First-Order Logic

Shiwali Mohan

Computer Science and Engineering University of Michigan

May 25, 2012

Outline

- 1 Translation
- 2 Unification

3 CNF conversion

4 FOL Resolution

• Every gardener likes the sun.

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$
- You can fool all of the people some of the time.

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$
- You can fool all of the people some of the time.
 - $\forall x. (person(x) \Rightarrow \exists t. (time(t) \land can-fool(x,t)))$

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$
- You can fool all of the people some of the time.
 - $\bullet \ \forall \ x. \ (\mathrm{person}(x) \Rightarrow \exists \ t. \ (\mathrm{time}(t) \, \wedge \, \mathrm{can\text{-}fool}(x,t)))$
- All purple mushrooms are poisonous.

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$
- You can fool all of the people some of the time.
 - \forall x. $(person(x) \Rightarrow \exists$ t. $(time(t) \land can-fool(x,t)))$
- All purple mushrooms are poisonous.
 - $\forall x. (mushroom(x) \land purple(x)) \Rightarrow poisonous(x)$

- Every gardener likes the sun.
 - \forall x. gardener(x) \Rightarrow likes(x,Sun)
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$
- You can fool all of the people some of the time.
 - \forall x. $(person(x) \Rightarrow \exists$ t. $(time(t) \land can-fool(x,t)))$
- All purple mushrooms are poisonous.
 - \forall x. $(mushroom(x) \land purple(x)) \Rightarrow poisonous(x)$
- There are exactly two purple mushrooms.

- Every gardener likes the sun.
 - $\forall x. \text{ gardener}(x) \Rightarrow \text{likes}(x,Sun)$
- You can fool some of the people all of the time.
 - $\exists x. (person(x) \land \forall t.(time(t) \Rightarrow can-fool(x,t)))$
- You can fool all of the people some of the time.
 - \forall x. $(person(x) \Rightarrow \exists$ t. $(time(t) \land can-fool(x,t)))$
- All purple mushrooms are poisonous.
 - \forall x. $(mushroom(x) \land purple(x)) \Rightarrow poisonous(x)$
- There are exactly two purple mushrooms.
 - $(\exists x.\exists y. mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land -(x=y)) \land (\forall z. (mushroom(z) \land purple(z)) \Rightarrow ((x=z) \lor (y=z)))$

Shiwali Mohan

Search 3/9

• parents(x, father(x), mother(Bill)); parents(Bill, father(Bill), y)

- parents(x, father(x), mother(Bill)); parents(Bill, father(Bill), y)
 - $\{x/Bill, y/mother(Bill)\}$

- parents(x, father(x), mother(Bill)); parents(Bill, father(Bill), y)
 - {x/Bill, y/mother(Bill)}
- parents(x, father(x), mother(Bill)); parents(Bill, father(y), z)

- parents(x, father(x), mother(Bill)); parents(Bill, father(Bill), y)
 - {x/Bill, y/mother(Bill)}
- parents(x, father(x), mother(Bill)); parents(Bill, father(y), z)
 - $\{x/Bill, y/Bill, z/mother(Bill)\}$

- $\bullet \ \ parents(x, \ father(x), \ mother(Bill)); \ parents(Bill, \ father(Bill), \ y) \\$
 - {x/Bill, y/mother(Bill)}
- parents(x, father(x), mother(Bill)); parents(Bill, father(y), z)
 - {x/Bill, y/Bill, z/mother(Bill)}
- parents(x, father(x), mother(Jane)); parents(Bill, father(y), mother(y))

- $\bullet \ \ parents(x, \, father(x), \, mother(Bill)); \, parents(Bill, \, father(Bill), \, y) \\$
 - {x/Bill, y/mother(Bill)}
- parents(x, father(x), mother(Bill)); parents(Bill, father(y), z)
 - {x/Bill, y/Bill, z/mother(Bill)}
- $\bullet \ parents(x, \ father(x), \ mother(Jane)); \ parents(Bill, \ father(y), \ mother(y)) \\$
 - Failure

