3.6 (Part I) Implicit differentiation So far we have thepresented functions as y= f(x) to draw graphs of functions, or to take derivatives, etc. etc. This is the case where the dependent variable

y is given "explicitly" in terms of x via the

function f. However, we might often deal

with situations where y can't be

expressed explicitly in terms of x. In this

case, we will have an equation involving y & x

but we may not be able to solve for y This y will be given implicitly' as some operation on Our goal will be to still make sense of the targent line to the curve at some given point on the curve. This, we will achieve through implicit diffenentiation'!

Suppose we are given the following and equation: 15030.
$x^2y + 2y = 3x$
11
One can draw the graph of this equation: we get some curve.
on the plane.
the point
One can draw the graph of this equation: we get some curve. on the plane. the point Note that $(2,1)$ lies on this curve. $(2^2.1 + 2.(1) = 3.(2))$
We want to define the find out slope of tangent line at (2,1).
Method I) We are lucky in this case, as we can solve for y explicitly: $y(x^2+2)=3x$
explicitly: $y(x^2+2)=3x$
$0^{4}, y = \frac{3x}{x^2 + 2}.$
Then you use quotient hule to find. slope, blublublahblah
Method 2 However, we can also use implicit differentiation.
for this. In fact, we are more focused on learning
for this. In fact, to we are more focused on learning. Method 2 as we won't get lucky everytime
(eg. x² + xy + y³ = 7).

Example Given $xy^3 + \frac{1}{y} = 1$, $\frac{1}{y} = \frac{1}{y} = \frac{1}{y}$ lies on this curve Find the equation of the tangent line of the graph at (-2,-1). $\frac{xy^3 + \frac{1}{y} = 1}{y}$ $\frac{d}{dx}\left(xy^3+\frac{1}{y}\right)=\frac{d}{dx}\left(xy^3+\frac{1}{y}\right)$ $\frac{d(xy^3)}{d(xy^3)} + \frac{d(\frac{4}{4})}{d(\frac{4}{4})} = 0$ y3 + x d/y3 + d (y-1) = 0. Using chain-nule Generalized

d (y3)

dx = d (y3) dy

dx $gh_{2} = y^{3} + 2 3y^{2} dy = -\frac{1}{y^{2}} dy = 0$ $\frac{dy}{dx} \left(\frac{3y^2x - 1}{y^2} \right) = -y^3$ $\frac{dx}{dx} = \frac{y^{3}}{\frac{1}{4x}} - 3y^{2}x$ $\frac{-1}{4x} = \frac{-1}{7}$

	Thus, $y-(-1)=-\frac{1}{7}(x-(-2))$
	oh, $y+1=-\frac{1}{2}(\pi tz)$ is the neguited answer.
[e.g.]	$\sqrt{x^2 + y^2} - 2y^3 = 3x^2$ Find dy dx
10	$\frac{d}{dx} \left(\sqrt{x^2 + y^2} \right) - 2 \frac{d}{dx} \left(y^3 \right) = \frac{d}{dx} \left(3x^p \right).$
- B. J.	1 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2
	[$\frac{d}{dx} \left(\sqrt{x^2 + y^2} \right)$, For the time being let $u = x^2 + y^2$.
P	Thus, described. $\frac{d}{dx} \left(u^{2} \right) \cdot D = \frac{d}{du} \left(u^{2} \right) \cdot \frac{du}{dx} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ The these very don't find $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) + \frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) + \frac{d}{dx} \left(x^{2} t y^{2} \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) + \frac{d}{dx} \left(x^{2} t y^{2} \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) + \frac{d}{dx} \left(x^{2} t y^{2} \right)$ $= \frac{1}{2\sqrt{u}} \cdot \left(\frac{d}{dx} \left(x^{2} t y^{2} \right) + \frac{d}{dx$
	$ \frac{1}{1} \frac{1}{2\sqrt{x^2+y^2}} \left(\frac{2x+2y}{dx} + \frac{2y}{dx} \right) - \frac{6y^2}{dx} \frac{dy}{dx} = 6x. $
	of, $\frac{dy}{dx} \left(\frac{y}{\sqrt{x^2 + y^2}} - 6y^2 \right) = 6x - \frac{x}{\sqrt{x^2 + y^2}}$
	Oh,