Exercise 1 (Reading - Getting started with Octave/Matlab). -

Exercise 2 (Programming). It is (without proof)

$$\sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{6}.$$

How large must N be chosen in

$$\sum_{j=1}^{N} \frac{1}{j^2} \tag{1}$$

in order to calculate π with an error $\leq 10^{-6}$? To determine such a number N, write a Matlab/Octave script that can calculate the sum in (1) above. Find the solution by trying.

Suggested Solution. The associated program can look like this, for example:

```
function y = sheet1_ex2(N)
  j = 1:N;
  aux = 1./(j.*j);
  y = sqrt(sum(aux)*6);
  err=abs(y-pi)
end
```

This script has to be stored in a separate file with filename (equal to the function name) sheet1_ex2.m. The distance from π to the number sheet1_ex2(954935) is smaller than 10^{-6} , i.e. one can choose $N \ge 954935$.

Exercise 3 (Math). A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive definite if

$$\langle x, Ax \rangle = x^T Ax > 0 \quad \forall x \in \mathbb{R}^n, \ x \neq 0$$
 (2)

holds. Proof the following

(a) For symmetric $A \in \mathbb{R}^{n \times n}$ we have

A is positive definite \Leftrightarrow all eigenvalues of A are strictly positive

Hint: For the reverse direction, use that the symmetric matrix A has an orthonormal basis of eigenvectors, and then represent x in Ax with respect to this particular basis.

(b) If $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, then all the diagonal elements of A are strictly positive, i.e.

$$a_{ii} > 0$$
 $i = 1, \ldots, n$.

Suggested Solution.

(a) " \Rightarrow ": Let $\lambda \in \mathbb{R}$ be any eigenvalue of A with corresponding eigenvector $v \neq 0$. Then

$$0 < \langle v, Av \rangle = \langle v, \lambda v \rangle = \lambda \underbrace{\|v\|^2}_{>0} \quad \Leftrightarrow \quad \lambda > 0.$$

<u>"\infty":</u> By the symmetry of A there exists an orthonormal eigenbasis $\{v_1, \ldots, v_n\}$ with $Av_i = \lambda_i v_i$ and $\lambda_i > 0$ for all i. Let $x \in \mathbb{R}^n$ be arbitrary and $\sum_j \mu_j v_j := x$. Then

$$\langle x, Ax \rangle = \langle \sum_{i} \mu_{i} v_{i}, A \sum_{j} \mu_{j} v_{j} \rangle$$

$$= \langle \sum_{i} \mu_{i} v_{i}, \sum_{j} \mu_{j} \underbrace{A v_{j}}_{=\lambda_{j} v_{j}}$$

$$= \langle \sum_{i} \mu_{i} v_{i}, \sum_{j} \mu_{j} \lambda_{j} v_{j} \rangle$$

$$= \sum_{i,j} \mu_{i} \mu_{j} \lambda_{j} \underbrace{\langle v_{i}, v_{j} \rangle}_{=\delta_{ij}}$$

$$= \sum_{i} \mu_{i}^{2} \underbrace{\lambda_{i}}_{>0}.$$

Since $x \neq 0$ there exists a least one index i_0 s.t. $\mu_{i_0}^2 > 0$ and thus we have that $\langle x, Ax \rangle > 0$ for all $x \neq 0$, yielding the positive definiteness of A.

Remark: Writing

we analogously obtain

- (1) $A > 0 \Leftrightarrow \text{all } \lambda_i > 0$
- (2) $A \ge 0 \Leftrightarrow \text{all } \lambda_i \ge 0$
- (3) $A < 0 \Leftrightarrow \text{all } \lambda_i < 0$
- (4) $A \le 0 \Leftrightarrow \text{all } \lambda_i \le 0$
- (5) A is indefinite $\Leftrightarrow \exists i, j \text{ s.t. } \lambda_i < 0 \text{ and } \lambda_j > 0$
- **(b)** Letting $x := e_i \ (i = 1, ..., n)$ we obtain

$$0 < \langle x, Ax \rangle = \langle e_i, Ae_i \rangle = \langle e_i, a_i \rangle = a_{ii}$$

where a_i denotes the *i*-th column of A.