IMPLEMENTASI VEKTOR & MATRIKS

TK13023
COMPUTATION II

KELAS B DAN C

DOSEN: LELY HIRYANTO

Review Nilai dan Vektor Eigen

Rumus Vektor Eigen untuk Matriks 2 × 2

 $(A - \lambda_i I)\mathbf{x} = 0$ untuk $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ dan λ_i adalah satu atau dua nilai eigen untuk matriks A

$$\begin{bmatrix} a_{11} - \lambda_i & a_{12} \\ a_{21} & a_{22} - \lambda_i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

dari hasil reduksi, baris pertama atau kedua selalu 0, dengan bentuk umum vektor eigen:

$$v_i = x_1 \begin{bmatrix} 1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ u_2 \end{bmatrix}$$
 untuk $x_1 = 1$, atau

$$v_i = x_2 \begin{bmatrix} u_1 \\ 1 \end{bmatrix} = \begin{bmatrix} u_1 \\ 1 \end{bmatrix}$$
 untuk $x_2 = 1$

Rumus Vektor Eigen untuk Matriks 2 × 2

Vektor eigen dari A untuk setiap lambda λ_i :

$$\begin{bmatrix} a_{11} - \lambda_i & a_{12} \\ a_{21} & a_{22} - \lambda_i \end{bmatrix} \begin{bmatrix} u_1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} (a_{11} - \lambda_i)u_1 + a_{12} \\ a_{21}u_1 + (a_{22} - \lambda_i) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Hasil eliminasi (reduksi) menghasilkan persamaan kedua 0, maka persamaan pertama digunakan untuk mencari variable u_1 :

$$(a_{11} - \lambda_i)u_1 + a_{12} = 0$$
 \implies $(a_{11} - \lambda_i)u_1 = -a_{12}$ \implies $u_1 = \frac{-a_{12}}{a_{11} - \lambda_i}$

maka

$$v_i = \begin{bmatrix} \frac{-a_{12}}{a_{11} - \lambda_i} \\ 1 \end{bmatrix}$$

Rumus Vektor Eigen untuk Matriks 2 × 2

Vektor eigen dari A untuk setiap lambda λ_i :

$$\begin{bmatrix} a_{11} - \lambda_i & a_{12} \\ a_{21} & a_{22} - \lambda_i \end{bmatrix} \begin{bmatrix} 1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} (a_{11} - \lambda_i) + a_{12}u_2 \\ a_{21} + (a_{22} - \lambda_i)u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Jika hasil eliminasi (reduksi) menghasilkan persamaan pertama 0, maka persamaan kedua digunakan untuk mencari variable u_1 :

$$a_{21} + (a_{22} - \lambda_i)u_2 = 0$$
 \Rightarrow $(a_{22} - \lambda_i)u_2 = -a_{21}$ \Rightarrow $u_1 = \frac{-a_{21}}{a_{22} - \lambda_i}$

maka

$$v_i = \begin{bmatrix} \frac{1}{-a_{21}} \\ \frac{1}{a_{22} - \lambda_i} \end{bmatrix}$$

Mencari Nilai Eigen di Excel – Goal Seek

Mencari Nilai Eigen di Excel – Goal Seek "latihansvd.xlsx"

18

19

Jika determinan tidak nol untuk nilai awal lambda = 0, maka nilai determinan tersebut digunakan untuk nilai lambda berikutnya untuk mencari nilai eigen kedua (terbesar); sebaliknya gunakan nilai awal > 0.

