

오늘의 토픽 (Topics)

- AI 재테크란?
- 생성형 AI 이해 및 활용
- 실무 문서 작성 실습
- AI 에이전트 및 툴 실습

실습 전 준비

■ 줌 회의 참가하기

Meeting ID: 622 395 4498 Passcode: 1234

40days's Personal Meeting Room https://seoultech.zoo m.us/j/6223954498

재테크의 개념

- "재무" + "테크닉(기술)"의 합성어
- 자산을 효율적으로 관리하고 증식하는 모든 활동
- 수입, 지출, 저축, 투자 등을 체계적으로 관리하여 자산을 늘리는 활동

"돈을 잘 굴리는 기술"

AI 재테크란?

- 인공지능(AI)을 활용한 재테크(재무 기술, 자산 관리, 투자 전략)를 의미. 쉽게 말해, AI 기술을 이용해서 돈을 더 잘 벌고, 더 효율적으로 관리하는 방법
- 재테크 데이터를 기반으로 성과를 분석하고 의사결정을 지원하는 통계적·정량적 분석
- 통계 방법, 정량적 분석을 활용하여 재테크 데이터의 과거와 현재 성과를 탐색하고, 미래 경향을 예측하며, 최적의 실행 방안을 제시하는 일련의 실천적 분석 프로세스

인공지능 Artificial Intelligence

다중층 신경망을 이용하는 머신러닝기술

기계가 인간의 지능을 모방하여 학습하고, 추론하며, 문제를 해결하는 기술

■ 의료, 금융, 제조업 등 다양한 분야에서 필수적인 도구로 자리잡고 있음

Artificial Intelligence Any technique which enables computers to mimic human behavior. Fuzzy logic 컴퓨터가 사람의 행동을 흉내내는 모든 Genetic algorithm 기술들 Expert system **Machine Learning** Machine Learning Subset of AI techniques which use statistical methods to enable machines to improve with experiences. f_{x} 통계적 방법을 이용하여 기계가 학습하게 하는 인공지능 기술 Neural network Deep Learning Subset of ML which make the computation of multi-layer neural networks feasible.

기계학습 (Machine Learning)

- An automated learning with little or no human intervention. 사람 개입없이 자동으로 기계가 학습하게 함
- Explores and constructs algorithms that can learn from the previous data and make predictions on new input data. 과거의 데이터로 모델을 만들고 그것을 이용하여 새로운 데이터를 예측하게 함

지도학습과 비지도학습 (Supervised and Unsupervised Learning)

분류(Classification)

 A machine learning technique that uses known data to determine how the new data should be classified into a set of existing categories. 기본의 데이터를 이용하여 어떻게 새로운 데이터를 기존의 범주로 분류할지 결정하는 머신러닝 기술

대출 예측문제 (Loan Prediction Problem)

nonnumeric

numeric

nonnumeric

Variable	Description
Loan_ID	Unique Loan ID
Gender	Male/ Female
Married	Applicant married (Y/N)
Dependents	Number of dependents
Education	Applicant Education (Graduate/ Undergraduate)
Self_Employed	Self employed (Y/N)
	Applicant income
	Coapplicant income
LoanAmount	Loan amount in thousands
Loan_Amount_Term	Term of loan in months
Credit_History	credit history meets guidelines
Property_Area	Urban/ Semi Urban/ Rural
Loan_Status	Loan approved (Y/N)

분류알고리즘 (Classification Algorithms)

Decision Tree 의사결정트리 Random Forest 랜덤포레스트 Linear Discriminant Analysis 선형판별분석

K-Nearest Neighbor K-최근접이웃 Support Vector Machine 지원벡트머신

Neural Network 신경망

회귀분석 (Regression)

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships among variables. 변수들 사이의 관계를 추정하는 통계기법

일에 관된 수들

회귀분석 예제 (Regression Example)

Variable	Description	Relation to Hypothesis
Item_Identifier	Unique product ID	ID Variable
Item_Weight	Weight of product	Not considered in hypothesis
Item_Fat_Content	Whether the product is low fat or not	Linked to 'Utility' hypothesis. Low fat items are generally used more than others
Item_Visibility	The % of total display area of all products in a store allocated to the particular product	Linked to 'Display Area' hypothesis.
Item_Type	The category to which the product belongs	More inferences about 'Utility' can be derived from this.
Item_MRP	Maximum Retail Price (list price) of the product	Not considered in hypothesis
Outlet_Identifier	Unique store ID	ID Variable
Outlet_Establishment_Year	The year in which store was established	Not considered in hypothesis
Outlet_Size	The size of the store in terms of ground area covered	Linked to 'Store Capacity' hypothesis
Outlet_Location_Type	The type of city in which the store is located	Linked to 'City Type' hypothesis.
Outlet_Type	Whether the outlet is just a grocery store or some sort of supermarket	Linked to 'Store Capacity' hypothesis again.
Item_Outlet_Sales	Sales of the product in the particular store. This is the outcome variable to be predicted.	Outcome variable

예측하려고 하는 변수

군집분석 (Clustering)

■ Clustering is the process of grouping similar entities together. 비슷한 것끼리 묶는 기술

생성형 인공지능 Generative Al

- 사람이 입력한 프롬프트를 바탕으로 새로운 콘텐츠를 자동 생성하는 인공지능
- 예) 텍스트, 이미지, 영상 생성, 음악 작곡, 코드 생성 등

텍스트 생성

ChatGPT, GPT 시리즈

이미지 생성

DALL·E, StableDiffusion

영상 생성

Runway,Pika

음악 생성

• Suno, Udio

음성 생성

• 음성 합성 AI (TTS)

기술 트렌드

- 머신러닝, 딥러닝, 생성형 Al(Gen Al)의 발전
- 재테크 분야에서의 AI 활용 가능성
- 주식 투자
 - AI가 시황 분석 → 종목 추천 및 매매 시점 제안
- 로보어드바이저
 - 30대 직장인의 연봉, 지출, 투자 목표 등을 분석 → 자동 포트폴리오 운영
- 챗GPT 사용: 투자 아이디어 리서치, 경제 뉴스 요약, 재무제표 분석 등

AI 도구의 종류

- 머신러닝/인공지능 라이브러리
 - TensorFlow, PyTorch
- 데이터 분석 및 시각화 도구
 - Tableau, Power BI, Pandas, Matplotlib, Seaborn
- 자연어 처리 도구
 - ChatGPT, Gemini, Claude, Perplexity

재테크 분야에서의 AI 활용 가능성

- 주식 투자
 - AI가 시황 분석 → 종목 추천 및 매매 시점 제안
- 로보어드바이저
- 30대 직장인의 연봉, 지출, 투자 목표 등을 분석 → 자동 포트폴리오 운영
- 챗GPT 사용: 투자 아이디어 리서치, 경제 뉴스 요약, 재무제표 분석 등

AI 재테크 분석

- 재테크 데이터를 기반으로 성과를 분석하고 의사결정을 지원하는 통계적·정량적 분석
- 통계 방법, 정량적 분석을 활용하여 재테크 데이터의 과거와 현재 성과를 탐색하고, 미래 경향을 예측하며, 최적의 실행 방안을 제시하는 일련의 실천적 분석 프로세스

AI 재테크 분석

- 인공지능(AI), 머신러닝, 딥러닝 기술을 통해 경영 및 금융 데이터를 자동 분석하고, 예측 모델을 만들어 실질적 재테크 전략을 지원
- 과거의 재무자료, 시장데이터, 고객 행동 등 다양한 정보를 분석하여 매출예측, 리스크 관리, 시장변화 감지 등 여러 의사결정 분야에 활용
- 특히 딥러닝은 여러 층의 인공신경망을 통해 복잡하고 비정형적인 데이터(텍스트, 이미지, 시계열 등)를 분석해 우수한 예측력을 제공

AI 재테크의 장단점 및 주의사항

■ 장점

- 자동화
- 객관적 의사결정
- 방대한 데이터 기반
- 주의사항
- 알고리즘 신뢰도, 리스크 관리 필요

AI 도입의 기대 효과

- 의사결정 속도 향상
 - 실시간 데이터 분석으로 빠른 대응 가능
- 정확도 향상
 - 인간의 직관보다 정량적 근거에 기반한 판단
- 비용 절감
 - 자동화로 인건비 및 운영비 절감
- 경쟁력 강화
 - 시장 변화에 대한 민첩한 대응

주요 데이터 분석 기법

- ■통계
 - 평균, 표준편차 등 기초 통계
 - 활용
- 머신러닝
 - 회귀분석이나 군집분석 로지스틱회귀
 - 의사결정나무
 - 랜덤포레스트

- 빅데이터
 - 텍스트마이닝
 - 자연어처리
 - 클러스터링
 - 토픽모델링 등

인공지능 (Artificial Intelligence)

■ The science of making machines imitate human thinking and behavior, can replace human decision making in some instances. 기계가 인간의 생각, 행동을 모방하여 어느정도 인간의 의사결정을 대체할수 있게하는 과학

인공지능 (Artificial Intelligence)

Artificial Intelligence

Any technique which enables computers to mimic human behavior.

