Natural Language Processing

Lecture 4 Formal grammars

Formal grammars

- 1. **Listing grammar**: if the language *L* consists of some chains then the language *L* can be described as a list of all chains;
- 2. **Generating grammar** specifies rules by which you can create any chain ("sentence") of this language;
- 3. **Recognizing grammar** (analytical grammar) allows to define if a word is contained in the language or not.

A grammar G is formally defined as a tuple $\langle N, \Sigma, P, S \rangle$, where

- N is a finite set of nonterminal symbols;
- Σ is a finite set of terminal symbols that is disjoint from N;
- P is a finite set of production rules α → β;
- S is a distinguished symbol $S \in N$ that is the start symbol (sentence symbol).

Alphabet is non-empty finite set, its elements are called symbols.

Chain (word, string) of symbols in alphabet Σ is a sequence of symbols from alphabet Σ . The number of symbols in chain α is called **length** and denoted as $|\alpha|$. Empty chain doesn't contain any symbols and denoted as e.

If α and β are chains then the chain $\omega = \alpha\beta$ is called **concatenation** of α and β . For any symbol a and integer k ($k \ge 0$) concatenation is denoted as a^k : $a^0 = e$, $a^1 = a$ and $a^{k+1} = a^k a$ for $k \ge 1$.

For any chains α , β and γ the chain β is **prefix** of chain $\beta\alpha$, **suffix** of chain $\alpha\beta$ and **subchain** of chain $\alpha\beta\gamma$.

Reversal of chain α (α^R) is a chain α , written in the reverse order, $e^R = e$.

Example:

Binary **alphabet** is a set $\{0, 1\}$. The sequence $\alpha = 000110$ is a chain with **length** 6. α is a **concatenation** of chains $\gamma = 0001$ and $\beta = 10$, i.e. $\alpha = \gamma \beta$.

Chains 0011, 000110, 1 are **subchains** of α

1⁰ is **empty chain**

$$\alpha^{R} = 011000$$

$$1^3 = 111$$

Let Σ be an alphabet. Σ is a set of all chains in alphabet Σ including empty chain e, Σ is a set Σ \ e.

Formally a set Σ^* is defined by the following rules:

- 1. $e \in \Sigma^*$;
- 2. if $\alpha \in \Sigma^*$ and $a \in \Sigma$ then $\alpha a \in \Sigma^*$;
- 3. $\alpha \in \Sigma^*$ iff α is a chain in alphabet Σ due to 1 and 2.

Set Σ^* is called **Kleene closure**.

For a set of symbols we get a set of chains:

{'a', 'b', 'c'}* = {e, 'a', 'b', 'c', 'aa', 'ab', 'ac', 'ba', 'bb', 'bc', 'ca', 'cb', 'cc', 'aaa'...}.

Example:

The grammar G is a tuple $\{A, S\}$, $\{0, 1\}$, P, S>, where P consists of the following rules:

- $S \rightarrow 0A1$;
- $0A \rightarrow 00A1$;
- $A \rightarrow e$.

A, S - nonterminal symbols;

0, 1 - terminal symbols;

S - start symbol.

Let $G = \langle N, \Sigma, P, S \rangle$ be a grammar. The relation of a **direct deducibility** \Rightarrow_G on a set $(N \cup \Sigma)^*$ is defined as follows: if $\alpha\beta\gamma$ is a chain from $(N \cup \Sigma)^*$ and $\beta \to \sigma$ is a rule from P then $\alpha\beta\gamma \Rightarrow_G \alpha\sigma\gamma$.

Transitive closure of the relation of a direct deducibility is denoted as $\varphi \Rightarrow_{G}^{+} \psi$.

Reflective and transitive closure of the relation \Rightarrow_G is denoted as $\varphi \Rightarrow_G^* \psi$. Reflexivity: $\varphi \Rightarrow_G^* \varphi$; transitivity: $\varphi \Rightarrow_G^* \psi$, $\psi \Rightarrow_G^* \theta$ then $\varphi \Rightarrow_G^* \theta$.

