МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет по дисциплине «Безопасность жизнедеятельности»

Лабораторная работа №5 Оценка устойчивости работы объекта при воздействии радиоактивных излучений

Выполнил студент группы ИВТ-32	/Рзаев А. Э./
Проверил преподаватель	/Митенев Ю.Н./

Цель работы: определение параметров защищённости людей от γ-излучений в случае радиоактивного заражения и выбор приемлемых с точки зрения безопасности вариантов поведения персонала и населения в этих условиях. Вариант №11.

Исходные данные для задания №6:

Время пребывания людей в производственных зданиях $-t_1=7$; Коэффициент ослабления радиации в производственных зданиях $-K_1=9$; Суммарное время следования на работу и с работы $-t_2=3$; Коэффициент ослабления радиации в автомобиле $-K_2=3$; Время пребывания людей в жилых зданиях $-t_3=12$; Коэффициент ослабления радиации в жилых зданиях $-K_3=20$; Время нахождения людей на открытой заражённой местности при перемещении пешком -t=2;

Решение:

1. Коэффициент защищённости:

$$C = \frac{24}{t + \frac{t_1}{K_1} + \frac{t_2}{K_2} + \dots} = \frac{24}{1 + \frac{7}{9} + \frac{3}{3} + \frac{12}{20}} = 7.1$$

где t_i — время нахождения людей в заданном помещении, ч.; K_i — коэффициент ослабления радиации в заданном помещении; t — время нахождения людей на открытой местности;

- 2. Рекомендуемые режимы поведения людей:
 - Для работников группы 1 режим № 3 (пребывание в течении 11 часов в производственных одноэтажных зданиях, 8 часов в двухэтажных зданиях, 1 часа в транспортных средствах, 4 часов в подвалах двухэтажных зданий);
 - Для работников группы 2 режим № 12 (пребывание в течении 3 часов в производственных одноэтажных зданиях, 3 часов в ПРУ на объекте, 1 часа в транспортных средствах, 2 часов на открытой местности, 15 часов в подвалах двухэтажных зданий);
 - Для работников группы 3 режим № 14 (пребывание в течении 22 часов в двухэтажных зданиях, 2 часов на открытой местности);

Исходные данные для задания №7: Время начала заражения после взрыва -5 ч.; Средний уровень радиации на объекте $-P_{cp.o6} = 70$ р/ч; Средний уровень радиации в загородной зоне $-P_{cp.3.3} = 30$ р/ч;

Решение:

1. Коэффициент безопасности защищённости для рабочих и служащих (группы 1 и 2) на первые сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{A_{\pi}} = \frac{7.6 * 70}{20} = 26.6,$$

где P_{cp} – средний уровень радиации, p/ч;

В – коэффициент;

2. Коэффициент безопасности защищённости для населения (группа 3) на первые сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{A_{\pi}} = \frac{7.6 * 30}{25} = 9.1$$

3. Коэффициент безопасности защищённости для рабочих и служащих (группы 1 и 2) на вторые сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{II_{II}} = \frac{2.2 * 70}{15} = 10.3$$

4. Коэффициент безопасности защищённости для населения (группа 3) на вторые сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{\mathcal{A}_{\pi}} = \frac{2.2 * 30}{8} = 8.3$$

5. Коэффициент безопасности защищённости для рабочих и служащих (группы 1 и 2) на третьи сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{\mathcal{A}_{A}} = \frac{1.2 * 70}{10} = 8.4$$

6. Коэффициент безопасности защищённости для населения (группа 3) на третьи сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{\mathcal{A}_A} = \frac{1.2 * 30}{5} = 7.2$$

7. Коэффициент безопасности защищённости для рабочих и служащих (группы 1 и 2) на четвёртые сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{I_{I_{II}}} = \frac{\hat{0}.8 * 70}{5} = 11.2$$

8. Коэффициент безопасности защищённости для населения (группа 3) на четвёртые сутки после аварии:

$$C_6 = \frac{B * P_{cp}}{\mathcal{I}_{IJ}} = \frac{0.8 * 30}{4} = 6$$

9. Результаты расчётов коэффициентов безопасной защищённости представлены в следующей таблице:

Время	Коэффициент	Рабочие и		Население, гр.3	
пребывания, сут.	В	служащие, гр. 1 и 2			
		Д _д , р	C_{6}	$\mathcal{A}_{\mathcal{A}}$, р	C_6
1	7.6	20	26.6	25	9.1
2	2.2	15	10.3	8	8.3
3	1.2	10	8.4	5	7.2
4	0.8	5	11.2	4	6

10. Режимы поведения групп населения представлены в следующей таблице:

Время	Группа №1	Группа №2	Группа №3
пребывания, сут.			
1	-	-	Режим № 15
2	Режим № 4	-	Режим № 15
3	Режим № 3	-	Режим № 14
4	Режим № 5	-	Режим № 13

Исходные данные для задания №8:

средний уровень радиации на объекте: $P_{cp} = 500 \text{ р/ч}$ при времени начала облучения после взрыва t = 1 ч;

средний уровень радиации в загородной зоне: $P_{cp} = 125 \text{ р/ч}$ при времени начала облучения после взрыва t = 1 ч;

коэффициент ослабления радиации укрытием на объекте: K = 100; коэффициент ослабления радиации укрытием в загородной зоне: K = 80; среднесуточный коэффициент защищенности для группы населения 1: C = 10; среднесуточный коэффициент защищенности для группы населения 2: C = 3; среднесуточный коэффициент защищенности для группы населения 3: C = 6.

