LROC EDR/CDR DATA PRODUCT SOFTWARE INTERFACE SPECIFICATION

Version 1.18 June 9, 2010

Signature Page

Prepared by:	
Ernest Bowman-Cisneros Date SOC Manager, LROC Arizona State University	
Reviewed by:	Reviewed by:
Mark Robinson Date Principal Investigator, LROC Arizona State University	Scott Brylow Date Instrument Manager, LROC Malin Space Science Systems
Reviewed by:	Reviewed by:
Chris Isbell Date Imaging Node, Planetary Data System U.S. Geological Survey	Stan Scott Date Data Manager, Lunar Reconnaissance Orbiter Goddard Space Flight Facility
Approved by:	
Ed Grayzeck Date	
Program Manager, Planetary Data System Goddard Space Flight Facility	

TABLE OF CONTENTS

DOCUMENT CHANGE LOG	iii
TBD/TBR ITEMS	
Acronyms and Abbreviations	V
1. Introduction	
1.1. Purpose and Scope	1
1.2. Applicable Documents	
1.3. Relationships with Other Interfaces	
2. Data Product Characteristics and Environment	2
2.1. Instrument Overview	2
2.2. Data Product Overview	3
2.3. Data Processing	4
2.3.1. Data Processing Level	
2.3.2. Data Product Generation	5
2.3.3. Data Flow	5
2.3.4. Labeling and Identification	6
2.4. Standards Used in Generating Data Products	
2.4.1. PDS Standards	6
2.4.2. Time Standards	
2.4.3. Data Storage Conventions	
2.5. Data Validation	7
3. Detailed Data Product Specifications	
3.1. Data Product Structure and Organization	7
3.2. Data Format Descriptions	7
3.2.1. Example label for LROC NAC EDR product:	
3.2.2. Example label for LROC NAC CDR product:	9
3.2.3. Example label for LROC WAC EDR product:	11
3.2.4. Example label for LROC WAC CDR product:	13
3.3. Label and Header Descriptions	16
Appendix A – Glossary	
Appendix B – NAC and WAC Companding Schemes	B
Appendix C - Orientation of NAC frames: From NAC image acquisition to EDR output	A

DOCUMENT CHANGE LOG

Date	Change	Affected Portions
2008/03/17	First draft for PDS review	all
2008/03/28	Incorporated comments/suggestions from Eric Eliason and Stan Scott.	Sections 1.1, 2.2, 2.3.2, 2.3.4, 2.4.2, 3.1
2008/05/20	Incorporated comments/suggestions from SIS review panel	Sections 2.1, 2.3, 2.3.3, 2.3.4, 2.5, 3.2, 3.3, Appendix B
2008/05/26	Incorporated comments/suggestions from Stuart Sides (SIS Review panel)	Minor edits in multiple sections.
2008/12/01	Added keyword for recording temperatures at beginning, middle, and end of a WAC image series.	Sections 3.2.3, 3.2.4 and 3.3
2009/02/24	Updated numbers; major review	all
2009/02/26	Updated numbers; major review	all
2009/05/04	Added missing label keywords and correcting information on keyword description.	Sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4
2009/06/01	Minor edits throughout document, NAC orientation, CDR data storage type, and header updates.	Sections 2.1, 2.2, 3.2., 3.3
2009/06/04	Minor edits throughout document, added keywords to labels	Sections 2.1, 3.2, 3.3, Appendix B
2009/06/08	Minor edit of NAC companding table	Appendix B
2009/06/11	Minor edit correcting maximum WAC file size Minor edit adding partition to sclk value description Minor correcting location of PDS UNITS keyword in labels	Section 2.2 Section 2.4.2 Sections 3.2.1, 3.2.2, 3.2.3, 3.2.4
2009/06/25	Acronym addition, minor edits, quotation fixes	Acronyms & Abbreviations, labels and keyword descriptions
2009/11/11	Updates to reflect new EDR/CDR header keywords and values	Sections 3.2-3.3
2010/01/31	Data quality description updated.	Section 3.3
2010/02/05	Updated CDR example labels and section describing label with Special Pixel information.	Sections 3.2.2, 3.2.4, 3.3
2010/03/12	Edits to correct typos, incorrect information, and formatting.	Sections 2.2, 3.2.3, 3.3
2010/06/09	Added new appendix describing image orientation, updated acronyms and abbreviations table	Appendix C, Acronyms and Abbreviations

TBD/TBR ITEMS

Section	Description	Person

Acronyms and Abbreviations

ASCII American Standard Code for Information Interchange

ASU Arizona State University
CCD Charge Coupled Device
CDR Calibrated Data Record

CD-ROM Compact Disk – Read-Only Memory

CD-WO Compact Disk – Write Once

CODMAC Committee on Data Management, Archiving, and Computing

DN Digital Number

EDR Experiment Data Record

FK Frames Kernel (NAIF SPICE kernel)

GSFC Goddard Space Flight Center I/F See Appendix A – Glossary

IK Instrument Kernel (NAIF SPICE kernel)

ISIS Integrated Software for Imagers and Spectrometers

ISO International Standards Organization

JPL Jet Propulsion Laboratory
LDWG LRO Data Working Group
LRO Lunar Reconnaissance Orbiter

LROC Lunar Reconnaissance Orbiter Camera

MD5 Message Digest algorithm 5

ME Mean Earth

MET Mission Elapsed Time

Mini-RF Mini-Radio Frequency Technology Demonstration

MOC Mission Operations Center MTF Modulation Transfer Function

NAC Narrow Angle Camera

NAC-L Narrow Angle Camera – Left (+X, A, 1)
NAC-R Narrow Angle Camera – Right (-X, B, 2)
NAIF Navigation Ancillary Information Facility
NASA National Aeronautics and Space Administration

NSSDC National Space Science Data Center

PDS Planetary Data System PSG Project Science Group

PTIFF Pyramid TIFF

SDVT Science Data Validation Team SIS Software Interface Specification

SNR Signal-to-Noise Ratio SOC Science Operations Center

SPICE S – Spacecraft ephemeris, P – Planet, satellite, comet, or

asteroid ephemeredes, I – Instrument description kernel, C –

C-matrix pointing kernel, E – Events kernel

SSH Secure Shell

TBD To Be Determined TBR To Be Reviewed

UV UltraViolet VIS WAC Visible

Wide Angle Camera

1. Introduction

1.1. Purpose and Scope

This Software Interface Specification (SIS) outlines the generation of Lunar Reconnaissance Orbiter Camera (LROC) NAC and WAC EDR (CODMAC Level 2) and CDR (CODMAC Level 3) data products with a detailed description of the products and a description of how the products are generated, including data sources and destinations. The EDR products contain panchromatic NAC image data, monochromatic WAC image data, and seven band WAC image data, while the CDR products contain calibrated panchromatic NAC image data, calibrated monochromatic WAC image data, and seven band calibrated WAC image data.

This SIS is intended to provide enough information to enable users to read and understand the data products.

1.2. Applicable Documents

The following documents are applicable to the development and execution of this document:

- 1. Lunar Reconnaissance Orbiter Project Data Management and Archive Plan, 431-PLAN-00182. Check with the LRO Project Configuration Management Office to ensure the document is the most current version prior to use.
- 2. LROC Data Management and Archive Plan, LROC_SOC_PLAN_0001.
- 3. LROC EDR Archive Volume SIS, LROC_SOC_SPEC_0002.

This SIS is also consistent with the following Planetary Data System documents:

- 4. Planetary Data System Archive Preparation Guide, August 29, 2006, Version 1.1, JPL D-31224.
- 5. *Planetary Data System Standards Reference*, March 20, 2006, Version 3.7. JPL D-7669, Part 2.
- 6. *Planetary Data System Data Dictionary Document*, August 28, 2002, JPL D-7116, Rev. E

1.3. Relationships with Other Interfaces

The LROC EDR and CDR Archive Volume SIS describes how the data products specified by this document will be cataloged and made available through the LROC PDS Data Node.

2. Data Product Characteristics and Environment

2.1. Instrument Overview

The LROC consists of two Narrow-Angle Cameras (NACs), a Wide-Angle Camera (WAC), and a common Sequence and Compressor System (SCS).

Each NAC (see Figure 2.1) has a 700 mm focal length Cassegrain (Ritchey-Chretien) telescope that images onto a 5064-pixel CCD line-array providing a cross-track field-of-view (FOV) of 2.85°. The NAC readout noise is better than 101 e⁻ and the data are sampled at 12-bits. These 12-bit pixel values are companded to 8-bit pixels using one of several selectable piecewise linear mappings during readout from the CCD. The NAC internal buffer holds 256 MB of uncompressed data, enough for a full-resolution image 52,224 lines long. NAC specifications are summarized in Table 2.1.

The WAC electronics is a copy of those flown on cameras on Mars Climate Orbiter, Mars Polar Lander, Mars Odyssey, and Mars Reconnaissance Orbiter. The WAC (see Figure 2.2) has two lenses imaging onto the same 1024 x 1024 pixel, electronically shuttered CCD area-array, one imaging in the visible/near infrared (VIS), and the other in the Ultraviolet (UV). In monochrome mode, 1024 x 14 pixels are read out in one visible band (645 nm). In color mode, only the center 704 x 14 visible pixels and 512 x 16 UV pixels binned to 128 x 4 pixels, are read out for each band. The VIS optics have a cross-track FOV of 91.7° (monochrome) and 61.4° (color), and the UV optics a 58.96° FOV. From the nominal 50-km orbit, the WAC will provide a nadir ground sample distance of 74.9 m/pixel in the visible, and a swath width of 104.6 km (visible monochrome), 59.6 km (visible color) and 56.8 km (UV color). The seven-band color capability of the WAC is provided by a color filter array (see Figure 2.3) mounted directly over the detector, providing different sections of the CCD with different filters. Consequently the instrument has no moving parts; it acquires data in the seven channels in a "pushframe" mode, with scanning of the WAC FOV provided by motion of the spacecraft and target. Continuous color coverage of the lunar surface is possible by repeated imaging such that each of the narrow framelets of each color band overlap. The WAC has a readout noise less than 66 e⁻ and, pixel values are digitized to 11-bits and are then companded to 8-bit values through a square-root-like lookup table. WAC specifications are summarized in Table 2.2 and the spectral transmissivity of all seven WAC filters are displayed in figure 2.4. The two UV bands (320 and 360 nm) undergo 4x4 pixel on-chip analog summing before digitization to achieve better signal-to-noise ratio. Thus, UV pixels are recorded at reduced 383.5 m/pixel sampling but have improved signal properties. Only the center 704 pixels for the VIS are digitized when all seven bands are being acquired. WAC band passes are arranged first UV then VIS (320, 360, 415, 565, 605, 645, 690), but the order is reversed after LRO performs a 180° yaw maneuver to align the solar panels with the sun.

The two NACs and the WAC interface with the Sequencing and Compressor System (SCS), the third element of the LROC (see Figure 2.5). As the name implies, the SCS commands individual image acquisition by the NACs and WAC from a stored sequence, and losslessly compresses the NAC and WAC data as they are read out and passed to the spacecraft data system. The SCS provides a single command and data interface between the LROC and the LRO spacecraft data system through a spacewire interface.

The NACs are mounted on the spacecraft such that the CCDs are perpendicular to the spacecraft's X-axis. The NAC-L is off-pointed ~2.85° from the NAC-R so that the footprints of the two images overlap ~130 pixels. The NAC-R is also mounted 0.106° forward of the NAC-L. The NACs are mounted such that pixel 0 for the NAC-L is at the -Y (in spacecraft coordinates) end of its CCD and pixel 0 for the NAC-R is at the +Y end of its CCD. This orientation requires that one of the NAC frames from a NAC-L and NAC-R paired observation must be transformed such that both images have the same ground orientation

The mass of both the NACs combined is 16.4 kg, the WAC is 0.9 kg, and the SCS is 1.2 kg, for a total LROC mass of 18.5 kg. The peak and average power consumption for each NAC is 9.3 W and 6.4 W the WAC is 2.7 W and 2.6 W, and the SCS is 4.5 W and 4.0 W, for a total LROC power dissipation of 16.5 W and 13 W, respectively.

Figure 2.1 - LROC Narrow Angle Camera

NAC-L	NAC-R	
2.8502°	2.8412°	
10.0042 μrad	9.9764 μrad	
0.5 m/pixel		
2.49 x 26 km	2.48 x 26.1 km	
3.577	3.590	
$699.62 \pm 0.08 \text{ mm}$	$701.57 \pm 0.09 \text{ mm}$	
0.0000181 ± 0.0000005	0.0000183 ± 0.0000005	
sample 2548 ± 8	sample 2568 ± 8	
198	mm	
0.:	23	
$90.5 \pm 2.6 \text{ e}^{-}/\text{DN}$	$92.5 \pm 1.5 \text{ e}^{-}/\text{DN}$	
$101 \pm 7 e^{-}$	$97 \pm 2 e^{-}$	
$334,000 \pm 31,000 e^{-}$	$352,000 \pm 4100 \text{ e}^{-1}$	
> 52	> 49	
12-bit, encoded to 8-bits		
1.7:1		
Graphite-cyanate composite		
Kodak KLI-5001G		
1 x 5,064*		
Honeywell ADC9225		
Actel RT54SX32-S		
$28 \pm 7 \text{V DC}$		
9.3 W		
6.4 W		
16.4 kg		
118 cm x 27 cm (incl. radiator)		
	2.8502° $10.0042 \mu rad$ $0.5 m$ $2.49 x 26 km$ 3.577 $699.62 \pm 0.08 mm$ 0.0000181 ± 0.0000005 $sample 2548 \pm 8$ 198 $0.5 \pm 2.6 e^{-}/DN$ $101 \pm 7 e^{-}$ $334,000 \pm 31,000 e^{-}$ > 52 12 -bit, encountries of a contraction of the	

Table 2.1 – NAC Specificationss. * Of the 5064 pixels, 39 masked pixels on the right and 21 masked pixels on the left are used for dark reference.

