report.md 4/2/2023

作业2实验报告

1900012731 王一鸣

任务2并行加速top-down BFS

做法:在取队头结点的循环和进行扩展这两个循环都使用#pragma omp parallel for,并使用#pragma omp critical保护对于new_frontier的更新以及读取,使得new frontier的节点储存正常。

任务3 实现并加速bottom-up BFS

在单线程上成功实现了bottom-up BFS,遗憾的是,它在grid1000x1000.graph以及更大的图上跑不通(超时),因而只能在此报告grid100x100.graph的结果。

加速:对遍历图上结点的大循环做并行加速,并使用critical pragma保护对于new_frontier的更新以及读取。

任务4 实现hybrid BFS

做法:当frontier的size大于图节点个数的四分之一,则采用bottom-up BFS,反之则采用top-down BFS。

测试结果如下,为grid100x100.graph的结果。

Your Coo	le: Timing Summary		
Threads	Top Down	Bottom Up	Hybrid
1:	0.04 (1.00x)	0.22 (1.00x)	0.01 (1.00x)
2:	0.02 (2.58x)	0.23 (1.00x)	0.01 (0.93x)
4:	0.01 (4.71x)	0.23 (0.97x)	0.01 (1.39x)
8:	0.01 (6.89x)	0.23 (0.99x)	0.01 (2.11x)
16:	0.01 (6.44x)	0.22 (1.00x)	0.01 (1.86x)
32:	0.03 (1.40x)	0.23 (0.99x)	0.01 (1.02x)
40:	0.01 (2.73x)	0.23 (0.98x)	0.01 (1.00x)
Reference	e: Timing Summary		
Threads	Top Down	Bottom Up	Hybrid
Threads 1:	,	Bottom Up 0.01 (1.00x)	Hybrid 0.00 (1.00x)
	Top Down		,
1:	Top Down 0.00 (1.00x)	0.01 (1.00x)	0.00 (1.00x)
1: 2:	Top Down 0.00 (1.00x) 0.00 (0.40x)	0.01 (1.00x) 0.01 (1.20x)	0.00 (1.00x) 0.00 (1.14x)
1: 2: 4:	Top Down 0.00 (1.00x) 0.00 (0.40x) 0.00 (0.37x)	0.01 (1.00x) 0.01 (1.20x) 0.00 (1.50x)	0.00 (1.00x) 0.00 (1.14x) 0.00 (0.91x)
1: 2: 4: 8:	Top Down 0.00 (1.00x) 0.00 (0.40x) 0.00 (0.37x) 0.00 (0.29x)	0.01 (1.00x) 0.01 (1.20x) 0.00 (1.50x) 0.00 (1.96x)	0.00 (1.00x) 0.00 (1.14x) 0.00 (0.91x) 0.00 (0.83x)
1: 2: 4: 8: 16:	Top Down 0.00 (1.00x) 0.00 (0.40x) 0.00 (0.37x) 0.00 (0.29x) 0.00 (0.30x)	0.01 (1.00x) 0.01 (1.20x) 0.00 (1.50x) 0.00 (1.96x) 0.00 (2.05x)	0.00 (1.00x) 0.00 (1.14x) 0.00 (0.91x) 0.00 (0.83x) 0.00 (0.70x)

Speedup	۷S.	Reference:		
Threads		Top Down	Bottom Up	Hybrid
1:		0.01	0.03	0.23
2:		0.05	0.02	0.19
4:		0.09	0.02	0.35
8:		0.18	0.01	0.57
16:		0.16	0.01	0.60
32:		0.10	0.02	0.62
40:		0.21	0.02	0.64

可以看到,并行加速在top-down、hybrid都有效果,并且hybrid的耗时更少。然而,在bottom-up下的BFS,我实现的并行加速并没有明显效果。

分析

report.md 4/2/2023

• 关于top-down BFS的另一种加速尝试

使用#pragma omp ordered,这样可以省去对于临界区的竞争,缺点是执行顺序固定。

结果如下(在grid1000x1000.graph上测试):

Your Cod	e: Timing Summary		
Threads	Top Down	Bottom Up	Hybrid
1:	0.10 (1.00x)	0.00 (1.00x)	0.00 (1.00x)
2:	0.05 (2.00x)	0.00 (0.67x)	0.00 (0.66x)
4:	0.05 (2.09x)	0.00 (0.59x)	0.00 (0.62x)
8:	0.05 (2.19x)	0.00 (0.85x)	0.00 (0.72x)
16:	0.07 (1.52x)	0.00 (0.59x)	0.00 (2.28x)
32:	0.09 (1.13x)	0.00 (0.24x)	0.00 (0.56x)
40:	0.10 (0.98x)	0.00 (0.73x)	0.00 (0.38x)
Reference	e: Timing Summary		
Threads	Top Down	Bottom Up	Hybrid
1:	0.08 (1.00x)	5.69 (1.00x)	1.91 (1.00x)
2:	0.04 (1.85x)	3.47 (1.64x)	1.17 (1.64x)
4:	0.06 (1.39x)	1.92 (2.96x)	0.70 (2.75x)
8:	0.04 (2.00x)	1.19 (4.79x)	0.51 (3.77x)
16:	0.04 (1.96x)	0.80 (7.15x)	0.38 (5.08x)
32:	0.04 (2.06x)	0.67 (8.49x)	0.33 (5.78x)
40:	0.04 (1.97x)	0.64 (8.85x)	0.32 (5.96x)

Correctness:

Bottom Up Search is not Correct Hybrid Search is not Correct

可以看到,加速比随线程的增加而减少,因为这样会导致越来越多的线程处于等待状态。

在random_1m.graph上的加速比就更差了:

Your Cod	e: Timing Summary	,	
Threads	Top Down	Bottom Up	Hybrid
1:	0.15 (1.00x)	0.00 (1.00x)	0.00 (1.00x)
2:	0.15 (1.02x)	0.00 (1.05x)	0.00 (0.93x)
4:	0.16 (0.92x)	0.00 (1.03x)	0.00 (0.91x)
8:	0.19 (0.78x)	0.00 (0.91x)	0.00 (0.94x)
16:	0.21 (0.74x)	0.00 (0.93x)	0.00 (0.61x)
32:	0.22 (0.70x)	0.00 (1.21x)	0.00 (0.46x)
40:	0.22 (0.68x)	0.00 (0.78x)	0.00 (0.38x)
Referenc	e: Timing Summary	,	
Threads	Top Down	Bottom Up	Hybrid
1:	0.12 (1.00x)	0.20 (1.00x)	0.06 (1.00x)
2:	0.07 (1.66x)	0.13 (1.54x)	0.04 (1.45x)
4:	0.08 (1.41x)	0.07 (3.05x)	0.03 (1.77x)
8:	0.04 (2.67x)	0.04 (4.45x)	0.02 (2.58x)
16:	0.03 (3.37x)	0.03 (7.99x)	0.02 (2.62x)
32:	0.03 (4.28x)	0.02 (11.64x)	0.02 (3.01x
40:	0.02 (5.18x)	0.02 (12.66x)	0.02 (3.25x

Correctness:

Bottom Up Search is not Correct Hybrid Search is not Correct

不过, 其运行时间还是比较优的。

• 关于bottom-up BFS的运行失败。

个人猜测是因为算法本身效率过低,当然也可能是我的实现(按照提供的伪代码实现)有可以优化的地方。