

FVPP: Teorijske osnove formalne verifikacije provjerom modela

Propozicijska logika Predikatna logika

Pripremio: izv. prof. dr. sc. Alan Jović

Ak. god. 2022./2023.

Provjera modela (engl. model checking)

Sustav za

verifikaciju

/= Implementacija (model sustava koji se verificira). Izraženo povezanim strojevima s konačnim brojem stanja (FSM).

DA = model sustava <u>logički</u> <u>zadovoljava</u> specifikaciju

NE (+ ispis traga (engl. *trace*) pogrešnog izvođenja programa)

S = Specifikacija (željeno ponašanje). Izraženo najčešće u <u>vremenskoj logici</u>.

Simbolički opisujemo:

Logika u provjeri modela

- Provjerom modela nastoji se dokazati logička
 zadovoljivost ("model implementacije zadovoljava
 specifikaciju") za to su potrebna znanja iz sljedećih
 područja:
 - Formalna (matematička) logika
 - Modeliranje implementacije strojevima s konačnim brojem stanja (u kontekstu formalne verifikacije model je tzv. Kripkeova struktura)
 - Izražavanje specifikacije (željenog ponašanja) vremenskom logikom kao proširenjem klasične matematičke logike

Formalna (matematička) logika

- Formalne logike su formalni jezici koji predstavljaju informaciju na način da se mogu automatizirano izvoditi "zaključci".
 - Sintaksa definira strukturu rečenice u jeziku.
 - Semantika definira značenje rečenica (definira istinitost rečenice u svijetu u kojem ju promatramo).
- Postoji mnogo logika:
 - Propozicijska i predikatna logika
 - Logike višega reda
 - Modalne logike
 - Epistemička logika
 - Vremenska logika
 - •
 - Opisna logika
 - Nemonotona logika
 - • •

u ovom kolegiju

Propozicijska logika (logika izjava, sudova, iskaza, tvrdnji)

Engl. propositional logic, propositional calculus

Hrizip iz Solija

Propozicijska logika - sintaksa

- Propozicijska logika preslikava deklarativne rečenice (koje mogu biti istinite ili lažne) u sustav simbola. Naprimjer: "Sokrat je mudar." preslikava se u simbol P.
- Sustav propozicijske logike sastoji se od:
- PS: P, Q, ... PS je prebrojiv skup atoma, simboličkih varijabli, simbola
- Logički operatori (vezice):

\neg	(ne, not, ~)	negacija
٨	(i, and, &)	konjunkcija
٧	(ili, or,)	disjunkcija
\Rightarrow	(ako, if, \supset , \rightarrow)	implikacija
\Leftrightarrow	(akko, iff, \equiv , \leftrightarrow)	ekvivalencija

Rezervirani simboli:

F (false,
$$\emptyset$$
, 0 , \bot) konstanta (neistinitost)

T (true, I) konstanta (istinitost)

(),. znakovi zagrada, zareza i točke

- **Definicija** (rekurzivno) ispravno formiran (wff) složeni iskaz, ili formula:
 - I. Svaki atom je formula.
 - 2. Ako su P i Q formule, onda su formule: $(\neg P)$, $(\neg Q)$, $(P \land Q)$, $(P \lor Q)$, $(P \Rightarrow Q)$, $(P \Leftrightarrow Q)$.

Propozicijska logika - semantika

- Pridruživanje obilježja istinitosti (T, F) atomičkim simbolima = Interpretacija (I)
- I: PS → BOOL
 gdje je BOOL = { T, F }, tj. funkcija s kodomenom T ili F (istinito ili lažno).

Semantika dvaju složenih atomičkih simbola

- prikazuje se istinitosnom tablicom.
- 2 simbola = 2^2 = 4 interpretacije, 2^4 = 16 istinitosnih tablica = funkcija
- Neke važnije tablice istinitosti za povezivanje dvaju simbola:

	P Q	implikacija (P⇒Q)	ekvivalencija (P ⇔ Q)	kontradikcija (),⊥ ⊤	tautologija
I ₁ :	TT	T	Т	F	T
l ₂ :	ΤF	F	F	F	Т
$\bar{I_3}$:	FΤ	Т	F	F	Т
l₄:	FF	Т	Т	F	Т

Semantička pravila – izračunavanje istinitosti formule

• Neka su: P_1, P_2 istinite, Q_1, Q_2 neistinite, = interpretacija A bilo koja formula (istinita ili ne).

