UNIVERSIDAD PRIVADA DE TACNA

INGENIERIA DE SISTEMAS

TEMA:

Patrones de Diseño Estructurales

CURSO:

BASE DE DATOS II

DOCENTE(ING):

Patrick Jose Cuadros Quiroga

Integrantes:

Marko Antonio RIVAS RIOS	(2016055461)
Jorge Luis MAMANI MAQUERA	(2016055236)
Andree Ludwed VELASCO SUCAPUCA	(2016055286)
Yofer Nain CATARI CABRERA	(2017059289)
Adnner Sleyder ESPERILLA RUIZ	(2015050543)
Jesus ESCALANTE ALANOCA	(2015050641)

Índice

1.	Patrones de Diseño Composite	1
2.	Patrón de Diseño Proxy	5
3.	Patrón de Diseño	9
4.	Patrones de Diseño Facade	10
5 .	Patrones de Diseño (Adapter)	12
6.	Patrón de Diseño	14
7.	Webgrafía	15

1. Patrones de Diseño Composite

El patrón de diseño Composite nos sirve para construir estructuras complejas partiendo de otras estructuras mucho más simples, dicho de otra manera, podemos crear estructuras compuestas las cuales están conformadas por otras estructuras más pequeñas. Para comprender mejor como funciona este patrón imaginemos una casa de ladrillos, las casas como tal no están hecha de una pieza, si observamos las paredes estas esta echas de pequeñas piezas llamadas ladrillos, entonces, el conjunto de estos ladrillos crea paredes, y un conjunto de paredes crean una casa. este ejemplo puede ser aplicado al patrón Composite, y no digo que vayamos a crear una casa con este patrón, sino más bien nos da una idea de cómo trabaja para poder utilizarlo con otros ejemplos.

Uso

El patrón Composite sirve para construir objetos complejos a partir de otros más simples y similares entre sí, gracias a la composición recursiva y a una estructura en forma de árbol. Esto simplifica el tratamiento de los objetos creados, ya que al poseer todos ellos una interfaz común, se tratan todos de la misma manera. Dependiendo de la implementación, pueden aplicarse procedimientos al total o una de las partes de la estructura compuesta (todo o parte) como si de un nodo final se tratara, aunque dicha parte esté compuesta a su vez de muchas otras.

Aplicación

Usar el patrón COMPOSITE cuando:

- Se quiere representar jerarquías de objetos todo-parte.
- Se quiere ser capaz de ignorar la diferencia entre objetos individuales y composiciones de objetos. Los clientes tratarán a todos los objetos de la estructura compuesta uniformemente.

Estructura

Participantes

El patrón Composite requiere mínimo de tres componentes para poder existir los cuales son Componente, Leaf o Rama y Composite.

- a) Component (Grafico) Generalmente es una interface o clase abstracta la cual tiene las operaciones mínimas que serán utilizadas, este componente deberá ser extendido por los otros dos componentes Leaf y Composite. En nuestro ejemplo esto podría representar de forma abstracta un ladrillo o toda la casa (Mas adelante comprenderemos porque)
- b) Leaf o Rama (Línea, Rectángulo, Texto) El leaf u hoja representa la parte más simple o pequeña de toda la estructura y este extiende o hereda de Component. En nuestro ejemplo, este representaría un ladrillo de nuestra casa.
- c) Composite (Dibujo) Aquí es donde está la magia de este patrón, ya que el composite es una estructura conformada por otros Composite y Leaf, los Composite tiene los métodos add (añadir) y remove (remover) los cuales nos permiten agregar objetos de tipo Component, Sin embargo, el Componente es por lo general un Interface o Clase abstracta por lo que se puede agregar objetos de tipo Composite o Leaf. Desde el punto de vista del ejemplo de la casa el Composite podría representar un conjunto de ladrillos o la casa completa, Esto desde luego sería agregando varias Ladrillo(Leaf) al Composite para crear una Pared.
- d) Client Es la entidad que hará uso del objeto compuesto.

EJEMPLO DE ESTUDIO DEL PATRON COMPOSITE Imaginemos un sistema de puntos de venta, en el cual se le pueden vender al cliente una serie de productos, estos productos pueden ser productos simples (Leaf) o paquetes (Composite). El sistema permitirá crear "Ordenes de Ventas", las cuales están compuestas por 1 o muchos productos.

En la imagen se muestra de forma gráfica cómo está compuesto un paquete. Los paquetes están creados a partir de un conjunto de productos simples y otros paquetes por lo que el precio de un paquete está calculado por el precio de sus hijos de forma recursiva. Muestra la estructura de una forma conceptual, sin embargo, la estructura es un poco más compleja, ya que está formado por una estructura de dato llamado "Arbol"

Esta imagen muestra un solo paquete, está formado de otros productos, simples y compuestos, un compuesto sería otro paquete, el cual tiene dentro más productos simples y como se vio en la figura anterior, el precio de un paquete es calculado por el precio de todos los hijos de forma recursiva.

CONCLUSION

- Define jerarquías de clases hechas de objetos simples y compuestos.
- Si el código cliente espera un objeto simple, puede recibir también uno compuesto
- Puede hacer el diseño demasiado general. Es complicado restringir el tipo de componentes de un composite.
- Un paquete es producto compuesto de varios productos simples y otros paquetes.
- Simplifica el cliente. Los paquetes y productos simples deberán ser tratados de la misma forma, por lo que deberán tener un padre en común.
- El precio de un paquete es la suma de todos los productos simples que contenga.
- El sistema deberá mostrar el total de la Orden y los productos que contiene.
- Facilita la incorporación de nuevos tipos de componentes

2. Patrón de Diseño Proxy

1. ¿Qué es el Patrón Proxy?

El patrón Proxy proporciona un objeto intermediario entre el cliente y el objeto a utilizar, que permite configurar ciertas características (como el acceso) sin necesidad de modificar la clase original.

- Por ejemplo: Si tenemos muchos objetos imagen en un documento, se tardaría mucho tiempo en abrir el documento al cargar las imágenes de disco. Para evitarlo podemos sustituir los objetos imagen por objetos proxyImagen, con el mismo interfaz, pero que solamente cargan la imagen cuando se va a visualizar.

2. Tipos de Patrón Proxy

Existen varios tipos de Proxy que realizan distintos tipos de tareas: Proxy Remoto, Proxy Virtual, Proxy de Protección.

- Proxy Remoto: Se comporta como un representante local de un objeto, al realizar esto lo que hace es abstraer toda la "conversación" entre "dos" y de esta forma la comunicación entre el cliente y el objeto remoto es más fácil gastando menos recursos.
- Proxy Virtual: Lo que hace el proxy virtual es instanciar objetos cuyo costo computacional es muy elevado.
- Proxy Protección: Lo único que hace es establecer el control de acceso a un objeto dependiendo de los permisos o reglas de autorización.
 - 3. Estructura del Patrón Proxy
 - 3.1. Clasificación
- Patrón estructural: Ya que define la forma en cómo se organizan los objetos y las dependencias que tiene entre ellos.
 - 3.2. Aplicaciones
- Útil cuando se desea retrasar la instanciación de un objeto hasta que sea necesario usarlo (optimiza operaciones costosas: invocar imagen).

- Proporciona un representante local de un objeto situado en otro espacio de direcciones (Proxy remoto o "Embajador").
- Uso en sistemas concurrentes, mediante cerrojo, controlando el acceso al objeto original.
- Puede utilizarse como un sustituto de un simple puntero, que lleva a cabo operaciones adicionales cuando se accede a un objeto (contar el número de referencias a un objeto real).

3.3. Consecuencias

- Un proxy puede ocultar el hecho de que un objeto reside en un espacio de direcciones diferente (proxy remoto).
- Puede llevar a cabo optimizaciones tales como crear un objeto por encargo (invocar imagen).
- Permiten realizar tareas de mantenimiento adicionales cuando se accede a un objeto (Proxy de protección y de referencias inteligentes).
- Se introduce un nivel de indirección al acceder al objeto.
- Se consigue una administración transparente de los servicios del objeto real.

ClaseReal Proxy +Petición() +Petición() ClaseReal Proxy +Petición() (ClaseReal.Petición();) El Cliente no forma parte del patrón

Representación UML

3.4. Participantes

- Sujeto: Define la interfaz común para el RealSubject y el Proxy, de modo que pueda usarse un Proxy en cualquier sitio en el que se espere un RealSubject.
- RealSubject: Define el objeto real representado.

- Proxy:

Mantiene una referencia que permite al Proxy acceder al objeto real. Proporciona una interfaz idéntica a la del sujeto, de manera que un Proxy pueda ser sustituido por el sujeto real. Controla el acceso al sujeto real, y puede ser responsable de su creación y borrado.

4. Ejemplos UML

Diagrama UML

Un ejemplo típico de aplicación del patrón proxy es el de un editor de documentos. El editor podrá incluir imágenes y dibujos complejos, y se plantea el problema de recuperar todos estos costosos objetos cada vez que se abre el documento. La aplicación del patrón proxy soluciona el problema definiendo un representante", que ocupe su lugar, hasta que sea necesario cargarlos.

5. Ejemplos de Implementación sin Proxy y/o con Proxy

- Sin Proxy

```
public interface lvehiculo {
     void start();
     void forward();
     void stop();
}
public class Coche implements Ivehiculo{
     private String nombre;
     public Coche(String nombre){
             this.nombre=nombre;
     public void start() {
             System.out.println("coche"+this.nombre+"arranca");
     public void stop() {
             System.out.println("coche"+this.nombre+"frena");
     public void forward() {
             System.out.println("coche"+this.nombre+"acelera");
}
```


Con Proxy

```
public class VehiculoProxy implements IVehiculo{
    private IVehiculo v,

public VehiculoProxy(IVehiculo v){
        this.v = v,
}

public void start(){
        System.out.println("Vehiculo Proxy: parado");
        vstart();
        System.out.println("Vehiculo Proxy: en marcha");
}

public void forward(){
        System.out.println("Vehiculo Proxy: en aceleracion");
        vforward();
}

public void stop(){
        System.out.println("Vehiculo Proxy: frenando");
        vforward();
}
```


6. Conclusiones

- No Proxy: El cliente interactúa directamente con los métodos definidos en la interface
- Proxy: Se encuentra entre la interfaz y la implementación e intercepta las llamadas a los métodos. La intención del Proxy es controlar el acceso al objeto deseado, además de mejorar la funcionalidad del mismo

3. Patrón de Diseño ...

1. ¿Qué es el Patrón ...?

