

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Patentschrift
⑩ DE 101 00 586 C 1

⑯ Int. Cl. 7:
C 12 N 15/11
C 12 N 15/87
C 12 N 15/63

⑪ Aktenzeichen: 101 00 586.5-41
⑫ Anmeldetag: 9. 1. 2001
⑬ Offenlegungstag: -
⑭ Veröffentlichungstag
der Patenterteilung: 11. 4. 2002

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Patentinhaber:
Ribopharma AG, 95447 Bayreuth, DE
⑯ Vertreter:
Gaßner, W., Dr.-Ing., Pat.-Anw., 91052 Erlangen

⑯ Erfinder:
Kreutzer, Roland, Dr., 95447 Bayreuth, DE; Limmer, Stefan, Dr., 95447 Bayreuth, DE; Rost, Sylvia, Dr., 95447 Bayreuth, DE; Hadwiger, Philipp, Dr., 95447 Bayreuth, DE
⑯ Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:
WO 00 44 895 A1

⑯ Verfahren zur Hemmung der Expression eines Zielgens
⑯ Die Erfindung betrifft ein Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle, umfassend die folgenden Schritte:
Einführen mindestens eines Oligoribonukleotids (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge, wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist, und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

DE 101 00 586 C 1

DE 101 00 586 C 1

DE 101 00 586 C 1

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren, eine Verwendung, ein Oligoribonukleotid und einen Kit zur Hemmung der Expression eines Zielgens.

5 [0002] Aus der WO 99/32619 sowie der WO 00/44895 sind Verfahren zur Hemmung der Expression von medizinisch oder biotechnologisch interessanten Genen mit Hilfe eines doppelsträngigen Oligoribonukleotids (dsRNA) bekannt. Die bekannten Verfahren sind nicht besonders effektiv.

[0003] Aufgabe der vorliegenden Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere ein möglichst wirksames Verfahren, eine möglichst wirksame Verwendung, ein Oligoribonukleotid und ein 10 Kit angegeben werden, mit denen eine noch effizientere Hemmung der Expression eines Zielgens erreichbar ist.

[0004] Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 36 und 71 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 35, 37 bis 70 und 72 bis 98.

[0005] Mit den erfindungsgemäß beanspruchten Merkmalen wird überraschender Weise eine drastische Erhöhung der Effektivität der Hemmung der Expression eines Zielgens erreicht. Die genauen Umstände dieses Effekts sind noch nicht 15 geklärt. Es wird angenommen, dass durch die besondere Ausbildung zumindest eines Endes des Oligoribonukleotids die Stabilität desselben erhöht wird. Durch die Erhöhung der Stabilität wird die wirksame Konzentration in der Zelle erhöht. Die Effektivität ist gesteigert.

[0006] Die Effektivität kann weiter gesteigert werden, wenn zumindest ein Ende zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist. Es können auch beide Enden ungepaarte Nukleotide aufweisen. Eine besondere Erhöhung der Stabilität des erfindungsgemäßen Oligoribonukleotids ist beobachtet worden, wenn das Ende das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.

[0007] Nach einem weiteren Ausgestaltungsmerkmal wird die Effektivität des Verfahrens erhöht, wenn zumindest ein weiteres, vorzugsweise ein entsprechend dem erfindungsgemäßen Oligoribonukleotid ausgebildetes, Oligoribonukleotid in die Zelle eingeführt wird, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur 25 des Oligoribonukleotids komplementär zu einem ersten Bereich des Zielgens ist, und wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur des weiteren Oligoribonukleotids komplementär zu einem zweiten Bereich des Zielgens ist. Die Hemmung der Expression des Zielgens ist in diesem Fall deutlich gesteigert.

[0008] Es hat sich weiter als vorteilhaft erwiesen, wenn das weitere Oligoribonukleotid eine doppelsträngige, aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist. Nach einem weiteren Ausgestaltungsmerkmal kann das Oligoribonukleotid und/oder das weitere Oligoribonukleotid auch eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweisen.

[0009] Der erste und der zweite Bereich können abschnittsweise überlappen, aneinandergrenzen oder auch voneinander beabstandet sein.

[0010] Insbesondere hinsichtlich der Turnorthерапie wird eine weitere Steigerung der Effizienz dann beobachtet, wenn die Zelle vor dem Einführen des/der Oligoribonukleotid/e mit Interferon behandelt wird.

[0011] Die erfindungsgemäßen Oligoribonukleotide können dann besonders einfach in die Zelle eingeschleust werden, wenn sie in micellare Strukturen, vorteilhafterweise in Liposomen, eingeschlossen werden. Es ist auch möglich das/die Oligoribonukleotid/e in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen einzuschließen.

[0012] Das Zielgen kann nach einem weiteren Ausgestaltungsmerkmal eine der in dem anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 aufweisen. Es kann auch aus der folgenden Gruppe ausgewählt sein: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Priongen.

[0013] Das Zielgen wird zweckmäßiger Weise in pathogenen Organismen, vorzugsweise in Plasmodien, exprimiert. Es kann Bestandteil eines Virus oder Viroids, insbesondere eines humanpathogenen Virus oder Viroids, sein. Das Virus oder Viroid kann auch ein tier- oder pflanzenpathogenes Virus oder Viroid sein.

[0014] Nach einem weiteren Ausgestaltungsmerkmal ist vorgesehen, dass die ungepaarten Nukleotide durch Nukleosidthiophosphate substituiert sind.

[0015] Die doppelsträngige Struktur der erfindungsgemäßen Oligoribonukleotide kann weiter durch eine chemische Verknüpfung der beiden Stränge stabilisiert werden. Die chemische Verknüpfung kann durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet werden. Es hat sich weiter als zweckmäßig und die Stabilität erhöhend erwiesen, wenn die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden des erfindungsgemäßen Oligoribonukleotids gebildet ist. Weitere vorteilhafte Ausgestaltungen hinsichtlich der chemischen Verknüpfung können den Merkmalen der Ansprüche 23 bis 29 entnommen werden, ohne dass es dafür 55 einer näheren Erläuterung bedarf.

[0016] Zum Transport der erfindungsgemäßen Oligoribonukleotide hat es sich ferner als vorteilhaft erwiesen, dass diese an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben werden. Das Hüllprotein kann vom Polyomavirus abgeleitet sein. Das Hüllprotein kann insbesondere das Virus-Protein 1 und/oder das Virus-Protein 2 des Polyomavirus enthalten.

[0017] Nach einer weiteren Ausgestaltung ist vorgesehen, dass bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. Ferner ist es von Vorteil, dass das/die Oligoribonukleotid/e zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind. Die Zelle kann eine Vertebratenzelle oder eine menschliche Zelle, wobei eine menschliche embryonale Stammzelle oder eine menschliche Keimzelle ausgeschlossen sind, sein.

[0018] Nach weiterer Maßgabe der Erfindung wird die Aufgabe gelöst durch ein Oligoribonukleotid mit einer doppel-

DE 101 00 586 C 1

strängigen, aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur komplementär zu einem Zielgen ist, wobei zumindest ein Ende des Oligoribonukleotids zumindest einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist, und wobei die Sequenz des Zielgens eine der im anhängenden Sequenzprotokoll wiedergegebenen Sequenzen SQ001 bis SQ140 ist.

5

[0019] Wegen der weiteren vorteilhaften Ausgestaltung des Oligoribonukleotids wird auf die vorangegangenen Ausführungen verwiesen.

[0020] Nach weiterer Maßgabe der Erfindung wird die Aufgabe außerdem gelöst durch einen Kit mit einem erfundungsgemäßen Oligoribonukleotid und einem weiteren doppelsträngigen Oligoribonukleotid, wobei das weitere Oligoribonukleotid eine doppelsträngige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang oder zumindest ein Abschnitt eines Strangs der doppelsträngigen Struktur komplementär zum Zielgen ist, und/oder Interferon.

10

[0021] Die Erfindung wird nachfolgend anhand der Zeichnungen beispielhaft erläutert. Es zeigen:

15

[0022] Fig. 1a-c schematisch ein erstes, zweites und drittes Oligoribonukleotid und

[0023] Fig. 2 schematisch ein Zielgen.

20

[0024] Die in den Fig. 1a bis c gezeigten Oligoribonukleotide dsRNA I, dsRNA II und dsRNA III weisen jeweils ein erstes Ende E1 und ein zweites Ende E2 auf. Das erste Oligoribonukleotid dsRNA I und das dritte Oligoribonukleotid dsRNA III weisen an ihren Enden E1 und E2 einzelsträngige aus etwa 1 bis 4 ungepaarten Nukleotiden gebildete Abschnitte auf. Beim zweiten Oligoribonukleotid dsRNA II handelt es sich um ein langes Oligoribonukleotid mit mehr als 49 Nukleotidpaaren.

25

[0025] In Fig. 2 ist schematisch ein auf einer DNA befindliches Zielgen gezeigt. Das Zielgen ist durch einen schwarzen Balken kenntlich gemacht. Es weist einen ersten Bereich B1, einen zweiten Bereich B2 und einen dritten Bereich B3 auf.

[0026] Jeweils ein Strang S1, S2 und S3 des ersten dsRNA I, zweiten dsRNA II und dritten Oligoribonukleotids dsRNA III ist komplementär zum entsprechenden Bereich B1, B2 und B3 auf dem Zielgen.

[0027] Die Expression des Zielgens wird dann besonders wirkungsvoll gehemmt, wenn die kurzkettigen ersten dsRNA I und dritten Oligoribonukleotide dsRNA III an ihren Enden E1, E2 einzelsträngige Abschnitte aufweisen. Die einzelsträngigen Abschnitte können sowohl am Strang S1, S3 als auch am Gegenstrang oder am Strang S1, S3 und am Gegenstrang ausgebildet sein. Es hat sich weiter gezeigt, dass ab einer bestimmten Länge der Oligoribonukleotide, z. B. ab einer Länge von mehr als 49 Nukleotidpaaren, eine einzelsträngige Ausbildung der Enden E1, E2 weniger stark zur Unterdrückung der Expression des Zielgens beiträgt. Bei langen Oligoribonukleotiden, hier beim zweiten Oligoribonukleotid dsRNA II, ist eine einzelsträngige Ausbildung an den Enden E1, E2 nicht unbedingt erforderlich.

30

[0028] Die Bereiche B1, B2 und B3 können, wie in Fig. 2 gezeigt, von einander beabstandet sein. Sie können aber auch an einander grenzen oder überlappen.

[0029] Im Falle der einzelsträngigen Ausbildung der Enden E1, E2 sind alle denkbaren Permutationen möglich, d. h. es können ein Ende oder beide Enden des Strangs S1, S2, S3 oder ein Ende oder beide Enden des Gegenstrangs überstehen. Der einzelsträngige Abschnitt kann 1 bis 4 gepaarte Nukleotide aufweisen. Es ist auch möglich, dass ein Ende oder beide Enden E1, E2 mindestens ein nicht nach Watson & Crick gepaartes Nukleotidpaar aufweisen.

35

Ausführungsbeispiel

40

[0030] Es wurden aus Sequenzen des Grün-fluoreszierenden Proteins (GFP) der Alge *Aequoria victoria* abgeleitete doppelsträngige RNAs (dsRNAs) hergestellt und zusammen mit dem GFP-Gen in Fibroblasten mikroinjiziert. Anschließend wurde die Fluoreszenzabnahme gegenüber Zellen ohne dsRNA ausgewertet.

Versuchsprotokoll

45

[0031] Mittels eines RNA-Synthesizer (Typ Expedite 8909, Applied Biosystems, Weiterstadt, Deutschland) und herkömmlicher chemischer Verfahren wurden die aus den Sequenzprotokollen SQ141 und SQ142 ersichtlichen RNA-Einzelstränge und die zu ihnen komplementären Einzelstränge (bei SQ142 mit zwei Nukleotiden langen überstehenden Einzelstrangenden) synthetisiert. Die Hybridisierung der Einzelstränge zum Doppelstrang erfolgte durch Aufheizen des stöchiometrischen Gemisches der Einzelstränge in 10 mM Natriumphosphatpuffer, pH 6,8, 100 mM NaCl, auf 90°C und nachfolgendes langsames Abkühlen über 6 Stunden auf Raumtemperatur. Anschließend erfolgte Reinigung mit Hilfe der HPLC. Die so erhaltenen dsRNAs wurden in die Testzellen mikroinjiziert.

50

[0032] Als Testsystem für diese in vivo-Experimente diente die murine Fibroblasten-Zelllinie NIH/3T3. Mit Hilfe der Mikroinjektion wurde das GFP-Gen in die Zellen eingebracht. Die Expression des GFP wurde unter dem Einfluss gleichzeitig mittransfizierter sequenzhomologer dsRNA untersucht. Die Auswertung unter dem Fluoreszenzmikroskop erfolgte 3 Stunden nach Injektion anhand der grünen Fluoreszenz des gebildeten GFP.

55

Vorbereitung der Zellkulturen

60

[0033] Die Zellen wurden in DMEM mit 4,5 g/l Glucose, 10% fötalem Rinderserum unter 7,5% CO₂-Atmosphäre bei 37°C in Kulturschalen inkubiert und vor Erreichen der Konfluenz passagiert.

[0034] Das Ablösen der Zellen erfolgte mit Trypsin/EDTA. Zur Vorbereitung der Mikroinjektion wurden die Zellen in Petrischalen überführt und bis zu Bildung von Mikrokolonien weiter inkubiert.

65

Mikroinjektion

[0035] Die Kulturschalen wurde zur Mikroinjektion für ca. 10 Minuten aus dem Inkubator genommen. Es wurde in ca.

DE 101 00 586 C 1

50 Zellen pro Ansatz innerhalb eines markierten Bereiches unter Verwendung des Mikroinjektionssystems FemtoJet der Firma Eppendorf, Deutschland, einzeln injiziert. Anschließend wurden die Zellen weitere drei Stunden inkubiert. Für die Mikroinjektion wurden Borosilikat-Glaskapillaren der Firma Eppendorf mit einem Spalteninnendurchmesser von 0,5 µm verwendet. Die Mikroinjektion wurde mit dem Mikromanipulator 5171 der Firma Eppendorf durchgeführt. Die 5 Injektionsdauer betrug 0,8 Sekunden, der Druck ca. 80 hPa. Die in die Zellen injizierten Proben enthielten 0,01 µg/µl pGFP-C1 (Clontech Laboratories GmbH, Heidelberg, Deutschland) sowie an Dextran-70000 gekoppeltes Texas-Rot in 14 mM NaCl, 3 mM KCl, 10 mM KPO₄, pH 7,5. Zusätzlich wurden in ca. 100 pl folgende dsRNAs zugegeben:
 10 Ansatz 1: 10 µM dsRNA (Sequenzprotokoll SQ141); Ansatz 2: 10 µM dsRNA (Sequenzprotokoll SQ142); Ansatz 3: ohne RNA. Die Zellen wurden bei Anregung mit Licht der Anregungswellenlänge von Texas-Rot, 568 nm, bzw. von GFP, 513 nm, mittels eines Fluoreszenzmikroskops untersucht. Die Fluoreszenz aller Zellen im Gesichtsfeld wurde bestimmt und in Relation zur Zelldichte (ausgedrückt durch deren Gesamtprotein-Konzentration) gesetzt.

Ergebnis und Schlussfolgerung

15 [0036] Bei einer Gesamtkonzentration von 10 µM dsRNA konnte beim Einsatz der dsRNA mit den an beiden 3'-Enden um je zwei Nukleotide überstehenden Einzelstrangbereichen (Sequenzprotokoll SQ142) eine merklich erhöhte Hemmung der Expression des GFP-Gens in Fibroblasten beobachtet werden im Vergleich zur dsRNA ohne überstehende Einzelstrangenden (Tabelle 1).
 20 [0037] Die Verwendung von kurzen (20–25 Basenpaare enthaltenden) dsRNA-Molekülen mit Überhängen aus wenigen, vorzugsweise ein bis drei nicht-basengepaarten, einzelsträngigen Nukleotiden ermöglicht somit eine vergleichsweise stärkere Hemmung der Genexpression in Säugerzellen als mit dsRNAs derselben Anzahl von Basenpaaren ohne die entsprechenden Einzelstrangüberhänge bei jeweils gleichen RNA-Konzentrationen.

Tabelle 1

Ansatz	dsRNA	10 µM
1	SQ141	-
2	SQ142 (überstehende Enden)	++
3	ohne RNA	-

[0038] Die Symbole geben den relativen Anteil an nicht oder schwach fluoreszierende Zellen an (++> 90%; ++60–90%; +30–60%; < 10%).

40

45

50

55

60

65

DE 101 00 586 C 1

SEQUENZPROTOKOLL

<110> Ribopharma AG

<120> Verfahren zur Hemmung der Expression eines Zielgens 5

<130>

<140>

<141>

10

<160> 142

<170> PatentIn Ver. 2.1

15

<210> 1

<211> 2955

<212> DNA

<213> Homo sapiens

20

<300>

<302> Eph A1

<310> NM00532

25

<300>

<302> ephrin A1

<310> NM00532

<400> 1

atggagcggc gctggccctt ggggctaggg ctgggtgtgc tgctctgcgc cccgctgccc 60
 ccggggggcgc gcgccaagga agttactctg atggacacaaa gcaaggcaca gggagagctg 120
 ggctggctgc tggatcccc aaaagatggg tggagtgaac agcaacagat actaatggg 180
 acacccctct acatgtacca ggactgccc atgcaaggac gcagagacac tgaccactgg 240
 cttcgctcca attggatcta ccgcggggag gaggttccc gcgtccacgt ggagctgcag 300
 ttcacccgtgc gggactgcaa gagtttccc gggggagccg ggcctctgg ctgcaaggag 360
 accttcaacc ttctgtacat ggagagtgac caggatgtgg gcattcagct ccgacggccc 420
 ttgttccaga aggttaaccac ggtggctgca gaccagatc tcaccatcg agacattcgc 480
 tctggctccg tgaagtgaa tggagcgc tggctctgg ggcgcctgac ccgcctggc 540
 ctcttcctcg ctttccacaa cccgggtgcc tgggtggccc tgggtctgt ccgggtcttc 600
 taccagcgct gtcctgagac cctgaatggc ttggcccaat tcccagacac tctgcctggc 660
 cccgcgtgggt tggtggaaat ggcgggcacc tgcttgcucc acgcgcgggc cagccccagg 720
 ccctcagggtg caccggcat gcaactgcagc cctgtatggcg aatggcttgtt gcctgttagga 780
 cggtgccact gtgagcctgg ctatgaggaa ggtggcagtgc gcaagcatg tggcctgc 840
 cctageggct cttaccggat ggacatggac acaccccatg gtctcacatg ccccccagg 900
 agcaactgtg agtctgaggg ggccaccatc tggatctgtg agagcggcca ttacagatc 960
 cccggggagg gcccccaatg ggcatgcaca ggtccccctt cggcccccgg aaacctgagc 1020
 ttctctggctt caggactca gctctccctg cgtggggAAC ccccaagcaga tacgggggg 1080
 cggccaggat tcatatacag tggaggtgt tcccaatgtgc agggcacacgc acaggacggg 1140
 gggccctgccc agccctgtgg ggtggcggtg cacttctcgcc cggggcccg ggcgcctacc 1200
 acacccatgcag tgcataatgtcaa tggccttgaa cttatgcac actacacatt taatgtggaa 1260
 gccccaaatg gaggatgtcagg gtcggggcacc tctggccatg ccagcacatc agtcaagcatc 1320
 agcatggggc atgcagatgc actgtcaaggc ctgtctctga gactgggtaa gaaagaaccg 1380
 aggcaacttag agctgacatgc ggcggggatcc cggcccccggaa gcccctgggc gaacctgacc 1440
 tatgagctgc acgtgctgaa ccaggatgaa gaaacggtacc agatggttt agaaccagg 1500
 gtcttgctga cagagctgcac gctgcacacc acatacatcg tcagagttccg aatgtgtacc 1560
 ccactgggtc ctggccctttt ctccctgtat catgagtttc ggaccagccc accagtgtcc 1620
 aggggcctga ctggaggaga gattgttagcc gtcataatggctt ggctgctgttcc 1680

60

65

DE 101 00 586 C 1

ttgtgtcttggattctcgtttccggtcccaggagagccccagcggcagaggcagagg 1740
 cacgtgaccgcgcccaccgatgtggatcgaggagacaagctgtgtgaagccttatgtgg 1800
 acctccaggcatacgaggacctgtcacaggagccttggatggatggatggactgtcat 1860
 5 aatttccttcccggagcttgatccagcgatggatggatggatggactgtcat 1920
 ggagagtttgggaagtgtatcgaggaccctcaggctcccgagccatggatggactgtcat 1980
 gtggccattaaagacacatccagacatcccgaggatggatggactgtcat 2040
 gagggcaactatcatggggccaatgttgcacccatattcgtcatctggatggactgtcat 2100
 acaaaggcagaagccgatcatgtatcacaatggatggactgtcat 2160
 10 ttcctggatggagcggggaggaccagctggatggatggactgtcat 2220
 atagcatctgtatcacaatggatggactgtcat 2280
 agaaaacatcttggtaatcaaaccatgttgcggaggatggatggactgtcat 2340
 ctccctggatgtatggatggatggactgtcat 2400
 acagccccctgaagccattgcacatccggatcttcaccacat 2460
 15 gggattgtatggatggactgtcat 2520
 caggaggatgtatggatggactgtcat 2580
 gcccctctgtatggatggactgtcat 2640
 ttcagaagttcaggatggatggactgtcat 2700
 attggcaactttgacccatggatggactgtcat 2760
 20 atccctgtatcggatggactgtcat 2820
 cactccatccggatggatggactgtcat 2880
 ctgacgcagaatggatggactgtcat 2940
 ggattcaaggactgtcat 2955

25 <210> 2
 <211> 3042
 <212> DNA
 <213> Homo sapiens

30 <300>
 <302> ephrin A2
 <310> XM002088

35 <400> 2
 gaaggttgcgcgcaggccggcggcggggagcggacaccggagccggcgtgcaggcg 60
 gtgtcgaaaaatggatcgaccggagagcgagaaggcgatggatggatggatggatgg 120
 caggcagcccgccgtctcgccctgttggatggatggatggatggatggatggatgg 180
 ggcggggcaatggatggatggatggatggatggatggatggatggatggatggatgg 240
 40 ctcacacaccatgtatggatggatggatggatggatggatggatggatggatggatgg 300
 atctacatgtatccgtgtatggatggatggatggatggatggatggatggatggatgg 360
 aactgggtgtatggatggatggatggatggatggatggatggatggatggatggatgg 420
 gactgcaacaatggatggatggatggatggatggatggatggatggatggatggatgg 480
 gccgatcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 540
 45 accatggcgcgcgtatggatggatggatggatggatggatggatggatggatggatgg 600
 aacgtggaggatggatggatggatggatggatggatggatggatggatggatggatgg 660
 gatatcggtatggatggatggatggatggatggatggatggatggatggatggatgg 720
 ctgatcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 780
 50 cgtatgcactgtgcgtatggatggatggatggatggatggatggatggatggatgg 840
 gcaggctatggatggatggatggatggatggatggatggatggatggatggatggatgg 900
 gaggcatctatggatggatggatggatggatggatggatggatggatggatggatggatgg 960
 gcccacccctatggatggatggatggatggatggatggatggatggatggatggatgg 1020
 55 gtggatggatggatggatggatggatggatggatggatggatggatggatggatggatgg 1080
 gtcacctcgaaatggatggatggatggatggatggatggatggatggatggatggatgg 1140
 cgctactcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 1200
 cccccacatgaaatggatggatggatggatggatggatggatggatggatggatggatgg 1260
 cgctactcgatggatggatggatggatggatggatggatggatggatggatggatggatgg 1320
 cccccacatgaaatggatggatggatggatggatggatggatggatggatggatggatgg 1380

60

65

DE 101 00 586 C 1

agccgcggct	tccgtactgc	cagtgtcaggc	atcaaccaga	cagagcccccc	caagggtgagg	1440
ctggaggggcc	gcagcaccac	ctcgcttagc	gtctcctgga	gcatcccccc	gccgcagcag	1500
agccgagttt	ggaagtacga	ggtaacttac	cgcaagaagg	gagactccaa	cagctacaat	1560
gtgcgcccga	ccgagggttt	ctccgtgacc	ctggacgacc	tggccccaga	caccacccat	1620
ctggtccagg	tgcaggcact	gacgcaggag	ggccagggggg	ccggcagcaa	ggtgtcacgaa	1680
ttccagacgc	tgtccccgg	gggatctggc	aacttggcg	tgatttggcg	cgtggctgtc	1740
ggtgtgttcc	tgccttcgtt	gttggcagga	gttggcttct	ttatccaccg	caggaggaag	1800
aaccagcgtt	cccgccagtc	cccgaggagac	gtttaacttct	ccaagtcaga	acaactgaag	1860
ccccctgaaga	catacgttga	ccccccacaca	tatgaggacc	ccaaaccaggc	tgtgttgaag	1920
ttcactaccc	agatccatcc	atccctgtgtc	actcggcaga	aggtgatcg	agcaggagag	1980
tttggggagg	tgtacaaggg	catgtgaag	acatcttcgg	ggaaaagaagga	ggtgcgggtg	2040
gccatcaaga	cgctgaaaggc	ccgttacaca	gagaagcagc	gagtggactt	cctcggcgag	2100
gccccatca	tggggcagtt	cagccaccac	aacatcatcc	gcttagaggg	cgtcatctcc	2160
aaatacaaga	ccatgatgat	catcaactgag	tacatggaga	atggggccct	ggacaagttc	2220
cttcgggaga	aggatggcga	gttcagcgt	ctgcagctgg	tgggcatgct	gccccggatc	2280
gcagctggca	tgaagtacct	ggccaacatg	aactatgtgc	accgtgaccc	ggctggccgc	2340
aacatcctcg	tcaacagcaa	cctggctctgc	aagggtctg	actttggccct	gtcccggctg	2400
ctggaggacg	accccgaggc	cacctacacc	accagtggcg	gcaagatccc	catccgcgtgg	2460
accggccccc	aggccatttc	ctaccggaa	ttcacccctg	ccagcgacgt	gtggagctt	2520
ggcattgtca	tgtggaggt	gtgacacct	ggcgagggc	cctactggga	gttgtccaac	2580
cacgagggtt	tgaaaagccat	caatgtatggc	ttccggctcc	ccacacccat	ggactgcccc	2640
tccggccatct	accagctcat	gtatgcagtgc	tggcagcagg	agcgtgcccgg	ccgccccaaag	2700
ttcgctgaca	tcgtcagcat	cctggacaag	ctcattctgt	ccctctgactc	cctcaagacc	2760
ctggctgact	ttggcccccc	cgtgtctatc	cggctccca	gcacgagcgg	ctcggagggg	2820
gtgccttgc	gcacgggtgc	cgagtggcc	gagtccatca	agatgcagca	gtatacggag	2880
cacttcatgg	cgccggcta	cactggccatc	gagaagggtgg	tgcaagatgac	caacgacgac	2940
atcaagagga	ttggggtgcg	gctggccggc	caccagaagc	gcatcgccct	cagcctgtctg	3000
ggactcaagg	accaggtgaa	cactgtgggg	atccccatct	ga		3042

<210> 3
<211> 2953
<212> DNA
<213> *Homo sapiens*

<300>
<302> ephrin A3
<310> NM005233

```

<400> 3
atggattgtc agctctccat ctccttcctt ctcagctgct ctgttctcgaa cagttcggg 60
gaactgattc cgccgccttc caatgaagtc aatctactgg attcaaaaac aattcaaggaa 120
gagctgggtt gatatcttta tccatcacat gggtggaaag agatcagtgg tggatgaa 180
cattacacac ccatacggac ttaccagggt tgcaatgtca tggaccacag tcaaaaacaat 240
tggctgagaa caaactgggt ccccaaggaa tcagctcaga agatttatgt ggagctcaag 300
ttcaactctac gagactgcaa tagcattcca ttgggttagt gaacttgcaa ggagacattc 360
aacctgtact acatggagtc tgatgtatcatgggtga aatttcgaga gcatcagttt 420
acaagatgg acaccattgc agctgtatgaa agtttcaactc aaatggatct tggggaccgt 480
attctgaagc tcaacactga gattagagaa gtaggtctgt tcaacaagaa gggattttat 540
ttggcatttt aagatgttgg tgcttgtgtt gccttgggtgt ctgtgagagt atacttcaaa 600
aagtggcccat ttacatgtaa gaatctgggt atgtttccag acacgggtacc catggactcc 660
cagtccttgg tggagggttag agggtctgtt gtcacaaatt ctaaggagga agatccttca 720
aggatgtact gcagttacaga aggcaatgg ctgttaccca ttggcaatgt ttccgtcaat 780
gctggctatg aagaaagagg tttatgtgc caagctgtc gaccagggtt ctacaaaggca 840
ttggatggta atatgaagtgtc tgctaatgtc cccgcctcaca gtttactca ggaagatgtt 900
tcaatgtact gcagggtgtga gaataattac ttccggcag acaaagaccc tccatccatg 960
gcttgtaccc gacccatc ttcaccaaga aatgttatct ctaatataaa cqaqaccc 1020

```

DE 101 00 586 C 1

gttatcctgg actggagttg gcccctggac acaggaggcc ggaaagatgt taccttcaac 1080
 atcatatgtta aaaaatgtgg gtggaatata aaacagtgtg agccatqcg cccaaatgtc 1140
 cgttcctcc ctcgacagt tggactcacc aacaccacgg tgacagtgcg agaccttctg 1200
 gcacatacta actacacctt tgagattgtat gccgttaat ggggtcaga gctgagctcc 1260
 ccaccaagac agtttgctgc ggtcagcatc acaactaatac aggctgtcc atcacctgtc 1320
 ctgacgatta agaaagatcg gaccccgaga aatagcatct ctttgctctg gcaagaacct 1380
 gaacatccta atgggatcat attggactac gaggtcaat actataaaaa gcaggaacaa 1440
 gaaacaaggat ataccatttct gaggccaaga ggcacaaaatg ttaccatcg tagcctcaag 1500
 cctgacacta tatacgat ccaaattccgaa gcccgaacag ccgctgata tgggacgaac 1560
 agccgcaagt ttgatgttga aactagtccaa gactcttct ccatactctgg tgaaagtagc 1620
 caagtggtca tgatcgccat tttagccgca tgtagcaat ttctccatc tgggtgcate 1680
 tatgtttgtt gcaatgggca ttaaaactt ccaggctca ggacttatgt tgacccacat 1740
 cttcattttg acatatgaag accctaccatc agctgttcat gagttgcca aggaatttggaa 1800
 atatccattt ataaaaggat tggagcaggat gaatttggag aggtgtgcag tggcgctta 1860
 aaacttcctt caaaaaaaaaa gatttcagt gccattaaaaa ccctgaaagt tggctacaca 1980
 gaaaaggcaga ggagagactt cctgggagaa gcaagcatta tgggacagtt tgaccacccc 2040
 aatatcattt cactggaaagg agttgttacc aaaagtaagc cagttatgt tgcacagaa 2100
 tacatggaga atgggttcctt ggatagtttc ctacgttaaac acgtgcccc gttactgtc 2160
 attcagcttag tggggatgtc tcgaggggata gcatctggca tgaagtacat gtcagacatg 2220
 ggctatgttc acccgagaccc cgctgtctgg aacatcttgc tcaacagtaa cttgggtgt 2280
 aagtttctg atttcggact tteggctgtc ctggaggatg acccagaagc tgcttataca 2340
 acaagaggag ggaagatccc aatcagggttgg acatcaccag aagctatagc ctaccgcaag 2400
 ttcacgttag ccagcgatgt atggaggat tggatgttgc tctggggatg gatgtttat 2460
 ggagagagac catactggga gatgtccat caggatgtaa ttaaagtgat agatgaggc 2520
 tatcgactgc caccatccat ggactgccc gtcgttgc atcagctgt gtcggactgc 2580
 tggcagaaag acaggaacaa cagacccaaatg tttgagcaga ttgttagtat tctggacaag 2640
 cttatccgaa atcccgcaatc cctgaagatc atcaccatgt cagccgcaag gccatcaa 2700
 ctcttctgg accaaagcaa tggatgtatc tctaccttcc gcacaacagg tgactggctt 2760
 aatgggtgtcc ggacagcaca ctgcaaggaa atttcacgg gctggagta cagttttgt 2820
 gacacaatag ccaagatttc cacagatgc atgaaaaagg ttgggtgtc acgtgggtggg 2880
 ccacagaaga agatcatcag tagcattaaa gctctagaaa cgcaatcaa gaatggccca 2940
 gttccctgtt aaaa 2953

35

<210> 4
 <211> 2784
 <212> DNA
 40 <213> Homo sapiens

<300>
 <302> ephrin A4
 <310> XM002578

45 <400> 4

atggatggaaa aaaatacacc aatccgaacc taccatgtgt gcaatgtat ggaacccagc 60
 cagaataact ggctacgaac tgattggatc acccgagaag gggctcagag ggttatatt 120
 gagattaaat tcaccttgcg ggactgcaat agtcttccgg gctgtatggg gacttgcaag 180
 50 gagacgttta acctgtacta ctatgaatca gacaacgc aagagcggtt catcagagag 240
 aaccagtttgc tcaaaatttgc caccattgtc gctgtatgaga gtttcacccaa agtggacatt 300
 ggtgacagaa tcatgaatgtt gaaacccggatg atccgggatg tagggccatt aagcaaaaag 360
 gggttttacc tggctttca ggatgtgggg gctgtatcg ccctggatc agtccgtgt 420
 ttctataaaa agtgtccact cacagtccgc aatctggccc agtttctgtc caccatcaca 480
 55 ggggctgata cgttccctt ggtggaaatg cggaggctcc gttgtcaacaa ctcagaagag 540
 aaagatgtgc caaaaatgtt ctgtggggca gatgggtat ggtggatcc cattggcaac 600
 tgcctatgca acgtggggca tgaggagcgg agcggagaat gccaagcttgc caaaaatttgg 660
 tattacaagg ctctctccac ggtgtccacc gggccacccca cagctactct 720

60

DE 101 00 586 C1

gtctggaaag	gaggccaccc	gtgcacactgt	gaccgaggct	ttttcagagc	tgacaacgat	780
gctgcctcta	tgcctgcac	ccgtccccca	tctgctcccc	tgaactttagt	ttcaaatgtc	840
aacgagacat	ctgtgaacct	ggaatggagt	agccctcaga	atacagggtgg	ccgcccagac	900
atttcctata	atgtgttatg	caagaaaatgt	ggagctgggt	accccgacaa	gtgccgaccc	960
tgtgaaagtg	gggtccacta	caccccacag	cagaatggct	tgaagaccac	caaagtctcc	1020
atcaactgacc	tcctagctca	taccaattac	acctttgaaa	tctgggtctgt	aatggagtg	1080
tccaaatata	accctaacc	agaccaatca	gttctgtca	ctgtgaccac	caaccaagca	1140
gcaccatcat	ccattgtctt	ggtccaggct	aaagaagtca	caagatacag	tgtggactg	1200
gcttggtctgg	aaccagatcg	gcccataatggg	gtaatcctgg	aatatgaagt	caagtattat	1260
gagaaggatc	agaatgagcg	aagctatcg	atagttcgg	cagctgccag	gaacacagat	1320
atcaaaggcc	tgaaccctct	cacttcctat	gtttccacg	tgcgagccag	gacagcagct	1380
ggctatggag	acttcgtgt	gcccattggag	gttacaacca	acacagtggc	ttcccgatc	1440
atttggatgt	gggctaactc	cacagtcct	ctggctctgt	tctcgggcag	tgtgggtctg	1500
gtggtaattc	tcattgcgc	ttttgtcattc	agccggagac	ggagtaaata	cagtaaagcc	1560
aaacaagaag	cggatgaaga	gaaacatttg	aatcaagggt	taagaacata	tgtggacccc	1620
tttacgtac	aagatccaa	ccaagcgtgt	cgagagttt	ccaaagaaat	tgacgcattc	1680
tgcatatta	ttgaaaaagt	tataggagtt	ggtaatttt	gtgaggatgt	cagtgggct	1740
ctcaaaagtgc	ctggcaagag	agagatctgt	gtggctatca	agactctgaa	agctggttat	1800
acagacaaac	agaggagaga	cttcctgagt	gaggccagca	tcatgggaca	gtttgaccat	1860
ccgaacatca	ttcacttgga	aggcgtggc	actaaatgt	aaccagtaat	gatcataaca	1920
gagtacatgg	agaatggctc	cttggatgt	ttcctcagga	aaaatgtatgg	cagatttaca	1980
gtcattcagc	tggtggcat	gttctgtggc	attgggtctg	ggatgaagta	tttatctgtat	2040
atgagctatg	tgcattgt	tctggccgca	cggAACATCC	tgtgtacacag	caacttggtc	2100
tgcaaaagtgt	ctgattttgg	catgtcccga	gtgtttgagg	atgtatccgga	agcagcttac	2160
accaccaggg	gtggcaagat	ttctatccgg	tggactgcgc	cagaagcaat	tgcctatctgt	2220
aaattcaca	cagcaagtga	tgtatggac	tatggatcg	ttatgtggga	agtgtatgtcg	2280
tacggggaga	ggccattttg	ggatatgtcc	aatcaagatg	tgattaaagc	cattgagaa	2340
ggctatcggt	taccccttcc	aatggactgc	cccattgcgc	tccaccagct	gatgttagac	2400
tgtgtggcaga	aggagaggag	cgacacggcc	aaattttggc	agattgtcaa	catgttgac	2460
aaactcatcc	gcaaccccaa	cagcttgaag	aggacaggga	cgagagac	cagacccat	2520
actgccttgt	tggatccaag	cttccccgt	ttctctgt	tgttatctgt	gggcgattgg	2580
ctccaggcc	ttaaaatgg	ccggatataag	gataactca	cagttgtgg	ttataccaca	2640
ctagaggctg	tggtgacacgt	gaaccaggag	gacctggca	gaattgttat	cacagccat	2700
acgcaccaga	ataagat	ttt gaggcgtgtc	caggcaatgc	gaacccaaat	gcagcagat	2760
cacggcagaa	tggttcccg	ctga				2784

<210> 5
<211> 2997
<212> DNA
<213> Homo sapiens

<300>
<302> ephrin A7
<310> XM004485

```

<400> 5
atggttttc aaactcggt a cccttcatgg attattttat gctacatctg gctgctccgc 60
ttgcacaca caggggaggg gcaggctcg a aaggaagtac tactgctgaa ttctaaagca 120
caacaaacag agttggagtg gat ttcctct ccacccaaatg gttggaaaga aattagtgg 180
ttggatgaga actatacccc gatacgaaca taccaggtgt gccaagtcat ggagcccaa 240
caaaaacaact ggctgoggac taactggatt tccaaaggca atgcacaaag gat ttttgt 300
gaattgaaat tcacccctgag ggattgtaaac agtcttctg gagaactctggg aacttgcaag 360
gaaacattta atttgtacta ttatgaaaca gactatgaca ctggcaggaa tataagagaa 420
aacctctatg taaaataga caccattgtc gcaatggaaa gtttacccca aggtgaccc 480
ggtaaaagaa agatgaagct taacactgag gtgagagaga ttggacccctt gtccaaaaag 540
ggattctatc ttgccttca ggatgttaggg gcttgcata g cttqgttc tqtcaaaatg 600

```

DE 101 00 586 C 1

tactacaaga agtgctggtc cattattgag aacttagcta tctttccaga tacagtgact 660
 ggttcagaat tttctcttt agtgcagggtt cgagggacat gtgtcagcag tgcaaggaa 720
 gaagcgaaa acgcccccaag gatgcactgc agtgcagaag gagaatgggt agtgcaccatt 780
 5 ggaaaatgta tctgc当地 aggctaccag caaaaaggag acacttgc当地 accctgtggc 840
 cgtgggtct acaagtcttc ctctcaagat ctgc当地 gta ctc当地 aactcacagt 900
 tttctgata aagaaggctc ctccagatgt gaatgtgaag atgggttatta cagggctcca 960
 tctgaccac catacgttgc atgc当地 cagg cctccatctg caccacagaa cctc当地 1020
 aacatcaacc aaaccacagg aagtttggaa tggagtc当地 ctgc当地 gagaa 1080
 10 aacatgtga cctc当地 agtgc当地 cggc当地 gggagcagg cgaatgtgtt 1140
 ccctgtggg gtaacattgg atacatgccc cagc当地 actgcatgg gattagagga taactatgtc 1200
 actgtcatgg acctgctgc ccacgtaat tatactttt aagtgaagc tgtaatgg 1260
 gttctgact taagccgatc ccagaggctc tttgctgctg tc当地 cactggctaa 1320
 gcagctccct cgcaaggtagg tggagtaatg aaggagagag tactgc当地 gagtgctgag 1380
 15 ct当地 ctggc aggaaccaga gcatccaaat ggagtcatca cagaatatga aatcaaggat 1440
 tacgagaaag atcaaaggaa acggacctac tcaacagtaa aaaccaaggc tacttcagcc 1500
 tccattaata atctgaaacc aggaacagtg tatgttttcc agattcggc ttttactgct 1560
 gctggttag gaaattacag tccc当地 gatgttgc当地 cactagagga agctacagg 1620
 aaaatgtttg aagctacaggc tgtctccatg gaacagaatc ct当地 tattt cattgctgtg 1680
 20 gttgctgtg tagtgggaccat catttgggtg ttcatggctt ttggcttcat cattgggaga 1740
 aggactgtg gttatagcaa agtgc当地 gaaggc当地 agagcttta ct当地 1800
 aaattccag gc当地 cccaaac ctacattgac cctgaaaccct atgaggaccc aaatagagct 1860
 gtccatcaat tc当地 cccaaaggg gcttagatgc当地 teetgttatta 1920
 gcaggagaat tc当地 gtaatgg ctgc当地 gtc当地 cgttggaaac ttccaggaa aagagatgtt 1980
 25 gc当地 taggcca taaaaaccct gaaagggtt tacacagaaa aacaaaggag agactttt 2040
 tgtgaagcaa gcatcatggg gc当地 ttgac cacccaaattt ttgtccattt ggaagggtt 2100
 gttacaagag ggaaaccagg catgatagta atagagttca 2160
 gc当地 atttctca ggaaacatga tggcaattt acagtc当地 atgaggaccc aaatagagct 2220
 ggaatttgc当地 ctggatgaa atattttgct gatatgggat agttagtagg aatgctgaga 2280
 30 gtc当地 gcaata ttcttgc当地 cagcaatctc gtttggaaag atgttc当地 caccatggc 2340
 cgaggatatacg aggatgatcc agaagotgac tatacaacta 2400
 aggtggacag cacccgaaagc catccaggatc cgggaaattca 2460
 agctatggaa tagtcatgtg ggaaggttatg tcttatggag aaagaccttta ttggacatg 2520
 tcaaatcaag atgttataaa agcaatagaa gaaggttatc gtttaccaggc acccatggc 2580
 35 tgccc当地 cgtg gc当地 ttccatcca gctaatgtt gattgttggc aaaaggagcg tgctgaaagg 2640
 cccaaaattt aacagatagt tggaaattctt gacaaaaatga ttccgaaaccctt aaatagtc当地 2700
 aaaactcccc tgggacttgg tagtaggcca ataagccctt ttctggatca aaacactccct 2760
 gatttcaacta ct当地 ttgttgc当地 agttggagaa tggctacaag ct当地 taaatgat ggaagatgtt 2820
 aaagataatt tc当地 acggc当地 tggctacaat tcccttgaat ctaggc当地 gatgactatt 2880
 40 gaggatgtga tgagtttagg gatcacactg gttggctatc aaaagaaaat catgagc当地 2940
 attcagacta tgagagcaca aatgctacat ttacatggaa ctggcattca agtgtga 2997

<210> 6
 45 <211> 3217
 <212> DNA
 <213> Homo sapiens

<300>
 50 <302> ephrin A8
 <310> XM001921

<400> 6
 ncbsncvwrbdnctdrtnng nmstrctrst tanmyymsar chbmdrtncnctdstrctrng 60
 55 mstmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmantt 120
 hdbrandnkba rggbnbankh msanshahar ntntanmycsm bmrnarnvdn tnhsansha 180
 hamrnaaccs snmvrsnmgatggccccgc cggggccgc ctgccccctg cgctctgggt 240
 cgtcacggcc cggccacctg cgtgtccgc当地 gcgccggc当地 aagtgaattt 300

60

65

DE 101 00 586 C 1

gctggacacg	tcgaccatcc	acggggactg	gggctggctc	acgtatccgg	ctcatgggtg	360	
ggactccatc	aacgagggtgg	acgagtcctt	ccagcccattc	cacacgtacc	agtttgcaa	420	
cgtcatgagc	cccaaccaga	acaactggct	gcfgacgagc	tgggtcccc	gagacggcgc	480	5
ccggcgctc	tatgctgaga	tcaagtttac	cctgcgcgac	tgcaacagca	tgccctgggt	540	
gctgggcacc	tgcaaggaga	ccttcaacct	ctactacctg	gagtcggacc	gcgacctggg	600	
ggccagcaca	caagaaagcc	agttcctcaa	aatcgacacc	attgcggccg	acgagagctt	660	
cacaggtgcc	gaccttgggt	tgcgcgctc	caagctcaac	acggagggtgc	gcagtgtggg	720	
tccctcage	aagcgcggt	tctacccggc	cttccaggac	ataggtgcct	gcctggccat	780	10
cctctcttc	cgcatactact	ataagaagt	ccctgcctatg	gtgcgcatac	tggctgcctt	840	
ctcgaggca	gtgacggggg	ccgactcg	ctcaactgggt	gaggtgaggg	gccagtgcgt	900	
gcfgcactca	gaggagcggg	acacacccaa	gatgtactgc	agcgcggagg	gcfgagtggct	960	
cgtccccatc	ggcaaatgcg	tgtgcagtgc	ccgctacgag	gagcgggggg	atgcctgtgt	1020	
ggcctgttag	ctgggcttct	acaagttagc	ccctggggac	cagctgtgt	cccgtgtccc	1080	15
tccccacagc	cactccgcag	ctccagccgc	ccaagcctgc	cactgtgacc	tcagactacta	1140	
ccgtgcagcc	ctggaccgc	cgtcctcagc	ctgcaccccg	ccaccctcg	caccagtgaa	1200	
cctgatctcc	agtgtgaatg	ggacatcagt	gactctggag	tggccccc	ccctggaccc	1260	
aggtggccgc	agtgacatca	cctacaatgc	cgtgtgcgc	cgctgcctt	gggactgag	1320	
ccgctgcgag	gcatgtggg	gcccacccg	cttgtgccc	cagcagacaa	gcctgggtca	1380	20
ggccagcctg	ctgggtggca	acctgtggc	ccacatgaac	tactccttct	ggatcgagge	1440	
cgtcaatggc	gtgtccgacc	tgagccccga	gccccccgg	gccgtgtgg	tcaacatcac	1500	
cacaaccagg	gcagccccgt	cccaggtgtt	ggtgatccgt	caagagcggg	cggggcagac	1560	
cagcgtctcg	ctgctgtggc	aggagccccg	gcagccgaac	ggcatcatcc	tggagtatga	1620	
gatcaagtac	tacgagaagg	acaaggagat	gcagagctac	tccaccccta	agggcgtcac	1680	25
caccagagcc	accgtctccg	gcctcaagcc	gggcaccccg	tacgtgttcc	aggtccgagc	1740	
ccgcacccatc	gcaggctgt	gcccgttc	ccaggccatg	gagggtggaga	ccggaaacc	1800	
ccggcccccgc	tatgacacca	ggaccattgt	ctggatctgc	ctgacgtca	tcacgggcet	1860	
ggtgtgtctt	ctgctccctgc	tcatctgcaa	gaagaggcac	tgtggetaca	gcaaggcett	1920	
ccaggactcg	gacgaggaga	agatgcacta	tcagaatgg	caggcacccc	cacctgtctt	1980	30
cctgcctctg	catcacccccc	cgggaaagct	cccagagccc	cagttctatg	cgaaacccca	2040	
cacccatcag	gagccaggcc	gggcggggcc	cagtttact	cgggagatcg	aggcctctag	2100	
gatccacatc	gaaaaatca	tcggctctgg	agactccggg	gaagtctgt	acgggaggct	2160	
gccccgtggca	gggcagcggg	atgtccccgt	ggccatcaag	gccctcaaa	ccggctacac	2220	
ggagagacag	aggcgggact	tcctgagcga	ggcgtccatc	atggggcaat	tcgaccatcc	2280	35
caacatcatc	cgccctcgagg	gtgtcgta	ccgtggccgc	ctggcaatga	ttgtgactga	2340	
gtacatggag	aacggctctc	tggacaccc	cttgaggacc	cacgcgggc	agttcaccat	2400	
catcgactg	gtgggcatgc	tgagaggagt	gggtggccgc	atgegtacc	tctcagaccc	2460	
gggtatgtc	caccgagacc	tggccccc	caacgtctg	tttgacagca	acctggcttg	2520	
caaggtgtct	gacttcgggc	tctcacgggt	gttggaggac	gaccggatg	ctgcctacac	2580	40
caccaacgggc	ggaaagatcc	ccatccgctg	gacggcccc	gaggccatcg	ccttccgcac	2640	
cttccctctcg	gccagcgacg	tgtggagctt	ccggctggc	atgtggagg	tgctggctta	2700	
tggggagcgg	ccctactgga	acatgaccaa	ccgggatgtc	atcagctctg	tggaggaggg	2760	
gtacccctcg	cccgccaccca	tgggctgccc	ccacgcctcg	caccgtca	tgctcgactg	2820	
ttggcacaag	gaccggggcgc	agccgcctcg	cttctccctag	attgtca	tcctcgatgc	2880	45
gctcatccgc	agccctgaga	gtctcagggc	caccgcccaca	gtcagcagg	gcccacccccc	2940	
tgccttcgtc	cgagactgt	ttgactccg	agggggcagc	ggtggcggt	ggggcctcac	3000	
cgtgggggac	tggctggact	ccatccgcat	ggccgggtac	cgagaccact	tcgctgcgggg	3060	
cggatactcc	tctctggggc	ttgtgtacg	catgaacgcc	caggacgtgc	gcccctggg	3120	
catcaccctc	atggggccacc	agaagaagat	cctggggcagc	attcagacca	tgcgggcccc	3180	50
gctgaccagc	acccaggggc	ccgcggca	cctctga			3217	

<210> 7
<211> 1497
<212> DNA

<213> Homo sapiens

<300>

55

60

65

DE 101 00 586 C 1

<308> U83508
 <300>
 5 <302> angiopoietin 2
 <310> U83508
 <400> 7
 atgacagttt tccttcctt tgcttcctc gctgccattc tgactcacat agggtgccgc 60
 aatcagcgcc gaagtccaga aaacagtggg agaagatata accggattca acatggcaa 120
 10 tggcttaca ctttcattct tccagaacac gatggcaact gtcgttagag tacgacagac 180
 cagtaacaaca caaacgctct gcagagagat gctccacacg tggaaaccgg tttctttcc 240
 cagaaacttc aacatctgga acatgtatg gaaaattata ctcagtggct gcaaaaactt 300
 gagaattaca ttgtggaaaa catgaagtgc gagatggccc agatacagca gaatgcagg 360
 15 cagaaccaca cggctaccat gctggagata ggaaccagcc tcctctctca gactgcagag 420
 cagaccagaa agctgacaga tggtagacc caggtactaa atcaaacttc tcgacttgag 480
 atacagctgc tggagaattt attatccacc tacaagctag agaagcaact tcttcacag 540
 acaaattaaa tcttgaatggat ccataaaaaa aacagtttat tagaacataaa aatcttagaa 600
 atggaaaggaa aacacaagga agagttggac accttaaagg aagagaaaga gaaccttcaa 660
 20 ggcttggta ctcgtcaaac atatataatc caggagctgg aaaaggcaatt aaacagagct 720
 accaccaaca acagtgcct tcagaagcag caactggagc tgatggacac agtccacaac 780
 cttgtcaatc ttgtcaatc agaagggtgtt ttactaaagg gaggaaaaag agagaaagag 840
 aaaccattta gagactgtgc agatgtatata caagctgggtt ttaataaaagg tggaatctac 900
 actattata ttaataatataat gccagaaccc aaaaagggtgtt tttgcaatat ggatgtcaat 960
 25 gggggagggtt ggactgtataat acaacatcgt gaagatggaa gtcttagttt ccaaagaggc 1020
 tggaaaggat ataaaaatggg ttttggaaat ccctccgggt aatattggct gggaaatggag 1080
 tttatTTTtgc ccattaccag tcagaggcag tacatgtctaa gaatttgagtt aatggactgg 1140
 gaagggaaacc gggcttattt acagttatgac agattccaca taggaaatgaa aagcaaaaac 1200
 tatagggtgtt attaaaaagg tcacactggg acagcaggaa aacagagcag cctgatctta 1260
 30 cacggtgctg atttcagcac taaagatgct gataatgaca actgtatgtg caaatgtgcc 1320
 ctcatgttaa caggaggatg gtggttgtat gctgtggcc cctccaatct aatggaaatg 1380
 ttctatactg cgggacaaaaa ccatggaaaa ctgaatggga taaagtggca ctacttcaaa 1440
 gggccagtt actccttacg ttccacaact atgatgattc gacctttaga ttttga 1497
 35 <210> 8
 <211> 3417
 <212> DNA
 <213> Homo sapiens
 40 <300>
 <310> XM001924
 <300>
 45 <302> Tiel
 <400> 8
 atggcttggc ggggtcccccc ttcttcgtc cccatcctct tcttggcttc tcatgtggc 60
 gcgccgggtgg acctgacgct gctggccaaac ctgcggctca cggacccccc gcgcttctc 120
 50 ctgacttgcg tttctggggg ggcggggcg gggagggct cggacgcctg gggccggccc 180
 ctgctgtgg agaaggacga cctgtatcgtg cgacccccgc cggggccacc cctgcccctg 240
 ggcgcgaacg gttcgacca ggtcacgctt cggcgcttc ccaagccctc ggacccctg 300
 ggcgtttctt cctgcgtggg cgggtgtgg ggcggccgca cgcgcgtcat ctacgtgcac 360
 aacagccctg gagcccaccc gcttccagac aaggtcacac acactgtgaa caaagggtgac 420
 55 accgtgtac ttcttcgtac gttgcacaag gagaaggcaga cagacgtgat ctggaaagagc 480
 aacggatcctt acttctacac cctggactgg catgaagccc aggatggcg gttcctgtcg 540
 cagctcccaa atgtgcagcc accatcgagc ggcacatctaca gtgccactta cctggaaagcc 600
 agccccctgg gcagcgccctt ctttcggctc atcgatgggg gttgtggggc tggcgctgg 660

