ORACLE* Academy

Programação de Banco de Dados com SQL

14-2

Constraints PRIMARY KEY, FOREIGN KEY e CHECK

Objetivos

Esta lição abrange os seguintes objetivos:

- Definir e dar um exemplo de uma constraint PRIMARY KEY, FOREIGN KEY e CHECK
- Explicar o propósito da definição de constraints
 PRIMARY KEY, FOREIGN KEY e CHECK
- Demonstrar a criação de constraints no nível da coluna e da tabela em uma instrução CREATE TABLE
- Avaliar um problema comercial que requeira o acréscimo de uma constraint PRIMARY KEY e FOREIGN KEY e gravar o código para executar a mudança

Finalidade

- Como discutido na última seção, as constraints são usadas para impedir a entrada de dados inválidos nas tabelas do banco de dados.
- O que aconteceria se, ilicitamente ou apenas por causa de um erro, a sua identificação pessoal exclusiva fosse dada para outra pessoa?
- E se amanhã, na escola, alguém recebesse as suas notas na prova ou conseguisse pegar um ônibus com o seu passe escolar?
- Garantir a integridade dos dados é a função das constraints. Afinal, você é único!

- Uma constraint PRIMARY KEY é uma regra que determina que os valores em uma coluna ou combinação de colunas devem identificar exclusivamente cada linha de uma tabela.
- Um valor de chave primária não pode aparecer em mais de uma linha da tabela.
- Para satisfazer uma constraint PRIMARY KEY, ambas as condições abaixo devem ser verdadeiras:
 - Uma coluna que faça parte da chave primária não pode conter um valor nulo.
 - Uma tabela pode ter apenas uma chave primária.

- As constraints PRIMARY KEY podem ser definidas no nível da coluna ou da tabela.
- No entanto, se for criada uma PRIMARY KEY composta, ela deverá ser definida no nível da tabela.
- Quando se define colunas PRIMARY KEY, recomenda-se usar o sufixo pk no nome da constraint.
- Por exemplo, o nome da constraint para a coluna PRIMARY KEY chamada client number na tabela chamada CLIENTS poderia ser clients client num pk.

Copyright © 2019, Oracle e/ou suas empresas afiliadas. Todos os direitos reservados.

 Em uma instrução CREATE TABLE, é determinada a sintaxe da constraint PRIMARY KEY no nível da coluna:

```
CREATE TABLE clients
(client_number NUMBER(4) CONSTRAINT clients_client_num_pk PRIMARY KEY,
first_name VARCHAR2(14),
last_name VARCHAR2(13));
```

- Observe que o nível da coluna simplesmente se refere à área da instrução CREATE TABLE onde as colunas são definidas.
- O nível da tabela refere-se à última linha da instrução, abaixo da lista de nomes de colunas individuais.

 A sintaxe para criar a constraint PRIMARY KEY no nível da tabela é:

```
CREATE TABLE clients
(client_number NUMBER(4),
  first_name VARCHAR2(14),
  last_name VARCHAR2(13),
CONSTRAINT clients_client_num_pk PRIMARY KEY (client_number));
```

 Observe que o nome da coluna PRIMARY KEY vem depois do tipo da constraint e está entre parênteses.

- Para definir uma PRIMARY KEY composta, você deve definir a constraint no nível da tabela, e não da coluna.
- Um exemplo da constraint de uma chave primária composta é mostrado abaixo:

```
CREATE TABLE copy_job_history
(employee_id NUMBER(6,0),
   start_date DATE,
   job_id VARCHAR2(10),
   department_id NUMBER(4,0),
CONSTRAINT copy_jhist_id_st_date_pk PRIMARY KEY(employee_id, start_date));
```


Constraints FOREIGN KEY (INTEGRIDADE REFERENCIAL)

- As constraints FOREIGN KEY também são chamadas de constraints de "integridade referencial".
- Esse tipo de constraint designa uma coluna ou combinação de colunas como uma chave estrangeira.
- Uma chave estrangeira está vinculada à chave primária (ou a uma chave exclusiva) de outra tabela, e esse elo é a base do relacionamento entre tabelas.

10

Exibindo uma Chave Estrangeira

 A tabela que contém a chave estrangeira é chamada de "filho" e a que contém a chave referenciada é chamada de "pai".

DEPARTMENTS - Pai

DEPARTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

Exibindo uma Chave Estrangeira

 Nas tabelas mostradas, a chave primária da tabela DEPARTMENTS, department_id, também aparece na tabela EMPLOYEES como uma coluna da chave estrangeira.

