

# DIGITAL LOGIC 数字逻辑



01

### **Course Content**







Mealy Vs Moore machines

Excitation Realization Cost

Excitation
Table and
Equations



State Machine Notation

State Diagram

### **Finite State Machines**



A state machine is a sequential circuit having a limited (finite) number of states occurring in a prescribed order. Two basic types of state machines are the **Moore** and the Mealy. The Moore state machine is one where the outputs depend only on the internal present state. The Mealy state machine is one where the outputs depend on both the internal present state and on the inputs. Both types have a timing input (clock) that is not considered a controlling input. A design approach to counters is presented in this section.



### Mealy Vs Moore machines



- Mealy model:
  - Both outputs and next state depend both on primary inputs AND present state.
- Moore model:
  - Only next state depends directly on primary inputs AND present state. Outputs depend only on present state.



### General Models of Finite State Machines





Two types of sequential logic.



### General Models of Finite State Machines



In the Moore machine, the combinational logic is a gate array with outputs that determine the next state of the flip-flops in the memory. There may or may not be inputs to the combinational logic. There may also be output combinational logic, such as a decoder. If there is an input(s), it does not affect the outputs because they always correspond to and are dependent only on the present state of the memory. For the Mealy machine, the present state affects the outputs, just as in the Moore machine; but in addition, the inputs also affect the outputs. The outputs come directly from the combinational logic and not the memory.

### State Machine Notation





- ✓ Input variable
- ✓ Output variable
- ✓ State variable
- ✓ Excitation variable
- √ State

State variables and states are related by the expression:







- Graphical representation of a state table.
- Graph node with label s denotes state s



 Graph edge with label X denotes transition between two states when input X is applied





### State Diagram of Mealy model







Reads as:

When at state **s1** and apply input I, we get output O and proceed to state s2.



|   |   | Next State |
|---|---|------------|
| J | K | of Q       |
| 0 | 0 | Q          |
| 0 | 1 | 0          |
| 1 | 0 | 1          |
| 1 | 1 | Q          |

Figure 6.5
Moore circuit notation of a J-K flip-flop



- (a) Output Variables Written under State Variable Names
- (b) Output Variables Indicated by Arcs





• Enumerates the relationship between inputs, outputs, and states of the sequential circuit.



|               | Next state xy/z |   |    |   |    |   |    |   |
|---------------|-----------------|---|----|---|----|---|----|---|
| Present state | 00              | z | 01 | z | 11 | z | 10 | z |
| A             | Α               | 0 | A  | 0 | В  | 0 | В  | 0 |
| В             | В               | 0 | С  | 0 | С  | 0 | В  | 0 |
| С             | Α               | 0 | D  | 0 | С  | 0 | В  | 0 |
| D             | Α               | 0 | D  | 0 | A  | 1 | D  | 0 |





|               | Next state xy/z |   |    |   |    |   |    |   |
|---------------|-----------------|---|----|---|----|---|----|---|
| Present state | 00              | z | 01 | z | 11 | z | 10 | z |
| Α             | A               | 0 | Α  | 0 | В  | 0 | В  | 0 |
| В             | В               | 0 | С  | 0 | С  | 0 | В  | 0 |
| С             | Α               | 0 | D  | 0 | С  | 0 | В  | 0 |
| D             | Α               | 0 | D  | 0 | A  | 1 | D  | 0 |

|               | State Table |            |        |  |  |  |  |  |  |  |
|---------------|-------------|------------|--------|--|--|--|--|--|--|--|
|               | Input       |            | Output |  |  |  |  |  |  |  |
| Present State | X Y         | Next State | Z      |  |  |  |  |  |  |  |
| A             | 0 0         | A          | 0      |  |  |  |  |  |  |  |
| A             | 0 1         | A          | 0      |  |  |  |  |  |  |  |
| A             | 1 0         | В          | 0      |  |  |  |  |  |  |  |
| A             | 1 1         | В          | 0      |  |  |  |  |  |  |  |
| В             | 0 0         | В          | 0      |  |  |  |  |  |  |  |
| В             | 0 1         | С          | 0      |  |  |  |  |  |  |  |
| В             | 1 0         | В          | 0      |  |  |  |  |  |  |  |
| В             | 1 1         | C          | 0      |  |  |  |  |  |  |  |
| D             | 0 0         | A          | 0      |  |  |  |  |  |  |  |
| D             | 0 1         | D          | 0      |  |  |  |  |  |  |  |
| D             | 1 0         | D          | 0      |  |  |  |  |  |  |  |
| D             | 1 1         | A          | 1      |  |  |  |  |  |  |  |
| C             | 0 0         | A          | 0      |  |  |  |  |  |  |  |
| С             | 0 1         | D          | 0      |  |  |  |  |  |  |  |
| C             | 1 0         | В          | 0      |  |  |  |  |  |  |  |
| C             | 1 1         | C          | 0      |  |  |  |  |  |  |  |