60

65

DE 101 00 586 C 1

ggcccaaggct	gtaccaagga	gtgcccaggt	tgcctacatg	gagggtgtctg	ccacgaccat	720
gacggcgaaat	gtgtatgccc	ccctggcttc	actggcaccc	gctgtgaaca	ggcctgcaga	780
gaggggcggtt	ttgggcagag	ctgccaggag	cagtccccag	gcatatcagg	ctgcccgggc	840
ctcaccttct	gcctcccaga	cccctatggc	tgctcttgc	gatctggctg	gagagagaagc	900
cagtgccaaag	aagcttgtgc	ccctggctat	tttggggctg	attgcccact	ccagtgcag	960
tgtcagaatgt	gtggcacttg	tgaccggttc	agtggttgtg	tctgcccctc	tgggtggcat	1020
ggagtgcact	gtgagaagtc	agaccggatc	ccccagatcc	tcaacatggc	ctcagaactg	1080
gagttcaact	tagagacat	gccccggatc	aactgtgcag	ctgcagggaa	ccccctcccc	1140
gtgcggggca	gcataagatc	acgcaagcca	gacggcaactg	tgctccctgc	caccaaggcc	1200
attgtggagc	cagagaagac	cacagctgag	ttcgagggtgc	cccgcttggt	tcttgcggac	1260
agtgggtctt	gggagtggcg	tgtgtccaca	tctggcggcc	aagacagccg	gcgcttcaag	1320
gtcaatgtga	aagtcccccc	cgtccccctg	gtgcacccctc	ggctcttgac	caagcagagc	1380
cgcctgcactt	tggtttttttt	gtctggctcg	ttctctgggg	atggaccatc	ctccactgtc	1440
cgcctgcact	acccggccccc	ggacagttacc	atggactgtt	cgaccattgt	ggtgaccccc	1500
agtgagaacg	tgacgttaat	gaacctgagg	ccaaagacag	gatacagtgt	tcgtgtcag	1560
ctgagccggc	caggggaagg	aggagagggg	gcctgggggc	ctccccaccc	catgaccaca	1620
gactgtctg	agccctttgtt	gcagccgtgg	ttggaggggc	ggcatgtgg	aggcaactgac	1680
cggctgcgag	tgagctggtc	cttgccttgc	gtgccccggc	cactgggtgg	cgacggttcc	1740
ctgctgcgcc	tgtgggacgg	gacacggggg	caggagccgc	gggagaacgt	ctcatcccc	1800
caggcccga	ctgcctctct	gacgggactc	acgcctggca	cccaactacca	gctggatgtg	1860
cagctctacc	actgcacccct	cctggggcccg	gcctegcccc	ctgcacacgt	gcttctgccc	1920
cccagtgggc	cttccagcccc	ccgacacccctc	cacgcccagg	ccctctcaga	ctccgagatc	1980
cagctgcacat	ggaagcaccgc	ggaggctctg	cctggggccaa	tatccaagta	cgttgtggag	2040
gtgcagggtgg	ctgggggtgc	aggagaccca	ctgtggatag	acgtggacag	gcctggaggag	2100
acaagcacca	tcatccgtgg	cctcaacgccc	agcacccgc	acctcttccg	catgcgggccc	2160
agcattcagg	ggctggggga	ctggacac	acagtagaaag	agtccacccct	gggcaacggg	2220
ctgcaggctg	aggggcccgat	ccaaagagac	cggcagctg	aagagggccct	ggatcagcag	2280
ctgatccctgg	cggtgggtgg	ctccgtgtc	gcccacgtcc	tcaccatcc	ggctgcctt	2340
ttaaccctgg	tgtgcattccg	cagaagctgc	ctgcacatgg	gacgcaccc	cacccatcc	2400
tcaggctcgg	gcfaggagac	catccctgcag	ttcagctcag	ggaccttgac	acttacccgg	2460
cggccaaaac	tgccagcccc	gccccctgagc	tacccagtc	tagagtggga	ggacatcacc	2520
tttggggacc	tcatccccgg	ggggaaacttc	ggccaggtca	tccggggccat	gatcaagaag	2580
gacgggctga	agatgaacgc	agccatcaaa	atgctgaaag	agtatgcctc	tggaaatgac	2640
catcggtact	ttgcgggaga	actggaaagg	ctgtgc当地	tggggcatca	ccccaaatc	2700
atcaacccctcc	tggggccctg	taagaaccga	gttacttgt	atatcgctat	tgaatatgcc	2760
ccctacggga	acctgtctaga	ttttctgcgg	aaaagccggg	tcctagagac	tgaccctagct	2820
tttgcgtcgg	agcatgggac	agccctctacc	cttagctccc	ggcagctgct	gcgtttcgcc	2880
agtgtatgcgg	ccaatggcat	cgactaccc	agtggagaagc	agttcatcc	caggggaccc	2940
gtgcggggaa	atgtgtctgt	cgagagagaac	ctggccctca	agattgcaga	cttcggccctt	3000
tctcggggag	aggaggttta	tgtgaaagaag	acgatggggc	gtctccctgt	gctgctggatg	3060
gccattgtgt	ccctgtacta	cagtgtctat	accaccaaga	gtgatgtctg	gtcccttgg	3120
gtcccttcttt	ggggatagat	gagccttgg	ggtacaccct	actgtggcat	gacctgtgcc	3180
gagctctat	aaaagctgcc	ccagggtctac	cgcatggagc	agccctcgaaa	ctgtgacgat	3240
gaagtgtac	agctgtatgcg	tcagtgctgg	cgggaccgtc	cctatgagcg	accccccctt	3300
gcccagattg	cgctacagct	aggccgcattg	ctggaaagcca	ggaaggccct	tgtgaacatg	3360
tcgtgttttgc	agaacttcac	ttacgcgggc	attgatgcca	cagctgagga	ggcctgaa	3417

<210> 9
<211> 3375
<212> DNA
<213> *Homo sapiens*

<300>
<302> TEK
<310> L06139

50

55

60

DE 101 00 586 C 1

<400> 9
atggactctt tagccagctt agttctctgt ggagtcagct tgctccccc tggaaactgtg 60
gaagggtgcca tggacttgat cttgatcaat tcctcacctc ttgttatctga tgctgaaaaca 120
5 tcttcaccc gcatggcctc tgggtggcgc ccccatgagc ccatcaccat aggaaggac 180
tttgaaggct taatgaacca gcaccaggat ccgcgttggaaag ttactcaaga tggaccaga 240
gaatgggcta aaaaagtgt ttggaagaga gaaaaggcta gtaagatcaa tgggtcttat 300
10 ttctgtgaag ggcgagttcg aggagaggca atcaggatac gaaccatgaa gatcgctcaa 360
caagttccct tcctaccagc tacttaact atgactgtgg acaagggaga taacgtgaac 420
atatctttca aaaaggattt gattaaagaa gaagatgcag tgatttacaa aaatggttcc 480
15 ttcattccatt cagtggcccg gcatggaga cctgatattc tagaagtaca cctgcctcat 540
gctcagcccc aggatgtcg agtgtactcg gcagggtata taggaggaaa cctcttacc 600
tcggccttca cgaggctgtat agtccggaga tggtaagcccc 660
aaccatctct gtactgtttt tatgaacaat ggtgttgc acaggatgtgg acctgtatgc 720
20 atttgcctc ctgggtttat gggaaaggac tggagaaggatc tttgttgc acacagttt 780
ggcagaacctt gtaaagaaaag gtgcagtggaa caagaggatc cttgttgcactt 840
ctccctgacc cctatgggtt ttctgtgcc acaggctggaa agggtctgca gtgcataatgaa 900
gcatggcacc ctgggttttta cggggccat tggtaagcttta ggtgcagctg caacaatggg 960
gagatgtgtg atcgcttcca aggtatgttc tgctctccag gatggcagggg gctccagtgt 1020
gagagagaag gcataccggag gatgacccca aagatagtgg atttgcacca tcatatagaa 1080
25 gtaaacagtg gtaaattttaa tcccttttgc aaagcttctg gctggccgct acctactaat 1140
gaagaaatga ccctggtgaa gccggatggg acagtgtcc atccaaaaga cttaaccat 1200
acggatcatt ttccttagtgc catattcacc atccaccggaa tcttcccccc tgactcagga 1260
gtttgggtct gcaagtgtgaa cacagtggct gggatgggtgg aaaagccctt caacattttt 1320
gttaaaggcc ttccaaagcc cctgaatgcc cccaaacgtga ttgacactgg acataacttt 1380
25 gctgtcatca acatcagttc tgagcttac ttggggatgt gaccaatccaa atccaaagaag 1440
cttctataca aaccggttaa tcaatctatgg gtttggcaac atattcaatg gacaactgtgt 1500
attgttacac tcaactattt ggaaccttggg acagaatatgg aactctgtg gcaactggtc 1560
30 cgtcggtggag agggtggggg aggccatctt ggapcttgc aacagtttct 1620
atcgactcc ctccctccaaag aggtctaaat ctccctgcctt aagtccatcactt 1680
ttgacctggc aaccaatatt tccaaagctcg gaagatgact tttatgttga agtggagaga 1740
aggtctgtgc aaaaaaggta tcagcagaat attaaagttc caggcaactt gacttgggtg 1800
35 ctacttaaca acttacatcc caggggcagc tacgtggtcc gagctagatg caacaccaag 1860
gcccaaggggg aatggagtga agatctactt gtttggacc ttagtgcacat tcttcttct 1920
caaccagaaaa acatcaagat ttccaaacattt acacactctt cggctgtgt ttcttggaca 1980
atatggatg gctattctat ttcttctattt actatccgtt acaagggtca aggcaagaat 2040
gaagaccagc acgttgatgtt gaagataaaag aatgcccacca tcattcaatg tcaagtc 2100
35 ggccttagagc ctgaaacagc ataccagggt gacatttttgc gagagaacaa catagggtca 2160
agcaacccag ctttttctca tgaactgtgtt accctcccgac aatctcaagc accagccgac 2220
40 ctcggggggg ggaagatgtt gtttatacgcc accttggct gctgttgc gacccgtt 2280
actgtgtgt tggctttctt gatcatattt caatgttgc gggcaatgtt gcaaaaggaga 2340
atggcccaag cttccaaaaa cgtgagggaa gaaccagctg tgcagttca ctcaggact 2400
45 ctggccctaa acaggaaggat caaaaacaaac ccagatcttca caatttatcc agtgcgttgc 2460
tggaatgaca tcaaaatttca agatgtgattt ggggaggggca attttggcca agttctttaag 2520
gwgccatca agaaggatgg gttacggatg gatgtgcctt tcaaaaagaat gaaagaatata 2580
gcctccaaag atgatcacag ggacttttgc ggagaacttgg aagttcttgc taaaacttgg 2640
50 caccatccaa acatcatcaa tctcttagga gcatgttgcac atcgaggctt cttgtacctg 2700
gccattgtgtt acggccccca tggaaacctt ctggacttcc ttcgcaagag ccgtgtgtc 2760
gagacggacc cagcatttgc cattggcaat agcaccggcgt ccacactgtc ctccctccag 2820
ctccctcaact tgcgtggccga cgtggcccg ggcattggact acttgaggca 2880
atccacaggg atctggctgc cagaaacattt ttagttgggtt aaaaactatgt ggcaaaaata 2940
55 gcagattttgc gatgttccc aggtcaagag gtgtacgtga aaaaagacat gggaaaggctc 3000
ccagtgccgtt gatggccat cggatctactt aattacatgtt tgcataacac caacagtgt 3060
gtatggctt atgggtgtgtt actatggggat ttttttttttttggacttggacccatcactg 3120
gggatgtgtt gtcagaaactt ctacgagaag ctggccccagg taggaggcac accctactgc 3180
ctgaactgtg atgatgaggtt gtatgtatca atgagacaat gctggccggaa gggcccttat 3240
gagaggccat catttgcctt gatattgggtt tccttaaaca gaatgttgc gggccggaaag 3300
acctacgtga ataccacgctt ttagtggaaat tttacttgc caggaatttgc ctgttctgtt 3360

DE 101 00 586 C 1

gaagaagcg cctag

3375

<210> 10
 <211> 2409
 <212> DNA
 <213> Homo sapiens

<300> 10
 <302> beta5 integrin
 <310> X53002

<400> 10
 ncbsncvra tgccgcgggc cccggcgcgg ctgtacgcct gcctcctggg gctctgcgcg 60
 ctccctcccc ggctcgcaagg tctcaacata tgcactagtg gaagtgcac ctcatgtgaa 120
 gaatgtctgc taatccaccc aaaatgtgcc tgggtctcca aaggaggactt cggaaagccca 180
 cggtccatca cctctcggtg tgatctgagg gcaaacccttgc taaaaaatgg ctgtggaggt 240
 gagatagaga gcccagccag cagttccat gtcctgagga gcctgcccct cagcagaag 300
 ggttcgggct ctgcaggctg ggacgtcatt cagatgacac cacaggagat tgccgtgaac 360
 ctccggcccg gtgacaagac caccttccag ctacaggttc gcacgggttgg 420
 gtggacctgt actacctgtat ggacctctcc ctgtccatga aggatgactt ggacaatata 480
 cggagccctgg gcaccaaact cgccggaggag atgaggaagc tcaccagcaa cttccgggtt 540
 ggattttgggt cttttgttga taaggacatc ttcctttct ctcacacggc accgaggta 600
 cagaccaatc cgtgcattgg ttacaagttt tttccaaatt gggtccccctc ctttgggttc 660
 cggccatctgc tgcctctcac agacagatc gacagcttca atgaggaagt tcggaaacag 720
 agggtgttcc ggaacccgaga tggcccttag gggggcttgg atgcgtact ccaggcagcc 780
 gtctgcaagg aagaatgtgg tggcgaaag gatgcactgc attgtgtgtt gttcacaaca 840
 gatgtatgtgc cccacatcgc attggatgga aaattggag gcctgtgtca gccacacat 900
 ggccagtgtcc acctgttacgc ggccaacccg tacacagcat ccaaccagat ggactatcca 960
 tcccttgctt tgcttggaga gaaattggca gagaacaaca tcaacactcat ctttgcgtt 1020
 aaaaaaaaaacc attatatgtt gtacaagaat ttacagccc tgatacctgg aacaacgggt 1080
 gagatttttag atggagactc caaaaatattt attcaactga ttattaatgc atacaatagt 1140
 atcccggtcta aagtggagtt gtcagtctgg gatcagccctg aggatctta tctttttttt 1200
 actgtctacctt gccaagatgg ggtatcctat cctggtcaga ggaagtgtga ggggtctgaag 1260
 atttggggaca cggcatcttt tgaagtatca ttggaggccc gaagctgtcc cagcagacac 1320
 acggagcatg tggttgcctt gggccgggtt ggattttggg acagccttggc ggtgggggtc 1380
 acctacaact gcaactgttgcgg ctgcagcggtt gggcttggaaac ccaacacggc cagggtgtcaac 1440
 gggagccggg cctatgtctt cggccctgtgtt gagtgttgcggcc cccgttacccctt gggcaccagg 1500
 tgcgtgtcc aggtatggggaa gaaccagatc gtgttccaggaa acctgttgcgg gggggccagg 1560
 ggcaagccac tggcgagccgg gctgtggggac tggcgacttgc accagtgtcc ctgtttcgag 1620
 agcgagttt gcaagatctt tggggcttgc tggactgttgc acaacttctc ctgtgtccagg 1680
 aacaagggggatc tcctctgttc aggccatggc gagtgttactt gggggaaatg caagtgtccat 1740
 gcaggttaca tcggggacaa ctgttacttgc tgcacagaca tcagcacatg cccggggcaga 1800
 gatggccaga tctgcagcga gctgtggggac tggactgttgc ggcagtgcca atgcacggag 1860
 cccggggccctt tggggagat gtgttggaaatg tgccccaccc tggggatgc atgcagcacc 1920
 aagagagattt gctgtcgatgtt cctgtgttgc tgggtggaa aacctgacaa ccagacccgtc 1980
 cacagccat tggggatgtt ggtgtatcaca tgggtggaca ccatgttgc agatgaccag 2040
 gaggtgttgc tatgttttcaaaaaccggc aaggactgtgc tcatgtatgtt caccttatgtt 2100
 gagctcccaatc tggggaaatgc caacacttgc tggcttgggg acccagatgtt tggaaacacc 2160
 cccaaacggc tggactgttgc tgggtgttgc tgggttgc tggcttgc tgggttgc 2220
 ctccctggctt tctggaaatgtt gctgttgc tgggttgc tgggttgc tggaaatgtt 2280
 cagagccggc gatccaggc cccgtatgaa atggcttca accattata cagaaacccct 2340
 atctccacgc acactgttgc ttcacccatc aacaagttca acaaatttca caatggactt 2400
 gtggacttgc 2409

60

65

DE 101 00 586 C 1

<210> 11
 <211> 2367.
 <212> DNA
 <213> Homo sapiens
 5
 <300>
 <302> beta3 integrin
 <310> NM000212
 10 <400> 11
 atgcgagcgc ggccgcggcc cggccgctc tggcgactg tgctggcgct gggggcgctg 60
 gcgggcgtt gcttaggagg gcccaacatc tgtaccacgc gaggtgttag ctccgtccag 120
 cagtgcctgg ctgtgagccc catgtgtgcc tggtgctctg atgaggccctt gcctctggc 180
 tcacctcgct gtgacctgaa ggagaatctg ctgaggata actgtgcccc agaatccatc 240
 15 gagttccca gtagtgaggc cggagtaacta gaggacaggc ccctcagcga caagggtct 300
 ggagacagct cccagggtcac tcaagtca gcccagagga ttgacttcg gctccggcca 360
 gatgattcga agaatttctc catccaagtg cggcagggtgg aggattaccc tggacatc 420
 tactacttga tggacctgtc ttactccatg aaggatgatc tggagcat ccagaacctg 480
 20 ggtaccaagc tggccaccca gatgcgaaag ctcaccagta acctgcggat tggcttcggg 540
 gcatttgtgg acaaggctgt gtcaccatac atgtatatct ccccaccaga ggcctcgaa 600
 aaccctctgt atgatatgaa gaccacgtc ttgcccattt tggctacaa acacgtgtc 660
 acgctaactg accaggtgac cgcgttcaat gaggaaatgtg agaagcagag tggtcacgg 720
 aaccgagatg ccccagaggg tggcttgat gccatcatgc aggctacagt ctgtatgaa 780
 25 aagatttgcg gggagaaatgtg tgcateccac ttgtcggtgt ttaccactga tgccaagact 840
 catatagcat tggacggaaag gctggcaggc attgtccagc ctaatgacgg gcagtgtcat 900
 gtttgttagt gataatcatc ctgcgttcc attaccatgg attatccctc tttggggctg 960
 atgactgaga agctatccca gaaaaatgtc aatttgcattt tggcgttgc tgaaaaatgt 1020
 30 gtcaatctct atcagaacta tagtgagctc atcccaggaa ccacagtgg ggttctgtcc 1080
 atgattcca gcaatgtcct ccagctcattt gttgatgctt atggaaaaat ccgttctaaa 1140
 gtagagctgg aagtgcgtga ctccttgcgaa gagttgtctc tattcttcaa tgcacacgtc 1200
 ctcacaatcg aggtcatccc tggctcaag tcttgcattgg gactcaagat tggagacacg 1260
 gttagcttca gcattgaggc caagggtcgaa ggctgtcccc aggagaagga gaagtcctt 1320
 accataaagc ccgtgggctt caaggacagc ctgtatgtcc aggtcacctt tgattgtgac 1380
 35 tggcctggc aggcccaagc tgaaccaat agccatcgct gcaacaatgg caatgggacc 1440
 tttgatgtg ggttatgcg ttgtgggcct ggctggctgg gatcccagt tgagtgtca 1500
 gagggaggact atcgccttc ccagcaggac gaatgcagcc cccggggagg tcagccgtc 1560
 tgcagccagc ggggcgatg cctctgtgtt caatgtgtct gccacagcag tgactttggc 1620
 aagatcacgg gcaagactgt cgagtgac gacttctctt gtgtccgtca caagggggag 1680
 40 atgtgtcg gccatggcga gtgcgttggggactgca tggcgtactc cgactggacc 1740
 ggctactact gcaactgtac cacgcgtact gacacgtcga tggccagca tggctgtct 1800
 tgcagccggcc gccggcaagtg tgaatgtgc agctgtgtct gatccagcc gggctctat 1860
 gggacacct gtgagaatgtt cccacactgc ccagatgcct gacacattaa gaaagaaatgt 1920
 gtggagtgtt agaagtttga cggggagccc tacatgaccg aaaataccgtt caaccgttac 1980
 45 tgcgtgacg agatttgatc agtggaaatggactttaaggaca tggcaagga tgcgttgc 2040
 tgtacccata agaatgagga tgactgtgc tgcaggatcc agtactatgt agattcttagt 2100
 ggaaagtcca tcctgtatgtt ggtggaaatggacttccaggatgtc ccaaggggccc tgacatctt 2160
 gtggccttgc tctcgtgtt gggggccattt ctgttcattt gcttgcggc cctgttcatc 2220
 tggaaactcc tcatcaccat ccacgaccga aaagaatttcg taaaatttgc gaaagaaacgc 2280
 50 gccagagcaa aatgggacac agccaaacaac ccactgtata aagaggccac gtctaccc 2340
 accaatatca cgtaccgggg cacttaa
 2367

DE 101 00 586 C 1

<300>
<302> alpha v intergrin
<310> NM0022210

Line Number	Sequence
1	atggcttttc cgccgcggcg acggctgcgc ctgggtcccc gggcctccc gtttcttctc 60
2	tccggactcc tgctacctct gtgccgcgc ttcaacctag acgtggacag tccctgcccag 120
3	tactctggcc ccgagggaaag ttacttcggc ttgcggctgg atttcttcgt gcccagcgcg 180
4	tcttcccgga tggttcttct cgtgggagct cccaaagcaa acaccaccca gcctgggatt 240
5	gtggaaaggag ggcaggctct caaatgtgac tggtcttctt cccgcgggtg ccagccaatt 300
6	gaatttgatg caacaggcaa tagagattat gccaaggatg atccatttggaa attaagtcc 360
7	catcagtggt ttggagcatc tgtgaggtcg aaacagataaaattttggc ctgtgcccc 420
8	ttgttaccat ggagaactga gatgaaaacag gagcgagagc ctgttggAAC atgttttctt 480
9	caagatggaa caaagactgt tgtagtgc ccatgttagat cacaagatataatggat tgatgctgt 540
10	ggcaggggat tttgtcaagg aggattcagg attgatTTTA ctaaagctga cagactt 600
11	cttgggtggtc ctggtagctt ttatggcaaa ggtcagctt tttcgatca agtggcagaa 660
12	atcgatatacta aatacggcccc caatgtttac aacatcaagg aataaaccat tagcaact 720
13	cgggactgcac aagctatTTT tgatgacagc tatttgggtt attctgtggc tgcggagat 780
14	ttcaatgggtt atggcataga tgactttgtt tcaggagttc caagagcagc aaggacttt 840
15	ggaatgggtt atatttatga tgggaaagaaac atgtccctt tatacaattt tactggcgag 900
16	cagatggctg catatttctgg attttctgtt gtcggactg acattaatgg agatgattat 960
17	gcagatgtgt ttattggagc acctcttcttc atggatctgt gctctgtatgg caaactccaa 1020
18	gagggtggggc aggtctcagt gtctctacag agagcttcag gagacttcca gacgacaaag 1080
19	ctgaatggat ttgaggctt tgcacgggtt ggcagtgcca tagtcctt gggagatctg 1140
20	gaccaggatg gtttcaatga tatttgcattt gtcgtccat atgggggtgtg agataaaaaaa 1200
21	ggaatgtgtt atatcttcaa tggaaagatca acaggcttga acgcagtcgg atctcaatc 1260
22	cttgaagggc agtgggctgc tggaaagatcc ccaccaaggctt tggtctatTC aatgaaagga 1320
23	gcccacatata tagacaaaaaa tggatattcca gacttaattt taggagatctt tggtgtatag 1380
24	cgagctatcttatacaggc cagaccaggat atcaacttAA atgtgtgtct tgaagtgtac 1440
25	ccttagcattttaaattcaaga caataaaaaacc tgctctactgc ctggaaacagc ttcctaaatgt 1500
26	tcctgtttta atgttaggtt ctgtttaaaAG gcagatggca aaggagactt tcccaggaaaa 1560
27	cttaatttcc aggttggaaact tttttggat aaactcaagc aaaaggggagc aattcgcacga 1620
28	gcactgttttctacacagcag gtcccccaagt cacttcaaga acatgactat ttcaaggggg 1680
29	ggactgtatgc agtgtgagga attgtatgcg tatctgcggg atgaatctga atttagagac 1740
30	aaactcaacttcaattactat ttttatggaa tatcggttgg attatagaac agctgtgtat 1800
31	acaaacaggtctgcacattcac ttttaaccag ttcacgcctg ctaacatttgc tcgacaggct 1860
32	cacatttctac ttgtactgtgg tgaagacaat gtctgtaaac ccaagctggaa agtttctgt 1920
33	gatagtgtatc aaaagaagat ctatatttggg gatgacaacc ctctgacattt gattgttaag 1980
34	gtctcaacatc aaggagaagg tgctctacaa gctgagctca tggtttccat tccactgcag 2040
35	gtctgatttca tgggggtgtt ccggaaacaaat gaaggcttag caagactttc ctgtgcattt 2100
36	aagacagaaa accaaactcg ccagggtggta tggacattt gaaacccaaat gaaggctgtt 2160
37	actcaacttct tagctgttct tcgtttcagt gtgcaccaggc agtccagatgtt ggtactt 2220
38	gtgaaattttt acttacaaat ccaagctca aatctatttgc acaaagtaag cccagttgtt 2280
39	tctcacaatggatgttgc tgtttttagct gcagttgaga taagaggagt ctgcgacttct 2340
40	gatcatatat ttcttccgat tccaaactgg gaggcacaagg agaacccttgc gactgaagaa 2400
41	gatgttgggc cagttgttca gcacatctat gagctgagaa acaatggtcc aagttcattt 2460
42	agcaaggccaa tgctccatct tcagtgccct tacaaatata ataataaacac tctgttgtat 2520
43	atctttcattt atgatattga tggaccaatgc aactgcactt cagatattggaa gatcaaccct 2580
44	ttggagaatggatcattc ttttgcggaaact actgaaaaga atgacacgggt tgccggccaa 2640
45	ggtagcggg accatctcat cactaaggcg gatcttgcctt tcagtgtgg agatatttcc 2700
46	actttttgggtt gtggaggttc tcagtgtttt aagattgtct gccaagggtt gggatggac 2760
47	agaggaaaga gtgcacatctt gtacgtaaag tcattactgt ggactgagac ttttatgtat 2820
48	aaagaaaaatc agaatttcatc ctatttctgtt aagtgcgttgc cttcattttaa tgcatacag 2880
49	tttccttata agaatttcc aatttggaggat atcacaactt ccacatttgg taccactaa 2940
50	gtcacctggg gcattcagcc agcggccatcg cctgtgcctg tgggggtgtat catttttagca 3000
51	tttcttagcag gattttgtgtt actggctgtt ttggatTTT taatgtacaaq qatqqqctt 3060

60

65

DE 101 00 586 C 1

tttaaacggg tccggccacc tcaagaagaa caagaaagg agcagcttca acctcatgaa 3120
 aatggtaag gaaactcaga aacttaa 3147
 5
 <210> 13
 <211> 402
 <212> DNA
 10 <213> Homo sapiens
 <300>
 <302> CaSm (cancer associated SM-like oncogene)
 <310> AF000177
 15 <400> 13
 atgaactata tgccctggcac cgccagcctc atcgaggaca ttgacaaaaa gcacttgggtt 60
 ctgcttcgag atggaaggac acttataggc tttttaagaa gcattgtatca atttgcaaac 120
 ttagtgcac atcagactgt ggagcgtatt catgtggca aaaaatacgg tgatattcct 180
 20 cgagggattt ttgtggtcag aggagaaaat gtggtcctac taggagaaat agacttggaa 240
 aaggagagtg acacaccctt ccagcaagta tcatttgcag aaattctaga agaacaagg 300
 gtggAACAGC agaccaagt ggaaggcagag aagttgaaag tgcaggccct gaaggaccga 360
 ggttttcca ttccctcgagc agataacttctt gatgagtact aa 402
 25 <210> 14
 <211> 1923
 <212> DNA
 <213> Homo sapiens
 30 <300>
 <302> c-myb
 <310> NM005375
 35 <400> 14
 atggcccgaa gaccccgca cagcatatat agcagtgcg aggatgtatga ggactttgag 60
 atgtgtgacc atgactatga tgggctgtt cccaagtctg gaaagcgtca cttggggaaa 120
 acaagggtgg acaagggtgg aaggatggaaa ctgagaagc tgggtggaca gaatggaaaca 180
 gatgacttgg aagtatttgc caattatctc ccaaatcgaa cagatgtgc gtgcagcac 240
 40 cgatggcaga aagtactaaa ccctgtgc acataagggtc cttggaccaa agaagaagat 300
 cagagagtga tagagcttgc acagaaaatac ggtccgaaac gttggctgt tatttccaaag 360
 cacttaaagg ggagaatttgg aaaacaatgt agggagagg tgcataaacc ttttacca 420
 gaagtttgc aacacccctt gacagaagag gaagacagaa ttatccaa ggcacacaag 480
 agactgggg acaagatgggc agaaatcgca aagctactgc ctggacgaac tgataatgt 540
 45 atcaagaacc actggaaattc tacaatgcgt cggaaaggctg aacaggaagg ttatctgcag 600
 gagtttccaa aagccagccaa gcccagctg gccacaagct tccagaagaa cagtcatttgc 660
 atgggttttgc ctcaggctcc gcttacagct caactccctg ccactggca gcccactgtt 720
 50 aacaacgact attccatttgc ccacatttgc gaagcacaat atgtctccag tcatgttcca 780
 taccctgttag ctttacatgt aaatatgtc aatgtccctc agccagctgc cgcagccatt 840
 cagagacact ataatgtatgc agacccctgaa aaggaaaagg gatataaaggaa attagaatttgc 900
 55 ctcctaattgtt caacccggaaa tgagctaaaa ggacagcagg tgcgtaccaac acagaaccac 960
 acatgcagct accccgggtt gacacagcacc accattggcg accacaccag acctcatgg 1020
 gacagtgcac ctgtttccctg tttggggagaa caccacttca ctccatcttgc gccagcggat 1080
 cctggctccc tacctgaaga aagcgctcg ccagcaagggtt gcatgtatgttgc ccacccaggc 1140
 accattctgg ataatgttgc gaaacctttaa gaatttgcag aaacacttca atttatagat 1200
 tctttcttaa acacttccag taaccatgaa aactcagact tggaaatgcc ttctttact 1260
 tccacccccc tcattggtc caaatttgcact gttacaacac catttcatacg agaccagact 1320
 gtggaaaactc aaaaggaaaa tactgtttt agaacccttca ctatcaaag gtcaatctt 1380
 gaaagcttc caagaacttcc tacaccatttca aacatgcac ttgcagctca agaaattttaa 1440

DE 101 00 586 C 1

tacggtcccc tgaagatgt acctcagaca ccctctcatc tagtagaaga tctgcaggat 1500 gtgatcaaac aggaatctga tgaatctgga ttgtttctg agtttcaaga aaatggacca 1560 cccttactga agaaaatcaa acaagaggtg gaatctccaa ctgataaatac agggaaacttc 1620 ttctgtcac accactggga aggggacagt ctgaataacc aactgttcac gcagacctcg 1680 cctgtgcgag atgcaccgaa tattttaca agtccggtt taatggcacc agcatcagaa 1740 gatgaagaca atgttctcaa agcattaca gtacctaaaa acaggtccct ggcgagcccc 1800 ttgcagcctt gtagcagtac ctggaaacct gcacccctgtg gaaagatgga ggagcagatg 1860 acatcttcca gtcaagctcg taaatacgt aatgcattct cagcccggac gctggatcg 1920 tga	5 10
<210> 15 <211> 544 <212> DNA <213> Homo sapiens	15
<300> <302> c-myc <310> J00120	20
<400> 15 gccccccgag ctgtgctgct cgccggccgcc accgcggggc cccggccgtc cctggctccc 60 ctccctgcctc gagaagggca gggcttctca gaggcttggc gggaaaaaga acggaggag 120 ggatccgcgt gagtataaaa gccggttttc ggggttttat ctaactcgct gtatgtatc 180 cagcgagagg cagagggagc gageggggcg ccggcttaggg tgaaagagcc gggcgagcag 240 agctgcgtcg cggggcgtctt gggaaaggag atccggagcg aatagggggc ttccctctg 300 gcccagccct cccgctgatc ccccagccag cggccggcaaa cccttgcgc atccacgaaa 360 ctttggccat agcagcgggc gggcactttt cacttggact tacaacaccc gagcaaggac 420 gcaactctcc cgacgcgggg aggctattct gccattttgg ggacacttcc cggccgctgc 480 caggaccgc ttctctgaaa ggctctccctt gcagctgtttt agacgctgga tttttttcgg 540 gttag	25 30 544
<210> 16 <211> 618 <212> DNA <213> Homo sapiens	35
<300> <302> ephrin-A1 <310> NM004428	40
<400> 16 atggaggttcc tctggggccc tctttttttt ctgtgctgca gtctggccgc tgctgatcgc 60 cacaccgtct tctggaaacag ttcaaatccc aagttccgga atgaggacta caccatacat 120 gtgcagctga atgactacgt ggacatcatc tgccgtact atgaagatca ctctgtggca 180 gacgtgcca tggagcgtta catactgtac ctgggtggagc atgaggatca ccagctgtgc 240 cagccccagt ccaaggacca agtccgttgg cagtgcacc ggcccgatgc caagcatggc 300 ccggagaagc tgcgttgagaa gttccagcgc ttccacaccc tcaccctggg caaggatcc 360 aaagaaggac acagctacta ctacatctcc aaacccatcc accagcatga agaccgctgc 420 ttgaggttga aggtgactgt cagtggaaa atcaactcaca gtcctcagcc ccatgtcaat 480 ccacaggaga agagacttgc agcagatgac ccagagggtgc gggttctaca tagcatcggt 540 cacagtgtcg ccccaacgcctt cttccactt gcctggactg tgctgctcct tccacttctg 600 ctgctgcaaa ccccggtga	45 50 618 55
<210> 17	60

65

DE 101 00 586 C 1

```

<211> 642
<212> DNA
<213> Homo sapiens

5 <400> 17
atggcgcccg cgcaagcgccc gctgctcccg ctgctgtcc tgctgttacc gctgccgccc 60
ccgccttcg cgcgcgccc ggacggcgc cgcgcctaact cggaccgcta cgcgtctac 120
tggaaaccga gcaaccccaag gttccacgc ggcgcggggg acgacggcgg gggctacacg 180
10 gtggagggtga gcatcaatga ctacctggac atctactgcc cgcaactatgg ggcgcgcgtg 240
ccgcggccg agcgcatgga gcactacgtg ctgtacatgg tcaacggcga gggccacgccc 300
tccctgcacc accgcgcagg cggtctcaag cgctgggagt gcaaccggcc cgcggcgc 360
ggggggccgc tcaagttctc ggagaagtcc cagctttca cgccttctc cctgggcttc 420
gaggttccggc ccggccacga gtattactac atctctgcca cgcctcccaa tgctgtggac 480
15 cggccctgcg tgcgactgaa ggtgtacgtg cggccgacca acgagaccct gtaccgaggct 540
cctgagccca tcttcacccag caataactcg ttagcagcc cggccggctg cgccttctc 600
ctcagcacca tccccgtgct ctggaccctc ctgggttctc ag 642

20 <210> 18
<211> 717
<212> DNA
<213> Homo sapiens

25 <300>
<302> ephrin-A3
<310> XM001787

<400> 18
30 atggcgccgg ctccgctgct gctgctgctg ctgctcgatgc cccgtgccgt gctgccgtg 60
ctggcccaag ggcccgagg ggcgttgaa aaccggcatg cggtgtactg gaacagctcc 120
aaccaggcacc tgcggcgaga gggctacacc gtgcagggtga acgtgaacga ctatctggat 180
atttactgccc cgcactacaaa cagctcggg gtggggccccc gggcgggacc gggcccccgg 240
ggcggggcag agcagtagct gctgtacatg gtgagccgca acggctaccg cacctgcaac 300
35 gccagccagg gttcaagcg ctgggagtgc aaccggccgc acggcccgca cagccccatc 360
aagttctcgg agaagttccaa ggcgtacage gccttctc tgggctacga gttccacgccc 420
ggccacgagt actactacat ctccacgccc actcacaacc tgcactggaa gtgtctgagg 480
atgaagggtgt tcgtctgctg cgcctccaca tgcactccg gggagaagcc ggtccccact 540
40 ctcccccaatgt tcaccatggg ccccaatatg aagatcaacg tgctggaaaga ctttgaggga 600
gagaaccctc aggtgcccua gcttgagaag agcatcagcg ggaccagccc caaacgggaa 660
cacctgcccc tggccgtggg catgccttc ttccatgca cgttcttggc ctccatag 717

45 <210> 19
<211> 606
<212> DNA
<213> Homo sapiens

50 <300>
<302> ephrin-A3
<310> XM001784

<400> 19
55 atgcgggctgc tgccccctgct gggactgtc ctctggccg cttccctcg ctccctctg 60
cgccggggct ccagcctccg ccacgtatgc tactggact ccagtaaccc caggttgcctt 120
cgaggagacg ccgtgggtgg agtggccctc aacgattacc tagacatgt ctgccccac 180
tacgaaggcc cagggcccccc tgagggcccc gagacgtttg ctttgcacat ggtggactgg 240
ccaggctatg agtcctgcca ggcagaggcc cccggccct acaagcgctg ggtgtgtcc 300

```

60

65

DE 101 00 586 C 1

ctgcctttg gccatgttca attctcagag aagattcagc gtttacacc ctttccctc 360
 ggcttgagt tcttacctgg agagacttac tactacatct cggtgccac tccagagat 420
 tctggccagt gcttggggct ccagggtct gcttgcgtca aggagagaa gtctgatca 480
 gcccattctg ttgggagccc tggagagat ggcacatcag ggtggcgagg gggggacact 540
 cccagcccccc tctgtctttt gcttactg ctgttttga ttcttcgtct tctgcaattt 600
 ctgtga 606

5

<210> 20
 <211> 687
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> ephrin-A5
 <310> NM001962

15

<400> 20
 atgttgcacg tggagatgtt gacgctgggtg tttctgggtgc tctggatgtg tggatcagc 60
 caggaccgg gtcacccggc cgtcgccgac cgctacgctg tctactgaa cagcagcaac 120
 cccagattcc agagggtgtt caaccatatt gatgtctgtt tcaatgacta cctggatgtt 180
 ttcttccttc actatggggta ctccgtccca gaagataaga ctgagcgctt tggatcactac 240
 atggtaact ttgatggctt cagtgccgtc gaccacactt ccaaagggtt caagagatgg 300
 gaatgttaacc ggcctcactc tccaaatggc ccgctgaagt tctctgaaaa attccagctc 360
 ttcactccct tttctcttagg atttgaattt cggccaggcc gagaatattt ctatctcc 420
 tctgcaatcc cagataatgg aagaagggtcc tggatggat tcaaaatgtt tggatggacca 480
 acaaataatgtt gtatgaaaac tatagggtttt catgatcgatg ttttcgtatgt taacgacaaa 540
 gtagaaaaattt cattagaacc agcagatgac accgtacatg agtcagccga gccatccgc 600
 ggcgagaacg cggcacaaac accaaggata cccagccgccc ttttggcaat cctactgttc 660
 ctctggcga tgcttttgcattata 687

20

25

30

<210> 21
 <211> 2955
 <212> DNA
 <213> Homo sapiens

35

<400> 21
 atggccctgg attatctact actgctccctc ctggcatccg cagtggtgc gatggaaagaa 60
 acgttatgg acaccagaac ggctatgcg gagctgggtt ggacggccaa tcctgcgtcc 120
 ggggtggaaag aagtcaatgg ctacgtggaa aacctgaaca ccattccgcac ctaccagggtt 180
 tgcaatgtct tcgagccca ccagaacaat tggctgtca ccacccatcat caacccgggg 240
 gggggcccatc gcatctacac agagatgcgc ttcactgtga gagactgcag cagcctccct 300
 aatgtccctcag gatcctgcaaa ggagacccctt aacctgttatt actatgagac tgactctgtc 360
 attggccacca agaagtcaac cttctgggtt gaggccccctt acctcaaatg agacacattt 420
 gctgcagatg agagcttctc ccagggtggac tttttggggaa ggctgtatgaa ggttaacaca 480
 gaagtcaagga gctttggggcc tcttactcgg aatggttttt acctcgctt tcaggattt 540
 ggagccctgtt tttctgtccgt gtcttcttca aaaatgtgttcc cagcattgtt 600
 caaaattttgc cagtgatccca agagactatg acaggggcag agagcacatc tctgggttatt 660
 gctcggggca catgcatttttcc caacgcacag gaagtggac tgcccatcaa actctactgc 720
 aacggggatg gggaaatggat ggtgcctatt gggcgatgc cctgcaagcc tggctatgag 780
 cctgagaaca gctggatgtt caagggttgc cctgcaggaa cattcaaggc cagccaggaa 840
 gctgaaggct gtccttccatg cccctcccaac agccgtttcc ctgcagggc gtctccatc 900
 tgcacctgttcc gggccgggttta ttaccggatg gacttttgccttccagaatg ggcatgtact 960
 agcgtcccat cagggtcccccg caatgttttccatgtca atgagatgttccatcattctg 1020
 gagtggcacc ctccaaggaa gacaggtggg cggatgttgc tgacctacaa catcatctgc 1080
 aaaaatgttcc gggcagaccg cccggatgttgc tcccgatgttgc acgacaatgttggatgtt 1140

40

45

50

55

60

65

DE 101 00 586 C 1

cccaggcagc tgggcctgac ggagtgccgc gtctccatca gcagcctgtg gccccacacc 1200
 ccctacacct ttgacatcca ggccatcaat ggagtctcca gcaagagtc cttccccc 1260
 5 cacaaggactt ctgtcaacat caccacaaac caagccgccc cttccaccgt tcccatcatg 1320
 aatggcatca tcctggacta tgagatccgg tactatgaga aggaacacaa tgagttcaac 1440
 tcctccatgg ccaggagtc gaccaacaca gcaaggattt atgggctgctg gcctggcatg 1500
 gstatatgtgg tacagggtcg tgcccgact gttgctggct acggcaagtt cagtgccag 1560
 10 atgtgcttcc agactctgac tgacgatgtat tacaagtca agctgaggaa gcaagtc 1620
 ctgattgtcg gctcgccgc ggccgggtc gtgttcgtt tgccttgc ggcacatct 1680
 atcgctgtc gcagggaaacg ggcttatagc aaagaggctg tgcacagcga taagttccag 1740
 cattacagca caggccgagg ctccccaggg atgaagatct acattgaccc cttcaactt 1800
 gaggatccca acgaagctgt cggggagttt gccaaggaga ttgatgtatc ttttgaaa 1860
 attgaagagg tcatcgagc agggagttt ggagaagtgt acaagggcg tttgaaaactg 1920
 15 ccaggcaaga gggaaatctt cgtggccatc aagaccctga aggccaggta ctccggagaag 1980
 cagcgtcggg actttcttag tgaggcgagc atcatggcc agttcgacca tcctaacatc 2040
 attcgctgg agggtgtgtt cccaagagt cggccgttca tgcacatcac agagttcatg 2100
 gagaatgtt cattggattc ttccctcaggaaaatgacg ggcagttcac cgtgatccag 2160
 cttgtgggtt tgctcagggg catcgctgt ggcgtatgacg acctggctga gatgaattat 2220
 20 gtgcacatcggg acctggctgc taggaacatt ctgggtcaaca gtaacccgtt gtgcacagg 2280
 tccgacttttgc gctctcccg ctaccccgat gatgacaccc ctagccac ctacaccage 2340
 tccttgggg ggaagatccc tgcgtggatgg acagctcccg aggccatccgc taccgc 2400
 ttcacttcg ccagcgtacgt ttggagctat gggatcgatca tgcgtggatgtt catgtcattt 2460
 ggagagagac ctatgggatgatgttcaac caagatgtca tcaatgcac cgagcaggac 2520
 25 taccggctgc ccccaacccat ggactgttca gctgtcttac accagctcat gctggactgt 2580
 tggcagaagg accggaaacag cccggcccg tttgcggaga ttgtcaacac cctagataag 2640
 atgatccgga accccggcaatgatcttcaacttca gttggcaacca tcaccgcgt gcctcc 2700
 cccctgtcg accgctccat cccagacttc accgccttca ccaccgttga tgactggctc 2760
 30 agcgccatca aaatggtcca gtacagggac agtttccttca ctgctggctt caccccttc 2820
 cagctgttca cccagatgac atcagaagac ctccctgagaa taggcacatcac cttggcaggc 2880
 catcagaaga agatcctgaa cagcattcat tctatgaggg tccagataag tcagtcacca 2940
 acggcaatgg catga 2955

35 <210> 22
 <211> 3168
 <212> DNA
 <213> Homo sapiens

40 <400> 22
 atggctctgc ggaggctggg ggccgcgcgtc ctgtgtgtgc cgctgtcgc cgccgtggaa 60
 gaaaacgttacaa tggactccac tacagcgact gctgagatgg gctggatgtt gcatcttcca 120
 tcagggtggg aagagggttag tggctacgtt gagaacatgtt acacgttccg cacgttaccat 180
 45 cgtggccccc accgcataccaa cgtggatggat aactggcttac ggaccaagtt tttccggcgc 240
 cccagcgatgc ctggctctgtt caaggagacc ttcaacccatcatttattatgaa ggctgacttt 300
 gactcggccca ccaagacattt ccccaacttgg atggagaatc catgggttga ggtggataacc 360
 attgcagccg acggagatctt ctcccaagggtt gacccgttgc gccgcgttcat gaaaatcaac 420
 accggagggtgc ggagcttcgg acctgtgtcc cgacgggtt tttccaggac 480
 50 tatggccgtt gcatgtccctt catgcgttgc cttacccgtt cttccaggac 540
 atccagaatgtt ggcacatctt ccaggaaacc ctgtggggggg ctgagagcac atcgctgggt 600
 gctggccggg gcaatgttca gccaatgttca gaaagggtgg atgttaccat caagcttac 660
 tggtaacgggg acggcgatgtt gctggatggcc atccggccgtt gcatgttcaaa agcaggcttc 720
 gaggccgttca aagatggcactt cgtctgcgaa gggttccat ctgggactttt caaggccaaac 780
 55 caaggggatg aggccctgttac ccactgttttccatcaacacggcc ggaccacttc tgaaggggcc 840
 accaactgtt tctggccgaa tggctactac agaggacacc tggacccctt ggacatggcc 900
 tgcacaacca tccctccgc gcccggatgttca gttgtcaatgtt gaccccttc 960
 atgctggatgtt ggcaccccttc cccgcgttcc ggaggccgag aggacccgtt ctacaacatc 1020
 60

65

DE 101 00 586 C 1

atctgcaaga gctgtggcgc gggccgggt gcctgcaccc gctgcgggga caatgtacag 1140
 taacgcaccac gccagctagg cctgaccgag ccacgcattt acatcagtga cctgctggcc 1200
 cacaccccagt acacccctcgaa gatccaggct gtgaacggcg ttactgacca gagcccccttc 1260
 tcgcctcagt tcgcctctgt gaacatcacc accaaccagg cagctccatc ggcagtgtcc 1320
 atcatgcattc aggtgagccg caccgtggac agcattaccc tgcgtggc ccagccagac 1380
 cagcccaatg gctgtatcct ggactatgag ctgcagtact atgagaagga gctcagttag 1440
 tacaacgcgc cagccataaa aagccccacc aacacggtaa ccgtgcaggg cctcaaagcc 1500
 ggcgcctatct atgtcttcca ggtgcgggca cgcaccgtgg caggctacgg ggcgtacagg 1560
 ggcagatgt acttccagac catgacagaa gccgagttacc agacaagcat ccaggagaag 1620
 ttgccactca tcatacggtc ctcggccgt ggcctggct tcctcatgtc tgggttgtc 1680
 atgcctatcg tggtaacag acgggggtt gagegtgtc actcggagta cacggacaag 1740
 ctgcacactc acaccaggctt ccacatgacc ccaggcatga agatctacat cgatcccttc 1800
 acctacgagg acccccaacaa ggcagtgcgg gagtttgcca aggaatattga catctcctgt 1860
 gtcaaaaattg agcaggttat cggagcaggg gagtttggcg aggtctgcag tggccacctg 1920
 aagctgccag gcaagagaga gatctttgtg gccatcaaga cgctcaatc gggctacacg 1980
 gagaaggcgc gccgggactt cctgagcga gctccatca tggcccgat cgaccatccc 2040
 aacgtcatcc acctggaggg tgcgtgacc aagagcacac ctgtatgtat catcaccgg 2100
 ttcatggaga atggctccct ggactccctt ctccggcaaa acgatggca gttcacagtc 2160
 atccagctgg tgggcatgtc tcgggcatc gcagctggca tgaagtacct ggcagacatg 2220
 aactatgttc accgtgaccc ggctgcccgc aacatccctcg tcaacagca cctggcttc 2280
 aagggtgtcg acccttgggt ctcacgtttt cttagaggacg atacctcaga ccccacctac 2340
 accagtgcgg tggggggaaa gatcccccattc cctggacag ccccgaaagc catccagtac 2400
 cggaaagttc ctcggccatc tgatgtgtgg agctacggca ttgtatgtg ggaggtgtg 2460
 tcctatgggg agccggcccta ctgggacatg accaaccagg atgtaatcaa tgccattgag 2520
 caggactatc ggctgccacc gcccattggc tgccggagcg ccctgcacca actcatgctg 2580
 gactgttggc agaaggaccc caaccaggcc cccaaatgttgc gccaaatatttgc 2640
 gacaagatga tccgcaatcc caacagccctc aaagccatgg cgcggccatc ctctggcatc 2700
 aacotgcccgc tgctggaccc cacgatcccc gactacacca gctttaacac ggtggacgag 2760
 tggctggagg ccatcaagat gggcagttac aaggagagct tcgccaatgc cggcttcacc 2820
 tcctttgacg tgcgtgtctca gatgtatgt gaggacattc tccgggttgg ggtcaatgg 2880
 gctggccacc agaaaaaaaaat cctgaacatgtt atccaggatg tgcggggcga gatgaaccag 2940
 attcagtctg tggagggccca gccactcgcc aggaggccac gggccacggg aagaaccaag 3000
 cggtgccacc caccggacgt caccacaaaa acatgcaact caaacgacgg aaaaaaaaaag 3060
 ggaatggaa aaaagaaaaac agatccctggg agggggggggg aaatacaagg aatatttttt 3120
 aaagaggatt ctcataagga aagcaatgac tgcgttgcg gggataa 3168

<210> 23

<211> 2997

<212> DNA

<213> Homo sapiens

40

<400> 23

atggccagag cccgcccgc gccgcccgg tcggccggc cggggcttct gccgctgctc 60
 cctccgtgc tgctgctgc gctgctgt ctggccggc gtcggggc gctggaaagag 120
 accctcatgg acacaaaatg ggttaacatct gagttggctt ggcacatctca tccagaaatgt 180
 ggggtggaaag aggtgagttgg ctacatgtt gccatgaatc ccattccgcac ataccagggt 240
 tgtaatgtgc gcgagtcaag ccagaacaac tggcttcga cgggggttcat ctggggcgg 300
 gatgtgcagg gggcttacgt ggagctcaag ttcaactgtgc tgcgtactgcaaa cagcatcccc 360
 aacatcccccg gtcctctgcaaa ggagacccctt aaccccttctt actacgaggc tgacagcgat 420
 gtggccctcag ctcctccccc ttctggatg gagaacccctt acgtgaaatgtt ggacaccattt 480
 gcaccccgatg agacgttccgc ggggtggat gccggccgtg tcaacacccaa ggtgcgcacg 540
 tttggccac ttccaaaggc tggcttctac ctggcccttc aggaccaggc cgcctgcatt 600
 tcgctcatct cctgtgcggc cttctacaag aagtgtgcattt ccaccacccgc aggcttcgc 660
 ctctttcccg agacccctcact tggggggggg cccacccctcg tggcttgcatttgc tcctggcacc 720
 tgcataccctt acggccgtggaa ggtgtcggtt ccactcaagc tctactgcaaa cggcgatggg 780
 gagttggatgg tgcctgtggg tgcctgcacc ggcattgagcc agctgccaag 840

60

65

DE 101 00 586 C 1

gagtcccagt gcegccccgt tccccctggg agctacaagg cgaagcaggg agaggggccc 900
 tgccctccat gtccccccaa cagccgtacc acctccccag ccgcgcgc catgcacctgc 960
 cacaataact tctaccgtgc agactcgac tctcgccaca gtgcctgtac caccgtgcca 1020
 5 tctccacccc gaggtgtat ctccaatgtg aatgaaaacct cactgatctt cgagtggagt 1080
 gagccccggg acctgggtgt ccgggatgac ctccgttaca atgtcatctg caagaagtgc 1140
 catggggctg gaggggcctc agcctgtca cgctgtatg acaacgtgga gtttgtgcct 1200
 cgccagctgg gcctgtcgga gccccgggtc cacaccagcc atctgtggc ccacacgcgc 1260
 tacaccccttgg aggtgcaggc ggtcaacggt gtctcgccca agagccctct ggcccttcgt 1320
 10 tatgcggccg tgaatatcac cacaaccag gtgcggccgt ctgaagtgcc cacactacgc 1380
 ctgcacagca gtcaggcag cagccatcacc ctatcctggg caccggcaga gcccggcaac 1440
 ggagtcatcc tggactacga gatgaagttt gatggagaaga gcgaggccat cgcctccaca 1500
 gtgaccagcc agatgaactc cgtgcacgtg gacgggctt ggcctgcgc cgcgtatgtg 1560
 15 gtccagggtcc gtgcggccac agtagctggc tatggcagttt acagccggcc tgcggaggtt 1620
 gagaccacaa gtgagagagg ctctggggcc cagcagctcc agggcagct tcccttcata 1680
 gtgggctccg ctacagctgg gcttgcattt gttgtggctg tctgtgtcat cgcgtatgtc 1740
 tgcttcagga agcagcgcaca cggctctgtat tcggagtaca cggagaagct gcagcgtac 1800
 attgctccctg gaatgaagttt ttatattgac ccttttaccc acgaggaccc taatgaggct 1860
 gttcgggagt ttgccaaggaa gatgcacgtg tcctgcgtca agatcgagga ggtgatcgga 1920
 20 gctggggaaat ttggggaaat gtgcgtgtt cgactgaaac agcctggccg ccgagaggtg 1980
 ttttgtggcca tcaagacgct gaagggtggc tacaccgaga ggcagcggc ggacttccta 2040
 agcgaggccctt ccacatggg tcagtttgcat caccggcaata taatccgctt cgagggcgtg 2100
 gtcaaaaaaa gtcggccagt ttagtgcctt actgaggttca tggaaaactg cgcctggac 2160
 tccttcctcc ggctcaacga tggcgttcc acggcatcc agctggggg catgttgcgg 2220
 25 ggcattgtcg cggcatgaa gtacctgtcc gagatgaact atgtgcaccc cgacccggct 2280
 gtcgcacaaca tccttgcataa cagcaacccgt gtctgcaccc ttcagactt tggcctctcc 2340
 cgcttcctgg aggtgaccc ctccgttcc acctacacca gttccctggg cggaaagatc 2400
 cccatcccgct ggactgcccc agggccata gcctatcgga agtccacttc tgctgtatgt 2460
 gtctggagct acggaaattgtt catgtggggat gtcgtatgcgat atggagagcg accctactgg 2520
 30 gacatgagca accaggatgtt catcaatgcc gtggagcagg attacccgtt gccaccaccc 2580
 atggactgtt ccacagccact gcaccagctc atgtggact gctgggtgcg ggaccggAAC 2640
 ctcaggccca aatttccca gattgtcaat accctggaca agtccatcccg caatgtgc 2700
 agcctcaagg tcattggccat cgtcgtatcc ggcattgtc acgcccctcc ggaccgcacg 2760
 gtcccagattt acacaacccat cagcagatgtt ggtgattggc tggatgcctt caagatgggg 2820
 35 cggtaacaagg agagttcgat cagtgcgggg tttgcattt ttgacctgtt ggcccaagatg 2880
 acggcagaag acctgtcccg tattggggcc accctggccg gccaccggaa gaagatccctg 2940
 agcagtatcc aggacatgcg gtcgcagatg aaccagacgc tgcctgtgca ggtctga 2997

