

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

Ciclo 2020-I

[Cod: CM4F1]

[Curso: Análisis y Modelamiento Numérico I]

Práctica Calificada \mathcal{N}^{o} 4

- 1. Sea $f: I \subset \mathbb{R} \to \mathbb{R}$ una función y sea $x \in I$. Demuestre que las siguientes afirmaciones son equivalentes
 - a) La función f es continua en el punto x.
 - b) Si $\{x_n\}$ es una sucesión monótona de puntos de I con $\{x_n\} \to x$, entonces $\{f(x_n)\} \to f(x)$.
 - c) Para cada $\varepsilon > 0$ existe un $\delta > 0$ tal que, si $y \in I$ verifica que $|y x| < \delta$, entonces $|f(y) f(x)| < \varepsilon$.

Es decir,

$$\forall \varepsilon > 0 \,\exists \delta > 0 : y \in I, |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon.$$

[4 puntos]

2. Demuestre que si una sucesión $(a_n)_{n\in\mathbb{N}}$ es convergente, entonces cualquier subsucesión de dicha sucesión converge al mismo límite.

[4 puntos]

- 3. Sea $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ una función derivable tal que:
 - a) $f([a,b]) \subset (a,b)$,
 - b) $\max_{x \in [a,b]} |f'(x)| < 1.$

Demuestre que existe un único $t \in [a, b]$ tal que f(t) = t, y además para todo $x_0 \in [a, b]$, la sucesión $\{x_n\}$ generada por la iteración $x_{n+1} = f(x_n)$ converge a t. [4 puntos]

- 4. Dada la ecuación $x = 2\tan(4x)$. Halle los intervalos disjuntos que contienen a la octava y decima raíz positiva. [4 puntos]
- 5. La ecuación que permite determinar la frecuencia de la viga empotrada en un extremo, y libre en el otro extremo, está dada por cos(ux)cosh(ux) + 1 = 0,

donde:

$$u^2 = \frac{p}{a}$$
, $a^2 = \frac{EIg}{A\gamma}$.

p = Frecuencia circular natural de la viga, rad/s.

 $x = 300 \,\mathrm{cm}$ (longitud de la viga.)

 $I = 7000 \,\mathrm{cm}^4$ (momento de inercia del área del material de la viga.)

 $E = 2 \times 10^5 \text{kg/cm}^2$ (módulo de elasticidad del material de la viga.)

 $\gamma = 0.002 \,\mathrm{kg/cm^3}$ (densidad del material de la viga.)

 $A = 200 \,\mathrm{cm}^2$ (área de la sección transversal de la viga.)

 $g = Aceleración de la gravedad, cm/s^2$.

Encuentre los intervalos que contienen a las tres primeras raíces positivas.

[4 puntos]

Los Profesores UNI, 12 de agosto de 2020.