Free biproduct quasi-Hopf algebras of rank 2

Matteo Misurati

University of Ferrara

GABY, June 17th to 21st, 2024

Based on a joint work in progress with Daniel Bulacu

Brief summary

- We obtain the structure of biproducts of rank 2 as free modules over a quasi-Hopf algebra H.
- This is achieved by considering 2-dimensional Hopf algebras in the category of left Yetter-Drinfeld modules over H (For the classical case, see Radford¹).
- Examples of such biproducts are found, where H is taken as a quasi-Hopf algebra obtained from cyclic groups or the Klein four-group.
- In conclusion, we will see how this characterization can be applied to the classification of low dimensional quasi-Hopf algebras.

¹Biproducts and Kashina's Examples, Commun. Algebra 44, (2015).

Motivation

- Hopf algebras with a projection were introduced by Radford². Up to isomorphism, a Hopf algebra A with a projection over H is a biproduct $B \times H$, where B is a braided Hopf algebra in ${}^H_H \mathcal{YD}$.
- It was proven by Bulacu³ that this holds even when *H* is a quasi-Hopf algebra.
- Knowing the structure of quasi-Hopf algebra with a projection can be a useful tool in the classification of quasi-Hopf algebras of low dimension.

²The structure of Hopf algebras with a projection. J. Algebra 92 (1985).

³A structure theorem for quasi-Hopf bimodule coalgebras, Theory Appl. Categ. 32 (2017).

Preliminaries: Quasi-bialgebra

A quasi-bialgebra is a datum $(H, \Delta, \epsilon, \Phi)$, where H is an algebra, Φ is an invertible element in $H \otimes H \otimes H$, called reassociator, and $\Delta : H \to H \otimes H$ and $\epsilon : H \to k$ are algebra morphism satisfying:

$$(Id_H \otimes \Delta)(\Delta(h)) = \Phi(\Delta \otimes Id_H)(\Delta(h))\Phi^{-1},$$

 $(Id_H \otimes \epsilon)(\Delta(h)) = h \text{ and } (\epsilon \otimes Id_H)(\Delta(h)) = h.$

The reassociator Φ is a 3-cocycle, in the sense that

$$(1 \otimes \Phi)(Id_H \otimes \Delta \otimes Id_H)(\Phi)(\Phi \otimes 1)$$

$$= (Id_H \otimes Id_H \otimes \Delta)(\Phi)(\Delta \otimes Id_H \otimes Id_H)(\Phi),$$
and
$$(Id_H \otimes \epsilon \otimes Id_H)(\Phi) = 1 \otimes 1.$$

The last two equalities imply $(\epsilon \otimes Id_H \otimes Id_H)(\Phi) = 1 \otimes 1$ and $(Id_H \otimes Id_H \otimes \epsilon)(\Phi) = 1 \otimes 1$.

Preliminaries: Quasi-Hopf algebra

• A quasi-bialgebra H is a quasi-Hopf algebra if there exists an algebra antimorphism $S: H \to H$ and distinguished elements $\alpha, \beta \in H$ such that, for all $h \in H$, the following conditions hold:

$$S(h_1)\alpha h_2 = \epsilon(h)\alpha,$$

 $h_1\beta S(h_2) = \epsilon(h)\beta,$
and
 $X^1\beta S(X^2)\alpha X^3 = 1,$
 $S(x^1)\alpha x^2\beta S(x^3) = 1.$

• Let H be a quasi-Hopf algebra with reassociator Φ and antipode (S, α, β) . $H' \subseteq H$ is a sub-quasi-Hopf algebra of H if it is a quasi-Hopf algebra with reassociator Φ , distinguished elements α, β and structure maps induced by those of H.

