PATENT ABSTRACTS OF JAPAN

(11) Publication number: 10030466 A

(43) Date of publication of application: 03.02.98

(51) Int. CI

F02D 29/00

B60K 41/06

F16H 61/04

// F16H 59:24

F16H 59:40

F16H 59:42

F16H 59:68

(21) Application number: 08181939

(22) Date of filing: 11.07.96

(71) Applicant:

JATCO CORP

(72) Inventor:

KODA JOJI

(54) TRANSMISSION CONTROLLER OF AUTOMATIC TRANSMISSION

(57) Abstract:

PROBLEM TO BE SOLVED: To prevent a pull shock due to a torque down deviation at the time of a speed change which is short in speed change time by releasing a torque down control so that a torque recovery timing may be the same as a speed change termination timing or a little faster than the timing when a predicted speed change time is shorter than a set speed change time.

SOLUTION: While a vehicle is driven, an A/T controller unit 4 reads a speed change command and a throttle opening and judges whether the speed change command is $1 \rightarrow 2$ speed change or a $2 \rightarrow 3$ speed change. In the case of YES, whether the throttle opening is a set throttle opening or more is judged. When the throttle opening is the set throttle opening or more, the gear ratio of at the time is read. Next, whether the gear ratio of this time is below the gear ratio of the previous time or not is judged. When the gear ratio is judged to be lower, a torque down control is made to be performed. Next, a learing speed change time is read, a set release gear ratio is set to G1 when a predicted speed change time is judged to be long and the set release gear ratio is set to G2 (>G1) when the predicted

speed change time is judged to be short. When the gear ratio G is G1 or G2, a torque down signal is outputted.

COPYRIGHT: (C)1998, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-30466

(43)公開日 平成10年(1998) 2月3日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ					技術表示箇所
F02D 29/00			F 0 2 D	29/00			H	
B60K 41/06			B 6 0 K	41/06				
F16H 61/04			F16H	61/04				
#F16H 59:24								
59: 40								
		審查請求	未請求 請才	≷項の数 5	OL	全	8 頁)	最終頁に続く
(21)出願番号	特顧平8-181939		(71)出願	人 000231	350			
			1	ジャト	コ株式	会社		
(22)出顧日	平成8年(1996)7月11日		ļ	静岡県	富士市·	今泉乡	鳴田70	0番地の1
			(72)発明和	哲 甲田	致二			
			1	静岡県	富士市	今泉字	鴨田700	0番地の1 ジ
				ヤトコ	株式会	吐内		
			(74)代理)	人 弁理士	朝倉	悟	少 13:	名)
			{					
			ì					
			į					

(54) 【発明の名称】 自動変速機の変速制御装置

(57) 【要約】

【課題】 変速中にエンジントルクを低下させることにより変速品質を確保するトルクダウン制御手段を備えた自動変速機の変速制御装置において、変速時間の短い変速時にトルクダウン外れによる引きショックを確実に防止すること。

【解決手段】 変速判断時に変速の開始から終了に要する変速時間を予測する変速時間予測手段 b と、変速時間予測手段 b により予測される変速時間が設定変速時間より短い時、トルクダウン制御解除からのトルク復帰応答性や変速進行速度を考慮し、トルク復帰タイミングが変速終了タイミングと同じか少し早くなるようにトルクダウン制御を解除する解除信号を発生する制御解除タイミング設定手段 c と、を備えた手段とした。

【特許請求の範囲】

【請求項1】 変速中にエンジントルクを低下させることにより変速品質を確保するトルクダウン制御手段を備えた自動変速機の変速制御装置において、

1

変速判断時に変速の開始から終了に要する変速時間を予 測する変速時間予測手段と、

前記変速時間予測手段により予測される変速時間が設定変速時間より短い時、トルクダウン制御解除からのトルク復帰応答性や変速進行速度を考慮し、トルク復帰タイミングが変速終了タイミングと同じか少し早くなるようにトルクダウン制御を解除する解除信号を発生する制御解除タイミング設定手段と、

を備えていることを特徴とする自動変速機の変速制御装 置。

【請求項2】 請求項1記載の自動変速機の変速制御装置において、

前記制御解除タイミング設定手段を、変速時間予測手段 により予測される変速時間が設定変速時間より短い時、 トルクダウン制御を解除する解除信号を発生する解除ギヤ比相当値を、設定変速時間より長い通常変速時に用い られる第1解除ギヤ比相当値に代えて変速前のギヤ比相 当値に設定量だけ近づけた第2解除ギヤ比相当値に変更 する解除ギヤ比相当値設定手段としたことを特徴とする 自動変速機の変速制御装置。

