Graphon Signal processing

A graphon signal is defined as a function

 $\chi: (0,1) \to \mathbb{R} \qquad (x \in \mathbb{R}^n)$

We focus on signals in L_2 , $Z \in L_2(Co_117)$:

 $\int |\chi(u)|^2 du \leq B + \infty$

"Finite energy signals"

Like a graphon, graphon signals are limits of convergent sequences of graph signals

Induced graphon signals: Let (Gin, xin) be a graph signal. The induced graphon signal is defined as:

Wn is as in (*) in Lec. 15

Zn(u)= ∑ (×n]; J(u∈ Ij)

$$f$$
 is indicator fon , $J_i = \int \left(\frac{1}{n}, \frac{1}{n}\right)^{n-1}$, $J_i \leq n-1$

$$\left(\frac{n-1}{n}, \frac{1}{n}\right)^{n-1}$$
, $J_i \leq n-1$

E.a. :

Convergent sequences of graph signals:

A sequence of graph signals (Gn, xn) converges to the graphon signal (W, X) if I a sequence of permutations {TInIn such that for all motifs F,

$$t(F,Gn) \rightarrow t(F,w)$$
 &

$\|\chi_{\eta_n(G_n)} - \chi\|_{_{\mathcal{I}}} \to 0$

We write $\{(G_n, x_n)\}_n \rightarrow (W, \mathcal{Z})$

Cr the permutation seq. is independent of node labels

(we could do w/o them completely by defining a cut distance for graphon signals; this is done in Levie, 2023. However, since we are operating w/ signals in Lz, we will stick with this defn. for now)

- The graphon (shift) operator

The graphian W can be used to define an integral linear operator

 $T_{w}: L^{2}(C_{0}, C_{1}) \rightarrow L^{2}(C_{0}, C_{1})$ $\chi \longmapsto T_{w} \chi$

 $T_{w}\chi = \int_{0}^{1} W(u, \cdot) \chi(u) du$

This is a Hilbert-Schmidt operator:
it is continuous & campact
mapping bounded sets to subsets with com-
mapping bounded sets to subsets with compact closure
It is a HS operator because W is bounded,
so it is in Lz
It has HS norm $\ Tw\ _{HS}^2 = \ W\ _{L}^2$
Tw is called the "graphon = SSW(u,v) du do shift operator because if "diffuses" a a graphon signals over the graphon
shift operator because if "diffuses"
graphon signals over the graphon
-D The graphon Fourier transform (WFT)
Besides being a HS operator Cand Hus
Besides being a HS operator Courd Hus compact), Tw is self adjoint due to sym-
metry of W:
$(T_w x, y) = \langle x, T_w y \rangle$
, 0

Spectral theorem for self-adjoint compact operators on Hilbert spaces H:

For every such T, I an orthonormal basis of H consisting of eigenfunctions of T.

This basis, {\(\text{ii} \)_i, is countably infinite,

with corresponding real eigenvalues \(\text{l.} \text{l.} \)_i,

satisfying \(\text{l.} \)_i > 0.

In our case, T=Tw and H= Lz (co,13)

The function $(f:Co,I) \rightarrow \mathbb{R}$ is an eigenfon of Tw with eigenvalue λ if:

 $T_{w} \varphi = \lambda \cdot \varphi \qquad (S_{v} = \lambda_{v})$

There are infinitely many such i, I pairs (possibly w/ geometric multiplicity larger than one), but the eigenpairs are countable

{(λ_i, ψ_i)}

Since the
$$f_i$$
 form an orthonormal, they have unit norm $\|f_i\|^2 : \iint f_i(u) du$

→ We can write the graphan W in the basis { θi ji as:

$$W(u,r) = \sum_{i=0}^{\infty} \lambda_i \varphi_i(u) \varphi_i(v)$$

(S=V_LV")

Eigenvalue range: since $0 \le w \le 1$, $||Tw||_2 \le 1$, which means the eigenvalues of $||Tw||_2 \le 1$, the only possible accumulation point is 0 < c.f. spectral theorem)

We will leverage this to order the eigenvalues as {\lambda_j} \ighta_z \{0\cdot_2\} \text{with:

 $\lambda_{-1} \leqslant \lambda_{-2} \leqslant \ldots \leqslant 0 \leqslant \ldots \leqslant \lambda_{2} \leqslant \lambda_{1}$

eigenvalue accumulation at 0 Cound only ato) also means that, for any c>0,

$$\{\lambda_i : |\lambda_i| \ge c\} = n_c < + \infty$$

Eigenvalue convergence:

(THM) Let (Gn)n be a sequence converging a graphon W. Then

 $\lim_{n\to\infty} \frac{\lambda_{j}(A_{n})}{n} = \lambda_{j}(W) = \lim_{n\to\infty} \lambda_{j}(Tw_{n})$ $\lim_{n\to\infty} \frac{\lambda_{j}(A_{n})}{n} = \lim_{n\to\infty} \lambda_{j}(Tw_{n})$

$$T_{w_n} \varphi(v) = \int_{\alpha} W_n(u,v) \varphi(u) du = \lambda \varphi(v)$$

$$(**) \lambda \psi(\sigma \in I_j) = \sum_{i=1}^{n} (An)_{ij} \int \int (u \in I_i) \psi(u) du$$

$$constant \forall \sigma \in I_j$$

Rewrite (**) as:
$$\lambda x_{j} = \sum_{i=1}^{N} (An)_{ij} \times_{i} \frac{1}{n}$$

=> $\lambda x = 1$ $A_{n} \times =$ $\lambda_{j} (T_{un}) = \frac{\lambda_{j} (A_{n})}{n}$

For convergence: •) $t(C_{x_{j}}, G_{n}) = \sum_{i=1}^{N} \lambda_{i}^{x_{i}}$

•) $t(C_{x_{j}}, G_{n}) \rightarrow t(C_{x_{j}}, W)$

We are finally ready to define the graphon

Fourier transform.

Note that $T_{w} \times can$ be written as:

$$(T_{w} \times)(v) = \int_{0}^{\infty} W(y, v) \times (u) du$$

$$= \int_{0}^{\infty} \sum_{j \in Z \setminus \{0\}} \lambda_{j} y_{j}(v) \times (u) du$$

$$= \int_{0}^{\infty} \sum_{j \in Z \setminus \{0\}} \lambda_{j} y_{j}(v) \int_{0}^{\infty} X(u) y_{j}(u) du$$

$$= \int_{0}^{\infty} \sum_{j \in Z \setminus \{0\}} \lambda_{j} y_{j}(v) \int_{0}^{\infty} X(u) y_{j}(u) du$$

=
$$\sum_{j \in \mathbb{Z} \setminus \{0\}} \lambda_j \varphi_j(\sigma) \langle \chi, \varphi_j \rangle$$

G. I.e., we can represent the signal X in the graphon eigenbasis

The change of basis is the graphon Fourier transform.

(VEF) The graphon FT of a graphon signal (W, X) is a functional $\hat{X} = WFT(X)$

 $\hat{x}_{j} = \hat{x}(\lambda_{j}) = \int \chi(u) \psi(u) du$

Since the 2j are countable the WFT is always defined

(DEF) The inverse WFT (iWFT) is defined as: $iWFT(\hat{x}) = \sum_{j \in Z \setminus \{0\}} \hat{\chi}(\lambda_j) \varphi_j = \chi$

We recover X due to orthonormality of Eq.j.s. GiWFT is a proper inverse