Figure 2.2. - LROC Wide Angle Camera

	Visible			UV
FOV (monochrome / color)	91.7° / 61.4°		58.96°	
IFOV	1.498 mrad		7.67 mrad (4x4 binned)	
Image scale (nadir, 50 km altitude)	74.9 m/pixel		383.5 m/pixel (binned)	
Image frame width monochrome	104.6 km			-
Image frame width 7-band color	59.6 km		5	66.8 km
Image format monochrome	1024 samples x 14	lines		-
Image format color (each band)	704 samples x 14	lines	128 samples	x 4 lines (binned)
f/#	5.052			5.65
Effective focal length	6.013 mm		4.	693 mm
Entrance pupil diameter	1.19 mm		0	.85 mm
System MTF (Nyquist)			0.37	
Gain			± 0.7 e ⁻ /DN	
Noise			$6 \pm 4 e^{-}$	
Detector fullwell		46,10	$0 \pm 3600 \text{ e}^{-}$	
Band λ_{eff} FWHM	320 nm		321 nm	32.3 nm
	360 nm	(360 nm	14.9 nm
	415 nm		415 nm	36.1 nm
	565 nm		566 nm	20.1 nm
	605 nm		504 nm	20.4 nm
	645 nm		643 nm	22.5 nm
	690 nm		689 nm	38.6 nm
SNR (at 1000 DN)	> 150			
Detector digitization	11-bit, encoded to 8-bits			
Lossless compression ratio	1.7:1			
Electronics	4 circuit boards			
Detector	Kodak KLI-1001			
Pixel format	1,024 x 1,024			
Voltage	28±7 V DC			
Peak Power	2.7 W			
Orbit average power	2.6 W			
Mass	0.9 kg			
Volume (width x length x height)	15.8 cm x 23.2 cm x 32.3 cm (incl. radiator)			

Table 2.2 – WAC Specifications

Figure 2.3 - Diagram of LROC Wide Angle Camera filter assembly.

Figure 2.4 - The spectral transmissivity of the 7 WAC filters. The values of the y-axis represent the relative system throughput.

Figure 2.5 - LROC components include the WAC, NAC, and Sequence and Compressor System (SCS).

2.2. Data Product Overview

LROC EDR data products are comprised of the following files:

- a. NAC panchromatic image corresponding to a single observation (either full resolution or summed), with Digital Number (DN) counts in 8-bit format, companded from 12-bit in the instrument. The NAC EDR file size will be a maximum of 256 MB for the full resolution 52,224 lines or summed 52,224 lines, with 5064 samples per line. NAC EDR file sizes will be smaller when fewer lines are acquired.
- b. WAC image corresponding to a series of framelets, with DN counts in 8-bit format, companded from 11-bit in the instrument. Each framelet is in row-major order. The WAC EDR file size will not exceed 26.6 MB, which corresponds to observing 18.5° of latitude in multispectral mode. The WAC exposure and/or interframe gap parameters will be modified approximately every 10° of latitude, resulting in an average file size of 14.4 MB. It is important to note that the WAC EDR stores multispectral framelets in single band, not as separate bands within the EDR file.

LROC CDR data products are comprised of the following files:

a. NAC DNs will be decompanded and images will be radiometrically calibrated to radiance (i.e. star observations) or I/F (i.e. lunar observations). Radiance images will be archived as floating point values (4 bytes per pixel) and I/F images as scaled signed-integer values (2 bytes per pixel). The I/F values will be multiplied by 32767 before being converted to signed-integer. The NAC CDR file size will be approximately 512 MB for full resolution 52,224 line or summed 52,224 line radiance images (I/F images will be half as large),

- with 5064 samples per line. NAC CDR file sizes will be smaller when fewer lines are acquired.
- b. WAC image corresponding to a series of framelet images, with decompanded DNs, radiometrically calibrated to radiance or I/F. The WAC CDR file size will not exceed a maximum of 256 MB, which corresponds to observing 80° of latitude in multispectral mode. The WAC exposure and/or interframe gap parameters will be modified approximately every 10° of latitude, resulting in an average file size of 28.8 MB. It is important to note that the WAC EDR stores multispectral framelets in single band, not as separate bands in the CDR file. The WAC CDR file will require further processing to separate framelets into their respective bands and to align the bands, in order to be viewed as a standard mutli-band image.

2.3. Data Processing

Post acquisition data processing for WAC and NAC images begins upon delivery of the images to SOC from the MOC. The SOC is designed to handle 440 Gbits per day of data downlink, not including ancillary products generated by the MOC. Owing to the large volume of data, the SOC has been designed with a high degree of automation in all aspects of the data processing.

Data are pushed to the SOC using the SSH protocol, with delivery status being checked using MD5 checksums for each file. Failed transfers will be automatically re-initiated by the MOC. Stored housekeeping (spacecraft and LROC instrument), predict and definitive SPICE kernels, and command load reports are also delivered to the SOC, some of which are used during data processing. Upon receipt by the SOC, all files are handled by automated processing routines being run within the Rector framework, to allow for scalable growth as processing needs grow or recede. At each stage of the automated processing, quality assurance tests are performed, either before processing or after processing occurs, to insure valid products are flowing down-stream through the pipelines. Meta-data for each EDR and CDR file that is processed will be recorded into a PostgreSQL database, which then directs the generation of each archive delivery. Archive deliveries are pushed from our production storage array onto a data node storage array, where the data are accessible (in read-only mode) by the LROC PDS data node (http://lroc.sese.asu.edu).

NAC and WAC data should not experience missing data under nominal downlink conditions, owing to the use of the CCSDS File Delivery Protocol (CFDP). Should downlink conditions be degraded such that PDU data packets are missed/lost, the MOC will identify missing PDU data packets, record the start and end bytes values in the Meta-file, and fill the missing bytes with zero values. This strategy will allow the SOC to reconstruct the majority of observations with missing data.

2.3.1. Data Processing Level

The EDR product contains individual NAC and WAC framelet images, and associated engineering data, corresponding to NASA processing Level 0 (CODMAC Level 2).

The CDR product contains individual NAC and WAC framelet images, and associated engineering data, corresponding to NASA processing Level 1a (CODMAC Level 3).

2.3.2. Data Product Generation

The processing pipeline can be run through multiple iterations to account for software updates that affect the output data, updates to SPICE information, or if the calibration of the instruments is updated or modified. In either case it is expected the data will be reprocessed as calibration files are updated.

All LRO data will be transmitted from the LRO Orbiter to the MOC. The MOC and Flight Dynamics Facility will generate LRO SPICE data files for distribution to the SOCs. LROC image files, as delivered from the MOC, are coupled with engineering data and other previously recorded information in the LROC operations database, to create an EDR product. Valid EDR files are then used as input to the process that performs additional processing to generate CDR files.

NAC raw image data (hereafter referred to as science files) consist of 8-bit companded pixels as read out from the camera. The image file is composed first of the even pixels from each line (with a 20 byte CTX heritage header every 1 MB; MB = 1024×1024 bytes) and padded to a 1 MB boundary, followed by the odd pixels in the same style. The EDR file generation process extracts the odd and even pixels, interleaving them to reconstruct original scan lines. If compression was enabled at image acquisition, the data stream is first de-compressed before the interleaving is performed. Information from the meta-file, housekeeping, and the SOC database are combined to generate the PDS label with the binary data to compose the EDR file.

NAC EDR files are calibrated using routines developed in the SOC and archived as Calibrated Data Records (CDR).

WAC science files consist of frames in row-major order with a 4 byte validity marker separating each frame. If compression was enabled at image acquisition, the data stream is first de-compressed before further processing is performed. Information from the meta-file, housekeeping, and the SOC database are combined to generate the PDS label that combined with the binary data to produce the EDR file.

WAC EDR files are calibrated using routines developed in the SOC and archived as CDRs.

2.3.3. Data Flow

Each NAC image file is uniquely named to distinguish between the two NACs (see Section 2.3.4). LROC WAC observations are stored as a series of framelets, with each framelet corresponding to one or more of the seven available bands on the detector. LROC observation and housekeeping files are downlinked through the Ka-band antenna at Whites Sands, N.M., then sent to LRO MOC at Goddard Space Flight Center (GSFC). Real-time telemetry is downlinked via S-band antenna at various locations and also transferred to the MOC. Once observation and housekeeping files are processed by the MOC, including identification of any missing data segments, the observation files and housekeeping files are transferred to the LROC

SOC at ASU via Secure Shell (SSH) file copy protocol. Real-time telemetry is streamed to the LROC SOC as it is received at the MOC (with no processing).

The MOC also sends to the LROC SOC numerous products generated by the GSFC Flight Dynamics group, including predictive and definitive NAIF SPICE kernels. Once all necessary files are received, observations can be ingested into product generation pipelines to produce EDR and CDR PDS products. The pipeline process includes validation of the EDR and CDR products compliance with PDS label and format standards.

At intervals specified in the LROC Data and Management Archive document [Applicable Documents 2], EDR and CDR products will be delivered to the PDS, which is the LROC Data Node (http://lroc.sese.asu.edu) hosted at ASU.

2.3.4. Labeling and Identification

LROC EDR and CDR products are identified by a unique name and each file has a header that records salient information regarding each product. Data product names follow the convention as defined in the LROC EDR Archive Volume SIS [Applicable Documents 3].

The product header (as described in section 3.2) contains information regarding the processing and generation of the product. Should products be reprocessed, the version number in the header section will be updated to reflect the new product.

2.4. Standards Used in Generating Data Products

2.4.1. PDS Standards

The LROC EDR data product complies with Planetary Data System standards for file formats and labels, as specified in the PDS Standards Reference [Applicable Documents 5].

2.4.2. Time Standards

LROC EDR and CDR products comply with Planetary Data Systems standards for time, as well as complying with the LRO project agreement on time stamping of data. This includes UTC and S-clock recorded observation times in EDR and CDR product labels.

The LRO spacecraft clock (SCLK) time stamp consists of three fields: P/SSSSSSSSSSFFFFF. The P field represents the clock partition, the SSSSSSSSS field represents the count of onboard seconds and the FFFFF field represents the count of fractions of a second with one fraction being 1/65536 of a second. Converting between SCLK and other time formats is performed using the MOC provided LRO SCLK kernel and NAIF SPICE toolkit.

2.4.3. Data Storage Conventions

All binary files are arranged with fixed-length records, stored in most-significant-byte-first (big-endian) format. In text files each record is terminated with a carriage return (ASCII code 13) followed by a line feed (ASCII code 10).

2.5. Data Validation

All LROC EDR and CDR products will be validated by the LROC SOC Team and the PDS Imaging Node for compliance with PDS archive standards [*Applicable Documents* 5].

3. Detailed Data Product Specifications

3.1. Data Product Structure and Organization

LROC data products are organized according to the directory structure defined in the LROC EDR Archive Volume SIS [Applicable Documents 3]. Data product names follow the convention defined in the LROC EDR Archive Volume SIS [Applicable Documents 3].

3.2. Data Format Descriptions

Final label content and format will be validated by PDS Engineering and Imaging Nodes. Resulting changes should of course be reflected within all label descriptions.

