ตรรกศาสตร์

บทที่ 5

Discrete Mathematics for Computer Science

อ.เอิญ สุริยะฉาย (ENS)

ภาควิชาวิทยาการคอมพิวเตอร์และสารสนเทศ

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

Discrete Math.

Earn S. (ENS)

ComSci, KMUTNB

ตรรกศาสตร์

การเขียนโปรแกรมคอมพิวเตอร์ สิ่งที่สำคัญคือผู้เขียนโปรแกรม ต้องมีความคิดเชิงลอจิกหรือตรรกศาสตร์ เช่น ต้องการสร้างโปรแกรม คำนวณเกรดของนักศึกษา โดยถ้าใส่คะแนนมากกว่า 80 ให้แสดง ผลลัพธ์เป็นเกรด A ถ้าใส่คะแนนมากกว่า 70 ให้แสดงผลลัพธ์เป็นเกรด B เป็นต้น โดยตรรกศาสตร์จะเป็นการฝึกให้ผู้เรียนคิดอย่างมีเหตุผลให้ เป็นที่ยอมรับกับการแก้ปัญหาทางคอมพิวเตอร์ เพื่อให้ผู้เขียนโปรแกรม สามารถเข้าใจหลักการคิดของคอมพิวเตอร์มากขึ้น และสามารถสั่งการ ให้คอมพิวเตอร์ทำงานได้ตามที่ผู้เขียนโปรแกรมต้องการ ดังนั้น ตรรกศาสตร์ จึงเป็นวิชาที่สำคัญมาก เป็นพื้นฐานของการศึกษาในสาขา ด้านคอมพิวเตอร์ต่อไป

Discrete Math.

Earn S. (ENS) ComSci, KMUTNB

ความหมายตรรกศาสตร์และประพจน์

ตรรกศาสตร์ (logic)

• เป็นการศึกษาเชิงปรัชญาว่าด้วยการให้เหตุผล หรือการตรวจสอบข้อ โต้แย้งที่สมเหตุสมผล โดยมักจะเป็นส่วนสำคัญของวิชาปรัชญา คณิตศาสตร์ คอมพิวเตอร์ รวมถึงภาษาศาสตร์ ตรรกศาสตร์เป็น การศึกษาที่มีมานานโดยมนุษยชาติที่เจริญแล้ว เช่น กรีก จีน หรืออินเดีย และถูกยกขึ้นเป็นสาขาวิชาหนึ่งโดย อริสโตเติล

Discrete Math. 3

Earn S. (ENS)

ComSci, KMUTNB

ความหมายตรรกศาสตร์และประพจน์

ประพจน์ (proposition)

- คือ ประโยคที่มีค่าความจริงเป็น จริง (True หรือสัญลักษณ์ตัว T) หรือ เท็จ (False หรือสัญลักษณ์ตัว F) อย่างใดอย่างหนึ่งเท่านั้น โดยประโยค เหล่านี้จะอยู่ในรูปประโยคบอกเล่า
- ส่วนข้อความรูปแบบ <u>คำสั่ง คำขอร้อง คำอุทาน คำปฏิเสธ</u> ข้อความ เหล่านี้<mark>ไม่เป็นประพจน์</mark>
- สำหรับข้อความบอกเล่าแต่**มีตัวแปรอยู่ด้วย** ไม่สามารถบอกว่าเป็นจริง หรือเท็จถึงว่า**ไม่เป็นประพจน์**
- ประโยคที่มีค่าความจริงไม่แน่นอน หรือไม่อาจระบุได้ว่ามีค่าความจริง เป็นจริงหรือเป็นเท็จได้ ไม่เป็นประพจน์ เช่น อารมณ์ ความรู้สึก เป็นต้น

ความหมายตรรกศาสตร์และประพจน์

• ตัวอย่าง

ธงชาติไทยมี 3 สี	(จริง)
1 ∈ {1,2,3,4}	(จริง)
กรุงเทพมหานครเป็นจังหวัดหนึ่งในประเทศไทย	(เท็จ)
5 > 6	(เท็จ)

ประพจน์ที่มีค่าความจริงเป็น จริง (T) เรียกว่า ประพจน์จริง ประพจน์ที่มีค่าความจริงเป็น เท็จ (F) เรียกว่า ประพจน์เท็จ

กำหนดตัวแปร p, q, r,... แทนประพจน์ใดๆ เรียกตัวแปรว่า ตัวแปรประพจน์ ค่าความจริงของตัวแปรประพจน์ ขึ้นอยู่กับตัวแปรนั้นใช้แทนประพจน์ใด p แทน $1 \in \{1,2,3,4\}$ p เป็นประพจน์จริง q แทน 5 > 6 q เป็นประพจน์เท็จ

Discrete Math.

Earn S. (ENS)

ComSci, KMUTNB

การเชื่อมต่อประพจน์

- การนำประพจน์มาเชื่อมกัน จะได้ประพจน์ใหม่ ซึ่งสามารถบอกได้ว่า ค่าความจริงเป็นจริงหรือเป็นเท็จ สำหรับตัวเชื่อมประพจน์ (Propositional Connective) นั้น มีอยู่ 5 ตัว และตัวเชื่อมที่ใช้กันมาก ในตรรกศาสตร์คือ และ, หรือ, ถ้า...แล้ว, ก็ต่อเมื่อ, ไม่
- ตัวเชื่อมประพจน์ "และ" (conjunction) ใช้สัญลักษณ์ " ∧ "
 - การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "และ" สามารถ เขียนแทนได้ด้วยสัญลักษณ์ p ∧ q ซึ่งจะมีค่าความจริงเป็นจริง เมื่อ p และ q มีค่าความจริงเป็นจริงทั้งคู่ นอกนั้นมีค่าความจริงเป็นเท็จ

- ตัวเชื่อมประพจน์ "หรือ" (disjunction) ใช้สัญลักษณ์ " v "
 - การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "หรือ" สามารถ เขียนแทนได้ด้วยสัญลักษณ์ p v q ซึ่งจะมีค่าความจริงเป็นเท็จ เมื่อ p และ q มีค่าความจริงเป็นเท็จทั้งคู่ นอกนั้นมีค่าความจริงเป็นจริง
- ตัวเชื่อมประพจน์ **"ถ้า...แล้ว"** (if...then...) ใช้สัญลักษณ์ " \to "
 - การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "ถ้า...แล้ว"
 สามารถเขียนแทนได้ด้วยสัญลักษณ์ p → q ซึ่งจะมีค่าความจริงเป็นเท็จ เมื่อ p เป็นจริง และ q เป็นเท็จ นอกนั้นมีค่าความจริงเป็นจริง

Discrete Math.

Earn S. (ENS)

ComSci, KMUTNB

การเชื่อมต่อประพจน์

- ตัวเชื่อมประพจน์ "ก็ต่อเมื่อ" (if and only if) ใช้สัญลักษณ์ " ↔ "
 - การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "ก็ต่อเมื่อ" สามารถ เขียนแทนได้ด้วยสัญลักษณ์ p ↔ q ซึ่งจะมีค่าความจริงเป็นจริง เมื่อ p และ q มีค่าความจริงตรงกัน และจะมีค่าความจริงเป็นเท็จ เมื่อ p และ q มีค่าความจริงตรงข้ามกัน
- นิเสธของประพจน์ "นิเสธ" (negation) ใช้สัญลักษณ์ " ~ "
 - นิเสธของประพจน์ใดๆ คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามกับ ประพจน์นั้นๆ และสามารถเขียนแทนนิเสธของ p ได้ด้วย ~p

ค่าความจริงของประพจน์ที่เชื่อมต่อกัน ตารางค่าความจริง (Truth Table) ของประพจน์ที่เชื่อมต่อกัน โดย T แทนค่าความจริงเป็น จริง และ F แทนค่าความจริงเป็นเท็จ มีรายละเอียดดังนี้

р	q	~p	p∧q	p∨q	p→q	p↔q
Т	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	Т	F	F	Т	Т

Discrete Math.

