Distributional Models of Semantics

Pawan Goyal

CSE, IIT Kharagpur

Week 7, Lecture 2

Vector Space Model without distributional similarity

Words are treated as atomic symbols

Vector Space Model without distributional similarity

Words are treated as atomic symbols

One-hot representation

Distributional Similarity Based Representations

You know a word by the company it keeps

Distributional Similarity Based Representations

You know a word by the company it keeps

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

Distributional Similarity Based Representations

You know a word by the company it keeps

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

These words will represent banking

Building a DSM step-by-step

The "linguistic" steps

Pre-process a corpus (to define targets and contexts)

Select the targets and the contexts

Building a DSM step-by-step

The "linguistic" steps

Pre-process a corpus (to define targets and contexts)

Select the targets and the contexts

The "mathematical" steps

Count the target-context co-occurrences

Weight the contexts (optional)

Build the distributional matrix

Reduce the matrix dimensions (optional)

Compute the vector distances on the (reduced) matrix

Week 7. Lecture 2

Many design choices

Matrix type		Weighting		Dimensionality reduction		Vector comparison
word × document word × word word × search proximity adj. × modified noun word × dependency rel. verb × arguments	×	probabilities length normalization TF-IDF PMI Positive PMI PPMI with discounting	×	LSA PLSA LDA PCA IS DCA	×	Euclidean Cosine Dice Jaccard KL KL with skew
÷ :		:		:		:

Many design choices

Matrix type		Weighting		Dimensionality reduction		Vector comparison
word × document word × word word × search proximity adj. × modified noun word × dependency rel. verb × arguments	×	probabilities length normalization TF-IDF PMI Positive PMI PPMI with discounting	×	LSA PLSA LDA PCA IS DCA	×	Euclidean Cosine Dice Jaccard KL KL with skew
;		;		:		:

General Questions

- How do the rows (words, ...) relate to each other?
- How do the columns (contexts, documents, ...) relate to each other?

The parameter space

A number of parameters to be fixed

- Which type of context?
- Which weighting scheme?
- Which similarity measure?
- ..

A specific parameter setting determines a particular type of DSM (e.g. LSA, HAL, etc.)

Documents as context: Word × document

	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10
against	0	0	0	1	0	0	3	2	3	0
age	0	0	0	1	0	3	1	0	4	0
agent	0	0	0	0	0	0	0	0	0	0
ages	0	0	0	0	0	2	0	0	0	0
ago	0	0	0	2	0	0	0	0	3	0
agree	0	1	0	0	0	0	0	0	0	0
ahead	0	0	0	1	0	0	0	0	0	0
ain't	0	0	0	0	0	0	0	0	0	0
air	0	0	0	0	0	0	0	0	0	0
aka	0	0	0	1	0	0	0	0	0	0

Words as context: Word × Word

	against	age	agent	ages	ago	agree	ahead	ain.t	air	aka	al
against	2003	90	39	20	88	57	33	15	58	22	24
age	90	1492	14	39	71	38	12	4	18	4	39
agent	39	14	507	2	21	5	10	3	9	8	25
ages	20	39	2	290	32	5	4	3	6	1	6
ago	88	71	21	32	1164	37	25	11	34	11	38
agree	57	38	5	5	37	627	12	2	16	19	14
ahead	33	12	10	4	25	12	429	4	12	10	7
ain't	15	4	3	3	11	2	4	166	0	3	3
air	58	18	9	6	34	16	12	0	746	5	11
aka	22	4	8	1	11	19	10	3	5	261	9
al	24	39	25	6	38	14	7	3	11	9	861

Parameters

- Window size
- Window shape rectangular/triangular/other

Parameters

- Window size
- Window shape rectangular/triangular/other

Consider the following passage

Suspected communist rebels on 4 July 1989 killed Col. Herminio Taylo, police chief of Makati, the Philippines major financial center, in an escalation of street violence sweeping the Capitol area. The gunmen shouted references to the rebel New People's Army. They fled in a commandeered passenger jeep. The military says communist rebels have killed up to 65 soldiers and police in the Capitol region since January.

