$\begin{array}{c} \text{Homework} \ \#7 \\ \text{Computational Microelectronics} \end{array}$

Seongpyo Hong

Due on October 22, 2018

1 Results

We have calculated the electron density and integrated electron density by solving the Schrödinger equation of 3D infinite potential well. Note that, by setting $L_x = L_y = 100$ nm and $L_z = 0.5$ nm, we approximately the quantum number about z-direction n_z as a subband number. We find that the integrated electron density increases with the Fermi energy E_F . And the electron density also increases and become more flat near the midpoint in the z-direction.

Figure 1: The integrated electron density n_{2D} as a function of the Fermi energy E_F .

Figure 2: Snapshot of the electron density n_{3D} in the z-direction.