BEAM DEFLECTION FORMULAE

				of Children by Demit Combine intollient its an also sind	5. Cantile vet Deam — Couple moment in at the rece end
antilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3I - x) $ antilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ \theta = \frac{Pa^2}{2EI} $ $ \theta = \frac{Oa^3}{6EI} $ $ y = \frac{Oax^2}{24EI} $ $ x $	1. Cantilever Beam – Concentrated load P at the free end 1. Cantilever Beam – Concentrated load P at the free end 2. Cantilever Beam – Concentrated load P at the free end 2. Cantilever Beam – Concentrated load P at any point 3. Cantilever Beam – Uniformly distributed load P (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_a (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam – Couple moment M at the free end 5. Cantilever Beam – Couple moment M at the free end	1. Cantilever Beam – Concentrated load P at the free end 2. Cantilever Beam – Concentrated load P at any point 2. Cantilever Beam – Concentrated load P at any point 3. Cantilever Beam – Uniformly distributed load P (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{α} (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{α} (N/m) 5. Cantilever Beam – Couple moment M at the free end 5. Cantilever Beam – Couple moment M at the free end	1. Cantilever Beam – Concentrated load P at the free end 2. Cantilever Beam – Concentrated load P at any point 3. Cantilever Beam – Uniformly distributed load O (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{α} (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{α} (N/m) 5. Cantilever Beam – Couple moment M at the free end 5. Cantilever Beam – Couple moment M at the free end	1. Cantilever Beam – Concentrated load P at the free end 2. Cantilever Beam – Concentrated load P at any point 3. Cantilever Beam – Uniformly distributed load O (N/m) 4. Cantilever Beam – Uniformly varying load: Maximum intensity $o_{o_{o}}$ (N/m) 5. Cantilever Beam – Counterment M at the free end 5. Cantilever Beam – Counterment M at the free end 5. Cantilever Beam – Counterment M at the free end 6. Cantilever Beam – Counterment M at the free end 7. Cantilever Beam – Counterment M at the free end 8. Cantilever Beam – Counterment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}(N/m)$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}(N/m)$ 5. Cantilever Beam — Counterport Most the free end 5. Cantilever Beam — Counterport Most the free end 1. Cantilever Beam — Counterport Most the free end 1. Cantilever Beam — Counterport Most the free end 2. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}(N/m)$ 3. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}(N/m)$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}(N/m)$ 3. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}(N/m)$
1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{P\chi^2}{6EI}(3I - x) $ $ y = \frac{P\chi^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load σ (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity σ_{σ} (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity σ_{σ} (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) $ \theta = \frac{\omega_{\alpha}I}{24EI} $ $ \theta = \omega_$	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3t - x) $ $ y = \frac{Px^2}{6EI}(3t - x) $ 3. Cantilever Beam — Uniformly distributed load P at any point 3. Cantilever Beam — Uniformly distributed load P (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $ y = \frac{ox^2}{24EI}(x^2 + 6t^2 - 4tx) $ $ y = \frac{ox^2}{24EI}(x^2 + 6t^2 - 4tx) $ $ y = \frac{ox^2}{24EI}(x^2 + 6t^2 - 4tx) $ $ y = \frac{ox^2}{24EI}(x^2 + 6t^2 - 4tx) $ $ y = \frac{ox^2}{24EI}(x^2 + 6t^2 - 4tx) $ 3. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $ y = \frac{ox^2}{24EI}(x^2 + 6t^2 - 4tx) $ 3. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_a (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_a (N/m) $o = \frac{o_a x^2}{24EI}$ $y = \frac{o_a x^2}{24EI}$ $y = \frac{o_a x^2}{24EI}$ $y = \frac{o_a x^2}{120/EI}$ $100^3 - 100^2 x + 51x^2 - x^3$	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load a (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{a \cdot P}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{a \cdot P}{24EI}(3x - a) \text{ for }$
BEAM TYPE SLOPE AT FREE END 1. Cantilever Beam — Concentrated load P at the free end P P P P P P P P	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x P X P X Y Y Y Y Y Y Y	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x P A A A A A A A	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x P A A A A A A A	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cartillever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ $y = \frac{Px^2}{6EI}(3l - x)$ 2. Cartillever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ 3. Cartillever Beam — Uniformly distributed load a (N/m) $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ 4. Cartillever Beam — Uniformly varying load: Maximum intensity a (N/m) $y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{ax^2}{24EI}(10l^3 - 10l^2 x + 5lx^2 - x^3)$ $y = \frac{ax^2}{120lEI}(10l^3 - 10l^2 x + 5lx^2 - x^3)$	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cartillever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ $y = \frac{Px^2}{6EI}(3l - x)$ 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load a (N/m) $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{ax^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{ax^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$
BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end P P P P P P P P	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end P P P P P P P P	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load e (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity e , (N/m) 5. Cantilever Beam — Couple moment M at the free end 3. Cantilever Beam — Uniformly varying load: Maximum intensity e , (N/m) $ y = \frac{6x^2}{24EI}(3x - a) \text{ for } a < x < a < a < a < a < a < a < a < a <$	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) $p = \frac{\omega_a x^2}{24EI} (3x - a)$ for $a < x < l$ $b = \frac{\omega_b l^3}{6EI}$ $b = \frac{\omega_b l^3}{24EI}$ $b = \frac{\omega_b l^3}{24EI}$ $b = \frac{\omega_b x^2}{6EI} (3x - a)$ for $a < x < l$ $b = \frac{\omega_b l^3}{24EI} (x^2 + 6l^2 - 4lx)$	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ $y = \frac{Px^2}{6EI}(3l - x)$ 3. Cantilever Beam — Uniformly distributed load P at any point $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $a < x < l$ 3. Cantilever Beam — Uniformly distributed load $a > l$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity $a > l$
BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity $\omega_{\alpha}(N/m)$ 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ϕ_b (N/m) 5. Cantilever Beam — Uniformly varying load: Maximum intensity ϕ_b (N/m) $\phi = \frac{\omega_b I}{24EI}$ $\phi = \frac{\omega_b I^3}{24EI}$ $\phi = \frac{\omega_b I^3}{2$	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) 5. Cantilever Beam — Couple moment M at the free end 3. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\rho_A^2}{24EI}(3x - $
BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3I - x) $ 2. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $ \theta = \frac{o_o^2}{24EI} $	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $0 <$	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3I - x)$ 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE I. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load P at any point 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_b (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_b (N/m) $\theta = \frac{\omega_b l^2}{24EI}$ $y = \frac{\rho x^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\rho x^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\rho x^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega x^2}{24EI}(10l^3 - 10l^2 x + 5lx^2 - x^3)$
BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3I - x)$ 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x)$ for $0 < x < a$ $0 < x < $	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3I - x)$ $y = \frac{Px^2}{6EI}(3I - x)$ 3. Cantilever Beam — Uniformly distributed load O (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $0 = \frac{o_o}{I}(I - x)$ $y = \frac{o_o x^2}{24EI}$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$ $y = \frac{o_o x^2}{24EI}(3x - a) \text{ for } a < x < I$	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3t - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3a - x) \text{ for } a < x < I $ 3. Cantilever Beam — Uniformly distributed load a (N/m) $ y = \frac{Gx^2}{6EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a a b a a a b a	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3t - x) $ $ y = \frac{Px^2}{6EI}(3t - x) $ 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o ₀ , (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3t - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load a (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{ax^2}{24EI}(x^2 + 6l^2 - 4lx) $	BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x 1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3t - x)$ $y = \frac{Px^2}{6EI}(3t - x)$ 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Px^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Px^2}{24EI}(x^2 + 6l^2 - 4lx)$
1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_b (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_b (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load O (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{P\chi^2}{6EI}(3I - x) $ $ y = \frac{P\chi^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load O (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load O (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $ y = \frac{ox^2}{4EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $ y = \frac{ox^2}{24EI}(x^2 + 6I^2 - 4Ix) $ $ y = \frac{ox^2}{24EI}(x^2 + 6I^2 - 4Ix) $ 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at the free end 3. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}$ (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity $o_{o_{o}}$ (N/m) 5. Cantilever Beam — Counter moment M at the free end 5. Cantilever Beam — Counter moment M at the free end 5. Cantilever Beam — Counter moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end 1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load. Maximum intensity $o_{o_{o}}$ (N/m) 5. Cantilever Beam — Uniformly varying load. Maximum intensity $o_{o_{o}}$ (N/m) 5. Cantilever Beam — Counten poper Most the free end 5. Cantilever Beam — Counten poper Most the free end 1. Cantilever Beam — Counten poper Most the free end 2. Cantilever Beam — Uniformly varying load. Maximum intensity $o_{o_{o}}$ (N/m) 5. Cantilever Beam — Counten poper Most the free end
1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3l - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load a (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{ax^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $	1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3l - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load a (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a ,	1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3l - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{\omega_0 x^2}{24EI} (10l^3 - 10l^2 x + 5lx^2 - x^3) $ 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $\frac{\omega}{\delta} = \frac{\omega}{l}(l - x)$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) $\frac{\omega}{\delta} = \frac{\omega_{\alpha}x^2}{24EI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam — Couple moment M at the free end	1. Cantilever Beam - Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3I - x) $ 2. Cantilever Beam - Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam - Uniformly distributed load ω (N/m) $ y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam - Uniformly varying load: Maximum intensity ω_a (N/m) $ y = \frac{\omega x^2}{24EI} y = \frac{\omega x^2}{24EI} (10I^3 - 10I^2x + 5Ix^2 - x^3) $ 5. Cantilever Beam - Countermornt M at the free end $ y = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) $	1. Cantilever Beam - Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3I - x) $ 2. Cantilever Beam - Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam - Uniformly distributed load a (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam - Uniformly varying load: Maximum intensity a ,
1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3l - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load a (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{aa^2}{24EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{aa^2}{24EI}(3x - a) \text{ for } a < x < l $ 5. Cantilever Beam — Couple moment a at the free end	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load o (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) 5. Cantilever Beam — Couple moment M at the free end $y = \frac{Px^2}{6EI}(3x - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cx}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cx}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cx}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cx}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cx}{24EI}(3x - a) \text{ for } a < x < l$	1. Cantilever Beam — Concentrated load P at the free end $ y = \frac{Px^2}{6EI}(3l - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load a (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{ax^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{ax^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac$	1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load $a = \frac{C}{2}$ $y = \frac{C}{2}$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity $a = \frac{C}{2}$ $y = \frac{C}{2$	1. Cantilever Beam — Concentrated load P at the free end 2. Cantilever Beam — Concentrated load P at any point 3. Cantilever Beam — Uniformly distributed load ω (N/m) 3. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) $\omega = \frac{\omega_{\alpha} l(l-x)}{l}$ $\omega = \frac{\omega_{\alpha} l^{2}}{l}$ $\omega = \frac{\omega_{\alpha} l}{l}$ $\omega = \frac{\omega_{\alpha} l}{$	1. Cantilever Beam — Concentrated load P at the free end $y = \frac{Px^2}{6EI}(3l - x)$ 2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_a (N/m) $y = \frac{\omega_a x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega_a x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$
$\theta = \frac{Pl^2}{2EI}$ $\frac{\partial}{\partial x} = \frac{P}{\partial EI} (3l - x)$ $\frac{\partial}{\partial EI} = \frac{\partial}{\partial EI} (3l - x$	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3I - x)$ $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3I - x)$ $y = \frac{Px^2}{6EI}(3I - x)$ $y = \frac{Px^2}{6EI}(3I - x)$ for $0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < l$ $y = \frac{Px^2}{6EI}(3x - a)$ for $a < x < $	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3I-x)$ $y = \frac{Px^2}{6$	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3I - x)$ $y = \frac{Px^2}{6EI}(3I - x)$ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < I$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < I$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < I$ $y = \frac{Gx^2}{6EI}(3x - a) \text{ for } a < x < I$ $y = \frac{Gx^2}{24EI}(x^2 + 6I^2 - 4Ix)$	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) $ \psi = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Gx^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{Gx^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{Gx^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{Gx^2}{24EI}(x^2 + 6l^2 - 4lx) $	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ 2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < I $ 3. Cantilever Beam — Uniformly distributed load o (N/m) $ y = \frac{ox^2}{6EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity o_o (N/m) $ y = \frac{ox^2}{24EI}(x^2 + 6I^2 - 4Ix) $ $ y = \frac{ox^2}{24EI}(x^2 + 6I^2 - 4Ix) $ $ y = \frac{ox^2}{24EI}(10I^3 - 10I^2x + 5Ix^2 - x^3) $ 5. Cantilever Beam — Courle moment M of the free and
2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < I $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Gx^2}{6EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{Gx^2}{24EI}(x^2 + 6I^2 - 4Ix) $ 5. Cantilever Beam — Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{α} (N/m) $ y = \frac{\omega_{\alpha}^2}{24EI}(x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam — Couple moment M at the free end 5. Cantilever Beam — Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < l $	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $ \frac{\omega}{24EI} $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $ $ y = \frac{\omega x^2}{24EI}(3x - a) \text{ for } a < x < I $	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3I - x) $ $ y = \frac{Px^2}{6EI}(3I - x) $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx) $ $ y = \frac{\omega x^2}{24EI} (10l^3 - 10l^2x + 5lx^2 - x^3) $ $ y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2x + 5lx^2 - x^3) $
2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3l - x) $ 2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load a (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity a (N/m) $ y = \frac{a - a^2}{6EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{a - a^2}{24EI}(x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam – Concentrated load P at any point $ \frac{a P}{b} b \downarrow x \\ y I \downarrow b \downarrow x \\ 0 Max $ $ \theta = \frac{Pa^2}{2EI} $ $ \theta = \frac{Pa^2}{2EI} $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{$	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3l - x) $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < $	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3i - x) $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \omega = \frac{\omega_0 a}{l}(l - x) + x $ $ \theta = \frac{\omega_0 l^3}{24EI} + y = \frac{\omega_0 x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3i - x) $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < $	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\theta = \frac{PI'}{2EII}$ $\theta = \frac{PA'}{2EII}$ $\theta = \frac{PA'}{6EI}(3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^2}{2EII}$ $\theta = \frac{Pa^2}{2EII}$ $\theta = \frac{Pa^2}{2EII}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(x^2 + 6l^2 - 4lx)$	$\theta = \frac{PI^{*}}{2EI}$ $\frac{a}{a} \frac{P}{b} \frac{b}{b} + \frac{x}{x}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{a}{b} \frac{P}{b} \frac{b}{b} + \frac{x}{x}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{B}{a} \frac{P}{b} \frac{D}{b} \frac{D}{$	$\theta = \frac{PI^{T}}{2EI}$ $\frac{a P}{b} \frac{b}{b_{\text{max}}}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{a P}{b} \frac{b}{b_{\text{max}}}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{b}{b_{\text{max}}}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{b}{b_{\text{max}}}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{b}{b_{\text{max}}}$ $\frac{b}{b} = \frac{pa^{2}}{2EI}$ $\frac{b}{b} = \frac{px^{2}}{6EI}(3a - x) \text{ for } 0 < x < a$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x - a) \text{ for } a < x < l$ $\frac{pa^{2}}{6EI}(3x -$	$\theta = \frac{PI^{T}}{2EI}$ $\frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{b}{2EI}$ $\frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{b}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{b}{b} $	$\theta = \frac{PI^{T}}{2EI}$ $\frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{a P}{2EI}$ $\frac{b}{b} \frac{a P}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{a P}{2EI}$ $\frac{b}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{e^{2}}{2EI}$ $\frac{b}{b} \frac{b}{b} \frac{x}{b}$ $\frac{b}{b} \frac{e^{2}}{2EI}$ $\frac{e^{2}}{2EI}$ $\frac{e^{2}}{b} \frac{e^{2}}{b} e^{$	$\theta = \frac{PI^{-}}{2EI}$ $\frac{a}{a} \frac{P}{b} \frac{b}{b} + \frac{x}{a}$ $\theta = \frac{Pa^{2}}{2EI}$ $\frac{e}{b} \frac{Pa^{2}}{6EI} (3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^{2}}{2EI}$ $y = \frac{Px^{2}}{6EI} (3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{6EI} (3x - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y = \frac{Pa^{2}}{24EI} (ax - a) \text{ for } a < x < l$ $y =$
$\theta = \frac{2EI}{2EI}$ $y = \frac{1}{6EI}(3l-x)$ 2. Cantilever Beam - Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a-x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x-a) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l$ 3. Cantilever Beam - Uniformly distributed load ω (N/m) $\frac{\omega}{\delta} = \frac{\omega d^3}{6EI}$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam - Couple moment M at the free end	$\theta = \frac{2EI}{2EI}$ $y = \frac{1}{6EI}(3l-x)$ 2. Cantilever Beam - Concentrated load P at any point $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3x-x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l$ 3. Cantilever Beam - Uniformly distributed load ω (N/m) $\theta = \frac{\omega_0 l^3}{6EI}$ $y = \frac{\omega_0 x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega_0 x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam - Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < I $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{ω} (N/m) $ \psi = \frac{\omega_0 x^2}{24EI}(x^2 + 6I^2 - 4Ix) $ 5. Cantilever Beam – Couple moment M at the free end $ \psi = \frac{\omega_0 x^2}{120IEI}(10I^3 - 10I^2x + 5Ix^2 - x^3) $	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \omega = \frac{\omega_0 l^3}{l^2(l - x)} \qquad \omega = \frac{\omega_0 l^3}{24EI} \qquad \omega = \frac{\omega_0 x^2}{24EI} (10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam — Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < I $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < I $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{\omega x^2}{24EI}(x^2 + 6I^2 - 4Ix) $ $ y = \frac{\omega_0 x^2}{24EI}(10I^3 - 10I^2x + 5Ix^2 - x^3) $ $ y = \frac{\omega_0 x^2}{120IEI}(10I^3 - 10I^2x + 5Ix^2 - x^3) $	2. Cantilever Beam - Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam - Uniformly distributed load $o(N/m)$ $ y = \frac{Oo^3}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam - Uniformly varying load: Maximum intensity $o_o(N/m)$ $ y = \frac{oox^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{oox^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ $ y = \frac{oox^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $
2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Px^2}{6EI}(3$	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{\omega_0 x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load o (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ y = \frac{\omega_0 x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam - Concentrated load P at any point
