Métodos Numéricos - Demostraciones de las observaciones

Victoria Eugenia Torroja Rubio

8/9/2025

Proposición (Proposición 2.11, Página 71). Sea $\|\cdot\|$ una norma en V. La aplicación $|||\cdot|||: \mathcal{M}_n \to \mathbb{R}^+ \cup \{0\}$ dada por

$$|||A||| = \sup_{v \neq 0} \frac{||Av||}{||v||} = \sup_{||v|| = 1} ||Av||,$$

es una norma matricial.

Demostración. Veamos que se cumplen las propiedades de las normas matriciales.

- (i) Está claro que como $||Av|| \ge 0$, $\forall v \in V$, si |||A||| = 0, debe ser que A = 0.
- (ii) Si $\lambda \in \mathbb{K}$,

$$|||\lambda A||| = \sup_{\|v\|=1} \|\lambda Av\| = \sup_{\|v\|=1} |\lambda| \, ||Av\| = |\lambda| \, \sup_{\|v\|=1} = |\lambda| \, |||A|||.$$

(iii) Si $A, B \in \mathcal{M}_n$,

$$|||A+B||| = \sup_{\|v\|=1} \|\left(A+B\right)v\| = \sup_{\|v\|=1} \|Av+Bv\| \leq \sup_{\|v\|=1} (\|Av\| + \|Bv\|) = \sup_{\|v\|=1} \|Av\| + \sup_{\|v\|=1} \|Bv\|.$$

(iv) Si $A, B \in \mathcal{M}_n$,

$$|||AB||| = \sup_{\|v\|=1} \|ABv\| \leq |||A||| \cdot \sup_{\|v\|=1} \|Bv\| = |||A||| \cdot |||B|||.$$

En efecto, por definición tenemos que

$$|||A||| = \sup_{v \neq 0} \frac{||Av||}{||v||} \ge \frac{||Av||}{||v||} \iff |||A||| \cdot ||v|| \ge ||Av||.$$