3.2.1. Example label for LROC NAC EDR product:

```
PDS VERSION ID
                                    = PDS3
/* FILE CHARACTERISTICS */
RECORD TYPE
                                    = FIXED LENGTH
RECORD BYTES
                                    = 5064
FILE RECORDS
                                   = 52225
LABEL RECORDS
                                   = 1
^IMAGE
/* DATA IDENTIFICATION */
DATA SET ID
                                    = "LRO-L-LROC-2-EDR-V1.0"
ORIGINAL PRODUCT ID
                                   = nacl000017a9
PRODUCT ID
                                   = M102658937LE
MISSION NAME
                                   = "LUNAR RECONNAISSANCE ORBITER"
MISSION_PHASE_NAME
                                   = "COMMISSIONING"
INSTRUMENT HOST NAME
                                   = "LUNAR RECONNAISSANCE ORBITER"
INSTRUMENT HOST ID
INSTRUMENT NAME
                                   = "LUNAR RECONNAISSANCE ORBITER CAMERA"
{\tt INSTRUMENT\_ID}
                                   = LROC
LRO:PREROLL TIME
                                    = 2009-07-19T16:07:49.362
START_TIME
                                   = 2009-07-19T16:07:50.004
STOP TIME
                                   = 2009-07-19T16:08:22.787
LRO:SPACECRAFT CLOCK PREROLL COUNT = "1/269712469:21626"
SPACECRAFT CLOCK START COUNT
                                   = "1/269712469:63752"
```

```
SPACECRAFT_CLOCK_STOP_COUNT = "1/269712502:49514"
                                        = 302
ORBIT NUMBER
                                     = LRO LROC TEAM
= 2009-12-05T11:55:45
= "ARIZONA STATE UNIVERSITY"
PRODUCER ID
PRODUCT_CREATION_TIME
PRODUCER_INSTITUTION_NAME
PRODUCT TYPE
                                        = EDR
PRODUCT TYPE
PRODUCT VERSION ID
                                        = "v1.2"
                                        = "SC 2009200_0200_B_V03.txt"
UPLOAD ID
/* DATA DESCRIPTION */
TARGET NAME
                                        = "MOON"
                                        = 1
CROSSTRACK SUMMING
                                       = "TARGET OF OPPORTUNITY"
= "LEFT"
RATIONALE DESC
FRAME ID
DATA QUALITY ID
                                        = "0"
                             = "The DATA_QUALITY_ID is set to an 8-bit
DATA_QUALITY DESC
value th
at encodes the
    following data quality information for the observation. For each bit
    a value of 0 means FALSE and a value of 1 means TRUE. More
    information about the data quality ID can be found in the LROC
    EDR/CDR SIS, section 3.3 'Label and Header Descriptions'.
        Bit 1: Temperature of focal plane array is out of bounds.
        Bit 2: Threshold for saturated pixels is reached.
        Bit 3: Threshold for under-saturated pixels is reached.
        Bit 4: Observation is missing telemetry packets.
        Bit 5: SPICE information is bad or missing.
        Bit 6: Observation or housekeeping information is bad or missing.
        Bit 7: Spare.
        Bit 8: Spare."
/*ENVIRONMENT*/
                                    = 1.99 <degC>
= 17.22 <degC>
= -13.87 <degC>
= 6.12 <degC>
= 2854
LRO:TEMPERATURE SCS
LRO:TEMPERATURE_SCS = 1.99

LRO:TEMPERATURE_FPA = 17.22

LRO:TEMPERATURE_FPGA = -13.8

LRO:TEMPERATURE_TELESCOPE = 6.12

LRO:TEMPERATURE_SCS_RAW = 2854

LRO:TEMPERATURE_FPA_RAW = 2138

LRO:TEMPERATURE_FPA_RAW = 3468

LRO:TEMPERATURE_TELESCOPE_RAW = 2665
/*IMAGING PARAMETERS*/
CROSSTRACK SUMMING
                                        = 1
                                    = 300 <nm>
= 600 <nm>
= 0.627733 <ms>
= 34
BANDWIDTH
CENTER_FILTER_WAVELENGTH
LINE EXPOSURE DURATION
LRO:LINE EXPOSURE CODE
LRO:DAC RESET LEVEL
                                        = 198
LRO:CHANNEL_A_OFFSET
LRO:CHANNEL_B_OFFSET
                                        = 43
                                        = 108
LRO:COMPAND CODE
                                        = 0
                                        = 51
LRO:LINE CODE
LRO:BTERM
                                         = (0,8,25,59,128)
LRO:MTERM
                                        = (0.5, 0.25, 0.125, 0.0625, 0.03125)
```

```
LRO:XTERM
                                   = (0,32,136,543,2207)
LRO:COMPRESSION FLAG
                                      = 1
LRO:MODE
                                     = 7
/*DATA OBJECT*/
                                = IMAGE
OBJECT
   LINES
                                    = 52224
                                     = 5064
    LINE SAMPLES
    SAMPLE BITS
                                     = 8
                                    = LSB_INTEGER
= "RAW_INSTRUMENT_COUNT"
= "780fb38e328c8df1bd6279645e98134a"
    SAMPLE TYPE
    UNIT
   MD5 CHECKSUM
END OBJECT
END
```

3.2.2. Example label for LROC NAC CDR product:

```
/* FILE CHARACTERISTICS */
RECORD TYPE
                                            = FIXED LENGTH
RECORD BYTES
                                            = 5064
FILE RECORDS
                                            = 52225
LABEL RECORDS
^IMAGE
                                             = 2
/* DATA IDENTIFICATION */
DATA SET ID
                                            = "LRO-L-LROC-3-CDR-V1.0"
ORIGINAL PRODUCT ID
                                            = nacl000017a9
                                      = nac1000017a9

= M102658937LC

= "LUNAR RECONNAISSANCE ORBITER"

= "COMMISSIONING"

= "LUNAR RECONNAISSANCE ORBITER"

= LRO

= "LUNAR RECONNAISSANCE ORBITER CAMERA"
PRODUCT ID
MISSION NAME
MISSION_PHASE_NAME
INSTRUMENT_HOST_NAME
INSTRUMENT_HOST_ID
INSTRUMENT NAME
INSTRUMENT ID
                                            = LROC
                                        = 2009-07-19T16:07:49.362
= 2009-07-19T16:07:50.004
LRO:PREROLL TIME
START TIME
STOP TIME
                                            = 2009-07-19T16:08:22.787
LRO:SPACECRAFT CLOCK PREROLL COUNT = "1/269712469:21626"
SPACECRAFT_CLOCK_START_COUNT = "1/269712469:63752"

SPACECRAFT_CLOCK_STOP_COUNT = "1/269712502:49514"
                                        = 302

= LRO LROC TEAM

= 2009-12-05T11:55:45

= "ARIZONA STATE UNIVERSITY"

= CDR
ORBIT NUMBER
PRODUCER ID
PRODUCER_ID
PRODUCT_CREATION_TIME
PRODUCER_INSTITUTION_NAME
PRODUCT_TYPE
PRODUCT TYPE
                                            = "v1.1"
PRODUCT VERSION ID
                                             = "SC 2009200 0200 B V03.txt"
UPLOAD ID
/* DATA DESCRIPTION */
                                            = "MOON"
TARGET NAME
CROSSTRACK SUMMING
RATIONALE DESC
                                             = "TARGET OF OPPORTUNITY"
```

```
FRAME ID
                                     = "LEFT"
DATA_QUALITY ID
                                      = "0"
                                      = "The DATA QUALITY ID is set to an 8-bit
DATA QUALITY DESC
value th
at encodes the
   following data quality information for the observation. For each bit
   a value of 0 means FALSE and a value of 1 means TRUE. More
   information about the data quality ID can be found in the LROC
   EDR/CDR SIS, section 3.3 'Label and Header Descriptions'.
        Bit 1: Temperature of focal plane array is out of bounds.
        Bit 2: Threshold for saturated pixels is reached.
        Bit 3: Threshold for under-saturated pixels is reached.
       Bit 4: Observation is missing telemetry packets.
       Bit 5: SPICE information is bad or missing.
       Bit 6: Observation or housekeeping information is bad or missing.
        Bit 7: Spare.
       Bit 8: Spare."
/*ENVIRONMENT*/
LRO:TEMPERATURE_SCS = 1.99 <degC>
LRO:TEMPERATURE_FPA = 17.22 <degC>
LRO:TEMPERATURE_FPGA = -13.87 <degC>
LRO:TEMPERATURE_TELESCOPE = 6.12 <degC>
LRO:TEMPERATURE_SCS_RAW = 2854
LRO: TEMPERATURE_SCS_RAW
                                     = 2138
= 3468
LRO:TEMPERATURE_FPA_RAW = 2138

LRO:TEMPERATURE_FPGA_RAW = 3468

LRO:TEMPERATURE_TELESCOPE_RAW = 2665
/*IMAGING PARAMETERS*/
CROSSTRACK_SUMMING
                                     = 1
                                  = 300 <nm>
= 600 <nm>
BANDWIDTH
CENTER_FILTER_WAVELENGTH
LINE EXPOSURE DURATION
                                     = 0.627733 < ms >
                                    = 34
LRO:LINE_EXPOSURE_CODE
                                     = 198
LRO:DAC RESET LEVEL
                                     = 43
LRO:CHANNEL A OFFSET
LRO:CHANNEL B OFFSET
                                     = 108
                                      = 0
LRO:COMPAND CODE
                                      = 51
LRO:LINE CODE
                                   = (0,8,25,59,128)
= (0.5,0.25,0.125,0.0625,0.03125)
= (0,32,136,543,2207)
LRO:BTERM
LRO:MTERM
LRO:XTERM
                                      = 1
LRO:COMPRESSION FLAG
LRO: MODE
                                       = 7
/* DATA OBJECT */
OBJECT
                                      = IMAGE
 LINES
                                      = 52224
  LINE SAMPLES
                                      = 5064
  SAMPLE BITS
                                      = 16
                                     = LSB_INTEGER
= 32767
  SAMPLE TYPE
  SCALING FACTOR
  VALID MINIMUM
                                      = -32752
                                      = -32768
  NULL
```

3.2.3. Example label for LROC WAC EDR product:

```
PDS VERSION ID
                                                          = PDS3
/*FILE CHARACTERISTICS*/
                                                        = FIXED_LENGTH
= 704
RECORD TYPE
RECORD BYTES
                                                        = 19276
FILE RECORDS
LABEL RECORDS
                                                         = 10
                                                         = 11
^IMAGE
/*DATA IDENTIFICATION*/
DATA SET ID
                                                         = "LRO-L-LROC-2-EDR-V1.0"
DATA_SET_ID = "LRO-L-LROC-2-EDR-V1.0"

ORIGINAL_PRODUCT_ID = wac000017b9

PRODUCT_ID = M102686980CE

MISSION_NAME = "LUNAR RECONNAISSANCE ORBITER"

MISSION_PHASE_NAME = "COMMISSIONING"

INSTRUMENT_HOST_NAME = "LUNAR RECONNAISSANCE ORBITER"

INSTRUMENT_HOST_ID = LRO

INSTRUMENT_NAME = "LUNAR RECONNAISSANCE ORBITER"

INSTRUMENT_NAME = "LUNAR RECONNAISSANCE ORBITER CAMERA"

INSTRUMENT_ID = LROC

START_TIME = 2009-07-19T23:55:12.604

STOP_TIME = 2009-07-20T00:02:05.557

SPACECRAFT_CLOCK_START_COUNT = "1/269740512:37355"
STOP_TIME = 2009-07-20T00:02:05.557

SPACECRAFT_CLOCK_START_COUNT = "1/269740512:37355"

SPACECRAFT_CLOCK_STOP_COUNT = "1/269740925:34283"

ORBIT_NUMBER = 306

PRODUCT_CREATION_TIME = 2009-12-05T12:22:21

PRODUCER_ID = LRO_LROC_TEAM

PRODUCER_INSTITUTION_NAME = "ARIZONA STATE UNIVERSITY"

PRODUCT_TYPE = EDR
PRODUCT TYPE
                                                         = EDR
                                                       = "v1.2"
PRODUCT VERSION ID
                                                         = "SC 2009200 0200 B V03.txt"
UPLOAD ID
                                                = "MOON"
= "GLOBAL COVERAGE"
= "0"
/*DATA DESCRIPTION*/
TARGET NAME
RATIONALE_DESC
DATA_QUALITY_ID
DATA_QUALITY_DESC
                                                         = "The DATA_QUALITY_ID is set to an 8-bit
value that e
ncodes the
      following data quality information for the observation. For each bit
      a value of 0 means FALSE and a value of 1 means TRUE. More
      information about the data quality ID can be found in the LROC
```

```
EDR/CDR SIS, section 3.3 'Label and Header Descriptions'.
       Bit 1: Temperature of focal plane array is out of bounds.
       Bit 2: Threshold for saturated pixels is reached.
       Bit 3: Threshold for under-saturated pixels is reached.
       Bit 4: Observation is missing telemetry packets.
       Bit 5: SPICE information is bad or missing.
       Bit 6: Observation or housekeeping information is bad or missing.
       Bit 7: Spare.
       Bit 8: Spare."
/*ENVIRONMENT*/
LRO:BEGIN TEMPERATURE SCS
                               = 2.11 < deqC>
LRO:MIDDLE TEMPERATURE SCS
                               = 2.01 < degC>
                               = 2.08 < deqC>
LRO: END TEMPERATURE SCS
LRO:BEGIN TEMPERATURE FPA
                               = -23.43 < degC>
LRO:MIDDLE TEMPERATURE FPA
                               = -23.15 < degC>
LRO:END TEMPERATURE FPA
                               = -22.80 < degC>
LRO:BEGIN TEMPERATURE SCS RAW = 2850
LRO:MIDDLE TEMPERATURE SCS RAW = 2853
LRO:END TEMPERATURE SCS RAW
                               = 2850
LRO:BEGIN TEMPERATURE FPA RAW = 3727
LRO:MIDDLE TEMPERATURE FPA RAW = 3719
LRO:END TEMPERATURE FPA RAW
                               = 3711
/*IMAGING PARAMETERS*/
EXPOSURE DURATION
                               = 50.0 < ms >
LRO: EXPOSURE CODE
                               = 500
INTERFRAME DELAY
                               = 1671.875 < ms >
INSTRUMENT MODE ID
                               = "COLOR"
                               = ("1", "2", "3", "4", "5", "6", "7")
FILTER NUMBER
CENTER FILTER WAVELENGTH
                               = (321 <nm>, 360 <nm>, 415 <nm>, 566 <nm>, 604
<nm>, 643 <nm>, 689 <nm>)
                               = (32 < nm >, 15 < nm >, 36 < nm >, 20 < nm >, 20 < nm >,
BANDWIDTH
23 < nm > , 39 < nm > )
LRO:LOOKUP TABLE TYPE
                               = STORED
LRO:LOOKUP CONVERSION TABLE
                                                   ((0,1),(2,2),(3,3),(-9998,-
9998),(4,4),(5,5),(-9998,
9998), (6,6), (7,7), (8,8), (9,9), (10,10), (11,11), (12,13), (14,14), (15,15), (16,17)
(18,18),(19,19),(20,21),(22,23),(24,24),(25,26),(27,28),(29,30),(31,32),(33,
33),(34,36),(37,38),(39,40),(41,42),(43,44),(45,47),(48,49),(50,51),(52,54),(
55,56),(57,59),(60,62),(63,64),(65,67),(68,70),(71,73),(74,76),(77,79),(80,82
),(83,85),(86,88),(89,92),(93,95),(96,98),(99,102),(103,105),(106,109),(110,1
13),(114,116),(117,120),(121,124),(125,128),(129,132),(133,136),(137,140),(14
1,144),(145,148),(149,152),(153,156),(157,161),(162,165),(166,170),(171,174),
(175,179),(180,183),(184,188),(189,193),(194,198),(199,203),(204,208),(209,21
3),(214,218),(219,223),(224,228),(229,233),(234,238),(239,244),(245,249),(250
,255),(256,260),(261,266),(267,271),(272,277),(278,283),(284,289),(290,295),(
296,301),(302,307),(308,313),(314,319),(320,325),(326,331),(332,337),(338,344
),(345,350),(351,357),(358,363),(364,370),(371,376),(377,383),(384,390),(391,
397),(398,404),(405,411),(412,418),(419,425),(426,432),(433,439),(440,446),(4
47,454),(455,461),(462,468),(469,476),(477,483),(484,491),(492,499),(500,506)
,(507,514),(515,522),(523,530),(531,538),(539,546),(547,554),(555,562),(563,5
70),(571,579),(580,587),(588,595),(596,604),(605,612),(613,621),(622,630),(63
1,638),(639,647),(648,656),(657,665),(666,674),(675,683),(684,692),(693,701),
```

```
(702,710),(711,719),(720,728),(729,738),(739,747),(748,756),(757,766),(767,77)
6),(777,785),(786,795),(796,805),(806,814),(815,824),(825,834),(835,844),(845
,854),(855,864),(865,874),(875,885),(886,895),(896,905),(906,916),(917,926),(
927,937),(938,947),(948,958),(959,969),(970,979),(980,990),(991,1001),(1002,1
012),(1013,1023),(1024,1034),(1035,1045),(1046,1056),(1057,1068),(1069,1079),
(1080,1090),(1091,1102),(1103,1113),(1114,1125),(1126,1136),(1137,1148),(1149
,1160),(1161,1171),(1172,1183),(1184,1195),(1196,1207),(1208,1219),(1220,1231
),(1232,1243),(1244,1255),(1256,1268),(1269,1280),(1281,1292),(1293,1305),(13
06,1317),(1318,1330),(1331,1342),(1343,1355),(1356,1368),(1369,1380),(1381,13
93),(1394,1406),(1407,1419),(1420,1432),(1433,1445),(1446,1458),(1459,1472),(
1473,1485),(1486,1498),(1499,1512),(1513,1525),(1526,1538),(1539,1552),(1553,
1566), (1567, 1579), (1580, 1593), (1594, 1607), (1608, 1621), (1622, 1635), (1636, 1648)
,(1649,1663),(1664,1677),(1678,1691),(1692,1705),(1706,1719),(1720,1734),(173
5,1748),(1749,1762),(1763,1777),(1778,1791),(1792,1806),(1807,1821),(1822,183
5),(1836,1850),(1851,1865),(1866,1880),(1881,1895),(1896,1910),(1911,1925),(1
926,1940),(1941,1955),(1956,1971),(1972,1986),(1987,2001),(2002,2017),(2018,2
032),(2033,2047))
LRO:COMPRESSION FLAG
                               = 0
LRO: MODE
LRO:NFRAMES
                               = 247
                               = 127
LRO:BAND CODE
LRO:INTERFRAME GAP CODE
                               = 82
LRO:COMPAND CODE
                               = 0
LRO:BACKGROUND OFFSET
                               = 56
/* DATA OBJECT */
OBJECT
                              = IMAGE
LINES
                           = 19266
                              = 704
    LINE SAMPLES
    SAMPLE BITS
                               = 8
    SAMPLE TYPE
                               = LSB INTEGER
    UNIT
                              = "RAW INSTRUMENT COUNT"
   MD5 CHECKSUM
                              = "dee3088477b54635963ae2518a4bdf1e"
END OBJECT
END
```

3.2.4. Example label for LROC WAC CDR product:

```
PDS VERSION ID
                               = PDS3
/* FILE CHARACTERISTICS */
RECORD TYPE
                                = FIXED LENGTH
RECORD BYTES
                                = 704
FILE RECORDS
                                = 19276
                                = 10
LABEL RECORDS
^IMAGE
                                = 11
/*DATA IDENTIFICATION*/
DATA SET ID
                                = "LRO-L-LROC-3-CDR-V1.0"
                               = wac000017b9
ORIGINAL PRODUCT ID
PRODUCT ID
                                = M102686980CC
MISSION NAME
                                = "LUNAR RECONNAISSANCE ORBITER"
```

```
MISSION_PHASE_NAME = "COMMISSIONING"
INSTRUMENT_HOST_NAME = "LUNAR RECONNAISSANCE ORBITER"
INSTRUMENT HOST ID
                                   = LRO
INSTRUMENT NAME
                                   = "LUNAR RECONNAISSANCE ORBITER CAMERA"
                            = LROC
= 2009-07-19T23:55:12.604
= 2009-07-20T00:02:05.557
INSTRUMENT ID
START TIME
STOP TIME
SPACECRAFT_CLOCK_START_COUNT = "1/269740512:37355"

SPACECRAFT_CLOCK_STOP_COUNT = "1/269740925:34283"
                                 = 306
= 2009-12-05T12:22:21
ORBIT NUMBER
ORBIT_NUMBER
PRODUCT_CREATION_TIME
PRODUCER_ID
PRODUCER_ID = LRO_LROC_TEAM
PRODUCER_INSTITUTION_NAME = "ARIZONA STATE UNIVERSITY"
PRODUCT_TYPE = CDR
                                   = "v1.1"
PRODUCT VERSION ID
UPLOAD ID
                                     = "SC 2009200 0200 B V03.txt"
/*DATA DESCRIPTION*/
TARGET NAME
                                    = "MOON"
                                 = "GLOBAL COVERAGE"
= "0"
RATIONALE DESC
DATA_QUALITY_ID
                              = "The DATA QUALITY ID is set to an 8-bit value
DATA QUALITY DESC
that encodes the
    following data quality information for the observation. For each bit
    a value of 0 means FALSE and a value of 1 means TRUE. More
    information about the data quality ID can be found in the LROC
    EDR/CDR SIS, section 3.3 'Label and Header Descriptions'.
        Bit 1: Temperature of focal plane array is out of bounds.
        Bit 2: Threshold for saturated pixels is reached.
        Bit 3: Threshold for under-saturated pixels is reached.
        Bit 4: Observation is missing telemetry packets.
        Bit 5: SPICE information is bad or missing.
        Bit 6: Observation or housekeeping information is bad or missing.
        Bit 7: Spare.
        Bit 8: Spare."
/*ENVIRONMENT*/
LRO:BEGIN_TEMPERATURE_SCS = 2.11 <degC>
LRO:MIDDLE_TEMPERATURE_SCS = 2.01 <degC>
LRO:END_TEMPERATURE_SCS = 2.08 <degC>
LRO:BEGIN_TEMPERATURE_FPA = -23.43 <degC>
LRO:MIDDLE_TEMPERATURE_FPA = -23.15 <degC>
LRO:END_TEMPERATURE_FPA = -22.80 <degC>
LRO:BEGIN TEMPERATURE SCS RAW = 2850
LRO:MIDDLE TEMPERATURE SCS RAW = 2853
LRO:END TEMPERATURE SCS RAW = 2850
LRO:BEGIN TEMPERATURE FPA RAW = 3727
LRO:MIDDLE TEMPERATURE FPA RAW = 3719
LRO:END TEMPERATURE FPA RAW = 3711
/*IMAGING PARAMETERS*/
                                  = 50.0 <ms>
= 500
EXPOSURE DURATION
LRO:EXPOSURE_CODE
                                    = 1671.875 < ms >
INTERFRAME DELAY
```

```
INSTRUMENT MODE ID
                                = "COLOR"
                                = ("1", "2", "3", "4", "5", "6", "7")
FILTER NUMBER
CENTER FILTER WAVELENGTH
                               = (321 <nm>, 360 <nm>, 415 <nm>, 566 <nm>, 604
<nm>, 643 <nm>, 689 <nm>)
                               = (32 <nm>, 15 <nm>, 36 <nm>, 20 <nm>, 20 <nm>,
BANDWIDTH
23 < nm > , 39 < nm > )
LRO:LOOKUP_TABLE TYPE
                                = STORED
LRO:LOOKUP CONVERSION TABLE
                                                     ((0,1),(2,2),(3,3),(-9998,-
9998),(4,4),(5,5),(-9998,-
9998), (6,6), (7,7), (8,8), (9,9), (10,10), (11,11), (12,13), (14,14), (15,15), (16,17)
(18,18),(19,19),(20,21),(22,23),(24,24),(25,26),(27,28),(29,30),(31,32),(33,32)
33), (34,36), (37,38), (39,40), (41,42), (43,44), (45,47), (48,49), (50,51), (52,54), (
55,56),(57,59),(60,62),(63,64),(65,67),(68,70),(71,73),(74,76),(77,79),(80,82
),(83,85),(86,88),(89,92),(93,95),(96,98),(99,102),(103,105),(106,109),(110,1
13),(114,116),(117,120),(121,124),(125,128),(129,132),(133,136),(137,140),(14
1,144),(145,148),(149,152),(153,156),(157,161),(162,165),(166,170),(171,174),
(175,179),(180,183),(184,188),(189,193),(194,198),(199,203),(204,208),(209,21
3),(214,218),(219,223),(224,228),(229,233),(234,238),(239,244),(245,249),(250
,255),(256,260),(261,266),(267,271),(272,277),(278,283),(284,289),(290,295),(
296,301),(302,307),(308,313),(314,319),(320,325),(326,331),(332,337),(338,344
),(345,350),(351,357),(358,363),(364,370),(371,376),(377,383),(384,390),(391,
397),(398,404),(405,411),(412,418),(419,425),(426,432),(433,439),(440,446),(4
47,454),(455,461),(462,468),(469,476),(477,483),(484,491),(492,499),(500,506)
,(507,514),(515,522),(523,530),(531,538),(539,546),(547,554),(555,562),(563,5
70), (571, 579), (580, 587), (588, 595), (596, 604), (605, 612), (613, 621), (622, 630), (63
1,638),(639,647),(648,656),(657,665),(666,674),(675,683),(684,692),(693,701),
(702,710),(711,719),(720,728),(729,738),(739,747),(748,756),(757,766),(767,77)
6),(777,785),(786,795),(796,805),(806,814),(815,824),(825,834),(835,844),(845
,854),(855,864),(865,874),(875,885),(886,895),(896,905),(906,916),(917,926),(
927,937),(938,947),(948,958),(959,969),(970,979),(980,990),(991,1001),(1002,1
012),(1013,1023),(1024,1034),(1035,1045),(1046,1056),(1057,1068),(1069,1079),
(1080, 1090), (1091, 1102), (1103, 1113), (1114, 1125), (1126, 1136), (1137, 1148), (1149
,1160),(1161,1171),(1172,1183),(1184,1195),(1196,1207),(1208,1219),(1220,1231
),(1232,1243),(1244,1255),(1256,1268),(1269,1280),(1281,1292),(1293,1305),(13
06,1317),(1318,1330),(1331,1342),(1343,1355),(1356,1368),(1369,1380),(1381,13
93),(1394,1406),(1407,1419),(1420,1432),(1433,1445),(1446,1458),(1459,1472),(
1473,1485),(1486,1498),(1499,1512),(1513,1525),(1526,1538),(1539,1552),(1553,
1566), (1567, 1579), (1580, 1593), (1594, 1607), (1608, 1621), (1622, 1635), (1636, 1648)
,(1649,1663),(1664,1677),(1678,1691),(1692,1705),(1706,1719),(1720,1734),(173
5,1748),(1749,1762),(1763,1777),(1778,1791),(1792,1806),(1807,1821),(1822,183
5),(1836,1850),(1851,1865),(1866,1880),(1881,1895),(1896,1910),(1911,1925),(1
926,1940),(1941,1955),(1956,1971),(1972,1986),(1987,2001),(2002,2017),(2018,2
032),(2033,2047))
LRO:COMPRESSION FLAG
                                = 0
LRO:MODE
                                = 0
LRO:NFRAMES
                                = 247
LRO:BAND CODE
                                = 127
LRO: INTERFRAME GAP CODE
                                = 82
LRO: COMPAND CODE
                                = 0
LRO:BACKGROUND OFFSET
                                = 56
/* DATA OBJECT */
OBJECT
                              = IMAGE
  LINES
                              = 10452
```

```
LINE SAMPLES
                           = 704
 SAMPLE BITS
                           = 32
 SAMPLE TYPE
                           = PC REAL
 VALID MINIMUM
                           = 16#FF7FFFA#
                           = 16#FF7FFFB#
 LOW REPR SATURATION
                           = 16#FF7FFFFC#
 LOW INSTR SATURATION
                          = 16#FF7FFFD#
 HIGH INSTR SATURATION
                          = 16#FF7FFFE#
 HIGH_REPR_SATURATION
                           = 16#FF7FFFF#
 UNIT
                           = "W / (m**2 micrometer sr)"
 MD5 CHECKSUM
                          = "3c234ada4401c044edde0190c1211fe2"
END OBJECT
```

3.3. Label and Header Descriptions

PDS VERSION ID

The PDS version number for the header format; always PDS3.

