# O Impulso e o Movimento Circular Uniforme

(Impulse and Uniform Circular Motion)

## Maria Teresinha X. Silva

Universidade Federal do Rio Grande do Sul - UFRGS
Instituto de Física
Caixa Postal 15051 - 91501-970 - Porto Alegre, RS - Brasil
e-mail: teka@if.ufrgs.br

## Nelson Toniazzo e Rolando Axt

Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ

Departamento de Física, Estatística e Matemática

Caixa Postal 560 - 98700-000 - Ijuí, RS - Brasil

Recebido 2 de Dezembro, 1997

São analisadas as variações do vetor velocidade de um corpo em movimento circular uniforme para evidenciar a natureza vetorial da quantidade de movimento linear.

The vectorial nature of linear momentum is stressed by analysing changes in the velocity of a body in uniform circular motion.

### 1. Introdução

Quando um ponto material de massa m descreve um movimento circular uniforme, sua velocidade tangencial é constante em módulo mas varia permanentemente em direção. Sendo assim, a energia cinética dessa massa é constante e a quantidade de movimento linear é variável.

O objetivo deste texto é destacar a natureza vetorial da quantidade de movimento linear propondo o seguinte problema:

A figura 1 representa o vetor velocidade de uma massa m que descreve um movimento circular uniforme de período T sobre um círculo de raio R. As posições 1 e 2 definem o deslocamento de m em um intervalo de tempo T/2. Pergunta-se [1]: Qual é o impulso sobre a massa m nesse intervalo de tempo (T/2)?

A solução trivial deste problema é dada pela relação

$$\vec{I} = \Delta \vec{p}$$
,

donde resulta

$$|\vec{I}| = 2mv = \frac{4\pi mR}{T},\tag{1}$$

já que  $v = 2\pi R/T$ .

Observe-se que  $|\Delta \vec{p}| = 2mv$  é equivalente à variação da quantidade de movimento linear de uma massa m que colide contra uma parede com velocidade  $+\vec{v}$  e retorna dela com velocidade  $-\vec{v}$  [2]. Embora à primeira vista este resultado pareça estranho para muitos alunos que, por intuição, acreditam ser  $\Delta \vec{p}$  igual a zero (ou igual a  $-m\vec{v}$ ), é por eles aceito sem maior relutância quando são alertados sobre a natureza vetorial de  $\vec{p}$ .

A solução do problema torna-se um pouco mais complicada quando se deseja calcular a integral  $\vec{I}=\int \vec{F} dt$ . Neste caso, é preciso identificar a força impulsiva, sem esquecer o seu caráter vetorial, e encontrar um modo de resolver a integral. A força centrípeta  $\vec{F_c}$  é a única força que é exercida sobre m. Ao decompô-la em suas componentes nas direções x e y ( $\vec{F_x}$  e  $\vec{F_y}$  na figura 2), verifica-se desde logo que estas não são uniformes em módulo e podem sofrer inversão de sentido em um intervalo de tempo T/2. Portanto, resolver a integral supondo que a força impulsiva é a força centrípeta, tomada em módulo ( $F_c = m\omega^2 R$ ) e esquecendo o seu caráter vetorial, levaria a um resultado incorreto para o impulso  $(2\pi^2 mR/T)$ . Na figura 3, a área sob a reta

 $F_c$  representaria graficamente esta solução (incorreta), num intervalo de tempo T/2.



Figura 1. Deslocamento de m entre as posições inicial (1) e final (2).



Figura 2. A força centrípeta  $\vec{F}_c$  e suas componentes  $\vec{F}_x$  e  $\vec{F}_n$ .

O cálculo do impulso exercido sobre a massa m, no deslocamente que sofre entre as posições 1 e 2, requer que analisemos os impulsos nas direções x e y separadamente.