The chain α is called **deduced chain** in grammar G if $S \Rightarrow_G^* \alpha$.

The language generated by grammar G (denoted as L(G)) is a set of terminal deduced chains of grammar G, i.e. $L(G) = \{\alpha : \alpha \in \Sigma^*, S \Rightarrow_G^* \alpha\}$.

Regular grammar

 $G = \langle \{A, S\}, \{0, 1\}, P, S \rangle$ and the deduction $S \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 0011$ by the rules.

One can show that the grammar generates the language $L(G) = \{0^n 1^n : n \ge 1\}$.

Context-free grammar

 $G = \langle E, T, F \rangle, \{a,+,*,(,)\}, P, E \rangle$, where P consists of the following rules:

- $E \rightarrow E + T \mid T$;
- $T \rightarrow T * F \mid F$;
- $F \rightarrow (E) \mid a$.

We can obtained the following deduction: $E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow a+T \Rightarrow a+T*F \Rightarrow a+F*F \Rightarrow a+a*F \Rightarrow a+a*a$.

Context-sensitive grammar

Let grammar *P* is defined by the following rules:

- $S \rightarrow aSBC$;
- $S \rightarrow abC$;
- *CB* → *BC*:
- $bB \rightarrow bb$;
- $bC \rightarrow bc$:
- $cC \rightarrow cc$.

Possible deduction: $S \Rightarrow aSBC \Rightarrow aabCBC \Rightarrow aabBCC \Rightarrow aabbCC \Rightarrow aabbcc$.

This grammar generates a language $L(G) = \{a^n b^n c^n : n \ge 1\}$.

Regular sets

Regular operations: union, concatenation, iteration. Regular sets are come out from elementary languages as a result of applying a finite number of regular operations.

Let Σ be a finite alphabet. **Regular set** in alphabet Σ is defined by the following recursive features:

- 1. Ø is a regular set;
- 2. {e} is a regular set;
- 3. $\{a\}$ is a regular set $\forall a \in \Sigma$;
- 4. if P, Q are regular sets then sets $P \cup Q$, PQ, P^* are also regular sets;
- 5. there isn't any others regular sets in alphabet Σ .

Regular sets are sets of symbols chains on a given alphabet, made in specified way (with using of regular operations).

Regular expressions (RE) in alphabet Σ is defined recursively in the following way:

- Ø is a RE denoting a regular set Ø;
- 2. e is a RE denoting a regular set {e};
- 3. if $a \in \Sigma$ then a is RE denoting a regular set $\{a\}$;
- 4. if p and q are REs denoting regular sets P and Q respectively then: union (p+q) is RE denoting a regular set $P \cup Q$; concatenation (pq) is RE denoting a regular set PQ; iteration $(p)^*$ is RE denoting a regular set P^* ;
- 5. there isn't any others REs.

Example 1:

The set of all chains composed from 0 and 1 and ended with a chain 001 can be described with RE (0+1)*011.

Example 2:

RE $(a+b)(a+b+0+1)^*$ denotes the set of all chains from $\{0, 1, a, b\}^*$ started with a or b.

Check if a string is ended with '.com' or '.org' or '.ru'

```
public static boolean test(String testString) {
    Pattern p = Pattern.compile(".+\\.(com|org|ru)");
    Matcher m = p.matcher(testString);
    return m.matches();
}
```

Check if users names is valid ("@_BEST" and "miha_10"): the first one is not valid, the second one is valid.

```
public static boolean manualCheck(String userNameString) {
    char[] symbols = userNameString.toCharArray();
    if (symbols.length < 3 || symbols.length > 15) return false;
    String validationString = "abcdefghijklmnopqrstuvwxyz0123456798 ";
    for (char c : symbols) {
        if (validationString.indexOf(c) == -1) return false;
    return true:
public static boolean checkWithRegExp(String userNameString) {
    Pattern p = Pattern.compile("^[a-z0-9]{3, 15}$");
    Matcher m = p.matcher(userNameString);
    return m.matches();
```

Replace all variants of "Тайланд" with "Россия".

