# Customer Segmentation & Sales Analysis Supermarket Dataset

**Dataset:** Supermarket Sales

#### **Tujuan Proyek:**

- Memahami karakteristik pelanggan berdasarkan perilaku belanja mereka
- Menganalisis perbedaan penjualan berdasarkan gender dan segmentasi lainnya
- Melakukan customer segmentation dengan K-Means clustering
- Memberikan insight actionable untuk strategi pemasaran dan loyalitas pelanggan

Tools: Python, Pandas, Matplotlib, Seaborn, Scikit-learn

## ✓ Import Library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

### Load Dataset

```
url = '/content/SuperMarket Analysis.csv'
df = pd.read_csv(url)

# Buat kolom 'Total'
df['Total'] = df['Unit price'] * df['Quantity']
```

# Tinjauan Awal Dataset

```
df.head()
df.info()
df.describe()
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000 entries, 0 to 999
    Data columns (total 18 columns):
     #
         Column
                                Non-Null Count Dtype
         -----
                                 _____
     0
         Invoice ID
                                1000 non-null object
     1
         Branch
                                1000 non-null
                                               object
         City
                                1000 non-null
                                               object
```

| 3  | Customer type           | 1000 non-null | object  |
|----|-------------------------|---------------|---------|
| 4  | Gender                  | 1000 non-null | object  |
| 5  | Product line            | 1000 non-null | object  |
| 6  | Unit price              | 1000 non-null | float64 |
| 7  | Quantity                | 1000 non-null | int64   |
| 8  | Tax 5%                  | 1000 non-null | float64 |
| 9  | Sales                   | 1000 non-null | float64 |
| 10 | Date                    | 1000 non-null | object  |
| 11 | Time                    | 1000 non-null | object  |
| 12 | Payment                 | 1000 non-null | object  |
| 13 | cogs                    | 1000 non-null | float64 |
| 14 | gross margin percentage | 1000 non-null | float64 |
| 15 | gross income            | 1000 non-null | float64 |
| 16 | Rating                  | 1000 non-null | float64 |
| 17 | Total                   | 1000 non-null | float64 |
|    | 67                      |               |         |

dtypes: float64(8), int64(1), object(9)

memory usage: 140.8+ KB

|       | Unit price  | Quantity    | Tax 5%      | Sales       | cogs       | gross<br>margin<br>percentage |
|-------|-------------|-------------|-------------|-------------|------------|-------------------------------|
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 | 1000.00000 | 1.000000e+03                  |
| mean  | 55.672130   | 5.510000    | 15.379369   | 322.966749  | 307.58738  | 4.761905e+00                  |
| std   | 26.494628   | 2.923431    | 11.708825   | 245.885335  | 234.17651  | 6.131498e-14                  |
| min   | 10.080000   | 1.000000    | 0.508500    | 10.678500   | 10.17000   | 4.761905e+00                  |
| 25%   | 32.875000   | 3.000000    | 5.924875    | 124.422375  | 118.49750  | 4.761905e+00                  |
| 50%   | 55.230000   | 5.000000    | 12.088000   | 253.848000  | 241.76000  | 4.761905e+00                  |
| 75%   | 77.935000   | 8.000000    | 22.445250   | 471.350250  | 448.90500  | 4.761905e+00                  |

# Cek Data Kosong

df.isnull().sum()

**\_\_\_** 

| 0 |
|---|
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
|   |

| Sales                   | 0 |
|-------------------------|---|
| Date                    | 0 |
| Time                    | 0 |
| Payment                 | 0 |
| cogs                    | 0 |
| gross margin percentage | 0 |
| gross income            | 0 |
| Rating                  | 0 |
| Total                   | 0 |

dtype: int64

# Eksplorasi Data

## Distribusi kategori produk

```
plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Product line')
plt.title('Jumlah Transaksi per Produk')
plt.xticks(rotation=45)
plt.show()
```





Insight: Produk dengan jumlah transaksi tertinggi adalah Fashion accessories, disusul oleh Food and beverages. Hal ini menunjukkan preferensi pelanggan terhadap produk yang mungkin bersifat impulsif atau berharga terjangkau. Produk seperti Health and beauty memiliki volume transaksi lebih rendah, yang bisa berarti lebih niche atau segmented market.