2. Cantilever Beam — Concentrated load P at any point	2. Cantilever Beam – Concentrated load P at any point	2. Cantilever Beam – Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \omega = \frac{\omega_o}{l}(l - x) $ $ \psi = \frac{\omega_o l^3}{4EI} $ $ \psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5k^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) $ \omega = \frac{\omega_o x^2}{I}(I - x) + x $ $ \omega = \frac{\omega_o l^3}{I} + x $ $ \theta = \frac{\omega_o l^3}{24EI} + y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam — Counle moment M at the free and	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \psi = \frac{\omega_o x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_o x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_o x^2}{120IEI}(10l^3 - 10l^2 x + 5k^2 - x^3) $ $ \psi = \frac{\omega_o x^2}{120IEI}(10l^3 - 10l^2 x + 5k^2 - x^3) $
2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_c (N/m) $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega_c x^2}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam — Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } 0 < x < a $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{ω} (N/m) $ \psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_{\omega} x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam — Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ 5. Cantilever Beam — Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_0 (N/m) $\omega = \frac{\omega_0}{I}(I - x)$ $\psi = \frac{\omega_0 I^3}{120IEI}(10I^3 - 10I^2x + 5Ix^2 - x^3)$ $\psi = \frac{\omega_0 x^2}{120IEI}(10I^3 - 10I^2x + 5Ix^2 - x^3)$	2. Cantilever Beam – Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{\omega l^3}{6EI}$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\omega = \frac{\omega_0}{l}(l - x)$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega_0 l^3}{120IEI}(10l^3 - 10l^2x + 5kx^2 - x^3)$
2. Cantilever Beam – Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Ol^3}{6EI}(3a-x)$	2. Cantilever Beam – Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Oa^3}{2EI}$ $\theta = \frac{Oa^3}{6EI}(3a-x)$ for $0 < x < a$ $\theta = \frac{Oa^3}{2EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$ for $0 < x < a$ $\theta = \frac{Oa^3}{6EI}(3x-a)$	2. Cantilever Beam – Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^2}{2EII}$ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < I$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω _a (N/m) $w = \frac{\omega_a x^2}{24EI}(10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam – Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^2}{2EII}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{α} (N/m) $y = \frac{\omega_{\alpha}^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega_{\alpha}x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^2}{2EII}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{2$	2. Cantilever Beam — Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3$
2. Cantilever Beam - Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cox^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Cox^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Cox^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{Cox^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{Cox^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	2. Cantilever Beam – Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3x - a) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω (N/m) $ \omega = \frac{\omega}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam – Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_a (N/m) $\omega = \frac{\omega_a x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega_a x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	2. Cantilever Beam - Concentrated load P at any point $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam - Uniformly distributed load ω (N/m) $ y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam - Uniformly varying load: Maximum intensity ω_a (N/m) $ y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam - Couple moment M at the free end $ y = \frac{\omega_o x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $	2. Cantilever Beam - Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam - Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam - Uniformly varying load: Maximum intensity ω_a (N/m) $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega_0 x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	2. Cantilever Beam - Concentrated load P at any point $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ 3. Cantilever Beam - Uniformly distributed load to (N/m) $y = \frac{6EI}{6EI}(3x - a) \text{ for } a < x < l$ 4. Cantilever Beam - Uniformly varying load: Maximum intensity ω_0 (N/m) $y = \frac{\omega_0 x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega_0 x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$
$ \frac{a P b}{l} \psi x \theta = \frac{Pa^2}{2EI} \qquad y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ \frac{P}{6EI} x \theta = \frac{Pa^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l $ $ y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x <$	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_a (N/m) $ \psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam – Couple moment M at the free end $ \psi = \frac{\omega_o x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω (N/m) $ \psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam – Couple moment M at the free end $ y = \frac{\omega_0 x^2}{120/EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_a (N/m) $ \psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam – Couple moment M at the free end $ \psi = \frac{\omega_0 x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a $ $ y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_a (N/m) $ \psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_a x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ $ \psi = \frac{\omega_a x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $	$ \frac{a P b}{l} \downarrow x \\ l \downarrow x \\ 0 x$
$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) $	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Ga}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Ga}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Ga}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Ga}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Ga}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{Ga}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(x^2 + 6l^2 - 4lx)$	$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cox^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Cox^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{Cox^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{Cox^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Oox^2}{6EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Oox^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Oox^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Oox^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Oox^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Ox}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Ox}{6EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Ox}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Ox}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Ox}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$
$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Oox^2}{6EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Oox^2}{24EI}(x^2 + 6l^2 - 4lx)$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{C}{24EI}(3x - a) \text{ for } a < x < l$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cax^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cax^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{Cax^2}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{Cax^2}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Cox^2}{24EI}(x^2 + 6l^2 - 4lx)$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ y	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Px^2}{6EI}(3x - a) \text{ for } a < x < l$ y
$\theta = \frac{Pa^2}{2EI}$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } a < x < l$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{I}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{I}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(x^2 + 6l^2 - 4lx)$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{I}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{I}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) f$	$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x <$	$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{r^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Contilever}{6EI} \text{ max}$ $\theta = \frac{\omega l^3}{6EI}$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\theta = \frac{\omega_0 l^3}{24EI} \text{ Maximum intensity } \omega_0 \text{ (N/m)}$ $y = \frac{\omega_0 x^2}{24EI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ $y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$	$\theta = \frac{Pa^2}{2EI}$ $y = \frac{I}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{I}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$
$\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{2EI}$ $\theta = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{24EI}(1x - a)$	3. Cantilever Beam — Uniformly distributed load ω (N/m) $ \theta = \frac{Pa^2}{2EI} \qquad y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l \\ y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l \\ y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l \\ y = \frac{Constilever}{6EI} \qquad y = \frac{Constilever}{24EI} (x^2 + 6l^2 - 4lx) $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) $ \theta = \frac{\omega_o l^3}{24EI} \qquad y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam — Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \theta = \frac{Pa^2}{2EI} \qquad y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{Ga}{6EI} (3x - a) \text{ for } a < x < l $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \phi = \frac{\omega_o x^2}{24EI} (10l^3 - 10l^2 x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < d \\ y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < d \\ y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < d \\ y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \psi = \frac{\omega_0 x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < a < a < a < a < a < a < a < a <$	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < a < a < a < a < a < a < a < a <$
3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{6EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\omega = \frac{\omega_0}{l}(l - x)$ $\psi = \frac{\omega_0 x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI} \qquad y = \frac{\omega_0 x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\frac{\partial}{\partial x} = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\frac{\partial}{\partial x} = \frac{\omega x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \theta = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{\omega x^2}{6EI}(x^2 + 6l^2 - 4lx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \phi = \frac{\omega_0}{l}(l - x) $ $ \theta = \frac{\omega_0 l^3}{24EI} $ $ \theta = \frac{\omega_0 l^3}{24EI} $ $ \theta = \frac{\omega_0 l^3}{24EI} $ $ y = \frac{\omega_0 x^2}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\theta = \frac{\omega_l^3}{6EI}$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\psi = \frac{\omega_v^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega_v^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $\psi = \frac{\omega_v x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	3. Cantilever Beam – Uniformly distributed load ω (N/m) 3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{Pa^2}{2EI}$ $y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < I$ $y = \frac{\omega x^2}{24EI}(x^2 + 6I^2 - 4Ix)$ $0 = \frac{\omega}{I}(I-x)$
3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{DI}{2EI}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{Oux^2}{6EI}(x^2 + 6l^2 - 4lx)$ $\theta = \frac{\omega_0 l^3}{6EI}$ $\phi = \frac{\omega_0 e^2}{l}(l - x)$ $\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 v^2}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l $ $ \psi = \frac{Cax^2}{24EI}(x^2 + 6l^2 - 4lx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \psi = \frac{\omega_o x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_o x^2}{120IEI}(10l^3 - 10l^2x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{\Delta EI}{2EI}$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{6EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\phi = \frac{\omega_0}{l}(l - x)$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\phi = \frac{\omega_0}{l}(l - x)$ $\phi = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 l^3}{24EI} $	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{\alpha I^{3}}{2EI}$ $\psi = \frac{Pa^{2}}{6EI}(3x-a) \text{ for } a < x < l$ $\psi = \frac{\omega X^{2}}{6EI}(x^{2}+6l^{2}-4lx)$ $\psi = \frac{\omega X^{2}}{24EI}(x^{2}+6l^{2}-4lx)$	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{\omega I^3}{2EI}$ $\theta = \frac{\omega I^3}{6EI}(3x-a) \text{ for } a < x < I$ $\psi = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < I$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6I^2 - 4Ix)$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6I^2 - 4Ix)$ $\psi = \frac{\omega x^2}{24EI}(10I^3 - 10I^2x + 5Ix^2 - x^3)$ $\psi = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 I^3}{120IEI}(10I^3 - 10I^2x + 5Ix^2 - x^3)$	3. Cantilever Beam – Uniformly distributed load ω (N/m) $\theta = \frac{\omega I^3}{2EI}$ $\theta = \frac{\omega I^3}{6EI}(3x - a) \text{ for } a < x < I$ $\psi = \frac{\omega x^2}{6EI}(x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega_0 I^3}{I}(I - x)$ $\psi = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI}(10I^3 - 10I^2x + 5Ix^2 - x^3)$
3. Cantilever Beam — Uniformly distributed load ω (N/m) $\theta = \frac{\omega t^3}{6EI}$ $\psi = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l$ $\psi = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$	3. Cantilever Beam — Uniformly distributed load ω (N/m) $\theta = \frac{\omega I^3}{6EI} \qquad y = \frac{Pa^2}{6EI} (3x-a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{6EI} (x^2 + 6l^2 - 4lx)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI} \qquad y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5lx^2 - x^3)$ 5. Cantilever Beam — Couple moment M at the free end	3. Cantilever Beam — Uniformly distributed load ω (N/m) $\theta = \frac{\omega I^3}{6EI} \qquad y = \frac{Pa^2}{6EI} (3x-a) \text{ for } a < x < I$ $y = \frac{Pa^2}{6EI} (3x-a) \text{ for } a < x < I$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$	3. Cantilever Beam — Uniformly distributed load ω (N/m) $\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{24EI}$	3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{6EI}(3x - a) \text{ for } a < x < l$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $y = \frac{\omega x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$ $y = \frac{\omega_0 x^2}{120lEI}(10l^3 - 10l^2x + 5lx^2 - x^3)$	3. Cantilever Beam — Uniformly distributed load ω (N/m) $y = \frac{Pa^2}{6EI}(3x-a) \text{ for } a < x < l$ $\theta = \frac{\omega l^3}{6EI}$ $y = \frac{\omega x^2}{24EI}(x^2 + 6l^2 - 4lx)$ $\theta = \frac{\omega_0}{24EI}(l-x)$ $\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 x^2}{24EI}(10l^3 - 10l^2x + 5lx^2 - x^3)$
3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{Pa^{-}}{6EI}(3x-a) \text{ for } a < x < I$ $y = \frac{\omega x^{2}}{6EI}(3x-a) \text{ for } a < x < I$ $y = \frac{\omega x^{2}}{6EI}(x^{2}+6I^{2}-4Ix)$ $y = \frac{\omega x^{2}}{24EI}(x^{2}+6I^{2}-4Ix)$ $y = \frac{\omega x^{2}}{24EI}(x^{2}+6I^{2}-4Ix)$ $y = \frac{\omega x^{2}}{24EI}(x^{2}+6I^{2}-4Ix)$ $y = \frac{\omega x^{2}}{24EI}(x^{2}+6I^{2}-4Ix)$ $y = \frac{\omega x^{2}}{24EI}(10I^{3}-10I^{2}x+5Ix^{2}-x^{3})$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam — Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^{-}}{6EI}(3x-a) \text{ for } a < x < I $ 3. Cantilever Beam — Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ 4. Cantilever Beam — Uniformly varying load: Maximum intensity ω_{o} (N/m) $ \psi = \frac{\omega_{o}x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ $ \psi = \frac{\omega_{o}x^{2}}{24EI}(10I^{3} - 10I^{2}x + 5Ix^{2} - x^{3}) $ 5. Cantilever Beam — Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \theta = \frac{\omega I^3}{6EI} $ $ \theta = \frac{\omega I^3}{24EI} $ $ \theta = \frac{\omega I^3}{24EI} $ $ \phi = \frac{\omega X^2}{24EI} $ $ \phi = \frac{\omega X^2}$	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^{T}}{6EI}(3x - a) \text{ for } a < x < I $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω _o (N/m) $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ $ \psi = \omega x^{2$	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^{2}}{6EI}(3x-a) \text{ for } a < x < I $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{o} (N/m) $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ $ \psi = \frac{\omega_{o}^{2}}{24EI}(1-x) $ $ \psi = \frac{\omega_{o}^{2}}{24EI}(1-x) $ $ \psi = \frac{\omega_{o}^{2}}{24EI}(10I^{3} - 10I^{2}x + 5Ix^{2} - x^{3}) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{Pa^{2}}{6EI}(3x-a) \text{ for } a < x < I $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{o} (N/m) $ \psi = \frac{\omega_{o}^{2}}{24EI}(x^{2} + 6I^{2} - 4Ix) $ $ \psi = \frac{\omega_{o}^{2}}{24EI}(1-x) $ $ \psi = \frac{\omega_{o}x^{2}}{24EI}(10I^{3} - 10I^{2}x + 5Ix^{2} - x^{3}) $ $ \psi = \frac{\omega_{o}x^{2}}{120IEI}(10I^{3} - 10I^{2}x + 5Ix^{2} - x^{3}) $
3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{(N/m)}{6EI} \text{(N/m)} $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \omega = \frac{\omega_0}{I}(I - x) \text{(N/m)} $ $ \omega = \frac{\omega_0}{I}(I - x) \text{(N/m)} $ $ \theta = \frac{\omega_0 I^3}{24EI} \text{(10I}^3 - 10I^2x + 5Ix^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{1}{6EI}(3x - a) \text{ for } a < x < t $ $ \theta = \frac{\omega l^3}{6EI} $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \omega = \frac{\omega_o}{l}(l - x) $ $ \psi = \frac{\omega_o x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_o x^2}{24EI}(x^2 + 6l^2 - 4lx) $ $ \psi = \frac{\omega_o x^2}{24EI}(10l^3 - 10l^2 x + 5lx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{1}{6EI}(3x - a) \text{ for } a < x < t $ $ \psi = \frac{\omega x^{2}}{24EI}(x^{2} + 6t^{2} - 4tx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{o} (N/m) $ \psi = \frac{\omega_{o}x^{2}}{24EI}(x^{2} + 6t^{2} - 4tx) $ $ \psi = \frac{\omega_{o}x^{2}}{24EI}(10t^{3} - 10t^{2}x + 5tx^{2} - x^{3}) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{(3x - a) \text{ for } a < x < t}{6EI} $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ y = \frac{\omega x^2}{24EI} (x^2 + 6t^2 - 4tx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \psi = \frac{\omega_o x^2}{24EI} (x^2 + 6t^2 - 4tx) $ $ \psi = \frac{\omega_o x^2}{24EI} (10t^3 - 10t^2 x + 5tx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{(3x - a) \text{ for } a < x < t}{6EI} $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6t^2 - 4tx) $ $ \psi = \frac{\omega_o x^2}{24EI} (x^2 + 6t^2 - 4tx) $ $ \psi = \frac{\omega_o x^2}{24EI} (10t^3 - 10t^2 x + 5tx^2 - x^3) $ 5. Cantilever Beam – Couple moment Mat the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{(3x - a) \text{ for } a < x < t}{6EI} $ 3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6t^2 - 4tx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \psi = \frac{\omega_0 x^2}{24EI} (10t^3 - 10t^2 x + 5tx^2 - x^3) $ $ \psi = \frac{\omega_0 x^2}{120tEI} (10t^3 - 10t^2 x + 5tx^2 - x^3) $
3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \theta = \frac{\omega I^3}{6EI} $ $ \theta = \frac{\omega I^3}{6EI} $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \theta = \frac{\omega_0 I^3}{24EI} $ $ \theta = \frac{\omega_0 X^2}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \theta = \frac{\omega I^3}{6EI} $ $ \theta = \frac{\omega I^3}{6EI} $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \theta = \frac{\omega_0 I^3}{24EI} $ $ \theta = \frac{\omega_0 I^3}{24EI} $ $ \theta = \frac{\omega_0 I^3}{24EI} $ $ \theta = \frac{\omega_0 I^3}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \theta = \frac{\omega f^3}{6EI} $ $ \theta = \frac{\omega f^3}{6EI} $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \theta = \frac{\omega_0 f^3}{24EI} $ $ \theta = \frac{\omega_0 x^2}{120IEI} (10f^3 - 10f^2 x + 5fx^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx) $ 5. Cantilever Beam – Couple moment M at the free end $ \psi = \frac{\omega_0 x^2}{24EI} (10l^3 - 10l^2 x + 5lx^2 - x^3) $	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix) $ $ \psi = \frac{\omega_0 x^2}{24EI} (x^2 + 6I^2 - 4Ix) $ $ \psi = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) $ 5. Cantilever Ream – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix) $ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $ \psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix) $ $ \psi = \frac{\omega_o x^2}{24EI} (x^2 + 6I^2 - 4Ix) $ $ \psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) $ 5. Cantilever Beam – Couple moment M at the free and
3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix\right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix\right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{6EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o X^2}{120IEI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix \right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3 \right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix\right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{24EI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\psi = \frac{\omega_o x^2}{24EI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{4EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$
3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix \right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3 \right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix \right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3 \right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix \right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3 \right)$ 5. Cantilever Beam – Cample moment M at the free and
3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix\right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{24EI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} \left(x^2 + 6I^2 - 4Ix\right)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120/EI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment Mat the free end	3. Cantilever Beam – Uniformly distributed load ω (N/m) $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment Mat the free and
