Linear equations with monomial constraints and decision problems in abelian-by-cyclic groups

Ruiwen Dong

Magdalen College, University of Oxford, UK Department of Mathematics, Saarland University, Germany

January 2025

This work was partly funded by the European Research Council (AdG 101097307).

Part I

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}$?

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}$?

Decidable (PTIME) by **linear algebra** over \mathbb{Z} .

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}$?

Decidable (PTIME) by **linear algebra** over \mathbb{Z} .

Does this system have solutions $y_1, y_2 \in \mathbb{Z}, z_1, z_2 \in \mathbb{N}$?

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}$?

Decidable (PTIME) by **linear algebra** over \mathbb{Z} .

Does this system have solutions $y_1, y_2 \in \mathbb{Z}$, $z_1, z_2 \in \mathbb{N}$?

Decidable (NP) by Integer Programming.

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}$?

Decidable (PTIME) by **linear algebra** over \mathbb{Z} .

Does this system have solutions $y_1, y_2 \in \mathbb{Z}$, $z_1, z_2 \in \mathbb{N}$?

Decidable (NP) by **Integer Programming**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}$, $z_1, z_2 \in 2^{\mathbb{N}} := \{2^n \mid n \in \mathbb{N}\}$?

Given a system of linear equations:

$$\begin{cases} 4y_1 + 12y_2 + 2z_1 + 3z_2 = 7 \\ 5y_1 + 17y_2 + 9z_1 + 8z_2 = 4 \\ 2y_1 + 21y_2 + 3z_1 + 4z_2 = 6 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}$?

Decidable (PTIME) by **linear algebra** over \mathbb{Z} .

Does this system have solutions $y_1, y_2 \in \mathbb{Z}$, $z_1, z_2 \in \mathbb{N}$?

Decidable (NP) by **Integer Programming**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}$, $z_1, z_2 \in 2^{\mathbb{N}} := \{2^n \mid n \in \mathbb{N}\}$?

Decidable by a fragment of Büchi arithmetic.

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$?

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$?

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$?

Decidable by **Gröbner Basis** + **Variable Elimination**.

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$? Decidable by **Gröbner Basis** + **Variable Elimination**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{N}[X]$ (polynomials with only positive coefficients)?

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$? Decidable by **Gröbner Basis** + **Variable Elimination**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{N}[X]$ (polynomials with only positive coefficients)?

Undecidable in general (Narenden 1996).

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$? Decidable by **Gröbner Basis** + **Variable Elimination**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{N}[X]$ (polynomials with only positive coefficients)?

Undecidable in general (Narenden 1996).

Decidable for homogeneous linear equations (Einsiedler 2003).

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$? Decidable by **Gröbner Basis** + **Variable Elimination**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{N}[X]$ (polynomials with only positive coefficients)?

Undecidable in general (Narenden 1996).

Decidable for homogeneous linear equations (Einsiedler 2003).

Does it have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in X^{\mathbb{N}} := \{X^n \mid n \in \mathbb{N}\}$?

Given a system of linear equations (with coefficients in the ring $\mathbb{Z}[X]$):

$$\begin{cases} (4X+1)y_1 + (X^2 - 3X + 1)y_2 + (2X^3 - 1)z_1 + 3z_2 = X^3 + 7 \\ (X^3 + 2X)y_1 + (X^4 + 2X^3 + 1)y_2 + (2X^2 + 7)z_1 + X^2z_2 = X^2 - X \\ (X^2 - 4)y_1 + (X^2 + 2X + 2)y_2 + (3X^2 - 5X)z_1 + (X + 1)z_2 = X + 5 \end{cases}$$

Does this system have solutions $y_1, y_2, z_1, z_2 \in \mathbb{Z}[X]$? Decidable (EXPSPACE) by **Gröbner Basis**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{Z}$? Decidable by **Gröbner Basis** + **Variable Elimination**.

Does this system have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in \mathbb{N}[X]$ (polynomials with only positive coefficients)?

Undecidable in general (Narenden 1996).

