Math. - CC 2 -

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE I

Pour $n \in \mathbb{N}$, on note

$$W_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$$
 et, pour $n \neq 0$, $I_n = \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt$

- 1. Calculer W_0 et W_1 .
- 2. a. A l'aide d'une intégration par parties, montrer que :

$$\forall n \in \mathbb{N}, \quad W_{n+2} = \frac{n+1}{n+2} W_n$$

- **b.** En déduire que pour tout $n \in \mathbb{N}, W_n > 0$.
- **3. a.** Montrer que la suite (W_n) est décroissante.
 - **b.** Déduire des questions **2.a** et **3.a** que $\lim_{n\to+\infty} \frac{W_{n+1}}{W_n} = 1$.
- **4. a.** Montrer que la suite $((n+1)W_nW_{n+1})$ est constante (et préciser cette constante).
 - **b.** En déduire que $\lim_{n \to +\infty} \sqrt{2n} W_n = \sqrt{\pi}$.
- **5. a.** Montrer que $I_n = \sqrt{n}W_{2n+1}$.

 On posera le changement de variable $t = \sqrt{n}\cos(u)$ dans l'intégrale I_n .
 - **b.** En déduire $\lim_{n\to+\infty}I_n$.

EXERCICE II

 $Les\ parties\ I\ et\ II\ sont\ ind\'ependantes.$

Partie I

Résoudre dans $\mathbb R$ l'équation différentielle

$$y'' - y' + y = x^4 \qquad (L)$$

Partie II

Le but de cette partie est de trouver les solutions sur \mathbb{R}_+^* de l'équation différentielle :

$$x^2y'' - xy' + y = x^4 (E)$$

1. Résoudre dans \mathbb{R}_+^* l'équation différentielle

$$y' + \frac{1}{x}y = x \qquad (E_1)$$

- **2.** On va chercher les solutions de l'équation différentielle (E) sur \mathbb{R}_+^* sous la forme $\varphi: x \mapsto x\lambda(x)$ où λ est une fonction définie sur \mathbb{R}_+^* , deux fois dérivable.
 - **a.** Déterminer φ' et φ'' à l'aide de λ , λ' et λ'' .
 - **b.** Montrer que φ est solution de (E) sur \mathbb{R}_+^* si, et seulement si λ' est solution de (E_1) sur \mathbb{R}_+^* .
- 3. Déduire des questions précédentes l'expression de λ , puis de φ .

EXERCICE III

1. Démontrer que

$$\forall x > 0$$
, $\operatorname{Arctan}\left(\frac{1}{2x^2}\right) = \operatorname{Arctan}\left(\frac{x}{x+1}\right) - \operatorname{Arctan}\left(\frac{x-1}{x}\right)$

2. En déduire la limite de la suite $(S_n)_{n\geq 1}$ définie par

$$S_n = \sum_{k=1}^n \operatorname{Arctan}\left(\frac{1}{2k^2}\right)$$

EXERCICE IV

Soient $n \in \mathbb{N}$ et $x \in \mathbb{R}$. On propose de calculer les sommes : $A_n = \sum_{k=0}^n \cos^2(kx)$ et $B_n = \sum_{k=0}^n \sin^2(kx)$.

- **1.** Calculer $A_n + B_n$ pour $n \in \mathbb{N}$.
- **2. a.** Montrer que pour $n \in \mathbb{N}, A_n B_n = \sum_{k=0}^n \cos(2kx)$.
 - **b.** En déduire une expression simplifiée de $A_n B_n$ en fonction de n (on discutera selon les valeurs de $x \in \mathbb{R}$).
- **3.** En déduire une expression simplifiée de A_n et de B_n en fonction de n.

EXERCICE V

On propose de résoudre l'équation suivante d'inconnue $z \in \mathbb{C}$:

$$z^3 - 6z - 6 = 0 \qquad (\mathscr{E})$$

- 1. On considère $z \in \mathbb{C}$ une solution de (\mathscr{E}) . Soient alors $u, v \in \mathbb{C}$ tels que u + v = z et uv = 2.
 - **a.** Justifier que $(u+v)^3 = 6(u+v) + 6$ et montrer que $(u+v)^3 = u^3 + v^3 + 6(u+v)$.
 - **b.** En déduire $u^3 + v^3$ et déterminer u^3v^3 .
 - c. Montrer que u^3 et v^3 sont solutions de l'équation $Z^2-6Z+8=0$ d'inconnue $Z\in\mathbb{C}$.
 - **d.** Résoudre l'équation $Z^2 6Z + 8 = 0$.
- **2. a.** Résoudre l'équation $W^3=2$, d'inconnue $W\in\mathbb{C}$ en exprimant les solutions sous forme trigonométrique.
 - **b.** Résoudre l'équation $W^3 = 4$, d'inconnue $W \in \mathbb{C}$ en exprimant les solutions sous forme trigonométrique.
 - c. A l'aide des questions précédentes, déterminer les valeurs possibles de u et v, puis de z.
 - **d.** En déduire les solutions de (\mathscr{E}) .