

Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Compiladores

NºMec:	Nome		(19/2020) 23 de junho de 2020 Curso:
1. Sobi	re o alfabeto $T_1 = \epsilon$ ela descrita. $S \rightarrow \epsilon \mid AB \mid A$		a G_1 dada a seguir e seja L_1 a linguagem
	$A \rightarrow \varepsilon \mid AB \mid A$ $B \rightarrow \varepsilon \mid bCf \mid 1$ $C \rightarrow aS \mid cDe$ $D \rightarrow Dd \mid d$		
2,0] (a)		esquerda da palavra abcdef.	
2,0] (b)	Das seguintes annie	to $F = \text{first}(ABC)$. ações, assinale todas as que são ver opção que falhar terá uma cotação i línea como um todo não será negati	rdadeiras. negativa de 1/4 da cotação da alinea.) va.)
		<pre> a ∈ F; c ∈ F; </pre>	
2,0) (c)	Considere o conjunt Das seguintes afirma (Note que por cada (A classificação da al	o $G = \text{follow}(B)$. $_{i ightharpoonup G}$, assimale todas as que são vere opção que falhar terá uma cotação (nea como um todo não será negativo (nea como um todo não será negativo).	dadeiras. negativa de 1/4 da cotação da alinea.) va.)
	□ ε∈ G: □ \$∈ G:		
	Das seguintes anrma,	$H = \operatorname{predict}(S \to AB)$. ões, assinale todas as que são vero oção que falhar terá uma cotação ca como um todo não será negativ	
	$c \in H$: $s \in H$:	<pre> a ∈ H; t ∈ H; </pre>	

[2,0] (e) O que são símbolos acessíveis? Mostre que todos os símbolos não terminais da gramática G₁ são acessíveis. Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.

Area do response

Simbolos acessíveis see succios acer acedidos per aumos
símbolos nee terminais (pane alem de eles mesmos).

A é acessívei per S

B é acessívei per S e B

D é acessívei per S e B

D é acessívei per C:

[2,0] (f) A gramática G₁ é inadequada à implementação de um reconhecedor descendente com lookahead de 1. Diga porquê e altere-a de forma a obter uma equivalente que o permita. Basta transcrever as partes alteradas.

Area de respecta

2. Sobre o alfabeto $A = \{abcxyvz\}$ considere a linguagem L_2 tal que:

 $L_2 = \{ \, \mathbf{a}^n \mathbf{x}^k \mathbf{v} (\mathbf{y} \mathbf{z})^{k-1} (\mathbf{b} | \mathbf{c})^{n+1} \, : \, n \geq 0 \, \wedge \, k > 0 \, \}$

[2,0] (.) Construa uma gramática independente do contexto que represente a linguagem L_2 .

Area de responta

3. Sobre o alfabeto $T_3 = \{mm, mored, closed, line, (,)\}$, considere a gramática G_3 dada a seguir.

$$\begin{aligned} & \text{follow}(\text{options}) = \{\text{LIME}\} \\ & \text{follow}(\text{xpoints}) = \{\$, \text{LIME}, \text{DOTTED}, \text{CLOSED}\} \end{aligned}$$

[2,0] (a) Proencha a tabela de análise para um reconhecedor (parser) descendente com lookahead de 1 da gramática G₃.

-	3011	DOTTED	CLOSED	LINE	()	8
2000	3011	901180	- CCUPAC				A1000-400
draw				Land Total			100 - E
seq		Sea -+ Live Se	Dirichles Deg.	ing margine see			
line		el	4	100			
opiticitus		- 6	G	0			
rpoints		4	4	201	0		1 7
option		P	10				
point					1)		

(b) A construccão de um reconhecedor (parser) ascendente para uma gramática baseia-se na coleccião de conjuntos de itens. O elemento inicial dessa coleccião para a gramática G₃ está parcialmente descrito a seguir.

$$Z_0 = \{ draw \rightarrow *seq \$ \} \cup \cdots$$

Complete-o e determine mais 5 elementos desse conjunto.

Assa de responta

[2.0] (c) Uma palavra na linguagem dada por G₃ descreve um desenho definido por um conjunto de linhas poligonais (polylines). Por defeito as linhas poligonais são sólidas e abertas, podendo ser ponteadas, se a opccão desemble for fornecida, e/ou fechadas, se a opccão cuesto for fornecida. O símbolo terminal num tem um atributo associado, designado v, que representa um número. O símbolo não terminal point representa as coordenadas X e Y de um ponto.

Dispõe-se da funccão drawLine(x1, y1, x2, y2, t), que desenha uma linha (segmento de reta), a contínuo ou a ponteado, dependendo do parâmetro t, entre os pontos (x1,y1) e

(x2, y2). Assuma que o parâmetro t pode ter os valores corres ou sollo.

Construa uma gramática de atributos que permita invocar a funccão dravLine de forma adequada para cada linha poligonal incluída num desenho. Note que uma linha poligonal com n pontos possui n-1 segmentos de reta, se for aberta, e n, se for fechada.

Produccão	Regra semântica		
$draw \rightarrow seq$			
$seq \rightarrow \varepsilon$			
$\operatorname{seq} o \operatorname{line} \operatorname{seq}$			
line \rightarrow options LIME point point xpoints			
options $\rightarrow \varepsilon$			
options → option options			
$xpoints \rightarrow \varepsilon$			
$xpoints \rightarrow point xpoints$			
option → DOTTED			
option → CLOSED			
point → NUM NUM			

Anna de rascunho