Determinants

Areas, Volumes and Cross Products

DEFINITION: (i) The **determinant of** 1×1 **matrix** is its sole entry.

(ii) The **determinant of a** 2×2 **matrix** is given by

$$det(A) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - b_1a_2, \text{ where } A = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix}$$

(iii) The **determinant of a** 3×3 **matrix** is given by

$$det(A) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

DEFINITION: If $\mathbf{a} = [a_1, a_2, a_3], \mathbf{b} = [b_1, b_2, b_3] \in \mathbb{R}^3$ the **cross product** of \mathbf{a} and \mathbf{b} is given by

$$\mathbf{a} \times \mathbf{b} = \left[\left| \begin{array}{cc|c} a_2 & a_3 \\ b_2 & b_3 \end{array} \right|, - \left| \begin{array}{cc|c} a_1 & a_3 \\ b_1 & b_3 \end{array} \right|, \left| \begin{array}{cc|c} a_1 & a_2 \\ b_1 & b_2 \end{array} \right| \right] = \mathbf{i} \left| \begin{array}{cc|c} a_2 & a_3 \\ b_2 & b_3 \end{array} \right| - \mathbf{j} \left| \begin{array}{cc|c} a_1 & a_3 \\ b_1 & b_3 \end{array} \right| + \mathbf{k} \left| \begin{array}{cc|c} a_1 & a_2 \\ b_1 & b_2 \end{array} \right|$$

Note: $\mathbf{a} \times \mathbf{b}$ is perpendicular to both \mathbf{a} and \mathbf{b} .

THEOREM: (i) If a parallelogram is determined by two nonzero vectors, $\mathbf{a} = [a_1, a_2]$ and $\mathbf{b} = [b_1, b_2]$ in \mathbb{R}^2 , then its area is given by

$$Area = |a_1b_2 - a_2b_1| = \left| det \left(\begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \right) \right| = \left| \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \right|$$

- (ii) If a parallelogram is determined by two nonzero vectors, $\mathbf{a} = [a_1, a_2, a_3]$ and $\mathbf{b} = [b_1, b_2, b_3]$ in \mathbb{R}^3 , then its area is given by $\|\mathbf{a} \times \mathbf{b}\|$.
- (iii) If a parallelepiped is determined by three nonzero vectors $\mathbf{a} = [a_1, a_2, a_3]$, $\mathbf{b} = [b_1, b_2, b_3]$ and $\mathbf{c} = [c_1, c_2, c_3]$ in \mathbb{R}^3 , then the volume of the box is given by

$$Volume = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$$

The Determinant of a Square Matrix

DEFINITION: The determinant of 1×1 , 2×2 and 3×3 matrices are defined. Let n > 1 and suppose that the determinant of $(n-1) \times (n-1)$ matrices is defined. Let $A = [a_{ij}]$ be an $n \times n$ matrix.

- 1. The **minor** matrix A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by removing the *i*th row and *j*th column of A.
- 2. The **cofactor** of a_{ij} of A is

$$a'_{ij} = (-1)^{i+j} det(A_{ij}) = (-1)^{i+j} |A_{ij}|$$

3. The determinant of A is

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= a_{11}a'_{11} + a_{12}a'_{12} + \cdots + a_{1n}a'_{1n}$$

$$= \sum_{i=1}^{n} a_{1i}a'_{1i} = \sum_{i=1}^{n} (-1)^{(i+1)}a_{1i}|A_{1i}| \quad \text{expansion along first row}$$

$$= \sum_{i=1}^{n} a_{ji}a'_{ji} = \sum_{i=1}^{n} (-1)^{(i+j)}a_{ji}|A_{ji}| \quad \text{expansion along } j \text{th row}$$

$$= \sum_{i=1}^{n} a_{ij}a'_{ij} = \sum_{i=1}^{n} (-1)^{(i+j)}a_{ij}|A_{ij}| \quad \text{expansion along } j \text{th column}$$

THEOREM: Let A, C be $n \times n$ matrices. Then:

- 1. $det(A) = det(A^T)$.
- 2. $A R_i \longleftrightarrow R_j B$, then det(B) = -det(A)
- 3. $A R_i \longrightarrow rR_i B$, then det(B) = r det(A)
- 4. $A R_i \longrightarrow R_i + rR_j B$, then det(B) = det(A)
- 5. If A contains proportional rows (or columns), then det(A) = 0.
- 6. A is invertible \iff $det(A) \neq 0$.
- 7. det(AB) = det(A)det(B).
- 8. If A is invertible, then $det(A^{-1}) = \frac{1}{det(A)}$.
- 9. If A is a triangular matrix, then det(A) is the product of all of its entries along the main diagonal.

Cramer's Rule

Cramer's Rule

THEOREM: If $A\mathbf{x} = \mathbf{b}$ is a system of n linear equations in n unknowns and $det(A) \neq 0$, then the unique solution $\mathbf{x} = [x_1, x_2, \cdots, x_n]$ is of the form

$$x_k = \frac{det(B_k)}{det(A)}$$
 for $k = 1, \dots, n$

where B_k is the matrix A with the k^{th} column replaced by the column vector **b**.

Example 0.0.1 Use Cramer's Rule to solve the system:

DEFINITION: Let A be an $n \times n$ matrix.

- 1. Let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained by removing the i^{th} row and j^{th} column of A.
- 2. The **cofactor** of a_{ij} of A is

$$a'_{ij} = (-1)^{i+j} det(A_{ij}) = (-1)^{i+j} |A_{ij}|$$

3. Let $A' = [a'_{ij}]$ be the matrix with ij^{th} entry the ij^{th} cofactor of A. Then the **adjoint** of A denoted by adj(A) is the $n \times n$ matrix

$$adj(A) = (A')^T$$

.

THEOREM: If A is an $n \times n$ matrix then

$$(adj(A)) A = A (adj(A)) = det(A)I$$

Corollary: If A is an $n \times n$ matrix and $det(A) \neq 0$, then

$$A^{-1} = \frac{1}{\det(A)} adj(A).$$