

Подготовка к экзамену по ТВиМСу (TVIEX-b)

Вопросы для подготовки

- 1. Дать определения случайного события, пространства элементарных событий. Привести примеры.
- 2. Дать классическое определение вероятности, сформулировать основные свойства вероятности.
- 3. Сформулировать аксиомы теории вероятности. Сформулировать и доказать основные свойства вероятности.
- 4. Вывести формулу полной вероятности и формулу Байеса.
- 5. Дать определение условной вероятности. Доказать теорему умножения. Дать определение независимых событий.
- 6. Изложить схему Бернулли, вывести формулу о вероятности успехов в схеме Бернулли и следствия из неё.
- 7. Дать определение функции распределения вероятности случайной величины. Сформулировать и доказать её свойства.
- 8. Дать определение дискретной случайной величины, обосновать вид её функции распределения.
- 9. Дать определения биномиального закона распределения и закона распределения Пуассона, найти их математические ожидания.
- 10. Дать определение плотности распределения вероятности случайной величины. Сформулировать и доказать её свойства.
- 11. Дать определения равномерного, экспоненциального и нормального законов распределения, найти их математические ожидания и дисперсии.
- 12. Сформулировать и доказать теорему о виде плотности распределения вероятности функции $\Phi(\xi)$ от случайной величины ξ , если Φ монотонная функция.
- 13. Дать определение математического ожидания, сформулировать и доказать его свойства.
- 14. Дать определение дисперсии, сформулировать и доказать её свойства.
- 15. Дать определение функции распределения вероятности двумерного случайного вектора. Сформулировать и доказать её свойства
- 16. Дать определение плотности двумерного случайного вектора, сформулировать и доказать её свойства.
- 17. Дать определение независимых случайных величин. Доказать необходимое и достаточное условие независимости непрерывных случайных величин.
- 18. Сформулировать и доказать теорему о свертке.
- 19. Сформулировать и доказать теорему о свойствах ковариации.
- 20. Дать определение ковариационной матрицы случайного вектора. Сформулировать и доказать свойства коэффициента корреляции.
- 21. Дать определение двумерного нормального вектора. Указать вид плотностей его координат.
- 22. Сформулировать и доказать первое и второе неравенства Чебышёва.
- 23. Сформулировать и доказать закон больших чисел в форме Чебышёва.
- 24. Доказать следствие закона больших чисел в форме Чебышёва для схемы Бернулли.
- 25. Сформулировать центральную предельную теорему и вывести (как следствие) теорему Муавра—Лапласа.
- 26. Дать определение выборочной функции распределения, доказать её сходимость к теоретической функции распределения.

 27. Дать определения точечной оценки, несмещённой оценки и состоятельной оценки. Показать, что X является несмещённой и состоятельной оценкой математического ожидания.
- 28. Дать определение моментов, дать определение метода моментов. Найти методом моментов параметры равномерно распределённой случайной величины.
- 29. Дать определение метода максимального правдоподобия. Оценить методом максимального правдоподобия параметры биномиального, пуассоновского, экспоненциального и нормального распределений.
- 30. Дать определение доверительного интервала. Вывести вид доверительного интервала для математического ожидания нормально распределённой случайной величины при известной и неизвестной дисперсии.

- 31. Дать определение доверительного интервала. Вывести выражение для доверительного интервала дисперсии нормально распределённой случайной величины.
- 32. Дать определение доверительного интервала. Вывести выражение для приближенного доверительного интервала для математического ожидания случайной величины. Вывести выражение для приближенного доверительного интервала для вероятности успеха в схеме Бернулли.
- 33. Дать определение доверительного интервала. Вывести вид доверительного интервала для разности математических ожиданий нормально распределённых случайных величин с известными и неизвестными, но равными дисперсиями.
- 34. Дать определения критерия проверки гипотез, критической и доверительной областей, ошибок 1-го и 2-го рода, уровня значимости критерия.
- 35. Изложить критерий проверки гипотезы о математическом ожидании нормальной случайной величины с известной дисперсией.
- 36. Изложить критерий проверки гипотезы о математическом ожидании нормальной случайной величины с известной и неизвестной дисперсией.
- 37. Изложить критерий проверки гипотезы о равенстве математических ожиданий двух нормальных случайных величин с известными и неизвестными, но равными дисперсиями.
- 38. Изложить критерий проверки гипотезы о величине дисперсии нормальной случайной величины.
- 39. Изложить критерий проверки гипотезы о равенстве дисперсий двух нормальных случайных величин.
- 40. Сформулировать критерий согласия Пирсона.
- 41. Найти методом наименьших квадратов оценки параметров линейной регрессионной модели.

Вопросы для подготовки

1. Дать определения случайного события, пространства элементарных событий. Привести примеры.

Элементарным исходом (или элементарным событием) называют любой простейший (т.е. неделимый в рамках данного опыта) исход опыта.

Случайным событием называют подмножество множества исходов случайного эксперимента.

Множество всех элементарных исходов будем называть пространством элементарных событий.

Пример

Опыт: подбрасывание игральной кости.

В этом опыте множеством всех элементарных исходов можно выбрать так:

$$\Omega = \{\omega_1, \ \omega_2, \ \omega_3, \ \omega_4, \ \omega_5, \ \omega_6\},\$$

где ω_k - исход опыта, заключающийся в выпадении k очков.

2. Дать классическое определение вероятности, сформулировать основные свойства вероятности.

Вероятностью события A называют отношение числа N_A благоприятствующих событию A элементарных исходов к общему числу N равновозможных элементарных исходов, т.е.

$$P(A) = rac{N_A}{N}$$

Примечание: В классическом определении вероятности исходят из того, что пространство элементарных исходов Ω содержит конечное число элементарных исходов, причем все они равновозможны.

Вероятность имеет следующие свойства:

1.
$$\forall A, B \in \Omega : A \subset B \Rightarrow P(A) \leq P(B)$$

2.
$$\forall A \in \Omega : P(A) \in [0; 1]$$

3.
$$P(\varnothing) = 0$$

4.
$$P(\overline{A}) = 1 - P(A)$$

5.
$$P(A + B) = P(A) + P(B) - P(AB)$$

3. Сформулировать аксиомы теории вероятности. Сформулировать и доказать основные свойства вероятности.

Аксиомы теории вероятности:

1.
$$\forall A \in \mathfrak{A}: P(A) \geq 0$$

2.
$$P(\Omega) = 1$$

3. если
$$A_n\in \mathfrak{A},\; n=1,2,..,$$
и $\, orall k
eq n:\, A_kA_n=arnothing$, то

$$P\Big(\sum_{n=1}^{\infty}A_n\Big)=\sum_{n=1}^{\infty}P(A_n)$$

Вероятность имеет следующие свойства:

1.
$$\forall A, B \in \Omega : A \subset B \Rightarrow P(A) \leq P(B)$$

2.
$$\forall A \in \Omega: P(A) \in [0; 1]$$

3.
$$P(\varnothing) = 0$$

4.
$$P(\overline{A}) = 1 - P(A)$$

5.
$$P(A + B) = P(A) + P(B) - P(AB)$$

Доказательство

1. Т.к.
$$A\subset B,\ A=B+A\backslash B, \Rightarrow P(A)=P(B)+P(A\backslash B)\geq P(B)$$

$$P(A) \ge P(B)$$

2.
$$A \in \Omega$$
 $P(A) \leq P(\Omega) = 1 \Rightarrow P(A) \in [0,1]$

3.
$$A+\overline{A}=\Omega,\ A\cdot\overline{A}=\varnothing$$

$$P(\Omega) = P(A + \overline{A}) = P(A) + P(\overline{A}) = 1, \ P(\overline{A}) = 1 - P(A)$$

4.
$$P(\emptyset) = P(\overline{\Omega}) = 1 - P(\Omega) = 1 - 1 = 0$$

5.
$$A \cup B = A + B \setminus A$$
, $B = (B \setminus A) + AB$

$$P(A \cup B) = P(A) + P(B \setminus A)$$

$$P(B) = P(B \backslash A) + P(AB) \Rightarrow P(B \backslash A) = P(B) - P(AB)$$

$$P(A \cup B) = P(A) + P(B \setminus A) = P(A) + P(B) - P(AB)$$

ЧТД

4. Вывести формулу полной вероятности и формулу Байеса.

