ГЕОМЕТРИЯ

ПАНОВ Тарас Евгеньевич

Механико-математический факультет МГУ им. М. В. Ломоносова Независимый Московский университет

Последняя редакция: 24 декабря 2017 г.

Содержание

Пред	дисловие	2
Спи	сок литературы	2
1	Линейные пространства	3
1.1.	Определение и примеры	3
1.2.	Линейная зависимость. Базис. Размерность	5
1.3.	Пересечение и сумма подпространств, их размерности	8
1.4.	Координаты вектора. Закон изменения координат при замене базиса	9
1.5.	Ориентация	11
Зада	ачи и упражнения	11
2.	Аффинные пространства	13
2.1.	Определение, подпространства, системы координат	13
2.2.	Прямые и плоскости в \mathbb{A}^2 и \mathbb{A}^3	15
Зада	ачи и упражнения	16
	Евклидовы пространства (пространства со скалярным произведением)	20
3.1.	Определение, примеры. Неравенство Коши-Буняковского, неравенство	
0.0	треугольника	20
3.2.	Ортогональные системы векторов, ортонормированные базисы.	
	Ортогонализация Грама-Шмидта	22
3.3.	Ортогональные и унитарные матрицы. QR -разложение	24
3.4.	Ортогональное дополнение. Проекция и ортогональная составляющая. Угол между вектором и подпространством	26
3.5.	Аффинные евклидовы пространства. Расстояние от точки до	
	подпространства. Расстояние между подпространствами	27
3.6.	Определитель матрицы Грама и многомерный объём	29
3.7.	Векторное произведение	31
3.8.	Φ ормулы для расстояний в \mathbb{A}^2 и \mathbb{A}^3	33
3.9.	Метод наименьших квадратов	34
	ачи и упражнения	35
	Группы преобразований	41
4.1.	Линейные операторы, изоморфизмы, линейная группа	41
4.2.	Ортогональные (изометрические) операторы, ортогональная группа	43
4.3.	Ортогональные операторы как композиции отражений и поворотов	44
4.4.	Параметризация группы $SO(3)$ углами Эйлера и кватернионами	47
4.5.	Аффинные преобразования, аффинная группа	50
4.6.	Аффинные изометрии (движения), классификация движений плоскости	00
1.0.	и трёхмерного пространства	51
Зала	ачи и упражнения	54
	Выпуклая геометрия	56
5.1.	Линейные функции. Двойственное пространство.	56
5.2.	Выпуклые множества	57
5.2.	Выпуклые многогранники, полярность	61
5.4.	Решётка граней	63
5.4.5.	гешетка гранеи Задачи линейного программирования	65
	Задачи линеиного программирования ачи и упражнения	66
Оада	лли и упражисним	UU

ПРЕДИСЛОВИЕ

Данный текст доступен на странице Т.Е. Панова на сайте кафедры высшей геометрии и топологии: http://higeom.math.msu.su/people/taras/

Примерный план лекций (каждая лекция занимает 90–100 минут):

- 1. Параграфы 1.1–1.2.
- 2. Параграфы 1.3-1.5. Задачи 1.26-1.35.
- 3. Параграфы 2.1-2.2. Задачи 2.6-2.26.
- 4. Параграфы 3.1-3.3. Задачи 3.47-3.62.
- 5. Параграфы 3.4–3.6. Задачи 3.63–3.78.
- 6. Параграфы 3.6-3.9. Задачи 3.79-3.89.
- 7. Параграфы 4.1-4.4. Задачи 4.25-4.33.
- 8. Параграфы 4.5-4.6. Задачи 4.34-4.40.
- 9. Параграфы 5.1-5.2. Задачи 5.35-5.46.
- 10. Параграфы 5.3-5.5. Задачи 5.47-5.56.

Список литературы

- [1] A. Brønsted. An Introduction to Convex Polytopes. Graduate Texts in Math. 90. Springer-Verlag, New-York, 1983. [Русский перевод: А. Брёнстед, Введение в теорию выпуклых многогранников, М.: Мир, 1988.]
- [2] Э.Б. Винберг. Курс алгебры. 2-е изд., испр. и доп. Москва, «Факториал Пресс», 2001.
- [3] А. П. Веселов, Е. В. Троицкий. Лекции по аналитической геометрии. Москва, Издательство МЦНМО, 2016.
- [4] А. И. Кострикин, Ю. И. Манин. Линейная алгебра и геометрия. Москва, «Наука», 1986.
- [5] М. М. Постников. Лекциии по геометрии. Семестр І. Аналитическая геометрия. Семестр ІІ. Линейная алгебра. Москва, «Наука», 1986.
- [6] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics, 152. Springer, New York, 1995. [Русский перевод: Г. Циглер, Теория многогранников, Москва, Издательство МЦНМО, 2014.]

1. Линейные пространства

В школьной планиметрии и стереометрии вектором (или свободным вектором) называется класс эквивалентности направленных отрезков на плоскости или в пространстве. При этом два направленных отрезка считаются эквивалентными, если они коллинеарны, одинаково направлены и равны по длине.

Операции сложения векторов по правилу параллелограмма или треугольника и умножения векторов на вещественные числа обладают рядом свойств, аксиоматизация которых приводит к понятию линейного пространства.

Мы определим линейное пространство над произвольным полем \mathbf{k} , элементы которого мы часто будем называть *числами* или *скалярам*. На первых порах можно считать, что \mathbf{k} — поле вещественных чисел \mathbb{R} . Со временем нам понадобятся поле комплексных чисел \mathbb{C} и поле рациональных чисел \mathbb{Q} , а также конечные поля.

1.1. Определение и примеры.

Определение 1.1. Линейным (или векторным) пространством над полем ${\bf k}$ называется множество V с заданными на нём операциями сложения «+» двух элементов множества V,

$$+: V \times V \to V, \qquad (\boldsymbol{u}, \boldsymbol{v}) \mapsto \boldsymbol{u} + \boldsymbol{v}$$

и yмножения «·» элементов V на элементы поля ${f k},$

$$\cdot : \mathbf{k} \times V \to V, \qquad (\lambda, \mathbf{v}) \mapsto \lambda \cdot \mathbf{v},$$

которые удовлетворяют следующим условиям:

- 1) u + v = v + u для любых $u, v \in V$;
- 2) (u + v) + w = u + (v + w) для любых $u, v, w \in V$;
- 3) существует такой элемент $\mathbf{0} \in V$, что $\mathbf{v} + 0 = \mathbf{v}$ для любого $\mathbf{v} \in V$;
- 4) для любого $v \in V$ существует такой элемент $-v \in V$, что v + (-v) = 0;
- 5) $\lambda \cdot (\boldsymbol{u} + \boldsymbol{v}) = \lambda \cdot \boldsymbol{u} + \lambda \cdot \boldsymbol{v}$ для любых $\boldsymbol{u}, \boldsymbol{v} \in V$ и $\lambda \in \mathbf{k}$;
- 6) $(\lambda + \mu) \cdot \mathbf{v} = \lambda \cdot \mathbf{v} + \mu \cdot \mathbf{v}$ для любых $\mathbf{v} \in V$ и $\lambda, \mu \in \mathbf{k}$;
- 7) $\lambda \cdot (\mu \cdot v) = (\lambda \mu) \cdot v$ для любых $v \in V$ и $\lambda, \mu \in \mathbf{k}$;
- 8) $1 \cdot \boldsymbol{v} = \boldsymbol{v}$ для любого $\boldsymbol{v} \in V$.

Элементы линейного пространства называются векторами. Свойства 1)-4) означают, что V является абелевой (коммутативной) группой относительно операции сложения. Элемент $\mathbf{0}$ называется нулевым вектором, а элемент $(-\mathbf{v})$ называется противоположеным вектором к \mathbf{v} .

Свойства 5)–8) означают, что поле **k** линейно действует на V. Обычно мы будем опускать знак умножения \cdot .

Далее говоря о пространстве мы будем иметь ввиду линейное пространство.

Вот некоторые простые свойства линейных пространств.

Предложение 1.2.

- a) $0\mathbf{v} = \lambda \mathbf{0} = \mathbf{0}$ das anobux $\mathbf{v} \in V$, $\lambda \in \mathbf{k}$;
- б) (-1)v = -v для любого $v \in V$;
- B) $ecnu \lambda v = 0$, mo либо $\lambda = 0$, либо v = 0.

Доказательство. Докажем а). Действительно, 0v+0v=(0+0)v=0v, откуда $0v=\mathbf{0}$ по свойству сокращения в абелевой группе. Аналогично, $\lambda \mathbf{0} + \lambda \mathbf{0} = \lambda (\mathbf{0} + \mathbf{0}) = \lambda \mathbf{0}$, т.е. $\lambda \mathbf{0} = \mathbf{0}$.

Докажем б). Действительно, $\boldsymbol{v}+(-1)\boldsymbol{v}=1\boldsymbol{v}+(-1)\boldsymbol{v}=(1+(-1))\boldsymbol{v}=0\boldsymbol{v}=\boldsymbol{0}$, т.е. вектор $(-1)\boldsymbol{v}$ противоположен к \boldsymbol{v} .

Наконец, докажем в). Если $\lambda \neq 0$, то $\mathbf{0} = \lambda^{-1}(\lambda \mathbf{v}) = (\lambda^{-1}\lambda)\mathbf{v} = 1\mathbf{v} = \mathbf{v}$.

Пример 1.3.

- 1. Множество $\{0\}$, состоящее из одного элемента 0, является линейным пространством над любым полем.
- 2. Множества векторов на прямой, на плоскости, в пространстве, являются линейными пространствами над полем \mathbb{R} .
 - 3. Поле **k** является векторным пространством над самим собой.
- 4. Поле \mathbb{C} является линейным пространством над полем \mathbb{R} , а поле \mathbb{R} является линейным пространством над полем рациональных чисел \mathbb{Q} . Более общо, если \mathbf{k}_1 подполе в \mathbf{k}_2 (т.е. \mathbf{k}_2 является расширением поля \mathbf{k}_1), то \mathbf{k}_2 является линейным пространством над \mathbf{k}_1 .
 - 5. Пусть

$$\mathbf{k}^n := \left\{ (x_1, \dots, x_n) \colon x_i \in \mathbf{k} \right\}$$

— множество последовательностей $(cmpo\kappa)$ фиксированной длины n из элементов поля \mathbf{k} . Операции покомпонентного сложения и умножения на скаляры, т.е.

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

 $\lambda \cdot (x_1, x_2, \dots, x_n) := (\lambda x_1, \lambda x_2, \dots, \lambda x_n),$

задают на \mathbf{k}^n структуру линейного пространства над \mathbf{k} . Оно называется n-мерным координатным (или арифметическим) пространством над \mathbf{k} . Мы в основном будем иметь дело с пространствами \mathbb{R}^n и \mathbb{C}^n .

При n = 1 мы получаем пространство из примера 3.

- 6. Множество функций на произвольном множестве X со значениями в поле \mathbf{k} , обозначаемое \mathbf{k}^X , является линейным пространством относительно операций поточечного сложения (т.е. значение функции f+g в точке $x\in X$ полагается равным f(x)+g(x)) и поточечного умножения на скаляры (т.е. $(\lambda\cdot f)(x)=\lambda f(x)$). В случае, когда X конечное множество из n элементов, мы получаем пространство \mathbf{k}^n из предыдущего примера.
- 7. Множество $C(\mathbb{R})$ непрерывных функций на вещественной прямой и множество C[a,b] непрерывных функций на отрезке являются линейными пространствами над \mathbb{R} . Также линейными пространствами являются множества дифференцируемых функций (на прямой или на отрезке).
- 8. Множество решений однородной системы линейных уравнений является линейным пространством.
- 9. Рассмотрим множество \mathbb{R}^{∞} , состоящее из бесконечных последовательностей вещественных чисел, в которых лишь конечное число членов отлично от нуля (такие последовательности называются ϕ инитными). Тогда \mathbb{R}^{∞} линейное пространство относительно операций поэлементного сложения и умножения на числа. Пространство \mathbb{R}^{∞} можно отождествить с бесконечным объединением $\bigcup_{n>0} \mathbb{R}^n$.

Пространство $\widehat{\mathbb{R}}^{\infty}$ всех бесконечных последовательностей также является линейным пространством.

- 10. Множество $\mathbf{k}[x]$ многочленов от одной переменной с коэффициентами в \mathbf{k} является линейным пространством. Также линейным пространством является множество $\mathbf{k}_n[x]$ многочленов степени не выше n.
- 11. Множество всех матриц размера $m \times n$ с элементами из \mathbf{k} образует линейное пространство $\mathrm{Mat}_{\mathbf{k}}(m,n)$ относительно операций сложения матриц и поэлементного умножения матриц на числа. При m=1 мы получаем пространство строк \mathbf{k}^n .

В предыдущих примерах мы столкнулись с ситуацией, когда подмножество линейного пространства само является линейным пространством. Это приводит к следующему определению.

Определение 1.4. Подмножество $W \subset V$ линейного пространства V называется nodnpocmpancmbom, если для любых векторов $u, v \in W$ и скаляра $\lambda \in \mathbf{k}$ мы имеем $u+v \in W$ и $\lambda u \in W$. Другими словами, W — подпространство, если W само является линейным пространством относительно операций, заданных в пространстве V.

Пример 1.5. Вот некоторые примеры подпространств.

- 1. $\{0\}$ является подпространством в любом пространстве V.
- 2. Множество векторов, коллинеарных заданному вектору, является подпространством в пространстве всех векторов на плоскости или в пространстве.
- 3. Пространство $C(\mathbb{R})$ непрерывных функций является подпространством в пространстве $\mathbb{R}^{\mathbb{R}}$ всех функций на \mathbb{R} .
- 4. Пространство \mathbb{R}^{∞} финитных последовательностей является подпространством в пространстве $\widehat{\mathbb{R}}^{\infty}$ всех последовательностей.
 - 5. $\mathbf{k}_n[x]$ является подпространством в $\mathbf{k}_m[x]$ при $m \geqslant n$, а также в $\mathbf{k}[x]$.
- 1.2. **Линейная зависимость. Базис. Размерность.** Пусть V линейное пространство над полем \mathbf{k} .

Определение 1.6. Линейной комбинацией системы векторов v_1, \ldots, v_k пространства V называется сумма вида $\lambda_1 v_1 + \ldots + \lambda_k v_k$, где $\lambda_i \in \mathbf{k}$.

 $\mathit{Линейной комбинацией}$ бесконечной системы векторов $\{v_i\colon i\in I\}$ называется сумма вида $\sum_{i\in I}\lambda_i v_i$, в которой лишь $\mathit{конечное}$ число скаляров λ_i отлично от нуля.

Линейная комбинация $\sum_{i\in I}\lambda_i v_i$ называется mpuвиальной, если в ней все коэффициенты λ_i равны нулю.

Система векторов $\{v_i: i \in I\}$ (конечная или бесконечная) называется линейно зависимой, если существуют числа λ_i , не все равные нулю, такие, что $\sum_{i \in I} \lambda_i v_i = \mathbf{0}$ (т.е. существует нетривиальная линейная комбинация векторов системы, равная нулю). В противном случае система называется линейно независимой.

Предложение 1.7. Линейная оболочка $\langle v_i : i \in I \rangle$ является линейным подпространством в V. Более того, $\langle v_i : i \in I \rangle$ является наименьшим по включению линейным подпространством, содержащим все векторы системы $\{v_i : i \in I\}$.

Доказательство. Сумма векторов системы и результат умножения вектора системы на скаляр являются линейными комбинациями и потому принадлежат линейной

оболочке. Следовательно, $\langle v_i \colon i \in I \rangle$ — подпространство. Если W — произвольное подпространство, содержащее все векторы из $\{v_i \colon i \in I\}$, то W также содержит все их линейные комбинации, а значит W содержит $\langle v_i \colon i \in I \rangle$.

Лемма 1.8. Если система векторов $\{v_i : i \in I\}$ линейно зависима, то один из векторов системы является линейной комбинацией остальных.

Доказательство. Пусть $\lambda_1 v_1 + \ldots + \lambda_k v_k = 0$, причем существует $\lambda_i \neq 0$. Тогда

$$\lambda_i \mathbf{v}_i = -\lambda_1 \mathbf{v}_1 - \ldots - \lambda_{i-1} \mathbf{v}_{i-1} - \lambda_{i+1} \mathbf{v}_{i+1} - \ldots - \lambda_k \mathbf{v}_k.$$

Умножив обе части этого равенства на λ_i^{-1} , получим, что \boldsymbol{v}_i является линейной комбинацией векторов $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{i-1},\boldsymbol{v}_{i+1},\ldots,\boldsymbol{v}_k$.

Определение 1.9. Линейно независимая система векторов $\{v_i : i \in I\}$ называется базисом пространства V, если каждый вектор $v \in V$ представляется в виде линейной комбинации $\sum_{i \in I} \lambda_i v_i$. Другими словами, базисом называется максимальная (по включению) линейно независимая система векторов в пространстве V.

Пространство V называется конечномерным, если в нём существует базис, состоящий из конечного числа векторов. В противном случае пространство называется бесконечномерным.

Предложение 1.10. Если $\{v_i: i \in I\}$ — базис пространства V, то представление любого вектора $v \in V$ в виде линейной комбинации $\sum_{i \in I} \lambda_i v_i$ единственно.

Доказательство. Действительно, если $\mathbf{v} = \sum_{i \in I} \lambda_i \mathbf{v}_i = \sum_{i \in I} \mu_i \mathbf{v}_i$, то получаем $\mathbf{0} = \sum_{i \in I} (\lambda_i - \mu_i) \mathbf{v}_i$. Так как система $\{\mathbf{v}_i \colon i \in I\}$ линейно независима, из последнего равенства вытекает, что $\lambda_i = \mu_i$, т.е. два представления \mathbf{v} в виде линейных комбинаций совпадают.

Теорема 1.11. B конечномерном пространстве все базисы состоят из одного числа элементов.

Доказательство этой теоремы будет опираться на следующую лемму.

Лемма 1.12. Пусть e_1, \ldots, e_m и $f_1, \ldots, f_n - d$ ве (конечных) линейно независимых системы векторов, причём вторая система содержится в линейной оболочке первой системы. Тогда $n \leq m$.

Доказательство. Пусть ${\pmb f}_j=a_{1j}{\pmb e}_1+\ldots+a_{mj}{\pmb e}_m,\ a_{ij}\in {\bf k},\ j=1,\ldots,n.$ Так как ${\pmb f}_1,\ldots,{\pmb f}_n$ — линейно независимая система, мы имеем

(1)
$$x_1 \boldsymbol{f}_1 + \ldots + x_n \boldsymbol{f}_n = \boldsymbol{0} \quad \Longleftrightarrow \quad x_1 = \ldots = x_n = 0.$$

Подставляя в линейную комбинацию (1) выражения f_i через e_1, \ldots, e_m , получаем:

$$\mathbf{0} = x_1(a_{11}\mathbf{e}_1 + \ldots + a_{m1}\mathbf{e}_m) + \ldots + x_n(a_{1n}\mathbf{e}_1 + \ldots + a_{mn}\mathbf{e}_m) =$$

$$= (a_{11}x_1 + \ldots + a_{1n}x_n)\mathbf{e}_1 + \ldots + (a_{m1}x_1 + \ldots + a_{mn}x_n)\mathbf{e}_m.$$

Так как e_1, \ldots, e_m — линейно независимая система, предыдущее равенство равносильно системе уравнений:

$$\begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = 0 \\ \ldots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = 0 \end{cases}$$

Если n > m, то эта система имеет ненулевое решение, что противоречит (1).

Доказательство теоремы 1.11. Пусть V — конечномерное пространство. По определению, в V существует конечный базис e_1,\ldots,e_m . Пусть $\{f_i\colon i\in I\}$ — другой базис. Если это базис бесконечен, то в нём содержится конечная линейно независимая система f_1,\ldots,f_n , где n>m. При этом, так как e_1,\ldots,e_m — базис, мы имеем $\{f_1,\ldots,f_n\}\subset \langle e_1,\ldots,e_m\rangle$, что противоречит лемме 1.12. Следовательно базис $\{f_i\colon i\in I\}$ конечен, т.е. имеет вид f_1,\ldots,f_n . Тогда $\{f_1,\ldots,f_n\}\subset \langle e_1,\ldots,e_m\rangle$ и $\{e_1,\ldots,e_m\}\subset \langle f_1,\ldots,f_n\rangle$, и из леммы 1.12 вытекает, что m=n.

Определение 1.13. *Размерностью* конечномерного линейного пространства V (обозначение: $\dim V$) называется число элементов в любом базисе V. Если же V бесконечномерно, то мы пишем $\dim V = \infty$.

Размерность линейной оболочки системы векторов $\{e_i: i \in I\}$ называется рангом системы векторов.

Замечание. В пространстве $\{0\}$ базисом естественно считать пустое множество \varnothing . Мы имеем $\dim\{0\} = 0$, так как пустое множество состоит из 0 элементов.

Предложение 1.14. Подпространство W конечномерного пространства V конечномерно, причём $\dim W \leqslant \dim V$, и равенство достигается только при W = V.

Доказательство. Пусть $\dim V = m$ и e_1, \ldots, e_m — базис пространства V. Если $\dim W > m$, то в W найдётся линейно независимая система f_1, \ldots, f_n с n > m. Тогда $\{f_1, \ldots, f_n\} \subset \langle e_1, \ldots, e_m \rangle = V$, что противоречит лемме 1.12. Следовательно, $\dim W \leqslant \dim V$.

Пусть $\dim W = \dim V = m$ и пусть $\boldsymbol{f}_1, \dots, \boldsymbol{f}_m$ — базис в W. Тогда каждый вектор \boldsymbol{e}_i линейно выражается через $\boldsymbol{f}_1, \dots, \boldsymbol{f}_m$, так как иначе мы бы получили линейно независимую систему $\boldsymbol{f}_1, \dots, \boldsymbol{f}_m, \boldsymbol{e}_i$ из m+1 векторов в V, что противоречит теореме 1.11. Следовательно, любой вектор из V лежит в $\langle \boldsymbol{f}_1, \dots, \boldsymbol{f}_m \rangle = W$, т.е. V = W.

Теорема 1.15. Любой базис подпространства W конечномерного пространства V можно дополнить до базиса всего пространства V.

Доказательство. Согласно предложению 1.14, пространство W конечномерно; пусть e_1, \ldots, e_r — его базис. Если W = V, то e_1, \ldots, e_r — базис в V и доказывать нечего. В противном случае в V найдётся вектор $e_{r+1} \notin \langle e_1, \ldots, e_r \rangle = W$. Рассмотрим подпространство $W_1 = \langle e_1, \ldots, e_r, e_{r+1} \rangle \subset V$. Если $W_1 = V$, то всё доказано. В противном случае аналогично строим подпространство $W_2 = \langle e_1, \ldots, e_r, e_{r+1}, e_{r+2} \rangle \subset V$, и так далее. Пусть $k = \dim V - \dim W$. Тогда на k-м шаге мы получим подпространство $W_k \subset V$ с $\dim W_k = \dim V$. Согласно предложению 1.14, $W_k = V$, а значит мы дополнили базис e_1, \ldots, e_r в W до базиса в V векторами e_{r+1}, \ldots, e_{r+k} .

Замечание. На самом деле предыдущая теорема имеет место и в бесконечномерном случае. В частности, в любом пространстве (даже бесконечномерном) существует базис. Доказательство этого факта, хотя и не сложно, использует абстрактные теоретико-множественные построения (лемму Цорна), которые выходят за рамки данного курса. Подробности можно найти в [КМ, §1.2].

Пример 1.16.

1. В арифметическом пространстве \mathbf{k}^n имеется cmandapmный базис e_1, \ldots, e_n , где $e_i = (0, \ldots, 1, \ldots, 0)$ — строка, в которой на i-м месте стоит 1, а на остальных местах — нули. Таким образом, $\dim \mathbf{k}^n = n$.

- 2. В пространстве $\mathbf{k}_n[x]$ многочленов степени $\leq n$ имеется базис из одночленов $1, x, x^2, \ldots, x^n$. Таким образом, $\dim \mathbf{k}_n[x] = n+1$. В пространстве $\mathbf{k}[x]$ всех многочленов имеется бесконечный базис из одночленов $1, x, x^2, x^3, \ldots$ всех степеней. Таким образом, $\dim \mathbf{k}[x] = \infty$.
- 3. В пространстве финитных последовательностей \mathbb{R}^{∞} имеется бесконечный базис e_1, e_2, \ldots , где $e_i = (0, \ldots, 0, 1, 0, \ldots)$ последовательность, в которой на i-м месте стоит 1, а на остальных местах нули. Заметим, что эта же система e_1, e_2, \ldots не является базисом в пространстве $\widehat{\mathbb{R}}^{\infty}$ всех последовательностей. Действительно, например, последовательность, состоящая из одних единиц не представляется в виде (конечной) линейной комбинации последовательностей e_1, e_2, \ldots

Далее все пространства мы будем предполагать конечномерными, если явно не указано противное.

1.3. Пересечение и сумма подпространств, их размерности.

Предложение 1.17. Пересечение $V_1 \cap V_2$ подпространств пространства V также является подпространством.

Доказательство. Для любых $u, v \in V_1 \cap V_2$ и $\lambda \in \mathbf{k}$ сумма u + v и произведение λv также лежат и в V_1 , и в V_2 , а значит и в пересечении $V_1 \cap V_2$.

В отличие от пересечения, объединение подпространств $V_1 \cup V_2$ в общем случае не будет линейным подпространством.

Определение 1.18. Суммой $V_1 + V_2$ подпространств V_1 и V_2 пространства V называется множество всех векторов $v \in V$, которые можно представить в виде суммы $v = v_1 + v_2$, где $v_1 \in V_1$ и $v_2 \in V_2$.

Предложение 1.19. Сумма подпространств является линейной оболочкой их объединения: $V_1 + V_2 = \langle V_1 \cup V_2 \rangle$. Таким образом, $V_1 + V_2$ является линейным подпространством.

Доказательство. Включение $V_1 + V_2 \subset \langle V_1 \cup V_2 \rangle$ следует из того, что вектор $\boldsymbol{v}_1 + \boldsymbol{v}_2$ является линейной комбинацией векторов $\boldsymbol{v}_1, \boldsymbol{v}_2 \in V_1 \cup V_2$.

Докажем обратное включение $\langle V_1 \cup V_2 \rangle \subset V_1 + V_2$. Рассмотрим линейную комбинацию $\boldsymbol{v} = \lambda_1 \boldsymbol{u}_1 + \ldots + \lambda_n \boldsymbol{u}_n$ векторов $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n \in V_1 \cup V_2$. Можно считать, что $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_k$ лежат в V_1 , а $\boldsymbol{u}_{k+1}, \ldots, \boldsymbol{u}_n$ лежат в V_2 . Тогда мы имеем $\boldsymbol{v} = \boldsymbol{v}_1 + \boldsymbol{v}_2$, где $\boldsymbol{v}_1 = \lambda_1 \boldsymbol{u}_1 + \ldots + \lambda_k \boldsymbol{u}_k \in V_1$ и $\boldsymbol{v}_2 = \lambda_{k+1} \boldsymbol{u}_{k+1} + \ldots + \lambda_n \boldsymbol{u}_n \in V_2$. Следовательно, $\boldsymbol{v} \in V_1 + V_2$.

Теорема 1.20. Для любых подпространств V_1 и V_2 линейного пространства V имеет место равенство

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2).$$

Доказательство. Выберем базис e_1, \ldots, e_k пространства $V_1 \cap V_2$. Воспользовавшись теоремой 1.15, дополним его до базиса $e_1, \ldots, e_k, f_1, \ldots, f_l$ пространства V_1 и до базиса $e_1, \ldots, e_k, g_1, \ldots, g_m$ пространства V_2 . Тогда мы имеем

(2)
$$\dim(V_1 \cap V_2) = k$$
, $\dim V_1 = k + l$, $\dim V_2 = k + m$.

Докажем, что $e_1, \ldots, e_k, f_1, \ldots, f_l, g_1, \ldots, g_m$ — базис пространства $V_1 + V_2$.

Прежде всего заметим, что так как $V_1+V_2=\langle V_1\cup V_2\rangle$, любой вектор из V_1+V_2 линейно выражается через эту систему векторов. Остаётся проверить, что эта система линейно независима. Пусть имеет место равенство

(3)
$$\lambda_1 e_1 + \ldots + \lambda_k e_k + \mu_1 f_1 + \ldots + \mu_l f_l + \nu_1 g_1 + \ldots + \nu_m g_m = 0.$$

Перепишем его в виде

$$\lambda_1 \boldsymbol{e}_1 + \ldots + \lambda_k \boldsymbol{e}_k + \mu_1 \boldsymbol{f}_1 + \ldots + \mu_l \boldsymbol{f}_l = -\nu_1 \boldsymbol{g}_1 - \ldots - \nu_m \boldsymbol{g}_m.$$

Вектор, стоящий в обеих частях этого равенства, лежит как в V_1 , так и в V_2 . Следовательно, он лежит в $V_1 \cap V_2$ и линейно выражается через e_1, \ldots, e_k . Так как векторы $e_1, \ldots, e_k, f_1, \ldots, f_l$ линейно независимы по построению, мы получаем, что $\mu_1 = \ldots = \mu_l = 0$. Аналогичным образом доказывается, что $\nu_1 = \ldots = \nu_m = 0$. Тогда из линейной независимости e_1, \ldots, e_k и (3) следует, что $\lambda_1 = \ldots = \lambda_k = 0$.

