81. Dans C, les solutions de l'équation d'inconnue z définie par
$$(1-i)z^2 - (6-4i)z + 9 - 7i = 0$$
 sont :

1.
$$z_1 = 3 + 4i$$
; $z_2 = 1 + 2i$ 3. $z_1 = 3 + 2i$; $z_2 = 1$ 5. $z_1 = 3 + 2i$; $z_2 = 2 - i$
2. $z_1 = 3 + 2i$; $z_2 = 1 + 2i$; $z_3 = 1 - i$ (M. -92)

1.
$$z_1 = 3 + 4i$$
; $z_2 = 1 + 2i$ 3. $z_1 = 3 + 2i$; $z_2 = 1$ 5. $z_1 = 3 + 2i$, $z_2 = 2 - i$ 2. $z_1 = 2 + 3i$; $z_2 = 3i$ 4. $z_1 = 4 + 2i$; $z_2 = 1 - i$ (M. -92)

82. L'ensemble des points M images des complexes
$$z = x + iy$$
 tels que $|iz-i| = |2z-1-i|$ forme un cercle de centre C et de rayon

|
$$|z-i| = |2z-1-i|$$
 forme un cercle de centre C et de l'ayon
1. $C(\frac{1}{3}; -\frac{2}{3})$ et $r(\frac{\sqrt{2}}{3})$ 4. $((-\frac{1}{3}; \frac{2}{3}))$ et $r=\frac{\sqrt{3}}{3}$

2.
$$C(-\frac{1}{2}; \frac{2}{3})$$
 et $r = \frac{\sqrt{2}}{3}$
3. $C(-\frac{1}{3}; \frac{2}{3})$ et $r = \frac{\sqrt{2}}{3}$ www.ecoles-rdc.net (M.-

83. Soient
$$z_1 = x + iy$$
; $z_2 = x' + iy'$, les racines de l'équation complexe

$$z^2 - z(1 - \sqrt{2}) + 1 - \sqrt{2} - i(1 + \sqrt{2}) = 0$$
 sachant que $x < x'$; $x' - y + y$ vaut:

1. 3 2.
$$\sqrt{3}$$
 + 1 3. 2 + $\sqrt{2}$ 4. 1 5. $-\sqrt{2}$ (M. -92)

84. L'ensemble des images des nombres complexes z tels que le nombre
$$u = (1 - z)(1 - iz)$$
 soit complexe pur est :

1.
$$y = \frac{1 - 3x}{1 - x}$$

2. $y = \frac{1 - x}{2x - 1}$
3. $y = \frac{3}{1 - x}$
4. $y = \frac{2x - 1}{1 + x}$
5. $y = \frac{1 - x}{1 - 2x}$
(B. -93)

85. On considère les deux nombres complexes suivants
$$z_1 = -\sqrt{6} + i\sqrt{2}$$
 et $z_2 = 1 + i\sqrt{3}$. L'argument du nombre $u = z_1/z_2$

vaut: 1.
$$\frac{\pi}{17}$$
 2. $\frac{\pi}{9}$ 3. $\frac{\pi}{2}$ 4. $\frac{\pi}{3}$ 5. $\frac{\pi}{6}$ (M. – 93)

86. Soit dans C, l'équation
$$z^3 = 4\sqrt{2}$$
 (1 + i). Elle admet trois solutions z_1 ; z_2 et z_3 dont on donnera pour chacune d'elles le module et l'argument. L'expression $z_1 + z_2 + z_3$ égale à :

1. 0 2 1 3. 2 4. 3 5. 4 (B. -93)