Rumus Vektor Eigen Matrix 3×3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Jika reduksi membuat baris pertama 0, dengan bentuk x_1 $\begin{vmatrix} 1 \\ u_2 \\ u_3 \end{vmatrix} = \begin{vmatrix} 1 \\ u_2 \\ u_3 \end{vmatrix}$ untuk $x_1 = 1$

Vektor eigen dari A untuk setiap lambda λ_i :

$$\begin{bmatrix} a_{22} - \lambda_i & a_{23} \\ a_{32} & a_{33} - \lambda_i \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = - \begin{bmatrix} a_{21} \\ a_{31} \end{bmatrix}$$

$$\begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = - \begin{bmatrix} a_{22} - \lambda_i & a_{23} \\ a_{32} & a_{33} - \lambda_i \end{bmatrix}^{-1} \begin{bmatrix} a_{21} \\ a_{31} \end{bmatrix}$$

Rumus Vektor Eigen Matrix 3×3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Dari hasil reduksi, jika baris kedua 0, dengan bentuk $x_2 \begin{vmatrix} u_1 \\ 1 \\ u_3 \end{vmatrix} = \begin{vmatrix} u_1 \\ 1 \\ u_3 \end{vmatrix}$ untuk $x_2 = 1$

Vektor eigen dari A untuk setiap lambda λ_i :

$$\begin{bmatrix} a_{11} - \lambda_i & a_{13} \\ a_{31} & a_{33} - \lambda_i \end{bmatrix} \begin{bmatrix} u_1 \\ u_3 \end{bmatrix} = - \begin{bmatrix} a_{12} \\ a_{32} \end{bmatrix}$$

$$\begin{bmatrix} u_1 \\ u_3 \end{bmatrix} = - \begin{bmatrix} a_{11} - \lambda_i & a_{13} \\ a_{31} & a_{33} - \lambda_i \end{bmatrix}^{-1} \begin{bmatrix} a_{13} \\ a_{33} \end{bmatrix}$$

Rumus Vektor Eigen Matrix 3×3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Dari hasil reduksi, jika baris ketiga 0, dengan bentuk $x_3 \begin{vmatrix} u_1 \\ u_2 \\ 1 \end{vmatrix} = \begin{vmatrix} u_1 \\ u_2 \\ 1 \end{vmatrix}$ untuk $x_3 = 1$

Vektor eigen dari A untuk setiap lambda λ_i :

$$\begin{bmatrix} a_{11} - \lambda_i & a_{12} \\ a_{21} & a_{22} - \lambda_i \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = - \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = - \begin{bmatrix} a_{11} - \lambda_i & a_{12} \\ a_{21} & a_{22} - \lambda_i \end{bmatrix}^{-1} \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

Cek excel 'latihansvd.xlsx' di sheet 'eigen' untuk perhitungan.

Singular Value Decomposition (SVD)

Implementasi Matriks dan Eigen

UNTAR untuk INDONESIA

SVD?

- Faktorisasi matriks A berukuran $m \times n$ ke tiga matriks
 - Matriks U $(m \times n)$, yaitu matriks orthogonal dari $A^T \times A$ atau disebut matrix of orthonormal eigenvectors dari A
 - Matriks S $(n \times n)$, yaitu matriks diagonal atau disebut *matrix of singular* values yang merupakan akar dari nilai eigen
 - Matriks V $(n \times n)$, matrix of orthonormal eigenvectors dari A.
- Berfungsi optimal untuk sparse data
- Umumnya digunakan untuk mereduksi dimensi matriks input ke dimensi ruang yang lebih kecil (ukuran matriks lebih kecil dengan jumlah variabel atau atribut yang lebih kecil).

Implementasi SVD

- Image Compression (Data Image)
 - Image berwarna berukuran $m \times n$ piksel memiliki 3 matriks warna: Red, Green, dan Blue
 - Satu image 3 matriks: matriks Red, Matriks Green, Matriks Blue
- Latent Semantic Analysis (Data Text)
 - Contoh: Latent Semantic Analysis (arti dari sebuah kalimat)
 - *m* terms
 - *n* kalimat
- Recommendation Systems (Data Text):
 - Contoh: rekomendasi film
 - *m* orang yang memberikan rekomendasi
 - *n* film

Tahapan SVD

Diketahui data A dalam bentuk matriks berukuran $m \times n$.

