Regular Expressions
Ettoru matching
Substing Search: find a single Shine
in leve
Pattou Hatching: find one of a specified
sit of shings in text
Regular Expression - motation to specify a set
Of shings
Operations
1) concatenation
2) 51
3) donne * (0 or more sourrences)
4) parenthesis ()
s-) wildcard.
6) character class [A-Za-2] [a-2]
7) at loast 1 occurrences +

8) exactly k {ks * Regular expressions are surprisingly expressive o substring search * SPB. * o social security numbers [0-5] {3}-[0-5] {2}-[0-5] {4} k digits o email [a-z]+@([a-z]+\.)+(edu/com) * RE important in the theory of computation · RE (concise way to describe a shing) o DFA (Disoute Finite Automaton) - machine to recognize wheter a given string is in a Siven set

Kleene's theorem · for any DFA, there exists a RE that describes the same set of strings o for any RE, those exists a DFA that recognizes the same set of strings Pattern matching inuplementation Basic Plan o build a DTA from RE o Simulate DPA with text as import Bod news · baric place is imperible; DFA may have exponential # of states Solution - we use NFA instead NFA = Non-deterministic finite automoton Regular Expression matchine NFA · RE endosed in parentheses

o one state per RE character (start=0, accept = H) epsilon · Red E-transition (dange state, but don't scan kert) o Black match fransition (change state and scan to mext text diar) · accept if any requerce of transitions ends in accept state after scorning all text * Systematically consider all possible transition XIFA Simulation Kepte sentation o state names - integers from I to M o match transitions - loop tagular expression in whay he []

o E travesitions => store in digraph G to maintain set of all possible states that NFA could be in after reading in the first i text characters How to perform reachability? - Read next imput diorader · find states reachable by match transitions · find states readvable by E-houritions - Where no more imput disrocters: · accept if any state readable is an accept state · reject otherwise Distart reachability o find all vertices readiable from a given source or set of vertices Solution: rue DFS from lack source

without unmarking vertices * trues in time proportional to E+V * worst case it takes time proportional to XFA Construction · concatenation — o motel transitions · parentheres -s & - housition edge from parentheses to next state o closure. — o add 3 E-transition edges for each # sperator Is 2 E-hour tion edges for each 1 operator distenger - remember left parauthoses to implement closure and Ir; remember / to implement or. Solution STACK / mush

Regular Expression Applications Ofrep => build an 17FA o use grap to solve crossword puzzles o leg Exp built in programming languages · Java String library [input. matches (re) · Jova Util - matcher spattom · evolution — - writing a compiler