Министерство науки и высшего образования Российской Федерации Московский физико-технический институт (национальный исследовательский университет) Заочная физико-техническая школа

МАТЕМАТИКА

Планиметрия (часть I)

Решение задания №1 для 9-х классов

(2020 – 2021 учебный год)

г. Долгопрудный, 2020

Составитель: Т. С. Пиголкина, доцент кафедры высшей математики МФТИ.

Математика: решение задания №1 для 9-х классов (2020 – 2021 учебный год), 2020, 21 с.

Составитель:

Пиголкина Татьяна Сергеевна

Подписано 16.09.20. Формат 60×90 1/16. Бумага типографская. Печать офсетная. Усл. печ. л. 1,31. Уч.-изд. л. 1,16.

Заочная физико-техническая школа Московского физико-технического института (национального исследовательского университета)

Институтский пер., 9, г. Долгопрудный, Москов. обл., 141700. ЗФТШ, тел. (495) 408-51-45 — **заочное отделение**, тел. (498) 744-63-51 — **очно-заочное отделение**, тел. (498) 744-65-83 — **очное отделение**.

e-mail: zftsh@mail.mipt.ru

Наш сайт: https://zftsh.online/

© МФТИ, ЗФТШ, 2020

Все права защищены. Воспроизведение учебно-методических материалов и материалов сайта ЗФТШ в любом виде, полностью или частично, допускается только с письменного разрешения правообладателей.

Контрольные вопросы

- **1(4).** а) Докажите, что для прямоугольного треугольника справедливы равенства (в обозначениях § 1): $a^2 = c \cdot a_c$ и $h^2 = a_c \cdot b_c$.
 - **б)** По данным рисунка 2 найдите $c, b, \cos \alpha$.
 - в) По данным рисунка 3 найдите h, c, если $\lg \alpha = \frac{2}{3}$.
- Δ **1a(2).** Приведём доказательство на основе подобия треугольников. Пусть CH высота к гипотенузе AB из вершины прямого угла треугольника ABC (рис. 1) и $\angle BAC = \alpha$, тогда и $\angle BCH = \alpha$. Имеем две пары подобных треугольников:

$$\Delta AHC \sim \Delta CHB \Rightarrow \frac{AH}{CH} = \frac{HC}{HB} \Leftrightarrow \frac{b_c}{h} = \frac{h}{a_c} \Leftrightarrow \frac{h^2 = a_c \cdot b_c}{h^2}.$$

$$\Delta ACB \sim \Delta CHB \Leftrightarrow \frac{AB}{CB} = \frac{CB}{HB} \Leftrightarrow \frac{c}{a} = \frac{a}{a} \Leftrightarrow a^2 = \underline{c} \cdot \underline{a}_c.$$

16(1). Пусть AH = x, BC = a (рис. 2). По доказанному $CH^2 = BH \cdot AH \Leftrightarrow 9 = 1 \cdot x \Leftrightarrow x = 9$, c = AB = 10.

Далее,
$$\underline{b} = AC = \sqrt{x \cdot c} = \underline{3\sqrt{10}}$$
 и $\cos \alpha = \frac{x}{b} = \frac{3}{\sqrt{10}}$.

1в(1). В прямоугольном треугольнике *CHB* угол *BCH* равен α (рис. 3), $\operatorname{tg}\alpha = \frac{BH}{CH} \Leftrightarrow \frac{2}{3} = \frac{4}{h} \Leftrightarrow \underline{h=6}$. В треугольнике *ACH* $\operatorname{tg}\alpha = \frac{CH}{AH} \Leftrightarrow \frac{2}{3} = \frac{h}{v} \Leftrightarrow y=9, \ c=BH+y, \underline{c=13}$.

- 2(7). а) Сформулируйте теорему о биссектрисе угла треугольника.
- **б)** В треугольнике ABC биссектриса AD делит сторону BC в отношении BD:DC=1:3. Медиана BM пересекает биссектрису AD в точке O (рис. 4). Найдите отношения BO:OM и AO:OD.

- **в)** В равнобедренном треугольнике ABC биссектриса CK равна основанию AC. Найдите углы треугольника ABC.
- г) Радиус окружности, вписанной в равнобедренный треугольник, составляет 2/7 его высоты к основанию. Периметр треугольника равен 28. Найдите стороны. (Используйте свойство биссектрисы треугольника).

 Δ **2a(1).** Биссектриса угла треугольника делит противолежащую углу сторону на отрезки, пропорциональные прилежащим им сторонам (если AD – биссектриса треугольника ABC, то $\frac{BD}{DC} = \frac{AB}{AC}$ (рис. 4). Теорема Задания).

26(3). По свойству биссектрисы треуголь-

ника имеем $\frac{BD}{DC} = \frac{AB}{AC} \Leftrightarrow \frac{x}{3x} = \frac{a}{AC} \Leftrightarrow \underline{AC = 3a}$. Точка M - середина сто-

роны AC, $AM = \frac{3}{2}a$. В треугольнике ABM отрезок AO – биссектриса, по

свойству биссектрисы
$$\frac{BO}{OM} = \frac{AB}{AM} \Leftrightarrow \frac{BO}{OM} = \frac{a}{\frac{3}{2}a} \Leftrightarrow \underline{BO:OM = 2:3}.$$

Пусть $DK \parallel BM$. Стороны угла BCM пересечены параллельными прямыми DK и BM, по теореме 6 §4 имеем $MK:MC=BD:BC \Leftrightarrow MK:MC=1:4 \Leftrightarrow MK=\frac{1}{4}MC=\frac{1}{4}\cdot\frac{3}{2}a$. $MK=\frac{3}{8}a$.

