Università degli Studi di Lecce Facoltà di Ingegneria - Facoltà di Scienze

Giovanni Calvaruso e Raffaele Vitolo

ESERCIZI DI GEOMETRIA ED ALGEBRA LINEARE

Versione provvisoria 29 febbraio 2008

ANNO ACCADEMICO 2000-2001

Informazioni legali: Quest'opera è un esemplare unico riprodotto in proprio con il metodo Xerox presso il Dipartimento di Matematica dell'Università di Lecce. Sono stati adempiuti gli obblighi previsti dal D. L. L. 31/8/1945 n. 660 riguardanti le pubblicazioni in proprio.

Nota: Questo libro viene rilasciato gratuitamente agli studenti della Facoltà di Scienze e della Facoltà di Ingegneria dell'Università di Lecce ed a tutti quelli che fossero interessati agli argomenti trattati mediante Internet nella convinzione che il patrimonio culturale in esso contenuto debba essere reso disponibile a tutti al minor costo possibile. Gli autori concedono completa libertà di riproduzione (ma non di modifica) del presente testo per soli scopi personali e/o didattici, ma non a fini di lucro.

Indirizzo degli autori.

Giovanni Calvaruso, Raffaele Vitolo, Università di Lecce, Dipartimento di Matematica, via per Arnesano, 73100 Lecce Giovanni.Calvaruso@unile.it Raffaele.Vitolo@unile.it

INDICE

	Int	roduzione	5
1		Premesse	6
	1.1	Matrici e determinanti	6
	1.2	Sistemi lineari	9
	1.3	Inversa di una matrice	
	1.4	Esercizi di riepilogo	6
2		Geometria analitica	9
	2.1	Dipendenza ed indipendenza lineare	9
	2.2	Prodotto scalare, vettoriale, misto	0
	2.3	Rette e piani dello spazio	2
	2.4	Sfere e circonferenze	
	2.5	Curve e superfici	8
	2.6	Coni e cilindri	1
	2.7	Esercizi di riepilogo	
3		Spazi vettoriali 50	0
	3.1	Sottospazi vettoriali, lineare indipendenza, basi	0
	3.2	Applicazioni lineari	9
	3.3	Autovalori ed autovettori	6
	3.4	Esercizi di riepilogo	4
4		Strutture metriche 9'	7
	4.1	Prodotti scalari	7
	4.2	Trasformazioni ortogonali	5
	4.3	Esercizi di riepilogo	9

PREFAZIONE

Con piacere presentiamo questa raccolta di esercizi, curata con competenza e professionalità da G. Calvaruso e R. Vitolo, che hanno tanta esperienza di esercitazioni agli studenti di Matematica, Fisica ed Ingegneria.

Si tratta di esercizi, per la maggior parte, dati a prove d'esame o assegnati durante l'anno. Alcuni sono semplici applicazioni di concetti studiati, altri richiedono intuizione geometrica, sia nel piano sia nello spazio ordinario.

Gli esercizi sono quasi tutti svolti, ma lo svolgimento va visto solo dopo aver provato a risolverli senza aiuto. Sappiamo che la difficoltà maggiore per gli studenti è proprio quella di immaginare la soluzione spaziale e di tradurre il problema geometrico in equazioni: seguire un percorso di soluzione è certamente più comodo ma non aiuta a sviluppare il "saper fare", essenziale in Matematica, una disciplina che non può essere studiata in modo passivo. Naturalmente è molto utile ed istruttivo vedere come il docente si è posto di fronte al problema, qual'è stata la sua preoccupazione di rigore e come ha esposto il procedimento, apprezzando l'equilibrio tra le motivazioni ed i calcoli. Negli esami sarà elemento di valutazione anche la chiarezza espositiva: una eccessiva trascuratezza può essere scambiata come mancanza di rispetto verso chi corregge.

Ringraziamo gli autori di questo testo, i quali si sono sottoposti alla fatica, convinti di fare cosa gradita agli studenti, e, cosa più importante, convinti di contribuire alla formazione matematica di base, utile in ogni circostanza della vita, poiché essa fornisce un allenamento al pensiero razionale e quindi, in ultima analisi, al "ben ragionare".

Lecce, Dicembre 2001

Giuseppe De Cecco Rosanna Marinosci Domenico Perrone

INTRODUZIONE

Questa raccolta di esercizi è pensata per gli studenti di Geometria I (Corso di Laurea in Matematica) e di Geometria ed Algebra (Facoltà di Ingegneria) come sussidio nella preparazione delle prove scritte dei suddetti corsi. È stata realizzata utilizzando i contributi dei corsi di esercitazione di Geometria I e Geometria ed Algebra tenuti dagli autori, con l'aggiunta di prove scritte assegnate per l'esame di Geometria ed Algebra. La gran parte degli esercizi è corredata da soluzioni.

Si suggerisce agli studenti che utilizzeranno tale raccolta di provare a risolvere autonomamente gli esercizi proposti, confrontando poi il metodo ed i risultati con quelli riportati. È inoltre buona pratica tentare di risolvere gli esercizi con più di un metodo, rendendosi conto di vantaggi e svantaggi di ciascun approccio. Infine, ogni risultato degli esercizi deve essere verificato: solo un controllo approfondito delle soluzioni può dare la certezza della loro validità.

Infine, una raccomandazione fondamentale: la conoscenza della teoria è indispensabile per risolvere gli esercizi. Viceversa, lo svolgimento degli esercizi costituisce il banco di prova dove si può verificare se la teoria è stata veramente compresa. Non serve, tuttavia, svolgere centinaia di esercizi: è sufficiente avere capito a fondo pochi esercizi per ogni argomento al fine di ottenere una perfetta padronanza della materia.

Lecce, dicembre 2001

G. Calvaruso R. Vitolo

Ringraziamenti.

Università di Lecce.

Queste note sono state scritte in LaTeX2e con l'estensione amsmath della American Mathematical Society.

CAPITOLO 1

PREMESSE

1.1 Matrici e determinanti

Esercizio 1.1. Siano date le matrici

$$A = \begin{pmatrix} 1 & 2 & -5 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 \\ -3 & 1 \\ 1 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 1 \end{pmatrix}.$$

Provare che A(B+C)=AB+AC. Inoltre, calcolare 2B-C. Soluzione. Infatti,

$$A(B+C) = A \begin{pmatrix} 3 & 3 \\ -3 & 3 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -18 & 4 \\ -3 & 3 \end{pmatrix},$$

$$AB = \begin{pmatrix} -9 & 5 \\ -3 & 1 \end{pmatrix}, \quad AC = \begin{pmatrix} -9 & -1 \\ 0 & 2 \end{pmatrix},$$

dunque A(B+C) = AB + AC. Inoltre, si ha

$$2B - C = \left(\begin{array}{cc} 3 & 6 \\ -6 & 0 \\ 0 & -1 \end{array}\right) .$$

Esercizio 1.2. Siano date le matrici

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Verificare che $AB \neq BA$ e dedurne che $(A+B)^2 \neq A^2 + 2AB + B^2$. SOLUZIONE. Infatti,

$$AB = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}, \quad BA = \begin{pmatrix} 0 & 0 \\ -2 & 1 \end{pmatrix}.$$

Inoltre, $(A+B)^2 = A^2 + AB + BA + B^2 \neq A^2 + 2AB + B^2$, poiché $AB \neq BA$.

Esercizio 1.3. Siano date le matrici

$$A = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -1 & 3 \\ 1/2 & 5 & 1 \\ -1 & -1/2 & 2 \end{pmatrix}.$$

Provare che $(AB)^t = B^t A^t$, e che $(AB)^t \neq A^t B^t$.

SOLUZIONE. Infatti,

$$AB = \begin{pmatrix} 3/2 & -7 & 5\\ 1 & 17/2 & 7\\ 0 & -3 & 10 \end{pmatrix}, \quad \text{quindi} \quad (AB)^t = \begin{pmatrix} 3/2 & 1 & 0\\ -7 & 17/2 & -3\\ 5 & 7 & 10 \end{pmatrix}.$$

Inoltre, essendo

$$A^{t} = \begin{pmatrix} 2 & 1 & 2 \\ -1 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}, \quad B^{t} = \begin{pmatrix} 1 & 1/2 & -1 \\ -1 & 5 & -1/2 \\ 3 & 1 & 2 \end{pmatrix},$$

si ottiene

$$A^t B^t = \left(\begin{array}{ccc} 7 & 8 & 3/2 \\ -3 & 19/2 & 0 \\ 5 & 7 & 7/2 \end{array} \right) .$$

Esercizio 1.4. $Si\ calcoli\ det\ A,\ dove$

$$A = \left(\begin{array}{rrr} 1 & 2 & 0 \\ -1 & -3 & 2 \\ 2 & 5 & 3 \end{array}\right) .$$

SOLUZIONE. Si ha:

$$\begin{vmatrix} 1 & 2 & 0 \\ -1 & -3 & 2 \\ 2 & 5 & 3 \end{vmatrix} = 0(-1)^{1+3} \begin{vmatrix} -1 & -3 \\ 2 & 5 \end{vmatrix} + 2(-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} + 3(-1)^{3+3} \begin{vmatrix} 1 & 2 \\ -1 & -3 \end{vmatrix}$$
$$= 0 - 2 - 3 = -5$$

Esercizio 1.5. Verificare con un esempio che $det(A + B) \neq det A + det B$. Soluzione. Infatti, si ha

$$\left|\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right| + \left|\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right| = 2 \neq \left|\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right| = 0.$$

Esercizio 1.6. Calcolare il determinante della matrice

$$A = \left(\begin{array}{cccc} 2 & 1 & 3 & 0 \\ -1 & 1 & 2 & 2 \\ 2 & 0 & -1 & -1 \\ -3 & 1 & 0 & 1 \end{array}\right)$$

usando il metodo di triangolarizzazione.

SOLUZIONE. Operando per righe otteniamo

$$\begin{vmatrix} 2 & 1 & 3 & 0 \\ -1 & 1 & 2 & 2 \\ 2 & 0 & -1 & -1 \\ -3 & 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 & 0 \\ 0 & 3/2 & 7/2 & 2 \\ 0 & -1 & -4 & -1 \\ 0 & 5/2 & 9/2 & 1 \end{vmatrix},$$

dove $r_2 \mapsto r_2 + 1/2 r_1$, $r_3 \mapsto r_3 - r_1$, $r_4 \mapsto r_4 + 3/2 r_1$;

$$\begin{vmatrix} 2 & 1 & 3 & 0 \\ 0 & 3/2 & 7/2 & 2 \\ 0 & -1 & -4 & -1 \\ 0 & 5/2 & 9/2 & 1 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 & 0 \\ 0 & 3/2 & 7/2 & 2 \\ 0 & 0 & -5/3 & 1/3 \\ 0 & 0 & -4/3 & -7/3 \end{vmatrix},$$

dove $r_3 \mapsto r_3 + 2/3 r_2$, $r_4 \mapsto r_4 - 5/3 r_2$; infine

$$\begin{vmatrix} 2 & 1 & 3 & 0 \\ 0 & 3/2 & 7/2 & 2 \\ 0 & 0 & -5/3 & 1/3 \\ 0 & 0 & -4/3 & -7/3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 3 & 0 \\ 0 & 3/2 & 7/2 & 2 \\ 0 & 0 & -5/3 & 1/3 \\ 0 & 0 & 0 & -13/5 \end{vmatrix}.$$

Dunque risulta det A = +13, poiché il determinante di A è uguale al determinante dell'ultima matrice che è uguale, a sua volta, al prodotto degli elementi diagonali, in quanto matrice triangolare.

Esercizio 1.7. Calcolare il rango della seguente matrice B al variare di $\lambda \in \mathbb{R}$:

$$B = \left(\begin{array}{cccc} 1 & -1 & 0 & 1\\ 0 & 2 & 1 & 0\\ 2 & 0 & \lambda & -1\\ 1 & 1 & 1 & 1 \end{array}\right).$$

SOLUZIONE. Si ha, operando per righe,

$$rg(B) = rg \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & \lambda & -3 \\ 0 & 2 & 1 & 0 \end{pmatrix} = rg \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & \lambda - 1 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

1.2. Sistemi lineari 9

Ne segue che $rg(B) \leq 3$ in quanto l'ultima matrice ha una riga nulla. Inoltre, scambiando la colonna 3 con la colonna 4, otteniamo 3 elementi diagonali non nulli (1, 2, 1), dunque rg(B) = 3.

Esercizio 1.8. Calcolare il rango delle seguenti matrici al variare di $k, h \in \mathbb{R}$:

$$C = \begin{pmatrix} 1 & k & -2 \\ h & 1 & 0 \\ 0 & -1 & h \end{pmatrix}, \qquad D = \begin{pmatrix} k & 0 & -h \\ 0 & 1 & k \\ k & 1 & h \end{pmatrix}.$$

Soluzione. Si ha, operando per righe, e nel caso $-hk + 1 \neq 0$:

$$\operatorname{rg}(C) = \operatorname{rg} \begin{pmatrix} 1 & k & -2 \\ 0 & -hk+1 & 2h \\ 0 & -1 & h \end{pmatrix} = \operatorname{rg} \begin{pmatrix} 1 & k & -2 \\ 0 & -hk+1 & 2h \\ 0 & 0 & \frac{3h-h^2k}{-hk+1} \end{pmatrix}.$$

Ciò implica che, se $-hk + 1 \neq 0$, allora:

 $1-3h-h^2k \neq 0$ implica $\operatorname{rg}(C)=3$, in quanto l'ultima matrice ha gli elementi diagonali non nulli;

 $2-3h-h^2k=0$ implica $\operatorname{rg}(C)=2$ in quanto abbiamo due elementi diagonali non nulli;

Se -hk+1=0, si osserva che hk=1 implica $h\neq 0$. Scambiando la seconda riga con la terza si ottiene una matrice con gli elementi diagonali non nulli, dunque $\operatorname{rg}(C)=3$.

Poiché det D = 2kh, se $hk \neq 0$ allora rg(D) = 3. Per h = 0, D diventa

$$D = \left(\begin{array}{ccc} 0 & 0 & -h \\ 0 & 1 & 0 \\ 0 & 1 & h \end{array}\right) .$$

Se $h \neq 0$, la seconda e la terza colonna sono linearmente indipendenti, quindi $\operatorname{rg}(D) = 2$. Se h = 0, la seconda colonna è l'unica non nulla, per cui $\operatorname{rg}(D) = 1$. Analogamente, se h = 0, allora $\operatorname{rg}(D) = 2$ oppure $\operatorname{rg}(D) = 1$ a seconda che, rispettivamente, sia $k \neq 0$ oppure k = 0. In conclusione,

$$rg(D) = 3 \Leftrightarrow hk \neq 0$$
,

$$rg(D) = 2 \Leftrightarrow k = 0, h \neq 0 \text{ o } h = 0, k \neq 0,$$

$$rg(D) = 1 \Leftrightarrow k = 0 e h = 0$$

1.2 Sistemi lineari

Esercizio 1.9. Si risolva il seguente sistema

$$\begin{cases} 3x - 2y = 2 \\ x + y = -1 \end{cases}.$$

Soluzione. Si procede con il metodo di eliminazione operando per righe; in particolare, si effettuano le seguenti sostituzioni:

$$r_2 \mapsto -1/3 \, r_1 + r_2 \quad \Rightarrow \quad \begin{cases} 3x - 2y = 2, \\ 5/3 \, y = -5/3, \end{cases}$$
$$r_1 \mapsto 6/5 \, r_2 + r_1 \quad \Rightarrow \quad \begin{cases} x = 0, \\ y = -1. \end{cases}$$

Esercizio 1.10. Si risolva il seguente sistema

$$\begin{cases} 2x + y + 2z = 3, \\ -y - 5z = 1, \\ x + y = 0. \end{cases}$$

Soluzione. Si risolve il sistema con il metodo di eliminazione in notazione matriciale.

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -5 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -5 & 1 \\ 0 & 1/2 & -1 & -3/2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -5 & 1 \\ 0 & 0 & -7/2 & -1 \end{pmatrix} \rightarrow$$

$$\rightarrow \left(\begin{array}{ccc|c} 2 & 1 & 0 & 17/7 \\ 0 & -1 & 0 & 17/7 \\ 0 & 0 & 1 & 2/7 \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & 17/7 \\ 0 & 1 & 0 & -17/7 \\ 0 & 0 & 1 & 2/7 \end{array}\right),$$

dunque il sistema ammette l'unica soluzione (17/7, -17/7, 2/7).

Esercizio 1.11. Si studi il sistema AX = B, dove

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 0 & 1 \\ 0 & -1 & -2 & -2 \\ 3 & -3 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -2 \\ -1 \\ 2 \\ 1 \end{pmatrix}.$$

1.2. Sistemi lineari

SOLUZIONE.

$$\begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 2 & 1 & 0 & 1 & -1 \\ 0 & -1 & -2 & -2 & 2 \\ 3 & -3 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 & 3 \\ 0 & -1 & -2 & -2 & 2 \\ 0 & -3 & -2 & 1 & 7 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & -2 & 1 & 3 \\ 0 & 0 & -4 & -1 & 3 \\ 0 & 0 & 0 & 3 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 & -2 \\ 0 & 1 & -2 & 0 & 2 \\ 0 & 0 & -4 & 0 & 6 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & -1/2 \\ 0 & 1 & 0 & 0 & -1/2 \\ 0 & 0 & 1 & 0 & -1/2 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$

Esercizio 1.12. Si studi il seguente sistema

$$\left\{ 2x - y = 2. \right.$$

SOLUZIONE. Secondo il teorema di Rouché—Capelli, le soluzioni del sistema sono costituite dai vettori somma di una soluzione particolare del sistema con una qualunque soluzione del sistema omogeneo associato.

La coppia (1,0) è una soluzione del sistema. Il sistema omogeneo associato è $\{2x-y=0,$ che ha le soluzioni $\{k(1,2)\,|\,k\in\mathbb{R}\}$. Quindi, le soluzioni del sistema costituiscono l'insieme

$$\{(1,0) + k(1,2) \mid k \in \mathbb{R}\}.$$

Esercizio 1.13. Si studi il sequente sistema

$$\begin{cases} x + y + z + t = 1, \\ x + y + 2z = 3, \\ 2x + 2y + 4z + t = 7. \end{cases}$$

SOLUZIONE. La matrice del sistema è

$$\left(\begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 & 3 \\ 2 & 2 & 4 & 1 & 7 \end{array}\right).$$

Operando per righe

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 & 3 \\ 2 & 2 & 4 & 1 & 7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & -2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Quindi, la matrice incompleta ha rango 2 mentre la matrice completa ha rango 3 (si prenda la sottomatrice costituita dalle colonne 2, 3 e 5). Pertanto, per il teorema di Rouché-Capelli, il sistema non ha soluzioni. Questo si può comunque dedurre dalla presenza della condizione impossibile 0 = 1 nella terza riga.

Esercizio 1.14. Si studi il seguente sistema

$$\begin{cases} 2x - y + 3z = 4, \\ x + 2z = 3, \\ 3x - 2y + 4z = 5. \end{cases}$$

Soluzione. La matrice associata al sistema lineare è

$$\left(\begin{array}{ccc|c}
2 & -1 & 3 & 4 \\
1 & 0 & 2 & 3 \\
3 & -2 & 4 & 5
\end{array}\right).$$

Operando per righe si ha

$$\begin{pmatrix} 2 & -1 & 3 & | & 4 \\ 1 & 0 & 2 & | & 3 \\ 3 & -2 & 4 & | & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 3 & | & 4 \\ 0 & 1/2 & 1/2 & | & 1 \\ 0 & -1/2 & -1/2 & | & -1 \end{pmatrix},$$

dove nell'ultima matrice la terza riga si può eliminare in quanto proporzionale alla seconda. Si ottiene quindi

$$\left(\begin{array}{cc|c} 2 & -1 & 3 & 4 \\ 0 & 1 & 1 & 2 \end{array}\right) \rightarrow \left(\begin{array}{cc|c} 2 & 0 & 4 & 6 \\ 0 & 1 & 1 & 2 \end{array}\right).$$

Pertanto, sia la matrice incompleta che la matrice completa del sistema hanno rango 2. Secondo il teorema di Rouché-Capelli, il sistema ammette quindi ∞^1 soluzioni. Una delle variabili è, dunque, arbitraria: diventa un parametro. Scegliamo come parametro z e poniamo, per questo, z = k. Le soluzioni sono tutti e soli i vettori del tipo (3, 2, 0) + k(-2, -1, 1), con $k \in \mathbb{R}$.

Esercizio 1.15. Risolvere il sistema

$$\begin{cases} x+y-z = 1, \\ 2x-y+z = -1, \\ x-2y+2z = -2. \end{cases}$$

Soluzione. La matrice incompleta del sistema

$$\tilde{A} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 2 & -1 & 1 & -1 \\ 1 & -2 & 2 & -2 \end{pmatrix}$$

1.2. Sistemi lineari

è equivalente per righe al sistema la cui matrice completa è la matrice a scalini

$$\tilde{S} = \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -3 & 3 & -3 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

dunque $\operatorname{rg}(\tilde{A}) = \operatorname{rg} \tilde{S} = 2$, il sistema ammette ∞^1 soluzioni. Per calcolare queste soluzioni si devono ricavare due variabili in funzione della terza, la cui determinazione è arbitraria e pertanto prende il ruolo di *parametro*. Si supponga di ricavare la x e la y in funzione della z. Secondo il metodo di sostituzione previsto nel metodo di Gauss bisogna operare per righe ricavando una matrice identità di ordine 2 in corrispondenza delle colonne delle due variabili scelte x ed y. Quindi, dividendo la seconda riga di \tilde{S} per -3 e sottraendola alla prima si ottiene il sistema equivalente a quello di partenza la cui matrice completa è

$$\tilde{S}' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Le soluzioni del sistema sono dunque (0, k-1, k) per ogni $k \in \mathbb{R}$, dove è stato posto z = k per evidenziare il fatto che a z possono essere assegnati arbitrari valori reali $k \in \mathbb{R}$.

Esercizio 1.16. Studiare al variare di $h \in \mathbb{R}$ il seguente sistema lineare

$$\begin{cases} x + 2y + hz - t = 1, \\ (h-1)y + (1-h)t = h, \\ x + 3y + 2z - ht = 3. \end{cases}$$

Soluzione. Operando per righe si ha, nel caso $h-1 \neq 0$:

$$\begin{pmatrix} 1 & 2 & h & -1 & | & 1 \\ 0 & h - 1 & 0 & 1 - h & | & h \\ 0 & 1 & 2 - h & 1 - h & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & h & -1 & | & 1 \\ 0 & 1 & 0 & -1 & | & h/(h-1) \\ 0 & 0 & 2 - h & 2 - h & | & -h/(h-1) + 2 \end{pmatrix}$$

da cui

1) se $2 - h \neq 0$ allora il rango della matrice incompleta è 3 perchè gli elementi della diagonale principale sono non nulli. Questo implica che anche il rango della matrice completa è 3, poiché non si possono estrarre minori di ordine > 3 da essa. Quindi, il sistema ha ∞^1 soluzioni per ogni valore di h. Procedendo per righe:

$$\begin{pmatrix}
1 & 2 & h & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{pmatrix}
\xrightarrow{h/(h-1)}
\xrightarrow{h/(h-1)}
\rightarrow
\begin{pmatrix}
1 & 2 & 0 & -1 - h \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{pmatrix}
\xrightarrow{h/(h-1)}
\xrightarrow{h/(h-1)}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 1 - h \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 1
\end{pmatrix}
\xrightarrow{h/(h-1)}
\xrightarrow{h/(h-1)}$$

da cui le soluzioni, ponendo t = k:

$$(x, y, z, t) = ((1 - h)k + 1 - h/(h - 1), k + h/(h - 1), -k - 1/(h - 1), k).$$

2) se 2 - h = 0 allora la terza riga si annulla. Il sistema che risulta compatibile e di rango 2, quindi con ∞^2 soluzioni:

$$\begin{pmatrix} 1 & 2 & 2 & -1 & | & 1 \\ 0 & 1 & 0 & -1 & | & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & | & -3 \\ 0 & 1 & 0 & -1 & | & 2 \end{pmatrix} \rightarrow$$

da cui $(x, y, z, t) = (-2k_1 - k_2 - 3, k_2 + 2, k_1, k_2)$, avendo posto $z = k_1$ e $t = k_2$.

Se, invece, h-1=0, allora si ottiene una condizione impossibile, dunque il sistema non ha soluzioni.

Esercizio 1.17. Risolvere il sistema

$$\begin{cases} x + y + z = 3, \\ 2y - z = 0, \\ 2x + 3z = 6. \end{cases}$$
 (1.2.1)

SOLUZIONE. Ovviamente,

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & -1 \\ 2 & 0 & 3 \end{pmatrix}; \qquad \tilde{A} = \begin{pmatrix} A & 3 \\ 0 \\ 6 \end{pmatrix}.$$

Poiché $p = \operatorname{rg}(A) = \operatorname{rg}(\tilde{A}) = 2$ il sistema è compatibile ed ammette ∞^1 soluzioni (n - p = 3 - 2 = 1). Esso è equivalente al sistema di tipo Cramer

$$\begin{cases} 2y = z, \\ 2x = 6 - 3z, \end{cases} \Leftrightarrow \begin{cases} x = -3t + 3, \\ y = t, \\ z = 2t. \end{cases}$$

Il sistema omogeneo associato è

$$\begin{cases} x + y + z = 0, \\ 2y - z = 0, \\ 2x + 3z = 0, \end{cases}$$
 (1.2.2)

che ha come soluzione x = h, y = -1/3h, z = -1/3h. Una soluzione particolare di (1.2.1), che si ottiene ad esempio ponendo z = 0, è (3,0,0). Quindi, tutte le soluzioni di (1.2.1) sono date da

$$x = h + 3, \quad y = -\frac{1}{3}h, \quad z = -\frac{2}{3}h, \qquad h \in \mathbb{R}.$$

Ponendo t = -1/3 h, ci si rende conto immediatamente che gli insiemi

coincidono.

Esercizio 1.18. Discutere e risolvere il sistema

$$\begin{cases} x + 2y - 4z = 1, \\ -3x + y + 5z = 0, \\ kx + 2y + hz = 1. \end{cases}$$

SOLUZIONE. Indicando con A la matrice incompleta del sistema, si ha det A = 7(h + 2k + 2). Quindi:

 $h + 2k + 2 \neq 0$: esiste l'unica soluzione

$$\left(\frac{h+4}{7(h+2k+2)}, \frac{3h+5k+7}{7(h+2k+2)}, \frac{1-k}{7(h+2k+2)}\right).$$

h+2k+2=0: si vede subito che rg A=2. La matrice incompleta è

$$(A,B) = \begin{pmatrix} 1 & 2 & -4 & 1 \\ -3 & 1 & 5 & 0 \\ k & 2 & h & 1 \end{pmatrix}$$

e si hanno i seguenti casi:

 $k \neq 1$: rg(A, B) = 3, quindi il sistema non ammette soluzioni;

k=1: rg(A,B)=2, quindi il sistema ammette ∞^2 soluzioni (per il teorema di Rouché-Capelli). Calcolate esplicitamente queste soluzioni.

1.3 Inversa di una matrice

Esercizio 1.19. Data la matrice

$$A = \left(\begin{array}{ccc} k & 0 & 1\\ 0 & -4 & -k\\ 1 & 1 & 0 \end{array}\right) ,$$

dire per quali valori di k la matrice A è invertibile, pensando A

- a) come matrice reale $(A \in \mathbb{R}^{n,n})$, o
- b) come matrice complessa $(A \in \mathbb{C}^{n,n})$

Soluzione. Condizione necessaria e sufficiente affinché A sia invertibile è che det $A \neq 0$. Calcolando det A si ottiene

$$\begin{vmatrix} k & 0 & 1 \\ 0 & -4 & -k \\ 1 & 1 & 0 \end{vmatrix} = k^2 + 4.$$

Quindi:

- a) Se $A \in \mathbb{R}^{n,n}$, poiché $k^2 + 4 \neq 0$ per ogni $k \in \mathbb{R}$, ne segue che A è invertibile per ogni valore reale di k.
- b) Se $A \in \mathbb{C}^{n,n}$, si ha che det A = 0 se $k = \pm 2i$. Quindi, A è invertibile se e solo se $k \neq \pm 2i$.

Esercizio 1.20. Calcolare l'inversa A^{-1} della seguente matrice A con il metodo della risoluzione contemporanea di sistemi lineari:

$$\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -1 & -2 \\
-3 & 1 & 0
\end{array}\right).$$

Soluzione. Si tratta di risolvere contemporaneamente tre sistemi lineari, ognuno con termine noto differente ma avente A come matrice dei coefficienti. Si ha

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & 0 & 1 & 0 \\ -3 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & 0 & 1 & 0 \\ 0 & 7 & 3 & 3 & 0 & 1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & 0 & 1 & 0 \\ 0 & 0 & -11 & 3 & 7 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 0 & 14/11 & 7/11 & 1/11 \\ 0 & 1 & 0 & 6/11 & 3/11 & 2/11 \\ 0 & 0 & 1 & -3/11 & -7/11 & -1/11 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 2/11 & 1/11 & -3/11 \\ 0 & 1 & 0 & 6/11 & 3/11 & 2/11 \\ 0 & 0 & 1 & -3/11 & -7/11 & -1/11 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 2/11 & 1/11 & -3/11 \\ 6/11 & 3/11 & 2/11 \\ -3/11 & -7/11 & -1/11 \end{pmatrix}$$

Si confronti questo metodo con il metodo dell'aggiunta classica (o metodo di Cramer) per la soluzione di questo stesso problema.

1.4 Esercizi di riepilogo

1. Si consideri in \mathbb{R} la legge di composizione interna

$$a * b = \frac{a+b}{2}.$$

1.4. Esercizi di riepilogo

- (a) Esiste per * l'elemento neutro?
- (b) Vale $(a * b)^n = a^n * b^n$?
- 2. Determinare le potenze della matrice $U=(u_{ij})\in\mathbb{R}^{n,n}$ tale che $u_{ij}=1$ per ogni $i,j=1,2,\ldots,n$.
- 3. Provare che sono simili le seguenti matrici

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$, $b \neq 0$.

4. Trovare le soluzioni delle seguenti equazioni:

$$f(x) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 3 & 1 & 2 & x \\ 27 & 1 & 8 & x^3 \\ 9 & 1 & 4 & x^2 \end{vmatrix} = 0,$$

$$g(x) = \begin{vmatrix} \sqrt{2} & 0 & 0 & 0 \\ \sqrt{3} & \sin x & 0 & 0 \\ \frac{1}{6} & \frac{3}{2} & 5 & \cos x \end{vmatrix} = 0,$$

$$h(\lambda) = \begin{vmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0,$$

$$g(\lambda) = \begin{vmatrix} 3 & -2 & \lambda \\ 2 & 1 & \lambda \\ 1 & 4 & \lambda \end{vmatrix} = 0,$$

5. Se $A \in \mathbb{R}^{3,3}$ è simmetrica, provare che

$$A^2 = 0 \iff A = 0$$
.

6. Determinare il rango della seguente matrice al variare di $\lambda \in \mathbb{R}$:

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & \lambda & 1 \\ 2 & 0 & -\lambda \\ 1 & 1 & 1 \end{pmatrix}.$$

7. Considerato il sistema lineare AX = B, dove

$$A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ -1, \\ 2 \end{pmatrix}$$

trovare la matrice X.

8. Date le matrici

$$A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 1 & 1 & 4 & 1 \\ 2 & 4 & 7 & 4 \\ 0 & -3 & 3 & 1 \end{pmatrix},$$

determinare la loro inversa.

Suggerimento. Le soluzioni sono

$$A^{-1} = -\frac{1}{5} \begin{pmatrix} -1 & 2 & -1 \\ 3 & -1 & -7 \\ -2 & -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -18 & 29 & -5 & -9 \\ 5 & -7 & 1 & 2 \\ 4 & -6 & 1 & 2 \\ -3 & 3 & 0 & -1 \end{pmatrix}$$

9. Risolvere il sistema AX = B, dove

$$A = \begin{pmatrix} 1 & 1 & -2 & 1 \\ 1 & 2 & 1 & 0 \\ 2 & 3 & 3 & -1 \\ 1 & 1 & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -3 \end{pmatrix}.$$

Suggerimento: det A=6 e l'unica soluzione è (-1,1,-1,-2).

CAPITOLO 2

GEOMETRIA ANALITICA

2.1 Dipendenza ed indipendenza lineare

Esercizio 2.1. Dire se i vettori u, v e w sono complanari nei seguenti casi:

- a) $\mathbf{u} = \mathbf{i} + \mathbf{k}$, $\mathbf{v} = 2\mathbf{j} + \mathbf{k}$, $\mathbf{w} = -\mathbf{i} \mathbf{j}$,
- b) $\mathbf{u} = -\mathbf{i} + 2\mathbf{k}$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$, $\mathbf{w} = -3\mathbf{i} \mathbf{j} + 4\mathbf{k}$.

SOLUZIONE.

a) Riportando come colonne di una matrice le componenti dei vettori \mathbf{u} , \mathbf{v} e \mathbf{w} rispetto alla base $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$, si ottiene la matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 1\\ 0 & 2 & 1\\ -1 & -1 & 0 \end{array}\right),$$

avente determinante $3 \neq 0$. Pertanto, le colonne di A, e quindi i vettori \mathbf{u} , \mathbf{v} e \mathbf{w} , sono linearmente indipendenti, cioè non complanari.

b) La matrice delle componenti di \mathbf{u} , \mathbf{v} e \mathbf{w} rispetto alla base $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ è

$$A = \left(\begin{array}{rrr} -1 & 0 & 2\\ 1 & 1 & 0\\ -3 & -1 & 4 \end{array}\right),$$

e det A = 0. Pertanto, le colonne di A, e quindi i vettori \mathbf{u} , \mathbf{v} e \mathbf{w} , sono linearmente dipendenti, cioè, \mathbf{u} , \mathbf{v} e \mathbf{w} sono complanari.

