PATTERN RECOGNITION USING PYTHON Clustering

Wen-Yen Hsu

Dept Electrical Engineering

Chang Gung University, Taiwan

2019-Spring

Organize Data into Meaningful Structures

- Finding centers of similarity using the popular k-means algorithm
- Taking a bottom-up approach to building hierarchical clustering trees
- Identifying arbitrary shapes of objects using a densitybased clustering approach

Working with Unlabeled Data

Unsupervised learning

Four Steps of k-means Algorithm

- Randomly pick k centroids from the sample points as initial cluster centers
- Assign each sample to the nearest centroid $\mu^{(j)}$, j=1,...,k
- Move the centroids to the center of the samples that were assigned to it
- Repeat steps 2 and 3 until the cluster assignments do not change or a user-defined tolerance or maximum number of iterations is reached

Measure Similarity between Objects

 Squared Euclidean Distance between two points x and y in m-dimensional space

$$d(\mathbf{x}, \mathbf{y})^{2} = \sum_{j=1}^{m} (x_{j} - y_{j})^{2} = ||\mathbf{x} - \mathbf{y}||_{2}^{2}$$

 Cluster Inertia: an iterative approach for minimizing the within-cluster Sum of Squared Errors (SSE)

$$SSE = \sum_{i=1}^{n} \sum_{j=1}^{k} w^{(i,j)} \left\| \mathbf{x}^{(i)} - \boldsymbol{\mu}^{(j)} \right\|_{2}^{2}$$

Find the Optimal Number k of Clusters

 Compare the performance of different k-means clusters based on the within-cluster SSE

k-mean Clustering

Finding centers of similarity

k-means++

- Similar to the k-mean algorithm but strategically improving the select method of the next centroid
- lacksquare To randomly select the next centroid $\mu^{(p)}$, use a weighted

probability distribution equal to

$$\frac{d(\boldsymbol{\mu}^{(p)}, \mathbf{M})^2}{\sum_{i} d(\boldsymbol{x}^{(i)}, \mathbf{M})^2}$$

Performing k-means++

 Randomly generate a random number between 0 and 1, to determine which interval it belongs to, then the number corresponding to the interval is the second centroid selected.

	1	2	3	4	5	6	7	8
d	2√2	√ 13	¦√5	√10	1	0	√2	1
d^2	8	13	1 15 1	10	1	0	3	1
P	0.2	0.325	0.125	0.25	0.025	0	0.05	0.025
ΣΡ	0.2	0.525	0.65	0.9	0.925	0.925	0.975	1

2nd centroid

1st centroid

K-mean++ Clustering

The next centroid is far from the previous one

Hierarchical Clustering

Agglomerative Hierarchical Clustering

 Merge the two clusters for which the distance between the most similar members is the smallest

 Merge the two closest clusters based on the distance between the most dissimilar (distant) members

Randomly Generate 5 Unlabeled Data

	X	Y	Z
ID_0	6.964692	2.861393	2.268515
ID_1	5.513148	7.194690	4.231065
ID_2	9.807642	6.848297	4.809319
ID_3	3.921175	3.431780	7.290497
ID_4	4.385722	0.596779	3.980443

Compute the Distance Matrix and Clustering

Distance matrix of all samples

	ID_0	ID_1	ID_2	ID_3	ID_4
ID_0	0.000000	4.973534	5.516653	5.899885	3.835396
ID_1	4.973534	0.000000	4.347073	5.104311	6.698233
ID_2	5.516653	4.347073	0.000000	7.244262	8.316594
ID_3	5.899885	5.104311	7.244262	0.000000	4.382864
ID_4	3.835396	6.698233	8.316594	4.382864	0.000000

Clustering approach

	row label 1	row label 2	distance	no. of items in clust.
cluster 1	0.0	4.0	3.835396	2.0
cluster 2	1.0	2.0	4.347073	2.0
cluster 3	3.0	5.0	5.899885	3.0
cluster 4	6.0	7.0	8.316594	5.0

Agglomerative Clustering via sklearn

Bottom-up approach

Difference Agglomerative Linkage

Randomly Generate 50 Unlabeled Data

Complete Linkage

Balance clustering

Single Linkage

Unbalance clustering

DBSCAN

- Density-based Spatial Clustering of Applications with Noise
- No need to select k but need to define ε and MinPts

DBSCAN via sklearn

Density-based clustering

```
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.2, min_samples=5, metric='euclidean')
y_db = db.fit_predict(X)
```


Clustering Experiment

Cluster this data

Select k=6

It seems that there are six groups

K-mean

Normal \ Spherical shape

Clusters found by KMeans

Agglomerative

Slow · Close to ideal clustering

Clusters found by AgglomerativeClustering

DBSCAN

Very fast

Clusters found by DBSCAN

H-DBSCAN (optional package) not in sitkit-learn

Fast

Clusters found by HDBSCAN

Reference

- Sebastian Raschka, Vahid Mirjalili. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow. Second Edition. Packt Publishing, 2017.
- How HDBSCAN Works
 https://hdbscan.readthedocs.io/en/latest/how_hdbscan_w
 orks.html