Итак, система $e_1, \ldots, e_k, f_1, \ldots, f_l, g_1, \ldots, g_m$ порождает пространство $V_1 + V_2$ и линейно независима. Следовательно, это — базис в $V_1 + V_2$ и $\dim(V_1 + V_2) = k + l + m$. Отсюда и из (2) вытекает требуемое равенство.

Определение 1.21. Сумма $V_1 + V_2$ подпространств пространства V называется nps-мой (обозначение: $V_1 \oplus V_2$), если для любого вектора $v \in V_1 + V_2$ представление $v = v_1 + v_2$, где $v_1 \in V_1$ и $v_2 \in V_2$, единственно.

Легко доказывается эквивалентность следующих условий:

- а) сумма $V_1 + V_2$ прямая;
- 6) $V_1 \cap V_2 = \{\mathbf{0}\}.$
- в) если ${f 0}=\dot{{m v}_1}+{m v}_2,$ где ${m v}_1\in V_1$ и ${m v}_2\in V_2,$ то ${m v}_1={m v}_2={f 0};$
- r) dim V_1 + dim V_2 = dim $(V_1 + \bar{V_2})$;

1.4. Координаты вектора. Закон изменения координат при замене базиса.

Определение 1.22. Пусть V — линейное пространство и e_1, \ldots, e_n — базис в V. Любой вектор $x \in V$ единственным образом представляется в виде линейной комбинации базисных векторов: $x = x_1 e_1 + \ldots + x_n e_n$. Числа $x_1, \ldots, x_n \in \mathbf{k}$ называются $\kappa oop \partial u hamamu$ вектора x в базисе e_1, \ldots, e_n .

При работе с матрицами координаты вектора x в базисе e_1, \ldots, e_n мы будем записывать в виде столбца высоты n, обозначая его простой (нежирной) буквой x, т.е.

$$x=egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
. Часто для экономии места вместо $egin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ будем писать $(x_1\,\ldots\,x_n)^t$.

Пусть в пространстве V заданы два базиса: «старый» e_1, \ldots, e_n и «новый» e'_1, \ldots, e'_n . Запишем формулы, выражающие векторы нового базиса через старый базис

$$e'_1 = c_{11}e_1 + \ldots + c_{n1}e_n,$$

 \cdots
 $e'_n = c_{1n}e_1 + \ldots + c_{nn}e_n$

Определение 1.23. Матрица

$$C = C_{e \to e'} = \begin{pmatrix} c_{11} & \cdots & c_{1n} \\ \vdots & \ddots & \vdots \\ c_{n1} & \cdots & c_{nn} \end{pmatrix}$$

называется матрицей перехода от базиса e_1, \ldots, e_n к базису e'_1, \ldots, e'_n . Её столбцы состоят из координат новых базисных векторов в старом базисе.

Теорема 1.24 (закон изменения координат). Пусть $x_1, \ldots, x_n - \kappa$ оординаты вектора x в базисе e_1, \ldots, e_n , а $x'_1, \ldots, x'_n - \kappa$ оординаты этого же вектора в базисе e'_1, \ldots, e'_n . Тогда два набора координат связаны следующими формулами:

$$x_1 = c_{11}x_1' + \ldots + c_{1n}x_n',$$

$$x_n = c_{n1}x_1' + \ldots + c_{nn}x_n',$$

 $u_{\mathcal{N}}u$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Доказательство. Мы имеем

$$x_{1}e_{1} + \ldots + x_{n}e_{n} = \mathbf{x} = x'_{1}e'_{1} + \ldots + x'_{n}e'_{n} =$$

$$= x'_{1}(c_{11}e_{1} + \ldots + c_{n1}e_{n}) + \ldots + x'_{n}(c_{1n}e_{1} + \ldots + c_{nn}e_{n}) =$$

$$= (c_{11}x'_{1} + \ldots + c_{1n}x'_{n})e_{1} + \ldots + (c_{n1'}x'_{1} + \ldots + c_{nn}x'_{n})e_{n}.$$

Так как e_1, \ldots, e_n — базис, мы получаем $x_i = c_{i1}x_1' + \ldots + c_{in}x_n'$ для $i = 1, \ldots, n$. Та же выкладка в матричных обозначениях имеет вид

$$(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)egin{pmatrix} x_1\ dots\ x_n \end{pmatrix} = \boldsymbol{x} = (\boldsymbol{e}_1',\ldots,\boldsymbol{e}_n')egin{pmatrix} x_1'\ dots\ x_n' \end{pmatrix} = (\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)egin{pmatrix} c_{11}&\cdots&c_{1n}\ dots&\ddots&dots\ c_{n1}&\cdots&c_{nn} \end{pmatrix}egin{pmatrix} x_1'\ dots\ x_n' \end{pmatrix},$$

откуда

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix}.$$

Обратим внимание также, что в определении матрицы перехода мы выражаем новые векторы через cmapue, а в законе преобразования координат, наоборот, cmapue координаты выражаются через новые.

Предложение 1.25.

а) Матрица $C_{\mathbf{e}' \to \mathbf{e}}$ перехода от базиса $\mathbf{e}'_1, \dots, \mathbf{e}'_n$ к базису $\mathbf{e}_1, \dots, \mathbf{e}_n$ является обратной к матрице $C_{\mathbf{e} \to \mathbf{e}'}$ перехода от $\mathbf{e}_1, \dots, \mathbf{e}_n$ к $\mathbf{e}'_1, \dots, \mathbf{e}'_n$, т. е.

$$C_{\boldsymbol{\rho} \to \boldsymbol{\rho}'} C_{\boldsymbol{\rho}' \to \boldsymbol{\rho}} = E.$$

В частности, матрица перехода всегда невырождена (обратима).

б) Если $e_1, \ldots, e_n, e'_1, \ldots, e'_n, e''_1, \ldots, e''_n$ — три базиса, то для соответствующих матрии перехода имеет место соотношение

$$C_{e \to e''} = C_{e \to e'} C_{e' \to e''}.$$

Доказательство. Первое утверждение следует из второго, если положить $e_{i''}=e_i$. Докажем второе утверждение. Пусть $C_{e\to e'}=(c_{ij}),\ C_{e'\to e''}=(a_{ij}),\ C_{e\to e''}=(b_{ij})$. Тогда

$$\sum_i b_{ik} \boldsymbol{e}_i = \boldsymbol{e}_k'' = \sum_j a_{jk} \boldsymbol{e}_j' = \sum_j a_{jk} \left(\sum_i c_{ij} \boldsymbol{e}_i \right) = \sum_i \left(\sum_j c_{ij} a_{jk} \right) \boldsymbol{e}_i,$$
 откуда $b_{ik} = \sum_j c_{ij} a_{jk}$, т. е. $C_{\boldsymbol{e} \to \boldsymbol{e}''} = C_{\boldsymbol{e} \to \boldsymbol{e}'} C_{\boldsymbol{e}' \to \boldsymbol{e}''}$.

1.5. Ориентация. Пусть $e = \{e_1, \dots, e_n\}$ и $e' = \{e'_1, \dots, e'_n\}$ — два базиса вещественного векторного пространства V и $C = C_{e \to e'}$ — матрица перехода. Согласно предложению 1.25, матрица C невырождена. Поэтому $\det C > 0$ или $\det C < 0$. В первом случае говорят, что базисы e и e' одинаково ориентированы, а во втором случае — базисы e и e' противоположно ориентированы. Из предложения 1.25 также следует, что все базисы в V распадаются на два класса эквивалентности, так что базисы из одного класса одинаково ориентированы, а два базиса из разных классов противоположно ориентированы. Выбор одного из этих классов эквивалентности называется ориентацией пространства V.

Имеется также более геометрический подход к понятию ориентации. Назовём de-формацией базиса $e = \{e_1, \ldots, e_n\}$ семейство базисов $e(t) = \{e_1(t), \ldots, e_n(t)\}$, зависящее от параметра $t \in [0, 1]$, удовлетворяющее условиям:

- a) e(0) = e;
- б) координаты векторов $e_i(t)$ в базисе $e = \{e_1, \dots, e_n\}$ являются непрерывными функциями от t.

Тогда можно доказать (задача), что базисы e и e' одинаково ориентированы тогда и только тогда, когда существует деформация e(t) базиса e, для которой e(1) = e'.

В пространстве \mathbb{R}^n имеется *стандартный* базис из строк где $e_i = (0, \dots, 1, \dots, 0)$. Базис пространства \mathbb{R}^n называется *положительно ориентированным*, если он лежит в классе эквивалентности стандартного базиса.

Задачи и упражнения.

- 1.26. Можно ли задать структуру линейного пространства
 - а) на абелевой группе Z целых чисел;
 - б) на вещественных числах $\mathbb R$ со следующей операцией умножения на скаляры: $\lambda \cdot u = \lambda^2 u;$
 - в) на вещественных числах $\mathbb R$ со следующей операцией умножения на скаляры: $\lambda \cdot u = \lambda^3 u$?
- **1.27.** Докажите, что если рассматривать \mathbb{R} как линейное пространство над \mathbb{Q} , то векторы 1 и ξ из \mathbb{R} линейно независимы тогда и только тогда, когда ξ иррационально.
- **1.28.** Докажите, что в пространстве $\widehat{\mathbb{R}}^{\infty}$ всех бесконечных последовательностей вещественных чисел не существует счётного базиса.
- **1.29.** Принадлежит ли число $\sqrt[6]{2}$ линейной оболочке чисел 1, $\sqrt{2}$ и $\sqrt[4]{2}$ над полем рациональных чисел?
- **1.30.** Пусть U, V, W подпространства в \mathbb{R}^n , причём $U \cap V = V \cap W = U \cap W = \{\mathbf{0}\}$. Верно ли, что $\dim(U + V + W) = \dim U + \dim V + \dim W$?

- **1.31** (прямая сумма двух подпространств). Сумма $V_1 + V_2$ подпространств пространства V называется npямой (обозначение: $V_1 \oplus V_2$), если для любого вектора $\boldsymbol{v} \in V_1 + V_2$ представление $\boldsymbol{v} = \boldsymbol{v}_1 + \boldsymbol{v}_2$, где $\boldsymbol{v}_1 \in V_1$ и $\boldsymbol{v}_2 \in V_2$, единственно. Докажите эквивалентность следующих условий для подпространств V_1, V_2 :
 - а) сумма $V_1 + V_2$ прямая;
 - 6) $V_1 \cap V_2 = \{\mathbf{0}\}.$
 - в) если ${f 0}=\dot{{m v}_1}+{m v}_2,$ где ${m v}_1\in V_1$ и ${m v}_2\in V_2,$ то ${m v}_1={m v}_2={m 0};$
 - Γ) dim V_1 + dim V_2 = dim $(V_1 + V_2)$;
- **1.32** (прямая сумма нескольких подпространств). *Суммой* нескольких подпространств V_1, \ldots, V_n пространства V называется линейная оболочка их объединения:

$$V_1 + \ldots + V_n = \langle V_1 \cup \ldots \cup V_n \rangle.$$

Сумма $V_1 + \ldots + V_n$ называется npямой, если для любого вектора $v \in V_1 + \ldots + V_n$ представление $v = v_1 + \ldots + v_n$, где $v_i \in V_i$, единственно.

Убедитесь, что условия $V_i \cap V_j = \{\mathbf{0}\}$ при $1 \leqslant i < j \leqslant n$ не являются достаточными для того, чтобы сумма $V_1 + \ldots + V_n$ была прямой. Докажите эквивалентность следующих условий:

- а) сумма $V_1 + \ldots + V_n$ прямая;
- б) $V_i \cap (V_1 + \ldots + V_{i-1} + V_{i+1} + \ldots + V_n) = \{\mathbf{0}\}$ для любого $i = 1, \ldots, n;$
- в) $V_i \cap (V_{i+1} + \ldots + V_n) = \{0\}$ для любого $i = 1, \ldots, n-1$;
- г) если $\mathbf{0}=oldsymbol{v}_1+\ldots+oldsymbol{v}_n$, где $oldsymbol{v}_i\in V_i$, то $oldsymbol{v}_1=\ldots=oldsymbol{v}_n=\mathbf{0};$
- **1.33.** Составьте систему линейных уравнений, задающую линейную оболочку системы векторов:
 - a) (1, 1, 1, 1), (1, 2, 1, 3);
 - 6) (1,1,1,1), (1,1,1,3), (3,-5,7,2), (1,-7,5,-2).
- **1.34.** Найти размерности и базисы суммы и пересечения подпространств L_1 и L_2 :
 - a) $L_1 = \langle (1,2,3), (4,3,1), (2,-1,-5) \rangle$, $L_2 = \langle (1,1,1), (-3,2,0), (-2,3,1) \rangle$;
 - 6) $L_1: x_1 + x_2 x_3 + x_4 x_5 = 0,$ $L_2 = \langle (1, 1, 1, 1, 1), (1, 0, -1, 1, -1), (0, 1, -1, -1, 1), (-2, 1, 0, 1, -1) \rangle;$

B)
$$L_1$$
:
$$\begin{cases} x_1 + x_3 + x_4 - x_5 = 0, \\ x_2 - x_4 = 0, \end{cases} \qquad L_2$$
:
$$\begin{cases} x_3 + 2x_4 = 0, \\ x_1 - x_2 - x_5 = 0. \end{cases}$$

1.35. Докажите, что базисы e и e' одинаково ориентированы тогда и только тогда, когда существует деформация e(t) базиса e, для которой e(1) = e'.

2. АФФИННЫЕ ПРОСТРАНСТВА

В геометрии на плоскости или в пространстве рассматриваются точки и векторы. Для формализации этих понятий и взаимосвязей между ними служит понятие аффинного пространства.

2.1. Определение, подпространства, системы координат.

Определение 2.1. $A\phi\phi$ инным пространством называется пара (\mathfrak{A}, V) , состоящая из множества \mathfrak{A} , элементы которого называются точками, и направляющего векторного пространства V над полем \mathbf{k} , с дополнительной операцией сложения

$$+: \mathfrak{A} \times V \to \mathfrak{A}, \quad (P, \mathbf{v}) \mapsto P + \mathbf{v}$$

для $P \in \mathfrak{A}$ и $v \in V$. (Говоря неформально к точке P можно «приложить» вектор v и тогда его «конец» — это точка P + v.) При этом требуется, чтобы операция сложения точек и векторов удовлетворяла следующим условиям:

- 1) $P + \mathbf{0} = p$ для любой точки $P \in \mathfrak{A}$;
- 2) (P + u) + v = P + (u + v) для любых $P \in \mathfrak{A}, u, v \in V$;
- 3) для любых $P,Q\in\mathfrak{A}$ существует единственный вектор ${\pmb v}\in V$, такой, что $P+{\pmb v}=Q.$

Pазмерностью аффинного пространства (\mathfrak{A},V) называется размерность векторного пространства V.

Часто аффинным пространством называют просто множество точек $\mathfrak A$ из определения выше (особенно когда из контекста понятно, какое векторное пространство V имеется ввиду). Вектор v, однозначно сопоставляемый паре точек $P,Q\in \mathfrak A$ в силу свойства 3), обозначается \overline{PQ} . Тогда из свойства 2) вытекает, что $\overline{PQ}+\overline{QR}=\overline{PR}$.

Замечание. Свойства 1)-2) из определения аффинного пространства означают, что на множестве $\mathfrak A$ задано действие абелевой группы векторов пространства V. Свойство 3) по определению означает, что это действие свободно и транзитивно. Множество, на котором задано свободное и транзитивное действие группы G называется главным однородным пространством группы G. Таким образом, аффинное пространство $\mathfrak A$ — это главное однородное пространство абелевой группы V.

Пример 2.2.

- 1. Точки плоскости и (трёхмерного) пространства образуют аффинные пространства. Заметим, что точки «не помнят» начала координат: все точки на плоскости или в пространстве равноправны, пока мы не ввели там систему координат.
- 2. Рассмотрим совместную неоднородную систему линейных уравнений Ax = b, где A матрица, а x и b столбцы. Пусть $\mathfrak A$ множество решений x этой системы, а V векторное пространство решений y однородной системы Ay = 0. Тогда $(\mathfrak A, V)$ аффинное пространство. Действительно, если $x \in \mathfrak A$ и $y \in V$, то A(x+y) = Ax + Ay = b и поэтому $x + y \in \mathfrak A$.
- 3. Из всякого векторного пространства V можно получить аффинное пространство A(V), взяв в качестве $\mathfrak A$ множество векторов V; при этом сложение точек и векторов это просто сложение векторов в исходном пространстве V. Аффинное пространство, получаемое при помощи этой процедуры из $\mathbb R^n$, мы будем обозначать через $\mathbb A^n$.

Определение 2.3. $A \phi \phi$ инной системой координат (или репером) в аффинном пространстве (\mathfrak{A}, V) называется набор $O e_1 \dots e_n$, состоящий из точки $O \in \mathfrak{A}$, называемой началом координат, и базиса e_1, \dots, e_n в векторном пространстве V. Вектор $r_P = \overline{OP}$ называется радиус-вектором точки P относительно системы координат с началом O.

 $Koop \partial u$ натами точки $P \in \mathfrak{A}$ в системе координат $Oe_1 \dots e_n$ называются координаты x_1, \dots, x_n её радиус-вектора вектора \overline{OP} в базисе e_1, \dots, e_n , т.е.

$$\overline{OP} = x_1 e_1 + \ldots + x_n e_n.$$

Выбор аффинной системы координат позволяет отождествить аффинное пространство (\mathfrak{A}, V) со стандартным аффинным пространством \mathbb{A}^n , в котором и точки и векторы задаются наборами из n чисел, где $n = \dim V$.

Предложение 2.4 (формулы замены аффинных координат). Пусть в аффинном пространстве (\mathfrak{A}, V) заданы две системы координат $Oe_1 \dots e_n$ и $O'e'_1 \dots e_n$. Тогда два набора координат точки $P \in \mathfrak{A}$ в этих системах связаны соотношениями

$$x_1 = c_{11}x_1' + \ldots + c_{1n}x_n' + o_1,$$

$$x_n = c_{n1}x_1' + \ldots + c_{nn}x_n' + o_n,$$

 $u_{\mathcal{N}}u$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = C \begin{pmatrix} x_1' \\ \vdots \\ x_n' \end{pmatrix} + \begin{pmatrix} o_1 \\ \vdots \\ o_n \end{pmatrix},$$

где $C = C_{\mathbf{e} \to \mathbf{e}'} -$ матрица перехода от базиса $\mathbf{e}_1, \dots, \mathbf{e}_n$ к базису $\mathbf{e}'_1, \dots, \mathbf{e}'_n$, а $(o_1, \dots, o_n) -$ координаты точки O' в системе $O \mathbf{e}_1 \dots \mathbf{e}_n$.

Доказательство. Мы имеем $\overline{OP} = \overline{OO'} + \overline{O'P}$ или $r_P = r'_P + r_{O'}$, где r_P и $r'_P -$ радиус-векторы точки P в системах координат $Oe_1 \dots e_n$ и $O'e'_1 \dots e'_n$, соответственно. Записывая координаты этих векторов в базисе e_1, \dots, e_n и используя векторную формулу замены координат (теорема 1.24), получаем требуемое.

Определение 2.5. $A\phi\phi$ инным подпространством в аффинном пространстве (\mathfrak{A}, V) называется пара (\mathfrak{B}, W), состоящая из подмножества $\mathfrak{B} \subset \mathfrak{A}$ и векторного подпространства $W \subset V$, такая, что (\mathfrak{B}, W) является аффинным пространством относительно операций в (\mathfrak{A}, V).

Эквивалентно, (\mathfrak{B}, W) называется аффинным подпространством в (\mathfrak{A}, V) , если

- 1) для любых $P \in \mathfrak{B}$ и $\boldsymbol{w} \in W$ точка $P + \boldsymbol{w}$ лежит в \mathfrak{B} ;
- 2) для любых $P,Q \in \mathfrak{B}$ вектор \overline{PQ} лежит в W.

Одномерные аффинные подпространства называются npямыми, а двумерные — nnockocmяmu.

Аффинные подпространства (\mathfrak{B}, W) в \mathbb{A}^n можно задавать двумя способами:

а) репером, т.е. точкой $P \in \mathfrak{B}$ и базисом f_1, \ldots, f_k векторного пространства $W \subset \mathbb{R}^n$. При этом любая другая точка $P' \in \mathfrak{B}$ представляется в виде $P' = P + x_1 f_1 + \ldots + x_k f_k$. Для такого способа задания используется обозначение

$$\mathfrak{B} = P + W = P + \langle \boldsymbol{f}_1, \dots, \boldsymbol{f}_k \rangle.$$

б) как множество решений совместной неоднородной системы уравнений:

$$\mathfrak{B} = \{ x \in \mathbb{R}^n \colon Ax = b \}.$$

При этом W — это пространство решений однородной системы Ax = 0.

Первый способ обобщает параметрическое задание прямых и плоскостей. Второй способ обобщает задание прямых и плоскостей уравнениями (см. следующий параграф).

Переход от второго способа задания подпространства к первому заключается в решении неоднородной системы Ax=b: точка p— это частное решение, а набор f_1,\ldots,f_k — это фундаментальная система решений однородной системы Ax=0.

Для перехода от первого способа задания подпространства ко второму необходимо задать линейную оболочку $\langle \boldsymbol{f}_1,\ldots,\boldsymbol{f}_k\rangle$ однородной системой Ax=0; тогда столбец b правых частей неоднородной системы Ax=b получается при подстановке координат точки P в уравнения системы Ax=0.

2.2. **Прямые и плоскости в** \mathbb{A}^2 **и** \mathbb{A}^3 . Традиционно, координаты на аффинной плоскости \mathbb{A}^2 обозначаются (x,y), а координаты в аффинном трёхмерном пространстве \mathbb{A}^3 обозначаются (x,y,z).

Вначале рассмотрим прямые в \mathbb{A}^2 . При первом способе задания прямая $\ell \subset \mathbb{A}^2$ определяется точкой $P_0 \in \ell$ и ненулевым вектором ${\it v}$ из направляющего одномерного векторного подпространства. Тогда для любой другой точки $P \in \ell$ имеем $P = P_0 + {\it v} t$ для некоторого $t \in \mathbb{R}$.

Пусть точка P имеет координаты (x_0, y_0) , а вектор v — координаты $(a, b) \neq (0, 0)$. Тогда координаты (x, y) произвольной точки $P \in \ell$ удовлетворяют соотношениям

(4)
$$x = x_0 + at, y = y_0 + bt,$$

где $t \in \mathbb{R}$. Это соотношения называются параметрическими уравнениями прямой в \mathbb{A}^2 . Избавляясь от параметра, эти уравнения часто записывают в виде

$$\frac{x - x_0}{a} = \frac{y - y_0}{b}.$$

При этом подразумевается, что при $a=0, b\neq 0$ уравнение выше есть просто $x-x_0=0$, и аналогично при $b=0, a\neq 0$.

При втором способе задания прямая $\ell \subset \mathbb{A}^2$ задаётся одним неоднородным линейным уравнением

$$Ax + By + C = 0$$
,

которое называется общим уравнением прямой в \mathbb{A}^2 . При этом, чтобы пространство решений однородного уравнения Ax + By = 0 было одномерным, необходимо, чтобы хотя бы одно из чисел A и B было отличным от нуля.

Теперь рассмотрим плоскости в \mathbb{A}^3 . При первом способе задания плоскость $\pi \subset \mathbb{A}^3$ определяется точкой $P_0 = (x_0, y_0, z_0) \in \pi$ и парой неколлинеарных векторов $v_1 = (a_1, b_1, c_1)$ и $v_2 = (a_1, b_2, c_2)$ из направляющего двумерного векторного подпространства. Координаты (x, y, z) произвольной точки $P \in \pi$ удовлетворяют соотношениям

(5)
$$x = x_0 + a_1t_1 + a_2t_2,$$
$$y = y_0 + b_1t_1 + b_2t_2,$$
$$z = z_0 + c_1t_1 + c_2t_2,$$

где $t_1, t_2 \in \mathbb{R}$ — независимые параметры. Это соотношения называются *параметрическими уравнениями плоскости* в \mathbb{A}^3 .

При втором способе задания плоскость $\pi \in \mathbb{A}^3$ задаётся одним неоднородным линейным уравнением

$$Ax + By + Cz + D = 0,$$

которое называется общим уравнением плоскости в \mathbb{A}^3 . При этом необходимо, чтобы хотя бы одно из чисел A, B и C было отличным от нуля.

Наконец, рассмотрим прямые в \mathbb{A}^3 . При первом способе задания прямая $\ell \subset \mathbb{A}^3$ определяется точкой $P_0 = (x_0, y_0, z_0) \in \ell$ и ненулевым вектором $\mathbf{v} = (a, b, c)$. Таким образом, параметрические уравнения прямой в \mathbb{A}^3 имеют вид

$$x = x_0 + at,$$

$$y = y_0 + bt,$$

$$z = z_0 + ct,$$

где $t \in \mathbb{R}$. Избавляясь от параметра, получаем

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{b}$$

(этим уравнениям нужно придавать дополнительный смысл, когда одно или два из числе a, b, c обращаются в нуль).

При втором способе задания плоскость $\pi \subset \mathbb{A}^3$ задаётся системой из двух неоднородных уравнений

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0. \end{cases}$$

При этом, чтобы пространство решений этой системы было одномерным, необходимо, чтобы векторы (A_1, B_1, C_1) и (A_2, B_2, C_2) были неколлинеарными. Геометрически это означает, что прямая задаётся как пересечение двух плоскостей.

Для записи прямых и плоскостей уравнениями удобно пользоваться определителями. Например, если плоскость задана параметрическими уравнениями (5), то её общее уравнение можно записать в виде

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$$

Общее уравнение плоскости, проходящей через три точки $(x_0,y_0,z_0), (x_1,y_1,z_1)$ и $(x_2,y_2,z_2),$ имеет вид

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$

Задачи и упражнения.

- **2.6.** В треугольнике ABC проведены медианы AD, BE и CF. Найти сумму векторов $\overline{AD} + \overline{BE} + \overline{CF}$.
- **2.7.** Дан пространственный четырёхугольник ABCD. Известны векторы $\overline{AB}=\boldsymbol{u}$ и $\overline{CD}=\boldsymbol{v}$. Найти вектор \overline{EF} , соединяющий середины диагоналей AC и BD.

- **2.8.** Выведите формулы замены координат в аффинном пространстве (предложение 2.4).
- **2.9.** Найти геометрическое место точек пересечения диагоналей параллелограммов, вписанных в данный четырехугольник так, что стороны этих параллелограммов параллельны диагоналям четырехугольника.
- **2.10.** Даны уравнения двух сторон треугольника 2x y = 0, 5x y = 0 и уравнение 3x y = 0 одной из его медиан. Составьте уравнение третьей стороны треугольника, зная, что на ней лежит точка (3,9).
- **2.11.** Согласно одной из аксиом Евклида, прямая делит плоскость на две полуплоскости, которые определяются условием: отрезок, соединяющий две точки из разных полуплоскостей, пересекает прямую, а отрезок, соединяющий две точки из одной полуплоскости, не пересекает прямую. Пусть прямая $\ell \in \mathbb{A}^2$ задана уравнением F = Ax + By + C = 0. Докажите, что подмножества $F_+ = \{(x,y) \in \mathbb{A}^2 \colon Ax + By + C > 0\}$ и $F_- = \{(x,y) \in \mathbb{A}^2 \colon Ax + By + C < 0\}$ суть (открытые) полуплоскости относительно ℓ .
- **2.12.** Найти условия, необходимые и достаточные для того, чтобы точка (x_0, y_0) лежала внутри треугольника, образованного прямыми $A_1x + B_1y + C_1 = 0$, $A_2x + B_2y + C_2 = 0$ и $A_3x + B_3y + C_3 = 0$.
- **2.13.** Пусть даны две прямые в \mathbb{A}^2 , заданные общими уравнениями $A_1x+B_1y+C_1=0$ и $A_2x+B_2y+C_2=0$. Найдите необходимые и достаточные условия для того, чтобы эти прямые а) пересекались в одной точке; б) были параллельны; в) совпадали.
- **2.14.** Пусть даны две прямые P + u t и Q + v t в \mathbb{A}^3 . Докажите, что эти прямые скрещиваются (т. е. не имеют общих точек и не параллельны) тогда и только тогда, когда векторы \overline{PQ} , u и v некомпланарны. Найдите необходимые и достаточные условия для того, чтобы прямые а) пересекались в одной точке; б) были параллельны; в) совпадали.
- **2.15.** Пусть прямые ℓ_1 и ℓ_2 в \mathbb{A}^3 заданы параметрически. Запишите общее уравнение плоскости, содержащей ℓ_1 и параллельной ℓ_2 (предварительно указав условия, при которых такая плоскость существует).
- **2.16.** Пусть прямые ℓ_1 и ℓ_2 в \mathbb{A}^3 скрещиваются, и пусть a точка, не лежащая ни на одной из двух прямых. Всегда ли существует прямая ℓ , проходящая через a и пересекающая каждую из прямых ℓ_1 и ℓ_2 ? (Если да, привести доказательство, если нет, указать явный контрпример с числами.) Найти уравнение прямой ℓ (параметрическое или как пересечение двух плоскостей), если прямые ℓ_1 и ℓ_2 заданы параметрически.
- **2.17.** Составить параметрические уравнения прямой, проходящей через точку (2,3,1) параллельно плоскости x-y-1=0 и пересекающей ось Oy.
- **2.18.** Составить уравнения прямой, лежащей в плоскости x+z=0 и пересекающей прямую

$$\frac{x-2}{3} = \frac{y-8}{11} = \frac{z-3}{2},$$

но не имеющей общих точек с прямой x = 1 + t, y = 3 + 4t, z = -1 - t.

