$\mathbf{M12.9.}$ 2 punkty Wykazać, że wzór

14:31

$$\|A\|_E \coloneqq \sqrt{\sum_{1 \leqslant i,j \leqslant n} a_{ij}^2}$$

definiuje submultiplikatywną normę w $\mathbb{R}^{n\times n}$, zwaną normą euklidesową, zgodną z normą wektorową $\|\cdot\|_2$.

Definicja

Normą macierzy nazywamy nieujemną funkcję rzeczywistą $\|\cdot\|$, określoną w przestrzeni liniowej $\mathbb{R}^{n \times n}$ wszystkich macierzy kwadratowych stopnia n, o następujących własnościach:

$$\bigwedge_{A \in \mathbb{R}^{n \times n} \setminus \{\Theta\}} \{ ||A|| > 0 \};$$

$$\bigwedge_{A \in \mathbb{R}^{n \times n}} \bigwedge_{\alpha \in \mathbf{R}} \{ ||\alpha A|| = |\alpha| ||A|| \};$$

$$\bigwedge_{A, B \in \mathbb{R}^{n \times n}} \{ ||A + B|| \le ||A|| + ||B|| \};$$

$$\bigwedge_{A, B \in \mathbb{R}^{n \times n}} \{ ||AB|| \le ||A|| ||B|| \}.$$

Definicja

Będziemy mówili, że normy macierzy i wektora są zgodne, jeśli

$$\bigwedge_{A \in \mathbb{R}^{n \times n}} \bigwedge_{x \in \mathbb{R}^n} \{ ||Ax|| \leqslant ||A|| ||x|| \}.$$

(i)
$$A \in \mathbb{R}^{n \times n} \setminus \{0\} \Rightarrow \exists i, j \ a_{ij} \neq 0 \Rightarrow \sum_{i,j} a_{ij}^2 > 0$$

(ii) $R \in \mathbb{R}^{n \times n}$, $\alpha \in \mathbb{R}$
 $\|\alpha A\| = \sum_{i,j} \sum_{i,j} a_{ij}^2 = \int_{\alpha_i}^2 \sum_{i,j} a_{ij}^2 = |\alpha| \cdot \sum_{i,j} a_{ij}^2 = |\alpha| \cdot ||A|||$

(iii) $A_i B \in \mathbb{R}^{n \times n}$
 $\|A_i B\| \stackrel{?}{=} \|A\| + \|B\| \stackrel{?}{=} \|A_i B\|^2 \leq \|A\|^2 + \|B\|^2 + 2\|A\| \cdot \|B\|$
 $\|A_i + B\|^2 = \sum_{i,j} (a_{ij} + b_{ij})^2 = \sum_{i,j} a_{ij}^2 + \sum_{i,j} b_{ij}^2 + 2\sum_{i,j} a_{ij} b_{ij}$
 $2\|A\| \cdot \|B\| = 2 \cdot \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij}^2 \cdot \sum_{i,j} b_{ij}^2$
 $\sum_{i,j} a_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij} b_{ij} b_{ij}$
 $\sum_{i,j} a_{ij} b_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij} b_{ij} b_{ij}$
 $\sum_{i,j} a_{ij} b_{ij} b_{ij} \stackrel{?}{=} \sum_{i,j} a_{ij} b_{ij} b_{ij} b_{ij} b_{ij}$
 $\sum_{i,j} a_{ij} b_{ij} b$