Part 4 Algorithms and Architectures for VLSI

- Algorithm strength reduction
- Pipelining
- Retiming
- Pipelined recursive filters
- Parallel processing
- Unfolding
- Parallel recursive filters
- Folding

1

Algorithm Strength Reduction

Strength Reduction

Strong operations = computationally expensive operations.

Weak operations = computationally inexpensive operations.

Strength reduction = replacing strong operations by weak operations.

In VLSI, strength reduction increases the throughput, or reduces the area, or reduces the power consumption.

3

Fast Fourier Transform

Discrete Fourier transform (DFT):
$$x(n)$$
 is defined for $n = 0,1,..., N-1$. $X(z) = \sum_{n=0}^{N-1} x(n)z^{-n}$

DFT is defined as
$$X(k) = X(z)|_{z=e^{j2\pi k/N}} = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}$$
 for $k=0,1,...,N-1$.

Direct computation of DFT requires N^2 complex multiply and N(N-1) complex add.

Fast Fourier transform (FFT):

Let N be a power of 2. Using 2-phase polyphase components $X(z) = X_0(z^2) + z^{-1}X_1(z^2)$,

$$X(k) = \sum_{n=0}^{N/2-1} x_0(n) e^{-j4\pi k n/N} + e^{-j2\pi k/N} \sum_{n=0}^{N/2-1} x_1(n) e^{-j4\pi k n/N}$$

where $x_0(n) = x(2n), x_1(n) = x(2n+1)$.

But
$$\sum_{n=0}^{N/2-1} x_0(n) e^{-j2\pi kn/\left(\frac{N}{2}\right)} = X_0(k)$$
, the N/2 point DFT of $x_0(n)$.

(Note that DFT coefficients X(k) are periodic.)

Similarly,
$$\sum_{n=0}^{N/2-1} x_1(n) e^{-j2\pi k n / \left(\frac{N}{2}\right)} = X_1(k)$$
, the N/2 point DFT of $x_1(n)$.

Therefore: $X(k) = X_0(k) + e^{-\frac{j2\pi k}{N}} X_1(k)$

This leads to a divide and conquer approach known as the decimation-in-time FFT:

Each N/2 point DFT requires $N^2/4$ complex multiply and N(N-2)/4 complex add. The "process" requires N complex multiply and N complex add. Overall, the structure needs N(N+2)/2 complex multiply and $N^2/2$ complex add.

Recursion: Compute each *N*/2 point DFT using two *N*/4 point DFTs, and so forth. FFT requires about (*N*/2)log*N* complex multiply and *M*log*N* complex add.

Complex Multiplication

Multiply a given number a+jb with an input A+jB:

$$(a+jb)(A+jB) = (aA-bB)+j(aB+bA)$$
2 real add

Rewrite it as:

$$(aA - bB + bA - bA) + j(aB + bA + bB - bB)$$

= \{(a + b)A - b(A + B)\} + j\{b(A + B) + (a - b)B\}

Let c = a + b, d = a - b be precomputed, then:

Data Flow Graph

(Directed) graph: nodes and directed edges

Signal flow graph:

Nodes = interconnections such as many to one (add), one to many

Directed edges = transformations such as multiply, delay

8

Data flow graph:

Nodes = computations such as add, multiply Directed edges = data path between nodes, including any delay

In a data flow graph, nodes are labelled by computation time, and edges are labelled by no of delays.

Cutset: set of edges which, if removed, makes the graph disjoint

Feed-forward cutset: cutset with all forward direction edges

(4) (3) A path of a graph begins at some node and ends at any node.
(1)

(4)
A loop of a graph begins and ends at the same node.

(4)
(1)
(3)
(4)
(4)
(4) Loop bound of a loop = $\frac{\text{loop computation time}}{\text{no of delays in the loop}}$ Loop bound of the above loop = (1+3+4)/(0+1+0) = 8

Critical path of a graph is the longest computation time among all zero delay paths.

Clock cycle is lower bounded by the critical path.

Critical path of the above graph = 4+4+1+3 = 12

Iteration bound is the maximum loop bound of a graph. Critical loop is the loop with the maximum loop bound.

In this graph: Iteration bound = 9 Critical loop = the left loop

11

Pipelining

Introduction

Pipelining = idea of a water pipe, continue pumping in the water without waiting for the water in the pipe to come out

Critical path = maximum processing time taken by a path without any latch

$$x(n) \xrightarrow{a} \xrightarrow{b} abx(n)$$

 $x(n) \xrightarrow{a} T \xrightarrow{ax(n-1)} b \xrightarrow{abx(n-1)}$ Critical path = T_M Sampling frequency is Insert a latch in between. doubled.