DEPARTMENTS - Pai

DEPARTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

Constraint de integridade referencial

 Para satisfazer uma constraint de integridade referencial, um valor de chave estrangeira deve ser equivalente a um valor existente na tabela pai ou ser nulo.

DEPARTMENTS - Pai

		RTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
	90		Executive	100	1700
1	110		Accounting	205	1700
	190		Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

Constraint de integridade referencial

 Um valor de chave primária pode existir sem um valor de chave estrangeira correspondente. No entanto, uma chave estrangeira precisa ter uma chave primária correspondente.

DEPARTMENTS - Pai

DEPARTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

Regra da Constraint de Integridade Referencial

 A regra é: antes de definir uma constraint de integridade referencial na tabela filho, a constraint UNIQUE ou PRIMARY KEY referenciada na tabela pai já deve estar definida.

DEPARTMENTS - Pai

DEPARTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

Regra da Constraint de Integridade Referencial

 Em outras palavras, é preciso definir uma chave primária pai antes de criar uma chave estrangeira em uma tabela filho.

DEPARTMENTS - Pai

DEPARTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

Constraint FOREIGN KEY

- Para definir uma constraint FOREIGN KEY, recomenda-se usar o sufixo _fk no nome da constraint.
- Por exemplo, o nome da constraint para a coluna FOREIGN KEY department_id na tabela de funcionários poderia ser nomeada emps_dept_id_fk.

Sintaxe da Constraint FOREIGN KEY

- A sintaxe para definir uma constraint FOREIGN KEY requer uma referência à tabela e à coluna na tabela pai.
- Uma constraint FOREIGN KEY em uma instrução CREATE TABLE pode se definida como aparece abaixo.
- Exemplo de sintaxe no nível da coluna:

Sintaxe da Constraint FOREIGN KEY

- A sintaxe para definir uma constraint FOREIGN KEY requer uma referência à tabela e à coluna na tabela pai.
- Uma constraint FOREIGN KEY em uma instrução CREATE TABLE pode se definida como aparece abaixo.
- Exemplo de sintaxe no nível da tabela:

ON DELETE CASCADE - Mantendo a Integridade Referencial

- O uso da opção ON DELETE CASCADE quando se define uma chave estrangeira permite às linhas dependentes na tabela filho serem excluídas quando uma linha na tabela pai é excluída.
- Se a chave estrangeira não tiver uma opção ON DELETE CASCADE, as linhas referenciadas na tabela pai não poderão ser excluídas.
- Em outras palavras, a constraint FOREIGN KEY da tabela filho inclui a permissão ON DELETE CASCADE, possibilitando que sua tabela pai exclua as linhas às quais se refere.

ON DELETE CASCADE - Mantendo a Integridade Referencial

DEPARTMENTS - Pai

DEPARTMENT_ID	DEPT_NAME	MANAGER_ID	LOCATION_ID
90	Executive	100	1700
110	Accounting	205	1700
190	Contracting	-	1700

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
205	Shelley	Higgins	110
206	William	Gietz	110

ON DELETE CASCADE

- Se a coluna department_id em employees foi criada com a opção ON DELETE CASCADE especificada, a instrução DELETE emitida na tabela de departamentos será executada.
- Se a opção ON DELETE CASCADE não tiver sido especificada quando FOREIGN KEY foi criado, a tentativa de excluir um departamento da tabela de departamentos que possui entradas na tabela de funcionários fracassará.

Sintaxe de ON DELETE CASCADE

Tabela criada sem ON DELETE CASCADE:

```
CREATE TABLE copy_employees

(employee_id NUMBER(6,0) CONSTRAINT copy_emp_pk PRIMARY KEY,
    first_name VARCHAR2(20),
    last_name VARCHAR2(25),
    department_id NUMBER(4,0),
    email VARCHAR2(25),

CONSTRAINT cdept_dept_id_fk FOREIGN KEY (department_id)
    REFERENCES copy_departments(department_id));
```

 A tentativa de excluir department_id 110 da tabela de departamentos fracassa, pois existem linhas dependentes na tabela de funcionários.

```
ORA-02292: integrity constraint (US_A009EMEA815_PLSQL_T01.CDEPT_DEPT_ID_FK) violated - child record found
```


23

Sintaxe de ON DELETE CASCADE

Tabela criada com ON DELETE CASCADE:

```
CREATE TABLE copy_employees

(employee_id NUMBER(6,0) CONSTRAINT copy_emp_pk PRIMARY KEY,
    first_name VARCHAR2(20),
    last_name VARCHAR2(25),
    department_id NUMBER(4,0),
    email VARCHAR2(25),

CONSTRAINT cdept_dept_id_fk FOREIGN KEY (department_id)
    REFERENCES copy_departments(department_id) ON DELETE CASCADE);
```

- A tentativa de excluir department_id 110 da tabela de departamentos é bem-sucedida, e as linhas dependentes na tabela de funcionários também são excluídas.
- 1 linha excluída.

