

Feb 2025 2

### **Project Story**

- Benefits of Crop Residue
  - Reduces erosion
  - Improves moisture retention
  - Increases organic matter → Enhances soil health
- Need for Automation
  - Measuring crop residue manually → Time-consuming & difficult
  - Technology solution:
    - Use mobile phones or drones to capture images
    - Al model analyzes images to estimate crop residue coverage

### **Targeted Audience**

This project is for the farmers and researchers interested in analysis of crop residue coverage

of a given field



### Roles and Responsibilities

- Saiman Model development
- Akash Data Augmentation, Model Searching
- Nipun Application Model integration
- Aayush Preprocessing, Model Evaluation
- Puumaaya Preprocessing, Data Cleaning



### Pre-processing

 Combine Residue dataset with Sunlight dataset to create 4 classes

- Residue | Sunlight -> Class 0
- Residue | Shade -> Class 1
- Background | Sunlight -> Class 2
- Background | Shade -> Class 3





### **Data Augmentation**

- Used the albumentations library in python
- Necessary due to the small size of training examples provided for this task.
- Following is the space of transforms, a transform was picked at random.

### **Data Augmentation**

- The following transformations were applied with a .5 probability:
  - Horizontal Flip
  - Vertical Flip
  - Rotate by 90
- And these were applied with .2 probability
  - Randomly change the brightness and contrast
  - Adjust Hue, Saturation and Value by a maximum of 20,30,20 respectively
  - Add Gaussian noise between 10 and 50
  - o Blur with a limit of 3

#### **Original Image**



#### **Augmented Image**



### Model background

- Hierarchical Transformer
  Encoder and Lightweight MLP
  module
- Takes local and global features.
- Hierarchical features from encoders and MLP to fuse features and predict masks.



Feb 2025 10

### **Model Creation**

- Full-fine tuning the SegFormer model.
- Multi-scale feature recognition in SegFormer.
- No positional encoding instead the mixed feed forward network uses a CNN layer to give positional information.
- The final decoder layer aggregates information from different layers, and thus combining both local attention and global attention.

11

### **Testing**





12

### Sample Prediction









Residue with sunlight: 278.75 mm<sup>2</sup> Residue with shade 1: 17.91 mm<sup>2</sup>

Background with sunlight: 2060.96 mm<sup>2</sup>

Background with shade: 263.82 mm<sup>2</sup>

## **Confusion Matrices**









### **App Development**







15

# **Key Findings**

**Optimized Crop Residue Management** 

->

By accurately identifying **residue vs. soil**, farmers can adjust tillage practices, leading to **better soil health**, **moisture retention**, and **reduced erosion**.

**Enhanced Irrigation and Fertilization** 



Identifying **sunlit vs. shaded** areas helps in understanding microclimates within fields, allowing for **targeted irrigation** and **fertilizer application** to maximize yields

**Promotes Sustainable Farming** 



Managing crop residue correctly reduces **soil erosion**, **runoff**, and **carbon emissions**, supporting **sustainable agricultural practices**.

**Data-Driven Decisions** 



Companies can use this data to offer advisory services or integrate it into farm management software for real-time decision-making.

## Code

The code developed and used in this hackathon can be found at https://github.com/raoakash1997/CropResiduePredictor

### **Model Info**

- interest to introduce Transformers to vision tasks.
- Multi-scale feature recognition in SegFormer.
- Full fine-tuning.
- Hierarchical transformer encoder.
- Light-weight MLP modules, can be used in any test cases.
- No positional embedding.
- lightweight MLP decoder where the key idea is to take advantage of the Transformer-induced features where the attentions of lower layers tend to stay local, whereas the ones of the highest layers are highly non-local. By aggregating the information from different layers, the MLP decoder combines both local and global attention.