(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-322773 (P2000-322773A)

(43)公開日 平成12年11月24日(2000.11.24)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G11B 7/24

561

G11B 7/24

561E 5D029

審査請求 未請求 請求項の数9 OL (全 9 頁)

(21)出願番号 特願平11-374192

(22)出願日

平成11年12月28日(1999, 12, 28)

(31)優先権主張番号 特願平11-62282

(32)優先日

平成11年3月9日(1999,3,9)

(33)優先権主張国 日本(JP) (71)出願人 000005810

日立マクセル株式会社

大阪府茨木市丑寅1丁目1番88号

(72)発明者 吉水 拓博

大阪府茨木市丑寅一丁目1番88号 日立マ

クセル株式会社内

(72)発明者 井内 信一郎

大阪府茨木市丑寅一丁目1番88号 日立マ

クセル株式会社内

(74)代理人 100078134

弁理士 武 顕次郎

最終頁に続く

(54) 【発明の名称】 光ディスク

(57)【要約】

【課題】 CD-R規格のTop level における反射光量 65%以上を確保し、しかも隣接トラック間でのクロス トークを抑制して、特性低下を防止することのできる光 ディスクを提供する。

【解決手段】 表面にグルーブ4とランド5を交互に同 心円状または螺旋状に形成したプリフォーマットを有す る透明基板1の前記プリフォーマット上にスピンコート により記録層2を形成するディスク形の光ディスクにお いて、前記透明基板1のランド5と平行な仮想面Xに対 してグルーブ4の両側の側面がそれぞれ傾斜して設けら れ、そのグルーブ4のディスク内周側の側面4aの前記 仮想面Xに対する平均テーパ角 θ 1が、そのグルーブ4 のディスク外周側の側面4bの前記仮想面Xに対する平 均テーパ角 θ 2よりも小さい(θ 1< θ 2) ことを特徴 とする。

20

【特許請求の範囲】

【請求項1】 表面にグルーブとランドを交互に同心円 状または螺旋状に形成したプリフォーマットを有する透 明基板の前記プリフォーマット上にスピンコートにより 記録層を形成する光ディスクにおいて、

1

前記グルーブを透明基板の径方向に沿って断面したとき にグルーブの溝の両側面が、透明基板のランドと平行な 仮想面に対してそれぞれ傾斜しており、その溝における 内周側の側面の前記仮想面に対する平均テーパ角 81 が、その溝における外周側の側面の前記仮想面に対する 平均テーパ角 θ 2よりも小さい(θ 1< θ 2)ことを特 徴とする光ディスク。

【請求項2】 請求項1記載の光ディスクにおいて、前 記 θ 2に対する θ 1の比率である θ 1/ θ 2の値が、 $0.3 \le \theta 1/\theta 2 < 1$ の範囲内にあることを特徴とす る光ディスク。

【請求項3】 請求項1記載の光ディスクにおいて、前 記 θ 2に対する θ 1の比率である θ 1/ θ 2の値が、 $0.75 \le \theta 1 / \theta 2 \le 0.9$ の範囲内にあることを特 徴とする光ディスク。

【請求項4】 請求項1ないし3のいずれか記載の光デ ィスクにおいて、前記ディスクの内側領域から外側領域 にいくに従って θ 1/ θ 2の値が徐々に小さくなってい ることを特徴とする光ディスク。

【請求項5】 請求項1ないし3のいずれか記載の光デ ィスクにおいて、前記ディスクの内側領域から外側領域 にかけて複数のゾーンに分かれており、最外周側ゾーン の前記 $\theta 1/\theta 2$ の値が最内周側ゾーンの前記 $\theta 1/\theta$ 2の値よりも小さいことを特徴とする光ディスク。

【請求項6】 請求項1ないし3のいずれか記載の光デ ィスクにおいて、前記ディスクの内側領域から外側領域 にかけて複数のゾーンに分かれており、前記 $\theta 1/\theta 2$ の値が内周側ゾーンから外周側ゾーンにかけて段階的に 小さくなっていることを特徴とする光ディスク。

【請求項7】 請求項1ないし6のいずれか記載の光デ ィスクにおいて、トラックピッチが 0.8μ m以下であ ることを特徴とする光ディスク。

【請求項8】 請求項1ないし6のいずれか記載の光デ ィスクにおいて、トラックピッチが0.74μm以下で あることを特徴とする光ディスク。

【請求項9】 請求項1ないし8のいずれか記載の光デ ィスクにおいて、前記記録層が有機色素を含有している ことを特徴とする光ディスク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光ディスクに係り、 特に表面にグルーブとランドを交互に同心円状または螺 旋状に形成したプリフォーマットを有する透明基板と、 その透明基板の前記プリフォーマットの上にスピンコー トで形成した記録層とを有する光ディスクに関する。

