

Plano de Ensino

Consultoria Especializada de Apoio ao Projeto Integrado: Aprendizagem de Máquinas

Período: 1° Semestre de 2023 **Turma:** 2° ano

Carga horária semanal: 4 h.a. Carga Horária Semestral: 72 h.a. (18 semanas)

Professor(a): Rooney R. A. Coelho

Ementa

Estudo e aplicação do aprendizado supervisionado: algoritmos para classificação e regressão (percéptron, modelos bayesianos, introdução a redes neurais, SVM, k-NN, árvores/florestas de decisão, etc.). Estudo da generalização, medidas de erro, treinamento e teste, viés e variância, overfitting, técnicas de regularização e algoritmos de validação. Estudo do aprendizado não-supervisionado: algoritmos para agrupamento, detecção de anomalia, separação de sinais e estimação de densidade.

Objetivos

Apresentar aos alunos os conceitos básicos e principais características dos modelos clássicos e o estado da arte de redes neurais artificiais, sua fundamentação biológica e suas possíveis aplicações em diversas áreas com ênfase ao projeto e construção de sistemas para resolução de problemas práticos.

Instrumentos e Critérios de Avaliação

Ao longo do curso o aluno será continuamente avaliado por meio de atividades individuais e em grupos. Para ser aprovado, o aluno deverá atingir pelo menos 75% de presença, e a média final deve ser igual ou superior a 5,0 (cinco). A fórmula geral vigente para o cálculo da Média Final (MF) nas disciplinas do curso é dada por:

$$MF = \frac{N_1 + N_2}{2} \cdot (0.8 + 0.04 \cdot A)$$
 $N_i = \frac{a \cdot P_i + b \cdot A_i}{a + b}$

Em que,

- $i = \{1,2\}$
- $a, b = \{1,2,3\}$
- P_i : nota da prova do bimestre, com $i = \{1,2\}$
- A_i : nota de atividades do bimestre, com $i=\{1,2\}$. As notas A_1 e A_2 serão compostas pelas notas de atividades do bimestre.
- A refere-se à atividade extra, que pode ser constituída por seminários, projetos, trabalhos de pesquisa, trabalhos de campo etc., de acordo com a especificação da disciplina.

Nesta disciplina, a Média Final (MF) é obtida fazendo-se: a=2, b=2 e A = 5,0. Com isso, tem-se:

$$MF = \frac{N_1 + N_2}{2}$$
 $N_i = \frac{2 \cdot P_i + 2 \cdot A_i}{4}$

O aluno tem direito à Prova Substitutiva (OS), que pode substituir, ou não, a prova com a nota mais baixa, de modo a maximizar a média final. Caso o aluno faça a OS, esta pode substituir qualquer uma das duas provas.

Conteúdo Programático

Semana	Data	Conteúdo	Metodologia	Recursos
1	23/02/2023	Apresentação da disciplina	Ativa	Lousa e Datashow
2	02/03/2023	O que são redes neurais e como funcionam. Introdução ao perceptron. Como criar um modelo básico de rede neural rasa usando o perceptron.	Ativa	Lousa e Datashow
3	09/03/2023	Treinamento de modelos: treinamento supervisionado, função de perda, ajuste de hiperparâmetros.	Ativa	Lousa e Datashow
4	16/03/2023	Construção de modelos de redes neurais rasas com TensorFlow e Pytorch: criação de modelos com camadas densas e como treiná-los.	Ativa	Lousa e Datashow
5	23/03/2023	Avaliação de modelos de redes neurais rasas: métricas de avaliação e como escolher a melhor métrica para o seu modelo. Carregamento de dados em TensorFlow e PyTorch: carregamento de dados de diferentes fontes (CSV, HDF5, imagens) e como preparar os dados para o treinamento de modelos em ambos os frameworks.	Ativa	Lousa e Datashow
6	30/03/2023	Pré-processamento de dados em TensorFlow e PyTorch: técnicas de pré-processamento de dados (normalização, codificação onehot, etc.) e como aplicá-las aos dados de entrada em ambos os frameworks. Modelo de rede neural rasa usando perceptron com camadas densas em PyTorch e TensorFlow: construção de modelos de redes neurais rasas mais avançados e como treiná-los em ambos os frameworks.	Ativa	Lousa e Datashow
7	06/04/2023	Pré-processamento de dados em TensorFlow e PyTorch: técnicas de pré-processamento de dados (normalização, codificação onehot, etc.) e como aplicá-las aos dados de entrada em ambos os frameworks. Modelo de rede neural rasa usando perceptron com camadas densas em PyTorch e TensorFlow: construção de modelos de redes neurais rasas mais avançados e como treiná-los em ambos os frameworks.	Ativa	Lousa e Datashow
8	13/04/2023	Primeira Avaliação	Ativa	Lousa e Datashow
9	20/04/2023	Redes Neurais Convolucionais (CNN): Introdução às redes neurais convolucionais; Arquitetura básica de uma CNN: camadas convolucionais, de pooling e totalmente conectadas; Pré- processamento de dados para treinamento de CNNs; Construção de uma CNN básica em TensorFlow e PyTorch	Ativa	Lousa e Datashow
10	27/04/2023	Treinamento de CNNs: função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em CNNs: dropout, regularização L1/L2; Transferência de aprendizagem em CNNs; Implementação de uma CNN mais complexa em TensorFlow e PyTorch	Ativa	Lousa e Datashow