ON DELETE SET NULL

 Em vez de excluir as linhas na tabela filho usando a opção ON DELETE CASCADE, as linhas filhos podem ser preenchidas com valores nulos usando a opção ON DELETE SET NULL.

```
CREATE TABLE copy_employees

(employee_id NUMBER(6,0) CONSTRAINT copy_emp_pk PRIMARY KEY,
first_name VARCHAR2(20),
last_name VARCHAR2(25),
department_id NUMBER(4,0),
email VARCHAR2(25),

CONSTRAINT cdept_dept_id_fk FOREIGN KEY (department_id)
REFERENCES copy_departments(department_id) ON DELETE SET NULL);
```


ON DELETE SET NULL

- Isso pode ser útil quando o valor da tabela pai está sendo alterado para um novo número, como converter números de inventário para códigos de barra.
- Você não vai querer excluir as linhas na tabela filho.
- Quando os novos códigos de barra forem incluídos na tabela pai, passará a ser possível inseri-los na tabela filho sem precisar recriar totalmente cada linha da tabela filho.

26

Constraints CHECK

- A constraint CHECK define explicitamente uma condição que deve ser atendida.
- Para satisfazer a constraint, cada linha na tabela deve tornar a condição Verdadeira ou desconhecida (devido a um valor nulo).
- A condição de uma constraint CHECK pode se referir a qualquer coluna na tabela especificada, mas não a colunas de outras tabelas.

Academy

Exemplo da Constraint CHECK

 Esta constraint CHECK garante que o valor incluído para end_date seja posterior ao de start_date.

```
CREATE TABLE copy_job_history
(employee_id NUMBER(6,0),
  start_date DATE,
  end_date DATE,
  job_id VARCHAR2(10),
  department_id NUMBER(4,0),
  CONSTRAINT cjhist_emp_id_st_date_pk
     PRIMARY KEY(employee_id, start_date),
  CONSTRAINT cjhist_end_ck CHECK (end_date > start_date));
```

 Como está referenciando duas colunas na tabela, essa constraint CHECK DEVE ser definida no nível da tabela.

Condições da Constraint CHECK

- CHECK deve estar apenas na linha em que a constraint é definida.
- Uma constraint CHECK não pode ser usada em consultas que referenciam valores em outras linhas.
- A constraint CHECK não pode conter chamadas às funções SYSDATE, UID, USER ou USERENV.
- A instrução CHECK(SYSDATE >'05-May-1999') não é permitida.

Condições da Constraint CHECK

- A constraint CHECK não pode usar as pseudocolunas CURRVAL, NEXTVAL, LEVEL ou ROWNUM.
- A instrução CHECK(NEXTVAL > 0) não é permitida.
- Uma coluna pode ter várias constraints CHECK que referenciem a coluna em sua definição.
- Não há limite para o número de constraints CHECK que você pode definir em uma coluna.

Sintaxe da Constraint CHECK

- As constraints CHECK podem ser definidas no nível da coluna ou da tabela.
- A sintaxe para definir uma constraint CHECK é:
 - Sintaxe no nível da coluna:

```
salary NUMBER(8,2) CONSTRAINT employees_min_sal_ck CHECK (salary > 0)
```

— Sintaxe no nível da tabela:

```
CONSTRAINT employees_min_sal_ck CHECK (salary > 0)
```


Terminologia

Estes são os principais termos usados nesta lição:

- Constraint CHECK
- Constraint FOREIGN KEY
- REFERENCES
- NOT NULL
- ON DELETE CASCADE
- ON DELETE SET NULL
- Constraint PRIMARY KEY

Resumo

Nesta lição, você deverá ter aprendido a:

- Definir e dar um exemplo de uma constraint PRIMARY KEY, FOREIGN KEY e CHECK
- Explicar o propósito da definição de constraints
 PRIMARY KEY, FOREIGN KEY e CHECK
- Demonstrar a criação de constraints no nível da coluna e da tabela em uma instrução CREATE TABLE
- Avaliar um problema comercial que requeira o acréscimo de uma constraint PRIMARY KEY e FOREIGN KEY e gravar o código para executar a mudança

ORACLE* Academy