Istinite su formule: **Neistinite** su formule:

$\neg Q_1$	$\neg P_1$
$(P_1 \wedge P_2)$	(Q ₁ ∧ A)
$(P_1 \vee A)$	$(\mathbf{A} \wedge \mathbf{Q}_1)$
$(A \vee P_1)$	$(Q_1 \vee Q_2)$
$(A \Rightarrow P_1)$	$(P_1 \Rightarrow Q_1)$
$(Q_1 \Rightarrow A)$	$(P_1 \Leftrightarrow Q_1)$
$(P_1 \Leftrightarrow P_2)$	$(\mathbf{Q}_{I} \Leftrightarrow \mathbf{P}_{I})$
$(Q_1 \Leftrightarrow Q_2)$	(A ∧ ¬A) - kontradikcija
$(A \lor \neg A)$ - tautologija	() - prazna formula

• Primjer izračunavanja istinitosti složene formule s 3 propozicijska simbola P, Q, R:

$$(Q \vee (((\neg Q) \wedge P) \Rightarrow R))$$

- Interpretacija (3 simbola povlači 2³ mogućih interpretacija)
- Neka je jedna interpretacija I: P=T, Q=F, R=F,
- Izračunavanje (**evaluacija**) temeljem osnovnih tablica istinitosti i računajući "iznutra prema van" daje ovoj formuli neistinitu vrijednost.
- Semantika uključuje interpretaciju i evaluaciju.

Pravila ekvivalencije

- Definicija: Dvije formule su semantički **ekvivalentne** ili **jednake** ako imaju jednaku (istu) istinitosnu vrijednost <u>za svaku interpretaciju</u>.
- Provjera koincidencije istinitosnih tablica nije u općem slučaju dovoljna jer formule ne moraju sadržavati iste simbole. Vidjeti za opći slučaj sl. 20.

•
$$(A \wedge A) = A$$

•
$$(A \lor A) = A$$

•
$$(A \lor B) = (B \lor A)$$

•
$$(A \wedge B) = (B \wedge A)$$

•
$$((A \land B) \land C) = (A \land (B \land C))$$

•
$$(A \land (B \lor C)) = ((A \land B) \lor (A \land C))$$

•
$$(A \lor (B \land C)) = ((A \lor B) \land (A \lor C))$$

•
$$(\neg(A \lor B)) = ((\neg A) \land (\neg B))$$

•
$$(\neg(A \land B)) = ((\neg A) \lor (\neg B))$$

•
$$(A \Rightarrow B) = ((\neg A) \lor B)$$

•
$$(A \Leftrightarrow B) = ((A \Rightarrow B) \land (B \Rightarrow A))$$

•
$$(A \Rightarrow B) = ((\neg B) \Rightarrow (\neg A))$$

kontradikcija

dvostruka negacija

jednaka važnost (idempotencija)

jednaka važnost

komutativnost

komutativnost

asocijativnost

asocijativnost

distributivnost

distributivnost

De Morganov zakon

De Morganov zakon

eliminacija uvjeta

eliminacija dvostrukog uvjeta

transpozicija

Formalan sustav

- Matematička ili formalna logika daje sustav zaključivanja u kojem je "logički izveden" zaključak barem tako dobar kao polazne pretpostavke.
- Temelj formalne logike: formalan sustav
- Definiramo formalan sustav kao dvojku: $\{\Gamma, L\}$ u odabranoj logici gdje je
 - \circ Γ skup ispravno definiranih (formiranih) formula (wff)
 - L konačan skup pravila zaključivanja

Temeljna pravila zaključivanja L

- Generiraju dodatne istinite formule (mehanički) iz početnih formula –
 aksioma formalnog sustava bez razumijevanja konteksta (značenja).
- Pogodna za strojnu primjenu.
- Ako P=T, Q=T, generiraj $(P \land Q) = T$ (uvođenje $\land = \land i$)
- Ako P=T, $(P\Rightarrow Q)=T$, generiraj Q=T ("modus ponens")
- Ako $\neg Q = T$, $(P \Rightarrow Q) = T$, generiraj $\neg P$ ("modus tolens")
- Ako $(P \land Q) = T$, generiraj $(Q \land P) = T$ (komutativnost \land)
- Ako $(P \land Q) = T$, generiraj P = T, Q = T (eliminacija $\land = \land e$)
- Ako P=T (odnosno Q=T), generiraj ($P \lor Q$) (uvođenje $\lor = \lor i$)
- Ako $[\neg(\neg P)]$ =T, generiraj P = T (eliminacija $\neg = \neg e$)
- Kroz primjere za vježbu pokazat će se još i pravilo "eliminacija \vee " kao i pravilo "uvođenje \Rightarrow ", vidjeti i zadnji slajd

Dedukcija (engl. deduction)

• Sekvencija formula $\{\omega_1, \omega_2, ..., \omega_n\}$ ili pojedina formula ω_i je **dedukcija (dokaz)** iz skupa formula Γ ako se već nalazi u skupu formula Γ (tada se naziva aksiom) ili se može izvesti iz Γ korištenjem pravila zaključivanja L.

$$\Gamma \vdash_{\mathsf{L}} \{\omega_1, \omega_2, ..., \omega_n\}$$
 sekvencija formula je dedukcija od Γ
 $\Gamma \vdash_{\mathsf{L}} \omega_i$ formula ω_i je dedukcija od Γ

Primjeri

- Neka skup Γ sadrži dvije istinite formule: Γ = { P, (P ⇒ Q) }
 Korištenjem pravila "Modus ponens" (iz skupa dopustivih pravila L), izvodimo da je istinita nova formula Q, te je ta formula Q dedukcija (dokaz) skupa Γ.
- Neka skup Γ sadrži tri istinite formule: $\Gamma = \{P, Q, (Q \land R)\}$ Formule $P, Q, i (Q \land R)$ su aksiomi, a ujedno i dedukcije, dok je formula R dedukcija, jer to daje pravilo eliminacije \land .

