Features and Polynomial Regression

Multivariate Linear Regression

Linear Regression with Multiple Variables

$$h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$$

 $h_{\theta}(x) = \theta_0 + \theta_1 \times frontage + \theta_2 \times depth$

Andrew Ng

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \underbrace{frontage}_{\times_1} + \theta_2 \times \underbrace{depth}_{\times_1}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \underbrace{frontage}_{X} + \theta_2 \times \underbrace{depth}_{X}$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \times \underbrace{frontage}_{X} + \theta_2 \times \underbrace{depth}_{X}$$

cland are

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\rightarrow \theta_0 + \theta_1 x + \theta_2 x^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 = \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$= \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$x_1 = (size)$$

$$x_2 = (size)^2$$

$$x_3 = (size)^3$$

Then, feature scaling is very important...

Choice of features

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

Choice of features

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$$

$$\rightarrow h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2\sqrt{(size)}$$

Choice of features

$$\rightarrow$$
 $h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2(size)^2$

$$h_{\theta}(x) = \theta_0 + \theta_1(size) + \theta_2 \sqrt{(size)}$$

An exercise

- Suppose you want to predict a house's price as a function of its size. Your model is
- $h(\theta_0) + \theta_1(size) + \theta_2\sqrt{size}$
- Suppose size ranges from 1 to 1000 (feet^22).
- You will implement this by fitting a model
- $\bullet \ h(\theta_0) = \theta_1 x_1 + \theta_2 x_2$
- Finally, suppose you want to use feature scaling (without mean normalization).

- Which of the following choices for x_1 and x_2 should you use?
- X1 = size, x2 = 32 \sqrt{size}
- X1 = 32(size) x2 = \sqrt{size}
- X1 = size/1000, x2 = \sqrt{size} /32
- X1 = size/32, x2 = \sqrt{size}