

VIT

Vellore Institute of Technology

(Deemed to be University under section 3 of UGC Act, 1956)

B.Tech. Winter Semester 2024-25 School Of Computer Science and Engineering (SCOPE)

Notes Cryptography and Network Security

Apurva Mishra: 22BCE2791

Date: CAT - II

Contents

1	Module 3: Asymmetric Encryption Algorithm and Key Exchange	2
	1.1 Principles	2
	1.2 RSA	2
	1.3 ElGamal	2
	1.4 Elliptic Curve cryptography	2
	1.5 Homomorphic Encryption and Secret Sharing	
	1.6 Key distribution and Key exchange protocols	2
	1.7 Diffie-Hellman Key Exchange	
	1.8 Man-in-the-Middle Attack	
2	Module 4: Message Digest and Hash Functions	3
	2.1 Requirements for Hash Functions	
	2.2 Security of Hash Functions	3
	2.3 Message Digest (MD5)	3
	2.4 Secure Hash Function (SHA)	3
	2.5 Birthday Attack	
	2.6 HMAC	

1 Module 3: Asymmetric Encryption Algorithm and Key Exchange

1.1 Principles

Algorithm	Encryption/Decryp-	Digital Signature	Key Exchange
	tion		
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes

1.2 RSA

1.2.1 Steps

1. Choose two large primes:

$$P, Q$$

$$N = P * Q$$
(1)

2. Choose public and private key:

$$K_{\mathrm{pub}} \mid K_{\mathrm{pub}} \text{ is not factor of } \phi(N)$$

$$K_{\mathrm{pri}} \mid (K_{\mathrm{pri}} * K_{\mathrm{pri}}) \mod \phi(N) = 1$$

$$(2)$$

3. Encrypt:

$$CT = PT^{K_{\text{pub}}} \mod N \tag{3}$$

4. Decrypt:

$$PT = CT^{K_{\text{pri}}} \bmod D \tag{4}$$

1.3 ElGamal

- 1.4 Elliptic Curve cryptography
- 1.5 Homomorphic Encryption and Secret Sharing
- 1.6 Key distribution and Key exchange protocols
- 1.7 Diffie-Hellman Key Exchange
- 1. Choose public numbers such that:
 - g is primitive root of n
 - g,n are primes

$$g, n$$
 (5)

2. Choose private numbers:

$$\begin{array}{c|c}
x_A \mid x < n \\
y_B \mid y < n
\end{array} \tag{6}$$

3. New public values:

$$A = g^x \mod n$$

$$B = g^y \mod n$$
(7)

4. Generate Keys User side:

$$K_A = B^x \mod n$$

$$K_B = A^y \mod n$$

$$K_A == K_B$$
(8)

1.8 Man-in-the-Middle Attack

2 Module 4: Message Digest and Hash Functions

- 2.1 Requirements for Hash Functions
- 2.2 Security of Hash Functions
- 2.3 Message Digest (MD5)
- 2.4 Secure Hash Function (SHA)
- 2.5 Birthday Attack
- **2.6 HMAC**