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{o} (N/m) $\theta = \frac{\omega I^{3}}{6EI}$ $\theta = \frac{\omega I^{3}}{24EI}$ $\theta = \frac{\omega_{o}I^{3}}{24EI}$ $\psi = \frac{\omega x^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega X^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega X^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega X^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega X^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega X^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega X^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega X^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{24EI}$ $\theta = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\phi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $A. Cantilever Beam - Uniformly varying load: Maximum intensity \omega_0 (N/m) \theta = \frac{\omega_0 I^3}{24EI} \theta = \frac{\omega_0 I^3}{24EI} \psi = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) \psi = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$
$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\psi = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $A. Cantilever Beam - Uniformly varying load: Maximum intensity \omega_0 (N/m) \theta = \frac{\omega_0 I^3}{24EI} \theta = \frac{\omega_0 I^3}{24EI} \psi = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) S. Cantilever Beam - Couple moment M at the free end$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $A. Cantilever Beam - Uniformly varying load: Maximum intensity \omega_0 (N/m) \theta = \frac{\omega_0 I^3}{24EI} \theta = \frac{\omega_0 I^3}{24EI} \theta = \frac{\omega_0 I^3}{24EI} y = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) 5. Cantilever Beam - Couple moment M at the free end$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $A. Cantilever Beam - Uniformly varying load: Maximum intensity \omega_0 (N/m) \theta = \frac{\omega_0 I^3}{24EI} \theta = \frac{\omega_0 I^3}{24EI} \psi = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) S. Cantilever Beam - Couple moment M at the free end$	$\theta = \frac{\omega I^3}{6EI}$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega I^3}{6EI}$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment Mat the free end	$\theta = \frac{\omega l^3}{6EI}$ $y = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment Mat the free and
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{6EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{24EI}$ $\theta = \frac{\omega X^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ $\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$	$\theta = \frac{\omega I^3}{6EI}$ $\theta = \frac{\omega I^3}{6EI}$ $y = \frac{\omega x^2}{24EI} (x^2 + 6I^2 - 4Ix)$ $A. Cantilever Beam - Uniformly varying load: Maximum intensity \omega_o (N/m) \theta = \frac{\omega_o I^3}{24EI} \theta = \frac{\omega_o I^3}{24EI} \theta = \frac{\omega_o I^3}{24EI} y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3) S. Cantilever Beam - Couple moment M at the free end$	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{o} (N/m) $\theta = \frac{\omega I^{3}}{6EI}$ $\theta = \frac{\omega I^{3}}{24EI}$ $\theta = \frac{\omega_{o}I^{3}}{24EI}$ $\theta = \frac{\omega_{o}I^{3}}{24EI}$ $\theta = \frac{\omega_{o}I^{3}}{24EI}$ $\psi = \frac{\omega_{o}x^{2}}{120IEI} (10I^{3} - 10I^{2}x + 5Ix^{2} - x^{3})$ S. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{o} (N/m) $\theta = \frac{\omega I^{3}}{6EI}$ $\theta = \frac{\omega I^{3}}{24EI}$ $\theta = \frac{\omega_{o}I^{3}}{24EI}$ $\psi = \frac{\omega_{o}x^{2}}{24EI} (x^{2} + 6I^{2} - 4Ix)$ $\psi = \frac{\omega_{o}x^{2}}{120IEI} (10I^{3} - 10I^{2}x + 5Ix^{2} - x^{3})$ S. Cantilever Beam – Couple moment Mat the free end	$\theta = \frac{\omega l^3}{6EI}$ $\theta = \frac{\omega l^3}{6EI}$ $\psi = \frac{\omega x^2}{24EI} (x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\psi = \frac{\omega_o x^2}{24EI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ $\psi = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega r}{6EI}$ $y = \frac{\omega x}{24EI} (x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega r}{6EI}$ $y = \frac{\omega x}{24EI} (x^2 + 6l^2 - 4lx)$ 4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega r}{6EI}$ $\psi = \frac{\omega x}{24EI} (x^2 + 6l^2 - 4lx)$ $\phi = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ $\phi = \frac{\omega_o r}{24EI}$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega r}{6EI}$ $\psi = \frac{\omega x}{24EI} (x^2 + 6l^2 - 4lx)$ $\psi = \frac{\omega_o x}{24EI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ $\phi = \frac{\omega_o t^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o T}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ $\theta = \frac{\omega_o I^3}{24EI}$
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o s^2}{24EI}$	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_{0} (N/m) $\theta = \frac{\omega_{0}l^{3}}{24EI}$ $\theta = \frac{\omega_{0}l^{3}}{24EI}$ $y = \frac{\omega_{0}x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ S. Cantilever Beam – Couple moment Mat the free and	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$
4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ 5. Cantilever Beam – Couple moment M at the free end	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ S. Cantilever Beam – Couple moment Mat the free and	4. Cantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$
Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Antilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Antilever Beam – Couple moment M at the free end	Antilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Antilever Beam – Couple moment M at the free end	Figure 3. Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Figure 3. Santilever Beam – Couple moment M at the free end	2antilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ antilever Ream – Couple moment M at the free end	2antilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ 2antilever Ream – Couple moment M at the free end
Antilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ Antilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Pantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Pantilever Beam – Couple moment M at the free end	Fantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Fantilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120/EI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Santilever Ream – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120/EI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Solution of the free and
Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Eantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Eantilever Beam – Couple moment M at the free end	Pantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Pantilever Ream – Couple moment M at the free end	Pantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120/EI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Pantilever Ream – Couple moment M at the free end
Pantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$ Fantilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Pantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120/EI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Pantilever Beam – Couple moment M at the free end	Antilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Antilever Beam – Couple moment M at the free end	Antilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120/EI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Antilever Ream – Couple moment M at the free end	Antilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Antilever Ream – Couple moment M at the free end
Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Eantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Eartilever Ream – Couple moment M at the free end
Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$ Santilever Beam – Couple moment M at the free end	Pantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Pantilever Beam – Couple moment M at the free end	Fantilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Fantilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120/EI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Santilever Ream – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Solution of the free and
Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_0 (N/m) $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Santilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} \left(10I^3 - 10I^2x + 5Ix^2 - x^3\right)$ Santilever Beam – Couple moment M at the free end	Pantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120lEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Fantilever Beam – Couple moment M at the free end	Santilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	Eantilever Beam – Uniformly varying load: Maximum intensity ω_o (N/m) $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Eartilever Beam – Couple moment M at the free end
$\theta = \frac{\omega_{o} l^{3}}{24EI}$ $\psi = \frac{\omega_{o} x^{2}}{120IEI} \left(10l^{3} - 10l^{2}x + 5lx^{2} - x^{3} \right)$ Tantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_{o} l^{3}}{24EI}$ $\theta = \frac{\omega_{o} l^{3}}{24EI}$ $y = \frac{\omega_{o} x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ Santilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ The introduction of the free end	$\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ The same of the free end	$\theta = \frac{\omega_0 I^3}{24EI}$ $\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120/EI} (10I^3 - 10I^2 x + 5Ix^2 - x^3)$ Antilever Ream – Couple moment M at the free end	$\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ The intrinsic properties and the free and
$\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120/EI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Santilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_o I^3}{24EI}$ $\theta = \frac{\omega_o I^3}{24EI}$ $y = \frac{\omega_o x^2}{120/EI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Antilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Finally, and the free end	$\theta = \frac{\omega_{o} l^{3}}{24EI}$ $\psi = \frac{\omega_{o} x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ Fantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_{o}l^{3}}{24EI}$ $y = \frac{\omega_{o}x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ Santilever Ream – Couple moment M at the free end	$\theta = \frac{\omega_{o}l^{3}}{24EI}$ $y = \frac{\omega_{o}x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ Fartilever Ream - Couple moment Mat the free and
$\theta = \frac{\omega_{o} l^{3}}{24EI}$ $\theta = \frac{\omega_{o} l^{3}}{24EI}$ $y = \frac{\omega_{o} x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ $\theta = \frac{\omega_{o} l^{3}}{24EI}$ $\theta = \frac{\omega_{o} l^{3}}{24EI}$ $\theta = \frac{\omega_{o} l^{3}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ $\theta = \frac{\omega_{o} l^{3}}{24EI}$	$\theta = \frac{\omega_{o}l^{3}}{24EI}$ $\theta = \frac{\omega_{o}l^{3}}{24EI}$ $y = \frac{\omega_{o}x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ Santilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_o l^3}{24EI}$ $\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Examile ver Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 l^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120/EI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Fantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ antilever Ream – Couple moment M at the free end	$\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ The integral of the free and
