CIS 833 – Information Retrieval and Text Mining Lecture 22

Text Classification

November 17, 2015

Credits for slides: Allan, Arms, Manning, Lund, Noble, Page.

Planning

■ PageRank implementation: due Dec 1st

■ Exam review: Dec 1st

■ Final exam: Dec 3rd

■ Project presentation: Dec. 17th (9:40 AM – 11:30 AM)

■ Project report: Dec. 18th

Textbook Material

- Next Text Classification
 - Chapter 13: Text Classification and Naïve Bayes
 - Chapter 14: Vector Space Classification
 - Chapter 15: Support Vector Machines

Learning Algorithms for Classification Tasks

- Relevance Feedback (Rocchio)
- k-Nearest Neighbors (simple, powerful)
- Naive Bayes (simple, common method)
- Support-vector machines (new, more powerful)
- ... plus many other methods

Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x:
 - Compute similarity between *x* and all examples in *D*.
 - Assign *x* the category of the most similar example in *D*.
- Does not explicitly compute a generalization or category prototypes.
- Also called:
 - Case-based
 - Memory-based
 - Lazy learning

K Nearest-Neighbor

- Using only the closest example to determine categorization is subject to errors due to:
 - A single atypical example.
 - Noise (i.e., error) in the category label of a single training example.
- More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Value of k is typically odd to avoid ties, 3 and 5 are most common.

Similarity Metrics

- Nearest neighbor method depends on a similarity (or distance) metric.
- Simplest for continuous *m*-dimensional instance space is *Euclidian distance*.
- Simplest for *m*-dimensional binary instance space is *Hamming distance* (number of feature values that differ).
- For text, cosine similarity of TF-IDF weighted vectors is typically most effective.

3 Nearest Neighbor Illustration (Euclidian Distance)

Rocchio Anomaly

 Prototype models have problems with polymorphic (disjunctive) categories.

3 Nearest Neighbor Comparison

 Nearest Neighbor tends to handle polymorphic categories better.

Evaluation Framework

- We want our classifier to generalize well to future examples
- Problem: But we do not know future examples !!!
- Solution: evaluate the classifier on the test set that is withheld from the learning stage

Methods to Estimate Performance

- Holdout
 - Reserve ½ for training and ½ for testing
 - Reserve 2/3 for training and 1/3 for testing
- To limit the effect of one lucky or unlucky train/test split it is common to average through:
 - Random subsampling
 - Repeated holdout
 - Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
 - Stratified sampling
 - oversampling vs undersampling
 - Bootstrap sampling with replacement

Random subsampling

A Note on Parameter Tuning

- It is important that the test data is not used in any way to create the classifier
- Some learning schemes operate in two stages:
 - Stage 1: builds the basic structure
 - Stage 2: optimizes parameter settings
- The test data can't be used for parameter tuning!
- Proper procedure uses three sets:
 - training data, validation data, and test data
- Validation data is used to optimize parameters

