Statistical Computing

Michael Mayer

Spring 2025

Statistical Computing: What will we do?

Chapters

- 1. R in Action
- 2. Statistical Inference
- 3. Linear Models
- 4. Model Selection and Validation
- 5. Trees
- 6. Neural Nets

Remarks

- Chapters 3 to 6: Statistical ML in Action
- Two weeks per chapter
- Exercises at end of chapter notes

Linear Models

Outline

- ► Start of "Statistical ML in Action"
- Linear Regression
- ► Generalized Linear Models (GLM)
- Modeling Large Data

Statistical ML in Action

What is ML?

Collection of statistical algorithms used to

- 1. predict things (supervised ML) or to
- 2. investigate data structure (unsupervised)

Focus on supervised ML

- Regression
- Classification

Chapters

- 3. Linear Models
- Model Selection and Validation
- 5. Trees
- 6. Neural Nets

Model Setup

$$T(Y \mid \mathbf{X} = \mathbf{x}) \approx f(\mathbf{x})$$

This means: Approximate property T of response Y (often $T = \mathbb{E}$) by function f of p-dim covariate vector $\mathbf{X} = (X^{(1)}, \dots, X^{(p)})$ with value $\mathbf{x} = (x^{(1)}, \dots, x^{(p)})$

Estimate f by \hat{f} from data by minimizing objective

$$Q(f) = \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

- ▶ L: loss function in line with T, e.g. squared error $L(y,z)=(y-z)^2$ for $T=\mathbb{E}$
- $\triangleright \lambda \Omega(f)$: optional penalty
- $\mathbf{y} = (y_1, \dots, y_n)^T$: observed values of Y
- x_1, \ldots, x_n : n feature vectors; $x_i^{(j)}$: i-th value of $X^{(j)}$; $x^{(j)}$: n values of feature $X^{(j)}$

Linear Regression

Postulate model equation

$$\mathbb{E}(Y \mid \mathbf{x}) = f(\mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

- ▶ Interpretation of parameters β_j ? Ceteris Paribus!
- ▶ Optimal $\hat{\beta}_j$? Minimize as objective the sum of squared errors/residuals

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
Residual

- Predicted/fitted values $\hat{y}_i = \hat{f}(x_i)$
- This means: we work with the squared error loss and no penalty

Example

Simple linear regression: $\mathbb{E}(Y \mid x) = \alpha + \beta x$

Aspects of Model Quality

Predictive performance

- ► MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- ► Root-MSE (RMSE)
- Relative performance: $R^2 = 1 - MSE/MSE_0$
- $ightharpoonup MSE_0
 ightarrow intercept-only model$

Validity of assumptions

- Model equation is correct
- Normal linear model

$$Y = f(\mathbf{x}) + \varepsilon$$
 with $\varepsilon \sim N(0, \sigma^2)$

Example

Typical Problems

Missing values

Overfitting

Outliers

Collinearity

Categorical Covariates

- ► One-Hot-Encoding
- Dummy coding
- Interpretation?

Example

Example of One-Hot-Encoding

color	D	Ε	F	G	Н	-	J
Е	0	1	0	0	0	0	0
Е	0	1	0	0	0	0	0
Е	0	1	0	0	0	0	0
- 1	0	0	0	0	0	1	0
J	0	0	0	0	0	0	1
J	0	0	0	0	0	0	1
- 1	0	0	0	0	0	1	0
Н	0	0	0	0	1	0	0
Е	0	1	0	0	0	0	0
Н	0	0	0	0	1	0	0

Linear Regression is Flexible

- 1. Non-linear terms
- 2. Interactions
- 3. Transformations like logarithms

These elements are essential but tricky!

Non-Linear Terms

Deal with non-linear associations to Y?

- \rightarrow invest more parameters
 - 1. Polynomial terms
 - E.g., cubic regression

$$\mathbb{E}(Y \mid x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

- Don't extrapolate!
- 2. Regression splines

Use systematic predictions

Interactions

Additivity of effects not always realistic

$$\mathbb{E}(Y \mid \mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

- Adding interaction terms brings necessary flexibility → more parameters
- Interaction between features X and Z
 - Multiplication (for categoricals?)
 - ► For categorical Z, effects of X are calculated by level of Z
 - Like separate models per level of Z

Carat and color

Transformations of Covariates

Examples

- Dummy variables for categoricals
- Decorrelation
- Logarithms against outliers

Effects are interpreted for transformed covariates

Logarithmic Covariates

- $\mathbb{E}(Y \mid x) = \alpha + \beta \log(x)$
- Properties of logarithm allow interpretation for original covariate
- ▶ A 1% increase in X is associated with an increase in $\mathbb{E}(Y)$ of about $\beta/100$
- ► Why?

