Reanalysis

Julia Haaf

3/5/2020

```
library(ggpubr)

## Loading required package: ggplot2

## Loading required package: magrittr

library(metaBMA)

## Loading required package: Rcpp

library(ggplot2)
library(knitr)
library(kableExtra)
library(papaja)
library(lemon)

ggplot2::theme_set(theme_apa(base_size = 14))
```

This document combines all analyses to draw plots.

Running Analyses

```
library(BayesFactor)
library(MCMCpack)
library(knitr)
library(kableExtra)
library(metafor)
library(papaja)
require(ggplot2)
ggplot2::theme_set(theme_apa(base_size = 10))
bayesBF <- function(dat, rScale = c(1, .4, .24), M = 30000, Mprior = 200000)</pre>
    N <- nrow(dat)
    J <- length(unique(dat$source))</pre>
    loc <- unique(dat$source)</pre>
    cond <- 2 - as.numeric(dat$ms_condition)</pre>
    alpha <- 1:J
    beta <- (J + 2):(2 * J + 1)
    mu \leftarrow J + 1
    X \leftarrow matrix(nrow = N, ncol = 2 * J + 1, 0)
    for(i in 1:N){
```

```
locit <- which(loc == dat$source[i])</pre>
  X[i, locit] <- 1</pre>
  X[i, J + 1] \leftarrow cond[i]
  X[i, J + 1 + locit] \leftarrow cond[i]
    gMap \leftarrow rep(0:2, c(J, 1, J))
    samples <- nWayAOV(dat$pro_minus_anti, X</pre>
                         , gMap, rscale = rScale
                         , posterior = T, iterations = M)
    bfFull <- nWayAOV(dat$pro_minus_anti, X</pre>
                        , gMap, rscale = rScale
                        , posterior = F, iterations = M)$bf
    bfNull <- nWayAOV(dat$pro_minus_anti, X[ , 1:J]</pre>
                        , gMap[1:J], rscale = rScale[1]
                        , posterior = F, iterations = M)$bf
    bfOne <- nWayAOV(dat$pro_minus_anti, X[ , 1:(J + 1)]</pre>
                       , gMap = rep(0:1, c(J, 1),), rscale = rScale[1:2]
                       , posterior = F, iterations = M)$bf
    samplesOne <- nWayAOV(dat$pro_minus_anti, X[ , 1:(J + 1)]</pre>
                            , gMap = rep(0:1, c(J, 1),), rscale = rScale[1:2]
                            , posterior = T, iterations = M)
    #Positive Effects (random)
    effect <- samples[500:M, beta + 1] + samples[500:M, mu + 1]
    post.pos <- mean(apply(effect > 0, 1, mean) == 1)
    gm <- rinvgamma(Mprior, .5, .5 * rScale[3]^2)</pre>
    m.1 <- rnorm(Mprior, 0, sqrt(gm))</pre>
    g <- rinvgamma(Mprior, .5, .5*rScale[2]^2)
    a1 <- 1:Mprior
    for (m in 1:Mprior) a1[m] = mean(rnorm(J, m.1[m], sqrt(g[m])) > 0)
    prior.pos \leftarrow mean(a1 == 1)
    #Positive Effect (common)
    effectOne <- samplesOne[500:M, mu + 1]
    post.pos.One <- mean(effectOne > 0)
    bfpostUpdate <- post.pos.One / .5</pre>
    bf <- c(exp(bfFull - bfNull)</pre>
             , exp(bfOne - bfNull) * bfpostUpdate
             , exp(bfFull - bfNull) * post.pos/prior.pos)
    out <- c(bf, post.pos, prior.pos)</pre>
    names(out) <- c("F0", "10", "P0", "post.pos", "prior.pos")</pre>
    effsize \leftarrow samples[500:M, mu + 1]/sqrt(samples[500:M, 2 * J + 3])
    effsizeCI <- quantile(effsize, probs = c(.025, .975))</pre>
    return(list("bfs" = out, "effects" = effect, "N" = nrow(dat), "ES" = mean(effsize), "CI" = effsizeC
}
simple.fig <- function(dat){</pre>
  meansbycondloc <- with(dat
                           , tapply(pro_minus_anti
                                     , list(source, ms_condition)
```

```
, mean, na.rm = TRUE))
effects <- meansbycondloc[, 1] - meansbycondloc[, 2]
plot(sort(effects)
    , pch = 19, ylab = "Effect", xlab = "Source")
abline(h = 0)
}</pre>
```

