16. Základní goniometrické rovnice a jejich aplikace

Úloha 1. Nejzákladnější goniometrické rovnice s "hezkými" výsledky:

(a)
$$\cos x = \frac{1}{2}$$

(d)
$$\cos x = 0$$

(g)
$$tg x = 1$$

(b)
$$\sin x = \frac{1}{2}$$

(e)
$$\sin x = -1$$

(h)
$$tg x = -\sqrt{3}$$

(c)
$$\sin x = -\frac{\sqrt{3}}{2}$$

(f)
$$\cos x = -\frac{\sqrt{2}}{2}$$

(i)
$$\cot x = \frac{\sqrt{3}}{2}$$

Úloha 2. Nejzákladnější goniometrické rovnice s ne tak hezkými výsledky:

(a)
$$\cos x = \frac{3}{5}$$

(b)
$$\sin x = -\sqrt{\frac{1}{3}}$$

(c)
$$tg x = \pi$$

Úloha 3. Rozličné (ale stále celkem "základní") goniometrické rovnice:

(a)
$$\cos 2x = 0$$

(e)
$$\left(\sin x - \frac{1}{2}\right)\left(\sin x - \frac{1}{3}\right)(\sin x - 2) = 0$$

(b)
$$\sin(x + \frac{7\pi}{6}) = -\frac{\sqrt{2}}{2}$$

$$(f) \cos x - \cos^3 x = 0$$

(c)
$$\sin \frac{1}{3}x = \frac{4}{5}$$

(g)
$$\left| \sin x + \frac{1}{2} \right| = \frac{1}{2}$$

(d)
$$\cos(-2x + \frac{\pi}{3}) = 1$$

(h)
$$3\cos^2 x + 4\cos x = 4$$

Úloha 4. Vymyslete goniometrickou rovnici tvaru $\sin(n\check{e}co) = n\check{e}co$ nebo $\cos(n\check{e}co) = n\check{e}co$, jejíž množinou řešení bude ta uvedená; u úloh s \star vezměte v potaz, že x v argumentu může něčím násobit, něco k němu přičítat...

(a)
$$\left\{ \frac{\pi}{3} + 2k\pi; \frac{2\pi}{3} + 2k\pi \right\}$$

(c)
$$\{3\pi + 2k\pi\}$$

$$\star$$
 (e) $\left\{ \frac{\pi}{2} + 4k\pi; \frac{3\pi}{2} + 4k\pi \right\}$

(b)
$$\left\{ \frac{2\pi}{3} + 2k\pi; \frac{4\pi}{3} + 2k\pi \right\}$$

$$\star$$
 (d) $\left\{ \frac{\pi}{4} + 2k\pi \right\}$

$$\star$$
 (f) $\left\{-\frac{\pi}{4} + k\pi; \frac{\pi}{12} + k\pi\right\}$

Úloha 5. Nalezněte všechna řešení rovnice na zadaném intervalu:

(a)
$$\cos x = 0$$
 na $\langle 0; 2\pi \rangle$

(f)
$$\cos x = \frac{1}{4} \text{ na } \langle 0; 2\pi \rangle$$

(k)
$$\sin 2x = \frac{1}{2} \text{ na } \langle 0; 2\pi \rangle$$

(b)
$$\cos x = 0$$
 na $\langle -\pi; \pi \rangle$

(g)
$$\sin x = \frac{3}{4} \text{ na } \langle 0; 2\pi \rangle$$

(l)
$$\cos \frac{x}{3} = -\frac{1}{2} \operatorname{na} \langle 0; 2\pi \rangle$$

(c)
$$\sin x = \frac{1}{2} \operatorname{na} \left\langle -\frac{\pi}{2}; \frac{\pi}{2} \right\rangle$$

(h)
$$\sin x = \frac{3}{4} \text{ na } \langle -\pi; \pi \rangle$$

(i) $\sin x = \frac{3}{4} \text{ na } \langle -2\pi; 0 \rangle$

(m)
$$\sin\left(x - \frac{2\pi}{3}\right) = 0$$
 na $\langle \pi; 2\pi \rangle$

(d)
$$\cos x = -\frac{\sqrt{2}}{2} \text{ na } \langle -\pi; 0 \rangle$$

(e) $\sin x = 1 \text{ na } \langle 0; 4\pi \rangle$

(j)
$$|\cos x| = \frac{\sqrt{3}}{2}$$
 na $\langle 0; 2\pi \rangle$

(n)
$$\sin(2x + \frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

na $\langle -\pi; \pi \rangle$

Úloha 6. Na pružině je zavěšeno závaží, které kmitá nahoru a dolů tak, že vzdálenost nejvyššího a nejnižšího bodu je $10 \,\mathrm{cm}$. Jeden celý kmit (z nejnižší pozice úplně nahoru + zpátky úplně dolů, tj. jedna perioda) trvá $1 \,\mathrm{s}$. V čase t=0 se závaží nacházelo přesně uprostřed a pohybovalo se směrem nahoru.

- (a) Uveďte předpis funkce, která udává závislost vertikální polohy závaží y na čase t; nechť výchozí (prostřední) poloze odpovídá hodnota y=0, nejvyšší y=5 a nejnižší y=-5.
- (b) Určete, kde (tj. y) se bude závaží nacházet v t = 0.75.
- (c) Určete, kde se bude závaží nacházet v $t = \frac{1}{2}$.
- (d) Do výšky y = 1 umístíme senzor, který zaznamenává, že se tam závaží objeví. V jaký čas se tam závaží objeví poprvé, podruhé a potřetí?