Pipelining reduces the critical path and therefore increases the clock/sampling speed

Consider a length 4 FIR filter: $y(n) = h_0 x(n) + h_1 x(n-1)$

Critical path = $T_M + 3T_A$ (where T_A = addition time)

Latency and Throughput

Latency = number of clock periods between the output sample and the corresponding input sample

Throughput = number of input samples/clock period

The sequential filter has latency = 1 clock (assuming critical path $\approx T_S$), throughput = 1 input/clock

13

Pipelining option 1: insert latches at a feed-forward cutset

Critical path is reduced to $T_M + 2T_A$.

Pipelining increases the latency.

Each output is computed using 2 clock periods.

So, this pipelined filter has latency = 2 clocks.

Pipelining may reduce the throughput.

This pipelined filter has throughput = 1 input/clock

15

Pipelining option 2: fine-grain pipelining Let $T_M = 10$ gate delays, $T_A = 2$ gate delays

To achieve a critical path less than T_M , break the multiplier into two parts with processing times of 6 gate delays and 4 gate delays.

Pipelining reduces critical path by increasing latency. We now study techniques such as retiming that reduces critical path without increasing latency.

Retiming

18

Retiming

Retiming = moving around delays without changing the functionality of a given system.

Retiming is done to increase the throughput, or reduce the area/power consumption/no of registers.

Example: Critical path of (a) = 2 + 1 = 3

Move the marked delay before the adder.

Critical path of (b) = 2 or 1 + 1 = 2

- (a) and (b) have same input/output relationships.
- (b) has a smaller clock cycle.

Cutset Retiming

Cutset retiming is a systematic way to achieve retiming.

Recall that a cutset is a set of edges which, when removed, makes a graph G disjoint. In this example, the 3 edges in the cutset are $2 \rightarrow 1$, $3 \rightarrow 2$, and $1 \rightarrow 4$.

Removing the cutset makes two disjointed subgraphs G_1 and G_2 .

20

Cutset retiming consists of adding k delays to each edge from G_1 to G_2 , and removing k delays from each edge from G_2 to G_1 .

Choose *k* such that no retimed edge has a negative delay.

k=1 delay is added to the edges $3\rightarrow 2$ and $1\rightarrow 4$, and 1 delay is removed from the edge $2\rightarrow 1$.

Pipelining option 3: retiming reduce the critical path using transposed form FIR structure

Critical path = $T_M + T_A$, independent of the length of the filter

This is better than other options, because latency is not increased, and it does not require additional latches.

22

Node Retiming

Consider a cutset around a node.

k=1 delay is added to the edges $3\rightarrow 2$ and $4\rightarrow 2$, and 1 delay is removed from the edge $2\rightarrow 1$, to obtain the retimed graph.

Critical path before retiming = 4 + 2 = 6Critical path after retiming = 4 or 2 + 2 = 4However, no of delays increases from 4 to 5.

Cutset Retiming in Lattice Filter

Consider an N-stage lattice filter.

24

Find the iteration bound and the critical loop:

$$\max\{T_{L1}, T_{L2}, T_{L3}, \dots\} = \frac{3T_A + 2T_M}{1}$$
 for loop L1

Cut the critical loop (loop L1):

Repeat the above for remaining loops. (Cut every alternate loop L3, L5, etc.)

Cutset retiming for the loop L1:

Add a delay on the top edge, remove the bottom edge

delay.

Critical path = $4T_A + 4T_M$

After repeated cutset retiming is applied, this is the critical path for any lattice filter independent of its number of stages.

For large T_M , retiming is better only for large N. For example, let $T_M = 2T_A$. Critical path before retiming = $(N+1)T_A+2T_M = (N+5)T_A$ Critical path after retiming = $4T_A+4T_M = 12T_A$ So, retiming is better only if N > 7.

26

Pipelined Recursive Filters

A latch may be interchanged with a processing stage:

Consider the implementation of the recursive filter

$$y(n) = ax(n) + by(n-1)$$

First Order Filters

31

Due to the feedback loop, the following cutsets are not feed-forward:

32

If the multiplier has a latch, the filter can be implemented as follows.

33

Note that y'(n) = y(n-1).

If a latch is inserted at the adder, the feedback loop will have two latches.

Feedback term is not y'(n-1) but y'(n-2).