Стороны угла DAC пересечены параллельными прямыми DK и OM, по той же теореме

$$\frac{AO}{OD} = \frac{AM}{MK} \Leftrightarrow \frac{AO}{OD} = \frac{\frac{3}{2}a}{\frac{3}{8}a} = 4, \qquad \underline{AO:OD=4:1}.$$

2в(1). Треугольник ABC – равнобедренный, $\angle A = \angle C = 2\alpha$ (рис. 5). Биссектриса CK делит угол C пополам, $\angle ACK = \alpha$. По условию CK = AC, т. е. треугольник ACK – равнобедренный с основанием AK, $\angle AKC = \angle KAC = 2\alpha$. Сумма углов треугольника ACK

равна 5α и равна π , значит $\alpha = \frac{\pi}{5} = 36^{\circ}$. Углы тре-

угольника
$$ABC$$
 равны $\angle A = \angle C = 2\alpha = \frac{2\pi}{5} = 72^{\circ}$,

Рис. 5

 $\angle B = \pi - 2 \angle A = \frac{\pi}{5}$, кратко $\frac{2\pi}{5}, \frac{2\pi}{5}, \frac{\pi}{5}$ или $\frac{72^{\circ}, 72^{\circ}, 36^{\circ}}{}$. Отсюда следует, что треугольник *BKC* так же равнобедренный и BK = a.

2г(2). В равнобедренном треугольнике ABC высота BD к основанию AC является медианой и биссектрисой (рис. 6). Если O – центр вписанной окружности, то он лежит на BD и CO – биссек-

триса угла C. Пусть $DC = x \left(DC = \frac{1}{2}AC\right)$, по свой-

ству биссектрисы треугольника для треугольника

$$BDC$$
 имеем $\frac{BO}{OD} = \frac{BC}{DC} \Leftrightarrow \frac{BC}{x} = \frac{\frac{5}{7}BD}{\frac{2}{7}BD} \Leftrightarrow BC = \frac{5}{2}x.$

Рис. 6

Периметр треугольника ABC равен $2 \cdot BC + 2x = 5x + 2x = 7x$. По условию $7x = 28 \implies x = 4$, AC = 8, AB = BC = 10.

- **3(4). а)** В треугольнике ABC проведены высоты AA_1 и BB_1 . Известно, что AB = 6, $A_1B_1 = 3\sqrt{2}$. Чему равен угол ACB? (Первая лемма о высотах).
- **б)** Угол ACB треугольника ABC равен 60° . Высоты AA_1 и BB_1 пересекаются в точке H, BH = 3, $HB_1 = 2$. Чему равна высота AA_1 ? (Вторая лемма о высотах).
- Δ **3a(2).** По первой лемме о высотах в любом не прямоугольном треугольнике $\Delta A_1 B_1 C \sim \Delta A B C$ и коэффициент подобия равен $\left|\cos C\right| = \frac{A_1 B_1}{A B}$.

Если угол
$$C$$
 – острый, то $\cos C = \frac{A_1 B_1}{AB} = \frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2}$, $\angle C = 45^{\circ}$; если же

угол
$$C$$
 – тупой, то $\cos C = -\frac{\sqrt{2}}{2}$, $\angle C = 135^{\circ}$.

36(2). В треугольнике ABC высоты AA_1 и BB_1 пересекаются в точке H, $\angle C = 60^\circ$ (рис. 7). В треугольнике AA_1C угол $A_1AC = 30^\circ$ и это острый угол прямоугольного треугольника AHB_1 , катет $HB_1 = 2$, следовательно, гипотенуза AH = 4. По

Рис. 7

второй лемме о высотах $AH \cdot HA_1 = BH \cdot HB_1 \Leftrightarrow 4 \cdot HA_1 = 3 \cdot 2 \Leftrightarrow HA_1 = \frac{3}{2}$ и

$$AA_1 = 4 + \frac{3}{2} = \frac{11}{2} = \frac{5.5}{2}$$
.

- 4(5). а) Сформулируйте теорему о трёх медианах.
- **б)** Медиана BM треугольника ABC равна половине стороны AC. Докажите, что $\angle B = 90^{\circ}$.
- в) В треугольнике ABC его медианы AA_1 , BB_1 и CC_1 пересекаются в точке О. Середины отрезков ОА, ОВ и ОС обозначены соответственно A_2, B_2 и C_2 . Выразите периметр шестиугольника $A_2C_1B_2A_1C_2B_1$ через медианы $m_a = AA_1, m_b = BB_1, m_c = CC_1$.
- Δ **4a(1).** Три медианы треугольника пересекаются в одной точке, и каждая медиана точкой пересечения делится в отношении 2:1, считая от вершины.
- **46(2).** Из $BM = \frac{1}{2}AC$ следует AM = MB и CM = MB (рис. 8). В равнобедренном треугольнике АМВ равные углы при основании AB обозначим α , в равнобедренном треуголь-Рис. 8 нике СМВ равные углы при основании ВС обозначим β . Сумма углов треугольника ABC равна 180° и равна $2\alpha + 2\beta$, откуда и следует, что $\angle ABC = \alpha + \beta = 90^{\circ}$.