Relationships between regular sets, regular grammars and finite-state machines

Ways to determine the regular languages:

- regular grammars;
- finite-state machines (FSM);
- regular sets

Regular expressions and FSMs

- For any regular language, determined by a regular expression, one may build a FSM determining the same language;
- For any regular language, determined by a FSM, one may get a regular expression determining the same language

Regular grammars and FSMs

- Based on a regular grammar one may build the equivalent FSM;
- For determined FSM one may build the equivalent regular grammar

Example:

Let a rightmost regular grammar $G = (\{A, S\}, \{a, b, c\}, P, S)$, where P consists of the following rules:

- $S \rightarrow aS$;
- $S \rightarrow bA$;
- $A \rightarrow e$;
- \bullet $A \rightarrow cA$.

This grammar describes the same language $L(G) = \{a^nbc^n : n \ge 1\}$ as the regular expression a^*bc^* .

Finite-state machine (FSM) is a transducer which allows to compare an input with the corresponding output, moreover this output can depend on not only the current input but also on previous FSM performance.

Non-determined finite-state machine (NFSM) is a tuple $M = \langle Q, \Sigma, \sigma, q_0, F \rangle$, where:

- Q finite non-empty set of states;
- Σ input alphabet (non-empty set of symbols);
- σ mapping a set $Q^*\Sigma$ on set Q, which is called **state-transition function**;
- q_0 initial state, the element of Q;
- *F* the set of final states.

If $M = \langle Q, \Sigma, \sigma, q_0, F \rangle$ is FSM then a pair $(q, \omega) \in Q * \Sigma^*$ is called the **machine M** configuration. (q_0, ω) is called **start configuration** and (q, e) where $q \in F$ is called **final configuration**.

The step of machine M performance is a binary relation \vdash_{M} , determined on the configurations. If $\sigma(q, a)$ contains p then $(q, a\omega) \vdash_{M} (p, \omega)$ for each $\omega \in \Sigma^{*}$.

The relation \vdash_{M}^{+} is a transitive closure of the relation \vdash_{M}^{-} . The relation \vdash_{M}^{+} is reflexive and transitive closure of the relation \vdash_{M}^{-} .

FMS M accepts the chain $\omega \in \Sigma^*$ if $(q_0, \omega) \vdash_M^* (q, e)$ for some $q \in F$. The language determined (recognized, accepted) by FSM M (denoted as L(M)) is a set of input chains, accepted by FMS M:

$$L(M) = \{\omega : \omega \in \Sigma^* \text{ and } (q_0, \omega) \vdash_M^* (q, e) \text{ for some } q \in F\}.$$

FMS begins to work in state q_0 , reading symbols from the input chain x one by one. Read symbol transits the FSM into another state according to the state-transition function. In the end FSM is in a state q'. If this state is final then FMS accepts the chain x.

Determined finite-state machine (DFSM) is a finite-state machine $M = \langle Q, \Sigma, \sigma, q_0, F \rangle$ where a set of state-transition functions $\sigma(q, a)$ contains no more than one state for any states $q \in Q$ and for input symbols $a \in \Sigma$.

Example:

Build DFSM *M* which recognizes two nulls which are standing together.

This DFSM is a tuple $M = \langle p, q, r \rangle$, $\{0, 1\}$, σ , p, $\{r\}$ where σ is defined by the

following table:

State	Input		
	0	1	
р	<i>{q}</i>	{p}	
q	{ <i>r</i> }	{p}	
r	{ <i>r</i> }	{r}	

Example:

Build NFSM accepting chains in the alphabet {1, 2, 3} for which the last symbol is already contained in the chain. For example: 121 is accepted, 31312 is not accepted.