Теорема (о полной вероятности)

Пусть $H_1, H_2, ..., H_n$ образуют полную группу событий. Тогда для любого события A

$$P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)$$

Доказательство

Представим событие A в виде

$$A = A\Omega = A(H_1 + ... + H_n) = AH_1 + ... + AH_n$$

С учетом того, что события $AH_i,\ i=1,..,n,$ несовместны, имеем

$$P(A) = P(AH_1) + ... + P(AH_n)$$

В соответствии с формулой умножения вероятностей получаем

$$P(AH_1) = P(H_1)P(A|H_1), ..., P(AH_n) = P(H_n)P(A|H_n)$$

Таким образом

$$P(A) = P(H_1)P(A|H_1) + ... + P(H_1)P(A|H_n)$$

ЧТД

теорема Байеса

Пусть $H_1, H_2, ..., H_n$ образуют полную группу событий. Тогда для любого события A

$$P(H_k|A) = \frac{P(A|H_k)P(H_k)}{P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ...P(A|H_n)P(H_n)}$$

Доказательство

По определению условной вероятности,

$$P(H_i|A) = rac{P(AH_i)}{P(A)}$$

Выражая теперь по

формуле умножения вероятностей

 $P(AH_i)$ через $P(A|H_i)$ и $P(H_i)$, получаем $P(AH_i) = P(H_i)P(A|H_i)$. Поэтому

$$P(H_i|A) = rac{P(H_i)P(A|H_i)}{P(A)}, \; P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ...P(A|H_n)P(H_n)$$

ЧТД

5. Дать определение условной вероятности. Доказать теорему умножения. Дать определение независимых событий.

Условной вероятностью события A при условии (наступлении) события B называют отношение вероятности пересечения событий A и B к вероятности события B:

$$P(A|B) = rac{P(AB)}{P(B)}$$

Теорема умножения

Пусть событие $A=A_1A_2..A_n$ (т.е. A - пересечение событий $A_1,A_2,..,A_n$) и P(A)>0. Тогда справедливо равенство

$$P(A) = P(A_1)P(A_2|A_1)..P(A_n|A_1A_2..A_{n-1})$$

Доказательство

По опр. условной вероятности,

$$P(A_n|A_1..A_{n-1}) = rac{P(A_1..A_n)}{P(A_1..A_{n-1})}, \Rightarrow P(A_1..A_n) = P(A_1..A_{n-1})P(A_n|A_1..A_{n-1})$$

Аналогично

$$P(A_1..A_{n-1}) = P(A_1..A_{n-2})P(A_{n-1}|A_1..A_{n-2})$$

Тогда

$$P(A_1..A_n) = P(A_1..A_{n-1})P(A_n|A_1..A_{n-1}) = P(A_1..A_{n-2})P(A_{n-1}|A_1..A_{n-2})P(A_n|A_1..A_{n-1})$$

Продолжая аналогичные действия, докажем теорему.

ЧТД

События A и B, имеющие ненулевую вероятность, называют **независимыми**, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B, т.е.

$$P(A|B) = P(A)$$

 $P(B|A) = P(B)$

Пояснение: запись "..условная вероятность A при условии B совпадает с безусловной вероятностью A.." означает, что вероятность наступления события A одинакова, как при наступлении события B, так и без его наступления, т.е. наступление события A не зависит от наступления события B.

Замечание:

$$P(A|B) = \frac{P(AB)}{P(B)} = P(A) \ \Rightarrow \ P(AB) = P(A)P(B) \ \Rightarrow \ \frac{P(AB)}{P(A)} = P(B) \ \Rightarrow \ P(B|A) = P(B)$$

6. Изложить схему Бернулли, вывести формулу о вероятности успехов в схеме Бернулли и следствия из неё.

Схемой Бернулли (или последовательностью независимых одинаковых испытаний, или биномиальной схемой испытаний) называют последовательность испытаний, удовлетворяющую следующим условиям:

- 1. при каждом испытании различают лишь два исхода: появление некоторого события A, называемого "успехом", либо появление его дополнения \overline{A} , называемого "неудачей";
- 2. испытания являются независимыми, т.е. вероятность успеха в k-м испытании не зависит от исходов всех испытаний до k-го;
- 3. вероятность успеха во всех испытаниях постоянна и равна P(A) = p.

Вероятность $P_n(k)$ того, что в n испытаниях по схеме Бернулли произойдет ровно k успехов, определяется формулой Бернулли

$$P_n(k)=C_n^kp^kq^{n-k}, k=0,..,n$$

Доказательство

Результат каждого опыта можно записать в виде последовательности УНН...У, состоящей из n букв "У" и "Н", причем буква "У" на i-м месте означает, что в i-м испытании произошел успех, а "Н" — неудача.

Пространство элементарных исходов Ω состоит из 2n исходов, каждый из которых отождествляется с определенной последовательностью УНН...У. Каждому элементарному исходу ω =УНН...У можно поставить в соответствие вероятность $P(\omega)$ = P(УНН...Y).

В силу независимости испытаний события У,Н,Н,...,У являются

независимыми в совокупности, и потому по теореме умножения вероятностей имеем

$$P(\omega)=p^iq^{n-i}, i=0,..,n,$$

если в

n испытаниях успех "У" имел место i раз, а неуспех "Н", следовательно, n-i раз.

Событие A_k происходит всякий раз, когда реализуется элементарный исход ω , в котором i=k. Вероятность любого такого элементарного исхода равна p^kq^{n-k} . Число таких исходов совпадает с числом способов, которыми можно расставить k букв "У" на n местах,

не учитывая порядок, в котором их расставляют. Число таких способов равно $C_n^k.$

Так как A_k есть объединение (сумма) всех указанных элементарных исходов, то окончательно получаем для вероятности

$$P(A_k) = P_n(k)$$
 формулу

$$P_n(k) = C_n^k p^k q^{n-k}, k = 0, ..., n$$

Следствия

1. Вероятность появления успеха (события A) в n испытаниях не более k_1 раз и не менее k_2 раз равна:

$$P\{k_1 \leq k \leq k_2\} = \sum_{k=k_1}^{k_2} C_n^k p^k q^{n-k}$$

2. В частном случае при $k_1=1$ и $k_2=n$ получаем формулу для вычисления вероятности хотя бы одного успеха в n испытаниях:

$$P\{k \ge 1\} = 1 - q^n$$

7. Дать определение функции распределения вероятности случайной величины. Сформулировать и доказать её свойства.

Функцию $F(x) = P\{\xi < x\}$ называют **функцией распределения** вероятности случайной величины ξ .

Функция F распределения случайной величины ξ имеет следующие свойства:

- 1. $\forall x \in \mathbb{R}: \ 0 \leq F(x) \leq 1$
- 2. $\forall x, y \in \mathbb{R}, \ x < y : \ F(x) \leq F(y)$
- 3. $F(-\infty) = 0$; $F(+\infty) = 1$
- 4. $P\{a \le \xi < b\} = F(b) F(a)$
- 5. $\lim_{y \to x = 0} F(y) = F(x)$, т.е. F(x) непрерывная слева функция.

Доказательство

- 1. Поскольку значение функции распределения в любой точке x является вероятностью, то из свойства 4 вероятности вытекает утверждение 1.
- 2. Если x < y, то событие $\xi < x$ включено в событие $\xi < y$, и, согласно свойству 3 вероятности, $P\{\xi < x\} \le P\{\xi < y\}$, т.е. $F(x) \le F(y)$, поэтому утверждение 2 выполнено.
- 3. Событие $\{\xi<+\infty\}$ достоверное, поэтому $F(+\infty)=1$.

 $\{\xi<-\infty\}$ - невозможное, поэтому $F(-\infty)=0$

4. $\{\xi < b\} = \{\xi < a\} + \{a \le \xi < b\}, \ \{\xi < a\} \cdot \{a \le \xi < b\} = \emptyset$ $\Rightarrow \{\xi < b\} - \{\xi < a\} = \{a \le \xi < b\}$

$$P\{a \le \xi < b\} = P\{\xi < b\} - P\{\xi < a\} = F(b) - F(a)$$

5. без док-ва

8. Дать определение дискретной случайной величины, обосновать вид её функции распределения.

Случайную величину называют дискретной, если она принимает не более, чем счетное число различных значений.

Рядом распределения (вероятностей) дискретной случайной величины ξ называют

таблицу, состоящую из двух строк: в верхней строке перечислены все возможные значения случайной величины, а в нижней — вероятности

$$p_n = P\{\xi = x_n\}, n = 1, 2,$$
 того, что случайная величина примет эти значения.