### Each state is assigned a unique code.

|               | Next state xy/z |   |    |   |    |   |    |   |
|---------------|-----------------|---|----|---|----|---|----|---|
| Present state | 00              | z | 01 | z | 11 | z | 10 | z |
| A             | Α               | 0 | Α  | 0 | В  | 0 | В  | 0 |
| В             | В               | 0 | С  | 0 | С  | 0 | В  | 0 |
| C             | Α               | 0 | D  | 0 | С  | 0 | В  | 0 |
| D             | Α               | 0 | D  | 0 | A  | 1 | D  | 0 |

| F <sub>A</sub> | $F_{B}$ | State |
|----------------|---------|-------|
| 0              | 0       | A     |
| 0              | 1       | В     |
| 1              | 1       | С     |
| 1              | 0       | D     |

|    |                               | Next state xy/z      |                               |       |                               |  |  |
|----|-------------------------------|----------------------|-------------------------------|-------|-------------------------------|--|--|
|    | Present state                 | 00 z                 | 01 z                          | ll z  | 10 z                          |  |  |
| c. | F <sub>A</sub> F <sub>B</sub> | $\overline{F_A F_B}$ | F <sub>A</sub> F <sub>B</sub> | FAFB  | F <sub>A</sub> F <sub>B</sub> |  |  |
|    | 0 0                           | 0 0 0                | 0 0 0                         | 0 1 0 | 010                           |  |  |
|    | 0 1                           | 0 1 0                | 1 1 0                         | 1 1 0 | 010                           |  |  |
|    | 1 1                           | 0 0                  | 100                           | 1 1 0 | 010                           |  |  |
|    | 1 0                           | . 000                | 100                           | 001   | 100                           |  |  |





### Transition Table for state machine M<sub>1</sub>

|                |                | Next state xy/z |   |                               |      |   |       |   |
|----------------|----------------|-----------------|---|-------------------------------|------|---|-------|---|
| Presen         | it state       | 00              | z | 01 2                          | 11   | z | 10    | z |
| F <sub>A</sub> | F <sub>B</sub> | FA FB           |   | F <sub>A</sub> F <sub>B</sub> | F, F | 3 | FA FB | _ |
| 0              | 0              | 0 0             | 0 | 0 0 0                         | 0 1  | 0 | 0 1   | 0 |
| 0              | 1              | 0 1             | 0 | 110                           | 11   | 0 | 0 1   | 0 |
| 1              | 1              | 0 0             | 0 | 100                           | 11   | 0 | 0 1   | 0 |
| 1              | 0              | . 00            | 0 | 100                           | 0 0  | 1 | 10    | 0 |

Transition Table for state machine M<sub>1</sub>

| <u> </u> |          | ani | C II | <u> </u> | ate II |        |
|----------|----------|-----|------|----------|--------|--------|
| Prese    | nt State | Inp | ut   | Next     | State  | Output |
| $F_{A}$  | $F_{B}$  | X   | Y    | $F_A$    | $F_B$  | Z      |
| 0        | 0        | 0   | 0    | 0        | 0      | 0      |
| 0        | 0        | 0   | 1    | 0        | 0      | 0      |
| 0        | 0        | 1   | 0    | 0        | 1      | 0      |
| 0        | 0        | 1   | 1    | 0        | 1      | 0      |
| 0        | 1        | 0   | 0    | 0        | 1      | 0      |
| 0        | 1        | 0   | 1    | 1        | 1      | 0      |
| 0        | 1        | 1   | 0    | 0        | 1      | 0      |
| 0        | 1        | 1   | 1    | 1        | 1      | 0      |
| 1        | 0        | 0   | 0    | 0        | 0      | 0      |
| 1        | 0        | 0   | 1    | 1        | 0      | 0      |
| 1        | 0        | 1   | 0    | 1        | 0      | 0      |
| 1        | 0        | 1   | 1    | 0        | 0      | 1      |
| 1        | 1        | 0   | 0    | 0        | 0      | 0      |
| 1        | 1        | 0   | 1    | 1        | 0      | 0      |
| 1        | 1        | 1   | 0    | 0        | 1      | 0      |
| 1        | 1        | 1   | 1    | 1        | 1      | 0      |



- Choose the type of flip-flops to design the state machine.
  - D

  - **JK**
  - -SR



| Q <sup>n</sup> | Q <sup>n+1</sup> | Z                               |
|----------------|------------------|---------------------------------|
| _              |                  |                                 |
|                |                  |                                 |
|                | 1                |                                 |
|                |                  |                                 |
|                | Q <sup>n</sup>   | Q <sup>n</sup> Q <sup>n+1</sup> |

n+19/39/48 da 09/44 -大·35





### D flip-flop used to realize circuit

#### D flip-flop characteristic table and equation

| D | Present, | Next,<br>Q <sub>t+1</sub> |
|---|----------|---------------------------|
| 0 | О        | 0                         |
| 1 | 0        | 1                         |
| 0 | 1        | 0                         |
| 1 | 1        | 1                         |