2.19. Даны три прямые

$$x = 3 + t, \quad y = -1 + 2t, \quad z = 4t;$$

$$x = -2 + 3t, \quad y = -1, \quad z = 4 - t;$$

$$\begin{cases} x - 3y + z = 0, \\ x + y - z + 4 = 0. \end{cases}$$

Написать уравнения прямой, пересекающей первые две из указанных прямых и параллельной третьей.

2.20. Написать уравнения прямой, проходящей через точку (1,2,3) и пересекающей прямые

$$\frac{x}{2} = \frac{y+1}{-2} = \frac{z-2}{1}, \qquad \frac{x}{4} = \frac{y+2}{0} = \frac{z}{3}.$$

- **2.21.** Показать, что три плоскости x + 2y z 4 = 0, 3x 2y + 3z 6 = 0 и 4y 3z + 3 = 0 образуют призму, и написать уравнение плоскости, проходящей через линию пересечения первых двух граней призмы и параллельной третьей.
- **2.22.** Собственным пучком плоскостей называется множество всех плоскостей в \mathbb{A}^3 , проходящих через фиксированную прямую. Несобственным пучком плоскостей называется множество всех плоскостей, параллельных данной плоскости. Аналогично определяются пучки прямых в \mathbb{A}^2 .

Докажите, что плоскость F=Ax+By+Cz+D=0 принадлежит пучку плоскостей, определяемому двумя несовпадающими плоскостями $F_1=A_1x+B_1y+C_1z+D_1=0$ и $F_2=A_2x+B_2y+C_2z+D_2=0$ тогда и только тогда, когда $F=\alpha_1F_1+\alpha_2F_2$, где $(\alpha_1,\alpha_2)\neq (0,0)$. Аналогично для пучков прямых.

2.23. Собственной связкой плоскостей называется множество всех плоскостей в \mathbb{A}^3 , проходящих через фиксированную точку. Несобственной связкой плоскостей называется множество всех плоскостей, параллельных данной прямой.

Докажите, что плоскость F=Ax+By+Cz+D=0 принадлежит связке плоскостей, определяемой тремя плоскостями $F_i=A_ix+B_iy+C_iz+D_i=0,\ i=1,2,3,$ не принадлежащими одному пучку тогда и только тогда, когда $F=\alpha_1F_1+\alpha_2F_2+\alpha_3F_3,$ или, эквивалентно,

$$\begin{vmatrix} A_1 & B_1 & C_1 & D_1 \\ A_2 & B_2 & C_2 & D_2 \\ A_3 & B_3 & C_3 & D_3 \\ A & B & C & D \end{vmatrix} = 0.$$

- **2.24.** Опишите все возможные способы взаимного расположения двух плоскостей в \mathbb{A}^5 .
- **2.25.** Пусть даны два аффинных подпространства $\mathfrak{B} = P + W$ и $\mathfrak{C} = Q + U$ в \mathbb{A}^n . В терминах точек P,Q и линейных пространств W,U запишите необходимое и достаточное условие для того, чтобы \mathfrak{B} и \mathfrak{C} пересекались (имели хотя бы одну общую точку).
- **2.26.** Пусть заданы два аффинных подпространства $\mathfrak{B} = P + \langle \boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3, \boldsymbol{b}_4, \boldsymbol{b}_5 \rangle$ и $\mathfrak{C} = Q + \langle \boldsymbol{c}_1, \boldsymbol{c}_2, \boldsymbol{c}_3 \rangle$ в аффинном пространстве, причём $\dim \mathfrak{B} = 5$ и $\dim \mathfrak{C} = 3$. С помощью рангов r и R систем векторов $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_5, \boldsymbol{c}_1, \boldsymbol{c}_2, \boldsymbol{c}_3\}$ и $\{\overline{PQ}, \boldsymbol{b}_1, \ldots, \boldsymbol{b}_5, \boldsymbol{c}_1, \boldsymbol{c}_2, \boldsymbol{c}_3\}$ выразить необходимые и достаточные условия того, чтобы данные подпространства

- а) скрещивались по точке;
- б) пересекались в одной точке;
- в) скрещивались по прямой;
- г) пересекались по прямой;
- д) скрещивались по двумерной плоскости;
- е) пересекались по двумерной плоскости;
- ё) были параллельны;
- ж) совпадали.

- 3. Евклидовы пространства (пространства со скалярным произведением)
- 3.1. Определение, примеры. Неравенство Коши-Буняковского, неравенство треугольника.

Определение 3.1. Линейное пространство над полем \mathbb{R} называется $e \ 6 \kappa \kappa n u \ do 6 b u M$, если на парах его векторов определена функция $f \colon V \times V \to \mathbb{R}$ (обозначаемая (a,b) := f(a,b) и называемая $c \kappa a \kappa a \kappa a \kappa b m n b n u s b e \ de hue M$), удовлетворяющая следующим свойствам:

1) билинейность, т.е.

$$(\lambda_1 u_1 + \lambda_2 u_2, v) = \lambda_1 (u_1, v) + \lambda_2 (u_2, v)$$
 и $(u, \mu_1 v_1 + \mu_2 v_2) = \mu_1 (u, v_1) + \mu_2 (u, v_2)$

для любых $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{R}$ и $\boldsymbol{u}, \boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{v}, \boldsymbol{v}_1, \boldsymbol{v}_2 \in V;$

- 2) симметричность: (v, u) = (u, v) для любых $u, v \in V$;
- 3) положительная определённость: $(v, v) \geqslant 0$ для любого $v \in V$, причём (v, v) = 0 только при v = 0.

Свойство билинейности выражает линейность скалярного произведения по каждому из аргументов. Ввиду наличия свойства симметричности, билинейность очевидно вытекает из линейности по любому из двух аргументов.

Определение 3.2. Линейное пространство над полем $\mathbb C$ называется *эрмитовым*, если на парах его векторов определена функция $f \colon V \times V \to \mathbb C$ (обозначаемая (a,b) := f(a,b) и называемая *скалярным произведением*), удовлетворяющая следующим свойствам:

1) полуторалинейность, т.е.

$$(\lambda_1 oldsymbol{u}_1 + \lambda_2 oldsymbol{u}_2, oldsymbol{v}) = \overline{\lambda}_1(oldsymbol{u}_1, oldsymbol{v}) + \overline{\lambda}_2(oldsymbol{u}_2, oldsymbol{v})$$
и ($oldsymbol{u}, \mu_1 oldsymbol{v}_1 + \mu_2 oldsymbol{v}_2) = \mu_1(oldsymbol{u}, oldsymbol{v}_1) + \mu_2(oldsymbol{u}, oldsymbol{v}_2)$

для любых $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{C}$ и $u, u_1, u_2, v, v_1, v_2 \in V$;

- 2) эрмитовость: $(v, u) = \overline{(u, v)}$ для любых $u, v \in V$; в частности, (v, v) вещественно для любого $v \in V$.
- 3) положительная определённость: $(v, v) \geqslant 0$ для любого $v \in V$, причём (v, v) = 0 только при v = 0.

Свойство полуторалинейности выражает линейность скалярного произведения по второму аргументу и *антилинейность* по первому. Ввиду наличия свойства эрмитовости, полуторалинейность очевидно вытекает из линейности по второму аргументу.

Пример 3.3. 1. *Стандартное* скалярное произведение векторов $u = (u_1, \ldots, u_n)$ и $v = (v_1, \ldots, v_n)$ в пространстве \mathbb{R}^n определяется по формуле

(6)
$$(u, v) := u_1 v_1 + u_2 v_2 + \ldots + u_n v_n.$$

Скалярное произведение векторов в \mathbb{C}^n определяется по формуле

(7)
$$(\boldsymbol{u}, \boldsymbol{v}) := \overline{u}_1 v_1 + \overline{u}_2 v_2 + \ldots + \overline{u}_n v_n.$$

2. Скалярное произведение в пространстве $\mathrm{Mat}_{\mathbb{C}}(n,n)$ квадратных комплексных матриц размера n задаётся с помощью формулы

$$(A, B) := \operatorname{Tr}(\overline{A}^t B) = \sum_{i,j=1}^n \overline{a_{ij}} b_{ij}.$$

При отождествлении пространства $\mathrm{Mat}_{\mathbb{C}}(n,n)$ с \mathbb{C}^{n^2} это скалярное произведение переходит в стандартное скалярное произведение из предыдущего примера.

3. Рассмотрим пространство C[a,b] вещественнозначных функций, непрерывных на отрезке [a,b]. Зададим скалярное произведение функций f и g по формуле

$$(f,g) := \inf_{a}^{b} f(x)g(x)dx.$$

Тогда свойства 1) и 2) скалярного произведения очевидны, а 3) вытекает из того, что интеграл $\operatorname{int}_a^b f^2(x) dx$ от неотрицательной непрерывной функции $f^2(x)$ неотрицателен и обращается в нуль только при $f(x) \equiv 0$.

Аналогично, скалярное произведение в пространстве комплекснозначных функций можно определить по формуле $(f,g) := \operatorname{int}_a^b \overline{f(x)} g(x) dx$.

Определение 3.4. Пусть V — евклидово или эрмитово пространство. Для $v \in V$ величина $\sqrt{(v,v)}$ называется $\partial_n u ho \ddot{u}$ вектора v и обозначается |v|.

Векторы $u, v \in V$, скалярное произведение которых равно нулю, называются nep- nehdukyлярными или opmoгoнальными. В этом случае пишут $u \perp v$.

Предложение 3.5. Пусть u — ненулевой вектор евклидова или эрмитова пространства V. Тогда для любого вектора $v \in V$ существует единственное разложение $v = v_1 + v_2$, где вектор v_1 коллинеарен вектору v_2 а вектор v_3 ортогонален v_4 .

Доказательство. Сначала докажем единственность. Пусть $v=v_1+v_2$ — такое разложение. Тогда для $\lambda \in \mathbb{R}$ имеем $v_1=\lambda u,\ v_2=v-\lambda u.$ Условие $u\perp v_2$ влечёт

$$\mathbf{0} = (\mathbf{u}, \mathbf{v}_2) = (\mathbf{u}, \mathbf{v} - \lambda \mathbf{u}) = (\mathbf{u}, \mathbf{v}) - \lambda (\mathbf{u}, \mathbf{u}).$$

Отсюда $\lambda = (\boldsymbol{u}, \boldsymbol{v})/(\boldsymbol{u}, \boldsymbol{u})$ и

(8)
$$v_1 = \frac{(u, v)}{(u, u)} u.$$

Тем самым векторы v_1 и $v_2 = v - v_1$ определены однозначно. С другой стороны, определив v_1 по этой формуле, мы получим $v_2 = (v - v_1) \perp u$.

Определение 3.6. Вектор (8) называется ортогональной проекцией вектора \boldsymbol{v} на направление вектора \boldsymbol{u} и обозначается $\operatorname{pr}_{\boldsymbol{u}} \boldsymbol{v}$, а вектор $\boldsymbol{v} - \operatorname{pr}_{\boldsymbol{u}} \boldsymbol{v}$ называется ортогональной составляющей вектора \boldsymbol{v} относительно \boldsymbol{u} и обозначается $\operatorname{ort}_{\boldsymbol{u}} \boldsymbol{v}$.

Длина ортогональной проекции вычисляется по формуле

$$|\operatorname{pr}_{\boldsymbol{u}}\boldsymbol{v}| = \sqrt{(\operatorname{pr}_{\boldsymbol{u}}\boldsymbol{v},\operatorname{pr}_{\boldsymbol{u}}\boldsymbol{v})} = \sqrt{\left(\frac{(\boldsymbol{u},\boldsymbol{v})}{(\boldsymbol{u},\boldsymbol{u})}\boldsymbol{u},\frac{(\boldsymbol{u},\boldsymbol{v})}{(\boldsymbol{u},\boldsymbol{u})}\boldsymbol{u}\right)} = \sqrt{\frac{\overline{(\boldsymbol{u},\boldsymbol{v})}(\boldsymbol{u},\boldsymbol{v})}{(\boldsymbol{u},\boldsymbol{u})}} = \frac{|(\boldsymbol{u},\boldsymbol{v})|}{|\boldsymbol{u}|}.$$

Теорема 3.7 (неравенство Коши-Буняковского). Для любых двух векторов u, v евклидова или эрмитова пространства имеет место неравенство

$$|(\boldsymbol{u}, \boldsymbol{v})| \leqslant |\boldsymbol{u}| \cdot |\boldsymbol{v}|,$$

причем равенство имеет место только в случае, когда векторы u, v коллинеарны.

Доказательство. Если u=0, утверждение очевидно. Пусть $u\neq 0$. Запишем $v=v_1+v_2$, где $v_1=\operatorname{pr}_u v$ и $v_2=\operatorname{ort}_u v$. Тогда $(v_1,v_2)=0$, и мы имеем

$$|m{v}|^2 = (m{v},m{v}) = (m{v}_1 + m{v}_2, m{v}_1 + m{v}_2) = (m{v}_1, m{v}_1) + (m{v}_1, m{v}_2) + (m{v}_2, m{v}_1) + (m{v}_2, m{v}_2) = |m{v}_1|^2 + |m{v}_2|^2.$$

Отсюда $|v_1| \leqslant |v|$, причём равенство достигается только при $v_2 = \mathbf{0}$, т.е. когда вектор v коллинеарен вектору u. Осталось заметить, что $|v_1| = |\operatorname{pr}_u v| = \frac{|(u,v)|}{|u|}$, так что неравенство $|v_1| \leqslant |v|$ эквивалентно требуемому.

Определение 3.8. Углом между двумя ненулевыми векторами u, v евклидова пространства называется величина

$$\angle(\boldsymbol{u},\boldsymbol{v}) := \arccos\frac{(\boldsymbol{u},\boldsymbol{v})}{|\boldsymbol{u}|\,|\boldsymbol{v}|} \in [0,\pi].$$

Неравенство Коши-Буняковского гарантирует, что угол между ненулевыми векторами всегда определен.

Следствие 3.9 (неравенство треугольника). Для любых двух векторов u, v евклидова или эрмитова пространства выполнено неравенство

$$|u+v|\leqslant |u|+|v|.$$

Доказательство. В обеих частях неравенства стоят неотрицательные величины, поэтому при возведении в квадрат получается равносильное неравенство

$$(u + v, u + v) \le (u, u) + (v, v) + 2|u||v|.$$

После раскрытия скобок в левой части и сокращения подобных членов мы получаем следующее неравенство:

$$(\boldsymbol{u}, \boldsymbol{v}) + (\boldsymbol{v}, \boldsymbol{u}) \leqslant 2|\boldsymbol{u}||\boldsymbol{v}|,$$

которое следует из неравенства Коши-Буняковского.

3.2. Ортогональные системы векторов, ортонормированные базисы. Ортогонализация Грама-Шмидта.

Предложение 3.10. Пусть v_1, \ldots, v_k — набор попарно ортогональных ненулевых векторов. Тогда эти векторы линейно независимы.

Доказательство. Пусть некоторая линейная комбинация данных векторов равна нулю:

$$\sum_{i=1}^k \lambda_i v_i = \mathbf{0}.$$

Умножим обе части этого равенства скалярно на v_j и воспользуемся линейностью скалярного произведения по второму аргументу:

$$0 = \left(\boldsymbol{v}_j, \sum_{i=1}^k \lambda_i \boldsymbol{v}_i\right) = \sum_{i=1}^k \lambda_i(\boldsymbol{v}_j, \boldsymbol{v}_i) = \lambda_j(\boldsymbol{v}_j, \boldsymbol{v}_j),$$

так как по условию остальные слагаемые в этой сумме равны нулю. Поскольку по условию $v_j \neq \mathbf{0}$, из положительной определенности скалярного произведения следует, что $(v_j, v_j) \neq 0$, а значит, $\lambda_j = 0$. Это выполнено для любого $j = 1, \dots, k$, следовательно, линейная комбинация $\sum_{i=1}^k \lambda_i v_i$ тривиальна.

Определение 3.11. Базис e_1, \ldots, e_n евклидова или эрмитова пространства называется *ортогональным*, если его векторы попарно ортогональны. Если при этом длина каждого вектора равна 1, то базис называется *ортонормированным*. Скалярные произведения векторов ортонормированного базиса задаются соотношением $(e_i, e_j) = \delta_{ij}$, где

$$\delta_{ij} = \begin{cases} 1, & \text{если } i = j; \\ 0, & \text{если } i \neq j \end{cases}$$

— так называемый символ Кронекера.

Теорема 3.12. Пусть a_1, \ldots, a_k — набор линейно независимых векторов пространства V. Тогда существует такой набор попарно ортогональных векторов b_1, \ldots, b_k , что для каждого $i = 1, \ldots, k$ линейная оболочка $\langle b_1, \ldots, b_i \rangle$ совпадает с $\langle a_1, \ldots, a_i \rangle$.

Доказательство. При k=1 утверждение очевидно: можно взять $\boldsymbol{b}_1=\boldsymbol{a}_1$. Предположим, что утверждение верно для наборов из i векторов, и докажем его для наборов из i+1 вектора. Пусть $\boldsymbol{b}_1,\ldots,\boldsymbol{b}_i$ — ортогональный набор, построенный по набору $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i$. Мы хотим, чтобы для нового вектора \boldsymbol{b}_{i+1} линейная оболочка $\langle \boldsymbol{b}_1,\ldots,\boldsymbol{b}_i,\boldsymbol{b}_{i+1} \rangle$ совпадала с $\langle \boldsymbol{a}_1,\ldots,\boldsymbol{a}_i,\boldsymbol{a}_{i+1} \rangle = \langle \boldsymbol{b}_1,\ldots,\boldsymbol{b}_i,\boldsymbol{a}_{i+1} \rangle$, и поэтому будем искать \boldsymbol{b}_{i+1} в виде

$$\boldsymbol{b}_{i+1} = \boldsymbol{a}_{i+1} + \lambda_1 \boldsymbol{b}_1 + \ldots + \lambda_i \boldsymbol{b}_i.$$

Коэффициенты $\lambda_1, \ldots, \lambda_i$ будем подбирать так, чтобы вектор \boldsymbol{b}_{i+1} был ортогонален всем предыдущим векторам $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_i$. Умножив скалярно предыдущее равенство слева на \boldsymbol{b}_i и использовав то, что $(\boldsymbol{b}_i, \boldsymbol{b}_\ell) = 0$ при $j \neq \ell$, получаем

$$0 = (b_i, b_{i+1}) = (b_i, a_{i+1}) + \lambda_i(b_i, b_i),$$

откуда $\lambda_j=-rac{(m{b}_j,m{a}_{i+1})}{(m{b}_j,m{b}_j)}$ для $j=1,\ldots,i.$ Окончательно для вектора $m{b}_{i+1}$ получаем

(9)
$$b_{i+1} = a_{i+1} - \frac{(b_1, a_{i+1})}{(b_1, b_1)} b_1 - \frac{(b_2, a_{i+1})}{(b_2, b_2)} b_2 - \dots - \frac{(b_i, a_{i+1})}{(b_i, b_i)} b_i = a_{i+1} - \operatorname{pr}_{b_1} a_{i+1} - \operatorname{pr}_{b_2} a_{i+1} - \dots - \operatorname{pr}_{b_i} a_{i+1}.$$

При этом $b_{i+1} \neq 0$ (так как $b_1 \dots, b_i, a_{i+1}$ линейно независимы), b_{i+1} ортогонален векторам $b_1, \dots, b_i,$ а $\langle b_1, \dots, b_i, b_{i+1} \rangle = \langle b_1, \dots, b_i, a_{i+1} \rangle = \langle a_1, \dots, a_i, a_{i+1} \rangle$.

Индуктивная процедура перехода от набора $a_1 \ldots, a_k$ к ортогональному набору b_1, \ldots, b_k называется процессом ортогонализации Грама-Шмидта. Условие $\langle b_1, \ldots, b_i \rangle = \langle a_1, \ldots, a_i \rangle$ при $i = 1, \ldots, k$ означает, что матрица перехода от $a_1 \ldots, a_k$ к b_1, \ldots, b_k является верхнетреугольной.

Следствие 3.13. B евклидовом или эрмитовом пространстве V существуют ортонормированные базисы.

Доказательство. Действительно, возьмём произвольный базис пространства V и применим к нему ортогонализацию Грама–Шмидта. В результате получим ортогональный базис b_1, \ldots, b_n . Тогда базис, состоящий из векторов $\frac{b_1}{|b_1|}, \ldots, \frac{b_n}{|b_n|}$ будет ортонормированным.

Предложение 3.14. Пусть векторы u u v имеют координаты u_1, \ldots, u_n u v_1, \ldots, v_n в некотором ортонормированном базисе евклидова или эрмитова пространства V. Тогда их скалярное произведение вычисляется по формуле

$$(u, v) = \bar{u}_1 v_1 + \bar{u}_2 v_2 + \ldots + \bar{u}_n v_n.$$

Доказательство. Пусть
$$e_1, \dots, e_n$$
 — ортонормированный базис. Тогда $(u, v) = (\sum_i u_i e_i, \sum_j v_j e_j) = \sum_{i,j} \bar{u}_i v_j (e_i, e_j) = \bar{u}_1 v_1 + \bar{u}_2 v_2 + \dots + \bar{u}_n v_n$.

3.3. Ортогональные и унитарные матрицы. QR-разложение.

Определение 3.15. Матрица перехода от одного ортонормированного базиса евклидова (соответственно, эрмитова) пространства к другому ортонормированному базису называется *ортогональной* (соответственно, *унитарной*).

Предложение 3.16. Следующие условия эквивалентны:

- a) матрица C ортогональна (соответственно, унитарна);
- б) $C^tC = E$ (соответственно, $\overline{C}^tC = E$);
- в) столбцы матрицы C образуют ортонормированный базис пространства \mathbb{R}^n (соответственно, пространства \mathbb{C}^n);
- Γ) $CC^t = E$ (соответственно, $\overline{C}C^t = E$);
- д) строки матрицы C образуют ортонормированный базис пространства \mathbb{R}^n (соответственно, пространства \mathbb{C}^n).

Доказательство. Условия б) и г) эквивалентны, так как каждое из них эквивалентно равенству $C^t = C^{-1}$ (соответственно, $\overline{C}^t = C^{-1}$). Эквивалентности б) \Leftrightarrow в) и г) \Leftrightarrow д) вытекают из правила умножения матриц и формул (6) и (7) для скалярного произведения в \mathbb{R}^n и \mathbb{C}^n .

Докажем импликацию а) \Rightarrow б). Пусть e_1, \ldots, e_n и e'_1, \ldots, e'_n — два ортонормированных базиса в эрмитовом пространстве и $C = (c_{ik})$ — матрица перехода, т.е. $e'_k = \sum_k c_{ik} e_i$. Тогда $(e_i, e_j) = \delta_{ij}$ и $(e'_k, e'_l) = \delta_{kl}$, откуда

$$\delta_{kl} = (\boldsymbol{e}_k', \boldsymbol{e}_l') = (\sum_i c_{ik} \boldsymbol{e}_i, \sum_j c_{jl} \boldsymbol{e}_j) = \sum_{i,j} \overline{c}_{ik} c_{jl} (\boldsymbol{e}_i, \boldsymbol{e}_j) = \sum_{i,j} \overline{c}_{ik} c_{jl} \delta_{ij} = \sum_{i,j} \overline{c}_{ik} \delta_{ij} c_{jl}.$$

Согласно правилу умножения матриц, это эквивалентно матричному соотношению $E=\overline{C}^tEC$ или $\overline{C}^tC=E$.

Осталось доказать импликацию $\mathfrak{d})\Rightarrow \mathfrak{a}$). Пусть имеет место тождество $\overline{C}^tC=E$ или $\sum_{i,j} \overline{c}_{ik} \delta_{ij} c_{jl} = \delta_{kl}$. Возьмём произвольный ортонормированный базис e_1,\ldots,e_n . Из соотношения $\overline{C}^tC=E$ вытекает, что матрица C невырождена, и поэтому можно рассмотреть новый базис e'_1,\ldots,e'_n , где $e'_k=\sum_k c_{ik}e_i$. Тогда аналогично предыдущей выкладке мы получаем $(e'_k,e'_l)=\sum_{i,j} \overline{c}_{ik}\delta_{ij}c_{jl}=\delta_{kl}$, т.е. базис e'_1,\ldots,e'_n также ортонормирован, и C — матрица перехода от одного ортонормированного базиса к другому.

Пример 3.17 (ортогональные матрицы 2×2). Из предложения 4.7 б) вытекает, что условие ортогональности матрицы $\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}$ записывается тремя соотношениями

$$c_{11}^2 + c_{21}^2 = 1$$
, $c_{11}c_{12} + c_{21}c_{22} = 0$, $c_{12}^2 + c_{22}^2 = 1$,

Выражая c_{12} из второго соотношения и подставляя в третье, получаем $c_{22}^2(c_{21}^2+c_{11}^2)=c_{11}^2$, откуда $c_{22}^2=c_{11}^2$. Отсюда получаем $c_{11}=\cos\varphi,\ c_{21}=\sin\varphi,\ c_{22}=\pm\cos\varphi,\ c_{12}=$

Рис. 1. Ортонормированные базисы в \mathbb{R}^2

 $\mp\sin\varphi$ для некоторого φ , $0\leqslant\varphi<2\pi$. Соответствующие ортогональные матрицы имеют вид

(10)
$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \quad \mathbf{H} \quad \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}.$$

Мы имеем $\det C = 1$ для первого семейства матриц и $\det C = -1$ для второго.

Этот вид матриц можно также получить геометрически, воспользовавшись исходным определением ортогональных матриц. Пусть $C = (c_{ij})$ — матрица перехода от ортонормированного базиса e_1 , e_2 к ортонормированному базису e'_1 , e'_2 . Тогда в первом столбце матрицы стоят координаты вектора e'_1 в базисе e_1 , e_2 , т.е.

$$\boldsymbol{e}_1' = c_{11}\boldsymbol{e}_1 + c_{21}\boldsymbol{e}_2 = \cos\varphi \boldsymbol{e}_1 + \sin\varphi \boldsymbol{e}_2,$$

где $\varphi \in [0, 2\pi)$ — угол от вектора e_1 до вектора e_2 . Так как вектор e_2' ортогонален вектору e_1' , возможны два случая: либо угол от e_2 к e_2' равен φ , см. рис. 1 а), либо этот угол равен $\varphi + \pi$, см. рис. 1 б). В первом случае базисы e_1 , e_2 и e_1' , e_2' одинаково ориентированы и мы получаем первое семейство (10). Во втором случае базисы e_1 , e_2 и e_1' , e_2' противоположно ориентированы и мы получаем второе семейство (10).

Теорема 3.18 (QR-разложение). Для любой невырожденной вещественной (соответственно, комплексной) матрицы A имеет место разложение

$$A = QR$$

где Q — ортогональная (соответственно, унитарная) матрица, а R — верхнетреугольная матрица с положительными числами на диагонали.

 \mathcal{A} оказательство. Пусть a_1, \ldots, a_n — базис пространства \mathbb{R}^n (или \mathbb{C}^n), состоящий из столбцов матрицы A. Применив к нему ортогонализацию Грама–Шмидта, получим ортогональный базис b_1, \ldots, b_n . Пусть C — матрица перехода, т.е.

$$(\boldsymbol{b}_1 \ldots \boldsymbol{b}_n) = (\boldsymbol{a}_1 \ldots \boldsymbol{a}_n) C$$

или B=AC, где B — матрица, столбцы которой суть $\boldsymbol{b}_1,\dots,\boldsymbol{b}_n$. При этом матрица C — верхнетреугольная с единицами на диагонали (это следует из соотношений (9)). При переходе от ортогонального базиса $\boldsymbol{b}_1,\dots,\boldsymbol{b}_n$ к ортонормированному базису $\boldsymbol{b}'_1,\dots,\boldsymbol{b}'_n$, где $\boldsymbol{b}'_i=\frac{\boldsymbol{b}_i}{|\boldsymbol{b}_i|}$, мы получаем B=B'D, где $B'=(\boldsymbol{b}'_1,\dots,\boldsymbol{b}'_n)$ — ортогональная матрица, а D — диагональная матрица с числами $|\boldsymbol{b}_i|$ на диагонали. Из соотношений B=AC и B=B'D мы получаем $A=B'DC^{-1}$. Тогда положив Q=B'

и $R = DC^{-1}$, мы получим требуемое разложение A = QR, так как R — верхнетреугольная матрица, на диагонали которой стоят положительные числа $|\boldsymbol{b}_i|$.

Замечание. QR-разложение имеет место также и для вырожденных матриц A (при этом на диагонали R могут стоять нули), а также для прямоугольных матриц A произвольного размера (задача).

3.4. Ортогональное дополнение. Проекция и ортогональная составляющая. Угол между вектором и подпространством.

Определение 3.19. Пусть $W \subset V$ — подпространство евклидова или эрмитова пространства. *Ортогональным дополнением* к W называется множество W^{\perp} , состоящее из векторов, ортогональных всем векторам из W, т.е.

$$W^{\perp} = \{ \boldsymbol{v} \in V \colon (\boldsymbol{v}, \boldsymbol{w}) = 0 \quad \text{для всех } \boldsymbol{w} \in W \}.$$

Легко видеть, что ортогональное дополнение W^{\perp} является подпространством.

