Chapter 2

Introduction

- Boolean Algebra
 - Similar to "regular" Algebra
 - Developed by George Boole.
- Used to optimize circuits for lowest cost
 - Why?

Basic Definitions

- Set of Elements (S)
- Set of operators
 - Binary Operator
 - A rule that assigns, to each pair of elements from S, a unique element from S.
- Postulates
 - Form the basic assumptions from which it is possible to deduce the rules, theorems and properties of a mathematical system.

Boolean Algebra

- An algebraic structure defined by
 - A set of elements, B
 - Operators $(+, \cdot)$

Huntington postulates

- Closure
- Commutation
- Identity
- Inverse
- Distribution

Closure

Closed with respect to

```
-AND(\cdot)
```

```
-OR(+)
```

Identity

The element 0 is an identity element WRT +.
The element 1 is an identity element WRT ·.
Given x an element of the set
Then,

$$x + 0 = 0 + x = x$$
$$x \cdot 1 = 1 \cdot x = x$$

Commutativity

x, y elements of the set Then,

$$x + y = y + x$$

$$x \cdot y = y \cdot x$$

Distributivity

x, y, z elements of the set Then,

$$x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$
$$x + (y \cdot z) = (x + y) \cdot (x + z)$$

Complement

For every $x \in B$, there exists an element x' such that

$$x + x' = 1$$

$$x \cdot x' = 0$$

Last one

There exist at least 2 elements $x, y \in B$ such that $x \neq y$.

What's missing?

We've talked about

- Closure
- Commutation
- Identity
- Inverse
- Distribution

What about Association?

- Applies to Boolean Algebra
- Can be proven from other postulates

Two-Valued Boolean Algebra

Defined on a set of two elements

$$B = \{0, 1\}$$

Two Binary Operators

AND

OR

Now must show that the Huntington postulates apply.

By definition

- Can prove the last postulate
 - There exist at least 2 elements x, y \in B such that x \neq y.

Truth Tables

Prove Closure; Identity; Commutation; Complement

AND			OR			NOT			
X	y	$x \cdot y$		х	y	x + y		X	<i>x'</i>
0	0	0		0	0	0		0	1
0	1	0		0	1	1		1	0
1	0	0		1	0	1			•
1	1	1		1	1	1			

Distribution

Use a truth table to prove

What have we just done

- Shown that Boolean Algebra can be defined in a formal mathematical manner
- That it is equivalent to the binary logic from Chapter 1.

Basic Theorems and Properties

- Duality Principle
 - Change
 - OR's to AND's and vice versa
 - 1's to 0's and vice versa
 - If first statement held true, then so will the result
 - x + 0 = x
 - $x \cdot 1 = z$

Some Postulates and Theorems

Table 2.1Postulates and Theorems of Boolean Algebra

restarates and riveorems or boolean rilgesta					
Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$	
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$	
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$	
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$	
Theorem 3, involution		(x')' = x			
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx	
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z	
Postulate 4, distributive	(a)	x(y+z) = xy + xz	(b)	x + yz = (x + y)(x + z)	
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'	
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x+y)=x	

Theorems must be proved

```
Theorem 1a: x + x = x
                x + x = (x + x) \cdot 1
                      = (x + x) (x + x')
                      = xx + xx + xx' + xx'
                      = xx + xx'
                      = x + xx'
                      = x + 0
                      = X
```

```
Theorem 1b: x \cdot x = x

x \cdot x = (xx) + 0

= (xx) (xx')

= x(x + x')

= x \cdot 1

= x
```

```
Theorem 2a: x + 1 = 1
                 x + 1 = 1 \cdot (x + 1)
                        = (x + x')(x + 1)
                        = xx + xx' + x \cdot 1 + x' \cdot 1
                        = x + 0 + x + x'
                        = x + x'
                        = 1
```

Theorem 2b: $x \cdot 0 = 0$ by duality

$$x + 1 = 1 \cdot (x + 1)$$

= $(x + x')(x + 1)$
= $xx + xx' + x \cdot 1 + x' \cdot 1$
= $x + 0 + x + x'$
= $x + x'$
= 1

Operator Precedence

- Parentheses
- Not
- And
- Or

DeMorgan's Theorems

Very useful.

$$(x + y)' = x' \cdot y'$$
$$xy = x' + y'$$

Boolean Functions

- Described by an algebraic expression
- Consisting of
 - Binary variables
 - Constants
 - Logic operation systems
- Expresses the logical relationship between binary variables

Example

$$F_1 = x + y'z$$

X	y	Z	F ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$F_1 = x + y'z$$

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Example

$$F_2 = x'y'z + x'yz + xy'$$

X	y	Z	F ₂
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$F_2 = x'y'z + x'yz + xy'$

Optimization

$$F_2 = x'y'z' + x'yz + xy'$$

$$F_2 = xy' + x'z$$

Copyright ©2013 Pearson Education, publishing as Prentice Hall