	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	7
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1	
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1	
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1	
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1	
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1	
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	1	
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2	1	
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3	1	
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	1	
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2	1	

Structure of data

dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): # Column Non-Null Count Dtype -----303 non-null int64 0 age 1 303 non-null int64 sex 2 ср 303 non-null int64 3 trestbps 303 non-null int64 chol 303 non-null int64 5 fbs 303 non-null int64 restecg 303 non-null int64 6 thalach 303 non-null int64

```
303 non-null
                              int64
     9 oldpeak 303 non-null
                              float64
     10 slope 303 non-null
                              int64
     11 ca
                 303 non-null
                              int64
              303 non-null
     12 thal
                              int64
     13 target 303 non-null
                              int64
    dtypes: float64(1), int64(13)
    memory usage: 33.3 KB
dataset.duplicated().sort_values()
    0
          False
```

205 False 204 False 203 False 202 False ... 97 False 96 False 102 False 302 False 164 True Length: 303, dtype: bool

dataset.drop_duplicates(inplace=True) dataset.duplicated().any()

False

dataset.describe(include='all').T

	count	mean	std	min	25%	50%	75%	max	1
age	302.0	54.420530	9.047970	29.0	48.00	55.5	61.00	77.0	
sex	302.0	0.682119	0.466426	0.0	0.00	1.0	1.00	1.0	
ср	302.0	0.963576	1.032044	0.0	0.00	1.0	2.00	3.0	
trestbps	302.0	131.602649	17.563394	94.0	120.00	130.0	140.00	200.0	
chol	302.0	246.500000	51.753489	126.0	211.00	240.5	274.75	564.0	
fbs	302.0	0.149007	0.356686	0.0	0.00	0.0	0.00	1.0	
restecg	302.0	0.526490	0.526027	0.0	0.00	1.0	1.00	2.0	
thalach	302.0	149.569536	22.903527	71.0	133.25	152.5	166.00	202.0	
exang	302.0	0.327815	0.470196	0.0	0.00	0.0	1.00	1.0	
oldpeak	302.0	1.043046	1.161452	0.0	0.00	0.8	1.60	6.2	
slope	302.0	1.397351	0.616274	0.0	1.00	1.0	2.00	2.0	
ca	302.0	0.718543	1.006748	0.0	0.00	0.0	1.00	4.0	
thal	302.0	2.314570	0.613026	0.0	2.00	2.0	3.00	3.0	
target	302.0	0.543046	0.498970	0.0	0.00	1.0	1.00	1.0	

```
categorical features=[]
def filter cat(cat):
    for i in cat:
        if dataset[i].nunique() < 20:</pre>
             categorical features.append(i)
filter_cat(dataset.columns)
categorical features
     ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'ca', 'thal', 'target']
dataset[categorical_features].nunique()
     sex
                2
                4
     ср
     fbs
                2
     restecg
                3
                2
     exang
                3
     slope
                5
     ca
     thal
                4
     target
                2
     dtype: int64
plt.figure(figsize=(14,6))
for i,features in enumerate(categorical_features):
    plt.subplot(2,5,i+1)
    sns.countplot(x=dataset[features])
    plt.tight_layout()
         200
                                                               250
                                                                                          140
                                    120
                                                                                         120
                                                               200
                                                                                                                    150 -
         150
                                    100
                                                                                         100
                                                                                                                  100 -
      100 100
                                                             뉟 150
                                    80
                                                                                          80 -
                                    60
                                                                                          60 -
                                                               100
                                    40
                                                                                          40 -
          50
                                                                                                                     50 -
                                                               50 -
                                    20 -
                                                                                          20 -
                                                                                                    restecg
                                                                                                                               exand
         140
                                                               150
                                                                                         150
                                    150
        120
                                                                                         125
                                                              125
         100
                                    125
                                                            뉟 100
                                                                                         100
                                 ¥ 100 ·
         80
                                                                                          75 -
                                                             8 75
         60
                                    75
                                                               50
                                                                                          50
                                    50 -
          40
          20
                                    25
                                                               25
                                                                                          25 -
                                        0 1 2 3 4
                                                                                                 ó
               Ö
                   i
                    slope
                                                                                                    target
```

```
cvd_true = dataset.loc[dataset.target == 1]
```

```
plt.figure(figsize=(18,5))
plt.subplot(1,3,1)
sns.histplot(x=cvd_true.age,kde=True)
plt.title('Histogram for CVD True')
plt.subplot(1,3,2)
sns.histplot(x=dataset.age,kde=True)
plt.title('Histogram for all the entries')
plt.subplot(1,3,3)
sns.histplot(x=cvd_true.age,kde=True,label='Cvd_True',color='red',alpha=0.4)
sns.histplot(x=dataset.age,kde=True,label='All data',color='blue',alpha=0.5)
plt.title('Integrated data')
plt.legend()
plt.suptitle('Comparing cvd_true with all data')
plt.show()
```



```
cvd false = dataset.loc[dataset.target == 0]
plt.figure(figsize=(25,4))
# PLOTTING SUBPLOT_1
plt.subplot(1,4,1)
sns.histplot(cvd_true.trestbps,color='red',alpha=0.3, label='True')
sns.histplot(cvd_false.trestbps,color='green',alpha=0.5,label='False')
plt.legend()
# PLOTTING SUBPLOT 2
plt.subplot(1,4,2)
sns.boxplot(cvd_true.trestbps,color='red')
plt.title("CVD: TRUE")
# PLOTTING SUBPLOT_3
plt.subplot(1,4,3)
sns.boxplot(cvd_false.trestbps.values,color='green')
plt.title("CVD: FALSE")
plt.subplot(1,4,4)
```



```
plt.figure(figsize=(20,4))
plt.subplot(121)
sns.scatterplot(x=dataset.chol, y=dataset.target, hue=dataset.target)
plt.legend(loc='center right')

plt.subplot(122)
sns.histplot(cvd_true.chol, color='r',alpha=0.4,label='True')
sns.histplot(cvd_false.chol, color='green',alpha=0.6,label='False')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fe71ee76c10>


