	ASSIGNMENT-1
= 0.0	Wower bound on the number of measurements for exact
3.	reconstruction of a signal in Rn that is 5- sparge in some
	orthonormal basis 4.
_	Of the noting 2510
-	@ Basis - Pursuit Algorithm
-	- 100/17/1) 10 10 12/0, mg
	Number of measurements & m > C log (7/8) 10 10 10 12 (0,0)
	· Exact Reconstruction guaranteed with probability (2-8)
	(A combinatorial algorithm (Problem Po)
	Y= OUn= An det n be a K-sparse signal.
	Null space of matrix A N(M= {x: An=04
	In order to provide a unique solution, any two K-sparge
	vectors in and not should not result in same measurement
	vector.
	i.e, A(n-n') =0 their difference should not lie in
	the null space of A.
	Now,
	since the difference between two K-sparge vectors is
	at-most 2K-sparse, then a K-sparse vector x is uniquely
	reconstructed if null space of A contains no 2k sparse vector
	which weary that any 2K Columns of A are linearly independent
	Spark(A) > 2K
	where spark(A) & [2, m+1]
) m+1>2k) m>2k-1