Decidable for homogeneous linear equations (Einsiedler 2003).

Does it have solutions $y_1, y_2 \in \mathbb{Z}[X]$, $z_1, z_2 \in X^{\mathbb{N}} := \{X^n \mid n \in \mathbb{N}\}$?

Undecidable (D. 2024, first result of this talk).

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \ldots, k$, there are solutions $y_1, \ldots, y_n \in \mathbb{Z}[X]$, $z_1, \ldots, z_n \in X^{\mathbb{N}}$.

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \ldots, k$, there are solutions $y_1, \ldots, y_n \in \mathbb{Z}[X]$, $z_1, \ldots, z_n \in X^{\mathbb{N}}$.

Proof (part 1): We embed Hilbert's tenth problem (solving a polynomial equation over integers is undecidable).

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \ldots, k$, there are solutions $y_1, \ldots, y_n \in \mathbb{Z}[X]$, $z_1, \ldots, z_n \in X^{\mathbb{N}}$.

Proof (part 1): We embed Hilbert's tenth problem (solving a polynomial equation over integers is undecidable).

Lemma (Expressing squares)

Suppose $n_1, n_2, n_3 \in \mathbb{N}$. We have

$$(X-1)^3 \mid X^{n_1} + X^{n_2}(1-X) + X^{n_3} + (X-3)$$

if and only if $n_2 = n_1^2$, $n_3 = -n_1$.

Idea: $(X-1)^3 \mid f$ if and only if f(1) = f'(1) = f''(1) = 0.

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \dots, k$, there are solutions $y_1, \dots, y_n \in \mathbb{Z}[X]$, $z_1, \dots, z_n \in X^{\mathbb{N}}$.

Proof (part 1): We embed Hilbert's tenth problem (solving a polynomial equation over integers is undecidable).

Lemma (Expressing squares)

Suppose $n_1, n_2, n_3 \in \mathbb{N}$. We have

$$(X-1)^3 \mid X^{n_1} + X^{n_2}(1-X) + X^{n_3} + (X-3)$$

if and only if $n_2 = n_1^2$, $n_3 = -n_1$.

Idea: $(X-1)^3 \mid f$ if and only if f(1) = f'(1) = f''(1) = 0.

Note that " $(X-1)^3 \mid f$ " can be expressed as " $(X-1)^3 y = f$ ". Therefore we can express "squaring" of integers.

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \ldots, k$, there are solutions $y_1, \ldots, y_n \in \mathbb{Z}[X]$, $z_1, \ldots, z_n \in X^{\mathbb{N}}$.

Proof (part 2):

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \ldots, k$, there are solutions $y_1, \ldots, y_n \in \mathbb{Z}[X]$, $z_1, \ldots, z_n \in X^{\mathbb{N}}$.

Proof (part 2):

Lemma (Expressing sums)

Suppose $n_1, n_2, n_3 \in \mathbb{N}$. We have

$$(X-1)^2 \mid X^{n_1} + X^{n_2} - X^{n_3} - 1$$

if and only if $n_3 = n_1 + n_2$.

Idea: $(X - 1)^2 | f$ if and only if f(1) = f'(1) = 0.

Therefore linear equations with monomial constraints can express "summing" of integers.

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \dots, k$, there are solutions $y_1, \dots, y_n \in \mathbb{Z}[X]$, $z_1, \dots, z_n \in X^{\mathbb{N}}$.

Proof (part 3): We embed Hilbert's tenth problem (solving a polynomial equation over integers is undecidable).

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \dots, k$, there are solutions $y_1, \dots, y_n \in \mathbb{Z}[X]$, $z_1, \dots, z_n \in X^{\mathbb{N}}$.

Proof (part 3): We embed Hilbert's tenth problem (solving a polynomial equation over integers is undecidable).

Linear equations with monomial constraints can express "squaring" and "summing" of integers. Note that "product" of integers and be expressed by "squaring" and "summing": $xy = \left((x+y)^2 - x^2 - y^2\right)/2$.