Teorem (engl. theorem)

• Formula ω_i je **teorem** ako se može izvesti korištenjem pravila zaključivanja ${\bf L}$ iz praznog skupa formula (bez premisa ili aksioma)

 $- \omega_i$ formula ω_i je teorem

Primjeri teorema

$$\begin{aligned} |-_{L} \left((P \Rightarrow Q) \land (Q \Rightarrow R) \right) \Rightarrow (P \Rightarrow R) \\ |-_{L} Q \Rightarrow (P \Rightarrow (P \Rightarrow (Q \Rightarrow P))) \end{aligned}$$

Konzistentnost (engl. consistency)

• Skup formula Γ je **konzistentan** ako i samo ako ne sadrži formule na temelju kojih bi ω_i i $\neg \omega_i$ (istovremeno) bile dedukcije.

Primjeri

- $\Gamma = \{ P, (P \Rightarrow Q) \}$ je konzistentan skup.
- $\Gamma = \{ P, \neg P, (P \Rightarrow Q) \}$ je **nekonzistentan** ili **kontradiktoran** jer su P i ¬P istovremeno dedukcije (kontradiktorni aksiomi se nalaze već u samom skupu Γ).
- $\Gamma = \{P, \neg Q, (P \Rightarrow Q)\}$ je nekonzistentan jer sadrži $\neg Q$, a pravilom "Modus ponens" može se izvesti Q, dakle $\neg Q$ i Q bi istovremeno bile dedukcije.

Odredivost (odlučljivost, engl. decidability)

- Neka se u formalnom sustavu $\{\Gamma, \mathbf{L}\}$ izvodi neka formula ω_i (tražimo odgovor je li ω_i dedukcija).
- Formalan sustav je **odrediv** ili **odlučljiv** (engl. *decidable*), ako i samo ako postoji postupak, procedura ili **algoritam** koji će u konačnom vremenu odrediti ili ne dedukciju ω_i (dati u konačnom vremenu odgovor da je ω_i dedukcija ili da ω_i nije dedukcija).
- Formalan sustav {Γ, L} je poluodrediv ili poluodlučljiv (engl. semidecidable), ako i samo postoji algoritam koji će u konačnom vremenu odrediti dedukciju ako ona postoji. Algoritam završava u konačnom vremenu s odgovorom "da" (za dedukciju ω_i), ali ne mora završiti u konačnom vremenu s odgovorom "ne" (ako ω_i nije dedukcija). Moguća je i alternativa (završava za "ne", a ne mora završiti za "da")
- Formalan sustav je neodrediv ili neodlučljiv (engl. undecidable) ako nije ni odrediv ni poluodrediv.

Semantika u formalnom sustavu povezana je s:

- interpretacijom pridruživanjem istinitosti atomima i
- evaluacijom izračunavanjem istinitosti složene formule.

Model (engl. model)

• Neka interpretacija je **model** formalnog sustava $\{\Gamma, L\}$ ako evaluira **sve** njegove formule u istinito

Primjer:

```
I: {P=T, Q=F, R=F} formule (Q \vee (((\negQ) \wedge P) \Rightarrow R)) nije model jer ta interpretacija formuli daje neistinitu vrijednost.
```

Logička zadovoljivost (engl. logical satisfiability)

- Skup formula je logički zadovoljiv ako ima (barem jedan) model.
- Vrijedi i za pojedinačne formule.
- Sukladno ranijoj definiciji, logički nezadovoljiv (nekonzistentan, kontradiktoran) skup formula nema nijedan model.

Logička posljedica (engl. logical consequence)

- Formula ω je **logička posljedica** skupa formula Γ , ako je svaki model od Γ ujedno i model od ω
- Kažemo i da skup formula Γ **povlači** (engl. entails) formulu ω
- Oznaka logičke posljedice:

$$\Gamma \models \omega$$

Valjanost

- Formula je valjana (engl. valid) ili tautologija (engl. tautology) ako je istinita za svaku interpretaciju i evaluaciju.
- Oznaka valjane formule:
 - $= \omega$ (svaka interpretacija je model formule ω)

 Logička posljedica izrečena na drugi način: Ako svaka interpretacija koja lijevoj strani od znaka l= daje istinitost ujedno daje i desnoj strani istinitost, tada je desna strana logička posljedica lijeve.

Primjeri logičkih posljedica

• I. $(P \land Q) \models P$

lijeva strana = T samo za (P=T, Q=T), samo jedan model, a to daje i desnoj strani = T, dakle gornji izraz vrijedi (P je logička posljedica (P \wedge Q)).

