```
In [75]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

import warnings
    warnings.filterwarnings('ignore')
```

Loading the Data from the CSV file

```
In [2]: mData = pd.read_csv('Data Sets/Rain in Australia/weatherAUS.csv')
#printing the shape of the dataset
print('The Shape of The Data ', mData.shape)
```

The Shape of The Data (142193, 24)

Data Preprocessing

```
In [3]: # getting some insights about the null values
mData.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 142193 entries, 0 to 142192
Data columns (total 24 columns):
                 142193 non-null object
Date
Location
                 142193 non-null object
MinTemp
                 141556 non-null float64
                 141871 non-null float64
MaxTemp
Rainfall
                 140787 non-null float64
Evaporation
                 81350 non-null float64
Sunshine
                 74377 non-null float64
                 132863 non-null object
WindGustDir
                 132923 non-null float64
WindGustSpeed
WindDir9am
                 132180 non-null object
                 138415 non-null object
WindDir3pm
WindSpeed9am
                 140845 non-null float64
WindSpeed3pm
                 139563 non-null float64
Humidity9am
                 140419 non-null float64
                 138583 non-null float64
Humidity3pm
Pressure9am
                 128179 non-null float64
Pressure3pm
                 128212 non-null float64
Cloud9am
                 88536 non-null float64
                 85099 non-null float64
Cloud3pm
Temp9am
                 141289 non-null float64
Temp3pm
                 139467 non-null float64
RainToday
                 140787 non-null object
RISK MM
                 142193 non-null float64
                 142193 non-null object
RainTomorrow
dtypes: float64(17), object(7)
memory usage: 26.0+ MB
```

```
In [4]: mData.count().sort values()
Out[4]: Sunshine
                           74377
        Evaporation
                           81350
        Cloud3pm
                           85099
        Cloud9am
                           88536
        Pressure9am
                         128179
        Pressure3pm
                         128212
        WindDir9am
                         132180
        WindGustDir
                         132863
        WindGustSpeed
                         132923
        WindDir3pm
                         138415
        Humidity3pm
                         138583
        Temp3pm
                         139467
        WindSpeed3pm
                         139563
        Humidity9am
                         140419
        RainTodav
                         140787
        Rainfall
                         140787
        WindSpeed9am
                         140845
        Temp9am
                         141289
        MinTemp
                         141556
        MaxTemp
                         141871
        Date
                         142193
        Location
                         142193
        RISK MM
                         142193
        RainTomorrow
                         142193
        dtype: int64
In [5]: #droppig some columns from the data in which it has more than 10% null values
        #dropping the date coulmen (is not helpful in clustering)
        #dropping RISK MM: https://www.kaggle.com/jsphyg/weather-dataset-rattle-package/discussion/78316
        mDataDroped = mData.drop(columns=['Date','RISK MM','Sunshine','Evaporation','Cloud3pm','Cloud9am','Pressure9am',
                                  ,axis=1)
        #dropping all rows with null values
        mDataDroped = mDataDroped.dropna(how='any')
        print('The Final Shape Of The Data: ',mDataDroped.shape)
```

The Final Shape Of The Data: (121790, 16)

```
In [6]: Y = mDataDroped.RainTomorrow
        X = mDataDroped.drop(columns=['RainTomorrow'])
        X.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 121790 entries, 0 to 142192
        Data columns (total 15 columns):
        Location
                         121790 non-null object
        MinTemp
                         121790 non-null float64
                         121790 non-null float64
        MaxTemp
        Rainfall
                         121790 non-null float64
        WindGustDir
                         121790 non-null object
        WindGustSpeed
                         121790 non-null float64
                         121790 non-null object
        WindDir9am
        WindDir3pm
                         121790 non-null object
        WindSpeed9am
                         121790 non-null float64
        WindSpeed3pm
                         121790 non-null float64
        Humidity9am
                         121790 non-null float64
        Humidity3pm
                         121790 non-null float64
        Temp9am
                         121790 non-null float64
        Temp3pm
                         121790 non-null float64
        RainToday
                         121790 non-null object
        dtypes: float64(10), object(5)
        memory usage: 14.9+ MB
```

Data Visualization

```
In [72]: # Target Distribution
    print(Y.value_counts())
    sns.countplot(Y)
```

No 94906 Yes 26884

Name: RainTomorrow, dtype: int64

Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0x1a23105be0>


```
In [76]: #histogram for all features
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.distplot(X.MinTemp)
         plt.title("MinTemp")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.distplot(X.MaxTemp)
         plt.title("MaxTemp")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.distplot(X.Rainfall)
         plt.title("Rainfall")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.distplot(X.WindGustSpeed)
         plt.title("WindGustSpeed")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.distplot(X.WindSpeed9am)
         plt.title("WindSpeed9am")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.distplot(X.WindSpeed3pm)
         plt.title("WindSpeed3pm")
         plt.figure(3,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.distplot(X.Humidity9am)
         plt.title("Humidity9am")
         plt.figure(3,figsize=[15,5])
```

```
plt.subplot(1,3,2)
sns.distplot(X.Humidity3pm)
plt.title("Humidity3pm")
plt.figure(3,figsize=[15,5])
plt.subplot(1,3,3)
sns.distplot(X.Temp9am)
plt.title("Temp9am")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,1)
sns.distplot(X.Temp3pm)
plt.title("Temp3pm")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,2)
sns.countplot(X["RainToday"])
plt.title("RainToday")
plt.figure(4,figsize=[15,5])
plt.subplot(1,3,3)
sns.countplot(X["WindDir9am"])
plt.title("WindDir9am")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,1)
sns.countplot(X["WindGustDir"])
plt.title("WindGustDir")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,2)
sns.countplot(X["WindDir3pm"])
plt.title("WindDir3pm")
plt.figure(5,figsize=[15,5])
plt.subplot(1,3,3)
sns.countplot(X["Location"])
plt.title("Location")
```