4в(2). По теореме о трёх медианах $BO = \frac{2}{3}BB_1 = \frac{2}{3}m_e$ (рис. 9). В треугольнике AOBточка C_1 – середина стороны AB, точка A_2 – середина стороны $AO \Rightarrow$ отрезок C_1A_2 – средняя линия, она параллельна ВО и равна его половине:

 $C_1 A_2 = \frac{1}{2} \left(\frac{2}{3} m_b \right) = \frac{1}{3} m_b$. Аналогично, $A_1 C_2 - \text{сред}$

няя линия треугольника BOC, $A_1C_2 \parallel BO$ и

Рис. 9

$$A_1 C_2 = \frac{1}{2} \left(\frac{2}{3} m_b \right) = \frac{1}{3} m_b$$
. Точно также устанавливается, что

 $C_1B_2 \parallel AA_1 \parallel B_1C_2$ и $C_1B_2 = B_1C_2 = \frac{1}{3}m_a$. Затем устанавливаем,

 $B_1A_2 = A_1B_2 = \frac{1}{3}m_c$ и $B_1A_2 \parallel CC_1 \parallel A_1B_2$. В шестиугольнике $A_2C_1B_2A_1C_2B_1$ противоположные стороны попарно параллельны и равны трети соответствующей медианы. Итак, периметр этого шестиугольника равен $2\left(\frac{1}{3}m_a + \frac{1}{3}m_b + \frac{1}{3}m_c\right) = \frac{2}{3}(m_a + m_b + m_c)$.

- **5(4).** Точка D лежит на стороне AC треугольника ABC, точка E на стороне BC. Известно: AD:DC=4:3, BE:EC=2:1.
- **a)** Отрезки AE и BD пересекаются в точке O. Найдите отношения AO:OE и BO:OD. (Теорема Менелая).
- **б)** Прямая DE пересекает прямую AB в точке K. Найдите отношение AK:AB. (Теорема Менелая).
- Δ **5a(2).** <u>1 способ</u> (по теореме Менелая). Обозначим DC = 3x, CE = y, тогда AD = 4x, BE = 2y (рис. 10).
 - 1) Рассматриваем треугольник СВD и секущую ЕА. По теореме Менелая:

$$\frac{CE}{EB} \cdot \frac{BO}{OD} \cdot \frac{DA}{AC} = 1 \Leftrightarrow \frac{y}{2y} \cdot \frac{BO}{OD} \cdot \frac{4x}{7x} = 1 \Leftrightarrow BO:OD = 7:2.$$

2) Теперь рассматриваем треугольник САЕ и секущую DB. Имеем:

$$\frac{CD}{DA} \cdot \frac{AO}{OE} \cdot \frac{EB}{BC} = 1 \Leftrightarrow \frac{3x}{4x} \cdot \frac{AO}{OE} \cdot \frac{2y}{3y} = 1 \Leftrightarrow \underbrace{AO : OE = 2:1}_{}.$$

Рис. 10

Рис. 11

2 способ (без использования теоремы Менелая). Через точку E проводим $EK \parallel BD$. (Рис. 11). Параллельные прямые EK и BD пересекают стороны угла BCD. По теореме 6 Задания $DK:KC=BE:EC \Leftrightarrow DK:KC=2:1; DK=\frac{2}{3}DC=2x$. Параллельные прямые OD и EK пе-

ресекают стороны угла *EAC*, по той же теореме $=AD:DK \Leftrightarrow AO:OE=4x:2x$, AO:OE=2:1. Для определения отношения BO:OD надо провести через точку D прямую, параллельную прямой AE до пересечения со стороной BC и далее аналогичные рассуждения.

5б(2). Если через точку E провести прямую EF, параллельную BA, то она пересечёт отрезок AC в точке, лежащей между D и C, так как $\frac{CE}{CR} = \frac{1}{3} < \frac{CD}{CA} = \frac{3}{7}$. Поэтому точки K и В лежат в разных полуплоскостях по отношению к прямой AC (рис. 12). Пусть $AH \parallel BC$, $\Delta ADH \sim \Delta CDE$ (по двум углам), тогда $\frac{AH}{CE} = \frac{AD}{DC} \Leftrightarrow AH = \frac{4}{3}y$. Далее, в треугольнике KBE отрезок $AH \parallel BE$, по лемме $\Delta KAH \sim \Delta KBE \Rightarrow \frac{KB}{KA} = \frac{BE}{AH} \Leftrightarrow \frac{c+z}{z} = \frac{2y}{\frac{4}{2}y} \Leftrightarrow$

Рис. 12

$$\frac{c}{z} = \frac{1}{2}; z = 2c, \underline{AK:AB=2:1}.$$

- 6(4). а) Диагонали трапеции, пересекая среднюю линию, делят её на три равные части. Найдите отношение длин оснований.
- **б)** Отрезок *MN* параллелен основаниям трапеции *ABCD* (рис. 14), BC=3, AD=13, MN=9. Найдите в каком отношении прямая MN делит боковые стороны.
- в) Найдите высоту равнобокой трапеции, диагональ которой равна d, а средняя линия равна m.
- ∆ 6а(1). Средняя линия трапеции, пересекая диагональ трапеции, делит её пополам (свойство 1° трапеции). Если MN- средняя линия трапеции АВСО (рис. 13) пересекает диагонали в точках P и Q, AD=a, BC=b, то

$$MP = \frac{b}{2}, \ QN = \frac{b}{2}, PQ = \frac{a-b}{2}$$
. Из равенства

$$\frac{b}{2} = \frac{a-b}{2}$$
 следует $\underline{\underline{a=2b}}$.

Рис. 13

66(2). Решаем по методу Примера 5 Задания. Пусть $CE \parallel BA$ и $NF \parallel BA$ (рис. 14). *MBCE* – параллелограмм, Имеем: ME = BC. AMNF – параллелограмм, MN = AF, nother EN = MN - BC = 6, FD = AD - MN = 4. Далее: $\Delta CNE \sim \Delta NDF$ (по двум углам), $\frac{CN}{ND} = \frac{EN}{ED} \Leftrightarrow \frac{CN}{ND} = \frac{3}{2}$. По

Рис. 14

обобщённой теореме Фалеса $\frac{BM}{MA} = \frac{CN}{ND} = \frac{3}{2}$.

