Comparison Table

Jiaxin Hu

May 19, 2021

Method	Model	# of features	non-Gaussian
STD (Ours)	$\mathbb{E}[\mathcal{Y}] = f(\mathcal{B} imes \{oldsymbol{X}_1, oldsymbol{X}_2, oldsymbol{X}_3\}), \mathcal{B} = \mathcal{C} imes \{oldsymbol{M}_1, oldsymbol{M}_2, oldsymbol{M}_3\}$	3	
${\bf Double\text{-}core}[1]$	$\mathbb{E}[\mathcal{Y}] = \mathcal{B}, \mathcal{B} = (\mathcal{C}_1 + \mathcal{C}_2) imes \{oldsymbol{M}_1, oldsymbol{M}_2, oldsymbol{M}_3\}$	0	$\sqrt{}$
GCP[4]	$\mathbb{E}[\mathcal{Y}] = f(\llbracket oldsymbol{A}_1, oldsymbol{A}_2, oldsymbol{A}_3 rbracket)$	0	$\sqrt{}$
CP-APR[3]	$\mathbb{E}[\mathcal{Y}] = f(\llbracket oldsymbol{A}_1, oldsymbol{A}_2, oldsymbol{A}_3 rbracket)$	0	Poi Only
CORALS[2]	$\mathbb{E}[\mathcal{Y}] = f(\llbracket oldsymbol{A}_1, oldsymbol{A}_2, oldsymbol{A}_3 rbracket)$	0	$\sqrt{}$
SupCP[6]	$\mathcal{Y} = \llbracket oldsymbol{A}_1, oldsymbol{A}_2, oldsymbol{A}_3 rbracket + \mathcal{E}, oldsymbol{A}_1 = oldsymbol{X} oldsymbol{B} + \mathcal{E}'$	1	×
mRRR[14]	$\mathcal{Y}_{ijk} \sim \exp \operatorname{fm}(\theta_{ijk}, \phi), \theta_{ijk} = f(\boldsymbol{X}\boldsymbol{B}), \operatorname{rank}(\boldsymbol{B}) = r$	1	and mixed
Envelope[5]	$\mathcal{Y} = \mathcal{B} \times_3 \mathbf{X} + \mathcal{E}, \mathcal{B} = \mathcal{C} \times \{\Gamma_1, \Gamma_2, \mathbf{I}_d\}, \operatorname{Cov}(\mathcal{E}) = \Sigma_1 \otimes \Sigma_2$	1	×
GLSNet[12]	$\mathbb{E}[\mathcal{Y}] = f(\Theta + \mathcal{B} \times_3 \mathbf{X}), \text{rank}(\Theta) = r, \ \mathcal{B}\ _0 = s$	1	$\sqrt{}$
STORE[7]	$\mathcal{Y} = \mathcal{B} imes_3 oldsymbol{X} + \mathcal{E}, \mathcal{B} = \llbracket oldsymbol{A}_1, oldsymbol{A}_2, oldsymbol{A}_3 rbracket, \lVert oldsymbol{A}_k rbracket_0 \leq s_k$	1	×
$\operatorname{Han}[10]$	$y_i = \langle \mathcal{B}, \mathcal{X}_i angle + \epsilon, \mathcal{B} = \mathcal{C} imes \{oldsymbol{M}_1, oldsymbol{M}_2, oldsymbol{M}_3 \}$	3	×
Garvesh[8]	$y_i = \langle \mathcal{B}, \mathcal{X}_i \rangle + \epsilon, \mathcal{B}$ various structures	3	×
STAR[9]	$\mathcal{Y}_{ijk} = \mathcal{T}(\mathcal{X}_i) + \epsilon, \mathcal{T}(\mathcal{X}_i) \approx \sum_{m}^{M} \langle \mathcal{B}_m, \mathcal{F}_m(\mathcal{X}_i) \rangle, \mathcal{B}_m \text{ CP sparse}$	3	×

Table 1: Comparison of different methods in model, the largest number of feature matrices which are able to be incorporated, and whether the model capacity to deal with non-Gaussian data. Here we consider the observation $\mathcal{Y} \in \mathbb{R}^{d \times d \times}$, which may be unfolded to matrix or vector based on formula of the model. Let $\mathcal{X}, \mathbf{X}, \mathbf{X}_k \in \mathbb{R}^{d \times p}$ denote the feature tensor and matrices, $\mathcal{B}, \mathbf{B}, \Theta$ denote the regression coefficient tensor and matrix, \mathcal{C} denote the core tensor and \mathbf{M}_k, Γ_k factor matrices of Tucker decomposition, respectively, \mathbf{A}_k denote the factors of tensor CP decomposition, and $\mathcal{E}, \mathcal{E}', \epsilon$ denote the noise tensor. Besides, $f(\cdot)$ denote the link function, $\|\cdot\|_0$ denote the number of non-zero elements in a tensor or matrix, $\mathcal{T}(\cdot)$ denote some non-parametric function, $\mathcal{C} \times \{\mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3\}$ denote the tucker product between the core tensor and factor matrices, $[\![\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3]\!]$ denote the outer-product in CP decomposition, and exp $\mathrm{fm}(\theta_{ijk}, \phi)$ denote the exponential family with natural parameter θ_{ijk} and dispersion parameter ϕ .

Method	Sparsity	non-i.i.d. noise	Algo	Algo guarantee	Complexity	Error bound
STD (Ours)	×	×	Alter/HOSVD	\checkmark	$r^3 + 3pr$	
${\bf Double\text{-}core}[1]$	×	×	ADMM	\checkmark	$r^3 + 3dr$	$\sqrt{}$
GCP[4]	$\times()$	×	BFGS	×	3dR	×
CP-APR[3]	×	×	Alter, MM	\checkmark	3dR	×
CORALS[2]	\checkmark	×	ALS	×	$(3dR)^*$	×
SupCP[6]	×	×	$\mathbf{E}\mathbf{M}$	×	2dR + pR	×
mRRR[14]	×	×	Alter	\checkmark	$pr + d^2r$	$\sqrt{}$
Envelope[5]	×	$\sqrt{}$	Alter	×	$(r^2d + 2dr)^+$	\checkmark
GLSNet[12]	\checkmark	×	Alter GD	\checkmark	2dr + s	$\sqrt{}$
STORE[7]	\checkmark	×	Alter	\checkmark	$r\sum_k s_k$	$\sqrt{}$
$\operatorname{Han}[10]$	×	×	PGD	\checkmark	$r^3 + 3pr$	$\sqrt{}$
Garvesh[8]	$\times()$	×	GD	×	$(d^3)^*$	\checkmark
STAR[9]	\checkmark	×	Alter	×	$(3Mdr)^*$	$\sqrt{}$

Table 2: Comparison of different methods in sparsity assumption, non-i.i.d. noise assumption, algorithm, algorithm guarantee, model complexity, and error bound of the estimations. Here we consider the special case with d-by-d-by-d observations, and the available feature matrices have dimension d-by-p. Assume the Tucker structure tensors have rank (r, r, r) and CP structure tensors have rank R. The value s, s_k refer to the sparsity, i.e., the number of non-zero elements. The mark $\times(\sqrt)$ means the purposed method can be extended with sparsity assumption, $(\cdot)^*$ implies the model has soft sparsity assumption through some sparsity regularizers and thus the model complexity is related to the tuning parameters, and $(\cdot)^+$ implies the Envelope method consists of extra complexity to estimate the covariance.