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

• Eliminate implication

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land -\forall y.(-Q(x,y) \lor P(y))))$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \neg \forall y.(-Q(x,y) \lor P(y))))$
- Move inwards
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))
- Standardize Variables

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land \exists \ y.(Q(x,y) \land \text{-P}(y)))) \\$
- Standardize Variables
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land \exists \ z.(Q(x,z) \land \text{-P}(z)))) \\$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - $\bullet \ \forall \ x.(-P(x) \lor (\forall \ y.(-P(y) \lor P(f(x,y))) \land \neg \forall \ y.(-Q(x,y) \lor P(y))))$
- Move inwards
 - $\bullet \ \forall \ x.(-P(x) \lor (\forall \ y.(-P(y) \lor P(f(x,y))) \land \exists \ y.(Q(x,y) \land -P(y))))$
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - $\bullet \ \forall \ x.(\text{-P}(x) \ \lor \ (\forall \ y.(\text{-P}(y) \ \lor \ P(f(x,y))) \ \land \ \exists \ y.(Q(x,y) \ \land \ \text{-P}(y))))$
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \ \land \ \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land \exists \ y.(Q(x,y) \land \text{-P}(y)))) \\$
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$
- Drop universal

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \neg \forall y.(-Q(x,y) \lor P(y))))$
- Move inwards
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))$
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land -P(g(x)))))$
- Drop universal
 - $(-P(x) \lor ((-P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land -P(g(x)))))$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$
- Drop universal
 - $(-P(x) \lor ((-P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land -P(g(x)))))$
- Distribute 'or' over 'and'

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$
- Drop universal
 - (-P(x) \vee ((-P(y) \vee P(f(x,y))) \wedge (Q(x,g(x)) \wedge -P(g(x)))))
- Distribute 'or' over 'and'
 - $\bullet \ (\text{-P}(x) \ \lor \ \text{-P}(y) \ \lor \ P(f(x,y))) \ \land \ (\text{-P}(x) \ \lor \ Q(x,g(x))) \ \land \ (\text{-P}(x) \ v \ \text{-P}(g(x))$

Shiwali Mohan

Search 5/9

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - $\bullet \ \forall \ x.(-P(x) \lor (\forall \ y.(-P(y) \lor P(f(x,y))) \land \neg \forall \ y.(-Q(x,y) \lor P(y)))) \\$
- Move inwards
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$
- Drop universal
 - (-P(x) \vee ((-P(y) \vee P(f(x,y))) \wedge (Q(x,g(x)) \wedge -P(g(x)))))
- Distribute 'or' over 'and'
 - $\bullet \ (\text{-P}(x) \ \lor \ \text{-P}(y) \ \lor \ P(f(x,y))) \ \land \ (\text{-P}(x) \ \lor \ Q(x,g(x))) \ \land \ (\text{-P}(x) \ v \ \text{-P}(g(x))$
- Create separate clauses

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - $\bullet \ \forall \ x.(\text{-P}(x) \ \lor \ (\forall \ y.(\text{-P}(y) \ \lor \ P(f(x,y))) \ \land \ \text{-} \forall \ y.(\text{-Q}(x,y) \ \lor \ P(y)))) \\$
- Move inwards
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists y.(Q(x,y) \land -P(y))))
- Standardize Variables
 - $\forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land \exists z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$
- Drop universal
 - $\bullet \ \left(\text{-P}(x) \, \vee \, \left(\left(\text{-P}(y) \, \vee \, P(f(x,y)) \right) \, \wedge \, \left(Q(x,g(x)) \, \wedge \, \text{-P}(g(x)) \right) \right) \right)$
- Distribute 'or' over 'and'
 - $(-P(x) \lor -P(y) \lor P(f(x,y))) \land (-P(x) \lor Q(x,g(x))) \land (-P(x) \lor -P(g(x)))$
- Create separate clauses
 - $-P(x) \vee -P(y) \vee P(f(x,y))$
 - $-P(x) \vee Q(x,g(x))$
 - $-P(x) \vee -P(g(x))$

$$\forall \ x.(P(x) \Rightarrow (\forall \ y.(P(y) \Rightarrow P(f(x,y))) \land \neg \forall \ y.(Q(x,y) \Rightarrow P(y))))$$

