Regression and Large Dimensional Data

let's make an example that uses a lot of variables but only a few that are important

100 variables, only 5 matter

```
require(magrittr)
## Loading required package: magrittr
require(dplyr)
## Loading required package: dplyr
##
## Attaching package: 'dplyr'
##
  The following object is masked from 'package:stats':
##
##
       filter
##
##
##
   The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
require(ggplot2)
## Loading required package: ggplot2
require(glmnet)
## Loading required package: glmnet
## Loading required package: Matrix
## Loading required package: foreach
## Loaded glmnet 2.0-2
```

```
bigDF <- data.frame()
N = 200
for (i in 1:100)
    bigDF[1:N,i] <- runif(N)

Response2 = bigDF[,1] * 20 + bigDF[,2]^1.2 * 10 + bigDF[,3]^0.9*5+ bigDF[,4]*2.5+ bigDF[,5] + ro
wSums(0.1 * bigDF[,6:100]^0.5) + 5 + 0.01*runif(N)

sensDF <- data.frame(Method = 0, Var = 0, Value=0)

#ggpairs(bigDF[,c(101,1:10)], Lower = List(continuous = "smooth"))

bigDF$Response <- Response2

summary(bigMod<-lm(Response ~ ., data=bigDF[1:110,]))</pre>
```

```
##
## Call:
   lm(formula = Response ~ ., data = bigDF[1:110, ])
##
## Residuals:
##
         Min
                     10
                           Median
                                          3Q
                                                   Max
##
   -0.116980 -0.031672 -0.003922 0.030363
                                             0.138537
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.738614
                            1.393184
                                        7.708 2.98e-05 ***
## V1
                19.385742
                            0.423910 45.731 5.72e-12 ***
## V2
                10.107444
                            0.261818
                                      38.605 2.61e-11 ***
## V3
                 5.426108
                            0.230121 23.579 2.12e-09 ***
## V4
                 2.381487
                            0.154284
                                      15.436 8.80e-08 ***
## V5
                 0.422572
                            0.189320
                                        2.232
                                                0.0525 .
## V6
                 0.406301
                            0.314982
                                        1.290
                                                0.2292
## V7
                -0.047667
                            0.474756
                                      -0.100
                                                0.9222
## V8
                -0.066486
                            0.192609
                                       -0.345
                                                0.7379
## V9
                 0.054468
                            0.209459
                                        0.260
                                                0.8007
## V10
                -0.405001
                            0.284678
                                      -1.423
                                                0.1886
## V11
                 0.351025
                            0.257204
                                        1.365
                                                0.2055
## V12
                 0.263723
                            0.281342
                                        0.937
                                                0.3730
## V13
                -0.194444
                            0.477929
                                       -0.407
                                                0.6936
## V14
                -0.118279
                            0.257905
                                       -0.459
                                                0.6574
## V15
                 0.355390
                            0.211268
                                        1.682
                                                0.1268
## V16
                -0.430293
                            0.235396
                                       -1.828
                                                0.1008
## V17
                 0.320491
                            0.196228
                                        1.633
                                                0.1368
## V18
                -0.393040
                            0.190530
                                       -2.063
                                                0.0692
## V19
                 0.198644
                            0.262043
                                        0.758
                                                0.4678
## V20
                -0.538241
                            0.234169
                                       -2.299
                                                0.0471 *
## V21
                 0.120725
                            0.218968
                                        0.551
                                                0.5948
## V22
                 0.569023
                            0.203356
                                        2.798
                                                0.0208 *
## V23
                -0.244563
                            0.260295
                                       -0.940
                                                0.3720
## V24
                 0.183754
                            0.230168
                                        0.798
                                                0.4452
## V25
                -0.487774
                            0.206723
                                       -2.360
                                                0.0426
## V26
                 0.041586
                            0.399422
                                        0.104
                                                0.9194
## V27
                 0.145044
                            0.238968
                                        0.607
                                                0.5589
## V28
                 0.051078
                            0.168102
                                        0.304
                                                0.7681
## V29
                                                0.0685
                 0.560813
                            0.271092
                                        2.069
## V30
                -0.203944
                                       -0.799
                                                0.4448
                            0.255220
## V31
                 0.399165
                            0.239159
                                        1.669
                                                0.1295
## V32
                -0.072174
                            0.268884
                                       -0.268
                                                0.7944
## V33
                 0.350469
                            0.340751
                                        1.029
                                                0.3306
## V34
                -0.229913
                            0.219836
                                       -1.046
                                                0.3229
                 0.170591
                                        0.588
## V35
                            0.290170
                                                0.5711
## V36
                -0.838592
                            0.263920
                                      -3.177
                                                0.0112 *
## V37
                 0.140754
                                                0.6028
                            0.260996
                                        0.539
## V38
                 0.265898
                            0.272163
                                        0.977
                                                0.3541
## V39
                -0.246520
                            0.327810
                                      -0.752
                                                0.4712
## V40
                 0.135001
                            0.213844
                                        0.631
                                                0.5435
## V41
                 0.119291
                            0.405038
                                        0.295
                                                0.7750
## V42
                -0.059463
                            0.235529
                                       -0.252
                                                0.8064
```

