MAT2440, Classwork26, Spring2025

ID:	Name:
ID.	rame.

1. The definition of an **Algorithm**:

An <u>algorithm</u> is a finite sequence of precise instructions for performing a computation or for solving a problem.

2. The introduction of **Pseudocode**:

Algorithms in English — → Pseudo Code — → Programming language

3. The structure of a pseudocode (procedure, statements, and return):

Procedure: Name of the code (input: description of input(s))

Statements : Assignments

Conditional statement (if condition then statement)

Loop Constructions (for loop, while loop)

Yeturn : Variable which is the output(s)

4. A pseudocode of summation:

procedure
$$summation(a_1, a_2, \dots, a_n)$$
: a list of n numbers)
 $n \coloneqq \text{the length of } \{a_i\}$
 $sum \coloneqq \underline{\hspace{1cm}}$ (which is a variable to store the summation)
 $for \ i \coloneqq 1 \ to \underline{\hspace{1cm}}$ (a $for \ loop$)
 $sum \coloneqq sum + a_i$ (adding each number to sum)
 $return \underline{\hspace{1cm}}$

How does this pseudocode work?

Initialization:

i	sum
i = 1	$sum + a_1 = 0 + a_1 = $
i = 2	$sum +a_2 =$
:	:
i = n	$sum + a_n =$

Return: sum =

5. Algorithm and Pseudocode of Finding the Maximus	m Element in a Finite Sequence.
--	---------------------------------

Problem: Let a_1, a_2, \dots, a_n be a list of n numbers. Find the largest value of them.

Algorithm:

- (1) Set temporary maximum *tempMax* equals the ______ element ____
- (2) Compare a_2 to *tempMax*:

if $a_2 > tempMax$, then tempMax =_____. if $a_2 < tempMax$, then do _____.

- (3) Repeat the previous step for ____, ____, ..., ____.
- (4) The variable *tempMax* at this point contains the largest value in the sequence.

Pseudocode:

procedure
$$max(a_1, a_2, \dots, a_n)$$
: a list of n numbers)
$$n \coloneqq \text{the } \underline{\qquad} \text{ of } \{a_i\}$$

$$tempMax \coloneqq \underline{\qquad} \text{ for } i \coloneqq \underline{\qquad} \text{ to } \underline{\qquad}$$

$$if \ tempMax < a_i \ then \ tempMax \coloneqq a_i$$

$$return \underline{\qquad} \{ \ tempMax \ is \ the \ largest \ element \}$$

6. An example of finding the maximum element in a finite sequence:

Let the sequence be {3, 1, 5, 6, 4}.

Initialization: tempMax =___ and n =___.

i	a_i	$tempMax < a_i \text{ (T or F?)}$	tempMax
i = 2			
i = 3			
i = 4			
i = 5			

Return: tempMax = .

7. Write down an algorithm of finding the Minimum Element in a Finite Sequence.