathcal{E}$, где A_e — матрица оператора \mathcal{A} в базисе \mathcal{E}_n .

5. Отметим два очевидных случая, когда матрица оператора не зависит от выбора базиса: 1) нулевой оператор, его матрица при любом выборе базисов в пространствах \mathbf{X}_n , \mathbf{Y}_m нулевая; 2) тождественный оператор, его матрица — единичная матрица в любом базисе пространства \mathbf{X}_n .

В дальнейшем (теорема 10, с. 165) будет доказано, фактически, обратное утверждение: если матрица оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ не зависит от выбора базиса, то существует такое число α , что $\mathcal{A} = \alpha I$, т. е. оператор \mathcal{A} — это оператор умножения на число (*скалярный* оператор).

6. Из определения матрицы оператора сразу же вытекает, что для любых операторов $\mathcal{A}, \mathcal{B}: \mathbf{X}_n \to \mathbf{Y}_m$ и для любых $\alpha, \beta \in \mathbb{C}$

$$(\alpha A + \beta B)_{eq} = \alpha A_{eq} + \beta B_{eq}, \tag{8.8}$$

т. е. линейным операциям над операторами соответствуют линейные операции над их матрицами.

7. Аналогичное при определенных условиях справедливо и для произведения операторов. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m, \mathcal{B}: \mathbf{Y}_m \to \mathbf{Z}_p, \mathcal{A}, \mathcal{B}$ — линейные операторы. Будем считать, что в пространствах $\mathbf{X}_n, \mathbf{Y}_m, \mathbf{Z}_p$ заданы базисы $\{e^k\}_{k=1}^n, \{q^k\}_{k=1}^m, \{r^k\}_{k=1}^p$, соответсвенно; A_{eq} — матрица оператора \mathcal{A}, B_{qr} — матрица оператора $\mathcal{B}, (BA)_{er}$ — матрица оператора $\mathcal{B}\mathcal{A}: \mathbf{X}_n \to \mathbf{Z}_p$. Покажем, что

$$(BA)_{er} = B_{gr}A_{eg}, \tag{8.9}$$

т. е. матрица произведения операторов равна произведению матриц операторов. Действительно, применяя формулы (8.5), получим

$$(BA)_{er} = \mathcal{R}^{-1}\mathcal{B}\mathcal{A}\mathcal{E} = \mathcal{R}^{-1}\mathcal{R}B_{ar}\mathcal{Q}^{-1}\mathcal{Q}A_{ea}\mathcal{E}^{-1}\mathcal{E} = B_{ar}A_{ea}.$$

Важно подчеркнуть, что здесь при определении матриц операторов \mathcal{A} и \mathcal{B} использовался один и тот же базис $\{q^k\}_{k=1}^m \subset \mathbf{Y}_m$. Указанное согласование базисов обычно предполагается выполненным.

Примеры.

1) Определим оператор $\mathcal{A}:\mathbb{C}^4 \to \mathbb{C}^4$ при помощи соотношения

$$\mathcal{A}x = (x_2, x_1, x_3 + x_4, x_4)$$

для любого $x=(x_1,x_2,x_3,x_4)\in\mathbb{C}^4$. Построим матрицу оператора \mathcal{A} в естественном базисе (см. с. 130, 114) пространства \mathbb{C}^4 . Имеем $\mathcal{A}i^1=(0,1,0,0)=i^2,\,\mathcal{A}i^2=(1,0,0,0)=i^1,\,\mathcal{A}i^3=(0,0,1,0)=i^3,\,\mathcal{A}i^4=(0,0,1,1)=i^3+i^4,\,$ следовательно, матрица оператора \mathcal{A} имеет вид

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

2) В трехмерном линейном пространстве \mathbf{Q}_2 всех полиномов степени не выше двух с комплексными коэффициентами определим оператор \mathcal{T} при помощи соотношения $\mathcal{T}q_2(z)=q_2(z+h)$ для любого элемента $q_2\in\mathbf{Q}_2$. Здесь h — фиксированное комплексное число (сдвиг). Построим матрицу оператора \mathcal{T} , принимая за базис пространства \mathbf{Q}_2 полиномы $\varphi_0(z)\equiv 1,\; \varphi_1(z)=z,\; \varphi_2(z)=z^2$. Имеем $\mathcal{T}\varphi_0=\varphi_0,\; \mathcal{T}\varphi_1=h\varphi_0+\varphi_1,\; \mathcal{T}\varphi_2=h^2\varphi_0+2h\varphi_1+\varphi_2,\;$ следовательно, матрица оператора \mathcal{T} равна

$$\begin{pmatrix} 1 & h & h^2 \\ 0 & 1 & 2h \\ 0 & 0 & 1 \end{pmatrix}.$$

Поэтому, если $q_2(z)=a_0+a_1z+a_2z^2$, то $\mathcal{T}q_2(z)=b_0+b_1z+b_2z^2$, где

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 1 & h & h^2 \\ 0 & 1 & 2h \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} a_0 + ha_1 + h^2a_2 \\ a_1 + 2ha_2 \\ a_2 \end{pmatrix}.$$

Упражнения.

- 1) Определим в пространстве \mathbb{C}^n так называемый оператор \mathcal{T} циклического сдвига, полагая $\mathcal{T}x = (x_1, x_2 \dots, x_{n-1}, x_0)$ для каждого $x = (x_0, x_1, \dots, x_{n-1}) \in \mathbb{C}^n$. Построить матрицу этого оператора в базисе Фурье (см. с. 136).
 - 2) Пусть \mathbf{T}_n линейное пространство функций вида

$$f_n(x) = a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \sin kx),$$

где $n \geqslant 1$ — фиксированное целое число, $a_0, a_k, b_k, k = 1, \ldots, n$ — произвольные вещественные числа, x может принимать любые вещественные значения. Операции сложения функций и умножения функции на число определены обычным образом. Показать, что функции

 $1, \cos x, \sin x, \cos 2x, \sin 2x, \dots, \cos nx, \sin nx$

образуют базис этого пространства. Построить матрицу оператора дифференцирования $\mathcal{D}f_n(x) = f'_n(x)$ в этом базисе.

- 3) Пусть \mathbf{P}_n линейное пространство полиномов степени не выше n с вещественными коэффициентами. Определим на этом пространстве линейный оператор \mathcal{A} , полагая $\mathcal{A}p_n(x) = ap'_n(x) + bp_n$ для любого $p_n \in \mathbf{P}_n$. Здесь a, b произвольным образом фиксированные вещественные числа. Построить матрицу оператора \mathcal{A} в базисе $\{1, x, x^2, \ldots, x^n\}$.
- 4) Построить матрицу оператора \mathcal{A} , описанного в предыдущем примере, полагая при этом b=0, трактуя возникающий оператор как оператор из \mathbf{P}_n в \mathbf{P}_{n-1} и принимая за базис пространства \mathbf{P}_k базис Тейлора¹⁾ $\{1,(x-c),\ldots,(x-c)^k\}$, c—произвольное вещественное число.
 - 5) Определим оператор \mathcal{K} , действующий из \mathbf{P}_n в \mathbf{P}_{n+1} по формуле

$$\mathcal{K}p_n(x) = \int_{0}^{x} p_n(t)dt.$$

Построить матрицу оператора \mathcal{K} , принимая $\{1, x, \dots, x^k\}$ за базис в пространстве \mathbf{P}_k .

6) Определим так называемый разностный оператор Δ_h , действующий из \mathbf{Q}_n в \mathbf{Q}_{n-1} по формуле

$$\Delta_h q_n(z) = q_n(z+h) - q_n(z),$$

 \mathbf{Q}_k — пространство полиномов степени не выше k с комплексными коэффициентами, h — произвольным образом фиксированное комплексное число. Построить матрицу оператора Δ_h , принимая $\{1, z, \ldots, z^k\}$ за базис в пространстве \mathbf{Q}_k .

8. Матрица оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$ определяется заданием базисов пространств $\mathbf{X}_n, \mathbf{Y}_m$. Выясним, как она изменяется при изменении базисов. Пусть наряду с базисами $\{e^k\}_{k=1}^n, \{q^k\}_{k=1}^m$ заданы базисы $\{\tilde{e}^k\}_{k=1}^n, \{\tilde{q}^k\}_{k=1}^m$ и $A_{\tilde{e}\tilde{q}}$ — матрица оператора \mathcal{A} в этих базисах. Будем считать известными матрицы T, R перехода к новым базисам, так что (см. § 11, с. 133)

$$\tilde{\mathcal{E}}_n = \mathcal{E}_n T, \quad \tilde{\mathcal{Q}}_m = \mathcal{Q}_m R.$$
 (8.10)

Согласно (8.5), с. 161, имеем $\mathcal{A} = \mathcal{Q}A_{eq}\mathcal{E}^{-1}$, $A_{\tilde{e}\tilde{q}} = \widetilde{\mathcal{Q}}^{-1}\mathcal{A}\widetilde{\mathcal{E}}$, следовательно, $A_{\tilde{e}\tilde{q}} = \widetilde{\mathcal{Q}}^{-1}\mathcal{Q}A_{eq}\mathcal{E}^{-1}\widetilde{\mathcal{E}}$. На основании (8.10) для любого $\xi \in \mathbb{C}^n$

 $^{^{1)}}$ Брук Тэйлор (Brook Taylor; 1685-1731) — английский математик.

имеем $\tilde{\mathcal{E}}_n \xi = \mathcal{E}_n T \xi$, поэтому $\tilde{\mathcal{E}} = \mathcal{E} T$, откуда получаем, что $\mathcal{E}^{-1} \tilde{\mathcal{E}} = T$. Аналогично, $\tilde{\mathcal{Q}}^{-1} \mathcal{Q} = R^{-1}$. Таким образом,

$$A_{\tilde{e}\tilde{q}} = R^{-1}A_{eq}T. \tag{8.11}$$

9. В важном частном случае, когда оператор ${\cal A}$ отображает пространство ${\bf X}_n$ в себя, получаем

$$A_{\tilde{e}} = T^{-1} A_e T. \tag{8.12}$$

Квадратные матрицы B, C, связанные соотношением

$$B = D^{-1}CD, (8.13)$$

где D — невырожденная матрица, называют *подобными*. Говорят еще, что матрица B получена из матрицы C при помощи *преобразования подобия*.

Соотношение (8.12) показывает, что матрицы одного и того же оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ в разных базисах подобны.

10. Теорема. Если матрица оператора $A : \mathbf{X}_n \to \mathbf{X}_n$ не зависит от выбора базиса в пространстве \mathbf{X}_n , то существует такое число α , что $A = \alpha I$.

Доказательство. Обозначим через A матрицу оператора \mathcal{A} в некотором базисе. Поскольку матрицы одного и того же оператора в различных базисах подобны, то $A = BAB^{-1}$ и, следовательно, AB = BA для любой невырожденной матрицы B. Пусть E_{ik} матрица, у которой элемент в позиции (i,k) равен единице, а все остальные элементы — нули. Матрица $E_{ik}+I$ — треугольная матрица с ненулевыми элементами на главной диагонали и потому обратима. Значит, $A(E_{ik}+I)=(E_{ik}+I)A$, следовательно, $AE_{ik}=E_{ik}A$. Будем считать, что $i \neq k$. В левой части последнего равенства, как нетрудно видеть, — матрица, у которой только k-й столбец отличен от нуля и он состоит из элементов $a_{1i}, a_{2i}, \ldots, a_{ni}$. В матрице, записанной в правой части этого же равенства, только i-я строка отлична от нуля и она состоит из элементов $a_{k1}, a_{k2}, \ldots, a_{kn}$. Поэтому указанное равенство может быть выполнено лишь в случае, когда $a_{ii} = a_{kk}$, а все участвующие здесь элементы с различающимися индексами равны нулю. Вследствие произвольности номеров i, k это означает, что матрица А диагональна и все ее диагональные элементы совпадают между собой, т. е. $A=\alpha I$, но тогда, очевидно, и $\mathcal{A}=\alpha I$. \square

§ 9. Вычисление матрицы оператора в евклидовом пространстве

1. Если пространство \mathbf{Y}_m евклидово, можно указать полезную формулу для вычисления матрицы оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$. Именно, пусть $G_q = \{(q^j,q^i)\}_{i,j=1}^m$ — матрица Грама, соответствующая базису \mathcal{Q}_m , матрица $G_{\mathcal{A}}$ определяется равенством

$$G_{\mathcal{A}} = \begin{pmatrix} (\mathcal{A}e^1, q^1) & (\mathcal{A}e^2, q^1) & \dots & (\mathcal{A}e^n, q^1) \\ (\mathcal{A}e^1, q^2) & (\mathcal{A}e^2, q^2) & \dots & (\mathcal{A}e^n, q^2) \\ \dots & \dots & \dots & \dots \\ (\mathcal{A}e^1, q^m) & (\mathcal{A}e^2, q^m) & \dots & (\mathcal{A}e^n, q^m) \end{pmatrix}.$$

Тогда

$$G_{\mathcal{A}} = G_q A_{eq}. \tag{9.1}$$

Действительно, умножая скалярно обе части уравнения (8.1), с. 160, на q^l , получим

$$(\mathcal{A}e^i, q^l) = \sum_{j=1}^m a_{ji}^{(eq)}(q^j, q^l), \quad i = 1, 2, \dots, n, \ l = 1, \dots, m.$$
 (9.2)

Формула (9.1) — это матричная запись равенств (9.2). Матрица Грама G_q невырождена, так как \mathcal{Q}_m — базис, следовательно,

$$A_{eq} = G_q^{-1} G_{\mathcal{A}}. (9.3)$$

В случае, когда базис Q_m ортонормирован, т. е. матрица G_q единичная,

$$A_{eq} = G_{\mathcal{A}}. (9.4)$$

2. Если и пространство \mathbf{X}_n евклидово, $\mathcal{A}^*: \mathbf{Y}_m \to \mathbf{X}_n$ — сопряженный к оператору \mathcal{A} , то точно так же, как в предыдущем пункте, получаем, что

$$G_{\mathcal{A}^*} = G_e A_{qe}^*, \tag{9.5}$$

где A_{qe}^* — матрица оператора \mathcal{A}^* относительно базисов $\mathcal{Q}_m \subset \mathbf{Y}_m$, $\mathcal{E}_n \subset \mathbf{X}_n$, G_e — матрица Грама базиса \mathcal{E}_n , матрица $G_{\mathcal{A}^*}$ определяется равенством

$$G_{\mathcal{A}^*} = \begin{pmatrix} (\mathcal{A}^*q^1, e^1) & (\mathcal{A}^*q^2, e^1) & \dots & (\mathcal{A}^*q^m, e^1) \\ (\mathcal{A}^*q^1, e^2) & (\mathcal{A}^*q^2, e^2) & \dots & (\mathcal{A}^*q^m, e^2) \\ \dots & \dots & \dots & \dots \\ (\mathcal{A}^*q^1, e^n) & (\mathcal{A}^*q^2, e^n) & \dots & (\mathcal{A}^*q^m, e^n) \end{pmatrix}.$$

Поскольку $(\mathcal{A}^*q^i, e^j) = (q^i, \mathcal{A}e^j) = \overline{(\mathcal{A}e^j, q^i)}$, то матрицы $G_{\mathcal{A}}$ и $G_{\mathcal{A}^*}$ взаимно сопряжены. Поэтому из (9.1) получаем $G_{\mathcal{A}^*} = (A_{eq})^*G_q$, откуда вследствие (9.5) вытекает, что

$$A_{qe}^* = G_e^{-1} (A_{eq})^* G_q. (9.6)$$

Формула (9.6) устанавливает связь между матрицами операторов \mathcal{A} и \mathcal{A}^* . В частности, если базисы \mathcal{E}_n и \mathcal{Q}_m ортонормированы, то матрицы операторов \mathcal{A} и \mathcal{A}^* взаимно сопряжены.

§ 10. Матрица обратного оператора

- 1. Поскольку $\det(D^{-1}) = 1/\det(D)$ для любой невырожденной матрицы D, то определители подобных матриц совпадают. В связи с этим можно назвать *определителем оператора* $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ определитель матрицы этого оператора. Такая характеристика оператора не зависит от выбора базиса в пространстве \mathbf{X}_n , т. е. является *инвариантом* оператора. Определитель оператора \mathcal{A} будем обозначать через $\det(\mathcal{A})$.
- **2.** Будем называть оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ невырожденным, если $\det(\mathcal{A}) \neq 0$. Для любого невырожденного оператора \mathcal{A} существует обратный. Действительно, фиксируем некоторый базис $\{e^k\}_{k=1}^n$ и определим оператор \mathcal{B} соотношением

$$\mathcal{B} = \mathcal{E} A_e^{-1} \mathcal{E}^{-1}.$$

Поскольку $\mathcal{A} = \mathcal{E}A_e\mathcal{E}^{-1}$, то $\mathcal{B}\mathcal{A} = \mathcal{A}\mathcal{B} = \mathcal{E}I\mathcal{E}^{-1} = I$, значит, оператор \mathcal{B} — обратный оператор к оператору \mathcal{A} .

- **3.** Как следует из предыдущих рассуждений, в любом базисе пространства \mathbf{X}_n матрица обратного оператора обратна к матрице исходного оператора.
- **4. Теорема.** Если оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ имеет обратный, то он невырожден.
- **5.** Теорема. Для того, чтобы оператор $A: \mathbf{X}_n \to \mathbf{X}_n$ имел обратный, необходимо и достаточно, чтобы уравнение Ax = 0 имело только тривиальное решение x = 0.

Упражнение. Докажите теоремы 4, 5.

§ 11. Ранг матрицы

- 1. Пусть A(m,n) произвольная прямоугольная матрица. Будем трактовать ее столбцы как систему векторов пространства \mathbb{C}^m . Ранг этой системы векторов (см. § 7, с. 125) назовем рангом матрицы A(m,n). Ранг матрицы A будем обозначать через $\operatorname{rank}(A)$.
- **2.** Теорема. Пусть $A: \mathbf{X}_n \to \mathbf{Y}_m$, A_{eq} матрица оператора A относительно произвольным образом фиксированных базисов $\{e_k\}_{k=1}^n \subset \mathbf{X}_n$, $\{q_k\}_{k=1}^m \subset \mathbf{Y}_m$. Тогда $\operatorname{rank}(A_{eq}) = \operatorname{rank}(A)$.

ДОКАЗАТЕЛЬСТВО. Пусть $x = \mathcal{E}_n \xi \in \mathbf{X}_n$. Тогда $\mathcal{A}x = \mathcal{Q}_m \eta$, где $\eta = A_{eq} \xi$ (см. п. 2, с. 161). Понятно, что вектор η принадлежит подпространству пространства \mathbb{C}^m , натянутому на столбцы матрицы A_{eq} и, следовательно, имеющему размерность, равную $\mathrm{rank}(A_{eq})$. Поскольку линейный оператор \mathcal{Q} обратим, то, очевидно, указанное подпространство изоморфно $\mathrm{Im}\,\mathcal{A}$, следовательно, в силу теоремы 4, с. 156, размерность $\mathrm{Im}(\mathcal{A})$ равна $\mathrm{rank}(A_{eq})$. \square

- **3.** Таким образом, ранг матрицы оператора инвариантен по отношению к выбору базисов, и можно было бы дать эквивалентное определение ранга оператора как ранга его матрицы.
- 4. Из теоремы 5, с. 160, теоремы 2 и п. 2, с. 166, немедленно вытекает, что для произвольной прямоугольной матрицы A(m,n) максимальное количество линейно независимых строк равно максимальному количеству линейно независимых столбцов этой матрицы. Таким образом, получаем эквивалентное данному выше определение ранга матрицы: ранг матрицы A(m,n) это ранг системы векторов пространства \mathbb{C}^n , образованных ее строками.
- **5.** Квадратная матрица порядка n невырождена тогда и только тогда, когда ее ранг равен n.
- ${f 6.}$ Любая перестановка строк или столбцов матрицы, очевидно, не меняет ее ранга. Более того, имеет место
- 7. Теорема. Пусть A(m,n) произвольная матрица, а B(m,m) и C(n,n) квадратные невырожденные матрицы. Тогда

$$rank(A) = rank(BA), (11.1)$$

$$rank(A) = rank(AC). (11.2)$$

ДОКАЗАТЕЛЬСТВО. Для проверки справедливости равенства (11.1) достаточно заметить, что если матрица B невырождена, то для

линейной независимости системы столбцов Ba^1, \ldots, Ba^p необходимо и достаточно линейной независимости столбцов a^1, \ldots, a^p (проверьте!). Справедливость (11.2) устанавливается затем переходом к транспонированным матрицам. \square

УПРАЖНЕНИЕ. Показать, что для любых допускающих умножение прямоугольных матриц A, B справедливо неравенство

$$rank(AB) \leq min\{rank(A), rank(B)\}.$$

§ 12. Элементарный метод вычисления ранга матрицы

В основе построений этого параграфа лежит следующая

1. Лемма. Пусть матрица A имеет ранг равный r. Тогда можно так переставить столбцы и строки этой матрицы, что главный минор $\Delta_r^{(1)}$ порядка r полученной матрицы будет отличен от нуля.

ДОКАЗАТЕЛЬСТВО. По условию лемммы найдутся r линейно независимых столбцов матрицы A. Выполним перестановку столбцов так, чтобы сделать их первыми r столбцами матрицы. Подматрица матрицы A, составленная из этих столбцов, очевидно, имеет ранг равный r, следовательно, r строк ее линейно независимы. Переставляя теперь строки матрицы A так, чтобы указанные строки были ее первыми r строками, мы, очевидно, получим главный минор порядка r, не равный нулю. \square

Минор Δ_r , сконструированный в ходе доказательства леммы 1, принято называть базисным минором матрицы A.

Сформулируем и докажем, в некотором смысле обратное, утверждение. Пусть A — произвольная прямоугольная матрица, Δ_r — ее главный минор порядка r. Назовем главный минор Δ_{r+1} окаймляющим минором для минора Δ_r . Переставляя строки и столбцы матрицы A с номерами, большим чем r, можно построить различные окаймляющие миноры для минора Δ_r .

2. Лемма. Пусть главный минор Δ_r матрицы A не равен нулю, а все окаймляющие его миноры — нули. Тогда ранг матрицы A равен r.

ДОКАЗАТЕЛЬСТВО. Поскольку $\Delta_r \neq 0$, первые r столбцов матрицы A линейно независимы. Покажем, что любой столбец матрицы A

 $^{^{1)}}$ Напомним, что главным минором порядка r называется минор, образованный элементами матрицы, стоящими на пересечении ее первых r строк и первых r столбцов (см. задачу 1 на с. 106).

с номером, большим чем r, линейно выражается через ее первые r столбцов. Это и будет означать, что $\mathrm{rank}(A)=r$. Предположим противное. Тогда, присоединяя к первым r столбцам матрицы A некоторый столбец с большим номером, мы получим, что образованная таким образом матрица имеет ранг r+1. Поэтому она имеет r+1 линейно независимую строку. Причем первые ее r строк линейно независимы, так как $\Delta_r \neq 0$. Значит, найдется строка с номером, большим чем r, которая не выражается линейно через первые r строк. Делая указанную строку (r+1)-й строкой матрицы A, получим, что $\Delta_{r+1} \neq 0$, чего по условию леммы быть не может. \square

- **3.** Доказательство леммы 2 приводит к следующему способу вычисления ранга матрицы $^{1)}$.
- 1) Просматриваем элементы матрицы. Если все они нули, полагаем ранг равным нулю и останавливаем процесс.
- 2) Если найден элемент матрицы, отличный от нуля, то, переставляя соответствующие строки и столбцы матрицы, помещаем его на место первого элемента первого столбца.
- 3) Окаймляем элемент a_{11} , т. е. составляем определители второго порядка, присоединяя к нему элементы других строк и столбцов (например, элементы второй строки и второго столбца). Если все эти определители второго порядка нули, то, очевидно, у матрицы только один линейно независимый столбец (и одна линейно независимая строка). Значит, ранг матрицы равен единице.
- 4) Если обнаружен ненулевой определитель второго порядка, то путем перестановки строк и столбцов матрицы превращаем этот определитель в определитель вида Δ_2 (образованный элементами, стоящими на перерсечении первых двух строк и первых двух столбцов) и окаймлением строим определители третьего порядка, пока не получим среди них определитель, отличный от нуля, и т. д.

Если на каком-то шаге описанного алгоритма получен определитель Δ_r , не равный нулю, а все определители порядка r+1, построенные его окаймлением, — нули, то это означает, что ранг матрицы равен r.

Понятно, что описанный процесс зачастую может быть ускорен. Именно, пусть удалось установить, что определитель, образованный элементами, стоящими на пересечении каких-то r строк и каких-то r столбцов матрицы, не равен нулю. Строим окаймлением этого определителя определители порядка r+1. Если среди них есть ненулевой,

 $^{^{1)}}$ В реальной вычислительной практике обычно применяют способ отыскания ранга матрицы, описанный на с. 223.

процесс продолжается. Если все такие определители — нули, то ранг матрицы равен r.

ПРИМЕР. Найдем ранг матрицы

$$A = \begin{pmatrix} 2 & -4 & 3 & 1 & 0 \\ 1 & -2 & 1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{pmatrix}.$$

Заметим, что в матрице A содержится минор

$$d = \begin{vmatrix} -4 & 3 \\ -2 & 1 \end{vmatrix},$$

не равный нулю. Минор третьего порядка

$$d' = \begin{vmatrix} 2 & -4 & 3 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{vmatrix} = 2 \begin{vmatrix} -2 & 1 \\ 1 & -1 \end{vmatrix} - \begin{vmatrix} -4 & 3 \\ 1 & -1 \end{vmatrix},$$

окаймляющий минор d, не равен нулю, однако, оба минора четвертого порядка

$$\begin{vmatrix} 2 & -4 & 3 & 1 \\ 1 & -2 & 1 & -4 \\ 0 & 1 & -1 & 3 \\ 4 & -7 & 4 & -4 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 3 & 1 \\ 1 & 0 & 1 & -4 \\ 0 & 1 & -1 & 3 \\ 4 & 1 & 4 & -4 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 3 & 1 \\ 1 & 0 & 1 & -4 \\ 0 & 1 & -1 & 3 \\ 4 & 0 & 5 & -7 \end{vmatrix} = - \begin{vmatrix} 2 & 3 & 1 \\ 1 & 1 & -4 \\ 5 & -7 \end{vmatrix} =$$

$$= - \begin{vmatrix} 2 & 3 & 1 \\ 1 & 1 & -4 \\ 2 & 2 & -8 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 1 \\ 1 & 1 & -4 \\ 1 & 1 & -4 \end{vmatrix}$$

И

$$\begin{vmatrix} 2 & -4 & 3 & 0 \\ 1 & -2 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 4 & -7 & 4 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 4 & 1 & 4 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 0 & 3 & 0 \\ 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 1 \\ 4 & 0 & 5 & 4 \end{vmatrix} = - \begin{vmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 4 & 5 & 4 \end{vmatrix} =$$

$$= - \begin{vmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{vmatrix} = -2 \begin{vmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{vmatrix},$$

окаймляющие минор d', очевидно, равны нулю, поэтому ранг матрицы A равен трем.

Глава 8

Общие системы линейных алгебраических уравнений

§ 1. Линейные операторные уравнения. Теорема Фредгольма

В этом параграфе изучаются *линейные* уравнения, т. е. уравнения вида

$$\mathcal{A}x = y. \tag{1.1}$$

Здесь \mathcal{A} — линейный оператор, действующий из евклидова пространства \mathbf{X}_n в евклидово пространство \mathbf{Y}_m , y — заданный элемент пространства \mathbf{Y}_m , x — искомый элемент пространства \mathbf{X}_n . Цель исследований — указать условия существования решений уравнения (1.1).

Наряду с уравнением (1.1) мы будем рассматривать соответствующее ему *однородное* уравнение

$$\mathcal{A}x = 0, \tag{1.2}$$

а также так называемое однородное сопряженное уравнение

$$\mathcal{A}^*z = 0. ag{1.3}$$

Здесь \mathcal{A}^* — оператор сопряженный оператору \mathcal{A} , см § 6, с. 157. Из теоремы 3, с. 159, непосредственно вытекает

Теорема Фредгольма¹⁾. Для того, чтобы уравнение (1.1) имело решение, необходимо и достаточно, чтобы его правая часть была ортогональна любому решению однородного уравнения (1.3).

Упражнение. Покажите, что теорему 5, с. 167, можно вывести из теоремы Фредгольма.

Приведем пример использования теоремы Фредгольма. Дана симметричная матрица

$$A = \begin{pmatrix} 1 & -1 & 0 & \cdots & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & -1 & 2 & -1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 0 & -1 & 2 & -1 \\ 0 & 0 & \cdots & \cdots & 0 & -1 & 1 \end{pmatrix}$$

 $^{^{1)}}$ Эрик Ивар Фредгольм (Erik Ivar Fredholm; 1866-1927) — шведский математик.

порядка n. Требуется найти ранг матрицы A и описать условия на вектор $b \in \mathbb{R}^n$, обеспечивающие разрешимость системы линейных уравнений

$$Ax = b. (1.4)$$

Будем трактовать матрицу A как линейный оператор, действующий в евклидовом пространстве \mathbb{R}^n со стандартным скалярным произведением. Поскольку матрица симметрична, оператор A самосопряжен. Опишем его ядро. Рассматривая однородную систему уравнений

$$Ax = 0, (1.5)$$

заметим, что ее i-е уравнение, $i=2,3,\ldots,n-1$, записывается так: $-x_{i-1}+2x_i-x_{i+1}=0$, или $x_i-x_{i-1}=x_{i+1}-x_i$. Отсюда, очевидно, вытекает, что если вектор x — решение системы (1.5), то

$$x_1 = x_2 = \dots = x_n$$

т. е. ядро оператора A — одномерное подпространство пространства \mathbb{R}^n векторов вида $x^1=c(1,\ldots,1)$, где c — произвольное вещественное число. Отсюда вследствие (7.4), с. 160, получаем, что $\mathrm{rank}(A)=n-1$. Записывая условие ортогональности вектора b вектору x^1 , получим

$$b_1 + b_2 + \dots + b_n = 0.$$

Это и есть необходимое и достаточное условие разрешимости системы уравнений (1.4).

§ 2. Общее решение линейного уравнения

В этом параграфе будем считать, что уравнение

$$\mathcal{A}x = y, \tag{2.1}$$

где \mathcal{A} — линейный оператор, действующий из линейного пространства \mathbf{X}_n в линейное пространство \mathbf{Y}_m , имеет решение, и опишем структуру всех его возможных решений, иными словами, получим представление общего решения уравнения (2.1).

Пусть x^1 , x^2 — решения уравнения (2.1) при одной и той же правой части y. Тогда, очевидно, $\mathcal{A}(x^1-x^2)=0$, т. е. $x^1-x^2\in \mathrm{Ker}(\mathcal{A})$. Отсюда вытекает, что если фиксировать некоторое решение уравнения (2.1) (обозначим его через x^0 и будем называть частным решением неоднородного уравнения), то любое другое решение (2.1) имеет

вид $x=x^0+\tilde{x}$, где $\tilde{x}\in {\rm Ker}(\mathcal{A})$. Пусть $\varphi^1,\,\varphi^2,\,\ldots,\,\varphi^p$ — некий базис в ${\rm Ker}(\mathcal{A})$. Тогда

$$x = x^0 + \sum_{k=1}^{p} c_k \varphi^k. (2.2)$$

Таким образом, представление общего решения уравнения (2.1) получено. Меняя в (2.2) коэффициенты c_1, c_2, \ldots, c_p , можно получить любое решение этого уравнения.

Векторы $\varphi^1, \varphi^2, \ldots, \varphi^p$ принято называть $\phi y n \partial a$ ментальной системой решений однородного уравнения

$$\mathcal{A}x = 0, \tag{2.3}$$

 $\tilde{x} = \sum_{k=1}^{p} c_k \varphi^k$ — общим решением однородного уравнения. Итак, общее решение уравнения (2.1) есть сумма его какого-либо частного решения уравнения (2.1) и общего решения однородного уравнения (2.3).

§ 3. Системы линейных уравнений. Теорема Кронекера — Капелли

1. При фактическом построении решений уравнения

$$\mathcal{A}x = y. \tag{3.1}$$

нужно ввести некоторые базисы $\mathcal{E}_n = \{e^k\}_{k=1}^n$, $\mathcal{Q}_m = \{q^k\}_{k=1}^m$ в пространствах \mathbf{X}_n , \mathbf{Y}_m и перейти к системе линейных алгебраических уравнений относительно коэффициентов ξ разложения вектора x по базису \mathcal{E}_n , считая известными коэффициенты η разложения вектора y по базису \mathcal{Q}_m . В результате (см. п. 2, с. 161), получим

$$A_{eq}\xi = \eta, \tag{3.2}$$

где A_{eq} — матрица оператора \mathcal{A} .

Более подробная запись уравнения (3.2) дает

$$\sum_{j=1}^{n} a_{ij}^{(eq)} \xi_j = \eta_i, \quad i = 1, 2, \dots, m.$$
 (3.3)

Подчеркнем, что коэффициенты $a_{ij}^{(eq)}$ этой системы уравнений (элементы матрицы оператора \mathcal{A}) и столбец правой части η_1 , η_2, \ldots, η_m предполагаются известными, а числа $\xi_1, \xi_2, \ldots, \xi_n$ требуется найти.

В отличие от рассматривавшихся ранее систем линейных алгебраических уравнений (см. § 5, гл. 5) у системы уравнений (3.3) количество уравнений и число неизвестных, вообще говоря, различны.

Задачи (3.1), (3.2) эквивалентны в том смысле, что если ξ — решение уравнения (3.2), то $x = \mathcal{E}_n \xi$ — решение уравнения (3.1) при $y = \mathcal{Q}_m \eta$, и наоборот, если x — решение уравнения (3.1), то коэффициенты разложения векторов x, y по соответствующим базисам связаны соотношением (3.2).

2. Редукция задачи (3.1) к системе линейных алгебраических уравнений (3.2) позволяет получить и некоторые дополнительные теоретические результаты. Для упрощения их формулировок будем считать, что базисы \mathcal{E}_n , \mathcal{Q}_m ортонормированы.

При этом предположении уравнение (1.3) эквивалентно системе уравнений

$$A_{eq}^* \zeta = 0, \tag{3.4}$$

где матрица A_{eq}^* , сопряженная матрице A_{eq} , есть матрица оператора \mathcal{A}^* (см.п. 2, с. 166), $z = \mathcal{Q}_m \zeta$. Напомним также (см. п. 2, с. 136), что скалярные произведения векторов в пространствах \mathbf{X}_n , \mathbf{Y}_m можно вычислять как стандартные скалярные произведения векторов коэффициентов их разложений по соответствующим ортонормированным базисам $\{e^k\}_{k=1}^n$ или $\{q^k\}_{k=1}^m$.

Интерпретируем теперь теорему Фредгольма в терминах систем (3.2), (3.4). Заметим, прежде всего, что принадлежность вектора $z = \sum_{k=1}^{m} \zeta_k q^k$ множеству $\operatorname{Ker}(\mathcal{A}^*)$ эквивалентна тому, что вектор ζ — решение системы (3.4). Последнее означает, что вектор ζ ортогонален столбцам матрицы A_{eq} в смысле стандартного скалярного произведения. Принадлежность вектора $y = \sum_{k=1}^{m} \eta_k q^k$ множеству $\operatorname{Im}(\mathcal{A})$ эквивалентна тому, что вектор η ортогонален в смысле стандартного скалярного произведения каждому решению системы (3.4), а это означает, что вектор η принадлежит подпространству, натянутому на столбцы матрицы A_{eq} .

Таким образом, теорема Фредгольма эквивалентна следующему очевидному утверждению. Для того, чтобы система уравнений (3.2) была разрешима, необходимо и достаточно, чтобы столбец правой части η принадлежал подпространству пространства \mathbb{C}^m , натянутому на столбцы матрицы A_{eq} .

Этот признак разрешимости системы (3.2) часто формулируют, используя понятие ранга матрицы. Пусть (A_{eq}, η) — так называемая

расширенная матрица системы (3.2), т. е. матрица, получающаяся из A_{eq} добавлением столбца η . Добавление столбца не уменьшает ранга матрицы, и, очевидно, что ранг сохраняется тогда и только тогда, когда η есть линейная комбинация столбцов матрицы A_{eq} . Таким образом, справедлива

3. Теорема Кронекера — Капелли¹⁾. Для того, чтобы система уравнений (3.2) имела решение, необходимо и достаточно, чтобы ранги матриц A_{eq} и (A_{eq}, η) совпадали.

Заметим также, что систему (3.4) можно записать в виде

$$\zeta^* A_{eq} = 0,$$

а условие ортогональности векторов ζ и η более подробно означает, что $\sum_{k=1}^m \bar{\zeta}_k \eta_k = 0$. Таким образом, теорема Фредгольма допускает следующую матричную формулировку.

4. Теорема. Для того, чтобы система линейных уравнений (3.2) имела решение, необходимо и достаточно, чтобы для любого решения однородной системы уравнений $\zeta A_{eq} = 0$ выполнялось равенство $\zeta \eta = 0$.

Поясним, что здесь η интерпретируется как вектор столбец, а ζ — как вектор строка.

Отметим также, что теоремы 3, 4 дают необходимые и достаточные условия разрешимости системы линейных уравнений (3.2), выраженные непосредственно в терминах матрицы этой системы и столбца правой части.

§ 4. Построение частного решения системы линейных уравнений

Опишем элементарный способ, который можно применять для построения частного решения системы линейных уравнений²⁾

$$Ax = b. (4.1)$$

Будем считать, что система (4.1) разрешима и положим $r = \operatorname{rank}(A, b)$.

 $^{^{1)}}$ Альфредо Капелли (Alfredo Capelli; 1858-1916) — итальянский математик.

²⁾В реальной вычислительной практике обычно применяют методы основанные на построении так называемых сингулярных базисов оператора (см. с. 223).

Используя описанные в пункте 3, с. 170, приемы вычисления ранга матрицы, приведем матрицу (A,b) к такому виду, что главный минор порядка r этой матрицы отличен от нуля, а все строки преобразованной матрицы (A,b) начиная с (r+1)-й есть линейные комбинации первых r строк.

Выполняемые указанным способом преобразования приводят, очевидно, к системе линейных уравнений, эквивалентной системе (4.1), т. е. каждое решение системы (4.1) — решение преобразованной системы, и, наоборот, каждое решение преобразованной системы есть решение системы (4.1). При этом последние m-r уравнений преобразованной системы — следствия первых r уравнений.

Отбросим эти последние уравнения, а в оставшихся r уравнениях перенесем слагаемые, содержащие переменные с (r+1)-й и до n-й (эти переменные принято называть ceofodhumu), в правую часть.

Придадим свободным переменным любые значения (чаще всего, нет никаких причин не брать их равными нулю). В результате получим систему из r уравнений с r неизвестными, определитель которой по построению отличен от нуля. Решив эту крамеровскую систему уравнений, найдем x_1, x_2, \ldots, x_r . Таким образом, будет построен вектор $x = (x_1, x_2, \ldots, x_r, x_{r+1}, \ldots, x_n)$, являющийся решением системы (3.2).

ПРИМЕР. Найдем частное решение системы уравнений

$$x_1 - x_2 + x_3 - x_4 = 4, (4.2)$$

$$x_1 + x_2 + 2x_3 + 3x_4 = 8, (4.3)$$

$$2x_1 + 4x_2 + 5x_3 + 10x_4 = 20. (4.4)$$

Определитель

$$\Delta_2 = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix},$$

находящийся в левом верхнем углу матрицы системы уравнений, не равен нулю. Определители

$$\begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & 2 \\ 2 & 4 & 5 \end{vmatrix}, \quad \begin{vmatrix} 1 & -1 & -1 \\ 1 & 1 & 3 \\ 2 & 4 & 10 \end{vmatrix}, \quad \begin{vmatrix} 1 & -1 & 4 \\ 1 & 1 & 8 \\ 2 & 4 & 20 \end{vmatrix},$$

окаймляющие определитель Δ_2 , — нули. Поэтому ранг основной матрицы системы уравнений равен двум, и ранг расширенной матрицы системы уравнений равен двум. Система совместна, причем последнее уравнение — следствие первых двух уравнений системы. Таким образом, чтобы найти частное решение системы (4.2)-(4.4), достаточно решить систему двух уравнений (4.2)-(4.3), придавая x_3 , x_4 произвольные значения. Полагая $x_3=x_4=0$, находим $x_1=6$, $x_2=2$, следовательно, вектор x=(6,2,0,0) — решение системы (4.2)-(4.4).

§ 5. Фундаментальная система решений однородной системы уравнений

Обратимся теперь к задаче построения фундаментальной системы решений однородной системы уравнений

$$Ax = 0 (5.1)$$

с матрицей размера $m \times n$. Пусть $\mathrm{rank}(A) = r$. Вследствие (7.4), с. 160, достаточно построить любые n-r линейно независимых решений однородной системы уравнений (5.1). Будем, естественно, предполагать, что n>r.

Выполнив те же действия, что и в $\S 4$, приведем систему уравнений (5.1) к эквивалентной системе вида

$$A(r,r)x(r,1) + B(r,n-r)y(n-r,1) = 0. (5.2)$$

Здесь A(r,r) — невырожденная матрица, столбец y((n-r),1) соответствует свободным переменным. Выберем векторы

$$y^{1}((n-r),1), y^{2}((n-r),1), \dots, y^{n-r}((n-r),1)$$
 (5.3)

так, чтобы они были линейно независимы (проще всего их взять как векторы стандартного базиса пространства \mathbb{C}^{n-r}). По этим векторам из уравнений

$$A(r,r)x^{k}(r,1) + B(r,(n-r))y^{k}((n-r),1) = 0,$$

k = 1, ..., n - r, однозначно определятся векторы

$$x^{1}(r,1), x^{2}(r,1), \dots, x^{n-r}(r,1).$$

Образуем теперь векторы $z^k(n,1)$, приписывая к компонентам векторов $x^k(r,1)$ компоненты векторов $y^k((n-r),1)$:

$$z^{k}(n,1) = (x^{k}(r,1), y^{k}((n-r),1)), \quad k = 1, 2, \dots, n-r.$$

По построению $Az^k=0$ для $k=1,\ldots,\ n-r,$ кроме того, очевидно, векторы $z^k,\ k=1,\ldots,\ n-r,$ линейно независимы, так как векторы системы (5.3) линейно независимы. Таким образом, векторы $z^k,\ k=1,2,\ldots,\ n-r,$ образуют фундаментальную систему решений однородной системы уравнений (5.1).