RECORD TYPE

END

The record type for this file; always FIXED LENGTH.

RECORD BYTES

The number of bytes per record.

FILE RECORDS

The total number of records in this file.

LABEL RECORDS

The total number of records used for the header data.

^IMAGE

A pointer to the starting record of the image object.

DATA SET ID

For EDR products, set to "LRO-L-LROC-2-EDR-V1.1". For CDR products, set to "LRO-L-LROC-3-CDR-V1.1".

ORIGINAL PRODUCT ID

Filename of this image as received from the LRO MOC. For NAC observations, the filename is either *nacl00000000* or *nacr00000000* (NAC-LEFT or NAC-RIGHT respectively). For WAC observations, the filename is *wac000000000*.

PRODUCT ID

Unique identifier for this LROC NAC and WAC EDR/CDR product. Example [TARGET][MET][INSTRUMENT][PRODUCT] where [TARGET] is a single character denoting the observation target [(M)oon, (E)arth, (C)alibration or (S)tar, [MET] is a nine digit number reflecting the MET of acquisition (with a single digit for partition), [INSTRUMENT] is a single character denoting the instrument [(R)ight NAC, (L)eft NAC, (M)onochrome WAC, (C)olor WAC, (U)V only WAC, (V)isible only WAC, and [PRODUCT] is a single character denoting an (E)DR product or (C)DR product.

MISSION NAME

Always "LUNAR RECONNAISSANCE ORBITER".

MISSION PHASE NAME

Name of the mission phase; "COMMISSIONING", "NOMINAL MISSION" or "EXTENDED MISSION".

INSTRUMENT_HOST_NAME

Always "LUNAR RECONNAISSANCE ORBITER".

INSTRUMENT HOST ID

Always LRO.

INSTRUMENT NAME

Always "LUNAR RECONNAISSANCE ORBITER CAMERA".

INSTRUMENT ID

Always LROC.

LRO:PREROLL TIME

The UTC time and date at the start of the image acquisition command, corresponding to the acquisition of 1024 lines at the given exposure prior to the actual image acquisition.

START TIME

The UTC time and date at the start of the image acquisition.

STOP TIME

The UTC time and date at the end of the image acquisition.

LRO:SPACECRAFT CLOCK PREROLL COUNT

Set to the sclk string for the start of an observation preroll acquisition.

SPACECRAFT CLOCK START COUNT

Set to the sclk string for the start of an observation.

SPACECRAFT CLOCK STOP COUNT

Set to the sclk string for the stop of an observation.

ORBIT NUMBER

Set to the LRO orbit revolution on which this image was acquired.

PRODUCT CREATION TIME

Set to time and date for the creation of this PDS product file, in the form of CCYY-MM-DDThh:mm:ss.sss.

PRODUCER ID

Always set to LRO LROC TEAM.

PRODUCER INSTITUTION NAME

Always set to "ARIZONA STATE UNIVERSITY".

PRODUCT TYPE

What kind of PDS product this file represents. Can be either EDR or CDR.

PRODUCT VERSION ID

The product version of this file, currently "v1.2" for EDR and "v1.0" for CDR.

UPLOAD ID

The string identifier for the ATS command report which corresponds to the ATS command load used to acquire this image.

TARGET NAME

Set to the target body: "MOON" for any nominal lunar imaging, "EARTH" for any observations of the Earth, "CAL" for any non-STAR calibration images, and "STAR" for star calibration images.

RATIONALE DESC

For NAC observations, set to one of the following: the keywords recorded in the REACT ROI, the appropriate NAC campaign, or set to the string "TARGET OF

OPPORTUNITY". For WAC observations, set to either the appropriate campaign or "GLOBAL COVERAGE".

FRAME ID

For NAC, records if the image was acquired from the "LEFT" or "RIGHT" NAC.

DATA QUALITY ID

Set to an 8-bit value that encodes data quality information for the observation.

DATA QUALITY DESC

The DATA_QUALITY_ID is set to an 8-bit value that encodes the following data quality information for the observation. For each bit a value of 0 means FALSE and a value of 1 means TRUE.

Bit 1: Temperature of focal plane array is out of bounds. Bit 1 is set to a value of 1 if temperature data is present and in not in the range -50C to +45C.

Bit 2: Threshold for saturated pixels is reached. Bit 2 is set to a value of 1 if count of DNs 250 or over exceeds 0.1% of all DN values.

Bit 3: Threshold for under-saturated pixels is reached. Bit 3 is set to a value of 1 if count of DNs 5 or under exceeds 0.1% of all DN values.

Bit 4: Observation is missing telemetry packets. Bit 4 is set to a value of 1 if the actual observation file (science file) is missing bits as recorded in the science META file.

Bit 5: SPICE information is bad or missing. Bit 5 is set to a value of 1 if the defintive NAIF SPK or CK covering the observation acquisition time is missing or incorrect.

Bit 6: Observation or housekeeping information is bad or missing. Bit 6 is set to a value of 1 if the observation header or it's housekeeping (APID 138) information is incorrect or missing.

Bit 7: Spare.

Bit 8: Spare.

LRO:TEMPERATURE SCS

Set to the temperature of the LROC SCS in degrees Celsius, as converted from the raw engineering counts.

LRO:TEMPERATURE FPA

Set to the temperature of the LROC FPA in degrees Celsius, as converted from the raw engineering counts.

LRO:TEMPERATURE FPGA

Set to the temperature of the LROC FPGA in degrees Celsius, as converted from the raw engineering counts.

LRO:TEMPERATURE TELESCOPE

Set to the temperature of the LROC telescope corresponding to NAC-L or NAC-R, as converted from the raw engineering counts.

LRO:TEMPERATURE SCS RAW

Set to the raw engineering counts for the LROC SCS.

LRO:TEMPERATURE FPA RAW

Set to the raw engineering counts for the LROC (F)ocal (P)lane (A)rray.

LRO:TEMPERATURE FPGA RAW

Set to the raw engineering counts for the LROC (F)ield (P)rogrammable (G)ate (A)rray. LRO:TEMPERATURE TELESCOPE RAW

Set to the raw engineering counts for the LROC Telescope corresponding to NAC-L or NAC-R.

LRO:BEGIN TEMPERATURE SCS

Set to the temperature of the LROC SCS in degrees Celsius, as converted from the raw engineering counts, at the beginning of a series of WAC frames.

LRO:MIDDLE TEMPERATURE SCS

Set to the temperature of the LROC SCS in degrees Celsius, as converted from the raw engineering counts, at the middle of a series of WAC frames.

LRO:END TEMPERATURE SCS

Set to the temperature of the LROC SCS in degrees Celsius, as converted from the raw engineering counts, at the end of a series of WAC frames.

LRO:BEGIN TEMPERATURE FPA

Set to the temperature of the LROC FPA in degrees Celsius, as converted from the raw engineering counts, at the beginning of a series of WAC frames.

LRO:MIDDLE TEMPERATURE FPA

Set to the temperature of the LROC FPA in degrees Celsius, as converted from the raw engineering counts, at the middle of a series of WAC frames.

LRO:END TEMPERATURE FPA

Set to the temperature of the LROC FPA in degrees Celsius, as converted from the raw engineering counts, at the end of a series of WAC frames.

LRO:BEGIN TEMPERATURE SCS RAW

Set to the raw engineering counts for the LROC SCS at the beginning of a series of WAC frames.

LRO:MIDDLE TEMPERATURE SCS RAW

Set to the raw engineering counts for the LROC SCS at the middle of a series of WAC frames.

LRO:END TEMPERATURE SCS RAW

Set to the raw engineering counts for the LROC SCS at the end of a series of WAC frames.

LRO:BEGIN TEMPERATURE FPA RAW

Set to the raw engineering counts for the LROC (F)ocal (P)lane (A)rray at the beginning of a series of WAC frames.

LRO:MIDDLE TEMPERATURE FPA RAW

Set to the raw engineering counts for the LROC (F)ocal (P)lane (A)rray at the middle of a series of WAC frames.

LRO:END TEMPERATURE FPA RAW

Set to the raw engineering counts for the LROC (F)ocal (P)lane (A)rray at the end of a series of WAC frames.

CROSSTRACK SUMMING

Indicates if NAC observation was taken with crosstrack summing (2) or no crosstrack summing (1). Keyword only applies to NAC products.

BANDWIDTH

Set to the bandwidth value, in nanometers, for both NAC and WAC observations. For NACs the value is 300nm, for WAC it can be a combination of the following: 32, 15, 36, 20, 23, 39, dependent on which UV and/or Vis bands were acquired.

CENTER FILTER WAVELENGTH

Set to the center filter wavelength, in nanometers, for both NAC and WAC observations. For NACs the value is 600nm. For WAC it can be a combination of the following: 321,

360, 415, 566, 604, 643, 689, dependent on which UV and/or Vis bands were acquired.

LINE EXPOSURE DURATION

For NAC products, LINE_EXPOSURE_DURATION can have values between 337.6 and 35,281.6 microseconds, in 128/15 microsecond increments

(LINE EXPOSURE DURATION = [LINE_EXPOSURE_CODE * 128/15] + 337.6).

LRO:LINE_EXPOSURE CODE

Index range from 0 to 4095 each corresponding to one LINE_EXPOSURE_DURATION increment.

LRO:DAC RESET LEVEL

Records the commanded DAC reset level for either the NAC LEFT or NAC RIGHT.

LRO:CHANNEL A OFFSET

Records the commanded NAC channel A offset for either the NAC LEFT or NAC RIGHT.

LRO:CHANNEL B OFFSET

Records the commanded NAC channel B offset for either the NAC LEFT or NAC RIGHT.

LRO:COMPAND CODE

Indicates which stored companding table was used (0-7) (see Appendix B).

LRO:LINE CODE

Records the commanded value for the number of NAC lines to acquire, in 1024 increments (LINES = LINES CODE * 1024)

LRO:BTERM

NAC companding bterms (see Appendix B)

LRO:MTERM

NAC companding mterm (see Appendix B)

LRO:XTERM

NAC companding xterms (see Appendix B)

LRO:COMPRESSION FLAG:

Indicates if lossless compression was commanded (0=no, 1=yes)

LRO:MODE

Set to the mode value as commanded for both NAC and WAC observations.

EXPOSURE DURATION

For WAC products, LINE_EXPOSURE_DURATION can have values between 0 and 6.5535 seconds, in 100 microsecond increments.

LRO:EXPOSURE CODE

Records the commanded exposure code for a WAC observation.

INTERFRAME DELAY

Set to the value of the interframe delay between WAC framelets. Keyword can have values between 25/64 and 280/64 seconds, in 1/64 seconds increments.

INSTRUMENT MODE ID

Records the commanded WAC mode: BW, COLOR, VIS or UV.

FILTER NUMBER

Records the WAC filter numbers taken during an observation, which corresponds to the INSTRUMENT_MODE_ID: (4) or (5) or (1,2,3,4,5,6,7) or (1,2,3,4,5) or (6,7). Filter (4) is optimal BW band, with filter (5) as an alternate.

LRO:LOOKUP_TABLE_TYPE

Always set to STORED.

LRO:LOOKUP CONVERSION TABLE

The table defines the onboard translation from 11-bit to 8-bit pixels. There are 2048 pairs of values in the table. The first pair in the table corresponds to the range of 11-bit pixels that map to 0 DN value of the output 8-bit pixel. Subsequent pairs correspond to incremental output DN values. Table is included in CDR products for completeness, de-companding has already occurred during the generation of the CDR. Example:

LRO:LOOKUP_CONVERSION_TABLE= ((0,1), (2,3), (4,5),...)

Input pixel values 0-1 were mapped to output DN value 0, 2-3 mapped to DN value 1, 4-5 mapped to DN 2, etc.)

LRO:NFRAMES

Records the commanded number of frames for a WAC observation.

LRO:BAND CODE

Records the commanded band code for a WAC observation.

LRO:INTERFRAME GAP CODE

Records the commanded interframe gap code for a WAC observation.

LINES

Set to the number of lines captured by the observation.

LINE SAMPLES

Set to the number of samples in a line.

SAMPLE BITS

Set to 8-bit for NAC or WAC EDR products. Set to 16-bit for NAC CDR products with I/F units. Set to 32-bit for NAC CDR products with RADIANCE units and all WAC CDR products.

SAMPLE TYPE

Set to LSB_INTEGER for EDR products and NAC CDR products with I/F units. Set to PC_REAL for NAC CDR products with RADIANCE units and any WAC CDR product.

VALID MINIMUM

Set to the value denoting the valid minimum within the image.

NULL

Set to the value denoting "no data" or "absence of data" in the image.

LOW REPR SATURATION

Set to the value denoting the low representation saturation within the image.

LOW INSTR SATURATION

Set to the value denoting the low instrument saturation within the image.

HIGH INSTR SATURATION

Set to the value denoting the high instrument saturation within the image.

HIGH REPR SATURATION

Set to the value denoting the high representation saturation within the image.

UNIT

Unit of measurement represented by pixel values (digital number or DN). NAC and WAC EDR files have a value of "RAW INSTRUMENT COUNT" for this keyword. NAC CDR files can have a value of Scaled I/F (a 2 byte integer) or radiance (W / (m**2 micrometer sr) (a 4 byte real). WAC CDR files can have a value of I/F or radiance (a 4 byte real).

MD5 CHECKSUM

The calculated MD5 checksum for the data stream, as a 32 character string value.

