#### МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

# «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

# ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ (БАЗОВОЙ) ПРАКТИКЕ

студента 4 курса 451 группы направления 38.03.05 — Бизнес-информатика

> механико-математического факультета Чайковского Петра Ильича

| Место прохождения:                                  |                 |
|-----------------------------------------------------|-----------------|
| Сроки прохождения: с 29.06.2019 г. по 26.07.2019 г. |                 |
| Оценка:                                             |                 |
|                                                     |                 |
| Руководитель практики от СГУ                        |                 |
| доцент, к. фм. н.                                   | Н. Ю. Агафонова |
| Руководитель практики от организации                |                 |
| ведущий программист                                 | Д. Э. Кнутов    |



# СОДЕРЖАНИЕ

| ВВЕДЕНИЕ         | 4 |
|------------------|---|
| Задание 1        | 5 |
| Задание 2        | 7 |
| Тестовые задания | 8 |
| ЗАКЛЮЧЕНИЕ 1     | 0 |

## ВВЕДЕНИЕ

Целью данной лабораторной работы служит ознакомление с основными характеристиками логических элементов и основами синтеза логических схем, изучение простейших комбинационных логических устройств, реализующих логические функции сложения, умножения и отрицания.

#### Задание 1.

Запустить лабораторный комплекс Labworks и среду MS10. Открыть файл **29.2.ms10**, размещенный в папке **Circuit Design Suite 10.0** среды MS10, или собрать на рабочем поле среды MS10 схему для испытания *основных и базовых логических элементов* и установить в диалоговых окнах компонентов их параметры или режимы работы. Скопировать схему в отчет.



Рисунок 1 – Схема с основными и базовыми логическими элементами.

Оперируя ключами  $1, 2, \ldots, 9$ , сформировать все возможные комбинации аргументов  $x_1$  и  $x_2$  (00, 10, 01 и 11) на входе дизъюнктора (**OR**), конъюнктора (**AND**), штриха Шеффера (**NAND**) и стрелки Пирса (**NOR**) и записать значения выходных логических функций  $y_k$  (0 или 1) в таблицу.

|       | [OR]  |   |       | AND   |   | N( | [TC] | [NAND] [NO: |       |   | NOR   |       |   |
|-------|-------|---|-------|-------|---|----|------|-------------|-------|---|-------|-------|---|
| $x_1$ | $x_2$ | y | $x_1$ | $x_2$ | y | x  | y    | $x_1$       | $x_2$ | y | $x_1$ | $x_2$ | y |
| 0     | 0     | 0 | 0     | 0     | 0 | 0  | 1    | 0           | 0     | 1 | 0     | 0     | 1 |
| 0     | 1     | 1 | 0     | 1     | 0 | 0  | 1    | 0           | 1     | 1 | 0     | 1     | 0 |
| 1     | 0     | 1 | 1     | 0     | 0 | 1  | 0    | 1           | 0     | 1 | 1     | 0     | 0 |
| 1     | 1     | 1 | 1     | 1     | 1 | 1  | 0    | 1           | 1     | 0 | 1     | 1     | 0 |

Таблица 1 – Таблица истинности основных и базовых логических операций.

## Задание 2.

Собрать схему для реализации логической функции y с тремя аргументами a,b и c. Скопировать собранную логическую схему в отчет. Функция y имеет вид:  $y = (a+b+\neg c)(\neg a+\neg bc)(a+\neg b+\neg c)$  (вариант  $\mathbb{N}^{2}$ ).



Рисунок 2 – Схема заданной логической функции.

