Álgebra lineal I, Grado en Matemáticas

Septiembre 2019

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz escalonada
- (b) Dependencia e independencia lineal de vectores.
- (c) Isomorfismo.
- (d) Núcleo e imagen de una aplicación lineal.

Ejercicio 1: (2 puntos)

Demuestre el siguiente resultado: Si v_1, \ldots, v_m son vectores linealmente independientes de un espacio vectorial V y v_{m+1} es un vector de V que no es combinación lineal de v_1, \ldots, v_m entonces $v_1, \ldots, v_m, v_{m+1}$ son linealmente independientes.

Ejercicio 2: (3 puntos)

(a) Discutir el siguiente sistema según los valores de los parámetros $a, b \in \mathbb{R}$

$$\begin{cases} x + y + z = a+1 \\ ax + y + (a-b)z = a \\ x + ay + z = 1 \end{cases}$$

(b) Resolver en el caso b = 0 y a = -1.

Ejercicio 3 (2 puntos)

Sean V un \mathbb{K} —espacio vectorial de dimensión 4 y

$$U \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ + 2x_2 + x_3 - x_4 = 0 \end{cases}$$

un subespacio vectorial de V cuyas ecuaciones están referidas a una base $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$. Determine todos los subespacios suplementarios de U que contienen a la recta $R = L(v_1 + v_2 + v_4)$. ¿Alguno de ellos contiene a la recta $S = L(-v_1 + v_3 + v_4)$?

Ejercicio 4: (1 punto)

Sean $\mathcal{B} = \{v_1, v_2\}$ y $\mathcal{B}' = \{u_1, u_2, u_3\}$ bases de dos \mathbb{K} -espacios vectoriales V y V', respectivamente. Determine si es lineal la aplicación $f: V \to V'$ definida como sigue:

$$f(v_1) = u_1 + u_2 + u_3$$
, $f(v_2) = u_1 - u_2$, $f(2v_1 - 3v_2) = -u_1 + 5u_2 - 3u_3$

Ejercicio 1: Proposición 3.8, página 97.

Ejercicio 2: (a) Discutir el siguiente sistema según los valores de los parámetros $a, b \in \mathbb{R}$

$$\begin{cases} x + y + z = a+1 \\ ax + y + (a-b)z = a \\ x + ay + z = 1 \end{cases}$$

(b) Resolver en el caso b = 0 y a = -1.

Solución: (Ejercicio 1ª PEC 2016/17)

(a) Para discutir el sistema, consideramos la matriz ampliada (A|B) y la escalonamos para posteriormente aplicar el Teorema de Rouché Fröbenius.

$$(A|B) = \begin{pmatrix} 1 & 1 & 1 & a+1 \\ a & 1 & a-b & a \\ 1 & a & 1 & 1 \end{pmatrix} \xrightarrow{f_2 \to f_2 - af_1} \begin{pmatrix} 1 & 1 & 1 & a+1 \\ 0 & 1-a & -b & -a^2 \\ 0 & a-1 & 0 & -a \end{pmatrix} = (A'|B')$$

Caso 1 : Si a = 1, la última fila es equivalente a la ecuación 0 = -1, que hace el sistema incompatible. Visto de otro modo: habría un pivote en la última columna de (A'|B'), y así $\operatorname{rg}(A') < \operatorname{rg}(A'|B')$.

Caso 2 : Supongamos $a \neq 1$ y continuemos escalonando el sistema:

$$\xrightarrow{f_3 \to f_3 + f_2} \begin{pmatrix}
1 & 1 & 1 & a+1 \\
0 & 1-a & -b & -a^2 \\
0 & 0 & -b & -a^2 - a
\end{pmatrix} = (A''|B'')$$

Caso 2.1 : si $b \neq 0$, entonces $\operatorname{rg}(A'') = \operatorname{rg}(A''|B'') = 3$ que es el número de incógnitas, luego el sistema es compatible determinado.

Caso 2.2 : si b = 0 y $-a^2 - a = 0$, entonces la última ecuación es trivial 0 = 0, y $\operatorname{rg}(A'') = \operatorname{rg}(A''|B'') = 2$ menor que el número de incógnitas, luego el sistema es compatible indeterminado.

Caso 2.3 : si b=0 y $-a^2-a\neq 0$, entonces hay un pivote en la última columna de (A''|B'') y $\operatorname{rg}(A'')=2<\operatorname{rg}(A''|B'')=3$, luego el sistema es incompatible.

