Class 10: Halloween Mini-Project

Anh Tran

```
url <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-ranking/
candy <- read.csv(url, row.names=1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	cicewafer
100 Grand		1	. 0	1		0	0		1
3 Musketeers		1	. 0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	. 0	0		1	0		0
	hard	bar	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511	46.11650	
Air Heads	0	0	()	0.906	0	.511	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

sum(candy\$fruity)

[1] 38

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

My favorite candy is Milky Way

```
#rownames(candy)
candy["Milky Way",]$winpercent
```

[1] 73.09956

Q4. What is the winpercent value for "Kit Kat"?

```
candy["Kit Kat",]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars",]$winpercent
```

[1] 49.6535

```
#install.packages("skimr")
#library("skimr")
#Instead of using library() to load the whole package, can use this function instead for j
skimr::skim(candy)
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12

Table 1: Data summary

Group variables	None
-----------------	------

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

Yes, winpercent is the only column that looks different from other other columns as its values are much higher than 0.

Q7. What do you think a zero and one represent for the candy\$\text{chocolate column?} If contains chocolate or not (1=yes, 0=no)

Q8. Plot a histogram of winpercent values

hist(candy\$winpercent)

Histogram of candy\$winpercent


```
#install.packages("ggplot2")

library(ggplot2)

ggplot(candy) +
   aes(winpercent) +
   geom_histogram(bins=10, fill="black", col="pink")
```


Q9. Is the distribution of winpercent values symmetrical?

No the distribution is not symmetrical. It is slightly skewed to the left.

Q10. Is the center of the distribution above or below 50%?

```
median(candy$winpercent)
```

[1] 47.82975

It is below 50%

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

```
chocolate.inds <- as.logical(candy$chocolate)
chocolate.wins <- candy[chocolate.inds,]$winpercent
mean(chocolate.wins)</pre>
```

[1] 60.92153

```
fruity.inds <- as.logical(candy$fruity)
fruity.wins <- candy[fruity.inds,]$winpercent
mean(fruity.wins)

[1] 44.11974

t.test(chocolate.wins, fruity.wins)

Welch Two Sample t-test

data: chocolate.wins and fruity.wins
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974</pre>
```

Chocolate candy is higher ranked than fruit candy

Q12. Is this difference statistically significant?

Yes, this difference is statistically significant

3. Overall Candy Rankings

13. What are the five least liked candy types in this set?

```
head(candy[order(candy$winpercent),], n=5)
```

	${\tt chocolate}$	fruity	caramel	peanutyalmondy	nougat
Nik L Nip	0	1	0	0	0
Boston Baked Beans	0	0	0	1	0
Chiclets	0	1	0	0	0
Super Bubble	0	1	0	0	0
Jawbusters	0	1	0	0	0

crispedricewafer hard bar pluribus sugarpercent pricepercent

Nik L Nip		0	0	0	1	0.197	0.976
Boston Baked Bean	S	0	0	0	1	0.313	0.511
Chiclets		0	0	0	1	0.046	0.325
Super Bubble		0	0	0	0	0.162	0.116
Jawbusters		0	1	0	1	0.093	0.511
	winpercent						
Nik I. Nip	22.44534						

 Nik L Nip
 22.44534

 Boston Baked Beans
 23.41782

 Chiclets
 24.52499

 Super Bubble
 27.30386

 Jawbusters
 28.12744

Q14. What are the top 5 all time favorite candy types out of this set?

```
head(candy[order(-candy$winpercent),], n=5)
```

	chocolate	fruity	caram	nel p	peanutyalm	nondy	nougat
ReeseÕs Peanut Butter cup	1	0		0		1	0
ReeseÕs Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedri	cewafer	hard	bar	pluribus	sugar	percent
ReeseÕs Peanut Butter cup	_	0	0	0	0	_	0.720
ReeseÕs Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	ent wing	oercen	ıt			
ReeseÕs Peanut Butter cup	0.6	651 8 ⁴	1.1802	29			
ReeseÕs Miniatures	0.2	279 83	1.8662	26			
Twix	0.9	906 83	1.6429	91			
Kit Kat	0.9	511 76	3.7686	60			
Snickers	0.6	351 76	6.6737	' 8			

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```


Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
library(ggplot2)
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col() +
  coord_fixed()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] ="chocolate"
my_cols[as.logical(candy$bar)]="brown"
my_cols[as.logical(candy$fruity)]="red"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill=my_cols)
```



```
#Save the last ggplot as image
ggsave("tmp.png")
```

Saving 5.5 x 3.5 in image

Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

4. Taking a look at pricepercent

```
#install.packages("ggrepel")
library(ggrepel)

ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
```

geom_text_repel(col=my_cols, size=2, max.overlaps=23)

Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck?

