T- Test:

T-Test will tell the significance difference between the groups

When to use T-Test:

- * Data are Independent
- * Datas are noramlly distributed (check distribution by applying skewness)

Types of T-Test:

- * Paired T-Test (If the groups come from a single population)
- * Two-Sample T-Test (If the groups come from two different)
- * One-Sample T-Test (If there is one group being compared against a standard value)

T-Test:

t Table

- * One-tailed T-Test (AIML < Cyber)
- * Two-tailed T-Test (AIML && Cyber)

T-Test Table:

cum. prob	t.50	t.75	t .80	t .85	t .90	t.95	t .975	t.99	t 995	t .999	t .9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df		Same Property of		C. (C. (C. (C. (C. (C. (C. (C. (C. (C. (000000000000000000000000000000000000000	ALCO DOM	A. C.	Marine Trades		en the core	
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3,106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1,734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3,396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
100	0.000	0.011	0.043	1.042	1.230	1.000	1.504	2.004	2.020	0.174	0.000

Problem 1:

Suppose a botanical wants to know if the mean height of certain species of plant is equal to 15 inches. Sam collects a random sample of 12 plants and records each of its heights in inches.

1.282

1.282

80%

1.646

1.645

90%

Confidence Level

1.962

1.960

95%

2.330

2.326

98%

2.581

2.576

99%

3.098

3.090

99.8%

3.300

3.291

99.9%

1000

Z

0.000

0.000

0%

0.675

0.674

50%

0.842

0.842

60%

1.037

1.036

70%

Answer:		Defre ann age	
n = 12	$\bar{x} = 172/12$ $\bar{x} = 14.333$	* It is one sample T-test * level of significance = 0.05	
plant height (xi)	(n; - ā)	$(\chi_1^2 - \bar{\chi})^2$	-61
14	-0.33	0.1089	201
14	- 0. 33	0.1089	
16	1.67	P88F. &	
13	. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.7689	313
12	-2.33	5.4289	1111
14	2.64	7.1289	
15	F4.0	0.4489	
14	-0.33	0.1089	
15	0.67	0.4489	
13	-1.33	1. 7689	- 13
15	D: 67	0, 4489	1
14	-0.33	0.1089	
	0.04	20.6668	- 13 - 24
formula of one-s	ample t-test:		
T- fest = m	<u>-μ</u> √n		
$m \rightarrow m$		#	
$\mu \rightarrow hy$	pothesis mean		
8 → 8t	andard deviation	N	
$n \rightarrow nc$	of samples.		

Standard Deviation =
$$\sqrt{\frac{90.6668}{12-1}} = \sqrt{1.8788}$$
 $8d \Rightarrow 1.3706/$

Thest = $\frac{14.323-15}{\left(\frac{1.3706}{3.464}\right)}$
 $\Rightarrow \frac{-0.667}{0.3467} \Rightarrow -1.684/$

Degree of Freedom = $n-1$
 $= 12-1$
 $\Rightarrow 11$.

Now from Thable we need check value of degree of freedom 11 and 0.05

That value = 1.796
 -1.684×1.798

Thest value \times Thable civitical value

3. Accept the null hypothesis

Problem 2:

Data given for boys and girls height. Find if there is any significance difference in the boys and girls heright with alpha 0.025

*	* Two-sample T-test * Two-tailed T-test * level of significance = 0.025	Formu
Formula	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Formula:

$$\Rightarrow \frac{|\sqrt{8i} - \sqrt{8}|}{\sqrt{\frac{8}{n}} + \frac{8}{n}}$$

$$= \frac{|10.5 - 8|}{\sqrt{\frac{19.33}{4} + \frac{18.66}{4}}} = \frac{2.5}{\sqrt{7.714}}$$

$$\Rightarrow 0.89,$$

T-test value = 0.89

Degree of freedom = $n_1 + n_2 - a$.

$$= 4+4 - a$$

$$= 6,$$

T-table value = 3.94 if

 $0.89 < 2.94$ if

T-test value < T-table critical value

**. Accept the null hypothesis.

Question 3:

A Researcher wants to test a new anti-hunger weight loss pill. They have 10 people, rate their hunger before and after taking the pill. Does the pill do anything?

	The level of a	significanu = C		[8-9.0]
before	after	diff(x)	[यांक (या)]	18.81 + E8.21 V
9	7	2	4	
10	6	4	4	418.0 €
7	5	2	,	
5	4	1		T tet volue o.eq
A	4	3	4 - 19 + 19 = V	Digree of freedom
5	Ь	-1	5-44-	
9	7	2	4	
6	5	ĵ	Jan S	
8	F	3	entry stant -	
7	4	140.0	> ps.09	
	mint both	T- tablet	> audio 0 est -	T
formu		lium with ity		
	⇒ <u>1</u>	qui frant	$2 \rightarrow \text{mean}$	WIT Co
	87/41	v	$\lambda \rightarrow \text{mean}$ $\lambda = 1$	<u>V</u> _
	=1.7	_ 1.7		
	1.494/	= <u>1.7</u> 0.473	λ,	l=1.4.
	סורי	,,,		
	⇒ 8 79	-> 0 m		
		-> 3.59		


```
Syntax:

Type:
   Tail:
   alpha(level of significance) :
   solve

df = Critical value
   Calculated Value < Critical Value
        The Accept the Null Hypothesis</pre>
```

