

R V COLLEGE OF ENGINEERING

(An autonomous institution affiliated to VTU, Belgaum)

DEPARTMENT OF MATHEMATICS

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS (MAT211CT)

Multivariable Functions and Partial Differentiation

TUTORIAL SHEET-1

1. 1. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\left(\frac{\partial y}{\partial \theta}\right)^2 + \left(\frac{\partial x}{\partial \theta}\right)^2 =$ _____ Ans: r

1. If
$$x = r \cos \theta$$
, $y = r \sin \theta$, then $\left(\frac{\partial}{\partial \theta}\right)^2 + \left(\frac{\partial}{\partial \theta}\right)^2 = \frac{Ans}{2}$.

2. If $z = x \sin y + y \sin x$, then $\frac{\partial^2 z}{\partial x \partial y} = \frac{Ans}{2}$.

3. If $z = e^{2x^2 + xy}$, then $\frac{\partial z}{\partial y} = \frac{Ans}{2}$.

Ans: $xe^{2x^2 + xy}$.

3. If
$$z = e^{2x^2 + xy}$$
, then $\frac{\partial z}{\partial y} =$ ______Ans: $xe^{2x^2 + xy}$

- 4. The steady state temperature of a metal sheet is $T(x,y) = x^2 a^2y^2$. The values of 'a' for which T(x,y) satisfies the Laplace equation $T_{xx} + T_{yy} = 0$ are _____. Ans:
- 5. If $u = y \cos(xy)$ then $\frac{\partial u}{\partial y}$ at the point $(1, \pi)$ is ______. Ans: -1
- 6. If V = f(x ct) + g(x + ct) where f and g are arbitrary functions of x ct and x + ctrespectively and c is a constant, then show that $\frac{\partial^2 V}{\partial r^2} = c^2 \frac{\partial^2 V}{\partial r^2}$

7. If
$$u = \frac{x+y}{x-y}$$
, verify that $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$

- 8. If $u = ae^{-gx}\sin(nt gx)$, where a, g and n are positive constants and $\frac{\partial u}{\partial t} = \mu \frac{\partial^2 u}{\partial x^2}$, show that $g = \sqrt{\frac{n}{2u}}$.
- 9. If V is the volume and S is the total surface area of rectangular box of length x, breadth y and height z, find
 - (i) the rate of change of V with respect to x if y = 4 and z = 12,
 - (ii) the rate of change of S with respect to z if x = 3 and y = 4.

Ans: (i) 48 (ii) 14

10. If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
, then show that $\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = -\frac{9}{(x+y+z)^2}$.

R V COLLEGE OF ENGINEERING

(An autonomous institution affiliated to VTU, Belgaum)

DEPARTMENT OF MATHEMATICS

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS (MAT211CT)

Multivariable Functions and Partial Differentiation

TUTORIAL SHEET-2

- 1. Given $z = xy^2 + x^3y$ where x and y are functions of t with x(1) = 1, y(1) = 2, x'(1) = 13 and y'(1) = 4. The value of $\frac{dz}{dt}$ at t = 1 is _____. **Ans**: 16
- 2. For the implicit function $(\cos x)^y = (\sin y)^x$, $\frac{dy}{dx} = \underline{\hspace{1cm}}$. **Ans**: $\frac{y(\cos x)^{y-1}(-\sin x) - (\sin y)^x \log \sin y}{(\cos x)^y \log(\cos x) - x(\sin y)^{x-1} \cos y}$
- 3. Given 't' represents time and $u = x^2 y^2$, $x = \frac{1}{t}$, $y = e^t$ then the rate of change of u with respect to 't' is ______. Ans: $\frac{-2}{t^3} - 2e^{2t}$
- 4. For the implicit function $e^x e^y = 2xy$, $\frac{dy}{dx} =$ ______. **Ans**: $\left[\frac{e^x 2y}{e^y + 2x}\right]$
- 5. Given, $x^2 + y^2 + 3xz = 1$ and x + y = 1, then $\frac{dz}{dx} =$ _____ Ans: $\frac{-(2x+3)}{3} + \frac{2y}{3x}$
- 6. If $z = z(x, y), x = e^u \sin v$, $y = e^v \cos v$, then $\frac{\partial z}{\partial u}$. Ans: $\frac{\partial z}{\partial x} e^u \sin v$.