[0002]

【従来の技術】近年、光記録用レーザ技術の進歩やコス トの低減に伴い、光ディスクにレーザ光を照射して、情 報の記録、再生を行なう光記録システムが開発されてい

【0003】この光ディスクの一つとして、有機色素を 用いた追記形光ディスクであるCD-R(コンパクトデ ィスクレコーダブル)等が商品化されている。この光デ ィスクは、有機色素を含有する記録材料を溶剤に溶か し、スピンコート法により透明基板上に記録層を塗布形 成することが可能で、スパッタリングや蒸着などで記録 層を形成する光ディスクに比べて、製造時間が短く、し かも製造コストが低いという利点を有している。

[0004]

【発明が解決しようとする課題】記録材料として有機色 素を含有したCD-R等の追記形光ディスクの基板は、 螺旋状のグルーブが形成され、この螺旋状のグルーブの 間にランドがあり、ディスクの径方向に沿ってグルーブ とランドが交互に設けられて、プリフォーマットを形成 している。

【0005】透明基板1の中心部に記録材料の溶液を滴 下し、透明基板1を高速回転して遠心力によりグループ 4とランド5を交互に設けた透明基板1上で前記溶液を 径方向外側に引き延ばして記録層2を形成するスピンコ ート法においては、図8に示すように、形成された記録 層2はグルーブ4の上では凹状となり、ランド5の上で は相対的に凸状となり、グルーブ4の上の記録層2に窪 み(凹み)6が生じ、記録層2の最下部と最上部との間 に段差 d 1 を生じる。 なお図中の 3 は金属からなる光反 射層である。

【0006】ビット(11T)とビット(11T)との 間のスペース(11T)であるToplevelにおける反射光 量は、窪み(凹み)6に何らかの作用を及ぼし、Top 1e vel における反射光量が減少して、CD-R規格に規定 してある反射光量65%以上が満足できない懸念があ る。

【0007】また、前記窪み(凹み)6が生じている部 位に記録を行なうと、記録部位が半径方向に拡がり易 く、隣接するトラック間でクロストークを生じ、そのた 40 めに記録特性が低下する。

【0008】今後、記録材料として有機色素を含有した CD-R等の追記形光ディスクは、高密度化のための狭 トラックピッチ化、および原価低減の観点よりタクトア ップによるスピンコートの高速回転化傾向にあり、窪み (凹み)6(段差d1)はますます大きくなる傾向にあ り、前述のような弊害が顕著に現れる。

【0009】特に近年、光ディスクの記録容量をより一 層増大させることが要望されており、これを実現する方 法として、記録再生に使用されるレーザ光の波長を短く 50 してビームスポット径を小さくすることにより、記録密

3

度を高める方法が提案されている。この方法に従う高密度記録の光ディスクとして、DVD(デジタルバーサタイルディスク)や、この追記型としてDVD-R(デジタルバーサタイルディスクレコーダブル)が提案されている。このDVD-Rの記録再生に使用されるレーザ光の波長は630nm~660nmである。

【0010】DVD-Rのグルーブのトラックピッチは $0.7\mu m\sim 0.8\mu m$ 、最小記録ピットは $0.40\mu m\sim 0.44\mu m$ で、CD-Rのトラックピッチ $1.6\mu m$ 、最小記録ピット $0.83\mu m$ に比べると極めて短くなっている。このように高密度化および高性能化によりトラックピッチがさらに狭小化すると、前述の窪み(凹み)6の影響(特にクロストークの問題)がさらに顕著になる。

【0011】本発明者らはこの窪み(凹み)6の形成について種々検討した結果、透明基板1の表面に形成されるグルーブ4の断面形状に問題があることを解明した。すなわち従来の光ディスクは、図8に示すようにグルーブ4の溝の両側面が傾斜しており、その溝のディスク内周側の側面4aのテーパ角 θ 1と、ディスク外周側の側面4bのテーパ角 θ 2が等しい(θ 1= θ 2 θ 1/ θ 2=1)。

【0012】そのため、ターンテーブル上に固定した透明基板1のほぼ中央部に記録材料の溶液を滴下し、透明基板1を高速回転して前記液状記録材料を中央部から外周部側に向けて流延、固化しながら記録層2を形成する際、前記液状記録材料はグルーブ4に流れ込んで一時的に溜まりながら、遠心力でさらにその外周側のランドラならびにグルーブ4へと流動するが、そのときの記録材料のグルーブ4への流れ込み状態とディスク外周側の側面4bのところでのせり上がり状態から、比較的深い窪み(凹み)6が形成され、その結果段差d1が大きくなることを解明した。