4. Patrones de Diseño Facade

patrones de diseño se consideran una de las herramientas más valiosas para producir diseños de calidad y una técnica de propósito general para mejorar un diseño es identificar todas las realizaciones de patrones y aplicar reglas conocidas para mejorarlos.

- Patrones de Diseño
 IDEA es un asistente de diseño interactivo para arquitectos de software destinado a automatizar la tarea de encontrar y mejorar las realizaciones de los patrones de diseño.
- ¿Qué es una fachada o facade en inglés?
 Es un patrón de diseño que nos permite simplificar el interface de comunicación entre dos objetos.

Busca simplificar el sistema, desde el punto de vista del cliente, proporcionando una interfaz unificada para un conjunto de subsistemas, definiendo una interfaz de nivel más alto. Esto hace que el sistema sea más fácil de usar.

Este patrón busca reducir al mínimo la comunicación y dependencias entre subsistemas. Para ello, utilizaremos una fachada, simplificando la complejidad al cliente. El cliente debería acceder a un subsistema a través del Facade. De esta manera, se estructura un entorno de programación más sencillo, al menos desde el punto de vista del cliente (por ello se llama "fachada").

− ¿Se debe utilizar cuando?

Se quiera proporcionar una interfaz sencilla para un subsistema complejo. Se quiera desacoplar un subsistema de sus clientes y de otros subsistemas, haciéndolo más independiente y portable. Se quiera dividir los sistemas en niveles: las fachadas serían el punto de entrada a cada nivel. Facade puede ser utilizado a nivel aplicación.

Los clientes se comunican con el subsistema a través de la facade, que reenvía las peticiones a los objetos del subsistema apropiados y puede realizar también algún trabajo de traducción. Los clientes que usan la facade no necesitan acceder directamente a los objetos del sistema.

5. Patrones de Diseño (Adapter)

El patrón de diseño Adapter es utilizado cuando tenemos interfaces de software incompatibles, las cuales a pesar de su incompatibilidad tiene una funcionalidad similar. Este patrón es implementado cuando se desea homogeneizar la forma de trabajar con estas interfaces incompatibles, para lo cual se crea una clase intermedia que funciona como un adaptador. Esta clase adaptador proporcionará los métodos para interactuar con la interface incompatible.

Los componentes que conforman el patrón son los siguientes:

- a) Client: Actor que interactua con el Adapter.
- b) Target: Interface que nos permitirá homogenizar la forma de trabajar con las interfaces incompatibles, esta interface es utilizada para crear los Adapter.
- c) Adapter: Representa la implementación del Target, el cual tiene la responsabilidad de mediar entre el Client y el Adaptee. Oculta la forma de comunicarse con el Adaptee.
- d) Adaptee: Representa la clase con interface incompatible.

- a) El Client invoca al Adapter con parámetros genéricos.
- b) El Adapter convierte los parámetros genéricos en parámetros específicos del Adaptee.
- c) El Adapter invoca al Adaptee.
- d) El Adaptee responde.
- e) El Adapter convierte la respuesta del Adaptee a una respuesta genérica para el Client.
- f) El Adapter responde al Client con una respuesta genérica.

EJEMPLO DEL MUNDO REAL

Mediante la implementación del patrón de diseño Adapter crearemos un adaptador que nos permite interactuar de forma homogénea entre dos API bancarías, las cuales nos permite aprobar créditos personales, sin embargo, las dos API proporcionadas por los bancos cuenta con interfaces diferentes y aunque su funcionamiento es prácticamente igual, las interfaces expuestas son diferentes, lo que implica tener dos implementaciones diferentes para procesar los préstamos con cada banco. Mediante este patrón crearemos un adaptador que permitirá ocultar la complejidad de cada implementación del API, exponiendo una única interface compatible con las dos API proporcionadas, además que dejáramos el camino preparado por si el día de mañana llegara una nueva API bancaría.

6. Patrón de Diseño ...

1. ¿Qué es el Patrón ...?

7. Webgrafía

- $-\ https://www.oscarblancarteblog.com/2014/10/07/patron-de-diseno-composite/$
- http://arantxa.ii.uam.es/ eguerra/docencia/0708/05 %20Composite.pdf

https://programacion.net/articulo/patrones_de_diseno_ix_patrones_estructurales_composite_1011