✔ 恭喜!您通过了!

下一项

1/1分

1。

Suppose we flip a coin five times to estimate θ , the probability of obtaining heads. We use a Bernoulli likelihood for the data and a non-informative (and improper) Beta(0,0) prior for θ . We observe the following sequence: (H, H, H, T, H).

Because we observed at least one H and at least one T, the posterior is proper. What is the posterior distribution for θ ?

- Beta(1.5, 4.5)
- Beta(1,4)
- Beta(4,1)

正确

We observed four "successes" and one "failure," and these counts are the parameters of the posterior beta distribution.

- Beta(2,5)
- Beta(5,2)
- Beta(4.5, 1.5)

 $Lesson \ \textbf{11} \quad \textbf{Continuing the previous question, what is the posterior mean for}$ θ ? Round your answer to one decimal place.

5/5 分 (100%)

0.8

正确回答

This is the same as the MLE, $ar{y}$.

1/1分

3。

Consider again the thermometer calibration problem from Lesson

Assume a normal likelihood with unknown mean heta and known variance $\sigma^2=0.25$. Now use the non-informative (and improper) flat prior for heta across all real numbers. This is equivalent to a conjugate normal prior with variance equal to ∞ .

- You collect the following n=5 measurements: (94.6, 95.4, 96.2, 94.9, 95.9). What is the posterior distribution for θ ?
 - $N(96.0, 0.25^2)$
- N(95.4, 0.05)

正确

This is $N(ar{y}, rac{\sigma^2}{n})$.

- N(95.4, 0.25)
- $N(96.0, 0.05^2)$

1/1分

5/5 分 (100%)

Hint: The Jeffreys prior in this case is Beta(1/2, 1/2).

正确

Beta distributions with parameters between 0 and 1 have a distinct "U" shape.

Lesson 11

测验, 5 个问题

5/5 分 (100%)

()

1/1分

5.

Scientist A studies the probability of a certain outcome of an experiment and calls it θ . To be non-informative, he assumes a Uniform(0,1) prior for θ .

Scientist B studies the same outcome of the same experiment using the same data, but wishes to model the odds $\phi=\frac{\theta}{1-\theta}$. Scientiest B places a uniform distribution on ϕ . If she reports her inferences in terms of the probability θ , will they be equivalent to the inferences made by Scientist A?

- Yes, they both used uniform priors.
- Yes, they used the Jeffreys prior.

Lesson 11

测验, 5 个问题

No, they are using different parameterizations.

5/5 分 (100%)

No, they did not use the Jeffreys prior.

The uniform prior on θ implies the following prior PDF for $\phi:f(\phi)=rac{1}{(1+\phi)^2}\,I_{\{\phi\geq 0\}}$, which clearly is not the uniform prior used by Scientist B.

They would obtain equivalent inferences if they both use the Jeffreys prior.