【0013】本発明の目的は、このような従来技術の欠点を解消し、前記窪み(凹み)を小さくし、CD-R規格のTop level における反射光量65%以上を確保し、しかも隣接トラック間でのクロストークを抑制して、特性低下を防止することのできる、特に高密度記録に適した光ディスクを提供することにある。

[0014]

【課題を解決するための手段】前記目的を達成するために、本発明は、表面にグルーブとランドを交互に同心円状または螺旋状に形成したプリフォーマットを有する透明基板の前記プリフォーマット上にスピンコートにより記録層を形成する光ディスクを対象とするものである。

【0015】そして本発明の第1の手段は、前記グルーブを透明基板の径方向に沿って断面したときにグルーブの溝の両側面が、透明基板のランドと平行な仮想面に対してそれぞれ傾斜しており、その溝における内周側の側面の前記仮想面に対する平均テーパ角 θ 1 が、その溝に

4

おける外周側の側面の前記仮想面に対する平均テーパ角 θ 2 よりも小さい(θ 1 < θ 2)ことを特徴とするものである。

【 0 0 1 6 】本発明の第2の手段は、前記第1の手段において、前記 θ 2 に対する θ 1 の比率である θ $1/\theta$ 2 の値が、0 . $3 \le \theta$ $1/\theta$ 2 < 1 の範囲内にあることを特徴とするものである。

0. 7μ m~0. 8μ m、最小記録ピットは 0.40μ 【 0.17】本発明の第3の手段は、前記第1の手段に m~0. 44μ mで、CD-Rのトラックピッチ1.6 おいて、前記 θ 2に対する θ 1 の此率である θ $1/\theta$ 2 がいて、前記 θ 2に対する θ 1 の値が、 $0.75 \le \theta$ $1/\theta$ $2 \le 0.9$ の範囲内にある くなっている。このように高密度化および高性能化によ ことを特徴とするものである。

【0018】本発明の第4の手段は、前記第1ないし第 3のいずれかの手段において、前記ディスクの内側領域 から外側領域にいくに従って θ 1/ θ 2の値が徐々に小 さくなっていることを特徴とするものである。

【0019】本発明の第5の手段は、前記第1ないし第3のいずれかの手段において、前記ディスクの内側領域から外側領域にかけて複数のゾーンに分かれており、最外周側ゾーンの前記 θ 1 $/\theta$ 2の値よりも小さいことを特徴とするものである。

【0020】本発明の第6の手段は、前記第1ないし第3のいずれかの手段において、前記ディスクの内側領域から外側領域にかけて複数のゾーンに分かれており、前記 θ 1/ θ 2の値が内周側ゾーンから外周側ゾーンにかけて段階的に小さくなっていることを特徴とするものである。

【0021】本発明の第7の手段は、前記第1ないし第6のいずれかの手段において、トラックピッチが0.8 μm以下であることを特徴とするものである。

【0022】本発明の第8の手段は、前記第1ないし第6のいずれかの手段において、トラックピッチが0.74μm以下であることを特徴とするものである。

【 0023 】 なお、 $\theta1/\theta2$ の値が1になると従来の 光ディスクに相当し、前述したように窪み(凹み)6 (段差 d1)が大きくなり、前述のように各種の弊害を 生じる。一方、 $\theta2/\theta1$ の値が0.3未満になると、 記録層のグルーブでの凹部の中心がグルーブの中心とず れてしまうので、トラッキングの中心と書込みの中心が ずれてしまい、十分な特性が得られず記録再生に支障を きたすという問題がある。従って $\theta1/\theta2$ の値は、 $0.3 \le \theta1/\theta2 < 1$ の範囲内に規制する必要があ

[0024]

【発明の実施の形態】以下、本発明の実施の形態を図面に基づいて説明する。図2に、ガラス基板9の上にフォトレジスト8を塗布した原盤に露光ビーム10を照射してプリフォーマットパターンをカッティングする際、原盤の表面に対して露光ビーム10を角度ので入射させて、プリフォーマットパターン(グルーブ)部位を露光

したときの、原盤に対する露光ビーム10の入射状態、 露光強度分布、グルーブ溝のディスク内周側と外周側の テーパ角をそれぞれ示す。

【0025】同図(a1)に示すように、露光ビーム10を入射角度 $\theta0=90$ °、つまり対物レンズ11を介して原盤に露光ビーム10を垂直に入射させ、フォトレジスト8を感光させると、同図(a2)に示すように焦点を中間にして内周側と外周側の露光強度分布が同じになる。そのため同図(a3)に示すように、現像後の内周側のテーパ角 $\theta1$ と外周側のテーパ角 $\theta2$ は等しくな 10る。

