Deep Fundamental Matrix Estimation without Correspondences

Omid Poursaeed

Depth Estimation

Depth estimation is crucial in many applications such Augmented Reality

Depth from Disparity

epipolar lines

 x_2-x_1 = the *disparity* of pixel (x_1, y_1)

$$disparity = x - x' = \frac{baseline * f}{z}$$

Fundamental Matrix

Describes the geometric relation that relates two stereo images

Homogeneous rank-2 matrix with seven degrees of freedom

Useful for:

- Estimating disparity and depth
- Rectifying stereo images
- Structure from Motion

Fundamental Matrix

$$\mathbf{F} = \mathbf{K}_2^{-T} \mathbf{R} \left[\mathbf{t} \right]_{\times} \mathbf{K}_1^{-1}$$

$$\mathbf{t}_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} -f & s & c_x \\ 0 & -\alpha f & c_y \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{R} = \mathbf{R}_{\mathbf{x}}(r_x)\mathbf{R}_{\mathbf{y}}(r_y)\mathbf{R}_{\mathbf{z}}(r_z)$$

$$\mathbf{K} = \begin{bmatrix} -f & s & c_x \\ 0 & -\alpha f & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

 $(c_x, c_y)^T$ is the principal point of the camera f_i is the focal length of camera \mathbf{R} and $[\mathbf{t}]_{\times}$ are the relative camera rotation and translation respectively

Epipolar Constraint: $q^T \mathbf{F} p = 0$

Feature Extraction

Regression

Reconstruction Layer: A differentiable layer to reconstruct the F-matrix based on predicted camera parameters.

Epipolar Parametrization: Parametrizing the F-matrix based on the first two rows and two coefficients to

linearly combine them to obtain the third row

$$\mathbf{f}_3 = \alpha \mathbf{f}_1 + \beta \mathbf{f}_2$$

Results on KITTI dataset

$$\mathcal{M}_{EPI-ABS}(\mathbf{F}, p, q) = \sum_{i} |q_i^T \mathbf{F} p_i| \qquad \mathcal{M}_{EPI-SQR}(\mathbf{F}, p, q) = \sum_{i} (q_i^T \mathbf{F} p_i)^2$$

	Siamese Network			Single-stream Network		
Normalization	Models	EPI-ABS	EPI-SQR	Models	EPI-ABS	EPI-SQR
ETR-Norm	Base	3.77	27.16	Base	4.43	34.34
	POS	4.05	21.90	POS	2.47	9.79
	EPI	0.52	0.28	EPI	1.00	0.99
	EPI + POS	0.88	1.02	EPI + POS	1.00	1.00
	REC	0.56	0.45	REC	0.99	0.99
	REC + POS	0.97	0.98	REC + POS	1.00	0.99
	7-point	1.91	152.83	7-point	1.91	152.83
	LeMedS	1.09	25.50	LeMedS	1.09	25.50
	RANSAC	0.60	3.85	RANSAC	0.60	3.85
	Ground-truth	0.05	0.004	Ground-truth	0.05	0.004

Results on KITTI dataset

$$\mathcal{M}_{EPI-ABS}(\mathbf{F}, p, q) = \sum_{i} |q_i^T \mathbf{F} p_i| \qquad \mathcal{M}_{EPI-SQR}(\mathbf{F}, p, q) = \sum_{i} (q_i^T \mathbf{F} p_i)^2$$

	Siamese Network			Single-stream Network		
Normalization	Models	EPI-ABS	EPI-SQR	Models	EPI-ABS	EPI-SQR
FBN-Norm	Base	1.44	2.58	Base	2.45	9.99
	POS	1.97	5.66	POS	2.78	8.55
	EPI	0.07	0.01	EPI	0.91	0.91
	EPI + POS	0.06	0.005	EPI + POS	0.67	0.58
	REC	0.92	1.11	REC	0.78	1.24
	REC + POS	0.43	0.44	REC + POS	0.87	0.81
	7-point	1.06	11.7	7-point	1.06	11.7
	LeMedS	0.39	0.68	LeMedS	0.39	0.68
	RANSAC	0.27	0.21	RANSAC	0.27	0.21
	Ground-truth	0.05	0.004	Ground-truth	0.05	0.004