 $Q_{t+1} = D$ 

#### D flip-flop excitation table

| $Q_t$ | $Q_{t+1}$ | D |
|-------|-----------|---|
| 0     | 0         | 0 |
| 0     | 1         | 1 |
| 1     | 0         | 0 |
| 1     | 1         | 1 |

#### Transition Table for state machine M<sub>1</sub>

|                |          |        | Next state xy/z |       |           |  |  |  |
|----------------|----------|--------|-----------------|-------|-----------|--|--|--|
| Prese          | nt state | 00 z   | 01 z            | 11 z  | 10 z      |  |  |  |
| F <sub>A</sub> |          | FA FB  | $F_A F_B$       | FAFB  | $F_A F_B$ |  |  |  |
| 0              | 0        | 0 0 0  | 0 0 0           | 0 1 0 | 010       |  |  |  |
| 0              | 1        | 0 1 0  | 110             | 110   | 010       |  |  |  |
| 1              | 1        | 000    | 100             | 110   | 010       |  |  |  |
| 1              | 0        | . 00 0 | 100             | 0 0 1 | 100       |  |  |  |

#### state machine M<sub>1</sub> excitation table using D flip-flops

|                |                |           | Next state xy/z |           |   |           |   |           |   |
|----------------|----------------|-----------|-----------------|-----------|---|-----------|---|-----------|---|
| Precen         | t state        | 00        | z               | 01        | z | 11 :      | ζ | 10        | z |
| F <sub>A</sub> | F <sub>B</sub> | $D_A D_B$ |                 | $D_A D_B$ |   | $D_A D_B$ |   | $D_A D_B$ |   |
| 0              | 0              | 0.0       | 0               | 0.0       | 0 | 0 1       | 0 | 0 1       | 0 |
| 0              | 1              | 0 1       | 0               | 1 1       | 0 | 11        | 0 | 0 1       | 0 |
| 1              | 1              | 0 0       | 0               | 1 0       | 0 | 11        | 0 | 0 1       | 0 |
| 1              | 0              | 0 0       | 0               | 1 0       | 0 | 0 0       | 1 | 1 0       | 0 |





### ■D flip-flop used to realize circuit (two D flip-flops)

#### D flip-flop characteristic table and equation

| D | Present,<br>Q, | Next, |
|---|----------------|-------|
| 0 | 0              | О     |
| 1 | 0              | 1     |
| 0 | 1              | 0     |
| 1 | 1              | 1     |

#### D flip-flop excitation table

| Qt | $Q_{t+1}$ | D |
|----|-----------|---|
| 0  | 0         | 0 |
| 0  | 1         | 1 |
| 1  | 0         | 0 |
| 1  | 1         | 1 |

#### Transition Table for state machine M<sub>1</sub>

|                               |           | Next state xy/z |           |           |  |  |
|-------------------------------|-----------|-----------------|-----------|-----------|--|--|
| Present state                 | 00 z      | 01 z            | 11 z      | 10 z      |  |  |
| F <sub>A</sub> F <sub>B</sub> | $F_A F_B$ | $F_A F_B$       | $F_A F_B$ | $F_A F_B$ |  |  |
| 0 0                           | 0 0 0     | 000             | 0 1 0     | 0 1 0     |  |  |
| 0 1                           | 0 1 0     | 1 1 0           | 1 1 0     | 0 1 0     |  |  |
| 1 1                           | 000       | 1 0 0           | 1 1 0     | 0 1 0     |  |  |
| 1 0                           | . 0000    | 1 0 0           | 0 0 1     | 1 0 0     |  |  |

#### state machine $M_1$ excitation table using D flip-flops

|        |                | Next state xy/z |   |          |   |           |   |      |                |
|--------|----------------|-----------------|---|----------|---|-----------|---|------|----------------|
| Drocer | t state        | 00              | z | 01       | z | 11        | z | 10   | z              |
| $F_A$  | F <sub>B</sub> | $D_A D_B$       |   | $D_{A}D$ | В | $D_A D_B$ |   | D, I | D <sub>B</sub> |
| 0      | 0              | 0 0             | 0 | 00       | 0 | 0 1       | 0 | 0    | 0              |
| 0      | 1              | 0 1             | 0 | 1 1      | 0 | 1 1       | 0 | 0    | 1 0            |
| 1      | 1              | 0 0             | 0 | 10       | 0 | 1 1       | 0 | 0    | 1 0            |
| 1      | 0              | 0 0             | 0 | 1 0      | 0 | 0 0       | 1 | 1    | 0 0            |





### D flip-flop used to realize circuit (two D flip-flops)



#### D flip-flop excitation table

| $\mathbf{Q}_{\mathbf{t}}$ | $Q_{t+1}$ | D |
|---------------------------|-----------|---|
| 0                         | 0         | 0 |
| 0                         | 1         | 1 |
| 1                         | 0         | 0 |
| 1                         | 1         | 1 |

