Logic Coverage

CS 3250 Software Testing

[Ammann and Offutt, "Introduction to Software Testing," Ch. 8]

Structures for Criteria-Based Testing

Overview

- Logic coverage ensures that tests not only reach certain locations, but the internal state is infected by trying multiple combinations of truth assignments to the expressions
- Covering logic expressions is required by the US Federal Aviation Administration for safety critical avionics software
- Logical expressions can come from many sources
 - Decisions in programs
 - FSMs and statecharts
 - Requirements
 - SQL queries
- Tests are intended to choose some subset of the total number of truth assignments to the expressions

Logic Predicates and Clauses

- Predicate: An expression that evaluates to a Boolean value
 - May contain
 - Boolean variable
 - Non-Boolean variables that contain >, <, ==, >=, <=, !=
 - Boolean function calls
 - Created by the logical operators

П	negation operator
^	and operator
V	<i>or</i> operator
\rightarrow	implication operator
\oplus	exclusive or operator
\leftrightarrow	equivalence operator

Clause: A predicate with no logical operators

Let's Refresh Our Memory

Row #	а	b	!a	a∧b	a∨b	$a \rightarrow b$	a ⊕ b	a⇔b
1	Т	Т						
2	Т							
3		Т						
4								

Example

Three clauses

A relational expression (a = b)

A boolean variable C

A boolean-valued function p(x)

$$((a = b) \lor C) \land ((a = b) \lor f(x))$$
A predicate with logical operators

Three clauses

A relational expression (a = b)

A boolean variable C

A boolean-valued function p(x)

Note on Predicates

- Most predicates have few clauses
- Sources of predicates
 - Decisions in program source code

```
public boolean isSatisfactory()
{
   if ((good && fast) || (good && cheap) || (fast && cheap))
      return true;
   else
      return false;
}
   (good ^ fast) \( \) (good ^ cheap) \( \) (fast ^ cheap)
```

Guards in finite state machines

```
button2 = true (when gear = park) \land (button2 = true)
```

Precondition in specifications

pre: stack not full AND object reference parameter not null

```
¬ stackFull() ∧ (newObj ≠ null)
```

Note on Predicates

Be careful when translating from English

"I am interested in CS6501 and CS4501"

Which one?

```
(course = CS6501) AND (course = CS4501)

(course = CS6501) OR (course = CS4501)
```


From a study of 63 open source programs (>400,000 predicates), most predicates have few clauses [Ammann and Offutt]

- 88.5% have 1 clauses
- 9.5% have 2 clauses
- 1.35% have 3 clauses
- Only .65% have 4 or more

Try to keep the predicate simple and short. How? Refactor it.

Short Circuit Evaluation

- Impacted by the order of operation
- Evaluate an expression or predicate until an outcome is known

$$((a = b) \lor C) \land f(x)$$

If f(x) is evaluated to T, we evaluate $(a = b) \lor C$ which can be T or F

If f(x) is evaluated to F, we stop. The outcome of the predicate is F

Short Circuit Evaluation

Stop evaluating the predicate when we know the outcome

Logic Coverage Criteria

- We use predicates in testing as follows:
 - Developing a model of the software as one or more predicates
 - Requiring tests to satisfy some combination of clauses
- Abbreviations:
 - P is the set of predicates
 - p is a single predicate in P
 - C is the set of clauses in P
 - C_p is the set of clauses in predicate p
 - c is a single clause in C

Predicate Coverage (PC)

- For each p in P, TR contains two requirements:
 - p evaluates to true
 - p evaluates to false

"Decision coverage"

$$p = ((a = b) \lor C) \land f(x)$$

Need 2 test cases to satisfy PC

а	b	С	C f(x)	
3 -	Г 3	Т	Т	Т
4 1	3	F	Т	F

 PC does not evaluate all the clauses, especially in the presence of short circuit evaluation

Activity #1 (PC)

$$p = a \vee (b \wedge c)$$

Row#	а	b	С	р
1	Т	Т	Т	
2	Т	Т		
3	Т		Т	
4	Т			
5		Т	Т	
6		Т		
7			Т	
8				

List test requirements that satisfy predicate coverage (PC)