По ряду распределения можно построить функцию распределения случайной величины:

Пусть ξ — дискретная случайная величина, заданная своим рядом распределения, причем значения $x_1, x_2, ..., x_n, ...$ расположены в порядке возрастания.

Тогда для всех $x \leq x_1$ событие $\{\xi < x\}$ является невозможным и поэтому

$$F(x) = 0.$$

Если $x_1 < x \le x_2$, то событие $\{\xi < x\}$ состоит из тех и только тех элементарных исходов ω , для которых $\xi(\omega) = x_1$, и, следовательно,

$$F(x) = p_1$$
.

Если $x_2 < x \le x_3$, то событие

 $\{\xi < x\}$ состоит из тех и только тех элементарных исходов ω , для которых $\xi(\omega) = x_1$ либо $\xi(\omega) = x_2$, то есть $\{\xi < x\} = \{\xi = x_1\} + \{\xi = x_2\}$, и, следовательно,

$$F(x) = p_1 + p_2.$$

Тогда, для $x_n < x \leq x_{n+1}$ имеем $F(x) = p_1 + ... + p_n$

9. Дать определения биномиального закона распределения и закона распределения Пуассона, найти их математические ожидания.

Случайную величину ξ называют **биномиальной** с параметрами $n\in\mathbb{N}$ и $p\in(0;1)$, если

$$P\{\xi=k\}=C_n^kp^kq^{n-k},\ k=0,1,2,..,n,\ q=1-p$$

Математическое ожидание
$$M\xi=\sum\limits_{k=0}^{n}kC_{n}^{k}p^{k}q^{n-k}=\sum\limits_{k=1}^{n}krac{n!}{k!(n-k)!}p^{k}q^{n-k}=np\sum\limits_{k=1}^{n}rac{(n-1)!p^{k-1}q^{n-k}}{(k-1)!(n-k)!}=|i=k-1,\;k=i+1|=np\sum\limits_{i=0}^{n-1}rac{(n-1)!p^{i}q^{(n-1)-i}}{i!((n-1)-i)!}=np\sum\limits_{i=0}^{n-1}C_{n-1}^{i}p^{i}q^{(n-1)-i}=|(a+b)^{m}=\sum\limits_{i=0}^{m}C_{m}^{i}a^{i}b^{m-i}|=np(p+q)^{n-1}=np$$

Случайную величину ξ называют **пуассоновской** с параметром $\lambda > 0$, если

$$P\{\xi=n\} = rac{\lambda^n}{n!} e^{-\lambda}, \; n=0,1,2,..$$

Математическое ожидание $M\xi=\sum\limits_{n=0}^{\infty}n\frac{\lambda^n}{n!}e^{-\lambda}=\sum\limits_{n=1}^{\infty}n\frac{\lambda^n}{n!}e^{-\lambda}=\sum\limits_{n=1}^{\infty}\frac{\lambda^n}{(n-1)!}e^{-\lambda}=e^{-\lambda}\lambda\sum\limits_{n=1}^{\infty}\frac{\lambda^{n-1}}{(n-1)!}=\lambda e^{-\lambda}\sum\limits_{n=0}^{\infty}\frac{\lambda^n}{n!}=\lambda e^{-\lambda}e^{\lambda}=\lambda$

10. Дать определение плотности распределения вероятности случайной величины. Сформулировать и доказать её свойства.

Плотностью распределения случайной величины f(x) называют подынтегральную функцию из выражения для функции распределения непрерывной случайной величины:

$$F(x) = \int\limits_{-\infty}^x f(t) dt$$

Функция f плотности распределения случайной величины ξ имеет следующие свойства:

- 1. $F'(x) = f(x) \ \forall x : \exists F'(x)$
- 2. $\forall x \in \mathbb{R}: \ f(x) \geq 0$
- 3. $P\{a \leq x \leq b\} = \int\limits_a^b f(x) dx$
- 4. $P\{x \leq \xi \leq x + \Delta x\} = f(x)\Delta x + o(\Delta x)$ при $\Delta x o 0$
- 5. $\forall x \in \mathbb{R}: \ P\{\xi=x\}=0$

6.
$$\int\limits_{-\infty}^{+\infty}f(x)dx=1$$

$$F(x) = P\{\xi < x\}, \ x \in \mathbb{R}$$

- 1. F'(x) = f(x) из матанализа.
- 2. F(x) не убывает \Rightarrow $F'(x) \geq 0 \Rightarrow f(x) = F'(x) \geq 0$

3.
$$P\{a \leq \xi \leq b\} = F(b) - F(a) = \int\limits_a^b F'(x) dx = \int\limits_a^b f(x) dx$$

4.
$$\int\limits_{-\infty}^{+\infty}f(x)dx=F(+\infty)-F(-\infty)=1-0=1$$

5.
$$P\{x \leq \xi < x + \Delta x\} = F(x + \Delta x) - F(x) = F'(x)\Delta x + o(\Delta x) = f(x)\Delta x + o(\Delta x) = |\Delta x \rightarrow 0| = f(x)\Delta x, \stackrel{\wedge}{x} \in (x, x + \Delta x)$$

6.
$$\{\xi = x\} \subset \{x \leq \xi < x + \Delta x\}, \ \forall \Delta x > 0$$

$$P\{\xi=x\} \leq P\{x \leq \xi < x+\Delta x\} = f(x)\Delta x + o(\Delta x) = |\Delta x \rightarrow 0| = 0$$

$$\Rightarrow P\{\xi = x\} = 0$$

11. Дать определения равномерного, экспоненциального и нормального законов распределения, найти их математические ожидания и дисперсии.

Случайную величину ξ называют **равномерно распределенной** на отрезке [a;b], если ее плотность имеет вид:

$$f(x) = egin{cases} rac{1}{b-a}, \ x \in [a;b] \ 0, \ x
otin [a;b] \end{cases}$$

Математическое ожидание $M\xi=\int\limits_{-\infty}^{+\infty}xf(x)dx=\int\limits_{-\infty}^{a}xf(x)dx+\int\limits_{a}^{b}xf(x)dx+\int\limits_{b}^{+\infty}xf(x)dx=\int\limits_{a}^{b}xrac{1}{b-a}dx=rac{1}{2(b-a)}x^2\Big|_{a}^{b}=rac{b+a}{2}$

Дисперсия
$$D\xi=\int\limits_{-\infty}^{+\infty}(x-M\xi)^2f(x)dx=\int\limits_a^b(x-\frac{b+a}{2})^2\frac{1}{b-a}dx=\frac{1}{b-a}\int\limits_a^b(x-\frac{b+a}{2})^2d(x-\frac{b+a}{2})=\frac{1}{b-a}\frac{1}{3}(x-\frac{b+a}{2})^3\Big|_a^b=\frac{1}{3(b-a)}\Big((\frac{b-a}{2})^3-(\frac{a-b}{2})^3\Big)=\frac{1}{3(b-a)}2(\frac{b-a}{2})^3=\frac{(b-a)^2}{12}$$

Случайную величину ξ называют **экспоненциальной** с параметром $\lambda>0$, если ее плотность имеет вид

$$f(x) = egin{cases} \lambda e^{-\lambda x}, \ x \geq 0 \ 0, \ x < 0 \end{cases}$$

Математическое ожидание $M\xi=\int\limits_{-\infty}^{+\infty}xf(x)dx=\int\limits_{0}^{+\infty}x\lambda e^{-\lambda x}dx=|u=x,\ du=dx,\ dv=\lambda e^{-\lambda x}dx,\ v=-e^{-\lambda x}|=-xe^{-\lambda x}\Big|_{0}^{+\infty}+\int\limits_{0}^{+\infty}e^{-\lambda x}dx=\frac{-1}{\lambda}\int\limits_{0}^{+\infty}e^{-\lambda x}d(-\lambda x)=\frac{-1}{\lambda}e^{-\lambda x}\Big|_{0}^{+\infty}=\frac{1}{\lambda}$ Дисперсия $D\xi=\int\limits_{0}^{+\infty}(x-M\xi)^2f(x)dx=\int\limits_{0}^{+\infty}(x-\frac{1}{\lambda})^2\lambda e^{-\lambda x}dx=|u=(x-\frac{1}{\lambda})^2,\ du=2(x-\frac{1}{\lambda})dx,\ dv=\lambda e^{-\lambda x}dx,\ v=-e^{-\lambda x}|=-e^{-\lambda x}(x-\frac{1}{\lambda})^2\Big|_{0}^{+\infty}+\int\limits_{0}^{+\infty}e^{-\lambda x}2(x-\frac{1}{\lambda})dx=\frac{1}{\lambda^2}+\int\limits_{0}^{+\infty}e^{-\lambda x}2(x-\frac{1}{\lambda})dx=\frac{1}{\lambda^2}+\sum_{0}^{+\infty}e^{-\lambda x}dx-\frac{2}{\lambda}\int\limits_{0}^{+\infty}e^{-\lambda x}dx=\frac{1}{\lambda^2}+\frac{2}{\lambda}\cdot\frac{1}{\lambda}-\frac{2}{\lambda}\cdot\frac{1}{\lambda}=\frac{1}{\lambda^2}$

