单元12.2 边覆盖集与匹配

第二编 图论 第十二章支配集、覆盖集、 独立集与匹配

13.2 边覆盖集与匹配

- 边覆盖集
- 兀配
- 匹配,点覆盖,点独立集,边覆盖集之间的关系
- 贝尔热定理
- 托特定理

边覆盖

- (无孤立点)无向图G=<V,E>
- 边覆盖(集): E*⊆E, ∀v∈V,∃e∈E*, e关联v
- 极小边覆盖: 真子集都非边覆盖的边覆盖
- 最小边覆盖: 边数最少的边覆盖
- 边覆盖数: $\alpha_1(G) = 最小边覆盖的边数$

边覆盖举例

• $\{e_2, e_3, e_6\}, \{e_2, e_3, e_7\}, \alpha_1 = 3$

匹配

- 无向图G=<V,E>
- 匹配(边独立集): E*⊆E,
 ∀e,f∈E*, e,f不相邻
- 极大匹配: 真母集都非匹配的匹配
- 最大匹配: 边数最多的匹配
- 匹配数: $\beta_1(G)$ = 最大匹配的边数

匹配举例

• $\{e_1, e_7\}, \{e_1, e_4\}, \{e_5\}, \beta_1=2$

饱和点

• 匹配中边所关联的顶点

• 非饱和点: 不与匹配中边关联的顶点

完美匹配

• 没有非饱和点的匹配

定理13.5

- 无向图G无孤立点,
- (1) 设M是最大匹配, ∀非饱和点v, 取v关联的一边, 组成边集N, 则W=M∪N是最小边覆盖
- (2) 设 W_1 是最小边覆盖, 若 W_1 中有相邻边, 就删除其中一边, 直到无相邻边为止,设删除的边组成边集 N_1 , 则 M_1 = W_1 - N_1 是最大匹配
- (3) $\alpha_1 + \beta_1 = n$

定理13.5证明(1)

• 证: M是最大匹配,
$$|M| = \beta_1$$
, $|N| = n-2\beta_1$, $\alpha_1 \le |W| = |M| + |N| = n-\beta_1$ (*) (上式是等式 $\Rightarrow \beta_1 \le \alpha_1$)

定理13.5证明(2)

• 证: W_1 是最小边覆盖, $|W_1| = \alpha_1$, 删除1相邻边恰产生1个非饱和点,

$$|N_1| = |W_1| - |M_1|$$

- ="删除边数"
- = "M₁的非饱和点数"
- $= n-2|M_1|,$

$$\alpha_1 = |W_1| = n-|M_1| \ge n-\beta_1$$

定理13.5证明(3)

证:

(3) 由(*)(**),
$$n \le \alpha_1 + \beta_1 \le n$$
, 所以 $\alpha_1 + \beta_1 = n$.

- (1) 由(*), $|W|=\alpha_1$, W是最小边覆盖.
- (2) 由(**), $|M_1|=\beta_1$, M_1 是最大匹配. #

定理13.5推论

无向图G无孤立点, M是匹配, W是边覆盖,则
 |M|≤|W|

等号成立时,

M是完美匹配, W是最小边覆盖.

定理13.5推论证明

• 证: 由定理13.5证明(1)可知 $\beta_1 \leq \alpha_1$, 于是 $|M| \leq \beta_1 \leq \alpha_1 \leq |W|$, 当 |M|=|W| 时,得 $|M| = \beta_1 = \alpha_1 = |W|,$ 因而M是最大匹配,W是最小边覆盖,再 由定理13.5(3)可知 $\alpha_1+\beta_1=2\beta_1=n$, 所以M是完美匹配.

- 无向图G无孤立点, M是匹配, N是点覆盖, Y是独立集, W是边覆盖, 则
 - (1) $|M| \leq |N|$,
 - (2) $|Y| \leq |W|$,
 - (3) 等号成立时, M是最大匹配, N是最小点覆盖, Y是最大独立集, W是最小边覆盖.
- 说明: 此所谓"最小-最大(min-max)"关系

定理13.6证明

证:

- (1) M中边不相邻, 至少需要|M|个点才能覆盖M.
- (2) Y中顶点不相邻, 至少需要|Y|条边才能覆盖Y.
- (3) |M|=|N|说明|M|达到最大值, |N|达到最小值. |Y|=|W|类似. #

推论

• 无向图**G无孤立点**,则 $\beta_1 \leq \alpha_0$, $\beta_0 \leq \alpha_1$. #

- 等号可能成立:
 - 对于 $K_{r,s}$: $β_1$ = $α_0$ =min{r,s} (定理13.14) $β_0$ = $α_1$ =max{r,s}

α_0 , β_0 , γ_0 , ν_0 , α_1 , β_1 之间关系

• 无向图G无孤立点,

$$\gamma_0 \le \alpha_0$$
, β_0 (补充定理,定理13.2补充推论) $n = \alpha_0 + \beta_0$ (定理13.3推论) $v_0(\overline{G}) = \beta_0 \le \alpha_1$ (定理13.4推论,13.6推论) $n = \alpha_1 + \beta_1$ (定理13.5) $\beta_1 \le \alpha_1$, α_0 (定理13.5, 定理13.6推论)

• α_1 , β_1 是容易计算的(tractable, easy)

交错路径

• 在匹配中和在匹配外交替取边的路径

• 例: e₃ e₁ e₂ e₇ e₈,

$$e_3 e_1 e_2 e_7 e_8$$

定理13.7

• 设 M_1 , M_2 是G中2个不同匹配,则 $G[M_1 \oplus M_2]$ 的每个连通分支是 M_1 和 M_2 中的边组成的交错圈或交错路径

定理13.7证明

证: 设G₁是G[M₁⊕M₂]的1个连通分支,
 ∀v∈V(G₁),

$$0 < d_{G1}(v) = d_{G[M1 \oplus M2]}(v) \le 2,$$
即 $d_{G1}(v) = 1$ 或 2, 所以 G_1 是交错圈或交错路径. #

