Pierre-Alexandre Mattei

Inria, Université Côte d'Azur

- pamattei.github.io
- **y** @pamattei
- pierre-alexandre.mattei@inria.fr

Overview of todday's lecture

Super short recap about last lecture

Latent variable models

Non-deep latent variable models

Approximate maximum likelihood for DLVMs

Deep learning is a general framework for function approximation.

Deep learning is a general framework for function approximation.

It can be used as a building block within probabilistic models by **using neural nets to model unknown functions.**

Deep learning is a general framework for function approximation.

It can be used as a building block within probabilistic models by **using neural nets to model unknown functions.**

Last week's simple example was binary classification:

$$p_{\theta}(y|\mathbf{x}) = \mathcal{B}(y|\pi_{\theta}(\mathbf{x})) = \pi_{\theta}(\mathbf{x})^{y}(1 - \pi_{\theta}(\mathbf{x}))^{1-y},$$

where the function $\mathbf{x} \mapsto \pi_{\theta}(\mathbf{x})$ is a neural net with parameters θ . Why it it useful again for classification to use a neural net for π_{θ} ?

Deep learning is a general framework for function approximation.

It can be used as a building block within probabilistic models by **using neural nets to model unknown functions.**

Last week's simple example was binary classification:

$$p_{\theta}(y|\mathbf{x}) = \mathcal{B}(y|\pi_{\theta}(\mathbf{x})) = \pi_{\theta}(\mathbf{x})^{y}(1 - \pi_{\theta}(\mathbf{x}))^{1-y},$$

where the function $\mathbf{x} \mapsto \pi_{\theta}(\mathbf{x})$ is a neural net with parameters θ . Why it it useful again for classification to use a neural net for π_{θ} ?

For many reasons! It can model arbitrarily complex decision boundaries, we can use prior information in the architecure (e.g. for image classification), we can do large-scale maximum likelihood training using stochastic gradient descent, leverage GPUs...

Overview of todday's lecture

Super short recap about last lecture

Latent variable models

Non-deep latent variable models

Approximate maximum likelihood for DLVMs

Latent variable models

Let's assume that we have i.i.d. data $x_1, ..., x_n$ that live in a **high-dimensional space** \mathcal{X} (for example images of newspaper articles).

Latent variable models

Let's assume that we have i.i.d. data $\mathbf{x}_1,...,\mathbf{x}_n$ that live in a **high-dimensional space** \mathcal{X} (for example images of newspaper articles).

Often, it is reasonable to assume that these data essentially depend on a few important factors of variation:

- if we have images of faces: size of nose, color of hair, glasses or not...
- if we have newspaper articles: topics of the paper, style...
- if we have molecules: physical properties, geometrical shape...

Latent variable models

Let's assume that we have i.i.d. data $x_1,...,x_n$ that live in a **high-dimensional space** \mathcal{X} (for example images of newspaper articles).

Often, it is reasonable to assume that these data essentially depend on a few important factors of variation:

- if we have images of faces: size of nose, color of hair, glasses or not...
- if we have newspaper articles: topics of the paper, style...
- if we have molecules: physical properties, geometrical shape...

This assumption is the cornerstone of **latent variable models**, that assume that the data are governed by **unobserved random variables** $\mathbf{z}_1,...,\mathbf{z}_n$ **that live in a low dimensional space** \mathcal{Z} (for example \mathbf{R}^2). We can think of \mathbf{z}_i as a **code** summarizing the essential factors of the data point \mathbf{x}_i .

Overview of todday's lecture

Super short recap about last lecture

Latent variable models

Non-deep latent variable models

Approximate maximum likelihood for DLVMs

In this slide, we assume that the data are continuous (i.e. $\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^p$).

In this slide, we assume that the data are continuous (i.e. $\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^p$).

Factor analysis is probably one of the oldest latent variable models (studied since at least the 1940s). The generative process is:

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi}).$

In this slide, we assume that the data are continuous (i.e. $\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^p$).

Factor analysis is probably one of the oldest latent variable models (studied since at least the 1940s). The generative process is:

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi}).$

Probabilistic PCA (PPCA, Tipping and Bishop, JRSSB, 1999) is a a slightly less general model that you already saw in the HD stats course:

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}_p).$

In this slide, we assume that the data are continuous (i.e. $\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^p$).