ComSci, KMUTNB

Earn S. (ENS)

การเชื่อมต่อประพจน์

ตัวอย่างการประยุกต์ใช้ประพจน์กับข้อความ

สมมติให้

p ฝนตก

q น้ำท่วมถนนในกรุงเทพฯ

เครื่องหมายของประพจน์และข้อความ

~p ฝนไม่ตก

p∧q ฝนตก และ น้ำท่วมถนนในกรุงเทพฯ

pvq ฝนตก หรือ น้ำท่วมถนนในกรุงเทพฯ

p→q ถ้า ฝนตก แล้ว น้ำท่วมถนนในกรุงเทพฯ

p↔q ฝนตก ก็ต่อเมื่อ น้ำท่วมถนนในกรุงเทพฯ

Discrete Math. 10

Earn S. (ENS)

- **ตัวอย่างที่ 1** ประเทศไทยเป็นเมืองร้อน และประเทศไทยอยู่ในทวีปแอฟริกา
 - ประเทศไทยเป็นเมืองร้อน

Т

q ประเทศไทยอยู่ในทวีปแอฟริกา

F

$$T \wedge F = F$$

ตัวอย่างที่ 2 (10 + 10 > 8) ∧ (1 x 0 = 0)

$$1 \times 0 = 0$$

$$T \wedge T = T$$

Discrete Math.

11 ComSci, KMUTNB

Earn S. (ENS)

การเชื่อมต่อประพจน์

- ตัวอย่างที่ 3 -3 เป็นเลขจำนวนจริง หรือ สกุลเงินไทยคือปอนด์
- -3 เป็นเลขจำนวนจริง

Τ

- q สกุลเงินไทยคือปอนด์

F

$$T \vee F = T$$

- **ตัวอย่างที่ 4** π เป็นเลขจำนวนเต็ม หรือ -2 เป็นเลขจำนวนเต็มบวก
- π เป็นเลขจำนวนเต็ม

F

- -2 เป็นเลขจำนวนเต็มบวก
- F

$$F \vee F = F$$

ตัวอย่างที่ 5 ถ้าฝนตก แล้ว รถติด

p ฝนตก T (กำหนดให้ฝนตกเป็น T)

q รถติด T (กำหนดให้รถติดเป็น T)

 $T \rightarrow T = T$

• **ตัวอย่างที่ 6** จงแสดงตารางค่าความจริงของประพจน์ S V ~S

S	~S	S V ~S
Т	F	T
F	Т	Т

Discrete Math. 13

Earn S. (ENS)

ComSci, KMUTNB

การเชื่อมต่อประพจน์

• **ตัวอย่างที่ 7** จงแสดงตารางค่าความจริงของประพจน์

$$p\lor q$$
, $(p\lor q)\to p$, $(p\lor q)\to q$

р	q	p∨q	(p∨q) → p	(p∨q)→q
Т	Т	Т	Т	Т
Т	F	Т	Т	F
F	Т	Т	F	Т
F	F	F	Т	Т

■ ตัวอย่างที่ 8 จงแสดงตารางค่าความจริงของประพจน์ p∧q และ (p∧q)→r

р	q	r	p∧q	(p∧q)→r
Т	Т	Т	Т	T
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	T

Discrete Math. 15

Earn S. (ENS)

ComSci, KMUTNB

ประพจน์ที่มีค่าความจริง

สัจจะ แปลว่า จริง และสำหรับนิรันดร์ แปลว่า ตลอดกาล ประพจน์ที่เป็นสัจนิรันดร์ (tautology) คือ ประพจน์ที่มีค่าความจริง เป็นจริงตลอดกาล ทุกกรณีของประพจน์ย่อย หรือประพจน์ที่มีค่าความ จริงเป็นจริงทุกกรณี

สำหรับการตรวจสอบสัจนิรันดร์ สามารถทำได้ 2 กรณีดังนี้

• กรณีที่ 1

สร้างตารางค่าความจริงของประพจน์นั้นๆ ขึ้นมาเพื่อตรวจสอบ ว่าเป็นสัจนิรันดร์หรือไม่ โดยถ้าเป็นต้องได้ผลลัพธ์ทุกกรณีเป็นจริงหมด แสดงว่าประพจน์นั้นเป็นสัจนิรันดร์

ประพจน์ที่มีค่าความจริง

ตัวอย่าง จงพิสูจน์ประพจน์เหล่านี้ p^ ~p, p\~p, (p^ q) \rightarrow p, (p^ q) \rightarrow q, p^q ~q เป็นสัจนิรันดร์หรือไม่

วิธีทำ ให้สร้างตารางค่าความจริงแล้วพิจารณาว่าประพจน์ใดที่มีค่าความจริงเป็นจริงทุกกรณี หากมีกรณีที่ค่าความจริงเป็นเท็จเพียงกรณีเดี่ยวเท่านั้นก็ถึงว่า ไม่เป็นสัจนิรันดร์

Р	p ∧ ~p	p∨~p
Т	F	Т
F	F	Т
	ไม่เป็นสัจนิรันดร์	สัจนิรันดร์

р	q	p∧q	(p∧ q) → p	(p∧ q)→q	p∧q∧~q
T	T	T	Т	Т	F
Т	F	F	Т	Т	F
F	Т	F	Т	Т	F
F	F	F	T	Т	F
			สัจนิรันดร์	สัจนิรันดร์	ไม่เป็นสัจนิรันดร์

ดังนั้น p \lor ~p, (p \land q) \to p, (p \land q) \to q เป็นสัจนิรันดร์ เพราะตารางความจริงเป็นจริงทุกกรณี

Discrete Math. 17

Earn S. (ENS)

ComSci, KMUTNB

ประพจน์ที่มีค่าความจริง

• กรณีที่ 2

กำหนดให้ประพจน์ทั้งหมดเป็นเท็จ แล้วพยายามพิสูจน์ว่า ประพจน์นี้สามารถเป็นเท็จได้ ถ้าสามารถเป็นเท็จได้ แสดงว่าประพจน์ นี้ไม่เป็นสัจนิรันดร์

ตัวอย่างที่ 1 จงพิสูจน์ว่าประพจน์ p∧q∧~q เป็นสัจนิรันดร์หรือไม่

 $p \wedge q \wedge \sim q$ กรณีนี้ถ้ากำหนด p = T และ q = T ได้ผลลัพธ์ของประพจน์เป็น F

 $T \wedge T \wedge F$

ผลลัพธ์ของประพจน์นี้คือ F ถ้าเป็นเท็จได้ถึงว่าไม่เป็นสัจนิรันดร์ ดังนั้นจึงไม่เป็นสัจนิรันดร์

ประพจน์ที่มีค่าความจริง

ตัวอย่างที่ 2 จงพิสูจน์ว่าประพจน์ (p∧ q)→p เป็นสัจนิรันดร์หรือไม่

 $(p \land q) \rightarrow p$ กำหนดให้เป็น F ถ้าจะเป็นเท็จได้ p ต้องเป็น F และ p ∧ q

ต้องเป็น T

 $T \rightarrow F$

 $p \wedge q = T$ ดังนั้น $p \wedge q$ ต้องเป็น T ทั้งหมด ซึ่งขัดแย้งกับ p ที่ต้องแรก

กำหนดเป็น F

ดังนั้นประพจน์นี้จึงเป็นสัจนิรันดร์ เนื่องจาก (p∧q)→p ไม่สามารถเป็น F ได้

Discrete Math.

