1 Motywacja

Motywacją do rozważania równań różniczkowych będzie zagadnienie rozpadu promieniotwórczego. Eksperymentalnie sprawdzono, że tempo rozpadu jest wprost proporcjonalne do masy pierwiastka promieniotwórczego. Czyli dla pewnej k>0 mamy x'(t)=-kx(t), gdzie x(t) to masa pierwiastka w chwili t. Szukamy funkcji m, pomijać będziemy oznaczenie argumentu, oraz będziemy pisać $\dot{x}:=m'$.

Zgadnąć możemy, że rozwiązaniem są funkcje postaci $x(t) = e^{-kt} \cdot x(0)$. Powstaje naturalne pytanie – czy wszystkie rozwiązania są takiej postaci? W tym przypadku możemy wykonać przejścia równoważne:

$$\dot{x} + kx = 0$$

$$\dot{x}e^{kt} + ke^{kt}x = 0$$

$$\left(xe^{kt}\right)^{\cdot} = 0.$$

Zatem xe^{kt} jest stałą, więc $x(t) = c \cdot e^{-kt}$.

2 Definicja

Układem równań równiczkowych zwyczajnych *m*-tego rzędu nazywamy wyrażenie:

$$F(\dot{x},\ddot{x},\ldots,x^{(m)})=0,$$

gdzie

$$x: \mathbb{R} \supseteq I \to \mathbb{R}^n$$

 $F: \mathbb{R}^{1+(m+1)n} \to \mathbb{R}^k$.

Zazwyczaj udaje się wyrazić najmniejszą pochodną w postaci rozwikłanej: $x^{(m)} = f(t, \dot{x}, \dots, x^{(m-1)})$. Zwykle zakłąda się różniczkowalność lub lipschitzowskość funkcji f.

3 Redukcja do układu równań pierwszego rzędu

Jeżeli mamy $x^{(m)} = f(t, \dot{x}, \dots, x^{(m-1)})$, to położywszy $y_k = x^{(k)}$, otrzymamy

$$\dot{y_0} = y_1, \dots, \quad \dot{y_{m-2}} = y_{m-1}, \quad \dot{y_{m-1}} = y_m = x^{(m)} = f(t, y)$$

dla $y = (y_0, ..., y_{m-1}) \in \mathbb{R}^m$. A zatem mamy $\dot{y} = g(t, y)$.

4 Badanie roztworów nasyconych

Kolejny przykład zastosowania równań różniczkowych. Stwierdzono, że w cieczy można rozpuścić ilość soli, która zwiększa się proporcjonalnie do zmiany temperatur: $\delta s = k \delta T$, a więc $\frac{\delta s}{\delta T} = k S$, czyli w granicy $\frac{dS}{dt} = k S$. Znamy rozwiązanie tego równania, S(T) = S(0). Biorąc $s_0 = S(T_0)$, $s_1 = S(T_1)$, dostaniemy