6в(1). Если основания равнобокой трапеции $ABCD\ (AD \| BC)$ равны a и b (рис. 15) и $CF \perp AD$, то по свойству 5° равнобокой трапеции $AF = \frac{a+b}{2}$, $FD = \frac{a-b}{2}$. В прямоугольном треугольнике ACF с гипотену-

зой AC=d и катетом $AF=\frac{a+b}{2}=m$ находим катет $\underline{CF}=\sqrt{d^2-m^2}$.

Рис. 15

Рис. 16

- **7(6).** a) В трапеции отрезок MN параллелен основаниям (рис. 16), MN = 4, сумма оснований равна 9. Найдите основания (см. Пример 4 Задания).
- **б)** Диагонали трапеции взаимно перпендикулярны и равны 7 и $\sqrt{15}$. Найдите расстояние между серединами оснований.
- в) Углы при большем основании трапеции равны 61° и 29° . Точки M и N – середины оснований, точки P и Q – середины боковых сторон. Найдите основания трапеции, если MN = 4 и PQ = 7.

 Δ 7a(2). Пусть BC = b, AD = a, (рис. 16). Из $MO \parallel AD$ следует $\triangle MBO \sim \triangle ABD$ (по лемме §3), $\frac{MO}{AD} = \frac{BO}{BD} \Leftrightarrow MO = a \cdot \frac{BO}{BD}$. (1)

Далее, $\triangle AOD \sim \triangle COB$ (по двум углам), $\frac{OD}{RO} = \frac{AD}{RC} \Leftrightarrow \frac{OD}{RO} = \frac{a}{h} \Leftrightarrow$ $\Leftrightarrow \frac{OD}{BO} + 1 = \frac{a}{b} + 1 \Leftrightarrow \frac{BO + OD}{BO} = \frac{a + b}{b} \Leftrightarrow \frac{BO}{BD} = \frac{b}{a + b}$, тогда из (1) следует $MO = \frac{ab}{a+b}$.

Аналогично доказывается, что $ON = \frac{ab}{a+b}$, поэтому $MN = \frac{2ab}{a+b}$. MN = 4 и a + b = 9 получаем систему $\begin{cases} a + b = 9, \\ ab = 18. \end{cases}$ При $\underline{a=6}, \underline{b=3} (a>b).$

76(2). Пусть $AD = a, BC = b, AC \perp BD, AC = \sqrt{15}, BD = 7$, точки M и N- середины оснований (рис. 17). По свойству 3° трапеции середины оснований и точки пересечения диагоналей лежат на одной прямой, следовательно, MN = MO + ON. В прямоугольных треугольниках *ВОС* и *АОD* отрезки *ОМ* и ON - медианы к гипотенузам, следовательно, $OM = \frac{1}{2}BC, ON = \frac{1}{2}AD$

Рис. 17

$$MN = \frac{1}{2}(a+b).$$

Диагонали перпендикулярны друг другу. Пусть $BK \parallel AD$ $DK \parallel AC$, тогда $\angle BDK = 90^{\circ}$, DK = AC и CK = AD (т. к. $ACKD - \pi a$ раллелограмм). Итак, BK = b + a, BK - гипотенуза прямоугольного треугольника *BDK*: $BK = \sqrt{BD^2 + AC^2} = \sqrt{49 + 15} = 8$, и BK = a + b. Haxoдим $MN = \frac{a+b}{2} = 4$.

7в(2). Сумма углов A и D при большем основании трапеции ABCD равна 90° , следовательно, продолжения боковых сторон пересекаются под углом 90° (рис. 18). Точки M и N — середины оснований. По свойству 3° трапеции середины оснований и точка пересечения продолжений боковых сторон лежат на одной прямой, т. е.

Рис. 18

точка N лежит на отрезке KM и MN = KM - KN . В прямоугольном треугольнике AKD и BKC отрезки KM и KN соответственно являются медианами к гипотенузам, $KM = \frac{1}{2}AD, KN = \frac{1}{2}BC, MN = \frac{1}{2}(AD - BC)$. От-

резок PQ – средняя линия, $PQ = \frac{1}{2}(AD + BC)$. По условию

$$AD-BC=8$$
, $AD+BC=14 \Rightarrow AD=11$, $BC=3$.

- 8*(3). а) Будут ли два четырёхугольника подобны, если четыре угла одного соответственно равны четырём углам другого?
- **б)** Дана трапеция с основаниями *а* и *b*. Прямая, параллельная основаниям, разбивает её на две трапеции, подобные друг другу. Какова длина отрезка прямой внутри трапеции?
- Δ В §3 дано определение подобных фигур. Подобные фигуры переводятся друг в друга преобразованием подобия.

Напомним определение преобразования «гомотетия» (в переводе с греческого «одинаковое расположение»). Пусть F — данная фигура и O — фиксированная точка. Проведём через произвольную точку X фигуры F луч OX и отложим на нём отрезок OX', равный $k \cdot OX$,

Рис. 19

где k — положительное число (рис. 19). Преобразование фигуры F, при котором каждая её точка X переходит в точку X', построенную указанным способом, называется гомотетией относительно центра O. Число k называется коэффициентом гомотетии. Гомотетия есть преобразование подобия: для любых точек X и Y фигуры F и их образов X' и Y' при

гомотетии
$$X'Y' = kXY$$
. Действительно, $\overrightarrow{OX'} = k\overrightarrow{OX}$, $\overrightarrow{OY'} = k\overrightarrow{OY}$, $\overrightarrow{OY'} = k\overrightarrow{OY}$, $\overrightarrow{X'Y'} = \overrightarrow{OY'} - \overrightarrow{OX'} = k\left(\overrightarrow{OY} - \overrightarrow{OX'}\right) = k \cdot \overrightarrow{XY} \Rightarrow \left|\overrightarrow{X'Y'}\right| = k\left|\overrightarrow{XY}\right| \Leftrightarrow X'Y' = k \cdot XY$.