Appendix A - Glossary

Archive – An archive consists of one or more data sets along with all the documentation and ancillary information needed to understand and use the data. An archive is a logical construct independent of the medium on which it is stored.

Archive Volume, Archive Volume Set – A volume is a unit of media on which data products are stored; for example, one CD-ROM or DVD-ROM. An *archive volume* is a volume containing all or part of an archive; that is, data products plus documentation and ancillary files. When an archive spans multiple volumes, they are called an *archive volume set*. Usually the documentation and some ancillary files are repeated on each volume of the set, so that a single volume can be used alone. The LROC EDR Archive will be stored, distributed, and archived solely on computer disk for the foreseeable future (there will be no formal hard-copy archive such as CD-ROM or DVD-ROM).

Catalog Information – Descriptive information about a data set (e.g. mission description, spacecraft description, instrument description), expressed in Object Description Language (ODL) that is suitable for loading into a PDS catalog.

Companding – A method for mitigating the detrimental effects of a channel with limited dynamic range. The use of companding allows signals with a large dynamic range to be transmitted over facilities that have a smaller dynamic range capability.

Data Product – A labeled grouping of data resulting from a scientific observation, usually stored in one file. A product label identifies, describes, and defines the structure of the data. An example of a data product is a planetary image, a spectrum table, or a time series table.

Data Set – An accumulation of data products. A data set together with supporting documentation and ancillary files is an archive.

I/F – Defined as the spectral radiance divided by the solar spectral irradiance of the Sun at target distance divided by pi. Thus, it is the ratio of the radiance observed from a surface to that of a perfect white Lambertian surface illuminated by the same light source but at normal incidence.

MD5 – The Message Digest algorithm 5 is widely used cryptographic hash function with a 128-bit hash value, commonly used to check the integrity of files. An MD5 hash is typically expressed as a 32-character string of hexadecimal numbers.

Standard Data Product – A data product generated in a predefined way using well-understood procedures, processed in "pipeline" fashion. Data products that are generated in a nonstandard way are sometimes called *special data products*.

Appendix B - NAC and WAC Companding Schemes

NAC images are companded using a piecewise linear transfer function with up to five segments. The LROC instrument can store up to eight NAC transfer functions, currently six functions are defined. The six transfer functions implemented in NAC hardware can be expressed in pseudo code.

Pseudo code

The companding logic operates as follows:

```
if pixin < xterm0 then pix <= pixin(7 downto 0)
elsif pixin < xterm1 then pix <= pixin/2+bterm<sub>0</sub>
elsif pixin < xterm2 then pix <= pixin/4+bterm<sub>1</sub>
elsif pixin < xterm3 then pix <= pixin/8+bterm<sub>2</sub>
elsif pixin < xterm4 then pix <= pixin/16+bterm<sub>3</sub>
else pix <= pixin/32+bterm<sub>4</sub>
end if
```

The code parameters are:

- "bterm" (i.e. the y-intercept of the linear function): bterm = [[0, 8, 25, 59, 128], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 16, 69, 103, 128], [0, 0, 0, 65, 128], [0, 0, 14, 65, 128]]
- "xterm" (i.e. the inflection point on the x-axis (12-bit axis)): xterm = [[0, 32, 136, 543, 2207], [511, 0, 0, 0, 0], [0, 0, 0, 0, 4095], [0, 64, 424, 536, 800], [0, 0, 0, 1040, 2000], [0, 0, 112, 816, 2000]]
- "pixin" is input 12-bit DN
- The first line of the code makes sure that only the 8 least significant bits are processed ("7 downto 0" refers to the bit number of a 12-bit byte), i.e. a 12-bit value of 256 DN rolls over to a value of 0 DN.

The companding scheme can also be described as linear functions with corresponding segments defined by 12-bit DN ranges.

Code 0: NAC nominal table (square-root-like)

	linear function	12-bit DN range (y)	8-bit DN range (x)
segment 1	$y = \frac{1}{2} \cdot x + 0$	0 - 31	0 - 15
segment 2	$y = \frac{1}{4} \cdot x + 8$	32 - 135	16 – 41
segment 3	$y = 1/8 \cdot x + 25$	136 – 542	42 - 92
segment 4	$y = 1/16 \cdot x + 59$	543 - 2206	92 – 196
segment 5	$y = 1/32 \cdot x + 128$	2207 – 4095	196 – 255

Code 1: NAC lin1 (0 DN to 255 DN mapped one-to-one)

	linear function	12-bit DN range (y)	8-bit DN range (x)
segment 1	y = x	0 - 255	0 – 255
segment 2	y = x - 256	256 – 510	0 - 254
segment 3	$y = 1/32 \cdot x$	511 – 4095	15 – 127

Code 2: NAC lin16 (12 bit to 8 bit linear)

	linear function	12-bit DN range (y)	8-bit DN range (x)
segment 1	$y = 1/16 \cdot x$	0 - 4094	0 – 255
segment 2	$y = 1/32 \cdot x$	4095 – 4095	127 – 127

Code 3: NAC low signal table (optimized for DN < 500)

	linear function	12-bit DN range (y)	8-bit DN range (x)
segment 1	$y = \frac{1}{2} \cdot x + 0$	0 – 63	0 – 31
segment 2	$y = \frac{1}{4} \cdot x + 16$	64 - 423	32 – 121
segment 3	$y = 1/8 \cdot x + 69$	424 - 535	122 – 135
segment 4	$y = 1/16 \cdot x + 103$	536 – 799	136 – 152
segment 5	$y = 1/32 \cdot x + 128$	800 - 4095	153 – 255

Code 4: NAC high signal table (optimized for 500 < DN < 2000)

	linear function	12-bit DN range (y)	8-bit DN range (x)
segment 1	$y = 1/8 \cdot x + 0$	0 - 1039	0 - 129
segment 2	$y = 1/16 \cdot x + 65$	1040 – 1999	130 – 189
segment 3	$y = 1/32 \cdot x + 128$	2000 - 4095	190 – 255

Code 5: NAC cap Ng/Ne table (minimize quantization noise for low DN)

	linear function	12-bit DN range (y)	8-bit DN range (x)
segment 1	$y = \frac{1}{4} \cdot x + 0$	0 – 111	0 - 27
segment 2	$y = 1/8 \cdot x + 14$	112 - 815	28 – 115
segment 3	$y = 1/16 \cdot x + 65$	816 – 1999	116 – 189
segment 4	$y = 1/32 \cdot x + 128$	2000 – 4095	190 – 255

Simply inverting the companding equations allows the 8-bit value to be decompanded back to the original 12-bit DN. However there is an ambiguity when inverting, the 8-bit value could have been any of a number of 12-bit values within the particular bin. The inverted equation returns the lowest 12-bit DN within the bin. An alternate method is to use a lookup table and for a particular implementation the analyst can choose the lowest, middle, or highest value within a bin (or any value that meets the particular requirements).

Example 12-bit bins for companding Scheme 0 (square root).

The first 12-bit bin (0, 1) maps to the 8-bit value 0, the second 12-bit bin (2, 3) maps to the 8-bit value 1, the third 12-bit (4, 5) bin maps to the 8-bit value 2 so on and so forth until the 256th 12-bit bin (4064, 4095) which maps to 255.

(0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11), (12, 13), (14, 15), (16, 17), (18, 19), (20, 21), (22, 23), (24, 25), (26, 27), (28, 29), (30, 31), (32, 35), (36, 39), (40, 43), (44, 47), (48, 51), (52, 55), (56, 59), (60, 63), (64, 67), (68, 71), (72, 75), (76, 79), (80, 83), (84, 87), (88, 91), (92, 95), (96, 99), (100, 103), (104, 107), (108, 111), (112, 115), (116, 119), (120, 123), (124, 127), (128, 131), (132, 135), (136, 143), (144, 151), (152, 159), (160, 167), (168, 175), (176, 183), (184, 191), (192, 199), (200, 207), (208, 215), (216, 223), (224, 231), (232, 239), (240, 247), (248, 255), (256, 263), (264, 271), (272, 279), (280, 287), (288, 295), (296, 303), (304, 311), (312, 319), (320, 327), (328, 335), (336, 343), (344, 351), (352, 359), (360, 367), (368, 375), (376, 383), (384, 391), (392, 399), (400, 407), (408, 415), (416, 416), (416, 41

```
423), (424, 431), (432, 439), (440, 447), (448, 455), (456, 463), (464, 471), (472, 479), (480, 487), (488, 495), (496,
503), (504, 511), (512, 519), (520, 527), (528, 535), (536, 543), (544, 559), (560, 575), (576, 591), (592, 607), (608,
(623), (624, 639), (640, 655), (656, 671), (672, 687), (688, 703), (704, 719), (720, 735), (736, 751), (752, 767), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768), (768, 768
783), (784, 799), (800, 815), (816, 831), (832, 847), (848, 863), (864, 879), (880, 895), (896, 911), (912, 927), (928,
943), (944, 959), (960, 975), (976, 991), (992, 1007), (1008, 1023), (1024, 1039), (1040, 1055), (1056, 1071), (1072,
1087), (1088, 1103), (1104, 1119), (1120, 1135), (1136, 1151), (1152, 1167), (1168, 1183), (1184, 1199), (1200,
1215), (1216, 1231), (1232, 1247), (1248, 1263), (1264, 1279), (1280, 1295), (1296, 1311), (1312, 1327), (1328,
1343), (1344, 1359), (1360, 1375), (1376, 1391), (1392, 1407), (1408, 1423), (1424, 1439), (1440, 1455), (1456,
1471), (1472, 1487), (1488, 1503), (1504, 1519), (1520, 1535), (1536, 1551), (1552, 1567), (1568, 1583), (1584,
1599), (1600, 1615), (1616, 1631), (1632, 1647), (1648, 1663), (1664, 1679), (1680, 1695), (1696, 1711), (1712,
1727), (1728, 1743), (1744, 1759), (1760, 1775), (1776, 1791), (1792, 1807), (1808, 1823), (1824, 1839), (1840,
1855), (1856, 1871), (1872, 1887), (1888, 1903), (1904, 1919), (1920, 1935), (1936, 1951), (1952, 1967), (1968,
1983), (1984, 1999), (2000, 2015), (2016, 2031), (2032, 2047), (2048, 2063), (2064, 2079), (2080, 2095), (2096,
2111), (2112, 2127), (2128, 2143), (2144, 2159), (2160, 2175), (2176, 2191), (2192, 2207), (2208, 2239), (2240,
2271), (2272, 2303), (2304, 2335), (2336, 2367), (2368, 2399), (2400, 2431), (2432, 2463), (2464, 2495), (2496,
2527), (2528, 2559), (2560, 2591), (2592, 2623), (2624, 2655), (2656, 2687), (2688, 2719), (2720, 2751), (2752,
2783), (2784, 2815), (2816, 2847), (2848, 2879), (2880, 2911), (2912, 2943), (2944, 2975), (2976, 3007), (3008,
3039), (3040, 3071), (3072, 3103), (3104, 3135), (3136, 3167), (3168, 3199), (3200, 3231), (3232, 3263), (3264,
3295), (3296, 3327), (3328, 3359), (3360, 3391), (3392, 3423), (3424, 3455), (3456, 3487), (3488, 3519), (3520,
3551), (3552, 3583), (3584, 3615), (3616, 3647), (3648, 3679), (3680, 3711), (3712, 3743), (3744, 3775), (3776,
3807), (3808, 3839), (3840, 3871), (3872, 3903), (3904, 3935), (3936, 3967), (3968, 3999), (4000, 4031), (4032,
4063), (4064, 4095)
```

WAC data are companded with a square root scheme similar to NAC scheme 0. WAC companding is implemented through a lookup table reproduced here.