Parameters

- Window size
- Window shape rectangular/triangular/other

5 words window (unfiltered): 2 words either side of the target word

Suspected communist rebels on 4 July 1989 killed Col. Herminio Taylo, police chief of Makati, the Philippines major financial center, in an escalation of street violence sweeping the Capitol area. The gunmen shouted references to the rebel New People's Army. They fled in a commandeered passenger jeep. The military says communist rebels have killed up to 65 soldiers and police in the Capitol region since January.

Parameters

- Window size
- Window shape rectangular/triangular/other

5 words window (filtered): 2 words either side of the target word

Suspected communist rebels on 4 July 1989 killed Col. Herminio Taylo, police chief of Makati, the Philippines major financial center, in an escalation of street violence sweeping the Capitol area. The gunmen shouted references to the rebel New People's Army. They fled in a commandeered passenger jeep. The military says communist rebels have killed up to 65 soldiers and police in the Capitol region since January.

Context weighting: documents as context

Context weighting: documents as context

Indexing function F: Essential factors

- Word frequency (f_{ij}): How many times a word appears in the document? $F \propto f_{ii}$
- Document length ($|D_i|$): How many words appear in the document? $F \propto \frac{1}{|D_i|}$
- **Document frequency (** N_j **):** Number of documents in which a word appears. $F \propto \frac{1}{N_i}$

Context weighting: documents as context

Indexing function F: Essential factors

- Word frequency (f_{ij}): How many times a word appears in the document? $F \propto f_{ii}$
- Document length ($|D_i|$): How many words appear in the document? $F \propto \frac{1}{|D_i|}$
- **Document frequency (** N_j **):** Number of documents in which a word appears. $F \propto \frac{1}{N_i}$

Indexing Weight: tf-Idf

• $f_{ij} * log(\frac{N}{N_j})$ for each term, normalize the weight in a document with respect to L_2 -norm.

basic inti	basic intuition				
word1	word2	freq(1,2)	freq(1)	freq(2)	
dog	small	855	33,338	490,580	
dog	domesticated	29	33,338	918	

basic intuition

word1	word2	freq(1,2)	freq(1)	freq(2)
dog	small	855	33,338	490,580
dog	domesticated	29	33,338	918

Association measures are used to give more weight to contexts that are more significantly associted with a targer word.

basic intuition

word1	word2	freq(1,2)	freq(1)	freq(2)
dog	small	855	33,338	490,580
dog	domesticated	29	33,338	918

Association measures are used to give more weight to contexts that are more significantly associted with a targer word.

 The less frequent the target and context element are, the higher the weight given to their co-occurrence count should be.

basic intuition

word1	word2	freq(1,2)	freq(1)	freq(2)
dog	small	855	33,338	490,580
dog	domesticated	29	33,338	918

Association measures are used to give more weight to contexts that are more significantly associted with a targer word.

- The less frequent the target and context element are, the higher the weight given to their co-occurrence count should be.
 - ⇒ Co-occurrence with frequent context element *small* is less informative than co-occurrence with rarer *domesticated*.

basic intuition

word1	word2	freq(1,2)	freq(1)	freq(2)
dog	small	855	33,338	490,580
dog	domesticated	29	33,338	918

Association measures are used to give more weight to contexts that are more significantly associted with a targer word.