#### state machine $M_1$ excitation table using D flip-flops

|                |                |           | Next state xy/z |           |           |  |  |  |
|----------------|----------------|-----------|-----------------|-----------|-----------|--|--|--|
| Presen         | t state        | 00 z      | 01 z            | 11 z      | 10 z      |  |  |  |
| F <sub>A</sub> | F <sub>B</sub> | $D_A D_B$ | $D_A D_B$       | $D_A D_B$ | $D_A D_B$ |  |  |  |
| 0              | 0              | 0 0 0     | 0.00            | 010       | 0 🔲 0     |  |  |  |
| 0              | 1              | 0 1 0     | 1 0             | 1 1 0     | 0 1 0     |  |  |  |
| 1              | 1              | 000       | 1 0 0           | 1 1 0     | 0 1 0     |  |  |  |
| 1              | 0              | 0 0 0     | 1 0 0           | 0 0 1     | 1 0 0     |  |  |  |





|        |                |           | Next state xy/z |           |   |           |           |
|--------|----------------|-----------|-----------------|-----------|---|-----------|-----------|
| Presen | t state        | 00        | z               | 01        | z | 11 z      | 10 z      |
| FA     | F <sub>B</sub> | $D_A D_B$ |                 | $D_A D_B$ |   | $D_A D_B$ | $D_A D_B$ |
| 0      | 0              | 0.0       | 0               | 0.0       | 0 | 010       | 010       |
| 0      | 1              | 0 1       | 0               | 1 1       | 0 | 1 1 0     | 010       |
| 1      | 1              | 0 0       | 0               | 1 0       | 0 | 1 1 0     | 010       |
| 1      | 0              | 0 0       | 0               | 1 0       | 0 | 0 0 1     | 1 0 0     |



D<sub>A</sub> K-Map

$$D_A = f(F_A, F_B, x, y) = \Sigma(5,7,10,13,15) = F_A F_B'xy' + F_A x'y + F_B y$$





|                |                |               | Next state xy/z |           |           |  |  |  |
|----------------|----------------|---------------|-----------------|-----------|-----------|--|--|--|
| Presen         | t state        | 00 z          | 01 z            | ll z      | 10 z      |  |  |  |
| F <sub>A</sub> | F <sub>B</sub> | $D_A D_B$     | $D_A D_B$       | $D_A D_B$ | $D_A D_B$ |  |  |  |
| 0              | 0              | 0 <u>0'</u> 0 | 0 <u>0</u> 0    | 0 1 0     | 0 🔲 0     |  |  |  |
| 0              | 1              | 0 1 0         | 1 1 0           | 1 1 0     | 0 1 0     |  |  |  |
| 1              | 1              | 0 0 0         | 100             | 1 1 0     | 0 1 0     |  |  |  |
| 1              | 0              | 0 0 0         | 100             | 0 0 1     | 100       |  |  |  |



D<sub>B</sub> K-Map

$$D_{B}=f(F_{A},F_{B},x,y)$$

$$=\Sigma(2,3,4,5,6,7,14,15)$$

$$=F_{A}'F_{B}+F_{A}'x+F_{B}x$$





|        |                |           | Next state xy/z |           |   |           |   |           |   |
|--------|----------------|-----------|-----------------|-----------|---|-----------|---|-----------|---|
| Presen | t state        | 00        | z               | 01        | z | 11        | z | 10        | z |
| FA     | F <sub>B</sub> | $D_A D_B$ |                 | $D_A D_B$ |   | $D_A D_B$ |   | $D_A D_B$ |   |
| 0      | 0              | 0 0       | 0               | 0.0       | 0 | 0 1       | 0 | 0 1       | 0 |
| 0      | 1              | 0 1       | 0               | 1 1       | 0 | 11        | 0 | 0 1       | 0 |
| 1      | 1              | 0 0       | 0               | 1 0       | 0 | 11        | 0 | 0 1       | 0 |
| 1      | 0              | 0 0       | 0               | 1 0       | 0 | 0,0       | 1 | 1 0       | 0 |

#### Logic for D excitation realization



Z= 
$$f(F_A, F_B, x, y) = \Sigma(11)$$
  
= $F_A F_B$ 'xy

$$D_A = F_A F_B'xy' + F_A x'y + F_B y$$

$$D_B = F_A'F_B + F_A'x + F_B x$$











 $D_{\Delta} = f(F_{\Delta}, F_{B}, x, y) = \Sigma(5, 7, 10, 13, 15) = F_{\Delta}F_{B}'xy' + F_{\Delta}x'y + F_{B}y$  $D_{B}=f(F_{\Delta},F_{B},x,y)=\Sigma(2,3,4,5,6,7,14,15)=F_{\Delta}'F_{B}+F_{\Delta}'x+F_{B}x$  $Z = f(F_{\Delta}, F_{B}, x, y) = \Sigma(11) = F_{\Delta}F_{B}'xy$ 





