Week 10: Bootstrap

MATH-517 Statistical Computation and Visualization

Tomas Masak

November 25th 2022

- population F
- random sample $\mathcal{X} = \{X_1, \dots, X_N\}$ from F

Goal of Statistics: Extract information about F using \mathcal{X} .

• characteristic of interest $\theta = \theta(F)$

Running Ex.: The mean
$$\theta = \mathbb{E}X_1 = \int x \, dF(x)$$
.

Δ

F can be estimated:

- parametrically
 - assuming $F \in \{F_{\lambda} \mid \lambda \in \Lambda \subset \mathbb{R}^p\}$ for some integer p, take $\widehat{F} = F_{\widehat{\lambda}}$ for an $\widehat{\lambda}$ estimator of the parameter vector λ
- non-parametrically
 - by the ECDF, i.e. $\widehat{F} = \widehat{F}_N$ where $\widehat{F}_N(x) = \frac{1}{N} \sum_{n=1}^N \mathbb{I}_{[X_n \leq x]}$

Tomas Masak Week 10: Bootstrap

ECDF

```
edf_plot <- function(N){</pre>
  X <- rnorm(N)</pre>
  EDF <- ecdf(X)
  plot(EDF)
  x < - seq(-4,4,by=0.01)
  points(x,pnorm(x),type="l",col="red")
set.seed(517)
edf_plot(12)
edf_plot(50)
```


Week 10: Bootstrap

- population F
- random sample $\mathcal{X} = \{X_1, \dots, X_N\}$ from F
- characteristic of interest $\theta = \theta(F)$

Running Ex.: The mean $\theta = \mathbb{E}X_1 = \int x \, dF(x)$.

- parametrically: MLE
- non-parametrically: $\hat{\theta} := \int x \, d\hat{F}_N(x) = \frac{1}{N} \sum_{n=1}^N X_n$

Δ

- population F
- random sample $\mathcal{X} = \{X_1, \dots, X_N\}$ from F
- characteristic of interest $\theta = \theta(F)$
- sample characteristic $\widehat{\theta} = \theta(\widehat{F})$
- sampling distribution of θ
 - quantiles of sampling distribution needed for CIs or testing
 - bias or MSF needed to rate the estimator all characteristics of sampling distr.

Running Ex.: The mean $\theta = \mathbb{E}X_1 = \int x \, dF(x)$.

- non-parametrically: $\hat{\theta} := \int x \, d\hat{F}_N(x) = \frac{1}{N} \sum_{n=1}^N X_n$
- if F is Gaussian, $\hat{\theta} \sim \mathcal{N}(\theta, \frac{\sigma^2}{N})$ is the sampling distribution
 - without Gaussianity, there is still a sampling distribution, we just don't know what it is

Tomas Masak Week 10: Bootstrap

Statistics is about the **sampling distribution**, which is given by the sampling process (part of which is F itself)

 if we controlled the sampling process, we would approximate the sampling distribution by Monte Carlo

The Bootstrap Idea: Resampling process from \widehat{F} can mimic the sampling process from F itself.

- ullet since \widehat{F} is known, the resampling distribution can be studied
 - or approximated by Monte Carlo

Sampling (real world): $F \Longrightarrow X_1, \dots, X_N \Longrightarrow \widehat{\theta} = \theta(\widehat{F})$

Resampling (bootstrap world): $\widehat{F} \Longrightarrow X_1^\star, \dots, X_N^\star \Longrightarrow \widehat{\theta}^\star = \theta(\widehat{F}^\star)$

Tomas Masak Week 10: Bootstrap November 25th 2022

Running Ex.

- $X_1, \ldots, X_N \stackrel{\perp}{\sim} F$ and $\theta = \theta(F) = \int x \, dF$
- we want $\widehat{\theta}(\alpha)$ such that $P(\theta \leq \widehat{\theta}(\alpha)) = \alpha$.
- Exact CI. Assuming Gaussianity,

$$T = \sqrt{N} \frac{\bar{X}_N - \theta}{\widehat{\sigma}} \sim t_{n-1} \quad \Rightarrow \quad P(-T \leq t_{n-1}(\alpha)) = \alpha$$

and so we get a CI with exact coverage by expressing θ from the inequality $T \leq t_{n-1}(\alpha)$:

$$\theta \leq \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} t_{n-1}(\alpha) =: \widehat{\theta}(\alpha).$$

2 Asymptotic CI. Assuming only $\mathbb{E}X_1^2 < \infty$, $T \stackrel{d}{\to} \mathcal{N}(0,1)$ and thus

$$P(\theta \leq \widehat{\theta}(\alpha)) \approx \alpha \quad \text{for} \quad \widehat{\theta}(\alpha) = \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} z(\alpha),$$

7 / 19

Tomas Masak Week 10: Bootstrap November 25th 2022

Running Ex.