Reanalysis with Exclusion Criterion .1.1

This is the original main analysis that is the basis for the key claims of the Many Labs 4 project.

```
dat.111 <- read.csv2("data/reanalysis_111.csv", header = T)</pre>
dat.211 <- read.csv2("data/reanalysis_211.csv", header = T)</pre>
dat.311 <- read.csv2("data/reanalysis_311.csv", header = T)</pre>
rean.111 <- bayesBF(dat = dat.111)</pre>
rean.111$bfs
##
                                         P0
                           10
                                                post.pos
                                                             prior.pos
## 2.871235e-02 9.665975e-02 9.592383e-05 2.711772e-04 8.117000e-02
rean.111$ES
## [1] 0.009033331
rean.111$CI
##
         2.5%
                    97.5%
## -0.1071739 0.1222694
resFig(rean.111$effects, dat = dat.111)
```



```
rean.211 <- bayesBF(dat = dat.211)
rean.211$bfs

## F0 10 P0 post.pos prior.pos
## 0.051531827 0.177922280 0.008499185 0.015863869 0.096185000
rean.211$ES

## [1] 0.01896612
rean.211$CI

## 2.5% 97.5%
## -0.1716215 0.2133810
resFig(rean.211$effects, dat = dat.211)</pre>
```



```
rean.311 <- bayesBF(dat = dat.311)
rean.311$bfs

## F0 10 P0 post.pos prior.pos
## 0.11074030 0.35693300 0.07413884 0.07189587 0.10739000
rean.311$ES

## [1] 0.04682775
rean.311$CI

## 2.5% 97.5%
## -0.2249348 0.3170858
resFig(rean.311$effects, dat = dat.311)</pre>
```


Reanalysis with Exclusion Criterion .3.2

```
(1,3,2), (2,3,2), \text{ and } (3,3,2)
dat.132 <- read.csv2("data/reanalysis_132.csv", header = T)</pre>
dat.232 <- read.csv2("data/reanalysis_232.csv", header = T)</pre>
dat.332 <- read.csv2("data/reanalysis_332.csv", header = T)</pre>
rean.132 <- bayesBF(dat = dat.132)</pre>
rean.132$bfs
                                         post.pos prior.pos
                        10
                                    P0
## 0.07421107 0.48624378 0.08351309 0.13663944 0.12142000
rean.132$ES
## [1] 0.08095625
rean.132$CI
                     97.5%
##
          2.5%
## -0.1242964 0.2870481
resFig(rean.132$effects, dat = dat.132)
```



```
rean.232 <- bayesBF(dat = dat.232)
rean.232$bfs

## F0 10 P0 post.pos prior.pos
## 0.1477902 1.0323751 0.3681414 0.3052439 0.1225400

rean.232$ES

## [1] 0.1376586

rean.232$CI

## 2.5% 97.5%
## -0.1060859 0.3862968

resFig(rean.232$effects, dat = dat.232)</pre>
```



```
rean.332 <- bayesBF(dat = dat.332)
rean.332$bfs

## F0 10 P0 post.pos prior.pos
## 0.2034751 1.2116533 0.6369582 0.3821904 0.1220900

rean.332$ES

## [1] 0.1756868

rean.332$CI

## 2.5% 97.5%
## -0.1147384 0.4802415

resFig(rean.332$effects, dat = dat.332)
```


Summary

```
BFs <- rbind(rean.111$bfs, rean.211$bfs, rean.311$bfs, rean.132$bfs, rean.232$bfs, rean.332$bfs)
BFs <- round(1/ BFs[, 1:3], 2)
Ns <- c(rean.111$N, rean.211$N, rean.311$N, rean.132$N, rean.232$N, rean.332$N)
BFs <- cbind(Ns, BFs)
rownames(BFs) <- paste("Exclusion Criterion", c(111, 211, 311, 132, 232, 332))
colnames(BFs) <- c("Sample Size", "$BF_{0f}$", "$BF_{01}$", "$BF_{0+}$")</pre>
apa_table(BFs, escape = FALSE, caption = "Bayes factors for key analyses.", note = "All Bayes factors a
# kable(BFs, escape = FALSE, format = "latex") %>%
# kable_styling(latex_options = "striped", font_size = 12)
library(metaBMA)
library(ggplot2)
library(knitr)
library(kableExtra)
library(papaja)
library(lemon)
ggplot2::theme_set(theme_apa(base_size = 12))
default.prior
                  <- prior(family = "t",
                           param = c(0, 0.707, 1)
                           , lower = 0
```

Table 1: Bayes factors for key analyses.