Preliminaries: Notation and conventions

 The following Sweedler-like notation is used for quasi-Hopf algebras and their reassociator:

$$(\Delta \otimes Id_{\mathcal{H}})(\Delta(h)) = h_{(1,1)} \otimes h_{(1,2)} \otimes h_2,$$

$$(Id_{\mathcal{H}} \otimes \Delta)(\Delta(h)) = h_1 \otimes h_{(2,1)} \otimes h_{(2,2)}.$$

$$\Phi = X^1 \otimes X^2 \otimes X^3 = Y^1 \otimes Y^2 \otimes Y^3 = Z^1 \otimes Z^2 \otimes Z^3 = \dots$$

$$\Phi^{-1} = x^1 \otimes x^2 \otimes x^3 = y^1 \otimes y^2 \otimes y^3 = z^1 \otimes z^2 \otimes z^3 = \dots$$

- We consider all (quasi-)Hopf algebras to have invertible antipode, and all fields to have characteristic different from 2.
- We call a quasi-Hopf algebra genuine if its reassociator is not $1 \otimes 1 \otimes 1$ (i.e., it is not a Hopf algebra).
- By Yetter-Drinfeld modules over H, we mean the left Yetter-Drinfeld modules ${}^{H}_{H}\mathcal{YD}$.

Braided bialgebras in ${}^{H}_{H}\mathcal{YD}$

Let now H be a quasi-Hopf algebra over a field k. We recall that ${}^H_H\mathcal{YD}$ is braided monoidal in such a way that the forgetful functor ${}^H_H\mathcal{YD} \to {}_H\mathcal{M}$ is strong monoidal.

A bialgebra B in ${}^{H}_{H}\mathcal{YD}$ is defined as a bialgebra in a braided category; i.e.

- B is an algebra in ${}^{H}_{H}\mathcal{YD}$, meaning it is equipped with a unit 1_{B} and a multiplication m_{B} such that both are H-(co)linear and m_{B} is associative in ${}^{H}_{H}\mathcal{M}$.
- ② B is a coalgebra in ${}^H_H\mathcal{YD}$, and as such it is endowed with a counit map $\epsilon_B: B \to k$ and a coproduct Δ_B , both H-(co)linear and such that Δ_B is coassociative in ${}^H_H\mathcal{M}$.
- **3** The coproduct and the counit are required to be algebra morphisms, where the algebra structure on $B \otimes B$ is given by $m_{B \otimes B}$, defined naturally through the associativity constraints, m_B and the braiding of ${}^H_H \mathcal{YD}$.

Braided Hopf algebras in ${}^{H}_{H}\mathcal{YD}$

• Since the monoidal category ${}^H_H\mathcal{Y}\mathcal{D}$ is not strict, the product and coproduct of B are associative and coassociative only up to the associativity constraints in ${}^H_H\mathcal{Y}\mathcal{D}$, which coincide with those of ${}^H_H\mathcal{M}$, given on B by

$$a_{B,B,B}: \left(b\otimes b'\right)\otimes b''\mapsto X^1\cdot b\otimes \left[\left(X^2\cdot b'\right)\otimes \left(X^3\cdot b''\right)\right],$$

where $X^1 \otimes X^2 \otimes X^3$ is the reassociator of H.

- In particular, B is an algebra and a coalgebra in ${}_{H}\mathcal{M}$.
- Moreover, B is a Hopf algebra in ${}_{H}^{H}\mathcal{YD}$ if it has an antipode S which is also a morphism in ${}_{H}^{H}\mathcal{YD}$.

2-dimensional braided Hopf algebras

The previous conditions result in the following structure for a 2-dimensional Hopf algebra B in ${}^{H}_{H}\mathcal{YD}$. B is isomorphic to one of the following:

- **1** The group Hopf algebra $k[C_2]$, seen as a YD-module via the trivial H-(co)action: $h \cdot g = \epsilon_H(h)g$, $g \mapsto 1_H \otimes g$, $h \in H$. We call this structure the trivial one.
- ② The Hopf algebra $B_{\sigma,\nu}$ generated by $\{1,\theta\}$, with unit 1 and θ a primitive element s.t. $\theta^2=0$, with H-module and comodule structures given, respectively, by $\sigma\in \mathrm{Alg}_k(H,k)$ and $\nu\in H$ as follows:

$$h \cdot n = \sigma(h)n, \quad n \mapsto \nu \otimes n.$$

 (σ, ν) has to satisfy the following relations:

$$\begin{split} \sigma(\nu) &= -1, \quad \sigma(h_2)h_1\nu = \sigma(h_1)\nu h_2, \\ \Delta_H(\nu) &= \sigma(y^1x^3X^2)(x^1\otimes x^2)(X^1\nu\otimes \nu X^3)(y^2\otimes y^3). \end{split}$$

The braided antipode S is determined by S(n) = -n.