Out[76]: Text(0.5,1,'Location')

In [12]: #information about each numeric features
print(X.describe())

	MinTemp	MaxTemp	Rainfall	WindGustSpeed	\
count	121790.000000	121790.000000	121790.000000	121790.000000	
mean	12.392117	23.442506	2.356095	40.686542	
std	6.336322	7.140863	8.482433	13.390520	
min	-8.500000	-4.800000	0.000000	7.000000	
25%	7.800000	18.100000	0.000000	31.000000	
50%	12.200000	23.000000	0.000000	39.000000	
75%	17.000000	28.500000	0.800000	48.000000	
max	33.900000	48.100000	367.600000	135.000000	
	WindSpeed9am	WindSpeed3pm	Humidity9am	Humidity3pm	\
count	121790.000000	121790.00000	121790.000000	121790.000000	
mean	15.029888	19.20739	67.685705	50.798990	
std	8.321005	8.58712	19.058076	20.939237	
min	2.000000	2.00000	0.000000	0.000000	
25%	9.000000	13.00000	56.000000	36.000000	
50%	13.000000	19.00000	69.000000	51.000000	
75%	20.000000	24.00000	82.000000	65.000000	
max	87.000000	87.00000	100.000000	100.000000	
	Temp9am	Temp3pm			
count	121790.000000	121790.000000			
mean	17.219650	21.913225			
std	6.455551	7.006987			
min	-7.200000	-5.400000			
25%	12.500000	16.800000			
50%	16.900000	21.400000			
75%	21.800000	26.800000			
max	40.200000	46.700000			

```
In [85]: plt.figure(figsize=[30,30])
    sns.heatmap(X.corr(), annot = True)
```

Out[85]: <matplotlib.axes._subplots.AxesSubplot at 0x1a230a0c18>

- -0.3

```
In [80]: sns.pairplot(mDataDroped[["Temp9am", "Temp3pm", "MinTemp", "MaxTemp", "RainTomorrow"]], hue='RainTomorrow')
Out[80]: <seaborn.axisgrid.PairGrid at 0x1a21128ef0>
```


In [82]: sns.pairplot(mDataDroped[["WindSpeed9am", "WindSpeed3pm", 'WindGustSpeed', "RainTomorrow"]], hue='RainTomorrow')

Out[82]: <seaborn.axisgrid.PairGrid at 0x1a303c8978>


```
In [83]: sns.pairplot(mDataDroped[["Humidity9am", "Humidity3pm", "RainTomorrow"]],hue='RainTomorrow')
```

Out[83]: <seaborn.axisgrid.PairGrid at 0x1a32156b00>


```
In [64]: #histogram for numeric attributes
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.boxplot(x = Y, y = X['MinTemp'])
         plt.title("MinTemp")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.boxplot(x = Y, y = X['MaxTemp'])
         plt.title("MaxTemp")
         plt.figure(1,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.boxplot(x = Y, y = X['Rainfall'])
         plt.title("Rainfall")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.boxplot(x = Y, y = X['WindGustSpeed'])
         plt.title("WindGustSpeed")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,2)
         sns.boxplot(x = Y, y = X['WindSpeed9am'])
         plt.title("WindSpeed9am")
         plt.figure(2,figsize=[15,5])
         plt.subplot(1,3,3)
         sns.boxplot(x = Y, y = X['WindSpeed3pm'])
         plt.title("WindSpeed3pm")
         plt.figure(3,figsize=[15,5])
         plt.subplot(1,3,1)
         sns.boxplot(x = Y, y = X['Humidity9am'])
         plt.title("Humidity9am")
         plt.figure(3,figsize=[15,5])
```

```
plt.subplot(1,3,2)
sns.boxplot(x = Y, y = X['Humidity3pm'])
plt.title("Humidity3pm")

plt.figure(3,figsize=[15,5])
plt.subplot(1,3,3)
sns.boxplot(x = Y, y = X['Temp9am'])
plt.title("Temp9am")

plt.figure(4,figsize=[15,5])
plt.subplot(1,3,1)
sns.boxplot(x = Y, y = X['Temp3pm'])
plt.title("Temp3pm")
```

Out[64]: Text(0.5,1,'Temp3pm')


```
In [63]: plt.figure(4,figsize=[15,5])
         ax=plt.subplot(1,3,1)
         pd.crosstab(X.RainToday,Y).plot(kind="bar",ax=ax)
         plt.title("RainToday")
         plt.ylabel('Frequancy')
         plt.figure(4,figsize=[15,5])
         ax=plt.subplot(1,3,2)
         pd.crosstab(X.WindGustDir,Y).plot(kind="bar",ax=ax)
         plt.title("WindGustDir")
         plt.ylabel('Frequancy')
         plt.figure(4,figsize=[15,5])
         ax=plt.subplot(1,3,3)
         pd.crosstab(X.WindDir3pm,Y).plot(kind="bar",ax=ax)
         plt.title("WindDir3pm")
         plt.ylabel('Frequancy')
         plt.figure(5,figsize=[15,5])
         ax=plt.subplot(1,3,1)
         pd.crosstab(X.WindDir9am,Y).plot(kind="bar",ax=ax)
         plt.title("WindDir9am")
         plt.ylabel('Frequancy')
         plt.figure(6,figsize=[15,5])
         ax=plt.subplot(1,1,1)
         pd.crosstab(X.Location,Y).plot(kind="bar",ax=ax)
         plt.title("Location")
         plt.ylabel('Frequancy')
```

Out[63]: Text(0,0.5,'Frequancy')

In []: