\mathbf{L} KORESPONDENCYJNY KURS Z MATEMATYKI

PRACA KONTROLNA nr 1 - POZIOM PODSTAWOWY

- 1. W pierwszym naczyniu było a litrów p-procentowego kwasu siarkowego, w drugim natomiast b litrów q-procentowego kwasu siarkowego. Z każdego z naczyń odlano czwartą część objętości roztworu, a następnie roztwór odlany z drugiego naczynia wlano do pierwszego, a odlany z pierwszego wlano do drugiego naczynia. Okazało się, że po wymieszaniu stężenia roztworów w obu naczyniach były równe. Wyznacz stosunek stężeń wyjściowych roztworów.
- 2. Uprość następujące wyrażenie, określiwszy uprzednio jego dziedzinę:

$$\frac{1}{\sqrt[6]{x^3y^2} - \sqrt[6]{y^5}} \left(\sqrt[3]{x^2} - \frac{y}{\sqrt[3]{x}} \right) + \frac{1}{\sqrt{x} + \sqrt{y}} : \frac{\sqrt[3]{xy}}{x - y}$$

Oblicz wartość tego wyrażenia, przyjmując $x = 3 + 2\sqrt{2}$ i $y = 1 + \sqrt{2}$

- 3. Narysuj wykres funkcji $f(x)=(\sin x+\frac{1}{2}\cos x)^2+(\frac{1}{2}\sin x+\cos x)^2$. Wyznacz zbiór jej wartości i rozwiąż nierówność $f(x)\geqslant \frac{5}{4}$.
- 4. Niech $A = \{(x, y) \in \mathbb{R}^2 : |x| \le 2, |y| \le 2\}$ oraz $B = \{(x, y) \in \mathbb{R}^2 : |x y| \le |x| + 1\}.$ Zaznacz na płaszczyźnie zbiory $A \setminus B$ oraz $A \setminus (A \setminus B)$.
- 5. W kwadrat wpisano trójkat równoboczny w taki sposób, że jeden z jego wierzchołków jest w wierzchołku kwadratu, a dwa pozostałe leżą na przeciwległych bokach kwadratu. Wyznacz stosunek pola trójkata do pola kwadratu.
- 6. W ostrosłupie prawidłowym trójkatnym podstawa ma długość a, a krawędź boczna jest do niej nachylona pod katem α . Oblicz objętość i pole powierzchni bocznej bryły.

PRACA KONTROLNA nr 1 - POZIOM ROZSZERZONY

- 1. W pierwszym naczyniu było a litrów p-procentowego kwasu siarkowego, w drugim natomiast b litrów q-procentowego kwasu siarkowego. Z obu naczyń odlano równe objętości roztworów, a następnie roztwór odlany z drugiego naczynia wlano do pierwszego, a odlany z pierwszego wlano do drugiego naczynia. Okazało się, że po wymieszaniu stężenia roztworów w obu naczyniach były równe. Jakie ilości roztworów odlano z każdego z naczyń?
- 2. Uprość wyrażenie (dla tych x, y, dla których ma ono sens)

$$\left(\frac{1}{\sqrt[3]{x} - \sqrt[3]{y}} - \frac{3\sqrt[3]{xy}}{x - y} - \frac{\sqrt[3]{y} - \sqrt[3]{x}}{\sqrt[3]{x^2} + \sqrt[3]{xy} + \sqrt[3]{y^2}}\right) \cdot \frac{x - y}{4\sqrt[3]{xy}}.$$

Następnie oblicz jego wartość dla $x = 5\sqrt{2} - 7$ i $y = 5\sqrt{2} + 7$.

- 3. Narysuj wykres funkcji $f(x) = \sin^2 x + \sin x \cos x$. Wyznacz zbiór jej wartości i rozwiąż nierówność $f(x) \ge 1$.
- 4. Niech $A = \{(x,y) \in \mathbb{R}^2 : |x-1| + |y-1| \leq 3\}$ oraz $B = \{(x,y) \in \mathbb{R}^2 : |x-y| \leq |x+y|\}$. Zaznacz na płaszczyźnie zbiór $A \cap B$ i oblicz jego pole.
- 5. W romb ABCD o boku a i kącie ostrym α wpisano trójkąt APQ tak, że punkt P leży na boku BC a punkt Q na boku DC, przy czym |PC| = |DQ| = x. Dla jakiego x pole trójkąta jest najmniejsze?
- 6. W ostrosłupie prawidłowym trójkątnym ściana boczna jest nachylona do podstawy pod kątem α . Wyznacz kąt między ścianami bocznymi.

Rozwiązania (rękopis) zadań z wybranego poziomu prosimy nadsyłać do **28 września 2020r.** na adres:

Wydział Matematyki Politechnika Wrocławska Wybrzeże Wyspiańskiego 27 50-370 WROCŁAW.

Na kopercie prosimy <u>koniecznie</u> zaznaczyć wybrany poziom! (np. poziom podstawowy lub rozszerzony). Do rozwiązań należy dołączyć zaadresowaną do siebie kopertę zwrotną z naklejonym znaczkiem, odpowiednim do formatu listu. Polecamy stosowanie kopert formatu C5 (160x230mm) ze znaczkiem o wartości 3,30 zł. Na każdą większą kopertę należy nakleić droższy znaczek. Prace niespełniające podanych warunków nie będą poprawiane ani odsyłane.

Uwaga. Wysyłając nam rozwiązania zadań uczestnik Kursu udostępnia Politechnice Wrocławskiej swoje **dane osobowe**, które przetwarzamy **wyłącznie** w zakresie niezbędnym do jego prowadzenia (odesłanie zadań, prowadzenie statystyki). Szczegółowe informacje o przetwarzaniu przez nas danych osobowych są dostępne na stronie internetowej Kursu.

Adres internetowy Kursu: http://www.im.pwr.edu.pl/kurs