- 1. Hitung $A^T \times A$
- 2. Hitung semua nilai eigen dan vektor eigen dari dari matriks yang dihasilkan pada no. 1
- 3. Bentuk matriks V dari semua vektor eigen yang dihasilkan di no. 2 dan telah dinormalisasi (dibentuk menjadi unit vektor)
- 4. Bentuk matriks singular *S*, yaitu matriks diagonal dimana setiap diagonalnya adalah akar dari nilai eigen yang diperoleh di no. 2
- 5. Bentuk matriks $U = A \times V \times S^{-1}$
- 6. Rekonstruksi matriks: $A = U \times S \times V^T$

SVD untuk
$$A = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{4} & \mathbf{5} \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 3 & 4 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix}$$

Nilai Eigen: $|A^TA - \lambda I| = 0$

$$\begin{vmatrix} 25 - \lambda & 20 \\ 20 & 25 - \lambda \end{vmatrix} = \lambda^2 - 50\lambda + 225 = (\lambda - 5)(\lambda - 45) = 0$$

$$\lambda_1 = 5 \operatorname{dan} \lambda_2 = 45$$

SVD untuk $A = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Urutkan vektor eigen dari terbesar ke terkecil!

Vektor Eigen untuk $\lambda_1 = 45$

$$\begin{bmatrix} 25 - 45 & 20 \\ 20 & 25 - 45 \end{bmatrix} = \begin{bmatrix} -20 & 20 \\ 20 & -20 \end{bmatrix}$$

$$\begin{bmatrix} -20 & 20 \\ 20 & -20 \end{bmatrix} \xrightarrow{H_1(-\frac{1}{20}), H_{21(-20)}} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}; x_1 = x_2 \\ x_2 = x_2 \qquad \begin{bmatrix} 20 & 20 \\ 20 & 20 \end{bmatrix} \xrightarrow{H_1(\frac{1}{20}), H_{21(-20)}} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}; x_1 = -x_2$$

$$x_2 = 1$$
, maka $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$v_1 = \begin{bmatrix} \frac{-a_{12}}{a_{11} - \lambda_1} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{-20}{25 - 45} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Vektor Eigen untuk $\lambda_2 = 5$

$$\begin{bmatrix} 25-5 & 20 \\ 20 & 25-5 \end{bmatrix} = \begin{bmatrix} 20 & 20 \\ 20 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 20 & 20 \\ 20 & 20 \end{bmatrix} \xrightarrow{H_1(\frac{1}{20}), H_{21(-20)}} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}; x_1 = -x_2$$

$$x_2 = 1$$
, maka $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

$$v_2 = \begin{bmatrix} \frac{-a_{12}}{a_{11} - \lambda_2} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{-20}{25 - 5} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

SVD untuk $A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$

Normaliasi vektor eigen:

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, ||V_1|| = \sqrt{2}$$

$$\mathbf{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.707 \\ 0.707 \end{bmatrix}$$

$$v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, ||V_2|| = \sqrt{2}$$

$$v_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -0.707 \\ 0.707 \end{bmatrix}$$

$$V = \begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix}$$

SVD untuk
$$A = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{4} & \mathbf{5} \end{bmatrix}$$

Matriks Singular
$$S = \begin{bmatrix} \sqrt{45} & 0 \\ 0 & \sqrt{5} \end{bmatrix} = \begin{bmatrix} 6.708 & 0 \\ 0 & 2.236 \end{bmatrix}$$

Bentuk Matriks $U = A \times V \times S^{-1}$

$$S^{-1} = \begin{bmatrix} 0.149 & 0 \\ 0 & 0.447 \end{bmatrix}$$

$$U = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} 0.707 & -0.707 \\ 0.707 & 0.707 \end{bmatrix} \begin{bmatrix} 0.149 & 0 \\ 0 & 0.447 \end{bmatrix} = \begin{bmatrix} 0.316 & -0.949 \\ 0.949 & 0.316 \end{bmatrix}$$

SVD untuk
$$A = \begin{bmatrix} 3 & \mathbf{0} \\ \mathbf{4} & \mathbf{5} \end{bmatrix}$$