WAC	Squa	re-root com	pano	ling table: 11	-bit	to 8-bit					
0	0	25	22	50	34	75	43	100	51	125	58
1	0	26	22	51	34	76	43	101	51	126	58
2	1	27	23	52	35	77	44	102	51	127	58
3	2	28	23	53	35	78	44	103	52	128	58
4	4	29	24	54	35	79	44	104	52	129	59
5	5	30	24	55	36	80	45	105	52	130	59
6	7	31	25	56	36	81	45	106	53	131	59
7	8	32	25	57	37	82	45	107	53	132	59
8	9	33	26	58	37	83	46	108	53	133	60
9	10	34	27	59	37	84	46	109	53	134	60
10	11	35	27	60	38	85	46	110	54	135	60
11	12	36	27	61	38	86	47	111	54	136	60
12	13	37	28	62	38	87	47	112	54	137	61
13	13	38	28	63	39	88	47	113	54	138	61
14	14	39	29	64	39	89	48	114	55	139	61
15	15	40	29	65	40	90	48	115	55	140	61
16	16	41	30	66	40	91	48	116	55	141	62
17	16	42	30	67	40	92	48	117	56	142	62
18	17	43	31	68	41	93	49	118	56	143	62
19	18	44	31	69	41	94	49	119	56	144	62
20	19	45	32	70	41	95	49	120	56	145	63
21	19	46	32	71	42	96	50	121	57	146	63
22	20	47	32	72	42	97	50	122	57	147	63
23	20	48	33	73	42	98	50	123	57	148	63
24	21	49	33	74	43	99	51	124	57	149	64

150	64	204	76	258	86	312 95	366 104	420 112
151	64	205	76	259	86	313 95	367 104	421 112
152	64	206	76	260	86	314 96	368 104	422 112
153	65	207	76	261	87	315 96	369 104	423 112
154	65	208	76	262	87	316 96	370 104	424 112
155	65	209	77	263	87	317 96	371 105	425 112
156	65	210	77	264	87	318 96	372 105	426 113
157	66	211	77	265	87	319 96	373 105	427 113
158	66	212	77	266	87	320 97	374 105	428 113
159	66	213	77	267	88	321 97	375 105	429 113
160	66	214	78	268	88	322 97	376 105	430 113
161	66	215	78	269	88	323 97	377 106	431 113
162	67	216	78	270	88	324 97	378 106	432 113
163	67	217	78	271	88	325 97	379 106	433 114
164	67	218	78	272	89	326 98	380 106	434 114
165	67	219	79	273	89	327 98	381 106	435 114
166	68	220	79	274	89	328 98	382 106	436 114
167	68	221	79	275	89	329 98	383 106	437 114
168	68	222	79	276	89	330 98	384 107	438 114
169	68	223	79	277	89	331 98	385 107	439 114
170	68	224	80	278	90	332 99	386 107	440 115
171	69	225	80	279	90	333 99	387 107	441 115
172	69	226	80	280	90	334 99	388 107	442 115
173	69	227	80	281	90	335 99	389 107	443 115
174	69	228	80	282	90	336 99	390 107	444 115
175	70	229	81	283	90	337 99	391 108	445 115
176	70	230	81	284	91	338 100	392 108	446 115
177	70	231	81	285	91	339 100	393 108	447 116
178	70	232	81	286	91	340 100	394 108	448 116
179	70	233	81	287	91	341 100	395 108	449 116
180	71	234	82	288	91	342 100	396 108	450 116
181	71	235	82	289	91	343 100	397 108	451 116
182	71	236	82	290	92	344 100	398 109	452 116
183	71	237	82	291	92	345 101	399 109	453 116
184	72	238	82	292	92	346 101	400 109	454 116
185	72	239	83	293	92	347 101	401 109	455 117
186	72	240	83	294	92	348 101	402 109	456 117
187	72	241	83	295	92	349 101	403 109	457 117
188	72	242	83	296	93	350 101	404 109	458 117
189	73	243	83	297	93	351 102	405 110	459 117
190	73	244	83	298	93	352 102	406 110	460 117
191	73	245	84	299	93	353 102	407 110	461 117
192	73	246	84	300	93	354 102	408 110	462 118
193	73	247	84	301	93	355 102	409 110	463 118
194	74	248	84	302	94	356 102	410 110	464 118
195	74	249	84	303	94	357 102	411 110	465 118
196	74	250	85	304	94	358 103	412 111	466 118
197	74	251	85	305	94	359 103	413 111	467 118
198	74	252	85	306	94	360 103	414 111	468 118
199	75	253	85	307	94	361 103	415 111	469 119
200	75	254	85	308	95	362 103	416 111	470 119
201	75	255	85	309	95	363 103	417 111	471 119
202	75	256	86	310	95	364 104	418 111	472 119
203	75	257	86	311	95	365 104	419 112	473 119
	-		-		-		· · · · · ·	

474 119	528 126	582 133	636 139	690 145	744 151
475 119	529 126	583 133	637 139	691 145	745 151
476 119	530 126	584 133	638 139	692 145	746 151
477 120	531 127	585 133	639 140	693 146	747 151
478 120	532 127	586 133	640 140	694 146	748 152
479 120	533 127	587 133	641 140	695 146	749 152
480 120	534 127	588 134	642 140	696 146	750 152
481 120	535 127	589 134	643 140	697 146	751 152
482 120	536 127	590 134	644 140	698 146	752 152
483 120	537 127	591 134	645 140	699 146	753 152
484 121	538 127	592 134	646 140	700 146	754 152
485 121	539 128	593 134	647 140	701 146	755 152
486 121	540 128	594 134	648 141	702 147	756 152
487 121	541 128	595 134	649 141	703 147	757 153
488 121	542 128	596 135	650 141	704 147	758 153
489 121	543 128	597 135	651 141	705 147	759 153
490 121	544 128	598 135	652 141	706 147	760 153
491 121	545 128	599 135	653 141	707 147	761 153
492 122	546 128	600 135	654 141	708 147	762 153
493 122	547 129	601 135	655 141	709 147	763 153
494 122	548 129	602 135	656 141	710 147	764 153
495 122	549 129	603 135	657 142	711 148	765 153
496 122	550 129	604 135	658 142	712 148	766 153
497 122	551 129	605 136	659 142	713 148	767 154
498 122	552 129	606 136	660 142	714 148	768 154
499 122	553 129	607 136	661 142	715 148	769 154
500 123	554 129	608 136	662 142	716 148	770 154
501 123	555 130	609 136	663 142	717 148	771 154
502 123	556 130	610 136	664 142	718 148	772 154
503 123	557 130	611 136	665 142	719 148	773 154
504 123	558 130	612 136	666 143	720 149	774 154
505 123	559 130	613 137	667 143	721 149	775 154
506 123	560 130	614 137	668 143	722 149	776 154
507 124	561 130	615 137	669 143	723 149	777 155
508 124	562 130	616 137	670 143	724 149	778 155
509 124	563 131	617 137	671 143	725 149	779 155
510 124	564 131	618 137	672 143	726 149	780 155
511 124	565 131	619 137	673 143	727 149	781 155
512 124	566 131	620 137	674 143	728 149	782 155
513 124	567 131	621 137	675 144	729 150	783 155
514 124	568 131	622 138	676 144	730 150	784 155
515 125	569 131	623 138	677 144	731 150	785 155
516 125	570 131	624 138	678 144	732 150	786 156
517 125	571 132	625 138	679 144	733 150	787 156
517 125	572 132	626 138	680 144	734 150	788 156
519 125	573 132	627 138	681 144	735 150	789 156
520 125	574 132	628 138	682 144	736 150	790 156
520 125	575 132	629 138	683 144	737 150	790 156
522 125	576 132	630 138	684 145	738 150	791 130
523 126	577 132	631 139	685 145	739 151	792 136
524 126	578 132	632 139	686 145	740 151	793 136
525 126	579 132	633 139	687 145	740 131	794 136
526 126	580 133	634 139	688 145	741 131 742 151	795 150
527 126	581 133	635 139	689 145	743 151	790 137
34/ 140	301 133	033 137	007 143	/ + 3 131	171 131

798 157	852 162	906 168	960 173	1014 178	1068 182
799 157	853 162	907 168	961 173	1015 178	1069 183
800 157	854 162	908 168	962 173	1016 178	1070 183
801 157	855 163	909 168	963 173	1017 178	1071 183
802 157	856 163	910 168	964 173	1018 178	1072 183
803 157	857 163	911 168	965 173	1019 178	1073 183
804 157	858 163	912 168	966 173	1020 178	1074 183
805 157	859 163	913 168	967 173	1021 178	1075 183
806 158	860 163	914 168	968 173	1022 178	1076 183
807 158	861 163	915 168	969 173	1023 178	1077 183
808 158	862 163	916 168	970 174	1024 179	1078 183
809 158	863 163	917 169	971 174	1025 179	1079 183
810 158	864 163	918 169	972 174	1026 179	1080 184
811 158	865 164	919 169	973 174	1027 179	1081 184
812 158	866 164	920 169	974 174	1028 179	1082 184
813 158	867 164	921 169	975 174	1029 179	1083 184
814 158	868 164	922 169	976 174	1030 179	1084 184
815 159	869 164	923 169	977 174	1031 179	1085 184
816 159	870 164	924 169	978 174	1032 179	1086 184
817 159	871 164	925 169	979 174	1033 179	1087 184
818 159	872 164	926 169	980 175	1034 179	1088 184
819 159	873 164	927 170	981 175	1035 180	1089 184
820 159	874 164	928 170	982 175	1036 180	1090 184
821 159	875 165	929 170	983 175	1037 180	1091 185
822 159	876 165	930 170	984 175	1038 180	1092 185
823 159	877 165	931 170	985 175	1039 180	1093 185
824 159	878 165	932 170	986 175	1040 180	1094 185
825 160	879 165	933 170	987 175	1041 180	1095 185
826 160	880 165	934 170	988 175	1042 180	1096 185
827 160	881 165	935 170	989 175	1043 180	1097 185
828 160	882 165	936 170	990 175	1044 180	1098 185
829 160	883 165	937 170	991 176	1045 180	1099 185
830 160	884 165	938 171	992 176	1046 181	1100 185
831 160	885 165	939 171	993 176	1047 181	1101 185
832 160	886 166	940 171	994 176	1048 181	1102 185
833 160	887 166	941 171	995 176	1049 181	1102 103
834 160	888 166	942 171	996 176	1050 181	1104 186
835 161	889 166	943 171	997 176	1050 181	1105 186
836 161	890 166	944 171	998 176	1052 181	1106 186
837 161	891 166	945 171	999 176	1053 181	1107 186
838 161	892 166	946 171	1000 176	1054 181	1107 186
839 161	893 166	947 171	1000 170	1055 181	1109 186
840 161	894 166	948 172	1002 177	1056 181	1110 186
841 161	895 166	949 172	1002 177	1057 182	1111 186
842 161	896 167	950 172	1003 177	1058 182	1112 186
843 161	897 167	951 172	1004 177	1059 182	1112 186
844 161	898 167	952 172	1005 177	1060 182	1114 187
845 162	899 167	953 172	1000 177	1060 182	1114 187
846 162	900 167	954 172	1007 177	1061 182	1116 187
847 162	901 167	955 172	1008 177	1062 182	1110 187
848 162	902 167	956 172	1010 177	1063 182	1117 187
849 162	903 167	957 172	1010 177	1065 182	1119 187
850 162	904 167	958 172	1011 177	1065 182	1119 187
851 162	905 167	959 173	1012 177	1060 182	1120 187
031 102	703 107	737 1/3	1013 1/6	100/ 102	1141 10/

1122	187	1176	192	1230	196	1284	201	1338	205	1392 209
1123	187	1177	192	1231	196	1285	201	1339	205	1393 209
1124	187	1178	192	1232	197	1286	201	1340	205	1394 210
1125	187	1179	192	1233	197	1287	201	1341	205	1395 210
1126	188	1180	192	1234	197	1288	201	1342	205	1396 210
1127	188	1181	192	1235	197	1289	201	1343	206	1397 210
1128	188	1182	192	1236	197	1290	201	1344	206	1398 210
1129	188	1183	192	1237	197	1291	201	1345	206	1399 210
1130	188	1184	193	1238	197	1292	201	1346	206	1400 210
1131	188	1185	193	1239	197	1293	202	1347	206	1401 210
1132	188	1186	193	1240	197	1294	202	1348	206	1402 210
1133	188	1187	193	1241	197	1295	202	1349	206	1403 210
1134	188	1188	193	1242	197	1296	202	1350	206	1404 210
1135	188	1189	193	1243	197	1297	202	1351	206	1405 210
1136	188	1190	193	1244	198	1298	202	1352	206	1406 210
1137	189	1191	193	1245	198	1299	202	1353	206	1407 211
1138	189	1192	193	1246	198	1300	202	1354	206	1408 211
1139	189	1193	193	1247	198	1301	202	1355	206	1409 211
1140	189	1194	193	1248	198	1302	202	1356	207	1410 211
1141	189	1195	193	1249	198	1303	202	1357	207	1411 211
1142	189	1196	194	1250	198	1304	202	1358	207	1412 211
1143	189	1197	194	1251	198	1305	202	1359	207	1413 211
1144	189	1198	194	1252	198	1306	203	1360	207	1414 211
1145	189	1199	194	1253	198	1307	203	1361	207	1415 211
1146	189	1200	194	1254	198	1308	203	1362	207	1416 211
1147	189	1201	194	1255	198	1309	203	1363	207	1417 211
1148	189	1202	194	1256	199	1310	203	1364	207	1418 211
1149	190	1203	194	1257	199	1311	203	1365	207	1419 211
1150	190	1204	194	1258	199	1312	203	1366	207	1420 212
1151		1205		1259		1313		1367		1421 212
1152		1206		1260	199	1314		1368		1422 212
1153		1207		1261		1315		1369		1423 212
1154		1208		1262	199	1316		1370		1424 212
1155		1209		1263		1317		1371		1425 212
1156		1210		1264		1318		1372		1426 212
1157		1211		1265		1319		1373		1427 212
1158		1212		1266		1320		1374		1428 212
1159		1213		1267		1321		1375		1429 212
1160		1214		1268		1322		1376		1430 212
1161		1215		1269		1323		1377		1431 212
1162		1216		1270		1324		1378		1432 212
1163		1217		1271		1325		1379		1433 213
1164		1218		1272		1326		1380		1434 213
1165		1219		1273		1327		1381		1435 213
1166		1220		1274		1328		1382		1436 213
1167		1221		1275		1329		1383		1437 213
1168		1222		1276		1330		1384		1438 213
1169		1223		1277		1331		1385		1439 213
1170		1224		1278		1332		1386		1440 213
1171		1225		1279		1333		1387		1441 213
1172		1226		1280		1334		1388		1442 213
1173		1227		1281		1335		1389		1443 213
1174		1228		1282		1336		1390		1444 213
1175	192	1229	196	1283	201	1337	205	1391	209	1445 213

