Analise Estatística de Bancos

Carlos E. Carvalho

1/31/2021

Neste documento serão analisados os preços de fechamento das ações de 5 bancos durante o ano de 2020. São eles: Banco do Brasil, Santander, Bradesco, Itaú e Banrisul O objetivo é mostrar a variação do preço das ações durante o ano, apresentar alguns valores estatísticos do preço das ações e verificar se existe alguma relação entre os bancos.

 $\label{linkedIn:https://www.linkedin.com/in/carlos-carvalho-93204b13/ Github: https://github.com/CarlosCarvalho1981/AnaliseEstatisticaBancos$

Definição do diretório de trabalho e carregamento das bibliotecas necessárias.

```
setwd("D:/CIENTISTA_DADOS/BANCOS")
getwd()
```

```
## [1] "D:/CIENTISTA_DADOS/BANCOS"
```

```
#http://www.quantmod.com/
#Carrega todos os pacotes
library(quantmod)
```

```
## Loading required package: xts

## Loading required package: zoo

## ## Attaching package: 'zoo'

## The following objects are masked from 'package:base':

## as.Date, as.Date.numeric

## Loading required package: TTR

## Registered S3 method overwritten by 'quantmod':

## method from

## as.zoo.data.frame zoo
```

```
library(xts)
library(moments)
library(readr)
library(rvest)
## Loading required package: xml2
##
## Attaching package: 'rvest'
## The following object is masked from 'package:readr':
##
##
       guess_encoding
library(stringr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
       first, last
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
library(ggplot2)
library(psych)
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
       %+%, alpha
##
```

Aqui são definidas as datas para a coleta do valor das ações. Neste caso estão sendo selecionados todos os dias de 2020, desconsiderando o dia primeiro de Janeiro e 31 de Dezembro.

```
startDate <- as.Date("2020-01-02")
endDate <- as.Date("2022-12-30")
```

Esse vetor indica quais bancos serão pesquisados. É importante verificar no yahoo finanças (https://br. financas.yahoo.com/) o ticker correto para cada ação que será pesquisada.

```
bancos <- c("BBAS3.SA", "BCSA34.SA", "BBDC4.SA", "ITUB4.SA", "BRSR6.SA")
```

Para criar a estrutura do data frame com a quantidade correta de linhas, utiliza-se a estrutura coletada da primeira ação, neste caso, Banco do Brasil.

```
ticker <- bancos[1]
dfBancos <- getSymbols(ticker, src = "yahoo", from = startDate, to = endDate, auto.assign = F)

## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
##

## This message is shown once per session and may be disabled by setting
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.

## Warning: BBAS3.SA contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.</pre>
```

Em seguida é criado o gráfico de velas (candlechart) para mostrar a variação do preço dos papéis da empresa. Esse arquivo será salvo em memória e para gerar o nome correto do arquivo de forma automática é necessário executar as seguintes instruções:

1 - Cria-se uma string com a extensão do arquivo:

```
extensao <- ".png"
```

2 - Os nomes das ações (ticker) tem os caracteres ".SA" no final. Retira-se esses caracteres para que não criem problemas no nome do arquivo:

```
Completo <- str_replace(ticker, "\\.","") #Retira o ponto (.)
Completo</pre>
```

```
## [1] "BBAS3SA"
```

```
Completo <- str_replace(Completo, "SA","") #Retira o SA
Completo
```

```
## [1] "BBAS3"
```

3 - Junta-se o nome da empresa (sem o .SA) com a extensão:

```
Completo <- paste(Completo, extensao)
Completo
```

```
## [1] "BBAS3 .png"
```

4 - Retira-se o espaço que ficou entre as duas strings:

```
Completo <- str_replace(Completo, "\\s", "")
Completo</pre>
```

```
## [1] "BBAS3.png"
```

5 - Agora cria-se o gráfico, salvando-o na memória com o nome correto.

```
#png(filename = Completo, width = 1200, height = 600, res = 80)
candleChart(dfBancos, name = ticker)
```


#dev.off()

Para que o arquivo seja salvo na memória, é necessário descomentar as linhas 79 e 81.

