

Overview of NASA Power Technologies for Space and Aero Applications

Presented to

IEEE Cleveland Power and Energy Society

Raymond F. Beach NASA Glenn Research Center October 16, 2014

Topics

- Space Power Development Objectives and Roadmap
- Aircraft Power Development Objectives and Roadmap
- Component Technology Development

Space Power Development Objectives and Roadmap

U.S. companies
provide
affordable
access to low
Earth orbit

Mastering the

Mastering the fundamentals aboard the International Space Station

boundaries in cis-lunar space

Developing planetary independence by exploring Mars, its moons, and other deep

space

destinations

The state of the s

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion crew capsule

Missions: 6 to 12 months Missions: 1 month up to 12 months
Return: hours Return: days

Earth Reliant

Proving Ground

Earth Independent

Missions: 2 to 3 years

Return: months

The Space Launch System (SLS)

- Designed to carry the Orion spacecraft, cargo, equipment and science experiments to Earth's orbit and destinations beyond.
- The SLS will have an initial lift capacity of 70 metric tons and will be evolvable to 130 metric tons.
- It will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25 from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage.
- SLS will use solid rocket boosters for the initial development flights, followon boosters will be competed based on performance requirements and affordability considerations.

Orion MPCV Electrical Power System

Solar Array Wings

- 4 wings with 3 deployable panels
- Triple junction solar cells for high conversion efficiency
- Two axis articulation for sun tracking
- 11.1 kW total power for user loads and battery recharge

Battery Energy Storage

- 4 batteries of ≈ 30 A-hr each
- Li ion chemistry for high energy density
- High voltage for direct connection to power distribution
- Cell balancing for high charge/discharge cycle life

Power Distribution Equipment

- 4 power distribution channels
- High voltage (120 VDC) distribution for reduced weight
- Current-limiting SiC switchgear for fault protection
- Transient protection for lightning strikes (on ground)

Solar Electric Propulsion (SEP)

Potential Deep Space Vehicle Power System Characteristics

- Power 10 kW average
- Two independent power channels with multi-level cross-strapping
- Solar array power
 - 24+ kW Multi-junction arrays
- Lithium Ion battery storage
 - 200+ amp*hrs
 - Sized for deep space or low lunar orbit operation
- Distribution
 - 120 V secondary (SAE AS 5698)
 - 2 kW power transfer between vehicles

Deep space vehicle concept

Aero Power Development Objectives and Roadmap

Aircraft Turboelectric Propulsion

Projected Timeframe for Achieving Technology Readiness Level (TRL) 6

Spinoff Technologies Benefit More/All Electric

Architectures:

- High-power density electric motors replacing hydraulic actuation
- Electrical component and transmission system weight reduction

 Turboelectric and hybrid electric distributed propulsion 300 PAX

>10 MW

5 to 10 MW

- Hybrid electric 737–150 PAX
- Turboelectric 737–150 PAX

2 to 5 MW class

- Hybrid electric 100 PAX regional
- Turboelectric distributed propulsion 150 PAX

N

1 to 2 MW class

- Hybrid electric 50 PAX regional
- Turboelectric distributed propulsion 100 PAX regional

kW class

All-electric and hybrid-electric general aviation

(Power level for single engine)

Today

10 Year

20 Year

30 Year

40 Year

Aircraft Turboelectric Propulsion

Power is distributed electrically from turbine-driven generators to motors that drive the propulsive fans.

Advanced Power Technologies Development Needs and Directions

Power System Taxonomy

Flywheel Energy Storage

Photovoltaic Arrays

Current State	Drivers	Missions
 Solar Cell Efficiency approx. 30% 6 mil thick, non-flexible cells Relatively high cost with only limited automation 	 Higher efficiency Lower Cost Lower Mass Improved Radiation Resistance Survive Space Environments High bus voltage capability Increased Reliability Improved stowed volume and deployability High temperature/high intensity and low temperature/low intensity Large multi-hundre kilowatt solar array improved stowed volume and deployability. Arrays tailored for 	blanket technology using automated manufacturing methods
 Honey-comb panels @ 10- 15 kW power levels Stowed volume limits power levels available 		 kilowatt solar arrays w/ improved stowed volume and deployability. Arrays tailored for low intensity / low light

Nuclear Power Generation

Current State	Drivers	Future State
MMRTG • 110 W modules • Low efficiency	 Long duration deep space missions Greater distance from sun Planet surface ops Large power generations for nuclear electric propulsion 100sW – MW needs 	 Advanced Stirling Generation 20% Conversion Efficiency Nuclear surface power Large fission for NEP

Batteries

Current State	Drivers	Future State	
 Rechargeable: Ni-H₂ (45Wh/kg, > 10 years); Lilon (100 Wh/kg, > 5 years life) Primary: Ag-Zn (100 Wh/kg; 20 cycles); Li-SO₂ (200 Wh/kg; 5 years life) Heavy, Bulky Safety Concerns 	 Very high specific energy Rechargeable batteries to enable longer operation Emphasis on safety Longer cycle life Extreme temperature environments 	 "Beyond Li ion" Rechargeable Batteries: > 500 Wh/kg, 5 yrs Rechargeable Li ion Long cycle life batteries:> 220 Wh/kg, 5 yrs Primary: 1000 Wh/kg, > 20 yrs 	

Regenerative Fuel Cells

- Power rating 2-10 kW
- 35-50% Efficient
- Life: 50 Cycles
- Heavy, Bulky, Complex,
 Safety Concerns

- Longer missions days / weeks
- High Efficiency
- "Passive" management of fluids and gasses
- High Power Rating and energy storage capability
- Long Life, high reliability, safe
- Operate with flexible fuels

- Power Rating: 10-30 kW>8 hrs.
- Operable with reactants at > 2000 psi to reduce tank volume
- Life: 10,000 hours
- 70% Efficient, Reliable & Safe
- Solid oxide fuel cells capable of CO₂ processing and oxygen production

Flywheels

Specific Energy
 50Whr/kg

- High power
- Long life
- High Energy Density
- High Strength Fibers
- Low Loss Bearings
- Reliability
- Mass

- Carbon fiber or Graphene specific power >200+ W-hr/kg.
- Cycle life >150,000 cycles
- Operating temperature
- -150C to +150C

Power Conversion and Distribution Systems

- Power converters 94% efficient
- Power Distribution: 170V
 and 120 V
- Switchgear Solid State,
 Electromechanical
 Relays
- Need for unique vehicle configurations
- Extreme Space environments
- Maximize efficiency, power density, safety, reliability
- Minimize mass/volume, DDT&E costs, integration and operations cost

- Modular PMAD
- Power Converter >97%
- Voltage >300V
- Novel Switching Devices
- Superconductors
- High radiation tolerance

Intelligent Power Management Systems

 Spacecraft power managed by ground controllers

- Long term autonomous operations
- Load and energy management under constrained capacity
- Failure diagnostics and prognostics
- Integration with Mission Manager

Autonomous Vehicle
Management with Ground
Oversight

Electric Machines for Commercial Aircraft Propulsion

Current State	Drivers	Future State
 Commercial aircraft use turbofans or turbo props. Electric aircraft propulsion only implemented on small experimental planes. Motors, generators, power distribution, and energy storage to heavy and inefficient to exceed performance of baseline system 	 High Specific Power Electric Machines High Efficiency Electric Machines High reliability/ redundancy High Specific Energy batteries for some configurations 	 10-100MW aircraft propulsion electric system for regional, single isle and larger commercial aircraft. Reduced aircraft fuel burn, NOx emissions, and noise Electric propulsion power system able to meet or exceed current safety standards (engine out, redundancy, others).

