

Report No.: FR8D1924A

: 1 of 17

: 01

FCC RADIO TEST REPORT

FCC ID : Z64-CC3235MOD

Equipment : Dual-Band Wi-Fi® Module

Brand Name : Texas Instruments

Model Name : CC3235MODASM2MON

CC3235MODASF12MON

: SimpleLinkTM Wi-Fi® CC3235MOD Dual-Band **Marketing Name**

Wireless Microcontroller Module

Applicant : Texas Instruments Incorported

12500 TI BLVD., Dallas Texas, 75243

Manufacturer : Texas Instruments Incorported

12500 TI BLVD., Dallas Texas, 75243

Standard : FCC Part 15 Subpart C §15.247

The product was received on Dec. 19, 2018 and testing was started from Oct. 23, 2019 and completed on Nov. 08, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Lunis Win

Approved by: Louis Wu

TEL: 886-3-327-3456

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Page Number FAX: 886-3-328-4978 : Nov. 14, 2019 Issued Date

Table of Contents

Report No. : FR8D1924A

: 01

Hi	story c	of this test report	3
Sι	ımmar	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test (Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	8
3	Test F	Result	9
	3.1	Output Power Measurement	9
	3.2	Radiated Band Edges and Spurious Emission Measurement	10
	3.3	Antenna Requirements	14
4	List o	f Measuring Equipment	15
5	Unce	rtainty of Evaluation	17
Αŗ	pendi	x A. Conducted Test Results	
Αŗ	pendi	x B. Conducted Spurious Emission	
Αŗ	pendi	x C. Conducted Spurious Emission Plots	
Αŗ	pendi	x D. Cabinet Radiated Spurious Emission	
Αŗ	pendi	x E. Cabinet Radiated Spurious Emission Plots	
Αŗ	pendi	x F. Duty Cycle Plots	
•	•	x G. Setup Photographs	
Αŗ	pendi	x H. Original Report	

TEL: 886-3-327-3456 Page Number : 2 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

History of this test report

Report No. : FR8D1924A

Report No.	Version	Description	Issued Date
FR8D1924A	01	Initial issue of report	Nov. 14, 2019

TEL: 886-3-327-3456 Page Number : 3 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

Summary of Test Result

Report No.: FR8D1924A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(2)	6dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)	Power Output Measurement	Pass	-
-	15.247(e)	Power Spectral Density	Not Required	-
	45.047/ 1)	Conducted Band Edges		-
-	15.247(d)	Conducted Spurious Emission	Not Required	-
3.2	15.247(d) Radiated Band Edges and Radiated Spurious Emission		Pass	Under limit 0.58 dB at 65.890 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Remark:

- 1. Not required means after assessing, test items are not necessary to carry out.
- 2. This is a variant report by changing model name and adding a new antenna model. All the test cases were performed on original report which can be referred to Sporton Report Number FR8D1930A as appendix H. Based on the original report, the test cases were verified.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Tina Chuang

TEL: 886-3-327-3456 Page Number : 4 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

Wi-Fi 2.4GHz 802.11b/g/n and Wi-Fi 5GHz 802.11a

			Antenna Information		
	Antenna Type	Brand Name	Model	2.4GHz ~ 2.5GHz Gain(dBi)	4.9GHz ~ 5.8GHz Gain(dBi)
1.	РСВ	Texas Instruments	CC3235MODAx Dual-Band Wi-Fi Antenna	3.5	4.5
2.		Pulse	W3078	1.7	4.3
3.	Chip	Yageo	ANT5320LL04R2455A	2.17	3.51
4.		Ethertronics	M830520	1	2.6
5.		Efficilies	1000423	-0.6	4.5
6.	PCB	Loird	CAF94504	2	4
7.		Laird	CAF94505	2	4
8.			001-0012	2	2
9.	Dipole		080-0013	2	2
10.		LSR	080-0014	2	2
11.	DIEA		001-0016	2.5	3
12.	PIFA	PIFA	001-0021	2.5	3
Note	e: The EUT used	a Dual-Band W	'i-Fi Antenna (Antenna 1 f	rom Texas Instrume	nts)

Report No.: FR8D1924A

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

TEL: 886-3-327-3456 Page Number : 5 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978			
Test Site No.	Sporton Site No. TH05-HY			

Report No.: FR8D1924A

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. 03CH15-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated:, radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

Report No.: FR8D1924A

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2492 F MH=	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437		

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

TEL: 886-3-327-3456 Page Number : 7 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

2.3 Connection Diagram of Test System

Report No.: FR8D1924A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	L570	FCC DoC	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "CC31XX/CC32XX Radio Tool_v1.0.3.12" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-3456 Page Number : 8 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR8D1924A

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1
- 2. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.1.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 9 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR8D1924A

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 10 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

3.2.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR8D1924A

- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 11 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

3.2.4 Test Setup

For Conducted Measurement Setup:

Report No.: FR8D1924A

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 12 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

For radiated emissions above 1GHz

Report No.: FR8D1924A

3.2.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Conduced Spurious at Band Edges in the Restricted Band

Please refer to Appendix B and C.