Предложение 3.20. Для любого подпространства $W \subset V$ имеет место разложение $V = W \oplus W^{\perp}$.

Доказательство. Пусть a_1, \ldots, a_k — базис в W, дополним его до базиса всего пространства V векторами a_{k+1}, \ldots, a_n . Применив ортогонализацию Грама-Шмидта, получим ортогональный базис $b_1, \ldots, b_k, b_{k+1}, \ldots, b_n$ в V, причём его первые k векторов будут базисом в W, так как $\langle b_1, \ldots, b_k \rangle = \langle a_1, \ldots, a_k \rangle = W$. В то же время b_{k+1}, \ldots, b_n лежат в W^{\perp} по определению ортогонального дополнения. Итак, для любого вектора $v \in V$ мы имеем разложение по базису

$$v = \underbrace{\lambda_1 b_1 + \ldots + \lambda_k b_k}_{\in W^{\perp}} + \underbrace{\lambda_{k+1} b_{k+1} + \ldots + \lambda_n b_n}_{\in W^{\perp}},$$

T.e. $V = W + W^{\perp}$.

Осталось доказать, что эта сумма прямая. Пусть $v \in W \cap W^{\perp}$. Так как $v \in W^{\perp}$, мы имеем $(v, w) = \mathbf{0}$ для всех $w \in W$. Так как $v \in W$, в качестве w мы можем взять сам вектор v. Тогда (v, v) = 0, т.е. $v = \mathbf{0}$ и сумма — прямая.

Определение 3.21. Пусть $W \subset V$ — подпространство евклидова или эрмитова пространства. Для произвольного вектора $v \in V$ запишем разложение $v = v_1 + v_2$, где $v_1 \in W$, а $v_2 \in W^{\perp}$. Тогда вектор v_1 называется ортогональной проекцией вектора v на подпространство w и обозначается v, а вектор v е v называется ортогональной составляющей вектора v относительно подпространства v и обозначается v.

Ясно, что $\operatorname{ort}_W v = \operatorname{pr}_{W^{\perp}} v$.

Предложение 3.22. Пусть подпространство $W \subset V$ задано как линейная оболочка системы векторов: $W = \langle {\bf a}_1, \dots, {\bf a}_k \rangle$. Тогда проекция вектора ${\bf v} \in V$ на W есть линейная комбинация

$$\operatorname{pr}_W \boldsymbol{v} = \lambda_1 \boldsymbol{a}_1 + \ldots + \lambda_k \boldsymbol{a}_k,$$

коэффициенты которой находятся из системы линейных уравнений

$$\left\{egin{aligned} (m{a}_1,m{a}_1)\lambda_1+(m{a}_1,m{a}_2)\lambda_2+\ldots+(m{a}_1,m{a}_k)\lambda_k=(m{a}_1,m{v}),\ (m{a}_2,m{a}_1)\lambda_1+(m{a}_2,m{a}_2)\lambda_2+\ldots+(m{a}_2,m{a}_k)\lambda_k=(m{a}_2,m{v}),\ &\cdots\cdots\ (m{a}_k,m{a}_1)\lambda_1+(m{a}_k,m{a}_2)\lambda_2+\ldots+(m{a}_k,m{a}_k)\lambda_k=(m{a}_k,m{v}). \end{aligned}
ight.$$

 \mathcal{A} оказательство. Запишем $\boldsymbol{v} = \operatorname{pr}_W \boldsymbol{v} + \operatorname{ort}_W \boldsymbol{v}$. Тогда вектор $\operatorname{ort}_W \boldsymbol{v} = \boldsymbol{v} - \lambda_1 \boldsymbol{a}_1 - \ldots - \lambda_k \boldsymbol{a}_k$ ортогонален каждому из векторов $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_k$. Взяв скалярное произведение \boldsymbol{a}_i с $\operatorname{ort}_W \boldsymbol{v}$, мы получаем

$$(\boldsymbol{a}_i, \boldsymbol{v} - \lambda_1 \boldsymbol{a}_1 - \ldots - \lambda_k \boldsymbol{a}_k) = 0,$$

что эквивалентно i-му уравнению системы.

Определение 3.23. Пусть V — евклидово пространство. Углом между вектором $v \in V$ и подпространством $W \subset V$ точная нижняя грань углов между v и произвольным вектором $w \in W$:

$$\angle(\mathbf{v}, W) := \inf_{\mathbf{w} \in W} \angle(\mathbf{v}, \mathbf{w}).$$

Точная нижняя грань $\inf_{\boldsymbol{w}\in W} \angle(\boldsymbol{v},\boldsymbol{w})$ существует, так как множество углов $\angle(\boldsymbol{v},\boldsymbol{w})$ ограничено снизу нулём. На самом деле точная нижняя грань достигается на векторе $\boldsymbol{w}=\operatorname{pr}_W\boldsymbol{v}$, как показано в следующем утверждении.

Предложение 3.24. Угол между вектором и подпространством равен углу между вектором и его проекцией на это подпространство:

$$\angle(\textbf{\textit{v}},W) = \angle(\textbf{\textit{v}},\operatorname{pr}_W\textbf{\textit{v}}).$$

 \mathcal{A} оказательство. Пусть $\boldsymbol{w} \in W$ — произвольный вектор. Обозначим $\alpha = \angle(\boldsymbol{v}, \operatorname{pr}_W \boldsymbol{v})$, $\beta = \angle(\boldsymbol{v}, \boldsymbol{w})$ и $\boldsymbol{v}_1 = \operatorname{pr}_W \boldsymbol{v}$. Необходимо показать, что $\alpha \leqslant \beta$. Так как $0 \leqslant \alpha, \beta \leqslant \pi$, неравенство $\alpha \leqslant \beta$ эквивалентно неравенству $\cos \alpha \geqslant \cos \beta$, т.е.

(11)
$$\frac{(\boldsymbol{v}, \boldsymbol{v}_1)}{|\boldsymbol{v}| |\boldsymbol{v}_1|} \geqslant \frac{(\boldsymbol{v}, \boldsymbol{w})}{|\boldsymbol{v}| |\boldsymbol{w}|}.$$

Запишем $\boldsymbol{v}=\boldsymbol{v}_1+\boldsymbol{v}_2$, где $\boldsymbol{v}_2=\operatorname{ort}_W\boldsymbol{v}\in W^\perp$. Тогда $(\boldsymbol{v},\boldsymbol{v}_1)=(\boldsymbol{v}_1+\boldsymbol{v}_2,\boldsymbol{v}_1)=|\boldsymbol{v}_1|^2$ и $(\boldsymbol{v},\boldsymbol{w})=(\boldsymbol{v}_1+\boldsymbol{v}_2,\boldsymbol{w})=(\boldsymbol{v}_1,\boldsymbol{w})$. Подставив это в (11), получим $|\boldsymbol{v}_1|\geqslant \frac{(\boldsymbol{v}_1,\boldsymbol{w})}{|\boldsymbol{w}|}$, что вытекает из неравенства Коши-Буняковского.

3.5. Аффинные евклидовы пространства. Расстояние от точки до подпространства. Расстояние между подпространствами.

Определение 3.25. Аффинное пространство (\mathfrak{A}, V) называется *евклидовым*, если линейное пространство V является евклидовым.

Paccmоянием между точками P и Q аффинного евклидова пространства (\mathfrak{A},V) называется длина вектора \overline{PQ} :

$$d(P,Q) := |\overline{PQ}|.$$

Paccmoshue M между точкой P и аффинным подпространством (\mathfrak{B}, W) называется точная нижняя грань расстояний между P и произвольной точкой $Q \in \mathfrak{B}$:

$$d(P, \mathfrak{B}) := \inf_{Q \in \mathfrak{B}} d(P, Q).$$

Paccmоянием между аффинными подпространствами (\mathfrak{C}, U) и (\mathfrak{B}, W) называется точная нижняя грань расстояний между точками $P \in \mathfrak{C}$ и $Q \in \mathfrak{B}$:

$$d(\mathfrak{C},\mathfrak{B}):=\inf_{P\in\mathfrak{C},\,Q\in\mathfrak{B}}d(P,Q).$$

Следующее утверждение обобщает утверждения о расстоянии между точкой и прямой или плоскостью из аналитической геометрии.

Теорема 3.26. Расстояние межсду точкой P и аффинным подпространством (\mathfrak{B},W) равно длине ортогональной составляющей вектора \overline{PQ} , соединяющего P с произвольной точкой $Q \in \mathfrak{B}$, относительно пространства W:

$$d(P,\mathfrak{B}) = |\operatorname{ort}_W \overline{PQ}|$$
 для любой точки $Q \in \mathfrak{B}$.

 \mathcal{A} оказательство. Вначале мы докажем, что ортогональная составляющая $\operatorname{ort}_W \overline{PQ}$ не зависит от выбора точки $Q \in \mathfrak{B}$. Пусть $Q' \in \mathfrak{B}$ — другая точка. Мы имеем $\overline{PQ} = \operatorname{pr}_W \overline{PQ} + \operatorname{ort}_W \overline{PQ}$ и $\overline{PQ'} = \operatorname{pr}_W \overline{PQ'} + \operatorname{ort}_W \overline{PQ'}$. С другой стороны, $\overline{PQ'} = \overline{PQ} + \overline{QQ'}$, где $\overline{QQ'} \in W$. Тогда

$$\overline{PQ'} = \underbrace{\operatorname{pr}_W \overline{PQ'}}_{\in W} + \underbrace{\operatorname{ort}_W \overline{PQ'}}_{\in W^\perp} = \overline{QQ'} + \overline{PQ} = \underbrace{\overline{QQ'} + \operatorname{pr}_W \overline{PQ}}_{\in W} + \underbrace{\operatorname{ort}_W \overline{PQ}}_{\in W^\perp}.$$

Отсюда в силу единственности разложения вектора в прямой сумме $V = W \oplus W^{\perp}$ получаем $\operatorname{ort}_W \overline{PQ'} = \operatorname{ort}_W \overline{PQ}$, что и требовалось.

Теперь докажем, что для любой точки $Q\in\mathfrak{B}$ мы имеем $|\overline{PQ}|\geqslant |\operatorname{ort}_W\overline{PQ}|$. Действительно,

$$|\overline{PQ}|^2 = (\overline{PQ}, \overline{PQ}) = (\operatorname{pr}_W \overline{PQ} + \operatorname{ort}_W \overline{PQ}, \operatorname{pr}_W \overline{PQ} + \operatorname{ort}_W \overline{PQ}) =$$

$$= (\operatorname{pr}_W \overline{PQ}, \operatorname{pr}_W \overline{PQ}) + (\operatorname{ort}_W \overline{PQ}, \operatorname{ort}_W \overline{PQ}) = |\operatorname{pr}_W \overline{PQ}|^2 + |\operatorname{ort}_W \overline{PQ}|^2 \geqslant |\operatorname{ort}_W \overline{PQ}|^2,$$

где в предпоследнем равенстве мы воспользовались тем, что $(\operatorname{pr}_W \overline{PQ}, \operatorname{ort}_W \overline{PQ}) = 0$. Следовательно, $d(P, \mathfrak{B}) = \inf_{Q \in \mathfrak{B}} |\overline{PQ}| \geqslant |\operatorname{ort}_W \overline{PQ}|$.

Осталось доказать, что значение $|\operatorname{ort}_W \overline{PQ}|$ достигается, т.е. $|\overline{PQ'}| = |\operatorname{ort}_W \overline{PQ}|$ для некоторой точки $Q' \in \mathfrak{B}$. Для этого возьмём в качестве Q' точку $P + \operatorname{ort}_W \overline{PQ}$. Тогда, по определению расстояния, $|\overline{PQ'}| = |\operatorname{ort}_W \overline{PQ}|$. С другой стороны,

$$Q'=P+\mathrm{ort}_W\,\overline{PQ}=P+\overline{PQ}-\mathrm{pr}_W\,\overline{PQ}=Q-\mathrm{pr}_W\,\overline{PQ},$$
 где $Q\in\mathfrak{B}$ и $\mathrm{pr}_W\,\overline{PQ}\in W$, т.е. $Q'\in\mathfrak{B}$.

В аналитической геометрии расстояние между скрещивающимися прямыми в пространстве вычислялось как длина их общего перпендикуляра. Аналогичным образом вычисляется расстояние между аффинными подпространствами в общем случае:

Теорема 3.27. Расстояние между двумя аффинными подпространствами (\mathfrak{C}, U) и (\mathfrak{B}, W) равно длине ортогональной составляющей вектора \overline{PQ} , соединяющего произвольную точку $P \in \mathfrak{C}$ с произвольной точкой $Q \in \mathfrak{B}$, относительно пространства U + W:

$$d(\mathfrak{C},\mathfrak{B}) = |\operatorname{ort}_{U+W} \overline{PQ}|$$
 для любых точек $P \in \mathfrak{C}, Q \in \mathfrak{B}$.

Доказательство аналогично предыдущему. Вначале докажем, что ортогональная составляющая $\operatorname{ort}_{U+W} \overline{PQ}$ не зависит от выбора точек $P \in \mathfrak{C}, \ Q \in \mathfrak{B}$. Пусть $P' \in \mathfrak{C}, \ Q' \in \mathfrak{B}$ — другие точки. Мы имеем $\overline{PQ} = \operatorname{pr}_{U+W} \overline{PQ} + \operatorname{ort}_{U+W} \overline{PQ}$ и $\overline{P'Q'} = \operatorname{pr}_{U+W} \overline{P'Q'} + \operatorname{ort}_{U+W} \overline{P'Q'}$. С другой стороны, $\overline{P'Q'} = \overline{P'P} + \overline{PQ} + \overline{QQ'}$, где $\overline{P'P} \in U$ и $\overline{QQ'} \in W$. Тогда

$$\overline{P'Q'} = \underbrace{\operatorname{pr}_{U+W} \overline{P'Q'}}_{\in U+W} + \underbrace{\operatorname{ort}_{U+W} \overline{P'Q'}}_{\in (U+W)^{\perp}} = \underbrace{\overline{P'P} + \overline{QQ'} + \operatorname{pr}_{U+W} \overline{PQ}}_{\in U+W} + \underbrace{\operatorname{ort}_{U+W} \overline{PQ}}_{\in (U+W)^{\perp}}.$$

Отсюда в силу единственности разложения вектора в прямой сумме получаем $ort_{U+W} \overline{P'Q'} = ort_{U+W} \overline{PQ}$, что и требовалось.

Так же, как в предыдущем предложении, мы доказываем, что для $P \in \mathfrak{C}$ и $Q \in \mathfrak{B}$ мы имеем $|\overline{PQ}| \geqslant |\operatorname{ort}_{U+W} \overline{PQ}|$. Следовательно,

$$d(\mathfrak{C}, \mathfrak{B}) = \inf_{P \in \mathfrak{C}, Q \in \mathfrak{B}} |\overline{PQ}| \geqslant |\operatorname{ort}_{U+W} \overline{PQ}|.$$

Осталось доказать, что значение $|\operatorname{ort}_{U+W} \overline{PQ}|$ достигается в некоторой паре точек, т.е. $|\overline{P'Q'}| = |\operatorname{ort}_{U+W} \overline{PQ}|$ для некоторых точек $P' \in \mathfrak{C}, \ Q' \in \mathfrak{B}$. Запишем вектор $\operatorname{pr}_{U+W} \overline{PQ} \in U + W$ в виде суммы:

(12)
$$\operatorname{pr}_{U+W} \overline{PQ} = \boldsymbol{u} + \boldsymbol{w},$$

где $u \in U$ и $w \in W$. Теперь возьмём P' = P + u, тогда очевидно $P' \in (\mathfrak{C}, U)$. Далее, возьмём $Q' = P' + \operatorname{ort}_{U+W} \overline{PQ}$. Тогда, по определению расстояния, $|\overline{P'Q'}| = |\operatorname{ort}_{U+W} \overline{PQ}|$. С другой стороны,

$$Q'=P'+\operatorname{ort}_{U+W}\overline{PQ}=P+m{u}+\overline{PQ}-\operatorname{pr}_{U+W}\overline{PQ}=Q-m{w},$$
где $Q\in\mathfrak{B}$ и $m{w}\in W$, т.е. $Q'\in(\mathfrak{B},W)$.

Если $d(\mathfrak{C},\mathfrak{B}) \neq 0$, то точки P' и Q', найденные в предыдущем доказательстве, различны. Прямая, содержащая P' и Q', перпендикулярна каждому из подпространств (\mathfrak{C},U) и (\mathfrak{B},W) и называется их общим перпендикуляром. Такая прямая единственна тогда и только тогда, когда векторы \boldsymbol{u} и \boldsymbol{w} в разложении (12) определены однозначно, т.е. когда $U \cap W = \{\mathbf{0}\}$. Например, это так в случае скрещивающихся прямых в 3-мерном пространстве.

3.6. Определитель матрицы Грама и многомерный объём.

Определение 3.28. *Матрицей Грама* системы векторов a_1, \ldots, a_k называется матрица

$$G = G(\boldsymbol{a}_1, \dots, \boldsymbol{a}_k) = \begin{pmatrix} (\boldsymbol{a}_1, \boldsymbol{a}_1) & (\boldsymbol{a}_1, \boldsymbol{a}_2) & \dots & (\boldsymbol{a}_1, \boldsymbol{a}_k) \\ (\boldsymbol{a}_2, \boldsymbol{a}_1) & (\boldsymbol{a}_2, \boldsymbol{a}_2) & \dots & (\boldsymbol{a}_2, \boldsymbol{a}_k) \\ \vdots & \vdots & \ddots & \vdots \\ (\boldsymbol{a}_k, \boldsymbol{a}_1) & (\boldsymbol{a}_k, \boldsymbol{a}_2) & \dots & (\boldsymbol{a}_k, \boldsymbol{a}_k) \end{pmatrix}.$$

Матрица G симметрична $(G^t = G)$ в евклидовом пространстве и эрмитова $(\overline{G}^t = G)$ в эрмитовом.

Матрица Грама уже появлялась как матрица системы для нахождения коэффициентов проекции вектора на подпространство $\langle a_1, \dots, a_k \rangle$ (см. предложение 3.22).

Предложение 3.29. Пусть G — матрица Грама системы векторов a_1, \ldots, a_k , а $A = (a_{ij})$ — матрица, в столбцы которой записаны координаты векторов a_1, \ldots, a_k в некотором ортонормированном базисе. Тогда имеет место соотношение

$$G = \overline{A}^t A$$
 $(G = A^t A \ e \ eeknudoeom \ npocmpahcmee).$

Доказательство. Это следует из закона умножения матриц и формулы для скалярного произведения в ортонормированном базисе (предложение 3.14).

Определение 3.30. Пусть $P \in (\mathfrak{A}, V)$ — точка в аффинном пространстве, а a_1, \ldots, a_k — набор векторов в линейном пространстве V. Параллелепипедом с вершиной в точке P, натянутым на векторы a_1, \ldots, a_k , называется следующее множество точек аффинного пространства \mathfrak{A} :

$$\Pi(P; \boldsymbol{a}_1, \dots, \boldsymbol{a}_k) := \{ Q \in \mathfrak{A} \colon Q = P + x_1 \boldsymbol{a}_1 + \dots + x_k \boldsymbol{a}_k, \quad 0 \leqslant x_i \leqslant 1 \}.$$

Определение 3.31. Определим k-мерный объём vol_k параллелепипеда $\Pi(P; a_1, \dots, a_k)$ в аффинном евклидовом пространстве индуктивно:

- 1) одномерный объём $\operatorname{vol}_1\Pi(P; \boldsymbol{a}_1) := |\boldsymbol{a}_1|$ это длина вектора;
- 2) $\operatorname{vol}_k \Pi(P; \boldsymbol{a}_1, \dots, \boldsymbol{a}_k) := \operatorname{vol}_{k-1} \Pi(P; \boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}) \cdot | \operatorname{ort}_{\langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1} \rangle} \boldsymbol{a}_k |$.

Это определение обобщает определение площади параллелограмма (или объёма 3-мерного параллелепипеда) как произведение длины (или площади) основания на высоту. Из определения объёма $\operatorname{vol}_k\Pi(P;\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k)$ видно, что он не зависит от вершины P; поэтому далее мы будем использовать обозначение $\operatorname{vol}_k\Pi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k)$.

Теорема 3.32. Квадрат объёма равен определителю матрицы Грама:

$$(\operatorname{vol}_k \Pi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k))^2 = \det G(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k).$$

B частности, объём $\operatorname{vol}_k \Pi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k)$ не зависит от порядка векторов.

Доказательство. Индукция по k. При k=1, очевидно, $|{\bm a}_1|^2=({\bm a}_1,{\bm a}_1)$.

Пусть утверждение доказано для vol_{k-1} , докажем его для vol_k . Рассмотрим разложение $a_k = \operatorname{pr}_{\langle a_1, \dots, a_{k-1} \rangle} a_k + \operatorname{ort}_{\langle a_1, \dots, a_{k-1} \rangle} a_k$, где $\operatorname{pr}_{\langle a_1, \dots, a_{k-1} \rangle} a_k = \lambda_1 a_1 + \dots + \lambda_{k-1} a_{k-1}$, и обозначим $b = \operatorname{ort}_{\langle a_1, \dots, a_{k-1} \rangle} a_k$. Тогда $(a_i, b) = 0$ при $i = 1, \dots, k-1$ и $(a_k, b) = (b, b)$. Мы имеем

$$\det G = \begin{vmatrix} (a_1, a_1) & \dots & (a_1, a_k) \\ \vdots & \ddots & \vdots \\ (a_k, a_1) & \dots & (a_k, a_k) \end{vmatrix} = \begin{vmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & (a_1, \lambda_1 a_1 + \dots + \lambda_{k-1} a_{k-1} + b) \\ \vdots & \ddots & \vdots & & \vdots \\ (a_k, a_1) & \dots & (a_1, a_{k-1}) & (a_1, a_1) \\ \vdots & \ddots & \vdots & & \vdots \\ (a_k, a_1) & \dots & (a_k, a_{k-1}) & (a_k, a_1) \end{vmatrix} + \dots + \lambda_{k-1} \begin{vmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & (a_1, a_{k-1}) \\ \vdots & \ddots & \vdots & & \vdots \\ (a_k, a_1) & \dots & (a_k, a_{k-1}) & (a_k, a_1) \end{vmatrix} + \dots + \lambda_{k-1} \begin{vmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & (a_1, a_{k-1}) \\ \vdots & \ddots & \vdots & & \vdots \\ (a_k, a_1) & \dots & (a_k, a_{k-1}) & (a_k, a_1) \end{vmatrix} + \dots + \lambda_{k-1} \begin{vmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & (a_k, a_{k-1}) \\ \vdots & \ddots & \vdots & & \vdots \\ (a_k, a_1) & \dots & (a_k, a_{k-1}) & (a_k, a_1) \end{vmatrix} = \begin{vmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ (a_{k-1}, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{vmatrix} = \begin{vmatrix} (a_1, a_1) & \dots & (a_{k-1}, a_{k-1}) & 0 \\ \vdots & \ddots & \vdots & & \vdots \\ (a_k, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{vmatrix} = \begin{vmatrix} (a_1, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (a_k, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{vmatrix} = \begin{pmatrix} (a_1, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{vmatrix} = \begin{pmatrix} (a_1, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{vmatrix} = \begin{pmatrix} (a_1, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{vmatrix} = \begin{pmatrix} (a_1, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \end{pmatrix}^2 = \begin{pmatrix} (a_1, a_1) & \dots & (a_k, a_{k-1}) & (b, b) \\ \vdots & \ddots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_{k-1}, a_{k-1}) \end{pmatrix}^2 + \begin{pmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & (b_1, a_1) \\ \vdots & \ddots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_{k-1}, a_{k-1}) \end{pmatrix}^2 + \begin{pmatrix} (a_1, a_1) & \dots & (a_1, a_{k-1}) & (b_1, a_1) \\ \vdots & \ddots & \ddots & \vdots \\ (a_{k-1}, a_1) & \dots & (a_{k-1}, a_{k-1}) \end{pmatrix}^2 + \begin{pmatrix} (a_1, a_1) & \dots & (a_1, a_1) & \dots & (a_1, a_1) \\ \vdots & \ddots & \ddots & \vdots \\ (a_k, a_1) & \dots & (a_k, a_k) \end{pmatrix}^2 + \begin{pmatrix} (a_1, a_1) & \dots & (a_1, a_1) & \dots & (a_1, a_1) \\ \vdots & \ddots & \ddots & \vdots \\ (a_k, a_1) & \dots & (a_k, a_1) & \dots & (a_k, a_1) \end{pmatrix}^2 + \begin{pmatrix} (a_1, a_1) & \dots & (a_1, a_1)$$

Следствие 3.33. Векторы a_1, \ldots, a_k линейно зависимы тогда и только тогда, когда $\det G(a_1, \ldots, a_k) = 0$.

Доказательство. Действительно, предположим, что векторы a_1, \ldots, a_k линейно зависимы. Можно считать, что a_k линейно выражается через a_1, \ldots, a_{k-1} . Тогда $\operatorname{ort}_{\langle a_1, \ldots, a_{k-1} \rangle} a_k = \mathbf{0}$ и, следовательно,

$$\det G = (\operatorname{vol}_k \Pi(\boldsymbol{a}_1, \dots, \boldsymbol{a}_k))^2 = (\operatorname{vol}_{k-1} \Pi(\boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1}))^2 | \operatorname{ort}_{\langle \boldsymbol{a}_1, \dots, \boldsymbol{a}_{k-1} \rangle} \boldsymbol{a}_k |^2 = 0.$$

Обратно, пусть $\det G = (\operatorname{vol}_k \Pi(\boldsymbol{a}_1,\dots,\boldsymbol{a}_k))^2 = 0$. Тогда, в силу индуктивного определения объема, мы имеем $\operatorname{vol}_i \Pi(\boldsymbol{a}_1,\dots,\boldsymbol{a}_i) = 0$, а $\operatorname{vol}_{i-1} \Pi(\boldsymbol{a}_1,\dots,\boldsymbol{a}_{i-1}) \neq 0$ для некоторого i. Так как $\operatorname{vol}_i \Pi(\boldsymbol{a}_1,\dots,\boldsymbol{a}_i) = \operatorname{vol}_{i-1} \Pi(\boldsymbol{a}_1,\dots,\boldsymbol{a}_{i-1}) | \operatorname{ort}_{\langle \boldsymbol{a}_1,\dots,\boldsymbol{a}_{i-1}\rangle} \boldsymbol{a}_i |$, это означает, что $\operatorname{ort}_{\langle \boldsymbol{a}_1,\dots,\boldsymbol{a}_{i-1}\rangle} \boldsymbol{a}_i = \mathbf{0}$, т.е. \boldsymbol{a}_i линейно выражается через $\boldsymbol{a}_1,\dots,\boldsymbol{a}_{i-1}$. \square

Следствие 3.34. Пусть $\dim V = n \ u \ A = (a_j^i) - \kappa в адратная матрица из координат векторов <math>a_1, \ldots, a_n$ в некотором ортонормированном базисе. Тогда

$$\operatorname{vol}_n \Pi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n) = |\det A|.$$

Доказательство. Из предложения 3.29 и предыдущей теоремы получаем

$$\left(\operatorname{vol}_n\Pi(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)\right)^2=\det G=\det(A^tA)=(\det A)^2.$$

Определение 3.35. В пространстве \mathbb{A}^n ориентированным объёмом n-мерного параллеленинеда $\Pi(P; \boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ называется число $\operatorname{vol}_n^{or} \Pi(\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$, равное по модулю объёму $\operatorname{vol}_n \Pi(\boldsymbol{a}_1, \dots, \boldsymbol{a}_n)$ и имеющее знак плюс (минус), если $\boldsymbol{a}_1, \dots, \boldsymbol{a}_n$ — положительно (отрицательно) ориентрированный базис.

Из предыдущего следствия вытекает формула для ориентированного объёма:

$$\operatorname{vol}_n^{or}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n) = \det A = \det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n).$$

3.7. Векторное произведение. Двумерный объём параллелограмма $\Pi(a, b)$ — это его площадь, которую мы будем обозначать S(a, b). Аналогично, трёхмерный объём параллелепипеда $\Pi(a, b, c)$ мы будем обозначать V(a, b, c). Ориентированные площадь и объём будут обозначаться через $S^{or}(a, b)$ и $V^{or}(a, b, c)$.

Площадь параллелограмма на векторах a, b можно вычислять по формуле $S(a, b) = |a| |b| \sin \alpha$, где α — угол между векторами a и b (задача). В двумерном пространстве \mathbb{R}^2 эта формула также даёт ориентированную площадь, если в качестве α брать угол от a до b.

В трёхмерном пространстве \mathbb{A}^3 существует билинейная операция на векторах, результатом которой является вектор. Для этой операции отсутствует непосредственный многомерный аналог (см., однако, задачу 3.78).

Определение 3.36. Векторным произведением двух векторов a и b в ориентированном трёхмерном пространстве называется вектор c, обозначаемый [a,b] и определяемый следующим образом. Если векторы a и b неколлинеарны, то c однозначно задаётся следующими свойствами:

- 1) длина вектора c равна площади параллелограмма $\Pi(a, b)$;
- 2) вектор c перпендикулярен a и b;

3) базис a, b, c положительно ориентирован.

Если векторы a и b коллинеарны, то c = 0. Число (a, b, c) := ([a, b], c) называется смешанным произведением тройки векторов a, b, c.

