MOCA B2 ED 1

Programmation dynamique

1 Problème du sac à dos

Nous considérons le programme linéaire en variables 0-1 suivant :

$$\max \sum_{i=1}^{n} c_i x_i$$

$$\sum_{i=1}^{n} a_i x_i \le b$$

$$x_i \in \{0, 1\}, 1 \le i \le n$$

où les paramètres a_i, c_i, b sont entiers. Notre objectif est de résoudre ce problème en utilisant la programmation dynamique.

Le problème est décomposé en n phases de la faon suivante :

à la phase $k, 1 \le k \le n$, on calcule

$$z_k(d) = \max\{\sum_{i=1}^k c_i x_i | \sum_{i=1}^k a_i x_i \le d, x_i \in \{0, 1\}\}$$

pour toutes les valeurs de d, $0 \le d \le b$.

Question 1 On note z(b) la solution optimale du problème. Montrer que $z(b)=z_n(b)$

Notre objectif est alors de calculer $z_n(b)$ à partir des valeurs de z_{n-1} qui seront elles-même calculées à partir de z_{n-2} et ainsi de suite.

Question 2 Montrer que la récurence est initialisée par $z_1(d) = \begin{cases} c_1 & \text{si } a_1 \leq d \\ 0 & \text{si } a_1 > d \end{cases}$

Supposons qu'à la phase k, pour la valeur d, $x_k = 1$ soit dans une solution optimale.

Question 3 Montrer que $d - a_k \ge 0$. En déduire que dans ce cas $z_k(d) = c_k + z_{k-1}(d - a_k)$

Supposons maintenant qu'à la phase k, pour la valeur d, $x_k = 0$ soit dans une solution optimale.

Question 4 Montrer que dans ce cas $z_k(d) = z_{k-1}(d)$

Question 5 Déduire des deux questions précédentes que pour $k=2,\ldots,n$ et $d=0,\ldots,b$ on a:

$$z_k(d) = \begin{cases} z_{k-1}(d) & \text{si } a_k > d \\ \max(z_{k-1}(d), c_k + z_{k-1}(d - a_k)) & \text{si } a_k \le d \end{cases}$$

Considérons l'exemple suivant :

$$\max 16x_1 + 19x_2 + 23x_3 + 28x_4$$
$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 7$$
$$x_i \in \{0, 1\}, 1 \le i \le 4$$

Question 6 Appliquer l'algorithme de programmation dynamique à l'exemple. Commencer par calculer z_1 puis z_2 puis z_3 et $z_4(7)$.