Activity #2 (PC)

$$p = a \wedge (b \vee c)$$

Row#	а	b	С	р
1	Т	Т	Т	
2	Т	Т		
3	Т		Т	
4	Т			
5		Т	Т	
6		Т		
7			Т	
8				

List test requirements that satisfy predicate coverage (PC)

Clause Coverage (CC)

- For each c in C, TR contains two requirements:
 - c evaluates to true
 - c evaluates to false

"Condition coverage"

$$p = ((a = b) \lor C) \land f(x)$$
 (a = b) evaluates to T, F
C evaluates to T, F
 $f(x)$ evaluates to T, F

a	b	С	f(x)	р
3	T 3	Т	F	F
4	F 3	F	Т	F

Need 2 test cases to satisfy CC

- CC does not always ensure PC
- The simplest solution is to test all combinations

Activity #1 (CC)

$$p = a \vee (b \wedge c)$$

Row#	а	b	С	р
1	Т	Т	Т	
2	Т	Т		
3	Т		Т	
4	Т			
5		Т	Т	
6		Т		
7			Т	
8				

List test requirements that satisfy clause coverage (CC)

Activity #2 (CC)

$$p = a \wedge (b \vee c)$$

Row#	а	b	С	р
1	Т	Т	Т	
2	Т	Т		
3	Т		Т	
4	Т			
5		Т	Т	
6		Т		
7			Т	
8				

List test requirements that satisfy clause coverage (CC)

Combinatorial Coverage (CoC)

Evaluate all possible combination of truth values

"Multiple Condition coverage"

$$p = ((a = b) \lor C) \land f(x)$$

а	b	С	f(x)	р
3	T 3	T	T	Т
3	T 3	T	F	F
3	T 3	F	T	Т
3	r 3	F	F	F
4	F 3	Т	Т	Т
4	F 3	Т	F	F
4	F 3	F	Т	F
4	F 3	F	F	F

Need 2^N test cases to satisfy CoC, where N = number of clauses

Note on CoC

- Coc is simple and comprehensive
- But quite expensive
- 2^N tests, where N is the number of clauses
 - Impractical for predicates with more than 3 or 4 clauses
- The literature has lots of suggestions some confusing
- The general idea is simple:

Test each clause that makes a big difference ... "active clause"

Revisit CoC Example

Which clause makes a big difference

$$p = ((a = b) \lor C) \land f(x)$$

а		b	С	f(x)	р
3	Ţ	3	T	T	Т
3	Т	3	_	F	F
3	Ţ	3	F	Т	Т
3	T	3	F	F	F
4	F	3	Т	Т	Т
4	F	3	Т	F	F
4	F	3	F	Т	F
4	F	3	F	F	F

Active Clauses

 To really test the results of a clause, the clause should be the determining factor in the value of the predicate

Determination

- A clause c_i in predicate p, called the major clause, determines p if an only if the values of the remaining minor clauses c_j are such that changing c_i changes the value p
- That is:
 - Major clause the clause (being considered) that determine the predicate
 - Minor clause all other clauses in the predicate
- This is considered to make the clause active

Determination

- Goal: Find tests for each clause when the clause determines the value of the predicate
- Determination: the conditions under which a clause solely determines the outcome of a predicate
 - Given a major clause c_i in a predicate p, c_i determines p if the minor clauses $c_i \neq c_i$ ($j \neq i$)
 - Major clause "active clause" controls the behavior
- Consider $p = a \lor b$
 - If b = true, the value of a does not matter
 - If b = false, the value of a is the determining factor in the value of the predicate

Revisit Coc Example (again)

Which clause determines the predicate

$$p = ((a = b) \lor C) \land f(x)$$

а	b	С	f(x)	р
3	r 3	T	T	Т
3	T 3	T	F	F
3	T 3	F	T	Т
3	r 3	F	F	F
4	F 3	T	Т	Т
4	F 3	Т	F	F
4	F 3	F	T	F
4	F 3	F	F	F

f(x) determines the predicate – but when ??

