Sistemas Electrónicos 2014-15

DAC - ADC

Conversão D/A - A/D:

- Introdução.
- · Representação Binária.
- Conversores Digital/Analógico (DAC)
- Conversores Analógico/Digital (ADC)
- Amostragem

DETI-UA (JEO) SE 2014-15

DAC-ADC - I

Representação binária

Exemplo de palavra de 4 bits:

$$B = (b_3b_2b_1b_0)_2 = (b_3 \cdot 2^3 + b_2 \cdot 2^2 + b_1 \cdot 2^1 + b_0 \cdot 2^0)_{10}$$

Conversão para sinal analógico (sendo ∂v o degrau/incremento mínimo):

$$v_a = (8b_3 + 4b_2 + 2b_1 + b_0) \delta v$$

Full scale = 15V \rightarrow $\partial v = 1V$ $b = 1111 \rightarrow v_a = 8+4+2+1 = 15V$ Full scale = 5V \rightarrow $\partial v = 5/15 = 0.333V$

$$v_{a \max} = (2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0) \,\delta v$$
$$= (2^n - 1) \,\delta v$$

Exemplo de palavra de 6 bits: Full scale = $5V \rightarrow \partial v = 5/63 = 0,079V$

DETI-UA (JEO) SE 2014-15

DAC-ADC - 4

Representação binária (2)

Exemplo de palavra de 6 bits: Full scale = $5V -> \partial v = 5/63 = 0,079V$

Conversão A/D:

Conversão D/A:

 $v_A = 1 \times 5/63 \text{ V} -> v_D = 000001$

 $v_A = 2 \times 5/63 \text{ V} \rightarrow v_D = 000010$

 $V_A' = \text{sinal analógico após DAC}$

V''A =sinal analógico após DAC e FILTRO passa-baixo

 $0.5 \times 5/63 \text{ V} < v_A < 1.5 \times 5/63 \text{ V} \longrightarrow v_D = 000001$ ERRO de QUANTIZAÇÃO = ± 0,5 LSB

DETI-UA (JEO) SE 2014-15

DAC-ADC - 5

DAC

Conversor digital-analógico weighted-resistor

Full scale = 15V
$$\rightarrow \partial v = 1V$$

 $Ro = 10 \text{ k}\Omega$ e $V_{\text{in}} = -V_{\text{R}} = 5V$

$$S_i \text{ up } -> b_i = 1 -> v_{ai} = 5 R_F/R_i$$

LSB=1 ->
$$b = 0001$$
 -> $V_a = \partial v = 1V$

$$R_F = \frac{\delta v \ R_0}{V_{\rm in}} = \frac{1 \cdot 10^4}{5} = 2 \text{ k}\Omega$$

$$b = 1111 -> V_a = 8+4+2+1 = 15V$$

 $n = n^0$ de bits Generalizando:

$$v_a = \frac{R_F}{R_0} (2^{n-1}b_{n-1} + \dots + 2^1b_1 + 2^0b_0) \cdot V_{\text{in}}$$

DETI-UA (JEO) SE 2014-15

DAC-ADC - 6

DAC (2)

Conversor digital-analógico R-2R ladder network

 $n = n^0$ de bits

Com i de 0 a n-1; Ii = ??

Rx = R + (2R // 2R) = 2R à direita de cada nó a resistência é sempre 2R

$$I_1 = 2 I_0$$
 $I_2 = 2 I_1$... $I_{n-1} = 2 I_{n-2}$

$$I_{\text{n-1}} = 2 I_{\text{n-2}} = 4 I_{\text{n-3}} = 8 I_{\text{n-4}} = \dots = 2^{\text{n-2}} I_{\text{1}} = 2^{\text{n-1}} I_{\text{0}}$$

 $I_i = I_{n-1} / 2^{n-1-i}$

DETI-UA (JEO) SE 2014-15

DAC-ADC - 7

DAC (3)

Conversor digital-analógico R-2R ladder network

 $b_{i} = 1$:

comutador para a direita $b_i = 0$:

comutador para a esquerda

$$I_{\text{n-1}} = 2 I_{\text{n-2}} = 4 I_{\text{n-3}} = 8 I_{\text{n-4}} = \dots = 2^{\text{n-2}} I_{\text{1}} = 2^{\text{n-1}} I_{\text{0}}$$

$$I_{\rm i} = I_{\rm n-1} / 2^{\rm n-1-i}$$

$$I_{\text{n-1}} = V_{\text{REF}} / 2R$$

$$V_0 = -R_F (b_{n-1} I_{n-1} + b_{n-2} I_{n-2} + ... + b_1 I_1 + b_0 I_0)$$

Se $R_F = R$, pondo em evidência V_{REF} e 1/R, temos:

$$V_{\text{O}} = -V_{\text{REF}} \left(\frac{b_{\text{n-1}}}{2} + \frac{b_{\text{n-2}}}{4} + \dots + \frac{b_1}{2^{\text{n-1}}} + \frac{b_{\text{O}}}{2^{\text{n}}} \right)$$

DETI-UA (JEO) SE 2014-15

DAC-ADC - 8

ADC

Tempo de conversão: depende do princípio de funcionamento da ADC.

Resolução (nº de bits):

· Considerando a full-range do sinal analógico à entrada da ADC:

$$v_{a \max} = (2^{n-1} + 2^{n-2} + \dots + 2^1 + 2^0) \,\delta v$$
$$= (2^n - 1) \,\delta v$$

· ∂v é a resolução, ou seja, 1 parte em 2ⁿ-1

Exemplo: ADC de 8 bits com full-range de 10V:

- resolução de 1 parte em 255, ou
- resolução de 0,4% da full-range, ou
- resolução de 40 mV.

DETI-UA (JEO) SE 2014-15

DAC-ADC - 9