ПРИМЕР. Найдем фундаментальную систему решений однородной системы уравнений

$$x_1 - x_2 + x_3 - x_4 = 0, (5.4)$$

$$x_1 + x_2 + 2x_3 + 3x_4 = 0, (5.5)$$

$$2x_1 + 4x_2 + 5x_3 + 10x_4 = 0. (5.6)$$

Ранг матрицы этой системы, как было показано при решении предыдущего примера, равен двум. Поэтому нужно построить два линейно независимых (непропорциональных) решения системы (5.4)-(5.6). Как уже было установлено, последнее уравнение системы — следствие первых двух. Полагая $x_3=1,\ x_4=0$ в уравнениях $(5.4),\ (5.5),$ получим

$$x_1 - x_2 + 1 = 0, (5.7)$$

$$x_1 + x_2 + 2 = 0, (5.8)$$

откуда $x_1 = -3/2$, $x_2 = -1/2$. Полагая же $x_3 = 0$, $x_4 = 1$ в уравнениях (5.4), (5.5), будем иметь $x_1 = -1$, $x_2 = -2$. Поэтому векторы $x^1 = (-3/2, -1/2, 1, 0)$, $x^2 = (-1, -2, 0, 1)$ образуют фундаментальную систему решений системы уравнений (5.4) – (5.6). Любой вектор

$$x = c_1(-3/2, -1/2, 1, 0) + c_2(-1, -2, 0, 1),$$
(5.9)

где c_1, c_2 — произвольные числа, — решение системы (5.4) — (5.6), и наоборот, любое решение системы уравнений (5.4) — (5.6) представимо в виде (5.9) при некоторых c_1, c_2 .

§ 6. Псевдорешение

1. Пусть оператор \mathcal{A} действует из евклидова пространства \mathbf{X}_n в евклидово пространство \mathbf{Y}_m , y — фиксированный вектор из \mathbf{Y}_m , x — произвольный вектор из \mathbf{X}_n . Вектор $\mathcal{A}x - y$ называется невязкой, соответствующей уравнению

$$\mathcal{A}x = y. \tag{6.1}$$

Вещественная функция

$$F(x) = |\mathcal{A}x - y|^2,$$

определенная на пространстве \mathbf{X}_n , называется функцией (функционалом) невязки. Если $\mathcal{A}x \neq y$, т. е. вектор x не является решением уравнения (6.1), то F(x) > 0. Естественно попытаться найти вектор x, который доставляет минимальное значение функции невязки.

Вектор $x \in \mathbf{X}_n$, минимизирующий функцию невязки, называют псевдорешением уравнения (6.1). Если уравнение (6.1) разрешимо, то любое его решение является псевдорешением.

2. Псевдорешение существует при любой правой части уравнения (6.1). В самом деле, в соответствии с разложением (7.1), с. 159, представим вектор y в виде $y = y_1 + y_0$, где $y_1 \in \text{Im}(\mathcal{A}), y_0 \in \text{Ker}(\mathcal{A}^*)$. Тогда для любого $x \in \mathbf{X}_n$ вектор $\mathcal{A}x - y^1$ принадлежит $\text{Im}(\mathcal{A})$, и, следовательно,

$$F(x) = |Ax - y^1|^2 + |y^0|^2.$$

Очевидно, что минимальное значение функции F равно $|y^0|^2$ и достигается на векторе x, являющемся решением уравнения

$$\mathcal{A}x = y^1. \tag{6.2}$$

Поскольку $y^1 \in \text{Im}(\mathcal{A})$, уравнение (6.2) разрешимо.

3. При любом $y \in \mathbf{Y}_m$ уравнение

$$\mathcal{A}^* \mathcal{A} x = \mathcal{A}^* y \tag{6.3}$$

разрешимо. Всякое его решение — псевдорешение уравнения (6.1). Действительно, так как $\mathcal{A}^*y^0=0$, то уравнение (6.3) эквивалентно уравнению

$$\mathcal{A}^*(\mathcal{A}x - y^1) = 0. \tag{6.4}$$

Уравнение (6.4) разрешимо, так как каждое решение уравнения (6.2) есть решение уравнения (6.4). Обратно, если x — решение уравнения (6.4), то вектор $\mathcal{A}x - y^1 \in \text{Ker}(\mathcal{A}^*)$ и, следовательно (см. (7.1), с. 159), ортогонален $\text{Im}(\mathcal{A})$, но, с другой стороны, $\mathcal{A}x - y^1 \in \text{Im}(\mathcal{A})$, значит $\mathcal{A}x - y^1 = 0$, т. е. x — решение уравнения (6.2).

Уравнение (6.3) называют *трансформацией Гаусса* уравнения (6.1). Трансформация Гаусса любого линейного уравнения приводит к разрешимому уравнению.

Глава 9

Строение линейного оператора

§ 1. Инвариантные подпространства

1. Пусть $\mathcal{A}: \mathbf{X} \to \mathbf{X}$ — линейный оператор. Подпространство $L \subset \mathbf{X}$ называется *инвариантным подпространством* оператора \mathcal{A} , если оператор \mathcal{A} отображает всякий вектор x из L в вектор, также принадлежащий подпространству L.

Тривиальные подпространства, т. е. $L = \{0\}$ и $L = \mathbf{X}$, являются инвариантными подпространствами любого оператора $\mathcal{A} : \mathbf{X} \to \mathbf{X}$.

Пусть пространство X — прямая сумма подпространств L и M, \mathcal{P} — оператор проектирования на подпространство L параллельно подпространству M. Тогда $\mathcal{P}x = x$ для любого $x \in L$ и $\mathcal{P}x = 0$ для любого $x \in M$, т. е. L и M — инвариантные подпространства оператора \mathcal{P} .

Приведем пример оператора, не имеющего нетривиальных инвариантных подпространств.

Пусть \mathbf{X}_2 — двумерное вещественное евклидово пространство. Нетрудно убедиться, что если L — нетривиальное подпространство \mathbf{X}_2 , то L — множество векторов вида αe , где e — фиксированный ненулевой вектор, а α пробегает все множество вещественных чисел (можно сказать, что L — прямая на плоскости, проходящая через начало координат). Введем в \mathbf{X}_2 ортонормированный базис e^1, e^2 . Пусть $\mathcal{Q}: \mathbf{X}_2 \to \mathbf{X}_2$ — оператор, отображающий каждый вектор $x = \xi_1 e^1 + \xi_2 e^2$ в вектор $y = -\xi_2 e^1 + \xi_1 e^2$. Векторы x, y ортогональны, и поэтому ясно, что если L — нетривиальное подпространство \mathbf{X}_2 , то для $x \in L$ вектор $\mathcal{Q}x \in L^\perp$ и, следовательно, $\mathcal{Q}x \notin L$, если $x \neq 0$, т. е. оператор \mathcal{Q} не имеет нетривиальных инвариантных подпространств.

2. Если известен базис инвариантного подпространства, то вид матрицы оператора может быть упрощен. Именно, пусть $\{e^k\}_{k=1}^n$ базис пространства \mathbf{X}_n , L — подпространство \mathbf{X}_n , инвариантное относительно оператора \mathcal{A} и имеющее размерность m. Пусть векторы $\{e^k\}_{k=1}^m$ принадлежат L. Тогда $\{e^k\}_{k=1}^m$ — базис подпространства L

(докажите!) и

$$\mathcal{A}e^k = \sum_{j=1}^m a_{jk}^{(e)} e^j, \ k = 1, \dots, m, \ \mathcal{A}e^k = \sum_{j=1}^n a_{jk}^{(e)} e^j, \ k = m+1, \dots, n.$$

Эти равенства показывают, что элементы матрицы A_e , стоящие на пересечении первых m столбцов и последних (n-m) строк, — нули, следовательно, матрица A_e может быть записана как блочная 2×2 треугольная матрица:

$$A_e = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}, \tag{1.1}$$

где A_{11} — квадратная матрица размера m, A_{22} — квадратная матрица размера n-m, 0 — нулевая матрица размера $(n-m) \times m, A_{12}$ — матрица размера $m \times (n-m)$.

Еще большее упрощение матрицы A_e достигается, когда пространство \mathbf{X}_n представимо в виде прямой суммы инвариантных подпространств L и M оператора \mathcal{A} , т. е. $\mathbf{X}_n = L \dotplus M$ и базис $\{e^k\}_{k=1}^n$ пространства \mathbf{X}_n выбран так, что векторы $\{e^k\}_{k=1}^m$ — базис подпространства L. Тогда, как нетрудно видеть, в представлении (1.1) матрица A_{12} будет нулевой, т. е. матрица A_e принимает блочно диагональный вид

$$A_e = \begin{pmatrix} A_{11} & 0\\ 0 & A_{22} \end{pmatrix}. {1.2}$$

- **2.1.** Очевидно, верно и обратное, а именно, если матрица оператора в некотором базисе $\{e^k\}_{k=1}^n$ имеет блочную структуру вида (1.2), то пространство \mathbf{X}_n представимо как прямая сумма двух подпространств, базисами этих подпространств будут векторы базиса $\{e^k\}_{k=1}^n$ с номерами, совпадающими с номерами строк соответствующих блоков.
- **2.2.** Вообще говоря, и подпространства L и M могут распадаться на прямые суммы инвариантных подпространств меньшей размерности. Тогда количество блоков, стоящих на диагонали матрицы A_e , будет увеличиваться, а их размеры будут уменьшаться.
- **2.3.** Наиболее простым является случай, когда пространство \mathbf{X}_n может быть представлено в виде прямой суммы n одномерных инвариантных подпространств оператора \mathcal{A} . Тогда матрица A_e становится диагональной. Однако такое представление возможно лишь для некоторых специальных классов операторов.

3. Лемма. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ — невырожденный оператор. Пусть $L \subset \mathbf{X}_n$ — инвариантное подпространство оператора \mathcal{A} . Тогда для любого $x \in L$ найдется, и при том только один, вектор $y \in L$ такой, что $\mathcal{A}y = x^1$.

ДОКАЗАТЕЛЬСТВО. Подпространство L инвариантно относительно оператора \mathcal{A} , поэтому можно ввести в рассмотрение оператор $\mathcal{A}_L: L \to L$, полагая $\mathcal{A}_L x = \mathcal{A} x$ для $x \in L$. Оператор \mathcal{A}_L не вырожден, так как если $\mathcal{A}_L x = \mathcal{A} x = 0$, то x = 0, поскольку \mathcal{A} не вырожден (см. теорему 5, с. 167). Отсюда вытекает, что уравнение $\mathcal{A}_L y = x$ при любом $x \in L$ имеет единственное решение $y \in L$. \square

Оператор \mathcal{A}_L , определенный в ходе доказательства леммы 3, называют сужением оператора \mathcal{A} на его инвариантное подпространство L.

§ 2. Собственные числа и собственные векторы

В пункте 2 предыдущего параграфа была показана особая роль одномерных инвариантных подпространств оператора. С понятием одномерного инвариантного подпространства тесно связано понятие собственного вектора оператора.

1. Будем говорить, что вектор $x \in \mathbf{X} - co6cmвенный вектор оператора <math>\mathcal{A}: \mathbf{X} \to \mathbf{X}$, если $x \neq 0$ и существует число λ такое, что

$$Ax = \lambda x. (2.1)$$

Число λ при этом называется собственным числом оператора \mathcal{A} . Говорят, что собственный вектор x соответствует (отвечает) собственному числу λ . Собственный вектор и соответствующее ему собственное число называют также собственной парой оператора \mathcal{A} .

- **2.** Пусть x, λ собственная пара оператора \mathcal{A} . Тогда $\mathcal{A}\alpha x = \lambda \alpha x$ для любого $\alpha \in \mathbb{C}$, т. е. одномерное подпространство пространства \mathbf{X} , натянутое на собственный вектор оператора \mathcal{A} , инвариантно относительно оператора \mathcal{A} .
- 3. Пусть λ собственное число оператора \mathcal{A} . Ядро оператора $\mathcal{A} \lambda I$ будем обозначать через L_{λ} и называть собственным подпространством оператора \mathcal{A} . Понятно, что $L_{\lambda} \neq \{0\}$. Всякий ненулевой вектор из L_{λ} собственный вектор оператора \mathcal{A} , отвечающий собственному числу λ .

¹⁾Можно сказать, таким образом, что невырожденный оператор осуществляет взаимнооднозначное отображение любого своего инвариантного подпространства на это же подпространство.

- **4.** Приведем простые примеры операторов, имеющих собственные векторы.
- 1) Для нулевого оператора всякий ненулевой вектор пространства \mathbf{X}_n собственный вектор, отвечающий собственному числу, равному нулю.
- 2) Для оператора αI , где $\alpha \in \mathbb{C}$, всякий ненулевой вектор пространства есть собственный вектор, отвечающий собственному числу, равному α .
- 3) Пусть пространство \mathbf{X} прямая сумма подпространств L и M и пусть \mathcal{P} оператор проектирования пространства \mathbf{X} на подпространство L параллельно M. Тогда $\mathcal{P}x=x$ для любого вектора x из L, и $\mathcal{P}x=0$ для любого $x\in M$, т. е. все ненулевые векторы из L собственные векторы оператора \mathcal{P} и все они отвечают собственному числу, равному единице, тогда как все ненулевые векторы из M собственные векторы оператора \mathcal{P} , отвечающие собственному числу, равному нулю.

В вещественном пространстве \mathbf{X}_n не у всякого оператора есть собственные векторы. Так, например, оператор \mathcal{Q} , построенный в пункте 1, с. 181, не имеет собственных векторов в вещественном пространстве \mathbf{X}_2 . Это сразу следует из того, что у оператора \mathcal{Q} нет нетривиальных инвариантных подпространств.

5. Теорема. Всякий оператор A, действующий в комплексном пространстве X_n , имеет собственные векторы.

ДОКАЗАТЕЛЬСТВО. Достаточно убедиться, что существует $\lambda \in \mathbb{C}$ такое, что линейное уравнение

$$(\mathcal{A} - \lambda I)x = 0 \tag{2.2}$$

имеет нетривиальное решение. Фиксируем в пространстве \mathbf{X}_n некоторый базис \mathcal{E}_n . Пусть A_e — матрица оператора \mathcal{A} в этом базисе. Рассмотрим уравнение

$$\det(A_e - \lambda I) = 0. \tag{2.3}$$

Нетрудно проверить, что $\det(A_e - \lambda I)$ — полином порядка n относительно λ . Поэтому уравнение (2.3) имеет n корней $\lambda_1, \lambda_2, \ldots, \lambda_n$. Всякий корень λ_k уравнения (2.3) — собственное число оператора \mathcal{A} . В самом деле,

$$(A_e - \lambda_k I)\xi = 0 (2.4)$$

есть однородная система линейных уравнений с вырожденной матрицей, следовательно, она имеет нетривиальное решение. Обозначим

это решение через ξ^k . Тогда вектор $x^k = \mathcal{E}_n \xi^k$, очевидно, будет не равен нулю и будет решением уравнения $(\mathcal{A} - \lambda_k I) x^k = 0$. \square

УПРАЖНЕНИЕ. Пусть \mathcal{A} — оператор, действующий в комплексном пространстве \mathbf{X}_n, L — инвариантное подпространство оператора \mathcal{A} . Показать, что у оператора \mathcal{A} есть собственный вектор, принадлежащий L.

- **6.** Операторы \mathcal{A} и \mathcal{B} , действующие в линейном пространстве \mathbf{X} , называются *перестановочными*, если $\mathcal{AB} = \mathcal{BA}$.
- **6.1.** Лемма. Пусть \mathcal{A} , \mathcal{B} перестановочные преобразования линейного пространства \mathbf{X} и пусть $L_{\lambda} \subset \mathbf{X}$ собственное подпространство оператора \mathcal{A} . Тогда L_{λ} инвариантное подпространство оператора \mathcal{B} .

ДОКАЗАТЕЛЬСТВО. Пусть $x \in L_{\lambda}$. Тогда $\mathcal{A}x = \lambda x$, следовательно, $\mathcal{B}\mathcal{A}x = \lambda \mathcal{B}x$, но $\mathcal{B}\mathcal{A} = \mathcal{A}\mathcal{B}$, поэтому $\mathcal{A}\mathcal{B}x = \lambda \mathcal{B}x$. Это означает, что вектор $\mathcal{B}x$ принадлежит подпространству L_{λ} . \square

§ 3. Характеристический полином и характеристические числа

1. Полином $\det(A - \lambda I)$ называется характеристическим полиномом матрицы A. Корни характеристического полинома называются характеристическими (собственными) числами матрицы A. Множество всех характеристических чисел матрицы A называется ее спектром и обозначается через $\sigma(A)$. Как установлено в ходе доказательства теоремы 5, с. 184, для любого числа $\lambda \in \sigma(A)$ существует вектор $x \in \mathbb{C}^n$, не равный нулю, и такой, что

$$Ax = \lambda x$$
.

Вектор x называется co6cmвенным вектором mampuqui A, соответствующим характеристическому числу λ этой матрицы.

2. Теорема. *Характеристические полиномы, а следовательно, и спектры подобных матриц совпадают.*

ДОКАЗАТЕЛЬСТВО. Пусть T — невырожденная матрица, матрица $B = T^{-1}AT$ подобна матрице A. Тогда

$$B - \lambda I = T^{-1}AT - \lambda I = T^{-1}(A - \lambda I)T.$$

Поскольку $\det(T^{-1}) = 1/\det(T)$, то $\det(B - \lambda I) = \det(A - \lambda I)$. \square

2.1. Матрицы оператора в различных базисах подобны (см. п. 9, с. 165), поэтому характеристический полином матрицы оператора и его корни не зависят от выбора базиса в пространстве \mathbf{X}_n . Характеристический полином матрицы оператора естественно называть поэтому характеристическим полиномом оператора.

Характеристические числа матрицы A_e оператора \mathcal{A} называются xарактеристическими числами этого оператора. Они, таким образом, являются инвариантами оператора.

Множество всех характеристических чисел оператора \mathcal{A} (часто называемое его $cne\kappa mpom$) будем обозначать через $\sigma(\mathcal{A})$.

Из доказательства теоремы 5 вытекает, что для оператора, действующего в комплексном пространстве \mathbf{X}_n , понятия характеристического и собственного числа, фактически, не различаются, и применительно к таким операторам соответствующие термины используются как синонимы.

§ 4. Признак линейной независимости собственных векторов

- 1. Понятно, что любой оператор, действующий в пространстве \mathbf{X}_n , имеет не более чем n различных собственных чисел.
- **2. Теорема.** Пусть $\lambda_1, \lambda_2, \ldots, \lambda_p$ собственные числа оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$. Пусть все они попарно различны. Пусть, далее, x^1, x^2, \ldots, x^p собственные векторы оператора \mathcal{A} , причем $\mathcal{A}x^k = \lambda_k x^k, k = 1, 2, \ldots, p$. Тогда векторы x^1, x^2, \ldots, x^p линейно независимы.

ДОКАЗАТЕЛЬСТВО. Предположим, что вопреки утверждению теоремы система векторов x^1, x^2, \ldots, x^p линейно зависима. Не ограничивая общности рассуждений, можно считать, что ее максимальную линейно независимую подсистему образуют векторы $x^1, x^2, \ldots, x^r, r < p$. Обозначим через L_r подпространство пространства \mathbf{X}_n , натянутое на векторы x^1, x^2, \ldots, x^r . Оно имеет размерность r и инвариантно относительно оператора \mathcal{A} . Пусть \mathcal{A}_{L_r} — сужение оператора \mathcal{A} на L_r . Тогда числа $\lambda_1, \ldots, \lambda_r$ — собственные числа оператора \mathcal{A}_{L_r} . Все они попарно различны. Ненулевой вектор x^{r+1} принадлежит L_r и $\mathcal{A}_{L_r}x^{r+1} = \mathcal{A}x^{r+1} = \lambda_{r+1}x^{r+1}$, т. е. λ_{r+1} — собственное число оператора \mathcal{A}_{L_r} , но оператор \mathcal{A}_{L_r} действует в пространстве размерности r и потому не может иметь больше чем r различных собственных чисел. \square

2.1. Из сказанного выше вытекает, что если у оператора \mathcal{A} все собственные числа оказываются различными, то соответствующие им собственные векторы x^k , $k=1,2,\ldots,n$, образуют базис пространства \mathbf{X}_n . По построению

$$\mathcal{A}x^k = \lambda_k x^k, \quad k = 1, 2, \dots, n,$$

поэтому матрица оператора \mathcal{A} в базисе $\{x^k\}_{k=1}^n$ — диагональная матрица, по диагонали которой расположены числа λ_k , $k=1,2\ldots,n$.

ПРИМЕР. Найдем все собственные числа и собственные векторы оператора \mathcal{A} , действующего в комплексном пространстве \mathbf{X}_3 и заданного в некотором базисе матрицей

$$\begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}.$$

Характеристическое уравнение имеет вид

$$\begin{vmatrix} 4-\lambda & -5 & 7\\ 1 & -4-\lambda & 9\\ -4 & 0 & 5-\lambda \end{vmatrix} = 0.$$

Вычисляя определитель, получим

$$\lambda^3 - 5\lambda^2 + 17\lambda - 13 = 0. (4.1)$$

Очевидно, $\lambda = 1$ — корень этого уравнения. Нетрудно проверить, что

$$\lambda^3 - 5\lambda^2 + 17\lambda - 13 = (\lambda - 1)(\lambda^2 - 4\lambda + 13).$$

Корни уравнения $\lambda^2 - 4\lambda + 13 = 0$ есть $2 \pm 3i$. Таким образом,

$$\lambda_1 = 1, \quad \lambda_2 = 2 + 3i, \quad \lambda_3 = 2 - 3i$$

есть собственные числа оператора \mathcal{A} .

Координаты собственного вектора, отвечающего λ_1 , есть решение однородной системы уравнений

$$3x_1 - 5x_2 + 7x_3 = 0, (4.2)$$

$$x_1 - 5x_2 + 9x_3 = 0, (4.3)$$

$$-4x_1 + 4x_3 = 0. (4.4)$$

Определитель $\begin{vmatrix} 3 & -5 \\ 1 & -5 \end{vmatrix} \neq 0$. Поэтому ранг матрицы системы уравнений (4.2)-(4.4) равен двум и, следовательно, эта система уравнений может иметь лишь одно линейно независимое решение. Положим $x_3=1$ и найдем x_1, x_2 , решая систему уравнений (4.2)-(4.3). Получим $x_1=1, x_2=2$. Таким образом, вектор (1,2,1) — решение системы уравнений (4.2)-(4.4). Отсюда вытекает, что множество всех собственных векторов, отвечающих собственному числу $\lambda_1=1$, есть множество векторов вида c(1,2,1), где c — произвольное комплексное число, не равное нулю.

Координаты собственного вектора, отвечающего λ_2 , есть решение однородной системы уравнений

$$(2-3i)x_1 - 5x_2 + 7x_3 = 0, (4.5)$$

$$x_1 - (6+3i)x_2 + 9x_3 = 0, (4.6)$$

$$-4x_1 + (3-3i)x_3 = 0. (4.7)$$

Определитель $\begin{vmatrix} 2-3i & -5 \\ 1 & -(6+3i) \end{vmatrix} \neq 0$. Поэтому координаты собственного вектора найдем, решая систему уравнений (4.5)-(4.6) при $x_3=1$. Получим $x_1=(3-3i)/4$, $x_2=(5-3i)/4$. Таким образом, множество всех собственных векторов, отвечающих собственному числу λ_2 , есть множество векторов вида c(3-3i,5-3i,4), где c — произвольное комплексное число, не равное нулю.

Аналогичные вычисления показывают, что множество всех собственных векторов, отвечающих собственному числу λ_3 , есть множество векторов вида c(3+5i,5+3i,4), где c — произвольное комплексное число, не равное нулю.

В рассматриваемом примере все собственные числа различны. Соответствующие им собственные векторы образуют базис пространства \mathbb{C}^3 . Это видно и из того, что определитель

$$\begin{vmatrix} 1 & 2 & 1 \\ 3 - 3i & 5 - 3i & 4 \\ 3 + 5i & 5 + 3i & 4 \end{vmatrix},$$

составленный из их координат, не равен нулю-

В случае, когда характеристический полином оператора \mathcal{A} имеет кратные корни, соответствующих им линейно независимых векторов может оказаться меньше, чем n, и они не будут базисом пространства \mathbf{X}_n .

ПРИМЕР. Найдем все собственные числа и собственные векторы оператора \mathcal{A} , действующего в комплексном пространстве \mathbf{X}_3 и заданного в некотором базисе матрицей

$$\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}.$$

Характеристическое уравнение есть $\lambda^3+3\lambda^2+3\lambda+1=0$. Корни этого уравнения есть $\lambda_1=\lambda_2=\lambda_3=-1$. Система уравнений для отыскания координат собственного вектора имеет, следовательно, вид

$$3x_1 - x_2 + 2x_3 = 0, (4.8)$$

$$5x_1 - 2x_2 + 3x_3 = 0, (4.9)$$

$$-x_1 - x_3 = 0. (4.10)$$

Определитель $\begin{vmatrix} 3 & -1 \\ 5 & -2 \end{vmatrix}$ не равен нулю. Поэтому ранг матрицы этой системы равен двум, и линейное пространство решений системы (4.8)-(4.10) одномерно. Нетрудно видеть, что вектор x=(1,1,-1) — решение системы (4.8)-(4.10). Следовательно, множество всех собственных векторов матрицы — это множество векторов вида c(1,1,-1), где c — произвольное не равное нулю число. Понятно, что собственные векторы матрицы в рассматриваемом случае не образуют базиса в пространстве \mathbb{C}^3 .

§ 5. Геометрическая и алгебраическая кратности собственных чисел

1. Размерность собственного подпространства оператора \mathcal{A} , отвечающего собственному числу λ этого оператора, называется *геометрической кратностью* собственного числа λ .

Кратность числа λ как корня характеристического уравнения оператора $\mathcal A$ называется алгебраической кратностью собственного числа λ .

2. Теорема. Для любого оператора A, действующего в конечномерном пространстве X_n , геометрическая кратность любого собственного числа не превосходит его алгебраической кратности.

ДОКАЗАТЕЛЬСТВО. Пусть L_{λ_0} — собственное подпространство оператора \mathcal{A} , отвечающее его собственному числу λ_0 , $\dim(L_{\lambda_0}) = m$, и векторы f^1, f^2, \ldots, f^m образуют базис этого подпространства. Дополним произвольно указанный базис векторами $g^{m+1}, g^{m+2}, \ldots, g^n$ до базиса пространства \mathbf{X}_n . Поскольку $\mathcal{A}f^k = \lambda_0 f^k, k = 1, 2, \ldots, m$, то матрицу оператора \mathcal{A} в полученном базисе можно представить в блочном виде (см. п. 2 с. 181)

$$\begin{pmatrix} \Lambda_0 & A_{12} \\ 0 & A_{22} \end{pmatrix}, \tag{5.1}$$

где Λ_0 — диагональная матрица порядка m с элементами λ_0 на диагонали и, следовательно, характеристический полином оператора A можно представить так:

$$\det(\mathcal{A} - \lambda I) = (\lambda - \lambda_0)^m Q_{n-m}(\lambda),$$

где $Q_{n-m}(\lambda)$ — некоторый полином порядка n-m. Теперь совершенно очевидно, что m не может превосходить кратности λ_0 как корня уравнения $\det(\mathcal{A} - \lambda I) = 0$. \square

- **3.** Говорят, что оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ есть оператор *простой структуры*, если можно указать базис пространства \mathbf{X}_n , все векторы которого собственные векторы оператора \mathcal{A} .
- **4. Теорема.** Для того, чтобы оператор \mathcal{A} был оператором простой структуры, необходимо и достаточно, чтобы геометрическая кратность каждого собственного числа оператора \mathcal{A} совпадала с его алгебраической кратностью.

ДОКАЗАТЕЛЬСТВО этой теоремы предлагается читателю в качестве упражнения.

§ 6. Инварианты оператора

При изложении элементов теории инвариантов нам потребуется

1. Лемма. Справедливо разложение

$$d(x) = \begin{vmatrix} a_{11} + x & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} + x & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} + x \end{vmatrix} =$$

$$= x^{n} + c_{1}x^{n-1} + c_{2}x^{n-2} + \dots + c_{n-1}x + c_{n}, \quad (6.1)$$

где

$$c_{k} = \sum_{1 \leq p_{1} < p_{2} < \dots < p_{k} \leq n} \begin{vmatrix} a_{p_{1}, p_{1}} & a_{p_{1}, p_{2}} & \dots & a_{p_{1}, p_{k}} \\ a_{p_{2}, p_{1}} & a_{p_{2}, p_{2}} & \dots & a_{p_{2}, p_{k}} \\ \dots & \dots & \dots & \dots \\ a_{p_{k}, p_{1}} & a_{p_{k}, p_{2}} & \dots & a_{p_{k}, p_{k}} \end{vmatrix},$$
(6.2)

k = 1, 2, ..., n. Суммирование в (6.2) распространяется на все C_n^k определителей порядка k указанного вида.

Определители, входящие в правую часть равенства (6.2), называются $\partial uarona_n bhы mu$ минорами порядка k матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Отметим, что

$$c_1 = a_{11} + a_{22} + \dots + a_{nn}, \quad c_n = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

ДОКАЗАТЕЛЬСТВО леммы 1. Обозначим через a^1, a^2, \ldots, a^n столбцы матрицы A и будем трактовать определитель матрицы A как функцию ее столбцов, т. е. $\det A = \Delta(a^1, a^2, \ldots, a^n)$. Тогда функцию d(x) можно представить в виде

$$d(x) = \Delta(a^1 + xi^1, a^2 + xi^2, \dots, a^n + xi^n),$$

где, как обычно, через i^1, i^2, \ldots, i^n обозначены единичные векторы пространства \mathbb{C}^n . Как мы знаем, определитель линеен по каждому

из своих столбцов, поэтому, проводя элементарные вычисления, получим

$$d(x) = \Delta(a^{1}, a^{2}, \dots, a^{n}) +$$

$$+x(\Delta(i^{1}, a^{2}, \dots, a^{n}) + \Delta(a^{1}, i^{2}, \dots, a^{n}) + \dots + \Delta(a^{1}, a^{2}, \dots, a^{n-1}, i^{n})) +$$

$$+x^{2}(\Delta(i^{1}, i^{2}, a^{3}, \dots, a^{n}) + \dots + \Delta(a^{1}, a^{2}, \dots, a^{n-2}, i^{n-1}, i^{n})) +$$

$$+ \dots + x^{n}\Delta(i^{1}, i^{2}, \dots, i^{n}).$$
 (6.3)

Поясним, что множителем при x^k является сумма C_n^k определителей, каждый из которых получается заменой k столбцов определителя $\Delta(a^1,a^2,\ldots,a^n)$ на соответствующие единичные векторы. Для завершения доказательства леммы остается заметить, что $\Delta(i^1,i^2,\ldots,i^n)=1$, а заменяя k столбцов в определителе $\Delta(a^1,a^2,\ldots,a^n)$ на единичные векторы с теми же номерами, мы получаем соответствующий диагональный минор порядка n-k матрицы A. \square

2. Характеристический полином матрицы A_e оператора \mathcal{A} с точностью до знака совпадает с $\det(\lambda I - A_e)$. Записывая этот определитель в виде разложения по степеням λ , получим

$$\det(\lambda I - A_e) = P_n(\lambda) = \lambda^n - \mathcal{I}_1 \lambda^{n-1} + \mathcal{I}_2 \lambda^{n-2} + \dots + (-1)^n \mathcal{I}_n. \quad (6.4)$$

Как уже отмечалось, коэффициенты полинома P_n являются инвариантами оператора \mathcal{A} . Все они выражаются через элементы матрицы оператора, но при этом важно помнить, что никакое преобразование базиса их значений не меняет. В связи этим приняты обозначения $\mathcal{I}_k = \mathcal{I}_k(\mathcal{A}), \ k = 1, 2, \dots, n$. Используя формулы (6.1), (6.2), нетрудно получить следующие выражения для инвариантов $\mathcal{I}_k(\mathcal{A})$ оператора \mathcal{A} через элементы матрицы A_e :

$$\mathcal{I}_{k}(\mathcal{A}) = \sum_{1 \leqslant i_{1} < i_{2} < \dots < i_{k} \leqslant n} \begin{vmatrix} a_{i_{1},i_{1}}^{e} & a_{i_{1},i_{2}}^{e} & \dots & a_{i_{1},i_{k}}^{e} \\ a_{i_{2},i_{1}}^{e} & a_{i_{2},i_{2}}^{e} & \dots & a_{i_{2},i_{k}}^{e} \\ \dots & \dots & \dots & \dots \\ a_{i_{k},i_{1}}^{e} & a_{i_{k},i_{2}}^{e} & \dots & a_{i_{k},i_{k}}^{e} \end{vmatrix},$$
(6.5)

k = 1, 2, ..., n, в частности,

$$\mathcal{I}_1(\mathcal{A}) = a_{11}^e + a_{22}^e + \dots + a_{nn}^e, \quad \mathcal{I}_n(\mathcal{A}) = \det A_e,$$
 (6.6)

причем вследствие формул Вьета (см. п. 24, с. 24)

$$a_{11}^e + a_{22}^e + \dots + a_{nn}^e = \lambda_1 + \lambda_2 + \dots + \lambda_n, \quad \det A_e = \lambda_1 \lambda_2 \dots \lambda_n,$$
 (6.7)

где $\lambda_1, \lambda_2, \ldots, \lambda_n$ — характеристические числа оператора \mathcal{A} . Вообще, $\mathcal{I}_k(\mathcal{A})$ есть сумма всевозможных произведений k различных характеристических чисел оператора \mathcal{A} .

Полезно отметить, что, поскольку всякая квадратная матрица $A = \{a_{ij}\}_{i,j=1}^n$ порождает линейный оператор (умножения на вектор), действующий в пространстве \mathbb{C}^n , ей можно отнести величины $\mathcal{I}_k(A), k = 1, 2, \ldots, n$, вычисляемые по формулам вида (6.5) с заменой a_{ij}^e на a_{ij} . Понятно, что эти величины не меняются ни при каком подобном преобразовании матрицы A и потому называются инвариантами матрицы A.

3. Теорема. Пусть \mathcal{A} — оператор, действующий в конечномерном пространстве \mathbf{X}_n . Тогда существует вещественное число $\varepsilon_0 > 0$ такое, что для любого числа ε такого, что $|\varepsilon| < \varepsilon_0$, $\varepsilon \neq 0$, оператор $\mathcal{A} + \varepsilon I$ обратим.

Доказательство этой теоремы поручается читателю в качестве упражнения.

4. Величину $a_{11}^e + a_{22}^e + \cdots + a_{nn}^e$ называют *следом* оператор \mathcal{A} и обозначают через $\operatorname{tr}(\mathcal{A})$. Отметим следующие полезные формулы:

$$\operatorname{tr}(\alpha \mathcal{A} + \beta \mathcal{B}) = \alpha \operatorname{tr}(\mathcal{A}) + \beta \operatorname{tr}(\mathcal{B}), \tag{6.8}$$

$$tr(\mathcal{AB}) = tr(\mathcal{BA}). \tag{6.9}$$

Здесь \mathcal{A}, \mathcal{B} — произвольные линейные операторы, действующие в конечномерном линейном пространстве, α, β — произвольные числа.

Равенство (6.8) непосредственно вытекает из определения следа оператора. Равенство (6.9) легко проверяется переходом к матрицам операторов и прямыми вычислениями величин, записанных в его правой и левой частях.

§ 7. Инвариантные подпространства оператора в вещественном пространстве

1. Пусть теперь оператор \mathcal{A} действует в вещественном пространстве \mathbf{X}_n . Матрица A_e оператора \mathcal{A} в любом базисе \mathcal{E}_n вещественна. Уравнение (2.3), с. 184, т. е. характеристическое уравнение матрицы A_e , — алгебраическое уравнение с вещественными коэффициентами. Оно, вообще говоря, имеет как вещественные, так и комплексные корни.

Если λ — вещественный корень уравнения (2.3), то система уравнений

$$(A_e - \lambda I)\xi = 0 \tag{7.1}$$

имеет нетривиальное вещественное решение ξ , и для вектора $x = \mathcal{E}_n \xi$ выполнено равенство $\mathcal{A}x = \lambda x$, т. е. x — собственный вектор оператора \mathcal{A} . Таким образом, все вещественные характеристические числа матрицы A_e — собственные числа оператора \mathcal{A} .

Если число λ не совпадает ни с одним из вещественных корней уравнения (2.3), то система уравнений (7.1) не может иметь нетривиальных вещественных решений, поэтому, если все корни уравнения (2.3) — комплексные числа, то оператор \mathcal{A} не имеет собственных векторов.

Таким образом, линейный оператор, действующий в вещественном пространстве, может не иметь одномерных инвариантных подпространств.

2. Каждому комплексному характеристическому числу матрицы A_e соответствует двумерное инвариантное подпространство оператора \mathcal{A} .

Действительно, если $\lambda=\alpha+i\beta$ — комплексное характеристическое число матрицы A_e , то $\det(A_e-\lambda I)=0$, и система уравнений

$$(A_e - \lambda I)\xi = 0 (7.2)$$

имеет нетривиальное комплексное решение $\xi = \zeta + i\eta$. Поясним, что ζ и η — векторы из \mathbb{R}^n . Более подробная запись системы (7.2), с учетом того, что A_e — вещественная матрица, дает

$$A_e\zeta + iA_e\eta = (\alpha + i\beta)(\zeta + i\eta) = \alpha\zeta - \beta\eta + i(\beta\zeta + \alpha\eta),$$

откуда, приравнивая вещественные и мнимые части, получаем

$$A_e \zeta = \alpha \zeta - \beta \eta,$$

$$A_e \eta = \beta \zeta + \alpha \eta.$$

Полагая $x = \mathcal{E}_n \zeta$, $y = \mathcal{E}_n \eta$, будем иметь

$$\mathcal{A}x = \alpha x - \beta y,\tag{7.3}$$

$$Ay = \beta x + \alpha y. \tag{7.4}$$

Образуем подпространство L, натянутое на векторы x, y. Пусть вектор $z \in L$. Это означает, что $z = \gamma x + \delta y$ для некоторых $\gamma, \delta \in \mathbb{R}$. Тогда $Az \in L$. В самом деле,

$$Az = \gamma Ax + \delta Ay = \gamma(\alpha x - \beta y) + \delta(\beta x + \alpha y) =$$
$$= (\alpha \gamma + \beta \delta)x + (\alpha \delta - \beta \gamma)y \in L.$$

Таким образом, L — инвариантное подпространство оператора \mathcal{A} . Упражнения.

- 1) Показать, что векторы x, y, удовлетворяющие соотношениям (7.3), (7.4), линейно независимы, т. е подпространство L двумерно.
- 2) Пусть \mathbf{X}_n вещественное пространство. Показать, что в любом подпространстве $L_m \subset \mathbf{X}_n$, размерности $m \geqslant 2$, инвариантном относительно оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$, оператор \mathcal{A} имеет либо одномерное, либо двумерное инвариантное подпространство.

§ 8. Приведение матрицы оператора к треугольной форме

1. Теорема. Для любого оператора \mathcal{A} , действующего в комплексном пространстве \mathbf{X}_n , можно указать такой базис, что матрица оператора \mathcal{A} в этом базисе треугольна, причем по ее диагонали расположены все собственные числа оператора \mathcal{A} .

В основе доказательства этого утверждения лежит

2. Теорема Шура¹⁾. Пусть $A - \kappa$ вадратная матрица порядка $n, \lambda_1, \lambda_2, \ldots, \lambda_n - x$ арактеристические числа матрицы A, занумерованные в некотором порядке. Существует унитарная матрица U такая, что

$$U^*AU = T, (8.1)$$

 $\it rde\ T$ — $\it sepx$ няя треугольная матрица $\it suda$

$$T = \begin{pmatrix} \lambda_1 & t_{12} & \dots & t_{1n} \\ 0 & \lambda_2 & \dots & t_{2n} \\ \dots & \dots & \dots & t_{n-1,n} \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}.$$
 (8.2)

ДОКАЗАТЕЛЬСТВО. Пусть u^1 — собственный вектор матрицы A, отвечающий собственному числу λ_1 . Собственные векторы матрицы определяются с точностью до скалярного множителя, поэтому можно считать, что $|u^1|=1^{2}$.

Построим в пространстве \mathbb{C}^n ортонормированный базис $\{u^k\}_{k=1}^n$ (см. п. 5, с. 132) и обозначим через U_1 матрицу, столбцами которой служат элементы векторов $\{u^k\}_{k=1}^n$.

 $^{^{1)}}$ Исай Шур (Issai Schur; 1875 - 1941) — немецкий математик.

 $^{^{2)}}$ Здесь и далее на протяжение этого параграфа под скалярным произведением понимается стандартное скалярное произведение в пространстве \mathbb{C}^n .

Вычислим матрицу $U_1^*AU_1$. Учтем при этом, что $Au^1=\lambda_1u^1$, а $(u^k,u^1)=0$ для $k=2,3,\ldots,n$. В результате, получим, что

$$U_1^* A U_1 = \begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix}. \tag{8.3}$$

Справа в этом равенстве — блочная 2×2 матрица. Первый диагональный блок состоит из одного элемента, равного λ_1 . Второй диагональный блок — квадратная матрица размера n-1. Блок в позиции (2,1) — нулевой столбец длины n-1. Блок в позиции (1,2) — строка длины n-1 с ненулевыми, вообще говоря, элементами. Обозначения, аналогичные использованным здесь, будут применяться и в дальнейшем.

Матрица $U_1^*AU_1$ подобна матрице A, поэтому (см. теорему 2, с. 185)

$$\sigma(U_1^*AU_1) = \sigma(A).$$

С другой стороны, из (8.3) вытекает, что $\sigma(U_1^*AU_1) = \lambda_1 \cup \sigma(A_1)$. Для того, чтобы убедиться в этом, нужно разложить по первому столбцу определитель $\det(\lambda I - U_1^*AU_1)$. Таким образом,

$$\sigma(A_1) = \{\lambda_2, \ldots, \lambda_n\}.$$

Рассуждая точно так же, как при построении матрицы U_1 , можно построить унитарную матрицу U_2 порядка n-1 такую, что

$$U_2^* A_1 U_2 = \begin{pmatrix} \lambda_2 & * \\ 0 & A_2 \end{pmatrix}. \tag{8.4}$$

Положим

$$V_2 = \begin{pmatrix} 1 & 0 \\ 0 & U_2 \end{pmatrix}.$$

Матрица V_2 , как нетрудно убедиться, есть унитарная матрица порядка n. Проводя элементарные вычисления, получим

$$V_2^* U_1^* A U_1 V_2 = \begin{pmatrix} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ 0 & 0 & A_2 \end{pmatrix}.$$

Понятно, что, продолжая этот процесс, можно построить унитарные матрицы V_3, \ldots, V_{n-1} такие, что матрица

$$V_{n-1}^* \cdots V_2^* U_1^* A U_1 V_2 \cdots V_{n-1}$$

есть верхняя треугольная матрица, на главной диагонали которой последовательно стоят числа $\lambda_1, \lambda_2, \ldots, \lambda_n$. Положим $U = U_1 V_2 \cdots V_{n-1}$. Матрица U унитарна как произведение унитарных матриц (см. п. 6, с. 99), причем $U^* = V_{n-1}^* \cdots V_2^* U_1^*$, поэтому для матрицы $T = U^* AU$ справедливо равенство (8.2). \square

3. Совершенно аналогично доказывается, что существует унитарная матрица V такая, что

$$V^*AV = L$$
,

где L — нижняя треугольная матрица, по диагонали которой расположены характеристические числа матрицы A.