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences.

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

기계학습 (Machine Learning)

- An automated learning with little or no human intervention. 사람 개입없이 자동으로 기계가 학습하게 함
- Explores and constructs algorithms that can learn from the previous data and make predictions on new input data. 과거의 데이터로 모델을 만들고 그것을 이용하여 새로운 데이터를 예측하게 함

지도학습과 비지도학습 (Supervised and Unsupervised Learning)

분류(Classification)

 A machine learning technique that uses known data to determine how the new data should be classified into a set of existing categories. 기본의 데이터를 이용하여 어떻게 새로운 데이터를 기존의 범주로 분류할지 결정하는 머신러닝 기술

회귀분석 (Regression)

In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships among variables. 변수들 사이의 관계를 추정하는 통계기법

군집분석 (Clustering)

■ Clustering is the process of grouping similar entities together. 비슷한 것끼리 묶는 기술

군집분석 활용 분야

- 고객 세분화: AI를 이용해 고객을 유사한 특성별로 자동 분류
- 고객 행동 분석: 딥러닝을 활용하여 고객의 행동 패턴을 분석하고 향후 행동을 예측
- 맞춤형 마케팅: 고객 세그먼트에 맞춘 개인화된 마케팅 전략 수립
- 추천 시스템: AI 기반 추천 알고리즘을 통해 제품 또는 서비스를 추천

일에 관된 수들

회귀분석 예제 (Regression Example)

Variable	Description	Relation to Hypothesis
Item_Identifier	Unique product ID	ID Variable
Item_Weight	Weight of product	Not considered in hypothesis
Item_Fat_Content	Whether the product is low fat or not	Linked to 'Utility' hypothesis. Low fat items are generally used more than others
Item_Visibility	The % of total display area of all products in a store allocated to the particular product	Linked to 'Display Area' hypothesis.
Item_Type	The category to which the product belongs	More inferences about 'Utility' can be derived from this.
Item_MRP	Maximum Retail Price (list price) of the product	Not considered in hypothesis
Outlet_Identifier	Unique store ID	ID Variable
Outlet_Establishment_Year	The year in which store was established	Not considered in hypothesis
Outlet_Size	The size of the store in terms of ground area covered	Linked to 'Store Capacity' hypothesis
Outlet_Location_Type	The type of city in which the store is located	Linked to 'City Type' hypothesis.
Outlet_Type	Whether the outlet is just a grocery store or some sort of supermarket	Linked to 'Store Capacity' hypothesis again.
Item_Outlet_Sales	Sales of the product in the particular store. This is the outcome variable to be predicted.	Outcome variable

예측하려고 하는 변수

머신러닝을 위한 파이썬라이브러리 (Python Libraries for Machine Learning)

Popular Python libraries

- NumPy 넘파이
- · SciPy WOIIIOI
- Pandas 팬다스
- SciKit-Learn 싸이킷런

Visualization libraries

- Matplotlib 맷플랏립
- Seaborn 씨본

분류알고리즘 (Classification Algorithms)

Decision Tree 의사결정트리 Random Forest 랜덤포레스트 Linear Discriminant Analysis 선형판별분석

K-Nearest Neighbor K-최근접이웃 Support Vector Machine 지원벡트머신

Neural Network 신경망

적용 분야

- 기업 신용평가
- 부도예측 (기업 부도 조기경보)
- 금융 투자와 위험관리
- 마케팅 전략 수립
- 고객 분석 등
- 실제로 AI 기반 예측모형(랜덤포레스트, 딥러닝 신경망 등)은 시계열 경제 데이터의 정확한 예측, 리스크 탐지에 기존 분석방식보다 뛰어난 성과를 보임

대출 예측문제 (Loan Prediction Problem)

nonnumeric

numeric

nonnumeric

Variable	Description
Loan_ID	Unique Loan ID
Gender	Male/ Female
Married	Applicant married (Y/N)
Dependents	Number of dependents
Education	Applicant Education (Graduate/ Undergraduate)
Self Employed	Self employed (Y/N)
ApplicantIncome	Applicant income
CoapplicantIncome	Coapplicant income
LoanAmount	Loan amount in thousands
Loan_Amount_Term	Term of loan in months
Credit_History	credit history meets guidelines
Property_Area	Urban/ Semi Urban/ Rural
Loan_Status	Loan approved (Y/N)

AI와 딥러닝의 경영분석 활용 분야

- 예측 분석 (Predictive Analytics)
 - 시장 변화
 - 매출 예측
 - 고객 행동 예측
- 고객 분석 (Customer Analytics)
 - 고객 세분화
 - 충성도 예측
 - 맞춤형 마케팅 전략 수립

AI와 딥러닝을 활용한 예측 분석

- 매출 예측: 과거 데이터와 트렌드를 분석하여 미래 매출 예측
- 수요 예측: 소비자 행동을 예측하여 제품 생산량과 재고 관리 최적화
- 시장 변화 예측: 경쟁사의 활동이나 외부 경제적 요인을 분석하여 시장 변화 예측
- 모델: 회귀분석, 시계열 분석, LSTM(긴단기기억) 네트워크 등

AI·딥러닝 기반 경영분석 적용 사례

- 소매업체의 수요 예측
 - 딥러닝 기반의 시계열 예측 모델을 통해 고객 구매 데이터를 분석, 재고 과잉이나 부족 문 제를 줄여 비용 절감 및 고객 만족도 향상
- 금융회사의 대출 심사 자동화 → AI가 고객의 신용 기록과 행동 데이터를 분석해 리스크를 평가, 수작업 심사 보다 빠르고 정확한 대출 승인 가능
- 제조업의 품질 관리 개선
 → 딥러닝을 활용한 영상 분석으로 제품 불량을 실시간으로 감지하고 생산 라인 중단 없이 품질 문제를 해결
- 고객 이탈 예측 및 맞춤형 마케팅
 → 고객 행동 데이터를 분석해 이탈 가능성이 높은 고객을 사전에 예측하고, AI 가 개인화된 프로모션을 자동 추천
- 경영진 의사결정 지원 시스템 → 실시간 KPI와 외부 시장 데이터를 AI가 분석하여, 경영진에게 전략적 의사 결정에 필요한 인사이트 제공

신경망 아키텍쳐

■ Structures algorithms in layers to create an "artificial neural network" that can learn and make intelligent decisions on its own. 스스로 학습하고 지능적인 결정을 내릴 수 있는 "인공 신경망"을 만들기 위해 알고리즘을 레이어로 구조화

신경망 아키텍쳐의 발전

딥러닝 기반 데이터 분석 기법

- 합성곱 신경망 (CNN)
 - 이미지 처리를 위해 컨볼루셔널 신경망을 사용

■ 순환신경망 (RNN)과 LSTM: 자연어 처리를 위해 순환 신경망을 사용

■ 생성적 적대적 신경망 (GAN)

생성적 적대적 신경망 (Generative Adversarial Network, GAN)

- 두 개의 신경망(Generator, Discriminator)이 경쟁하며 학습하는 방식
- 이미지 생성 (딥페이크, 화풍 전환 등), 비디오 생성, 데이터 증강 등에 사용
- 원리 및 구조
 - Generator: 가짜 데이터를 생성
 - Discriminator: 진짜 데이터와 가짜 데이터를 구분
 - 경쟁적 학습: Generator가 점점 더 진짜 같은 데이터를 생성하게 됨

생성형 인공지능 (Generative AI)

- Technologies that generate new data, images, speech or text, etc. 새로운 데이터, 이미지, 음성 또는 텍스트 등을 생성하는 기술
- Generative Al is a branch of Artificial Intelligence that works using a variety of architectures based on neural networks. 생성형 AI는 인공지능의 한분야로 신경망 기반의 다양한 아키텍처를 사용하여 작동

Generative Al

Technologies that generate new data, images, speech or text.

How Generative Al Works

 A branch of artificial intelligence that uses different kinds of neural network architectures.