19

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

1). จากข้อความข้างล่างนี้ ให้ทำเครื่องหมาย 🗸 หน้าข้อความที่เป็นประพจน์
1) คุณวรนุช
2) สุนัขเห่าเหมียวๆ
3) มนุษย์มีสองขา
4) 8 x 8 > 10
5) โลกเป็นบริวารของดวงอาทิตย์
6) ฉันคิดถึงเธอมาก
7) โปรดเห็นใจฉันบ้าง
8) ผู้หญิงที่เดินมาเธอเป็นใครเหรอ
9) จงเงียบสะ
 10) กากเกรียนกะโหลกกะลากิ๊กก๊อก

____ 11) รบกวนช่วยเปิดหน้าต่างหน่อย

12) ผมอยากเป็นโปรแกรมเมอร์

13) ผมเป็นนักศึกษา

____ 14) ผมเป็นเมียเขา

____ 15) โอ้ยเจ็บ

____ 16) เราพร้อมแล้วเพื่อนเอ๋ย

____ 17) รักลูกให้ผูก รักวัวให้ตี

____ 18) x + 5 = 15

____ 19) x + y = z

____ 20) ไก่ขัน "เหมียวๆ"

Discrete Math. 21

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

21) แม่คิดถึงลูกมาก

____ 22) อาจารย์ทิพย์เป็นผู้ชาย

23) กรุงเทพเป็นเมืองหลวงของประเทศไทย

24) นกไม่มีปีก

_____ 25) ธนาคารมีการบันทึกและจัดเก็บข้อมูลลูกค้าไว้ในคอมพิวเตอร์

26) 4+5 มีค่าเท่ากับ 9

____ 27) จังหวัดอุดรธานีไม่ได้อยู่ในภาคอีสาน

28) 2 + 3 = 3 - 1

29) โลกเป็นดาวเคราะห์

____ 30) เลขคู่ทุกจำนวนหารด้วยสองลงตัว

Discrete Math.

22

31)	17	+	8	=	3	0
_			_		_	_

____ 32) เซตว่างไม่เป็นสับเซตของทุกเซต

33) ปลาและนกเป็นสัตว์บก

___ 34) 50 คูณด้วย 40 มีค่าเท่ากับเท่าไร

____ 35) หยุดเดี๋ยวนี้นะ

____ 36) อย่าส่งเสียงดังในเวลาทำงาน

____ 37) กรุณาปิดไฟทุกครั้งก่อนออกจากห้อง

__ 38) ได้โปรดเถอะนะถือว่าสงสารฉันหน่อย

39) ว้าย! ตะเถรตกกระโถน

____ 40) บรรยากาศสำหรับเราสองคนอยากให้เป็นเช่นนี้จังเลย

Discrete Math. 23

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

41) อย่าคุยเวลาทำงาน

____ 42) อยากดูหนังมากเลย

43) ว้าย! น่ากลัวจัง

____ 44) สมการของ x+y = 1 เป็นสมการอะไร

2) จงเติมตารางค่าความจริงของประพจน์ (P \wedge Q) ightarrow Q

P	Q	$P \wedge Q$	$(P \land Q) \rightarrow Q$
T	T	T	\mathcal{T}
Ī	F	F	T
F	T	F	T
F	F	F	t

ଶ୍ରବ ଜନ୍ମ ส์จจะมีรัสน์

4 393= 250Ni

3) จงเติมตารางค่าความจริงของประพจน์ \sim P ightarrow (P \vee Q)

P	Q	~P	P ∨ Q	$\sim P \rightarrow (P \lor Q)$
T	T	F	T	\mathcal{T}
T	F	F	T	T
F	T	Γ	T	7
F	F	T	F	F

かるかかっていい

Discrete Math.

Earn S. (ENS)

แบบฝึกหัด

25

4) จงเติมตารางค่าความจริงของประพจน์ (\sim P \vee R) \to Q

Р	R	Q	~P ∨ R	$(\sim P \vee R) \rightarrow Q$

Discrete Math.

26

ComSci, KMUTNB Earn S. (ENS)

5) จงเติมตารางค่าความจริงของประพจน์ (P \rightarrow Q) \leftrightarrow (P \lor ~R)

Discrete Math.

27

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

- **6)** จงหาค่าความจริงของประพจน์ $(10 > 5) \land (\frac{4}{8} + 5 > 6)$
- 7) จงหาค่าความจริงของประพจน์ ((P \lor Q) \land (\sim P)) \rightarrow (R \rightarrow P) โดยที่ P = F, Q = T, R = T
- 8) จงหาค่าความจริงของประพจน์ 5+5=10 และ -3+3=3
- 9) จงหาค่าความจริงของ (~Q \wedge (P V Q)) \rightarrow ((Q \wedge R) V (P V R)) โดยที่ P, Q, R โดยมีค่าความ จริง T, F, F

Discrete Math.

28

Earn S. (ENS) ComSci, KMUTNB

10) จงหาค่าความจริงของประพจน์ ถ้า 6 มากกว่า 5 แล้ว -6 มากกว่า -5

- 11) จงหาค่าความจริงของประพจน์ ถ้า 5 มากกว่า 6 แล้ว -5 มากกว่า -6
- 12) จงหาค่าความจริงของประพจน์ ถ้า 2 คือเลขคี่ แล้ว 3 เป็นเลขคู่
- 13) จงหาค่าความจริงของประพจน์ 33 คือเลขจำนวนเต็มบวก ก็ต่อเมื่อ 33 เป็นเลขจำนวนเต็มบวก

Discrete Math. 29

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

14) จงหาค่าความจริงของประพจน์ 10 คือเลขคู่ ก็ต่อเมื่อ π เป็นเลขจำนวนเต็ม

15) $p \rightarrow p \lor q$ ประพจน์ต่อไปนี้เป็นสัจนิรันดร์ หรือไม่

16) (R→ (S V T)) \lor (S \leftrightarrow (R \land T)) ประพจน์ต่อไปนี้เป็นสัจนิรันดร์ หรือไม่

17) ((p→q)∧(q→r))→(p↔r) ประพจน์ต่อไปนี้เป็นสัจนิรันดร์ หรือไม่

18) ((p→q)∧(q→r))→(p→r) ประพจน์ต่อไปนี้เป็นสัจนิรันดร์ หรือไม่

Discrete Math.

31

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

19) ((p→q)→r)→(p→(q→r)) ประพจน์ต่อไปนี้เป็นสัจนิรันดร์ หรือไม่

20) (p \rightarrow (r \lor q)) \rightarrow ((p \rightarrow r) \lor (p \rightarrow q)) ประพจน์ต่อไปนี้เป็นสัจนิรันดร์ หรือไม่

ประพจน์สมมูลกัน (Logically equivalent) คือ ประพจน์สอง ประพจน์จะสมมูลกันก็ต่อเมื่อประพจน์ทั้งสอง<mark>มีค่าความจริงเหมือนกัน</mark> ทุกกรณีของค่าความจริงของประพจน์ย่อย หรือประพจน์ทั้งสองต้องมี ค่าความจริงแบบเดียวกันทุกกรณี เขียนแทนด้วย p ≡ q

การทดสอบว่าประพจน์ 2 ประพจน์ สมมูลกันนั้นสามารถทำได้ โดยการสร้างตารางแจกแจงค่าความจริง ถ้าค่าความจริงของตาราง ตรงกันทุกกรณี แสดงว่าประพจน์ 2 ประพจน์สมมูลกัน

Discrete Math. 33

Earn S. (ENS) ComSci, KMUTNB

ประพจน์สมมูลกัน

ตัวอย่างประพจน์ที่สมมูลกันที่ควรทราบ มีดังนี้

 $p \wedge q \equiv q \wedge p$

 $p \vee q \equiv q \vee p$

 $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$

 $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

 $p \rightarrow q \equiv \sim p \vee q$

 $p \rightarrow q \equiv \sim q \rightarrow \sim p$

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

ตัวอย่าง จงพิจารณาว่า p↔q \equiv (p→q) \land (q→p) เป็นประพจน์ที่สมมูลกันหรือไม่

р	q	p↔q	p→q	q→p	(p→q)∧(q→p)
Т	Т	Т	Т	Т	Т
Т	F	F	F	Т	F
F	Т	F	Т	F	F
F	F	Т	Т	Т	Т

ข้อสังเกต ประพจน์ที่สมมูลกัน เมื่อเชื่อมกันด้วย จะเป็นประพจน์สัจนิรันดร์ แต่โดยส่วนมากแล้ว นิยมเขียนตาราง เพราะตัวเชื่อมกันเป็น ทำให้กรณีที่เกิดขึ้นมีโอกาสเป็น T และ F หรือ F และ T เมื่อพิสูจน์ทำให้มีหลายกรณี จึงทำให้การพิจารณากรณีให้ครบเป็นเรื่องที่ยุ่งยาก ถ้าพบว่าไม่เป็นสัจนิ รันดร์ เพียงกรณีเดี่ยวก็สามารถสรุปได้ว่า ประพจน์ทั้งสองไม่สมมูลกัน แต่ถ้าไล่กรณีไม่ครบก็มีโอกาสที่ จะไม่พบกรณีที่ไม่เป็นสัจนิรันดร์ ทำให้พิจารณาว่าประพจน์ทั้งสองนี้สมมูลกัน ซึ่งทำให้ได้คำตอบที่ผิด