Rewrite the filter output y(n) = ax(n) + by(n-1) without using y(n-1) but using y(n-2) instead.

$$y(n) = ax(n) + by(n-1)$$

$$y(n-1) = ax(n-1) + by(n-2)$$

$$y(n) = ax(n) + bax(n-1) + b^2y(n-2)$$

36

The input/output relationship for the above implementation is $y'(n) = ax(n-3) + bax(n-4) + b^2y'(n-2)$.

We have, $y(n) = ax(n) + by(n-1) = ax(n) + bax(n-1) + b^2y(n-2)$. Replacing n by n-3, we have $y(n-3) = ax(n-3) + bax(n-4) + b^2y(n-5)$. Latency = 3 (because of

It can be seen that y'(n) = y(n-3). the latch), throughput $\Rightarrow 1$

If the adder has a latch and the multiplier is a two-latch pipelined multiplier, the feed back loop would be three-latch pipelined. Thus, y(n-1) and y(n-2) should be removed for the computation to be possible.

$$n \to n-1$$

$$y(n) = ax(n) + by(n-1)$$

$$y(n-1) = ax(n-1) + by(n-2)$$

$$y(n) = ax(n) + bax(n-1) + b^2y(n-2)$$

$$y(n-2) = ax(n-2) + by(n-3)$$

$$y(n) = ax(n) + bax(n-1) + b^2ax(n-2) + b^3y(n-3)$$

38

Higher Order Filters

Example: y(n) = ax(n) + by(n-1) + cy(n-2)

$$y(n) = ax(n) + by(n-1) + cy(n-2)$$

$$y(n-1) = ax(n-1) + by(n-2) + cy(n-3)$$

$$y(n) = ax(n) + bax(n-1) + b^2y(n-2) + bcy(n-3) + cy(n-2)$$

$$= ax(n) + abx(n-1) + (b^2+c)y(n-2) + bcy(n-3)$$

Example: Implement the filter

$$y(n) = a_0x(n) + a_1x(n-1) + a_2x(n-2) + b_1y(n-1) + b_2y(n-2)$$

using 2-latch multipliers and non-pipelined adders.

Solution:

The structure of the feedback loop is as shown. There are two delays in the feedback path. Thus, it is a 2-latch pipelined system. Suppose the output of the 2-latch pipelined implementation is y'(n). Since it is a 2-latch pipelined system, y'(n-1) should be removed from the computation of y'(n).

40

$$y(n) = a_0x(n) + a_1x(n-1) + a_2x(n-2) + b_1y(n-1) + b_2y(n-2)$$

Substitute n by $n-1$, we have
$$y(n-1) = a_0x(n-1) + a_1x(n-2) + a_2x(n-3) + b_1y(n-2) + b_2y(n-3)$$

Eliminating y(n-1) in y(n), we have

$$y(n) = a_0x(n) + a_1x(n-1) + a_2x(n-2)$$

$$+ b_1\{a_0x(n-1) + a_1x(n-2) + a_2x(n-3) + b_1y(n-2) + b_2y(n-3)\}$$

$$+ b_2y(n-2)$$

$$= a_0x(n) + (a_1 + a_0b_1)x(n-1) + (a_2 + a_1b_1)x(n-2) + a_2b_1x(n-3)$$

$$= a_0 x(n) + (a_1 + a_0 b_1) x(n-1) + (a_2 + a_1 b_1) x(n-2) + a_2 b_1 x(n-3)$$

$$+ (b_2 + b_1 b_1) y(n-2) + b_1 b_2 y(n-3)$$

$$y(n) = a_0 x(n) + (a_1 + a_0 b_1) x(n-1) + (a_2 + a_1 b_1) x(n-2) + a_2 b_1 x(n-3)$$

$$+ (b_2 + b_1 b_1) y(n-2) + b_1 b_2 y(n-3)$$

Example: Implement the filter y(n) = x(n) + y(n-1) using 4-latch pipelined adders (no multiplier).

Solution: Feedback path has 4 latches, so y(n-1), y(n-2), and y(n-3) should be removed from the computation.

$$y(n) = x(n) + y(n-1)$$

= $x(n) + x(n-1) + x(n-2) + x(n-3) + y(n-4)$

43

However, writing it as

$$(1+z^{-2})\{(1+z^{-1})X(z)\} = (1+z^{-2})W(z)$$

where $W(z) = (1+z^{-1})X(z)$, needs only 2 adders.

The complete implementation before pipelining is:

44

The pipelined implementation is:

The input/output relationship is:

$$y'(n) = x(n-12) + x(n-13) + x(n-14) + x(n-15) + y'(n-4)$$

Comparing with

$$y(n) = x(n) + x(n-1) + x(n-2) + x(n-3) + y(n-4)$$

it can be seen that $y'(n) = y(n-12)$.