Преобразование подобия есть композиция гомотетии и движения (рис. 20). Фигура F'' равна фигуре F', фигура F'' гомотетична с коэффициентом k фигуре F, фигура F'' подобна фигуре F с коэффициентом k, но не гомотетична ей.

Рис. 20

8a(1). Два четырёхугольника F_1 и F_2 , у которых четыре угла одного равны соответственно четырём углам другого, могут не быть подобными, например, квадрат и прямоугольник с отношением сторон 2:1, поскольку не существует прямоугольника с таким отношением сторон, который был бы гомотетичен квадрату (квадрат при гомотетии всегда переходит в квадрат). K

86(2). Рассмотрим трапецию *ABCD*. По определению, у трапеции только две стороны параллельны, значит продолжения двух других сторон (боковых) пересекаются в некоторой точке *K*. Любая прямая *d*, параллельная основаниям, разобьёт трапецию *ABCD* на две трапеции, при этом четыре угла верхней трапеции будут соответственно равны четырём углам нижней. Ищем положения прямой *MN* такое, что при гомотетии с центром в точке *K* верхняя трапеция преобразовы-

Рис. 21

валась бы в нижнюю (рис. 21). Тогда эти две трапеции будут подобны.

Пусть BC = b, AD = a, MN = x. При гомотетии, с центром в точке K вершины трапеции MBCN соответственно перейдут в вершины $B \to M$, $M \to A, C \to N, N \to D$. Отношение верхних оснований должно быть равно отношению нижних оснований. $\frac{BC}{MN} = \frac{MN}{AD} \Leftrightarrow \Leftrightarrow MN^2 = BC \cdot AD, MN = \sqrt{ab}$. Найдём коэффициент гомотетии $\frac{AD}{MN} = \frac{a}{\sqrt{ab}} = \sqrt{\frac{a}{b}}, \quad \frac{MN}{BC} = \frac{\sqrt{ab}}{b} = \sqrt{\frac{a}{b}}, \quad k = \sqrt{\frac{a}{b}}$. Покажем, что отношение образов боковых сторон AM и DN к их прообразам AB и ABC будет таким же: ABC = AB

рон равно:
$$\frac{AM}{MB} = \frac{DN}{NC} = \frac{a-x}{x-b}$$
, $\frac{a-x}{x-b} = \frac{a-\sqrt{ab}}{\sqrt{ab}-b} = \frac{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)} = \sqrt{\frac{a}{b}}$.

Действительно, отношение образа любой из сторон трапеции MBCN при гомотетии с центром в точке K и коэффициентом $k = \sqrt{\frac{a}{b}}$ преобразуется в соответствующую сторону нижней трапеции AMND.

Итак, отрезок, параллельный основаниям трапеции с концами на боковых сторонах разбивает трапецию на две подобные друг другу трапеции, тогда и только тогда, когда его длина равна среднему геометрическому оснований искомой трапеции. Заметим, что при этом диагонали MC и AN параллельны. \blacktriangle

Задачи

1(4). Гипотенуза AB прямоугольного треугольника ABC равна 6. Медиана CM перпендикулярна медиане AK. Найдите катеты и третью медиану.

Ответ: $AC = 2\sqrt{3}$; $BC = 2\sqrt{6}$; $BE = 3\sqrt{3}$. Δ Пусть медианы CM и AK пересекаются в точке O (рис. 22). Медиана CM, проведённая к гипотенузе AB = 6,

см, проведенная к гипотенузе AB = 6, равна $\frac{1}{2}AB$, CM = 3; в точке O медиана CM делится в отношении 2:1, считая от вершины, CO = 2, OM = 1.

Рис. 22

$$\triangle AMO, \angle AOM = 90^{\circ}, AO = \sqrt{AM^2 - OM^2} = \sqrt{8};$$

 $\triangle ACO, \angle AOC = 90^{\circ}, AC = \sqrt{AO^2 + CO^2} = \sqrt{12} = 2\sqrt{3};$
 $\triangle ABC, \angle C = 90^{\circ}, BC = \sqrt{AB^2 - AC^2} = \sqrt{24} = 2\sqrt{6}.$

Третья медиана *BE* проходит через точку *O* и $OE = \frac{1}{3}BE$. Отрезок OE - медиана к гипотенузе в прямоугольном треугольнике ACO, $OE = \frac{1}{2}AC = \sqrt{3} \Rightarrow BE = 3\sqrt{3}$. \blacktriangle

2(5). Точка D — середина стороны AB, точка M — середина стороны BC треугольника ABC. Высота AH пересекает отрезок DM в точке K так, что DK = 2KM. Найдите длину стороны BC, если AB = 7 и AC = 8.

Ответ: $5\sqrt{3}$.

 Δ Средняя линия DM=4, DK=2KM, $KM=\frac{1}{3}DM=\frac{4}{3}$ (рис. 23). Пусть BC=a,

точка M – середина стороны BC, $MC = \frac{a}{2}$, и

Рис. 23

пусть HM = y. Имеем: $\Delta AHC \sim \Delta KHM$ (т. к. $KM \parallel AC$), $\frac{CH}{MH} = \frac{AC}{KM} \Leftrightarrow$

$$\Leftrightarrow \frac{\frac{a}{2} + y}{y} = \frac{8}{\frac{4}{3}} \Leftrightarrow y = \frac{a}{10} \Rightarrow CH = \frac{a}{2} + \frac{a}{10} = \frac{3}{5}a$$
, $BH = \frac{2}{5}a$. Выражаем высо-

ту АН из треугольников АВН и АСН:

$$AH^2 = 49 - \left(\frac{2}{5}a\right)^2 = 64 - \left(\frac{3}{5}a\right)^2 \Leftrightarrow \frac{a^2}{5} = 15 \Leftrightarrow a = 5\sqrt{3}.$$

3(5). Основания BC и AD равнобокой трапеции ABCD равны 3 и 12. Диагональ DB перпендикулярна боковой стороне AB. Найдите высоту, диагональ и боковую сторону трапеции.