대규모 언어모델 Large Language Model (LLM)

대량의 텍스트 데이터를 학습하여 문맥을 이해하고, 새로운 문장을 생성할 수 있는 모델

대표모델

ChatGPT (OpenAI)

Claude (Anthropic)

Gemini (Google)

텍스트 생성 Text Generation

■ 문장에서 다음 단어를 예측할 때 그전에 오는 단어를 알면 더 잘 예측할 수 있음

ChatGPT

- OpenAl 에서 개발한 자연어 처리기술을 활용한 대화형 Al 모델
- 사용자와 대화를 통해 상호작용하며, 질문에 대답하고 자연스러운 대화를 제공
- GPT-3.5, GPT-4, 최신 GPT-4o까지 발전
- 사용자의 피드백과 입력을 바탕으로 계속해서 학습하고 발전하는 능력을 갖춤
- 코드 작성, 글쓰기, 요약 등 다용도에 강함

GPT = Generative + Pre-trained + Transformer

코드 생성 예제

▶ 사용자로부터 이름과 나이를 입력받아, 다음과 같은 인사 메시지를 출력하는 프로그램 코드를 작성하시오.

■ 조건:

- 나이가 20세 이상이면 "성인입니다." 출력
- 20세 미만이면 "청소년입니다." 출력

■ 예상 출력:

- 이름을 입력하세요: Kim
- 나이를 입력하세요: 18
- 안녕하세요 Kim님! 청소년입니다.

파이썬 코드

```
# 이름과 나이 입력 받기
name = input("이름을 입력하세요: ")
age = int(input("나이를 입력하세요: "))
# 조건 판단 및 출력
if age >= 20:
  print(f"안녕하세요 {name}님! 성인입니다.")
else:
   print(f"안녕하세요 {name}님! 청소년
```

복리 계산 + 시각화 코드생성 예제

■매달 얼마씩 투자해서, 몇 년 뒤 얼마가 될까?"

파이썬 코드

```
import matplotlib.pyplot as plt
```

🔽 기본 입력값

```
monthly_invest = 500_000 # 매달 투자 금액 (50만 원)
annual_return = 0.08 # 예상 연 수익률 (8%)
years = 10 # 투자 기간 (10년)
```

🔽 계산

📊 10년 후 예상 자산: 90,062,137원

```
total_months = years * 12
monthly_return = (1 + annual_return) ** (1/12) - 1
```

```
balance = []
```

파이썬 코드

```
# 🛂 결과 출력
final value = round(balance[-1], 2)
print(f"\n (years)년 후 예상 자산: {final_value:,.0f}원")
# 🛂 그래프 시각화
plt.plot(balance)
plt.title("재테크 자산 성장 그래프")
plt.xlabel("개월 수")
plt.ylabel("누적 자산 (원)")
plt.grid(True)
plt.show()
```

10년 후 예상 자산: 90,062,137원

언어모델의 발전

Encoder and Decoder

■ 트랜스포머 Transformer

■ 어텐션 모델 (Attention Model)

재테크 분야에서의 AI 활용 가능성

- 주식 투자: AI가 시황 분석 → 종목 추천 및 매매 시점 제안
- 로보어드바이저: 30대 직장인의 연봉, 지출, 투자 목표 등을 분석 → 자동 포트폴리오 운영
- 챗GPT 사용: 투자 아이디어 리서치, 경제 뉴스 요약, 재무제표 분석 등

AI의 이해 및 실습

- 생성형 AI와 LLM 개요
- GPT, Claude, Gemini 등 소개
- 프롬프트의 개념 및 유형 프롬프트 실습 기본 작성법부터 심화 엔지니어링까지 ChatGPT, Gemini, Claude, Perplexity 차이점 분석 데이터 분석 및 시각화 실습
- AI를 활용한 기초 통계 분석
- Matplotlib, Seaborn 등 활용
- AI 기반 재테크 도구 & 전략 다양한 생성형 AI 툴을 실제 재테크 목적에 맞춰 활용하는 방법
- 인공지능을 이용해 자산을 분석하고 투자 전략을 수립하는 방법

종목분석 프롬프트

- 이 종목이 왜 하락했는지 뉴스부터 경제흐름까지 단계별로 설명해줘. GPT 질문 기법: 생각의 사슬, 생각의 나무 기법 사용
- 혹시 다른 해석도 있어? 상승 하락, 종류까지 다양한 시나리오를 보여줌

실습 자료

https://github.com/denverkim/eyesvision

대규모 언어모델 Large Language Model (LLM)

(OpenAI)

대량의 텍스트 데이터를 학습하여 문맥을 이해하고, 새로운 문장을 생성할 수 있는 모델

대표모델
ChatGPT Gemini (Google) Claude Perplexity

(Anthropic)

(Perplexity AI)

ChatGPT

- OpenAI 에서 개발한 자연어 처리기술을 활용한 대화형 AI 모델
- 사용자와 대화를 통해 상호작용하며, 질문에 대답하고 자연스러운 대화를 제공
- GPT-3.5, GPT-4, 최신 GPT-4o까지 발전
- 사용자의 피드백과 입력을 바탕으로 계속해서 학습하고 발전하는 능력을 갖춤
- 코드 작성, 글쓰기, 요약 등 다용도에 강함

GPT = Generative + Pre-trained + Transformer

Gemini 제미나이

- Generalized Multimodal Intelligence Network의 약자
- 구글과 딥마인드가 개발한 멀티모달 (LMM) 생성형 인공지능 모델
- Bard에서 발전한 모델 (Gemini로 리브랜딩)
- 구글 검색과 연계, 최신 정보 접근이 강점
- 멀티모달(이미지+텍스트 등) 처리 기능
 - 텍스트 뿐만 아니라 오디오, 이미지, 비디오와 같은 다양한 입출력을 지원

Claude

- OpenAl 출신 연구자들이 창업한 Anthropic에서 개발
- 안전성과 윤리를 강조한 AI
- 인간 의사소통 방식에 가까운 응답 설계
- 긴 문서 처리와 요약에 강점
- 사용자 피드백을 기반으로 자가 개선

Perplexity

- Perplexity AI에서 개발 (2022년 출시)
- AI 기반의 검색 특화 모델
- 답변에 출처 링크를 함께 제공
- 사실 기반 응답과 빠른 정보 제공에 강점
- 불필요하게 길거나 추상적인 설명을 줄이고, 핵심만 전달

프롬프트 prompt

■ 생성형 AI에게 작업을 지시하는 명령문 (질문, 요청, 설명 등)

■유형

■ 질문형: "GPT란 무엇인가요?"

■ 지시형: "GPT를 초등학생이 이해할 수 있도록 설명해줘."

프롬프트 예시

- 요약: "다음 글을 3문장으로 요약해줘: [글 내용]"
- 번역: "이 문장을 영어로 번역해줘: '안녕하세요. 오늘 날씨가 좋네요."
- 글쓰기: "블로그 글 제목: '프롬프트 엔지니어링 기초'. 초보자에게 친절하게 설명하는 글 작성해줘."
- 코드 요청: "파이썬으로 리스트를 정렬하는 코드 예제 보여줘"

프롬프트의 기본 구조 (3요소)

	구성 요소	설명	예시	
	지시문 (Instruction)	AI에게 시킬 작업	"다음 글을 요약해줘."	
	입력 데이터 (Input)	작업 대상 데이터	"오늘 회의에서는 3가지 안건이 논의되었다"	99.99%
9	출력 형식 지정 (Format)	출력 방식 또는 스타일	"3문장으로 요약, 번호 매기기"	
	14	.05% w		

기본 프롬프트 실습

- 단순 지시 프롬프트
 - 예: "고객 불만을 정중하게 응답해줘."
 - 예상 출력
 - "불편을 드려 진심으로 죄송합니다. 빠르게 해결하겠습니다."
- 단순 질문 프롬프트
 - 예: "인공지능이 교육에 미치는 긍정적인 영향은 무엇인가요?"

요약 프롬프트 실습

- 예: "다음 회의록을 3문장으로 요약해줘."
- 입력: "오늘 회의에서는 마케팅 전략, 신규 채용, 계획, 그리고 예산 분배안이 논의되었습니다. 마케팅팀은 SNS 강화 필요성을 언급했고, 인사팀은 다음 분기부터 인턴 채용을 제안했습니다. 재무팀은 예산을 전년 대비 15% 감축해야 한다고 발표했습니다."
- 예상 출력
 - 마케팅 전략 강화와 인턴 채용 계획이 논의되었다.
 - 재무팀은 예산을 15% 감축해야 한다고 보고했다.
 - 각 팀의 전략 방향성에 대해 다음 회의에서 재논의하기로 했다.

텍스트 첨삭 프롬프트 실습

■ 예: "학생의 글을 첨삭해줘. 각 문장을 수정하고, 수정 이유를 아래에 적어줘."

- 예상 출력
 - [원문] 나는 이것을 재밌다고 생각한다.
 - [수정] 나는 이것이 재미있다고 생각한다.
 - [이유] '재밌다'는 구어체이며, '재미있다'가 맞춤법상 올바른 표현이다.

프롬프트 최적화

■ 명확한 지시문을 사용한 프롬프트로 수정

이메일 써줘.

회의 일정 조율을 위한 비즈니스 이메일을 정중한 말투로 작성해줘. 수신자는 박대리님이고, 가능한 날짜를 물어봐줘.

