Geometry Problem booklet

Assoc. Prof. Cornel Pintea

E-mail: cpintea math.ubbcluj.ro

Contents

1	Wee	ek 8: Applications of the triple scalar product. Conics	1
		1.0.1 Applications of the triple scalar product	1
		• The distance between two straight lines	1
		• The coplanarity condition of two straight lines	
	1.1	Conics	
		1.1.1 The Ellipse	3
		1.1.2 The Hyperbola	
	1.2	Problems	

Module leader: Assoc. Prof. Cornel Pintea

Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania

1 Week 8: Applications of the triple scalar product. Conics

1.0.1 Applications of the triple scalar product

• The distance between two straight lines.

If Δ_1 , Δ_2 are two straight lines, then the distance between them, denoted by $\delta(\Delta_1, \Delta_2)$, is defined as

$$\min\{||M_1M_2|| | M_1 \in \Delta_1, M_2 \in \Delta_2\}.$$

- 1. If Δ_1, Δ_2 are concurrent, then $\delta(\Delta_1, \Delta_2) = 0$.
- 2. If $\Delta_1||\Delta_2$, then $\delta(\Delta_1, \Delta_2) = ||\overrightarrow{MN}||$ where $\{M\} = d \cap \Delta_1$, $\{N\} = d \cap \Delta_2$ and d is a straight line perpendicular to the lines Δ_1 and Δ_2 . Obviously $||\overrightarrow{MN}||$ is independent on the choice of the line d. Note that $\delta(\Delta_1, \Delta_2) = \delta(M, \Delta_2) = \delta(\Delta_1, N)$, where $M \in \Delta_1$ and $N \in \Delta_2$ are arbitrary here.
- 3. We now assume that the straight lines Δ_1 , Δ_2 are noncoplanar (skew lines). In this case there exists a unique straight line d such that $d \perp \Delta_1$, Δ_2 and $d \cap \Delta_1 = \{M_1\}$, $d \cap \Delta_2 = \{M_2\}$. The straight line d is called the *common perpendicular* of the lines Δ_1 , Δ_2 and obviously $\delta(\Delta_1, \Delta_2) = ||M_1M_2||$.

Assume that the straight lines Δ_1 , Δ_2 are given by some points $A_1(x_1,y_1,z_1) \in \Delta_1$, $A_2(x_2,y_2,z_2) \in \Delta_2$ and some director vectors $\vec{d}_1(p_1,q_1,r_1) \in \overset{\rightarrow}{\Delta}_1$ and $\vec{d}_2(p_2,q_2,r_2) \in \overset{\rightarrow}{\Delta}_2$. In other words, their equations are

$$\Delta_1: \frac{x - x_1}{p_1} = \frac{y - y_1}{q_1} = \frac{z - z_1}{r_1}$$
$$\Delta_2: \frac{x - x_2}{p_2} = \frac{y - y_2}{q_2} = \frac{z - z_2}{r_2}.$$

The common perpendicular of the lines Δ_1 , Δ_2 is the intersection line between the plane containing the line Δ_1 which is parallel to the vector $\vec{d}_1 \times \vec{d}_2$, and the plane containing the line Δ_2 which is parallel to $\vec{d}_1 \times \vec{d}_2$. Since

$$\vec{d}_{1} \times \vec{d}_{2} = \begin{vmatrix} \vec{r} & \vec{r} & \vec{r} \\ \vec{r} & \vec{j} & \vec{k} \\ p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2} \end{vmatrix} = \begin{vmatrix} q_{1} r_{1} \\ q_{2} r_{2} \end{vmatrix} \vec{i} + \begin{vmatrix} r_{1} p_{1} \\ r_{2} p_{2} \end{vmatrix} \vec{j} + \begin{vmatrix} p_{1} q_{1} \\ p_{2} q_{2} \end{vmatrix} \vec{k}$$

it follows that the equations of the common perpendicular are

$$\begin{cases}
\begin{vmatrix}
x - x_1 & y - y_1 & z - z_1 \\
p_1 & q_1 & r_1 \\
q_1 & r_1 \\
q_2 & r_2
\end{vmatrix} = 0 \\
\begin{vmatrix}
x - x_2 & y - y_2 & z - z_2 \\
p_2 & q_2 & r_2 \\
p_1 & q_1 & r_1 \\
q_2 & r_2
\end{vmatrix} = 0.
\end{cases}$$
(1.1)

Figure 1: Prependiculara comună a dreptelor Δ_1 și Δ_2

The distance between the straight lines Δ_1 , Δ_2 can be also regarded as the height of the parallelogram constructed on the vectors \vec{d}_1 , \vec{d}_2 , $\vec{d}_1 \times \vec{d}_2$. Thus

$$\delta(\Delta_1, \Delta_2) = \frac{|(\overrightarrow{A_1} \overrightarrow{A_2}, \overrightarrow{d_1}, \overrightarrow{d_2})|}{||\overrightarrow{d_1} \times \overrightarrow{d_2}||}.$$
(1.2)

Therefore we obtain

$$\delta(\Delta_{1}, \Delta_{2}) = \frac{\begin{vmatrix} x_{2} - x_{1} & y_{2} - y_{1} & z_{2} - z_{1} \\ p_{1} & q_{1} & r_{1} \\ p_{2} & q_{2} & r_{2} \end{vmatrix}}{\sqrt{\begin{vmatrix} q_{1} r_{1} \\ q_{2} r_{2} \end{vmatrix}^{2} + \begin{vmatrix} r_{1} p_{1} \\ r_{2} p_{2} \end{vmatrix}^{2} + \begin{vmatrix} p_{1} q_{1} \\ p_{2} q_{2} \end{vmatrix}^{2}}}$$
(1.3)

• The coplanarity condition of two straight lines.

Using the notations of the previous section, observe that the straight lines Δ_1, Δ_2 are coplanar if and only if the vectors $\overrightarrow{A_1A_2}, \overrightarrow{d_1}, \overrightarrow{d_2}$ are linearly dependent (coplanar), or equivalently $(\overrightarrow{A_1A_2}, \overrightarrow{d_1}, \overrightarrow{d_2}) = 0$. Consequently the stright lines Δ_1, Δ_2 are coplanar if and only

if

$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ p_1 & q_1 & r_1 \\ p_2 & q_2 & r_2 \end{vmatrix} = 0$$
 (1.4)

1.1 Conics

1.1.1 The Ellipse

Definition 1.1. An ellipse is the locus of points in a plane, the sum of whose distances from two fixed points, say F and F', called foci is constant.

The distance between the two fixed points is called the *focal distance*

Let F and F' be the two foci of an ellipse and let |FF'| = 2c be the focal distance. Suppose that the constant in the definition of the ellipse is 2a. If M is an arbitrary point of the ellipse, it must verify the condition

$$|MF| + |MF'| = 2a.$$

We choose the Cartesian coordinate system with F'F as the x-axis and the perpendicula bisector of the segment [F'F] as the y axis. With such a choice we have F(c,0), F'(-c,0).

Remark 1.2. In $\triangle MFF'$ the following inequality |MF| + |MF'| > |FF'| holds. Hence 2a > 2c. Thus, the constants a and c must verify a > c.

Thus, for the generic point M(x, y) of the ellipse we have that |MF| + |MF'| = 2a, which implies that

 $(a^2 - c^2)x^2 + a^2y^2 - a^2(a^2 - c^2) = 0,$

as can be easily seen. Denote $a^2 - c^2$ by b^2 , as (a > c). Thus $b^2x^2 + a^2y^2 - a^2b^2 = 0$, i.e.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0 \tag{1.5}$$

Remark 1.3. *The equation (1.5) is equivalent to*

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2};$$
 $x = \pm \frac{a}{b} \sqrt{b^2 - y^2},$

which means that the ellipse is symmetric with respect to both the x and the y axes. In fact, the line FF', determined by the foci of the ellipse, and the perpendicular line on the midpoint of the segment [FF'] are axes of symmetry for the ellipse. Their intersection point, which is the midpoint of [FF'], is the center of symmetry of the ellipse, or, simply, its center.

Remark 1.4. In order to sketch the graph of the ellipse, observe that it is enough to represent the function

$$f: [-a, a] \to \mathbb{R}, \qquad f(x) = \frac{b}{a} \sqrt{a^2 - x^2},$$

and to complete the ellipse by symmetry with respect to the x-axis.