3.2.7 Test Result of Conduced Spurious Emission in the Restricted Band

Please refer to Appendix B and C.

3.2.8 Test Result of Cabinet Radiated Spurious at Band Edges

Please refer to Appendix D and E.

3.2.9 Test Result of Cabinet Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix D and E.

3.2.10 Duty Cycle

Please refer to Appendix F.

TEL: 886-3-327-3456 Page Number : 13 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR8D1924A

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 14 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Sensor	DARE	RPR3006W	16I00054S NO10	10MHz~6GHz	Dec. 19, 2018	Oct. 23, 2019	Dec. 18, 2019	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	0932001	N/A	Oct. 03, 2019	Oct. 23, 2019	Oct. 02, 2020	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1207349	300MHz~40GH z	Sep. 06, 2019	Oct. 23, 2019	Sep. 05, 2020	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	Oct. 23, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Oct. 23, 2019	Mar. 26, 2020	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV40	101565	10Hz~40GHz	Jul. 12, 2019	Nov. 05, 2019~ Nov. 06, 2019	Jul. 11, 2020	Conducted (TH05-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 13, 2019	Nov. 05, 2019~ Nov. 06, 2019	Mar. 12, 2020	Conducted (TH05-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 13, 2019	Nov. 05, 2019~ Nov. 06, 2019	Mar. 12, 2020	Conducted (TH05-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2 GHx Lowpass	Sep. 22, 2019	Nov. 05, 2019~ Nov. 06, 2019	Sep. 21, 2020	Conducted (TH05-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60SS	SN2	3 GHz Highpass	Sep. 15, 2019	Nov. 05, 2019~ Nov. 06, 2019	Sep. 14, 2020	Conducted (TH05-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Oct. 31, 2019~ Nov. 08, 2019	Jan. 06, 2020	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 06, 2018	Oct. 31, 2019~ Nov. 08, 2019	Dec. 05, 2019	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&0 0800N1D01N- 06	41912&05	30MHz to 1GHz	Feb. 12, 2019	Oct. 31, 2019~ Nov. 08, 2019	Feb. 11, 2020	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-211 4	1-18GHz	Jul. 31, 2019	Oct. 31, 2019~ Nov. 08, 2019	Jul. 30, 2020	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 05, 2018	Oct. 31, 2019~ Nov. 08, 2019	Dec. 04, 2019	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2018	Oct. 31, 2019~ Nov. 08, 2019	Dec. 27, 2019	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0054001	1GHz~18GHz	May 19, 2019	Oct. 31, 2019~ Nov. 08, 2019	May 18, 2020	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY532701 95	1GHz~26.5GHz	Aug. 23, 2019	Oct. 31, 2019~ Nov. 08, 2019	Aug. 22, 2020	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY554201 70	20MHz~8.4GHz	Mar. 08, 2019	Oct. 31, 2019~ Nov. 08, 2019	Mar. 07, 2020	Radiation (03CH15-HY
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 27, 2018	Oct. 31, 2019~ Nov. 08, 2019	Dec. 26, 2019	Radiation (03CH15-HY)
Controller	ChainTek	3000-1	N/A	Control Turn table & Ant Mast	N/A	Oct. 31, 2019~ Nov. 08, 2019	N/A	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Oct. 31, 2019~ Nov. 08, 2019	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Oct. 31, 2019~ Nov. 08, 2019	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k 5)	RK-00045 1	N/A	N/A	Oct. 31, 2019~ Nov. 08, 2019	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY36980/ 4	30M-18G	Apr. 15, 2019	Oct. 31, 2019~ Nov. 08, 2019	Apr. 14, 2020	Radiation (03CH15-HY)

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : 15 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9838/4 PE	30M-18G	Apr. 15, 2019	Oct. 31, 2019~ Nov. 08, 2019	Apr. 14, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY802430 /4	30M~18GHz	May 13, 2019	Oct. 31, 2019~ Nov. 08, 2019	May 12, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 13, 2019	Oct. 31, 2019~ Nov. 08, 2019	Mar. 12, 2020	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30MHz-40GHz	Mar. 13, 2019	Oct. 31, 2019~ Nov. 08, 2019	Mar. 12, 2020	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-1 530-8000-40S S	SN4	1.53G Low Pass	Jul. 04, 2019	Oct. 31, 2019~ Nov. 08, 2019	Jul. 03, 2020	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3GHz High Pass Filter	Jul. 17, 2019	Oct. 31, 2019~ Nov. 08, 2019	Jul. 16, 2020	Radiation (03CH15-HY)