Ответ:
$$h = \frac{3}{2}\sqrt{15}$$
, $d = 3\sqrt{10}$, $c = 3\sqrt{6}$.

 Δ Трапеция ABCD — равнобокая, $BD \perp AB$, BC = b = 3, AC = a = 12 (рис. 24). Опустим высоту BF. По свойству 5° равнобокой трапеции $AF = \frac{a - b}{2} = \frac{9}{2}$,

$$DF = \frac{a+b}{2} = \frac{15}{2}$$
. Треугольник $ABD -$ пря-

моугольный, BF – высота к гипотенузе.

Рис. 24

По формуле $h^2 = AF \cdot BF$ для высоты прямоугольного треугольника получаем: $h^2 = \frac{9 \cdot 15}{4}$, $h = \frac{3}{2} \sqrt{15}$. Из прямоугольных треугольников BDF и BAF вычисляем диагональ и боковую сторону:

$$d = BD = \sqrt{h^2 + \left(\frac{a+b}{2}\right)^2} = \sqrt{\frac{9 \cdot 15}{4} + \frac{15^2}{4}} = \sqrt{\frac{15}{4} \cdot 24} = \sqrt{90} = 3\sqrt{10},$$

$$c = CD = \sqrt{h^2 + \left(\frac{a-b}{2}\right)^2} = \sqrt{\frac{9 \cdot 15}{4} + \frac{9^2}{4}} = \sqrt{\frac{9}{4} \cdot 24} = 3\sqrt{6}.$$

Для равнобокой трапеции справедливо равенство $d^2=c^2+ab$. Действительно, $c^2+ab=h^2+\left(\frac{a-b}{2}\right)^2+ab=h^2+\left(\frac{a+b}{2}\right)^2=d^2$.

- **4(8).** Треугольник ABC равнобедренный, AB = BC = 13, AC = 10. Найдите расстояние от вершины B до точек пересечения:
- а) медиан; б) биссектрис; в) серединных перпендикуляров; г) высот.

Ответ: a) 8; б)
$$8\frac{2}{3}$$
; в) $7\frac{1}{24}$; г) $9\frac{11}{12}$.

 Δ Высота h = BD к основанию AC является медианой, биссектрисой и серединным перпендикуляром отрезка AC, поэтому все искомые точки лежат на BD; $h = BD = \sqrt{13^2 - 5^2} = 12$ (рис. 25).

а) Пусть M — точка пересечения медиан, по теореме о медианах $BM = \frac{2}{3}BD, \underline{BM = 8}$.

Рис. 25

б) Пусть O_1 — точка пересечения биссектрис (рис. 25). В треугольнике ABD отрезок AO_1 — биссектриса, по теореме о биссектрисе треугольника $\frac{BO_1}{O_1D} = \frac{AB}{AD} \Leftrightarrow \frac{BO_1}{O_1D} = \frac{13}{5} \Leftrightarrow BO_1 = \frac{13}{18}BD$. Итак, $BO_1 = \frac{26}{3} = 8\frac{2}{3}$.

в) Пусть O — точка пересечения серединных перпендикуляров к сторонам треугольника ABC (рис. 26), тогда O — центр описанной окружности: OB = OC = R. Из прямоугольного треугольника DOC, в котором OC = R и OD = h - R, получаем $R^2 - \left(h - R\right)^2 = DC^2 \Leftrightarrow -h^2 + 2hR = 5^2$, $R = \frac{169}{24} = 7\frac{1}{24}$, $BO = 7\frac{1}{24}$.

Рис. 27

г) Высота AK пересекает высоту BD в точке H (рис. 27), $\alpha = \angle CAK = \angle CBD$. Из треугольника CBD находим $\operatorname{tg}\alpha = \frac{DC}{BD} = \frac{5}{12}$.

В треугольнике
$$AHD$$
 $tg\alpha = \frac{HD}{AD} = \frac{HD}{5} \Rightarrow HD = \frac{25}{12}$ и $BH = BD - HD = 12 - \frac{25}{12} = \frac{119}{12} = 9\frac{11}{12}$.

5(5). В равнобедренном треугольнике с основанием 2 и боковой стороной 5, найдите периметр ортотреугольника.

Ответ: 3,84.

 Δ Пусть BB_1 , AA_1 и CC_1 — высоты равнобедренного треугольника ABC (AB=BC=5), AC=2 (рис. 28). По лемме 1 о высотах $\Delta A_1B_1C \sim \Delta ABC$. Треугольник A_1B_1C также равнобедренный, $A_1B_1=B_1C$. Из $AB_1=B_1C=1$ следует $A_1B_1=1$. Аналогично, $\Delta AB_1C_1\sim \Delta ABC$, $AB_1=B_1C_1\Rightarrow B_1C_1=1$. Далее, по двум сторонам и углу между ними $\Delta A_1B_1C=\Delta AB_1C_1\Rightarrow AC_1=CA_1$. Обозначим $CA_1=x$. Из подчёркнутого подобия следует $\frac{x}{AC}=\frac{1}{BC}\Rightarrow x=\frac{2}{5}$, значит $AC_1=CA_1=\frac{2}{5}$ и $AC_1=CA_1$

6(6). В трапеции ABCD боковая сторона AB перпендикулярна основаниям AD и BC (AD > BC). Точка M — середина стороны CD, угол AMD — прямой. Найдите отношение длин оснований, если $AB = \frac{2}{3}AM$.

