Candidate's N	ame:
Signature:	combination
P525/1	
CHEMISTRY	
Paper 1	PRIDE SECONDARY SCHOOL-MITYANA
2 ³ / ₄ hours	

END OF TERM II EXAMINATIONS-2022 Uganda Advanced Certificate of Education S.5 CHEMISTRY Paper 1

2 hours 45 minutes

INSTRUCTIONS TO STUDENTS:

Answer all questions in section A and six questions in section B All questions must be answered in the spaces provided

The Periodic Table, with relative atomic masses, is supplied.

Mathematical tables(3 – figure tables) are adequate or non-programmable scientificelectronic calculators may be used

Illustrate your answers with equations where applicable.

Where necessary, use the following:

Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4

litres. Standard temperature = 273 K

Standard pressure = $101325 N m^{-2}$

	For Examiner's Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

Turn Over

SECTION A (46 MARKS)

1.	a)	i)	ylamine is a weak base What is weak base ?	(1 mark)
		ii)	Write the equation for the ionization of methylar	mine. (1 mark)
		iii)	Write the expression for the ionization constant	of methylamine. (1 mark)
	b)	i)	Calculate the hydrogen ion concentration in a 0.0 methylamine. ($K_b = 4.4 \times 10^{-4}$; $K_w = 1 \times 10^{-14}$ a	02M solution of
	•••••	ii)	Calculate the pH of the solution.	(1 mark)
				•••••

	of compo	ounds. In		e to distinguish between the following pairs at you would observe when the reagent is
<i>a</i>)	CH ₃ CH ₂ Cl <i>Reagent:</i>	and	Chlorobenzene	(2 marks)
	Observatio	ns:		
7 \				
b)	CH ₃ CH ₂ OH Reagent:	and C		(2 marks)
	Observatio	ns:		
c)	CH ₃ CHO and Reagent:	l CH₃CH	I ₂ CHO	(2 marks)
	Observatio	ns:		

3.		_	ion for the reaction between	
	(a)	Silicon(IV) ox		(1 ½ marks)
••••		Aluminum	••••••	(1 ½ marks)
••••	(c)	Beryllium oxid		(1 ½ marks)
<i>4</i>		i) Define	a 'complex ion'.	(2 marks
			why transition metals form	
••••	(b)	Complete the	following table about comple	xes of chromium and cobalt. (2 marks)
	Comple	ex	Oxidation state of metal ion	Co-ordination number
	[Cr(NH	3)6] ³⁺		
	[CO(NI	$H_3)_4(H_2O)_2]Cl_2$		

5.	State what you would observe and write an ionic equation for the reaction between aqueous copper(II) sulphate solution and:								
Obs	(a) ervatio		(2 ½ marks)						
Equ	ation								
Obs		Aqueous potassium iodide solution.	(2 ½ marks)						
Equ	ation								
6.		excess magnesium was added to 100 cm ³ of 0.2 M copper(II) sulphate							
	a)	tion. The temperature rose by 16.9 °C. Write an equation for the reaction.	(1½ marks)						
•••••	(b)	Calculate the enthalpy of the reaction. (Density 1.0 g/cm ³ . Specific heat capacity of the solution							
	•••••								
•••••	•••••								

7.	a)	Define: i) Bond energy.	(02 marks)
		ii) Heat of formation.	(02 marks)
8.	a)	An alkyne X has molecular formula C ₄ H ₆ . Write the na structural formulae of all possible isomers of X.	mes and (2 marks)
	••••••		

	(b)	X reacts with an ammoniacal solution of silver nitrate.							
		i)	State what is observed.	(½ mark)					
		ii)	Write the equation for the reaction that takes place.	(1 mark)					
••••	c)	Writ	te equations to show how ${f X}$ can be synthesized from e	thene. (4 marks)					
		•••••							
	•••••								
•••••	•••••	•••••							
9.	Expl	ain the	law of mass action. Illustrate your answer						
		• • • • • • • • • • • • • • • • • • • •							
	• • • • •	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •					
	• • • • • •	• • • • • • • •		•••••					
	• • • • • •	• • • • • • • •		•••••					
	• • • • • •	• • • • • • • •		•••••					
	• • • • • •	• • • • • • •		•••••					
	•••••	• • • • • • • •		•••••					
	•••••	• • • • • • • •	••••••	•••••					
	• • • • • •	• • • • • • • •	••						

SECTION B: (54 MARKS)

Answer **six** questions from this section. Additional questions answered will **not** be marked.

10.	Write equations to show how the following compounds can be synthesize Indicate the reagents and conditions.									
	a)		$)_2C = NOF$			2 - ol.			(2 marks)	
•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	
•••••	••••••	••••••	•••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••••	
					•••••					
	b) CH	I ₃ CH(C	OH)CH3 fro	om CH ₃ C	H ₂ CH ₂ C	1		(3 m	arks)	
	0) 01	1)011(0	<i>311</i> / <i>C11</i> 3 110		11201120	-		(2 111	411 15)	
	•••••	•••••			,	•••••	•••••	•••••	•••••	
•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
		•••••				•••••				
•••••	<i>c</i>)	CH ₂ ($CH_2C \equiv CC$	`H2CH2CI	H ₃ from	 But-1-en	e	•••••	(2 marks)	
	c)	CHI		7112C112C1	ing monn	Dut I ch	.		(2 marks)	
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
•••••	••••••	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	
		d)	CH ₃ COC	CH ₃ from (CH ₃ CHC	CICH ₂ Cl			(2 marks)	
•••••		•••••	•••••		•••••	,		•••••		
										

