isc N-Channel MOSFET Transistor

2SK1378

DESCRIPTION

- Drain Current –I_D=10A@ T_C=25℃
- · Drain Source Voltage-
 - : V_{DSS}=400V(Min)
- · Fast Switching Speed

APPLICATIONS

· Designed for high voltage, high speed power switching

ABSOLUTE MAXIMUM RATINGS(T_a=25°C)

SYMBOL	ARAMETER	VALUE	UNIT
V_{DSS}	Drain-Source Voltage (V _{GS} =0)	400	V
V _{GS}	Gate-Source Voltage ±30		V
I _D	Drain Current-continuous@ TC=25℃	-continuous@ TC=25°C 10	
P _{tot}	Total Dissipation@TC=25°C	125	W
T _j	Max. Operating Junction Temperature	150	$^{\circ}$
T _{stg}	Storage Temperature Range	-55~150	$^{\circ}$

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	MAX	UNIT
R _{th j-c}	Thermal Resistance,Junction to Case	se 2.77	
R _{th j-a}	th j-a Thermal Resistance,Junction to Ambient		°C/W

isc website: www.iscsemi.cn

isc & iscsemi is registered trademark

isc N-Channel Mosfet Transistor

2SK1378

• ELECTRICAL CHARACTERISTICS (T_C=25℃)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0; I _D = 0.25mA	400			V
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =10 V _{GS} ; I _D =0.25mA	2.0		4.0	V
R _{DS(on)}	Drain-Source On-stage Resistance	V _{GS} =10V; I _D =5A		0.35	0.55	Ω
I _{GSS}	Gate Source Leakage Current	V _{GS} = ±25V;V _{DS} = 0			±100	nA
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =400V; V _{GS} = 0			250	uA
tr	Rise time	V_{GS} =10V; I_D =10A; R_L =20 Ω		16		ns
ton	Turn-on time			40		ns
tf	Fall time			14		ns
toff	Turn-off time			80		ns