- 4. Из доказательства теоремы Шура видно, что если матрица A вещественна и все ее характеристические числа (а, следвательно, и собственные векторы) вещественны, то матрица U в (8.1) может быть выбрана вещественной и унитарной, иными словами, ортогональной.
- 5. ДОКАЗАТЕЛЬСТВО теоремы 1. Пусть \mathcal{A} произвольный линейный оператор, действующий в пространстве \mathbf{X}_n , $\mathcal{F}_n = \{f^k\}_{k=1}^n$ произвольно фиксированный базис в \mathbf{X}_n . Тогда $\mathcal{A}\mathcal{F}_n = \mathcal{F}_nA_f$, где A_f матрица оператора \mathcal{A} в этом базисе (см. (8.3), с. 161). По теореме Шура существует унитарная матрица U такая, что $A_f = UTU^*$, где T матрица вида (8.2), $\lambda_1, \lambda_2, \ldots, \lambda_n$ характеристические числа матрицы A_f , или, что все равно, собственные числа оператора \mathcal{A} , следовательно, $\mathcal{A}\mathcal{F}_n = \mathcal{F}_nUTU^*$, или $\mathcal{A}\mathcal{F}_nU = \mathcal{F}_nUT$. Положим $\mathcal{E}_n = \mathcal{F}_nU$. Тогда $\mathcal{A}\mathcal{E}_n = \mathcal{E}_nT$. Таким образом, T матрица оператора \mathcal{A} в базисе \mathcal{E}_n . \square

§ 9. Приведение матрицы оператора к жордановой форме

В этом параграфе будет показано, что для любого линейного оператора, действующего в комплексном пространстве \mathbf{X}_n , можно указать базис, в котором матрица оператора имеет очень простую форму. Она двухдиагональна. Причем по ее главной диагонали расположены все собственные числа оператора. На ближайшей сверху параллельной диагонали располагаются элементы, которые могу принимать значения нуль или единица. Матрица такого вида называется экордановой 1 . Для того, чтобы получить экорданово представление

 $^{^{1)}}$ Мари Энмон Камиль (Камилл) Жордан (Marie Ennemond Camille Jordan; 1838 — 1922) — французский математик.

оператора, нужно взять его матрицу в произвольно выбранном базисе, а затем преобразованием подобия привести ее к жордановой форме. Указанная программа и будет реализована в настоящем параграфе.

Естественно, возникает вопрос, а нельзя ли любую матрицу привести подобным преобразованием к диагональному виду. Простейшие примеры показывают, что это невозможно. Так, если потребовать, чтобы матрица SAS^{-1} , где

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

при некоторой невырожденной матрице S была диагональной, то мы получим противоречивые равенства.

1. Нам потребуется следующее определение. Жордановым блоком или жордановой клеткой называется верхняя треугольная матрица $J_k(\lambda)$, имеющая вид

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & & & 0 \\ & \lambda & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \\ 0 & & & \lambda \end{pmatrix}. \tag{9.1}$$

Поясним, что k — порядок матрицы $J_k(\lambda)$, все элементы ее главной диагонали равны λ , параллельно главной диагонали располагается k-1 единиц. Все остальные элементы матрицы $J_k(\lambda)$ равны нулю.

2. Полезно отметить, что если матрица оператора $\mathcal{A}: \mathbf{X}_k \to \mathbf{X}_k$ в базисе $\{e^i\}_{i=1}^k$ есть клетка Жордана $J_k(0)$, то векторы этого базиса, очевидно, связаны соотношениями Обозначая вектор e^k через f, получим, что базис $\{e^i\}_{i=1}^k$ образован векторами f, $\mathcal{A}f$, \mathcal{A}^2f , ..., $\mathcal{A}^{k-1}f^{1}$, причем $\mathcal{A}^kf=0$.

Сформулируем теперь основной результат настоящего параграфа.

3. Теорема. Для произвольной матрицы A порядка n существует невырожденная матрица S такая, что

$$S^{-1}AS = J, (9.2)$$

¹⁾Взятыми в обратном порядке.

где

$$J = \begin{pmatrix} J_{n_1}(\lambda_1) & & & 0 \\ & J_{n_2}(\lambda_2) & & \\ & & \ddots & \\ 0 & & & J_{n_k}(\lambda_k) \end{pmatrix}.$$
 (9.3)

Здесь $n_1 + n_2 + \cdots + n_k = n$. Числа λ_i , $i = 1, 2, \ldots, k$, не обязательно различные, исчерпывают все множество характеристических чисел матрицы A (с учетом их кратности).

3.1. Теорема 3, очевидно, эквивалентна следующему утверждению. Для любого оператора \mathcal{A} , действующего в конечномерном комплексном пространстве \mathbf{X}_n , можно указать базис \mathcal{E}_n , в котором матрица оператора \mathcal{A} принимает вид (9.3), т. е.

$$\mathcal{A}\mathcal{E}_n = \mathcal{E}_n J. \tag{9.4}$$

Базис, в котором матрица оператора принимает жорданову форму, называется *экордановым* базисом.

- 4. Наиболее просто доказательство существования жорданова базиса проводится для так называемого *нильпотентного* оператора, т. е. для оператора, все собственные числа которого равны нулю. Отметим, что в соответствии с теоремой Шура для того, чтобы оператор был нильпотентным, необходимо и достаточно, чтобы матрица этого оператора в некотором базисе была верхней треугольной с нулевыми элементами на главой диагонали.
- **4.1. Теорема.** Пусть \mathbf{X}_n комплексное линейное пространство, $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ нильпотентный оператор. Тогда существует базис пространства \mathbf{X}_n , в котором матрица оператора \mathcal{A} принимает жорданову форму

$$\begin{pmatrix}
J_{n_1}(0) & & & 0 \\
& J_{n_2}(0) & & \\
& & \ddots & \\
0 & & J_{n_m}(0)
\end{pmatrix}.$$
(9.5)

 $3 \partial e c b \ n_1 + n_2 + \dots + n_m = n.$

ДОКАЗАТЕЛЬСТВО. Принимая во внимание сказанное в п. 2, нетрудно убедиться, что доказываемое утверждение эквивалентно следующему: для любого нильпотентного оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ существуют векторы $f^1, f^2, \dots f^m$ такие, что

$$f^{1}, \mathcal{A}f^{1}, \mathcal{A}^{2}f^{1}, \dots, \mathcal{A}^{n_{1}-1}f^{1}, f^{2}, \mathcal{A}f^{2}, \mathcal{A}^{2}f^{2}, \dots, \mathcal{A}^{n_{2}-1}f^{2}, \dots,$$

 $f^{m}, \mathcal{A}f^{m}, \mathcal{A}^{2}f^{m}, \dots, \mathcal{A}^{n_{m}-1}f^{m}$ (9.6)

есть базис пространства \mathbf{X}_n , причем

$$\mathcal{A}^{n_1} f^1 = \mathcal{A}^{n_2} f^2 = \dots = \mathcal{A}^{n_m} f^m = 0. \tag{9.7}$$

Существование искомого базиса докажем индукцией по размерности пространства. Для случая нильпотентного оператора, действующего в одномерном пространстве, доказываемое утверждение выполняется тривиальным образом. Предположим, что оно верно для любого пространства размерности меньше n, и покажем, что тогда это утверждение справедливо и для пространства размерности равной n.

Оператор \mathcal{A} нильпотентен, следовательно, $\operatorname{def}(\mathcal{A}) \geqslant 1$, поэтому (см. п. 6, с. 160) $\operatorname{rank}(\mathcal{A}) < n$. Подпространство $\operatorname{Im}(\mathcal{A})$, очевидно, инвариантно относительно оператора \mathcal{A} , поэтому в силу предположения индукции существуют векторы u^1, u^2, \ldots, u^k такие, что векторы

$$u^{1}, \mathcal{A}u^{1}, \mathcal{A}^{2}u^{1}, \dots, \mathcal{A}^{p_{1}-1}u^{1}, u^{2}, \mathcal{A}u^{2}, \mathcal{A}^{2}u^{2}, \dots, \mathcal{A}^{p_{2}-1}u^{2}, \dots, u^{k}, \mathcal{A}u^{k}, \mathcal{A}^{2}u^{k}, \dots, \mathcal{A}^{p_{k}-1}u^{k}$$
 (9.8)

образуют базис подпространства Im(A), причем,

$$\mathcal{A}^{p_1} u^1 = \mathcal{A}^{p_2} u^2 = \dots = \mathcal{A}^{p_k} u^k = 0. \tag{9.9}$$

Для i = 1, 2, ..., k векторы u^i принадлежат $\operatorname{Im}(\mathcal{A})$, следовательно, существуют векторы $v^i \in \mathbf{X}_n$ такие, что

$$u^i = \mathcal{A}v^i. (9.10)$$

Векторы

$$\mathcal{A}^{p_i - 1} u^i, \ i = 1, 2, \dots, k, \tag{9.11}$$

принадлежат базису (9.8), следовательно, они линейно независимы. Соотношения (9.9) показывают, что эти векторы принадлежат $\operatorname{Ker}(\mathcal{A})$. Отсюда вытекает, что можно построить векторы w^1 , w^2 , ..., w^l , дополняющие векторы (9.11) до базиса подпространства $\operatorname{Ker}(\mathcal{A})$.

Если мы покажем теперь, что векторы

$$v^{1}, \mathcal{A}v^{1}, \dots, \mathcal{A}^{p_{1}}v^{1}, v^{2}, \mathcal{A}v^{2}, \dots, \mathcal{A}^{p_{2}}v^{2}, \dots, v^{k}, \mathcal{A}v^{k}, \dots, \mathcal{A}^{p_{k}}v^{k},$$

$$w^{1}, w^{2}, \dots, w^{l} \quad (9.12)$$

образуют базис пространства X_n , то, очевидно, это и будет искомым базисом Жордана оператора \mathcal{A} . Система (9.12) содержит n векторов. В самом деле, в этой системе $p_1 + \cdots + p_k + k + l$ элементов, причем $p_1 + \cdots + p_k = \operatorname{rank}(\mathcal{A})$, и $k + l = \operatorname{def}(\mathcal{A})$, а для любого оператора \mathcal{A} справедливо равенство $\operatorname{rank}(\mathcal{A}) + \operatorname{def}(\mathcal{A}) = n$. Далее, пусть

$$\alpha_{1,0}v^{1} + \alpha_{1,1}\mathcal{A}v^{1} + \dots + \alpha_{1,p_{1}}\mathcal{A}^{p_{1}}v^{1} + \alpha_{2,0}v^{2} + \alpha_{2,1}\mathcal{A}v^{2} + \dots + \alpha_{2,p_{2}}\mathcal{A}^{p_{2}}v^{2} + \dots + \alpha_{k,0}v^{k} + \alpha_{k,1}\mathcal{A}v^{k} + \dots + \alpha_{k,p_{k}}\mathcal{A}^{p_{k}}v^{k} + \dots + \beta_{l}w^{l} + \beta_{2}w^{2} + \dots + \beta_{l}w^{l} = 0. \quad (9.13)$$

Подействуем на обе части этого равенства оператором \mathcal{A} , учтем соотношения (9.9), (9.10) и тот факт, что $w^1, w^2, \ldots, w^l \in \mathrm{Ker}(\mathcal{A})$. Получим

$$\alpha_{1,0}u^{1} + \alpha_{1,1}\mathcal{A}u^{1} + \dots + \alpha_{1,p_{1}-1}\mathcal{A}^{p_{1}-1}u^{1} + \\ + \alpha_{2,0}u^{2} + \alpha_{2,1}\mathcal{A}u^{2} + \dots + \alpha_{2,p_{2}-1}\mathcal{A}^{p_{2}-1}u^{2} + \\ + \dots + \alpha_{k,0}u^{k} + \alpha_{k,1}\mathcal{A}u^{k} + \dots + \alpha_{k,p_{k}-1}\mathcal{A}^{p_{k}-1}u^{k} = 0.$$
 (9.14)

Векторы (9.8) линейно независимы, следовательно, все коэффициенты линейной комбинации в левой части (9.14) — нули и равенство (9.13) принимает вид

$$\alpha_{1,p_1} \mathcal{A}^{p_1} v^1 + \alpha_{2,p_2} \mathcal{A}^{p_2} v^2 + \dots + \alpha_{k,p_k} \mathcal{A}^{p_k} v^k + \beta_1 w^1 + \beta_2 w^2 + \dots + \beta_l w^l = 0. \quad (9.15)$$

В левой части (9.15) — линейная комбинация базисных векторов подпространства $\operatorname{Ker}(\mathcal{A})$, поэтому все коэффициенты этой линейной комбинации равны нулю. Таким образом, показано, что все коэффициенты линейной комбинации в правой части равенства (9.13) могут быть только нулями, т. е. система векторов (9.12) линейно независима, содержит n векторов и потому является базисом пространства \mathbf{X}_n . \square

Непосредственным обобщением теоремы 4.1 является

4.2. Теорема. Пусть оператор \mathcal{A} , действующий в комплексном пространстве \mathbf{X}_n , имеет вид $\mathcal{A} = \mathcal{A}_0 + \lambda I$, где \mathcal{A}_0 — нильпотентный оператор, λ — произвольное число. Тогда в базисе Жордана оператора \mathcal{A}_0 матрица оператора \mathcal{A} имеет экорданову форму

$$\begin{pmatrix}
J_{n_1}(\lambda) & & 0 \\
& J_{n_2}(\lambda) & \\
& & \ddots & \\
0 & & J_{n_m}(\lambda)
\end{pmatrix}.$$
(9.16)

Справедливость этого утверждения следует из того, что линейным операциям над операторами соответствуют линейные операции над их матрицами, а матрица тождественного оператора в любом базисе — единичная матрица.

5. Теорема. Пусть A- произвольная квадратная матрица порядка $n, \lambda_1, \lambda_2, \ldots, \lambda_k-$ попарно различные характеристические числа матрицы A кратностей $n_1, n_2, \ldots, n_k, n_1+n_2+\cdots+n_k=n$. Существует невырожденная матрица S такая, что

$$S^{-1}AS = \begin{pmatrix} T_1 & & 0 \\ & T_2 & \\ & & \ddots & \\ 0 & & & T_k \end{pmatrix} \tag{9.17}$$

есть блочно диагональная матрица, каждый диагональный блок T_i — верхняя треугольная матрица порядка n_i , все диагональные элементы матрицы T_i равны λ_i .

ДОКАЗАТЕЛЬСТВО. Сначала, используя теорему Шура, приведем унитарным подобием матрицу A к верхнему треугольному виду T. При этом характеристические числа матрицы A будем упорядочивать так, как это сделано в формулировке настоящей теоремы, т. е. сначала на диагонали треугольной матрицы будут расположены n_1 чисел λ_1 , затем n_2 чисел λ_2 и т. д.

Для того, чтобы завершить доказательство теоремы, нужно построить преобразование подобия, которое «уничтожит лишние» ненулевые элементы верхней треугольной матрицы и приведет ее к виду (9.17).

Искомое преобразование будет получено как результат последовательных элементарных преобразований подобия, основанных на использовании матриц вида $I + \alpha E_{rs}$, где, напомним, E_{rs} — матрица, у которой элемент в позиции (r,s) равен единице, а все остальные элементы — нули. Нетрудно убедиться, что если $r \neq s$, то при любом α справедливо равенство $(I + \alpha E_{rs})(I - \alpha E_{rs}) = I$, т. е. матрицы $(I + \alpha E_{rs})$, $(I - \alpha E_{rs})$ взаимно обратны.

Проводя элементарные вычисления, нетрудно проверить, что для любой верхней треугольной матрицы T матрица

$$(I - \alpha E_{rs})T(I + \alpha E_{rs}) \tag{9.18}$$

при r < s отличается от T только элементами, стоящими в r-й строке правее s-го столбца, и элементами, стоящим в s-м столбце вы-

ше r-й строки, а также элементом в позиции (r,s), который принимает значение, равное $t_{rs}+\alpha(t_{rr}-t_{ss})$. Если $t_{rr}\neq t_{ss}$, то полагая $\alpha=-t_{rs}/(t_{rr}-t_{ss})$, преобразованием подобия (9.18) получим матрицу, которая, как и T, — верхняя треугольная матрица, ее диагональные элементы такие же, как у T, а элемент в позиции (r,s) равен нулю.

Обратимся теперь к верхней треугольной матрице T, полученной, как уже говорилось, из матрицы A при помощи теоремы Шура. Будем перебирать элементы матрицы T по строкам в следующем порядке: $(n-1,n); (n-2,n-1), (n-2,n); (n-3,n-2), (n-3,n-1), (n-3,n); \dots$ Если при этом окажется, что соответствующие элементы t_{rr} и t_{ss} различны, то элемент t_{rs} превратим в нулевой при помощи описанного выше преобразования подобия (9.18). Важно подчеркнуть, на каждом шаге такого преобразования нули, полученные на предыдущих шагах, не будут «портиться». В результате будет построена матрица, подобная матрице A и имеющая вид (9.17). \square

- 6. ДОКАЗАТЕЛЬСТВО теоремы 3. Представление (9.2) получается как результат последовательного выполнения следующих этапов.
- 1) Опираясь на теорему Шура, находим верхнюю треугольную матрицу T унитарно подобную матрице A.
- 2) Используя метод, описанный в теореме 5, приведем матрицу T к блочно диагональному виду. Каждый блок здесь будет верхней треугольной матрицей, у которой все диагональные элементы равны между собой и совпадают с некоторым характеристическим числом матрицы A.
- 3) Применяя теоремы 4.1, 4.2, каждый блок, полученный на втором этапе, независимо приведем к виду (9.16). \square

При исследовании единственности жордановой формы нам потребуется

7. Лемма. Для жордановой клетки $J_k(0)$ справедливы следующие соотношения:

$$(J_k(0))^k = 0, (J_k(0))^j \neq 0, \quad j = 1, 2, \dots, k-1.$$

Справедливость леммы 7 легко проверяется непосредственными вычислениями. При этом полезно отметить, что при последовательном увеличении степени матрицы $J_k(0)$ ее ненулевые столбцы «вытесняются» вправо.

8. Теорема. Жорданова матрица (9.2) определяется по матрице А однозначно (с точностью до перестановок жордановых клеток на главной диагонали).

ДОКАЗАТЕЛЬСТВО. Две возможные жордановы формы матрицы A подобны матрице A и потому обладают одним и тем же набором характеристических чисел (с учетом их кратностей), поэтому остается лишь доказать совпадение размеров жордановых клеток, соответствующих некоторому фиксированному характеристическому числу матрицы A.

Стоящую перед нами задачу можно сформулировать так: убедиться в совпадении размеров жордановых клеток двух возможных жордановых форм для матрицы, обладающей единственным характеристическим числом. Более того, используя рассуждения из доказательства теоремы 4.2, нетрудно заметить, что можно ограничится рассмотрением матрицы A_0 , которая имеет единственное характеристическое число, равное нулю.

Итак, пусть

$$J(0) = \begin{pmatrix} J_{n_1}(0) & 0 \\ & \ddots & \\ 0 & J_{n_k}(0) \end{pmatrix}, \quad \tilde{J}(0) = \begin{pmatrix} J_{m_1}(0) & 0 \\ & \ddots & \\ 0 & J_{m_r}(0) \end{pmatrix}$$

есть две возможные жордановы формы матрицы A_0 . Будем считать жордановы клетки упорядоченными по неубыванию размеров (этого можно добиться при помощи соответствующей нумерации базисов Жордана), так что

$$n_1 \geqslant n_2 \geqslant \cdots \geqslant n_k, \quad n_1 + n_2 + \cdots + n_k = n,$$

 $m_1 \geqslant m_2 \geqslant \cdots \geqslant m_r, \quad m_1 + m_2 + \cdots + m_r = n,$

n — порядок матрицы A_0 . Предположим, что первые $l-1, l \geqslant 1$ жордановых клеток матриц J(0) и $\tilde{J}(0)$ совпадают. По предположению существует невырожденная матрица S такая, что

$$J(0) = S\tilde{J}(0)S^{-1}. (9.19)$$

Вследствие сделанного предположения о совпадении первых l-1 клеток матрица S должна иметь следующую структуру:

$$S = \begin{pmatrix} I_p & 0\\ 0 & S_{n-p} \end{pmatrix},$$

где I_p — единичная матрица порядка $p=n_1+\cdots+n_{l-1}$. Это дает возможность, фактически, считать, что рассматриваются матрицы J(0) и $\tilde{J}(0)$, уже первые блоки которых, т. е. $J_{n_1}(0)$, $J_{m_1}(0)$, не совпадают.

Если мы установим, что это невозможно, то теорема будет доказана. Положим для определенности, что $n_1 > m_1$ и возведем обе части равенства (9.19) в степень m_1 . Получим

$$(J(0))^{m_1} = S(\tilde{J}(0))^{m_1} S^{-1}. \tag{9.20}$$

По лемме 7 имеем, что $(\tilde{J}(0))^{m_1} = 0$, по той же лемме $(J(0))^{m_1} \neq 0$. Полученное противоречие завершает доказательство теоремы. \square

§ 10. Структура базиса Жордана. Корневые и циклические подпространства

1. Матрица Жордана имеет блочно диагональную структуру, следовательно, пространство \mathbf{X}_n можно представить в виде прямой суммы инвариантных подпространств оператора \mathcal{A} , соответствующих этим блокам (см. п. 2.1, с. 182). Подпространство, отвечающее блоку $J_{n_j}(\lambda_j)$ в представлении (9.2), называется *циклическим* подпространством. Прямая сумма всех циклических подпространств, отвечающих одному и тому же собственному числу λ оператора \mathcal{A} , называется *корневым* подпространством.

Исследуем подробнее структуру циклических и корневых подпространств.

1.1. Пусть собственному числу λ оператора \mathcal{A} отвечает циклическое подпространство размерности m. Пусть для определенности ему соответствуют векторы $\{e^k\}_{k=1}^m$ базиса \mathcal{E}_n . Вследствие (9.4) получаем

$$Ae^1 = \lambda e^1, \ Ae^2 = \lambda e^2 + e^1, \ \dots, \ Ae^m = \lambda e^m + e^{m-1}.$$
 (10.1)

Отсюда сразу вытекает, что вектор e^1 — собственный вектор оператора \mathcal{A} , и поскольку векторы $e^1, e^2, \ldots, e^{m-1}$, конечно, не нули, то все остальные векторы e^2, e^3, \ldots, e^m не являются собственными векторами оператора \mathcal{A} .

1.2. Каждое циклическое подпространство содержит ровно один собственный вектор оператора \mathcal{A} . В самом деле, если предположить, что вектор $x = \xi_1 e^1 + \xi_2 e^2 + \dots + \xi_m e^m$ — собственный вектор оператора \mathcal{A} , то $J_m(\lambda)\xi = \lambda \xi$, где $\xi = (\xi_1, \xi_2, \dots, \xi_m)^T$. Последнее равенство эквивалентно тому, что $J_m(0)\xi = 0$. Ранг матрицы $J_m(0)$ равен m-1, так как $\det J_m(0) = 0$, а минор, получающийся при вычеркивании первого столбца и последней строки матрицы $J_m(0)$, равен единице. Поэтому размерность ядра матрицы $J_m(0)$ равна единице.

1.3. Понятно, что если корневое подпространство, отвечающее собственному числу λ оператора \mathcal{A} , есть прямая сумма k циклических подпространств, то оно содержит ровно k линейно независимых собственных векторов оператора \mathcal{A} , отвечающих собственному числу λ .

В соответствии с этим количество циклических подпространств данного корневого подпространства совпадает с геометрической кратностью собственного числа λ .

Сумма размерностей всех циклических подпространств, совпадающая с кратностью λ как корня характеристического уравнения оператора \mathcal{A} , есть алгебраическая кратность собственного числа λ .

1.4. Из (10.1) очевидным образом вытекает цепочка следующих равенств:

$$(\mathcal{A} - \lambda I)^j e^j = 0, \quad j = 1, 2, \dots, m.$$
 (10.2)

Нетрудно видеть, что $(\mathcal{A} - \lambda I)^p e^j \neq 0$ при p < j. Целое число j принято в связи с этим называть *высотой циклического* вектора e^j . В частности, собственный вектор есть циклический вектор высоты, равной единице.

Нетрудно догадаться, что если l — размерность корневого подпространства, отвечающего собственному числу λ оператора \mathcal{A} , то для любого вектора x этого подпространства справедливо равенство

$$(\mathcal{A} - \lambda I)^l x = 0. \tag{10.3}$$

Замечание. Базис Жордана, конечно, не определяется однозначно по оператору \mathcal{A} . Более того, имея некий базис Жордана, можно легко построить по нему другой базис Жордана. Например, если в базисе \mathcal{E}_n заменить вектор e^2 вектором $\tilde{e}^2 = e^2 + \alpha e^1$, где α — любое число, то для такого базиса, по-прежнему, будут выполнены равенства (10.1), т. е. это также будет жорданов базис оператора \mathcal{A} . Однако, поскольку жорданова матрица определяется по оператору \mathcal{A} однозначно (с точностью до перестановки диагональных блоков), то все базисы Жордана будут иметь описанную выше структуру.

$\S 11$. Теорема Кэли — Гамильтона

1. Теорема Кэли — Гамильтона $^{1)}$. $\Pi ycmb$

$$P_n(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_0 \tag{11.1}$$

 $^{^{1)}}$ Артур Кэли (Arthur Cayley; 1821-1895) — английский математик, Уильям Роуэн Гамильтон (William Rowan Hamilton; 1805-1865) — ирландский математик и физик.

есть характеристический полином оператора \mathcal{A} . Тогда

$$P_n(\mathcal{A}) = \mathcal{A}^n + a_{n-1}\mathcal{A}^{n-1} + \dots + a_0I = 0.$$
 (11.2)

ДОКАЗАТЕЛЬСТВО. Пусть $\lambda_1, \lambda_2, \ldots, \lambda_k$ — попарно различные корни полинома $P_n, n_1, n_2, \ldots, n_k$ — их кратности. Тогда (см. (2.6), с. 23)

$$P_n(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \dots (\lambda - \lambda_k)^{n_k}.$$

Справедливо равенство

$$P_n(\mathcal{A}) = (\mathcal{A} - \lambda_1 I)^{n_1} (\mathcal{A} - \lambda_2 I)^{n_2} \dots (\mathcal{A} - \lambda_k I)^{n_k}. \tag{11.3}$$

Для того, чтобы убедиться в этом, нужно раскрыть скобки в правой части (11.3), привести подобные и воспользоваться затем формулами Вьета (с. 24). Пусть теперь x — произвольный вектор пространства \mathbf{X}_n . Поскольку пространство \mathbf{X}_n представимо в виде прямой суммы корневых подпространств L_j оператора \mathcal{A} , отвечающих собственным числам $\lambda_j, j = 1, 2, \ldots, k$, оператора \mathcal{A} , то вектор x можно записать в виде

$$x = x^1 + x^2 + \dots + x^k,$$

где $x^j \in L_j, \ j = 1, 2, \ldots, k$. Следовательно,

$$P_n(\mathcal{A})x = P_n(\mathcal{A})x^1 + \dots + P_n(\mathcal{A})x^k.$$

Операторы $(A - \lambda_2 I)^{n_s}$, $(A - \lambda_2 I)^{n_t}$ при любых $s, t = 1, \ldots, k$ являются полиномами от оператора A и поэтому, как нетрудно убедиться непосредственными вычислениями, они перестановочны, значит, для любого $j = 1, 2, \ldots, k$ справедливо равенство

$$P_n(\mathcal{A})x^j = Q_{n-n_j}(\mathcal{A})(\mathcal{A} - \lambda_2 I)^{n_j}x^j.$$

Здесь $Q_{n-n_j}(\mathcal{A})$ — полином от \mathcal{A} степени $n-n_j$. Вследствие (10.3) имеем $(\mathcal{A}-\lambda_2 I)^{n_j}x^j=0$, поэтому $P_n(\mathcal{A})x_j=0$, а значит, $P_n(\mathcal{A})x=0$. Поскольку x — произвольный вектор пространства \mathbf{X}_n , получаем, что $P_n(\mathcal{A})=0$. \square

Из теоремы 1 вытекает простое, но важное для приложений, например, в механике

2. Следствие. Пусть оператор $A: \mathbf{X}_n \to \mathbf{X}_n$ обратим. Тогда существует полином Q_{n-1} , степени не выше чем n-1, такой, что

$$\mathcal{A}^{-1} = Q_{n-1}(\mathcal{A}).$$

ДОКАЗАТЕЛЬСТВО этого утверждения поручается читателю.

Глава 10

Операторы в евклидовом пространстве

§ 1. Самосопряженный и косоэрмитов операторы

1. Оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ называется самосопряженным (эрмитовым), если $\mathcal{A}^* = \mathcal{A}$, иными словами, если

$$(\mathcal{A}x, y) = (x, \mathcal{A}y) \quad \forall \, x, y \in \mathbf{X}_n. \tag{1.1}$$

Оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ называется *косоэрмитовым*, если $\mathcal{A}^* = -\mathcal{A}$, то есть

$$(\mathcal{A}x, y) = -(x, \mathcal{A}y) \quad \forall x, y \in \mathbf{X}_n.$$
 (1.2)

Поскольку в любом ортонормированном базисе матрицы взаимно сопряженных операторов взаимно сопряжены (см. п. 2, с. 166), то матрица самосопряженного оператора в любом ортонормированном базисе эрмитова, матрица косоэрмитова оператора косоэрмитова.

УПРАЖНЕНИЕ. Показать, что если матрица оператора \mathcal{A} в некотором ортонормированном базисе эрмитова, то оператор \mathcal{A} самосопряжен, если матрица оператора \mathcal{A} в некотором ортонормированном базисе косоэрмитова, то оператор \mathcal{A} косоэрмитов.

- **1.1.** Примером самосопряженного оператора является оператор ортогонального проектирования $^{1)}$. Действительно, пусть \mathcal{P} оператор ортогонального проектирования евклидова пространства \mathbf{X} на подпространство $L \subset \mathbf{X}, x, y$ произвольные векторы из \mathbf{X} . По определению оператора ортогонального проектирования можем написать, что $y = \mathcal{P}y + y^2, x = \mathcal{P}x + x^2$, где x^2, y^2 векторы, ортогональные L. Поэтому $(\mathcal{P}x, y) = (\mathcal{P}x, \mathcal{P}y)$. Точно так же $(x, \mathcal{P}y) = (\mathcal{P}x, \mathcal{P}y)$, следовательно, $(\mathcal{P}x, y) = (y, \mathcal{P}x)$.
- **1.2.** Рассуждая точно так же, как в п. 3, с. 98, нетрудно убедиться, что любой оператор \mathcal{A} , действующий в евклидовом пространстве, однозначно представим в виде

$$\mathcal{A} = \mathcal{H}_1 + i\mathcal{H}_2,\tag{1.3}$$

¹⁾См. определение на с. 153.

где i — мнимая единица,

$$\mathcal{H}_1 = rac{1}{2}(\mathcal{A} + \mathcal{A}^*), \quad \mathcal{H}_2 = rac{1}{2i}(\mathcal{A} - \mathcal{A}^*)$$

суть самосопряженные операторы.

1.3. Теорема. Пусть A — линейный оператор, действующий в евклидовом пространстве \mathbf{X}_n . Если

$$(\mathcal{A}x, x) = 0 \quad \forall x \in \mathbf{X}_n, \tag{1.4}$$

 $mo\ A=0.$

ДОКАЗАТЕЛЬСТВО. Предположим сначала, что \mathcal{A} — самосопряженный оператор. Тогда для любых $x,y\in\mathbf{X}_n$ справедливо равенство

$$(\mathcal{A}(x+y),(x+y)) = (\mathcal{A}x,x) + (\mathcal{A}y,y) + 2\operatorname{Re}(\mathcal{A}x,y).$$

Отсюда, используя условие (1.4), получаем, что $\text{Re}(\mathcal{A}x,y) = 0$. Последнее равенство выполнено для любого $y \in \mathbf{X}_n$. Поэтому можно заменить y, на iy, но $\text{Re}(\mathcal{A}x,iy) = -\text{Im}(\mathcal{A}x,y)$. Таким образом, получаем, что $(\mathcal{A}x,y) = 0$ для любого $x \in \mathbf{X}_n$. Полагая $y = \mathcal{A}x$, будем иметь, что $|\mathcal{A}x| = 0$ для любого $x \in \mathbf{X}_n$, т. е. $\mathcal{A} = 0$. Итак, в случае самосопряженного оператора \mathcal{A} утверждение теоремы доказано. Пусть теперь \mathcal{A} — произвольный оператор. Если $(\mathcal{A}x,x) = 0$, то вследствие (1.3), (1.4) получаем, что $(\mathcal{H}_1x,x) = 0$, $(\mathcal{H}_2x,x) = 0$ для любого $x \in \mathbf{X}_n$. Операторы \mathcal{H}_1 , \mathcal{H}_2 самосопряжены, поэтому \mathcal{H}_1 , $\mathcal{H}_2 = 0$. \square

1.4. Теорема. Для того, чтобы оператор \mathcal{A} , действующий в евклидовом пространстве \mathbf{X}_n , был самосопряжен, необходимо и достаточно, чтобы скалярное произведение $(\mathcal{A}x, x)$ было вещественным при любом $x \in \mathbf{X}_n$.

ДОКАЗАТЕЛЬСТВО. Если $\mathcal{A}=\mathcal{A}^*$, то

$$(\mathcal{A}x, x) = (x, \mathcal{A}x) = \overline{(\mathcal{A}x, x)},$$

т. е. $(\mathcal{A}x,x)$ — вещественное число. Обратно, если $(\mathcal{A}x,x)$ — вещественное число, то

$$(\mathcal{A}^*x, x) = (x, \mathcal{A}x) = (\mathcal{A}x, x),$$

следовательно, $((\mathcal{A}^* - \mathcal{A})x, x) = 0$ для любого $x \in \mathbf{X}_n$, откуда по теореме 1.3 получаем, что $\mathcal{A} - \mathcal{A}^* = 0$. \square

Совершенно аналогично доказывается

1.5. Теорема. Для того, чтобы оператор A, действующий в евклидовом пространстве \mathbf{X}_n , был косоэрмитов, необходимо и достаточно, чтобы скалярное произведение (Ax, x) было мнимым при любом $x \in \mathbf{X}_n$.

§ 2. Неотрицательный и положительно определенный операторы

Самосопряженный оператор ${\mathcal A}$ называется ${\it неотрицательным},$ если

$$(\mathcal{A}x, x) \geqslant 0 \quad \forall x \in \mathbf{X}_n.$$
 (2.1)

Самосопряженный оператор ${\mathcal A}$ называется *положительно опре-* ${\it деленным},$ если

$$(\mathcal{A}x, x) > 0 \quad \forall x \neq 0 \text{ из } \mathbf{X}_n.$$
 (2.2)

Эрмитова матрица A порядка n называется neompuuamenьной, если

$$(Ax, x) = \sum_{i,j=1}^{n} a_{ij} x_i \bar{x}_j \geqslant 0 \quad \forall x \in \mathbb{C}^n.$$
 (2.3)

Эрмитова матрица A порядка n называется nonoжumeльно onpe-деленной, если

$$(Ax,x) = \sum_{i,j=1}^{n} a_{ij} x_i \bar{x}_j > 0 \quad \forall x \neq 0 \text{ из } \mathbb{C}^n.$$
 (2.4)

В двух последних определениях скобками обозначено стандартное скалярное произведение в пространстве \mathbb{C}^n .

Упражнения.

- 1) Покажите, что для любого оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_m$ оператор $\mathcal{A}^*\mathcal{A}$ самосопряжен и неотрицателен. Если оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{Y}_n$ обратим, то оператор $\mathcal{A}^*\mathcal{A}$ положительно определен.
- 2) Пусть оператор \mathcal{A} действует в евклидовом пространстве \mathbf{X}_n . Докажите, что если оператор $\mathcal{A} + \mathcal{A}^*$ положительно определен, то оператор \mathcal{A} невырожден.
- 3) Покажите, что матрица положительно определенного оператора в любом ортонормированном базисе положительно определена.
- 4) Покажите, что все элементы главной диагонали положительно определенной матрицы положительны.
- 5) Покажите, что матрица Грама любой системы векторов в евклидовом пространстве неотрицательна.

6) Покажите, что линейная независимость системы векторов эквивалентна положительной определенности матрицы Грама этой системы векторов.

§ 3. Унитарный оператор

1. Оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ называется унитарным, если

$$\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A} = I. \tag{3.1}$$

Упражнения.

- 1) Покажите, что для того чтобы оператор был унитарным необходимо и достаточно, чтобы его матрица в любом ортонормированном базисе пространства \mathbf{X}_n была унитарна (см. с. 99).
- 2) Покажите, что определитель унитарного оператора по модулю равен единице.
- 3) Покажите, что произведение унитарных операторов унитарный оператор.
- **2.** Если оператор \mathcal{A} унитарен, то для любых $x, y \in \mathbf{X}_n$ имеем $(\mathcal{A}x, \mathcal{A}y) = (x, \mathcal{A}^*\mathcal{A}y) = (x, y)$, т. е. унитарный оператор не меняет скалярного произведения векторов, и, следовательно, унитарный оператор не меняет длин векторов.
- **3.** Обратно, если линейный оператор не меняет скалярного произведения любых двух векторов из \mathbf{X}_n , то он унитарен. В самом деле, из равенства $(\mathcal{A}x, \mathcal{A}y) = (x, y)$ вытекает, что $(x, \mathcal{A}^*\mathcal{A}y) = (x, y)$. Нетрудно убедиться, что, поскольку последнее равенство выполнено для любых $x, y \in \mathbf{X}_n$, то

$$\mathcal{A}^*\mathcal{A} = I. \tag{3.2}$$

Докажем, что равенство $\mathcal{A}\mathcal{A}^*=I$ также выполняется. Из равенства (3.2) вытекает, что $\det(\mathcal{A})\neq 0$, следовательно, оператор \mathcal{A} имеет обратный. Умножая равенство (3.2) слева на \mathcal{A} , а затем справа на \mathcal{A}^{-1} , получим, что $\mathcal{A}\mathcal{A}^*=I$.

УПРАЖНЕНИЕ. Покажите, что если для любого $x \in \mathbf{X}_n$ выполнено равенство $|\mathcal{A}x| = |x|$, то \mathcal{A} — унитарный оператор.

4. Таким образом, оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ является унитарным тогда и только тогда, когда он не меняет длины никакого вектора пространства \mathbf{X}_n .

§ 4. Нормальный оператор

1. Оператор \mathcal{A} , действующий в евклидовом пространстве \mathbf{X}_n , называется *нормальным*, если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$. Самосопряженный, косоэрмитов и унитарный операторы, очевидно, — нормальные операторы.

Для того, чтобы оператор \mathcal{A} был нормальным, необходимо и достаточно, чтобы его матрица в любом ортонормированном базисе пространства \mathbf{X}_n была нормальной (см. определение на с. 100).

2. Теорема. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ — нормальный оператор. Тогда $\operatorname{Ker} \mathcal{A} = \operatorname{Ker} \mathcal{A}^*$.

ДОКАЗАТЕЛЬСТВО. Пусть Ax = 0. Тогда

$$0 = (\mathcal{A}x, \mathcal{A}x) = (\mathcal{A}^*\mathcal{A}x, x) = (\mathcal{A}\mathcal{A}^*x, x) = (\mathcal{A}^*x, \mathcal{A}^*x),$$

следовательно, $\mathcal{A}^*x=0$. Эти же выкладки показывают, что если $\mathcal{A}^*x=0$, то $\mathcal{A}x=0$. \square

Из теоремы 2 и теоремы 3, с. 159, немедленно вытекает

- 3. Следствие. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ нормальный оператор. Тогда $\mathbf{X}_n = \operatorname{Ker}(\mathcal{A}) \oplus \operatorname{Im}(\mathcal{A}) = \operatorname{Ker}(\mathcal{A}^*) \oplus \operatorname{Im}(\mathcal{A}^*)$, $\operatorname{Im}(\mathcal{A}) = \operatorname{Im}(\mathcal{A}^*)$.
- **4. Теорема.** Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ нормальный оператор, x, λ собственная пара оператора \mathcal{A} , m. e. $\mathcal{A}x = \lambda x$. Тогда x, $\bar{\lambda}$ собственная пара оператора \mathcal{A}^* .

ДОКАЗАТЕЛЬСТВО. Нетрудно убедиться, что если \mathcal{A} — нормальный оператор, то при любом $\lambda \in \mathbb{C}$ оператор $\mathcal{A} - \lambda I$ — также нормальный оператор, причем $(\mathcal{A} - \lambda I)^* = \mathcal{A}^* - \bar{\lambda} I$, следовательно, $\operatorname{Ker}(\mathcal{A} - \lambda I) = \operatorname{Ker}(\mathcal{A}^* - \bar{\lambda} I)$. \square

- 5. Все собственные числа самосопряженного оператора вещественны. Все собственные числа косоэрмитва оператора чисто мнимые. Действительно, всякий самосопряженный оператор \mathcal{A} является нормальным, поэтому, если x, λ собственная пара оператора \mathcal{A} , то $\mathcal{A}x = \lambda x$ и $\mathcal{A}x = \bar{\lambda}x$, следовательно, $(\lambda \bar{\lambda})x = 0$, но вектор x, как собственный вектор, не равен нулю, значит, $\lambda = \bar{\lambda}$. Аналогично, если x, λ собственная пара косоэрмитва оператора \mathcal{A} , то выполняются равенства $\mathcal{A}x = \lambda x$, $\mathcal{A}x = -\bar{\lambda}x$, следовательно, $\lambda = -\bar{\lambda}$.
- **6.** Все собственные числа унитарного оператора по модулю равны единице. В самом деле, если $\mathcal{A}x = \lambda x, x \neq 0$, то поскольку для унитарного оператора $|\mathcal{A}x| = |x|$ (см. п. 4, с. 210), то $|\lambda||x| = |\mathcal{A}x| = |x|$, т. е. $|\lambda| = 1$.