Theorem (D. 2024)

It is undecidable whether, given system of linear equations $a_{i1}y_1 + \cdots + a_{in}y_n + b_{i1}z_1 + \cdots + b_{im}z_m = c_i$, $i = 1, \dots, k$, there are solutions $y_1, \dots, y_n \in \mathbb{Z}[X]$, $z_1, \dots, z_n \in X^{\mathbb{N}}$.

Proof (part 3): We embed Hilbert's tenth problem (solving a polynomial equation over integers is undecidable).

Linear equations with monomial constraints can express "squaring" and "summing" of integers. Note that "product" of integers and be expressed by "squaring" and "summing": $xy = \left((x+y)^2 - x^2 - y^2\right)/2$.

Therefore linear equations with monomial constraints can express any polynomial equation over integers, therefore undecidable.

Q.E.D

Part II

Let G be an (infinite) group. Let $g_1, g_2, g_3, g_4 \in G$. Consider the following problems:

Let G be an (infinite) group. Let $g_1, g_2, g_3, g_4 \in G$. Consider the following problems:

(Conjugacy Problem): Is there $x \in G$ such that $xg_1x^{-1} = g_2$?

Let G be an (infinite) group. Let $g_1, g_2, g_3, g_4 \in G$. Consider the following problems:

(Conjugacy Problem): Is there $x \in G$ such that $xg_1x^{-1} = g_2$? (Simultaneous Conjugacy): Is there $x \in G$ such that $xg_1x^{-1} = g_2$ and $xg_3x^{-1} = g_4$?

Let G be an (infinite) group. Let $g_1, g_2, g_3, g_4 \in G$. Consider the following problems:

(Conjugacy Problem): Is there $x \in G$ such that $xg_1x^{-1} = g_2$?

(Simultaneous Conjugacy): Is there $x \in G$ such that $xg_1x^{-1} = g_2$ and $xg_3x^{-1} = g_4$?

(Finding Square Root): Is there $x \in G$ such that $x^2 = g_1$?

Let G be an (infinite) group. Let $g_1, g_2, g_3, g_4 \in G$. Consider the following problems:

(Conjugacy Problem): Is there $x \in G$ such that $xg_1x^{-1} = g_2$?

(Simultaneous Conjugacy): Is there $x \in G$ such that $xg_1x^{-1} = g_2$ and $xg_3x^{-1} = g_4$?

(Finding Square Root): Is there $x \in G$ such that $x^2 = g_1$?

(???): Are there $x, y \in G$ such that $xy^2g_1x^{-1} = g_2yg_3$ and $yxyg_2x^{-1} = xyg_1xg_4$?

Let G be an (infinite) group. Let $g_1, g_2, g_3, g_4 \in G$. Consider the following problems:

(Conjugacy Problem): Is there $x \in G$ such that $xg_1x^{-1} = g_2$?

(Simultaneous Conjugacy): Is there $x \in G$ such that $xg_1x^{-1} = g_2$ and $xg_3x^{-1} = g_4$?

(Finding Square Root): Is there $x \in G$ such that $x^2 = g_1$?

(???): Are there $x, y \in G$ such that $xy^2g_1x^{-1} = g_2yg_3$ and $yxyg_2x^{-1} = xyg_1xg_4$?

Definition (Equations over groups)

Solving a system of equations over a group ${\it G}$ is the following problem.

Let
$$\mathcal{X} = \{x_1, \dots, x_n\}$$
 be an alphabet and $\mathcal{X}^{-1} := \{x_1^{-1}, \dots, x_n^{-1}\}.$

Input: words w_1, \ldots, w_t over the alphabet $\mathcal{X} \cup \mathcal{X}^{-1} \cup \mathcal{G}$.

Question: whether there exist $h_1, \ldots, h_n \in G$, such that each w_i evaluates to the neutral element when we replace each x_i with h_i .

Equations over groups: classic results

Theorem (Makanin 1977)

Solving a system of equations over a **free monoid** (i.e. **word equations**) is decidable.

