Task 3

Ariella Fuzaylov and Candice Djorno

4/3/2021

We transform the data Employee_B_probs into a matrix.

```
Employee.B.Branch=read.csv("Employee_B_by_Branch.csv", header=TRUE)
Employee.B.overall=read.csv("Employee_B_overall.csv", header=TRUE)
Employee.B.probs=as.matrix(read.csv("Employee_B_probs.csv", header=FALSE))
```

We add col and row names for human readability.

knitr::kable(head(Employee.B.Branch))

Year_Month	Branch	Total_of_Ratings	i
2011-12	Disneyland_California	4.469767	215
2011-12	Disneyland_HongKong	4.134831	89
2011-12	Disneyland_Paris	4.118421	76
2011-7	Disneyland_California	4.232877	73
2011-7	Disneyland_HongKong	4.083333	24
2011-7	Disneyland_Paris	3.791667	72

knitr::kable(head(Employee.B.overall))

Year_Month	Total_of_Ratings	i
2011-12	4.321053	380
2011-7	4.023669	169
2012-10	4.365155	419
2012-3	4.351351	370
2014-2	4.253968	252
2015-5	4.264012	678

```
\verb|month<-Employee.B.overall$Year\_Month|
```

colnames(Employee.B.probs)<-month
rownames(Employee.B.probs)<-month</pre>

knitr::kable(Employee.B.probs)

	2011-12	2011-7	2012-10	2012-3	2014-2	2015-5	2015-6	2015-7	2016-11	
2011-12	0.0594317	0.0061980	0.0106966	0.0149327	0.0048871	0.0077698	0.0073959	0.0133081	0.0081639	0
2011-7	0.0061980	0.1121817	0.0202638	0.0282797	0.0092623	0.0147226	0.0140144	0.0252060	0.0154688	0
2012 - 10	0.0106966	0.0202638	0.1923618	0.0487390	0.0159819	0.0253951	0.0241746	0.0434500	0.0266810	0
2012 - 3	0.0149327	0.0282797	0.0487390	0.2669152	0.0223071	0.0354345	0.0337329	0.0605900	0.0372272	0

	2011-12	2011-7	2012-10	2012-3	2014-2	2015-5	2015-6	2015-7	2016-11
2014-2	0.0048871	0.0092623	0.0159819	0.0223071	0.0886201	0.0116104	0.0110518	0.0198815	0.0121990
2015-5	0.0077698	0.0147226	0.0253951	0.0354345	0.0116104	0.1403151	0.0175655	0.0315853	0.0193878
2015-6	0.0073959	0.0140144	0.0241746	0.0337329	0.0110518	0.0175655	0.1336334	0.0300681	0.0184556
2015-7	0.0133081	0.0252060	0.0434500	0.0605900	0.0198815	0.0315853	0.0300681	0.2384302	0.0331839
2016 - 11	0.0081639	0.0154688	0.0266810	0.0372272	0.0121990	0.0193878	0.0184556	0.0331839	0.1473484
2016-2	0.0061392	0.0116343	0.0200718	0.0280118	0.0091744	0.0145830	0.0138815	0.0249672	0.0153221
2016-8	0.0135883	0.0257363	0.0443626	0.0618607	0.0202999	0.0322494	0.0307004	0.0551545	0.0338815
2017 - 11	0.0080456	0.0152448	0.0262951	0.0366893	0.0120224	0.0191072	0.0181884	0.0327041	0.0200753
2017-4	0.0084400	0.0159916	0.0275820	0.0384831	0.0126115	0.0200429	0.0190792	0.0343037	0.0210583
2018-12	0.0071992	0.0136419	0.0235327	0.0328379	0.0107580	0.0170988	0.0162765	0.0292701	0.0179653
2018-8	0.0114919	0.0217692	0.0375335	0.0523501	0.0171696	0.0272807	0.0259698	0.0466708	0.0286619

Subtask 1

Estimate average rating

The estimated average satisfaction rating overall for the population of 40,041 reviews is 4.2182.

Confidence interval

Subtask 2

Calculate Mean by Branch

```
knitr::kable(Employee.B.Branch%>%
  summarise(n= n(), Mean= mean(Total_of_Ratings), Var=sd(Total_of_Ratings)^2),
  caption = "Rating Summary Statistics")
```

Table 4: Rating Summary Statistics

Var	Mean	n
0.0490165	4.187407	45

```
knitr::kable(Employee.B.Branch%>% group_by(Branch)%>%
summarise(n= n(), Mean= mean(Total_of_Ratings), StD=sd(Total_of_Ratings)),
```

caption = "Rating Summarised by Branch")

`summarise()` ungrouping output (override with `.groups` argument)

Table 5: Rating Summarised by Branch

Branch	n	Mean	StD
Disneyland_California	15	4.391302	0.1133633
Disneyland_HongKong	15	4.164182	0.1312240
Disneyland_Paris	15	4.006737	0.2094921

The estimated average rating for California is 4.391302, for HongKong is 4.164182, for Paris is 4.006737.

Hypothesis Test

We perform a hypothesis test to determine whether there is evidence that any of the ratings are statistically significantly different from each other in the population.

```
H_0: \mu_{california} = \mu_{hongkong} = \mu_{paris}
```

 $H_1: \mu_{california} \neq \mu_{hongkong} \text{ or } \mu_{california} \neq \mu_{paris} \text{ or } \mu_{hongkong} \neq \mu_{paris} \text{ (i.e. the means are not all equal)}.$

We perform an ANOVA.

```
rating_aov = aov(Total_of_Ratings~Branch,data=Employee.B.Branch)
summary(rating_aov)
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## Branch 2 1.121 0.5607 22.74 2.03e-07 ***
## Residuals 42 1.035 0.0247
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

We obtain p-value < 2.03e-07 so $p-value < \alpha$. Therefore, we reject the null hypothesis and we conclude that there is evidence that Employee B could achieve more precision for these estimates.

Subtask 3

For Employee A:

Overall estimated average rating: 4.2227

SE: 0.0125

95% confidence interval: [4.198217, 4.247116]

California estimated average: 4.396533 HongKong estimated average: 4.213475

Paris estimated average: 3.976963

Result of ANOVA: the means are not all equal

For Employee B:

Overall estimated average rating: 4.2182

SE: 0.0308

95% confidence interval: [4.157762, 4.278607]

California estimated average: 4.391302 HongKong estimated average: 4.164182

Paris estimated average: 4.006737

Result of ANOVA: the means are not all equal

Let \bar{y}_A be the estimated average for Employee A and \bar{y}_B the estimated average for Employee B.

We observe that $SE(\bar{y}_A) < SE(\bar{y}_B)$ so $Var(\bar{y}_A) < Var(\bar{y}_B)$, therefore the estimate found by Employee A is more efficient than the estimate found by Employee B. Thus, the result found by Employee A provides the best answer. Because Employee B used months as clusters, this means people who went to the park in similar wheather would be in the same cluster. This would lead to homogeneity inside a single cluster, making cluster-sampling perform worse than SRSWOR.