Случайную величину ξ называют **нормальной (гауссовской)** с параметрами $\mu \in \mathbb{R}$ и $\sigma > 0$, если ее плотность имеет вид:

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}},\;x\in\mathbb{R}$$

Математическое ожидание $M\xi = \int\limits_{-\infty}^{+\infty} x f(x) dx = \int\limits_{-\infty}^{+\infty} x \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = |t = \frac{x-\mu}{\sigma}, dt = \frac{dx}{\sigma}| = \int\limits_{-\infty}^{+\infty} (\mu + \sigma t) \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2}\sigma} dt = \mu \int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt + \sigma \int\limits_{-\infty}^{+\infty} t \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt,$ $\mu \int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \frac{\mu}{\sqrt{2\pi}} \int\limits_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = |m = \frac{t}{\sqrt{2}}, dt = \sqrt{2} dm| = \frac{\mu}{\sqrt{\pi}} \int\limits_{-\infty}^{+\infty} e^{-m^2} dm = \frac{\mu}{\sqrt{\pi}} \sqrt{\pi} = \mu$

 $\sigma\int\limits_{-\infty}^{+\infty}trac{1}{\sqrt{2\pi}}e^{-rac{t^2}{2}}dt=0$ - интеграл нечетной функции по симметричному интервалу.

т.о.
$$M\xi=\mu$$

Дисперсия
$$D\xi = \int\limits_{-\infty}^{+\infty} (x-M\xi)^2 f(x) dx = \int\limits_{-\infty}^{+\infty} (x-\mu)^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = |t = \frac{x-\mu}{\sigma}, dt = \frac{dx}{\sigma}| = \sigma^2 \int\limits_{-\infty}^{+\infty} t^2 \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{t^2}{2}} \sigma dt = |u = t, \ du = dt, \ dv = t \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt, \ v = \frac{-1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}| = \sigma^2 \frac{-t}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}|^{+\infty} - \infty + \int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \sigma^2$$

12. Сформулировать и доказать теорему о виде плотности распределения вероятности функции $\Phi(\xi)$ от случайной величины ξ , если Φ — монотонная функция.

Теорема

Пусть случайная величина ξ имеет плотность $f_{\xi}(x)$ и $M_{\xi}=\{x\in\mathbb{R}:f(x)
eq0\}$ — множество возможных значений

ξ.

Пусть функция y=arphi(x) является монотонной и дифференцируемой функцией.

Обозначим $x=\psi(y)$ функцию, обратную к $y=\varphi(x)$. Тогда плотность случайной величины $\eta=\varphi(\xi)$ есть

$$f_{\eta}(y) = egin{cases} f_{\xi}(\psi(y))|\psi'(y)|, \ y \in M_{\eta} \ 0, y
otin M_{\eta} \end{cases}$$

где $M_\eta=\{y\in\mathbb{R}:y=arphi(x),x\in M_\xi\}$ — множество возможных значений η .

Доказательство

Обозначим через $F_{\mathcal{E}}$

И

 F_{η} функции распределения случайных величин ξ и η соответственно. Если функция $\varphi(x)$ является монотонной, то событие $\{\varphi(\xi(\omega)) < y\}$ эквивалентно событию

 $\{\xi(\omega)<\psi(y)\}$ (в случае возрастающей функции $\varphi(x)$) или событию $\{\xi(\omega)>\psi(y)\}$ (в случае убывающей $\varphi(x)$). Значит, для возрастающей функции $\varphi(x)$

$$P\{\varphi(\xi) < y\} = P\{\xi < \psi(y)\},$$

для убывающей $\varphi(x)$

$$P\{\varphi(\xi) < y\} = P\{\xi > \psi(y)\},$$

Поскольку

$$F_{\eta}(y) = P\{\eta < y\},$$
 $P\{\xi < \psi(y)\} = F_{\xi}(\psi(y)), \ P\{\xi > \psi(y)\} = 1 - F_{\xi}(\psi(y))$

то окончательно получаем: для возрастающей функции arphi(x)

$$F_{\eta}(y)=F_{\xi}(\psi(y));$$

для убывающей функции $\varphi(x)$

$$F_{\eta}(y)=1-F_{\xi}(\psi(y));$$

Далее, согласно правилу дифференцирования сложной функции, имеем: в случае возрастающей функции $\eta(x)$

$$f_{\eta}(y)=F'\eta(y)=\Big(F\xi(x)\Big)'\Big|x=\psi(y)\psi'(y)=f\xi(\psi(y))\psi'(y);$$

в случае убывающей функции $\eta(x)$

$$f_{\eta}(y)=F'\eta(y)=-\Big(F\xi(x)\Big)'\Big|x=\psi(y)\psi'(y)=-f\xi(\psi(y))\psi'(y);$$

Оба эти случая можно записать в доказываемом виде.

ЧТД

13. Дать определение математического ожидания, сформулировать и доказать его свойства.

Пусть ξ - дискретная случайная величина, и пусть $P\{\xi=x_n\}=p_n,\ n=1,2,..,\ p_1+p_2+..+p_n+..=1.$

Число $M\xi=x_1p_1+x_2p_2+..+x_np_n+..=\sum\limits_{n=1}^{\infty}x_np_n$ называют **математическим ожиданием (средним**

значением), (средним) дискретной случайной величины ξ при условии, что этот ряд абсолютно сходится.

Математическим ожиданием (средним значением) непрерывной случайной величины называют интеграл

$$M\xi=\int\limits_{-\infty}^{+\infty}xf(x)dx$$

Математическое ожидание $M\xi$ обладает следующими свойствами:

1. C = const: MC = C

2.
$$\forall \alpha, \beta : M(\alpha \xi + \beta) = \alpha M(\xi) + \beta$$

3.
$$M(\xi \pm \eta) = M(\xi) \pm M(\eta)$$

4.
$$M(\xi\eta) = M(\xi)M(\eta)$$
, где ξ,η -независимые случайные величины.

Доказательство

- 1. Если случайная величина ξ принимает всего одно значение C с вероятностью единица, то $MC=C\cdot 1=C$, откуда следует утверждение 1.
- 2. Доказательство свойств 2 и 4 проведем для непрерывных случайных величин, а свойство 3 докажем для дискретных

случайных величин.

Найдем математическое ожидание случайной величины $\eta=lpha\xi+eta$

$$M\eta=M(lpha\xi+eta)=\int\limits_{-\infty}^{+\infty}(lpha x+eta)f_{\xi}(x)dx=lpha\int\limits_{-\infty}^{+\infty}xf_{\xi}(x)dx+eta\int\limits_{-\infty}^{+\infty}f_{\xi}(x)dx=lpha M\xi+eta\cdot 1$$

3. Пусть $\gamma=\xi+\eta$, $M\gamma=M(\xi+\eta)=\sum_{i,j}(x_i+y_j)p_{ij}=\sum_{i,j}x_ip_{ij}+\sum_{i,j}y_jp_{ij}=\sum_ix_i\sum_jp_{ij}+\sum_jy_j\sum_ip_{ij}=\sum_ix_ip_{iullet}+\sum_jy_jp_{ullet j}=M\xi+M\eta$

4.
$$M(\xi\eta) = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} xy f(x,y) dx dy = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} xy f_{\xi}(x) f_{\eta}(y) dx dy = \left(\int\limits_{-\infty}^{+\infty} x f_{\xi}(x) dx\right) \left(\int\limits_{-\infty}^{+\infty} y f_{\eta}(y) dy\right) = M\xi M\eta$$

ЧТД

14. Дать определение дисперсии, сформулировать и доказать её свойства.