Из определения сразу вытекает, что для любого положительно ориентированного ортонормированного базиса e_1, e_2, e_3 имеем

$$[e_1, e_2] = e_3, \quad [e_1, e_3] = -e_2, \quad [e_2, e_3] = e_1, \quad (e_1, e_2, e_3) = 1.$$

Предложение 3.37. $(a, b, c) = V^{or}(a, b, c)$.

Доказательство. Из определений вытекает, что знаки этих двух чисел совпадают. Проверим совпадение абсолютных величин:

$$|(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})| = |[\boldsymbol{a}, \boldsymbol{b}]| \cdot |\boldsymbol{c}| \cdot |\cos \angle (\boldsymbol{c}, [\boldsymbol{a}, \boldsymbol{b}])| = S(\boldsymbol{a}, \boldsymbol{b}) \cdot |\operatorname{ort}_{\langle \boldsymbol{a}, \boldsymbol{b} \rangle} \boldsymbol{c}| = V(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}),$$

где последнее равенство следует из определения трёхмерного объёма.

Предложение 3.38. Смешанное произведение линейно по каждому аргументу и кососимметрично (меняет знак при перестановке любых двух векторов).

Доказательство. Так как $({\pmb a}, {\pmb b}, {\pmb c}) = V^{or}({\pmb a}, {\pmb b}, {\pmb c}) = \det({\pmb a}, {\pmb b}, {\pmb c})$, эти свойства вытекают из свойств определителя.

Предложение 3.39. Векторное произведение билинейно и кососимметрично:

$$[a, b] = -[b, a], \quad [\lambda a, b] = \lambda [a, b], \quad [a_1 + a_2, b] = [a_1, b] + [a_2, b].$$

Доказательство. Первые два равенства сразу вытекают из определения. Для доказательства третьего рассмотрим вектор $c = [a_1 + a_2, b] - [a_1, b] - [a_2, b]$. Тогда

$$(c,c) = ([a_1 + a_2, b] - [a_1, b] - [a_2, b], c) = (a_1 + a_2, b, c) - (a_1, b, c) - (a_2, b, c)$$

согласно предыдущему предложению. Следовательно, c=0.

Предложение 3.40. Пусть векторы a и b имеют координаты (a_1, a_2, a_3) и (b_1, b_2, b_3) в положительном ортонормированном базисе e_1, e_2, e_3 . Тогда

$$egin{aligned} [m{a},m{b}] = egin{bmatrix} a_2 & a_3 \ b_2 & b_3 \end{bmatrix} \cdot m{e}_1 + egin{bmatrix} a_3 & a_1 \ b_3 & b_1 \end{bmatrix} \cdot m{e}_2 + egin{bmatrix} a_1 & a_2 \ b_1 & b_2 \end{bmatrix} \cdot m{e}_3, \end{aligned}$$

что символически записывается в виде

$$[m{a},m{b}] = egin{array}{cccc} m{e}_1 & m{e}_2 & m{e}_3 \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ \end{array}.$$

Доказательство. Вычисляем, используя предыдущие утверждения:

$$[\mathbf{a}, \mathbf{b}] = [\sum_{i} a_{i} \mathbf{e}_{i}, \sum_{j} b_{j} \mathbf{e}_{j}] = \sum_{i,j} a_{i} b_{j} [\mathbf{e}_{i}, \mathbf{e}_{j}] =$$

$$= (a_{2}b_{3} - a_{3}b_{2}) \mathbf{e}_{1} + (a_{3}b_{1} - a_{1}b_{3}) \mathbf{e}_{2} + (a_{1}b_{2} - a_{2}b_{1}) \mathbf{e}_{3} =$$

$$= \begin{vmatrix} a_{2} & a_{3} \\ b_{2} & b_{3} \end{vmatrix} \cdot \mathbf{e}_{1} + \begin{vmatrix} a_{3} & a_{1} \\ b_{3} & b_{1} \end{vmatrix} \cdot \mathbf{e}_{2} + \begin{vmatrix} a_{1} & a_{2} \\ b_{1} & b_{2} \end{vmatrix} \cdot \mathbf{e}_{3}.$$

3.8. Формулы для расстояний в \mathbb{A}^2 и \mathbb{A}^3 . Система координат $Oe_1 \dots e_n$ называется *прямоугольной*, если (e_1, \dots, e_n) — ортонормированный базис.

Здесь мы будем предполагать, что (x, y, z) — координаты в некоторой прямоугольной системе координат в трёхмерном аффинном евклидовом пространстве, тем самым отождествляя его с \mathbb{A}^3 . Аналогично, (x, y) — прямоугольные координаты в двумерном пространстве.

Предложение 3.41. Пусть плоскость π задана уравнением Ax + By + Cz + D = 0. Вектор $\mathbf{n} = (A, B, C)$ ортогонален этой плоскости. Если приложить вектор \mathbf{n} в некоторой точке плоскости, то его конец будет лежать в положительном полупространстве.

Доказательство. Пусть $P=(x_1,y_1,z_1)$ и $Q=(x_2,y_2,z_2)$ — две точки плоскости, т.е. $Ax_1+By_1+Cz_1+D=Ax_2+B_2y+C_2z+D=0$. Тогда

$$(\mathbf{n}, \overline{PQ}) = A(x_2 - x_1) + B(y_2 - y_1) + C(z_2 - z_1) = 0,$$

т. е. вектор n ортогонален любому вектору, соединяющему две точки на плоскости. Следовательно, n ортогонален плоскости π .

Докажем второе утверждение. Если приложить вектор n в точке $(x_1, y_1, z_1) \in \pi$, то его конец будет иметь координаты $(x_1 + A, y_1 + B, z_1 + C)$. Мы имеем

$$A(x_1+A)+B(y_1+B)+C(z_1+C)+D=A^2+B^2+C^2+(Ax_1+By_1+Cz_1+D)=A^2+B^2+C^2>0,$$
 т. е. точка (x_1+A,y_1+B,z_1+C) лежит в положительном полупространстве.

Аналогично, вектор $\boldsymbol{n}=(A,B)$ ортогонален прямой Ax+By+C=0 и «смотрит» в положительную полуплоскость.

Предложение 3.42.

а) Расстояние от точки $P=(x_1,y_1)$ до прямой $\ell\colon Ax+By+C=0$ в \mathbb{A}^2 вычисляется по формуле

$$d(P,\ell) = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}.$$

б) Расстояние от точки $P = (x_1, y_1, z_1)$ до плоскости $\pi : Ax + By + Cz + D = 0$ в \mathbb{A}^3 вычисляется по формуле

$$d(P,\pi) = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Доказательство. Обе формулы доказываются аналогично; докажем первую. Согласно общей формуле из теоремы 3.26, расстояние $d(P,\ell)$ равно длине ортогональной составляющей $\operatorname{ort}_{\boldsymbol{v}} \overline{PQ}$, где \boldsymbol{v} — направляющий вектор прямой ℓ , а $Q=(x_0,y_0)$ — произвольная точка на прямой. Мы имеем

$$\begin{split} d(P,\ell) &= |\operatorname{ort}_{\boldsymbol{v}} \overline{PQ}| = |\operatorname{pr}_{\boldsymbol{n}} \overline{PQ}| = \frac{|(\boldsymbol{n}, \overline{PQ})|}{|\boldsymbol{n}|} = \\ &= \frac{|A(x_1 - x_0) + B(y_1 - y_0)|}{\sqrt{A^2 + B^2}} = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}. \quad \Box \end{split}$$

Предложение 3.43. Расстояние от точки Q до параметрически заданной прямой $\ell \colon P + vt$ в \mathbb{A}^3 вычисляется по формуле:

$$d(Q,\ell) = \frac{|[\textbf{\textit{v}}, \overline{PQ}]|}{|\textbf{\textit{v}}|}.$$

Доказательство. Расстояние $d(Q,\ell)$ — это высота в параллелограме на векторах \overline{PQ} и \pmb{v} . Более формально,

$$|[\boldsymbol{v}, \overline{PQ}]| = S(\boldsymbol{v}, \overline{PQ}) = |v| \cdot |\operatorname{ort}_{\boldsymbol{v}} \overline{PQ}| = |v| \cdot d(Q, \ell),$$

откуда следует требуемая формула.

Предложение 3.44. Расстояние между скрещивающимися или пересекающимися прямыми $\ell_1 \colon P_1 + v_1 t \ u \ \ell_2 \colon P_2 + v_2 t \ s \ \mathbb{A}^3$ вычисляется по формуле:

$$d(\ell_1, \ell_2) = \frac{|(\mathbf{v}_1, \mathbf{v}_2, \overline{P_1 P_2})|}{|[\mathbf{v}_1, \mathbf{v}_2]|}.$$

Доказательство. Расстояние $d(\ell_1,\ell_2)$ — это высота в параллелепипеде на векторах $\overline{P_1P_2},\ \pmb{v}_1$ и \pmb{v}_2 . Более формально,

$$|(\boldsymbol{v}_1,\boldsymbol{v}_2,\overline{P_1P_2})| = V(\boldsymbol{v}_1,\boldsymbol{v}_2,\overline{P_1P_2}) = S(\boldsymbol{v}_1,\boldsymbol{v}_2) \cdot |\operatorname{ort}_{\langle \boldsymbol{v}_1,\boldsymbol{v}_2\rangle}\overline{P_1P_2}| = |[\boldsymbol{v}_1,\boldsymbol{v}_2]| \cdot d(\ell_1,\ell_2),$$
 откуда следует требуемая формула.

3.9. **Метод наименьших квадратов.** Часто на практике при исследовании какогонибудь природного или социального явления делается допущение, что это явление описывается линейной формулой. Точнее, мы предполагаем, что некоторая величина b линейно зависит от других величин a_1, \ldots, a_n , и хотим найти эту зависимость

$$b = a_1 x_1 + \ldots + a_n x_n,$$

т.е. найти неизвестные коэффициенты x_1, \ldots, x_n (это называется моделью линейной регрессии). Для нахождения зависимости b от a_1, \ldots, a_n делается большое число N измерений (как правило $N \gg n$), и по таблице измеренных значений записывается система линейных уравнений

(13)
$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \dots & \dots \\ a_{N1}x_1 + \dots + a_{Nn}x_n = b_N \end{cases}$$

в которой число неизвестных меньше числа уравнений. Такая система, как правило, несовместна. Поэтому находится «наилучшее приближённое» решение x_1, \ldots, x_n , для которого отклонение значений b_i от $a_{i1}x_1 + \ldots + a_{in}x_n$ будет наименьшим.

Метод наименьших квадратов решает задачу нахождения наилучшего приближённого решения в предположении, что в качестве меры отклонения берётся сумма квадратов разностей величин $\sum_{j=1}^{n} a_{ij}x_{j}$ и b_{i} .

Определение 3.45. Псевдорешением системы (13) называется набор $\tilde{x}_1, \ldots, \tilde{x}_n$, который минимизирует сумму квадратов разностей левых и правых частей уравнений системы, т. е. минимизирует величину

$$(14) \qquad \left(\sum_{j=1}^{n} a_{1j} x_j - b_1\right)^2 + \left(\sum_{j=1}^{n} a_{2j} x_j - b_2\right)^2 + \ldots + \left(\sum_{j=1}^{n} a_{Nj} x_j - b_N\right)^2$$

по всем $(x_1, \ldots, x_n) \in \mathbb{R}^n$. Эта величина называется $\kappa в a d p a m u u + b M o m \kappa n o h e h u e M$.

Пусть $A=(a_{ij})$ — матрица системы (13), $\boldsymbol{a}_1,\dots,\boldsymbol{a}_n\in\mathbb{R}^N$ — векторы-столбцы этой матрицы, а $\boldsymbol{b}\in\mathbb{R}^N$ — вектор правых частей.

Теорема 3.46. Псевдорешение системы (13) находится как решение системы

$$\begin{cases} (a_1, a_1)x_1 + \ldots + (a_1, a_n)x_n = (a_1, b), \\ \cdots & \cdots \\ (a_n, a_1)x_1 + \ldots + (a_n, a_n)x_n = (a_n, b). \end{cases}$$

Другими словами, псевдорешение — это набор коэффициентов в разложении проекции $\operatorname{pr}_{(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)} \boldsymbol{b}$ по векторам $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$, а квадратичное отклонение псевдорешения — это квадрат длины вектора $\operatorname{ort}_{(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)} \boldsymbol{b}$.

Доказательство. Квадратичное отклонение (14) набора x_1, \ldots, x_n — это по определению квадрат длины вектора $\sum_{j=1}^n a_j x_j - b$, т.е. квадрат расстояния между точками b и $\sum_{j=1}^n a_j x_j \in \langle a_1, \ldots, a_n \rangle$ аффинного пространства \mathbb{A}^N . Мы знаем из теоремы 3.26, что расстояние между b и точкой $\sum_{j=1}^n a_j x_j$ подпространства $\langle a_1, \ldots, a_n \rangle$ минимально, когда $\sum_{j=1}^n a_j x_j$ — это проекция вектора b на $\langle a_1, \ldots, a_n \rangle$. Коэффициенты в разложении проекции по векторам подпространства находятся из указанной системы (предложение 3.22), а минимальное расстояние равно $|\operatorname{ort}_{\langle a_1, \ldots, a_n \rangle} b|$.

Аналогично, методом наименьших квадратов можно находить более сложные зависимости величины b от a_1,\ldots,a_n . Например, в случае неоднородной линейной зависимости $b=x_0+a_1x_1+\ldots+a_nx_n$ можно находить коэффициенты x_0,x_1,\ldots,x_n . В случае, когда предполагаемая зависимость b от одной величины a выражается многочленом n-й степени $b=x_0+ax_1+a^2x_2+\ldots+a^nx_n$ с неизвестными коэффициентами x_0,x_1,\ldots,x_n , метод наименьших квадратов позволяет находить наилучшее приближение для этих коэффициентов.

Задачи и упражнения.

- **3.47.** Докажите, что в евклидовом пространстве \mathbb{R}^3 существует единственное скалярное произведение, для которого выполнено соотношение $(v, v) = |v|^2$ квадрат длины вектора v.
- **3.48.** Докажите, что для любых линейно независимых векторов a_1, \ldots, a_k евклидова пространства найдётся такой вектор b, что $(a_i, b) > 0$ для $i = 1, \ldots, k$.
- **3.49** (формулы деления отрезка). Пусть точки A и B аффинного евклидова пространства имеют координаты (a_1,\ldots,a_n) и (b_1,\ldots,b_n) , соответственно. Пусть также дано отношение $\lambda:\mu$, где $\lambda>0$ и $\mu>0$. Скажем, что точка X делит отрезок AB в отношении $\lambda:\mu$, если $\frac{|\overline{AX}|}{|\overline{XB}|}=\frac{\lambda}{\mu}$. Докажите, что координаты такой точки X задаются формулами

$$x_i = \frac{\mu a_i + \lambda b_i}{\mu + \lambda}, \quad i = 1, \dots, n.$$

Далее рассмотрите случай произвольных вещественных λ и μ . Тогда формулы выше дают координаты некоторой точки X, если $\lambda + \mu \neq 0$. Как записать условие, связывающее точки A, B, X в общем случае? Проанализируйте случаи взаимного расположения точек A, B, X в зависимости от λ и μ .

- **3.50.** Найдите единичный вектор вдоль биссектриссы угла, образованного векторами a = (-3, 0, 4) и b = (5, -2, -14).
- **3.51.** Найдите ортогональную проекцию вектора c = (0, 2, 1) на плоскость, определяемую векторами a = (1, 1, 1) и b = (2, -1, 2), и вычислите угол между вектором c и его проекцией.
- **3.52.** Дополните данную систему векторов до ортонормированного базиса эрмитова пространства \mathbb{C}^4 : $\boldsymbol{a}_1 = \frac{1}{\sqrt{2}}(i,0,0,-1), \ \boldsymbol{a}_2 = \frac{1}{\sqrt{2}}(0,1,i,0).$
- **3.53.** Методом ортогонализации Грама-Шмидта постройте ортогональный базис подпространства пространства многочленов, порождённого многочленами x^3 , x^4 , x^5 , x^6 со скалярным произведением, заданным интегралом:
 - a) $(f,g) = \inf_{-1}^{1} f(x)g(x)dx;$
 - $6) (f,g) = \operatorname{int}_0^1 f(x)g(x)dx$
- **3.54.** Докажите, что процесс ортогонализации Грама–Шмидта не увеличивает длины ортогонализируемых векторов, т. е. $|\boldsymbol{b}_k| \leqslant |\boldsymbol{a}_k|, k=1,\ldots,n$, где векторы \boldsymbol{b}_k получены из \boldsymbol{a}_k процессом ортогонализации. При каких условиях для некоторого k имеет место равенство $|\boldsymbol{b}_k| = |\boldsymbol{a}_k|$?
- **3.55.** Докажите, что в процессе ортогонализации системы векторов $\{a_1, \ldots, a_n\}$ возникает нулевой вектор b_k тогда и только тогда, когда исходная система $\{a_1, \ldots, a_n\}$ линейно зависима. Точнее, $b_k = 0$ тогда и только тогда, когда $a_k \in \langle a_1, \ldots, a_{k-1} \rangle$.
- **3.56.** *Многочлены Лежсандра P_k(x)* определяются формулами

$$P_0(x) = 1$$
, $P_k(x) = \frac{1}{2^k k!} \frac{d^k}{dx^k} ((x^2 - 1)^k)$, $k \ge 1$.

а) Докажите, что многочлены Лежандра удовлетворяют рекуррентным соотношениям

$$P_{k+1}(x) = \frac{2k+1}{k+1}xP_k(x) - \frac{k}{k+1}P_{k-1}(x), \quad k \geqslant 1.$$

Найдите явные выражения для $P_1(x)$, $P_2(x)$, $P_3(x)$, $P_4(x)$, $P_5(x)$.

- б) Докажите, что многочлены Лежандра $P_0(x), P_1(x), \dots, P_n(x)$ образуют ортогональный базис в пространстве $\mathbb{R}_n[x]$ со скалярным произведением $(f,g) = \inf_{-1}^1 f(x)g(x)dx$.
- в) Найдите квадрат длины многочлена $P_k(x)$.
- **3.57.** *Многочлены Чебышева* $T_k(x)$ определяются формулами

$$T_0(x) = 1$$
, $T_k(\cos \theta) = \cos k\theta$, $k \geqslant 1$.

а) Докажите, что многочлены Чебышева удовлетворяют рекуррентным соотношениям

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x), \quad k \geqslant 1.$$

Найдите явные выражения для $T_1(x)$, $T_2(x)$, $T_3(x)$, $T_4(x)$, $T_5(x)$.

- б) Докажите, что многочлены Чебышева $T_0(x), T_1(x), \ldots, T_n(x)$ образуют ортогональный базис в пространстве $\mathbb{R}_n[x]$ со скалярным произведением $(f,g) = \inf_{-1}^1 \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$.
- в) Найдите квадрат длины многочлена $T_k(x)$.

3.58. Пусть e_1, \ldots, e_k — набор ортонормированных векторов в \mathbb{R}^n . Докажите, что для любого $x \in \mathbb{R}^n$ выполнено *неравенство Бесселя*

$$\sum_{i=1}^k (oldsymbol{e}_i, oldsymbol{x})^2 \leqslant |oldsymbol{x}|^2,$$

причём равенство (равенство Парсеваля) достигается для всех \boldsymbol{x} тогда и только тогда, когда $\boldsymbol{e}_1,\dots,\boldsymbol{e}_k$ — ортонормированный базис, т.е. k=n.

- **3.59.** Докажите, что QR-разложение имеет место для любых прямоугольных матриц. А именно, докажите, что любую вещественную матрицу A размера $m \times n$ можно представить в виде A = QR, где Q ортогональная матрица размера $m \times m$, а $R = (r_{ij})$ верхнетреугольная матрица размера $m \times n$ с неотрицательными числами на «диагонали» (т.е. $r_{ij} = 0$ при i > j и $r_{ii} \geqslant 0$).
- 3.60. Используя процесс ортогонализации Грама-Шмидта, представить матрицу

$$\begin{pmatrix} 1 & -1 & 5 \\ -2 & 0 & -3 \\ 2 & -1 & -7 \end{pmatrix}$$

в виде QR, где Q – ортогональная матрица, а R – верхнетреугольная матрица с положительными числами на диагонали.

3.61. Используя процесс ортогонализации Грама-Шмидта, представить матрицу

$$\begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 2 \\ -3 & -2 & 6 \end{pmatrix}$$

в виде RQ, где Q — ортогональная матрица, а R — верхнетреугольная матрица с положительными числами на диагонали.

3.62. Используя процесс ортогонализации Грама-Шмидта, представить матрицу

$$\begin{pmatrix} 1+i & -2-i \\ i & 1 \end{pmatrix}$$

в виде UR, где U – унитарная матрица, а R – верхнетреугольная матрица с положительными числами на диагонали.

- **3.63.** Обоснуйте «геометрические» определения ориентаций в \mathbb{R}^2 и \mathbb{R}^3 :
- базис a, b в \mathbb{R}^2 положительно ориентирован тогда и только тогда, когда угол от a до b меньше π (кратчайший поворот от a к b происходит против часовой стрелки); базис a, b, c в \mathbb{R}^3 положительно ориентирован тогда и только тогда, когда, если смотреть с конца вектора c, кратчайший поворот от a к b происходит против часовой стрелки.
- **3.64.** Стороны BC, CA и AB треугольника ABC разделены точками P, Q и R в отношениях \overline{BP} : $\overline{PC}=\lambda$, $\overline{CQ}:\overline{QA}=\mu$ и $\overline{AR}:\overline{RB}=\nu$. Найти отношение площади ориентированного треугольника PQR к площади ориентированного треугольника ABC.
- **3.65.** Докажите, что $S(\boldsymbol{a},\boldsymbol{b}) = |\boldsymbol{a}||\boldsymbol{b}|\sin\alpha$, где α угол между векторами \boldsymbol{a} и \boldsymbol{b} . Докажите, что в \mathbb{R}^2 эта формула также даёт ориентированную площадь, если в качестве α брать угол от \boldsymbol{a} до \boldsymbol{b} .

- 3.66. Докажите следующие тождества:
 - a) [a, [b, c]] = b(a, c) c(a, b);
 - б) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 (тождество Якоби);
 - B) $([a, b], [b, c], [c, a]) = (a, b, c)^2;$
 - $\Gamma) ([a, b], [c, d]) + ([a, c], [d, b]) + ([a, d], [b, c]) = 0;$
 - д) $(oldsymbol{a},oldsymbol{b},oldsymbol{c})(oldsymbol{x},oldsymbol{y},oldsymbol{z}) = egin{vmatrix} (oldsymbol{a},oldsymbol{x}) & (oldsymbol{b},oldsymbol{x}) & (oldsymbol{c},oldsymbol{x}) \\ (oldsymbol{a},oldsymbol{z}) & (oldsymbol{b},oldsymbol{z}) & (oldsymbol{c},oldsymbol{x}) \end{pmatrix}.$
- **3.67.** В трёхгранном угле OABC пусть даны плоские углы $\angle BOC = \alpha$, $\angle COA = \beta$, $\angle AOB = \gamma$ и противолежащие им двугранные углы A, B, C. Докажите формулы сферической геометрии:
 - а) теорема синусов:

$$\frac{\sin \alpha}{\sin A} = \frac{\sin \beta}{\sin B} = \frac{\sin \gamma}{\sin C};$$

б) теорема косинусов:

$$\sin \alpha \sin \gamma \cos B = \cos \beta - \cos \alpha \cos \gamma,$$

$$\sin A \sin C \cos \beta = \cos B + \cos A \cos C.$$

- **3.68.** Даны две пересекающиеся прямые $A_1x + B_1y + C_1 = 0$ и $A_2x + B_2y + C_2 = 0$ и точка (x_0, y_0) , не лежащая ни на одной из этих прямых. Составьте уравнение биссектриссы того угла между прямыми, в котором лежит эта точка.
- **3.69.** Даны две прямые 2x y 1 = 0 и 11x + 2y + 8 = 0.
 - а) Составьте уравнение биссектриссы острого угла между прямыми.
 - б) Составьте уравнение биссектриссы того угла между прямыми, в котором лежит точка (1,2).
- **3.70.** Даны две прямые: ℓ_1 : x+y=0 и ℓ_2 : x-2y+6=0. Найдите такую прямую ℓ_3 , что ℓ_2 является биссектриссой угла между ℓ_1 и ℓ_3 .
- **3.71.** Составьте уравнение плоскости, проходящей через точку (x_1,y_1,z_1) и перпендикулярной к прямой $\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}.$
- **3.72.** Составьте уравнение перпендикуляра, опущенного из точки (x_1, y_1, z_1) на
 - а) плоскость Ax + By + Cz + D = 0;
 - б) прямую $\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$.
- **3.73.** Найдите уравнение перпендикуляра из точки P=(1,-1,2) на прямую $\ell\colon \frac{x}{2}=\frac{y-2}{1}=\frac{z+1}{-1}$ и найдите расстояние $d(P,\ell)$.
- 3.74. Найдите точку,
 - а) симметричную точке (1,3,-4) относительно плоскости 3x+y-2z=0.
 - б) симметричную точке (1,2,3) относительно прямой $\frac{x-8}{1}=\frac{y-11}{3}=\frac{z-4}{-1}.$
- **3.75.** Составьте уравнение ортогональной проекции прямой $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-2}{1}$ на плоскость 5x + 6y 2z + 1 = 0.

- **3.76.** Составьте уравнение общего перпендикуляра к двум прямым $\frac{x}{1} = \frac{y+4}{3} = \frac{z}{2}$ и $\frac{x-3}{2} = \frac{y+2}{-3} = \frac{z+3}{-2}$.
- **3.77.** Составьте уравнение общего перпендикуляра к двум прямым $\frac{x-1}{8} = \frac{y-2}{4} = \frac{z-3}{1}$ и x + y = 1, x + 2y + 2z = -1, найдите расстояние между этими прямыми и точки пересечения общего перпендикуляра с этими прямыми.
- **3.78.** В ориентированном евклидовом n-мерном пространстве обобщённым векторным произведением упорядоченного набора из n-1 вектора a_1, \ldots, a_{n-1} называется вектор c, обозначаемый $[a_1,\ldots,a_{n-1}]$ и однозначно задаваемый следующими свойствами:
 - 1) $|c| = \text{vol}_{n-1}(a_1, \dots, a_{n-1});$
 - 2) $(a_i, c) = 0$ при i = 1, ..., n-1;
 - 3) если векторы a_1, \ldots, a_{n-1} линейно независимы, то базис a_1, \ldots, a_{n-1}, c положительно ориентирован.

Докажите, что обобщённое векторное произведение полилинейно (линейно по каждому аргументу a_i) и кососимметрично (меняет знак и перестановке любых двух векторов \boldsymbol{a}_i и \boldsymbol{a}_i).

- 3.79. Докажите следующие свойства ортогонального дополнения для подпространств U и W (конечномерного) евклидова или эрмитова пространства V:
 - a) $(U^{\perp})^{\perp} = U$.
 - 6) $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$. B) $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$.
- 3.80. а) Найдите угол между вектором v=(4,-8,0,1) и плоскостью $\pi=$ $\langle (-1,1,2,3), (2,0,1,1) \rangle$.
 - б) Найдите угол между вектором v=(1,-5,-3,-5) и плоскостью π , заданной системой уравнений $\left\{ \begin{array}{ll} -4x+3y+2z+t=0\\ x-2y+z=0 \end{array} \right..$
- а) Найдите расстояние между прямой $l=(2,3,2,9)+\langle (0,-1,2,-5)\rangle$ и плос-3.81. костью $\pi = (4, 1, -2, 5) + \langle (0, 1, -2, 4), (1, 1, -3, 3) \rangle$.
 - б) Найдите расстояние между прямой $l=(-1,3,4,-1)+\langle (1,-2,-1,-1)\rangle$ и плоскостью π , заданной системой уравнений $\begin{cases} 2x+y-2z+2t=4\\ 5x+2y-7z-6t=-7 \end{cases}.$
- **3.82.** Единичным кубом I^n в n-мерном аффином евклидовом пространстве называется параллелепипед на векторах, образующих ортонормированный базис.
 - а) Найдите расстояние между двумерной гранью четырёхмерного куба I^4 и его диагональю, не пересекающей эту грань.
 - б) Докажите, что ортогональные проекции вершин куба I^n на любую его диагональ делят её на n равных частей.
 - в) Найдите угол между диагональню куба I^n и его k-мерной гранью.
- **3.83.** Какие трёхмерные тела получаются в сечении четырёхмерного куба $\{x\in$ $\mathbb{R}^4\colon -1\leqslant x_i\leqslant 1,\ i=1,2,3,4\}$ трёхмерной гиперплоскостью $x_1+x_2+x_3+x_4=\varepsilon$ при значениях $\varepsilon = 0, 2, 3, 4, 5$? Сравните результаты с аналогичной трёхмерной задачей.

3.84. Даны три симметричные матрицы

$$1)\begin{pmatrix}1&-2&3\\-2&4&-6\\3&-6&10\end{pmatrix},\quad 2)\begin{pmatrix}1&2&1\\2&1&1\\1&1&2\end{pmatrix},\quad 3)\begin{pmatrix}2&1&1\\1&1&-1\\1&-1&1\end{pmatrix}.$$

- В каждом из случаев выясните, может ли матрица быть матрицей Грама
- а) линейно независимой системы векторов;
- б) системы векторов (не обязательно линейно независимой).
- 3.85. Докажите обобщённое неравенство Адамара:

$$\det G(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k) \leqslant \det G(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_i) \det G(\boldsymbol{a}_{i+1},\ldots,\boldsymbol{a}_k), \quad i=1,\ldots,k,$$

и выясните его геометрический смысл. Когда оно превращается в равенство?