## V43	0.214696	0.205067	1.047	0.3224
## V44	-0.192265	0.260117	-0.739	0.4787
## V45	-0.286316	0.375071	-0.763	0.4648
## V46	0.309247	0.285405	1.084	0.3067
## V47	-0.244709	0.188215	-1.300	0.2259
## V48	-0.549418	0.413928	-1.327	0.2171
## V49	0.052047	0.225736	0.231	0.8228
## V50	0.171071	0.176969	0.967	0.3590
## V51	0.028949	0.309515	0.094	0.9275
## V52	-0.062347	0.183038	-0.341	0.7412
## V53	0.585268	0.191364	3.058	0.0136 *
## V54	0.075297	0.413437	0.182	0.8595
## V55	0.467507	0.273097	1.712	0.1211
## V56	-0.245959	0.253927	-0.969	0.3580
## V57	-0.328750	0.296991	-1.107	0.2970
## V58	0.527172	0.248271	2.123	0.0627
## V59	0.023034	0.270560	0.085	0.9340
## V60	0.270628	0.263344	1.028	0.3309
## V61	0.374267	0.320685	1.167	0.2732
## V62	-0.119485	0.245748	-0.486	0.6384
## V63	0.248703	0.204699	1.215	0.2553
## V64	-0.220934	0.198117	-1.115	0.2937
## V65	0.280184	0.222666	1.258	0.2399
## V66	-0.092208	0.221112	-0.417	0.6864
## V67	-0.069457	0.161869	-0.429	0.6779
## V68	-0.038948	0.273400	-0.142	0.8899
## V69	0.327411	0.216473	1.512	0.1647
## V70	-0.496636	0.194497	-2.553	0.0310 *
## V71	-0.315681	0.256237	-1.232	0.2492
## V72	-0.413758		-1.723	0.1190
## V73	0.597728	0.232357	2.572	0.0301
## V74	0.416578			
## V75	-0.277243	0.213930	-1.296	0.2272
## V76		0.220429		0.0915
## V77	0.147349			0.4957
## V78	-0.237233	0.240912	-0.985	0.3505
## V79		0.181003	0.185	0.8572
## V80	-0.149220			0.6661
## V81	-0.083760	0.281471	-0.298	0.7728
## V82	0.483341	0.286372	1.688	0.1257
## V83	0.549855	0.290017	1.896	0.0905
## V84			0.869	
## V85		0.197263	-2.985	0.0153
## V86	0.506525	0.186599	2.715	0.0238 *
## V87		0.238843	1.628	0.1379
## V88	-0.188174		-0.629	0.5449
## V89	0.658756	0.235388	2.799	0.0208
## V90 ## V01	-0.375364	0.475720	-0.789	0.4504
## V91		0.193565	-0.567	0.5844
## V92	-0.049334		-0.184	
## V93		0.276088	-1.354	
## V94 ## V95	-0.085667	0.149673	-0.572	
## V95 ## V96		0.471225	-0.770 0.648	0.4612 0.5334
## VYO	0.141340	0.218246	0.648	0.5334

```
## V97
                0.082951
                           0.278825
                                      0.298
                                              0.7728
## V98
               -0.418090
                           0.221210 -1.890
                                              0.0913 .
## V99
                0.043668
                           0.252971
                                              0.8668
                                      0.173
                0.007768
                                              0.9802
## V100
                           0.303731
                                      0.026
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1866 on 9 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9991
## F-statistic: 1175 on 100 and 9 DF, p-value: 2.956e-13
```

```
plotDF <- bigDF
plotDF[1:110,'Type'] <- 'Train'
plotDF[111:200,'Type'] <- 'Test'
plotDF$Predict <- predict(bigMod,plotDF)
plotDF$Error <- plotDF$Response-plotDF$Predict
ggplot(plotDF,aes(x=Response,y=Predict,color=Type,size=abs(Error))) + geom_point() +
scale_size("Absolute Error") + geom_smooth(method="lm",se=F,size=1)</pre>
```



```
sqrt(var(data.frame(plotDF %>% filter(Type=="Test") %>% select(Error))))/110
```

```
## Error 0.009294262
```

```
ggplot(plotDF,aes(x=Error)) + geom_histogram()
```



```
sensitivities <- coef(bigMod)
require(glmnet)

sensDF[1:length(sensitivities), 'Method'] <- "Least-Squares"
sensDF[1:length(sensitivities), 'Var'] <- names(sensitivities)
sensDF[1:length(sensitivities), 'Value'] <- (sensitivities)
rowStart <- length(sensitivities)+1</pre>
```