Remark on braided Hopf algebras of dimension 2

• The following condition on (σ, ν) differentiates the Hopf case from the genuine quasi-Hopf case:

$$\Delta_H(\nu) = \sigma(y^1x^3X^2)(x^1\otimes x^2)(X^1\nu\otimes \nu X^3)(y^2\otimes y^3).$$

- The difference between cases is substantial; even in the first non-trivial example, given by H=k [C_2] seen as a quasi-Hopf algebra with reassociator $\Phi=1_H\otimes 1_H\otimes 1_H-2p_-\otimes p_-\otimes p_-$, where $p_-=\frac{1}{2}(1_H-g)$, there are no nontrivial 2-dimensional Hopf algebras in ${}^H_H\mathcal{YD}$, while in the classical case, i.e. in ${}^k_{k}[C_2]\mathcal{YD}$, there is one, namely $B_{\bar{\sigma},g}$ where $\bar{\sigma}\in Alg_k(H,k)$ is determined by $\bar{\sigma}(g)=-1_k$.
- When H is a commutative quasi-Hopf algebra with reassociator such that $x^1 \otimes x^2 \otimes x^3 = x^1 \otimes x^3 \otimes x^2$ (such will be the case in our examples), the condition becomes much simpler:

$$\Delta_H(\nu) = \sigma(y^1)(y^2 \otimes y^3)(\nu \otimes \nu).$$

Biproduct quasi-Hopf algebras

A quasi-Hopf algebra A with a projection $A \overset{r}{\underset{\pi}{\longleftarrow}} H$ is obtained, through the biproduct construction, from a braided Hopf algebra B in ${}^H_H \mathcal{YD}$. The structure of the biproduct $B \times H$ is as follows: 4

$$B\times H=B\otimes H \text{ (as a vector space)},$$

$$(b\times h)(b'\times h')=(x^1\cdot b)(x^2h_1\cdot b')\times x^3h_2h',$$

$$\Delta(b\times h)=y^1X^1\cdot b_1\times y^2Y^1(x^1X^2\cdot b_2)_{-1}x^2X_1^3h_1$$

$$\otimes y_1^3Y^2\cdot (x^1X^2\cdot b_2)_0\times y_2^3Y^3x^3X_2^3h_2 \text{ '}$$

$$\epsilon(h\times b)=\epsilon_B(h)\epsilon_H(h),\quad \Phi_{B\times H}=1\times X^1\otimes 1\times X^2\otimes 1\times X^3,$$

$$S(b\times h)=(1\times S_H(X^1x_1^1b_{-1}h)\alpha_H)(X^2x_2^1\cdot S_B(b_0)\times X^3x^2\beta_HS_H(x^3)),$$
 with distinguished elements: $\alpha_{B\times H}=1\times \alpha_H,\quad \beta_{B\times H}=1\times \beta_H.$

⁴D.Bulacu, E.Nauwelaerts, Radford's biproduct for quasi-Hopf algebras and bosonization, J. Pure Appl. Algebra 174, 2002

Biproduct quasi-Hopf algebras

- By identifying H with the image of $i: h \mapsto 1 \times h$, we get, from the structure maps seen before, that H is a sub-quasi-Hopf algebra of $B \times H$.
- If B is finite dimensional with $\dim(B) = n$, $B \times H$ is a right free H-module of rank n. We will call any such structure a biproduct of rank n, for short.
- The projection on H is determined by $b \times h \mapsto \epsilon_B(b)h$.

Biproduct quasi-Hopf algebras of rank 2

Through the biproduct construction, we obtain the next quasi-Hopf algebras, respectively associated to $k[C_2]$ and $B_{\sigma,\nu}$.

• $H_g := k[C_2] \otimes H$, generated as a k-algebra by H and the grouplike element g, with relations

$$g^2 = 1$$
 and $gh = hg$,

such that it has H as a sub-quasi-Hopf algebra.

