Computational Frameworks

Streaming (Part 2)

OUTLINE

- Sketching
 - Estimating individual frequencies
 - Estimating the second moment F₂
- 2 Filtering: Bloom filters for membership problem

Sketching

Objective

Let us recall **our setting:**

- Stream $\Sigma = x_1, x_2, \dots, x_n$, whose elements belong to a universe U, with |U| = M.
- For each $u \in U$ its frequency in Σ is

$$f_u = |\{j : x_j = u, 1 \le j \le n\}|,$$

In one pass over Σ we want to compute a **small sketch** which enables to compute **unbiased estimates** of

- f_u for any given $u \in U$ (individual frequencies)
- $F_2 = \sum_{u \in U} (f_u)^2$ (second moment)

which exhibit provable (probabilistic) space-accuracy tradeoffs

Observation: clearly, the exact computation of all f_u 's or of F_2 might require space proportional to $|\Sigma|$.

Count-min sketch

The first approach we consider is based on the count-min sketch invented by [Cormode, Muthukrishnan 2003].

Main ingredients

- $d \times w$ array C of counters $(O(\log n))$ bits each)
- d hash functions: h_1, h_2, \ldots, h_d , with

$$h_i: U \to \{1, 2, \ldots, w\},\$$

for every j.

Note that d and w are design parameters that regulate the space/time-accuracy tradeoff.

Count-min sketch: algorithm

Initialization: C[j, k] = 0, for every $1 \le j \le d$ and $1 \le k \le w$.

For each x_t in Σ do

For
$$1 \le j \le d$$
 do $C[j, h_j(x_t)] \leftarrow C[j, h_j(x_t)] + 1$;

At the end of the stream: for any $u \in U$, its frequency f_u can be estimated as:

$$\tilde{f}_u = \min_{1 \le j \le d} C[j, h_j(u)].$$

It is always true that fu > fu + v > biased estimator

Example: n = 15, d = 3, w = 3

$$\Sigma = A, B, C, B, D, A, C, D, A, B, D, C, A, A, B$$

u, f_u	h_1	h_2	h_3
A, 5	1	2	2
B, 4	2	3	2
C, 3	1	1	3
D, 3	2	2	3

	Array C	
5 A+ 3c	48+30	
30	5A+30	413
	5 ATUB	30+30

•
$$\tilde{f}_A = \min \{ 8, 8, 9 \} = 8 > \beta_A = 5$$

•
$$\tilde{f}_C = m \cdot n \{ g, 3, 6 \} = 3 = f_C$$

Count-min sketch: analysis

We assume:

- the d hash functions h_1, h_2, \ldots, h_d are mutually independent
- for each $j \in [1, d]$ and each $u, v \in U$ with $u \neq v$, $h_i(u)$ and $h_i(v)$ are independent random variables uniformly distributed in [1, w].

Theorem

Consider a $d \times w$ count-min sketch for a stream Σ of length n, where $d = \log_2(1/\delta)$ and $w = 2/\epsilon$, for some $\delta, \epsilon \in (0,1)$. The sketch ensures that for any given $u \in U$ occurring in Σ acure cy

$$\tilde{f}_u - f_u \leq \epsilon \cdot n,$$

with probability $\geq 1 - \delta$. \longrightarrow con fide we

Obs.: The bias in the estimated frequencies discourages their use to estimate the second moment F_2 .

Intution if h; (v) is independent of h; (u) hu +v then ([j, hj(u)] will receive, on everege a fection W of the detinat dements of I, hence a frechon w of the sum of all frequences i.e. n/w => Togethe with fu all Chi, h; (4)] will outain an addtoned outribution which is on everge, < n/w

=) of W= 2/E then n/w = En/2 => 13y Markov inquely (tj.hj.a)] - fu < En with constant pobelity Then repeating I times, the pelology becomes 1- 8 using d = 9 (ly (1/8))

Count sketch

The count sketch was invented by [Charikar, Chen, Farach-Colton 2002], and can be seen as an **unbiased variant of the count-min sketch**.