Lasso regression

crossValid <- cv.glmnet(as.matrix(bigDF[1:40,1:100]),as.matrix(bigDF\$Response[1:40]),alpha = 1)
plot(crossValid)</pre>


```
lambda <- crossValid$lambda.min
sensitivities <- coef(crossValid)
plotDF <- bigDF
plotDF[1:40,'Type'] <- 'Train'
plotDF[41:200,'Type'] <- 'Test'
plotDF[,"Predict" ]<- data.frame(Predict=predict(crossValid,as.matrix(plotDF[,1:100]),lambda=lambda))
plotDF$Error <- plotDF$Response-plotDF$Predict
ggplot(plotDF,aes(x=Response,y=Predict,color=Type,size=abs(Error))) + geom_point() +
scale_size("Absolute Error") + geom_smooth(method="lm",se=F,size=1)</pre>
```



```
sqrt(var(data.frame(plotDF %>% filter(Type=="Test") %>% select(Error))))/40
```

```
## Error 0.009364811
```

```
ggplot(plotDF,aes(x=Error)) + geom_histogram()
```



```
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Method'] <- "Lasso"
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Var'] <- t(t(rownames(sensitivities)))
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Value'] <- as.numeric(sensitivities)
rowStart <- rowStart + length(sensitivities)</pre>
```

Ridge regression

```
crossValid <- cv.glmnet(as.matrix(bigDF[1:110,1:100]),as.matrix(bigDF$Response[1:110]),alpha = 0,l
mbda=exp(seq(-5,5,by=0.1)))
plot(crossValid)</pre>
```



```
lambda <- crossValid$lambda.min
sensitivities <- coef(crossValid)
plotDF <- bigDF
plotDF[1:110,'Type'] <- 'Train'
plotDF[111:200,'Type'] <- 'Test'
plotDF[,"Predict" ]<- data.frame(Predict=predict(crossValid,as.matrix(plotDF[,1:100]),lambda=lambda))
plotDF$Error <- plotDF$Response-plotDF$Predict
ggplot(plotDF,aes(x=Response,y=Predict,color=Type,size=abs(Error))) + geom_point() +
scale_size("Absolute Error") + geom_smooth(method="lm",se=F,size=1)</pre>
```



```
sqrt(var(data.frame(plotDF %>% filter(Type=="Test") %>% select(Error))))/110
```

```
## Error
## Error 0.0153188
```

```
ggplot(plotDF,aes(x=Error)) + geom_histogram()
```



```
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Method'] <- "Ridge"
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Var'] <- t(t(rownames(sensitivities)))
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Value'] <- as.numeric(sensitivities)
rowStart <- rowStart + length(sensitivities)

#good values
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Method'] <- "Exact"
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Var'] <- t(t(rownames(sensitivities)))
sensDF[rowStart:(rowStart + length(sensitivities)-1),'Value'] <- c(5,20,12,5*.9,2.5,1,rep(0.1,95))
sensDF$Exact = rep(c(5,20,12,5*.9,2.5,1,rep(0.1,95)),4)</pre>
```

Compare Methods

ggplot(sensDF[sensDF\$Exact<1,],aes(x=reorder(Var,-Value),y=Value,color=Method,group=Method)) + g
eom_point() + geom_line() + theme(panel.grid.major = element_blank(),axis.text.x =
element_text(angle = 90, hjust = 1, size=8))+ scale_x_discrete("Variable") +
scale_y_continuous("Coefficient")</pre>

ggplot(sensDF,aes(x=reorder(Var,-Value),y=abs(Value-Exact),color=Method,group=Method)) + geom_po
int() + geom_line() + theme(panel.grid.major = element_blank(),axis.text.x = element_text(angle
= 90, hjust = 1, size=8)) + scale_x_discrete("Variable") + scale_y_continuous("Abs. Error in Coe
fficient")