$\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Santilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 l^3}{24EI}$ $\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120/EI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3\right)$ Santilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Examile ver Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 I^3}{24EI}$ $\psi = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3 \right)$ The anti-lever Beam – Couple moment M at the free end	$\theta = \frac{\omega_{o} l^{3}}{24EI}$ $y = \frac{\omega_{o} x^{2}}{120IEI} (10l^{3} - 10l^{2}x + 5lx^{2} - x^{3})$ Figure 1. Another properties Mat the free end	$\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Partilever Ream - Couple moment Mat the free and
$\theta = \frac{\omega_0 I^3}{24EI}$ $y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3\right)$ Eantilever Beam – Couple moment M at the free end	$\delta_{\text{max}} \qquad \theta = \frac{\omega_0 I^3}{24EI} \qquad \qquad y = \frac{\omega_0 x^2}{120IEI} \left(10I^3 - 10I^2 x + 5Ix^2 - x^3 \right)$ antilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 l^3}{24EI}$ $y = \frac{\omega_0 x^2}{120lEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ The literary Beam – Couple moment M at the free end	$\theta = \frac{\omega_o l^3}{24EI}$ $\psi = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Finally, while ver Beam – Couple moment M at the free end	$\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Antilever Ream - Couple moment M at the free end	$\theta = \frac{\omega_o l^3}{24EI}$ $y = \frac{\omega_o x^2}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Fartilever Ream - Couple moment Mat the free and
$\theta = \frac{\omega_0 t}{24EI}$ $v = \frac{\omega_0 x}{120IEI} (10l^3 - 10l^2 x + 5lx^2 - x^3)$ Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 t}{24EI}$ $v = \frac{\omega_0 x}{120tEI} \left(10t^3 - 10t^2 x + 5tx^2 - x^3 \right)$ Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 t}{24EI}$ $v = \frac{\omega_0 x}{120IEI} \left(10l^3 - 10l^2 x + 5lx^2 - x^3 \right)$ Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 t}{24EI}$ $y = \frac{\omega_0 x}{120IEI} (10t^3 - 10t^2 x + 5tx^2 - x^3)$ Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\omega_0 t}{24EI}$ $y = \frac{\omega_0 x}{120IEI} (10t^3 - 10t^2 x + 5tx^2 - x^3)$ Captilever Ream – Couple moment Mat the free end	$\theta = \frac{\omega_0 t}{24EI}$ $y = \frac{\omega_0 x}{120IEI} (10t^3 - 10t^2 x + 5tx^2 - x^3)$ Continuous Ream - Couple moment Mat the free and
$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{\frac{1}{24EI}} \qquad y = \frac{120IEI}{120IEI} (10I^3 - 10I^2x + 5Ix^2 - x^3)$ Cantilever Beam – Couple moment M at the free end	$ \frac{\delta_{\text{max}}}{\uparrow} \qquad \qquad \delta = \frac{\delta_{\text{max}}}{24EI} \qquad \qquad y = \frac{\delta_{\text{max}}}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3) $ Cantilever Beam – Couple moment M at the free end	$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{\frac{1}{24EI}} \qquad y = \frac{120IEI}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ Cantilever Beam – Couple moment M at the free end	$\theta = \frac{\delta_{\text{max}}}{24EI}$ $v = \frac{\delta_{\text{max}}}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ Cantilever Beam – Couple moment M at the free end	$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{\frac{1}{24EI}} \qquad y = \frac{1}{120IEI} (10l^3 - 10l^2x + 5lx^2 - x^3)$ Captilever Ream – Couple moment Mat the free end	$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{120 \text{ IEI}} \left(\frac{10l^3 - 10l^2 x + 5lx^2 - x^3}{120 \text{ IEI}} \right)$ Continuous Ream – Couple moment Mat the free and
$ \begin{array}{c c} \hline \delta_{\text{max}} & \overline{\delta} = \overline{24EI} \\ \hline \hline \bullet & 120IEI \\ \hline Cantilever Beam - Couple moment M at the free end \end{array} $	$\frac{\delta_{\text{max}}}{\uparrow} \qquad \frac{\delta = \frac{\delta}{24EI}}{120IEI} (10i - 10i x + 5ix - x)$ Cantilever Beam – Couple moment M at the free end	$\frac{\delta_{\text{max}}}{\uparrow}$ $\frac{\delta_{\text{max}}}{\uparrow}$ Cantilever Beam – Couple moment M at the free end	$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{\frac{1}{24EI}} = \frac{\delta_{\text{max}}}{24EI} = \frac{\delta_{\text{max}}}{120IEI} = \frac{\delta_{\text{max}}}$	$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{\frac{1}{24EI}} = \frac{\delta_{\text{max}}}{24EI} = \frac{\delta_{\text{max}}}{24EI} = \frac{\delta_{\text{max}}}{120IEI} = \frac{\delta_{\text{max}}}{1$	$\delta_{\text{max}} = \frac{\delta_{\text{max}}}{120IEI} \left(\frac{10i}{10i} - \frac{10i}{10i} \frac{x + 5ix}{1} - x \right)$ Captilever Ream - Couple moment Mat the free and
Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Omax Omax 24EI 120/EI Captilever Ream — Countermoment Mat the free end	Omax Omax 24EI 120/EI Cantile year Ream — Couple moment Mat the free end
Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Ream — Counte moment Mat the free end	Contilever Ream — Countermoment Mat the free and
Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Beam – Couple moment M at the free end	Cantilever Ream - Counte moment Mat the free end	Cantilever Ream - Couple moment Mat the free end
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	S Cantilever Ream - Countermoment Mat the free end	S Cantilever Ream - Countermoment Mat the free and
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	S Cantilever Ream - Countermoment Mat the free end	S Cantilever Ream - Countermoment Mat the free and
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5 Cantilever Ream – Countermoment Mat the free end	S Cantilever Ream — Countermoment Mat the free and
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5 Cantilever Ream - Countermoment Mat the free end	5 Cantilever Ream - Countermoment Mat the free and
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5 Cantilever Ream – Countermoment Mat the free end	5 Cantilever Ream - Countermoment Mat the free and
בי. כמונווכ על והפחוד והסוווכווו של מני חבר בחת	5. Cantilevet Beant – Couple montent in at the field end	בי. Cantile ver Death — Couple inonient in at the fire end	3. Callulayat Daalii — Coudia illolliatii M at ula taga alid		
				o. Calificate Deally Coaple intelliging in the city	
				of Children by Demit Combine intollient its an also sind	5. Cantile vet Deam — Couple moment in at the rece end
M	M	M	M	M	M_{\star}^{-2}
M	M	M M M 2	M M M 2	M M M 2	Mr^2
M = M = M = M = M = M = M = M = M = M =	M = M = M = M = M = M = M = M = M = M =	M Mx^2	M = M = M = M = M = M = M = M = M = M =	M = M = M = M = M = M = M = M = M = M =	M_X^2
$O_{-}MI$ Mx^{2}	$O = MI$ Mx^2	$O = MI$ Mx^2	$O = MI$ Mx^2	$O M$ Mx^2	Mx^2
$\Theta = \frac{M}{2}$ $W = \frac{Mx^2}{2}$	$\Theta = \frac{M}{M}$ $W - \frac{Mx^2}{M}$	$\Theta = \frac{MI}{2}$ $W = \frac{Mx^2}{2}$	$\Theta = \frac{Ml}{M}$ $W = \frac{Mx^2}{M}$	$\theta = \frac{M}{2}$ $v - \frac{Mx^2}{2}$	$W = \frac{Mx^2}{x^2}$
$\theta = \frac{Ml}{l}$ $V = \frac{Mx^2}{l}$	$\theta = \frac{Ml}{l}$ $V = \frac{Mx^2}{l}$	$\theta = \frac{MI}{V}$	$\theta = \frac{MI}{V}$	$\theta = \frac{Ml}{l}$ $v = \frac{Mx^2}{l}$	$v = \frac{Mx^2}{}$
$\theta = \frac{Ml}{r}$ $y = \frac{Mx^2}{r}$	$\theta = \frac{Ml}{2x}$ $y = \frac{Mx^2}{2x}$	$\theta = \frac{Ml}{2\pi}$ $y = \frac{Mx^2}{2\pi}$	$\theta = \frac{Ml}{r}$ $y = \frac{Mx^2}{r}$	$\theta = \frac{Ml}{rr}$ $y = \frac{Mx^2}{rr}$	$y = \frac{Mx^2}{2}$
$\theta = \frac{Ml}{ET} \qquad \qquad y = \frac{Mx^2}{2ET}$	$\theta = \frac{Ml}{EI} \qquad \qquad y = \frac{Mx^2}{2EI}$	$\theta = \frac{Ml}{ET} \qquad \qquad y = \frac{Mx^2}{2ET}$	$\theta = \frac{Ml}{ET} \qquad y = \frac{Mx^2}{2ET}$	$\theta = \frac{Ml}{ET} \qquad y = \frac{Mx^2}{2ET}$	$y = \frac{Mx^2}{2ET}$
$\theta = \frac{MI}{S_{max}}$ $\theta = \frac{MI}{S_{EI}}$ $y = \frac{Mx^2}{S_{EI}}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{S_{FI}}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{S_{max}}$ $\theta = \frac{MI}{S_{FI}}$ $\psi = \frac{Mx^2}{S_{FI}}$	$\theta = \frac{MI}{S_{max}}$ $\theta = \frac{MI}{S_{FI}}$ $y = \frac{Mx^2}{S_{FI}}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{S_{\text{max}}}$ $\theta = \frac{MI}{S_{\text{F}I}}$	$\theta = \frac{MI}{S_{\text{max}}}$ $\theta = \frac{MI}{S_{\text{F}I}}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{S_{II}}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2FI}$ $y = \frac{Mx^2}{2FI}$	$\theta = \frac{MI}{S_{\text{max}}}$ $\theta = \frac{MI}{S_{\text{FI}}}$	$\theta = \frac{MI}{S_{\text{max}}}$ $\theta = \frac{MI}{S_{\text{max}}}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{2EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{2EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $\psi = \frac{Mx^2}{2EI}$
$\theta = \frac{M}{EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{EI}$ $y = \frac{Mx^2}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{M}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{EI}$ $y = \frac{Mx^2}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\frac{1}{2EI}}$ $\theta = \frac{MI}{\frac{2EI}{2EI}}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI} \qquad \qquad y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$ \begin{array}{c c} I \\ \downarrow \\ \downarrow \\ 0 \\ \hline \end{array} \qquad \qquad$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{EI}$ $y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$ \begin{array}{c c} I \\ \downarrow \\ \downarrow \\ 0 \\ \hline \end{array} \qquad \qquad$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{M}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $\psi = \frac{Mx^2}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$
$\theta = \frac{MI}{EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{2EI}$ $\theta = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{2EI}$ $\psi = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2EI}$ $y = \frac{Mx^2}{2EI}$
$\theta = \frac{MI}{2FI}$ $y = \frac{Mx^2}{2FI}$	$\theta = \frac{MI}{S_{\text{max}}}$ $\theta = \frac{MI}{2 FI}$	$\theta = \frac{MI}{S_{\text{max}}}$ $\theta = \frac{MI}{S_{\text{F}I}}$ $y = \frac{Mx^2}{2FI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2FI}$ $y = \frac{Mx^2}{2FI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2FI}$ $y = \frac{Mx^2}{2FI}$	$\theta = \frac{MI}{\delta_{\text{max}}}$ $\theta = \frac{MI}{2FI}$
$\theta = \frac{MI}{EI} \qquad \qquad y = \frac{Mx^2}{2EI}$	$\theta = \frac{MI}{EI} \qquad \qquad y = \frac{Mx^2}{2EI}$	$\theta = \frac{Ml}{EI} \qquad \qquad \mathcal{V} = \frac{Mx^2}{2EI}$	$\theta = \frac{Ml}{EI} \qquad \qquad y = \frac{Mx^2}{2EI}$	$\theta = \frac{Ml}{EI} \qquad \qquad y = \frac{Mx^2}{2EI}$	$y = \frac{Mx^2}{2ET}$
$\theta = \frac{Ml}{r}$ $y = \frac{Mx^2}{r}$	$\theta = \frac{Ml}{2x}$ $y = \frac{Mx^2}{2x}$	$\theta = \frac{Ml}{2\pi}$ $y = \frac{Mx^2}{2\pi}$	$\theta = \frac{Ml}{r}$ $y = \frac{Mx^2}{r}$	$\theta = \frac{Ml}{rr}$ $y = \frac{Mx^2}{rr}$	$y = \frac{Mx^2}{2}$
$\theta = \frac{Ml}{V}$ $V = \frac{Mx^2}{l}$	$\theta = \frac{Ml}{l}$ $V = \frac{Mx^2}{l}$	$\theta = \frac{Ml}{l}$ $V = \frac{Mx^2}{l}$	$\theta = \frac{Ml}{l}$ $v = \frac{Mx^2}{l}$	$\theta = \frac{Ml}{l}$ $v = \frac{Mx^2}{l}$	$v = \frac{Mx^2}{}$
$\theta = \frac{M}{2}$ $v = \frac{Mx^2}{2}$	$\theta = \frac{M}{2}$ $v = \frac{Mx^2}{2}$	$\theta = \frac{M}{2}$ $v = \frac{Mx^2}{2}$	$\theta = \frac{Ml}{l}$ $v = \frac{Mx^2}{l}$	$\theta = \frac{Ml}{l}$ $v = \frac{Mx^2}{l}$	$v = \frac{Mx^2}{}$
A = M	A = M	$\Theta = M$	A = M	A = M	Mx^2
$O_{-}MI$ Mx^{2}	$O = MI$ Mx^2	$O = MI$ Mx^2	$O = MI$ Mx^2	$O M$ Mx^2	Mx^2
$M = M = Mx^2$	$M = M = Mx^2$	$M = M = Mx^2$	M Mx^2	M Mx^2	Mx^2
M = M = M = M = M = M = M = M = M = M =	M Mx^2	M M M M M M M M M M	M M M M M M M M M M	M Mx^2	Mx^2
M	M	M M 2	M	M	Mr^2
A. 2		M7 A.2	AA. 2	AA. 2	1.4.2
			The second secon	C. CHIMILANT DANIT COMPLANTATION AND THAT AND THAT AND THAT	7. Cativity for Death - Couple intentivity at the City

