Ancillarity-Sufficiency or not; Interweaving to Improve MCMC Estimation of the Local Level DLM

Matt Simpson

February 19, 2014

Abstract

In dynamic linear models (DLMs), MCMC sampling can often be very slow for estimating the posterior density — especially for longer time series. In particular, in some regions of the parameter space the standard data augmentation algorithm can mix very slowly. Recently ancillarity-sufficiency interweaving has been introduced as a method to take advantage of alternate parameterizations in multilevel models in order to improve the mixing and convergence properties of the chain. Focusing on the local level DLM, we explore alternate parameterizations and various interweaving algorithms through simulation in order to improve mixing. We conclude by explaining what our results may mean for MCMC in a more general DLM.

1 Model

The general dynamic linear model (DLM) is a linear, gaussian, state space model. A state space model has two components — a sequence of real valued random vectors $\{y_t\}$ denoting an observation for each period and another sequence of real valued random vectors $\{\theta_t\}$ denoting a latent state for each period. The observations range from $t=1,\cdots,T$, i.e. the length of the full time series, and the states range from $t=0,\cdots,T$. The states form a Markov chain so that $p(\theta_{t+1}|\theta_{0:T})=p(\theta_{t+1}|\theta_t)$ where p(x|z) denotes the conditional density of x given z. Furthermore, the observations are conditionally independent given the states and in particular $p(y_{1:T}|\theta_{0:T})=p(y_1|\theta_1)\times\cdots\times p(y_T|\theta_T)$. The state space model is then completed by specifying the observation and system equations: for $t=1,2,\cdots,T$

$$y_t = f_t(\theta_t, v_t) \tag{1}$$

$$\theta_t = q_t(\theta_{t-1}, w_t) \tag{2}$$

where $v_{1:T}$ and $w_{1:T}$ are independent and are each iid draws from some distribution. Equation (1) is known as the observation equation since it describes how the observations depend on the current latent state and (2) is known the system equation since it describes how the latent states, or the underlying system, evolve over time. The random vector v_t is called the observation error and w_t is called the system error or the system disturbance. The functions f_t and g_t and the distributions of $v_{1:T}$ and $w_{1:T}$ may depend on some unknown parameter vector ϕ that we wish to estimate.

The dynamic linear model adds a couple of constraints to the state space model. First, it requires that both f_t and g_t be linear functions. Second, it requires that $(v_{1:T}, w_{1:T})$ is normally distributed, usually with a mean of zero. We can then rewrite the DLM as

$$y_t | \theta_{0:T} \stackrel{ind}{\sim} N(F_t \theta_t, V_t)$$
 (3)

$$\theta_t | \theta_{0:t-1} \sim N(G_t \theta_{t-1}, W_t) \tag{4}$$

for $t = 1, 2, \dots, T$ where F_t and G_t are matrices, and V_t and W_t are symmetric and positive definite covariance matrices. If θ_t is $p \times 1$ and y_t is $k \times 1$, then F_t is $k \times p$ and G is $p \times p$ while V_t is $k \times k$ and W_t is $p \times p$. The

observation errors ("errors"), $v_t = y_t - F_t \theta_t$ for $t = 1, 2, \dots, T$, and the system disturbances ("disturbances"), $w_t = \theta_t - G_t \theta_{t-1}$ for $t = 1, 2, \dots, T$ are independent. Let ϕ denote the unknown parameter vector. Then possibly $F_{1:T}$, $G_{1:T}$, $V_{1:T}$, and $W_{1:T}$ are all functions of ϕ . We'll focus our attention on a simpler version of the DLM. Specifically, suppose that F_t and G_t are known matrices for $t = 1, 2, \dots, T$ and that both V_t and W_t are fully unknown for $t = 1, 2, \dots, T$. Thus $\phi = (V_{1:T}, W_{1:T})$ is our unknown parameter vector.

To complete the model specification in a Bayesian context, we need priors on θ_0 , $V_{1:T}$, and $W_{1:T}$. We'll use the standard approach for now and assume that they're mutually independent a priori and that $\theta_0 \sim N(m_0, C_0)$, $V_t \sim IW(\Psi_t, \eta_t)$ for $t = 1, 2, \dots, T$, and $W_t \sim IW(\Omega_t, \delta_t)$ for $t = 1, 2, \dots, T$ where m_0 , C_0 and Ψ_t , η_t , Ω_t , and δ_t for $t = 1, 2, \dots, T$ are known hyperparameters and $IW(\Psi, \eta)$ denotes the inverse Wishart distribution with degrees of freedom η and positive definite scale matrix Ψ . This allows us to write the full joint distribution of $(V_{1:T}, W_{1:T}, \theta_{0:T}, y_{1:T})$ as

$$p(V_{1:T}, W_{1:T}, \theta_{0:T}, y_{1:T}) \propto \exp\left[-\frac{1}{2}(\theta_0 - m_0)'C_0^{-1}(\theta_0 - m_0)\right]$$

$$\times \prod_{t=1}^{T} |V_t|^{-(\eta_t + k + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Psi_t V_t^{-1}\right)\right] |V_t|^{-1/2} \exp\left[-\frac{1}{2}(y_t - F_t \theta_t)'V_t^{-1}(y_t - F_t \theta_t)\right]$$

$$\times |W_t|^{-(\delta_t + p + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Omega_t W_t^{-1}\right)\right] |W_t|^{-1/2} \exp\left[-\frac{1}{2}(\theta_t - G_t \theta_{t-1})'W_t^{-1}(\theta_t - G_t \theta_{t-1})\right]$$
(5)

where $p = dim(\theta_t)$, $k = dim(y_t)$, and tr(.) is the matrix trace operator.

2 Estimating the Model via Data Augmentation: Parameterization Issues

The usual way to estimate the model is via data augmentation (DA) using forward filtering backward sampling (FFBS), as in Frühwirth-Schnatter [1994] and Carter and Kohn [1994]. The basic idea is to implement a Gibbs sampler with two blocks. The generic DA algorithm with parameter ϕ , augmented data θ , and data y obtains the k+1'st state of the Markov chain, $\phi^{(k+1)}$, from the k'th state, $\phi^{(k)}$ as follows:

Algorithm 1.

- 1. Draw θ from $p(\theta|\phi^{(k)},y)$
- 2. Draw $\phi^{(k+1)}$ from $p(\phi|\theta, y)$

The first block samples the states conditional on the data and model parameters while the second block samples the parameters conditional on the states and the data. We're calling this algorithm the "state sampler." The FFBS step consists of running the Kalman filter to obtain a draw from $\theta_T|V_{1:T}, W_{1:T}, y_{1:T}$, then moving backward to obtain draws from $\theta_t|V_{1:T}, W_{1:T}, y_{1:T}, \theta_{t+1:T}$ for $t = T-1, T-2, \cdots, 0$. Frühwirth-Schnatter [1994], Carter and Kohn [1994], and Petris et al. [2009] contain the details of this process. For the subset of DLMs we are considering, the algorithm cashes out like this:

Algorithm 2.

- 1. $Draw \ \theta_{0:T} \ from \ p(\theta_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T}) \ using \ FFBS$
- 2. Draw $(V_{1:T}^{(k+1)}, W_{1:T}^{(k+1)})$ from $p(V_{1:T}, W_{1:T} | \theta_{0:T}, y_{1:T})$:

$$V_1, V_2, \cdots, V_T \text{ and } W_1, W_2, \cdots, W_T \text{ are conditionally independent given } (\theta_{0:T}, y_{1:T}), \text{ with distributions}$$

$$V_t | \theta_{0:T}, y_{1:T} \sim IW(\Psi_t + v_t v_t', \eta_t + 1) \qquad W_t | \theta_{0:T}, y_{1:T} \sim IW(\Omega_t + w_t w_t', \delta_t + 1)$$
 where $v_t = y_t - F_t \theta_t$ and $w_t = \theta_t - G_t \theta_{t-1}$.

We can immediately see why the "standard priors" are standard – they are conditionally conjugate for each parameter in question so that the full conditional distributions are all easy to sample from. The main problem with this algorithm is that computation time increases quickly with the length of the time series because the Kalman filter essentially requires drawing from $\theta_t|V_{1:T}, W_{1:T}, \theta_{0:t}, y_{0:T}$ for $t=0,1,\cdots,T$, so the FFBS step represents 2T multivariate draws. A second problem is that in some regions of the parameter space, the Markov chain mixes poorly for some of the parameters. For example, in the univariate local level model and similar models it's known that if the time constant variance of the latent states, W, is too small, mixing will be poor for W Frühwirth-Schnatter [2004].

One well known method of improving mixing and convergence in MCMC samplers is reparameterizing the model. Papaspiliopoulos et al. [2007] is a good summary. Most of the work in some way focuses on what are called centered and noncentered parameterizations. In our general notation where ϕ is the parameter, θ is the DA and y is the data, the parameterization (ϕ, θ) is a centered parameterization (CP) if $p(y|\theta, \phi) = p(y|\theta)$. The parameterization is a noncentered parameterization (NCP) if $p(\theta|\phi) = p(\theta)$. When (ϕ, θ) is a CP, θ is called a centered augmentation (CA) for ϕ and when (ϕ, θ) is a NCP, θ is called a noncentered augmentation (NCA) for ϕ . A centered augmentation is sometimes called a sufficient augmentation (SA) and a noncentered augmentation is sometimes called an ancillary augmentation (AA), e.g. in Yu and Meng [2011]. Like Yu and Meng, we prefer the latter terminology because it immediately suggests the intuiton that a sufficient augmentation is like a sufficient statistic while an ancillary augmentation is like an ancillary statistic.

The key reasoning behind the emphasis on SAs and AAs is that typically when the DA algorithm based on the SA has nice mixing and convergence properties the DA algorithm based on the AA has poor mixing and convergence propeties and vice versa. In other words, the two algorithms form a "beauty and the beast" pair. This property suggests that there might be some way to combine the two DA algorithms or the two underlying parameterizations in order to construct a sampler which has "good enough" properties all the time. Some work focuses on using partially noncentered parameterizations that are a sort of bridge between the CP and NCP, e.g. Papaspiliopoulos et al. for general hierarchical models and Frühwirth-Schnatter [2004] in the context of a partiuclar DLM — a dynamic univarite regression with a stationary AR(1) coefficient. But this doesn't quite accomplish what we want because it still picks a single parameterization to use that may depend on the region of the parameter space the posterior conentrates most of its mass. The interweaving concept of Yu and Meng [2011] does precisely what we want, however. The idea is pretty simple: suppose that ϕ denotes the parameter vector, θ denotes one augmented data vector, γ denotes another augmented data vector, and γ denotes the data. Then an MCMC algorithm that interweaves between θ and γ performs the following steps in a single iteration to obtain the k+1'st draw, $\phi^{(k+1)}$, from the k'th draw, $\phi^{(k)}$:

Algorithm 3.

- 1. Draw θ from $p(\theta|\phi^{(k)}, y)$
- 2. Draw $\gamma^{(k+1)}$ from $p(\gamma|\theta,y)$
- 3. Draw $\phi^{(k+1)}$ from $p(\phi|\gamma^{(k+1)}, y)$.

Notice that an additional step is added to algorithm 1, and the final step now draws ϕ conditional on γ instead of θ . This is the intuition behind the name "interweaving"—the draw of the second augmented data vector is weaved in between the draws of θ and ϕ . This particular method of interweaving is called a global interweaving strategy (GIS) since interweaving occurs globally across the entire parameter vector. It's possible to define a componentwise interweaving strategy (CIS) that interweaves within specific steps of a Gibbs sampler as well. Step two of the GIS algorithm is typically accomplished by sampling $\phi|\theta, y$ and then $\gamma|\theta, \phi, y$. In addition, γ and θ are often, but not always, one-to-one transformations of each other conditional on (ϕ, y) , i.e. $\gamma = M(\theta; \phi, y)$. Where $M(.; \phi, y)$ is a one-to-one function. In this case, the algorithm becomes:

Algorithm 4.