Parallel Processing

47

Introduction

- Increases the sampling rate/throughput
- · Replicates the hardware
- Multiple outputs are computed in parallel in a clock period

$$x(n) \xrightarrow{a} \underset{ax(n)}{\overset{b}{\longrightarrow}} abx(n)$$

sampling period $T_s = \text{clock}$ $x(n) \xrightarrow{a} b \quad \text{cycle } T_c \ge 2T_M$ $(T_M = \text{multiplication time})$

$$x(0), x(2), \dots a \\ x(2n) \xrightarrow{a} ax(2n) \xrightarrow{b} abx(2n)$$

$$x(1), x(3), \dots a \\ x(2n+1) \xrightarrow{ax(2n+1)} abx(2n+1)$$
Duplicate the multipliers
$$T_c \ge 2T_M \text{ but } T_s = \frac{1}{2}T_c \ge T_M$$

$$T_M$$
Sampling frequency is doubled.

Duplicate the multipliers. doubled.

In parallel processing the critical path is unchanged, but the sampling becomes a fraction of the clock cycle.

Polyphase Parallel FIR Filters

A length N FIR filter requires N multiply and N–1 add of delay less than the sampling period T:

$$Y(z) = X(z)H(z)$$
, where $X(z) = \sum x(n)z^{-n}$ etc.

The input 2-phase polyphase components are

$$X_0(z) = \sum x(2n)z^{-n}, X_1(z) = \sum x(2n+1)z^{-n}$$
 such that $X(z) = X_0(z^2) + z^{-1}X_1(z^2)$.

 $X_0(z)$ is the z-transform of even-numbered inputs x(2n). $X_1(z)$ is the z-transform of odd-numbered inputs x(2n+1).

49

Similarly,
$$Y(z) = Y_0(z^2) + z^{-1}Y_1(z^2)$$

and $H(z) = H_0(z^2) + z^{-1}H_1(z^2)$.

Then
$$Y(z) = \{X_0(z^2) + z^{-1}X_1(z^2)\}\{H_0(z^2) + z^{-1}H_1(z^2)\}$$

 $= \{X_0(z^2)H_0(z^2) + z^{-2}X_1(z^2)H_1(z^2)\}$
 $+ z^{-1}\{X_0(z^2)H_1(z^2) + X_1(z^2)H_0(z^2)\}$
 $= Y_0(z^2) + z^{-1}Y_1(z^2)$

It follows that:
$$Y_0(z) = X_0(z)H_0(z) + z^{-1}X_1(z)H_1(z)$$

 $Y_1(z) = X_0(z)H_1(z) + X_1(z)H_0(z)$

In matrix form (leaving z for brevity):

$$\begin{bmatrix} Y_0 \\ Y_1 \end{bmatrix} = \begin{bmatrix} H_0 & z^{-1}H_1 \\ H_1 & H_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \end{bmatrix}$$

Implementation:

(Note that z^{-1} implies a delay of 2T.)

The polyphase parallel FIR filter requires 2N multiply and 2(N-1) add with double the sampling frequency. \Rightarrow Strength reduction due to increased throughput.

Alternately, keeping the same sampling frequency, a slower multiplier/adder takes less area.

⇒Strength reduction due to reduced area.

51

3-phase polyphase:

$$X(z) = X_0(z^3) + z^{-1}X_1(z^3) + z^{-2}X_2(z^3)$$

where $X_0(z)$ is the z-transform of inputs x(3n), etc.

Then

$$\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} H_0 & z^{-1}H_2 & z^{-1}H_1 \\ H_1 & H_0 & z^{-1}H_2 \\ H_2 & H_1 & H_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \end{bmatrix}$$

Implementation:

 $(z^{-1}$ implies a delay of 3T.)

The 3-phase polyphase parallel FIR filter requires 3*N* multiply and 3(*N*–1) add with triple the sampling frequency.

53

Generalization to *L*-phase polyphase:

Let:
$$X(z) = \sum_{l=0}^{L-1} z^{-l} X_l(z^L), Y(z) = \sum_{l=0}^{L-1} z^{-l} Y_l(z^L)$$

$$H(z) = \sum_{l=0}^{L-1} z^{-l} H_l(z^L)$$

Then it may be shown that

$$Y_{l}(z) = \sum_{i=0}^{l} H_{i}(z)X_{l-i}(z) + z^{-1} \sum_{i=l+1}^{L-1} H_{i}(z)X_{L+l-i}(z)$$

for $0 \le l \le L-1$.