- Eliminate implication
 - \forall x.(-P(x) \lor (\forall y.(-P(y) \lor P(f(x,y))) \land - \forall y.(-Q(x,y) \lor P(y))))
- Move inwards
 - $\bullet \ \forall \ x.(-P(x) \lor (\forall \ y.(-P(y) \lor P(f(x,y))) \land \exists \ y.(Q(x,y) \land -P(y)))) \\$
- Standardize Variables
 - $\bullet \ \forall \ x.(-P(x) \lor (\forall \ y.(-P(y) \lor P(f(x,y))) \land \exists \ z.(Q(x,z) \land -P(z))))$
- Skolemize
 - $\bullet \ \forall \ x.(\text{-P}(x) \lor (\forall \ y.(\text{-P}(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \text{-P}(g(x))))) \\$
- Drop universal
 - $\bullet \ \left(\text{-P}(x) \, \vee \, \left(\left(\text{-P}(y) \, \vee \, P(f(x,y)) \right) \, \wedge \, \left(Q(x,g(x)) \, \wedge \, \text{-P}(g(x)) \right) \right) \right)$
- Distribute 'or' over 'and'
 - $\bullet \ (-P(x) \ \lor \ -P(y) \ \lor \ P(f(x,y))) \ \land \ (-P(x) \ \lor \ Q(x,g(x))) \ \land \ (-P(x) \ v \ -P(g(x))$
- Create separate clauses
 - $-P(x) \vee -P(y) \vee P(f(x,y))$
 - $-P(x) \vee Q(x,g(x))$
 - $-P(x) \vee -P(g(x))$
- Standardize variables
 - $-P(x) \vee -P(y) \vee P(f(x,y))$
 - $-P(z) \vee Q(z,g(z))$
 - $-P(w) \vee -P(g(w))$

Resolution by Refutation

Knowledge Base:

Tony, Sam and Ellen belong to the Activity Club. Every member of the Activity Club is either a skier or a mountain climber or both. No mountain climber likes rain, and all skiers like snow. Ellen dislikes whatever Tony likes and likes everything that Tony dislikes. Tony likes rain and snow.

Question:

Which member of the Activity Club is a mountain climber but not a skier?

Translate to FOL Sentences

member(x) means is a member of activity club, S(x) means x is a skier, M(x) means x is a mountain climber, and L(x,y) means x likes y

- Every member of the Activity Club is either a skier or a mountain climber or both.
- No mountain climber likes rain
- All skiers like snow.
- Tony, Sam and Ellen belong to the Activity Club.

- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
- Tony likes rain and snow.
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
- All skiers like snow.
- Tony, Sam and Ellen belong to the Activity Club.

- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
- Tony likes rain and snow.
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
 - -∃ x. M(x) ∧ L(x, Rain)
- All skiers like snow.
- Tony, Sam and Ellen belong to the Activity Club.

- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
- Tony likes rain and snow.
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
 - -∃ x. M(x) ∧ L(x, Rain)
- All skiers like snow.
 - \forall x. $S(x) \Rightarrow L(x, Snow)$
- Tony, Sam and Ellen belong to the Activity Club.

- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
- Tony likes rain and snow.
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
 - $-\exists x. M(x) \wedge L(x, Rain)$
- All skiers like snow.
 - \forall x. $S(x) \Rightarrow L(x, Snow)$
- Tony, Sam and Ellen belong to the Activity Club.
 - member(Tony)
 - member (Sam)
 - member (Ellen)
- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
- Tony likes rain and snow.
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
 - $-\exists x. M(x) \wedge L(x, Rain)$
- All skiers like snow.
 - \forall x. $S(x) \Rightarrow L(x, Snow)$
- Tony, Sam and Ellen belong to the Activity Club.
 - member(Tony)
 - member (Sam)
 - member (Ellen)
- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
 - \forall y. L(Ellen, y) \Leftrightarrow -L(Tony, y)
- Tony likes rain and snow.
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
 - -∃ x. M(x) ∧ L(x, Rain)
- All skiers like snow.
 - \forall x. $S(x) \Rightarrow L(x, Snow)$
- Tony, Sam and Ellen belong to the Activity Club.
 - member(Tony)
 - member (Sam)
 - member (Ellen)
- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
 - \forall y. L(Ellen, y) \Leftrightarrow -L(Tony, y)
- Tony likes rain and snow.
 - L(Tony, Rain)
 - L(Tony, Snow)
- Which member of the Activity Club who is a mountain climber but not a skier?

- Every member of the Activity Club is either a skier or a mountain climber or both.
 - \forall x. member(x) \Rightarrow (S(x) \vee M(x))
- No mountain climber likes rain
 - $-\exists x. M(x) \wedge L(x, Rain)$
- All skiers like snow.
 - \forall x. $S(x) \Rightarrow L(x, Snow)$
- Tony, Sam and Ellen belong to the Activity Club.
 - member(Tony)
 - member (Sam)
 - member (Ellen)
- Ellen dislikes whatever Tony likes and likes everything that Tony dislikes.
 - \forall y. L(Ellen, y) \Leftrightarrow -L(Tony, y)
- Tony likes rain and snow.
 - L(Tony, Rain)
 - L(Tony, Snow)
- Which member of the Activity Club who is a mountain climber but not a skier?
 - Query $(\exists x. member(x) \land M(x) \land -S(x))$
 - Negation of the Query or Answer literal (- \exists x. member(x) \land M(x) \land -S(x)) \lor Ans(x)

```
\forall x. \text{ member}(x) \Rightarrow S(x) \vee M(x)
                                                        1. -member(x1) \vee S(x1) \vee M(x1)
-\exists x. M(x) \wedge L(x, Rain)
                                                        2. -M(x2) \vee -L(x2, Rain)
\forall x. S(x) \Rightarrow L(x, Snow)
                                                        3. -S(x3) \vee L(x3, Snow)
member(Tony)
                                                        4. member(Tony)
member (Sam)
                                                        5. member(Sam)
member (Ellen)
                                                        6. member(Ellen)
\forall v. L(Ellen, v) \Leftrightarrow -L(Tony, v)
                                                        7. -L(Tony, x4) \vee -L(Ellen, x4)
                                                        8. L(Tony, x5) \vee L(Ellen, x5)
L(Tony, Rain)
                                                        9. L(Tony, Rain)
L(Tony, Snow)
                                                        10. L(Tony, Snow)
(-\exists x. \text{ member}(x) \land M(x) \land -S(x)) \lor Ans(x)
                                                        11. (-member(x7) \lor -M(x7)
                                                        \vee S(x7) \vee Ans(x7)
```

- \bullet -member(x1) \vee S(x1) \vee M(x1)
- $\mathbf{2}$ -M(x2) \vee -L(x2, Rain)
- $3 S(x3) \vee L(x3, Snow)$
- member(Tony)
- 6 member(Sam)
- 6 member(Ellen)
- \bullet -L(Tony, x4) \vee -L(Ellen, x4)
- \otimes L(Tony, x5) \vee L(Ellen, x5)
- L(Tony, Rain)
- L(Tony, Snow)