【請求項3】 請求項1または請求項2記載の自動変速機の変速制御装置において、

前記変速時間予測手段を、過去の同じ変速モードでの変速開始から終了までの時間を測定したデータに基づいて決められた学習変速時間を今回の変速時間として予測する手段としたことを特徴とする自動変速機の変速制御装置。

【請求項4】 請求項1または請求項2記載の自動変速機の変速制御装置において、

前記変速時間予測手段を、変速の種類やエンジン負荷や 油温や変速油圧等の変速時間にかかわる変速条件に基づ いて変速時間を予測する手段としたことを特徴とする自 動変速機の変速制御装置。

【請求項5】 請求項1または請求項2記載の自動変速 機の変速制御装置において、

前記変速時間予測手段を、変速中のエンジン回転数の変化またはギヤ比の変化に基づいて変速時間を予測する手段としたことを特徴とする自動変速機の変速制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、変速時に締結される締結要素の締結摩擦発熱に対する耐久性を確保するべく変速時間を短くした場合に生じるショックへの跳ね返りを変速中のエンジントルク低下により解消するトルクダウン制御手段を備えた自動変速機の変速制御装置の技術分野に属する。

2

[0002]

【従来の技術】従来、トルクダウン制御手段を備えた自動変速機の変速制御装置としては、例えば、特開平3~51892号公報に記載のものが知られている。

【0003】この公報には、変速中、今回検出のエンジン回転数Neiが前回検出のエンジン回転数Neiが前回検出のエンジン回転数Neiが、Neiを開始し、今回検出のエンジン回転数Neiが、Nei <No·IH+Ni(Noは自動変速機の出力軸回転速度、IHは高速段ギヤ比、Niは変速の種類やスロットル開度に応じて予め定められた定数)となったと判断されるとエンジントルクを復帰させる変速時トルクダウン制御技術が示されている。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来の自動変速機の変速制御装置にあっては、エンジントルクの復帰条件として、エンジン回転数Neiが変速後のギヤ位置でのエンジン回転数(No・IH)よりNi回転だけ小さくなった時点としているため、図6(们)に示すように、変速時間がある程度長い通常の変速時には、変速終了時もしくは変速終了直前のタイミングにてエンジントルクの復帰がなされ、変速時トルクダウン制御の目指す変速品質の向上が達成されるが、図6(回)に示すように、変速時間が短い場合、変速終了後にエンジントルクの復帰がなされることになり、トルクダウン外れによる引きショック(出力軸トルクが大きく落ち込むこと)が発生してしまうという問題がある。

【0005】すなわち、変速時に締結されるクラッチやブレーキは、単位時間当りの発熱量と変速時間で決まる総発熱量が大きくなると耐久性が低下する。よって、単位時間当りの発熱量が成立しないものについてはイナシャフェーズ圧を高くする等により変速時間を短くするように設定する。しかし、変速時間を短くすると締結要素を素早く締結するのでショックへの跳ね返りが生じる。このため、変速時間を短く設定した変速モードでこそショックを低減する変速時トルクダウン制御が必要となってくる。

【0006】このように、トルクダウン制御が行なわれる変速モードで締結要素の摩擦材被害度確保のために変速時間を短くすると、エンジントルクの復帰の判断ポイントから変速終了するまでの時間TSが通常変速時の時間TLに比べて短くなるのに対し、トルクダウン制御を解除する解除信号を発生してから実際にエンジントルクが復帰するまでのトルク復帰時間TR(遅れ時間+立ち上がり時間)はほぼ一定であるため、エンジントルク復帰の判断ポイントから変速終了するまでの時間TSよりトルク復帰時間TRが長くなり、トルクダウン外れが発生する。

【0007】本発明が解決しようとする課題は、変速中 にエンジントルクを低下させることにより変速品質を確

保するトルクダウン制御手段を備えた自動変速機の変速 制御装置において、変速時間の短い変速時にトルクダウン外れによる引きショックを確実に防止することにある。

[0008]