11.	(a)	Write the formula and name of one ore of aluminium.	(1 mark)
••••	(b)	In the extraction of aluminium, the ore is first digested with hydroxide solution. Describe what happens and write equation the reaction (s) that take place.	
	••••••		
	•••••		
	(c)	Name the steps that are carried out after digesting the ore wi hydroxide.	th sodium (3 marks)
•••••	••••••		•••••••
•••••	•••••		••••••••
•••••	• • • • • • • • • • • • • • • • • • • •		••••••
•••••	••••••		•••••••••
	(c)	Describe how pure aluminium is obtained from the purified Write the equation for the reaction.	(2 marks)
•••••			

12.	a)	Define							
		<i>i)</i>	Electrolytic conductivity.	(1 mark)					
		ii)	Molar conductivity	(1 mark)					
	(b)	1.96 3.52	electrolytic conductivity of a 0.1 M ethanoic acid at 2 x 10 ⁻² Sm ⁻¹ . Its molar conductivity at infinite dilution x 10 ⁻² S m ² mol ⁻¹ . ulate:						
		i)	The molar conductivity of ethanoic acid at 20°C.	(2 marks)					
••••	• • • • • • •	• • • • • • •							
	•••••	ii)	The degree of ionization of the acid at 20°C.	(1 mark)					
		iii)	The pH of the acid	(2 marks)					
•••••	••••••	•••••							

	(c)	State two other f the acid.	actors other than conc	entration that can a	(2 marks)
• • • • • • • •					

13.	a)	State three properties exhibited by chromium as a transition metal. (3 marks)								
•••••	•••••									
•••••	(b)		equeous solution of iron(II) salt was added to an aciomium in the oxidation state of +6. State what was observed.	dified solution of (1 mark)						
		ii)	Write half equations and the overall equation for took place	the reaction that (3 ½ marks)						
••••	(c)	i)	State one application of chromium in the oxidation organic synthesis.	on state of +6 in (½ mark)						
•••••	•••••	ii)	Write the equation to illustrate your answer.	(1 mark)						
14.	Hydrogen iodide decomposes according to the equation.									
	a)	Wri	te an expression for the equilibrium constant (K _c) or	f the reaction. $(\frac{1}{2} mark)$						

	(b)	equi unde	ig of hydrogen iodide was heated in a 1000 cm ³ bulb at librium the bulb was rapidly cooled to room temperature or potassium iodide solution. The iodine liberated required the 2 M sodium thiosulphate for complete reaction. Calculate The number of moles of hydrogen iodide that were heaten	e and broken ed 33.5 cm ³ ate
•••••				
		ii)	The number of moles of iodine that were formed from decomposition.	n the (2½ marks)
•••••				
•••••		•••••		
•••••	•••••	iii)	The value of K_c for the reaction at 500 $^{\circ}C$.	(3½ marks)
•••••				
•••••				
•••••				
••••	(c)	i)	State what would happen to the value of K_c if the tem changed from 500 °C to 200 °C	perature (½ mark)
• • • • •				

•••••		ii)	Explain your answer.	(1 mark)
	a)		t is meant by " hydrolysis of a salt "?	(1 mark)
•••••	(b)		lution was made by dissolving 2.675 g of ammon or to make 1 litre of solution.	
		(i)	Write the equation for the hydrolysis of ammor	nium chloride. (1½ marks)
		(ii)	Calculate the hydrogen ion concentration and h solution in (b) above	ence the pH of the (5 marks)
••••	•••••	ii)	The degree of hydrolysis. $(K_w = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}, K_h = 1.75 \times 10^{-5})$	(1½ marks)

		•••••
16. Complete the equation and write an accomplete the equation and write an accomplex (a) CH3CHO+2,4-dinitrophenylhydraz		(5.5 marks)
)CH ₃ CH ₂ COCH ₃ +NaHSO _{3 (aq)}		
	(3.5 marks)	
7. A compound Y contains 52.2% carbon, 13.0% hydro		
a) Determine the empirical formula of Y.	(04marks)	

b) When vapourised 0.1g of Y occupied 78.8cm³ at 107°C and 654mmHg. (i) Calculate the formula mass of Y.	(2 ½ marks)
(ii) Determine the molecular formula of Y.	(01mark)
(iii) Write the structural formulae of all possible isomers of Y.	(01mark)
(iv) Y does not react with sodium. Identify Y.	(½ mark)

PERIODIC TABLE

1	2											3	4	5	6	7	8
1 H 1.0																1 H 1.0	2 He 4.0
3 Li 6.9	4 Be 9.0											5 B 10.8	6 C 12.0	7 N 14.0	8 O 16.0	9 F 19.0	10 Ne 20.2
11 Na 23.0	12 Mg 24.3											13 Al 27.0	14 Si 28.1	15 P 31.0	16 S 32.1	17 Cl 35.4	18 Ar 40.0
19 K 39.1	20 Ca 40.1	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.7	29 Cu 63.5	30 Zn 65.	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.9	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc 98.9	44 Ru 101	45 Rh 103	46 Pd 103	47 Ag 108	48 Cd 112	49 In 115	50 Sn 119	51 Sb 122	52 Te 128	53 I 127	54 Xe 131
55 Cs 133	56 Ba 137	57 La 139	72 Hf 178	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 Ti 204	82 Pb 207	83 Bi 209	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)															
			57 La 139	58 Ce 140	59 Fr 141	60 Nd 144	61 Pm (145)	62 Sm 150	63 Eu 152	64 Gd 157	65 Tb 159	66 Dy 162	67 Ho 165	68 Er 167	69 Tm 169	70 Yb 173	71 Lu 175
			89 Ac (227)	90 Th 232	91 Pa 231	92 U 238	93 Np 237	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf 251	99 Ea (254)	100 Fm (257)	101 Mv (256)	102 No (254)	103 Lw 260

1. H – indicates Atomic number

2. H – indicates relative Atomic mass 1.0

END