Homework 1 Foundations of Computational Math 1 Fall 2017

Problem 1.1

This problem considers three basic vector norms: $\|.\|_1, \|.\|_2, \|.\|_{\infty}$.

- **1.1.a**. Prove that $||.||_1$ is a vector norm.
- **1.1.b.** Prove that $\|.\|_{\infty}$ is a vector norm.
- **1.1.c.** Consider $||.||_2$.
 - (i) Show that $\|.\|_2$ is definite.
 - (ii) Show that $\|.\|_2$ is homogeneous.
- (iii) Show that for $||.||_2$ the triangle inequality follows from the Cauchy inequality $|x^H y| \le ||x||_2 ||y||_2$.
- (iv) Assume you have two vectors x and y such that $||x||_2 = ||y||_2 = 1$ and $x^H y = |x^H y|$, prove the Cauchy inequality holds for x and y.
- (v) Assume you have two arbitrary vectors \tilde{x} and \tilde{y} . Show that there exists x and y that satisfy the conditions of part (iv) and $\tilde{x} = \alpha x$ and $\tilde{y} = \beta y$ where α and β are scalars.
- (vi) Show the Cauchy inequality holds for two arbitrary vectors \tilde{x} and \tilde{y} .

Problem 1.2

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function, i.e.,

$$F(\alpha x + \beta y) = \alpha F(x) + \beta F(y)$$

- .
- **1.2.a.** Suppose you are given a routine that returns F(x) given any $x \in \mathbb{R}^n$. How would you use this routine to determine a matrix $A \in \mathbb{R}^{m \times n}$ such that F(x) = Ax for all $x \in \mathbb{R}^n$?
- **1.2.b**. Show A is unique.

Problem 1.3

Let $y \in \mathbb{R}^m$ and ||y|| be any vector norm defined on \mathbb{R}^m . Let $x \in \mathbb{R}^n$ and A be an $m \times n$ matrix with m > n.

- **1.3.a.** Show that the function f(x) = ||Ax|| is a vector norm on \mathbb{R}^n if and only if A has full column rank, i.e., rank(A) = n.
- **1.3.b.** Suppose we choose f(x) from part (1.3.a) to be $f(x) = ||Ax||_2$. What condition on A guarantees that $f(x) = ||x||_2$ for any vector $x \in \mathbb{R}^n$?

Problem 1.4

Theorem 1. If V is a real vector space with a norm ||v|| that satisfies the parallelogram law

$$\forall x, \ y \in \mathcal{V}, \ \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$
 (1)

then the function

$$f(x,y) = \frac{1}{4}||x+y||^2 - \frac{1}{4}||x-y||^2$$

is an inner product on V and $f(x,x) = ||x||^2$.

This problem proves this theorem by a series of lemmas. Prove each of the following lemmas and then prove the theorem.

Lemma 2. $\forall x \in \mathcal{V}$

$$f(x,x) = ||x||^2$$

Lemma 3. $\forall x, y \in \mathcal{V} \ f(x,x)$ is definite and f(x,y) = f(y,x), i.e., (f is symmetric)

Lemma 4. The following two "cosine laws" hold $\forall x, y \in \mathcal{V}$:

$$2f(x,y) = \|x+y\|^2 - \|x\|^2 - \|y\|^2$$
(2)

$$2f(x,y) = -\|x - y\|^2 + \|x\|^2 + \|y\|^2$$
(3)

Lemma 5. $\forall x, y \in \mathcal{V}$:

$$|f(x,y)| \le ||x|| ||y|| \tag{4}$$

$$f(x,y) = \gamma ||x|| ||y||, \quad sign(\gamma) = sign(f(x,y)), \quad 0 \le |\gamma| \le 1$$
 (5)

Lemma 6. $\forall x, y, z \in \mathcal{V}$:

$$f(x+z,y) = f(x,y) + f(z,y)$$

Lemma 7. $\forall x, y \in \mathcal{V}, \alpha \in \mathbb{R}$

$$f(\alpha x, y) = \alpha f(x, y)$$

Problem 1.5

- **1.5.a.** Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$ be nonsingular matrices. Show $(AB)^{-1} = B^{-1}A^{-1}$.
- **1.5.b.** Suppose $A \in \mathbb{R}^{m \times n}$ with m > n and let $M \in \mathbb{R}^{n \times n}$ be a nonsingular square matrix. Show that $\mathcal{R}(A) = \mathcal{R}(AM)$ where $\mathcal{R}(\dot{)}$ denotes the range of a matrix.

Problem 1.6

Consider the matrix

$$L = \begin{pmatrix} \lambda_{11} & 0 & 0 & 0 \\ \lambda_{21} & \lambda_{22} & 0 & 0 \\ \lambda_{31} & \lambda_{32} & \lambda_{33} & 0 \\ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} \end{pmatrix}$$

Suppose that $\lambda_{11} \neq 0$, $\lambda_{33} \neq 0$, $\lambda_{44} \neq 0$ but $\lambda_{22} = 0$.

- **1.6.a**. Show that L is singular.
- **1.6.b.** Determine a basis for the nullspace $\mathcal{N}(L)$.

Problem 1.7

Suppose $A \in \mathbb{C}^{m \times n}$ and let the matrix B be any submatrix of A. Show that $||B||_p \leq ||A||_p$.

Problem 1.8

Suppose that $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ and let $E = uv^T$.

- **1.8.a.** Show that $||E||_F = ||E||_2 = ||u||_2 ||v||_2$.
- **1.8.b.** Show that $||E||_{\infty} = ||u||_{\infty} ||v||_{1}$.

Problem 1.9

Let $\mathcal{S}_1 \subset \mathbb{R}^n$ and $\mathcal{S}_2 \subset \mathbb{R}^n$ be two subspaces of \mathbb{R}^n .

- **1.9.a.** Suppose $x_1 \in \mathcal{S}_1$, $x_1 \notin \mathcal{S}_1 \cap \mathcal{S}_2$. $x_2 \in \mathcal{S}_2$, and $x_2 \notin \mathcal{S}_1 \cap \mathcal{S}_2$. Show that x_1 and x_2 are linearly independent.
- **1.9.b.** Suppose $x_1 \in \mathcal{S}_1$, $x_1 \notin \mathcal{S}_1 \cap \mathcal{S}_2$. $x_2 \in \mathcal{S}_2$, and $x_2 \notin \mathcal{S}_1 \cap \mathcal{S}_2$. Also, suppose that $x_3 \in \mathcal{S}_1 \cap \mathcal{S}_2$ and $x_3 \neq 0$, i.e., the intersection is not empty. Show that x_1 , x_2 and x_3 are linearly independent.

Problem 1.10

Suppose $A \in \mathbb{C}^{m \times n}$. Consider the matrix norm ||A|| induced by the two vector 1-norms $||x||_1$ and $||y||_1$ for $x \in \mathbb{C}^n$ and $y \in \mathbb{C}^m$ respectively,

$$||A|| = \max_{||x||_1=1} ||Ax||_1.$$

Is this induced norm the same as the matrix 1-norm defined by

$$||A||_1 = \max_{1 \le i \le n} ||Ae_i||_1?$$

If so prove it. If not give counterexample to disprove it.

Problem 1.11

Consider the definition of the matrix norm $||A|| = \max_{i,j} |\alpha_{i,j}|$ where $e_i^T A e_j = \alpha_{i,j}$.

- 1.11.a. Show that this defines a matrix norm.
- **1.11.b**. Show that the matrix norm is not consistent.