【課題を解決するための手段】

(解決手段1)上記課題の解決手段1(請求項1)は、図1のクレーム対応図に示すように、変速中にエンジントルクを低下させることにより変速品質を確保するトルクダウン制御手段 a を備えた自動変速機の変速制御装置において、変速判断時に変速の開始から終了に要する変速時間を予測する変速時間予測手段 b と、前記変速時間予測手段 b により予測される変速時間が設定変速時間より短い時、トルクダウン制御解除からのトルク復帰タイミングと同じか少し早くなるようにトルクダウン制御を解除する解除信号を発生する制御解除タイミング設定手段 c と、を備えていることを特徴とする。

【0009】(解決手段2)上記課題の解決手段2(請求項2)は、請求項1記載の自動変速機の変速制御装置において、前記制御解除タイミング設定手段cを、変速時間予測手段bにより予測される設定変速時間より短い時、トルクダウン制御を解除する解除信号を発生する解除ギヤ比相当値を、設定変速時間より長い通常変速時に用いられる第1解除ギヤ比相当値に代えて変速前のギヤ比相当値に設定量だけ近づけた第2解除ギヤ比相当値に変更する解除ギヤ比相当値設定手段としたことを特徴とする。

【0010】 (解決手段3) 上記課題の解決手段3 (請求項3) は、請求項2記載の自動変速機の変速制御装置において、前記変速時間予測手段bを、過去の同じ変速モードでの変速開始から終了までの時間を測定したデータに基づいて決められた学習変速時間を今回の変速時間として予測する手段としたことを特徴とする。

【0011】(解決手段4)上記課題の解決手段4(請求項4)は、請求項1または請求項2記載の自動変速機の変速制御装置において、前記変速時間予測手段bを、変速の種類やエンジン負荷や油温や変速油圧等の変速時間にかかわる変速条件に基づいて変速時間を予測する手段としたことを特徴とする。

【0012】(解決手段5)上記課題の解決手段5(請求項5)は、請求項1または請求項2記載の自動変速機の変速制御装置において、前記変速時間予測手段bを、変速中のエンジン回転数の変化またはギヤ比の変化に基づいて変速時間を予測する手段としたことを特徴とする。

[0013]

【発明の実施の形態】

(実施の形態1) 実施の形態1は、解決手段1ないし解 決手段3に対応する自動変速機の変速制御装置である。 4

【0014】まず、構成を説明する。

【0015】図2は自動変速機の変速制御装置を示す全体システム図である。

【0016】図2において、1はエンジン、2は自動変速機、3はECCSコントロールユニット、4はA/Tコントロールユニット、5はスロットル開度センサ、6は入力軸回転数センサ(タービン回転数センサ)、7は出力軸回転数センサ(車速センサ)である。

【0017】前記ECCSコントロールユニット3は、燃料噴射制御、点火制御、アイドル回転数制御等を集中して行なうエンジン集中電子制御システム(ECCS)に用いられる一つのコントロールユニットで、クランク角度信号やエンジン冷却水温信号やスロットル開度信号や吸入空気量信号等の入力情報に基づいて上記各種の制御が実行される。

【0018】前記A/Tコントロールユニット4は、ライン圧制御、変速制御、シフトパターン選択制御、ロックアップ制御、エンジンブレーキ制御等を行なう一つのコントロールユニットで、車速信号やスロットル開度信号や入力軸回転数信号や出力軸回転数信号等の入力情報に基づいて上記各種の制御が実行される。

【0019】例えば、A/Tコントロールユニット4での変速制御は、予め記憶設定されているシフトパターン(図3)を用い、入力される車速信号とスロットル開度信号からその時の走行状況をシフトパターン上の運転点にて把握し、運転点がアップシフト線あるいはダウンシフト線を横切った時にアップシフトあるいはダウンシフトの変速指令を出し、この変速指令に基づいて出力されるシフトソレノイドへの駆動指令により行なわれる。

【0020】前記ECCSコントロールユニット3とA /Tコントロールユニット4には、それぞれ通信IC3 a, 4 aが設けられていて、互いの情報交換により、急 発進・急加速時等で車両の走行状態に応じたリアルタイ ム連携制御により、変速フィーリングを向上させるエン ジンと自動変速機の総合制御が行なわれる。

【0021】この総合制御は、スロットル開度が大きい(急発進・急加速)場合の1→2あるいは2→3変速時、A/Tコントロールユニット4からトルクダウン要求信号をECCSコントロールユニット3へ出力し、ECCSコントロールユニット3はトルクダウン要求信号に基づき点火時期をリタード(遅角)あるいは部分気筒燃料カットをする制御であり、変速中に一時的にエンジン1の発生トルクを小さくすることで、高トルク・高回転域での変速性能を向上させ、滑らかな変速が行なわれる(請求項のトルクダウン制御手段aに相当)。

【0022】前記スロットル開度センサ5は、スロットル開度を検出してスロットル開度信号を出力するセンサであり、前記入力軸回転数センサ6及び出力軸回転数センサ7は、A/Tコントロールユニット4においてギヤ比を算出するために必要な入力情報である自動変速機2

の入力軸回転信号と出力軸回転信号をもたらすセンサである。

【0023】次に、作用を説明する。

【0024】 [トルクダウン制御作動] 図3は自動変速機の変速制御装置のA/Tコントロールユニット4で行なわれるトルクダウン制御作動の流れを示すフローチャートで、以下、各ステップについて説明する。

【0025】ステップ40では、変速指令とスロットル 開度THが読み込まれる。

【0026】ステップ41では、ステップ40で読み込まれた変速指令が、 $1\rightarrow 2$ 変速, $2\rightarrow 3$ 変速のいずれかの変速指令かどうかが判断される。

【0027】ステップ42では、ステップ41でYES であると判断された時、ステップ40で読み込まれたスロットル開度THが設定スロットル開度TH $_0$ (例えば、 $TH_0=7/8$)以上かどうかが判断される。

【0028】ステップ43では、ステップ42でYESであると判断された時、他のルーチンにて随時演算されているギヤ比Gが読み込まれる。

【0029】ステップ44では、ステップ43で読み込まれた今回のギヤ比G』が前回のギヤ比G」ー 未満かどうかが判断される。

【0030】ステップ45では、ステップ42でYES、つまり、変速によりギヤ比が低下していると判断された時、トルクダウン要求信号がECCSコントロールユニット3に対して出力される。

【0031】このトルクダウン要求信号によりECCSコントロールユニット3では点火時期をリタード(遅角)あるいは部分気筒燃料カットをするトルクダウン制御が開始される。

【0032】ステップ46では、過去の同じ変速モード(変速の種類及びスロットル開度)での変速開始から終了までの時間を測定したデータに基づいて決められた学習変速時間STが読み込まれる(請求項の変速時間予測手段bに相当)。

【0033】ステップ47では、ステップ46で読み込まれた学習変速時間STが設定変速時間 ST_0 以上かどうかが判断される。

【0034】ステップ48では、ステップ47によりS T \ge S T $_0$ 、つまり、予測される変速時間が長いと判断された時、トルクダウン解除信号を出力する設定解除ギヤ比GOFF が、GOFF=G1に設定される。

6

【0036】尚、ステップ47~ステップ49は、請求項の解除ギヤ比相当値設定手段に相当する。

【0037】ステップ50では、他のルーチンにて随時 演算されているギヤ比Gが読み込まれる。

【0038】ステップ51では、ステップ50で読み込まれたギヤ比Gが、ステップ48あるいはステップ49にて設定された設定解除ギヤ比GOFF以下かどうかが判断される。

【0039】ステップ52では、ステップ51でYESと判断された時、トルクダウン解除信号がECCSコントロールユニット3に対して出力される。

【0040】このトルクダウン解除信号によりECCSコントロールユニット3では点火時期をリタード(遅角)あるいは部分気筒燃料カットをするトルクダウン制御を終了させ、応答遅れを持ってエンジントルクを復帰させる。

【0041】 [解除ギヤ比変更による変速作用] 図5は 高スロットル開度領域 (7/8~8/8 開度) での1→ 2変速時における変速指令, ギヤ比, エンジントルク, 20 出力軸トルクの各特性を示すタイムチャートである。

【0042】高スロットル開度領域での $1 \rightarrow 2$ 変速時であって、学習変速時間STが設定変速時間ST0未満の短い変速時間である場合には、図4のフローチャートで、ステップ4 $0 \rightarrow$ ステップ4 $1 \rightarrow$ ステップ4 $2 \rightarrow$ ステップ4 $3 \rightarrow$ ステップ4 $4 \rightarrow$ ステップ4 $5 \rightarrow$ ステップ4 $6 \rightarrow$ ステップ4 $7 \rightarrow$ ステップ4 $9 \sim$ と進む流れとなり、ステップ4 $9 \sim$ では設定解除ギヤ比GOFFがG2 (>G1)に設定される。

【0043】よって、トルクダウン解除信号を出力する 設定解除ギヤ比GOFFをG1のままとした場合、G1の 時点から2速ギヤ比となる変速終了時点までの時間TS が短くなり、トルクダウン制御を解除する解除信号を発 生してから実際にエンジントルクが復帰するまでのトル ク復帰時間TRと時間TSがTR>TSの関係となり、 図5のエンジントルクの1点鎖線特性に示すように、エ ンジントルク復帰が変速終了タイミングの間に合わない トルクダウン外れが発生する。

【0044】これに対し、変速時間が短い時には、トルクダウン解除信号を出力する設定解除ギヤ比GOFFをG2(>G1)とすると、G2の時点から2速ギヤ比となる変速終了時点までの時間TLが長くなり、トルクダウン制御を解除する解除信号を発生してから実際にエンジントルクが復帰するまでのトルク復帰時間TRと時間TLがTR \leq TLの関係となり、図5のエンジントルクの実線特性に示すように、エンジントルク復帰のタイミングが変速終了時点と一致もしくは変速終了前のタイミングとなり、トルクダウン外れが防止される。

【0045】この結果、図5の出力軸トルク特性に示すように、トルクダウン外れを原因とする引きショックが 50 防止され、変速時間が短い高スロットル開度領域での1

→2変速時においても確実に高い変速品質が確保され ス

【0046】次に、効果を説明する。

【0047】(1) $1 \rightarrow 2$ または $2 \rightarrow 3$ の変速中にエンジントルクを低下させることにより変速品質を確保するトルクダウン制御を行なう自動変速機の変速制御装置において、学習変速時間STが設定変速時間ST0 未満の短い変速時間である時、トルクダウン解除信号を発生する設定解除ギヤ比GOFF として、通常の変速時に設定する設定解除ギヤ比G1に代えて、変速前の1 速ギヤ比に設定量だけ近づけた設定解除ギヤ比G2に変更する解除ギヤ比設定を行なう装置としたため、変速時間の短い高スロットル開度領域での $1 \rightarrow 2$ 変速時等において、トルクダウン外れによる引きショックを確実に防止することできる。

【0048】(2)設定解除ギヤ比G2の値は、トルクダウン制御の解除信号出力から実際にトルク復帰する時間と変速進行速度を考慮し、トルク復帰タイミングが変速終了タイミングと同じか少し早くなるように設定したため、変速時間の短い変速時にトルクダウン外れを確実 20 に防止することができる。

【0049】(3)過去の同じ変速モードでの変速開始 から終了までの時間を測定したデータに基づいて決めら れた学習変速時間を今回の変速時間として予測する装置 としたため、変速時間の予測をデータメモリから変速モ ードを指定して読み出すだけの簡単処理により行なうこ とができる。

【0050】(その他の実施の形態)実施の形態1では、制御解除タイミング設定手段として解除ギヤ比相当値設定手段を用いる例を示したが、変速時間を精度良く予測できる場合には、変速開始からの可変タイマ値によりトルクダウン制御を解除する解除信号を発生するような手段としても良い。

【0051】実施の形態1では、トルクダウン制御を解除する解除信号を発生する解除ギヤ比相当値として演算により求めたギヤ比を用いるを示したが、エンジン回転数や自動変速機の入力軸回転数や出力軸回転数を用いるようにしても良い。

【0052】実施の形態1では、変速時間が短い時、一つの値による設定解除ギヤ比G2を与える例を示したが、変速時間が短い時、変速時間や変速の種類やスロットル開度等に応じて可変値を与えるようにしても良い。【0053】実施の形態1では、変速時間予測手段として、過去の同じ変速モードでの変速開始から終了までの時間を測定したデータに基づいて決められた学習変速時間を今回の変速時間として予測する手段の例を示したが、変速の種類やエンジン負荷や油温や変速油圧等の変速時間にかかわる変速条件に基づいて変速時間を予測する変速時間予測手段としても良いし(請求項4)、また、変速中のエンジン回転数の変化またはギヤ比の変化

Я

に基づいて変速時間を予測する変速時間予測手段として も良い (請求項5)。

[0054]

