Групповой проект по математическому моделированию

Список заданий

Задача 1.

Вслед за лордом Рэлеем найдите период малых колебаний капелек жидкости под действием их поверхностного натяжения, считая, что всё происходит вне гравитационного поля (в космосе).

Задача 2.

В приведённом наборе данных V представляет собой среднюю скорость ходьбы, а P — численность популяции. Мы хотим узнать, можно ли предсказать численность популяции P, наблюдая за тем, как быстро ходят люди. «Подгоните» моделям $P = a \ln V$ и $P = a V^b$ к имеющимся данным с помощью критерия наименьших квадратов. Сравните модели с помощью критерия Фишера.

V	4.81	4.90	5.05	5.21	5.62	5.88
P	341948	49375	260200	867023	1340000	1092759

Задача 3.

Изучается распределение температуры u=u(x,t) в тонком бесконечном металлическом стержне, боковая поверхность которого теплоизолирована. Внутри стержня нет источника тепла. Коэффициент температуропроводности стержня $\alpha=\frac{1}{20}$. Начальное распределение температуры в стержне имеет вид

$$\varphi(x) = (1 - x)(\theta(x) - \theta(x - 1)),$$

где

$$\theta(x) = \begin{cases} 0, x < 0, \\ 1, x \ge 0 \end{cases}$$

- ступенчатая функция Хевисайда.
 - 1. Решите задачу с помощью преобразования Фурье и постройте 3D-график полученного решения.
 - 2. Постройте анимацию пространственно-временного распределения температуры в стержне при $0 \le t \le 5$.

Задача 4.

Максимизируйте целевую функцию g(x,y) = 2x - y при следующих условиях:

$$\begin{cases} x \le 3, \\ y \ge -1, \\ -2x - 3y \le 6, \\ -x + 2y \le 6. \end{cases}$$