### T flip-flop used to realize circuit

T flip-flop characteristic table and equation

|            | Present | Next |
|------------|---------|------|
| <u>'</u> T | Q,      | Q,+1 |
| 0          | 0       | 0    |
| 1          | 0       | 1    |
| 1          | 1       | 0    |
| 0          | 1       | 1    |

$$Q_{i+1} = T \oplus Q_i$$

#### T flip-flop excitation table

| $\mathbf{Q}_{t}$ | $Q_{t+1}$ | T |
|------------------|-----------|---|
| 0                | 0         | 0 |
| 0                | 1         | 1 |
| 1                | 0         | 1 |
| 1                | 1         | 0 |

#### Transition Table for state machine M<sub>1</sub>

|                                             |   | Next state xy/z               |   |                               |   |           |   |                               |   |  |
|---------------------------------------------|---|-------------------------------|---|-------------------------------|---|-----------|---|-------------------------------|---|--|
| Present state F <sub>A</sub> F <sub>B</sub> |   | 00                            | z | 01                            | z | 11        | z | 10                            | z |  |
|                                             |   | F <sub>A</sub> F <sub>B</sub> |   | F <sub>A</sub> F <sub>B</sub> |   | $F_A F_B$ |   | F <sub>A</sub> F <sub>B</sub> |   |  |
| 0                                           | 0 | 0 0                           | 0 | 0 0                           | 0 | 0 1       | 0 | 0 1                           | 0 |  |
| 0                                           | 1 | 0 1                           | 0 | 1 1                           | 0 | 1 1       | 0 | 0 1                           | 0 |  |
| 1                                           | 1 | 0 0                           | 0 | 1 0                           | 0 | 1 1       | 0 | 0 1                           | 0 |  |
| 1                                           | 0 | . 00                          | 0 | 1 0                           | 0 | 0 0       | 1 | 10                            | 0 |  |

T flip-flop excitation table for state machine M1

|               |       | Next st | ate xy/z |       |
|---------------|-------|---------|----------|-------|
| Present state | 00 z  | 01 z    | 11 z     | 10 z  |
| FA Fe         | TA Te | TA To   | TA TB    | TA Ta |
| 0 0           |       |         |          |       |
| 0 1           |       |         |          |       |
| 1 1           |       |         |          |       |
| 1 0           |       |         |          |       |







$$T_{A}=f(F_{A},F_{B},x,y)=\Sigma(5,7,8,11,12,14)=F_{A}F_{B}'xy+F_{A}x'y'+F_{A}F_{B}y'+F_{A}'F_{B}y$$

$$T_{B}=f(F_{A},F_{B},x,y)=\Sigma(2,3,12,13)=F_{A}'F_{B}'x+F_{A}F_{B}x'$$





### S-R flip-flop used to realize circuit

#### R-S flip-flop characteristic table and equation

| - 1 | Preser | at | Next             |
|-----|--------|----|------------------|
| 5   | R      | Q, | Q <sub>i+1</sub> |
| 0   | 0      | 0  | 0                |
| 0   | 0      | 1  | 1                |
| 0   | 1      | 0  | o                |
| 0   | 1      | 1  | О                |
| 1   | 0      | 0  | 1. 7             |
| 1   | 0      | 1  | 1                |
| 1   | 1      | 0  | Undefined        |
| 1   | 1      | 1  | Undefined        |

#### S-R flip-flop excitation table

| $\mathbf{Q}_{\mathbf{t}}$ | $Q_{t+1}$ | S | R |
|---------------------------|-----------|---|---|
| 0                         | 0         | 0 | d |
| 0                         | 1         | 1 | 0 |
| 1                         | 0         | 0 | 1 |
| 1                         | 1         | d | 0 |

#### Transition Table for state machine M<sub>1</sub>

|                |                |           |   | Next st                       | ate xy/z |           |
|----------------|----------------|-----------|---|-------------------------------|----------|-----------|
| Prese          | nt state       | 00        | z | 01 z                          | 11 z     | 10 z      |
| F <sub>A</sub> | F <sub>B</sub> | $F_A F_B$ |   | F <sub>A</sub> F <sub>B</sub> | FAFB     | $F_A F_B$ |
| 0              | 0              | 0 0       | 0 | 0 0 0                         | 0 1 0    | 010       |
| 0              | 1              | 0 1       | 0 | 110                           | 110      | 010       |
| 1              | 1              | 0 0       | 0 | 100                           | 110      | 010       |
| 1              | 0              | . 00      | 0 | 100                           | 001      | 100       |

#### state machine M<sub>1</sub> excitation table using S-R flip-flops

|                |          |      | Next state xy/z |   |                               |      |   |           |      |   |      | · · · · · · atten |   |  |  |
|----------------|----------|------|-----------------|---|-------------------------------|------|---|-----------|------|---|------|-------------------|---|--|--|
| Preser         | it state | 0    | 0               | z | 0                             | 1    | ż | 1         | 1    | z | 1    | 0                 | z |  |  |
| F <sub>A</sub> | F,       | SARA | S,R,            |   | S <sub>A</sub> R <sub>A</sub> | S.R. |   | $S_A R_A$ | S.R. |   | SARA | S,R,              | ľ |  |  |
| 0              | 0        |      |                 |   |                               |      |   |           |      |   |      |                   |   |  |  |
| 0              | 1        |      |                 |   |                               |      |   |           |      |   |      |                   |   |  |  |
| 1              | 1        |      |                 |   |                               |      |   |           |      |   |      |                   |   |  |  |
| 1              | 0        |      |                 |   |                               |      |   |           |      |   |      |                   |   |  |  |





### S-R flip-flop used to realize circuit (two SR flip-flops)

| Ĺ    | reser | at | Next             |
|------|-------|----|------------------|
| 5    | 0 0   | Q, | Q <sub>i+1</sub> |
| 0    | 0     | 0  | 0                |
| 0, , | 0     | 1  | 1                |
| 0    | 1     | 0  | 0                |
| 0    | 1     | 1  | 0                |
| 1    | 0     | 0  | ~ 1. 2           |
| 18   | 0     | 1  | 1                |
| ı    | 1     | 0  | Undefined        |
| 1    | 1     | 1  | Undefined        |

| S-R | flin- | flon | excitation  | table |
|-----|-------|------|-------------|-------|
|     | шр    | пор  | CACITUITOII | unic  |

| $\mathbf{Q}_{\mathbf{t}}$ | $Q_{t+1}$ | S | R |
|---------------------------|-----------|---|---|
| 0                         | 0         | 0 | d |
| 0                         | 1         | 1 | 0 |
| 1                         | 0         | 0 | 1 |
| 1                         | 1         | d | 0 |

#### Transition Table for state machine M<sub>1</sub>

|                |                | Next state xy/z               |           |           |       |  |  |  |  |  |
|----------------|----------------|-------------------------------|-----------|-----------|-------|--|--|--|--|--|
| Presen         | t state        | 00 z                          | 01 z      | 11 z      | 10 z  |  |  |  |  |  |
| F <sub>A</sub> | F <sub>B</sub> | F <sub>A</sub> F <sub>B</sub> | $F_A F_B$ | $F_A F_B$ | FA FB |  |  |  |  |  |
| 0              | 0              | 0 0 0                         | 000       | 010       | 010   |  |  |  |  |  |
| 0              | 1              | 010                           | 110       | 110       | 010   |  |  |  |  |  |
| 1              | 1              | 000                           | 100       | 110       | 010   |  |  |  |  |  |
| 1              | 0              | . 00 0                        | 100       | 001       | 100   |  |  |  |  |  |

#### state machine M<sub>1</sub> excitation table using S-R flip-flops

|                |          |      |      |   |                               | Ne   | xt st | ate xy/z  |            |   |           | atí        | CH |
|----------------|----------|------|------|---|-------------------------------|------|-------|-----------|------------|---|-----------|------------|----|
| Preser         | it state | 0    | 0    | z | 0                             | 1    | z     | 1         | 1          | z | 1         | 0          | z  |
| F <sub>A</sub> | F,       | SARA | S,R, |   | S <sub>A</sub> R <sub>A</sub> | S.R. |       | $S_A R_A$ | S.R.       |   | $S_A R_A$ | S,R,       | r  |
| 0              | 0        | 0d   | 0d   | 0 | Od                            | 0d   | 0     | 0d        | 10         | 0 | 04        | 10         | 0  |
| 0              | 1        | 0d   | d0   | 0 | 10                            | d0   | 0     | 10        | <b>d</b> 0 | 0 | 0d        | ₫0         | 0  |
| 1              | 1        | 01   | 01   | 0 | d0                            | 01   | 0     | d0        | <b>d</b> 0 | 0 | 01        | <i>d</i> 0 | 0  |
| 1              | 0        | 01   | 0d   | 0 | d0                            | 0d   | 0     | 01        | 0d         | 1 | d0        | 04         | 0  |





|                |    |      | Next state xy/z |   |                               |            |   |            |            |   |            |      |    |
|----------------|----|------|-----------------|---|-------------------------------|------------|---|------------|------------|---|------------|------|----|
| Present state  |    | 00   |                 | z | 01                            |            | z | 11         |            | Z | 10         |      | Z  |
| F <sub>A</sub> | F, | SARA | S, R,           |   | S <sub>A</sub> R <sub>A</sub> | S.R.       |   | $S_A R_A$  | S.R.       |   | $S_A R_A$  | S,R, | Į. |
| 0              | 0  | (√d) | 0d              | 0 | (A)                           | 0d         | 0 | 0@         | 10         | 0 | OA         | 10   | 0  |
| 0              | 1  | 0d   | d0              | 0 | 10                            | d0         | 0 | <b>l</b> o | <b>d</b> 0 | 0 | OF         | đ0   | 0  |
| 1              | 1  | 0/1  | 01              | 0 | (d)                           | 01         | 0 | <b>d</b> 0 | <i>d</i> 0 | 0 | <b>OD</b>  | d0   | 0  |
| 1              | 0  | OL   | 0d              | 0 | a)                            | 0 <i>d</i> | 0 | <b>①</b>   | 0d         | 1 | <b>₽</b> 0 | 04   | 0  |