Úloha 7. Vzdálenost Země od Slunce v průběhu roku je dána přibližným vztahem $d = 1 - 0.01672\cos(0.0172(t - 4))$, kde t je čas od začátku roku v dnech a d je ona vzdálenost v astronomických jednotkách. Určete, kdy během roku je Země vzdálená $1.01\,\mathrm{AU}$ od Slunce.

* Úloha 8. Rozmyslete si, jak budou vypadat grafy následujících funkcí; výsledky si můžete ověřit např. v GeoGebře.

(a)
$$y = \cos(\arccos x)$$

(c)
$$y = \sin(\arcsin x)$$

(e)
$$y = \arccos(\sin x)$$

(g)
$$y = \cos(\arcsin x)$$

(b)
$$y = \arccos(\cos x)$$

(d)
$$y = \arcsin(\sin x)$$

(f)
$$y = \arcsin(\cos x)$$

(h)
$$y = \sin(\arccos x)$$

- 1. (a) $\left\{\pm\frac{\pi}{3} + 2k\pi\right\}$ (b) $\left\{\frac{\pi}{6} + 2k\pi; \frac{5\pi}{6} + 2k\pi\right\}$ (c) $\left\{\frac{4\pi}{3} + 2k\pi; \frac{5\pi}{3} + 2k\pi\right\}$ (d) $\left\{\frac{\pi}{2} + k\pi\right\}$ (e) $\left\{\frac{3\pi}{2} + 2k\pi\right\}$ (f) $\left\{\pm\frac{3\pi}{4} + 2k\pi\right\}$ (g) $\left\{\frac{\pi}{4} + k\pi\right\}$ (h) $\left\{\frac{2\pi}{3} + k\pi\right\}$ (i) $\left\{\frac{\pi}{3} + k\pi\right\}$
- **2.** (a) $\left\{\pm \arccos \frac{3}{5} + 2k\pi\right\}$ (b) $\left\{\arcsin \left(-\sqrt{\frac{1}{3}}\right) + 2k\pi; \pi \arcsin \left(-\sqrt{\frac{1}{3}}\right) + 2k\pi\right\}$ (c) $\left\{\arctan \pi + k\pi\right\}$
- 3. (a) $\left\{\frac{\pi}{4} + \frac{k\pi}{2}\right\}$ (b) $\left\{\frac{\pi}{12} + 2k\pi; \frac{7\pi}{12} + 2k\pi\right\}$ (c) $\left\{3(\arcsin\frac{4}{5} + 2k\pi); 3(\pi \arcsin\frac{4}{5} + 2k\pi)\right\}$ (d) $\left\{\frac{\pi}{6} + k\pi\right\}$ (e) $\left\{\frac{\pi}{6} + 2k\pi; \frac{5\pi}{6} + 2k\pi; \arcsin\frac{1}{3} + 2k\pi; \pi \arcsin\frac{1}{3} + 2k\pi\right\}$ (f) $\left\{\frac{k\pi}{2}\right\}$ (g) $\left\{k\pi; \frac{3\pi}{2} + 2k\pi\right\}$ (h) $\left\{\pm\arccos\frac{2}{3} + 2k\pi\right\}$
- **4.** (a) $\sin x = \frac{\sqrt{3}}{2}$ (b) $\cos x = -\frac{1}{2}$ (c) $\cos x = -1$ (d) $\cos(x + \frac{\pi}{4}) = 1$ (e) $\sin \frac{x}{2} = \frac{\sqrt{2}}{2}$ (f) $\cos(2x + \frac{\pi}{6}) = \frac{1}{2}$
- **5.** (a) $\left\{\frac{\pi}{2}; \frac{3\pi}{2}\right\}$ (b) $\left\{\pm\frac{\pi}{2}\right\}$ (c) $\left\{\frac{\pi}{6}\right\}$ (d) $\left\{-\frac{3\pi}{4}\right\}$ (e) $\left\{\frac{\pi}{2}; \frac{5\pi}{2}\right\}$ (f) $\left\{\arccos\frac{1}{4}; -\arccos\frac{1}{4} + 2\pi\right\}$ (g) $\left\{\arcsin\frac{3}{4}; \pi \arcsin\frac{3}{4}\right\}$ (h) $\left\{\arcsin\frac{3}{4}; \pi \arcsin\frac{3}{4}\right\}$ (i) $\left\{\arcsin\frac{3}{4} 2\pi; -\pi \arcsin\frac{3}{4}\right\}$ (j) $\left\{\frac{\pi}{6}; \frac{5\pi}{6}; \frac{7\pi}{6}; \frac{11\pi}{6}\right\}$ (k) $\left\{\frac{\pi}{12}; \frac{13\pi}{12}; \frac{17\pi}{12}\right\}$ (l) $\left\{2\pi\right\}$ (m) $\left\{\frac{5\pi}{3}\right\}$ (n) $\left\{-\pi; -\frac{3\pi}{4}; 0; \frac{\pi}{4}; \pi\right\}$
- **6.** (a) $y = 5\sin(2\pi t)$ (b) $5\sin\frac{3\pi}{2} = -5$, tj. úplně dole (c) $5\sin\frac{2\pi}{3} = \frac{5\sqrt{3}}{2}$ (d) poprvé $\frac{1}{2\pi}\arcsin\frac{1}{5} \doteq 0.032\,\mathrm{s}$, podruhé $\frac{1}{2\pi}(\pi \arcsin\frac{1}{5}) \doteq 0.468\,\mathrm{s}$, potřetí o 1 s později než poprvé, tj. cca $1.032\,\mathrm{s}$
- 7. cca 132. den a 240. den