

Exemples: 1) On donne un canal à section trapézoïdale dont les caractéristiques sont les suivantes: largeur du fond $l=4\,\mathrm{m}$; pente des berges m=1/1. Déterminer la profondeur critique pour $Q=6\,\mathrm{m}^3/\mathrm{s}$.

On pourrait utiliser l'abaque 120 de la même façon que dans l'exemple qui y est traité. Ce serait le procédé le plus rapide. Toutefois, à titre d'exercice, on tracera la courbe ψ (h) = S $\sqrt{\frac{S}{L}} = S \sqrt{h_{\rm m}}$ au moyen du tableau ci-après :

h		$ \begin{array}{l} L = l + 2 mh = \\ = (4 + 2 h) \end{array} $	$h_m = \frac{S^{(1)}}{L}$	$\sqrt{h_m}$	SVhm
0,45	2,00	4,90	0,41	0,64	I,28
0,50	2,25	5,00	0,45	0,67	I,51
0,55	2,50	5,10	0,49	0,70	I,75
0,60	2,76	5,20	0,53	0,73	2,00
0,65	3,02	5,30	0,57	0,76	2,29

On obtient $\frac{Q}{\sqrt{g}} = \frac{6}{3,13} = 1.92 \text{ m}^{5/2}$. Par interpolation, on détermine la profondeur à laquelle correspond $S\sqrt{h_{\rm m}} = 1.91 \text{ m}^{5/2}$, c'est-à-dire $h_{\rm c} = 0.58 \text{ m}$.

2) Déterminer la profondeur critique pour le cas de l'exemple 2) du

Par application directe de la formule $h_c = \sqrt[3]{\frac{1}{g} \left(\frac{Q}{L}\right)^2}$ (tableau 119),

on obtient :
$$h_{\rm C} = 0.47 \left(\frac{Q}{L}\right)^{2/3} = 0.47 \times \left(\frac{6}{4}\right)^{2/3} = 0.47 \times 1.31 = 0.62 \, {\rm m}.$$

On a déterminé la puissance 2/3 au moyen du tableau 30.