Multigrid discontinuous Galerkin method for multigroup particle transport

Pablo Lucero

Interdisciplinary Research Center for Scientific Computing Universität Heidelberg

DEAL.II Workshop 2015

Radiative transfer in astrophysics

Radiative transfer in climatology

Radiative transfer in neutron and gamma transport

Particle density description

Transport equation

$$\begin{aligned} & \boldsymbol{\Omega} = (\psi, \phi) & \boldsymbol{\Psi} = \boldsymbol{\Psi}(\boldsymbol{\Omega}, E, \boldsymbol{x}) & \boldsymbol{\Psi}' = \boldsymbol{\Psi}(\boldsymbol{\Omega}', E', \boldsymbol{x}) \\ & \boldsymbol{\sigma}_T = \boldsymbol{\sigma}_T(E, \boldsymbol{x}) & \boldsymbol{\sigma}_{s(\boldsymbol{\Omega}', E')} = \boldsymbol{\sigma}_s(\boldsymbol{\Omega}' \to \boldsymbol{\Omega}, E' \to E, \boldsymbol{x}) & \boldsymbol{q} = \boldsymbol{q}(\boldsymbol{\Omega}, E, \boldsymbol{x}) \end{aligned}$$

Transport equation

$$oldsymbol{\Omega}\cdot
abla\Psi+\sigma_T\Psi-\int_0^{E_{max}}\int_{\mathcal{S}}\sigma_{s(oldsymbol{\Omega}',E')}\Psi'doldsymbol{\Omega}'dE'=q,$$

$$\forall (\mathbf{\Omega}, E, \mathbf{x}) \in S \times (0, E_{max}] \times \mathcal{D}$$

Boundary condition

$$\Psi(\mathbf{\Omega}, E) = 0 \qquad \forall (\mathbf{\Omega}, E) \in S \times (0, E_{max}] \times \partial \mathcal{D}, \mathbf{\Omega} \cdot \mathbf{n} < 0$$

Transport equation with fission

$$\nu \sigma_f' = \nu \sigma_f(E')$$
 $\chi = \chi(E)$

Transport equation

$$\mathbf{\Omega}\cdot
abla\Psi+\sigma_T\Psi-\int_0^{E_{max}}\int_S\sigma_{s(\mathbf{\Omega}',E')}\Psi'd\mathbf{\Omega}'dE'-\chi\int_0^{E_{max}}
u\sigma_f'\Psi'dE'=q$$

Eigenvalue problem

$$m{\Omega} \cdot
abla \Psi + \sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(m{\Omega}',E')} \Psi' dm{\Omega}' dE' = rac{1}{k_{eff}} \chi \int_0^{E_{max}}
u \sigma_f' \Psi' dE'$$

Diffusion approximation

$$m{J} = m{J}(E, m{x}) = \int_{S} \mathbf{\Omega} \Psi d\mathbf{\Omega}$$
 $\Phi = \Phi(E, m{x}) = \int_{S} \Psi d\mathbf{\Omega}$ $\mathbf{\Omega} \cdot \nabla \Psi = \nabla \cdot (\mathbf{\Omega} \Psi) = \nabla \cdot m{J}$ $m{J} \approx -D(E, m{x}) \nabla \Phi$

Diffusion equation

$$-
abla \cdot (D
abla \Phi) + \sigma_T \Phi - \int_0^{E_{max}} \sigma_{s(E')} \Phi' dE' = q$$

$$-\nabla \cdot (D\nabla \Phi) + \sigma_T \Phi - \int_0^{E_{max}} \sigma_{s(E')} \Phi' dE' - \chi \int_0^{E_{max}} \nu \sigma_f' \Phi' dE' = q$$

$$-
abla \cdot (D
abla \Phi) + \sigma_T \Phi - \int_0^{E_{max}} \sigma_{s(E')} \Phi' dE' = rac{1}{k_{\it eff}} \chi \int_0^{E_{max}}
u \sigma_f' \Phi' dE'$$

Angle description

Angle collocation S_n

$$oldsymbol{\Omega}\cdot
abla\Psi+\sigma_T\Psi-\int_0^{E_{max}}\int_{S}\sigma_{s(oldsymbol{\Omega}',E')}\Psi'doldsymbol{\Omega}'dE'=q,$$

$$\Psi_i = \Psi(\mathbf{\Omega}_i, E, \mathbf{x})$$
 $\Psi_{i'} = \Psi(\mathbf{\Omega}_{i'}, E', \mathbf{x})$ $\sigma_{s(E')}^{i'i} = \sigma_s(\mathbf{\Omega}_{i'} \to \mathbf{\Omega}_i, E' \to E, \mathbf{x})$ $q_i = q(\mathbf{\Omega}_i, E, \mathbf{x})$

$$\int_0^{E_{max}} \int_S \sigma_{s(\mathbf{\Omega}',E')} \Psi' d\mathbf{\Omega}' dE' \approx \int_0^{E_{max}} \sum_{i'=1}^n \omega_{i'} \sigma_{s(E')}^{i'i} \Psi_{i'} dE'$$

Angle collocation S_n

$$oldsymbol{\Omega}\cdot
abla\Psi+\sigma_T\Psi-\int_0^{E_{max}}\int_{S}\sigma_{s(oldsymbol{\Omega}',E')}\Psi'doldsymbol{\Omega}'dE'=q,$$

$$\begin{cases} \boldsymbol{\Omega}_{1} \cdot \nabla \Psi_{1} + \sigma_{T} \Psi_{1} - \int_{0}^{E_{max}} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s(E')}^{i'1} \Psi_{i'} dE' = q_{1} \\ \dots \\ \boldsymbol{\Omega}_{i} \cdot \nabla \Psi_{i} + \sigma_{T} \Psi_{i} - \int_{0}^{E_{max}} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s(E')}^{i'i} \Psi_{i'} dE' = q_{i} \\ \dots \\ \boldsymbol{\Omega}_{n} \cdot \nabla \Psi_{n} + \sigma_{T} \Psi_{n} - \int_{0}^{E_{max}} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s(E')}^{i'n} \Psi_{i'} dE' = q_{n} \end{cases}$$

$$oldsymbol{\Omega}_n \cdot
abla \Psi_n + \sigma_T \Psi_n - \int_0^{E_{max}} \sum_{i'=1}^n \omega_{i'} \sigma_{s(E')}^{i'n} \Psi_{i'} dE' = q_i$$

Multigroup

Multigroup

$$oxed{\Omega_i \cdot
abla \Psi_i + \sigma_T \Psi_i - \int_0^{E_{max}} \sum_{i'=1}^n \omega_{i'} \sigma_{s(E')}^{i'i} \Psi_{i'} dE' = q_i,}$$

$$(0, E_{max}] = (0, E_1] \cup ... \cup (E_{g-1}, E_g] \cup ... \cup (E_{G-1}, E_{max}]$$

$$\Psi_{i,g} = \int_{E_{g-1}}^{E_g} \Psi(\mathbf{\Omega}_i, E, \mathbf{x}) dE$$
 $\sigma_T^{i,g} = \frac{\int_{E_{g-1}}^{E_g} \sigma_T(E, \mathbf{x}) dE}{\Psi_{i,g}}$

$$\sigma_{s}^{i'i,g'g} = \frac{\int_{E_{g-1}}^{E_{g}} \int_{0}^{E_{max}} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s(E')}^{i'i} \Psi_{i'} dE' dE}{\Psi_{i,g'}}$$

Multigroup

$$\Omega_i \cdot
abla \Psi_i + \sigma_T \Psi_i - \int_0^{E_{max}} \sum_{i'=1}^n \omega_{i'} \sigma_{s(E')}^{i'i} \Psi_{i',g'} dE' = q_i,$$

$$\begin{cases} \mathbf{\Omega}_{i} \cdot \nabla \Psi_{i,1} + \sigma_{T,1} \Psi_{i,1} - \sum_{g'=1}^{G} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s}^{i'i,g'1} \Psi_{i',g'} = q_{i,1} \\ & \cdots \\ \mathbf{\Omega}_{i} \cdot \nabla \Psi_{i,g} + \sigma_{T,g} \Psi_{i,g} - \sum_{g'=1}^{G} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s}^{i'i,g'g} \Psi_{i',g'} = q_{i,g} \\ & \cdots \\ \mathbf{\Omega}_{i} \cdot \nabla \Psi_{i,G} + \sigma_{T,G} \Psi_{i,G} - \sum_{g'=1}^{G} \sum_{i'=1}^{n} \omega_{i'} \sigma_{s}^{i'i,g'G} \Psi_{i',g'} = q_{i,G} \end{cases}$$

Discrete angle and energy system

Discontinuous Galerkin finite elements

$$oldsymbol{\Omega}_i \cdot
abla \Psi_{i,g}(oldsymbol{x}) + \sigma_{T,g}(oldsymbol{x}) \Psi_{i,g}(oldsymbol{x}) - \sum_{g'=1}^G \sum_{i'=1}^n \omega_{i'} \sigma_s^{i'i,g'g}(oldsymbol{x}) \Psi_{i',g'}(oldsymbol{x}) = q_{i,g}(oldsymbol{x})$$

$$V_h = \left\{ v \in L^2(\mathcal{D}) \middle| v_{|K} \in P_K \right\}$$

$$\{\!\{v\}\!\} := \frac{v_1 + v_2}{2}$$
 $\{\!\{vn\}\!\} := \frac{v_1n_1 + v_2n_2}{2}$

Discontinuous Galerkin finite elements

$$\begin{aligned} a_h(\psi, v) &= \sum_{K \in \mathbb{T}_h} \sum_{g=1}^G \sum_{i=1}^n \omega_i \int_K \left(\boldsymbol{\Omega}_i \cdot \nabla \psi_{i,g} + \sigma_{T,g} \psi_{i,g} - \sum_{g'=1}^G \sum_{i'=1}^n \omega_{i'} \sigma_s^{i'i,g'g} \psi_{i',g'} \right) v_{i,g} d\boldsymbol{x} \\ &+ \sum_{F \in \mathbb{F}_p^b} \sum_{g=1}^G \sum_{\boldsymbol{\Omega}_i \cdot \boldsymbol{n} \leq 0} \omega_i \int_F |\boldsymbol{\Omega}_i \cdot \boldsymbol{n}| \, \psi_i v_i d\boldsymbol{x} + b_h(\psi, v) \end{aligned}$$

$$b_h(\psi, v) = \sum_{F \in \mathbb{F}^l} \sum_{g=1}^G \sum_{i=1}^n \omega_i \int_F \left(\frac{4}{\max\{4, \sigma_s h\}} \left| \Omega_i \cdot \boldsymbol{n} \right| \left\{ \left\{ \psi_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ \psi_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \left\{ \left\{ v_{i,g} \boldsymbol{n} \right\} \left\{ v_{i,g} \boldsymbol{n}$$

Multigrid preconditioner with Schwarz smoothers

Source iteration?

Diffusion with $\sigma_a = 1$

$$-\nabla \cdot (\epsilon D \nabla \Phi) + \frac{1}{\epsilon} \left(\sigma_T \Phi - \int_0^{E_{max}} \sigma_{s(E')} \Phi' dE' \right) = q$$

le	v eps	0	-1	-2	-3	-4	-5	-6
	4	5		4				1
	5	6	5	5	3	2	1	1
	6	6	6	5	4	2	1	1
	7	6	6	5			2	1
	8	6	6	6	5	4	2	1
	9	6	6	6	6	5	3	2

Diffusion with $\sigma_a = 0$ 2G

$$-
abla \cdot (\epsilon D
abla \Phi) + rac{1}{\epsilon} \left(\sigma_T \Phi - \int_0^{E_{max}} \sigma_{s(E')} \Phi' dE'
ight) = q$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	5	5	4	2	1	1	1
5	6	6	6	6	6	6	6
4 5 6 7 8	6	6	6	6	6	6	6
7	6	6	6	6	6	6	6
8	6	6	6	6	6	6	6
9	6	6	6	6	6	6	6

Diffusion with $\sigma_a = 0$ 5G

$$-
abla \cdot (\epsilon D
abla \Phi) + rac{1}{\epsilon} \left(\sigma_T \Phi - \int_0^{E_{max}} \sigma_{s(E')} \Phi' dE'
ight) = q$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	5	5	5	5	5	5	5
5	6	6	6	6	6	6	6
4 5 6 7 8	6	6	6	6	6	6	6
7	6	6	6	6	6	6	6
8	6	6	6	6	6	6	6
9	6	6	6	6	6	6	6

$$\Psi_1(\mathbf{\Omega}_1, \mathbf{x})$$

$$\Psi_1(\mathbf{\Omega}_2, \mathbf{x})$$

$$\Psi_1(\mathbf{\Omega}_3, \mathbf{x})$$

f 3 group $k_{e\!f\!f}$

$$oldsymbol{\Omega} \cdot
abla \Psi + \sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(\mathbf{\Omega}',E')} \Psi' d\mathbf{\Omega}' dE' = rac{1}{k_{e\!f\!f}} \chi \int_0^{E_{max}}
u \sigma_f' \Psi' dE'$$