Укажем на очевидное, но полезное

7. Следствие. У всякой эрмитовой матрицы все характеристические числа вещественны; у всякой косоэрмитовой матрицы все характеристические числа чисто мнимые; у всякой унитарной матрицы все характеристические числа по модулю равны единице.

УПРАЖНЕНИЕ. Покажите, что определитель самосопряженного оператора — вещественное число (см. также п. 2, с. 98).

8. Теорема. *Собственные векторы нормального оператора, отвечающие различным собственным числам, ортогональны.*

ДОКАЗАТЕЛЬСТВО. Действительно, пусть \mathcal{A} — нормальный оператор, $\mathcal{A}x = \lambda x$, $\mathcal{A}y = \mu y$, $\lambda \neq \mu$. Тогда $\lambda(x,y) = (\mathcal{A}x,y) = (x,\mathcal{A}^*y)$. По теореме 4 имеем $\mathcal{A}^*y = \bar{\mu}y$, следовательно, $(x,\mathcal{A}^*y) = \mu(x,y)$, значит, $\lambda(x,y) = \mu(x,y)$. Поскольку $\lambda \neq \mu$, то (x,y) = 0. \square

9. Теорема. Пусть \mathcal{A} — линейный оператор, действующий в пространстве \mathbf{X}_n . Для того, чтобы существовал ортонормированный базис $\{e^k\}_{k=1}^n \subset \mathbf{X}_n$ такой, что $\mathcal{A}e^k = \lambda_k e^k$, $k = 1, 2, \ldots, n$, необходимо и достаточно, чтобы оператор \mathcal{A} был нормальным.

ДОКАЗАТЕЛЬСТВО. Необходимость. Матрицы взаимно сопряженных операторов в ортонормированном базисе взаимно сопряжены (см. п. 2, с. 166). Поэтому, если

$$A_e = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$$

есть матрица оператора \mathcal{A} в ортонормированном базисе $\{e^k\}_{k=1}^n$, то матрицей оператора \mathcal{A}^* в этом же базисе будет матрица

$$A_e^* = \operatorname{diag}(\bar{\lambda}_1, \bar{\lambda}_2, \dots, \bar{\lambda}_n).$$

Матрица произведения операторов есть произведение их матриц (см. п. 7, с. 162), диагональные матрицы, очевидно, перестановочны, следовательно,

$$(A^*A)_e = A_e^*A_e = A_eA_e^* = (AA^*)_e,$$

откуда вытекает, что $\mathcal{A}^*\mathcal{A}=\mathcal{A}\mathcal{A}^*$, т. е. \mathcal{A} — нормальный оператор.

Д о с т а т о ч н о с т ь. Пусть e^1 , λ_1 — собственная пара оператора \mathcal{A} . Будем считать, что $|e^1|=1$. По теореме 4 e^1 , $\bar{\lambda}_1$ — собственная пара оператора \mathcal{A}^* . Обозначим через L_{n-1} подпространство всех векторов из \mathbf{X}_n ортогональных e^1 . Подпространство L_{n-1} инвариантно относительно оператора \mathcal{A} . Действительно, если $x\in L_{n-1}$, т. е. $(x,e^1)=0$, то и $(\mathcal{A}x,e^1)=(x,\mathcal{A}^*e^1)=\lambda_1(x,e^1)=0$. Точно так же доказывается, что подпространство L_{n-1} инвариантно относительно оператора \mathcal{A}^* . Поэтому (см. упражнение на с. 185) существует

нормированный вектор $e^2 \in L_{n-1}$ и число λ_2 такие, что $\mathcal{A}e^2 = \lambda_2 e^2$, $\mathcal{A}^*e^2 = \bar{\lambda}_2 e^2$. Пусть теперь L_{n-2} — подпространство пространства \mathbf{X}_n , состоящее из векторов ортогональных одновременно e^1 и e^2 . Точно так же, как и раньше, покажем, что существует нормированный вектор $e^3 \in L_{n-2}$ и число λ_3 такие, что $\mathcal{A}e^3 = \lambda_3 e^3$, $\mathcal{A}^*e^3 = \bar{\lambda}_3 e_3$. Продолжая этот процесс, мы построим ортонормированную систему векторов $\{e^k\}_{k=1}^n \subset \mathbf{X}_n$ такую, что $\mathcal{A}e^k = \lambda_k e^k$, $\mathcal{A}^*e^k = \bar{\lambda}_k e^k$, $k=1,2,\ldots,n$. \square

Замечания.

- 1) В теореме 9, фактически, утверждается, что для каждого нормального оператора существует ортонормированный базис, в котором его матрица принимает диагональный вид, причем на диагонали матрицы расположены все собственные числа этого оператора. Таким образом, всякий нормальный оператор есть оператор простой структуры (см. п. 3, с. 189).
- 2) Часто оказывается полезной следующая эквивалентная формулировка указанного результата: пусть $\mu_1, \ \mu_2 \dots \mu_s, \ s \leqslant n,$ все попарно различные собственные числа нормального оператора $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n, \ L_{\mu_i}, \ i=1,2,\dots,s,$ соответствующие собственные подпространства оператора \mathcal{A} . Тогда

$$\mathbf{X}_n = L_{\mu_1} \oplus L_{\mu_2} \cdots \oplus L_{\mu_s}. \tag{4.1}$$

Упражнения.

- 1) Пусть A вещественная квадратная матрица порядка n такая, что $A^TA = AA^T$. Опираясь на теорему 9, показать, что существует система векторов $\{\xi^k\}_{k=1}^n \subset \mathbb{C}^n$, ортонормированная в смысле стандартного скалярного произведения пространства \mathbb{C}^n , и такие числа $\lambda_1, \lambda_2, \ldots, \lambda_n$, что $A\xi_k = \lambda_k \xi_k, k = 1, 2, \ldots, n$. Причем, если число λ_k вещественно, то и вектор ξ_k можно выбрать вещественным.
- 2) Докажите, что если у нормального оператора все собственные числа вещественны, то он самосопряженный оператор; если у нормального оператора все собственные числа чисто мнимые, то он косоэрмитов оператор; если у нормального оператора все собственные числа по модулю равны единице, то он унитарный оператор.
- **10. Теорема.** Для того, чтобы нормальные операторы \mathcal{A} , \mathcal{B} были перестановочными, необходимо и достаточно, чтобы у них был общий ортонормированный базис собственных векторов.

ДОКАЗАТЕЛЬСТВО. Достаточность. Пусть $\{e^j\}_{k=1}^n$ общий базис собственных векторов операторов \mathcal{A}, \mathcal{B} , т. е. $\mathcal{A}e^k = \lambda_k e^k$,

 $\mathcal{B}e^k = \mu_k e^k, \ k = 1, \dots, n.$ Тогда $\mathcal{B}\mathcal{A}e^k = \lambda_k \mu_k e^k, \ \mathcal{A}\mathcal{B}e^k = \lambda_k \mu_k e^k$ для $k = 1, \dots, n$, т. е. на векторах базиса операторы $\mathcal{A}\mathcal{B}, \ \mathcal{B}\mathcal{A}$ совпадают, но тогда они совпадают и на любом векторе пространства \mathbf{X}_n .

Необходимость. Воспользуемся представлением пространства \mathbf{X}_n в виде ортогональной суммы (4.1) собственных подпространств оператора \mathcal{A} , отвечающих попарно различным собственным числам этого оператора. По лемме 6.1, с. 185, каждое из подпространств L_{μ_i} инвариантно относительно оператора \mathcal{B} . Поскольку \mathcal{B} — нормальный оператор, то в этом подпространстве существует ортонормированный базис собственных векторов оператора \mathcal{B} . Объединение всех указанных базисов, очевидно, образует базис пространства \mathbf{X}_n , причем по построению все векторы этого базиса — собственные векторы оператора \mathcal{A} . \square

§ 5. Вариационные свойства собственных чисел самосопряженного оператора

1. Напомним, что оператор $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ называется *самосопря- женным*, если

$$(\mathcal{A}x, y) = (x, \mathcal{A}y) \quad \forall x, y \in \mathbf{X}_n.$$
 (5.1)

Напомним также, что все собственные числа самосопряженного оператора вещественны, существует ортонормированный базис пространства \mathbf{X}_n , составленный из собственных векторов оператора \mathcal{A} , собственные векторы самосопряженного оператора, отвечающие различным собственным числам, ортогональны.

2. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ — самосопряженный оператор, а λ_1 , $\lambda_2, \ldots, \lambda_n$ — его собственные числа, $\{e^k\}_{k=1}^n$ — ортонормированный базис собственных векторов. Будем считать, что собственные числа упорядочены по возрастанию, т. е.

$$\lambda_1 \leqslant \lambda_2 \cdots \leqslant \lambda_n. \tag{5.2}$$

Подчеркнем, что мы рассматриваем как собственные числа оператора все характеристические числа его матрицы, т. е. кратные характеристические числа повторяются столько раз, какова их кратность, поэтому, вообще говоря, неравенства в (5.2) являются нестрогими.

Пусть p, q — целые числа такие, что $1 \leqslant p \leqslant q \leqslant n$. Обозначим через L_{pq} подпространство пространства \mathbf{X}_n , натянутое на векторы $\{e^k\}_{k=p}^q$. Очевидно, $L_{1n}=\mathbf{X}_n$.

2.1. Лемма. Для любого $x \in L_{pq}$ справедливы неравенства

$$\lambda_p(x,x) \leqslant (\mathcal{A}x,x) \leqslant \lambda_q(x,x),$$
 (5.3)

более того

$$\lambda_p = \min_{x \in L_{pq}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)}, \quad \lambda_q = \max_{x \in L_{pq}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)}. \tag{5.4}$$

ДОКАЗАТЕЛЬСТВО. Для любого $x \in L_{pq}$

$$(\mathcal{A}x, x) = \left(\mathcal{A}\sum_{k=p}^{q} \xi_k e^k, \sum_{k=p}^{q} \xi_k e^k\right) =$$

$$= \left(\sum_{k=p}^{q} \lambda_k \xi_k e^k, \sum_{k=p}^{q} \xi_k e^k\right) = \sum_{k=p}^{q} \lambda_k |\xi_k|^2. \quad (5.5)$$

Очевидно, что

$$\lambda_p \sum_{k=p}^q |\xi_k|^2 \leqslant \sum_{k=p}^q \lambda_k |\xi_k|^2 \leqslant \lambda_q \sum_{k=p}^q |\xi_k|^2, \quad \sum_{k=p}^q |\xi_k|^2 = (x, x),$$

следовательно, (5.3) доказано и для любого $x \neq 0$ из L_{pq} справедливы неравенства

$$\lambda_p \leqslant \frac{(\mathcal{A}x, x)}{(x, x)} \leqslant \lambda_q.$$

Заметим теперь, что

$$\frac{(\mathcal{A}e^p, e^p)}{(e^p, e^p)} = \lambda_p, \quad \frac{(\mathcal{A}e^q, e^q)}{(e^q, e^q)} = \lambda_q,$$

поэтому равенства (5.4) также доказаны. \square

Очевидным следствием леммы 2.1 является

2.2. Теорема. Для любого k = 1, 2, ..., n

$$\lambda_k = \min_{x \in L_{k,n}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)}, \quad \lambda_k = \max_{x \in L_{1,k}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)}. \tag{5.6}$$

Использование формул (5.6) затруднено тем, что при отыскании собственного числа с номером k нужно знать все собственные векторы оператора \mathcal{A} , отвечающие всем собственным числам с меньшими номерами, или — все собственные векторы оператора \mathcal{A} , отвечающие всем собственным числам с большими номерами.

Следующие две теоремы дают независимое описание каждого собственного числа самосопряженного оператора \mathcal{A} .

2.3. Теорема. Для любого k = 1, 2, ..., n

$$\lambda_k = \max_{R_{n-k+1}} \min_{x \in R_{n-k+1}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)}.$$
 (5.7)

Здесь $R_{n-k+1} \subset \mathbf{X}_n$ — подпространство размерности n-k+1. Максимум берется по всем подпространствам пространства \mathbf{X}_n размерности n-k+1.

ДОКАЗАТЕЛЬСТВО. Ясно, что $\dim(R_{n-k+1})+\dim(L_{1k})=n+1$, поэтому (см. следствие 3, с. 145) существует вектор $x \neq 0$, принадлежащий $R_{n-k+1} \cap L_{1k}$. Таким образом (см. (5.6)), в каждом подпространстве R_{n-k+1} найдется вектор x, для которого $(\mathcal{A}x,x)/(x,x) \leqslant \lambda_k$. Следовательно, для любого подпространства R_{n-k+1}

$$\min_{x \in R_{n-k+1}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} \leqslant \lambda_k.$$

Если мы укажем подпространство R_{n-k+1} , для которого

$$\min_{x \in R_{n-k+1}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} = \lambda_k,$$

то это будет означать выполнение равенства (5.7). По теореме 2.2 искомым подпространством R_{n-k+1} является L_{kn} . \square

2.4. Теорема. Для любого k = 1, 2, ..., n

$$\lambda_k = \min_{R_k} \max_{x \in R_k, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)}. \tag{5.8}$$

Здесь $R_k \subset \mathbf{X}_n$ — подпространство размерности k. Минимум берется по всем подпространствам пространства \mathbf{X}_n размерности k.

ДОКАЗАТЕЛЬСТВО. Очевидно, что $\dim(R_k) + \dim(L_{kn}) = n+1$ для любого подпространства R_k , значит $R_k \cap L_{kn} \neq \{0\}$. По теореме 2.2

$$\min_{x \in L_{kn}, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} = \lambda_k,$$

поэтому для любого подпространства R_k

$$\max_{x \in R_k, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} \geqslant \lambda_k.$$

Для завершения доказательства теоремы осталось указать такое подпространство R_k размерности k, для которого

$$\max_{x \in R_k, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} = \lambda_k.$$

По теореме 2.2 таким подпространством является L_{1k} . \square

3. Из (5.3) сразу же следует, что для того, чтобы самосопряженный оператор \mathcal{A} был неотрицателен (см. (2.1), с. 209), необходимо и достаточно, чтобы все его собственные числа были неотрицательными, а для того, чтобы самосопряженный оператор \mathcal{A} был положительно определен (см. (2.2), с. 209), необходимо и достаточно, чтобы все его собственные числа были положительны.

Упражнения.

- 1) Доказать, что если оператор положительно определен, то его определитель положителен.
- 2) Доказать неравенство Коши Буняковского (см. теорему 3, с. 119), используя матрицу Грама (см. (8.1), с. 126) системы, состоящей из двух векторов x, y евклидова пространства.

§ 6. Примеры применения вариационного описания собственных чисел

1. Пусть $\mathcal{A}, \mathcal{B}, \mathcal{C}: \mathbf{X}_n \to \mathbf{X}_n$ — самосопряженные операторы, а

$$\lambda_1(\mathcal{A}) \leqslant \lambda_2(\mathcal{A}) \leqslant \cdots \leqslant \lambda_n(\mathcal{A}),$$

$$\lambda_1(\mathcal{B}) \leqslant \lambda_2(\mathcal{B}) \leqslant \cdots \leqslant \lambda_n(\mathcal{B}),$$

$$\lambda_1(\mathcal{C}) \leqslant \lambda_2(\mathcal{C}) \leqslant \cdots \leqslant \lambda_n(\mathcal{C})$$

есть их собственные числа. Пусть $\mathcal{A} = \mathcal{B} + \mathcal{C}$. Тогда

$$\lambda_1(\mathcal{C}) \leqslant \lambda_k(\mathcal{A}) - \lambda_k(\mathcal{B}) \leqslant \lambda_n(\mathcal{C}), \quad k = 1, 2, \dots, n.$$
 (6.1)

Для доказательства этого утверждения достаточно заметить, что, фиксируя произвольное подпространство $R_k \subset \mathbf{X}_n$, получаем, что

$$\frac{(\mathcal{A}x,x)}{(x,x)} = \frac{(\mathcal{B}x,x)}{(x,x)} + \frac{(\mathcal{C}x,x)}{(x,x)} \quad \forall x \in R_k, \ x \neq 0.$$

Вследствие (5.3)

$$\frac{(\mathcal{C}x, x)}{(x, x)} \leqslant \lambda_n(\mathcal{C}) \quad \forall \, x \in \mathbf{X}_n, \, x \neq 0,$$

поэтому

$$\min_{x \in R_k, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} \leqslant \min_{x \in R_k, \ x \neq 0} \frac{(\mathcal{B}x, x)}{(x, x)} + \lambda_n(\mathcal{C}),$$

но тогда и

$$\max_{R_k} \min_{x \in R_k, \ x \neq 0} \frac{(\mathcal{A}x, x)}{(x, x)} \leqslant \max_{R_k} \min_{x \in R_k, \ x \neq 0} \frac{(\mathcal{B}x, x)}{(x, x)} + \lambda_n(\mathcal{C}).$$

Последнее неравенство по теореме 2.3, с. 216, равносильно тому, что

$$\lambda_k(\mathcal{A}) - \lambda_k(\mathcal{B}) \leqslant \lambda_n(\mathcal{C}). \tag{6.2}$$

Заметим теперь, что $\mathcal{B} = \mathcal{A} + (-\mathcal{C})$. Собственными числами оператора $-\mathcal{C}$ являются числа $-\lambda_k(\mathcal{C})$. Максимальным из них будет $-\lambda_1(\mathcal{C})$. Поэтому, повторяя предыдущие рассуждения, получим

$$\lambda_k(\mathcal{B}) - \lambda_k(\mathcal{A}) \leqslant -\lambda_1(\mathcal{C}). \tag{6.3}$$

Объединяя (6.2), (6.3), приходим к (6.1).

Оценки (6.1) полезны тем, что они показывают, как могут измениться собственные числа самосопряженного оператора \mathcal{B} , если к нему добавить самосопряженный оператор \mathcal{C} . Видно, что если собственные числа оператора \mathcal{C} малы, то собственные числа оператора \mathcal{B} мало меняются.

2. Используем полученный результат для оценки возмущений собственных чисел эрмитовой матрицы.

Пусть $A=\{a_{ij}\}_{i,j=1}^n,\,E=\{\varepsilon_{ij}\}_{i,j=1}^n$ — эрмитовы матрицы. Предположим, что $|\varepsilon_{ij}|\leqslant \varepsilon,\,i,j=1,2,\ldots,n.$ Тогда

$$|\lambda_k(A) - \lambda_k(A + E)| \le n\varepsilon, \quad k = 1, 2, \dots, n,$$
 (6.4)

т. е. малые возмущения элементов самосопряженной матрицы приводят к малым возмущениям ее собственных чисел.

Из (6.1) вытекает, что для доказательства оценки (6.4) достаточно установить, что

$$|\lambda_k(E)| \le n\varepsilon, \quad k = 1, 2, \dots, n.$$
 (6.5)

Вследствие (5.4) нужная оценка сводится к оценке |(Ex,x)|. Под скалярным произведением здесь понимается стандартное скалярное произведение в \mathbb{C}^n . Запишем сначала очевидное неравенство

$$|(Ex,x)| = \left| \sum_{i,j=1}^n \varepsilon_{ij} x_i \bar{x}_j \right| \leqslant \sum_{i,j=1}^n |\varepsilon_{ij}| |x_i| |x_j|.$$

Используя теперь неравенство Коши — Буняковского (применительно к стандартному скалярному произведению в пространстве \mathbb{R}^m размерности $m=n^2$), получим

$$|(Ex,x)| \leq \left(\sum_{i,j=1}^{n} |\varepsilon_{ij}|^{2}\right)^{1/2} \left(\sum_{i,j=1}^{n} |x_{i}|^{2} |x_{j}|^{2}\right)^{1/2} =$$

$$= \left(\sum_{i,j=1}^{n} |\varepsilon_{ij}|^{2}\right)^{1/2} \left(\sum_{i=1}^{n} |x_{i}|^{2} \sum_{j=1}^{n} |x_{j}|^{2}\right)^{1/2} = \left(\sum_{i,j=1}^{n} |\varepsilon_{ij}|^{2}\right)^{1/2} (x,x) \leq$$

$$\leq n\varepsilon(x,x).$$

Последняя оценка, очевидно, обеспечивает выполнение (6.5).

3. Полученный результат о возмущениях собственных чисел эрмитовой матрицы не распространяется на произвольные матрицы. Приведем соответствующий пример. Пусть A — вещественная двухдиагональная матрица десятого порядка. По диагонали этой матрицы расположены в порядке убывания целые числа $10, 9, 8, \ldots, 1$, все элементы на ближайшей сверху параллельной диагонали равны десяти. Понятно, что все характеристические числа этой матрицы есть числа, стоящие на ее диагонали. Наряду с матрицей A рассмотрим матрицу

$$A_{\varepsilon} = \begin{pmatrix} 10 & 10 & 0 & \cdots & 0 \\ 0 & 9 & 10 & \cdots & 0 \\ 0 & 0 & 8 & \cdots & 0 \\ & & & \ddots & 10 \\ \varepsilon & 0 & 0 & \cdots & 1 \end{pmatrix},$$

Рис. 1. К примеру неустойчивой задачи на собственные значения: \circ — характеристические числа матрицы A, \square — характеристические числа матрицы A_{ε}

отличающуюся от A только одним элементом, стоящим в позиции (10,1) и равным ε . На рисунке 1 показано расположение на ком-

плексной плоскости характеристических чисел матрицы A и матрицы A_{ε} при $\varepsilon=10^{-5}$. Видно, что малому по сравнению с элементами матрицы A значению ε отвечают существенные отклонения характеристических чисел. Результат, впрочем, ожидаемый, поскольку, как нетрудно убедиться, разлагая определитель по первому столбцу, $\det A=10!$, а $\det A_{\varepsilon}=10!-\varepsilon 10^9$, и, поскольку определитель матрицы есть произведение ее характеристических чисел, то даже при малых ε характеристические числа матриц A и A_{ε} различаются значительно.

4. Теорема. Пусть $A_{n+1} = \{a_{ij}\}_{i,j=1}^{n+1} - n$ роизвольная эрмитова матрица порядка n+1, $A_n = \{a_{ij}\}_{i,j=1}^n - m$ атрица, соответствующая ее главному минору порядка n. Пусть $\hat{\lambda}_1 \leqslant \hat{\lambda}_2 \leqslant \cdots \leqslant \hat{\lambda}_{n+1} - c$ обственные числа матрицы A_{n+1} , $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_n - c$ обственные числа матрицы A_n . Тогда

$$\hat{\lambda}_1 \leqslant \lambda_1 \leqslant \hat{\lambda}_2 \leqslant \lambda_2 \leqslant \dots \leqslant \lambda_n \leqslant \hat{\lambda}_{n+1}, \tag{6.6}$$

 $m. \ e., \ \kappa a \kappa \ robops m, \ cobcmbehhue числа матриц <math>A_n \ u \ A_{n+1} \ nepeme-$ экаются.

ДОКАЗАТЕЛЬСТВО. В ходе последующих рассуждений под скалярным произведением понимается стандартное скалярное произведение в пространстве \mathbb{C}^n .

Пусть $1 \le k \le n$. В соответствии с теоремой 2.4, с. 216,

$$\hat{\lambda}_{k+1} = \min_{R_{k+1}} \max_{x \in R_{k+1}, \ x \neq 0} \frac{(A_{n+1}x, x)}{(x, x)}.$$
(6.7)

Здесь минимум берется по всевозможным подпространствам R_{k+1} пространства \mathbb{C}^{n+1} размерности k+1.

Обозначим через $R_k \subset \mathbb{C}^n$ множество векторов из R_{k+1} , (n+1)-я компонента которых в естественном базисе равна нулю. Тогда

$$\max_{x \in R_{k+1}, \ x \neq 0} \frac{(A_{n+1}x, x)}{(x, x)} \geqslant \max_{x \in R_k, \ x \neq 0} \frac{(A_nx, x)}{(x, x)}.$$

Для обоснования этого неравенства достаточно заметить, что слева максимум берется по более широкому множеству векторов, чем справа. Таким образом, из (6.7) получаем

$$\hat{\lambda}_{k+1} = \min_{R_{k+1}} \max_{x \in R_{k+1}, \ x \neq 0} \frac{(A_{n+1}x, x)}{(x, x)} \geqslant \min_{R_k} \max_{x \in R_k, \ x \neq 0} \frac{(A_nx, x)}{(x, x)},$$

но правая часть этого неравенства по теореме 2.4 равна λ_k . Итак, $\hat{\lambda}_{k+1} \geqslant \lambda_k$ для всех $k=1,2,\ldots,n$.

Обратимся теперь к теореме 2.3, с. 216, в соответствии с которой

$$\hat{\lambda}_k = \max_{R_{n+2-k}} \min_{x \in R_{n+2-k}, \ x \neq 0} \frac{(A_{n+1}x, x)}{(x, x)}.$$
 (6.8)

Здесь максимум берется по всевозможным подпространствам R_{n+2-k} пространства \mathbb{C}^{n+1} размерности n+2-k. При сужении множества векторов, по которому вычисляется минимум, последний не может уменьшиться, поэтому по аналогии с предыдущим случаем можем написать, что

$$\hat{\lambda}_{k} = \max_{R_{n+2-k}} \min_{x \in R_{n+2-k}, \ x \neq 0} \frac{(A_{n+1}x, x)}{(x, x)} \leqslant$$

$$\leqslant \max_{R_{n+1-k}} \min_{x \in R_{n+1-k}, \ x \neq 0} \frac{(A_{n}x, x)}{(x, x)} = \lambda_{k}. \quad (6.9)$$

Таким образом, неравенства (6.6) доказаны. \square

§ 7. Корень из самосопряженного неотрицательного оператора

1. Теорема. Пусть \mathcal{A} — самосопряженный неотрицательный оператор, $k \geqslant 2$ — целое число. Тогда существует единственный самосопряженный неотрицательный оператор \mathcal{T} такой, что $\mathcal{T}^k = \mathcal{A}$.

Оператор \mathcal{T} называют корнем порядка k из оператора \mathcal{A} и обозначают через $\mathcal{A}^{1/k}$ или через $\sqrt[k]{\mathcal{A}}$.

ДОКАЗАТЕЛЬСТВО. Поскольку оператор \mathcal{A} самосопряжен, существует ортонормированный базис $\{e^j\}_{k=1}^n$ его собственных векторов. Определим оператор \mathcal{T} действием на векторы базиса:

$$\mathcal{T}e_i = \sqrt[k]{\lambda_i} e_i, \quad i = 1, \dots, n.$$

Все собственные числа неотрицательного оператора \mathcal{A} неотрицательны, поэтому можно считать, что все числа $\sqrt[k]{\lambda_i}$, $i=1,\ldots,n$, неотрицательны. Очевидно, что оператор \mathcal{T} самосопряжен, неотрицателен и $\mathcal{T}^k = \mathcal{A}$, т. е. $\mathcal{T} = \mathcal{A}^{1/k}$.

Осталось доказать единственность корня порядка k из оператора \mathcal{A} . С этой целью установим предварительно, что существует полином P_m , степени $m \leq n-1$, такой, что $\mathcal{T} = P_m(\mathcal{A})$. Действительно, пусть $\lambda_1, \ldots, \lambda_r, r \leq n$, — все попарно различные собственные числа оператора \mathcal{A} . Найдется (и притом только один) полином P_{r-1} ,

степени r-1, такой, что $P_{r-1}(\lambda_i) = \sqrt[k]{\lambda_i}$, $i=1,\ldots,r^{1)}$. Действуя оператором $P_{r-1}(\mathcal{A})$ на векторы базиса e_i , получим

$$P_{r-1}(\mathcal{A})e_i = P_{r-1}(\lambda_i)e_i = \sqrt[k]{\lambda_i} \ e_i, \ i = 1, \dots, n,$$

т. е. $P_{r-1}(\mathcal{A}) = \mathcal{T}$. Пусть теперь \mathcal{U} — произвольный самосопряженный неотрицательный оператор такой, что $\mathcal{U}^k = \mathcal{A}$. Тогда

$$\mathcal{T}\mathcal{U} = P_{r-1}(\mathcal{A})\mathcal{U} = P_{r-1}(\mathcal{U}^k)\mathcal{U} = \mathcal{U}P_{r-1}(\mathcal{U}^k) = \mathcal{U}\mathcal{T},$$

т. е. операторы T и \mathcal{U} перестановочны, по теореме 10, с. 213, у них существует общий ортонормированный базис собственных векторов (обозначим его вновь через e_1, \ldots, e_n)

$$\mathcal{T}e_i = \mu_i \ e_i, \ \mathcal{U}e_i = \widetilde{\mu}_i e_i, \ \mu_i, \ \widetilde{\mu}_i \geqslant 0, \ i = 1, 2, \dots, n.$$

Следовательно,

$$\mathcal{T}^k e_i = \mu_i^k e_i, \ \mathcal{U}^k e_i = \widetilde{\mu}_i^k e_i, \ i = 1, 2, \dots, n,$$

но \mathcal{T}^k = \mathcal{U}^k , поэтому $\widetilde{\mu}_i^k=\mu_i^k$, откуда вытекает, что $\widetilde{\mu}_i=\mu_i,\,i=1,\ldots,n$. Таким образом, $\mathcal{U}=\mathcal{T}$. \square

§ 8. Обобщенная проблема собственных значений

1. Пусть \mathcal{A} , \mathcal{B} — произвольные операторы, действующие в пространстве \mathbf{X}_n . Ненулевой вектор $x \in \mathbf{X}_n$ называется собственным вектором обобщенной проблемы собственных значений, если существует число λ такое, что

$$\mathcal{A}x = \lambda \mathcal{B}x; \tag{8.1}$$

число λ называется при этом собственным числом обобщенной проблемы собственных значений. Если оператор \mathcal{B} невырожден, то задача (8.1), очевидно, эквивалентна задаче на собственные значения

$$\mathcal{B}^{-1}\mathcal{A}x = \lambda x \tag{8.2}$$

для оператора $\mathcal{C} = \mathcal{B}^{-1} \mathcal{A}$.

Наиболее просто обобщенная проблема собственных значений исследуется в случае самосопряженных операторов \mathcal{A} , \mathcal{B} .

 $^{^{1)}}$ Полином P_{r-1} можно записать в явном виде, используя, например, интерполяционную формулу Лагранжа (см. с. 85).

2. Теорема. Пусть \mathcal{A} — самосопряженный оператор, \mathcal{B} — положительно определенный оператор, действующие в евклидовом пространстве \mathbf{X}_n . Тогда существуют векторы $\{e^k\}_{k=1}^n$, образующие базис пространства \mathbf{X}_n , и вещественные числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ такие, что

$$\mathcal{A}e^k = \lambda_k \mathcal{B}e^k, \quad k = 1, 2, \dots, n, \tag{8.3}$$

$$(\mathcal{B}e^k, e^l) = \delta_{kl}, \quad k, l = 1, 2, \dots, n.$$
 (8.4)

ДОКАЗАТЕЛЬСТВО. Каждой паре элементов $x, y \in \mathbf{X}_n$ поставим в соответствие число $(x, y)_{\mathcal{B}} = (\mathcal{B}x, y)$. Нетрудно убедиться, что это соответствие определяет скалярное произведение на пространстве \mathbf{X}_n . Оператор $\mathcal{C} = \mathcal{B}^{-1}\mathcal{A}$ самосопряжен относительно этого нового скалярного произведения. Действительно, для любых $x, y \in \mathbf{X}_n$ имеем

$$(\mathcal{C}x,y)_{\mathcal{B}} = (\mathcal{B}\mathcal{C}x,y) = (\mathcal{A}x,y) = (x,\mathcal{A}y) = (x,\mathcal{B}\mathcal{B}^{-1}\mathcal{A}y) = (x,\mathcal{C}y)_{\mathcal{B}}.$$

Поэтому по теореме 9, с. 212, существуют векторы $\{e^k\}_{k=1}^n$, образующие базис пространства \mathbf{X}_n , и вещественные числа $\lambda_1, \lambda_2, \ldots, \lambda_n$ (см. п. 5, с. 211) такие, что

$$Ce^k = \lambda_k e^k, \quad k = 1, 2, \dots, n, \tag{8.5}$$

$$(e^k, e^l)_{\mathcal{B}} = \delta_{kl}, \quad k, l = 1, 2, \dots, n.$$
 (8.6)

Равенства (8.5), (8.6) эквивалентны соответствующим равенствами (8.3), (8.4). \square

§ 9. Сингулярные базисы и сингулярные числа оператора

1. В этом параграфе будет показано, что для любого оператора \mathcal{A} , действующего из евклидова пространства \mathbf{X}_n в евклидово пространство \mathbf{Y}_m , можно указать такие ортонормированные базисы $\{e^k\}_{k=1}^n \subset \mathbf{X}_n$ и $\{q^k\}_{k=1}^m \subset \mathbf{Y}_m$, что матрица оператора \mathcal{A} принимает наиболее простой вид, а именно,

$$\mathcal{A}e^k = \begin{cases} \rho_k q^k, & k \leqslant r, \\ 0, & k > r, \end{cases} \tag{9.1}$$

где $\rho_k > 0, k = 1, 2, \ldots, r$. Числа ρ_k называют сингулярными числами оператора \mathcal{A} . Базисы $\{e^k\}_{k=1}^n, \{q^k\}_{k=1}^m$, обеспечивающие выполнение соотношений (9.1), называются сингулярными базисами оператора \mathcal{A} .

Как показывает (9.1), ненулевыми элементами матрицы A_{eq} оператора \mathcal{A} относительно сингулярных базисов являются только числа $\rho_1, \, \rho_2, \, \ldots, \, \rho_r$, расположенные на диагонали главного (базисного) минора матрицы A_{eq} .

2. Построим сингулярные базисы оператора \mathcal{A} . Оператор $\mathcal{A}^*\mathcal{A}$ самосопряжен и неотрицателен (см. упражнение 1 на с. 209), следовательно (см. теорему 9, с. 212, и п. 3, § 5), существуют ортонормированные собственные векторы $\{e^k\}_{k=1}^n$ оператора $\mathcal{A}^*\mathcal{A}$, все его собственные числа неотрицательны. Таким образом,

$$\mathcal{A}^* \mathcal{A} e^k = \rho_k^2 e^k, \quad k = 1, 2, \dots, n.$$
 (9.2)

Здесь $\rho_k^2 \geqslant 0$ — собственные числа оператора $\mathcal{A}^*\mathcal{A}$. Будем нумеровать их так, чтобы $\rho_1 \geqslant \rho_2 \geqslant \cdots \geqslant \rho_r > 0, \; \rho_{r+1} = \cdots = \rho_n = 0.$ Положим $z^k = \mathcal{A}e^k$ для $k = 1, \ldots, r$ и заметим, что

$$(z^p, z^q) = (Ae^p, Ae^q) = (A^*Ae^p, e^q) = \rho_p^2(e^p, e^q).$$

Поэтому

$$(z^p, z^q) = \begin{cases} 0, & p \neq q, \\ \rho_p^2, & p = q, \end{cases}$$
 (9.3)

следовательно, векторы

$$q^k = \rho_k^{-1} \mathcal{A} e^k, \quad k = 1, 2, \dots, r,$$
 (9.4)

образуют ортонормированную систему в пространстве \mathbf{Y}_m . Если окажется, что r < m, дополним ее произвольно векторами q^k , k = r + 1, $r + 2, \ldots, m$, до ортонормированного базиса пространства \mathbf{Y}_m . Из определения векторов $\{e^k\}_{k=1}^n$, $\{q^k\}_{k=1}^m$ сразу же вытекает справедливость (9.1).

3. Из (9.1) получаем, что векторы $\{q^k\}_{k=1}^r$ образуют базис в $\mathrm{Im}(\mathcal{A})$, но тогда из теоремы 3, с. 159, вытекает, что векторы $\{q^k\}_{k=r+1}^m$ образуют базис в $\mathrm{Ker}(\mathcal{A}^*)$, следовательно,

$$\mathcal{A}^* q^k = 0$$
 для $k = r + 1, \dots, m.$ (9.5)

Для $k = 1, 2, \dots, r$ из (9.4), (9.2) получаем

$$\mathcal{A}^* q^k = \rho_k^{-1} \mathcal{A}^* \mathcal{A} e^k = \rho_k e^k. \tag{9.6}$$

4. Сопоставляя (9.6), (9.4), (9.5), будем иметь, что

$$\mathcal{A}\mathcal{A}^*q^k = \rho_k^2 q^k, \ k = 1, \dots, r, \quad \mathcal{A}\mathcal{A}^*q^k = 0, \ k = r + 1, \dots, m.$$
 (9.7)

Из (9.2), (9.7) вытекает, что ненулевые собственные числа операторов $\mathcal{A}^*\mathcal{A}$ и $\mathcal{A}\mathcal{A}^*$ совпадают, т. е. спектры этих операторов могут отличаться лишь кратностью нулевого собственного числа.

5. Из предыдущих рассуждений также следуют равенства

$$\operatorname{rank}(\mathcal{A}) = \operatorname{rank}(\mathcal{A}^* \mathcal{A}) = \operatorname{rank}(\mathcal{A} \mathcal{A}^*),$$
$$\operatorname{def}(\mathcal{A}^* \mathcal{A}) = n - \operatorname{rank}(\mathcal{A}), \quad \operatorname{def}(\mathcal{A} \mathcal{A}^*) = m - \operatorname{rank}(\mathcal{A}).$$

- 6. Понятно, что ранг r оператора \mathcal{A} равен количеству ненулевых сингулярных чисел оператора \mathcal{A} . Это наблюдение открывает реальную возможность вычисления ранга оператора \mathcal{A} : нужно решить задачу на собственные значения для самосопряженного неотрицательного оператора $\mathcal{A}^*\mathcal{A}$ и определить количество ненулевых собственных чисел. Именно таким способом обычно пользуются в вычислительной практике. Ясно также, что собственные векторы $\{e^i\}_{i=r+1}^n$ оператора $\mathcal{A}^*\mathcal{A}$ образуют ортонормированный базис ядра оператора \mathcal{A} .
- 7. Если сингулярные числа и сингулярные базисы оператора \mathcal{A} найдены, то построение псевдорешения (см. § 6, с. 179) уравнения

$$\mathcal{A}x = y \tag{9.8}$$

не вызывает затруднений. В самом деле, как было показано в п. 3, с. 180, любое решение уравнения

$$\mathcal{A}^* \mathcal{A} x = \mathcal{A}^* y \tag{9.9}$$

есть псевдорешение уравнения (9.8). Представляя векторы x и y в виде разложений по сингулярным базисам, $x = \sum_{k=1}^{n} \xi_k e^k$, $y = \sum_{k=1}^{m} \eta_k q^k$, и используя затем соотношения (9.2), (9.5), (9.6), получим как следствие уравнения (9.9), что

$$\sum_{k=1}^{r} (\rho_k^2 \xi_k - \rho_k \eta_k) e^k = 0, \tag{9.10}$$

откуда вытекает, что $\xi_k = \eta_k/\rho_k$ для $k=1,2,\ldots,r$. Таким образом, любой вектор

$$x = \sum_{k=1}^{r} (\eta_k / \rho_k) e^k + \sum_{k=r+1}^{n} \xi_k e^k,$$
 (9.11)

где ξ_{r+1}, \ldots, ξ_n — произвольные числа, есть псевдорешение уравнения (9.8).

Если $y \in \text{Im}(\mathcal{A})$, т. е. уравнение (9.8) разрешимо, то формула (9.11) дает общее решение (см. § 2, с. 173) уравнения (9.8). Действительно, в этом случае вектор $x_0 = \sum_{k=1}^r (\eta_k/\rho_k) e^k$ есть частное решение

уравнения (9.8), а $\sum_{k=r+1}^{n} \xi_k e^k$ — общее решение соответствующего однородного уравнения.

8. Для любого псевдорешения x уравнения (9.8) имеем

$$|x|^2 = \sum_{k=1}^r (\eta_k/\rho_k)^2 + \sum_{k=r+1}^n \xi_k^2.$$

Полагая ξ_{r+1} , ..., $\xi_n = 0$, получим псевдорешение с минимальной длиной. Такое псевдорешение принято называть *нормальным*. Оно ортогонально ядру оператора \mathcal{A} .

Упражнения.

- 1) Покажите, что модуль определителя любого оператора, действующего в конечномерном пространстве, равен произведению всех сингулярных чисел этого оператора.
- 2) Пусть A произвольная прямоугольная матрица ранга r. Покажите, что существуют унитарные матрицы U, V такие, что

$$A = UDV, (9.12)$$

где

$$D = \begin{pmatrix} R & O_{1,2} \\ O_{1,2}^T & O_{2,2} \end{pmatrix}$$

есть блочная 2×2 матрица, $R = \operatorname{diag}(\rho_1, \rho_2, \dots \rho_r)$, все элементы диагонали R положительны, все элементы матриц $O_{1,2}, O_{2,2}$ — нули.

Формула (9.12) определяет так называемое *сингулярное* разложение прямоугольной матрицы.

9. Сингулярные числа оператора характеризуют чувствительность решения линейного уравнения по отношению к изменению его правой части. Пусть \mathcal{A} — невырожденный оператор, действующий в евклидовом пространстве \mathbf{X}_n . Рассмотрим наряду с уравнением

$$\mathcal{A}x = y \tag{9.13}$$

уравнение

$$\mathcal{A}x = \tilde{y}.\tag{9.14}$$

Поскольку оператор \mathcal{A} невырожден, оба уравнения однозначно разрешимы. Пусть x — решение уравнения (9.13), \tilde{x} — решение уравнения (9.14). Величину $\delta_x = |x - \tilde{x}|/|x|$ называют величиной *относительного изменения решения* при изменении правой части. Выясним, как она зависит от $\delta_y = |y - \tilde{y}|/|y|$ — величины *относительного изменения правой части*. Представим векторы y, \tilde{y} в виде разложений

по сингулярному базису:
$$y = \sum_{k=1}^n \eta_k q^k$$
, $\tilde{y} = \sum_{k=1}^n \tilde{\eta}_k q^k$. Тогда вслед-

ствие (9.1) получим
$$x = \mathcal{A}^{-1}y = \sum_{k=1}^{n} \frac{\eta_k}{\rho_k} e^k$$
, $\tilde{x} = \mathcal{A}^{-1}\tilde{y} = \sum_{k=1}^{n} \frac{\tilde{\eta}_k}{\rho_k} e^k$,

поэтому, используя неравенства $\rho_1\geqslant \rho_2\geqslant \cdots \geqslant \rho_n>0$, будем иметь, что

$$\delta_x^2 = \frac{\sum_{k=1}^n \frac{|\eta_k - \tilde{\eta}_k|^2}{\rho_k^2}}{\sum_{k=1}^n \frac{|\eta_k|^2}{\rho_k^2}} \leqslant \frac{\rho_1^2}{\rho_n^2} \sum_{k=1}^n |\eta_k - \tilde{\eta}_k|^2}{\sum_{k=1}^n |\eta_k|^2} = \frac{\rho_1^2}{\rho_n^2} \delta_y^2. \tag{9.15}$$

Таким образом,

$$\delta_x \leqslant \frac{\rho_1}{\rho_n} \delta_y. \tag{9.16}$$

Величина ρ_1/ρ_n , характеризующая устойчивость решения уравнения (9.13) по отношению к изменению его правой части, называется *числом обусловленности* оператора \mathcal{A} и обозначается через $\operatorname{cond}(\mathcal{A})$. Очевидно, $\operatorname{cond}(\mathcal{A}) \geqslant 1$ для любого оператора \mathcal{A} .

