

DEPARTMENT OF COMPUTER SCIENCE/INFORMATION SCIENCE ENGINEERING/DATA SCIENCE ENGINEERING

PRACTICE PAPER II

Semester: III	Session: Aug- Dec 2022
Course Name: Discrete Mathematics and Graph Theory	Course Code: 21CIDS31
Date:	Max Marks: 50
Time:	Duration: 90 min

Note:

- i. PART A (Question 1-5) answer any 4 full questions.
- ii. PART B (Question 6-8) answer any 2 full questions.

iii. PART - C (Question 9) is compulsory to attend.

Q. No	Questions	Marks	CO's	Bloom's Level
•	$PART -A (4 \times 5 = 20 Marks)$		•	
1.	Prove that, for any proposition p, q, r the compound proposition $\{p \to (q \to r)\} \to \{(p \to q) \to (p \to r)\}$ is a tautology.	5	CO1	L2
2.	Find the rook polynomial for the board shown below (shaded part) using product formulae. 1 2 3 4 4 5 5 6 7 8 9 10 The state of the board shown below (shaded part) using product formulae.	5	CO2	L3
3.	In how many ways can 12 oranges be distributed among three children A, B, C, so that A gets at least four, B and C get at least two, but C gets no more than five?	5	CO3	L3
4.	Consider the graph K2,3 shown in the below Figure. Let A denote the number of colors available to properly color the vertices of this graph. Find: i. how many proper colorings of the graph have vertices a, b colored the same? ii. how many proper colorings of the graph have vertices a, b colored differently? iii. the chromatic polynomial of the graph.	5	CO4	L3
5.	If a tree T has four vertices of degree 2, one vertex of degree 3, two vertices of degree 4, one vertex of degree 5. Find the number of leaves in tree.	5	CO5	L2
	$PART -B (2\times9 = 18 Marks)$			
6.	a State the Pigeonhole principle. Also, prove that if 5 colours are used to paint 26 doors, then atleast 6 doors will have the same colour.	4	CO2	L2
			Page	1 of 2

1		1	1	
	 b Write down the following statements in symbolic form using quantifiers: i. Every real number has an additive inverse ii. The set of real numbers has a multiplicative identity. iii. The integer 58 is equal to the sum of two perfect squares. 	5	CO1	L3
7.	a Define the terms with example for each: i. Hamiltonian path. ii. Hamiltonian circuit.	4	CO4	L1
	b For the diagram of a graph shown below verify Euler's formula (b)	5	CO4	L2
8.	 a Explain the following terms with an example i. Spanning Trees. ii. Rooted Tree. 	4	CO5	L1
	b Construct the optimal prefix code for the message "ROAD IS GOOD". Indicate the code.	5	CO5	L3
•	PART -C (1×12 = 12 Marks)			
9.	a. Solve the recurrence relation $a_n = 2(a_{n-1} - a_{n-2})$ for $n \ge 2$, given that $a_0 = 1$ and $a_1 = 2$.	6	СОЗ	L3
	b. Using Prim's algorithm find the minimal spanning tree for the weighted graph. V5 10 V4 16 7 19.5 19.5	6	CO4	L3

Outcomes:
Discuss logical reasoning to verify the correctness of the logical statements and Perform set operations.
Illustrate the relations, partially ordered sets and lattices in data bases and data structures.
Employ generating function techniques to solve recurrence relations problems
Examine recurrence relations to solve problems involving an unknown sequence in engineering problems
Solve network analysis problems using graph theory.
Employ graphs for Mathematical structures, trees, and shortest path techniques in computer applications.

Programme Outcomes:

PO-1: Knowledge, PO-2: Analyze, PO-3: Design, PO-4: Conduct, PO-5: Tools, PO-6: Societal Problems, PO-7: Sustainability, PO-8: Ethics, PO-9: Teamwork and leadership qualities, PO-10: Communication, PO-11: Project and

finance management, PO-12: Lifetime Learning

CO/PO: Manning

CO/FO: M	CO/FO: Mapping													
	(3/2/1 indicates strength of correlation) 3-High, 2-Medium, 1-Low													
Course Programme Outcome (POs)														
Outcome				•		•	•							
(COs)	PO-	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12		
(005)	1													
CO-1	3	2	1											
CO-2	3	2	1											
CO-3	3	2	1	1	2									

CO-4	3	2	1	1	2				
CO-5	3	2	1				1		
CO-6	3	2	1	1			1		

L1	L2	L3	L4	L5	L6
Remembering	Understanding	Applying	Analyzing	Evaluating	Creating