ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN

TOÁN RỜI RẠC VÀ THUẬT TOÁN

Bài 8 Mật mã học và ứng dụng (Cryptography and its applications)

Nguyễn Thị Hồng Minh

minhnth@gmail.com

Nội dung

- 1. Số nguyên tố
- 2. Số học mô đun
- 3. Mật mã học
 - Mật mã khóa bí mật, khóa công khai
 - Hàm băm
 - Chữ kí số

Chú ý: Hầu hết các hình vẽ trong các bài giảng được sưu tầm từ internet và được trình bày theo quan điểm của giảng viên.

Khái niệm

Số nguyên chỉ chia hết cho 1 và chính nó

Định lí

Một số nguyên bất kì có thể viết thành tích của các thừa số nguyên tố

Có vô số các số nguyên tố (Rosen Book – P260 Ed7)

- Định lí Số nguyên tố (Prime Number Theory)
 - Tỉ lệ giữa số các số nguyên tố nhỏ hơn n và n/log(n) tiến tới 1 khi n lớn

$$\lim_{n \to \infty} \frac{\pi(n)}{n/\log(n)} = 1$$

- Hệ quả
 - Xấp xỉ cho số nguyên tố thứ n: $p_n \sim n \log(n)$ (Rosen Book P262 Ed7)

Một số giả thuyết với số nguyên tố

• Tồn tại hàm f(n) mà giá trị của nó là số nguyên tố?

Ví dụ:
$$f(n) = n^2-n+41$$

 $f(1)=41, f(2)=43, f(2)=47, f(4)=53,...$

Điều này có ý nghĩa trong mật mã học và các ứng dụng

- Giả thuyết Goldbach: mọi số nguyên lẻ n > 5, là tổng của 3 số nguyên tố.
- Giả thuyết về cặp số nguyên tố sinh đôi (twin prime): có vô hạn các cặp số nguyên tố sinh đôi (hơn kém nhau 2 đơn vị)

- * Một số nghiên cứu tính toán với số nguyên tố
 - Xác định tính nguyên tố của số nguyên
 - Sinh số nguyên tố

The largest known prime (1/2018)

2^{77,232,917}**-1** (23,249,45 digits)

282,589,933-1 with 24,862,048 digits (7/2018)

https://primes.utm.edu/largest.html

Số học mô đun

Số học mô đun (modulo arithmetic)

Đồng hồ: modulo 12

Phép modulo:
$$a \equiv b \pmod{n}$$

 $\Leftrightarrow a = k*n + b (k - s\acute{o} nguyên)$

http://inversed.ru/Blog_1.htm

Mật mã (cryptography)

- Lĩnh vực đảm bảo an toàn thông tin
- 2 quá trình: Mã hóa (Encryption), Giải mã (Decryption)
- Đảm bảo tính chất:
 - Tính bí mật (confidentiality)
 - Tính toàn vẹn (integrity)
 - Tính xác thực (authentication)
 - Tính chống chối bỏ (non-repudiation)

- Mật mã khóa đối xứng (Symmetric Cryptography)
 - Tên gọi khác: Secret/Private Key Cryptography

- 2 bên gửi nhận thống nhất thuật toán mã hóa
- Khóa được truyền bí mật giữa 2 bên

- Mật mã khóa bất đối xứng (Asymmetric Cryptography)
 - Tên gọi khác: Public Key Cryptography

- Mã hóa và giải mã dùng 2 khóa khác nhau
- Public key (công bố), Private key (bí mật)

- Mật mã khóa bất đối xứng (Asymmetric Cryptography)
 - Hệ mã RSA (The RSA Cryptosystem) 1977
 - Ronald Rivest (1948, USA); Adi Shamir (1952, Israel),
 Leonard Adleman (1945, USA)
 - Mã hóa công khai với 2 khóa (K_u,K_r). Trong đó:
 - K_u public, K_r private, có mối quan hệ, nhưng không thể suy ra nhau (sử dụng hàm một chiều phân tích số thành thừa số nguyên tố).
 - 1 khóa dùng mã hóa, 1 khóa dùng giải mã.
 - Mã hóa bí mật (chỉ gửi cho người nhận), mã hóa chứng thực (nhiều người nhận xác thực).