• 2. (P ∨ Q) |= P

lijeva strana je istinita za (P=F, Q=T; P=T, Q=F; P=T, Q=T), ali desna za interpretaciju (P=F, Q=T) nije istinita, te P **nije logička posljedica** (P \vee Q).

- 3. $\{\neg Q, (P \lor Q)\} \models P$ (zarez predstavlja konjunkciju \land) skup Γ na lijevoj strani je istinit samo za Q=F, P=T, a to daje istinitost i desnoj strani, te je P logička posljedica navedenog skupa Γ .
- 4. P |= (Q ∨ ¬Q)

također vrijedi, jer za svaku interpretaciju za koju je lijeva strana istinita (P=T) i desna stana je istinita (desna strana je doduše uvijek istinita).

• Skup formula Γ naziva se još **baza znanja** (engl. *knowledge base*, **KB**) formalnog sustava

Primjer: $\Gamma = \{(A \lor C) \land (B \lor \neg C)\}$ = baza znanja = dvije konjunkcijom povezane formule (umjesto \land može se koristiti zarez).

Neka je: $\alpha = (A \lor B)$

Pitanje: **KB** $= \alpha$?

DA!

A	В	C	$A \lor C$	$B \vee \neg C$	KB	α
False	False	False	False	True	False	False
False	False	True	True	False	False	False
False	True	False	False	True	False	True
False	True	True	True	True	\underline{True}	True
True	False	False	True	True	True	True
True	False	True	True	False	False	True
True	True	False	True	True	True	True
True	True	True	True	True	True	True

Semantička ekvivalentnost: stroža definicija ekvivalencije dviju formula preko pojma logičke posljedice (\models)

- Dvije formule α i β su **semantički ekvivalentne** (oznake $(\alpha \Leftrightarrow \beta)$ ili $(\alpha = \beta)$) ako i samo ako vrijede (istinite su) logičke posljedice: $(\alpha \models \beta)$ i $(\beta \models \alpha)$.
- Ranija tablica pravila ekvivalencije daje:

$$(\alpha \Leftrightarrow \beta) = (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha).$$

• Ako su α i β ekvivalentne, formula $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ mora uvijek biti istinita:

$$= ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$

• <u>Semantička</u> ekvivalencija je na taj način identična <u>dokazljivoj</u> ekvivalenciji: ako želimo dokazati ekvivalentnost dviju formula, dokažemo da je formula $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ tautologija ili da je njena negacija nezadovoljiva.

Ispravnost (engl. soundness) i kompletnost (engl. completeness)

• Formalan sustav $\{\Gamma, \mathbf{L}\}$ je **ispravan** (engl. sound) ako je svaka (pravilima dokazana) dedukcija ujedno i logička posljedica skupa formula Γ , tj.:

$$\Gamma \mid - \ \sqcup \ \omega_{i} \implies \Gamma \mid = \omega_{i}$$

Neformalno, ispravnost osigurava da je svaka činjenica koja se dokaže istinita.

• Formalan sustav $\{\Gamma, \mathbf{L}\}$ je **kompletan** (engl. *complete*) ako je svaku logičku posljedicu skupa Γ moguće dokazati pravilima L, tj.:

$$\Gamma \models \omega_{i} \qquad \Rightarrow \qquad \Gamma \models_{\mathsf{L}} \omega_{i}$$

Neformalno, kompletnost osigurava da se mogu dokazati sve istinite činjenice.

- Primijetiti: u kompletnom sustavu vrijedi: $|=\omega_i \Rightarrow |-\omega_i|$
- U ispravnom i kompletnom formalnom sustavu $\{\Gamma, L\}$ vrijedi:
- $\Gamma \models \omega_i = \Gamma \vdash_{L} \omega_i$ (logička posljedica je ujedno dedukcija i obratno)

Većina interesantnih formalnih logičkih sustava je nekompletna, a vrlo malo ih je odredivo.

Propozicijska logika je:

• Ispravna, kompletna i odrediva (npr. preslikavanjem u tablicu istinitosti), jer operira s konačnim skupom simbola.

Predikatna logika prvoga reda je:

- Poluodrediva (ako dedukcija postoji, dokazat će se, a ako ne postoji može se ali i ne mora dokazati).
- Odredivi su samo neki podskupovi logike prvog reda.
- "Čista" (npr. bez aritmetike) predikatna logika je ispravna i kompletna (Gödel).

Predikatne logike višega reda nisu kompletne pod pretpostavkom pune semantike.

Normalni oblici propozicijskih formula

 Svaka formula propozicijske logike može se preslikati (ekvivalentna je) formuli u disjunkcijskom normalnom obliku (DNF):

$$(kl_1 \wedge ... \wedge kl_n) \vee (k2_1 \wedge ... \wedge k2_m) \vee ... \vee (kp_1 \wedge ... \wedge kp_r)$$

 Svaka propozicijska formula može se preslikati (ekvivalentna je) formuli u konjunkcijskom normalnom obliku (CNF):

$$(kl_1 \vee ... \vee kl_n) \wedge (k2_1 \vee ... \vee k2_m) \wedge ... \wedge (kp_1 \vee ... \vee kp_r)$$

gdje su:

- k_i = literal (negirani ili nenegirani atomički simbol atom)
- klauzula = disjunkcija literala. Npr.: (k2₁ ∨ ... ∨ k2m)
- Preslikavanje CNF u DNF i obrnuto je računalno vrlo skupo (vremenski i prostorno). Spada u razred NP-teških (engl. NP-hard) problema.