Дисперсией $D\xi$ случайной величины ξ называют математическое ожидание квадрата отклонения случайной величины ξ от ее среднего значения

$$D\xi = M(\xi - M\xi)^2$$

Дисперсия $D\xi$ обладает следующими свойствами:

- 1. C = const: DC = 0
- 2. $\forall a,b: D(a\xi+b)=a^2D\xi$
- 3. $D\xi = M\xi^2 (M\xi)^2$
- 4. $D(\xi\pm\eta)=D\xi+D\eta$ для независимых случайных величин ξ и η

Доказательство

- 1. Если случайная величина ξ с вероятностью единица принимает всего одно значение C, то в силу свойства 1 математического ожидания $(M\xi=C)$ получаем $D\xi=M(\xi-C)^2=(C-C)^2\cdot 1=0$, откуда вытекает утверждение 1.
- 2. Определим дисперсию случайной величины $\eta=a\xi+b$. Используя свойство 2 математического ожидания, имеем $D\eta=M(\eta-M\eta)^2=M(a\xi+b-M(a\xi+b))^2=M(a\xi+b-aM\xi-b)^2=M(a(\xi-M\xi))^2=M(a^2(\xi-M\xi)^2)=a^2M(\xi-M\xi)^2=a^2D\xi$
- 3. согласно свойствам 2 и 3 математического ожидания, получаем $D\xi=M(\xi-M\xi)^2=M(\xi^2-2\xi M\xi+(M\xi)^2)=M\xi^2-2(M\xi)^2+(M\xi)^2=M\xi^2-(M\xi)^2$
- 4. пусть ξ и η независимые случайные величины. Тогда, используя свойство 3 дисперсии,

$$D(\xi+\eta)=M(\xi+\eta)^2-(M(\xi+\eta))^2=M(\xi^2+2\xi\eta+\eta^2)-((M\xi)^2+2M(\xi\eta)+(M\eta)^2)=(M\xi^2-(M\xi)^2)+(\eta^2+2\eta^2)$$
 чтд

15. Дать определение функции распределения вероятности двумерного случайного вектора. Сформулировать и доказать её свойства.

Функцией распределения (вероятностей) 2-мерного случайного вектора (ξ,η) называют функцию

F(x,y), значение которой в точке $(x,y) \in \mathbb{R}^2$ равно вероятности совместного осуществления (пересечения) событий

$$\{ \xi < x \}, \{ \eta < y \}$$
, т.е.

$$F(x,y) = P\{\xi < x, \eta < y\}.$$

Двумерная функция распределения удовлетворяет следующим свойствам.

- 1. $0 \le F(x,y) \le 1$
- 2. F(x,y) неубывающая функция по каждому из аргументов x и y.
- 3. $F(-\infty, y) = F(x, +\infty) = 0$
- 4. $F(+\infty, +\infty) = 1$
- 5. $P\{a \le \xi \le b, c \le \eta \le d\} = F(b,d) F(b,c) F(a,d) + F(a,c)$
- 6. F(x,y) непрерывная слева в любой точке $(x,y)\in\mathbb{R}^2$ по каждому из аргументов x и y функция.
- 7. $F(x, +\infty) = F_{\xi}(x), F(+\infty, y) = F_{\eta}(y).$

- 1. Утверждения 1 и 2 доказываются точно так же, как и в одномерном случае.
- 2. События $\{\xi<-\infty\}$ и $\{\eta<-\infty\}$ являются невозможными, а пересечение невозможного события с любым событием, как известно, также невозможное событие, вероятность которого равна нулю, отсюда следует 3 утверждение.

- 3. Аналогично из того, что события $\{\xi<+\infty\}$ и $\{\eta<+\infty\}$ так же, как и их пересечение, являются достоверными, вероятность которых равна единице, вытекает утверждение 4.
- 4. Чтобы найти вероятность попадания двумерной случайной величины (ξ,η) в прямоугольник $\{a\leq x < b,c\leq y < d\}$, сначала определим вероятность попадания в полуполосу $\{x< a,c\leq y < d\}$ (отмечена двойной штриховкой). Но эта вероятность представляет собой вероятность попадания в квадрант

 $\{x < a, y < d\}$ за вычетом вероятности попадания в квадрант $\{x < a, y < c\}$, т.е.

$$P\{\xi < a, c \le \eta < d\} = F(a, d) - F(a, c)$$

Аналогично,

$$P\{\xi < b, c \le \eta < d\} = F(b, d) - F(b, c)$$

Теперь осталось заметить, что вероятность попадания в прямоугольник $\{a \leq x < b, c \leq y < d\}$ совпадает с вероятностью попадания в полуполосу $\{x < b, c \leq y < d\}$ из которой вычитается вероятность попадания в полуполосу $\{x < a, c \leq y < d\}$, откуда следует утверждение 5.

- 1. Подобно одномерному случаю доказывается и утверждение 6.
- 2. Событие $\{\eta < +\infty\}$ является достоверным, поэтому

$$\{\xi < x\} \cap \{\eta < +\infty\} = \{\xi < x\}$$

Аналогично

$$\{\xi<+\infty\}\cap\{\eta< y\}=\{\eta< y\}$$

Отсюда приходим к утверждению 7.

ЧТД

16. Дать определение плотности двумерного случайного вектора, сформулировать и доказать её свойства.

подынтегральную функцию f(x,y) из выражения для функции распределения непрерывного двумерного случайного вектора, называют **плотностью распределения вероятностей случайного вектора** (ξ,η)

$$F(x,y) = \int\limits_{-\infty}^{x}\int\limits_{-\infty}^{y}f(s,t)dsdt$$

Двумерная плотность распределения обладает следующими свойствами.

1.
$$f(x,y) > 0$$
.

2.
$$P\{a < \xi < b, c < \eta < d\} = \int\limits_a^b dx \int\limits_a^d f(x,y) dy$$

3.
$$\int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}f(x,y)dxdy=1$$

4.
$$P\{x < \xi < x + \Delta x, y < \eta < y + \Delta y\} pprox f(x,y) \Delta x \Delta y$$

5.
$$P\{\xi = x, \eta = y\} = 0$$

6.
$$P\{(\xi,\eta)\in D\}=\iint\limits_{D}f(x,y)dxdy$$

7.
$$f_{\xi}(x) = \int\limits_{-\infty}^{+\infty} f(x,y) dy$$

8.
$$f_{\eta}(y)=\int\limits_{-\infty}^{+\infty}f(x,y)dx$$

Свойства 1 — 5 аналогичны свойствам одномерной плотности распределения. Свойство 6 является обобщением свойства 2.

Докажем утверждения 7 и 8.

Из свойства 7 двумерной функции распределения и определения двумерной плотности распределения вытекает:

$$egin{aligned} F_{\xi}(x) &= F(x,+\infty) = \int\limits_{-\infty}^{x} \int\limits_{-\infty}^{+\infty} f(s,t) ds dt \ F_{\eta}(y) &= F(+\infty,y) = \int\limits_{-\infty}^{\infty} \int\limits_{-\infty}^{y} f(s,t) ds dt \end{aligned}$$

откуда, дифференцируя интегралы по переменному верхнему пределу получаем утверждения 7 и 8 для одномерных плотностей распределения $f_{\xi}(x)$ и $f_{\eta}(y)$ случайных величин ξ и η .

17. Дать определение независимых случайных величин. Доказать необходимое и достаточное условие независимости непрерывных случайных величин.

Случайные величины ξ и η назовем **независимыми**, если случайные события $\{\xi < x\}$ и $\{\eta < y\}$ являются независимыми для всевозможных действительных

x и y. В противном случае случайные величины назовем зависимыми.

Теорема

Обозначим через F(x,y), $F_{\xi}(x)$ и $F_{\eta}(y)$ соответственно функции распределения (ξ,η) , ξ и η .

Для того чтобы случайные величины ξ и η были независимыми, необходимо и достаточно, чтобы для всех x и y.

$$F(x,y) = F_{\xi}(x)F_{\eta}(y)$$

Доказательство

По определению независимость случайных величин ξ и η равносильна равенству

$$P\{\xi < x, \eta < y\} = P\{\xi < x\}P\{\eta < y\},$$

что равносильно утверждению теоремы, поскольку

$$F(x,y) = P\{\xi < x, \eta < y\}, \; F_{\xi}(x) = P\{\xi < x\}, F_{\eta}(y) = P\{\eta < y\}$$

18. Сформулировать и доказать теорему о свертке.