$$\begin{split} S_A &= f(F_A, F_B, x, y) \\ &= \Sigma(5,7) + \Sigma d(9,10,13,15) = F_B y \\ R_A &= f(F_A, F_B, x, y) \\ &= \Sigma(8,11,12,14) + \Sigma d(0,1,2,3,4,6) \\ &= F_B' x y + x' y' + F_B y' \end{split}$$

S<sub>A</sub> K-Map

R<sub>A</sub> K-Map





|               |    |            |      |   | 2                             | Ne   | xt st | ate xy/z  |            |   |           | c, mat/    | tien |  |  |  |  |  |
|---------------|----|------------|------|---|-------------------------------|------|-------|-----------|------------|---|-----------|------------|------|--|--|--|--|--|
| Present state |    | 00         |      | z | 01                            |      | z     |           | 11         |   | 10        |            | z    |  |  |  |  |  |
| FA            | F, | SARA       | S,R, |   | S <sub>A</sub> R <sub>A</sub> | S.R. |       | $S_A R_A$ | S.R.       |   | $S_A R_A$ | S,R,       | J.   |  |  |  |  |  |
| 0             | 0  | 0d         | 0d   | 0 | 0d                            | 0d   | 0     | 0d        | 10         | 0 | 0d        | 10         | 0    |  |  |  |  |  |
| 0             | 1  | 0 <b>d</b> | d0   | 0 | 10                            | d0   | 0     | 10        | <b>d</b> 0 | 0 | 0d        | ₫0         | 0    |  |  |  |  |  |
| 1             | 1  | 01         | 01   | 0 | d0                            | 01   | 0     | d0        | d0         | 0 | 01        | <i>d</i> 0 | 0    |  |  |  |  |  |
| 1             | 0  | • 01       | 0d   | 0 | d0                            | 0d   | 0     | 01        | 0d         | 1 | d0        | 04         | 0    |  |  |  |  |  |



S<sub>B</sub> K-Map



R<sub>B</sub> K-Map

$$S_{B}=f(F_{A},F_{B},x,y)$$

$$=\Sigma(2,3) + \Sigma d(4,5,6,7,14,15) = F_{A}'x$$

$$R_{B}=f(F_{A},F_{B},x,y)$$

$$=\Sigma(12,13) + \Sigma d(0,1,8,9,10,11) = F_{A}x'$$











S<sub>∆</sub> K-Map

R<sub>△</sub> K-Map

S<sub>R</sub> K-Map

R<sub>B</sub> K-Map

$$S_A = f(F_A, F_B, x, y) = \Sigma(5,7) + \Sigma d(9,10,13,15) = F_B y$$

$$R_A = f(F_A, F_B, x, y) = \Sigma(8,11,12,14) + \Sigma d(0,1,2,3,4,6) = F_B'xy + x'y' + F_By'$$

$$S_B = f(F_A, F_B, x, y) = \Sigma(2,3) + \Sigma d(4,5,6,7,14,15) = F_A'x$$

$$R_B = f(F_A, F_B, x, y) = \Sigma(12,13) + \Sigma d(0,1,8,9,10,11) = F_A x'$$





### J-K flip-flop used to realize circuit



#### J-K flip-flop excitation table

|   | $\mathbf{Q}_{\mathbf{t}}$ | $\mathbf{Q}_{t+1}$ | J | K |   |
|---|---------------------------|--------------------|---|---|---|
|   | 0                         | 0                  | 0 | d |   |
|   | 0                         | 1                  | 1 | d |   |
| < |                           | 0                  | d | 1 | > |
| < | 1                         | 1                  | d | 0 | > |
|   |                           |                    |   |   |   |

### Transition Table for state machine M<sub>1</sub>

|                |                | Next state xy/z |   |                               |   |           |   |           |   |  |  |  |
|----------------|----------------|-----------------|---|-------------------------------|---|-----------|---|-----------|---|--|--|--|
| Presen         | t state        | 00              | z | 01                            | z | 11        | z | 10        | z |  |  |  |
| F <sub>A</sub> | F <sub>B</sub> | $F_A F_B$       |   | F <sub>A</sub> F <sub>B</sub> |   | $F_A F_B$ |   | $F_A F_B$ |   |  |  |  |
| 0              | 0              | 0 0             | 0 | 0 0                           | 0 | 0 1       | 0 | 0 1       | 0 |  |  |  |
| 0              | 1              | 0 1             | 0 | 1 1                           | 0 | 11        | 0 | 0 1       | 0 |  |  |  |
| 1              | 1              | 0 0             | 0 | 1 0                           | 0 | 1 1       | 0 | 0 1       | 0 |  |  |  |
| 1              | 0              | . 00            | 0 | 1 0                           | 0 | 0 0       | 1 | 10        | 0 |  |  |  |

