

Drocon

Simulation and Control of Drop Size Distributions in Stirred Liquid/Liquid Systems

J. Heiland M. Baumann A. Walle V. Mehrmann M. Schäfer

Keywords: Liquid/liquid dispersion, Drop size distribution (DSD), Control interface, Control design, DQMOM, CFD

Background and Motivation

Control of the particle distribution of liquid/liquid dispersions:

- · Optimization of mixing processes used e.g. in chemical industry
- · Recent developments enable reliable and affordable CFD investigations
- There are no mathematical tools available for the control of liquid/liquid dispersions

Research goals:

- Implementation of the DQMOM algorithm to approximate the DSD into the flow solver
- · Coupling of the flow solver to the control unit
- Design of controllers for the coupled system

Physical Setup:

- Rushton turbine DN150 with 90% water and 10% toluene, treated as a single-fluid
- Simulations with \approx 240 rpm \rightarrow Reynolds Number ≈ 18.000

Simulation & Control

Figure 1. Schematical illustration of the project

Implementation Approach

Design of the Control Setup:

- Coupling of the flow solver FASTEST3D to MATLAB for simulation design and control
- ullet Use FASTEST3D and the DQMOM to compute the moments m_0, m_1, \ldots, m_N of the DSD in the reactor
- Use MATLAB Control Toolbox to control the DSD

Definition of the Control Problem:

- ullet Take the stirrer speed ω as input and the Sauter diameter d_{32} and the standard deviation σ as observed and controlled output
- Define the target value d_{32}^* and the optimal control problem:

$$\mathcal{J}_{(\alpha,\beta)}(d_{32},\sigma,\omega) = |||d_{32}(\omega) - d_{32}^*||| + \alpha||\sigma(\omega)|| + \beta|\omega| \to \min$$
 (*)

Identification:

• Use test functions ω^k and compute input/output data $[\omega^k \leftrightarrow d_{32}^k, \sigma^k]$ (Figure 3) to tune the surrogate linear state space model

$$\dot{x} = Ax + B\omega$$

$$\begin{bmatrix} d_{32} \\ \sigma \end{bmatrix} = Cx + D\omega$$

 \bullet Approximate $(\sp{*})$ using e.g. linear quadratic controllers of the identified model

Recent Result:

· Currently no optimization results due to poor quality of generated input/output data

Upcoming Issues

- Improve robustness of the numerical simulations through dimensionless formulations
- · Validation of numerical results with experimental findings
- Design of model specific and robust controllers for simulations and experiments

SOLVER FASTEST 3D Control Unit

Figure 2. FASTEST3D/MATLAB coupling

0.05

Outputs 5.0512 × 10⁻⁴ Ξ _d₃₂(k=1 d₃₂(k=2) _ d₃₂(k=3

-ω(k=0) $\omega(k=1)$

 $\omega(k=3)$

Ē

Figure 3: Input/output data for the input testfunctions ω^k , k=0,1,2,3

Partners Involved

Chair of Chemical and Process Engineering, TU Berlin: S. Herrmann, M. Kraume Institute of Mathematics, TU Berlin: M. Baumann, J. Heiland, V. Mehrmann Institute of Numerical Methods in Mech. Engineering, TU Darmstadt: A. Walle, M. Schäfer