Ответ: 7:9.

 Δ Пусть AD=a, BC=b и AB=2x, KM- средняя линия трапеции (рис. 29). Из $KM \parallel AD$ и $AD \perp AB \Rightarrow KM \perp AB$. Обозначим $\angle KMA=\alpha$, тогда $\angle DAM=\alpha$ (накрест лежащие углы). По условию $AM=\frac{3}{2}AB=3x$. Из ΔKAM

Рис. 29

находим $KM = 2\sqrt{2}x$. Прямоугольные треугольники с равным острым углом подобны, поэтому $\Delta KMA \sim \Delta MAD$. Из подобия следует $\frac{KM}{MA} = \frac{MA}{AD} \Leftrightarrow \frac{2\sqrt{2}x}{3x} = \frac{3x}{a} \Rightarrow a = \frac{9}{2\sqrt{2}}x$. Уже найденный отрезок KM есть

средняя линия:
$$KM = \frac{a+b}{2} = 2\sqrt{2}x$$
. Находим $b = 4\sqrt{2}x - a =$

$$=4\sqrt{2}x-\frac{9\sqrt{2}}{4}x=\frac{7\sqrt{2}}{4}x$$
, откуда $\frac{b}{a}=\frac{7\sqrt{2}}{4}\cdot\frac{2\sqrt{2}}{9}=\frac{7}{9}$. \blacktriangle

- **7(6).** В прямоугольном треугольнике ABC из вершины C прямого угла проведены медиана CM, биссектриса CK и высота CH.
 - а) Докажите, что CK биссектриса угла HCM.
- б) Зная, что HK = 1 и KM = 2 найдите величину угла A в градусах, длину биссектрисы CK и значение tg A. B ($45^{\circ}-\alpha$)

Ответ: $\angle A = 15^{\circ}$; $\operatorname{tg} A = 2 - \sqrt{3}$, CK = 2.

 Δ **a)** Пусть прямоугольный треугольник ABC не равнобедренный (рис. 30), меньший из его углов $\angle BAC = \alpha$

 $(\alpha < 45^\circ)$. Медиана $CM = \frac{1}{2}AB = AM$,

Рис. 30

треугольник AMC – равнобедренный, $\angle ACM = \alpha$. CH – высота к гипотенузе, $\angle BCH = \angle BAC = \alpha$. Если CK – биссектриса прямого угла ACB, то $\angle ACK = \angle BCK = 45^\circ$ и $\angle MCK = 45^\circ - \alpha = \angle HCK$. Это означает, что биссектриса CK прямого угла ACB делит пополам угол MCH между медианой CM и высотой CH, ч. т. д.

6) Пусть AB = c, CH = h, HK = 1, KM = 2. Из ΔCHM имеем $CH^2 = CM^2 - HM^2 \Leftrightarrow h^2 = \frac{c^2}{4} - 9$ и $\frac{CH}{CM} = \frac{HK}{KM} \Leftrightarrow \frac{h}{\frac{c}{2}} = \frac{1}{2}$. Итак,

$$h = \frac{c}{4}, 9 = \frac{c^2}{4} - \frac{c^2}{16} = \frac{3}{16}c^2 \Leftrightarrow \underline{c = 4\sqrt{3}}, \quad h = \sqrt{3}.$$
 Далее, $\angle CMH = 2\alpha$,

$$\cos 2\alpha = \frac{HM}{CM} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2}$$
, $2\alpha = 30^{\circ}$, $\underline{\alpha = 15^{\circ}}$. Из прямоугольного тре-

угольника
$$CHA$$
 находим $tg 15^{\circ} = \frac{CH}{HA}$, $HA = HM + MA = 3 + 2\sqrt{3}$,

$$tg 15^{\circ} = \frac{\sqrt{3}}{3 + 2\sqrt{3}} = \frac{1}{2 + \sqrt{3}} = \frac{2 - \sqrt{3}}{2 + \sqrt{3}}$$
. Длину биссектрисы определяем из

прямоугольного треугольника
$$HCK$$
: $CK = \sqrt{HC^2 + HK^2} = \sqrt{h^2 + 1} = \underline{\underline{2}}$.

8(6). Точка M лежит на стороне AC, точка D — на стороне BC треугольника ABC. Отрезки AD и BM пересекаются в точке O, при этом AO:OD=6:7 и BO:OM=10:3. Найдите отношения AM:MC и BD:DC.

Ответ: AM : MC = 3:7, BD : DC = 1:1.

 Δ Пусть $AM=m,\ MC=n$ и $BD=p,\ DC=q$ (рис. 31). Для треугольника CAD и секущей MB по теореме Менелая имеем

$$\frac{CM}{MA} \cdot \frac{AO}{OD} \cdot \frac{DB}{BC} = 1 \iff \frac{n}{m} \cdot \frac{6}{7} \cdot \frac{p}{p+q} = 1 \qquad (1),$$

а из треугольника CBM и секущей DA по теореме Менелая получаем CD BO MA a 10 m

$$\frac{CD}{DB} \cdot \frac{BO}{OM} \cdot \frac{MA}{AC} = 1 \Leftrightarrow \frac{q}{p} \cdot \frac{10}{3} \cdot \frac{m}{m+n} = 1$$
 (2).

Преобразуем равенство (2):

$$\frac{q}{p} \cdot \frac{10}{3} = \frac{m+n}{m} \Leftrightarrow \frac{10q}{3p} - 1 = \frac{n}{m} \Leftrightarrow \frac{n}{m} = \frac{10q - 3p}{3p}$$

и значение $\frac{n}{m}$ подставляем в (1):

Рис. 31

$$\frac{10q-3p}{3p} \cdot \frac{6}{7} \cdot \frac{p}{p+q} = 1 \Leftrightarrow 20q-6p = 7p+7q \Leftrightarrow 13p = 13q.$$

Итак, p=q, теперь находим $\frac{n}{m} = \frac{7}{3}$ и записываем ответ AM:MC=m:n=3:7 и BD:DC=p:q=1:1.

