소리

- 소리 sound
 - 북
 - 표피 떨림 (진동)
 - 공기
 - 표피 진동이 공기 진동으로 변환
 - 귀
 - 고막은 공기 진동을 증폭하여 청신경까지 전달

소리가 전달되기 위해서 반드시 매질이 필요

우주공간과 같은 <mark>진공</mark>에서는 소리가 전달될 수 없음

- 종파 (縱波, longitudinal wave)
 - 음원 (音源, sound source) : 소리가 발생하는 근원
 - 압력: 음원의 소리 진동이 공기의 압력 변화로 나타남
 - 종파
 - 음원의 소리가 전파되는 방향과 압력 변화가 같은 방향

- 파장 (波長, wavelength)
 - 소리는 공기 압력이 높은 압력과 낮은 압력이 반복으로 나타남
 - 높은 압력 : 공기의 밀도 높음 ("밀"로 표시)
 - 낮은 압력 : 공기의 밀도 낮음 ("소"로 표시)
 - 파장
 - "밀"에서 "밀"까지의 거리 혹은 "소"에서 "소"까지의 거리
 - 거리를 나타내므로 단위는 m
 - 파장이란 말 그대로 파의 길이
 - 파장 기호 *λ*
 - 위의 그리스 문자는 lambda라고 읽으며 영어 *l*에 해당

- 음속 (音速, speed of sound)
 - 소리가 매질에서 1초 동안에 이동한 거리
 - 온도와 음속 관계

$$v = (331 + 0.606T_C) m / s$$

- *T_C*: 섭씨 온도
- 압력과 음속 관계
 - 압력이 높을수록 음속이 빠름 (기체 경우)

매질	v (m/s)	매질	v (m/s)	매질	v (m/s)
기체		25 °C의 액체		고체ª	
수소 (0°C)	1 286	글리세롤	1 904	파이렉스 유리	5 640
헬륨 (0 °C)	972	바닷물	1 533	철	5 950
공기 (20 °C)	343	물	1 493	알루미늄	6 420
공기 (0 °C)	331	수은	1 450	놋쇠	4 700
산소 (0 °C)	317	등유	1 324	구리	5 010
		메틸 알코올	1 143	금	3 240
		사염화 탄소	926	루사이트	2 680
				납	1 960
				고무	1 600

- 소리의 진동수(or 주파수) frequency, pitch
 - 기호로는 f를 사용
 - 음속 v와 파장 λ 및 진동수 f 관계

$$v = \lambda f$$

음속 ν 단위 : m/s파장 λ 단위 : m진동수 f 단위 : 1/s=Hz (Hertz)

- 주파수 *f*의 단위는 1/*s* 혹은 *Hz*
- 그러므로 주파수는 1초에 몇 번 "밀(소)"에서 "밀(소)"로 압력이 변하는 횟수를 의미

- 주파수 분류
 - 가청 주파수 audible frequency
 - 인간이 들을 수 있는 소리의 영역 대 : 20 Hz~20 kHz
 - 아래 그림에서 "acoustic"으로 표현
 - 초음파 (超音波, ultrasound)
 - 20 kHz 이상의 주파수 영역
 - 소노그라피 (sonography) : 자궁 내 태아 사진
 - 초저주파 (超低周波, infrasound)
 - 20 Hz 이하의 주파수 영역
 - 화산분출 탐지에 이용

- 로그 스케일(logarithmic scale)
 - 너무 작은 값, 중간 영역의 값, 너무 큰 값을 함께 모아서 비교하기에 편리
 - 천문학, 소리, 지진 등에 사용
- 로그 스케일 예

•
$$P = 10,000 = 10^4$$
, $P_0 = 100 = 10^2$

$$log_{10} \frac{P}{P_0} = log_{10} \frac{10^4}{10^2} = log_{10} 10^{4-2} = log_{10} 10^2 = 2$$

•
$$P = 100 = 10^2$$
, $P_0 = 100,000 = 10^5$

$$log_{10} \frac{P}{P_0} = log_{10} \frac{10^2}{10^5} = log_{10} 10^{2-5} = log_{10} 10^{-3} = -3$$

• 소리의 세기

- 소리 에너지의 크기
- 데시벨 (decibel, 기호 dB)

$$L = 10 \log_{10} \frac{P}{P_0} \quad (dB)$$

- P_0 : 들을 수 있는 가장 작은 소리의 세기
- 계산 예1
 - 보통의 숨쉬기 $P = 10P_0$

$$L = 10 \log_{10} \frac{P}{P_0} = 10 \log_{10} \frac{10P_0}{P_0} = 10 \log_{10} 10 = 10 dB$$

- 계산 예2
 - 부드러운 속삭임 $P = 1000P_0$

$$L = 10 \log_{10} \frac{P}{P_0} = 10 \log_{10} \frac{1000P_0}{P_0} = 10 \log_{10} 10^3 = 30 dB$$

- 계산 예3
 - 도심 한복판 차 속 $P = 10^8 P_0$

$$L = 10 \log_{10} \frac{P}{P_0} = 10 \log_{10} \frac{10^8 P_0}{P_0} = 10 \log_{10} 10^8 = 80 dB$$

• 소리 준위

음 원	β(dB)	
제트기 근처	150	
李	130	
사이렌; 록 콘서트	120	
지하철	100	
五子	80	
진공 청소기	70	
일상적 대화	50	
모기 소리	40	
속삭임	30	
바스락거리는 낙엽 소리	10	

• 소리의 세기와 진동수

- 도플러 효과 (Doppler effect)
 - 음원이 움직이면 진동수가 달라진다
 - 왼쪽 사람
 - 앰블런스가 멀어진다
 - 진동수가 감소하여 낮은 음으로 들린다
 - 오른쪽 사람
 - 앰블런스가 가까워진다
 - 진동수가 증가하여 높은 음으로 들린다

Doppler effect

- 도플러 효과의 실제
 - 음원이 움직이는 속력 v_S
 - 음속 *v*
 - 마하수 (Mach number)
 - $M = v_s/v$

M = 0

M = 0.7

M=1

M = 1.4

- 충격파 (衝擊波, shock wave)
 - 음원의 속력 v_S
 - 음속 *v*
 - Mach number $M > 1: v_S > v$
 - 원뿔 모양의 파면을 이루는 충격파가 발생
 - Mach number 증가 $\rightarrow \theta$ 감소

파면들의 포락선은 꼭지 반각이 $\sin\theta = v/v_S$ 로 주어지는 원뿔 모양이 된다. $\vec{\mathbf{v}}_S$

- 적색편이 (赤色偏異, red shift)
 - 빛에 적용된 도플러 효과
 - 빛을 발생시키는 광원이 멀어질 때 생기는 현상

- 청색편이 (靑色偏異, blue shift)
 - 빛에 적용된 도플러 효과
 - 빛을 발생시키는 광원이 가까워질 때 생기는 현상

- 적색편이 (red shift)의 예
 - 왼쪽 그림
 - 특정 원자의 스펙트럼
 - 오른쪽 그림
 - 어떤 별에서 방출하는 특정 원자의 스펙트럼
 - 적색편이가 나타나므로 별은 지구로부터 멀어짐
 - 빨간색 쪽으로 편이된 정도를 측정
 - 별이 멀어지는 속력을 결정
 - 멀리 떨어진 별이 더 빠른 속도로 지구로부터 멀어짐
 - 암흑에너지 (dark energy)와 암흑물질 (dark matter) 가정

특정 원자의 스펙트럼

어떤 별에서 방출하는 특정 원자의 스펙트럼