可增广(交错)路径

- 两端都是非饱和点的交错路径
- 例: $e_3 e_1 e_2 e_7 e_8$

《集合论与图论》

定理13.8

• 设M是G中匹配, Γ 是M的可增广路径,则 $M' = M \oplus E(\Gamma)$

定理13.8证明

• 证: 显然M是匹配.

$$|\mathsf{M}'| = |\mathsf{M} \oplus \mathsf{E}(\Gamma)|$$

= $|\mathsf{M} - \mathsf{E}(\Gamma)| + |\mathsf{E}(\Gamma) - \mathsf{M}|$
= $|\mathsf{M}| + 1$.

贝尔热定理

• 定理13.9(Berge, 1957):

M是G中最大匹配⇔G中无M可增广路径

贝尔热定理证明

• 证: (⇒) (反证) 定理13.8.

(⇐) 设M₁是G的最大匹配. 设H=G[M₁⊕M].

若H=Ø,则M=M₁,M是最大匹配.

若H≠Ø,则H的连通分支是交错圈或交错路径.

在交错圈和交错路径上M和M₁都边数相等

(M和M₁都无可增广路径), 故 <math>|M|=|M₁|. #

求最大匹配是易解的

• 有多项式时间算法求最大匹配

• 求最小边覆盖, 求完美匹配 也是易解的

托特定理

• 定理13.10(Tutte,1947):

G有完美匹配⇔

 \forall V'⊂V(G), p_{\(\hat{\text{o}}\)}(G-V') \leq |V'|.

• 说明: p_奇是奇数阶连通分支数

托特定理证明(⇒)

证: (⇒) 设M是G的完美匹配, V'⊂V, 设G₁是G-V'的奇阶连通分支, 则 ∃u₁∈V(G₁), ∃v₁∈V', (u₁,v₁)∈M, 所以 p_奇(G-V') ≤ |V'|.

托特定理证明(←)

证:(⇐)(对G阶数归纳) 由于∀V', p_奇(G-V')≤|V'|, 取 $V'=\emptyset$, 得G是偶阶, 取 $V'=\{u\}$, 得 $G-\{u\}$ 恰有1个奇阶连通分支. 设 $S_0 \subset V$ 是使 $p_{\hat{D}}(G-S_0)=|S_0|=s$ 的最大集合, $C_1,C_2,...,C_s$ 是 $G-S_0$ 所有奇阶连通分支, $D_1,D_2,...,D_t$ 是 $G-S_0$ 所有偶阶连通分支.

托特定理证明(⇐)(1)

• (1)每个Di内部有完美匹配.

$$\forall S \subseteq V(D_i)$$
, $p_{\hat{\sigma}}(G-S_0) + p_{\hat{\sigma}}(D_i-S)$ $= p_{\hat{\sigma}}(G-(S_0 \cup S)) \le |S_0 \cup S|$ $= |S_0| + |S|$, 所以 $p_{\hat{\sigma}}(D_i-S) \le |S|$. 由归纳假设, D_i 内部有完美匹配.

托特定理证明(←)(2)

• (2) 每个C_i-{c_i}内部有完美匹配, 其中c_i∈C_i. (反证) 若∃S⊆V(C_i-{c_i}), p_奇(C_i-{c_i}-S))>|S|, 因两端同奇偶, 故 p_奇(C_i-{c_i}-S))≥|S|+2. $|S_0|+1+|S| = |S_0 \cup \{c_i\} \cup S|$ $\geq p_{\stackrel{\leftarrow}{a}}(G-(S_0\cup\{c_i\}\cup S))$ $= p_{\hat{a}}(G-S_0) - 1 + p_{\hat{a}}(C_i-\{c_i\}-S))$ $\geq |S_0|+1+|S|$, 这与 S_0 的最大性矛盾.

托特定理证明(←)(3)

(3)二部图H=G[{C₁,C₂,...,C_s},S₀]有完美匹配.
 ∀A⊆{C₁,C₂,...,C_s}, 令 B=Γ_H(A),
 则 |A| ≤ p_奇(G-B) ≤ |B|,
 即H满足Hall-条件,所以H有完备(美)匹配.
 G的完美匹配由(3)(2)(1)三部分构成.

托特定理推论

• 无桥 3-正则图有完美匹配

托特定理推论证明

• 证: 对任意 V_1 , 设 $G-V_1$ 的奇阶连通分支是 G_i ,

$$\Sigma_{v \in V(Gi)} d_G(v) = 3n_i = 2|E(G_i)|+m_i \Rightarrow m_i$$
是奇数.

无桥 ⇒ m_i≥3.

$$p_{\hat{a}}(G-V_1) = r$$

$$\leq (\sum_{i=1}^{r} m_i)/3$$

$$\leq (\Sigma_{v \in V_1} d_G(v))/3 = |V_1|$$
, 再用托特定理. #

无桥条件不能去掉

• 反例:

• p_奇(G-{v}) = 3 > |{v}| = 1, 无完美匹配

小结

- 边覆盖,极小(最小)边覆盖(易解)
- 匹配,极大(最大)匹配,完美匹配(易解)
- 饱和点, 非饱和点, 交错路径
- α_0 , β_0 , γ_0 , ν_0 , α_1 , β_1 之间关系
- 匹配存在的充要条件
 - Berge定理: 有最大匹配 ⇔ 无可增广路径
 - Tutte定理: 有完美匹配 ⇔ ∀V′, p_奇(G-V′)≤|V′|