Теорема о свертке

Пусть ξ и η являются независимыми случайными величинами и имеют абсолютно непрерывное распределение с плотностями $f_{\xi}(x)$ и $f_{\eta}(y)$, тогда плотность распределения суммы $\xi+\eta$ равна «свертке» плотностей $f_{\xi}(x)$ и $f_{\eta}(y)$.

$$f_{\zeta}(z) = \int\limits_{-\infty}^{+\infty} f_{\eta}(z-x) f_{\xi}(x) dx$$

Доказательство

Так как ξ и η являются независимыми случайными величинами

$$f(x,y)=f_{\xi}(x)f_{\eta}(y)$$

$$\zeta = \xi + \eta, \; \zeta = \varphi(\xi, \eta)$$

где arphi(x,y)=x+y

$$F_{\zeta}(z) = \int\limits_{x+y < z} f(x,y) dx dy = \int\limits_{x+y < z} f_{\xi}(x) f_{\eta}(y) dx dy = \int\limits_{-\infty}^{+\infty} f_{\xi}(x) dx \int\limits_{-\infty}^{z-x} f_{\eta}(y) dy = \int\limits_{-\infty}^{+\infty} F_{\eta}(z-x) f_{\xi}(x) dx$$

Дифференцируя последнюю формулу по z под знаком интеграла, получаем (с учетом переобозначения x=x) доказываемое выражение для плотности $f_{\zeta}(z)$ распределения суммы ξ и η :

$$f_{\zeta}(z)=\int\limits_{-\infty}^{+\infty}f_{\eta}(z-x)f_{\xi}(x)dx$$

19. Сформулировать и доказать теорему о свойствах ковариации.

Ковариация имеет следующие свойства

- 1. $cov(\xi, \xi) = D\xi$
- 2. $cov(\xi,\eta)=0$ для независимых случайных величин ξ и η
- 3. Если $\eta_i = a_i \xi_i + b_i, \ i = 1, 2,$ то $cov(\eta_1, \eta_2) = a_1 a_2 cov(\xi_1, \xi_2)$
- 4. $-\sqrt{D\xi D\eta} \leq cov(\xi,\eta) \leq \sqrt{D\xi D\eta}$, причем

$$|cov(\xi,\eta)| = \sqrt{D\xi D\eta}$$

тогда и только тогда, когда случайные величины ξ и η связаны линейной зависимостью, т.е. существуют такие числа

a и b, при которых

$$\eta = a\xi - b$$

5.
$$cov(\xi, \eta) = M(\xi \eta) - M\xi M\eta$$

Доказательство

Утверждение 1 вытекает из очевидного соотношения $cov(\xi,\xi)=M(\xi-M\xi)^2$

Пусть
$$\eta_1 = a_1 \eta_1 + b_1, \; \eta_2 = a_2 \xi_2 + b_2.$$
 Тогда

$$cov(\eta_1,\eta_2) = M((\eta_1 - M\eta_1)(\eta_2 - M\eta_2)) = M((a_1\xi_1 + b_1 - a_1M\xi_1 - b_1)(a_2\xi_2 + b_2 - a_2M\xi_2 - b_2)) = M(a_1a_2(\xi_1 + b_1 - a_1M\xi_1 - b_1)(a_2\xi_2 + b_2 - a_2M\xi_2 - b_2)) = M(a_1a_2(\xi_1 + b_1 - a_1M\xi_1 - b_1)(a_2\xi_2 + b_2 - a_2M\xi_2 - b_2))$$

остальное без доказательства.

20. Дать определение ковариационной матрицы случайного вектора. Сформулировать и доказать свойства коэффициента корреляции.

Матрицей ковариаций (ковариационной матрицей) случайного вектора ξ называют

матрицу

$$\Sigma=(\sigma_{ij})=(cov(\xi_i,\xi_j))$$
, состоящую из ковариаций случайных величин ξ_i и ξ_j .

Коэффициент корреляции имеет следующие свойства.

- 1. $\rho(\xi, \xi) = 1$
- 2. Если случайные величины ξ и η являются независимыми (и существуют $D\xi>0$ и $D\eta>0$), то

$$\rho(\xi,\eta)=0.$$

- 3. $ho(a_1\xi+b_1,a_2\eta+b_2)=\pm
 ho(\xi,\eta)$. При этом знак плюс нужно брать в том случае, когда a_1 и a_2 имеют одинаковые знаки, и минус в противном случае.
- 4. $-1 < \rho(\xi, \eta) < 1$
- 5. $|
 ho(\xi,\eta)|=1$ тогда и только тогда, когда случайные величины ξ и η связаны линейной зависимостью.

Доказательство

следует из свойств ковариации

21. Дать определение двумерного нормального вектора. Указать вид плотностей его координат.

Вектор $\zeta=(\xi,\eta)$ имеет **(невырожденное) двумерное нормальное распределение**, если его плотность распределения определяется формулой

$$f(x,y) = rac{1}{2\pi\sigma_1\sigma_2\sqrt{1-
ho^2}}e^{rac{-1}{2}Q(x-m_1,y-m_2)}$$

где функция

$$Q(s,t)=rac{1}{1-
ho^2}\Big(rac{s^2}{\sigma_1^2}-rac{2
ho st}{\sigma_1\sigma_2}+rac{t^2}{\sigma_2^2}\Big)$$

Координаты ξ и η нормального случайного вектора $\zeta=(\xi,\eta)$ являются случайными величинами, распределенными по нормальному закону.

22. Сформулировать и доказать первое и второе неравенства Чебышёва.

Теорема 1

Для каждой неотрицательной случайной величины ξ , имеющей математическое ожидание

 $M\xi$, при любом $\varepsilon \to 0$ справедливо соотношение

$$P\{\xi \geq \varepsilon\} \leq \frac{M\xi}{\varepsilon}$$

называемое первым неравенством Чебышёва.

Доказательство

Доказательство проведем для непрерывной случайной величины ξ с плотностью распределения f(x) Поскольку случайная величина ξ является неотрицательной, то

$$M\xi=\int\limits_{0}^{+\infty}xf(x)dx$$

Так как подынтегральное выражение неотрицательное, то при уменьшении области интегрирования интеграл может только уменьшиться. Поэтому

$$M\xi = \int\limits_0^arepsilon x f(x) dx + \int\limits_arepsilon^{+\infty} x f(x) dx \geq \int\limits_arepsilon^{+\infty} x f(x) dx$$

Заменяя в подынтегральном выражении сомножитель x на arepsilon, имеем

$$\int\limits_{-\infty}^{+\infty}xf(x)dx\geqarepsilon\int\limits_{-\infty}^{+\infty}f(x)dx$$

Остается заметить, что последний интеграл представляет собой вероятность события $\xi \geq \varepsilon$, и, значит,

$$M\xi > \varepsilon P\{\xi > \varepsilon\}$$

$$\frac{M\xi}{\varepsilon} \ge P\{\xi \ge \varepsilon\}$$

откуда и вытекает первое неравенство Чебышёва.

Теорема 2

Для каждой случайной величины ξ , имеющей дисперсию $D\xi$, при любом $\varepsilon>0$ справедливо второе неравенство Чебышёва

$$P\{|\xi-M\xi|\geq\varepsilon\}\leq\frac{D\xi}{\varepsilon^2}$$

Доказательство

Для доказательства воспользуемся утверждением первого неравенства Чебышёва. Применяя к случайной величине $\eta=(\xi-M\xi)^2$ это неравенство, в котором ε заменено на ε^2 , получаем

$$P\{|\xi-M\xi|\geq\varepsilon\}=P\{(\xi-M\xi)^2\geq\varepsilon^2\}=P\{\eta\geq\varepsilon^2\}\leq\frac{M\eta}{\varepsilon^2}=\frac{D\xi}{\varepsilon^2}$$

что и доказывает второе неравенство Чебышёва.

23. Сформулировать и доказать закон больших чисел в форме Чебышёва.

Теорема (Закон больших чисел в форме Чебышёва)

Пусть последовательность $\xi_1, \xi_2, ..., \xi_n, ...$ независимых случайных величин такова, что существуют $M\xi_i = m_i$ и $D\xi_i$, причем дисперсии $D\xi_i$ ограничены в совокупности (т.е.

