Universidad Nacional de Río Negro Física III B - 2020

Unidad 03

Clase U03C01 / 14

Cont Segundo principio

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b

Contenidos: Termodinámica, alias F3B, alias F4A

Ciclo Otto

H. Asorey - F3B 2020

Ciclo Otto, combustión isócora

H. Asorey - F3B 2020

Ciclo Diesel

Ciclo Diésel o ciclo de combustión isóbara

Mácjuinas térmicas

- Máquina térmica: dispositivo cíclico que absorbe calor de una fuente caliente, realiza un trabajo mecánico y entrega la energía remanente en forma de calor a una fuente fría
 - Este calor no es aprovechable por la misma máquina térmica

¿Por qué no puede ser 1?

Hemos dicho

$$\eta = 1 - \frac{Q_{ENT}}{Q_{ABS}} \le \eta_{C} = 1 - \frac{T_{Fria}}{T_{Caliente}}$$

- Para que el rendimiento sea 1 debería pasar que Q_{ENT}=0
- Esto implicaría una conversión total del calor entregado por la fuente caliente en trabajo ← Esto no es posible

Segundo principio de la termodinámica

- Enunciado de Kelvin-Planck (K-P)
 No es posible construir una máquina térmica que,
 operando en forma cíclica, produzca como único efecto
 la absorción de calor procedente de un foco y la
 realización de una cantidad equivalente de trabajo.
- Expresa un hecho empírico, y va por la negativa: nos dice lo que no es posible hacer
- El rendimiento de una máquina térmica siempre será menor que 1

Segundo principio de la termodinámica

- Enunciado de Clausius
 No es posible un proceso que tenga como único
 resultado la transferencia de calor de un cuerpo hacia
 otro más caliente.
- Al igual que K-P, también expresa un hecho empírico, y también va por la negativa

• Establece un sentido para el flujo espontáneo de calor de los focos calientes a los focos fríos y no al revés

Ambos enunciados son equivalentes:

Supongamos existe una máquina que no cumple K-P:

- Dado que, por el 1er ppio, $W_1=Q_1 \rightarrow Q_3=Q_1+Q_2$.
- y puesto que la fuente caliente entrega Q₁ y recibe Q₃, hay una transferencia neta y espontánea Q₂ de T_F a T_C

Equivalencia

- Ambos enunciados son equivalentes:
- Tengo una máquina términa normal operando, y supongamos existe una máquina que no cumple Clausius:

- Por el 1^{er} ppio, W₁=Q₁-Q₂
- puesto que Q₂ vuelve a la fuente caliente, esta entrega una cantidad de calor (Q₁-Q₂) en forma de trabajo W₁.

Equivalencia

 Hemos visto que el no cumplimiento de un enunciado implica el no cumplimiento del otro enunciado → Ambos enunciados del 2º principio son equivalentes

Reversibilidad, otra vez

- Podemos transformar íntegramente el trabajo en calor (estufa), pero no íntegramente el calor en trabajo (K-P)
- Proceso reversible →
 - La transformación puede ocurrir en los dos sentidos de forma que el estado final del sistema y del entorno sea exactamente igual al incial (sin huellas); ó
 - Aquel cuyo sentido puede invertirse por un cambio en las condiciones de fondo
- Proceso irreversible → no hay camino inverso.
- Todos los procesos reales son irreversibles:

iisi hay ΔT, entonces hay irreversibilidad!!

Proceso irreversible

El proceso es irreversible porque el entorno cambió: realizó un trabajo sobre el sistema

Irreversibilidad

- Interna: procesos internos fuera de equilibrio → el sistema no está en un estado termodinámico definido
 - Mecánica: conversión de trabajo en calor (p. ej., viscosidad)
 - Térmica: transferencias de calor en el sistema
 - Químico-físicas: reacciones, mezclas, disoluciones, ...
 - •
- Externa: la interacción con el medio es irreversible
 - Mecánica: el rozamiento es irreversible (si no, viola K-P)
 - Térmica: transferencias de calor con el medio
 - •

Máquina reversible e irreversible

H. Asorey - F3B 2020

Máquina reversible e irreversible

H. Asorey - F3B 2020

Carnot y el segundo principio

- En la fuente caliente:
- En la fuente fría

• Sale:
$$Q_1$$
 lo que sale menos lo que entra
$$Q_2 = \frac{\eta_1}{\eta_c} Q_1$$
 $\Rightarrow \Delta Q_c = Q_1 - Q_2 = Q_1 \left(1 - \frac{\eta_1}{\eta_c}\right)$

• Sale:
$$Q_{2f} = Q_1 \frac{\eta_1}{\eta_c} (1 - \eta_c)$$
 lo que entra menos lo que sale • Entra: $Q_{1f} = Q_1 (1 - \eta_1)$ $\Rightarrow \Delta Q_f = Q_{1f} - Q_{2f} = Q_1 \left(1 - \frac{\eta_1}{\eta_c}\right)$

$$\rightarrow \Delta Q_f = \Delta Q_c \equiv \Delta Q$$

Balance de energía en cada fuente

Entendiendo AQ

Entendiendo AQ

Si △Q es negativo....

Una máquina térmica que no cumple el teorema de Carnot, es decir, si su rendimiento es mayor al de Carnot operando entre las mismas fuentes, $\eta_1 > \eta_C$, entonces esa máquina no

cumple el postulado de Clausius

¡Violación del 2do principio!

May , H. Asorey - F3B 2O2O 24/28

Dos máquinas de Carnot

H. Asorey - F3B 2020

Dos máquinas de Carnot

• En la fuente caliente:

• Sale:
$$Q_1$$

• Entra:
$$Q_2 = \frac{\eta_c}{\eta_c} Q_1$$

En la fuente fría

• Sale:
$$Q_{2f} = Q_1 \frac{\eta_c}{\eta_c} (1 - \eta_c)$$

• Entra: $Q_{1f} = Q_1 (1 - \eta_c)$ $\Rightarrow \Delta Q_f = Q_{1f} - Q_{2f} = 0$

• Entra:
$$Q_{1f} = Q_1 (1 - \eta_c)$$

• Sale:
$$Q_1$$
• Entra: $Q_2 = \frac{\eta_c}{\eta_c} Q_1$
• $\Delta Q_c = Q_1 - Q_2 = 0$

$$\rightarrow \Delta Q_f = Q_{1f} - Q_{2f} = 0$$

$$\rightarrow \Delta Q_f = -\Delta Q_c = \Delta Q = 0$$

no hay flujo neto de energía entre las fuentes

Conclusión, η es el rendimiento de una máquina térmica no reversible, entonces

• Si $\eta = \eta_c \rightarrow$ El motor combina funciona sin ningún efecto, pero la máquina térmica tiene disipación

Violación del Primer Principio

 Si η>η_c → Transferencia neta de calor de la fuente fría a la fuente caliente, sin trabajo externo

Violación del Segundo Principio

Entonces, sólo es posible: η<η_c:

Una máquina térmica sólo puede tener menor rendimiento que una máquina de Carnot funcionando entre las mismas temperaturas

Enunciados del segundo principio

- Clausius → No es posible un proceso que tenga como único resultado la transferencia de calor de un cuerpo hacia otro más caliente
- Kelvin-Planck → No es posible construir una máquina térmica que, operando en forma cíclica, produzca como único efecto la absorción de calor procedente de un foco y la realización de una cantidad equivalente de trabajo
- Carnot → El rendimiento de una máquina térmica no puede ser superior que el de una máquina reversible que opere entre los mismos focos. Será igual sí y sólo sí esa máquina es también reversible