Recursion CS284

Structure of this week's classes

What is Recursion?

More Examples

Problem Solving with Recursion

Recursion (in Programming)

- ➤ The self-referring condition of some datatypes whereby a data element can be decomposed into "smaller" ones of a "similar" nature
- ► The self-referring condition of some algorithms whereby a programming problem can be decomposed into "smaller" ones of a "similar" nature

Recursive Datatypes

The self-referring condition of some datatypes whereby an element can be decomposed into "smaller" ones of a "similar" nature

- ► Natural Numbers *N*:
 - 0 ∈ N
 - ▶ $1 + n \in N$ if $n \in N$
- Context-free grammar for balanced parentheses:
 - ightharpoonup E
 ightarrow EE
 - ightharpoonup E
 ightarrow (E)
 - \triangleright $E \rightarrow \Diamond$
- ► Trees: We'll study them later

Recursive Programs

The self-referring condition of some algorithms whereby a problem can be decomposed into "smaller" ones of a "similar" nature

- Computing the size of a list I
 - If it is empty, return 0
 - If not, compute the size of / without the head element and add 1
- Computing the factorial of a number n
 - ▶ If it is zero, return 1
 - If not, compute the factorial of n-1 and multiply by n

Lets take a closer look at the second example

Factorial – Mathematically

$$0! \stackrel{def}{=} 1$$

$$n! \stackrel{def}{=} n*!(n-1), n > 0$$

- ► The first clause is the base case
- ► The second clause is the recursive case

```
5! = 5 * 4!
= 5 * 4 * 3!
= 5 * 4 * 3 * 2!
= 5 * 4 * 3 * 2 * 1!
= 5 * 4 * 3 * 2 * 1 * 0!
= 5 * 4 * 3 * 2 * 1 * 1
= 120
```

Factorial - Java

```
public static int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n - 1);
}
```

- ► Consider factorial (4)
- ▶ We follow its execution by tracing each recursive call

Stacks and Calls

```
public static int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n - 1);
}
```

► On the board: factorial(4)

Infinite Recursion and Stack Overflow

```
public static int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n-1);
}
```

▶ What happens if we execute factorial (-2)?

Infinite Recursion and Stack Overflow

```
public static int factorial(int n) {
   if (n == 0)
     return 1;
   else
     return n * factorial(n-1);
}
```

- ▶ What happens if we execute factorial (-2)?
- Exception in thread "main" java.lang.StackOverflowError

Some Questions

What's wrong with this program?

```
public static int factorial(int n) {
  if (n == 0)
    return 0;
  else
    return n * factorial(n-1);
}
```

What about this one?

```
public static int factorial(int n) {
  if (n == 0)
    return 1;
  else
    return n * factorial(n+1);
}
```

Tail Recursion

- ► Only one recursive call
- ▶ It is the last instruction performed

```
public static int factorialTail(int n, int a) {
   if (n == 0)
      return a;
   else
      return factorialTail(n-1, n*a);
}

public static int factorial(int n) {
    return factorialTail(n,1);
}
```

Computing Factorial Iteratively (i.e. without recursion)

```
public static int factorial_it(int n) {
   int r = 1;
   for (int i=1; i<n+1; i++) {
        r = r * i;
   }
   return r;
}</pre>
```

The above code can be obtained automatically from the tail recursive version:

```
public static int factorialTail(int n, int a) {
   if (n == 0)
      return a;
   else
      return factorialTail(n-1, n*a);
}

public static int factorial(int n) {
   return factorialTail(n,1);
}
```

Iteration vs Recursion

- Recursive methods often have slower execution times relative to their iterative counterparts
 - Modern optimizing compilers make this difference often imperceptible
- ► The overhead for loop repetition is smaller than the overhead for a method call and return
- ▶ If it is easier to conceptualize an algorithm using recursion, then you should code it as a recursive method
- ► The reduction in efficiency does not outweigh the advantage of readable code that is easy to debug

What is Recursion?

More Examples

Problem Solving with Recursion

Fibonacci - In Maths

The Fibonacci numbers are a sequence defined as follows

$$fib(0) \stackrel{def}{=} 1$$

$$fib(1) \stackrel{def}{=} 1$$

$$fib(n) \stackrel{def}{=} fib(n-1) + fib(n-2), n > 1$$

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$$

Fibonacci - Implemented as a Recursive Program

```
public static int fibonacci(int n)
{
  if (n<=1)
    return 1;
  else
    return fibonacci(n-1) + fibonacci(n-2);
}</pre>
```

Efficiency of fibonacci

What is the complexity of fibonacci(n)?

