

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № 2

Название:	Построение	<u>: IDEF0-модели</u>	AS-IS ф	ункционир	ования	<u>заданной</u>
<u>c</u>	истемы					

Дисциплина: Теория систем и системный анализ

Студент	ИУ6-72Б		С.В. Астахов
	(Группа)	 (Подпись, дата)	(И.О. Фамилия)
Преподаватель			
		 (Подпись, дата)	(И.О. Фамилия)

Цель лабораторной работы: овладение методологией IDEF0 для функционального моделирования сложных систем.

Ход работы

Задание: построить структурно-функциональную модель системы на основе методологии IDEF0.

Предметная область: технологии обмена и хранения данных блокчейн.

Субъект моделирования: система публикации смарт-контрактов.

Цель моделирования: проанализировать процесс публикации смартконтрактов.

Точка зрения: разработчик системы.

Рассмотрим основные параметры субъекта моделирования.

В качестве управляющих данных выступают настройки (параметры) конкретной блокчейн-сети, в которой происходит публикация смарт-контракта.

В качестве входных параметров выступают код смарт-контракта и закрытые ключи пользователя и валидатора.

Механизмами системы являются ПО пользователя и валидатора.

Выходными данными являются опубликованный блок с кодом смартконтракта и системное событие «Контракт опубликован».

На основе этих данных была построена контекстная диаграмма, представленная на рисунке 1.

Рисунок 1 — Контекстная диаграмма «А-0. Публикация смарт-контракта в сети Ethereum»

Составим диаграмму декомпозиции А0.

Она представлена следующими функциональными блоками:

- сборка смарт-контракта;
- формирование публикующей транзакции;
- публикация смарт-контракта.

Во всех функциональных блоках используется ПО пользователя и код смарт-контракта на Solidity (или результаты его преобразования). На этапе публикации используются также приватные ключи пользователя и валидатора, настройки сети и ПО валидатора.

Результаты моделирования представлены на рисунке 2.

Рисунок 2 — Диаграмма «А0. Публикация смарт-контракта в сети Ethereum» Далее декомпозируем функциональные блоки А1 и А3. Декомпозиция блока А3 представлена на рисунке 3.

Рисунок 3 — Диаграмма «А3. Публикация смарт-контракта»

Декомпозиция блока А1 представлена на рисунке 4

Рисунок 4 — Диаграмма «А1. Сборка смарт-контракта»

При рассмотрении полученной модели были выявлены следующие недостатки:

- 1. Публикация смарт-контракта в сети Ethereum: отстутствует т.н. «финализация» опубликованного блока, что понижает надежность сети.
- 2. Сборка смарт-контракта: после компиляции в байт-код не происходит его оптимизации, что понижает производительность.
- 3. Публикация смарт-контракта: происходит подсчет nonce, так как подразумевается использование алгоритма консенсуса proof-of-work, понижающего производительность сети.

Вывод: в процессе выполнения лабораторной работы были освоены основы методологии IDEF0 для функционального моделирования сложных систем, получены навыки выделения недостатков системы с помощью этой методологии.