This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Darren K. ROGERS, et al. Application No.: 09/888,977

AMENDMENTS TO THE CLAIMS

Please CANCEL claims 2, 8, 15, 19 and 22 without prejudice or disclaimer.

Please **AMEND** claims 1, 3-7, 9-14, 16-18, 20-21 and 23-27 as shown below.

Please ADD claims 28-29 as shown below.

This listing of claims as follows will replace all prior versions, and listings, of claims in the application:

- 1)1. (Currently Amended) In a A fuel cell comprising:
 - A) a polymer electrolyte membrane;
 - B) a fuel electrode or an anode;
 - C) an oxidation electrode or a cathode; and
- D) appropriate conductors for the supply of electrical current to an electrical load, the improvement comprising the use of a porous, coal-based, carbon foam as either or both of said anode and said cathode wherein at least one of said anode and said cathode comprises a coal-based carbon foam produced from particulate coal of a small diameter and exhibits a density in the range of about 0.1 g/cm³ to about 0.8 g/cm³, a thermal conductivity of below about 1 W/m/°K and a pore size below about 2000 μm.

2. (Cancelled)

- 3)3. (Currently Amended) The fuel cell of claim 21 wherein said small diameter is less than about 1 mm.
- 4)4. (Currently Amended) The fuel cell of claim 2 1 wherein said coal-based carbon foam has a compressive strength below about 6000 psi.
- 5)5. (Currently Amended) The fuel cell of claim 1 wherein said coal-based carbon foam is prepared from bituminous coal.

Darren K. ROGERS, et al. Application No.: 09/888,977

6)6. (Currently Amended) The fuel cell of claim [[4]] $\underline{5}$ wherein said bituminous coal has a swell index of between about 3 and about $\underline{5}$ $\underline{9}$.

7)7. (Currently Amended) The fuel cell of claim [[4]] 5 wherein said bituminous coal has a Gieseler plasticity value above about 500DDPM.

8. (Cancelled)

9)9. (Currently Amended) The fuel cell of claim $\frac{8}{1}$ wherein said coal-based carbon foam exhibits a pore size below about 100μ .

10)10. (Currently Amended) The fuel cell of claim 2 1 wherein said coal-based carbon foam has been graphitized at a temperature between about 1600° C and 26003000° C.

11)11. (Currently Amended) The fuel cell of claim 9 10 wherein said coal-based carbon foam has been graphitized at a temperature between about 1800°C and about 2200°C.

12)12. (Currently Amended) The fuel cell of claim 9 11 wherein said coal-based carbon foam has been graphitized at a temperature of about 2200°C.

 $\frac{13)13}{13}$. (Currently Amended) The fuel cell of claim $2 \frac{1}{1}$ wherein said coal-based carbon foam is prepared by a process comprising the steps of:

- A) comminuting coal to a small particle size to form a ground coal;
- B) placing said ground coal in a mold;
- heating said ground coal in said mold under a non-oxidizing atmosphere to a temperature of between about 300° C and about 700° C and soaking at this temperature for a period of from about 10 minutes to about 12 hours to form an electrode preform;
 - D) controllably cooling said electrode preform; and
- E) graphtizing said electrode preform at a temperature between about 1600°C and 24003000°C.

Darren K. ROGERS, et al. Application No.: 09/888,977

14)14. (Currently Amended) In an An electrical cell for the generation or storage of electrical power through an electrochemical reaction and comprising:

- A) an anode;
- B) a cathode; and
- appropriate conductors for the supply of electrical current to an electrical load,

the improvement comprising the use of a porous carbon foam as either or both of said anode and said cathode wherein at least one of said anode and said cathode comprises a coalbased carbon foam produced from particulate coal of a small diameter and exhibits a density in the range of about 0.1 g/cm³ to about 0.8 g/cm³, a thermal conductivity of below about 1 W/m/°K, and a pore size below about 2000 µm.

15. (Cancelled)

16)16. (Currently Amended) The electrical cell of claim 14 wherein said coal-based carbon foam is derived from a particulate coal having has a swell index of between about 3 and about 9.