```
plt.figure(figsize=(18,4))
plt.subplot(1,3,1)
sns.barplot(y=dataset.oldpeak, x=dataset.slope, hue=dataset.target)
plt.subplot(1,3,2)
sns.histplot(cvd_true.slope,color='red',alpha=0.4,label='True')
sns.histplot(cvd_false.slope,color='green',alpha=0.5,label='False')
plt.legend()
plt.subplot(1,3,3)
sns.histplot(cvd_true.oldpeak,color='red',alpha=0.4,label='True')
sns.histplot(cvd_false.oldpeak,color='green',alpha=0.4,label='True')
sns.histplot(cvd_false.oldpeak,color='green',alpha=0.4,label='False')
plt.legend()
```

<matplotlib.legend.Legend at 0x7fe721206c40>

plt.figure(figsize=(16,4))

plt.subplot(1,2,1)

sns.histplot(cvd_true.thal,color='red',alpha=0.4,label='True')

sns.histplot(cvd_false.thal,color='green',alpha=0.4,label='False')

plt.legend()

plt.subplot(1,2,2)

sns.countplot(x=dataset.thal,hue=dataset.target)

cmatplotlib.axes._subplots.AxesSubplot at 0x7fe721876b20>

sns.pairplot(data=dataset)

plt.figure(figsize=(16,12))
sns.heatmap(dataset.corr(),annot=True, fmt='.1f', linecolor='white',linewidths= 1.001,cmap='inferno')

print(logreg.summary())

<matplotlib.axes._subplots.AxesSubplot at 0x7fe71bbb1940>

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