Решение:

- 1. Продолжительность укрытия людей группы 1: 23 ч., длительность соблюдения режима после выхода из убежища 30 сут.;
- 2. Продолжительность укрытия людей группы 2: 6.8 сут., длительность соблюдения режима после выхода из убежища -30 сут.;
- 3. Продолжительность укрытия людей группы 3: 1 ч., длительность соблюдения режима после выхода из убежища 4 сут.;

4. Коэффициент безопасности защищенности для рабочих и служащих (группы 1 и 2) на первые сутки после аварии:

$$C_6 = B * P_{cp}/Д_{д} = 2.6 * 500/20 = 65$$

где $P_{cp}-$ средний уровень радиации, р/ч;

В – коэффициент

5. Коэффициент безопасности защищенности для группы 3 на первые сутки после аварии:

$$C_6 = B * P_{cp}/Д_{д} = 2.6 * 125/25 = 13$$

6. Допустимое время пребывания людей на открытой зараженной местности для групп 1 и 2 в первые сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(100 - 65)}{65 * (100 - 1)} = 0.13 (4.)$$

7. Допустимое время пребывания людей на открытой зараженной местности для группы 3 в первые сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(80 - 13)}{13 * (80 - 1)} = 1.6 (4.)$$

8. Коэффициент безопасности защищенности для рабочих и служащих (группы 1 и 2) на вторые сутки после аварии:

$$C_6 = B * P_{cp}/Д_{д} = 0.42 * 500/15 = 14$$

9. Коэффициент безопасности защищенности для группы 3 на вторые сутки после аварии:

$$C_6 = B * P_{cp}/Д_{\pi} = 0.42 * 125/8 = 6.6$$

10. Допустимое время пребывания людей на открытой зараженной местности для групп 1 и 2 в вторые сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(100 - 14)}{14 * (100 - 1)} = 1.5 \text{ (ч.)}$$

11. Допустимое время пребывания людей на открытой зараженной местности для группы 3 в вторые сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(80 - 6.6)}{6.6 * (80 - 1)} = 3.4 (4.)$$

12. Коэффициент безопасности защищенности для рабочих и служащих (группы 1 и 2) на третьи сутки после аварии:

$$C_6 = B * P_{cp}/J_{J_d} = 0.2 * 500/10 = 10$$

13. Коэффициент безопасности защищенности для группы 3 на третьи сутки после аварии:

$$C_6 = B * P_{cp}/A_A = 0.2 * 125/5 = 5$$

14. Допустимое время пребывания людей на открытой зараженной местности для групп 1 и 2 в третьи сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(100 - 10)}{10 * (100 - 1)} = 2.2 \text{ (4.)}$$

15. Допустимое время пребывания людей на открытой зараженной местности для группы 3 в третьи сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(80 - 5)}{5 * (80 - 1)} = 4.6 (4.)$$

16. Коэффициент безопасности защищенности для рабочих и служащих (группы 1 и 2) на четвёртые сутки после аварии:

$$C_6 = B * P_{cp}/Д_{д} = 0.125 * 500/5 = 12.5$$

17. Коэффициент безопасности защищенности для группы 3 на четвёртые сутки после аварии:

$$C_6 = B * P_{cp}/Д_{\pi} = 0.125 * 125/4 = 3.9$$

18. Допустимое время пребывания людей на открытой зараженной местности для групп 1 и 2 в четвёртые сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(100 - 12.5)}{12.5 * (100 - 1)} = 1.7 \text{ (4.)}$$

19. Допустимое время пребывания людей на открытой зараженной местности для группы 3 в четвёртые сутки:

$$\tau = 24 * \frac{(K - C_6)}{C_6 * (K - 1)} = 24 * \frac{(80 - 3.9)}{3.9 * (80 - 1)} = 5.9 \text{ (y.)}$$

Результаты расчетов коэффициентов безопасной защищенности и допустимого времени пребывания людей на открытой зараженной местности

Время	Рабочие и служащие, гр. 1			Население, гр. 3				
после	и 2							
заражения,	Коэфф.	Д _д , р	C_6	τ, ч.	Коэфф.	Д _д , р	C_6	τ, ч.
сут	В	, ,			В	, ,		
1	2.6	20	65	0.13	2.6	25	13	1.6
2	0.42	15	14	1.5	0.42	8	6.6	3.4
3	0.2	10	10	2.2	0.2	5	5	4.6
4	0.125	5	12.5	1.7	0.125	4	3.9	5.9

Вывод: в ходе лабораторной работы были определены параметры защищенности людей от у-излучений в случае радиоактивного заражения. Были определены режимы поведения населения на зараженной местности исходя из величины коэффициента защищенности, режимы поведения всех групп населения на первые четверо суток после взрыва АЭС и необходимое время нахождения людей в укрытиях и длительность соблюдения требуемого режима поведения после выхода из убежища.