- **9 Bootstrap CI.** Let $\mathbb{E}X_1^2 < \infty$ and $X_1^\star, \dots, X_N^\star$ be a resample from the ECDF \widehat{F}_N
 - set up the bootstrap statistic $T^{\star} = \sqrt{N} \frac{\bar{X}_N^{\star} \bar{X}_N}{\hat{\sigma}^{\star}}$ • denote by $q^{\star}(\alpha)$ the quantile of T^{\star}
 - instead of $\widehat{\theta}(\alpha) = \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} z(\alpha)$, consider $\widehat{\theta}^*(\alpha) = \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} q^*(\alpha)$

From Edgeworth expansions (complicated!):

$$P_{F}(T \le x) = \Phi(x) + \frac{1}{\sqrt{N}} a(x) \phi(x) + \mathcal{O}\left(\frac{1}{N}\right)$$
$$P_{\widehat{F}_{N}}(T^{*} \le x) = \Phi(x) + \frac{1}{\sqrt{N}} \widehat{a}(x) \phi(x) + \mathcal{O}\left(\frac{1}{N}\right)$$

where $\hat{a}(x) - a(x) = \mathcal{O}(N^{-1/2})$.

Running Ex. - Coverage Comparison

Asymptotic CI. By the Berry-Essen theorem

$$P(T \le x) - P(\mathcal{N}(0, 1) \le x) = \mathcal{O}\left(\frac{1}{\sqrt{N}}\right) \quad \text{for all } x$$

$$\Rightarrow \quad P\left(\theta \le \underbrace{\bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}} z(\alpha)}_{=\widehat{\theta}(\alpha)}\right) = \alpha + \mathcal{O}\left(\frac{1}{\sqrt{N}}\right).$$

I.e. the coverage of the asymptotic CI is exact up to $\mathcal{O}(N^{-1/2})$.

3 Bootstrap CI. From Edgeworth expansions

$$P_{\widehat{F}_{N}}(T \leq x) - P_{F}(T^{*} \leq x) = \mathcal{O}\left(\frac{1}{N}\right)$$

$$\Rightarrow P\left(\theta \leq \underbrace{\bar{X}_{N} + \frac{\widehat{\sigma}}{\sqrt{N}}q^{*}(\alpha)}_{=\widehat{\theta}^{*}(\alpha)}\right) = \alpha + \mathcal{O}\left(\frac{1}{N}\right),$$

I.e. the coverage of the bootstrap CI is exact up to $\mathcal{O}(N^{-1})$.

Tomas Masak Week 10: Bootstrap November 25th 2022

How is this possible?

- we got a better interval than that from CLT by resampling our data once
 - $\bullet \ \ \text{resampling once} \equiv \text{discarding information} \\$

Tomas Masak Week 10: Bootstrap November 25th 2022

How is this possible?

- we got a better interval than that from CLT by resampling our data once
 - ullet resampling once \equiv discarding information
- however, we did "theoretical" resampling
- in practice, we don't know $q^*(\alpha)$, we have to approximate it
 - e.g. by Monte Carlo ≡ resampling many times
 - but still, how can we gain information by resampling?

Baron Munchausen (half-fictional character)

- rode a cannonball
- traveled to the Moon (18th century)
- got out from the bottom of the lake by pulling his bootstraps

Another Example

- X_1, \ldots, X_N i.i.d. with $\mathbb{E}|X_1|^3 < \infty$
- characteristic of interest: $\theta = \mu^3$, where $\mu = \mathbb{E}X_1$
- empirical estimator: $\hat{\theta} = (\int x \, d\hat{F}_N)^3 = (\bar{X}_N)^3$ is biased
- bootstrap: estimate the bias $b := bias(\widehat{\theta}) = \mathbb{E}\widehat{\theta} \theta$ as \widehat{b}^*
- bias-corrected estimator: $\widehat{\theta}_h^\star = \widehat{\theta} \widehat{b}^\star$... provably smaller bias?