ב. כמונווי אינו בילמווו – כיסווירווי זיז מי עול ווללי לווע	5. Cantile ver Deant — Couple montent in at the nee end	J. Calluly V. D. Death — Couple intollicity at the 1100 clus	o. Callille ver Deall — Coudle Highlette ver at the circ circ		
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end) (antiever Ream = Coline moment // at the tree end	
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5 Cantilever Ream – Counle moment Mat the free end	S Cantilever Ream - Countermoment Mat the free and
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5 Cantilever Ream – Counle moment M at the free end	S Cantilever Ream - Countermoment Mat the free and
5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam – Couple moment M at the free end	5. Cantilever Beam — Couple moment M at the free end	5 Cantilever Ream – Couple moment M at the free end	S Cantilever Ream — Countermoment M at the free end

BEAM DEFLECTION FORMULAS

$0 = \frac{\omega_0}{l} x \qquad 0 = \frac{\omega_0}{\omega_0} x \qquad 0 = \frac{\omega_0}{l} x \qquad 0 $	9. Beam Simply S $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c c} & P \\ & \theta_{1} \downarrow a \\ \hline & \theta_{2} \downarrow b \\ \hline & \theta_{max} \end{array} $ 8. Beam Simply S	θ_1 θ_2 δ_{max}	BEAM TYPE 6. Beam Simply S
10. Beam Simply Supported at Ends – Unifor $\theta_1 = \frac{7\omega_o l^3}{360EI}$ $\theta_2 = \frac{\omega_o l^3}{45EI}$	9. Beam Simply Supported at Ends – Couple moment M at the right end $\theta_1 = \frac{MI}{6EI}$ $\theta_2 = \frac{MI}{3EI}$ $y = \frac{1}{3EI}$	$\theta_1 = \theta_2 = \frac{\omega l^3}{24EI}$	$\theta_{1} = \frac{Pb(l^{2} - b^{2})}{6lEI}$ $\theta_{2} = \frac{Pab(2l - b)}{6lEI}$ 8. Beam Simply Supported at Ends – Uniform	$\theta_1 = \theta_2 = \frac{Pl^2}{16EI}$ $y = \frac{Px}{12EI} \left(\frac{3}{12EI} \right)$ Ream Simply Supported at Ends – Concentrated load P at any point	SLOPE AT ENDS DEFLECTION AT A 6. Beam Simply Supported at Ends – Concentrated load P at the center
Uniformly varying load: Maximum intensity ω_o (N/m) $y = \frac{\omega_o x}{360 lEI} \left(7l^4 - 10l^2 x^2 + 3x^4\right)$	moment M at the right end $y = \frac{Mlx}{6EI} \left(1 - \frac{x^2}{l^2} \right)$	$y = \frac{\omega x}{24EI} \left(l^3 - 2lx^2 + x^3 \right)$	$y = \frac{Pbx}{6lEI} (l^2 - x^2 - b^2) \text{ for } 0 < x < a$ $b) \qquad y = \frac{Pb}{6lEI} \left[\frac{l}{b} (x - a)^3 + (l^2 - b^2) x - x^3 \right]$ $\text{For } a < x < l$ Uniformly distributed load ω (N/m)	$y = \frac{Px}{12EI} \left(\frac{3l^2}{4} - x^2 \right) \text{ for } 0 < x < \frac{l}{2}$	DEFLECTION AT ANY SECTION IN TERMS OF x trated load P at the center
$\delta_{\text{max}} = 0.00652 \frac{\omega_{\text{o}} l^4}{EI} \text{ at } x = 0.519 I$ $\delta = 0.00651 \frac{\omega_{\text{o}} l^4}{EI} \text{ at the center}$	$\delta_{\text{max}} = \frac{Ml^2}{9\sqrt{3} El} \text{ at } x = \frac{l}{\sqrt{3}}$ $\delta = \frac{Ml^2}{16El} \text{ at the center}$	$\delta_{\max} = \frac{5\omega I^4}{384EI}$	$\delta_{\text{max}} = \frac{Pb(l^2 - b^2)^{3/2}}{9\sqrt{3} lEI} \text{ at } x = \sqrt{(l^2 - b^2)/3}$ $\delta = \frac{Pb}{48EI} (3l^2 - 4b^2) \text{ at the center, if } a > b$	$\delta_{\text{max}} = \frac{Pl^3}{48EI}$	MAXIMUM AND CENTER DEFLECTION

Deflections and Slopes of Beams

DEFLECTIONS AND SLOPES OF CANTILEVER BEAMS TABLE H-1

v = deflection in the y direction (positive upward)

v' = dv/dx = slope of the deflection curve

 $\delta_B = -v(L) = \text{deflection at end } B \text{ of the beam (positive downward)}$ $\theta_B = -v'(L) = \text{angle of rotation at end } B \text{ of the beam (positive clockwise)}$

$$v = -\frac{qx^2}{24EI}(6L^2 - 4Lx + x^2) \qquad v' = -\frac{qx}{6EI}(3L^2 - 3Lx + x^2)$$

$$v' = -\frac{qx}{6FI}(3L^2 - 3Lx + x^2)$$

$$\delta_B = \frac{qL^4}{8EI} \qquad \theta_B = \frac{qL^3}{6EI}$$

2

$$v = -\frac{qx^2}{24EI}(6a^2 - 4ax + x^2) \qquad (0 \le x \le a)$$

$$v' = -\frac{qx}{6EI}(3a^2 - 3ax + x^2) \qquad (0 \le x \le a)$$

$$v = -\frac{qa^3}{24EI}(4x - a)$$
 $v' = -\frac{qa^3}{6EI}$ $(a \le x \le L)$

$$At x = a$$
: $v = -\frac{qa^4}{8EI}$ $v' = -\frac{qa^3}{6EI}$

$$\delta_B = \frac{qa^3}{24EI}(4L - a) \qquad \theta_B = \frac{qa^3}{6EI}$$

(Continued)

7

$$v = -\frac{M_0 x^2}{2EI}$$
 $v' = -\frac{M_0 x}{EI}$ $(0 \le x \le a)$

$$v = -\frac{M_0 a}{2EI}(2x - a)$$
 $v' = -\frac{M_0 a}{EI}$ $(a \le x \le L)$

$$At \ x = a$$
: $v = -\frac{M_0 a^2}{2EI}$ $v' = -\frac{M_0 a}{EI}$

$$\delta_B = \frac{M_0 a}{2EI} (2L - a) \qquad \theta_B = \frac{M_0 a}{EI}$$

8

$$v = -\frac{q_0 x^2}{120LEI} (10L^3 - 10L^2 x + 5Lx^2 - x^3)$$

$$v' = -\frac{q_0 x}{24 LEI} (4L^3 - 6L^2 x + 4Lx^2 - x^3)$$

$$\delta_B = \frac{q_0 L^4}{30EI} \qquad \theta_B = \frac{q_0 L^3}{24EI}$$

9

$$v = -\frac{q_0 x^2}{120 L EI} (20 L^3 - 10 L^2 x + x^3)$$

$$v' = -\frac{q_0 x}{24 LEI} (8L^3 - 6L^2 x + x^3)$$

$$\delta_B = \frac{11q_0L^4}{120EI} \qquad \theta_B = \frac{q_0L^3}{8EI}$$

10

$$v = -\frac{q_0 L}{3\pi^4 E I} \left(48L^3 \cos \frac{\pi x}{2L} - 48L^3 + 3\pi^3 L x^2 - \pi^3 x^3 \right)$$

$$v' = -\frac{q_0 L}{\pi^3 EI} \left(2\pi^2 Lx - \pi^2 x^2 - 8L^2 \sin \frac{\pi x}{2L} \right)$$

$$\delta_B = \frac{2q_0L^4}{3\pi^4 EI}(\pi^3 - 24)$$
 $\theta_B = \frac{q_0L^3}{\pi^3 EI}(\pi^2 - 8)$

