7.2-5.

Suppose that the splits at every level of quicksort are in the proportion $1-\alpha$ to α , where $0 < \alpha < 1/2$ is a constant. Show that the minimum depth of a leaf in the recursion tree is approximately $-\lg n/\lg \alpha$ and the maximum depth is approximately $-\lg n/\lg (1-\alpha)$. (Don't worry about integer round-off.)

Answer.

Figure 1 shows the recursion tree for this split on every level of quicksort. We can see that the the minimum depth of a leaf in the recursion tree is approximately $\log_{\frac{1}{\alpha}} n = -\lg n/\lg \alpha$, and the maximum depth is approximately $\log_{\frac{1}{1-\alpha}} n = -\lg n/\lg (1-\alpha)$.

Figure 1. A recursion tree for QUICKSORT in which PARTITION always produces a split in the proportion $1 - \alpha$ to α , where $0 < \alpha < 1/2$ is a constant.

^{*.} Creative Commons © 2014, Lawrence X. Amlord (颜世敏, aka 颜序). Email address: informlarry@gmail.com