Report No. : FR8D1924A

TEL: 886-3-327-3456 Page Number : 16 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

Report No.: FR8D1924A

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

-		
	Measuring Uncertainty for a Level of Confidence	5.5
	of 95% (U = 2Uc(y))	5.5

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	5.2

TEL: 886-3-327-3456 Page Number : 17 of 17
FAX: 886-3-328-4978 Issued Date : Nov. 14, 2019

Report Number : FR8D1924A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Rebecca Li	Temperature:	21~25	°C
Test Date:	2019/10/23	Relative Humidity:	51~54	%

Report Number : FR8D1924A

TEST RESULTS DATA Peak Output Power

								2.4GH	Iz Band							
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	(Peak Conducted Power (dBm)	d	Po ^r Liı	ucted wer mit Bm)		G Bi)	_	RP wer Bm)	Lir	RP wer mit Bm)	Pass /Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	
11b	1Mbps	1	1	2412	17.28	-	-	30.00	-	3.50	-	20.78	-	36.00	-	Pass
11b	1Mbps	1	6	2437	17.45	-	-	30.00	-	3.50	-	20.95	-	36.00	-	Pass
11b	1Mbps	1	11	2462	17.33	-	-	30.00	-	3.50	-	20.83	-	36.00	-	Pass
11g	6Mbps	1	1	2412	19.01	-	-	30.00	-	3.50	-	22.51	-	36.00	-	Pass
11g	6Mbps	1	6	2437	19.64	-	-	30.00	-	3.50	-	23.14	-	36.00	-	Pass
11g	6Mbps	1	11	2462	19.07	-	-	30.00	-	3.50	-	22.57	-	36.00	-	Pass
HT20	MCS0	1	1	2412	19.05	-	-	30.00	-	3.50	-	22.55	-	36.00	-	Pass
HT20	MCS0	1	6	2437	19.53	-	-	30.00	-	3.50	-	23.03	-	36.00	-	Pass
HT20	MCS0	1	11	2462	18.98	-	-	30.00	-	3.50	-	22.48	-	36.00	-	Pass

Note: Measured power (dBm) has offset with cable loss.

Report Number : FR8D1924A

TEST RESULTS DATA Average Output Power

				2.4GH	Iz Band					
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Fac	uty ctor B)	Average Conducted Power (dBm)			
					Ant 1	Ant 2	Ant 1	Ant 2	SUM	
11b	1Mbps	1	1	2412	-	-	15.10	-		
11b	1Mbps	1	6	2437	-	-	15.40	-		
11b	1Mbps	1	11	2462	-	-	15.30	-		
11g	6Mbps	1	1	2412	-	-	10.50	-		
11g	6Mbps	1	6	2437	-	-	15.00	-	-	
11g	6Mbps	1	11	2462	-	-	10.30	-		
HT20	MCS0	1	1	2412			10.30	-		
HT20	MCS0	1	6	2437	-	-	14.90	-		
HT20	MCS0	1	11	2462	-	-	10.10	-		

Appendix B. Conducted Spurious Emission

Test Engineer :	Richard Qiu	Temperature :	23~25°C
rest Engineer.		Relative Humidity :	52~58%

2.4GHz 2400~2483.5MHz WIFI 802.11b (Band Edge)

Report No.: FR8D1924A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		2373.525	-36.44	-15.24	-21.2	-42.16	3.5	2.22	0	0	Р
000 441		2387.805	-48.52	-7.32	-41.2	-54.25	3.5	2.23	0	0	Α
802.11b	*	2412	12.26	-	-	6.51	3.5	2.25	0	0	Р
CH 01 2412MHz	*	2412	8.83	-	-	3.08	3.5	2.25	0	0	Α
		2355.5	-38.71	-17.51	-21.2	-44.43	3.5	2.22	0	0	Р
		2357.6	-48.12	-6.92	-41.2	-53.84	3.5	2.22	0	0	Α
802.11b	*	2437	12.83	-	-	7.07	3.5	2.26	0	0	Р
CH 06 2437MHz	*	2437	9.14	-	-	3.38	3.5	2.26	0	0	Α
2437 WITIZ		2490.27	-38.14	-16.94	-21.2	-43.93	3.5	2.29	0	0	Р
		2493.7	-49.67	-8.47	-41.2	-55.46	3.5	2.29	0	0	Α
	*	2462	13.66	-	-	7.89	3.5	2.27	0	0	Р
	*	2462	9.13	-	-	3.36	3.5	2.27	0	0	Α
802.11b		2487.48	-34.95	-13.75	-21.2	-40.74	3.5	2.29	0	0	Р
CH 11 2462MHz		2496.96	-46.51	-5.31	-41.2	-52.3	3.5	2.29	0	0	Α
Remark		o other spurious		Peak and	Average lim	it line.	-		1	1	

