1. Lineare Gleichungssysteme, Körper und Matrizen.

1.1. Entscheiden Sie für

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix} \in \operatorname{Mat}_3(\mathbb{Q})$$
:

- ↓ W A ist invertierbar über Q.
- + Es gibt $b \in \mathbb{Q}^3$ mit $L(A, b) = \emptyset$.
- + A lässt sich mit elementaren Zeilenumformungen auf eine Zeilenstufenform mit genau 2 Pivots bringen.
- + W Das homogene lineare Gleichungssystem mit Koeffizientenmatrix A besitzt nur die triviale Lösung.

1.2. Entscheiden Sie:

- Mit Hilfe von elementaren Zeilenumformungen lässt sich jede Matrix mit Einträgen aus einem Körper in Zeilenstufenform bringen.
 - + Besitzt eine Matrix A in Zeilenstufenform mehr Spalten als Pivots, so besitzt jedes inhomogene lineare Gleichungssystem mit A als Koeffizientenmatrix eine Lösung.
 - Die Summe zweier Lösungen eines inhomogenen linearen Gleichungssystems ist stets wieder eine Lösung.
 - W Eine quadratische Matrix in reduzierter Zeilenstufenform ist die Einheitsmatrix.
 - 1.3. Sei K ein Körper. Entscheiden Sie, ob für alle $A \in \operatorname{Mat}_{m,n}(K)$ und $b \in K^m$ gilt:
 - + W Ist $c \in L(A, b)$ und $d \in L(A, 0)$, so ist $c + d \in L(A, b)$.
 - f Sind $c, d \in L(A, b)$, so ist $c d \in L(A, 0)$.
 - + \square Ist $c \in L(A,0)$ und $\lambda \in K$, so ist $\lambda c \in L(A,0)$.
 - + Aus $L(A,0) \neq \{0\}$ folgt $L(A,b) \neq \emptyset$.

- Für jedes $A \in \operatorname{Mat}_m(K)$ existiert ein $n \in \mathbb{N}$ mit $A^n = 0$.
- + \bowtie $A, B \in GL_m(K) \Rightarrow AB \in GL_m(K).$
- $A \in \mathrm{GL}_m(K) \Rightarrow \mathrm{rang}(A) = m.$
- → Mat₂(ℝ) bildet mit der bekannten Addition und Multiplikation von Matrizen einen kommutativen Ring.

1.5. Entscheiden Sie:

- + W Es gibt einen Körper mit genau 23 Elementen.
- \bot $\mathbb{Z}/9\mathbb{Z}$ ist ein Körper (mit der bekannten Addition und Multiplikation).
- In einem Körper können Elemente mehr als ein multiplikativ Inverses besitzen.
- ☐ ☐ Z ist ein Körper (mit der bekannten Addition und Multiplikation).

1.6. Entscheiden Sie:

- + \(\mathbb{\times}\) \(\mathbb{C}\) ist ein kommutativer Ring (mit der bekannten Addition und Multiplikation).
- \mathbb{W} Für $a, b \in \mathbb{C} \setminus \{0\}$ kann ab = 0 gelten.
- $\perp \quad \text{$\widetilde{\square}$ Für $z \in \mathbb{C}$ gilt $|z|^2 = z\overline{z}$.}$
- Der Betrag einer komplexen Zahl ist stets eine reelle Zahl.

2. Vektorräume und lineare Abbildungen.

- **2.1.** Sei K ein Körper und V ein endlich erzeugter K-Vektorraum. Entscheiden Sie:
- + W V besitzt eine Basis.
- + Jedes Erzeugendensystem von V ist eine Basis.
- + \longrightarrow Je zwei Basen von V bestehen aus gleich vielen Vektoren.
- + $\hfill \begin{tabular}{l} \bot$ Jedes System linear unabhängiger Vektoren von Vlässt sich zu einer Basis von Vergänzen.
- 2.2. Entscheiden Sie, ob die folgenden Teilmengen von $V = \mathcal{F}([0,1],\mathbb{R})$ jeweils \mathbb{R} -Untervektorräume sind (bezüglich der bekannten Addition und skalaren Multiplikation):
- + $W \{ f \in V \mid f(0) = 0 \}.$
- + $\{f \in V \mid f(0) = 1\}.$
- $\{f \in V \mid f(1) = 0\}.$
- $\{f \in V \mid f(a) \geq 0 \text{ für alle } a \in [0, 1]\}.$
- **2.3.** Sei V ein K-Vektorraum und $v_1, \ldots, v_m \in V$. Entscheiden Sie:
- + \longrightarrow Es ist $\mathrm{Span}_K(\{v_1,\ldots,v_m\})$ ein Untervektorraum von V.
- \longrightarrow Es ist $\operatorname{Span}_K(\{v_1,\ldots,v_m\})$ ein Untervektorraum von K^m .
- + Es ist $\operatorname{Span}_K(\{v_1,\ldots,v_m\})$ die Vereinigung aller Untervektorräume von V, welche v_1,\ldots,v_m enthalten.
- + Es ist $\operatorname{Span}_K(\{v_1,\ldots,v_m\})$ die Menge aller linear unabhängiger Teilmengen von $\{v_1,\ldots,v_m\}$.

