Assignment 2 MEEN 357

Jacob Hartzer

February 10, 2017

Task 6

Problem 1. Machine Epsilon

Machine epsilon for this 9-bit floating-point number would be half the difference between the following floats: 000000000 and 000000001. This can be found as:

$$\begin{split} \epsilon &= \frac{-1^0*2^{1-3}*0.00001 - -1^0*2^{1-3}*0.00000}{2} \\ &= \frac{(0.00000010.00000000)}{2} \\ &= 0.00000001_2 \\ &= 2^{-8} \\ &= 0.00390625 \end{split}$$

Problem 2. Floats

i

$$0 110 11111 = 2^{(2^{2} + 2^{1}3)}x1.11111$$

$$= 1111.112$$

$$= 2^{4} + 2^{3} + \dots + 2^{-2}$$

$$= 15.75_{1}0$$

ii

$$0\ 001\ 00001 = 2^{1-3} * 1.00001$$
$$= .0100001_2$$
$$= 2^{-2} + 2^{-7}$$
$$= 0.2578125_10$$

iii

$$0\ 000\ 11111 = 2^{1-3} * 0.11111$$
$$= 0.0011111_2$$
$$= 2^{-3} + \dots + 2^{-7}$$
$$= 0.2421875_10$$

iv

$$0\ 000\ 00001 = 2^{1-3} * 0.00001$$
$$= 0.0000001_2$$
$$= 2^{-7}$$
$$= 0.0000078125_10$$

Problem 3. Floating Point Binary

Number	Number in Binary	Exponential	Exponential Binary	Binary Float Representation
0	0	0	000	0 000 00000
1	1	0+3	011	0 011 00000
2	10	1+3	100	0 100 00000
3	11	1+3	100	0 100 10000
4	100	2+3	101	0 101 00000
5	101	2+3	101	0 101 01000
6	110	2+3	101	0 101 10000
7	111	2+3	101	0 101 11000
8	1000	3+3	110	0 110 00000
9	1001	3+3	110	0 110 00100
10	1010	3+3	110	0 110 01000
11	1011	3+3	110	0 110 01100
12	1100	3+3	110	0 110 10000
13	1101	3+3	110	0 110 10100
14	1110	3+3	110	0 110 11000
15	1111	3+3	110	0 110 11100