TEL: 886-3-327-3456 Page Number : B1 of B9

2.4GHz 2400~2483.5MHz WIFI 802.11b (Harmonic)

Report No. : FR8D1924A

				1111100	2.11b (nai	11101110)					
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		4018.7	-46.28	-25.08	-21.2	-53.45	3.5	3.67	0	0	Р
		4824	-57.83	-36.63	-21.2	-65.19	3.5	3.86	0	0	Р
802.11b											
CH 01											
2412MHz											
		4061.4	-47.13	-25.93	-21.2	-54.33	3.5	3.7	0	0	Р
		4874	-51.27	-30.07	-21.2	-58.65	3.5	3.88	0	0	Р
802.11b		7311	-63.35	-42.15	-21.2	-71.7	3.5	4.85	0	0	Р
CH 06											
2437MHz											
		4098	-48.9	-27.7	-21.2	-56.13	3.5	3.73	0	0	Р
		4924	-48.77	-27.57	-21.2	-56.16	3.5	3.89	0	0	Р
802.11b		7386	-60.83	-39.63	-21.2	-69.26	3.5	4.93	0	0	Р
CH 11											
2462MHz											
Domoste	1. No	other spurious	s found.								
Remark	2. All	results are PA	SS against I	Peak and	Average lim	it line.					

TEL: 886-3-327-3456 Page Number : B2 of B9

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge)

Report No. : FR8D1924A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		2389.485	-36.61	-15.41	-21.2	-42.34	3.5	2.23	0	0	Р
000 44		2389.17	-47.29	-6.09	-41.2	-53.02	3.5	2.23	0	0	Α
802.11g	*	2412	10.21	-	-	4.46	3.5	2.25	0	0	Р
CH 01 2412MHz	*	2412	1.7	-	-	-4.05	3.5	2.25	0	0	Α
		2381.54	-38.32	-17.12	-21.2	-44.05	3.5	2.23	0	0	Р
		2380.7	-47.82	-6.62	-41.2	-53.55	3.5	2.23	0	0	Α
_	*	2437	14.57	-	-	8.81	3.5	2.26	0	0	Р
	*	2437	6.6	-	-	0.84	3.5	2.26	0	0	Α
802.11g CH 06 2437MHz 802.11g CH 11		2483.9	-37.52	-16.32	-21.2	-43.31	3.5	2.29	0	0	Р
		2483.62	-46.86	-5.66	-41.2	-52.65	3.5	2.29	0	0	Α
2437MHz	*	2462	10.07	-	-	4.3	3.5	2.27	0	0	Р
000 44	*	2462	2.05	-	-	-3.72	3.5	2.27	0	0	Α
_		2483.6	-33.46	-12.26	-21.2	-39.25	3.5	2.29	0	0	Р
2462MHz		2483.64	-46.52	-5.32	-41.2	-52.31	3.5	2.29	0	0	Α
Remark		o other spurious		Peak and	Average lim	it line.	1		1	1	1

TEL: 886-3-327-3456 Page Number : B3 of B9

2.4GHz 2400~2483.5MHz WIFI 802.11g (Harmonic)

Report No. : FR8D1924A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun ding	Peak
Ant. 1		(MHz)	(dBm)	Limit (dB)	Line (dBm)	Level (dBm)	Gain (dBi)	Loss (dB)	Factor (dB)	Factor (dB)	Avg. (P/A)
		4018.7	-46.04	-24.84	-21.2	-53.21	3.5	3.67	0	0	Р
802.11g		4824	-65.45	-44.25	-21.2	-72.81	3.5	3.86	0	0	Р
CH 01											
2412MHz											
		4061.4	-45.07	-23.87	-21.2	-52.27	3.5	3.7	0	0	Р
000 44 ~		4874	-51.45	-30.25	-21.2	-58.83	3.5	3.88	0	0	Р
802.11g CH 06		7311	-57.69	-36.49	-21.2	-66.04	3.5	4.85	0	0	Р
2437MHz											
		4098	-50.85	-29.65	-21.2	-58.08	3.5	3.73	0	0	Р
000 44		4924	-55.97	-34.77	-21.2	-63.36	3.5	3.89	0	0	Р
802.11g CH 11		7386	-60.39	-39.19	-21.2	-68.82	3.5	4.93	0	0	Р
2462MHz											
2402WH12											
Remark		o other spurious		Peak and	Average lim	it line.	1		1	ı	

TEL: 886-3-327-3456 Page Number : B4 of B9

2.4GHz 2400~2483.5MHz

Report No. : FR8D1924A

WIFI 802.11n HT20 (Band Edge)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	MIMO	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		2388.645	-34.78	-13.58	-21.2	-40.51	3.5	2.23	0	0	Р
802.11n		2389.8	-46.74	-5.54	-41.2	-52.47	3.5	2.23	0	0	Α
HT20	*	2412	10.18	-	-	4.43	3.5	2.25	0	0	Р
CH 01	*	2412	1.97	-	-	-3.78	3.5	2.25	0	0	Α
2412MHz											
		2324.42	-38.31	-17.11	-21.2	-44.02	3.5	2.21	0	0	Р
802.11n		2323.44	-48.95	-7.75	-41.2	-54.66	3.5	2.21	0	0	Α
HT20	*	2437	13.58	-	-	7.82	3.5	2.26	0	0	Р
CH 06	*	2437	5.34	-	-	-0.42	3.5	2.26	0	0	Α
2437MHz		2483.48	-38.87	-17.67	-21.2	-44.66	3.5	2.29	0	0	Р
		2484.32	-48.37	-7.17	-41.2	-54.16	3.5	2.29	0	0	Α
	*	2462	9.75	-	-	3.98	3.5	2.27	0	0	Р
802.11n	*	2462	1.73		-	-4.04	3.5	2.27	0	0	Α
HT20		2483.64	-31.63	-10.43	-21.2	-37.42	3.5	2.29	0	0	Р
CH 11		2483.64	-46.06	-4.86	-41.2	-51.85	3.5	2.29	0	0	Α
2462MHz											
Remark		o other spurious		Peak and	Average lim	it line.					

TEL: 886-3-327-3456 Page Number : B5 of B9

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Harmonic)

Report No. : FR8D1924A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant. 1		(MHz)	(dBm)	Limit (dB)	Line (dBm)	Level (dBm)	Gain (dBi)	Loss (dB)	Factor (dB)	Factor (dB)	Avg. (P/A)
		4024.8	-46.19	-24.99	-21.2	-53.36	3.5	3.67	0	0	Р
802.11n		4824	-65.43	-44.23	-21.2	-72.79	3.5	3.86	0	0	Р
HT20											
CH 01											
2412MHz											
		4061.4	-45.61	-24.41	-21.2	-52.81	3.5	3.7	0	0	Р
802.11n		4874	-53.83	-32.63	-21.2	-61.21	3.5	3.88	0	0	Р
HT20		7311	-58.84	-37.64	-21.2	-67.19	3.5	4.85	0	0	Р
CH 06											
2437MHz											
		4098	-50.54	-29.34	-21.2	-57.77	3.5	3.73	0	0	Р
802.11n		4924	-54.78	-33.58	-21.2	-62.17	3.5	3.89	0	0	Р
HT20		7386	-63.12	-41.92	-21.2	-71.55	3.5	4.93	0	0	Р
CH 11											
2462MHz											
Remark		o other spurious		Peak and	Average lim	it line.					

TEL: 886-3-327-3456 Page Number: B6 of B9

Emission below 1GHz

Report No.: FR8D1924A

2.4GHz WIFI 802.11n HT20 (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Grounding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
		83.46	-82.47	-27.27	-55.2	-91.21	3.5	0.54	0	4.7	Р
		167.16	-77.94	-26.24	-51.7	-86.89	3.5	0.75	0	4.7	Р
		261.66	-80.1	-30.9	-49.2	-89.12	3.5	0.82	0	4.7	Р
		351.8	-80.6	-31.4	-49.2	-89.7	3.5	0.9	0	4.7	Р
2.4GHz		518.4	-79.71	-30.51	-49.2	-89.02	3.5	1.11	0	4.7	Р
802.11n		825.7	-78.47	-29.27	-49.2	-88.11	3.5	1.44	0	4.7	Р
HT20											
LF											
Remark		o other spuriou I results are PA		Peak and	l Average li	mit line.	,				

TEL: 886-3-327-3456 Page Number: B7 of B9

Note symbol

Report No. : FR8D1924A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average

TEL: 886-3-327-3456 Page Number : B8 of B9

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8D1924A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	МІМО	Groun ding	Peak
Ant.				Limit	Line	Level	Gain	Loss	Factor	Factor	Avg.
1		(MHz)	(dBm)	(dB)	(dBm)	(dBm)	(dBi)	(dB)	(dB)	(dB)	(P/A)
802.11b		2386.545	-39.03	-17.83	-21.2	-44.06	2	3.03	0	0	Р
CH 01											
2412MHz		2386.125	-48.1	-6.9	-41.2	-53.13	2	3.03	0	0	Α

1. Level(dBm) =

Antenna Gain(dBi) + Path Loss(dB) + Read Level(dBm) + MIMO Factor(dB) + Grounding Factor(dB)

2. Over Limit(dB) = Level(dBm) - Limit Line(dBm)

For Peak Limit @ 2386.545MHz:

- 1. Level(dBm)
- = Antenna Gain(dBi) + Path Loss(dB) + Read Level(dBm) + MIMO Factor(dB) + Grounding Factor(dB)
- = 2(dB) + 3.03(dB) 44.06(dBm)
- = -39.03(dBm)
- 2. Over Limit(dB)
- = Level(dBm) Limit Line(dBm)
- = -39.03(dBm) + 21.2(dBm)
- = -17.83(dB)