Esercizio 2.2. Dire per quali valori del parametro $\lambda \in \mathbb{R}$ i vettori $\mathbf{u} = (1, \lambda, -\lambda)$, $\mathbf{v} = (0, 1, 3)$ e $\mathbf{w} = (\lambda + 1, 0, 1)$ sono complanari.

Soluzione. La matrice delle componenti dei vettori ${\bf u},\,{\bf v}$ e ${\bf w}$ rispetto alla base $\{{\bf i},{\bf j},{\bf k}\}$ è

$$A = \left(\begin{array}{ccc} 1 & \lambda & -\lambda \\ 0 & 1 & 3 \\ \lambda + 1 & 0 & 1 \end{array}\right).$$

I vettori **u**, **v** e **w** sono complanari, cioè linearmente dipendenti, se e solo se le colonne delle loro componenti sono linearmente dipendenti, quindi se e solo se det A=0, ossia per $\lambda=-1/2$.

Esercizio 2.3. Dati i vettori $\mathbf{a} = (2,1,2)$, $\mathbf{b} = (1,1,-1)$, $\mathbf{c} = (0,-1,4)$ e $\mathbf{d} = (k,-k,1)$, esprimere \mathbf{c} come combinazione lineare di \mathbf{a} e \mathbf{b} , e determinare $k \in \mathbb{R}$ affinché \mathbf{a} , \mathbf{b} e \mathbf{d} formino una base di V_3 .

Soluzione. La matrice delle componenti dei vettori ${\bf a},\,{\bf b}$ e ${\bf c}$ rispetto alla base $\{{\bf i},{\bf j},{\bf k}\}$ è

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 2 & -1 & 4 \end{array}\right).$$

Poiché det A=0, i vettori I vettori \mathbf{a} , \mathbf{b} e \mathbf{c} sono linearmente dipendenti. Inoltre, le prime due colonne di A sono linearmente indipendenti, cioè, \mathbf{a} e \mathbf{b} sono linearmente indipendenti, e quindi si potrà esprimere \mathbf{c} come combinazione lineare di \mathbf{a} e \mathbf{b} . Siano $\lambda, \mu \in \mathbb{R}$ tali che

$$\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$$

$$\Rightarrow (0, 1, -4) = \lambda(2, 1, 2) + \mu(1, 1, -1) = (2\lambda + \mu, \lambda + \mu, 2\lambda - \mu)$$

$$\Rightarrow \begin{cases} 2\lambda + \mu = 0, \\ \lambda + \mu = 1, \\ 2\lambda - \mu = -4. \end{cases} \Rightarrow \begin{cases} \lambda = -1, \\ \mu = 2. \end{cases}$$

Pertanto, $\mathbf{c} = -\mathbf{a} + 2\mathbf{b}$.

Affinché ${\bf a}, {\bf b}$ e ${\bf d}$ formino una base di V_3 , tali vettori devono essere linearmente indipendenti. La matrice delle loro componenti rispetto a $\{{\bf i},{\bf j},{\bf k}\}$ è

$$B = \left(\begin{array}{ccc} 2 & 1 & k \\ 1 & 1 & -k \\ 2 & -1 & 1 \end{array}\right).$$

Essendo det B = 1 - 7k, si ha che **a**, **b** e **d** formano una base di V_3 se e solo se $k \neq 1/7$.

2.2 Prodotto scalare, vettoriale, misto

Esercizio 2.4. Dati i vettori $\mathbf{u} = \mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ e $\mathbf{v} = -2\mathbf{j}$, determinare $\mathbf{u} \cdot \mathbf{v}$, $||\mathbf{u}||$, $||\mathbf{v}||$, $\cos(\mathbf{u}^{\wedge}\mathbf{v})$, $\mathbf{u} \wedge \mathbf{v}$.

SOLUZIONE.

$$\mathbf{u} \cdot \mathbf{v} = -2\mathbf{i} \cdot \mathbf{j} + 6\mathbf{j} \cdot \mathbf{j} - 4\mathbf{k} \cdot \mathbf{j} = 6,$$

$$||\mathbf{u}|| = (\mathbf{u} \cdot \mathbf{u})^{1/2} = (1^2 + (-3)^2 + 2^2) = \sqrt{14},$$

$$||\mathbf{v}|| = (\mathbf{v} \cdot \mathbf{v})^{1/2} = 2,$$

$$cos(\mathbf{u}^{\wedge}\mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| ||\mathbf{v}||} = \frac{3}{\sqrt{14}},$$
$$\mathbf{u} \wedge \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -3 & 2 \\ 0 & -2 & 0 \end{vmatrix} = 4\mathbf{i} - 2\mathbf{k}.$$

Esercizio 2.5. Trovare i vettori di modulo 2 perpendicolari a $\mathbf{u} = (1, -2, 1)$ e $\mathbf{v} = (0, 1, -1)$.

SOLUZIONE. Sia $\mathbf{x} = (x, y, z)$ un generico vettore di V_3 .

$$\mathbf{x} \perp \mathbf{u} \Rightarrow \mathbf{x} \cdot \mathbf{u} = 0 \Rightarrow x - 2y + z = 0,$$

 $\mathbf{x} \perp \mathbf{v} \Rightarrow \mathbf{x} \cdot \mathbf{v} = 0 \Rightarrow y - z = 0,$
 $||\mathbf{x}|| = 2 \Rightarrow x^2 + y^2 + z^2 = 4,$

quindi le componenti di ${\bf x}$ verificano il sistema

$$\begin{cases} x - 2y + 2z = 0, \\ y - z = 0, \\ x^2 + y^2 + z^2 = 4. \end{cases} \Rightarrow \begin{cases} x = \pm 2/\sqrt{3}, \\ y = \pm 2/\sqrt{3}, \\ z = \pm 2/\sqrt{3}. \end{cases}$$

Pertanto, i vettori cercati sono $\mathbf{x_1} = (2/\sqrt{3}, 2/\sqrt{3}, 2/\sqrt{3})$ e $\mathbf{x_2} = (-2/\sqrt{3}, -2/\sqrt{3}, -2/\sqrt{3})$.

Esercizio 2.6. Trovare il vettore \mathbf{x} complanare con $\mathbf{u} = (1, -1, 2)$ e $\mathbf{v} = (0, 2, -1)$, e tale che $\mathbf{x} \cdot \mathbf{u} = 0$ e $\mathbf{x} \cdot \mathbf{v} = 2$.

SOLUZIONE. Il vettore \mathbf{x} è combinazione lineare di \mathbf{u} e \mathbf{v} , essendo \mathbf{u} e \mathbf{v} linearmente indipendenti e \mathbf{x} complanare a \mathbf{u} e \mathbf{v} . Siano $a,b \in \mathbb{R}$ tali che $\mathbf{x} = a\mathbf{u} + b\mathbf{v}$.

$$\mathbf{x} \cdot \mathbf{u} = 0 \Rightarrow 0 = a||\mathbf{u}||^2 + b\mathbf{u} \cdot \mathbf{v} = 6a - 4b,$$

$$\mathbf{x} \cdot \mathbf{v} = 2 \Rightarrow 2 = a\mathbf{u} \cdot \mathbf{v} + b||\mathbf{v}||^2 = -4a + 5b$$

$$\Rightarrow a = 4/7, b = 6/7$$

$$\Rightarrow \mathbf{x} = (4/7, 8/7, 2/7).$$

Esercizio 2.7. Trovato il valore di $k \in R$ per cui i vettori $\mathbf{u} = (1, -1, 1)$ e $\mathbf{v} = (-3-k, -k, k+2)$ sono ortogonali, determinare i vettori \mathbf{x} , di norma 3, tali che $\mathbf{u} \wedge \mathbf{x} = \mathbf{v}$.

SOLUZIONE.

$$\mathbf{u} \perp \mathbf{v} \Rightarrow \mathbf{u} \cdot \mathbf{v} = 0 \Rightarrow k = 1.$$

Dato un generico vettore $\mathbf{x} = (x, y, z)$, si ha

$$\mathbf{u} \wedge \mathbf{x} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ x & y & z \end{vmatrix} = -(y+z)\mathbf{i} + (x-z)\mathbf{j} + (x+y)\mathbf{k}.$$

Imponendo $\mathbf{u} \wedge \mathbf{x} = \mathbf{v}$ e $||\mathbf{x}|| = 3$, si ottiene il sistema

$$\begin{cases} -y + z = -4, \\ x - z = -1, \\ x + y = 3, \\ x^2 + y^2 + z^2 = 9. \end{cases} \Rightarrow \begin{cases} x = 1, \\ y = 2, \\ z = 2, \end{cases} o \begin{cases} x = 1/3, \\ y = 8/3, \\ z = 4/3. \end{cases}$$

Pertanto, i vettori cercati sono $\mathbf{x_1} = (1, 2, 2)$ e $\mathbf{x_2} = (1/3, 8/3, 4/3)$.

Esercizio 2.8. Dati i vettori $\mathbf{u} = (0, 1, -2)$ e $\mathbf{v} = (1, -1, 1)$ e $\mathbf{w} = (2, 0, 3)$, trovare l'area del triangolo di lati \mathbf{u} e \mathbf{v} , e il volume del tetraedro di spigoli \mathbf{u} , \mathbf{v} e \mathbf{w} .

SOLUZIONE.

$$\mathcal{A} = \frac{1}{2}||\mathbf{u} \wedge \mathbf{v}|| = \frac{1}{2}||\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & -2 \\ 1 & -1 & 1 \end{vmatrix}|| = \frac{1}{2}||\mathbf{i} + 2\mathbf{j} + \mathbf{k}|| = \frac{\sqrt{6}}{2},$$
$$\mathcal{V} = \frac{1}{6}|\mathbf{u} \wedge \mathbf{v} \cdot \mathbf{w}| = \frac{1}{6}|\begin{vmatrix} 0 & 1 & -2 \\ 1 & -1 & 1 \\ 2 & 0 & 3 \end{vmatrix}| = \frac{1}{6}|-5| = \frac{5}{6}.$$

Esercizio 2.9. Dati i vettori $\mathbf{u} = (k, 1, 0)$, $\mathbf{v} = (k, -1, -k)$ e $\mathbf{w} = (1, -2k, -2)$, calcolare $\mathbf{u} \wedge \mathbf{v} \cdot \mathbf{w}$ e dire per quali valori di $k \in \mathbb{R}$ i tre vettori formano una base di V_3 . Soluzione.

$$\mathbf{u} \wedge \mathbf{v} \cdot \mathbf{w} = \begin{vmatrix} k & 1 & 0 \\ k & -1 & -k \\ 1 & -2k & -2 \end{vmatrix} = 3k - 2k^3 = k(3 - 2k^2).$$

I tre vettori sono linearmente indipendenti, e quindi formano una base di V_3 , se e solo se il loro prodotto misto è diverso da 0, cioè se e solo se $k \neq 0$ e $k \neq \sqrt{3/2}$.

2.3 Rette e piani dello spazio

Salvo indicazione contraria, in ogni esercizio di questo capitolo considereremo fissato un riferimento ortonormale $\mathcal{RC}(O, \mathbf{i}, \mathbf{j}, \mathbf{k})$.

Esercizio 2.10. Sia data la retta

$$r: \left\{ \begin{array}{l} x - y + 2z - 1 = 0, \\ x + y + z + 3 = 0. \end{array} \right.$$

Calcolarne i parametri direttori.

Soluzione. I suoi parametri direttori sono le soluzioni del sistema omogeneo associato ad r, ossia

$$\begin{cases} x - y + 2z = 0, \\ x + y + z = 0. \end{cases}$$

Questo sistema rappresenta, infatti, la retta parallela ad r e passante per l'origine (che ha gli stessi parametri direttori di r). Quindi, una terna di parametri direttori è $\vec{v} = (-3, 1, 2)$.

Esercizio 2.11. Verificare che le sequenti equazioni parametriche

$$\begin{cases} x = 3 + 2t, \\ y = 2, \\ z = 2 - \frac{t}{2}, \end{cases} \begin{cases} x = 11 - 4t', \\ y = 2, \\ z = t', \end{cases}$$

rappresentano la stessa retta r. Chi sono i parametri direttori di r? Scrivere equazioni cartesiane di r.

Esercizio 2.12. Siano date le due rette

$$r:$$
 $\begin{cases} x=z, \\ y=z, \end{cases}$ $r':$ $\begin{cases} x=2z+1, \\ y=-z+2. \end{cases}$

- 1. Si provi che r ed r' sono sghembe.
- 2. Si calcoli la distanza tra le due rette.
- 3. Si trovi il piano α per r e parallelo ad r' e si provi che

$$d(P', \alpha) = d(r, r'),$$

Dove P' è un arbitrario punto di r'.

SOLUZIONE.

- 1. r ed r' non sono parallele e $r \cap r' = \emptyset$.
- 2. Scriviamo la perpendicolare comune alle due rette:

$$(l, m, n) \sim (1, 1, 1) = \vec{r}, \qquad (l', m', n') \sim (2, -1, 1) = \vec{r'},$$

 $\vec{r} \wedge \vec{r'} = \vec{n}(2, 1, -3).$

Quindi $n = \beta \cap \beta'$ dove

$$\beta$$
: $4x - 5y + z = 0$, β' : $x + 4t + 2z - 9 = 0$.

Inoltre

$$P_0 = r \cap \beta' = \left(\frac{9}{7}, \frac{9}{7}, \frac{9}{7}\right),$$

quindi $d(r, r') = d(P_0, P'_0) = 2\sqrt{14}/7$.

3. Si proceda in modo simile a quanto fatto al punto precedente.

Esercizio 2.13. Scrivere l'equazione del piano α soddisfacente alle sequenti proprietà:

- a) passante per A(1,1,0) e parallelo ai vettori $\mathbf{u}=(1,0,-1)$ e $\mathbf{v}=(0,2,3)$,
- b) passante per B(0,1,-1) e C(3,2,1) e parallelo a $\mathbf{w} = (0,0,5)$,
- c) passante per D(1,1,-1) e ortogonale a $\mathbf{n}=(1,-1,2)$,
- d) piano assiale del segmento AB, con A(1,1,0) e B(0,1,-1)

SOLUZIONE. a) I punti del piano sono tutti e soli i punti P(x, y, z) tali che il vettore P - A sia complanare a \mathbf{u} e \mathbf{v} , cioè soddisfacenti l'equazione

$$\left| \begin{array}{ccc} x - 1 & y - 1 & z \\ 1 & 0 & -1 \\ 0 & 2 & 3 \end{array} \right| = 0$$

$$\Rightarrow 2x - 3y + 2z + 1 = 0.$$

b) Il piano richiesto passa per B ed è parallelo a \mathbf{w} e C-B, quindi ha equazione

$$\left| \begin{array}{ccc} x & y - 1 & z + 1 \\ 0 & 0 & 5 \\ 3 & 1 & 2 \end{array} \right| = 0$$

$$\Rightarrow x - 3y + 3 = 0.$$

c) Il vettore ${\bf n}$ individua la giacitura del piano, essendo perpendicolare ad esso. Quindi, l'equazione del piano è

$$1(x-1) - 1(y-1) + 2(z+1) = 0 \implies x - y + 2z + 2 = 0.$$

d) Il piano assiale del segmento AB, con $A(x_1, y_1, z_1)$ e $B(x_2, y_2, z_2)$, è il luogo dei punti dello spazio equidistanti da A e B, cioè dei punti P(x, y, z) soddisfacenti l'equazione

$$(x-x_1)^2 + (y-y_1)^2 + (z-z_1)^2 = (x-x_2)^2 + (y-y_2)^2 + (z-z_2)^2.$$

Nel nostro caso, con A(1,1,0) e B(0,1,-1), otteniamo

$$\alpha: x + z = 0.$$

Esercizio 2.14. Dati il punto P(1,2,-1) e il piano $\alpha:2x-y+3z-5=0$, determinare

- a) Il piano β passante per P e parallelo ad α .
- b) Il luogo descritto dal punto medio del segmento PQ al variare di Q su α .
- c) Il luogo descritto dai punti simmetrici di P rispetto ai punti di α .

Soluzione. a) β ha la stessa giacitura di α , e passa per P, quindi ha equazione

$$2(x-1) - 1(y-2) + 3(z+1) = 0 \implies 2x - y + 3z + 3 = 0.$$

b) Il generico punto di α è Q(u, 2u + 3v - 5, v), ottenuto rappresentando α in forma parametrica. Il punto medio M del segmento PQ ha equazioni

$$\begin{cases} x = \frac{u+1}{2}, \\ y = \frac{2u+3v-3}{2}, \\ z = \frac{v-1}{2}, \end{cases}$$

da cui, ricavato u=2x-1 e v=2z+1 e sostituito nella restante equazione del sistema, si ottiene l'equazione

$$2x - y + 3z - 1 = 0.$$

Quindi, il luogo richiesto è un piano parallelo ad α .

c) Il generico punto P'(x, y, z), simmetrico di P rispetto al generico punto Q(u, 2u + 3v - 5, v) di α , ha coordinate che soddisfano il sistema

$$\begin{cases} \frac{x+1}{2} = u, \\ \frac{y+2}{2} = 2u + 3v - 5, \\ \frac{z-1}{2} = v, \end{cases}$$

da cui, ricavando u e v dalla prima e terza equazione e sostituendo nella seconda, si ottiene

$$2x - y + 3z - 13 = 0.$$

Quindi, il luogo richiesto è ancora un piano parallelo ad α .

Esercizio 2.15. Rappresentare con equazioni parametriche e cartesiane le seguenti rette:

- a) passante per A(1, 2, -1) e B(0, 1, 4),
- b) passante per A(1,2,-1) e parallela alla retta s: x-1=2y+3=1-z,
- c) passante per A(1,2,-1) e parallela ai piani $\alpha: x+y-1=0$ e $\beta: 2y+3=0$.

SOLUZIONE.

a) La retta richiesta passa per A ed è parallela al vettore A-B=(1,1,-5), quindi ha equazioni

$$\frac{x-0}{1} = \frac{y-1}{1} = \frac{z-4}{-5}$$
 \Rightarrow $x = y-1 = \frac{z-4}{-5} = t$,

cioè ha equazioni parametriche

$$\begin{cases} x = t, \\ y = t + 1, \\ z = -5t + 4. \end{cases}$$

Ricavando t e sostituendo si ottengono le equazioni cartesiane

$$\begin{cases} y = x + 1, \\ z = -5x + 4. \end{cases}$$

b) La retta richiesta, essendo parallela ad s, ha gli stessi parametri direttori di s, cioè (2,1,-2), e inoltre passa per A, quindi ha equazioni parametriche

$$\begin{cases} x = 2t + 1, \\ y = t + 2, \\ z = -2t - 1. \end{cases}$$

Ricavando t ad esempio dalla seconda equazione e sostituendo, si ottengono le equazioni cartesiane

$$\begin{cases} x = 2y - 3, \\ z = -2y + 3. \end{cases}$$

c) Essendo parallela ai piani α e β , la retta richiesta è parallela alla retta intersezione di tali piani, cioè r: x+y-1=2y+3=0, che ha parametri direttori (0,0,2). Pertanto, la retta richiesta ha equazioni parametriche

$$\begin{cases} x = 1, \\ y = 2, \\ z = 2t - 1, \end{cases}$$

e quindi, equazioni cartesiane

$$\begin{cases} x = 1, \\ y = 2. \end{cases}$$

Esercizio 2.16. Determinare l'equazione del piano α passante per A(3,2,1) e contenente la retta r: y+z-1=x+2y-z=0.

Soluzione. Il fascio di piani contenenti la retta r, in forma non omogenea, ha equazione

$$\mathcal{F}(r): y + z - 1 + k(x + 2y - z) = 0.$$

Tra i piani di tale fascio, quello cercato passa per A. Imponendo l'appartenenza di A a tale piano, si ottiene

$$2+1-1+k(3+4-1)=0$$
,

da cui, k = -1/3, e quindi l'equazione del piano richiesto è

$$y + z - 1 - 1/3(x + 2y - z) = 0 \implies x - y - 4z + 3 = 0.$$

Esercizio 2.17. Trovare la retta r, passante per P(1,2,3), complanare ad s: x+y-3=2x+z-2=0, e parallela al piano $\alpha: 2x+y-z-1=0$.

Soluzione. La retta r si puo' ottenere come intersezione dei piani β , contenente P ed s, e γ , parallelo ad α e passante per P. Il piano β appartiene al fascio di piani contenenti la retta s

$$\mathcal{F}(s): x + y - 3 + k(2x + z - 2) = 0,$$

e passa per P, per cui si ottiene k=0, e quindi $\beta: x+y-3=0$. Il piano γ , essendo parallelo ad α , ha un'equazione del tipo

$$\gamma: 2x + y - z + d = 0.$$

Imponendo l'appartenenza di P a γ , si ottiene d=-1, e quindi $\gamma:2x+y-z-1=0$. In conclusione, r è data da

$$r: x + y - 3 = 2x + y - z - 1 = 0.$$

Esercizio 2.18. Verificare che le rette r: x+2y+z-1=x-3z+3=0 ed $s: \frac{x-1}{3} = \frac{y-2}{-2} = z$ sono parallele, e trovare l'equazione del piano π che le contiene.

Soluzione. Scritte in forma parametrica, r ed s hanno equazioni

$$r: \begin{cases} x = 3t - 3, \\ y = 2 - 2t, \\ z = t, \end{cases} \qquad s: \begin{cases} x = 3t + 1, \\ y = 2 - 2t, \\ z = t, \end{cases}$$

per cui, sia r che s hanno parametri direttori (3, -2, 1), e sono quindi parallele. Troviamo il piano contenente r ed s come piano contenente r ed un fissato punto S(1, 2, 0) appartenente ad s (si ottiene per t = 0). Il fascio di piani per r ha equazione

$$\mathcal{F}(r): x + 2y + z - 1 + k(x - 3z + 3) = 0,$$

e il piano cercato passa per S, da cui k=-1, e quindi l'equazione di π è

$$\pi: y + 2z - 2 = 0.$$

Esercizio 2.19. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si considerino il punto A(0,1,2) e la retta

$$r: x - 2z - 3 = 0, \quad y + z + 1 = 0.$$

1. Determinare il piano α passante per A ed ortogonale ad r.

- 2. Posto $H = r \cap \alpha$ e verificato che C(0,0,1) appartiene ad α , determinare un punto D tale che H,A,D,C siano nell'ordine i vertici consecutivi di un parallelogramma Γ .
- 3. Trovare l'area di Γ .

SOLUZIONE.

1. I parametri direttori di r sono proporzionali a (2, -1, 1), quindi

$$\alpha$$
: $2(x-0) - (y-1) + (z-2) = 0$,

cioè α : 2x - y + z - 1 = 0.

2. Si verifica immediatamente che $C \in \alpha$; infatti $2 \cdot 0 - 0 + 1 - 1 = 0$. Equazioni parametriche di r sono x = 2t + 3, y = -t - 1, z = t, per cui $H = r \cap \alpha = (1, 0, -1)$. Posto D(x, y, z) imponiamo che $\vec{AD} = \vec{HC}$. Ora

$$\vec{HC} = (-1, 0, 2), \quad \vec{AD} = (x, -1 + y, -2 + z),$$

per cui x = 1, y = 1, z = 0, quindi D(-1, 1, 4).

3. Indicata con \mathcal{A} l'area richiesta si ha

$$\mathcal{A} = |\vec{HA} \wedge \vec{HC}| = |2\vec{\imath} - \vec{\jmath} + \vec{k}| = \sqrt{4 + 1 + 1} = \sqrt{6}.$$

Esercizio 2.20. Verificare che le rette r: x-y+z=y+3z=0 ed s: x+y-1=y+3z-2=0 sono sghembe, trovare l'equazione del piano α contenente r e parallelo ad s, la retta di minima distanza e la minima distanza di r ed s

SOLUZIONE. Per provare che r ed s sono sghembe, proviamo che non sono né incidenti né complanari. Dalle equazioni di r ed s si ricava che i loro parametri direttori sono rispettivamente (-4, -3, 1) e (3, -3, 1), che non sono paralleli, quindi r ed s non sono parallele.

Mettendo a sistema le equazioni di r ed s, si ottiene un sistema incompatibile, in quanto le equazioni y+3z=0 e y+3z-2=0 sono incompatibili, per cui r ed s non hanno punti in comune, quindi non sono incidenti.

Il piano α appartiene al fascio di piani contenenti r,

$$\mathcal{F}(r): x - y + z + k(y + 3z) = 0, \Rightarrow x + (k-1)y + (3k+1)z = 0,$$

ed è parallelo ad s, per cui i suoi parametri di giacitura individuano un vettore perpendicolare ai parametri direttori di s

$$\Rightarrow 0 = (1, k - 1, 3k + 1) \cdot (3, -3, 1) = 7.$$

Non essendo tale condizione verificata per nessun valore di k, α è proprio il piano escluso dalla rappresentazione non omogenea del fascio $\mathcal{F}(r)$, ossia $\alpha: y+3z=0$.

Scritte r ed s in forma parametrica, si ricava che il generico punto di r è R(-4t, -3t, t), e il generico punto di s è S(3t'-1, -3t'+2, t'), per cui S-R=(4t+3t'-1, 3t-3t'+2, t'-t). La retta di minima distanza tra r ed s passa per quei particolari punti R ed S tali che $S-R \perp r$ e $S-R \perp s$, da cui si ricavano le condizioni

$$\left\{ \begin{array}{l} (4t+3t'-1,3t-3t'+2,t'-t)\cdot(-4,-3,1)=0,\\ (4t+3t'-1,3t-3t'+2,t'-t)\cdot(3,-3,1)=0. \end{array} \right.$$

Risolvendo il sistema, si ottiene t = -4/35, t' = 17/35, da cui R(16/35, 12/35, -4/35) ed S(16/35, 19/35, 17/35), la retta di minima distanza è 35x - 16 = 21y - 7z + 8 = 0, e la minima distanza di r ed s è $||S - R|| = \sqrt{2/5}$.

Esercizio 2.21. Dato il piano $\alpha: x+2y-z+5=0$, determinare

- a) il fascio di rette del piano α passanti per $A(-1, -2, 0) \in \alpha$;
- b) il fascio improprio di rette del piano α parallele al piano $\beta: 2x + y z 1 = 0$.

Soluzione. a) Basta considerare una retta r passante per A e incidente α , il fascio di rette cercato sarà allora dato da tutte le rette ottenute intersecando α con il generico piano del fascio passante per r. Essendo A(-1,-2,0), ad esempio possiamo prendere r: x+1=y+2=0, controllando che sia incidente α , cioè che $\alpha \cap r=\{A\}$, che è verificata.

Il fascio di piani contenenti r è

$$\mathcal{F}(r): x + 1 + k(y + 2) = 0,$$

per cui il fascio di rette cercato ha equazioni

$$\begin{cases} x+1+k(y+2) = 0, \\ x+2y-z+5 = 0. \end{cases}$$

b) Il fascio di rette cercato si ottiene intersecando α con il fascio improprio di piani paralleli a β , per cui ha equazioni

$$\begin{cases} 2x + y - z + k = 0, \\ x + 2y - z + 5 = 0. \end{cases}$$

Esercizio 2.22. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si considerino i seguenti piani:

$$\alpha$$
: $x + 2y + z = 1$, β : $x + y + z = 3$, γ : $x + hy + z = 2$ $(h \in \mathbb{R})$.

1. Determinare h in modo tale che α , β , γ appartengano ad uno stesso fascio proprio, ed in tal caso trovare la retta asse del fascio.

- 2. Determinare h in modo tale che le rette $r = \alpha \cap \beta$ ed $s = \beta \cap \gamma$ siano parallele.
- 3. Trovare il punto P'_0 , simmetrico di $P_0(-1,0,1)$ rispetto ad α (nella simmetria ortogonale).

SOLUZIONE.

1. I piani α , β , γ appartengono allo stesso fascio proprio se e solo se si intersecano in una stessa retta, ovvero se il sistema lineare

$$\begin{cases} x + 2y + z = 1, \\ x + y + z = 3, \\ x + hy + z = 2, \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & h & 1 \end{pmatrix}, \quad \tilde{A} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 3 \\ 1 & h & 1 & 2 \end{pmatrix},$$

(è compatibile ed) ammette ∞^1 soluzioni, cioè $\operatorname{rg}(A) = \operatorname{rg}(\tilde{A}) = 2$. Dal calcolo (che si può effettuare col metodo di riduzione) risulta $\operatorname{rg}(A) = 2$ per ogni $h \in \mathbb{R}$, mentre $\operatorname{rg}(\tilde{A}) = 2$ se e solo se h = 3/2.

La retta asse del fascio è

$$r \colon \left\{ \begin{array}{l} x + 2y + 1 = 1, \\ x + y + z = 3, \end{array} \right. \Rightarrow r \colon \left\{ \begin{array}{l} x = t, \\ y = -2, \\ z = 5 - t. \end{array} \right.$$

- 2. I parametri direttori di r sono (1,0,-1), mentre quelli di s sono (1-h,0,h-1) per $h \neq 1$. In tal caso il vettore (1-h,0,h-1) è proporzionale a (1,0,-1), quindi le rette sono parallele per ogni $h \neq 1$.
- 3. La retta per P_0 e perpendicolare ad α (che ha parametri di giacitura (1,2,1)) è

$$n: \begin{cases} x = t - 1, \\ y = 2t, \\ z = t + 1. \end{cases}$$

Ora $P_0 \in n$ ed il punto medio H di $\vec{P_0P_0}$ deve appartenere ad α , quindi

$$H\left(\frac{t-2}{2}, t, \frac{t+1}{2}\right) \in \alpha \quad \Rightarrow \quad t = \frac{1}{3}.$$

Quindi $P'_0(-2/3, 2/3, 4/3)$.

Esercizio 2.23. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si considerino la retta r ed il piano α

$$r: x = -y = z,$$
 $\alpha: x - y + 3z = 2.$

- 1. Trovare la retta r' proiezione ortogonale di r su α .
- 2. Determinare l'angolo $\widehat{r\alpha}$.
- 3. Dire se esistono piani passanti per r e paralleli ad α .

SOLUZIONE.

1. Se β è il piano per r e perpendicolare ad α , allora $r' = \alpha \cap \beta$. Ora, il piano $\beta(k)$, variabile nel fascio di piani di asse r, ha equazione

$$\beta(k): x + y + k(x - z) = 0 \implies (1 + k)x + y - kz = 0.$$

I parametri di giacitura di α sono proporzionali a (1, -1, 3), quindi $\beta(k)$ è perpendicolare ad α se e solo se i vettori (1, -1, 3) e (1 + k, 1, -k) sono ortogonali, da cui k = 0 e quindi $\beta(0) = \beta \colon x + y = 0$. Ne segue

$$r'$$
: $x + y = 0$, $x - y + 3z = 2$.

2. I parametri direttori di r (a meno di un fattore di proporzionalità) sono (1, -1, 1) e quelli di r' sono (-3, 3, 2), quindi

$$\cos \widehat{r\alpha} = |\cos \widehat{rr'}| = \frac{|-3-3+2|}{\sqrt{1+1+1}\sqrt{9+9+4}} = \frac{4}{\sqrt{3}\sqrt{22}},$$

oppure, direttamente,

$$\sin \widehat{r\alpha} = \frac{|1+1+3|}{\sqrt{1+1+1}\sqrt{1+1+9}} = \frac{5}{\sqrt{3}\sqrt{11}}.$$

3. Il piano $\beta(k)$ è parallelo ad α se i vettori (1+k,1,-k) e (1,-1,3) sono proporzionali. Si vede immediatamente che il sistema $1+k=\rho,\ 1=-\rho,\ -k=3\rho$ è incompatibile, quindi non esistono piani verificanti la condizione richiesta.

Esercizio 2.24. Dire se nel fascio di piani \mathcal{F} di asse

$$r: \begin{cases} x+y=0\\ x-y+3=0 \end{cases}$$

esiste un piano contenente la retta

$$r \colon \left\{ \begin{array}{l} x + y + z = 2 \\ y - 2z = 1 \end{array} \right.$$

SOLUZIONE. I piani del fascio \mathcal{F} passano tutti per la retta $s = \sigma \cap \pi$. Ora $r \cap s = \emptyset$ ed r non è parallela as s, quindi r ed s sono sghembe. Ne segue che non esiste alcun piano (in particolare del fascio \mathcal{F}) che le contiene entrambe.

2.4 Sfere e circonferenze

Esercizio 2.25. Scrivere l'equazione della sfera S avente centro nel punto C(1,2,0) e soddisfacente ad una delle seguenti condizioni:

- a) S è tangente al piano $\pi: x y + z 1 = 0$;
- b) S interseca il piano $\pi: x-y+z-1=0$ secondo una circonferenza di raggio r=1;
- c) S è tangente alla retta s: x-z+2=y-1=0. Trovare inoltre la circonferenza γ , di centro C e tangente ad s.

Soluzione. Essendo noto il centro di S, si deve solo determinarne di volta in volta il raggio R.

a) $R = d(C, \pi) = 2/\sqrt{3}$, applicando la formula per la distanza punto-piano. Di conseguenza, come sfera di centro C e raggio R, S ha equazione

$$S: (x-1)^2 + (y-2)^2 + z^2 = 4/3.$$

b) Il centro C' della circonferenza $\gamma = S \cap \pi$ coincide con la proiezione di C su $\pi,$ per cui

$$d(C, C') = d(C, \pi) = 2/\sqrt{3}.$$

Il raggio R si ottiene allora mediante il teorema di Pitagora, come ipotenusa del triangolo rettangolo di cateti d(C, C') e r. Quindi, $R = \sqrt{7/3}$, per cui

$$S: (x-1)^2 + (y-2)^2 + z^2 = 7/3.$$

c) Essendo S tangente ad $s,\,R$ coincide con la distanza tra C ed s. Il piano passante per C e perpendicolare ad s è

$$\alpha: x + z - 1 = 0$$

(ha come parametri di giacitura i parametri direttori di s, e passa per C). L'intersezione di α ed s è P(0,1,1), e

$$R = d(C, s) = d(C, P) = \sqrt{3},$$

per cui S ha equazione

$$S: (x-1)^2 + (y-2)^2 + z^2 = 3.$$

Risulta $\gamma = S \cap \beta$, dove β è il piano passante per C ed s. β appartiene al fascio di piani contenenti s,

$$\mathcal{F}(s): x - z + 2 + k(y - 1) = 0,$$

2.4. Sfere e circonferenze 33

e passa per C, per cui k = -3, $\beta : x - 3y - z + 5 = 0$, e quindi

$$\gamma: \left\{ \begin{array}{l} (x-1)^2 + (y-2)^2 + z^2 = 3, \\ x - 3y - z + 5 = 0. \end{array} \right.$$

Esercizio 2.26. Scrivere l'equazione della sfera S tangente l'asse y nel punto A(0,1,0) e la retta r: x-y+1=x-z-1=0 nel punto B(0,1,-1), e l'equazione del piano α , tangente ad S nel punto A.