Factor analysis is probably one of the oldest latent variable models (studied since at least the 1940s). The generative process is:

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \boldsymbol{\Psi}).$

Probabilistic PCA (PPCA, Tipping and Bishop, JRSSB, 1999) is a a slightly less general model that you already saw in the HD stats course:

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \sigma^2 \mathbf{I}_p).$

Related models for non-continuous data: topic models (text), Poisson PPCA (count data). What is the geometric intuition?

How do we transform this kind of model

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \sigma^2 \mathbf{I}_p).$

...into "something deep"?

How do we transform this kind of model

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}_p).$

...into "something deep"?

We can replace the affine function $\mathbf{z}\mapsto W\mathbf{z}+\mu$ by a neural net!

How do we transform this kind of model

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}_p).$

...into "something deep"?

We can replace the affine function $\mathbf{z}\mapsto \mathbf{W}\mathbf{z}+\mu$ by a neural net!

That's the key idea of **deep latent variable models (DLVMs)**, present in particular in both **variational autoencoders (VAEs)**, invented independently by Kingma and Welling (ICLR 2014) and Rezende, Mohamed & Wierstra (ICML 2014), and **generative adversarial networks (GANs)** (Goodfellow et al., NeurIPS 2014).

How do we transform this kind of model

- $\mathbf{z}_i \sim \mathcal{N}(0, \mathbf{I}_d)$,
- $\mathbf{x}_i | \mathbf{z}_i \sim \mathcal{N}(\mathbf{W}\mathbf{z}_i + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}_p).$

...into "something deep"?

We can replace the affine function $\mathbf{z} \mapsto \mathbf{W}\mathbf{z} + \mu$ by a neural net!

That's the key idea of **deep latent variable models (DLVMs)**, present in particular in both **variational autoencoders (VAEs)**, invented independently by Kingma and Welling (ICLR 2014) and Rezende, Mohamed & Wierstra (ICML 2014), and **generative adversarial networks (GANs)** (Goodfellow et al., NeurIPS 2014).

In this lecture, we'll focus on VAEs, but GANs are really quite similar.

Deep latent variable models (DLVMs)

Kingma and Welling (ICLR 2014), Rezende, Mohamed & Wierstra (ICML 2014), Goodfellow et al. (NeurIPS 2014)

Assume that $(\mathbf{x}_i, \mathbf{z}_i)_{i \leq n}$ are i.i.d. random variables driven by the model:

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\theta}(\mathbf{x} \mid \mathbf{z}) & \text{(observation model)} \end{cases}$$

where

- $\mathbf{z} \in \mathbb{R}^d$ is the **latent** variable,
- $x \in \mathcal{X}$ is the **observed** variable.

Deep latent variable models (DLVMs)

Kingma and Welling (ICLR 2014), Rezende, Mohamed & Wierstra (ICML 2014), Goodfellow et al. (NeurIPS 2014)

Assume that $(\mathbf{x}_i, \mathbf{z}_i)_{i \leq n}$ are i.i.d. random variables driven by the model:

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) = \Phi(\mathbf{x} \mid f_{\boldsymbol{\theta}}(\mathbf{z})) & \text{(observation model)} \end{cases}$$

where

- $\mathbf{z} \in \mathbb{R}^d$ is the **latent** variable.
- $x \in \mathcal{X}$ is the **observed** variable,
- the function $f_{\theta}: \mathbb{R}^d \to H$ is a (deep) neural network called the decoder
- $(\Phi(\cdot \mid \boldsymbol{\eta}))_{\boldsymbol{\eta} \in H}$ is a parametric family called the **observation model**, usually **very simple**: unimodal and fully factorised (e.g. multivariate Gaussians or products of multinomials)

The role of the prior

As in regular factor analysis, the prior distribution of the latent variable is often an isotropic Gaussian $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}_d, \mathbf{I}_d)$.

The role of the prior

As in regular factor analysis, the prior distribution of the latent variable is often an **isotropic Gaussian** $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}_d, \mathbf{I}_d)$.