■ 부정확하거나 모호한 프롬프트는 수정

보고서 써줘.

2025 상반기 마케팅 성과를 정리한 보고서를 작성해줘.

내용에는 클릭률, 전환율, 광고비 효율 분석을 포함해줘.

객관적인 어조로, A4 1장 분량으로 작성해줘.

프롬프트 엔지니어링 Prompt Engineering

- 생성형 AI에게 정확하고 유용한 결과를 얻기 위해 질문 (프롬프트)을 설계하는 기술
- 인간의 의도 (intention)를 AI에게 명확히 전달하는 인터페이스 디자인 도구
- 생성형 AI의 출력 품질을 결정짓는 핵심 요소
- 기존의 '질문'이 아닌, 시나리오 설계, 작업 지시, 역할 설정까지 포함하는 복합적 구조

프롬프트 엔지니어링 기법

Role Prompting

Chain of Thought (CoT)

Few-shot Prompting

Contextual Prompting

프롬프트의 구성요소

구성 요소	설명	예시
지시문 (Instruction)	모델에게 수행할 작업을 명확히 지시	"공문 형식으로 문서를 작성해줘"
입력 데이터 (Input)	모델이 참고할 구체적인 정보나 자료	날짜, 장소, 기관명, 행사명, 연락처 등
출력 형식 지정 (Format)	원하는 출력의 형태나 스타일을 지정	"문장 말데는 '~바랍니다'로 끝맺고, 공문서 형식을 지켜줘"
맥락 (Context)	모델이 상황을 이해할 수 있도록 배경정보 제공	"이 문서는 시청에 보낼 문화행사 협조 요청입니다."
역할 부여 (Role prompting)	모델에게 특정 인물이나 역할을 부여	"너는 행정 공문을 잘 쓰는 공무원이다"
제약조건 (Constraints)	반드시 포함하거나 피해야 할 조건 명시	"500자 이내", "이모지 없이 작성", "존댓말로"
예시 제공 (Few-shot examples)	원하는 스타일을 학습시키기 위해 예시 포함 (옵션)	"예시: 제목은 '〇〇의 건' 형식으로 작성"

프롬프트 구성요소를 포함한 프롬프트 실습

■ 예: 다음 구성요소 (지시문, 맥락, 제약조건 등)를 포함해서 프롬프트를 작성해 보세요.

다음 정보를 바탕으로 격식 있는 공문 형식의 글을 작성해줘.

- 수신: 서울시 문화예술과
- 제목: 시민문화축제 행사 협조 요청
- 일시: 2025년 9월 20일
- 장소: 시민청 지하공연장
- 요청사항: 장소 대관 및 홍보 협조
- 발신자: 한국문화진흥원 홍보팀 이지은
- 형식: 공공기관에서 쓰는 일반 공문 스타일

프롬프트 변환 실습

■ 예: "다음 문장을 초등학생도 이해할 수 있게 바꿔줘."

■ 입력: "신경망은 사람의 뇌 구조를 모방한 인공지능 학습 방식입니다."

- 예상 출력
 - "신경망은 컴퓨터가 뇌처럼 생각하도록 돕는 방법이에요."

프롬프트 리팩토링

■ 예: 아래 초기 프롬프트를 더 효과적으로 리팩토링 해보세요.

- 초기 프롬프트:
 - "초보자도 이해할 수 있게 AI 설명해줘."
- 최적화 조건:
 - 대상: 비전공 일반인
 - 형식: 3문단 에세이
 - 어조: 친절하고 비유 포함

AI를 활용한 데이터 분석

- AI는 대량의 데이터를 신속하게 분석하고 패턴을 찾아내어 비즈 니스 인사이트를 제공
- 예를 들어, 소매업체는 고객 구매 데이터를 분석하여 맞춤형 마 케팅 전략을 수립할 수 있음

AI 기반 의사결정 지원

- AI는 다양한 데이터를 분석하여 의사결정에 필요한 정보를 제공
- 예를 들어, 금융업체는 AI를 통해 신용 위험을 평가하고 대출 결 정을 지원
 - Tableau, Power Bl, Pandas, Matplotlib, Seaborn

AI와 팀 협업의 향상

- AI는 팀원 간의 커뮤니케이션을 원활하게 하고, 프로젝트 관리 도구와 통합되어 업무 진행 상황을 실시간으로 공유
- 예를 들어, Slack과 같은 플랫폼에서 AI가 자동으로 회의록을

근무시간 분석을 위한 코드 생성 실습

- 교직원 근무시간을 관리하기 위해 근태 로그 파일 attendance.csv가 있다.
 파일에는 Name, Date, Check_in, Check_out 컬럼이 있다.
- 요구사항:
 - CSV 파일을 읽고,
 - 각 직원별로 평균 근무 시간(시간 단위)을 계산하시오.
 - 결과를 staff_avg_hours.csv 파일로 저장하는 코드를 작성하시오.

attendance.csv

- Name, Date, Check_in, Check_out
- 김철수,2023-01-01,09:00:00,17:00:00
- 김영희,2023-01-01,09:30:00,18:00:00
- 김철수,2023-01-02,08:45:00,17:15:00
- 김영희,2023-01-02,10:00:00,18:30:00
- 박지민,2023-01-01,09:00:00,17:30:00
- 김철수,2023-01-03,09:10:00,17:00:00

코드 생성 결과

df['Check_in_datetime'] = pd.to_datetime(df['Da

```
import pandas as pd
                                                                             # 'Check_out' 시간에서 'Check_in' 시간을 빼서 근무 시간을 구해요
                                                                             df['Duration'] = df['Check_out_datetime'] - df['Check_in_datetime']
# 1. attendance.csv 파일 읽기
                                                                             # 근무 시간을 시간 단위(float)로 변환해요. (초 / 3600초)
                                                                             df['Working_Hours'] = df['Duration'].dt.total_seconds() / 3600
try:
   df = pd.read_csv('attendance.csv')
                                                                             # 4. 각 직원별 평균 근무 시간 계산하기
                                                                             # 'Name'으로 그룹을 지어서 각 직원의 'Working_Hours' 평균을 구해요
   print("☑ 'attendance.csv' 파일을 성공적으로 읽었
                                                                             average_hours_per_staff = df.groupby('Name')['Working_Hours'].mean().reset_index()
except FileNotFoundError:
                                                                             # 컬럼 이름을 좀 더 명확하게 바꿔줄게요.
print(" A 유류: 'attendance.csv' 파일을 찾을 수 없(학인해주세요.")
                                                                             average_hours_per_staff.rename(columns={'Working_Hours': 'Average_Working_Hours'}, inplace=True)
                                                                             # 5. 결과를 staff_avg_hours.csv 파일로 저장하기
   exit() # 파일이 없으면 프로그램을 종료해요
                                                                             output_filename = 'staff_avg_hours.csv'
                                                                             qverage hours per_staff.to_csv(output_filename, index=False) # index=False는 불필요한 인덱스 컬럼이
# 2. 'Check_in'과 'Check_out' 시간을 datetime 형식
                                                                             print(f" 🎉 직원별 평균 근무 시간이 '{output_filename}' 파일로 저장되었습니다!")
# 날짜와 시간을 합쳐서 정확한 시간 계산을 위해 datetim
                                                                            print("₩n--- 결과 미리보기 ---")
```

df['Check_out_datetime'] = pd.to_datetime(df['Date] + + αιι υπεςκ_ουτ])

print(average_hours_per_staff)

예산 집행 내역 분석을 위한 코드 생성 실습

- 교육행정 부서에서는 매년 예산 집행 내역을 CSV 파일로 관리한다. budget_2024.csv 파일에는 Category, Allocated, Used 컬럼이 있다.
- 요구사항:
 - CSV 파일을 불러와,
 - 각 항목별 잔여 예산(Remaining = Allocated Used)을 계산하고,
 - 잔여 예산이 0 이하인 항목만 출력하는 코드를 작성하시오.

budget_2024.csv

- Category, Allocated, Used
- 인건비,10000000,9800000
- 운영비,5000000,5200000
- 시설유지보수,3000000,2900000
- **-** 교재비,2000000,2000000
- 홍보비,1500000,1600000
- 전기요금,1000000,1050000

