

Evolution of gene family size change in fungi

Jason Stajich
University of California, Berkeley

Outline

- Motivation
- Model of Gene family size change
- Cornucopia of fungal genomes
- Methodology for comparing family size
- Lineage specific expansions in several groups of fungi

Fungal comparative genomics

Why study family size change?

- Gene duplicates are fixed because one copy aquires a novel function (Ohno 1970)
 - Gene duplications are the crucible of new genes and thus new function.
- Not all duplicates are preserved because of directional selection (Lynch and Katju, TIG 2004)
- Are some lineage-specific expansions of gene families the result of adaptive evolution?

Identifying family expansions

- Previous work primarily considered pairwise comparisons
- Ad hoc comparison of gene family sizes
 - C.elegans-C.briggsae GPCR family expansions (Stein et al, PLOS Biology 2004).
 - A. gambiae-D. melanogaster Mosquito specific family expansions related to symbiotic bacteria (Holt et el, Science 2002).
 - Loss of olfactory receptors corr with increased vision capabilities in Humans (Gilad, PNAS 2003, PLOS Bio 2004)
- Need a null model

Gene family sizes follow power law distribution

Phylogenetic evaluation of gene family size change

- Previous methods only ad hoc statistics
- Explicit model for gene family size change according to a Birth-Death models
- Apply BD to family size along phylogeny using probabilistic graph models
- CAFE Computational Analysis of gene Family Evolution

CAFE

- Use a Probabilistic Graph Model for:
- Ancestral states
- Birth and Death rate (lamda)
- Per branch changes
- P-values

Phylogeny of 37 fungi with fully sequenced genomes Rhizopus oryaze Neurospora crassa Podospora anserina Chaetomium globosum Magnaporthe grisea Fusarium verticillioides Fusarium graminearum Trichoderma reesei Sclerotinia sclerotiorum Euascomycota Botrytis cinerea Stagonospora nodol Uncinocarpus reesii Coccidioides immitis Histoplasma capsula Aspergillus fumigatu Aspergillus nidulans Aspergillus terreus Opp Hum pathogen Aspergillus oryzae Ashbya gosspyii rial uses Kluyveromyces lactis Saccharomyces cerevisia trial uses Candida glabrata **Hemiascomycota** bathogen Candida lusitaniae athogen Debaryomyces hansenii Candida guilliermondii Opp Hum pathogen Candida tropicalis Opp Hum pathogen Candida albicans Opp Hum pathogen Archiascomydota Candida dubliniensis Opp Hum pathogen Yarrowia lipolytica Industrial uses Schizosaccharomyces pomb Cryptococcus neoformans Cryptococcus neoformans H Cryptococcus gattii WM276 Basidiomycota Cryptococcus gattii R265 Phanerochaete chrysosporiu Coprinus cinereus Saprophyte Ustilago maydis Biotroph - maize Million 900 800 700 600 500 300 200 400 100 years ago

50+ More funded and in progress world-wide

Sequencing In-Progress*

Species	Clade	Sequencing center
$Schizosaccharomyces\ japonicus$	Archaeascomycta	Broad-FGI
Schizosaccharomyces octosporus	Archaeascomycta	Broad-FGI
Pneumocystis carinii	Archaeascomycta	Sanger, UC, Broad-FGI
Pneumocystis carinii hominis	Archaeascomycta	UC, Broad-FGI, UC
Amanita bisporigera	Basidiomycota: Homobasidiomycota	MSU
Crinipellis perniciosa	Basidiomycota: Homobasidiomycota	Univ Campinas
Ganoderma lucidum	Basidiomycota: Homobasidiomycota	Yang-Ming Univ
Hebeloma cylindrosporum	Basidiomycota: Homobasidiomycota	INRA
Laccaria bicolor	Basidiomycota: Homobasidiomycota	JGI-DOE R
Phakopsora pachyrhizi	Basidiomycota: Homobasidiomycota	JGI-DOE
Postia placenta	Basidiomycota: Homobasidiomycota	JGI-DOE
Schizophyllum commune	Basidiomycota: Homobasidiomycota	JGI-DOE
Sporobolomyces roseus	Basidiomycota: Urediniomycota	JGI-DOE
Phakopsora meibomiae	Basidiomycota: Urediniomycota	JGI-DOE
$Batrachochytrium\ dendrobatidis$	Chytridiomycota	Broad-FGI & JGI-DOE
Piromyces sp.	Chytridiomycota	JGI-DOE
Glomus intraradices	Glomeromycota	JGI-DOE
Phycomyces blakesleeanus	Zygomycota	JGI-DOE R
Brachiola algerae	Microsporidia	Genoscope
Nosema (Antonospora) locustae	Microsporidia	MBL R
Enterocytozoon bieneusi	Microsporidia	Tufts Univ