More complex, **learnable priors** have also been considered. For example, mixtures of K Gaussians:

$$p(\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

where the parameters $\pi_1,...,\pi_K, \mu_1,...,\mu_K, \Sigma_1,...\Sigma_K$ are learned.

The role of the prior

As in regular factor analysis, the prior distribution of the latent variable is often an **isotropic Gaussian** $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}_d, \mathbf{I}_d)$.

More complex, **learnable priors** have also been considered. For example, mixtures of *K* Gaussians:

$$p(\mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

where the parameters $\pi_1,...,\pi_K, \mu_1,...,\mu_K, \Sigma_1,...\Sigma_K$ are learned.

Note that **this prior is not a prior in the Bayesian sense** (i.e., about parameter uncertainty).

The role of the observation model

The observation model $(\Phi(\cdot \mid \eta))_{\eta \in H}$ usually **very simple**: unimodal and fully factorised (e.g. multivariate Gaussians or products of multinomials)

Its parameters are the output of the decoder.

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\mathbf{z})) & \text{(Gaussian observation model)} \end{cases}$$

The role of the observation model

The observation model $(\Phi(\cdot \mid \eta))_{\eta \in H}$ usually **very simple**: unimodal and fully factorised (e.g. multivariate Gaussians or products of multinomials)

Its parameters are the output of the decoder.

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\theta}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{\theta}(\mathbf{z}), \boldsymbol{\Sigma}_{\theta}(\mathbf{z})) & \text{(Gaussian observation model)} \end{cases}$$

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\theta}(\mathbf{x} \mid \mathbf{z}) = \mathcal{B}(\mathbf{x} \mid \boldsymbol{\pi}_{\theta}(\mathbf{z})) & \text{(Bernoulli observation model)} \end{cases}$$

The role of the observation model

The observation model $(\Phi(\cdot \mid \boldsymbol{\eta}))_{\boldsymbol{\eta} \in H}$ usually **very simple**: unimodal and fully factorised (e.g. multivariate Gaussians or products of multinomials)

Its parameters are the output of the decoder.

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\mathbf{z})) & \text{(Gaussian observation model)} \end{cases}$$

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) = \mathcal{B}(\mathbf{x} \mid \boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})) & \text{(Bernoulli observation model)} \end{cases}$$

$$\begin{cases} \mathbf{z} \sim p(\mathbf{z}) & \text{(prior)} \\ \mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) = \mathsf{St}(\mathbf{x} \mid \boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\mathbf{z}), \boldsymbol{\nu}_{\boldsymbol{\theta}}(\mathbf{z})) & \text{(Student's t observation model)} \end{cases}$$

The role of the decoder

The role of the **decoder** $f_{\theta} : \mathbb{R}^d \to H$ is:

- to transform \mathbf{z} (the code) into parameters $\eta = f_{\theta}(\mathbf{z})$ of the observation model $\Phi(\cdot \mid \eta)$.
- The weights θ of the **decoder** are learned.

Simple non-linear decoder (d=1, p=2): $f_{\theta}(z) = \mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z})$ with, for all $z \in \mathbb{R}$,

$$\boldsymbol{\mu}_{\boldsymbol{\theta}}(z) = \left(10\sin(z)^3, 10\cos(z) - 10\cos(z)^4\right), \ \boldsymbol{\Sigma}_{\boldsymbol{\theta}}(\mathbf{z}) = \mathsf{Diag}\left(\left(\frac{\sin(z)}{3z}\right)^2, \left(\frac{\sin(z)}{z}\right)^2\right).$$

Training data $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ binary MNIST

Generative model for $\mathbf{z} \in \mathbb{R}^2$ and $\mathbf{x} \in \{0, 1\}^{28 \times 28}$

$$\begin{cases} \mathbf{z} \sim \mathcal{N} \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \\ x^{j,k} \sim \text{Bernoulli}(p = f^{j,k}(\mathbf{z})) \end{cases}$$

Decoder network

$$f(\mathbf{z}) = \text{Sigmoid}(\mathbf{V} \tanh(\mathbf{W}\mathbf{z} + \mathbf{b}) + \boldsymbol{\beta})$$

Training data $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ binary MNIST

Generative model for $\mathbf{z} \in \mathbb{R}^2$ and $\mathbf{x} \in \{0,1\}^{28 \times 28}$

$$\begin{cases} \mathbf{z} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) \\ x^{j,k} \sim \text{Bernoulli}(p = f^{j,k}(\mathbf{z})) \end{cases}$$

Decoder network

$$f(\mathbf{z}) = \operatorname{Sigmoid}(\mathbf{V} \tanh(\mathbf{W}\mathbf{z} + \mathbf{b}) + \boldsymbol{\beta})$$

$$\mathbf{z} \sim \mathcal{N}\Big(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}1&0\\0&1\end{bmatrix}\Big)$$

 $\mathbf{z} = (-1.2033, 0.5340)$

Training data $\{x_1, \ldots, x_n\}$ binary MNIST

Generative model for $\mathbf{z} \in \mathbb{R}^2$ and $\mathbf{x} \in \{0,1\}^{28 \times 28}$

$$\begin{cases} \mathbf{z} \sim \mathcal{N} \Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Big) \\ x^{j,k} \sim \mathrm{Bernoulli}(p = f^{j,k}(\mathbf{z})) \end{cases}$$

Decoder network

$$f(\mathbf{z}) = \text{Sigmoid}(\mathbf{V} \tanh(\mathbf{W}\mathbf{z} + \mathbf{b}) + \boldsymbol{\beta})$$

$$\begin{split} & \mathbf{z} \sim \mathcal{N}\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\Big) \\ & \mathbf{z} = (-1.2033, 0.5340) \end{split}$$

Training data $\{x_1, \ldots, x_n\}$ binary MNIST

Generative model for $\mathbf{z} \in \mathbb{R}^2$ and $\mathbf{x} \in \{0, 1\}^{28 \times 28}$

$$\begin{cases} \mathbf{z} \sim \mathcal{N} \Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Big) \\ x^{j,k} \sim \text{Bernoulli}(p = f^{j,k}(\mathbf{z})) \end{cases}$$

Decoder network

$$f(\mathbf{z}) = \text{Sigmoid}(\mathbf{V} \tanh(\mathbf{W}\mathbf{z} + \mathbf{b}) + \boldsymbol{\beta})$$

$$\mathbf{z} \sim \mathcal{N}\left(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}1&0\\0&1\end{bmatrix}\right)$$

 $\mathbf{z} = (-1.2033, 0.5340)$

$$f(\mathbf{z})$$

$$x^{j,k} \sim \operatorname{Bern}(f^{j,k}(\mathbf{z}))$$

Training data $\{x_1, \ldots, x_n\}$ binary MNIST

Generative model for $\mathbf{z} \in \mathbb{R}^2$ and $\mathbf{x} \in \{0, 1\}^{28 \times 28}$

$$\begin{cases} \mathbf{z} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) \\ x^{j,k} \sim \text{Bernoulli}(p = f^{j,k}(\mathbf{z})) \end{cases}$$

Decoder network

$$f(\mathbf{z}) = \text{Sigmoid}(\mathbf{V} \tanh(\mathbf{W}\mathbf{z} + \mathbf{b}) + \boldsymbol{\beta})$$

$$\mathbf{z} \sim \mathcal{N}\Big(\begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}1&0\\0&1\end{bmatrix}\Big)$$

 $\mathbf{z} = (0.0791, -1.8165)$

$$x^{j,k} \sim \operatorname{Bern}(f^{j,k}(z))$$

Training data $\{x_1, \ldots, x_n\}$ binary MNIST

Generative model for $\mathbf{z} \in \mathbb{R}^2$ and $\mathbf{x} \in \{0, 1\}^{28 \times 28}$

$$\begin{cases} \mathbf{z} \sim \mathcal{N}\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\Big) \\ x^{j,k} \sim \text{Bernoulli}(p = f^{j,k}(\mathbf{z})) \end{cases}$$