SOLUZIONE. Il centro C di S si ottiene come intersezione di tre piani π_1 , π_2 e π_3 , con π_1 piano per A e perpendicolare all'asse y, π_2 piano passante per B e perpendicolare ad r, e π_3 piano assiale del segmento AB. Quindi, $\pi_1:y=1$, $\pi_2:x+y+z=0$ (vedi Es. 2.13), mentre π_3 è il luogo dei punti P(x,y,z) tali che d(A,P)=d(P,B), per cui si ottiene $\pi_3:2z+1=0$. Mettendo a sistema le equazioni di π_1 , π_2 e π_3 , si ottiene C(-1/2,1,-1/2). Il raggio R di S si puo' calcolare ad esempio come distanza tra C ed A, per cui $R=\sqrt{1/2}$, e si ottiene

$$S: (x+1/2)^2 + (y-1)^2 + (z+1/2)^2 = 1/2,$$

cioè

$$S: x^2 + y^2 + z^2 + x - 2y + z + 1 = 0.$$

Poiché in una sfera la direzione radiale è sempre ortogonale al piano tangente, il piano α si ottiene come piano passante per A ed ortogonale al vettore AC = (1/2, 0, 1/2). Quindi,

$$\alpha: 1/2x + 1/2z = 0 \qquad \Rightarrow \qquad x + z = 0.$$

Esercizio 2.27. Dati la sfera $S: x^2 + y^2 + z^2 - 2x - 2y + 4z + 5 = 0$ e il piano $\pi: x + y - z - 3 = 0$, verificare che $d(C, \pi) < R$, dove C ed R sono rispettivamente il centro e il raggio di S, e trovare centro e raggio della circonferenza $\gamma = S \cap \pi$.

SOLUZIONE. Dall'equazione di $S: x^2+y^2+z^2-2\alpha x-2\beta y-2\gamma z+\delta=0$ ricaviamo che il centro C ha coordinate $C(\alpha=1,\beta=1,\gamma=-2)$, e raggio $R=\sqrt{\alpha^2+\beta^2+\gamma^2-\delta}=1$. Poiché $d(C,\pi)=1/\sqrt{3}$, risulta $d(C,\pi)< R$, e quindi ha senso considerare la circonferenza $\gamma=S\cap\pi$.

Il centro C' di γ coincide con l'intersezione di π con la retta r, passante per C e perpendicolare a π , ossia

$$r: x - 1 = y - 1 = -z - 2.$$

Quindi, C'(2/3,2/3,-5/3) e, applicando il teorema di Pitagora, il raggio R' di γ è dato da

$$R' = \sqrt{R^2 - d(C, C')^2} = \sqrt{2/3}.$$

Esercizio 2.28. Scrivere le equazioni della circonferenza γ passante per i punti A(1,1,-1), B(2,1,1) e C(1,2,-1).

SOLUZIONE. La circonferenza γ si ottiene intersecando il piano π , contenente A, B e C, con la sfera S avente γ stessa come circonferenza di raggio massimo.

Il piano π si trova come piano passante per tre punti non allineati:

$$\begin{vmatrix} x & y & z & 1 \\ 1 & 1 & -1 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & 2 & -1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow 2x - z - 3 = 0.$$

Il centro Q di γ (e di S) si puo' determinare come intersezione dei piani π , α e β , con α piano assiale di AC, e β piano assiale di AB. Procedendo come in Es. 2.13), otteniamo

$$\alpha: 2y - 3 = 0,$$
 $\beta: 2x + 4z - 3 = 0,$

da cui segue che $\{Q\} = \pi \cap \alpha \cap \beta$ è il punto Q(3/2, 3/2, 0). Il raggio di S (e γ) si puo' calcolare ad esempio come

$$R = d(Q, A) = \sqrt{3/2},$$

per cui, l'equazione di S è

$$S: (x-3/2)^2 + (y-3/2)^2 + z^2 = 3/2$$
 \Rightarrow $x^2 + y^2 + z^2 - 3x - 3y + 3 = 0.$

In conclusione, le equazioni di γ sono

$$\gamma: \left\{ \begin{array}{l} x^2+y^2+z^2-3x-3y+3=0,\\ 2x-z-3=0. \end{array} \right.$$

Esercizio 2.29. Determinare la retta r, tangente in A(1,1,-1) alla circonferenza γ dell'Es. 2.28

SOLUZIONE. Poiché $\gamma \subset \pi$, anche $r \subset \pi$. Inoltre, $r \subset \alpha$, dove α è il piano tangente ad S in A. Essendo A(1,1,-1) e $\mathbf{QA} = (1/2,1/2,1)$, si ha (cfr. Es. 2.26)

$$\alpha: x + y + 2z = 0.$$

Pertanto, le equazioni di $r = \pi \cap \alpha$ sono

$$\gamma : \left\{ \begin{array}{l} 2x - z - 3 = 0, \\ x + y + 2z = 0. \end{array} \right.$$

2.4. Sfere e circonferenze

35

Esercizio 2.30. Trovare la sfera di raggio minimo, tangente alla rette sghembe r: y+1=z-1=0 ed s: x+2y-1=z-2y-2=0.

SOLUZIONE. Sia t la retta di minima distanza tra r ed s, $A = t \cap r$ e $B = t \cap \underline{s}$. La sfera cercata è la sfera di diametro \overline{AB} , cioè avente centro nel punto medio C di \overline{AB} , e passante per tali punti.

Il generico punto di r è R(t,-1,1), il generico punto di s è S(1-2t',t',2t'-2), i parametri direttori di r ed s sono dati rispettivamente da $\mathbf{r}=(\mathbf{1},\mathbf{0},\mathbf{0})$ e $\mathbf{s}=(-\mathbf{2},\mathbf{1},\mathbf{2})$. I punti R ed S sono quelli in cui si realizza la minima distanza, cioè R=A e S=B, quando $S-R\cdot\mathbf{r}=S-R\cdot\mathbf{s}=0$, da cui si ricavano le condizioni

$$\begin{cases} 1 - 2t' - t = 0, \\ 2t + 9t' - 7 = 0 \end{cases}$$

(vedi anche Es. 2.20). Risolvendo il sistema, si ottiene t = -1, t' = 1, per cui A(-1, -1, 1) e B(-1, 1, 0). Il centro della sfera è quindi il punto medio C(-1, 0, 1/2), il raggio è $C\bar{A} = \sqrt{5/4}$. Pertanto, la sfera cercata ha equazione

$$(x+1)^2 + y^2 + (z-1/2)^2 = 5/4.$$

Esercizio 2.31. Siano dati il punto $P_0(-1,0,1)$ e la retta

$$r: \begin{cases} x + 2y + z = 1, \\ x + y + z = 3. \end{cases}$$

Determinare la sfera Σ avente centro su r e passante per i punti O e P_0 .

Soluzione. Σ ha centro C(t, -2, 5-t) e raggio $R = \|\vec{CO}\| = \|\vec{CP_0}\|$, quindi

$$t^{2} + 4 + (5 - t)^{2} = (t + 1)^{2} + 4 + (4 - t)^{2} \implies t = 2.$$

Allora $C(2, -2, 3), R = \sqrt{4+4+9} = \sqrt{17} e$

$$\Sigma \colon (x-2)^2 + (y+2)^2 + (z-3)^2 = 17.$$

Esercizio 2.32. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si consideri la sfera

$$\Sigma \colon x^2 + y^2 + z^2 - 4x + 4y - 6z + 16 = 0.$$

- 1. Trovare l'equazione della circonferenza massima $\tilde{\gamma}$ parallela al piano $\tau \colon x y + 2z + 2 = 0$.
- 2. Trovare l'equazione della retta r tangente nel punto $P_0(2,-2,2)$ alla circonferenza $\gamma = \Sigma \cap \pi$, dove π è il piano π : x + y = 0.

- 3. Trovare la minima distanza della sfera Σ dal piano σ : x y + 3 = 0.
- 4. Scrivere equazioni cartesiane della proiezione ortogonale di γ sul piano xz.

SOLUZIONE.

1. La sfera Σ ha centro C(2,-2,3) e raggio R=1. Un piano parallelo a τ ha equazione x-y+2z+h=0; esso passa per C se 2+2+6+h=0, cioè h=-10. Quindi il piano cercato è

$$\tilde{\tau}$$
: $x - y + 2z = 10$,

e quindi $\tilde{\gamma} = \Sigma \cap \tilde{\tau}$.

2. Chiaramente $r = \alpha \cap \pi$, dove α è il piano tangente in P_0 a Σ . Posto

$$f(x, y, z) = x^2 + y^2 + z^2 - 4x + 4y - 6z + 16 = 0$$

si ha $f_x=2x-4,\,f_y=2y+4,\,f_z=2z-6,$ che calcolate nel punto P_0 dànno $f_x^0=0,\,f_y^0=0,\,f_z^0=-2,$ quindi $\alpha\colon z=2$ e

$$r \colon \left\{ \begin{array}{l} x + y = 0, \\ z = 2. \end{array} \right.$$

3. La (minima) distanza $d(\Sigma, \sigma)$ di Σ da σ è uguale a $d(C, \sigma) - R$, dove

$$d(C,\sigma) = \left| \frac{2+2+3}{\sqrt{1+1}} \right| = \frac{7}{\sqrt{2}}.$$

Quindi $d(\Sigma, \sigma) = 7/\sqrt{2} - 1$.

4. La circonferenza γ può essere rappresentata come

$$\begin{cases} 2x^2 + z^2 - 8x - 6z + 16 = 0, \\ y = -x. \end{cases}$$

La prima equazione rappresenta il cilindro passante per γ con generatrici parallele all'asse y (ortogonale al piano xz), quindi la proiezione ortogonale sul piano xz è

$$\gamma' \colon \left\{ \begin{array}{l} 2x^2 + z^2 - 8x - 6z + 16 = 0, \\ y = 0. \end{array} \right.$$

Esercizio 2.33. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si consideri la circonferenza $\widetilde{\mathcal{C}} = \Sigma \cap \alpha$, dove

$$\Sigma \colon x^2 + y^2 + z^2 - 2x - 4z + 1 = 0, \qquad \alpha \colon x - y + z = 0.$$

2.4. Sfere e circonferenze 37

- 1. Scrivere l'equazione cartesiana della sfera $\widetilde{\Sigma}$ avente $\widetilde{\mathcal{C}}$ come circonferenza massima.
- 2. Determinare i piani paralleli ad α e tangenti a Σ .
- 3. Determinare i piani passanti per l'asse y e tangenti a Σ .

SOLUZIONE.

1. Se \widetilde{C} e \widetilde{R} sono rispettivamente il centro ed il raggio di \widetilde{C} , allora la sfera richiesta $\widetilde{\Sigma}$ avrà centro \widetilde{C} e raggio \widetilde{R} . Posto C= centro di Σ e R= raggio di Σ , si ha

$$C(1,0,2), \qquad R = \sqrt{1+0+4-1} = 2,$$

$$d(C,\alpha) = \left| \frac{1-0+2}{\sqrt{3}} \right| = \sqrt{3} < 2, \qquad \widetilde{R} = \sqrt{R^2 - d(C,\alpha)^2} = \sqrt{4-3} = 1.$$

La retta n per C ed ortogonale ad α ha equazioni parametriche

$$x = t + 1,$$
 $y = -t,$ $z = t + 2,$

quindi

$$\widetilde{\mathcal{C}} = n \cap \alpha, \quad t+1+t+t+2 = 0 \quad \Rightarrow \quad t = -1 \quad \Rightarrow \quad \widetilde{C}(0,1,1),$$

allora

$$\widetilde{\Sigma}$$
: $(x-0)^2 + (y-1)^2 + (z-1)^2 = 1$.

2. I piani richiesti saranno paralleli ad α e passanti per i punti Q e Q^* intersezioni di n con Σ .

$$(t+1)^{2} + t^{2} + (t+2)^{2} - 2(t+1) - 4(t+2) + 1 = 0 \implies$$

$$\Rightarrow 3t^{2} - 4 = 0 \implies t = \pm \frac{2}{\sqrt{3}},$$

$$Q\left(\frac{2}{\sqrt{3}} + 1, -\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}} + 2\right), \qquad Q^{*}\left(-\frac{2}{\sqrt{3}} + 1, \frac{2}{\sqrt{3}}, -\frac{2}{\sqrt{3}} + 2\right).$$

I piani richiesti sono

$$x - y + z + h = 0$$
, con $h = \pm \frac{6}{\sqrt{3}} - 3 = \pm 2\sqrt{3} - 3$.

Oppure più semplicemente si possono determinare i piani del tipo α_h : x-y+z+h=0 con $d(C,\alpha_h)=2$, cioè

$$\left| \frac{h+3}{\sqrt{3}} \right| = 2.$$

3. Il fascio di piani di asse y ha equazione $\lambda x + \mu z = 0$. Indicato con φ il generico piano del fascio, i piani richiesti sono quelli per cui $d(C, \varphi) = R$, cioè

$$\left| \frac{\lambda + 2\mu}{\sqrt{\lambda^2 + \mu^2}} \right| \quad \Rightarrow \quad 3\lambda^2 - 4\lambda\mu = 0 \quad \Rightarrow \quad \lambda = 0, \ \lambda = \frac{4}{3}\mu.$$

I piani richiesti sono z = 0 e 4x + 3z = 0.

2.5 Curve e superfici

Esercizio 2.34. Sia data la superficie Σ di equazioni parametriche

$$x = -u^3 + 3vu^2$$
, $y = 2u + 2v$, $z = e^u(v - 1)$.

- 1. Scrivere equazioni parametriche di \mathcal{L} , linea coordinata u di equazione v=1, e riconoscere che essa è piana.
- 2. Trovare le coordinate del versore tangente ad \mathcal{L} nel punto $P_0(4,0,0)$, supponendo la curva orientata nel verso del parametro u decrescente.
- 3. Provare che il piano tangente a Σ in $Q_0(0, -2, -2)$ contiene una retta appartenente a Σ .

SOLUZIONE.

- 1. \mathcal{L} : $x = -u^3 + 3u^2$, y = 2u + 2, z = 0è piana poiché appartiene al piano z = 0.
- 2. Il vettore tangente nel generico punto di \mathcal{L} ha componenti

$$x_u = -3u^2 + 6u, y_u = 2, z_u = 0.$$

Quindi, il vettore \vec{w} tangente nel punto P_0 , che si ottiene per u=-1, è

$$\vec{w} = (x_u^0, y_u^0, z_u^0) = (-9, 2, 0), \qquad ||\vec{w}|| = \sqrt{81 + 4} = \sqrt{85},$$

e il versore (con l'orientazione richiesta) è $(9/\sqrt{85}, -2/\sqrt{85}, 0)$.

3. Consideriamo le derivate parziali dell'equazione di Σ

$$x_u = -3u^2 + 6uv,$$
 $y_u = 2,$ $z_u = e^u(v-1),$
 $x_v = 3u^2,$ $y_v = 2,$ $z_v = e^u,$

che calcolate nel punto Q_0 , che si ottiene per u=0 e v=-1, sono

$$(x_u^0, y_u^0, z_u^0) = (0, 0, -2),$$
 $(x_v^0, y_v^0, z_v^0) = (0, 2, 1).$

Il piano tangente richiesto è x=0. Ora

$$\Sigma \cap yz = \{x = 0, y = 2v, z = 2v - 1\} \cup \{x = 0, y = 8v, z = e^{3v}(v - 1)\}$$

e la prima curva è una retta essendo il parametro v lineare.

Esercizio 2.35. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si consideri la curva \mathcal{C} di equazioni parametriche

$$C: x = e^t, \quad y = e^{-t} \cos t, \quad z = \sin^2 t.$$

- 1. Provare che C è contenuta nella superficie Σ : $z = 1 x^2y^2$.
- 2. Trovare il versore tangente a C nel punto P_0 , corrispondente al parametro t=0.
- 3. Determinare i versori normali a Σ in P_0 .

SOLUZIONE.

1. Si verifica immediatamente che ogni punto di \mathcal{C} appartiene a Σ , cioè

$$1 - x^2y^2 = 1 - e^{2t} \cdot e^{-2t} \cos^2 t = 1 - \cos^2 t = \sin^2 t = z.$$

2. Si ha

$$x'=e^t, \quad y'=-e^{-t}\cos t - e^{-t}\sin t, \quad z'=2\cos t\sin t,$$
 quindi $x'(0)=1, \ y'(0)=-1, \ z'(0)=0,$ da cui $\vec{t}=(1/\sqrt{2},-1/\sqrt{2},0)$

3. Equazioni parametriche di Σ sono

$$x = u$$
, $y = v$, $z = 1 - u^2 v^2$.

Il punto $P_0(1,1,0)$ si ottiene per u=1, v=1. Quindi il piano tangente è

$$\begin{vmatrix} x-1 & y-1 & z-0 \\ 1 & 0 & -2 \\ 0 & 1 & -2 \end{vmatrix} = 0.$$

Il suo vettore giacitura è proporzionale a (2,2,1), quindi $\vec{n} = \pm (2/3,2/3,1/3)$.

Esercizio 2.36. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$, data la retta r: x = -y = z, determinare la superficie di rotazione ottenuta facendo ruotare intorno ad r la curva

$$C: x = 2t, \quad y = t^2 - 1, \quad z = t^2 - 1.$$

SOLUZIONE. Il generico punto di \mathcal{C} è $P(2t, t^2 - 1, t^2 - 1)$. Il piano passante per P e perpendicolare ad r, di parametri direttori (1, -1, 1), è

$$1(x-2t) - 1(y-t^2+1) + 1(z-t^2+1) = 0 \implies x-y+z = 2t.$$

La sfera di centro O e raggio $\|\vec{OP}\|$ è

$$x^{2} + y^{2} + z^{2} = 4t^{2} + 2(t^{2} - 1)^{2}$$
.

da cui l'equazione cartesiana della superficie richiesta è

$$8(x^2 + y^2 + z^2) = (x - y + z)^4 + 16.$$

Esercizio 2.37. Con riferimento alla circonferenza $\widetilde{\mathcal{C}}$ dell'esercizio 2.33, determinare equazioni cartesiane della curva $\widetilde{\mathcal{C}}'$ proiezione ortogonale di $\widetilde{\mathcal{C}}$ sul piano xz.

Soluzione. La circonferenza $\widetilde{\mathcal{C}}$ può essere rappresentata anche così

$$\begin{cases} 2x^2 + 2z^2 + 2xz - 2x - 4z + 1 = 0, \\ y = x + z. \end{cases}$$

La prima equazione rappresenta il cilindro con generatrici parallele all'asse y (ortogonale al piano xz), quindi la proiezione ortogonale sul piano xz è

$$\begin{cases} 2x^2 + 2z^2 + 2xz - 2x - 4z + 1 = 0, \\ y = 0. \end{cases}$$

Esercizio 2.38. In un riferimento cartesiano $\mathcal{RC}(Oxyz)$ si consideri il piano α : x-y+9z=1 e la curva

$$C: x = t^2 + 1, \quad y = -t, \quad z = t^2 - 1.$$

- 1. Provare che C è una curva piana e trovare il piano β che la contiene.
- 2. Trovare l'equazione della retta r tangente a C nel punto $P_0(2,1,0)$ e verificare che essa appartiene a β .
- 3. Determinare la distanza di P_0 dal piano α .
- 4. C è una circonferenza?

SOLUZIONE.

2.6. Coni e cilindri

1. Cerchiamo il piano β : ax + by + cz + d = 0 con $(a, b, c) \neq (0, 0, 0)$ che contenga \mathcal{C} . Dunque deve essere un'identità

$$a(t^2+1) - bt + c(t^2-1) + d = 0,$$

da cui, per il principio d'identità dei polinomi, deve aversi

$$a + c = 0$$
, $b = 0$, $a - c + d = 0$,

da cui c=-a e d=-2a. Il piano richiesto è

$$\beta : x - z - 2 = 0.$$

2. P_0 si ottiene per t=-1. I parametri direttori della tangente sono proporzionali a

$$x'(-1) = -2, \quad y'(-1) = -1, \quad z'(-1) = -2,$$

e quindi la retta tangente è

$$r: \frac{x-2}{2} = \frac{y-1}{2} = \frac{z-0}{2} \implies \begin{cases} x = 2+z, \\ z = 2y-2. \end{cases}$$

Ponendo z=u si ottengono equazioni parametriche di r

$$r: x = 2 + u, \quad y = 1 + \frac{u}{2}, \quad z = u,$$

che permettono di verificare facilmente che $r \subset \beta$; infatti

$$(2+u) - u - 2 = 0 \qquad \forall u \in \mathbb{R}.$$

- 3. $d(P_0, \alpha) = \left| \frac{2-1+0-1}{\sqrt{1+1+81}} \right| \Rightarrow P \in \alpha.$
- 4. Una circonferenza è una curva con punti reali al finito. Mentre per $t\to\infty$, il punto P va all'infinito; quindi $\mathcal C$ non può essere una circonferenza.

2.6 Coni e cilindri

Esercizio 2.39. Sia data la curva

$$C: x = t^3, y = t^3 - t, z = t^2.$$

1. Scrivere l'equazione del cilindro avente generatrici di direzione $\vec{w}(1,1,1)$ e passante per C.

- 2. Proiettare la curva C sul piano yz parallelamente alla direzione individuata da \vec{w} .
- 3. Proiettare sempre la stessa curva C nel piano x = y + 1 dal punto V(1, 1, 1). Soluzione.
- 1. La generatrice generica ha equazioni

$$\frac{x-t^3}{1} = \frac{y-t^3+t}{1} = \frac{z-t^2}{1} = h,$$

quindi equazioni parametriche del cilindro sono

$$\Gamma$$
: $x = t^3 + h$, $y = t^3 - t + h$, $z = t^2 + h$, $(t, h) \in \mathbb{R}^2$.

Per ottenere l'equazione cartesiana, basta eliminare i parametri t ed h

$$\Gamma$$
: $(x-y)^3 - (x-y)^2 + z - x = 0$.

2. Ponendo x=0 nelle equazioni parametriche si ha $h=-t^3$ e quindi

$$C'$$
: $x = 0$, $y = -t$, $z = t^2 - t^3$,

oppure in forma cartesiana

$$C'$$
: $x = 0$, $z = y^2 + y^3$.

3. Si ha immediatamente

$$\mathcal{K}\colon \quad x = 1 + v(t^3 - 1), \quad y = 1 + v(t^3 - t - 1), \quad z = 1 + v(t^2 - 1)$$

$$\mathcal{C}'\colon \quad x = 1 + t^2 - \frac{1}{t}, \quad y = t^2 - \frac{1}{t}, \quad z = 1 + t - \frac{1}{t}.$$

Esercizio 2.40. Scrivere l'equazione del cono Σ di vertice V(1,2,-1) le cui generatrici formano un angolo $\alpha = \pi/6$ con il vettore $\vec{u}(2,1,2)$.

SOLUZIONE.

$$P(x, y, z) \in \Sigma \quad \Leftrightarrow \quad \cos\left(\widehat{\overrightarrow{PVu}}\right) = \cos\frac{\pi}{6}.$$

Il secondo membro dà

$$(x-1)^2 + (y-2)^2 + (z+1)^2 = \sqrt{(x-1)^2 + (y-2)^2 + (z+1)^2} \ 3 \ \frac{1}{2}$$

da cui elevando al quadrato entrambi i membri

$$(2x + y + 2z - 2)^2 = \frac{27}{4}((x - 1)^2 + (y - 2)^2 + (z + 1)^2).$$

2.6. Coni e cilindri 43

Esercizio 2.41. Trovare il cono di vertice V(-1,2,2) e generatrici che formano un angolo di $\pi/4$ con la retta

$$r: \begin{cases} x - y + 3 = 0, \\ 2x - z + 4 = 0. \end{cases}$$

Soluzione. Si proceda come nel precedente esercizio, ricavando prima un vettore di direzione della retta r.

Esercizio 2.42. Determinare il cilindro Σ con generatrici parallele ad $\vec{u}(1,1,-1)$ e circoscritto alla sfera $S: x^2 + y^2 + z^2 - 2x + 4z + 2 = 0$.

SOLUZIONE.

I metodo. Sia $P(\alpha, \beta, \gamma) \in \Sigma$. Consideriamo la generica retta g_P passante per P; questa è tangente alla sfera S se il sistema $g_P \cap S$ ammette una sola soluzione:

$$\begin{cases} x = \alpha + t, \\ y = \beta + t, \\ z = \gamma - t, \\ x^2 + y^2 + z^2 - 2x + 4z + 2 = 0. \end{cases}$$

Sostituendo le prime tre equazioni nell'ultima si ottiene una equazione di secondo grado in t. Richiedendo che questa abbia il discriminante uguale a 0 si ottiene

$$(\alpha + \beta - \gamma - 3)^2 - 3(\alpha^2 + \beta^2 + \gamma^2 - 2\alpha + 4\gamma + 2) = 0.$$

La precedente condizione è necessaria e sufficiente affinché $P(\alpha, \beta, \gamma) \in \Sigma$; quindi, può essere presa come equazione del cilindro sostituendo (α, β, γ) con (x, y, z).

II metodo. Sia π il piano passante per il centro C(1,0,-2) di S e perpendicolare a $\vec{u}(1,1,-1)$. Allora Σ ha direttrice la circonferenza $\sigma = S \cap \pi$. Si ha

$$\sigma \colon \left\{ \begin{array}{l} x^2 + y^2 + z^2 - 2x + 4z + 2 = 0, \\ (x - 1) + y - (z + 2) = 0. \end{array} \right.$$

Dunque, se $P(\alpha, \beta, \gamma) \in \Sigma$, e considerando la generica retta g_P passante per P, le equazioni parametriche del cilindro sono

$$\begin{cases} \alpha^2 + \beta^2 + \gamma^2 - 2\alpha + 4\gamma + 2 = 0, \\ \alpha + \beta - \gamma - 3 = 0, \\ x = \alpha + t, \\ y = \beta + t, \\ z = \gamma - t \end{cases}$$

(le prime due equazioni sono la condizione di appartenenza di P a σ). Ricavando α , β e γ dalle ultime tre equazioni e sostituendole nella seconda si può ricavare t in funzione di x, y, e z. Sostituendo t nelle ultime tre equazioni si otengono α , β e γ in funzione delle sole x, y, e z. Sostituendo queste nella prima equazione si ottiene l'equazione cartesiana del cilindro.

Confrontate le due soluzioni!

Esercizio 2.43. Data la curva

$$\begin{cases} x = t, \\ y = t^2, \\ z = t^3. \end{cases}$$

determinare la proiezione ortogonale di γ sul piano π_{xy} .

SOLUZIONE. Il punto generico di γ è $P(t, t^2, t^3)$. Sia Σ il cilindro avente direttrice γ e generatrice perpendicolare a π_{xy} , ovvero parallela a (0, 0, 1). L'equazione parametrica del cilindro è

$$\begin{cases} x = t, \\ y = t^2, \\ z = t^3 + t', \end{cases}$$

e l'equazione cartesiana si ottiene eliminando t e t': $y=x^2$. Pertanto la curva γ' proiezione di γ ha equazione

$$\begin{cases} y = x^2, \\ z = 0, \end{cases}$$

e risulta una parabola.

Esercizio 2.44. Data la circonferenza

$$\sigma \colon \left\{ \begin{array}{l} x^2 + y^2 + z^2 - 4x + z = 0, \\ x - y + z = 0, \end{array} \right.$$

determinare σ' proiezione ortogonale sul piano π_{xy} .

SOLUZIONE.

I metodo. Si consideri il punto generico $P(\alpha, \beta, \gamma) \in \sigma$. Il cilindro che ha direttrice σ e asse parallelo all'asse z ha equazioni parametriche

$$\begin{cases} \alpha^2 + \beta^2 + \gamma^2 - 4\alpha + \gamma = 0, \\ \alpha - \beta + \gamma = 0, \\ x = \alpha, \\ y = \beta, \\ z = t. \end{cases}$$

Ricavando γ in funzione di α e β nella seconda equazione, ed usando la terza e la quarta equazione, si ha l'equazione del cilindro: $2x^2 + 2y^2 - 2xy - 5x + y = 0$. Intersecando con il piano coordinato z = 0 si ha l'equazione della curva cercata, che è un'ellisse.

 $II\ metodo$. Eliminare z tra le equazioni di σ . Questo è possibile solo perchè si sta proiettando ortogonalmente su di un piano coordinato.

Esercizio 2.45. Si consideri la curva C dell'esercizio 2.38. Trovare equazioni cartesiane di C', proiezione di C sul piano α parallelamente alla direzione $\vec{v} = (2, 1, 0)$.

2.6. Coni e cilindri 45

SOLUZIONE. Sia $P(t^2+1,-t,t^2-1)$ il punto generico di \mathcal{C} . La retta per P di direzione \vec{v} ha equazioni parametriche

$$x = t^2 + 1 + 2v$$
, $y = -t + 0v$, $z = t^2 - 1 + v$, $v \in \mathbb{R}$.

Quindi chiamando i parametri t e v si ottiene il cilindro Γ per \mathcal{C} e di direzione \vec{v} :

$$\Gamma \colon y^2 = 3 + 2z - x,$$

da cui

$$C'$$
: $y^2 = 3x + 2z - x$, $x - y + 9z = 1$.

Esercizio 2.46. Sia data la seguente circonferenza:

$$\mathcal{C} \colon \left\{ \begin{array}{l} x^2 + y^2 + z^2 = 1, \\ y = x. \end{array} \right.$$

- 1. Proiettare C ortogonalmente sul piano xz. Descrivere la curva proiezione.
- 2. Qual è la proiezione ortogonale di $\mathcal C$ sul piano x=0 e sul piano z=0?

SOLUZIONE.

1. \mathcal{C} può essere rappresentata anche dal sistema equivalente

$$\mathcal{C} \colon \left\{ \begin{array}{l} 2x^2 + z^2 = 1, \\ y = x. \end{array} \right.$$

In tal caso \mathcal{C} è pensata come intersezione del cilindro Γ : $2x^2 + z^2 = 1$ con il piano α : y = x. La proiezione ortogonale di \mathcal{C} sul piano y = 0 sarà

$$\mathcal{C}' \colon \left\{ \begin{array}{l} 2x^2 + z^2 = 1, \\ y = 0. \end{array} \right.$$

Si vede immediatamente che \mathcal{C}' non è una circonferenza, ma un'ellisse, com'è intuitivo, essendo i piani y=x e y=0 non paralleli tra loro.

2. Si tenga presente che il piano y = x è ortogonale al piano z = 0.

Esercizio 2.47. Trovare la superficie Σ generata dalla rotazione intorno all'asse z della retta

$$r: \quad x = 1, \quad y = 2z,$$

e trovare i meridiani di Σ .

Soluzione. Essendo r sghemba con l'asse z, Σ non sarà un cono. Equazioni parametriche di r sono

$$x = 1$$
, $y = 2u$, $z = u$.

Quindi, posto A(0,0,0) e $(l, m, n) \sim (0,0,1)$,

$$\tau$$
: $z = u$,
 S : $x^2 + y^2 + z^2 = (1 - 0)^2 + (2u - 0)^2 + (u - 0)^2$.

cioè

$$\mathcal{P} \colon \left\{ \begin{array}{l} z = u, \\ x^2 + y^2 + z^2 = 1 + 5u^2, \end{array} \right.$$

ed eliminando il parametro

$$x^2 + y^2 - 4z^2 = 1,$$

che è una superficie algebrica di ordine 2.

Troviamo ora i meridiani di Σ . Il fascio di piani di asse z è x+ky=0, quindi i meridiani sono

$$\mathcal{M} \colon \left\{ \begin{array}{l} x^2 + y^2 - 4z^2 = 1, \\ x + ky = 0. \end{array} \right.$$

Per k = 0 si ha il meridiano

$$C: \quad x = 0, \quad y^2 - 4z^2 = 1,$$

che è un'iperbole.

Provare che se si fa ruotare la curva C intorno all'asse z si ottiene la stessa superficie.

Esercizio 2.48. Trovare il piano tangente in $P_0(1,1,1)$ alla superficie Σ : y=xz.

Soluzione. Σ è rappresentata dalle equazioni cartesiane f(x,y,z)=y-xz=0, quindi

$$f_x = -z$$
, $f_y = 1$, $f_z = -x$.

Poiché $f_y=1$ in ogni punto $P\in\Sigma$, la superficie ha tutti i punti regolari. Ora

$$f_x^0 = -1, \quad f_y^0 = 1, \quad f_z^0 = -1,$$

quindi il piano tangente richiesto è x - y + z - 1 = 0.

 $Ritrovare\ l'equazione\ cartesiana\ del\ piano\ tangente\ utilizzando\ la\ rappresentazione\ parametrica$

$$x = u, \quad y = uv, \quad z = uv.$$

Esercizio 2.49. Si consideri la superficie Σ : y = xz, il punto $P_0(1,1,1)$ ed il piano τ , tangente a Σ in P_0 . Provare che la curva $C = \Sigma \cap \tau$ è costituita da due rette.

