COMMON SOURCE AMPLIFIER

Specification:

$$Gain(Av)=40$$

Rout=150 K
$$\Omega$$

$$BW=25 MHz$$

Calculation:

Formula Used

• BW(3dB freq) =
$$\frac{1}{2\pi Rout.CL}$$

Av=gm.Rout

- Rout= ro1 // ro2
- CL=42.44 fF
- o gm/id=10 (Choose)
- \circ gm=0.266 mS
- Id=26.6 μA
- \circ gm/gds= 81.72from chart

id/w = 13.6

 \circ gds=3.25 μ S

 $W1=1.95 \mu m$

• Ro1=307.21 KΩ

Vgs1=657.8mV

Continue....

- \circ Ro2=293.12 K Ω
- o gds2=3.41 μS
- o (Id/gds)2=7.8
- o (gm/id)₂= 7.106 from chart
- \circ (Id/w)₂=7.312 from chart
- Vgs2=712.9 mV
- \circ W2= 3.63 µm

SIMULATION

SOME CHANGES

Internal capacitance at node Vout = cgd2 + cgd1(1+Av)C(Vout) = 3.36 fF So CL=42.44 f -3.36f = 39.08 fF

RESULT AND CONCLUSION

Simulated Value	Specifications		
Av= 40.01 v/v	Av=40 v/v		
BW=25.06 MHz	BW=25MHz		
GBW=1.002 GHz	GBW=1 GHz		
Rout=149.327 KΩ	Rout=150 KΩ		
Id=26.73 μA	Id=26.6 μA		
Vout(dc)=0.773 V	Vout(dc)=0.9 V		

SPICE ERROR LOG FILE

--- Transfer Function ---

Transfer_function: -40.0109 transfer vin#Input_impedance: 1e+020 impedance output_impedance_at_V(vout): 149327 impedance

```
Semiconductor Device Operating Points:
                        --- BSIM3 MOSFETS ---
Name:
             m2
                         m1
Model:
                         nch
             pch
                       2.67e-05
Id:
          -2.67e-05
Vqs:
          -7.13e-01
                       6.58e-01
Vds:
          -1.03e+00
                       7.74e-01
Vbs:
           0.00e+00
                       0.00e+00
Vth:
          -4.48e-01
                       4.59e-01
Vdsat:
          -2.19e-01
                       1.52e-01
           1.87e-04
                       2.68e-04
Gm:
Gds:
           3.21e-06
                       3.49e-06
Gmb
           5.86e-05
                       7.00e-05
Cbd:
           0.00e+00
                       0.00e+00
Cbs:
           0.00e+00
                       0.00e+00
Cgsov:
           2.38e-15
                       9.57e-16
Cgdov:
           2.38e-15
                       9.57e-16
Cqbov:
           2.98e-19
                       3.28e-19
           1.24e-14
dQqdVqb:
                       6.48e-15
dQqdVdb:
          -2.38e-15
                      -9.32e-16
dQqdVsb:
          -9.67e-15
                      -5.23e-15
          -2.39e-15
                      -9.63e-16
dQddVqb:
dQddVdb:
           2.39e-15
                       9.60e-16
dQddVsb:
           4.60e-18
                     4.49e-18
dQbdVqb:
          -1.61e-15
                      -9.88e-16
dQbdVdb:
          -5.20e-19
                      1.92e-18
          -7.20e-16
                      -4.05e-16
dQbdVsb:
```

UNIT DEVICES

TRANSIENT ANALYSIS

FREQUENCY

BW=25.96 MHz

DIFFERENTIAL PAIR

Using two Common Source Amplifier

CALCULATION FOR CURRENT SOURCE

```
Id=54.96 μA
gm/id= 10 ...(Choose)
```

Vgs=Vb=0.662

Id/w=13.41

 $W5=4.09 \ \mu m$

W5=4.14 μm for unit device

RESULT AND CONCLUSION

Simulated Value	Specifications			
Av= 36.18 v/v	Av=40 v/v			
BW=28.66 MHz	BW=25MHz			
GBW=1.03 GHz	GBW=1 GHz			
Rout=263.492 KΩ				
Iss= 54.46 μA	Iss= 54.96μA			
Vout(dc)=0.949 V	Vout(dc)=0.9 V			