Tomas Masak Week 10: Bootstrap

Another Example

- X_1, \ldots, X_N i.i.d. with $\mathbb{E}|X_1|^3 < \infty$
- characteristic of interest: $\theta = \mu^3$, where $\mu = \mathbb{E}X_1$
- estimator: $\hat{\theta} = (\int x \, d\hat{F}_N)^3 = (\bar{X}_N)^3$ is biased

$$\mathbb{E}\widehat{\theta} = \mathbb{E}\bar{X}_N^3 = \mathbb{E}\big[\mu + N^{-1}\sum_{n=1}^N (X_n - \mu)\big]^3 = \mu^3 + \underbrace{N^{-1}3\mu\sigma^2 + N^{-2}\gamma}_{=h},$$

ullet bootstrap: estimate the bias $b:=\mathrm{bias}(\widehat{ heta})=\mathbb{E}\widehat{ heta}- heta$ as \widehat{b}^\star

$$\mathbb{E}_{\widehat{F}_N}\widehat{\theta}^{\star} = \mathbb{E}_{\widehat{F}_N}(\bar{X}_N^{\star})^3 = \mathbb{E}_{\widehat{F}_N}\big[\bar{X}_N + N^{-1}\sum_{n=1}^N (X_n^{\star} - \bar{X}_N)\big]^3 = \bar{X}_N^3 + \underbrace{N^{-1}3\bar{X}_N\widehat{\sigma}^2 + N^{-2}\widehat{\gamma}}_{=\widehat{b}^{\star}},$$

• bias-corrected estimator: $\widehat{\theta}_b^\star = \widehat{\theta} - \widehat{b}^\star$... provably smaller bias?

$$\mathbb{E}\widehat{\theta}_b^\star = \mu^3 + N^{-1}3\underbrace{\left[\mu\sigma^2 - \mathbb{E}\bar{X}_N\widehat{\sigma}^2\right]}_{\mathcal{O}(N^{-1})} + N^{-2}\underbrace{\left[\gamma - \mathbb{E}\widehat{\gamma}\right]}_{\mathcal{O}(N^{-1})}.$$

Tomas Masak Week 10: Bootstrap No

Bootstrap

Bootstrap combines

- the plug-in principle, i.e. estimating the unknowns, and
- Monte Carlo principle, i.e. simulation instead of analytic calculations

What are the unknowns?

- parameters ⇒ parametric bootstrap
- ullet the whole F via ECDF \Rightarrow the (standard/non-parametric) bootstrap

Tomas Masak Week 10: Bootstrap November 25th 2022

The (standard/non-parametric) Bootstrap

- let $\mathcal{X} = \{X_1, \dots, X_N\}$ be a random sample from F
- characteristic of interest: $\theta = \theta(F)$
- estimator: $\widehat{\theta} = \theta(\widehat{F}_N)$
 - write $\widehat{\theta} = \theta[\mathcal{X}]$, since \widehat{F}_N and thus the estimator depend on the sample
- the distribution F_T of a scaled estimator $T = g(\hat{\theta}, \theta) = g(\theta[\mathcal{X}], \theta)$ is of interest
 - e.g. $T = \sqrt{N}(\widehat{\theta} \theta)$

The (standard/non-parametric) Bootstrap

- let $\mathcal{X} = \{X_1, \dots, X_N\}$ be a random sample from F
- characteristic of interest: $\theta = \theta(F)$
- estimator: $\widehat{\theta} = \theta(\widehat{F}_N)$
 - write $\widehat{\theta}=\theta[\mathcal{X}]$, since \widehat{F}_{N} and thus the estimator depend on the sample
- the distribution F_T of a scaled estimator $T = g(\hat{\theta}, \theta) = g(\theta[\mathcal{X}], \theta)$ is of interest
 - e.g. $T = \sqrt{N}(\widehat{\theta} \theta)$

The workflow of the bootstrap is as follows for some $B \in \mathbb{N}$ (e.g. B = 1000):

 $\mathcal{X} = \{X_1, \dots, X_N\} \quad \Longrightarrow \quad \begin{cases} & \mathcal{X}_1^\star = \{X_{1,1}^\star, \dots, X_{1,N}^\star\} & \Longrightarrow & \mathcal{T}_1^\star = g(\theta[\mathcal{X}_1^\star], \theta[\mathcal{X}]) \\ & \vdots & & \vdots \\ & \mathcal{X}_B^\star = \{X_{B,1}^\star, \dots, X_{B,N}^\star\} & \Longrightarrow & \mathcal{T}_B^\star = g(\theta[\mathcal{X}_B^\star], \theta[\mathcal{X}]) \end{cases}$

 F_T now estimated by $\widehat{F}_{T,B}^\star(x) = B^{-1} \sum_{b=1}^B \mathbb{I}_{[T_b^\star \leq x]}$

• any characteristic of F_T can be estimated by the char. of $\widehat{F}_{T,B}^{\star}(x)$