Decoder network

$$f(\mathbf{z}) = \text{Sigmoid}(\mathbf{V} \tanh(\mathbf{W}\mathbf{z} + \mathbf{b}) + \boldsymbol{\beta})$$

$$\begin{split} & \mathbf{z} \sim \mathcal{N}\Big(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\Big) \\ & \mathbf{z} = (1.0097, -0.1711) \end{split}$$

$$x^{j,k} \sim \operatorname{Bern}(f^{j,k}(z))$$

DLVMs applications: density estimation on MNIST

Rezende, Mohamed & Wierstra (ICML 2014)

0	3		3	_	6	7	3	8	8
9	0	5	5	0	ď	7	8	4	8
4	6	3	2	4	1	٢.	1	フ	7
5	1	8	4	8		4	5	4	7
3	3	0	Ь	1	3	7	6	2	ω
6	4	5	۵		yw.	***	5	8	***
7	8	3	7	9	7	1	6	7	œ
0	0	<i>5</i>	7		3	_	3	2	1
3	3	9	3	•	Ģ	8	7	8	6
ð	1	В	Ч	9	Ģ	1	6	8	8

6	-	9	A	(1)	7	3	Ş	0	9
*	5	ing	Ď	6	9	\$	4	3	Ô
4	de je	14	5		4	Å	lon	4	N. San
8	9	***	ブ	3	9	Ø.	\$ 5	A. A.	1
É	Ģ	+4	O	Ö	9				©×0
0	a		6	1	5		7	7	G
\$	6	2	9	7	*	9	4	O	Ą
n.	3	*****	₩	4	1	Ç	Ž.	4	٥
	1	4.5	7	6	4	ť.	5	3	7
6	- Par	4.64		1	G.	ð	9	q	\$7 3

Training data

Model samples

DLVMs applications: clustering on MNIST

Harchaoui, Mattei, Bouveyron & Almansa (2018)

DLVMs applications: Data imputation

Rezende, Mohamed & Wierstra (ICML 2014)

DLVMs applications: Data imputation

Mattei & Frellsen (ICML 2019)

DLVMs applications: Molecular design

Kusner, Paige, and Hernandez-Lobato (2017)

DLVMs applications: Reinforcement learning

Ha & Schmidhuber (2018)

DLVMs applications: Reinforcement learning

Ha & Schmidhuber (2018)

Overview of todday's lecture

Super short recap about last lecture

Latent variable models

Non-deep latent variable models

Approximate maximum likelihood for DLVMs

Kingma & Welling (2014), Rezende et al. (2014)

Given a data matrix $\mathbf{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)^\intercal\in\mathcal{X}^n$, the log-likelihood function for a DLVM is

$$\ell(\boldsymbol{\theta}) = \log p_{\boldsymbol{\theta}}(\mathbf{X}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i),$$

where

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

We would like to find a MLE $\hat{\theta} \in \operatorname{argmax}_{\theta} \ell(\theta)$.

Kingma & Welling (2014), Rezende et al. (2014)

Given a data matrix $\mathbf{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)^\intercal\in\mathcal{X}^n$, the log-likelihood function for a DLVM is

$$\ell(\boldsymbol{\theta}) = \log p_{\boldsymbol{\theta}}(\mathbf{X}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i),$$

where

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

We would like to find a MLE $\hat{\theta} \in \operatorname{argmax}_{\theta} \ell(\theta)$.

However, even with a simple output density $p_{\theta}(\mathbf{x} \mid \mathbf{z})$:

• $p_{\theta}(\mathbf{x})$ is intractable rendering MLE intractable

Kingma & Welling (2014), Rezende et al. (2014)

Given a data matrix $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^\intercal \in \mathcal{X}^n$, the **log-likelihood function** for a DLVM is

$$\ell(\boldsymbol{\theta}) = \log p_{\boldsymbol{\theta}}(\mathbf{X}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i),$$

where

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

We would like to find a MLE $\hat{\theta} \in \operatorname{argmax}_{\theta} \ell(\theta)$.