IDEA: for each item $u \in U$ multiply its contributions to each row by a value in $\{-1, +1\}$ randomly selected, so to cancel out collisions.

Main ingredients

- $d \times w$ array C of counters $(O(\log n))$ bits each)
- d hash functions: h_1, h_2, \ldots, h_d , with

$$h_i: U \to \{1, 2, \ldots, w\},\$$

for every j.

• d hash functions: g_1, g_2, \ldots, g_d , with

$$g_j : U \to \{-1, +1\},$$

for every j.

Count sketch: algorithm

Initialization: C[j, k] = 0, for every $1 \le j \le d$ and $1 \le k \le w$.

For each x_t in Σ do

For
$$1 \le j \le d$$
 do $C[j, h_j(x_t)] \leftarrow C[j, h_j(x_t)] + g_j(x_t)$;

At the end of the stream: for any $u \in U$ and $1 \le j \le d$, let

$$\tilde{f}_{u,j} = g_j(u) \cdot C[j, h_j(u)].$$

The frequency of u can be estimated as:

$$\tilde{f}_u = \text{median of the } \tilde{f}_{u,j}$$
's

Example: n = 15, d = 3, w = 3

$$\Sigma = A, B, C, B, D, A, C, D, A, B, D, C, A, A, B$$

u, f_u	h_1	g ₁	h_2	g ₂	<i>h</i> ₃	g 3
A, 5	1	+1	2	+1	2	+1
B, 4	2	-1	3	+1	2	-1
C, 3	1	-1	1	-1	3	+1
D, 3	2	-1	2	+1	3	+1

	Array C	
5A-3c	-43-3D	
-30	5A+3D	4 _B
	5A-4B	30+30

• \tilde{f}_A = med: a $\{2, 8, 1\} = 2 < f_A = 5$ • \tilde{f}_B = med: a $\{7, 4, -1\} = 4 = f_B$ • \tilde{f}_C = mede: $\{-2, 3, 6\} = 3 = f_C$ • \tilde{f}_D = mede: $\{7, 8, 6\} = 6, 7, f_D = 3$

Count sketch: analysis

Assumptions: for both sets of hash functions (the h_j 's and the g_j 's) we make the same assumptions of independence and uniform distribution, which we made for the h_j 's in the analysis of the count-min sketch.

Theorem

Consider a $d \times w$ count sketch for a stream Σ of length n, where $d = \log_2(1/\delta)$ and $w = O\left(1/\epsilon^2\right)$, for some $\delta, \epsilon \in (0,1)$. The sketch ensures that for any given $u \in U$ occurring in Σ :

- $\mathrm{E}[\tilde{f}_{u,j}] = f_u$, for any $j \in [1,d]$, i.e., $\tilde{f}_{u,j}$ is an unbiased estimator of f_u ;
- With probability $\geq 1 \delta$,

$$|\tilde{f}_u - f_u| \le \epsilon \cdot \sqrt{F_2},$$

where $F_2 = \sum_{u \in U} (f_u)^2$ (true second moment).

Intuition. Due to the random signs, on average the "noise" created by several items colliding on the same colum as a u, cancel out.

Count-min sketch vs count sketch Guerenteed dsurpency for ٤n count- min sketch count sketch E VF2 $F_2 = \sum_{u \in U} (f_u)^2 \le (\sum_{u \in U} f_u)^2 = n^2$ E/F < 5/n2 = En => count-sketh pardes unbiesed estimetis (in each sow) and tighter fu's at least for not too skeened ditabution, but needs more space

Estimation of F_2

Given a $d \times w$ count-sketch for Σ , define

$$\tilde{F}_{2,j} = \sum_{k=1}^{w} (C[j,k])^{2}. \quad \forall \quad | \downarrow j \not \sqsubseteq d$$

We can derive the following estimate for the true second moment F_2 :

$$\tilde{F}_2$$
 = median of the $\tilde{F}_{2,j}$'s

Observation: the estimator is the result of a line of resarch initiated by [Alon, Matias, Szegedy 1996] who proposed the AMS sketch, and ancestor of the count sketch.