TRANSIENT ANALYSIS

Gain=36.14

FREQUENCY RESPONSE

COMMON SOURCE AMPLIFIER

Av=40

Rout=93 KΩ

Formula Used

$$W = \frac{id}{id/w}$$

$$gds = \frac{1}{ro}$$

Id/W = 9.896

 $W1=3.61 \mu m$

$$\circ$$
 gm=0.43 mS

$$\circ$$
 (Id/gds)₃=7.63

$$gm/gds=70.92$$

$$gds=6.06 \mu S$$

$$Ro3 = 213.125 \text{ K}\Omega$$

SIMULATION

.include C:\Users\ASUS\Desktop\CMOS180.txt

RESULTS

Simulated Value	Specifications
Av= 40.15 v/v	Av=40 v/v
Rout=95.632 KΩ	Rout=93 KΩ
Id= 35.18 μA	Id= 35.8 μA
Vout(dc)=1.07 V	Vout(dc)=0.9 V

OP-AMP (STAGE-1)

Using Common Source Amplifier

RESULT

Simulated Value	Specifications				
Av= 39.8092 v/v	Av=40 v/v				
BW=28.66 MHz	BW=25MHz				
GBW=1.03 GHz	GBW=1 GHz				
Rout=97.259 KΩ	Rout=93 KΩ				
Iss= 70.3 μA	Iss= 71.6 μA				
Vout(dc)=1.04 V	Vout(dc)=1.15 V				

FREQUENCY ANALYSIS

Frequency

TRANSIENT ANALYSIS

Vin1-Vin2(pp)=4 mV Vout1(pp)=158.68 mV Gain=39.67

COMMON SOURCE AMPLIFIER

For Second Stage op-amp

```
'Specs:
Av=28
\frac{1}{2}gm2=8 x 0.432 mS = 3.384 mS
Rout2 = 8K\Omega
```

- ~ Vgs1≡780 mV

 - o gm/id=5.466 id/w=11.9from chart
- o gm/gds=46.96from chart

- Id=619 μA
- W6=52μm
- o gds6=72.06 μS
- \circ Ro7=18.9 K Ω

- $Ro6 = 13.87 \text{ K}\Omega$
- $gds7=52.9 \mu S$

- o (Id/gds)7=11.7
- o gm/id=6.24 id/w=31.05
- W7=19.9 μm **W7=15.84 μm in Simulation**
- o Vgs7=0.7629 V

SIMULATION

$. include \ C: \ \ Vars \ \ \ Desktop \ \ \ CMOS180.txt$

RESULT

Simulated Value	Specifications
Av = 28.34 v/v	Av=28 v/v
BW=256.9 MHz	
GBW=9. 24 GHz	
Rout=9.6 KΩ	Rout=8 KΩ
IB2= 494 μA	IB2= 619 μA
Vout(dc)=0.998 V	Vout(dc)=0.9 V

FREQUENCY RESPONSE

Frequency

TRANSIENT ANALYSIS

PROJECT: DESIGNING OF TWO STAGE OPERATIONAL AMPLIFIER

Specification			
Gain(Av)	≥ 1000 (60dB)		
GBW	1GHz		
Phase Margin	≥50		
Load Capacitance	20 fF		

PROJECT: TWO STAGE OP-AMP

Combining Stage-1 and Stage-2

CAPACITOR

C1=Capacitance at Node(Vout1)= Cgd4 + Cgd1 + { (Cgd6 + Cc)*(1+Av2)} C1= 1.3 pF

C2=Capacitance at Node(Vout2)= CL + Cgd7 + { (Cgd6 + Cc)*(1 + $\frac{1}{Av2}$)}

C2=73.52 fF

POLE AND ZERO

Dominant Pole

where Rout1=97.25 K Ω

• Fp2= Beyond 1GHz

where Rz=12k, Gm2=2.95mS

FREQUENCY COMPENSATION

- \circ Cc=10 fF (generally Cc=(0.3 0.5)*CL)
- Rz=12 K Ω (generally Rz= $^{1}/_{Gm2}$)
- But we have taken 12 KΩ for achieving Phase Margin of 45° .

RESULT

Simulated Value	Specifications				
Av= 1139 v/v	$Av \ge 1000 \text{ v/v}$				
BW=1.12 MHz	BW=1 MHz				
GBW=1.02 GHz	GBW=1 GHz				
Rout=9.68 KΩ	Rout=8 KΩ				
Vout(dc)=0.97 V	Vout(dc)=0.9 V				
IB1=70.3 μA, IB2= 493.24 μA Total Current=563.54 μA Vdd=1.8 Powe Discipation = 1.01 mW	- - - -				
Phase Margin = 45°	Phase Margin = 50°				
Gain Margin = 16.5 dB	- 51				
CL=20 fF	CL=20 fF				

TABLE

Stage 1	Stage 2			
L=0.36µm	L=0.36µm			
$W_{1,2} = 3.6 \mu m$ $\frac{W}{L} = 10$	W ₆ =52.02µm $\frac{W}{L}$ =144.5			
$gm_{1,2} = 0.419 \text{ mS}$	$gm_6 = 2.59 \text{ mS}$			
$W_{3,4} = 3.78 \mu m$ $\frac{W}{L} = 10.5$	W ₇ = 15.84 µm $\frac{w}{L}$ =44			
$gm_{3,4} = 0.21 \text{ mS}$	gm7 = 3.05 mS			

SPICE ERROR LOG FILE

Semicondu	ctor Device	Operating P	oints:				
		BSIM	3 MOSFETS	-			
Name:	mб	m3	m4	m7	m5	m2	m1
Model:	pch	pch	pch	nch	nch	nch	nch
Id:	-4.93e-04	-3.52e-05	-3.52e-05	4.93e-04	7.03e-05	3.52e-05	3.52e-05
Vgs:	-7.54e-01	-7.54e-01	-7.54e-01	7.63e-01	7.63e-01	7.40e-01	7.40e-01
Vds:	-8.26e-01	-7.54e-01	-7.54e-01	9.74e-01	4.50e-01	5.96e-01	5.96e-01
Vbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	-4.50e-01	-4.50e-01
Vth:	-4.50e-01	-4.48e-01	-4.48e-01	4.58e-01	4.62e-01	5.82e-01	5.82e-01
Vdsat:	-2.55e-01	-2.50e-01	-2.50e-01	2.19e-01	2.15e-01	1.38e-01	1.38e-01
Gm:	2.95e-03	2.11e-04	2.11e-04	3.05e-03	4.40e-04	4.19e-04	4.19e-04
Gds:	6.24e-05	4.69e-06	4.69e-06	4.09e-05	1.09e-05	5.73e-06	5.73e-06
Gmb	9.53e-04	6.66e-05	6.66e-05	7.91e-04	1.13e-04	9.52e-05	9.52e-05
Cbd:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cbs:	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00
Cqsov:	3.42e-14	2.48e-15	2.48e-15	7.78e-15	1.15e-15	1.77e-15	1.77e-15
Cqdov:	3.42e-14	2.48e-15	2.48e-15	7.78e-15	1.15e-15	1.77e-15	1.77e-15
Cgbov:	2.98e-19	2.98e-19	2.98e-19	3.28e-19	3.28e-19	3.28e-19	3.28e-19
dQqdVqb:	1.78e-13	1.30e-14	1.30e-14	5.26e-14	7.80e-15	1.18e-14	1.18e-14
dQgdVdb:	-3.42e-14	-2.48e-15	-2.48e-15	-7.58e-15	-1.13e-15	-1.72e-15	-1.72e-15
dQqdVsb:	-1.38e-13	-1.01e-14	-1.01e-14	-4.27e-14	-6.32e-15	-9.53e-15	-9.53e-15
dQddVqb:	-3.43e-14	-2.50e-15	-2.50e-15	-7.81e-15	-1.19e-15	-1.78e-15	-1.78e-15
dQddVdb:	3.43e-14	2.49e-15	2.49e-15	7.79e-15	1.18e-15	1.78e-15	1.78e-15
dQddVsb:	1.04e-16	8.68e-18	8.68e-18	2.36e-17	1.14e-17	1.33e-17	1.33e-17
dQbdVqb:	-2.25e-14	-1.67e-15	-1.67e-15	-7.92e-15	-1.17e-15	-1.67e-15	-1.67e-15
dQbdVdb:	-2.52e-17	-2.70e-18	-2.70e-18	1.63e-17	-9.51e-18	7.38e-19	7.38e-19
dQbdVsb:	-1.10e-14	-7.45e-16	-7.45e-16	-3.25e-15	-4.67e-16	-4.71e-16	-4.71e-16
_							

--- Transfer Function ---

Fransfer_function: -1139.14 transfer
vin1#Input_impedance: 1e+020 impedance
output_impedance_at_V(vout2): 9688.45

impedance

FREQUENCY RESPONSE

Frequency

TRANSIENT ANALYSIS

Vin1-Vin2(pp)=40 μV Vout2(pp)=45.54 mV Gain=1138.5