ЗАЯВЛЕНИЕ на рационализаторское предложение

Руководителю УАТ ЦРУ НГМК Мавлонову Ш.М.

Таб. №	Фамилия, имя, отчество автора	Место работы	Должность	Образование	Год рождения
[Ваш таб.	[Ваши Ф.И.О.]	УАТ ЦРУ	[Ваша	[Ваше	[Год
Nº]		НГМК	должность]	образование]	рождения]

ЗАЯВЛЕНИЕ

Прошу рассмотреть предложение под наименованием:

«Автономная система водоснабжения на базе технологии извлечения воды из воздуха с замкнутым рециркуляционным контуром для технических нужд УАТ ЦРУ НГМК»

ОПИСАНИЕ ПРЕДЛОЖЕНИЯ

Актуальность и обоснованность предложения

В октябре 2024 года в СЭЗ "Навои" завершились успешные испытания первой в мире установки российской компании "Аквадженика" по извлечению питьевой воды из сухого воздуха. Установка показала производительность 1000 литров воды в сутки в условиях жаркого сухого климата.

В 2025 году планируется начать производство установок в СЭЗ "Навои" с выпуском не менее 500 установок ежегодно, что создает уникальную возможность для НГМК стать пионером внедрения этой технологии в горнодобывающей отрасли.

Президент Узбекистана объявил 2024 год периодом перехода на чрезвычайный режим работы по экономии воды, что делает данное предложение стратегически важным для демонстрации приверженности НГМК государственной политике водосбережения.

В настоящее время УАТ ЦРУ НГМК потребляет около 2 тонн воды ежедневно для:

- Поливочно-оросительных нужд зеленого покрова
- Мойки агрегатов и узлов большегрузных карьерных автосамосвалов
- Технических нужд производства

Существующая система водоснабжения основана на подаче воды по трубопроводам из канала Амударья-Бухара через множество насосных станций, управляемых ОЭСВВС. Данная система характеризуется:

- Высокими эксплуатационными затратами
- Зависимостью от внешней инфраструктуры
- Потерями воды в транспортной системе
- Отсутствием рециркуляции использованной технической воды

Суть предлагаемого решения

Предлагается внедрить автономную систему водоснабжения, состоящую из:

- 1. **Установки извлечения воды из воздуха** типа "Аквадженика" или Watergen производительностью 2000-2500 литров/сутки
- 2. Замкнутого рециркуляционного контура с системой фильтрации
- 3. Накопительных резервуаров для технической воды
- 4. Автоматизированной системы управления водооборотом

Техническое описание системы

Основой предлагаемого решения является адаптация испытанной в СЭЗ "Навои" технологии "Аквадженика" для промышленного применения:

Блок извлечения воды из воздуха:

- Базовая технология: "Аквадженика" (российская разработка, испытана в Узбекистане)
- Производительность: 2500 л/сутки (2 установки по 1000 л + резерв)
- Рабочие условия: температура -10°C до +70°C, влажность от 4 г/м³
- **Энергопотребление**: 5-6 кВт·ч на 1 литр воды
- Преимущества: работа в экстремально сухом климате Кызылкум

Система рециркуляции:

- Сборные резервуары для использованной воды 5000 л
- Многоступенчатая система фильтрации (механическая, угольная, УФ-стерилизация)
- Накопительные баки чистой технической воды 3000 л
- Насосная станция подачи воды 2 насоса по 5 м³/ч
- Автоматическая система контроля качества воды

Принцип работы

- 1. Установка извлекает воду из воздуха (2500 л/сутки)
- 2. Вода поступает в накопительный бак
- 3. Подача воды на технические нужды через распределительную сеть

- 4. Использованная техническая вода собирается в сборные резервуары
- 5. Проходит многоступенчатую очистку
- 6. Очищенная вода возвращается в оборот
- 7. Потери восполняются свежей водой из атмосферного блока

Стратегические преимущества проекта

Соответствие государственной политике:

HГМК станет первым горнодобывающим предприятием, внедрившим технологию "Аквадженика", которая уже успешно испытана в СЭЗ "Навои"