- 1. Draw θ from $p(\theta|\phi^{(k)}, y)$
- 2. Draw ϕ from $p(\phi|\theta,y)$

```
3. Draw \gamma from p(\gamma|\theta,\phi,y)
```

```
4. Draw \phi^{(k+1)} from p(\phi|\gamma, y)
```

When γ is not a one-to-one transformation of θ , step 4 is an update $\gamma = M(\theta; \phi, y)$. The GIS algorithm is directly comparable to an *alternating* algorithm. Given the same two DAs, θ and γ , and parameter vector ϕ , the alternating algorithm for sampling from $p(\phi|y)$ is as follows:

Algorithm 5.

- 1. Draw θ from $p(\theta|\phi^{(k)}, y)$
- 2. Draw ϕ from $p(\phi|\theta, y)$
- 3. Draw γ from $p(\gamma|\phi, y)$
- 4. Draw $\phi^{(k+1)}$ from $p(\phi|\gamma, y)$

The key difference between this algorithm and algorithm 4 is in step 3: instead of drawing from $p(\gamma|\theta,\phi,y)$, the alternating algorithm draws from $p(\gamma|\phi,y)$. In other words it alternates between two data augmentation algorithms in a single iteration. The interweaving algorithm, on the other hand, connects or "weaves" the two separate iterations together in step 3 by drawing γ conditional on θ in addition to ϕ and y.

Yu and Meng call a GIS approach where one of the DAs is a SA and the other is an AA an ancillary sufficient interweaving strategy, or an ASIS. They show that the GIS algorithm has a geometric rate of convergence no worse than the worst of the two underlying algorithms and in some cases better than the the corresponding alternating algorithm. In models with a "nice" prior on ϕ in some sense, they also show that the ASIS algorithm is the same as the optimal PX-DA algorithm of Meng and Van Dyk [1999], Liu and Wu [1999], Van Dyk and Meng [2001] and Hobert and Marchev [2008]. Their results suggest that ASIS is a promising approach to improve the speed of MCMC in a variety of models no matter what region of the parameter space the posterior is concentrated. To gain some intuition about why this is so, recall that a typical problem with slow MCMC is that there is high autocorrelation in the Markov chain for ϕ , $\{\phi^{(k)}\}_{k=1}^{K}$, leading to imprecise estimates of $E[f(\phi)]$ for some function f. Our ultimate goal here is to reduce this dependence. In the usual DA algorithm, e.g. algorithm 1, when ϕ and θ are highly dependent in the joint posterior the draws from $p(\theta|\phi,y)$ and then from $p(\phi|\theta,y)$ won't move the chain much, resulting in high autocorrelation in the chain. Interweaving helps break this autocorrelation in two ways. First, by inserting the extra step, e.g. steps 2 and 3 together in 4, the chain gets an additional chance to move in a single iteration thereby weaking the autocorrelation. Second, when one of θ and γ is a "beauty" and the other is a "beast", as is often the case when they form a SA-AA pair, one of steps 2 and 4 in algorithm 4 will significantly move the chain even if the other step will not. This intuition suggests that the key isn't so much that θ and γ form a SA-AA pair as that they form a beauty and the beast pair. It just so happens that SA-AA pairs are often great at accomplishing this.

2.1 The Scaled Disturbances

The next step is to apply the ideas of interweaving to sampling from the posterior of the dynamic linear model. Papaspiliopoulos et al. note that typically the usual parameterization results in a SA for the parameter ϕ . All that's necessary for an ASIS algorithm, then, is to construct an AA for ϕ . We immediately run into a problem because the standard DA for a DLM is the latent states $\theta_{0:T}$. From equations (3) and (4) we see that $V_{1:T}$ is in the observation equation so that $\theta_{0:T}$ isn't a SA for $(V_{1:T}, W_{1:T})$ while $W_{1:T}$ is in the system equation so that $\theta_{0:T}$ isn't an AA for $(V_{1:T}, W_{1:T})$ either. In order to find a SA we need to somehow move $V_{1:T}$ from the observation equation (3) to the system equation (4) while leaving $W_{1:T}$ in the system equation. Alternatively, we could find an AA by somehow moving $W_{1:T}$ from the system equation to the observation equation while leaving $V_{1:T}$ in the observation equation. A naive thing to try is to condition on the disturbances instead of the states and see if the disturbances for a SA or an AA for $(V_{1:T}, W_{1:T})$. The disturbances $w_{0:T}$ are defined by $w_t = \theta_t - G_t\theta_{t-1}$ for t = 0, 1, ..., T and we define $\theta_{-1} = 0$ so that $w_0 = \theta_0$.

However the DA algorithm based on the w_t 's is identical to the algorithm based on the θ_t 's. This is because $w_{0:T}$ is a one-to-one function of $\theta_{0:T}$ that doesn't depend on $V_{1:T}$ or $W_{1:T}$, the conditional distributions $p(V_{1:T}, W_{1:T} | \theta_{0:T}, y_{1:T})$ and $p(V_{1:T}, W_{1:T} | w_{0:T}, y_{1:T})$ are identical.

Papaspiliopoulos et al. suggest that in order to obtain an ancillary augmentation for a variance parameter, we must scale the sufficient agumentation by the square root of that parameter. Based on this intuition, note that if we hold $V_{1:T}$ constant then $\theta_{0:T}$ is a SA for $W_{1:T}$ from the observation and system equations, (3) and (4), i.e. we say $\theta_{0:T}$ is a SA for $W_{1:T}$ given $V_{1:T}$, or for $W_{1:T}|V_{1:T}$. Similarly $\theta_{0:T}$ is an AA for $V_{1:T}|W_{1:T}$. This suggests that if we scale θ_t by W_t for all t appropriately we'll have an ancillary augmentation for $V_{1:T}$ and $W_{1:T}$ jointly. The same intuition suggests scaling $w_t = \theta_t - G_t \theta_{t-1}$ by W_t for all t appropriately in order to find an ancillary augmentation for $(V_{1:T}, W_{1:T})$. We'll work with the latter case though, again these two ideas are ultimately equivalent since the resulting DAs are one-to-one transformations of each other.

To define the scaled disturbances in the general DLM, let L_t denote the Cholesky decomposition of W_t , i.e. $L'_tL_t = W_t$, for $t = 1, 2, \dots, T$. Then we'll define the scaled disturbances $\gamma_{0:T}$ by $\gamma_0 = \theta_0$ and $\gamma_t = L_t^{-1}(\theta_t - G_t\theta_{t-1})$ for $t = 1, 2, \dots, T$. We can confirm our intuition that the scaled disturbances are an AA for $V_{1:T}$ and $W_{1:T}$ jointly. The reverse transformation is defined recursively by $\theta_0 = \gamma_0$ and $\theta_t = L_t\gamma_t + G_t\theta_{t-1}$ for $t = 1, 2, \dots, T$. Then the Jacobian is block lower triangular with the identity matrix and the L_t 's along the diagonal blocks, so $|J| = \prod_{t=1}^T |L_t| = \prod_{t=1}^T |W_t|^{1/2}$. Then from (5) we can write the full joint distribution of $(V_{1:T}, W_{1:T}, \gamma_{0:T}, y_{1:T})$ as

$$p(V_{1:T}, W_{1:T}, \gamma_{0:T}, y_{1:T}) \propto \exp\left[-\frac{1}{2}(\gamma_0 - m_0)'C_0^{-1}(\gamma_0 - m_0)\right]$$

$$\times \prod_{t=1}^{T} |W_t|^{-(\delta_t + p + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Omega_t W_t^{-1}\right)\right] \exp\left[-\frac{1}{2}\gamma_t'\gamma_t\right] |V_t|^{-(\eta_t + k + 3)/2}$$

$$\times \exp\left[-\frac{1}{2}\left(tr\left(\Psi_t V_t^{-1}\right) + \sum_{t=1}^{T} \left[y_t - F_t \theta_t(\gamma_{0:T}, W_{1:T})\right]'V^{-1}\left[y_t - F_t \theta_t(\gamma_{0:T}, W_{1:T})\right]\right)\right]$$
(6)

where $\theta_t(\gamma_{0:T}, W_{1:T})$ denotes the recursive back transformation defined by the scaled disturbances. So ultimately under the scaled disturbance parameterization we can write the model as

$$y_t|\gamma_{0:T}, V_{1:T}, W_{1:T} \stackrel{ind}{\sim} N\left(F_t \theta_t(\gamma_{0:T}, W_{1:T}), V_t\right)$$
$$\gamma_t \stackrel{iid}{\sim} N(0, I_p) \tag{7}$$

for $t = 1, 2, \dots, T$ where I_p is the $p \times p$ identity matrix. Neither $V_{1:T}$ nor $W_{1:T}$ are in the system equation, so the scaled disturbances are an AA for $(V_{1:T}, W_{1:T})$. This parameterization is well known, e.g. Frühwirth-Schnatter [2004] use it in a dynamic regression model with stationary regression coefficient.

The DA algorithm based on $\gamma_{0:T}$ is as follows:

Algorithm 6.

- 1. Draw $\gamma_{0:T}$ from $p(\gamma_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$
- 2. Draw $(V_{1:T}^{(k+1)}, W_{1:T}^{(k+1)})$ from $p(V_{1:T}, W_{1:T} | \gamma_{0:T}, y_{1:T})$.

Step 1 can be accomplished directly with the disturbance smoother of Koopman [1993] or indirectly by using FFBS to draw the states and then transform them to the scaled disturbances. Step 2 ends up being complicated because the joint conditional posterior of V and W isn't a known density. We'll go through an example of this when both y_t and θ_t are scalars later.

We previously mentioned that the intuition behind the scaled disturbances also suggests trying the scaled states, i.e. $\theta_{0:T}^s$ where $\theta_0^s = \theta_0$ and for $t = 1, 2, \dots, T$, $\theta_t^s = L_t^{-1}\theta_t u$. Note that $\theta_{0:T}^s$ and $\gamma_{0:T}$ are completely determined by each other independently of $V_{1:T}$ and $W_{1:T}$, which suggests the conditional distribution of $(V_{1:T}, W_{1:T})$ is unchanged. This intuition is dangerously close to running right into the Borel-Kolmogorov paradox, but in this case there is no issue since the determinant of the Jacobian will be the same whether we are transforming to the scaled disturbances or the scaled states.

2.2 The Scaled Errors

The scaled disturbances immediately suggest another potential AA that seems like it should be analogous—the scaled observation errors, or more succinctly the scaled errors. What we are referring to is $v_t = y_t - F_t \theta_t$ appropriately scaled by V_t in the general DLM. Now let K_t denote the Cholesky decomposition of V_t , that is $K'_t K_t = V_t$. Then we can define the scaled errors as $\psi_0 = \theta_0$ and $\psi_t = K_t^{-1}(y_t - F_t\theta_t)$ for $t = 1, 2, \dots, T$. This is a bit strange since in general $dim(\psi_0) \neq dim(\psi_t)$ for $t = 1, 2, \dots, T$. Ideally we might like an " F_0 " so that we can set $\psi_0 = F_0\theta_0$ in order for ψ_0 to have the same dimension as ψ_1 . However, in general there is no F_0 . In some DLMs F_t is constant with respect to t so that we could set $F_0 = F$, but in dynamic regression for example, there is no natural " F_0 ".