코드 생성 결과

```
import pandas as pd
# 1. budget_2024.csv 파일 불러오기
file_path = 'budget_2024.csv'
try:
  df = pd.read_csv(file_path)
  print(f" ☑ '{file_path}' 파일을 성공적으로 불러왔습니다!")
except FileNotFoundError:
  print("₩n--- 잔여 예산이 부족하거나 모두 소진된 항목
print(f" X 오류: '{file_path}' 파일을 찾을 수 없어요. 파일이 같은 폴더에 있는 (Remaining <= 0) ---")
  exit() # 파일이 없으면 프로그램을 종료해요
# 2. 각 항목별 잔여 예산(Remaining) 계산하기
# 'Allocated'에서 'Used'를 빼서 'Remaining' 컬럼을 새로 만들어요.
df['Remaining'] = df['Allocated'] - df['Used']
print("₩n--- 각 항목별 잔여 예산 계산 결과 ---")
```

print(df[['Category', 'Allocated', 'Used', 'Remaining']]) # 계산된 잔여 0

```
# 3. 잔여 예산이 0 이하인 항목만 출력하기
# 'Remaining' 컬럼의 값이 0보다 작거나 같은(0 이하)
항목들만 필터링해요.
# 즉, 예산을 모두 사용했거나 초과 사용한 항목들을 찾는
insufficient_budget_items = df[df['Remaining'] <=
if not insufficient_budget_items.empty:
print(insufficient_budget_items[['Category', 'Allocated', 'Used', 'Remaining']])
else:
print(" 같은 잘 할 이 이 이 이 이 하인 항목이 없어요! 모든 예산이 잘 관리되고 있다며 않는")
```

인공지능 **Artificial Intelligence**

■ AI는 기계가 인간의 지능을 모방하여 학습하고, 추론하며, 문제 를 해결하는 기술

■ 오늘날 AI는 의료, 금융, 제조업 등 다양한 분야에서 필수적인 도

구로 자리잡고 있음

Artificial Intelligence

Any technique which enables computers to mimic human behavior. Fuzzy logic 컴퓨터가 사람의 행동을 흉내내는 모든 Genetic algorithm

Expert system

Neural network

Machine Learning

Subset of AI techniques which use statistical methods to enable machines to improve with experiences. 통계적 방법을 이용하여 기계가 학습하게

하는 인공지능 기술

Deep Learning

Subset of ML which make the computation of multi-layer neural networks feasible.

다중층 신경망을 이용하는 머신러닝기술

신경망 아키텍쳐 (Neural Network)

■ 스스로 학습하고 지능적인 결정을 내릴 수 있는 "인공 신경망"을 만들기 위해 알고리즘을 레이어로 구조화

Output

Neural network Deep neural network

Input Hidden Output Input Hidden Hidden Hidden

신경망 아키텍처의 발전

- 합성곱 신경망 (Convolutional Neural Network): 이미지 처리를 위해 컨볼루셔널 신경망을 사용
- 순환 인공 신경망 (Recurrent Neural Network): 자연어 처리를 위해 순환 신경망을 사용

생성형 인공지능 Generative Al

- 사람이 입력한 프롬프트를 바탕으로 새로운 콘텐츠를 자동 생성하는 인공지능
- 예) 텍스트, 이미지, 영상 생성, 음악 작곡, 코드 생성 등

텍스트 생성

• ChatGPT, GPT 시리즈

이미지 생성

DALL·E, StableDiffusion

영상 생성

Runway,Pika

음악 생성

• Suno, Udio

음성 생성

• 음성 합성 AI (TTS)

텍스트 생성 Text Generation

■ 문장에서 다음 단어를 예측할 때 그전에 오는 단어를 알면 더 잘 예측할 수 있음

언어모델의 발전

Encoder and Decoder

■ 트랜스포머 Transformer

■ 어텐션 모델 (Attention Model)

이미지 생성 Image Generation

- Diffusion Model (확산 모델)
 - data에 noise를 조금씩 더해가거나 noise로부터 조금씩 복원해가는 과정을 통해 data를 generate하는 모델
 - 데이터를 노이즈로 변형한 뒤, 이를 점진적으로 복원하여 새로운 데이터를 생성
 - 고화질 이미지 생성, 텍스트-투-이미지 변환, 예술 및 디자인 분야 등에 활용
 - 예) DALL·E 2, Stable Diffusion, Imagen 등

기본 이미지 생성 프롬프트 실습

- 예: 다음 설명을 기반으로 AI 이미지 생성 프롬프트를 작성하시오.
 - 장면: 한국 전통 마을의 겨울 아침
 - 스타일: 수채화
 - 분위기: 따뜻하고 평화로운 느낌
 - 요소: 눈이 살짝 쌓인 초가집, 연기가 나는 굴뚝, 먼 산에 떠오르는 해
- 예상 출력 프롬프트
 - "A peaceful Korean traditional village in winter morning, with light snow on thatched-roof houses, smoke gently rising from chimneys, and the sun rising over distant mountains. Watercolor style, warm and serene mood."

예상 출력

Gemini

ChatGPT

홍보 영상 콘텐츠 설계 프롬프트 실습

■ 기관 홍보를 위한 짧은 영상 콘텐츠를 생성형 AI로 제작하려한다.

다음 조건에 따라 텍스트, 이미지, 음성(TTS) 구성 요소를 설계하시오

- 기관 이름: '인구보건복지협회'
- 콘셉트: 감성적이면서도 진취적인 느낌
- 주요 콘텐츠: 인트로 문구, 이미지 스타일, 배경 음악 또는 TTS 문구

예상 출력

- 인트로 문구 (텍스트 + TTS)
- 톤 & 보이스 (TTS 스타일 제안)
 - 차분하면서도 희망적인 톤
 - 젊은 성인 여성 목소리 (명확하고 따뜻한 발음)
 - 배경에 잔잔한 울림(리버브)을 살짝 주어 몰입도 상승

- 이미지 스타일 (AI 이미지 생성용 프롬프트)
- 스타일 콘셉트: 감성적 + 진취적
- 구성 요소
 - 따뜻한 아침 햇살 아래, 아이와 부모가 함께 웃는 장면
 - 도시와 자연이 조화를 이루는 미래형 풍경
 - 다양한 세대(청년, 부모, 노인)가 함께 걷는 모습
- 비주얼 톤:
 - 수채화풍 + 따뜻한 색감
 - 은은한 블루 & 오렌지 계열 (희망 + 따뜻함 강조)
 - 다큐멘터리 느낌보다는 브랜드 홍보 영상처럼 부드럽고 고급스러운 연출

직무별 생성형 AI 활용 분야

문서 작성 및 기획	공문서 자동 작성, 보고서 및 계획서 작성, 회의록 작성 및 요약
민원 처리 및 대민 서비스	민원 응답 자동화, 민원 데이터 분석, 실시간 상담 챗봇
정책 분석 및 평가	정책 자료 요약 및 비교, 데이터 기반 정책 제안, 성과 평가 보고서 작성
교육 및 내부 역량 강화	직무 교육 자료 자동 생성, 시뮬레이션 기반 실습 시나리오 생성, 정리 및 복습용 요약 자료 생성 ^{9 9}
데이터 관리 및 보고	데이터 분석 자동화, 시각화 보고서 생성, 예산 집행 및 결산 자료 분석
대외 홍보 및 커뮤니케이션	보도자료, 및 홍보문 작성, 멀티미디어 콘텐츠 제작, 홈페이지 및 SNS 콘텐츠 관리
회의 및 협업 지원	회의 자료 자동 작성, 다국어 문서 지원, 협업 워크플로 자동화

Al를 활용한 공문 작성법

필요 시 문체 생성된 문서 내용 최종본 공유 및 변경, 문장 프롬프트 작성 다듬기, 형식화 복사 검토 등요청

공문 초안 작성 실습

- 너는 전문 행정문서 기획자야.
- 아래 조건에 맞는 공문 초안을 작성해줘.
- 목적: 교육과정 개편에 대한 안내
- 대상: 전체 교수 및 교직원
- 주요 내용: 교육과정 변경 배경, 주요 변경 사항, 협조 요청
- 톤: 공식적이고 정중한 행정 문서 스타일
- 분량: A4 1장 내외

■ 결과물

수산: 전체 교수 및 교직원

제목: 2025학년도 교육과정 개편 안내 및 협조 요청

1. 배경 및 목적

본교는 교육환경의 변화와 학문 간 융합 요구, 산업계의 수요 등을 반영하여 2025학년도 교육과정을 개편하였 습니다. 이번 개편은 학생 중심의 학습 경험 강화와 학문적 정합성 제고를 목표로 하며, 교육의 질을 지속적으 로 항상시키기 위한 조치입니다.

2. 주요 변경 사형

가. 전공 및 교양 교육과정 구조 조정

- 일부 전공과목 통합 및 신설
- 교양필수 영역의 학문기초 강화 및 선택권 확대

나. 졸업 요건 및 이수 체계 조정

- 학과별 졸업요건 재정비
- 핵심역량 기반 이수체계 마련

다. 비교과 프로그램 연계 강화

- 정규 교과목과 비교과 활동의 연계 체계화
- 비교과 이수 실적의 포트폴리오 반영 확대

3. 혐조 요청 사항

가. 개편된 교육과정에 대한 학과(부) 내 공유 및 의견 수렴

나. 각 교과목 담당 교수님의 강의계획서 수정 및 교육목표 재점검

다. 교육과정 운영 관련 질의사항은 교무처(내선 XXXX)로 문의

4. 기타 안나

자세한 교육과정 개편안은 본교 포털 > 공지사항 > 교무처 게시판에서 확인하실 수 있습니다. 관련 자료는 7 윌 말까지 학과(부)별로 안내드릴 예정이오니 참고 바랍니다.

앞으로도 본교의 교육 경쟁력 강화를 위한 각별한 관심과 적극적인 협조를 부탁드립니다

감사합니다.

2025년 7월 22일

교무처장 [직인 생략]

안내문 작성 실습

■프롬프트

- 너는 전문 행정문서 기획자야.
- 목적: 신규 IT 시스템 도입 안내
- 대상: 전체 행정 직원
- 주요 내용: 시스템 도입 배경, 주요 기능, 교육 일정
- 톤: 친절하지만 공식적인 톤
- 분량: 간략히 1페이지 요약

■ 결과물

수신: 전체 행정 직원

제목: 신규 행정 IT 시스템 도입 및 사용자 교육 안내

1. 도입 배경

업무 효율성 제고와 데이터 기반 행정 구현을 위해 본교는 차세대 행정 IT 시스템을 도입하게 되었습니다. 본 시스템은 기존 운영 중인 여러 개별 시스템을 통합·개선하여, 보다 직관적이고 신속한 업무 처리를 지원합니다.

2. 주요 기능

- 통합 업무 포털 제공: 인사, 회계, 문서, 일정 등 주요 기능 일원화
- 사용자 맞춤형 대시보드: 실시간 업무현황 및 요청사항 확인 가능
- 모바일 지원: 스마트기기에서도 주요 기능 사용 가능
- 알림 및 협업 기능 강화: 부서 간 협업과 업무 공유 기능 개선

3. 사용자 교육 일정

- 대상: 전 행정 직원
- 일정: 2025년 8월 5일(화) ~ 8월 7일(목)
- 장소: 본관 2층 전산교육실
- 내용: 시스템 사용법, 주요 기능 시연, 질의용답 등
 ※ 부서별 참석일정은 별도 공지 예정

4. 협조 요정 사항

- 교육 참석 전, 기존 시스템 사용 관련 불편 사항 및 건의사항을 정리해 주시기 바랍니다.
- 교육 후 시스템 시범운영 기간(8월 중순~말 예정) 중에는 개선 의견을 적극 제출해 주시기 바랍니다.

새로운 시스템의 원활한 정착을 위해 많은 관심과 협조를 부탁드립니다.

감사합니다.

2025년 7월 22일

정보전산팀장 [직인 생략]

협조 공문 작성 실습

- 너는 전문 공문 작성 전문가야.
- 목적: 장학금 신청 서류 제출 요청
- 대상: 학생지원팀
- 주요 내용: 서류 제출 기한, 필요 서류 목록, 미제출 시 불이익 안내
- 톤: 매우 공식적이고 정중

■ 결과물

수신: 학생지원팀

제목: 2025학년도 2학기 장학금 신청 관련 서류 제출 요청

1. 관련

- 가. 장학금 운영 지침 제12조(신청 및 심사)
- 나. 학생지원업무 시행계획(2025.01.03.

2. 요청 목적

2025학년도 2학기 장학금 지급을 위한 신청자 서류 접수가 원활히 이루어질 수 있도록, 아래와 같이 관련 서 로이 제축은 요청드립니다

- 3. 제출 요청 사항
- 가. 제출 기한: 2025년 8월 9일(금) 17:00까지
- 나, 제출 대상 서류
- 장학금 신청서(서식 제2025-1호)
- 성적증명서(최근 학기 기준)
- 소독 관련 중빙자료(해당자에 한함)
- 기타 해당 장학금별 요구 서류
- 다. 제출 방법: 방문 또는 내부 행정시스템 언로드
- 마 유의 사하
- 제출기한 내 미제출 시 해당 학생의 장학금 심사 대상에서 제외될 수 있으므로, 각 학과(부서)에서는 신청 학생들에게 기한 준수 및 제출서류 누락 방지를 철저히 안내해 주시기 바랍니다.

4 7 E

서류 서식은 학생지원시스템 또는 본교 홈페이지 '장학공지' 게시판에서 다운로드하실 수 있습니다. 관련 문의 는 학생지원팀(내선 XXXX)으로 연락 주시기 바랍니다.

학생 복지 향상을 위한 귀 부서의 지속적인 협조에 감사드리며, 업무에 참고하여 주시기 바랍니다.

감사합니다.

2025년 7월 22일

학생처장 [직인 생략]

업무 보고서 요약 실습

■ 주간 업무 일지를 간결한 보고서 형태로 상사에게 제출하시오.

- 프롬프트
 - "아래 내용을 한 페이지 분량의 주간 업무 보고서로 요약해 주세요. 주요 성과, 문제점, 향후 계획을 포함해 주세요."
- ■실습 자료
 - 기존 업무 일지 문서 (3~5쪽)

3쪽 일지 → 1쪽 보고서 요약

중간과정

■ 프롬프트 입력

업무일지_샘플문서.docx Google Docs

아래 내용을 한 페이지 분량의 주간 업무 보고서로 요약해 주세요. 주요 성과, 문제점, 향후 계획을 포함해 주세요

■ 생성된 문서

📋 2025년 7월 1주차 주간 업무 보고서

☑ 주요 성과

- 신규 서비스 런칭을 위한 핵심 준비 단계 완료: 기획안 검토 및 부서별 피드백 반영
- 외부 파트너사와의 협력 조건 조율 및 계약 협의 진행
- UI 개선 및 서비스 운영 정책 수정안 마련
- 사용자 피드백 기반 분석 보고서 및 분기별 예산 조정안 최종 점검
- 마케팅 캠페인 최종 승인안 검토 및 신규 홍보 전략 수립

▲ 문제점

- 기획안 예산안 수정 및 추가 예산 확보 필요
- 디자인 리소스 부족으로 인한 일부 일정 지연
- 파트너사 요구사항으로 인한 일정 재조정 필요
- 캠페인 콘텐츠 품질 보완 필요

🔎 향후 계획

- 고객 피드백을 반영한 기획안 및 교육 자료 보완
- 디자인 리소스 확보 및 일정 재정비
- 외부 파트너 협력 일정 확정 및 리스크 관리 강화
- 캠페인 콘텐츠 개선 및 차주 업무 계획 조기 수립

회의록 요약 실습

- 다음은 내부 팀 회의록의 일부입니다. 생성형 AI를 활용해 아래 조건에 요약 결과를 작성하시오.
- 원문 회의록
 - [PM 김리나] 이번 7월 업데이트에는 로그인 UI를 새롭게 적용할 예정입니다. 관련 시안은 다음 주까지 피드백 받아 최종 확정합니다.
 - [개발 홍철우] 로그인 연동 관련해서는 구글 로그인에서 오류가 있었는데, 그 부분은 수정 완료했습니다.
 - [디자이너 최유림] UI 시안은 오늘 공유드린 버전이 최종안 기준이며, 피드백은 슬랙 채널에 남겨주세요.
 - [PM 김리나] 일정상 QA는 7월 10일부터 시작하고, 배포는 7월 15일 예정입니다. 일정 변동 있으면 바로 공유드릴게요.

회의록 요약 실습

- 요구사항
 - 3~4문장 요약
 - 핵심 내용만 요약 (중복 제거, 역할 중심 구조 OK)
 - 어조는 간결하고 객관적
- 예상 출력

7월 업데이트에서는 새 로그인 UI가 적용되며, UI 시안 피드백은 다음 주까지 수렴한다. 구글 로그인 오류는 수정 완료되었다. QA는 7월 10일부터 시작하고, 최종 배포는 7월 15일로 예정되어 있다.

회의록 요약 실습

- 위 회의록을 요약할 수 있도록 AI에 줄 수 있는 프롬프트를 작성하시오.
- 예상 출력

당신은 IT 프로젝트 회의록을 정리하는 전문 비서입니다. 아래 회의록을 역할별로 간결하게 요약해 주세요. 각 담당자당 1문장 이내로 핵심 내용만 정리하며, 중복은 피하고 어조는 객관적으로 유지해 주세요.

형식:

- PM 김리나: ...
- 개발 홍철우: ...
- 디자이너 최유림: ...

[회의록 입력]

회의록 요약 실습

- 회의록을 역할별로 요약하시오 (예: PM / 개발 / 디자인 발언 정리)
- TO-DO 리스트를 추출하시오.