Example (same as before)

$$\Sigma = A, B, C, B, D, A, C, D, A, B, D, C, A, A, B$$

 $F_2 = (f_A)^2 + (f_B)^2 + (f_C)^2 + (f_D)^2 = 5^2 + 4^2 + 3^2 + 3^2 = 59.$

Array	C from	before
2	-7	
-3	8	4
	1	6

- Estimate from row j = 1: $2^2 + (-7)^2 = 53$
- Estimate from row j = 2: (-3) 2 2 2 4 2 = 89
- Estimate from row j = 3: $146^2 = 37$

$$\Rightarrow \tilde{F}_2 = 53 \qquad \left(F_2 = 59\right)$$

Analysis of \tilde{F}_2

The following theorem can be proved under the same assumptions made for the analysis of the count sketch

Theorem

Consider a $d \times w$ count-min sketch for a stream Σ of length n, where $d = \log_2(1/\delta)$ and $w = O\left(1/\epsilon^2\right)$, for some $\delta, \epsilon \in (0,1)$. The sketch ensures that:

- $\mathbb{E}[\tilde{F}_{2,j}] = F_2$, for any $j \in [1, d]$, i.e., $\tilde{F}_{2,j}$ is an unbiased estimator of F_2 ;
- With probability $\geq 1 \delta$,

$$|\tilde{F}_2 - F_2| \le \epsilon \cdot \sqrt{F_2},$$

In the following slides, we show that $\mathbb{E}[\tilde{F}_{2,j}] = F_2$ for every j, while we skip the proof of the second bullet point.

20										

21										

22									

23									

Analysis of performance metrics

Both count-min and count sketches can be computed in 1 pass

To assess space and time performance, we assume:

- Each hash function can be applied in constant time
- The space occupied by the sketch dominates over the one needed to store the hash functions

For both sketches we have

- Working memory: $O(d \cdot w)$, which becomes $O(\log(1/\delta)/\epsilon)$, for the count-min sketch, and $O(\log(1/\delta)/\epsilon^2)$, for the count sketch, in order to attain the proabilistic accuracy stated before.
- Processing time per element: $O(d) = O(\log(1/\delta))$,

Moreover, given the sketch, the estimates \tilde{f}_u 's (individual frequencies) and \tilde{F}_2 (second moment) can be computed in O(d) and $O(d \cdot w)$ time, respectively.

Filtering

Motivation

For many applications, processing a data stream $\Sigma = x_1, x_2, \dots$ entails essentially the identification of the x_i 's which meet a certain criterion.

Some criteria can be checked very easily with a minimum cost in terms of space and time. However, this is not always the case.

Example. Suppose that the x_i 's are email addresses and that when x_i arrives we need to check whether it belongs to a set S of verified addresses. If S is very large (e.g., 1 billion addresses of approximately 20 bytes each), we face two issues:

- If S does not fit into main memory, it must be stored on disk.
- Standard exact techniques to check $x_i \in S$, especially if S is on disk, may be time consuming and not compatible with a high arrival rate.

Can we check membership efficiently with reasonable accuracy?

Bloom filter

Approximate membership problem

Given a stream $\Sigma = x_1, x_2, ...$ of elements from some universe U, and let S be a set of m elements from U. Store S into a compact data structure that, for any given x_i , allows to check whether $x_i \in S$ with

- no error, when $x_i \in S$ (No false negatives)
- small probability error, when $x_i \notin S$ (Small false positive rate)

A solution to the problem comes from the **Bloom filter**, introduced in [Bloom 1970]. Its **main ingredients** are:

- Array A of n bits, all initially 0.
- k hash functions: h_1, h_2, \ldots, h_k , with

$$h_j \ : \ U \to \{0,1,\ldots,n-1\}$$
 for every $1 \le j \le k$

Note that n and k are design parameters that regulate the tradeoff between space/time and accuracy.