Discrete Math. 35

Earn S. (ENS)

ComSci, KMUTNB

ประพจน์สมมูลกัน

์ ตัวอย่าง จงพิจารณาว่า p→q \equiv (p∧q) \wedge (q \rightarrow p) เป็นประพจน์ที่สมมูลกันหรือไม่

ถ้าคิดกรณีแรกเป็นกรณีที่สมมูลกัน ดังนั้นจึงตอบว่าประพจน์ทั้งสองสมมูล กัน แต่ความจริงแล้วพลาดไม่ได้คิดกรณีที่ สอง ซึ่งเป็นกรณีที่ไม่สมมูลกัน ทำให้ นักศึกษาตอบคำถามผิด

p→	q	\leftrightarrow	(p∧q)	٨	(q→p)	
F				Т		
Т	Т		$T \wedge T$		$T \rightarrow T$	
q ต้องเป็น F กำหนดเป็น ขัดแย้งกัน ประพจน์ไม่ส "เท็จ	แสดงว่า ามารถเป็น		Т		T	สัจนิรันดร์

แต่ในความจริงแล้วถ้าคิดกรณีที่สอง กรณีนี้ไม่เป็นสัจนิรันดร์ เพราะสามารถเป็นเท็จ ได้ ดังนั้นประพจน์ทั้งสองไม่สมมูลกัน

p→q	\leftrightarrow	(p∧q)	^	(d→b)	
T			F		ไม่เป็นสัจนิรันดร์
$F \rightarrow T$		$F \wedge T$		$T \rightarrow F$	
ไม่ขัดแย้ง T แสดงว่าประพจน์ สามารถเป็น "เท็จ" ได้		F		F	

สำหรับการค้นหาคำตอบ ถ้าหากพบคำตอบที่ไม่เป็นสัจนิรันดร์ เพียงคำตอบเดี่ยวถึง ว่าให้ยุติการค้นหาคำตอบ เพราะประพจน์ทั้งสองอันนั้นไม่สมมูลกันแน่นนอน แต่ถ้าเกิดพบว่า คำตอบเป็นสัจนิรันดร์ ต้องหากรณีอื่นๆ อีกจนครบทุกกรณีที่เป็นไปได้ จึงจะสรุปได้ว่า ประพจน์ ทั้งสองสมมูลกัน ถ้าหากขาดเพียงกรณีเดียว อาจจะสรุปคำตอบที่ผิด

Discrete Math. 37

Earn S. (ENS)

ComSci, KMUTNB

ประพจน์สมมูลกัน

ตัวอย่างที่ 1 จงแสดงให้เห็นว่าประพจน์ pightarrowq = \sim p \lor q สมมูลกันหรือไม่

р	~p	q	p→q	~p∨q
Т	F	Т	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	F	Т	Т

จากตารางนี้สรุปได้ว่า p→q = ~p∨q ประพจน์สมมูลกัน

ตัวอย่างที่ 2 จงแสดงให้เห็นว่า ถ้า 4² เป็นจำนวนคู่แล้ว 4 เป็นจำนวนคู่ และถ้า 4² ไม่เป็นจำนวนคู่แล้ว 4 ไม่เป็นจำนวนคู่ สมมูลกันหรือไม่ วิธีทำ

สามารถเขียนแทนในรูปแบบ p และ q ได้ดังนี้ $p = 4^2 \text{ เป็นจำนวนคู่} \quad \sim p = 4^2 \text{ ไม่เป็นจำนวนคู่}$ $q = 4 \text{ เป็นจำนวนคู่} \quad \sim q = 4 \text{ ไม่เป็นจำนวนคู่}$

และสามารถเขียนสรุปได้ดังนี้ p→q = ~p→~q

Discrete Math. 39

Earn S. (ENS)

ComSci, KMUTNB

ประพจน์สมมูลกัน

р	q	p→q
Т	T	Т
Т	F	F
F	Т	Т
F	F	Т

~p	~q	~p->~q
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

จากตารางทั้งสองนี้สรุปได้ว่า $p \rightarrow q \equiv \sim q \rightarrow \sim p$ ประพจน์<mark>ไม่สมมูลกัน</mark>

ตัวอย่างที่ 4 จงแสดงให้เห็นว่าประพจน์ p \rightarrow (q \lor r) \equiv (p \land ~q) \rightarrow r สมมูลกันหรือไม่

р	q	r	p→(q∨r)
T	Т	T	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	Т	Т
Т	Т	F	Т
Т	F	F	F
F	Т	F	Т
F	F	F	Т

р	q	r	(p∧~q)→r
Т	Т	Т	Т
Т	F	Т	Т
F	Т	T	Т
F	F	Т	Т
Т	Т	F	Т
Т	F	F	F
F	Т	F	Т
F	F	F	Т

จากตารางสองตารางนี้สรุปได้ว่า pightarrow(qightarrowr) \equiv (pightarrowq)ightarrowr ประพจน์สมมูลกัน

Discrete Math. 41

Earn S. (ENS)

ComSci, KMUTNB

ประพจน์สมมูลกัน

ประพจน์ที่สมมูลกัน เพื่อใช้ในการลดรูปประพจน์ และพิสูจน์ประพจน์

p = ~(~p)	นิเสธซ้อน		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	กระจาย	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge q)$	r) กระจาย
$(q \lor r) \land p \equiv (q \land p) \lor (r \land p)$	กระจาย	$(q \wedge r) \vee p \equiv (q \vee p) \wedge (r \vee q)$	p) กระจาย
$p \lor q \equiv q \lor p$	สลับที่	$p \land q \equiv q \land p$	สลับที่
$(p\lor q)\lor r \equiv p\lor (q\lor r)$	จัดกลุ่ม	$(p \land q) \land r \equiv p \land (q \land r)$	จัดกลุ่ม
~(p∨q) ≡ ~p∧~q	เดอมอร์แกน	$\sim (p \land q) \equiv \sim p \lor \sim q$	เดอมอร์แกน
\sim (p \rightarrow q) \equiv p \wedge \sim q		$p \rightarrow q \equiv \sim p \lor q$	
$p \rightarrow q \equiv \sim q \rightarrow \sim p$	ไระพจน์แย้งสลับที่	$\sim (\sim p \lor q) \equiv p \land \sim q$	
$(p \land q) \rightarrow r \equiv (p \rightarrow r) \lor (q)$	$q \rightarrow r$)	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$	

นิยาม : ลำดับของประพจน์ เขียนแทนด้วย $p_1 p_2 p_n$ และ q จะเรียก $p_1, p_2, ..., p_n$ ว่า สมมุติฐาน (hypothesis) และเรียก q ว่า ข้อยุติ (conclusion) ซึ่งสมเหตุสมผล ถ้า p_1 และ p_2 และ ... และ p_n เป็นจริง ทั้งหมด แล้ว q ต้องเป็นจริงเท่านั้น มิฉะนั้น จะถือว่า ไม่สมเหตุสมผล

นิยามนี้คือ (p₁∧p₂∧...∧p๓) → q จะสมเหตุสมผล เมื่อประพจน์เป็น สัจนิรันดร์ ต้องเอาประพจน์มาเชื่อมต่อกัน ถ้าตารางความจริงเป็นสัจนิรันดร์ถึงว่า ข้อความนี้สมเหตุสมผล

Discrete Math. 43

Earn S. (ENS)

