

the ordinary and =83 > the weighting and =80
. Ixaux the water is more on the top
·
as the example of & and o
Probability HERAit)
Pick a point at random in oxyx+x2
,
(y=1x) (ttis)
proportional to area $x>\frac{1}{2}$
probability = $\frac{PBRT}{MOLE} = \frac{\int_{\frac{1}{2}}^{\frac{1}{2}} (1-x)dy}{\int_{-1}^{1} (1-x^2)dy} = \frac{S}{8}$ the weight
Vil it / (Lx2)dy 8
the weight 3-1 (1777)
General Estmula
(b)
(b)
$Q \leq X_1 \leq X_2 \leq b$ $P(X_1 \leq X \leq X_2) = \frac{\int_{X_1}^{X_2} w(x) dx}{\int_{X_2}^{X_2} e^{-x} dx} = \frac{P_0 e^{-x}}{ A_1 ^2}$
(b)
$Q \leq X_1 \leq X_2 \leq b$ $P(X_1 \leq X \leq X_2) = \frac{\int_{X_1}^{X_2} w(x) dx}{\int_{X_2}^{X_2} e^{-x} dx} = \frac{P_0 e^{-x}}{ A_1 ^2}$
$Q \leq X_1 \leq X_2 \leq b$ $P(X_1 \leq X \leq X_2) = \frac{\int_{X_1}^{X_2} w(x) dx}{\int_{X_2}^{X_2} e^{-x} dx} = \frac{P_0 e^{-x}}{ A_1 ^2}$
$P(x_1 < x_2 < b) = \frac{\int_{x_1}^{x_2} w(x) dx}{\int_{a}^{b} w(x) dx} = \frac{Port}{Whole}$
$P(x_1 < x_2 < b) = \frac{\int_{x_1}^{x_2} w(x) dx}{\int_{a}^{b} w(x) dx} = \frac{Port}{Whole}$
$ \frac{\alpha \leq x_1 \leq x_2 \leq b}{P(x_1 \leq x_2 \leq x_2)} = \frac{\int_{x_1}^{x_2} w(x) dx}{\int_{a}^{b} w(x) dx} = \frac{Point}{Whole} $ next time
$P(x_1 < x_2 < b) = \frac{\int_{x_1}^{x_2} w(x) dx}{\int_{a}^{b} w(x) dx} = \frac{Port}{Whole}$

ş.

Date.