Introduction to Online Learning Algorithms

Yoav Freund

January 2, 2025

Outline

Halving Algorithm

Perceptron

Estimating the mean

Example trace for Halving Algorithm

	t = 1	<i>t</i> = 2	t = 3	t = 4	<i>t</i> = 5	
expert1	1	1	1	1	-	
expert2	1	0	-	-	-	
expert3	0	-	-	-	-	
expert4	1	0	-	-	-	
expert5	1	0	-	-	-	
expert6	0	-	-	-	-	
expert7	1	1	1	1	-	
expert8	1	1	1	0	0	
alg.	1	0	1	1	0	
outcome	1	1	1	0	0	

Mistake bound for Halving algorithm

- Each time algorithm makes a mistakes, the pool of perfect experts is halved (at least).
- We assume that at least one expert is perfect.
- Number of mistakes is at most log₂ N.
- No stochastic assumptions whatsoever.
- Proof is based on combining a lower and upper bounds on the number of perfect experts.

The Perceptron Problem

- $||\vec{V}|| = 1$
- ► Example = (\vec{X}, y) , $y \in \{-1, +1\}$.
- $\blacktriangleright \ \forall \vec{X}, \ \|\vec{X}\| \leq R.$
- $\forall (\vec{X}, y), \\ y(\vec{X} \cdot \vec{V}) \geq g$

The Perceptron learning algorithm

- An online algorithm. Examples presented one by one.
- ightharpoonup start with $\vec{W}_0 = \vec{0}$.
- ▶ If mistake: $(\vec{W}_i \cdot \vec{X}_i)y_i \leq 0$
 - ▶ Update $\vec{W}_{i+1} = \vec{W}_i + y_i X_i$.

Example trace for the perceptron algorithm

Bound on number of mistakes

- The number of mistakes that the perceptron algorithm can make is at most $\left(\frac{R}{g}\right)^2$.
- ▶ Proof by combining upper and lower bounds on $\|\vec{W}\|$.

Pythagorian Lemma

If $(\vec{W}_i \cdot X_i)y < 0$ then

$$\|\vec{W}_{i+1}\|^2 = \|\vec{W}_i + y_i \vec{X}_i\|^2 \le \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$$

Upper bound on $\|\vec{W}_i\|$

Proof by induction

- ightharpoonup Claim: $\|\vec{W}_i\|^2 \leq iR^2$
- ► Base: i = 0, $\|\vec{W}_0\|^2 = 0$
- Induction step (assume for i and prove for i+1): $\|\vec{W}_{i+1}\|^2 < \|\vec{W}_i\|^2 + \|\vec{X}_i\|^2$

$$\|W_{i+1}\|^2 \le \|W_i\|^2 + \|X_i\|^2$$

 $< \|\vec{W}_i\|^2 + R^2 < (i+1)R^2$

Lower bound on $\|\vec{W}_i\|$

 $\|\vec{W}_i\| \ge \vec{W}_i \cdot \vec{V}$ because $\|\vec{V}\| = 1$. Let *i* denote the number of mistakes made so far.

We prove a lower bound on $\vec{W}_i \cdot \vec{V}$ by induction over i

- ► Claim: $\vec{W}_i \cdot \vec{V} \ge ig$
- ▶ Base: i = 0, $\vec{W}_0 \cdot \vec{V} = 0$
- Induction step (assume for i and prove for i+1): $\vec{W}_{i+1} \cdot \vec{V} = (\vec{W}_i + \vec{X}_i y_i) \vec{V} = \vec{W}_i \cdot \vec{V} + y_i \vec{X}_i \cdot \vec{V}$ > iq + q = (i+1)q

Combining the upper and lower bounds

$$(ig)^2 \leq \|\vec{W}_i\|^2 \leq iR^2$$

Thus:

$$i \leq \left(\frac{R}{g}\right)^2$$

The mean estimation game

- ▶ An adversary choses a real number $y_t \in [0, 1]$ and keeps it secret.
- You make a guess of the secret number x_t
- ▶ The adversary reveals the secret and you pay $(x_t y_t)^2$
- You want to minimize $\frac{1}{T} \sum_{t=1}^{T} (x_t y_t)^2$
- ► Impossible without additional constraints.

Adversary is a fixed distribution

- Suppose that the adversary draws $y_1, y_2, ..., y_T$ IID from a fixed distribution over [0, 1] with mean μ and std σ .
- ▶ Optimal prediction $x_t = \mu$
- \triangleright E_Y $[(\mu Y)^2] = \sigma^2$
- ▶ Online prediction: predict x_{t+1} from $Y^t = \langle Y_1, Y_2, \dots, Y_t \rangle$.
- **Expected regret**: compare performance of algorithm to Regret = $E_{Y^T} [(x_t Y_t)^2] \sigma^2$

Individual sequence bounds

- Make no assumption about how the sequence is generated.
- ► The best constant value for x in hind-sight:

$$x_T^* \doteq \underset{x \in [0,1]}{\operatorname{argmin}} \sum_{t=1}^T (x - y_t)^2, \ \ x_t^* = \frac{1}{T} \sum_{t=1}^T y_t$$

Regret: the loss over and above the loss of x_T^* . for the worst-case sequence

Regret_T =
$$\sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_t^* - y_t)^2$$

▶ **Goal:** sublinear regret $\lim_{T\to\infty} \frac{\text{Regret}_T}{T} = 0$

Follow the Leader

- ldea: set x_{t+1} to be the best constant prediction on y_1, \dots, y_t
- $X_{t+1} = \operatorname{argmin}_{x \in [0,1]} \sum_{i=1}^{t} (x y_i)^2$
- We will prove that the regret of this algorithm is upper bound by 4 + 4 ln T

regret bound

Theorem

Let $y_t \in [0,1]$ for t=1,...T an arbitrary sequence of numbers. Let the algorithm output be $x_t = x_{t-1}^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i$, then

$$Regret_T = \sum_{t=1}^{T} (x_t - y_t)^2 - \sum_{t=1}^{T} (x_T^* - y_t)^2 \le 1 + \ln T$$

-Estimating the mean

Lemma

 $\textit{Let } x_1^*, x_2^*, \dots \textit{ be the squence of predictions produced by FTL. Then for all } u \in \textit{R (In particular, for } u = x_{T+1}^*) :$

$$Regret_{T}(u) = \sum_{t=1}^{T} \left((x_{t}^{*} - y_{t})^{2} - (u - y_{t})^{2} \right)$$

$$\leq \sum_{t=1}^{T} \left((x_{t}^{*} - y_{t})^{2} - (x_{t+1}^{*} - y_{t})^{2} \right)$$

proof sketch:

Subtract $\sum_{t=1}^{T} (x_t^* - y_t)^2$ from both sides to get an equivalent claim:

$$\sum_{t=1}^{T} (x_{t+1}^* - y_t^*)^2 \le \sum_{t=1}^{T} (u - y_t)^2$$

The inequality is proven by induction on T.

Sketch of proof of theorem

```
Using the fact that FTL is x_t^* = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i one can show that x_{t+1}^* - y_t = \frac{t-1}{t} (x_t^* - y_t) and therefor that (x_t^* - y_t)^2 - (x_{t+1}^* - y_t)^2 = \frac{1}{t} (x_t^* - y_t)^2 From the fact that 0 \le x_t^*, y_t \le 1 we get that (x_t^* - y_t)^2 \le 1. From which we obtain \sum_{t=1}^T ((x_t^* - y_t)^2 - (x_{t+1}^* - y_t)^2) \le \sum_{t=1}^T \frac{1}{t} Combing the last statement with the Lemma concludes the proof of the theorem.
```