ComSci, KMUTNB

การได้ข้อยุติอย่างสมเหตุสมผล

ตัวอย่างที่ 1 กำหนดประพจน์ทั้ง 2 ข้อเป็นจริง จงแสดงว่าการได้ข้อยุตินี้สมเหตุผล

- 1. ถ้า ฝนตก แล้ว น้ำท่วมถนนในกรุงเทพฯ
- 2. ฝนตก

สรุป น้ำท่วมถนนในกรุงเทพฯ

สามารถแทนข้อความ ออกมาในรูปแบบประพจน์ได้ดังนี้

ว แทน ฝนตก

q แทน น้ำท่วมถนนในกรุงเทพฯ

p→q คือ ถ้าฝนตก แล้วน้ำท่วมถนนในกรุงเทพฯ

โดยสรุป สามารถเขียนรูปแบบประพจน์ได้ดังนี้

 $p \rightarrow q$

р

_

q

Discrete Math. 44

Earn S. (ENS) ComSci, KMUTNB

วิธีการคือพยายามสมมุติให้มันเป็น F ให้ได้ จากข้อนี้สามารถเขียนออกมาเป็นรูปแบบ นี้ ((pightarrowq) ightarrow p)ightarrowq

р	\rightarrow q	∧ p	\rightarrow q	
	Т		F	์ สัจนิรันดร์
T	T เดิมกำหนด q ต้องเป็น F แต่ เมื่อแทนค่า F เข้าไปแล้ว ขัดแย้งกับเงือนไขใหม่ ที่ กำหนดให้ q เป็น T ดังนั้น ประพจน์ไม่สามารถเป็น F ได้	Т		สขนวนทว

เมื่อประพจน์เป็นสัจนิรันดร์ ประพจน์นี้จึงสมเหตุสมผล

Discrete Math. 45

Earn S. (ENS)

ComSci, KMUTNB

การได้ข้อยุติอย่างสมเหตุสมผล

ตัวอย่างที่ 2 กำหนด ประพจน์ทั้ง 2 ข้อ เป็นจริง จงแสดงว่าการได้ข้อยุตินี้สมเหตุผล

- 1. ถ้า ฝนตก แล้ว น้ำท่วมถนนในกรุงเทพฯ
- น้ำท่วมถนนในกรุงเทพฯ
 สรุป ฝนตก

โดยสรุป สามารถเขียนรูปแบบประพจน์ได้ดังนี้

 $p \rightarrow q$

a

р

วิธีการคือพยายามสมมุติให้มันเป็น F ให้ได้ จากข้อนี้สามารถเขียนออกมาเป็นรูปแบบ นี้ ((p→q)∧q)→p

р	\rightarrow q	∧ q	→ p	
Т			F	ไม่เป็นสัจนิรันดร์
F เดิมกำหนด p ต้องเป็น F เมื่อแทนค่า F เข้าไปแล้ว ประพจน์นี้สามารถเกิดขึ้นได้ แสดงว่าสอดคล้องกัน ดังนั้นประพจน์ สามารถเป็น F ได้	Т	Т		

เมื่อประพจน์ไม่เป็นสัจนิรันดร์ จึงไม่สมเหตุสมผล

Discrete Math. 47

Earn S. (ENS)

ComSci, KMUTNB

การได้ข้อยุติอย่างสมเหตุสมผล

ตัวอย่างที่ 3 กำหนดประพจน์ข้อ 1-4 เป็นจริง จงแสดงว่าการได้ข้อยุตินี้สมเหตุผล <u>วิธีทำ</u>

- 1. $p \land q \rightarrow \sim r$
- 2. ~s→q
- 3. P
- 4. R
- สรุป ร

วิธีการคือพยายามสมมุติให้มันเป็น F ให้ได้ จากข้อนี้สามารถเขียนออกมาเป็นรูปแบบ นี้ (p\q \rightarrow ~r)\(-s \rightarrow q)\\(p\rangle r \rightarrow s

$$(p \land q \rightarrow \sim r) \land (\sim s \rightarrow q) \land p \land r \rightarrow s$$

(p∧q→~r) ∧	(~s→q) ∧	р∧	r	\rightarrow s	
-	Г				
$(T \wedge F \rightarrow F)$	$T \rightarrow T$	Т	Т		
q ต้องเป็น F แต่คำตอบที่ได้คือ T ขัดแย้ง ซึ่งขัดแย้งกับเงื่อนไขของการเป็นเท็จ ของประพจน์นี้ ดังนั้นประพจน์จึงไม่สามารถเป็น F ได้	T→T			F	สัจนิรันดร์

เมื่อประพจน์เป็นสัจนิรันดร์ จึงสมเหตุสมผล

Discrete Math. 49

Earn S. (ENS)

ComSci, KMUTNB

การได้ข้อยุติอย่างสมเหตุสมผล

ตัวอย่างที่ 4 กำหนดประพจน์ข้อ 1 และ 2 เป็นจริง จงแสดงว่าการได้ ข้อยุตินี้สมเหตุผล

วิธีทำ

- 1. p→r
- 2. p→q

สรุป p→(r∧q)

วิธีการคือพยายามสมมุติให้มันเป็น F ให้ได้ จากข้อนี้สามารถเขียนออกมาเป็นรูปแบบ นี้ (pightarrowrightarrowq)

$$(p \rightarrow r) \land (p \rightarrow q) \rightarrow p \rightarrow (r \land q)$$

(p→r) ∧	(p→q)	\rightarrow	p →	(r∧q)	
Т			F		
Т	Т		Т	F	
T→T	T→T			r หรือ q ต้องเป็น F ตัวใดตัวหนึ่ง แต่คำตอบที่ได้คือ r หรือ q เป็น T ซึ่งขัดแย้งกับเงื่อนไขของการเป็นเท็จ ของประพจน์นี้ ดังนั้นประพจน์จึงไม่สามารถเป็น Fได้	สัจนิรันดร์

เมื่อประพจน์เป็นสัจนิรันดร์ จึงสมเหตุสมผล

Discrete Math.

51

ComSci, KMUTNB

Earn S. (ENS)

แบบฝึกหัด

- จากข้อความข้างล่างนี้ ให้ทำเครื่องหมาย ✓ หน้าข้อความที่ถูก และ ทำเครื่องหมาย × หน้าข้อความที่ผิด
 - 1.1) ถ้ามีประพจน์ย่อยรวมทั้งสิ้น 5 ประพจน์ จะมีค่าความจริงกี่กรณี 32
- _____1.2) ประพจน์ที่มีความสมมูลกันคือประพจน์ทั้งสองมีจำนวนค่าความจริงเท่ากัน
- 1.3) สัจนิรันดร์คือค่าความจริงของประพจน์เป็นจริงทุกกรณี
- 1.4) (p→q) → (p ↔ q) เป็น F แล้ว (p ∧ q) → q เป็น F
- ____1.5) (~p↔ ~r) V (p ↔ q) เป็น F แล้ว (p ∧ q) ∧ ~r เป็น F
- ____1.6) (p ∧ (q → r)) → (r V s) เป็น F แล้ว (p ∧ q) → s เป็น F
- $\underline{\hspace{1cm}}$ 1.7) ~ $((p \land q) \rightarrow (\sim p \ V \ r)) \equiv p \land \sim (q \rightarrow r)$
- ____1.8) $(p\rightarrow r) \land (q\rightarrow r) \equiv \sim (p \lor q) \land r$
- 1.9) p v (\sim q) v r $\equiv \sim$ p \rightarrow (q \rightarrow (r \land q))

- 1.10) ((p ightarrow q) V \sim q) ightarrow (p ightarrow r) เป็นสัจนิรันดร์
- 1.11) ((p∧q) ightarrow r) ightarrow (p ightarrow(q ightarrowr)) เป็นสัจนิรันดร์
- ____1.12) (~p∧ (qVp)) ↔ (p ∧~q) เป็นสัจนิรันดร์
- 2) จงหาว่าประพจน์ต่อไปนี้ สมมูลกันหรือไม่ P \wedge Q \to R และ P \to (Q \to R)
- 3) จงหาว่าประพจน์ต่อไปนี้ สมมูลกันหรือไม่ ~ (P \wedge Q) \leftrightarrow R และ P \to (~Q \leftrightarrow R)

Discrete Math.