【0026】これに対して同図(b1)に示すように入射角度 $\theta0$ < 90° 、つまり対物レンズ11を介して原盤に露光ビーム10を若干傾けて入射させ、フォトレジスト8を感光させると、同図(b2)に示すように焦点を間にして内周側と外周側の露光強度分布が異なり、露光範囲は外周側の方が内周側よりも狭い。そのため同図(b3)に示すように、溝の内周側のテーパ角 $\theta1$ を外周側のテーパ角 $\theta2$ よりも小さくできる($\theta1$ < $\theta2$)。

【0027】同図(b1)、(b2)、(b3)に示すように原盤を露光し、現像した後、原盤にニッケルなどを公知技術にてメッキしてスタンパを作成した。

【0028】このスタンパを用い、射出成形法によりポリカーボネート樹脂の透明基板1を作成する。透明基板1の材料としてポリカーボネート樹脂以外の例えばエポキシ樹脂などの他の透明な樹脂材料を用いることも可能である。このようにして作成した透明基板1は、スタンパのプリフォーマットパターンを転写している。

【0029】このプリフォーマットパターンのうちのプリグルーブ4は図1に示すように、透明基板1のランド 5と平行な仮想面Xに対して溝の両側の側面4 a、4 b が互いに上側に向けて広角になるように傾斜して設けられている。そしてグルーブ4のディスク内周側の側面4 aの平均テーパ角 θ 1 が、ディスク外周側の側面4 bの 平均テーパ角 θ 2 よりも小さく形成されている(θ 1< θ 2)。この平均テーパ角 θ 1, θ 2については、後で 具体的に説明する。

【0030】本発明において前記仮想面Xの位置は、グルーブ4の溝の深さ方向の中間位置(すなわちL1=L2)を通る位置とした。図8に示すようにグルーブ4の溝底面あるいはランド5の表面を通る仮想面にした場合、グルーブ4の溝底面と側面4a,4bが交わる部分あるいはランド5の表面と側面4a,4bが交わる部分が、微小的に見ると欠けたりあるいは丸みが付いたりして正確な角度が出ない懸念があるため、仮想面Xは、グルーブ4の溝の深さ方向の中間位置を通る仮想面とした。

【0031】この透明基板1のプリフォーマットパターン形成面上に、有機色素を含有した記録層2をスピンコ

ート法により成膜した。有機色素としては、シアニン系、フタロシアニン系、アゾ系染料などを用いることができる。特に次の[化1]、[化2]の一般構造式で表せる有機色素が好適である。

[0032]

 $\begin{array}{c|c}
A & Y \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$

式中、RまたはR'は同じかまたは異なってもよく、それぞれは水素原子、アルキル基、アルコキシル基、アルコトンル基、アルキルカルボキシル基、アルキルスルホニル基を示す。YまたはY'は同じかまたは異なってもよく、それぞれは一C(CH。)2-、-S-、-O-、-CH=CH-を示す。AまたはA'は同じかまたは異なってもよく、それぞれは芳香環あるいはベンゼン環を示す。Xは対イオンを示し、ハロゲンおよびハロゲン化物イオンもしくは金属錯体を示す。Zは水素原子、ハロゲン原子、アルキル基を示す。nは0~2の整数を示す。

[0033]

【化2】

式中、 R_1 、 R_2 、 R_8 および R_4 は同じかまたは異なってもよく、それぞれは水素原子、水酸基、フッ化アルキル基、アミン、アルキル基、アルコキシル基、アルキルヒドロ基、アラルキル基、アルケニル基、アルキルカルボキシル基、アルキルスルホニル基もしくはこれらの官能基をもつ芳香環を示す。X は陰イオンを示し、R は合物のイオン価を示し1または2である。

【0034】なお、数種類の有機色素を組み合わせてもよく、また耐食性の向上などの目的によりクエンチャー、赤外線吸収剤を添加することが可能で、添加剤としてはアミニウムやイモジウムなどを用いることができる。

【0035】前述のようにグルーブ4のディスク内周側の側面4aの平均テーパ角の1を、ディスク外周側の側面4bの平均テーパ角の2よりも小さく形成することにより、グルーブ4ならびにランド5上にスピンコートで記録層2を形成した際、図1に示すように記録層2には若干窪み(凹み)6が形成されるが、その段差d1は図8に示す従来のものに比べると格段に小さいか、あるいは殆どない状態となる。

【0036】この記録層2の上に、Au、Ag、A1などの金属もしくはAu、Ag、A1などを含有する合金をスパッタリングや蒸着により成膜した反射層3を形成した。この反射層3の上に、アクリル系の紫外線硬化樹脂の保護層を積層して追記型光ディスクを作成した。