9(7). В треугольнике ABC проведены биссектриса AD и медиана BM. Из точек D и M опущены перпендикуляры DK и MP на сторону AB. Известно, что AK:KB=9:1 и AP:PB=2:3. Найдите отношение AD:BM.

Ответ:
$$AD:BM=\sqrt{2}$$
.

 Δ Из условия следует, что $AK = \frac{9}{10}AB$,

$$KB = \frac{1}{10}AB$$
, а также $AP = \frac{4}{10}AB$,

$$PB = \frac{6}{10}AB$$
. Обозначим $KB = x$

(рис. 32), тогда AK = 9x, AP = 4xPB = 6x.

Рис. 32

Точка M — середина стороны AC. Проведём высоту $CH \perp AB$. Из $MP \perp AB$, и $CH \perp AB$ следует, $MP \parallel CH$, тогда из AM = AC по теореме Фалеса следует AP = PH = 4x, а по теореме о средней линии $MP = \frac{1}{2}CH$. Также следует, что AH = 8x, поэтому HB = 2x и точка K — середина отрезка HB. Вновь из HK = KB и $HC \parallel KD$ по теореме Фалеса получаем BD = DC, а по теореме о средней линии $DK = \frac{1}{2}CH$.

Биссектриса AD треугольника ABC оказалась также и медианой. Можно утверждать, что треугольник ABC равнобедренный AB = AC (доказано в Задании в «примерах ответов на контрольные вопросы», стр. 24).

Итак, $\underline{AB} = AC = 10x$. Обозначим CH = h, как установили $MP = \frac{h}{2}$ и $DK = \frac{h}{2}$. Из прямоугольных треугольников BMP и ADK выражаем $BM^2 = PM^2 + BP^2$ и $AD^2 = DK^2 + AK^2$, получаем $BM^2 = \frac{h^2}{4} + (6x)^2$ и $AD^2 = \frac{h^2}{4} + (9x)^2$. Рассмотрим также ΔAMP : $\angle APM = 90^\circ$, $AM = \frac{1}{2}AC = 5x$, $MP = \frac{h}{2}$, имеем $\frac{h^2}{4} = 25x^2 - 16x^2 = 9x^2$. Вот теперь выражаем через x AD и BM: $AD^2 = 9x^2 + 81x^2 = 90x^2$, $BM^2 = 9x^2 + 36x^2 = 45x^2 \Rightarrow \frac{AD}{BM} = \sqrt{\frac{90}{45}} = \sqrt{2}$.

10(6). Диагонали AC и BD трапеции ABCD пересекаются в точке O и перпендикулярны друг другу, основания AD=a и BC=b, a>b. Прямая, проходящая через точку O перпендикулярно стороне AB, пересекает сторону AB в точке M и сторону CD в точке N. Известно, что имеет место равенство $AO \cdot OC = BO \cdot OD$. Найдите длину отрезка MN.

OTBET:
$$\frac{(a+b)^2}{2\sqrt{2}\sqrt{a^2+b^2}}$$
.

Δ В любой трапеции диагонали разбивают трапецию на 4 треугольника. Треугольники, прилежащие к основаниям, подобны. В трапеции ABCD с основаниями AD и BC (рис. 33)

$$\triangle BOC \sim \triangle DOA \Rightarrow \frac{BO}{OD} = \frac{OC}{OA} \Leftrightarrow BO \cdot OA = CO \cdot OD.$$

заданной трапеции другое равенство $AO \cdot OC = BO \cdot OD$. Отношение левых и правых

Рис. 33

частей даёт равенство $\frac{BO}{OC} = \frac{CO}{BO} \Rightarrow BO = OC \Rightarrow AO = DO$. Это приводит

к равенству диагоналей BD = AC и равенству боковых сторон $(BO = CO, AO = DO, \angle BOA = \angle COD \Rightarrow \Delta BOA = \Delta COD \Rightarrow AB = CD).$

Треугольники *BOC* и *AOD* прямоугольные равнобедренные (рис. 34); ΔBOC : $BO = OC = \frac{b}{\sqrt{2}}$; ΔAOD : $AO = OD = \frac{a}{\sqrt{2}}$; треугольники

AOB и COD - равные прямоугольные, с катетами

$$\frac{b}{\sqrt{2}}, \frac{a}{\sqrt{2}}$$
 и гипотенузами $\frac{\sqrt{a^2+b^2}}{\sqrt{2}}$. В треугольнике

$$OM \cdot AB = BO \cdot AO \Rightarrow OM = \frac{ab}{\sqrt{2} \cdot \sqrt{a^2 + b^2}}.$$
 Paccra

 $\sqrt{2}$ — . В треугольнике $\sqrt{2}$ — . $\sqrt{2$ Рис. 34 треугольнике COD, $ON = \frac{1}{2}CD = \frac{1}{2}\frac{\sqrt{a^2 + b^2}}{\sqrt{2}}$. Длина отрезка MNравна

$$OM + ON = \frac{ab}{\sqrt{2}\sqrt{a^2 + b^2}} + \frac{\sqrt{a^2 + b^2}}{2\sqrt{2}} = \frac{2ab + a^2 + b^2}{2\sqrt{2}\sqrt{a^2 + b^2}} = \frac{\left(a + b\right)^2}{2\sqrt{2}\sqrt{a^2 + b^2}} . \quad \blacktriangle$$