However, even with a simple output density $p_{\theta}(\mathbf{x} \mid \mathbf{z})$:

- $p_{\theta}(\mathbf{x})$ is intractable rendering MLE intractable
- $p_{\theta}(\mathbf{z} \mid \mathbf{x})$ is intractable rendering EM intractable

Kingma & Welling (2014), Rezende et al. (2014)

Given a data matrix $\mathbf{X}=(\mathbf{x}_1,\ldots,\mathbf{x}_n)^\intercal\in\mathcal{X}^n$, the log-likelihood function for a DLVM is

$$\ell(\boldsymbol{\theta}) = \log p_{\boldsymbol{\theta}}(\mathbf{X}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(\mathbf{x}_i),$$

where

$$p_{m{ heta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{m{ heta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

We would like to find a MLE $\hat{\theta} \in \operatorname{argmax}_{\theta} \ell(\theta)$.

However, even with a simple output density $p_{\theta}(\mathbf{x} \mid \mathbf{z})$:

- $p_{\theta}(\mathbf{x})$ is intractable rendering MLE intractable
- $p_{\theta}(\mathbf{z} \mid \mathbf{x})$ is intractable rendering EM intractable
- stochastic EM is not scalable to large *n* and moderate *d*.

The solution: amortised variational inference

A general and scalable framework to tackle these issues was proposed by Kingma & Welling (2014), Rezende et al. (2014), leading to the **variational autoencoder (VAE)**.

The solution: amortised variational inference

A general and scalable framework to tackle these issues was proposed by Kingma & Welling (2014), Rezende et al. (2014), leading to the **variational autoencoder (VAE)**.

Here, I am going to derive this approach in a slightly different manner, largely inspired by the following paper:

Burda, Grosse & Salakhutdinov (2016), Importance weighted autoencoders, ICLR 2016

The solution: amortised variational inference

A general and scalable framework to tackle these issues was proposed by Kingma & Welling (2014), Rezende et al. (2014), leading to the **variational autoencoder (VAE)**.

Here, I am going to derive this approach in a slightly different manner, largely inspired by the following paper:

Burda, Grosse & Salakhutdinov (2016), Importance weighted autoencoders, ICLR 2016

The main idea is to use **Monte Carlo techniques** to approximate the intractable integrals

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}.$$

Let's say we want to estimate an integral of the form

$$I = \int_{\Omega} f(x)p(x)dx,$$

where $f \geq 0$ and p is a density over a space Ω .

Let's say we want to estimate an integral of the form

$$I = \int_{\Omega} f(x)p(x)dx,$$

where $f \ge 0$ and p is a density over a space Ω .

Simple Monte Carlo estimate: We sample $x_1, ..., x_K \sim p$ and approximate

$$I \approx \frac{1}{K} \sum_{k=1}^{K} f(x_k) = \hat{I}_K.$$

A few properties:

$$\hat{I}_K \stackrel{a.s.}{\to} I$$
, $\mathbb{E}[\hat{I}_K] = I$, $\mathbb{V}[\hat{I}_K] = \frac{1}{K} \mathbb{V}[f(x_1)]$,

which sounds nice, but the variance may be very large.

Importance sampling tries to improve this estimate by **sampling** $x_1, ..., x_K$ **from another density** q **rather than** p**.** The trick is the following:

$$I = \int_{\Omega} f(x)p(x)dx$$

$$= \int_{\Omega} \frac{f(x)p(x)}{q(x)} q(x)dx \approx \frac{1}{K} \sum_{k=1}^{K} \frac{f(x_k)p(x_k)}{q(x_k)} = \hat{I}_K^q.$$

Importance sampling tries to improve this estimate by **sampling** $x_1, ..., x_K$ **from another density** q **rather than** p**.** The trick is the following:

$$I = \int_{\Omega} f(x)p(x)dx$$

$$= \int_{\Omega} \frac{f(x)p(x)}{q(x)} q(x)dx \approx \frac{1}{K} \sum_{k=1}^{K} \frac{f(x_k)p(x_k)}{q(x_k)} = \hat{I}_K^q.$$

As before, the estimate is **consistent and unbiased** (under the condition that q has heavier tails than p). What about the variance?

Importance sampling tries to improve this estimate by **sampling** $x_1, ..., x_K$ **from another density** q **rather than** p**.** The trick is the following:

$$I = \int_{\Omega} f(x)p(x)dx$$

$$= \int_{\Omega} \frac{f(x)p(x)}{q(x)} q(x)dx \approx \frac{1}{K} \sum_{k=1}^{K} \frac{f(x_k)p(x_k)}{q(x_k)} = \hat{I}_K^q.$$

As before, the estimate is **consistent and unbiased** (under the condition that q has heavier tails than p). What about the variance?

If we choose $q^*(x) \propto f(x)p(x)$, which means $q^*(x) = f(x)p(x)/I$, then $\hat{I}_K^{q^*}$ has zero variance! But we can't do that because we don't know I...

Importance sampling tries to improve this estimate by **sampling** $x_1, ..., x_K$ **from another density** q **rather than** p**.** The trick is the following:

$$I = \int_{\Omega} f(x)p(x)dx$$

$$= \int_{\Omega} \frac{f(x)p(x)}{q(x)} q(x)dx \approx \frac{1}{K} \sum_{k=1}^{K} \frac{f(x_k)p(x_k)}{q(x_k)} = \hat{I}_K^q.$$

As before, the estimate is **consistent and unbiased** (under the condition that q has heavier tails than p). What about the variance?

If we choose $q^*(x) \propto f(x)p(x)$, which means $q^*(x) = f(x)p(x)/I$, then $\hat{I}_K^{q^*}$ has zero variance! But we can't do that because we don't know I...

However, this still means that importance sampling with a good q will work much better than simple MC.

We want to approximate

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

We want to approximate

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

Idea: use importance sampling! Let $\mathbf{z}_{i1},...,\mathbf{z}_{iK}$ follow some proposal q_i :

$$\int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}_{ik}) d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^K \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}_{ik}) p(\mathbf{z})}{q_i(\mathbf{z}_{ik})}$$

We want to approximate

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

Idea: use importance sampling! Let $\mathbf{z}_{i1},...,\mathbf{z}_{iK}$ follow some proposal q_i :

$$\int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}_{ik}) d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^K \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}_{ik}) p(\mathbf{z})}{q_i(\mathbf{z}_{ik})}$$

Let's say that we want to choose our **proposal in a parametric family** $(\Psi(\cdot|\kappa))_{\kappa \in \mathcal{K}}$ over \mathbb{R}^d (e.g. Gaussians).

We want to approximate

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

Idea: use importance sampling! Let $\mathbf{z}_{i1},...,\mathbf{z}_{iK}$ follow some proposal q_i :

$$\int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}_{ik}) d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^K \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}_{ik}) p(\mathbf{z})}{q_i(\mathbf{z}_{ik})}$$

Let's say that we want to choose our **proposal in a parametric family** $(\Psi(\cdot|\kappa))_{\kappa\in\mathcal{K}}$ over \mathbb{R}^d (e.g. Gaussians).

Problem: we need to choose n **proposals** $q_1, ..., q_n$ (and n is usually large in deep learning...).

We want to approximate

$$p_{\boldsymbol{\theta}}(\mathbf{x}_i) = \int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}) \mathbf{z}.$$

Idea: use importance sampling! Let $\mathbf{z}_{i1},...,\mathbf{z}_{iK}$ follow some proposal q_i :

$$\int_{\mathbb{R}^d} p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}) p(\mathbf{z}_{ik}) d\mathbf{z} \approx \frac{1}{K} \sum_{k=1}^K \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_i \mid \mathbf{z}_{ik}) p(\mathbf{z})}{q_i(\mathbf{z}_{ik})}$$

Let's say that we want to choose our **proposal in a parametric family** $(\Psi(\cdot|\kappa))_{\kappa\in\mathcal{K}}$ over \mathbb{R}^d (e.g. Gaussians).

Problem: we need to choose n proposals $q_1, ..., q_n$ (and n is usually large in deep learning...).

Exercise: What would be the optimal, zero-variance choices for $q_1, ..., q_n$?

A solution: Amortised variational inference, all the q_i will be defined together via a neural net!

A solution: Amortised variational inference, all the q_i will be defined together via a neural net!

Rationale: q_i needs to depends on \mathbf{x}_i , so we'll define it as a **conditional distribution** parametrised by γ :

$$q_i(\mathbf{z}) = q_{\gamma}(\mathbf{z}|\mathbf{x}_i).$$

A solution: Amortised variational inference, all the q_i will be defined together via a neural net!

