รหัสนักศึกษา	รหัสนักศึกษา

การทดลองที่ A

การทำงานของแคชชนิด Direct Mapped
วิชา Computer Organization and Assembly Language
ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

ใช้เว็บเบราส์เซอร์เปิดใช้งานซิมูเลเตอร์ ชื่อ Para Cache

https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/start.html

เอกสารอธิบาย

https://www3.ntu.edu.sg/home/smitha/ParaCache/Paracache/kb.pdf

ทำการทดลอง ตามขั้นตอนต่อไปนี้

รหัสนักศึกษา]	รหัสนักศึกษา	1

1. การทดลอง Direct Mapped Cache

กดเมนู เลือก Direct Mapped Cache ตั้งขนาดและ Write Policy ของแคช ดังรูป

2. กด Submit แล้วสังเกตรายละเอียดของแคชที่อยู่ด้านขวา

→ Instruction Breakdown

TAG	INDEX	OFFSET
2 bit	2 bit	0 bit

Memory	Block
---------------	-------

D. A W. U	_
B. B W. 0	
B. C W. 0	
B. D W. 0	
B. E W. 0	
B. F W. 0	~

Ⅲ Cache Table

Index	Valid	Tag	Data (Hex)	Dirty Bit
0	0	-	0	0
1	0	-	0	0
2	0	-	0	0
3	0	-	0	0

เลื่อนหน้าต่างลงไปด้านล่างสุดของ Memory Block โปรดสังเกตหมายเลขบล็อก (B.) มีค่าเท่ากับ 0 ถึง F และหมายเลขเวิร์ด (W.) เท่ากับ 0 เสมอ

เพราะเหตุใด

เพราะ B มีขนาก memory size 16 จังมีแก่ o-F

3. การทดลองคำสั่ง Load Instruction ที่หมายเลขแอดเดรสที่ต้องการ หรือ ให้โปรแกรมสุ่มหมายเลขแอดเดรสให้ กรอก 4 ลงในหมายเลขฐานสิบหกที่มีอยู่ในกล่องข้อความด้านขวา กรอกหมายเลข 7, 7, c, 4, 0, 4, 3, 5, 5 ในกล่องข้อความดังรูป

อธิบาย information ในรูปว่า Tag, Index และ Offset สัมพันธ์กับ Cache Size และ Memory Size ที่กรอก

4. กดปุ่ม Submit หมายเลข 4 ที่กรอก โปรดสังเกตและอ่านกล่องข้อความที่เป็นสีชมพู อธิบายตามความเข้าใจ

คำสั่วถูกแปลงากฐาน 16 เป็นฐาน 2 แล้วจัดใช้กับ tag index กับ tag offset กามสำกับ

5. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นสีเหลืองว่าเกี่ยวข้องกับหมายเลขที่ Submit ไปก่อนหน้านี้อย่างไร

อธิบายความสัมพันธ์ระหว่าง Instruction Breakdown 01 00 และหมายเลข 4

6. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นสีเขียว

อธิบายรูปนี้ และบิต Valid จึงเป็น 0

เพราะไม่สัพรโนลกค่างา้

7. กดปุ่ม Next และสังเกตกล่องข้อความที่เปลี่ยนเป็นน้ำเงิน และ AND เกตว่าทำกระบวนการอะไรกัน

อธิบายว่า Tag จึงมีสัญลักษณ์ '-'

เพราะไม่มีกรโนลกค่าเง่า

8. กดปุ่ม Next ต่อเพื่อดำเนินการต่อ โปรดสังเกตข้อความบน AND เกต

กดปุ่ม Next เพื่อดำเนินการต่อ โปรดสังเกต Cache Table ว่ามีการเปลี่ยนแปลงอย่างไร

Ⅲ Cache Table

Index	Valid	Tag	Data (Hex)	Dirty Bit
0	1	01	BLOCK 4 WORD 0 - 0	0
1	0	-	0	0
2	0	-	0	0
3	0	-	0	0

อธิบายบิต Valid Tag และ Data (Hex) จึงเปลี่ยนเป็นรูปนี้

มีการใส่ค่า 4 เขาไปในช่องของ index o mila valid มีค่าเป็น 1

9. กดปุ่ม Next เพื่อดำเนินการต่อ โปรดสังเกตข้อมูลสถิติสีเหลืองด้านล่าง

Statistics
Hit Rate: 0%
Miss Rate: 100%
List of Previous Instructions:
• Load 4 [Miss]

อธิบายข้อมูลที่ได้

Hit rate = 0% Miss rate = 100%.

