

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2018 -الموضوع-

RS24

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية: "أ " و " ب "	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من أربعة تمارين مستقلة فيما بينها.
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.

لا يسمح باستعمال الآلة الحاسبة كيفما كان نوعها

لا يسمح باستعمال اللون الأحمر بورقة التحرير

الصفحة	D 0
_2	RS

24

الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – مادة: الرياضيات – شعبة العلوم الرياضة "أ" و"بب"

التمرين 1: (3.5نقط)

نذكر أن
$$(M_2(i),+,i)$$
 حلقة واحدية صفر ها المصفوفة المنعدمة $O=\{0,+,+,i\}$ و وحدتها نذكر أن $O=\{0,+,+,i\}$

.4 معده حقيقي بعده
$$(M_2(\mathbf{j}_1),+,.)$$
 و أن $I=egin{pmatrix} \mathfrak{A} & 0\ddot{0} \\ \vdots \\ 0 & 1\ddot{\overline{\phi}} \end{pmatrix}$

$$E = \{M(x,y)/(x,y)\hat{\mathbf{1}}_{|\hat{\mathbf{1}}|^2}\}$$
 و نعتبر المجموعة $M(x,y) = \begin{cases} \frac{\partial x}{\partial y} & \frac{y\ddot{0}}{\dot{0}} \\ 0 & x\ddot{0} \end{cases}$ نضع نظم المحموعة والمحموعة المحموعة الم

$$(M_2(i),+)$$
 بين أن E زمرة جزئية للزمرة (0.5

$$(M_2(i),+,.)$$
بين أن E فضاء متجهي جزئي للفضاء المتجهي (1-2 متجهي الفضاء فضاء متجهي (2-1 متجهي الفضاء فضاء متجهي الفضاء المتجهي (1-2 متجهي الفضاء فضاء متجهي الفضاء فضاء فضاء متجهي الفضاء ا

. 2 هو
$$(E,+,.)$$
 هو 2 سبن أن بعد الفضاء المتجهى الحقيقى $(E,+,.)$

ستقر بالنسبة للقانون " "ا مستقر بالنسبة القانون
$$E$$
 أين أن E مستقر بالنسبة القانون " "

بین أن
$$(E,+,')$$
 حلقة تبادلیة.

$$M_2(i)$$
 من $M(x',y')$ و $M(x,y)$ من $M(x,y)$

ليكن
$$\mathbf{j}$$
 التطبيق المعرف من \mathbf{t} نحو \mathbf{E} بما يلي: لكل عدد عقدي مكتوب على شكله

$$j(z)=M(x,y)$$
 ، $z=x+iy$ الجبري

$$T$$
" أ) بين أن E مستقر بالنسبة للقانون D

$$(E,T)$$
 نحو (f,f) نحو (f,f) نحو انحو (f,f)

ج) نضع
$$\{O^*,T\}$$
 زمرة تبادلية. $E^*=E^-$ زمرة تبادلية.

.
$$E$$
 في X + » في النسبة للقانون X في X . X

بین أن
$$(E,+,T)$$
 جسم تبادلي.

التمرين 2: (3.5 نقط)

(E):
$$z^2$$
 - $2iz$ - $2=0$ المعادلة: \pm في \pm (\pm 0.5

$$(O,e_1^l,e_2^l)$$
 ساشر معامد متعامد معامد منسوب إلى معلم معامد معامد عامدي منسوب العقدي منسوب العقدي معامد معامد معامد معامد معامد عامد العقدي منسوب العقدي معامد عامد العقدي ا

$$Re(a)=1$$
:نرمز ب a و b لحلى المعادلة

$$z$$
و لكل $B(b)$ و $A(a)$ و $M'(h(z))$ و النقط (a,a,b) دات الألحاق و لكل (a,a,b) و الكل

و
$$h(z)$$
 و a و b بالتوالي.