▶ Let's draw a picture of the trace of execution of fibonacci (5)

Efficiency of fibonacci

What is the complexity of fibonacci(n)?

▶ Let's draw a picture of the trace of execution of fibonacci (5)

► How can we do better?

Efficient fibonacci

```
private static int ffib(int prevFibo, int currentFibo, int n)
{
   if (n==0)
      return currentFibo;
   else
      return ffib(currentFibo, prevFibo+currentFibo, n-1);
}
public static int ffibonacciStart(int n) {
    return ffib(0, 1, n);
}
```

What is the complexity of ffibonacciStart(n)?

► Let's draw a picture of the trace of execution of ffibonacciStart(5)

Efficient fibonacci

- Method fibo is an example of tail recursion or last-line recursion
- When recursive call is the last line of the method, arguments and local variables do not need to be saved in the activation frame
- ▶ They can be easily implemented using iteration

Functional Programming

- Object-oriented programming languages:
 - ▶ Java, Python, etc.
- Functional programming language
 - ► Haskell, JavaScript, Scala
 - Immutability: does not have the concept of variables, which can be re-assigned a different value;

```
# mutable, OOP style
def function(a):
    a = a + 1
    function_2(a)
```

```
# immutable, FP style
def function(a):
    function_2(a + 1)
```

Why Do We Care about Tail Recursion?

- ► In functional programming languages such as Haskell, Javascript, there are no imperative loops;
- So any iteration needs to be replaced by recursions;
- That could easily leads to a stack overflow! e.g., sum(10000);
- ► The key for solving the stack overflow problem is tail recursive elimination (TRE)

Replacing a Recursion with a While Loop

Trampoline - A trampoline function basically wraps our recursive function in a loop

```
const trampoline = fn => (...args) => {
  let result = fn(...args)
  while (typeof result === 'function') {
    result = result()
  }
  return result
}
```

The Stack of Non-Tail Recursion

The Non-Stack of Tail Recursion

- No stack is needed because recursion is now equivalent to iteratively executing the same function;
- Function call in place
 - Calling result returns exactly the same result as calling the next result except the difference in input parameters;
 - ▶ In other words, the same result can be returned by two function call bindings: (factorialTail, args1), (factorialTail, args2) where the two factorialTail are consecutive calls;
 - ► There is no way (factorial, args1), (factorial, args2) can return the same result, no matter what args1 and args2 are;

What is Recursion?

More Examples

Problem Solving with Recursion

Towers of Hanoi

- Move the n disks (size 1 through n) to a different peg;
- Disks can be moved only one at a time;
- ► A larger disk cannot be placed on top of a smaller disk;

Towers of Hanoi

- ▶ Problem input:
 - Number of disks
 - Starting peg
 - Destination peg
 - Temporary peg
- ▶ Problem output:
 - List of moves

Algorithm for Towers of Hanoi

Solution to Three-Disk Problem: Move Three Disks from Peg L to Peg R

- 1. Move the top two disks from peg L to peg M.
- 2. Move the bottom disk from peg L to peg R.
- 3. Move the top two disks from peg M to peg R.

Algorithm for Towers of Hanoi

Solution to Two-Disk Problem: Move Top Two Disks from Peg M to Peg R

- 1. Move the top disk from peg M to peg L.
- 2. Move the bottom disk from peg M to peg R.
- 3. Move the top disk from peg L to peg R.

Algorithm for Towers of Hanoi

Solution to Four-Disk Problem: Move Four Disks from Peg L to Peg R

- 1. Move the top three disks from peg L to peg M.
- 2. Move the bottom disk from peg L to peg R.
- 3. Move the top three disks from peg M to peg R.

Recursive Algorithm for Towers of Hanoi – *n*-Disk Problem

Move n Disks from the Starting Peg to the Destination Peg

- ▶ if *n* is 1
 - 1. move disk 1 (the smallest disk) from the starting peg to the destination peg
- else
 - 1. move the top n-1 disks from the starting peg to the temporary peg (neither starting nor destination peg)
 - 2. move disk n (the disk at the bottom) from the starting peg to the destination peg
 - 3. move the top n-1 disks from the temporary peg to the destination peg

Java Code

```
public class TowersOfHanoi {
   public static String showMoves(int n, char startPeg, char destPeg,
   tempPeg) {
     if (n==1) { // Base case
         return "Move disk 1 from peg " + startPeg
              + " to peg " + destPeg + "\n";
    } else {
             // Recursive case
         return showMoves (n-1, startPeg, tempPeg, destPeg)
           + "Move peg " + n + " from peg " + startPeg
           + " to peg " + destPeg + "\n "
           + showMoves(n-1, tempPeg, destPeg, startPeg);
```