 $D\xi_i \leq C$ для некоторой постоянной C), i=1,2,....

$$\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\frac{1}{n}\sum_{i=1}^{n}m_{i}\underset{n o\infty}{\overset{P}{\longrightarrow}}0$$

Доказательство

Теорема является следствием второго неравенства Чебышёва. Действительно, в силу свойств математического ожидания и дисперсии

$$M\bigg(rac{1}{n}\sum_{i=1}^n \xi_i\bigg) = rac{1}{n}\sum_{i=1}^n m_i$$

$$Digg(rac{1}{n}\sum_{i=1}^n \xi_iigg) = rac{1}{n^2}\sum_{i=1}^n D\xi_i \leq rac{Cn}{n^2} = rac{C}{n}$$

Применяя теперь второе неравенство Чебышёва к случайной величине $rac{1}{n}\sum_{i=1}^n \xi_i$, получаем для любого arepsilon>0

$$P\bigg\{ \left| \frac{1}{n} \sum_{i=1}^n \xi_i - \frac{1}{n} \sum_{i=1}^n m_i \right| \geq \varepsilon \bigg\} \leq \frac{C}{n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$$

Таким образом, мы показали, что для последовательности $\xi_1, \xi_2, ..., \xi_n, ...$ выполняется закон больших чисел.

24. Доказать следствие закона больших чисел в форме Чебышёва для схемы Бернулли.

Пусть проводится n испытаний по схеме Бернулли и Y_n — общее число успехов в n испытаниях. Тогда наблюденная частота успехов (доля успехов)

$$\stackrel{\wedge}{p}=rac{Y_n}{n}$$

сходится по вероятности к вероятности p успеха в одном испытании

$$\stackrel{\wedge}{p} \stackrel{P}{\underset{n \to \infty}{\longrightarrow}} p$$

Обозначим ξ_i число успехов в i-м испытании Бернулли (ξ_i принимают значения 0 или 1 с вероятностями q=1-p и p соответственно). Тогда $Y_n=\sum\limits_{i=1}^n\xi i$ и частоту успехов в n испытаниях можно

определить в виде

$$\hat{p} = rac{1}{n} \sum_{i=1}^n \xi i$$

, причем

 $M\xi_i=p$ и $D\xi_i=pq$

$$rac{1}{n}\sum_{i=1}^n \xi_i - rac{1}{n}\sum_{i=1}^n p = rac{1}{n}\sum_{i=1}^n \xi_i - p {\stackrel{P}{\underset{n o \infty}{ o}}} 0, \Rightarrow \ \hat{p} {\stackrel{P}{\underset{n o \infty}{ o}}} p$$

25. Сформулировать центральную предельную теорему и вывести (как следствие) теорему Муавра—Лапласа.

Теорема (центральная предельная теорема)

Пусть $\xi_1,\xi_2,...,\xi_n,...$ — последовательность независимых одинаково распределенных случайных величин, $M\xi_n=m,\ D\xi_n=\sigma^2,S_n=\sum_{i=1}^n\xi_i.$ Тогда

$$P\Big\{rac{S_n-nm}{\sqrt{n\sigma^2}} < x\Big\} \mathop{\longrightarrow}\limits_{n o\infty} \Phi(x)$$

где $\Phi(x)$ — функция стандартного нормального распределения.

Теорема (интегральная теорема Муавра — Лапласа)

Обозначим через Y_n суммарное число успехов в n испытаниях по схеме Бернулли с вероятностью успеха p и вероятностью неудачи q=1-p. Тогда с ростом n последовательность функций распределения случайных величин $(Y_n-np)/\sqrt{npq}$ сходится к функции стандартного нормального распределения, т.е.

$$P\Big\{rac{Y_n-np}{\sqrt{npq}} < x\Big\} \mathop{\longrightarrow}\limits_{n o\infty} \Phi(x)$$

Доказательство

Пусть ξ_i — число успехов в i-м испытании. Тогда $M\xi_i=p, D\xi_i=pq$. Представляя Y_n в виде

 $Y_n = \xi_1 + ... + \xi_n$ и используя центральную предельную теорему, приходим к утверждению следствия.

26. Дать определение выборочной функции распределения, доказать её сходимость к теоретической функции распределения.

Функцию

$$\hat{F}(x;ec{X}_n)=rac{n(x;ec{X}_n)}{n},\ x\in\mathbb{R}$$

будем называть выборочной функцией распределения

Теорема

Для любого фиксированного x последовательность случайных величин $\{\hat{F}(x;\vec{X}_n)\}$ сходится по вероятности при

 $n o \infty$ к значению F(x) функции распределения случайной величины X в точке x.

При любом фиксированном x выборочная функция распределения $\hat{F}(x; \vec{X}_n)$ есть частота события

 $\{X < x\}$. В соответствии с законом больших чисел в форме Бернулли, частота при

 $n o \infty$ сходится по вероятности к вероятности события $\{X < x\}$. Следовательно,

$$\hat{F}(x;ec{X}_n) {\overset{P}{\underset{n o \infty}{\longrightarrow}}} P\{X < x\} = F(x)$$

Теорема доказана.

27. Дать определения точечной оценки, несмещённой оценки и состоятельной оценки. Показать, что X является несмещённой и состоятельной оценкой математического ожидания.

Точечной оценкой параметра $heta \in \Theta$ назовем любую функцию от наблюдений $\hat{ heta}(\vec{X}_n)$.

Оценку $\hat{\theta}(\vec{X}_n)$ параметра $\theta \in \Theta$ называют **состоятельной**, если с ростом объема выборки n она сходится по вероятности к оцениваемому параметру θ , т.е.

$$\hat{ heta}(ec{X}_n) \xrightarrow[n o \infty]{P} heta.$$

Оценку $\hat{\theta}(\overrightarrow{X}_n)$ параметра $\theta \in \Theta$ называют **несмещенной**, если ее математическое ожидание совпадает с θ , т.е. $M\hat{\theta}(\vec{X}_n) = \theta$ для любого n.

Теорема

Пусть $ec{X}_n = (X_1,...,X_n)$ — независимые наблюдения случайной величины X (выбока) и существует DX .

Тогда выборочное среднее $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ является несмещенной и состоятельной оценкой математического ожидания случайной величины X.

Доказательство

По определению выборки случайные величины $X_i,\ i=1,..,n$ являются независимыми случайными величинами и имеют то же самое распределение, что и случайная величина X. Следовательно,

$$MX_i=MX$$
 и $DX_i=DX,\ i=1,..,n.$

В силу свойств математического ожидания имеем

$$M\overline{X} = Migg(rac{1}{n}\sum_{i=1}^n X_iigg) = rac{1}{n}\sum_{i=1}^n MX_i = rac{1}{n}\sum_{i=1}^n MX = MX$$

что и доказывает несмещенность оценки \overline{X} .

Далее, поскольку последовательность $X_1,...,X_n$ состоит из независимых одинаково распределенных случайных величин с конечной дисперсией, то в силу закона больших чисел в форме Чебышева для любого

 $\varepsilon > 0$

$$P\{|\overline{X} - MX| < \varepsilon\} \to 1, \ n \to \infty,$$

т.е. оценка X сходится по вероятности к оцениваемому параметру, а это и означает ее состоятельность.

28. Дать определение моментов, дать определение метода моментов. Найти методом моментов параметры равномерно распределённой случайной величины.

Пусть X - случайная величина, $X_1,..,X_n$ - наблюдения X.

Случайную величину

Подготовка к экзамену по ТВиМСу (TVIEX-b)

$$\mu_k = M(X^k)$$

называют **начальным моментом** k-го порядка.

Случайную величину

$$v_k = M(X - MX)^k$$

называют центральным моментом к-го порядка.

Случайную величину

$$\hat{\mu}_k = rac{1}{n} \sum_{i=1}^n X_i^k$$

называют выборочным начальным моментом к-го порядка.

Случайную величину

$$\hat{v}_k = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^k$$

называют выборочным центральным моментом к-го порядка.

Метол моментов

Оценкой $\theta(\overrightarrow{X}_n) = (\theta_1(\overrightarrow{X}_n), ..., \theta_n(\overrightarrow{X}_n))$ параметра θ методом моментов назовем решение любой системы из r уравнений вида

$$egin{cases} \hat{\mu}_{i_lpha}(ec{X}_n) = \mu_{i_lpha}(heta), lpha = \overline{1,k}, \ \hat{v}_{j_eta}(ec{X}_n) = v_{j_eta}(heta), eta = \overline{1,l}, \end{cases}$$

k+l=r, относительно неизвестных $\theta_1,...,\theta_r$. Индексы i_lpha и j_eta выбирают таким образом, чтобы эта система уравнений решалась как можно проще (обычно так бывает, если i_lpha и j_eta невелики, например 1,2 и т.д.)

