DISPERSIÓN DE DISTRIBUCIONES

PARÁMETROS DE DISPERSIÓN

Son una serie de valores que indican **lo dispersos o agrupados** están los datos entre sí y respecto a la media.

Parámetros estadísticos

RANGO O AMPLITUD

- Es el recorrido de la distribución estadística.
- Dada una serie de valores x₁, x₂, ..., x_n, su recorrido es la diferencia aritmética entre el máximo y el mínimo de estos valores:

$$Re = x_i(m\acute{a}x) - x_i(m\acute{n})$$

Siendo $i = 1, 2, ..., n$.

RANGO PARA DATOS NO AGRUPADOS

 Es la diferencia entre el valor máximo y el valor mínimo de un conjunto de datos.

$$Re = x_i(m\acute{a}x) - x_i(m\acute{n})$$

Siendo $i = 1, 2, ..., n$.

Sea el siguiente conjunto de datos: 12, 15, 17, 23, 25, 28 Hallar el rango.

$$R = 28 - 12 = 16$$

RANGO PARA DATOS AGRUPADOS

 Si los datos están agrupados en una tabla de frecuencias, el recorrido es la diferencia entre el límite real superior del último intervalo y el límite real inferior del primer intervalo.

$$R = L_{m \acute{a} x} - L_{m \acute{i} n}$$

Según los datos de la tabla, hallar el rango.

Peso (Kg.)	f_{i}
55,0-63,0	5
63, 1-71, 1	15
71, 2 - 79, 2	12
79, 3 - 87, 3	5
87, 4 - 95, 4	3
Total	40

$$L_{min} = 55$$
 $L_{max} - 95,4$
 $R = L_{max} - L_{min} = 40,4$

El rango mide "la dispersión total" del conjunto de datos.

Aunque el rango es una medida de dispersión simple y que se calcula con facilidad, su debilidad preponderante es que no toma en consideración la forma en que se distribuyen los datos entre los valores más pequeños y los más grandes.