40 <210> 24
 <211> 2964
 <212> DNA
 <213> Homo sapiens

45 <400> 24
 atggagctcc ggggtgtgt ctgtgggt tcgttggccg cagctttgga agagaccctg 60
 ctgaacacaa aattggaaac tgctgtatctg aagtgggtga cattccctca ggtggacggg 120
 cagtgccggg aactgagccg cctggatgag gaacagcaca gcgtgcgcac ctacgaatgt 180
 50 tggtaatgtc agcgatgtccccc gggccaggcc cactggcttgc acacagggtt ggtcccacgg 240
 cggggccggcc tccacgtgttgc cggccatccgc tgcgtcgatgtt cctgtccctg 300
 cctcgccgttgc ggcgcctcttgc caaggagacc ttccatgttct tctactatgtt gagcgtatgtc 360
 gacacggccca cggcccttcac gccaggcttgc atggagaacc cctacatcaa ggtggacacgg 420
 gtggccggcc agcatcttcac cgggaagccgc cctggggccg aggccaccgg gaaggtgaat 480
 gtcaagacgc tgcgtctggg acgcgtccatc aaggctgttgc ttcacctggc cttccaggac 540
 55 cagggtgttgc gcatggccct gctatcccttgc cacccttttgc acaaaaatgtt cggcccaatgt 600
 actgtgttgcacc tgcgtcgatcc cccggagact gtgcgtcggtt gcccgtggcc 660
 ggttagtgcg tggtagtgc cgtcccccgc cctggccca gccccagcccttactgcccgt 720
 gaggatggccca agtggggccga acagccggcgc acgggtgcgca gtcgtgtccgg 780

60

65

DE 101 00 586 C1

g	cagctgagg ggaacaccaa	gtgccgagcc tggcccagg gcaccccaa gccccgtca	840
g	gagaagggt cctccagcc	atgcccagcc aatacgact ctaacaccat tggatctgc	900
g	gtctccagt gcccgttcg	ggacttccgg gcacccacag accccccggg tgcaccctgc	960
a	accacccctc ctccggctcc	gccccggctg gttttccgg tgaacggctc ctcctgcac	1020
c	ctggaatggc gtggccccc	ggagtcgtgt ggccgagagg acctcaccta cgccctccgc	1080
t	tgccggagt gcccacccgg	aggctctgt ggcctctgcg ggggagaccc gacttttgc	1140
c	cccggcccccc gggacctgg	ggagccctgg gtgggttgc gagggctacg tccggacttc	1200
a	acctataacct tttaggtcac	tgcattgaac ggggtatcct ctttagccac gggggccctg	1260
c	ccatggagc cttgtcaatgt	caccactgac cgagaggta ctcctgcagt gtctgacatc	1320
c	cgggtgacgc ggtctccacc	cagcagctt agcctggct gggctgttcc cggggccaccc	1380
a	agtggggcgt ggctggacta	cgaggtcaaa taccatgaga agggcgccga ggttcccg	1440
a	agcgtgcgt tcctgaagac	gtcagaaaaac cgggcagagc tgccccggct gaagcgggga	1500
g	gccagctacc tggtcaggt	acggggcgcg tctgaggccg gtcacgggccc cttccggcag	1560
g	gaacatcaca gccagaccca	atcggtatgg agcgagggtc ggcgggagca gtcggccctg	1620
a	attgcgggca cggcagtcgt	gggtgttgc ctggctctgg tggtcattgt ggtcgcagtt	1680
c	ctctgcctca ggaagcagag	caatgggaga gaaggacaaatttcgacaa acacggacag	1740
t	tatctcatcg gacatggta	taaggctctac atcgaccctt tcaacttatga agacccta	1800
g	gaggctgtga gggaaatttgc	aaaagagatc gatgtctctt acgtcaagat tgaagaggt	1860
a	attgggtcag gtgagtttg	cgaggtgtgc cggggggcgc tcaaggcccc agggaaagaag	1920
g	gagagctgtg tggcaatcaa	gaccctgaag ggtggctaca cggagcggca gccggctgt	1980
t	tttctggcgc aggccctccat	catgggccag ttcgagcacc ccaatatcat cccctggag	2040
g	ggcgtgttca ccaacacgat	gccccgtcatg attctcacag agttcatggaa gacggcc	2100
c	ctggactctt tcctccggct	aaacgcacgga cagttcacag tcatccagct cgtggccat	2160
c	ctgcggggca tgcctccggg	catgcggta cttggccaga ttagctacgt ccacccgagac	2220
c	ctggctgttc gcaacatcc	agtcaacacgc aacctctgtc gcaaagtgtc tgactttgc	2280
c	ctttcccgat tcctggagga	aaacttcc gatccaccc acacgagctc cctggagga	2340
a	aagattccca tccgatggac	tgcggccggag gccattgcct tcggaaagtt cacttccgc	2400
a	agtgtatgcct ggagttacgg	gattgtatgg tggggaggtg tgtcatttgg ggagaggccg	2460
t	tactgggaca tgagaatca	ggacgtgatc aatggccattt aacaggacta cccgctgccc	2520
c	ccggcccccac actgtcccac	ctccctccac cagctcatgc tggactgttg gcagaaaagac	2580
c	cggaatggcc gccccggctt	cccccagggt gtcagccccc tggacaagat gatccggaaac	2640
c	cccccccgcc tcaaaatcgt	ggcccccggag aatggccggg cttcacaccc tctcctggac	2700
c	cagcggcgcg ctcactact	acttttggc tctgtggcg agtggcttcg ggccatcaaa	2760
a	atgggaagat acgaaggccg	tttgcagcc gctggcttgc gtccttcga gtcggtcagc	2820
c	cagatctctg ctgaggacat	atccatgc ggttcactc tggggggaca ccagaagaaa	2880
a	atcttggcca gtgtccagca	catgaacttc caggcaagc cggaaacccc gggtgggaca	2940
g	ggaggaccgg ccccgagta	ctgaa	2964

<210> 25
<211> 1041
<212> DNA
<213> *Homo sapiens*

<300>
<302> ephrin-B1
<310> NM004429

<pre> <400> .25 atggctccgc ctgggcagcg ttggctcggc aagtggcttg tggcgatggt cgtgtggcg 60 ctgtccggc tcgcacacc gctggccaag aacctggagc ccgtatcctg gagctccctc 120 aaccccaagt tcctgagtgg gaaggggcttg gtatcttc egaaaattgg agacaagctg 180 gacatcatct gcccccgagc agaagcaggg cgcccctatg agtactacaa gctgtacctg 240 gtcgggcctg agcaggcagc tgcctgtac acagttctcg accccaaacgt gttggtcacc 300 tgcataatggc cagagcagga aatacgcattt accatcaagt tccaggagtt cagccccaaac 360 tacatggggcc tggagttcaa gaagcaccat gattactaca ttacctaacc atccaatggta 420 agcctggagg ggctggaaaa cccgggagggc ggtgtgtgcc gcacacgcac catqaagatc 480 </pre>	50 55
---	----------

DE 101 00 586 C 1

atcatgaagg ttgggcagaaga tcccaatgct gtgacgcctg agcagctgac taccagcagg 540
 cccagcaagg aggccagacaa cactgtcaag atggccacac aggcccctgg tagtcggggc 600
 5 tccctgggtg actctgtatgg caagcatgag actgtgaacc aggaagagaa gagtggccca 660
 ggtgcagaatgt ggggcagcag cggggaccct gatggcttct tcaactccaa ggtggcattg 720
 ttcgcggctg tcgggtccgg ttgcgtcatc ttcctgtctca tcatcatctt cctgacggtc 780
 ctactactga agtacacgaa gcggcacccgc aagcacacac agcagcgggc ggctgccctc 840
 tcgctcagta ccctggccag tcccaagggg ggcagtggca cagcggcac cgagcccage 900
 10 gacatcatca ttcccttagc gactacagag aacaactact gcccccaacta tgagaagggtg 960
 agtggggact acgggcaccc tgtctacatc gtccaagaga tgccgccccca gagcccgccg 1020
 aacatctact acaagggtctg a 1041

<210> 26
 15 <211> 1002
 <212> DNA
 <213> Homo sapiens

<300>

20 <400> 26
 atggctgtga gaagggactc cgtgttggaa tactgtctgg gtgttttgat ggttttatgc 60
 agaactgcga ttccaaatc gatagttta gacccatatct attgaaattc ctcgaactcc 120
 aaatttctac ctggacaagg actgttacta taccacaga taggagacaa attgatatt 180
 25 atttgccca aagtggactc taaaactgtt ggcagttatg aatattataa agtttatatg 240
 gttgataaaag accaaggcaga cagatgcact attaagaagg aaaataccc tctcctcaac 300
 tgcgtccaaac cagaccaaga tatcaaattc accatcaagt ttcaagaatt cagccctaac 360
 ctctgggtc tagaatttca gaagaacaaa gattattaca ttatattctac atcaaattggg 420
 tctttggagg gcctggataa ccaggaggga ggggtgtgcc agacaaggc catgaagatc 480
 30 ctcatgaaag ttggacaaga tgcaagttct gctggatcaa ccaggaataa agatccaaca 540
 agacgtccag aactagaagc tggtacaaat ggaagaagtt cgacaacaag tccctttgtc 600
 aaaccaaatac caggttctag cacagacggc aacagcggc gacattcggg gaacaacatc 660
 ctcggtccg aagtggcctt atttgcaggg attgttctcag gatgcattat cttcatcg 720
 atcatcatca cgtgttgggt cctcttgcgt aagtaccggg ggagacacag gaagcactcg 780
 35 ccgcagcaca gcaccacgt gtcgctcgc acactggcca cacccaagcg cagcggcaac 840
 aacaacggct cagagcccg tgacattatc atcccgctaa ggactgcggc cagegtcttc 900
 tgcctctact acgagaaggt cagcggcgc tacgggcacc cggtgtacat cgtccaggag 960
 atgccccccgc agagcccgcc gaacatttac tacaagggtct ga 1002

40 <210> 27
 <211> 1023
 <212> DNA
 <213> Homo sapiens

45 <400> 27
 atggggcccc cccattctgg gccggggggc gtgcgagtcg gggccctgt gctgttgggg 60
 gttttggggc tgggtctgg gtcaggctg gagcctgtct actggaaactc ggcgaataag 120
 aggttccagg cagagggtgg ttatgtctg taccctcaga tcggggaccc gctagacctg 180
 50 ctctggcccc gggccggcc tccctggccct cactcctctc ctaattatga gttctacaag 240
 ctgtacactgg taggggggtgc tcagggccgg cgctgtgagg caccggctgc cccaaacctc 300
 cttctcaactt gtgatgcggc agacctggat ctccgttca ccatcaagg ccaggat 360
 agcccaatac tctggggccca cgagttccgc tcgcaccacg attactacat cattgccaca 420
 tcggatggga cccggggaggc cctggagacg ctgcaggggag gtgtgtgcct aaccagggc 480
 55 atgaagggtgc ttctccgagt gggacaaatg ccccgaggag ggggtgtccc cggaaaacct 540
 gtgtctgaaa tgcctccatgg aagagacca gggcagcccc acagcctggc gcctggaaag 600
 gagaacctgc caggtgaccc caccagcaat gcaacctccc ggggtgtcga aggccccctg 660
 ccccccctccca gcatgcctgc agtggctggg gcagcagggg ggctggcgtc gctcttgcgt 720

60

DE 101 00 586 C 1

ggcgtggcag gggctggggg tccatgtgt tggcgagac ggcccccaa gccttcggag 780 agtcccacc ctggtcctgg ctccctcggg agggagggt ctctgggcct ggggggtgga 840 ggtggtatgg gacctcggga ggctgagcct gggagatgg gatagctct gcgggggtggc 900 ggggctgcag atccccctt ctgccccac tatgagaagg tgagtgtga ctatggcat 960 cctgtgtata tcgtcagga tggggccccc cagagccctc caaacatcta ctacaaggta 1020 tga	5 1023
<210> 28 <211> 3399 <212> DNA <213> Homo sapiens	10
<300> <302> telomerase reverse transcriptase <310> AF015950	15
<400> 28 atgccgcgc ctccccgtg ccgagccgtg cgccctcgc tgcgcagcca ctaccgcgag 60 gtgtccgc tggcacgtt cgtcgccgc ctggggcccc agggctggcg gctgggtcag 120 cgccggacc cggcggtt ccgcccgtg gtggccca 180 gacgcacgc cgcggccccc cgcccccctcc ttccgcccagg tgcctgcct gaaggagctg 240 gtggcccggag tgctgcagag gctgtcgag cggcgccgaga agaacgtgt ggccttcggc 300 ttccgcgtgc tggacggggc cccggggggg ccccccggagg cttcaccac cagcggtgc 360 agctacactgc ccaacacggc gaccgacgc ctggggggg gggggcggtg ggggctgtc 420 ctgcgcgcg tgggacgca cgtgttgtt cacctgtgg caccgtgc cgtgttgc 480 ctggtggtc ccaactgcg cttaccagggt tgcggggccgc 540 gcaactcagg cccggccccc gccacacgct agttggacccc gaaaggcgct gggatgcgaa 600 cgggcttggaa accatagcg tggggggccggc ggggtttttt tgggctgtcc agcccccgggt 660 gcccggggccgc gggggggccgg tggcagccgc agtctgcgt tgcccaagag gcccaggcg 720 ggcgctgccc ctgagccggc gccgacggcc gttggggcagg ggttctggc ccacccggc 780 aggacgcgtg gaccggatgtt cctgtgttgc tggatgtgtt caccgtccag accccggc 840 gaaggccaccc ttttgggggg tgcgtctctt ggcacgcgc actcccaccc atccgtggc 900 cgccagcacc acggggcccc cccatccaca tcgcccgcac cactccctcg ggacacgcct 960 tgtccccccgg tggatgcgcg gaccaagcac ttccctact cctcaggcgca caaggagcag 1020 ctgcggccct ctttctact cagctctcg aggcccagcc tgactggcg tcggaggtc 1080 gtggagacca ttttctggg ttccaggccc tggatgcgcg ggactcccc caggttggccc 1140 cgccctggccc agcgctactg gcaaatgcgg cccctgttcc tggagctgt tgggaaaccac 1200 gcgcgtgcc cctacgggggt gctccctcaag acggactgcg cgctgcgcgc tgcggtcacc 1260 ccagcagccg gtgtctgtgc cccggagaag ccccagggtt ctgtggcgcc ccccgaggag 1320 gaggacacag accccccgtcg cctgggtgcag ctgtccgc accacagcag cccctggcag 1380 gtgtacggct tcgtggggc cgtccgtgc cggctgtgc ccccaaggct ctgggctcc 1440 aggcacaacg aacgcgcctt cctcagaac accaagaagt tcatctccct ggggaagcat 1500 gccaagctt cgctgcagga gctgacgtgg aagatgagcg tgcgggactg cgcttggctg 1560 cgccaggagcc caggggttgg ctgtgttccg gcccgcagcc accgtctcg tgaggagatc 1620 ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgt caggtcttgc 1680 tttatgtca cggagaccac gtttcaaaag aacaggctt ttttctaccg gaagagtgtc 1740 tggagcaagt tgcaaaagcat tggaatcaga cagcaattga agagggtgca gctgcgggg 1800 ctgtcggaa caggggttagtgcg gcaatcgcc gaaaggccggc ccccccgtt gacgtccaga 1860 ctccgttca tcccccaaggc tgacgggtcg cggccgattt tgaacatggc ctacgtcg 1920 ggagccagaa cgtcccgccag agaaaaaggagg gcccgcgcgc tcacccctcgag ggtgaaggca 1980 ctgttcagcg tgctcaacta cggcgccgc cggcccccgg gcctcctggg cgcctctgtg 2040 ctggggctgg accatatcca caggccctgg cgcacccctcg tgctgcgtgt gggggcccg 2100 gaccggccgc ctggatgtgtt ctttgcgttcaag gttggatgtga cggggccgcgtt cgacaccatc 2160 cccccaggaca ggctcacggc ggtcatcgcc agcatcatca aacccccagaa cacgtactgc 2220 gtgcgtcggt atgcgttgtt ccagaaggcc gcccattggc acgtccgcggaa ggccttcaag 2280 agccacgtctt ctacccatgc agacccatcg cccgtacatgc gacagttcg ggtcacatcg 2340	20 25 30 35 40 45 50 55 60 65

DE 101 00 586 C 1

caggagacca gcccgcgtgag ggatgccgtc gtcatcgagc agagctcc tc cctgaattag 2400
 gccagcagtgc ctcttcgtc cgtcttccta cggttcatgt gcccaccgcg cgtgcgcata 2460
 agggcaagt cctacgtcca gtgcgcagggg atccccggg gtcacccatctt ctcacacgtg 2520
 5 ctctgcagcc tggcttgcgg cgacatgggg aacaagctgt ttggggat tggcgccggac 2580
 gggctgtcc tgcgttttgtt ggatgatttc ttgttggtga cacccatctt caccacacgcg 2640
 aaaaccccttc tcaggaccctt ggtccggggat gtccctgtat atggctgtgt ggtgaacttg 2700
 cggaaagacag tggtaacctt ccctgttagaa gacgaggccc tgggtggcac ggctttgtt 2760
 cagatgcggc cccacggcctt attccctgg tgcggcttc tgctggatac cccgaccctg 2820
 10 gaggtgcaga gcgactactc cagctatgcc cgacacttcca tcagagccatc ttcaccccttc 2880
 aaccgcggct tcaaggcttgg gaggAACATC cgtcgcaaaac tctttgggtt cttgcggctg 2940
 aagtgtcaca gcctgtttt ggatttgcag gtgcacagcc tccagacgggt gtgcaccaac 3000
 atctacaaga tcctcctgtc gcaggcgtac aggtttcactg catgtgtgtc gcagctccca 3060
 tttcatcagc aagtttggaa gaacccacata ttttctgc gctcatctc tgacacggcc 3120
 15 tccctctgtc actccatctt gaaaggcaag aacgcaggga tgcgtctggg ggccaagggc 3180
 gccgcggcc ctctgccttc cgaggccgtg cagtggctgt gcccaccaac attcctgtc 3240
 aagctgactc gacaccgtt cacctacgtt ccactcctgg ggtcaactcag gacagcccaag 3300
 acgcagactgta gtcggaaactt cccggggacg acgctgactt ccctggaggc cgcagccaaac 3360
 ccggcactgc cctcagactt caagaccatc ctggactga
 20 3399

<210> 29
 <211> 567
 <212> DNA
 25 <213> Homo sapiens

<300>
 <302> K-ras
 <310> M54968

30 <400> 29
 atgactgaat ataaacttggt ggttagttggaa gcttggcg taggcaagag tgccttgacg 60
 atacagctaa ttcagaatca ttttggac gaatatgtatc caacaataga ggatttctac 120
 aggaagcaag tagtaatttga tggaaaaacc tgcgtctttgg atattctcgat cacagcagggt 180
 35 caagaggagt acagtgcattt gaggggaccat tacatggaa ctggggagggtt ctttctttgt 240
 gtatttgcctt taaaataatac taaatcattt gaagatattt accattatag agaacaattt 300
 aaaagagttt aggactctgtt agatgtacccat atgttcttag taggaaataaa atgtgatttg 360
 ctttcttagaa cagtagacac aaaacaggctt caggacttagt taagaagttt tggaaatttctt 420
 40 tttattttttttaa catcagcaaa gacaagacag ggtgttgatg atgccttcttca tacattatgtt 480
 cgagaaaatttcaaaacataaa agaaaagatg agcaaagatg gtaaaaagaa gaaaaagaag 540
 tcaaagacaa agtgtgtat tatgtaa 567

<210> 30
 45 <211> 3840
 <212> DNA
 <213> Homo sapiens

<300>
 50 <302> mdr-1
 <310> AF016535

<400> 30
 atggatcttgc aaggggaccgc caatggggat gcaaaaagaaga agaactttttt taaaactgtac 60
 55 aataaaaatgtt aaaaagataaa gaaggaaaag aaaccaactgt tcagtgtattt ttcaatgtttt 120
 cgctattcaaa attggcttgc caagttgtat atgggtgggg gaaactttggc tgccatcatc 180
 catggggcttgc gacttccttcatcatgtt gttgtggag aatgtacaga tatctttgtca 240
 aatgcaggaa atttagaaatgttca aacatcacta atagaatgttatcaatgtat 300

60

DE 101 00 586 C 1

acagggttct tcatgaatct ggaggaagac atgaccaggat atgccttatta ttacagtgg 360
 attgggtctg ggggtctgg tgcgtcttac attcagggtt cattttggc cctggcagct 420
 ggaagacaaa tacacaaaaat tagaaaacag tttttcatg ctataatgcg acaggagata 480
 ggctgggttg atgtgcacga tggtgggag cttaacaccc gacttacaga ttagtgcctcc 540
 aagattaatg aagaaattgg tgacaaaatt ggaatgttct ttcaagtcaat ggcaacattt 600 5
 ttcaactgggt ttatagttagg atttacacgt ggttggaaagc taacccctgt gattttggcc 660
 atcagtccctg ttcttggact gtcagctgt gtctggcaa agatactatc ttcatctact 720
 gataaagaac tcttagcgta tgcaaaagct ggagcagtag ctgaagaggt cttggcagca 780
 attagaactg tgattgcatt tggaggacaa aagaaagaac ttgaaaggta caacaaaaat 840 10
 tttagaagaag cttaaaagaat tggataaaag aaagcttatta cagccaatat ttctataggt 900
 gctgtttcc tgcgtatcta tgcatcttac gctctggcct tctggatgg gaccaccc 960
 gtccctctcg gggataatc tattggacaa gtaactcaactg tattttctgt attaattggg 1020
 gcttttagtg ttggacagcc atctccaagc attgaagcat ttgcaatgc aagaggagca 1080
 gcttatgaaa tcttcaagat aattgataat aagccaaatg ttgacagctt ttcgaagaggt 1140 15
 gggcacaaac cagataatata taaggaaat ttggaaatc gaaatgttca cttcagttac 1200
 ccacatctcgaa aagaagttaa gatcttgaag ggtctgaacc tgaagggtca gagttggcag 1260
 acggtggccc tgggtggaaa cagtggctgt gggaaagagca caacagtcca getgatgcag 1320
 aggctctatg acccccacaga ggggatggtc agtggttgatg gacaggatatt taggaccata 1380
 aatgttaagggt ttctacgggaa aatcattggt ttgggtgatc aggaacctgtt atttttgcc 1440 20
 accacatcgatg ctgaaaacat tcgtatggc cgtggaaatg tcaccatggta tgagattgag 1500
 aaagctgtca aggaagccaa tgcctatgac ttatcatgaa aactgcctca taaatttgac 1560
 accctgggtg gagagagagg gggccagttt agtgggtggc agaaggcagag gatgccatt 1620
 gcacgtgccc tgggtcgcaa ccccaagatc ctccctgtctt atgaggccac gtcagccctg 1680
 gacacagaaa gcgaaagcgtt ggttccgggt gctctggata aggccagaaa aggtcgacc 1740 25
 accattgtga tagctcatcg tttgtctaca gttcgtaatg ctgacgtctatc cgctgggtt 1800
 gatgatggag tcaattgtggaa gaaaggaaat catgatgaaatc tcatgaaaga gaaaggcatt 1860
 tacttcaaacc ttgtcacaat gcaagacagca gggaaatgaaat ttgaaatttga aatgcagct 1920
 gatgaatccaa aagtgaaat tgatgcctt gaaatgttctt caaatgattt aagatccagt 1980
 ctaataagaa aagatcaac tcgttaggat gtcctggat cacaagccca agacagaaaag 2040 30
 ctttagtacca aagaggctct ggtgaaatg atacccatcg tttccctttt gaggattatg 2100
 aagcttaattt taactgtatc gccttattttt gttttgggtg tattttgtgc cattataat 2160
 ggagggcctgc aaccaggatc tgcaatataa ttttcaaaaga ttatagggtt ttttacaaga 2220
 attgatgatc ctgaaaacaa acgacaaatg agttaacttgc tttcactatt gtttctagcc 2280
 ctttggattt tttcttttacatccatc cttcagggtt tcacattttt gaaagctgga 2340 35
 gagatccctca ccaaggccgtt ccgatcatcg gttttccgat ccatgctcag acaggatgtg 2400
 agttggtttgc atgaccctaa aaacaccact ggacatttgc ctaccaggctt cgccaatgt 2460
 gctgctcaag ttaaaggggc tataggttcc aggttgcgtt taatttacca gaatatacg 2520
 aatcttggga caggaataat tatatccctt atctatggttt ggcaactaaatc actgttactc 2580
 ttagcaattt taccatcat tgcaatagca ggagttgtt gaaatgaaat gttgtctgga 2640 40
 caagcaatttca aagataagaa agaacttagaa ggtgtggaa agatcgctac tgaagccata 2700
 gaaaatttcc gaaccgttgtt ttcttgcact caggagcaga agtttgcata tatgtatgt 2760
 cagatgttgc aggttccatc cagaaactt ttgaggaaag cacacatctt tggaaattaca 2820
 ttttccctca cccaggcaat gatgtatccc ttctatgtt gatgtttccg gtttggagcc 2880
 tacttgggttgg cacatataact catgatgtt gaggatgtt tttttttttt ttcagctgtt 2940 45
 gtctttgggtt ccattggccgtt gggggcaatc agtttccatc ttccctgacta tgccaaagcc 3000
 aaaatatcgat cagccccatcatcatgatc atttttttttgc ttcccttgc tggccaaagcc 3060
 agcacggaaatgcctaaatgcgc gacacatttgc gaaaggaaatg tcacatttttgg tgaagggtt 3120
 ttcaactatc ccaccccgacc ggacatccca gtgttccagg gacttgcctt ggaggtgaag 3180
 aaggggccaga cgttgcgtt ggtggccagc agtggctgtt ggaagagcac agtggccatc 3240 50
 ctccctggagc ggttctacga ccccttggca gggaaatgttgc tgcttgcattt cttttttttt 3300
 aagcactgtt atgttgcgtt gtcctggatc caccctggca tcgtgtccca ggagccatc 3360
 ctgtttgcactt gcaatgttgc tgaaacattt gcttgcattt gcaacagccg ggtgggttca 3420
 caggaagaga ttgttggggc agcaaaaggat gccaacatcatc atgccttcat ctagtcaactg 3480
 ccttataat atagcactaa agtaggagac aaaggaacttgc agtctctcttgg tggccaaagcc 3540
 caacccattt ccattggatc tgcccttgc agacagccctt atattttgtt tttttttttt 3600
 gcccacgttccatc agaaatgttca aagtttgcgtt aagaagccctt ggacaaagcc 3660
 agagaaggcc gcaatgttccatc tttttttttt tttttttttt tttttttttt 3720 55

60

65

DE 101 00 586 C 1

ttaatagtgg tgtttcagaa tggcagagtc aaggagcatg gcacgcata gcagctgctg 3780
gcacagaaaag gcatctattt ttcaatggtc agtgtccagg ctggAACAAA ggcgcAGTGA 3840

5 <210> 31
<211> 1318
<212> DNA
<213> Homo sapiens
10 <300>
<302> UPAR (urokinase-type plasminogen activator receptor)
<310> XM009232
15 <400> 31
atgggtcacc cgccgctgtgt gcccgtgtgt ctgtgtgtcc acacctgcgt cccagccct 60
tggggcctgc ggtgcgtgtca gtgtaaagacc aacggggatt gccgtgtgtttt agagtgcgtcc 120
ctgggacagg acctctgtcg gaccacgtc gtgcgtgtgtt gggaaagaagg agaagagctg 180
gagctgggtgg agaaaagctg tacccactca gagaagacca acaggaccctt gagctatcg 240
20 actggcttga agatcaccag ctttaccgtt gttgtgtgtt ggttagactt gtgcacccag 300
ggcaactctg gcccggctgtt cacctattcc cgaagccgtt acctcgtatc catttccctgt 360
ggctcatcg acatgagctg tgagaggggc cggcaccaga gcctcgtgtt ccgcacccct 420
gaagaacagt ggctggatgtt ggtgacccac tggatccagg aaggtgaaga aggggttcca 480
aaggatgacc gccacccctccg tggctgtggc tacccctccg gtcgtcccccgtt ctccaatgg 540
25 ttccacaaca acgacacacccctt ccacttctgtt aaatgtgtca acaccaccaa atgcaacgg 600
ggcccaatcc tggagcttga aaatctccgtt cagaatggcc gccagtgtt cagctgtcaag 660
gggaacagca cccatggatgtt ctcctctgaa gagactttcc tcatttgcgtt ccggggcccc 720
atgaatcaat gtctggatgtt caccggactt cacaaccgtt aaaaaccaaaatctatgtt 780
agaggctgtt caaccgcctt aatgtgtccaa catgtccacc tgggtgacgc cttcagcatg 840
30 aaccacattt atgtcttctgtt ctgtactaaa agtggctgtt accacccaga cctggatgtt 900
cagtaccgtt gttgggttgc tcctcgtgtt ggcctgtccc atctcgtt caccatcacc 960
ctgtctatgtt ctgtccagact gttggggaggc actcttctt ggacctaacc ctgaaatccc 1020
cctctctgtt cttggctggatgtt cccggggacc cctttgttcc tcctcgtgtt cccagcccta 1080
cagactgtt gtgtgacccctt aggccagtgtt gcccgttctt ctgggcctca gttttccctt 1140
35 ctatgaaaac agctatctca caaagtgtt tgaagcgtt gagaacgtt ggaggaaggc 1200
cgtggccaa tggagagctt cttgttattt ttaatattgtt tgccgttgcgtt gtgttgtt 1260
tattaattaa tattcatattt atttatattt tacttacata aagattttgtt accagtgg 1318
40 <210> 32
<211> 636
<212> DNA
<213> Homo sapiens
45 <300>
<302> Bak
<310> U16811
40 <400> 32
atgggttcgg ggcaaggccc aggtccccc accaggagggtt gcccgtccc 60
tctgtttctg aggaggcagggtt agcccaggac acagaggagg ttttccgtt ctttccgtt 120
taccggccatc agcaggaaaca ggaggctgaa ggggtggctt cccctggca cccagagatg 180
gtcaccccttac ctctgtcaacc tagcagccacc atggggcagg tgggacggca gtcggccatc 240
atcgggggacg acatggacccg acgttatgttcc tcagagtgttcc agaccatgtt gtcgttgc 300
55 cagcccaacgg cagagaatgc cttatgttcc ttccaccaaga ttggccaccatgtt cctgtttgag 360
agtggcatca attggggcccg tttgtgtgttcc ttcttggcttcc tcggctaccgtt cttggcccta 420
cactgttacc acatggccctt gactggccctt ctagggccagg tgaccctgtt cgtggcgtac 480
ttcatgttgc atcaactgttcc ttccgttgcgtt attgcacaca ggggtggctt ggtggcagcc 540

60

65

DE 101 00 586 C 1

ctgaacttgg gcaatggtcc cattctgaac gtgctgggtgg ttctgggtgt ggtctgttg 600
 ggcagtttgg tggtaacaaat tcatga 636

<210> 33
 <211> 579
 <212> DNA
 <213> Homo sapiens

5

<300>
 <302> Bax alpha
 <310> L22473

10

<400> 33
 atggacgggt ccggggagca gcccagaggc gggggggccca ccagctctga gcagatcatg 60
 aagacagggg ccctttgttc tcaggggttc atccaggatc gagcaggcg aatggggggg 120
 gaggcacccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcatacg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gcccgggtgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300
 tctgacggca acttcaactg gggccgggtt gtgcgccttt tctactttgc cagcaaactg 360
 gtgctcaagg ccctgtgcac caaggtggcg gaactgatca gaaccatcat gggctggaca 420
 ttggacttcc tccggggagcg gctgtgggc tggatccaag accagggtgg ttgggacggc 480
 ctccctctctt actttgggac gcccacgtgg cagaccgtga ccatcttgc ggcgggagtg 540
 ctccccatctt cgtcaccat ctggagaag atgggctga 579

15

20

25

<210> 34
 <211> 657
 <212> DNA
 <213> Homo sapiens

30

<300>
 <302> Bax beta
 <310> L22474

35

<400> 34
 atggacgggt ccggggagca gcccagaggc gggggggccca ccagctctga gcagatcatg 60
 aagacagggg ccctttgttc tcaggggttc atccaggatc gagcaggcg aatggggggg 120
 gaggcacccg agctggccct ggaccgggtg cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcatacg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gcccgggtgg acacagactc ccccccggagag gtcttttcc gagtggcagc tgacatgttt 300
 tctgacggca acttcaactg gggccgggtt gtgcgccttt tctactttgc cagcaaactg 360
 gtgctcaagg ccctgtgcac caaggtggcg gaactgatca gaaccatcat gggctggaca 420
 ttggacttcc tccggggagcg gctgtgggc tggatccaag accagggtgg ttgggatgaga 480
 ctccctcaaggc ctccctcacc ccaccacccgc gccttcacca accagggtgg ttgggtgaga 480
 ctccccatctt ccaactcctctt gggaccctgg gccttcttggc gcaggtcaca gtgggtccct 540
 ctccccatctt ctagatcatc agatgtggtc tataatgcgt ttcccttacg tgtctga 657

40

45

50

<210> 35
 <211> 432
 <212> DNA
 <213> Homo sapiens

55

<300>
 <302> Bax delta
 <310> U19599

55

60

65

DE 101 00 586 C 1

5 <400> 35
 atggacgggt ccggggagca gcccagaggc gggggggccca ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggatg attgccgcg tggacacaga ctcccccca 120
 gaggtctttt tccgagtggc agctgacatg tttctgacg gcaacttcaa ctggggccgg 180
 gttgtcgccc ttttctactt tgccagcaaa ctggtgctca aggccctgtg caccagggt 240
 cccgaactga tcagaaccat catgggctgg acattggact tcctccggga gggctgtt 300
 ggctggatcc aagaccaggg tggttggac ggccteetct cctacttgg gacgcccacg 360
 tggcagaccg tgaccatctt tgtggcggga gtgctcacgg ctcgctcac catctggaag 420
 10 aagatgggct ga 432

15 <210> 36
 <211> 495
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> Bax epsilon
 <310> AF007826

25 <400> 36
 atggacgggt ccggggagca gcccagaggc gggggggccca ccagctctga gcagatcatg 60
 aagacagggg ccctttgtc tcagggatc atccaggatc gggcggcg aatggggggg 120
 30 gaggcacccg agctggccct ggaccgggt cctcaggatg cgtccaccaa gaagctgagc 180
 gagtgtctca agcgcatgg ggacgaactg gacagtaaca tggagctgca gaggatgatt 240
 gccgcgtgg acacagactc ccccccggag gtcttttcc gagtgccgac tgacatgtt 300
 tctgacggca acttcaactg gggccgggtt gtcgcctt tctaacttgc cagcaaactg 360
 35 gtgtcaagg ctggcgtgaa atggcgtat ctgggctcac tgcaacctt gcctccggg 420
 ttcaagcgat tcacctgcct cagcatccca aggagctggg attacaggcc ctgtgcacca 480
 aggtggcggga actga 495

35 <210> 37
 <211> 582
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> bcl-w
 <310> U59747

45 <400> 37
 atggcgaccc cagcctcgcc cccagacaca cgggctctgg tggcagactt tggtagttat 60
 aagctgaggc agaagggtta tgtctgtgg gctggcccg gggagggccc agcagctgac 120
 ccgctgcacc aagccatgcg ggcagctgg gatgagttcg agacccgctt ccggcgcacc 180
 ttctctgatc tggcggtca gctgcgttg acccccaggct cagcccagea acgcttcacc 240
 caggctccg acgaactttt tcaagggggc cccaaactggg gccgccttg aeccttctt 300
 50 gtcttgggg ctgcactgtg tgctgagagt gtcaacaagg agatggaaacc actgggtgg 360
 caagtgcagg agtggatggt ggcctacctg gagacgcggc tggctgactg gatccacagc 420
 agtggggctt gggcgaggat cacagctcta tacggggacg gggccctgg gggaggcggg 480
 cgtctgcggg aggggaactg ggcatacgatg aggacagtgc tgacggggc cgtggactg 540
 gggccctgg taactgttagg ggcctttttt gctagcaagt ga 582

55 <210> 38
 <211> 2481

60

65

DE 101 00 586 C 1

<212> DNA
<213> *Homo sapiens*

<300>
<302> HIF-alpha
<310> U22431

5

<210> 39
<211> 481
<212> DNA
<213> *Homo sapiens*

55

60

DE 101 00 586 C 1

<300>
<302> ID1
<310> X77956

5 <400> 39
atgaaagtgcg ccagtggcag caccgccacc gccggccggg gccccagctg cgcgctgaag 60
gccggcaaga cagcgagcg tgccggcgag gtgggtcgct gtctgtctga gcagagcgtg 120
gccccatctcgc gctgccccggg cgccggggcg cgccctgcctg ccctgcttgg 180
gttaaacgtgc tgctctacga catgaacggc tgttactcac gcctcaagg 240
accctgcccc agaaccggcaa ggtgagcaag gtggagattc tccagcacgt catcgactac 300
atcaggggacc ttcaagttgga gctgaactcg gaatccgaag ttgggacccc cggggggccga 360
gggctgcccc tccgggctcc gtcagcacc ctcaacggcg agatcagegc cctgacggcc 420
gaggccgcata gcttccctgc ggacgatcgat atcttgttgc gctgaatgg 480
a 481

10 <210> 40
<211> 110
<212> DNA
<213> Homo sapiens

20 <300>
<302> ID2B
<310> M96843

25 <400> 40
tgaaaggcctt cagtccccgtg aggtccattt ggaaaaaacag cctgttggac caccgcctgg 60
gcacatctccca gagcaaaaacc cccgggtggatg acctgtatgag cctgctgtaa 110

30 <210> 41
<211> 486
<212> DNA
<213> Homo sapiens

35 <300>
<302> ID4
<310> Y07958

40 <400> 41
atgaaggccgg tgagccccggt gcgcctctcg ggccgcaagg cggccgtcggt ctggggccggc 60
ggggagctgg cgctgcgtg cctggccgag cacggccaca gcctgggtgg ctccgcagcc 120
gcggccggcgg cggccggccggc agcgcgtgt aaggccggcg aggccggccgc cgacgagccg 180
45 ggcgtgtgcc tgcagtgcga tatgaacgac tgctatagcc gcctgcggag gctgggtggccc 240
accatccccgc ccaacaaga agtcagcaaa gtggagatcc tgccagcacgt tatcgactac 300
atcctggacc tgcagctggc gctggagacg cacccggccc tgctgaggca gccaccaccc 360
cccgccgcgc cacaccaccc ggccgggacc tgccagccg cggccggccgc gaccccgctc 420
actgcgctca acaccgaccc ggccggccgc gtgaacaagc agggcgacag cattctgtgc 480
50 cgctga 486

<210> 42
<211> 462
55 <212> DNA
<213> Homo sapiens

<300>

60

DE 101 00 586 C 1

<302> IGF1
 <310> NM000618

<400> 42
 atggaaaaaa tcagcagtct tccaacccaa ttatthaagt gctgcttttg tgatttcttg 60
 aaggtaaga tgcacaccat gtcctcctcg catctcttct acctggcgct gtgcctgtc 120
 accttcacca gctctgccac ggctggaccg gagacgctct gcggggctga gctgggtggat 180
 gctctcagt tcgtgtgtgg agacaggggc ttttatttca acaagccac agggtatggc 240
 tccagcagtc ggaggggccc tcagacaggc atcgtggatg agtgctgctt ccggagctgt 300
 gatctaagga ggctggagat gtatttgcga cccctcaagc ctgccaagtc agctcgctct 360
 gtcctgtccc agcgcacac cgacatgccc aagacccaga aggaagtaca tttgaagaac 420
 gcaagttagag ggagtgcagg aaacaagaac tacaggatgt ag 462

5

10

<210> 43
 <211> 591
 <212> DNA
 <213> Homo sapiens

15

<300>
 <302> PDGFA
 <310> NM002607

20

<400> 43
 atgaggacct tggcttgccc gctgctcctc ggctgceggat acctcgccca ttttctggcc 60
 gaggaaagccg agatcccccc cgaggtgatc gagaggctgg cccgcagtca gatccacagc 120
 atccgggacc tccagcgtact cctggagata gactccgtag ggagtggatg ttctttggac 180
 accagcctga gagctcacgg ggtccacgccc actaaagcatg tgcccgagaa gggggccctg 240
 cccattcggaa ggaagagaag catcgaggaa gctgtccccc ctgtctgcaa gaccggacg 300
 gtcatttacg agattcctcg gagtcaggc gaccccacgt cccgcacactt cctgatctgg 360
 ccccccgtgcg tggaggtgaaa acgctgcacc ggctgctgca acacgagcag tgcgtcaagtgc 420
 cagccctccc gctgtccacca cccgcaggc aagtgccca aggtggaaa aatgtggatg cgtcaggaaag 480
 aagccaaaat taaaagaatg ccaggtgagg ttagaggagc atttggatg cgcctgcgcg 540
 accacaagcc tgaatccggaa ttatcgggaa gaggacacgg atgtggatg a 591

25

30

35

<210> 44
 <211> 528
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> PDGFRA
 <310> XM003568

45

<400> 44
 atggccaagc ctgaccacgc taccagtgaa gtctacgaga tcatggtaa atgctggAAC 60
 agtgagccgg agaagagacc ctcctttac cacctgatg agattgtggaa gaatctgtc 120
 cctggacaat ataaaaaagag ttatgaaaaa attcacctgg attcctgaa gagtgaccat 180
 cctgtgtgg cacgtatgcg tgtggactca gacaatgcat acattggatg caccataaaa 240
 aacgaggaag acaagctgaa ggactgggag ggtggctgg atgagcagag actgagcgct 300
 gacagtggct acatcattcc tctgcctgac attgaccctg tccctgagga ggaggacctg 360
 ggcaagagga acagacacag ctcgcagacc tctgaagaga gtgccattgaa gacgggttcc 420
 agcaggatcca cttcatcaa gagagggac gagaccattg aagacatcgaa catgtggat 480
 gacatcgccaa tagactcttc agacctggatg gaagacagct tcctgtaa 528

50

55

60

65

DE 101 00 586 C 1

```

<210> 45
<211> 1911
<212> DNA
<213> Homo sapiens
5

<300>
<302> PDGFRB
<310> XM003790

10 <400> 45
atgcggcttc cgggtgcgat gccagctctg gcccctaag gcgagctgct gttgctgtct 60
ctcctgttac ttctggAACC acagatctct caggggctgg tcgtcacacc cccggggcca 120
gagcttgc tcaatgttctc cagcaccttc gttctgacct gtcgggttc agctccggtg 180
15 gtgtggaaac ggatgtccca ggagccccca caggaaatgg ccaaggccca ggatggcacc 240
ttctccagcg tgctcacact gaccaacctc actggggctag acacgggaga atactttgc 300
acccacaatg actcccgtag actggagacc gatgagcgga aacggctcta catcttgc 360
ccagatccca ccgtgggctt cctccctaat gatgccgagg aactattcat ctcttcacg 420
gaaataactg agatcaccat tccatgccga gtaacagacc cacagctgtt ggtgacactg 480
20 cacgagaaga aaggggacgt tgcactgcct gtcccctatg atcaccaacg tggctttct 540
ggtatcttg aggacagaag ctacatctgc aaaaccacca ttggggacag ggaggtggat 600
tctgatgcct actatgtctc cagactccag gtgtcatcca tcaacgtctc tgtgaacgca 660
gtcagactg tggccgcga gggtgagaac atcaccctca tgcattgt gatcggaat 720
gagggtgtca acttcgagtg gacatacccc cgccaaagaaa gtggcgct ggtggagccg 780
25 gtactgact tcctcttgc tatgccttac cacatccgtt ccacccctca catccccagt 840
gcccggatgg aagactcggg gacctacacc tgcaatgtga cggagatgtt gaatgaccat 900
caggatggaa aggccatcaa cataccgtt gttggagagcg gctacgtcg gctctggga 960
gagggtggca cactacaatt tgctgagctg catcgagcc ggacactgca ggttagtggc 1020
gaggcttacc caccggccac tgcctcttgc ttccaaagaca accgcacccctt gggcgactcc 1080
30 agcgctggcg aaatcgccct gtccacgcgc aacgtgtcg ggacccggta tgcagatgtt 1140
ctgacactgg ttcgggtgaa ggtggcagag gctggccact acaccatgcg ggccttccat 1200
gaggatgtc aggttccagct tccttccatc ctacagatca atgtccctgt ccgagatgt 1260
gagctaattt agagccaccc tgacagtggg gaacagacat tccgctgtcg tggccggggc 1320
atgcggccatc cgaacatcat ctgggtctggc tgcaatgttgc taaaagggtg tccacgtgag 1380
35 ctggccccc ctgtgttggg gaacagtccg gaagaggaga gccagctgga gactaacgtg 1440
acgtactggg aggaggagca ggagggttggat gtgttggatc cactgcgtt gcagcacgtg 1500
gatcgccac tgcgggtcg ctgcacgtt cgcacacgtt tggccaggaa cacgcaggag 1560
gtcatcggtt ggccacactt cttggccctt aagggtgtgg tgatctcgatc catccctggcc 1620
ctgggtgtgc tcaccatcat ctcccttatac atccatcatc tgcgttggca gaagaagcca 1680
40 cgtaacgaga tccgatggaa ggtgatttggat tgcgttggatc ctgacggccca tgatcatc 1740
tacgtggacc ccatgcagct gcccatttgc tccacgtggg agctgcccgg ggaccagctt 1800
gtgtggggac gcaccctcggtt ctctggggcc ttggggcagg tgggtggggc caccgttcat 1860
ggccctgagcc attttcaagc cccaaatggaa gtggccgtca aaaatgctta a 1911

45 <210> 46
<211> 1176
<212> DNA
<213> Homo sapiens
50

<300>
<302> TGFbeta1
<310> NM000660

55 <400> 46
atgcggccct cccgggtcgcc gctgctgtccg ctgtgttac cgtgtgttgc gctactgggt 60
ctgacgcctg gccccccggc cggggacta tccacatgcgca agactatgcg catggagctg 120
gtgaagcgga agcgcatcgaa ggccatccgc ggccagatcc tgcgttggggc 180

60

```

DE 101 00 586 C 1

agccccccga gccaggggga ggtgccgccc ggcccgctgc ccgaggcgt gctgccctg 240		
tacaacagca cccgcgaccg ggtggccggg gagagtgcag aaccggagcc cgagccttag 300		
gcccactact acgccaagga ggtcacccgc gtgctaattgg tggaaaccca caacgaaatc 360		
tatgacaagt tcaagcagag tacacacagc atatatatgt tcttcaaacac atcagagctc 420		
cgagaagcgg tacctgaacc cgtgtgtc tccggggcag agctgcgtct gctgaggagg 480		5
ctcaagttaa aagtggagca gcacgtggag ctgtaccaga aatacagcaa caattcctgg 540		
cgataacctea gcaaccggct gctggcaccc agcactcgc cagagtggtt atctttgtat 600		
gtcaccggag ttgtcgccca gtgggtgagc cgtggagggg aaattgaggg ctttcgcctt 660		
agcgcact gctcctgtg cagcaggat aacacactgc aagtggacat caacgggttc 720		
actaccggcc gccgagggtg cctggccacc attcatggca tgaaccggcc tttcctgtt 780		10
ctcatggcca ccccgtgga gaggggccag catctgcaaa gctcccgca ccggcggagcc 840		
ctggacacca actattgtt cagctccacg gagaagaact gctgcgtgcg gcagctgtac 900		
attgacttcc gcaaggaccc cggctggaa tgatccacg agcccaaggg ctaccatgcc 960		
aacttctgcc tcgggcccctg cccctacatt tgagcctgg acacgcagta cagcaagggtc 1020		
ctggccctgt acaaccagca taacccgggc gctcggcgg cgccgtgtc cgtggcgeag 1080		15
gctggggc cgctggccat cgtgtactac gtggggccca agcccaaggt ggagcagctg 1140		
tccaacatga tcgtgcgtc ctgcaagtgc agctga 1176		
<210> 47		20
<211> 1245		
<212> DNA		
<213> Homo sapiens		
<300>		25
<302> TGFbeta2		
<310> NM003238		
<400> 47		
atgcactact gtgtgtctgag cgctttctg atcctgcatt tggtcacggt cgcgctcage 60		30
ctgtctaccc gcagcacact cgatattggac cagttcatgc gcaagaggat cgaggcgtac 120		
cgcggccaga tcctgagcaa gctgaagctc accagtcccc cagaagacta tcctgagccc 180		
gaggaagtcc ccccgaggat gatttcate tacaacagca ccaggactt gctccaggag 240		
aaggcgagcc ggagggcggc cgccctggag cggagaggg ggcacgaaaga gtactacgccc 300		
aaggagggtt aaaaaataga catgccccc ttcttccctt ccggaaaatgc catccggccc 360		35
actttctaca gaccctactt cagaattgtt cgatttgacg ttcagcaat ggagaagaat 420		
gcttccaatt tggtaaaggc agagttcaga gtcttcgtt tgcaaaaaaaa 480		
gtgcctgaac aacggattga gctatatcag atttcataatg ccaaaagattt aacatctca 540		
accacagcgt acatcgacag caaatgttg aaaaacaagag cagaaggcga atggctctcc 600		40
ttcgatgtaa ctgatgtctgt tcatgaatgg cttcaccata aagacaggaa cctggattt 660		
aaaataagct tacactgtcc ctgctgcact ttttaccat ctaataatta catcatccca 720		
aataaaagtg aagaactaga agcaagattt gcaggtattt atggcaccc cacatataacc 780		
agtgggtatc agaaaactat aaagtccact agggaaaaaaa acagtggggaa gacccacat 840		
ctccctctaa tggatttgc ctcctacaga cttgagtcac aacagacccaa ccggcggaaag 900		45
aagctgtctt tggatgcggc ctattgttt agaaatgtgc aggataattt ctgcctacgt 960		
ccacttaca ttgatattcaa gagggatcta gggggaaat ggatacacga acccaaagg 1020		
tacaatgcca acttctgtgc tggagcatgc ccgtatttat ggagttcaga cactcagcac 1080		
agcagggtcc tgagttata taataccata aatccagaag catctgcttc tccttgc 1140		
gtgtcccaag attagaacc tctaaccatt ctctactaca ttggcaaaac acccaagatt 1200		
gaacagcttt ctaatatgtat tgtaaaagtct tgcaaaatgca gctaa 1245		50
<210> 48		
<211> 1239		55
<212> DNA		
<213> Homo sapiens		

60

65

DE 101 00 586 C1

<300>
 <302> TGFbeta3
 <310> XM007417

5 <400> 48
 atgaagatgc acttgcaaag ggctctggc gtcctggcc tgctgaactt tgccacggtc 60
 agcctctctc tgtccacttg caccacccg gacttcggcc acatcaagaa gaagagggtg 120
 gaagccatta ggggacagat cttgagcaag ctcaggctca ccagcccccc tgagccaacg 180
 10 gtatgaccc acgtcccccta tcaggtcctg gcccttaca acagcacccg ggagctgctg 240
 gagagatgc atggggagag ggaggaaggc tgcccccagg aaaacacccg gtcgaaatac 300
 tatgccaag aaatccataa attcgacatg atccaggggc tggcggagca caacgaactg 360
 gctgtctgc ctaaaggaaat taccttcaag gtttcccgct tcaatgtgtc ctcagtggag 420
 aaaaatagaa ccaacattt ccgagcagaa ttccgggtct tgccgggtgcc caaccccagc 480
 tctaaagcggc atgagcagag gatcgaccc ttcagatcc ttccggccaga tgacacatt 540
 15 gccaaacagc gctatatcgg tggcaagaat ctggcccacac ggggcactgc cgagttggctg 600
 tcctttagt tcactgacac tgcgtgtgg tgctgttga gaagagatgc caacttaggt 660
 ctagaaatca gcattcactg tccatgtcac acctttcage ccaatggaga tatectggaa 720
 aacattcagc aggtgatgga aatcaaattt aaaggcgtgg acaatgagga tgaccatggc 780
 20 cgtggagatc tggggcgcct caagaagcag aaggatcacc acaaccccta tctaattcctc 840
 atgatgattc cccccacaccc gctcgacaaac ccggggccagg ggggtcagag gaagaagcgg 900
 gctttggaca ccaattactg cttccgcaac ttggaggaga actgctgtgt ggcgcctc 960
 tacattgact tccgacagga tctgggctgg aagtgggtcc atgaacctaa gggctactat 1020
 25 gccaacttct gtcaggccc ttgcccatac ctccgcagtg cagacacaac ccacagcagc 1080
 gtgtggggac tgtacaacac tctgaaccct gaagcatctg cctcgccttgc tgctgtgccc 1140
 caggacctgg agcccccgtac catcctgtac tatgttggga ggacccccaa agtggagcag 1200
 ctctccaaca tgggtgtgaa gtcttgtaaa ttagctgtga 1239

30 <210> 49
 <211> 1704
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> TGFbetaR2
 <310> XM003094

40 <400> 49
 atgggtcgcc ggctgctcag gggcctgtgg ccgctgcaca tcgtcctgtg gacgcgtatc 60
 gcccacgca tccccacccgca cgtcagaag tcggtaata acgacatgt agtcaactgac 120
 aacaacggtg cagtcacgtt tccacaactg tgtaaaattt gtatgtgtgg atttccacc 180
 tgtgacaacc agaaatccctg catgagcaac tgccatca cttccatctg tgagaagcc 240
 caggaagtct gtgtggctgt atggagaaag aatgacgaga acataaacact agagacagg 300
 45 tgccatgacc ccaagctccc ctaccatgac ttattctgg aagatgtgc ttctccaaag 360
 tgcattatga aggaaaaaaa aaagctggt gagactttct tcattgtgttc ctgtagctc 420
 gatgagtgca atgacaacat cattttca gaagaatata acaccagcaa tcctgacttg 480
 tgctgtca tatttcaagt gacaggcatc agccctctgc caccactggg agttgccata 540
 tctgtcatca tcattttca ctgttacccgc gtttaaccggc agcagaagct gagttcaacc 600
 50 tggaaaaccg gcaagacgcg gaagctcatg gagttcagcg agcactgtgc catcatctg 660
 gaagatgacc gctctgacat cagtcacccg tgcgtccaca acatcaacca caacacagag 720
 ctgctgccc ttgagctggc caccctggc gggaaaaggc gcttctgtga ggtctataag 780
 gccaagctga agcagaacac ttccagagcag tttggagacatc tggcagtcac gatcttccc 840
 55 tatgaggagt atgcctcttg gaagacagag aagacatct tctcagacatc caatctga 900
 catgagaaca tactccagtt cctgacggct gaggagcggc agacggagtt gggaaaacaa 960
 tactggctga tcaccggcctt ccacgccaag ggcaacctac aggagtagctt gacgcggcat 1020
 gtcatcagct gggaggacct ggcgaagctg ggcagctccc tcggccgggg gattgtctcac 1080
 ctccacagtg atcacacttc atgtgggagg cccaaagatgc ccacatgtgca cagggaccc 1140

60

65

DE 101 00 586 C 1

aagagctcca atatcctcgta gaaaacgac ctaacctgtgc gcctgtgtga ctttgggctt 1200
 tccctgcgtc tggaccctac tctgtctgtg gatgacctgg ctaacagtgg gcaggtggaa 1260
 actgcaagat acatggctcc agaagtccta gaatccagga tgaatttggaa gaatgttgag 1320
 tccttcaagc agaccgtgt ctactccatg gctctgggtgc tctgggaaat gacatctcgc 1380 5
 tggatgcag tgggagaagt aaaagattat gaggcctccat ttgggttccaa ggtgcgggag 1440
 caccctgtg tcgaaagcat gaaggacaac gtgttgagag atcgaggcg accagaatt 1500
 cccagcttc ggctcaacca ccagggcatc cagatgggtgt gtgagacgtt gactgagtgc 1560
 tggaccacg acccagaggc cctgtctaca gcccagtgtg tggcagaacg cttcagttag 1620
 ctggagcatc tggacaggtt ctggggagg agctgctcg aggagaagat tcctgaagac 1680 10
 ggctccctaa acactaccaa atag 1704

<210> 50
 <211> 609
 <212> DNA
 <213> Homo sapiens 15

<300>
 <302> TGFbeta3
 <310> XM001924 20

<400> 50
 atgtctcatt acaccattat tgagaatatt tggcctaaag atgaatctgt gaaattctac 60
 agtccaaga gagtgcatt tcctatcccg caagctgaca tggataagaa gcgattcagc 120 25
 tttgtcttc agcctgtctt caacacctca ctgtctttc tacagtgtga gctgacgctg 180
 tgtacgaaga tggagaagca cccccagaag ttgccttaagt gtgtgcctcc tgacgaagcc 240
 tgcacccctgc tggacgcctc gataatctgg gccatgatgc agaataagaa gacgttact 300
 aagcccttg ctgtgatcca ccatgaagca gaatctaaag aaaaaggccc aagcatgaag 360
 gaaccaaatac caatttctcc accaatttcc catggtctgg acaccctaaac cgtgatggc 420 30
 attgcgtttt cagccctttgt gatcgagca ctccctgacgg gggccttggtg gtacatctat 480
 tctcacacag gggagacagc aggaaggcag caagtccccca cctcccccggc agcctcgaa 540
 aacagcgtg ctgcccacag catcgccagc acgcagagca cgccttgc cagcagcagc 600
 acggccctag 609 35

<210> 51
 <211> 3633
 <212> DNA
 <213> Homo sapiens 40

<300>
 <302> EGFR
 <310> X00588

<400> 51
 atgcgaccct cggggacggc cggggcagcg ctccctggcgc tgctggctgc gctctgccc 60
 gcgagtcggg ctctggagga aaagaaaatt tgccaaggca cgagtaacaa gctcacgcag 120 45
 ttggcactt ttgaagatca ttttctcagc ctccagagga ttttcaataaa ctgtgagggt 180
 gtccttggga atttggaaat tacctatgtg cagaggaatt atgatcttc cttctttaaa 240
 accatccagg aggtggctgg ttatgtccctc attgcccata acacagtgg gcgaaattcc 300
 ttggaaaaacc tgcatgatcat cagaggaat atgtactacg aaaattccata tgccttagca 360 50
 gtcttatcta actatgtgc aaataaaaacc ggactgaaagg agctgcccatt gagaattta 420
 cagaaaaatcc tgcatggcgc cgtgcgggtc agcaacaacc ctgcccctgtg caacgtggag 480
 agcatccagt ggcggggatcat agtcagcgt gactttctca gcaacatgtc gatggacttc 540
 cagaaccacc tggggcagctg cccaaatgtt gatccaagct gtcccaatgg gagctgctgg 600 55
 ggtgcaggag aggagaactg ccagaaaactg accaaaaatca tctgtgecca gcagtgtcc 660
 gggcgctgcc gtggcaagtc ccccaagtgc tgctgcccaca accagtgtgc tgcaggtgc 720
 60

65

DE 101 00 586 C 1

acaggcccccc gggagagcga ctgcctggtc tgccgcaaat tccgagacga agccacgtgc 780
 aaggacacct gccccccact catgtctac aaccccacca cgtaccagat ggatgtgaac 840
 cccgagggca aatacagctt tgggccacc tgctgtgaaaga aagtgtcccg taattatgtg 900
 gtgacagatc acggctcgta cgtccgagcc tggggcccg acagctatga gatggaggaa 960
 gacggcgtcc gcaagtgtaa gaagtgcga gggccttgcc gcaaagtgtg taacgaaaata 1020
 ggtattgtg aatttaaaga ctcactctcc ataaaatgtca cgaatattaa acacttcaaa 1080
 aactgcaccc ccatcagtgg cgatctccac atccctgcgg tggcatttag gggtgactcc 1140
 ttccacatca ctccctctt ggatccacag gaactggata ttctgaaaac cgtaaggaa 1200
 atcacagggt tttgtctgat tcaggcttgg cctgaaaaaca ggacggaccc ccattgcctt 1260
 gagaacctag aatacatacg cggcaggacc aagcaacatg gtcagtttc tcttgagtc 1320
 gtcagcctga acatacatacg cttggattt cgtccctca gtgataattt cagggaaacaa aaattttgtc tatgcaata 1380
 tttgggaccc cccgttcagaa aacccaaaattt ataagcaaca caataaactg gaaaaaactg 1440
 gccacaggcc aggtctgcca tgccttgc tccccggg gagggtaaaaa cagctgeaag 1500
 agggactgcg tctcttgcgg gaatgtcagc cgaggcaggg gctgctgggg cccggagccc 1560
 cttctggagg gtgagccaag ggagtttgc gagaactctg gagtgccctgc ctcaggccat gaacatcacc tgacaggac 1620
 cagttgtgccc actacattga cggccccac tgcgtcaaga ggagaaaaaca acaccctggt ctggaaatgac gcatagcggc 1680
 catccaaact gcacctacgg atgcacttggg ccaggcttg cctaagatcc cgtccatcgc cactggatg gtggggggccc 1740
 gcccctggga tccggctctt catgcgaagg cgccacatcg aggctgctgc aggagggaa gcttgcggg cctcttacac 1800
 caagctctt tgaggatctt gaaggaaact gaattcaaaa agatcaaaatg gctgggctcc 1860
 ggtgcgttcg gcacgggtta taagggactc tggatcccag aaggctgtcc aaggctgtcc 1920
 cccgtcgcta tcaaggaattt aagagaagca acatctccga gatgaagcct acgtgtatggc cagcgtggac aaccccccacg 1980
 tgcctcacct ccaccgtgca actcatcacc cagctcatgc tatgtccggg aacacaagaaca caatattggc tcccaactt 2040
 atcgcaaaagg gcatgacta cttggaggac cgtcgcttgc tcccgatccctt gatggggatggc aatccctgc 2100
 aggaacgtac tggtaaaaaac accgcagcat gtcaagatca atggcattgg aatcaattttt acacagaatc tataccacc 2160
 ggggtgaccg tttgggagtt gatgacccctt ggatccaaggc aaggatggaaa agttaaaaattt 2220
 agcgagatct cctccatcct ggagaaagga gaacgcctcc atcgatgtct acatgatcat ggtcaagtgc tggatgatag 2280
 ttccgtgagt tgatcatcgat attctccaa atggcccgag attcaggggg atgaaaagaat gcatttgcga agtcttacag 2340
 ctgatggatg aagaagacat ggacgcgtg gtggatgcgg cagggttctt tcagcagccctt 2400
 accagcaaca attccaccgt ggcttgcatt gatagaaatg ggatgttgc tccatgttgc 2460
 aaggaagaca gettcttgcga gcgatacagc tcagacccca cccgtggctt ctgtgcagaa tccctgttat 2520
 accatagacg acaccccttccccc cccaggcttcc cccgtggctt ctgtgcagaa tccctgttat cacaatcage 2580
 cccgtggctt ctgtgcagaa tccctgttat cacaatcage cccaggcttcc cccgtggctt ctgtgcagaa 2640
 agagacccac actaccagga ccccccacgc actgcgtgg gcaaccccgaa gtatctcaac 2700
 actgtccagc ccacctgtgt caacagcaca ttgcacagcc tccggccacc cccgtggctt ctgtgcagaa 2760
 ggcagccacc aaatttagcct ggacaacccct gactaccagc aggacttctt tcccaaggaa 3300
 gccaagccaa atggcatctt taaggctcc acagctgaaa atgcagaata cctaaagggtc 3360
 gcgccacaaa gcagtgaatt tattggagca tga 3420
 3600
 3633

<210> 52
 <211> 3768
 <212> DNA
 <213> Homo sapiens

<300>

60

65

DE 101 00 586 C 1

<302> ERBB2
<310> NM004448

<400> 52
atggagctgg cggccttgtg ccgctgggg ctcctcctcg ccctttgc ccccgagcc 60
gegacaccc aagtgtcac cggcacagac atgaagctgc ggctccctgc cagttccgag 120
acccacctgg acatgtccg ccacctctac cagggtgtcc aggtgggtca gggaaacctg 180
gaactcacct acctgcccac caatgccagc ctgtccctcc tgcaaggatata ccaggagggt 240
cagggtcta cgtcatcgc tcacaaccaa gtgaggcagg tccactgca gaggctgccc 300
attgtgcgag gcaccacagct ctttgaggac aactatgtcc ttggccgtct agacaatgaa 360
gaccggctga acaataccac ccctgtcaca ggggcctccc cagggggct gcgaggctg 420
caggttgc aacatccacaga gatcttggaaa ggagggtct tgatccagcg gaacccccag 480
ctctgttacc aggacacgt ttgttggaaag gacatcttcc acaagaacaa ccagctggct 540
ctcacactga tagacaccaa cegctctcg ggctgcacc cctgttctcc gatgtgttaag 600
ggctcccgct gctggggaga gatgttgc gattgtcaga ggctgacgctg cactgtctgt 660
ggccgggtgt gtggccgctg caaggggcca ctggccactg actgtgtcca tgagcagtgt 720
gtgtccggct gcacggggcc caagactct gactgcctgg cctgcctcca ttcaaccac 780
agtggcatct gtgactgtca ctggccagcc ctggtcacca acaacacama cactgttgag 840
tccatgcca atccccgggg ccggtatata ttggcggcca gctgtgtac tgctgttccc 900
tacaactacc ttctacggg cgtgggatcc tgacccctcg tctggccctt gcaacaccaa 960
gaggtgacag cagaggatgg aacacagcgg tggagaagt gcagcaagcc ctgtggccga 1020
gtgtctatg gtctggcat ggagacttg cgagaggta gggcagttac cagtgccaaat 1080
atccaggagt ttgttggctg caagaagatc ttggggagcc tggcattttct gccggagagc 1140
tttgcgtggg acccagccctc caacactgca cggccactg cagagcagct ccaagtgttt 1200
gagactctgg aagagatcac agtttaccta tacatctcg catggccgga cagccctgcct 1260
gacccatcg tttccatggaa cctgcaagta atccggggac gaattctgca caatggccgc 1320
tactcgctga ccctgcaagg ctggggcatc agctggctgg ggctgcgcctc actgagggaa 1380
ctgggcgtgt gactggccct catccacat aacaccacc tctgttctgt gcacacagggt 1440
ccctgggacc agcttttgt gaaaccggcac caagcttgc tccacactgc caaccggccaa 1500
gaggacgagt gtgtggcgaa gggcctggcc tgccaccgc tggcggcccg agggcactgc 1560
cggggtccag ggcccaaaaa gtgtgtcaac tgccaggccat tccctggggg ccaggagtgc 1620
gtggaggaat gcccgtact gcaagggctc cccaggaggat atgtaatgc caggcactgt 1680
ttgtccgtggc accctgtgtg tcagccccc aatggctcg tgacctgttt tggaccggag 1740
gtgtgaccagt gtgtggctgg tggccactat aaggaccctc ccttctgcgt gcccgcgtc 1800
cccagegggtg taaaacctga cctctccctac atgcccattt ggaagttcc agatgaggag 1860
ggcgtggcc acccttggcc catcaactgc acccactct gtgtggacctt ggtgttggc 1920
gtgtccgtgg tggccgtttt ggggtggc tggcgttcc tctacaagggt catctggatc 1980
tttgcgtgttgg tggccgtttt ggggtggc aatccatggaa agtacacatg gggggatcc 2040
agatccggaa agtacacatg gggagactg ctgaggaaa cggagctggt ggagccgctg 2100
acaccttagcg gagcgatgcc caaaccaggcg cagatgcggaa tccatggccatc 2160
ggaaagggtga aggtgttgg atctggcgat tttggccatc tggcgttggt gggctccca 2220
ctgtatgggg agaatgtgaa aattccatgt gcatcaactgc acatccacgg tggcgttggt 2280
ccaaagccca acaaagaaat cttagacgaa gcatcaactgc gcatacgtga tggcgttggt 2340
atgtctccc gccttctggg catctgcctg acatccacgg tggcgttggt gggctccca 2400
tgcctatcg tgcctatcg agaccatgtc cggggaaacc gccggacgcct gggctccca 2460
acctgtgtga actgggtgtat gcaaggatggc aaggggatga gctacctggaa ggtgtgggg 2520
tgcgtatcaca gggacttggc cgctcgaaac gtgtgggtca agatcccataa ccatgtcaaa 2580
tttacagact tcgggttggc tcgggtgtcg gacattgtac agacagatg ccatgcagat 2640
ggggcaagg tgcccatcaa gtggatggcg ctggagtccaa ttctccggcc ggggttccacc 2700
accagagtg atgtgttgg tttatgtgtg actgtgttgg agtgcgtatgac tttggggcc 2760
aaccttacg atgggttggc agccccgggg aatccctgacc tgctgtggaaa gggggagcgg 2820
tgccccagc ccccccattcg caccattgtat gtcatacatgaa tcatgttggtaa atgttggatg 2880
tttgcgttgc aatgtcgcc aagatcccg gatgttgggtt ctgaaatctc ccgcgtatggcc 2940
ggggacccccc agcgctttgt ggtcatcccg aatgaggact tggggccacg cagttcccttg 3000
acagcacct tctaccgtcc actgtgtggag gacgtatgaca tgggggaccc ggtggatgtct 3060
aggagtatac tggttacccca gcagggttcc ttctgtccag accctggccccc gggcgctggg 3120
gcatgttcc accacaggca cccgacgtca tctaccaggaa gtggcggtgg qqqacctqaca 3180

60

65

DE 101 00 586 C 1

ctagggctgg	agccctctga	agaggaggcc	cccaggtctc	cactggcacc	ctccgaaggg	3240	
5	gctggctccg	atgtatTTGA	tggTgacTGT	ggaatggggg	cagccaaggg	gctgcaaAGC	3300
	ctccccacac	atgacCCCAg	cccttacAG	cggtacAGTg	aggacCCAC	agtacCCCTG	3360
	ccctctgaga	ctgatggcta	cgTTgggggg	ctgacACTGCA	gcccccaGCC	tgaatatgtg	3420
	aaccagccag	atgttcggcc	ccagccccCT	tcgccccGAG	aggggccCTCT	gcctgctGCC	3480
	cgacctGCTG	gtgccactCT	ggaaaggGGCC	aagactCTCT	ccccaggGAA	gaatggggTC	3540
	gtcaaaGACG	tttttgcTTT	tgggggtGcc	gtggagaACC	ccgagtactT	gacacCCCAg	3600
	ggaggagCTG	cccccTcAgCC	ccacCCCTCT	cctgcCTTCA	gcccAGCCTT	cgacaacCTC	3660
10	tattactggg	accaggacCC	accagAGCGG	ggggCTCCAC	ccagcacCTT	caaaggGACA	3720
	cctacGGCAG	agaacCCAGA	gtacCTgggt	ctggacGTGc	cagtGTGA.		3768

15 <210> 53
<211> 1986
<212> DNA
<213> Homo sapiens

20 <300>
<302> ERBB3
<310> XM006723

<400>	53	atgcacaact	tcagtgtttt	ttccaatttg	acaaccattg	gaggcagaag	cctctacaac	60
25		cggggcttct	cattgttcat	catgaagaac	ttgaatgtca	catctctggg	cttccgatcc	120
		ctgaaggaaa	ttagtgtctgg	gcgtatctat	ataagtgccta	ataggcagct	ctgttaccac	180
		caactttga	actggaccaa	ggtgttctgg	gggcctacgg	aagagcgact	agacatcaag	240
		cataatcgcc	cgcgcagaga	ctgctgtggca	gagggcaaaag	tgtgtgaccc	actgtgtcc	300
30		tctggggat	gttggggcccc	aggcccttgg	cagtgtttgt	cctgtcgaaa	ttatagccga	360
		ggaggtgtct	gtgtgaccca	ctgcaacttt	ctgaatgggg	agccctcgaga	atttggccat	420
		gaggccgaat	gttcttctgg	ccacccggaa	tggcaacccca	tggagggcac	tgccacatgc	480
		aatggctcgg	gttctgtata	ttgtgtctaa	tgtgcccatt	ttcagatgg	gccccactgt	540
		gtgagcagct	gccccccatgg	agtcttaggt	gccaaggggcc	caatctacaa	gtacccagat	600
		gttcagaatg	aatgtcgcc	ctgcccatttt	aactgcaccc	aggggtgtaa	aggaccagag	660
35		cttcaagact	gtttaggaca	aacacttgggt	ctgatcgca	aaacccatct	gacaatggct	720
		ttgacagtga	tagcaggatt	ggtagtgatt	ttcatgtatc	tgggccccac	ttttctctac	780
		tggcggtggc	gccggattca	gaataaaaagg	gctatgaggc	gatacttgg	acgggggtgag	840
		agcatagagc	ctctggaccc	cagtggaaag	gctaacaaaag	tcttggccag	aatcttcaaa	900
		gagacagagc	taaggaagct	taaagtgttt	ggctcggggt	tctttggaaac	tgtgcacaaaa	960
40		ggagtgtgga	tccctgaggg	tgaatcaatc	aagattccag	tctgcattaa	agtcatgtag	1020
		gacaagagtg	gacggcagag	ttttcaagct	gtgacagatc	atatgttgc	cattggcagc	1080
		ctggaccatg	ccccacattgt	aaggctgtg	ggactatgcc	cagggtcatc	tctgcagctt	1140
		gtcactcaat	atttgcctt	gggttctctg	ctggatcatg	tgagacaaca	ccggggggca	1200
		ctggggccac	agctgtctgt	caacttgggg	gtacaaaattt	ccaagggtt	gtactacatt	1260
45		gaggaacatg	gtatggtca	tagaaaacct	gctgcccggaa	acgtgtctact	caagtccccc	1320
		agtcaaggttc	agggtggcaga	ttttgggtgt	gctgacctgc	tgcctcttga	tgataaagcag	1380
		ctgttatata	gtgaggccaa	gactccaaatt	aagtggatgg	cccttggagag	tatccacttt	1440
		gggaaataca	cacaccagag	tgatgtctgg	agctatgggt	tgacagttt	ggagttgtat	1500
		accttcgggg	cagagcccta	tgcaaggctt	cgatggctg	aagtaccaga	cctgctagag	1560
50		aaggggggagc	gttggcaca	gccccagatc	tgacacaattt	atgtctacat	ggtgtatggtc	1620
		aagtgttgg	tgattgtatga	gaacatttgc	ccaacccctta	aagaactagc	caatgagttc	1680
		accaggatgg	cccgagaccc	accacggat	ctgggtctaa	agagagagag	tgggcttgg	1740
		atagggcttgc	ggcccgagac	ccatgttctg	acaaaacaaga	agctagagga	agtagagctg	1800
		gagccagaac	tagacccatg	ccttagatgg	gaagcagagg	aggacaaccc	ggcaaccacc	1860
55		acactgggct	ccggcccttca	ccttaccagg	ggaacactta	atcgcccaacg	tgggacccag	1920
		agccctttaa	gttccatcatc	tggatcatg	cccatgaaacc	agggtaatct	tggggttctt	1980
		ccttag						

60

65

DE 101 00 586 C 1

<210> 54
<211> 1437
<212> DNA
<213> Homo sapiens

<300>
<302> ERBB4
<310> XM002260

<400> 54

atgatgtacc tggaaagaaaag acgactcggtt catcgggatt tggcagccccg taatgtctta 60
gtgaaaatctc caaacatgt gaaaatcaca gattttgggc tagccagact ctttgaagga 120
gtgaaaaaaag agtacaatgc tgatggagga aagatgccaa tttaaatggat ggctctggag 180
tgtatacatt acaggaaattt caccatcgat agtgcgtttt ggagctatgg agttactat 240
tggaaactga tgaccccttgg aggaaaacccc tatgtggaa ttccaacgcg agaaaatccct 300
gatttattag agaaaggaga acgtttgcct cagccctcca tctgcactat tgacgtttac 360
atggtcatgg tcaaataatgtt gatgattgat gctgacagta gacctaattt taaggaactg 420
gctgctgagt ttcaaggat ggctcgagac cctcaaagat accttagttat tcagggttat 480
gatcgatata gacttcccgat tccaaatgac agcaagttctt tcagaatctt ctggatgaa 540
gaggattttgg aagatatgat gtatgtcgat gagtacttgg tccctcaggc ttcaacatc 600
ccacccctcca tctatacttc cagagcaaga attgactcgat ataggagtga aattggacac 660
agccccctcc tgcctacac ccccatgtca gggaaaccatgtt ttgtataccg 720
tttgctgtcg aacaaggatgt gtcgtgtccc tacagagccc caactagcac agatggaggt 780
gctcctgtgg cacagggtgc tactgtcgat atttttgtat actcctgtcg taatggcacc 840
ctacgcgaagc cagtgccacc ccatgtccaa gaggacagta gcacccagag gtacagtgt 900
gaccccccaccc tgtttgcctt cagaacggagc ccacgaggag agctggatga ggaagggtac 960
atgactccca tgcgagacaa accccaaacaa gaataacctga atccagtggatgg 1020
tttggtttctc ggagaaaaaaa tggagacctt caagcattgg ataatcccgat gggaaaccct 1080
gcatccaatg gtccacccaa ggcggaggat gaggatgtga atgagccact gtacctcaac 1140
accccttgcac acacccctggg aaaagctgatg tacctgaaga acaacatactt gtcaatgcca 1200
gagaaggcca agaaaggctt tgacaaccctt gactactggat accacagccctt gccacctcg 1260
agcacccttc agcaccctaga ctacctgtcgat gagtacagca caaaatattt ttataaacag 1320
aatggccgga tccggcttat tggcggatgaa aatcctgtat acctctgtat gttctccctg 1380
aaggccaggca ctgtgtcgcc gcctccaccc tacagacacc ggaataactgtt ggtgtaa 1437

<210> 55
<211> 627
<212> DNA
<213> Homo sapiens

<300>
<302> FGF10
<310> NM004465

<400> 55

atgtggaaat ggatactgac acattgtgcc tcagccttcc cccacactgccc cggctgtgc 60
tgtctgtctt ttttgggtt gttcttgggt tcttccgtcc ctgtcacctt ccaaggccctt 120
ggtcaggaca tgggtgcacc agaggccacc aactcttctt cctccctt ctcctctctt 180
cccaaggccgg gaaggcatgt gcccggactac aatcacccctt aaggagatgtt ccgctggaga 240
aaggcttatttctt ctttcaccaaa gtactttctt aagattggaa agaacgggaa ggtcagccgg 300
accaagaagg agaactgccc gtacagcatc ctggagataa catcagtata aatcggagtt 360
tttggccgtca aaggccattaa cagcaactat tacttagcca tgaacaagaa gggggaaactc 420
atggcgtca aagaattttaa caatgtactgtt aagctgaaagg agaggataga gggaaaatgg 480
acaaataacctt atgcatttcaacttggcag cataatggga ggccaaatgtt tggcattt 540
aatggaaaag gagcttcaag gagaggacag aaaacacccac gggaaaacac ctctgtc 600

DE 101 00 586 C 1

tttcttccaa tggtggtaca ctcata

627

5 <210> 56
<211> 1069
<212> DNA
<213> Homo sapiens

10 <300>
<302> FGF11
<310> XM008660

<400> 56
15 ncbnsncvwrb mdnctdrtnng nmstrctrst tanmymmsar chbmdrttnnc tdstrctrgn 60
mstmmtanmy rmtsndhstr ycbardasna stagnbankg rahcsmdatv washtmantt 120
hdbrandnkb arggnbankh msansbrbas tgrrtntanm ycsmbmrnar nvdnthmsa 180
nsbrbastgr wthactrgmr naaccssnmv rsnmgkywrd ssrchmanrg ansmhmsans 240
karytamtaa chrdatacra natavrtbra tatstmmamm aathrarmat scatarrhnh 300
20 mndahmrrnc basstathrs ncbanntatn rcttdrcts bmssnrnasb mttdnvnatn 360
acnrrrbtch ngynrmatnn hbthsdamds aatggcgccg ctggccagta gcctgatccg 420
gcagaagccg gaggccgcg agcccgggg cagccggccg gtgtccgcg acgcggcgcgt 480
gtgtccccgc ggcaccaagt cccttgcca gaagcagetc ctcatccgtc tgtccaaggt 540
gcaactgtgc gggggccgcg ccgcggccg ggaccggccg cggagccctc agctcaaagg 600
25 catgtcacc aaactgttct gcccgggg ttctacctc caggcgaatc ccgacggaaag 660
catccaggc accccagagg ataccagtc cttcacccac ttcaacctga tccctgtggg 720
cctccgtgtc gtcaccatcc agagcccaa gctgggtcac tacatggca tgaatgctga 780
gggactgctc tacagttcgc cgcatttcac agctgagtgt cgcttaagg agtgtgtctt 840
tgagaattac tacgtcctgt acgcctctgc tctctaccgc cagcgtcggt ctggccggc 900
30 ctggtaaccc gcccacttgc tgcccaagct cctggaggtg gccatgtacc aggacccctc 1020
tctccacagt gtccccggagg cctcccttc cagtcggggc gccccctga 1069

35 <210> 57
<211> 732
<212> DNA
<213> Homo sapiens

40 <300>
<302> FGF12
<310> NM021032

<400> 57
45 atggctgcgg cgatagccag ctccttgatec cggcagaagc ggcaggcgag ggagtccaaac 60
agcgaccgag tgcggccctc caagccccgc tccagccccca gcaaagacgg ggcgtccctg 120
tgcgagggc acgtccctcg ggtgttcagc aaagtgcgt tctgcagccg cgcgaaggagg 180
ccggtagggc ggagaccaga accccagctc aaaggattg tgacaagggtt attcagccag 240
caggataact tcctgcagat gcacccagat ggtaccattg atgggacccaa ggacgaaaac 300
50 agcgactaca ctctttcaaa tctaattccc gtggccctgc gtgtagtggc catccaagga 360
gtgaaggcta gcctctatgt ggcataaat ggtgaaggct atctctacag ttcagatgtt 420
ttcacccag aatgcaaatt caaggaatct gtgttgaaa actactatgt gatctattct 480
tccacactgt accgccagca agaatcagcc cgagcttggt ttctggact caataaaagaa 540
ggtcaaattt tgaagggaa cagagtgaag aaaaccaagc cctcatcaca ttttgtaccg 600
55 aaacctattt aagtgtgtat gtacagagaa ccatcgctac atgaaattgg agaaaaacaa 660
ggcgttcaa gaaaaagtcc tggaacacca accatgaatg gaggcaaagt tgtgaatcaa 720
gattcaacat ag 732

60

65

DE 101 00 586 C 1

<210> 58
 <211> 738
 <212> DNA
 <213> Homo sapiens

5

<300>
 <302> FGF13
 <310> XM010269

10

<400> 58
 atggcggcgg ctatcgccag ctcgctcatc cgtcagaaga ggcaagcccc cgagcgcgag 60
 aaatccaacg cctgcaagtgt tgtagcgcgccc cccagcaaa gcaagaccagg ctgcgacaaa 120
 aacaagttaa atgtcttttc ccgggtcaaa ctcttcggct ccaagaagag ggcgagaaga 180
 agaccagagc ctcagcttaa gggtatagtt accaagctat acagccgaca aggctaccac 240
 ttgcagctgc aggccggatgg aaccattgtat ggacccaaag atgaggacag cacttacact 300
 ctgtttaacc tcatccctgt gggctcgat gtgggtggcta tccaaaggagt tcaaaccaag 360
 ctgtacttgg caatgaacag tgagggatac ttgtacacctt cggaaactttt cacacctgag 420
 tgcaattca aagaatcagt gtttgaaaat tattatgtga catattcatc aatgatatac 480
 cgtcagcgc agtcaggccg agggtgttat ctgggtctga acaaagaagg agagatcatg 540
 aaaggcaacc atgtgaagaa gaacaaggctt gcagctcatt ttctgcctaa accactgaaa 600
 gtggccatgt acaaggagcc atcaactgcac gatctcacgg agttctcccg atctggaaagc 660
 gggaccccaa ccaagagcag aagtgtctct ggctgtctga acggaggcaa atccatgagc 720
 cacaatgaat caacgtag 738

25

<210> 59
 <211> 624
 <212> DNA
 <213> Homo sapiens

30

<300>
 <302> FGF16
 <310> NM003868

35

<400> 59
 atggcagagg tggggggcgt ctgcgcctcc ttggactggg atctacacgg ctgcgcctcg 60
 tctctgggaa acgtgcgcctt agctgactcc ccagggtttcc tgaacgcgcg cctggccaa 120
 atcgaggggaa agctgcagcg tggctcaccc acagacttcg cccacactgaa gggatcctg 180
 cggccgcgc agctctactg ccgcacccgc ttccacctgg agatcttccc caacggcgcg 240
 gtgcacggga cccgcacga ccacagccgc ttccggatcc tggagttt cagctggct 300
 gtggggctga tcagcatccg gggagttggac tctggcctgt accttaggaat gaatgagcga 360
 ggagaactct atgggtcgaa gaaactcaca cgtgaatgtg tttccggaa acagtttggaa 420
 gaaaacttgtt acaacaccta tgcctcaacc ttgtacaaac attcggactc agagagacag 480
 tattacgtgg ccctgaacaa agatggctca ccccgagg gatacaggac taaacgacac 540
 cagaattca ctcactttt acccaggcct gtagatccctt ctaagttgcc ctccatgtcc 600
 agagacctctt ttcactatag gtaa 624

40

<210> 60
 <211> 651
 <212> DNA
 <213> Homo sapiens

45

<300>
 <302> FGF17
 <310> XM005316

55

60

65

DE 101 00 586 C 1

5 <400> 60
 atgggagccg cccgcctgtc gccccaccc actctgtgt tacagctgtct gattctctgc 60
 tgtcaaactc agggggagaa tcaccgtct cctaattttt accagtaactt gagggaccag 120
 ggcgccatga ccgaccagct gagcaggccg cagatcccg agtaccaactt ctacacggg 180
 accagtggca agcacgtca ggtcaccggg cgtcgcattt ccccccaccc cgaggacggc 240
 aacaagttt ccaagctcat agtggagacg gacacgtttt gcaagccggg tccatcaaaa 300
 gggctgaga gtgagaagta catctgtatg aacaagaggg gcaagctcat cggaaagccc 360
 agcggagaaga gcaaagactg cgtgttacg gagatctgtc tggagaacaa ctatacggcc 420
 ttccagaaacg cccggcacga gggctggttc atggcattca cgcggcaggg gggccccccgc 480
 10 caggcttccc gcacccgcga gaaccacgcg gaggccact tcatcaagcg ccttaccaa 540
 ggcagctgc cttcccca ccacgcggag aaggagaagc agttcgagtt tgtggctcc 600
 gccccaccc gccggaccaa gcgcacacgg cgccccccagc ccctcacgtt g 651

15 <210> 61
 <211> 624
 <212> DNA
 <213> Homo sapiens

20 <300>
 <302> FGF18
 <310> AF075292

25 <400> 61
 atgttattcag cggccctccgc ctgcacttgc ctgtgtttac acttcctgtct gctgtgttc 60
 caggtacagg tgctgggtgc cgaggagaac gtgacttcc gcatccacgt ggagaaccag 120
 acgcgggctc gggacgtgt gagccgtaa cagctgcggc tgcgttccatc tcatacggg 180
 accagtggga aacacatcca ggtcctggc cgcaggatca gtggccgcgg cgaggatggg 240
 30 gacaagtatg cccagctcct agtggagaca gacaccttcg ttagtcaagt cccggatcaag 300
 ggcaaggaga cggaaattcta cctgtgcattt aaccgcggaa gcaagctcg tggaaagccc 360
 gatggcacca gcaaggagtg tgcgttccatc gagaagggtt tggagaacaa ctacacggcc 420
 ctgtatgtcg ctaagtactc cggctggatc gtggcttca ccaagaagggg gggccgcgg 480
 aaggggccca agacccggga gaaccacgcg gacgtgcatt tcatgaagcg ctaccccaag 540
 35 gggcagccgg agcttcagaa gcccttcaag tacacgcacgg tgaccaagag gtcccgatcg 600
 atccggccca cacacccttc ctag 624

40 <210> 62
 <211> 651
 <212> DNA
 <213> Homo sapiens

45 <300>
 <302> FGF19
 <310> AF110400

50 <400> 62
 atgcggagcg ggtgtgtggg ggtccacgtt tggatctgg cggccctctg gctggccgtg 60
 gccggggccc ccctcgccctt ctgcggacgcg gggcccccacg tgcactacgg ctggggcgac 120
 cccatccgcg tgcggcacctt gtacacctcc ggcggccacg ggctctccag ctgcttccctg 180
 cgcatccgtg cggacggcggt cgtggactgc ggcggggcc agagcgcgcgca cagtttgcgt 240
 gagatcaagg cagtcgcctt ggcggaccgtg gccatcaagg ggcgtgcacag cgtgcggatc 300
 ctctgcattttt ggcggacccgg caagatgcag gggctgttcc agtactcgaa ggaagactgt 360
 55 gctttcgagg aggagatccg cccagatggc tacaatgtgt accgatccga gaagcaccgc 420
 ctcccggtctt ccctgagcag tgccaaacag cggcagctgt acaagaacag aggctttctt 480
 ccactcttc atttcctgcc catgctgccc atggcccccag aggagcctgtt ggacccagg 540

60

65

DE 101 00 586 C 1

ggccacttgg aatctgacat gttcttctcg cccctggaga ccgacagcat ggaccattt 600
 gggcttgtca ccggactgga ggccgtgagg agtcccagct ttgagaagta a 651

<p><210> 63 <211> 468 <212> DNA <213> Homo sapiens</p> <p><400> 63 atggctgaag gggaaatcac cacottcaca gccttgaccg agaagttaa tctgcctcca 60 gggattaca agaagccaa actccttac ttagcaacg gggccactt cctgaggatc 120 ctccggatg gcacagtggg tgggacaagg gacaggagcg accagcacat tcagtcag 180 ctcagtgcgg aaagcgtggg ggaggttat ataaagatg ccgagactgg ccagacttg 240 gccatggaca ccgacgggc ttatacggc tcacagacac caaatgagga atgttgc 300 ctggaaaaggc tggaggagaa ccattacaac acatatatac ccaagaagca tgcaaaaaag 360 aattggtttgc ttggcctcaa gaagaatggg agctgcaaac gccgtcctcg gactcactat 420 ggccagaaag caatcttgc tctccccctg ccagtctctt ctgattaa 468</p> <p><210> 64 <211> 636 <212> DNA <213> Homo sapiens</p> <p><300> <302> FGF20 <310> NM019851</p> <p><400> 64 atggctccct tagccgaagt cgggggctt ctggggcgcc tggagggctt gggccagcag 60 gtgggttcgc atttcctgtt gcctcctgcc gggagcgcc cgccgctgtt gggcagcgc 120 aggagcgggg cggagcggag cggccggcc gggccgggg ctgcgcagct ggcgcacctg 180 cacggcatcc tgcgcggcc gcagcttat tgccgcaccc gcttccacctt gcagatcctg 240 cccgacggca gctgtcaggg caccggccag gaccacagcc tcttcggat cttggaaattc 300 atcagtgtgg cagtgggact ggtcagtatt agaggtgtgg acagtggctt ctatcttgg 360 atgaatgaca aaggagaact ctatggatca gagaaactt cttccgaatg catctttagg 420 gagcaatttgc aagagaactg gtataacacc tattcatcta acatataaa acatggagac 480 actggccgca ggtatattgtt ggcacttaac aaagacggaa ctccaagaga tggccagg 540 tccaaaggc atcagaaattt tacacatttgc ttacatggatc cagtgatcc agaaagagtt 600 ccagaatttgc acaaggaccc actgatgtac acttgc 636</p> <p><210> 65 <211> 630 <212> DNA <213> Homo sapiens</p> <p><300> <302> FGF21 <310> XM009100</p> <p><400> 65 atggactcggtt acgagaccgg gttcgagcac tcaggactgt gggtttctgt gctggctgg 60 cttctgctgg ggcacttgc ggcacacccc atccctgact ccagtccctt cctgaattc 120 gggggccaaatccggcagcg gtaccccttac acagatgtat cccagcagac agaagccac 180 ctggagatca gggaggatgg gacgggtggg ggcgctgtt accagagcccc cggaaatctc 240</p>	<p>5 10 15 20 25 30 35 40 45 50 55 60 65</p>
---	--

DE 101 00 586 C 1

5 ctgcagctga aaggccttggaa gccgggagtt attcaaattct tgggagtc aa gacatccagg 300
 ttccctgtgcc agcgccccaga tggggccctg tatggatcgc tccactttga ccctgaggcc 360
 tgca gcttcc 360
 ggcctcccgcc tgcacctgcc agggaaacaag tccccacacc gggacctgc cgaagccac 420
 ccagctcgct tcctgcccact accaggcctg ccccccgcac tcccgagcc acccgaaatc 540
 ctggcccccc agggggggaa tgtgggctcc tcggaccctc tgagcatggt gggacccttcc 600
 cagggccgaa gccccagcta cgcttccctga 630

10 <210> 66
 <211> 513
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> FGF22
 <310> XM009271

20 <400> 66
 atgcggccgc gcctgtggct gggcctggcc tggctgtgc tggcgccggc gccggacgcc 60
 gcgggaaccc cgagcgcgtc gcggggaccg cgcagctacc cgcaccttga gggcgacgtg 120
 cgctggggc gccttcttc ctccactcac ttcttcctgc gctggatcc cgccggccgc 180
 gtgcaggcga cccgctggcg ccacggccag gacagcatcc tggagatccg ctctgtacac 240
 25 gtgggcgtcg tggtcataaa agcagtgtcc tcaggcttct acgtggccat gaaccggccgg 300
 ggcgcctct acgggtcgcg actctacacc gtggactgca gttccggga ggcgcacatcgaa 360
 gagaacggcc acaacaccta cgcctcacag cgctggccgc ggcgcggcca gcccatgttc 420
 ctggcgctgg acaggagggg gggggcccccgg ccaggcggcc ggacgcggcg gtaccacctg 480
 tccgcccact tcctgcccgt cctggtctcc tga 513

30 <210> 67
 <211> 621
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> FGF4
 <310> NM002007

40 <400> 67
 atgtcggggc cggggacggc cgccgttagcg ctgtcccg cggtcctgtc ggccttgctg 60
 ggcgccttggg cggggccagg gggcggccgc gcacccactg caccacacgg cacgctggag 120
 gcccagctgg aegcgccgtc ggagagcctg gtggcgctct cgttggcgcg cctgcccgtg 180
 45 gcagcgccgc ccaaggaggc ggccgtccag agcggcgccg ggcactacatc gctgggcate 240
 aagcggtcg ggcggctcta ctgcaacgtg ggcacgtgc tccacccatc ggcgtctccc 300
 gacggccgca tcggcgccgc gcacgcggac acccgccgaca gctgtcgat gctctcgccc 360
 gtggagcgcc ggctggtagt catcttcggc gtggccagcc gtttcttgc ggcacatgagc 420
 agcaaggggca agctctatgg ctgccttc ttacccatg agtgcacgtt caaggagat 480
 50 ctcccttccca acaactacaa cgcctacag tccataagt accccggcat gttcatcgcc 540
 ctgagcaaga atggaaagac caagaagggg aaccgagtgt cgcccaccat gaaggtcacc 600
 cacttccctcc ccaggctgtg a 621

55 <210> 68
 <211> 597
 <212> DNA
 <213> Homo sapiens

DE 101 00 586 C 1

<300>		
<302> FGF6		
<310> NM020996		
<400> 68		5
atgtcccgaa gaggcaggacg tctgcagggc acgctgtggg ctctcgctt cctaggcatc 60		
ctagtggca tggtggtgcc ctcgcctgca ggcacccgtg ccaacaacac gctgctggac 120		
tcgagggct ggggcaccct gctgtccagg tctcgccgg ggctagctgg agagattgcc 180		
ggggtaact gggaaagtgg ctatgggtg gggatcaagc ggcagcggag gctctactgc 240		
aacgtggca tcggcttca cctccagggtg ctccccgacg gceggatcatcg cgggaccac 300		
gaggagaacc cctacagcc tctggaaatt tccactgtgg agcgaggcgt ggtgagtc 360		
tttggagtga gaagtgcctt cttcggtgcc atgaacagta aaggaagatt gtacgcaacg 420		
cccagctcc aagaagaatg caagttcaga gaaaccctcc tgcccaacaa ttacaatgcc 480		
tacgagttagt acttgttacca agggacctac attgcccgtga gcaaatacgg acggtaaag 540		
cggggcagca aggtgtcccc gatcatgact gtcaactcatt tccttcccgatctaa 597		
<210> 69		
<211> 150		
<212> DNA		
<213> Homo sapiens		
<300>		
<302> FGF7		
<310> XM007559		
<400> 69		
atgtcttggc aatgcacttc atacacaatg actaatctat actgtgtatga tttgactcaa 60		
aaggagaaaa gaaattatgt agtttcaat tctgatttctt attcacctt tgtttatgaa 120		
tggaaagctt tgtgcaaaaat atacatataa 150		
<210> 70		
<211> 628		
<212> DNA		
<213> Homo sapiens		
<300>		
<302> FGF9		
<310> XM007105		
<400> 70		
gatggctccc ttaggtgaag ttgggaacta ttccgggtgt caggatgcgg taccgtttgg 60		
gaatgtccc gtgtggccgg tggacagccc gggtttgtta agtgcaccacc tgggtcagtc 120		
cgaagcaggc gggctcccca ggggaccgc agtcacggac ttggatcatt taaagggat 180		
tctcaggcgg aggcagctat actgcaggac tggatttcac ttagaaatct tccccatgg 240		
tactatccag ggaaccagga aagaccacag ccgatttggc attctggat ttatcagtat 300		
agcagtgggc ctggtcagca ttccggcgt ggacagtggc ctctacctcg ggatgaatga 360		
gaagggggag ctgtatggat cagaaaaact aacccaagag tttgttattca gagaacagtt 420		
cgaagaaaac tggtataata cgtactcatc aaacctatat aagcacgtgg acactggaa 480		
gcgataactat gtgcattaa ataaagatgg gaccccgaga gaagggacta ggactaaacg 540		
gcaccagaaa ttccacacatt ttttacctag accagtggac cccgacaaag tacctgaact 600		
gtataaggat attctaagcc aaagttga 628		
<210> 71		
		55
		60
		65

DE 101 00 586 C 1

<211> 2469
 <212> DNA
 <213> Homo sapiens

5 <300>
 <302> FGFR1
 <310> NM000604

10 <400> 71
 atgtggagct ggaagtgcct cctcttctgg gctgtgctgg tcacagccac actctgcacc 60
 gctaggccgt ccccgacattt gcctgaacaa gcccagccct ggggagcccc tggagaagtg 120
 gagtccttcc tggtccaccc cggtgacctg ctgcagcttc gctgtcggtc gggggacat 180
 gtgcagagca tcaactggct gcgggacggg gtgcagctgg cgaaaagcaa cccgacccgc 240
 15 atcacagggg aggaggtgga ggtgcaggac tccgtccccg cagactccgg cctctatgt 300
 tgcgtAACCA gcagccccctc gggcagtgc accacctact tctccgtcaa tgtttcat 360
 gctctccctt cctcgaggaa tgatgtat gatgtatgact cctcttcaga ggaaaaagaa 420
 acagataaca ccaaaccaaa ccgtatgccc gttagctccat attggacatc cccagaaaaag 480
 atggaaaaga aattgcatgc agtgcggct gccaagacag tgaagttcaa atgccttcc 540
 20 agtgggaccc caaaccacact gtcgcgtgg ttggaaaatg gcaaaagaatt caaacctgac 600
 cacagaattt gaggctacaa ggtccgttat gcacacttgg gcatcataat ggactctgtg 660
 gtgcctctg acaaggggcaa ctacacctgc attgtggaga atgagtacgg cagcatcaac 720
 cacacatacc agctggatgt cgtggagcgg tccctctacc ggcccattct gcaagcaggg 780
 ttgcccggca acaaaccacat ggccctgggt agcaacgtgg agttcatgtg taagggttac 840
 25 agtgcacccgc agccgcacat ccagtggcta aagcacatcg aggtgaatgg gagcaagatt 900
 ggcccgacaca acctgcctta tggcagatc ttggaaactg ctggagttt taccacccgac 960
 aaagagatgg aggtgcctca ctttggaaat gtcctcttttgg aggacgcagg ggagtatacg 1020
 tgcttggcggt gtaactctat cggactctcc catcaacttgc catgggttac cgtttggaa 1080
 gcccctggaaag agaggccggc agtgcgttggc tggccctgtt acctggagat catcatctat 1140
 30 tgcacagggg ctttctcat ctcctgtcat gtggggctgg tcatcgcttca caagatgaag 1200
 agtgtacca agaagagtga cttccacacgc cagatggctg tgcacaagct ggccaagagc 1260
 atccctctgc gcagacaggt aacagtgtct gtcgtactcca gtgcattccat gaactctggg 1320
 gttttctgg ttccggccatc acggctctcc tccagtggggat tcccatgtc acgcagggtc 1380
 tctgatgtt agctttccggaa agacccttgc tgggagctgc tccatgttgc 1440
 35 ggcaaaaaacc cttggaggggg ctgttttgggg cagggtgggtg tggcagggc tatcggtctg 1500
 gacaaggaca aaccaaccgc tggcaccaaa gtggctgtga agatgttgc gtcggacgc 1560
 acagagaaaag acttgtcaga cctgatctca gaaatggaga tggatgttgc gatcggtgg 1620
 cataagaata tcatcaaccc tgcggggggc tgcacgcgg atggccctt gtatgtcatc 1680
 gtggagtatg cttccaaagggg caaccttgcgg gaggatgtc agggccggg gccccccagg 1740
 40 ctggaaatact gtcacaaacc cagccacaac ccagaggagc agtctcttc caaggacctg 1800
 gtgtcctgcg cttaccagggt gggccggggc atggaggatc tggcctccaa gaagtgcata 1860
 caccggagacc tggcagccag gaatgttgc gtgacagagg acaatgttgc gaagatagca 1920
 gactttggcc tgcacggga cattcaccac atcgactact ataaaaagac aaccaacggc 1980
 cgactgcctg tgaagtggat ggcacccggc gcattatttg accggatcta caccacccag 2040
 45 agtgcgtt gtccttgcgg ggtgccttgc tgggagatct tcaactctggg cggctcccc 2100
 taccctgggt gtccttgcgg ggaacttttca aagctgttgc aggagggtca ccgcattggac 2160
 aagcccaacta actgcaccaa cggatgtac atgtatgtc gggactgtgc gcatgcgtg 2220
 ccctcacaga gaccacccctt caagcagctg gtggaaagacc tggacccgc tggcccttg 2280
 acctccaaacc aggagttaccc ggacctgtcc atggccctgg accagtaatc ccccaactt 2340
 50 cccgacaccc ggagctctac gtgtcctca gggaggattt cggcttctc tcatgagccg 2400
 ctggccggagg agccctgcctt gccccggacac ccagccccagc ttggcaatgg cgactcaaa 2460
 cggcgctga 2469

55 <210> 72
 <211> 2409
 <212> DNA
 <213> Homo sapiens

60

65

DE 101 00 586 C1

<300>
<302> FGFR4
<310> XM003910

atgcggctgc tgctggccct gttgggggtc ctgctgagtg tgcctgggcc tccagtcttg 60
 tcccggagg cctctgagga agtggagctt gagccctgcc tggctccag cctggacag 120
 caagagcagg agctgacagt agcccttggg cagcctgtgc ggctgtctg tggcgccgct 180
 10
 gagcgtggtg gccactggta caaggagggc agtcgcctgg cacctgtctg ccgtgtacgg 240
 ggctggaggg gccgctaga gattgcacgc ttccatccctg aggatgtctg ccgctaccc 300
 tgcctggcac gaggtccat gatcgtctg cagaatctca ctttgcattac aggtgactcc 360
 ttgacctcca gcaacgatga tgaggacccc aagtccttata gggacctctc gaataggcac 420
 agttaccccc agcaagcacc ctactggaca cacccttgc gcatggagaa gaaactgcat 480
 cgactacccg cggggAACAC cgtcaagttt cgctgtccag ctgcaggcaa cccaccccc 540
 accatccgtt ggcttaagga tggacaggcc ttcatgggg agaaccgcatt tggaggcatt 600
 15
 cggctgeccc atcagactg gagtctctgt atggagagcg tggccctc ggaccgcggc 660
 acatacacat gccttggata gaacgtgtt ggcagatcc ttataacta cctgcttagat 720
 gtgctggagc ggtccccggc cggccccatc ctgcaggccg ggctccggc 20
 gccgtgggg gcagcgacgt ggagctgtt tcaagggtt acagcgatgc caacaccac 780
 atccagttgc tgaagcacat cgtcatcaac ggcagcagct tcggagccga ccaagcccc 840
 tatgtgcaag tcctaaagac tgcagacatc aatagcttag aggtggaggt cggttcccc 900
 cggaaacgtgt cagccggagga cgcaggcgag tacaccttgc tcgcaggcaa cctgtacttgc 960
 ctctcttacc agtctgttgc gtcacgggtt ctgcaggagg aggaccccac ttccatcg 1020
 25
 gcagcccccg aggccaggta tacggacatc atccctgtacg cgtcgccctc atggaccgc 1080
 gctgtgttcc ttgtctgttgc caggctgtat cgagggcagg cgctccacgg cctggcttgc 1140
 cggcccccgg ccactgttca gaagctctcc cgcttccctc tggcccgaca cggcaccc 1200
 gagtcaggat cttccggcaa gtcaagctca tccctgttac gaggcgtgtt tctctcttcc 1260
 agccggcccg ctttgcctgc cggccctgtt agtcttagatc taccctcttgc 1320
 gagttttccccc gggacagggtt ggtgtttggg aagcccttag gcgagggtgt cccactatgg 1380
 30
 tagtactgtt cagaggcctt tggatggac cttccggc ctgaccaagg ctttggcccg 1440
 gccgtcaaga tgctaaaaga caacgcctt gacaaggacc tggccgact cagactgttgc 1500
 atggaggttga tgaagctgtat cggccgcacac aagaacatca tcaacctgtt ggtctcgag 1560
 acccaggaag ggccctgtt cgtatgttgc gagtgcggccg ccaaggggaaa tggtgtctgc 1620
 ttcttgcggg cccggccccc cccaggcccc gacctcagcc cggacgggtt cctggggag 1680
 35
 gagggggccgc tctctttccc agtctgttgc tcttgcgcctt accagggttgc cggaggcatg 1740
 cagtatctgg agtcccgaa gtgtatccat cgggacctgg ctgccccgca tggagcatg 1800
 actgaggaca atgtatgtt gattgtctgat tttgggttgc cccgggggtt tggctgttgc 1860
 gactactata agaaaaaccag caacggccgc ctgcctgtt agtggatggc ccaccacatt 1920
 ttgtttgacc ggggttacac acaccagat gacgtgttgc ttttgggttgc cccgggggg 1980
 gagatcttca ccctcggggg ctcccttgc tcttgcgcctt cggggatcc cgggggggg 2040
 ctgtctcggtt agggacatcg gatggaccga ccccccacact gcccggccgtt gctgtatgg 2100
 ctgtatgttgc agtgttgc cgcacccccc tcccaaggcc ctaccccttca gctgttctcg 2160
 gagggcgctgg acaagggttgc tctggccgtc tcttgggttgc acctcgatcc gctgtacccgg 2220
 ttccggacccctt attccccctt tgggtggggac gccagcagca cctgttccctc cggactgttgc 2280
 gtcttcagcc acgacccccc tccatggga tccagcttgc tcccttcgg cagcgattt 2340
 45
 cagacatgtt 2400
 2409

<210> 73
<211> 1695
<212> DNA
<213> *Homo sapiens*

<300>
<302> MT2MMP
<310> D86331

50

55

60

DE 101 00 586 C 1

<400>	73	atgaagcggc	cccgctgtgg	ggtgcagac	cagttcgggg	tacgagtcaa	agccaacctg	60
5		cggggcgctc	ggaagcgcta	cgccccacc	ggaggagaat	ggaacaacca	ccatctgacc	120
		tttagcatcc	agaactacac	ggagaagtt	ggctggtaacc	actcgatgg	ggcggtgcgc	180
		agggccttcc	gcgtgtggga	gcagggccacg	cccctggtct	tccaggaggt	gccttatgag	240
10		gacatccggc	tgccggcgaca	gaaggaggcc	gacatcatgg	tactcttgc	ctctggcttc	300
		cacggcgaca	gtctcccggt	tgatggcacc	ggtggcttcc	tggcccacgc	ctatttccct	360
		ggcccccggcc	taggcggggg	caccatTTT	gacgcagatg	agccctggac	cttctccagc	420
15		actgcacctgc	atggaaacaa	cctcttcctg	gtggcagtgc	atgagctgg	ccacgcgtg	480
		gggtctggagc	actcccgacaa	ccccaaatgcc	atcatggcgc	cgttctacca	gtggaaaggac	540
		gttgcacaatc	tcagactgccc	cgaggacat	ctccctggca	tccagcaget	ctacgggtacc	600
20		ccagacggtc	agccacagcc	tacccacgt	ctccccactc	tgacgcacgc	gcccggcaggc	660
		cggccctgacc	accggccgccc	ccggctctcc	cagggcaccac	ccccagggtt	gaagccagag	720
25		cgccccccaa	agccggggccc	cccagtccag	ccccgagcca	catagcgccc	cgacccatgt	780
		ggccccaaca	tctgcgacgg	ggactttgac	acagtggcca	tgcttcgggg	ggagatgtt	840
		gtgttcaagg	gcccgtgggt	ctggcgagtc	cggcacaacc	gcttcctgga	caactatccc	900
30		atgcctcatcg	ggcacttctg	ggctggtctg	cccggtgaca	tcagtgtcgc	ctacggagcgc	960
		caagacggtc	gttttgtctt	tttcaaggt	gaccgctact	ggctcttcg	agaagcgaac	1020
		ctggagcccg	gttacccaca	ggcgctgacc	agctatggcc	tgggcattcc	ctatgaccgc	1080
		attgacacgg	ccatctgggt	ggagcccaca	ggccacaccc	tcttcttcca	agaggacagg	1140
		tactggcgct	tcaaccgagga	gacacagcgt	ggagaccctg	ggtaccccaa	gcccacatcgt	1200
		gtctggcagg	ggatccccgtc	ctccccctaaa	ggggccttcc	tgagcaatga	cgcacccctac	1260
35		acctacttct	acaaggggc	caaatactgg	aaattcgaca	atgagccct	gcggatggag	1320
		cccgcttacc	ccaaatccat	cctgcgggac	ttcatgggt	gccaggagca	cgtggagcc	1380
		ggcccccgtat	ggcccgacgt	ggccggccgc	cccttcaacc	cccacgggg	tgcagagccc	1440
		ggggcgggaca	ggcgagaggg	cgacgtgggg	gatggggatg	gggacttgg	ggccgggggt	1500
		aacaaggaca	ggggcagccg	cgtgggtgg	cagatggagg	agggtggcagc	gacgtgtaac	1560
		gtgggtatgg	tgctgggtgcc	actgctgtc	ctgctctgc	tcctgggct	cacctacgcg	1620
40		ctgggtcaga	tgcagcgc当地	gggtgc当地	cgtgtccctgc	tttactgca	gcgctcgctg	1680
		caggagtggg	tctgt					1695

