《概率论与数理统计》 期末考试卷 (B)												
	使用	专业	4、班级_	信计 20	姓名_				_			
	题	数		=	Ξ	四	五	六	七	总	分	
	得	分										
本题 得分 一、填空题〖每小题 5 分,共计 25 分〗												
1、设 A,B,C 是三个随机事件,则事件 \overline{ABC} 表达的涵义是。												
2、设随机变量 X 与 Y 相互独立,且 $X \sim N(2,9)$, $Y \sim N(1,4)$,则 $Z = X - 2Y \sim$ 。												
3、已知 $X \sim N(\mu, \sigma^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, x_1, x_2, \cdots, x_n ($n > 1$)是来自总体 X 的样												
	本,且样本均值方差分别为 x 和 x^2 。当参数 μ 是未知的,则作参数 x^2 的区间估计所取的枢轴量为											
4、假设某袋子中有同一规格产品 N 件,其中正品 M 件,次品 $N-M$ 件。现从袋子中随机抽取 n 件产品,则事件"抽取 n 件产品中刚好有正品 m 件正品、 $n-m$ 次品"的概率是。												
5、现代统计学主要有												
本题												

考试形式开卷 () 、闭卷 (√) ,在选项上打 (√) 开课教研室<u>应用数学</u> 命题教师<u>唐旭清</u> 命题时间<u>2017.12</u> 使用学期<u>2017-2018 (1)</u> 本题 得分

数分布。令

」三、〖计 15 分〗设随机变量 X 和 Y 相互独立,且都服从参数为 λ 的指

$$\begin{cases} U = X + Y \\ V = X - Y \end{cases}$$

试求: (1) (U,V) 的联合概率密度函数 $p_{U,V}(u,v)$; (2) U=X+Y 的概率密度函数 $p_U(u)$; (3) 判断随机变量U与V是否独立。

总张数______ 教研室主任审核签字

本题 得分 四、〖计 12 分〗设 x_1,x_2,\cdots,x_n 是来自总体X的一组样本,且X的期望 μ 和方差 σ^2 均存在。对形如 $\mu_1 = \sum_{i=1}^n a_i x_i$ 的统计量(其中 a_1, a_2, \cdots, a_n 为已知参数), 试求: (1) 若 μ_1 为参数 μ 的无偏估计量, a_1,a_2,\cdots,a_n 所满足的条件; (2) 在 (1) 的基础上, a_1, a_2, \cdots, a_n 取何值时, $\mu_1 \stackrel{\cdot}{\neq} \mu$ 的最有效估计量?

本题

[79] 五、[79] 五、

х	142.08	177.30	204.68	242.68	316.24	341.99	332.69	389.29	453.40
у	3.93	5.96	7.85	9.82	12.50	15.55	15.79	16.39	18.45

假定 y 与 x 间具有一元线性关系。试求: (1) y 对 x 的回归方程; (2) 对建立的回归方程作显著性检验(α = 0.05); (3) 若 x = 300,计算营业税税收总额的概率为 95%的预测区间。

本题 得分 」六、〖计 10 分〗设有甲、乙两个小麦品种,选择 18 块条件相似的试验 田,采用相同的耕作方法做实验,其中8块播种甲品种,10块播种乙品种。实验结果 为甲、乙甲品种单位面积上平均产量分别是x = 569.38和y = 487.00(单位: kg), 样本方差分别是 $S_x^2 = 2140.55$ 和 $S_y^2 = 3256.22$ 。假设每个品种的单位面积的产量均服从 正态分布,在显著性水平 $\alpha = 0.05$ 下,是否可以认为这两个品种的方差是相等的?

本题 得分

七、〖计 10 分〗设 $\{X_n\}$ 是独立同分布的随机变量序列,其共同的分布为

$$P\left(X_n = \frac{2^k}{k^2}\right) = \frac{1}{2^k} \quad (k = 1, 2, \dots)$$

试问随机变量序列 $\{X_n\}$ 是否服从大数定律?

附:
$$u_{0.95} = 1.645$$
, $u_{0.975} = 1.96$ $t_{0.95}(6) = 1.9432$, $t_{0.95}(7) = 1.8946$, $t_{0.95}(8) = 1.8595$, $t_{0.95}(9) = 1.8331$ $t_{0.975}(6) = 2.4469$, $t_{0.975}(7) = 2.3646$, $t_{0.975}(8) = 2.3060$, $t_{0.975}(9) = 2.2622$ $F_{0.05}(8,10) = 1/3.35$, $F_{0.95}(8,10) = 3.07$, $F_{0.025}(7,9) = 1/4.82$, $F_{0.975}(7,9) = 4.20$ $F_{0.05}(1,6) = 1/233.99$, $F_{0.95}(1,6) = 5.99$, $F_{0.025}(1,7) = 1/948.22$, $F_{0.975}(1,7) = 8.07$.