【発明の効果】請求項1記載の発明にあっては、変速中にエンジントルクを低下させることにより変速品質を確保するトルクダウン制御手段を備えた自動変速機の変速制御装置において、変速判断時に変速の開始から終了に要する変速時間を予測する変速時間予測手段と、変速時間予測手段により予測される設定変速時間より短い時、トルクダウン制御解除からのトルク復帰応答性や変速進行速度を考慮し、トルク復帰タイミングが変速終了タイミングと同じか少し早くなるようにトルクダウン制御を解除する解除信号を発生する制御解除タイミング設定手段と、を備えた構成としたため、変速時間の短い変速時にトルクダウン外れによる引きショックを確実に防止することができるという効果が得られる。

【0055】請求項2記載の発明にあっては、請求項1記載の自動変速機の変速制御装置において、制御解除タイミング設定手段を、変速時間予測手段により予測される変速時間が設定変速時間より短い時、トルクダウン制御を解除する解除信号を発生する解除ギヤ比相当値を、設定変速時間より長い通常変速時に用いられる第1解除ギヤ比相当値に代えて変速前のギヤ比相当値に設定量だけ近づけた第2解除ギヤ比相当値に変更する解除ギヤ比相当値設定手段としたため、上記効果に加え、通常変速時も短い変速時間による変速時も同じギヤ比相当値の変更という簡単な制御により対応することができる。

【0056】請求項3記載の発明にあっては、請求項1 または請求項2記載の自動変速機の変速制御装置におい て、変速時間予測手段を、過去の同じ変速モードでの変 速開始から終了までの時間を測定したデータに基づいて 決められた学習変速時間を今回の変速時間として予測す る手段としたため、請求項1または請求項2記載の発明 の効果に加え、変速時間の予測をデータメモリから変速 モードを指定して読み出すだけの簡単処理により行なう ことができる。

【0057】請求項4記載の発明にあっては、請求項1 または請求項2記載の自動変速機の変速制御装置において、変速時間予測手段を、変速の種類やエンジン負荷や 油温や変速油圧等の変速時間にかかわる変速条件に基づいて変速時間を予測する手段としたため、請求項1また は請求項2記載の発明の効果に加え、過去の同じ変速モードでの変速条件と今の変速判断時の変速条件が違って いる場合にも変速条件の変化にかかわらず精度良く変速 時間の予測を行なうことができる。

【0058】請求項5記載の発明にあっては、請求項1 または請求項2記載の自動変速機の変速制御装置におい て、変速時間予測手段を、変速中のエンジン回転数の変 化またはギヤ比の変化に基づいて変速時間を予測する手 段としたため、請求項1または請求項2記載の発明の効

果に加え、過去の同じ変速モードでの変速条件との変化 ばかりでなく変速中における変速条件も変化にも対応し て精度良く変速時間の予測を行なうことができる。

【図面の簡単な説明】

【図1】本発明の自動変速機の変速制御装置を示すクレーム対応図である。

【図2】実施の形態1の自動変速機の変速制御装置を示す全体システム図である。

【図3】実施の形態1の自動変速機の変速制御装置で行 トリなわれる変速制御で用いられるシフトパターンの一例を 10 る。 示す図である。

【図4】実施の形態1の自動変速機の変速制御装置のA/Tコントロールユニットで行なわれるトルクダウン制御作動の流れを示すフローチャートである。

【図1】

10

*【図5】実施の形態1の自動変速機の変速制御装置での $7/8\sim8/8$ の高スロットル開度領域での $1\rightarrow2$ 変速時における変速指令、ギヤ比、エンジントルク、出力軸トルクの各特性を示すタイムチャートである。

【図6】従来の自動変速機の変速制御装置での通常の変速時におけるエンジン回転数、出力軸トルク、締結油圧、エンジントルクを示すタイムチャート(イ)と、変速時間の短い変速時におけるエンジン回転数、エンジントルク、出力軸トルクを示すタイムチャート(ロ)である。

【符号の説明】

- a トルクダウン制御手段
- b 変速時間予測手段
- c 制御解除タイミング設定手段

【図2】

【図3】

【図5】

【図6】

フロントページの続き

(51) Int. Cl. 6 F 1 6 H 59:42

識別記号 庁内整理番号

FΙ

技術表示箇所

59:68