En resumen:

- Si $b \neq 0$ y $a \neq 1$: compatible determinado.
- Si b = 0 y $a \in \{0, -1\}$: compatible indeterminado.
- En el resto de casos, sistema incompatible.
- (b) Si b=0 y a=-1, estaríamos en el caso 2.2 pues $a\neq 1$ y $-a^2-a=0$. La matriz del sistema escalonado equivalente A''X=B'' (eliminando la última fila nula) es:

$$\left(\begin{array}{cc|cc|c} 1 & 1 & 1 & 0 \\ 0 & 2 & 0 & -1 \end{array}\right)$$

Las incógnitas principales son x e y y la secundaria $z = \lambda$. Despejando las principales se obtiene la solución general:

$$\left(\frac{1}{2} - \lambda, \frac{-1}{2}, \lambda\right)$$
 con $\lambda \in \mathbb{R}$.

Ejercicio 3: Sean V un \mathbb{K} —espacio vectorial de dimensión 4 y

$$U \equiv \begin{cases} x_1 + x_2 + x_3 + x_4 = 0\\ 2x_2 + x_3 - x_4 = 0 \end{cases}$$

un subespacio vectorial de V cuyas ecuaciones están referidas a una base $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$. Determine todos los subespacios suplementarios de U que contienen a la recta $R = L(v_1 + v_2 + v_4)$. ¿Alguno de ellos contiene a la recta $S = L(-v_1 + v_3 + v_4)$?

Solución: El ejercicio es análogo al F5.10 (lista ejercicios foro 5)

Comenzamos determinado una base de U. La dimensión de U es 2 ya que está determinado por 2 ecuaciones implícitas y siempre se cumple la fórmula

$$\dim V = \dim U + n^{\circ}$$
 ecuaciones de U

Podemos determinar la base resolviendo el sistema y obteniendo las ecuaciones paramétricas. Una posible base es:

$$\mathcal{B}_U = \{u_1 = (1, 1, -2, 0)_{\mathcal{B}}, u_2 = (-3, 1, 0, 2)_{\mathcal{B}}\}\$$

Un subespacio W es suplementario de U si y sólo si está generado por dos vectores $W = L(u_3, u_4)$ de modo que $\{u_1, u_2, u_3, u_4\}$ sea una base de V. Nos piden los suplementarios que contienen a la recta $R_1 = L((1,1,0,1)_{\mathcal{B}})$, de modo que podemos tomar $u_3 = (1,1,0,1)_{\mathcal{B}}$. Por otro lado $u_4 = (a,b,c,d)_{\mathcal{B}}$ sólo deberá cumplir la condición de independencia lineal del conjunto de vectores $\{u_1, u_2, u_3, u_4\}$. Éstos vectores son linealmente independientes si y sólo si la correspondiente matriz de coordenadas, respecto de la base \mathcal{B} , tiene rango 4 o equivalentemente determinante distinto de 0

$$\det \begin{pmatrix} 1 & 1 & -2 & 0 \\ -3 & 1 & 0 & 2 \\ 1 & 1 & 0 & 1 \\ a & b & c & d \end{pmatrix} = 2a - 10b - 4c + 8d \neq 0 \iff a - 5b - 2c + 4d \neq 0$$

Así, todos los suplementarios de U que contienen a la recta R son de la forma

$$L((1,1,0,1)_{\mathcal{B}}, (a,b,c,d)_{\mathcal{B}}) \text{ con } a-5b-2c+4d \neq 0 \quad (*)$$

A continuación estudiamos si alguno de estos subespacios contiene a la recta

$$S = L(-v_1 + v_3 + v_4) = L((-1, 0, 1, 1)_{\mathcal{B}})$$

Si W_S es un suplementario de U que contiene a las rectas R y S, entonces

$$W_S = L(u_3 = (1, 1, 0, 1)_B, u_4 = (-1, 0, 1, 1)_B)$$

y cumplirá la condición (*). En efecto, si (-1,0,1,1)=(a,b,c,d) se cumple $a-5b-2c+4d=1\neq 0$, luego el subespacio W_S es el suplementario de U y contiene a R y a S.

Ejercicio 4: Sean $\mathcal{B} = \{v_1, v_2\}$ y $\mathcal{B}' = \{u_1, u_2, u_3\}$ bases de dos \mathbb{K} -espacios vectoriales V y V', respectivamente. Determine si es lineal la aplicación $f: V \to V'$ definida como sigue:

$$f(v_1) = u_1 + u_2 + u_3, \ f(v_2) = u_1 - u_2, \ f(2v_1 - 3v_2) = -u_1 + 5u_2 - 3u_3$$

Solución: Una aplicación en las condiciones dadas no sería lineal pues debería cumplir

$$f(2v_1 - 3v_2) = 2f(v_1) - 3f(v_2)$$

y esta condición no se cumple ya que

$$2f(v_1) - 3f(v_2) = 2(u_1 + u_2 + u_3) - 3(u_1 - u_2) = -u_1 + 5u_3 + 2u_3 \neq f(2v_1 - 3v_2)$$