Sequencing In-Progress*

Species	Clade	Sequencing center
Aspergillus niger	Euascomycota: Eurotiomycota	DOE-JGI R
Aspergillus flavus	Euascomycota: Eurotiomycota	NCSU
Aspergillus clavatus	Euascomycota: Eurotiomycota	OU
Neosartorya fischeri	Euascomycota: Eurotiomycetes	TIGR
Histoplasma capsulatum WU24	Euascomycota: Eurotiomycota	Broad-FGI D
Histoplasma capsulatum 186R,217B	Euascomycota: Eurotiomycota	WUSTL
$Coccidioides\ posadas ii$	Euascomycota: Eurotiomycota	TIGR
Coccidioides immitis 10 strains	Euascomycota: Eurotiomycota	Broad-FGI & TIGR
Paracoccidioides brasiliensis	Euascomycota: Eurotiomycota	Univ of Brazil
Ascosphaera apis	Euascomycota: Eurotiomycota	BCM
Epichloe festucae	Euascomycota: Sordariomycetes	UK
Podospora anserina	Euascomycota: Sordariomycetes	Broad-FGI
Trichoderma atroviride	Euascomycota: Sordariomycetes	DOE-JGI
Trichoderma virens	Euascomycota: Sordariomycetes	DOE-JGI
Leptosphaeria maculans	Euascomycota: Dothideomycetes	Genoscope
Alternaria brassicicola	Euascomycota: Dothideomycetes	VPI & WUSTL R
Xanthoria parietina (lichen)	Euascomycota: Lecanoromycetes	DOE-JGI
Candida albicans WO-1	Hemiascomycota	Broad-FGI
Lodderomyces elongisporus	Hemiascomycota	Broad-FGI K
Pichia stipitis	Hemiascomycota	JGI-DOE
Saccharomces bayanus	Hemiascomycota	(49, 167)
Saccharomces castellii	Hemiascomycota	(49)
Saccharomces cerevevisiae RM11-1A	Hemiascomycota	Broad-FGI
Saccharomces cerevevisiae YJM789	Hemiascomycota	(113) +++
Saccharomyces kluyeri	Hemiascomycota	WUSTL (finishing)
Saccharomces kudriavzevii	Hemiascomycota	(49)
Saccharomces mikatae	Hemiascomycota	(49, 167)
Saccharomces paradoxus	Hemiascomycota	(167)
Saccharomyces pastorianus	Hemiascomycota	Kitasato Univ
Zygosaccharomyces rouxii	Hemiascomycota	CNRS-Genoscope

25 strains

Genome annotation

- Many of the fungal genomes were only assembled genomic sequence.
- Automated annotation pipeline was built to generate to get systematic gene prediction.
- Several gene prediction programs were trained and results were combined with GLEAN (Liu, Mackey, Roo, et al unpublished) to produce composite gene calls.

Intron frequency varies among the fungi

http://fungal.genome.duke.edu

Generic Genome Browser

Methods: gene family identification

- All-vs-All pairwise sequence searches (FASTP)
- Cluster genes by similarity using Markov
 CLustering (MCL) algorithm
- Identify families with unusually large size changes along phylogeny with CAFE
- Use 37 fungal genomes from 5 major clades

Families with significant expansions

49 significant families

Transporters
Kinases
P450
Oxidation

Vitamin & Cofactor transport				
Lactose & sugar transport				
Amine transport				
Myo-instol, quinate, and glucose transport				
Oligopeptide transport				
ABC transporter				
MFS, drug pump, & sugar transport				
Transport				
Monocarboxylate & sugar transport				
ABC transport				
Amino acid permease				

Transporters

- Of 45 significant families, 22 were related to transport
- Vitamin and amino acid transport
- Sugar and sugar-like transporters
- Multidrug and efflux pumps
- ABC transporters (ATP Binding Cassette)

Vitamin & Cofactor Transporters

Marked branches with significant (P<0.05)

expansions or contractions

Transporter expansions

- Sugar related, Drug pump, and Major Facilitator Superfamily
 - Aspergillus spp, Fusarium spp, S. nodorum
 - Euascomycota
- Vitamin transport
 - C. neoformans, Fusarium
 - A. nidulans (Biotin)
- Saccharomyces expansions independent!