الصفحة - 3	RS 24	الامتحان الوطني الموحد للبكالوريا – الحورة الامتحراكية 2018 – الموضوع	
4		– ماحة: الرياضيان <i>ت — شعب</i> ة العلوم الرياضة "أ" و"ببم"	
		$\frac{h(z)-a}{h(z)-b} = -\frac{z-a}{z-b}$ ان بین أن: (0.7)	75
		$(M'B,M'A)^{\circ}$ $p + (MB,MA)$ [2p] نا استنتج أن: $(2p)$	75
		عبين أنه إذا كانت النقط M و A و B مستقيمية فإن النقط M و A و B مستقيمية.).5
	رة.	بين أنه إذا كانت النقط M و A و B غير مستقيمية فإن النقط M و A و B و M متداور M	0.5
		التمرين 3: (3 نقط) نرمى قطعة نقدية غير مغشوشة في الهواء 10 مرات متتالية.	
		ليكن X المتغير العشوائي الذي يربط كل نتيجة ممكنة بتردد ظهور الوجه "Pile"	
		(أي عدد مرآت الحصول على"Pile" مقسوم على 10)	
		1-أ) حدد القيم الممكنة للمتغير X.	1
		$X = \frac{1}{2}$ ب) احسب احتمال الحدث:	1
		$\frac{9}{10}$ عا هو احتمال الحدث: X أكبر من أو يساوي $\frac{9}{10}$ ؟	1
		التمرين 4: (10 نقط)	
		التكن f الدالة العددية المعرفة على المجال] f بما يلي:	
		$f(0)=0$ $f(x)=\sqrt{x}(\ln x)^2 (x>0)$	
		(C)امنحناها في معلم متعامد ممنظم الكن (C) .	
		0 ($f(x) = \frac{e^{x}}{6} + \frac{1}{4} \ln \frac{e^{x}}{6} + \frac{20^{2}}{6}$ (یمکن ملاحظة أن $\frac{1}{6}$ $\frac{e^{x}}{6} + \frac{1}{6}$).).5
		ب) احسب $\lim_{x \to + \pm} \frac{f(x)}{x}$ و $\lim_{x \to + \pm} \frac{f(x)}{x}$ ثم أول مبيانيا النتيجة المحصل عليها.	75
		ر. 2 أ ادرس اشتقاق f على اليمين في 0 ثم أول مبيانيا النتيجة المحصل عليها.	75
		(x) بين أن f قابلة للاشتقاق على $[0,+\infty]$ ثم احسب (x) لكل (x)	75
	$(\forall x \in$	$= [0,1]$ $0 \le \sqrt{x} \left(\ln x\right)^2 \le \left(\frac{4}{e}\right)^2$. استنتج أن: $\left[0,+\infty\right]$ على $\left[0,+\infty\right]$ على على الدالمة f	1
		$\left\ \stackrel{\Gamma}{i} \right\ = 2cm$ (نأخذ: $\left\ \stackrel{\Gamma}{i} \right\ $).).5
		$F(x) = \int_{x}^{1} f(t) dt$ نضع: $x \ge 0$ نظع -3	
		F F N N N N N N N N N N N N N N N N N N	

أ) بين أن الدالة F قابلة للاشتقاق على المجال $[0,+\infty]$.

. [0,+ ∞ [کل F علی F علی F لکل F لکل F استنتج رتابة

0.5

1

الصفحة 4	RS 24	الامتدان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع – ماحة: الرياضيات – شعبة العلوم الرياضة "أ" و"بج"	
		$x>0$ لكل $\int_{x}^{1}\sqrt{t}\ln t.dt$ المكاملة بالأجزاء احسب أعلى المكاملة بالأجزاء احسب	0.75
		$F(x) = -\frac{2}{3}x\sqrt{x}(\ln x)^2 + \frac{8}{9}x\sqrt{x}\ln x - \frac{16}{27}x\sqrt{x} + \frac{16}{27} : x > 0$ بين أن لكل (ب	0.75
		ج) استنتج مساحة الحيز المستوي المحصور بين المنحنى (C) و المستقيمات المعرفة	1
		y=0 و $x=0$ و $x=0$	
		$u_n = \int_{\frac{1}{n}}^{1} f(x) dx$ 0 نضع: n نضع غير منعدم n نضع	
		$(u_n)_{n\geq 1}$ أ) بين أن المتتالية $(u_n)_{n\geq 1}$ محدودة و رتيبة قطعا.	1
		. $\lim_{n o +\infty} u_n$ متقاربة ثم احسب $\left(u_n ight)_{n \geq 1}$ بين أن المتتالية	0.75

انتهى

الامتحان الوطني الموحد للبكالوريا

+0.7M/8+ | MEYO40 +0.50160+ | 807E2 016E80 A 80E8++X 0.888810 A 800MEA 015.84880 5.00001

الدورة الاستدراكية 2018 -عناصر الإجابة-

RR24

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة	
9	المعامل	شعبة العلوم الرياضية: "أ " و " ب "	ر معبة أو المسلك -	الث

