AMENDMENTS TO THE CLAIMS

This listing of claims supersedes all prior versions and listings of claims in this application:

LISTING OF CLAIMS:

1. (Original) A pneumatic tire, comprising:

circumferential grooves disposed along a circumferential direction of a tread; and land portions divided by the circumferential grooves, wherein positions of groove deepest portions in the circumferential grooves vary in a predetermined cycle along the circumferential direction in a width direction of the tread within the circumferential grooves; and

depth direction positions, where a groove bottom surface of the circumferential groove contacts with each of perpendicular lines which are perpendicular or approximately perpendicular to a tread surface and which pass respectively through edges of the land portions on a side of each of the circumferential grooves, as well as angles, which are formed by the perpendicular lines and a section line of a cross-section of the groove bottom surface in the width direction of the tread surface with a vertex in the depth direction positions, vary in the predetermined cycle along the circumferential direction.

ATTORNEY DOCKET NO. Q94729

PRELIMINARY AMENDMENT U.S. SERIAL NO. 10/577,901

- 2. (Original) The pneumatic tire of claim 1 characterized in that when a maximum groove cross-sectional area S is defined as an area of a rectangle formed by each of the edges of the land portions on the side of the circumferential groove and by points where the perpendicular lines, which are perpendicular or approximately perpendicular to the tread surface and which pass through the edges, intersect perpendicularly with a line which is parallel to the tread surface and tangent to the groove deepest portion, an effective groove cross-sectional area S' corresponding to a portion forming the circumferential groove along the entire circumferential direction satisfies $S' \ge 0.45S$ in the maximum groove cross-sectional area S.
- 3. (Currently Amended) The pneumatic tire of claim 1 [[or 2]] characterized in that, when an angle close to a rotation center of the tire is denoted as $\alpha 1$ and an angle close to the tread surface is denoted as $\beta 1$, the angles being respectively formed, with a vertex in the depth direction position, by one of the perpendicular lines and the section line of the cross-section of the groove bottom surface in the width direction, at which the groove bottom surface contacts with the perpendicular line passing through the edge of the land portion disposed on the shoulder side of the tread, and when an angle close to the rotation center of the tire is denoted as $\alpha 2$ and an angle close to the tread surface is denoted as $\beta 2$, the angles being respectively formed, with a vertex in the depth direction position, by the other of the perpendicular line and the section line

of the cross-section of the groove bottom surface in the width direction, at which the groove bottom surface contacts with the perpendicular line passing through an edge of a second land portion which is the land portion disposed on a center side of the tread, a relationship $\alpha 2 < \beta 2$ is satisfied in a region where a relationship $\alpha 1 > \beta 1$ is satisfied, and a relationship $\alpha 2 > \beta 2$ is satisfied in a region where a relationship $\alpha 1 < \beta 1$ is satisfied.

Please add the following newly presented claim 4:

4. (New) The pneumatic tire of claim 2 characterized in that, when an angle close to a rotation center of the tire is denoted as $\alpha 1$ and an angle close to the tread surface is denoted as $\beta 1$, the angles being respectively formed, with a vertex in the depth direction position, by one of the perpendicular lines and the section line of the cross-section of the groove bottom surface in the width direction, at which the groove bottom surface contacts with the perpendicular line passing through the edge of the land portion disposed on the shoulder side of the tread, and when an angle close to the rotation center of the tire is denoted as $\alpha 2$ and an angle close to the tread surface is denoted as $\beta 2$, the angles being respectively formed, with a vertex in the depth direction position, by the other of the perpendicular line and the section line of the cross-section of the groove bottom surface in the width direction, at which the groove bottom surface contacts with the perpendicular line passing through an edge of a second land

portion which is the land portion disposed on a center side of the tread, a relationship $\alpha 2 < \beta 2$ is satisfied in a region where a relationship $\alpha 1 > \beta 1$ is satisfied, and a relationship $\alpha 2 > \beta 2$ is satisfied in a region where a relationship $\alpha 1 < \beta 1$ is satisfied.