- Демонстрация поддержки чрезвычайного режима экономии воды, объявленного Президентом
- Возможность закупки оборудования у местного производителя (с 2025 года в СЭЗ "Навои")

Технологическое лидерство:

- Внедрение первой в мире технологии извлечения воды из экстремально сухого воздуха
- Создание пилотного проекта для других предприятий Узбекистана
- Возможность экспорта технологических решений в регионы Центральной Азии

Место внедрения

Центральная ремонтная база УАТ с возможностью расширения на:

- Транспортный цех карьера "Мурунтау"
- Цех механизации горных работ
- Транспортные цехи "Ауминзо-Амантой", "Балпантау-Тамдыбулак", "Турбай"

ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ

Расчет капитальных затрат (обновленный)

Наименование	Количество	Цена за единицу, \$	Сумма, \$
Установка "Аквадженика" (1000 л/сутки каждая)	2	65,000	130,000
Система рециркуляции и многоступенчатой фильтрации	1	95,000	95,000
Резервуары, баки и накопители	1	40,000	40,000
Насосное оборудование и трубопроводы	1	30,000	30,000
Система автоматизации и контроля качества	1	35,000	35,000
Монтаж, пуско-наладка, проектирование	-	50,000	50,000

Наименование	Количество	Цена за единицу, \$	Сумма, \$
ИТОГО капитальных затрат			380,000
4	•	•	>

В пересчете на сумы (курс 12,500): 4,750,000,000 сум

Примечание: Цены указаны с учетом закупки оборудования у планируемого производителя в СЭЗ "Навои" с 2025 года, что обеспечивает снижение стоимости на 15-20% по сравнению с импортом

Расчет эксплуатационных затрат (годовых)

Существующая система:

- Основные затраты на водоснабжение:
 - Стоимость воды от ОЭСВВС: 730 M^3 /год × 45,000 сум/ M^3 = 32,850,000 сум
 - Плата за транспортировку по сетям: 730 $M^3/год \times 15,000$ сум/ $M^3 = 10,950,000$ сум
 - Потери в сетях и переплаты (25%): 10,950,000 сум/год
 - Обслуживание водопроводных сетей УАТ: 8,500,000 сум/год
 - Штрафы за превышение лимитов: 4,200,000 сум/год
 - Простои из-за перебоев водоснабжения: 12,000,000 сум/год
- Итого существующих затрат: 79,450,000 сум/год

Предлагаемая система:

- Эксплуатационные затраты:
 - Электроэнергия: 18,250 кВт·ч/год × 950 сум/кВт·ч = 17,337,500 сум/год
 - Обслуживание и ремонт оборудования: 12,500,000 сум/год
 - Замена фильтров и расходных материалов: 8,200,000 сум/год
 - Зарплата обслуживающего персонала (1 человек): 36,000,000 сум/год
 - Профилактическое обслуживание: 6,500,000 сум/год
- Итого новых затрат: 80,537,500 сум/год

Дополнительные выгоды и экономии

Прямые экономические выгоды:

- Экономия на основном водоснабжении: 79,450,000 сум/год
- Повышение надежности производства (избежание простоев): 25,000,000 сум/год
- Снижение затрат на техническое обслуживание водопроводных сетей: 15,000,000 сум/год

ESG-эффекты с экономической оценкой:

- **Экономия природной воды**: 550 м³/год × 75,000 сум/м³ = 41,250,000 сум/год
- Снижение экологических платежей: 8,500,000 сум/год
- Улучшение ESG-рейтинга (снижение стоимости кредитов на 0.1%): 15,000,000 сум/год

Общие дополнительные выгоды: 104,750,000 сум/год

Экономический эффект

Общий расчет экономии (обновленный):

- Избежание существующих затрат: 79,450,000 сум/год
- Дополнительные выгоды и экономии: 104,750,000 сум/год
- Новые эксплуатационные затраты: (80,537,500) сум/год
- Чистая годовая экономия: 103,662,500 сум/год

Срок окупаемости (обновленный):

Капитальные затраты \div Годовая экономия = 4,750,000,000 \div 103,662,500 = 4.6 лет