سلم التنقيط و عناصر الإجابة

سلم التنقيط	عناصر الإجابة	1 (التمريز
0.5	زمرة جزئية		-1
0.5	فضاء متجهي جزئي	(1	-2
0.25	$\dim E = 2$	ب)	
0.25	الاستقرار بالنسبة ل ُ	(1	-3
0.5	حلقة تبادلية $(E,+,^\prime)$	ب (ب	
0.25	T الاستقرار بالنسبة ل	(1	
0.25	تشاكل	ب)	-4
0.25	زمرة تبادلية $\left(E^{*},T ight)$	(₹	
0.5	التجميعية	([†]	-5
0.25	جسم تبادلي $(E,+,T)$	ب)	3

سلم التنقيط	عناصر الإجابة		التمرين 2
0.5	تحقق	(1	-1
2x0.25	حلا المعادلة هما: $i+i$ و $i+1$ –	ب)	
0.75	المتساوية	(1	-2
0.75	المتساوية	ب)	
0.5	الاستازام	(1	-3

الصفحة الصفحة	الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 — عناصر الإجابة
الصفحة 2 RR 24	– عادة: الرياضيات — شعبة العلوم الرياضة "أ" و"بب"

ب) الاستلزام

سلم التنقيط	عناصر الإجابة		التمرين 3
الللفتص			
1	$0, \frac{1}{10}, \frac{2}{10}, ,,,,,, \frac{9}{10}, 1$ القيم الذي يقبلها المتغير X هي: X	(أ	-1
1	$p_{\xi}^{\mathcal{Z}} X = \frac{1 \ddot{0}}{2 \dot{\bar{\theta}}} = p_{\xi}^{\mathcal{Z}} X = \frac{5 \ddot{0}}{10 \dot{\bar{\theta}}} = \frac{10! \text{cd} \frac{\ddot{0}}{2} \text{cd} \frac{\ddot{0}}{2}}{5! 5! 2 \dot{\bar{\theta}}} \frac{\ddot{0}}{2} $	ب (ب	
1	$p_{\xi}^{x}X^{3} \frac{9 \ddot{0}}{10 \dot{\overline{\theta}}}$		-2

سلم التنقيط	عناصر الإجابة	التمرين 4	
0.5	الاتصال على اليمين في 0	(1)	
	$\lim_{x \in +\frac{\pi}{2}} f(x)$ حساب		
0.75	$\lim_{x \in +\frac{1}{2}} \frac{f(x)}{x}$ حساب	ب)	-1
	فرع شلجمي في اتجاه محور الأفاصيل		
0.75	الاشتقاق على اليمين في0	(أ	-2
	التأويل المبياني		
0.75	الاشتقاق على] £4+][]D,+	ب)	
0.73	f'(x)حساب $f'(x)$	(-	
1	$[0,+rac{1}{2}$ علی $[0,+rac{1}{2}]$ تغیرات f علی	ج)	
	استنتاج المتفاوتة	(C	
0.5	التمثيل المبياني مع احترام وحدة القياس	(7	

Z	الصفحأ
${}^{\prime}$	3
3	~

RR 24

الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – عناصر الإجابة – ماحة: الرياضيات – شعبة العلوم الرياضة "أ" و"بب

-3	(1	متصلة على] $= 0,+1$ و الدالة $\int_1^x f(t)dt$ هي دالتها الأصلية التي تنعدم f في 1.	0.5
	ب)	F'(x) = - f(x) 0.5 $F(x) = - f(x)$ نغيرات $F(x) = - f(x)$	1
-4	(1	$(x>0)$ $\partial_x^1 \sqrt{t} \ln(t) dt$ حساب	0.75
	ب)	المتساوية	0.75
	(ट	المساحة= $\partial_0^{-1} f(x) dx' \ 4cm^2 = F(0)' \ 4cm^2 = 4cm^2' \lim_{x \to 0^+} F(x) = \frac{64}{27} cm^2$ لأن الدالة F متصلة على اليمين في 0. O لحساب التكامل و O لوحدة القياس.	1
-5	(1	المتتالية محدودة	1
	ب)	المتتالية متقاربة $\lim_{n \oplus + \frac{1}{4}} u_n =$	0.75