- The less frequent the target and context element are, the higher the weight given to their co-occurrence count should be.
 - ⇒ Co-occurrence with frequent context element *small* is less informative than co-occurrence with rarer *domesticated*.
- different measures e.g., Mutual information, Log-likelihood ratio

Pointwise Mutual Information (PMI)

$$PMI(w_1, w_2) = log_2 \frac{P_{corpus}(w_1, w_2)}{P_{ind}(w_1, w_2)}$$

Pointwise Mutual Information (PMI)

$$PMI(w_1, w_2) = log_2 \frac{P_{corpus}(w_1, w_2)}{P_{ind}(w_1, w_2)}$$

$$PMI(w_1, w_2) = log_2 \frac{P_{corpus}(w_1, w_2)}{P_{corpus}(w_1)P_{corpus}(w_2)}$$

Pointwise Mutual Information (PMI)

$$PMI(w_1, w_2) = log_2 \frac{P_{corpus}(w_1, w_2)}{P_{ind}(w_1, w_2)}$$

$$PMI(w_1, w_2) = log_2 \frac{P_{corpus}(w_1, w_2)}{P_{corpus}(w_1)P_{corpus}(w_2)}$$

$$P_{corpus}(w_1, w_2) = \frac{freq(w_1, w_2)}{N}$$

$$P_{corpus}(w) = \frac{freq(w)}{N}$$

Positive PMI

All PMI values less than zero are replaced with zero.

Positive PMI

All PMI values less than zero are replaced with zero.

Bias towards infrequent events

Consider w_j having the maximum association with w_i ,

$$P_{corpus}(w_i) \approx P_{corpus}(w_j) \approx P_{corpus}(w_i, w_j)$$

Positive PMI

All PMI values less than zero are replaced with zero.

Bias towards infrequent events

Consider w_i having the maximum association with w_i ,

 $P_{corpus}(w_i) \approx P_{corpus}(w_j) \approx P_{corpus}(w_i, w_j)$

PMI increases as the probability of w_i decreases.

Positive PMI

All PMI values less than zero are replaced with zero.

Bias towards infrequent events

Consider w_i having the maximum association with w_i ,

 $P_{corpus}(w_i) \approx P_{corpus}(w_j) \approx P_{corpus}(w_i, w_j)$

PMI increases as the probability of w_i decreases.

Also, consider a word w_j that occurs once in the corpus, also in the context of w_i .

Positive PMI

All PMI values less than zero are replaced with zero.

Bias towards infrequent events

Consider w_i having the maximum association with w_i ,

$$P_{corpus}(w_i) \approx P_{corpus}(w_j) \approx P_{corpus}(w_i, w_j)$$

PMI increases as the probability of w_i decreases.

Also, consider a word w_j that occurs once in the corpus, also in the context of w_i . A discounting factor proposed by Pantel and Lin:

$$\delta_{ij} = \frac{f_{ij}}{f_{ij}+1} \frac{min(f_i, f_j)}{min(f_i, f_j)+1}$$

$$PMI_{new}(w_i, w_j) = \delta_{ij}PMI(w_i, w_j)$$

Distributional Vectors: Example

Normalized Distributional Vectors using Pointwise Mutual Information

petroleum	oil:0.032 gas:0.029 crude:0.029 barrels:0.028 exploration:0.027 barrel:0.026
petroleum	opec:0.026 refining:0.026 gasoline:0.026 fuel:0.025 natural:0.025 exporting:0.025
drug	trafficking:0.029 cocaine:0.028 narcotics:0.027 fda:0.026 police:0.026 abuse:0.026
arug	marijuana:0.025 crime:0.025 colombian:0.025 arrested:0.025 addicts:0.024
insurance	insurers:0.028 premiums:0.028 lloyds:0.026 reinsurance:0.026 underwriting:0.025
insurance	pension:0.025 mortgage:0.025 credit:0.025 investors:0.024 claims:0.024 benefits:0.024
forest	timber:0.028 trees:0.027 land:0.027 forestry:0.026 environmental:0.026 species:0.026
iorest	wildlife:0.026 habitat:0.025 tree:0.025 mountain:0.025 river:0.025 lake:0.025
robotics	robots:0.032 automation:0.029 technology:0.028 engineering:0.026 systems:0.026
TODOLICS	sensors:0.025 welding:0.025 computer:0.025 manufacturing:0.025 automated:0.025