• $H(\theta)_{\sigma,\nu}$, the k-algebra generated by H and θ with relations

$$\theta^2 = 0$$
, $h\theta = \sigma(h_1)\theta h_2$,

for all $h \in H$. Its quasi-Hopf algebra structure is determined by H being its sub-quasi-Hopf algebra and

$$\Delta(\theta) = \sigma(X^2x^1)\nu X^1x^2 \otimes \theta X^3x^3 + \sigma(x^1)\theta x^2 \otimes x^3,$$

$$S(\theta) = -\sigma(X^2x_2^1)S(X^1x_1^1\nu)\alpha\theta X^3x^2\beta S(x^3).$$

Biproduct quasi-Hopf algebras of rank 2: Remarks

From the classification of 2-dimensional Hopf algebras in ${}^{H}_{H}\mathcal{YD}$, we obtain the following characterization for quasi-Hopf algebras A with a projection on H, of rank 2 as free H-modules. There are 3 cases.

- If A is semisimple, so is H. Moreover, $A \cong H_g$ (as quasi-Hopf algebras).
- ② If A is not semisimple and H is semisimple, then $A \cong H(\theta)_{\sigma,\nu}$.
- **3** If both A and H are not semisimple, then $A \cong H_g$ or $A \cong H(\theta)_{\sigma,\nu}$

A nice property of biproducts quasi-Hopf algebras $A=B\times H$ of rank 2 is that A is basic if and only if H is basic. (A is basic if all of its left simple modules are 1 dimensional)

Example: cyclic group quasi-Hopf algebra

Fix $n \ge 2$ and $1 \le t \le n$. Let k be a field with n^2 -th primitive roots of the unit. We fix a primitive n-th root of the unit \mathfrak{q} .

We denote by $k_{\Phi_t}[C_n]$ the quasi-Hopf algebra with the same k-algebra structure and structure maps as $k[C_n]$, with reassociator

$$\Phi_t = \sum_{i,j,l=0}^{n-1} \mathfrak{q}^{ti \lfloor rac{j+l}{n}
floor} 1_i \otimes 1_j \otimes 1_l, \quad ext{where } 1 \leq t \leq n,$$

$$1_j = \frac{1}{n} \sum_{a=0}^{n-1} \mathfrak{q}^{(n-a)j} g^j,$$

and distinguished elements α, β such that $\alpha\beta = g^{-t}$.

Example: cyclic group quasi-Hopf algebra

We proved that all biproduct quasi-Hopf algebras of rank 2 over $H = k_{\Phi_t}[C_n]$ are either

- **1** the trivial one $k[C_2] \otimes k_{\Phi_t}[C_n]$, or
- ② $H(\theta)_{\sigma_z,g^d}$, where (σ_z,g^d) is determined by two integers $0 \le z, d \le n-1$, such that $\sigma_z(g) = \mathfrak{q}^z$,

$$m \mid z$$
 and $\mathfrak{q}^{zd} = -1$

where
$$m = \frac{n}{\gcd(n,t)}$$
.

We notice that, if n is odd or gcd(n, t) = 1, we have only the first, semisimple, type of biproduct.

Example: Klein four-group

Denote by g,h the generators of $C_2 \times C_2$ and suppose k is a field with primitive 4th roots of the unit and fix $a,b,c \in \{0,1\}$.

The quasi-Hopf algebra structures⁵ on the Klein group algebra are $k_{\Phi_{(a,b,c)}}[C_2 \times C_2]$, where

$$\begin{split} \Phi_{(a,b,c)} &= \sum_{i,j,p,q,r,s=0}^1 (-1)^{ai\lfloor\frac{r+p}{2}\rfloor+bj\lfloor\frac{r+p}{2}\rfloor+cj\lfloor\frac{q+s}{2}\rfloor} \ 1_{ij} \otimes 1_{pq} \otimes 1_{rs}, \\ 1_{ij} &= \frac{1}{4}(1+(-1)^ig)(1+(-1)^jh) \\ &\quad \text{and} \quad \alpha\beta = g^ah^c\sum_{ii} (-1)^{bij}1_{ij}. \end{split}$$