This isn't where the difficulties end either. With this definition of $\psi_{0:T}$, it isn't straightforward to determine $p(\psi_{0:T}|V_{1:T}, W_{1:T})$, i.e. to write down the model in terms of $\psi_{0:T}$ instead of $\theta_{0:T}$. When F_t is $k \times k$ (so that $dim(y_t) = k = p = dim(\theta_t)$) and is invertible for $t = 1, 2, \dots, T, \psi_{0:T}$ is a one-to-one transformation of $\theta_{0:T}$ and the problem is easier. Then $\theta_t = F_t^{-1}(y_t - K_t\psi_t)$ for $t = 1, 2, \dots, T$ while $\theta_0 = \psi_0$. The Jacobian of this transformation is block diagonal with a single copy of the identity matrix and the $F_t^{-1}K_t$'s along the diagonal, so $|J| = \prod_{t=1}^T |F_t|^{-1}|V_t|^{-1/2}$. Then from (5) we can write the joint distribution of $(V_{1:T}, W_{1:T}, \psi_{0:T}, y_{1:T})$ as

$$p(V_{1:T}, W_{1:T}, \psi_{0:T}, y_{1:T}) \propto \exp\left[-\frac{1}{2}(\psi_0 - m_0)'C_0^{-1}(\psi_0 - m_0)\right]$$

$$\times \prod_{t=1}^{T} |V_t|^{-(\eta_t + k + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Psi_t V_t^{-1}\right)\right] \exp\left[-\frac{1}{2}\psi_t'\psi_t\right]$$

$$\times |W_t|^{-(\delta_t + k + 3)/2} \exp\left[-\frac{1}{2}\left(tr\left(\Omega_t W_t^{-1}\right) + (y_t - \mu_t)'(F_t W_t F_t')^{-1}(y_t - \mu_t)\right)\right]$$
(8)

where we define $\mu_t = K_t \psi_t + F_t G_t F_{t-1}(y_{t-1} - K_{t-1} \psi_{t-1})$, $y_0 = 0$, $K_0 = I_k$, and $F_0 = I_k$ where I_k is the $k \times k$ identity matrix. The $|F_t|^{-1}$'s have been absorbed into the normalizing constant, but note that if the F_t 's depended on some unknown parameter then we couldn't do this. Now we can write the model in terms of the scaled error parameterization:

$$y_t | V_{1:T}, W_{1:T}, \psi_{0:T}, y_{1:t-1} \sim N(\mu_t, F_t' W_t F_t)$$

 $\psi_t \stackrel{iid}{\sim} N(0, I_k)$

for $t = 1, 2, \dots, T$. Now we see immediately that the scaled errors, $\psi_{0:T}$, are also an AA for $(V_{1:T}, W_{1:T})$ since neither V nor W are in the system equation of this model, though note that both $V_{1:T}$ and $W_{1:T}$ are in the observation equation, so $\psi_{0:T}$ is not a SA for $(V_{1:T}, W_{1:T})$ or for either one given the other.

The DA algorithm based on $\psi_{0:T}$ is:

Algorithm 7.

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V_{1:T}^{(k)},W_{1:T}^{(k)},y_{1:T})$
- 2. Draw $(V_{1:T}^{(k+1)}, W_{1:T}^{(k+1)})$ from $p(V_{1:T}, W_{1:T} | \psi_{0:T}, y_{1:T})$.

Once again step 1 can be accomplished directly with Koopman's disturbance smoother or indirectly using FFBS. Step 2 is also once again complicated since the joint conditional posterior of $V_{1:T}$ and $W_{1:T}$ isn't a known density.

2.3 Conditionally conjugate priors and the choice of DA

After choosing the priors for θ_0 , $V_{1:T}$ and $W_{1:T}$ we motivated the choice by appealing to conditional conjugacy and thus computation. If this is our main concern for choosing a prior, it's worth asking what the conditional

conjugate priors are under the scaled disturbances and the scaled errors. We'll look closely at the scaled disturbances, but the scaled errors are analogous. Based on (7) we can write the augmented data likelihood as

$$p(y_{1:T}|\gamma_{0:T}, V_{1:T}, W_{1:T}) \propto \exp\left[-\frac{1}{2}\sum_{t=1}^{T}\gamma_t'\gamma_t\right] \prod_{t=1}^{T}|V_t|^{-1/2} \exp\left[-\frac{1}{2}\left(y_t - F_t\theta_t(\gamma_{0:T}, W_{1:T})\right)'V_t^{-1}\left(y_t - F_t\theta_t(\gamma_{0:T}, W_{1:T})\right)\right].$$

Immediately we see that the conjugate prior for V_t is inverse Wishart, so no change on that front. For W_t on the other hand, it's unclear until we unpack $\theta_t(\gamma_{0:T}, W_{1:T})$. Recall that in our definition of the scaled disturbances for $t=1,2,\cdots,T$, $\gamma_t=L_t^{-1}w_t=L_t^{-1}(\theta_t-G_t\theta_{t-1})$ where $L_t'L_t=W_t$ while $\gamma_0=\theta_0$. The reverse transformation is thus the recursion $\theta_t=L_t\gamma_t+G_t\theta_{t-1}$ for $t=1,2,\cdots,T$. This implies that for $t=0,1,\cdots,T$

$$\theta_t = \sum_{s=1}^t \left(\prod_{r=s+1}^t G_r \right) L_s \gamma_s + \prod_{r=1}^t G_r \gamma_0$$

where for s+1>t, $\prod_{r=s+1}^t G_r=I_k$ the $k\times k$ identity matrix. Now recall that $K_t'K_t=V_t$ and let $H_{st}=\prod_{r=s+1}^t G_r$. This allows us to write the full conditional distribution of $W_{1:T}$, ignoring the prior, as

$$p(W_{1:T}|\gamma_{0:T},\cdots) \propto \exp\left[-\frac{1}{2}\sum_{t=1}^{T}\left(y_{t} - F_{t}H_{0t}\gamma_{0} - F_{t}\sum_{s=1}^{t}H_{st}L_{s}\gamma_{s}\right)'(K_{t}^{-1})'K_{t}^{-1}\left(y_{t} - F_{t}H_{0t}\gamma_{0} - F_{t}\sum_{s=0}^{t}H_{st}L_{s}\gamma_{s}\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\sum_{t=1}^{T}\left(\left(\sum_{s=1}^{t}\gamma_{s}'L_{s}'H_{st}'\right)F_{t}'(K_{t}^{-1})'K_{t}^{-1}F_{t}\sum_{s=1}^{t}H_{st}L_{s}\gamma_{s} - 2(y_{t} - F_{t}H_{0t}\gamma_{0})'(K_{t}^{-1})'K_{t}^{-1}F_{t}\sum_{s=1}^{t}H_{st}L_{s}\gamma_{s}\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\sum_{t=1}^{T}\left(\left(\sum_{s=1}^{t}\gamma_{s}'L_{s}'H_{st}'\right)A_{t}'A_{t}\sum_{s=1}^{t}H_{st}L_{s}\gamma_{s} - 2b_{t}'A_{t}\sum_{s=1}^{t}H_{st}L_{s}\gamma_{s}\right)\right]$$

where we define $b_t = K_t^{-1}(y_t - F_t H_{0t} \gamma_0)$ and $A_t = K_t^{-1} F_t$.

This doesn't look like it has any conjugate form for W_t , but with some finesse it looks like it might be a normal kernel for L_t , the Cholesky decomposition of W_t . Then since we can assume the Jacobian from $W_t \to L_t$ will be absorbed into the prior, which we are ignoring, we have

$$p(L_{1:T}|\gamma_{0:T}, \dots) \propto \exp\left[-\frac{1}{2} \sum_{t=1}^{T} \left(\sum_{s=1}^{t} \gamma_{s}' L_{s}' H_{st}' A_{t}' A_{t} H_{st} L_{s} \gamma_{s} + 2 \sum_{r < s}^{t} \gamma_{r}' L_{r}' H_{rt}' A_{t}' A_{t} H_{st} L_{s} \gamma_{s} - 2 b_{t}' A_{t} \sum_{s=1}^{t} H_{st} L_{s} \gamma_{s}\right)\right]$$

$$\propto \exp\left[-\frac{1}{2} \sum_{t=1}^{T} \sum_{s=1}^{t} \left(\gamma_{s}' L_{s}' B_{st}' B_{st} L_{s} \gamma_{s} - 2 \left(b_{t}' - \sum_{r=1}^{s-1} \gamma_{r}' L_{r}' B_{rt}'\right) B_{st} L_{s} \gamma_{s}\right)\right]$$

$$\propto \exp\left[-\frac{1}{2} \sum_{t=1}^{T} \sum_{s=t}^{T} \left(\gamma_{t}' L_{t}' B_{ts}' B_{ts} L_{t} \gamma_{t} - 2 \left(b_{s}' - \sum_{r=1}^{t-1} \gamma_{r}' L_{r}' B_{rs}'\right) B_{ts} L_{t} \gamma_{t}\right)\right]$$

where we define $B_{st} = A_t H_{st}$. Now let's define

$$C_{t} = \sum_{s=t}^{T} B'_{ts} B_{ts} = \sum_{s=t}^{T} H'_{st} A'_{t} A_{t} H_{st} = \sum_{s=t}^{T} \left(K_{t}^{-1} F_{t} \prod_{r=s+1}^{t} G_{r} \right)' \left(K_{t}^{-1} F_{t} \prod_{r=s+1}^{t} G_{r} \right)'$$

and

$$c_t = \sum_{s=t}^T B_{ts}' \left(b_s - \sum_{r=1}^{t-1} B_{rs} L_r \gamma_r \right) = \sum_{s=t}^T \left(K_t^{-1} F_t \prod_{r=s+1}^t G_r \right)' \left[K_s^{-1} \left(y_s - F_t \prod_{r=1}^s (G_r) \gamma_0 \right) - \sum_{r=1}^{s-1} K_r^{-1} F_r \prod_{i=r+1}^s (G_i) L_r \gamma_r \right].$$

This allows us to write

$$p(L_{1:T}|\gamma_{0:T},\cdots) \propto \exp\left[-\frac{1}{2}\sum_{t=1}^{T}\left(\gamma_t'L_t'C_tL_t\gamma_t - 2c_t'L_t\gamma_t\right)\right].$$

This looks like a normal kernel for $L_t\gamma_t$, but note that c_t is a function of $L_{1:(t-1)}$. So the L_t 's are not conditionally independent, however it is immediately clear that

$$p(L_t|L_{1:(t-1)}, \gamma_{0:T}, \dots) \propto \exp\left[-\frac{1}{2}\left(\gamma_t' L_t' C_t L_t \gamma_t - 2c_t' L_t \gamma_t\right)\right]$$
$$\propto \exp\left[-\frac{1}{2}\left((L_t \gamma_t - C_t^{-1} c_t)' C_t (L_t \gamma_t - C_t^{-1} c_t)\right)\right]$$

so that we can easily sample from $p(L_{1:T}|\gamma_{0:T},\cdots)$ as long as $p(L_t|L_{1:(t-1)},\gamma_{0:T},\cdots)$ is easy to sample from. While we have a normal kernel for $L_t\gamma_t$, it is not immediately clear whether L_t will have a normal distribution. If we follow the approach of Frühwirth-Schnatter and Tüchler [2008] and vectorize L_t by stacking the nonzero elements of each column on top of each other, we will see that the nonzero elements of L_t conditional on $L_{1:(t-1)}, \gamma_{0:T}, \cdots$ are normally distributed, again ignoring the prior.