Deriving Determination Predicates, Using Mathematical Approach

$$p = a \wedge (b \vee c)$$

```
p_a = p_{a=true} \oplus p_{a=false}
      = (true \land (b \lor c)) \oplus (false \land (b \lor c))
      = (b \vee c) \oplus false
      = b \vee c
p_b = p_{b=true} \oplus p_{b=false}
      = (a \land (true \lor c)) \oplus (a \land (false \lor c))
      = (a \wedge true) \oplus (a \wedge c)
      = a \oplus (a \wedge c)
      = a \wedge \neg c
p_c = p_{c=true} \oplus p_{c=false}
      = (a \land (b \lor true)) \oplus (a \land (b \lor false))
      = (a \wedge true) \oplus (a \wedge b)
      = a \oplus (a \wedge b)
      = a \wedge \neg b
```

$$p = a \wedge (b \vee c)$$

Major clause: a

$$p_{a} = p_{a=true} \oplus p_{a=false}$$

$$= (true \land (b \lor c)) \oplus (false \land (b \lor c))$$

$$= (b \lor c) \oplus false$$

$$= b \lor c$$

row	а	b	С	р	p _a	P _b	p _c
1	Т	Т	Т	Τ	Τ		
2	Т	Т		Т	Τ		
3	Т		Т	Т	Т		
4	Т						
5		Т	Т		Т		
6		Т			Т		
7			Т		Т		
8							

(Fill in a table to make it easy to read)

$$p = a \wedge (b \vee c)$$

Major clause: b

$$p_b = p_{b=true} \oplus p_{b=false}$$

= $(a \land (true \lor c)) \oplus (a \land (false \lor c))$
= $(a \land true) \oplus (a \land c)$
= $a \oplus (a \land c)$
= $a \land \neg c$

row	а	b	С	р	p _a	P _b	p _c
1	Т	Т	Τ	Т	Т		
2	Т	Τ		Т	Т	Т	
3	Т		Т	Т	Т		
4	Т					Т	
5		Т	Т		Т		
6		Т			Т		
7			Т		Т		
8							

(Fill in a table to make it easy to read)

$$p = a \wedge (b \vee c)$$

Major clause: c

$$p_c = p_{c=true} \oplus p_{c=false}$$

= $(a \land (b \lor true)) \oplus (a \land (b \lor false))$
= $(a \land true) \oplus (a \land b)$
= $a \oplus (a \land b)$
= $a \land \neg b$

row	а	b	C	р	p _a	p _b	p _c
1	Т	Т	Т	Τ	Т		
2	Т	Т		Τ	Т	Т	
3	Т		Т	Т	Т		Т
4	Т					Т	Т
5		Т	Т		Т		
6		Т			Т		
7			Т		Т		
8							

(Fill in a table to make it easy to read)

Deriving Determination Predicates, Using Tabular Approach

Identifying Determination Using Truth Table

$$p = a \wedge (b \vee c)$$

Major clause: a

		row	a	b	С	р	p a	p _b	p _c
	ightharpoonup	1	Т	Η	Τ	Т	Τ		
Г	 	2	Т	4		Т	Τ		
H	 	3	Т		Т	Т	Т		
$\ $	 	4	Т						
	L	5		Т	Т		Т		
	\rightarrow	6		Т			Т		
ᆫ	\rightarrow	7			Т		Т		
	\rightarrow	8							

Identifying Determination Using Truth Table

$$p = a \wedge (b \vee c)$$

Major clause: b

	row	а	b	С	р	p _a	p _b	p _c
 	1	Τ	Т	Т	T	Т		
┌	2	Τ	Т		T	Т	Т	
	3	Τ		Т	Т	Т		
└ →	4	Т					Т	
 	5		Т	Т		Т		
├ →	6		Т			Т		
	7			Т		Т		
\mapsto	8							

Identifying Determination Using Truth Table

$$p = a \wedge (b \vee c)$$

Major clause: c

	row	а	b	С	р	p a	р _b	p _c
 	1	Т	H	Т	T	Τ		
L	2	Τ	H		T	Τ	H	
 	3	Т		Т	T	Т		Т
L	4	Т					Т	Т
 	5		Τ	Т		Т		
L	6		H			Τ		
 	7			Т		Т		
L	8							

What's next?

- Use determination
- Apply logic coverage criteria to derive test requirements and design test cases
 - Active Clause Coverage (ACC)
 - General Active Clause Coverage (GACC)
 - Correlated Active Clause Coverage (CACC)
 - Restricted Active Clause Coverage (RACC)