SOLUZIONE. Infatti

$$\begin{cases} y = xz, \\ x - y + z - 1 = 0, \end{cases} \Rightarrow \begin{cases} y = xz, \\ (x - 1)(1 - z) = 0. \end{cases}$$

Quindi le due rette, appartenenti a Σ e τ , sono

$$\begin{cases} x = 1, \\ y = z, \end{cases} \begin{cases} z = 1, \\ y = x. \end{cases}$$

Esercizio 2.50. Determinare il profilo di Σ : y = xz visto dal punto $P_0(0,1,0) \notin \Sigma$.

SOLUZIONE. Si tratta di trovare la curva $\mathcal{L} = \Sigma \cap K$, dove K è il cono di vertice P_0 con generatrici tangenti a Σ (cioè il cono circoscritto a Σ).

La generica retta per P_0 : x = lt, y = mt + 1, z = nt è tangente a Σ se l'equazione $lnt^2 - mt - 1 = 0$ ha due radici coincidenti, cioè se $m^2 - 4ln = 0$. Tenendo conto che l: m: n = x: (y-1): z, il cono K avrà equazione

$$(y-1)^2 - 4xz = 0.$$

2.7 Esercizi di riepilogo

- 1. Siano α un piano perpendicolare al vettore $\vec{a} = (1, -2, 0)$ e β un piano perpendicolare al vettore $\vec{b} = (3, -1, -1)$.
 - (a) Verificare che i vettori

$$\vec{u_1} = (2, 1, 0), \qquad \vec{u_2} = \left(\frac{4}{5}, \frac{2}{5}, -2\right),$$

sono paralleli ad α .

- (b) Si trovino i vettori $\vec{v_1}$ e $\vec{v_2}$ paralleli a β le cui proiezioni ortogonali su α siano rispettivamente $\vec{u_1}$ e $\vec{u_2}$.
- 2. Siano dati i vettori

$$\vec{u} = (2, 1, 3), \quad \vec{v_1} = (0, -1, -1), \quad \vec{v_2} = (1, 0, 2), \quad \vec{w} = (1, 1, 1).$$

(a) Trovare la giacitura \vec{a} individuata da $\vec{v_1}$ e $\vec{v_2}$ (cioè un vettore perpendicolare al piano individuato da $\vec{v_1}$ e $\vec{v_2}$).

- (b) Decomporre \vec{w} secondo una retta r parallela ad \vec{u} ed un piano α di giacitura \vec{a} .
- 3. Si considerino i seguenti vettori

$$\vec{u} = \lambda \vec{i} - \vec{j} + 3\vec{k}$$
, $\vec{v} = \vec{i} - \lambda \vec{j} + \vec{k}$, $\vec{w} = -2\vec{i} + \mu \vec{k}$,

dove $\lambda, \mu \in \mathbb{R}$.

(a) Trovare per quali valori di λ , μ esistono vettori \vec{x} tali che

$$\vec{u} \wedge \vec{x} + \vec{x} \wedge \vec{v} = \vec{w}$$
.

- (b) Determinare, quando possibile, le componenti di \vec{x} per $\lambda = 1$.
- 4. Siano dati i seguenti vettori di V_3 riferiti alla base $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$:

$$\vec{v}_1 = (2 - h, 4 - 2h, 2 - h), \quad \vec{v}_2 = (h, 3h, 2h), \vec{v}_3 = (1 - h, 1 - 2h, h).$$

- Determinare per quali valori di $h \in \mathbb{R}$ il vettore $\vec{w} = (1 2h, 1 h, -5h)$ è combinazione lineare dei vettori $\vec{v_1}, \vec{v_2}, \vec{v_3}$.
- Esaminare il caso h = 0.
- 5. Si dimostri che considerati tre vettori qualsiasi \vec{u} , \vec{v} , \vec{w} , sussiste l'identità

$$(\vec{u} \wedge \vec{v}) \wedge \vec{w} = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{v} \cdot \vec{w})\vec{u}$$
.

L'operazione \wedge è associativa?

6. Determinare le equazioni delle bisettrici delle rette

$$r: x - 1 = y - z = 0$$
, $s: y = 1 = z$.

Suggerimento: si ricordi che se \vec{r} e \vec{s} sono i versori associati alle rette, allora $\vec{r} + \vec{s}$ e $\vec{r} - \vec{s}$ danno le direzioni delle bisettrici.

- 7. Detta r la retta passante per i punti A(2,-1), B(-1,2), trovare il punto P simmetrico dell'origine O rispetto ad r. Verificare che il quadrilatero AOBP è un rombo, e trovarne l'area.
- 8. Si consideri il piano α contenente il triangolo T di vertici

$$A(1,0,0), \quad B(0,\sqrt{2},1), \quad C(-1,1/\sqrt{2},1).$$

(a) Determinare l'angolo ϕ ($0 \le \phi \le \pi/2$) tra il piano α e il piano coordinato xy.

(b) Indicato con T_{xy} il triangolo, proiezione ortogonale di T sul piano xy, si verifichi che

$$\mathcal{A}(T_{xy}) = \mathcal{A}(T)\cos\phi\,,$$

dove \mathcal{A} indica l'area.

(c) Si provi inoltre che

$$A(T)^2 = A(T_{xy})^2 + A(T_{yz})^2 + A(T_{xz})^2.$$

- (d) Scrivere equazioni parametriche e cartesiane della retta r passante per A e B.
- (e) Trovare i parametri direttori di r e quelli di giacitura di α .
- (f) Determinare il piano ortogonale ad \vec{AB} e passante per il punto medio H di AB.
- (g) Trovare il baricentro G del triangolo T. Si ricordi che si chiama baricentro dei punti A_1, \ldots, A_n l'unico punto G tale che

$$(A_1 - G) + \dots + (A_n - G) = \vec{0}.$$

Questa nozione di baricentro è un caso particolare di quella che si incontra in statica (ponendo tutte le masse uguali).

9. Scrivere l'equazione della circonferenza che passa per l'origine O ed è tangente nel punto P(1,2) alla retta

$$r: x - y + 1 = 0$$
.

10. Determinare le tangenti alla circonferenza

$$x^2 + y^2 - 7x + y = 0$$

parallele all'asse x e trovare i punti di tangenza.

11. Determinare la circonferenza tangente alle rette

$$r: 4x - 3y + 10 = 0$$
 $r': 4x - 3y - 30 = 0$

ed avente centro sulla retta s: 2x + y = 0.

12. Determinare le circonferenze passanti per O e tangenti simultaneamente alle rette

$$r: 2\sqrt{3}x - 2y + 1 = 0$$
 $s: x - \sqrt{3}y - 1 = 0$.

CAPITOLO 3

SPAZI VETTORIALI

3.1 Sottospazi vettoriali, lineare indipendenza, basi

Esercizio 3.1. Provare che i sottoinsiemi S ed A, formati rispettivamente dalle matrici simmetriche e quelle antisimmetriche di ordine n, formano sottospazi vettoriali di $\mathbb{R}^{n,n}$. Per n=2, trovare una base per S e una base per A.

Soluzione. $S = \{X = (x_{ij}) \in \mathbb{R}^{n,n} \mid x_{ij} = x_{ji} \ \forall i, j\}.$

Quindi, se $X = (x_{ij}), Y = (y_{ij}) \in \mathcal{S}$, allora $X + Y = (x_{ij} + y_{ij}) \in \mathcal{S}$, poiché $x_{ji} + y_{ji} = x_{ij} + y_{ij}$ per ogni i, j. Inoltre, per ogni $k \in \mathbb{R}$, $kX \in \mathcal{S}$, poiché $kx_{ji} = kx_{ji}$ per ogni i, j. Avendo provato che \mathcal{S} è chiuso rispetto alla somma di matrici ed al prodotto di una matrice per uno scalare, possiamo concludere che \mathcal{S} è un sottospazio vettoriale di $\mathbb{R}^{n,n}$. Per \mathcal{A} si procede analogamente, la dimostrazione è lasciata per esercizio.

Sia ora $X=(x_{ij})\in\mathbb{R}^{2,2}$. Poiché $x_{12}=x_{21}$, possiamo scrivere

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} = x_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + x_{12} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + x_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

cioè, \mathcal{S} è generato da $A_1=\begin{pmatrix}1&0\\0&0\end{pmatrix}, A_2=\begin{pmatrix}0&1\\1&0\end{pmatrix}$ ed $A_3=\begin{pmatrix}0&0\\0&1\end{pmatrix}$. Inoltre, A_1,A_2 ed A_3 sono linearmente indipendenti. Infatti, siano $a,b,c\in\mathbb{R}$ tali che $aA_1+bA_2+cA_3=O$, dove O denota la matrice nulla. Allora

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + b \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) + c \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right),$$

da cui segue immediatamente a = b = c = 0. Quindi, poiché A_1 , A_2 e A_3 sono linearmente indipendenti e generano S, possiamo concludere che essi formano una base di S. In particolare, dim S=3.

Se $X = (x_{ij}) \in \mathcal{A}$, da $x_{ij} = -x_{ij}$ segue che $a_{11} = a_{22} = 0$ e $a_{21} = -a_{22}$. Pertanto, $X = a_{12}A_4 = a_{12}\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, cioè, \mathcal{A} è generato da A_4 . Essendo $A_4 \neq O$, concludiamo che $\{A_4\}$ è una base di \mathcal{A} . In particolare, dim $\mathcal{A}=1$.

Esercizio 3.2. Dati in $\mathbb{R}_2[x]$ i sottospazi $U = \{p \in \mathbb{R}_2[x] \mid p(1) = p(4) = 0\}$ e $V = L(p_1, p_2, p_3)$, dove $p_1(x) = x^2$, $p_2(x) = x + 1$ e $p_3(x) = 2x^2 - 3x - 3$, trovare le dimensioni di U e V e una loro base.

SOLUZIONE. Sia $p \in U$. Poiché p(1) = p(4) = 0, x - 1 e x - 4 dividono p. Inoltre, $p \in \mathbb{R}_2[x]$, quindi ha grado ≤ 2 . Pertanto, esiste $a \in \mathbb{R}$ tale che p(x) = a(x-1)(x-4), e possiamo concludere che U = L((x-1)(x-4)), $\{(x-1)(x-4)\}$ è una base di U, e dim U=1.

Di V conosciamo già un sistema di generatori, $\{p_1, p_2, p_3\}$. Vediamo se sono linearmente indipendenti. Siano $a, b, c \in \mathbb{R}$ tali che $ap_1 + bp_2 + cp_3 = o$, dove o denota il polinomio nullo. Allora, per ogni $x \in \mathbb{R}$ si ha

$$0 = ax^{2} + b(x+1) + c(2x^{2} - 3x - 3) = (a+2c)x^{2} + (b-3c)x + (b-3c),$$

da cui segue a + 2c = b - 3c = 0, ossia a = -2c e b = 3c, per ogni valore reale di c. Quindi, p_1 , p_2 e p_3 non sono linearmente indipendenti. Procedendo nello stesso modo, possiamo verificare che p_1 e p_2 sono linearmente indipendenti, per cui $\{p_1, p_2\}$ è una base di V, e dim V=2.

Esercizio 3.3. Dati in \mathbb{R}^4 i vettori $v_1 = (1, 3, 1, 3), v_2 = (1, 1, 1, 1)$ e $v_3 = (1, -1, 1, -1)$ e i sottospazi $V = L(v_1, v_2, v_3)$ e $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\},$

- a) trovare $V \cap W$ e V + W;
- b) trovare un supplementare di $V \cap W$ in V e uno in W.

SOLUZIONE.

a) $W = \{(x, y, z, t) \in \mathbb{R}^4 \mid t = -x - y - z\} = \{(a, b, c, -a - b - c) \mid a, b, c \in \mathbb{R}\} = L((1, 0, 0, -1), (0, 1, 0, -1), (0, 0, 1, -1))$. E' facile verificare che (1, 0, 0, -1), (0, 1, 0, -1), (0, 0, 1, -1) sono linearmente indipendenti, quindi formano una base di W.

La matrice delle componenti di v_1, v_2, v_3 rispetto alla base canonica è

$$\left(\begin{array}{cccc} 1 & 3 & 1 & 3 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{array}\right),$$

che ha rango 2, e le ultime due colonne sono linearmente indipendenti. Pertanto, $\{v_2, v_3\}$ è una base di V.

Sia $v \in V \cap W$. Poiché $v \in V$, esistono $a, b \in \mathbb{R}$ tali che $v = av_2 + bv_3 = (a+b, a-b, a+b, a-b)$. Inoltre, $v \in W$, quindi le sue coordinate soddisfano l'equazione x+y+z+t=0, da cui, a=0. Pertanto, $V \cap W = \{v = bv_3 \mid b \in \mathbb{R}\} = L(v_3)$

Dalla relazione di Grassmann, si ha

$$\dim(V + W) = \dim V + \dim W - \dim(V \cap W) = 2 + 3 - 1 = 4 = \dim \mathbb{R}^4.$$

Essendo \mathbb{R}^4 l'unico sottospazio di \mathbb{R}^4 stesso avente dimensione 4, possiamo concludere che $V+W=\mathbb{R}^4$.

b) Per trovare un supplementare di $V \cap W$ in V, completiamo la base v_3 di $V \cap W$ con 2-1=1 vettore, ad esempio v_2 . Allora, $X=L(v_2)$ ci dà un supplementare di $V \cap W$ in V.

Analogamente, un supplementare di $V \cap W$ in W sarà un sottospazio di W generato da 3-1=2 vettori che, aggiunti a v_3 , diano una base di W, ad esempio, (1,0,0,-1) e (0,1,0,-1). Quindi, Y=L((1,0,0,-1),(0,1,0,-1)) è un supplementare di $V \cap W$ in W.

Esercizio 3.4. Dati in $\mathbb{R}_2[x]$ i sottospazi $U = L(p_1, p_2)$ e $V = L(q_1, q_2)$, dove $p_1(x) = x^2 + 2x$, $p_2(x) = x + 1$, $q_1(x) = x + 2$ e $q_2(x) = -x^2 + 1$, si trovino $U \cap V$ e U + V.

SOLUZIONE. Sia $p \in U \cap V$. Allora, esistono $a, b, c, d \in \mathbb{R}$ tali che $p = ap_1 + bp_2 = cq_1 + dq_2$, ossia

$$p(x) = a(x^2 + 2x) + b(x+1) = c(x+2) + d(-x^2 + 1),$$

da cui segue, uguagliando i coefficienti delle potenze di x, a=-d, b=c+2a e b=2c+d, e quindi, a+d=c+3d=b+5d=0. Di conseguenza, $p\in U\cap V$ è necessariamente del tipo $p(x)=-3d(x+2)+d(-x^2+1)=d(-x^2-3x-5)$, per cui $U\cap V=L(x^2+3x+5)$ ed ha dimensione 1. Dall'identità di Grassmann segue che

$$\dim(U+V) = \dim U + \dim V - \dim(U \cap V) = 2 + 2 - 1 = 3 = \dim \mathbb{R}_2[x]$$

e quindi, $U + V = \mathbb{R}_2[x]$.

Esercizio 3.5. Provare che i sottospazi S ed A, formati rispettivamente dalle matrici simmetriche e quelle antisimmetriche di ordine n, sono supplementari in $\mathbb{R}^{n,n}$.

SOLUZIONE. Ricordiamo che $S = \{X = (x_{ij}) \in \mathbb{R}^{n,n} \mid x_{ij} = x_{ji} \ \forall i,j\}$ e $A = \{X = (x_{ij}) \in \mathbb{R}^{n,n} \mid x_{ij} = -x_{ji} \ \forall i,j\}$ (vedi anche Es. 3.1).

Quindi, se $X = (x_{ij}) \in \mathcal{S} \cap \mathcal{A}$, allora $x_{ij} = x_{ji} = -x_{ji}$, cioè, $x_{ij} = 0$, per ogni i, j. Così, $\mathcal{S} \cap \mathcal{A} = O$, dove O denota il sottospazio nullo, e resta da provare che $\mathcal{S} + \mathcal{A} = \mathbb{R}^{n,n}$. Per ogni $A \in \mathbb{R}^{n,n}$, risulta:

$$A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t),$$

dove A^t denota la matrice trasposta di A. E' facile verificare che $\frac{1}{2}(A+A^t) \in \mathcal{S}$ e che $\frac{1}{2}(A-A^t) \in \mathcal{A}$, e quindi, $A \in \mathcal{S}+\mathcal{A}$.

Esercizio 3.6. Dati in $\mathbb{R}_3[x]$ i sottospazi $U = \{p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_1 - a_3 = a_2 = a_0 = 0\}$ e $V = L(q_1, q_2)$, dove $q_1(x) = x^2 + x$ e $q_2(x) = x^3 + 1$, si trovino $U \cap V$, U + V e un sottospazio supplementare di W in $\mathbb{R}_3[x]$.

SOLUZIONE. Sia $p \in U \cap V$. Poiché $p \in V$, esistono $a, b \in \mathbb{R}$ tali che $p = aq_1 + bq_2$, ossia

$$p(x) = a(x^{2} + x) + b(x^{3} + 1) = bx^{3} + ax^{2} + ax + b.$$

D'altro canto, $p \in U$, per cui i suoi coefficienti a_i soddisfano $a_1 - a_3 = a_2 = a_0 = 0$, cioè, a = b = 0, e quindi, $U \cap V = O$ e la somma di $U \in V$ è diretta.

Se $p \in V$, allora $p(x) = a_1(x^3 + x)$. Quindi, $U = L(p_1)$, dove $p_1(x) = x^3 + x$, ed ha dimensione 1. Inoltre, si verifica facilmente che $\{q_1, q_2\}$ è una base di V, e quindi, dim V = 2. Dalla relazione di Grassmann,

$$\dim(U \oplus V) = \dim U + \dim V = 1 + 2 = 3.$$

Essendo la somma di U e V diretta, $U \oplus V$ è generato dall'unione di una base di U con una base di V, cioè,

$$U \oplus V = L(p_1, q_1, q_2) = \{ p \in \mathbb{R}_3[x] \mid \exists a, b, c \in \mathbb{R} : p = ap_1 + bp_2 + cp_3 \} =$$

$$= \{ p(x) = (a+c)x^3 + bx^2 + (a+b)x + c \mid a, b, c \in \mathbb{R} \} =$$

$$= \{ p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_0 + a_1 - a_2 - a_3 = 0 \}.$$

Esercizio 3.7. In \mathbb{R}^4 si consideri l'insieme $X = \{v_1, v_2, v_3, v_4\}$, dove $v_1 = (k, 2k, 0, k)$, $v_2 = (2k + 1, k + 2, 0, 1)$, $v_3 = (1, k + 2, -k, 1)$ e $v_4 = (k - 4, 0, 0, k)$, dove $k \in \mathbb{R}$.

- a) Trovare, al variare di $k \in \mathbb{R}$, il rango di X, rg X.
- b) Trovare, per ogni k tale che X sia una base di \mathbb{R}^4 , le componenti di v = (-1, 0, 0, 1) rispetto a tale base.
 - c) Per ogni k tale che rg X = 3, si verifichi se $v \in L(X)$.
 - d) Per ogni k tale che rg X=2, si trovi un sottospazio supplementare di L(X) in \mathbb{R}^4 . Soluzione.
 - a) Le componenti dei vettori v_i rispetto alla base canonica di \mathbb{R}^4 formano la matrice

$$A = \begin{pmatrix} k & 2k+1 & 1 & k-4 \\ 2k & k+2 & k+2 & 0 \\ 0 & 0 & -k & 0 \\ k & 1 & 1 & k \end{pmatrix},$$

e rg X=rg A. Essendo det $A=4k^3(k-1)$, se $k\neq 0,1$ allora det $A\neq 0$ e quindi, rg X=rg A=4. In tal caso, X è una base di \mathbb{R}^4 .

Se k=1, allora il comlemento algebrico di a_{41} ha determinante $9 \neq 0$. Quindi, rg $X=\operatorname{rg} A=3$, e ad esempio v_2 , v_3 e v_4 sono linearmente indipendenti.

Se k=0, allora rg $X=\operatorname{rg} A=2$, le ultime due colonne (e quindi, i vettori v_3, v_4) sono linearmente indipendenti.

b) Assumendo $k \neq 0, 1$, siano $a, b, c, d \in \mathbb{R}$ tali che $v = av_1 + bv_2 + cv_3 + dv_4$, cioè,

$$(-1,0,0,1) = a(k,2k,0,k) + b(2k+1,k+2,0,1) + c(1,k+2,-k,1) + d(k-4,0,0,k),$$

da cui otteniamo

$$\begin{cases} ka + (2k+1)b + c + (k-4)d = -1, \\ 2ka + (k+2)b + (k+2)c = 0, \\ -kc = 0, \\ ka + b + c + kd = 0. \end{cases}$$

Risolvendo il sistema lineare usando k come parametro e tenendo conto del fatto che $k \neq 0, 1$, otteniamo

$$\begin{cases} a = \frac{k+2}{4k^2(k-1)}, \\ b = -\frac{1}{2k(k-1)}, \\ c = 0, \\ d = \frac{k-2}{4(k-1)}. \end{cases}$$

c) Quando rg X=3, cioè per k=1, si ha che $v\in L(X)=L(v_2,v_3,v_4)$ se e solo se esistono $b,c,d\in\mathbb{R}$ tali che $v=bv_2+cv_3+dv_4$, cioè,

$$(-1,0,0,1) = b(3,3,0,1) + c(1,3,-1,1) + d(-3,0,0,1),$$

da cui otteniamo

$$\begin{cases} 3b + c - 3d = -1, \\ 3b + 3c = 0, \\ -c = 0, \\ b + c + d = 0, \end{cases}$$

che è incompatibile. Quindi, $v \notin L(X)$ per k = 1.

d) L'unico valore di k per cui rg X=2 è k=0. In tal caso, completiamo la base $\{v_3, v_4\}$ di L(X) con due vettori della base canonica, e il sottospazio da essi generato sarà un supplementare di L(X). Si verifica facilmente che $\{e_2, e_3, v_3, v_4\}$ sono linearmente indipendenti, dove $e_2=(0,1,0,0)$ e $e_3=(0,0,1,0)$, e quindi, $Y=L(e_2,e_3)$ è un sottospazio supplementare di X in \mathbb{R}^4 .

Esercizio 3.8. Dato in $\mathbb{R}_3[x]$ il sottospazio U = L(p), con $p(x) = x^2 - 5x + 6$, trovare un sottospazio V supplementare di U in $\mathbb{R}_3[x]$. Esprimere poi $q(x) = x^3 + x^2 + x + 1$ come somma di un polinomio in U e di uno in W.

SOLUZIONE. Completiamo $\{p\}$ con tre vettori, ad esempio della base canonica di $\mathbb{R}_3[x]$, in modo da ottenere una nuova base. Questi tre vettori generano un sottospazio supplementare di U. E' facile verifiacre che $\{p,1,x,x^3\}$ è una base di $\mathbb{R}_3[x]$, e quindi $V=L(1,x,x^3)$ è un sottospazio supplementare di U. Siano $a,b,c,d\in\mathbb{R}$ tali che $q(x)=ap(x)+b+cx^2+dx^3$, cioè,

$$x^{3} + x^{2} + x + 1 = a(x^{2} - 5x + 6) + b + cx^{2} + dx^{3} = dx^{3} + (a + c)x^{2} - 5ax + (6a + b).$$

Per il principio di identità dei polinomi, uguagliando i coefficienti delle potenze di x otteniamo $a=-5,\ b=6,\ c=d=1.$ Pertanto, $p=q_1+q_2,$ dove $q_1=1\cdot p=p\in U$ e $q_2(x)=6+x^2+x^3\in V.$

Esercizio 3.9. Sia \mathbb{R} spazio vettoriale su \mathbb{Q} , rispetto alla somma di numeri reali e al prodotto di un numero razionale per un numero reale. Provare che i vettori u=1 e v=2 sono linearmente dipendenti, mentre u e $w=\sqrt{2}$ sono linearmente indipendenti.

SOLUZIONE. Siano $a, b \in \mathbb{Q}$ tali che $a \cdot 1 + b \cdot 2 = 0$. Allora, a = -2b, per cui possiamo prendere ad esempio a = -2, b = 1 ed otteniamo una combinazione lineare non banale di u = 1 e v = 2 che dà il vettore nullo 0. Quindi, 1 e 2 sono linearmente dipendenti.

Invece, siano ora $a, b \in \mathbb{Q}$ tali che $a \cdot 1 + b \cdot \sqrt{2} = 0$. Allora, $a = -\sqrt{2}b$, che ha come unica soluzione razionale a = b = 0. Pertanto, 1 e $\sqrt{2}$ sono linearmente indipendenti.

Esercizio 3.10. Provare che $B_1 = \begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$, $B_2 = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}$ e $B_3 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ formano una base di $U = \{A \in \mathbb{R}^{2,2} \mid \text{tr} A = 0\}$, e trovare le componenti di $A = \begin{pmatrix} 3 & 5 \\ -2 & -3 \end{pmatrix}$ rispetto a tale base.

SOLUZIONE.

$$U = \{A \in \mathbb{R}^{2,2} \mid \text{tr}A = 0\} = \{A \in \mathbb{R}^{2,2} \mid a_{11} + a_{22} = 0\}$$
$$= \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & -a_{11} \end{pmatrix} \mid a_{ij} \in \mathbb{R} \right\} = a_{11}A_1 + a_{12}A_2 + a_{21}A_3,$$

dove $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $A_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. È facile verificare che A_1 , A_2 ed A_3 sono linearmente indipendenti, e quindi formano una base di U. In particolare, dim U = 3, quindi per provare che $\{B_1, B_2, B_3\}$ è una base di U basta provare ad esempio che sono linearmente indipendenti. Siano $a, b, c \in \mathbb{R}$ tali che $aB_1 + bB_2 + cB_3 = O$, dove O denota la matrice nulla. Allora,

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) = a \left(\begin{array}{cc} 2 & -3 \\ 1 & -2 \end{array}\right) + b \left(\begin{array}{cc} 1 & -1 \\ 0 & -1 \end{array}\right) + c \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right),$$

e quindi,

$$\begin{cases} 2a+b+c=0, \\ -3a-b+c=0, \\ a+c=0, \end{cases}$$

da cui si ottiene facilmente a=b=c=0, cioè, i tre vettori sono linearmente indipendenti e quindi formano una base di U. Siano ora $a,b,c\in\mathbb{R}$ tali che $A=aB_1+bB_2+cB_3$. Allora,

$$\begin{cases} 2a+b+c = 3, \\ -3a-b+c = 5, \\ a+c = -2, \end{cases}$$

da cui otteniamo a = -4, b = 9, c = 2.

Esercizio 3.11. Fissata
$$A = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}^{2,2}$$
,

- a) Provare che $V = \{X \in \mathbb{R}^{2,2} \mid AX = XA\}$ è un sottospazio vettoriale di $\mathbb{R}^{2,2}$.
- b) Trovare una base di V ed un supplementare W di V in $\mathbb{R}^{2,2}$.
- c) Esprimere $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ come somma di due matrici di V e W.

SOLUZIONE.

a) Siano $X, Y \in V$ e $a, b \in \mathbb{R}$. Allora

$$A(aX + bY) = A(aX) + A(bY) = aAX + bAY = aXA + bYA = (aX + bY)A.$$

Quindi, $aX + bY \in V$, cioè, V è un spttospazio vettoriale.

b) Sia $X \in V$, $X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. Imponendo che AX = XA, si ottiene che i coefficienti di X devono soddisfare il sistema e quindi,

$$\begin{cases}
2x_1 + x_2 = 2x_1, \\
x_2 = 2x_2, \\
2x_3 + x_4 = x_1 + x_3, \\
x_4 = x_2 + x_4,
\end{cases}$$

da cui si ottiene $x_2 = x_1 - x_3 - x_4 = 0$. Quindi,

$$V = \left\{ \begin{pmatrix} x_3 + x_4 & 0 \\ x_3 & x_4 \end{pmatrix} \mid x_3, x_4 \in \mathbb{R} \right\} = L \left(\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right).$$

È facile verificare che le due matrici $X_1 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, oltre ad essere un sistema di generatori per V, sono linearmente indipendenti, e quindi formano una base di V. Completiamo $\{X_1, X_2\}$ con due matrici, ad esempio della base canonica di $\mathbb{R}^{2,2}$, in modo da ottenere una nuova base di $\mathbb{R}^{2,2}$. Ad esempio, $\{X_1, X_2, E_1, E_2\}$ è una base di $\mathbb{R}^{2,2}$, dove $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Pertanto, $W = L(E_1, E_2)$ è un sottospazio supplementare di V in $\mathbb{R}^{2,2}$.

c) $B \in \mathbb{R}^{2,2} = V \oplus W$. Cerchiamo $a,b,c,d \in \mathbb{R}$ tali che $B = aX_1 + bX_2 + cE_1 + dE_2$. Otteniamo

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) = a \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right) + b \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + c \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) + d \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) = \left(\begin{array}{cc} a+b+c & d \\ a & b \end{array}\right).$$

Uguagliando i coefficienti di posto corrispondente otteniamo a=b=d=1, c=-1.Pertanto, $B_1=X_1+X_2=\begin{pmatrix}2&0\\1&1\end{pmatrix}\in V, B_2=E_1-E_2=\begin{pmatrix}-1&1\\0&0\end{pmatrix}\in W,$ e $B=B_1+B_2.$ Esercizio 3.12. In \mathbb{R}^4 si considerino i sottospazi vettoriali

$$U = \{(0, -2a, a, a) \mid a \in \mathbb{R}\}, \qquad V = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = z - t = 0\}.$$

- a) Trovare una base di U e una di V e verificare che la somma di U e V è diretta.
- b) Dire per quali valori di $k \in \mathbb{R}$ il vettore w = (1, -1, 0, k) è un elemento di $E = U \oplus V$.

SOLUZIONE.

a) I vettori di U sono del tipo a(0, -2, 1, 1), $a \in \mathbb{R}$, per cui, $\{u = (0, -2, 1, 1)\}$ è una base di U. Per quanto riguarda V,

$$V = \{(x, y, z, t) \in \mathbb{R}^4 \mid y = -x, z = t\} = \{(b, -b, c, c) \mid b, c \in \mathbb{R}\} = L(v_1, v_2),$$

dove $v_1 = (1, -1, 0, 0)$ e $v_2 = (0, 0, 1, 1)$. Si verifica facilmente che v_1 e v_2 sono linearmente indipendenti, e quindi formano una base di V.

Sia $v \in U \cap V$. Poiché $v \in U$, esiste $a \in \mathbb{R}$ tale che v = (0, -2a, a, a). Ma $v \in V$, quindi le sue coordinate verificano x+y=z-t=0, per cui otteniamo 0-2a=a-a=0, ossia a=0. Quindi, v=(0,0,0,0), cioè, $U \cap V=O$, vale a dire che la somma di $U \in V$ è diretta.

b) Poiché $\{u\}$ e $\{v_1, v_2\}$ sono basi rispettivamente di U e V e la somma di U e V è diretta, $\{u, v_1, v_2\}$ è una base di $U \cap V$, e $w \in U \cap V$ se e solo se è combinazione lineare dei vettori di tale base, cioè, se $\{u, v_1, v_2, w\}$ è linearmente dipendente. La matrice delle componenti di questi vettori rispetto alla base canonica è

$$A = \left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ -2 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & k \end{array}\right),$$

e il suo determinante è 2k. Quindi, $w \in U \cap V$ se e solos se rg A < 4, cioè, se e solo se k = 0.

Esercizio 3.13. In \mathbb{R}^4 si consideri il sottospazio $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = x + 2z - t = 0\}.$

- a) Determinare una base $\{u, v\}$ di U.
- b) Dire se $w = (1, 0, 1, 0) \in U$.
- c) Dire per quali valori di $a \in \mathbb{R}$ il vettore x = (a+1,0,2,-a) è combinazione lineare di u,v,w.

SOLUZIONE.

a) $U = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y = x + 2z - t = 0\} = \{(x, y, z, t) \in \mathbb{R}^4 \mid y = -x, t = x + 2z\} = \{(\alpha, -\alpha, \beta, \alpha + 2\beta) \mid \alpha, \beta \in \mathbb{R}\} = L(u, v), \text{ dove } u = (1, -1, 0, 1) \text{ e } v = (0, 0, 1, 2).$ I vettori $u \in v$ sono linearmente indipendenti, e quindi formano una base di U.

b) $w \in U$ se e solo se esistono $\alpha, \beta \in \mathbb{R}$ tali che $w = \alpha u + \beta v$, cioè

$$(1,0,1,0) = (\alpha, -\alpha, \beta, \alpha + 2\beta),$$

che è impossibile, poiché dalle prime due coordinate segue $\alpha=1$ e $-\alpha=0$. Pertanto, $w\notin U$. Si osservi che u,v,w sono quindi linearmente indipendenti.

c) Essendo u, v, w linearmente indipendenti, x è combinazione lineare di u, v, w se e solo se la matrice A delle componenti di u, v, w, x rispetto alla base canonica di \mathbb{R}^4 ha rango < 4, cioè ha determinante nullo. Tale matrice è

$$A = \left(\begin{array}{cccc} 1 & 0 & 1 & a+1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 2 & 0 & -a \end{array}\right)$$

e il suo determinante è -a + 2. Pertanto, x è combinazione lineare di u, v, w se e solo se a = 2.

Esercizio 3.14. Per ogni $\lambda \in \mathbb{R}$, sia $A(\lambda) = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & \lambda \end{pmatrix}$. Provare che, fissato λ ,

l'insieme $V = \{X \in \mathbb{R}^{3,3} \mid XA(\lambda) = A(\lambda)X = 0\}$ è un sottospazio vettoriale di $\mathbb{R}^{3,3}$, e calcolarne la dimensione in funzione di λ .

SOLUZIONE. Siano $X, Y \in V$, $a, b \in \mathbb{R}$. Allora:

$$A(\lambda)(aX + bY) = A(\lambda)(aX) + A(\lambda)(bY) = aA(\lambda)X + bA(\lambda)(Y) = 0,$$

e analogamente, $(aX + bY)A(\lambda) = 0$, tenendo conto del fatto che $X, Y \in V$. Quindi, V è un sottospazio vettoriale di $\mathbb{R}^{3,3}$.