Упражнения.

- 1) Покажите, что при определенном выборе y и \tilde{y} неравенство (9.16) превращается в равенство, и в этом смысле оценка (9.16) неулучшаема.
- 2) Приведите примеры операторов, для которых число обусловленности равно единице.

§ 10. Полярное разложение оператора

1. Пусть $\mathcal{A}: \mathbf{X}_n \to \mathbf{X}_n$ — произвольный оператор. Определим, как в п. 1, § 9, сингулярные базисы $\{e^k\}_{k=1}^n$, $\{q^k\}_{k=1}^n$ оператора \mathcal{A} , а затем операторы $\mathcal{U}, \mathcal{T}, \mathcal{S}$, задав их действием на векторы базисов:

$$Ue^k = q^k, \ Tq^k = \rho_k q^k, \ Se^k = \rho_k e^k, \ k = 1, 2, \dots, n.$$
 (10.1)

Оператор \mathcal{U} унитарный, так как переводит ортонормированный базис в ортонормированный базис. Операторы \mathcal{T} , \mathcal{S} — самосопряженные неотрицательные операторы. Для того, чтобы убедиться в этом,

достаточно заметить, что числа $(\mathcal{T}x, x)$, $(\mathcal{S}x, x)$ неотрицательны для любого $x \in \mathbf{X}_n$.

Далее, учитывая (9.1), (10.1), получим

$$\mathcal{US}e^k = \rho_k q^k = \mathcal{A}e^k, \quad \mathcal{TU}e^k = \rho_k q^k = \mathcal{A}e^k, \ k = 1, 2, \dots, n,$$

следовательно,

$$\mathcal{A} = \mathcal{US} = \mathcal{TU}.\tag{10.2}$$

Формулы (10.2) определяют так называемое *полярное разложеение* оператора \mathcal{A} . Они показывают, что любое линейное преобразование есть результат последовательного выполнения унитарного преобразования, не меняющего длин векторов, и самосопряженного неотрицательного преобразования, выполняющего растяжения пространства в n попарно ортогональных направлениях.

Оператор S называют *правым оператором растяжения*, а оператор T — левым оператором растяжения.

2. Из (10.2) непосредственно получаем $\mathcal{A}^*\mathcal{A} = \mathcal{S}^2$, $\mathcal{A}\mathcal{A}^* = \mathcal{T}^2$. Поскольку операторы \mathcal{S} , \mathcal{T} — самосопряженные неотрицательные операторы, то эти равенства показывают, что \mathcal{S} , \mathcal{T} однозначно определяются по оператору \mathcal{A} , а именно

$$S = \sqrt{A^*A}, \quad T = \sqrt{AA^*}.$$
 (10.3)

В случае, когда оператор \mathcal{A} невырожден, оператор $\mathcal{A}^*\mathcal{A}$ также невырожден, следовательно, невырожден и оператор \mathcal{S} , поэтому оператор $\mathcal{U} = \mathcal{AS}^{-1}$ также определяется однозначно.

Из формул $(10.\overline{2})$, (10.3) непосредственно вытекает

3. Теорема. Для того, чтобы оператор \mathcal{A} был нормальным, необходимо и достаточно операторы \mathcal{T} и \mathcal{S} в представлении (10.2) совпадали, иными словами, чтобы операторы \mathcal{U} и \mathcal{S} были перестановочны.

Глава 11

Операторы в вещественном евклидовом пространстве

§ 1. Общие сведения

Отметим некоторые особенности, связанные с рассмотрением линенйных операторов, действующих в вещественном евклидовом пространстве \mathbf{X}_n .

В любом ортонормированном базисе пространства \mathbf{X}_n матрицы операторов \mathcal{A} и \mathcal{A}^* взаимно транспонированы.

Для того, чтобы оператор был самосопряжен, необходимо и достаточно, чтобы в любом ортонормированном базисе пространства \mathbf{X}_n его матрица была симметрична.

Косоэрмитов оператор, действующий в вещественном евклидовом пространстве, обычно называют кососимметричным. Для того, чтобы оператор был кососимметричным необходимо и достаточно, чтобы в любом ортонормированном базисе пространства \mathbf{X}_n его матрица была кососимметрична.

Любой оператор \mathcal{A} однозначно представим в виде $\mathcal{A} = \mathcal{A}_1 + \mathcal{A}_2$, где \mathcal{A}_1 — самосопряженный, \mathcal{A}_2 — кососимметричный операторы, причем

$$\mathcal{A}_1 = \frac{1}{2}(\mathcal{A} + \mathcal{A}^*), \quad \mathcal{A}_2 = \frac{1}{2}(\mathcal{A} - \mathcal{A}^*).$$

Аналогичные рассуждения для матриц см. на с. 98, 99.

1. Теорема. Для того, чтобы оператор \mathcal{A} был кососимметричным, необходимо и достаточно выполнения условия

$$(\mathcal{A}x, x) = 0 \quad \forall x \in \mathbf{X}_n. \tag{1.1}$$

ДОКАЗАТЕЛЬСТВО. Действительно, если $\mathcal{A}=-\mathcal{A}^*,$ то

$$(\mathcal{A}x, x) = (x, \mathcal{A}^*x) = -(x, \mathcal{A}x),$$

т. е. (Ax, x) = 0. Достаточность условия (1.1) вытекает из очевидного тождества $(A(x+y), x+y) = (Ax, x) + (Ay, y) + (Ax + A^*x, y)$. \square

2. Унитарный оператор, т. е. оператор \mathcal{A} , удовлетворяющий условию $\mathcal{A}\mathcal{A}^*=I$, действующий в вещественном евклидовом пространстве, называется *ортогональным*. Для того, чтобы оператор был ортогональным, необходимо и достаточно, чтобы его матрица была ортогональной (см. п. 7 на с.99) в любом ортонормированном базисе пространства \mathbf{X}_n .

Из определения ортогонального оператора сразу же вытекает, что он не меняет длин векторов и углов между векторами. Определитель ортогонального оператора равен плюс или минус единице.

Собственным числом ортогонального оператора может быть только плюс или минус единица.

3. Напомним, что оператор \mathcal{A} называется нормальным, если $\mathcal{A}\mathcal{A}^* = \mathcal{A}^*\mathcal{A}$. Самосопряженный, кососимметричный и ортогональный операторы — нормальные операторы. В любом ортонормированном базисе \mathcal{E}_n пространства \mathbf{X}_n матрица A_e нормального оператора \mathcal{A} является нормальной, т. е. удовлетворяет условию

$$A_e A_e^T = A_e^T A_e. (1.2)$$

Справедливо и обратное: если в некотором ортонормированном базисе \mathcal{E}_n пространства \mathbf{X}_n матрица A_e оператора \mathcal{A} удовлетворяет условию (1.2), то \mathcal{A} — нормальный оператор.

§ 2. Структура нормального оператора

В этом параграфе все операторы — операторы, действующие в вещественном евклидовом пространстве \mathbf{X}_n .

1. Теорема. Для того, чтобы оператор \mathcal{A} , действующий в вещественном евклидовом пространстве \mathbf{X}_n , был нормальным оператором, необходимо и достаточно существования ортонормированного базиса \mathcal{E}_n пространства \mathbf{X}_n , в котором матрица оператора \mathcal{A} блочно диагональна:

$$A_e = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_k \end{pmatrix}. \tag{2.1}$$

Диагональные блоки этой матрицы могут иметь размеры либо 1×1 , либо 2×2 ; блоки размера 1×1 — это вещественные числа,

блоки размера 2×2 есть матрицы вида

$$A_p = \begin{pmatrix} \alpha_p & -\beta_p \\ \beta_p & \alpha_p \end{pmatrix}, \tag{2.2}$$

где α_p , β_p — вещественные числа.

ДОКАЗАТЕЛЬСТВО. Д о с т а т о ч н о с т ь. Непосредственными вычислениями легко проверяется, что матрица A_e описанной в теореме структуры удовлетворяет условию (1.2).

Н е о б х о д и м о с т ь. Пусть A_e — матрица нормального оператора \mathcal{A} в произвольно выбранном ортонормированном базисе \mathcal{E}_n . Тогда A_e удовлетворяет условию (1.2). Как было установлено ранее (см. упражнение 1 на с. 213), по матрице A_e можно построить ортонормированный базис $\mathcal{F}_n = \{f_k\}_{k=1}^n$ пространства \mathbb{C}^n такой, что

$$A_e f_k = \lambda_k f_k, \quad k = 1, 2, \dots, n,$$
 (2.3)

где $\lambda_1, \lambda_2, \ldots, \lambda_n$ — характеристические числа матрицы A_e , причем если λ_k — вещественное число, то и вектор f_k можно считать вещественным. Будем нумеровать характеристические числа матрицы A_e так, что $\lambda_1 = \alpha_1, \ \lambda_2 = \alpha_2, \ \ldots, \ \lambda_m = \alpha_m, \ 0 \leqslant m \leqslant n$, вещественны, а $\lambda_{m+j} = \alpha_{m+j} + i\beta_{m+j}, \ \bar{\lambda}_{m+j} = \alpha_{m+j} - i\beta_{m+j}, \ j = 1, 2, \ldots, p,$ p = (n - m)/2, — комплексные числа. Тогда собственные векторы f_k , $k=1,2,\ldots,m$, будут вещественными, остальные — комплексными, т. е. $f_k = g_k + ih_k$, где $g_k, h_k \in \mathbb{R}^n$, k > m. Отметим также, что, поскольку A_e — вещественная матрица, то если λ_k комплексное характеристическое число матрицы A_e и $A_e f_k = \lambda_k f_k$, то $A_e \bar{f}_k = \lambda_k f_k$. По теореме 8, с. 212, собственные векторы, соответствующие различным собственным числам нормального оператора, ортогональны, следовательно, $(f_k, \bar{f}_k) = 0$, откуда вытекает, что $(g_k,g_k)=(h_k,h_k), (g_k,h_k)=0$. Кроме того, $(f_k,f_k)=1$. Отсюда легко получается, что $(g_k, g_k) = (h_k, h_k) = 1/2$. Пусть, далее, $f_k, f_l \in \mathcal{F}_n$ есть_комплексные векторы $k \neq l, f_k \neq \bar{f}_l$. Тогда $(f_k, f_l) = 0,$ и $(f_k, \bar{f}_l) = 0$, откуда при помощи элементарных выкладок получаем, что (g_k, g_l) , (h_k, h_l) , (g_k, h_l) , $(h_k, g_l) = 0$. Напомним (см. п. 2, с. 193), что если $A_e f_k = \lambda_k f_k$, $\lambda_k = \alpha_k + i\beta_k$, $f_k = g_k + ih_k$, то $A_e g_k = \alpha_k g_k - \beta_k h_k$, $A_e h_k = \alpha_k g_k + \beta_k h_k$. Поставим теперь в соответствие каждому вещественному характеристическому числу λ_k матрицы A_e вещественный вектор $f_k \in \mathcal{F}_n$, а каждой паре комплексно сопряженных характеристических чисел λ_k , λ_k матрицы A_e вещественные векторы $\tilde{g}_k = \sqrt{2}\,g_k, \; \tilde{h}_k = \sqrt{2}\,h_k$. В результате, получим систему $\tilde{\mathcal{F}}_n = \{f_1, f_2, \dots, f_m, \ \tilde{g}_1, \tilde{h}_1, \ \tilde{g}_2, \tilde{h}_2, \dots, \ \tilde{g}_p, \tilde{h}_p\},$ состоящую из n векторов пространства \mathbb{R}^n и по доказанному выше ортонормированную. Для векторов системы $\widetilde{\mathcal{F}}_n$ выполнены равенства

$$A_e f_k = \alpha_k f_k, \quad k = 1, 2, \dots, m,$$
 (2.4)

$$A_{e}\tilde{g}_{j} = \alpha_{j}\tilde{g}_{j} - \beta_{j}\tilde{h}_{j}$$

$$A_{e}\tilde{h}_{j} = \beta_{i}\tilde{g}_{j} + \alpha_{j}\tilde{h}_{j},$$
(2.5)

 $j=1,2,\ldots,p$, из которых, очевидно, вытекает, что в ортонормированном базисе $\widetilde{\mathcal{E}}_n=\mathcal{E}\widetilde{\mathcal{F}}_n$ пространства \mathbf{X}_n оператор \mathcal{A} будет иметь матрицу вида (2.1). Блоки этой матрицы образованы соответствующим элементами матрицы A_e . \square

Остановимся на некоторых важных частных случаях. При этом мы будем опираться на следствие 7, с. 212.

- **2.** Самосопряженный оператор. Матрица самосопряженного оператора \mathcal{A} в любом ортонормированном базисе симметрична, следовательно (см. п. 7, с. 212), все ее характеристические числа вещественны. Поэтому, все числа $\beta_j, j=1,2,\ldots,p$, в равенствах (2.5) равны нулю. Таким образом, существует ортонормированный базис пространства \mathbf{X}_n , в котором матрица оператора \mathcal{A} диагональна.
- 3. Кососимметричный оператор. Матрица кососимметричного оператора \mathcal{A} в любом ортонормированном базисе кососимметрична, следовательно, все ее характеристические числа чисто мнимые. Поэтому, все числа α_j , в равенствах (2.4), (2.5) равны нулю, значит, существует ортонормированный базис пространства \mathbf{X}_n , в котором матрица оператора \mathcal{A} имеет вид (2.1). При этом все диагональные блоки первого порядка нулевые, а блоки второго порядка кососимметричны:

$$A_j = \begin{pmatrix} 0 & -\beta_j \\ \beta_j & 0 \end{pmatrix},$$

 $j=1,2\ldots,p.$

§ 3. Структура ортогонального оператора

1. Матрица ортогонального оператора в любом ортонормированном базисе ортогональна, следовательно, все ее характеристические числа по модулю равны единице. Поэтому числа α_k , $k=1,2,\ldots,m$, в соотношениях (2.4) могут быть равны только плюс единице или минус единице, а числа α_j , β_j , $j=1,2,\ldots,p$, в равенствах (2.5) таковы, что $\alpha_j^2 + \beta_j^2 = 1$, следовательно, существуют углы $\varphi_j \in [0,2\pi)$ такие,

что $\alpha_j = \cos \varphi_j$, $\beta_j = \sin \varphi_j$. Таким образом, существует ортонормированый базис пространства \mathbf{X}_n , в котором матрица ортогонального оператора принимает вид (2.1). При этом все диагональные блоки первого порядка — это числа, равные плюс единице или минус единице, а блоки второго порядка имеют вид

$$\begin{pmatrix} \cos \varphi_j & -\sin \varphi_j \\ \sin \varphi_j & \cos \varphi_j \end{pmatrix}.$$

Благодаря теореме 1, § 2, всякому ортогональному преобразованию вещественного евклидова пространства можно придать отчетливый геометрический смысл.

2. Начнем с двумерного случая. Как следует из вышеизложенного для любого ортогонального преобразования евклидова пространства \mathbf{X}_2 существует ортонормированный базис e^1, e^2 , в котором его матрица будет либо

$$A_e = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$

либо

$$A_e = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

В первом случае всякий вектор $x = \xi_1 e^1 + \xi_2 e^2 \in \mathbf{X}_2$ переводится оператором \mathcal{A} в вектор $\mathcal{A}x = -\xi_1 e^1 + \xi_2 e^2$, т. е. оператор \mathcal{A} осуществляет зеркальное отражение относительно координатной оси ξ_2 .

Во втором случае $(\mathcal{A}x,x)=|x||\mathcal{A}x|\cos\varphi$ т. е. оператор \mathcal{A} осуществляет поворот каждого вектора $x\in\mathbf{X}_2$ на угол φ . Направление поворота (при $\varphi>0$) совпадает с направлением кратчайшего поворота от e^1 к e^2 .

3. В трехмерном случае у любого ортогонального оператора \mathcal{A} существует хотя бы одно собственное число, поскольку соответствующее характеристическое уравнение есть алгебраическое уравнение третьего порядка с вещественными коэффициентами. Поэтому с точностью до перенумерации векторов ортонормированного базиса e^1 , e^2 , $e^3 \in \mathbf{X}_3$ матрица A_e может принять одну из следующих форм

$$A_e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}, \tag{3.1}$$

$$A_e = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos \varphi & -\sin \varphi\\ 0 & \sin \varphi & \cos \varphi \end{pmatrix}. \tag{3.2}$$

Отметим, что если оператор \mathcal{A} имеет одно собственное число, указанные представления непосредственно следуют из теоремы 1, а если оператор \mathcal{A} имеет три собственных числа, то представления (3.1) или (3.2) получаются за счет специального выбора угла φ .

Рассуждая по аналогии с двумерным случаем, нетрудно убедиться, что оператор \mathcal{A} с матрицей (3.1) осуществляет поворот пространства \mathbf{X}_3 вокруг оси ξ_1 на угол φ , а оператор \mathcal{A} с матрицей (3.1) осуществляет поворот пространства \mathbf{X}_3 вокруг оси ξ_1 на угол φ с последующим отражением относительно плоскости, ортогональной вектору e^1 . В первом случае определитель оператора \mathcal{A} равен единице, во втором — минус единице.

Определитель оператора, как мы знаем, не зависит от выбора базиса пространства. Поэтому все ортогональные преобразования трехмерного пространства можно разбить на два класса: собственные вращения — это преобразования с положительным определителем, они осуществляют поворот пространства вокруг некоторой оси; и несобственные вращения — это преобразования с отрицательным определителем, они осуществляют поворот пространства вокруг некоторой оси с последующим отражением относительно плоскости, ортогональной этой же оси.

4. Евклидово пространство X_n произвольной размерности в соответствии с теоремой 1 можно представить в виде ортогональной суммы некоторого количества одномерных инвариантных подпространств и некоторого количества двумерных инвариантных подпространств ортогонального оператора \mathcal{A} . В двумерных инвариантных подпространствах оператор \mathcal{A} выполняет поворот, в каждом, вообще говоря, на свой угол, а в одномерных инвариантных подпространствах может изменится лишь направление координатной оси.

5. Упражнения.

- 1) Опираясь на результаты § 10, с. 227, описать линейные отображения трехмерного вещественного евклидова пространства с положительным определителем и линейные отображения с отрицательным определителем.
- 2) Показать, что всякая вещественная симметричная матрица A ортогонально подобна диагональной, т. е. $Q^TAQ=\Lambda$, где Λ диагональная, Q ортогональная матрицы. Столбцы матрицы Q собственные векторы матрицы A, по диагонали матрицы Λ расположены все собственные числа матрицы A.
- 3) Пусть A симметричная, B положительно определенная вещественные матрицы одного и того же порядка. Опираясь на тео-

рему 2, с. 223, показать, что существует невырожденная матрица T такая, что $T^TAT = \Lambda$, где Λ — диагональная матрица, а $T^TBT = I$.

§ 4. Матрицы вращения и отражения

Остановимся на двух часто используемых в приложениях типах ортогональных матриц.

1. Матрица вращения. Вещественная матрица

$$R_{pq}(\varphi) = \{r_{ij}(\varphi)\}_{i,j=1}^n, \quad 1 \leqslant p < q \leqslant n,$$

называется матрицей вращения, если $r_{pp}(\varphi) = r_{qq}(\varphi) = \cos \varphi$, $r_{ii}(\varphi) = 1$ при $i \neq p, q, r_{pq}(\varphi) = -\sin \varphi, r_{qp}(\varphi) = \sin \varphi$, а все остальные элементы матрицы $R_{pq}(\varphi)$ — нули.

Нетрудно видеть, что матрица $R = R_{pq}(\varphi)$ ортогональна. Порождаемое ей преобразование евклидова пространства \mathbb{R}^n со стандартным скалярным произведением есть поворот на угол φ в двумерном подпространстве (плоскости), натянутом на векторы i^p , i^q естественного базиса пространства \mathbb{R}^n . Матрица R^T , обратная к R, выполняет поворот в той же плоскости в обратном направлении.

Пусть x — произвольный вектор пространства \mathbb{R}^n . Ясно, что $(Rx)_i = x_i$ при $i \neq p, q$,

$$(Rx)_p = x_p \cos \varphi - x_q \sin \varphi,$$

$$(Rx)_q = x_p \sin \varphi + x_q \cos \varphi.$$

Положим $\rho = (x_p^2 + x_q^2)^{1/2}$. Пусть $\varphi = 0$, если $\rho = 0$, и $\cos \varphi = x_p/\rho$, $\sin \varphi = -x_q/\rho$, если $\rho > 0$. Тогда $(Rx)_p = \rho$, $(Rx)_q = 0$.

Теперь совершенно ясно, что если x — произвольный ненулевой вектор пространства \mathbb{R}^n , то выбирая последовательно углы $\varphi_n, \ \varphi_{n-1}, \ \ldots, \ \varphi_2$, можно построить матрицы вращения $R_{1,n}(\varphi_n)$, $R_{1,n-1}(\varphi_{n-1}), \ \ldots, \ R_{1,2}(\varphi_2)$ такие, что $Rx = |x| i^1$. Здесь

$$R = R_{1,2}(\varphi_2) \cdots R_{1,n-1}(\varphi_{n-1}) \cdots R_{1,n}(\varphi_n).$$

Таким образом, любой ненулевой вектор при помощи ортогональной матрицы можно преобразовать в вектор, совпадающий по направлению с первым вектором естественного базиса.

Пусть теперь x, y два произвольных ненулевых вектора пространства \mathbb{R}^n . Как только что было показано, существуют ортогональные матрицы R_x и R_y такие, что $R_x x = |x| i^1$, $R_y y = |y| i^1$. Отсюда вытекает, что Rx = (|x|/|y|)y, где $R = R_y^T R_x$, т. е. для любой пары ненулевых векторов найдется ортогональная матрица, преобразующая первый вектор в вектор, совпадающий по направлению со вторым.

2. Матрица отражения. Пусть $w=\{w_i\}_{i=1}^n$ — произвольно выбранный вектор единичной длины пространства \mathbb{R}^n . Матрица

$$R = I - 2ww^T$$

называется матрицей отражения. Поясним, что w трактуется здесь как вектор столбец, так что $R = \{\delta_{ij} - 2w_iw_j\}_{i,j=1}^n$.

Матрица R симметрична. Покажем, что она ортогональна. Действительно,

$$R^T R = R^2 = I - 4ww^T + 4ww^T ww^T = I,$$

так как $w^T w = |w|^2 = 1$.

Заметим, далее, что

$$Rw = w - 2ww^T w = -w, \quad Rz = z - 2ww^T z = z,$$
 (4.1)

если $w^T z = (w, z) = 0$, т. е. векторы w и z ортогональны¹⁾.

Пусть теперь x — произвольный вектор. По теореме 3, с. 150, он однозначно представим в виде $x=\alpha w+z$, где α некоторое число, z — некоторый вектор, ортогональный w. Из равенств (4.1) вытекает, что $Rx=-\alpha w+z$.

Можно сказать, таким образом, что матрица R выполняет отражение вектора x относительно (n-1)-мерной гиперплоскости, ортогональной вектору w. Это свойство матрицы R и позволяет называть ее матрицей отражения.

2.1. Рассмотрим следующую задачу. Даны ненулевой вектор a и вектор единичной длины e. Требуется построить матрицу отражения R, такую, что $Ra = \mu e$, где μ — число (ясно, что $|\mu| = |a|$, поскольку матрица R ортогональна).

Нетрудно видеть (сделайте чертеж!), что решение задачи — матрица отражения, определяемая вектором

$$w = (a - |a|e)/|a - |a|e|$$
 (4.2)

или вектором w=(a+|a|e)/|a+|a|e|. При вычислениях для минимизации погрешностей округления следует выбрать вектор w с бо́льшим знаменателем.

Полезно отметить, что если a — произвольный ненулевой вектор то матрица отражения R может быть построена так, что для любого вектора $x \in \mathbb{R}^n$

$$(a, Rx) = |a|x_k, (4.3)$$

где k — заданное целое число, лежащее в пределах от 1 до n. Для этого, очевидно, в формуле (4.2) нужно положить $e=i^k$.

 $^{^{(1)}}$ В смысле стандартного скалярного произведения в пространстве \mathbb{R}^n .

Глава 12

Квадратичные формы и квадратичные функции

§ 1. Канонический вид квадратичной формы

1. Kвадратичной формой будем называть вещественную функцию F от n вещественных переменных x_1, x_2, \ldots, x_n вида

$$F(x_1, x_2, \dots, x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j.$$
 (1.1)

Заданные вещественные числа a_{ij} называют коэффициентами квадратичной формы. Их можно считать удовлетворяющими условиям симметрии $a_{ij} = a_{ji}, i, j = 1, 2, \ldots, n$, поскольку слагаемые в квадратичной форме, содержащие коэффициенты a_{ij}, a_{ji} , можно представить так:

$$a_{ij}x_ix_j + a_{ji}x_jx_i = \frac{a_{ij} + a_{ji}}{2}x_ix_j + \frac{a_{ij} + a_{ji}}{2}x_jx_i.$$

Запишем квадратичную форму в более компактном виде. Пусть A — симметричная матрица с элементами a_{ij} , $i, j = 1, 2, \ldots, n$. Вектор $x = (x_1, x_2, \ldots, x_n)$ будем считать элементом пространства \mathbb{R}^n . Тогда F(x) = (Ax, x). Здесь и всюду на протяжении данной главы скобки обозначают стандартное скалярное произведение в пространстве \mathbb{R}^n .

2. Пусть в квадратичной форме выполнена линейная замена переменных, т. е. введены новые переменные $y=(y_1,y_2,\ldots,y_n)$, связанные со старыми переменными $x=(x_1,x_2,\ldots,x_n)$ соотношением

$$x = Qy, (1.2)$$

где Q — невырожденная матрица, называемая матрицей преобразования переменных. Выполнив замену переменных (1.2), получим

$$F(Qy) = (AQy, Qy) = (Q^T AQy, y) = (By, y) = \sum_{i,j=1}^{n} b_{ij} y_i y_j,$$

где через B обозначена матрица Q^TAQ . Очевидно, матрица B симметрична. Чаще всего, матрицу Q стремятся подобрать так, чтобы

квадратичная форма в новых переменных приобрела наиболее простой вид.

Говорят, что преобразование переменных (1.2) приводит квадратичную форму (1.1) к каноническому виду, если матрица $B=Q^TAQ$ диагональна, т. е.

$$F(Qy) = \sum_{i=1}^{n} b_{ii} y_i^2.$$
 (1.3)

Можно сказать также, что квадратичная форма (1.1) преобразованием переменных (1.2) приведена к сумме квадратов.

3. Всякую квадратичную форму невырожденным преобразованием переменных можно привести к каноническому виду. Действительно, поскольку A — симметричная матрица, существует ортогональная матрица Q такая, что (см. упражнение 2 на с. 234)

$$Q^T A Q = \Lambda,$$

где Λ — диагональная матрица, по диагонали которой расположены все собственные числа матрицы A. При таком выборе матрицы Q преобразование переменных (1.2) приводит квадратичную форму (1.1) к виду

$$F(Qy) = \sum_{i=1}^{n} \lambda_i y_i^2, \tag{1.4}$$

где $\lambda_1, \, \lambda_2, \, \ldots, \, \lambda_n$ — собственные числа матрицы A.

4. Известны и другие способы приведения квадратичной формы к каноническому виду. Опишем, например, метод Лагранжа, или метод выделения полных квадратов, приведения квадратичной формы к каноническому виду. В ходе описания этого метода, фактически, будет дано еще одно, независимое, доказательство возможности приведения любой квадратичной формы к каноническому виду.

Будем различать два случая: 1) в квадратичной форме (1.1) коэффициент при квадрате какой-либо переменной отличен от нуля, 2) коэффициенты при квадратах всех переменных — нули.

Рассмотрим сначала первый случай, и пусть $a_{11} \neq 0$. Если это не так, придется ввести другую нумерацию неизвестных.

Запишем квадратичную форму (1.1) в виде

$$F = a_{11}^{-1}(a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n)^2 + G, \tag{1.5}$$

где $G = F - a_{11}^{-1}(a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n)^2$. Нетрудно убедиться, что G не содержит x_1 , а является квадратичной формой только от

переменных x_2, x_3, \ldots, x_n . Положим

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n, \quad y_2 = x_2, \dots, \quad y_n = x_n.$$
 (1.6)

Тогда

$$F = a_{11}^{-1} y_1^2 + G(y_2, \dots, y_n), \tag{1.7}$$

где $G(y_2, \ldots, y_n)$ — квадратичная форма от переменных y_2, \ldots, y_n . Матрица замены переменных (1.6) невырождена, так как ее определитель равен a_{11} , а по предположению $a_{11} \neq 0$.

Пусть теперь все коэффициенты при квадратах переменных в (1.1) равны нулю. Тогда будем считать, что хотя бы один коэффициент при произведениях переменных отличен от нуля, иначе квадратичная форма тождественно равна нулю, и она имеет тривиальный канонический вид: все коэффициенты при квадратах неизвестных — нули. Итак, примем для определенности, что $a_{12} \neq 0$, и выполним преобразование переменных по формулам

$$x_1 = z_1 - z_2, \quad x_2 = z_1 + z_2, \quad x_3 = z_3, \dots, \quad x_n = z_n.$$
 (1.8)

Заметим, во-первых, что определитель матрицы преобразования (1.8) равен двум, а во-вторых, что $2a_{12}x_1x_2=2a_{12}z_1^2-2a_{12}z_2^2$, следовательно, в квадратичной форме появились слагаемые, содержащие квадраты переменных, поэтому, повторяя рассуждения предыдущего случая, при помощи невырожденной замены переменных приведем квадратичную форму к виду

$$F = \alpha y_1^2 + G(y_2, \dots, y_n). \tag{1.9}$$

Таким образом, выполняя одно или два последовательных невырожденных преобразования переменных, квадратичную форму (1.1) можно привести к виду (1.9).

Аналогичными преобразованиями переменных выделим полный квадрат в квадратичной форме $G(y_2, \ldots, y_n)$. Продолжая преобразования, в конце концов приведем квадратичную форму (1.1) к сумме квадратов.

ПРИМЕР. Приведем к каноническому виду квадратичную форму

$$F(x_1, x_2, x_3) = 2x_1x_2 - 6x_2x_3 + 2x_3x_1. (1.10)$$

Поскольку в этой форме отсутствуют квадраты переменных, выполним сначала преобразование переменных

$$x_1 = y_1 - y_2$$
, $x_2 = y_1 + y_2$, $x_3 = y_3$.

Получим

$$F = 2y_1^2 - 4y_1y_3 - 2y_2^2 - 8y_2y_3.$$

Положим теперь

$$z_1 = y_1 - y_3$$
, $z_2 = y_2$, $z_3 = y_3$.

Тогда

$$F = 2z_1^2 - 2z_2^2 - 8z_2z_3 - 2z_3^2 = 2z_1^2 - 2(z_2^2 + 4z_2z_3) - 2z_3^2.$$

Отсюда после замены переменных

$$t_1 = z_1, \quad t_2 = z_2 + 2z_3, \quad t_3 = z_3$$

получаем

$$F = 2t_1^2 - 2t_2^2 + 6t_3^2, (1.11)$$

т. е. в переменных t_1 , t_2 , t_3 квадратичная форма принимает канонический вид. Очевидно, каждое из выполненных нами преобразований переменных имеет невырожденную матрицу. Результирующее преобразование переменных, как нетрудно проверить, имеет вид

$$t_1 = \frac{1}{2}x_1 + \frac{1}{2}x_2 - x_3, \quad t_2 = -\frac{1}{2}x_1 + \frac{1}{2}x_2 + 2x_3, \quad t_3 = x_3,$$

откуда

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 3 \\ 1 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}. \tag{1.12}$$

Непосредственной проверкой нетрудно убедиться, что матрица преобразования переменных (1.12) невырождена, и эта замена переменных приводит квадратичную форму (1.10) к каноническому виду (1.11).

§ 2. Закон инерции квадратичных форм

Среди коэффициентов b_{ii} канонического вида (1.3) квадратичной формы (1.1) могут быть положительные, отрицательные числа, а также — нули. Нумеруя соответствующим образом переменные, запишем (1.3) так:

$$F(Qy) = (By, y) = \sum_{i=1}^{n_+} b_{ii} y_i^2 + \sum_{i=n_++1}^{n_++n_-} b_{ii} y_i^2.$$
 (2.1)

Считаем при этом, что числа b_{ii} положительны при $i=1,2,\ldots,n_+$ и отрицательны при $i=n_++1,\ldots,n_++n_-$.

Как мы уже убедились, приведение квадратичной формы к каноническому виду может быть выполнено различными способами. Поэтому естественно поставить вопрос: зависят ли числа n_+ , n_- от способа приведения квадратичной формы к каноническому виду?

При исследовании этого вопроса будут использованы следующие определения.

Симметричные матрицы A и B называют конгруэнтными, если существует невырожденная матрица C такая, что $B = C^T A C$.

С каждой симметричной матрицей A свяжем три целых числа: $n_0(A)$ — количество нулевых характеристических чисел матрицы A, $n_+(A)$ — количество положительных характеристических чисел, $n_-(A)$ — количество отрицательных характеристических чисел (характеристические числа подсчитываются с учетом их кратности). Тройка чисел $n_0(A)$, $n_+(A)$, $n_-(A)$ называется инерцией матрицы A, или инерцией соответствующей ей квадратичной формы.

1. Теорема. Для того, чтобы матрицы A u B были конгруэнтными, необходимо и достаточно, чтобы их инерции совпадали.

ДОКАЗАТЕЛЬСТВО. Достаточность. Как было показано выше, для всякой симметричной матрицы A можно указать ортогональную матрицу Q такую, что

$$F(Qy) = (Q^T A Q y, y) = \sum_{i=1}^{n} \lambda_i y_i^2,$$
 (2.2)

где $\lambda_1, \, \lambda_2, \, \ldots, \, \lambda_n$ — собственные числа матрицы A. Заметим, что

$$\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} = \sum_{i=1}^{n} \operatorname{sgn}(\lambda_{i}) |\lambda_{i}| y_{i}^{2} = \sum_{i=1}^{n} \operatorname{sgn}(\lambda_{i}) (\sqrt{|\lambda_{i}|} y_{i})^{2} =$$

$$= \sum_{i=1}^{n} \operatorname{sgn}(\lambda_{i}) t_{i}^{2} = \sum_{i=1}^{n_{+}(A)} t_{i}^{2} - \sum_{i=n_{+}(A)+1}^{n_{+}(A)+n_{-}(A)} t_{i}^{2}. \quad (2.3)$$

Эти преобразования можно трактовать как невырожденную замену переменных: $t_i = \sqrt{|\lambda_i|}y_i$, если $\lambda_i \neq 0$, и $t_i = y_i$, если $\lambda_i = 0$.

Таким образом, установлено, что всякая симметричная матрица A конгруэнтна диагональной матрице, у которой на диагонали $n_+(A)$ единиц, $n_-(A)$ минус единиц, остальные элементы главной диагонали — нули. Если симметричная матрица B имеет инерцию, равную инерции матрицы A, то она конгруэнтна точно такой же диагональной матрице. Отношение конгруэнтности, как нетрудно убедиться, транзитивно, следовательно, матрицы A и B конгруэнтны.

Необходимость. Заметим, прежде всего, что у конгруэнтных матриц ранги, очевидно, совпадают. Кроме того, для любой симметричной матрицы A справедливо равенство $\operatorname{rank}(A) = n_+(A) + n_-(A)$. Действительно, всякая симметричная матрица A подобна диагональной матрице, у которой по диагонали расположены все собственные числа матрицы A. Из этих рассуждений вытекает, что если матрицы A и B конгруэнтны, то $n_+(A) + n_-(A) = n_+(B) + n_-(B)$.

Таким образом, для завершения доказательства теоремы достаточно установить, что если матрицы A, B конгруэнтны, то

$$n_{+}(A) = n_{+}(B). (2.4)$$

Пусть $\lambda_n \geqslant \lambda_{n-1} \geqslant \cdots \geqslant \lambda_{n-n_++1}$ — положительные собственные числа матрицы $A, e^{n-n_++1}, \ldots, e^n$ — соответствующие им ортонормированные собственные векторы матрицы A. По предположению теоремы $B = C^TAC$, где C — невырожденная матрица, или $A = D^TBD$, где $D = C^{-1}$. Поскольку матрица D невырождена, векторы $De^{n-n_++1}, \ldots, De^n$ линейно независимы, и подпространство S_{n_+} , натянутое на эти векторы, имеет размерность n_+ . Пусть $x \in S_{n_+}$. Тогда $x = \alpha_{n-n_++1}De^{n-n_++1} + \cdots + \alpha_nDe^n = Dy$, где $y = \alpha_{n-n_++1}e^{n-n_++1} + \cdots + \alpha_ne^n$, и, используя лемму 2.1, с. 215, получим

$$(Bx, x) = (D^T B D y, y) = (Ay, y) \geqslant \lambda_{n-n_{+}+1}(y, y).$$
 (2.5)

Заметим теперь, что $(y,y) = (Cx,Cx) = (C^TCx,x)$. Матрица C невырождена, поэтому матрица C^TC положительно определена (см. упражнение 1 на с. 209), следовательно,

$$(y,y) \geqslant \lambda_1(C^T C)(x,x), \tag{2.6}$$

причем $\lambda_1(C^TC) > 0$ (здесь, вновь, использована лемма 2.1, с. 215). Из (2.5), (2.6) вытекает, что

$$\min_{x \in S_{n_+}, \ x \neq 0} \frac{(Bx, x)}{(x, x)} \geqslant \lambda_{n - n_+ + 1} \lambda_1(C^T C) > 0,$$

поэтому, применяя теорему 2.3, с. 216, получим, что $\lambda_{n-n_{n_+}+1}(B)>0$. Это означает, что у матрицы B не меньше чем n_+ положительных характеристических чисел, иначе говоря, $n_+(B)\geqslant n_+(A)$. В выполненных рассуждениях матрицы A и B можно поменять местами. Таким образом, $n_+(A)=n_+(B)$. \square

2. Следствие (закон инерции квадратичных форм). Количества положительных и отрицательных слагаемых в (2.1) не зависят от способа приведения невырожденным линейным преобразованием переменных квадратичной формы (1.1) к каноническому виду.

ДОКАЗАТЕЛЬСТВО. Коэффициенты b_{ii} в (2.1) — это характеристические числа диагональной матрицы $B = Q^T A Q$, конгруэнтной

матрице A, поэтому количества положительных и отрицательных слагаемых в (2.1) определяются инерцией матрицы A и не зависят от способа приведения невырожденным линейным преобразованием переменных квадратичной формы (1.1), 1, к каноническому виду. \square

§ 3. Положительно определенные квадратичные формы

1. Квадратичная форма (1.1) называется *положительно определенной*, если соответствующая ей матрица A положительно определена, т. е.

$$(Ax, x) > 0$$
 для всех не равных нулю $x \in \mathbb{R}^n$. (3.1)

Как известно (см. п. 3, с. 217), для того, чтобы матрица A была положительно определена, необходимо и достаточно, чтобы все ее собственные числа были положительны.

Полезный признак положительной определенности квадратичной формы дает

1.1. Теорема (критерий Сильвестра¹⁾). Для того, чтобы квадратичная форма (1.1), 1, была положительно определена, необходимо и достаточно, чтобы все главные миноры матрицы A были положительны.

ДОКАЗАТЕЛЬСТВО. Н е о б х о д и м о с т ь. Фиксируем некоторое целое $k, 1 \le k \le n$. Выберем в качестве вектора x в (3.1) вектор вида $x = (x_1, \ldots, x_k, 0, \ldots, 0) = (y, 0, \ldots, 0)$, где y можно считать произвольным вектором пространства \mathbb{R}^k . Тогда $(Ax, x) = (A_k y, y)$, где A_k — матрица, соответствующая главному минору порядка k матрицы A. Из условия (3.1), очевидно, вытекает, что $(A_k y, y) > 0$ для любого ненулевого вектора y из \mathbb{R}^k , т. е. матрица A_k положительно определена, следовательно, ее определитель (главный минор порядка k матрицы A) положителен (см. упражнение 1 на с. 217).

Д о с т а т о ч н о с т ь. Покажем, что если все главные миноры матрицы A положительны, то положительны все ее собственные числа. Тогда положительная определенность матрицы A будет установлена. На самом деле, мы докажем большее, мы покажем, что собственные числа всех главных миноров матрицы A положительны. Для минора первого порядка, т. е. для a_{11} , это выполняется тривиальным образом. Предположим, что у матрицы A_k , соответствующей главному минору порядка k, все собственные числа $\lambda_1 \leqslant \cdots \leqslant \lambda_k$ положительны и покажем, что тогда и у матрицы A_{k+1} все собственные

 $^{^{1)}}$ Джеймс Джозеф Сильвестр (James Joseph Sylvester, 1814-1897) — английский математик.

числа $\hat{\lambda}_1\leqslant\cdots\leqslant\hat{\lambda}_{k+1}$ положительны. В соответствии с теоремой 4, с. 220, выполнены неравенства

$$\hat{\lambda}_1 \leqslant \lambda_1 \leqslant \hat{\lambda}_2 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_k \leqslant \hat{\lambda}_{k+1},$$

откуда вытекает, что $\hat{\lambda}_2,\ldots,\hat{\lambda}_{k+1}>0$. Поскольку по условию $\det(A_{k+1})>0$, а $\det(A_{k+1})=\hat{\lambda}_1\hat{\lambda}_2\cdots\hat{\lambda}_{k+1}$ (см. (6.7), с. 191), то и $\hat{\lambda}_1>0$. \square

1.2. Одновременное приведение двух квадратичных форм к каноническому виду.

УПРАЖНЕНИЕ. Пусть (Ax,x) — произвольная квадратичная форма, (Bx,x) — положительно определенная квадратичная форма. Показать, что существует невырожденное преобразование переменных y=Tx, которое одновременно приводит эти квадратичные формы к каноническому виду, а именно

$$(T^T A T y, y) = \sum_{i=1}^n d_{ii} y_i^2, \quad (T^T B T y, y) = \sum_{i=1}^n y_i^2.$$

УКАЗАНИЕ. Используйте результаты упражнения 3, с. 234.

