HW1-2020 (10월 7일, 수요일)

- 1. Ex. 6.6
- 2. Ex. 6.9
- 3. Ex. 6.57
- 4. Ex. 6.58
- 5. Ex. 6.59
- 6. Assume that we have collected 10 samples of size 5 each from a process producing bearings. The quality characteristics of interest X is the inside diameter measurements of the bearings. The original observed data of X along with the sample means and sample ranges are given in the table below.

Sample	x_1	x_2	x_3	x_4	x_5	\bar{X}	R
1	34.09	36.30	35.76	35.01	36.50	35.53	2.41
2	36.11	34.39	35.15	36.76	37.63	36.01	3.24
3	33.43	35.41	34.00	35.20	35.67	34.74	2.24
4	36.79	35.96	35.62	34.48	33.63	35.30	3.16
5	36.46	35.89	35.83	35.43	35.40	35.80	1.06
6	33.59	34.76	33.98	34.35	35.39	34.41	1.80
7	36.17	36.20	34.60	34.97	34.83	35.35	1.60
8	34.66	35.05	36.08	34.99	35.15	35.19	1.42
9	35.95	34.18	35.02	35.32	34.77	35.05	1.77
10	35.62	35.18	34.93	36.35	36.24	35.66	1.42

- (i) Construct the \bar{X} and R chart using $\alpha=0.0027$. Does the process seem to be in statistical control?
- (ii) Assume that the manufacturing process is IC, and the observed dataset shown in the above table is an IC dataset. Provide estimates for the IC mean μ_0 and the IC standard deviation σ of X.
- (iii) Using the results in parts (i) and (ii), compute the probability that the sample mean of a new sample of size 5 would give a signal of mean shift in the \bar{X} chart constructed in part (i) in cases when the true process mean is not shifted.
- (iv) Compute the ARL₀ value of the \bar{X} chart constructed in part (i), and its ARL₁ value when detecting a mean shift of size 1 (i.e., the shifted mean $\mu_1 = \mu_0 + 1$).
- 7. The sample standard deviations of the observed data presented in Problem 1 are computed to be

$$0.99, 1.28, 0.97, 1.25, 0.43, 0.70, 0.77, 0.53, 0.66, 0.63.$$

- (i) Construct the \bar{X} and s chart using $\alpha=0.0027$. Does the process seem to be in statistical control?
- (ii) Compare the control charts in part (i) and the control charts obtained in part (i) of Problem 1, and summarize your findings.
- (iii) The standard deviation σ of the quality characteristic X can be estimated by

$$\widehat{\sigma} = \frac{\bar{R}}{d_1(m)}$$

based on the sample ranges. It can also be estimated by

$$\widehat{\sigma} = \frac{\bar{s}}{d_3(m)}$$

based on the sample standard deviations. Further, it can be estimated by the sample standard deviation of the combined sample (i.e., all samples are combined into a single sample). Discuss the strengths and limitations of the three estimators of σ for the purpose of SPC, and compute their values using the observed data given in Problem 6 above.

8. Assume that we have collected 14 samples of size 5 each from an injection molding process. The sample means and sample standard deviations of the compressive strength measurements of the sampled parts a listed below.

Sample	1	2	3	4	5	6	7
$ar{X}_i$	80.22	78.31	81.40	78.53	81.32	80.54	77.33
s_i	3.99	5.35	4.79	4.68	3.79	5.78	3.52
\bar{X}_i	79.24	81.44	77.76	79.48	76.74	81.12	86.79
s_i	4.51	5.16	4.81	4.56	7.35	3.91	6.31

- (i) Use the first 10 samples to construct the \bar{X} and s charts. Does the process seem to be in statistical control? If the answer is positive, then use the constructed control charts to monitor the last 4 samples, which are treated as phase II data. Describe your findings of the phase II SPC.
- (ii) Use the first 10 samples to construct the s^2 chart. If the process variability seems to be in statistical control at the first 10 time points, then use the constructed control chart to monitor the process variability at the last 4 time points by treating the last 4 samples as phase II data. Describe your findings of the phase II SPC.
- (iii) Note that by taking the squared root of the lower and upper control limits of the s^2 chart, we obtain the lower and upper control limits of a new version of the s chart.

Compare this version of the s chart with the s chart constructed in part (i) for both phase I and phase II analyses.

9. The data given below are measurements of the tensile strength of the sampled papers manufactured by a production process. This is an individual observation dataset. At each time point, only on observation is obtained, and different observations are obtained at equally space time points.

Construct the \bar{X} and R charts using moving windows of size \tilde{m} with (i) $\tilde{m} = 2$, and (ii) $\tilde{m} = 5$. Compare the two sets of control charts, and summarize your major findings.