In matrix form:

$$\begin{bmatrix} Y_0 \\ Y_1 \\ \vdots \\ Y_{L-1} \end{bmatrix} = \begin{bmatrix} H_0 & z^{-1}H_{L-1} & \cdots & z^{-1}H_1 \\ H_1 & H_0 & \cdots & z^{-1}H_2 \\ \vdots & \vdots & \ddots & \vdots \\ H_{L-1} & H_{L-2} & \cdots & H_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ \vdots \\ X_{L-1} \end{bmatrix}$$

The *L*-phase polyphase parallel FIR filter requires *L* times the required number of multiply and add, with *L* times the sampling frequency.

55

Low-Complexity Parallel FIR Filters

Recall that in the 2-phase polyphase parallel FIR filters, the second output is given by:

$$Y_1(z) = X_0(z)H_1(z) + X_1(z)H_0(z)$$

It may be simplified as:

Implementation:

$$x(2n) \xrightarrow{H_0} \xrightarrow{H_0} y(2n)$$

$$x(2n+1) \xrightarrow{H_1} \xrightarrow{Z^{-1}} y(2n+1)$$

This low-complexity implementation needs only 3 subfilters, each of length *N*/2.

 \Rightarrow It requires 1.5N multiply and 1.5N+1 add.

Other equivalent low-complexity parallel FIR filter structures may be obtained. For example, a structure with 3 subfilters H_0 , H_0 – H_1 , and H_1 may be realized.

57

Systematic procedure to find a low-complexity structure:

Given
$$\begin{bmatrix} Y_0 \\ Y_1 \end{bmatrix} = \begin{bmatrix} H_0 & z^{-1}H_1 \\ H_1 & H_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \end{bmatrix}$$
 or **Y=H.X**, diagonalize **H**.

$$\mathbf{H} = \begin{bmatrix} H_0 & z^{-1}H_1 \\ H_1 & H_0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & z^{-1} \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} H_0 & 0 & 0 \\ 0 & H_0 + H_1 & 0 \\ 0 & 0 & H_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

3-phase polyphase:

$$\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} H_0 & z^{-1}H_2 & z^{-1}H_1 \\ H_1 & H_0 & z^{-1}H_2 \\ H_2 & H_1 & H_0 \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \end{bmatrix}$$

Diagonalize **H**:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & z^{-1} & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -z^{-1} & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \times$$

$$\begin{aligned} \mathbf{Diagonalize} & \mathbf{H}: \\ \mathbf{H} = \begin{bmatrix} 1 & 0 & z^{-1} & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -z^{-1} & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \times \\ \begin{bmatrix} H_0 \\ H_1 \\ H_2 \\ H_0 + H_1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \end{aligned}$$

Implementation:

This structure needs 6 subfilters, each of length *N*/3. \Rightarrow It requires 2N multiply and 2N+4 add.

Unfolding

63

Unfolding

Unfolding replicates a system J times, where J is the unfolding factor.

Unfolding reduces the sampling period, reaching the iteration bound. It also achieves parallel processing.

 $(1) \stackrel{A_0}{\triangleright} D \stackrel{B_0}{\triangleright} (1)$

Iteration bound = (1+1)/2 = 1Operations: $A_0 \rightarrow B_0$, $A_1 \rightarrow B_1$, (1) (A₁ B₁ (1)

 $A_2 \rightarrow B_2,...$

J unfolding: J copies, each delay equals J earlier delays.

Iteration bound = (1+1)/1 = 2

Top: $A_0 \rightarrow B_0$, $A_2 \rightarrow B_2$,...

Bottom: $A_1 \rightarrow B_1$, $A_3 \rightarrow B_3$,...

$$y(n) = ay(n-9) + x(n)$$

J=2 unfolding:
$$\begin{cases} y(2n) = ay(2n-9) + x(2n) \\ y(2n+1) = ay(2n-8) + x(2n+1) \end{cases}$$

But y(2n-9) is y(2n+1) delayed by 5, since each delay after unfolding equals 2 delays.

Similarly, y(2n-8) is y(2n) delayed by 4.

$$\begin{cases} y(2n) = ay[2(n-5)+1] + x(2n) \\ y(2n+1) = ay[2(n-4)] + x(2n+1) \end{cases}$$

65

Algorithm for Unfolding

Systematic procedure for unfolding:

Step 1: For each node U in the original data flow graph, draw J nodes $U_0, U_1, ..., U_{J-1}$.

Original data flow graph:

Replicated data flow graph:

Step 2: For each edge $U \rightarrow V$ with m delays in the original data flow graph, draw J edges $U_i \rightarrow V_{(i+m)\%J}$ with

$$\left| \frac{i+m}{J} \right|$$
 delays for $i = 0, 1, ..., J-1$.