<u>■ 유약에 감정 분석을 포함하시오 ("회의 분위기: 전반적으로</u>

- ☑ 역할별 회의 요약
- PM (김리나): 로그인 UI를 7월 업데이트에 적용 예정이며, 시안 피드백은 다음 주까지 받아 확정한다. QA는 7월 10일부터 시작하고, 배포는 7월 15일로 예정되어 있으며 일정 변동 시 공유 예정이다
- 개발 (홍철우):
 구글 로그인 연동 오류를 확인 후 수정 완료했다.
- 디자인 (최유림): 최종 UI 시안을 공유했으며, 피드백은 슬랙 채널을 통해 제출해달라고 안내했다.

- ☑ TO-DO 리스트
- 1. 📩 로그인 UI 시안에 대한 피드백 수렴
 - 담당자: 전 팀원
 - 방법: 슬랙 채널에 의견 작성
 - 기한: 다음 주 내 (정확한 마감일 내부 공유 필요)
- 2. 🧩 로그인 UI 최종안 확정
 - 담당자: PM 김리나, 디자이너 최유림
 - 기한: 피드백 수렴 마감 직후
- 3. 🥢 QA 테스트 시작 준비
 - 담당자: QA 담당자 (지정 필요)
 - 시작일: 7월 10일
 - 사전 조건: 최종 시안 확정 및 반영 완료
- 4. 🚀 배포 준비 및 일정 조율
 - 담당자: PM 김리나 + 개발팀
 - 배포일정: 7월 15일
- 비고: 일정 변동 시 즉시 팀에 공유

- 5. 🔎 회의 분위기
- 전반적으로 원활
- 각 담당자 간의 커뮤니케이션이 명확하며, 일정과 책임이 잘 공유됨

Notion Al

- 초기에 웹/앱 빌더로 시작했지만 이후 사용자 니즈에 맞춰 생산성 앱으로 방향 전환
- 2023년 2월, Notion Al 기능을 공식 출시
- 문서 요약, 콘텐츠 생성, 자동화 지원 등 제공
- AI 기반 이메일 클라이언트, 캘린더, Q&A 기능 등 다양한 멀티모달 기능 추가

자동화와 AI의 관계

- AI는 자동화의 핵심 요소로, 반복적인 작업을 자동으로 수행
- 예를 들어, 제조업에서 로봇이 조립 작업을 자동으로 수행

LLM 기반 AI 에이전트 도구

문서 생성 자동화

- Genspark
- Notion Al
- Goover

문서 시각화 자동화

Napkin

PPT 자동 생성

Gamma

Genspark

- AI 에이전트 기반 검색 및 문서 자동화 플랫폼
- 2023년 Eric Jing (전 Baidu Xiaodu CTO)와 Kay Zhu (전 Baidu 출신)이 창업
- 생성형 AI를 활용하여 다양한 업무를 자동화하거나 보조하도록 설계
- 문서 작성, 데이터 분석, 보고서 자동화, 프롬프트 설계, PPT/엑셀 자동화 등 지원
- 여러 단계를 한 번에 연결 (예: 데이터 분석 → 보고서 작성 → PPT 변환) 하여 자동화
- 사용자는 자연어 지시(프롬프트)만으로 각 업무 단위를 제어

Genspark 에이전트 활용 문서 생성 자동화 프로세스

■ 정책 보고서, 만족도 분석 등을 자동 생성할 때 활용할 수 있음

보고서 h료 수집 자동 작성

편집/검증

분석 요약

PPT 및 엑셀 자동 생성

최종 배포

행정 보고서 작성 실습

■프롬프트

- 너는 교육 행정 보고서 작성 전문가야.
- 다음 데이터를 분석 후, 보고서를 작성해줘.
- 데이터: [여기에 간략히 서술]
- 형식: 표지, 목차, 서론, 본론(현황 분석, 문제점, 개선 방안), 결론
- 톤: 공적인 행정 문서 스타일

■ 샘플 데이터

- 2022년 졸업생 취업률: 68% (현장 실습 기회 부족, 산업체 연계 프로그램 미비)
- 2023년 졸업생 취업률: 74% (취업 상담 부족, 직무 역량 프로그램 부족)
- 2024년 졸업생 취업률: 80% (국제 취업 정보 부족, 실전 면접 대비 프로그램 필요)

결과 보고서

졸업생 취업률 현황 분석 및 개선 방안 보고서

(2022년 ~ 2024년 데이터 분석)

작성일: 2024년 12월 작성기관: 교육기관명 담당부서: 학생취업지원센터

목차

I . 서른3
1. 보고서 목적
2. 분석 범위 및 방법
II . 본론
1. 졸업생 취업률 현황 분석
2. 문제점 분석
3. 개선 방안
III. 결론
1. 종합 분석 결과
2. 향후 추진 계획

||. 본론

1. 졸업생 취업률 현황 분석

가. 연도별 취업을 현황

연도	취업률	전년 대비 중감	주요 특징
2022년	68%	68% - 기준	
2023년	74%	+6%p	점진적 개선
2024년	80%	+6%p	지속적 상승

나. 취업률 변화 추이 분석

지난 3년간 졸업생 취업률은 지속적인 상승세를 보이고 있다. 2022년 68%에서 시작하여 2023 년 74%, 2024년 80%로 매년 6%포인트씩 꾸준히 증가하였다. 이는 취업 지원 프로그램의 점진적 개선과 졸업생들의 취업 역량 항상이 복합적으로 작용한 결과로 분석된다.

특히 2022년 대비 2024년 취업률이 12%포인트 상승한 것은 상당히 고무적인 성과로 평가할 수 있으나, 여전히 개선이 필요한 영역들이 존재한다.

2. 문제점 분석

가. 2022년 주요 문제점

2022년 취임률 68% 달성 과정에서 확인된 주요 문제점은 다음과 같다. 첫째, 현장 실습 기회의 부족으로 인해 졸업생들이 심무 정점을 중분히 쌓지 못하고 취업 시장에 진출하게 되었다. 통째, 산 업체와의 연계 프로그램이 미비하여 졸업생들이 실제 취업 기회에 대한 정보와 접근성이 제한적이 없다.

나. 2023년 주요 문제점

2023년에는 취업률이 74%로 개선되었으나 여전히 해결해야 할 과제들이 있었다. 취업 상담 서 비스의 부족으로 인해 개별 학생들의 특성과 작성에 맞는 맞춤형 취업 지도가 이루어지지 못했다. 또한 직무 역량 강화 프로그램의 부족으로 졸업생들이 기업에서 요구하는 실무 능력을 충분히 갖 추지 못한 상태에서 취업 활동을 진행해야 했다.

다. 2024년 주요 문제점

2024년 취업률이 80%에 달했음에도 불구하고 새로운 문제점들이 확인되었다. 글로벌화 시대 에 대응하기 위한 국제 취업 정보가 부족하여 해외 취업을 희망하는 졸업생들에 대한 지원이 미흡

결과 보고서

■ 노션에 저장하거나 파일을 다운로드 할 수 있음

Genspark Integration

🕒 대학 취업 지원 프로그램의 효과성 연구 보고서

보고서 기반 PPT 생성 자동화 프롬프트

- 위 보고서를 기반으로, 10페이지 분량의 발표용 PPT 초안을 작성해줘.
 - 형식: 제목, 요약, 핵심 분석, 제안, 결론, Q&A 포함
 - 톤: 간결하고 설득적인 비즈니스 스타일

발표용 PPT 초안 작성 예시

발표용 PPT 초안을 작성할 때는 각 슬라이드에 적절한 제목과 내용을 배치하는 것 니다. 다음은 비즈니스 스타일의 PPT 초안을 위한 예시입니다.

- 1. 제목 슬라이드
- 제목: 비즈니스 분석 보고서
- **부제**: 2025년 2분기 성과 및 전략
- 발표자: 홍길동
- 소속: ABC 주식회사
- **날짜**: 2025년 7월 7일
- 2. 요약 슬라이드
- 목표: 이 보고서는 2025년 2분기 동안 ABC 주식회사의 성과를 분석하고, 향후 안합니다.
- 주요 포인트:
- 2분기 매출 성장률: 15%
- 주유 고객 세그먼트 분석
- 경쟁업체와의 비교

엑셀 생성 자동화 프롬프트

■ 이 분석 데이터를 기반으로, 요약 테이블과 지표 트렌드

그래프가 포함된 엑셀 파일을 작성해줘.

■ 시트 구성: 데이터 원본, 분석 요약, 그래프

"결과물

■ 생성된 파일들

■ 주요 분석 결과

2022-2024년 졸업생 취업률 분석 데이터를 기반으로 **체계적인 액셀 파일과 시각화 자료**를 성공적으로 작성 했습니다.