Theorem (Makanin 1977)

Solving a system of equations over a free monoid (i.e. word equations) is decidable.

Theorem (Makanin 1983)

Solving a system of equations over a free group is decidable.

Theorem (Makanin 1977)

Solving a system of equations over a free monoid (i.e. word equations) is decidable.

Theorem (Makanin 1983)

Solving a system of equations over a free group is decidable.

Theorem (Ciobanu, Elder 2019)

Solving a system of equations over a hyberbolic group is decidable.

Theorem (Makanin 1977)

Solving a system of equations over a **free monoid** (i.e. **word equations**) is decidable.

Theorem (Makanin 1983)

Solving a system of equations over a free group is decidable.

Theorem (Ciobanu, Elder 2019)

Solving a system of equations over a hyberbolic group is decidable.

Theorem (folklore)

Solving a system of equations over an abelian group is decidable.

Theorem (Makanin 1977)

Solving a system of equations over a free monoid (i.e. word equations) is decidable.

Theorem (Makanin 1983)

Solving a system of equations over a free group is decidable.

Theorem (Ciobanu, Elder 2019)

Solving a system of equations over a hyberbolic group is decidable.

Theorem (folklore)

Solving a system of equations over an abelian group is decidable.

Theorem (Romankov 1979, Duchin, Liang, Shapiro 2015)

Solving a system of equations over free metabelian groups and over free nilpotent groups is undecidable.

Open problem: find an example of group G, neither hyperbolic nor virtually abelian, such that solving a system of equations is decidable.

Open problem: find an example of group G, neither hyperbolic nor virtually abelian, such that solving a system of equations is decidable.

Most hopeful candidates: abelian-by-cyclic groups.

Definition

A group G is called **abelian-by-cyclic** if it admits an normal subgroup A, such that A is abelian and $G/A \cong \mathbb{Z}$.

Open problem: find an example of group G, neither hyperbolic nor virtually abelian, such that solving a system of equations is decidable.

Most hopeful candidates: abelian-by-cyclic groups.

Definition

A group G is called **abelian-by-cyclic** if it admits an normal subgroup A, such that A is abelian and $G/A \cong \mathbb{Z}$.

Remark: if A is abelian and G/A is <u>finite</u> then G is called **virtually abelian**, and solving a system of equations over G is decidable.

Open problem: find an example of group G, neither hyperbolic nor virtually abelian, such that solving a system of equations is decidable.

Most hopeful candidates: abelian-by-cyclic groups.

Definition

A group G is called **abelian-by-cyclic** if it admits an normal subgroup A, such that A is abelian and $G/A \cong \mathbb{Z}$.

Remark: if A is abelian and G/A is <u>finite</u> then G is called **virtually** abelian, and solving a system of equations over G is decidable.

Examples of abelian-by-cyclic groups:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

Open problem: find an example of group G, neither hyperbolic nor virtually abelian, such that solving a system of equations is decidable.

Most hopeful candidates: abelian-by-cyclic groups.

Definition

A group G is called **abelian-by-cyclic** if it admits an normal subgroup A, such that A is abelian and $G/A \cong \mathbb{Z}$.

Remark: if A is abelian and G/A is <u>finite</u> then G is called **virtually abelian**, and solving a system of equations over G is decidable.

Examples of abelian-by-cyclic groups:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

$$\textbf{Lamplighter group:} \quad (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{F}_2[X^\pm], b \in \mathbb{Z} \right\}$$

Open problem: find an example of group G, neither hyperbolic nor virtually abelian, such that solving a system of equations is decidable.

Most hopeful candidates: abelian-by-cyclic groups.

Definition

A group G is called **abelian-by-cyclic** if it admits an normal subgroup A, such that A is abelian and $G/A \cong \mathbb{Z}$.

Remark: if A is abelian and G/A is <u>finite</u> then G is called **virtually** abelian, and solving a system of equations over G is decidable.

