Turbulent flow over NACA0012 airfoil (2D)

Table of Contents

Overview

Physics and Numerics

Results

Resources

Mesh

Datasets for verifications (plain text)

Overview

- Based on https://turbmodels.larc.nasa.gov/naca0012_val.html [81]
- References: Gregory-O'Reilly (1970) [22], McCroskey (1987) [50], Ladson (1988) [35], Spalart-Allmaras (1994) [72], and Krist et al. (1997) [34]
- See the resources section for additional data files

Flow physics:

- · External flow
- Steady
- · High Reynolds number
- · Low Mach number, subsonic
- · Newtonian, single-phase, incompressible, non-reacting

Solver:

simpleFoam

Tutorial case:

• \$FOAM TUTORIALS/incompressible/simpleFoam/airFoil2D

Keywords: Reynolds-averaged Navier-Stokes, simpleFoam

Physics and Numerics

Physical domain:

• The case is a two-dimensional airfoil located around the centre of a computational domain whose dimensions are considerably larger than the chord-length of the airfoil.

- x: Longitudinal direction (mean flow direction)
- y: Spanwise direction (statistically homogeneous direction)
- z: Vertical direction (wall-normal direction)
- O: Origin at the leading edge of the airfoil

Physical modelling:

- Reynolds number based on local chord length: ${
 m Re}_c = U_x \, c \,
 u^{-1} pprox 6 imes 10^6$
 - Streamwise far-field flow speed: $U_x = 51.4815 \, [\text{m} \cdot \text{s}^{-1}]$
 - Characteristic length (Local chord length of the airfoil): $c=1.0~\mathrm{[m]}$
 - $\circ~$ Kinematic viscosity of fluid: $\nu_{\rm fluid} = 8.58 \times 10^{-6}~[\rm m^2 \cdot s^{\text{-1}}]$
- Mach number: $Ma = U_x/U_s \approx 0.15$
 - Speed of sound: $U_s = 343.21 \text{ [m} \cdot \text{s}^{-1}\text{]}$
- Turbulence model: Spalart-Allmaras

Numerical domain modelling:

- · Shape: extruded C-grid
- Dimensions: $(x, y, z) \approx (985.5, 1.0, 1015.6)$ [m]
- Sketch (View direction to *y*-positive):

Numerical domain

Spatial domain discretisation:

- Mesh type: hexahedral cells in plot3d format
- Mesh converter: plot3dToFoam
- Number of cells, $N: (N_x, N_y, N_z) = (257, 1, 897)$
- First wall-normal cell centre height: $\Delta_y^+ < 1$
- Mesh detail (View direction to *y*-positive):

Equation discretisation:

Spatial derivatives and variables:

- Gradient: Gauss linear
- Divergence:
 - default: Gauss linear
 - div(phi,U): bounded Gauss linearUpwind grad(U)
 - div(phi,nuTilda): bounded Gauss linearUpwind grad(nuTilda)
- Laplacian: Gaussian linear corrected
- Surface-normal gradient: corrected

Temporal derivatives and variables:

• ddtSchemes: steadyState

Numerical boundary conditions:

• Velocity, U

Patch	Condition	Value [m·s ⁻¹]
Inlet	freestreamVelocity	\mathbf{U}_{lpha}
Outlet	freestreamVelocity	\mathbf{U}_{lpha}
Sides (y-dir)	empty	-
Aerofoil	fixedValue	(0.0, 0.0, 0.0)

а	Uα	
$\alpha = 0^{\circ}$	(51.4815, 0.00, 0.0000)	
$\alpha = 10^{\circ}$	(50.6994, 0.00, 8.9397)	
$\alpha = 15^{\circ}$	(49.7273, 0.00, 13.3244)	

• Kinematic pressure, p

Patch	Condition	Value [m ² ·s ⁻²]
Inlet	freestreamPressure 0.0	
Outlet	freestreamPressure	0.0
Sides (y-dir)	empty	-
Aerofoil	zeroGradient	-

- Turbulent kinematic viscosity, nut (i.e. $\nu_t)$

Patch	Condition	Value [m ² ⋅s ⁻¹]
Inlet	freestream	$8.58e^{-6} \approx \nu_{\rm fluid}$ [82]
Outlet	freestream	$8.58e^{-6} \approx \nu_{\rm fluid}$ [82]
Sides (y-dir)	empty	-
Aerofoil	fixedValue	0.0 [82]

- Spalart-Allmaras model modified viscosity, nuTilda (i.e. $\tilde{\nu}$)

Patch	Condition	Value [m ² ·s ⁻¹]
Inlet	freestream	$3.432e^{-5} \approx 4\nu_{\rm fluid}$ [82]
Outlet	freestream	$3.432e^{-5} \approx 4\nu_{\rm fluid}$ [82]

Sides (y-dir)	empty	-
Aerofoil	fixedValue	0.0 [82]

Solution algorithms and solvers:

- Pressure-velocity: SIMPLE algorithm
- · Parallel decomposition of spatial domain and fields: Not applicable
- · Linear solvers:

Field	Linear Solver	Smoother	Tolerance (rel)
U	Smooth solvers	Gauss Seidel Smoother	0.01
р	GAMG Solver	Gauss Seidel Smoother	0.01
nuTilda	Smooth solvers	Gauss Seidel Smoother	0.01

Results

List of metrics:

- Lift coefficient C_L vs. Angle of attack α
- Drag coefficient C_D vs. Angle of attack lpha
- Drag coefficient C_D vs. Lift coefficient C_L
- Surface pressure coefficient \mathbf{C}_p vs. Normalised chord length x/c
- Surface skin friction coefficient \mathbf{C}_f vs. Normalised chord length x/c
- {\bar{\cdot}} is the time-averaging operator

Resources

Note: Links will take you to the NASA website

Mesh

- · Mesh description
- Mesh: (3-D) 2 x 897 x 257 with 2 x 513 points on airfoil surface (gzipped, 5.1 MB)

Datasets for verifications (plain text)

Lift and drag coefficients vs angle of attack

- [Experiment] (https://turbmodels.larc.nasa.gov/NACA0012_validation/CLCD_Ladson_expdata.dat) [35]
- Numerical (CFL3D software) [34]

Pressure distribution vs local chord length

- Experiment [35]
- Numerical (CFL3D software) [34]

Lift coefficient vs angle of attack

Theoretical [50]

Skin friction coefficient vs local chord length

• Numerical (CFL3D software) [34]