【0037】次に具体的な実施例について説明する。

(例1)透明基板を複製するためにガラス原盤を用い、このガラス原盤は原盤露光装置を使用して次のようにして作成した。まず研磨したガラス基板9を用意し、それの上に屈折率1.65のクレゾールノボラック樹脂とナ 10フトキノンジアジドの感光剤からなるフォトレジスト8を0.13 μ mの膜厚になるように塗布した。

【0038】次に図2に示すように、このガラス基板9をターンテーブル上で回転させながらフォトレジスト8上に露光ビーム10を図4に示す θ 0の角度を付けて内周から外周へと照射した。最内周から最外周まで θ 0=60°に固定し、トラックピッチ(TP)1.6 μ mの断面形状が台形の連続溝となるように露光した。

【0039】この露光後のガラス基板9を回転させながら、アルカリ性現像液を用いて露光したフォトレジスト8の上に塗布して現像し、フォトレジスト8にグルーブに相当する連続溝を形成する。このガラス基板9の表面にニッケルメッキを施してスタンパを作成し、このスタンパを用いて射出成形によりポリカーボネート樹脂の透明基板1を作成した。

【0040】この透明基板1のグルーブ4におけるディスク内周側の側面4aの平均テーパ角 θ 1とディスク外周側の側面4bの平均テーパ角 θ 2を測定し、その結果を図4に示した。

【0041】本発明における平均テーパ角 $\theta1$, $\theta2$ は、作成した透明基板を切断し、そのグルーブの切断面のテーパ角を原子間力顕微鏡(AFM)を用いてそれぞれランダムに10個所測定し、その平均値を算出して平均テーパ角 $\theta1$, $\theta2$ とした。また図4中のゾーン $1\sim4$ は、図3に示すように透明基板1を内周側から外周側にかけてほぼ等間隔に4つのゾーンに分けて、内周側から外周側に向かってゾーン1を符号12、ゾーン2を符号13、ゾーン3を符号14、ゾーン4を符号15として表している。

【0042】この図4の結果から明らかなように、最内 周から最外周まで θ 0=60°を固定することにより、 各ゾーン1~4とも平均テーパ角 θ 1は67°、平均テーパ角 θ 2は74°で、テーパ角 θ 1の方がテーパ角 θ 2よりも小さく、また図5から明らかなように各ゾーン 1~4とも θ 1/ θ 2の値は0.9となり、0.3 $\leq \theta$ 2/ θ 1<1の範囲内にある。

【0043】この透明基板1のプリピットパターン上に、次の構造式[化3]を有するインドール系シアニン色素と、アミニウム塩を溶媒に溶かし、スピンコート法により厚さ160μmの記録層2を形成した。

【0044】 【化3】

この記録層の上に金からなる厚さ100nmの光反射層3を形成し、さらにこの記録層2と光反射層3をオーバーコートするように、アクリル系の紫外線硬化樹脂からなる厚さ10μmの保護層を積層して追記型光ディスクを作成した。

【0045】この光ディスクの各ゾーンにおける反射率を測定し、その結果を図6に示す。同図(a)は、各ゾーンをさらに内側と中側と外側に分けて、各部位の反射率を表にしたものである。また同図(b)は、前記各部位の反射率をグラフにしたものであるが、線が重複するため例1と例5は図示を省略している。

20 【0046】この光ディスクに対して、波長入=780 nmのレーザービームを用い、NA=0.50の光学レンズを使用して、記録パワー7.0mW、線速1.2m/sでランダムパターンを記録した。一方、再生は波長入=780nmのレーザービームを用い、NA=0.45の光学レンズを使用して、再生パワー0.1mW、線速1.2m/sで行ない、その際のクロストークを測定し、その結果を図7に示す。同図(a)は、各ゾーンをさらに内側と中側と外側に分けて、各部位のクロストークを表にしたものである。また同図(b)は、前記各部 位のクロストークをグラフにしたものであるが、線が重複するため例3と例4は図示を省略している。

【0047】(例2)トラックピッチ 0.8μ mとし、 $\theta0=60$ °に固定して例1と同様にスタンパを作成し、そのスタンパを用いて射出成形によりポリカーボネート樹脂製の透明基板を作成した。

【0048】最内周から最外周まで θ 0=60°で露光することにより、図4から明らかなように、各ゾーン1~4とも平均テーパ角 θ 1は67°、平均テーパ角 θ 2は74°で、テーパ角 θ 1の方がテーパ角 θ 2よりも小さく、また図5から明らかなように各ゾーン1~4とも θ 1/ θ 2の値は0.9となり、0.3 \leq θ 1/ θ 2<

【0049】この透明基板1のプリピットパターン上に、次の構造式[化4]を有するシアニン色素と、アミニウム塩を溶媒に溶かし、スピンコート法により厚さ160μmの記録層2を形成した。

