Database - Parte 2 Le applicazioni gestionali e le basi di dati

Prof. Francesco Gobbi

I.I.S.S. Galileo Galilei - Ostiglia (MN)

Materia: Informatica

18 settembre 2024

Introduzione alle Applicazioni Gestionali

Le applicazioni gestionali sono software progettati per aiutare le aziende, studi professionali o enti pubblici a risolvere problemi gestionali.

- ▶ I dati vengono raccolti e organizzati in archivi.
- Vengono forniti strumenti di interrogazione e stampa di report.

Tipi di Archivi in Applicazioni Gestionali

Gli archivi in una gestione informatica sono solitamente suddivisi in tre categorie:

- Anagrafiche: contengono informazioni sui soggetti, persone o prodotti.
- Movimenti: riguardano eventi relativi ai soggetti descritti nelle anagrafiche.
- ▶ Parametri: dati che rimangono costanti per un determinato periodo di tempo.

Esempio di Applicazione Gestionale: CRM per un'Azienda

Un esempio concreto di applicazione gestionale è l'uso di un CRM (Customer Relationship Management) per un'azienda:

- ► Anagrafiche: memorizza informazioni sui clienti (nome, indirizzo, contatti).
- ► **Movimenti**: registra tutte le interazioni con i clienti, come ordini o richieste di supporto.
- Parametri: include sconti fissi applicati ai clienti fedeli.

Questo permette di:

- Migliorare la gestione delle relazioni con i clienti.
- Automatizzare la registrazione degli ordini e delle richieste.
- Analizzare i dati per migliorare le vendite e il servizio clienti.

Vantaggi delle Applicazioni Gestionali

Utilizzare applicazioni gestionali porta diversi vantaggi:

- Maggiore efficienza operativa.
- Riduzione degli errori manuali.
- Migliore capacità di analisi e decisioni basate sui dati.

Gestione dell'Archivio: Creazione e Manutenzione

La gestione degli archivi richiede un processo ben strutturato per garantire l'efficienza e l'integrità dei dati nel tempo.

Creazione degli Archivi:

- Definizione della struttura dei dati (tabelle, campi, relazioni).
- Implementazione dei sistemi di sicurezza per l'accesso ai dati.
- Esempio: Creare un archivio clienti con campi come nome, indirizzo, numero di telefono.

Manutenzione nel Tempo:

- Verifica periodica dell'integrità dei dati.
- ► Aggiornamento delle informazioni obsolete.
- Esempio: Controllo mensile per eliminare o aggiornare i clienti che non hanno interagito da un anno.

Procedure di Interrogazione degli Archivi

L'interrogazione degli archivi consente di estrarre informazioni rilevanti in modo rapido e preciso.

Query di Selezione:

- Utilizzate per estrarre dati specifici dall'archivio.
- Esempio: "Trova tutti i clienti che hanno effettuato un acquisto negli ultimi 6 mesi".

Query di Aggregazione:

- Utilizzate per ottenere statistiche o riassunti dei dati.
- Esempio: "Calcola il totale delle vendite mensili per ogni regione".

Query con Condizioni:

- Utilizzate per filtrare i dati in base a determinate condizioni.
- Esempio: "Trova tutti i clienti con età superiore a 30 anni e che vivono in una città specifica".

Esempi di Linguaggi di Interrogazione: SQL

Il linguaggio SQL (Structured Query Language) è uno dei più comuni per l'interrogazione degli archivi.

- ► **SELECT**: per selezionare dati specifici.
 - Esempio: 'SELECT nome, indirizzo FROM clienti WHERE città = 'Roma';'
- UPDATE: per aggiornare i dati.
 - Esempio: 'UPDATE clienti SET telefono = '1234567890' WHERE id_cliente = 1:'
- DELETE: per cancellare dati non più necessari.
 - Esempio: 'DELETE FROM clienti WHERE id_cliente = 5;'

Concetto di Basi di Dati

Le **basi di dati** (o database) sono insiemi organizzati di dati che possono essere:

- Archiviati in modo strutturato per un facile accesso.
- Gestiti tramite software appositi per manipolare, recuperare e memorizzare dati in modo efficiente.

Obiettivo: superare i limiti degli archivi tradizionali, garantendo l'integrità e la sicurezza delle informazioni.