### state machine M₁ excitation table using J-K flip-flops

|               |                | Next state xy/z          |                               |    |           |    |                                                             |    |      |                               |   |  |  |
|---------------|----------------|--------------------------|-------------------------------|----|-----------|----|-------------------------------------------------------------|----|------|-------------------------------|---|--|--|
| Present state | 00 .           |                          | z                             | 01 | z         | 11 | z                                                           | 10 |      | z                             |   |  |  |
| FA            | F <sub>B</sub> | $J_{\Lambda}K_{\Lambda}$ | J <sub>B</sub> K <sub>B</sub> |    | JAKA JBKB |    | J <sub>A</sub> K <sub>A</sub> J <sub>B</sub> K <sub>B</sub> |    | J,K, | J <sub>B</sub> K <sub>B</sub> | _ |  |  |
| 0             | 0              |                          |                               |    |           |    |                                                             |    |      |                               |   |  |  |
| 0             | 1              |                          |                               |    |           |    |                                                             |    |      |                               |   |  |  |
| 1             | 1              |                          |                               |    |           |    |                                                             |    |      |                               |   |  |  |
| 1             | 0              |                          |                               |    |           |    |                                                             |    |      |                               |   |  |  |













J<sub>A</sub> K-Map K<sub>A</sub> K-Map  $J_A = f(F_A, F_B, x, y) = \Sigma(5,7) + \Sigma d(8,9,10,11,12,13,14,15) = F_B y$  K<sub>R</sub> K-Map

 $K_{\Delta} = f(F_{\Delta}, F_{B}, x, y) = \Sigma(8, 11, 12, 14) + \Sigma d(0, 1, 2, 3, 4, 6, 7) = F_{B}'xy + x'y' + F_{B}y'$ 

 $J_{B}=f(F_{\Delta},F_{B},x,y)=\Sigma(2,3)+\Sigma d(4,5,6,7,12,13,14,15)=F_{\Delta}'x$ 

 $K_{B}=f(F_{\Delta},F_{B},x,y)=\Sigma(12,13)+\Sigma d(0,1,2,3,8,9,10,11)=F_{\Delta}x'$ 

|                               |   |                          | Next state xy/z               |     |                          |                               |   |                          |                               |     |                          |            |   |  |
|-------------------------------|---|--------------------------|-------------------------------|-----|--------------------------|-------------------------------|---|--------------------------|-------------------------------|-----|--------------------------|------------|---|--|
| Present state                 |   | 00 .                     |                               | . 2 | 01                       |                               | z | 11                       |                               | z   | 10                       |            | z |  |
| F <sub>A</sub> F <sub>B</sub> |   | $J_{\Lambda}K_{\Lambda}$ | J <sub>B</sub> K <sub>B</sub> |     | $J_{\Lambda}K_{\Lambda}$ | J <sub>B</sub> K <sub>B</sub> |   | $J_{\Lambda}K_{\Lambda}$ | J <sub>B</sub> K <sub>B</sub> |     | $J_{\Lambda}K_{\Lambda}$ | J,K,       | _ |  |
| 0                             | 0 | 0d                       | 0d                            | 0   | 0d                       | 0d                            | 0 | 0d                       | 1 <i>d</i>                    | 0   | Od                       | 1d         | ( |  |
| 0                             | 1 | 04                       | dO                            | 0   | 1d                       | do                            | 0 | 14                       | d0                            | 0   | 04                       | d0         | ( |  |
| 1                             | 1 | dl                       | dl                            | 0   | d0                       | dl                            | 0 | d0                       | dO                            | 0   | dl                       | <b>d</b> 0 | ( |  |
| 1                             | 0 | dl                       | Od                            | 0   | d0                       | Od                            | 0 | dl                       | 0d                            | 1 . | d0                       | Od         | ( |  |







$$J_{A}=F_{B}y$$

$$K_{A}=F_{B}'xy+x'y'+F_{B}y'$$

$$J_{B}=F_{A}'x$$

$$K_{B}=F_{A}x'$$













COST = 16 GATE INPUTS

$$S_A = F_B y$$

$$R_A = F_B'xy + x'y' + F_By'$$

$$S_B = F_A'x$$

$$R_B = F_A x'$$







COST = 25 GATE INPUTS

$$T_A = F_A F_B' x y + F_A x' y' + F_A F_B y' + F_A' F_B y$$

$$T_B = F_A'F_B'x + F_AF_Bx'$$





#### Logic for D excitation realization



COST = 21 GATE INPUTS

$$D_A = F_A F_B' x y' + F_A x' y + F_B y$$

$$D_B = F_A' F_B + F_A' x + F_B x$$





Logic diagram for J-K realization of example sequential circuit  $(M_1)$ 



$$Z = F_A F_B'xy$$





#