§ 4. Квадратичная функция и ее инварианты

1. Пусть A — вещественная квадратная матица порядка n, a — заданный фиксированный вектор пространства \mathbb{R}^n, a_0 — вещественное число. Определенная на пространстве \mathbb{R}^n вещественная функция вида

$$F(x) = (Ax, x) + 2(a, x) + a_0 (4.1)$$

называется $\kappa вадратичной$. Множитель два перед вторым слагаемым поставлен ради удобства записи формул в дальнейшем. Не ограничивая общности (см. п. 1, с. 237), можно считать, что матрица A симметрична.

Понятно, что теория квадратичных функций может строиться как некоторое обобщение теории квадратичных форм.

Свяжем с каждой квадратичной функцией F симметричную матрицу

$$B = \begin{pmatrix} A & a \\ a^T & a_0 \end{pmatrix}. \tag{4.2}$$

3десь a трактуется как вектор столбец.

2. Выполним так называемое *аффинное преобразование* переменных, т. е. положим

$$x = x^0 + Ty, (4.3)$$

где x^0 — фиксированный вектор пространства \mathbb{R}^n , T — невырожденная матрица. Иногда замену переменных (4.3) удобнее записывать в виде $x = T(\hat{x}^0 + y)$, где $\hat{x}^0 = T^{-1}x^0$.

Выполняя элементарные преобразования, нетрудно получить, что

$$F(x^{0} + Ty) \equiv \hat{F}(y) = (\hat{A}y, y) + 2(\hat{a}, y) + \hat{a_0}, \tag{4.4}$$

где

$$\hat{A} = T^T A T, \tag{4.5}$$

$$\hat{a} = T^T a + \hat{A}\hat{x}^0, \quad \hat{a}_0 = a_0 + 2(T^T a, \hat{x}^0) + (\hat{A}\hat{x}^0, \hat{x}^0).$$
 (4.6)

Таким образом, любое аффинное преобразование переменных переводит квадратичную функцию в квадратичную.

Введем в рассмотрение квадратные матрицы

$$Q = \begin{pmatrix} T & 0 \\ 0^T & 1 \end{pmatrix}, \quad U = \begin{pmatrix} I & \hat{x}^0 \\ 0^T & 1 \end{pmatrix} \tag{4.7}$$

порядка n+1. Поясним, что здесь 0 — вектор столбец длины n, I — единичная матрица порядка n. Ясно, что $\det(Q) = \det(T)$, $\det(U) = 1$, т. е. матрицы Q, U невырождены.

Простые выкладки показывают, что

$$\hat{B} \equiv \begin{pmatrix} \hat{A} & \hat{a} \\ \hat{a}^T & \hat{a}_0 \end{pmatrix} = (QU)^T B(QU). \tag{4.8}$$

Из соотношений (4.5), (4.8) вытекает, что матрицы A и \hat{A} , B и \hat{B} , соответственно, конгруэнтны, поэтому их инерции совпадают (см. теорему 1, с. 241). Можно сказать, таким образом, что инерции матриц A, B являются $a\phi\phi$ инными инвариантами квадратичной функции.

3. Будем считать теперь, что матрица T ортогональна, т. е. $T^T = T^{-1}$. Тогда матрица Q, очевидно, также ортогональна. Из (4.5) в этом случае вытекает, что матрицы A и \hat{A} подобны, следовательно, их собственные числа совпадают. Из (4.8), очевидно, вытекает, что $\det(\hat{B}) = \det(B)$.

Таким образом, собственные числа матрицы A, инерция, а следовательно, и ранг матрицы B, а также определитель матрицы B могут быть названы *ортогональными инвариантами* квадратичной функции (4.1). Они не меняются при любом преобразовании переменных (4.3) с ортогональной матрицей T.

§ 5. Приведенная форма квадратичной функции

1. Покажем, что, выбирая в (4.3) соответствующим образом ортогональную матрицу T и вектор x^0 , любую квадратичную функцию можно преобразовать к простейшему так называемому npusedenhomy sudy.

Матрица A симметрична, поэтому существует ортонормированный базис e^1, e^2, \ldots, e^n пространства \mathbb{R}^n , составленный из собственных векторов матрицы A. Обозначим через $\lambda_1, \lambda_2, \ldots, \lambda_n$ соответствующие им собственные числа матрицы A.

Будем считать что первые r собственных чисел матрицы A отличны от нуля, остальные — нули.

Обозначим через T ортогональную матрицу, столбцы которой образованы векторами e^1, e^2, \ldots, e^n . Отметим, что последние n-r столбцов матрицы T принадлежат ядру матрицы A.

Выполним замену переменных в функции (4.1), полагая

$$x = Tu. (5.1)$$

В соответствии с формулами (4.4)–(4.6) (см. также упражнение 2 на с. 234) получим

$$F(Tu) = \lambda_1 u_1^2 + \lambda_2 u_2^2 + \dots + \lambda_r u_r^2 + 2(\hat{a}_1 u_1 + \hat{a}_2 u_2 + \dots + \hat{a}_r u_r) + 2(\hat{a}_{r+1} u_{r+1} + \hat{a}_{r+2} u_{r+2} + \dots + \hat{a}_n u_n) + a_0.$$
 (5.2)

Заметим, что

$$\lambda_k u_k^2 + 2\hat{a}_k u_k = \lambda_k (u_k + \hat{a}_k/\lambda_k)^2 - \hat{a}_k^2/\lambda_k$$

для k = 1, 2, ..., r. Поэтому

$$F(Tu) = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_r y_r^2 + 2(b, \tilde{y}) + \hat{a}_0, \tag{5.3}$$

где

$$y_k = u_k + \hat{a}_k/\lambda_k, \ k = 1, 2, \dots, r, \ \tilde{y} = (u_{r+1}, u_{r+2}, \dots, u_n) \in \mathbb{R}^{n-r},$$

$$b = (\hat{a}_{r+1}, \hat{a}_{r+2}, \dots, \hat{a}_n) \in \mathbb{R}^{n-r}, \quad \hat{a}_0 = a_0 - \sum_{k=1}^r \hat{a}_k^2 / \lambda_k.$$
 (5.4)

Далее будем различать два случая. Предположим сначала, что вектор b равен нулю, и пусть

$$\hat{x}_k^0 = -\hat{a}_k/\lambda_k, \ k = 1, 2, \dots, r, \quad \hat{x}_k^0 = 0, \ k = r + 1, r + 2, \dots, n.$$
 (5.5)

Tогда $u = y + \hat{x}^0$,

$$Tu = Ty + T\hat{x}^0, (5.6)$$

и равенство (5.3) принимает вид

$$F(x^{0} + Ty) = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{r}y_{r}^{2} + \hat{a}_{0},$$
 (5.7)

где

$$x^0 = T\hat{x}^0. \tag{5.8}$$

Пусть теперь $b \neq 0$. Следуя построениям п. 2.1, с. 236, сконструируем симметричную ортогональную матрицу R порядка n-r (матрицу отражения) такую, что $Rb = |b|(1,0,\ldots,0)^T$. Выполним в (5.3) замену переменных

$$y = \widetilde{R}v, \tag{5.9}$$

где

$$\widetilde{R} = \begin{pmatrix} I_r & 0 \\ 0^T & R \end{pmatrix},$$

 I_r — единичная матрица порядка r. Тогда (5.3) примет вид

$$F(Tu) = \lambda_1 v_1^2 + \lambda_2 v_2^2 + \dots + \lambda_r v_r^2 + 2b_{r+1} v_{r+1} + \hat{a}_0, \tag{5.10}$$

где $b_{r+1} = |b|$. Заметим, наконец, что

$$2b_{r+1}v_{r+1} + \hat{a}_0 = 2b_{r+1}(v_{r+1} + \hat{a}_0/b_{r+1}).$$

Поэтому, полагая

$$w = v + x^1, (5.11)$$

где

$$x_{r+1}^1 = \hat{a}_0/b_{r+1}, \quad x_i^1 = 0$$
 при $i = 1, 2, \dots, n, i \neq r+1,$ (5.12)

получим

$$F(Tu) = \lambda_1 w_1^2 + \lambda_2 w_2^2 + \dots + \lambda_r w_r^2 + 2b_{r+1} w_{r+1}.$$
 (5.13)

Из (5.6), (5.8), (5.9), (5.11) вытекает, что $Tu = \tilde{x}^0 + \tilde{T}w$,где

$$\widetilde{T} = T\widetilde{R}, \quad \widetilde{x}^0 = x^0 - \widetilde{T}x^1,$$
 (5.14)

следовательно,

$$F(\tilde{x}^0 + \tilde{T}w) = \lambda_1 w_1^2 + \lambda_2 w_2^2 + \dots + \lambda_r w_r^2 + 2b_{r+1} w_{r+1}.$$
 (5.15)

Матрица \widetilde{T} ортогональна, поскольку является произведением ортогональных матриц. Нетрудно убедиться также, что первые r столбцов матрицы \widetilde{T} совпадают с соответствующими столбцами матрицы T, а последние n-r столбцов матрицы \widetilde{T} являются линейными комбинациями последних n-r столбцов матрицы матрицы T и потому принадлежат ядру матрицы A.

2. Таким образом, доказано, что для любой квадратичной функции вида (4.1) найдутся матрица T, столбцы которой есть векторы ортонормированного базиса пространства \mathbb{R}^n , образованного собственными векторами матрицы A, и вектор x^0 такие, что либо

$$F(x^{0} + Ty) = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{r}y_{r}^{2} + \hat{a}_{0},$$
 (5.16)

либо

$$F(x^{0} + Ty) = \lambda_{1}y_{1}^{2} + \lambda_{2}y_{2}^{2} + \dots + \lambda_{r}y_{r}^{2} + 2b_{r+1}y_{r+1}.$$
 (5.17)

Здесь $\lambda_1, \lambda_2, \ldots, \lambda_r$ — все ненулевые собственные числа матрицы A, $b_{r+1} > 0$. Представления (5.16), (5.17) называются $npuвedeнными \phi op-$ мами квадратичной функции.

Ранг матрицы B (см. (4.2)), соответствующей квадратичной функции (5.16), очевидно, равен r, если $\hat{a}_0 = 0$ и равен r+1, если $\hat{a}_0 \neq 0$. Ранг матрицы B, соответствующей квадратичной функции (5.17), равен r+2 (докажите!).

Собственные числа матрицы A и ранг матрицы B инвариантны по отношению к замене переменных (4.3) с любой ортогональной матрицей T и любым вектором x^0 . Поэтому любой квадратичной функции однозначно соответствует либо приведенная форма (5.16), либо приведенная форма (5.17).

3. В этом пункте будет показано, что коэффициенты приведенной формы квадратичной функции F однозначно определяются по элементам матрицы B. Они не зависят от выбора вектора x^0 и ортогональной матрицы T в преобразовании переменных (4.3), дающем приведенную форму квадратичной функции.

Нам потребуются в дальнейшем некоторые вспомогательные результаты.

3.1. Лемма. Пусть

$$B = \begin{pmatrix} A & a \\ a^T & a_0 \end{pmatrix}, \tag{5.18}$$

где $A = \operatorname{diag}(a_{11}, a_{22}, \ldots, a_{nn}) - \partial u$ агональная матрица порядка n, $a = \{a_i\}_{i=1}^n - \text{вектор столбец. Предполагается, что лишь элементы } a_{11}, a_{22}, \ldots, a_{rr}, r \leqslant n-1$, матрицы A отличны от нуля. Тогда

$$\mathcal{I}_{r+2}(B) = -a_{11}a_{22}\cdots a_{rr}(a_{r+1}^2 + \cdots + a_n^2)^{1}.$$
 (5.19)

 $[\]mathcal{I}_k(B), k=1,2,\ldots,n,$ — инвариант матрицы B, определяемый по ее элементам при помощи формулы вида (6.5), с. 191.

ДОКАЗАТЕЛЬСТВО. Нетрудно убедиться, что среди главных миноров порядка r+2 матрицы B лишь миноры вида

$$\Delta_{r,m} = \begin{vmatrix} D_{11} & D_{12} \\ D_{12}^T & D_{22} \end{vmatrix}, \tag{5.20}$$

где

$$D_{11} = \operatorname{diag}(a_{11}, a_{22}, \dots, a_{rr}), \tag{5.21}$$

$$D_{12} = \begin{pmatrix} 0 & a_1 \\ 0 & a_2 \\ \vdots & \vdots \\ 0 & a_r \end{pmatrix}, \quad D_{22} = \begin{pmatrix} 0 & a_m \\ a_m & a_0 \end{pmatrix},$$

 $m=r+1,r+2,\ldots,n$, отличны от нуля. Все остальные главные миноры порядка r+2 содержат хотя бы одну нулевую строку (и столбец). Используя формулу (11.11), с. 110, нетрудно получить, что $\Delta_{r,m}=-a_{11}a_{22}\cdots a_{rr}a_m^2$. Суммируя теперь все миноры вида (5.20), приходим к (5.19). \square

3.2. Лемма. Пусть выполнены условия леммы 3.1,

$$\operatorname{rank}(B) = r + 1. \tag{5.22}$$

Тогда

$$\mathcal{I}_{r+1}(B) = \begin{vmatrix} D_{11} & d \\ d^T & a_0 \end{vmatrix}, \tag{5.23}$$

где матрица D_{11} определена равенством $(5.21), d = (a_1, a_2, \dots, a_r)^T$ — вектор столбец.

ДОКАЗАТЕЛЬСТВО. Вследствие условия (5.22) все миноры порядка r+2 матрицы B равны нулю. Поэтому $\mathcal{I}_{r+2}(B)=0$, откуда вследствие (5.19) вытекает, что $a_{r+1}, a_{r+2}, \ldots, a_n=0$. Тогда, как нетрудно убедится, все главные миноры порядка r+1 матрицы B, кроме минора вида (5.23), содержат хотя бы одну нулевую строку. \square

3.3. Лемма. Пусть выполнены условия леммы 3.1, матрица U определена равенством (4.7), $\widetilde{B} = U^T B U$. Тогда

$$\mathcal{I}_{r+2}(\widetilde{B}) = \mathcal{I}_{r+2}(B). \tag{5.24}$$

Если выполнены условия леммы 3.2, то $\mathcal{I}_{r+1}(\widetilde{B}) = \mathcal{I}_{r+1}(B)$. ДОКАЗАТЕЛЬСТВО. Заметим, что

$$BU = \begin{pmatrix} A & \tilde{a} \\ a^T & \tilde{a}_0 \end{pmatrix},$$

где

$$\tilde{a}_i = a_i + \hat{x}_i^0 a_{ii}, \quad i = 1, 2, \dots, r,$$
 (5.25)

$$\tilde{a}_i = a_i, \quad i = r + 1, \dots, n,$$
 (5.26)

$$\tilde{a}_0 = a_0 + \sum_{i=1}^n a_i \hat{x}_i^0. \tag{5.27}$$

Вследствие (5.19), (5.26) справедливо равенство $\mathcal{I}_{r+2}(BU) = \mathcal{I}_{r+2}(B)$. Точно так же проверяется, что умножение матрицы вида BU слева на матрицу U^T не меняет инварианта $\mathcal{I}_{r+2}(BU)$. Отсюда, очевидно, вытекает равенство (5.24). Второе утверждение леммы с использованием соотношений (5.25)–(5.27) доказывается аналогично. При этом надо учесть, что определитель (5.23) не меняется при переходе от матрицы B к матрице \widetilde{B} . \square

3.4. Теорема. Пусть ранг матрицы A квадратичной функции F равен r, ранг матрицы B не превосходит r+1. Пусть при помощи замены переменных $x=x^0+Ty$ с ортогональной матрицей T квадратичная функция F приведена κ виду

$$\hat{F}(y) = \alpha_1 y_1^2 + \alpha_1 y_1^2 + \dots + \alpha_m y_m^2 + \hat{a}_0.$$
 (5.28)

Тогда: 1) m = r, $\alpha_i = \lambda_i$, где λ_i , i = 1, 2, ..., r, — все ненулевые собственные числа матрицы A; 2) справедливо равенство

$$\hat{a}_0 = \mathcal{I}_{r+1}(B)/\mathcal{I}_r(A). \tag{5.29}$$

ДОКАЗАТЕЛЬСТВО. Используем формулы (4.4)–(4.8), связывающие исходную и приведенную формы квадратичной функции. В рассматриваемом случае $T^TAT = \hat{A} = \operatorname{diag}(\alpha_1, \alpha_2, \ldots, \alpha_m)$. Поскольку матрица T ортогональна, то матрицы A, \hat{A} подобны, откуда вытекает справедливость утверждения 1). Используем теперь тот факт, что, в рассматриваемом случае $\hat{a} = 0$. Поэтому по лемме 3.2 получаем, что $\mathcal{I}_{r+1}(\hat{B}) = \lambda_1 \lambda_2 \cdots \lambda_r \hat{a}_0$. Матрица A имеет ровно r ненулевых собственных чисел, следовательно, $\mathcal{I}_r(A) = \lambda_1 \lambda_2 \cdots \lambda_r$. Таким образом, $\hat{a}_0 = \mathcal{I}_{r+1}(\hat{B})/\mathcal{I}_r(A)$. Матрица Q^TBQ подобна матрице B. Поэтому все их инварианты совпадают. С другой стороны матрица Q^TBQ удовлетворяет условиям леммы 3.3, значит, $\mathcal{I}_{r+1}(Q^TBQ) = \mathcal{I}_{r+1}(\hat{B})$, т. е. $\mathcal{I}_{r+1}(\hat{B}) = \mathcal{I}_{r+1}(B)$, и утверждение 2) также доказано. \square

3.5. Теорема. Пусть ранг матрицы A квадратичной функции F равен $r, r \leq n-1$, ранг матрицы B равен r+2. Пусть

при помощи замены переменных $x = x^0 + Ty$ с ортогональной матрицей T квадратичная функция F приведена к виду

$$\hat{F}(y) = \alpha_1 y_1^2 + \alpha_1 y_1^2 + \dots + \alpha_m y_m^2 + 2b y_{m+1}. \tag{5.30}$$

Тогда: 1) m = r, $\alpha_i = \lambda_i$, где λ_i , i = 1, 2, ..., r, — все ненулевые собственные числа матрицы A; 2) выполнено равенство

$$b^{2} = -\mathcal{I}_{r+2}(B)/\mathcal{I}_{r}(A). \tag{5.31}$$

ДОКАЗАТЕЛЬСТВО. Справедливость утверждения 1) обосновывается точно так же, как и при доказательстве теоремы 3.4. В рассматриваемом случае лишь одна компонента вектора \hat{a} отлична от нуля. Поэтому по лемме 3.1 получаем, что $b^2 = -\mathcal{I}_{r+2}(\hat{B})/\mathcal{I}_r(A)$. Равенство $\mathcal{I}_{r+2}(\hat{B}) = \mathcal{I}_{r+2}(B)$ получаем аналогично доказательству предыдущей теоремы, используя подобие матриц B и Q^TBQ , а также лемму 3.3. \square

Глава 13

Кривые второго порядка

§ 1. Приведение к простейшему виду уравнения кривой второго порядка

1. Как и в § 6, гл. 4, будем рассматривать плоскость, отнесенную к декартовой системе координат x_1, x_2 .

Множество всех точек $x=(x_1,x_2)$ плоскости, удовлетворяющих уравнению

$$a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2 + 2a_1x_1 + 2a_2x_2 + a_0 = 0, (1.1)$$

называют кривой второго порядка. Здесь a_{ij} , i, j = 1, 2, a_i , i = 0, 1, 2, — вещественные числа, называемые коэффициентами уравнения.

Для сокращения записей, как и в предыдущей главе, введем в рассмотрение симметричную ненулевую матрицу

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, \tag{1.2}$$

составленную из старших коэффициентов квадратичной функции, и вектор $a = (a_1, a_2)$, составленный из младших коэффициентов. Тогда уравнение (1.1) запишется в виде¹⁾

$$(Ax, x) + 2(a, x) + a_0 = 0. (1.3)$$

2. Упрощение этого уравнения мы будем выполнять на основе замены переменных

$$x = Ty, (1.4)$$

где T — ортогональная матрица вида

$$T = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}. \tag{1.5}$$

Геометрически эта замена переменных может быть интерпретирована как поворот координатных осей против часовой стрелки на

 $^{^{1)}}$ В этой главе под скалярным произведением всюду понимается стандартное скалярное произведение в пространстве \mathbb{R}^2 .

угол φ , если считать при этом, что и исходная декартова система координат правая, т. е. поворот от оси x_1 к оси x_2 — поворот против часовой стрелки (см. п. 2, с. 233).

Выполним замену переменных (1.4) в (1.3). После элементарных преобразований получим

$$(T^T A T y, y) + 2(\hat{a}, y) + a_0 = 0, (1.6)$$

где $\hat{a} = T^T a$.

Построим теперь ортогональное преобразование T так, чтобы привести матрицу T^TAT к диагональному виду (см. упражнение 2 на с. 234). С этой целью решим характеристическое уравнение

$$|A - \lambda I| = 0.$$

Корни его легко выписываются в явном виде:

$$\lambda_{1,2} = \frac{a_{11} + a_{22} \pm \sqrt{(a_{11} - a_{22})^2 + 4a_{12}^2}}{2}.$$
 (1.7)

Если $a_{12}=0$, то $\lambda_1=a_{11},\,\lambda_2=a_{22}.$ Положим в этом случае T=I. Уравнение (1.6) принимает вид

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + 2\hat{a}_1 y_1 + 2\hat{a}_2 y_2 + a_0 = 0 \tag{1.8}$$

(здесь $\hat{a}_1 = a_1, \, \hat{a}_2 = a_2$).

Если $a_{12} \neq 0$, то, очевидно, $\lambda_1 \neq \lambda_2$. Найдя λ_1 , λ_2 , определим соответствующие им единичные собственные векторы e^1 , e^2 :

$$e^k = (\cos \varphi_k, \sin \varphi_k), \quad k = 1, 2,$$

как решения уравнений

$$Ae^k = \lambda_k e^k, \quad k = 1, 2,$$

или, более подробно,

$$(a_{11} - \lambda_k)\cos\varphi_k + a_{12}\sin\varphi_k = 0,$$

$$a_{12}\cos\varphi_k + (a_{22} - \lambda_k)\sin\varphi_k = 0,$$

откуда получаем уравнения для определения углов φ_1, φ_2 :

$$\operatorname{tg}\varphi_k = -\frac{a_{11} - \lambda_k}{a_{12}}, \quad k = 1, 2. \tag{1.9}$$

Будем считать, что $\varphi_1, \varphi_2 \in (-\pi/2, \pi/2)$. Причем, поскольку собственные векторы симметричной матрицы, отвечающие различным

собственным числам ортогональны (см. теорему 8, с. 212), то обязательно

$$\varphi_1 - \varphi_2 = \pm \pi/2.$$

Элементарные вычисления дают

$$\operatorname{tg}\varphi_{1} - \operatorname{tg}\varphi_{2} = (\lambda_{1} - \lambda_{2})/a_{12} = \frac{\sqrt{(a_{11} - a_{22})^{2} + 4a_{12}^{2}}}{a_{12}}.$$
 (1.10)

В соответствии со знаком a_{12} занумеруем собственные числа (и соответствующие им углы) так, чтобы $\operatorname{tg} \varphi_1 \leqslant \operatorname{tg} \varphi_2$, т. е.

$$\varphi_2 = \varphi_1 + \pi/2.$$

Используя общие построения (см. упражнение 2 на с. 234), матрицу T составим из собственных векторов e^1, e^2 :

$$T = \begin{pmatrix} \cos \varphi_1 & \cos \varphi_2 \\ \sin \varphi_1 & \sin \varphi_2 \end{pmatrix} = \begin{pmatrix} \cos \varphi_1 & -\sin \varphi_1 \\ \sin \varphi_1 & \cos \varphi_1 \end{pmatrix}. \tag{1.11}$$

При указанном выборе матрицы T получаем

$$T^T A T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \tag{1.12}$$

и уравнение (1.6) вновь принимает вид (1.8).

Далее будем различать два случая.

2.1. Предположим сначала, что $\det(A) \neq 0$. Это условие эквивалентно тому, что $\lambda_1 \lambda_2 \neq 0$. При выполнении этого условия уравнение (1.8) можно записать в виде

$$\lambda_1 z_1^2 + \lambda_2 z_2^2 + \hat{a}_0 = 0, \tag{1.13}$$

где $z_1 = y_1 + \hat{a}_1/\lambda_1$, $z_2 = y_2 + \hat{a}_2/\lambda_2$, $\hat{a}_0 = a_0 - \hat{a}_1^2/\lambda_1 - \hat{a}_2^2/\lambda_2$.

2.2. Пусть теперь $\det(A) = 0$. Напомним, что мы считаем, что $A \neq 0$. Понятно, что в этом случае либо $\lambda_1 = 0$, либо $\lambda_2 = 0$. Одновременно λ_1 и λ_2 не могут равняться нулю (почему?). Предположим для определенности, что $\lambda_1 \neq 0$. Тогда уравнение (1.8) можно представить в виде

$$\lambda_1(y_1 + \hat{a}_1/\lambda_1)^2 + 2\hat{a}_2y_2 + \hat{a}_0 = 0. \tag{1.14}$$

где $\hat{a}_0 = a_0 - \hat{a}_1^2/\lambda_1$

Здесь опять надо различать два случая.

1) Если $\hat{a}_2 = 0$, положим $z_1 = y_1 + \hat{a}_1/\lambda_1$, $z_2 = y_2$. Такая замена переменных приведет уравнение (1.14) к виду

$$\lambda_1 z_1^2 + \hat{a}_0 = 0. ag{1.15}$$

2) Если $\hat{a}_2 \neq 0$, представим уравнение (1.14) в форме

$$\lambda_1(y_1 + \hat{a}_1/\lambda_1)^2 + 2\hat{a}_2(y_2 + \hat{a}_0/2\hat{a}_2) = 0$$

и положим $z_1=y_1+\hat{a}_1/\lambda_1,\ z_2=y_2+\hat{a}_0/2\hat{a}_2.$ Тогда уравнение (1.14) примет вид

$$\lambda_1 z_1^2 + 2\hat{a}_2 z_2 = 0. ag{1.16}$$

Предполагая, что $\lambda_1 = 0$, а $\lambda_2 \neq 0$, можно точно так же пребразовать уравнение (1.8) либо к уравнению

$$\lambda_2 z_2^2 + \hat{a}_0 = 0, \tag{1.17}$$

либо к уравнению

$$\lambda_2 z_2^2 + 2\hat{a}_1 z_1 = 0, (1.18)$$

2.3. Подводя итог, можно сказать, что, выбирая соответствующим образом начало x^0 новой декартовой системы координат и угол поворота φ ее осей по отношению к осям старой системы координат (сделайте рисунок!), общее уравнение (1.1) кривой второго порядка при помощи замены переменных

$$x = x_0 + Ty, \tag{1.19}$$

где T — матрица вида (1.5) такая, что выполнено (1.12), можно преобразовать к одной из следующих форм:

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \hat{a}_0 = 0, \quad \lambda_1, \lambda_2 \neq 0,$$
 (1.20)

$$\lambda_2 y_2^2 + 2\hat{a}_1 y_1 = 0, \quad \lambda_2 \neq 0, \ \lambda_1 = 0,$$
 (1.21)

$$\lambda_2 y_2^2 + \hat{a}_{01} = 0, \quad \lambda_2 \neq 0, \ \lambda_1 = 0,$$
 (1.22)

$$\lambda_1 y_1^2 + 2\hat{a}_2 y_2 = 0, \quad \lambda_1 \neq 0, \ \lambda_2 = 0,$$
 (1.23)

$$\lambda_1 y_1^2 + \hat{a}_{01} = 0, \quad \lambda_1 \neq 0, \ \lambda_2 = 0.$$
 (1.24)

Важно подчеркнуть, что угол φ и вектор x^0 определяются по коэффициентам уравнения (1.1) при помощи простых явных формул. В соответствии с общей теорией квадратичных функций каждое уравнение (1.1) при помощи преобразования вида (1.19) может быть однозначно приведено лишь к одной из форм (1.20)–(1.24).

3. Из общих результатов, полученных при изучении квадратичных функций, следует, что коэффициенты уравнений (1.20)–(1.24) однозначно определяются при помощи простых формул по коэффициентам уравнения (1.1), так что построение преобразования (1.19), фактически, требуется лишь для того, чтобы установить, как располагается исследуемая кривая по отношению к исходной декартовой системе координат.

Наряду с матрицей A, определяемой соотношением (1.2), введем в рассмотрение матрицу

$$B = \begin{pmatrix} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{pmatrix},$$

соответствующую квадратичной функции, определяемой левой частью уравнения (1.1), и выпишем выражения для коэффициентов уравнений (1.20)–(1.24) (см. теоремы 3.4, 3.5, с. 250):

$$\hat{a}_0 = \mathcal{I}_3(B)/\mathcal{I}_2(A), \ \hat{a}_1 = \hat{a}_2 = \sqrt{-\mathcal{I}_3(B)/\mathcal{I}_1(A)}, \ \hat{a}_{01} = \mathcal{I}_2(B)/\mathcal{I}_1(A).$$

Здесь (см. общие формулы для инвариантов оператора, с. 190)

$$\mathcal{I}_3(B) = \det(B) = \begin{vmatrix} a_{11} & a_{12} & a_1 \\ a_{12} & a_{22} & a_2 \\ a_1 & a_2 & a_0 \end{vmatrix}, \quad \mathcal{I}_2(A) = \det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix},$$

$$\mathcal{I}_1(A) = \operatorname{tr}(A) = a_{11} + a_{22}, \quad \mathcal{I}_2(B) = \begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} + \begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix}.$$

По сравнению с (6.5), с. 191, в выражении $\mathcal{I}_2(B)$ на одно слагаемое меньше, поскольку в рассматриваемом случае $\det A = 0$.

§ 2. Геометрические свойства кривых второго порядка

Опираясь на уравнения (1.20)-(1.24), исследуем геометрические свойства кривых второго порядка.

Для упрощения записей в дальнейшем изменим очевидным образом обозначения декартовых координат и коэффициентов уравнений. В результате получим, что нам предстоит исследовать три различных типа уравнений

$$\lambda_1 x^2 + \lambda_2 y^2 + d = 0, \quad \lambda_1, \lambda_2 \neq 0,$$
 (2.1)

$$y^2 = 2px, (2.2)$$

$$y^2 + d = 0. (2.3)$$

- 1. Начнем с уравнения (2.3). Возможны три случая: d=0, кривая совпадает с осью y; d<0, кривая распадается на две параллельные прямые $y=\sqrt{-d},\,y=-\sqrt{-d};\,d>0$, множество точек плоскости, удовлетворяющих уравнению (2.3), пусто, говорят, что в этом случае кривая распадается на ∂ee мнимые параллельные прямые.
- **2.** Исследуем уравнение (2.1). Здесь нужно различать такие случаи:
- 1) знаки собственных чисел λ_1, λ_2 матрицы A совпадают, при этом, не ограничивая общности, можно считать, что $\lambda_1, \lambda_2 > 0$;
 - 2) знаки собственных чисел λ_1, λ_2 различны.

Кривые, соответствующие первому случаю, называют эллипсами. Здесь опять нужно различать три случая: d=0, кривая вырождается в точку, совпадающую с началом координат; d>0, уравнение определят так называемый мнимый эллипс; d<0, в этом случае уравнение (2.1) запишем в виде

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (2.4)$$

где

$$a = \sqrt{\frac{-d}{\lambda_1}}, \quad b = \sqrt{\frac{-d}{\lambda_2}}.$$

Кривую, описываемую уравнением (2.4), называют эллипсом.

Кривые, соответствующие случаю, когда λ_1 , λ_2 имеют различные знаки, называют *гиперболами*. Будем для определенности считать, что $\lambda_1 > 0$, $\lambda_2 < 0$ и рассмотрим три случая. Если d = 0, то уравнение (2.1) можно записать в виде

$$\sqrt{\lambda_1}x = \pm \sqrt{-\lambda_2}y,$$

т. е. в данном случае кривая распадается на две прямые, пересекающиеся в начале координат. Случаи $d<0,\,d>0,\,$ фактически, можно не различать, так как они сводятся один к другому за счет переименования осей координат.

Будем для определенности считать, что d < 0. Тогда уравнение (2.1) можно записать в виде

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, (2.5)$$

где

$$a = \sqrt{\frac{-d}{\lambda_1}}, \quad b = \sqrt{\frac{-d}{-\lambda_2}}.$$

Кривую, описываемую уравнением (2.5), называют $\varepsilon unepболой$.

3. Опишем геометрические свойства эллипса (см. рис. 1). Непосредственно из уравнения (2.4) вытекает, что для всех точек эллипса справедливы неравенства: $|x| \leq a, \ |y| \leq b, \ \text{т. e. эллипс}$ — ограниченная кривая, расположенная в соответствующем прямоугольнике.

Рис. 1. К описанию геометрических свойств эллипса

Точками пересечения этой кривой с осями координат являются точки $(\pm a,0)$, $(0,\pm b)$. Они называются вершинами эллипса. Оси координат — оси симметрии эллипса, так как если точка (x,y) принадлежит эллипсу, то точки (-x,y), (x,-y) также лежат на эллипсе. Начало координат — центр симметрии эллипса, так как, если точка (x,y) принадлежит эллипсу, то и точка (-x,-y) лежит на эллипсе.

Числа a,b называют длинами nonyoceй эллипса. Будем для определенности считать, что $a\geqslant b$. Понятно, что при a=b эллипс превращается в окружность (радиуса a). Положим $c=\sqrt{a^2-b^2}$. Величина $e=c/a=\sqrt{1-b^2/a^2}\in[0,1)$ характеризует степень вытянутости эллипса вдоль большой полуоси и называется эксцентриситетом эллипса.

Точки (-c,0), (c,0) называются фокусами эллипса. Пусть (x,y) — произвольная точка эллипса. Тогда, как ниже будет показано,

$$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a.$$
 (2.6)

Равенство (2.6) означает, что сумма расстояний от точки эллипса до фокусов одна и та же для всех точек эллипса (см. рис. 2). Это свойство эллипса можно принять за его определение, так как, исходя из (2.6), очевидно, можно получить уравнение эллипса.

Докажем справедливость равенства (2.6) для точек, принадлежащих эллипсу. Используя равенства $c^2=a^2-b^2,\ y^2=b^2-b^2x^2/a^2,$ можем написать

$$(x+c)^2 + y^2 = x^2 + 2cx + a^2 - b^2 + b^2 - b^2x^2/a^2 =$$

Рис. 2. К определению эллипса и гиперболы

$$= x^{2}(1 - b^{2}/a^{2}) + 2cx + a^{2} = x^{2}c^{2}/a^{2} + 2cx + a^{2} = (xc/a + a)^{2}. (2.7)$$

Точно так же

$$(x-c)^2 + y^2 = (-xc/a + a)^2.$$

Заметим, что c < a. Учтем также, что $|x| \leqslant a$ для любой точки эллипса. Поэтому справедливы неравенства

$$xc/a + a > 0$$
, $-xc/a + a > 0$,

следовательно,

$$\sqrt{(x+c)^2 + y^2} = xc/a + a, \quad \sqrt{(x-c)^2 + y^2} = -xc/a + a,$$

откуда непосредственно вытекает (2.6).

4. Опишем геометрические свойства гиперболы (см. рис. 3). Из уравнения (2.5) непосредственно вытекает, что если точка (x,y) лежит на гиперболе, то $x^2 \geqslant a^2$, $y^2 \leqslant b^2 x^2/x^2$, т. е. кривая, описываемая уравнением (2.5), лежит вне полосы |x| < a и внутри соответствующих (вертикальных) углов, образованных прямыми $y = \pm (b/a)x$.

Прямые $y=\pm (b/a)x-acumnmomы$ соответствующих ветвей гиперболы (рис. 3). Покажем это применительно к ветви, определяемой уравнением

$$y = -\frac{b}{a}\sqrt{x^2 - a^2}, \quad x \geqslant a, \tag{2.8}$$

и прямой y = (b/a)x. Для остальных ветвей выкладки полностью аналогичны. В соответствии с определением асимптоты (см. курс ма-

Рис. 3. К описанию геометрических свойств гиперболы

тематического анализа) достаточно проверить справедливость следующих равенств:

$$\lim_{x \to \infty} \frac{\frac{b}{a}\sqrt{x^2 - a^2}}{x} = \frac{b}{a}, \quad \lim_{x \to \infty} \left(\frac{b}{a}\sqrt{x^2 - a^2} - \frac{b}{a}x\right) = 0.$$

Проверка первого из этих равенств элементарна. При проверке второго полезно заметить, что

$$\sqrt{x^2 - a^2} - x = -\frac{a^2}{\sqrt{x^2 - a^2} + x} \to 0$$

при $x \to \infty$.

Положим $c = \sqrt{a^2 + b^2}$. Точки (-c, 0), (c, 0) называются фокусами гиперболы.

Для любой точки (x, y), лежащей на гиперболе,

$$\left| \sqrt{(x+c)^2 + y^2} - \sqrt{(x-c)^2 + y^2} \right| = 2a, \tag{2.9}$$

т. е. модуль разности расстояний от точки гиперболы до фокусов постоянен (см. рис. 2). Это свойство гиперболы можно было бы принять за ее определение.

Проверим справедливость равенства (2.9), считая, что выполнены соотношения (2.8). Для остальных ветвей гиперболы все рассуждения полностью аналогичны. Следуя выкладкам, выполненным в предыдущем пункте (см. (2.7)), получаем

$$(x+c)^2 + y^2 = (cx/a + a)^2$$
, $(x-c)^2 + y^2 = (cx/a - a)^2$.

Для рассматриваемой ветви гиперболы, как нетрудно убедиться, справедливы неравенства

$$cx/a + a > 0, \quad cx/a - a > 0.$$

Рис. 4. K описанию геометрических свойств параболы (a). K определению параболы (b)

Поэтому

$$\sqrt{(x+c)^2+y^2}-\sqrt{(x-c)^2+y^2}=cx/a+a-(cx/a-a)=2a,$$
 т. е. (2.9) доказано.

5. Кривая, задаваемая уравнением (2.2) называется *параболой*. Опишем ее геометрические свойства (см. рис. 4, a). Большинство из них хорошо известны читателю из школьного курса математики. Будем считать, что p>0. Рассмотрение случая p<0 требует очевидных изменений.

Непосредственно из уравнения (2.2) вытекает, что парабола расположена в правой полуплоскости, симметрична относительно оси x. Единственной точкой пересечения с осями координат является начало координат. Эта точка называется вершиной параболы. Парабола не имеет асимптот (докажите!).

Точка (p/2,0) называется фокусом параболы. Прямая x=-p/2 называется директрисой параболы (см. рис. 4, a). Для любой точки (x,y), принадлежащей параболе,

$$\sqrt{(x-p/2)^2 + y^2} = x + p/2, \tag{2.10}$$

т. е. расстояние от любой точки параболы до фокуса равно расстоянию этой точки до директрисы (см. рис. 4, b). Это свойство параболы можно было бы принять за ее определение.

Докажем равенство (2.10). Имеем

$$(x - p/2)^2 + y^2 = x^2 - px + p^2/4 + 2px = (x + p/2)^2$$

причем, очевидно, x+p/2>0 для любой точки параболы, следовательно, (2.10) выполнено.

Рис. 5. К примеру исследования уравнения кривой второго порядка

6. ПРИМЕР. Привести к простейшему виду уравнение

$$3x_1^2 + 10x_1x_2 + 3x_2^2 - 2x_1 - 14x_2 - 13 = 0 (2.11)$$

и построить кривую в исходной декартовой системе координат x_1x_2 .

РЕШЕНИЕ. В данном случае $a_{11}=a_{22}=3,\ a_{12}=5,\ a_1=-1,\ a_2=-7,\ a_0=-13.$ По формуле (1.7), с. 253, имеем $\lambda_1=8,\ \lambda_2=-2,$ по формуле (1.9), с. 253, получаем tg $\varphi_1=1,$ tg $\varphi_2=-1.$ Далее действуем в соответствии с предписаниями § 1, т. е. нумеруем углы и соответствующие им собственные числа так, чтобы выполнялись условия $-\pi/2\leqslant\varphi_1<\varphi_2\leqslant\pi/2.$ Таким образом получаем $\lambda_1=-2,\ \varphi_1=-\pi/4,\ \lambda_2=8,\ \varphi_2=\pi/4.$ По формуле (1.11), с. 254,

$$T = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}. \tag{2.12}$$

Выполнив замену переменных x = Ty, в соответствии с (1.6), с. 253, получаем

$$-2y_1^2 + 8y_2^2 + \frac{12}{\sqrt{2}}y_1 - \frac{16}{\sqrt{2}}y_2 - 13 = 0.$$

Используя теперь формулы пункта 2.1, с. 254, приходим к уравнению

$$-2z_1^2 + 8z_2^2 - 8 = 0, (2.13)$$

или

$$-\frac{z_1^2}{4} + \frac{z_2^2}{1} = 1, (2.14)$$

где

$$z_1 = y_1 - 3/\sqrt{2}, \quad z_2 = y_2 - 1/\sqrt{2}.$$
 (2.15)

Перепишем соотношения (2.15) в виде $z=T^Tx+\tilde{x}^0$, где $\tilde{x}_0=-(3/\sqrt{2},1/\sqrt{2})$. Отсюда получаем, что $x=x^0+Tz$, где $x^0=(2,-1)$. Таким образом, кривая задаваемая

уравнением (2.11) есть гипербола, описываемая уравнением (2.14) в декартовой системе координат z_1z_2 , оси которой повернуты на угол $-\pi/4$ против часовой стрелки ($\pi/4$ — по часовой стрелке) по отношению к осям декартовой системы координат x_1x_2 , а начало системы координат z_1z_2 расположено в точке (2,-1) относительно системы координат x_1x_2 (см. рис. 5).

Отметим, что если оставить в стороне вопрос о расположении кривой по отношению к исходной системе координат, то уравнение (2.13) может быть выписано непосредственно по формулам п. 3, с. 256. Для этого учтем, что уравнению (2.11) соответствуют матрицы

$$A = \begin{pmatrix} 3 & 5 \\ 5 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 5 & -1 \\ 5 & 3 & -7 \\ -1 & -7 & -13 \end{pmatrix}.$$

Поскольку $\det A = -16 \neq 0$, собственные числа матрицы A есть $\lambda_1 = -2$, $\lambda_2 = 8$, $\det B = 128$, то приведенной формой уравнения (2.11) будет уравнение (2.13).