In order to show this, we first have to introduce a bit of notation. Let $A = (a_{ij})$ be a $p \times q$ matrix. First we define the vectorization of A, vec(A), as the $pq \times 1$ column vector obtained by stacking the columns of A on top of each other. If p = q then we define the half vectorization of A, vech(A), as the $p(p+1)/2 \times 1$ column vector obtained by first deleting the elements of A above the main diagonal, then stacking the remaining elements on top of each other column by column. Formally,

$$\operatorname{vec}(A) = (a_{11}, a_{21}, \cdots, a_{p1}, a_{12}, a_{22}, \cdots a_{p2}, \cdots, a_{pq})'$$

$$\operatorname{vech}(A) = (a_{11}, a_{21}, \cdots, a_{p1}, a_{22}, a_{32}, \cdots a_{p2}, \cdots, a_{pp})'.$$

In particular not that if a is a column vector, vec(a) = a and vec(a') = vec(a)'. Suppose p = q so that A is square. Then there exists a unique $p(p+1)/2 \times p^2$ matrix S_p such that $\text{vech}(A) = S_p \text{vec}(A)$, called the elimination matrix. We list a few of the properties of S_p here, but see Magnus and Neudecker [1980] or Magnus [1988] for more details.

- 1. $S_p S_p' = I_{p(p+1)/2}$
- 2. If A is lower triangular $vec(A) = S'_p vech(A) = S'_p S_p vec(A)$.
- 3. $S_p = \sum_{i \geq j}^p u_{ij} \operatorname{vec}(E_{ij})'$ where E_{ij} is a $p \times p$ matrix of zeroes except for a one in the ij'th spot and u_{ij} is a $p(p+1)/2 \times 1$ column vector of zeroes except for a one in the [(j-1)p+i-j(j-1)/2]'th spot.
- 4. If A and B are $p \times p$ matrices then $|S_p(A \otimes B)S_p'| = \prod_{i=1}^p |A^{(i)}| |B_{(i)}|$ where \otimes is the Kronecker product, i.e. $A \otimes B = (a_{ij}B)$, $A^{(i)}$ is the submatrix of A obtained by deleting everything but the upper left $i \times i$ block, and $B_{(i)}$ is the submatrix of B obtained by deleting everything but the lower right $(n-i+1) \times (n-i+1)$ block.

Now we can apply this to our conditional distribution for $L_t|_{L_{1:(t-1)}}, \gamma_{0:T}, \cdots$. Let $L_t^* = L_t - C_t^{-1}c_t$.

Then

$$p(L_t^*|L_{1:(t-1)}, \gamma_{0:T}, \cdots) \propto \exp\left[-\frac{1}{2}\left((L_t^*\gamma_t)'C_t(L_t^*\gamma_t)\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\left(\operatorname{vec}(L_t^*\gamma_t)'C_t\operatorname{vec}(L_t^*\gamma_t)\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\left(\operatorname{vec}(L_t^*)'(\gamma_t'\otimes I_p)'C_t(\gamma_t'\otimes I_p)\operatorname{vec}(L_t^*)\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\left(\operatorname{vec}(L_t^*)'(\gamma_t\gamma_t'\otimes C_t)\operatorname{vec}(L_t^*)\right)\right]$$

$$\propto \exp\left[-\frac{1}{2}\left(\operatorname{vec}(L_t^*)'S_p(\gamma_t\gamma_t'\otimes C_t)S_p'\operatorname{vech}(L_t^*)\right].$$

Here we use two properties of the Kronecker product \otimes . First for any matrices $A: p \times q$ and $B: q \times r$, $\operatorname{vec}(AB) = (B' \otimes I_p) \operatorname{vec}(A)$. Second, for any $p \times 1$ vector γ and any $p \times p$ matrix A, $(\gamma' \otimes I_p)' A (\gamma' \otimes I_p) = \gamma \gamma' \otimes A$. Now converting back to L_t we have

$$p(L_t|L_{1:(t-1)},\gamma_{0:T},\cdots) \propto \exp\left[-\frac{1}{2}\left(\left[\operatorname{vech}(L_t) - \operatorname{vech}(C_t^{-1}c_t)\right]'S_p(\gamma_t\gamma_t'\otimes C_t)S_p'\left[\operatorname{vech}(L_t) - \operatorname{vech}(C_t^{-1}c_t)\right]\right)\right].$$

In other words

$$\operatorname{vech}(L_t)|L_{1:(t-1)}, \gamma_{0:T}, \dots \sim N\left(\operatorname{vech}(C_t^{-1}c_t), [S_p(\gamma_t\gamma_t' \otimes C_t)S_p']^{-1}\right).$$

The fourth property of S_p above ensures that this distribution is not singular.

So the conjugate prior on L_t is a multivariate normal distribution. This seems a strange since we expect the diagonal elements of L_t to be positive since they are standard deviations, but this is no problem as long as we view this prior as a clever trick for defining a prior on $W_t = L_t' L_t$ so that the sign doesn't matter. Strictly speaking here, we're subtly changed the definition of L_t to the signed Cholesky decomposition of W_t , and thus subtly changed the defintion of the γ_t 's to take into account the signs of the diagonal elements of L_t . Frühwirth-Schnatter and Tüchler [2008], Frühwirth-Schnatter and Wagner [2011] and CITE THE DYNAMIC PAPER SYLVIA IS WORKING ON WITH ANGELA use this approach to choosing priors for the system (or hierarchical) variance when working with the scaled disturbances in dynamic and non-dynamic models, but only the first considers the covariance matrix case, rather than the scalar variance case, and that paper does not give the exlicit construction of the covariance matrix of vech(L_t) using the elimination matrix..

This is a bit strange though. We have two sets of covariance matrices, $W_{1:T}$ and $V_{1:T}$, and we want to put a different class of priors on each set. We can put the same sort of normal prior on K_t^* , the vectorized Cholesky decomposition of V_t . In the univariate case the conditional posterior of V_t will come out to be a generalized inverse gaussian distribution which is a bit complicated but not awful to draw from. There's mild tension here as well – depending on how we choose to write down the model we end up with a different class of prior distributions for at least $W_{1:T}$. Now the reason for this difference is ultimately computation — it is known that sometimes using the scaled disturbances improves mixing in the Markov chain — but ideally computational concerns should not have an effect on inference. It would be nice to unite these priors two priors under a common class without sacrificing their respective computational advantages under the relevant data augmentations.

3 Interweaving in the DLM: Global and Componentwise

We now have three DAs for the generic DLM with known F_t 's and G_t 's. For simplicity we'll assume that $dim(y_t) = dim(\theta_t)$ and F_t invertible for $t = 1, 2, \dots, T$ so that the scaled errors are easy to work with.

The three DAs are the states, $\theta_{0:T}$, the scaled disturbances $\gamma_{0:T}$, and the scaled errors $\psi_{0:T}$. This allows us to construct four separate GIS algorithms based on algorithm 4: three algorithms that interweave between any two of $\theta_{0:T}$, $\gamma_{0:T}$, and $\psi_{0:T}$, the state-dist, state-error, and dist-error interweaving algorithms, and one algorithm that interweaves between all three, the triple interweaving algorithm. Strictly speaking, the order in which we sample the DAs in the algorithm does matter, but Yu and Meng note that this tends not to make much difference. So while we actually have twelve separate GIS samplers (two of each GIS sampler depending on two DAs, and six GIS samplers depending on all three), effectively we only have four. For example, algorithm 8 is the state-dist GIS algorithm:

Algorithm 8.

- 1. Draw $\theta_{0:T}$ from $p(\theta_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$
- 2. Draw $(V_{1:T}^{(k+0.5)}, W_{1:T}^{(k+0.5)})$ from $p(V_{1:T}, W_{1:T} | \theta_{0:T}, y_{1:T})$
- 3. Update $\gamma_{0:T}^{(k+1)}$ from $\gamma_0 = \theta_0$ and $\gamma_t = L_t^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2, \dots, T$
- 4. Draw $(V_{1:T}^{(k+1)}, W_{1:T}^{(k+1)})$ from $p(V_{1:T}, W_{1:T} | \gamma_{0:T}, y_{1:T})$

where again $L_t^{(k+0.5)}$ is the Cholesky decomposition of $(W_t^{(k+0.5)})^{-1}$, i.e. $(L_t^{(k+0.5)})'L_t^{(k+0.5)} = (W_t^{(k+0.5)})^{-1}$. Steps 1 and 2 are the same as steps 1 and 2 in algorithm 2, and step 4 is the same as step 2 of algorithm 6. The triple interweaving algorithm is the same as algorithm 8 except it adds two more steps at the end: an update of $\psi_{0:T}$ from $\gamma_{0:T}$ and the draw of $(V_{1:T}, W_{1:T})$ in step 4, and then a draw from $(V_{1:T}, W_{1:T}|\psi_{0:T}, y_{1:T})$. In practice we may want to break up step 4 into two steps if it's easier to draw from the full conditionals of $V_{1:T}$ and $W_{1:T}$ rather than drawing them jointly. Algorithm 9 below is exactly this.

Algorithm 9.

- 1. Draw $\theta_{0:T}$ from $p(\theta_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$
- 2. $Draw(V_{1:T}, W_{1:T}) from p(V_{1:T}, W_{1:T} | \theta_{0:T}, y_{1:T})$
- 3. Update $\gamma_{0:T}^{(k+1)}$ from $\gamma_0 = \theta_0$ and $\gamma_t = L_t^{-1}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2, \dots, T$
- 4. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|W_{1:T}, \gamma_{0:T}, y_{1:T})$
- 5. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \gamma_{0:T}, y_{1:T})$

Step 4 actually draws $V_{1:T}$ from the same density as in step 2, but only the last of the two draws is used for anything in the algorithm. As a result, we can either draw only $W_{1:T}$ in step 2 or step 4 can be ommitted.

None of these GIS algorithms are ASIS algorithms — none of the DAs are a SA for $(V_{1:T}, W_{1:T})$. The states, $\theta_{0:T}$, are a SA for $W_{1:T}|V_{1:T}$ though, so this motivates a CIS algorithm. A partial CIS algorithm is immediate:

Algorithm 10.

- 1. Draw $\theta_{0:T}$ from $p(\theta_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$
- 2. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \theta_{0:T}, y_{1:T})$
- 3. Draw $W_{1:T}^{(k+0.5)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)},\theta_{0:T},y_{1:T})$
- 4. Update $\gamma_{1:T}^{(k+1)}$ from $\gamma_0 = \theta_0$ and $\gamma_t = L_t^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2, \dots, T$
- 5. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V^{(k+1)}, \gamma_{0:T}, y_{1:T})$

This algorithm is actually the same as a version of the state-dist interweaving algorithm, specifically algorithm 9. So we can construct a partial CIS algorithm, but it's actually the exact same algorithm as a GIS algorithm.

With a little more work, we can also construct a full CIS algorithm that also turns out to be the same as another GIS algorithm. Recall that $\gamma_t = L_t^{-1}(\theta_t - G_t\theta_{t-1})$ and $\psi_t = K_t^{-1}(y_t - \theta_t)$ for $t = 1, 2, \cdots, T$ where $L_t'L_t = W_t$ and $K_t'K_t = V_t$. Now define $\tilde{\gamma}_t = K_t^{-1}(\theta_t - G_t\theta_{t-1})$ and $\tilde{\psi}_t = L_t^{-1}(y_t - \theta_t)$ for $t = 1, 2, \cdots, T$ and $\tilde{\psi}_0 = \tilde{\gamma}_0 = \theta_0$. In other words, the "tilde" versions of the scaled disturbances and the scaled errors are scaled by the "wrong" Cholesky decomposition. Now we'll show that $\gamma_{0:T}$ and $\tilde{\gamma}_{0:T}$ are an AA-SA pair for $W_{1:T}|V_{1:T}$ while $\psi_{0:T}$ and $\tilde{psi}_{0:T}$ are an AA-SA pair for $V_{1:T}|W_{1:T}$. We've already shown that both $\psi_{0:T}$ and $\gamma_{0:T}$ are AAs for $(V_{1:T}, W_{1:T})$, so we just need to show that $ga\tilde{m}ma_{0:T}$ is a SA for $W_{1:T}|V_{1:T}$ and that $\tilde{\psi}_{0:T}$ is a SA for $V_{1:T}|W_{1:T}$.

First consider $\tilde{\gamma}_{0:T}$. If we define $L_0 = K_0 = I_k$ where I_k is the $k \times k$ identity matrix, then $\tilde{\gamma}_t = K_t^{-1} L_t \gamma_t$ for $t = 0, 1, 2, \dots, T$. The reverse transformation is then $\gamma_t = L_t^{-1} K_t \tilde{\gamma}_t$. The Jacobian is then block diagonal with $L_t^{-1} K_t$'s along the diagonal. Thus $|J| = \prod_{t=0}^T |L_t|^{-1} |K_t| = \prod_{t=1}^T |W_t|^{-1/2} |V_t|^{1/2}$. Then from (6) we can write the joint distribution of $(V_{1:T}, W_{1:T}, \tilde{\gamma}_{0:T}, y_{1:T})$ as

$$p(V_{1:T}, W_{1:T}, \tilde{\gamma}_{0:T}, y_{1:T}) \propto \exp\left[-\frac{1}{2}(\tilde{\gamma}_0 - m_0)'C_0^{-1}(\tilde{\gamma}_0 - m_0)\right] \prod_{t=1}^{T} |V_t|^{-(\eta_t + k + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Psi_t V_t^{-1}\right)\right] \times |W_t|^{-1/2} \exp\left[-\frac{1}{2}\left(y_t - F_t \theta_t(\tilde{\gamma}_{0:T})\right)' V_t^{-1}\left(y_t - F_t \theta_t(\tilde{\gamma}_{0:T})\right)\right] \times |W_t|^{-(\delta_t + k + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Omega_t W_t^{-1}\right)\right] \exp\left[-\frac{1}{2}\tilde{\gamma}_t'(K_t^{-1}W_t(K_t^{-1})')^{-1}\tilde{\gamma}_t\right]$$

$$(9)$$

Then under $\tilde{\gamma}_{0:T}$ we can write the model as

$$\begin{aligned} y_t | \tilde{\gamma}_{0:T}, V_{1:T}, W_{1:T} &\overset{ind}{\sim} N\left(F_t \theta_t(\tilde{\gamma}_{0:T}), V_t\right) \\ \tilde{\gamma}_t &\overset{ind}{\sim} N(0, K_t^{-1} W_t(K_t^{-1})') \end{aligned}$$

for $t = 1, 2, \dots, T$. Since K_t is the Cholesky decomposition of V_t , the observation equation doesn't contain W_t . So $\tilde{\gamma}_{0:T}$ is a SA for $W_{1:T}|V_{1:T}$ and thus $\gamma_{0:T}$ and $\tilde{\gamma}_{0:T}$ form an AA-SA pair for $W_{1:T}|V_{1:T}$. Note also that since W_t and K_t are both in the system equation, $\tilde{\gamma}_{0:T}$ is not an AA for $V_{1:T}$ nor for $W_{1:T}$.

Now consider $\tilde{\psi}_t = L_t^{-1} K_t \psi_t$ for $t = 0, 1, 2, \dots, T$ where, again, $L_0 = K_0 = I_k$, the $k \times k$ identity matrix. Then $\psi_t = K_t^{-1} L_t \tilde{\psi}_t$ and the Jacobian is block diagonal with $K_t^{-1} L_t$'s along the diagonal. So $|J| = \prod_{t=1}^{T} |V_t|^{-1/2} |W_t|^{1/2}$ and from (8) we can write the joint distribution of $(V_{1:T}, W_{1:T}, \tilde{\psi}_{0:T}, y_{1:T})$ as

$$p(V_{1:T}, W_{1:T}, \tilde{\psi}_{0:T}, y_{1:T}) \propto \exp\left[-\frac{1}{2}(\tilde{\psi}_0 - m_0)'C_0^{-1}(\tilde{\psi}_0 - m_0)\right]$$

$$\times \prod_{t=1}^{T} |V_t|^{-(\eta_t + k + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Psi_t V_t^{-1}\right)\right] \exp\left[-\frac{1}{2}\tilde{\psi}_t'(L_t^{-1}V_t(L_t^{-1})')^{-1}\tilde{\psi}_t\right]$$

$$\times |W_t|^{-(\delta_t + k + 2)/2} \exp\left[-\frac{1}{2}tr\left(\Omega_t W_t^{-1}\right)\right] |V_t|^{-1/2} \exp\left[-\frac{1}{2}(y_t - \tilde{\mu}_t)'(F_t W_t F_t')^{-1}(y_t - \tilde{\mu}_t)\right]$$
(10)

where we define $\tilde{\mu}_t = L_t \psi_t + F_t G_t F_{t-1} (y_{t-1} - L_{t-1} \tilde{\psi}_{t-1})$ with, again, $y_0 = 0$ and $L_0 = K_0 = I_k$. In terms of $\tilde{\psi}_{0:T}$, the model is then:

$$y_t|V_{1:T}, W_{1:T}, \tilde{\psi}_{0:T}, y_{1:t-1} \sim N(\tilde{\mu}_t, F_t'W_tF_t)$$

 $\tilde{\psi}_t \stackrel{ind}{\sim} N(0, L_t^{-1}V_t(L_t^{-1})')$

for $t=1,2,\cdots,T$. Since $\tilde{\mu}_t$ only depends on W_t (through L_t) and not on V_t , $V_{1:T}$ is absent from the observation equation. Thus $\tilde{\psi}_{0:T}$ is a SA for $V_{1:T}|W_{1:T}$ and as a result $\psi_{0:T}$ and $\tilde{\psi}_{0:T}$ form an AA-SA pair

for $V_{1:T}|W_{1:T}$. Again that both W_t and V_t are in the system equation so $\tilde{\psi}_{0:T}$ is not an AA for either $V_{1:T}$ or $W_{1:T}$. Now we can construct a full CIS algorithm:

Algorithm 11.

- 1. Draw $\tilde{\psi}_{0:T}$ from $p(\tilde{\psi}_{0:T}|V_{1:T}^{(k)},W_{1:T}^{(k)},y_{1:T})$.
- 2. Draw $V_{1:T}^{(k+0.5)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \tilde{\psi}_{0:T}, y_{1:T})$
- 3. Update $\psi_{0:T}$ from $\psi_0 = \tilde{\psi}_0$ and $\psi_t = (K_t^{-1})^{(k+0.5)} (L_t)^{(k)} \tilde{\psi}_t$ for $t = 1, 2, \dots, T$.
- 4. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \psi_{0:T}, y_{1:T})$.
- 5. Update $\tilde{\gamma}_{0:T}$ from $\psi_{0:T}$, $W_{1:T}^{(k)}$, and $V_{1:T}^{(k+1)}$.
- 6. Draw $W_{1:T}^{(k+0.5)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \tilde{\gamma}_{0:T}, y_{1:T})$
- 7. Update $\gamma_{0:T}$ from $\gamma_0 = \tilde{\gamma}_0$ and $\gamma_t = (L_t^{-1})^{(k+0.5)} (K^{(k+1)})_t \tilde{\gamma}_t$ for $t = 1, 2, \dots, T$.
- 8. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \gamma_{0:T}, y_{1:T})$

Steps 1-4 constitute a Gibbs step for $V_{1:T}$ and steps 5-8 constitute a Gibbs step for $W_{1:T}$. Step 1 can be accomplished by using FFBS to draw the states and transforming appropriately, or by using the disturbance smoother of Koopman [1993] and again transforming appropriately. Note that $L_t^{(k)}$ is the Cholesky decomposition of $W_t^{(k)}$ and $K_t^{(k)}$ is the Cholesky decomposition of $V_t^{(k)}$. It turns out that $p(W_{1:T}|V_{1:T}, \tilde{\gamma}_{0:T}, y_{1:T})$ and $p(W_{1:T}|V_{1:T}, \theta_{0:T}, y_{1:T})$ are the same density, and $p(V_{1:T}|W_{1:T}, \tilde{\psi}_{0:T}, y_{1:T})$

It turns out that $p(W_{1:T}|V_{1:T},\tilde{\gamma}_{0:T},y_{1:T})$ and $p(W_{1:T}|V_{1:T},\theta_{0:T},y_{1:T})$ are the same density, and $p(V_{1:T}|W_{1:T})$ and $p(V_{1:T}|W_{1:T})$ are also the same density. Since $\tilde{\gamma}_t = K_t^{-1}(\theta_t - G_t\theta_{t-1})$ is a one-to-one function of $\theta_{0:T}$ given $V_{1:T}$ with a diagonal Jacobian, the conditional distribution of $W_{1:T}$ does not depend on whether we condition on $\theta_{0:T}$ or $\tilde{\gamma}_{0:T}$. Similar reasoning applies to $W_{1:T}$ given either $\theta_{0:T}$ or $\tilde{\psi}_{0:T}$. The upshot is that step 1 of algorithm 11 can be replaced with a draw from $p(\theta_{0:T}|V_{1:T},W_{1:T},y_{1:T})$, and any time we condition on one of the "tilde" variables, we can condition on $\theta_{0:T}$ instead.

Now we can rewrite the full CIS algorithm in terms of $\theta_{0:T}$ instead of the tilde variables. We'll also rearrange the order in which $\theta_{0:T}$ and $\psi_{0:T}$ are used in the Gibbs step for $V_{1:T}$. This rearranging does change the algorithm, but it's still a full CIS algorithm.

Algorithm 12.

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$.
- 2. Draw $V_{1:T}^{(k+0.5)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \psi_{0:T}, y_{1:T})$.
- 3. Update $\theta_{0:T}$ from $\theta_0 = \psi_0$ and $\theta_t = y_t (K_t^{(k+0.5)})\psi_t$ for $t = 1, 2, \dots, T$.
- 4. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \theta_{0:T}, y_{1:T})$.
- 5. Draw $W_{1:T}^{(k+0.5)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)},\theta_{0:T},y_{1:T})$.
- 6. Update $\gamma_{0:T}$ from $\gamma_0 = \theta_0$ and $\gamma_t = (L_t^{-1})^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2, \dots, T$.
- 7. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \gamma_{0:T}, y_{1:T})$.

There is no update step between the two Gibbs steps for $V_{1:T}$ and $W_{1:T}$, i.e. between steps 4 and 5, because the DA is alread in the proper form to draw $W_{1:T}^{(k+0.5)}$ in step 5. The only thing left to show now is that this is the same as a GIS algorithm. Consider the error-dist GIS algorithm that interweaves between the scaled errors and the scaled disturbances:

Algorithm 13.

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$.
- 2. $Draw(V_{1:T}^{(k+0.5)}, W_{1:T}^{(k+0.5)})$ from $p(V_{1:T}, W_{1:T} | \psi_{0:T}, y_{1:T})$.
- 3. Update $\gamma_{0:T}$ from $\gamma_0 = \psi_0$ and $\gamma_t = (L_t^{-1})^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2 \cdots, T$ for $\theta_0 = \psi_0$ and $\theta_t = y_t (K_t^{(k+0.5)})\psi_t$ for $t = 1, 2, \cdots, T$.
- 4. Draw $(V_{1:T}^{(k+1)}, W_{1:T}^{(k+1)})$ from $p(V_{1:T}, W_{1:T} | \gamma_{0:T}, y_{1:T})$.

