

[그림 3.4.13] 접합부 FEM 해석

파괴 거동의 검토는 강보에 도입되는 힘이 부재에는 축력(Ph)과 전단력(Pv)에 의한 휨거동을 동시에 발생시키기 때문에 P-M곡선의 극한곡선(Nominal Curve)을 통하여 검토하였다. 파괴 거동 역시 단면 A가 설계를 지배하는 것으로 검토되었다. 이론적으로 파괴가 관측된 강봉 도입 긴장력이 900kN일 때 단면 A에서는 수직 및 수평분력으로 636.4kN이 작용하게되고 이때 단면A에서의 설계공칭강도는 730.3kN·m이다. 이에 반하여 실험에서 계측된 모멘트 강도는 1018kN·m이었으므로 설계 값은 계측 강도 대비 71.7% 수준의 안전 측으로평가되었다.

[丑	3.4.2] 거더-교대	간 접합부 휨공칭강도	평가 결과
		공칭강도	

구분		공칭강도			
		P (kN)	Pv=Ph (kN)	L (m)	M_n (kN·m)
단면 A -	이론값	900.0	636.4	_	730.3 (71.7%)
	계측			1.6	1018 (100%)
단면 C -	이론값	980.0	693.0	_	764.5 (69.6%)
	계측			1.585	1098 (100%)

[그림 3.4.14] 단면 휨 강도 분석