Lesson 2 Board-work

Plan for Lesson 2

- Using various rules for derivatives.
- Implicit differentiation.
- Inverse functions and their derivatives.
- Numerical Differentiation (Python File).

Q 1. Find the derivative of the function $f(x) = \left(\frac{x+5}{x-1}\right)^x$.

- **Q 2.** The surge function $f(t) = \alpha t e^{-t}$, where $t \ge 0$ and $\alpha \ge 0$ is a constant, can be used to model a variety of phenomena, such as the amount of a drug in a patient's bloodstream after the drug is ingested, electrical surges, or the number of sales of an item following a successful advertising campaign. In each case, there is a quantity that initially "surges", then gradually decays.
- A. For which values of t does f increase ("surge")? For which values of t does f decay?
- B. Can you find the maximum value of the surge function? If so, how, and what is it?

Q 3. Application to Data. Suppose you are presented with a large data set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, where $0 < x_{n+1} - x_n < \Delta x$ for some (small) increment $\Delta x > 0$ when $1 \le n < N$.

A. Given an index n such that $1 \le n < N$, explain how the data set S can be used to estimate the value of a derivative at x_n .

B. Explain another way in which the data set can be used to estimate the value of a derivative at x_n . Can you think of a third or even fourth way?

C. Explain when and how the data set S can be used to estimate the value of a second derivative at x_n .

Python Resources available on Canvas for numerical differentiation.

Inverse functions: A discussion

Q 4. Find the inverse of the hyperbolic tangent function $g(x) = \operatorname{artanh}(x)$.

Inverse Function Theorem

Let f(x) be a function that is both invertible and differentiable. Let $y = f^{-1}(x)$ be the inverse of f(x). For all x satisfying $f'(f^{-1}(x)) \neq 0$,

$$\frac{dy}{dx} = \frac{d}{dx}(f^{-1}(x)) = (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Alternatively, if y = g(x) is the inverse of f(x), then

$$g'(x) = \frac{1}{f'(g(x))}.$$

Q 5. If a function f(x) is invertible and differentiable for all x, does it follow from the inverse function theorem that $f^{-1}(x)$ is differentiable for all x? Explain.

Q 6. What is the derivative of the inverse of a linear function?

Q 7. Find and compare the derivatives of $\ln(x)$, $\ln(2x)$, and $\ln(3x)$ using the inverse function theorem. How can you make sense of your answers?

Q 8. Consider the logistic function $g(z) = \frac{1}{1 + e^{-z}}$ to answer the following.

(a). Find the derivative of the logistic function. Prove that g' = g(1-g).

(b). Find its inverse (called logit or log-odd function) and the derivative of the inverse. Discuss the domain and range of the logit function.

Q 9. For each of the following equations, use implicit differentiation to find $\frac{dy}{dx}$ (which you're free to denote y' if you prefer).

A.
$$x^2 - y^2 = 4$$

B.
$$x^2 = y - 7$$

C.
$$e^{x/y} = x$$

D.
$$y^3 - \ln(x^2y) = 1$$

- **Q 10.** A closed rectangular box with a square base has a side length of x cm and a height of y cm. Its surface area is 1000 cm².
- A. Express the above information using a single equation.
- B. What is the rate of change of the height of the box with respect to the length of its base when the height is 20 cm?
- C. Why does it even make sense to talk about the rate of change of the height of the box with respect to the length of its base?

Survey 2 (Sept 8):

Q 11. Find the slope of the tangent line to the curve $2x^2 - y^3 = x^3y$ at (x,y) = (1,1).

Indicate your level of understanding of the following by putting a number from 1 to 5.

• How comfortable you feel about finding implicit differentiation.

• How comfortably can you work with the inverse of a function.