Jaypee Institute of Information Technology End Term Examination, Odd 2021

B.Tech, III Semester

Maximum Time: 2 Hrs Course Title: Electrical Science-2 Course Code: 15B11EC211 Maximum Marks: 35 After pursuing the course, the student shall be able to: CO1: Study and analyze the complete response of the first order and second order circuits with energy storage and/or non-storage elements. CO2: Understand two-port network parameters and study first order, second order passive filters. CO3: Study the properties of different types of semiconductors, PN junction diode, zener diode and analyze diode applications. CO4: Study the characteristics, operation of bipolar junction transistor (BJT) and its biasing, stability aspects. Note: Attempt all the questions: Q1. For the circuit shown in Fig. 1, find the value of (a) i_L (b) i_1 and i_2 at time t=0.15s. [3,CO1]**Q2.** Calculate the Z parameters Z_{11} , Z_{12} , Z_{21} and Z_{22} for the circuit shown in Fig. 2. [3,CO2]**23.** For the circuit shown in Fig. 3, determine the transfer function $H(jw) = \frac{V_0(jw)}{V_1(jw)}$ [3,CO2]Q4) For a silicon sample shown in Fig. 4, with l=2cm, w=d=0.4cm, $B_z=5\times10^{-5}$ weber- cm^{-2} , $V_x=1.5V$, $I_x=7.5$ mA and V_H =6mV, find (a) Hall constant R_H (b) majority hole charge concentration P_0 (c) mobility μ_H . Q5/A silicon sample is doped with donor concentration 6×10^{15} cm⁻³ and acceptor concentration 2×10^{15} cm⁻³. Determine (a) Electron hole concentration (b) Position of Fermi level i.e. E_C-E_F. Take n_i= 1.5x10¹⁰ cm⁻³. Q6. A silicon sample is doped with donor concentration 6×10^{11} cm⁻³ has τ_p (mean free time of holes)=1µs. The sample is uniformly illuminated to produce electron hole pair at a rate G_L=2x10¹⁹ cm⁻³/s (a) Determine excess charges Δn and Δp (b) Resistivity of the illuminated sample. Take $n_i = 1.5 \times 10^{10}$ cm⁻³, $\mu_n = 1350$ cm²/V-sec and $\mu_p = 480 \text{ cm}^2/\text{V-sec}$ [3,CO3] Q7. A silicon P-N abrupt junction at 300K has $N_A = 10^{15}$ cm⁻³, $N_D = 2x10^{15}$ cm⁻³. For equilibrium condition, draw the energy band diagram for the following bias conditions (a) Reverse bias of 3V (b) forward bias of 0.7V. The energy-band diagram should be shown with proper label of energy levels and built-in potential. Take n_i = $1.5 \times 10^{10} \text{ cm}^{-3} \text{ V}_{T} = 26 \text{ mV}$. Q8. (a) A full wave bridge rectifier with 120V RMS sinusoidal input has a load resistance of $1K\Omega$. Assume silicon diode has cut in voltage $V_{\gamma} = 0.7V$ and $R_f = 0$. Determine DC voltage across the load resistance. 11. / PIV rating of the diode. Maximum current through each diode during conduction. iv. Power rating of each diode. [4, CO3] Draw the waveform of output voltage for the circuit shown in Fig. 5. Briefly explain the working of the efreuit for the given input in the time interval 0 to T3. Assume ideal diode. [3, CO3]Determine the output voltage V_0 and the diode current i_{d1} and i_{d2} for the circuit shown in Fig. 6 if (a) $V_1 = 0V$ $V_I = 4V$. Assume ideal diode. [4, CO3] Q10. Write a short note of the following (a) Ebers-Moll model of the PNP BJT. (b) Base Width Modulation. (c) Output characteristics of common emitter PNP transistor [4,CO4]

