数字电路课程设计 实验指导书-

《自动数字日历》

北京邮电大学自动化学院

2018年8月

一、任务和要求

设计一台用数字显示月、日和星期的自动数字日历。

具体要求如下:

- 1. 计日脉冲用 555 时基集成电路产生 T=0.5-1 秒的脉冲信号代替。
- 2. 用七段数码管显示星期数和日、月的个位数:星期数的 1-6 用数码管显示"1-6",而星期日要求数码管显示 8,读做"日"。日、月的个位数显示"1-9"。
- 3. 用发光二极管以二进制方式显示日、月的十位数: 日的十位数 "00" (1-9 号)、 "01" (10-19 号)、 "10" (20-29 号)、 "11" (30-31 号)。月的十位数 "00" (1-9 月)、 "01" (10-12 月)
- 4. 实现平年(2月28日)的自动数字日历:在计日脉冲的作用下,自动完成1-12月的月、日及星期的计数和显示。
 - 5. 设置开关,手动使平年置成1月1日,而星期不进行控制。
- 6. 在完成平年电路设计、安装、调试后,加做下面功能:将平年数字日历改为含闰年在内的自动数字日历。

二、可选用的器件

1. 芯片: 管脚定义和功能说明见附件1

555 时基电路	1片:	555 时基电路
74LS162	3片:	同步十进制计数器(同步清零)
74LS47	3片:	BCD 七段译码器、驱动器
74LS04	2片:	六反相器
74LS112	2片:	负边沿触发双 JK 触发器
74LS153	1片:	双 4 选 1 数据选择器
74LS10	1片:	三个3输入与非门
74LS20	1片:	双 4 输入与非门
74LS02	1片:	四 2 输入或非门
74LS30	1片:	8 输入与非门
74LS00	1片:	四 2 输入与非门

- 2. 显示: 共阳极七段数码管、发光二极管各3只。
- 3. 电阻: 10k, 30k, 50k 电阻各 1 只, 330 Ω 电阻 6 只。
- 4. 电容: 电解电容 10μf/16V 一个, 370μf/16V 两个。陶瓷电容 0.01μf 两个, 0.02μf 一个。

三、仪器设备

- 1. 数字万用表 1 块。
- 2. 器件盒一个(第二部分列出的器件、显示、电阻、电容)。
- 3. 工具盒1个(九件工具)。
- 4. 5V 电池盒 1 个 (学生自备)。
- 5. 实验面包板 1 块。
- 6. 公用示波器 2 台。
- 7. 连接导线根据需要取舍。

四、预习及进实验室要求

- 1. 参照附表,熟悉上述所有器件的工作原理和硬件连线;
- 2. 利用 workbench、multisim 电路仿真软件搭建仿真电路,验证逻辑设计的正确性;

3. 进实验室开始调试之前,每个人要有各部分的原理设计图及逻辑推导过程、符合实验室提供的面包板的元器件布线图(每组的每个成员必须同时满足要求)、电路的仿真程序。

五、课程设计报告要求

- 1. 设计报告要求包含下面的内容
 - (1) 对电路设计要求的分析;
 - (2) 电路设计方案及各个模块的具体实现设计(包括逻辑设计和化简,模块逻辑图);包含以下模块:星期(1-6,日)、日单独(1-31)、月单独(1-12)、平年系统(2.28)、加一个单刀双掷开关的平年系统、闰年。
 - (3) 调试中问题分析及解决;
 - (4) 心得体会与建议;
 - (5) 附上电路元件的实际布线图和电路仿真图。

