DIGITAL IMAGE PROCESSING

Image Enhancement (Point Processing)

Contents

- In this lecture we will look at image enhancement point processing techniques:
 - What is point processing?
 - Negative images
 - Thresholding
 - Logarithmic transformation
 - Power law transforms
 - Grey level slicing
 - Bit plane slicing
 - Histogram Specification

Basic Spatial Domain Image Enhancement

Most spatial domain enhancement operations can be reduced to the form

$$\Box g(x, y) = T[f(x, y)]$$

where f(x, y) is the input image, g(x, y) is the processed image and T is some operator defined over some neighbourhood of (x, y)

Point Processing

- The simplest spatial domain operations occur when the neighbourhood is simply the pixel itself
- \square In this case T is referred to as a grey level transformation function or a point processing operation
- □Point processing operations take the form

$$s = T(r)$$

where S refers to the processed image pixel value and Γ refers to the original image pixel value

Point Processing Example: Negative Images

 Negative images are useful for enhancing white or grey detail embedded in dark regions of an image

Original mage

Point Processing Example: Negative Images (cont...)

$$s = intensity_{max} - r$$

Point Processing Example: Thresholding

Thresholding transformations are particularly useful for segmentation in which we want to isolate an object of interest from a background

Point Processing Example: Thresholding (cont...)

$$s = \begin{cases} 1.0 & r > threshold \\ 0.0 & r <= threshold \end{cases}$$

Intensity Transformations

Basic Grey Level Transformations

- There are many different kinds of grey level
- transformations
- □Three of the most common are shown here
 - Linear
 - Negative/Identity
 - Logarithmic
 - Log/Inverse log
 - Power law
 - nth power/nth root

Logarithmic Transformations

The general form of the log transformation is

$$s = c * log(1 + r)$$

- The log transformation maps a narrow range of low input grey level values into a wider range of output values
- □The inverse log transformation performs the opposite transformation

Logarithmic Transformations (cont...)

- Log functions are particularly useful when the input grey level values may have an extremely large range of values
- □In the following example the Fourier transform of an image is put through a log transform to reveal more detail

Logarithmic Transformations (cont...)

$$s = log(1 + r)$$

 \boldsymbol{x}

We usually set c to 1 Grey levels must be in the range [0.0, 1.0]

Power Law Transformations

Power law transformations have the following form

$$s = c * r^{\gamma}$$

Map a narrow range of dark input values into a wider range of output values or vice versa

Varying γ gives a whole family of curves

Power Law Transformations (cont...)

$$s=r^{\gamma}$$

- \square We usually set C to 1
- Grey levels must be in the range [0.0, 1.0]

Power Law Example

$$\gamma = 0.6$$

$$\gamma = 0.4$$

$$\gamma = 0.3$$

- The images to the right show a magnetic resonance (MR) image of a fractured human spine
- Different curves highlight different detail

Power Law Example

$$\gamma = 5.0$$

Power Law Transformations (cont...)

- An aerial photo of a runway is shown
- This timepower lawtransforms areused to darkenthe image
- Different curves highlight different detail

Gamma Correction

Many of you might be familiar with gamma correction of computer monitors

- □Problem is that display devices do not respond linearly to different intensities
- Can be corrected using a log transform

Piecewise Linear Transformation Functions

- Rather than using a well defined mathematical function we can use arbitrary user-defined transforms
- The images below show a contrast stretching linear transform to add contrast to a poor quality image

Gray Level Slicing

□Highlights a specific range of grey levels

Similar to thresholding

- Other levels can be suppressed or maintained
- Useful for highlighting features in an image

Bit Plane Slicing

- Often by isolating particular bits of the pixel values in an image we can highlight interesting aspects of that image
 - Higher-order bits usually contain most of the significant visual information
 - Lower-order bits contain subtle details

FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Reconstructed image using only bit planes 8 and 7

