

PHYSICS Chapter 18

EQUILIBRIO TERMICO

CALOR Y TEMPERATURA

¿Qué es la TEMPERATURA?

Es la cantidad física escalar que caracteriza el grado de agitación molecular en un cuerpo.

Es la energía que se transfiere de manera espontanea, debido a una diferencia de temperatura entre ellos.

CALOR Y TEMPERATURA

¿Qué efectos produce el calor sobre las sustancias?

Cambio de temperatura

Cambio de fase

Dilatación

EQUILIBRIO TERMICO

Es el estado en el que se igualan las temperaturas de dos cuerpos que inicialmente se encontraban a diferentes temperaturas. Al igualarse las temperaturas se suspende la transferencia de calor, y el sistema formados por esos cuerpos llega a su equilibrio térmico. De forma practica:

Utilizaremos el "diagrama lineal de temperatura" para analizar la transmisión de calor de un cuerpo a otro.

Para el equilibrio térmico; se cumple:

$$Q_G = Q_P$$

Someoneast-O-Matte-com Ver animación

CALOR SENSIBLE: (Q_S)

Unidad: caloría (cal) 1 000 cal = 1 kcal Es la cantidad de calor que debe de absorber o ceder toda sustancia (solida; liquida o gaseosa) para aumentar o disminuir

su temperatura.

Su valor se obtiene con:

$$Q_S = Ce \cdot m \cdot \Delta T$$

Donde:

 $Ce = calor \ espec$ ífico $de \ la \ sustancia \ \left(\frac{cal}{g^{\circ}C}\right)$

m = masa(g)

 $\Delta T = variación en la temperatura (°C)$

Para fines prácticos, considerar

$$\Delta T = T_{mayor} - T_{menor}$$

Determine la cantidad de calor que requiere absorber 60 g de agua para variar su temperatura en 12 °C. $(Ce_{H_2O} = 1cal/g \cdot °C)$

RESOLUCIÓN:

Datos:

$$m = 60 g$$

 $\Delta T = 12 \,^{\circ}C$

Al absorber calor, se produce sólo variación en la temperatura; por lo tanto, se produce un calor sensible

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 1 \frac{cal}{g \cdot {}^{\circ}\text{C}} \cdot 60 \ g \cdot 12 \ {}^{\circ}\text{C}$$

$$\therefore Q_S = 720 \ cal$$

Determine la cantidad de calor que requiere 95 g de agua para elevar su temperatura de 15°C a 50°C.

RESOLUCIÓN:

Datos:

$$m = 95 g$$

 $T_O = 15 \,^{\circ}\text{C}$
 $T_f = 50 \,^{\circ}\text{C}$

Para elevar su temperatura el agua absorbe calor; por lo tanto, se produce un calor sensible ya que sólo hay variación en la temperatura. Realizamos el "Diagrama lineal de temperatura"

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 1 \frac{cal}{g \cdot {}^{\circ}\text{C}} \cdot 95 \ g \cdot 35 \ {}^{\circ}\text{C}$$

$$\therefore Q_S = 3325 \ cal$$

Un cuerpo de 200 g eleva su temperatura de 5°C a 25°C. Determine las calorías que ganó durante el proceso. ($Ce_{cuerpo} = 0.7cal/g \cdot °C$)

RESOLUCIÓN:

Datos:

$$m = 200 g$$

 $T_O = 5 \,^{\circ}\text{C}$
 $T_f = 25 \,^{\circ}\text{C}$

Para elevar su temperatura el cuerpo absorbe calor; por lo tanto, se produce un calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 0.7 \frac{cal}{g \cdot {}^{\circ}\text{C}} \cdot 200 \ g \cdot 20 \ {}^{\circ}\text{C}$$

$$\therefore Q_S = 2800 \ cal$$

Se mezclan 100 g de agua a 10 °C con 300 g de agua a 90 °C. Determine la temperatura de equilibrio de la mezcla. ($Ce_{H_2O} = 1cal/g \cdot °C$)

RESOLUCIÓN:

Se produce calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_{G} = Q_{P}$$

$$(Ce \cdot m \cdot \Delta T)_{1} = (Ce \cdot m \cdot \Delta T)_{2}$$

$$1 \frac{cal}{g^{\circ}C} \cdot 100 g \cdot (T_{Eq} - 10^{\circ}C) = 1 \frac{cal}{g^{\circ}C} \cdot 300 g \cdot (90^{\circ}C - T_{Eq})$$

$$T_{Eq} - 10^{\circ}C = 3(90^{\circ}C - T_{Eq})$$

$$T_{Eq} - 10^{\circ}C = 270^{\circ}C - 3T_{Eq}$$

$$T_{Eq} = 280^{\circ}C$$

$$\therefore T_{Eq} = 70^{\circ}C$$

Determine la temperatura de equilibrio cuando se mezclan 400 g de agua a 15 °C con 200 g de agua a 45 °C. ($Ce_{H_2O} = 1cal/g$ °C)

RESOLUCIÓN:

Se produce calor sensible ya que sólo hay variación en la temperatura.

Aplicamos:

$$Q_{G} = Q_{P}$$

$$(Ce \cdot m \cdot \Delta T)_{1} = (Ce \cdot m \cdot \Delta T)_{2}$$

$$1\frac{cal}{g^{\circ}C} \cdot 400 \ g \cdot (T_{Eq} - 15^{\circ}C) = 1\frac{cal}{g^{\circ}C} \cdot 200 \ g \cdot (45^{\circ}C - T_{Eq})$$

$$4(T_{Eq} - 15^{\circ}C) = 2(45^{\circ}C - T_{Eq})$$

$$4T_{Eq} - 60^{\circ}C = 90^{\circ}C - 2T_{Eq}$$

$$6T_{Eq} = 150^{\circ}C$$

Una mañana fría de invierno me levante para ir a la escuela y cuando abrí la ducha eléctrica me di cuenta que estaba malograda.

Para poder darme un baño con agua tibia mezcle en un recipiente ¼ de volumen de agua caliente (88 °C) con ¾ de agua fría (20 °C). ¿Cuál es la temperatura final que obtuve?

RESOLUCION

* Para el agua podemos considerar que su volumen es equivalente a su masa .

$$Q_G = Q_P$$

Ce.
$$m1.(TE - T1) = Ce. m2.(T2 - TE)$$

$$1cal/g \, ^{\circ}C \, . \, 3/4m \, (TE - 20^{\circ}C) = 1cal/g \, ^{\circ}C \, . \, 1/4m \, (88^{\circ}C - TE)$$

Simplificando:

$$3 (TE - 20^{\circ}C) = 1 (88^{\circ}C - TE)$$

 $3.TE - 60^{\circ}C = 88^{\circ}C - TE$
 $TE = 37^{\circ}C$

hervir Solemos agua a diario en una tetera olla. Si la una temperatura inicial del agua al medio ambiente es de 20 °C aproximadamente, ¿qué cantidad de calor debemos suministrarle aproximadamente a 500 g de agua al medio ambiente con la finalidad de que el agua empiece a hervir si a nivel del mar el agua hierve a 100 °C?.

RESOLUCIÓN:

Para que el agua empiece a hervir tiene que alcanzar los 100°C

Datos:

$$m = 500 g$$

 $T_O = 20 \, ^{\circ}\text{C}$
 $T_f = 100 \, ^{\circ}\text{C}$

Al absorber calor, se produce sólo variación en la temperatura; por lo tanto, se da un calor sensible.

Realizamos el "Diagrama lineal de temperatura"

Aplicamos:

$$Q_S = Ce \cdot m \cdot \Delta T$$

$$Q_S = 1 \frac{cal}{g \cdot {}^{\circ}C} \cdot 500 \ g \cdot 80 \ {}^{\circ}C$$

$$\therefore Q_S = 40000 \ cal = 40 \ kcal$$