For Average Limit @ 2386.125MHz:

- 1. Level(dBm)
- = Antenna Gain(dBi) + Path Loss(dB) + Read Level(dBm) + MIMO Factor(dB) + Grounding Factor(dB)
- = 2(dBi) + 3.03(dB) 53.13(dBm)
- = -48.1(dBm)
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -6.9(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number: B9 of B9

Appendix C. Conducted Spurious Emission Plots

Test Engineer :	Richard Qiu	Temperature :	23~25°C
rest Engineer :		Relative Humidity :	52~58%

Report No.: FR8D1924A

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number : C1 of C20

2.4GHz 2400~2483.5MHz

Report No.: FR8D1924A

WIFI 802.11b (Band Edge)

TEL: 886-3-327-3456 Page Number : C2 of C20

CC RADIO TEST REPORT Report No. : FR8D1924A

TEL: 886-3-327-3456 Page Number: C3 of C20

WIFI 2.4GHz 2400~2483.5MHz Band Edge ANT 802.11b CH06 2437MHz - R 1 **CSE Fundamental** : TH05-HY
-FCC CLASS-B_CON ANT GAIN +3.5 HORIZONTAL.
-FBW-1000.000KHz_VBW:3000.000KHz
-FBaik
-B01924
-206fault Left blank Peak Left blank Avg.

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C4 of C20

WIFI

2.4GHz 2400~2483.5MHz Band Edge

ANT

802.11b CH11 2462MHz

1

CSE

Fundamental

Peak

Peak

Peak

Peak

Peak

Fundamental

TEL: 886-3-327-3456 Page Number: C5 of C20

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge)

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C6 of C20

WIFI 2.4GHz 2400~2483.5MHz Band Edge ANT 802.11g CH06 2437MHz - L 1 **CSE Fundamental** : TH05-HY
FCC CLASS-B_CON ANT GAIN +3.5 HORIZONTAL
RBW-1000 000RHz VBW-3000 000RHz
Peak
S01594
5
offsult : TH05-HY
FCG CLASS-B_CON ANT GAIN +3.5 HORIZONTAL
RBW-1000 000KHz VBW:3000 000KHz
Peak
101924
5 default Peak Avg.

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C7 of C20

WIFI 2.4GHz 2400~2483.5MHz Band Edge ANT 802.11g CH06 2437MHz - R 1 **CSE Fundamental** : TH05-HY
-FCC CLASS-B_CON ANT GAIN +3.5 HORIZONTAL.
-FBW-1000.000KHz_VBW:3000.000KHz
-FBaik
-B01924
-5.06fault Left blank Peak Left blank Avg.

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C8 of C20

WIFI 2.4GHz 2400~2483.5MHz Band Edge ANT 802.11g CH11 2462MHz 1 **CSE Fundamental** : THOS-HY
FCC CLASS-B_CON ANT GAIN +3.5 HORIZONTAL
RBW-1000 000RHz VBW-3000 000RHz
Feak
6 101924
6 default Peak Avg.

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C9 of C20

Report No.: FR8D1924A

WIFI 802.11n HT20 (Band Edge)

TEL: 886-3-327-3456 Page Number : C10 of C20

TEL: 886-3-327-3456 Page Number : C11 of C20

WIFI 2.4GHz 2400~2483.5MHz Band Edge ANT 802.11n HT20 CH06 2437MHz - R 1 **CSE Fundamental** : TH05-HY
FCG CLASS-B_CON ANT GAIN +3.5 HORIZONTAL.
RBW-1000.000KHz VBW:3000.000KHz
Paak
801924
8
default Left blank Peak Left blank Avg.

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C12 of C20

WIFI 2.4GHz 2400~2483.5MHz Band Edge ANT 802.11n HT20 CH11 2462MHz 1 **CSE Fundamental** : TH95-HY
FCC CLASS-B_CON ANT GAIN +3.5 HORIZONTAL
RBW-1000.000KHz VBW:3000.000KHz
Peak
801594
5
offsult : THOS-HY
FCC CLASS-B_CON ANT GAIN +3.5 HORIZONTAL
RBW-1000 000RHz VBW-3000 000RHz
Feak
801924
9
odraut Peak Avg.

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C13 of C20

2.4GHz 2400~2483.5MHz WIFI 802.11b (Harmonic)

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C14 of C20

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C15 of C20

Report No.: FR8D1924A

WIFI 802.11g (Harmonic)

TEL: 886-3-327-3456 Page Number : C16 of C20

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C17 of C20

Report No.: FR8D1924A

WIFI 802.11n HT20 (Harmonic)

TEL: 886-3-327-3456 Page Number : C18 of C20

Peak Avg.