- \bullet -member(x1) \vee S(x1) \vee M(x1)
- \circ -M(x2) \vee -L(x2, Rain)
- $3 S(x3) \vee L(x3, Snow)$
- member(Tony)
- 6 member(Sam)
- 6 member(Ellen)
- \bullet -L(Tony, x4) \vee -L(Ellen, x4)
- & L(Tony, x5) \lor L(Ellen, x5)
- 9 L(Tony, Rain)
- L(Tony, Snow)

- \bullet -member(x1) \vee S(x1) \vee M(x1)
- $\mathbf{2}$ -M(x2) \vee -L(x2, Rain)
- $3 S(x3) \vee L(x3, Snow)$
- member(Tony)
- 6 member(Sam)
- 6 member(Ellen)
- \bullet -L(Tony, x4) \vee -L(Ellen, x4)
- & L(Tony, x5) \lor L(Ellen, x5)
- L(Tony, Rain)
- L(Tony, Snow)

- **®** L(x1, Snow) \vee (-member(x1) \vee Ans(x1)) [12,3] {x3/x1}

- \bullet -member(x1) \vee S(x1) \vee M(x1)
- \circ -M(x2) \vee -L(x2, Rain)
- $3 S(x3) \vee L(x3, Snow)$
- 4 member(Tony)
- 6 member(Sam)
- 6 member(Ellen)
- \bullet -L(Tony, x4) \vee -L(Ellen, x4)
- \bullet L(Tony, x5) \vee L(Ellen, x5)
- 9 L(Tony, Rain)
- L(Tony, Snow)
- \bullet S(x1) \vee (-member(x1) \vee Ans(x1)) [11,1] {x7/x1}
- & L(x1, Snow) \lor (-member(x1) \lor Ans(x1)) [12,3] {x3/x1}
- \bullet -L(Tony, Snow) \vee (-member(Ellen) \vee Ans(Ellen)) [13,7] {x4/Snow, x1/Ellen}

- \bullet -member(x1) \vee S(x1) \vee M(x1)
- $\mathbf{2}$ -M(x2) \vee -L(x2, Rain)
- $3 S(x3) \vee L(x3, Snow)$
- member(Tony)
- 6 member(Sam)
- 6 member(Ellen)
- \bullet -L(Tony, x4) \vee -L(Ellen, x4)
- & L(Tony, x5) \lor L(Ellen, x5)
- L(Tony, Rain)
- L(Tony, Snow)

- **®** L(x1, Snow) \vee (-member(x1) \vee Ans(x1)) [12,3] {x3/x1}
- -L(Tony, Snow) \vee (-member(Ellen) \vee Ans(Ellen)) [13,7] {x4/Snow, x1/Ellen}
- \bullet -member(Ellen) v Ans(Ellen) [14,7] {}

- $\bullet \text{ -member}(x1) \vee S(x1) \vee M(x1)$
- \circ -M(x2) \vee -L(x2, Rain)
- $3 S(x3) \vee L(x3, Snow)$
- 4 member(Tony)
- 6 member(Sam)
- 6 member(Ellen)
- \bullet -L(Tony, x4) \vee -L(Ellen, x4)
- \bullet L(Tony, x5) \vee L(Ellen, x5)
- 9 L(Tony, Rain)
- L(Tony, Snow)
- \bullet S(x1) \vee (-member(x1) \vee Ans(x1)) [11,1] {x7/x1}
- $\ \ \, \mathbb{E}\left(\mathrm{x}1,\,\mathrm{Snow}\right)\,\vee\,\left(\mathrm{-member}(\mathrm{x}1)\,\vee\,\mathrm{Ans}(\mathrm{x}1)\right)\,\left[12,3\right]\,\left\{\mathrm{x}3/\mathrm{x}1\right\}$
- \bullet -L(Tony, Snow) \vee (-member (Ellen) \vee Ans (Ellen)) [13,7] {x4/Snow, x1/Ellen}
- -member(Ellen) v Ans(Ellen) [14,7] {}
- Ans(Ellen) [15,6] {}