Probability Distribution:

```
In [5]:
x = c(14,14,16,13,12,17,15,14,15,13,15,14)
In [6]:
length(x)
12
In [9]:
# t.test = is used for the which sample test
# mu = hypothesis mean value
# conf.level = level of significance
t.test(x, mu=15, conf.level=0.05)
        One Sample t-test
data: x
t = -1.6848, df = 11, p-value = 0.1201
alternative hypothesis: true mean is not equal to 15
5 percent confidence interval:
14.30795 14.35872
sample estimates:
mean of x
 14.33333
In [10]:
# alternative = to mention the number of tails
             \ ^{*} In R code it uses the parameter alternative , it will accept 3 value
                        st "lesser" ot "greater" is the one tailed T-Test
                        * "two.sided" is the two tailed T-Test
In [11]:
t.test(x, mu=15, conf.level=0.05, alternative = "two.sided")
        One Sample t-test
data: x
t = -1.6848, df = 11, p-value = 0.1201
alternative hypothesis: true mean is not equal to 15
5 percent confidence interval:
14.30795 14.35872
sample estimates:
mean of x
 14.33333
```

```
In [12]:
t.test(x, mu=15, conf.level=0.05, alternative= "greater")
        One Sample t-test
data: x
t = -1.6848, df = 11, p-value = 0.9399
alternative hypothesis: true mean is greater than 15
5 percent confidence interval:
15.04394
sample estimates:
mean of x
14.33333
In [13]:
t.test(x, mu=15, conf.level=0.05, alternative = "less")
        One Sample t-test
data: x
t = -1.6848, df = 11, p-value = 0.06007
alternative hypothesis: true mean is less than 15
5 percent confidence interval:
     -Inf 13.62273
sample estimates:
mean of x
14.33333
In [ ]:
           For Two Sample Cases:
                 * If its a two sample special use paird = TRUE
                 * If its a two sample use paird = FALSE
In [14]:
x1 = c(14,8,7,13)
x2 = c(8,6,4,14)
In [23]:
t.test(x1, x2, paired= FALSE)
        Welch Two Sample t-test
data: x1 and x2
t = 0.89803, df = 5.7596, p-value = 0.4051
alternative hypothesis: true difference in means is not equal to \ensuremath{\text{0}}
95 percent confidence interval:
 -4.381432 9.381432
sample estimates:
mean of x mean of y
     10.5
                8.0
In [25]:
t.test(x1, x2, paired= FALSE, conf.level=0.01)
        Welch Two Sample t-test
data: x1 and x2
t = 0.89803, df = 5.7596, p-value = 0.4051
alternative hypothesis: true difference in means is not equal to \boldsymbol{\theta}
1 percent confidence interval:
2.463568 2.536432
sample estimates:
mean of x mean of y
     10.5
                8.0
```

```
In [21]:
```

```
b = c(9,10,7,5,7,5,9,6,8,7)
a = c(7,6,5,4,4,6,7,5,5,7)
x = c(2,4,2,1,3,-1,2,1,3,0)
```

In [26]:

```
t.test(b,a,paired=TRUE, conf.level=0.05)
```

Paired t-test

Binomial Distribution:

- * A Binomial Distribution is a discrete probability distribution
- * It describe the outcome of n independent trials in an experiment

$$P_x=inom{n}{x}p^xq^{n-x}$$

```
x = 0,1,2,3,.....
n = independent trial
p = probability of successfull trial
x = sucessful outcomes in an experiment of "n"
q = (1 - p)
```

In [27]:

```
# pbinom = is used for binomial distribution
# pbinom(successful outcome, size, probability)

pbinom(4, size = 12, prob = 0.2) # probability = 1/5 = 0.2
```

0.92744450048

Poison Distribution:

Poison is a probability ditribution of independent of event occurance in an interval

x = 0,1,2,3,....

 λ = Mean Occurance per interval

e = Euler's Constant ~ 2.71828

```
In [28]:
```

```
# ppois = is used for poison distribution
# ppois( , lambda)

ppois(16, lambda = s)

Error in ppois(16, lambda = s): object 's' not found
Traceback:

1. ppois(16, lambda = s)
```

Continuous Uniform Distribution:

Continuous Uniform Distribution is a probability distribution of the random numbers selection from the continuous interval between A to B $\,$

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{cases}$$

In [29]:

```
# runif = is used for continuous Uniform Distribution
# runif(number of numbers needed, minimum , maximum)
runif(10, min=1, max =5)
```

3.16520885378122 2.24853338487446 1.85274896863848 3.91063662618399 3.43775863293558 4.23783768713474 4.69304928742349 1.7086231932044 4.58909172657877 4.32584514189512

```
In [30]:
```

```
a = runif(10, min=1, max =5)
plot(density(a))
```

density.default(x = a)

Exponential Distribution:

Exponential Distribution describe the arrival time of a randomly reccuring independent event sequence

```
1/(\mu) e^{-x/u}
```

 $\boldsymbol{\mu}$ = mean waiting time for the next event

e = Euler's Constant ~ 2.71828

x = random variable

In [31]:

```
# pexp() = is used for exponential distribution
# pexp(value, rate)

pexp(2, rate = 1/3)
```

0.486582880967408

Normal Distribution:

Normal Distribution definied by the following probablity density function, where

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

- * σ = Variance
- * μ = Population Mean
- * x = Value of the variable or data

*

In [33]:

```
# pnorm() = is used for normal distribution
# pnorm(value, mean , standard deviation)
pnorm(84, mean=72, sd=15.2)
```

0.785082397688728

In []: