Diszkrét matematika 1

Relációk

Mérai László merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Relációk.

Relációk

Relációk: adat + köztük lévő kapcsolat

Példa

 Adott cég esetén legyenek A ,B, ..., M az alkalmazottak. A cég két projekten dolgozik: BANK, JÁTÉK

beosztás	alkalmazott
menedzser	A, B
fejlesztő	C, D, E, F, G
tesztelő	H, I,
HR	J
marketing	K, L
tech. dolgozó	M

projekt	alkalmazott	határidő
BANK	A, C, D, F,G, H	2025.03.24.
JÁTÉK	B, D, E, F, G, I	2025.03.31.

Relációk

Relációk: adat + köztük lévő kapcsolat

Példa

• Függvények, "többértékű függvények": $x \leftrightarrow \sin(x)$

• Egészek és $n \leftrightarrow m$, ha $n \mid m$

- Halmazok és $A \leftrightarrow B$, ha $A \subset B$
-

Descartes-szorzat

Relációk tárolása: rendezett páronként (ill. általában: rendezett n-esekként)

- IT cég: {(A, 'menedzser'), (B, 'menedzser'), (C, 'fejlesztő'), ...}
- sin: $\{(0,0), (\frac{\pi}{6},\frac{1}{2}), (\frac{\pi}{4},\frac{\sqrt{2}}{2}), (\frac{\pi}{3},\frac{\sqrt{3}}{2}), (\frac{\pi}{2},1),\dots\}$
- oszthatóság: {(1,2), (1,3), (1,4), (2,4), (2,6), (3,6), (3,12), ...}

Definíció

Adott A, B halmazok Descartes-szorzata: $A \times B = \{(a, b) : a \in A, b \in B\}$.

Figyelem:

- ha $a \neq b$, akkor $(a, b) \neq (b, a)$
- ha $A \neq B$, akkor $A \times B \neq B \times A$
- $A^2 = A \times A, A^3 = A \times A \times A, \dots$

Binér reláció

Definíció

- Legyen X, Y két tetszőleges halmaz. Ekkor az R C X × Y egy (binér) reláció az X, Y halmaz között.
- Ha X = Y, akkor $R \subset X \times X$ egy (binér) reláció X-en.

- egyenlőség reláció: $\mathbb{I}_X = \{(x, x) : x \in X\}$
- részhalmaz reláció X-en: $\{(A,B) \in 2^X \times 2^X : A \subset B : A,B \in 2^X\}$
- altér reláció: $\{(U, V) : U, V \leq \mathbb{R}^5, U \text{ altere } V\text{-nek}\}$
- sajátvektor reláció $\{(\mathbf{v}, M) \in \mathbb{R}^2 \times \mathbb{R}^{2 \times 2} : \exists \lambda : M\mathbf{v} = \lambda \mathbf{v}\}$
- \sin függvény relációja: $\{(x, \sin x) \in \mathbb{R} \times \mathbb{R} : x \in \mathbb{R}\}$

Értelmezési tartomány, értékkészlet

Definíció

Legyen $R \subset X \times Y$ egy reláció. Ekkor

- R éretelmezési tartománya ('domain'): $dmn(R) = \{x \in X : \exists y \in Y : (x, y) \in R\}.$
- R értékkészlete ('range'): $\operatorname{rng}(R) = \{ y \in Y : \exists x \in X : (x, y) \in R \}.$

- Legyen $R \subset \{a, b, c, d, e\} \times \{1, 2, 3, 4, 5, 6\}$. $dmn(R) = \{a, b, d, e\}, rng(R) = \{1, 3, 6\}$.
- $\bullet \ N = \{(x^2, x) : x \in \mathbb{R}\} \ \mathrm{dmn}(N) = \mathbb{R}_0^+, \ \mathrm{rng}(R) = \mathbb{R}.$

Reláció inverze

Definíció

Egy $R \subset X \times Y$ reláció inverze az

$$R^{-1} = \{ (y, x) \in Y \times X : (x, y) \in R \}.$$

- $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$ és $R^{-1} = \{(1,b), (1,d), (3,a), (6,b), (6,e)\}$
- Legyen $R = \{(x, x^2) : x \in \mathbb{R}\}$ Ekkor $R^{-1} = \{(x^2, x) : x \in \mathbb{R}\} \neq \{(x, \sqrt{x}) : x \in \mathbb{R}_0^+\}$

Halmaz képe, teljes inverz képe

Definíció

Legyen R egy binér reláció.

- Az A halmaz képe az $R(A) = \{y : \exists x \in A : (x, y) \in R\}.$
- Adott B halmaz inverz képe, vagy teljes ősképe az R⁻¹(B), a B halmaz képe az R⁻¹ reláció esetén.

- $R = \{(a,3), (b,1), (b,6), (d,1), (e,6)\}$. Ekkor $R(\{a,b,c\}) = \{1,3,6\}$
- Legyen $R = \{(x, x^2) : x \in \mathbb{R}\}.$ Ekkor $R(\{2\}) = \{4\}$ (vagy (R(2) = 4)) és $R^{-1}(\{4\}) = \{-2, +2\}$ (vagy $R^{-1}(4) = \{-2, +2\}$).

Példa

Legyen

$$R = \{(a,3), (b,1), (b,6), (c,2), (c,7), (d,1), (d,7), (e,4), (e,6)\}$$

Ekkor

- $\bullet \operatorname{dmn}(R) = \{a, b, c, d, e\}$
- \bullet rng(R) = {1, 2, 3, 4, 6, 7}
- $R|_{\{a,e,f\}} = \{(a,3), (e,4), (e,6)\}$
- $R({a,b,c}) = {1,2,3,6,7}$
- $R^{-1}(\{1,2,3\}) = \{a,b,c,d\}$

