CS & IT

ENGINEERING

OPERATING SYSTEMS

CPU Scheduling

Lecture No. 1

By- Dr. Khaleel Khan Sir

TOPICS TO BE COVERED

Process Times:

5) Completion Time (CT)

)			T. F	1.1			─ >\	
	W.T.	B.T,	IOBT	Wiz	Biz	W·T3	B.73	
	R.Q	cpu	ΙοΣ	R. Q	cpu	R.Q	Cpu	
A	Ī.		•		Ÿ	2		C-T

2 IOBT=0

WT=TAT-BT

)
$$\pi$$
 - processes $(P_1 - P_n)$
2) $A \cdot T(P_i) = A_i$
3) $B \cdot T(P_i) = X_i$
4) $IOBT(P_i) = Y_i$
5) $C \cdot T(P_i) = C_i$
Average $TAT = \sum_{i=1}^{n} C_i - A_i$
 π

= Man(ci)-Min(Ai) Thrubut = No. 9 Trocens Completed Yer unit Jime

CPU Scheduling Occurs

Lifecycle of Rogers

Load store add store read from file

CPU burst

wait for I/O

I/O burst

Store increment Index write of file

CPU burst

wait for I/O

I/O burst

load store add store read from file

CPU burst

wait for I/O

I/O burst

CPU-I/O bursts

Process execution consists of a cycle of CPU execution and I/O wait

 different processes may have different distributions of burts

CUP-bound process: performs lots of computations in long bursts, very little I/O

I/O-bound process: performs
lots of I/O followed by short
burst of computation

 ideally, the system admits a mix of CPU bound and I/Obound processes to maximize CPU and I/O

:

1. FCFS < First Come First Served) TAT=CI-AT Selection Criteria: A.T WT=TAT-BT L= 12-0=12 Mode of operation: Non-Recomptive TAT Conflict resolution: Lower Pid 2 — 0 — 3 — 7 Assumbtums: A.TAT = 23/3 A.WT=11/3 (i) Time is in clock Ticks NO JOBT'S (iii) Schollygorhd (8)=0

TAT = CT-AT

$$\omega T = TAT - BT$$
 $\mathcal{L} = Mm(CT) - Mim(AT)$
 $\mathcal{L} = \frac{\pi}{2}$
 $\mathcal{L} = \frac{5}{12}$

$$\int_{-24-3=21}^{2}$$

$$24-3=21$$

$$25$$

$$25$$

$$21$$

$$\int_{-12}^{1} -3 = 9$$

$$\mathcal{L} = 25-2=23$$
Av. TAT = 4.3 = ?
Av. WT = 7/6 = ?

 $\mathcal{L} = 25-2=23$

Av. WT = 4.3 = ?

 $\mathcal{L} = 25-2=23$

weeew I could stay here forever Anyway, I'm not going back to the end of the queue

Fist come, first served

first served.

Hurry up. I'm waiting You've possessor for ages

Look at the size of that queue!

Process queue