This algorithm samples $V_{1:T}$ and $W_{1:T}$ jointly in steps 2 and 4. If we instead sample them from each of their full conditionals, we get another variant of this algorithm:

Algorithm 14.

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$.
- 2. Draw $V_{1:T}^{(k+0.5)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \psi_{0:T}, y_{1:T})$.
- 3. Draw $W_{1:T}^{(k+0.5)}$ from $p(W_{1:T}|V_{1:T}^{(k+0.5)}, \psi_{0:T}, y_{1:T})$.
- 4. Update $\gamma_{0:T}$ from $\gamma_0 = \psi_0$ and $\gamma_t = (L_t^{-1})^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2 \cdots, T$ with $\theta_0 = \psi_0$ and $\theta_t = y_t (K_t^{(k+0.5)})\psi_t$ for $t = 1, 2, \cdots, T$.
- 5. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|W_{1:T}^{(k+0.5)}, \gamma_{0:T}, y_{1:T})$.
- 6. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \gamma_{0:T}, y_{1:T})$.

Step 4 can be broken up into two steps: a transformation from $\psi_{0:T}$ to $\theta_{0:T}$, and another transformation from $\theta_{0:T}$ to $\gamma_{0:T}$. This allows us to rewrite algorithm 14 as:

Algorithm 15.

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V_{1:T}^{(k)}, W_{1:T}^{(k)}, y_{1:T})$.
- 2. Draw $V_{1:T}^{(k+0.5)}$ from $p(V_{1:T}|W_{1:T}^{(k)},\psi_{0:T},y_{1:T})$.
- 3. Draw $W_{1:T}^{(k+0.5)}$ from $p(W_{1:T}|V_{1:T}^{(k+0.5)}, \psi_{0:T}, y_{1:T})$.
- 4. Update $\theta_{0:T}$ from $\theta_0 = \psi_0$ and $\theta_t = y_t (K_t^{(k+0.5)})\psi_t$ for $t = 1, 2, \dots, T$.
- 5. Update $\gamma_{0:T}$ from $\gamma_0 = \theta_0$ and $\gamma_t = (L_t^{-1})^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2 \cdots, T$.
- 6. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|W_{1:T}^{(k+0.5)}, \gamma_{0:T}, y_{1:T})$.
- 7. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \gamma_{0:T}, y_{1:T})$.

Now the draw of $W_{1:T}^{(k+0.5)}$ in step 3 could actually be drawn conditional on $\theta_{0:T}$ instead of $\psi_{0:T}$ since this does not change the conditional distribution of $W_{1:T}$, so the order of steps 3 and 4 doesn't matter. Similarly in step 6 $V_{1:T}$ could be drawn conditional on $\theta_{0:T}$ isntead of $\gamma_{0:T}$ without change the distribution from which it is drawn, so steps 6 and 5 can be interchanged. This allows us to rewrite algorithm 15 as:

Algorithm 16.

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V_{1:T}^{(k)},W_{1:T}^{(k)},y_{1:T})$.
- 2. Draw $V_{1:T}^{(k+0.5)}$ from $p(V_{1:T}|W_{1:T}^{(k)}, \psi_{0:T}, y_{1:T})$.

- 3. Update $\theta_{0:T}$ from $\theta_0 = \psi_0$ and $\theta_t = y_t (K_t^{(k+0.5)})\psi_t$ for $t = 1, 2, \dots, T$.
- 4. Draw $V_{1:T}^{(k+1)}$ from $p(V_{1:T}|\theta_{0:T}, y_{1:T})$.
- 5. Draw $W_{1:T}^{(k+0.5)}$ from $p(W_{1:T}|\theta_{0:T}, y_{1:T})$.
- 6. Update $\gamma_{0:T}$ from $\gamma_0 = \theta_0$ and $\gamma_t = (L_t^{-1})^{(k+0.5)}(\theta_t G_t\theta_{t-1})$ for $t = 1, 2 \cdots, T$.
- 7. Draw $W_{1:T}^{(k+1)}$ from $p(W_{1:T}|V_{1:T}^{(k+1)}, \gamma_{0:T}, y_{1:T})$.

which is identical to algorithm 12. So one version of the full CIS algorithm based on $\psi_{0:T}$, $\tilde{\psi}_{0:T}$, $\gamma_{0:T}$, and $\tilde{\gamma}_{0:T}$ is identical to a GIS algorithm. As long as we believe Yu and Meng and don't think the order in which we use each of the DAs in a CIS or GIS algorithm matters much, there doesn't appear to be any benefit to using CIS for DLMs.

4 Application: The Local Level Model

In order to illustrate how these algorithms work, we'll focus on the local level model primarily for simplicity. Drawing from $p(W_{1:T}|V_{1:T}, \gamma_{0:T}, y_{1:T})$ and $p(V_{1:T}|W_{1:T}, \psi_{0:T}, y_{1:T})$ in particular is diffult since these turn out not to be of a known distributional form, but the simplicity of the local level model helps to clarify what the issues are. Of course, it is possible to implement a metropolis step for the difficult conditional or for $(V_{1:T}, W_{1:T})$ jointly, but first we would like to see what sort of gains are possible if we sample directly from the desired distributions. The local level model (LLM) is a DLM with univariate data y_t for $t = 1, 2, \dots, T$ and a univariate latent state θ_t for $t = 0, 2, \dots, T$ that satisfies

$$y_t | \theta_{0:T} \stackrel{ind}{\sim} N(\theta_t, V)$$
 (11)

$$\theta_t | \theta_{0:t-1} \sim N(\theta_{t-1}, W) \tag{12}$$

with $\theta_0 \sim N(m_0, C_0)$. Here $\theta_t = E[y_t | \theta_{0:T}]$, i.e. the average value of y_t . The states are $\theta_{0:T}$, the scaled disturbances are $\gamma_{0:T}$ with $\gamma_0 = \theta_0$ and $\gamma_t = (\theta_t - \theta_{t-1})/\sqrt{W}$ for $t = 1, 2, \dots, T$, and the scaled errors are $\psi_{0:T}$ with $\psi_0 = \theta_0$ and $\psi_t = (y_t - \theta_t)/\sqrt{V}$ for $t = 1, 2, \dots, T$. The independent inverse Wishart priors on V and W in Section 1 cash out to independent inverse gamma priors for the local level model, i.e. $V \sim IG(\alpha_V, \beta_V)$ and $W \sim IG(\alpha_W, \beta_W)$.

4.1 Base Samplers

The joint density of $(V, W, \theta_{0:T}, y_{1:T})$ is:

$$p(V,W,\theta_{0:T},y_{1:T}) \propto V^{-(\alpha_V+1+T/2)} \exp\left[-\frac{1}{V}\left(\beta_V + \frac{1}{2}\sum_{t=1}^T (y_t - \theta_t)^2\right)\right]$$

$$W^{-(\alpha_W+1+T/2)} \exp\left[-\frac{1}{W}\left(\beta_W + \frac{1}{2}\sum_{t=1}^T (\theta_t - \theta_{t-1})^2\right)\right] \exp\left[-\frac{1}{2C_0}(\theta_0 - m_0)^2\right]$$

This immediately gives the state sampler:

Algorithm 17 (State Sampler for LLM).

- 1. Draw $\theta_{0:T}$ from $p(\theta_{0:T}|V^{(k)}, W^{(k)}, y_{1:T})$ using FFBS.
- 2. $Draw(V^{(k+1)}, W^{(k+1)})$ from $p(V, W|\theta_{0:T}, y_{1:T})$.

In step 2, V and W are independent with $V \sim IG(a_V, b_V)$ and $W \sim IG(a_W, b_W)$ where $a_V = \alpha_V + T/2$, $b_V = \beta_V + \sum_{t=1}^T (y_t - \theta_t)^2/2$, $a_W = \alpha_W + T/2$, and $b_W = \beta_W + \sum_{t=1}^T (\theta_t - \theta_{t-1})^2/2$. The scaled disturbance sampler, the DA algorithm based on the scaled disturbances, is a bit more compli-

The scaled disturbance sampler, the DA algorithm based on the scaled disturbances, is a bit more complicated. In this context $\gamma_0 = \theta_0$ and $\gamma_t = (\theta_t - \theta_{t-1})/\sqrt{W}$ for $t = 1, 2, \dots, T$, and thus $\theta_t = \sqrt{W} \sum_{t=1}^{T} \gamma_t + \gamma_0$ for $t = 1, 2, \dots, T$. Following (6), we can write the joint posterior of $(V, W, \gamma_{0:T})$ as

$$p(V, W, \gamma_{0:T}|y_{1:T}) \propto V^{-(\alpha_V + 1 + T/2)} \exp\left[-\frac{1}{V} \left(\beta_V + \frac{1}{2} \sum_{t=1}^T (y_t - \gamma_0 - \sqrt{W} \sum_{s=1}^t \gamma_s)^2\right)\right] \times W^{-(\alpha_W + 1)} \exp\left[-\frac{\beta_W}{W}\right] \exp\left[-\frac{1}{2} \sum_{t=1}^T \gamma_t^2\right] \exp\left[-\frac{1}{2C_0} (\gamma_0 - m_0)^2\right]$$
(13)

Now V and W are no longer conditionally independent given $\gamma_{0:T}$ and $y_{1:T}$. Instead of attempting the usual DA algorithm, we'll add an extra Gibbs step and draw V and W separately. This gives us the scaled disturbance sampler:

Algorithm 18 (Scaled Disturbance Sampler for LLM).

- 1. Draw $\gamma_{0:T}$ from $p(\gamma_{0:T}|V^{(k)},W^{(k)},y_{1:T})$, possibly using FFBS to sample $\theta_{0:T}$ then transforming.
- 2. Draw $V^{(k+1)}$ from $p(V|W^{(k)}, \gamma_{0:T}, y_{1:T})$.
- 3. Draw $W^{(k+1)}$ from $p(W|V^{(k+1)}, \gamma_{0:T}, y_{1:T})$.

In step 2, V is drawn from the same inverse gamma distribution as in step 2 of algorithm 17. In step 3, the draw of W is more complicated. The density can be written as

$$p(W|V, \gamma_{0:T}, y_{1:T}) \propto W^{-\alpha_W - 1} \exp \left[-\frac{1}{2V} \sum_{t=1}^T \left(y_t - \gamma_0 - \sqrt{W} \sum_{s=1}^t \gamma_s \right)^2 \right] \exp \left[-\frac{\beta_W}{W} \right].$$

This density isn't any known form and is difficult to sample from. The log density can be written as

$$\log p(W|V, \gamma_{0:T}, y_{1:T}) = -aW + b\sqrt{W} - (\alpha_W + 1)\log W - \beta_W/W + C$$

where C is some constant, $a = \sum_{t=1}^{T} (\sum_{j=1}^{t} \gamma_j)^2 / 2V$ and $b = \sum_{t=1}^{T} (y_t - \gamma_0) (\sum_{j=1}^{t} \gamma_j) / V$. It can be shown that $b^2 > \frac{32}{9\beta_w} (\alpha_w + 1)^3 (1 - 2sgn(b)/3)$ implies that the density is log concave where

$$sgn(b) = \begin{cases} 1 & \text{if } b > 0 \\ 0 & \text{if } b = 0 \\ -1 & \text{if } b < 0. \end{cases}$$

This condition is equivalent to $\partial^2 \log p(W|.)/\partial W^2 < 0$ at the W^* that maximizes $\partial^2 \log p(W|.)/\partial W^2$ and hence guarantees the density is globally log-concave. It turns out that this tends to hold over a wide region of the parameter space — so long as V is smaller or isn't much larger than W. This allows for the use of adaptive rejection sampling in order to sample from this distribution in many cases, e.g. using Gilks and Wild [1992]. An alternative is to use a t approximation to the conditional density as a proposal in a rejection sampler, but this is much more computationally expensive when necessary.