[0050]

【化4】

9 CH3 CH3 CH₃ CH₃ CH-CH-CH I n - C3H7

この記録層の上に金からなる厚さ100nmの光反射層 3を形成し、さらにこの記録層2および光反射層3をオ ーバーコートするように、アクリル系の紫外線硬化樹脂 からなる厚さ10μmの保護層を積層して追記型光ディ スクを作成した。この光ディスクの各ゾーンの反射率を 図6に、また各ゾーンのクロストークを図7に示す。

【0051】(例3)トラックピッチ 0.8μ mとし、 図3に示すようにゾーン1(符号12)とゾーン2(符 号13)は θ 0=60°とし、ゾーン3(符号14)と ゾーン4(符号15)は θ 0=70°として例1と同様 にスタンパを作成し、そのスタンパを用いて射出成形に よりポリカーボネート樹脂製の透明基板を作成した。

【0052】この透明基板の各ゾーンのにおける $\theta1$ と θ 2を測定すると図4のように、ゾーン1,2の平均テ ーパ角 θ 1は67°、平均テーパ角 θ 2は74°であ り、ゾーン3,4の平均テーパ角 θ 1は65°、平均テ ーパ角 θ 2は81°であり、各ゾーンともテーパ角 θ 1 の方がテーパ角 θ 2よりも小さい。

【0053】また図5から明らかなようにゾーン1,2 $\theta \theta 1/\theta 2$ の値は0.9、ゾーン3,4 $\theta \theta 1/\theta 2$ の値は0.8で、各ゾーンとも $\theta1/\theta2$ の値は0.3 $\leq \theta 1 / \theta 2 < 1$ の範囲内にあるが、ディスクの外側領 域に相当するゾーン3,4の θ 1 $/\theta$ 2値が、内側領域 に相当するゾーン1, $2 O\theta 1 / \theta 2$ 値よりも小さくな っている。

【0054】この透明基板1のプリピットパターン上 に、前記構造式[化4]を有するシアニン色素と、アミニ ウム塩を溶媒に溶かし、スピンコート法により厚さ16 Oμmの記録層2を形成した。

【0055】この記録層の上に金からなる厚さ100n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ10μmの保護層を積層して 追記型光ディスクを作成した。この光ディスクの各ゾー ンの反射率を図6に、また各ゾーンのクロストークを図 7に示す。

【0056】(例4)トラックピッチ 0.74μ mと し、各ゾーン $1\sim4$ とも θ 0=60°に固定して例1と 同様にスタンパを作成し、そのスタンパを用いて射出成 形によりポリカーボネート樹脂製の透明基板を作成し た。

【0057】この透明基板の各ゾーンのにおける $\theta1$ と θ2を測定すると図4のように、各ゾーンとも平均テー パ角 θ 1は67°、平均テーパ角 θ 2は74°であり、

また図5から明らかなように各ゾーンとも $\theta1/\theta2$ の 値は0.9であった。

【0058】この透明基板1のプリピットパターン上 に、前記構造式[化4]を有するシアニン色素と、アミニ ウム塩を溶媒に溶かし、スピンコート法により厚さ16 0μmの記録層2を形成した。

【0059】この記録層の上に金からなる厚さ100n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ10μmの保護層を積層して 追記型光ディスクを作成した。この光ディスクの各ゾー ンの反射率を図6に、また各ゾーンのクロストークを図 7に示す。

【0060】(例5)トラックピッチ 0.74μ mと し、図3に示すようにゾーン1(符号12)とゾーン2 (符号13)は θ 0=60°とし、ゾーン3(符号1 4)とゾーン4(符号15)は θ 0=70°として例1 と同様にスタンパを作成し、そのスタンパを用いて射出 成形によりポリカーボネート樹脂製の透明基板を作成し 20 た。

【0061】この透明基板の各ゾーンのにおける $\theta1$ と θ 2を測定すると図4のように、ゾーン1, 2の平均テ ーパ角 θ 1は67°、平均テーパ角 θ 2は74°であ り、ゾーン3、4の平均テーパ角 θ 1は65°、平均テ -パ角 θ 2は81°であり、各ゾーンともテーパ角 θ 1 の方がテーパ角 θ 2よりも小さい。

【0062】また図5から明らかなようにゾーン1,2 の $\theta 1/\theta 2$ の値は0.9、ゾーン3,4の $\theta 1/\theta 2$ の値は0.8で、各ゾーンとも $\theta1/\theta2$ の値は0.3 $\leq \theta 1 / \theta 2 < 1$ の範囲内にあるが、ディスクの外側領 域に相当するゾーン3, 4の θ 1/ θ 2値が、内側領域 に相当するゾーン1, $2 O\theta 1 / \theta 2 値よりも小さくな$ っている。