Пример

Оценим a и b методом моментов по наблюдениям $X_1,...,X_n$ случайной величины X.

$$\mu = rac{a+b}{2}, \ v = DX = rac{(b-a)^2}{12}, \ \hat{v}_2 = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$\begin{cases} \frac{a+b}{2} = \overline{X} \\ \frac{(b-a)^2}{12} = \hat{v}_2 \end{cases} \ \Rightarrow \ \begin{cases} a+b = 2\overline{X} \\ b-a = 2\sqrt{3} \hat{v}_2 \end{cases} \ \Rightarrow \ \begin{cases} a = \overline{X} - \sqrt{3} \hat{v}^2 \\ b = \overline{X} + \sqrt{3} \hat{v}^2 \end{cases}$$

29. Дать определение метода максимального правдоподобия. Оценить методом максимального правдоподобия параметры биномиального, пуассоновского, экспоненциального и нормального распределений.

Пусть \vec{X}_n — независимые наблюдения случайной величины X. Если X непрерывна, что через $P(x;\theta)$ обозначим ее плотность $f(x;\theta)$, а если X дискретна, то по определению положим $P(x;\theta)=\mathbf{P}\{X=x\}$ для любого $x\in\mathbb{R}$:

$$P(x; heta) = egin{cases} f(x; heta), \$$
если X непрерывная случайная величина $P(x; heta) = \mathbf{P}\{X = x\}, \$ если X дискретная случайная величина

Вводим функцию

$$l(ec{X}_n; heta) = \ln L(ec{X}_n; heta) = \sum_{i=1}^n \ln P(X_i; heta)$$
 — логарифмическая функция правдоподобия

. Оценкой максимального правдоподобия параметра heta называют точку максимума функции правдоподобия.

Пример (только для нормального распределения, остальные аналогично)

Пусть \hat{X}_n — случайная выборка из $N(\theta_1,\theta_2)$. Методом максимального правдоподобия найдем оценку вектора параметров $\theta=(\theta_1;\theta_2)$.

В этом случае плотность равна

$$f(x; heta) = rac{1}{\sqrt{2\pi heta_2}} \exp\Big(-rac{(x- heta_1)^2}{2 heta_2}\Big)$$

функция правдоподобия есть

$$L(ec{X}_n; heta) = \sum_{i=1}^n rac{1}{\sqrt{2\pi heta_2}} \exp\Big(-rac{(X_i- heta_1)^2}{2 heta_2}\Big) = rac{1}{(\sqrt{2\pi heta_2})^n} \exp\Big(-rac{1}{2 heta_2} \sum_{i=1}^n (X_i- heta_1)^2\Big)$$

а логарифмическая функция правдоподобия имеет вид

$$l(ec{X}_n; heta) = -n\ln\sqrt{2\pi} - rac{n}{2}\ln heta_2 - rac{1}{2 heta_2}\sum_{i=1}^n(X_i- heta_1)^2$$

Поскольку число неизвестных параметров r=2, система уравнений правдоподобия будет состоять из двух уравнений

$$\begin{cases} \frac{\partial}{\partial \theta_1} l(\vec{X}_n; \theta) = \frac{1}{\theta_2} \sum_{i=1}^n (X_i - \theta_1) = 0 \\ \frac{\partial}{\partial \theta_2} l(\vec{X}_n; \theta) = \frac{-n}{2\theta_2} + \frac{1}{2\theta_2^2} \sum_{i=1}^n (X_i - \theta_1)^2 = 0 \end{cases} \begin{cases} \sum_{i=1}^n (X_i - \theta_1) = 0 \Rightarrow \theta_1 = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} \\ \theta_2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 \end{cases}$$

Следовательно, оценками максимального правдоподобия для математического ожидания $MX=\theta_1$ и дисперсии $DX=\theta_2$ нормальной случайной величины являются соответственно выборочное среднее

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

и выборочная дисперсия

$$\hat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

30. Дать определение доверительного интервала. Вывести вид доверительного интервала для математического ожидания нормально распределённой случайной величины при известной и неизвестной дисперсии.

Пусть $\vec{X}_n=(X_1,...,X_n)$ — независимые наблюдения случайной величины или случайного вектора X с функцией распределения $F(x;\theta)$, зависящей от скалярного параметра θ , значение которого неизвестно. Предположим, что для параметра θ построен интервал $(\underline{\theta}(\vec{X}_n),\overline{\theta}(\vec{X}_n))$, где $\underline{\theta}(\vec{X}_n)$ и $\overline{\theta}(\vec{X}_n)$ являются такими функциями случайной выборки \vec{X}_n , что для некоторого $\gamma \in (0,1)$ выполняется равенство

$$P\{\underline{\theta}(\vec{X}_n) \le \theta \le \overline{\theta}(\vec{X}_n)\} = \gamma$$

В этом случае интервал $(\underline{\theta}(\vec{X}_n), \overline{\theta}(\vec{X}_n))$ называют доверительным интервалом для параметра θ с коэффициентом доверия γ или γ -доверительным интервалом, а случайные величины $\underline{\theta}(\vec{X}_n)$ и $\overline{\theta}(\vec{X}_n)$ соответственно нижней и верхней границами доверительного интервала.

Вывод вида доверительного интервала для математического ожидания нормально распределённой случайной величины при известной и неизвестной дисперсий: стр.88-90 лекций

31. Дать определение доверительного интервала. Вывести выражение для доверительного интервала дисперсии нормально распределённой

случайной величины.

определение выше (вопрос 30).

Вывод выражения для доверительного интервала дисперсии нормально распределённой случайной величины: стр.90-91 лекций.

32. Дать определение доверительного интервала. Вывести выражение для приближенного доверительного интервала для математического ожидания случайной величины. Вывести выражение для приближенного доверительного интервала для вероятности успеха в схеме Бернулли.

определение выше (вопрос 30).

Выводы выражений для доверительных интервалов: стр.93-94 лекций

33. Дать определение доверительного интервала. Вывести вид доверительного интервала для разности математических ожиданий нормально распределённых случайных величин с известными и неизвестными, но равными дисперсиями.

определение выше (вопрос 30).

Выводы выражений для доверительных интервалов: стр.91-93 лекций

34. Дать определения критерия проверки гипотез, критической и доверительной областей, ошибок 1-го и 2-го рода, уровня значимости критерия.

Критерием, или статистическим критерием, проверки гипотез называют правило,

по которому по данным выборки

 $ec{X}_n$ принимается решение о справедливости либо основной, либо альтернативной гипотезы.

Критическое множество (критическая область) W - множество выборок, на которых статистический критерий отвергает основную гипотезу.

Доверительное множество (доверительная область) - дополнение критического множества W до \mathbb{R}^n ($\mathbb{R}^n \backslash W$) - множество выборок, на которых статистический критерий отвергает альтернативную гипотезу.

Рассмотрим две гипотезы:

- 1. основную H_0
- 2. альтернативную $H_{
 m A}$

Ошибка первого рода - принять гипотезу H_A , когда верна H_0 .

Ошибка второго рода - принять гипотезу H_0 , когда верна H_A .

Вероятность совершения ошибки первого рода lpha называют **уровнем значимости критерия**.

35. Изложить критерий проверки гипотезы о математическом ожидании нормальной случайной величины с известной дисперсией.

стр. 97-99 лекций

36. Изложить критерий проверки гипотезы о математическом ожидании нормальной случайной величины с известной и неизвестной дисперсией.

стр. 97-100 лекций

37. Изложить критерий проверки гипотезы о равенстве математических ожиданий двух нормальных случайных величин с известными и неизвестными, но равными дисперсиями.

стр. 102-103 лекций

38. Изложить критерий проверки гипотезы о величине дисперсии нормальной случайной величины.

стр. 101-102 лекций

39. Изложить критерий проверки гипотезы о равенстве дисперсий двух нормальных случайных величин.

стр. 104 лекций

40. Сформулировать критерий согласия Пирсона.

теорема Пирсона

Распределение случайной величины

$$\sum_{k=1}^r rac{\left(n_k(ec{X}_n) - np_k
ight)^2}{np_k}$$

при $n o \infty$ сходится к χ^2 -распределению с r-1 степенями свободы.

41. Найти методом наименьших квадратов оценки параметров линейной регрессионной модели.

стр. 111-113 лекций

Copyright botva

fiixii, aryagri, dimlanks, yusunnykitty, telephonist 95, pluttan

