Laboratorium 9

Aproksymacja Padego funkcji exp(-x²)

Bartosz Balawender

15.04.2021

1.Cel ćwiczenia

Celem ćwiczenia było przeprowadzenie aproksymacji Padego funkcji f(x).

2.Opis problemu

Naszym zadaniem było przeprowadzenie aproksymacji Padego funkcji:

$$f(x) = \exp(-x^2)$$

Aproksymacji należało wykonać kolejno dla sześciu różnych wartości (N, M) = (2, 2), (4, 4), (6, 6), (2, 4), (2, 6), (2, 8).

3.Opis metody

Funkcję f(x) będziemy przybliżać przy pomocy funkcji wymiernej $R_{N,M}(x)$, która dana jest następującym wzorem:

$$R_{N,M}(x) = \frac{P_N(x)}{Q_M(x)} = \frac{\sum_{i=0}^{N} a_i x^i}{\sum_{i=0}^{M} b_i x^i}$$

Równanie (1)

W naszym rozwiązaniu dążymy więc do wyliczenia wektorów \vec{a} i \vec{b} . W tym celu zaczynamy od wyliczenia współczynników szeregu Maclaurina (c_k), które otrzymujemy bezpośrednio z rozwinięcia naszej funkcji f(x) w ten właśnie szereg.

$$exp(-x^2) = \sum_{p=0}^{\infty} (-1)^p \frac{x^{2p}}{p!} = \sum_{k=0}^{\infty} c_k \cdot x^k$$

Wartości wyliczonych współczynników c_k zapisujemy do wektora $\vec{c} = [c0, c1, ..., cn]$

Następnym krokiem jest rozwiązanie układu równań postaci:

$$A \cdot \vec{x} = \vec{y}$$

Wektor \vec{y} ma rozmiar [M], a macierz A jest rozmiarów [M][M]. Współczynniki wektora i macierzy wyliczamy za pomocą otrzymanych wartości współczynników c_k przechowywanych w wektorze \vec{c} :

$$A_{i,j}=c_{N-M+i+j+1}$$
, $gdzie\ i,j=0,1...,M-1$
$$y_i=-c_{N+1+i}$$
, $gdzie\ i=0,1...,M-1$

Wektor \vec{x} jest wektorem rozwiązań naszego układu, który posłuży nam do obliczenia wektora \vec{b} , w którym przechowujemy współczynniki wielomianu $Q_M(x)$. Wektor \vec{b} wyliczamy w następujący sposób:

$$bo = 1 \ oraz \ b_{M-i} = x_i, \ gdzie \ i = 0,1,...,M-1$$

Pozostało nam już tylko wyznaczenie wartości współczynników wielomianu $P_N(x)$, które są przechowywane w wektorze \vec{a} zgodnie ze wzorem:

$$a_{i} = \sum_{j=0}^{i} c_{i-j} \cdot b_{j}, \quad gdzie \ i = 0,1,...,N$$

Po wyliczeniu współczynników wielomianu $P_N(x)$ oraz $Q_M(x)$ zgodnie z "Równaniem (1)" obliczamy wartości funkcji wymiernej $R_{N,M}(x)$ potrzebnej nam do przybliżenia naszej funkcji f(x) = $\exp(-x^2)$.

4.Wyniki

Dla ustalonych wartości N i M tworzymy wykresy f(x) oraz $R_{N,M}(x)$, gdzie nasze $x \in [-5,5]$.

1)

Wykres 1.Wykres funkcji f(x) = exp(-x²) oraz jej aproksymacji Padego dla wartości N=2 oraz M=2

Wykres 2. Wykres funkcji $f(x) = \exp(-x^2)$ oraz jej aproksymacji Padego dla wartości N=4 oraz M=4

3)

Wykres 3. Wykres funkcji f(x) = exp(-x²) oraz jej aproksymacji Padego dla wartości N=6 oraz M=6

Wykres 4. Wykres funkcji $f(x) = \exp(-x^2)$ oraz jej aproksymacji Padego dla wartości N=2 oraz M=4

5)

Wykres 5. Wykres funkcji $f(x) = \exp(-x^2)$ oraz jej aproksymacji Padego dla wartości N=2 oraz M=6

Wykres 6.Wykres funkcji f(x) = exp(-x²) oraz jej aproksymacji Padego dla wartości N=2 oraz M=8

5.Wnioski

Z otrzymanych wykresów wynika, że dokładność otrzymanej przez nas funkcji wymiernej $R_{N,M}(x)$ w dużej mierze zależy od podanych N i M. Im większą wartość M wprowadzimy, tym bardziej wartości naszej funkcji wymiernej zbliżają się do wartości funkcji aproksymowanej. Możemy również zauważyć, że im większa różnica pomiędzy N i M (przy założeniu, że M > N) tym dokładniejsze wykresy jesteśmy wstanie otrzymać.

Zaletą aproksymacji Padego w problemie aproksymacji jednostajnej są m.in. mniejsze błędy niż aproksymacja funkcji wielomianem N-tego stopnia.