【0063】この透明基板1のプリピットパターン上 に、前記構造式[化4]を有するシアニン色素と、アミニ ウム塩を溶媒に溶かし、スピンコート法により厚さ16 Oμmの記録層2を形成した。

【0064】この記録層の上に金からなる厚さ100m mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ10μmの保護層を積層して 追記型光ディスクを作成した。この光ディスクの各ゾー ンの反射率を図6に、また各ゾーンのクロストークを図 7に示す。

【0065】(例6)トラックピッチ 0.74μ mと し、ゾーン1は θ 0=60°、ゾーン2は θ 0=65 として例1と同様にスタンパを作成し、そのスタンパを 用いて射出成形によりポリカーボネート樹脂製の透明基 50 板を作成した。

【0066】この透明基板の各ゾーンのにおける $\theta1$ と θ 2を測定すると図4のように、ゾーン1の θ 1=67 $^{\circ}$ $\mathcal{C}\theta$ $2=74^{\circ}$ 、 $\mathcal{Y}-\mathcal{Y}2\mathcal{O}\theta$ $1=66^{\circ}$ $\mathcal{C}\theta$ 2=7 8° 、ゾーン3の θ 1=65°で角 θ 2=81°、ゾー $\nu 4$ の $\theta 1$ = 6 2°で $\theta 2$ = 8 3°となっており、各ゾ ーンともテーパ角 θ 1の方がテーパ角 θ 2よりも小さ

1 1

【0067】また図5から明らかなように $\theta1/\theta2$ 値 はゾーン1で0.9、ゾーン2で0.85、ゾーン3で O.8、ゾーン4でO.75となっており、各ゾーンと 10 を特徴とするものである。 $\delta\theta1/\theta2$ 値は0.3 $\leq\theta1/\theta2$ <1の範囲内にあ るが、ディスクの内側領域から外側領域にいくに従って $\theta 1 / \theta 2$ 値が徐々に小さくなっている。

【0068】この透明基板1のプリピットパターン上 に、前記構造式[化4]を有するシアニン色素と、アミニ ウム塩を溶媒に溶かし、スピンコート法により厚さ16 Oμmの記録層2を形成した。

【0069】この記録層の上に金からなる厚さ100n mの光反射層3を形成し、さらにこの記録層2および光 反射層3をオーバーコートするように、アクリル系の紫 外線硬化樹脂からなる厚さ10μmの保護層を積層して 追記型光ディスクを作成した。この光ディスクの各ゾー ンの反射率を図6に、また各ゾーンのクロストークを図 7に示す。

【0070】前記実施例では透明基板上をゾーン1~4 に分割し、各ゾーンの径方向の長さをほぼ同じにした が、本発明はこれに限定されるものではなく、ゾーンの 分割数も各ゾーンの径方向の長さも、必要に応じて適宜 変更できる。

[0071]

【発明の効果】図6から明らかなように各部位の反射率 は66%以上で、CD-R規格のToplevel における反 射光量65%以上を確保している。また、図7から明ら かなように各部位のクロストークも低く抑えられてい

【0072】図5の右側に各トラックピッチ(TP)で のクロストーク特性の評価を示している。同図に示すよ うに例1の如くTPが1.6µmと比較的大きい場合 は、各ゾーンの θ 1/ θ 2値がディスクの全領域におい て同じであってもクロストークの影響はほとんどなく、 評価は最良の \odot である。例2、3の如くTPが0.8 μ mとやや狭くなると、例2よりも例3のように $\theta 1/\theta$ 2値をディスク内周側領域よりも外周側領域の方を小さ くした方がクロストークの影響が少なくなり、評価は最 良の◎である。さらにTPがO.74μmと狭小化する と、例4よりも例5または例6のように $\theta1/\theta2$ 値を ディスク内周側領域よりも外周側領域の方を段階的にあ るいは徐々に小さくした方がクロストークの影響が抑制 されて、評価は最良の◎である。

【0073】本発明は前述のように、表面にグルーブと 50 13 ゾーン2

ランドを交互に同心円状または螺旋状に形成したプリフ ォーマットを有する透明基板の前記プリフォーマット上 にスピンコートにより記録層を形成する光ディスクにお いて、前記グルーブを透明基板の径方向に沿って断面し たときにグルーブの溝の両側面が、透明基板のランドと 平行な仮想面に対してそれぞれ傾斜しており、その溝に おける内周側の側面の前記仮想面に対する平均テーパ角 ⊕1が、その溝における外周側の側面の前記仮想面に対 する平均テーパ角 θ 2よりも小さい(θ 1< θ 2)こと