Sia
$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \in V$$
. Imponendo $XA(\lambda) = 0$, otteniamo

$$\begin{cases} x_{11} + 2x_{12} = 0, \\ x_{21} + 2x_{22} = 0, \\ x_{31} + 2x_{32} = 0, \\ \lambda x_{13} = \lambda x_{23} = \lambda x_{33} = 0. \end{cases}$$

Analogamente, imponendo $A(\lambda)X = 0$, si ha

$$\begin{cases} x_{11} + 2x_{21} = 0, \\ x_{12} + 2x_{22} = 0, \\ x_{13} + 2x_{23} = 0, \\ \lambda x_{31} = \lambda x_{32} = \lambda x_{33} = 0. \end{cases}$$

Tutte queste condizioni danno un sistema lineare di cui ora determiniamo le soluzioni.

Se $\lambda \neq 0$, otteniamo $x_{13} = x_{23} = x_{33} = x_{31} = x_{32} = 0$, e $x_{21} = x_{12} = -2x_{22}$, $x_{11} = 4x_{22}$, $x_{21} = -2x_{22}$. Posto $x_{22} = \alpha$, risulta che il generico vettore di V è una matrice del tipo $X = \begin{pmatrix} 4\alpha & -2\alpha & 0 \\ -2\alpha & \alpha & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Quindi, se $\lambda \neq 0$, allora $U = L(X_1)$, dove $X = \begin{pmatrix} 4 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

$$X_1 = \left(\begin{array}{ccc} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Resta da esaminare il caso $\lambda = 0$. In tal caso, il sistema lineare dà solo $x_{21} = x_{12} = -2x_{22}, x_{11} = 4x_{22}, x_{13} = -2x_{23}, x_{31} = -2x_{32}$. Allora, posto $x_{22} = \alpha, x_{23} = \beta, x_{32} = \gamma$ e $x_{33} = \delta$, risulta che il generico vettore di V è una matrice del tipo $X = \begin{pmatrix} 4\alpha & -2\alpha & -2\beta \\ -2\alpha & \alpha & \beta \\ -2\gamma & \gamma & \delta \end{pmatrix}$. Pertanto, se $\lambda = 0$, allora $U = L(X_1, X_2, X_3, X_4)$, dove $X_1 = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, X_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & 1 & 0 \end{pmatrix}, X_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Si prova facilmente che, oltre ad essere un sistema di generatori, X_1, X_2, X_3, X_4 sono anche linearmente indipendenti, e quindi formano una base di V. Riassumendo, dim V=1 se e solo se $\lambda \neq 0$, mentre dim V=4 se e solo se $\lambda=0$.

3.2 Applicazioni lineari

Esercizio 3.15. Sia dato lo spazio vettoriale \mathbb{R}^3 con la base canonica $\mathcal{C} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$.

- 1. Provare che i vettori $\vec{v}_1(1,0,1)$, $\vec{v}_2(0,1,-1)$, $\vec{v}_3(0,0,2)$ formano una base \mathcal{B} di \mathbb{R}^3 .
- 2. Dato l'endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tale che

$$f(\vec{v}_1) = (3, 1, 0), \quad f(\vec{v}_2) = (-1, 0, 2), \quad f(\vec{v}_3) = (0, 2, 0),$$

determinare la matrice associata ad f rispetto a \mathcal{B} e rispetto a \mathcal{C} .

SOLUZIONE. Il primo punto è ovvio. Si può risolvere il secondo punto con due metodi. I metodo. Per scrivere $\mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(f)$ bisogna conoscere $f(\vec{e_i})$ nella base \mathcal{C} . Indicata con B la matrice di passaggio da \mathcal{C} a \mathcal{B} , si ha

$$\begin{cases}
\vec{v}_1 = \vec{e}_1 + \vec{e}_3, \\
\vec{v}_2 = \vec{e}_2 - \vec{e}_3, \\
\vec{v}_3 = 2\vec{e}_3,
\end{cases}$$

$$\begin{cases}
\vec{e}_1 = \vec{v}_1 - 1/2\vec{v}_3, \\
\vec{e}_2 = \vec{v}_2 + 1/2\vec{v}_3, \vec{e}_3 = 1/2\vec{v}_3.
\end{cases}$$
(3.2.1)

da cui

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}, B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/2 & 1/2 & 1/2 \end{pmatrix}.$$

La matrice B^{-1} si può calcolare direttamente o risolvendo il sistema (3.2.1 simbolicamente rispetto alle $\vec{e_i}$.

$$\begin{cases} f(\vec{v}_1) = f(\vec{e}_1) + f(\vec{e}_3) = 3\vec{e}_1 + \vec{e}_2, \\ f(\vec{v}_2) = f(\vec{e}_2) - f(\vec{e}_3) = -\vec{e}_1 + 2\vec{e}_3, \\ f(\vec{v}_3) = 2f(\vec{e}_3) = 2\vec{e}_2, \end{cases} \Rightarrow \begin{cases} f(\vec{e}_1) = 3\vec{e}_1, \\ f(\vec{e}_2) = -\vec{e}_1 + \vec{e}_2 + 2\vec{e}_3, \\ f(\vec{e}_3) = \vec{e}_2, \end{cases}$$
$$A = \mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(f) \begin{pmatrix} 3 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 0 \end{pmatrix}.$$

Per scrivere $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f)$ bisogna conoscere $f(\vec{v_i})$ nella base \mathcal{B} .

$$\begin{cases} f(\vec{v}_1) = 3\vec{e}_1 + \vec{e}_2 = 3\vec{v}_1 + \vec{v}_2 - \vec{v}_3, \\ f(\vec{v}_2) = -\vec{e}_1 + 2\vec{e}_3 = -\vec{v}_1 + 3/2\vec{v}_3, \\ f(\vec{v}_3) = 2\vec{e}_2 = 2\vec{v}_2 + \vec{v}_3, \end{cases}$$
$$A' = \mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 2 \\ -1 & 3/2 & 1 \end{pmatrix}.$$

Si verifichi che $A' = B^{-1}AB$.

II metodo. Dai dati del problema segue direttamente

$$\mathcal{M}_{\mathcal{B}}^{\mathcal{C}}(f) = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix},$$

e usando le formule per il cambiamento di base

$$\mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(f) = \mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(\mathrm{Id}_{\mathbb{R}^{3}}) \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{C}}(f) \cdot \mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\mathrm{Id}_{\mathbb{R}^{3}}),$$
$$\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f) = \mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\mathrm{Id}_{\mathbb{R}^{3}}) \cdot \mathcal{M}_{\mathcal{B}}^{\mathcal{C}}(f) \cdot \mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(\mathrm{Id}_{\mathbb{R}^{3}}),$$

tenendo presente che $\mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(\mathrm{Id}_{\mathbb{R}^3}) = \mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(\mathrm{Id}_{\mathbb{R}^3}) = \mathrm{Id}$, matrice identità, e che

$$B = \mathcal{M}_{\mathcal{B}}^{\mathcal{C}}(\mathrm{Id}_{\mathbb{R}^3}), \qquad B^{-1} = \mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(\mathrm{Id}_{\mathbb{R}^3}).$$

Esercizio 3.16. Sia $f : \mathbb{R}^2 \to \mathbb{R}^3$, $(x,y) \mapsto (2x, -2y, x + y)$. Siano $B = \{e_1, e_2\}$ la base canonica di \mathbb{R}^2 , $B' = \{e'_1, e'_2, e'_3\}$ la base canonica di \mathbb{R}^3 , $e B'' = \{v_1, v_2, v_3\}$ la base di \mathbb{R}^3 formata dai vettori $v_1 = (1, 1, 1)$, $v_2 = (1, 0, 1)$ e $v_3 = (1, 0, 0)$. Trovare $M_{BB'}(f)$ e $M_{BB''}(f)$.

SOLUZIONE.

$$f(e_1) = f(1,0) = (2,0,1) = 2e'_1 + e'_3,$$

 $f(e_2) = f(0,1) = (0,-2,1) = -2e'_2 + e'_3,$

e quindi,

$$M_{BB'}(f) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \\ 1 & 1 \end{pmatrix}.$$

Per determinare $M_{BB''}(f)$, dobbiamo esprimere $f(e_1)$, $f(e_2)$ come combinazioni lineari dei vettori della base B''. Siano $a, b, c \in \mathbb{R}$ tali che $f(e_1) = av_1 + bv_2 + cv_3$. Allora,

$$f(e_1) = (2,0,1) = a(1,1,1) + b(1,0,1) + c(1,0,0) = (a+b+c,a,a+b),$$

da cui otteniamo $a=0,\ b=1$ e c=1, che sono i coefficienti della prima colonna di $M_{BB''}(f)$. Analogamente, siano $a',b',c'\in\mathbb{R}$ tali che $f(e_2)=a'v_1+b'v_2+c'v_3$. Si ottiene $a'=-2,\ b'=3$ e c'=-1, che formano la seconda colonna di $M_{BB''}(f)$. Pertanto,

$$M_{BB''}(f) = \begin{pmatrix} 0 & -2 \\ 1 & 3 \\ 1 & -1 \end{pmatrix}.$$

Esercizio 3.17. Data $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1/2 & -3/2 \end{pmatrix}$, trovare $f : \mathbb{R}^3 \to \mathbb{R}^2$ tale che A sia la matrice associata ad f rispetto alle basi canoniche B, B' di \mathbb{R}^3 ed \mathbb{R}^2 rispettivamente.

SOLUZIONE. Poiché A è la matrice associata ad f rispetto alle basi canoniche B, B' di \mathbb{R}^3 ed \mathbb{R}^2 , per ogni $(x, y, z) \in \mathbb{R}^3$ si ha che la matrice colonna Y delle componenti di f(x, y, z) rispetto a B' è data da $Y = a \cdot X$, dove X è la matrice colonna delle componenti di (x, y, z) rispetto a B. Quindi,

$$Y = A \cdot X = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1/2 & -3/2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + y \\ \frac{1}{2}y - \frac{3}{2}z \end{pmatrix},$$

da cui segue che

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (2x + y, \frac{1}{2}y - \frac{3}{2}z).$$

Esercizio 3.18. Sia $f: \mathbb{R}^{2,2} \to \mathbb{R}^{2,2}$ tale che $X \mapsto X + X^t$.

- a) Provare che f è lineare ed esplicitare f.
- b) Trovare ker f, Im f e una loro base.
- c) Dato $V = \{X \in \mathbb{R}^{2,2} \mid \text{tr}(X) = 0\}, \text{ trovare } f(V).$

SOLUZIONE.

a) Per ogni $X, Y \in \mathbb{R}^{2,2}$ e $a \in \mathbb{R}$,

$$f(X+Y) = X + Y + (X+Y)^{t} = X + Y + X^{t} + Y^{t} =$$

$$= X + X^{t} + Y + Y^{t} = f(X) + f(Y),$$

$$f(aX) = aX + (aX)^{t} = aX + aX^{t} = a(X + X^{t}) = af(X).$$

Pertanto, f è un'applicazione lineare.

Sia
$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \in \mathbb{R}^{2,2}$$
. Allora

$$f(X) = X + X^{t} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} + \begin{pmatrix} x_{11} & x_{21} \\ x_{12} & x_{22} \end{pmatrix} = \begin{pmatrix} 2x_{11} & x_{12} + x_{21} \\ x_{12} + x_{21} & 2x_{22} \end{pmatrix}.$$

Quindi,

$$f: \mathbb{R}^{2,2} \longrightarrow \mathbb{R}^{2,2}$$

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \longmapsto \begin{pmatrix} 2x_{11} & x_{12} + x_{21} \\ x_{12} + x_{21} & 2x_{22} \end{pmatrix}.$$

b) $X \in \ker f$ se e solo se f(X) = O, dove O è la matrice nulla. Quindi, $X = (x_{ij}) \in \ker f$ se e solo se $X + X^t = O$, che, espressa in termini di coefficienti x_{ij} , dà $x_{11} = x_{22} = x_{12} + x_{21} = 0$. Pertanto,

$$\ker f = \{X \in \mathbb{R}^{2,2} \mid X + X^t = 0\} = \{X = (x_{ij}) \in \mathbb{R}^{2,2} \mid x_{11} = x_{22} = x_{12} + x_{21} = 0\}$$
$$= \left\{ \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \mid a \in \mathbb{R} \right\} = L(X_1),$$

dove
$$X_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
.

Considerata ad esempio la base canonica $\{E_1, E_2, E_3, E_4\}$ di $\mathbb{R}^{2,2}$, poichè $\mathbb{R}^{2,2} = L(E_1, E_2, E_3, E_4)$, si ha Im $f = L(f(E_1), f(E_2), f(E_3), f(E_4))$. Dall' espressione esplicita di f otteniamo

$$f(E_1) = f(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

e, analogamente,

$$f(E_2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad f(E_3) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad f(E_4) = 2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Quindi, Im
$$f = L(A_1, A_2, A_3)$$
, dove $A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Si osservi che ker $f = \{X \in \mathbb{R}^{2,2} \mid X = -X^t\} = \mathcal{A}$, sottospazio delle matrici antisimmetriche, mentre Im $f = \mathcal{S}$, sottospazio delle matrici simmetriche.

c) V è il sottospazio delle matrici a traccia nulla, ed ha dimensione 3 (v. Es. 3.10). Possiamo provare facilmente che $V_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $V_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $V_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ è una base di V. Di conseguenza, $f(V) = L(f(V_1), f(V_2), f(V_3))$. Poiché si calcola facilmente che $f(V_1) = 2V_1$ e $f(V_2) = f(V_3) = A_2$, possiamo concludere che

$$f(V) = L(V_1, A_2) = \left\{ \begin{pmatrix} a & b \\ b & -a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}.$$

Esercizio 3.19. Si considerino lo spazio vettoriale \mathbb{R}^3 con la struttura euclidea standard e l'endomorfismo f di \mathbb{R}^3 così definito

$$f(x, y, z) = \left(\frac{1}{2}x + \frac{\sqrt{3}}{2}z, y, -\frac{\sqrt{3}}{2}x + \frac{1}{2}z\right).$$

- 1. Provare che f è un isomorfismo e trovare f^{-1} .
- 2. Trovare f(W) dove $W = \{(x, y, z) \in \mathbb{R}^3 \mid x y + z = 0\}.$

SOLUZIONE.

1. La matrice associata ad f rispetto alla base canonica $\mathcal C$ è

$$A = \begin{pmatrix} 1/2 & 0 & \sqrt{3}/2 \\ 0 & 1 & 0 \\ -\sqrt{3}/2 & 0 & 1/2 \end{pmatrix}.$$

Poiché det $A=1\neq 0,\ A$ è invertibile e quindi f è un isomorfismo. Inoltre

$$\mathcal{M}_{\mathcal{C}}^{\mathcal{C}}(f^{-1}) = A^{-1} = \begin{pmatrix} 1/2 & 0 & -\sqrt{3}/2 \\ 0 & 1 & 0 \\ \sqrt{3}/2 & 0 & 1/2 \end{pmatrix},$$

quindi

$$f^{-1}(x', y', z') = \left(\frac{1}{2}x' - \frac{\sqrt{3}}{2}z', y', \frac{\sqrt{3}}{2}x' + \frac{1}{2}z'\right).$$

2. $W = \{(x, x + z, z)\}$ è un piano e $W = \mathcal{L}(\vec{w_1}, \vec{w_2})$, dove $\vec{w_1} = (1, 1, 0)$ e $\vec{w_2} = (0, 1, 1)$. Allora, per un teorema noto, $f(W) = \mathcal{L}(f(\vec{w_1}), f(\vec{w_2}))$, e risulta anche $f(\vec{w_1}) = (1/2, 1, -\sqrt{3}/2)$, $f(\vec{w_2}) = (\sqrt{3}/2, 1, 1/2)$, quindi f(W) è il piano di equazioni parametriche

$$\begin{cases} x = \frac{1}{2}\lambda + \frac{\sqrt{3}}{2}\mu, \\ y = \lambda + \mu, \\ z = -\frac{\sqrt{3}}{2}\lambda + \frac{1}{2}\mu. \end{cases}$$

Esercizio 3.20. Sia $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x], \ p(x) \mapsto xp'(x)$.

- a) Provare che f è lineare. Esplicitare f.
- b) Trovare $\ker f$, $\operatorname{Im} f$ e le loro dimensioni.
- c) Trovare f(V), dove $V = \{ax^2 + bx b \mid a, b \in \mathbb{R}\}.$

SOLUZIONE.

a) Per ogni $p, q \in \mathbb{R}_3[x]$ e $a \in \mathbb{R}$:

$$f(p+q) = x(p+q)'(x) = xp'(x) + xq'(x) = f(p) + f(q)$$

 $f(ap) = x(ap)'(x) = xap'(x) = a \cdot xp'(x) = af(p).$

Pertanto, f è un'applicazione lineare.

Sia $p(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$ un generico elemento di $\mathbb{R}_3[x]$. Allora

$$f(p) = xp'(x) = x(3\alpha x^2 + 2\beta x + \gamma) = 3\alpha x^3 + 2\beta x^2 + \gamma x.$$

Quindi,

$$f: \mathbb{R}_3[x] \longrightarrow \mathbb{R}_3[x]$$

$$\alpha x^3 + \beta x^2 + \gamma x + \delta \longmapsto 3\alpha x^3 + 2\beta x^2 + \gamma x.$$

b) $p \in \ker f$ se e solo se f(p) = 0, dove 0 è il polinomio nullo. Quindi, $p(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta \in \ker f$ se e solo se $3\alpha x^3 + 2\beta x^2 + \gamma x$ per ogni $x \in \mathbb{R}$, che, per il principio di identità dei polinomi, dà $\alpha = \beta = \gamma = 0$. Pertanto,

$$\ker f = \{ p \in \mathbb{R}_3[x] \mid xp'(x) = 0 \} = \{ \alpha x^3 + \beta x^2 + \gamma x + \delta \in \mathbb{R}_3[x] \mid \alpha = \beta = \gamma = 0 \}$$
$$= \{ p(x) = \delta \mid \delta \in \mathbb{R} \} = L(1).$$

In altri termini, ker f è il sottospazio dei polinomi di $\mathbb{R}_3[x]$ di grado 0. In particolare, $\{1\}$ è una base di ker f, per cui, dim ker f = 1.

Considerata ad esempio la base canonica $\{1, x, x^2, x^3\}$ di $\mathbb{R}_3[x]$, poiché $\mathbb{R}_3[x]$ è generato da $\{1, x, x^2, x^3\}$, si ha Im $f = L(f(1), f(x), f(x^2), f(x^3))$. Dall' espressione esplicita di f otteniamo

$$f(1) = x \cdot (1)' = 0$$
, $f(x) = x \cdot (x)' = x$, $f(x^2) = x \cdot (x^2)' = 2x^2$, $f(x^3) = x \cdot (x^3)' = 3x^3$.

Quindi, $\operatorname{Im} f = L(x, 2x^2, 3x^3) = L(x, x^2, x^3) = \{0\} \cup \{p \in \mathbb{R}_3[x] \mid deg(p) \geq 1\}$, dove deg(p) è il grado di p. In particolare, $\{x, x^2, x^3\}$ è una base di $\operatorname{Im} f$, per cui dim $\operatorname{Im} f = 3$.

c) Se $p \in V$, allora esistono $a, b \in \mathbb{R}$ tali che $p(x) = ax^2 + b(x - 1)$. Pertanto, $V = L(p_1, p_2)$, dove $p_1(x) = x^2$, $p_2(x) = x - 1$. Quindi, $f(V) = L(f(p_1), f(p_2)) = L(2x^2, x) = L(x^2, x)$.

Esercizio 3.21. Siano $U = \{(x,y) \in \mathbb{R}^2 \mid x-y=0\}$ e V l'asse delle x. Consideriamo $f: \mathbb{R}^2 = U \oplus V \to \mathbb{R}^2$, $w = u + v \mapsto u - v$ (f è la simmetria rispetto all'asse delle x, eseguita parallelamente alla retta U).

- a) Provare che f è lineare. Esplicitare f.
- b) Trovare ker f, Im f, e la matrice $M_B(f)$, dove B è la base canonica di \mathbb{R}^2 . Soluzione.
- a) Dati $w, w' \in \mathbb{R}^2$, w = u + v, w' = u' + v', e $a, b \in \mathbb{R}$, risulta:

$$f(aw + bw') = f(a(u + v) + b(u' + v')) = f((au + bu') + (av + bv')) =$$

$$= au + bu' - (av + bv') = (au - av) + (bu' - bv')$$

$$= (u - v) + b(u' - v') = af(w) + bf(w').$$

Pertanto, f è un'applicazione lineare.

Consideriamo la base canonica $B = \{e_1, e_2\}$ di \mathbb{R}^2 . $e_1 = (0, 1) \in V$, per cui $f(e_1) = -e_1$. Inoltre, $e_2 = (1, 0) = (e_2 + e_1) + (-e_1) \in U \oplus V$, quindi $f(e_2) = (e_2 + e_1) + e_1 = 2e_1 + e_2$.

Pertanto, la matrice associata ad f rispetto a B è

$$A = M_B(f) = \left(\begin{array}{cc} -1 & 2\\ 0 & 1 \end{array}\right).$$

Allora, per ogni $(x,y) \in \mathbb{R}^2$, si ha

$$f(x,y) = A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x + 2y \\ y \end{pmatrix} = (-x + 2y, y).$$

b) $(x,y) \in \ker f$ se e solo se f(x,y) = (0,0), cioè se e solo se (-x+2y,y) = (0,0), da cui segue subito x=y=0. Quindi, $\ker f = O$, il sotospazio nullo di \mathbb{R}^2 , ossia, f è iniettiva.

Per quanto riguarda $\operatorname{Im} f$, si ha

$$\operatorname{Im} f = L(f(e_1), f(e_2)) = L(-e_1, 2e_1 + e_2) = L(e_1, e_2) = \mathbb{R}^2.$$

Alla stessa conclusione si arriva applicando il Teorema del rango. Infatti:

$$\dim \operatorname{Im} f = \dim \mathbb{R}^2 - \dim \ker f = \dim \mathbb{R}^2 - 0 = \dim \mathbb{R}^2.$$

Quindi, essendo Im f un sottospazio di \mathbb{R}^2 avente la sua stessa dimensione, si conclude che Im $f = \mathbb{R}^2$.

Esercizio 3.22. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$, la proiezione ortogonale sul piano $\pi: x+y=0$. Trovare ker f, Im f e una loro base, e provare che $\mathbb{R}^3 = \ker f \oplus \operatorname{Im} f$.

Soluzione. π individua il sottospazio vettoriale

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\} = \{(a, -a, b) \mid a, b \in \mathbb{R}\} = L(u_1, u_2),$$

dove $u_1 = (1, -1, 0)$, $u_2 = (0, 0, 1)$. Si verifica facilmente che $\{u_1, u_2\}$ è una base di U, quindi dim U = 2. Per ogni vettore $v = (x, y, z) \in \mathbb{R}^3$, si ha

$$v \in U^{\perp} \Leftrightarrow v \cdot u_1 = v \cdot u_2 = 0 \Leftrightarrow x - y = z = 0.$$

Quindi, $U^{\perp} = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = z = 0\} = \{(c, c, 0) \mid c \in \mathbb{R}\} = L(u_3)$, dove $u_3 = (1, 1, 0)$. Chiaramente, $\{u_3\}$ è base di U^{\perp} e dim $U^{\perp} = 1$. Essendo f la proiezione ortogonale su U, risulta:

$$f: \mathbb{R}^3 = U \oplus U^{\perp} \longrightarrow \mathbb{R}^3$$
$$v = u + u^{\perp} \longmapsto u,$$

dove u (rispettivamente, u^{\perp}) indica la componente di v in U (risp., in U^{\perp}). $v = u + u^{\perp} \in \ker f$ se e solo se u = 0, cioè se e solo se $v = u^{\perp} \in U^{\perp}$. Quindi, $\ker f = U^{\perp}$.

Per quanto riguarda Im f, si noti che, dato $u \in U \subset \mathbb{R}^3$, si ha f(u) = u. Quindi, $U \subset \text{Im } f$. D'altro canto, per il Teorema del rango,

$$\dim \operatorname{Im} f = \dim \mathbb{R}^3 - \dim \ker f = 3 - 1 = 2 = \dim U.$$

Quindi, essendo U un sottospazio di Im f avente la sua stessa dimensione, si conclude che Im f=U. In particolare, è ovvio ora che $\mathbb{R}^3=\ker f\oplus \operatorname{Im} f$, poiché $\mathbb{R}^3=U\oplus U^\perp$, e $\ker f=U^\perp$, $\operatorname{Im} f=U$.

Esercizio 3.23. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione lineare la cui matrice associata, rispetto alle basi canoniche $B \in B'$ di \mathbb{R}^3 ed \mathbb{R}^2 rispettivamente, è $A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix}$.

- a) Trovare f(1, 2, 3).
- b) Trovare ker f, dire se f è iniettiva e suriettiva.
- c) trovare $f^{-1}(1,2)$.

SOLUZIONE.

a) Considerando le matrici colonna X delle componenti di x = (1, 2, 3) rispetto a B e di f(1, 2, 3) rispetto a B', si ha

$$f(1,2,3) = A \cdot X = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \end{pmatrix} = (7,4).$$

b)
$$v=(x,y,z)\in\ker f$$
 se e solo se $\begin{pmatrix}1&0&2\\-1&1&1\end{pmatrix}\cdot\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$, da cui si ha $x+2z=y+3z=0$. Quindi,

$$\ker f = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2z = y + 3z = 0\} = \{(2a, 3a, -a) \mid a \in \mathbb{R}\} = L((2, 3, -1)).$$

Poiché $\ker f$ non è il sottos pazio nullo, f non è iniettiva. Dal Teorema del rango segue che

$$\dim \operatorname{Im} f = \dim \mathbb{R}^3 - \dim \ker f = 3 - 1 = 2 = \dim \mathbb{R}^2.$$

Di conseguenza, Im $f = \mathbb{R}^2$, cioe', f è suriettiva.

c) Le terne $(x,y,z)\in f^{-1}(1,2)$ corrispondono alle soluzioni del sistema lineare $A\cdot\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}1\\2\end{pmatrix}$, che dà x+3z-1=y+3z-1=0. Pertanto,

$$f^{-1}(1,2) = \{(x,y,z) \in \mathbb{R}^3 \mid x+2z-1=y+3z-1=0\} = \{(1-2a,1-3a,-a) \mid a \in \mathbb{R}\} = (1,1,0) + \ker f.$$

Si noti che f(1,1,0)=(1,2), e si confronti il risultato trovato con quanto afferma il Teorema di Rouché-Capelli circa le soluzioni di un sistema lineare e del sistema omogeneo associato.

Esercizio 3.24. Sia $f : \mathbb{R}^2 \to \mathbb{R}^3$ l'applicazione lineare tale che f(1,1) = (3,-1,0), f(-1,1) = (1,0,-1).

- a) Trovare La matrice A, associata ad f rispetto alle basi canoniche B e B' di \mathbb{R}^2 e di \mathbb{R}^3 rispettivamente.
 - b) Trovare $\ker f \in \operatorname{Im} f$.
 - c) trovare $f^{-1}(2, h, -1)$, dove $h \in \mathbb{R}$.

SOLUZIONE.

a) $B = \{i, j\}, B' = \{e_1, e_2, e_3\}$. Risulta:

$$(3,-1,0) = f(1,1) = f(i+j) = f(i) + f(j),$$

 $(1,0,-1) = f(-1,1) = f(-i+j) = -f(i) + f(j).$

Dalle due precedenti uguaglianze si ricava

$$f(i) = e_1 - \frac{1}{2}e_2 + \frac{1}{2}e_3,$$

$$f(j) = 2e_1 - \frac{1}{2}e_2 - \frac{1}{2}e_3.$$

Visto che le componenti di f(i) ed f(j) formano la prima e la seconda colonna della matrice A associata a f, concludiamo che

$$A = \begin{pmatrix} 1 & 2 \\ -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$

b)
$$v = (x, y) \in \ker f$$
 se e solo se $\begin{pmatrix} 1 & 2 \\ -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, da cui si ha

x + 2y = x + y = x - y = 0, e quindi, x = y = 0. Pertanto, ker f è il sottospazio nullo, cioè, f è iniettiva. Dal Teorema del rango segue che

$$\dim \operatorname{Im} f = \dim \mathbb{R}^2 - \dim \ker f = 2 - 0 = 2.$$

Si ha che

Im
$$f = L(f(i), f(j)) = L((1, -\frac{1}{2}, \frac{1}{2}), (2, -\frac{1}{2}, -\frac{1}{2})) =$$

= $L((2, -1, 1), (4, -1, -1)) = \{(2a + 4b, -a - b, a - b) \mid a, b \in \mathbb{R}\}.$

c) Le coppie $(x,y) \in f^{-1}(2,h,-1)$ corrispondono alle soluzioni del sistema lineare $A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ h \\ -1 \end{pmatrix}$, che è incompatibile per $h \neq 1/3$, mentre per h = 1/3 ha soluzione $x = -2/3, \ y = 4/3$. Pertanto, se $h \neq 1/3$ allora $f^{-1}(2,h,-1) = \emptyset$, mentre se h = 1/3 allora $f^{-1}(2,h,-1) = \{(-2/3,4/3)\}$.

Esercizio 3.25. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare tale che, dati $v_1 = (1,0,1)$, $v_2 = (0,1,-1)$ e $v_3 = (0,0,2)$, risulta $f(v_1) = (3,1,0)$, $f(v_2) = (-1,0,2)$, $f(v_3) = (0,2,0)$. Trovare le matrici associate ad f rispetto alla base canonica $B = \{i,j,k\}$ di \mathbb{R}^3 e rispetto alla base $B' = \{v_1, v_2, v_3\}$.

SOLUZIONE.

$$\begin{cases}
(3,1,0) = f(v_1) = f(1,0,1) = f(i) + f(k), \\
(-1,0,2) = f(v_2) = f(0,1,-1) = f(j) - f(k), \\
(0,2,0) = f(v_3) = f(0,0,2) = 2f(k).
\end{cases}$$

Dalle precedenti uguaglianze si ricava

$$\begin{cases} f(i) = (3,0,0) = 3i, \\ f(j) = (-1,1,2) = -i + j + 2k, \\ f(k) = (0,1,0) = j. \end{cases}$$

Pertanto, la matrice associata ad f rispetto alla base canonica B è

$$M_B(f) = \left(\begin{array}{ccc} 3 & 0 & 0 \\ -1 & 1 & 2 \\ 0 & 1 & 0 \end{array}\right).$$

Per quanto riguarda $M_{B'}(f)$, poiché conosciamo già $f(v_i)$, i = 1, 2, 3, dobbiamo solo esprimere $f(v_i)$ come combinazione lineare di v_1, v_2, v_3 , i coefficienti della combinazione lineare daranno i coefficienti della *i*-esima colonna di $M_{B'}(f)$.

Siano $a, b, c \in \mathbb{R}$ tali che $f(v_1) = av_1 + bv_2 + cv_3$. Allora

$$(3,1,0) = a(1,0,1) + b(0,1,-1) + c(0,0,2) = (a,b,a-b+2c),$$

da cui segue facilmente a=3, b=1, c=-1. Analogamente, da $f(v_2)=a'v_1+b'v_2+c'v_3$ si ottiene a'=-1, b'=0, c'=3/2, mentre da $f(v_3)=a''v_1+b''v_2+c''v_3$ segue a''=0, b''=2, c''=1. Quindi, la matrice associata a f rispetto alla base B' è

$$M_{B'}(f) = \begin{pmatrix} 3 & -1 & 0 \\ 1 & 0 & 2 \\ -1 & 3/2 & 1 \end{pmatrix}.$$

Esercizio 3.26. Si considerino gli endomorfismi f_k di \mathbb{R}^3 così definiti, al variare di $k \in \mathbb{R}$:

$$f_k(x, y, z) = (y + z, kx + y, -y)$$
.

- 1. Dire per quali valori di k l'applicazione f_k è un isomorfismo.
- 2. Calcolare $f_0(W)$, dove $W = \{(x, y, z) \in \mathbb{R}^3 \mid z 2y = 3\}$, specificando se esso sia un sottospazio vettoriale di \mathbb{R}^3 .

SOLUZIONE.

1. La matrice di f_k rispetto alla base canonica è

$$A_k = \begin{pmatrix} 0 & 1 & 1 \\ k & 1 & 0 \\ 0 & -1 & 0 \end{pmatrix}, \quad \det A = -k.$$

Quindi f_k è un isomorfismo per $k \neq 0$.

2. $W = \{ (u, v, 2v + 3) \mid u, v \in \mathbb{R} \}$, quindi

$$f_0(W) = \{ (3v + 3, v, -v) \mid v \in \mathbb{R} \},\$$

che non è un sottospazio vettoriale poiché non contiene il vettore nullo.

Esercizio 3.27. Consideriamo $f: \mathbb{R}^3 \to \mathbb{R}^{2,2}, \ (x,y,z) \mapsto \begin{pmatrix} 2z & x-y \\ y+z & x \end{pmatrix}$.

- a) Provare che f è lineare.
- b) Trovare $\ker f$, $\operatorname{Im} f$ e una sua base.
- c) Trovare $f^{-1}\begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix}$, al variare di $a \in \mathbb{R}$.