Importanza delle Basi di Dati nell'Organizzazione

Le basi di dati sono fondamentali per l'**efficienza** e la **produttività** aziendale:

- ► Accesso rapido: permettono di ritrovare facilmente le informazioni desiderate.
- Organizzazione ottimale: consentono di gestire grandi quantità di dati con velocità ed efficacia.
- Sicurezza: proteggono i dati sensibili da accessi non autorizzati.
- Supporto decisionale: forniscono informazioni precise e aggiornate, migliorando il processo decisionale.

Esempio: i dati relativi agli articoli del magazzino possono essere utilizzati per generare listini e report personalizzati.

Integrità dei Dati

L'integrità dei dati è un principio fondamentale per il funzionamento di un database:

- ▶ Integrità: garantisce che le operazioni effettuate dagli utenti autorizzati non compromettano la consistenza del database.
- Consistenza: i dati inseriti devono essere significativi e utilizzabili correttamente nelle applicazioni.
- ➤ **Sicurezza**: devono essere implementate misure per prevenire la perdita o il danneggiamento accidentale dei dati.

Esempio: se un dipendente effettua un aggiornamento su un articolo di magazzino, il sistema garantisce che l'informazione sia coerente e riflessa in tutti i listini e report connessi.

Cos'è un DBMS

DBMS sta per *DataBase Management System*, ed è un sistema software utilizzato per la gestione delle basi di dati. Le sue funzioni principali includono:

- Organizzare i dati in maniera strutturata.
- Permettere l'accesso, la manipolazione e l'aggiornamento dei dati da parte degli utenti.
- Mantenere l'integrità e la sicurezza delle informazioni.
- Consentire la gestione degli utenti e dei loro permessi.

Come si compone un DBMS

Un DBMS è formato da diverse componenti che lavorano insieme per gestire le basi di dati:

- ► Motore di archiviazione: responsabile dell'organizzazione fisica dei dati su memoria di massa.
- Linguaggio di interrogazione (SQL): consente agli utenti di accedere e modificare i dati con comandi specifici.
- Sistema di gestione delle transazioni: garantisce che le operazioni sui dati siano sicure e coerenti, anche in presenza di errori o interruzioni.
- Sistema di controllo degli accessi: gestisce gli utenti, i permessi e le politiche di sicurezza.
- ➤ **Sistema di backup e ripristino**: permette di salvaguardare i dati e ripristinarli in caso di perdita o danno.

Differenza tra DBMS e Database

È importante distinguere tra il concetto di DBMS e database:

- Database: è una collezione di dati strutturati, organizzati per essere facilmente accessibili, gestiti e aggiornati.
- ▶ DBMS: è il software che gestisce i database. Si occupa della manipolazione, archiviazione e sicurezza dei dati, senza richiedere che l'utente abbia conoscenze dettagliate della struttura fisica dei dati.

In sintesi:

- ▶ Il database è l'insieme dei dati.
- ▶ II **DBMS** è il sistema che gestisce quei dati.

Utenti del DBMS

Il DBMS interagisce con due principali categorie di utenti:

- ▶ Utenti finali: accedono alle informazioni contenute nel database tramite applicazioni specifiche per svolgere operazioni quotidiane (ad esempio, inserire nuovi dati o consultare informazioni esistenti).
- Amministratori di database (DBA): sono responsabili della progettazione e della manutenzione del database, della gestione delle performance e dell'integrità dei dati, e della configurazione del sistema per garantire la sicurezza.

Vantaggi dell'uso di un DBMS

L'adozione di un DBMS porta numerosi vantaggi rispetto ai sistemi di archiviazione tradizionali:

- Migliore organizzazione: i dati sono strutturati e facilmente accessibili.
- Sicurezza: il DBMS permette la gestione avanzata degli accessi e dei permessi.
- Consistenza dei dati: il sistema garantisce l'integrità e la coerenza delle informazioni, riducendo il rischio di dati duplicati o contraddittori.
- ▶ Backup e ripristino: il DBMS include funzionalità di backup automatico e procedure di ripristino in caso di guasti.

Problemi dell'Approccio File-Based

L'approccio **file-based**, cioè basato su archivi indipendenti, presenta i seguenti inconvenienti:

- Ridondanza e inconsistenza dei dati: La duplicazione dei dati può causare incongruenze tra diversi archivi, rendendo difficile determinare i dati corretti.
 - **Esempio**: Se un cliente cambia indirizzo, questo deve essere aggiornato in più file. Se l'aggiornamento avviene solo in un file e non negli altri, si crea un'incongruenza.
- ▶ Difficoltà nell'accesso ai dati: Il programmatore deve seguire le modalità di accesso stabilite, limitando le operazioni ammissibili.
 - ▶ **Esempio**: In un sistema file-based, per trovare i dati di un cliente, il programmatore deve sapere esattamente in quale file e come sono organizzati, rendendo il processo complesso e manuale.