Agora extrai-se apenas a coluna com o preço de fechamento em cada dia.

```
dfBancos <- dfBancos[,4]</pre>
```

E então capta-se os valores das ações de todos os outros bancos (ou empresas) que estão no vetor bancos. Esse processo é feito em um loop, captando todos os valores, extraindo apenas a coluna com o preço de fechamento de cada dia, organizando o nome do gráfico para salvar na memória e criando o gráfico.

```
for (i in 2:length(bancos)){
  ticker <- bancos[i]</pre>
  obj <- getSymbols(ticker, src = "yahoo", from = startDate, to = endDate, auto.assign = F)
  #Retira o ponto (.) do ticker
  Completo <- str_replace(ticker, "\\.","")</pre>
  Completo
  #Retira o SA do nome
  Completo <- str_replace(Completo, "SA","")</pre>
  Completo
  #Junta o nome com a extensão .png
  Completo <- paste(Completo, extensao)</pre>
  Completo
  #Retira o espaço do nome
  Completo <- str_replace(Completo, "\\s", "")</pre>
  Completo
  #Gera a figura
  #pnq(filename = Completo, width = 1200, height = 600, res = 80) - Retire o comentário para salvar o a
  candleChart(obj, name = ticker)
  #dev.off() - Retire o comentário para salvar o arquivo em memória
  obj1 <- as.vector(obj[,4])</pre>
  dfBancos <- cbind(dfBancos,obj1)</pre>
  Sys.sleep(0.3) #É importante esperar um tempo para cada requisição, senão o site pode bloquear
}
## Warning: BCSA34.SA contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
## Warning: BBDC4.SA contains missing values. Some functions will not work if
## objects contain missing values in the middle of the series. Consider using
## na.omit(), na.approx(), na.fill(), etc to remove or replace them.
```


Warning: ITUB4.SA contains missing values. Some functions will not work if
objects contain missing values in the middle of the series. Consider using
na.omit(), na.approx(), na.fill(), etc to remove or replace them.

Warning: BRSR6.SA contains missing values. Some functions will not work if
objects contain missing values in the middle of the series. Consider using
na.omit(), na.approx(), na.fill(), etc to remove or replace them.

Observa-se como ficou o dataset

head(dfBancos)

```
##
              BBAS3.SA.Close obj1
                                      obj1.1 obj1.2 obj1.3
## 2020-01-02
                       53.80 16.77 34.10000
                                              38.03
## 2020-01-03
                       53.71 17.00 34.10000
                                                     22.09
                                              37.63
## 2020-01-06
                       53.00 17.12 33.49091
                                              37.07
                                                     22.05
## 2020-01-07
                       52.60 16.90 32.90909
                                              36.21
                                                     22.15
## 2020-01-08
                       52.12 16.88 32.40000
                                              35.62
                                                     21.67
## 2020-01-09
                       51.06 16.93 31.88182
                                              34.91
                                                     21.39
```

Altera-se o nome das colunas para que seja mais fácil de identificar.

```
colnames(dfBancos) <- c("BancoBrasil", "Santander", "Bradesco", "Itau", "Banrisul")</pre>
```

Retira-se os valores faltantes (NA) das linhas.

```
dfBancos <- dfBancos[complete.cases(dfBancos), ]</pre>
```

A partir desse ponto, observam-se algumas medidas estatísticas para cada empresa. A instrução a seguir mostra os valores mínimos e máximos, todos os quartis e a média para o preço de fechamento dos papéis de cada banco. Essas medidas são conhecidas como medidas de tendência central.