 7. If u = xyz where $x = e^{-t}$, $y = e^{-t} \sin^2 t$, $z = \sin t$, then find $\frac{du}{dt}$.
- **Ans**: $e^{-t}\sin^2 t(3\cos t 2\sin t)$
- 8. If $z = x^2 + 2xy + 4y^2$ and $y = e^{3x}$, find $\frac{dz}{dx}$. Ans: $2(x + e^{3x}) + 2(x + 4e^{3x})3e^{3x}$
- 9. If z is a function of x and y and if $x = e^u \sin v$, $y = e^u \cos v$, prove that
 - (i) $\frac{\partial z}{\partial y} = x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$
 - (ii) $\frac{\partial z}{\partial x} = e^{-u} \left(\sin v \frac{\partial z}{\partial u} + \cos v \frac{\partial z}{\partial v} \right)$
- 10. If = f(x y, y z, z x), show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- 11. If $u = x^2 \tan^{-1} \left(\frac{y}{x} \right) y^2 \tan^{-1} \left(\frac{x}{y} \right)$, determine $\frac{\partial^2 u}{\partial x \partial y}$.

R V COLLEGE OF ENGINEERING

 $(An\ autonomous\ institution\ affiliated\ to\ VTU, Belgaum)$

DEPARTMENT OF MATHEMATICS

FUNDAMENTALS OF LINEAR ALGEBRA, CALCULUS AND STATISTICS (MAT211CT)

Multivariable Functions and Partial Differentiation

TUTORIAL SHEET-3

1. Match the following:

i)	If $x = e^u sinv$, $y = e^v cosv$ then $J\left(\frac{x,y}{u,v}\right) = \underline{\hspace{1cm}}$.	a)	1 4vsin2u
ii)	If (a,b) is a stationary point of $f(x,y)$ and $f_{xx} = 3$, $f_{xy} = 2$ and $f_{yy} = 2$ at this point then the nature of (a,b) is	b)	minimum
iii)	The nature of the point $(1, -1)$ to the function $f(x,y) = x^3 + 3xy^2 - 3x^2 - 3y^2 + 7$ is	c) d)	$\frac{e^{u+v}(\sin v \cos v - \sin^2 v)}{\frac{v \sin 2u}{4}}$
iv)	If $\frac{\partial(x,y)}{\partial(u,v)} = v\sin 2u$ and $\frac{\partial(x,y)}{\partial(r,\theta)} = \frac{1}{4}$ then $\frac{\partial(u,v)}{\partial(r,\theta)} = \underline{\hspace{1cm}}$.	e) f) g) h)	Neither maximum nor minimum Saddle point maximum $e^{u+v}(sinvcosv - sin^2v) - e^u cosv$

- 2. Find the extreme values of $\sin x + \sin y + \sin(x + y)$. **Ans:** Maximum value at $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$, maximum value is $\frac{3\sqrt{3}}{2}$
- 3. Find the volume of largest rectangular parallelepiped that can be inscribed in an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ Ans: Maximum volume = $\frac{8abc}{3\sqrt{3}}$
- 4. Find the maximum and minimum distances of the point (1, 2, 3) from the sphere $x^2 + y^2 + z^2 = 56$ using Lagrange's Method of undetermined multipliers. **Ans:** Minimum distance at $(2, 4, 6) = \sqrt{14}$, Maximum distance at (-2, -4, -6), maximum distance $= \sqrt{126}$
- 5. Show that $u = \frac{x^2 y^2}{x^2 + y^2}$, $v = \frac{2xy}{x^2 + y^2}$ are functionally dependent and find the relation between them.

 Ans: $u^2 + v^2 = 1$.
- 6. For u = xyz, v = yz + zx + xy, w = x + y + z, find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$, Ans: (y-z)(z-x)(x-y).
- 7. If $x = e^v \sec u$, $y = e^v \tan u$, then verify that J' = 1.