3.86. Докажите, что расстояние между аффинными подпространствами $\mathfrak{B} = P + \langle \boldsymbol{b}_1, \dots, \boldsymbol{b}_k \rangle$ и $\mathfrak{C} = Q + \langle \boldsymbol{c}_1, \dots, \boldsymbol{c}_l \rangle$ в \mathbb{A}^n можно вычислять по формуле

$$d(\mathfrak{B},\mathfrak{C}) = \sqrt{\frac{\det G(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_k,\boldsymbol{c}_1,\ldots,\boldsymbol{c}_l,\overline{PQ})}{\det G(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_k,\boldsymbol{c}_1,\ldots,\boldsymbol{c}_l)}},$$

где $\det G$ — определитель матрицы Грама.

- **3.87.** Как выглядит многомерное обобщение формулы для расстояния между скрещивающимися прямыми из предложения 3.44? (Указание: используйте две предыдущие задачи.)
- **3.88.** Методом наименьших квадратов найдите псевдорешение следующих несовместных систем линейных уравнений:

a)
$$\begin{cases} x + 2y = 1, \\ 2x + 4y = 1, \\ x + y = 0; \end{cases}$$
 6)
$$\begin{cases} x = 2, \\ 2x - y = 1, \\ x - 2y = -1, \\ x + y = 2; \end{cases}$$
 B)
$$\begin{cases} 2x - z = 1, \\ y + z = -1, \\ x - y + z = 0, \\ x - z = -1. \end{cases}$$

- **3.89.** Методом наименьших квадратов найдите интерполяцию (наилучшее среднеквадратичное приближение) функции f, заданной значениями f(0) = 1, f(1) = 2, f(2) = 3, f(3) = 5:
 - а) линейным многочленом $b_1x + b_0$;
 - б) квадратичным многочленом $b_2 x^2 + b_1 x + b_0$;
 - в) кубическим многочленом $b_3x^3 + b_2x^2 + b_1x + b_0$.

В каждом из этих случаев найдите квадратичное отклонение.

4. ГРУППЫ ПРЕОБРАЗОВАНИЙ

4.1. Линейные операторы, изоморфизмы, линейная группа.

Определение 4.1. Пусть V и W — линейные пространства над полем \mathbf{k} . Отображение $\mathcal{A} \colon V \to W$ называется линейным, если для любых векторов $\mathbf{u}, \mathbf{v} \in V$ и скаляра $\lambda \in \mathbf{k}$ выполнены равенства

$$A(u + v) = A(u) + A(v), \quad A(\lambda v) = \lambda A(v).$$

Мы часто будем писать $\mathcal{A}v$ вместо $\mathcal{A}(v)$.

Биективное (т.е. взаимно однозначное) линейное отображение $\mathcal{A}\colon V\to W$ называется изоморфизмом. Пространства V и W называются изоморфными, если между ними существует изоморфизм.

Из определения легко вытекает, что изоморфизм переводит базис в базис, а потому изоморфные пространства имеют одинаковые размерности. Верно и обратное: два конечномерных пространства одной размерности изоморфны: изоморфизм получается продолжением по линейности любой биекции между базисами (детали оставляются в качестве упражнения).

Множество всех линейных отображений $\mathcal{A}: V \to W$ с операциями сложения $(\mathcal{A}_1 + \mathcal{A}_2)(v) := \mathcal{A}_1 v + \mathcal{A}_2 v$ и умножения на скаляры $(\lambda \mathcal{A})(v) := \lambda(\mathcal{A}v)$ является линейным пространством. Оно обозначается $\operatorname{Hom}_{\mathbf{k}}(V, W)$.

Определение 4.2. Линейное отображение $A: V \to V$ пространства V в себя называется линейным оператором (или эндоморфизмом пространства V).

Композиция линейных операторов \mathcal{A} и \mathcal{B} есть линейный оператор $\mathcal{A} \cdot \mathcal{B} \colon V \to V$, $(\mathcal{A} \cdot \mathcal{B})(v) = \mathcal{A}(\mathcal{B}(v))$. Линейный оператор $\mathcal{A} \colon V \to V$ является изоморфизмом тогда и только тогда, когда он обратим. Последнее означает, что существует обратный оператор \mathcal{A}^{-1} , $\mathcal{A}^{-1} \cdot \mathcal{A} = \mathrm{id}$, где $\mathrm{id} \colon V \to V$ — тождественный оператор, $\mathrm{id}(v) = v$.

Обратимые операторы также называют автоморфизмами или линейными преобразованиями пространства V. Они образуют группу относительно композиции. Эта группа называется линейной группой пространства V и обозначается GL(V).

Определение 4.3. *Матрицей линейного оператора* $A: V \to V$ *в базисе* e_1, \ldots, e_n называется квадратная матрица

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{nn} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$

в которой i-й столбец составлен из координат вектора $\mathcal{A}e_i$:

$$\mathcal{A}oldsymbol{e}_i = \sum_{j=1}^n a_{ji}oldsymbol{e}_j.$$

Зная матрицу линейного оператора \mathcal{A} , мы можем найти образ любого вектора $x \in V$ следующим образом.

Предложение 4.4. Пусть y = Ax, $x = x_1 e_1 + \ldots + x_n e_n$, $y = e_1 e_1 + \ldots + y_n e_n$. Тогда

$$y_i = \sum_{j=1}^n a_{ij} x_j \qquad \text{unu} \qquad \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Доказательство. Действительно,

$$\sum_i y_i \boldsymbol{e}_i = \boldsymbol{y} = \mathcal{A}\boldsymbol{x} = \mathcal{A}(\sum_j x_j \boldsymbol{e}_j) = \sum_j x_j \mathcal{A}\boldsymbol{e}_j = \sum_j x_j (\sum_i a_{ij} \boldsymbol{e}_i) = \sum_i (\sum_j a_{ij} x_j) \boldsymbol{e}_i.$$
 Так как $\{\boldsymbol{e}_i\}$ — базис, отсюда следует, что $y_i = \sum_j a_{ij} x_j$.

Пример 4.5.

- 1. Тожсдественный оператор id переводит каждый вектор $v \in V$ в себя: id v = v. Матрицей оператора id в любом базисе является единичная матрица E. Обратно, если матрица оператора \mathcal{A} в каком-то базисе есть E, то $\mathcal{A} = \mathrm{id}$.
- 2. Рассмотрим оператор дифференцирования $\frac{d}{dx}$ в пространстве $\mathbf{k}_2[x]$ многочленов степени не выше 2. Тогда $\frac{d}{dx}\,1=0,\,\frac{d}{dx}\,x=1$ и $\frac{d}{dx}\,x^2=2x$. Таким образом, матрицей оператора $\frac{d}{dx}$ в базисе $1,x,x^2$ является матрица

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

3. В пространстве \mathbb{R}^3 рассмотрим оператор \mathbf{pr}_{v} ортогонального проектирования на направление вектора $\mathbf{v}=(1,1,1)$. Найдём матрицу этого оператора в стандартном базисе $\mathbf{e}_1=(1,0,0),\ \mathbf{e}_2=(0,1,0)$ и $\mathbf{e}_3=(0,0,1)$. Для любого вектора $\mathbf{u}\in\mathbb{R}^3$ мы имеем $\mathrm{pr}_{v}\,\mathbf{u}=\frac{(\mathbf{u},v)}{(\mathbf{v},v)}\mathbf{v}$. Следовательно,

$$\operatorname{pr}_{\boldsymbol{v}} \boldsymbol{e}_1 = \operatorname{pr}_{\boldsymbol{v}} \boldsymbol{e}_2 = \operatorname{pr}_{\boldsymbol{v}} \boldsymbol{e}_3 = \frac{1}{3} (1, 1, 1) = \frac{1}{3} \boldsymbol{e}_1 + \frac{1}{3} \boldsymbol{e}_2 + \frac{1}{3} \boldsymbol{e}_3.$$

Таким образом, матрица оператора pr_v имеет вид

$$\begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}.$$

4. Как обобщение предыдущего примера, рассмотрим оператор проектирования

$$\operatorname{pr}_{\boldsymbol{v}} \colon V \to V, \quad \boldsymbol{u} \mapsto \frac{(\boldsymbol{u}, \boldsymbol{v})}{(\boldsymbol{v}, \boldsymbol{v})} \boldsymbol{v}.$$

Если вектор v задан как вектор-столбец $v=(v_1,\ldots,v_n)^t$ координат в некотором ортонормированном базисе, то матрица оператора pr_v в этом базисе есть

$$\frac{1}{|\boldsymbol{v}|^2} v v^t = \frac{1}{|\boldsymbol{v}|^2} \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \begin{pmatrix} v_1 & v_2 & \cdots & v_n \end{pmatrix} = \frac{1}{|\boldsymbol{v}|^2} \begin{pmatrix} v_1 v_1 & v_1 v_2 & \cdots & v_1 v_n \\ v_2 v_1 & v_2 v_2 & \cdots & v_2 v_n \\ \vdots & \vdots & \ddots & \vdots \\ v_n v_1 & v_n v_2 & \cdots & v_n v_n \end{pmatrix}$$

Теорема 4.6 (закон изменения матрицы линейного оператора). Пусть A- матрица оператора $A\colon V\to V$ в базисе e_1,\ldots,e_n , A'- матрица в базисе e'_1,\ldots,e'_n и C- матрица перехода от базиса e_1,\ldots,e_n к базису e'_1,\ldots,e'_n . Тогда имеет место соотношение

$$A' = C^{-1}AC.$$

Доказательство. Пусть $A=(a_{ij})$ и $C=(c_{jk})$, тогда

$$\mathcal{A}e_k' = \mathcal{A}(\sum_j c_{jk}e_j) = \sum_j c_{jk}\mathcal{A}e_j = \sum_j c_{jk}(\sum_i a_{ij}e_i) = \sum_i (\sum_j a_{ij}c_{jk})e_i.$$

С другой стороны, если $A' = (a'_{ik})$, то

$$\mathcal{A}\boldsymbol{e}_k' = \sum_j a_{jk}' \boldsymbol{e}_j' = \sum_j a_{jk}' (\sum_i c_{ij} \boldsymbol{e}_i) = \sum_i (\sum_j c_{ij} a_{jk}') \boldsymbol{e}_i.$$

Так как $\{e_i\}$ — базис, получаем $\sum_j a_{ij}c_{jk} = \sum_j c_{ij}a'_{jk}$. Это эквивалентно соотношению AC = CA', т. е. $A' = C^{-1}AC$.

Матрицы A и A', удовлетворяющие соотношению $A' = C^{-1}AC$, где C — невырожденная матрица, называются nodoбными. Таким образом, матрицы одного оператора в разных базисах подобны.

Непосредственно проверяется, что матрица композиции операторов $\mathcal{A} \cdot \mathcal{B}$ в любом базисе есть произведение матриц операторов \mathcal{A} и \mathcal{B} в этом базисе.

Так как $\det(C^{-1}AC) = \det A$, определитель матрицы оператора \mathcal{A} не зависит от базиса; он называется определителем оператора и обозначается $\det \mathcal{A}$. Оператор \mathcal{A} обратим тогда и только тогда, когда он невырожден, т.е. $\det \mathcal{A} \neq 0$.

Множество $\operatorname{Hom}_{\mathbf k}(V,V)$ всех линейных операторов $\mathcal A\colon V\to V$ в фиксированном пространстве V образует кольцо относительно операций сложения и композиции. Если включить в рассмотрение и умножение операторов на элементы поля $\mathbf k$, то получаемый объект называется алгеброй над $\mathbf k$. Наряду с $\operatorname{Hom}_{\mathbf k}(V,V)$ для этого кольца (или алгебры) используется обозначение $\operatorname{End}(V)$. Кольцо (алгебра) $\operatorname{End}(V)$ изоморфно кольцу (алгебре) квадратных матриц $\operatorname{Mat}_{\mathbf k}(n,n)$, где $n=\dim V$; изоморфизм устанавливается сопоставлением оператору его матрицы в фиксированном базисе.

Линейная группа GL(V), состоящая из обратимых (невырожденных) операторов, изоморфна группе невырожденных квадратных матриц размера n с элементами из поля \mathbf{k} по умножению; эта группа обозначается $GL_n(\mathbf{k})$.

Операторы с определителем 1 образуют подгруппу в GL(V); эта подгруппа называется специальной линейной группой и обозначается SL(V). Аналогично, подгруппа матриц с определителем 1 обозначается $SL_n(\mathbf{k})$.

4.2. Ортогональные (изометрические) операторы, ортогональная группа. В этом параграфе V — евклидово пространство.

Предложение 4.7. Следующие условия для оператора $A: V \to V$ эквивалентны:

- а) оператор \mathcal{A} сохраняет длины векторов, т.е. $|\mathcal{A}v| = |v|$ для любого $v \in V$;
- б) оператор \mathcal{A} сохраняет скалярное произведение, т.е. $(\mathcal{A}\mathbf{u}, \mathcal{A}\mathbf{v}) = (\mathbf{u}, \mathbf{v})$ для любых $\mathbf{u}, \mathbf{v} \in V$;
- в) оператор \mathcal{A} переводит ортонормированные базисы в ортонормированные, т.е. если $\mathbf{e}_1, \dots, \mathbf{e}_n$ ортонормированный базис, то $\mathcal{A}\mathbf{e}_1, \dots, \mathcal{A}\mathbf{e}_n$ также ортонормированный базис;
- г) матрица A оператора $\mathcal A$ в ортонормированном базисе ортогональна, т. е. $A^tA=E$.

 \mathcal{A} оказательство. Мы докажем импликации \mathbf{a}) \Leftrightarrow \mathbf{b}) и \mathbf{b}) \Rightarrow \mathbf{b}) \Rightarrow \mathbf{c}) \Rightarrow \mathbf{b}). Имеем ($\mathbf{u} + \mathbf{v}$, $\mathbf{u} + \mathbf{v}$) = (\mathbf{u} , \mathbf{u}) + 2(\mathbf{u} , \mathbf{v}) + (\mathbf{v} , \mathbf{v}), откуда

$$(u, v) = \frac{1}{2} ((u + v, u + v) - (u, u) - (v, v)).$$

Поэтому, если оператор \mathcal{A} сохраняет длины, т.е. скалярные произведения вида (v, v), то он сохраняет и все скалярные произведения.

б)⇒а). Очевидно.

б) \Rightarrow в). Пусть ($\mathcal{A}u, \mathcal{A}v$) = (u, v). Тогда если e_1, \ldots, e_n — ортонормированный базис, то ($\mathcal{A}e_i, \mathcal{A}e_j$) = (e_i, e_j) = δ_{ij} , т.е. базис $\mathcal{A}e_1, \ldots, \mathcal{A}e_n$ также ортонормирован.

в) \Rightarrow г). Пусть \mathcal{A} переводит ортонормированный базис e_1, \ldots, e_n в ортонормированный базис $\mathcal{A}e_1, \ldots, \mathcal{A}e_n$ и $A = (a_{ij})$ — матрица оператора в базисе e_1, \ldots, e_n . Тогда

$$\delta_{ij} = (\mathcal{A}\boldsymbol{e}_i, \mathcal{A}\boldsymbol{e}_j) = (\sum_k a_{ki}\boldsymbol{e}_k, \sum_\ell a_{\ell j}\boldsymbol{e}_\ell) = \sum_{k,\ell} a_{ki}a_{\ell j}(\boldsymbol{e}_k, \boldsymbol{e}_\ell) = \sum_{k,\ell} a_{ki}\delta_{k\ell}a_{\ell j}.$$

Это эквивалентно матричному соотношению $E = A^t E A$ или $A^t A = E$.

г) \Rightarrow б). Пусть $A^tA = E$. Запишем векторы \boldsymbol{u} и \boldsymbol{v} столбцами координат u и v в ортонормированном базисе. Тогда

$$(\mathcal{A}\boldsymbol{u}, \mathcal{A}\boldsymbol{v}) = (A\boldsymbol{u})^t(A\boldsymbol{v}) = \boldsymbol{u}^t(A^tA)\boldsymbol{v} = \boldsymbol{u}^t\boldsymbol{v} = (\boldsymbol{u}, \boldsymbol{v}),$$

т. е. \mathcal{A} сохраняет скалярное произведение.

Определение 4.8. Линейный оператор $\mathcal{A}\colon V\to V$, удовлетворяющий одному из эквивалентных условий из предложения 4.7, называется *ортогональным* или *изометрическим*.

Ортогональные операторы образуют подгруппу в линейной группе GL(V) евклидова пространства, называемую *ортогональной группой* и обозначаемую O(V). Группа ортогональных матриц размера n обозначается O_n или $O_n(\mathbb{R})$.

Из соотношения $A^tA = E$ вытекает, что $\det \mathcal{A} = \pm 1$ для ортогонального оператора. Ортогональные операторы \mathcal{A} с $\det \mathcal{A} = 1$ называются собственными, а ортогональные операторы с $\det \mathcal{A} = -1$ — несобственными.

Подгруппа собственных ортогональных операторов называется специальной ортогональной группой и обозначается SO(V). Мы имеем $SO(V) = SL(V) \cap O(V)$. Группа ортогональных матриц размера n с определителем 1 обозначается SO_n или $SO_n(\mathbb{R})$.

4.3. Ортогональные операторы как композиции отражений и поворотов.

Пример 4.9 (ортогональные операторы в двумерном пространстве). Пусть e_1 , e_2 — ортонормированный базис двумерного пространства V. Согласно примеру 3.17, ортогональная 2×2 -матрица имеет один из двух видов:

(15) a)
$$\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
, 6) $\begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$.

Ортогональный оператор, задаваемый матрицей (10) а) в базисе e_1, e_2 , поворачивает каждый вектор на угол φ . Этот оператор называется поворотом на угол φ . Поворот задаётся одной и той же матрицей в любом ортонормированном базисе двумерного пространства. При $\varphi = 0$ мы получаем тождественный оператор.

Ортогональный оператор, задаваемый матрицей (10) б) оставляет вектор $e_1' := (\cos\frac{\varphi}{2},\sin\frac{\varphi}{2})$ неподвижным и переводит вектор $e_2' := (-\sin\frac{\varphi}{2},\cos\frac{\varphi}{2})$ в вектор $-e_2'$. В

этом можно убедиться непосредственно, проверив соотношение

$$\begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix} \begin{pmatrix} \cos \frac{\varphi}{2} \\ \sin \frac{\varphi}{2} \end{pmatrix} = \begin{pmatrix} \cos \frac{\varphi}{2} \\ \sin \frac{\varphi}{2} \end{pmatrix}.$$

Таким образом, в базисе e_1' , e_2' этот оператор задаётся матрицей $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Он называется *отражением* или *симметрией* относительно прямой $\langle e_1' \rangle$.

Введём следующее общее определение.

Определение 4.10. Пусть $V = W \oplus W^{\perp}$, где W — подпространство. Ортогональный оператор \mathcal{R}_W , переводящий вектор $\mathbf{v} = \operatorname{pr}_W \mathbf{v} + \operatorname{ort}_W \mathbf{v}$ в вектор $\mathcal{R}_W \mathbf{v} = \operatorname{pr}_W \mathbf{v} - \operatorname{ort}_W \mathbf{v}$, называется *отражением* или *симметрией* относительно подпространства W. Оператор \mathcal{R}_W инволютивен, т. е. $\mathcal{R}_W^2 = \operatorname{id}$.

Важным частным случаем является отражение в гиперплоскости u^{\perp} с нормальным вектором $u \neq 0$. Мы имеем

$$\mathcal{R}_{\boldsymbol{u}^{\perp}} \boldsymbol{v} = \operatorname{pr}_{\boldsymbol{u}^{\perp}} \boldsymbol{v} - \operatorname{ort}_{\boldsymbol{u}^{\perp}} \boldsymbol{v} = \boldsymbol{v} - 2 \operatorname{pr}_{\boldsymbol{u}} \boldsymbol{v} = \boldsymbol{v} - 2 \frac{(\boldsymbol{u}, \boldsymbol{v})}{(\boldsymbol{u}, \boldsymbol{u})} \boldsymbol{u}.$$

Если e_1, \ldots, e_k — ортонормированный базис в W, а e_{k+1}, \ldots, e_n — ортонормированный базис в W^{\perp} . Тогда оператор \mathcal{R}_W в базисе e_1, \ldots, e_n задаётся матрицей $\begin{pmatrix} E & 0 \\ 0 & -E \end{pmatrix}$, где блоки E и -E имеют размер k и n-k, соответственно.

Предложение 4.11. Любые два различных вектора одинаковой длины переводятся друг в друга отражением в некоторой гиперплоскости.

 \mathcal{A} оказательство. Пусть |u|=|v|. Тогда для отражения $\mathcal{R}_{(u-v)^{\perp}}$ имеем

$$\mathcal{R}_{(u-v)^{\perp}}u = u - 2\frac{(u-v,u)}{(u-v,u-v)}(u-v) = u - 2\frac{|u|^2 - (u,v)}{|u|^2 + |v|^2 - 2(u,v)}(u-v) = u - (u-v) = v. \quad \Box$$

Теорема 4.12. Любой ортогональный ортогональный оператор \mathcal{A} в n-мерном евклидовом пространстве представляется в виде композици не более n отражений в гиперплоскостях.

Доказательство. Будем вести индукцию по размерности n. Если n=0 или $\mathcal{A}=\mathrm{id}$, то доказывать нечего. В противном случае существует вектор v, для которого $\mathcal{A}v\neq v$. Пусть $\mathcal{R}-$ отражение в гиперплоскости, переводящее $\mathcal{A}v$ в v. Тогда композиция $\mathcal{R}\mathcal{A}$ оставляет вектор v неподвижным, а значит $\mathcal{R}\mathcal{A}(v^\perp)\subset v^\perp$. Следовательно, мы можем рассмотреть ограничение $\mathcal{R}\mathcal{A}|_{v^\perp}$ оператора $\mathcal{R}\mathcal{A}$ на подпространство v^\perp . Так как $\dim v^\perp=n-1$, по предположению индукции имеем $\mathcal{R}\mathcal{A}|_{v^\perp}=\mathcal{R}_1\cdots\mathcal{R}_k$, где \mathcal{R}_i , $i=1,\ldots,k$, — отражения в гиперплоскостях в пространстве v^\perp и $k\leqslant n-1$. Далее, $\mathcal{R}_i=\mathcal{R}_i'|_{v^\perp}$, где \mathcal{R}_i' — отражение в пространстве V относительно некоторой гиперплоскости, содержащей вектор v. Поэтому мы имеем $\mathcal{R}\mathcal{A}=\mathcal{R}_1'\cdots\mathcal{R}_k'$, откуда $\mathcal{A}=\mathcal{R}\mathcal{R}_1'\cdots\mathcal{R}_k'$, что завершает шаг индукции.

Формализуем некоторые понятия из предыдущего доказательства.

Определение 4.13. Подпространство $W \subset V$ называется *инвариантным* относительно оператора $\mathcal{A} \colon V \to V$, если $\mathcal{A}(W) \subset W$. Если $W \subset V$ — инвариантное подпространство, то определён линейный оператор $\mathcal{A}|_W \colon W \to W$ — *ограничение* оператора \mathcal{A} на подпространство W.

Ненулевой вектор $v \in V$ называется собственным для оператора \mathcal{A} , если $\mathcal{A}v = \lambda v$ для некоторого $\lambda \in \mathbf{k}$. Линейная оболочка собственного вектора — одномерное инвариантное подпространство.

Теорема 4.14. Для линейного оператора \mathcal{A} в ненулевом вещественном пространстве V существует одномерное или двумерное инвариантное подпространство.

Доказательство. Пусть dim V = n > 0 и возьмём ненулевой вектор $v \in V$. Тогда n+1 векторов v, Av, A^2v, \dots, A^nv линейно зависимы, т.е.

$$a_0 \mathbf{v} + a_1 \mathcal{A} \mathbf{v} + a_2 \mathcal{A}^2 \mathbf{v} + \ldots + a_n \mathcal{A}^n \mathbf{v} = \mathbf{0},$$

где не все a_i равны нулю. Последнее равенство можно записать в виде $P(\mathcal{A})v=\mathbf{0}$, где $P(x)=a_0+a_1x+\ldots+a_nx^n$ — многочлен положительной степени и $P(\mathcal{A})=a_0$ id $+a_1\mathcal{A}+\ldots+a_n\mathcal{A}^n$ — результат подстановки оператора \mathcal{A} в многочлен P(x). Разложим многочлен на линейные и квадратичные множители: $P(x)=cP_1(x)\cdots P_k(x)$, где каждый $P_i(x)$ имеет вид x-a или x^2-ax-b . Рассмотрим наименьшее i, для которого вектор $u:=P_{i+1}\cdots P_k(\mathcal{A})v$ ещё не равен нулю. Тогда $P_i(\mathcal{A})u=\mathbf{0}$. Если $P_i(x)=x-a$, то $\mathcal{A}u=au$ и $\langle u\rangle$ — инвариантное подпространство. Если $P_i(x)=x^2-ax-b$, то $\mathcal{A}(\mathcal{A}u)=a\mathcal{A}u+bu$ и $\langle u,\mathcal{A}u\rangle$ — инвариантное подпространство.

Согласно примеру 4.9, ортогональный оператор в двумерном пространстве является либо поворотом, либо отражением. Далее мы получим многомерное обобщение этого наблюдения.

Теорема 4.15. Для любого ортогонального оператора \mathcal{A} в евклидовом пространстве V существует разложение $V = U_1 \oplus \ldots \oplus U_k \oplus W_1 \oplus \ldots \oplus W_\ell$ в прямую сумму попарно ортогональных инвариантных подпространств, где каждое U_i двумерно и оператор действует в нём поворотом, а каждое W_j одномерно и оператор действует в нём как \pm id.

В соответствующем ортонормированном базисе матрица оператора \mathcal{A} блочнодиагональная с блоками размера 1 или 2, причём блоки размера 1 имеют вид (1)
или (-1), а блоки размера 2 имеют вид $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$, где $\varphi \neq \pi k$ с целым k.

В силу теоремы 4.14 для оператора \mathcal{A} существует 1-мерное или 2-мерное инвариантное подпространство $W \subset V$. Так как оператор \mathcal{A} сохраняет скалярное произведение, ортогональное дополнение W^{\perp} также инвариантно. По предположению индукции, в пространствах W и W^{\perp} имеются требуемые ортогональные разложения. Вместе они дают требуемое ортогональное разложение пространства V.

Разложение из теоремы 4.15 называется *каноническим*, а описанный там вид матрицы — *каноническим видом* ортогонального оператора \mathcal{A} .

Пример 4.16. В трёхмерном пространстве канонический вид ортогонального оператора есть

$$\begin{pmatrix}
\cos\varphi & -\sin\varphi & 0\\
\sin\varphi & \cos\varphi & 0\\
0 & 0 & \pm 1
\end{pmatrix}$$

где в левом нижнем углу стоит 1, если оператор собственный, и -1 иначе. (Операторы, канонический вид которых имеет три блока (1) или (-1), получаются при $\varphi = \pi k$.) Собственный оператор представляет собой поворот (вокруг оси третьего вектора базиса). Композиция двух поворотов — это снова поворот вокруг некоторой оси, так как в каноническом виде присутствует всего один поворот. Несобственный оператор — это «поворот с переворотом», т.е. композиция поворота и симметрии относительно плоскости, перпендикулярной оси поворота.

Пример 4.17. В четырёхмерном пространстве уже бывают «независимые повороты». А именно, канонический вид собственного ортогонального оператора представляет собой матрицу из двух блоков размера 2:

$$\begin{pmatrix}
\cos \varphi & -\sin \varphi & 0 & 0 \\
\sin \varphi & \cos \varphi & 0 & 0 \\
0 & 0 & \cos \psi & -\sin \psi \\
0 & 0 & \sin \psi & \cos \psi
\end{pmatrix}$$

 Θ то — композиция двух независимых поворотов: на угол arphi в плоскости первого и второго базисных векторов и на угол ψ в плоскости третьего и четвёртого базисных векторов. Такой оператор не сводится к одному повороту.

4.4. Параметризация группы SO(3) углами Эйлера и кватернионами. Здесь мы рассмотрим два описания группы SO(3) собственных ортогональных матриц 3×3 .

Первое описание (углы Эйлера) широко используется в теоретической и прикладной механике твёрдого тела. Положение системы координат, связанной с телом в пространстве, относительно стандартной системы координат описывается при помощи трёх элементарных углов. Это даёт параметризацию ортогональных матриц $C \in SO(3)$, которые рассматриваются как матрицы перехода от ортонормированного базиса e_1, e_2, e_3 (исходной системы координат) к ортонормированному базису

 e_1',e_2',e_3' той же ориентации (системе координат, связанной с телом). Предположим вначале, что векторы e_3 и e_3' неколлинеарны. Это нормальные векторы к плоскостям $\langle e_1,e_2\rangle$ и $\langle e_1',e_2'\rangle$. Тогда $f:=\frac{[e_3,e_3']}{|[e_3,e_3']|}$ — направляющий вектор прямой пересечения этих плоскостей (называемой осью узлов).