35 <210> 74
<211> 1824
<212> DNA
<213> *Homo sapiens*

40 <300>
<302> MT3MMP
<310> D85511

60

65

DE 101 00 586 C 1

gatgatttac agggcatcca gaagatata ggtccacctg acaagattcc tccacctaca 900
 agacctcac cgacagtgc cccacaccgc ttatccctc cggctgaccc aaggaaaaat 960
 gacaggccaa aacctctcg gcctccaacc ggcagaccct cctatcccgg agccaaaccc 1020
 aacatctgtg atgggaaactt taacactcta gttatcttc gtcgtgagat gtttgggg 1080
 aaggaccagt gttttggcg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
 attacttaat tctgggggg ctgcctct agtacgtatc ctttatgaa aaatagcgac 1200
 gggattttg tggatggata aggtaaacaaa tattgggtgt tcaaggatac aactcttcaa 1260
 cctgggtacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggatttgat 1320
 tcagccattt ggtggggagga cgtcgaaac acctatttct tcaaggaga cagatattgg 1380
 agatatagtg aagaaatgaa aacaatggac cctggctatc ccaagccaa cacagtctgg 1440
 aaaggatcc ctgaatctcc tcagggagca tttgtacaca aagaaaatgg ctttacgtat 1500
 ttctacaaag gaaaggagta ttggaaattt aacaaccaga tactcaaggt agaacctgga 1560
 tattcaagat ccacccctaa ggattttatg ggctgtgtat gaccaacaga cagatggaa 1620
 gaaggacaca gcccacccaa tgatgttagac attgtcatca aactggacaa cacagccagc 1680
 actgtgaaag ccatagctat tgcattttcc tgcattttgg ctttatgcct ctttgtattg 1740
 gtttacactg tggatggata caagggaaa ggaacacccc gccacatact gtactgtaaa 1800
 cgctctatgc aagagtgggt gtga 1824

5

<210> 75
 <211> 1818
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> MT4MMP
 <310> AB021225

25

<400> 75

atgcggcgcc ggcgagcccg gggacccggc cggccggccc cagggcccg actctcgccg 60
 ctggcgctgc tgccgctgcc gctgtgtgc ctgtcgccg tggggacccg cgggggctgc 120
 gccgcggccg aacccgcgcg ggcgcccggag gacccatggcc tggagtgaa gtggctaaac 180
 agttcggtt acctggccccc ggctgacccccc acaacaggcc agctgcacac gcaagaggag 240
 ctgtctaaagg ccatcacacgc catgcacgcg tttgggtggcc tggaggccac cggcatccg 300
 gacgaggcca ccctggccct gatggaaacc ccacgcgtgc ccctgccaga cctccctgtc 360
 ctgacccagg ctgcgaggag acgcggcgtt ccagggccca ccaagtggaa caagaggaac 420
 ctgtcggtgg gggtccggac gttccacgg gacttcacccac tggggcgcga cacgtgcgt 480
 gcaactcatgt actacgcctt caaggctgg agcgacattt cggccctgtaa cttccacggag 540
 gtggcgccgca gacccgcgcg catccagatc gacttctcca agggccacca taacgcggc 600
 tacccttcg acgcggccgg gcaccgtgcc cacgccttc tcccccggcca ccaccacacc 660
 gcccgggtaca cccactttaa cgatgacgg gctggaccc tccgctctc ggatggccac 720
 gggatggacc tggatggactt ggctgtccac gagttggcc acgcattttt gttaaagccat 780
 gtggccgctg cacaactccat catgcggccg tactaccagg gcccgggtgg tgacccgcgt 840
 cgctacggcc tcccttacga ggacaaagggt cgctgtgtggc agctgtacgg tggatgggg 900
 tctgtgtctc ccacggccgc gcccggagg gctcccttc tggccggagcc cccagacaac 960
 cggccctccggc cccggcccgaa gaaggacgtt cccacccatg gcaactca ctgtgcgcg 1020
 gtggcccgaga tccgggggtga agctttttt ttcaaaaggca agtacttctg ggggtgcacg 1080
 cgggacccggc acctgggtgc ctgcgacccg gcacagatgc accgcttctg gggggccctg 1140
 ccgcgtccacc tggacagggtt ggacccggcg ttcggatggca ccacgcacca caagatgtc 1200
 ttctttaaag gagacaggta ctgggtgttc aaggacaata acgttagagga aggatcccc 1260
 cggccctctt ccgacttcag ccccccgtt ggccggatcg acgcgtccctt ctccctggcc 1320
 cacaatgaca gacttattt tttaaggac cagctgtact ggcgcatacg tgaccacacg 1380
 aggccatgg accccggctt ccccgcccgag agccccctgt ggaggggtgt ccccaacacg 1440
 ctggacgcgcg ccatgcgtgc gtccgacgggt gcctcctact tttccgtgg ccaggagttac 1500
 tggaaaggatgc tggatggcga gctggaggtg gcacccgggt accccacatgc caccggccgg 1560
 gactggctgg tggatggaga ctcacaggcc gatggatgtg tggctgcggg cgtggacgcg 1620
 gcagaggggc cccggccccc tccaggacaa catgaccaga ggcgcctggaa ggacgggtac 1680

30

35

40

45

50

55

60

65

DE 101 00 586 C 1

gaggtctgct catgcaccc tcggggatcc tctcccccg gggccccagg cccactggtg 1740
 gctgccacca tgctgctgct gctgcgcca ctgtcaccag gcgcctgtg gacagcggcc 1800
 caggccctga cgctatga 1818

5

<210> 76
 <211> 1938
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> MT5MMP
 <310> AB021227

15

<400> 76
 atgccgagga gcccggggcg 25 cccgcggcg 25 cccggccgc 25 cccgcggcc 25 gcccggcc 25 60
 gcccaggccc cgcgctggag 25 cgcgtggcg 25 gtccctggc 25 ggctgctgct 25 gctgctgt 25 120
 cccgcgtct 25 gtgcctccc 25 gggcggcg 25 cggcgccgg 25 cggcgccgc 25 ggggcagg 25 180
 20 aaccgggcag 25 cggtgtgggt 25 ggcgggtggc 25 cggcgccacg 25 aggcggaggc 25 gcccgtcgc 25 240
 gggcagaact 25 gttaaaagtgc 25 ctatggctat 25 ctgtttccct 25 atgactcact 25 ggcatactgc 25 300
 ctgcactcag 25 cgaaggcctt 25 gcagtcggca 25 gtctccacta 25 tgcagcagg 25 ttacggatc 25 360
 cccgtcaccg 25 gtgtgttgg 25 tcagacaacg 25 atcgagtgg 25 tgaagaaaacc 25 ccgatgtgg 25 420
 gtccctgtatc 25 accccccactt 25 aagccgtagg 25 cggagaaaaca 25 agcgtatgc 25 cctgactgga 25 480
 25 cagaagtgg 25 ggcaaaaaca 25 catcacact 25 agcattcaca 25 actatacc 25 aaaagtgggt 25 540
 gagctagaca 25 cgcggaaagc 25 tattcgcc 25 gctttcgat 25 tttggcagaa 25 ggtgacccca 25 600
 ctgacctttt 25 aagagggtgc 25 ataccatg 25 atcaaaaatg 25 accggaagg 25 ggcagacatc 25 660
 atgatctttt 25 ttgttctgg 25 ttccatggc 25 gacagctccc 25 catttcatgg 25 agaaggggga 25 720
 ttcctggccc 25 atgcctactt 25 ccctggcc 25 gggattggag 25 gagacacca 25 ctttactcc 25 780
 30 gatgagccat 25 ggacgctagg 25 aaacgccaac 25 catgacggg 25 acgaccc 25 cctgggtg 25 840
 gtgcatgagc 25 tggggccacgc 25 gctgggactg 25 gggacttca 25 gggaccc 25 cgccatcatg 25 900
 ggccttc 25 accagtatcat 25 ggagaccc 25 aacttcaagc 25 tgccccag 25 cgatctcc 25 960
 ggcaccc 25 agatctatgg 25 acccccc 25 gggctctgg 25 agcccaac 25 gccactcc 25 1020
 acactcc 25 tccgcaggat 25 ccactcaca 25 tcggagagga 25 aacacgag 25 ccagcccagg 25 1080
 35 ccccttc 25 cgcggcc 25 ggaccggc 25 tccacacc 25 gcaacaa 25 caacatct 25 1140
 gacggcaact 25 tcaacac 25 ggccttc 25 cggggcg 25 tggttgc 25 taaggatc 25 1200
 tggttctggc 25 gtctgcgca 25 taaccg 25 cggagg 25 accccatg 25 gatcgag 25 1260
 ttctggagg 25 gcctgcctgc 25 cgcacatc 25 gcaac 25 aaaggcc 25 tggagatt 25 1320
 gtcttcttca 25 aagggtgacaa 25 gtattgg 25 ttaagg 25 tgacgg 25 gcctgg 25 1380
 40 ccccacagcc 25 tgggggagct 25 gggcagctgt 25 ttggccctgt 25 aaggcatt 25 cacagct 25 1440
 cgctgggaac 25 ctgtgggca 25 gacctactt 25 ttcaaagg 25 aggcgtact 25 ggcgtac 25 1500
 gaggagcc 25 gggccacgg 25 ccctggctac 25 cctaagg 25 tcaccgt 25 gaaggc 25 1560
 ccacaggc 25 cccaaagg 25 cttcatc 25 aagg 25 attacac 25 tttctaca 25 1620
 ggcgggact 25 actggaa 25 tgacaacc 25 aaactg 25 tggagg 25 ctaccc 25 1680
 45 aacatcctgc 25 gtactggat 25 gggctgca 25 cagaagg 25 tggagg 25 gaagg 25 1740
 cggctggccc 25 aggacgac 25 ggacatcat 25 gtgaccat 25 acgatgt 25 gggctcc 25 1800
 aacggcgtgg 25 ccgtggat 25 cccctgc 25 ctgtccct 25 gcatctgt 25 gctgg 25 1860
 accatcttcc 25 agtcaagaa 25 caagacagg 25 cctcagcc 25 tcaccta 25 taagg 25 1920
 gtccaggaat 25 ggggtg 25 1938

50

<210> 77
 <211> 1689
 <212> DNA
 <213> Homo sapiens

55

<300>
 <302> MT6MMP

60

DE 101 00 586 C 1

<310> AJ27137

<400> 77

atgcggctgc ggctccggct tctggcgctg ctgtttctgc tgctggcacc gcccgcgc 60	5
gccccgaagc cctcgccca ggacgtgagc ctggcgctgg actggctgac tcgttatggt 120	
tacctgcgc caccggccccc tgcccaaggcc cagctgcaga gcccgtgagaa gttgcgcgat 180	
gcatcaaaag tcatgcagag gttcggggg ctgcgggaga cggccgcata ggacccagg 240	
acatggccca ccatcgtaa gccccgtgc tcctgcctg acgtgtggg gttggcgggg 300	
ctggcaggc ggcgtcgccg gtacgtctg agcggcagcg tggaaagaa gcaaccctg 360	
acatggaggg tacgttccct ccccaagagc tcccgatga gccaggagac cgtcggtc 420	
ctcatgagct atgcctgtat ggcctggggc atggagttag gcctcacatt tcatgagg 480	
gattcccccc aggggccaggc gccccacatc ctcatcgact ttgcggcgc cttccaccag 540	
gacagctacc ccttcgacgg gttgggggc accctagccc atgccttcc ccctgggg 600	
caccatct cccgggacac tcacttgac gatgaggaga cctggactt tgggtcaaaa 660	
gacggcgagg ggacccgacct gtttggctg gctgtccatg agtttggca cgccctggc 720	
ctggccact ctcagcccc caactccatt atgaggccct tctaccagg tccgggtggc 780	
gaccctgaca agtaccggc gtctcaggat gaccgcgtg gcctgcacca actctatggg 840	
aaggcgcccc aaacccccata tgacaagccc acaaggaaac ccctggctcc tccgccccag 900	
ccccggcct cgcccacaca cagccatcc ttcccatcc ctgatcgatg tgaggcaat 960	
tttgcacca tcgccaacat cggaggggaa actttctcti tcaaaggccc ctggctctgg 1020	
cgcctccaggc ctcggggaca gctgggttcc cccgcaccccg cacggctgca ccgcctctgg 1080	
gaggggctgc cggccagggt gagggtgtg caggccgcct atgctcgca ccgagacggc 1140	
cgaatccctcc tctttaggg gccccagttc tgggtgttcc aggaccggca gctggagg 1200	
ggggcgggc cgctcacggc gttttggctg ccccccggag aggagggtgga cgccgtgttc 1260	
tcgtggccac agaacgggaa gacctacccgt gtcgcggcc ggcagtactg gcgtacgac 1320	
gaggcggcgg cgcggccggc ccccggtac cctcgccacc tgagcctctg gaaaggcgc 1380	
ccccctccct ctgacgtatg caccgtcage aacgcagggt acacctaattt cttaagg 1440	
gcccaact ggcgttcccc caagaacacgc atcaagaccc agccggacgc ccccccggcc 1500	
atggggccca actggctgga ctgcggccccc ccgagctctg gtcccccgc ccccaaggccc 1560	
cccaaaggca ccccggtgtc cggaaacctgc gattgtcagt gcgagctaa ccaggccgc 1620	
ggacgttggc ctgctccat cccgctgtc ctcttgcctt tgctgggtggg gggtgtagcc 1680	
tcccgtga 1689	

35

<210> 78

<211> 1749

<212> DNA

<213> Homo sapiens

40

<300>

<302> MTMMP

<310> X90925

<400> 78

45

atgtctcccc ccccaagacc ctccctgttgc ccctgtcac gctggcacc 60	
gctcgccct ccctcggtc ggcggaaagc agcagttca gccccgaagc ctggctacag 120	
caatatggct acctgcctcc cggggaccta cgtaccacca cacagcgctc accccagg 180	
ctctcagccgg ccatcgctgc catgcagaag tttacggct tgcaagtaac aggcaaa 240	
gatgcagaca ccatgaaggc catgaggcgc ccccgatgtg gtgttccaga caagg 300	
gctgagatca aggccaatgt tcgaaggaaag cgctacgcca tccagggtct caaatggca 360	
cataatgaaa tcactttctg catccagaat tacacccca aggtggcga gtatgccaca 420	
tacgaggcca ttgcgaaggc gttccgcgtg tggagagtg ccacaccact ggcgttccgc 480	
gagggtccct atgcctatcat ccgtgaggggc catgagaagc aggccgacat catgatctc 540	
tttgcggagg gttccatgg cggacgacacg cccttcgtatg gtggggcgg ctccctggcc 600	
catgcctact tcccaaggccc caacattgga ggagacaccc actttgactc tgccgagg 660	
tggactgtca ggaatggaga tctgaatgga aatgacatct tcctggtggc tggcaca 720	
ctggggccatg ccctggggct cggacattcc agtacccctt cggccatcat ggcaccctt 780	

60

65

DE 101 00 586 C 1

taccagtgga tggacacgga gaattttgtg ctgcccgtg atgaccgcgg gggcatccag 840
 caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc caggactacc 900
 tccccggctt ctgttctcga taaacccaaa aaccccacct atgggccaat catctgtgac 960
 5 gggactttg acaccgtggc catgctccga gggagatgt ttgtcttcaa ggagcgctgg 1020
 ttctggcggt tgaggaataa ccaagtatg gatggatacc caatgccat tggccagttc 1080
 tggccggggcc tgcctgcgtc catcaacact gcctacgaga ggaaggatgg caaattcgtc 1140
 ttcttcaaag gagacaagca ttgggtgtt gatgaggcgt cccttggaaacc tggcttcccc 1200
 aagcacatta aggagctggg ccgagggtg cctaccgaca agattgtgc tgcctcttc 1260
 10 tggatggca atggaaagac ctacttttc cgtggaaaca agtactaccg tttcaacgaa 1320
 gagctcaggg cagtggatag cgagtacccc aagaacatca aagtctggg agggatccct 1380
 gagtctccca gaggggtcatt catggcgcgc gatgaagtct tcacttactt ctacaagggg 1440
 aacaataact gaaaaattcaa caaccagaag ctgaaggtag aaccgggcta ccccaagcc 1500
 gccctgaggg actggatggg ctgcccattcg ggaggccggc cggatgaggg gactgaggag 1560
 15 gagacgggg tgatcatcat tgaggtggac gaggagggcg gcggggcggt gagcgcggct 1620
 gcccgttgtc tgcccgtgct gctgtctc ctgggtctgg cgggtggccct tgcagtcttc 1680
 ttcttcaagac gccatgggac ccccaggcga ctgctctact gccagcggtc cctgtggac 1740
 aaggctgta 1749

20 <210> 79
 <211> 744
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> FGF1
 <310> XM003647

30 <400> 79
 atggccgggg ccatcgctag cggcttgatc cgccagaagc ggcaggcgcg ggagcagcac 60
 tgggacccggc cgtctgccag caggaggcg agcagcccc gcaagaaccg cgggctctgc 120
 aacggcaacc ttgtggatat ctctccaaa gtgcgcattt tcggcctcaa gaagcgcagg 180
 ttgcggcgcc aagatccccca gctcaagggt atagtgacca ggttatattt caggaaggc 240
 35 tactacttgc aaatgcaccc cgatggagct ctgcattggaa ccaaggatga cagactaat 300
 tctacactct tcaacctcat accagtggga ctacgtttt ttgccttccca gggagtgaaa 360
 acagggttgt atatagccat gaatggagaa gtttacctt accccatcaga actttttacc 420
 cctgaatgca agtttaaaga atctgtttt gaaaattattt atgtaatccat ctcatccatg 480
 ttgtacagac aacaggaaatc ttgttagagcc ttgtttttgg gattaaataa ggaaggccaa 540
 40 gctatgaaag ggaacagagt aaagaaaaacc aaaccagcag ctcattttt acccaagcc 600
 ttggaaagttt ccatgttaccg agaaccatct ttgcattgtt gttggggaaac ggtcccgaaag 660
 cctggggtga cgccaaagta aagcacaagt gcgtctgca taatgaatgg aggcaaacca 720
 gtcaacaaga gttaagacaac atag 744

45 <210> 80
 <211> 468
 <212> DNA
 <213> Homo sapiens

50 <300>
 <302> FGF2
 <310> NM002006

55 <400> 80
 atggcagccg ggagcatcac cacgctgccc gccttgcgg aggatggcg cagcggcgcc 60
 ttcccggccg gccacttcaa ggaccccaag cggctgtact gcaaaaacgg gggcttcttc 120
 ctgcgcattcc accccgacgg ccgagttgac ggggtccggg agaagagcga ccctcacatc 180

60

65

DE 101 00 586 C 1

aagctacaac ttcaaggcaga agagagagga gttgtgtcta tcaaaggagt gtgtgctaac 240 cgttacctgg ctatgaagga agatggaaata ttactggctt ctaaatgtgt tacggatgag 300 tgttctttt ttgaacgatt ggaatctaata aactacaata cttaccggtc aaggaaataac 360 accagtttgtt atgtggcact gaaacgaact gggcagtata aacttggatc caaaacagga 420 cctggccaga aagctataact ttttctcca atgtctgcta agagctga 468	5
<210> 81 <211> 756 <212> DNA <213> Homo sapiens	10
<300> <302> FGF23 <310> NM020638	15
<400> 81 atgttggggg cccgcctcaag gctctgggtc tgcctgtgt gcagcgtctg cagcatgagc 60 gtccctcagag cctatccaa tgcctccccca ctgctcggtc ccagctgggg tggcctgatc 120 cacctgtaca cagccacagc caggaacagc taccacctgc agatccacaa gaatggccat 180 gtggatggcg caccccatca gaccatctac agtgcctgtga tgatcgatc agaggatgct 240 ggctttgtgg tgattacagg tgcgtatggc agaagatacc tctgcgttggaa ttccagagggc 300 aacatttttgc gatcacacta ttccgaccccg gagaactgca ggttccaaca ccagacgctg 360 gaaaaacgggt acgacgtcta ccactcttct cagatctact tcctggtcag tctggccgg 420 gcgaagagag cttccctgcc aggcataac ccaccccccgt actcccaactt cctgtcccg 480 aggaacgaga tccccctaaat tcacttcaac accccctatac cacggccggca caccgggagc 540 gccgaggacg actcggagcg ggacccctg aacgtgttgc agccccgggc ccggatgacc 600 ccggccccgg cctccctgttc acaggagctc ccgagcggcc aggacaacag cccgatggcc 660 agtgaccat taggggtggt cagggccggc cgagtgttgc cgcacgctgg gggaaacgggc 720 ccgaaaggct ggcggccctt cgccaagttt atctag 756	20 25 30
<210> 82 <211> 720 <212> DNA <213> Homo sapiens	35
<300> <302> PFG3 <310> NM005247	40
<400> 82 atgggcctaa tctggctgtc actgctcagc ctgcgtggagc ccggctggcc cgcaaggggc 60 cctggggcgc gggtgcggcg cgatgcgggc ggcgcgtggcg gcgtctacga gcacccctggc 120 ggggccccc ggcgcggcaaa gctctactgc gccacacgtt accaccttca gctgcacccg 180 agcggcccgcg tcaacggcagc cctggagaac agcgcctaca gtatggatc gataacggca 240 gtggaggtgg gcattgtggc catcagggtt ctcttctccg ggcggtagtcc ggcctatggac 300 aagagggggac gactctatgc ttccggagcac tacagcggccg agtgcgagggt tggagcgg 360 atccacgagc tgggtataaa tacgtatgcc tccggctgtt accggacggt gtctagtagc 420 cctggggccc gccggcagcc cagcgcggagc agactgtggt acgtgtctgtt gaaacggcaag 480 ggccggccccc gcaggggctt caagacccgc cgcacacaga agtccctccctt gttccctggccc 540 cgegtgttgc accacagggca ccacgagatg gtgcggcagc tacagagtgg gctgcccaga 600 ccccctggta agggggtcca gccccgacgg cggcggcaga agcagagccc ggataacctg 660 gagccctetc acgttcaaggc ttccgagactg ggctccctgc tggaggccag tgcgcactag 720	45 50 55
<210> 83	60

65

DE 101 00 586 C1

<211> 807
 <212> DNA
 <213> Homo sapiens
 5 <300>
 <302> FGFR5
 <310> NM004464
 10 <400> 83
 atgagcttgt ctttcctcct ctcctcttc ttcagccacc tgatcctcag cgccctgggt 60
 cacggggaga agcgtctcg ccccaaagg caacccggac ccgctgccac tgcataggAAC 120
 cctataggct ccagcagcag acagagcagc agtagcgta tgccttcctc ttgcctcc 180
 tcctcccccg cagcttctc gggcagccaa ggaagtggct tggagcagAG cagttccag 240
 15 tggagccccct cggggcggcc gaccggcagc ctctactgca gagtgggcat cggttccat 300
 ctgcagatct accccggatgg caaatggatgg aaggtcaat ggatcccac aagccaatgtt 360
 ttggaaatat ttgctgtgtc tcaggggatt gtaggaatac gaggagttt cagcaacaaa 420
 ttttagcga tgcataaaaaa aggaaaactc catgcaagtg ccaagttcac agatgactgc 480
 aagttcaggg agcgtttca agaaaatagc tataataccct atgcctcagc aatacataga 540
 20 actaaaaaaa cagggcggga gtggatgtt gccctgaata aaagaggaaa agccaaacgA 600
 gggtcagcc cccgggttaa accccagcat atctctaccc attttcttcc aagattcaag 660
 cagtcggcgc agccagaact ttcttcacg ttactgttc ctgaaaagaa aaatccacct 720
 agccctatca agtcaaagat tcccccttct gcacctcgga aaaataccaa ctcagtgaaa 780
 tacagactca agtttcgott tggataa 807
 25
 <210> 84
 <211> 649
 <212> DNA
 30 <213> Homo sapiens
 <300>
 <302> FGF8
 <310> NM006119
 35 <400> 84
 atgggcagcc cccgctccgc gctgagctgc ctgcgtttgc acttgctggc cctctgcctc 60
 caagcccagg taactgttca gtcctcacct aattttacac agcatgtgag ggagcagagc 120
 ctgggtacgg atcagctcag ccggccgcctc atccggacct accaactcta cagccgcacc 180
 40 agcgggaagc acgtgcaggt cctggccaac aagcgcatac acggccatggc agaggacggc 240
 gacccttcg caaagctcat cgtggagacg gacacctttg gaagcagagt tcgagtcga 300
 ggagccgaga cgggcctcta catctgcata aacaagaagg ggaagctgat cgccaagagc 360
 aacggcaag gcaaggactg cgtcttcacg gagattgtgc tggagaacaa ctacacagcg 420
 45 ctgcagaatca ccaagatcga gggctggtaatggccttca cccgcaaggg ccggccccgc 480
 aagggttcca agacgcggca gcaccagcgt gaggtccact tcatgaagcg gctgccccgg 540
 ggccaccaca ccaccgagca gagcctgcgc ttgcagttcc tcaactaccc gcccctcagc 600
 cgcagcctgc gccggcagcca gaggacttgg gccccggaaac cccgatagg 649
 50 <210> 85
 <211> 2466
 <212> DNA
 <213> Homo sapiens
 55 <300>
 <302> FGFR2
 <310> NM000141

60

65

DE 101 00 586 C1

<400> 85
 atggtcagct ggggtcggtt catctgcctg gtcgtggta ccatggcaac cttgtccctg 60
 gcccggccct ctttcagttt agttgaggat accacattag agccagaaga gccaccaacc 120
 aaataccaaa tcttcacaacc agaagtgtac gtggctgcgc caggggagtc gctagaggtg 180
 cgctgcctgt taaaagatgc cgccgtgatc agttggacta aggttgggt gcacttgggg 240
 cccaaacaata ggacagtgtc tattggggag tacttgcaga taaaaggcgc cacgcctaga 300
 gactccgccc tctatgttt tactgccagt aggactgttag acagtgaaac ttggtaacttc 360
 atggtaatg tcacagatgc catctcatcc ggagatgtatc aggttgacac cgatggcg 420
 gaagatttg tcagtggagaa cagtaacaac aagagagcac catactggac caacacagaa 480
 aagatggaaa agccgttcca tgctgtgcct gcccggcaaca ctgtcaagt tcgctgccc 540
 gcccggggga accaaatgcc aaccatgcgg tggctgaaaa acgggaaggaa gtttaagcag 600
 gagcatcgc tggaggctca caaggatcaga aaccagcaact ggagcctcat tatggaaagt 660
 ttggtccccat ctgacaaaggaa aattataacc tgggtgggtt agaaatgtataa cgggtccatc 720
 aatcacacgt accaccttga tgggtggag cgatccctc accggcccat ccttcaagcc 780
 ggactgcgg caaatgcctc cacagtggc ggaggagacg tagagttgt ctgcaagggtt 840
 tacagtgtat cccagccccatccatggatc atcaagcactc tgaaaaagaa cggcagtaaa 900
 tacgggcccc acgggtcgcc ctacccatggatc gttcttcaagg ccggccgtgt taacaccacg 960
 gacaaagaga ttgagggtct ctatattcgg aatgttaactt ttgaggacgc tggggaaatat 1020
 acgtgttgg cgggttaattt tattgggata tcctttcaact ctgcatgggtt gacagttctg 1080
 ccagcgctg gaagagaaaa ggagattaca gttcccccac actaccttggatc gatagccatt 1140
 tactgcatac gggtcttctt aatcgccctgt atgggtgtaa cagtcatccatc gtggccaaatg 1200
 aagaacacga ccaagaagcc agacttcagc agccagccgg ctgtgcacaa gctgacccaa 1260
 cgtatcccccc tggcgagaca ggttaacagggt tcggctgactt ccagctccctc catgaactcc 1320
 aacacccccc tggtgaggat aacaacacgc ctctttccaa cggcagacac ccccatgtcg 1380
 gcaggggtct cccgatgtatc acttccagag gacccaaaat gggagtttc aagagataag 1440
 ctgacactgg gcaagccccct gggagaagggt tgcttgggc aatgtgtcat ggcggaaagca 1500
 gtggaaattt acaaagacaa gcccaggag gcggttccacgg tggccgtgaa gatgttggaaa 1560
 gatgtatgca cagagaaaga ctttctgtat ctgggtgtcag agatggagat gatgaagatg 1620
 attggaaac acaagaatatacataatctt ctggagccctt gacacacagga tgggcctctc 1680
 tatgtcatag ttgagtatgc ctctaaaggc aacccggatc aataccctccg agccggagg 1740
 ccacccggga tggagtactc ctatgacatt aaccgtgttc ctgaggagca gatgacctc 1800
 aaggacttgg tgcgtatgcac ctaccagctg gccagaggca tggagtactt ggcttccaa 1860
 aaatgtatcc atcgagatcc agcagccaga aatgtttgg taacagaaaa caatgtgtatg 1920
 aaaatagcgg acttggact cggccagagat atcaacaata tagactatta caaaaagacc 1980
 accaatgggc ggctccctgt caagtggatc gtcggcggatc cccgttttgc tagagtatac 2040
 acttcatcaga gtatgttgc gtccttcggg gtgttaatgtt gggagatctt cactttaggg 2100
 ggctcgccct accccaggat tccctgtggag gaaacttttta agctgtcgaa ggaaggacac 2160
 agaatggaaa agccggccaa ctgcaccaac gaactgtaca tgatgtatggatc ggttgg 2220
 catcgatgc cttcccccacgg accaaacgttc aacgttggatc tagaagactt ggatcgaaatt 2280
 ctcactctca caaccatgtt ggaataactt gacccggatc aacccatctcgaa acagtattca 2340
 ccttagttacc ctgacacaag aagttcttgt tcttcaggag atgattctgt tttttctcca 2400
 gaccccatgc cttacgaacc atgccttctt cagttccac acataaacgg cagtgtaaaa 2460
 acatga 2466

<210> 86
<211> 2421
<212> DNA
<213> *Homo sapiens*

<300>
<302> FGFR3
<310> NM000142

<400> 86
atggggcgccctgcctgcgc cctcgcgctc tgcgtggccg tggccatcggtggccg 60
tcctcgagttccggac ggagcagcgc gtcgtggc gagcggcaga agtccccggc 120

DE 101 00 586 C 1

ccagagcccg gccagcagga gcagttggtc ttccgcgcgcg gggatgtgt ggagctgagc 180
 tgcggccct cgggggtgg tccccatgggg cccactgtct gggtaagga tggcacagg 240
 ctgggtccct cggagcgtgt cctgggtggg cccagcgcc tcgcagggtgt gaatgcctcc 300
 5 cacgaggact cccggggccta cagctgccgg cagcgctca cgcagcgcgt actgtgccac 360
 ttcagtgtgc gggtgacaga cgctccatcc tcgggagatg acgaagacgg ggaggacgag 420
 gctgaggaca cagggtgtgg cacagggcc ccttactgtgg cacggcccgaa gcgatggac 480
 aagaagctgc tggccgtgcc ggccgcac accgtccgc tccgctgccc agccgctggc 540
 aaccggactc ctcacatc tcggctgaag aacggcaggg agttccgcgg cgagcaccgc 600
 10 atggaggca tcaagctgc gcatcagcg tggagcctgg tcatggaaag cgtggtgc 660
 tcggacccgg gcaactacac ctgcgtcg gagaacaagt ttggcagcat cccgcagacg 720
 tacacgtgg acgtgtggc ggcgtcccg cacggccca tcctgcaggc ggggtgcgg 780
 gccaaccaga cggcggtgt gggcagcgc gtggagttcc actgcaaggt gtacagtgac 840
 gcacagcccc acatccagtg gctcaagcac gtggaggtga acggcagcaa ggtggcccg 900
 15 gacggcacac cctacgttac cgtgtcaag acggcggcg ctaacaccac cgacaaggag 960
 ctagagggttc ttccttgc caacgtcacc ttggaggacg cccgggagta cacgtcctg 1020
 gcccccaatt ctattgggtt ttctcatcac tctgcgtggc tgggtgtgtt gccagccag 1080
 gaggagctgg tggaggctga cgaggccggc agtgtgtatg caggcatctt cagctacggg 1140
 gtgggttct tcctgttcat cctgggtgt gcgctgtga cgtctgcgc cctgcgcage 1200
 ccccccaaga aaggcctggg ctccccaccgt gtgcacaaga tctcccgtt cccgctcaag 1260
 20 cgacagggtgt ccttggagtc caacgcgtcc atgagctcca acacaccact ggtgcgcate 1320
 gcaaggctgt ctcagggggaa gggcccccacg ctggccaaatg tctccgagct cgagctgcct 1380
 gccgacccca aatggggact gtctcgccg cggctgaccc tgggcaagcc cttttggag 1440
 ggctgttcg gccagggtgtt catggccgg gccatcggtca ttgacaaggaa cccggccg 1500
 25 aagctgtca cctgtcgatg gaagatgtg aaagatcgat cactgacaa ggacctgtcg 1560
 gacctgggtgt ctgagatggaa gatgatgaaatgatcgatggaa aacacaaaaa catcatcaac 1620
 ctgctggcg ctcgcacgcgaa gggccggccctt ctgtacgtgc tgggtggatg cgcggccaag 1680
 ggttaacctgc gggagttctt gggggccggg cggcccccggg gcctggacta tccttcgac 1740
 acctgcaagc cgcccgagga gcagctcacc ttcaaggacc tgggtgcctg tgcttaccag 1800
 30 gtggcccgaa gcatggagta ctggcctcc cagaagtgc tccacacgttggggatccc cgtaccccgatg catccctgtg 1860
 cgcaatgtgc tggtgaccga ggacaacgtg atgaagatcg cagacttcgg gctggcccg 1920
 gacgtgcaca acctcgacta ctacaagaag acaaccaacg gccggctgccc cgtgaagtgg 1980
 atggccctg aggcttgc ttgaccgatc tacactcacc agagtgcacgt ctggccctt 2040
 ggggtctgc tctggggatgtt ctgcgtggatggggatccc cgtaccccgatg catccctgtg 2100
 35 gaggagctct tcaagctgtgtt gaaaggaggc caccgcattt gcaagcccgca caactgcaca 2160
 cacgacccgtt acatgtatc gggggatgtc tggcatgcgg cggcccccacca gaggcccacc 2220
 ttcaagcagc tggtgaggatgtt cttggaccgtt gtccattaccg tgacgtccac cgacgagttac 2280
 ctggacccgtt cggccctt cggccgttcc cggccgttcc gccaggacac ccccaactcc 2340
 agctccctcag gggacgactc cgtgtttgccc cacgacctgc tggcccccggc cccacccagc 2400
 40 agtgggggtt cggccgttcc a 2421

<210> 87
 <211> 2102
 <212> DNA
 45 <213> Homo sapiens

<300>
 <302> HGF
 50 <310> E08541

<400> 87
 atgcagaggg acaaaggaaa agaagaaaata caattcatga attcaaaaaa tcagcaaaga 60
 ctaccctaat caaaatagat ccagcactga agataaaaac caaaaaatgt aataactgcag 120
 55 accaatgtgc taatagatgt acttaggaata aaggacttcc attcaacttgc aaggctttt 180
 tttttgataa agcaaggaaa caatgcctct ggttccctt caatagcatg tcaagtggag 240
 tgaaaaaaaatggccat gaatttgacc tctatgaaaa caaagactac attagaaaact 300
 gcatcattgg taaaggacgc agtacaagg gaacagtatc tatcaactaag agtggcatca 360

60

65

DE 101 00 586 C 1

aatgtcagcc ctggagttcc atgataccac acgaacacag cttttgcct tcgagctatc 420
 gggtaaaaga cctacaggaa aactactgtc gaaatcctcg agggaaagaa ggggaccct 480
 ggtttcac aagcaatcca gaggtacgtc acgaagtctg tgacattcct cagtgttcag 540
 aaggtaatg catgacctgc aatggggaga gttatcgagg tctcatggat catacagaat 600
 cagcaagat ttgtcagcgc tggatcatc agacaccaca ccggcacaaa ttcttcctg 660
 aaagatatcc cgacaaggc tttgtatgata attattgcg caatcccgt ggccagccg 720
 ggcatggtg ctatactt gaccctcaca cccgctggg gtactgtca attaaaacat 780
 ggcgtacaa tactatgaat gacactgtat ttcccttggg aacaactgaa tgcaccaag 840
 gtcaaggaga aggctacagg ggcactgtca ataccatgg gaatggatt ccatgtcgc 900
 gttggattc tcagtatcct cacgacgtc acatgactcc taaaaatttc aagtgcagg 960
 acctacgaga aaattactgc cgaatccag atgggtctga atcaccctgg tggtttacca 1020
 ctgatccaa catccgagg gcgtactgtc cccaaattcc aaactgtat atgtcacatg 1080
 gacaagattt ttatcggtt aatggaaaaa attatatggg caattatcc caaacaagat 1140
 ctgactaac atgttcaatg tggacaaga acatggaga cttacatcgat catabttct 1200
 gggaccaga tgcaagtaag ctgaatgaga attactgcg aaatccagat gatgtatgc 1260
 atggaccctg gtgtacacg ggaaatccac tcattccttgggattattgc cctattctc 1320
 gttgtgaagg tgataccaca cctacaatag tcaatttaga ccattccgtat atatctgtg 1380
 cccaaaggaa acaattgcg gttgtaaatg ggattccac acgaacaaac ataggatgga 1440
 tggtagttt gagatcaga aataaacata tctgcggagg atcattgata aaggagagtt 1500
 gggttttac tgcacgacag tggtttccctt ctcgagactt gaaagattat gaagcttggc 1560
 ttgaaattca tgatgtccac ggaagaggag atgagaaatg caaacagggtt ctcaatgttt 1620
 cccagctggt atatggccctt gaaggatcag atctgggtttt aatgaagctt gccaggcctg 1680
 ctgtcctggat tgatttgtt agtacgattt attaccaa ttatggatgc acaattcctg 1740
 aaaagaccag ttgcagtgtt tatggctggg gctacactgg attgtatcaat tatgtatggcc 1800
 tattacgagt ggcacatctt tatataatgg gaaatgagaa atgcagccag catcatcgag 1860
 ggaagggtgac tctgaatgag tctgaaatat gtgtctgggc tgaaaagattt ggatcaggac 1920
 catgtgaggg ggattatggt ggcccacttg tttgtgagca acataaaatg agaatggttc 1980
 ttgtgtcat tggatcgatc cgtggatgtt ccattccaaa tcgtccttgtt atttttgtcc 2040
 gagtagcata ttatgcaaaaa tggatcacaca aaattatttt aacatataag gtaccacagt 2100
 ca 2102

<210> 88
 <211> 360
 <212> DNA
 <213> Homo sapiens 35

<300>
 <302> ID3
 <310> XM001539 40

<400> 88
 atgaaggcgc tgagcccggt ggcggctgc tacgaggcgg tggctgcct gtcggAACGC 60
 agtctggca tcgccccggg ccgagggaaag ggccggcag ctgaggagcc gctgagcttgc 120
 ctggacgaca tgaaccactg ctactccgc ctgcggaaac tggatccgg agtcccgaga 180
 ggcactcagc tttagccagggt gggaaatcta cagcgcgtca tcgactacat tctcgacccgt 240
 caggtatgcc tggccgagcc agccctggaa cccctgtat gccccccaccc tcccatccag 300
 acagccgagc tcactccggaa acttgtatc tccaaacgaca aaaggagctt ttggccactga 360

<210> 89
 <211> 743
 <212> DNA
 <213> Homo sapiens 55

<300>
 <302> IGF2

60

65

DE 101 00 586 C 1

<310> NM000612

<400> 89
 5 atgggaatcc caatggggaa gtcgatgctg gtgcttctca ctttcttgc ctgcgcctcg 60
 tgctcattg ctgttaccc ccccagttag accctgtcg gggggagct ggtggacacc 120
 ctccagttcg tctgtgggaa ccgcggcttc tacttcagca ggcccgcaga ccgtgtgagc 180
 cgtcgcagcc gtggcatcg tgaggagtgc tgtttccgca gctgtgacct ggcctcctg 240
 gagacgtact gtgttaccc cgcgcgttcc gagaggagcg tgctgacccc tccgaccgtg 300
 10 cttecgacaca acttccccag atacccctgt ggcgcgttcc tccaatatga cacctggaag 360
 cagtcaccc acgcgcgtcg caggggcctg cctgcctcc tgcgtgcggc ccggggtcac 420
 gtgcgcgcca agaggatcg ggcgttcagg gaggccaaac gtcacccgtcc cctgattgct 480
 ctacccaccc aagaccccgcc acacggggc gcccccccg agatggccag caatcggaag 540
 tgagaaaaac tgccgcagaat ctgcgcgttcc ggcgcacccat cctgcgcgttcc 600
 15 acggacgttt ccatcaggtt ccatccggaa aatctctgg ttccacgtcc ccctggggct 660
 tctcttgacc cagtcacccgtt gcccgcctc cccgaaacag gtcactctcc tcggggccct 720
 ccatcggtt gaggaaagcac agc 743

20 <210> 90
 <211> 7476
 <212> DNA
 <213> Homo sapiens

25 <300>
 <302> IGF2R
 <310> NM000876

<400> 90
 30 atggggcccg ccgcggccg gagcccccac ctggggcccg cgcggcccg ccgcggccag 60
 cgctctctgc tcctgctgca gctgctgctg ctgcgcgttcc cccggggcgc cacgcaggcc 120
 caggccgccc cgttcccccg gctgtgcagt tatacatggg aagctgttga tacaaaaaat 180
 aatgtactttt ataaaatcaa catctgttgc agtgtggata ttgtccagtg cggggccatca 240
 agtgcgtttt gtatgcacca cttgaagaca cgcacttatac attcagtgg tgactctgtt 300
 35 ttgagaagtgc caaccacatc ttcctgttgc ttcaacacaa cagtgcgttcc cgtgaggctg tgaccagcaa 360
 ggcacaaatc acagagtccca gaggcatt gccttctgttgc gggggaaaac cctgggaact 420
 cctgaatttg taactgcacac agaatgtgtg cactacttttgc tgaggaggac cactgcagcc 480
 tgcaagaaag acatattttaa agcaataaag gaggtgcatt gctatgttt tgatgaagag 540
 ttgaggaagc atgatctcaa tcctctgttcc aagcttagtgc tgccctactt ggtggatgac 600
 40 tccgatccgg acacttctctt attcatcaat gttttagtgc acatagacac actacagagac 660
 ccagggttccac agctgcgggc ctgtcccccc ggcactgcgc cctgccttgtt aagaggacac 720
 caggcgtttt atgttggcca gccccgggac ggactgaagc tggtgcgcacca ggcaggctt 780
 gtcctgaggat acgtgaggga agaggcagga aagcttagact tttgtatgg tcacagccct 840
 gcggtgactt ttatcttttgc ttgcccgttgc gaggcgagag agggcaccat tcccaaaactc 900
 45 acagtaataat ccaactgcgc ctatgaaatt gagttgttgc ctgagtatgc ctgcacacaga 960
 gattacctgg aaagtaaaaat ttgttctgttgc agccgcgcgc agcaggatgt ctccatagac 1020
 ctcacaccac ttgcccagag cggagggttca tcctatattt cagatggaaa agaatatttg 1080
 ttttatttgc atgtctgttgc agaaaactgaa atacagttctt gtaataaaaaa acaagctgca 1140
 gtttgccaaatg tgaaaaaagag cgatacccttcaatgc cagcaggaaatg ataccacaat 1200
 50 cagaccctcc gatattcgatc tggagaccc accttgcattt gatggaaatg gcaataaaaac cgcaggtaac 1260
 agctcagggtt ttcagcggtt gaggcgttca aaccttgcattt gatggaaatg gcaataaaaac cgcaggtaac 1320
 gatggggaaatg gaaactctgttgc attcacaggc gagggttgcacttgc acatggatcttgc ttcacatgg 1380
 gacacccggat acgcctgtgttgc taaggagaag gaagacctcc tctgcgggtgc caccgacggg 1440
 aagaagcgctt atgacctgttgc cgcgttgc cgcgcgttgc aaccagagca gaatttggaa 1500
 55 gctgtggatgc gcaatgc gaggacccat gggaaacccat aagaagcattt ttttgcatttgc ttttgcatttgc 1560
 agatgtgtgc agggaaaggca ggcacgggg tggttgcagg acgcggcagt gtcgtgcgttgc 1620
 gataaaaaatg gaagtaaaaaa tctggggaaa ttatcccttgc tcccatgaa agagaaagga 1680
 aacattcaac tctcttatttgc agatggatgc gattgtgtgc atggcaagaa aattaaaaactt 1740

60

65

DE 101 00 586 C 1

aatatcacac ttgttatgcaa gccaggtgat ctggaaagtg caccagtgtt gagaacttct 1800
 ggggaaggcg gttgcttta tgagtttag tggcgcacag ctgcggctg tgtgtgtct 1860
 aagacagaag gggagaactg cacggcttt gactcccagg cagggtttc ttttgactta 1920
 tcacctctca caaagaaaaa ttgtgcctat aaagttgaga caaagaagta tgactttat 1980 5
 ataaatgtgt gtggcccggt gtctgtgagc ccctgtcagc cagactcagg agcctgccag 2040
 gtggcaaaaaa gtatgagaa gacttggaaac ttgggtctga gtaatgcgaa gcttcatat 2100
 tatgtggaa tgatccaact gaactacaga ggcggcacac cctataacaa tgaagacac 2160
 acaccgagag ctacgctcat caccttctc tggatcgag acgcgggagt gggctccct 2220
 gaatatcagg aagaggataa ctccacctac aacttccggc ggtacaccag ctatgcctgc 2280 10
 ccggaggagc ccctggaaatg cgtatgtgacc gacccttcca cgctggagca gtacgacctc 2340
 tccagtctgg caaaatctga aggtggcctt ggaggaaact ggtatgcct ggcacaactca 2400
 ggggaacatg tcacgtggag gaaatactac attaactgtgt gtcggctct gaatccagt 2460
 ccgggctgca accgatatgc atcggcttgc cagatgaaatg aaaaaaaaaa tcagggctcc 2520
 ttcactgaag ttgtttccat cagaacttg ggaatggcaa agacggcccc ggtgtttag 2580
 gacagccgca gcctccttctt ggaatacgtg aatgggtcgg cctgcaccc cagcgtggc 2640
 agacagacca catataccac gaggatccat ctcgtctgtt ccagggccag gctgaacagc 2700
 caccccatct tttctctcaa ctgggagtgt ttgggtcagtt tcctgtgaa cacagaggct 2760
 gcctgtccca ttcaagacaac gacggataca gaccaggctt gctctataag ggatcccac 2820
 agtgattttg ttgttaatct taatccgcta aacagttcgc aaggatataa cgtctctggc 2880 15
 attggaaaga tttttatgtt taatgtctgc ggcacaatgc ctgtctgtgg gaccatctg 2940
 gggaaacacccctg cttctggctg tgaggcagaa accccaaactg aagagctaa gaattggaaag 3000
 ccagcaggc cagtcggaaatg tgagaaaacccctg ccacagaggg cttcatact 3060
 ctgacctaca aaggccctct ctctggccaaatg ggtaccggcgt atgtttat cgtccgctt 3120
 gtttgcataatg atgtgtttt ctcaggcccc ctcggatcc tgcataaga tatcgactct 3180 25
 gggcaaggaa tccgaaacac ttacttttag tttggaaaccg cttttggctg tggttctct 3240
 ccagtggact gccaagtcac cgacctggct gggaaatggat acgacctgac tggcttaagc 3300
 acagtcaaggg aacccttggac ggctgttgac acctctgtcg tatttgagcg ttgcataatcc atggagaaa gaggacttgc 3360
 gtttgcataatg atgtgtttt ctcaggcccc ctcggatcc tggagaaactg gccaggccag cgccgtgggg 3420
 tcttgccttag tgcataaggg caatagctgg aatctgggtg tggcagat gaggccccaa 3480
 gcccggcga atggatctt gaggatcatg tatgtcaacg gtgacaagtg tgggaaccag 3540 30
 cgcttctcca ccaggatcac gtttggatgt gtcagatataatg tggcggcttccatc 3600
 cttcaggatg ttgttgatgtc cgtgtttatc tggagaaactg tggagccctg tcccgttgc 3660
 agagtggaaag gggacaactg tgagggtggaa gaccaaggc aatacactta ttacttccgg 3720
 aagccctgg gcctcaacga caccatctg agcgtggcg gtcgtggaaatg acaagtccaa ggtggctcc 3840
 gtctgtggaa agctttccctc agacgtctgc cccacaactg tcatgtcagg aaaagcggga accgcaggaa ttcaccaatgg 3900
 aagctaactt atgaaaatgg cttgtttaaa atgaaacttca aagtttatac agcgtccac agccatcttca ttcactgtg 3960
 gtatttctaa aggagacttc agattttcc tacttgttgc tgcggccatc 4020
 tgcccacctt tcgatctgac tgaatgttca ttcaaaagatg atggcgaac gcatgtatgc 4080 40
 ctctctccc tgcataaggta cagtgcacac tggagccaa gggctggccaa ctccttcgac 4140
 gagacttacc tcatcaatgt ctgcggatct ctggccccgc aggtggcaca tcaactggac gggggaccgg 4200
 cctccagaag cagccgtgt tgcgtgggt ggctccaagc cctgtgaacct cggcagggt 4260
 agggacggac ctcagtggag agatggcata attgtctga tgcggccatc 4320
 tgcgtggatg ggattcggaa aaagtcaacc accatccgt aatacgttgc tggcactta 4380 45
 gtgaacttca gggccatgtt catcagcgcc gtggaggact tgcggccatc 4440
 cccacagcca cagccctgtcc catgaagagc aacgagcatg tgcggccatc 4500
 ccaagcacag gacacccgtt tgcgtgtgc tccttaagtg atgactgcac ggtcacaac 4560
 gcttacagcg agaagggggtt gtttacatg agcatctgtg tgcggccatc 4620
 cctggcgtgg gggccctgtt tggacagacc aggattagcg tggggcaaggc caacaagagg 4680 50
 ctgagatacg tggaccaggc ctcgtcgatc gtgtacaagg atgggtcccc ttgtccctcc 4740
 aaatccggcc tgcataatgg gaggatgtgatc agttctgtgt gcaaggccatc 4800
 accaataggc ccatgtctcat ctccctggac aacgagcatg gcaactctt cttctctgg 4860
 cacacccgc tggcctgtcgatc gcaagcgacc gaatgttccg tgaggaaatgg aagcttctatt 4920
 gttgacttgc tcccttcatc tcatcgact ggtggatgg aggctttaga tgagagttag 4980 55
 gatgtgtgcct ccgataccaa ccctgatttc tacatcaata ttgtcagcc actaaatccc 5040
 atgcacgcgac tggccctgtcc tggccggagcc gctgtgtgc aagttctat tgcgtggccc 5100
 atgcacgcgac tggccctgtcc tggccggagcc gctgtgtgc aagttctat tgcgtggccc 5160

60

65

DE 101 00 586 C 1

cccatagata tcggccgggt agcaggacca ccaaactca atccaatagc aaatgagatt 5220
 tacttgaatt ttgaaagcac tactcttcgc tttagccgaca agcatttcaa ctacaccccg 5280
 5 ctcatcgct ttcactgtaa gagagggtgt agcatggaa cgccctaagct gtttaaggacc 5340
 agcgagtgcg actttgtgtt cgaatgggg actccctgtcg tctgtccctga tgaagtgggg 5400
 atggatggct gtaccctgac agatgagcac ctcctctaca gcttcaactt gtccagccct 5460
 tccacagacca ccttaagggt gactcgccac acagcgttgg ggtgtgcacc 5520
 tttgcagtcg ggccagaaca aggaggctgt aaggacggag gaggctgtct gcttcaggc 5580
 accaagggggg catcccttgg acggctgcaa tcaatgaaaac tggattacag gcaccaggat 5640
 10 gaagcggctcg ttttaagtta cgtgaatggt gatcggttgc ctccagaaac cgatgacggc 5700
 gtcccctgt tttcccttcatattcaat gggaaagagct acgaggagtg catcatagag 5760
 agcaggggcga agctgggtt tagcacaaact gggactacg acagagacca cgagtggggc 5820
 ttctcgacac actcaaaacag ctaccggaca tccagcatca tatttaagt tgatgaagat 5880
 gaggacatttggaggccacaa agtcttcagt gaagtgcgtg ggtgtgtat gacatttgag 5940
 15 tggaaaacaa aagttgtctg ccctccaaag aagttggagt gcaaaatcg ccagaaacac 6000
 aaaacctacg acctcgccgt gcttcctct ctcaccgggt cctggccct ggtccacaac 6060
 ggagtctcg actatataaa tctgtgccag aaaatatata aaggggccct gggctgtct 6120
 gaaaggccca gcatttgcag aaggaccaca actgggtacg tccaggctt gggactcg 6180
 cacacgcaga agctgggtgt catagggtac aaagttgttgc tcacgtactc caaaggttat 6240
 20 ccgtgtgggt gaaataagac cgcattctcc gtgatagaat tgacctgtac aaagacgggt 6300
 ggcagacctg cattcaagag gtttgatatac gacagctgca cttactactt cagctggac 6360
 tccccggctg cctgcgcctg gaagcctcag gagggtcaga tggtgaatgg gaccatcacc 6420
 aacctataaa atggcaagag cttcagccctt ggagatattt attttaagct gttcagagcc 6480
 tctggggaca tgaggaccaa tggggacaaac tacctgtatg agatccaact ttcctccatc 6540
 25 acaagctcca gaaaccggcgt gtgtcttgg gccaacatata gccagggtaa gcccaacat 6600
 cagcaactca gtccggaaagt tggaaacctct gacaagacca gatctcgatg tcgtgtttgc ctcttcctct aagtgcggaa tcttccacca tcttcttcca ctgtgaccctt ctgtggggg 6660
 cacgagactg ccgactgcca gtaccccttc tcttggtaca 6720
 30 ggggtgggt ttgacagcga gaatccggg gacgacgggc agatgcacaa ggggtgtca 6900
 gaacggagcc aggcagtcgg cgccgtctc agcctgtgc ctgctggccc ttgtgtctca caagaaggag aggaggaaaa cagtgataag taagctgacc 7020
 acttgcgttga ggagaaggatc caacgtgtcc tacaataact caaagggtgaa taagggagaa 7080
 gagacatgt aagatgaaaac agagtggctg atgaaagaga tccagctgcc tectccacgg 7140
 35 cagggaaaagg aagggcagga gaacggccat attaccacca agtcagtgaa agccctcagc 7200
 tccctcgatg gggatgacca ggacagtttgc gatgaggatc tgaccatccc agaggtgaaa 7260
 gttcacttcgg gcagggggac tggggcagag agtcccccacc cagtgagaaa cgcacagac 7320
 aatgccttc aggacgtgttga ggacgatagg gtggggctgg tcaggggtga gaaggcgagg 7380
 aaagggaagt ccagctctgc acagcagaag acagtggatc ccaccaagct ggtgtccctc 7440
 40 catgacgaca gcgacgagga ccttttacac atctga 7476

<210> 91
 <211> 4104
 45 <212> DNA
 <213> Homo sapiens

<300>
 <302> IGF1R
 50 <310> NM000875

<400> 91
 atgaagtctg gtcggggagg agggtccccg acctcgctgt gggggctccct gtttctctcc 60
 gccgcgtct cgctctggcc gacgagtggaa gaaatctgcg ggccaggcat cgacatccgc 120
 55 aacgactatc agcagctgaa gcgcctgggg aactgcacgg tgatcgagggtt ctacctccac 180
 atccctgtca tctccaaggc cgaggactac cgcaactacc gtttcccttca gtcacggc 240
 attaccgagt acttgcgtct gttccaggtg gctggctcg agagectgg agacctttc 300
 cccaaacctca cggtcatccg cggtggaaa ctcttctaca actacggccctt ggtcatcttc 360

