Computer Intelligence

Kunnapat Thippayapalaphonkul (590612113)

18 November 2019

รายงานผลการทดลองการบ้าน Fuzzy

ในการบ้านนี้นั้นได้ทำการเรียกใช้ Libraries คือ 1). matplotlib 2). numpy 3). random โดยที่ matplotlib ใช้ plot กราฟ, numpy สร้าง array, matrix, random สุ่มค่าให้ Input

รายงานผลการทดลองผลการคั่วเมล็ดกาแฟเพื่อที่จะได้เมล็ดกาแฟในแต่ละระดับ ที่มีความไม่แน่นอนโดย ใช้วิธี Fuzzy Mamdani โดยปัจจัยในการควบคุมการคั่วกาแฟนั้นมีอยู่มากมาย ก็คือ

- อุณหภูมิ
- เวลา
- ความชื้นในเมล็ดกาแฟ
- ชนิดของสายพันธุ์เมล็ดกาแฟ
- แหล่งการใช้พลังงานเครื่องคั่วกาแฟ
- อุณหภูมิเริ่มต้น
- อุณหภูมิจบ
- ระยะเวลาของการคั่วเมล็ดกาแฟ
- สภาพความชื้นขณะคั่วกาแฟ
- ระบบถ่ายเทความร้อนภายในเครื่องคั่วเมล็ดกาแฟ

แต่ในการบ้านนี้จะขอยกปัจจัยมาเพียง 2 ปัจจัยเท่านั้นที่จะควบคุมการคั่วเมล็ดกาแฟให้ออกมาได้ในแต่ละระดับ คือ

- อุณหภูมิ โดยที่ถือว่าอุณหภูมิเริ่มต้นกับอุณหภูมิจบนั้นให้เท่ากัน
- ระยะเวลาของการคั่วเมล็ดกาแฟ

Fuzzy Rules

กฎของ Fuzzy ที่ผมได้สร้างขึ้นมาคือรับ Input เข้าไปในระบบ 2 ค่า คือ 1). อุณหภูมิหน่วยเป็นองศา เซลเซียส 2). เวลาหน่วยเป็นนาที

		ai v	עפו	e 6	e.	e e	2	ಡ	
ตาราง 1 กฎแต่ละกฎใน	Fuzzy Rules	ท่าละ	โดผล	ลพก	L9 9	นระดาเคว	าวแขนเขา	องเมลดกาแง	Λ
	. u,u.cs			0	٠.			O 1004017111 1007	•

Temperature (องศาเซล เซียส) Time (นาที)	ร้อนน้อย	ร้อนกลาง	ร้อนมาก
สั้น	คั่วอ่อน	คั่วกลาง	คั่วกลาง
ปานกลาง	คั่วอ่อน	คั่วกลาง	คั่วกลาง
นาน	คั่วกลาง	คั่วเข้ม	คั่วเข้ม

Rule

- 1. ถ้า Time is สั้น and Temperature is ร้อนน้อย then result is คั่วอ่อน
- 2. ถ้า Time is ปานกลาง and Temperature is ร้อนน้อย then result is คั่วอ่อน
- 3. ถ้า Time is สั้น and Temperature is ร้อนกลาง then result is คั่วกลาง
- 4. ถ้า Time is สั้น and Temperature is ร้อนมาก then result is คั่วกลาง
- 5. ถ้า Time is ปานกลาง and Temperature is ร้อนกลาง then result is คั่วกลาง
- 6. ถ้า Time is ปานกลาง and Temperature is ร้อนมาก then result is คั่วกลาง
- 7. ถ้า Time is นาน and Temperature is ร้อนน้อย then result is คั่วกลาง
- 8. ถ้า Time is นาน and Temperature is ร้อนปานกลาง then result is คั่วเข้ม
- 9. ถ้า Time is นาน and Temperature is ร้อนมาก then result is คั่วเข้ม