Na direção y, o impulso líquido no intervalo de tempo em consideração é zero.  $F_y$  varia do seu valor máximo positivo, em t=0, até o seu valor máximo negativo, em t=T/2, de modo que os impulsos sofri-

dos nos sucessivos quartos de período cancelam-se mutuamente. Na figura 3, a área (nula) sob a curva  $F_y$  representa o impulso  $I_y$ .



Figura 3. Representação gráfica de  $F_c$  (linha contínua) e de suas componentes  $F_x$  (linha pontilhada) e  $F_y$  (linha tracejada). A linha vertical identifica o ponto P da figura 2:  $F_c = (F_x^2 + F_y^2)^{1/2}$ .

Já na direção x, o impulso no mesmo intervalo de tempo é máximo.  $F_x$  varia de zero, em t=0, a um valor máximo negativo, em t=T/4, e retorna novamente a zero em t=T/2. Durante esse intervalo de tempo,  $\vec{F}_x$  tem sempre o mesmo sentido (contrário ao sentido de  $\vec{v}$  na posição 1) e, no instante T/4, seu módulo é igual ao da força centrípeta  $F_c$ . Na figura 3, a área (negativa) sob a curva  $F_x$  representa o impulso  $I_x$ .

O problema resume-se, portanto, em analisar o movimento circular uniforme considerando a superposição dos movimentos harmônicos simples que correspondem às projeções do MCU sobre os eixos coordenados  $x \in y$ .

Supondo-se que em t=0 a massa m encontra-se na posição 1, as coordenadas de sua posição, em qualquer instante de tempo, são dadas por:

$$x = R\cos\left(\omega t - \frac{\pi}{2}\right)$$

e

$$y = R \operatorname{sen}\left(\omega t - \frac{\pi}{2}\right),$$

onde  $\omega=2\pi/T$  é a freqüência angular desse movimento.

Portanto, as componentes  $F_x$  e  $F_y$  da força centrípeta são, respectivamente.

$$F_x = ma_x = m\frac{d^2x}{dt^2} = -m\omega^2 R\cos\left(\omega t - \frac{\pi}{2}\right) = -F_c\cos\left(\omega t - \frac{\pi}{2}\right)$$

е

$$F_y = ma_y = m\frac{d^2y}{dt^2} = -m\omega^2 R \, \mathrm{sen} \left(\omega t - \frac{\pi}{2}\right) = -F_c \, \mathrm{sen} \left(\omega t - \frac{\pi}{2}\right).$$

As componentes do impulso sofrido pela partícula ao longo das direções x e y, no intervalo de tempo considerado, são dadas por:

$$I_x = \int_0^{T/2} F_x dt = -\frac{4\pi mR}{T}$$

е

$$I_y = \int_0^{T/2} F_y dt = 0.$$

Este resultado está em concordância com aquele obtido em (1) e o sinal negativo indica a reversão da velocidade entre as posições 1 e 2, ou seja, o sentido da variação da quantidade de movimento de m, contrário ao da sua velocidade inicial.

Adicionalmente, pode-se propor aos alunos a análise do impulso sobre m em outros intervalos de tempo representados na figura 3. Por exemplo, a variação da quantidade de movimento linear entre T/8 e 3T/8 equivale à da colisão elástica de uma partícula contra

uma parede rígida com um ângulo de incidência de 45°.

A descrição feita acima, considerando o MCU como uma superposição de dois movimentos harmônicos simples, oferece ainda uma alternativa [3] para a dedução da fórmula da força (aceleração) centrípeta, já que  $|\vec{F}_c| = m\omega^2 R$  representa o valor máximo das componentes  $F_x$  e  $F_y$  exercidas sobre a massa m em MCU.

### Referências

- 1. Rad, M. Sepehry. Shortcomings in physics education in Iran. Phys. Educ. **26** (6), 332 (1991).
- 2. Stinner, A. The story of force: from Aristotle to Einstein. Phys. Educ. 29 (2), 77 (1994).
- Fitzpatrick, J. A. Derivation of centripetal acceleration by a momentum change. Phys. Educ. 30 (5), 264 (1995).