комплексные числа

Комплексное число имеет вид z=a+bi, где a и b — действительные числа, i — мнимая единица, $i^2=-1$. Число a называется действительной частью комплексного числа, а число b — его мнимой частью; они обозначаются соответственно $\operatorname{Re} z$ и $\operatorname{Im} z$. Числа a+bi и a-bi, которые отличаются только знаком мнимой части, называются сопряженными.

ДЕЙСТВИЯ С КОМПЛЕКСНЫМИ ЧИСЛАМИ

Сложение	(a + bi) + (c + di) = (a + c) + (b + d)i
Вычитание	(a + bi) - (c + di) = (a - c) + (b - d)i
Умножение	(a+bi)(c+di) = (ac-bd) + (ad+bc)i
Деление	$\frac{a+bi}{c+di} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i; c^2+d^2 \neq 0$
Возведение в степень числа <i>i</i>	$i^{4m}=1, i^{4m+1}=i, i^{4m+2}=-1, i^{4m+3}=-i.$

ТРИГОНОМЕТРИЧЕСКАЯ ФОРМА КОМПЛЕКСНЫХ ЧИСЕЛ

Модуль	$r = \sqrt{a^2 + b^2}$
Аргумент	Число α такое, что $tg\alpha = \frac{b}{a}$.
Тригонометрическая форма комплексного числа	$z = r(\cos\alpha + i\sin\alpha)$
Умножение	$z_1 z_2 = r_1 r_2 \left(\cos \left(\alpha_1 + \alpha_2 \right) + i \sin \left(\alpha_1 + \alpha_2 \right) \right)$
Деление	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left(\cos(\alpha_1 - \alpha_2) + i \sin(\alpha_1 - \alpha_2) \right)$
Возведение в степень	$z^n = r^n(\cos n\alpha + i\sin n\alpha)$
⊭ ∋рмула Муава	$(\cos\alpha + i\sin\alpha)^n = \cos n\alpha + i\sin n\alpha$
Извлечение корня:	$\sqrt[n]{z} = \sqrt[n]{r}\left(\cos\frac{\alpha + 2k\pi}{n} + i\sin\frac{\alpha + 2k\pi}{n}\right),$ $k = 1, 2,, n - 1.$