- Mật mã khóa bất đối xứng (Asymmetric Cryptography)
 - Thuật toán RSA

Sinh khóa

- 1. Chọn 2 số nguyên tố lớn p,q
- 2. Tính N = p.q; n = (p-1)(q-1)
- 3. Chọn số u (nhỏ) sao cho:

$$gcd(u,n) = 1$$

4. Tính số r sao cho:

$$r.u \equiv 1 \pmod{n}$$
 $(r.u)\%n=1$

5. Public key: $K_{ij} = (u, N)$

Private key: $K_r = (r, N)$

Mã hóa và giải mã (M ⇒ C ⇒ M)

- 6. Mã hóa : $C = E(M,K_{II}) = M^{II} \mod N$
- 7. Giải mã: $M = D(C,K_r) = C^r \mod N$

Mật mã khóa bất đối xứng (Asymmetric Cryptography)

Thuật toán RSA

Sinh khóa

- 1. Chọn 2 số nguyên tố lớn p,q
- 2. Tính N = p.q; n = (p-1)(q-1)
- 3. Chọn số u (nhỏ) sao cho:

$$gcd(u,n) = 1$$

4. Tính số r sao cho:

$$r.u \equiv 1 \pmod{n}$$
 $(r.u)\%n=1$

5. Public key: $K_u = (u, N)$

Private key: $K_r = (r, N)$

Ví dụ:

```
p=11; q=3
```

$$N=33; n=20$$

Public key:

$$K_u = (u, N) = (3, 33)$$

Private key

$$K_r = (r, N) = (7, 33)$$

Mã hóa và giải mã (M ⇒ C ⇒ M)

- 6. Mã hóa : $C = E(M,K_u) = M^u \mod N$
- 7. Giải mã: $M = D(C,K_r) = C^r \mod N$

Mật mã khóa bất đối xứng (Asymmetric Cryptography)

Thuật toán RSA

Sinh khóa

- 1. Chọn 2 số nguyên tố lớn p,q
- 2. Tính N = p.q; n = (p-1)(q-1)
- 3. Chọn số u (nhỏ) sao cho:

$$gcd(u,n) = 1$$

4. Tính số r sao cho:

$$r.u \equiv 1 \pmod{n}$$
 $(r.u)\%n=1$

5. Public key: $K_u = (u, N)$

Private key: $K_r = (r, N)$

Mã hóa và giải mã (M ⇒ C ⇒ M)

6. Mã hóa : $C = E(M,K_u) = M^u \mod N$

7. Giải mã: $M = D(C,K_r) = C^r \mod N$

Ví dụ:

$$p=11; q=3$$

Public key:

$$K_u = (u, N) = (3, 33)$$

Private key

$$K_r = (r, N) = (7, 33)$$

$$C = E(M,K_{II}) = (25^3)\%33 = 16$$

Giải mã:

$$D(C,K_r) = (16^7)\%33 = 25 = M$$

- Mật mã khóa bất đối xứng (Asymmetric Cryptography)
 - RSA đảm bảo nguyên tắc mã hóa
 - ✓ Bản giải mã là bản rõ ban đầu

$$M = D(C, K_r) = C^r \mod N$$

$$M = D(C, K_r) = C^r \mod N$$

✓ Không thể (khó) thám mã: K_u ✓ K_r

- Hàm băm (Hash Function)
 - Mã hóa một chiều (không giải mã)

Hàm băm (Hash Function)

- Tính chất:
 - Dữ liệu giống nhau cho giá trị băm giống nhau
 - Dữ liệu khác nhau cho giá trị băm khác nhau
 - Không thể khôi phục giá trị băm về dữ liệu ban đầu
- Sử dụng
 - Hash function để kiểm tra tính toàn vẹn/đúng của dữ liệu
- Một số thuật toán băm
 - MD (Message Digets): MD2, MD4, MD5 (128bits)
 - SHA (Secure Hash Algorithm): SHA-1 (160bits), SHA-256 (256bits), SHA-384, SHA-512 (512bits)
 - https://emn178.github.io/online-tools/sha256.html

Hàm băm (Hash Function)

- Úng dụng
 - Quản lí mật khẩu
 - Đấu giá trực tuyến
 - Kiểm tra file được truyền/tải đúng bản gốc
 - Chữ kí số

Chữ kí số (digital signature)

- Đoạn dữ liệu số đặc trưng được đính kèm vào thông điệp phục vụ cho xác thực. Kết hợp hash và cryptography
- Tính chất:
 - Là đặc trưng duy nhất cho mỗi thông điệp (tài liệu)
 - Không thể giả mạo: Có cơ chế phát hiện sự giả mạo.
 - Không thể chối bỏ: Có cơ chế phát hiện tác giả của chữ ký.
- Quy trình
 - Người gửi kí (signing) khóa bí mật (mã hóa chứng thực)
 - Người nhận giải mã, xác thực (verification) khóa công khai

Chữ kí số (digital signature)

Vấn đề nghiên cứu thêm

- Mật mã học trong công nghệ blockchain
 - Lý thuyết, công nghệ kết hợp trong blockchain
 - Mật mã học
 - Mạng và truyền thông
 - Trò chơi
 - Blockchain từ các góc nhìn
 - Business: Cơ sở dữ liệu chứa đựng tài sản, có giao dịch
 - Kĩ thuật: Phương thức bất biến lưu trữ lịch sử giao dịch
 - Xã hội: Thiết lập thể chế mới về niềm tin, sự đồng thuận