【0074】このような構成にすることにより、窪み (凹み)を小さくし、CD-R規格のTop level におけ る反射光量65%以上を確保し、しかも隣接トラック間 でのクロストークを抑制して、特性低下を防止すること のできる、特に高密度記録に好適な光ディスクを提供す ることができる。

【図面の簡単な説明】

【図1】本発明の実施形態に係る光ディスクの一部拡大 断面図である。

【図2】ガラス基板に対する露光ビームの入射角、露光 強度、グルーブ溝側面の傾斜角との関係を示す説明図で ある。

【図3】透明基板上におけるゾーン1~4を示す説明図

【図4】本発明の各例における透明基板上の各ゾーンの θ 0, θ 1, θ 2とトラックピッチ (TP) を示した図 である。

【図5】本発明の各例における各ゾーンの $\theta 1/\theta 2$ 値、トラックピッチ(TP)、評価結果を示した図であ 30

【図6】本発明の各例における反射率を示す特性図であ

【図7】本発明の各例におけるクロストークを示す特性 図である。

【図8】従来の光ディスクの一部拡大断面図である。

【符号の説明】

- 1 透明基板
- 2 記録層
- 3 反射層
- 4 グルーブ

4 a グルーブのディスク内周側の側面

4b グルーブのディスク外周側の側面

- 5 ランド
- 6 窪み(凹み)
- 8 フォトレジスト層
- 9 ガラス基板
- 10 露光ビーム
- 11 対物レンズ
- 12 ゾーン1

14 ゾーン3 15 ゾーン4

X ランドと平行な仮想面層

 θ 1 グルーブのディスク内周側の側面の仮想面に対す

る平均テーパ角 Θ2 グルーブのディスク外周側の側面の仮想面に対する平均テーパ角

【図1】

【図3】

【図2】

【図4】

	ソーン1			ゾーン2			ソーン3			ゲーン4			TP
	80	9	82	θ¢	e 1	9 2	00	91	62	90	61	82	
例1	60	67	74	60	67	74	60	67	74	60	67	74	1.6
例2	60	67	74	60	67	74	60	67	74	60	67	74	0,8
(PJ3	60	67	74	60	67	74	70	65	81	70	65	81	0.8
例4	60	67	74	60	67	74	60	67	74	60	67	74	0.74
61 5	60	67	74	60	67	74	70	65	81	70	65	81	0.74
6 016	60	67	74	65	66	78	70	65	81	75	62	83	0.74

【図5】

	ゾーン1	ゾーン2	ソーン3	ゾーン4	TP	評価
例1	0.9	0.9	0.9	0.9	1.6	0
例2	0.9	0.9	0. 9	0.9	0.8	0
例3	0.9	0.9	0.8	0.8	0.8	0
例4	0.9	0.9	0.9	0.9	0.74	0
例5	0.9	0. 9	0.8	0.8	0.74	0
例6	0.9	0.85	0.8	0.75	0.74	0

【図8】

(a) (a) (b) (b) (c) (c)

【図6】

【図7】

フロントページの続き

(72)発明者 松木 陽太

大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内

(72)発明者 大塚 隆裕

大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 大塚 幸一

大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内

Fターム(参考) 5D029 JA04 WB03 WB11 WC01 WD10 WD11 WD16

PAT-NO: JP02000322773A

DOCUMENT-IDENTIFIER: JP 2000322773 A

TITLE: OPTICAL DISK

PUBN-DATE: November 24, 2000

INVENTOR-INFORMATION:

NAME COUNTRY

YOSHIMIZU, TAKUHAKU N/A

INAI, SHINICHIRO N/A

MATSUKI, YOTA N/A

OTSUKA, TAKAHIRO N/A

OTSUKA, KOICHI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

HITACHI MAXELL LTD N/A

APPL-NO: JP11374192

APPL-DATE: December 28, 1999

PRIORITY-DATA: 11062282 (March 9, 1999)

INT-CL (IPC): G11B007/24

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an optical disk which assures ≥65% reflecting light quantity at a top level of a CD-R standard and further can prevent characteristic degradation by

suppressing crosstalk between neighboring tracks.

SOLUTION: In the disk-shaped optical disk in which a recording layer 2 is formed by spin-coating on a preformat of a transparent substrate 1 having the preformat in which grooves 4 and lands 5 are alternatively formed in concentric circular shape or in spiral shape on a surface thereof, flanks of both sides of the groove 4 are provided by respectively inclining toward a virtual face X being parallel to the land 5 of the transparent substrate 1, average taper angle $\theta 1$ of the flank of disk inner peripheral side of the groove 4 to the virtual face X is made to be smaller than average taper angle $\theta 2$ of flank 4b of disk outer peripheral side of the groove 4 to the virtual face X.

COPYRIGHT: (C)2000, JPO