- \forall + \bowtie Wenn φ injektiv ist, ist φ auch surjektiv.
 - + \bigcirc Es ist φ stets surjektiv.
 - \downarrow Es kann dim $V < \dim \text{Bild}(\varphi)$ gelten.
 - \searrow Aus dim Bild (φ) < dim V folgt, dass φ nicht injektiv ist.

- + $\varphi: \mathbb{R}^2 \to \mathbb{R}^1; (a,b)^t \mapsto a b^2.$
 - + \mathbb{W} $\varphi: \mathbb{R}^2 \to \mathbb{R}^2; (x,y)^t \mapsto (2x-y,3y).$
- $\bot \quad \boxed{\mathbf{f}} \quad \varphi \colon \mathbb{R}^1 \to \mathbb{R}^1; a \mapsto a + 1.$

3. Determinanten.

3.1. Sei K ein Körper und $m \in \mathbb{N}$ beliebig. Entscheiden Sie:

- \mathcal{L} \mathbb{W} Die Determinante det: $\mathrm{Mat}_m(K) \to K$ ist eine K-lineare Abbildung.
 - + \mathbb{W} Es gilt $\det(AB) = \det(A) \cdot \det(B)$ für alle $A, B \in \operatorname{Mat}_m(K)$.
 - + Die Determinante einer Matrix ändert sich unter elementaren Zeilenumformungen nicht.
 - + W Aus $det(A) \neq 0$ folgt $L(A, b) \neq \emptyset$ für alle $b \in K^m$.

3.2. Entscheiden Sie:

- + Es gilt $A \cdot A^{\mathrm{adj}} = I_2$ für alle $A \in \mathrm{Mat}_2(\mathbb{R})$.
 - + \longrightarrow $A \in \operatorname{Mat}_2(\mathbb{Z}/2\mathbb{Z})$ ist genau dann invertierbar wenn $\det(A) = 1$ gilt.
 - + Die Determinante einer oberen Dreiecksmatrix ist Null.
 - + Für $a_1, a_2, a_3 \in \mathbb{C}^3$ gilt $\det(a_1, a_2, a_3) = -\det(a_2, a_3, a_1)$.

3.3. Entscheiden Sie:

- + Die Regel von Sarrus gilt für Matrizen der Größe 4.
- + Für $A \in \operatorname{Mat}_m(K)$ gilt $A^{\operatorname{adj}} \in \operatorname{Mat}_{m-1}(K)$.
- + W Es gilt

$$\det \left(\begin{array}{cc} 1 & -2 \\ -2 & 4 \end{array} \right) = 0.$$

Der Rang einer Matrix ist die größte Größe einer quadratischen Untermatrix mit Determinante $\neq 0$.

4. Allgemeine Beweisaufgaben.

4.1. Sei V ein Vektorraum, $\varphi:V\to V$ eine lineare Abbildung und $v_1,v_2\in V$. Entscheiden Sie:

Aus $\varphi(v_1) = 7v_1$ und $\varphi(v_2) = 7v_2$ folgt $\varphi(v) = 7v$ für alle $v \in \text{Span}\{v_1, v_2\}$.

+ Sind v_1, v_2 linear unabhängig, so auch $\varphi(v_1), \varphi(v_2)$.

+ \square Sind $\varphi(v_1), \varphi(v_2)$ linear unabhängig, so auch v_1, v_2 .

+ \square Aus $v_2 - v_1 \in \text{Kern}(\varphi)$ folgt $\varphi(v_1) = \varphi(v_2)$.

4.2. Sei K ein Körper, $A \in \operatorname{Mat}_m(K)$ und $n \in \mathbb{N}$ mit $A^n = 0$. Entscheiden Sie:

- $2 + |w| \operatorname{rang}(A) < m.$
 - + A hat Diagonalgestalt.
 - $\qquad \qquad Aus \ A^2v = Av \ \text{folgt} \ Av = 0.$
 - + Es gibt keine Matrizen mit $A^n = 0$ für ein $n \in \mathbb{N}$.