Углы Эйлера определяются следующим образом:

угол прецессии φ — это угол от e_1 к f, $\varphi \in [0, 2\pi)$;

угол нутации θ — это угол от e_3 к $e_3', \theta \in [0,\pi];$

угол собственного вращения ψ — это угол от f к $e_1', \psi \in [0, 2\pi)$. Если векторы e_3 и e_3' коллинеарны, то φ и ψ не определены, а $\theta=0$ или $\theta=\pi$. Переход от одной системы координат к другой тогда определяется углом от e_1 до e_1' .

Первый шаг — переход от базиса e_1, e_2, e_3 к базису f, g, e_3 , который задаётся поворотом на угол φ вокруг оси вектора e_3 . Соответствующая матрица перехода имеет вид

$$\begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

На втором шаге осуществим переход от базиса f, g, e_3 к базису f, h, e_3' , который задаётся поворотом на угол heta вокруг оси вектора f. При этом $\langle f,h \rangle = \langle e_1',e_2' \rangle$.

Соответствующая матрица перехода имеет вид

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}.$$

Наконец, на третьем шаге осуществим переход от базиса f, h, e'_3 к базису e'_1 , e'_2 , e'_3 , который задаётся поворотом на угол ψ вокруг оси вектора e'_3 . Соответствующая матрица перехода имеет вид

$$\begin{pmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Тем самым нами доказана следующая

Теорема 4.18 (Эйлер). Произвольная собственная ортогональная матрица $C \in SO(3)$ допускает разложение вида

(16)
$$C = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

 $egli{eq}
egli{eq}
eg$

Если $\theta = 0$, то C есть матрица поворота вокруг оси вектора e_3 на угол $\varphi + \psi$. Если $\theta = \pi$, то C есть матрица поворота вокруг оси вектора e_3 на угол $\varphi - \psi$.

Данная параметризация описывается «внутренними» (instrinsic) углами Эйлера: каждый из трёх поворотов на соответствующий угол задаётся во «внутренней» системе координат, связанной с телом. Вначале из системы координат x, y, z поворотом на угол φ вокруг оси z получается система координат x', y', z', затем из x', y', z' поворотом на угол θ вокруг оси x' получается система координат x'', y'', z'', и наконец из x'', y'', z'' поворотом на угол ψ вокруг оси z'' получается система координат x''', y''', z'''. Это кодируется символами z - x' - z''.

Разложение Эйлера (16) можно также рассматривать как разложение ортогонального оператора в \mathbb{R}^3 в композицию поворотов относительно координатных осей исходной системы координат x,y,z на «внешние» (extrinsic) углы Эйлера. Это повороты производятся в обратном порядке: сначала поворот на угол ψ вокруг оси z, затем поворот на угол θ вокруг оси x, и наконец поворот на угол φ вокруг оси z. Это кодируется символами z-x-z.

Классические углы Эйлера используются, например, в небесной механике (откуда и происходят названия трёх углов). В других разделах механики используются параметризации тремя углами поворотов относительно других координатных осей. Например, в авиации положение самолёта задаётся углами рыскания, тангажа и крена. Имеется система координат наземной станции слежения с осями север—восток—верх и система координат, связанная с самолётом: продольная ось—поперечная ось—вертикальная ось. Углы рыскания, тангажа и крена определяются как углы Эйлера для последовательности поворотов вокруг осей z - y' - x''.

Недостатком параметризации углами Эйлера является неоднозначность при некоторых значениях углов (хотя с этим связаны разные интересные механические явления). Однозначной параметризации не существует (это — топологический факт:

группа SO(3) не гомеоморфна области трёхмерного пространства, об этом пойдёт речь в курсе топологии). Однако мы далее опишем другую параметризацию, неоднозначность которой легче контролируется.

Kватернионы определяются как линейные комбинации a+bi+cj+dk, где a,b,c,d-вещественные числа, а i,j,k- символы. Определим множество кватернионов

$$\mathbb{H} = \{ q = a + bi + cj + dk \colon a, b, c, d \in \mathbb{R} \}.$$

Тогда \mathbb{H} — четырёхмерное вещественное линейное пространство. Введём следующую таблицу умножения символов i, j, k:

$$ij = -ji = k$$
, $jk = -kj = i$, $ki = -ik = j$, $i^2 = j^2 = k^2 = -1$.

Как показывает проверка, продолжение этого умножения по билинейности на \mathbb{H} превращает множество кватернионов в ассоциативную, но не коммутативную алгебру над полем \mathbb{R} (напомним, что ancebpa — кольцо и векторное пространство, в котором умножение билинейно).

Определим операцию сопряжения в Н, полагая

$$\overline{q} = a - bi - cj - dk$$
 для $q = a + bi + cj + dk$.

Непосредственная проверка показывает, что имеют место соотношения

$$\overline{q_1 + q_2} = \overline{q_1} + \overline{q_2}, \qquad \overline{q_1 q_2} = \overline{q_2} \ \overline{q_1}, \qquad q\overline{q} = |q|^2 = a^2 + b^2 + c^2 + d^2, \quad |q_1 q_2| = |q_1| \cdot |q_2|.$$

Это позволяет определить для $q \neq 0$ обратный кватернион формулой $q^{-1} = \frac{\overline{q}}{|q|^2}$, что превращает $\mathbb H$ в *meло* («поле» с некоммутативным умножением).

Рассмотрим в Н подпространство «чисто мнимых» кватернионов:

$$\mathbb{H}_0 = \{x = bi + cj + dk \in \mathbb{H}\} = \{x \in \mathbb{H} : \overline{x} = -x\}.$$

Это — трёхмерное евклидово пространство, $|x|^2 = b^2 + c^2 + d^2$.

Предложение 4.19. *Если* |q| = 1, то преобразование

$$\alpha_q \colon \mathbb{H}_0 \to \mathbb{H}_0, \quad x \mapsto qxq^{-1},$$

есть ортогональный оператор в трёхмерном евклидовом пространстве $\mathbb{H}_0 = \mathbb{R}^3$.

Доказательство. Имеем $\overline{qxq^{-1}} = \overline{q^{-1}}\,\overline{x}\,\overline{q} = -qxq^{-1}$, так что преобразование α_q переводит \mathbb{H}_0 в себя. Кроме того, $|qxq^{-1}| = |x|$, так что α_q — ортогональный оператор. \square

Кватернионы единичной длины образуют группу

$$Sp(1) := \{q \in \mathbb{H} \colon |q| = 1\} = \{a + bi + cj + dk \in \mathbb{H} \colon a^2 + b^2 + c^2 + d^2 = 1\}$$

по умножению. Как множество группа Sp(1) представляет собой единичную трёхмерную сферу в четырёхмерном пространстве. Легко видеть, что $\alpha_{q_1q_2}=\alpha_{q_1}\cdot\alpha_{q_2}$, так что отображение $q\mapsto\alpha_q$ задаёт гомоморфизм группы Sp(1) в группу $SO(\mathbb{H}_0)=SO(3)$. Можно проверить, что этот гомоморфизм сюръективен, а его ядро есть подгруппа $\{1,-1\}\in Sp(1)$. Тем самым мы задали параметризацию группы SO(3) кватернионами единичной длины; при этом кватернионам q и -q отвечает одна и та же матрица. Произведя вычисления, мы получаем

Теорема 4.20 (Кэли-Клейн). Для любого вектора единичной длины $(a,b,c,d) \in \mathbb{H} = \mathbb{R}^4$ матрица

$$\begin{pmatrix} a^2 + b^2 - c^2 - d^2 & 2(bc - ad) & 2(ac + bd) \\ 2(ad + bc) & a^2 - b^2 + c^2 - d^2 & 2(cd - ab) \\ 2(bd - ac) & 2(ab + cd) & a^2 - b^2 - c^2 + d^2 \end{pmatrix}$$

является матрицей из SO(3) и любая матрица из SO(3) имеет такой вид.

4.5. **Аффинные преобразования, аффинная группа.** Теперь мы изучим преобразования аффинных пространств.

Определение 4.21. Биективное отображение f множества точек $\mathfrak A$ аффинного пространства $(\mathfrak A, V)$ в себя называется $a\phi\phi$ инным преобразованием, если в некоторой аффинной системе координат $Oe_1 \dots e_n$ оно задаётся формулой

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

или кратко $f: \mathfrak{A} \to \mathfrak{A}, x \mapsto Ax + b$, где $A = (a_{ij})$. Биективность такого преобразования эквивалентна условию $\det A \neq 0$. Из формул замены координат (предложение 2.4) следует, что если преобразование задаётся формулой выше в некоторой системе координат, то оно задаётся аналогичной формулой (возможно, с другими A и b) в любой системе координат. Невырожденная матрица $A = (a_{ij})$ называется матрицей аффинного преобразования в системе координат $Oe_1 \dots e_n$.

Аффинные преобразования образуют группу относительно композиции, которая называется $a\phi\phi$ инной группой и обозначается $Aff(\mathfrak{A})$ (иногда Aff(V)).

С каждым аффинным преобразованием $f:\mathfrak{A}\to\mathfrak{A}$ связано линейное преобразование $f_{\mathrm{lin}}\colon V\to V$, заданное формулой $f_{\mathrm{lin}}(\overline{PQ}):=\overline{f(P)f(Q)}$. В координатах имеем $f_{\mathrm{lin}}(x)=Ax$.

Аффинное преобразование $f:\mathfrak{A}\to\mathfrak{A}$, для которого b=0 (т. е. f(x)=Ax), называется n инейным, а аффинное преобразование, для которого A=E (т. е. f(x)=x+b), называется c двигом (а также m рансляцией или n араллельным n ереносом). (Проверьте, что эти определения не зависят от системы координат.)

Из определений вытекает, что аффинное преобразование переводит аффинные подпространства (прямые, плоскости, гиперплоскости и т. д.) в аффинные подпространства той же размерности, сохраняет параллельность и отношения длин отрезков на прямой.

Также из определений вытекает, что всякое аффинное преобразование является композицией линейного преобразования и сдвига (это можно было бы взять за определение аффинного преобразования). Таким образом, всякое аффинное преобразование $f:\mathfrak{A}\to\mathfrak{A}$ задаётся парой $(\mathcal{A},\boldsymbol{b})$, где $\mathcal{A}\in GL(V)$ и $\boldsymbol{b}\in V$. Мы будем использовать обозначение $f_{\mathcal{A},\boldsymbol{b}}$. В координатах имеем

$$f_{A,b}(x) = Ax + b.$$

Найдём композицию преобразований $f_{A,b}$ и $f_{A',b'}$:

$$f_{\mathcal{A},\mathbf{b}} \cdot f_{\mathcal{A}',\mathbf{b}'}(x) = A(A'x + b') + b = AA'x + (Ab' + b) = f_{\mathcal{A}\mathcal{A}',\mathcal{A}\mathbf{b}'+\mathbf{b}}(x).$$

Отсюда видно, что линейные преобразования и трансляции не коммутируют:

$$f_{\mathcal{A},\mathbf{0}} \cdot f_{\mathrm{id},\mathbf{b}'} = f_{\mathcal{A},\mathcal{A}\mathbf{b}'} \neq f_{\mathcal{A},\mathbf{b}'} = f_{\mathrm{id},\mathbf{b}'} \cdot f_{\mathcal{A},\mathbf{0}}.$$

Эти вычисления показывают, что аффинная группа $\mathrm{Aff}(\mathfrak{A})$ как множество представляет собой декартово произведение $GL(V) \times V$ линейной группы и группы трансляций, а операция произведения на элементах $(\mathcal{A}, \boldsymbol{b}) \in GL(V) \times V$ определена следующим образом:

$$(\mathcal{A}, b) \cdot (\mathcal{A}', b') = (\mathcal{A}\mathcal{A}', \mathcal{A}b' + b).$$

Эта конструкция называется полупрямым произведением линейной группы GL(V) и группы трансляций V (относительно действия GL(V) на V линейными преобразованиями) и обозначается $GL(V) \ltimes V$. Итак, мы имеем

$$Aff(V) = GL(V) \ltimes V.$$

4.6. Аффинные изометрии (движения), классификация движений плоскости и трёхмерного пространства.

Определение 4.22. Аффинное преобразование f аффинного евклидова пространства называется $a\phi\phi$ инной изометрией (или dвижением), если оно сохраняет расстояния между точками, т.е. d(f(P), f(Q)) = d(P, Q) для любых точек P, Q.

Матрица аффинной изометрии в прямоугольной системе координат ортогональна (это доказывается так же, как и для операторов).

Аналогично аффинной группе, группа аффинных изометрий Isom(V) есть полупрямое произведение ортогональной группы O(V) и группы трансляций V:

$$Isom(V) = O(V) \ltimes V.$$

Так как ортогональный оператор в двумерном пространстве (плоскости) есть либо поворот, либо симметрия, всякая аффинная изометрия плоскости есть композиция поворотов, симметрий и сдвигов. Это описание можно сильно упростить.

Скользящей симметрией на плоскости называется композиция симметрии и сдвига на вектор, параллельный оси симметрии (эти два преобразования коммутируют, так что композицию можно брать в любом порядке). В прямоугольной системе координат Oe_1e_2 , где e_1 — вектор вдоль оси симметрии, скользящая симметрия задаётся формулой

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+a \\ -y \end{pmatrix}.$$

Теорема 4.23 (Шаль). Всякая аффинная изометрия плоскости является либо сдвигом, либо поворотом, либо скользящей симметрией.

Доказательство. Рассмотрим сначала собственную аффинную изометрию f. В прямоугольной системе координат она задаётся формулой

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}.$$

Если $\varphi = 0$, то f— сдвиг. Пусть $\varphi \neq 0$, тогда f является композицией поворота и сдвига. Мы докажем, что f на самом деле является поворотом относительно другой

точки. Эту точку можно найти как (единственную) неподвижную точку преобразования f. Итак, пусть f(P) = P, где $P = (x_0, y_0)$. Мы имеем

$$\begin{cases} x_0 \cos \varphi - y_0 \sin \varphi + a &= x_0, \\ x_0 \sin \varphi + y_0 \cos \varphi + b &= y_0. \end{cases}$$

Таким образом, координаты (x_0, y_0) находятся из неоднородной системы линейных уравнений с определителем

$$\begin{vmatrix} \cos \varphi - 1 & -\sin \varphi \\ \sin \varphi & \cos \varphi - 1 \end{vmatrix} = (\cos \varphi - 1)^2 + \sin^2 \varphi \neq 0.$$

Поэтому неподвижная точка $P=(x_0,y_0)$ существует и единственна. Тогда в новой системе координат $x'=x-x_0, y'=y-y_0$ с началом в P преобразование f задаётся формулой

$$\begin{pmatrix} x' \\ y' \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix},$$

т. е. является поворотом на угол φ вокруг точки P.

Теперь рассмотрим несобственную аффинную изометрию f. В прямоугольной системе координат Oe_1e_2 она задаётся формулой

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}.$$

Линейная часть этого преобразования — симметрия относительно прямой, содержащей вектор $e_1' = (\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2})$. В системе координат $Oe_1'e_2'$ преобразование f задаётся формулой

$$\begin{pmatrix} x' \\ y' \end{pmatrix} \mapsto \begin{pmatrix} x' + a \\ -y' + b \end{pmatrix}.$$

Наконец, в координатах $x'' = x', y'' = y' - \frac{b}{2}$ преобразование f задаётся формулой

$$\begin{pmatrix} x'' \\ y'' \end{pmatrix} \mapsto \begin{pmatrix} x'' + a \\ -y'' \end{pmatrix},$$

т. е. оно является скользящей симметрией.

Из теоремы Шаля в частности вытекает, что композиция двух поворотов есть поворот или сдвиг, а композиция поворота и скользящей симметрии — скользящая симметрия.

Теперь рассмотрим аффинные изометрии трёхмерного пространства. Определим три выделеных класса преобразований.

Винтовое движение — композиция поворота вокруг некоторой оси и сдвига на вектор вдоль этой оси. В подходящей системе координат задаётся формулой

(17)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} = \begin{pmatrix} x \cos \varphi - y \sin \varphi \\ x \sin \varphi + y \cos \varphi \\ z + c \end{pmatrix}.$$

Поворот с переворотом — композиция поворота вокруг оси и симметрии относительно плоскости, перпендикулярной этой оси. В подходящей системе координат задаётся формулой

(18)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \cos \varphi - y \sin \varphi \\ x \sin \varphi + y \cos \varphi \\ -z \end{pmatrix}.$$

Скользящая симметрия — композиция симметрии относительно плоскости и сдвига на вектор, параллельный плоскости симметрии. В подходящей системе координат задаётся формулой

(19)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+a \\ y+b \\ -z \end{pmatrix}.$$

Теорема 4.24. Всякая аффинная изометрия трёхмерного пространства является либо винтовым движением, либо поворотом с переворотом, либо скользящей симметрией.

 \mathcal{L} оказательство. Рассмотрим сначала собственную аффинную изометрию f. Из теореме о каноническом виде ортогонального оператора (см. пример 4.16) следует, что в некоторой прямоугольной системе координат f задаётся формулой

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Если $\varphi = 0$, получаем сдвиг — частный случай винтового движения. Если $\varphi \neq 0$, то мы можем найти (x_0, y_0) как в доказательстве теоремы Шаля. Тогда в новой системе координат $x' = x - x_0$, $y' = y - y_0$, z' = z с началом в точке $(x_0, y_0, 0)$ преобразование f задаётся формулой (17), т.е. является винтовым движением.

Теперь рассмотрим несобственную аффинную изометрию f. В некоторой прямоугольной системе координат f задаётся формулой

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Если $\varphi = 0$, то мы получаем преобразование

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+a \\ y+b \\ -z+c \end{pmatrix}$$

В новой системе координат $x'=x, y'=y, z'=z-\frac{c}{2}$ оно приобретает вид (19), т.е. является скользящей симметрией.

Если $\varphi \neq 0$, то мы найдём (x_0, y_0) как в доказательстве теоремы Шаля. Тогда в системе координат $x' = x - x_0$, $y' = y - y_0$, z' = z с началом в точке $(x_0, y_0, 0)$ преобразование f задаётся формулой

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \mapsto \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ c \end{pmatrix} = \begin{pmatrix} x' \cos \varphi - y' \sin \varphi \\ x' \sin \varphi + y' \cos \varphi \\ -z' + c \end{pmatrix}.$$

Наконец, в новой системе координат x'' = x', y'' = y', $z'' = z' - \frac{c}{2}$ оно приобретает вид (18), т.е. является поворотом с переворотом.

Задачи и упражнения.

- 4.25. Докажите, что два конечномерных линейных пространства изоморфны тогда и только тогда, когда они имеют одинаковую размерность.
- **4.26.** Определите матрицу линейного отображения $A: V \to W$ по отношению к базисам в V и W и выведите закон изменения матрицы линейного отображения при замене базисов.
- **4.27.** Пусть подпространство W в n-мерном пространстве V задано как линейная оболочка векторов: $W = \langle b_1, \dots, b_k \rangle$, причём векторы b_1, \dots, b_k линейно независимы. Пусть B — матрица размера $n \times k$, составленная из столбцов координат векторов $oldsymbol{b}_1,\ldots,oldsymbol{b}_k$ в некотором ортонормированном базисе. Найдите матрицу ортогонального проектора $\operatorname{pr}_W \colon V \to V, \ \boldsymbol{v} \mapsto \operatorname{pr}_W \ \boldsymbol{v}$, в этом базисе.
- **4.28.** В стандартном базисе евклидова пространства \mathbb{R}^4 найдите матрицы ортогонального проектора и отражения относительно подпространства,

 - а) заданного уравнением $x_1+x_2+x_3+x_4=0;$ б) заданного системой $\begin{cases} x_1+x_2=0,\\ x_3+x_4=0. \end{cases}$
- **4.29.** Верно ли, что для любого оператора ${\mathcal A}$ в евклидовом пространстве свойство $\mathcal{A}(W) \subset W$ влечёт $\mathcal{A}(W^{\perp}) \subset W^{\perp}$?
- 4.30. Найдите канонический вид и соответствующий ортонормированный базис ортогонального оператора, заданного в некотором ортонормированном базисе матрицей

a)
$$\frac{1}{7} \begin{pmatrix} -3 & 2 & -6 \\ -6 & -3 & 2 \\ 2 & -6 & -3 \end{pmatrix}$$
; 6) $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 \end{pmatrix}$; B) $\begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}$.

4.31. Докажите, что отображение

$$\alpha \colon Sp(1) \to SO(\mathbb{H}_0) = SO(3), \qquad q \mapsto (x \mapsto qxq^{-1})$$

является сюръективным гомоморфизмом с ядром $\{-1,1\}$.

4.32. Докажите, что отображение

$$\alpha \colon Sp(1) \times Sp(1) \to SO(\mathbb{H}) = SO(4), \qquad (q_1, q_2) \mapsto (x \mapsto q_1 x q_2^{-1})$$

является сюръективным гомоморфизмом с ядром $\{-1,1\}$.

- **4.33.** Определим специальную унитарную группу SU(n) как группу комплексных унитарных $n \times n$ -матриц с определителем 1, т. е. матриц C, удовлетворяющих соотношениям $\overline{C}^t C = E$, $\det C = 1$. Докажите изоморфизмы:
 - a) $SU(2)/\{1,-1\} \cong Sp(1)/\{1,-1\} \cong SO(3);$
 - 6) $(SU(2) \times SU(2))/\{1, -1\} \cong SO(4)$.
- 4.34. Докажите, что биективное отображение аффинного евклидова пространства в себя, сохраняющее расстояния между точками, является аффинной изометрией.
- 4.35. Докажите, что если аффинное преобразование плоскости имеет единственную неподвижную точку, то всякая инвариантная прямая проходит через эту точку. Сколько в этом случае может быть инвариантных прямых?

- **4.36.** Существует ли аффинное преобразование трёхмерного пространства, не имеющее инвариантных прямых и неподвижных точек, но имеющее инвариантную плоскость?
- **4.37.** Пусть ℓ_1, ℓ_2, ℓ_3 три попарно скрещивающихся прямых, не параллельные одной плоскости, и $\ell'_1, \ell'_2, \ell'_3$ другие три попарно скрещивающихся прямых, также не параллельные одной плоскости. Докажите, что существует аффинное преобразование трёхмерного пространства, переводящее первую тройку прямых во вторую.
- **4.38.** Пусть ℓ_1, ℓ_2, ℓ_3 три попарно скрещивающихся прямых, параллельные одной плоскости, и $\ell'_1, \ell'_2, \ell'_3$ другие три попарно скрещивающихся прямых, также параллельные некоторой плоскости. Существует ли аффинное преобразование трёхмерного пространства, переводящее первую тройку прямых во вторую?
- **4.39.** Найдите отличную от тождественной аффинную изометрию трёхмерного пространства, оставляющую неподвижными точки (1,0,0), (0,1,0) и (0,0,1).
- **4.40.** Выясните геометрический смысл и найдите канонический вид следующих аффинных изометрий пространства:
 - a) $(x, y, z) \mapsto (-z + 1, x, y);$
 - б) $(x, y, z) \mapsto (z + 1, x, y)$.

5. Выпуклая геометрия

5.1. Линейные функции. Двойственное пространство. Линейной функционей (или линейным функционалом) на линейном пространстве V называется линейное отображение $f \colon V \to \mathbf{k}$. Как и всякое множество линейных отображений между двумя пространствами, множество линейных функций является линейным пространством.

Определение 5.1. Пространство $\text{Hom}(V, \mathbf{k})$ линейных функций $f: V \to \mathbf{k}$ называется двойственным (или сопряжённым) пространством к V и обозначается V^* .

Пусть e_1, \ldots, e_n — базис в V. Значение линейной функции $f \in V^*$ на любом векторе $x = \sum_i x_i e_i \in V$ определяется её значениями на базисных векторах, так как $f(x) = \sum_i x_i f(e_i)$. Определим линейные функции $\varepsilon_1, \ldots, \varepsilon_n \in V^*$ по правилу

$$\varepsilon_i(\mathbf{e}_i) = \delta_{ii}$$
.

Тогда для любого вектора $oldsymbol{x} = \sum_j x_j oldsymbol{e}_j$ мы имеем

$$\varepsilon_i(\mathbf{x}) = \varepsilon_i(\sum_j x_j \mathbf{e}_j) = \sum_j x_j \varepsilon_i(\mathbf{e}_j) = \sum_j x_j \delta_{ij} = x_i.$$

В связи с этим функции ε_i часто называют координатными функциями.

Предложение 5.2. Линейные функции $\varepsilon_1, ..., \varepsilon_n$ образуют базис в V^* .

Доказательство. Линейная независимость. Пусть $a_1\varepsilon_1+\ldots+a_n\varepsilon_n=o$. Это равенство означает, что линейная функция $f:=\sum_i a_i\varepsilon_i$ равна нулю на любом векторе из V. Вычислим её на векторе $e_j\colon 0=f(e_j)=\sum_i a_i\varepsilon_i(e_j)=a_j$. Итак, все коэффициенты a_j равны нулю, а значит $\varepsilon_1,\ldots,\varepsilon_n\in V^*$ линейно независимы.

Теперь проверим, что $\varepsilon_1, \ldots, \varepsilon_n$ порождают всё пространство V^* . Мы утверждаем, что любая линейная функция f представляется в виде линейной комбинации $f = \sum_i a_i \varepsilon_i$, где $a_i = f(e_i)$. Действительно, для любого вектора $\mathbf{x} = \sum_j x_j e_j \in V$ имеем

$$\sum_{i} a_i \varepsilon_i(\boldsymbol{x}) = \sum_{i} a_i x_i = \sum_{i} f(\boldsymbol{e}_i) x_i = f(\sum_{i} x_i \boldsymbol{e}_i) = f(\boldsymbol{x}).$$

Следовательно, $f = \sum_i a_i \varepsilon_i$, т.е. $\varepsilon_1, \dots, \varepsilon_n$ — базис в V^* .

Определение 5.3. Базис $\varepsilon_1, \dots, \varepsilon_n$ пространства V^* называется *двойственными* (или *сопряжеённым*) *базисом* к e_1, \dots, e_n .

Следствие 5.4. Для конечномерного V имеем $\dim V = \dim V^*$.

Таким образом, в конечномерном случае пространства V и V^* изоморфны. Однако для построения изоморфизма между ними нам необходимо выбрать базис в V (и двойственный базис в V^*); изоморфизм между V и V^* «неканоничен» в том смысле, что он зависит от выбора базиса. Разные базисы дают разные изоморфизмы.

Для бесконечномерных пространств ситуация иная: пространства V и V^* никогда не изоморфны (задача), пространство V^* всегда «больше».

Теперь рассмотрим второе двойственное пространство V^{**} . По определению, его элементами являются линейные функции на пространстве линейных функций V^{*} . Здесь имеется каноническое (не зависящее от выбора базисов) линейное отображение $V \to V^{**}$, которое является изоморфизмом в конечномерном случае.

Теорема 5.5. Отображение $\varphi \colon V \to V^{**}$, сопоставляющее вектору $\mathbf{x} \in V$ линейную функцию $\varphi_{\mathbf{x}}$ на V^* , задаваемую формулой

$$\varphi_{\mathbf{x}}(f) := f(\mathbf{x})$$
 для $f \in V^*$,

является линейным, а в конечномерном случае — изоморфизмом.

Доказательство. Очевидно, что φ_x — линейная функция на V^* . Кроме того,

$$\varphi(x + y) = \varphi_{x+y} = \varphi_x + \varphi_y = \varphi(x) + \varphi(y)$$

и $\varphi(\lambda x) = \lambda \varphi(x)$, т.е. отображение φ линейно.

Пусть теперь V конечномерно. Докажем, что $\varphi \colon V \to V^{**}$ инъективно. Пусть $\varphi(x) = \varphi_x = o$. Последнее равенство означает, что $\varphi_x(f) = f(x) = 0$ для любой линейной функции $f \in V^*$. В частности, это верно для всех линейных функций $\varepsilon_1, \ldots, \varepsilon_n$ двойственного базиса к произвольному базису e_1, \ldots, e_n в V. Следовательно, $\varepsilon_i(x) = x_i = 0$, т.е. все координаты вектора $x \in V$ в базисе e_1, \ldots, e_n равны нулю. Это означает, что x = 0, т.е. φ инъективно. Так как $\dim V = \dim V^{**}$ и φ инъективно, оно переводит базис пространства V в базис пространства V^{**} , а потому является изоморфизмом.

Далее, чтобы подчеркнуть симметрию между пространствами V и V^* , мы будем обозначать значение линейной функции $a \in V^*$ на векторе $x \in V$ через $\langle a, x \rangle$ (оно же есть значенение линейной функции $x \in V^{**} = V$ на векторе $a \in V^*$).

5.2. Выпуклые множества. Пусть V — евклидово пространство размерности n и A(V) — связанное с ним аффинное пространство.

 $A \phi \phi$ инной оболочкой подмножества $S \subset A(V)$ называется наименьшее аффинное подпространство aff S, содержащее S. Набор из k точек $x_1, \ldots, x_k \in A(V)$ называется $a \phi \phi$ инно независимым, если $\dim \operatorname{aff}(x_1, \ldots, x_k) = k-1$. Размерностью подмножества $S \subset A(V)$ называется размерность его аффинной оболочки: $\dim S := \dim \operatorname{aff} S$.

Определение 5.6. Подмножество $C \subset A(V)$ называется выпуклым, если вместе с любыми двумя точками $x_1, x_2 \in C$ оно содержит отрезок

$$[x_1, x_2] := \{\lambda_1 x_1 + \lambda_2 x_2 \in A(V) \colon \lambda_1, \lambda_2 \geqslant 0, \ \lambda_1 + \lambda_2 = 1\} = \{(1 - \lambda) x_1 + \lambda x_2 \colon \lambda \in [0, 1]\}.$$
 Аналогично определяются интервал (x_1, x_2) и полуинтервал $[x_1, x_2)$.

