1 Transitive closure of a binary relation, it's existence

Предложение (Транзитивное замыкание)

Дано отношение r на множестве A, оно является транзитивным замыканием, т.е.

$$r^* = \bigcup \{r^n | n \ge 1\}$$

Доказательство

Во-первых, отметим, что r^* транзитивно. Действительно, пусть $(a,b),(b,c)\in r^*$. Тогда для некоторых $n,m\geq 1,\ (a,b)\in r^n$ и $(b,c)\in r^m$. Но тогда $(a,c)\in r^n\circ r^m=r^{n+m}\subseteq r^*$. Так как $r^1=r$, то $r\subseteq r^*$. Доказательство минимальности r^* проведём по индукции: покажем, что $r^n\subseteq r'$ для любого транзитивного r' содержащего r. Основание индукции - n=1 очевидно. Теперь предположим, что $r^{n-1}\subseteq r'$ и $(a,c)\in r^n\stackrel{def}{=} r^{n-1}\circ r$. По определению композиции существует некоторое b такое, что $(a,b)\in r^{n-1}$ и $(b,c)\in r$. Тогда $(a,b),(b,c)\in r'$, и так как r' транзитивно, то $(a,c)\in r'$.

2 Church numbers: addition and multiplication

Сложение, умножение

Если определить сложение и умножение как

- $PLUS = \lambda mnfx.m \ f \ (n \ f \ x)$
- $MULT = \lambda mnfx.m (n f) x$

ТО

- $PLUS \ n \ m = n + m$
- $MULT \ \underline{n} \ \underline{m} = \underline{n} \cdot \underline{m}$

3 Predicate calculus of a given signature. Notions of linear proof and deduction tree. Provability characterization theorem

Определение

Линейное доказательство (или **линейный вывод**) из множества секвенций H в PredC_{σ} - это последовательность секвенций (s_1, s_2, \ldots, s_n) такая, что каждая секвенция s_i :

- аксиома, т.е. $s_i \in A_{PredC}(\sigma)$
- предпосылка, т.е. $s_i \in H$
- получена из секвенций $s_{j_1}, s_{j_2}, \ldots, s_{j_k}$, где $j_1, j_2, \ldots, j_k < i$, по одному из правил вывода $\operatorname{PredC}_{\sigma}$, т.е.

$$\frac{s_{j_1}, s_{j_2}, \dots, s_{j_k}}{s_i} \in R_{PredC}(\sigma)$$

Множество H называется множеством **предпосылок** или **предположений**, и если не указано, то будем считать, что $H = \emptyset$.

Определение

Секвенция s называется **выводимой** (или **доказуемой**, **допустимой**) в $\operatorname{PredC}_{\sigma}$ из множества предпосылок H, тогда и только тогда, когда существует линейное доказательство (s_1, \ldots, s_n) из множества H, такое, что $s = s_n$. Обозначается следующим образом:

$$H \triangleright s$$

Если $H = \emptyset$, то можно писать просто $\triangleright s$.

Определение

Формула ϕ называется **выводимой** (или **доказуемой**, **допустимой**) в $\operatorname{PredC}_{\sigma}$, тогда и только тогда, когда секвенция $\vdash \phi$ может быть выведена из пустого множества предпосылок, т.е. $\rhd \vdash \phi$. Обозначается как $\rhd \phi$.

Определение

Теперь по индукции определим **дерево секвенций** T, его высоту h(T), корень r(T) и множество листьев l(T).

- ullet секвенция s является деревом, $h(s)=0,\,r(T)=s,\,l(T)=\{s\}$
- ullet если T_1,\ldots,T_n деревья, а s секвенция, то

$$T = \frac{T_1 \dots T_n}{s}$$

- является деревом:
 - высоты $h(T) = \max(\{h(T_i)|i \le n\}) + 1$
 - с корнем r(T) = s
 - с листьями $l(T) = \bigcup \{l(T_i) | i \le n\}$

переход в дереве секвенций T - 'это поддерево высоты 1, т.е. поддерево в T вида: $\frac{s_1\ s_2\ ...\ s_n}{s_0}$

Определение

Дерево секвенций T называется **деревом вывода** секвенции s из множества предпосылок H в PredC_{σ} , тогда и только тогда, когда:

- 1. r(T) = s
- 2. все секвенции из множества листьев l(T) являются аксиомами PredC_σ или элементами H, т.е. $l(T)\subseteq H\cup A_{PredC}(\sigma)$
- 3. все переходы $\frac{s_1 \ s_2 \ \dots \ s_n}{s_0}$ из T являются правилами вывода, т.е.

$$\frac{s_1 \ s_2 \ \dots \ s_n}{s_0} \in R_{PredC}(\sigma)$$

Теорема (эквивалентность выводимости)

Для любого множества секвенций H и секвенции s, $H \rhd s \Leftrightarrow$ для s существует дерево вывода из предпосылок H.

Доказательство

 \Rightarrow .

Пусть для s существует линейное доказательство (s_1,\ldots,s_n) из предпосылок H. Индукцией по n докажем, что для s существует дерево вывода. Основание индукции: если n=1, то $s=s_1\in H\cup A_{PC}$ - аксиома или предпосылка, тогда T=s - дерево вывода для s. Шаг индукции. Предположим, что утверждение верно для всех i< n, т.е. для секвенций s_1,\ldots,s_{n-1} существуют деревья вывода T_1,\ldots,T_{n-1} с предпосылками H. По индукции линейного доказательства существуют такие $s_{j_1},\ldots s_{j_k}$, что $j_1,\ldots,j_k< n$ и $\frac{s_{j_1}\ldots s_{j_k}}{s_n}$ - правило вывода. Тогда

$$\frac{T_{j_1} \dots T_{j_k}}{s_n}$$

будет деревом вывода для s_n . Обратное включение. \Leftarrow .

Пусть существует дерево вывода T для s с предпосылками H. Индукцией по высоте T докажем, что для любого дерева вывода T с предпосылками H его корень линейно доказуем из H. Основание индукции: если h(T)=0, то T=s, следовательно, $s\in H\cup A_{PC}$ - аксиома или предпосылка, тогда s очевидно доказуем из H. Шаг индукции. Предположим, что утверждение верно для всех деревьев высоты $< n, T = \frac{T_1 \dots T_n}{S}$ - дерево вывода высоты n. Тогда $h(T_i) < n$ для всех $1 \le i \le n$, следовательно, все корни $r(T_i) = s_i$ линейно доказуемы из H. Пусть P_i - линейное доказательство s_i . Последний переход в дереве T выглядит следующим образом: $\frac{s_1 \dots s_n}{s}$ и происходит по какому-либо правилу вывода. Тогда секвенция $P = P_1 \ P_2 \ \dots \ P_n \ s$ будет линейным доказательством s с предпосылками H. \square