BOOLEAN ALGEBRA AND LOGIC

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Learning Objectives

- At the end of this lecture you should:
 - Understand how logic relates to computing problems
 - Be able to represent Boolean logic problems as:
 - Truth tables
 - Logic circuits
 - Boolean algebra

What is Logic?

- Dictionary definitions (dictionary.com reduced!)
 - reason or sound judgement
 - a system of principles of reasoning
 - the science that investigates the principles governing correct or reliable inference
- Branch of philosophy
 - Principles of inference
- You use logic all the time in your everyday life

Propositional Logic

- The Ancient Greek philosophers created a system to formalise arguments called propositional logic
- A proposition is a statement that can be TRUE or FALSE
- Propositions can be compounded by means of the operators AND, OR and NOT

Propositional Logic Example

- Propositions may be TRUE or FALSE, for example:
 - It is raining
 - The weather forecast is bad
- A combined proposition example is:
 - It is raining OR the weather forecast is bad

Propositional Logic Example

- Can assign values to propositions, for example: I will take an umbrella if it is raining OR the weather forecast is bad
 - Means that the proposition "I will take an umbrella" is the result of the Boolean combination (OR) between raining and weather forecast being bad. In fact we could write:
 - I will take an umbrella = it is raining OR the weather forecast is bad

Diagrammatic Representation

 Can think of the umbrella proposition as a result that we calculate from the weather forecast and the fact that it is raining by means of a logical OR

Truth Tables

 Since propositions can only take two values, we can express all possible outcomes of the umbrella proposition by a table

Raining	Bad Forecast	Umbrella
FALSE	FALSE	FALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

Complex Propositions

- Can make our propositions more complex, for example:
 - (Take Umbrella) = (NOT (Take Car)) AND ((Bad Forecast) OR (Raining))
- Diagrammatical representation

Boolean Logic

- To perform calculations quickly and efficiently we need a more succinct notation than propositional logic
- Need to have well-defined semantics for all the "operators", or connectives that we intend to use
- Boolean Algebra satisfies the criterion above
- Named after George Boole
- Provides a system of logical operations
- Rules for combining operations
- Describes their application to binary numbers

George Boole: 1815-1864

Boolean Algebra – Fundamentals

- The truth values are replaced by 1 and 0
 - 1 = TRUE 0 = FALSE

- Propositions are replaced by variables
 - R = it is raining W = The weather forecast is bad

- Operators are replaced by symbols
 - ' = NOT + = OR = AND

Boolean Algebra – Simplify Propositions

Recall:

(Take Umbrella) = (NOT (Take Car)) AND ((Bad Forecast) OR (Raining))

Using notations notations, we get:

• $U = (C') \cdot (W + R)$

Boolean Algebra – Precedence

- Operator Precedence
 - Highest precedence operator is evaluated first

OPERATOR	SYMBOL	PRECEDENCE
NOT	' (¬)	Highest
AND	• (^)	Middle
OR	+ (v)	Lowest

math (logic) symbol

- Note that: (C') * (W + R) is not the same as C' * W + R
- Logic operators in, e.g., C:
 - Logical: AND: && OR: | NOT: !
 - (Binary: AND: & OR: | NOT: ~)

Boolean Algebra – Truth Tables

 All possible outcomes of the operators can be written as truth tables

AND	OR	NOT
•	+	1
<u>A B R</u>	A B R	$A \mid R$
0 0 0	0 0 0	$\overline{0 \mid 1}$
0 1 0	0 1 1	1 0
1 0 0	1 0 1	
1 1 1	1 1 1	
,		

Boolean Algebra – Truth Tables

- Given any Boolean expression e.g.: U = C' (W + R)
- We can calculate a truth table for every possible value of the variables on the right hand side
- For n variables there are 2ⁿ possibilities

Boolean Algebra – Truth Tables

- Truth table for "Umbrella"
 - $U = C' \cdot (W + R)$

R W C	X1=R+W	X2=C'	U=X1•X2
0 0 0	0	1	0
0 0 1	0	0	0
0 1 0	1	1	1
0 1 1	1	0	0
1 0 0	1	1	1
1 0 1	1	0	0
1 1 0	1	1	1
1 1 1	1	0	0
Inputs	Partial Results C		Outputs

Boolean Algebra – Rules

Note: A and B can be any Boolean Expression

Negation: Associative: Commutative: (A')' = A $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ $A \cdot B = B \cdot A$ $A \cdot A' = 0$ (A + B) + C = A + (B + C) A + B = B + A A + A' = 1

Distributive:

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

 $A + (B \cdot C) = (A + B) \cdot (A + C)$
Note the precedence

Boolean Algebra – Rules

Single variables (Idempotent law):

$$A \cdot A = A$$

$$A + A = A$$

Simplification rules with 1 and 0:

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

Boolean Algebra – de Morgan's Rule

$$(A + B)' = A' \cdot B'$$

$$(A \cdot B)' = A' + B'$$

as before, A and B can be any Boolean expression

Can generalise to n Boolean variables:

$$(A + B + C + D + ...)' = A' \cdot B' \cdot C' \cdot D' \cdot ...$$

$$(A \cdot B \cdot C \cdot D \cdot ... \cdot X)' = A' + B' + C' + D' + ... + X'$$

Boolean Functions – Schematic Representation

 A standard set of easy-to-recognise symbols is used to represent Boolean functions

 A circle is all that is required to indicate NOT. The triangle is just to indicate Input/Output direction

Inverting Functions

 A circle can be added to the AND and OR symbol outputs to create their inverted functions – NotAnd (NAND) and NotOr (NOR) gates

Building Blocks for Circuits

- NAND/NOR are the commonly used building blocks for most circuits
 - NAND / NOR can easily be constructed from transistors
 - NAND is complete
 - A set of Boolean functions f1,f2,... is "complete" if and only if any Boolean function can be generated by a combination these functions
 - Also called "universal gate"

NAND Gate – NOT

- It is possible to build all other gates out of NAND gates
- Create a NOT gate using the Idempotent law:

NAND Gate – AND

Create an AND gate using the Involution law:

•
$$(A')' = A$$

NAND Gate – OR / NOR

 To make an OR gate we need to apply de Morgan's theorem:

•
$$A + B = (A' \cdot B')'$$

Just invert output to get a NOR gate ©

NAND – Complex Circuits

Consider two cascading NAND Gates

- What circuit have we created?
 - Use Boolean Algebra to find out
 - I = (B C)'
 - $X = (A \cdot I)' = (A \cdot (B \cdot C)')'$
 - Apply de Morgan's law, we get
 - $X = A' + ((B \cdot C)')' = A' + (B \cdot C)$

NAND – Complex Circuits

• Truth table for $X = A' + (B \cdot C)$

Α	В	С	B • C	$X = A' + (B \cdot C)$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

XOR and XNOR Gates

Very useful gates

Exclusive Or (XOR)

$$\begin{array}{c}
A \\
B
\end{array}$$

$$R = A.B' + A'.B$$

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Exclusive Nor (XNOR)

$$A \longrightarrow R$$

$$R = A'.B' + A.B$$

A	В	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Instantaneous on IC?

Instantaneous on IC?

 Time delay and saturation limit state 'switching' speed of real in-silico circuits

CMOS NAND in silico

Figure 4. Base-Emitter On Voltage