summary(dfBancos)

```
BancoBrasil
                                              Santander
##
        Index
                                                                Bradesco
                                           Min.
##
    Min.
            :2020-01-02
                          Min.
                                  :22.13
                                                   :10.00
                                                             Min.
                                                                    :16.06
##
    1st Qu.:2020-04-08
                          1st Qu.:30.82
                                            1st Qu.:11.77
                                                             1st Qu.:20.48
##
    Median :2020-07-15
                          Median :33.62
                                           Median :12.73
                                                             Median :21.97
##
   Mean
            :2020-07-15
                          Mean
                                  :35.41
                                            Mean
                                                   :13.74
                                                             Mean
                                                                    :23.33
    3rd Qu.:2020-10-19
                          3rd Qu.:37.40
                                            3rd Qu.:16.22
                                                             3rd Qu.:26.36
##
##
    Max.
            :2021-01-29
                          Max.
                                  :53.80
                                           Max.
                                                   :18.97
                                                             Max.
                                                                    :34.10
##
         Itau
                        Banrisul
##
   Min.
            :20.52
                            :10.82
                     Min.
                     1st Qu.:12.57
##
    1st Qu.:23.69
    Median :26.42
                     Median :13.62
##
            :27.21
##
    Mean
                     Mean
                             :14.42
    3rd Qu.:30.66
                     3rd Qu.:14.63
##
   Max.
            :38.03
                     Max.
                             :22.24
```

Também é importante observar o desvio padrão e a variância dos valores.

```
#Desvio padrão
apply(dfBancos,2, sd)
## BancoBrasil
                  Santander
                               Bradesco
                                                 Itau
                                                         Banrisul
##
      7.087705
                   2.431678
                               4.090909
                                            4.152875
                                                         2.778837
#Variância
apply(dfBancos,2, var)
## BancoBrasil
                  Santander
                               Bradesco
                                                 Itau
                                                         Banrisul
     50.235560
                   5.913056
                               16.735539
                                           17.246368
                                                         7.721933
```

Pelo valor do desvio padrão é possível ver que o Banco do Brasil tem o maior valor, indicando que foram os papéis com a maior variação entre os bancos pesquisados, durante o ano. O coeficiente de variação, calculado abaixo, mostra essa variação em termos percentuais em relação à média. Com isso é possível fazer uma avaliação mais apropriada.

```
#Coeficiente de Varição
CV <- function(x){
  return ((sd(x)/mean(x))*100)
}
apply(dfBancos,2,CV)</pre>
```

```
## BancoBrasil Santander Bradesco Itau Banrisul
## 20.01873 17.69257 17.53410 15.26218 19.27604
```

Com isso, é possível perceber que, em relação à média, os papéis do Banco do Brasil foram os que mais variaram durante o ano, seguidos de perto pelo Banrisul.

As medidas de dispersão são outra ferramenta estatística que se pode utilizar para avaliar o comportamento das amostras. O coeficiente de assimetria representa o quanto a distribuição está próxima de uma distribuição normal (em relação a horizontal).

```
apply(dfBancos, 2, skewness)
```

```
## BancoBrasil Santander Bradesco Itau Banrisul
## 1.0937061 0.4849168 0.7071677 0.5221489 1.4547515
```

Um coeficiente de assimetria menor do que zero indica que a distribuição está deslocada para a esquerda. Se o coeficiente for maior do que zero, a distribuição está deslocada para a direita. A distribuição normal tem o coeficiente de assimetria igual a zero.

Já a curtose indica a variação da distribuição no eixo vertical.

```
apply(dfBancos, 2, kurtosis)

## BancoBrasil Santander Bradesco Itau Banrisul
## 3.343560 1.824855 2.576787 2.160203 4.049307
```

Para continuar a análise estatística observando a relação entre as variáveis, é necessário transformar o dataset em um objeto do tipo dataframe e inserir uma coluna de índice numérica.

```
dfBancos <- as.data.frame(dfBancos)
dfBancos <- dfBancos %>% mutate(id = row_number())
rownames(dfBancos) <- dfBancos$id
dfBancos$id <- NULL
head(dfBancos)</pre>
```

```
##
     BancoBrasil Santander Bradesco Itau Banrisul
## 1
           53.80
                     16.77 34.10000 38.03
                                              22.24
## 2
           53.71
                     17.00 34.10000 37.63
                                              22.09
## 3
           53.00
                     17.12 33.49091 37.07
                                              22.05
## 4
           52.60
                     16.90 32.90909 36.21
                                              22.15
## 5
           52.12
                     16.88 32.40000 35.62
                                              21.67
## 6
           51.06
                     16.93 31.88182 34.91
                                              21.39
```

A tabela a seguir mostra a correlação entre o preço de fechamento dos papéis dos bancos analisados, em 2020. É possível ver que, aparentemente, existem algumas correlações entre as empresas. Essas correlações podem ser apenas coincidência. Lembrando também que correlação não significa causalidade. Ou seja, a correlação não indica que um papel influenciou no outro ou que essa correlação vai acontecer sempre.

```
cor(as.data.frame(dfBancos[c("BancoBrasil", "Santander", "Bradesco", "Itau", "Banrisul")]))
```

```
## BancoBrasil Santander Bradesco Itau Banrisul
## BancoBrasil 1.0000000 0.7944910 0.9533271 0.9257719 0.9584999
## Santander 0.7944910 1.0000000 0.8843192 0.9166207 0.6958777
## Bradesco 0.9533271 0.8843192 1.0000000 0.9842941 0.8759966
## Itau 0.9257719 0.9166207 0.9842941 1.0000000 0.8428838
## Banrisul 0.9584999 0.6958777 0.8759966 0.8428838 1.0000000
```

A figura a seguir ajuda a visualizar essas correlações:

Para finalizar, observa-se um histograma e um boxplot para cada um dos bancos analisados:

1 - Banco do Brasil:

```
ggplot(dfBancos, aes(x = BancoBrasil), binwidth = 30) +
  geom_histogram(aes(y = ..density..), fill = "yellow1", alpha = 0.5)+
  geom_density(colour = "blue") + xlab(expression(bold("Preço de Fechamento"))) +
  ylab(expression(bold("Densidade")))
```


ggplot(dfBancos, aes(y = BancoBrasil)) + geom_boxplot()

2 - Santander:

```
ggplot(dfBancos, aes(x = Santander), binwidth = 30) +
geom_histogram(aes(y = ..density..), fill = "tomato", alpha = 0.5)+
geom_density(colour = "blue") + xlab(expression(bold("Preço de Fechamento"))) +
ylab(expression(bold("Densidade")))
```


ggplot(dfBancos, aes(y = Santander)) + geom_boxplot()

3 - Bradesco:

```
ggplot(dfBancos, aes(x = Bradesco), binwidth = 30) +
geom_histogram(aes(y = ..density..), fill = "red", alpha = 0.5)+
geom_density(colour = "blue") + xlab(expression(bold("Preço de Fechamento"))) +
ylab(expression(bold("Densidade")))
```


ggplot(dfBancos, aes(y = Bradesco)) + geom_boxplot()

4 - Itaú:

```
ggplot(dfBancos, aes(x = Itau), binwidth = 30) +
  geom_histogram(aes(y = ..density..), fill = "blue4", alpha = 0.5)+
  geom_density(colour = "blue") + xlab(expression(bold("Preço de Fechamento"))) +
  ylab(expression(bold("Densidade")))
```


ggplot(dfBancos, aes(y = Itau)) + geom_boxplot()

5 - Banrisul:

```
ggplot(dfBancos, aes(x = Banrisul), binwidth = 30) +
geom_histogram(aes(y = ..density..), fill = "skyblue2", alpha = 0.5)+
geom_density(colour = "blue") + xlab(expression(bold("Preço de Fechamento"))) +
ylab(expression(bold("Densidade")))
```


ggplot(dfBancos, aes(y = Banrisul)) + geom_boxplot()

