

نموذج اختبار

السؤال الأول (أ)

س في الشكل المقابل $\frac{1}{\sqrt{2}}$ مماس للدائرة التي مركزها و أوجد قيمة ω

س في الشكل المقابل أوجد البعد بين مركز الدائرة والوتر.

رس) أثبت صحة المطابقة التالية: $= \mathsf{cl}^{\mathsf{T}}(w) + \mathsf{cl}(w) \times \mathsf{cd}^{\mathsf{T}}(w) = \mathsf{cl}(w)$

السؤال الثاني (أ)
$$\begin{bmatrix} \cdot & \tau \\ \cdot & - \end{bmatrix} = \begin{bmatrix} \tau & \cdot \\ \cdot & - \end{bmatrix} = \begin{bmatrix} \cdot & \tau \\ \cdot & - \end{bmatrix}$$
السؤال الثاني (أ)
$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

$$(\theta)$$
، جتا (θ) ا بحتا (θ) ا بحت

$$\mathbf{v}-\mathbf{v}=\mathbf{v}$$
 أوجد البعد من النقطة $\mathbf{v}-\mathbf{v}=\mathbf{v}$ إلى المستقيم \mathbf{v} : $\mathbf{v}=\mathbf{v}$

 $(\xi\cdot \Upsilon)$ ب $(\Upsilon-\iota\xi)$ ا أوجد معادلة الدائرة التي قطرها $\overline{\eta}$ حيث ا

س إذا كان المستقيم هـ: $\Upsilon - \omega + \omega + \gamma = 0$ فأوجد: معادلة المستقيم نه العمودي علي المستقيم هـ والذي يمر بالنقطة (٤٠١)

س إذا كان $(-\circ \circ)$ ، $(-\circ \circ)$ فأوجد نقطة تقسيم $\overline{(-\circ \circ)}$ من جهة أبنسبة $(-\circ \circ)$ من الداخل.

س أثبت أن النقطة $\{(\cdot,\cdot)\}$ تنتمي الي الدائرة التي مركزها (و) ومعادلتها: $w^{-1}+w^{-1}+Nw-Nw-Nw=0$ ثم أوجد معادلة المماس لهذه الدائرة عند هذه النقطة.

س اشترى ناصر علبة حلوى تحتوي على ١٢ قطعة بينها ٤ قطع بالشوكولا، يريد ناصر أخذ قطعتين من العلبة معا عشوائيا. فما احتمال أن يختار قطعتين بالشوكولا ؟

ظلل أ إذا كانت الإجابة صحيحة. ب إذا كانت خاطئة:

 $oldsymbol{\omega}$ قيمة $oldsymbol{\omega}$ في الشكل المجاور هي $oldsymbol{\omega}$

س ظا(۔ه۲۲°)

۹ 🔾

۲ 🔿

- س ^ل = ۲۷۳۰

ظلل رمز الدائرة الدال على الإجابة الصحيحة

- س إذا كإن طول قطر دائرة يساوي ٢٥ سم وطول أحد أوتارها ١٦ سم فإن البعد بين مركز الدائرة والوتر هو
 - 🔾 ۱۹٫۲ سم

- س إذا كانت المصفوفة $\begin{bmatrix} w & y \\ 1 & 1 \end{bmatrix}$ منفردة، فإن قيمة w تساوي:

۸- ()

- $oldsymbol{\omega}$ إذا كان $oldsymbol{\overline{\psi}}$ مماس للدائرة. فإن $oldsymbol{\omega}$
- ٩ 🔾
- 11 0

٨ 10 0

10

۲ 🔿

🔾 ۱۸ سم

1- 0

- $rac{m{arphi}}{m{arphi}}$ للنسبة المثلثية في ما يلي التي قيمتها الس $\frac{\pi Y}{3}$ ظ
 - $\frac{\pi^{r_1}}{7}$ جيا \bigcirc
 - $\left(\frac{\pi r \circ}{r}\right)$

 $\frac{\pi \Gamma}{2}$ ق

۲- 🔾

س في الشكل المجاور، محيط المثلث هو:

ن ککم

۰ ۲۲ م

۰ ٤٠ م

) ۱۱ م

س في الشكل المقابل قيمة 💆 تساوي:

٩ 🔾

٤ 🔾

77 O

٦)

- $oldsymbol{w}$ إذا كان $rac{1}{2}$ حدثين مستقلين وكان $\mathcal{U}(rac{1}{2})=7$,۰۰ ل $(rac{1}{2})=6$, فإن $\mathcal{U}(rac{1}{2})=0$
- ۰٫٦ 🔾
- ٠,٨)

٠,٧ ر

٠,٥ 🔾