BÀI 3. ĐẠO HÀM CỦA HÀM SỐ LƯỢNG GIÁC

A. LÝ THUYẾT

1. Giới hạn
$$\frac{\sin x}{x}$$

Định lý 1.

$$\lim_{x\to 0}\frac{\sin x}{x}=1.$$

Ví dụ 1. Tính
$$\lim_{x\to 1} \frac{\sin x - 1}{x^2 - 1}$$

Lời giải

Đặt
$$x$$
 − 1 = t .

Khi x tiến đến 1 thì t tiến đến 0.

$$\lim_{t \to 0} \frac{\sin t}{t + 2} = \lim_{t \to 0} \left(\frac{\sin t}{t} \cdot \frac{1}{t + 2} \right) = \lim_{t \to 0} \frac{\sin t}{t} \cdot \lim_{t \to 0} \frac{1}{t + 2} = 1 \cdot \frac{1}{2} = \frac{1}{2}.$$

2. Đạo hàm của hàm số $y = \sin x$

Định lý 2.

Hàm số $y = \sin x$ có đạo hàm tại mọi $x \in \mathbb{R}$ và $(\sin x)' = \cos x$.

Chú ý:

Nếu
$$y = \sin u$$
 và $u = u(x)$ thì: $(\sin u)' = u'.\cos u$

Ví dụ 2. Tính đạo hàm của hàm số $y = [\sin 2x + 3]^2$

Lời giải

$$y' = 2[\sin 2x + 3] \cdot \sin 2x + 3 = 2[\cos 2x + 3 \cdot 2x + 3] \cdot \sin 2x + 3$$

 $y' = 4\cos 2x + 3 \cdot \sin 2x + 3$.

3. Đạo hàm của hàm số $y = \cos x$

Định lý 3.

Hàm số $y = \cos x$ có đạo hàm tại mọi $x \in \mathbb{R}$ và $(\cos x)' = -\sin x$.

Chú ý:

Nếu
$$y = \cos u$$
 và $u = u(x)$ thì: $(\cos u)' = -u'$. $\sin u$

Ví dụ 3. Tính đạo hàm của hàm số $y = \cos\left(\frac{\pi}{2} - x\right)$ tại $x = \frac{\pi}{3}$.

Lời giải

Đặt
$$u = \frac{\pi}{2} - x$$

$$\Rightarrow y' = \cos u' = -u' \cdot \sin u = -\left(\frac{\pi}{2} - x\right)' \sin\left(\frac{\pi}{2} - x\right) = \sin\left(\frac{\pi}{2} - x\right).$$

Thay $x = \frac{\pi}{3}$ vào y' ta được:

$$y'\left(\frac{\pi}{3}\right) = \sin\left(\frac{\pi}{2} - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}.$$

Vậy giá trị của đạo hàm của hàm số tại $x = \frac{\pi}{3}$ là $\frac{1}{2}$.

4. Đạo hàm của hàm số y = tanx

Định lý 4.

Hàm số y = tanx có đạo hàm tại mọi $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$ và $(tanx)' = \frac{1}{\cos^2 x}$.

Chú ý:

Nếu y = u và u = u(x) thì: (tanu)' =
$$\frac{u'}{\cos^2 u}$$
.

Ví dụ 4. Tính đạo hàm $y = \sqrt{2 + \tan x}$

Lời giải

Dặt u = 2 + tanx

$$y' = \frac{u'}{2\sqrt{u}} = \frac{2 + \tan x'}{2\sqrt{2 + \tan x}} = \frac{\frac{1}{\cos^2 x}}{2\sqrt{2 + \tan x}} = \frac{1}{2 \cdot \cos^2 x \sqrt{2 + \tan x}}.$$

5. Đạo hàm của hàm số $y = \cot x$

Định lý 5.

Hàm số y = cotx có đạo hàm tại mọi $x \neq k\pi, k \in \mathbb{Z}$ và $(\cot x)' = -\frac{1}{\sin^2 x}$.

Chú ý:

Nếu y = u và u = u(x) thì: (cotu)' =
$$-\frac{u'}{\sin^2 u}$$
.

Ví dụ 5. Tính đạo hàm của hàm $y = \cot x^2$.

Lời giải

y' =
$$(\cot x^2)$$
' = (x^2) '. $-\frac{1}{\sin^2 x^2} = -\frac{2x}{\sin^2 x^2}$.

6. Bảng quy tắc tính đạo hàm tổng hợp:

Đạo hàm của hàm f(x) với x là biến số	Đạo hàm của hàm f(u) với u là một hàm
	số
(c)' = 0	(c)' = 0
(x)' = 1	(u)' = u'
$(x^n)' = n.x^{n-1}$	$(u^n)' = n.u^{n-1}.u'$
$\left(\frac{1}{x}\right) = -\frac{1}{x^2}$	$\left(\frac{1}{\mathbf{u}}\right)' = -\frac{1}{\mathbf{u}^2}$
$\sqrt{x} = \frac{1}{2\sqrt{x}}$	$\sqrt{u} = \frac{u'}{2\sqrt{u}}$
$(\sin x)' = \cos x$	(sinu)' = u'.cosu
$(\cos x)' = -\sin x$	$(\cos u)' = -u'. \sin x$
$\tan x = \frac{1}{\cos^2 x}$	$\tan u = \frac{u'}{\cos^2 u}$
$\cot x = \frac{1}{\sin^2 x}$	$\cot u = \frac{u'}{\sin^2 u}$

B. BÀI TẬP

Bài 1. Tính các đạo hàm sau:

a)
$$y = \sqrt{3\tan^2 x + \cot 2x}$$

b)
$$y = -\frac{\cos x}{3\sin^3 x} + \frac{4}{3}\cot x$$

c)
$$y = \cos^2 \sin^3 x$$

d)
$$y = \frac{x}{\sin x}$$

Lời giải

a)
$$y' = \frac{3\tan^2 x + \cot 2x'}{2\sqrt{3}\tan^2 x + \cot 2x} = \frac{6\tan x \cdot \frac{1}{\cos^2 x} - \frac{2}{\sin^2 2x}}{2\sqrt{3}\tan^2 x + \cot 2x} = \frac{6\sin x}{\frac{\cos^3 x}{2\sqrt{3}\tan^2 x + \cot 2x}} = \frac{1}{2\sqrt{3}\tan^2 x + \cot 2x}$$

b)
$$y' = \left(-\frac{\cos x}{3\sin^3 x} + \frac{4}{3}\cot x\right)' = \frac{\sin x \cdot 3\sin^3 x + \cos x \cdot 9 \cdot \sin^2 x \cdot \cos x}{3\sin^3 x} - \frac{4}{3\sin^2 x}$$

$$=\frac{\sin^2 x + 3\cos^2 x}{3\sin^4 x} - \frac{4}{3\sin^2 x} = \frac{3\cos^2 x - 3\sin^2 x}{3\sin^4 x} = \frac{\cos^2 x - \sin^2 x}{\sin^4 x}.$$

c)
$$y' = \cos^2 \sin^3 x = 2.\cos \sin^3 x \cdot [\cos \sin^3 x] = 2.\cos \sin^3 x \cdot [\cos \sin^3 x]$$

$$=2.\cos \sin^3 x \cdot \left[-\sin \sin^3 x \cdot \right] \sin^3 x \cdot = -2.\cos \sin^3 x \cdot \sin \sin^3 x \cdot 3\sin^2 x \cdot \cos x$$

$$=$$
 -6.cos sin³ x .sin sin³ x sin² x.cos x

d)
$$y' = \frac{x' \cdot \sin x - x \cdot \sin x}{\sin x^2} = \frac{\sin x - x \cdot \cos x}{\sin x^2}$$
.

Bài 2. Chứng minh rằng các hàm số sau đây có đạo hàm không phụ thuộc x.

a)
$$y = \sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$$

b)
$$y = \cos^2\left(\frac{\pi}{3} - x\right) + \cos^2\left(\frac{\pi}{3} + x\right) + \cos^2\left(\frac{2\pi}{3} - x\right) + \cos^2\left(\frac{2\pi}{3} + x\right) - 2\sin^2 x$$

Lời giải

a)
$$y' = \sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$$

$$=6\sin^5 x \cos x - 6\cos^5 x \cdot \sin x + 6\sin x \cos^3 x - 6\sin^3 x \cos x$$

$$= 6\sin x \cos x \sin^4 x - \cos^4 x + 6\sin x \cos x \cos^2 x - \sin^2 x$$

$$= 6\sin x \cos x \sin^2 x - \cos^2 x \sin^2 x + \cos^2 x + 6\sin x \cos x \cos^2 x - \sin^2 x$$

$$= 6\sin x \cos x \sin^2 x - \cos^2 x + 6\sin x \cos x \cos^2 x - \sin^2 x$$

$$= -6\sin x \cos x \cos^2 x - \sin^2 x + 6\sin x \cos x \cos^2 x - \sin^2 x$$

=0

b)
$$y' = \left(\cos^2\left(\frac{\pi}{3} - x\right) + \cos^2\left(\frac{\pi}{3} + x\right) + \cos^2\left(\frac{2\pi}{3} - x\right) + \cos^2\left(\frac{2\pi}{3} + x\right) - 2\sin^2x\right)^{\frac{1}{3}}$$

$$\begin{split} &=2\cos\left(\frac{\pi}{3}-x\right)\sin\left(\frac{\pi}{3}-x\right)-2\cos\left(\frac{\pi}{3}+x\right)\sin\left(\frac{\pi}{3}+x\right)+2\cos\left(\frac{2\pi}{3}-x\right)\sin\left(\frac{2\pi}{3}-x\right)\\ &-2\cos\left(\frac{2\pi}{3}+x\right)\sin\left(\frac{2\pi}{3}+x\right)-4\sin x\cos x\\ &=\sin\left(\frac{2\pi}{3}-2x\right)-\sin\left(\frac{2\pi}{3}+2x\right)+\sin\left(\frac{4\pi}{3}-2x\right)-\sin\left(\frac{4\pi}{3}+2x\right)-2\sin 2x\\ &=-2\cos\left(\frac{2\pi}{3}\right)\sin 2x-2\cos\left(\frac{4\pi}{3}\right)\sin 2x-2\sin 2x\\ &=\sin 2x+\sin 2x-2\sin 2x\\ &=0 \end{split}$$

Bài 3. Tìm f'(2) biết $f(x) = x^2 \cdot \sin(x - 2)$.

Lời giải

Ta có : f'(x) =
$$2x.\sin(x-2) + x^2\cos(x-2)$$

Khi đó: f'(2) = $2.2.\sin(2-2) + 2^2.\cos(2-2)$
= $4.0 + 4.1$
= $0 + 4$
= 4 .

Vậy f'(2) = 4.