Bits & Bots

Anna Gerber

Bits & Bots Sessions

Session	Topic	
Tuesday 20 th May, 6 – 8pm	Intro to 3D Design : Design custom robot parts to print on the 3D printers	
Tuesday 27 th May, 6 – 8pm	Intro to Electronics: Learn how the electronic parts in the kit work, design our robot circuits	
Tuesday 3 rd Jun,e 6 – 8 pm	Intro to Arduino: Write NodeJS programs to read from sensors and control actuators	
7 th June, 1 – 5 pm	Intermediate 3D Design: Design more complex robot parts: gears, claws etc	
14 th June, 1 – 5 pm	Intermediate Arduino: Develop our robots' locomotion, sensing and responding behaviours	
21 st June, 1 – 6 pm	Advanced Bits & Bots: Finalise robot design and assembly, develop advanced robot control programs	

A robot is an autonomous system that senses and responds to, or acts upon the physical world

ROBOT DESIGN

DESIGNING 3D PRINTABLE CUSTOM ROBOT PARTS

Plan function and layout of part

Use calipers and ruler to measure precise dimensions required

Create the 3D model

Once you are satisfied that the part will function as required, refine the model to improve the appearance and personalise your design

3D print the part

Test and refine

If the part isn't quite right, modify (e.g. using hobby knife, rotary tool) or refine the 3D model and reprint

Bits & Bots Robot Kits

Electronics		Chassis
Arduino Nano microcontroller	20 x jumper wires female – female	small parts box
Mini USB Cable plus USB female to male extension cable	10 x jumper wires male – female	small spring for bumper
3 x 9g servo for arm/head	4 x male-male jumper wires (long)	2 x wheels
ultra sonic sensor	13 x jumper wires male - male (short)	cable ties
piezo element	led matrix	wire for affixing wheels
medium breadboard	photo resistor	plastic chassis frame
mini breadboard	2 x 5mm super bright LEDs	
RGB LED (common cathode)	16 x 330 ohm resistor	
2 x push buttons	2 x continuous rotation servos for wheels	
battery holder with switch	2 x shift registers	
4 x AA Batteries	row of 15 header pins	

Exercise: Designing a 3D Model

We will design a 3D printable mount to attach our ultrasonic sensor to a servo motor to allow it to be rotated

You can download the free Sketchup Make software from http://www.sketchup.com/