53

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

4) p∧(q∨r) ≡ (p∧q)∨(p∧r) จงแสดงให้เห็นว่าประพจน์สมมูลกันหรือไม่

5) $p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$ จงแสดงให้เห็นว่าประพจน์สมมูลกันหรือไม่

6) จงแสดงว่าการสรุปข้อยุติข้อย่อยต่อไปนี้สมเหตุสมผลหรือไม่

	6.1)	p→q	6.2)	p→r
		~ q		p
		·—		_
		~ p		r
	077777			
	6.3)	r→s	6.4)	~q → r
		~s		p →~ q
		_		—
		~r		p→r
Discrete M	ath.			

ComSci, KMUTNB Earn S. (ENS)

แบบฝึกหัด

55

6.5) $(p \rightarrow q) \lor r$ 6.6) **~**p→r ~pVq $p \rightarrow q$

6.7) $(p \lor q) \longrightarrow (r \land s)$	6.8) p → ~q
r → ~s	q∨r
_	~ r
~p ∧ ~q	_
	Р
6.9) p ∧ q	6.10) $p \rightarrow q \rightarrow \sim s$
507 / 7	
$q \rightarrow r$	p∧s
90.00.5	17 Sul
$q \rightarrow r$	17 Sul
$q \rightarrow r$	p∧s —
q → r ~r∨s —	p∧s — q
q → r ~r∨s — s	p∧s — q
q → r ~r∨s — s	p∧s —— q
q → r ~r∨s — s	p ^ s q

Discrete Math. 57

Earn S. (ENS)

ComSci, KMUTNB

ประโยคเปิด

ประโยคเปิด คือ**ประโยคบอกเล่าที่มีตัวแปร** สำหรับ**ประโยค**เปิดไม่สามารถบอกค่าความจริงได้ ซึ่งประกอบด้วยตัวแปรหนึ่งตัว
หรือมากกว่าโดยไม่เป็นประพจน์ แต่ถ้าแทนค่าตัวแปรลงไป ประโยค
เปิดจะกลายเป็นประพจน์ และสามารถบอกค่าความจริงได้

ตัวอย่างประโยคเปิด เช่น

$$x + 5 = 15$$

$$x + y \ge 0$$

$$x = y$$

ตัวอย่างประโยคที่ไม่ใช่ประโยคเปิด เช่น

- 10 เป็นคำตอบของสมการ x 1 = 7
- โลกหมุนรอบตัวเอง
- จงหาค่า x จากสมการ 2x + 1 = 8
- กรุณานั่งเงียบๆ
- ห้ามสูบบุหรื่

ประโยคเปิด

ข้อตกลงของประโยคเปิด

- 1. นิยมแทนประพจน์ด้วย p, q, r, s,...
- 2. นิยมแทนประโยคเปิดด้วย P(x) , Q(x) ,... P(x, y) , Q(x, y), ...

โดย P(x) , Q(x) , ... แทน ประโยคเปิดที่มี x เป็นตัวแปร

โดย P(x, y) , Q(x, y) , ... แทน ประโยคเปิดที่มี x และ y เป็นตัวแปร

กำหนดให้ P(x) เป็นประโยคเปิดที่ขึ้นอยู่กับตัวแปร x

P(x, y) เป็นประโยคเปิดที่ขึ้นอยู่กับตัวแปร x และ

 $P(x_1, x_2, ..., x_n)$ เป็นประโยคเปิดที่ขึ้นอยู่กับตัวแปร $x_1, x_2, ..., x_n$

Discrete Math. 59

Earn S. (ENS) ComSci, KMUTNB

ประโยคเปิด

เช่น P(x) แทน x+4 = 20 เป็นประโยคเปิดที่ประกอบด้วยตัวแปร x ถ้า

แทนค่า x จะสามารถบอกได้ว่าค่าความจริงเป็น

จริงหรือเป็นเท็จ

p(x, y) แทน x + y < 50 เป็นประโยคเปิดที่ประกอบด้วยตัวแปร x, y ถ้า

แทนค่า x, yจะสามารถบอกได้ว่าค่าความจริง

เป็นจริงหรือเป็นเท็จ

ตัวบ่งปริมาณ (quantifier) เป็นตัวระบุจำนวนสมาชิกในเอก ภพสัมพัทธ์ที่ทำให้ประโยคเปิดกลายเป็นประพจน์ เพราะประโยคเปิด จะเป็นประพจน์ได้ เมื่อแทนค่าตัวแปรแล้วหรือมีตัวบ่งปริมาณกำกับอยู่ ตัวบ่งปริมาณมี 2 ชนิด คือ

- ตัวบ่งปริมาณที่กล่าวถึง "สมาชิกทุกตัวในเอกภพสัมพัทธ์" ซึ่งเขียน แทนได้ด้วยสัญลักษณ์ ∀ (for all) อ่านว่า " สำหรับสมาชิก x ทุก ตัว "
- ตัวบ่งปริมาณที่กล่าวถึง "สมาชิกบางตัวในเอกภพสัมพัทธ์" ซึ่ง เขียนแทนได้ด้วยสัญลักษณ์ ∃ (for some) อ่านว่า "สำหรับสมาชิก x บางตัว"

Discrete Math. 61

Earn S. (ENS)

ComSci, KMUTNB

ตัวบ่งปริมาณ

∀x(p(x)) คือ ทุกค่า x ในเอกภพสัมพัทธ์ หรือเมื่อแทนค่า x ทุก ตัวในเอกภพสัมพัทธ์ ลงใน p(x) แล้ว ทำให้ p(x) มีค่าความจริงเป็นจริง ทุกตัว ถึงว่าประพจน์นี้มีค่าความจริงเป็นจริง ถ้าหากแทนค่า x ลงใน p(x) แล้ว มีเพียง 1 ตัวที่ทำให้ความค่าจริงเป็นเท็จ ถึงว่าประพจน์นี้มีค่า ความจริงเป็นเท็จ

ตัวอย่างเช่น

∀x∈R (x²≥0) เป็น "จริง"

∀x ∈R (x²≥x) ไม่จริงกรณีนี้ x= 1/2 เป็น "เท็จ"

∀x∈R (|x|≥0) เป็น "จริง"

∀x ∈R (x³≥0) ไม่จริงกรณีนี้ x= -1 เป็น "เท็จ"

∃x(p(x)) คือ ค่า x เพียงค่าเดียวในเอกภพสัมพัทธ์ หรือเมื่อแทน ค่า x เพียงตัวเดียวตัวในเอกภพสัมพัทธ์ ลงใน p(x) แล้วทำให้ p(x) มีค่า ความจริงเป็นจริงเพียงตัวเดียว ถึงว่าประพจน์นี้มีค่าความจริงเป็นจริง ถ้าหากแทนค่า x ทุกตัวในเอกภพสัมพัทธ์ ลงใน p(x) แล้วทำให้ p(x) มี ค่าความจริงเป็นเท็จทุกตัว ถึงว่าประพจน์นี้มีค่าความจริงเป็นเท็จ

ตัวอย่างเช่น

$\exists x \in R (x^2 \ge x)$	เป็นจริงเมื่อแทน x=5	เป็น "จริง"
$\exists x \in R (x^2 \ge x)$	เปนจรึงเมื่อแทน x=5	เปน "จร่ง"

	4 1 A U A	ಡ, ,, ಡ ,,
$\exists x \in R (x=x+1)$	ไม่จริงสักกรณี	เป็น "เท็จ"
$\neg \lor \subset \cup (\lor - \lor \bot \bot)$	991 J 9 J 11 1 1 1 9 PR	6018 6110

∃x∈R (x²< 0) ไม่จริงสักกรณี เป็น "เท็จ"

Discrete Math. 63

Earn S. (ENS) ComSci, KMUTNB

ตัวบ่งปริมาณ

• ตัวบ่งปริมาณ 2 ตัว

	a ı	<u> </u>	ಜ । ୟା		ା ଝା ର
$\forall x \forall y (P(x,y))$	มคาความจ	จรงเปนจรง	กตอเมอ	x และ y ห	ทุกค่าเป็นจริง

้มีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ x และ y เพียง 1 คู่ทำให้เป็นเท็จ

∀x∃y(P(x,y)) มีค่าความจริงเป็นจริง ก็ต่อเมื่อ x ทุกตัวต้องสามารถมี y เพียง 1 ค่าที่ทำให้เป็นจริง

มีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ x อย่างน้อย 1 ตัวที่นำ y มาแทนค่าให้เป็นจริงไม่ได้

∃x∀y(P(x,y)) มีค่าความจริงเป็นจริง ก็ต่อเมื่อ y ทุกตัวต้องสามารถมี x เพียง 1 ค่าที่ทำให้เป็นจริง

ี มีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ y อย่างน้อย 1 ตัวที่นำ x มาแทนค่าให้เป็นจริงไม่ได้

∃x∃y(P(x,y)) มีค่าความจริงเป็นจริง ก็ต่อเมื่อ มีเพียง 1 คู่ที่เป็นจริง

มีค่าความจริงเป็นเท็จ ก็ต่อเมื่อ ไม่มีคู่ไหนที่เป็นจริง

Discrete Math. 64

Earn S. (ENS) ComSci, KMUTNB

ตัวอย่างที่ 1 จงหาค่าความจริงของ $\forall x \forall y (P(x, y))$ โดย U = { 0, 1 } และ $P(x, y) = x + y \ge y$

<u>วิธีทำ</u> กรณีนี้ต้องแทนค่าทั้งหมดที่เป็นไปได้ จากสมการนี้ x + y ≥ y และต้องเป็นจริงทุกกรณี

	ಡ, ಎ
$0+0 \ge 0$	เป็นจริง
010 = 0	000001

จากกรณี ทั้ง x และ y ให้ผลลัพธ์เป็นจริงทุกกรณี ดังนั้น ∀x∀y(P(x, y)) มีค่าความจริง เป็นจริง

Discrete Math. 65

Earn S. (ENS)

ComSci, KMUTNB

ตัวบ่งปริมาณ

ตัวอย่างที่ 2 จงหาค่าความจริงของ $\forall x \forall y (P(x, y))$ โดย U = { 0, 1 } และ $P(x, y) = x \ge y$

<u>วิธีทำ</u> กรณีนี้ต้องแทนค่าทั้งหมดที่เป็นไปได้ จากสมการนี้ x ≥ y และ ต้องเป็นจริงทุกกรณีแต่ถ้าเป็นเท็จเพียงกรณีเดียวถึงว่าเป็นเท็จ

0 ≥ 1 เป็นเท็จ

ดังนั้น ∀x∀y(P(x, y)) มีค่าความจริง เป็นเท็จ

ตัวอย่างที่ 3 จงหาค่าความจริงของ $\exists x \exists y (P(x, y))$ โดย U = { 0, 1 } และ $P(x, y) = x + y \ge xy$

<u>วิธีทำ</u> กรณีนี้ถ้าเป็นจริงเพียงกรณีเดียว ค่าความจริงเป็นจริง

1 + 1 ≥ 1*1 เป็นจริง

ดังนั้น ∃x∃y(P(x, y)) มีค่าความจริง เป็นจริง

Discrete Math. 67

Earn S. (ENS)

ComSci, KMUTNB

ตัวบ่งปริมาณ

ตัวอย่างที่ 4 จงหาค่าความจริงของ ∃x∃y(P(x, y)) โดย $U = \{ 0, 1 \}$ และ P(x, y) = x + y = 5

<u>วิธีทำ</u> กรณีนี้ต้องแทนค่าทั้งหมดที่เป็นไปได้ จากสมการนี้ x + y = 5 และต้องเป็น เท็จทุกกรณี จึงมีค่าความจริงเป็นเท็จ

0+0 ≠5 เป็นเท็จ

0+1 ≠5 เป็นเท็จ

1+0 ≠5 เป็นเท็จ

1+1 ≠5 เป็นเท็จ

จากกรณี ทั้ง x และ y ให้ผลลัพธ์เป็นเท็จทุกกรณี ดังนั้น ∃x∃y(P(x, y)) มีค่าความจริง เป็นเท็จ

ตัวอย่างที่ 5 จงหาค่าความจริงของ $\forall x \exists y (P(x, y))$ โดย $U = \{ -1, 0, 1 \}$ และ P(x, y) = x + y = 0

<u>วิธีทำ</u> กรณีนี้ต้องแทนค่า x ทุกตัว แต่ y ให้เอาตัวไหนมาแทนค่าก็ได้ของให้ ประพจน์เป็นจริง

$$-1 + 1 = 0$$
 เป็นจริง

$$0 + 0 = 0$$
 เป็นจริง

$$1 + -1 = 0$$
 เป็นจริง

จากกรณี x ทุกตัวให้ผลลัพธ์เป็นจริงทุกกรณี

ดังนั้น ∀x∃y(P(x, y)) มีค่าความจริง เป็นจริง

Discrete Math. 69

Earn S. (ENS)

ComSci, KMUTNB

ตัวบ่งปริมาณ

ตัวอย่างที่ 6 จงหาค่าความจริงของ $\forall x \exists y (P(x, y))$ โดย U = { 0, 1 } และ P(x, y) = x + y = 0

วิธีทำ กรณีนี้ต้องแทนค่า x ทุกตัว แต่ y ให้เอาตัวไหนมาแทนค่าก็ได้ของให้ประพจน์เป็นจริง

$$0 + 0 = 0$$
 เป็นจริง

ดังนั้น ∀x∃y(P(x, y)) มีค่าความจริง เป็นเท็จ

ตัวอย่างที่ 7 จงหาค่าความจริงของ ∃x∀y(P(x,y)) โดย $U = \{-1\ 0\ 1\}$ และ P(x,y) = x + y = 0

<u>วิธีทำ</u> กรณีนี้ต้องแทนค่า y ทุกตัว แต่ x ให้เอาตัวไหนมาแทนค่าก็ได้ของให้ ประพจน์เป็นจริง

$$-1 + 1 = 0$$
 เป็นจริง

$$0 + 0 = 0$$
 เป็นจริง

$$1 + -1 = 0$$
 เป็นจริง

จากกรณี y ทุกตัวให้ผลลัพธ์เป็นจริงทุกกรณี ดังนั้น ∃x∀y(P(x, y)) มีค่าความจริง เป็นจริง

Discrete Math. 71

Earn S. (ENS)

ComSci, KMUTNB

ตัวบ่งปริมาณ

ตัวอย่างที่ 8 จงหาค่าความจริงของ ∃x∀y(P(x, y)) โดย $U = \{ 0 \ 1 \}$ และ P(x, y) = x + y = 0

วิธีทำ กรณีนี้ต้องแทนค่า y ทุกตัว แต่ x ให้เอาตัวไหนมาแทนค่าก็ได้ของให้ประพจน์เป็นจริง

$$0 + 0 = 0$$
 เป็นจริง

$$x + 1 = 0$$
 เป็นเท็จ เพราะไม่สามารถหาค่ามาแทน x แล้วเป็นจริง จากกรณีนี้มี x หนึ่งกรณีที่ไม่เป็นจริง

ดังนั้น ∃x∀y(P(x, y)) มีค่าความจริง เป็นเท็จ

นิเสธของประพจน์ที่มีตัวบ่งปริมาณที่สมมูลกัน มีรายละเอียดดังนี้

~∀x(P(x)) สมมูลกับ ∃x(~P(x))

~∃x(P(x)) สมมูลกับ ∀x(~P(x))

~∀x(~P(x)) สมมูลกับ ∃x(P(x)]

~∃x(~P(x)) สมมูลกับ ∀x(P(x))

~∀x∀y(P(x, y)) สมมูลกับ ∃x∃y(~P(x, y))

~∀x∃y(P(x, y)) สมมูลกับ ∃x∀y(~P(x, y))

~∃x∀y(P(x, y)) สมมูลกับ ∀x∃y(~P(x, y))

~∃x∃y(P(x, y)) สมมูลกับ ∀x∀y(~P(x, y))

Discrete Math.