One has

1.1.2 The Hyperbola

Definition 1.5. The hyperbola is defined as the geometric locus of the points in the plane, whose absolute value of the difference of their distances to two fixed points, say F and F', called foci, is constant.

The two fixed points are called the *foci* of the hyperbola, and the distance |FF'| = 2c between the foci is the *focal distance*.

Assume that the constant in the definition is 2a. If M(x,y) is an arbitrary point of the hyperbola, then

$$||MF| - |MF'|| = 2a.$$

We choose the Cartesian coordinate system with F'F as the x-axis and the perpendicula bisector of the segment [F'F] as the y axis. With such a choice we have F(c,0), F'(-c,0).

Remark 1.6. *In the triangle* $\Delta MFF'$, ||MF| - |MF'|| < |FF'|, so that a < c.

Let us determine the equation of a hyperbola. By using the definition we get for a point M(x, y) on the hyperbola that $|MF| - |MF'| = \pm 2a$, which implies that

$$(c^2 - a^2)x^2 - a^2y^2 - a^2(c^2 - a^2) = 0,$$

as can be easily seen. By using the notation $c^2 - a^2 = b^2$ (c > a) we obtain the equation of the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - 1 = 0. ag{1.6}$$

The equation (1.6) is equivalent to

$$y = \pm \frac{b}{a} \sqrt{x^2 - a^2};$$
 $x = \pm \frac{a}{b} \sqrt{y^2 + b^2}.$

Therefore, the coordinate axes are axes of symmetry of the hyperbola and the origin is a center of symmetry equally called the *center of the hyperbola*.

1.2 Problems

- 1. Find the distance from the point P(1,2,-1) to the straight line (d) x = y = z.
- 2. Find the distance between the straight lines

$$(\Delta_1) \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{1}, \ (\Delta_2) \frac{x+1}{3} = \frac{y}{4} = \frac{z-1}{3}$$

as well as the equations of the common perpendicular.

3. Find the distance between the straight lines M_1M_2 and d, where $M_1(-1,0,1)$, $M_2(-2,1,0)$ and

$$(d) \begin{cases} x + y + z = 1 \\ 2x - y - 5z = 0. \end{cases}$$

as well as the equations of the common perpendicular.

- 4. The points $A(1,2\alpha,\alpha)$, B(3,2,1), $C(-\alpha,0,\alpha)$ and D(-1,3,-3) are being considered with respect to some orthonormal cartezian system. Find the value of the parameter α for which the pencil of planes through the straight line AB has a common plane with the pencil of planes through the straight line CD.
- 5. Find the value of the parameter λ for which the straight lines

$$(\Delta_1) \frac{x-1}{3} = \frac{y+2}{-2} = \frac{z}{1}, (\Delta_2) \frac{x+1}{4} = \frac{y-3}{1} = \frac{z}{\lambda}$$

are coplanar. Find the coordinates of their intersection point in that case.

- 6. Determine the coordinates of the foci of the ellipse (*E*) $9x^2 + 25y^2 225 = 0$.
- 7. Sketch the graph of $y = -\frac{3}{4}\sqrt{16-x^2}$.
- 8. Find the intersection points between the line (*d*) x + 2y 7 = 0 and the ellipse (*E*) $x^2 + 3y^2 25 = 0$.

- 9. Determine the coordinates of the foci of the hyperbola $\mathcal{H}: \frac{x^2}{92} \frac{y^2}{4} 1 = 0.$
- 10. Find the intersection points between the line (d) 2x y 10 = 0 and the hyperbola $\mathcal{H}: \frac{x^2}{20} \frac{y^2}{5} 1 = 0$.

References

- [1] Andrica, D., Topan, L., Analytic geometry, Cluj University Press, 2004.
- [2] Galbură Gh., Radó, F., Geometrie, Editura didactică și pedagogică-București, 1979.
- [3] Pintea, C. Geometrie. Elemente de geometrie analitică. Elemente de geometrie diferențială a curbelor și suprafețelor, Presa Universitară Clujeană, 2001.
- [4] Radó, F., Orban, B., Groze, V., Vasiu, A., Culegere de Probleme de Geometrie, Lit. Univ. "Babeş-Bolyai", Cluj-Napoca, 1979.