(% = mod or modulo, find the remainder.)

 $(\lfloor \bullet \rfloor = \text{floor, same as truncation.})$

Edges without delay such as $A \rightarrow C$, $D \rightarrow C$ are unchanged.

Edge $C \rightarrow D$ has m = 9 delays. So, $C_0 \rightarrow D_{(0+9)\%2} = D_1$ has $\lfloor (0+9)/2 \rfloor = 4$ delays. $C_1 \rightarrow D_{(1+9)\%2} = D_0$ has $\lfloor (1+9)/2 \rfloor = 5$ delays.

67

Example 2:

Let J = 4.

Recall that $U_i \rightarrow V_{(i+m)\%J}$ with $\lfloor (i+m)/J \rfloor$ delays.

$$\left|\frac{i+m}{J}\right| = \left|\frac{i+37}{4}\right| = \begin{cases} 9 & i = 0,1,2\\ 10 & i = 3 \end{cases}$$

Let
$$J = 3$$
.
For $U_i o V_{(i+1)\%3}$, $\left\lfloor \frac{i+m}{J} \right\rfloor = \left\lfloor \frac{i+1}{3} \right\rfloor = \begin{cases} 0 & i = 0,1 \\ 1 & i = 2 \end{cases}$
For $V_i o W_{(i+6)\%3}$, $\left\lfloor \frac{i+m}{J} \right\rfloor = \left\lfloor \frac{i+6}{3} \right\rfloor = 2$
For $W_i o U_{(i+5)\%3}$, $\left\lfloor \frac{i+m}{J} \right\rfloor = \left\lfloor \frac{i+5}{3} \right\rfloor = \begin{cases} 1 & i = 0 \\ 2 & i = 1,2 \end{cases}$

Consists of 3 disjoint loops since gcd(12 delays, J=3) = 3.

69

Properties of Unfolding

Unfolding preserves the number of delays in a graph, since:

$$\left\lfloor \frac{0+m}{J} \right\rfloor + \left\lfloor \frac{1+m}{J} \right\rfloor + \dots + \left\lfloor \frac{J-1+m}{J} \right\rfloor = m$$

Unfolding preserves precedence constraints of a system.

Unfolding of a loop with m delays leads to gcd(m,J) loops.

Each of these loops contains $m/\gcd(m,J)$ delays. Each of these loops contains $J/\gcd(m,J)$ copies of each node that appears in the original loop.

Unfolding a graph with iteration bound T_{∞} results in the new iteration bound JT_{∞} .

Applications of Unfolding

- Sampling period reduction
 - Case 1: Longest node computation time is greater than the iteration bound
 - · Case 2: Iteration bound is not an integer
 - Case 3: Both case 1 and case 2
- Parallel processing

Sampling Period Reduction

Example of case 1: Longest node computation time (for D) 4 > $(1) \stackrel{\text{E}}{\text{E}} \stackrel{\text{D}}{\text{O}} (4)$ iteration bound $T_{\infty} = 3$. $(0) \stackrel{\text{A}}{\text{B}} \stackrel{\text{B}}{\text{C}} (0)$ Sampling period cannot be made 3. $(1) \stackrel{\text{C}}{\text{E}} \stackrel{\text{D}}{\text{C}} (0)$

Use *J* unfolding to change the iteration bound to $JT_{\infty} > 4$.

71

Example of case 2:

Iteration bound T_{∞} = 4/3, not an integer.

(1)

Use *J* unfolding to change the iteration bound to JT_{∞} = integer.

With J = 3, iteration bound $JT_{\infty} = 4$. New sampling period = 1 (=4), (1) (1) (1) but 3 inputs/outputs, so effective sampling period = 4/3.

For case 3, use J unfolding to change the iteration bound to JT_{∞} = integer > longest node computation time.

If $T_{\infty} = 4/3$ and longest node time is 6, use J=6 so that $JT_{\infty} = 8$, an integer greater than 6.

72

Parallel FIR Filters

Unfolding converts a sequential system to a parallel system.

Consider the following sequential system (FIR filter):

$$y(n) = ax(n) + bx(n-1)$$

Critical path = $T_M + T_A$

So, clock cycle $T_c \ge T_M + T_A$

Since sampling period $T_s = T_c$, $T_s \ge T_M + T_A$

73

Convert it to a parallel system with unfolding factor (also known as block size) *J*=3

At the n-th clock cycle, 3 inputs x(3n), x(3n+1), and x(3n+2) are processed, and 3 outputs y(3n), y(3n+1), and y(3n+2) are generated.