Earn S. (ENS) ComSci, KMUTNB

ตัวบ่งปริมาณ

73

ตัวอย่างนิเสธของประพจน์ที่มีตัวบ่งปริมาณที่สมมูลกัน

จงพิสูจน์ ~∀x(x+3 > 5) สมมูลกับ ∃x(x+3 ≤ 5)

การพิสูจน์ ~(∀x p(x)) สมมูลกับ ∃x ~p(x)

ต้องพิสูจน์ $\sim (\forall x \ p(x)) \rightarrow \exists x \sim p(x)$ และ $\exists x \sim p(x) \rightarrow \sim (\forall x \ p(x))$

กรณีพิสูจน์ $\sim (\forall x p(x)) \rightarrow \exists x \sim p(x)$

สมมติ ~(∀x p(x)) เป็น T

∀x (p(x)) เป็น F

มี x ที่ทำให้ p(x) เป็น F

มี x ที่ทำให้ ~p(x) เป็น T

∃x ~p(x) เป็น T

สรุป ~($\forall x p(x)$) $\rightarrow \exists x ~p(x)$ คือ T \rightarrow T เป็นจริง

กรณีพิสูจน์ $\exists x \sim p(x) \rightarrow \sim (\forall x p(x))$

สมมติ ∃x(~p(x)) เป็น T

มี x ที่ทำให้ ~p(x) เป็น T

มี x ที่ทำให้ p(x) เป็น F

∀x(p(x)) เป็น F

~(∀x p(x)) เป็น T

สรุป $\exists x \, (\sim p(x)) \rightarrow \sim (\forall x \, p(x))$ คือ $T \rightarrow T$ เป็นจริง

Discrete Math. 75

Earn S. (ENS)

ComSci, KMUTNB

ตัวบ่งปริมาณ

หมายเหตุ ถ้าหากต้องการพิสูจน์โดยแทนค่า สมมุติให้ U = {1, 2, 3, 4, 5}

ตัวเลขที่แทนค่า	1	2	3	4	5
∀x[x+3>5]	F	F	Т	T	Т
~∀x[x+3>5]	Т	Т	F	F	F
∃x[x+3≤5]	Т	Т	F	F	F

~∀x[x+3>5] โดยภายใน 3, 4, 5 ทั้งหมดมีค่าความจริงเป็น T แต่ประพจน์มีนิเสธจึงมีผลลัพธ์ที่ได้เป็น F และ 1, 2 ทำให้มีค่าความจริงเป็น F แต่ประพจน์มีนิเสธจึงมีผลลัพธ์ที่ได้เป็น T ซึ่งเหมือนกับกรณีของ ∃x[x+3≤5] ทุกกรณี

∃x[x+3≤5] โดยภายใน 3, 4, 5 ในเซตคำตอบนี้ไม่มีแม้แต่ตัวเดียว ที่ทำให้ประพจน์มีผลลัพธ์ที่ได้เป็น F และ 1, 2 ทำให้มีค่าความจริงเป็น T ซึ่งเหมือนกับกรณีของ ~∀x[x+3>5] ทุกกรณี

ดังนั้น จึงสามารถสรุปได้ว่า ~∀x(x+3 > 5) สมมูลกับ ∃x(x+3 ≤ 5) โดยพิจารณาจากการแทนค่า แต่วิธีนี้ไม่ สามารถนำมาพิสูจน์ทางคณิตศาสตร์ได้ แต่อาจจะใช้ในการตรวจสอบคำตอบได้

แบบฝึกหัด 1.1

1) จากข้อความข้างล่างนี้ ให้ทำเครื่องหมาย ✓ หน้าข้อความที่ถูก และ ทำเครื่องหมาย × หน้าข้อความที่ผิด

1.1) ~(∀x[x²=1] ∨ ∃x[2x=x+1]) ≡ ∃x[x²≠1] ∧ ∀x[2x ≠ x+1] โดย x∈R

Discrete Math. 77

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

 จากข้อความข้างล่างนี้ ให้ทำเครื่องหมาย ✓ หน้าข้อความที่ถูก และ ทำเครื่องหมาย × หน้าข้อความที่ผิด

1.1)	$\sim (\forall x[x^2=1] \vee \exists x[2x=x+1]) \equiv \exists x[x^2 \neq 1] \wedge $. ∀xเ2x ≠ x+11 โดย x∈R
 /		VALZA - ALIJ BIO ACI

1.2) ~∀x∀y[x+y > 0] ≡ ∃x∃y[x+y ≥ 0] โดย x,y∈R

___1.3) ~∃x∀y[(x=y)] ≡ ~∀x∃y[x≠y] โดย x,y∈R

1.4) ∃x∀y[(x=y)→(x²>y)] ≡ ∀x∃y[(x=y)∧(x²≤y)] โดย x,y∈R

____1.5) ~∃x∀y[(xy<0) → (x<0∨y<0)] ≡ ∃x∀y[(xy<0)∧(x≥0∧y≥0)] โดย x,y∈R

___1.6) ∃y∀x[(xy=0 ∧ x≠0) → y=0] ≡ ∀y∃x[(xy=0 ∧ x≠0) ∧ y≠0] โดย x,y∈R

____1.7) ∀x∃y[(x>y) ∧ (x²<y)] ≡ ∃x∀y[(x>y) → (y≤x²)] โดย x,y∈R

____1.8) U = {1, 2, 3} ∃x∀y[x² < y + 1] มีค่าความจริงเป็น F

____1.9) U = {1, 2, 3} ∃y∀x[x² + y² < 12] มีค่าความจริงเป็น T

2) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\forall x \in R(x^2-6x+9 \ge 0)$

Discrete Math. 79

Earn S. (ENS) ComSci, KMUTNB

แบบฝึกหัด 3

3) จงพิสูจน์ค่าความจริงของประพจน์นี้ ∀x∈**R(**x²-**6**x+**9** < **0)**

4) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\exists x (\frac{1}{x^2+1} > 1)$ เมื่อ x จำนวนจริง

Discrete Math. 81

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด 5

5) จงพิสูจน์ค่าความจริงของประพจน์นี้ ∀x(x² > x) โดยที่ x เป็นจำนวนจริง

6) จงพิสูจน์ค่าความจริงของประพจน์นี้ ∃x(x² > x) โดยที่ x เป็นจำนวนจริง

Discrete Math. 83

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด 8

7) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\forall x(x>1 o x^2>x)$ โดยที่ x เป็นจำนวนจริง

- 8) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\exists x(x>1 \to x^2>x)$ โดยที่ x เป็นจำนวน จริง
- 9) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\forall x (x>1 \to \frac{x}{x^2+1} < \frac{1}{3})$ โดยที่ x เป็น จำนวนจริง
- 10) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\exists x(x>1 \to \frac{x}{x^2+1} < \frac{1}{3})$ โดยที่ x เป็น จำนวนจริง
- 11)จงพิสูจน์ค่าความจริงของประพจน์นี้ $\forall x(x>1 \to \frac{x}{x^2+1} < \frac{1}{2})$ โดยที่ x เป็นจำนวน จริง
- 12) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\exists x(x>1 \to \frac{x}{x^2+1} < \frac{1}{2})$ โดยที่ x เป็น จำนวนจริง

Discrete Math. 85

Earn S. (ENS)

ComSci, KMUTNB

แบบฝึกหัด

- 13) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\forall x(p(x))$ โดย U = {1, 2, 3} และให้ p(x) คือ $x+1 \geq 2$
- 14) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\forall x(p(x))$ โดย U = {1, 2, 3} และให้ p(x) คือ $x+1 \leq 2$
- 15) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\exists x \ (p(x))$ โดย $U = \{1, 2, 3\}$ และให้ p(x) คือ x + 1 < 3
- 16) จงพิสูจน์ค่าความจริงของประพจน์นี้ $\exists x \ (p(x))$ โดย $U = \{1, 2, 3\}$ และให้ p(x) คือ x + 1 < 2