Avg.

12.4GHz 2400~2483.5MHz Harmonic

802.11n HT20

1 CH11 2462MHz

| CH11 2462MHz |
| CH1

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number : C19 of C20

Emission below 1GHz

Report No.: FR8D1924A

2.4GHz WIFI 802.11n HT20 (LF)

TEL: 886-3-327-3456 Page Number : C20 of C20

Appendix D. Cabinet Radiated Spurious Emission

Test Engineer :		Temperature :	24.3~25.2°C
Test Engineer .	Bigshow Wang	Relative Humidity :	55~64%

Report No. : FR8D1924A

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

			Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
*	2462	93.43	-	-	80.53	27.78	16.23	31.11	236	251	Р	Н
*	2462	90.29	-	-	77.39	27.78	16.23	31.11	236	251	Α	Н
	2496.76	56.35	-17.65	74	43.46	27.71	16.27	31.09	236	251	Р	Н
	2497.6	47.8	-6.2	54	34.92	27.7	16.27	31.09	236	251	Α	Н
												Н
												Н
*	2462	100.51	-	-	87.61	27.78	16.23	31.11	329	197	Р	V
*	2462	97.34	-	-	84.44	27.78	16.23	31.11	329	197	Α	V
	2483.6	57.61	-16.39	74	44.73	27.73	16.25	31.1	329	197	Р	V
	2499.92	48.17	-5.83	54	35.29	27.7	16.27	31.09	329	197	Α	V
												V
												٧
,	k	2462 2462 2496.76 2497.6 2462 2462 2483.6	2462 93.43 2462 90.29 2496.76 56.35 2497.6 47.8 2462 100.51 2462 97.34 2483.6 57.61	(MHz) (dBμV/m) (dB) 2462 93.43 - 2462 90.29 - 2496.76 56.35 -17.65 2497.6 47.8 -6.2 2462 100.51 - 2462 97.34 - 2483.6 57.61 -16.39	(MHz) (dBμV/m) (dB) (dBμV/m) 2462 93.43 - - 2462 90.29 - - 2496.76 56.35 -17.65 74 2497.6 47.8 -6.2 54 3 2462 100.51 - - 4 2462 97.34 - - 2483.6 57.61 -16.39 74	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) 2462 93.43 - - 80.53 2462 90.29 - - 77.39 2496.76 56.35 -17.65 74 43.46 2497.6 47.8 -6.2 54 34.92 34.92 - - 87.61 2462 97.34 - - 84.44 2483.6 57.61 -16.39 74 44.73	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dBμV) 2462 93.43 - - 80.53 27.78 2462 90.29 - - 77.39 27.78 2496.76 56.35 -17.65 74 43.46 27.71 2497.6 47.8 -6.2 54 34.92 27.7 2462 100.51 - - 87.61 27.78 2483.6 57.61 -16.39 74 44.73 27.73	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 2462 93.43 - - 80.53 27.78 16.23 2462 90.29 - - 77.39 27.78 16.23 2496.76 56.35 -17.65 74 43.46 27.71 16.27 2497.6 47.8 -6.2 54 34.92 27.7 16.27 2462 100.51 - - 87.61 27.78 16.23 2462 97.34 - - 84.44 27.78 16.23 2483.6 57.61 -16.39 74 44.73 27.73 16.25	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 2462 93.43 - - 80.53 27.78 16.23 31.11 2462 90.29 - - 77.39 27.78 16.23 31.11 2496.76 56.35 -17.65 74 43.46 27.71 16.27 31.09 2497.6 47.8 -6.2 54 34.92 27.7 16.27 31.09 3400 2462 100.51 - - 87.61 27.78 16.23 31.11 2462 97.34 - - 84.44 27.78 16.23 31.11 2483.6 57.61 -16.39 74 44.73 27.73 16.25 31.1	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 2462 93.43 - - 80.53 27.78 16.23 31.11 236 2462 90.29 - - 77.39 27.78 16.23 31.11 236 2496.76 56.35 -17.65 74 43.46 27.71 16.27 31.09 236 2497.6 47.8 -6.2 54 34.92 27.7 16.27 31.09 236 2462 100.51 - - 87.61 27.78 16.23 31.11 329 2462 97.34 - - 84.44 27.78 16.23 31.11 329 2483.6 57.61 -16.39 74 44.73 27.73 16.25 31.1 329	(MHz) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) 2462 93.43 - - 80.53 27.78 16.23 31.11 236 251 2462 90.29 - - 77.39 27.78 16.23 31.11 236 251 2496.76 56.35 -17.65 74 43.46 27.71 16.27 31.09 236 251 2497.6 47.8 -6.2 54 34.92 27.7 16.27 31.09 236 251 2462 100.51 - - 87.61 27.78 16.23 31.11 329 197 2462 97.34 - - 84.44 27.78 16.23 31.11 329 197 2483.6 57.61 -16.39 74 44.73 27.73 16.25 31.1 329 197	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 2462 93.43 - - 80.53 27.78 16.23 31.11 236 251 P 2462 90.29 - - 77.39 27.78 16.23 31.11 236 251 A 2496.76 56.35 -17.65 74 43.46 27.71 16.27 31.09 236 251 P 2497.6 47.8 -6.2 54 34.92 27.7 16.27 31.09 236 251 A 34 2462 100.51 - - 87.61 27.78 16.23 31.11 329 197 P 2462 97.34 - - 84.44 27.78 16.23 31.11 329 197 A 2483.6 57.61 -16.39 74 44.73 27.73 16.25 31.1 329 197 P