Critical path = $T_M + T_A$ Clock cycle $T_c \ge T_M + T_A$ But $3T_s = T_c$, or $T_s \ge (T_M + T_A)/3$

Parallel architecture:

In unfolding factor J parallel structures, since $T_c = JT_s$, a latch z^{-1} of 1 clock cycle produces an effective delay of J sampling periods, JT_s .

In the above structure, x(3n+2) passing through z^{-1} is delayed by 3 sampling periods, or becomes x(3n-1).

Since $T_s = 1/3$ T_c , the sampling frequency is tripled. Latency = 1 clock, throughput = 3 inputs/clock

75

Functioning of the parallel architecture: Let n=0.

Parallel Recursive Filters

79

First Order Filters

Even though unfolding works for the IIR filter in unfolding example 1, it doesn't work for most IIR filters

Consider a first order IIR filter:

$$y(n) = x(n) + ay(n-1)$$

Critical path = $T_M + T_A$, so $T_s \ge T_M + T_A$

Hardware complexity: sequential architecture 1 multiply, 1 add

Option 1: Convert it to a parallel system with unfolding factor 2

Critical path = $2T_M + 2T_A$ so $T_s \ge (2T_M + 2T_A)/2$ no improvement!

Hardware complexity: parallel architecture

- 1 multiply, 1 add
- 2 sets
 total 2 multiply, 2 add
 latency = 1 clock, throughput = 2 inputs/clock

81

Option 2: To obtain disjoint loops, change D to 2D (J=2). Rewrite the filter output without using y(2n-1) but using y(2n-2) instead.

$$y(n) = x(n) + ax(n-1) + a^{2}y(n-2)$$

$$\downarrow X \qquad \downarrow Y \qquad \downarrow Y \qquad \downarrow ZD$$

Convert to parallel

Critical path = $T_M + 2T_A$ so $T_s \ge (T_M + 2T_A)/2$ improvement

Parallel architecture:

total 2² multiply, 2² add

For general unfolding factor *J*,

- J multiply, J add
- J sets total J² multiply, J² add

83

Option 3: Incremental block processing: The J^2 increase in the hardware complexity can be reduced at the expense of 1/J improvement in T_s , or latency.

No improvement in option 1, since y_1 is computed using y_0 To break the critical path, compute y_1 without using y_0

It is called incremental block processing, because

- Some outputs are computed using block processing (option 1), such as y₀
- Other outputs are computed without using y_i , such as y_1 computed without using y_0 (uses delayed y_1 instead)

 y_0 computed as block processing (option 1)

$$y_0(n) = x(n) + ay(n-1)$$

 y_1 computed from past y_1 [which is y(n-2)]

$$y_1(n) = x(n) + ax(n-1) + a^2y(n-2)$$

Critical path = $T_M + 2T_A$

Hardware complexity:

- set 1: 1 multiply, 1 add
- set 2: 2 multiply, 2 add total 3 multiply, 3 add

85

Higher Order Filters

Consider a second order IIR filter: $x \rightarrow 2$

$$y(n) = 2x(n) + 2y(n-1) - 2y(n-2)$$

Critical path = $T_M + 2T_A$, so $T_S \ge T_M + 2T_A$

Hardware complexity: sequential architecture

- inputs 1 multiply, 0 add
- past outputs 2 multiply, 2 add total 3 multiply, 2 add

In general, for any IIR filter with #inputs/numerator order *N*, and #past outputs/ denominator order *M*,

- inputs N multiply, N-1 add
- past outputs *M* multiply, *M* add total *N*+*M* multiply, *N*+*M*–1 add

Option 1: Convert it to a parallel system with J=3

Critical path = $3T_M + 5T_A$ so $T_s \ge (3T_M + 5T_A)/3$ marginal improvement

Hardware complexity:

- 3 multiply, 2 add
- 3 sets total 9 multiply, 6 add

87

Option 2: To obtain disjoint loops, change D to 3D (J=3). Rewrite the filter output using y(n-3) and y(n-6).

$$y(n) = 2x(n) + 2y(n-1) - 2y(n-2)$$

$$= 2x(n) + 4x(n-1) + 2y(n-2) - 4y(n-3)$$

$$\vdots$$

$$= 2x(n) + 4x(n-1) + 4x(n-2) + 0x(n-3)$$

$$-8x(n-4) - 8y(n-5) + 8y(n-6)$$
(1)

But y(n-3) is equal to:

$$y(n-3) = 2x(n-3) + 4x(n-4) + 2y(n-5) - 4y(n-6)$$
 (2)

To cancel y(n-5), scale equation (2) by 4 and add to (1):

$$y(n) + 4y(n-3) = 2x(n) + 4x(n-1) + 4x(n-2) + 8x(n-3) + 8x(n-4) - 8y(n-6)$$

or

$$y(n) = 2x(n) + 4x(n-1) + 4x(n-2) + 8x(n-3) + 8x(n-4) - 4y(n-3) - 8y(n-6)$$

Critical path = $T_M + 4T_A$

89

Convert to parallel system. Loops will be disjoint.

