ETHAN (YI-CHEN) LIU

+1 (332) 256 1405 | yl5188@columbia.edu | www.linkedin.com/in/Ethan-Yi-Chen-Liu

EDUCATION

Columbia University, New York, US

Sept.2022-Dec.2023(Expected)

Master of Science in Material Science and Engineering

National Tsing Hua University, Hsinchu, TW

July.2020-July.2022

Master of Science in Chemical Engineering

National Chung Cheng University, Chiayi, TW

Sept.2015-Jan.2020

Bachelor of Science in Chemical Engineering

WORK EXPERIENCES

Effect of Laser Annealing on Indium-Gallium-Zinc-Oxide (IGZO) Thin-Film Transistors Researcher Student

Research Advisors: Prof. James S. Im, Columbia University

Oct.2022- Present

- Simulated laser-induced crystallization of thin films using 3-D numerical simulation (3DNS) program to analyze thermal behavior and optimize process parameters.
- Fabricated the bottom-gate transistor with varying composition and thickness of IGZO and heat conductive layer and performed annealing of oxide layers using Excimer Laser and Flashlamp system.
- Optimized Excimer Laser annealing energy density based on the tendency of oxygen vacancies and electrical characterizations with X-ray photoelectron spectroscopy (XPS) to achieve desired material properties and applied X-ray diffraction (XRD) to assess crystallization process of IGZO.
- Evaluated the conductivity and sustainability of devices after high-density laser annealing, ensuring superior performance and reliability.

Model-Building for Ozone Absorption and VOCs ozonation in a Rotating Packed Bed Researcher Assistant

Research Advisors: Prof. Shi-Shang Jang, NTHU, and Prof. David Shan-Hill Wong, NTHU July.2020-July.2022

- Developed a generic high-gravity rotating-bed model in Aspen Custom Modeler to predict ozone absorption and VOCs ozonation.
- Selected suitable combination of mass transfer correlations through numerous comparisons and reduced deviation between simulation and experiment data to 9% and 3.2% in ozone and oxygen absorption, respectively.
- Modified the Enhancement Factor in mass transfer from VOC concentration-based to pH-based, resulting in an improvement in simulation accuracy and reducing deviation from 97.5% and 57.8% to 7.3% and 11.5% in simulating two VOCs ozonation.
- Validated model applicability and universality and presented at Asian Symposium on Process Systems Engineering (PSE Asia 2022).

Study on the influences of Different Solvents for CO2 Capture in Rotating Packed Bed (RPB) Researcher Assistant

 $Research\ Mentor:\ Prof.\ Jeffrey\ Kantor,\ University\ of\ Notre\ Dame$

Jan.2021-May. 2021

- Compared CO₂ absorption of MEA and DETA (as solvents), then studied effect of adding PZ, discovered a mixture of DETA and PZ was assessed to highest mass transfer coefficient, K_{Ga}.
- Analyzed absorption performance of RPB and traditional absorption tower and demonstrated the potential for substituting the traditional packed tower with RPB based on comparative data.
- · Presented at International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2021).

SKILLS

Simulation/Programming:

Aspen Plus, Aspen Custom Modeler, Origin, Microsoft Office (Word, Excel, PowerPoint...), Python, Layouteditor.

Device Fabrication/Skills:

Photolithography, Plasma-Enhance Chemical Vapor Deposition, Wet and Dry Etching, Laser Annealing, Flashlamp Annealing, Wafer Dicing, Chemical Mechanical Polishing, Physical Vapor Deposition.

Metrology/Equipment:

Optical Microscope, X-ray Photoelectron Spectroscopy, Atomic Force Microscope, Ellipsometer, Raman spectrometer X-ray Diffraction, Probe Station.