	Sample Size	BF_{0f}	BF_{01}	BF_{0+}
Exclusion Criterion 111	2,211.00	34.83	10.35	10,424.94
Exclusion Criterion 211	637.00	19.41	5.62	117.66
Exclusion Criterion 311	277.00	9.03	2.80	13.49
Exclusion Criterion 132	700.00	13.48	2.06	11.97
Exclusion Criterion 232	386.00	6.77	0.97	2.72
Exclusion Criterion 332	229.00	4.91	0.83	1.57

Note. All Bayes factors are reported in favor of the null model.

```
oosterwijk.prior <- prior(family = "t",</pre>
                            param = c(0.35, 0.102, 3)
                            , lower = 0
vohs.prior
                   <- prior(family = "norm",
                            param = c(0.3, 0.15)
                              lower = 0
priors <- list(default = default.prior,</pre>
               oosterwijk = oosterwijk.prior,
               vohs = vohs.prior
# lower truncate priors at zero?
.bmaCalculateBFHeterogeneity <- function(prior_models, posterior_models){
# Returns the heterogeneity Bayes factor
  postOdds <- (posterior_models["random_HO"] + posterior_models["random_H1"]) /</pre>
               (posterior_models["fixed_HO"] + posterior_models["fixed_H1"])
  priorOdds <- (prior_models[3] + prior_models[4]) / (prior_models[1] + prior_models[2])</pre>
  BFheterogeneity <- postOdds/priorOdds
  return(BFheterogeneity)
}
# BFrf or BFfr?
.runRema <- function(y, SE, priors, extrainfo = FALSE){</pre>
# Returns a list containing:
# BFmu: dataframe with 1 row/3columns (BF per prior)
```

```
# BFtau: dataframe with 1 row/3columns (BF per prior)
# est: list containing 3 dataframes per prior
       with effect size and 95% credible interval estimates
  BFmu <- BFtau <- data.frame(default = 0,
                               oosterwijk = 0,
                               vohs = 0
  empty.dataframe <- data.frame(est.es = numeric(),</pre>
                                 est.lower = numeric(),
                                 est.upper = numeric()
  est <- list(default = empty.dataframe,
              oosterwijk = empty.dataframe,
              vohs = empty.dataframe
  m.est <- list(default = c(),</pre>
              oosterwijk = c(),
              vohs = c()
              )
  for(i in 1:length(priors)){
    rema <- meta_bma(y, SE, d = priors[[i]], control = list(adapt_delta = 0.995))
    BFmu[, i] <- 1/rema$inclusion$incl.BF # BF in favour of the null model
    if(extrainfo){
      BFtau[i] <- .bmaCalculateBFHeterogeneity(rema$prior_models, rema$posterior_models)
      est.es <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "mean"]
      est.lower <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "2.5%"]
      est.upper <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "97.5%"]
      est[[i]] <- rbind(est[[i]], cbind(est.es, est.lower, est.upper))</pre>
      m.est.es <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[1, "mean"]
      m.est.lower <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[1, "2.5%"]</pre>
      m.est.upper <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[1, "97.5%"]
      m.est[[i]] <- c(m.est.es, m.est.lower, m.est.upper)</pre>
    }
  }
  if(!extrainfo){
    return(BFmu)
  } else {
    remaResult <- list(BFmu = BFmu,
                       BFtau = BFtau,
                       est = est,
                       m.est = m.est
    return(remaResult)
 }
remaForest <- function(obs.data, est.data){</pre>
# Returns a forest plot with observed and estimated effects
```

```
I <- nrow(obs.data)</pre>
ord <- order(obs.data$vi)</pre>
es <- obs.data$yi[ord]
est.es <- est.data[ord, "est.es"]</pre>
est.lower <- est.data[ord, "est.lower"]</pre>
est.upper <- est.data[ord, "est.upper"]</pre>
studyLabels <- obs.data[ord, "source"]</pre>
lower <- es - qnorm(1.95/2) * obs.data$sei
upper \leftarrow es + qnorm(1.95/2) * obs.data$sei
y.obs <- I:1
y.est \leftarrow rev(seq(.6, I - .4, 1))
dfBoth <- data.frame(es = c(es, est.es),
                      y = c(y.obs, y.est),
                      studyLabels = c(studyLabels, studyLabels),
                      lower = c(lower, est.lower), upper = c(upper, est.upper),
                      g = rep(c("Observed", "Estimated"), each = I)
plot <- ggplot(dfBoth, aes(x = es, y = y)) +
        geom_vline(xintercept = 0, linetype = "dotted") +
        geom_point(aes(shape = as.factor(dfBoth$g)), colour = as.factor(dfBoth$g))) +
        geom_errorbarh(aes(xmin = dfBoth$lower, xmax = dfBoth$upper, colour = as.factor(dfBoth$g)),
                         height = .1, show.legend = FALSE) +
        scale_y_continuous(breaks = I:1, labels = as.character(studyLabels),
                                     expand = c(0, 0.5) +
        scale_color_manual("", values = c("black", "slategrey"),
                                     labels = c(gettext("Estimated"), gettext("Observed"))) +
        scale_shape_manual("", values = c(16, 15)) +
        guides(shape = guide_legend(reverse=TRUE, override.aes = list(size=3)),
               colour = guide_legend(reverse=TRUE)) +
        xlab("Mortality Salience Effect") +
        ylab(" ") +
        theme(axis.line.y = element_blank(),
              axis.ticks.y = element_blank())
return(plot)
```