Pretvorba u normalni oblik CNF

Svaka formula u propozicijskoj logici može se pretvoriti u konjunkciju klauzula (CNF):

Npr:
$$\neg(P \Rightarrow Q) \lor (R \Rightarrow P)$$

Algoritam:

I. Eliminiraj ekvivalencije i implikacije uporabom ekvivalentnog "v" oblika:

$$\neg(\neg P \lor Q) \lor (\neg R \lor P)$$

2. Reduciraj doseg negacije (pomak u desno) uporabom DeMorganovih pravila, te eliminiraj dvostruke negacije:

$$(P \land \neg Q) \lor (\neg R \lor P)$$

3. Pretvori u CNF asocijativnim i distribucijskim pravilima:

$$\begin{array}{l} (P\vee\neg R\vee P)\wedge (\neg Q\vee\neg R\vee P),\\ \text{te dalje:}\\ (P\vee\neg R)\wedge (\neg Q\vee\neg R\vee P) & = \text{CNF oblik} \end{array}$$

 Napomena: pretvorba u CNF-oblik ne dovodi nužno do minimalnog CNFoblika, minimizacija se naknadno provodi prema potrebi.

SAT-problem – temeljni NP problem

- Traži se model skupa formula Γ (interpretaciju koja evaluira sve formule u skupu Γ u istinito. To je ekvivalentno traženju modela **jedne** složene formule koja se sastoji iz **konjunkcije svih formula u** Γ .
- CNF-oblik skupa formula:

$$(kl_1 \vee ... \vee kl_p) \wedge (k2_1 \vee ... \vee k2_r) \wedge ... \wedge (kp_1 \vee ... \vee kp_s)$$

- Iscrpna procedura rješavanja **CNF** SAT-problema sistematski pridjeljuje istinitosne vrijednosti atomičkim propozicijskim simbolima. **Za** *n* **atoma 2**^{*n*} **pridruživanja**. Eksponencijalna složenost!
- CNF 2SAT (do 2 literala u klauzuli) polinomna složenost
- CNF 3SAT (3 literala u klauzuli) NP-kompletno, eksponencijalna složenost
- Zadovoljivost formule u CNF-obliku s 3 i više literala je NP-kompletno.
- Mnogi stohastički algoritmi troše eksponencijalno vrijeme u najgorem slučaju, ali
 polinomno u srednjem (očekivanom). Ti se algoritmi zovu SAT-rješavači (engl. SAT solver).
- Najpoznatiji suvremeni SAT-solveri: zChaff, miniSAT, SatZ

Teorem dedukcije

- **Teorem:** Formula ψ je **logička posljedica** formule φ , tj. $\varphi \models \psi$, ako i samo ako je formula $(\varphi \Rightarrow \psi)$ tautologija (valjana).
- **Dokaz:** Ako je $(\phi \Rightarrow \psi)$ tautologija (uvijek istinita), onda iz tablice za implikaciju proizlazi da kada je ϕ istinit da tada i ψ mora biti istinit (jer bi alternativa vodila na neistinu). To je upravo definicija logičke posljedice.

$$\begin{array}{cccc} \underline{\phi} & \underline{\psi} & (\underline{\phi} \Rightarrow \underline{\psi}) \\ F & F & T \\ F & T & T \\ \hline T & F & F \\ \hline T & T & T \\ \end{array}$$

• Korolar (metoda opovrgavanja): Budući da ($\phi \Rightarrow \psi$) mora biti tautologija, to njena negacija

$$\neg (\phi \Rightarrow \psi) = \neg (\neg \phi \lor \psi) = (\phi \land \neg \psi)$$
 mora biti nezadovoljiva. Dakle:

$$\varphi \models \psi$$
 akko je $(\varphi \land \neg \psi)$ nezadovoljiva

Primjer rasuđivanja opovrgavanjem

Neka istinite formule predstavljaju skup Γ :

- 1. P 2. $(P \Rightarrow Q)$ 3. $(Q \Rightarrow S)$ U CNF obliku: $\Gamma = [(P) \land (\neg P \lor Q) \land (\neg Q \lor S)]$
- Pitamo se: je li S logička posljedica skupa Γ : $\Gamma \models S$?
- Teorem dedukcije i korolar: S je logička posljedica Γ ako je $(\Gamma \land \neg S)$ nezadovoljiva.
- Dakle, skupu Γ dodajemo negaciju formule koju želimo dokazati (\neg S): $\Gamma(P) \land (\neg P \lor Q) \land (\neg Q \lor S) \land (\neg S)$ 1

Sad možemo iskoristiti npr. SAT-rješavač da pokušamo naći barem jedan model (zadovoljivost). Ako SAT-rješavač pokaže da formulu **nije** moguće zadovoljiti (opovrgnuo ju je – nema modela), zaključujemo:

S je doista logička posljedica skupa Γ .