17)17. (Currently Amended) The electrical cell of claim 15 16 wherein said particulate coal has a swell index is of about 4.

18)18. (Currently Amended) The electrical cell of claim 14 wherein said earbon foam is derived from a particulate coal having has a Gieseler plasticity value above about 500 DDPM.

19. (Cancelled)

20)20. (Currently Amended) The electrical cell of claim 18 14 wherein said small diameter is less than about 1 mm.

Reply to Office Action dated October 14, 2003

Darren K. ROGERS, et al. Application No.: 09/888,977

21)21. (Currently Amended) The electrical cell of claim 18 14 wherein said coal-based carbon foam has a compressive strength below about 6000 psi.

22. (Cancelled)

 $\frac{23)23}{14}$ (Currently Amended) The electrical cell of claim $\frac{21}{14}$ wherein said coal-based carbon foam exhibits a pore size below about $100\mu m$.

24)24. (Currently Amended) The electrical cell of claim 14 wherein said coal-based carbon foam has been graphitized at a temperature between about 1600°C and 26003000°C.

25)25. (Currently Amended) The electrical cell of claim 23 24 wherein said coal-based carbon foam has been graphitized at a temperature between about 1800°C and about 2200°C.

26)26. (Currently Amended) The electrical cell of claim 24 25 wherein said coal-based carbon foam has been graphitized at a temperature of about 2200°C.

27)27. (Currently Amended) The electrical cell of claim 14 wherein said carbon foam is prepared by a process comprising the steps of:

- F) comminuting coal to a small particle size to form a ground coal;
- G) placing said ground coal in a mold;
- H) heating said ground coal in said mold under a non-oxidizing atmosphere to a temperature of between about 300° C and about 700° C and soaking at this temperature for a period of from about 10 minutes to about 12 hours to form an electrode preform;
 - 1) controllably cooling said electrode preform; and
- 1) graphtizing said electrode preform at a temperature between about 1600°C and 24003000°C.
- 28. (New) A fuel cell comprising:

polymer electrolyte membrane;

Darren K. ROGERS, et al. Application No.: 09/888,977

an anode;

a cathode; and

appropriate conductors for the supply of electrical current to an electrical load, wherein at least one of said anode and said cathode comprises a coal-based carbon foam produced produced by the process comprising:.

comminuting coal to a small particle size to form a ground coal; placing said ground coal in a mold;

heating said ground coal in said mold under a non-oxidizing atmosphere to a temperature of between about 300° C and about 700° C and soaking at this temperature for a period of from about 10 minutes to about 12 hours to form an electrode preform;

controllably cooling said electrode preform; and

graphtizing said electrode preform at a temperature between about 1600°C and 24003000°C,

wherein said coal-based carbon foam exhibits a density in the range of about 0.1 g/cm^3 to about 0.8 g/cm^3 , a thermal conductivity of below about $1 \text{ W/m/}^\circ K$, and a pore size below about 2000 \mu m .

29. (New) An electrical cell for the generation or storage of electrical power through an electrochemical reaction comprising:

an anode;

a cathode; and

appropriate conductors for the supply of electrical current to an electrical load, wherein at least one of said anode and said cathode comprises a coal-based carbon foam produced by the process comprising:

comminuting coal to a small particle size to form a ground coal; placing said ground coal in a mold;

heating said ground coal in said mold under a non-oxidizing atmosphere to a temperature of between about 300° C and about 700° C and soaking at this temperature for a period of from about 10 minutes to about 12 hours to form an electrode preform;

controllably cooling said electrode preform; and

Darren K. ROGERS, et al. Application No.: 09/888,977

graphtizing said electrode preform at a temperature between about 1600° C and $2400\underline{3000}^{\circ}$ C;

wherein said carbon based foam exhibits a density in the range of about $0.1~\text{g/cm}^3$ to about $0.8~\text{g/cm}^3$, a thermal conductivity of below about 1~W/m/°K, and a pore size below about $2000~\mu\text{m}$.