Isolamento dei Dati e Dipendenza dai Dati

- Isolamento dei dati: I dati possono essere rappresentati in formati diversi, rendendo difficile l'integrazione tra archivi e programmi.
 - ▶ **Esempio**: Un file potrebbe contenere informazioni sui clienti in formato CSV, mentre un altro file con dati sui pagamenti potrebbe essere in formato JSON. Collegare questi file richiede un'integrazione manuale complessa.
- ▶ Dipendenza dai dati: Ogni programma dipende dalla struttura dell'archivio, richiedendo modifiche a tutti i programmi se la struttura cambia.
 - ▶ **Esempio**: Se viene aggiunto un nuovo campo, come il "numero di cellulare" di un cliente, tutti i programmi che accedono a quel file devono essere aggiornati per gestire il nuovo campo.

Integrità dei Dati e Interrogazioni Predefinite

- Difficoltà nel gestire l'integrità dei dati: I vincoli di integrità sono spesso nascosti nei programmi, rendendo difficile mantenere la coerenza dei dati.
 - **Esempio**: Se un cliente viene eliminato da un file, non c'è alcuna garanzia che i suoi ordini vengano eliminati anche in un altro file collegato, violando l'integrità referenziale.
- ► Interrogazioni predefinite: Le interrogazioni sui dati sono limitate a quelle previste dalle applicazioni sviluppate, limitando la flessibilità.
 - ▶ **Esempio**: Un'applicazione per la gestione di magazzino permette solo di vedere il numero di prodotti disponibili, ma non consente di effettuare query avanzate come il calcolo del valore complessivo del magazzino.

Aggiornamento del Software e Difficoltà d'Accesso

- Complessità nell'aggiornamento del software e delle strutture: Modificare la struttura di un record richiede la modifica di tutti i programmi che utilizzano tale record.
 - ▶ **Esempio**: Aggiungendo un nuovo campo "data di nascita" nel file clienti, tutti i programmi che accedono al file devono essere modificati per gestire correttamente il nuovo campo.
- ▶ Difficoltà nell'accesso ai dati: L'accesso è rigido e dipendente dalla struttura del file, complicando il lavoro del programmatore per accedere ai dati.
 - Esempio: Se un file contiene i dati di ordini in un formato tabellare non standard, l'accesso ai dati richiede la scrittura di codice personalizzato per leggere e manipolare il formato specifico.

Difficoltà nel Gestire la Concorrenza

L'approccio file-based soffre di problemi legati alla concorrenza, quando più utenti accedono e modificano i dati contemporaneamente.

- **Esecuzione concorrente**: Lo stesso programma può essere eseguito contemporaneamente da più utenti.
- Perdita di aggiornamento: Questo può portare a problemi come la "perdita di aggiornamento", dove uno degli utenti sovrascrive accidentalmente le modifiche fatte da un altro.

Esempio: Se due utenti aggiornano lo stesso record cliente contemporaneamente, solo l'ultima modifica sarà salvata, causando la perdita di aggiornamenti importanti.

Salvataggio e Ripristino Dati Limitato

I sistemi file-based hanno limitazioni nel gestire il salvataggio e il ripristino dei dati.

- ▶ Backup: Il backup è l'unico mezzo di difesa per prevenire la perdita accidentale di dati causata da malfunzionamenti hardware o software.
- Ripristino inefficace: Tuttavia, il ripristino da backup può risultare inefficace, soprattutto se i dati vengono persi o modificati in modo frequente.

Esempio: Se un sistema subisce un crash e i dati non sono stati salvati di recente, l'utente potrebbe perdere modifiche importanti apportate subito prima del malfunzionamento.

Limiti nella Gestione della Sicurezza

Nei sistemi tradizionali, la gestione della sicurezza presenta diverse limitazioni:

- Riserbo: Il sistema deve garantire che solo utenti autorizzati possano accedere ai dati e che lo facciano solo nei limiti dei loro permessi.
- Operazioni limitate: Nei sistemi file-based, le operazioni di controllo sono limitate a livello di file system, non a livello di singolo record.

Esempio: Se un utente ha accesso a un intero file, non è possibile limitare l'accesso a specifici campi all'interno di quel file, compromettendo la sicurezza.