Zadaci

- I. Dokažite istinitost sljedećih logičkih zaključaka:
 - a) $(P \wedge Q) \wedge R, S \wedge T \vdash_{I} Q \wedge S$
 - b) $P \wedge Q \Rightarrow R \mid_{-L} P \Rightarrow (Q \Rightarrow R)$
 - c) $P \Rightarrow Q \mid L \neg P \lor Q$
- 2. Pretvorite propozicijsku formulu u CNF-oblik

$$(P \Rightarrow (Q \Rightarrow R)) \Leftrightarrow (P \Rightarrow (R \Rightarrow Q))$$

- 3. Koristeći teorem o dedukciji, ekvivalencije koje vrijede u propozicijskoj logici i pravila zaključivanja, pokažite da je formula S logička posljedica skupa formula:
 - I. F
 - 2. $(P \Rightarrow Q)$
 - 3. $(Q \Rightarrow S)$
- 4. Koristeći pojam logičke posljedice, pokažite ili opovrgnite semantičku ekvivalentnost formula

$$\phi_1: P \Rightarrow (Q \vee R)$$
 i

$$\phi_2$$
: $(\neg Q \land \neg R) \Rightarrow P$

Predikatna logika (Logika predikata prvoga reda)

Engl. predicate logic, predicate calculus, first order predicate logic - FOPL

Gottlob Frege Kurt Gödel Alfred Tarski

Predikatna logika – sintaksa

I. P: Svi ljudi su smrtni.

2. Q: Sokrat je čovjek.

3. R: Sokrat je smrtan.

U propozicijskoj logici nikako se iz 1:P i 2:Q ne može zaključiti 3:R.
 FOPL uvodi objekte, relacije, obilježja, funkcije (za pobliži opis izjave).
 Povećana je izražajna moć formalne logike.

Sintaksa:

Atomički predikat:

```
(pred_simb t1 t2 ... tn) – infiks notacija (LISP) — oba načina pisanja pred_simb(t1 t2 ... tn) – prefiks notacija (Prolog) — OK, ali ne miješati
```

- pred_simbol: osnovno obilježje u rečenici (predikat)
- t_i = članovi: objekti ili odnosi u rečenici

Predikatna logika – sintaksa

<u>Članovi (t_i)</u>:

• Konstante: objekti u nekom svijetu (blok I, sokrat, ...).

Rezervirane konstante: T, F.

Varijable: razred objekata ili obilježja;

mogu poprimiti vrijednosti iz svoje domene; (Npr.: X,Y,...).

Funkcije: veza između objekata - (fun_simb t1 t2 ... tn). Npr.: (cos X),

(otac_od abel kain)

Formalna def. člana:

- I. Konstanta je član.
- 2. Varijabla je član.
- 3.Ako je fun_simb funkcijski simbol sa n-argumenata, a $t_1, t_2, ..., t_n$ su članovi, tada je (fun_simb t_1 t_2 ... t_n) član.

Logički operatori (vezice): \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow

Kvantifikacijski simboli (uz varijable, pobliže određuju istinitost rečenice):

- ∃ (postoji, za neki, exist)
 egzistencijski ili partikularni kvantifikator (barem jedan).
- ∀ (za_svaki, svi, for_all) univerzalni kvantifikator (svi), ima središnju ulogu u izražavanju generalizacije.

Predikatna logika – sintaksa

Ispravno definiran složeni predikat ili formula (wff):

- I. svaki atomički predikat je formula.
- 2. ako je S_i formula, tada su formule: $(\neg S), (S_1 \land S_2), (S_1 \lor S_2), (S_1 \Rightarrow S_2), (S_1 \Leftrightarrow S_2).$
- 3. ako je X varijabla, a S formula, tada su formule: $\exists X S(X), \forall X S(X)$. oznaka S(X) = formula S u kojoj postoji varijabla X
- Negirani ili nenegirani atomički predikat naziva se literal.

Primjer ispravno definirane složene formule u infiks notaciji:

$$(\forall X \ \forall Y \ (((otac \ X \ Y) \ \lor \ (majka \ X \ Y)) \Rightarrow (roditelj \ X \ Y)))$$

Predikatna logika – semantika

Skup wff uvijek se odnosi na neku domenu razmatranja D.

