Prova pratica Programmazione Non Lineare

May 27, 2016

Cognomi gruppo:

Parte 1 Determinare il volume massimo che può avere un cilindro inscritto in un cono il cui diametro di base è di 40 cm e la cui altezza è di 1 m. Assumendo che la base del cilindro poggi sulla base del cono.

Volume massimo:

 CM^3

Parte 2 Data una funzione $f: \mathbb{R}^2 \to \mathbb{R}$, si conoscono le seguenti coppie ingressi-uscita: $x^1 = (1, 1), \ y^1 = 10; \ x^2 = (1, 3), \ y^2 = 5; \ x^3 = (2, 8), \ y^3 = 12; \ x^4 = (0, 3), \ y^4 = -5; \ x^5 = (2, -1), \ y^5 = 9; \ x^6 = (11, 66), \ y^6 = 40; \ x^7 = (12, 10), \ y^7 = 10; \ x^8 = (-1, -1), \ y^8 = 3$. Completare tutti i seguenti punti:

- 1. approssimare f con una funzione lineare $(m^T x + q)$, stimando i parametri che minimizzano l'errore in norma 2 quadrata $(\|e\|_2^2)$;
- 2. approssimare f con una funzione lineare $(m^T x + q)$, stimando i parametri che minimizzano l'errore in norma infinito $(\|e\|_{\infty})$;
- 3. approssimare f con la funzione $a_1x_1^2 + a_2x_2^2 + b_1x_1 + b_2x_2 + c$ e stimando i parametri che minimizzano l'errore in norma 2 quadrata ($||e||_2^2$);

Errore 1:

Errore 2:

Errore 3:

Parte 3 Si consideri un monopolista che operi su 4 mercati distinti: Europa, Nord America, Cina e India. Ciascun mercato è caratterizzato da una funzione di domanda inversa che prende la quantità di prodotto in tonnellate (q_i) e ne restituisce il prezzo unitario in euro (p_i) :

$$p_i = a_i - b_i q_i^2,$$

dove $a_1 = 1000$, $b_1 = 0.001$ (Europa), $a_2 = 1300$, $b_2 = 0.002$ (Nord America), $a_3 = 800$, $b_3 = 0.002$ (Cina), $a_4 = 700$, $b_4 = 0.001$ (India). Il costo unitario di produzione (in tonnellate) dipende solo dalla quantità (in tonnellate) del prodotto finale e non dal mercato ed è pari a 10. Il problema consiste nel massimizzare il profitto del monopolista sapendo che la sua produzione massima totale è pari a 1000 tonnellate.

PROFITTO MASSIMO: