Felipe P. Vista IV

Course Outline

- Mathematical Thinking
 - Convincing Arguments, Find Example, Recursion, Logic, Invariants
- Probability & Combinatronics
 - Counting, Probability, Random Variables
- Graph Theory
 - Graphs (cycles, classes, parameters)
- Number Theory & Cryptography
 - Arithmetic in modular form
 - Intro to Cryptography

Mathematical Thinking – Invariants

THE 15-PUZZLE

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Invariants – The 15-Puzzle

The 15-Puzzle

https://upload.wikimedia.org/wikipedia/commons/4/48/15-Puzzle.jpg

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

Chonbuk National University

Global Frontier Colllege

move the pieces (into an empty neighbor square)

The Game

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

The Game

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

15	2	1	12
8	5	6	11
4	9	10	7
3	13	14	

https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/15-puzzle_magical.svg/800px-15-puzzle_magical.svg.png

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration

/15-puzzle_magical.svg/800px-15-puzzle_magical.svg.png

Chonbuk National University
-

Global Frontier Colllege

- move the pieces (into an empty neighbor square)
- goal → to obtain a particular configuration
- go back to starting configuration
- Are you up to it?

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

- 12 -

\$100 Dare!

https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/15-puzzle-loyd.svg/600px-15-puzzle-loyd.svg.png

move the pieces (into an empty neighbor square)

goal → to obtain a particular configuration

go back to starting configuration

Are you up to it?

https://i.stack.imgur.com/0B14h.png

https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/15-puzzle-loyd.svg/600px-15-puzzle-loyd.svg.png

\$100 Dare!

Invariants – The 15-Puzzle

History

• invented in the 19th century

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):
 - impossibility proof exists!

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):
 - impossibility proof exists!
- Challenge: reinvent this proof!

History

- invented in the 19th century
- complicated claims (Chapman, Sam Loyd)
- very popular for some time, prizes were offered!
- why take risk of giving prize (15-14 interchanged):
 - impossibility proof exists!
- Challenge: reinvent this proof!

https://upload.wikimedia.org/wikipedia/commons/thumb/3/39/15-puzzle-loyd.svg/600px-15-puzzle-loyd.svg.png

https://i.stack.imgur.com/0B14h.png

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Invariants – The 15-Puzzle

Another point of view

Empty cell active

Invariants – The 15-Puzzle

- Empty cell active
 - move around, exchange places with neighbors

- Empty cell active
 - move around, exchange places with neighbors
- Generally:

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of <u>n</u> objects obtained through sequence of pair exchanges (transpositions)

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of *n* objects obtained through sequence of pair exchanges (transpositions)
 - STOP \rightarrow SPOT:

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP \rightarrow SPOT:
 - one transposition enough

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP → SPOT:

STOP - SPOT

STOP - POST

- one transposition enough
- STOP →POST: 5+4.

- Empty cell active
 - move around, exchange places with neighbors
- Generally:
 - permutations of n objects obtained through sequence of pair exchanges (transpositions)
 - STOP \rightarrow SPOT:
 - one transposition enough
 - STOP \rightarrow POST:
 - how many transposition?

Even and Odd Permutations

- STOP \to SPOT: 1, 3, 5, 7, ...
- STOP \rightarrow POST: 3, 5, 7, ...
- STOP \rightarrow POTS: 2, 4, 6, ...
- $n \rightarrow n + 2$ transposition: twice nothing
- Conjecture: permutations are two types
 - Even
 - Odd

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

A Counterexample

even and odd at the same time?

- even and odd at the same time?
- spoiler!

A Counterexample

- even and odd at the same time?
- spoiler!
 - two T's are mixed (we assumed all letters are different)

A Counterexample

- even and odd at the same time?
- spoiler!
 - two T's are mixed (we assumed all letters are different)

Introduction to Discrete Math

Invariants – The 15-Puzzle

Theorem

Introduction to Discrete Math

Invariants – The 15-Puzzle

Theorem

 each permutation can be obtained through transpositions

Theorem

- each permutation can be obtained through transpositions
- some permutations can be derived only through an even number of transpositions, while others can be derived only through odd number of transpositions

Introduction to Discrete Math

Invariants – The 15-Puzzle

Proof: The Easy Part

• claim: each permutation can be obtained by transpositions

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

Proof: The Easy Part

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

 $STOP \rightarrow POST$

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

 $\begin{array}{c} \mathrm{STOP} \to \mathrm{POST} \\ \mathrm{STOP} \end{array}$

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

$$\begin{array}{c} STOP \rightarrow POST \\ \hline STOP \end{array}$$

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \\ \text{POTS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \text{STOP} \rightarrow \text{POST} \\ \text{STOP} \\ \text{PTOS} \\ \text{POTS} \end{array}
```

- claim: each permutation can be obtained by transpositions
- proof: put letters to their right place through one transposition per letter

