Process for the concentration of oleic acid and/or elaidic and

Patent Number:

DE3831516

Publication date:

1990-03-22

Inventor(s):

BRUNS ANDREAS DR (DE); WOLLMANN GERHARD DR (DE)

Applicant(s)::

HENKEL KGAA (DE)

Requested Patent:

☐ <u>DE3831516</u>

Application Number: DE19883831516 19880916

Priority Number(s):

DE19883831516 19880916

IPC Classification:

C11C1/08

EC Classification:

B01D15/08, C11C1/08

Equivalents:

Abstract

The invention relates to a process for the concentration of oleic acid and/or elaidic acid in a fatty acid mixture. In order to obtain a very much more concentrated oleic acid or elaidic acid than in the state of the art, it is proposed that the oleic acid/elaidic acid be concentrated by means of liquid chromatography under a pressure of 20 to 100 bar, that moreover the stationary phase be a reversed phase with C18-alkyl chains on silica gel as support material with a particle size of up 40 mu m, and that the mobile phase contain a methanol/water and/or ethanol/water mixture.

Data supplied from the esp@cenet database - 12

(19) BUNDESREPUBLIK

DEUTSCHLAND

(5) Int. Cl. 5; C11C1/08 // B01D 15/08

DEUTSCHES PATENTAMT (1) Aktenzeichen: P 38 31 516.5 22 Anmeldetag: 16. 9.88

(43) Offenlegungstag: 22. 3.90

(71) Anmelder:

Henkel KGaA, 4000 Düsseldorf, DE

② Erfinder:

Bruns, Andreas, Dr., 4018 Langenfeld, DE; Wollmann, Gerhard, Dr., 4010 Hilden, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Verfahren zum Anreichern von Ölsäure und/oder Elaidinsäure

Die Erfindung betrifft ein Verfahren zum Anreichern von Ölsäure und/oder Elaidinsäure in einem Fettsäuregemisch. Um eine sehr viel stärker angereicherte Ölsäure bzw. Elaidinsäure zu erhalten als im Stand der Technik, wird vorgeschlagen, daß die Ölsäure/Elaidinsäure mittels Flüssig-Chromatographie bei einem Druck von 20 bis 100 bar angereichert wird, daß dabei die stationäre Phase eine »reversed phase« mit C₁₈-Alkylketten auf Kieselgel als Trägermaterial mit einer Korngröße bis zu 40 μm ist und daß das Laufmittel eine Methanol-Wasser- und/oder Äthanol-Wasser-Mischung enthält. .

Die Erfindung betrifft ein V gemisch.

ren zum Anreichern von Ölsäure und/oder E

dinsäure in einem Fettsäure-

Ölsäure und Elaidinsäure, die beiden Isomere der neun-Octadecensäure, sind die wichtigsten ungesättigten Fettsäuren und werden in der Kosmetik und in Spezialchemikalien eingesetzt. Im technischen Maßstab wird Olsäure aus Talg-Spaltfettsäure gewonnen, indem die Ölsäure durch Umnetzen auf 60 bis 70 Gew.-% angereichert wird.

Das Umnetzen besteht aus einem Abtrennen von relativ kleinen Fettkristallen durch eine selektive Benetzung, z. B. mit Natriumlaurylsulfat oder Natriumdecylsulfat in wäßriger Lösung. Dazu wird eine Suspension von Fettkristallen mit einer wäßrigen Lösung gemischt, die ein Netzmittel enthält. Die benetzten Fettkristalle gehen in suspendierter Form in die wäßrige Phase über und können dann durch Zentrifugieren leicht abgetrennt werden. Aus der wäßrigen Lösung wird die höher schmelzende Fraktion nach Erwärmen als flüssiges Fett in weiteren Separatoren wiedergewonnen und die Umnetz-Lösung in den Prozess zurückgeführt.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu entwickeln, mit dem

eine sehr viel stärker angereicherte Ölsäure bzw. Elaidinsäure erhalten wird.

Diese Aufgabe wird erfindungsgemäß bei einem Verfahren der eingangs genannten Art dadurch gelöst, daß die Ölsäure/Elaidinsäure mittels Flüssig-Chromatographie bei einem Druck von 20 bis 100 bar angereichert wird, daß dabei die stationäre Phase eine "reversed phase" mit C₁₈-Alkylketten auf Kieselgel als Trägermaterial mit einer Korngröße bis zu 40 µm ist und daß das Laufmittel eine Methanol-Wasser- und/oder Äthanol-Wasser-Mischung enthält.

Erfindungsgemäß wird also eine präparative Hochdruck- bzw. Hochleistungs-Flüssigkeits-Chromatographie (HPLC) zum Anreichern angewendet. Bei dem verwendeten Packungsmaterial und dem polaren Elutionsmittel wird die normale Elutionsreihenfolge umgekehrt, d. h. unpolare Komponenten werden stärker zurückgehalten

als polare. Dieses "reversed phase system" wird erfindungsgemäß verwendet.

Von besonderem Vorteil ist bei dem erfindungsgemäßen Verfahren, daß als Laufmittel eine Methanol-Wasser- und/oder Äthanol-Wasser- Mischung verwendet wird, da die so hergestellte Ölsäure zur Anwendung in der Kosmetik besonders geeignet ist. Das Laufmittel läßt sich ferner problemlos von der Fettsäure abtrennen. Ein anderer Vorteil ist, daß dieses Laufmittel im Gegensatz zu dem in der Literatur erwähnten hochgiftigen Lösungsmittelgemisch Acetonitril-Wasser erheblich weniger giftig ist.

Besonders vorteilhaft ist es, wenn das Laufmittel zusätzlich Essigsäure, insbesondere bis zu 0,2%, enthält. Damit eine noch bessere Trennwirkung erreicht wird, ist eine Säurezugabe vorteilhaft. Im erfindungsgemäßen Verfahren ist Essigsäure deshalb besonders vorteilhaft, da diese Säure bei einer nachfolgenden Destillation sehr leicht abtrennbar ist. Durch diese leichte Abtrennbarkeit eignet sich die so angereicherte Ölsäure besonders gut

zu Anwendung in der Kosmetik.

Eine noch bessere Abtrennung läßt sich erreichen, wenn die Korngröße der stationären Phase zwischen 5 und 20 µm liegt. Zum besseren Abtrennen ist eine Korngröße von 5 µm besonders gut geeignet, aber das Verfahren verteuert sich dadurch. Umgekehrt ist es bei einer Korngröße von 20 µm. Daher liegt der besonders günstige

Bereich der Korngröße zwischen 5 und 20 µm.

Eine besonders reine Ölsäure erhält man, wenn von vornherein von der Ölsorte "Sonnenblumenöl neu" ausgegangen wird. Diese Ölsorte weist nämlich einen Ölsäuregehalt von 84% auf. Mit dem erfindungsgemäßen Verfahren läßt sich ohne besondere Anstrengungen dieser Ölsäuregehalt auf 94,4% steigern. Das dabei entstandene Produkt enthält noch 4% Palmitinsäure, die jedoch destillativ abgetrennt werden kann. Nach einer solchen Destillation ist damit eine 98% Ölsäure erreichbar. In einer weiteren Ausgestaltung der Erfindung wird daher vorgeschlagen, daß nach dem Anreichern destillativ das Laufmittel und Palmitinsäure abgetrennt werden. Ölsäure/Elaidinsäure und Palmitinsäure lassen sich nämlich durch die erfindungsgemäße präparative Chromatographie nicht trennen, eine Trennung ist aber sehr einfach durch Destillation möglich. Mit einer nach der präparativen Chromatographie erfolgten Destillation läßt sich damit erreichen, daß sowohl das Laufmittel abgetrennt als auch Palmitinsäure entfernt wird.

Besonders hohe Ölsäuregehalte lassen sich erreichen, wenn schon von einer angereicherten Fettsäure ausgegangen wird. Daher wird weiterhin vorgeschlagen, daß bei dem erfindungsgemäßen Verfahren vor dem chromatographischen Anreichern die Ölsäure/Elaidinsäure durch Umnetzen angereichert wird.

Im folgenden werden einige Ausführungsbeispiele des erfindungsgemäßen Verfahrens beschrieben.

Zuerst wird die Chromatographie-Säule mit einem konstanten Lösungsmittelstrom konditioniert. Als Laufmittel wird eine Lösung von 90% Methanol, 10% Wasser und 0,1% Essigsäure verwendet. Nach dem Konditionieren wird in den Lösungsmittelstrom eine Fettsäuremenge injiziert. Nach einer gewissen Prozeßzeit registriert ein Detektor am Ende der Säule die ankommenden Fraktionen und steuert die Ventile der Probensammler. Die Zusammensetzung der einzelnen Proben werden anschließend mit Hilfe der Gaschromatographie (GC) analysiert. Die Daten der Arbeitsbedingungen sind in Tabelle 1 zusammengestellt.

In einem ersten Beispiel wurde von einer Talg-Spaltfettsäure ausgegangen, deren Ölsäuregehalt in einem Umnetzverfahrensschritt auf 69,2% Ölsäure angereichert worden war. Durch die erfindungsgemäße präparative Chromatographie konnte eine Fraktion gewonnen werden, die 87% Ölsäure enthält. Die Zusammensetzung des Ausgangs-Säuregemisches und der Ölsäurefraktion ist in Tabelle 2 gezeigt. Fig. 1 zeigt das Flüssig-Chromatogramm der Fettsäuren nach dem Austritt aus der präparativen HPLC-Säule. Zum mit "Start" bezeichneten

S Zeitpunkt wurde das Ausgangsprodukt injiziert.

Die Ergebnisse des auf Fettsäure aus "Sonnenblumenöl neu" angewendeten erfindungsgemäßen Versahrens sind in Tabelle 3 zusammengesaßt. Die Anteile innerhalb jeder Fraktion sind auch hier in Prozent angegeben.

Tabelle 1

	<u> </u>
Ölsäure-angereicherte Talgfettsäure (FS)	Fettsäure (FS) aus "Sonnenblumenöl neu"
Präparative HPCL-Anlage (Fa. Merck)	Praparative HPCL-Anlage (Fa. Merck)
400	400
100	100
RP 18.5 - 20 um (reversed phase)	RP 18,5-20 µm (reversed phase)
	MeOH-H ₂ O-Essigsäure
900-100-1	900-100-1
400	400
50	50
30	30
	10 g FS + 30 ml Lösungsmittel
	Kleiner 30
	über Brechungsindex
Probennahme, GC	Probennahme, GC
	Präparative HPCL-Anlage (Fa. Merck) 400 100 RP 18,5 – 20 μm (reversed phase) MeOH-H ₂ O-Essigsäure 900-100-1 400 50 30 20 g FS + 30 ml Lösungsmittel i) Kleiner 30 über Brechungsindex

Tabelle 2

Kettenverteilung vor und nach dem Anreichern der Ölsäure-angereicherten Talgfettsäure durch präparative Chromatographie (vergleiche Fig. 1)

	Ausgangs- produkt (in %)	Ölsäurefraktion im Endprodukt (in %)
C14:0	2,1	0,19
C14.0	5,1	3,67
C16:1	6,0	0,24
C17:0	-,-	0,89
C18:0	1,4	0,17
C18:1	69,2	79,13
C18:1	•	7,90
unbek.	,	3,44
C18:2	10,6	1,07
C18:3	0,8	0,59
C20:0	0,2	0,23
C20:1	2,2	0,15
C20:4		0,41
C22:1		0,09
C24:1		0,09
(Zahl nach Doppelpunkt		
gibt die Anzahl der		
Doppelbindungen an)		•
undefinierte Peaks		1,74

Kettenverteilung wie in T

5

10

15

20

30

35

40

55

60

65

Tabelle 3

2, aber mit Fettsäure aus "Sonnenblumenöl neu" als Ausgangsprodukt

	Ausgangs- produkt (in %)	Ölsäurefraktior im Endprodukt (in %)
C14:0	0,19	
C16:0	3,33	3,84
C16:1	0.22	. 0,0 .
C18:0	4.94	0.80
C18:1	84,52	94.44
C18:2	4,73	0.33
C18:3		0.06
C20:0	0,45	0.09
C20:1	0,45	0.14
C22:0	0,85	0.15

Patentansprüche

- Verfahren zum Anreichern von Ölsäure und/oder Elaidinsäure in einem Fettsäuregemisch, dadurch gekennzeichnet, daß die Ölsäure/Elaidinsäure mittels Flüssig-Chromatographie bei einem Druck von 20 bis 100 bar angereichert wird, daß dabei die stationäre Phase eine "reversed phase" mit C₁₈-Alkylketten auf Kieselgel als Trägermaterial mit einer Korngröße bis zu 40 μm ist und daß das Laufmittel eine Methanol-Wasser- und/oder Äthanol-Wasser-Mischung enthält.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Laufmittel zusätzlich Essigsäure, insbesondere bis zu 0,2%, enthält.
 - 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Korngröße der stationären Phase zwischen 5 und 20 µm liegt.
 - 4. Verfahren nach einem der Ansprüche 1 bis 3. dadurch gekennzeichnet, daß vom "Sonnenblumenöl neu" ausgegangen wird.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß nach dem Anreichern destillativ das Laufmittel und Palmitinsäure abgetrennt werden.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß vor dem chromatographischen Anreichern die Ölsäure/Elaidinsäure durch Umnetzen angereichert wird.

Hierzu 1 Seite(n) Zeichnungen

4