1446 214	1500 218	1554 222	1608 226	1662 229	1716 233
1447 214	1501 218	1555 222	1609 226	1663 229	1717 233
1448 214	1502 218	1556 222	1610 226	1664 230	1718 233
1449 214	1503 218	1557 222	1611 226	1665 230	1719 233
1450 214	1504 218	1558 222	1612 226	1666 230	1720 234
1451 214	1505 218	1559 222	1613 226	1667 230	1721 234
1452 214	1506 218	1560 222	1614 226	1668 230	1722 234
1453 214	1507 218	1561 222	1615 226	1669 230	1723 234
1454 214	1508 218	1562 222	1616 226	1670 230	1724 234
1455 214	1509 218	1563 222	1617 226	1671 230	1725 234
1456 214	1510 218	1564 222	1618 226	1672 230	1726 234
1457 214	1511 218	1565 222	1619 226	1673 230	1727 234
1458 214	1512 218	1566 222	1620 226	1674 230	1728 234
1459 215	1513 219	1567 223	1621 226	1675 230	1729 234
1460 215	1514 219	1568 223	1622 227	1676 230	1730 234
1461 215	1515 219	1569 223	1623 227	1677 230	1731 234
1462 215	1516 219	1570 223	1624 227	1678 231	1732 234
1463 215	1517 219	1571 223	1625 227	1679 231	1733 234
1464 215	1518 219	1572 223	1626 227	1680 231	1734 234
1465 215	1519 219	1573 223	1627 227	1681 231	1735 235
1466 215	1520 219	1574 223	1628 227	1682 231	1736 235
1467 215	1521 219	1575 223	1629 227	1683 231	1737 235
1468 215	1522 219	1576 223	1630 227	1684 231	1738 235
1469 215	1523 219	1577 223	1631 227	1685 231	1739 235
1470 215	1524 219	1578 223	1632 227	1686 231	1740 235
1471 215	1525 219	1579 223	1633 227	1687 231	1741 235
1472 215	1526 220	1580 224	1634 227	1688 231	1742 235
1473 216	1527 220	1581 224	1635 227	1689 231	1743 235
1474 216	1528 220	1582 224	1636 228	1690 231	1744 235
1475 216	1529 220	1583 224	1637 228	1691 231	1745 235
1476 216	1530 220	1584 224	1638 228	1692 232	1746 235
1477 216	1531 220	1585 224	1639 228	1693 232	1747 235
1478 216	1532 220	1586 224	1640 228	1694 232	1748 235
1479 216	1533 220	1587 224	1641 228	1695 232	1749 236
1480 216	1534 220	1588 224	1642 228	1696 232	1750 236
1481 216	1535 220	1589 224	1643 228	1697 232	1751 236
1482 216	1536 220	1590 224	1644 228	1698 232	1752 236
1483 216	1537 220	1591 224	1645 228	1699 232	1753 236
1484 216	1538 220	1592 224	1646 228	1700 232	1754 236
1485 216	1539 221	1593 224	1647 228	1701 232	1755 236
1486 217	1540 221	1594 225	1648 228	1702 232	1756 236
1487 217	1541 221	1595 225	1649 229	1703 232	1757 236
1488 217	1542 221	1596 225	1650 229	1704 232	1758 236
1489 217	1543 221	1597 225	1651 229	1705 232	1759 236
1490 217	1544 221	1598 225	1652 229	1706 233	1760 236
1491 217	1545 221	1599 225	1653 229	1707 233	1761 236
1492 217	1546 221	1600 225	1654 229	1708 233	1762 236
1493 217	1547 221	1601 225	1655 229	1709 233	1763 237
1494 217	1548 221	1602 225	1656 229	1710 233	1764 237
1495 217	1549 221	1603 225	1657 229	1711 233	1765 237
1496 217	1550 221	1604 225	1658 229	1712 233	1766 237
1497 217	1551 221	1605 225	1659 229	1713 233	1767 237
1498 217	1552 221	1606 225	1660 229	1714 233	1768 237
1499 218	1553 222	1607 225	1661 229	1715 233	1769 237

1770	237	1824	241	1878	244	1932	248	1986	251	2040	255
1771	237	1825	241	1879	244	1933	248	1987	252	2041	255
1772		1826		1880		1934			252	2042	
1773	237	1827		1881		1935	248	1989	252	2043	
1774		1828		1882		1936	248	1990	252	2044	
1775		1829		1883		1937	248	1991	252	2045	
1776		1830		1884		1938	248	1992	252	2046	
1777		1831		1885		1939	248	1993	252	2047	
1778		1832		1886		1940	248	1994	252		
1779		1833		1887		1941		1995			
1780		1834		1888		1942		1996			
1781		1835		1889		1943		1997			
1782		1836		1890		1944		1998			
1783		1837		1891		1945		1999			
1784		1838		1892		1946		2000			
1785		1839		1893		1947		2001			
1786		1840		1894		1948		2002			
1787		1841		1895		1949		2003			
1788		1842		1896		1950		2004			
1789		1843		1897		1951		2005			
1790		1844		1898		1952		2006			
1791		1845		1899		1953		2007			
1792		1846		1900		1954		2008			
1793		1847		1901		1955		2009			
1794		1848		1902		1956		2010			
1795		1849		1903		1957		2011			
1796		1850		1904		1958		2012			
1797		1851		1905		1959		2013			
1798		1852		1906		1960		2014			
1799		1853		1907		1961		2015			
1800		1854		1908		1962		2016			
1801		1855		1909		1963		2017			
1802		1856		1910		1964		2018			
1803		1857		1911		1965		2019			
1804		1858		1912		1966		2020			
1805		1859		1913		1967		2021			
1806		1860		1914		1968		2022			
1807		1861		1915		1969		2023			
1808		1862		1916		1970		2024			
1809		1863		1917		1971		2025			
1810		1864		1918		1972		2026			
1811		1865		1919		1973		2027			
1812		1866		1920		1974		2028			
1813		1867		1921		1975		2029			
1814		1868		1922		1976		2030			
1815		1869		1923		1977		2031			
1816		1870		1924		1978		2032			
1817		1871		1925		1979		2033			
1818		1872		1926		1980		2034			
1819		1873		1927		1981		2035			
1820		1874		1928		1982		2036			
1821		1875		1929		1983		2037			
1822		1876		1930		1984		2038			
1823		1877		1931		1985		2039			
1020		1011	- · ·	.,,,		1,00					

Appendix C - Orientation of NAC frames: From NAC image acquisition to EDR output

1: Image Acquistion

NAC image pairs are acquired by LROC through two linear array CCDs. The NACs are mounted on the spacecraft rotated 180° with respect to each other, thus their relative pixel ordering is reversed (Figure 1).

Figure 1. Orientations of NAC CCDs as mounted on LRO. Numbers show pixel addresses, where the starting coordinate is zero (pixel numbers 0-41 and 5039-5063 are masked for calibration purposes). The NACs overlap ~135 imaging pixels in the crosstrack direction (Y-axis) and are separated ~0.106° (185 pixels) downtrack (X-axis) (Robinson, et al., 2010).

The forward motion of the LRO spacecraft is used to "push" the CCDs (NAC-L and NAC-R) over the lunar surface. In addition, the even and odd pixels for each NAC are read out separately during observations. This function halves the time for readout and transfer to the buffer, thus enabling the ground track motion to correspond to a single pixel (Robinson, et al., 2010). Based on LRO velocity and exposure time per line, NAC images are constructed line-by-line as the CCDs scan the surface at regular intervals, resulting in two slightly overlapping images.

Once acquired, the image data are stored as science files within the solid-state recorder on LRO. In these files, the upper left corner of each image is the first line and first pixel imaged by LROC. Thus, pixels are stored from left to right (pixel 0 to 5063), top down (line 1 up to 52224), in the array. Although not typically viewed or used for analysis in this format, the right frame is mirrored about the vertical axis (because of storage order) with respect to the left (Figure 2b).

The science files are transmitted to the GSFC MOC for data packet validation and processing, and then transferred to the LROC SOC where the images are processed and archived. The resulting data products include engineering data records (EDRs), calibrated data records (CDRs), and browse images (PTIFs). Part of the archive process of converting the science files to EDR (Figure 2) includes flipping the NAC-R frame to match the orientation of the NAC-L. In this way, the images will always appear contiguous along the central overlap area. The LROC frames (FK) and instrument kernels (IK) assumes the NAC-R orientation has been reversed in the sample direction.

Figure 2. Schematic of NAC image acquisition. Figure a) represents a north-oriented region of the Moon to be imaged. In this example, the LRO spacecraft is in a dayside descending orbit (traveling north to south in the +X orientation). Figure b) depicts the orientation of NAC left and right image frames in the science file. Figure c) indicates the final orientation of the frames in EDR format (as well as CDR and PTIF products).

Over a given lunar surface area at a given time (Figure 2a), LRO orbits either in a north-to-south or south-to-north direction. In this example, the LRO is traveling from north to south and is oriented in the forward-facing direction (+X is in the same direction of velocity vector). LROC will "see" the north part of the surface first (Start Line) and south last (End Line) (Figure 2b). The raw data are stored in science files where the pixels for both frames are ordered from left to right. In these files the NAC-R frame is mirrored with respect to the NAC-L, although in practice the science files are rarely viewed. When the science files are processed into EDR products, the NAC-R image is mirrored right to left (sample direction) to match the orientation of the NAC-L frame (Figure 2c).

2: Geometric Orientation Of Images

Because LRO travels in a polar orbit, LROC targeting is generally oriented along lines of longitude; although north is not always at the top of the images. Image orientation is controlled by two factors: direction of travel in orbit (ascending or descending) and orientation of the spacecraft (LRO +X-axis forward or -X-axis forward).

The convention for incrementing orbits is when LRO crosses the ecliptic on the night side. Ecliptic crossing is referred to as a node crossing and the direction of crossing can be either ascending (from south to north) or descending (from north to south). Two node crossings occur during each orbit; these are referenced by the respective lighting conditions, "day" or "night", at

the time of crossing. Thus there are four possible combinations of node crossing: ascending day, descending day, ascending night, or descending night (Figure 3). This node designation is maintained for the duration of the orbit until the next equatorial crossing. Thus, during the first half of the ascending day node, the spacecraft is traveling north (towards the pole) in the daylight, but during the second half LRO is actually traveling south on the night side.

The change in LRO orientation (+/–X-axis relative to velocity vector) occurs every six months near Beta-angle 0° (the angle between the vector of the Sun and the orbital plane of the spacecraft; 0° means that the Sun and the orbit of LRO are in alignment). This maneuver is performed to allow the solar panel array full range of motion when the relative position of the Sun moves from one side of LRO to the other and to maintain power and thermal values. Additionally, the lighting conditions for ascending/descending node will change following terminator crossing through Beta-angle 90°. This event also occurs twice a year, between the reorientation maneuvers (Tooley, et al., 2010). Thus NAC images have four possible orientations with respect to the surface of the Moon. Each of these cases is described below. All references to direction of travel refer to the illuminated side of the Moon.

Figure 3. The four possible cases of LRO orientation based on LRO direction of travel (+X or -X axis forward) and lighting conditions at a given node crossing.

Case 1 (Figure 3a)

LRO is traveling from north to south in the spacecraft's +X direction on the illuminated side of the Moon. In this orientation, the first imaged, left-most pixel of NAC-L (pixel #42, line 1) will capture the northeast corner of the frame, the last pixel captured being the southwest corner of the frame. The first right-most pixel of NAC-R (also pixel #42, line 1) will image the northwest corner of the frame, the last left-most pixel imaging the southeast corner. The illustration of this example was used in Figure 2. The EDR files of the NAC pair will appear mirrored about the vertical axis, that is, both images are flipped from left to right.

Note that the final orientation already takes into account the flipping of the NAC-R to correspond to the NAC-L orientation and is true for all cases. Additionally, in each of the following cases, the NAC-R will image in the reverse direction (in the east-west direction) with respect to NAC-L.

Case 2 (Figure 3b)

LRO is traveling from north to south in the –X direction. In this orientation, the first left-most pixel of NAC-L will capture the northwest corner of the frame, the last pixel captured being the southeast corner of the frame (Figure 4). The resulting NAC pair is identical to the observed north-oriented surface area.

Figure 4. Case 2: LRO is traveling north to south in the –X direction.

Case 3 (Figure 3c)

When LRO is traveling from south to north in the +X direction, the first left-most pixel of NAC-L will capture the southwest corner of the frame and the last pixel will capture the northeast corner of the frame (Figure 5). The resulting image pair is mirrored about the horizontal axis (south end up as a result of mirroring from top to bottom).

Figure 5. Case 3: LRO is traveling south to north in the +X direction.

Case 4 (Figure 3d)

In the final case, LRO is traveling from south to north in the –X direction. The first left-most pixel of NAC-L will capture the southeast corner of the frame, the last pixel captured being the northwest corner of the frame (Figure 6). The EDR NAC products of this observation will be rotated 180° (south end up, but without mirroring).

Figure 6. Case 4: LRO is traveling south to north in the –X direction.

Coordinate Information

In each of the cases, the coordinates of the corner points (upper right and left, lower right and left) of the NAC science files are calculated. These coordinates represent values for the corners *after* the right frame has been flipped to match the left frame and do not reflect a north-oriented preference. That is, the upper coordinates represent the starting line of imaging and the lower coordinates are from the ending line. This means that in cases 3 and 4, where south is at the "top" of the images, the upper coordinates are south of the lower coordinates.

References:

M.S. Robinson, et al., Lunar Reconnaissance Orbiter (LROC) Instrument Overview, Space Sci Rev, **150**, 81-124 (2010)

C. Tooel, et al., Lunar Reconnaissance Orbiter Mission and Spacecraft Design, Space Sci Rev, **150**, 23-62 (2010)