División de los enteros

Luis Eduardo Amaya B. Sede Guanacaste, Universidad de Costa Rica.

> MA-0320 - Matemáticas Discretas Agosto 2020

Contents

- Introducción
 - Previos y un poco de historia
- Conceptos de teoría de números
 - Divisibilidad de un número entero
 - Números primos
 - Teorema Fundamental de la Aritmética
 - Máximo Común Divisor
 - El algoritmo euclidiano

Teorema Fundamental de la aritmética

Teorema

Cualquier entero n mayor que 1, se puede expresar como un productos de números primos.

Más aún, si los primos se escriben en orden no decreciente, la factorización es única.

$$n = p_1 \cdot p_2 \cdots p_k$$

donde los números p_k son primos.

Notar que la cantidad de números primos que pueden cumplir este teorema es infinita.

Ejemplo 4: realizar la descomposición en números primos de:

Máximo común divisor

Definición

Sean m y n enteros diferentes de cero. Un divisor común de m y n es un entero que divide tanto a m como a n, a partir de lo anterior podemos definir al **máximo común divisor**, denotado como mcd(m, n) como el divisor común mas grande de m y n

Ejemplo 5:

- Los divisores positivos del 30 son: 1, 2, 3, 5, 6, 10, 15, 30.
- Los divisores positivos del 105 son: 1, 3 6, 7, 15, 21, 35, 105,
- Los divisores positivos comunes de 30 y 105 son 1, 3, 5, 15.
- De lo anterior tenemos

mcd(30, 105) = 15

Máximo común divisor

Existe otra forma de encontrar el máximo común divisor de dos enteros m y n observando con cuidado sus factorizaciones primas.

Ejemplo 6:

- La descomposición en números primos de 30 es, $30 = 2 \cdot 3 \cdot 5$
- La descomposición en números primos de 105 es, 105 = 3 5 7.
- En la descomposición en primos de 30 y 105 son comunes 3 y 5.
- De lo anterior tenemos

$$30 = 2 \cdot 3 \cdot 5 \cdot 105 = 3 \cdot 5 = 15$$

$$30 = 2 \cdot 3 \cdot 5 \cdot 7$$

$$105 = 2 \cdot 3 \cdot 5 \cdot 7$$

Máximo común divisor

Lo anterior es un caso del siguiente teorema

Teorema

Sean m y n enteros, m > 1, n > 1 con factorizaciones primas

$$m = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$$

$$n = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$$

Si el primo p_i no es un factor de m, se hace $a_i = 0$. De manera similar, si el primo p_i no es un factor de n, se hace $b_i = 0$, entonces

$$mcd(m, n) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \cdots p_n^{min(a_n,b_n)}$$

Máximo común divisor

Ejemplo 7

Haciendo uso del teorema anterior determinar mcd(30, 105).

Tenons (1)
$$30 = 2 \cdot 3 \cdot 5 = 2 \cdot 3 \cdot 5 \cdot 7$$

(i) $105 = 3 \cdot 5 \cdot 7 = 2^{0} \cdot 3 \cdot 5 \cdot 7$
(ii) $105 = 3 \cdot 5 \cdot 7 = 2^{0} \cdot 3 \cdot 5 \cdot 7$
 $min(0,1) = min(0,1) = min(0,1) = min(1,1) = min(1,1) = min(0,1) = min(0,1)$

Introducción Conceptos de teoría de números

Divisibilidad de un número entero Números primos Teorema Fundamental de la Aritmética

Máximo Común Divisor

Máximo común divisor

Ejemplo 8

Haciendo uso del teorema anterior determinar *mcd* (82320, 950796).

Tonends

i)
$$82320 = 2^{2} \cdot 3 \cdot 5 \cdot 7 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11$$

ii) $956796 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 11 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$

min(2,4) min(1,2)

 $5^{min}(1,0) = min(3,4) = 2^{min(0,1)}$
 $5^{min(1,0)} = 3^{min(3,4)} = 4116$

Máximo común divisor

¿Cómo te encuentro de forma eficiente?

Ni el método de la "lista de todos los divisores" del ejemplo 5 ni el de los factores primos del ejemplo 7 es eficiente para encontrar el máximo común divisor.

El problema es que ambos métodos requieren encontrar los factores primos de los números implicados y no se conoce un algoritmo eficiente.

Existe una solución, la cual no esta en photomath... 🗇 🕟 📵 🤊 🧸 🕞

El algoritmo euclidiano

Introducción

El algoritmo euclidiano es un algoritmo antiguo, conocido y eficiente para encontrar el máximo común divisor de dos enteros. El algoritmo euclidiano se basa en el hecho de si

$$f = mod(a, b) \approx a mod b$$

entonces

$$mcd(a, b) = mcd(b, r)$$

30, 105

105 mod 30 =
$$1.5 = r$$

m.c.d(105,30)=

m.c.d(30,15)

$$m \cdot c \cdot d(a_0) = 0$$

 $m \cdot c \cdot d(a_0) = 20$

El algoritmo euclidiano

Algoritmo

Teorema

Si a es un entero no negativo, b es un entero positivo y r = mod(a, b) entonces

$$mcd(a, b) = mcd(b, r)$$

```
Algoritmo euclidiano
Este algoritmo encuentra el máximo común divisor de los enteros no negativos a y b,
donde no son cero a y b.
       Entrada:
                    a y b (enteros no negativos, ambos diferentes de cero)
         Salida:
                    máximo común divisor de a y b
       mcd(a, b) {
          // sea a el mayor
          if (a < b)
4.
             intercambia(a, b)
5.
          while (b \neg = 0) {
             r = a \mod b
             a = b
              b = r
9.
10.
          return a
```

11.

El algoritmo euclidiano

Implementación en Mathematica

```
MaxComDiv[a_, b_] := Module[\{x = a, y = b, r = 0\},
                      módulo
   temp1 = x;
   temp2 = y;
   If [x < y]
    temp1 = y;
    temp2 = x;
   1;
   (*Lo anterior es para garantizarnos siempre el mayor*)
   While [temp2 != 0,
   mientras
    r = Mod[temp1, temp2];
        operación módulo
    temp1 = temp2;
    temp2 = r;
   Print[temp1];
   escribe
  ];
```

El algoritmo euclidiano

Ejemplo 9

Haciendo uso del algoritmo euclidiano determinar mcd(30, 105).

$$a = 30$$
, $b = 105$ //cm-di.//

 $a = 105$, $b = 30$, $b \neq 0$, autoross

 $a = 105$, $b = 30$, $b \neq 0$, autoross

 $a = 105$, $a = 105$
 $a = 105$
 $a = 105$, $a = 105$
 $a = 105$

(i)
$$a = 30$$
, $b = 15$, $b \neq 0$, endormore

 $Y = mod(30, 15) = 0$

whore $a = b = 15$, $b = Y = 0$

con $b = 0$, fin , $Solida = 0 = 15$

mcl(105,30) = mcd(30,15) = mcd(5,0)