Indice

1	Stal	bilità nei sistemi dinamici	2
	1.1	Definizione sistema dinamico e punti di equilibrio	2
	1.2	Definizione stabilità	2
	1.3	Stabilità nei sistemi lineari	3

Capitolo 1

Stabilità nei sistemi dinamici

1.1 Definizione sistema dinamico e punti di equilibrio

Un sistema dinamico è composta da uno stato $x \in \mathbb{R}^n$ e da una legge di evoluzione

$$\dot{x}(t) = f(x(t), u(t), t)$$

Definizione 1.1. Un sistema è detto **tempo invariante** se la sua evoluzione non dipende esplicitamente dal tempo t, cioè:

$$\dot{x}(t) = f(x(t), u(t))$$

Definizione 1.2. Un sistema è detto **autonomo** se la sua evoluzione non dipende esplicitamente dall'ingresso u(t), cioè:

$$\dot{x}(t) = f(x(t), t)$$

Se il sistema è sia autonomo che tempo invariante allora si ha:

$$\dot{x}(t) = f(x(t))$$

Definizione 1.3. Dato un sistema dinamico **tempo invariante** nella forma:

$$\dot{x}(t) = f(x(t), u(t))$$

un punto di equilibrio (\bar{x}, \bar{u}) è una coppia stato-ingresso tale che:

$$\dot{x} = f(\bar{x}, \bar{u}) = 0$$

1.2 Definizione stabilità

Un sistema dinamico tempo invariante è detto stabile se

$$\forall \varepsilon > 0, \exists \delta > 0 : x_0 \in B_{\delta}(\bar{x}) \Rightarrow |x_{x_0}(t) - \bar{x}| \le \varepsilon, \forall t \ge 0$$

Dove con $x_{x_0}(t)$ si intende la traiettoria del sistema che parte da x_0 .

Ora dimostriamo che $\delta \leq \varepsilon, \forall \varepsilon > 0$. Supponiamo per assurdo che esista un $\varepsilon > 0$ per cui si ha che la δ per cui è rispettata la definizione di stabilità sia tale che $\delta > \varepsilon$. Allora si ha che per le $x_0 \in B_{\delta}(\bar{x}) \backslash B_{\varepsilon}(\bar{x})$ vale:

$$|x_{x_0}(0) - \bar{x}| = |x_0 - \bar{x}| > \varepsilon$$

Ma questo è assurdo perché $x_0 \in B_{\delta}(\bar{x})$ dunque rispetta la definizione di stabilità per cui si dovrebbe avere :

$$|x_{x_0}(0) - \bar{x}| = |x_0 - \bar{x}| \le \varepsilon$$

Dunque siamo arrivati ad un assurdo.

Figura 1.1: In verde si ha il punto di equilibrio \bar{x} . In rosso si ha l'insieme delle condizioni iniziali per cui le traiettorie rimangono confinate all'interno del cerchio di raggio ε .

1.3 Stabilità nei sistemi lineari

Consideriamo un sistema lineare tempo invariante:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

Dove $A \in \mathbb{R}^{n \times n}$ e $B \in \mathbb{R}^{n \times m}$. Per trovare i punti di equilibrio dobbiamo imporre:

$$\dot{x}(t) = 0 \iff Ax(t) + Bu(t) = 0$$

Dunque i punti di equilibrio sono i punti (\bar{x}, \bar{u}) che soddisfano:

$$A\bar{x} + B\bar{u} = 0$$

Notiamo subito che il punto $(\bar{x}, \bar{u}) = (0, 0)$ è sicuro un punto di equilibrio.