EI339 Artificial Intelligence Homework 3

Zhou Litao 518030910407 F1803016

2020 年 12 月 4 日, Fall Semester

Exercise 1 (BAYES NETWORK) Evaluate the distributions p(a),p(b|c),and p(c|a) corresponding to the joint distribution given in Table 1. Hence show by direct evaluation that p(a,b,c) = p(a)p(c|a)p(b|c). Draw the corresponding directed graph (30)

b	c	p(a,b,c)
0	0	0.192
0	1	0.144
1	0	0.048
1	1	0.216
0	0	0.192
0	1	0.064
1	0	0.048
1	1	0.096
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 0 1

Table 1 The joint distribution over three binary variables.

Solution. The directed graph is shown below, and the distributions are listed on the next page.

			_				
				a p(a)			
				0	0.6		
			_	1	0.4	_	
			b	c	p(t	o c)	
			0	0	0.	.8	
			1	0	0.	.2	
			0	1	0.	.4	
			_1	1	0.	.6	
			a	c	p(c	a	
			0	0	0.	.4	
			0	1	0.	.6	
			1	0	0.	.6	
			1	1	0.	.4	
a	b	с	p(a)	p(c	c a)	p(b c)	p(a,b,c)
0	0	0	0.6	0	.4	0.8	0.192
0	0	1	0.6	0	.6	0.4	0.144
0	1	0	0.6	0	.4	0.2	0.048
0	1	1	0.6	0	.6	0.6	0.216
1	0	0	0.4	0	.6	0.8	0.192
1	0	1	0.4	0	.4	0.4	0.064

1 1

0.4

0.4

0.6

0.4

0.2

0.6

0.048

0.096

Exercise 2 (Markov Model) Use the technique of d-separation, to verify that the Markov model shown in Figure 1 having N nodes in total satisfies the conditional independence properties

$$p\left(\boldsymbol{x}_{n} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n-1}\right) = p\left(\boldsymbol{x}_{n} \mid \boldsymbol{x}_{n-1}\right)$$

for n = 2,..,N. Similarly, show that a model described by the graph in Figure 2 in which there are N nodes in total (30)

 \mathbb{Z} 1: A first-order Markov chain of observations $\{x_n\}$ in which the distribution $p(x_n \mid x_{n-1})$ of a particular observation x_n is conditioned on the value of the previous observation x_{n-1}

Solution. For the first formula, we can check for every X_i , i < N-1, the only undirected path to X_N will necessarily pass through X_{N-1} . Thus if we set X_{N-1} to be evidence, there will be no active path for any X_i , i < N-1 to reach X_N . Thus $X_N \perp X_1...X_{N-2}|X_{N-1}$. i.e.

$$p\left(\boldsymbol{x}_{n} \mid \boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n-1}\right) = p\left(\boldsymbol{x}_{n} \mid \boldsymbol{x}_{n-1}\right)$$

For second-order Markov Chain, we assert that $X_N \perp X_{N-3}, \ldots, X_1 | X_{N-2}, X_{N-1}$, i.e.

$$p\left(\boldsymbol{x}_{n} \mid \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n-1}\right) = p\left(\boldsymbol{x}_{n} \mid \boldsymbol{x}_{n-1}, \boldsymbol{x}_{n-2}\right)$$

To prove this, for every X_i , i < N - 2, we check the undirected path in the graph between X_i and X_N . Note that it must pass through either X_{N-1} or X_{N-2} , forming a casual relation. Since X_{N-1} and X_{N-2} colored grey, all the paths between X_i and X_N are inactive. Thus, by d-separation, the assertion holds.

3

Exercise 3 (HMM) Consider the following Hidden Markov Model. O_1 and O_2 are supposed to be shaded. Suppose that we observe $O_1 = a$ and $O_2 = b$ Using the forward algorithm, compute the probability distribution $P(W_2 \mid O_1 = a, O_2 = b)$ one step at a time. (40)

- 1. Compute $P(W_1, O_1 = a)$.
- 2. Using the previous calculation, compute $P(W_2, O_1 = a)$
- 3. Using the previous calculation, compute $P(W_2, O_1 = a, O_2 = b)$
- 4. Finally, compute $P(W_2 | O_1 = a, O_2 = b)$.

		W_t	W_{t+1}	$P(W_{t+1} V)$
W_1	$P(W_1)$	0	0	0.9
0	0.7	0	1	0.1
1	0.3	1	0	0.5
		1	1	0.5

W_t	O_t	$P(O_t W_t)$
0	a	0.4
0	b	0.6
1	a	0.8
1	b	0.2

Solution.

1.
$$P(W_1 = 0, O_1 = a) = P(W_1 = 0) \times P(O_1 = a | W_1 = 0) = 0.4 \times 0.7 = 0.28$$

 $P(W_1 = 1, O_1 = a) = P(W_1 = 1) \times P(O_1 = a | W_1 = 1) = 0.3 \times 0.8 = 0.24$

2.

$$P(W_2 = 1, O_1 = a)$$

$$= P(W_2 = 1 | O_1 = a) \times P(O_1 = a)$$

$$= P(W_2 = 1 | W_1 = 1) \times P(W_1 = 1, O_1 = a) + P(W_2 = 1 | W_1 = 0) \times P(W_1 = 0, O_1 = a)$$

$$= 0.5 \times 0.24 + 0.1 \times 0.28 = 0.148$$
(1)

$$P(W_2 = 0, O_1 = a)$$

$$= P(W_2 = 0 | O_1 = a) \times P(O_1 = a)$$

$$= P(W_2 = 0 | W_1 = 1) \times P(W_1 = 1, O_1 = a) + P(W_2 = 0 | W_1 = 0) \times P(W_1 = 0, O_1 = a)$$

$$= 0.5 \times 0.24 + 0.9 \times 0.28 = 0.372$$
(2)

3.

$$P(W_2 = 0, O_1 = a, O_2 = b)$$

$$= P(O_2 = b|W_2 = 0, O_1 = a) \times P(W_2 = 0, O_1 = a)$$

$$= P(O_2 = b|W_2 = 0) \times P(W_2 = 0, O_1 = a)$$

$$= 0.6 \times 0.372 = 0.2232$$
(3)

$$P(W_2 = 1, O_1 = a, O_2 = b)$$

$$= P(O_2 = b|W_2 = 1, O_1 = a) \times P(W_2 = 1, O_1 = a)$$

$$= P(O_2 = b|W_2 = 1) \times P(W_2 = 1, O_1 = a)$$

$$= 0.2 \times 0.148 = 0.0296$$
(4)

4.

$$P(W_2 = 0 | O_1 = a, O_2 = b) = \frac{0.2232}{0.2232 + 0.0296} \approx 0.8829$$
 (5)

$$P(W_2 = 1 | O_1 = a, O_2 = b) = \frac{0.0296}{0.2232 + 0.0296} \approx 0.1171$$
 (6)