9.4 多元复合函数的求导法则

1. 填空题

(1)
$$\[\[\] \] f(x,y) = x + (y-1) \arcsin \sqrt{\frac{x}{y}} \]$$
, $\[\] \[\] f_x(x,1) = \underline{\qquad}$

(2)
$$z = e^{3u-2v}, u = x^2, v = \cos x, \frac{dz}{dx} = \underline{\hspace{1cm}}$$

(4) 设
$$z = \frac{y}{f(x^2 - y^2)}$$
, 其中 f 可微,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}};$

$$\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$$

(5) 设
$$u = f(\frac{x}{y}, \frac{y}{z})$$
, 其中 f 具有一阶连续偏导数, 则 $\frac{\partial u}{\partial x} =$ ______;

$$\frac{\partial u}{\partial y} = \underline{\hspace{1cm}}; \quad \frac{\partial u}{\partial z} = \underline{\hspace{1cm}}.$$

(6) 设函数 z = f(x, y) 在点 (1,1)处可微,且 f(1,1) = 2, f(1,2) = 1, $f_x(1,1) = 2$,

$$f_y(1,1) = 3$$
, $f_x(1,2) = 4$, $f_y(1,2) = 5$, $\exists \varphi(x) = f(x,f(x,x))$, $\exists \frac{d}{dx} \varphi^3(x) \Big|_{x=1} = \underline{\qquad}$

2. 选择题

(1) 已知函数 $u(x,y) = \varphi(x+y) + \varphi(x-y) + \int_{x-y}^{x+y} \psi(t)dt$,其中函数 φ 具有二阶导数, ψ 具有一阶导数,则必有(

A
$$\frac{\partial^2 u}{\partial x^2} = -\frac{\partial^2 u}{\partial y^2}$$
 B $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$ C $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y^2}$ D $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial x^2}$

3. 设函数 z = f(u, v, w) 具有连续偏导数,而 $u = \eta - \xi, v = \eta + \xi, w = \xi \eta$,

$$\dot{\mathbb{R}}\frac{\partial z}{\partial \xi}\,, \quad \frac{\partial z}{\partial \eta}\,.$$

4. 设 $z = f(u, x, y), u = xe^{y}$, 其中 f 具有连续的二阶偏导数,求 $\frac{\partial^{2} z}{\partial x \partial y}$.

5. 设 $u = x^y$, 而 $x = \varphi(t)$, $y = \phi(t)$ 都是可微函数, 求 $\frac{du}{dt}$.

6. 设函数 $z = xy + xf(\frac{y}{x})$, 其中 f(u) 为可微函数, 证明: $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xy + z$.

