Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Домашняя работа №1

Конструкторско-технологическое обеспечение производства ЭВМ

Проектирование тонкоплёночных гибридных интегральных микросхем ${\it Cxema~7,~ sapuahm~1}$

Студент: Саржевский Иван

Группа: Р3402

Задание

R_1	22 кОм	$\pm 10\%$	0.001 Вт
R_2	6.8 кОм	$\pm 20\%$	$0.01~\mathrm{Br}$
R_3	50 кОм	$\pm 10\%$	$0.005~\mathrm{Br}$
R_4	50 кОм	$\pm 10\%$	$0.005~\mathrm{Br}$
R_3	3.3 кОм	$\pm 20\%$	$0.05~\mathrm{Br}$
C_1	15000 пФ		
C_2	15000 пФ		

Ход работы

Оптимальное удельное поверхностное сопротивление

$$\rho_{\Box opt} = \sqrt{\frac{\sum_{i=1}^{n} R_i}{\sum_{i=1}^{n} R_i^{-1}}} \approx 15700(\frac{Ohm}{\Box})$$

Выбор материала резистивной пленки

Наименование		Сопротивление, Ом	$W_0, (\frac{W}{cm^2})$
Кермет К-50С	1000-10000	100-100000	2

Определение каэффициента формы

$$k_{fi} = \frac{R_i}{\rho_{\square}}$$

R_i	$\frac{R_i}{\rho_{\square}}$	k_{fi}
R_1	22000 / 10000	2.2
R_2	6800 / 10000	0.68
R_3	50000 / 10000	5
R_4	50000 / 10000	5
R_5	3300 / 10000	0.33

Определение ширины резисторов

$$b \ge max[b_{ex}, b_W]$$

$$b_{ex}=0.2\mathrm{mm}$$
 if $\Delta R=\pm20\%$ and 0.3mm if $\Delta R=\pm30\%$

$$b_W = \sqrt{\frac{\rho_\square * W}{R * W_0}}$$

R_i	b_{ex}	b_W	b
R_1	0.3 мм	0.2 мм	0.3 мм
R_2	0.2 мм	0.9 мм	0.9 мм
R_3	0.3 мм	0.3 мм	0.3 мм
R_4	0.3 мм	0.3 мм	0.3 мм
R_5	0.2 мм	2.8 мм	2.8 мм

Расчет размеров резисторов

$$l_r = \frac{R}{\rho_\square} * b = k_f * b$$

$$\Delta R' = \frac{|R - \frac{l'*\rho_{\square}}{b}|}{R}$$

R_i	l'	ΔR
R_1	0.7 mm	6.1%
R_2	0.6 мм	2%
R_3	1.5 мм	0%
R_4	1.5 мм	0%
R_3	0.9 мм	2.6%

Расчет тонкопленочных конденсаторов

Наименование	Мат-л обкладок	C_0 , п Φ / см ²	U, B	ϵ при $f=1$ к Γ ц
Стекло электровакуумное С41-1	Аллюминий А99	$(15-40)*10^3$	12.6-6.3	5.2

Площадь конденсаторов:

$$S = \frac{C}{C_0}$$

C_i	$S(\text{cm}^2)$	а, мм	b, мм
C_1	0.375	7.5	5
C_2	0.375	7.5	5

Слои

1. Резистивный: Кермет К-50С

2. Проводящий: Аллюминий А99

3. Диэлектрический: Моноокись германия

4. Проводящий: Аллюминий А99

5. Защитный: Моноокись кремния

Схема