dados em lote, aumento de dados; Uso de ferramentas de visualização para entender o comportamento da CNN Introdução às redes neurais recorrentes (RNNs): Arquitetura básica de uma RNN: neurônios recorrentes e camadas LSTM/GRU; Fluxo de informação em uma RNN; Exemplos de aplicações de RNNs; Treinamento de RNNs: função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em RNNs: dropout, regularização L1/L2; Implementação de uma RNN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de RNNs em processamento de se sequências Aplicações avançadas de RNNs: tradução automática, geração de texto, modelagem de linguagem; Arquiteturas avançadas de RNNs: RNNs bidirecionais, redes neurais de memória de curto prazo (LSTM) e redes neurais de atualização de portas (GRU); Discussão sobre os desafios de treinamento de RNNs; Implementação de uma RNN avançada em TensorFlow ou PyTorch Introdução à redes generativas adversárias (GANs): Introdução às GANs: definição e funcionamento; Arquitetura básica de uma GAN: gerador e discriminador; Fluxo de informação em uma GAN; Exemplos de aplicaçãos de GANs: furiamento de GANs: função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em GANs: normalização de instância, regularização de gradiente, otimização do gerador; Implementação de uma GAN básica em TensorFlow e/ou PyTorch; Exemplos de aplicaçãos de magens Introdução ao aprendizado por reforço: definição e funcionamento; Agentes e ambientes: interação entre o agente e o ambiente; Processo de decisão de Markov: estados, ações e recompensas; Exemplos de aplicações de aprendizado por reforço; Algoritmos de aprendizado por reforço: Monte Carlo, TD(0), Q-learning, SARSA; Aprendizado por reforço: Monte Carlo, TD(0), Q-learning, S					
básica de uma RNN: neurônios recorrentes e camadas LSTM/GRU; Fluxo de informação em uma RNN; Exemplos de aplicações de RNNs; Treinamento de RNNs; função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em RNNs: dropout, regularização L1/L2; Implementação de uma RNN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de RNNs em processamento de sequências Aplicações avançadas de RNNs: tradução automática, geração de texto, modelagem de linguagem; Arquiteturas avançadas de RNNs: RNNs bidirecionais, redes neurais de nemerória de curto prazo (LSTM) e redes neurais de atualização de portas (GRU); Discussão sobre os desafios de treinamento de RNNs; Implementação de uma RNN avançada em TensorFlow ou PyTorch Introdução à redes generativas adversárias (GANs): Introdução às GANs: definição e funcionamento; Arquitetura básica de uma GAN: gerador e discriminador; Fluxo de informação em uma GAN; Exemplos de aplicações de GANs; Treinamento de GANs: função de perda, otimizações de GANs; Treinamento de GANs: função de perda, otimizaçõo de gradirente, otimização de instância, regularização de gradiente, otimização do gerador; Implementação de uma GAN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de GANs em geração de imagens Introdução ao aprendizado por reforço: definição e funcionamento; Agentes e ambientes: interação entre o agente e o ambiente; Processo de decisão de Markov: estados, ações e recompensas; Exemplos de aplicações de aprendizado por reforço; Algoritmos de aprendizado por reforço: definição e função: redes neurais como função de valor ou função Q; Implementação de um agente básico em TensorFlow e/ou PyTorch 16 08/06/2023 Corpus Christi Ativa Lousa e 17 15/06/2023 Segunda Avaliação Ativa Lousa e	11	04/05/2023	de imagens, detecção de objetos, segmentação de imagens; Trabalhando com conjuntos de dados grandes: carregamento de dados em lote, aumento de dados; Uso de ferramentas de	Ativa	Lousa e Datashow
texto, modelagem de linguagem; Arquiteturas avançadas de RNNs: RNNs bidirecionais, redes neurais de memória de curto prazo (LSTM) e redes neurais de atualização de portas (GRU); Discussão sobre os desafios de treinamento de RNNs; Implementação de uma RNN avançada em TensorFlow ou PyTorch Introdução à redes generativas adversárias (GANs): Introdução às GANs: definição e funcionamento; Arquitetura básica de uma GAN; gerador e discriminador; Fluxo de informação em uma GAN; Exemplos de aplicações de GANs; Treinamento de GANs: função de perda, ottimizadores e ajuste de hiperparâmetros; Técnicas de regularização em GANs: normalização de instância, regularização de gradiente, otimização do gerador; Implementação de uma GAN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de GANs em geração de imagens Introdução ao aprendizado por reforço: definição e funcionamento; Agentes e ambientes: interação entre o