Reconstructed image using only bit planes 8, 7 and 6

Reconstructed image using only bit planes 7, 6 and 5

Histogram Equalization — Example

□ Suppose a 3-bit image (L=8) of size 64×64 (MN=4096) with

intensity distribution shown:

$$s_0 = T(r_0) = (7) \sum_{j=0}^{0} \frac{n_0}{MN} = 7 p_r(r_0) = 1.33$$

$$s_1 = T(r_1) = (7) \sum_{j=0}^{1} \frac{n_j}{MN} = 7 \sum_{j=0}^{1} p_r(r_j)$$

$$=7p_r(r_0)+7p_r(r_1)=3.08$$

$s_0 = 1.33 \rightarrow 1$	
$s_1 = 3.08 \rightarrow 3$	
$s_2 = 4.55 \rightarrow 5$	
$s_3 = 6, s_4 = 6, s_5 = 7, s_5$	$s_6 = 7, s_7 = 1$

 r_k

 $r_0 = 0$

 $r_1 = 1$

 $r_2 = 2$

 $r_3 = 3$

 $r_4 = 4$

 $r_5 = 5$ $r_6 = 6$

 $r_7 = 7$

 n_k

790

1023

850

656

329

245

122

81

 $p_r(r_k) = n_k/MN$

0.19

0.25

0.21

0.16

0.08

0.06

0.03

0.02

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Histogram Specification

- Histogram equalization is an automatic process which produces a uniform histogram of the output image
- Sometimes, it is desired to have the output image follow a certain pre-specified histogram
- The method to generate image that has a specified histogram is called histogram matching or histogram specification

$$\begin{split} s_k &= T(r_k) = (L-1) \sum_{j=0}^k \frac{n_j}{n} = \frac{(L-1)}{MN} \sum_{j=0}^k n_j \\ G(z_q) &= (L-1) \sum_{i=0}^q p_z(z_i) = s_k \end{split}$$

 $z_a = G^{-1}(s_k)$

Histogram Specification-Steps

- 1. Compute the histogram $p_r(r)$ of the given image, perform histogram equalization and round the s_k to the integer range [0,L-1]
- Compute all values of G using equation-5d for q=0, 1, 2,....,
 L-1 from the specified histogram
- 3. For every value of s_k use the stored value of G from step-2 to find the corresponding z_a so that $G(z_a)$ is closet to s_k

Histogram Specification-Steps

Histogram Specification- Example

Suppose a 3-bit image (L=8) of size 64 x 64 (MN=4096) with intensity

distribution shown:

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Step-1

$$s_0 = 1.33 \to 1$$

$$s_1 = 3.08 \rightarrow 3$$

$$s_2 = 4.55 \rightarrow 5$$

$$s_3 = 6, s_4 = 6, s_5 = 7, s_6 = 7, s_7 = 7$$

Histogram Specification- Example

Suppose a 3-bit image (L=8) of size 64 x 64 (MN=4096) with intensity

distribution shown:

 $p_r(r_k)$

.30 .25 .20 .15

.10

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Specified $p_z(z_q)$	Actual $p_z(z_k)$
0.00	0.00
0.00	0.00
0.00	0.00
0.15	0.19
0.20	0.25
0.30	0.21
0.20	0.24
0.15	0.11
	$p_z(z_q)$ 0.00 0.00 0.00 0.15 0.20 0.30 0.20

Step-2a

$$G(z_0) = 7\sum_{j=0}^{0} p_z(z_j) = 0,$$

$$G(z_1) = 0, G(z_2) = 0, G(z_3) = 1.05,$$

$$G(z_4) = 2.45, G(z_5) = 4.55,$$

$$G(z_6) = 5.95, G(z_7) = 7.00$$

 $p_z(z_q)$

Step-2b

Round the values of G(z)

$G(z_q)$
0
0
0
1
2
5
6
7

Histogram Specification- Example

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

z_q	Specified $p_z(z_q)$	Actual $p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

Third step

Find the smallest value of z_q so that value of G(z) is the closest to s_k .

For example, $s_0=1$ and $G(z_3)=1$ i.e. $s_0->z_3$

Which means that every pixel whose value=1 in the **histogram equalized** image would map to pixel valued 3 in the **histogram specified** image

z_q	$G(z_q)$
$z_0 = 0$	0
$z_1 = 1$ $z_2 = 2$	0
$z_3 = 3$	1
$z_4 = 4$	2
$z_5 = 5$	5
$z_6 = 6$	6
$z_7 = 7$	7

Histogram Matching.

Histogram Matching.

Summary

- We have looked at different kinds of point processing image enhancement
- □Next time we will start to look at neighbourhood operations – in particular filtering and convolution