Original Analysis

```
m.111 <- read.csv2("data/metaset_111.csv", header = T)
m.211 <- read.csv2("data/metaset_211.csv", header = T)
m.311 <- read.csv2("data/metaset_311.csv", header = T)

rema.111 <- .runRema(m.111$yi, m.111$sei, priors, TRUE)
rema.211 <- .runRema(m.211$yi, m.211$sei, priors, TRUE)
rema.311 <- .runRema(m.311$yi, m.311$sei, priors, TRUE)

remaForest(m.111, rema.111$est$default) + ggtitle("Exlusion Criterion 111")</pre>
```


remaForest(m.211, rema.211\$est\$default) + ggtitle("Exlusion Criterion 211")

remaForest(m.311, rema.311\$est\$default) + ggtitle("Exlusion Criterion 311")

Mortality Salience Effect

Analysis for the Main Claim of the Comment

```
m.132 <- read.csv2("data/metaset_132.csv", header = T)
m.232 <- read.csv2("data/metaset_232.csv", header = T)
m.332 <- read.csv2("data/metaset_332.csv", header = T)

rema.132 <- .runRema(m.132$yi, m.132$sei, priors, TRUE)
rema.232 <- .runRema(m.232$yi, m.232$sei, priors, TRUE)
rema.332 <- .runRema(m.332$yi, m.332$sei, priors, TRUE)

remaForest(m.132, rema.132$est$default) + ggtitle("Exlusion Criterion 132")</pre>
```

Table 2: Model-averaged Bayes factors for key analyses.

	Effect Size BF		Heterogeneity BF			
	Default	Oosterwijk	Vohs	Default	Oosterwijk	Vohs
Exclusion Criterion 111	12.60	44.69	16.64	0.44	0.43	0.44
Exclusion Criterion 211	7.95	16.84	7.20	0.41	0.42	0.42
Exclusion Criterion 311	4.18	4.01	2.49	0.56	0.57	0.57

Note. All Bayes factors are reported in favor of the null model.

Exlusion Criterion 132

remaForest(m.232, rema.232\$est\$default) + ggtitle("Exlusion Criterion 232")

remaForest(m.332, rema.332\$est\$default) + ggtitle("Exlusion Criterion 332")

Table 3: Model-averaged Bayes factors for comment analyses.

	Effect Size BF			Heterogeneity BF		
	Default	Oosterwijk	Vohs	Default	Oosterwijk	Vohs
Exclusion Criterion 132	3.82	5.84	2.75	0.39	0.40	0.40
Exclusion Criterion 232	1.42	0.90	0.66	0.48	0.50	0.47
Exclusion Criterion 332	1.45	0.73	0.62	0.53	0.53	0.52

All Other Variants

Table 4: Model-averaged Bayes factors for all other analyses.

	Default	Oosterwijk	Vohs
Exclusion Criterion 112	7.32	16.49	6.80
Exclusion Criterion 212	3.66	4.24	2.32
Exclusion Criterion 312	4.18	4.01	2.49
Exclusion Criterion 121	10.34	34.12	12.76
Exclusion Criterion 221	4.32	5.88	2.99
Exclusion Criterion 321	1.45	0.73	0.62
Exclusion Criterion 122	3.82	5.84	2.75
Exclusion Criterion 222	1.42	0.90	0.66
Exclusion Criterion 322	1.45	0.73	0.62
Exclusion Criterion 131	6.17	16.58	6.40
Exclusion Criterion 231	4.32	5.88	2.99
Exclusion Criterion 331	1.45	0.73	0.62

Plots Original Analysis

```
m.111$source

## [1] ashland azusa byui
```

```
## [4] cnj
                          illinois
                                            ithaca
## [7] kansas_expert
                                            occid
                        kansas_inhouse
## [10] pace_expert
                          pace_inhouse
                                            plu
## [13] riverside
                                            ufl
                          sou_inhouse
## [16] upenn
                          uwmadison_expert uwmadison_inhouse
## [19] vcu
                          wesleyan_inhouse wpi
## 21 Levels: ashland azusa byui cnj illinois ithaca ... wpi
m.111$labelpretty <- c("Ashland University", "Azusa Pacific University", "Brigham Young University - Id
m.211$source
## [1] ashland
                                          byui
                         azusa
                                                           cnj
## [5] ithaca
                         kansas_expert
                                          occid
                                                           pace_expert
## [9] riverside
                         upenn
                                          uwmadison_expert vcu
## 12 Levels: ashland azusa byui cnj ithaca kansas_expert ... vcu
m.211$labelpretty <- c("Ashland University", "Azusa Pacific University", "Brigham Young University - Id
m.311$source
## [1] ashland
                        byui
                                         cnj
                                                          kansas_expert
## [5] occid
                        pace_expert
                                         riverside
                                                          uwmadison_expert
## [9] vcu
## 9 Levels: ashland byui cnj kansas_expert occid pace_expert ... vcu
m.311$labelpretty <- c("Ashland University", "Brigham Young University - Idaho", "The College of New Je
forest.all(obs.data = dat.111, es.data = m.111, est.averaging = rema.111$est$default, est.multilevel = :
```


forest.all(obs.data = dat.311, es.data = m.311, est.averaging = rema.311\$est\$default, est.multilevel = :