60

65

DE 101 00 586 C 1

gagatgacca atctcaagga tattgggctt tacaacctga ggaacattac tcgggggcc 420
 atcaggattg agaaaaatgc tgacctctgt tacctctcca ctgtggactg gtccctgatc 480
 ctggatgcgg tgcataataa ctacattgtg gggataaagc ccccaaagga atgtgggac 540
 ctgtgtccag ggaccatgga ggagaagccg atgtgtgaga agaccaccaat caacaatgag 600
 tacaactacc gctgctggac cacaaaccgc tggcagaaaaa tgcgtccaaag cactgtgtgg 660
 aagcggcggt gcaccgagaa caatgagtgc tgccaccccg agtgcctggc cagctgcagc 720
 ggcctgaca acgacacgcg ctgtgttagt tgccgcccact actactatgc cgggtgtctgt 780
 gtgcctgcct gccccccaa cacctacagg ttgagggtt ggcgtgtgt ggacccgtac 840
 ttctgcgcca acatcttcag cgccgagagc agegactccg aggggtttgt gatccacgac 900
 ggcgagtgc tgcaggatg cccctcgcc ttcatccgca acggcagcca gagcatgtac 960
 tgatccctt gtgaagggtt ccgtccaaag gtcgttgagg aagaaaagaa aacaaaagacc 1020
 attgattctg ttacttctgc tcagatgtc caaggatgca ccatttcaa gggcaatttg 1080
 ctcatthaaca tccgacgggg gaataacatt gttcagagc tggagaactt catggggctc 1140
 atcgaggtgg tgcgggtca cgtgaagatc cgcatttc atgccttggt ctcccttgtcc 1200
 ttcctaaaaa accttcgcct catcttagga gaggagcagc tagaaggaa ttacttccttc 1260
 tacgtctcg acaaccagaa ctgcagcaaa ctgtggact gggaccaccc caacgtgacc 1320
 atcaaaggcg gaaaaatgtt ctttgcattt aatcccaaat tatgttttc cgaattttac 1380
 cgcgtggagg aagtgcacggg gactaaaggg cgccaaagca aaggggacat aaacaccagg 1440
 aacaacgggg agagagcctc ctgtgaaagt gacgtcttc attcacccctc caccaccacg 1500
 tcgaagaatc gcatcatcat aacctggcac cgttaccggc cccctgacta caggatctc 1560
 atcagcttca cgcgttacta caaggaagca ccctttaaga atgtcacaga gtatgtggg 1620
 caggatgcct gcggtccaa cagctggaaat atggtggacg tggacccccc gccccacaag 1680
 gacgtggacg cccgcatttt actacatggg ctgaaggccctt ggactca gcccgtttac 1740
 gtcaaggctg tgaccctcac catgtggag aacgaccata tccgtgggc caagagttag 1800
 atcttgtaca ttcgcaccaa tgcttcagtt ccttccattc ctttggacgt tcttcagca 1860
 tcgaacttctt cttcttcgtt aatcgtaag tggaaaccctc cttctctgc caacggcaac 1920
 ctgagttact acattgtgcg ctggcagegg cagcctcagg acggctactt ttacccggac 1980
 aattactgtt ccaaagacaaa aatccccatc aggaagtatg cgcacggcac catgcacatt 2040
 gaggaggtca cagagaaccc caagactgag gtgtgtggg gggagaagg gccttgctgc 2100
 gcctggccca aactgtgaagc cgagaagcag gccgagaagg aggaggctga ataccgcaaa 2160
 gtcttgaga atttccctgca caactccatc ttctggccca gacctgtacat ttacccggac 2220
 gatgtcatgc aagtggccaa caccacccatg tccagccgaa gcaggaacac cacggccgca 2280
 gacacctaca acatcaccga cccggaaagag ctggagacag agtaccctt tttgagagc 2340
 agagtggata acaaggagag aactgttatt tcttccattc ggcctttcac attgtaccgc 2400
 atcgatatacc acagctgca ccacgggtt gagaagctgg gtcgcagcgc ctccaacttc 2460
 gtcttgcaaa ggactatgcg cgcagaaggaa gcagatgaca ttcctggggc agtgcacctgg 2520
 gagccaaggc ctgaaaactc catctttta aagtggccgg aacctgagaa tcccaatggg 2580
 ttgattctaa tttatggaaat aaaatacggg tcacaagttt aggatcagcg agaatgtgtg 2640
 tccagacagg aatacaggaa gtatggaggg gccaagctaa accggctaaa cccggggaaat 2700
 tacacagccc ggattcaggc cacatcttc tctgggatg ggtcggtggc agatctgtg 2760
 ttcttctatg tccaggccaa aacaggatata gaaaacttca tccatctgtt catcgctctg 2820
 cccgtcgctg tccgtgtgtt cgtgggggg ttgtgttta aacctgagaa tcccaatggg 2880
 aagagaaaaa acacgggtt ggggaatggg gtgtgtatg tgcgtacgtt cttccataga 2940
 ttcagcgctg ctgtatgttgc cgttccatg gatgtggggatg tggctcgaa cccggaggatc 2980
 atgagccggg aacttggca ggggtcgat gggatgttca atgaggaaat tggcaagggt 3060
 gtggtaaag atgaacctga aaccagatg gccattaaa cagtgaacca ggcgcgaac 3120
 atgcgtgaga ggatttggat tctcaacgaa gcttctgtt gtaaggaggat caattgttac 3180
 catgtgtgc gattgtggg tttgtgttcc caaggccagc aacactgtt catcatggaa 3240
 ctgtatgacac gggggcattt cttttttt ctccggcttc tgaggccaga aatggggaaat 3300
 aatccaaatcc tagcaccctcc aaggccatg aagatgatc agatggccgg agagattgca 3360
 gacggcatgg catacctcaa cgccaaataag ttctggccaca gagaccttgc tgccggaaat 3420
 tgcgtgttag cccaaatggatcacatgatgaaatggatgatc gtcgtgttccatgatc 3480
 tatgagacag actattaccg gaaaggaggc aaagggtgc tgccctgtgc ctggatgtct 3540
 cctgatgtcc tcaaggatgg agtcttcacc acttactccg acgtctggc ttccgggtc 3600
 gtcctctggg agatcgccac actggccggcag cagccctacc agggcttgc caacgagca 3660
 gtccttcgt tgcgtatggc gggggccctt ctggacaagc cagacaactg ttctgacatg 3720
 ctgtttgaac tgcgtggcgtat gtcgtggcagataaaaaa agatgaggcc ttcccttcgt 3780

60

65

DE 101 00 586 C 1

gagatcatca gcagcatcaa agaggagatg gagcctggct tccgggaggt ctccttctac 3840
 tacagcgagg agaacaagct gcccggccg gaggagctgg acctggagcc agagaacatg 3900
 gagagcggtcc ccctggaccc ctgcggctcc tcgtccccc tgccactgcc cgacagacac 3960
 5 tcaggacaca aggccccgagaa cggccccggc cctgggggtgc tggctccccc cgccagcttc 4020
 gacgagagac agccttacgc ccacatgaac gggggccgca agaagcagcg ggccttgcgg 4080
 ctgccccagt cttcgacactg ctga 4104

10 <210> 92
 <211> 726
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> PDGFB
 <310> NM002608

<400> 92
 20 atgaatcgct gctgggcgct cttcctgtct ctctgctgct acctgcgtct ggtcagegc 60
 gagggggacc ccattcccgaa ggagctttat gagatgctga gtgaccactc gatccgctcc 120
 ttttatgtatc tccaacgcctc gctgcacggaa gaccccccggag aggaagatgg ggccgagttg 180
 gacctgaaca tgaccccgctc ccactctggaa ggcgagctgg agagcttggc tcgttggaaa 240
 aggagcctgg gttccctgac cattgctgag ccggccatga tcgcccggatg caagacgcgc 300
 25 accgagggtgt tcgagatctc ccggcgccctc atagaccgca ccaacgc 360
 tggccgcctt gtgtgggggt gcagcgctgc tccggctgct gcaacaacccg caacgtgcag 420
 tgccgc 480
 aagaagccaa tctttaagaa ggcacccggtgc acgctggaa accacactggc atgcaagtgt 540
 gagacagtgg cagctgcacg gcctgtgacc cgaagcccg 600
 30 gccaaaacgc cccaaactcg ggtgaccatt cggacggcgtc gactccggc 660
 ggcaagcacc ggaaattcaa gcacacgcata gacaagacgg cactgaagga gacccttgg 720
 gcctag 726

35 <210> 93
 <211> 1512
 <212> DNA
 <213> Homo sapiens

40 <300>
 <302> TGFbetaR1
 <310> NM004612

<400> 93
 45 atggaggcgccgg cggtcgctgc tccgcgtccc cggctgctcc tcctcggtct ggcggccggcg 60
 gccggccggccggccggccgtc gctccgggggg ggcacggcgat tacagtgttt ctgcacac 120
 tgtacaaaag acaattttac ttgtgtgaca gatggggctct gctttgtctc tgcacagag 180
 accacagaca aagtataaca caacagcatg tgcgtatgtc aatttgactt aattcctcga 240
 gataggccgt ttgtatgtc acccttctca aaaactgggt ctgtgactac aacatattgc 300
 50 tgcaatcagg accattgcaaa taaaatagaa cttccaaacta ctgtaaatgc atcacctggc 360
 cttggctctg tggaaactggc agctgtcatt gctggaccag tggcttctgt ctgcattctca 420
 ctcatgttga tggcttatat ctgcacacac cgcactgtca ttccacatcg agtgc 480
 gaagaggacc ctcattttaga tggccctttt atttcagagg gtactacgtt gaaagactta 540
 atttatgata tgacaacgtc aggttctggc tcaggtttac cattgtttgt tca 600
 55 attgcgagaa ctattgtgtt acaagaaagc attggcaaaag gtcgatattgg agaagttgg 660
 agagggaaagt ggcggggaga agaagttgtt gttaaatat ttcctcttag agaagaacgt 720
 tcgtgggtcc ttgtggcaga gatttatcaa actgtaatgt taacgtcatga aaacatccctg 780
 ggatttatacg cagcagacaa taaagacaat ggtacttgaa ctcagctctg gttgggtgtca 840

60

65

DE 101 00 586 C 1

gattatcatg agcatggatc ccttttgc tacttaaaca gatacacagt tactgtggaa 900
 ggaatgataa aacttgctc gtccacggcg agcggcttg cccatctca catggagatt 960
 gtggtagcc aaggaaagcc agccattgtc catagagatt tgaaatcaa gaatatctt 1020
 gtaaaaaga atggaacttgc ctgtattgca gacttaggac tggcagtaag acatgattca 1080
 gccacagata ccattgatat tgctccaa cacagagtgg gaacaaaaag gtacatggcc 1140
 cctgaagttc tcgatgattc cataaatatg aaacattttg aatccttcaa acgtgctgac 1200
 atctatgca tggcttagt attctggaa attgctcgac gatgttccat tgggtgaatt 1260
 catgaagatt accaactgcc ttattatgt ctgtacctt ctgaccatc agttaagaa 1320
 atgaaaaag ttgttgta acagaagttt aggc当地ata tcccaaacag atggcagagc 1380
 tggtaaggct tgagagtaat ggctaaaattt atgagagaaat gttggatgc caatggagca 1440
 gctaggctt cagcattgca gattaagaaa acattatgca aactcagtca acaggaaggc 1500
 atcaaaaatgt aa 1512

5

<210> 94
 <211> 4044
 <212> DNA
 <213> Homo sapiens

<300> 20
 <302> Flk1
 <310> AF035121

<400> 94 25
 atgcagagca aggtgctgct ggccgtcgcc ctgtggctc gcgtggagac ccggccgccc 60
 tctgtgggt tgcctagtgt ttctcttgc ctgcccaggc tcagcataca aaaagacata 120
 cttacaatta aggctaatac aactcttca attacttgca ggggacagag ggacttggac 180
 tggcttggc ccaataatca gagtggcagt gagcaaaagg tggaggtgac tgagtgcac 240
 gatggcctct tctgtaaagac actcacaatt ccaaaaatgtca tcggaaaatgtca cactggagcc 300
 tacaagtgtc tctaccggga aactgacttg gcctcggtca tttatgtcta tggttcagat 360
 tacagatctc catttattgtc ttctgttagt gaccaacatg gagtcgtgtc cattacttag 420
 aacaaaaaca aaactgtggt gattccatgt ctgggttcca ttccaaatctt caacgtgtca 480
 ctttgtgcaaa gataccccaga aaagagattt gttctgtat gtaacagaat ttccctggac 540
 agcaagaagg gctttactat tcccagatc atgatcagat atgctggat ggtcttctgt 600
 gaagaaaaaa ttaatgtatgaa aagtttccatg tcttattatgt acatagtgt cgttgttagg 660
 tataggattt atgatgtggt tctgagttccg tctcatggaa ttgaaactat tgggtggagaa 720
 aagctgtct taaaattgtac agcaagaact gaactaaatg tggggatttga cttaactgg 780
 gaataccctt cttegaagca tcagcataag aaacttgcataa tagatgggt aacccggat 840
 tctggagatg agatgaagaa atttttgagc accttacta tgaccaaggaa gaacagcaca 900
 gaccaaggat tgcacatc tgcagcatcc agtgggctga tgaccaaggaa 960 40
 ttgttcaggg tccatgaaaaa acctttgtt gctttggaa gtggcatgga atctctgg 1020
 gaagccacgg tgggggagcg tgcagaatc cctgcgaatg accttggat cccacccccc 1080
 gaaataaaaat ggtataaaaaa tggaaatcccc ctttgcgttca atcacacaat taaagcccc 1140
 catgtactga cgttactggaa agtggatgaa agacacacag gaaatttacac tgcacatc 1200
 accaatccca ttccaaaggaa gaagcagacg catgtggctc ctctggatgt gtatgtccca 1260
 ccccaaggatg tgcagaaatc tctaattctt ccttgcgtt ccttgcgttca cggcaccact 1320
 caaacgctga catgtacggc tgcacatc ctttgcgttca atcacacaat taaagcccc 1380
 cagttggagg aagatgtgcgc caacgcggcc agccaagctg tgcacatc acatgtggat 1440
 ccttgcgttca aatggggaaatg tgcacatc tgcacatc tgcacatc 1500
 aaaaatcaat ttgtctcaat tgaaggaaaa aacaaaactg taagtaccc tggatgtccca 1560
 gggccaaatg tgcacatc tgcacatc tgcacatc tgcacatc tgcacatc 1620
 agggtagatc ctttgcgttca gacccgggtt ccttgcgttca ttttgcgttca ttttgcgttca 1680
 cccactgac agagatgtgcgc ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca 1740
 ctttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca 1800
 ccttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca 1860
 acaaatgaca ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca ttttgcgttca 1920
 gtctgccttg cttcaagacag gaagaccaag aaaagacatttgcgttca ttttgcgttca 1980

55

60

65

DE 101 00 586 C 1

gtcctagagc gtgtggcacc cacgatcaca gaaaaacctgg agaatcagac gacaagtatt 2040
 gggaaagca tcgaagtctc atgcacggca tctgggaatc cccctccaca gatcatgtgg 2100
 5 tttaaagata atgagaccct tgttagaagac tcaggcattt gatggaggaa tttttcataa tagaagggtgc ccaggcatgc 2160
 aacctcaact tcccgagagt gaggaaggag gaccaaggcc tctacacctg ccaggcatgc 2220
 agtgttcttg gctgtgcaaa agtggaggca ttttcataa tagaagggtgc ccaggaaaag 2280
 acgaacttgg aaatcattat tctagtaggc acggcggtga ttgccatgtt ctctggcta 2340
 ctcttgcata tcatcctacg gaccgttaag cgggccaatg gaggggaaact gaagacaggc 2400
 tacttgtcca tcgtcatgaa tccagatgaa ctcccatattgg atgaacattt tgaacgactg 2460
 10 cctatgatg ccagcaaatg ggaattcccc agagaccggc tgaagctagg taagcttctt 2520
 ggcgtggtg ccttggcaca agtgattgaa gcagatgcct ttggaatttga caagacagca 2580
 acttgcaggc ctagcgtcaaaatgtt aagaaggag caacacacag tgagcatcga 2640
 gctctcatgt ctgaactcaa gatccattt catattggc accatctcaa tgtggtcaac 2700
 ctcttaggtg cctgtaccaa gccaggaggcc aacttcatgg tgattgttga attctgcaaa 2760
 15 tttggaaacc tgcacttactt cctgaggagc aagggaaatg aatttgcattt ctacaagacc 2820
 aaaggcccac gatccgtca agggaaagac tacgttggag caatccctgt ggatctgaaa 2880
 cggcgcttgg acagcatcac ctagcccg agtcagccca gctctggatt tggaggag 2940
 aagtccctca gtgtatgtt aagaaggaa gctcctgaaatctgtataa ggacttcctg 3000
 accttggcgc atctcatctg ttacagtttca caagtggcta agggcatgga gttctggca 3060
 20 tcgcgaaatgt tgcacccatcg ggacctggcg gcacgaaata tcctcttatac ggagaagaac 3120
 gtgtttaaaatctgtgactt tggcttggcc cgggatattt ataaagatcc agattatgtc 3180
 agaaaaggag atgctcgctt ccctttgaaa tggatggccc cagaaacaat ttttgcacaga 3240
 gtgtacacaaatccagatgtt cgtctggctt ttgggttggta aatattttcc 3300
 ttaggtgctt ctccatatttcc tggggtaaaatgtatgtt aattttgttgcgattgaaa 3360
 25 gaaggaacta gaatgagggc ccctgatttactacccag aaatgtacca gaccatgctg 3420
 gactgtggc acggggaggcc cagtcagaga cccacgtttt cagatgttgg ggaacatttgc 3480
 gggaaatctct tgcacgttacatccatgttggcc gatggcaaaatctgttgcata 3540
 tcagagactt tgacatggca agaggatttctt ggcactcttc tgcctaccc accttgc 3600
 tgtatggagg aggaggaaatgttgcacccaaatccatttgcata 3660
 30 agtcagtatc tgcacaaatccatgttggcc gatggcaaaatctgttgcata 3720
 gatatccctgt tagaagaacc agaagtaaaa gtaatccatgttgcata 3780
 ggtatgttgc ttcctcaga agagctgaaa actttggaaatccatgttgcata 3840
 tctttgggtt gatatggcc cagcaaaatccatgttgcata 3900
 cagacaagcc gtcaccatgttgcata 3960
 35 agtgaggaag cagaactttt aaagctgata gagatggatccatgttgcata 4020
 cagattctcc agcctgactc ggggg 4044

<210> 95
 40 <211> 4017
 <212> DNA
 <213> Homo sapiens

<300>
 45 <302> Flt1
 <310> AF063657

<400> 95
 atggtcagct actgggacac cggggccttgc ctgtgcgcgc tgctcagctg tctgcttctc 60
 50 acaggatcta gttcagggttc aaaattaaaa gatccctgaaatccatgttgcata 120
 cacatcatgc aacggccca gacactgcatttgcata 180
 tggctttgc ctgaaatgttgcata 240
 tggtaagaaatccatgttgcata 300
 cacactggct tctacagctg caaatatcttgcata 360
 55 gatatgttgcata 420
 gaaatccatgttgcata 480
 acgtcaccatgttgcata 540
 gggaaaacgcata 600

60

65

DE 101 00 586 C 1

gaaataggc ttctgacctg tgaagcaaca gtcataatggc atttgtataa gacaaactat 660
 ctcacacatc gacaaaccaa tacaatcata gatgtccaa taagcacacc acgcccagtc 720
 aaattactt gaggccatac tcttgcttc aattgtactg ctaccactcc cttgaacacg 780
 agagttcaaa tgacctggag ttaccctgt gaaaaaaaata agagagctc cgtaaggcg 840
 cgaattgacc aaagcaattc ccatgccaac atattctaca gtgttcttac tattgacaaa 900
 atgcagaaca aagacaaaagg actttatact tgcgtgtaa ggagtggacc atcattcaaa 960
 tctgttaaca cctcagtgca tatatatgtaa aagcattca tcactgtgaa acatcgaaaa 1020
 cagcagggtgc ttgaaaccgt agctggcaag cgttcttacc ggctcttat gaaagtgaag 1080
 gcattttccct cggccggaaat tttatgtt gaaatgggt tacctgcccac tgagaaatct 1140
 gtcgttatt tgactcggtt ctactcgtaa attatcaagg acgttaactga agaggatgca 1200
 gggaaattata caaatctgtt gggatggggaaat cgttccatc tgatccatc agcaagggtt 1260
 actctaattt tcaatgtgaa accccagatt tacgaaaagg ccgtgtcattt gttttccagac 1320
 cggcgtctct accccactggg cagcagacaa atcctgtt gttttccatc tggtatccct 1380
 caacctacaa tcaagtgggt ctggcaccctc tgtaaccata atcattccga agcaagggtt 1440
 gactttgtt ccaataatgaa agactcctt atcctggatg ctgacagccaa catggggaaac 1500
 agaattgaga gcatcactca ggcgttggca ataatagaag gaaagaataa gatggcttagc 1560
 accttgggtt tggctgactc tagaattttt ggaatctaca tttgcatacg ttccaaataaa 1620
 gttgggactg tggggagaaa cataagcttt tatatcacag atgtgccaaa tggggttcat 1680
 gttaacttgg aaaaaatgcc gacggagga gaggacctgaa aactgtttt cacagttaac 1740
 aagtcttat acagagagct tacttgggtt ttactcggtt cagttataaa cagaacaatg 1800
 cactacagta ttagcagca aaaaatggcc atcactaagg agcactccat cactttaat 1860
 cttaccatca tgaatgtttt cctgcaagat tcaggcacct atgcctgcag agccaggaat 1920
 gtatacacag gggaaagaaat cttccagaag aaagaaatataa caatcagaga tcaggaagca 1980
 ccataccctcc tgcggaaacccctt cagtgtatcac acatggccaa tcagcagttt caccactta 2040
 gactgtcatg ctaatgtgtt ccccgagccctt cagatcactt ggtttaaaaaa caaccacaaa 2100
 atacaacaag agcctggaaat ttttttagga ccaggaagca gCACGCTGT TATTGAAAGA 2160
 gtcacagaag aggatgaagg tttctatcac tgcaaaagccaa ccaaccagaa gggctctgt 2220
 gaaagttcag cataccctcac tttcaaggaa acctcgacaa atgtctatct ggagctgatc 2280
 actctaataat gacccctgtt ggtctggact ctcttctggc tccttattaaac cctctttatc 2340
 cggaaaaatgaa aagggtcttc ttctgaaata aagactgact acctatcaat tataatggac 2400
 ccagatgaag ttcttttggg tgagctgtt gggccgttcc cttatgtgc cagcaagtgg 2460
 gagtttggccc gggagagact taaactgggaaatcacttg gaagagggggc ttttggaaaa 2520
 gtgggtcaag catcagcatt tggcatcaag aaatcaccata cgtgccccac tggctgtgt 2580
 aaaatgtga aagagggggc cacggccacg ggttccatc ttctgtatgac tgagctaaaa 2640
 atcttgaccc acattggcca ccatctgaaatc ttctgttgc tggctggagc ctgcaccaag 2700
 caaggagggc ctctgtatgtt gattgttgaatcacttgc atggaaatct ctccaaactac 2760
 ctcagagacaa acgtgactt attttttctc aacaaggatg cagcactaca catggggcc 2820
 aagaaagaaa aaatgggagcc aggcctggaa caaggcaaga aaccaagact agatagcgtc 2880
 accagcagccg aaagctttgc gagctccggc ttccaggaaatc gtttttttttcttcttctt 2940
 gaggaagagg aggatgttgc cggtttctac aaggagccca tcactatggaa agatctgatt 3000
 ttcttacagtt ttcaagtggc cagaggcatg gaggctctgtt cttccagaaa gtgcattcat 3060
 cggggacttgc cagcggaaaaa catttttttca tctggagaaca acgtgtgtt gattttgtat 3120
 ttggcccttgc cccggatattt ttataagaac cccgattatc tgagaaaaagg agataactcg 3180
 ctccctctgtt aatggatggc ttctgtatct attttgcataaaatctacag caccacggc 3240
 gacgtgtgtt cttacggatgtt attgtgtgtt gaaatcttctt ctttaggtgg gtctccatc 3300
 ccaggaggatc aaatggatgaa ggacttttgc agtgcgttgc gggaggcat gaggatgaga 3360
 gtcctgtatgtt actctactcc ttctgtatgtt ctttgcataatc ctttgcataatc 3420
 cccaaagaaa ggccaaagatt tgcagaactt gtggaaaaac taggtgattt gcttcaagca 3480
 aatgttacac agatggtaa agactacatc ccaatcaatg ccataactgac agggaaatagt 3540
 gggtttacatc actcaactcc ttctgtatgtt gaggacttctt tcaagggaaa tatttcagct 3600
 ccgaagtttta attcaggaaatc ttctgtatgtt gtcagatgtt taaatgtttt caagttcatg 3660
 agcctggaaa gaatcaaaaatc ttctgtatgtt ctttgcataatc atgcccacccatc 3720
 gactaccagg gggccggccatc cactctgttgc gcttctccca tgctgttgc cttcacctgg 3780
 actgcacacca aaccccaatggc ctcgttgcataatc attgtacttgc gaggtaaccatg taaaatgtt 3840
 gagtcggggc ttctgtatgtt ctttgcataatc agtgcgttgc attccagctg tggccacgtc 3900
 agcgaaggca agcgcaggatc ctttgcataatc ctttgcataatc tggaaaggaa aatcgcgttc 3960
 tgctccccccgc ccccaactactca ctttgcataatc ttctgtatgtt ccaccccccaccatc 4017

60

65

DE 101 00 586 C 1

```

<210> 96
<211> 3897
<212> DNA
<213> Homo sapiens
5
<300>
<302> Flt4
<310> XM003852
10 <400> 96
atgcagcggg ggcggcgct gtgcctgcga ctgtggctct gcctggact cctggacggc 60
ctgtgagtg gctactccat gacccccccc accttgaaca tcacggagga gtcacacgtc 120
atcgacaccg gtgacagcct gtccatctcc tgcaggggac agcaccccc cgagtggct 180
15 tggccaggag ctcaggagc gccagccacc ggagacaagg acagcgagga cacgggggtg 240
gtgcgagact gcgagggcac agacccagg ccctactgca aggtgttgc gctgcacgag 300
gtacatgcca acgacacagg cagctacgtc tgctactaca agtacatcaa ggcacgcattc 360
gagggcacca cggccgcacg ctccctacgt ttcgtgagag actttgagca gccatttcattc 420
aacaaggctg acacgcttt ggtcaacagg aaggacgcca tgggggtcc ctgtctgg 480
20 tccatccccg gcctcaatgt cacgctgcgc tcgcaaaagct cggtgctgtg gccagacggg 540
caggagggtgg tggggatga cggcggggc atgctcggt ccacgcact gctgcacgat 600
gccctgtacc tgcagtgcga gaccacctgg ggagaccagg acttccttc caacccttc 660
ctggtgtcaca tCACAGGCAA CGAGCTCTAT GACATCCAGC TGGGCCAG GAAAGTCGTG 720
gagctgtgg tagggggagaa gctggctgt aactgcaccg tggggctga gtttaactca 780
25 ggtgtcacct ttgactggga ctaccaggaa aagcaggcag agcggggtaa gttgggtgccc 840
gagcgcacgct cccagcagac ccacacagaa ctctccagca tcctgaccat ccacaacgtc 900
agccagcaccg acctgggctc gtatgtgc aaggccaaca acggcatcca gcgatttcgg 960
gagagcaccg aggtcattgt gcataaaaat cccttcatac ggtcgagtg gtc当地 1020
cccattcctgg aggccacggc aggagacgag ctggtaaagc tgccctgtaa gtc当地 1080
30 taccggccgc cggagttcca gtggtacaag gatggaaagg cactgtccgg ggc当地 1140
ccacatgccc tgggtctcaa ggaggtgaca gaggccagca caggcactca caccctcgcc 1200
ctgtggaaact cccatgtgg cctgaggcgc aacatcagcc tggagctgg ggtgaatgtg 1260
ccccccaga tacatgagaa ggaggcctcc tcccccagca tctactcggt tcacagccgc 1320
caggccctca cctgcacggc ctacgggtg cccctgcctc tcagcatcca gtggactgg 1380
35 cggccctggc caccctgcaa gatgttgcc cagctgtgc tccggccggc gc当地 1440
gacctcatgc cacagtggcc tgactgggg ggggtgaccg cgcaggatgc cgtgaacccc 1500
atcgagagcc tggacacctgt gaccggatgg tggaggggaa agaataagac tggagcaag 1560
ctgggtatcc agaatgccaa cgtgtctgc atgtacaatgt gtgggtctc caacaagg 1620
ggccaggatg agcggctcat ctacttctat gtgaccacca tccccgacgg ct当地 1680
40 gaatccaagc catccgagga gctactagag ggc当地 1740
gacagctaca agtacgagca tctgcgtgg taccgcctca acctgtccac gtc当地 1800
gcccacggg acccgcttct gctcactgc aagaacgtgc atctgttgc caccctctg 1860
gcccacggcc tggaggaggat ggcacctggg gc当地 1920
ccccggctcg cggccggccac cgaggcccac tatgtgtcg aagtgc当地 1980
45 catgacaagc actgc当地 2040
acgc当地 2100
gtggccggag cgc当地 2160
aagtctggag tggacttggc gagactccaa cagaagctga gcatccacg cgtgc当地 2220
gaggatgcgg gacgctatct gtgc当地 2280
50 gccc当地 2340
ggtagtgc当地 2400
aggaggccgg cccacgc当地 2460
gagggtgc当地 2520
ccccggagc ggctgc当地 2580
55 gaagc当地 2640
ctgaaagagg gccc当地 2700
cttgc当地

```

60

65

DE 101 00 586 C 1

attcacatcg	gcaaccaccc	caacgtggc	aaccctccg	gggcgtgcac	caagccgcag	2760
ggccccctca	tggtgategt	ggagttctgc	aagtacggca	acctctccaa	cttcctgcgc	2820
gccaaggcggg	acgccttcag	ccccctgcgcg	gagaagtctc	ccgagcagcg	cggacgcctc	2880
cgcgccatgg	tggagctcgc	caggctggat	cggaggcggc	cggggagcag	cgacagggtc	2940
ctcttcgcgc	ggtttctcgaa	gaccgagggg	ggagcggagc	gggcttctcc	agaccaagaa	3000
gctgaggacc	tgtggctgag	cccgctgacc	atggaaagatc	ttgtctgtct	cagcttcagg	3060
gtggccagag	ggatggagtt	cctggcttcc	cgaaagtgc	tccacagaga	cctggctgt	3120
cggAACATTC	tgctgtcgga	aagcgcacgt	gtgaagatct	gtgacttttg	ccttgcgggg	3180
gacatctaca	aagaaaaaaa	ctacgtccgc	aaggcggagt	cccggtgtcc	cctgaagtgg	3240
atggcccttg	aaagcattt	cgacaaagggt	tacaccacgc	agagtgcacgt	gtggtccttt	3300
gggggtcttc	tctggagat	cttctctctg	ggggccctccc	cgtacccctgg	ggtgccagatc	3360
aatgaggagt	tctgccagcg	gcttagagac	ggcacaaggaa	tgaggggcccc	ggagctggcc	3420
actcccccca	tacggcgcatt	catgctgaa	tgtgttccg	gagaccccaa	ggcgagaccc	3480
gcattctcgg	agctgggtgg	gatcttgggg	gacctgtcc	agggcggggg	cctgcaagag	3540
gaagaggagg	tctgcattggc	cccgccgcgc	tctcagagct	cagaagagggg	cagtcttcg	3600
caggtgttca	ccatggccct	acacatgcgc	caggtgtccg	ctggagacag	cccgccaagc	3660
ctgcagcgcc	acagccctggc	cgccaggat	tacaacttgg	tgttctttcc	cggggtctgt	3720
gccagagggg	ctgagacccg	tggttcctcc	aggatgaaga	catttgaggaa	atccccatcg	3780
accccaacga	cctacaaaagg	ctctgtggac	aaccagacag	acagtgggtat	ggtgctggcc	3840
tcggaggagt	ttgagcagat	agagagcagg	catagacaag	aaagcggctt	caggtag	3897

<210> 97
<211> 4071
<212> DNA
<213> Homo sapiens

<300>
<302> KDR
<310> AF063658

<400>	97					
atggagagca	aggtgtctgt	ggccgtcgcc	ctgtggctct	gcgtggagac	ccggggccgc	60
tctgtgggtt	tgcctagtgt	ttctcttgat	ctgcccaggc	tcagcataca	aaaagacata	120
cttacaattta	aggctaatac	aactcttcaa	attacttgca	ggggacagag	ggacttggac	180
tggcttggc	ccaataatca	gagtggcagt	gagcaaaggg	tggaggtgac	tgagtgcagc	240
gatggccctct	tctgtaaagac	actcacaatt	ccaaaagtga	tcgaaatga	cactggagcc	300
tacaagtgt	tctaccggga	aactgacttg	gcctcggtca	tttatgtcta	tgttcaagat	360
tacagatctc	catttattgc	ttctgttagt	gaccaacatg	gagtcgtgt	cattactgag	420
aacaaaaaaa	aaactgtgt	gattccatgt	ctcggtcca	tttcaaattct	caacgtgtca	480
ctttgtcga	gataccaga	aaagagattt	tttccctgtat	gtaacagaat	ttccctggac	540
agcaagaagg	gtttaatctat	tcccgatctac	atgatcagt	atgctggcat	ggtcttctgt	600
gaagcaaaaa	ttaatgtat	aagttaccag	tcttattatgt	acatagtgt	cgtttaggg	660
tataggattt	atgatgtgt	tctgagtcgg	tctcatggaa	ttgaactatc	tgttggagaa	720
aagcttgtct	taaattgtac	agcaagaact	gaactaaatg	tgggattgt	cttcaactgg	780
gaataaccctt	cttcgaagca	tcagcataag	aaacttgtaa	accgagacct	aaaaaccacg	840
tctgggagtg	agatgaagaa	attttgago	accttaacta	tagatggtgt	aacccggagt	900
gaccaaggat	tgtcacccctg	tgccagcatcc	agtgggtgt	tgaccaagaa	gaacagcaca	960
tttgtcaggg	tccatgaaaaa	accttttgtt	gtttttggaa	gtggcatgga	atctctggtg	1020
gaagccacgg	tggggagcg	tgtcagaatcc	cctgcgaagt	accttggta	ccccaccccca	1080
aaaataaaat	ggtataaaaa	tggaatacc	cttgagtcac	atcacacaaat	taaagcgggg	1140
catgtactga	cgattatgg	agtggatgtaa	agagacacag	gaaattacac	tgtcatccct	1200
accaatccca	tttcaaaagg	gaagcagagc	catgtggct	ctctgggtt	gtatgtccca	1260
ccccagattt	gtgagaatac	tctaatctct	cctgtggatt	ccttaccatgt	cggcaccact	1320
caaacgctga	catgtacgg	ctatgccatt	cctccccccgc	atcacatcca	ctggatttgg	1380
cagttggagg	aagagtgcgc	caacgagccc	agccaagctg	tctcagtgac	aaacccatata	1440
ccttgcgtaa	aatggagaag	tgtggaggac	ttccagggag	gaaataaaaat	tgaagttaat	1500

60

65

DE 101 00 586 C 1

	aaaaatcaat	ttgctcta	tgaaggaaaa	aacaaaactg	taagtaccct	tgttatccaa	1560
5	gcggcaaatg	tgtcagctt	gtacaatgt	gaagcggta	acaaagtccg	gagaggagag	1620
	agggtatct	ccttccacgt	gaccaggggt	cctgaaatta	cttgcaacc	tgacatgcag	1680
	cccactgagc	aggagagcgt	gtcttgtgg	tgcactgcag	acagatctac	gttgagaac	1740
	ctcacatggt	acaagcttgg	cccacagcct	ctgccaatcc	atgtggaga	gttgcacaca	1800
	cctgtttgca	agaacttgg	tactcttgg	aaattgaatg	ccaccatgtt	ctctaata	1860
	acaatgaca	ttttgatcat	ggagcttaag	aatgcatctt	tgcaggacca	aggagactat	1920
10	gtctgcctt	ctcaagacag	gaagaccaag	aaaagacatt	gcgtggtcag	gcagtcaca	1980
	gtcttagagc	gtgtggcacc	cacgtatcaca	ggaaacctgg	agaatcagac	gacaagtatt	2040
	ggggaaagca	tgcaggatctc	atgcacggc	tctggaaatc	ccccccacac	gatcatgtgg	2100
	tttaaagata	atagacccct	tgttagaagac	tcaggcattt	tatttgaagga	tggaaacccgg	2160
	aacctcacta	tcccgagagt	gaggaaggag	gacgaaaggcc	tctacacctt	ccaggcatgc	2220
	agtgttctt	gctgtgcaaa	agtggaggca	tttttcataaa	tagaagggtc	ccagaaaaag	2280
15	acgaacttgg	aatcattat	tctagtaggc	acggcgggtg	ttgcacatgtt	cttctggcta	2340
	cttcttgc	tcatcctacg	gaccgttaag	cgggcaatg	gaggggaact	gaagacaggc	2400
	tacttgtca	tcgtcatgaa	tccagatgaa	ctcccatgg	atgaacattt	tgaacgactg	2460
	ccttatgtat	ccagcaatg	ggaattcccc	agagacccgc	tgaagctagg	taagcttctt	2520
	ggccgtgt	cccttggcca	agtgattgaa	gcagatgcct	ttggaaatg	caagacagca	2580
20	acttgcagga	cagtagcgt	caaaaatgtt	aaagaaggag	caacacacag	tgagcatcga	2640
	getctcatgt	ctgaactcaa	gatcccttatt	catattggtc	accatctcaa	tgtgtcaac	2700
	ctttaggt	cctgttaccaa	gccagggagg	ccactcatgg	tgattgtgg	attctgcaaa	2760
	tttggaaat	tgtccactt	ccttgaggagc	aagagaaatg	aatttggccc	ctacaagacc	2820
	aaaggggcac	gattccgtca	agggaaagac	tacgttggag	caatccctgt	ggatctgaaa	2880
25	cgccgttgg	acagcatcac	cagtagccag	agctcagcc	gctctggatt	tgtggaggag	2940
	aagtccctca	gtgatgtaga	agaagggaa	gctcctgaaag	atctgtataa	ggacttccctg	3000
	acttggagc	atctcatctg	ttacagctt	caagtggcta	agggcatgga	gttcttggca	3060
	tcgcgaaatg	gtatccacag	ggacctggcg	gcacgaaata	tcctcttatac	ggagaagaac	3120
	gtggtaaaaa	tctgtgactt	tggcttggcc	cgggatattt	ataaaagatcc	agattatgtc	3180
30	agaaaaggag	atgctcgct	cccttggaaa	tggatggccc	cagaaaacaat	ttttgacaga	3240
	gtgtaccaa	tccagagtga	cgtctggct	tttgggtt	tgctgtgg	aatatttcc	3300
	tttagtgt	ctccatatec	tggggtaaaag	atgtgatgaa	aattttgtag	gogattgaaa	3360
	gaaggaacta	gaatggggc	ccctgttatt	actacaccag	aatgttacca	gaccatgctg	3420
	gactgtggc	acggggagcc	cagtcagaga	cccacgtttt	cagagtgtt	ggaacatttg	3480
35	ggaaatctt	tgcaagctaa	tgctcagcag	gatggcaaag	actacatgt	tcttccgata	3540
	tcagagactt	tgagcatgga	agaggattt	ggactctctc	tgccctaccc	acctgtttcc	3600
	tgtatggagg	aggaggaatg	atgtgacccc	aaattccatt	atgacaacac	agcaggaatc	3660
	agtcagttatc	tgcagaacag	taagcggaa	agccggctg	tgagtgtaaa	aacatttgaa	3720
	gataccctgt	tagaagaacc	agaagaaaa	gtaatcccag	atgacaacca	gacggacagt	3780
40	ggtatggttc	ttgcctcaga	agagctgaaa	actttggaa	acagaaccaa	attatcttca	3840
	tcttttgt	gaatgggtcc	cagaaaaagc	aggaggtctg	tggcatctga	aggtcaaac	3900
	cagacaagcg	gctaccatgc	cggtatcac	tccgatgaca	cagacaccac	cgtgtactcc	3960
	agtggagaag	cagaactttt	aaagctgata	gagattggag	tgcaaaccgg	tagcacagcc	4020
	cagattctcc	agcctgactc	ggggaccaca	ctgagcttc	ctccgttta	a	4071
45							
	<210>	98					
	<211>	1410					
	<212>	DNA					
50	<213>	Homo sapiens					
	<300>						
	<302>	MMP1					
	<310>	M13509					
55	<400>	98					
	atgcacagct	ttcctccact	gtctgtgt	ctgttgtgg	gtgtgggtc	tcacagcttc	60
	ccagcgactc	tagaaacaca	agagcaagat	gtggacttag	tccagaaaata	cctggaaaaaa	120

DE 101 00 586 C 1

tactacaacc	tgaagaatga	tgggaggcaa	gttggaaaagc	ggagaaaatag	tggcccagtg	180
gttggaaaat	tgaagcaaat	gcaggaattc	tttggctga	aagtgactgg	aaaaccagat	240
gctgaaaccc	tgaaggtgat	gaagcagccc	agatgtggag	tgcctgtat	ggctcagttt	300
gtcctcactg	agggaaaccc	tcgctgggag	caaacacatc	tgaggtagac	gattgaaaat	360
tacacgcagg	atttccaag	agcagatgtg	gaccatgcc	tttagaaaaagc	cttccaactc	420
tggagtaatg	tcacacctct	gacattcacc	aaggctctgt	agggtaagc	agacatcatg	480
atatctttt	tcaggggaga	tcatcgggac	aactccctt	ttgatggacc	tggagggaaat	540
cttgcctatg	ctttcaacc	aggcccagg	attggagggg	atgctcattt	tgatgaagat	600
gaaagggtgg	ccaaacaattt	cagagagtac	aacttacatc	gtgttgcggc	tcatgaactc	660
ggccatttcc	ttggactctc	ccattctact	gatatcgggg	cttgcgttgc	ccctagctac	720
accttcagtg	gtgtatcc	gttagctcag	gatgacattt	atggcatcca	agccatataat	780
ggacgtttcc	aaaatctgt	ccagggccatc	ggccccaaaa	ccccaaaaagc	gtgtgacagt	840
aagctaacct	ttgtatgttat	aactacattt	cggggagaag	tgatgttttt	taaagacaga	900
ttctacatgc	gcacaaaatcc	cttctaccgg	gaagttgagc	tcaattttcat	ttctgttttc	960
tggccacaac	tgccaaatgg	gcttgaagct	gcttacaaat	ttggccagacag	agatgaagtc	1020
cggtttttca	aagggataaa	gtactgggt	gttcaggagc	agaatgtgt	acacggatac	1080
cccaaggaca	tctacagctc	ctttggcttc	ccttagaactg	tgaagcatat	cgtatgtgt	1140
ctttctgagg	aaaacactgg	aaaaacctac	ttttttgttgc	ctaacaaaata	ctggaggtat	1200
gatgaatata	aacgatctat	ggatccaagt	tatccccaaa	tgatagcaca	tgacttttct	1260
ggaattggcc	acaaaagtta	tgcagtttc	atggaaagatg	gattttctat	tttctttcat	1320
ggaacaagac	aatacaaatt	tgatcctaaa	acgaagagaa	ttttgactct	ccagaaaagct	1380
aataatgttgt	tcaactgcag	gaaaaatttg				1410

<210> 99
<211> 1743
<212> DNA
<213> *Homo sapiens*

<300>
<302> MMP10
<310> XM006269

<400>	99						
aaagaaggta	agggcagtga	aatgatgca	tcttgcatc	tttgtgctgt	tgtgtctgcc	60	35
agtctgcct	gcctatccct	tgagtggggc	agcaaaagag	gaggactcca	acaaggatct	120	
tggcccgaaa	tacctagaaa	agtactacaa	cctcgaaaag	gatgtgaaac	agtttagaaag	180	
aaaggacagt	aatctcattt	ttaaaaaaaat	ccaaggaatg	cagaagttcc	ttgggttgg	240	
ggtgacaggg	aagctagaca	ctgacactct	ggaggtatg	cgcaagccca	ggtgtggagt	300	
tcctgacgtt	ggtcacttca	gctccttcc	tggcatggcg	aagtggagga	aaacccacct	360	40
tatcacatagg	attgtgaatt	atacacagg	tttgcctaaga	gatgtgttg	attctgcct	420	
tgagaaaagt	ctgaaagtct	ggaaaggggt	gactccactc	acattctcca	ggctgttatga	480	
aggagaggtt	gatataatga	tctcttttgc	agttaaagaa	catggagact	tttactcttt	540	
tgatggccca	ggacacagtt	tggtctatgc	ctacccacat	ggacattggc	tttatggaga	600	
tattcactt	gatgtatgt	aaaaatggac	agaagatgc	tcaggccaca	attttatctt	660	
cgttgcgtct	catgaacttg	gccactccct	ggggctctt	cactcagccca	acactgaagc	720	
tttgcgtac	ccactctaca	actcattcac	agagctcgcc	cagttccggcc	tttcgcgaaga	780	
tgatgtgaat	ggcattcagt	ctctctacgg	acctccccct	gcctctactg	aggaaccccct	840	
ggtgccccca	aaatctgtt	cttcgggatc	tgagatgcca	gcaagtgtg	atcctgcctt	900	45
gtccctcgat	gcccatacga	ctctgggggg	agaatatctg	ttctttaaag	acagatattt	960	
ttggcgaaga	tcccacgtt	accctgaaacc	tgaatttcat	ttgatttctg	cattttggcc	1020	
tcctcttcca	tcatatttgg	atgtgcata	tgaagttaac	agcaggacata	ccgtttttat	1080	
ttttaaagga	aatgaggttct	gggcocatcg	aggaataatgg	gtacaaggcag	gttatccaaag	1140	
aggcatccat	accctgggtt	ttcttccaaac	cataaggaaa	attgtgcag	ctgtttctga	1200	
aaaggaaaag	aagaaaacat	acttcttgc	agcggacaaa	tactggagat	ttgtataaaa	1260	
agcccaagtcc	atggagcaag	gctccctag	actaatagct	gatgactttc	caggagttga	1320	
ccctaaggtt	gatgtgttat	tacaggcatt	tggattttc	tacttttca	gtggatcatc	1380	

60

DE 101 00 586 C 1

acagtttgag tttgacccca atgcaggat ggtgacacac atattaaaga gtaacagctg 1440
 gttacattgc taggcgagat aggggaaga cagatatggg tgaaaaat aaatctaata 1500
 attattcatc taatgtatta tgagccaaa tggtaattt ttccctgcata ttctgtact 1560
 5 gaagaagatg agccttgcag atatctgcata gtgtcatgaa gaatgtttctt ggaatttttc 1620
 acttgctttt gaattgcact gaacagaatt aagaaatact catgtcaat aggtgagaga 1680
 atgtattttc atagatgtgt tattacttcc tcaataaaaaa gtttattttt gggctgttc 1740
 ctt 1743

10 <210> 100
 <211> 1467
 <212> DNA
 <213> Homo sapiens

15 <300>
 <302> MMP11
 <310> XM009873

20 <400> 100
 atgctccgg ccgcctggct ccgcagcgcg gccgcgcgcg cccttcgtcc cccatgtct 60
 ctgtctgc tccagccgcg gcgcgtgtc gcccgggctc tgccgcggc cgccccaccac 120
 ctccatgcgg agaggagggg gccacagccc tggcatgcag ccctgcccag tagccccggca 180
 cctgccccctg ccacgcggag aaaaaaaaaa cctgcggagca gcctcaggcc tccccgtgt 240
 25 ggcgtggccg accccatctga tgggtcgagt gcccgcaccc gacagaagag gttcgtgtt 300
 tctggcgccc gctggggagaa gacggaccc tcactacaggta tccttcgtt cccatggcag 360
 ttggtgcagg agcagggtgcg gcagacccatg gcagaggccc taaaaggatg gagcgatgtg 420
 acgccactca cctttactga ggtgcacccg ggccgtgtc acatcatgtat cgacttcgccc 480
 aggtactggc atggggacca cctgcgtt gatggggctg ggggcattct ggccatgcc 540
 30 ttcttccca agactcaccc agaaggggat gtccacttcg actatgtatg gacctggact 600
 atcggggatg accagggcac agacctgtc caggtggcag cccatgaatt tggccacgtg 660
 ctggggctgc agcacaac acgcaccaag gcccgtatgt ccgccttcta caccttcgc 720
 taccactga gtctcagcc agatgactgc agggggcgtt aacacctata tggccagccc 780
 tggcccactg tcacctccag gaccccgcc ctggggcccc aggctggat agacaccaat 840
 35 gagattgcac cgctggaggc agaccccccc ccagatgtc gtgaggcctc ctttgcgcg 900
 gtctccacca tccgaggcga gctttttt ttcgggggg gctttgtgt ggcgcctccgt 960
 gggggccage tgccggcccg ctaccggca ttggccttc gccaactggca gggactgccc 1020
 agccctgtgg acgctgcctt cgaggatgcc caggggccaca ttgggtttt ccaagggtgt 1080
 40 cagtaactggg tgtacgacgg tgaaaaagcca gtccctggcc ccgcacccct caccgagctg 1140
 ggcctggta gggtccccgtt ccatgtgtcc ttgggtctggg gtccccggaa gaacaagatc 1200
 tacttcttcc gaggcaggga ctactgggt ttccacccca gcacccggcg ttagacagat 1260
 cccgtggccc gcaggggccac tgactggaga ggggtgcctt ctgagatcga cgctgccttc 1320
 caggatgtc atggctatgc ctacttcgt cgccggccgc tctactggaa gtttgcacct 1380
 gtgaagggtgaa aggctctggaa aggctcccc cgtctcggtt gtccctgactt ctttggctgt 1440
 45 gcccggccctg ccaacacttt cctctga 1467

<210> 101
 <211> 1653

50 <212> DNA
 <213> Homo sapiens

<300>
 <302> MMP12
 <310> XM006272

<400> 101
 atgaaggtttcc ttcttaataact gtcctgcag gccactgtttt ctggagctct tccccctgaac 60

60

65

DE 101 00 586 C 1

agctctacaa gcctggaaaa aaataatgt ctatgggtg agagatactt agaaaaattt 120
 tatggcccttg agataaaacaa acttccagtgc aaaaaaatga aatatagtgg aaacttaatg 180
 aaggaaaaaaa tccaagaaaat gcagcacttc ttgggtctga aagtggccgg gcaactggac 240
 acatctaccc tggagatgtat gcacgcacct cgatgtggag tccccatgtt ccatttcatttc 300
 agggaaatgc cagggggggcc cgtatggaggaa aacattata tcacctacag aatcaataat 360
 tacacacctg acatgaaccg tgaggatgtt gactacgcaaa tccggaaagc ttccaagta 420
 tggagtaatg ttacccctt gaaattcagc aagattaaca caggcatggc tgacatttt 480
 gtggtttttg cccgtggagc tcatggagac ttccatgtt ttgatggcaa aggtgaaatc 540
 ctagcccatg ctggatggacc tggatctggc attggagggg atgcacattt cgatggagac 600
 gaattctgga ctacacattt aggagnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnn 660
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 720
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 780
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnn 840
 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnnn 900
 aaatatgtt acatcaacac atttcgcctc tctgtgtatg acatacgtgg cattcagtcc 960
 ctgtatggag accaaaaaga gaaccaacgc ttgccaattt ctgacaattt agraccagct 1020
 ctctgtgacc ccaatttgag ttttgatgtt gtcacttaccc tggggaaataa gatcttttc 1080
 ttcaaaagaca ggtttttctg gctgaaggtt tctggagag caaagaccag tgtttaattt 1140
 atttcttcct tatggccaaac cttggccatct ggcatttgaag ctgtttatg aatttggacc 1200
 agaaatcaag tttttttttt taagatgac aaatacttgtt taatttagcaa tttaagacc 1260
 gagccaaattt atccccaaagag catacattct tttggtttc ctaactttgtt gaaaaaaaaattt 1320
 gatgcagctg ttttttaccc acgtttttat aggacctact tctttgtttaga taaccaggat 1380
 tggaggtatg atgaaaaggag acagatgtat gaccctgggtt atcccaaactt gatttaccaag 1440
 aacttccaaag gaatcgccgc taaaattgtat gcaagtctt actctaaaaaa caaataactac 1500
 tattttttcc aaggatctaa ccaatttgaa tatgacttcc tactccaaacg tattttccaa 1560
 acactgaaaaa gcaatagctg gtttgggtttag 1620
 1653

<210> 102
<211> 1416
<212> DNA
<213> *Homo sapiens*

<400> 102	atgcatccag	gggtcctggc	tgccttcctc	ttcttgagct	ggactcattg	tccggccctg	60	35
	ccccctcca	gtgggttga	tgaagatgt	ttgtctgagg	aagacctcca	gtttgcagag	120	
	cgctacctga	gatcatacta	ccatcctaca	aatctcgccg	gaatcctgaa	ggagaatgca	180	
	gcaagctcca	tgactgagag	gtcccgagaa	atgcagtctt	tcttcggctt	agaggtgact	240	
	ggcaaacttg	acgataaacac	cttagatgtc	atgaaaaaagc	caagatgcgg	gttccctgt	300	40
	gtgggtgaat	acaatgtttt	ccctcgaact	cttaaatggt	ccaaaatgaa	tttaacctac	360	
	agaatttgta	attacacccc	tgatatgact	cattctgaaag	tcgaaaaggc	attcaaaaaa	420	
	gccttcaag	tttggtccga	tgtaactcct	ctgaatttta	ccagacttca	cgatggcatt	480	
	gctgacatca	tgatctctt	tggaattaag	gagcatggcg	acttctaccc	atttgatggg	540	45
	ccctctggcc	tgctggctca	tgcttttct	cctggccaa	attatggagg	agatgccat	600	
	tttgatgatg	atgaaacccct	gacaagtagt	tccaaaggct	acaacttgtt	tcttgttgc	660	
	gcgcatgagt	tcggccactc	cttaggtctt	gaccacttca	aggaccctgg	agcactcatg	720	
	tttccatatct	acacccatcac	cggcaaaaggc	cactttatgc	ttcctgtatga	cgatgtacaa	780	
	gggatccagt	ctcttatgg	tccaggagat	gaagacccca	accctaaaca	tccaaaaacg	840	50
	ccagacaaaat	gtgacccttc	cttacccctt	gatgccatta	ccagtctccg	aggagaaaaca	900	
	atgatcttta	aagacagatt	cttctggcgc	ctgcatctc	agcaggttg	tgcggagctg	960	
	tttttaacga	aatcattttg	gccagaactt	cccaaccgt	ttgtatgtc	atatgagcac	1020	
	ccttctcatg	acctcatctt	catcttcaga	ggtagaaaaat	tttgggtctt	taatggttat	1080	
	gacattctgg	aagttatcc	aaaaaaaaata	tctgaactgg	gtttccaaa	agaagttaaag	1140	
	aagataagtg	cagctgttca	cttggaggat	acaggcaaga	ctctcgtt	ctcagggaaac	1200	
	caggtctgga	gatatgtga	tactaaccat	attatggata	aagactatcc	gagactaata	1260	
	gaagaagact	tcccaggaat	tggtgataaa	gtagatgtc	tctatgaga	aaatggttat	1320	

60

DE 101 00 586 C 1

atctattttt tcaacggacc catacagttt gaatacagca tctggagtaa ccgtattgtt 1380
 cgcgcatgc cagcaaattc catttgtgg tgttaa
1416