Глава 14

Поверхности второго порядка

§ 1. Приведение к простейшему виду уравнения поверхности второго порядка

1. Отнесем трехмерное евклидово пространство V_3 к декартовой системе координат (см. п. 1, с. 42). Поверхностью второго порядка называется множество всех точек $x=(x_1,x_2,x_3)\in\mathbb{R}^3$, удовлетворяющих уравнению 1)

$$(Ax, x) + 2(a, x) + a_0 = 0, (1.1)$$

где

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$
 (1.2)

есть заданная симметричная ненулевая матрица, $a = (a_1, a_2, a_3)$ — заданный вектор, a_0 — заданное число.

Простейший пример: уравнение сферы радиуса R с центром в точке $x^0 = (x_1^0, x_2^0, x_3^0)$, как известно (см. с. 56), имеет вид

$$(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2 + (x_3 - x_3^0)^2 - R^2 = 0.$$

После элементарных преобразований получаем

$$(x,x) - 2(x^0,x) + |x^0|^2 - R^2 = 0,$$

т. е. в данном случае A = I, $a = -x^0$, $a_0 = |x^0|^2 - R^2$.

Упрощение уравнения (1.1) опирается на общую теорию квадратичных функций и проводится по той же схеме, что и для кривых второго порядка. Оно основано на замене переменных

$$x = x^0 + Ty, (1.3)$$

где T — некоторая ортогональная матрица. Геометрически эта замена переменных состоит в переносе начала координат в точку x^0 ,

 $^{^{1)}}$ В этой главе под скалярным произведением всюду понимается стандартное скалярное произведение в пространстве \mathbb{R}^3 .

повороте системы координат вокруг некоторой оси и, возможно, последующем изменении направления этой координатной оси (см. п. 3, с. 233). Однако построение матрицы T не может быть выполнено в общем случае с той же степенью подробности, как для кривых второго порядка, поскольку задача приведения симметричной матрицы третьего порядка ортогональным преобразованием подобия к диагональному виду не допускает решения по простым явным формулам.

2. Из общей теорией квадратичных функций вытекает, что, выбирая соответствующим образом начало x^0 новой декартовой системы координат и ортогональную матрицу T, уравнение (1.1) поверхности второго порядка можно преобразовать к одному из следующих пяти видов:

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 + \hat{a}_0 = 0, \quad \lambda_1, \lambda_2, \lambda_3 \neq 0, \tag{1.4}$$

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + 2\hat{a}_3 x_3 = 0, \quad \lambda_1, \lambda_2 \neq 0, \lambda_3 = 0,$$
 (1.5)

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + \hat{a}_{0,1} = 0, \quad \lambda_1, \lambda_2 \neq 0, \lambda_3 = 0,$$
 (1.6)

$$\lambda_1 x_1^2 + 2\hat{a}_2 x_2 = 0, \quad \lambda_1 \neq 0, \ \lambda_2, \lambda_3 = 0,$$
 (1.7)

$$\lambda_1 x_1^2 + \hat{a}_{0,2} = 0, \quad \lambda_1 \neq 0, \ \lambda_2, \lambda_3 = 0.$$
 (1.8)

3. Аналогично случаю кривых второго порядка коэффициенты уравнений (1.4)–(1.8) могут быть однозначно выражены через коэффициенты исходного уравнения (1.1). Введем в рассмотрение наряду с матрицей A, определенной равенством (1.2), матрицу

$$B = \begin{pmatrix} A & a \\ a^T & a_0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_1 \\ a_{12} & a_{22} & a_{23} & a_2 \\ a_{13} & a_{23} & a_{33} & a_3 \\ a_1 & a_2 & a_3 & a_0 \end{pmatrix}$$

и выпишем, используя теоремы 3.4, 3.5, с. 250, выражения для коэффициентов уравнений (1.4)–(1.8):

$$\hat{a}_0 = \mathcal{I}_4(B)/\mathcal{I}_3(A) = \det(B)/\det(A), \quad \hat{a}_3 = \sqrt{-\det(B)/\mathcal{I}_2(A)}$$
 $\hat{a}_{0,1} = \mathcal{I}_3(B)/\mathcal{I}_2(A), \quad \hat{a}_2 = \sqrt{-\mathcal{I}_3(B)/\mathcal{I}_1(A)}, \quad \hat{a}_{0,2} = \mathcal{I}_2(B)/\mathcal{I}_1(A).$
Здесь (см. формулы (6.5), с. 191)

$$\mathcal{I}_{2}(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{13} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{vmatrix}, \quad \mathcal{I}_{1}(A) = a_{11} + a_{22} + a_{33},$$

$$\mathcal{I}_{3}(B) = \begin{vmatrix} a_{11} & a_{12} & a_{1} \\ a_{12} & a_{22} & a_{2} \\ a_{1} & a_{2} & a_{0} \end{vmatrix} + \begin{vmatrix} a_{22} & a_{23} & a_{2} \\ a_{23} & a_{33} & a_{3} \\ a_{2} & a_{3} & a_{0} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} & a_{1} \\ a_{13} & a_{33} & a_{3} \\ a_{1} & a_{3} & a_{0} \end{vmatrix},$$

$$\mathcal{I}_2(B) = \begin{vmatrix} a_{11} & a_1 \\ a_1 & a_0 \end{vmatrix} + \begin{vmatrix} a_{22} & a_2 \\ a_2 & a_0 \end{vmatrix} + \begin{vmatrix} a_{33} & a_3 \\ a_3 & a_0 \end{vmatrix}.$$

Выписывая формулы для $\mathcal{I}_3(B)$, $\mathcal{I}_2(B)$, мы опустили нулевые слагаемые, учитывая, что в первом случае ранг матрицы A равен двум и, следовательно, ее определитель равен нулю, а во втором случае ранг матрицы A равен единице и, следовательно, все ее миноры второго порядка — нули.

§ 2. Геометрические свойства поверхностей второго порядка

Опираясь на уравнения (1.4)-(1.8), исследуем геометрические свойства поверхностей второго порядка. Для удобства записей в дальнейшем изменим очевидным образом обозначения для декартовых координат и некоторых коэффициентов. Таким образом, нам предстоит исследовать поверхности, описываемые следующими уравнениями:

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + d = 0, \quad \lambda_1, \lambda_2, \lambda_3 \neq 0,$$
 (2.1)

$$\lambda_1 x^2 + \lambda_2 y^2 + 2b_3 z = 0, \quad \lambda_1, \lambda_2 \neq 0,$$
 (2.2)

$$\lambda_1 x^2 + \lambda_2 y^2 + d = 0, \quad \lambda_1, \lambda_2 \neq 0,$$
 (2.3)

$$y^2 = 2px, (2.4)$$

$$y^2 + d = 0. (2.5)$$

- 1. Начнем с уравнения (2.5). Здесь возможны три случая: d < 0, поверхность распадается на две параллельные плоскости $y = \sqrt{-d}$, $y = -\sqrt{-d}$; d = 0 поверхность представляет собой плоскость y = 0; d > 0 нет ни одной точки пространства, удовлетворяющей уравнению, говорят, что уравнение описывает пару параллельных мнимых плоскостей.
- **2.** Как показано в предыдущей главе, уравнение (2.4) описывает параболу на плоскости переменных (x,y), поэтому соответствующая поверхность есть так называемый napafonuчeckuŭ uunundp с образующей, параллельной оси z. Любое сечение этой поверхности плоскостью $z=\mathrm{const}$ парабола (см. рис. 1).
- 3. Уравнение (2.3) в зависимости от знаков λ_1, λ_2, d может описывать эллипс или гиперболу в декартовой плоскости x, y. Соответствующие поверхности эллиптический или гиперболический цилиндр (см. рис. 1). Понятно, что здесь возможны случаи вырождения, аналогичные, изученным в пункте 2, с. 257.

Рис. 1. Цилиндры

4. Обратимся к уравнению (2.2). Здесь нужно различать два случая: 1) числа λ_1 , λ_2 имеют одинаковые знаки, 2) знаки чисел λ_1 , λ_2 различны.

Пусть числа λ_1 , λ_2 имеют одинаковые знаки. Для определенности будем считать, что они положительны. Будем считать, что $b_3 < 0$. Если принять, что $b_3 > 0$, то получим, очевидно, такую же поверхность, но симметричную относительно плоскости x,y. Если $b_3 = 0$, то мы приходим к одной из поверхностей, рассмотренных в предыдущих пунктах. При сделанных предположениях уравнение (2.2) можно записать в виде

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z. {(2.6)}$$

Здесь $a^2=2|b_3|/\lambda_1,\,b^2=2|b_3|/\lambda_2.$ При z<0 уравнение (2.2) противоречиво, т. е. вся поверхность расположена в полупространстве $z\geqslant 0.$ Единственная точка плоскости z=0, принадлежащая поверхности, — начало координат. Координатные плоскости $x=0,\,y=0$ являются плоскостиями симметрии, ось z является осью симметрии, так как если точка (x,y,z) принадлежит поверхности, то точки $(-x,y,z),\,(x,-y,z),\,(-x,-y,z)$ также принадлежат поверхности. Записывая уравнение (2.2) при z>0 в виде

$$\frac{x^2}{za^2} + \frac{y^2}{zb^2} = 1, (2.7)$$

получаем, что сечения этой поверхности плоскостями z = const > 0 — эллипсы, полуоси которых увеличиваются с ростом z (см. рис. 2). Сечения этой поверхности плоскостям x = const или y = const, как нетрудно убедиться, — параболы (см. рис. 2). Описанную поверхность называют эллиптическим параболоидом.

Пусть числа λ_1 , λ_2 имеют разные знаки. Будем считать, что

$$\lambda_1 > 0, \ \lambda_2 < 0, \ b_3 < 0.$$

Рис. 2. Эллиптический параболоид

Любое другое допустимое сочетание знаков рассматривается аналогично. Уравнение (2.2) можно записать в виде

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z. {(2.8)}$$

Здесь $a^2=2|b_3|/\lambda_1,\ b^2=2|b_3|/|\lambda_2|.$ Вновь координатные плоскости $x=0,\ y=0$ являются плоскостями симметрии, ось z является осью симметрии.

Проанализируем сечения этой поверхности плоскостями, параллельными координатной плоскости x,y (см. рис. 3, b). При z=0 из (2.2) получаем

 $b^2x^2 - a^2y^2 = 0.$

т. е. сечение поверхности плоскостью z=0 — пара прямых (см. рис. $3,\,b)$

$$y = \pm \frac{b}{a}x.$$

При $z=h\neq 0$ запишем уравнение (2.2) в виде

$$\frac{x^2}{ha^2} - \frac{y^2}{hb^2} = 1. (2.9)$$

При h>0 уравнение (2.9) — уравнение гиперболы, ветви которой вытянуты вдоль оси x. При h<0 получаем гиперболу, ветви которой вытянуты вдоль оси y (см. рис. 3, b).

Пересекая поверхность плоскостью x = h, получаем параболу

$$\frac{h^2}{a^2} - \frac{y^2}{b^2} = z, (2.10)$$

ветви которой направлены противоположно оси z. Пересекая поверхность плоскостью y=h, очевидно, получим параболу, ветви которой

Рис. 3. Гиперболический параболоид (a). Сечения гиперболического параболоида плоскостями z=h при различных значениях h (b)

направлены вдоль оси z. Описанную седлообразную поверхность называют *гиперболическим параболоидом* (см. рис. 3, a).

5. Обратимся, наконец, к уравнению

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + d = 0, \quad \lambda_1, \lambda_2, \lambda_3 \neq 0,$$
 (2.11)

Не ограничивая общности, здесь можно различать два случая:

1) $\lambda_1, \, \lambda_2, \, \lambda_3 > 0,$ это условие эквивалентно условию положительной определенности матрицы A (см. с. 209);

2)
$$\lambda_1, \lambda_2 > 0, \lambda_3 < 0.$$

В случае 1) возможны три ситуации: d=0, единственная точка, удовлетворяющая (2.11), — начало координат; d>0, нет ни одной точки пространства, удовлетворяющей этому уравнению; d<0. При выполнении последнего условия уравнение (2.11) запишем в виде

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. {(2.12)}$$

Здесь $a^2 = -d/\lambda_1$, $b^2 = -d/\lambda_2$, $c^2 = -d/\lambda_3$. Поверхность, описываемая уравнением (2.12), называется эллипсоидом (см. рис. 4, a).

Эллипсоид, очевидно, симметричен относительно всех трех координатных плоскостей и относительно начала координат. Вся поверхность заключена в параллелепипеде

$$|x| \leqslant a, \quad |y| \leqslant b, \quad |z| \leqslant c$$

и, следовательно, ограничена.

Рис. 4. Эллипсоид (a). Сечения эллипсоида плоскостями z=h при различных значениях h (b)

Изучим сечения эллипсоида плоскостями, параллельными координатным. Вследствие симметрии поверхности достаточно ограничиться, например, плоскостями, параллельными плоскости x,y. Нетрудно убедиться, что кривая, получающаяся при пересечении эллипсоида с плоскостью z=h, где $|h|\leq c$, является эллипсом с полуосями

$$a_1 = a\sqrt{1 - \frac{h^2}{c^2}}, \quad b_1 = b\sqrt{1 - \frac{h^2}{c^2}}.$$

При возрастании h от 0 до c полуоси a_1, b_1 убывают. При $h=\pm c$ эллипс вырождается в точку (см. рис. 4, b).

Полезно отметить, что сечение эллипсоида любой плоскостью дает эллипс. В самом деле, это сечение — кривая второго порядка. Она ограничена, так как эллипсоид ограничен, но единственной ограниченной кривой второго порядка (см. § 2 настоящей главы) является эллипс.

Обратимся к случаю 2). Пусть при этом d=0. Запишем уравнение (2.11) в виде

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0. {(2.13)}$$

Здесь $a^2=1/\lambda_1,\ b^2=1/\lambda_2,\ c^2=-1/\lambda_3.$ Поверхность, описываемая уравнением (2.13), называется эллиптическим конусом. Поверхность симметрична относительно всех трех координатных плоскостей и относительно начала координат. Ее сечение плоскостью z=h — эллипс с полуосями $a_1=a|h|/c,\ b_1=b|h|/c$ (см. рис. 5).

Рис. 5. Эллиптический конус

При a=b получаем прямой круговой конус с вершиной в начале координат.

Заметим, что если точка (x,y,z) лежит на конусе, то и точка (tx,ty,tz) при любом $t\in (-\infty,\infty)$ лежит на конусе, т. е. вместе с любой точкой (x,y,z), лежащей на конусе, конусу принадлежит и вся прямая, проходящая через эту точку и начало координат (см. рис. 5).

Можно сказать, таким образом, что эллиптический конус получается при движении прямой (образующей), закрепленной в одной точке, по эллиптической направляющей.

Пусть теперь d < 0. Запишем уравнение (2.11) в виде

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1. {(2.14)}$$

Здесь $a^2=-d/\lambda_1,\ b^2=-d/\lambda_2,\ c^2=-d/|\lambda_3|.$ Поверхность, описываемая уравнением (2.14), называется однополостным гиперболоидом (см. рис. 6, a). Поверхность симметрична относительно всех трех координатных плоскостей и относительно начала координат. Сечение поверхности плоскостями $x=h,\ y=h$ дает гиперболы.

Сечение поверхности плоскостью z=h является эллипс с полуосями

$$a_1 = a\sqrt{1 + \frac{h^2}{c^2}}, \quad b_1 = b\sqrt{1 + \frac{h^2}{c^2}}.$$

При h=0 получаем так называемый горловой эллипс (см. рис. 6, b). Рассмотрим, наконец, случай d>0. Уравнение (2.11) представим

в следующей форме:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1, (2.15)$$

Рис. 6. Однополостный гиперболоид (a). Сечения однополостного гиперболоида плоскостями z=h при различных значениях h (b)

где $a^2=d/\lambda_1,\ b^2=d/\lambda_2,\ c^2=d/|\lambda_3|$. Уравнение (2.15) описывает двуполостный гиперболоид (см. рис. $7,\ a$).

Поверхность симметрична относительно всех трех координатных плоскостей и относительно начала координат. Заметим, что при |z| < c не существует вещественных x,y, удовлетворяющих уравнению (2.15). При |z| = c уравнению (2.15) удовлетворяют лишь x = 0, y = 0, т. е. вся поверхность лежит вне плоского слоя |z| < c. Сечениями поверхности плоскостями $z = \pm h$ при h > c являются эллипсы (см. рис. 7, b) с полуосями

$$a_1 = a\sqrt{\frac{h^2}{c^2} - 1}, \quad b_1 = b\sqrt{\frac{h^2}{c^2} - 1}.$$

Сечение поверхности плоскостями x = h, y = h дает гиперболы.

6. Однополостный гиперболоид представляет собой линейчатую поверхность, т. е. через каждую точку, лежащую на однополостном гиперболоиде, можно провести две различные прямые, целиком принадлежащие этому же однополостному гиперболоиду (см. рис. $8,\ a$). Аналогичным свойством обладает гиперболический параболоид (см. рис. $8,\ b$).

Проведем доказательство этого утверждения применительно к случаю однополостного гиперболоида. Определим прямую l как результат пересечения двух плоскостей, задаваемых уравнениями

$$\alpha\left(\frac{x}{a} + \frac{z}{c}\right) = \beta\left(1 - \frac{y}{b}\right), \quad \beta\left(\frac{x}{a} - \frac{z}{c}\right) = \alpha\left(1 + \frac{y}{b}\right),$$
 (2.16)

Рис. 7. Двуполостный гиперболоид (a). Сечения двуполостного гиперболоида плоскостями z=h при различных значениях h (b)

где a,b,c — параметры однополостного гиперболоида Γ , описываемого уравнением (2.14). Пусть точка (x_0,y_0,z_0) лежит на Γ . Подберем α,β так, чтобы точка (x_0,y_0,z_0) принадлежала прямой l. Для этого нужно, чтобы числа α,β удовлетворяли системе линейных уравнений

$$\alpha \left(\frac{x_0}{a} + \frac{z_0}{c} \right) = \beta \left(1 - \frac{y_0}{b} \right), \quad \beta \left(\frac{x_0}{a} - \frac{z_0}{c} \right) = \alpha \left(1 + \frac{y_0}{b} \right). \tag{2.17}$$

Понятно, что если $(x_0, y_0, z_0) \in \Gamma$, то определитель системы уравнений (2.17) равен нулю, значит, существует нетривиальное решение α_0, β_0 этой системы. Нетрудно убедиться также, что при любых α, β , не равных нулю одновременно, плоскости, описываемые уравнениями (2.16), не параллельны. Поэтому прямая l по найденным значениям α_0, β_0 определятся однозначно. Пусть теперь (x, y, z) — произвольная точка прямой l. Очевидно, ее координаты должны удовлетворять системе уравнений

$$\alpha_0 \left(\frac{x}{a} + \frac{z}{c} \right) = \beta_0 \left(1 - \frac{y}{b} \right), \quad \beta_0 \left(\frac{x}{a} - \frac{z}{c} \right) = \alpha_0 \left(1 + \frac{y}{b} \right), \quad (2.18)$$

и, поскольку среди чисел α_0, β_0 хотя бы одно не нуль, то определитель системы (2.18) равен нулю, следовательно $(x,y,z)\in\Gamma$.

Аналогичные рассуждения показывают, что через точку (x_0, y_0, z_0) можно провести прямую l', определяемую как пересечение плоско-

Рис. 8. Однополостный гиперболоид (a) и гиперболический параболоид (b) как линейчатые поверхности

стей, описываемых уравнениями вида

$$\nu\left(\frac{x}{a} + \frac{z}{c}\right) = \lambda\left(1 + \frac{y}{b}\right), \quad \lambda\left(\frac{x}{a} - \frac{z}{c}\right) = \nu\left(1 - \frac{y}{b}\right),$$

и целиком лежащую на Γ . Используя результаты п. 6, с. 68, нетрудно убедиться, что прямые l и l' не параллельны.

УПРАЖНЕНИЕ. Показать, что через каждую точку гиперболического параболоида, описываемого уравнением (2.8), можно провести две различные прямые, целиком лежащие на этом параболоиде и задаваемые как пересечение плоскостей

$$\alpha z = \beta \left(\frac{x}{a} + \frac{y}{b} \right), \ \beta = \left(\frac{x}{a} - \frac{y}{b} \right) \ \text{ if } \ \nu z = \lambda \left(\frac{x}{a} - \frac{y}{b} \right), \ \lambda = \nu \left(\frac{x}{a} + \frac{y}{b} \right).$$

Линейчатость поверхностей широко используется в инженерной практике, так как позволяет создавать соответствующие конструкции в виде простых стержневых систем. Такова, например, знаменитая телевизионная шуховская башня в Москве¹⁾.

7. Приведем в заключение сводку уравнений и названий поверхностей второго порядка:

1)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 — эллипсоид;

 $^{^{1)}}$ Владимир Григорьевич Шухов (1853 — 1939) — русский, советский инженер. Ему принадлежит идея использования однополостных гиперболоидов в строительстве.

$$(2)$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$ — эллиптический конус;

$$(3) \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
 — однополостный гиперболоид;

$$(4)$$
 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$ — двуполостный гиперболоид;

$$(5) \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} = z -$$
 эллиптический параболоид;

$$(x^2) = \frac{x^2}{a^2} - \frac{y^2}{b^2} = z$$
 — гиперболический параболоид;

7)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 — эллиптический цилиндр;

$$(8) \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 — гиперболический цилиндр;

9)
$$y^2 = 2px$$
 — параболический цилиндр.

8. ПРИМЕРЫ.

1) Привести к простейшему виду уравнение

$$4x_1^2 + 8x_2^2 + 4x_3^2 + 2x_1x_2 + 6x_1x_3 + 2x_2x_3 - 2x_1 + 6x_2 + 2x_3 = 0 (2.19)$$

и построить поверхность, описываемую этим уравнением в декартовой системе координат $x_1x_2x_3$.

Решение. В обозначениях п. 1, § 1, имеем

$$A = \begin{pmatrix} 4 & 1 & 3 \\ 1 & 8 & 1 \\ 3 & 1 & 4 \end{pmatrix}, \quad a = (-1, 3, 1)^T, \ a_0 = 0.$$

Будем опираться на описанный в $\S 5$, с. 246, способ построения приведенной формы квадратичной функции. Характеристическое уравнение матрицы A, как нетрудно убедиться, имеет вид

$$P_3(\lambda) \equiv \lambda^3 - 16\lambda^2 + 69\lambda - 54 = 0.$$

Очевидно $\lambda_1=1$ — корень этого уравнения. Далее, поделив полином $P_3(\lambda)$ на $\lambda-1$, получим $P_3(\lambda)=(\lambda-1)(\lambda^2-15\lambda+54)$. Корнями уравнения $\lambda^2-15\lambda+54=0$ являются числа $\lambda_2=6,\ \lambda_3=9$.

Таким образом все собственные числа матрицы A отличны от нуля и они попарно различны. Соответствующие им собственные векторы матрицы A по теореме 8, с. 212, образуют ортогональную систему в евклидовом пространстве \mathbb{R}^3 со стандартным скалярным произведением.

Вычислим собственные векторы матрицы A. Собственный вектор, соответствующий собственному числу $\lambda_1=1$, есть решение однородной системы линейных алгебраических уравнений (A-I)x=0. Записывая эту систему подробнее, получим

$$3x_1 + x_2 + 3x_3 = 0,$$

$$x_1 + 7x_2 + x_3 = 0,$$

$$3x_1 + x_2 + 3x_3 = 0.$$

Определитель матрицы этой системы по построению равен нулю. Главный минор вто-

Рис. 9. К примеру 1) исследования уравнения поверхности второго порядка

рого порядка матрицы этой системы отличен от нуля, поэтому последнее уравнение системы — следствие первых двух уравнений, и искомый собственный вектор можно вычислить, полагая $x_3=1$ и определяя затем x_1, x_2 из первых двух уравнений системы. В результате получим, что собственному числу $\lambda_1=1$ соответствует собственный вектор $x^1=(-1,0,1)$. Точно так же находим, что собственному числу λ_2 соответствует собственный вектор $x^2=(1,-1,1)$, собственному числу λ_3 соответствует собственный вектор $x^3=(1,2,1)$. Нормируя эти векторы, получим столбцы ортогональной матрицы T:

$$T = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\ 0 & -1/\sqrt{3} & 2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix}.$$

Используя теперь формулу (4.6), с. 245, найдем

$$\hat{a} = T^T a = (\sqrt{2}, -\sqrt{3}, \sqrt{6})^T,$$

по формуле (5.4), с. 246, вычисляем $\hat{a}_0 = a_0 - \sum\limits_{k=1}^3 \hat{a}_k^2/\lambda_k = -19/6$. Затем по формуле (5.5), с. 246, находим $\hat{x}^0 = (-\sqrt{2}, 1/6\sqrt{3}, -1/9\sqrt{6})^T$ и, наконец, по формуле (5.8), с. 247, $x^0 = T\hat{x}^0 = (19/18, -7/18, -17/18)^T.$

Таким образом, замена переменных $x = x^0 + Ty$ приводит уравнение (2.19) к виду

$$y_1^2 + 6y_2^2 + 9y_3^2 - 19/6 = 0,$$

откуда получаем, что

$$(6/19)y_1^2 + (36/19)y_2^2 + (54/19)y_3^2 = 1. (2.20)$$

Уравнение (2.20) — это уравнение эллипсоида с полуосями $\sqrt{19/6}$, $\sqrt{19/6}$, $\sqrt{19/6}/3$, отнесенного к декартовой системе координат $y_1y_2y_3$, которая получается из исходной системы координат $x_1x_2x_3$ переносом начала в точку x^0 и поворотом таким, что оси y_k оказываются направленными вдоль векторов x^k , k=1,2,3, соответственно (см. рис. 9).

Рис. 10. К примеру 2) исследования уравнения поверхности второго порядка

2) Привести к простейшему виду уравнение

$$x_1^2 + x_2^2 + 2x_1x_2 + 4x_1 - 2x_2 + 6x_3 + 183 = 0 (2.21)$$

и построить поверхность, описываемую этим уравнением в декартовой системе координат $x_1x_2x_3$.

Решение. В обозначениях п. 1, § 1, имеем

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad a = (2, -1, 3)^T, \ a_0 = 183.$$

Собственные числа матрицы A, как нетрудно убедиться, есть $\lambda_1=2,\ \lambda_2=\lambda_3=0.$ Ранг матрицы

$$A - 2I = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

равен двум. Все ненулевые решения системы уравнений (A-2I)x=0, очевидно, пропорциональны вектору $e^1=(1,1,0)^T$. Ранг матрицы A равен единице. Поэтому размерность фундаментальной системы решений однородного уравнения Ax=0 равна двум. Полагая сначала $x_2=1,\ x_3=0,\$ а затем $x_2=0,\ x_3=1,\$ получим, что векторы

 $e^2=(-1,1,0)^T,\ e^2=(0,0,1)^T$ образуют базис собственного подпространства матрицы A, отвечающего нулевому собственному числу. Векторы $e^1,\ e^2,\ e^3$ попарно ортогональны. Нормируя их, получаем ортогональную матрицу T собственных векторов матрицы A:

$$T = \begin{pmatrix} \sqrt{1/2} & -\sqrt{1/2} & 0\\ \sqrt{1/2} & \sqrt{1/2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Нетрудно убедиться, что $\hat{a}=T^Ta=(\sqrt{1/2},-3\sqrt{1/2},3)^T,$ поэтому, выполняя замену переменных x=Tu в уравнении (2.21), получим

$$2(u_1^2 + \sqrt{1/2}u_1) + 2(-3\sqrt{1/2}u_2 + 3u_3) + 183 = 0.$$
 (2.22)

В соответствии с методикой, описанной в п. 1, §5, гл. 12 (см. с. 246, 247), построим матрицу отражения R, преобразующую вектор $b = (-3\sqrt{1/2},3)^T$ в вектор, параллельный вектору $e = (1,0)^T$. Для этого (см. п. 2, п. 2.1, с. 236) сначала вычислим вектор

$$w = (b - |b|e)/|b - |b|e| = ((1 + \sqrt{3})/(6 + 2\sqrt{3}), 1/\sqrt{3 + \sqrt{3}})^T,$$

затем матрицы

$$R = I - 2ww^T = \begin{pmatrix} -\sqrt{1/3} & \sqrt{2/3} \\ \sqrt{2/3} & \sqrt{1/3} \end{pmatrix}, \quad \widetilde{R} = \begin{pmatrix} 1 & 0 \\ 0 & R \end{pmatrix}$$

и выполним в уравнении (2.23) замену переменных $u = \widetilde{R}v$. В результате, получим

$$2(v_1^2 + \sqrt{1/2}v_1) + 3\sqrt{6}v_2 + 183 = 0, (2.23)$$

или

$$2(v_1 + \sqrt{1/2}/2)^2 + 3\sqrt{6}(v_2 + (183 - 1/4)/(3\sqrt{6})) = 0.$$
 (2.24)

Наконец, полагая $y_1=v_1+\sqrt{1/2}/2,\ y_2=v_2+(183-1/4)/(3\sqrt{6}),\ y_3=v_3,$ приходим к уравнению

$$y_1^2 = -3\sqrt{3/2}\,y_2. \tag{2.25}$$

Переменные x, y связаны соотношением $x = \tilde{x}^0 + \tilde{T}y$. Вектор \tilde{x}^0 и ортогональная матрица \tilde{T} могут быть найдены при помощи последовательных вычислений по формулам (5.4), (5.5), (5.8), (5.12), (5.14), гл. 12: $\hat{a}_0 = 183 - 1/4$, $\hat{x}^0 = (1/2\sqrt{2}, 0, 0)^T$, $x^0 = T\hat{x}^0 = (1/4, 1/4, 0)^T$, $x^1 = (0, 2(183 - 1/4)/(3\sqrt{6}), 0)^T$,

$$\widetilde{T} = T\widetilde{R} = \begin{pmatrix} \sqrt{1/2} & \sqrt{1/6} & -\sqrt{1/3} \\ \sqrt{1/2} & -\sqrt{1/6} & \sqrt{1/3} \\ 0 & 2\sqrt{1/6} & \sqrt{1/3} \end{pmatrix},$$

 $\tilde{x}^0=x^0-\tilde{T}x^1=(-361/18,185/9,-731/18)^T$. Таким образом, уравнение (2.25) — это уравнение параболического цилиндра, отнесенного к декартовой системе координат $y_1y_2y_3$, которая получается из исходной системы координат $x_1x_2x_3$ переносом начала в точку \tilde{x}^0 и поворотом таким, что оси $y_k, k=1,2,3$, оказываются направленными вдоль векторов, образованных столбцами матрицы \tilde{T} (см. рис. 10).

УПРАЖНЕНИЕ. Получите уравнения (2.20), (2.25) непосредственно из уравнений (2.19), (2.21), используя формулы п. 3, с. 265.

§ 3. Гиперповерхности второго порядка в пространстве \mathbb{R}^n и их классификация

1. Гиперповерхностью второго порядка в пространстве \mathbb{R}^n называется множество всех точек пространства \mathbb{R}^n , удовлетворяющих уравнению

$$F(x) \equiv (Ax, x) + 2(a, x) + a_0 = 0. \tag{3.1}$$

Здесь A — заданная симметричная матрица порядка n, a — заданный вектор из \mathbb{R}^n , a_0 — фиксированное число, под скалярным произведением понимается стандартное скалярным произведение в пространстве \mathbb{R}^n .

Выполним в уравнении (3.1) замену переменных, полагая

$$x = x^0 + Ty. (3.2)$$

В дальнейшем на протяжении данного параграфа будем предполагать, что T — ортогональная матрица.

Замена переменных (3.2) может быть интерпретирована как замена естественного базиса пространства \mathbb{R}^n на ортонормированный базис, образованный столбцами матрицы T, и перенос начала отсчета в точку x^0 .

Как показано в § 5 гл. 12, матрица T и вектор x^0 могут быть выбраны так, что уравнение (3.1) примет одну и только одну из следующих $npusedenhux\ \phiopm$:

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_r y_r^2 + \hat{a}_0 = 0, \tag{3.3}$$

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_r y_r^2 + 2b_{r+1} y_{r+1} = 0.$$
 (3.4)

Здесь, как и раньше, $\lambda_1, \lambda_2, \ldots, \lambda_r$ — все ненулевые собственные числа матрицы $A, b_{r+1} > 0$. Условимся в дальнейшем считать, что числа $\lambda_1, \lambda_2, \ldots, \lambda_k$ положительны, $\lambda_{k+1}, \lambda_{k+2}, \ldots, \lambda_r$ отрицательны.

- **2.** Приведенные формы гиперповерхностей позволяют выполнить их классификацию. Мы будем при этом использовать результаты п. 3, $\S 4$, гл. 12, об ортогональных инвариантах квадратичных функций. Как и в главе 12, через B будем обозначать квадратную матрицу порядка n+1, определенную равенством (4.2), с. 244.
- **2.1.** Пусть r=n (это, условие эквивалентно, тому, что $\det(A) \neq 0$). Форма (3.4) в этом случае, очевидно, невозможна. Таким образом, в рассматриваемом случае возможны лишь следующие ситуации:

1) Определитель матрицы B не нуль, и $\hat{a}_0 = \det(B)/\det(A) < 0$. Тогда уравнение (3.3) можно записать в виде

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_n^2}{\alpha_n^2} = 1.$$
 (3.5)

2) Определитель матрицы B не нуль, $\hat{a}_0 = \det(B)/\det(A) > 0$. Уравнение (3.3) принимает вид

$$-\frac{y_1^2}{\alpha_1^2} - \frac{y_2^2}{\alpha_2^2} - \dots - \frac{y_k^2}{\alpha_k^2} + \frac{y_{k+1}^2}{\alpha_{k+1}^2} + \frac{y_{k+2}^2}{\alpha_{k+2}^2} + \dots + \frac{y_n^2}{\alpha_n^2} = 1.$$
 (3.6)

3) Определитель матрицы B равен нулю. Уравнение (3.3) можно записать в виде

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_n^2}{\alpha_n^2} = 0.$$
 (3.7)

Коэффициенты α_i , $i=1,2,\ldots,n$, в уравнениях (3.5)–(3.7) очевидным образом выражаются через собственные числа матрицы A и определитель матрицы B.

Гиперповерхность, описываемая уравнением (3.5) при k = n (уравнением (3.6) при k = 0), называется эллипсоидом.

Гиперповерхность, описываемая уравнением (3.5) при k=0 (уравнением (3.6) при k=n) называется мнимым эллипсоидом. Нет ни одной точки пространства \mathbb{R}^n , удовлетворяющей этому уравнению.

Уравнения (3.5), (3.6) при 1 < k < n описывают гиперповерхности, называемые $\it cunep6onoudamu$.

Гиперповерхности, описываемые уравнением (3.7) при 1 < k < n, называются конусами. При k = 0 и k = n уравнение (3.7) вырождается. Ему удовлетворяет единственная точка x = 0 пространства \mathbb{R}^n .

2.2. Пусть r = n - 1. В этом случае $\det(A) = 0$. Ранг матрицы B, очевидно, может принимать при этом следующие значения: n - 1, n, n + 1.

Если $\operatorname{rank}(B) = n-1$, то приведенная форма уравнения гиперповерхности принимает вид (3.3) с \hat{a}_0 равным нулю и ее можно представить так

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_{n-1}^2}{\alpha_{n-1}^2} = 0.$$
 (3.8)

Если $\operatorname{rank}(B) = n$, то $\hat{a}_0 \neq 0$ и в зависимости от знака \hat{a}_0 приходим либо к уравнению вида

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_{n-1}^2}{\alpha_{n-1}^2} = 1, \tag{3.9}$$

либо к уравнению вида

$$-\frac{y_1^2}{\alpha_1^2} - \frac{y_2^2}{\alpha_2^2} - \dots - \frac{y_k^2}{\alpha_k^2} + \frac{y_{k+1}^2}{\alpha_{k+1}^2} + \frac{y_{k+2}^2}{\alpha_{k+2}^2} + \dots + \frac{y_{n-1}^2}{\alpha_{n-1}^2} = 1, \quad (3.10)$$

Если rank(B) = n + 1, то реализуется приведенная форма (3.4), которую можно представить в виде

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_{n-1}^2}{\alpha_{n-1}^2} = 2py_n, \quad p > 0. \quad (3.11)$$

2.3. Пусть, наконец, 0 < r < n-1. Ранг матрицы B может при этом принимать значения: r , r+1, r+2. Аналогично предыдущему случаю приходим к уравнениям вида

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_r^2}{\alpha_r^2} = 0, \tag{3.12}$$

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_r^2}{\alpha_r^2} = 1, \tag{3.13}$$

или

$$-\frac{y_1^2}{\alpha_1^2} - \frac{y_2^2}{\alpha_2^2} - \dots - \frac{y_k^2}{\alpha_k^2} + \frac{y_{k+1}^2}{\alpha_{k+1}^2} + \frac{y_{k+2}^2}{\alpha_{k+2}^2} + \dots + \frac{y_r^2}{\alpha_r^2} = 1, \qquad (3.14)$$

$$\frac{y_1^2}{\alpha_1^2} + \frac{y_2^2}{\alpha_2^2} + \dots + \frac{y_k^2}{\alpha_k^2} - \frac{y_{k+1}^2}{\alpha_{k+1}^2} - \frac{y_{k+2}^2}{\alpha_{k+2}^2} - \dots - \frac{y_r^2}{\alpha_r^2} = 2py_{r+1}, \quad p > 0. \quad (3.15)$$

Уравнения (3.8)–(3.10), (3.12)–(3.15) описывают гиперповерхности, называемые unnundpamu, уравнение (3.11) описывает napa fonoud.

Уравнения (3.5)–(3.15) исчерпывают все так называемые *канонические формы* уравнения гиперпроверхности второго порядка. Геометрическая интерпретация этих уравнений может быть выполнена аналогично тому, как это делалось для поверхностей в трехмерном пространстве.

Глава 15

Итерационные методы

§ 1. Простейшие итерационные методы решения систем линейных уравнений

1. В этом параграфе изучаются простейшие итерационные методы решения систем линейных алгебраических уравнений вида

$$Ax = b. (1.1)$$

Матрица $A = \{a_{ij}\}_{i,j=1}^n$ предполагается невырожденной и, вообще говоря, комплексной. Под скалярным произведением векторов $x, y \in \mathbb{C}^n$ понимается стандартное скалярное произведение $(x,y) = \sum_{j=1}^n x_j \bar{y}_j$, соответственно, $|x| = (x,x)^{1/2}$.

Читателю из курса математического анализа хорошо известно понятие предела последовательности векторов из пространства \mathbb{R}^n . Это определение, фактически, без изменений переносится на последовательности векторов из пространства \mathbb{C}^n , а именно, будем говорить, что вектор $x \in \mathbb{C}^n$ является пределом последовательности векторов $\{x^k\} \subset \mathbb{C}^n$, если $\lim_{k \to \infty} |x^k - x| = 0$. Из очевидных неравенств

$$\max_{1 \le j \le n} |x_j - x_j^k| \le |x - x^k| \le \sqrt{n} \max_{1 \le j \le n} |x_j - x_j^k|$$

вытекает, что последовательность векторов $\{x^k\}$ сходится к вектору x тогда и только тогда, когда для любого $j=1,2,\ldots,n$

$$\lim_{k \to \infty} |x_j - x_j^k| = 0,$$

т. е. $x_j^k \to x_j$ при $k \to \infty$ для всех $j = 1, 2, \ldots, n$.

Отметим, что если $\lim_{k\to\infty}x^k=x$, то $\lim_{k\to\infty}Ax^k=Ax$ для любой матрицы A (проверьте!).

2. Все методы решения систем линейных алгебраических уравнений можно разбить на два класса: прямые и итерационные. Прямые методы характеризуются тем, что если пренебречь ошибками округления, то решение системы может быть получено за конечное число

арифметических операций (зависящее лишь от порядка системы). Таков, например, метод Гаусса (см. § 9, с. 100).

При реализации прямых методов важно, чтобы все данные располагались в оперативной (быстрой) памяти компьютера. Если порядок системы настолько велик, что ее матрица может быть сохранена только с использованием внешней (медленной) памяти, например, жесткого диска, то время, затрачиваемое на решение системы, существенно увеличивается.

Для больших систем предпочтительнее оказываются итерационные методы. Основная идея этих методов состоит в построении последовательности векторов x^k , $k = 1, 2, \ldots$, сходящейся к решению x системы (1.1). За приближенное решение принимается вектор x^k при достаточно большом k. Всюду в дальнейшем через z^k будем обозначать вектор $x^k - x$, т. е. погрешность приближения с номером k.

При реализации итерационных методов обычно достаточно уметь вычислять вектор Ax при любом заданном векторе x.

3. Метод Якоби¹⁾. Будем считать, что все диагональные элементы матрицы A отличны от нуля. Перепишем систему (1.1), разрешая каждое уравнение относительно переменной, стоящей на диагонали:

$$x_i = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j + \frac{b_i}{a_{ii}}, \quad i = 1, 2, \dots, n.$$
 (1.2)

Выберем некоторое начальное приближение $x^0=(x_1^0,x_2^0,\ldots,x_n^0)$ и построим последовательность векторов x^1,x^2,\ldots , определяя векторо x^{k+1} по уже найденному вектору x^k при помощи соотношений:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = 1, 2, \dots, n.$$
 (1.3)

Формулы (1.3) определяют итерационный метод решения системы (1.1), называемый методом Якоби.

Укажем легко проверяемое достаточное условие сходимости этого метода. Будем говорить, что для матрицы A выполнено условие диагонального преобладания, если

$$q = \max_{1 \le i \le n} \sum_{j=1, j \ne i}^{n} \frac{|a_{ij}|}{|a_{ii}|} < 1.$$
 (1.4)

 $^{^{1)}}$ Карл Густав Якоб Яко́би (Carl Gustav Jacob Jacobi; 1804 — 1851) — немецкий математик

3.1. Теорема. Пусть матрица A системы (1.1) — матрица c диагональным преобладанием. Тогда итерационный метод Якоби cходится при любом начальном приближении x^0 ; справедлива следующая оценка скорости cходимости:

$$\max_{1 \le j \le n} |z_j^k| \le q^k \max_{1 \le j \le n} |z_j^0|. \tag{1.5}$$

ДОКАЗАТЕЛЬСТВО. Пусть x — решение системы уравнений (1.1). Вычитая почленно из равенства (1.3) равенство (1.2), получим

$$z_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} z_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} z_j^k, \quad i = 1, 2, \dots, n,$$

следовательно,

$$|z_{i}^{k+1}| \leqslant \sum_{j=1}^{i-1} \frac{|a_{ij}|}{|a_{ii}|} |z_{j}^{k}| + \sum_{j=i+1}^{n} \frac{|a_{ij}|}{|a_{ii}|} |z_{j}^{k}| \leqslant \left(\sum_{j=1}^{i-1} \frac{|a_{ij}|}{|a_{ii}|} + \sum_{j=i+1}^{n} \frac{|a_{ij}|}{|a_{ii}|}\right) \max_{1 \leqslant j \leqslant n} |z_{j}^{k}| = q \max_{1 \leqslant j \leqslant n} |z_{j}^{k}|,$$

 $i=1,2,\ldots,n$, откуда вытекает, что

$$\max_{1 \le j \le n} |z_j^{k+1}| \le q \max_{1 \le j \le n} |z_j^k|$$

для любого k = 0, 1, ..., поэтому

$$\max_{1 \le i \le n} |z_j^k| \le q^k \max_{1 \le i \le n} |z_j^0| \to 0$$

при $k \to \infty$, поскольку 0 < q < 1, а это и означает, что $x^k \to x$. \square

Оценка (1.5) показывает, что, чем меньше q, т. е. чем выше диагональное преобладание матрицы A, тем быстрее сходится метод Якоби.