Soluzione. a) è lasciata per esercizio (segue facilmente dala dipendenza lineare dei coefficienti di f(x, y, z) da $x, y \in z$).

b) $v = (x, y, z) \in \ker f$ se e solo se

$$\left(\begin{array}{cc} 2z & x-y \\ y+z & x \end{array}\right) = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right).$$

Uguagliando i coefficienti delle due matrici, otteniamo x=y=z=0. Pertanto, ker f è il sottospazio nullo, cioè, f è iniettiva. Dal Teorema del rango segue che

$$\dim \operatorname{Im} f = \dim \mathbb{R}^3 - \dim \ker f = 3 - 0 = 3.$$

Considerata la base canonica $B = \{i, j, k\}$ di \mathbb{R}^3 , risulta:

$$\begin{aligned} \operatorname{Im} f &= L(f(i), f(j), f(k)) = L\left(\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix}\right) = \\ &= \left\{\begin{pmatrix} 2\gamma & \alpha - \beta \\ \beta + \gamma & \alpha \end{pmatrix} \middle| \alpha, \beta, \gamma \in \mathbb{R} \right\}. \end{aligned}$$

Poichè dim Im f = 3, le tre matrici che generano Im f formano una base di Im f.

c) Le terne $(x, y, z) \in f^{-1} \begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix}$ corrispondono alle soluzioni di

$$\left(\begin{array}{cc} 2z & x-y \\ y+z & x \end{array}\right) = \left(\begin{array}{cc} a & 0 \\ 1 & a \end{array}\right),$$

cioè, del sistema lineare

$$\begin{cases} 2z = a, \\ x - y = 0 \\ y + z = 1 \\ x = a. \end{cases}$$

Risolvendo il sistema, si ottiene che è incompatibile per $a \neq 2/3$, mentre per a = 2/3 ha soluzione x = 2/3, y = 2/3, z = 1/3. Pertanto, se $a \neq 2/3$ allora $f^{-1}\begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix} = \emptyset$, mentre se a = 2/3 allora $f^{-1}\begin{pmatrix} a & 0 \\ 1 & a \end{pmatrix} = \{(2/3, 2/3, 1/3)\}$.

Esercizio 3.28. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare la cui matrice associata rispetto alla base canonica B di \mathbb{R}^3 è

$$A = \left(\begin{array}{rrr} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 0 & 2 & 0 \end{array}\right).$$

- a) Determinare $\operatorname{rg} f^2$ (il rango di f^2) e $\ker f^2$.
- b) Trovare $\ker f \cap \operatorname{Im} f$.
- c) trovare $f^{-1}(V)$, dove V = L((1,0,0),(1,0,1)).

SOLUZIONE. a) Essendo A la matrice associata ad f rispetto a B, la matrice associata a f^2 rispetto a B è

$$A^{2} = A \cdot A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 0 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & -1 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -2 & -2 \\ 0 & 0 & 0 \\ 2 & -2 & -2 \end{pmatrix}.$$

Risulta rg $f^2 = \text{rg } A^2 = 1$. Inoltre, poichè dim Im $f = \text{rg } f^2 = 1$, dal Teorema del rango segue che dim ker f = 3 - 1 = 2.

$$(x,y,z) \in \ker f^2$$
 se e solo se $A^2 \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, cioè, se e solo se $2(x-y-z) = 0$.

Pertanto,

$$\ker f^2 = \{(x,y,z) \in \mathbb{R}^3 \mid x-y-z = 0\} = \{(\alpha+\beta,\alpha,\beta) \mid \alpha,\beta \in \mathbb{R}\} = L((1,1,0),(1,0,1)).$$

b)
$$(x,y,z)\in\ker f$$
 se e solo se $A\cdot\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}$, cioè, se e solo se
$$\begin{cases}x+y-z=0,\\x-y-z=0\\2y=0,\end{cases}$$

da cui segue x - z = y = 0. Pertanto,

$$\ker f = \{(x, y, z) \in \mathbb{R}^3 \mid x - z = y = 0\} = \{(a, 0, a) \mid a \in \mathbb{R}\} = L((1, 0, 1)).$$

Si noti che, come è ovvio, $\ker f \subset \ker f^2$.

Considerata la base canonica $B = \{i, j, k\}$ di \mathbb{R}^3 , risulta:

$$\begin{aligned} \operatorname{Im} f &= L(f(i), f(j), f(k)) = L\left((1, 1, 0), (1, -1, 2), (-1, -1, 0)\right) = \\ &= L\left((1, 1, 0), (1, -1, 2)\right) = \left\{(a + b, a - b, 2b) \mid a, b \in \mathbb{R}\right\}. \end{aligned}$$

Si noti che $(1,0,1) \in \text{Im } f$, e ker f = L((1,0,1)). Quindi, ker $f \subset \text{Im } f$, per cui, ker $f \cap \text{Im } f = \ker f = L((1,0,1))$.

c) $V = L((1,0,0),(1,0,1)) = \{(a+b,0,a) \mid a,b \in \mathbb{R}\} = \{(x,y,z) \in \mathbb{R}^3 \mid y=0\}$. Dato $v = (x,y,z) \in \mathbb{R}^3$, risulta:

$$v \in f^{-1}(V) \Leftrightarrow f(v) \in V \Leftrightarrow (x+y-z, x-y-z, 2y) \in V.$$

I vettori di V sono quelli con seconda componente nulla, quindi, $v \in f^{-1}(V)$ se e solo se x - y - z = 0. Pertanto:

$$f^{-1}(V) = \{(x, y, z) \in \mathbb{R}^3 \mid x - y - z = 0\}.$$

Esercizio 3.29. Fissato $u=i-2j+3k\in\mathbb{R}^3,\ sia\ f:\mathbb{R}^3\to\mathbb{R}^3,\ v\mapsto 3u+u\wedge v.$

- a) Provare che f è lineare.
- b) Trovare la matrice associata ad f rispetto alla base canonica B di \mathbb{R}^3 , ker f e Im f.

Soluzione. a) Per ogni $v, v' \in \mathbb{R}^3$ e $a, b \in \mathbb{R}$:

$$f(av + bv') = 3(av + bv') + (av + bv') \wedge u = 3av + 3bv' + av \wedge u + av' \wedge u = a(3v + v \wedge u) + b(3v' + v' \wedge u) = af(v) + bf(v').$$

Quindi, f è lineare.

b) Dalla definizione di f, segue

$$f(i) = 3i + i \wedge u = 3i + i \wedge (i - 2j + 3k) = 3i - 2k - 3j,$$

$$f(j) = 3j + j \wedge (i - 2j + 3k) = 3j - k + 3i,$$

$$f(k) = 3k + k \wedge (i - 2j + 3k) = 3k + j + 2i.$$

Pertanto,

$$A = M_B(f) = \begin{pmatrix} 3 & 3 & 2 \\ -3 & 3 & 1 \\ -2 & -1 & 3 \end{pmatrix}.$$

Poiché det $A=69\neq 0$, A è invertibile. Quindi, anche f è invertibile, cioè è iniettiva e suriettiva, per cui, ker f=O e Im $f=\mathbb{R}^3$.

Esercizio 3.30. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x, y, z) \mapsto (x + 2y + z, -y - 2z, -3x + y)$. Provare che $f \in invertibile$, $e trovare f^{-1}$.

SOLUZIONE. Troviamo la matrice associata ad f rispetto alla base canonica B di \mathbb{R}^3 . dalla definizione di f segue che:

$$f(i) = (1,0,-3) = i - 3k,$$

$$f(j) = (2,-1,1) = 2i - j + k,$$

$$f(k) = (1,-2,0) = i - 2j.$$

Pertanto,

$$A = M_B(f) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -2 \\ -3 & 1 & 0 \end{pmatrix}.$$

La matrice A ha determinante $11 \neq 0$. Quindi, A è invertibile, per cui, f è invertibile. L'inversa di A è stata calcolata nell'Es. 1.20:

$$A^{-1} = \begin{pmatrix} 2/11 & 1/11 & -3/11 \\ 6/11 & 3/11 & 2/11 \\ -3/11 & -7/11 & -1/11 \end{pmatrix}.$$

Poichè $A = M_B(f), A^{-1} = M_B(f^{-1}),$ quindi, per ogni $(x, y, z) \in \mathbb{R}^3$:

$$f^{-1}(x,y,z) = A^{-1} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{11} \begin{pmatrix} 2x+y-3z \\ 6x+3y+z \\ -3x-7y-z \end{pmatrix} = \frac{1}{11} (2x+y-3z, 6x+3y+z, -3x-7y-z).$$

Esercizio 3.31. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare, la cui matrice associata rispetto alle basi canoniche $B \in B'$ di \mathbb{R}^4 ed \mathbb{R}^3 rispettivamente è

$$A = \left(\begin{array}{cccc} 1 & 2 & 1 & -1 \\ 0 & 1 & 6 & -1 \\ 1 & 0 & -4 & 1 \end{array}\right).$$

- a) Dire se f è iniettiva o suriettiva.
- b) Trovare $f^{-1}(L(u))$, dove u = (1, 2, 3).

Soluzione. a) $v = (x, y, z, t) \in \ker f$ se e solo se

$$A \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

da cui si ricava il sistema lineare

$$\begin{cases} x + 2y + z - t = 0, \\ y + 6z - t = 0, \\ x - 3z + t = 0, \end{cases}$$

che ha soluzione x + t = y - t = z = 0. Pertanto,

$$\ker f = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + t = y - t = z = 0\} = \{(a, -a, 0, a) \mid a \in \mathbb{R}\} = L((1, -1, 0, 1)).$$

Poiché $\ker f$ non è il sottos pazio nullo, f non è iniettiva. Dal Teorema del rango segue che

$$\dim \operatorname{Im} f = \dim \mathbb{R}^4 - \dim \ker f = 4 - 1 = 3 = \dim \mathbb{R}^3.$$

Quindi, $\operatorname{Im} f = \mathbb{R}^3,$ cioè, f è suriettiva.

b) Poiché $L(u)=\{(b,2b,3b)\mid b\in\mathbb{R}\},$ si ha che $v=(x,y,z,t)\in f^{-1}(L(u))$ se e solo se esiste $b\in\mathbb{R}$ per cui

$$A \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} b \\ 2b \\ 3b \end{pmatrix},$$

cioè,

$$\begin{cases} x + 2y + z - t = b, \\ y + 6z - t = 2b \\ x - 3z + t = 3b, \end{cases}$$

La matrice del sistema è A, e rg $A=\dim \operatorname{Im} f=3$. Poiché la matrice completa del sistema è di tipo 3×5 , anch'essa ha rango 3. Quindi, il Teorema di Rouché–Capelli assicura la compatibilità del sistema, per ogni $b\in \mathbb{R}$. Cerchiamo una soluzione particolare v_0 , dopodiché la soluzione generale sarà data da $v_0+\ker f$. Ad esempio, richiedendo in più che t=0, otteniamo la soluzione particolare $x=\frac{21}{4}b, \ y=-\frac{5}{2}b, z=\frac{3}{4}b, \ t=0$. Pertanto,

$$f^{-1}(L(u)) = (\frac{21}{4}b, -\frac{5}{2}b, \frac{3}{4}b, 0) + \ker f = \{(a + \frac{21}{4}b, -a - \frac{5}{2}b, \frac{3}{4}b, a) \mid a, b \in \mathbb{R}\}.$$

Esercizio 3.32. Si consideri l'endomorfismo f di \mathbb{R}^3 così definito, al variare di $a \in \mathbb{R}$,

$$f_a(x, y, z) = (ax, x + y + az, z).$$

Descrivere $\ker f_a$ ed $\operatorname{Im} f_a$ al variare di a.

SOLUZIONE. $\ker f_a = \{(x,y,z) \mid ax = 0, x+y+az = 0, z = 0\}$. Se $a \neq 0$, $\ker f_a = \{\vec{0}\}$ e quindi f_a è un isomorfismo. Se a = 0, $\ker f_a = \{(t,-t,0)\} = \mathcal{L}((1,-1,0))$. Ovviamente, se $a \neq 0$, $\operatorname{Im} f_a = \mathbb{R}^3$, mentre se a = 0 si ha $\operatorname{Im} f_0 = \{(0,k,h)\} = \mathcal{L}(\vec{e}_2,\vec{e}_3)$.

Esercizio 3.33. Sia $\mathbb{R}_2[t]$ lo spazio vettoriale dei polinomi su \mathbb{R} di grado ≤ 2 e $\mathcal{B} = \{t^2, t, 1\}$ la sua base canonica. Si consideri l'endomorfismo f di $\mathbb{R}_2[t]$ così definito

$$f(t^2) = (t+1)^2$$
, $f(t) = 2(t^2+1)$, $f(1) = (t+1)^2$.

- 1. f è un isomorfismo?
- 2. Determinare la matrice A associata ad f rispetto alla base \mathcal{B} .
- 3. Determinare $\ker f$ ed $\operatorname{Im} f$ come sottospazi di $\mathbb{R}_2[t]$.

SOLUZIONE.

1. Poiché $f(t^2) = f(1)$, l'applicazione f non è iniettiva e quindi non è un isomorfismo.

2.
$$f(t^2) = t^2 + 2t + 1$$
, $f(t) = 2t^2 + 2$, $f(1) = t^2 + 2t + 1$, quindi

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

3. Indichiamo con $p(t)=at^2+bt+c$ il generico elemento di $\mathbb{R}_2[t]$. Allora

$$\ker f = \{ at^2 + bt + c \mid a + 2b + c = 0, \ 2a + 2c = 0 \}$$

$$= \{ at^2 + bt + c \mid b = 0, \ a + c = 0 \}$$

$$= \{ a(t^2 - 1) \mid a \in \mathbb{R} \}$$

$$= \mathcal{L}((t^2 - 1))$$

$$\operatorname{Im} f = \mathcal{L}(t^2 + 2t + 1, 2t^2 + 1)$$

3.3 Autovalori ed autovettori

Esercizio 3.34. Siano V uno spazio vettoriale di dimensione finita $n, e f : V \to V$ un endomorfismo. Provare che

- a) $f \ \dot{e} \ invertibile \Leftrightarrow 0 \ non \ \dot{e} \ un \ autovalore \ di \ f;$
- b) Se $\lambda \in \mathbb{K}$ è autovalore di f ed f è invertibile, allora λ^{-1} è autovalore di f^{-1} .

Soluzione. a) Poiché dim V è finita, dal Teorema del rango segue:

f è invertibile $\Leftrightarrow f$ è iniettiva $\Leftrightarrow \ker f = \{\mathbf{0}\} \Leftrightarrow f(x) \neq \mathbf{0}$ per ogni $x \in V \Leftrightarrow \nexists x \in V$ tale che $x \neq \mathbf{0}$ e $f(x) = \mathbf{0} = 0 \cdot x \Leftrightarrow 0$ non è autovalore per f.

b) Poiché λ è autovalore di f, esiste $x \neq 0 \in V$ tale che $f(x) = \lambda \cdot x$. Allora,

$$x = f^{-1}(f(x)) = f^{-1}(\lambda x) = \lambda f^{-1}(x).$$

Poiché f è invertibile, $\lambda \neq 0$ (vedi a)), quindi $f^{-1}(x) = \lambda^{-1}x$, con $x \neq 0$, cioè, λ^{-1} è autovalore di f^{-1} .

Esercizio 3.35. Sia $f: \mathbb{R}^2 \to \mathbb{R}^2$ tale che $(x, y) \mapsto (0, x)$.

- a) Trovare autovalori ed autovettori di f, e dire se f è semplice.
- b) Dire se $\mathbb{R}^2 = \text{Im } f \oplus \ker f$.

SOLUZIONE. a) Poiché f(1,0) = (0,1) e f(0,1) = (0,0), la matrice associata a f rispetto alla base canonica $\{(1,0),(0,1)\}$ di \mathbb{R}^2 è

$$A = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right).$$

Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} -\lambda & 0 \\ 1 & -\lambda \end{vmatrix} = \lambda^{2}.$$

Quindi, l'unico autovalore di f è $\lambda = 0$, di molteplicità algebrica 2. Troviamo il relativo autospazio, $V(0) = \ker f$:

$$f(x,y) = (0,0) \Leftrightarrow (0,x) = (0,0) \Leftrightarrow x = 0,$$

per cui, $V(0) = \{(x,y) \in \mathbb{R}^2 \mid x=0\} = \{(0,a) \mid a \in \mathbb{R}\} = L((0,1))$. Poiché la molteplicità geometrica di 0 è dim V(0) = 1 mentre la molteplicità algebrica è 2, f non è semplice.

b) $\operatorname{Im} f = L(f(1,0), f(0,1)) = L((0,1), (0,0)) = L((0,1)) = \ker f$. Pertanto, $\mathbb{R}^2 \neq \ker f + \operatorname{Im} f = \ker f$.

Esercizio 3.36. Si consideri l'endomorfismo

$$f: \mathbb{R}_3[t] \to \mathbb{R}_3[t]$$

che rispetto alla base canonica $\mathcal{P} = \{1, t, t^2, t^3\}$ è associato alla matrice

$$A = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -2 & -6 & -6 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & -2 & -2 \end{pmatrix}.$$

Dire se f è semplice.

SOLUZIONE. Si vede facilmente che

$$\det(A - \lambda \operatorname{Id}) = \lambda(\lambda + 2)^{2}(\lambda - 1),$$

quindi gli autovalori sono $\lambda_1=0$ con $m_1=1,\ \lambda_2=1$ con $m_2=1,\ \lambda_3=-2$ con $m_3=2.$ Gli autospazi sono

$$V(0) = \mathcal{L}(-t^2 + t^3) \qquad \Rightarrow \dim V(0) = 1$$

$$V(1) = \mathcal{L}(2t - 3t^2 + 2t^3) \qquad \Rightarrow \dim V(1) = 1$$

$$V(-2) = \mathcal{L}(1, t) \qquad \Rightarrow \dim V(-2) = 2$$

quindi f è diagonalizzabile.

Esercizio 3.37. Si consideri l'endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ definito da

$$f(a_0, a_1, a_2, a_3) = (-2a_0, -2a_1 - 6a_2 - 6a_3, 3a_2 + 3a_3, -2a_2 - 2a_3)$$

e si veda se è semplice.

Soluzione. L'esercizio è quello precedente poiché vale il seguente isomorfismo

$$\varphi \colon \mathbb{R}_3[t] \to \mathbb{R}^4, a_0 + a_1 t + a_2 t^2 + a_3 t^3 \mapsto (a_0, a_1, a_2, a_3).$$

Naturalmente ora

$$V(0) = \mathcal{L}(\vec{v}_1) \qquad \qquad \vec{v}_1 = (0, 0, -1, 1)$$

$$V(1) = \mathcal{L}(\vec{v}_2) \qquad \qquad \vec{v}_2 = (0, 2, -3, 2)$$

$$V(-2) = \mathcal{L}(\vec{v}_3, \vec{v}_4) \qquad \qquad \vec{v}_3 = (1, 0, 0, 0)$$

$$\vec{v}_4 = (0, 1, 0, 0)$$

La rappresentazione di f nella base $\mathcal{B} = \{\vec{v}_i\}$ è data dalla matrice diagonale

$$\tilde{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix}.$$

Esercizio 3.38. Dati i vettori u = (1, -1, 0), v = (-1, 0, 1) e w = (0, -1, 2) in \mathbb{R}^3 , trovare un endomorfismo f di \mathbb{R}^3 tale che u, v e w siano autovettori relativi rispettivamente agli autovalori 1, -1 e 0. Un tale endomorfismo è unico?

Soluzione. La matrice delle componenti di u,v e w rispetto alla base canonica di \mathbb{R}^3 è

$$\left(\begin{array}{ccc} 1 & -1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 2 \end{array}\right),$$

che ha rango 3, poichè il suo determinante è $-1 \neq 0$. Quindi, $\{u, v, w\}$ sono linearmente indipendenti, per cui formano una base di \mathbb{R}^3 . Supponiamo ora che f sia un endomorfismo tale che u, v e w siano autovalori relativi a 1, -1, 0 rispettivamente. Allora, risulta f(u) = u, f(v) = -v e $f(w) = \mathbf{0}$ e quindi, la matrice associata ad f rispetto alla base $B' = \{u, v, w\}$ è

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Di conseguenza, un tale endomorfismo esiste ed inoltre è unico, poiché, fissata la base $B' = \{u, v, w\}$, esiste un unico endomorfismo f avente A come matrice associata rispetto a B'.

Esercizio 3.39. Con riferimento all'endomorfismo f dell'esercizio 3.19, stabilire se f ed f³ sono semplici.

Soluzione. Gli autovalori di A sono le radici reali dell'equazione caratteristica

$$|A - \lambda \operatorname{Id}| = (1 - \lambda)(\lambda^2 - \lambda + 1) = 0.$$

Poiché esistono radici non reali, A non è diagonalizzabile e quindi f non è semplice. Invece

$$A^{2} = \begin{pmatrix} -1/2 & 0 & \sqrt{3}/2 \\ 0 & 1 & 0 \\ -\sqrt{3}/2 & 0 & -1/2 \end{pmatrix}, \quad A^{3} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Essendo A^3 diagonale, f^3 è semplice.

Esercizio 3.40. *Sia* $S = \{A \in \mathbb{R}^{2,2} \mid A = A^t\}.$

a) Provare che esiste un unico endomorfismo f di S tale che

$$\begin{split} f\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)\right) &= \left(\begin{array}{cc} 1 & -2 \\ -2 & 3 \end{array}\right), \quad f\left(\left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right)\right) = \left(\begin{array}{cc} h & 0 \\ 0 & 2-h \end{array}\right), \\ f\left(\left(\begin{array}{cc} 2 & 0 \\ 0 & -1 \end{array}\right)\right) &= \left(\begin{array}{cc} 2 & -1 \\ -1 & 0 \end{array}\right), \end{split}$$

dove $h \in \mathbb{R}$.

- b) Trovare, al variare di h in \mathbb{R} , gli autospazi di f e una loro base.
- c) Stabilire per quali valori di $h \in \mathbb{R}$, f è semplice.

SOLUZIONE. a) Come nell'Es. 3.38, per garantire esistenza ed unicità ad f basta provare che $\left\{A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}\right\}$ è una base di \mathcal{S} . Poiché dim $\mathcal{S}=3$ (vedi Es. 4.1), basta provare che le tre matrici sono linearmente indipendenti. Siano $a,b,c \in \mathbb{R}$ tali che

$$a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} + c \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Uguagliando i coefficienti otteniamo a + 2c = b = a + b - c = 0, da cui segue facilmente a = b = c = 0, per cui, A_1 , A_2 e A_3 sono linearmente indipendenti. Quindi, f è univocamente determinato.

b), c) Siano
$$E_1=\begin{pmatrix}1&0\\0&0\end{pmatrix}$$
, $E_2=\begin{pmatrix}0&1\\1&0\end{pmatrix}$, $E_3=\begin{pmatrix}0&0\\0&1\end{pmatrix}$. Poiché $A_1=E_1+E_3$, $A_2=E_2+E_3$ e $A_3=2E_1-E_3$, si ha

$$\begin{cases} f(E_1) + f(E_3) = f(A_1) = E_1 - 2E_2 + 3E_3, \\ f(E_2) + f(E_3) = f(A_2) = hE_1 + (2 - h)E_3, \\ 2f(E_1) - f(E_3) = f(A_3) = 2E_1 - E_2, \end{cases}$$

da cui otteniamo

$$\begin{cases} f(E_1) = E_1 - E_2 + E_3, \\ f(E_2) = hE_1 + E_2 - hE_3, \\ f(E_3) = -E_2 + 2E_3. \end{cases}$$

Pertanto, la matrice associata ad f rispetto alla base $\{E_1, E_2, E_3\}$ è

$$A = \left(\begin{array}{ccc} 1 & h & 0 \\ -1 & 1 & -1 \\ 1 & -h & 2 \end{array}\right).$$

Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & h & 0 \\ -1 & 1 - \lambda & -1 \\ 1 & -h & 2 - \lambda \end{vmatrix} = -(1 - \lambda)^2 (\lambda - 2),$$

e quindi, $\lambda_1 = 1$ di molteplicità algebrica 2, e $\lambda_2 = 2$, di molteplicità algebrica 1, per ogni $h \in \mathbb{R}$. Troviamo i corrispondenti autospazi.

V(1) è costituito dai vettori le cui componenti $a,b,c\in\mathbb{R}$ rispetto a $\{E_1,E_2,E_3\}$ soddisfano

$$0 = (A - I) \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 & h & 0 \\ -1 & 0 & -1 \\ 1 & -h & 1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} hb \\ -a - c \\ a - hb + c \end{pmatrix},$$

cioè, (a, b, c) deve essere soluzione del sistema lineare

$$\begin{cases} hb = 0, \\ a + c = 0, \\ a - hb + c = 0. \end{cases}$$

Se $h \neq 0$, le soluzioni del sistema sono le terne (a, b, c) tali che b = a + c = 0, per cui,

$$V(1) = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & -a \end{array} \right) \mid a \in \mathbb{R} \right\} = L \left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right).$$

Poiché la molteplicità algebrica di $\lambda_1 = 1$ è 2 mentre la molteplicità geometrica è dim V(1) = 1, per $h \neq 0$ f non è semplice.

Se h=0, le soluzioni del sistema sono le terne (a,b,c) tali che a+c=0, quindi,

$$V(1) = \left\{ \left(\begin{array}{cc} a & b \\ b & -a \end{array} \right) \mid a,b \in \mathbb{R} \right\} = L\left(\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right).$$

In questo caso, la molteplicità algebrica e geometrica di λ_1 sono entrambe uguali a 2. Poiché per λ_2 è comunque vero che molteplicità algebrica e geometrica coincidono, essendo la molteplicità algebrica, che è uguale a 1, la maggiore delle due, possiamo già concludere che, per h=0, f è semplice.

V(2) è costituito dai vettori le cui componenti $a,b,c\in\mathbb{R}$ rispetto a $\{E_1,E_2,E_3\}$

soddisfano

$$0 = (A - 2I) \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -1 & h & 0 \\ -1 & -1 & -1 \\ 1 & -h & 0 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -a + hb \\ -a - b - c \\ a - hb \end{pmatrix},$$

cioè, (a, b, c) deve essere soluzione del sistema lineare

$$\begin{cases}
-a + hb = 0, \\
a + b + c = 0, \\
a - hb = 0.
\end{cases}$$

Le soluzioni del sistema sono le terne (a, b, c) tali che a + hb = a + b + c = 0, da cui segue a = -hb, c = (h-1)b. Pertanto,

$$V(2) = \left\{ \begin{pmatrix} hb & b \\ b & (h-1)b \end{pmatrix} \mid b \in \mathbb{R} \right\} = L\left(\begin{pmatrix} h & 1 \\ 1 & h-1 \end{pmatrix} \right).$$

Comer abbiamo già osservato, la molteplicità geometrica di λ_2 è effettivamente sempre uguale a 1.

Esercizio 3.41. Si considerino lo spazio vettoriale \mathbb{R}^3 con la struttura euclidea standard e l'endomorfismo

$$f \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad (x, y, z) \mapsto \left(\frac{1}{2}x + ay, \frac{h}{a}x - \frac{1}{2}y, z\right)$$

 $con \ a, \ h \in \mathbb{R} \ ed \ a \neq 0.$

- 1. Descrivere, al variare dei parametri a ed h, i sottospazi ker f ed Im f.
- 2. Posto $h = \frac{3}{4}$, trovare per quali valori di a l'applicazione f è semplice.

SOLUZIONE.

1. Per trovare $\ker f$ consideriamo il sistema lineare

$$\begin{cases} \frac{1}{2}x + ay = 0, \\ \frac{h}{a}x - \frac{1}{2}y = 0, \\ z = 0, \end{cases} A = \begin{pmatrix} \frac{1}{2} & a & 0 \\ \frac{h}{a} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Ora det $A = -\frac{1}{4} - h$.

Per $h \neq -\frac{1}{4}$ ed a arbitrario si ha ker f = 0 e Im $f = \mathbb{R}^3$.

Per $h = -\frac{1}{4}$ ed *a* arbitrario si ha

$$\ker f = \{(-2at, t, 0)\}, \quad \operatorname{Im} f = \mathcal{L}((2a, -1, 0), (0, 0, 1)).$$

Quindi, dim $\ker f = 1$, dim $\operatorname{Im} f = 2$ in questo caso.

2. Gli autovalori sono le radici reali dell'eq. caratteristica seguente (con $h = \frac{3}{4}$):

$$\det(A - \lambda I) = (1 - \lambda)(\lambda^2 - 1) = 0,$$

quindi $\lambda = 1$ con molteplicità 2 e $\lambda = -1$ con molteplicità 1.

L'autospazio corrispondente a $\lambda = 1$ è $V(1) = \{(2ay, y, z)\}$, quindi dim V(1) = 2 per ogni a. Ne segue che, per h = 3/4, l'applicazione f è semplice per ogni a.

Esercizio 3.42. Con riferimento all'esercizio 3.26, e considerando \mathbb{R}^3 con la struttura euclidea standard, dire per quali valori di k l'endomorfismo f_k è semplice.

Soluzione. Gli autovalori di f_k sono le radici reali del polinomio caratteristico

$$\det(A_k - \lambda I) = (\lambda^2 - k)(1 - \lambda).$$

Quindi se k > 0 e $k \neq 1$, l'endomorfismo f_k è semplice poiché ha tre autovalori reali distinti $\pm \sqrt{k}$, 1; se k < 0, f_k non è semplice poiché le radici del polinomio caratteristico non sono tutte reali; se k = 1 gli autovalori sono $\lambda_1 = 1$ con molteplicità algebrica 2 e $\lambda_2 = -1$, e risulta

$$V(1) = \{ (x, y, z) \in \mathbb{R}^3 \mid -x + y + z = 0, \ x = 0, \ -y - z = 0 \}$$

= \{ (0, t, -t) \| t \in \mathbb{R} \},

quindi dim V(1) = 1 ed f_1 non è semplice.

Esercizio 3.43. Sia
$$f: \mathbb{R}^{2,2} \to \mathbb{R}^{2,2}$$
, $X \mapsto A(X - X^t)A$, dove $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.

- a) Trovare $\ker f \in \operatorname{Im} f$.
- b) Dire se f è semplice.

SOLUZIONE. a) Sia $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un generico elemento di $\mathbb{R}^{2,2}$. Risulta:

$$f(X) = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} a & c \\ b & d \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2c - 2b & b - c \\ 2c - 2b & c - b \end{pmatrix}.$$

In particolare, se $B = \{E_1, E_2, E_3, E_4\}$ è la base canonica di $\mathbb{R}^{2,2}$, si ha

$$f(E_1) = f\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

$$f(E_2) = f\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ -2 & -1 \end{pmatrix},$$

$$f(E_3) = f\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix},$$

$$f(E_4) = f\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Quindi, la matrice associata ad f rispetto alla base canonica B è

$$M_B(f) = \left(\begin{array}{cccc} 0 & -2 & 2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -2 & 2 & 0 \\ 0 & -1 & 1 & 0 \end{array}\right).$$

 $X \in \ker f$ se e solo se f(X) = O cioè, se i suoi coefficienti a, b, c, d verificano 2c - 2b = b - c = c - b = 0, da cui segue b = c. Pertanto,

$$\ker f = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid b = c \right\} = \left\{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} \mid a, b, d \in \mathbb{R} \right\} = \mathcal{S},$$

cioè, ker f è il sottospazio delle matrici simmetriche. In particolare, dim ker f=3 e quindi, per il Teorema del rango, dim Im f=4-3=1. Risulta:

Im
$$f = L(f(E_1), f(E_2), f(E_3), f(E_4)) = L\left(\begin{pmatrix} 2 & -1 \\ 2 & 1 \end{pmatrix}\right)$$
.

b) Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(M_B(f) - \lambda I) = \begin{vmatrix} -\lambda & -2 & 2 & 0 \\ 0 & 1 - \lambda & -1 & 0 \\ 0 & -2 & 2 - \lambda & 0 \\ 0 & -1 & 1 & -\lambda \end{vmatrix} = \lambda^3 (\lambda - 3),$$

e quindi, $\lambda_1 = 0$ di molteplicità algebrica 3, e $\lambda_2 = 3$, di molteplicità algebrica 1.

 $V(0) = \ker f$, e quindi ha dimensione 3. Poiché la molteplicità algebrica di $\lambda_2 = 3$ è 1, anche la molteplicità geometrica, che è sempre minore o uguale di quella algebrica nonché maggiore o uguale a 1, è 1. Quindi, essendo il polinomio caratte- ristico interamente decomponibile in $\mathbb R$ e coincidendo molteplicità algebrica e geometrica di ogni autovalore, possiamo concludere che f è semplice.

Esercizio 3.44. Sia $f : \mathbb{R}^3 \to \mathbb{R}^3$, endomorfismo, tale che ker $f = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y = 0\}$ e $V(1) = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = z = 0\}$.

- a) Provare che $\mathbb{R}^3 = \ker f \oplus V(1)$.
- b) Interpretare geometricamente f, dire se f è semplice e, in tal caso, trovare una base di autovettori.
 - c) Trovare $M_B(f)$, dove $B \ \dot{e}$ la base canonica di \mathbb{R}^3 .

Soluzione. a) La somma di kerf=V(0) e V(1) è diretta, essendo autospazi relativi ad autovalori distinti. Osserviamo che

$$\ker f = \{(a, 2a, b) \mid a, b \in \mathbb{R}\} = L((1, 2, 0), (0, 0, 1)),$$

da cui segue facilmente che dim ker f=2, e

$$V(1) = \{(-2c, c, 0) \mid c \in \mathbb{R}\} = L((-2, 1, 0)).$$

Dalla relazione di Grassmann:

$$\dim(\ker f \oplus V(1)) = \dim \ker f + \dim V(1) = 2 + 1 = 3 = \dim \mathbb{R}^3$$

per cui, $kerf \oplus V(1) = \mathbb{R}^3$.

b) Gli autovalori di f sono $\lambda_1 = 1$, di molteplicità geometrica dim V(1) = 1, e $\lambda_2 = 0$, di molteplicità geometrica dim $\ker f = 2$. Poiché $\mathbb{R}^3 = \ker f \oplus V(1) = V(0) \oplus V(1)$, possiamo concludere che f è semplice. Otteniamo una base di autovettori unendo una base di $\ker f$ con una base di V(1). Ad esemplo, $\{(1,2,0),(0,0,1),(-2,1,0)\}$ è una base di autovettori per f. Per interpretare geometricamente f, osserviamo che

$$f: \mathbb{R}^3 = \ker f \oplus V(1) \longrightarrow \mathbb{R}^3$$

 $x = u + v \longmapsto v.$

Quindi, f annulla la componente del vettore x in ker f, e lascia invariata la componente in V(1). Osserviamo infine che ker f e V(1) sono sottospazi ortogonali di \mathbb{R}^3 rispetto al prodotto scalare standard. Pertanto, possiamo concludere che f è la proiezione ortogonale sulla retta V(1).

c) Risulta:

$$\begin{cases} f(i) + 2f(j) = f(1, 2, 0) = (0, 0, 0), \\ f(k) = f(0, 0, 1) = (0, 0, 0), \\ -2f(i) + f(j) = f(-2, 1, 0) = (-2, 1, 0) = -2i + j, \end{cases}$$

e quindi, otteniamo

$$f(i) = \frac{4}{5}i - \frac{2}{5}j, \quad f(j) = -\frac{2}{5}i + \frac{1}{5}j, \quad f(k) = 0.$$

Quindi, la matrice associata a f rispetto a $B = \{i, j, k\}$ è

$$M_B(f) = \begin{pmatrix} \frac{4}{5} & -\frac{2}{5} & 0\\ -\frac{2}{5} & \frac{1}{5} & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Esercizio 3.45. Sia $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$, endomorfismo, tale che $f(x+1) = 4x^3 + 5x^2 + 3x + 1$, $f(x^3 - x^2 + 1) = 3x^3 - x^2 + 3x + 1$, $f(x^3 + 2x^2 - 1) = -5x^3 + 5x^2 - 4x - 1$ e $f(x^3) = -x^3$.

