CSE301 – Computer Organization

Tutorial 4

Single-Cycle CPU Implementation

Question 1 On the next page is a **single-cycle datapath** for a machine different from the one seen in lecture. It supports the following (complex) instructions:

```
lw_add rd, (rs), rt  # rd = Memory[R[rs]] + R[rt]
addi_st (rs), rs, imm  # Memory[R[rs]] = R[rs] + imm
sll_add rd, rs, rt, imm  # rd = (R[rs] << imm) + R[rt]</pre>
```

All instructions use the same format (shown below), but not all fields are used by every instruction.

Field	op	rs	rt	rd	imm
Bits	31-26	25-21	20-16	15-11	10-0

Part (a) - Control Signals

For each of the above instructions, specify how the **control signals** should be set for correct operation. Use **X** for *don't care*. ALUOP can be one of: ADD, SUB, SLL, PASS_A, or PASS_B (e.g., PASS_A) means pass through the top operand unchanged).

inst	ALUsrc1	ALUsrc2	ALUsrc3	ALUop1	ALUop2	MemRead	MemWrite	RegWrite
lw_add								
addi_st								
sll_add								

Part (b) - Functional Unit Latency

Given the following **functional unit latencies**, compute the **minimum time** to perform each instruction type. Explain your reasoning.

Functional Unit	Latency
Register File	2 ns
ALU	4 ns
Memory	3 ns

inst	Minimum time	Explain
lw_add		
addi_st		
sll_add		

Part (c) - CPI and Cycle Time

What are the CPI and cycle time for this processor?

Question2 For this question, we will implement a hypothetical instruction **sw+** in the single-cycle pipeline. **sw+** is a "store word, with post increment" that is found in some real architectures (e.g., IA-64). It is encoded as an I-type instruction and performs the following operations:

M[R[rs]] = R[rt]	Field	op	rs	rt	imm
R[rs] = R[rs] + imm	Bits	31-26	25-21	20-16	15-0

Part (a)

The single-cycle datapath from lecture appears below. Show what changes are needed to support sw+ instruction. You should only add wires and muxes to the datapath; do not modify the main functional units themselves (the memory, register file and ALU). Try to keep your diagram neat!

Part (b)

On the diagram below, write (next to the signal's name) values of all control signals required for the sw+ instruction.

Part 2: Questions with Answers

Question1

Part (a) - Control Signals

inst	ALUsrc1	ALUsrc2	ALUsrc3	ALUop1	ALUop2	MemRead	MemWrite	RegWrite
lw_add	Х	1	0	Х	ADD	1	0	1
addi_st	1	0	Х	ADD	Х	0	1	0
sll_add	1	1	1	SLL	ADD	0/X	0	1

Part (b) - Functional Unit Latency

inst	Minimum time Explain	
lw_add	14 ns	IMEM (3 ns) + RF_read (2 ns) + DMEM (3 ns) + ALU (4 ns) + RF_write (2 ns)
addi_st	12 ns	IMEM (3 ns) + RF_read (2 ns) + ALU (4 ns) + DMEM (3 ns)
sll_add	15 ns	IMEM (3 ns) + RF_read (2 ns) + ALU (4 ns) + ALU (4 ns) + RF_write (2 ns)

Part (c) - CPI and Cycle Time

Since the processor is a single-cycle implementation, the CPI is 1. The cycle time is set by the slowest instruction, which in this case is the sll_add, yielding a clock period of 15ns.

Question2