```
\begin{array}{c} \mathbf{STOP} \rightarrow \mathbf{POST} \\ \mathbf{STOP} \\ \mathbf{PTOS} \\ \mathbf{POTS} \\ \mathbf{POST} \end{array}
```

Intro to Discrete Structure

Reminder

- Everybody, make sure that your name in ZOOM is in the following format:
 - Ex: 202054321 Juan Dela Cruz

Not changing your name to this format

* you will be marked Absent * → absent?

,)

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Introduction to Discrete Math

Invariants – The 15-Puzzle

Even is Not Odd

• second claim: the same permutation cannot be even and odd at the same time

- second claim: the same permutation cannot be even and odd at the same time
- special case: *an identity permutation* (no changes) *cannot be derived through odd number of transpositions*

- second claim: the same permutation cannot be even and odd at the same time
- special case: *an identity permutation* (no changes) *cannot be derived through odd number of transpositions*
- general case can be reduced to this special case:

- second claim: the same permutation cannot be even and odd at the same time
- special case: an identity permutation (no changes) cannot be derived through odd number of transpositions
- general case can be reduced to this special case:

$$A \rightarrow \dots \rightarrow B$$
 (even), $A \rightarrow \dots \rightarrow B$ (odd)

- second claim: the same permutation cannot be even and odd at the same time
- special case: an identity permutation (no changes) cannot be derived through odd number of transpositions
- general case can be reduced to this special case:

$$A \rightarrow \dots \rightarrow B$$
 (even), $A \rightarrow \dots \rightarrow B$ (odd)

- back and forth: even + odd = odd number of transpositions brings us back

- xsecond claim: the same permutation cannot be even and odd at the same time
- special case: *an identity permutation* (no changes) *cannot be derived through odd number of transpositions*
- general case can be reduced to this special case:

$$\neg A \rightarrow ... \rightarrow B \text{ (even)}, A \rightarrow ... \rightarrow B \text{ (odd)}$$

- back and forth: even + odd = odd number of transpositions brings us back
- Not possible if we believe in the special case

Introduction to Discrete Math

Invariants – The 15-Puzzle

Transposition of Neighbors

 claim: after odd number of neighbor transpositions, we cannot return to original position

- claim: after odd number of neighbor transpositions, we cannot return to original position
- look at every pair of letters, why is the number of transpositions for this pair even?

- claim: after odd number of neighbor transpositions, we cannot return to original position
- look at every pair of letters, why is the number of transpositions for this pair even?
 - Each transposition of the pair changes the order (who is on the left)

- claim: after <u>odd number</u> of neighbor transpositions, we cannot return to original position
- look at every pair of letters, why is the number of transpositions for this pair even?
 - Each transposition of the pair changes the order (who is on the left)
- note that neighbor transposition does not change order in other pairs

$$ab = 2k + 1 - 11d$$

$$bar = 2k + 1 - 10d$$

$$even$$

Introduction to Discrete Math

Invariants – The 15-Puzzle

Introduction to Discrete Math

Invariants – The 15-Puzzle

Reduction to the Neighbor Case

k + 1 + k = 2k + 1 neighbor transpositions

Reduction to the Neighbor Case

k + 1 + k = 2k + 1 neighbor transpositions = $1 \pmod{2}$

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

Where We Are Now?

• in 15-puzzle, one cannot arrive at a goal with everything in order except 14 and 15 interchanged, why?

- in 15-puzzle, one cannot arrive at a goal with everything in order except 14 and 15 interchanged, why?
- generalization: permutations, transpositions

- in 15-puzzle, one cannot arrive at a goal with everything in order except 14 and 15 interchanged, why?
- generalization: permutations, transpositions
- classification theorem: some permutations need even number of transpositions, other require an odd number

- in 15-puzzle, one cannot arrive at a goal with everything in order except 14 and 15 interchanged, why?
- generalization: permutations, transpositions
- classification theorem: some permutations need even number of transpositions, other require an odd number
- OK... so what?

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Invariants – The 15-Puzzle

Invariants – The 15-Puzzle

Back to the 15-Puzzle

why we cannot exchange 14 and 15 in the puzzle?

Invariants – The 15-Puzzle

- why we cannot exchange 14 and 15 in the puzzle?
- from general theory

- why we cannot exchange 14 and 15 in the puzzle?
- from general theory
 - each move is a transposition of an empty cell and some of its neighbor

- why we cannot exchange 14 and 15 in the puzzle?
- from general theory
 - each move is a transposition of an empty cell and some of its neighbor
- the required exchange requires an odd number of moves

- why we cannot exchange 14 and 15 in the puzzle?
- from general theory
 - each move is a transposition of an empty cell and some of its neighbor
- the required exchange requires an odd number of moves
- but for other reasons, it requires an even number of moves, why is this?

Back to the 15-Puzzle

- why we cannot exchange 14 and 15 in the puzzle?
- from general theory
 - each move is a transposition of an empty cell and some of its neighbor
- the required exchange requires an odd number of moves
- but for other reasons, it requires an even number of moves, why is this?
- so the required exchange is impossible!

Me + even

Invariants – The 15-Puzzle

Hello again Chessboard

To bring back an empty cell, we need an even number of moves, why?

To bring back an empty cell, we need an even number of moves, why?

each move changes the color of the empty cell

To bring back an empty cell, we need an even number of moves, why?

each move changes the color of the empty cell bringing it back requires an even number of moves.

To bring back an empty cell, we need an even number of moves, why?

each move changes the color of the empty cell bringing it back requires an even number of moves. No risk to lose the \$100 prize :D...

- The game
- Permutations
- Proof: The Challenging Part
- Mission Impossible
- Classify a Permutation

Invariants – The 15-Puzzle

Classify a Permutation

Invariants – The 15-Puzzle

Classify a Permutation

Given:

Invariants – The 15-Puzzle

Classify a Permutation

Given:

ven: $a_{n} = a_{n} + a_{n} +$ numbers from 1, ..., n

Classify a Permutation

Given:

• an array a[1], ..., a[n], it contains the permutation of the numbers from 1, ..., n

Classify a Permutation

Given:

• an array a[1], ..., a[n], it contains the permutation of the numbers from 1, ..., n

Required:

• give an output of "0" if the permutation is even

Given:

• an array a[1], ..., a[n], it contains the permutation of the numbers from 1, ..., n

- give an output of "0" if the permutation is even
 - requires an even number of transpositions

Given:

• an array $\alpha[1]$, ..., $\alpha[n]$, it contains the permutation of the numbers from 1, ..., n

- give an output of "0" if the permutation is even
 - requires an even number of transpositions
- give an output of "1" if the permutation is odd

Given:

• an array a[1], ..., a[n], it contains the permutation of the numbers from 1, ..., n

- give an output of "0" if the permutation is even
 - requires an even number of transpositions
- give an output of "1" if the permutation is odd
 - requires an odd number of permutations

Given:

• an array $\alpha[1]$, ..., $\alpha[n]$, it contains the permutation of the numbers from 1, ..., n

Required:

- give an output of "0" if the permutation is even
 - requires an even number of transpositions
- give an output of "1" if the permutation is odd
 - requires an odd number of permutations

How to?:

Invariants – The 15-Puzzle

A Possible Approach

recall situation when permutation is obtained through transpositions

50TP-

- recall situation when permutation is obtained through transpositions
- it is through sort (if done by exchanges)

- recall situation when permutation is obtained through transpositions
- it is through sort (if done by exchanges)
- hint: sort a and count the number of exchanges

- recall situation when permutation is obtained through transpositions
- it is through sort (if done by exchanges)
- hint: sort a and count the number of exchanges
 - To see if this number is even or odd

Assignment

Implementation