Fuzzy Membership Function

สมการ Membership Function ของอุณหภูมิดัง รูปที่ 1

รูปที่ 1 Membership Function ของอุณหภูมิ

- ร้อนน้อย :
 - O if x < 160:

$$f(x) = 1$$

O else if x >= 160 and x < 180:

$$f(x) = \frac{x}{(160 - 180)} + \left(1 + \frac{160}{(180 - 160)}\right)$$

O else:

$$f(x) = 0$$

- ร้อนกลาง :
 - O if x == 180:

$$f(x) = 1$$

O else if x > 160 and x < 180:

$$f(x) = \frac{x}{(160 - 180)} + \left(1 - \frac{180}{(180 - 160)}\right)$$

O else if x > 180 and x < 200:

$$f(x) = \frac{x}{(180 - 160)} + \left(1 + \frac{180}{(180 - 160)}\right)$$

O else:

$$f(x) = 0$$

- ร้อนมาก :
 - O if x > 200:

$$f(x) = 1$$

O else if x > 180 and x <= 200:

$$f(x) = \frac{x}{(200 - 180)} + \left(1 - \frac{200}{(200 - 180)}\right)$$

O else:

$$f(x) = 0$$

สมการ Membership Function ของเวลาดัง รูปที่ 2

รูปที่ 2 Membership Function ของเวลา

- น้อย :
 - O if x < 10:

$$f(x) = 1$$

O else if $x \ge 10$ and x < 12:

$$f(x) = (12 - x) \times \left(\frac{1}{2}\right)$$

O else:

$$f(x) = 0$$

- ปานกลาง:
 - O if x == 12:

$$f(x) = 1$$

O else if x > 10 and x < 12:

$$f(x) = x \times \left(\frac{1}{2}\right) - \left(\frac{12}{2}\right) + 1$$

O else if x > 12 and x < 14:

$$f(x) = x \times \left(\frac{1}{2}\right) - \left(\frac{12}{2}\right)$$

O else:

$$f(x) = 0$$

- มาก :
 - O if x < 12:

$$f(x) = 0$$

O else if x >= 12 and x < 14:

$$f(x) = \left(\frac{x}{2}\right) - \left(\left(\frac{14}{2}\right) + 1\right)$$

O else:

$$f(x) = 1$$

สมการ Membership Function ของระดับการคั่วกาแฟดัง รูปที่ 3

รูปที่ 3 Membership Function ของระดับการคั่วกาแฟ

- คั่วอ่อน :
 - O if $x \le 1$:

$$f(x) = 1$$

O else if $x \ge 1$ and x < 2:

$$f(x) = (x) \times \left(-\frac{1}{1}\right)$$

O else:

$$f(x) = 0$$

- ปานกลาง:
 - O if x == 2:

$$f(x) = 1$$

O else if x > 2 and x < 3 or x < 2 and x > 1:

$$f(x) = x \times \left(-\frac{1}{1}\right)$$

O else:

$$f(x) = 0$$

- มาก :
 - O if $x \le 2$:

$$f(x) = 0$$

O else if x > 2 and x < 3:

$$f(x) = \left(\frac{1}{1}\right) \times (x)$$

O else:

$$f(x) = 1$$

Defuzzification

ใช้การคำนวณแบบ Center of Area (Centroid) โดยเลือกการใช้ ฐานนิยม (Mode) ในการคำนวณหา Defuzzification

$$de_{y} = \frac{\sum_{j \in N_n} c_j y_{B_j}^0}{\sum_{j \in N_n} c_j}$$

การทดลอง

การทดลองนี้จะลองคำนวณบางส่วนด้วยการลองทำเอง เพื่อดูว่าผลจากโปรแกรมนั้นถูกต้อง หรือเปล่า โดยที่ให้ Input อุณหภูมิเท่ากับ 187 และเวลาเท่ากับ 13

รูปที่ 4 แสดงผลการหา min หรือ lpha ในรูปจากการคำนวณด้วยตัวเอง

โดยจาก รูปที่ 4 จะเห็นได้ว่าจะเข้ากฎที่ 5, 6, 8, 9 จะให้ผลลัพธ์การหา α จะได้ผลลัพธ์ดัง รูปที่ 4 และหลังนำแต่ ละ Rule มารวมกันก็จะได้ดัง รูปที่ 5 ดังนั้นผลลัพธ์จะอยู่ในช่วง กลางจนถึงเข้ม แต่เราก็ไม่รู้ว่าจริงๆ แล้วต้องเป็น เท่าไหร่ ดังนั้นจึงต้องทำการ Defuzzification เพื่อจะให้รู้ว่าจะตอบอะไรกันแน่

รูปที่ 5 จากนำผลลัพธ์ของแต่ละ Rule มารวมกัน

ในส่วนต่อไปนี้ จะทำการ Defuzzification เพื่อหาคำตอบของระบบนี้ โดยใช้โปรแกรมและได้ใช้การ Defuzzification แบบ Centroid เลือกคำนวณแบบ Mode