#### Penjualan per Kota

```
plt.figure(figsize=(6,4))
sns.boxplot(data=df, x='City', y='Total')
plt.title('Distribusi Total Pembelian per Kota')
plt.show()
```



#### Trend Penjualan Berdasarkan Tanggal

```
df['Date'] = pd.to_datetime(df['Date'])
daily_sales = df.groupby('Date')['Total'].sum()

plt.figure(figsize=(10,4))
daily_sales.plot()
plt.title('Total Penjualan per Hari')
plt.xlabel('Tanggal')
plt.ylabel('Total Penjualan')
plt.grid(True)
plt.show()
```



## Visualisasi Tambahan 1: Total Penjualan Berdasarkan Gender

```
# Statistik deskriptif per gender
print(df.groupby('Gender')['Total'].agg(['mean', 'std', 'count']))
                   mean
                                std
                                     count
     Gender
     Female
             324.696585
                         239.631753
                                        571
                                       429
                         224.975890
     Male
             284.814988
plt.figure(figsize=(8, 4))
sns.kdeplot(data=df, x='Total', hue='Gender', fill=True, common_norm=False, alpha=0.5)
plt.title('Distribusi Total Penjualan Berdasarkan Gender')
plt.xlabel('Total')
plt.ylabel('Density')
plt.show()
```





Uji statistik (independent t-test) untuk mengetahui apakah rata-rata nilai pembelian pelanggan laki-laki dan perempuan berbeda secara signifikan.

```
from scipy.stats import ttest_ind

# Ambil nilai total berdasarkan gender
male_total = df[df['Gender'] == 'Male']['Total']

female_total = df[df['Gender'] == 'Female']['Total']

# Uji t dua sampel (tidak diasumsikan variansi sama)
t_stat, p_value = ttest_ind(female_total, male_total, equal_var=False)

print(f"T-Statistic: {t_stat:.4f}")
print(f"P-Value: {p_value:.4f}")

T-Statistic: 2.6977
P-Value: 0.0071
```

Insight: Berdasarkan uji t dua sampel independen, ditemukan bahwa pelanggan perempuan memiliki rata-rata nilai pembelian yang secara signifikan lebih tinggi daripada pelanggan lakilaki (p = 0.0071).

Hal ini memperkuat temuan dari total penjualan, dan mengindikasikan bahwa pelanggan perempuan tidak hanya lebih banyak belanja, tapi juga cenderung melakukan transaksi dengan nominal lebih besar.

Perusahaan dapat mempertimbangkan pendekatan pemasaran yang lebih terpersonalisasi untuk segmen pelanggan perempuan - seperti paket bundling yang sesuai dengan preferensi mereka, atau promosi berbasis kategori produk yang lebih sering mereka beli.

# Clustering:

Mengelompokkan pelanggan berdasarkan pola belanja pelanggan agar bisnis dapat:

Menyesuaikan strategi pemasaran ke tiap segmen.

Mengetahui siapa pelanggan "besar" vs "hemat".

Mengoptimalkan penawaran dan promo.

#### K-Means

```
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
# 1. Pilih fitur yang relevan
features = df[['Unit price', 'Quantity', 'Total', 'Rating']]
# 2. Standarisasi fitur agar clustering tidak bias
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
X = df[['Unit price', 'Quantity','Total','Rating']]
inertia = []
K = range(1, 11)
for k in K:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(X)
    inertia.append(kmeans.inertia_)
plt.figure(figsize=(6, 4))
plt.plot(K, inertia, 'bo-')
plt.xlabel('Jumlah Cluster (k)')
plt.ylabel('Inertia')
plt.title('Metode Elbow untuk Menentukan k Optimal')
plt.show()
```





```
# 3. Menentukan jumlah cluster optimal dengan Elbow Method
inertia = []
for k in range(1, 10):
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(scaled_features)
    inertia.append(kmeans.inertia_)

plt.figure(figsize=(8,4))
plt.plot(range(1, 10), inertia, marker='o')
plt.title('Elbow Method for Optimal k')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.grid(True)
plt.show()
```



```
# Pilih 4 cluster
kmeans = KMeans(n_clusters=4, random_state=42)
df['Cluster'] = kmeans.fit_predict(scaled_features)

# Visualisasi hasil clustering
plt.figure(figsize=(8,5))
```

```
siis.scatterprot(uata=ui, x= iotar , y= Quantity , nue= cruster , parette= setz )
plt.title('Customer Segmentation by Clustering')
plt.show()
```



# Rata-rata tiap fitur per cluster
cluster\_summary = df.groupby('Cluster')[['Unit price', 'Quantity', 'Total', 'Rating']]
cluster\_summary

|                                                                                                 | Unit price | Quantity | Total  | Rating |     |  |  |
|-------------------------------------------------------------------------------------------------|------------|----------|--------|--------|-----|--|--|
| Cluster                                                                                         |            |          |        |        | 11. |  |  |
| 0                                                                                               | 77.17      | 2.89     | 222.41 | 7.66   | */  |  |  |
| 1                                                                                               | 78.39      | 8.17     | 634.78 | 6.53   | -   |  |  |
| 2                                                                                               | 32.57      | 7.10     | 231.47 | 8.16   |     |  |  |
| 3                                                                                               | 36.78      | 3.57     | 126.83 | 5.70   |     |  |  |
| Langkah berikutnya:  Buat kode dengan cluster_summary  Lihat plot yang direkomendasikan  New in |            |          |        |        |     |  |  |

cluster\_labels = {

0: "Selective Spenders",

1: "High Rollers (Big Spenders)",

2: "Value Seekers - Loyal & Produktif",

```
3: "Casual, Unengaged Buyers"
df['Segment'] = df['Cluster'].map(cluster_labels)
df['Segment']
                                 Segment
       0
                 High Rollers (Big Spenders)
       1
           Value Seekers - Loyal & Produktif
       2
           Value Seekers - Loyal & Produktif
       3
           Value Seekers - Loyal & Produktif
       4
                 High Rollers (Big Spenders)
      995
                 Casual, Unengaged Buyers
      996
                 High Rollers (Big Spenders)
      997
                 Casual, Unengaged Buyers
      998
                 Casual, Unengaged Buyers
      999
                 High Rollers (Big Spenders)
     1000 rows × 1 columns
     dtype: object
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Data cluster summary
cluster_summary = pd.DataFrame({
    'Cluster': [0, 1, 2, 3],
    'Segment': [
        'Selective Spenders',
        'High Rollers (Big Spenders)',
        'Value Seekers - Loyal & Produktif',
         'Casual, Unengaged Buyers'
    ],
    'Unit Price': [77.17, 78.39, 32.57, 36.78],
    'Quantity': [2.89, 8.17, 7.10, 3.57],
    'Total': [222.41, 634.78, 231.47, 126.83],
    'Rating': [7.66, 6.53, 8.16, 5.70]
})
# Set style for better visuals
sns.set(style="whitegrid")
```



# Tambahkan deskripsi statistik per cluster
cluster\_stats = df.groupby('Cluster')[['Unit price', 'Quantity', 'Total', 'Rating']].agg
display(cluster\_stats)

Unit price Ouantity Total Rating

|                                                                                                  |         | F         |           | ·        |          |            |            |          |   |
|--------------------------------------------------------------------------------------------------|---------|-----------|-----------|----------|----------|------------|------------|----------|---|
|                                                                                                  |         | mean      | std       | mean     | std      | mean       | std        | mean     | ! |
|                                                                                                  | Cluster |           |           |          |          |            |            |          |   |
|                                                                                                  | 0       | 77.171696 | 15.752525 | 2.888393 | 1.417713 | 222.412098 | 117.459021 | 7.660268 |   |
|                                                                                                  | 1       | 78.389008 | 14.724432 | 8.167939 | 1.519491 | 634.782328 | 153.524954 | 6.531298 |   |
|                                                                                                  | 2       | 32.568566 | 14.018974 | 7.103586 | 2.228279 | 231.467171 | 120.626967 | 8.156972 | • |
|                                                                                                  | 3       | 36.779620 | 16.761893 | 3.574144 | 2.168744 | 126.828289 | 91.555838  | 5.696578 | • |
| Langkah berikutnya:  Buat kode dengan cluster_stats  Lihat plot yang direkomendasikan  New inter |         |           |           |          |          |            |            |          |   |

Dari hasil segmentasi pelanggan menggunakan K-Means clustering, ditemukan empat segmen utama:

High Rollers (Big Spenders): Pelanggan membeli produk mahal dalam jumlah besar, membe Value Seekers - Loyal & Produktif: Pelanggan hemat yang puas. Pelanggan membeli banya Selective Spenders: Pembeli dengan preferensi produk mahal, tapi jumlah belanjanya se Casual, Unengaged Buyers: Belanja sedikit dan tidak puas. Ini adalah kelompok berisik