2. 报告格式

实验报告用统一的"北京邮电大学实验报告"表格,文字要手写,电路可手画或打印贴图插于叙述的正文中。按组提交"北京邮电大学课程设计报告表格"。

六、时间安排

- 1.7.7(周六) 上午 9:00-11:30 沙河校区报告厅教师宣讲
- 2.7.7(周六)下午至7.10(周二): 学生分组进行设计和画图(每两人组成一组,建议最好设本班同学之间组队)。完成系统原理设计、元件布线图(元件管脚连接图,手绘在≥A4坐标纸上),做到熟知原理和连线图;同时有电路的仿真结果。
- 3.7.11(周三):每组同学拿模块设计过程、原理图、元件布线图和仿真程序,(四个内容缺一不可),经老师检查合格后,领元件、工具并开始进实验室,搭电路。检查截止时间 7.12 下午 4:00。
- 4.7.12(周四)-7.16(周日): 每组同学连接、调试电路,完成电路课程设计。每完成一个功能模块请老师进行检查并记录,然后再调试下面的模块。

星期(1-6,日) → 日单独(1-31) → 月单独(1-12) → 平年系统(2.28) → 加一个单刀 双掷开关的平年系统 → 闰年

- 5.7.16(周日)下午: 学生交课程设计报告和北京邮电大学课程设计报告电子版
- 6.周六周日不休息.7.16 日下午 5 点前结束,交回元器件

附件1: 器件的管脚定义和功能图

1、555 定时器管脚图和内部电路框图

CB555 定时器组成的一个多谐振荡器:

振荡周期: T=1 秒;

输出脉冲幅度: 在 3V~5V 之间

输出脉冲的占比: q=2/3

$$T_1 = (R_1 + R_2)C \ln 2$$
; $T_2 = R_2C \ln 2$;
 $T = T_1 + T_2 = (R_1 + 2R_2)C \ln 2$
 $q = \frac{T_1}{T_2} = \frac{R_1 + R_2}{R_1 + 2R_2}$

2、74LS162 同步型十进制计数器

74LS162 是同步置数,同步清零。清零端低电平有效。

(工作) 方式选择表

清零	置数	使	能	时钟	工作模式
CLR	LOAD	ENT	ENP	CLK	
L	×	×	×	1	清零
Н	L	×	×	1	置数
Н	Н	Н	Н	t	计数
Н	Н	L	X	X	保持 (不变)
Н	Н	X	L	X	保持 (不变)

H-高电平 L=低电平 ×=不定(高或低电平) ↑=由"低"→"高"电平的跃变

3、LED 七段共阳极数码管的引脚图

4、74LS47(BCD 七段译码器、驱动器;低电平作用)

Pin Descriptions

Pin Names	Description
A0-A3	BCD inputs
RBI	Ripple Blanking Input (Active LOW)
ĪŢ.	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
a –g	Segment Outputs (Active LOW) (Note 1)

Decimal or Function		Inputs						Outputs						Note	
	LT	RBI	A3	A2	A1	A0	BI/RBO	a	b	c	d	e	f	g	
0	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	Н	(Note 2
1	Н	Х	L	L	L	Н	Н	Н	L	L	Н	Н	Н	Н	(Note 2
2	Н	Х	L	L	Н	L	Н	L	L	Н	L	L	Н	L	110000000000000000000000000000000000000
3	Н	Х	L	L	Н	Н	н	L	L	L	L	Н	Н	L	
4	Н	Х	L	Н	L	L	н	н	L	L	Н	Н	L	L	
5	Н	Х	L	Н	L	Н	н	L	Н	L	L	Н	L	L	
6	Н	Х	L	Н	Н	L	н	Н	Н	L	L	L	L	L	
7	Н	Х	L	Н	Н	Н	Н	L	L	L	Н	Н	Н	Н	
8	Н	Χ	Н	L	L	L	Н	L	L	L	L	L	L	L	
9	Н	Х	н	L	L	Н	н	L	L	L	н	Н	L	L	
10	Н	Х	Н	L	Н	L	Н	Н	Н	Н	L	L	Н	L	
11	Н	Х	Н	L	Н	Н	н	Н	Н	L	L	Н	Н	L	
12	Н	Х	Н	Н	L	L	Н	Н	L	Н	Н	Н	L	L	
13	Н	Х	Н	Н	L	Н	н	L	Н	Н	L	Н	L	L	
14	Н	Х	н	Н	н	L	н	Н	Н	Н	L	L	L	L	
15	Н	Х	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	
BI	Х	Χ	Х	Х	Х	Х	L	Н	Н	Н	Н	Н	Н	Н	(Note 3
RBI	Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	(Note 4
LΤ	L	Х	Х	Х	Х	Х	н	L	L	L	L	L	L	L	(Note 5)