👔 주요 분석 결과

취업률 트렌드 개요:

- · 2022년: 68% → 2023년: 74% → 2024년: 80%
- 전체 증가율: 17.6% (3년간)
- 연평균 상승률: 6%포인트
- 총 개선 폭: 12%포인트

■ 엑셀 파일 구성

🗓 생성된 엑셀 파일 구성

📊 졸업생_취업률_분석.xlsx 다운로드

시트 1: 데이터 원본

- 연도별 취업률 데이터 (2022-2024)
- 주요 문제점 1, 2 상세 기록
- 원본 데이터의 체계적 정리

시트 2: 분석 요약

- 통계 지표: 전체 증가율, 연평균 상승률, 최고/최저 취업률
- 개선사항 분석: 연도별 개선 필요 영역과 구체적 방안
- 트렌드 분석 결과 종합

시트 3: 그래프

- 차트 생성용 데이터 테이블
- 전년대비 증가율 계산값 포함
- 시각화 작업을 위한 정제된 데이터

🎯 연도별 문제점 분석

연도별 주요 문제점 분포 (2022-2024)

■ 문제점 변화 추이

문제점 변화 추이:

- 2022년: 현장 실습 기회 부족, 산업체 연계 프로그램 미비
- 2023년: 취업 상담 부족, 직무 역량 프로그램 부족
- 2024년: 국제 취업 정보 부족, 실전 면접 대비 프로그램 필요

🢡 핵심 인사이트

- 1. 지속적 성장: 3년 연속 취업률 상승 추세 유지
- 2. 문제점 진화: 기초 인프라 → 역량 강화 → 글로벌 경쟁력으로 이슈 고도화
- 3. 체계적 접근: 각 연도별 특화된 개선방안 필요
- 4. **긍정적 전망**: 꾸준한 개선을 통한 80% 달성

생성 문서 편집 및 교차 검증 자동화 프롬프트

■ 프롬프트

■ 작성된 보고서 문서의 정확성을 검증하고, 필요한 부분에 수정 및 보완 의견을 달아줘.

■형식

■ 원문 하단에 수정 코멘트 추가

■ 결과 보고서

Napkin Al

- 아이디어, 개념, 구조화된 정보를 시각적으로 정리할 수 있는 도구
- 단순한 메모를 넘어 마인드맵, 플로우차트, 컨셉 다이어그램 등 다양한 형태로 시각화 가능
- 간결한 인터페이스와 직관적인 UX/ 가능

Napkin 활용 시각화 자동화 프로세스

• 예) 교육 행정 개선, 학생 만족도 분석, 상담 서비스 강화, 취업 지원 확대

> 개념 및 키워드 입력

자동 관계도 생성

- Napkin이 입력된 키워드를 자동으로 연결하여 트리형/네트워크형 구조 제안
- 관련성 높은 개념을 AI가 제안 (연관 노트, 추가 링크 등)

- 관계선 수정, 추가 코멘트 작성
- 외부 문서 (예: PDF 보고서, AI 분석 요약)와 링크

편집 및 상세화

■ Draft with AI를 선택

■ 키워드 입력

■ 결과물

자동 관계도 생성

■ Generate Visuals 버튼 클릭

■ 제안된 그래프에서 선택

편집 및 상세화

■ 관계선 수정

■ 추가 코멘트 작성

Gamma

GAMMA

- AI 기반 프레젠테이션 자동 생성 플랫폼
- 슬라이드 형태의 문서를 빠르게 작성 및 시각화
- 문서와 웹페이지, 멀티미디어를 한 번에 통합
- 디자인, 내용, 인터랙션까지 AI가 자동 제안
- 자동 PPT 생성, 템플릿 라이브러리, 에셋 추가 (이미지, GIF, 동영상, 아이콘, 그래프 등), 실시간 공동 편집

Gamma 활용 PPT 초안 자동 생성 프로세스

PPT 초안 자동 생성 실습

■ 프롬프트

■ 주제: 대학 행정 혁신 전략 발표

■ 포인트: 만족도 분석, 정책 개선, 디지털 행정화, 미래 방향

■ 톤: 전문적이고 간결하게

핵심 아이디어 입력

■ Generate new AI 선택

■ Generate 선택

■ 프롬프트 입력

내용과 디자인

■ 자동 구조화 (목차, 개요, 세부 내용)

■ 디자인 및 이미지 자동 추천

결과물

Goover

- AI 기반 데이터 분석 및 문서 자동화 솔루션
- 업로드된 CSV, Excel 등 다양한 형식의 데이터를 자동으로 분석
- 분석된 데이터를 기반으로 행정 보고서, 성과 보고서, 기획안 등 자동 작성
- 차트, 그래프, 인포그래픽 등 시각화 자료 자동 생성
- 생성된 보고서를 실시간으로 공유 및 공동 편집
- 데이터 분석 결과와 생성된 문서 간의 불일치시 자동 알림

Gamma 활용 PPT 초안 자동 생성 프로세스

PPT 초안 자동 생성 실습

■ 프롬프트

■ 주제: 대학 행정 혁신 전략 발표

■ 포인트: 만족도 분석, 정책 개선, 디지털 행정화, 미래 방향

■ 톤: 전문적이고 간결하게

핵심 아이디어 입력

■ Generate new Al 선택

■ Generate 선택

■ 프롬프트 입력

내용과 디자인

■ 자동 구조화 (목차, 개요, 세부 내용)

■ 디자인 및 이미지 자동 추천

결과물

통합 자동화 워크 플로우 예시

ChatGPT & Goover로 초안 작성

Napkin에 핵심 개념 입력 및 구조화

PDF/PNG로 내보내어 보고서에 삽입

- ChatGPT + Goover + Napkin을 연계해서 도식 이미지가 삽입된 행정 보고서를 작성하시오.
- 초안 프롬프트
 - 본 보고서는 2022~2024년 민원 처리 데이터를 분석하여, 처리 속도 개선 및 부서 협업 강화 방안을 제안하기 위해 작성되었습니다.
 - 2022년 민원 처리 건수: 1,200건 (처리 지연 15%)
 - 2023년 민원 처리 건수: 1,350건 (처리 지연 12%)
 - 2024년 민원 처리 건수: 1,500건 (처리 지연 8%)
 - 주요 문제: 민원 분류 체계 미흡, 부서 간 협력 부족
 - 개선 방안: AI 기반 민원 자동 분류, 응답 매뉴얼 강화, 상담 인력 확충

할루시네이션 Hallucination

- AI가 존재하지 않거나 잘못된 정보를 실제처럼 만들어내는 현상
- 근거 없는 사실을 "그럴듯하게" 생성하는 오류
- 예를 들어,
 - AI가 존재하지 않는 논문이나 출처를 인용함
 - 틀린 사실을 자신 있게 설명함
 - 사용자가 준 문맥과 전혀 다른 정보를 덧붙임

사실 확인 사이트

- 구글 등 검색엔진
- 네이버 지식백과, 위키피디아
- 학술 DB: Google Scholar, PubMed, DBpia 등
- 정부, 대학, 국제기구 등
- 정부기관 보고서, 논문, 법령집 등
- 기타 사이트
 - Korea FactCheck Center

 - SnopesPolitiFact
 - FactCheck.org
 - Google Fact Check Explorer

3개 이상의 독립된 소스를 크로스체크!!!

AI 도입을 위한 준비 단계

- 1. 목표 설정
 - AI 도입의 목적을 명확히 함
- 2. 데이터 수집
 - 필요한 데이터를 수집하고 정제
- 3. 인력 교육
 - AI 관련 교육을 실시

AI 도구 선택 가이드

- 1. 사용 용도: 도구의 기능이 필요에 맞는지 확인
- 2. 비용: 예산에 맞는 도구를 선택
- 3. 사용자 친화성: 사용하기 쉬운 도구를 선택

삼성 주가 분석 및 시각화

■ 다음 데이터를 시각화 하시오.

→ ▼	Price	Close	High	Low	0pen	Volume
	Ticker	005930.KS	005930.KS	005930.KS	005930.KS	005930.KS
	Date					
	2023-01-02	52576.949219	53145.348670	52292.749493	52576.949219	10031448
	2023-01-03	52482.222656	53050.622180	51629.623371	52482.222656	13547030
	2023-01-04	54755.824219	54945.290739	52671.692501	52766.425761	20188071
	2023-01-05	55134.757812	55703.157378	54566.358247	55134.757812	15682826
	2023-01-06	55892.613281	56271.546253	54850.547610	55229.480581	17334989
	2025-09-17	78200.000000	79100.000000	77100.000000	79100.000000	20856317
	2025-09-18	80300.000000	80500.000000	78600.000000	79100.000000	25619035
	2025-09-22	83500.000000	84000.000000	81100.000000	81500.000000	27529656
	2025-09-23	84700.000000	85900.000000	83600.000000	85800.000000	23610263
	2025-09-24	85400.000000	85500.000000	83700.000000	84200.000000	18300997
	667 rows × 5	columns				

