STAT5003

Week 3 : Density Estimation

Dr. Justin Wishart

Readings **and q** functions covered

- For the bias variance tradeoff see Section 2.2 James, Witten, Hastie, and Tibshirani (2013)
- **R** functions
 - dbinom dnorm (density functions)
 - rnorm (generate random values)
 - hist (Histogram)
 - density (nonparametric density estimation)
 - stats4::mle (Maximum Likelihood estimation)

Review on probability distribution functions

Discrete distributions

For any random variable X with a discrete distribution, there is a sample space Ω with finite number of possible values (outcomes) $x = \{x_1, x_2, ...\}$ and associated probabilities $\{p_1, p_2, ...\}$.

The point probabilities for each value of x are denoted f(x) and the cumulative distribution function denoted F(x) where

$$f(x) = P(X = x),$$
 $F(x) = P(X \le x)$

Properties:

- There is a *countable* number of possible values;
- $\sum_{i=1}^{\infty} p_i = 1$
- $\bullet \ p_i \geq 0$

Binomial distribution

$$f(x) = \{ \begin{pmatrix} n \\ x \end{pmatrix} p^{x} (1-p)^{n-x}, \quad x = 0, 1, 2, ..., n \\ 0, \quad \text{otherwise}$$

The $\binom{n}{x}$ are known as the binomial coefficients. The parameter p is the probability of success.

```
x <- 0:50
prob <- dbinom(x, size = 50, prob = 0.33)
# Base R graphics
plot(x, prob, type = "h")
dat <- data.frame(x = x, y = prob)
# ggplot2 version
ggplot(dat, aes(x = x, y = y, xend = x, yend = 0)) +
    geom_segment() + theme_minimal()</pre>
```


Continuous distributions

- A continuous random variable X is where the outcome can take an infinite (uncountable) number of possible values.
 - These values may be within a fixed or unbounded interval.
- For example, the height of male in cm may be within the range of [50, 300].

The point probabilities for each value of x is P(X = x) = 0 and the cumulative distribution function

$$F(x) = \int_{-\infty}^{x} f(t) dt = P(X \le x)$$

Properties:

- There are an infinite (uncountable) number of possible values;
- f(x) is called the density function
- $f(x) \ge 0$ (non-negative)
- $\int_{-\infty}^{\infty} f(x) dx = 1$ (unit measure)

Normal(Gaussian) distribution: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

- The most famous continuous distribution
- Fully specified by two parameters
 - μ the location parameter (mean)
 - $\circ \sigma$ the scale parameter (sd)
- Notation $X \sim N(\mu, \sigma)$,

Density estimation - Likelihoood approach

Density estimation

In exploratory data analysis, an estimate of the density function can be used

- to assess multimodality, skew, tail behaviour, etc.
- in decision making, classification, and summarizing Bayesian posteriors
- as a useful visualisation tool (a simple summary of a distribution)

Suppose random variables $X_1, X_2, ..., X_n$ have been observed and assumed to be sampled independently from the distribution with density f.

Goal: The estimation of the density function f.

Parametric density estimation

- The parametric approach to density estimation assumed a parametric model.
- That is, $X_1, X_2, \ldots, X_n \overset{i.i.d.}{\sim} f_\theta$ where θ is a parameter vector.
 - For example, $\theta = (\mu, \sigma)$ when $X \sim N(\mu, \sigma)$
- Typically the parameter θ is estimated using the method of maximum likelihood.
- Density function is then estimated as $f(x|\hat{\theta})$

Maximum likelihood the best value for the parameters is the one for which the probability of obtaining the observed samples is the largest.

What is a likelihood?

Simple example:

- Population has girl:boy ratio of 2:1 (100 girls for 50 boys)
- If I draw a sample of 50 people, what is the probability of picking 10 boys
- If I draw a sample of 50 people, and picked 10 boys, what is the likelihood that the girl:boy ratio is 2:1

Normal distribution example

- Consider a random variable $X \sim N(3.5, 0.2)$
- What is the probability that \mathbf{X} is between 3.5 and 4?
 - ∘ Compute the area under the density. $P(3.5 \le X \le 4) = \int_{3.5}^{4} f(t) dt$

```
mu = 3.2; sig = 0.5
pnorm(4, mean = mu, sd = sig) -
   pnorm(3.5, mean = mu, sd = sig)
```

[1] 0.2194538

```
# Or in one line
## diff(pnorm(c(3.5, 4), mean = mu, sd = sig))
```


Likelihood

- Consider a single value is observed from $X \sim N(\mu, 0.2)$, say x = 3.7
- Determine the likelihood of drawing this value. Flip the perspective $f(x|\theta) \rightarrow L(\theta|x)$

```
dnorm(3.7, mean = 3.5, sd = 0.2)

## [1] 1.209854

dnorm(3.7, mean = 3.6, sd = 0.2)

## [1] 1.760327

dnorm(3.7, mean = 3.7, sd = 0.2)

## [1] 1.994711

dnorm(3.7, mean = 3.8, sd = 0.2)

## [1] 1.760327
```


Maximum likelihood approach

• $f(x_1, x_2, ..., x_n | \theta)$ is the probability density of observing $x_1, x_2, ..., x_n$ given the parameter θ .