Examples of abelian-by-cyclic groups:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

$$\textbf{Lamplighter group:} \quad (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} := \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{F}_2[X^\pm], b \in \mathbb{Z} \right\}$$

$$\textbf{Wreath product:} \ \ \mathbb{Z} \wr \mathbb{Z} \coloneqq \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \ \middle| \ f \in \mathbb{Z}[X^\pm], b \in \mathbb{Z} \right\}$$

Examples of abelian-by-cyclic groups, where solving equations might be decidable:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

Lamplighter group:
$$(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} \coloneqq \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{F}_2[X^{\pm}], b \in \mathbb{Z} \right\}$$

Wreath product:
$$\mathbb{Z} \wr \mathbb{Z} \coloneqq \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{Z}[X^{\pm}], b \in \mathbb{Z} \right\}$$

Examples of abelian-by-cyclic groups, where solving equations might be decidable:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

Lamplighter group:
$$(\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} \coloneqq \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{F}_2[X^{\pm}], b \in \mathbb{Z} \right\}$$

Wreath product:
$$\mathbb{Z} \wr \mathbb{Z} := \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{Z}[X^{\pm}], b \in \mathbb{Z} \right\}$$

Open problem (Kharlampovich, López, Myasnikov 2020): is solving systems of equations in these groups decidable? (An earlier version of the paper mistakenly claimed that they are decidable.)

Examples of abelian-by-cyclic groups, where solving equations might be decidable:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

$$\textbf{Lamplighter group:} \quad (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} \coloneqq \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{F}_2[X^\pm], b \in \mathbb{Z} \right\}$$

Wreath product:
$$\mathbb{Z} \wr \mathbb{Z} := \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{Z}[X^{\pm}], b \in \mathbb{Z} \right\}$$

Open problem (Kharlampovich, López, Myasnikov 2020): is solving systems of equations in these groups decidable? (An earlier version of the paper mistakenly claimed that they are decidable.)

Theorem (D. 2024)

Solving a system of equations over $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Examples of abelian-by-cyclic groups, where solving equations might be decidable:

Baumslag-Solitar group:
$$\mathsf{BS}(1,2) \coloneqq \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$

$$\textbf{Lamplighter group:} \quad (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{Z} \coloneqq \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \;\middle|\; f \in \mathbb{F}_2[X^\pm], b \in \mathbb{Z} \right\}$$

Wreath product:
$$\mathbb{Z} \wr \mathbb{Z} := \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{Z}[X^{\pm}], b \in \mathbb{Z} \right\}$$

Open problem (Kharlampovich, López, Myasnikov 2020): is solving systems of equations in these groups decidable? (An earlier version of the paper mistakenly claimed that they are decidable.)

Theorem (D. 2024)

Solving a system of equations over $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof idea: embed linear equations with monomial constraints.

Examples of abelian-by-cyclic groups, where solving equations might be decidable:

? Baumslag-Solitar group:
$$BS(1,2) := \left\{ \begin{pmatrix} 2^b & f \\ 0 & 1 \end{pmatrix} \mid f \in \mathbb{Z}[1/2], b \in \mathbb{Z} \right\}$$
?

? Lamplighter group:
$$(\mathbb{Z}/2\mathbb{Z})\wr\mathbb{Z}\coloneqq\left\{\begin{pmatrix}X^b&f\\0&1\end{pmatrix}\;\middle|\;f\in\mathbb{F}_2[X^\pm],b\in\mathbb{Z}\right\}$$
?

Wreath product:
$$\mathbb{Z} \wr \mathbb{Z} := \left\{ \begin{pmatrix} X^b & f \\ 0 & 1 \end{pmatrix} \middle| f \in \mathbb{Z}[X^{\pm}], b \in \mathbb{Z} \right\}$$

Open problem (Kharlampovich, López, Myasnikov 2020): is solving systems of equations in these groups decidable? (An earlier version of the paper mistakenly claimed that they are decidable.)

Theorem (D. 2024)

Solving a system of equations over $\mathbb{Z} \wr \mathbb{Z}$ is undecidable.

Proof idea: embed linear equations with monomial constraints.