4 disks, (S)ource, (D)estination, (T)emporary

```
Move disk 1 from peg S to peg T
Move peg 2 from peg S to peg D
Move disk 1 from peg T to peg D
Move peg 3 from peg S to peg T
Move disk 1 from peg D to peg S
Move peg 2 from peg D to peg T
Move disk 1 from peg S to peg T
Move peg 4 from peg S to peg D
Move disk 1 from peg T to peg D
Move peg 2 from peg T to peg S
Move disk 1 from peg D to peg S
Move peg 3 from peg T to peg D
Move disk 1 from peg S to peg T
Move peg 2 from peg S to peg D
Move disk 1 from peg T to peg D
```

Why Recursive Algorithm Preserve the Order?

- i.e., Why are the larger disks always under the smaller ones?
- Every sub-tree at depth i moves disk $1, \dots, n-i$ from one disk to another, while disk $n-i+1, \dots, n$ stay still;
 - ▶ Sub-tree at depth 1 moves disk $1, \dots, 2$;
 - Sub-tree at depth 2 moves disk 1;
- Larger disks are always under smaller ones because:
 - ▶ Disks $n i + 1, \dots, n$ are never under disks $1, \dots, n i$;
 - ▶ Disks $1, \dots, k$ preserves the order because:
 - ▶ Suppose this is true for $1, \dots, k-1$;
 - ▶ Disk k is always under disks $1, \dots, k-1$;
 - **b** By math induction, disk $1, \dots, k$ also preserves the order;

Recursive Algorithm

Design of a Binary Search Algorithm

- ► A binary search can be performed only on an array that has been sorted
- ► Rather than looking at the first element, a binary search compares the middle element for a match with the target
- ► A binary search excludes the half of the array within which the target cannot lie
- Base cases?

Design of a Binary Search Algorithm

- ► A binary search can be performed only on an array that has been sorted
- ▶ Rather than looking at the first element, a binary search compares the middle element for a match with the target
- ➤ A binary search excludes the half of the array within which the target cannot lie
- ▶ Base cases?
 - ► The array is empty
 - Element being examined matches the target

Design of a Binary Search Algorithm

- ▶ if the array is empty
 - ▶ return −1 as the search result
- else if the middle element matches the target
 - return the subscript of the middle element as the result
- else if the target is less than the middle element
 - recursively search the array elements before the middle element and return the result
- else
 - recursively search the array elements after the middle element and return the result

Binary Search in an Ordered List - An Example

► Target: Dustin

Caryn	Debbie	Dustin	Elliot	Jacquie	Jonathan	Rich
0	1	2	3	4	5	6

- ▶ Initial boundaries of "subarray" to search:
 - ► The "interval" [first=0,last=6]
 - ► That is, the entire array

Efficiency of Binary Search

- At each recursive call we eliminate half the array elements from consideration, making a binary search $O(\log n)$
- ► An array of 16 would search arrays of length 16, 8, 4, 2, and 1; 5 probes in the worst case
 - **▶** 16 = 24
 - $> 5 = \log_2 16 + 1$
- ► A doubled array size would only require 6 probes in the worst case
 - **▶** 32 = 25
 - $ightharpoonup 6 = \log_2 32 + 1$
- An array with 32,768 elements requires only 16 probes! $(\log_2 32768 = 15)$

Implementation of a Binary Search Algorithm

- ► Classes that implement the Comparable interface must define a compareTo method
- ► Method obj1.compareTo(obj2) returns an integer with the following values

negative: obj1 < obj2
zero: obj1 == obj2
positive: obj1 > obj2

Implementing the Comparable interface is an efficient way to compare objects during a search

Implementation of a Binary Search Algorithm

```
private static int binSearch(E[] items, Comparable<E> target, int firs
 if (first > last) {
    return -1; // Base case for unsuccessful search.
 } else {
    int middle = (first+last)/2; // Next probe index
    int compResult = target.compareTo(items[middle]);
    if (compResult == 0) {
        return middle; // Base case for succ. search
     } else if (compResult < 0) {
        return binSearch(items, target, first, middle-1);
    } else {
        return binSearch(items, target, middle+1, last);
 } } }
public static int binSearch(E[] items, Comparable<E> target) {
  return binSearch(items, target, 0, items.length - 1); }
```