Interpretacija (I) je proces preslikavanja elemenata iz domene D svakoj pojedinoj konstanti, varijabli, i funkciji, te atomičkom predikatu, tako da:

- Simbolu T uvijek je pridružena istinita vrijednost.
- Simbolu F uvijek je pridružena neistinita vrijednost.
- Svakoj konstanti pridruži se jedan element iz D.
- Svakom funkcijskom simbolu pridruži se jedan element iz D.
- Svakoj varijabli se pridruži neprazan podskup iz D (dozvoljene supstitucije).
- Svaka funkcija f, sa m argumenata, definira **interpretacijom i evaluacijom** preslikavanje iz D^m u D, tj. f: $D^m \to D$ (funkcija se evaluira u jedan element iz D).
- Svaki predikat P, s brojem članova n, definira interpretacijom i evaluacijom svojih članova preslikavanje iz D^n u $\{T, F\}$, tj. P: $D^n \to \{T, F\}$ (predikat se za određene elemente domene preslika u istinu ili laž).
- Vrijednosti wff formula složenih logičkim operatorima dane su odgovarajućim istinitosnim tablicama.
- Vrijednost $\forall X P(X)$ je T, ako P(X) je T, za sve vrijednosti X dane sa I, a F inače.
- Vrijednost $\exists X P(X)$ je T, ako P(X) je T, barem za jednu vrijednost X danoj sa I, a F inače.

Predikatna logika – semantika

- Određivanje istinitosti wff svodi se na interpretaciju + evaluaciju
- Skup svih istinitih predikata nad domenom D naziva se stanje svijeta (engl. state of the world).

Primjeri pridruživanja istinitosti:

I. (prijatelj ivan ana)
predikat je T, ako u D postoji objekt Ana koja je prijatelj Ivanu.

2. Neka je domena od X skup prirodnih brojeva. Tada:

```
\forall X \text{ (veci } X \text{ I 0)} atomički predikat je F \exists X \text{ (veci } X \text{ I 0)} atomički prediakt je T
```

- ∀ u određivanju T potrebne sve supstitucije varijable (problem ako je domena beskonačna)
- ∃ u određivanju T potrebna jedna supstitucija za koju T (problem ako je domena beskonačna i predikat F)

Dopuna pravilima ekvivalencije

Simbol varijable i doseg kvantifikatora:

Neka su P(X), Q(X) wff s varijablom X, tada vrijedi:

$$\exists X P(X) = \exists Y P(Y)$$

 $\forall X P(X) = \forall Y P(Y)$

- simbol varijable nije bitan, ali je bitan doseg, uvijek unutar jedne formule

Proširenje De Morganovih relacija:

Primjer: "Ne vole svi ići zubaru." = "Postoji netko tko ne voli ići zubaru."

$$\neg(\forall X P(X)) = \exists X (\neg P(X))$$
$$\neg(\exists X Q(X)) = \forall X (\neg Q(X))$$

Negacija mijenja kvantifikator!

Dopuna pravilima ekvivalencije

Supstitucija

- Neka je P(X) wff s varijablom X.
- Neka je domena X: D = {1, 2, 3}
- Formula $\forall X P(X)$ je ekvivalentna [$P(1) \land P(2) \land P(3)$] $\forall X P(X) \equiv [P(1) \land P(2) \land P(3)]$
- $\forall X P(X)$ je istinita ako su istinite sve supstitucije iz domene.
- Formula $\exists X P(X)$ je ekvivalentna [$P(I) \lor P(2) \lor P(3)$] $\exists X P(X) \equiv [P(I) \lor P(2) \lor P(3)$]
- $\exists X P(X)$ je istinita ako je istinita **barem jedna** supstitucija iz domene.

Permutacija kvantifikatora

Formule:

 $\forall X \exists Y P(X,Y) \neq \exists Y \forall X P(X,Y)$ - nisu ekvivalentne! Npr. $\forall x \exists y Voli(x, y)$: svatko voli nekoga i $\exists y \forall x Voli(x, y)$: postoji netko koga svi vole

Ispravna uporaba univerzalnog kvantifikatora ∀

Primjer:

- Neka je okvir razmatranja (skup objekata): {Garfield, Feliks, računalo}
- Preslikaj u predikatnu logiku rečenicu: "Sve mačke su sisavci."
- Za sve objekte x u okviru razmatranja vrijedi: ako su mačke tada su sisavci.

```
\forall x [ mačka(x) \Rightarrow sisavac(x)]
```

 Dokaz: Supstitucija svih objekata u formulu (konjunkcija formula jer ∀):

```
[ mačka(Garfield) \Rightarrow sisavac(Garfield)] \land [ mačka(Feliks) \Rightarrow sisavac(Feliks)] \land [ mačka(računalo) \Rightarrow sisavac(računalo)]
```

```
• prva [T \Rightarrow T]: T (vidi tablicu za \Rightarrow)
```

• druga
$$[T \Rightarrow T]$$
: T (vidi tablicu za \Rightarrow)

• treća [F
$$\Rightarrow$$
 F]: T (vidi tablicu za \Rightarrow)

```
time je ukupna formula = T !!!
```

Ispravna uporaba univerzalnog kvantifikatora ∀

Primjer (nastavak):

Da smo napisali: ∀x [mačka(x) ∧ sisavac(x)]

Doslovno: "svaki x je mačka i svaki x je sisavac"

Supstitucija svih objekata u tom slučaju daje:

```
[ mačka(Garfield) \( \) sisavac(Garfield)] \( \) [ mačka(Feliks) \( \) sisavac(Feliks)] \( \) [ mačka(računalo) \( \) sisavac(računalo)]
```

• mačka(računalo) = F - daje neistinitu cijelu formulu !!!

Ispravna uporaba egzistencijskog kvantifikatora ∃

Primjer:

- Neka je okvir razmatranja (kao i prije): {Garfield, Feliks, računalo}
- Preslikaj u predikatnu logiku: "Garfield ima brata koji je mačka."
- Postoji barem jedan (neki) objekt i takav da su mu obilježja istinita.
 ∃x [brat(x, Garfield) ∧ mačka(x)]
- Dokaz supstitucijom svih objekata u formulu (disjunkcija formula jer ∃):

```
[brat(Garfield, Garfield) \land mačka(Garfield)] \lor [brat(Feliks, Garfield) \land mačka(Feliks)] \lor [brat(računalo, Garfield) \land mačka(računalo)]
```

- Prva [] neistinita jer Garfield nije sam sebi brat, ali idemo dalje jer su [...]
 povezane disjunkcijom.
- Drugi red istinit, cijela formula je istinita (dalje ne moramo ispitivati).

Ispravna uporaba egzistencijskog kvantifikatora ∃

Primjer (nastavak):

- Ako bi preslikali: ∃x [brat(x, Garfield) ⇒ mačka(x)]
- To se drugačije može napisati kao: $\exists x \ [\neg brat(x, Garfield) \lor mačka(x)] doslovno: "postoji takav x koji ili nije brat od Garfielda ili je mačka"$
- Supstitucija svih objekata u disjunkciju formula daje:

```
[brat(Garfield, Garfield) \Rightarrow mačka(Garfield)] \lor [brat(Feliks, Garfield) \Rightarrow mačka(Feliks)] \lor [brat(računalo, Garfield) \Rightarrow mačka(računalo)]
```

- Implikacija je istinita ako je atomički izraz na lijevoj strani neistinit!
- Npr. ako je: [brat(računalo, Garfield) \Rightarrow mačka(računalo)] istinito, cijela je formula istinita !
- Egzistencijski kvantificirana implikacijska formula je istinita ako u okviru razmatranja postoji barem jedan objekt za koji je premisa implikacije neistinita (desna strana može biti T ili F).
- Takva rečenica ne daje nikakvu potvrdnu informaciju.
- Zaključak: ∀ ide uz ⇒∃ ide uz ∧

Obilježja predikatne logike

- Zadovoljivost
- Model
- Logička posljedica
- Kontradiktornost
- Pravila zaključivanja

Sva navedena svojstva su jednaka kao i u propozicijskoj logici.

- Predikatna logika višega reda (engl. Higher-Order Logic):
 - Kvantifikacija na predikatnom (ili funkcijskom) simbolu.

Npr: \forall (Voli) (Voli ivo ana)

Zadaci

- I. Preslikajte sljedeće rečenice prirodnog jezika u formalizam predikatne logike prvoga reda (FOPL). Pritom definirajte sve potrebne predikate i konstante.
 - a) "Niti jedan student ne sluša sve predmete."
 - b) "Svaki profesor je zaposlenik samo jednog fakulteta, a predaje na jednom ili više fakulteta."
 - c) "Svatko voli nekog i nitko ne voli svakog."
 - d) "Neki studenti koji slušaju predmet FMuOS također slušaju i predmet NOS."

The basic rules of natural deduction:

The basic rules of natural deduction.					
	introduction	elimination			
٨	$rac{\phi \psi}{\phi \wedge \psi}$ $\wedge \mathrm{i}$	$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$			
٧	$\frac{\phi}{\phi \vee \psi} \vee i_1 \qquad \frac{\psi}{\phi \vee \psi} \vee i_2$	$ \begin{array}{c c} \phi & \psi \\ \vdots & \chi \\ \hline \chi & \chi \end{array} $ ve			
\rightarrow	$\frac{\begin{bmatrix} \phi \\ \vdots \\ \psi \end{bmatrix}}{\phi \to \psi} \to i$	$\frac{\phi \phi \to \psi}{\psi} \to e$			
٦	$ \begin{array}{c} \phi \\ \vdots \\ \bot \\ \hline \neg \phi \end{array} \neg \mathbf{i} $	$\frac{\phi \neg \phi}{\perp} \neg e$			
\perp	(no introduction rule for \perp)	$\frac{\perp}{\phi}$ \perp e			
77		$\frac{\neg \neg \phi}{\phi} \neg \neg e$			

Some useful derived rules:

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \text{ MT} \qquad \frac{\phi}{\neg \neg \phi} \neg \neg i$$

Dodatak: bitna pravila prirodnog zaključivanja u propozicijskoj logici

- Izvor: Huth, Ryan, Logic in Computer Science,
 Cambridge University Press, 2004.
- Objašnjenja nekih pojmova:

$$\rightarrow$$
e = modus ponens

MT = modus tollens

PBC (Proof By Contradiction)

LEM (Law of the Excluded

Middle) = TND (Tertium Non

Datur) = Trećega nema