Lập trình ghép nối text LCD

- LCD LM016L:
 - Display characters
 - 2 hàng, 16 cột
- Sơ đồ khối:

Sơ đồ chân LCD 16x2

Pin Number	Symbol	Pin Function
1	VSS	Ground
2	VCC	+5v
3	VEE	Contrast adjustment (VO)
4	RS	Register Select. 0:Command, 1: Data
5	R/W	Read/Write R/W=0: Write R/W=1: Read
6	EN	Enable. Falling edge triggered
7	D0	Data Bit 0
8	D1	Data Bit 1
9	D2	Data Bit 2
10	D3	Data Bit 3
11	D4	Data Bit 4
12	D5	Data Bit 5
13	D6	Data Bit 6
14	D7	Data Bit 7/Busy Flag
15	A/LED+	Back-light Anode(+)
16	K/LED-	Back-Light Cathode(-)

Timing diagram

Các bước lập trình ghép nối LCD

- Bước 1: Thiết lập cấu hình làm việc cho LCD
 - R/W = 0 (write)
 - RS = 0 (command)
- Bước 2: Hiển thị ký tự trên LCD
 - Chọn vị trí hiển thị
 - R/W = 0 (write)
 - RS = 1 (data)
 - Send ASCII code to LCD
 - Send negative edge to LCD

Ví dụ

Hàm gửi lệnh điều khiển

```
void LCD_Send_Command(unsigned char x)
  LCD DATA=x;
  RS=0; //Chon thanh ghi lenh
  RW=0; //De ghi du lieu
  EN=1;
  Delay_ms(1);
  EN=0;
  Wait_For_LCD(); //Doi cho LCD san sang
  EN=1;
```

Hàm gửi ký tự

```
void LCD_Write_One_Char(unsigned char c)
  LCD_DATA=c; //Dua du lieu vao thanh ghi
  RS=1; //Chon thanh ghi du lieu
  RW=0;
  EN=1;
  Delay_ms(1);
  EN=0;
  Wait_For_LCD();
  EN=1;
```

Tập lệnh điều khiển LCD

LCD Command Codes

Code (Hex)	Command to LCD Instruction Register		
1	Clear display screen		
2	Return home		
4	Decrement cursor (shift cursor to left)		
6	Increment cursor (shift cursor to right)		
5	Shift display right		
7	Shift display left		
8	Display off, cursor off		
Α	Display off, cursor on		
С	Display on, cursor off		
Е	Display on, cursor blinking		
F	Display on, cursor blinking		
10	Shift cursor position to left		
14	Shift cursor position to right		
18	Shift the entire display to the left		
1C	Shift the entire display to the right		
80	Force cursor to beginning to 1st line		
C0	Force cursor to beginning to 2nd line		
38	2 lines and 5x7 matrix		

Hàm khởi tạo LCD

```
void LCD_init()
 //Chon che do 5x7 bit, 2 hang cho LCD
 LCD_Send_Command(0x38);
  //Bat hien thi, nhap nhay con tro
 LCD Send Command(0x0E);
 LCD Send Command(0x01); //Xoa man hinh
 LCD_Send_Command(0x80); //Ve dau dong
```

Ví dụ ghép nối LCD

Bài tập

- Ghép nối cả keypad và LCD với 8051
- Lập trình hiện số lên màn hình LCD dựa theo phím bấm trên keypad

Ghép nối bảng quang báo

Úng dụng của bảng quang báo: bảng led quảng cáo,
 thông báo

thông báo...

- Nguyên lý:
 - Bảng quang báo hoạt động dựa trên hiện tượng lưu ảnh trên mắt người
 - Các hàng/cột LED được quét tốc độ cao (giống quét LED 7 thanh)

Bảng quang báo

 Bảng quang báo kích thước nhỏ: một hoặc một vài module led ma trận 8x8

- Bảng quang báo kích thước lớn: hàng chục/hàng trăm module led được ghép nối với nhau
- Mỗi một cụm module led sẽ có vi điều khiển
- Các vi điều khiển tại các cụm sẽ được kết nối với nhau theo các chuẩn truyền tin: RS485, CAN, I2C, ...

Module led ma trận

- Mỗi module led sẽ bao gồm các chân điều khiển hàng và điều khiển cột
- VD: module led 8x8 có 8 chân điều khiển hàng và 8 chân điều khiển cột

Tạo font chữ

- Để hiển thị số 0 trên module led 8x8
 - Bước 1: Tạo font chữ (thường có kích thước 5x8 – chiều rộng 5 pixel và cao 8 pixel)
 - Bước 2: quét module
 LED theo từng hàng

Bài tập

Tạo font chữ

Minh họa giao tiếp led matrix

Sơ đồ ghép nối 1 led matrix

Bài tập

Lập trình hiển thị chữ A lên ma trận LED