(Continued)

TABLE H-2 DEFLECTIONS AND SLOPES OF SIMPLE BEAMS

EI = constant

v = deflection in the y direction (positive upward)

v' = dv/dx = slope of the deflection curve

 $\delta_C = -v(L/2) = \text{deflection at midpoint } C \text{ of the beam (positive downward)}$

 x_1 = distance from support A to point of maximum deflection

 $\delta_{\text{max}} = -v_{\text{max}} = \text{maximum deflection (positive downward)}$

 $\theta_A = -v'(0)$ = angle of rotation at left-hand end of the beam

(positive clockwise)

 $\theta_B = v'(L)$ = angle of rotation at right-hand end of the beam (positive counterclockwise)

1

$$v = -\frac{qx}{24EI}(L^3 - 2Lx^2 + x^3)$$

$$v' = -\frac{q}{24EI}(L^3 - 6Lx^2 + 4x^3)$$

$$\delta_C = \delta_{\text{max}} = \frac{5qL^4}{384EI}$$
 $\theta_A = \theta_B = \frac{qL^3}{24EI}$

2

$$v = -\frac{qx}{384EI}(9L^3 - 24Lx^2 + 16x^3) \qquad \left(0 \le x \le \frac{L}{2}\right)$$

$$v' = -\frac{q}{384EI}(9L^3 - 72Lx^2 + 64x^3) \qquad \left(0 \le x \le \frac{L}{2}\right)$$

$$v = -\frac{qL}{384EI}(8x^3 - 24Lx^2 + 17L^2x - L^3) \qquad \left(\frac{L}{2} \le x \le L\right)$$

$$v' = -\frac{qL}{384EI}(24x^2 - 48Lx + 17L^2)$$
 $\left(\frac{L}{2} \le x \le L\right)$

$$\delta_C = \frac{5qL^4}{768EI} \qquad \theta_A = \frac{3qL^3}{128EI} \qquad \theta_B = \frac{7qL^3}{384EI}$$

3

$$v = -\frac{qx}{24LEI}(a^4 - 4a^3L + 4a^2L^2 + 2a^2x^2 - 4aLx^2 + Lx^3) \qquad (0 \le x \le a)$$

$$v' = -\frac{q}{24LEI}(a^4 - 4a^3L + 4a^2L^2 + 6a^2x^2 - 12aLx^2 + 4Lx^3) \qquad (0 \le x \le a)$$

$$v = -\frac{qa^2}{24LEI}(-a^2L + 4L^2x + a^2x - 6Lx^2 + 2x^3) \qquad (a \le x \le L)$$

$$v' = -\frac{qa^2}{2AIEI}(4L^2 + a^2 - 12Lx + 6x^2) \qquad (a \le x \le L)$$

$$\theta_A = \frac{qa^2}{24LEI}(2L - a)^2$$
 $\theta_B = \frac{qa^2}{24LEI}(2L^2 - a^2)$

4
$$\frac{L}{2} \rightarrow \frac{L}{2} \rightarrow \frac{$$

$$v = -\frac{Px}{48EI}(3L^2 - 4x^2) \qquad v' = -\frac{P}{16EI}(L^2 - 4x^2) \qquad \left(0 \le x \le \frac{L}{2}\right)$$
$$\delta_C = \delta_{\text{max}} = \frac{PL^3}{48EI} \qquad \theta_A = \theta_B = \frac{PL^2}{16EI}$$

$$v = -\frac{Pbx}{6LEI}(L^2 - b^2 - x^2) \qquad v' = -\frac{Pb}{6LEI}(L^2 - b^2 - 3x^2) \qquad (0 \le x \le a)$$

$$\theta_A = \frac{Pab(L+b)}{6LEI} \qquad \theta_B = \frac{Pab(L+a)}{6LEI}$$
If $a \ge b$, $\delta_C = \frac{Pb(3L^2 - 4b^2)}{48EI}$ If $a \le b$, $\delta_C = \frac{Pa(3L^2 - 4a^2)}{48EI}$

$$e^{-a}$$

$$v = -\frac{Px}{6EI}(3aL - 3a^2 - x^2) \qquad v' = -\frac{P}{2EI}(aL - a^2 - x^2) \qquad (0 \le x \le a)$$
$$v = -\frac{Pa}{6EI}(3Lx - 3x^2 - a^2) \qquad v' = -\frac{Pa}{2EI}(L - 2x) \qquad (a \le x \le L - a)$$

$$\delta_C = \delta_{\text{max}} = \frac{Pa}{24FI}(3L^2 - 4a^2)$$
 $\theta_A = \theta_B = \frac{Pa(L - a)}{2FI}$

If $a \ge b$, $x_1 = \sqrt{\frac{L^2 - b^2}{3}}$ and $\delta_{\text{max}} = \frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3} LEI}$

$$v = -\frac{M_0 x}{6LEI} (2L^2 - 3Lx + x^2) \qquad v' = -\frac{M_0}{6LEI} (2L^2 - 6Lx + 3x^2)$$

$$\delta_C = \frac{M_0 L^2}{16EI} \qquad \theta_A = \frac{M_0 L}{3EI} \qquad \theta_B = \frac{M_0 L}{6EI}$$

$$x_1 = L \left(1 - \frac{\sqrt{3}}{3}\right) \quad \text{and} \quad \delta_{\text{max}} = \frac{M_0 L^2}{9\sqrt{3}EI}$$

(Continued)

8
$$M_0$$

$$v = -\frac{M_0 x}{24LEI}(L^2 - 4x^2) \qquad v' = -\frac{M_0}{24LEI}(L^2 - 12x^2) \qquad \left(0 \le x \le \frac{L}{2}\right)$$
$$\delta_C = 0 \qquad \theta_A = \frac{M_0 L}{24EI} \qquad \theta_B = -\frac{M_0 L}{24EI}$$

9
$$M_0$$

$$v = -\frac{M_0 x}{6LEI} (6aL - 3a^2 - 2L^2 - x^2) \qquad (0 \le x \le a)$$

$$v' = -\frac{M_0}{6LEI} (6aL - 3a^2 - 2L^2 - 3x^2) \qquad (0 \le x \le a)$$
At $x = a$: $v = -\frac{M_0 ab}{3LEI} (2a - L) \qquad v' = -\frac{M_0}{3LEI} (3aL - 3a^2 - L^2)$

At
$$x = a$$
: $v = -\frac{1}{3LEI}(2a - L)$ $v' = -\frac{1}{3LEI}(3aL - 3a^2 - L)$

$$\theta_A = \frac{M_0}{6LEI}(6aL - 3a^2 - 2L^2)$$
 $\theta_B = \frac{M_0}{6LEI}(3a^2 - L^2)$

10
$$M_0$$
 M_0

11

$$v = -\frac{M_0 x}{2EI}(L - x)$$
 $v' = -\frac{M_0}{2EI}(L - 2x)$

$$\delta_C = \delta_{\text{max}} = \frac{M_0 L^2}{8EI}$$
 $\theta_A = \theta_B = \frac{M_0 L}{2EI}$

$$v = -\frac{q_0 x}{360 LEI} (7L^4 - 10L^2 x^2 + 3x^4)$$

$$v' = -\frac{q_0}{360LEI}(7L^4 - 30L^2x^2 + 15x^4)$$

$$\delta_C = \frac{5q_0L^4}{768EI}$$
 $\theta_A = \frac{7q_0L^3}{360EI}$ $\theta_B = \frac{q_0L^3}{45EI}$

$$x_1 = 0.5193L$$
 $\delta_{\text{max}} = 0.00652 \frac{q_0 L^4}{EI}$

$$v = -\frac{q_0 x}{960 LEI} (5L^2 - 4x^2)^2 \qquad \left(0 \le x \le \frac{L}{2}\right)$$

$$v' = -\frac{q_0}{192LEI}(5L^2 - 4x^2)(L^2 - 4x^2) \qquad \left(0 \le x \le \frac{L}{2}\right)$$

$$\delta_C = \delta_{\text{max}} = \frac{q_0 L^4}{120EI} \qquad \theta_A = \theta_B = \frac{5q_0 L^3}{192EI}$$

$$v = -\frac{q_0 L^4}{\pi^4 E I} \sin \frac{\pi x}{L} \qquad v' = -\frac{q_0 L^3}{\pi^3 E I} \cos \frac{\pi x}{L}$$

$$\delta_C = \delta_{\text{max}} = \frac{q_0 L^4}{\pi^4 E I}$$
 $\theta_A = \theta_B = \frac{q_0 L^3}{\pi^3 E I}$