```
// sorting a[1]...a[n]
sign=0 // sign = number of transpositions mod 2
s=0 // first s elements at the right places
while (s < 2) {
   u=s+1; t=u; // a[t] is minimal among a[s+1]...a[u]
   while (u < n) {
      u=u+1;
      if a[u] < a[u] {t = u;}
   // a[t] is minimal among s[t+1]...a[n]
   tmp=a[s+1]; a[s+1]=a[t]; a[t]=tmp; sign=1-sign;
```

What is wrong with this code?

Invariants – The 15-Puzzle

Bonus

Invariants – The 15-Puzzle

Bonus

Running time (number of steps) for this approach?

Bonus

- Running time (number of steps) for this approach?
 - $O(n^2)$, since two nested loops

Bonus

- Running time (number of steps) for this approach?
 - $O(n^2)$, since two nested loops

A more efficient algorithm?

Bonus

- Running time (number of steps) for this approach?
 - $O(n^2)$, since two nested loops

A more efficient algorithm?

• Hint: use $O(n \log n)$ sorting to get $O(n \log n)$ algorithm

Bonus

- Running time (number of steps) for this approach?
 - $O(n^2)$, since two nested loops

A more efficient algorithm?

- Hint: use $O(n \log n)$ sorting to get $O(n \log n)$ algorithm
 - mergeSort (worst case), heapSort (worst case), quickSort (worst case
 - \rightarrow $O(n^2)$, depending on pivot point)

Bonus

- Running time (number of steps) for this approach?
 - $O(n^2)$, since two nested loops

A more efficient algorithm?

- Hint: use $O(n \log n)$ sorting to get $O(n \log n)$ algorithm
 - mergeSort (worst case), heapSort (worst case), quickSort (worst case) $\rightarrow O(n^2)$, depending on pivot point)
- Challenge: can you think of an O(n) algorithm?

Thank you.