C. neoformans

Sugar transporter use in phytopathogens

- Sugar transporters are used to extract nutrients from host
 - Haustorium: specialized structure for plant parasitism
 - Many sugar transporters highly and specifically expressed in haustoria

Cryptococcus sugar transporters expansion

Cryptococcus sugar transporters

- 3x as many sugar transporters in C.
 neoformans (~50) than other basidiomycetes
- "sugar coated killer"
- Capsule is a mixture of glucose, xylose, and mannose.
- Transporters could be important in capsule synthesis

Zerpa et al, 1996

Basidiomycota changes

C.neoformans P.chrysosporium

C.cinereus

U.maydis

P450 CYP64

P450 enzymes involved in synthesis and cleavage of chemical bonds. Drug metabolism in animals.

CYP64: Step in Aspergillus spp aflatoxin pathway *P. chrysosporium* implicated in lignin and hydrocarbon degradation.

CYP64 was from independent duplication

C. cinereus expansion

P. chrysosporium expansion

Local duplications created CYP64 expansion

Interpretation of CYP64 expansion

Hydrophobin Family

P.chr	C.cin	C.neo	U.may
21	33	0	2

- Self assembling proteins involved in fungal cell wall
- Part of what makes a mushroom
- 8 Cysteine residues critical to function
- Help spores stay airborne resisting water

Local Duplications

Family size contractions

- Many families contracted in Onygenales
 - Histoplasma, Coccidioides
 - Several Human pathogenic fungi are found in this clade

Coccidioides

- Human pathogen one of very few fungi that infect immno-competent individuals.
- Found in deserts of Southwest US and in Mexico
- Spores are infectious propogules
- Onygenales genomes
 - 2 species have sequenced genomes (C. immitis and C. posadasii)
 - I non-pathogenic (U. reesii)
 - 3 Histoplasma strains.

Analysis of protein domain content

- Pfam database is semi-curated set of wellconserved protein domains
- Alignments of the domains can be searched against proteins of each fungal genome
- Identify copy number in each species
- Map values onto phylogenetic tree to identify significant differences
- Only evaluated filamentous euascomycete fungi

Coccidioides expansions

- Metalloprotease (Peptidase M35)
- Subtilisin peptide proteinase inhibitor

Onygenales contractions

- Heterokaryon incompatibility domain (HET)
- Tannase, Cellulose Binding Domain, Cellulase,
 Cutinase, NPPI (necrosis inducing protein)
- Pectin lyase and Pectinesterase rotting of soft tissue
- Several families of peptidases and hydrolases

Trends

- Lack of many putative plant degrading enzymes
- Are Onygenales losing genes related to being saprophytic?
- Genome streamlining as part of pathogenic lifestyles?

Conclusions

- Transporters are highly expanded in independent lineages
 - Saprophytic and phytopathogenic lifestyles
- Homobasidiomycete (mushroom) expansions
 - Lignin degradation saprophytic lifestyles
 - Hydrophobins cell wall structures
 - Convergent evolution to generate similar complements of a gene family

Are lineage-specific size changes adaptive?

- Some promising candidates can be identified by these methods
- May need functional data to interpret the changes
- Additional methods to look at timing of duplication and speciation with good sampling

Acknowledgments

Matthew Hahn (Indiana)

Jeff Demuth

Sang-Gook Han

Tijl De Bie Nello Cristianini

Aaron Mackey Ian Korf Mario Stanke

Fred Dietrich

John Taylor
Thomas Sharpton

Sequencing centers
Broad Institute
Joint Genome Institute
Génolevures
Stanford University
TIGR
Welcome Trust Sanger Centre
(NIH and NSF)

