Single value decomposition and pseudo-inverses

Kristian Wichmann

December 12, 2016

1 Gramian matrices

Given a set of vectors $a_1, a_2, \ldots, a_n \in \mathbb{R}^m$, the Gramian matrix is the traditionally matrix of inner products $\langle a_i, a_j \rangle$. If these vectors are collected into a $m \times n$ matrix A, this matrix can be expressed as A^tA . Here, we will use the term for any matrix in this form. By starting out with the transpose instead, this means that AA^t is also a Gramian, with dual results.

Theorem 1.1. If $A \in \mathbb{R}^{m \times n}$, then $A^t A$ is symmetric and positive semi-definite. Iff A has rank m, $A^t A$ is positive definite.

Proof. $(A^tA)^t = A^t(A^t)^t = A^tA$ shows symmetry. positive semi-definiteness, let $x \in \mathbb{R}^n$. Then:

$$x^{t}A^{t}Ax = \langle Ax, Ax \rangle = ||Ax||^{2}$$
(1.1)

As a norm, this is greater than or equal to zero. Hence A^tA is positive semi-definite. If A has rank m the map $x \mapsto Ax$ has a trivial kernel by the rank-kernel theorem. Which means only the zero vector is mapped to zero, and hence A^tA is positive definite. If the rank is less than m, the kernel is non-trivial and positive definiteness cannot be true.

2 Single value decomposition

Let $A \in \mathbb{R}^{m \times n}$. Since $A^t A$ is symmetric, it is diagonalizable. So there is an orthogonal $n \times n$ matrix O such that $A^t A = ODO^t$, where D is a diagonal matrix of eigenvalues.

Figure 1: Visualization of dimensionality for the rank-nullity theorem

3 Generalized inverses

For an invertible matrix A, it's obviously true that:

$$AA^{-1}A = A \tag{3.1}$$

If A is not invertible, we may still define a generalized inverse A^g as a matrix that satisfies the same equation:

$$AA^g A = A (3.2)$$

If A^g further satisfies:

$$A^g A A^g = A^g, (3.3)$$

it is called a reflexive generalized inverse.

3.1 Left and right inverses

If $A \in \mathbb{R}^{m \times n}$ has rank n, then the null space is trivial, and hence the corresponding linear transformation is injective. This means that the equation Ax = b may or may not have a solution, but if it exists, it's unique. The

matrix A^tA has rank n as well, and hence is invertible. This can be used to construct a left inverse:

$$A_L^{-1} = (A^t A)^{-1} A^t, \qquad A_L^{-1} A = (A^t A)^{-1} A^t A = I_n$$
 (3.4)

Similarly, if $A \in \mathbb{R}^{m \times n}$ has rank m, then the image space is all of \mathbb{R}^m , and hence the corresponding linear transformation is surjective. This means that the equation Ax = b always has a solution, and it may have infinitely many. The matrix AA^t has rank m as well, and hence is invertible. Analogously, we can use this to construct a right inverse:

$$A_R^{-1} = A^t (AA^t)^{-1}, \qquad AA_R^{-1} = AA^t (AA^t)^{-1} = I_m$$
 (3.5)

Both of of these inverses (when they exist) satisfies equation 3.2. They also satisfy 3.3. For instance:

$$A_L^{-1}AA_L^{-1} = (A^tA)^{-1}A^tA(A^tA)^{-1}A^t = (A^tA)^{-1}A^t = A_L^{-1}$$
 (3.6)

4 The Moore-Penrose pseudoinverse

The *Moore-Penrose pseudoinverse* or simply the pseudoinverse of a real matrix A is the reflexive, generalized inverse A^+ which also satisfies:

$$(AA^{+})^{t} = AA^{+}, \qquad (A^{+}A)^{t} = A^{+}A$$
 (4.1)

In other words, for which AA^+ and A^+A are symmetrical.