

FORCES & MOMENTS Couples

> This refers to two parallel, non-collinear forces that are equal in magnitude and opposite in direction.

➤ It is a free vector that can be applied anywhere

DDEK/2014/ ME 161 - BASIC MECHANICS

94

FORCES & MOMENTS

Calculating the Moment of a Couple

> Scalar approach

$$(+) \quad M_O = F(a+d) - F(a) = Fd$$

➤ Vector Approach

$$\begin{split} \vec{M} &= \vec{r}_A \times \vec{F} + \vec{r}_B \times \left(-\vec{F} \right) \\ &= \left(\vec{r}_A - \vec{r}_B \right) \times \vec{F} \\ &= \vec{r} \times \vec{F} \\ M &= rF \sin \theta = Fd \end{split}$$

95

FORCES & MOMENTS Some Properties of Couples

- > Two couples are considered equivalent if
 - > their moments is of the same magnitude
 - > They lie in the same plane
 - > Tend to cause rotation in the same direction
- ➤ Couples are vectors
- > They obey Varignon's Theorem

DDEK/2014/ ME 161 - BASIC MECHANICS

96

EQUIVALENT FORCE SYSTEMSShifting the line of Action of a Force

- ➤ This can be done by replacing the force with a force-couple system that acts at the desired point.
- > The couple is given by the product of the force and the perpendicular distance between the old and new line of actions.

➤ Where a system of forces act on a body, they can be reduced to a several force-couple systems acting at a desired point.

The force couple systems can be combined into a resultant force-couple.

$$\vec{R} = \sum \vec{F}$$
 $\vec{M}_O^R = \sum (\vec{r} \times \vec{F})$

DDEK/2014/ ME 164 - STATICS OF SOLID MECHANICS

98

EQUIVALENT FORCE SYSTEMSReduction of Several forces into a force couple-system

A system of forces act on a body, they can be reduced to a force-couple system acting at a desired point.

Example

For the machine part shown in the Figure below, replace the applied load of 150 kN acting at point A by an equivalent force-couple system with the force acting at point B.

DDEK/2014/ ME 161 - BASIC MECHANICS

100

EQUIVALENT FORCE SYSTEMSReduction of Several forces into a force couple-system

Solution

$$M_B = -150(0.08 \,\mathrm{m} + 0.04 \,\mathrm{m}) = -18 \,\mathrm{kN}$$

Example

Replace the force-couple system shown in Fig. (a) with an equivalent force-couple system, with the force acting at point A, given that F=100 N and M=120 N.m.

DDEK/2014/ ME 161 - BASIC MECHANICS

102

EQUIVALENT FORCE SYSTEMSReduction of Several forces into a force couple-system

Solution

$$\vec{F} = 100\lambda_{BE} = 100 \left(\frac{-4i + 2k}{\sqrt{((-4)^2 + 2^2)}} \right) = -89.44i + 44.72k$$

$$\vec{r} = 4i - 2k$$

$$\vec{M}_A = \vec{r}_{AB} \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 4 & -2 \\ -89.44 & 0 & 44.72 \end{vmatrix}$$

=
$$(178.9i + 178.9j + 357.8k)$$
 N.m

$$\vec{M} = 120\lambda_{DB} = 120 \left(\frac{4i + 4j - 2k}{\sqrt{(4^2 + 4^2 + (-2)^2)}} \right)$$

= $(80i + 80j - 40k)$ N.m

$$\vec{\mathbf{M}}_{RA} = \vec{M}_A + \vec{M} = (258.9i + 258.9j + 317.8k) \,\text{N.m}$$

 $\mathbf{M}_{RA} = 484.8 \,\text{N.m}$

103

Example

For the beam, reduce the system of forces shown to (a) an equivalent force-couple system at A, (b) an equivalent force couple system at B. (Ignore the support reactions)

DDEK/2014/ ME 161 - BASIC MECHANICS

104

EQUIVALENT FORCE SYSTEMSReduction of Several forces into a force couple-system

Example

The Resultant force will be

+
$$\uparrow R = \sum F$$

= (150 N)-(600 N)+(100 N)-(250 N)
= (-600 N)

The Resultant Moment

$$\begin{array}{l}
+) \ \vec{M}_B = \sum (r \times F) \\
= (250N \times 0m) - (100N \times 2m) + (600N \times 3.2m) - (150N \times 4.8m) \\
= 1000Nm
\end{array}$$

105

Example

If the resultant of the two forces and couple M passes through point O, determine M.

DDEK/2014/ ME 161 - BASIC MECHANICS

106

EQUIVALENT FORCE SYSTEMSReduction of Several forces into a force couple-system

Example

Four tugboats are used to bring an ocean liner to its pier. Each tugboat exerts a 5000-lb force in the direction shown. Determine the equivalent force-couple system at the foremast O. Also determine the angle the resultant force makes with the horizontal as well as the direction of rotation of the moment.

R = 13.33 lb,
$$\theta_{i} = 47.3^{\circ}$$

 $M_{RO} = 1035$ lb.in, Clockwise

Centroid of an Area using the moments of area approach

Centroid of an Area using with the integration approach

An Introduction Moments of Inertia.