^{2.} All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : D1 of D5

Report No. : FR8D1924A

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4110	54.76	-19.24	74	74.24	29.72	8.9	58.1	299	243	Р	Н
		4110	50.08	-3.92	54	69.56	29.72	8.9	58.1	299	243	Α	Н
		4924	42.59	-31.41	74	59.73	31.4	9.59	58.13	100	0	Р	Н
802.11b		7386	47.61	-26.39	74	56.71	36.63	11.67	57.4	100	0	Р	Н
CH 11 2462MHz		4104	54.68	-19.32	74	74.17	29.71	8.9	58.1	100	276	Р	V
2402111112		4104	50	-4	54	69.49	29.71	8.9	58.1	100	276	Α	V
		4924	43.54	-30.46	74	60.68	31.4	9.59	58.13	100	0	Р	V
		7386	45.34	-28.66	74	54.44	36.63	11.67	57.4	100	0	Р	V
Remark		other spurious											

^{2.} All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : D2 of D5

Report No. : FR8D1924A

Emission below 1GHz

2.4GHz WIFI 802.11b (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		66.86	37.37	-2.63	40	56.76	12.06	1.11	32.56	273	323	Q	Н
	*	66.86	43.56	-	-	62.95	12.06	1.11	32.56	273	323	Р	Н
		167.74	33.34	-10.16	43.5	48.18	15.83	1.83	32.5			Р	Н
		192.96	29.73	-13.77	43.5	45.49	14.8	1.93	32.49			Р	Н
		307.42	38.18	-7.82	46	49.11	19.3	2.31	32.54			Р	Н
		385.02	32.52	-13.48	46	41.23	21.3	2.54	32.55			Р	Н
		548.95	30.78	-15.22	46	35.25	24.97	3.14	32.58			Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
802.11b LF		65.89	32.89	-7.11	40	52.52	11.82	1.11	32.56	100	241	Q	V
LF		65.89	39.42	-0.58	40	59.05	11.82	1.11	32.56	100	241	Р	V
		167.74	28.35	-15.15	43.5	43.19	15.83	1.83	32.5			Р	V
		192.96	27.13	-16.37	43.5	42.89	14.8	1.93	32.49			Р	V
		308.39	34.09	-11.91	46	45.03	19.3	2.3	32.54			Р	V
		382.11	32.95	-13.05	46	41.79	21.18	2.53	32.55			Р	V
		514.03	31.11	-14.89	46	36.64	24.1	2.94	32.57			Р	V
													V
													V
													V
													V
													V

TEL: 886-3-327-3456 Page Number: D3 of D5

Note symbol

Report No. : FR8D1924A

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : D4 of D5

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8D1924A

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : D5 of D5

Appendix E. Cabinet Radiated Spurious Emission Plots

Toot Engineer	Pigghow Wong	Temperature :	24.3~25.2°C
Test Engineer :	Bigshow Wang	Relative Humidity :	55~64%

Report No. : FR8D1924A

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number : E1 of E5

WIFI 802.11b (Band Edge @ 3m)

Report No.: FR8D1924A

TEL: 886-3-327-3456 Page Number: E2 of E5

Report No. : FR8D1924A

TEL: 886-3-327-3456 Page Number : E3 of E5

Report No. : FR8D1924A

WIFI 802.11b (Harmonic @ 3m)

TEL: 886-3-327-3456 Page Number : E4 of E5

Emission below 1GHz

Report No. : FR8D1924A

TEL: 886-3-327-3456 Page Number : E5 of E5

Appendix F. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
802.11b	47.37	432	2.31	3kHz	3.24
802.11g	45.71	160	6.25	10kHz	3.40
2.4GHz 802.11n HT20	40.00	160	6.25	10kHz	3.98

Report No.: FR8D1924A

802.11b

Date: 23.0CT.2019 11:15:03

TEL: 886-3-327-3456 Page Number : F1 of F2

Report No.: FR8D1924A

Date: 23.0CT.2019 11:22:43

802.11n HT20

Date: 23.0CT.2019 11:25:40

TEL: 886-3-327-3456 Page Number : F2 of F2