Integer Linear Programming and its Application in Carleton's CS Match

Batmend Batsaikhan, Andreas Miller, Mary Blanchard, Petrichor Park, Cecilia Ehrlichman, Hugh Shanno Carleton College Computer Science Department

1. Introduction

1. Understanding Integer Linear Programming

Solve for x_1, x_2, \dots, x_N

Integer Variables

2. Example: Knapsack Problem

Maximize the total value without exceeding the

Let $x_i = 1$ if the *i*th item is taken and $x_i = 0$ if otherwise.

Maximize While respecting Where

 $7x_1 + 2x_1 + 3x_3 + 8x_4$ $1x_1 + 9x_1 + 10x_1 + 4x_1 \le 15$ $0 \le x_i \le 1$

3. Carleton's CS Match

- \geq 300 students ~ 10 courses
- Only 74% first-choice matches

Currently uses the Gale Shapley Algorithm

4. Preferences and Stable Matching

preference Lists:

Student and Course Each student submits a preference list of

Courses rank students based on seniority, number of courses taken, etc.

Stable Matching:

After a match, no unmatched pair wants each other more than what they are matched to

2. Work Structure

3. ILP formulations of the CS Match

For *i*th student and *j*th course, let $x_{ij} = \begin{cases} 0, & \text{if } i \text{ and } j \text{ didn't match} \\ 1, & \text{if } i \text{ and } j \text{ matched} \end{cases}$

1. Students get matched to at most one course

$$\sum_{j=1}^{C} x_{ij} \le 1$$

2. Courses don't exceed their capacity

$$\sum_{i=1}^{3} x_{ij} \le Capacity_{j}$$

3. "Stable Matching" constraint

For *i*th student and *j*th course

let $S = \{i' | i'$ th student is not worse than *i*th student for *j*th course} let $C = \{j'|j'$ th course is not worse than jth course for ith student $\}$

$$Capacity_{j}(1 - \sum_{i' \in C} x_{ij'}) \leq \sum_{i' \in S} x_{i'j}$$

4. Objective functions

Hospital Resident Matching with Ties.

$$Maximize \sum_{i=1}^{C} \sum_{j=1}^{S} x_{ij}$$

Gale Shapley Emulation

$$Maximize \sum_{i=1}^{C} \sum_{j=1}^{S} x_{ij} \left(10000 - index(i,j)\right)$$

Where index(i, j) is the **order** of jth course for ith student

Weighted Matching

Maximize
$$\sum_{i=1}^{C} \sum_{j=1}^{S} x_{ij} \left(10000 + weight(i,j)\right)$$
Where weight(i, j) is the **weight** of jth course for the ith student

4. Specialization: Simplex Algorithm

Standard Form

Minimize $\sum_{i=1}^{N} c_i x_i$ With respect to $\sum_{i=1}^{N} a_{j,i} x_i = b_i$ Where $x_i \ge 0$

Tableau Form	x_1	x_2	x_3	x_4	x_5	f	RHS
1401044 1 01111	2	2	0	1	2	0	7
	1	1	1	3	0	0	6
	1	2	3	1	0	0	6
	2	2	-1	2	1	-1	0

Canonical Form	$\overline{x_1}$	x_2	x_3	x_4	x_5	f	RHS
Canonical Polin	1	0	0	15/2	-1	0	15/2
	0	1	0	-7	2	0	-4
	0	0	1	5/2	-1	0	5/2
	0	0	0	7/2	-2	-1	-9/2
Pivot	$\overline{x_1}$	x_2	x_3	x_4	x_5	f	RHS
	1	1/2	0	4	0	0	11/2

	U	- <i>,</i> -	•	/ —	_	•	_
	0	1/2	1 –	-1	0	0	1/2
	0	1	0 - 7	7/2	0	-1	-17/2
Reneat	$\overline{x_1}$	x_2	x_3	x_4	x_5	f	RHS
Repeat	1/4	1/8	0	1	0	0	11/8
	7/8	15/16	0	0	1	0	45/16
	1/4	5/8	1	0	0	0	15/8
	7/8	23/16	0	0	0	-1	-59/16

Results
$$x_1 = x_2 = 0, x_3 = \frac{15}{8}, x_4 = \frac{11}{8}, x_5 = \frac{45}{16}, f = \frac{59}{16}$$

Finiteness of the Algorithm

Bland Rule: Out of equivalent choices (rows or columns), pick one that has the minimum index

5. Specialization: Data Generation

Accessed only summary
statistics to respect the
privacy of students

7		# of total students	Mean # of classes wanted
/	Freshman	57	4.15
	Sophomore	96	4.51
	Junior	97	3.85
	Senior	61	2.43

	CS208 0.10						
4.15 / 9 = 0.45 cutoff							

3.1 Generate normalized weights

3.2 Generate preference list

6. Preliminary Results

7. Conclusion

Integer Linear Programming is a flexible technique that can model not only trivially linear problems but also various optimization problems with non-trivial structures.

Adjusting the objective function provides us with even greater flexibility in defining what is the most optimal, consequently influencing the resulting solutions of the ILP algorithm.

Initially, we had intended to run our ILP models against Carleton's CS Match algorithm using the same generated dataset. We had to forego this plan due to time constraints. It is important for the study to running such comparisons in the future.

8. Acknowledgements

I would like to express my gratitude to Professor Layla Oesper for her guidance and Professor David Musicant for sharing summary data. My deepest appreciation goes to my parents, brothers, and friends for their unwavering support throughout my academic journey.

9. References

PAN, P.-Q. (2023). Linear Programming Computation (2nd ed. 2023.). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0147-8

Delorme, M., García, S., Gondzio, J., Kalcsics, J., Manlove, D., & Pettersson, W. (2019). Mathematical models for stable matching problems with ties and incomplete lists. European Journal of Operational Research, 277(2), 426-441. https://doi.org/10.1016/j.ejor.2019.03.017