1. Contradiction

proof by contradiction

Assume conclusion is Salse. Derive something that is absurd/impossible. This implies our original assumption is wrong, so the conclusion is true.

Proposition: 12 is irrational.

Proof: Suppose by way of contradiction (BWOC) that 12 is rotional. So there exists $a, b \in \mathbb{Z}$, $b \neq 0$ such that $12 = \frac{a_1}{b}$. We choose on b so that $\frac{a_1}{b}$ is fully reduced. Square both sides to get $2 = \frac{a_1^3}{b^2}$, so $a_1^2 = 2b^2$. Since $b^2 \in \mathbb{Z}$, a_1^2 is even. Then a_1 is even. So there exists $k \in \mathbb{Z}$ such that $a_1 = 2k$. So $(2k)^2 = 2b^2$, and $b^2 = 2k^2$. Since $k^2 \in \mathbb{Z}$, b^2 is even, then b is even. Since $a_1^2 \in \mathbb{Z}$, $a_1^2 \in \mathbb{Z}$, a

Desinition: For an integer 1>2, n is a prime if the only possible divisors are 1 and n. Otherwise n is composite, so there exist a, $b \in [N]$, a, $b \ge 2$, such that n=ab. Primes: 2,3,5,7,11,13,17,19,23,29,31,37,...

Proposition: Every integer n=2 contains a prime divisor.

Proof: Suppose BWOC that there are integers ≥ 2 that do not have prime divisors. Among all such intogers, let n be the smallest one (We can do this due to the well-ordening principle).

We see that n is not a prime, for otherwise n/n and n is a prime divisor of itself, contradiction.

So n is composite, and there exists a, b $\in \mathbb{Z}$, $a,b \ge 2$ such that n $\ge ab$.

Since $a,b\geq 2$, $a\leq n$, by the minimality of our choice of n, a has a prime divisor p. Since p|a and q|n, by transitivity, p|n. So p is a prime divisor of n, contradiction.

Euclid's Theorem: there are insinitely many primes. Proof: suppose BWOC there are Sinitely many primes.

Let P1, P2, ..., Pk be all the primes.

Dasine: N=P.P2--Pk+1. By the previous preposition, N has a prime divisor.

Suppose this prime is Pi.

Then PiN, so Pi (P.P2...Px+1). Also, Pi | P.P2...k

By div. of int. comb, Pi [(P...Px+1)-P...Px],

so Pi | I

Since all primes one at heart 2, Pi | I.

Contradiction.