- a) Trovare $A = M_B(f)$, dove $B = \{1, x, x^2, x^3\}$.
- b) Trovare $\ker f \in \operatorname{Im} f$.
- c) Provare che f è semplice, trovare una base B' di autovettori e la matrice P di passaggio dalla base canonica B a B'.

SOLUZIONE. a) Risulta:

$$\begin{cases} f(x) + f(1) = f(x+1) = 4x^3 + 5x^2 + 3x + 1, \\ f(x^3) - f(x^2) + f(1) = f(x^3 - x^2 + 1) = 3x^3 - x^2 + 3x + 1, \\ f(x^3) + 2f(x^2) - f(1) = f(x^3 + 2x^2 - 1) = -5x^3 + 5x^2 - 4x - 1, \\ f(x^3) = -x^3. \end{cases}$$

Risolvendo, otteniamo

$$\begin{cases} f(1) = 4x^3 + 3x^2 + 2x + 1, \\ f(x) = 2x^2 + x, \\ f(x^2) = 4x^2 - x, \\ f(x^3) = -x^3. \end{cases}$$

Quindi, la matrice associata a f rispetto a B è

$$A = M_B(f) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 4 & 0 \\ 4 & 0 & 0 & -1 \end{pmatrix}.$$

b) $p(x) = a + bx + cx^2 + dx^3 \in \ker f$ se e solo se

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 4 & 0 \\ 4 & 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

da cui si ottiene il sistema lineare

$$\begin{cases} a = 0, \\ 2a + b - c = 0, \\ 3a + 2b + 4c = 0, \\ 4a - d = 0, \end{cases}$$

che ha l'unica soluzione (a, b, c, d) = (0, 0, 0, 0). Quindi, ker f = O, cioè, f è iniettiva, e quindi, essendo un endomorfismo, è un isomorfismo di $\mathbb{R}_3[x]$. In particolare, Im $f = \mathbb{R}_3[x]$.

c) Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & 0 & 0 \\ 2 & 1 - \lambda & -1 & 0 \\ 3 & 2 & 4 - \lambda & 0 \\ 4 & 0 & 0 & -1 - \lambda \end{vmatrix} = (\lambda^2 - 1)(\lambda - 2)(\lambda - 3).$$

Quindi, gli autovalori di f sono $\lambda_1 = -1$, $\lambda_2 = 1$, $\lambda_3 = 2$ e $\lambda_4 = 3$. Poiché f ha $4 = \dim \mathbb{R}_3[x]$ autovalori tutti distinti tra loro, f è semplice. Troviamo i relativi autospazi, per poter trovare una base di autovettori.

Poiché $f(x^3) = -x^3$ e dim V(-1) = 1, possiamo già concludere che $V(-1) = L(x^3)$. Gli elementi di V(1) sono i polinomi $p(x) = a + bx + cx^2 + dx^3$ tali che

$$0 = (A - I)X = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 3 & 2 & 3 & 0 \\ 4 & 0 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix},$$

da cui otteniamo $c=d=2a, b=-\frac{9}{2}a$. Quindi, $V(1)=L(2-9x+4x^2+4x^3)$. Gli elementi di V(2) sono i polinomi $p(x)=a+bx+cx^2+dx^3$ tali che

$$0 = (A - 2I)X = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 2 & -1 & -1 & 0 \\ 3 & 2 & 2 & 0 \\ 4 & 0 & 0 & -3 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix},$$

da cui otteniamo a = d = 0, b = -c. Quindi, $V(2) = L(x - x^2)$. Gli elementi di V(3) sono i polinomi $p(x) = a + bx + cx^2 + dx^3$ tali che

$$0 = (A - I)X = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 2 & -2 & -1 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 0 & 0 & -4 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix},$$

da cui otteniamo $a=d=0,\,c=-2b.$ Pertanto, $V(3)=L(x-2x^2).$

In conclusione, una base di autovettori di f è data da $B' = \{x^3, 2 - 9x + 4x^2 + 4x^3, x - x^2, x - 2x^2\}$. La matrice P di passaggio da B a B' è la matrice delle componenti dei vettori di B' rispetto a B, cioè,

$$P = \left(\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & -9 & 1 & 1 \\ 0 & 4 & -1 & -2 \\ 0 & 4 & 0 & 0 \end{array}\right).$$

Esercizio 3.46. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$, endomorfismo, tale che

$$A = M_B(f) = \begin{pmatrix} 1 & 0 & h \\ 3 & 2 & 1 \\ h & 0 & 1 \end{pmatrix},$$

dove B è la base canonica di \mathbb{R}^3 e $h \in \mathbb{R}$.

- a) Dire per quali valori di h, f è un isomorfismo.
- b) Dire per quali valori di h, f è semplice.

SOLUZIONE. a) f è un isomorfismo $\Leftrightarrow f$ è invertibile $\Leftrightarrow A = M_B(f)$ è invertibile \Leftrightarrow det $A \neq 0$. Poichè det $A = 2 - 2h^2$, concludiamo che f è un isomorfismo se e solo se $h \neq \pm 1$.

b) Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & h \\ 3 & 2 - \lambda & 1 \\ h & 0 & 1 - \lambda \end{vmatrix} = -(\lambda - 2)(\lambda - 1 + h)(\lambda - 1 - h).$$

Quindi, gli autovalori di f sono $\lambda_1=2,\ \lambda_2=1-h,\ \lambda_3=1+h,$ e la loro molteplicità dipende da $h\in\mathbb{R}$. Osseviamo che

$$\lambda_2 = \lambda_3 \Leftrightarrow h = 0,$$

$$\lambda_1 = \lambda_2 \Leftrightarrow h = -1,$$

$$\lambda_1 = \lambda_3 \Leftrightarrow h = 1.$$

Quindi, se $h \neq 0, 1, -1$, allora f ha 3 autovalori a due a due distinti, e quindi, f è semplice. Restano da esaminare i casi h = 0, h = 1 e h = -1.

Supponiamo prima che h=0. Gli autovalori di f in tal caso sono $\lambda_1=2$, di molteplicità (algebrica, e quindi anche geometrica) 1, e $\lambda_2=1$, di molteplicità algebrica 2. Troviamo la molteplicità geometrica di 1, cioè, dim V(1). Gli elementi di V(1) sono i vettori

di \mathbb{R}^3 le cui componenti x,y,z soddisfano

$$0 = (A - I)X = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

da cui otteniamo 3x + y + z = 0. Pertanto,

$$V(1) = \{(x, y, z) \in \mathbb{R}^3 \mid 3x + y + z = 0\} = \{(a, b, -3a - b) \mid a, b \in \mathbb{R}\} = L((1, 0, -3), (0, 1, -1)).$$

Si verifica facilmente che (1,0,-3) e (0,1,-1) sono linearmente indipendenti, quindi la molteplicità geometrica di 1 è dimV(1)=2 e coincide con la molteplicità algebrica. Poiché il polinomio caratteristico è interamente decomponibile in $\mathbb R$ e per ogni autovalore molteplicità algebrica e geometrica coincidono, possiamo concludere che, per h=0, f è semplice.

Sia ora h = 1. Gli autovalori di f in tal caso sono $\lambda_1 = 2$, di molteplicità algebrica 2, e $\lambda_2 = 0$, di molteplicità (algebrica, e quindi anche geometrica) 1. Troviamo la molteplicità geometrica di 2. Gli elementi di V(2) sono i vettori di \mathbb{R}^3 le cui componenti x, y, z soddisfano

$$0 = (A - 2I)X = \begin{pmatrix} -1 & 0 & 1 \\ 3 & 0 & 1 \\ 1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

da cui otteniamo x = z = 0. Pertanto,

$$V(2) = \{(x, y, z) \in \mathbb{R}^3 \mid x = z = 0\} = L((0, 1, 0)).$$

Poiché la molteplicità geometrica di $\lambda_1 = 2$ è dim V(2) = 1, mentre la molteplicità algebrica è 2, possiamo concludere che, per h = 1, f non è semplice.

Sia infine h = -1. Gli autovalori di f in tal caso sono $\lambda_1 = 2$, di molteplicità algebrica 2, e $\lambda_3 = 0$, di molteplicità (algebrica, e quindi anche geometrica) 1. Gli elementi di V(2) sono i vettori di \mathbb{R}^3 le cui componenti x, y, z soddisfano

$$0 = (A - 2I)X = \begin{pmatrix} -1 & 0 & -1 \\ 3 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

da cui otteniamo x = z = 0. Pertanto,V(2) = L((0, 1, 0)). Poichè la molteplicità geometrica di $\lambda_1 = 2$ è dim V(2) = 1, mentre la molteplicità algebrica è 2, possiamo concludere che, per h = -1, f non è semplice.

Esercizio 3.47. Sia

$$A = \left(\begin{array}{cccc} 1 & 0 & k & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right),$$

dove $k \in \mathbb{R}$.

- a) Trovare gli autovalori di A.
- b) Dire per quali valori di k, A è diagonalizzabile.

SOLUZIONE. a) Fissati uno spazio vettoriale di dimensione 4 (ad esempio, \mathbb{R}^4) e una sua base (ad esempio, quella canonica B), la matrice A determina univocamente un endomorfismo f di tale spazio vettoriale, la cui matrice associata, rispetto alla fissata base, è A. Gli autovalori di A sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & k & 0 \\ 0 & -1 - \lambda & 0 & 1 \\ 0 & 0 & 1 - \lambda & 0 \\ 0 & 0 & 0 & 2 - \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda + 1)(\lambda - 2).$$

Quindi, gli autovalori di f sono $\lambda_1 = 1$, di molteplicità algebrica 2, $\lambda_2 = -1$ e $\lambda_3 = 2$, questi ultimi di molteplicità (algebrica, e quindi anche geometrica) 1, per ogni $k \in \mathbb{R}$.

b) A è diagonalizzabile se e solo se f è semplice. Visto che per per λ_2 e λ_3 le molteplicità algebriche e geometriche coincidono, f è semplice se e solo se dim V(1)=2, perchè in tal caso anche per $\lambda_1=1$ le molteplicità algebrica e geometrica coincidono. Gli elementi di V(1) sono individuati da quadruple (x,y,z,t) di componenti rispetto alla fissata base, tali che

$$0 = (A - I)X = \begin{pmatrix} 0 & 0 & k & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix},$$

da cui otteniamo y = t = kz = 0. Pertanto, dobbiamo distinguere due casi.

Se $k \neq 0$, allora le soluzioni sono date da y = z = t = 0, ossia, dalle quadruple (x,0,0,0) = x(1,0,0,0). Pertanto, dim $V(1) = 1 \neq 2$, e quindi, se $k \neq 0$, allora A non è diagonalizzabile.

Se k=0, le soluzioni sono date da y=t=0, cioè dalle quadruple (x,0,z,0)=x(1,0,0,0)+z(0,0,1,0). In tal caso, dim V(1)=2 e quindi, per k=0, A è diagonalizzabile. Naturalmente in tal caso una matrice diagonale simile ad A è quella avente lungo la diagonale principale gli autovalori 1 (2 volte), -1 e 2.

Esercizio 3.48. Sia $f: \mathbb{K}^3 \to \mathbb{K}^3$, $(x, y, z) \mapsto (x - z, 2y, x + y + z)$.

- a) Trovare gli autovalori di f, per $\mathbb{K} = \mathbb{R}$ e per $\mathbb{K} = \mathbb{C}$.
- b) Dire se f è semplice, per $\mathbb{K} = \mathbb{R}$ e per $\mathbb{K} = \mathbb{C}$.

SOLUZIONE. a),b) Dall'espressione di f si ricava (sia per $\mathbb{K} = \mathbb{R}$ che per $\mathbb{K} = \mathbb{C}$)

$$f(1,0,0) = (1,0,1) = (1,0,0) + (0,0,1),$$

$$f(0,1,0) = (0,2,1) = 2(0,1,0) + (0,0,1),$$

$$f(0,0,1) = (-1,0,1) = -(1,0,0) + (0,0,1).$$

Pertanto, in entrambi i casi, la matrica associata ad f rispetto alla base $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ è

$$A = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{array}\right).$$

Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 0 & -1 \\ 0 & 2 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = -(\lambda - 2)[(\lambda - 1)^2 + 1)].$$

Se $\mathbb{K} = \mathbb{R}$, l'unico autovalore reale di f è quindi $\lambda_1 = 2$, di moolteplicità algebrica 1. Poiché il polinomio caratteristico di f non è interamente decomponibile in \mathbb{R} , possiamo concludere che f non è semplice.

Se invece $\mathbb{K} = \mathbb{C}$, gli autovalori di f sono $\lambda_1 = 2$, $\lambda_2 = 1 - i$ e $\lambda_3 = 1 + i$, tutti di molteplicità algebrica, e quindi anche geometrica, uguale a 1. Poiché f è definita su uno spazio vettoriale, \mathbb{C}^3 , di dimensione 3 su \mathbb{C} , ed ha 3 autovalori complessi a due a due distinti, concludiamo che f è semplice.

Esercizio 3.49. Si consideri l'endomorfismo

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \ f(x, y, z) = (-y, x, 2z).$$

Dire se f è semplice. Se si sostituisce \mathbb{R}^3 con \mathbb{C}^3 , f rimane un endomorfismo semplice?

SOLUZIONE. Poiché f ammette solo un autovalore reale $\lambda = 2$ di molteplicità algebrica 1, l'endomorfismo non è semplice. Mentre lo stesso endomorfismo, pensato su \mathbb{C}^3 , cioè

$$f \colon \mathbb{C}^3 \to \mathbb{C}^3, \ f(x, y, z) = (-y, x, 2z),$$

ha tre autovalori distinti $\pm i$, 2, quindi è semplice.

Esercizio 3.50. Sia $f: \mathbb{C}^3 \to \mathbb{C}^3$ endomorfismo, tale che $f(e_1) = -ke_2$, $f(e_2) = ke_1$, $f(e_3) = 2e_3$, dove $k \in \mathbb{C}$ e $B = \{e_1, e_2, e_3\}$ è la base canonica di \mathbb{C}^3 .

- a) Dire per quali $k \in \mathbb{C}$, f è semplice, e scrivere $M_B(f^{-1})$.
- b) Dire per quali $k \in \mathbb{C}$, f è semplice.

Soluzione. a) Dalle condizioni elencate otteniamo subito che la matrice associata a f rispetto a B è

$$A = M_B(f) = \begin{pmatrix} 0 & k & 0 \\ -k & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

f è invertibile se e solo se A è invertibile, ossia det $A = 2k^2 \neq 0$. Quindi, f è invertibile se e solo se $k \neq 0$. Troviamo ora $M_B(f^{-1})$, per $k \neq 0$.

$$\begin{cases} f(e_1) = -ke_2 \Rightarrow e_1 = f^{-1}(-ke_2) = -kf^{-1}(e_2) \Rightarrow f^{-1}(e_2) = -\frac{1}{k}e_1, \\ f(e_2) = ke_1 \Rightarrow e_2 = f^{-1}(ke_1) = kf^{-1}(e_1) \Rightarrow f^{-1}(e_1) = \frac{1}{k}e_2, \\ f(e_3) = 2e_3 \Rightarrow e_3 = f^{-1}(2e_3) = 2f^{-1}(e_3) \Rightarrow f^{-1}(e_3) = \frac{1}{2}e_3. \end{cases}$$

Pertanto,

$$M_B(f^{-1}) = \begin{pmatrix} 0 & -\frac{1}{k} & 0 \\ \frac{1}{k} & 0 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix}.$$

b) Gli autovalori di f sono le soluzioni dell'equazione caratteristica

$$0 = \det(A - \lambda I) = \begin{vmatrix} -\lambda & k & 0 \\ -k & -\lambda & 0 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda)(\lambda^2 + k^2) = (2 - \lambda)(\lambda^2 \pm ik),$$

cioè, $\lambda_1 = 2$, $\lambda_2 = -ik$, $\lambda_3 = ik$. Osserviamo che

$$\begin{split} \lambda_2 &= \lambda_3 \Leftrightarrow k = 0, \\ \lambda_1 &= \lambda_2 \Leftrightarrow k = 2i, \\ \lambda_1 &= \lambda_3 \Leftrightarrow k = -2i. \end{split}$$

Quindi, se $k \neq 0, 2i, -2i$, allora f ha 3 autovalori a due a due distinti, e quindi, f è semplice. Restano da esaminare i casi k = 0, k = 2i e k = -2i.

Supponiamo prima che k=0. Gli autovalori di f in tal caso sono $\lambda_1=2$, di molteplicità (algebrica, e quindi anche geometrica) 1, e $\lambda_2=0$, di molteplicità algebrica 2. Troviamo la molteplicità geometrica di 0, cioè, dim V(0)=dim ker f. Gli elementi di V(0) sono i vettori di \mathbb{C}^3 le cui componenti x, y, z soddisfano

$$0 = AX = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix},$$

da cui otteniamo 2z = 0. Pertanto,

$$V(0) = \{(x, y, z) \in \mathbb{C}^3 \mid z = 0\} = \{(a, b, 0) \mid a, b \in \mathbb{C}\} = L((1, 0, 0), (0, 1, 0)).$$

Quindi, la molteplicità geometrica di 0 è dim V(0) = 2 e coincide con la molteplicità algebrica. Poichè il polinomio caratteristico è interamente decomponibile in \mathbb{C} e per ogni autovalore molteplicità algebrica e geometrica coincidono, possiamo concludere che, per k = 0, f è semplice.

Sia ora k=2i. Gli autovalori di f in tal caso sono $\lambda_1=2$, di molteplicità algebrica 2, e $\lambda_2=-2$, di molteplicità (algebrica, e quindi anche geometrica) 1. Troviamo la molteplicità geometrica di 2. Gli elementi di V(2) sono i vettori di \mathbb{C}^3 le cui componenti x,y,z soddisfano

$$0 = AX = 2X \Rightarrow \begin{pmatrix} 0 & 2i & 0 \\ -2i & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix},$$

da cui otteniamo x = iy. Pertanto,

$$V(2) = \{(x, y, z) \in \mathbb{C}^3 \mid x = iy\} = L((i, 1, 0), (0, 0, 1)).$$

Poiché la molteplicità geometrica di $\lambda_1 = 2$ è dim V(2) = 2, possiamo concludere che, per k = 2i, f è semplice.

Il caso k = -2i è analogo al caso k = 2i, ed è lasciato per esercizio.

Esercizio 3.51. Con riferimento all'esercizio 3.32,

- 1. dire per quali valori di a l'endomorfismo f_a è semplice;
- 2. nel caso a = 0, trovare la matrice associata ad f_a rispetto alla base

$$\tilde{\mathcal{B}} = \{ \vec{v}_1 = (1, 1, 0), \ \vec{v}_2 = (-2, -1, 0), \ \vec{v}_3 = (1, 0, -1) \}$$

e dire se essa è diagonalizzabile.

SOLUZIONE.

1. La matrice associata ad f_a rispetto alla base canonica \mathcal{B} è

$$A = \begin{pmatrix} a & 0 & 0 \\ 1 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}; \text{ inoltre } \det(A - \lambda \operatorname{Id}) = (a - \lambda)(1 - \lambda)^2,$$

quindi gli autovalori sono $\lambda=a$ e $\lambda=1$ con molteplicità algebrica almeno 2. Ora

$$V(1) = \{(x, y, z) \mid (a - 1)x = 0, \ x + az = 0\}$$

Se $a \neq 0, 1$ allora $V(1) = \{(0, h, 0)\}$; quindi dim V(1) = 1 ed f_a non è semplice.

Se a = 0 allora $V(1) = \{(0, k_1, k_2)\}$; quindi dim V(1) = 2 ed f_0 è semplice.

Se a = 1, allora $V(1) = \{(h_1, h_2, -h_1)\}$, quindi dim V(1) = 2 ed f_1 non è semplice, poiché la molteplicità algebrica di $\lambda = 1$ è 3.

2. La matrice del cambiamento della base è

$$P = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}; \quad \det P = -1 \neq 0.$$

Allora

$$\operatorname{Adj}(P) = \begin{pmatrix} 1 & -2 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad P^{-1} = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$$
$$\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f_0) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; \quad \mathcal{M}_{\tilde{\mathcal{B}}}^{\tilde{\mathcal{B}}}(f_0) = P^{-1}\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f_0)P = \begin{pmatrix} 4 & -6 & 3 \\ 2 & -3 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

Si noti che $P = \mathcal{M}^{\mathcal{B}}_{\tilde{\mathcal{B}}}(\mathrm{Id}_{\mathbb{R}^3})$. Ora $\mathcal{M}^{\tilde{\mathcal{B}}}_{\tilde{\mathcal{B}}}$ è diagonalizzabile poiché f_0 è semplice, per quanto visto al punto precedente.

Esercizio 3.52. Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo associato, relativamente alla base canonica di \mathbb{R}^3 , alla matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- 1. Provare che ker $f \oplus \text{Im } f = \mathbb{R}^3$.
- 2. Determinare, dopo aver osservato che esiste, una base di \mathbb{R}^3 formata da autovettori di f.
- 3. L'espressione $A^3=3A^2$, dove A è la matrice data, è un'identità? Da $A^3=3A^2$ si può dedurre A=3I?

SOLUZIONE.

- 1. $\ker f = \{(x,y,z) \mid x+y+z=0\} \Rightarrow \dim(\ker f) = 2,$ $\operatorname{Im} f = \mathcal{L}(\vec{v}), \text{ dove } \vec{v} = (1,1,1) \Rightarrow \dim(\operatorname{Im} f) = 1.$ Quindi $\operatorname{Im} f = \{(h,h,h) \mid h \in \mathbb{R}\}.$ Si verifica immediatamente che $\ker f \cap \operatorname{Im} f = \{\vec{0}\}$
- 2. A è una matrice simmetrica, quindi esiste una base di autovettori.

$$\det(A - \lambda I) = 3\lambda^2 - \lambda^3 = 0 \quad \Rightarrow \quad \lambda = 0 \text{ con molteplicità 2 e } \lambda = 3.$$

Determiniamo una base di V(0) e V(3). Per quanto visto al punto precedente, segue

$$\vec{u}_1 = (1, 0, 1), \qquad \vec{u}_2 = (0, 1, -1), \qquad \vec{u}_3 = (1, 1, 1).$$

3. Si verifica facilmente che $A^2=3A$ e quindi $A^3=3A^2$. Poiché A non è invertibile non si può dedurre che A=3I.

Esercizio 3.53. Con riferimento all'endomorfismo f dell'esercizio 3.33, dire se f è semplice e trovare gli autospazi relativi ad f.

Soluzione. $\det(A-\lambda I)=-\lambda^3+2\lambda^2+8\lambda=0 \Rightarrow \lambda=0,-2,4$. Gli autospazi avranno tutti dimensione 1. Più precisamente

$$V(0) = \ker f = \mathcal{L}(t^2 - 1)$$

$$V(-2) = \ker(f + 2 \operatorname{Id})$$

$$= \{ at^2 + bt + c \mid 3a + 2b + c = 0, \ 2a + 2b + 2c = 0, \ a + 2b + 3c = 0 \}$$

$$= \{ a(t^2 - 2t + 1) \} = \mathcal{L}(t^2 - 2t + 1),$$

$$V(4) = \ker(f - 4 \operatorname{Id})$$

$$= \{ at^2 + bt + c \mid -3a + 2b + c = 0, \ 2a - 4b + 2c = 0, \ a + 2b - 3c = 0 \}$$

$$= \{ a(t^2 + 2t + 1) \} = \mathcal{L}(t^2 + 2t + 1).$$

f è sempre semplice poiché A è simmetrica.

3.4 Esercizi di riepilogo

- 1. Verificare che:
 - $V = \{A \in \mathbb{R}^{n,n} \mid \operatorname{tr}(A) = 0\}$ è un sottospazio vettoriale di $\mathbb{R}^{n,n}$;
 - $W = \{ p \in \mathbb{R}_2[t] \mid p(1) = 0 \}$ è un sottospazio vettoriale di $\mathbb{R}_2[t]$;
 - $V = \{A \in \mathbb{R}^{n,n} \mid \det(A) = 0\}$ non è un sottospazio vettoriale di $\mathbb{R}^{n,n}$.
- 2. Determinare i valori del parametro $h \in \mathbb{R}$ per cui i seguenti sottoinsiemi siano sottospazi di \mathbb{R}^3 :
 - $U = \{(x, y, z) \in \mathbb{R}^3 \mid hx + (h^2 1)y + h^2 4 = (h 1)y z h + 2 = 0\};$
 - $V = \{(x, y, z) \in \mathbb{R}^3 \mid hx y + h^2 1 = (h 1)y^2 z = 0\}$:
 - $W = \{(x, y, z) \in \mathbb{R}^3 \mid hx y + h 1 = (h 1)y z + h = 0\};$
 - $Z = \{(x, y, z) \in \mathbb{R}^3 \mid hx y^2 + h 1 = (h 1)y + 3z = 0\};$
- 3. Sia \mathcal{F} lo spazio vettoriale delle funzioni reali di una variabile reale.
 - (a) Provare che, fissato $x_0 \in \mathbb{R}$,

$$W = \{ f : \mathbb{R} \to \mathbb{R} \mid f(x_0) = 0 \}$$

è un sottospazio vettoriale di V.

- (b) Provare che i vettori $e^x, e^{2x} \in \mathcal{F}$ sono indipendenti.
- 4. In $\mathbb{R}_2[t]$, spazio vettoriale dei polinomi di grado ≤ 2 , si considerino i seguenti vettori

$$p_1(t) = 1 - t + 2t^2$$
, $p_2(t) = -2 + t^2$, $p_3(t) = -1 - t + 3t^2$, $q(t) = 1 + t$.

- (a) Vedere se p_1, p_2, p_3 sono dipendenti.
- (b) Scrivere $W_1 = \mathcal{L}(p_1, p_2, p_3)$ e $W_2 = \mathcal{L}(q)$.
- (c) Gli spazi W_1 e W_2 sono tra loro supplementari ?
- 5. Sia $\mathbb{R}^{3,3}$ lo spazio vettoriale delle matrici di ordine 3. Si considerino i vettori

$$A_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

e gli insiemi

$$W_i = \{ X \in \mathbb{R}^{3,3} \mid XA_i = A_i X \} \qquad i = 1, 2.$$

- (a) Verificare che $W_1 = W_2$.
- (b) Dimostrare che W_i è un sottospazio vettoriale di $\mathbb{R}^{3,3}$ e determinarne una base.
- 6. Si consideri il sottospazio

$$V = \{(x, x + z - 2t, z, t) \mid x, y, z, t \in \mathbb{R}\} \subset \mathbb{R}^4$$

e l'endomorfismo

$$f: V \to V$$
, $f(x, x + z - 2t, z, t) = (hx - (h+1)t, hx + z + (1-h)t, z, -t)$,

con $h \in \mathbb{R}$. Per quali valori di h l'endomorfismo f è semplice?

7. Spazio vettoriale V, base $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.

Si consideri l'applicazione lineare $f:V\to V$ tale che

$$f(\vec{v}_1 + \vec{v}_2) = \frac{3}{2}\vec{v}_2$$
, $f(\vec{v}_1 - 2\vec{v}_3) = -\frac{1}{2}\vec{v}_2 - 3\vec{v}_3$, $f(2\vec{v}_1) = 4\vec{v}_1 - \vec{v}_2 + 2\vec{v}_3$.

Verificare che f è invertibile e determinare la matrice associata ad f^{-1} (inversa di f) rispetto alla base \mathcal{B} .

8. Spazi vettoriali numerici.

Si consideri l'applicazione lineare $f:\mathbb{R}^3\to\mathbb{R}^2$ la cui matrice rispetto alle basi canoniche è

$$A = \left(\begin{array}{cc} 2 & 0 & 1 \\ 1 & 5 & 3 \end{array}\right) .$$

(a) Determinare l'immagine, mediante f, del vettore $\vec{u}=(1,0,3)$ e quella del sottospazio vettoriale

$$H = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$$

- (b) Trovare, se esistono, le controimmagini del vettore $\vec{v} = (0,3) \in \mathbb{R}^2$.
- 9. Spazio vettoriale \mathbb{R}^3 , base canonica $\mathcal{B} = \{\vec{i}, \vec{j}, \vec{k}\}.$

Dopo aver verificato che i vettori

$$\vec{u}_1 = (0, 0, 1), \qquad \vec{u}_2 = (0, 1, 1), \qquad \vec{u}_1 = (1, 1, 1),$$

formano una base di \mathbb{R}^3 , si consideri l'applicazione $f:\mathbb{R}^3 \to \mathbb{R}^3$ lineare tale che

$$f(\vec{u}_1) = (2,3,5), \quad f(\vec{u}_2) = (-1,0,2), \quad f(\vec{u}_3) = (0,3,9),$$

- (a) Provare che $\mathbb{R}^3 = \ker f \oplus \operatorname{im} f$.
- (b) Si trovi una base $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ tale che $\vec{e}_1 \in \ker f$.
- 10. Spazio vettoriale numerico.

Si consideri l'endomorfismo

$$f: \mathbb{R}^2 \to \mathbb{R}^2: f(x,y) = (-2x + 3y, 2x - 3y).$$

- (a) Provare che f è diagonalizzabile.
- (b) Determinare l' endomorfismo $g: \mathbb{R}^2 \to \mathbb{R}^2$ che fa passare dalla base canonica a quella di autovettori.
- 11. Spazio vettoriale delle matrici.

Sia \mathcal{S} lo spazio vettoriale delle matrici simmetriche di ordine 2 ad elementi reali.

(a) Si provi che esiste un unico endomorfismo f di \mathcal{S} tale che (per $h \in \mathbb{R}$)

$$f\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}; \quad f\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} h & 0 \\ 0 & 2 - h \end{pmatrix};$$
$$f\begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}.$$

- (b) Determinare, per ogni valore di $h \in \mathbb{R}$, una base per gli autospazi di f.
- (c) Stabilire per quali valori di $h \in \mathbb{R}$ l'endomorfismo f è diagonalizzabile.
- (d) Posto h=0, trovare una base per il sottospazio vettoriale $f^{-1}(G)$, dove

$$G = \left\{ Y = \begin{pmatrix} y_1 & y_2 \\ y_3 & y_4 \end{pmatrix} \in \mathcal{S} \mid y_1 + y_2 - y_3 = 2y_2 + y_3 = 0 \right\}.$$

CAPITOLO 4

STRUTTURE METRICHE

4.1 Prodotti scalari

Esercizio 4.1. Dato uno spazio vettoriale V di dimensione 2 si considerino due basi $\mathcal{B} = \{\vec{e_1}, \vec{e_2}\}\ e\ \mathcal{B}' = \{\vec{e'_1}, \vec{e'_2}\}\ tali\ che$

$$\vec{e'}_1 = 2\vec{e}_1 - \vec{e}_2, \qquad \vec{e'}_2 = \vec{e}_1 + \vec{e}_2.$$

Sia

$$\beta(\vec{x}, \vec{y}) = 4x_1y_1 + 3x_1y_2 + 3x_2y_1 + 5x_2y_2.$$

- 1. Trovare la matrice G associata a β rispetto alla base \mathcal{B} .
- 2. Trovare $G' = \mathcal{M}_{\mathcal{B}'}(\beta)$.

SOLUZIONE.

1. La matrice associata a β rispetto alla base \mathcal{B} è

$$G = \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}.$$

2. Procedendo direttamente si ha

$$g'_{11} = \beta(\vec{e'}_1, \vec{e'}_1)$$

$$= \beta(2\vec{e}_1 - \vec{e}_2, 2\vec{e}_1 - \vec{e}_2)$$

$$= 4\beta(\vec{e}_1, \vec{e}_1) - 4\beta(\vec{e}_1, \vec{e}_2) + \beta(\vec{e}_2, \vec{e}_2)$$

$$= 4g_{11} - 4g_{12} + g_{22} = 9.$$

Analogamente $g'_{12}=6$ e $g'_{22}=15$, quindi

$$G' = \begin{pmatrix} 9 & 6 \\ 6 & 15 \end{pmatrix}.$$

Si provi che $G' = {}^{t}BGB$, dove B è la matrice del cambiamento di base.

Esercizio 4.2. Si consideri la forma bilineare $g: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ così definita:

$$q((x, y, z), (x', y', z')) = xx' + xz' + yy' + zx' + 2zz'.$$

- 1. Provare che g è un prodotto scalare.
- 2. Determinare una base ortonormale rispetto a g.
- 3. Trovare l'angolo tra i vettori $\vec{u} = (1, -1, 1)$ e $\vec{v} = (0, -1, 2)$.

SOLUZIONE.

