DAY 3

1. In a right angle $\triangle ABC$, right angled at B, If tan A = 1, then verify that $2 \sin A \cdot \cos A = 1$

[Example 4]

Sol:- Given
$$\tan A = 1 = \frac{1}{1} = \frac{\text{Perpendicular}}{\text{Base}}$$

 \therefore Perpendicular(P) = 1 and Base(B) = 1

By Pythagoras Theorem, we have

$$H^{2} = P^{2} + B^{2}$$

$$\Rightarrow H^{2} = 1^{2} + 1^{2}$$

$$\Rightarrow H^{2} = 1 \times 1 + 1 \times 1$$

$$\Rightarrow H^{2} = 1 + 1 = 2 = (\sqrt{2})^{2}$$

$$\Rightarrow H = \sqrt{2}$$

Now
$$\sin A = \frac{P}{H} = \frac{1}{\sqrt{2}}$$
 $\cos A = \frac{B}{H} = \frac{1}{\sqrt{2}}$

$$\times \frac{1}{1} - 2 \times \frac{1}{1} - 1 - \text{RHS}$$

LHS: 2 sin A. cosA =
$$2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 2 \times \frac{1}{2} = 1 = \text{RHS}$$

2. In \triangle ABC, right angled at B, if tanA = $\frac{1}{\sqrt{3}}$ then find sinA. cosC + cosA. sinC [Ex 8.1, Q9]

Sol:- Given
$$\tan A = \frac{1}{\sqrt{3}} = \frac{\text{Perpendicular}}{\text{Base}}$$

∴ Perpendicular(P) =
$$\frac{BC}{AB} = \frac{1}{AB}$$
 and Base(B) = $AB = \sqrt{3}$

By Pythagoras Theorem, we have
$$H^{2} = P^{2} + B^{2} \qquad \Rightarrow H^{2} = 1^{2} + (\sqrt{3})^{2}$$

$$\Rightarrow H^{2} = 1 \times 1 + \sqrt{3} \times \sqrt{3} \qquad \Rightarrow H^{2} = 1 + 3 = 4 = (2)^{2}$$

$$\Rightarrow H = 2$$

$$\sin A = \frac{P}{H} = \frac{1}{2}$$
 and $\cos A = \frac{B}{H} = \frac{\sqrt{3}}{2}$

For $\angle C$, Perpendicular = $AB = \sqrt{3}$ and Base = BC = 1

$$\sin C = \frac{P}{H} = \frac{AB}{AC} = \frac{\sqrt{3}}{2}$$
 and $\cos C = \frac{B}{H} = \frac{BC}{AC} = \frac{1}{2}$

Now sinA. cosC + cosA. sinC =
$$\frac{1}{2} \times \frac{1}{2} + \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} = \frac{1}{4} + \frac{3}{4} = \frac{1+3}{4} = \frac{4}{4} = \mathbf{1}$$

3. In $\triangle OPQ$, right angled at P. OP = 7 cm and OQ - PQ = 1 cm. Determine the values of sin Q and cos Q. [Example 5]

Sol :- Given
$$OP = 7 cm$$
 and $OQ - PQ = 1 cm$

Let
$$PQ = x$$
 then $QQ = 1 + x$

By Pythagoras Theorem:

$$0Q^{2} = 0P^{2} + PQ^{2} \Rightarrow (1+x)^{2} = 7^{2} + x^{2}$$

$$\Rightarrow 1 + x^{2} + 2x = 49 + x^{2} \Rightarrow x^{2} + 2x + 1 - 49 - x^{2} = 0$$

$$\Rightarrow 2x - 48 = 0 \Rightarrow 2x = 48$$

$$\Rightarrow x = \frac{48}{2} = 24$$

$$\therefore PQ = x = 24 \text{ and } OP = 1 + x = 1 + 24 = 25$$
For Q: $\sin Q = \frac{P}{H} = \frac{7}{25}$ and $\cos Q = \frac{B}{H} = \frac{24}{25}$

EXERCISE

- 1. In a right angle $\triangle ABC$, right angled at C, If AB = 29, BC = 21 and $\angle B = \theta$, then find i) $\sin^2\theta + \cos^2\theta$ ii) $\cos^2\theta \sin^2\theta$
- **2.** Ex 8.1, Q 7,8,9,10

come-become-educated