```
y = dataset.pop('target')
X = dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state = 4)
print('X_train:',X_train.shape)
print('X_test :',X_test.shape)
print('y_train:',y_train.shape)
print('y_test :',y_test.shape)
     X_train: (211, 13)
     X_test : (91, 13)
     y_train: (211,)
     y_test : (91,)
import statsmodels.api as sm
logreg = sm.Logit(y_train,X_train).fit()
     Optimization terminated successfully.
              Current function value: 0.349166
              Iterations 7
```

Logit Regression Results

========			=======			
Dep. Variab	ole:	targ	et No. Ob	servations:		211
Model:		Log	it Df Res	iduals:		198
Method:		M	LE Df Mod	lel:		12
Date:	Sa ⁻	t, 28 Jan 20	23 Pseudo	R-squ.:		0.4953
Time:		04:52:	40 Log-Li	kelihood:		-73.674
converged:		Tr	ue LL-Nul	1:		-145.97
Covariance	Type:	nonrobu	st LLR p-	value:		7.087e-25
========	========	========	========			
	coef	std err	Z	P> z	[0.025	0.975]
age	0.0359	0.025	1.443	0.149	-0.013	0.085
sex	-1.6155	0.527	-3.067	0.002	-2.648	-0.583
ср	0.7427	0.226	3.293	0.001	0.301	1.185
trestbps	-0.0097	0.012	-0.796	0.426	-0.034	0.014
chol	-0.0032	0.004	-0.738	0.461	-0.012	0.005
fbs	0.2782	0.706	0.394	0.694	-1.106	1.662
restecg	0.5689	0.406	1.402	0.161	-0.227	1.364
thalach	0.0204	0.010	2.074	0.038	0.001	0.040
exang	-1.1044	0.489	-2.259	0.024	-2.062	-0.146
oldpeak	-0.4253	0.277	-1.534	0.125	-0.969	0.118
slope	0.5908	0.442	1.337	0.181	-0.275	1.457
ca	-1.0731	0.290	-3.701	0.000	-1.641	-0.505
thal	-0.8927	0.350	-2.549	0.011	-1.579	-0.206
========					.=======	

new_features = logreg.pvalues[logreg.pvalues <= .6]
new_X = dataset[new_features.index]
new X.head()</pre>

	age	sex	ср	trestbps	chol	restecg	thalach	exang	oldpeak	slope	ca	thal	1
0	63	1	3	145	233	0	150	0	2.3	0	0	1	
1	37	1	2	130	250	1	187	0	3.5	0	0	2	
2	41	0	1	130	204	0	172	0	1.4	2	0	2	
3	56	1	1	120	236	1	178	0	8.0	2	0	2	
4	57	0	0	120	354	1	163	1	0.6	2	0	2	

new_features.index

X1_train, X1_test, y1_train, y1_test = train_test_split(new_X, y, test_size = 0.3, random_state=5)

print('X1_train:',X1_train.shape)
print('X1_test :',X1_test.shape)
print('y1_train:',y1_train.shape)
print('y1_test :',y1_test.shape)

X1_train: (211, 12) X1_test : (91, 12) y1_train: (211,) y1_test : (91,)

logreg1 = sm.Logit(y1_train, X1_train).fit()

Optimization terminated successfully.

Current function value: 0.334213

Iterations 7

print(logreg1.summary())

Logit Regression Results

Dep. Variab Model: Method: Date: Time: converged: Covariance	Sa	t, 28 Jan 2 04:53	git Df Res MLE Df Mod 023 Pseudo :55 Log-L rue LL-Nu	o R-squ.: ikelihood:		211 199 11 0.5144 -70.519 -145.21 1.998e-26
	coef	std err	z	P> z	[0.025	0.975]
age sex cp trestbps chol restecg thalach exang oldpeak slope ca thal	0.0302 -1.7057 1.0425 -0.0162 -0.0055 0.8602 0.0307 -1.5725 -0.5475 0.4170 -0.8438 -0.8279	0.023 0.585 0.238 0.012 0.004 0.443 0.011 0.513 0.265 0.424 0.230 0.340	1.289 -2.918 4.388 -1.331 -1.221 1.944 2.831 -3.065 -2.066 0.984 -3.674 -2.434	0.197 0.004 0.000 0.183 0.222 0.052 0.005 0.002 0.039 0.325 0.000 0.015	-0.016 -2.851 0.577 -0.040 -0.014 -0.007 0.009 -2.578 -1.067 -0.414 -1.294 -1.495	0.076 -0.560 1.508 0.008 0.003 1.727 0.052 -0.567 -0.028 1.248 -0.394 -0.161
========			========		=======	

new_features = logreg1.pvalues[logreg1.pvalues <= .3]
new_X = dataset[new_features.index]
new_X.head()</pre>

	age	sex	ср	trestbps	chol	restecg	thalach	exang	oldpeak	ca	thal	1
0	63	1	3	145	233	0	150	0	2.3	0	1	
1	37	1	2	130	250	1	187	0	3.5	0	2	
2	41	0	1	130	204	0	172	0	1.4	0	2	
3	56	1	1	120	236	1	178	0	0.8	0	2	
4	57	0	0	120	354	1	163	1	0.6	0	2	

X2_train, X2_test, y2_train, y2_test = train_test_split(new_X, y, test_size = 0.3, random_state=5)

print('X2_train:',X2_train.shape)
print('X2_test :',X2_test.shape)

```
print('y2_train:',y2_train.shape)
print('y2_test :',y2_test.shape)
    X2 train: (211, 11)
```

X2_train: (211, 11) X2_test : (91, 11) y2_train: (211,) y2_test : (91,)

logreg2 = sm.Logit(y2_train, X2_train).fit()

Optimization terminated successfully.

Current function value: 0.336456

Iterations 7

print(logreg2.summary())

Logit Regression Results

			_	_			
========		=====	=====	========		========	
Dep. Variab	ole:		t	arget No.	Observatio	ns:	211
Model:				Logit Df	Residuals:		200
Method:				MLE Df	Model:		10
Date:		Sat, 2	8 Jan	2023 Pse	udo R-squ.:		0.5111
Time:		-	04:	54:50 Log	-Likelihood	:	-70.992
converged:				True LL-	Null:		-145.21
Covariance	Tyne:		nonre	obust LLR			7.840e-27
	coef	st	d err	Z	. P> z	[0.025	0.975]
age	0.0326	5	0.023	1.400	0.161	-0.013	0.078
sex	-1.6789)	0.580	-2.894	0.004	-2.816	-0.542
ср	1.0214	ļ.	0.236	4.335	0.000	0.560	1.483
trestbps	-0.0158	3	0.012	-1.296	0.195	-0.040	0.008
chol	-0.0055	,	0.005	-1.222	0.222	-0.014	0.003
restecg	0.8807	,	0.441	1.995	0.046	0.015	1.746
thalach	0.0337	,	0.010	3.216	0.001	0.013	0.054
exang	-1.5866	5	0.514	-3.086	0.002	-2.594	-0.579
oldpeak	-0.6719)	0.236	-2.847	0.004	-1.134	-0.209
ca	-0.8083	3	0.223	-3.628	0.000	-1.245	-0.372
thal	-0.8185	5	0.341	-2.403	0.016	-1.486	-0.151

✓ 0s completed at 10:18 AM

×