Combining Evidence from multiverse analysis

```
sets <- c(111, 211, 311, 132, 232, 332, 112, 212, 312, 121, 221, 321, 122, 222, 322, 131, 231, 331)
ssize <- data.frame("metaset" = character(),</pre>
                     "N" = numeric(),
                      "N.study" = numeric()
for(i in sets){
  path.m <- paste0("data/reanalysis ", i, ".csv")</pre>
  m <- read.csv2(path.m, header = T)</pre>
  N \leftarrow nrow(m)
  path.m <- paste0("data/metaset_", i, ".csv")</pre>
  m <- read.csv2(path.m, header = T)</pre>
  N.study <- nrow(m)</pre>
  ssize <- rbind(ssize, c(i, N, N.study))</pre>
}
rema.all <- rbind(BFs.og[, 1:3]</pre>
                    , BFs.cmnt[, 1:3]
                     rema.other
rema.all <- 1/rema.all
rema.all <- cbind(rema.all, "N" = ssize[, 2], "N.study" = ssize[, 3])</pre>
rema.all <- cbind(rema.all, "Crit" = rownames(rema.all))</pre>
result <- tidyr::gather(rema.all, prior, bf, Default:Vohs, factor_key = TRUE)</pre>
result$Nscaled <- result$N.study/2
result <- result[!duplicated(result$bf),]</pre>
xrange <- c(0, 2500)
yrange \leftarrow c(1/50, 50) # log scale
# Plot with n participants included on the x-axis, BF01 on the y-axis, colors for
# participant exclusion sets and bubble sizes for number of studies included
ggplot(aes(x = N, y = bf, size = Nscaled, color = as.factor(prior)), data = result) +
```

```
geom_jitter(alpha = 0.6, width = 15) +
scale_y_continuous(trans='log', limits = yrange, breaks = c(1/50, 1/5, 1, 5, 50)) +
scale_size_identity() +
scale_colour_brewer(palette = 'Dark2') +
labs(x = 'Sample Size', y = expression(BF["10"]), color = "Priors") +
xlim(xrange) +
geom_hline(yintercept = 1) +
theme_apa() +
theme_classic(base_size = 19) +
theme(axis.line=element_line()) +
guides(color = guide_legend(override.aes = list(size = 4))) +
coord_capped_cart(gap = 0.1, bottom = 'none', left = 'none') + #caps the axes so they don't touch
theme(axis.title.x = element_text(vjust=-0.5),
      axis.text.x = element_text(vjust=-0.5),
      axis.text.y = element_text(hjust=.8,),
      axis.ticks.length = unit(0.25, 'cm'),
      legend.position = c(0.8, .85)
```



```
tab.all <- cbind(crits, rema.all[, c("N", "N.study")])</pre>
tab.all <- tab.all[order(tab.all$`N-based`), ]</pre>
tab.all <- tab.all[c(1:12, 16:18, 13:15),]
apa_table(tab.all
          , note = "Bla"
          , caption = "Exclusion constellations and resulting sample sizes"
          , col.names = c("Participant-level", "N-based", "Protocol", "Sample Size", "Number of Studies
          , row.names = F
          , digits = 0)
##
##
## \begin{table}[tbp]
## \begin{center}
## \begin{threeparttable}
## \caption{\label{tab:unnamed-chunk-4}Exclusion constellations and resulting sample sizes}
## \begin{tabular}{11111}
## \toprule
## Participant-level & N-based & Protocol & Sample Size & Number of Studies\\
## \midrule
## All & All & All & 2,211 & 21\\
## White \& US-born & All & All & 637 & 12\\
## US-Identity > 7 & All & All & 277 & 9\\
## All & All & AA & 799 & 9\\
## White \& US-born & All & AA & 463 & 9\\
## US-Identity > 7 & All & AA & 277 & 9\\
## All & N > 60 & All & 2,053 & 17\\
## White \& US-born & N > 60 & All & 549 & 9\
## US-Identity > 7 & N > 60 & All & 229 & 7\\
## All & N > 60 & AA & 700 & 7\\
## White \ US-born & N > 60 & AA & 386 & 7\
## US-Identity > 7 & N > 60 & AA & 229 & 7\\
## All & N > 80 & All & 1,852 & 14\\
## White \& US-born & N > 80 & All & 549 & 9\
## US-Identity > 7 & N > 80 & All & 229 & 7\
## All & N > 80 & AA & 700 & 7\\
## White \ US-born & N > 80 & AA & 386 & 7\
## US-Identity > 7 & N > 80 & AA & 229 & 7\\
## \bottomrule
## \addlinespace
## \end{tabular}
## \begin{tablenotes}[para]
## \normalsize{\textit{Note.} Bla}
## \end{tablenotes}
## \end{threeparttable}
## \end{center}
## \end{table}
```

Additional Info

Overall effect size estimates

```
default.prior.unconstrained
                                <- prior(family = "t",
                                          param = c(0, 0.707, 1)
priors.es <- list(default = default.prior.unconstrained</pre>
               )
rema.111.es <- .runRema(m.111$yi, m.111$sei, priors.es, TRUE)
rema.211.es <- .runRema(m.211$yi, m.211$sei, priors.es, TRUE)
rema.311.es <- .runRema(m.311$yi, m.311$sei, priors.es, TRUE)
rema.132.es <- .runRema(m.132$yi, m.132$sei, priors.es, TRUE)
rema.232.es <- .runRema(m.232$yi, m.232$sei, priors.es, TRUE)
rema.332.es <- .runRema(m.332$yi, m.332$sei, priors.es, TRUE)
es.tab <- rbind(
 rema.111.es$m.est[[1]]
 , rema.211.es$m.est[[1]]
 , rema.311.es$m.est[[1]]
 , rema.132.es$m.est[[1]]
 , rema.232.es$m.est[[1]]
  , rema.332.es$m.est[[1]]
kable(round(es.tab, 2), col.names = c("ES", "2.5%", "95%"))
```

ES	2.5%	95%
0.03	-0.07	0.13
0.03	-0.14	0.21
0.07	-0.21	0.33
0.08	-0.09	0.25
0.16	-0.07	0.40
0.18	-0.10	0.47

forest.all(obs.data = dat.111, es.data = m.111, est.averaging = rema.111.es\$est\$default, est.multilevel

A. University of Kansas Export

forest.all(obs.data = dat.311, es.data = m.311, est.averaging = rema.311.es\$est\$default, est.multilevel