1. Si vede facilmente che q è simmetrica e

$$g((x, y, z), (x, y, z)) = x^2 + 2xz + y^2 + 2z^2 = (x + z)^2 + y^2 + z^2 > 0$$

per ogni $(x, y, z) \neq (0, 0, 0)$. Inoltre l'espressione è uguale a zero se e solo se x+z=0, y=0, z=0, ossia (x,y,z)=(0,0,0).

2. Partiamo dalla base canonica $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ usando il procedimento di Gram–Schmidt. Poniamo $\vec{v}_1 \stackrel{\text{def}}{=} \vec{e}_1$, si ha

$$\|\vec{v}_1\|_g = 1 + 2 \cdot 0 + 0 + 2 \cdot 0 = 1.$$

Inoltre $g(\vec{e}_1, \vec{e}_2) = 0$, quindi poniamo $\vec{v}_2 \stackrel{\text{def}}{=} \vec{e}_2$, notando che

$$\|\vec{v}_1\|_g = 0 + 2 \cdot 0 + 1 + 2 \cdot 0 = 1.$$

Infine, posto $\vec{v}_3 \stackrel{\text{def}}{=} \vec{e}_3 + \lambda \vec{e}_1 + \mu \vec{e}_2$, si ha

$$0 = g(\vec{v}_3, \vec{e}_1) = g(\vec{e}_3, \vec{e}_1) + \lambda \quad \Rightarrow \quad \lambda = -g(\vec{e}_1, \vec{e}_3) = -1,$$

$$0 = g(\vec{v}_3, \vec{e}_2) = g(\vec{e}_3, \vec{e}_2) + \mu \quad \Rightarrow \quad \mu = -g(\vec{e}_2, \vec{e}_3) = 0,$$

quindi $\vec{v}_3 = (-1, 0, 1)$. Inoltre $g(\vec{v}_3, \vec{v}_3) = 1$, quindi una base ortonormale rispetto a g è data da

$$\vec{v}_1 = (1, 0, 0), \qquad \vec{v}_2 = (0, 1, 0), \qquad \vec{v}_3 = (-1, 0, 1).$$

3. Si ha

$$g(\vec{u}, \vec{v}) = 0 + 2 + 1 + 0 + 2 \cdot 2 = 7,$$

$$g(\vec{u}, \vec{u}) = 1 + 2 + 1 + 2 = 6,$$

$$g(\vec{v}, \vec{v}) = 1 + 8 = 9,$$

dunque $\cos \widehat{\vec{u}} \cdot \vec{v} = 7/(3\sqrt{6})$.

4.1. Prodotti scalari 99

Esercizio 4.3. Si consideri la matrice

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

- 1. Provare che G definisce un prodotto scalare g su \mathbb{R}^3 , tale che G sia la matrice associata a g rispetto alla base canonica di \mathbb{R}^3 .
- 2. Determinare una base ortogonale di \mathbb{R}^3 rispetto a g.
- 3. Riconoscere la quadrica $Q(\vec{v}) = g(\vec{v}, \vec{v}) = 1$.

SOLUZIONE.

1. La matrice G è simmetrica, quindi

$$g((x, y, z), (x', y', z')) = xx' + xz' + yy' + zx' + 2zz'$$

è una forma bilineare simmetrica. Basta verificare che è definita positiva. Ora

$$Q((x,y,z)) = x^2 + y^2 + 2z^2 + 2xz = (x+z)^2 + y^2 + z^2 \ge 0$$
$$Q((x,y,z)) = 0 \implies x+z = 0, \quad y = 0, \quad z = 0 \implies (x,y,z) = (0,0,0).$$

2. Partiamo dalla base canonica $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ di \mathbb{R}^3 ed applicando il metodo di ortonormalizzazione di Gram–Schmidt per ottenere una base ortonormale $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$

$$g(\vec{e}_1, \vec{e}_1) = 1 \quad \Rightarrow \quad \vec{u}_1 = \vec{e}_1,$$

$$g(\vec{e}_1, \vec{e}_2) = 0 \quad \Rightarrow \quad \vec{e}_2 \perp \vec{e}_1,$$

$$g(\vec{e}_2, \vec{e}_2) = 1 \quad \Rightarrow \quad \vec{u}_2 = \vec{e}_2.$$

Poniamo $\vec{v}_3 = \vec{e}_3 - \lambda_1 \vec{u}_1 - \lambda_2 \vec{u}_2$, con $\lambda_1 = g(\vec{e}_3, \vec{e}_1)$, $\lambda_2 = g(\vec{e}_3, \vec{e}_2) = 0$. Risulta $\vec{v}_3 = \vec{e}_3 - \vec{u}_1 = (1, 0, 1)$, e $g(\vec{v}_3, \vec{v}_3) = 1 + 0 + 2 - 2 = 1$, quindi $\vec{u}_3 = \vec{v}_3$.

3. Poiché g è definita positiva, gli autovettori di G sono positivi e quindi la quadrica è un ellissoide (reale).

Esercizio 4.4. Sia data la forma bilineare simmetrica $\beta \colon \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ rappresentata rispetto alla base canonica di \mathbb{R}^3 da

$$\beta(\vec{x}, \vec{y}) = x_1 y_1 + 2(x_1 y_2 + x_2 y_1) + x_2 y_2 + 2x_3 y_3,$$

e quindi $Q(\vec{x}) = x_1^2 + 4x_1x_2 + x_2^2 + 2x_3^2$. Si trovi una forma canonica e la forma normale di Q.

SOLUZIONE. Considerata la base $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ dove

$$\vec{v}_1 = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \quad \vec{v}_2 = (0, 0, 1), \quad \vec{v}_3 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right),$$

si vede facilmente che

$$\beta(\vec{v}_i, \vec{v}_i) = 0 \ \forall i \neq j, \quad \beta(\vec{v}_1, \vec{v}_1) = -1, \quad \beta(\vec{v}_2, \vec{v}_2) = 2, \quad \beta(\vec{v}_3, \vec{v}_3) = 3,$$

quindi rispetto a β' la forma canonica è

$$Q(\vec{x}) = -x_1'^2 + 2x_2'^2 + 3x_3'^2.$$

Consideriamo ora la base $\mathcal{B}'' = \{\vec{w_1}, \vec{w_2}, \vec{w_3}\}$ dove

$$\vec{w}_1 = (1, 0, 0), \quad \vec{w}_2 = (0, 0, 1), \quad \vec{w}_3 = (2, -1, 0).$$

Si ha

$$\beta(\vec{w_i}, \vec{w_i}) = 0 \ \forall i \neq j, \quad \beta(\vec{w_1}, \vec{w_1}) = 1, \quad \beta(\vec{w_2}, \vec{w_2}) = 2, \quad \beta(\vec{w_3}, \vec{w_3}) = -3.$$

Quindi, rispetto a \mathcal{B}'' la forma canonica è

$$Q(\vec{x}) = x_1''^2 + 2x_2''^2 - 3x_3''^2.$$

Si osservi che le due forme canoniche sono divise ma in entrambi i casi s=2, p=3, p-s=1. La segnatura è (2,1), dunque Q è indefinita. Infatti

$$Q(\vec{v}_1) = -1, \qquad Q(\vec{v}_2) = 2.$$

Naturalmente, ponendo

$$X_1 = x_1'', \quad X_2 = \sqrt{2}x_2'', \quad X_3 = \sqrt{3}x_3''$$

si ha la forma normale

$$Q(\vec{x}) = X_1^2 + X_2^2 - X_3^2.$$

Esercizio 4.5. Si consideri in \mathbb{R}^2 il prodotto scalare

$$g(\vec{x}, \vec{y}) \stackrel{def}{=} 4x_1y_1 + 3x_1y_2 + 3x_2y_1 + 5x_2y_2.$$

Trovare l'angolo tra i vettori $\vec{e}_1 = (1,0)$ e $\vec{e}_2 = (0,1)$.

Soluzione. La matrice associata al prodotto scalare rispetto alla base canonica è

$$G = \begin{pmatrix} 4 & 3 \\ 3 & 5 \end{pmatrix}$$

4.1. Prodotti scalari 101

quindi

$$\cos \widehat{e_1 e_2} = \frac{g(\vec{e_1}, \vec{e_2})}{\|\vec{e_1}\|_q \|\vec{e_2}\|_q} = \frac{3}{\sqrt{4\sqrt{5}}}.$$

Esercizio 4.6. Si considerino $V = \mathbb{R}^{n,n}$ e la forma bilineare $g: V \times V \to \mathbb{R}$ così definita:

$$g((a_{ij}), (b_{ij})) = \sum_{ij} a_{ij}b_{ij}.$$

- 1. Provare che g è un prodotto scalare su V.
- 2. Per n=2, trovare la matrice associata a g rispetto alla base canonica di V, e U^{\perp} , dove U=L(A) e $A=\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$.
- 3. Determinare una base ortonormale di $\mathbb{R}^{2,2}$, formata da vettori di U e di U^{\perp} .

SOLUZIONE.

1. Si vede facilmente che g è simmetrica e

$$g((a_{ij}), (a_{ij})) = \sum_{ij} a_{ij}^2 \ge 0$$

per ogni matrice (a_{ij}) . Inoltre, l'espressione è uguale a zero se e solo se $a_{ij} = 0$ per ogni i, j, ossia nel caso della matrice nulla.

2. Si verifica facilmente che $g(E_i, E_j) = \delta_{ij}$, dove $B = \{E_1, E_2, E_3, E_4\}$ è la base canonica di $\mathbb{R}^{2,2}$. Pertanto, $M_B(g) = I_4$, la matrice identità di ordine 4. Per ogni $B = (b_{ij}) \in \mathbb{R}^{2,2}$, risulta:

$$b \in U^{\perp} \Leftrightarrow g(B, A) = 0 \Leftrightarrow g\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}) = 0 \Leftrightarrow b_{11} + b_{22} = 0.$$

Quindi,

$$U^{\perp} = \{ ((b_{ij}) \mid b_{21} + b_{22} = 0 \} =$$

$$= \left\{ \begin{pmatrix} a & b \\ c & -c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\} =$$

$$= L \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \right).$$

Poiché $\{A\}$ è una base di U e una base di U^{\perp} è data da $\{B_1, B_2, B_3\}$, con $B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $B_3 = \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix}$, una base ortonormale richiesta si

ottiene ortonormalizzando $\{A, B_1, B_2, B_3\}$. Osservato che tali matrici sono a 2 a 2 ortogonali, basta normalizzarle. Pertanto, una base ortonormale di vettori di U e U^{\perp} è $\{A', B'_1, B'_2, B'_3\}$, dove

$$A' = \frac{A}{||A||} = \frac{1}{\sqrt{2}}A, \ B'_1 = \frac{B_1}{||B_1||} = B_1, \ B'_2 = \frac{B_2}{||B_2||} = B_2, \ B'_3 = \frac{B_3}{||B_3||} = \frac{1}{\sqrt{2}}B_3.$$

Esercizio 4.7. Sia $V = \mathbb{R}^{2,2}$ e $g(A,B) = \sum_{ij} a_{ij}b_{ij}$. Trovare l'angolo tra i vettori

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}.$$

Soluzione. Poiché g(A, B) = 0, i due vettori sono ortogonali. Inoltre

$$||A||_g = \sqrt{4+1+1+1} = \sqrt{7}, \quad ||B||_g = \sqrt{0+1+4+1} = \sqrt{6}.$$

Esercizio 4.8. Determinare una base ortonormale di U^{\perp} dove $U = \mathcal{L}(\vec{v})$, essendo $\vec{v} = (1, 1, 0)$.

Soluzione. U^{\perp} è il piano ortogonale alla retta U passante per O:

$$U^{\perp} = \{(x, y, z) \mid x + y = 0\} = \{(\lambda, -\lambda, \mu)\}.$$

Se $\vec{w}_1 = (0,0,1) \in U^{\perp}$, allora $\vec{w}_2 = (\lambda, -\lambda, \mu) \in U^{\perp}$ è ortogonale a \vec{w}_1 se $\mu = 0$ ed ha norma unitaria se $\lambda^2 + \lambda^2 = 1$, cioè $\lambda = \pm 1/\sqrt{2}$.

Esercizio 4.9. Data la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix},$$

associata ad una forma bilineare simmetrica β , dire se β è un prodotto scalare.

SOLUZIONE. β non è un prodotto scalare, poiché è una forma degenere (det A=0); d'altra parte non è definita positiva poiché i suoi autovalori non sono tutti positivi (c'è $\lambda=0$ contato due volte).

Esercizio 4.10. Si consideri la forma bilineare $q: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ così definita:

$$g((x, y, z), (x', y', z')) = xx' + xz' + yy' + zx' + 2zz'.$$

- 1. Provare che g è un prodotto scalare.
- 2. Determinare una base ortonormale rispetto a g.

4.1. Prodotti scalari 103

3. Trovare l'angolo tra i vettori $\vec{u} = (1, -1, 1)$ e $\vec{v} = (0, -1, 2)$.

SOLUZIONE.

1. Si vede facilmente che g è simmetrica e

$$g((x, y, z), (x, y, z)) = x^2 + 2xz + y^2 + 2z^2 = (x + z)^2 + y^2 + z^2 > 0$$

per ogni $(x, y, z) \neq (0, 0, 0)$. Inoltre l'espressione è uguale a zero se e solo se x+z=0, y=0, z=0, ossia (x,y,z)=(0,0,0).

2. Partiamo dalla base canonica $\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ usando il procedimento di Gram–Schmidt. Poniamo $\vec{v}_1 \stackrel{\text{def}}{=} \vec{e}_1$, si ha

$$\|\vec{v}_1\|_a = 1 + 2 \cdot 0 + 0 + 2 \cdot 0 = 1.$$

Inoltre $g(\vec{e_1},\vec{e_2})=0$, quindi poniamo $\vec{v_2}\stackrel{\text{def}}{=}\vec{e_2}$, notando che

$$\|\vec{v}_1\|_q = 0 + 2 \cdot 0 + 1 + 2 \cdot 0 = 1.$$

Infine, posto $\vec{v}_3 \stackrel{\text{def}}{=} \vec{e}_3 + \lambda \vec{e}_1 + \mu \vec{e}_2$, si ha

$$0 = g(\vec{v}_3, \vec{e}_1) = g(\vec{e}_3, \vec{e}_1) + \lambda \quad \Rightarrow \quad \lambda = -g(\vec{e}_1, \vec{e}_3) = -1,$$

$$0 = g(\vec{v}_3, \vec{e}_2) = g(\vec{e}_3, \vec{e}_2) + \mu \quad \Rightarrow \quad \mu = -g(\vec{e}_2, \vec{e}_3) = 0,$$

quindi $\vec{v}_3 = (-1,0,1)$. Inoltre $g(\vec{v}_3,\vec{v}_3) = 1$, quindi una base ortonormale rispetto a g è data da

$$\vec{v}_1 = (1, 0, 0), \qquad \vec{v}_2 = (0, 1, 0), \qquad \vec{v}_3 = (-1, 0, 1).$$

3. Si ha

$$g(\vec{u}, \vec{v}) = 0 + 2 + 1 + 0 + 2 \cdot 2 = 7,$$

$$g(\vec{u}, \vec{u}) = 1 + 2 + 1 + 2 = 6,$$

$$g(\vec{v}, \vec{v}) = 1 + 8 = 9,$$

dunque $\cos \widehat{\vec{u}}\vec{v} = 7/(3\sqrt{6})$.

Esercizio 4.11. Si consideri la matrice

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

1. Provare che G definisce un prodotto scalare g su \mathbb{R}^3 , tale che G sia la matrice associata a g rispetto alla base canonica di \mathbb{R}^3 .

- 2. Determinare una base ortogonale di \mathbb{R}^3 rispetto a g.
- 3. Riconoscere la quadrica $Q(\vec{v}) = g(\vec{v}, \vec{v}) = 1$.

SOLUZIONE.

1. La matrice G è simmetrica, quindi

$$g((x, y, z), (x', y', z')) = xx' + xz' + yy' + zx' + 2zz'$$

è una forma bilineare simmetrica. Basta verificare che è definita positiva. Ora

$$Q((x,y,z)) = x^2 + y^2 + 2z^2 + 2xz = (x+z)^2 + y^2 + z^2 \ge 0$$

$$Q((x,y,z)) = 0 \implies x+z = 0, \quad y = 0, \quad z = 0 \implies (x,y,z) = (0,0,0).$$

2. Partiamo dalla base canonica $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ di \mathbb{R}^3 ed applicando il metodo di ortonormalizzazione di Gram-Schmidt per ottenere una base ortonormale $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

$$g(\vec{e}_1, \vec{e}_1) = 1 \quad \Rightarrow \quad \vec{u}_1 = \vec{e}_1,$$

$$g(\vec{e}_1, \vec{e}_2) = 0 \quad \Rightarrow \quad \vec{e}_2 \perp \vec{e}_1,$$

$$g(\vec{e}_2, \vec{e}_2) = 1 \quad \Rightarrow \quad \vec{u}_2 = \vec{e}_2.$$

Poniamo
$$\vec{v}_3 = \vec{e}_3 - \lambda_1 \vec{u}_1 - \lambda_2 \vec{u}_2$$
, con $\lambda_1 = g(\vec{e}_3, \vec{e}_1)$, $\lambda_2 = g(\vec{e}_3, \vec{e}_2) = 0$. Risulta $\vec{v}_3 = \vec{e}_3 - \vec{u}_1 = (1, 0, 1)$, e $g(\vec{v}_3, \vec{v}_3) = 1 + 0 + 2 - 2 = 1$, quindi $\vec{u}_3 = \vec{v}_3$.

3. Poiché g è definita positiva, gli autovettori di G sono positivi e quindi la quadrica è un ellissoide (reale).

Esercizio 4.12. Nello spazio vettoriale euclideo \mathbb{R}^5 , munito del prodotto sclare standard, si consideri $U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 / x_1 - x_3 + x_5 = x_2 + x_4 = 0\}$. Trovare U^{\perp} , e una base ortonormale di \mathbb{R}^5 costituita da vettori di U e U^{\perp} .

SOLUZIONE.

$$U = \{(a, b, c, -b, -a + c) \mid a, b, c \in \mathbb{R}\} =$$

$$= L(u_1 = (1, 0, 0, 0, -1), u_2 = (0, 1, 0, -1, 0), u_3 = (0, 0, 1, 0, 1)).$$

Per ogni $x=(x_1,x_2,x_3,x_4,x_5)\in\mathbb{R}^5$ risulta:

$$x \in U^{\perp} \Leftrightarrow x \cdot u_i = 0, i = 1, 2, 3 \Leftrightarrow \begin{cases} x_1 - x_5 = 0, \\ x_2 - x_4 = 0, \\ x_3 - x_5 = 0. \end{cases}$$

Quindi,

$$U^{\perp} = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 \mid x_1 - x_5 = x_2 - x_4 = x_3 - x_5 = 0\}$$

= $\{(\alpha, \beta, \alpha, \beta, \alpha) \mid \alpha, \beta \in \mathbb{R}\} = L(v_1 = (1, 0, 1, 0, 1), v_2 = (0, 1, 0, 1, 0)).$

Poiché $\{u_1, u_2, u_3\}$ e $\{v_1, v_2\}$ sono rispettivamente basi di U e U^{\perp} , basta ortonormalizzarle ed unirle per ottenere una base di \mathbb{R}^5 formata da vettori di U e U^{\perp} .

Essendo v_1 e v_2 ortogonali, basta considerare $v_1' = \frac{v_1}{||v_1||} = \frac{1}{\sqrt{3}}(1,0,1,0,1)$ e $v_2' = \frac{v_2}{||v_2||} = \frac{1}{\sqrt{2}}(0,1,0,1,0)$.

Consideriamo allora $u_2' = \frac{u_2}{||u_2||} = \frac{1}{\sqrt{2}}(0,1,0,-1,0)$, e poniamo $u_1'' = u_1 - \lambda u_2'$, imponendo che $u_1'' \perp u_1''$ 2, da cui segue $\lambda = 0$ (poiché $u_2 \perp u_1$). Quindi, sia $u_1' = \frac{u_1''}{||u_1''||} = \frac{1}{\sqrt{2}}(1,0,0,0,0,-1)$.

Infine, poniamo $u_3'' = u_3 - \lambda u_2' + \mu u_3'$, imponendo che u_3'' sia perpendicolare a u_2' e u_1' . Otteniamo $\lambda = 0$ e $\mu = -1/\sqrt{2}$, per cui,

$$u_3'' = u_3 - frac \sqrt{2}u' = (0, 0, 1, 0, 1) + \frac{1}{2}(1, 0, 0, 0, -1) = (\frac{1}{2}, 0, 1, 0, \frac{1}{2}),$$

e quindi, $u_3' = \frac{u_3''}{||u_3''||} = \sqrt{\frac{2}{3}}((\frac{1}{2},0,1,0,\frac{1}{2}))$. In conclusione, una base di \mathbb{R}^5 formata da vettori di U e U^{\perp} è data da $\{\frac{1}{\sqrt{2}}(1,0,0,0,-1), \frac{1}{\sqrt{2}}(0,1,0,-1,0), \sqrt{\frac{2}{3}}((\frac{1}{2},0,1,0,\frac{1}{2})), \frac{1}{\sqrt{3}}(1,0,1,0,1), \frac{1}{\sqrt{2}}(0,1,0,1,0)\}$.

4.2 Trasformazioni ortogonali

Esercizio 4.13. Ridurre a forma canonica la conica

$$\mathcal{C} \colon 2xy - 2x + y = 0.$$

SOLUZIONE. La forma quadratica Q(x,y)=2xy associata a \mathcal{C} ha autovalori ± 1 . quindi si tratta di un'iperbole. La seguente base $\mathcal{B}'=\{\vec{e'}_1,\vec{e'}_2\}$, con

$$\vec{e'}_1 = \frac{1}{\sqrt{2}}\vec{e}_1 + \frac{1}{\sqrt{2}}\vec{e}_2, \qquad \vec{e'}_2 = -\frac{1}{\sqrt{2}}\vec{e}_1 + \frac{1}{\sqrt{2}}\vec{e}_2,$$

è una base ortonormale di autovettori e la matrice del cambiamento di base è

$$B = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad \text{con} \quad \begin{cases} x = \frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y' + x_0, \\ y = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y' + y_0. \end{cases}$$

Sostituendo nell'equazione di \mathcal{C} si ha

$$2\left(\frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y' + x_0\right)\left(\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y' + y_0\right) - 2\left(\frac{1}{\sqrt{2}}x' - \frac{1}{\sqrt{2}}y' + x_0\right) + \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y' + y_0 = 0.$$

Eseguendo i calcoli e imponendo che i termini lineari siano nulli si ha

$$\begin{cases} 2y_0 + 2x_0 - 1 = 0, \\ -2y_0 + 2x_0 + 3 = 0, \end{cases}$$

da cui $x_0 = -1/2$, $y_0 = 1$, quindi

$$C \colon {x'}^2 - {y'}^2 + 1 = 0.$$

Il centro di \mathcal{C} nelle coordinate x'y' è (0,0), quindi $(x_0,y_0)=(-1/2,1)$ nelle coordinate xy.

Esercizio 4.14. Si consideri l'endomorfismo f dell'esercizio 3.19. Dimostrare che f è un'isometria, trovare i suoi punti fissi e dire cosa rappresenta f geometricamente.

SOLUZIONE. f è un'isometria perché f è una trasformazione ortogonale, essendo ${}^tA = A^{-1}$. Il luogo dei punti fissi di f è costituito dalle soluzioni del sistema

$$AX = X$$
 \Rightarrow $(A - \operatorname{Id})X = O$ \Rightarrow
$$\begin{cases} -x - \sqrt{3}z = 0, \\ -\sqrt{3}x - z = 0, \end{cases}$$

dunque $U = \{(0, k, 0)\}$. Quindi f rappresenta una rotazione intorno all'asse y.

Esercizio 4.15. Considerando l'esercizio 3.26,

- 1. determinare $(\ker f_k)^{\perp}$;
- 2. dire se esistono valori di k per cui f_k è una trasformazione ortogonale.

SOLUZIONE.

1. Si ha

$$\ker f_k = \{ (x, y, z) \in \mathbb{R}^3 \mid x + z = 0, \ kx + y = 0, \ -y = 0 \}$$
$$= \{ (x, y, z) \in \mathbb{R}^3 \mid kx = 0, \ y = 0, \ z = 0 \}.$$

Se $k \neq 0$, allora $\ker f_k = \{\vec{0}\}\ e\ (\ker f_k)^{\perp} = \mathbb{R}^3$.

Se
$$k = 0$$
, allora $\ker f_0 = \{ (t, 0, 0) \mid t \in \mathbb{R} \}$ e $(\ker f_k)^{\perp} = \{ (0, m, n) \mid m, n \in \mathbb{R} \}$.

2. La funzione f_k è una trasformazione ortogonale se e solo se

$$A_k \cdot {}^t A_k = {}^t A_k \cdot A_k = I,$$

ma $A_k \cdot {}^t A_k \neq I$ per ogni $k \in \mathbb{R}$.

Esercizio 4.16. Nello spazio vettoriale euclideo \mathbb{R}^3 , munito del prodotto sclare standard, si consideri l'endomorfismo f tale che

$$M_B(f) = A = \begin{pmatrix} h-1 & h & 0 \\ h & 0 & 1-h \\ h-1 & 0 & h \end{pmatrix},$$

dove B rappresenta la base canonica, e $h \in \mathbb{R}$. Dire per quali valori di h, f è una trasformazione ortogonale. Per tali valori di h, interpretare geometricamente f.

SOLUZIONE. Si verifica facilmente che

$$A \cdot A^{T} = \begin{pmatrix} 2(h-1)^{2} + h^{2} & h(h-1) & 0 \\ h(h-1) & h^{2} & 0 \\ 0 & 0 & (1-h)^{2} + h^{2} \end{pmatrix}.$$

f è una trasformazione ortogonale se e solo A è una matrice ortogonale, ossia se $A \cdot A^T = I$, quindi se e solo se $h^2 = 1$ e h(h-1) = 0, che sono contemporaneamente soddisfatte solo per h = 1. Interpretiamo ora f quando h = 1, studiando il sottospazio V dei punti fissi di f. Poichè h = 1, risulta

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

I punti fissi di f corrispondono alle soluzioni del sistema lineare (A-I)X=0, ossia,

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Si calcola facilmente che

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x - y = z = 0\} = \{(a, a, 0) \mid a \in \mathbb{R}\} = L((1, 1, 0)).$$

Quindi, dim V=1. Di conseguenza, f è la rotazione intorno alla retta vettoriale V=L((1,1,0)).

Esercizio 4.17. Nello spazio vettoriale euclideo \mathbb{R}^3 , munito del prodotto sclare standard, si consideri l'endomorfismo f tale che

$$M_B(f) = A = \frac{1}{23} \begin{pmatrix} 3 & 6 & 22 \\ 14 & -18 & 3 \\ 18 & 13 & -6 \end{pmatrix},$$

dove B rappresenta la base canonica. Interpretare geometricamente f.

Soluzione. Si verifica facilmente che $A \cdot A^T = I$. Quindi, A è una matrice ortogonale. Essendo A associata ad f rispetto a una base ortonormale, ne segue che f è una

trasformazione ortogonale. Interpretiamo f studiando $\operatorname{rg}(A-I)$, da cui ricaviamo la dimensione del sottospazio V dei punti fissi di f (dal Teorema di Rouché-Capelli, in quanto A-I è la matrice associata al sistema lineare che dá i punti fissi di f). Poichè

$$A - I = \frac{1}{23} \begin{pmatrix} -20 & 6 & 22 \\ 14 & -41 & 3 \\ 18 & 13 & -29 \end{pmatrix},$$

si verifica facilmente che det(A - I) = 0, e quindi, rg(A - I) < 3. Poichè

$$\left| \begin{array}{cc} -41 & 3 \\ 13 & -29 \end{array} \right| \neq 0,$$

concludiamo che $\operatorname{rg}(A-I)=2$, e quindi, dim V=3-2=1. Di conseguenza, f è la rotazione intorno alla retta vettoriale V.

Esercizio 4.18. Si consideri la seguente matrice

$$A = \begin{pmatrix} 1/2 & 0 & \sqrt{3}/2 \\ 0 & 1 & 0 \\ \sqrt{3}/2 & 0 & 1/2 \end{pmatrix}$$

e sia $f_A : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f_A(X) = AX$ rispetto alla base canonica.

- 1. Provare che f è una trasformazione ortogonale.
- 2. Trovare $f(\vec{e}_1 + \vec{e}_2)$.
- 3. Trovare i punti fissi di f e dire che cosa rappresenta f geometricamente.
- 4. Trovare gli autovalori di A^h per ogni $h \in \mathbb{N}$ e vedere se A^h è diagonalizzabile.

SOLUZIONE.

- 1. Si verifica facilmente che $A^tA = Id = {}^tAA$. Inoltre det A = -1.
- 2. $f(\vec{e}_1 + \vec{e}_2) = f(\vec{e}_1) + f(\vec{e}_2) = (1/2, 0, \sqrt{3}/2).$
- 3. Basta risolvere il sistema omogeneo $A \operatorname{Id} X = O$, che dà come soluzione il piano $x = \sqrt{3}z$. Ne segue che f è il ribaltamento (simmetria ortogonale) rispetto a questo piano.
- 4. Poiché $A={}^t A=A^{-1}$ risulta $A^2=\operatorname{Id} \operatorname{e} A^h=\operatorname{Id} \operatorname{per} h$ pari $\operatorname{e} A^h=A$ per h dispari. Se h è pari A^h ha l'autovalore $\lambda=1$ con molteplicità 3; se h è dispari A^h ha l'autovalore $\lambda_1=1$ con molteplicità 2 e $\lambda_2=-1$ con molteplicità 1. Essendo A simmetrica, anche A^h è simmetrica e quindi diagonalizzabile.

Esercizio 4.19. Facendo riferimento all'esercizio 3.41, posto $h = \frac{3}{4}$, trovare per quali valori di a l'applicazione f è un'isometria, e nel caso $a = \frac{\sqrt{3}}{2}$, trovare i punti fissi di f e riconoscere come opera geometricamente l'applicazione f.

Soluzione. La matrice associata ad f (per h = h = 3/4) è

$$A = \begin{pmatrix} \frac{1}{2} & a & 0\\ \frac{3}{4a} & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Ora $A^tA=I$ implica $1/4+a^2=1,\ a^2=3/4,$ che implica $a=\pm\sqrt{3}/2.$ Dunque f è un'isometria per $a=\pm\sqrt{3}/2.$

Troviamo ora i punti fissi di f. Essendo

$$x = \frac{1}{2}x + \frac{\sqrt{3}}{2}y, \quad y = \sqrt{3}x - \frac{1}{2}y, \quad z = z,$$

il luogo dei punti fissi è il piano $x=\sqrt{3}y$. Si tratta, allora, della simmetria ortogonale rispetto al piano $x=\sqrt{3}y$.

4.3 Esercizi di riepilogo

- 1. Sia E uno spazio vettoriale euclideo arbitrario.
 - (a) Verificare che

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2$$

(b) Provare che

$$\vec{u} \perp \vec{v} \qquad \Leftrightarrow \qquad \|\vec{u} + \vec{v}\| = \|\vec{u} - \vec{v}\|.$$

(c) Provare che

$$\|\vec{u}\| = \|\vec{v}\| \qquad \Leftrightarrow \qquad (\vec{u} + \vec{v}) \perp (\vec{u} - \vec{v}).$$

- (d) Interpretare i risultati precedenti nello spazio dei vettori ordinari.
- 2. Sia $E=\mathbb{R}^2$ con la struttura euclidea standard. Verificare che i seguenti vettori costituiscono un quadrato:

$$\vec{v}_1 = (9,1), \quad \vec{v}_2 = (4,13), \quad \vec{v}_1 = (-8,-8), \quad \vec{v}_1 = (-3,-4).$$

3. Si consideri la forma bilineare $\beta: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ associata (rispetto alla base canonica) alla matrice

$$A = \left(\begin{array}{ccc} a & 0 & 1\\ 0 & a & 0\\ 1 & 0 & a \end{array}\right), \qquad a \in \mathbb{R}.$$

- (a) Vedere per quali valori di a la matrice A è diagonalizzabile.
- (b) Studiare, al variare di $a \in \mathbb{R}$, la segnatura di β .
- (c) Dopo aver provato che per a=2 la forma β definisce un prodotto scalare, trovare una base ortonormale rispetto a β .
- 4. Sia E uno spazio vettoriale su \mathbb{R} riferito alla base $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_2\}$.
 - (a) Provare che i seguenti vettori costituiscono una base $\tilde{\mathcal{B}}$:

$$\vec{u}_1 = (1, 1, -1), \quad \vec{u}_2 = (1, -1, 0), \quad \vec{u}_3 = (-1, 0, 1).$$

(b) Si dimostri che (E, g) è uno spazio vettoriale euclideo, dove

$$g(\vec{x}, \vec{y}) = x_1 y_1 + x_2 y_2 + 2x_3 y_3.$$

- (c) Dedurre dalla base $\tilde{\mathcal{B}}$ una base ortonormale rispetto a g.
- (d) Descrivere U^{\perp} , dove $U = L(\vec{u}_1, \vec{u}_2)$.
- (e) Trovare la proiezione ortogonale di $\vec{x} = (0, 1, 1)$ su U.
- 5. Sia $V = \mathbb{R}_n[t]$ lo spazio vettoriale dei polinomi a coefficienti reali di grado minore o uguale ad n. Per $p, q \in V$ si consideri l'applicazione

$$g: V \times V \to \mathbb{R}, \quad g(p,q) = \int_{-1}^{+1} p(t)q(t) dt$$
.

- (a) Provare che g è un prodotto scalare.
- (b) Nel caso n=2 trovare la matrice associata a g rispetto alla base canonica di V.
- (c) Determinare una base ortonormale di V.
- 6. Si consideri l'endomorfismo di \mathbb{R}^3 , individuato, rispetto alla base canonica, dalla matrice

$$A = \left(\begin{array}{ccc} 1 & 2 & -4 \\ 2 & -2 & -2 \\ -4 & -2 & 1 \end{array}\right) .$$

Ridurre a forma canonica la forma quadratica associata ad f.