4. Метод Зейделя. Формулы (1.3) допускают естественную модификацию. Именно, при вычислении x_i^{k+1} будем использовать уже найденные компоненты вектора x^{k+1} , т. е. $x_1^{k+1}, x_2^{k+1}, \ldots x_{i-1}^{k+1}$. В результате приходим к итерационному методу Зейделя¹⁾:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = 1, 2, \dots, n, \ k = 0, 1, \dots$$
(1.6)

 $^{^{1)}}$ Филипп Людвиг Зейдель (Philipp Ludwig von Seidel; 1821 — 1896) — немецкий математик и астроном.

Метод Зейделя позволяет более экономно расходовать память компьютера, поскольку в данном случае вновь получаемые компоненты вектора x^{k+1} можно размещать на месте соответствующих компонент вектора x^k , в то время как при реализации метода Якоби все компоненты векторов x^k , x^{k+1} должны одновременно находиться в памяти компьютера.

Достаточное условие сходимости и оценку скорости сходимости метода Зейделя дает

4.1. Теорема. Пусть матрица A — матрица c диагональным преобладанием. Тогда метод Зейделя сходится при любом начальном приближении x^0 ; справедлива оценка скорости сходимости:

$$\max_{1 \le j \le n} |z_j^k| \le q^k \max_{1 \le j \le n} |z_j^0|. \tag{1.7}$$

ДОКАЗАТЕЛЬСТВО. Вычитая почленно из равенства (1.6) равенство (1.2), получим

$$z_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} z_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} z_j^k, \quad i = 1, 2, \dots, n.$$
 (1.8)

Пусть $\max_{1\leqslant j\leqslant n}|z_j^{k+1}|=|z_l^{k+1}|.$ Из l-того уравнения системы (1.8) вытекает, что

$$|z_l^{k+1}| \leqslant \alpha_l \max_{1 \leqslant j \leqslant n} |z_j^{k+1}| + \beta_l \max_{1 \leqslant j \leqslant n} |z_j^k|,$$

где

$$\alpha_l = \sum_{j=1}^{l-1} \frac{|a_{lj}|}{|a_{ll}|}, \quad \beta_l = \sum_{j=l+1}^n \frac{|a_{lj}|}{|a_{ll}|},$$

следовательно,

$$\max_{1 \le j \le n} |z_j^{k+1}| \le \frac{\beta_l}{1 - \alpha_l} \max_{1 \le j \le n} |z_j^k|.$$

Из условия (1.4) получаем, что $\alpha_l + \beta_l \leqslant q < 1$, но тогда и $q\alpha_l + \beta_l \leqslant q$, таким образом, $\beta_l/(1-\alpha_l) \leqslant q$, поэтому $\max_{1\leqslant j\leqslant n}|z_j^{k+1}|\leqslant q\max_{1\leqslant j\leqslant n}|z_j^k|$.

Дальнейшие рассуждения совпадают с соответствующими рассуждениями из доказательства предыдущей теоремы.

5. Метод релаксации. Зачастую существенного ускорения сходимости можно добиться за счет введения в расчетные формулы числового параметра. В качестве примера приведем итерационный процесс

$$x_i^{k+1} = (1-\omega)x_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}} \right), \quad (1.9)$$

 $i=1,2,\ldots,n,\,k=0,1,\ldots$ Этот метод называется методом релаксации, число ω — релаксационным параметром. При $\omega=1$ метод переходит в метод Зейделя.

Ясно, что по затратам памяти и объему вычислений на каждом шаге итераций метод релаксации не отличается от метода Зейделя.

§ 2. Элементы общей теории итерационных методов

1. Придадим итерационным методам, рассмотренным в предыдущих пунктах, матричные формулировки. Начнем с метода Якоби. Нетрудно видеть, что равенства (1.3) можно записать в матричном виде

$$D(x^{k+1} - x^k) + Ax^k = b, (2.1)$$

где $D = \operatorname{diag}(a_{11}, a_{22}, \ldots, a_{nn})$. Для того, чтобы придать матричную форму записи методам Зейделя и релаксации, обозначим через L нижнюю строго треугольную матрицу, поддиагональные элементы которой совпадают с соответствующими элементами матрицы A, а все диагональные элементы равны нулю. Через R обозначим верхнюю строго треугольную матрицу, такую что A = L + D + R. Равенства (1.9) могут быть переписаны тогда в следующем виде:

$$\frac{1}{\omega}(D + \omega L)(x^{k+1} - x^k) + Ax^k = b.$$
 (2.2)

Будем рассматривать общий класс итерационных методов, определяемых соотношениями

$$\frac{1}{\tau}B(x^{k+1} - x^k) + Ax^k = b, \quad k = 0, 1, \dots$$
 (2.3)

Здесь B — невырожденная матрица, $\tau > 0$ — число, называемое ume-рационным параметром. Для того, чтобы найти вектор x^{k+1} по уже известному вектору x^k , нужно решить систему линейных уравнений

$$Bx^{k+1} = f^k, (2.4)$$

где $f^k = Bx^k - \tau(Ax^k - b)$.

Очевидно, при построении итерационного метода (2.3) матрица B должна выбираться так, чтобы решение системы уравнений вида (2.4) выполнялось намного быстрее, чем решение исходной системы уравнений (1.1).

Итерационные методы Якоби, Зейделя и релаксации являются частными случаями метода (2.3). Например, в случае метода Якоби $B=D,\, \tau=1.$

Наша ближайшая цель — получить условия на матрицу B и параметр τ , обеспечивающие сходимость метода (2.3).

Если x — решение системы (1.1), то, очевидно,

$$\frac{1}{\tau}B(x-x) + Ax = b. {(2.5)}$$

Вычитая почленно равенства (2.3), (2.5), получим

$$\frac{1}{\tau}B(z^{k+1}-z^k) + Az^k = 0, (2.6)$$

откуда

$$z^{k+1} = Sz^k, (2.7)$$

где

$$S = I - \tau B^{-1} A. (2.8)$$

Понятно, что сходимость итерационного метода (2.3) определяется свойствами матрицы S.

Пусть $\lambda_1, \lambda_2, \ldots, \lambda_n$ — собственные числа матрицы S. Неотрицательное число

$$\rho(S) = \max_{1 \le k \le n} |\lambda_k| \tag{2.9}$$

называется спектральным радиусом матрицы S.

2. Теорема. Для того, чтобы итерационный метод (2.3) сходился при любом начальном приближении x^0 , необходимо и достаточно, чтобы спектральный радиус матрицы S был меньше единицы.

ДОКАЗАТЕЛЬСТВО. Необходимость. Пусть λ — собственное число матрицы S такое, что $|\lambda| \geqslant 1$, e — соответствующий этому собственному числу нормированный собственный вектор матрицы S. Выберем в качестве начального приближения в итерационном методе (2.3) вектор $x^0 = x + e$, где x — решение уравнения (1.1). Тогда в соответствии с (2.7) имеем $z^1 = Sz^0 = \lambda e$ и, вообще, $z^k = \lambda^k e$, следовательно, $|z^k| = |\lambda|^k$. Очевидно, либо $|z^k| \to \infty$ при $k \to \infty$, либо $|z^k| = 1$ для всех $k = 1, 2, \ldots$, т. е. метод (2.3) не сходится.

Д о с т а т о ч н о с т ь. По теореме Шура, с. 194, существует унитарная матрица U такая, что

$$S = UTU^*, (2.10)$$

где T — верхняя треугольная матрица, по диагонали которой расположены все собственные числа матрицы S. Пусть

$$D_d = \operatorname{diag}(d, d^2, \ldots, d^n),$$

где d — положительное число. Положим

$$Q = D_d T D_d^{-1}. (2.11)$$

Нетрудно убедиться, что

$$Q = \begin{pmatrix} \lambda_1 & d^{-1}t_{12} & d^{-2}t_{13} & \dots & d^{(n-2)}t_{1n-1} & d^{(n-1)}t_{1n} \\ 0 & \lambda_2 & d^{-1}t_{23} & \dots & d^{(n-3)}t_{2n-1} & d^{(n-2)}t_{2n} \\ 0 & 0 & \lambda_3 & \dots & d^{(n-4)}t_{3n-1} & d^{(n-3)}t_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_{n-1} & d^{-1}t_{n-1,n} \\ 0 & 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix}.$$
 (2.12)

Поскольку $\rho(S) < 1$, то, выбирая d достаточно большим, можно добиться того, что сумма модулей элементов каждой строки матрицы $Q = \{q_{ij}\}_{i,j=1}^n$ будет не больше положительного числа q, строго меньшего единицы. Вследствие (2.10), (2.11) получаем $S = VQV^{-1}$, где $V=UD_d^{-1}$. Далее, используя (2.7), можем написать, что $z^k=S^kz^0$ для любого $k\geqslant 1$, поэтому $z^k=VQ^kV^{-1}z^0$, или $w^k=Q^kw^0$, где $w^j=V^{-1}z^j$. Заметим теперь, что для любого $i=1,2,\ldots,n$

справедливо неравенство $|w_i^1| \leqslant \sum_{j=1}^n |q_{ij}w_j^0| \leqslant q \max_{1\leqslant j\leqslant n} |w_j^0|$, следовательно, $\max_{1\leqslant j\leqslant n} |w_j^2| \leqslant q^2 \max_{1\leqslant j\leqslant n} |w_j^0|$, и, вообще, $\max_{1\leqslant j\leqslant n} |w_j^k| \leqslant q^k \max_{1\leqslant j\leqslant n} |w_j^0|$. Таким образом, $w^k \to 0$ при $k \to \infty$, но тогда и $z^k = Vw^k \to 0$ при $k \to \infty$. \square

Опираясь на теорему 2, получим часто используемое условие сходимости итерационного процесса (2.3).

3. Теорема Самарского¹⁾. Пусть матрица А положительно определена и пусть для любого не равного нулю вектора x из \mathbb{C}^n выполнено неравенство

$$(B_1x, x) > (\tau/2)(Ax, x),$$
 (2.13)

где $B_1 = (1/2)(B + B^*)$. Тогда матрица B невырождена, и итерационный процесс (2.3) сходится при любом начальном приближении x^0 . Обратно, если матрица A положительно определена и итерационный процесс (2.3) сходится при любом начальном приближении x^0 , то выполнено условие (2.13).

 $[\]overline{\ \ ^{(1)}}$ Александр Андреевич Самарский (1919 — 2008) — советский, российский математик.

ДОКАЗАТЕЛЬСТВО. Невырожденность матрицы B сразу же следует из условия (2.13) и положительной определенности матрицы A (см. упражнение 2 на с. 209). Покажем, что если выполнено условие (2.13), то $\rho(S) < 1$, где S — матрица, определенная равенством (2.8). Вследствие теоремы 2 отсюда будет вытекать сходимость итерационного метода (2.3). Пусть λ , x — собственная пара матрицы S. Тогда $Bx - \tau Ax = \lambda Bx$, поэтому

$$\lambda = \frac{(Bx, x) - \tau(Ax, x)}{(Bx, x)}.$$

Используя формулу (8.1), с. 98, представим матрицу B в виде

$$B = B_1 + iB_2, (2.14)$$

где $B_1 = (1/2)(B + B^*), B_2$ — эрмитовы матрицы. Тогда

$$\lambda = \frac{(B_1 x, x) - \tau(Ax, x) + i(B_2 x, x)}{(B_1 x, x) + i(B_2 x, x)},$$

следовательно,

$$|\lambda|^2 = \frac{((B_1x, x) - \tau(Ax, x))^2 + (B_2x, x)^2}{(B_1x, x)^2 + (B_2x, x)^2}.$$

Запишем последнее равенство в виде

$$|\lambda|^2 = \frac{(1-a)^2 + b^2}{1+b^2},\tag{2.15}$$

где $a = \tau(Ax,x)/(B_1x,x)$, $b = (B_2x,x)/(B_1x,x)$. Из условия (2.13) получаем, что 0 < a < 2, поэтому |1-a| < 1, откуда, очевидно, вытекает, что $|\lambda| < 1$. Для доказательства второй части теоремы достаточно заметить, что если итерационный процесс (2.3) сходится при любом начальном приближении, то по теореме 2 все собственные числа матрицы S по модулю строго меньше единицы, и тогда из представления (2.15) получаем, что 0 < a < 2, следовательно, условие (2.13) выполнено. \square

4. Теорема. Пусть выполнены условия теоремы 3. Тогда для погрешностей итерационного процесса (2.3) при любом $k \geqslant 0$ выполнено неравенство

$$(Az^{k+1}, z^{k+1}) < (Az^k, z^k), (2.16)$$

 $ecnu z^k \neq 0.$

ДОКАЗАТЕЛЬСТВО. Используя тривиальное тождество

$$z^{k} = (1/2)(z^{k+1} + z^{k}) - (1/2)(z^{k+1} - z^{k}),$$

перепишем уравнение (2.6) в виде

$$\frac{1}{\tau}(B - (\tau/2)A)(z^{k+1} - z^k) + (1/2)A(z^{k+1} + z^k) = 0.$$

Умножая теперь скалярно обе части последнего равенства на вектор $2(z^{k+1}-z^k)$ и используя представление (2.14), после элементарных преобразований получим

$$\frac{2}{\tau}((B_1 - (\tau/2)A)(z^{k+1} - z^k), z^{k+1} - z^k) + i\frac{2}{\tau}(B_2(z^{k+1} - z^k), z^{k+1} - z^k) + i\frac{2}{\tau}(B_2(z^{k+1} - z^k), z^{k+1} - z^k) + i\operatorname{Im}(Az^k, z^{k+1}) = 0,$$

поэтому

$$\frac{2}{\tau}((B_1 - (\tau/2)A)(z^{k+1} - z^k), z^{k+1} - z^k) + (Az^{k+1}, z^{k+1}) - (Az^k, z^k) = 0. \quad (2.17)$$

Если $z^k \neq 0$, то вследствие невырожденности оператора B из (2.6) вытекает, что $z^{k+1}-z^k \neq 0$. Тогда на основании условия (2.13) из равенства (2.17) получаем, что $(Az^{k+1},z^{k+1})-(Az^k,z^k)<0$. \square

5. Если матрица A положительно определена, то уравнение (1.1), с. 282, эквивалентно задаче минимизации функции (функционала)

$$F(x) = (Ax, x) - 2\operatorname{Re}(x, b)^{1}.$$
 (2.18)

Действительно, пусть \hat{x} — решение уравнения (1.1), с. 282. Тогда

$$F(x) = (Ax, x) - 2\operatorname{Re}(x, A\hat{x}) =$$

$$= (Ax, x) - 2\operatorname{Re}(x, A\hat{x}) + (A\hat{x}, \hat{x}) - (A\hat{x}, \hat{x}) =$$

$$= (A(x - \hat{x}), x - \hat{x}) - (A\hat{x}, \hat{x}), \quad (2.19)$$

следовательно, функции F(x) и $F_0(x) = (A(x-\hat{x}), x-\hat{x})$ отличаются на постоянное слагаемое. Поскольку матрица A положительно определена, то единственной точкой минимума функции F_0 , а стало быть,

 $^{^{(1)}}$ Функционал F часто называют *энергетическим*. Это связано с задачами физики, в которых возникают уравнения с положительно определенными матрицами.

и функции F является \hat{x} . Вследствие (2.19) неравенство (2.16) можно записать в виде

$$F(x^{k+1}) < F(x^k). (2.20)$$

Таким образом, можно сказать, что при выполнении условий теоремы 3 итерационный процесс (2.3) является $penakcauuonhum^2$: каждое последующее приближение уменьшает значение функционала F.

- **6.** Используя полученные в предыдущем пункте общие результаты, исследуем сходимость метода релаксации (2.2).
 - 6.1. Теорема. Пусть матрица А положительно определена,

$$0 < \omega < 2. \tag{2.21}$$

Тогда итерационный метод (2.2) сходится при любом начальном приближении x^0 .

ДОКАЗАТЕЛЬСТВО. Будем опираться на теорему 3. В рассматриваемом случае $B=D+\omega L$, $\tau=\omega$, $B_1=D+(\omega/2)(L+L^*)$, $A=D+L+L^*$, и условие (2.13) принимает вид $(Dx,x)>(\omega/2)(Dx,x)$ для любого $x\neq 0$. Все диагональные элементы положительно определенной матрицы положительны (см. упражнение 3 на с. 209), поэтому матрица D положительно определена, и условие (2.13) выполнено, если выполнено условие (2.21). \square

6.2. Теорема. Условие (2.21) необходимо для сходимости итерационного процесса (1.9).

ДОКАЗАТЕЛЬСТВО. Запишем равенство (2.8) в виде

$$(D + \omega L)S = (D + \omega L) - \omega A = (1 - \omega)D - \omega R. \tag{2.22}$$

Поскольку L и R — строго треугольные матрицы, а D — диагональная матрица, все диагональные элементы которой отличны от нуля, то, вычисляя определители левой и правой частей равенства (2.22), получим, что $\det(S) = (1 - \omega)^n$, следовательно (см. (6.7), с. 191),

$$\prod_{k=1}^{n} |\lambda_k| = |1 - \omega|^n, \tag{2.23}$$

где $\lambda_1, \lambda_2, \ldots, \lambda_n$ — характеристические числа матрицы S. Если условие (2.21) нарушено, то $|1 - \omega| > 1$, и среди собственных чисел λ_k матрицы S есть хотя бы одно, модуль которого больше единицы, но тогда по теореме 2 найдется начальное приближение x^0 , при котором итерационный процесс (1.9) не сходится. \square

 $[\]overline{}^{2)}$ Релаксация (лат. relaxatio) — уменьшение напряжения, ослабление.

7. Пример решения задачи об оптимальном выборе итерационного параметра. Из доказательства теоремы 2 видно, что итерационный процесс (2.3) сходится тем быстрее, чем меньше спектральный радиус матрицы $S = I - \tau B^{-1}A$. В связи с этим возникает задача отыскания такого (onmumanbhoro) значения итерационного параметра τ , при котором величина $\rho(S)$ принимает минимальное значение.

Наиболее просто эта задача решается в случае, когда матрицы $A,\ B$ положительно определены. Поскольку в рассматриваемом случае $B=B^*,$ т. е. в представлении (2.14) матрица B_2 равна нулю, то из (2.15) получаем, что для любой собственной пары $\lambda,\ x$ матрицы S справедливо равенство

$$|\lambda| = \left| 1 - \tau \frac{(Ax, x)}{(Bx, x)} \right|. \tag{2.24}$$

Нетрудно видеть, что если x — собственный вектор матрицы S, то x — собственный вектор матрицы $B^{-1}A$ и, следовательно (см. § 8, с. 222), x — собственный вектор обобщенной проблемы собственных значений

$$Ax = \lambda Bx. \tag{2.25}$$

Очевидно, справедливо и обратное: любой собственный вектор задачи (2.25) есть собственный вектор оператора S.

Для любой собственной пары x, λ задачи (2.25) справедливо равенство $(Ax,x)=\lambda(Bx,x)$. Поэтому все собственные числа задачи (2.25) положительны. Пусть m — минимальное, а M максимальное из этих чисел. Тогда для любого собственного вектора x оператора x справедливы неравенства

$$m \leqslant \frac{(Ax,x)}{(Bx,x)} \leqslant M. \tag{2.26}$$

Полученные оценки являются точными, поскольку соответствующие неравенства (2.26) превращаются в равенства, если в качестве x взять собственный вектор, отвечающий m или M.

Нетрудно видеть, что функция $g(\mu) = |1 - \tau \mu|$ вещественного переменного μ на любом ограниченном отрезке вещественной оси достигает максимального значения на одном из концов этого отрезка. Поэтому, используя соотношения (2.24), (2.26), получаем, что

$$\rho(S) = \varphi(\tau) = \max\{|1 - \tau m|, |1 - \tau M|\}. \tag{2.27}$$

График функции $\varphi(\tau)$ при $\tau\geqslant 0$ изображен на рис. 1. Нетрудно убедиться, что

$$\min_{\tau \ge 0} \varphi(\tau) = \varphi(\tau_0) = (1 - \xi)/(1 + \xi), \tag{2.28}$$

Рис. 1. К выбору оптимального итерационного параметра

где $\tau_0 = 2/(M+m), \, \xi = m/M.$

Таким образом, итерационный процесс (2.3) при оптимальном значении итерационного параметра $\tau=\tau_0$ сходится тем быстрее, чем больше m/M, т. е. чем меньше разброс собственных чисел задачи (2.25).

§ 3. Метод Якоби решения задач на собственные значения

В этом параграфе излагается приближенный метод Якоби, который можно применять для приближенного отыскания собственных чисел и собственных векторов эрмитовых матриц. Как и все методы, используемые в настоящее время для приближенного решения задач на собственные значения, метод Якоби является итерационным. В самых общих чертах, идея его состоит в следующем. Пусть A — диагональная матрица. Тогда собственные числа матрицы A есть ее диагональные элементы. Метод Якоби для любой эрмитовой матрицы A дает способ построения последовательности матриц $A_1, A_2, \ldots, A_k, \ldots$ таких, что каждая из матриц этой последовательности эрмитова, подобна матрице A и с увеличением номера k становится все более близкой к диагональной. В качестве приближенных значений собственных чисел матрицы A берутся диагональные элементы матрицы A_k , как только все ее внедиагональные элементы оказываются достаточно малыми.

1. Итак, пусть A — эрмитова матрица порядка $n, Q = \{q_{ij}\}_{i,j=1}^n$ — матрица, отличающаяся от единичной лишь четырьмя элементами:

$$q_{k,k} = \cos \varphi, \ q_{ll} = \cos \varphi, \ q_{kl} = -q \sin \varphi, \ q_{lk} = \bar{q} \sin \varphi,$$
 (3.1)

где $1\leqslant k < l\leqslant n,\ \varphi$ — вещественное число, q — вообще говоря, комплексное число, |q|=1. Очевидно, Q — унитарная матрица.

Образуем по матрице A матрицу $\widehat{A} = Q^T A Q$ и попытаемся выбрать параметры матрицы Q, т. е. числа $k,\ l,\ \varphi,\ q$, так, чтобы матрица \widehat{A} была максимально близка к диагональной.

Нетрудно убедиться, что матрица $\tilde{A} = Q^T A$ отличается от матрицы A лишь элементами строк с номерами k, l, причем

$$\tilde{a}_{k,j} = a_{kj}\cos\varphi + a_{lj}\bar{q}\sin\varphi,$$

$$\tilde{a}_{l,j} = -a_{kj}q\sin\varphi + a_{lj}\cos\varphi, \quad j = 1, \dots, n.$$
(3.2)

Аналогично, матрица $\hat{A} = \tilde{A}Q$ отличается от матрицы \tilde{A} лишь элементами столбцов с номерами k, l, причем

$$\hat{a}_{j,k} = \tilde{a}_{jk}\cos\varphi + \tilde{a}_{jl}q\sin\varphi,$$

$$\hat{a}_{j,l} = -\tilde{a}_{jk}\bar{q}\sin\varphi + \tilde{a}_{jl}\cos\varphi, \quad j = 1, \dots, n.$$
(3.3)

Из (3.2), (3.3) сразу же следует, что

$$|\tilde{a}_{k,j}|^2 + |\tilde{a}_{l,j}|^2 = |a_{k,j}|^2 + |a_{l,j}|^2, \quad |\hat{a}_{j,k}|^2 + |\hat{a}_{j,l}|^2 = |a_{j,k}|^2 + |a_{j,l}|^2,$$

 $j = 1, \dots, n, \quad (3.4)$

$$\hat{a}_{kl} = \bar{q}(a_{ll} - a_{kk})\cos\varphi\sin\varphi + a_{kl}\cos^2\varphi - \bar{q}^2a_{lk}\sin^2\varphi.$$
 (3.5)

Вычислим сумму квадратов модулей внедиагональных элементов матрицы \hat{A} . Используя соотношения (3.2)-(3.4), нетрудно получить, что

$$\sum_{i \neq j} |\widehat{a}_{ij}|^2 = \sum_{i \neq j} |a_{ij}|^2 - 2|a_{kl}|^2 + |\widehat{a}_{kl}|^2.$$
 (3.6)

Определим теперь числа k, l из условия:

$$|a_{kl}| = \max_{i \neq j} |a_{ij}|. \tag{3.7}$$

Поскольку A — эрмитова матрица, то $a_{lk} = \bar{a}_{kl}$, и из (3.5) с учетом того, что $1/\bar{q} = q$, будем иметь, что

$$\hat{a}_{kl} = \bar{q} \left(\frac{a_{ll} - a_{kk}}{2} \sin 2\varphi + q a_{kl} \cos^2 \varphi - \bar{q} \bar{a}_{kl} \sin^2 \varphi \right).$$

Будем считать, что $a_{kl} \neq 0$. В противном случае матрица диагональна, и ее собственные числа определяются тривиальным образом. Положим

$$q = |a_{kl}|/a_{kl}. (3.8)$$

Тогда

$$\hat{a}_{kl} = \bar{q} \left(\frac{a_{ll} - a_{kk}}{2} \sin 2\varphi + |a_{kl}| \cos 2\varphi \right). \tag{3.9}$$

Выберем затем угол φ так, чтобы

$$|a_{kl}|\cos 2\varphi + \frac{1}{2}(a_{ll} - a_{kk})\sin 2\varphi = 0,$$

ИЛИ

$$\operatorname{tg} 2\varphi = \frac{2|a_{kl}|}{a_{kk} - a_{ll}}.$$
(3.10)

При указанном выборе параметров, определяющих матрицу Q, сумма квадратов модулей внедиагональных элементов матрицы \widehat{A} принимает наименьшее значение.

Теперь можно описать метод Якоби. Пусть $A_0 = A$. Образуем последовательность матриц A_1, A_2, \ldots при помощи рекуррентной формулы:

$$A_{p+1} = Q_p^T A_p Q_p, \quad p = 0, 1, \dots,$$
 (3.11)

где параметры матрицы Q_p определяются так, чтобы сделать сумму квадратов внедиагональных элементов матрицы A_{p+1} минимально возможной, т. е. по формулам вида (3.7), (3.8), (3.10).

Вычисления проводят до тех пор, пока все внедиагональные элементы матрицы A_p не станут достаточно малыми. Тогда в качестве приближений к собственным числам матрицы A принимают диагональные элементы матрицы A_p , а столбцы матрицы $Q_0Q_1\ldots Q_p$ считают приближениями к собственным векторам матрицы A.

§ 4. Исследование сходимости метода Якоби

1. Лемма. Пусть параметры матрицы Q определяются согласно формулам (3.7), (3.8), (3.10). Тогда

$$\sum_{i \neq j} |\widehat{a}_{ij}|^2 \leqslant \rho \sum_{i \neq j} |a_{ij}|^2, \tag{4.1}$$

e

$$0 < \rho = 1 - \frac{2}{n(n-1)} < 1$$

 $npu \ n > 2.$

ДОКАЗАТЕЛЬСТВО. Вследствие (3.10) из (3.6) получаем

$$\sum_{i \neq j} |\widehat{a}_{ij}|^2 = \sum_{i \neq j} |a_{ij}|^2 - 2|a_{kl}|^2, \tag{4.2}$$

а на основании (3.7)

$$\sum_{i \neq j} |a_{ij}|^2 \leqslant |a_{kl}|^2 n(n-1). \tag{4.3}$$

Здесь учтено, что матрица порядка n имеет n^2-n внедиагональных элементов. Из (4.2), (4.3) очевидным образом следует (4.1). \square

Докажем сходимость метода Якоби. Пусть $A_p = \{a_{ij}^{(p)}\}_{i,j=1}^n$. Из рекуррентной формулы (3.11) и леммы 1 вытекает, что

$$\sum_{i \neq j} |a_{ij}^{(p)}|^2 \leqslant \rho \sum_{i \neq j} |a_{ij}^{(p-1)}|^2 \leqslant \rho^p \sum_{i \neq j} |a_{ij}|^2 \to 0 \text{ при } p \to \infty.$$

Это означает, что по любому заданному $\varepsilon > 0$ можно указать целое положительное число p такое, что

$$|a_{ij}^{(p)}| \le \varepsilon/n, \quad i \ne j, \quad i, j = 1, 2, \dots, n.$$
 (4.4)

Обозначим через Λ_p диагональную матрицу, на диагонали которой расположены диагональные элементы матрицы A_p . В соответствии с оценками (4.4), а также (6.4), с. 218, можем написать:

$$|\lambda_k(A_p) - \lambda_k^{(p)}| \le \varepsilon, \quad k = 1, 2, \dots, n,$$

где $\lambda_k^{(p)}$, $k=1,\ldots,n$, — диагональные элементы матрицы Λ_p , упорядоченные по неубыванию, $\lambda_k(A_p)$ — так же упорядоченные собственные числа матрицы A_p . Вследствие (3.11) имеем $A_p = T_p^T A T_p$, где $T_p = Q_0 Q_1 \ldots Q_p$, т. е. матрицы A_p и A подобны, а, значит, их собственные числа совпадают, поэтому

$$|\lambda_k(A) - \lambda_k^{(p)}| \le \varepsilon, \quad k = 1, 2, \dots, n.$$
 (4.5)

Таким образом, выполнив определенное количество итераций, мы получим приближенные значения собственных чисел матрицы A с любой наперед заданной точностью.

2. Применяя метод Якоби для приближенного отыскания собственных чисел и собственных векторов симметричной вещественной матрицы, в формулах (3.1) параметр q следует положить равным единице. Соответственно, в формуле (3.10), нужно заменить $|a_{kl}|$ на a_{kl} . Все выше полученные оценки при этом сохраняются. Матрица Q, определенная на с. 293, при q=1 есть матрица, осуществляющая поворот на угол φ в двумерной плоскости, натянутой на векторы i^k , i^l естественного базиса пространства \mathbb{R}^n . Поэтому метод Якоби часто называют методом вращений.

Предметный указатель

Аксиомы — линейного пространства, 112, 116 — скалярного произведения (в вещественном пространстве), 113 — скалярного произведения (в комплексном пространстве), 115 Алгебраическое дополнение, 76 Базис — декартов — обобщенный, 46 — естественный, 137 — Жорданов, 198 — Лагранжа, 138 — ньютона, 138 — пространства, 46 —— Спестественный, 130 — сингулярный, 223 — Фурье, 136 Базиса — ориентация, 50 Блок — жорданов, 197	— компланарные, 45 — равные, 111 Вращение — несобственное, 234 — собственное, 234 Гипербола, 257 Гиперболоид, 280 — двуполостный, 272 — однополостный, 271 Гиперболы — асимптоты, 259 — вершины, 259 — центр симметрии, 259 Гиперповерхности второго порядка — приведенная форма, 279 Гиперповерхность второго порядка, 279 Дополнение
Блок	Гиперповерхность второго порядка, 279
— жорданов, 197 Вектор, 42, 111, 116	Дополнение — ортогональное, 150
— единичный, 112, 114 — циклический, 205	Замена переменных — линейная, 237
Вектора	Инверсия, 72
— декартовы координаты, 43	Клетка
— компоненты, 111	— жорданова, 197
— координаты, 46, 131	Комплексного числа
— модуль, 43, 113, 120	— аргумент, 12
— умножение на число, 43, 112	— вещественная часть, 8
Вектора циклического	— мнимая часть часть, 8
— высота, 205	— модуль, 10
Векторов	— тригонометрическое представление, 12
— системы эквивалентные, 123 — векторное произведение, 50	12 Комплексное число
— вычитание, 45	— нулевое, 9
— линейная комбинация, 122	— сопряженное, 10
— подсистема максимальная, 125	Комплексных чисел
— система	— вычитание, 8
—— линейно зависимая, 121	— деление, 10°
—— линейно независимая, 123	— сложение, 8
—— ортогональная, 128	— умножение, 9
—— ортонорированная, 128	Конус, 280
— системы ранг, 126	— эллиптический, 270

— разложение

Корень —— треугольное, 10*7* — из оператора, 221 — ранг, 168 — из комплексного числа, 15 — собственный вектор, 185 Кривая второго порядка, 252 — спектр, 185 Критерий — спектральный радиус, 287 — Сильвестра, 243 — умножение —— на число, 88 Матриц — характериситческие числа, 185 сумма, 88 Матрица — характеристический полином, 185 блочная, 108 Метод — вращения, 235 — Γaycca, 100 Зейделя, 284 — вырожденная, 94 — Лагранжа (выделения полных квад-— Гильберта, 149 — Грама, 126 ратов), 238 — диагональная, 86 — релаксации, 286 — Якоби, 283, 293 — единичная, 87 — жорданова, 196 Минор, 76 — квадратная, 74 базисный, 169 — кососимметричная, 99 — главный, 106 — косоэрмитова, 98 — диагональный, 190 — невырожденная, 94 — окаймляющий, 169 — неотрицательная, 209 Мнимая единица, 7 — нижняя треугольная Многочлен, 17 —— элементарная, 87 — нулевой, 17 — нормальная, 100 — прведенный (нормированный), 20 Многочлена — нулевая, 86 — обратная, 95 — корень, 20 —— левая, **9**5 -- кратный, 20 -- правая, 95— коэффициенты, 17 — ортогональная, 99 порядок, 17 — отражения, 236 Многочленов — перестановки, 87 деление, 19 — перехода, 133 Невязка, 179 — положительно определенная, 209 Невязки — преобразования переменных, 237 — функция (функционал), 179 — присоединенная, 95 Неравенство — Бесселя, 147 — прямоугольная, 86 — системы линейных алгебраических — Коши, 49 уравнений, 81 — Коши — Буняковского, 119 — Минковского, 114 — сопряженная, 98 — транспонированная, 77, 93 — треугольника, 49, 114 — треугольная — треугольника (Минковского), 120 —— верхняя, *7*9 Оператор -- нижняя, 79— единичный, 153 — унитарная, 99 — кососимметричный, 229 — эрмитова, 98 — косоэрмитов, 207 Матрицы – линейный, 152 — невырожденный, 167 инерция, 241 — конгруентные, 240 — неотрицательный, 209 подобные, 165 — нильпотентный, 198

— нормальный, 211

нулевой, 152
обратный, 154
ортогональный, 230
положительно определеннный, 209
проектирования, 153
простой структуры, 189
разложения по базису, 155

— растяжения —— левый, 228 —— правый, 228

— самосопряженный (эрмитов), 207

— скалярный, 162— сопряженный, 157— унитарный, 210

Оператора — дефект, 159

— инвариантное подпространство, 181

— инвариантное подр — инварианты, 190 — матрица, 160 — область значений —— образ, 159 — определитель, 167

— полярное разложение, 228

— ранг, 159 — след, 192

собственная пара, 183собственное число, 183собственный вектор, 183

— собственое подпространство, 183

— спектр, 186— сужение, 183

характеристический полином, 186характристические числа, 186

ядро, 159Операторы

— перестановочные, 185

Определитель, 74 — Вандермонда, 80 Определителя

— разложение
— по столбцу, 76
— по строке, 76
— свойства

—— третьего порядка, 33

Отображение, 152 Парабола, 261 Параболоид

— гиперболический, 269 — эллиптический, 267

Параболы
— вершина, 261

— директриса, 261 — фокус, 261 Параметр

— итерационный, 286 — релаксационный, 286

Переменные
— свободные, 177
Перестановка, 71
— нечетная, 72
— четная, 72
Перестановки

— сигнатура, 72 Поверхность — линейчатая, 272

Поверхность второго порядка, 264

Подпространств
— пересечение, 141
— сумма, 141

—— ортогональная, 143

—— прямая, 142 Подпространства — базис, 141

ортогональные, 143
размерность, 141
Подпространство, 140
корневое, 204

— тривиальное, 181 — циклическое, 204

Полиномы

— Лежандра, 138 — Чебышева, 139 Праболоид, 281 Преобразование — переменных — аффинное, 245 — подобия, 165 — пространства, 152 Приближенеие — наилучшее, 145

— наилушего элемент, 151

Проекция

Приближения

— ортогональная, 147

Произведенеие
— скалярное, 117
Пространства
— изоморфные, 155
— размерность, 131

Пространство $-\mathbb{C}^n$, 114 $-\mathbb{R}^n$, 111

Самарского, 288

— арифметическое, 114 — Фредгольма, 172 — Шура, 194 — бесконечномерное, 132 векторое, 116 Тождество — евклидово Пифагора, 119 Транспозиция, 72 —— вещественное, 118 — комплексное (унитарное)), 118 Угол — конечномерное, 131 — между векторами, 121 линейное — между прямыми, 61 —— вещественное, 116 Умножение — — комплексное, 116 — матрицы —— на вектор, 88 Процесс — ортогонализации Грама — Шмидта, — матриц, 90 129— строки Псевдорешение, 179 —— на матрицу, **89** — нормальное, 226 —— на столбец, 88 Разложение Уравнение — ортогональное, 150 – линейное, 172 Расстояние — однородное, 172 — между двумя точками, 55 — отрезка прямой, 56 — от точки до прямой, 60 — плоскости, 62 Решение —— нормальное, 62 —— общее, **6**3 — линейного уравнения —— общее, 173 — прямой, 58 -- частное, 173 —— в пространстве, 65 — тривиальное, 82 —— каноническое, 66 —— нормальная форма, 59 Решений — система фундаментальная —— общая форма, 59 —— однородного уравнения, 174 — сопряженное, 172 Символ — сферы, 56 — Кронекера, 41 Форм квадратичных Система координат — закон инерции, 242 – декартова, 42 Форма Система линейных алгебраических — квадратичная, 237 —— положительно определенная, 243 уравнений — крамеровская, 81 Формула — однородная, 81 — интерполяционная —— Лагранжа, 85 Собственного числа кратность — алгебраическая, 189 — Муавра, 14 — геометрическая, 189 — площади треугольника, 57 Собственных значений проблема Формулы — обобщенная, 222 Вьета, 24 Столбец, 86 Крамера, 84 Строка, 86 Формы Схема Горнера, 19 квадратичной Теорема —— канонический вид, 238 — алгебры основная, 20 Функции квадратичной — Безу, 20 — инварианты — Грама — Шмидта, 128 -- аффинные, 245 — Кронекера — Капелли, 176 —— ортогональные, 245 — Кэли — Гамильтона, 205 — форма приведенная, 248

Функционал

— линейный, 157

Функция

— квадратичная, 244

Фурье

— коэффициенты, 135

Цилиндр, 281

— гипеболический, 266

— параболический, 266

— эллиптический, 266

Число

— комплексное, 8

— мнимое, 7

— обусловленности, 227

— сингулярное, 223

Эллипс, 257 Эллипса

— вершины, 258

— оси симметрии, 258

— полуоси, 258

— фокусы, 258

— центр симметрии, 258

— эксцентриситет, 258

Эллипсоид, 269, 280

Литература

Основная литература

- 1. Воеводин В.В. Линейная алгебра. Изд-во «Лань», 2009.
- **2.** Ильин В.А., Позняк Э.Г. Линейная алгебра. М.: ФИЗМАТ-ЛИТ, 2010.
- **3.** Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М.: ФИЗ-МАТЛИТ, 2009.
- 4. Курош А.Г. Курс высшей алгебры. Изд-во «Лань», 2008.
- **5.** Погорелов А.В. Аналитическая геометрия. Изд-во НИЦ «Регулярная и хаотическая динамика», 2005.
- 6. Рунг Е.В., Эскин Л.Д. Классификация кривых и поверхностей второго порядка: учебное пособие. Казань: Казанский государственный университет, 2009.

Дополнительная литература

- **1.** Беклемишев Д.В. Курс аналитической геометрии и линейной алгебры. М.: ФИЗМАТЛИТ, 2008.
- **2.** Винберг Э.Б. Курс алгебры. Изд-во «МЦНМО», 2011.
- **3.** Гантмахер Ф.Р. Теория матриц. М.: ФИЗМАТЛИТ, 2010.
- 4. Гельфанд И.М. Лекции по линейной алгебре. Изд-ва «Добросвет», «КДУ», 2009.
- 5. Глазман И.М., Любич Ю.И. Конечномерный линейный анализ. М.: Наука, 1969.
- **6.** Ильин В.А., Ким Г.Д. Линейная алгебра и аналитическая геометрия. Изд-во «Проспект», 2012.
- 7. Кострикин А. И. Сборник задач по алгебре (под ред. А.И. Кострикина).— Москва: Физматлит, 2001.

Литература 303

8. Мальцев А.И. Основы линейной алгебры. — Изд-во «Лань», 2009.

- 9. Мусхелишвили Н.И. Курс аналитической геометрии. Изд-во «Лань», 2002.
- **10.** Прасолов В.В. Задачи и теоремы линейной алгебры. М.: «Физматлит», 1996.
- **11.** Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
- 12. Стрэнг Г. Линейная алгебра и ее применения. М.: Мир, 1980.
- **13.** Тихомиров В.М., Успенский В.В. Десять доказательств основной теоремы алгебры // Математическое просвещение. 1997, 1. С. 50–70.
- **14.** Тыртышников Е.Е. Матричный анализ и линейная алгебра— М.: Академия, 2007.
- **15.** Уилкинсон Дж. X. Алгебраическая проблема собственных значений. М.: Наука, 1970.
- 16. Фаддеев Д.К. Лекции по алгебре. Изд-во «Лань», 2004.
- **17.** Халмош П. Конечномерные векторные пространства. М: Физматгиз, 1963.
- **18.** Хорн Р., Джонсон Ч. Матричный анализ. М.: Мир, 1989.
- **19.** Шилов Г.Е. Математически анализ (конечнмерные векторные пространства). М: Наука, 1969.
- 20. Allen G.D. Lectures on Linear Algebra and Matrices. Texas A&M University. URL: http://www.math.tamu.edu/~dallen/m640_03c/readings.htm, свободный, 31.05.2012.
- 21. Lau D. Übungsbuch zur Linearen Algebra und analytischen Geometrie. Aufgaben mit Lösungen. Springer-Verlag, 2007.
- **22.** Wildon M. A short proof of the existence of Jordan normal form. URL: http://www.ma.rhul.ac.uk/ uvah099/Maths/JNFfinal.pdf, свободный, 20.07.2011.