agente e o ambiente; Processo de decisão de Markov: estados, ações e recompensas; Exemplos de aplicações de aprendizado por reforço; Algoritmos de aprendizado por reforço: Monte Carlo, TD(0), Q-learning, SARSA; Aprendizado por reforço com aproximação de função: redes neurais como função de valor ou função Q; Implementação de um agente básico em TensorFlow e/ou PyTorch 16 08/06/2023 Corpus Christi Ativa Lousa e Segunda Avaliação	12	11/05/2023	básica de uma RNN: neurônios recorrentes e camadas LSTM/GRU; Fluxo de informação em uma RNN; Exemplos de aplicações de RNNs; Treinamento de RNNs: função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em RNNs: dropout, regularização L1/L2; Implementação de uma RNN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de RNNs em	Ativa	Lousa e Datashow
GANS: definição e funcionamento; Arquitetura básica de uma GAN: gerador e discriminador; Fluxo de informação em uma GAN; Exemplos de aplicações de GANs; Treinamento de GANs: função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em GANs: normalização de instância, regularização de gradiente, otimização do gerador; Implementação de uma GAN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de GANs em geração de imagens Introdução ao aprendizado por reforço: definição e funcionamento; Agentes e ambientes: interação entre o agente e o ambiente; Processo de decisão de Markov: estados, ações e recompensas; Exemplos de aplicações de aprendizado por reforço; Algoritmos de aprendizado por reforço: Monte Carlo, TD(0), Q- learning, SARSA; Aprendizado por reforço com aproximação de função: redes neurais como função de valor ou função Q; Implementação de um agente básico em TensorFlow e/ou PyTorch 16 08/06/2023 Corpus Christi Ativa Lousa e 17 15/06/2023 Segunda Avaliação Ativa Lousa e	13	18/05/2023	texto, modelagem de linguagem; Arquiteturas avançadas de RNNs: RNNs bidirecionais, redes neurais de memória de curto prazo (LSTM) e redes neurais de atualização de portas (GRU); Discussão sobre os desafios de treinamento de RNNs;	Ativa	Lousa e Datashow
funcionamento; Agentes e ambientes: interação entre o agente e o ambiente; Processo de decisão de Markov: estados, ações e recompensas; Exemplos de aplicações de aprendizado por reforço; Algoritmos de aprendizado por reforço: Monte Carlo, TD(0), Q-learning, SARSA; Aprendizado por reforço com aproximação de função: redes neurais como função de valor ou função Q; Implementação de um agente básico em TensorFlow e/ou PyTorch 16 08/06/2023 Corpus Christi Ativa Lousa e 17 15/06/2023 Segunda Avaliação Ativa Lousa e	14	25/05/2023	GANs: definição e funcionamento; Arquitetura básica de uma GAN: gerador e discriminador; Fluxo de informação em uma GAN; Exemplos de aplicações de GANs; Treinamento de GANs: função de perda, otimizadores e ajuste de hiperparâmetros; Técnicas de regularização em GANs: normalização de instância, regularização de gradiente, otimização do gerador; Implementação de uma GAN básica em TensorFlow e/ou PyTorch; Exemplos de aplicação de	Ativa	Lousa e Datashow
17 15/06/2023 Segunda Avaliação Ativa Lousa e	15	01/06/2023	funcionamento; Agentes e ambientes: interação entre o agente e o ambiente; Processo de decisão de Markov: estados, ações e recompensas; Exemplos de aplicações de aprendizado por reforço; Algoritmos de aprendizado por reforço: Monte Carlo, TD(0), Qlearning, SARSA; Aprendizado por reforço com aproximação de função: redes neurais como função de valor ou função Q;	Ativa	Lousa e Datashow
	16	08/06/2023	Corpus Christi	Ativa	Lousa e Datashow
18 22/06/2023 Fechamento das notas Ativa Lousa e	17	15/06/2023	Segunda Avaliação	Ativa	Lousa e Datashow
	18	22/06/2023	Fechamento das notas	Ativa	Lousa e Datashow

Bibliografia básica

- [1] CARVALHO, A. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina. São Paulo: LTC, 2011.
- [2] MÜLLER, A. C.; GUIDO, S. Introduction to Machine Learning with Python. New Jersey: O'Reilly Media, 2017.
- [3] GÉRON, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow. New Jersey: O'Reilly Media, 2017.

Bibliografia complementar

- [4] COLINS, M. Machine learning: an introduction to supervised and unsupervised learning algorithms. Amazon eBook, 2017.
- [5] DUDA, R. O.; HART, P. E.; STORK, D. G. Pattern classification. New Jersey: John Wiley, 2012.

- [6] HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical learning: data mining, inference, and prediction. New York: Springer, 2002.
- [7] MARSLAND, S. Machine learning: an algorithmic perspective. Boca Raton: CRC Press, 2015.
- [8] MITCHELL, T. Machine learning. New York: McGrawHill, 1997.