NFSM is a tuple $M = \langle \{q_0, q_1, q_2, q_3, q_f\}, \{1, 2, 3\}, \sigma, q_0, \{q_f\} \rangle$, σ is defined by the following table:

State	Input		
	1	2	3
q_0	{q ₀ , q ₁ }	{q ₀ , q ₂ }	{q ₀ , q ₃ }
91	{q ₁ , q _p }	{q₁}	{q₁}
q_2	{q ₂ }	{q ₂ , q _f }	{q ₂ }
q_3	{q ₃ }	{q ₃ }	{q₃}
q_f	Ø	Ø	Ø

The diagram of states (the graph of transitions) is annotated oriented graph, the heads correspond to the states, arcs correspond to the transitions from one state to another.

Let $M = \langle Q, \Sigma, \sigma, q_0, F \rangle$ be the FSM. If symbol $a \in \Sigma : q \in \sigma(p, a)$ exists then in the graph of transitions there is an arc (p, q).

The language accepted by the following automaton is {do, undo, done, undone}:

The following three finite-state automata are equivalent: they all accept the set {go, gone, going}.

Note that A_1 is deterministic: for any state and alphabet symbol there is at most one possible transition. A_2 is not deterministic: the initial state has three outgoing arcs all labeled by g. The third automaton, A_3 , has ϵ -arcs and hence is not deterministic. While A_2 might be the most readable, A_1 is the most compact as it has the fewest nodes.

FSM in NLP: dictionaries

$$go: \bigcirc \xrightarrow{g} \bigcirc \xrightarrow{o} \bigcirc$$

To represent more than one word, we can simply add paths to our "lexicon", one path for each additional word. Thus, after adding the words *gone* and *going*, we might have:

This automaton can then be determinized and minimized:

$$go, gone, going:$$
 $0 \xrightarrow{g} 0 \xrightarrow{o} 0 \xrightarrow{n} 0 \xrightarrow{e} 0$

FSM in NLP: morphology

$$\Sigma = \{a, b, c, \dots, y, z, -N, -V, -sg, -pl, -inf, -prp, -psp\}$$

With the extended alphabet, we might construct the following automaton:

The language generated by the above automaton is no longer a set of words in English. Rather, it is a set of (simplisticly) "analyzed" strings, namely {go-V-inf, gone-V-psp, going-V-prp}.

According to the definition, a set of chains in the alphabet is called **regular** iff it is one of the sets \emptyset , $\{e\}$, $\{a\}$ \forall $a \in \Sigma$ or it can be deduced from these sets by applying the operations of joining, concatenation and iteration.

Building FSM M (s+t)

 q_0 (out of the frame) is new initial state;

 q_f (out of the frame) is new final state

Building FSM M (s+t)

Let R_1 be the following relation, mapping some English words to their German counterparts:

 $R_1 = \{tomato: Tomate, cucumber: Gurke, grapefruit: Grapefruit, pineapple: Ananas, coconut: Koko\}$

Let R_2 be a similar relation: $R_2 = \{grapefruit: pampelmuse, coconut: Kokusnuß\}$. Then

 $R_1 \cup R_2 = \{tomato: Tomate, cucumber: Gurke, grapefruit: Grapefruit, grapefruit: pampelmuse, pineapple: Ananas, coconut: Koko, coconut: Kokusnuß\}$

Building FSM M (st)

Building FSM M (st)

Let R_1 be the following relation, mapping some English words to their German counterparts:

```
R_1 = \{tomato: Tomate, cucumber: Gurke, grapefruit: Grapefruit, grapefruit: pampelmuse, pineapple: Ananas, coconut: Koko, coconut: Kokusnu<math>\beta}
```

Let R_2 be a similar relation, mapping French words to their English translations:

```
R_2 = \{tomate:tomato, ananas:pineapple, pampelmousse:grapefruit, concombre:cucumber, cornichon:cucumber, noix-de-coco:coconut\}
```

Then $R_2 \circ R_1$ is a relation mapping French words to their German translations (the English translations are used to compute the mapping, but are not part of the final relation):

```
R_2 \circ R_1 = \{tomate: Tomate, ananas: Ananas, pampelmousse: Grapefruit, pampelmousse: Pampelmuse, concombre: Gurke, cornichon: Gurke, noix-de-coco: Koko, noix-de-coco: Kokusnuße \}
```

Thank you for your attention!