Bloom filter

Initialization:

For each $e \in S$ do

For
$$1 \le j \le k$$
 do $A[h_j(e)] \leftarrow 1$;

A & the conject representation of S we are looking for

Membership test: for any x_i in Σ if

$$x_i \in S \Leftrightarrow h_1(x_i) = h_2(x_i) = \cdots = h_k(x_i) = 1$$

Straighforward properties:

- The approach ensures that there are no false negatives
- Assuming that $k \ll n$, and that the hash functions can be stored compactly, the required working memory is dominated by the storage of $A \Rightarrow n$ bits.
- Assuming that each hash function can be applied in O(1) time, the membership test requires O(k) time.

Bloom filter: analysis of false positive rate

Assumptions: for the set of hash functions (the h_j 's) we make the same assumptions of independence and uniform distribution, which we made in the analysis of the count-min sketch.

Theorem

Suppose that n is ufficiently large. For any given x_i which does not belong to S, the probability that x_i is erroneously claimed to be in S is

$$\Pr(A[h_i(x_i)] = 1 \text{ for each } 1 \leq j \leq k) \simeq (1 - e^{-km/n})^k$$

This probability is referred to as false positive rate.

Email example: In the case of email addresses mentioned before, $m = 10^9$ and storing the entire set S would require 20GB (assuming that each email takes 20 bytes). Using a Bloom filter with n = 8m (hence |A| = 1GB), and k = 6, the false positive rate is about 2.15%.

Prob (A[1] = 0) = (1-1) k·m & anditreny l $= \left(1 - \frac{1}{2}\right) \frac{n}{n} km$ $\simeq \left(\frac{1}{e}\right) \frac{km}{n} = e km/n$ using the pect that he large in (1-1/n) == Defin p = e Km/n and assume that A contains "exectly" p.n o's Consider x; of and let lj = h; (xi) index returned by hj for x;

Prob (xci is enousely deimed to be in S) = Pub (A [e.] = A[ez] = ... = A[ex] = 1) = TT Prob (A[ej] = 1) = TT (1-P-5(A[(j]=0)) = (1-p) K = (1- e) K

Obs. Un ug stoudand calculus it can be proved that he fixed n, m the best clare for K is $K = \frac{n}{m} \ln 2$ (absent integer to n (n2)

Exercise

Consider a stream $\Sigma = x_1, x_2, \dots, x_n$ of n measurements from sensors. Each measurement x_i is a pair (k_i, w_i) , where k_i is the ID of a sensor and w_i is the value of the measurement (an integer). For a given sensor u occurring in Σ define

$$f_u = \sum_{(k_i, w_i) \in \Sigma : k_i = u} w_i,$$

i.e., the aggregate measurements taken by u.

- **1** Briefly describe a space-efficient unbiased estimator for $\sum_{u} (f_u)^2$, where the sum is over all sensors occurring in the stream.
- 2 What can you say about the unbiasedness of your estimator?

Exercise

Consider a Bloom filter built to assess membership for a set S of m elements. The Bloom filter consists of a n-bit array A and k hash functions h_1, h_2, \ldots, h_k , mutually independent and with values uniformly distributed in [0, n-1]. Assume that n is even, and that each hash function h_i is such that, for every $e \in S$, $h_i(e) \mod n/2$ is uniformly distributed in [0, n/2 - 1].

- 1 Show how to transform, in O(n) time, the given Bloom filter into a new Bloom filter based on an n/2-bit array B, and describe how to assess membership with the new Bloom filter.
- 2 Compute the probability that a given cell B[i] of the new array is 0.

References

- [LRU14] J. Leskovec, A. Rajaraman and J. Ullman. Mining Massive Datasets. Cambridge University Press, 2014. Chapter 4 (Sections 4.3-4.5) (pdf provided in Moodle)
- [CGHJ12] G. Cormode, M.N. Garofalakis, P.J. Haas, C. Jermaine. Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations and Trends in Databases 4(1-3): 1-294, 2012. Chapter 5 (Sections 5.1-5.3) (pdf provided in Moodle)