6. Pochodna funkcji (cz.2)

6. Pochodna funkcji (cz.2)

Twierdzenie

Jeśli funkcja jest różniczkowalna w punkcie a, to jest ciągła w tym punkcie.

Twierdzenie odwrotne nie zachodzi.

Twierdzenia o wartości średniej

Twierdzenie

(Rolle'a)

Jeżeli funkcja f jest ciągła na przedziale domkniętym [a,b] i różniczkowalna na (a,b) oraz f(a)=f(b), to istnieje punkt $c \in (a,b)$ taki że f'(c)=0.

Twierdzenie

(Lagrange'a)

Jeżeli funkcja f jest ciągła na przedziale domkniętym [a,b] i różniczkowalna na (a,b), to istnieje punkt $c \in (a,b)$ taki że $f'(c) = \frac{f(b) - f(a)}{b}$.

Wnioski z twierdzenia Lagrange'a

Niech f będzie funkcją różniczkowalną na przedziale (a,b). Jeżeli dla każdego $x \in (a,b)$

- f'(x) = 0, to f jest stała na (a, b),
- f'(x) > 0, to f jest rosnąca na (a, b),
- f'(x) < 0, to f jest malejąca na (a, b),
- $f'(x) \ge 0$, to f jest niemalejąca na (a, b),
- $f'(x) \leq 0$, to f jest nierosnąca na (a, b).

(Fermata, warunek konieczny istnienia ekstremum)

Jeżeli funkcja f jest różniczkowalna w punkcie x_0 i ma w punkcie w tym punkcie ekstremum lokalne, to $f'(x_0) = 0$.

Twierdzenie odwrotne nie zachodzi.

Punkt x_0 , dla którego zachodzi warunek $f'(x_0) = 0$ nazywamy punktem stacjonarnym lub krytycznym funkcji f.

Funkcja może mieć ekstermum lokalne w punkcie, w którym nie jest różniczkowalna.

(warunek dostateczny istnienia ekstremum).

Załóżmy, że funkcja f jest różniczkowalna na pewnym przedziale (a,b) oraz $x_0 \in (a,b)$.

Jeśli w pewnym lewostronnym sąsiedztwie punktu x_0 pochodna funkcji f jest dodatnia, zaś w pewnym prawostronnym sąsiedztwie tego punktu - ujemna, to funkcja f ma w punkcie x_0 maksimum lokalne.

Jeśli w pewnym lewostronnym sąsiedztwie punktu x_0 pochodna funkcji f jest ujemna, zaś w pewnym prawostronnym sąsiedztwie tego punktu - dodatnia, to funkcja f ma w punkcie x_0 minimum lokalne.

Jeżeli funkcja f jest różniczkowalna na przedziale $(a,b), x_0 \in (a,b)$ oraz istnieje

$$\lim_{h \to 0} \frac{f'(x_0 + h) - f'(x_0)}{h}$$

to granicę tę nazywamy pochodną drugiego rzędu (drugą pochodną) funkcji f w punkcie x_0 i oznaczamy symbolem $f''(x_0)$.

Analogicznie definiujemy pochodne wyższych rzędów.

Powiemy, że funkcja ciągła f na przedziale (a,b) jest **wypukła w punkcie** $x_0 \in (a,b)$, jeśli wykres tej funkcji (w pewnym otoczeniu punktu x_0) znajduje się ponad styczną do wykresu wyznaczoną w punkcie $(x_0, f(x_0))$.

Funkcję nazwiemy wklęstą w punkcie x_0 , jeśli jej wykres znajduje się pod taką styczną.

Mówimy, że funkcja jest wypukła (wklęsła) na przedziale (a,b) jeśli jest wypukła (wklęsła) w każdym punkcie tego przedziału.

Jeśli funkcja f jest wypukła na lewo od punktu x_0 , zaś wklęsła na prawo od tego punktu (albo odwrotnie), to mówimy, że f ma w x_0 punkt przegięcia.

Jeżeli funkcja f jest dwukrotnie różniczkowalna na przedziałe (a,b) i druga pochodna f'' jest dodatnia w każym punkcie tego przedziału, to f jest wypukła na przedziałe (a,b).

Jeśli druga pochodna jest ujemna w każdym punkcie przedziału (a,b), to funkcja f jest na przedziałe (a,b) wklęsła.

Twierdzenie

(warunek konieczny istnienia punktu przegięcia) Jeśli funkcja f ma w x_0 punkt przegięcia i jest w tym punkcie dwukrotnie różniczkowalna, to $f''(x_0)=0$.

Twierdzenie

(warunek dostateczny istnienia punktu przegięcia) Jeśli funkcja f jest w otoczeniu punktu x_0 dwukrotnie różniczkowalna, $f''(x_0)=0$ oraz druga pochodna zmienia znak w punkcie x_0 , to funkcja f ma w x_0 punkt przegięcia.

Jeśli funkcja f jest w otoczeniu punktu x_0 n-krotnie różniczkowalna, wszystkie kolejne pochodne funkcji f do rzędu n-1 są równe zero oraz $f^{(n)} \neq 0$, to f ma w punkcie x_0 ekstremum lokalne lub punkt przegięcia, przy czym jest to:

- a) punkt przegięcia, jeśli n jest nieparzyste,
- b) ekstremum lokalne, jeśli n jest parzyste (minimum, gdy $f^{(n)}>0$, a maksimum gdy $f^{(n)}<0$).