| $y_1$ : | = a | +b+ | $\neg c$ | $y_2$ | = ¬ | $a + \frac{1}{2}$ | $\neg bc$ | $y_3 = a + \neg b + \neg c$ |   |   | $+ \neg c$ | $y = y_1 \wedge y_2 \wedge y_3$ |
|---------|-----|-----|----------|-------|-----|-------------------|-----------|-----------------------------|---|---|------------|---------------------------------|
| a       | b   | c   | $y_1$    | a     | b   | c                 | $y_2$     | a                           | b | c | $y_3$      | y                               |
| 0       | 0   | 0   | 1        | 0     | 0   | 0                 | 1         | 0                           | 0 | 0 | 1          | 1                               |
| 0       | 0   | 1   | 0        | 0     | 0   | 1                 | 1         | 0                           | 0 | 1 | 1          | 0                               |
| 0       | 1   | 0   | 1        | 0     | 1   | 0                 | 1         | 0                           | 1 | 0 | 1          | 1                               |
| 0       | 1   | 1   | 1        | 0     | 1   | 1                 | 1         | 0                           | 1 | 1 | 0          | 0                               |
| 1       | 0   | 0   | 1        | 1     | 0   | 0                 | 0         | 1                           | 0 | 0 | 1          | 0                               |
| 1       | 0   | 1   | 1        | 1     | 0   | 1                 | 1         | 1                           | 0 | 1 | 1          | 1                               |
| 1       | 1   | 0   | 1        | 1     | 1   | 0                 | 0         | 1                           | 1 | 0 | 1          | 0                               |
| 1       | 1   | 1   | 1        | 1     | 1   | 1                 | 0         | 1                           | 1 | 1 | 1          | 0                               |

Таблица 2 – Таблица истинности заданной логической функции.

#### Тестовые задания.

| 1. Укажите <b>признаки</b> , характеризующие основные логические элемен-        |
|---------------------------------------------------------------------------------|
| гы:                                                                             |
| 🗆 на входах логических элементов аналоговые сигналы, а на выходах -             |
| цифровые: <b>неверно.</b> Как на входах, так и на выходах логических элементов  |
| сигналы цифровые, а именно <b>бинарные.</b>                                     |
| □ операции логического сложения, логического умножения и инвер-                 |
| сия не составляют функционально полный набор: <b>неверно.</b> Операции $y=$     |
| $x_1+x_2,\;y=x_1x_2,\;y=ar{x}$ обладают функциональной полнотой и составляют    |
| функционально полный набор.                                                     |
| 🗆 используя основные логические операции И, ИЛИ и НЕ, можно ана-                |
| литически выразить любую сложную логическую функцию: <b>верно.</b> Основ-       |
| ные логические операции ИЛИ, И и НЕ позволяют аналитически описать, а           |
| логические элементы ИЛИ (дизъюнктор), И (конъюнктор) и НЕ (инверсор)            |
| - реализовать комбинационное устройство любой степени сложности.                |
| 🗆 минимальный логический базис составляют операции ИЛИ и НЕ                     |
| или И и НЕ: <b>верно.</b> Используя законы де Моргана, можно выразить конъ-     |
| юнкцию через дизъюнкцию и три отрицания. Аналогично можно выразить              |
| дизъюнкцию:                                                                     |
| $a \wedge b = \neg(\neg a \vee \neg b),  a \vee b = \neg(\neg a \wedge \neg b)$ |
| □ входные и выходные сигналы логических элементов могут прини-                  |
| мать только два значения: логическую 1 и логический 0: верно.                   |
| □ операция логического сложения совпадает с операцией обычного                  |
| сложения. <b>неверно.</b> Равенство выполняется только в том случае, когда либо |
|                                                                                 |

2. Укажите **выражение** логической функции двух переменных  $x_1$  и  $x_2$ , реализуемой элементом «стрелка Пирса»:  $y = \overline{x_1 + x_2}$ 

оба операнда равны нулю, либо один равен нулю, а второй единице.

- 3. Укажите **выражение** логической функции двух переменных  $x_1$  и  $x_2$ , реализуемой элементом «штрих Шеффера»:  $y = \overline{x_1 x_2}$
- 4. Укажите **выражение** логической функции трех переменных a,b и c, записанной в совершенной дизъюнктивной нормальной форме (СДНФ):  $y(a,b,c)=\bar{a}bc+a\bar{b}c+ab\bar{c}+abc$ .

5. Укажите элемент ИЛИ-НЕ:

$$x_1$$
 1  $x_2$  1  $x_2$ 

Рисунок 3 – Элемент ИЛИ-НЕ.

6. Укажите элемент И:

Рисунок 4 – Элемент ИЛИ-НЕ.

7. Укажите значение **функции**  $y = (ab + \bar{c})(\bar{a} + \bar{b})$ , если a = b = c = 1:

0.

#### ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мы ознакомились с основными характеристиками логических элементов и основами синтеза логических схем на примере построения простейшей электросхемы и составления для неё таблицы истинности. Также нами были рассмотрены и изучены простейшие комбинационные логические устройства, реализующие логические функции сложения, умножения и отрицания.