#elem	Result	Reference	diff [pcm]
16	0.9017874	0.9016819	12
32	0.9019407	0.9018984	5
64	0.9019622	0.9019520	2
128	0.9019651	0.9019654	< 1

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(oldsymbol{\Omega}',E')} \Psi' doldsymbol{\Omega}' dE'
ight) = q,$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	3	5	7	7	8	8	9
5	3	5	8	9	9	10	11
6	3	5	9	10	10	11	12
7	3	4	8	10	11	11	12
8	3	4	8	10	11	11	12
9	3	4	8	9	10	11	12

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_{\mathcal{S}} \sigma_{s(oldsymbol{\Omega'}, E')} \Psi' doldsymbol{\Omega'} dE'
ight) = q,$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	3	5	10			12	13
5	3	5	10	11		13	14
6	3	5	10		13	14	15
7	3	4	10	12	13	14	15
8	3	4	10	12	13	14	15
9	3	4	9	11	12	13	15

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(oldsymbol{\Omega}',E')} \Psi' doldsymbol{\Omega}' dE'
ight) = q,$$

lev eps	0		-2	-3	-4	-5	-6
4	3	5			13		15
5	3	5	12		15		17
6	3	5	12		15		18
7	3	4		14	15	17	18
8	3	4	11	14	15	16	18
9	3	4	11	13	15	16	17

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(oldsymbol{\Omega}',E')} \Psi' doldsymbol{\Omega}' dE'
ight) = q,$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	3	5	12	14	15	16	17
5	3	5	13	15	17	18	20
6	3	5	13	16	17	19	20
7	3	4	12	16	17	19	20
8	3	4	12	15	17	18	20
9	3	4	11	15	17	18	19

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(oldsymbol{\Omega}',E')} \Psi' doldsymbol{\Omega}' dE'
ight) = q,$$

lev eps	0	-1	-2		-4	-5	-6
4	3	5	13	15	16	18	19
5	3	5	14	17	19	20	22
6	3	5	14	18	19	21	22
7	3	4	13	17	19	21	22
8	3	4	12	17	19	20	22
9	3	4	12	16	18	20	21

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(oldsymbol{\Omega'},E')} \Psi' doldsymbol{\Omega'} dE'
ight) = q,$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	3	5	14 15	16	18	19	20
5	3	5	15	19	20	22	
6	3	5	14	19	21	23	
7	3	4	15 14 14	19	21	22	24
8	3	4		18	20	22	24
9	3	4	12	17	20	21	23

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_S \sigma_{s(oldsymbol{\Omega'},E')} \Psi' doldsymbol{\Omega'} dE'
ight) = q,$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	3	5	14	17	19	20	21
5	3	5	15	20	22	23	25
6	3	5	14	21		24	26
7	3	4	14	20	22	24	26
8	3	4	13	19	21	23	25
9	3	4	13	18	21	23	25

$$oldsymbol{\Omega} \cdot
abla \Psi + rac{1}{\epsilon} \left(\sigma_T \Psi - \int_0^{E_{max}} \int_{\mathcal{S}} \sigma_{s(oldsymbol{\Omega}', E')} \Psi' doldsymbol{\Omega}' dE'
ight) = q,$$

lev eps	0	-1	-2	-3	-4	-5	-6
4	3	5	14	18	19	21	22
5	3	5	15		23	25	27
6	3	5	15	22	23	26	28
7	3	4	14		23	25	28
8	3	4	13	20	23	25	27
9	_		13	20	22	24	26

Conclusions

- Energy iteration solver in each cell.
- Diffusion scales well in space, energy and parameter-wise.
- ARPACK allows easy implementation of the eigenvalue problem with good performance.

To do

- Prove the behavior of the diffusion solver, get insights for transport.
- Implement multigrid in energy (maybe multigrid in angle?)
- Use Schwarz-preconditioned Inexact Newton to include local thermodynamic equilibrium for astrophysics applications.
- Once a scalable algorithm is ready, implement the method matrix-free in parallel.

Thank you.

