Recurrent Neural Network

Jun-ichi Sato

May 16, 2016

Outline

- Review of last seminar
- Neural Networks
 - Activation function
 - Feed foword calculation
 - Backpropagation
- Recurrent Neural Networks
 - Structure
 - Calculation
- Example of RNN application

Review of last seminar

- We proposed the method of neural decoding of c-VEP
- Spatio-temporal inverse filter for neural decoding
 - Linear model (LMSE, lasso)
 - Nonlinear model (Neural network)
- We adopt the feed forward neural network for the nonlinear model
- Feature works : more appropriate network for neural network
 - e.g. Recurrent Neural Network

Neural Network

- Feed-forward structure
 - Input
 - Hidden
 - Output
- Model for Classification or Regression

History of Neural Network

year	Events
1940s	Research stated
1980s	Backpropagation [1]
1980s (late)	Convolutional neural network (CNN)
1990s	Recurrent neural networks (RNN) [2]
2000s	Deep belief networks (DBN) [3]

- [1] D. E. Rumelhart and J. Mcclelland. "Parallel Distributed Processing: Explorations in the Microstructure of Cognition.", MIT Press, 1986
- [2] C. Goller, "Learning task-dependent distributed representations by backpropagation through structure." Neural Networks, 1996., IEEE International Conference on. Vol. 1. IEEE, 1996.
- [3] G. E. Hinton, "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554.

Neural Network in Computer Vision

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)

- Classification problem
- 1000 class
- 1.2 million training

Year	Method	Accuracy
2010	Fast descriptor coding, large-scale SVM	72 %
2011	Fisher vector	75 %
2012	Deep Learning (AlextNet)	85 %
2013	Deep Learning	89 %
2014	Deep Learning (GoogleNet)	93 %
2015	Deep Learning	95.18 %
• Human	(hard studied): 95 %	eyond the human

Feed forward Neural Network

- Each unit calculates the multi-inputs and the output
- Total input is calculated by

$$u = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b$$

 w_i : weight of input

b: bias

Output is given by

$$z = f(u)$$

f: Activation function

Feed forward calculation of neural network

- Unit of first layer : i = 1, ..., I
- Unit of second layer : j = 1, ..., J
- The calculation is generalized by

$$u_{j} = \sum_{i}^{l} w_{ji} x_{i} + b_{j}$$
$$z_{j} = f(u_{j})$$

We can rewrite the equation by vector and matrix representation

$$u = Wx + b$$

$$z = f(u)$$

Multi-layer neural network

• L = 3 layer network

$$u^{(l+1)} = W^{(l+1)}z^{(l)} + b^{(l+1)}$$

 $z^{(l+1)} = f(u^{(l+1)})$

Output of the network is

Activation functions

- Logistic sigmoid function
 - Most used
 - domain : $(-\infty, \infty)$, range : (0, 1) $f(u) = \frac{1}{1 + e^{-u}}$
- Hyperbolic tangent
 - Similar to logistic sigmoid function
 - domain : $(-\infty, \infty)$, range : (-1, 1) $f(u) = \frac{1}{1 + e^{-u}}$
- Rectified linear function (ReLU)
 - Used recently

$$f(u) = \max(u, 0)$$

Faster training and better results than sigmoid and hyperbolic tangent

Activation functions

Design of output layer

Linear activation function

$$f(u) = u$$

Problem	Activation function	Error function
Regression	Linear activation function	Squared error
Multi-class classification	Softmax function	Cross entropy

Softmax function

$$y_k = \frac{\exp(u_k^L)}{\sum_{j=1}^K \exp(u_j^L)}$$

Cross entropy

$$E(w) = -\sum_{n=1}^{N} \sum_{k=1}^{K} d_{nk} \log y_k(x_n; w)$$

• d_n : one-hot encoded vector (like [0,0,0,1,0])

Backpropagation

Output layer error :

$$\delta_j \equiv \frac{\partial E}{\partial u_j}$$

Backpropagation formula is given by

$$\delta_j = \sum_k w_{kj} \delta_k f'(u_j)$$

• Differential of E_n is given by

$$\frac{\partial E_n}{\partial w_{ji}} = \delta_j z_i$$

Classification of sequential data

Sequential data:

- $x^1, x^2, ..., x^T$
- T is variable
- Ordered data
- E.g. voice, video, text

Example: Predict the next word in the text

We can get an idea of the quality of the learned **feature** vectors

word	We	can	get	•••	the	learned	?
input	x^1	x^2	x^3		x^{t-1}	x^t	x^{t+1}
output		y ¹	y ²		y^{t-2}	y^{t-1}	y^t

Predict word y^t is influenced by previous words x^1 , ..., x^t

Recurrent Neural Network (RNN)

- RNN is a neural networks which has closed circuits
- RNN catches the context of a sequential data
- RNN receives x^t and outputs y^t for each time
- Theoretically, RNN outputs y^t from all inputs $(x^1, ..., x^t)$

Design of output layer for RNN

- Same as feed forward network
- In classification problem,
 softmax function is used for activation function
- Error function is given by,

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} d_{nk}^{t} \log y_{k}^{t}(\mathbf{x}_{n}; \mathbf{w})$$

- $y^1, ..., y^T$: output sequence
- d^1, \dots, d^T : target of the output
- x_n : input of n sample
- d_{nk}^t : target of n sample at time t

RNN: Feed forward calculation

• Each unit is different state at each time t = 1, 2, ...

$$oldsymbol{x}^t = \left(x_i^t
ight)$$
 input input of hidden layer $oldsymbol{u}^t = \left(u_j^t
ight)$ output of hidden layer $oldsymbol{v}^t = \left(z_j^t
ight)$ output of output layer $oldsymbol{v}^t = \left(v_k^t
ight)$ output of output layer output of output layer $oldsymbol{d}^t = \left(d_k^t
ight)$ target of the output $oldsymbol{W}^{in} = \left(w_{ji}^{in}
ight)$ weight of the input to hidden layer $oldsymbol{W} = \left(w_{jj}^{out}
ight)$ weight of feedback path weight of hidden to output

 $oldsymbol{W}$ is constant value at any time

RNN: Feed forward calculation

• Input of the hidden layer at t = t

$$u_{j} = \sum_{i} w_{ji}^{(in)} x_{i}^{t} + \sum_{j} w_{jj'} z_{j'}^{t-1}$$

- Sum of **inputs at** t and output of **hidden layer at** t-1
- Bias is $w_{j0}^{(in)}$
- Output of hidden layer

$$z_j^t = f(u_j^t)$$

$$z^t = f(W^{(in)}x^t + Wz^{t-1})$$

Output of output layer

$$v_k^t = \sum_j w_{kj}^{(out)} z_j^t$$
$$y^t = f^{(out)}(v^t) = f^{(out)}(W^{(out)}z^t)$$

RNN: Backpropagation (1)

BPTT: backpropagation through time

- Replace RNN with feed forward NN
- Unfolding RNN through time

RNN: Backpropagation (2)

Backpropagation of feed forward networks

$$\delta_j^{(l)} = \sum_k w_{kj}^{(l+1)} \delta_k^{(l+1)} f'(u_j^{(l)})$$

Output delta of unit k at t

$$\delta_k^{out,t} \equiv \frac{\partial E}{\partial v_k^t}$$

Hidden delta of unit j at t

$$\delta_j^t \equiv \frac{\partial E}{\partial u_j^t}$$

RNN: Backpropagation (3)

• δ_j^t is given by

$$\delta_j^t = \left(\sum_k w_{kj}^{out} \delta_k^{out,t} + \sum_{j'} w_{jj'} \delta_{j'}^{t+1}\right) f'(u_j^t)$$

Delta of T + 1 is not able to calculate

RNN: Backpropagation (4)

Differential of E are given by

$$\frac{\partial E}{\partial w_{ji}^{in}} = \sum_{t=1}^{T} \frac{\partial E}{\partial u_{j}^{t}} \frac{\partial u_{j}^{t}}{\partial w_{ji}^{in}} = \sum_{t=1}^{T} \delta_{j}^{t} x_{i}^{t}$$

$$\frac{\partial E}{\partial w_{jj'}} = \sum_{t=1}^{T} \frac{\partial E}{\partial u_{j}^{t}} \frac{\partial u_{j}^{t}}{\partial w_{jj'}} = \sum_{t=1}^{T} \delta_{j}^{t} x z_{j}^{t-1}$$

$$\frac{\partial E}{\partial w_{kj}^{out}} = \sum_{t=1}^{T} \frac{\partial E}{\partial v_{k}^{t}} \frac{\partial v_{k}^{t}}{\partial w_{kj}^{out}} = \sum_{t=1}^{T} \delta_{j}^{t} z_{j}^{t}$$

Bidirectional RNN

- If all data is given at the same time, We can input the reversal data $(t=T,T-1\ldots,1)$ to the RNN
- B-RNN has better performance than normal RNN

Example of RNN

- "Deep Visual-Semantic Alignments for Generating Image Descriptions",
 K. Andrej and F. Li, CVPR, 2015
- Generate the description from the image region

Proposed method

Image representation: CNN

- CNN which is trained by ImageNet
- I_b : pixel of image region
- Image representation is given by

$$v = W_m [CNN_{\theta_c}(I_b)] + b_m$$

Sentence representation: BRNN

- I_t : input vector, word of the number t. 1 of K representation
- *s*_t : output vector
- BRNN is used to get output vector
- W_w : weight of word2vec
- $f: x \mapsto \max(0, x)$, ReLU

$$x_{t} = W_{w}I_{t}$$

$$e_{t} = f(W_{e}x_{t} + b_{e})$$

$$h_{t}^{f} = f(e_{t} + W_{f}h_{t-1}^{f} + b_{f})$$

$$h_{t}^{b} = f(e_{t} + W_{b}h_{t+1}^{b} + b_{b})$$

$$s_{t} = f(W_{d}(h_{t}^{f} + h_{t}^{b}) + b_{d})$$

Score

The score is given by

$$S_{kl} = \sum_{t \in g_l} \sum_{i \in g_k} \max(0, v_i^T s_t)$$

• g_l : index set of sentence

• g_k : index set of image region

Result: Full frame

- "man in black shirt is playing a guitar" does not exist in training data sets
- "man in black shirt" and "is playing guitar" exists

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

Full frame : Failure

- Not young
- Not wakeboard

two young girls are playing with lego toy.

boy is doing backflip on wakeboard.

Result: region-level descriptions

- "Table with wine glasses"
 - In training, it occurred in small region only 30 times.

Future works

- To apply RNN to c-VEP BCI
- To study Long Short Term Memory (LSTM)
 - One of the RNN