รหัสนักศึกษา	รหัสนักศึกษา	1

- 10. โปรดสังเกตหมายเลขแอดเดรสถัดไปจะย้ายมาในกล่องข้อความด้านขวาบนของรูปนี้ กดปุ่ม Submit
- 11. กดปุ่ม Fast Forward เพื่อเร่งการทำงานของคำสั่งให้รวดเร็วขึ้น โปรดสังเกตการเปลี่ยนแปลงใน Cache Table และ Statistics หลัง จากนั้น

			1001 0001					•• Memory Dio
	01	11		0				
	2 bit	2 bit 0 bit		0 bit				
—	Cacha '	Toblo						
	Cache '	Table						
	Cache '	Table Valid	Tag			Data (Hex)		
II			Tag 01			Data (Hex) BLOCK 4 WORD 0 - 0		
	Index							
	Index		01			. , ,		

Statistics

Hit Rate : 0%

Miss Rate: 100%

List of Previous Instructions:

- · Load 4 [Miss]
- · Load 7 [Miss]

12. กด Submit และ Fast Forward เรื่อยๆ จนไม่เหลือหมายเลขแอดเดรส โปรดสังเกตการเปลี่ยนแปลงใน Statistics หลังจากนั้น

Statistics

Hit Rate : 20%
Miss Rate : 80%

List of Previous Instructions:

- · Load 4 [Miss]
- · Load 7 [Miss]
- Load 7 [Hit]
- · Load C [Miss]
- · Load 4 [Miss]
- Load 0 [Miss]
- · Load 4 [Miss]
- Load 3 [Miss]
- · Load 5 [Miss]
- Load 5 [Hit]

อธิบายข้อมูลที่ได้ว่า Hit Rate และ Miss Rate คำนวณอย่างไร

นักศึกษาควรจะได้ผลการทดลองใน Cache Table ตรงกับรูปนี้

Ⅲ Cache Table

Index	Valid	Tag	Data (Hex)
0	1	01	BLOCK 4 WORD 0 - 0
1	1	01	BLOCK 5 WORD 0 - 0
2	0	-	0
3	1	00	BLOCK 3 WORD 0 - 0

13. กรอกหมายเลขบล็อกที่แคชมีอยู่ เพื่อจงใจให้เกิด แคชฮิต ดังรูป

Instruction					
Load v (in hex)#				
3, 4, 5					
Gen. Random	Submit				

กด Submit และ Next จนได้เหตุการณ์นี้

โปรดสังเกตคอลัมน์ Valid และ Tag ว่าตรงกันหรือไม่

14. กดปุ่ม Submit หมายเลขถัดไปจนหมด และแนบรูปตาราง Statistics ว่ามีการเปลี่ยนแปลงหรือไม่ อย่างไร

Statistics	5	
Hit Ra	te :	38%
Miss F	Rate:	62%
	revious Instructions : Load 4 [Miss]	
	Load 7 [Miss] Load 7 [Hit] Load C [Miss]	
	Load 4 [Miss] Load 0 [Miss]	
•	Load 4 [Miss] Load 3 [Miss]	
	Load 5 [Miss] Load 5 [Hit]	
•	Load 3 [Hit] Load 4 [Hit] Load 5 [Hit]	
	Load o [rild]	

Am Hit rate เพิ่มขึ้นเรื่อยๆ เพเาะโนลด cache ที่ กัมกถ่าย

รหัสนักศึกษา	1	รหัสนักศึกษา	1

กิจกรรมท้ายการทดลอง

- 1. ศึกษาการทำงานของ Load Instruction เช่นเดิม
 - o ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต แล้วเปรียบเทียบ
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต แล้วเปรียบเทียบ
- 2. ศึกษาการทำงานของ Load Instruction เช่นเดิม แต่ตั้ง Write Policy เป็น Write Through และ Write Around
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต
- 3. เปลี่ยน Instruction เป็น Store เพื่อศึกษาการทำงานของ Dirty Bit โดยตั้ง Write Policy เป็น Write Back และ Write on Allocate
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต
- 4. เปลี่ยน Instruction เป็น Store เพื่อศึกษาการทำงานของ Dirty Bit โดยตั้ง Write Policy เป็น Write Through และ Write Around
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 8 และ Memory Size เท่ากับ 16 OFFSET = 0 บิต
 - o ตั้งขนาดของแคชเท่ากับ 4 และ Memory Size เท่ากับ 16 OFFSET = 1 บิต