DDEK/2014/ ME 161 - BASIC MECHANICS

108

CENTROIDS

- It is sometimes necessary in mechanics problems to determine the central point of bodies.
- This central point is defined as that point a physical quantity under consideration may be assumed to be centered.
- The central point may have different terminologies for different physical quantities.

Terminology	Physical Entity		
Centroid	Length of a curve		
Centroid	Area of a surface		
Centroid	Volume of a body		
Centre of a mass	Mass of a body		

Centre of gravity Gravitational force on a body

All the terms mentioned above can be determined using the summation approach, which will be discussed. An integration approach can also be used.

DDEK/2014/ ME 161 - BASIC MECHANICS

Determining the Centroid of a Plane Area

- ➤ Using the summation approach,
 - ➤ We assume the area comprises several smaller elemental areas.
 - ➤ We then sum moments of the elemental areas about axes of the origin (1st moments) and divide this by the total area to get the centroid of the area.

$$\overline{x} = \frac{First \ Moment \ of \ Area \ about \ y\text{-}axis, Q_y}{Total \ Area} = \frac{\sum x_i dA_i}{\sum A_i}$$

$$\bar{y} = \frac{First \ Moment \ of \ Area \ about \ x-axis, Q_x}{Total \ Area} = \frac{\sum y_i dA_i}{\sum A_i}$$

Centroid is $(\overline{X}, \overline{Y})$

110

CENTROIDS

Determining the Centroid of a Plane Area

The same idea is used in determining the centroids of composite areas.

$$\begin{split} \overline{X} &= \frac{First \ Moment \ of \ each \ Area \ about \ y-axis, Q_y}{Total \ Area} \\ &= \frac{\displaystyle\sum \overline{x}_i dA_i}{\displaystyle\sum A_i} = \frac{\left(\overline{x}_1 A_1\right) + \left(\overline{x}_2 A_2\right) + \left(\overline{x}_3 A_3\right)}{A_1 + A_2 + A_3} \end{split}$$

$$\overline{Y} = \frac{First \ Moment \ of \ each \ Area \ about \ x-axis, Q_x}{Total \ Area}$$

$$= \frac{\sum \overline{y}_i dA_i}{\sum A_i} = \frac{(\overline{y}_1 A_1) + (\overline{y}_2 A_2) + (\overline{y}_3 A_3)}{A_1 + A_2 + A_3}$$

Centroid is $(\overline{X}, \overline{Y})$

Note:

THE ELEMENTAL AREA CENTROID VALUES MAY BE NEGATIVE OR POSITIVE DEPENDING ON THE LOCATION OF THE ORIGIN OF THE COMPOSITE AREA BEING CONSIDERED.

Centroids of Common Shapes

Shape	Man a deather the man person with	\overline{x}	\overline{y}	Area
Triangular area	$ \begin{array}{c c} & x_1 \\ \hline y & \overline{x} \\ \hline \hline y & \overline{y} \\ \hline & b \\ \hline \end{array} $	$\frac{a+b}{3}$	<u>h</u> 3	<u>bh</u> 2
Quarter-circular area	c c	$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
Semicircular area	$\sqrt{\overline{y}}$	0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	C C b	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area		0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$
Semiparabolic area	← a →	3 <i>a</i> 8	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$0 \qquad \overline{x} \qquad 0 \qquad a \qquad h$	0	$\frac{3h}{5}$	4 <i>ah</i> 3

DDEK/2014/ ME 161 - BASIC MECHANICS

112

CENTROIDS

Centroids of Common Shapes

113

CENTROIDS Determining the Centroid of a Plane Area

Example

For the plane area shown, determine the first moments with respect to the x and y axes and the location of the centroid.

DDEK/2014/ ME 161 - BASIC MECHANICS

114

Component	A, mm²	₹, mm	\overline{y} , mm	$\bar{x}A$, mm ³	<i>ȳA</i> , mm³
Rectangle Triangle Semicircle Circle	$(120)(80) = 9.6 \times 10^{3}$ $\frac{1}{2}(120)(60) = 3.6 \times 10^{3}$ $\frac{1}{2}\pi(60)^{2} = 5.655 \times 10^{3}$ $-\pi(40)^{2} = -5.027 \times 10^{3}$	60 40 60 60	40 -20 105.46 80	$+576 \times 10^{3} +144 \times 10^{3} +339.3 \times 10^{3} -301.6 \times 10^{3}$	$+384 \times 10^{3}$ -72×10^{3} $+596.4 \times 10^{3}$ -402.2×10^{3}
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \bar{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

CENTROIDSDetermining the Centroid of a Plane Area

$$\overline{X} = \frac{\sum \overline{x}A}{\sum A} = \frac{+757.7 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

NOTE: The same principles are used in determining the centroids of curves and volumes as well as the centers of mass and gravity of bodies.

DDEK/2014/ ME 161 - BASIC MECHANICS

116

CENTROIDS

≻Example

Determine the co-ordinates centroid of the area shown.

117

≻Example

Determine the co-ordinates centroid of the area shown.

DDEK/2014/ ME 161 - BASIC MECHANICS

118

CENTROIDS

≻Example

Determine the co-ordinates centroid of the area shown.

DDEK/2014/ ME 161 - BASIC MECHANICS