ESTRATÉGIA DE REGIÕES DE CONFIANÇA.

REFS:

- 1) RIBEIRO, KARAZ. OTIMIZAÇÃO CONTINUA. CENGAGE. 2013.
- 2) MARTINEZ, SANTOS. MÉTOPOS COMPUTACIONAIS DE OTIMIZAÇÃO. UNICAMP, 1998.

ESTRATÉGIA DE BUSCA LINEAR

- (i) CALCULAR DIRECTO d
- (ii) BUSCA LINEAR: PROCURA

 XK+1 AD LONGO DE d.

ESTRATÉGIA DE REGIOES DE CONFIANÇA

- (i) BUSCO UM PONTO QUE

 PIMINUA UM MODELD

 SIMPLIFICADO DO PROBLEMA

 ORIGINAL, RESTRITO A

 UMA VIZINHANÇA DE X*
- (ii) SE O PONTO FOI REJEITADO, REDUZO A VIZINHANCA.

A ESTRÁTEGIA PE REGIÕES PE COLFIANÇA PERMITE TENTAR MINIMIZAK & EN TODAS AS DIRECTES A PARTIR DE XX.

POR OUTRO LADO, O CÁLCULO PE XXII É MAIS

CUSTOSO QUE A BUSCA LINEAR. A IDEIA É TROCAR

O PROBLEMA ORIGINAL POR UM MODELO SIMPLIFICATO.

PROBLEMA IRRESTRITO:

min f(x)s.o. $x \in \mathbb{R}^m$

MODELO SIMPLIFICADO: SUPONHA J DE CLASSE (, OU SEJA, J TEM 2ª DERIVADAS PONTINUAS. APROXIMAÇÃO DE TAYLOR DE 2ª ORDEM (AO REPOR DE XX):

 $f(x) \approx f(x^{*}) + \nabla f(x^{*})^{t}(x-x^{*}) + f(x-x^{*})^{t} \nabla^{2} f(x^{*})(x-x^{*})$ $(x \approx x^{*}).$

min f(x)s.a. $x \in \mathbb{R}^m$ $x \in \mathbb{R}^m$

OLPE

 $m(d) = f(x^*) + \nabla f(x^*)^t d + f d^t B_* d$ $d = x - x^*.$

CASO & REDUZA, DAMOS O PASSO "COMPLETO" NA
DIREÇÃO d CALCULADA PELO MOPELO:

 $\chi^{K+1} = \chi^{K} + \chi^{K}$

- O MOPELO QUAPRÁTICO $\frac{50}{6}$ É CONFIAVEL PRÓXIMO À χ^{K} .

 OU SERA, QUANRO $\|\chi \chi^{K}\| \leq \Delta_{K}$ (RAIO RE CONTIANÇA).
- * NO MODECO QUADRATICO, PODEMOS TROCAR A HESSIALA $\nabla^2 f(x^*)$ POR UMA MATRIZ B_K SEMI-DEFINIDA POSITIVA BARATA DE CALCULAR.
 - * $\nabla^2 f(x^*)$ PODE NÃO SER SEMI-DET. POSIT \Rightarrow MODELO QUADRÁTICO É NÃO-CONVEXO.
 - * POPE SER CARA DE CALCULAR.
 - * BK (QUASE-NENTON: BFGS, DFD, ...)

min f(x) $x^{k} Fixo$ $x^$

OLPE

m(d)= f(x*) + \(\naggref(x*)^t d + \frac{1}{2} d^t \mathbb{B}_x d

 $d = x - x^{\kappa}$.

CASO & REDUZA, DAMOS O PASSO "COMPLETO" NA
DIRECTO d' CALCULADA PELO MOPELO:

 $\chi^{K+1} = \chi^{K} + \chi^{K}$

ared =
$$f(x^k) - f(x^k + d^k)$$

$$pred = m(0) - m(d^{k})$$

MEDIDA DE ACEITAÇÃO:

$$P_{x} = \frac{\text{and}}{\text{pred}}$$

SITUAÇÃO BOA: QUANDO and FOR CRANDE EM RELAÇÃO À pred,

NÍVEL DE A
min

ESQUENA PE REGIOES DE CONFIANÇA

- . PADOS $\chi^{\bullet} \in \mathbb{R}^{m}$, $\Delta_{\bullet} > 0$, $\eta \in [0, \frac{1}{4}]$, K = 0.
- · REPITA ENQUALTO $\nabla f(x^*) \neq 0$
 - RESOLVA APROXIMADAMENTE O MODELO UMPRÁTICO
 CENTRADO EM X":

 min m(d)

5.a. | d| ≤ Ax

S.a. $\|d\| \leq \Delta_K$ OBTEMOS ASSIM UMA SOLUÇÃO d^K .

PALCULE ρ_K .

SE $\rho_K > \eta$ $\chi^{K+1} = \chi^K + d^K$ REDUÇÃO FOI BOA

ACEITO O PONTO

(REDUÇÃO RUIM => NÃO REXIED O PASSO) SE PX 24 L. Dx+1 = 1 Dx REPUÇÃO RUIM >> MOPELO NÃO É BOM >> REPUZO O RAIO SENAD L→ SE Pκ > 34 E || d| = Δκ $L_{\star} \Delta_{\kappa+1} = 2\Delta_{\kappa}$ REDUCAD MUITO BOA E 0MODELO ALCANCOU A BORDA J SE O RAIO FOSSE MAIOR, TALVEZ HOVESSE MAIOR REPUÇTE. LO CASO CONTRARIO, O RAIO É BOM.

CONO RESOLVER O MODECO QUADRATICO min m(d)s.a. $11dl \leq \Delta_{R}$.

- 1°) APLICAR UM MÉTODO DE DESCIDA (POR EX. COM DIREÇÕES - VM).
- 2°) APLICAR GRADIENTES CONJUGADOS PARA RESOLVER min m(d)s.a. $d \in \mathbb{R}^{n}$.

SE A SOLUÇÃO d' SATISFAZER IIdII \ \D_K, ACEITE.

CASO CONTRARIO, USE A ESTRATÉCIA 1.

3°) MÉTODO DOG-LEG: CONSISTE NA COMBINAÇÃO DAS DIREL

COES - VM COM A DIRECTO PE NEUTON.

PETALHES: VEJA A REF. 1.