14 / 19

Tomas Masak Week 10: Bootstrap November 25th 2022

Running Ex. Again

- $X_1, \ldots, X_N \stackrel{\perp}{\sim} F$ and $\theta = \theta(F) = \int x \, dF$
- we want $\widehat{\theta}(\alpha)$ such that $P(\theta \leq \widehat{\theta}(\alpha)) = \alpha$.
- **3** Bootstrap CI. Let $\mathbb{E}X_1^2 < \infty$ and $X_1^{\star}, \dots, X_N^{\star}$ be a resample from the ECDF \hat{F}_{N}
 - set up the bootstrap statistic $T^* = \sqrt{N} \frac{X_N^* X_N}{2}$
 - denote by $q^*(\alpha)$ the quantile of T^*
 - take $\left(-\infty, \bar{X}_N + \frac{\widehat{\sigma}}{\sqrt{N}}q^*(\alpha)\right)$

In practice, $q^*(\alpha)$ approximated by Monte Carlo:

Data Resamples

$$\mathcal{X} = \{X_1, \dots, X_N\} \quad \Longrightarrow \quad \left\{ \begin{array}{ccc} \mathcal{X}_1^\star = \{X_{1,1}^\star, \dots, X_{1,N}^\star\} & \Longrightarrow & \mathcal{T}_1^\star \\ \vdots & & \vdots \\ \mathcal{X}_B^\star = \{X_{B,1}^\star, \dots, X_{B,N}^\star\} & \Longrightarrow & \mathcal{T}_B^\star \end{array} \right.$$

 \Rightarrow take $q^{\star}(\alpha)$ as the sample quantile of $T_1^{\star}, \ldots, T_R^{\star}$

Tomas Masak Week 10: Bootstrap

Running Ex. Specific

```
lambda <- 2
N < -100
X <- rexp(N,lambda)</pre>
(CI_asyptotic <- mean(X) + qnorm(0.95)*sd(X)/sqrt(N))
## [1] 0.5645591
Tstar <- function(Xstar,X){</pre>
  return( (mean(Xstar)-mean(X))/sd(Xstar)*sqrt(N))
}
B <- 10<sup>3</sup>
boot_ind <- sample(1:N, size=N*B, replace=T)</pre>
boot_data <- matrix(X[boot_ind],ncol=B)</pre>
Tstars <- rep(0,B)
for(b in 1:B){
  Tstars[b] <- Tstar(boot_data[,b],X)</pre>
( CI_boot <- mean(X) + quantile(Tstars, 0.95)*sd(X)/sqrt(N) )
          95%
##
```

The Bootstrap

- now we know what the bootstrap is
 - the scheme is very simple, though a bit mysterious, spawning questions:
- when does it work? ("work" = consistency)
- when does it give us something extra? (e.g. faster rates)

Tomas Masak Week 10: Bootstrap November 25th 2022 17 / 19

Consistency for Smooth Transformation of the Mean

Bootstrap setup in practice:

- \bullet T is the scaled estimator with unknown distribution F_T
- the bootstrap statistic T^* has F_T^* also unknown
- ullet the Monte Carlo proxy $F_{T,B}^{\star}$ is used instead of F_T^{\star}

Glivenko-Cantelli:

$$\sup_{x} \left| \widehat{F}_{T,B}^{\star}(x) - F_{T}^{\star}(x) \right| \stackrel{a.s.}{\to} 0 \quad \text{as} \quad B \to \infty.$$

Question:
$$\sup_{x} \left| F_{T}^{\star}(x) - F_{T}(x) \right| \to 0 \text{ for } N \to \infty$$
?

Theorem: Let $\mathbb{E}X_1^2 < \infty$ and $T = h(\bar{X}_N)$, where h is continuously differentiable at $\mu := \mathbb{E}X_1$ and such that $h(\mu) \neq 0$. Then

$$\sup_{x} \left| F_T^\star(x) - F_T(x) \right| \overset{a.s.}{\to} 0 \quad \text{as} \quad N \to \infty.$$

Tomas Masak Week 10: Bootstrap November 25th 2022

Remarks

- bootstrap should not be used blindly
 - verification via theory
 - and/or via simulations
- folk knowledge
 - bootstrap "works" when we have non-degenerate asymptotic normality
 - bootstrap "doesn't work" when working with order statistics, extremes, non-smooth transformations, non-i.i.d. regimes (e.g. time series), etc.
- bootstrap replaces analytic calculations (in particular the Delta method), but showing that it actually works requires even deeper analytic calculations
- faster rates can be achieved by bootstrap
 - hard to prove, but often happends e.g. when working with a skewed distribution
- how many Monte Carlo draws needed?
 - $B = 10^2$ is enough for variance estimation (next week)
 - $B = 10^3$ is taken most commonly
 - $B = 10^4$ better for small/large quantiles

Tomas Masak Week 10: Bootstrap November 25th 2022 19 / 19