5 <210> 103
 <211> 1749
 <212> DNA
 <213> Homo sapiens

10 <300>
 <302> MMP14
 <310> NM004995

15 <400> 103
 atgtctcccg ccccaagacc cccccgttgt ctccctgctcc ccctgctcac gtcggcacc 60
 gcgctcgctt ccctcggtc ggccccaaagc agcagcttca gccccgaagc ctggctacag 120
 caaatatggct acctgcctcc cggggaccta cgtaccccaca cacagcgctc accccagtc 180
 ctctcagcgg ccatcgctc catgcagaag ttttacggct tgcaagtaac aggaaagct 240
 20 gatgcagaca ccatgaaggc catgaggcgc ccccgatgtg gtgttccaga caagtttggg 300
 gctgagatca aggccaatgt tcgaaggaag cgctacgcca tccagggctt caaaatggcaa 360
 cataatgaaa tcactttctg catccagaat tacaccccca aggtgggcca gtatgccaca 420
 tacaggccta ttgcgaaggc gttccgcgtg tggagagtg ccacaccact ggcgttccgc 480
 gaggtgcctt atgcctacat ccgtgagggc catgagaagc agggcgacat catgatctc 540
 25 ttggccgagg gcttccatgg cgacacgacg cccttcgatg gtgagggcgg cttctggcc 600
 catgcctact tcccaggccc caacatttggg ggagacaccc actttgactc tgccgagcct 660
 tggactgtca ggaatgagga tctgaatggg aatgacatct tcctgggtgc tgcacgag 720
 ctggggccatg ccctggggctt cgagcattcc atgaccctt cggccatcat ggcacccttt 780
 taccagtggg tggacacggg gaattttgtt ctgccccatg atgaccggcgg gggcatccag 840
 30 caactttatg ggggtgagtc agggttcccc accaagatgc cccctcaacc caggactacc 900
 tcccgccctt ctgttccatgg taaacccaaa aaccccaacctt atggggccaa catctgtgac 960
 gggaaacttttgc acaccgtggc catgcctccga ggggagatgt ttgttcttca ggagcgctgg 1020
 ttctggccggg tgaggaataaa ccaagtgtatg gatggatacc caatgcccattt tggccagttc 1080
 tggccggggcc tgcctgcgtc catcaacact gcctacgaga ggaaggatgg caaattcgcc 1140
 35 ttcttcaaaag gagacaagc ttgggtgttt gatgaggcgt ccctggaaacc tggcttccccc 1200
 aagcacatta aggagctggg ccgagggtg cctaccgaca agattgtgc tgctctttc 1260
 tggatgccttca atggaaagac ctacttttcc cgtggaaaaca agtactaccg tttcaacgaa 1320
 gagctcaggg cagtggatacg cgatggatccc aagaacatca aagtctgggaa agggatccct 1380
 gagtctccca gagggtcatt catgggcacg gatggatct tcacttactt ctacaaggggg 1440
 40 aacaaatact gaaattcaa caaccagaag ctgaaggtagt aaccgggttta ccccaagtca 1500
 gccctgaggg actggatggg ctgccccatcg ggaggccggc cggatgggg gactgaggag 1560
 gagacggagg tggatcatcat tgagggtggac gaggaggccg gccccgggtt gacgcggct 1620
 gccgtgggtgc tgccctgtgtc gctgctgtcc ctgggtgtgg cgggtggccct tgcagtcttc 1680
 ttcttcagac gccatgggac ccccaggcga ctgcttactt gccagcgttc cctgctggac 1740
 45 aaggctgtga
1749

<210> 104
 <211> 2010
 50 <212> DNA
 <213> Homo sapiens

55 <300>
 <302> MMP15
 <310> NM002428

<400> 104
 atgggcagcg acccgagcgc gccccggacgg ccgggctggaa cgggcagcctt cctcgccgac 60

60

65

DE 101 00 586 C 1

cgggaggagg cggcgccggcc gcgactgctg ccgctgcctc tggtgcttct gggctgcctg 120
 ggcttggcg tagcgccga agacgcggag gtccatgcc agaactggt gggctttat 180
 ggctacctgc ctcagccccag ccgcataatc tcaccatgc gttccgccta gatcttggcc 240
 tcggcccttg cagagatgca ggcgttctac gggatcccac tcaccgggt gctcgacgaa 300
 gagacaagg agtggatgaa gcggcccccgc tgggggtgc cagaccatg cgggttacg 360 5
 gtgaaaagcca acctgcggcg gcgtcgaaag cgctacgccc tcaccggag gaagtggaa 420
 aaccaccatc tgacctttag catccagaac tacacggaga agttggctg gtaccactcg 480
 atggaggcg tgccgcaggc ctccgcgtg tggagcagg ccacgcctt ggtttccag 540
 gaggtgcctt atgaggacat ccggctgcgg cgacagaagg aggccgacat catgtactc 600
 ttgcctctg gttccacgg cgacagctcg ccgtttatg gcaccgggtt ctttctggcc 660 10
 cacgcattt cccttggccc cggcttaggc ggggacaccc attttgcgc agatgagccc 720
 tggaccttct ccagcactga cctgcatttga aacaacctct tcctgggtgc agtgcattgag 780
 ctggccacg cgtggggctt ggagcactcc agcaacccca atgcacatcat ggcggcggtt 840
 taccoagtggaa aggacgttga caacttcaag ctggccggagg acgatctccg tggcatccag 900
 cagctctacg gtaccccaaga cggtcagcca cagcttaccc agcctctccc cactgtacg 960 15
 ccacggcgcc caggccggcc tgaccacgg ccgcggcc ggtggaaagc cagacggccccc cccaaagccg gggcccccag tccagccccg accacacag 1080
 cggcccgacc agtatggccc caacatctgc gacggggact ttgacacagt ggccatgctt 1140
 cgcggggaga tggtcgtttt caaggccgc tggttctggc gagtccgca caacccgc 1200
 ctggacaact atcccatgcc catcggtcac ttctggctg gtcgtcccg tgacatcagt 1260 20
 gtcgtacg agcgccaaaga cggtcgtttt gtcttttca aagggtacccg ctactggctc 1320
 ttgcgagaag cgaaccttggc gcccggctac ccacagccgc tgaccagta tggcctggc 1380
 atccctatg accgcatttga cacggccatc tggggggact ccacaggcca caccttctt 1440
 ttcaagagg acaggtactg ggcgttcaac gaggagacac agcgtggaga ccctgggtac 1500 25
 cccaaagccca tcagttctg cggggggatc ctcgcctccc ctaaaaggggc cttcttgagc 1560
 aatgacgcag cttacaccta ttcttacaaat ggcaccaaatt actggaaattt cgacaatgag 1620
 cgcctgcggc tggagccggc ttaccatccatc gggacttcat gggctgcccag 1680
 gagcacgtgg agccaggccc ccgttgcggc gacgtggccc ggccggccctt caaccccccac 1740
 ggggggtgcag agcccggggc ggacagcgca gaggggcgacg tgggggatgg ggtatgggac 1800
 tttggggcccg gggtaacaa ggacgggggc agccgcgtgg tggtcagat ggaggagggtg 1860 30
 gcacggacgg tgaacgttggt gatggtctg gtgccactgc tgctgtctt ctgcgtctg 1920
 ggcttcaccc acgcgttggt gcagatgcag cgcaagggtt cgccacgtgt cctgttttac 1980
 tgcaagcgct cgctgcaggaa gtgggtctga 2010

35

<210> 105
 <211> 1824
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> MMP16
 <310> NM005941

45

atgatcttac tcacatttgc cactggaaaga cgggtggatt tcgtgcattca ttccgggggtg 60
 tttttcttc aaacatttgc ttggattttta tggatgttgc tctgcggaaac ggagcgttat 120
 ttcaatgtgg aggtttgggtt acaaaatgtt ggcatttttc caccgttgc ccccaatgt 180
 tcagttgtgc gctctgcaga gaccatgttgc tctgccttgc ctgcatttgc gcatgttat 240
 ggcatttacat tggatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt 300
 tgggtgttgc ctgcattttttt aatgtttttttt aatgtttttttt aatgtttttttt 360
 gcatgtttttt aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt 420
 cccaaatgttgc gatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt 480
 aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt 540
 gatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt 600
 ggatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt 660
 cttttttttt aatgtttttttt aatgtttttttt aatgtttttttt aatgtttttttt 720

60

65

DE 101 00 586 C 1

	tttctttag cagtccatga actgggacat gctctggat tggagcattc caatgacccc 780
	actgccatca tggctccatt ttaccatgc atggaaacag acaacttcaa actaccta 840
5	gatgatttac agggcatcca gaaaatatat ggtccacctg acaagattcc tccacctaca 900
	agacctctac cgacagtgcc cccacaccgc tcttacccctc cggctgaccc aaggaaaaat 960
	gacaggccaa aacccctcg gcctccaacc ggcagacccct cctatcccg agccaaaccc 1020
	aacatctgtg atggaaacct taacactcta gtattctc gtcgtgagat gtttgttcc 1080
	aaggaccagt gtttttgccg agtgagaaac aacagggtga tggatggata cccaatgcaa 1140
10	attacttaact tctggcgccc ctgcctct agtatcgatg cagttatga aaatagcgac 1200
	gggaaatttg tggttcttaa aggtacaaa tattgggtgt tcaaggatata aactcttcaa 1260
	cctgggtacc ctcatgactt gataaccctt ggaagtggaa ttccccctca tggatttgat 1320
	tcaaggccat ggtgggagga cgtcggaaa acctatttct tcaagggaga cagatattgg 1380
	agatatagtg aagaaatgaa aacaatggac cctggctatc ccaagccaat cacagtctgg 1440
15	aaaggatcc ctgaatcttc tcagggagca ttgtacaca aagaaaatgg ctttacgtat 1500
	ttctacaaag gaaaggatg ttggaaattc aacaaccaga tactcaaggt agaacctgga 1560
	catccaagat ccatcctcaa ggattttatg ggctgtgatg gaccaacaga cagagttaaa 1620
	gaaggacaca gcccaccaga tgatgttagac attgtcatca aactggacaa cacagccagec 1680
	actgtgaaag ccatacttat tgcattccc tgcattttgg ccttatggc ctttgcct 1740
20	gttacactg tggtccaggta caagaggaaa ggaacacccc gccacatact gtactgtaaa 1800
	cgctctatgc aagagtgggt gtga 1824

	<210> 106
	<211> 1560
25	<212> DNA
	<213> Homo sapiens
	<300>
	<302> MMP17
30	<310> NM004141
	<400> 106
	atgcacgttggccct ggaggccacc ggcattctgg acgaggccac cctggccctg 60
	atgaaaaccc caccgtgtcc cctgcacagac ctccctgtcc tgaccaggc tcgcaggaga 120
35	cgcacggctc cagccccccac caagtggAAC aagaggAAC tgcgtggag ggtccggacg 180
	ttcccacggg actcaccact ggggcacgac acgggtgcgtg cactcatgtc ctacgccc 240
	aaggctgttgc ggcacattgc gccccttgc ttccacggg tggcgggcacg caccggc 300
	atccagatcg acttctccaa ggcgcacccat aacgcacggct acccccttgcg cggccccggc 360
	ggcacccgtgg cccacgcctt ctccccggc caccaccata cccgcggggc caccacttt 420
40	gacgatgacg aggccctggac ctccgcctt ctcgtatgc acggggatggg cctgtttgc 480
	gtggctgtcc acgagtttgg ccacgcctt gggtaagcc atgtggccgc tgcacactcc 540
	atcatgcggc cgtactacca gggccgggtg ggtgacccgc tgcgtacgg gtccttc 600
	gaggacaagg tgcgcgtctg gcaactgtac ggtgtggggc agtctgtgtc tccacggcg 660
	cagcccgagg agcccccctt gtcgcggag ccccaagaca accggccca cggccccggc 720
45	aggaaggacg tgcggccacag atgcacactt cactttgc acggggatggg ctcgtggcc 780
	gaagctttct tcttcaaaagg caagtactt tggcggtgtc cgcgggaccc gcacctgg 840
	tccctgcacgc cggcacacat gcaccgcctt tggggggcc tgcgtgtca cctggacacg 900
	gtggacgcgc tgtaacggcg caccacgcac cacaagatcg tcttctttaa aggagacagg 960
50	tactgggtgt tcaaggacaa taacgttagag gaaggatacc cgcgcggccgt ctccgacttc 1020
	agcctccgc ctggcgccat cgacgcgtcc ttctcctggg cccacaatga caggacttat 1080
	ttctttaagg accagctgtt ctcgcgtac gatgaccaca cgaggccat gggccccggc 1140
	tacccgcgc agagccccctt gtggagggggt gtcccccggc cgctggacga cgccatgcgc 1200
	tggtccgcacg gtgcctctta cttctccgt ggccaggagt actggaaagt gctggatggc 1260
55	gagctggagg tggcacccgg gtacccacag tccacggccc gggactggct ggtgtgtgg 1320
	gactcacagg ccgtggatc tgcgtgtcg ggcgtggacg cggcagagg gccccggc 1380
	cctccaggac aacatgacca gagccgcctcg gaggacgggt acgaggcttg ctcatgcacc 1440
	tctggggcat ctcctccccc gggggcccca ggccactgg tggctgcccc catgctgtcg 1500
	ctgctggccgc cactgtcacc aggcgcctcg tggacagcgg cccaggccct gacgtatga 1560

60

65

DE 101 00 586 C 1

<210> 107
 <211> 1983
 <212> DNA
 <213> Homo sapiens

5

<300>
 <302> MMP2
 <310> NM004530

10

<400> 107
 atggaggcgc taatggcccg gggcgcgctc acgggtcccc tgagggcgct ctgtctccctg 60
 ggctgcctgc tgagccacgc cgccgcccgc ccgtcgccca tcatacgatt ccccgccgat 120
 gtcgccccca aaacggacaa agagtggca gtgcaatacc tgaacacccctt ctatggctgc 180
 cccaaggaga gctgcaacct gtttgtctg aaggacacac taaaagaagat gcagaagttc 240
 tttggactgc cccagacagg tgatcttgac cagaataccca tcgagaccat gcggaagcc 300
 cgctcgccgc accccagatgt ggccaaactac aacttcttcc ctcgcaagcc caagtggac 360
 aagaaccaga tcacatacag gatcattggc tacacacacccctt atctggaccc agagacagt 420
 gatgatgcct ttgctcgctc cttccaagtc tggagcgtatg tgaccccaact gcggtttct 480
 cgaatccatg atggagaggg agacatcatg atcaactttg gccgctggga gcatggcgat 540
 ggataccccc ttgacggtaa ggacggactc ctggctcatg ctttcgccttcc aggcaactggt 600
 gttgggggag actcccaattt tgatgacgt gagctatggc ctttgggaga aggccaagt 660
 gtccgtgtga agtatggcaa cgccgatggg gagtaactgca agttccctt cttgttcaat 720
 ggcaaggagt acaacagctg cactgatact gcccgcagcg atggcttctt ctgggtctcc 780
 accacctaca actttggagaa ggatggcaag tacggcttc gtcggccatg agccctgttc 840
 accatggcg gcaacgcgtga aggacagcc tgaagtttcc cattccgcctt ccaggccaca 900
 tcctatgaca gtcgcaccac tgagggccgc acggatggct accgctgtt cggcaccact 960
 gaggactacg accgcgcacaa gaagttatggc ttctgccttgc agacccatgt gtccactgtt 1020
 ggtggaaact cagaagggtgc cccctgtgtc ttcccttca ctttccttggg caacaatat 1080
 gagagctgca ccagcgccgg cccgactgtac ggaaagatgt ggtgtgcgac cacagccaa 1140
 tacgatgacg accgcgaatgt gggcttctgc cctgaccaag ggtacagccctt gttctcgctg 1200
 gcagccccacg agtttggcca cgccatgggg ctggagcact cccaaagaccc tggggccctg 1260
 atggcacccca ttacacaccta caccaagaac ttccgtctgtt cccaggatgt catcaaggcc 1320
 attcaggagc tctatggggc ctctcctgac attgaccttgc gcaacggccc caccggccaca 1380
 ctggccctg tcactcctgtac gatctgcaaa caggacattt gatctgcactt gtcgactgtt 1440
 atccgtggtg agatcttctt cttcaaggac cggttcattt ggcggactgtt gacgccacgt 1500
 gacaagccca tggggccctt gctgggtggcc acattctggc ctgagctccc ggaaaagatt 1560
 gatgcgttat acgaggcccc acaggaggag aaggctgtgt tctttgcagg gaatgaatac 1620
 tggatctact cagccagcac cctggagcga gggtaaaaaa agccactgac cagcctggga 1680
 ctgccccctg atgtccagcg agtggatgccc gcctttaact ggagcaaaaaa caagaagaca 1740
 tacatctttt ctggagacaa attctggaga tacaatgagg tgaagaagaa aatggatctt 1800
 ggcttccca agctcatgcg agatgcctgg aatgccttcc ccgataacccctt ggatgcgttc 1860
 gtggacactgc agggcgccgg tcacagctac ttcttcaagg gtgcctatata cctgaagctg 1920
 gagaaccaaa gtctgaagag cgtgaagttt ggaagcatca aatccgactg gctaggctgc 1980
 tga 1983 45

45

<210> 108
 <211> 1434
 <212> DNA
 <213> Homo sapiens

50

<300>
 <302> MMP2
 <310> XM006271

55

60

65

DE 101 00 586 C 1

```

<300>
<302> MMP3
<310> XM006271

5   <400> 108
atgaagagtc ttccaaatcct actgttgcgt tgcgtggca gttgctcagc ctagccattg 60
gatggagctg caaggggtaa ggacaccagc atgaaccttg ttcagaataa tctagaaaac 120
tactacgacc tcgaaaaaaga tgtgaaaacag tttgtttagga gaaaggacag tggctctgtt 180
gttaaaaaaaa tccgagaaat gcagaagttc cttggatgg aggtgacggg gaagctggac 240
tccgacactc tggaggtgt gcgcaagccc aggtgtggag ttccgtacgt tggctacttc 300
agaacccattc ctggcatccc gaagtggagg aaaacccacc ttacatacag gattgtaat 360
tatacaccag atttgc当地 agatgtgtt gattctgtt ttgagaaagc tctgaaagtc 420
tggaaagagg tgactccact cacatctcc aggtgtatg aaggagaggc tgatataatg 480
atcttttg cagttagaga acatggagac ttttaccctt ttgatggacc tggaaatgtt 540
ttggccatg cctatgc当地 tggccaggg attaatggag atgcccactt tgatgtatg 600
gaacaatgga caaaggatcac aacaggacc aatttatttc tcgttgc当地 tcatgaaatt 660
ggccactccc tgggtctt tcaactcagcc aacactgaag ctttgatgtt cccactctat 720
caactca cagacctgac tgggtccgc ctgtctcaag atgatataaa tggcattcag 780
tccctctatg gaccccccc tgactccct gagacccccc tggtaccac ggaacctgtc 840
cctccagaac ctgggacgcc agccaactgt gatcctgtt tgccttga tgctgtcagc 900
actctgaggg gagaatcct gatcttaaa gacaggact tttggc当地 atccctcagg 960
aagcttgaac ctgaattgca tttgatctt tcatcttgc catctctcc ttcaggcgtg 1020
gatggccatc atgaagttac tagcaaggac ctcgtttca ttttaaagg aaatcaattc 1080
tggccatca gaggaaatg ggtacgagct ggatacccaa gaggcatcca caccctagg 1140
ttccctccaa ccgtgaggaa aatcgatgca gcatcttctg ataaggaaaa gaacaaaaca 1200
tattttttt tagaggacaa atactggaga tttgatgaga agagaaattc catggagcca 1260
ggcttccca agcaaatacg tgaagactt ccaggattt actcaaagat tgatgtgtt 1320
tttgaagaat ttgggttctt ttatctt actggatctt cacagttga gtttgaccca 1380
aatgcaaaga aagtgacaca cacttgaag agtaacagct ggcttaattt ttga 1434

<210> 109
<211> 1404
35  <212> DNA
      <213> Homo sapiens

<300>
<302> MMP8
40  <310> NM002424

<400> 109
atgttctccc tgaagacgct tccatttctg ctcttactcc atgtgcagat ttccaaaggcc 60
ttccctgtat cttctaaaaga gaaaaataca aaaactgtt aggactactt ggaaaagttc 120
45  tccaattac caagcaacca gtatcgtt acaaggaaga atggactaa tgcgtatgtt 180
gaaaacttca aaaaaatgca gggatttt gggttgaatg tgcggggaa gccaatgag 240
gaaaactctgg acatgtgaa aaagcctcgc tggggactt cttacaggat tcgaaactat 300
ttaacccagg gaaaccccaa gtgggaacgc actaacttgc cttacaggat tcgaaactat 360
acccacacgc tgcagaggc tgaggtagaa agactatca aggatgcctt tgaactctgg 420
50  agtgttgcat cacctctcat cttcaccagg atctcacagg gagggcaga tatcaacatt 480
gttttttacc aaagagatca cggtgacaaat tctccattt atggacccaa tggaaatcctt 540
gtctcatgcct ttccatccagg ccaaggattt ggaggagatg ctttttgc tggcaagaa 600
acatggacca acacccccc aaattacaac ttgtttctt tgcgtctca tgaatttggc 660
catttttgg ggctcgctca cttctctgac cttgggtgcct tgcgtatcc caactatgtt 720
55  ttcaggaaaa ccagcaacta cttcaacttca caagatgaca tgcgtggcat tcaggccatc 780
tatggacttt caagcaaccc tatccaaacct actggacca gacaccccaa accctgtgac 840
cccaggta catttgatgc tatcaccaca cttccgtggag aaatactttt cttaaagac 900
aggtaatttcc ggagaaggca ttccatgc当地 caaagatgtc当地 aatgaattt tattttctca 960

```

60

65

DE 101 00 586 C 1

ttctggccat cccttccaac tggtatacag gctgcttagt aagatttga cagagaccc 1020
 attttcstat taaaaggcaa ccaatactgg gctctgagtg gctatgatat tctgcaaggt 1080
 tatcccaagg atatatcaa ctatgcttc cccagcagcg tccaaagcaat tgacgcagct 1140
 gtttctaca gaagtaaaac atacttctt gtaaatgacc aattctggag atatgataac 1200
 caaagacaat tcatggagcc aggttatccc aaaagcatat caggtgcctt tccaggaata 1260
 gagagtaaag ttgatgcagt tttcagcaa gaacatttct tccatgtctt cagtgacca 1320
 agatattacg catttgcac tattgcttag agagttacca gagttgcaag aggcaataaaa 1380
 tggcttaact gtatgatagg ctga 1404

5

<210> 110
 <211> 2124
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> MMP9
 <310> XM009491

15

<400> 110

atgagcctct ggcagccccct ggtcctggtg ctctgggc tgggctgctg ctttgcgtcc 60
 cccagacage gccagttcac ccttgtctc ttccctggag acctgagaac caatctcacc 120
 gacaggcage tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg 180
 cgtggagagt cggaaatctct ggggcctgctg ctgtgtcttcc tccagaagca actgtccctg 240
 cccgagaccg gtgagctggta tagcgcaccc ctgaaggccca tgcgaaccccc acgggtcgccc 300
 gtcccgagacc tggcagatt ccaaaccctt gagggcgacc tcaagtgccca ccaccacaac 360
 atcacctatt gatccaaaa ctactcgaa gacttgcgc gggcgggtat tgacgacgccc 420
 tttggcccgcg ctttcgact gtggagcgcc gtgacgcccgc tcaaccttccac tggcggttac 480
 agccgggacg cagacatcgat catccagttt ggttgcggg agcacaaggaa cgggtatccc 540
 ttcgacggga aggacgggct cctggcacac gcctttccctc ctggcccccggg cattcaggga 600

20

gacggccatt tcgacgatga cgagttgtgg tccctggca agggcgtctg gtttccaact 660

cggtttggaa acgcagatgg cgccggctc cacttccct tcatcttccaa gggccgtccc 720

tactctgcet gcaccaccga cggtcgttcc gacggcttgc cttgggtcag taccacggcc 780

aactacgaca cggacgaccg gtttggctt tgccccagcg agagactcta caccaggac 840

ggcaatgctg atggaaaccctt ctggccatccatct tccaaggccca atcctactcc 900

gcctgcacca cggacggctg ctccgacggc taccgttgc ggcacccac cgccaaactac 960

gacgggacaa agcttccgg cttctggcc acccgagatctt actcgacgtt gatggggggc 1020

aactcgccgg gggagctgtt cgtttttccc ttcaacttcc tgggttaagga gtactcgacc 1080

tgtaccagcg agggcccgcc agatgggcgc ctctggctgctt accacccttca gaaacttgc 1140

agcgacaaga agtggggctt ctggccggac caaggataca gtttgcctt cgtggccggc 1200

catgagttcg gccacgcgtt gggcttagat catccctcgt tgccggaggc gtcatgtac 1260

cctatgtacc gtttacttgc gggggccccc ttgcataagg acgacgttgc tggcatccgg 1320

cacctctatgtt gtttccggcc tgaaccttgcg ccacggccctc caaccaccac cacaccgc 1380

cccacggctc ccccgacggt ctggcccccggc ggaccccccctt ctgtccaccc ctcagagcgc 1440

cccacagctg gcccccaagg tccccctca gtttgccttca caggtttccca cactgttgc 1500

ctttctacgg caactactgtt gtttgcgttgcg cgggtggccatc cgtgaacatc 1560

ttgcacgcca tggcgagat tgggaaccag ctgtattttgt tcaaggatgg gaagttactgg 1620

cgattctctg agggcagggg gacggccggc caggggccctt cccttatttgcg cgacaactgg 1680

ccccgctgc cccgcaagctt ggactcggtt ttggaggac ggctctccaa gaagtttc 1740

ttcttctctg ggcggccagggt gtgggtgtac acaggccgtt cgggtgttggg cccggggcgt 1800

ctggacaaggc tgggcctggg agccgacgtt gcccagggttgc cggggccctt ccggagggttgc 1860

agggggaaaga tgcgtgttgc tggggccgg cgcctctggaa gtttgcacgtt gaaggcgc 1920

atgggttggatc cccggagcgc cggcgagggtt gacccggatgt tccccgggggtt gccttggac 1980

acgcacgcacg tttccaggatca cggagagaaa gcttatttctt gccaggaccg ctttacttgc 2040

cggcgatgtt cccggaggatca gttgaaccag gtggaccaag tgggttacgtt gacccatgtac 2100

40

atcctgcagt gccctggaggatca ctag 2124

55

60

65

DE 101 00 586 C 1

```

<210> 111
<211> 2019
<212> DNA
<213> Homo sapiens
5

<300>
<302> PKC alpha
<310> NM002737

10 <400> 111
atggctgacg tttcccccggg caacgcactcc acggcggtctc aggacgtggc caaccgccttc 60
gcccccaaaag gggcgctgaa gcaagaagaac gtgcacgagg tgaaggacca caaattcatc 120
gcgcgcgttct tcaaggcagcc caccttctgc agccactgca ccgacttcat ctgggggttt 180
15 gggaaacaag gcttccagtg ccaagttgc tggtttgtgg tccacaagag gtgcctatgaa 240
tttggtaactt ttttttgcggat aaggggacccg acactgatga ccccaaggagc 300
aagcacaagt taaaaatcca cacttacgga agccccacct tctgcgtatca ctgtgggtca 360
ctgcgtatg gacttatcca tcaaggatg aaatgtgaca cctgcgtat gaacgttcac 420
aagcaatgcg tcatcaatgt ccccagcctc tgccgaatgg atcacactga gaagaggggg 480
20 cggttttacc taaaaggctga gggtgtgtat gaaaagctcc atgtcacatg acgagatgca 540
aaaaatctaa tcccttatgaa tccaaacggg ctttcagatc cttatgtgaa gctgaaactt 600
attcctgtatc ccaagaatga aagcaagcaa aaaacccaaa ccattccgtc cacactaaat 660
ccgcgttggaa atgagtccct tacattccaa ttgaaacacct cagacaaga ccgcgtactg 720
tctgttagaaa tctggggactg ggatcgaaca acaaggaatg attcatggg atccctttcc 780
25 tttggagttt cggagctgat gaagatggccg gccagtgat ggtacaagtt gcttaaccaa 840
gaagaagggtg agtactacaa cgtaccatt ccggaaagggg acgaggaaagg aaacatggaa 900
ctcaggcgaga aattcgagaa agccaaacct ggccctgtct gcaacaaggat catcgtccc 960
tctgaagaca gggaaacaacc ttccaacaac cttgaccggag tggaaactcac ggacttcaat 1020
ttcctcatgg tggtggggaaa gggggagttt gggaaagggtga tgcttgcga caggaagggc 1080
30 acagaagaac tgtatgcaat caaaatctg aagaaggatg tgggtgattca ggatgtgac 1140
gtggagtgcg ccatggtaga aaagcgagtc ttggccctgc ttgacaaacc cccgttctt 1200
acgcagctgc actcctgtct ccagacagtg gatcggtgt aacttcgtcat ggaatatgtc 1260
aacgggtgggg acctcatgtatcc acatccatcg caagttagaa aatttaagga accacaagca 1320
gtattctatg cggcagagat ttccatcgga ttgttcttc ttcataaaag aggaatcatt 1380
35 tatagggatc tgaagtttaga taacgtcatg ttggatttcg aaggacatat caaaattgtct 1440
gactttggga tggcaagggaa acacatgtatc gatggagtca cgaccaggac cttctgtggg 1500
actccagatt atatcgcccc agagataatc gtttatcgc tggatggaaa atctgtggac 1560
tgggggcct atggcgtccct gttgtatgaa atgttgcgg ggcagccctc atttgcgtgt 1620
gaagatgaag acgagctatt tcagtcatac atggaggaca acgtttccat tccaaaatcc 1680
40 ttgtccaagg aggctgtttc tatctgcataa ggactgtatgaa ccaaaacaccc agccaagcgg 1740
ctggcgtgtg ggcctgaggg ggagaggac gtgagagac atgccttctt ccggaggatc 1800
gactggaaa aactggagaa cagggagatc cagccaccat tcaagccaa agtgtgtggc 1860
aaaggagcag agaactttga caagttctt acacgaggac agccgttctt aacaccacct 1920
gatcagctgg ttattgctaa catagaccat tctgttttg aagggttctc gtatgtcaac 1980
45 ccccagttt tgcacccat cttacagatc gcagtatga 2019

```

```

<210> 112
<211> 2022
50 <212> DNA
<213> Homo sapiens

<300>
<302> PKC beta
55 <310> X07109

<400> 112

```

60

65

DE 101 00 586 C 1

atggctgacc cggctgcggg gccgcgcgg agcgaggcg aggagagcac cgtgcgc 60
 gcccggaaag gcgcgcctcg gcagaagaac gtgcattgagg tcaagaacca caaattcacc 120
 gcccgcgttct tcaaggcggcc caccttcgc agccactgca cgcacttcat ctggggcttc 180
 gggaaagcagg gattccagt ccaagttgc tgctttgtgg tgcacaagcg gtgcgc 240
 tttgtcacat ttcctgcgc tggcgtgac aagggtccag cctccatga ccccccgc 300
 aaacacaagt ttaagatcca cacgtactcc agccccacgt tttgtgacca ctgtgggtca 360
 ctgcgtatg gactcatcca ccagggatg aaatgtgaca cctgcattatg gaatgtgcac 420
 aaggcgtcg 5
 aaggcgtcg tcatgatgt tcccagcctg tggcgcacgg accacacgga ggcgcgc 480
 cgcattaca tccaggccca catcgacagg gacgtcctca ttgtcctcg aagagatgct 540
 aaaaaccttg tacctatggc ccccaatggc ctgtcagatc cctacgtaaa actgaaactg 600
 attcccgatc cccaaagtga gagcaaacag aagaccaaaa ccatcaaatg ctccctcaac 660
 cctgagtgg 10
 aatgagacatt tagatttcg ctgaaagaat cggacaaga cagaagactg 720
 tcagtagaga tttgggattt ggatttgacc agcaggaatg acttcattggg atctttgtcc 780
 tttgggattt ctgaacttca gaaggccagt gttgatggct gtttaatgt actgagccag 840
 gaggaaggcg 15
 agtacttcaa tggcctgtg ccaccagaag gaagtggc 900
 ctgcgcaga aatttggag ggccaagatc agtcaggaa ccaaggccc ggaagaaaaag 960
 acgaccaaca ctgtctccaa atttgacaaac aatggcaaca gagaccggat gaaactgacc 1020
 gatttaact tccataatggt gctggggaaa ggcagcttg gcaaggctcat gcttcagaa 1080
 cgaaaaggca cagatgagct ctatgtgtg aagatctga agaaggacgt tttgtatccaa 1140
 gatgatgacg tggagtgcac tatggtggag aagegggtg tggccctgc 1200
 ccctcctga cccagctcca ctccctgcctc cagaccatgg accgcctgt 1260
 gatgtatcg 20
 atgggggatc cctcatgtat cacatccagc aagtggccg gttcaaggag 1320
 ccccatgtcg tattttacgc tgcagaaatt gcatcggtc ttttcttctt acagagtaag 1380
 ggcattatc accgtgaccc aaaaacttgc aacgtgtgc tgcattctga gggacacatc 1440
 aagattggcg 25
 attttggcat gtgtaaggaa aacatctggg atgggggtgac aaccacagaca 1500
 ttctgtggca ctccagacta catgcgcgc gagataattt cttatcgc 1560
 tccgtggatt ggtgggcatt tggagtcctg ctgtatgaaa ttttggctgg gcaggcaccc 1620
 tttgaagggg 30
 aggtatggaa tgaacttcc caatccatca tggacacacaa cgtgccttat 1680
 cccaaatcta ttttggc 1740
 ttttggc 1740
 ggcaaacgtc tgggttggc 1800
 acctgataatggc 1860
 gtttgggc 1920
 gaaatgtgtca 1980
 aaacttcgac 2022
 acaccccg 35
 accaggaat 2022
 catcaggaat attgaccaat cagaattcga aggattttcc
 tttgttaact ctgaattttt aaaacccgaa gtcaagagct aa

<210> 113
 <211> 2031
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> PKC delta
 <310> NM006254

45

<400> 113
 atggcgcgt tcctgcgcac cgccttcaac tcctatgagc tgggctccct gcaggccgag 60
 gacgaggcg 50
 aaccgcctt ctgtgcgtg aagatgaagg aggcgcctag cacagacgt 120
 gggaaacac tggtgcagaa gaagccgacc atgtatcctg agtggaaatc gacgttcgt 180
 gcccacatct atgagggcg cgtcatccag attgtctaa tgcgggc 240
 gtgtctgagg tgaccgtggg tggcgtggc ctggccgacg gctgcaagaa gaacaatggc 300
 aaggctgagt tctggctgga cctgcagcc tggccaaagg tggatgtgc tggcgtat 360
 ttctggagg acgtggattt caaaatctt atgcgcgtg aggacgaggc 420
 acatgtaccc gccgcggc 480
 catcaacatcc gccaaaatcc actacatcaa gaaccatgag 480
 tttatcgcca ctttctttgg gcaacccacc ttctgttctg tggcaaga ctttgc 540
 ggcctcaaca agcaaggcta caaatgcagg caatgtaaacg ctggccatcca caagaaatgc 600
 atcgacaaga tcatcgcc 660

60

65

DE 101 00 586 C 1

cagaaaagaac gtttcaacat cgacatgccg caccgttca agttcacaa ctacatgagc 720
 cccaccttct gtgaccactg cggcagccgt ctctggggac tggtaagca gggattaaag 780
 tgtgaagact gccgcataaa tgtaaccat aaatgcggg agaagggtgc caacctctgc 840
 5 ggcataacc agaagcttt ggctgaggcc ttgaaccaag tcacccagag agctccccgg 900
 agatcagact cagcctcctc agagcctgtt gggatatac agggttcga gaagaagacc 960
 ggagttgctg gggaggacat gcaagacaac agtgggacat acggcaagat ctgggagggc 1020
 agcagcaagt gcaacatcaa caacttcattt ttccacaagg tcctggcaa aggagcttc 1080
 gggaaagggtgc tgcttgaga gctgaaggcc agaggagat actctgccat caaggccctc 1140
 10 aagaaggatg tggtcctgtat cgacgacgc gtggagtgc ccatggtga gaagcgggtg 1200
 ctgacacttg ccgcagagaa tcccttctc acccacctca tctgcacccat ccagaccaag 1260
 gaccacctgt tctttgtat ggagtccat aacggggggg acctgatgtt ccacatccag 1320
 gacaaaaggcc gctttaact ctaccgtgcc acgttttatg ccgctgagat aatgtgtgga 1380
 ctgcagttc tacacagcaa gggcatcatt tacaggacc tcaaacttggaa caatgtgtg 1440
 15 ttggacccggg atggccacat caagattgcc gactttggga tggcaaaaaga gaacatattc 1500
 ggggagagcc gggccagcac cttctggcc accccctgact atatcgcccc tgagatccta 1560
 cagggcctga agtacacatt ctctgtggac tgggtgtctt tcggggctt tctgtacgag 1620
 atgtcatttgc gcccgtcccc ctccatgtt gatgatgagg atgaactt ccagtccatc 1680
 cgtgtggaca cggccacatta tccccgtgg attaccaagg agtccaaggat catccctggg 1740
 20 aagctctttg aaagggaacc aaccaagagg ctgggaatgtt cggggaaacat caaaatccac 1800
 cccttcttca agaccataaa ctggactctg ctggaaaaggc ggaggttggaa gcccacccctc 1860
 aggcccaaag tgaagtccacc cagagactac agtaactttg accaggagtt cctgaacccgg 1920
 aaggcgcggcc tctcttacag cgacaagaac ctcatcgact ccatggacca gtctgcattc 1980
 gctgcttctt ctttgcata ccccaattt gggcacctcc tggaaagattt a 2031

25
 <210> 114
 <211> 2049
 <212> DNA
 30 <213> Homo sapiens

<300>
 <302> PKC eta
 <310> NM006255

35 <400> 114
 atgtcgctg gcaccatgaa gttcaatggc tattttgggg tccgcacatcg tgaggcagt 60
 gggctgcagc ccacccgtcg gtcctggcc cactcgctt tcaagaaggcc acccagctg 120
 ctggaccctt atctgacggt gagcgtggac caggtgcgc tggggccagac cagcacaag 180
 40 cagaagacca acaaaccacat gtacaacggag gagtttgcg ctaacgtcac cgacggccgc 240
 cacctcgagt tggccgtctt ccacggagacc cccctgggtt acgacttcgtt ggccaaactgc 300
 accctcgagt tccaggagct cgtcgccacg accggccctt cggacacccat cgagggttgg 360
 gtggatctcg agccagaggg gaaagtattt gtggtaataaa cccttaccgg gagtttact 420
 gaagctactc tccagagaga ccggatctttaa aacattttta ccaggaagcg ccaaagggtt 480
 45 atgcgaaggc gaggccacca gatcaatggc cacaaggatca tggccacgtt tctgaggcag 540
 cccacctact gctctactg cagggagttt atctggggag tggggggaa acagggttat 600
 cagtgccaaag tggccacccat tggccatccat aacgcgtcc atcatctaat tggtagcc 660
 tggacttgcctt aaaaatat taacaaatgtt gattcaaaaga ttgcagaaca gaggttccgg 720
 atcaacatcc cacacaaggat cagccatccac aactacaaatg tgccaaacatt ctgcgtatcac 780
 50 tgggctcac tggctctgggg aataatgcga caaggactt cttttttttt atgtaaaaatg 840
 aatgtgcata ttgcgtatgtca agcgaacgtt gccccttaact gtggggtaaa tgccggggaa 900
 cttgccaaga ccctggcagg gatgggtctc caacccggaa atatttctcc aacctcgaaa 960
 ctgcgttccat gatcgaccctt aagacgacag ggaaaggaga cagccaaaga aggaatggg 1020
 attgggggttta attcttccaa ccgacttggt atcgacaact ttgatgttcat ccgagtttg 1080
 55 gggaaaggggaa gttttggggaa ggtgtatgtt gcaagagttt aagaaacagg agacccctat 1140
 gctgtgaagg tggtaagaa ggacgtgtt ctgtggatg atgtgtgga atgcaccatg 1200
 accggagaaaa ggatcctgtc tctggccgc aatcaccctt ccctcactca gttgttctgc 1260
 tgcttcaga ccccccgtatc tctgtttttt gtgtatggatg tgggtacttg 1320

60

65

DE 101 00 586 C 1

atgttccaca	ttcagaagtc	tcgtcgaaaa	gatgaagcac	gagctcgaaa	ctatgtgc	1380
gaaatcattt	cggctctcat	gttcctccat	gataaaggaa	tcatctata	agatctgaaa	1440
ctggacaatg	tcctgttgg	ccacgagggt	cactgtaaac	tggcagactt	cgaaatgtc	1500
aaggagggga	tttgcataatgg	tgtcaccac	gccacattct	gtggcacgccc	agactatata	1560
gctccagaga	tcctccagga	aatgtgtac	gggcctgcag	tagactgttg	ggcaatgggc	1620
gtgttgtct	atgagatgt	ctgtggtcac	ggccctttt	aggcagagaa	tgaagatgac	1680
ctctttgagg	ccataactgaa	tgatgagggt	gtctacccta	cctggctcca	tgaagatgcc	1740
acagggatcc	taaaatcttt	catgaccaag	aacccccacca	tgcgttggg	cagcctgact	1800
cagggaggcg	agcacgccc	cttggagacat	cctttttta	aggaaatcga	ctggggcccg	1860
ctgaaccatc	gccaaataga	accgcctttc	agacccagaa	tcaaattcccg	agaagatgtc	1920
agtaattttt	accctgactt	cataaaggaa	gagccagttt	taactccaa	tgatgaggga	1980
catcttccaa	tgattaacca	ggatgagttt	agaaaactttt	cctatgtgtc	tccagaattt	2040
caaccatag						2049

<210> 115
<211> 948
<212> DNA
<213> *Homo sapiens*

<300>
<302> PKC epsilon
<310> XM002370

<210> 116
<211> 1764
<212> DNA
<213> *Homo sapiens*

<300>
<302> PKC iota 50
<310> NM002740

<400> 116
atgtcccaaca cggtcgcaagg cggcggcagc ggggaccatt cccaccaggt ccgggtaaaa 60 55
gcctactacc gcggggatata catgataaaca cattttgaac ctcccatctc ctttgaggc 120 .
ctttgcaatg aggttcgaga catgtgttct tttgacaacg aacagcttt caccataaaa 180
tggatagatg aggaaggaga cccgtgtaca gtatcatctc agttggagtt agaagaagcc 240

DE 101 00 586 C 1

5 ttttagacttt atgagctaaa caaggattct gaactcttga ttcatgtgtt cccttgtgtta 300
 ccagaacgtc ctgggatgcc ttgtccagga gaagataaaat ccatctaccg tagaggtgca 360
 cgccgcgttga gaaagcttta ttgtgc当地 gcccacactt tccaagccaa gcgttcaac 420
 aggcgtgtc actgtgc当地 ctgcacagac cgaatatggg gacttggacg ccaaggatat 480
 aagtgc当地 aactgc当地 acttgc当地 aagaagtgc当地 ataaactcg当地 cacaattgaa 540
 tgtggccggc attcttgc当地 acaggaacca gtgatgc当地 tggatc当地 atccatgc当地 600
 tctgaccatg cacagacagt aattccat当地 aatc当地 tcaa gtcatgagag tttggatcaa 660
 gttgtgtt当地 aaaaagaggc aatgaacacc agggaaagtg gcaaagctt当地 atccagtc当地 720
 10 ggtcttc当地 attttgattt gtc当地 cgggta attaggaagag gaagttatgc当地 caaagtaactg 780
 ttgggtc当地 gat aaaaaaaaaac agatcg当地 tatgc当地 atga aagttgtt当地 aaaagagctt 840
 gtaatgtt当地 atgaggat当地 tgattgggta cagacagaga agcatgtt当地 tgagcaggca 900
 tccaatc当地 ct当地 tcc当地 tt当地 tggtc当地 tctt当地 cttt当地 agacagaaaag cagattgtt当地 960
 tttgtt当地 atgat当地 taaaatgggat当地 tggaggagac ctaatgtt当地 atatgc当地 cgc当地 acaaagaaaaa 1020
 15 cttc当地 ct当地 gaag aacatgc当地 attttactt当地 gc当地 agaaatca gtcttagc当地 aaatttatctt 1080
 catgagc当地 gag ggataat当地 tagagat当地 tt当地 aactggaca atgtt当地 attactt当地 ggactctgaa 1140
 ggccacatta aactcactg当地 ct当地 acggc当地 atg ttaaggaaag gattacglocal aggagataca 1200
 accagcactt tctgtgtt当地 tac当地 tc当地 taattt当地 attgctt当地 ct当地 aaattt当地 taag aggagaagat 1260
 tatgtt当地 ca gtgtt当地 actg gtgggctt当地 ggactgctc当地 tggatgat当地 gatggc当地 agga 1320
 20 aggtctccat tt当地 gatattt当地 tggagc当地 tcc local gataaccctt当地 accagaacac agaggattat 1380
 ctcttccaag tt当地 attttt当地 gaa aaaacaaattt cgat当地 accacc gttctctg local tgtaaaaagct 1440
 gcaagtgtt当地 tgaagat当地 tt当地 taataag gaccctt当地 aagg aacgattt当地 gggg 1500
 caaacaggat tt当地 gctgat当地 at tc当地 agggacac cc当地 gttt当地 tcc local gaaatgtt当地 tgtaaaaatg 1560
 atggagcaaa aacagggtggt acctccctt当地 aaaccaaata tt当地 ct当地 tgggat当地 atttgggat当地 1620
 25 gacaat当地 tt当地 ct当地 ctagt tactaatgaa cctgtcc当地 cagc tcactcc当地 caga tgacgatgac 1680
 attgtgagga agattgatc当地 gtctgaaat当地 tt当地 ggat当地 tttt当地 tt当地 tgat当地 atccatc当地 1740
 atgtctgc当地 gag aatgtt当地 ctgaa 1764

30 <210> 117
 <211> 2451
 <212> DNA
 <213> Homo sapiens

35 <300>
 <302> PKC mu
 <310> XM007234

40 <400> 117
 40. atgtatgata agatcctgct tt当地 tc当地 cccat gaccctt当地 act ct当地 gaaaatc cttt当地 cagctg 60
 gtgaaagc当地 gg cc当地 agt gat当地 at cc当地 agg gac local gatctt当地 tattt当地 aagtggctt当地 gt当地 cagctt当地 cc 120
 gccaccc当地 tt当地 tg aagactt当地 ca gattc当地 gtccc caccgctt当地 ctctt当地 tt当地 gttt当地 cattc当地 atacagatct 180
 cc当地 agctt当地 ct当地 gt当地 atcactg当地 tggagaaatg ct当地 gt当地 gggggc tggatc当地 gtctt当地 aagg 240
 tgtgaagggtt当地 gt当地 ggct当地 tctgaa tt当地 accataag agatgtc当地 cat taaaat当地 acc caacaattt当地 gc 300
 45 agcgggtgtgat当地 ggccg当地 gagaag gctctt当地 caaacc gttt当地 cc当地 tcc local ct当地 gggglocal tc当地 tagatc当地 360
 acatcatctg当地 ct当地 gaactt当地 ctc当地 tacaatglocal gcc local cctgatgac local cc当地 tt当地 ct当地 tctgca local aaaatcatcca 420
 tc当地 agatc当地 gtctg local tt当地 atttggctg local agagaagg tcaat当地 tctc local aatc当地 atcatacat tggacgacca 480
 attc当地 acatctt当地 tcaat当地 tttt当地 gatgtctt当地 aatc当地 tt当地 gttt当地 atccatccac 540
 tc当地 ct当地 tccat当地 acatccat当地 ggccc当地 acatccat当地 agtgc当地 tggccat当地 tctgat当地 ggatgg 600
 50 caggc当地 tt当地 tgc当地 agtgc当地 aaaggatcc local aactglocal cc当地 tcc local aatggat当地 tggatc当地 tggglocal cagag 720
 ccaaacaact local gc当地 tt当地 tggc当地 gagatcc local agtgc当地 accatccat当地 aatggat当地 tggatc当地 tggglocal cagag 780
 tctgatgat当地 ggatggat当地 tcaat当地 tttt当地 gatgtctt当地 aatc当地 tt当地 gttt当地 atccatccat当地 ggatgg 840
 atggatgata local tggat当地 agaaggatcc local aatggatcc local gatgtctt当地 tggatc当地 tggatc当地 tggglocal cagag 900
 aacgacatgt当地 gcgatgatc当地 agatccat当地 cc当地 gagaccatc当地 aggacgccaa local cagaaccatc local 960
 55 agtccatcaa local caagcaacaa local tatccactc local atgaggat当地 tagtgc当地 tggatc当地 tggatc当地 tggglocal cagag 1020
 aagaggaaaa local gc当地 agc当地 acatg local aaaggatcc local ggatggatgg local tccactacac local cagcaaggac local 1080
 acgctgc当地 ggatggat当地 tggatc当地 tggatc当地 tggatc当地 tggglocal cagag 1140

60

65

DE 101 00 586 C 1

gtaaaaactt cagcttaat tcctaattggg gccaatcctc attgttcga aatcaactacg 1200
 gcaaatgtag tgtattatgt gggagaaaaat gtggtaatc cttccagccc atcaccaaat 1260
 aacagtgttc tcaccagggtgg cggtggta gatgtggcca ggatgtggga gatagccatc 1320
 cagcatgccc ttatgccgt cattccaaag ggctccctcg tgggtacagg aaccaacttg 1380
 cacagagata tttctgttag tatttcaga tcaaattgcc agattcaaga aaatgtggac 1440
 atcagcacag tatatcagat tttccgtat gaagtactgg gttctggaca gtttggaaatt 1500
 gtttatggag gaaaacatcg taaaacagga agagatgtag ctattaaaat cattgacaaa 1560
 ttacgatcc caacaaaaca agaaagccag ctcgtaatg aggttgcatt tctacagaac 1620
 ctcatcacc ctgggttgtt aaatttggag tttatgtttg agacgcctga aagagtgtt 1680 5
 gtttggatgg aaaaactcca tggagacatg ctggaaatga tttgtcaag tgaaaaggc 1740
 aggttgcac agcataaca gaagtttta attactcaga tactcgtggc ttgcggcac 1800
 ctcatatataaaaatcg tcaactgtac ctcacccacg aaaatgtgtt gtagcctca 1860
 gctgatccctt ttcctcaggta gaaactttgtt gattttgggtt ttgcggat cattggagag 1920
 aagtcttcc gggaggtcagt ggtgggtacc cccgcattacc tggcccttgc ggtccctaagg 1980
 aacaagggct acaatcgctc tctagacatg tggctgttgc gggcatcat ctatgtac 2040
 ctaagcggca cattccatt taatgaagat gaagacatac acgaccaat tcagaatgca 2100
 gcttcatgt atccaccaaaa tccctggaa gaaatatctc atgaagccat tgatcttac 2160
 aacaatttgc tgcaagtaaaa aatgagaaag cgctacagt tggataagac cttgagccac 2220
 ccttggctac aggactatca gacctggta gatttgcgag agctggaaatg caaaatcg 2280
 gagcgtaca tcacccatgaa aagtgtatgac ctgaggtggg agaagtatgc aggcgagcag 2340
 gggctgcagt accccacaca cctgatcaat ccaagtgcata gccacagtga cactcctgag 2400
 actgaagaaa cagaaatgaa agccctcggt gagcgtgtca gcattcctatg a 2451
 2451

25

<210> 118
 <211> 2673
 <212> DNA
 <213> Homo sapiens

30

<300>
 <302> PKC nu
 <310> NM005813

<400> 118

35

atgtctgcaa ataattcccc tccatcagcc cagaagtctg tattaccac agctattcct 60
 gctgtgttc cagctgttc tccgtgttca agtcttaaga cgggactctc tgcccgactc 120
 tctaattggaa gcttcgtgc accatcaactc accaacttca gaggctcgt gcatacagt 180
 tcatttctac tgcaattgg cctcacacgg gagagtgtt ccattgaac ccaggaactg 240
 tctttatctg ctgtcaagga tcttgcgtgc tccatagttt atcaaaatgtt tccagagtgt 300
 ggatttttg gcatgtatgaa caaaaattttt ctcttcgc gatcatgaa ctcagaaaac 360
 attttgcagc tgattacatc agcagatgaa atacatgaa gagacctgtt ggaagtgggtt 420
 cttttagctt tagccacagt agaagacttc cagattcgtc cacatactt ctatgtacat 480
 tcttacaaag ctcttactt ctgtgattac tttgtgttgc tgctgtgggg attgtacgt 540
 caaggactga aatgtgaagg ctgtggatta aattaccata aacgatgtgc cttcaagatt 600
 ccaaataact gtatgtggatg aaaaaagaga cgtctgtcaa atgtatctt accaggaccc 660
 ggccttcag tcccaagacc cctacagccct gaatatgttag cccttcccaag tgaagagtca 720
 catgtccacc aggaaccaag taatggaaat ccttcttggta gtggtcgccc aatctggatg 780
 gaaaagatgg taatgtgcag agtggaaatg ccacacacat ttgtctgttca ctcttacacc 840
 cgtccccacga tatgtcagta ctgcaagcgg ttactgaaag gccttccctcg ccaaggaatg 900
 cagtgtaaag attgcaaaattt caactgccc aacgcgtgtt catcaaaatg accaagagac 960
 tgccttggag aggttactttt caatggagaa cttccagtc tgggaacaga tacatata 1020
 ccaatggata ttgacaataa tgacataat agtgtatgta gtcgggggtt ggatgacaca 1080
 gaagagccat caccggccaga agataagatg ttcttcttgg atccatctga tctcgatgtg 1140
 gaaagagatg aagaagccgt taaaacaatc agtccatcaa caagcaataa tattccgcta 1200
 atgaggggtt tacaatccat caagcacaca aagaggaaga gcagcacaat ggtgaaggaa 1260
 ggggtggatgg tccattacac cagcaggat aacctgagaa agggcatta ttggagactt 1320
 gacagcaaat gtcataacattt atttcagaat gaatctggat caaagtatttta taagggaaattt 1380

40

45

50

55

60

65

DE 101 00 586 C 1

cccattttcag aaattctccg catatctca ccacgagatt tcacaacat ttcaacaaggc 1440
 agcaatccac actgttttgaa aatcattact gatactatgg tatacttcgt tggtgagaac 1500
 aatggggaca gctctcataa tcctgttctt gtcgcactg gagttgact tgatgttagca 1560
 5 cagagctggg aaaaagcaat tcgccaagcc ctcatgcctg ttactccta agcaagtgtt 1620
 tgcacttctc cagggcaagg gaaagatcac aaagatttgat tctacaagtat ctctgttatct 1680
 aattgtcaga ttccaggagaa tggatatac agtactgtttt accagatctt tgcatgttag 1740
 gtgcctgggtt caggccagg tggcatcggtt tatggaggaa aacatagaaa gactgggagg 1800
 gatgtggcta tttaaagtaat tgataagatg agattccccca caaaacaaga aagtcaactc 1860
 10 cgtaatgaag tggcttattt acagaatttg caccatcctg ggattgtaaa ccttggaaatgt 1920
 atgtttgaaa ccccaagaacg agtcttgcata gtaatggaaa agtgcgttgg agatatgtt 1980
 gaaatgatcc tattccatgtgaa gaaaagtcgg cttccagaac gaattactaa attcatggtc 2040
 acacagatcc ttgttgcctt gggatcttgcattttaa gaaatggaaa atgtgcgttgc tgcatacgca 2100
 15 aagccagaaa atgtgcgttgc tgcatacgca gagccatttc ctcagggtt gctgtgtgac 2160
 tttggatttg caccatcat tggtaaaag tcattcaggaa gcatacttag cccctgaagt tctccggagc 2220
 20 tcagtggag ttatcatcta tggatgcctc agtggcacat gatataatgc accaaatcca 2280
 gatataatgc accaaatcca aatgtgcata tttatgtacc caccatccatc atggagagaa 2340
 atttctggtg aagcaatttgat tctgataaaac aatctgcctc aagtgaagat gagaaaaacgt 2400
 tacagtgttgc acaaattctctt tagtcatccc tgcttacagg ctttagagaat ttggaaactcg 2460
 25 ctttagagaat ttggaaactcg cattggagaa cgttacatta cgctggggaaa tacatgcata cacacataac ctgttatacc actatcagac ttggcttgac 2520
 cttcaatccag atgatatggaa agaagatcct taa cacaatggc cttatggct 2580
 30 cttcaatccag atgatatggaa agaagatcct taa 2640
 2673
 <210> 119
 <211> 2121
 <212> DNA
 <213> Homo sapiens
 35 <300>
 <302> PKC tau
 <310> NM006257
 40 <400> 119
 atgtcgccat ttcttccggat tggcttgc tggcttgc aactttgact gccccgttgc ccagtcttgt 60
 caggcgagg ctgttaaccctt ttaacttgcgtgtca aagatgttgc 120
 aacggcgaga tggatataccca gaaaaagccctt accatgttacc caccctggaa cagcaacttt 180
 45 gatgccatca tcaacaaggaa aagatgttgc cttccatccaa gatgttgcataa aaacccatcg 240
 ctcatctctg aaaccatcggtt gggatcttgc tggatgttgc gaggatgttgc 300
 gggaaagacag aataatgggtt agatgttgc cttccatccaa gatgttgcataa aaacccatcg 360
 tactttctgg aataatgggtt agatgttgc cttccatccaa gatgttgcataa aaacccatcg 420
 50 gcttgcatac agcgccgggg tggatgttgc cttccatccaa gatgttgcataa aaacccatcg 480
 gagttcaactg ccacccatcggtt cccacatccaa gatgttgcataa aaacccatcg 540
 tggggcctga acaaaacaggaa ctaccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 600
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 660
 55 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 720
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 780
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 840
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 900
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 960
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1020
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1080
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1140
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1200
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1260
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1320
 tggatgttgc aatgttgcataa aaacccatcggtt gggatgttgc cttccatccaa gatgttgcataa aaacccatcg 1380

