Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет ИТМО»

Факультет информационных технологий и программирования

Домашняя работа №2

Программирование циклических алгоритмов.

Выполнил студент группы № М3111 Акберов Рустам Ханкишиевич Подпись:

Написать комплекс программ, состоящий из программы и подпрограммы и обеспечивающий подсчет количества требуемых элементов массива данных. Программа должна выявлять требуемые элементы, а их подсчет должен производиться в подпрограмме.

Вариант №1 подсчитать количество неотрицательных элементов из CEBA, 0848, 3476, AE05, B0BA.

Адрес	Код команды	Мнемоника	Комментарии
00A	0010		
00B	0000		
00C	0000		
00D	0000		
00E	0000		
00F	0000		
010	CEBA		
011	0848		
012	3476		
013	AE05		
014	BOBA		
015	FFFC		Счетчик
016	F200	CLA	Начало программы, 0 → А
017	480A	ADD 010	$(00A) + (A) \rightarrow A$
018	901A	BMI 01A	Если (A) >= 0, то 01A → CK
019	2045	JSR 045	$(CK) \rightarrow 045, 045 + 1 \rightarrow CK$
01A	0015		$(015) + 1 \rightarrow 015$, если (015)
			>=0, TO (CK) + 1 → C
01B	C016	BR 016	016 → CK
01C	F000	HLT	Остановка
01D	0000		Здесь будут храниться все
			неотрицательные значения
•••			
045	0000		
046	F200	CLA	0 → A
047	F800	INC	(A) + 1 → A
048	401D	ADD 01D	$(01D) + (A) \rightarrow A$
049	301D	MOV 01D	(A) → 01D
04A	C845	BR 01B	01B → CK

Таблица трассировки

Выполняемая команда		Содержимое регистров после выполнения команды						Ячейка, содержимое которой изменилось после выполнения команды		
Адрес	Код	СК	PA	РК	РД	A	C	Адрес	Новый код	
016	F200	017	016	F200	F200	0000	0			
017	480A	018	010	480A	CEBA	CEBA	0	00A	0011	
018	901A	019	018	901A	901A	CEBA	0			
019	2045	046	045	2046	001A	CEBA	0	045	001A	
046	F200	047	046	F200	F200	0000	0			
047	F800	048	047	F800	F800	0001	0			
048	401D	049	01D	401D	0000	0001	0			
049	301D	04A	01D	301D	0001	0001	0	01D	0001	

04A	C845	01A	045	C845	001A	0001	0		
01A	0015	01B	015	0015	FFFB	0001	0	015	FFFB
01B	C016	016	01B	C016	C016	0001	0		
016	F200	017	016	F200	F200	0000	0		
017	480A	018	011	480A	0848	0848	0	00A	0012
018	901A	01A	018	901A	901A	0848	0		
01A	0015	01B	015	0015	FFFC	0848	0	015	FFFC
01B	C016	016	01B	C016	C016	0848	0		
016	F200	017	016	F200	F200	0000	0		
017	480A	018	012	480A	3476	3476	0	00A	0013
018	901A	01A	018	901A	901A	3476	0		
01A	0015	01B	015	0015	FFFD	3476	0	015	FFFD
01B	C016	016	01B	C016	C016	3476	0		
016	F200	017	016	F200	F200	0000	0		
017	480A	018	013	480A	AE05	AE05	0	00A	0014
018	901A	019	018	901A	901A	AE05	0		
019	2045	046	045	2046	001A	AE05	0	045	001A
046	F200	047	046	F200	F200	0000	0		
047	F800	048	047	F800	F800	0001	0		
048	401D	049	01D	401D	0001	0002	0		
049	301D	04A	01D	301D	0002	0002	+	01D	0002
04A	C845	01A	045	C845	001A	0002	0	-	
01A	0015	01B	015	0015	FFFE	0002	+	015	FFFE
01B	C016	016	01B	C016	C016	0002	0		
016	F200	017	016	F200	F200	0000	0		
017	480A	018	014	480A	B0BA	B0BA	+	00A	0015
018	901A	019	018	901A	901A	B0BA	0		
019	2045	046	045	2046	001A	B0BA	+	045	001A
046	F200	047	046	F200	F200	0000	0		
047	F800	048	047	F800	F800	0001	0		
048	401D	049	01D	401D	0002	0003	0		
049	301D	04A	01D	301D	0003	0003	-	01D	0003
04A	C845	01A	045	C845	001A	0003	0		
01A	0015	01B	015	0015	FFFF	0003	+	015	FFFF
01B	C016	016	01B	C016	C016	0003	0		
016	F200	017	016	F200	F200	0000	0		
017	480A	018	015	480A	FFFF	FFFF	-	00A	0016
018	901A	019	018	901A	901A	FFFF	0	0011	0010
019	2045	046	045	2046	001A	FFFF	+	045	001A
046	F200	047	046	F200	F200	0000	0	1	
047	F800	048	047	F800	F800	0001	0		
048	401D	049	01D	401D	0003	0004	0		
049	301D	04A	01D	301D	0003	0004	+	01D	0004
04A	C845	01A	045	C845	001A	0004	0		0001
01A	0015	01C	015	0015	0000	0004	+	015	0000
01C	F000	01D	01C	F000	F000	0004	0		
UIC	1.000	OID	OIC	1.000	1.000	0004	U		

Вывод:

В данной домашней работе были изучены методы, обеспечивающие подсчет количества требуемых элементов массива данных с помощью подпрограмм.