The scaled error sampler is similar to the scaled disturbance sampler, and this is easy to see in the local level model. Here $\psi_0 = \theta_0$ and $\psi_t = (y_t - \theta_t)/\sqrt{V}$ for $t = 1, 2, \dots, T$ so that $\theta_t = y_t - \sqrt{V}\psi_t$ for $t = 1, 2, \dots, T$. From (8) we can write $p(V, W, \psi_{0:T}|y_{1:T})$ as

$$p(V, W, \psi_{0:T}, y_{1:T}) \propto W^{-(\alpha_W + 1 + T/2)} \exp\left[-\frac{1}{W} \left(\beta_W + \frac{1}{2} \sum_{t=1}^T (Ly_t - \sqrt{V}L\psi_t)^2\right)\right]$$
$$V^{-(\alpha_V + 1)} \exp\left[-\frac{\beta_V}{V}\right] \exp\left[-\frac{1}{2} \sum_{t=1}^T \psi_t^2\right] \exp\left[-\frac{1}{2C_0} (\psi_0 - m_0)^2\right]$$

where we define $Ly_t = y_t - y_{t-1}$ for $t = 2, 3, \dots, T$ & $Ly_1 = y_1 - \psi_0$ and $L\psi_t = \psi_t - \psi_{t-1}$ for $t = 2, 3, \dots, T$ & $L\psi_1 = \psi_1 - 0$. Once again, V and W are no longer conditionally independent given $\psi_{0:T}$ and $y_{1:T}$. In fact, the density is analgous to (13) with V and W switching places. The scaled error sampler obtained from drawing V and W separately is:

Algorithm 19 (Scaled Error Sampler for LLM).

- 1. Draw $\psi_{0:T}$ from $p(\psi_{0:T}|V^{(k)}, W^{(k)}, y_{1:T})$, possibly using FFBS to sample $\theta_{0:T}$ then transforming.
- 2. Draw $V^{(k+1)}$ from $p(V|W^{(k)}, \psi_{0:T}, y_{1:T})$.
- 3. Draw $W^{(k+1)}$ from $p(W|V^{(k+1)}, \psi_{0:T}, y_{1:T})$.

In step 3, W is drawn from the same inverse gamma distribution as in step 2 of algorithm 17. Drawing V in step 2 is more complicated, but exactly analogous to drawing W in algorithm 18. The log density of $V|W, \psi_{0:T}, y_{1:T}$ can be written as

$$\log p(V|W, \psi_{0:T}, y_{1:T}) = -aV + b\sqrt{V} - (\alpha_V + 1)\log V - \beta_V/V + C$$

where again C is some constant, but now $a = \sum_{t=1}^{T} (L\psi_t)^2/2W$ and $b = \sum_{t=1}^{T} (L\psi_t Ly_t)/W$. So we can use the same methods to sample from this density – adaptive rejection sampling, as in Gilks and Wild [1992], will work as long as $b^2 > \frac{32}{9\beta_V}(\alpha_V + 1)^3(1 - 2sgn(b)/3)$, and otherwise a t proposal in a rejection sampler will work but will be substantially slower.

4.2 Hybrid Samplers: Interweaving, Alternation and Random Kernel

Section 3 contains the details for the interweaving algorithms in the general DLM. In the local level model, there is little to add. We'll consider all four GIS samplers based on any two or three of the base samplers and one CIS sampler. In the GIS samplers, the order of the parameterizations will always be the states $(\theta_{0:T})$, then the scaled disturbances $(\gamma_{0:T})$, then the scaled errors $(\psi_{0:T})$. All of the GIS algorithms and the CIS algorithm are below in Table 1. Note the distributional forms for each of these steps (in some cases a transformation) are in Section 4.1. In Section 3 we saw that one version of the CIS algorithm is the same as the "error-dist" GIS algorithm (i.e. the dist-error algorithm but flipping the order in which the DAs are used). The CIS algorithm below is not the same as the CIS algorith which is equivalent to the error-dist GIS algorithm, but the difference is only the order in which the DAs are used within each Gibbs step. Thus we don't expect it to perform much differently from the dist-error GIS algorithm, but we include it for completeness.

Interweaving algorithms are conceptually very similar to alternating algorithms. For every GIS algorithm, there's a corresponding alternating algorithm where each $[DA_2|V,W,DA_1]$ step is replaced by a $[DA_2|V,W]$ step (here DA_i is a data augmentation for i=1,2.). Table 2 contains each alternating algorithm. Note that there are two possible "hybrid triple" algorithms that we don't consider here where the move from $\theta_{0:T}$ to $\gamma_{0:T}$ interweaves and while the move from $\gamma_{0:T}$ to $\psi_{0:T}$ alternates and vice versa.

Finally, we also consider random kernel algorithms. In this context, a random kernel algorithm randomly chooses from the state sampler, scaled disturbance sampler, and scaled error sampler in each iteration where the selection probabilities are constant with respect to the iteration. We consider four random kernel algorithms based on any two or three of the base samplers with an equal probability of selecting each base sampler included in the algorithm. For example, the State-Dist random kernel algorithm selects either the state sampler or the scaled disturbance sampler with equal probability at every iteration, while the triple random kernel algorithm selects from the state sampler, scaled disturbance sampler, or the scaled error sampler with equal probability at every iteration.

Table 3 contains each algorithm we considered for the local level model. The basic idea here is that the alternating algorithms and the random kernel algorithms should serve as a sort of baseline to compare the corresponding interweaving algorithms against. The GIS algorithm should be slightly faster than the alternating algorithm since the only difference is one step becoming a transformation instead of a random

1. state-dist GIS algorithm:

$$[\theta_{0:T}|V,W] \rightarrow [V,W|\theta_{0:T}] \rightarrow [\gamma_{0:T}|V,W,\theta_{0:T}] \rightarrow [V|W,\gamma_{0:T}] \rightarrow [W|V,\gamma_{0:T}]$$

2. state-error GIS algorithm:

$$[\theta_{0:T}|V,W] \to [V,W|\theta_{0:T}] \to [\psi_{0:T}|V,W,\theta_{0:T}] \to [V|W,\psi_{0:T}] \to [W|V,\psi_{0:T}]$$

3. dist-error GIS algorithm:

$$[\gamma_{0:T}|V,W] \to [V|W,\gamma_{0:T}] \to [W|V,\gamma_{0:T}] \to [\psi_{0:T}|V,W,\gamma_{0:T}] \to [V|W,\psi_{0:T}] \to [W|V,\psi_{0:T}]$$

4. triple GIS algorithm:

$$\begin{array}{l} [\theta_{0:T}|V,W] \to [V,W|\theta_{0:T}] \to [\gamma_{0:T}|V,W,\theta_{0:T}] \to [V|W,\gamma_{0:T}] \to [W|V,\gamma_{0:T}] \to [\psi_{0:T}|V,W,\gamma_{0:T}] \to [V|W,\psi_{0:T}] \to [W|V,\psi_{0:T}] \end{array}$$

5. full CIS algorithm:

Table 1: GIS and CIS algorithms for the local level model

1. State-Dist alternating algorithm:

$$[\theta_{0:T}|V,W] \rightarrow [V,W|\theta_{0:T}] \rightarrow [\gamma_{0:T}|V,W] \rightarrow [V|W,\gamma_{0:T}] \rightarrow [W|V,\gamma_{0:T}]$$

2. State-Error alternating GIS algorithm:

$$[\theta_{0:T}|V,W] \to [V,W|\theta_{0:T}] \to [\psi_{0:T}|V,W] \to [V|W,\psi_{0:T}] \to [W|V,\psi_{0:T}]$$

3. Dist-Error alternating GIS algorithm:

$$[\gamma_{0:T}|V,W] \rightarrow [V|W,\gamma_{0:T}] \rightarrow [W|V,\gamma_{0:T}] \rightarrow [\psi_{0:T}|V,W] \rightarrow [V|W,\psi_{0:T}] \rightarrow [W|V,\psi_{0:T}]$$

4. Triple alternating GIS algorithm:

$$[\theta_{0:T}|V,W] \to [V,W|\theta_{0:T}] \to [\gamma_{0:T}|V,W] \to [V|W,\gamma_{0:T}] \to [W|V,\gamma_{0:T}] \to [\psi_{0:T}|V,W] \to [V|W,\psi_{0:T}] \to [W|V,\psi_{0:T}]$$

Table 2: Alternating algorithms for the local level model

draw, but the difference shouldn't be large. So we'd like the GIS algorithms to have at least as quick mixing as the corresponding alternating algorithms. The random kernel algorithms, however, have do do half as much computation to obtain a single draw (or a third as much computation in the case of the triple random kernel algorithm). Thus in some sense, we would like the GIS algorithms to have mixing which is twice as fast as the corresponding random kernel algorithm, or three times as fast in the case of the triple algorithms. We can make this notion precise by considering the effective sample size (ESS) of the Markov chain – we'd like the GIS algorithms to have an ESS about twice as large as the corresponding random kernel algorithms, or three times as large for the triple algorithms.

Type				
Base	State	Scaled Disturbance	Scaled Error	
GIS	State-Dist	State-Error	Dist-Error	Triple
Alt	State-Dist	State-Error	Dist-Error	Triple
RandKern	$\frac{1}{2}$ State $+\frac{1}{2}$ Dist	$\frac{1}{2}$ State $+\frac{1}{2}$ Error	$\frac{1}{2}$ Dist $+\frac{1}{2}$ Error	$\frac{1}{3}$ State $+\frac{1}{3}$ Dist $+\frac{1}{3}$ Error
CIS	State-Error for V	V W; State-Dist for W	V V	

Table 3: Each algorithm considered for the local level model

4.3 Simulation Setup

In order to test these algorithms, we simulated a fake dataset from the local level model for various choices of V, W, and T. We created a grid over V-W space with (V,W) ranging from $(10^{-2},10^{-2})$ to $(10^2,10^2)$ and we simulated a dataset for all possible combinations of V and W with each of T=10,100,1000. Then for each dataset, we fit the local level model using each algorithm in Table 3. We used the same rule for constructing priors for each model: $\theta_0 \sim N(0,10^7)$, $V \sim IG(5,4\tilde{V})$, and $W \sim IG(5,4\tilde{W})$, mutually independent where (\tilde{V},\tilde{W}) are the true values of V and W used to simulate the time series. Thus both the prior and likelihood roughly agree about the likely values of V and W.

For each dataset and each sampler, we obtained n=3000 draws and threw away the first 500 as burn in. The chains were started at the true values used to simulated the time series, so we can examine the behavior of the chains to determine how well they mix but not how quickly they converge. Define the effective sample proportion (ESP) for a scalar component of the chain as the effective sample size (ESS) of the component divided by the actual sample size, i.e. ESP = ESS/n. An ESP = 1 indicates that the Markov chain is behaving as if it obtains iid draws from the posterior. It's possible to obtain ESP > 1 if the draws are negatively correlated and this happens occasionally with some of our samplers, but we round this down to ESP = 1 in order to simplify our plots.

4.4 Base Results

Figure 1 contains plots of ESP for V and W in each chain of each base sampler for each of T=10, T=100, and T=1000. We'll focus on T=10 first. The state sampler has a low ESP for V and a high ESP for W when the signal-to-noise ratio, W/V, is larger than one. When the signal-to-noise ratio is smaller than one, on the other hand, the state sampler has a low ESP for W and a high ESP for V. In the usual case where the signal to noise ratio isn't too different from one, the state sampler has a modest to low ESP for both V and W. Note that the particular values of V and W don't seem to matter at all — just their relative values, i.e. the signal-to-noise ratio W/V. Moving up any diagonal on the plots for V and W in the state sampler has mixing issues for whichever of V or W is smaller.

Figure 1 tells a different story for the scaled disturbance sampler. When the signal-to-noise ratio is less than one, ESPs for both V and W are nearly 1, i.e. the effective sample size is nearly the actual sample size of the chain. When the signal-to-noise ratio is greater than one, however, ESP for both V and W becomes small, especially for V. Once again the absolute values of V and W don't matter for this behavior — just the relative values. The scaled error sampler has essentially the opposite properties. When W/V is large, it has a near 1 ESP for both V and W. On the other hand, when W/V is small is has a low ESP for both V and W, especially for V. The lesson here seems to be that the scaled disturbances $(\gamma_{0:T})$ are the preferred data augmentation for low signal-to-noise ratios and the scaled errors $(\psi_{0:T})$ are the preferred data augmentation for high signal-to-noise ratios, while the states $(\theta_{0:T})$ are preferred for signal-to-noise ratios near 1.

The plots for T=100 and T=1000 in Figure 1 tell basically the same story, with a twist. Increasing the length of the time series seems to exacerbate all problems without changing the basic conclusions. As T increases, W/V has to be smaller and smaller for the scaled disturbance sampler to have decent mixing, and similarly W/V has to be larger and larger for the scaled error sampler to have decent mixing. Interestingly, the scaled error sampler appears to mix well for both V and W over a larger region of the space W/V < 1 than the scaled disturbance sampler does over W/V > 1. The state sampler is stuck between a rock and a hard place, so to speak, since as T increases, good mixing for V requires W/V to be smaller and smaller, but good mixing for W requires W/V to be larger and larger.

INSERT PARAGRAPH EXPLAINING SOME INTUITION BEHIND *WHY* THESE ALGORITHMS BEHAVE THE WAY THEY DO - MAY NEED TO GO BACK AND RE-READ SOME OF THE PAPERS ON CENTRAL AND NONCENTRAL PARAMETERIZATIONS

It's also worth noting that both the scaled error and scaled disturbance samplers run into trouble with their adaptive rejection sampling step in precisely the same region of the parameter space where they have good mixing for both V and W, though as T increases, this only happens in the increasingly extreme ends

of the parameter space. More precisely, when W/V > 1, $p(W|V, \psi_{0:T}, y_{1:T})$ will often fail to be log concave, and when W/V < 1, $p(V|W, \gamma_{0:T}, y_{1:T})$ will often fail to be log concave, but as T increases the degree to which W/V must differ from one (in the appropriate direction) in order for log concavity to often or even occasionally fail increases. Outside of these respective regions, log-concavity of the relevant density failing is an extremely unlikely occurence. As a result, the adaptive rejection sampling algorithm of Gilks and Wild [1992] won't work in general. Another option is to give up directly sampling from either conditional density and use a metropolis step, perhaps for (V, W) jointly. In general, the sampling algorithm should be prepared to use something other than adaptive rejection sampling if necessary because it's possible that the chain enters a region of the parameter space where the relevant density is not log concave, no matter what the likely values of V and W are. NOTE: ADD DETAILS ABOUT PRECISELY HOW LARGE OR SMALL W/V HAS TO BE TO THIS PARAGRAPH

Figure 1: Effective sample proportion in the posterior sampler for a time series of lengths T=10, T=100, and T=1000, for V and W, and for the state, scaled disturbance, and scaled error samplers. X and Y axes indicate the true values of V and W respectively for the simulated data. Note that the signal-to-noise ratio is constant moving up any diagonal. In the upper left the signal is high, in the lower right the noise is high. Note that for plotting purposes, effective sample proportions larger than 1 were rounded down to 1

Based on the intuition in Section 2 above, the GIS algorithms should work best when at least one of the underlying base algorithms has a high ESP — the basic idea is that when least one of the underlying algorithms has low autocorrelation, we should have low autocorrelation in the GIS algorithm using multiple DAs. This suggests that the dist-error GIS algorithm will have the best performance of the GIS algorithms using two DAs for both V and W, especially for W/V far away from one. When W/V is near one it may offer no improvement, especially for large T. The state-dist GIS algorithm should have trouble with V when W/V is high since both the state sampler and the scaled disturbance sampler have trouble with V when V/V is high. Similarly, the state-error GIS algorithm should have trouble with V when V/V is low since both underlying samplers have trouble with V when V/V is low. Since the triple GIS algorithm adds the

state sampler into the dist-error GIS algorithm, it seems plausible that it might improve mixing for one of V or W since for V/W different from one, the state sampler has good mixing for at least one of V of W. The full CIS algorithm, on the other hand, is unlikely to be better than the dist-error GIS algorithm since in a certain sense one algorithm is the same as the other, just with the steps reordered.

Figure 2: Effective sample proportion in the posterior sampler for V and W in for T=10, T=100, and T=1000, in the state, scaled disturbance and scaled error samplers and for all three GIS samplers based on any two of these. Horizontal and vertical axes indicate the true values of V and W respectively for the simulated data. Note that the signal-to-noise ratio is constant moving up any diagonal. In the upper left the signal is high, in the lower right the noise is high. Note that for plotting purposes, effective sample proportions larger than one were rounded down to one.

We can verify most of these intuitions in Figure 2. First, the state-dist GIS algorithm has high ESP for

W except for a narrow band where W/V is near one, though this band becomes much wider as T increases. The state-dist GIS algorithm's mixing behavor for V appears identical to the original state sampler — high ESP when W/V < 1 and poor ESP when W/V > 1, and again the good region shrinks as T increases. So this algorithm behaves as expected — it takes advantage of the fact that the state and scaled disturbance DA algorithms make up a "beauty and the beast" pair for W and thus improves mixing for W. However, the two underlying DA algorithms behave essentially indentically for V so there is no improvement. Similarly the state-error GIS algorithm's ESP for W is essentially identical to the state and scaled error algorithms' ESP for W — high when W/V large and low when W/V small — but for V, the state-error algorithm has a high ESP when W/V isn't too close to one, especially when T is small. The dist-error GIS algorithm also behaves as predicted — when W/V is not too close to one it has high ESP for both V and W, though as T increases W/V has too be farther away from one in order for the ESPs to be high. The dist-error GIS algorithm behaves apparently identically to the full CIS and triple GIS algorithms, with some differences when T is small. The first of these is not surprising — based on the intuition that the dist-error GIS and full CIS algorithms are the same up to a reordering of each of their steps, we didn't expect much of a difference. However, we had some hope that the triple GIS algorithm would improve upon the dist-error GIS algorithm somewhat by further breaking the correlation between iterations in the Markov chain. This didn't happen, and furthermore the state-dist and state-error samplers didn't improve the ESP for V or W respectively. When the two underlying DA algorithms form a "beast and the beast" pair, the interweaving algorithm appears to mix just as well as the best mixing single DA algorithm.

Finally Figure 3 allows us to compare the GIS algorithms to the alternating and random kernel algorithms. Note that for the purposes of making a direct comparison, these plots show ESP/2 for the three two-DA random kernel algorithms and ESP/3 for the triple random kernel algorithm. We do this because the alternating and interweaving algorithms each have to two roughly twice as much computation as the random kernel algorithm in order to complete one full iteration of the sampler, or in the case of the triple algorithms three times as much. The main takeaway is that there doesn't appear to be any difference between itnerweaving and alternating, and the differences between the random kernel and the former two algorithms are small. For large T, the random kernel algorithm tends to be a bit worse than the GIS and alternating algorithms in the "good" region of the parameter space, but in the "bad" region the differences aren't meaningful.

INSERT SECTION ON TIMINGS – POINT OUT THE BAD TIMINGS IN CERTAIN REGIONS OF THE PARAMETER SPACE FOR ALL ALGORITHMS THAT USE THE SCALED ERRORS OR SCALED DISTURBANCES, THEN USE THIS TO SEGUE INTO THE NORMAL PRIOR ON THE STANDARD DEVIATION. IF THE MIXING RESULTS ARE THE SAME, DON'T SHOW GRAPHS JUST MENTION THIS, THEN SHOW GRAPHS OF TIMINGS WHICH, HOPEFULLY, ARE MUCH FASTER

Figure 3: Effective sample proportion in the posterior sampler for a time series of length T=10, T=100, and T=1000, for V and W, and for the GIS and alternating samplers based on the state, scaled disturbance, and scaled error samplers. X and Y axes indicate the true values of V and W respectively for the simulated data. The signal-to-noise ratio is constant moving up any diagonal. In the upper left the signal is high, in the lower right the noise is high. Note that for plotting purposes, effective sample proportions larger than 1 were rounded down to 1. Also note that the ESP for the random kernel samplers has been multiplied by 2 or, in the case of the triple kern sampler, by 3, in order to make them comparable to the GIS and alternating samplers.

References

- Chris K Carter and Robert Kohn. On Gibbs sampling for state space models. *Biometrika*, 81(3):541–553, 1994.
- Sylvia Frühwirth-Schnatter. Data augmentation and dynamic linear models. *Journal of Time Series Analysis*, 15(2):183–202, 1994.
- Sylvia Frühwirth-Schnatter. Efficient Bayesian parameter estimation for state space models based on reparameterizations. State Space and Unobserved Component Models: Theory and Applications, pages 123–151, 2004.
- Sylvia Frühwirth-Schnatter and Regina Tüchler. Bayesian parsimonious covariance estimation for hierarchical linear mixed models. *Statistics and Computing*, 18(1):1–13, 2008.
- Sylvia Frühwirth-Schnatter and Helga Wagner. Bayesian variable selection for random intercept modeling of gaussian and non-gaussian data. page 165, 2011.
- Walter R Gilks and Pascal Wild. Adaptive rejection sampling for Gibbs sampling. *Applied Statistics*, pages 337–348, 1992.
- James P Hobert and Dobrin Marchev. A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms. *The Annals of Statistics*, 36(2):532–554, 2008.
- Siem Jan Koopman. Disturbance smoother for state space models. Biometrika, 80(1):117–126, 1993.
- Jun S Liu and Ying Nian Wu. Parameter expansion for data augmentation. *Journal of the American Statistical Association*, 94(448):1264–1274, 1999.
- Jan R Magnus. Linear structures. 1988.
- Jan R Magnus and H Neudecker. The elimination matrix: some lemmas and applications. SIAM Journal on Algebraic Discrete Methods, 1(4):422–449, 1980.
- Xiao-Li Meng and David A Van Dyk. Seeking efficient data augmentation schemes via conditional and marginal augmentation. *Biometrika*, 86(2):301–320, 1999.
- Omiros Papaspiliopoulos, Gareth O Roberts, and Martin Sköld. A general framework for the parametrization of hierarchical models. *Statistical Science*, pages 59–73, 2007.
- Giovanni Petris, Patrizia Campagnoli, and Sonia Petrone. Dynamic linear models with R. Springer, 2009.
- David A Van Dyk and Xiao-Li Meng. The art of data augmentation. *Journal of Computational and Graphical Statistics*, 10(1), 2001.
- Yaming Yu and Xiao-Li Meng. To center or not to center: That is not the question an ancillarity–sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency. *Journal of Computational and Graphical Statistics*, 20(3):531–570, 2011.