• Assuming independent and identically distributed variables $f(x_1, x_2, ..., x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$

Maximising the log-likelihood is often easier so it is common to maximise

$$L(\theta|x) = \prod_{i=1}^{n} f(x_i|\theta) \rightsquigarrow L(\theta|x) = \ln L(\theta|x) = \sum_{i=1}^{n} \ln f(x_i|\theta)$$

Density estimation - Non-parametric approach

Non-parametric density estimation

- Danger of misspecification with parametric approach
 - \circ If the assumed f_{θ} is incorrect.
 - Serious danger of inferential errors.
- Non-parametric approaches to density estimations
 - Assume little about the structure of f
 - \circ use *local information* to estimate f at a point x
- · Histograms are
 - one type of nonparametric density estimators
 - piecewise constant density estimators
 - o produced automatically by most software packages

Histograms

- Very simple visualization
- Sensitive to the number of bins chosen and bin width

• Preferable to have a smooth estimate and not have columns

Kernel functions

- A kernel is a special type of probability density function (PDF) having the properties.
 - ∘ non-negative $K(x) \ge 0$, symmetric K(-x) = K(x), unit measure $\int K(x) dx = 1$

Kernel density esimation

- Kernel density estimation is a non-parametric approach estimating densities
 - Knowledge of the structure of f is not required
- Essentially, at every data point, a kernel function is created with the point at its centre.
- The PDF is estimated by adding all of these kernel functions and dividing by the number of data to ensure that it satisfies
 - every possible value of the PDF is non-negative.
 - the definite integral of the PDF over its support set equals 1

Normal kernel density estimate

• E.g. Four sampled variables marked in red with Gaussian weights sum together to give the overall density estimate

Kernel density estimator (KDE)

• A simple one weights all points within a window h of x equally

$$\hat{f}(x) = \frac{1}{2nh} \sum_{i=1}^{n} 1_{\{|X_i - x| < h\}}$$

• More generally a univariate kernel density estimator has a general weight function (Kernel)

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

- K is a Kernel function
- h is a bandwidth parameter (possibly fixed or varying)
- Consider only h fixed for this course.

Tuning the Kernel density estimator (KDE)

- There are two main components for the KDE $\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K(\frac{X_i X}{h})$
 - The choice of K
 - o The choice of h
- The choice of Kernel is less important and generally gives similar results
- The choice of bandwidth is important and can vary the result greatly.
- Some standard kernels

Uniform
$$K(x) = \frac{1}{2} \mathbf{1}_{\{|x| \le 1\}}$$
 Gaussian
$$K(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$$
 Epanechnikov
$$K(x) = \frac{3}{4} (1 - x^2) \mathbf{1}_{\{|x| \le 1\}}$$

Different choices of Kernel function with same bandwidth

Computing density in **Q**

- Base **Q** there is density
 - density computes the KDE
 - Can wrap in plot, i.e. plot(density(x)), to visualize
 - Can inspect details in summary
- For plotting ggplot there is geom_density
 - Can specify the bandwidth with bw argument

Choosing the bandwidth

• The density estimator

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

- is a fixed-bandwidth kernel density estimator since h is constant.
- If h is too small, the density estimator will tend to assign probability density too locally near observed data
 - a wiggly estimated density function with many false modes.
- If h is too large, the density estimator will spread probability density contributions too diffusely
 - o smooths away important features of f

Choice of bandwidth

• Consider the distance from CBD variable again with three bandwidths

- A bias and variance trade-off.
 - A small bandwidth gives high variance
 - A large bandwidth gives high bias

Uses of the density estimate

- Compute probabilities: Consider the probability a property is between 8-10km of CBD
- Integrate the density function between 8 and 10 yields p = 0.13 13% chance of finding a property between 8-10km of CBD

Mean squared error, Bias and Variance

We can decompose the mean squared error (MSE) into the sum of three quantities: The variance, the squared bias and the variance of the error.

$$E(Y - \hat{f}(X))^{2} = V \operatorname{ar}(\hat{f}(X)) + \left[\operatorname{Bias}(\hat{f}(X))\right]^{2} + V \operatorname{ar}(\epsilon)$$

- Variance here denoting how much would $\hat{f}(x)$ change if we estimate using a different training set.
- Bias
 - Error introduced by approximating the data using a model.

Kernel density estimation type equivalent

$$V \operatorname{ar}(\hat{f}(x)) = O(\frac{1}{nh})$$

Bias(\hat{f}(x)) = O(h)

References

James, G., D. Witten, T. Hastie, et al. (2013). *An introduction to statistical learning*. Vol. 112. Springer.