Input = [187, 13]
Medium Roast: 41.18 %

รูปที่ 6 แสดงค่า Input ที่ใส่เข้าไปในระบบและได้ผลลัพธ์

จะเห็นได้ว่าผลลัพธ์ของระบบนั้นอยู่ในช่วงที่ถูกต้องที่คาดการณ์ไว้คือช่วงกลางถึงเข้ม หรือ 0 ถึง 2

การทดลองต่อไปนี้ จะทำการสุ่มค่าของ Input โดยที่ให้ค่าอุณหภูมินั้นอยู่ในช่วง 150 ถึง 250 องศาเซลเซียส และ ให้ เวลานั้น อยู่ในช่วง 8 ถึง 10 นาที

```
Input = [154, 14]
Medium Roast
Input = [208, 17]
Dark Roast
Input = [183, 13]
Medium Roast: 23.08 %
Input = [236, 15]
Dark Roast
Input = [157, 14]
Medium Roast
Input = [154, 8]
Light Roast
Input = [162, 12]
Light Roast: 10.00 %
Input = [196, 10]
Medium Roast
Input = [199, 11]
Medium Roast: 45.45 %
Input = [176, 13]
Light Roast: 85.71 %
```

รูปที่ 7 ผลลัพธ์ของการสุ่มค่าอุณหภูมิ, เวลาและผลลัพธ์หลังจากการนำไปเข้าระบบ

จาก รูปที่ 7 จะเห็นได้ว่า Input ที่ทำการสุ่มขึ้นมานั้นตรงกับกฎที่ได้ตั้งเอาไว้ จึงได้ผลลัพธ์ที่ถูกต้องตามที่คาดหวัง ไว้

สรุปผลการทดลอง

การทดลองการเขียนโปรแกรมจำลองการคั่วเมล็ดกาแฟ โดยการใช้ Fuzzy logic โดยใช้วิธี Mamdani ให้ การทำโดยมีกฎทั้งหมด 9 ข้อ ที่ได้สร้างขึ้นมาเพื่อควบคุมระบบนี้ โดยการคั่วเมล็ดกาแฟนี้จะแบ่งให้มี 3 ระดับคือ 1). คั่วอ่อน 2). คั่วกลาง 3). คั่วเข้ม ซึ่งระบบที่ได้ทำขึ้นมานั้น ให้ผลลัพธ์ที่ถูกต้องตามกฎที่ได้ตั้งไว้