The input (left) part has the same critical path, so critical path = $T_M + 4T_A$ so $T_s \ge (T_M + 4T_A)/3$

improvement

Hardware complexity:

$$y(n) = 2x(n) + 4x(n-1) + 4x(n-2) + 8x(n-3) + 8x(n-4) - 4y(n-3) - 8y(n-6)$$

- inputs 5 multiply, 4 add
- · past outputs 2 multiply, 2 add
- 3 sets

total 21 multiply, 18 add

In general,

- inputs JM-M+N multiply, JM-M+N-1 add
- past outputs M multiply, M add
- J sets

total $\mathcal{P}M+JN$ multiply, $\mathcal{P}M+J(N-1)$ add

91

Option 3: Incremental block processing

To break the critical path, compute y_2 without using y_1

- y₀, y₁ computed using block processing (option 1)
- y₂ computed without using
 y₁ (uses delayed y₂ instead)

$$y_2(n) = 2x(n) + 4x(n-1) + 2y(n-2) - 4y(n-3)$$

Critical path = $2T_M + 4T_A$ so $T_s \ge (2T_M + 4T_A)/3$

Hardware complexity:

- inputs 4 multiply, 1 add
- past outputs 6 multiply, 6 add total 10 multiply, 7 add

Folding

93

Folding

Folding reduces the silicon area (hardware complexity) by time multiplexing multiple operations into single functional units such as adders and multipliers.

$$a(n)$$
 $b(n)$
 $x(n) \xrightarrow{\bullet} x(n) + a(n) + b(n)$

Clock cycle 0: Add x(n) with a(n), store in register.

Clock cycle 1: Add register with b(n), this is the output.

Folding introduces registers/storage and control signals.

$$a(n) b(n)$$

$$x(n) \xrightarrow{0} \xrightarrow{1} \xrightarrow{1} \longrightarrow x(n) + a(n) + b(n)$$

Control signals are generated by a finite state machine.

Outputs = control for 2 multiplexers and 1 switch

Input data to a *N* folded architecture is assumed to be valid for *N* cycles, and one output sample is produced every *N* cycles, where *N* is the folding factor.

Hardware is reduced by a factor of N, but computation time is increased to N clock cycles. Latency is increased accordingly. \Rightarrow Folding trades hardware complexity with computation time.

91

Folding = reverse transformation of unfolding.

Folding an FIR Filter

FIR filter: x(n) T T T h_2 h_3 y(n) 1 sampling period = 1 computation cycle. N fixed multipliers,

N-1 adders.

Folding:

Cycle 2:

1 sampling period = N computation cycles

1 generalized multiplier, 1 adder, 1 coefficient memory, control

This strategy is often used in DSP chips.

97

Folding an IIR Filter

IIR filter:
$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + a_1 y(n-1) + a_2 y(n-2)$$

Direct form II realization:

$$w(n) = x(n) + a_1 w(n-1) + a_2 w(n-2)$$

$$y(n) = b_0 w(n) + b_1 w(n-1) + b_2 w(n-2)$$

Before folding: 5 multipliers with fixed coefficients, 4 adders, 2 delays, latency 1 clock cycle.

After folding: 1 general multiplier, 1 adder, 3 delays/registers, coefficient memory, 4 multiplexer-demultiplexers, controller, latency 5 clock cycles.

99

Cycle	Register 1	Register 2	Register 3	compute
0	w(n-1)	w(n-2)		$b_2w(n-2)$

- output to register
- store in register

100

Functioning of the folded architecture:

Cycle 0:

101

Functioning of the folded architecture:

Cycle 1:

Functioning of the folded architecture:

Cycle 2:

103

Functioning of the folded architecture:

Cycle 3:

$$w(n) = x(n) + a_1 w(n-1) + a_2 w(n-2)$$

104

Functioning of the folded architecture:

Cycle 4:

$$y(n) = b_0 w(n) + b_1 w(n-1) + b_2 w(n-2)$$

105