Sales Tracker Project

This notebook demonstrates how raw sales data can be cleaned, analyzed, and visualized.

It began as a simple coding exercise but was expanded into a project showcasing skills in data cleaning, statistics, and visualization.

```
In [14]: import pandas as pd
import matplotlib.pyplot as plt
```

Load Dataset

We start by importing the raw sales dataset (sales.csv).

```
In [16]: df = pd.read_csv("sales.csv")
          df.head()
Out[16]:
             ID Product
                           Sales
                    Shirt 120.50
              2
                   Jeans 250.00
          1
          2
              3
                   Shoes
                            NaN
                           75.25
          3
                     Hat
```

Data Cleaning

Shirt 130.00

5

- Removed rows with missing or invalid sales values (e.g., NaN).
- Converted the Sales column to numeric format for analysis.

```
In [18]: df_clean = df.dropna().copy()
    df_clean.loc[:, "Sales"] = pd.to_numeric(df_clean["Sales"], errors="coerce")
    df_clean.head()
```

ut[18]:		ID	Product	Sales
	0	1	Shirt	120.50
	1	2	Jeans	250.00
	3	4	Hat	75.25
	4	5	Shirt	130.00
	5	6	Shoes	200.75

Basic Statistics

We compute:

- Total Sales
- Average Sale
- Top-Selling Product

```
In [20]: total_sales = df_clean["Sales"].sum()
    average_sales = df_clean["Sales"].mean()
    top_product = df_clean.groupby("Product")["Sales"].sum().idxmax()

    print("Total Sales: $", round(total_sales, 2))
    print("Average Sale: $", round(average_sales, 2))
    print("Top-Selling Product:", top_product)
Total Sales: $ 1237.0
```

Average Sale: \$ 154.62
Top-Selling Product: Jeans

Sales Value Distribution

This histogram shows the distribution of sales values across the dataset. It provides insight into the spread and frequency of transaction sizes.

For example:

- Lower bars indicate less common sales values.
- Taller bars highlight the ranges where most transactions fall.

```
In [25]: # Histogram of individual sales values
plt.figure(figsize=(6,4))
plt.hist(df_clean["Sales"], bins=5, color="lightgreen", edgecolor="black")
plt.title("Distribution of Sales Values")
plt.xlabel("Sale Amount ($)")
plt.ylabel("Frequency")
plt.tight_layout()
plt.show()
```


Visualization

This bar chart shows total sales by product, making it easy to spot which category performs best.

```
In [22]: product_sales = df_clean.groupby("Product")["Sales"].sum()
product_sales.plot(kind="bar", title="Sales by Product", figsize=(6,4))
plt.ylabel("Total Sales ($)")
plt.show()
```


Reflection

This project demonstrates:

- Programming skills: cleaning and analyzing datasets with Python/pandas.
- Analytical skills: extracting insights like averages and top products.
- Visualization skills: presenting results in an intuitive chart.

It shows how I can take a classroom-style project and turn it into something closer to real-world analysis, making it relevant for internships in data analytics, business analysis, or tech consulting.