Часть 1. Тест.

Вопрос 1 ♣ блюдений	Предпосылка об отсут	сствии систематиче	еской ошибки в модели означает, что для всех на-
			С Нет верного ответа.
Вопрос 2 🜲	После применения МН	$ ext{HK}$ к модели $y_i=eta_i$	$x_i + arepsilon_i$ сумма $ESS + RSS$
А обязател	вьно равна TSS		\fbox{B} может быть не равна TSS
Вопрос 3 ♣ дели	При наличии ошибок	измерения зависи	мой переменной МНК-оценки коэффициентов мо-
А состояте	льны		В несостоятельны
Вопрос 4 ♣ тервале	Индексы вздутия дист	персии (VIF) в случ	ае отсутствия мультиколлинеарности лежат в ин-
$\boxed{A} \ [0;1]$			$\boxed{\mathrm{B}} \ [1;+\infty)$
Вопрос 5 🐥	Незначимость всех коз	эффициентов регре	ссии
А может б стью	ыть не связана с мульт	гиколлинеарно-	В обязательно свидетельствует о наличии мультиколлинеарности
-		-	мы Гаусса-Маркова, но остатки модели не подчи- ценки коэффициентов регрессии являются
А несмеще	ёнными		В смещёнными
Вопрос 7 🜲	Если в модель добавил	и незначимый фа	ктор, то коэффициент детерминации \mathbb{R}^2
А не изме:	нится	В упадёт	С вырастет
Вопрос 8 🜲	Нулевая гипотеза в тес	сте Дарбина-Уотсон	та состоит в
А отсутств	вии автокорреляции		В наличии автокорреляции
Вопрос 9 🜲	При диагностике автог	корреляции третье	го порядка тест Бройша-Годфри
А примен	ИМ	В неприменим	
_	Стандартные ошибки ность оценок коэффици		случае гетероскедастичности помогают устранить
А верно			В неверно

Часть 2. Задачи.

1. На основании опроса была оценена следующая модель:

$$ln(wage_i) = \beta_1 + \beta_2 exper_i + \beta_3 exper_i^2 + \beta_4 married_i + \beta_5 educ_i + \beta_6 black_i + \varepsilon_i$$

где:

- $wage_i$ величина заработной платы в долларах
- $exper_i$ опыт работы в годах
- $educ_i$ количество лет обучения
- $married_i$ наличие супруга/супруги (1 есть, 0 нет)
- $black_i$ принадлежность к негроидной расе (1 да, 0 нет)

Показатель	Значение
R^2	B7
Скорректированный \mathbb{R}^2	0.219
Стандартная ошибка регрессии	B6
Количество наблюдений	B2

Результаты дисперсионного анализа:

	df	SS	MS	F	Р-значение
Регрессия	B1	5.993	1.199	B 5	0.000
Остаток	134	18.240	0.136		
Итого	B 3	B4			

Коэффициент	Оценка	$se(\hat{\beta})$	t-статистика	Р-Значение	Нижние 95%	Верхние 95%
Константа	4.529	0.331	13.688	0.000	3.874	5.183
exper	0.090	0.037	2.419	0.017	0.016	0.164
$exper^2$	-0.003	0.002	-1.790	0.076	-0.006	0.000
married	0.240	0.079	3.045	0.003	B8	B9
educ	0.078	0.017	B10	0.000	0.045	0.111
black	0.073	0.171	0.424	0.672	-0.266	0.411

Найдите пропущенные числа В1-В10.

Ответ округляйте до 3-х знаков после запятой. Кратко поясняйте, например, формулой, как были получены результаты.

2. На основании данных по ценам на квартиры в Москве были построена модель

$$ln(price_i) = \beta_1 + \beta_2 totsp_i + \beta_3 metrdist_i + \beta_4 dist_i + \beta_5 floor_i + \varepsilon_i,$$

где:

- $ln(price_i)$ логарифм цены квартиры в тысячах долларов
- $totsp_i$ общая площадь квартиры в кв. м.
- $metrdist_i$ расстояние до метров в минутах
- $dist_i$ расстояние до центра города в км
- $floor_i$ дамми-переменная (1 если квартира не на первом и последнем этажах, 0 иначе)

Модели были оценены на пяти разных выборках, результаты представлены в таблице:

Коэффициент	Выборка А	Выборка В	Выборка С	Выборка D	Выборка Е
Константа	3.980***	3.926***	3.929***	3.719***	4.224***
totsp	0.0155^{***}	0.0148***	0.0163***	0.0179***	0.0139***
metrdist	-0.00858***	-0.0169***	-0.00566**	-0.0108***	-0.0077
dist	-0.0267***	-0.0186***	-0.0253***	-0.0150***	-0.0350***
floor	0.0419**	0.0633*	0.0224	0.0225	0.0228
Наблюдений	460	145	315	150	150
R^2	0.693	0.684	0.723	0.328	0.520
RSS	15.120	4.503	9.408	2.163	8.545

 $^{^*}$ — значимость на 10%, ** — значимость на 5%, *** — значимость на 1%.

- а) Для всей выборки (выборка A) проинтерпретируйте коэффициент при переменной $dist_i$.
- б) Определите на 5%-ом уровне значимости, можно ли использовать одну модель для квартир, находящихся в пешей доступности от метро (выборка С), и квартир, находящихся в транспортной доступности (выборка В).
- в) Исследователь предположил, что дисперсия ошибок модели возрастает с увеличением площади квартиры. Проверьте, есть ли в модели гетероскедастичность на 10% уровне значимости на основании соответствующего теста. В выборку D включены 150 квартир с наименьшей общей площадью, в выборку E-150 квартир с наибольшей общей площадью.

При проверке гипотез: выпишите H_0 , H_a , найдите значение тестовой статистики, укажите её распределение, найдите критическое значение, сделайте выводы

- 3. Эконометресса Эвридика хочет оценить модель $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$. К сожалению, она измеряет зависимую переменную с ошибкой. Т.е. вместо y_i она знает значение $y_i^* = y_i + u_i$ и использует его в качестве зависимой переменной при оценке регрессии. Ошибки измерения u_i некоррелированы между собой и с ε_i .
 - а) Будут ли оценки Эвридики несмещенными?
 - б) Могут ли дисперсии оценок Эвридики быть ниже чем дисперсии МНК оценок при использовании настоящего y_i ?
 - в) Могут ли оценки дисперсий оценок Эвридики быть ниже оценок дисперсий МНК оценок при использовании настоящего y_i ?

Аргументируйте ответы.

- 4. По наблюдениям x=(1,2,3)', y=(2,-1,3)' оценивается модель $y=x+\varepsilon$. Ошибки ε_i гетероскедастичны и известно, что $\mathrm{Var}(\varepsilon_i)=\sigma^2\cdot x_i^2$.
 - а) Найдите оценку $\hat{\beta}_{ols}$ с помощью МНК и её дисперсию
 - б) Найдите оценку \hat{eta}_{gls} с помощью обобщенного МНК и её дисперсию

Часть 3. Теоретические вопросы

- 5. Дана модель $y_t = \beta_1 + \beta_2 x_t + \varepsilon_t$, в которой ошибки модели подчиняются авторегрессионной схеме первого порядка, $\varepsilon_t = \rho \varepsilon_{t-1} + u_t$, где $u_t \sim WN(0,\sigma^2)$ и ρ известно. Здесь WN означает белый шум. Опишите процедуру получения эффективных оценок коэффициентов для такой модели.
- 6. В модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ переменная x_i эндогенна. Для нее был найден инструмент z_i . Опишите процедуру получения состоятельных оценок коэффициентов регрессии.
- 7. Дайте определение гомоскедастичности и гетероскедастичности. Укажите последствия гетероскедастичности. Какие действия нужно сделать для получения корректных доверительных интервалов для коэффициентов при гетероскедастичности неизвестной формы?