```
max <- which.max((candy[, "winpercent"] / candy[, "pricepercent"]))
candy[max,]</pre>
```

```
Chocolate fruity caramel peanutyalmondy nougat Tootsie Roll Midgies 1 0 0 0 0 0 Crispedricewafer hard bar pluribus sugarpercent Tootsie Roll Midgies 0 0 0 1 0.174 pricepercent winpercent Tootsie Roll Midgies 0.011 45.73675
```

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head(candy[ord, c(11,12)], n=5)</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
HersheyÕs Krackel	0.918	62.28448
HersheyÕs Milk Chocolate	0.918	56.49050

Among the top 5 most expensive candy types, the least popular is Nik L Nip

5. Exploring the correlation structure

```
#install.packages("corrplot")
library(corrplot)
```

corrplot 0.92 loaded

```
cij <- cor(candy)
corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

chocolate and fruity

Q23. Similarly, what two variables are most positively correlated? chocolate and winpercent

6. Principal Component Analysis

```
pca <- prcomp(candy, scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                PC4
                                                       PC5
                                                               PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion 0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                          PC10
                                                  PC11
                                                          PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317
Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

```
#pca$rotation[]
plot(pca$x[,1], pca$x[,2])
```


 $plot(pca$x[,1], pca$x[,2], col=my_cols, xlab="PC1", ylab="PC2", pch=16)$


```
my_data <- cbind(candy, pca$x[,1:3])
head(my_data)</pre>
```

```
chocolate fruity caramel peanutyalmondy nougat crispedricewafer
100 Grand
                             0
                      1
                                     1
3 Musketeers
                             0
                                                                              0
                      1
                                                     0
                                                            1
One dime
                     0
                             0
                                     0
                                                     0
                                                            0
                                                                              0
One quarter
                     0
                             0
                                     0
                                                     0
                                                            0
                                                                              0
                                                            0
Air Heads
                     0
                             1
                                     0
                                                     0
                                                                              0
Almond Joy
                      1
                             0
                                     0
                                                     1
                                                            0
                                                                              0
             hard bar pluribus sugarpercent pricepercent winpercent
                                                                              PC1
100 Grand
                    1
                              0
                                       0.732
                                                     0.860
                                                             66.97173 -3.8198617
3 Musketeers
                    1
                              0
                                       0.604
                                                     0.511
                                                             67.60294 -2.7960236
                0
One dime
                0
                    0
                              0
                                       0.011
                                                     0.116
                                                             32.26109 1.2025836
                    0
                              0
                                       0.011
                                                     0.511
                                                             46.11650 0.4486538
One quarter
                0
Air Heads
                0
                    0
                              0
                                       0.906
                                                     0.511
                                                             52.34146 0.7028992
                                                     0.767
Almond Joy
                    1
                                       0.465
                                                             50.34755 -2.4683383
                    PC2
                                PC3
100 Grand
             -0.5935788 2.1863087
3 Musketeers -1.5196062 -1.4121986
One dime
              0.1718121 -2.0607712
One quarter
              0.4519736 -1.4764928
Air Heads
             -0.5731343 0.9293893
Almond Joy
              0.7035501 -0.8581089
  p <- ggplot(my_data) +</pre>
    aes(x=PC1, y=PC2,
        size=winpercent/100,
        text=rownames(my_data),
        label=rownames(my_data)) +
    geom_point(col=my_cols)
  p
```


Warning: ggrepel: 54 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

Data from 538

```
#install.packages("plotly")
#library(plotly)
#ggplotly(p)

par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity, hard, and pluribus. Yes, they make sense because these types of candy usually go together (fruity candies are hard and pluribus) so it makes sense that they are all positive values.