ภาคผนวก

```
import matplotlib.pyplot as plt
import numpy as np
import random
plt.rcParams['font.family'] = 'Tahoma'
#### Input
inpu = [187, 13]
xlist = range(150, 250)
tlist = range(9, 16)
graph = 0
def main():
    if graph:
        graphrule()
    for i in range(10):
        inpu = []
        inpu.append(random.randrange(150, 250))
        inpu.append(random.randrange(8, 20))
        print("Input =", inpu)
        minrule = minOfrule(inpu)
        # print("Min Rule =", minrule)
        mamdani(minrule)
        print("-----")
##### Rule
def temperature10(i, down = 160):
    ran = 20
    if i < down :</pre>
        membership = 1
    elif i >= down and i < down + ran :
        membership = i * (-1/ran) + (1 + down/ran)
    else :
        membership = 0
    return membership
def temperature11(i, mid = 180):
```

```
ran = 20
    if i == mid :
        membership = 1
    elif i > mid - ran and i < mid :</pre>
        membership = i^*(1/ran) + (1 - mid/ran)
    elif i > mid and i < mid + ran :</pre>
        membership = i *(-1/ran) + (1 + mid/ran)
    else :
        membership = 0
    return membership
def temperature12(i, up = 200):
    ran = 20
    if i > up :
       membership = 1
    elif i > up - ran and i <= up :
        membership = i *(1/ran) + (1 - up/ran)
    else :
        membership = 0
    return membership
def time10(i, down = 10):
    ran = 2
    if i < down :</pre>
        y = 1
    elif i >= down and i < down + ran :
        y = (down + ran - i)*(1/ran)
    else :
        y = 0
    return y
def time11(i, mid = 12):
    ran = 2
    if i == mid :
       y = 1
    elif i > mid - ran and i < mid :
        y = i * (1/ran) - mid/ran + 1
    elif i > mid and i < (mid + ran) :
        y = i * (1/ran) - mid/ran
    else :
        y = 0
    return y
```

```
def time12(i, up = 14):
    ran = 2
    if i < up - ran :
       y = 0
    elif i >= up - ran and i < up :
        y = i/(ran) - (up/ran - 1)
    else :
        y = 1
    return y
def roast00(i, down = 1):
    ran = 1
    if i <= down :
        membership = 1
    elif i > down and i < down + ran :</pre>
        membership = ((1)/(-ran))*i
    else :
        membership = 0
    return membership
def roast01(i, mid = 2):
    ran = 1
    if i == mid :
        membership = 1
    elif i > mid and i < mid + ran or i < mid and i > mid - 1:
        membership = ((1)/(-ran))*i
    else :
        membership = 0
    return membership
def roast02(i, up = 2):
    ran = 1
    if i <= up :
        membership = 0
    elif i > up and i < up + ran :</pre>
        membership = ((1)/(up - ran))*i
    else :
        membership = 1
    return membership
```

```
#### Find min
def minOfrule(inpu): # Find Alpha cut return listmin
    Listmin = []
    L1 = min(temperature10(inpu[0]), time10(inpu[1]))
    L2 = min(temperature10(inpu[0]), time11(inpu[1]))
    M1 = min(temperature11(inpu[0]), time10(inpu[1]))
    M2 = min(temperature12(inpu[0]), time10(inpu[1]))
    M3 = min(temperature11(inpu[0]), time11(inpu[1]))
    M4 = min(temperature10(inpu[0]), time12(inpu[1]))
    M5 = min(temperature11(inpu[0]), time12(inpu[1]))
    D1 = min(temperature12(inpu[0]), time11(inpu[1]))
    D2 = min(temperature12(inpu[0]), time12(inpu[1]))
    Listmin.append([L1, L2])
    Listmin.append([M1, M2, M3, M4, M5])
    Listmin.append([D1, D2])
    return Listmin
#### Mamdani
def mamdani(minOfrule):
    alpha = minOfrule
    maxlevel = []
    # print(alpha)
    for i in range(len(alpha)):
        maxlevel.append(max(alpha[i]))
    # print(maxlevel)
    ###### Simplified Centroid
    defuzzi = np.zeros(2)
    # print(len(alpha))
    for i in range(len(alpha)):
        for j in range(len(alpha[i])):
            defuzzi[0] += alpha[i][j]*(i+1)
            defuzzi[1] += alpha[i][j]
    defuzzify = defuzzi[0]/defuzzi[1]
```

```
if ( defuzzify >= 1 and defuzzify < 2):
        if defuzzify - 1 != 0 :
            print("Light Roast: {:.2f} %" .format((defuzzify - 1)*100))
        else :
            print("Light Roast")
    elif ( defuzzify >= 2 and defuzzify < 3 ) :
        if defuzzify - 2 != 0:
            print("Medium Roast: {:.2f} %" .format((defuzzify - 2)*100))
        else :
            print("Medium Roast")
    elif ( defuzzify >= 3 ) :
        if defuzzify - 3 != 0:
            print("Dark Roast: {:.2f} %" .format((defuzzify - 3)*100))
        else :
            print("Dark Roast")
##### Graph Rule
def graphrule():
   tem1 = [temperature10(x) for x in xlist]
    tem2 = [temperature11(x) for x in xlist]
    tem3 = [temperature12(x) for x in xlist]
    tim = [time10(t, 10) for t in tlist]
    tim1 = [time11(t, 12) for t in tlist]
    tim2 = [time12(t, 14) for t in tlist]
    roaslist = range(0,5)
    roas = [roast00(x) for x in roaslist]
    roas1 = [roast01(x) for x in roaslist]
    roas2 = [roast02(x) for x in roaslist]
    # roas = [roast00(x) for t in roaslist]
    fig, axs = plt.subplots(2, 1)
    axs[0].set title(label=u"อุณหภูมิ")
    axs[0].plot(xlist, tem1, label=u'รือนน้อย')
    axs[0].plot(xlist, tem2, label=u'ร้อนกลาง')
    axs[0].plot(xlist, tem3, label=u'รือนมาก')
    axs[0].set_xlabel('Temperature')
    axs[0].set ylabel('Membership')
    axs[0].legend()
    axs[1].set_title(label=u"ເກຄາ")
    axs[1].plot(tlist, tim, label=u'น้อย')
    axs[1].plot(tlist, tim1, label=u'ปานกลาง')
```

```
axs[1].plot(tlist, tim2, label=u'wn')
axs[1].set_xlabel('Time')
axs[1].set_ylabel('Membership')
axs[1].legend()

plt.show()

if __name__ == "__main__":
    main()
```