⁵HL.Huang, G.Liu, Y.Ye, The Braided Monoidal Structures on a Class of Linear Gr-Categories, Algebr Represent Theor 17, (2014)

Example: Klein four-group

Depending on the value of (a, b, c), we can have up to three types of non-trivial rank 2 biproduct structures on $k_{\Phi_{(a,b,c)}}[C_2 \times C_2]$:

• If a=0, denoting $B_b=\sum_{ijpq} (-1)^{bjp} 1_{ij}\otimes 1_{pq}$ and as \bar{m} the multiplication on the biproduct:

$$\nu \in \{g, gh\}, \quad \begin{array}{ll} g\theta = -\,\theta g, & \Delta(\theta) = (\nu \otimes \theta) B_b + \theta \otimes 1, \\ h\theta = \!\theta h, & S(\theta) = -\,\nu \alpha \theta \alpha^{-1} \bar{m}(B_b). \end{array}$$

② If c=0, denoting $E_b=\sum_{ijpq}(-1)^{b\lfloor\frac{i+p}{2}\rfloor}\ 1_{ij}\otimes 1_{pq}$:

$$\nu \in \{h, gh, \nu_2^+, \nu_2^-\}, \quad g\theta = \theta g, \quad \Delta(\theta) = (\nu \otimes \theta + \theta \otimes 1) E_b, \\ h\theta = -\theta h, \quad S(\theta) = -\nu \alpha \theta \alpha^{-1}.$$

where

$$u_2^{\pm} = \frac{1 \pm \mathfrak{q}^b}{2} h + \frac{1 \mp \mathfrak{q}^b}{2} gh.$$

Example: Klein four-group

The type and amount of structures for non-trivial biproducts of rank 2 over $k_{\Phi_{(a,b,c)}}[C_2 \times C_2]$ depends on the value of (a,b,c). Namely, we can have up to three types of non-trivial biproduct structures:

3 If a + b + c is even, defining

$$C_{(a,b,c)} = \sum_{ij,pq} (-1)^{aip+bjp+cjq} \ 1_{ij} \otimes 1_{pq}$$
 and

$$D_{(a,b,c)} = \sum_{ij,pq} (-1)^{(a+b)\lfloor \frac{i+p}{2} \rfloor + c \lfloor \frac{j+q}{2} \rfloor} 1_{ij} \otimes 1_{pq},$$

we have: $\nu \in \{\mathrm{g},\mathrm{h},\nu_{\mathrm{4}}^+,\nu_{\mathrm{4}}^-\}$,

$$g\theta = -\theta g$$
, $\Delta(\theta) = ((\nu \otimes \theta)C_{(a,b,c)} + \theta \otimes 1)D_{(a,b,c)}$, $h\theta = -\theta h$, $S(\theta) = -\nu \alpha \theta \beta \bar{m}(C_{(a,b,c)})$.

where
$$\nu_4^{\pm} = \pm \frac{\mathfrak{q}}{2} 1 + \frac{1}{2} g + \frac{1}{2} h \mp \frac{\mathfrak{q}}{2} g h$$
.

Application: Classification of 6 dimensional qHas 1

- We are applying the characterization of free biproduct quasi-Hopf algebras of rank 2 to the classification of all 6 dimensional quasi-Hopf algebras.
- From the example over cyclic groups, it follows that all biproducts of rank 2 in dimension 6 are semisimple.
- We characterize biproduct quasi-Hopf algebras of rank 3 over a quasi-Hopf algebra of dimension 2. All are semisimple.
- Then, we found that all 6 dimensional quasi-Hopf algebras with a projection are semisimple.

Application: Classification of 6 dimensional qHas 2

- In order to classify 6 dimensional quasi-Hopf algebras H, we consider the graded algebra gr(H) associated to the radical filtration, which is a quasi-Hopf algebra when H is basic.
- We obtain that if H is not semisimple, gr(H) is a non-semisimple quasi-Hopf algebras with a projection in dimension 6, which contradicts the characterization of biproducts in dimension 6.
- Therefore, all 6 dimensional quasi-Hopf algebras are semisimple.

Thank you for your attention!