Rekonstruksi Matriks $A = U \times S \times V^T$

$$\begin{bmatrix} 0.316 & -0.949 \\ 0.949 & 0.316 \end{bmatrix} \begin{bmatrix} 6.708 & 0 \\ 0 & 2.236 \end{bmatrix} \begin{bmatrix} 0.707 & 0.707 \\ -0.707 & 0.707 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix} = A$$

Contoh SVD dalam Latent Semantic Analysis

Data frekuensi kata

Term	K1	K2	КЗ
Bahasa	1	1	0
Bali	0	0	1
Belajar	1	0	1
Budi	1	0	0
Indonesia	1	1	1
favourit	0	0	1
milik	0	1	0
Tempat	0	0	1
wisata	0	0	1

Matriks dari kata

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

SVD: Data ke matriks

Representasi Kata dalam Matriks

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Transpose Matriks A

$$A^{T} = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

SVD: Nilai Eigen

• Hitung $A^T A$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$

Dihitung dengan bantuan Excel ("svd.xlsx"): $\lambda_1 = 1.429$, $\lambda_2 = 3.857$, $\lambda_3 = 6.714$

SVD: Vektor Eigen

Dihitung dengan bantuan Excel ("svd.xlsx")

Urutkan SVD menurun: nilai eigen terbesar ke terkecil

$$\lambda_1 = 6.714, \quad \lambda_2 = 3.857, \quad \lambda_3 = 1.429$$
 Vector Eigen
$$\begin{pmatrix} 0.939 \\ 0.775 \\ 1 \end{pmatrix} \quad \begin{pmatrix} -0.693 \\ -0.450 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 10.750 \\ -14.320 \\ 1 \end{pmatrix}$$

Norm

$$\sqrt{0.939^2 + 0.775^2 + 1^2} \qquad 1.297 \qquad 17.934$$

Normalized Vector Eigen

ed
$$0.939/1.576 = 0.596$$
en 0.492
 0.635

= 1.576

$$\begin{pmatrix}
0.939/1.576 = 0.596 \\
0.492 \\
0.635
\end{pmatrix}
\begin{pmatrix}
-0.534 \\
-0.347 \\
0.771
\end{pmatrix}
\begin{pmatrix}
0.599 \\
-0.799 \\
0.056
\end{pmatrix}$$

Matriks V

0.596 -0.534 -0.799 0.492 -0.347 0.056

SVD: Matriks Singular dan U

Matriks
$$U = A \times V \times S^{-1} =$$

0.4198684	-0.448751	-0.1665444
0.24490045	0.39251339	0.04664723
0.23006404	-0.2719789	0.50146948
0.23006404	-0.2719789	0.50146948
0.66476885	-0.0562376	-0.1198971
0.24490045	0.39251339	0.04664723
0.18980435	-0.1767722	-0.6680138
0.24490045	0.39251339	0.04664723
0.24490045	0.39251339	0.04664723

SVD: Rekontruksi Matriks A

Matriks
$$A = U \times S \times V^T =$$

Matriks
$$A = U \times S \times V^T =$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Truncated SVD: Reduksi Dimensi

• k-Truncated SVD dari matriks A mempertahankan hanya $k \le n$ nilai singular (s_i) pertama dari matriks singular S dan k kolom pertama dari matriks U dan V.

$$A_k = \sum_{i=1}^k s_i u_i v_i^T \approx A$$

• Matriks A_k berisi nilai yang mendekati A.

Soal Latihan

Diketahui dataset hasil rating dari 7 users untuk 3 film yang mereka review ('datasvd.xlsx'). Hitunglah

- 1. (20 poin) Nilai Eigen dan Vektor Eigen
- 2. (20 poin) Matriks V
- 3. (20 poin) Matriks S
- 4. (20 poin) Matriks U
- 5. (20 poin) Rekontruksi matriks A menggunakan matriks V, S dan U