60

65

DE 101 00 586 C 1

ctcaacggag gggacttaat gtaccacatc caaagctgcc acaagttcga ccttccaga 1440
 gcgacgtttt atgctgctga aatcatctt ggctgcagt tccttcattc caaaggaata 1500
 gtctacaggg acctgaagct agataacatc ctgttagaca aagatggaca tatcaagatc 1560
 gcggattttg gaatgtgcaa ggagaacatg ttaggagatg ccaagacaa tacctctgt 1620
 gggacacctg actacatcg cccagagatc ttgtctggtc agaaatacaa ccactctgt 1680
 gactggtgtt cttcgggtt tctcctttat gaaatgtga ttggtcagtc gccttccac 1740
 gggcaggatg aggaggagct cttccactcc atccgcatttgg acaatccctt ttacccacgg 1800
 tggctggaga aggaagcaaa ggaccttctg gtgaagctct tcgtgcgaga acctgagaag 1860
 aggctggcg tgaggggaga catcccccag caccctttgt ttccggagat caactggag 1920
 gaacttgaac ggaaggagat tgacccaccc ttccggccga aagtgaaatc accatttgac 1980
 tgcagcaatt tcgacaaaaga attcttaaac gagaagcccc ggctgtcatt tgccgacaga 2040
 gcactgatca acagcatgaa ccagaatatg ttccaggaact ttcccttcat gaaccccccgg 2100
 atggagcggc tgatatccctg a 2121

5

10

15

<210> 120
 <211> 1779
 <212> DNA
 <213> Homo sapiens

20

<300>
 <302> PKC zeta
 <310> NM2744

25

<400> 120
 atgcccagca ggaccgaccc caagatggaa gggagcggcg gccgcgtccg cctcaaggcg 60
 cattacgggg gggacatctt catcaccagc gtggacgccc ccacgcaccc cgaggagctc 120
 tgtgaggaag tgagagacat gtgtcgctg caccagcagc acccgcgtc ac cctcaagtgg 180
 gtggacagcg aagggtgaccc ttgcacggtg tcctcccaga tggagctgg agaggcttc 240
 cgcctggccc gtcagtgcag ggatgaaggc ctcatttc atgttttccc gaggccct 300
 gagcagcctg gcctgccatg tccggagaa gacaaatcta tctaccgcgg gggagccaga 360
 agatggagga agctgtaccc tgccaaacggc cacccttcc aagccaagcg cttaaacagg 420
 agagcgtact gcggtcagtg cagcgagagg atatggggcc tcgcaggcaggc aggctacagg 480
 tgcataact gcaaaactgtc ggtccataag cgctgcccacg gcctcgccc gctgacactgc 540
 aggaagcata tggattctgt catgccttcc caagagcctc cagtagacga caagaacgag 600
 gacccggacc ttcccttccga ggagacatg ggaattgtttt acatccctc atcccgaaag 660
 catgacagca ttaaagacga ctggggac cttaaaggccag ttatcgatgg gatggatgg 720
 atcaaaatct ctcagggct tgggctgcag gactttgacc taatcagaatg catcgccgc 780
 gggagctacg ccaaggttct cctgggtcgg ttgaagaaga atgaccaaatttacgc 840
 aaagtggta agaaagagct ggtgcatgat gacgaggata ttgactgggt acagacagag 900
 aagcacgtgt ttgagcaggc atccagcaac cccttccctgg tcggattaca ctcctcgccc 960
 cagacgacaa gtcgggtt cctggtcatt gagtacgtca acggcgggaa cctgatgttc 1020
 cacatgcaga ggcagaggaa gtcctctgag gagcacgcca gttctacgc ggccgagatc 1080
 tgcatcgccc tcaaacttccgc acacggagg gggatcatct acagggaccc gaagctggac 1140
 aacgtccctcc tggatgcggc cgggcacatc aagtcacag actacggcat gtgcaaggaa 1200
 ggcctggccc ctgggtgacac aacgacact ttctgcggaa ccccgaaatata catcgcccc 1260
 gaaatctgc ggggagagga gtacgggttc agcgtggact ggtgggcgt gggagtcctc 1320
 atgttgaga tggatggccgg ggcgtccccc ttgcacatca tcaccgacaa cccggacatg 1380
 aacacagagg actacctttt ccaagtgtac ctggagaagc ccacccggat ccccccgttc 1440
 ctgtccgtca aagcctccca tggataaaaa ggattttaa ataaggaccc caaagagagg 1500
 ctggctgcc ggcacagac tggatttct gacatcaagt cccacgcgtt cttccgcagc 1560
 atagactggg acttgcgtga gaagaagcag gcgcctccctt cattccagcc acagatcaca 1620
 gacgactacg gtctggacaa ctttgacaca cagttcacca gcgcggccgt gcagctgacc 1680
 ccagacgatg aggatgccc aagaggatc gaccaggtagt agttcgaagg ctttgagtat 1740
 atcaacccat tattgctgtc caccgaggag tcgggtgtga 1779

40

45

50

55

60

65

DE 101 00 586 C 1

<210> 121
<211> 576
<212> DNA
<213> Homo sapiens
S
<300>
<302> VEGF
<310> NM003376

10 <400> 121
atgaacttc tgctgtcttg ggtgcattgg agccttgcct tgctgctcta cctccaccat 60
gccaagtgg tcccaggctgc acccatggca gaaggaggag ggcagaatca tcacaagg 120
gtgaagttca tggatgtcta tcagcgac tactgccat caatcgagac cctggggac 180
15 atctccagg agtaccctga tgagatcgag tacatctca agccatctg tgtggccctg 240
atcgatgct ggggctgctg caatgacgag ggcctggagt gtgtgccac tgaggagtcc 300
aacatcacca tgcagattat gcggatcaa cctcacaag gccagcacat aggagagatg 360
agcttcctac agcacaacaa atgtaatgc agaccaaaga aagatagac aagacaagaa 420
aatccctgtg ggccttgcctc agagcggaga aagcattgt ttgtacaaga tccgcagacg 480
20 tgtaaatgtt cctgcacaaa cacagactcg cgttgcagg cgagggcagct tgagttaaac 540
gaacgtactt gcagatgtga caagccgagg cggta 576

<210> 122
25 <211> 624
<212> DNA
<213> Homo sapiens
<300>
30 <302> VEGF B
<310> NM003377

<400> 122
atgagccctc tgctccggcc cctgctgctc gcccactcc tgcagctggc ccccgccccag 60
35 gccccctgtct cccagcctga tgcccttgc caccagagga aagtgggtgc atggatagat 120
gtgtatactc ggcttacccctg ccagccccgg gaggtgggtgg tgcccttgc tggggagctc 180
atggcaccgg tggccaaaca getgggtccc agctgcgtga ctgtgcagcg ctgtgggtggc 240
tgctgcctg acgatggccct ggagtgtgtg cccactgggc agcacaagt cggatgcag 300
atccatcata tccggtaccc gaggcgtcag ctggggggaga tgcccttggaa agaacacagc 360
40 cagtgtaat gcagacctaa aaaaaaggac agtgtgtga tgccagacag ggctgcccact 420
ccccaccacc gtccccagcc cgggttctgtt cggggctggg actctgcctt cggagcaccc 480
tccccagctg acatcaccctt tcccactcca gccccaggcc cctctgcctt cgcgtgcaccc 540
agcaccacca ggcgcctgac ccccgacccct ggcgcggccct ctggcgcacgc cgcagttcc 600
tccgttgcctt aaaaaaaaaaaaaaaaatgggggggc tttag 624
45
<210> 123
<211> 1260
<212> DNA
50 <213> Homo sapiens
<300>
<302> VEGF C
<310> NM005429
55 <400> 123
atgcacttgc tgggcttctt ctctgtggcg tggttctctgc tcgcgcgtgc gctgtccccg 60
ggtcctcgcg aggcccccgc gccttcgagt cggactcga cctctcggac 120
60

65

DE 101 00 586 C 1

cgccggcccc	acgcggggcga	ggccacggct	tatgcaagca	aagatcttga	ggagcaggta	180
cggctgtgt	ccagtgtaga	tgaactcatg	actgtactct	acccagaata	ttggaaaatg	240
tacaagtgtc	agctaaggaa	aggaggctgg	caacataaca	gagaacaggc	caacctcaac	300
tcaaggacag	aagagactat	aaaatttgc	gcagcacatt	ataatacaga	gatcttggaa	360
agtattgtata	atgagtggag	aaagactcaa	tgcacccac	gggaggtgtg	tatagatgtg	420
gggaaaggagt	ttggagtgcg	gacaaacacc	ttcttaaac	ctccatgtgt	gtccgtctac	480
agatgtgggg	gttgcgtcaa	tagtgagggg	ctgcagtgca	tgaacaccag	cacgagctac	540
ctcagcaaga	cgttatttga	aattacagtg	cctctctctc	aaggccccaa	accagtaaca	600
atcagtttt	ccaaatcacac	ttccctgccga	tgcacgtcta	aactggatgt	ttacagacaa	660
gttcatttca	ttatttagacg	ttccctgccga	gcaacactac	cacagtgtca	ggcagcgaac	720
aagacctggc	ccaccaatta	catgtggaat	aatcacatct	gcagatgcct	ggctcaggaa	780
gatttatgt	tttcctcgga	tgctggagat	gactcaacag	atggatttcca	tgacatctgt	840
ggacccaaaca	aggagcttga	tgaagagacc	tgtcagttgt	tctcgaggg	ggggcttcgg	900
cctgccagct	gtggacccc	caaagaacta	gacagaaact	catgccagt	tgtctgtaaa	960
aacaaactct	tccccagcca	atgtggggcc	aaccggaaat	tttgtaaaaa	cacatgcagg	1020
tgtgtatgt	aaagaacctg	ccccagaaaat	caacccctaa	atccctggaaa	atgtgcctgt	1080
gaatgtacag	aaagtccaca	gaaatgttt	ttaaaaggaa	agaagttcca	ccacccaaaca	1140
tgcagctgtt	acagacggcc	atgtacgaac	cgccagaagg	cttgtgagcc	aggatttca	1200
tatagtgtaa	aagtgtgtcg	ttgtgtccct	tcatatttga	aaagaccacaa	aatgagctaa	1260

<210> 124
<211> 1074
<212> DNA
<213> *Homo sapiens*

<300>
<302> VEGF D
<310> AJ000185

<400>	124					
atattcaaaa	tgtacagaga	gtgggttagtg	gtgaatgtt	tcatgatgtt	gtacgtccag	60
ctgggtcagg	gttcgcgtaa	tgaacatgg	ccagtgaagc	gatcatctca	gtccacatg	120
gaacgatctg	aacagcgat	cagggtctgt	tctagtttg	aggaactact	tcgaattact	180
cactctgagg	actggaaagt	gtggagatgc	aggctgaggc	tcaaaagttt	taccagtatg	240
gactctcgct	cagcatccca	tcggtccact	aggtttgcgg	caactttcta	tgacattgaa	300
acaataaaag	ttatagatga	agaatggcaa	agaactcagt	gcagccctag	agaaaacgtgc	360
gtggagggtgg	ccagtgagct	ggggaaaggt	accaacacat	tcttcaagcc	cccttgttg	420
aacgttccc	gatgtgttgg	ctgttgcatt	gaagagagcc	ttatctgtat	gaacaccagc	480
acctcgtaa	tttccaaaca	gctctttgag	atatcagtgc	ctttgacatc	agtacactgaa	540
tttagtgcctg	ttaaagtgtc	caatcatata	ggttgttaatg	gcttgccaaac	agccccccgc	600
catccatact	caattatcag	aagatccatc	cagatccctg	aagaagatcg	ctgtttccat	660
tccaagaaac	tctgttctat	tgacatgtt	tggatagca	acaaatgtta	atgtgttttg	720
caggaggaaa	atccacttgc	tggAACAGAA	gaccactctc	atctccaggaa	accagctctc	780
tgtggccac	acatgatgtt	tgacgaagat	cgttcgaggt	gtgtctgtaa	aacaccatgt	840
cccaaaagatc	taatccagca	ccccaaaaac	tgcagttgt	ttgatgtgca	agaaaagtctg	900
gagacctgt	gccagaagca	caagctattt	cacccagaca	cctgcagctg	tgaggacaga	960
tggcccttcc	ataccagacc	atgtcaagt	ggcaaaacag	catgtgcaaa	gcattgccgc	1020
tttccaaagg	agaaaagggc	tggccaggggg	ccccacagcc	gaaagaatcc	ttga	1074

<210> 125
<211> 1314
<212> DNA
<213> *Homo sapiens*

<300> .

DE 101 00 586 C 1

<302> E2F
<310> M96577

5 <400> 125
atggccttgg ccggggccccc tgccccggc ccatgcgcgc cggcgctgga ggcctgctc 60
ggggccggcg cgctcgccgt gtcgactcc tcgcagatcg tcatcatctc cgccgcgcag 120
gacgcacgcg ccccgccggc tcccaccggc ccccgccgc cgccgcggc cccctgcgac 180
cctgacctgc tgctcttcgc cacaccgcag gccccccggc ccacacccag tgccgcgg 240
cccgccctcg gcgcgcggc ggtgaagcgg aggctggacc tggaaactgta ccattcgtac 300
ctggccgaga gcagtggggc agctcgccggc agaggccgc atccaggaaa aggtgtgaaa 360
tccccgggg agaagtcacg ctatgagacc tcactgaatc tgaccaccaa ggccttcctg 420
gagctgtga gccactcgcc tgacgggtgc gtgcacctga actgggtctgc cgaggtgctg 480
aagggtcaga agccgcgcatt ctatgacate accaactgtcc ttgagggcat ccagctcatt 540
15 gccaagaagt ccaagaacca catccagtgg ctgggcgcgc acaccacagt gggcgtcg 600
ggacggcttg aggggttgac ccaggacetc cgacagctgc aggagagcga gcagcagctg 660
gaccacctga tgaatatctg tactacgcag ctgcgcctgc tctccgagga cactgacagc 720
cagcgctgg cctacgtgac gtgtcaggac cttagtagca ttgcagaccc tgcaagcag 780
atggttatgg tgatcaaagc ccctcctgag acccagctcc aagccgtgga ctcttcggag 840
20 aactttcaga tccctttaa gagcaaacaa ggcccgtcg atgttttcgt gtcgcctgag 900
gagaccgtag gtgggatcg ccctggaaag accccatccc aggagggtcac ttctgaggag 960
gagaacaggg ccactgactc tgccaccata gtgtcaccac caccatcatc tccccctca 1020
tccctccacca cagatcccag ccagtcctca ctcaagctgg agcaagaacc gctgttgc 1080
25 cggatggca gcctgcgggc tccctggac gaggaccgc tgccccctgt ggtggcggcc 1140
gactcgctcc tggagcatgt gggggaggac ttctccggcc tccctccctga ggagttcata 1200
agccttccc caccacca ggcctcgac taccacttcg gcctcgagga gggcgaggcc 1260
atcagagacc tttcgactg tgactttggg gacccatccc ccctggattt ctga 1314

30 <210> 126
<211> 166
<212> DNA
<213> Human papillomavirus

35 <300>
<302> EBER-1
<310> J02078

40 <400> 126
ggacctacgc tgccctagag gttttgtcg ggaggagacg tttgtggctg tagccacccg 60
tcccggtac aagtcccggt tggtggggac ggtgtctgtg tttgtcttc cagactctgc 120
tttctgcgtt ctteggtaa gtaccagctg gtggccgca tttttt 166

45 <210> 127
<211> 172
<212> DNA
<213> Hepatitis C virus

50 <300>
<302> EBER-2
<310> J02078

55 <400> 127
ggacagccgt tgccctagtg gtttcggaca caccgccaac gtcagtgcg gtgttaccga 60
cccgaggta agtcccggtt gaggagaaga gaggctccc gcctagagca tttgcaagtc 120
aggattctct aatccctctg ggagaagggt attcggcttg tccgctattt tt 172

60

65

DE 101 00 586 C 1

<210> 128			
<211> 651			
<212> DNA			
<213> Hepatitis C virus			5
<300>			
<302> NS2			
<310> AJ238799			
 			10
<400> 128			
atggaccggg agatggcagc atcggtcgga ggcgcgggtt tcgttaggtct gatactttt 60			
accttgtcac cgcaactataa gctgttcctc gcttaggtca tatgggtgtt acaatatttt 120			
atcaccaggc cggaggcaca cttgcagaatg tggatcccccc ccctcaacgt tcggggggggc 180			
cgcgtatccc tcataccctc caccgtcgat atccacccag agctaattt taccatcacc 240			
aaaatcttgc tcgcccatact cggtccactc atgggtgtcc aggctgttat aaccaaagt 300			
ccgtacttcg tgcgcgcaca cgggcttatt cgtgcatttca tgctgggtcg gaaggttgct 360			
gggggttcat atgtccaaat ggctctcatg aagtggccg cactgacagg tacgtacgtt 420			
tatgaccatc tcacccactc gggggactgg gccacacgg gcctacgaga ctttgcgggt 480			
gcagttgagc cggcgtctt ctctgatatg gagaccaagg ttatcacctt qggggcagac 540			
accgcggcgt gtggggacat catcttggc ctgcccgtt cggccggcag ggggagggag 600			
atacatctgg gaccggcaga cggccttggaa gggcagggtt ggcgacttctt c 651			
 			15
<210> 129			
<211> 161			
<212> DNA			
<213> Hepatitis C virus			
 			25
<300>			
<302> NS4A			
<310> AJ238799			
 			30
<400> 129			
gcacctgggt gctggtaggc ggagtcctag cagctctggc cgcgtattgc ctgacaacag 60			
gcagcgtgtt cattgtggc aggatcatct tggccggaaa gccggccatc attcccgaca 120			
gggaagtctt ttaccgggag ttcgatgaga tggaaagagt 161			
 			35
<210> 130			
<211> 783			
<212> DNA			
<213> Hepatitis C virus			
 			40
<300>			
<302> NS4B			
<310> AJ238799			
 			45
<400> 130			
gcctcacacc tcccttacat cgaacaggaa atgcagctcg ccgaacaatt caaacagaag 60			
gcaatcggtt tgctgcacac agccaccaag caagcggagg ctgctgtcc cgtgggtggaa 120			
tccaaatattt tagcaggctt gtccactctg cttggcaacc cccgcataatc atactgtat 180			
atacaatattt tagcaggctt gtccactctg cttggcaacc cccgcataatc atactgtat 240			
gcattcacac cctctatcac cagccgcctc accacccaac atacccttctt gtttaacatc 300			
ctggggggat ggggtggcgc ccaacttgct cttcccgatcg ctgcttctgc tttcgtaggc 360			
gccggcatcg ctggagcggc tggatggcagc ataggccttgg gaaagggtgt tggatattt 420			
ttggcagggtt atggagcagg ggtggcaggc ggcgtcgatgg ctttaaggat catgacggc 480			
 			50
<210> 130			
<211> 783			
<212> DNA			
<213> Hepatitis C virus			
 			55
<300>			
<302> NS4B			
<310> AJ238799			
 			60
<400> 130			
gcctcacacc tcccttacat cgaacaggaa atgcagctcg ccgaacaatt caaacagaag 60			
gcaatcggtt tgctgcacac agccaccaag caagcggagg ctgctgtcc cgtgggtggaa 120			
tccaaatattt tagcaggctt gtccactctg cttggcaacc cccgcataatc atactgtat 180			
atacaatattt tagcaggctt gtccactctg cttggcaacc cccgcataatc atactgtat 240			
gcattcacac cctctatcac cagccgcctc accacccaac atacccttctt gtttaacatc 300			
ctggggggat ggggtggcgc ccaacttgct cttcccgatcg ctgcttctgc tttcgtaggc 360			
gccggcatcg ctggagcggc tggatggcagc ataggccttgg gaaagggtgt tggatattt 420			
ttggcagggtt atggagcagg ggtggcaggc ggcgtcgatgg ctttaaggat catgacggc 480			
 			65

DE 101 00 586 C 1

gagatgccct ccaccgagga cctggtaac ctactccctg ctatccttc ccctggcgcc 540
 ctatcgctg gggtcgtgtg cgcagcgata ctgcgtcgcc acgtggccc aggggagggg 600
 gctgtcagt ggatgaacct gctgatagcg ttgcgttcgc gggtaacca cgctcccccc 660
 acgactatg tgcctgagag cgacgctgca gcacgtgtca ctcagatctt ctctagtc 720
 accatca tc agctgctgaa gaggcttcac cagtggatca acgaggactg ctccacgcca 780
 tgc 783

5 <210> 131
 <211> 1341
 <212> DNA
 <213> Hepatitis C virus

10 <300>
 <302> NS5A
 <310> AJ238799

15 <400> 131
 20 tccggctcg ggctaagaga tgtttggat tggatatgca cggtgttgc tgatttcaag 60
 acctggctcc agtccaagct cctgcgcga ttgcggggag tccccttctt ctcatgtcaa 120
 cgtgggtaca agggagtctg gcggggcgcac ggcatcatgc aaaccacctg cccatgtgga 180
 gcacagatca cggacatgtt gaaaaacggt tccatgagga tcgtgggccc tagacctgt 240
 agtaaacatgtt ggcatttgcac attcccccatt aacgcgttaca ccacgggccc ctgcacgccc 300
 25 tccccggcgc caaatattt tagggcgctg tggcggttgc ctgctgagga gtacgtggag 360
 gttacgcggg tggggattt ccactacgtg acgggcatttgc ccaactgacaa cgtaaaagtgc 420
 cctgtcagg ttccccccccc cgaatcttc acagaagtgg atgggggtgcg gttgcacagg 480
 ttagctccatgtt cttccatggg agatggggcgg gaacatcacc cgcgtggagt cagaaaataa ggttagtaatt 540
 30 caatacctgg ttgggttaca gtccttgc gggccggaa cggacgttgc agtgcctact 600
 tccatgttca ccgacccctc ccacatttgc gggggacgg ctaagctgt gctggccagg 660
 ggtatcccc cttccatttgc cagcttgc cttccatgc gtagccagg tgcgttgc ttccttgaag 720
 gcaacatgttca ctaccgttca tgactccccg gacgcttgc tcatcgaggc caacctctgt 780
 tggcgccagg agatggggcgg gaacatcacc cgcgtggagt cagaaaataa ggttagtaatt 840
 35 ttggacttctt tcgagccgtt ccaagcgagg gaggatgaga gggaaagtatc cgttccggc 900
 gagatcctgc ggagggtccag gaaatcccc ctagcttgc ctagccatgc ccatatggc acggccggat 960
 tacaacccctc cactgtttaga gtccttgc gacccggact acgtccctcc agtggtaac 1020
 ggggttccat tggcccttcg caaggccccctt ctagatccac ctccacggag gaagaggacg 1080
 gtttctgtt cagaatcttac cgtgtttctt gcttggcg agctcgccac aaagaccttc 1140
 40 ggcacgtccg aatcgcttgc cgtcgacacgc ggcacggcaaa cggcccttcc tgaccagccc 1200
 tccacgttgc gggacgggg atccgacgtt gaggctgtact cctccatgtcc ccccttgag 1260
 gggggacgggg gggatccccg ttcacgttgc gggtcttgc ctaccgttcaag cgaggaggtt 1320
 agtggaggacg tcgttgc c 1341

45 <210> 132
 <211> 1772
 <212> DNA
 <213> Hepatitis C virus

50 <300>
 <302> NS5B
 <310> AJ238799

55 <400> 132
 tcgtatgttcc acacatggac aggcccttgc atcacgttgc ggcgttgc gggaaaccaag 60
 ctgccttgc acatgttgc gggccatca atgcacttgc caacttttgc ttccgttcc accaacttgcg 120
 acatcttcgca ggcacggccctt ggcggcagaag aaggttgcaccc ttgcacgttgc gcaagggttgc 180
 gacgaccactt accggggacgt gtcacggag atgcacggca accggccatcc accgttac 240

DE 101 00 586 C 1

aaacttctat ccgtggagga agcctgtaag ctgacgcccc cacattcgc cagatctaaa 300
 tttggctatg gggcaaaggaa cgccggaaac ctatccagca aggccgttaa ccacatccgc 360
 tccgtgtgga aggacttgc ggaagacact gagacaccaa ttgacaccac catcatggca 420
 aaaaatgagg ttttctgcgt ccaaccagag aagggggggcc gcaagccgc tcgccttatac 480
 gtattcccag atttgggggt tcgtgtgtc gagaaaaatgg cccttacga tgtggctcc 540
 accctccctc aggccgtat gggctttca tacggattcc aatactctcc tggacagcgg 600
 gtcgagttcc tggtaatgc ctggaaagcg aagaatgcc ctatggctt cgcatatgac 660
 acccgctgtt tgactcaac ggtcactgag aatgacatcc gtgttgagga gtcaatctac 720
 caatgtgtg acttggcccc cgaagccaga cagggcataa ggtcgctcac agagcggctt 780
 tacatgggg gccccctgac taattctaaa gggcagaact gggctatcg ccgggtccgc 840
 gcgagccgtg tactgacgac cagctgcgt aataccctca catgttactt gaaggccgt 900
 gccggctgtc gagctgcgaa gtcacccggc tgacatgc tggatgcgg agacacctt 960
 gtcgttatct gtgaaagcgc ggggacccaa gggacgagg cgagccctacg ggccttacg 1020
 gaggctatga cttagactc tgccccccct ggggacccgc ccaaccaga atacgactt 1080
 gagttgataa catcatgctc ctccaaatgtg tcagtcgc acgtatgc tggccaaaagg 1140
 gtgtactatc tcacccgtga cccccaccacc cccctgcgc gggctgcgt ggagacagct 1200
 agacacactc cagtcaattc ctggcttaggc aacatcatca tggatgcgc caccttgtgg 1260
 gcaaggatga tcctgtatgac tcatttcttcc tccatcttc tagctcagga acaactt 1320
 aaagccctag attgtcagat ctacggggcc tggacttcca ttgagccact tgacccatct 1380
 cagatcattc aacgacttca tggccttagc gcattttcac tccatagitta ctctccagg 1440
 gagatcaata gggtggttc atgcctcagg aaacttgggg taccggccctt gcgagtctgg 1500
 agacatcggg ccagaagtgt cccgcgttgc ctactgtccc agggggggggag ggctgcccact 1560
 tgtggcaagt accttctcaa ctggggacta aggaccaagc tcaaactcac tccaatccc 1620
 gtcgctccc agttggattt atccagctgg ttctgtgtc gttacagcgg gggagacata 1680
 tatacagcc tgcgtgtgc ccgacccccc tggatcatgt ggtgcctact cctactttct 1740
 gtaggggttag gcatctatct actccccaac cg 1772

<210> 133
 <211> 1892
 <212> DNA
 <213> Hepatitis C virus

<300>
 <302> NS3
 <310> AJ238799

<400> 133

cgcctattac ggcctactcc caacagacgc gaggcctact tggctgcata atcaactagcc 60
 tcacaggccg ggacaggaac caggtcgagg gggaggtcca agtggctcc accgcaacac 120
 aatcttcctt ggcgcacctc gtcaatggcg tggatggac tggatcatcat ggtggccgt 180
 caaagaccct tggccggccaa aaggcccaa tcaaccataat gtacaccaat gtggaccagg 240
 acctcgtcggt ctggcaagcg cccccccggg cggccgttgc gacaccatgc acctgcggca 300
 gtcggacact ttacttggtc acgaggcatg cggatgtcat tccgggtgcgc cggccggcc 360
 acagcagggg gggctactcc tccccccaggc cggctcccta tggatggc tttccggcc 420
 gtccactgtc tggcccttcg gggcactgtc tggatgtcat tccgggtgcgc gtgtgcaccc 480
 gagggttgc gaaggccgttgc gactttgtac cggccgttgc tatggaaacc actatgcgg 540
 ccccggttgc cggccgttgc tggccgttgc gacaccatgc cggccggcc 600
 atctacacgc ccctactgtt gggccaaaga gcaactaagg gccggctgcg tatcagcccc 660
 aagggtataa ggtgttgc tggatggc cggccgttgc cacccttaggt ttcggggcgt 720
 atatgtctaa ggcacatgtt atccacccata acatcagaac cggggtaagg accatcacca 780
 cggggccccc catcacgtac tccacccatgt gcaagtttgc tggccgttgc ggttgcctg 840
 gggggcccta tgacatcata atatgtatgt agtgcactc aactgactcg accactatcc 900
 tggccatcgcc cacagtccgt gaccaagcgg agacggctgg agcgcgactc gtgcgtctg 960
 ccacccgtac ccgttccgggaa tgggttgcaccgc tgccacatcc aaacatcgag gaggtggctc 1020
 tggccacac tggagaaatc ccctttatgt gcaagccat ccccatcgag accatcaagg 1080
 gggggaggca cccatccatgttca agaagaaatg tgatgagctc gccgcgaagc 1140

60

65

DE 101 00 586 C 1

DE 101 00 586 C 1

atacactgct gccagggtccg aaaacactgt gagtggtgcc gggccctcat ctgcccgcac 420
 gagaagccca gcgcgccttc gaagggaaaga accgcttgc gccaactcaga aacagtggtc 480
 tga 483

5

<210> 136
 <211> 1071
 <212> DNA
 <213> Homo sapiens

10

<300>
 <302> GD3 synthase
 <310> NM003034

15

<400> 136
 atgagccccct gccccggggc ccggcgacaa acgtccagag gggccatggc tgtactggcg 60
 tggaaagtcc cggcgaccccg gctgccatg ggagccagtg ccctctgtgt cgtggtcctc 120
 tgttggctct acatcttccc cgtctaccgg ctgccccaaacg agaaaagagat cgtgcagggg 180
 gtgctgcaac agggcacggc gtggaggagg aaccagacccg cggccagagc gttcaggaaa 240
 caaatggaaag actgctgca cccctgccccat ctctttgcta tgactaaaaat gaattccccc 300
 atggggaaaga gcatgtggta tgacggggag ttttataact cattcacccat tgacaattca 360
 acttactctc ttccccaca ggcaacccca ttccagctgc cattgaagaa atgcgcggtg 420
 gtggggaaatg gtgggattct gaagaagagt ggctgtggcc gtcaaataaaat tgaagcaa 480
 ttgtcatgc gatgcaatct cccctctttg tcaagtgaat acactaaagga tttttttttt 540
 aaaagtcaagt tagtgcacgc taatcccgac ataattcgcc aaagggtttca gaaccttctg 600
 tggcccgaaa agacatttgt ggacaacatg aaaaatctata accacagtttta catctacatg 660
 cctgcctttt ctatgaagac aggaacacagag ccatttttgc gggtttatttt tacactgtca 720
 gatgttggtg ccaatcaaacc agtgcgtttt gccaacccca actttctgcg tagcattgga 780
 aagttctgga aaagttagagg aatccatgcc aagcgcctgt ccacaggact tttttttttt 840
 agcgcagctc tgggtctctg tgaagaggtg gccatctatg gcttctggcc cttctctgtg 900
 aatatgcatg agcagcccat cagccaccac tactatgaca acgtcttacc cttttttttt 960
 ttccatgcca tggcccgagga atttctccaa ctctggatc ttccataaaaat cggtgcaactg 1020
 agaatgcacgc tggacccatg tgaagatacc tcactccacg ccacttcctaa g 1071

25

<210> 137
 <211> 744
 <212> DNA
 <213> Homo sapiens

40

<300>
 <302> FGF14
 <310> NM004115

45

<400> 137
 atggccgcgg ccatcgctag cggcttgcattt cgccagaacg ggcaggcgccgg ggagcagcac 60
 tgggaccggc cgtctgccag caggaggcg agcagccca gcaagaacccg cgggtctgc 120
 aacggcaacc tggatgatcttccaaa gtgcgcattt tcggcctcaa gaagcgcagg 180
 ttgcggcgcc aagatccccca gctcaagggt atagtgcacca gtttatattt caggcaaggc 240
 tactactgc aaatgcaccc ccatggatcttgcattttt ccaaggatga cagcaactaat 300
 tctacactct tcaacactcat accagtggaa ctacgttttgc ttgcatttca gggagtgaaa 360
 acagggttgtt atatagccat gaatggagaa gtttacccat accccatcaga acttttttacc 420
 cctgaatgca agttttaaaga atctgtttttt gaaaattttt atgtatctt ctcattccatg 480
 ttgtacagac aacaggaatc tggtagagcc tggtttttgg gattaaataa ggaaggggcaa 540
 gctatgaaag ggaacagagt aaagaaaaacc aaaccagcag ctcattttctt acccaagcca 600
 ttggaaatgg ccattgtaccg agaaccatct ttgcatttttgc ttggggaaac ggtcccgaaag 660
 cctggggatgca cggcaagttaa aagcacaatgtt gtcattttttttt gggccatggaggcc 720

55

65

gtcaacaaga gtaagacaac atag

744

5 <210> 138
 <211> 1503
 <212> DNA
 <213> Human immunodeficiency virus

 10 <300>
 <302> gag (HIV)
 <310> NC001802

 <400> 138
 15 atgggtgcga gagcgtcagt attaagcggg ggagaattag atcgatggg aaaaattcg 60
 ttaaggccag gggaaagaa aaaatataaa ttaaaacata tagtatggc aagcagggag 120
 ctagaacat tcgcagttaa tcctggctg ttagaaacat cagaaggctg tagacaata 180
 ctggacagc tacaaccatc cttcagaca ggatcagaag aacttagatc attatataat 240
 acatgatcaa ccctctattt tgtcatcaa aggatagaga taaaagacac caaggaagct 300
 20 ttagacaaga tagaggaaga gcaaaacaaa agtaagaaaa aagcacagca agcagcagct 360
 gacacaggac acagaaatca ggtcaggccaa aattacccta tagtgcagaa catccagggg 420
 caaatggatc atcaggccat atcacctaga actttaatg catgggtaaa agtagtagaa 480
 gagaaggctt tcagcccaga agtgataccc atgttttcag cattatcaga aggagccacc 540
 25 ccacaaggat taaacaccat gctaaacaca gtggggggac atcaagcagc catgcaaatg 600
 ttaaaagaga ccatcaatga ggaagctgca gaatgggata gagtgcattc agtgcatgca 660
 gggcttattt caccaggcca gatgagagaa ccaaggggaa gtgacatagc aggaactact 720
 agtacccttc aggaacaaat aggtggatg acaaataatc cacctatccc agtaggagaa 780
 30 atttataaaa gatggataat cctgggatta aataaaatag taagaatgtg tagccctacc 840
 agcattctgg acataagaca aggaccaaag gaacccttta gagactatgt agaccgggtc 900
 tataaaactc taagagccga gcaagcttca caggaggtaa aaaattggat gacagaaacc 960
 ttgttgtcc aaaatgcgaa cccagattgt aagactattt taaaagcatt gggaccagcg 1020
 gctacactag aagaatgtat gacagcatgt cagggagtag gaggaccgg ccataaggca 1080
 agagtttgg ctgaagcaat gagccaagta acaaatttcg ctaccataat gatgcagaga 1140
 35 ggcattttt ggaaccaaag aaagatgtt aagtgtttca attgtggca agaaggcacc 1200
 acaggcagaa attgcaggcc cccatggaaa aagggctgtt ggaatgtgg aaaggaagga 1260
 caccaaatga aagattgtac tgagagacag gctaattttt tagggaaatg ctggccctcc 1320
 tacaaggaa ggccaggaa ttttcttcag agcagaccag agccaacagc cccaccagaa 1380
 gagagttca ggtctgggt agagacaaca actccccctc agaagcagga gccgatagac 1440
 40 aaggaactgt atcccttaac ttccctcagg tcactctttg gcaacgaccc ctcgtcacaa 1500
 taa 1503

<210> 139
 <211> 1101
 <212> DNA
 <213> Human immunodeficiency virus

 45 <300>
 <302> TARBP2
 <310> NM004178

 <400> 139
 atgagtgaag aggagcaagg ctccggcaact accacgggt gcgggctgcc tagtataagag 60
 caaatgctgg cccccaaccc aggcaagacc ccgatcagcc ttctgcagga gtatgggacc 120
 55 agaataggaa agacgctgt gtacgacctt ctcaaagccg agggccaagc ccaccagcct 180
 aatttcacct tccgggtcac cggtggcgac accagctgca ctggtcaggg ccccaagcaag 240
 aaggcagcca agcacaaggc agctgagggtc gcctctaaac acctcaaaagg ggggagcatg 300
 ctggagccgg ccctggagga cagcaggcttcttttccccc tagactcttc actgccttag 360

60

65

DE 101 00 586 C 1

gacattcegg ttttactgc tgcagcagct gctaccccaag ttccatctgt agtcctaacc 420			
aggagcccccc ccatggact gcagccccct gtctccctc agcagtctga gtcaaaaaaa 480			
gttgggtctc tgcaggagct ggtgggtcag aaaggctggc gggtggccga gtacacagtg 540			
accaggagt ctggggccagc ccacccaaa gaattcacca tgacctgtcg agtggagcgt 600			
ttcattgaga ttgggagtgg cacttccaaa aaattggcaa agcgaatgc ggcggccaaa 660			
atgctgttc gagtgccacac ggtgcctctg gatgcccggg atggcaatga ggtggagcct 720			
gatgtatggacc acttctccat tgggtgggc ttccgcctgg atggctctcg aaaccggggc 780			
ccagggtgca cctgggattc tctacgaaat tcagtaggag agaagatccct gtcctccgc 840			
agttgtcccc tgggctccct ggggtgcctg gcccctgcct gctgccgtgt cctcaagtgag 900			
ctctctgagg agcaggcctt tacacgtcagc tacctggata ttgaggagct gagectgagt 960			
ggactctgcc agtgcctggt ggaactgtcc acccagccgg ccactgtgtg tcatggctet 1020			
gcaaccacca gggaggcagc ccgtggtag gctgcccggc gtgcctgca gtacactcaag 1080			
atcatggcag gcagcaagt a 1101			
15			
<210> 140			
<211> 219			
<212> DNA			
<213> Human immunodeficiency virus			20
<300>			
<302> TAT (HIV)			
<310> U44023			
25			
<400> 140			
atggagccag tagatcctag cctagagccc tggaaagcatc caggaagtca gcctaagact 60			
gcttgtacca cttgttatgg taaagagtgt tgctttcatt gccaagttt tttcataaca 120			
aaaggcttag gcatctccta tggcaggaag aagcggagac agcgaacgaa aactcctcaa 180			
ggtcatcaga ctaatcaagt ttctctatca aagcagtaa 219			30
35			
<210> 141			
<211> 21			
<212> RNA			
<213> Künstliche Sequenz			
40			
<220>			
<223> Beschreibung der künstlichen Sequenz: anti-GFP			
<400> 141			
ccacaugaag cagcacgacu u			21
45			
<210> 142			
<211> 27			
<212> RNA			
<213> Künstliche Sequenz			
50			
<220>			
<223> Beschreibung der künstlichen Sequenz: anti-GFP; 3`-Überhänge			
<400> 142			
gaccacaaug gaagcagcac gacuuucu			27
55			

Literatur

Bass, B. L., 2000. Double-stranded RNA as a template for gene silencing. *Cell* 101, 235–238.

Bosher, J. M. and Labouesse, M., 2000. RNA interference: genetic Wand and genetic watchdog. *Nature Cell Biology* 2, E31–E36.

Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A., 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. *Gene* 252, 95–105.

Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A., and Dixon, J. E., 2000. Use of doublestranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. *Proc.Natl.Acad.Sci.USA* 97, 6499–6503.

Ding, S. W., 2000. RNA silencing. *Curr. Opin. Biotechnol.* 11, 152–156.

DE 101 00 586 C 1

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C., 1998. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 391, 806–811.

Fire, A., 1999. RNA-triggered genesilencing. *Trends Genet.* 15, 358–363.

Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H., 1986. Improved freeenergy parameters for prediction of RNA duplex stability. *Proc. Natl. Acad. Sci. USA* 83, 9373–9377.

Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* 404, 293–296.

Limmer, S., Hofmann, H.-P., Ött, G., and Sprinzl, M., 1993. The 3'-terminal end (NCCA) of tRNA determines the structure and stability of the aminoacyl acceptor stem. *Proc. Natl. Acad. Sci. USA* 90, 6199–6202.

Montgomery, M. K. and Fire, A., 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and cosuppression. *Trends Genet.* 14, 255–258.

Montgomery, M. K., Xu, S., and Fire, A., 1998. RNA as a target of double-stranded RNA-mediated genetic interference in *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. USA* 95, 15502–15507.

Ui-Tei, K., Zenno, S., Miyata, Y., and Saigo, K., 2000. Sensitive assay of RNA interference in *Drosophila* and Chinese hamster cultured cells using firefly luciferase gene as target. *FEBS Lett.* 479, 79–82.

Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P., 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. *Cell* 101, 25–33.

Patentansprüche

1. Verfahren zur Hemmung der Expression eines Zielgens in einer Zelle umfassend die folgenden Schritte:
Einführen mindestens eines Oligoribonukleotids (dsRNA I) in einer zur Hemmung der Expression des Zielgens ausreichenden Menge,
wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, und wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist,
und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

2. Verfahren nach Anspruch 1, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.

3. Verfahren nach einem der vorhergehenden Ansprüche, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweisen.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei zumindest ein weiteres, vorzugsweise entsprechend dem Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche ausgebildetes, Oligoribonukleotid (dsRNA II) in die Zelle eingeführt wird,
wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur des Oligoribonukleotids (dsRNA I) komplementär zu einem ersten Bereich (B1) des Zielgens ist,
und wobei ein Strang (S2) oder zumindest ein Abschnitt des Strangs (S2) der doppelsträngigen Struktur des weiteren Oligoribonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das weitere Oligoribonukleotid (dsRNA II) eine doppelstängige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist.

7. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Oligoribonukleotid (dsRNA I) und/oder das weitere Oligoribonukleotid (dsRNA II) eine doppelsträngige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.

8. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinandergrenzen.

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle vor dem Einführen des/der Oligoribonukleotids/e (dsRNA I, dsRNA II) mit Interferon behandelt wird.

11. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird/werden.

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls aufweist.

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

15. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.

16. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

17. Verfahren nach Anspruch 16, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

18. Verfahren nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

DE 101 00 586 C 1

19. Verfahren nach einem der vorhergehenden Ansprüche, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

20. Verfahren nach einem der vorhergehenden Ansprüche, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Strände stabilisiert wird.

21. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.

23. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

24. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Purinanaloge gebildet wird.

25. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch Azabenzolcinehen gebildet wird.

26. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloge gebildet wird.

27. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

28. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

29. Verfahren nach einem der vorhergehenden Ansprüche, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt wird.

30. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben wird/werden.

31. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

32. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

33. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

34. Verfahren nach einem der vorhergehenden Ansprüche, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist/sind.

35. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

36. Verwendung eines Oligoribonukleotids (dsRNA I) zur Hemmung der Expression eines Zielgens in einer Zelle, wobei das Oligoribonukleotid (dsRNA I) eine doppelsträngige aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zum Zielgen ist, und wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist.

37. Verwendung nach Anspruch 36, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.

38. Verwendung nach einem der Ansprüche 36 oder 37, wobei beide Enden (E1, E2) ungepaarte Nukleotide aufweist.

39. Verwendung nach einem der Ansprüche 36 bis 38, wobei das Ende (E1) das 3'-Ende eines Strangs der doppelsträngigen Struktur ist.

40. Verwendung nach einem der Ansprüche 36 bis 39, wobei zumindest ein weiteres, vorzugsweise entsprechend dem Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche ausgebildetes, Oligoribonukleotid (dsRNA II) in die Zelle eingeführt wird, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur des Oligonukleotids komplementär zu einem ersten Bereich (B1) des Zielgens ist, und wobei ein Strang (S2) oder zumindest ein Abschnitt des Strangs (S2) der doppelsträngigen Struktur des weiteren Oligonukleotids (dsRNA II) komplementär zu einem zweiten Bereich (B2) des Zielgens ist.

41. Verwendung nach einem der Ansprüche 36 bis 40, wobei das weitere Oligoribonukleotid eine doppelstängige aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist.

42. Verwendung nach einem der Ansprüche 36 bis 40, wobei das Oligoribonukleotid und/oder das weitere Oligoribonukleotid eine doppelstängige aus weniger als 25 aufeinanderfolgenden Nukleotidpaaren gebildete Struktur aufweist/en.

43. Verwendung nach einem der Ansprüche 36 bis 42, wobei der erste (B1) und der zweite Bereich (B2) abschnittsweise überlappen oder aneinandergrenzen.

44. Verwendung nach einem der Ansprüche 36 bis 43, wobei der erste (B1) und der zweite Bereich (B2) voneinander beabstandet sind.

45. Verwendung nach einem der Ansprüche 36 bis 44, wobei die Zelle vor dem Einführen des/der Oligoribonukleotids/e mit Interferon behandelt wird.

46. Verwendung nach einem der Ansprüche 36 bis 45, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen wird/werden.

47. Verwendung nach einem der Ansprüche 36 bis 46, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in

DE 101 00 586 C 1

virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden.

48. Verwendung nach einem der Ansprüche 36, bis 47, wobei das Zielgen eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls aufweist.

5 49. Verwendung nach einem der Ansprüche 36 bis 48, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

10 50. Verwendung nach einem der Ansprüche 36 bis 49, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.

51. Verwendung nach einem der Ansprüche 36 bis 50, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

15 52. Verwendung nach Anspruch 51, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

53. Verwendung nach Anspruch 52, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus oder Viroid ist.

54. Verwendung nach einem der Ansprüche 36 bis 53, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

15 55. Verwendung nach einem der Ansprüche 36 bis 54, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert wird.

56. Verwendung nach einem der Ansprüche 36 bis 55, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswechselwirkungen, oder durch Metall-Ionenkoordination gebildet wird.

20 57. Verwendung nach einem der Ansprüche 36 bis 56, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden (E1, E2) gebildet ist.

58. Verwendung nach einem der Ansprüche 36 bis 57, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

25 59. Verwendung nach einem der Ansprüche 36 bis 58, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist.

60. Verwendung nach einem der Ansprüche 36 bis 59, wobei die chemische Verknüpfung durch Azabenzoleinheiten gebildet ist.

61. Verwendung nach einem der Ansprüche 36 bis 60, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

30 62. Verwendung nach einem der Ansprüche 36 bis 61, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen.

63. Verwendung nach einem der Ansprüche 36 bis 62, wobei die chemische Verknüpfung durch in der Nähe der Enden des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet wird.

35 64. Verwendung nach einem der Ansprüche 36 bis 63, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen gebildet ist.

65. Verwendung nach einem der Ansprüche 36 bis 64, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.

40 66. Verwendung nach einem der Ansprüche 36 bis 65, wobei das Hüllprotein vom Polyomavirus abgeleitet ist.

67. Verwendung nach einem der Ansprüche 36 bis 66, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

68. Verwendung nach einem der Ansprüche 36 bis 67, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist.

45 69. Verwendung nach einem der Ansprüche 36 bis 68, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

70. Verwendung nach einem der Ansprüche 36 bis 67, wobei die Zelle eine Vertebratenzelle oder eine menschliche Zelle ist.

50 71. Oligoribonukleotid (dsRNA I) mit einer doppelsträngigen aus höchstens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang (S1) oder zumindest ein Abschnitt des Strangs (S1) der doppelsträngigen Struktur komplementär zu einem Zielgen ist, wobei zumindest ein Ende (E1) des Oligoribonukleotids (dsRNA I) einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist, und wobei die Sequenz des Zielgens eine der Sequenzen SQ001 bis SQ140 des Sequenzprotokolls ist.

55 72. Oligoribonukleotid nach Anspruch 71, wobei zumindest ein Ende (E1, E2) zumindest ein nicht nach Watson & Crick gepaartes Nukleotid aufweist.

73. Oligoribonukleotid nach einem der Ansprüche 71 und 72, wobei beide Enden (E1, E2) ungedpaarte Nukleotide aufweisen.

60 74. Oligoribonukleotid nach einem der Ansprüche 71 bis 73, wobei das Ende (E1) das 3'-Ende eines Strangs oder beider Stränge der doppelsträngigen Struktur ist.

75. Oligoribonukleotid nach einem der Ansprüche 71 bis 74, wobei das Zielgen aus der folgenden Gruppe ausgewählt ist: Onkogen, Cytokin-Gen, Id-Protein-Gen, Entwicklungsgen, Prionen.

65 76. Oligoribonukleotid nach einem der Ansprüche 71 bis 75, wobei das Zielgen in pathogenen Organismen, vorzugsweise in Plasmoidien, exprimiert wird.

77. Oligoribonukleotid nach einem der Ansprüche 71 bis 76, wobei das Zielgen Bestandteil eines Virus oder Viroids ist.

78. Oligoribonukleotid nach Anspruch 77, wobei das Virus ein humanpathogenes Virus oder Viroid ist.

79. Oligoribonukleotid nach Anspruch 17, wobei das Virus oder Viroid ein tier- oder pflanzenpathogenes Virus

DE 101 00 586 C 1

oder Viroid ist.

80. Oligoribonukleotid nach einem der Ansprüche 71 bis 79, wobei ungepaarte Nukleotide durch Nukleosidthiophosphate substituiert sind.

81. Oligoribonukleotid nach einem der Ansprüche 71 bis 80, wobei die doppelsträngige Struktur durch eine chemische Verknüpfung der beiden Stränge stabilisiert ist. 5

82. Oligoribonukleotid nach einem der Ansprüche 71 bis 81, wobei die chemische Verknüpfung durch eine kovalente oder ionische Bindung, eine Wasserstoffbrückenbindung, hydrophobe Wechselwirkungen, vorzugsweise van-der-Waals- oder Stapelungswchselwirkungen, oder durch Metall-Ionenkoordination gebildet ist.

83. Oligoribonukleotid nach einem der Ansprüche 71 bis 82, wobei die chemische Verknüpfung in der Nähe des einen oder in der Nähe der beiden Enden gebildet ist. 10

84. Oligoribonukleotid nach einem der Ansprüche 71 bis 83, wobei die chemische Verknüpfung mittels einer oder mehrerer Verbindungsgruppen gebildet wird, wobei die Verbindungsgruppen vorzugsweise Poly-(oxyphosphinicoxy-1,3-propandiol)- und/oder Polyethylenglycol-Ketten sind.

85. Oligoribonukleotid nach einem der Ansprüche 71 bis 84, wobei die chemische Verknüpfung durch Purinanaloga gebildet ist. 15

86. Oligoribonukleotid nach einem der Ansprüche 71 bis 85, wobei die chemische Verknüpfung durch Azabenzol-einheiten gebildet ist.

87. Oligoribonukleotid nach einem der Ansprüche 71 bis 86, wobei die chemische Verknüpfung durch anstelle von Nukleotiden benutzte verzweigte Nukleotidanaloga gebildet ist.

88. Oligoribonukleotid nach einem der Ansprüche 71 bis 87, wobei zur Herstellung der chemischen Verknüpfung mindestens eine der folgenden Gruppen benutzt wird: Methylenblau; bifunktionelle Gruppen, vorzugsweise Bis-(2-chlorethyl)-amin; N-acetyl-N'-(p-glyoxyl-benzoyl)-cystamin; 4-Thiouracil; Psoralen. 20

89. Oligoribonukleotid nach einem der Ansprüche 71 bis 88, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) des doppelsträngigen Bereichs angebrachte Thiophosphoryl-Gruppen gebildet ist.

90. Oligoribonukleotid nach einem der Ansprüche 71 bis 89, wobei die chemische Verknüpfung durch in der Nähe der Enden (E1, E2) befindliche Tripelhelix-Bindungen hergestellt ist. 25

91. Oligoribonukleotid nach einem der Ansprüche 71 bis 90, wobei die Oligoribonukleotid (dsRNA I, dsRNA II) an mindestens ein von einem Virus stammendes, davon abgeleitetes oder ein synthetisch hergestelltes virales Hüllprotein gebunden, damit assoziiert oder davon umgeben ist.

92. Oligoribonukleotid nach einem der Ansprüche 71 bis 91, wobei das Hüllprotein vom Polyomavirus abgeleitet ist. 30

93. Oligoribonukleotid nach einem der Ansprüche 71 bis 92, wobei das Hüllprotein das Virus-Protein 1 (VP1) und/ oder das Virus-Protein 2 (VP2) des Polyomavirus enthält.

94. Oligoribonukleotid nach einem der Ansprüche 71 bis 93, wobei bei Bildung eines Kapsids oder kapsidartigen Gebildes aus dem Hüllprotein die eine Seite zum Inneren des Kapsids oder kapsidartigen Gebildes gewandt ist. 35

95. Oligoribonukleotid nach einem der Ansprüche 71 bis 94, wobei die Oligoribonukleotid (dsRNA I, dsRNA II) zum primären oder prozessierten RNA-Transkript des Zielgens komplementär ist.

96. Oligoribonukleotid nach einem der Ansprüche 71 bis 95, wobei das/die Oligoribonukleotid/e (dsRNA I, dsRNA II) in micellare Strukturen, vorzugsweise in Liposomen, eingeschlossen ist.

97. Oligoribonukleotid nach einem der Ansprüche 71 bis 96, wobei das/die Oligoribonukleotid/e (dSRNA I, dsRNA II) in virale natürliche Kapside oder in auf chemischem oder enzymatischem Weg hergestellte künstliche Kapside oder davon abgeleitete Strukturen eingeschlossen wird/werden. 40

98. Kit umfassend

mindestens ein Oligoribonukleotid (dsRNA I) nach einem der vorhergehenden Ansprüche und
mindestens ein weiteres Oligoribonukleotid (dsRNA II) mit einer doppelsträngigen aus mindestens 49 aufeinanderfolgenden Nukleotidpaaren gebildeten Struktur, wobei ein Strang oder zumindest ein Abschnitt des Strangs der doppelsträngigen Struktur komplementär zum Zielgen ist,
und/oder
Interferon.

99. Kit nach Anspruch 98, wobei zumindest ein Ende (E1) des weiteren Oligoribonukleotids (dsRNA II) zumindest einen aus 1 bis 4 Nukleotiden gebildeten einzelsträngigen Abschnitt aufweist. 50

Hierzu 1 Seite(n) Zeichnungen

55

60

65

Fig. 1a

Fig. 1b

Fig. 1c

Fig. 2