$$\mathbb{E}(Y \mid 1.01x) - \mathbb{E}(Y \mid x) = \alpha + \beta \log(1.01x) - \alpha - \beta \log(x)$$
$$= \beta \log\left(\frac{1.01x}{x}\right)$$
$$= \beta \log(1.01) \approx \beta/100$$

Example

Logarithmic Responses

We see: log-transforming X allows to talk about relative effects in X

Idea: log-transformed Y allows to talk about relative effects on Y Assume for a moment that

$$\mathbb{E}(\log(Y) \mid x) = \alpha + \beta x \implies \log(\mathbb{E}(Y \mid x)) = \alpha + \beta x$$

- ▶ Multiplicative model $\mathbb{E}(Y \mid x) = e^{\alpha + \beta x}$
- Relative interpretation: "A one-point increase in X is associated with a relative increase in $\mathbb{E}(Y)$ of $100\%(e^{\beta}-1)\approx 100\%\beta$ "
- ▶ If also log(X)?

But assumption is wrong o biased predictions for $Y o \mathsf{GLMs}$

Examples

Example: Realistic Model for Diamond Prices

- Response: log(price)
- Covariates: log(carat), color, cut and clarity

Generalized Linear Model (GLM)

(One) extension of linear regression

Model equation

Two equivalent formulations

$$g(\mathbb{E}(Y \mid \mathbf{x})) = \eta(\mathbf{x}) = \beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)}$$

$$\mathbb{E}(Y \mid \mathbf{x}) = g^{-1}(\eta(\mathbf{x})) = g^{-1}(\beta_o + \beta_1 x^{(1)} + \dots + \beta_p x^{(p)})$$

Components

- ightharpoonup Linear function/predictor η
- ▶ Link function g to map $\mathbb{E}(Y \mid x)$ to linear scale
- **Distribution** of Y conditional on covariates \rightarrow loss function (unit deviance)

Typical GLMs

Regression Di	stribution	Range of Y	Natural link	Unit deviance
Linear	Normal	$(-\infty,\infty)$	Identity	$(y-\hat{y})^2$
Logistic	Binary	$\{0,1\}$	logit	$-2(y\log(\hat{y})+(1-y)\log(1-\hat{y})$
Poisson I	Poisson	$[0,\infty)$	log	$2(y\log(y/\hat{y}) - (y-\hat{y}))$
Gamma	Gamma	$(0,\infty)$ 1	/x (typical: log)	$2((y-\hat{y})/\hat{y} - \log(y/\hat{y}))$
Multinomial M	ultinomial {	$C_1,\ldots,C_m\}$	mlogit	$-2\sum_{j=1}^m \mathbb{1}(y=C_j)\log(\hat{y}_j)$

- Predictions?
- Log-Link?
- For binary Y: $\mathbb{E}(Y) = P(Y = 1) = p$
- ► MSE → Deviance
- Losses in ML?

Why GLM, not Linear Regression?

Linearity assumption not always realistic

- 1. Binary Y:

 Jump from 0.5 to 0.6 success probability less impressive than from 0.89 to 0.99
- 2. Count Y: Jump from $\mathbb{E}(Y)$ of 2 to 3 less impressive than from 0.1 to 1.1.
- Right-skewed Y:
 Jump from 1 Mio to 1.1 Mio deemed larger than from 2 Mio to 2.1 Mio.

Logarithmic Y not possible in the first two cases

GLM solves problem by suitable link g

Further advantages?

Interpretation of Effects guided by Link

Identity link

Like linear regression

Log link

Like linear regression with log response

- Multiplicative model for response
- Now in mathematically sound way

Logit link

- Additive model for logit(p)
- logit(p) = $\log(\text{odds}(p)) = \log\left(\frac{p}{1-p}\right)$
- ▶ Remember: $p = P(Y = 1) = \mathbb{E}(Y)$
- Multiplicative model for odds(p)
- Coefficients e^β interpreted as odds ratios

Examples with Insurance Claim Data

- 1. Poisson regression for claim counts
- 2. Binary logistic regression for claim (yes/no)

Modeling Large Data

As per 2025

- On normal laptops, we can model datasets up to 8 GB in size (1 Mio iris data)
- Cloud computing allows 1000 times more
- We focus on in-memory situations
 - \rightarrow data fits in RAM

Aspect and example technology

- 1. Data storage \rightarrow Apache Parquet
- 2. Data loading \rightarrow Apache Arrow
- 3. Preprocessing \rightarrow data.table
- 4. Modeling \rightarrow H2O

Example