5、74LS112 (下降沿触发双 JK 触发器)

Connection Diagram

Function Table

	1	Outputs				
PR	CLR	CLK	J	K	Q	Q
L	Н	X	Х	Х	Н	L
Н	L	X	X	X	L	Н
L	L	X	X	Χ	H*	H*
Н	Н	1	L	L	Q ₀	\overline{Q}_0
Н	Н	1	Н	L	Н	L
Н	Н	1	L	Н	L	Н
Н	Н	1	Н	Н	Toggle	
Н	Н	Н	X	Х	Q ₀	\overline{Q}_0

H = High Logic Level

L = Low Logic Level

X = Either Low or High Logic Level

1 = Negative Going Edge of Pulse

 This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) level.

 $\mathbf{Q}_0 = \mathsf{The}$ output logic level before the indicated input conditions were established.

Toggle = Each output changes to the complement of its previous level on each falling edge of the clock pulse.

CLK1、CLK2——时钟输入端(下降沿有效)

J1、J2、K1、K2——数据输入端

Q1、Q2、/Q1、/Q2——输出端

CLR1、CLR2——直接复位端(低电平有效)

PR1、PR2——直接置位端(低电平有效)

6、74LS153 (双 4 选 1 数据选择器)

功能表

选择	输入	数	据	输	入	选通脉冲输入	输 出
В	A	C0	C1	C2	C3	G	Y
X	X	X	X	X	X	Н	L
L	L	c_0 L	X	\mathbf{X}	X	L	L CO
L	L	H	\mathbf{X}	\mathbf{X}	\mathbf{X}	L	Н
L	H	X	L	\mathbf{X}	X	L	L C1
L	H	X	\mathbb{C}^1	\mathbf{X}	\mathbf{X}	L	Н
H	L	X	X	L	\mathbf{X}	L	L C2
H	L	X	X C	H	\mathbf{X}	L	H C2
H	\mathbf{H}	X	\mathbf{X}	X C	₃ L	L	L
H	H	X	\mathbf{X}	X	H	L	$_{\rm H}$ C3

选择输入A和B对两部分是公共的。

说明:

该电路由倒相器和"与或"门组成,从4个数据中选出1个输出,每个4线选择有1个 选通端来控制。

7、74LS10 (三个3输入与非门)

Connection Diagram

Joinne Cuon Diagram

Function Table

- H = High Logic Level
- L = Low Logic Level
- X = Either Low or High Logic Level

8、74LS20 (双 4 输入与非门)管脚图

9、74LS02 (四 2 输入与非门) 管脚图

10、74LS30(8输入与非门)管脚图

11、74LS00 (四 2 输入与非门)管脚图

12、74LS04(六反相器)管脚图

北京邮电大学课程设计报告

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
课程设计 名称	电路课程设计	学 院	自动化学院	指导教师	(各班的实际老师)
学生姓名		班 级		学 号	
	# =				
课程设计内容	(请同学们填好内容				、实验方法和团队分工等
学生课程设 计报告 (附页)	见附件。				
课程设计成绩评定	2、团队分工 3、综合运用 4、是否认真、 文字通顺、书写规 (空着,由:	目的任务明 是否恰当与 所学知识, 、独立完成 观范	月确,选题符合教 百合理 提高分析问题、 【属于自己的课程 <mark>语)</mark>	数学要求,份量 解决问题及5	量及难易程度 实践动手能力的效果 程设计报告是否思路清晰、