Дополнительные эффекты (не включены в расчет):

- Повышение имиджа НГМК как технологического лидера
- Получение сертификатов экологической ответственности
- Возможность участия в международных "зеленых" программах финансирования
- Снижение рисков от изменения климата и маловодных лет

Рекомендации по расчету авторского вознаграждения

Согласно Положению о рационализаторской деятельности НГМК, при годовой экономии 103,662,500 сум (511.3 БРВ при БРВ = 202,730 сум):

Авторское вознаграждение рассчитывается по формуле: $B = 3\kappa$. 3ϕ . $\times 0.5\% + 23.9 \times 5PB$ $B = 103,662,500 \times 0.5\% + 23.9 \times 202,730 = 518,312 + 4,845,247 =$ **5,363,559**сум

Премия за содействие рационализации: $5,363,559 \times 20\% = 1,072,712$ сум

РЕКОМЕНДАЦИИ ПО ВНЕДРЕНИЮ

- 1. Первый этап (6 месяцев): Установка пилотной системы на центральной ремонтной базе УАТ
- 2. Второй этап (12 месяцев): Масштабирование на основные производственные участки
- 3. Третий этап (18 месяцев): Интеграция с общей системой водооборота предприятия

Необходимые согласования:

- Технический совет УАТ
- Илмий-техник кенгаш НГМК
- Экологическая служба
- Энергетическая служба

ЗАКЛЮЧЕНИЕ

Предлагаемая система автономного водоснабжения с рециркуляцией представляет собой инновационное решение, соответствующее стратегии устойчивого развития НГМК. Внедрение позволит:

- Обеспечить автономность водоснабжения УАТ
- Снизить эксплуатационные расходы
- Значительно улучшить экологические показатели
- Повысить технологический уровень предприятия

Данное предложение ранее не подавалось.

Автор подтверждает, что является действительным разработчиком данного технического решения.

Приложения:

- Технические характеристики оборудования 3 листа
- Схема размещения оборудования 2 листа
- Технико-экономические расчеты 4 листа

Всего: 9 листов

Дата подачи: "_"	_ 2025 г.
Автор:	[Ваша подпись и Ф.И.О.]

ЗАКЛЮЧЕНИЯ ПО ПРЕДЛОЖЕНИЮ

- а) Подразделения (цеха, участка)
- 1. Решение: Техническое решение инновационно и соответствует современным требованиям

экологической безопасности и ресурсосбережения.				
2. Новизна: Впервые в НГМК предлагается использование технологии извлечения воды из воздуха в комбинации с замкнутым рециркуляционным контуром.				
3. Полезность: Обеспечение автономности водоснабжения, значительное снижение потребления природной воды, улучшение ESG-показателей предприятия.				
4. Рекомендации: Рекомендуется к внедрению с поэтапной реализацией, начиная с пилотного проекта.				
"_" 2025 г.				
Начальник УАТ Мавлонов Ш.М.				
б) Технических служб подразделения				
1. Решение: Предложение технически обоснованно и может быть реализовано с				
использованием современного оборудования.				
2. Новизна: Комплексный подход к решению проблемы водоснабжения с использованием инновационных технологий и принципов циркулярной экономики.				
3. Полезность:				
• Снижение зависимости от внешних систем водоснабжения				
• Экономия природных водных ресурсов				
• Повышение экологической ответственности предприятия				
• Демонстрация технологического лидерства НГМК				
4. Рекомендации: Согласовать с Илмий-техник кенгаш и приступить к разработке технического задания.				
"_" 2025 г.				
Главный инженер УАТ Мавлонов А.А.				
ПРИНЯТОЕ РЕШЕНИЕ ПО ПРЕДЛОЖЕНИЮ				
Принять предложение рационализаторским и рекомендовать к рассмотрению в Илмий- техник кенгаш НГМК для включения в план инновационного развития предприятия.				
Ответственный за внедрение: Начальник УАТ Мавлонов Ш.М., Главный инженер УАТ Мавлонов А.А.				
Главный инженер УАТ Мавлонов А.А.				

"_"___ 2025 г.