Rationale: q_i needs to depends on \mathbf{x}_i , so we'll define it as a **conditional distribution** parametrised by γ :

$$q_i(\mathbf{z}) = q_{\gamma}(\mathbf{z}|\mathbf{x}_i).$$

How to parametrise this conditional distribution? The key idea is that its parameters are the output of a neural net g_{γ} :

$$q_{\gamma}(\mathbf{z}|\mathbf{x}_i) = \Psi(\mathbf{z}|g_{\gamma}(\mathbf{x}_i)).$$

A solution: Amortised variational inference, all the q_i will be defined together via a neural net!

Rationale: q_i needs to depends on \mathbf{x}_i , so we'll define it as a **conditional distribution** parametrised by γ :

$$q_i(\mathbf{z}) = q_{\gamma}(\mathbf{z}|\mathbf{x}_i).$$

How to parametrise this conditional distribution? The key idea is that its parameters are the output of a neural net g_{γ} :

$$q_{\gamma}(\mathbf{z}|\mathbf{x}_i) = \Psi(\mathbf{z}|g_{\gamma}(\mathbf{x}_i)).$$

This neural net is called the **inference network** or **encoder**.

All of this leads to the following approximation of the likelihood

$$\ell(\boldsymbol{\theta}) \approx \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z}_{i1},...,\mathbf{z}_{iK} \sim q_{\gamma}(\mathbf{z}|\mathbf{x}_{i})} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_{i}|\mathbf{z}_{ik})p(\mathbf{z}_{ik})}{q_{\gamma}(\mathbf{z}_{ik}|\mathbf{x}_{i})} \right] = \mathcal{L}_{K}(\boldsymbol{\theta}, \boldsymbol{\gamma}).$$

All of this leads to the following approximation of the likelihood

$$\ell(\boldsymbol{\theta}) \approx \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z}_{i1},...,\mathbf{z}_{iK} \sim q_{\boldsymbol{\gamma}}(\mathbf{z}|\mathbf{x}_{i})} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_{i}|\mathbf{z}_{ik})p(\mathbf{z}_{ik})}{q_{\boldsymbol{\gamma}}(\mathbf{z}_{ik}|\mathbf{x}_{i})} \right] = \mathcal{L}_{K}(\boldsymbol{\theta}, \boldsymbol{\gamma}).$$

Rather than maximising $\ell(\theta)$, we'll maximise $\mathcal{L}_K(\theta, \gamma)$ using SGD and the reparametrisation trick. But does it make sense to do that?

All of this leads to the following approximation of the likelihood

$$\ell(\boldsymbol{\theta}) \approx \sum_{i=1}^{n} \mathbb{E}_{\mathbf{z}_{i1},...,\mathbf{z}_{iK} \sim q_{\gamma}(\mathbf{z}|\mathbf{x}_{i})} \left[\log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\boldsymbol{\theta}}(\mathbf{x}_{i}|\mathbf{z}_{ik})p(\mathbf{z}_{ik})}{q_{\gamma}(\mathbf{z}_{ik}|\mathbf{x}_{i})} \right] = \mathcal{L}_{K}(\boldsymbol{\theta}, \boldsymbol{\gamma}).$$

Rather than maximising $\ell(\theta)$, we'll maximise $\mathcal{L}_K(\theta, \gamma)$ using SGD and the reparametrisation trick. But does it make sense to do that?

It does make sense! For several reasons:

- $\mathcal{L}_K(\theta, \gamma)$ is a lower bound of $\ell(\theta)$ (exercise!)
- The bounds get tighter and tighter!

$$\mathcal{L}_1(\boldsymbol{\theta}, \boldsymbol{\gamma}) \leq \mathcal{L}_2(\boldsymbol{\theta}, \boldsymbol{\gamma}) \leq \ldots \leq \mathcal{L}_K(\boldsymbol{\theta}, \boldsymbol{\gamma}) \xrightarrow[K \to \infty]{} \ell(\boldsymbol{\theta}).$$

 $\mathcal{L}_K(\theta, \gamma)$ is called the **importance weighted autoencoder (IWAE)** bound, and was introduced by Burda et al. (2016).