 $Bыпуклой оболочкой подмножества <math>S \subset A(V)$ называется наименьшее выпуклое подмножество conv S, содержащее S.

Ясно, что всякое аффинное подпространство выпукло. Вот другой базовый пример выпуклого множества.

Пример 5.7. Пусть x_1, \ldots, x_k — аффинно независимые точки. Симплексом с вершинами x_1, \ldots, x_k называется подмножество

$$\Delta(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k) := \{\lambda_1\boldsymbol{x}_1 + \ldots + \lambda_k\boldsymbol{x}_k \in A(V) : \lambda_i \geqslant 0, \ \lambda_1 + \ldots + \lambda_k = 1\}.$$

Ясно, что dim $\Delta(x_1, \ldots, x_k) = k - 1$. Нульмерные симплексы — точки, одномерные — отрезки, двумерные — треугольники, трёхмерные — тетраэдры.

Любая точка $x \in \Delta(x_1, ..., x_k)$ однозначно задаётся числами $\lambda_1, ..., \lambda_k$, которые называются её барицентрическими координатами.

Легко видеть, что $\Delta(x_1,\ldots,x_k)$ — выпуклое множество. Кроме того, множество $S\subset A(V)$ выпукло тогда и только тогда, когда вместе с любыми точками

 $x_1, \ldots, x_k \in S$ оно содержит симплекс $\Delta(x_1, \ldots, x_k)$ (задача). В связи с этим линейную комбинацию $\lambda_1 x_1 + \ldots + \lambda_k x_k$ с $\lambda_i \geqslant 0$ и $\lambda_1 + \ldots + \lambda_k = 1$ называют випуклой комбинацией точек x_1, \ldots, x_k . Выпуклая оболочка множества S есть множество всех выпуклых комбинаций его точек.

Определение 5.8. Точка x называется внутренней точкой множества $S\subset A(V),$ если для некоторого $\varepsilon>0$ множество S содержит открытый шар

$$B_{\varepsilon}(\boldsymbol{x}) = \{ \boldsymbol{x}' \in A(V) : d(\boldsymbol{x}, \boldsymbol{x}') < \varepsilon \}$$

с центром в x и радиусом ε . Множество всех внутренних точек множества S называется его внутренностью и обозначается int S.

Множество S называется *открытым*, если S = int S. Множество называется замкнутым, если его дополнение в A(V) открыто. Внутренность множества S является наибольшим открытым множеством, содержащимся в S. Наименьшее замкнутое множество, содержащее S, называется его замыканием и обозначается \overline{S} .

Предложение 5.9. Для непустого выпуклого множества C имеем ri $C \neq \varnothing$.

Доказательство. Пусть вначале $C=\Delta({m x}_1,\ldots,{m x}_k)$ — симплекс. Легко видеть, что

$$\operatorname{ri} \Delta(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k) = \{\lambda_1 \boldsymbol{x}_1 + \ldots + \lambda_k \boldsymbol{x}_k \in \Delta(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k) \colon \lambda_i > 0\} \neq \emptyset.$$

Пусть теперь C — произвольное выпуклое множество, причём dim aff $C=k-1, k\geqslant 1$. Выберем k аффинно независимых точек $x_1,\ldots,x_k\in C$. Тогда $C\supset \Delta(x_1,\ldots,x_k)$ и гі $C\supset$ гі $\Delta(x_1,\ldots,x_k)\neq\varnothing$.

Лемма 5.10. Пусть C - выпуклое множество. Тогда для любых различных точек $x \in ri\ C \ u \ y \in C \ umeem\ [x,y] \subset ri\ C$.

Доказательство. Не ограничивая общности можно считать, что aff C=A(V), т. е. гі $C=\operatorname{int} C$. Пусть $\boldsymbol{x}_{\lambda}=(1-\lambda)\boldsymbol{x}+\lambda\boldsymbol{y}$, где $\lambda\in(0,1)$; надо проверить, что $\boldsymbol{x}_{\lambda}\in\operatorname{int} C$. Так как $\boldsymbol{x}\in\operatorname{int} C$, мы имеем $B_{\varepsilon}(\boldsymbol{x})\subset C$ для некоторого $\varepsilon>0$. Тогда

$$(1 - \lambda)B_{\varepsilon}(\boldsymbol{x}) + \lambda \boldsymbol{y} = B_{(1-\lambda)\varepsilon}(\boldsymbol{x}_{\lambda})$$

— шар с центром x_{λ} и радиусом $(1-\lambda)\varepsilon > 0$. Левая часть равенства показывает, что этот шар содержится в C, так как C — выпуклое множество. Итак, $x_{\lambda} \in \text{int } C$.

 $A\phi\phi$ инной функцией на пространстве A(V) называется функция $A(V) \to \mathbb{R}$ вида $x \mapsto \langle a, x \rangle + b$, где $a \in V^*$ и $b \in \mathbb{R}$. Если $a \neq \mathbf{0}$, то такая аффинная функция задаёт гиперплоскость (аффинное подпространство размерности n-1)

$$H(\boldsymbol{a},b) = \{ \boldsymbol{x} \in A(V) \colon \langle \boldsymbol{a}, \boldsymbol{x} \rangle + b = 0 \}$$

и положительное и отрицательное полупространства

$$H_{+}(\boldsymbol{a},b) = \{ \boldsymbol{x} \in A(V) \colon \langle \boldsymbol{a}, \boldsymbol{x} \rangle + b \geqslant 0 \} \qquad \text{if} \qquad H_{-}(\boldsymbol{a},b) = \{ \boldsymbol{x} \in A(V) \colon \langle \boldsymbol{a}, \boldsymbol{x} \rangle + b \leqslant 0 \}.$$

Определение 5.11. Пусть C — замкнутое выпуклое множество. Гиперплоскость H называется опорной для C, если $H \cap C \neq \emptyset$ и C содержится в одном из полупространств H_+ или H_- . Полупространство H_+ или H_- , в котором содержится C, называется опорным полупространством.

Теорема 5.12. Пусть C — непустое замкнутое выпуклое множество. Для любой точки $x \in \text{rb } C$ существует опорная гиперплоскость H, проходящая через x и не имеющая общих точек c ri C (в частности, не содержащая C).

Доказательство этой теоремы опирается на следующую лемму.

Лемма 5.13. Пусть U — непустое открытое выпуклое множество в A(V). Любая точка $x \notin U$ содержится в гиперплоскости H, не пересекающей U.

Доказательство. Проведём индукцию по размерности dim V. Очевидно, утверждение верно при dim V=0,1. Для шага индукции нам также понадобится случай dim V=2. Итак, пусть U — непустое открытое выпуклое множество на плоскости и пусть $\boldsymbol{x}\notin U$. Докажем, что на плоскости существует такая прямая ℓ , что $\boldsymbol{x}\in \ell$ и $L\cap U=\varnothing$. Пусть S — произвольная окружность с центром в \boldsymbol{x} . Для каждой точки $\boldsymbol{u}\in U$ обозначим через \boldsymbol{u}' точку пересечения полупрямой, выходящей из \boldsymbol{x} и проходящей через \boldsymbol{u} , с окружностью S. Множество $S'=\{\boldsymbol{u}':\boldsymbol{u}\in U\}$ представляет собой открытую дугу на S. Так как $\boldsymbol{x}\notin U$ и U выпукло, никакие две диаметрально противоположные точки на S не могут одновременно принадлежать S'. Значит, угол между полупрямыми, выходящими из \boldsymbol{x} и проходящими через концы дуги S', не превосходит π . Поэтому в качестве ℓ можно взять любую из двух прямых, порождаемых этими полупрямыми. (В случае, когда указанный угол равен π , прямая ℓ единственна.)

Пусть теперь $\dim V > 2$. Проведём через \boldsymbol{x} произвольную двумерную плоскость π , пересекающую U. Тогда $U \cap \pi$ — непустое открытое выпуклое множество в π , не содержащее \boldsymbol{x} . Согласно предыдущему утверждению, существует такая прямая $\ell \subset \pi$, что $\boldsymbol{x} \in \ell$ и $\ell \cap (U \cap \pi) = \ell \cap U = \varnothing$. Выберем произвольную гиперплоскость R, ортогональную к прямой ℓ , и рассмотрим ортогональную проекцию $\operatorname{pr}_R : A(V) \to R$. Тогда $\operatorname{pr}_R U$ — непустое открытое выпуклое множество в R, не содержащее точку $\operatorname{pr}_R \boldsymbol{x}$ (так как $\operatorname{pr}_R^{-1}(\operatorname{pr}_R \boldsymbol{x}) = \ell$). По предположению индукции, в R найдётся гиперплоскость H', такая что $\operatorname{pr}_R \boldsymbol{x} \in H'$ и $H' \cap \operatorname{pr}_R U = \varnothing$. Но тогда $H := \operatorname{aff}(H' \cap \ell) = \operatorname{pr}_R^{-1} H'$ будет гиперплоскостью в исходном пространстве, удовлетворяющей условиям $\boldsymbol{x} \in H$ и $H \cap U = \varnothing$.

Доказательство теоремы 5.12. Применим лемму 5.13 к непустому выпуклому множеству $U=\mathrm{ri}\,C$, которое открыто в пространстве aff C, и точке $x\in\mathrm{rb}\,C$. Тогда $x\notin U$ Это даёт нам гиперплоскость $H'\subset\mathrm{aff}\,C$, для которой $x\in H'$ и $\mathrm{ri}\,C\cap H'=\varnothing$. Очевидно, что найдётся гиперплоскость $H\subset A(V)$ с aff $C\cap H=H'$. Тогда мы по-прежнему имеем $x\in H$ и $\mathrm{ri}\,C\cap H=\varnothing$. Мы утверждаем, что H— опорная гиперплоскость. Действительно, пусть $y\in\mathrm{ri}\,C$ и предположим, что найдётся такая точка $z\in C$, что y и z лежат по разные стороны от H. Тогда найдётся точка $u\in (y,z)$, лежащая на H. Но согласно лемме 5.10 имеем $u\in\mathrm{ri}\,C$. Следовательно, $u\in\mathrm{ri}\,C\cap H$. Противоречие. Итак, H— опорная гиперплоскость для C.

Теорема 5.14. Всякое непустое замкнутое выпуклое множество C совпадает c пересечением своих опорных полупространств.

Рис. 2. Вершины и крайние точки

Доказательство. Утверждение верно, если $\dim C = 0$ (то есть C — точка) или C = A(V) (тогда нет опорных полупространств). Пусть C — собственное подмножество в A(V) положительной размерности. Достаточно доказать, что для любой точки $x \notin C$ найдётся такая опорная гиперплоскость H, что $C \subset H_+$, а $x \notin H_+$.

Если $x \notin \text{aff } C$, то найдётся такая гиперплоскость H, что aff $C \subset H$ и $x \notin H$. Можно считать, что $x \notin H_+$ (иначе заменим H на -H), так что H — требуемая опорная гиперплоскость.

Пусть теперь $x \in \text{aff } C$. Выберем согласно предложению 5.9 точку $z \in \text{ri } C$. Тогда $[z,x] \cap C = [z,y]$, где $y \in \text{rb } C$ и $[z,y) \subset \text{ri } C$ (см. лемму 5.10). Согласно теореме 5.12 существует такая опорная гиперплоскость H, что $y \in H$ и гі $C \cap H = \varnothing$. Мы утвеждаем, что это и есть требуемая опорная гиперплоскость. Действительно, пусть H = H(a,b). Тогда $\langle a,y \rangle + b = 0$ (так как $y \in H$) и можно считать, что $\langle a,z \rangle + b > 0$ (так как $z \in \text{ri } C$ и гі $C \cap H = \varnothing$). Так как y - внутренняя точка отрезка [z,x], мы имеем $\langle a,x \rangle + b < 0$, т. е. $x \notin H_+$, как и требуется.

Определение 5.15. Гранью замкнутого выпуклого множества C называется пересечение $H \cap C$ с любой опорной гиперплоскостью H, не содержащей C. Грань является выпуклым множеством размерности строго меньше, чем размерность C. Нульмерные грани называются вершинами, одномерные грани — $p\ddot{e}\delta pamu$, а грани размерности $\dim C - 1$ называются гипергранями.

Точка $x \in C$ называется *крайней* для выпуклого множества C, если x не является внутренней точкой никакого отрезка с концами в C. Каждая вершина является крайней точкой, но обратное, вообще говоря, неверно (см. пример ниже).

Терминология граней происходит из выпуклых многогранников, которые будут рассмотрены в следующем разделе. Здесь мы рассмотрим два примера выпуклых множеств, для которых грани устроены не как у многогранников.

Пример 5.16. Все граничные точки замкнутого шара являются его вершинами, а граней положительной размерности нет.

Рассмотрим выпуклое множество на рис. 2, ограниченное двумя полуокружностями и двумя отрезками. Его вершинами являются все точки открытых полуокружностей, а крайними точками — точки замкнутых полуокружностей. Четыре выделенные точки являются крайними, но не являются вершинами.

Теорема 5.17. Всякое замкнутое ограниченное выпуклое множество C является выпуклой оболочкой своих крайних точек.

Доказательство. Проведём индуцкию по $\dim C$. Утверждение очевидно при $\dim C = 0$ и $\dim C = 1$. Пусть $\dim C > 1$. Необходимо доказать, что любая точка $\boldsymbol{x} \in C$ является выпуклой комбинацией крайних точек. Если \boldsymbol{x} — крайняя точка, то доказывать нечего. В противном случае \boldsymbol{x} является внутренней точкой некоторого отрезка $[\boldsymbol{y}, \boldsymbol{z}]$, где $\boldsymbol{y}, \boldsymbol{z} \in C$. Продлив, если необходимо, отрезок за его концы, можно считать, что

 $y, z \in \text{rb } C$ (здесь используется ограниченность). Согласно теореме 5.12 через точки y, z проходят опорные гипеплоскости, не содержащие C. Это означает, что точки y, z содержатся в гранях множества C. По предположению индукции, каждая из точек y, z является выпуклой комбинацией крайних точек соответствующей грани, т.е. $y = \lambda_1 y_1 + \ldots + \lambda_k y_k$ и $z = \mu_1 z_1 + \ldots + \mu_\ell z_\ell$. Крайняя точка грани также является крайней точкой для C. Поэтому

$$\boldsymbol{x} = \lambda \boldsymbol{y} + (1 - \lambda) \boldsymbol{z} = \lambda \lambda_1 \boldsymbol{y}_1 + \lambda \lambda_k \boldsymbol{y}_k + (1 - \lambda) \mu_1 \boldsymbol{z}_1 + (1 - \lambda) \mu_\ell \boldsymbol{z}_\ell$$

— выпуклая комбинация крайних точек множества C.

5.3. Выпуклые многогранники, полярность. В теоремах 5.14 и 5.17 мы получили два представления замкнутых ограниченных выпуклых множеств: «внешнее» (как пересечение опорных полупространств) и «внутреннее» (как выпуклая оболочка крайних точек). Выпуклые многогранники представляют собой множества, для которых каждое из этих представлений конечно. При этом теорема об эквивалентность двух условий конечности имеет важное теоретическое и практическое значение.

Определение 5.18. Выпуклым многогранником P в аффинном пространстве A(V) называется выпуклая оболочка конечного набора точек:

$$P = \operatorname{conv}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_s).$$

Поиэдральным множееством называется пересечение конечного числа замкнутых полупространств:

(20)
$$Q = \bigcap_{i=1}^{m} H_{+}(\boldsymbol{a}_{i}, b_{i}) = \{\boldsymbol{x} \in A(V) : \langle \boldsymbol{a}_{i}, \boldsymbol{x} \rangle + b_{i} \geqslant 0, \ i = 1, \dots, m\}.$$

Теорема 5.19 (Минковский–Вейль). Множеество S является выпуклым многогранником тогда и только тогда, когда оно является ограниченным полиэдральным множееством.

Доказательство теоремы 5.19 (достаточность). Пусть Q — ограниченное полиэдральное множество (20). Ясно, что Q выпукло. По теореме 5.17 множество Q является выпуклой оболочкой своих крайних точек. Докажем, что всякая крайняя точка есть единственная точка пересечения некоторых из гиперплоскостей $H(\boldsymbol{a}_i,b_i)$. Отсюда будет следовать, что число крайних точек у Q конечно, а значит Q — выпуклый многогранник.

Пусть $q \in Q$ — крайняя точка. Положим

$$I(q) = \{i : \langle a_i, q \rangle + b_i = 0\} \subset \{1, \dots, m\},$$
 $L(q) = \{x \in A(V) : \langle a_i, x \rangle + b_i = 0 \quad \text{при } i \in I(q)\}.$

Так как $\langle \boldsymbol{a}_j, \boldsymbol{q} \rangle + b_j > 0$ при $j \notin I(\boldsymbol{q})$, точка \boldsymbol{q} является внутренней для полиэдрального множества $Q \cap L(\boldsymbol{q})$ в пространстве $L(\boldsymbol{q})$. Но \boldsymbol{q} — крайняя точка для Q, а значит и крайняя точка для $Q \cap L(\boldsymbol{q})$. Следовательно, $\dim L(\boldsymbol{q}) = 0$, т. е. $L(\boldsymbol{q}) = \{\boldsymbol{q}\}$.

Для доказательства необходимости нам понадобится понятие полярности.

Определение 5.20. Полярным множеством для $S \subset A(V)$ называется множество

$$S^*:=\{m{a}\in A(V^*)\colon \langle m{a},m{x}
angle+1\geqslant 0\quad$$
для любого $m{x}\in S\}=igcap_{m{x}\in S}H_+(m{x},1).$

Из этого определения следует, что S^* является замкнутым выпуклым множеством, содержащим $\mathbf{0}$, так как этим свойством обладает каждое полупространство $H_+(x,1)$. Так как $a \in H_+(x,1)$ тогда и только тогда, когда $x \in H_+(a,1)$, мы имеем

$$a \in S^* \Leftrightarrow S \subset H_+(a, 1).$$

Далее, ясно, что

$$S_1 \subset S_2 \quad \Rightarrow \quad S_1^* \supset S_2^*.$$

Предложение 5.21. Пусть S- подмножество в A(V).

- а) Если S ограничено, то $\mathbf{0}$ внутренняя точка для S^* .
- б) Eсли $\mathbf{0} в$ нутренняя точка для S, то S^* ограничено.

 \mathcal{A} оказательство. Вначале заметим, что если $\overline{B}_r(\mathbf{0})$ — замкнутый шар радиуса r с центром в $\mathbf{0}$, то $\overline{B}_r(\mathbf{0})^* = \overline{B}_{1/r}(\mathbf{0})$.

Докажем а). Пусть S ограничено. Тогда $S \subset \overline{B}_r(\mathbf{0})$ для некоторого r > 0. Следовательно $S^* \supset \overline{B}_{1/r}(\mathbf{0})$, т. е. $\mathbf{0} \in \operatorname{int} S^*$.

Докажем б). Пусть $\mathbf{0} \in \operatorname{int} S$. Тогда $\overline{B}_r(\mathbf{0}) \subset S$ для некоторого r>0. Следовательно $\overline{B}_{1/r}(\mathbf{0})\supset S^*$, т. е. S^* ограничено.

Теорема 5.22. Для любого замкнутого подмножества S в A(V) имеем

$$S^{**} = \overline{\operatorname{conv}(\mathbf{0} \cup S)},$$

 $m. e. S^{**}$ — наименьшее замкнутое выпуклое множество, содержащее $0 \ u \ S.$

Заметим, что $\overline{\text{conv}(\mathbf{0} \cup S)}$ может не совпадать с $\text{conv}(\mathbf{0} \cup S)$, даже если S замкнуто (см. задачу 5.39).

Доказательство теоремы 5.22. Мы имеем

$$S^{**} = \bigcap_{a \in S^*} H_+(a, 1) = \bigcap_{S \subset H_+(a, 1)} H_+(a, 1).$$

Отсюда следует, что S^{**} — замкнутое выпуклое множество, содержащее $\mathbf{0}$ и S. Следовательно, $\overline{\text{conv}(\mathbf{0} \cup S)} \subset S^{**}$.

Чтобы доказать обратное включение, рассмотрим $\mathbf{y} \notin \overline{\mathrm{conv}(\mathbf{0} \cup S)}$. Нужно доказать, что найдётся полупространство $H_+(\mathbf{a},1)$, содержащее S, но не содержащее \mathbf{y} . Так как замкнутое выпуклое множество $\overline{\mathrm{conv}(\mathbf{0} \cup S)}$ совпадает с пересечением своих опорных полупространств (теорема 5.14), найдётся опорное полупространство $H_+(\mathbf{a}',b)$, не содержащее \mathbf{y} . Так как $\mathbf{0} \in \overline{\mathrm{conv}(\mathbf{0} \cup S)}$, мы имеем $b \geqslant 0$. Тогда найдётся такое $\varepsilon > 0$, что $\mathbf{y} \notin H_+(\mathbf{a}',b+\varepsilon)$. При этом, так как $S \subset \overline{\mathrm{conv}(\mathbf{0} \cup S)} \subset H_+(\mathbf{a}',b)$, мы тем более имеем $S \subset H_+(\mathbf{a}',b+\varepsilon)$. Теперь, положив $\mathbf{a} := \frac{\mathbf{a}'}{b+\varepsilon}$, мы имеем $H_+(\mathbf{a},1) = H_+(\mathbf{a}',b+\varepsilon)$, $\mathbf{y} \notin H_+(\mathbf{a},1)$ и $S \subset H_+(\mathbf{a},1)$, что и требовалось.

Из предложения 5.21 и теоремы 5.22 немедленно вытекает

Следствие 5.23. Пусть C — замкнутое ограниченное выпуклое множество, причём $\mathbf{0} \in \operatorname{int} C$. Тогда C^* — тоже замкнутое ограниченное выпуклое множество, причём $\mathbf{0} \in \operatorname{int} C^*$. Кроме того, $C^{**} = C$.

Теперь при помощи полярности установим взаимосвязь между выпуклыми многогранниками и полиэдральными множествами.

Теорема 5.24.

а) Пусть $P=\operatorname{conv}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_s)$ — выпуклый многогранник в A(V). Тогда

$$P^* = \{ a \in A(V^*) : \langle a, x_i \rangle + 1 \ge 0, \quad i = 1, ..., s \} = \bigcap_{i=1}^s H_+(x_i, 1).$$

Таким образом, P^* — полиэдральное множество и $\mathbf{0} \in \operatorname{int} P^*$.

б) Пусть

$$Q = \{ \boldsymbol{x} \in A(V) : \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + 1 \geqslant 0, \quad i = 1, \dots, m \} = \bigcap_{i=1}^m H_+(\boldsymbol{a}_i, 1)$$

— полиэдральное множество. Тогда $Q^* = \text{conv}(\mathbf{0}, \mathbf{a}_1, \dots, \mathbf{a}_m)$. Если Q ограничено, то $Q^* = \text{conv}(\mathbf{a}_1, \dots, \mathbf{a}_m)$ и $\mathbf{0} \in \text{int } Q^*$.

Доказательство. Докажем а). Мы имеем $P^* = \bigcap_{x \in P} H_+(x,1) \subset \bigcap_{i=1}^s H_+(x_i,1)$. С другой стороны, для любого $x \in P = \operatorname{conv}(x_1,\ldots,x_s)$ неравенство $\langle a,x \rangle + 1 \geqslant 0$ является следствием неравенств $\langle a,x_i \rangle + 1 \geqslant 0$, $i=1,\ldots,m$. Следовательно, $\bigcap_{x \in P} H_+(x,1) \subset \bigcap_{i=1}^s H_+(x_i,1)$.

Докажем б). Положим $P=\operatorname{conv}(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m)$. Согласно а), $Q=P^*$, а значит

$$Q^* = P^{**} = \overline{\operatorname{conv}(\mathbf{0} \cup P)} = \operatorname{conv}(\mathbf{0}, \boldsymbol{a}_1, \dots, \boldsymbol{a}_m)$$

в силу теоремы 5.22. Наконец, если Q ограничено, то $\mathbf{0} \in \operatorname{int} Q^*$ согласно предложению 5.21 а). Так что в этом случае $Q^* = \operatorname{conv}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_m)$.

Теперь мы можем завершить доказательство теоремы 5.19.

Доказательство теоремы 5.19 (необходимость). Пусть $P = \text{conv}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_s)$ — выпуклый многогранник. Необходимо доказать, что P — ограниченное полиэдральное множество. Не ограничивая общности можно считать, что $\boldsymbol{0} \in \text{int } P$. Тогда P^* — ограниченное полиэдральное множество в силу предложения 5.21 б) и теоремы 5.24 а). Согласно уже доказанной части утвеждения теоремы 5.19, множество P^* является выпуклым многогранником, т. е. $P^* = \text{conv}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_m)$. Снова применяя утверждение а) теоремы 5.24, мы заключаем, что $P^{**} = P$ — ограниченное полиэдральное множество.

5.4. **Решётка граней.** Напомним, что гранью замкнутого выпуклого множества C называется пересечение $H \cap C$ с любой опорной гиперплоскостью H, не содержащей C. Нульмерные грани называются вершинами, а грани размерности $\dim C - 1$ называются гипергранями.

Вначале опишем, как выглядят грани полиэдральных множеств.

Теорема 5.25. Всякая грань F полиэдрального множества

$$Q = \{ \boldsymbol{x} \in A(V) : \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + b_i \geqslant 0, \quad i = 1, \dots, m \} = \bigcap_{i=1}^m H_+(\boldsymbol{a}_i, b_i)$$

имеет вид

$$F = Q \cap \left(\bigcap_{i \in I} H(\boldsymbol{a}_i, b_i)\right)$$

для некоторого $I = \{i_1, \ldots, i_k\} \subset \{1, \ldots, m\}.$

Доказательство. Положим $I:=\{i\colon F\subset H(\pmb{a}_i,b_i)\}$. Для каждого $j\notin I$ найдётся такая точка $\pmb{y}_j\in F$, что $\langle \pmb{a}_j,\pmb{y}_j\rangle+b_j>0$. Пусть $\pmb{y}:=\frac{1}{m-|I|}\sum_j\pmb{y}_j$ — центр тяжести системы этих точек. Тода $\langle \pmb{a}_j,\pmb{y}\rangle+b_j>0$ при всех $j\notin I$.

Теперь положим $F' = Q \cap (\bigcap_{i \in I} H(a_i, b_i))$. Тогда F' — пересечение граней $Q \cap H(a_i, b_i)$, $i \in I$, и это пересечение непусто, так как $F \subset F'$. Следовательно, F' — грань (задача). Кроме того, $\mathbf{y} \in \mathrm{ri}\, F'$. Поэтому всякая опорная гиперплоскость, проходящая через \mathbf{y} , содержит F'. Это доказывает обратное включение $F' \subset F$.

Таким образом, всякая грань полиэдрального множества Q получается заменой части из задающих Q неравенств равенствами. Отсюда легко выводится следующее утверждение (задача):

Следствие 5.26. Всякая грань полиэдрального множества является пересечением содержащих её гиперграней.

Теперь рассмотрим грани выпуклых многогранников.

Теорема 5.27. Всякая грань F выпуклого многогранника $P = \text{conv}(\mathbf{x}_1, \dots, \mathbf{x}_s)$ имеет вид $F = \text{conv}(\mathbf{x}_i : i \in I)$ для некоторого $I \subset \{1, \dots, s\}$.

Доказательство. Пусть $\exp P$ — множество крайних точек многогранника $P = \operatorname{conv}(\boldsymbol{x}_1,\dots,\boldsymbol{x}_s)$. Мы утверждаем, что $\exp P \subset \{\boldsymbol{x}_1,\dots,\boldsymbol{x}_s\}$. Действительно, в противном случае найдётся крайняя точка $\boldsymbol{x} \notin \{\boldsymbol{x}_1,\dots,\boldsymbol{x}_s\}$. По определению крайней точки, $P \setminus \{\boldsymbol{x}\}$ — выпуклое множество, содержащее $\boldsymbol{x}_1,\dots,\boldsymbol{x}_s$. Тогда $\operatorname{conv}(\boldsymbol{x}_1,\dots,\boldsymbol{x}_s) \subset P \setminus \{\boldsymbol{x}\} \subsetneq P$. Противоречие.

Теперь пусть F — грань. Положим $I = \{i : x_i \in F\}$. Так как каждая крайняя точка F является крайней и для P, мы имеем $\operatorname{ext} F = \operatorname{ext} P \cap F \subset \{x_i : i \in I\}$. В силу теоремы 5.17, $F = \operatorname{conv}(\operatorname{ext} F)$, откуда следует $F = \operatorname{conv}(x_i : i \in I)$.

На самом деле каждая крайняя точка выпуклого многогранника является его вершиной (задача). Отсюда вытекает

Следствие 5.28. Всякая грань выпуклого многогранника является выпуклой оболочкой содержащихся в ней вершин.

Из любой из теорем 5.25 и 5.27 получаем

Следствие 5.29. Число граней выпуклого многогранника конечно.

Теперь рассмотрим грани произвольного замкнутого ограниченного (компактного) выпуклого множества C. Мы будем предполагать, что $\mathbf{0} \in \operatorname{int} C$. Тогда полярное множество

$$C^*=\{oldsymbol{a}\in A(V^*)\colon \langle oldsymbol{a},oldsymbol{x}
angle+1\geqslant 0$$
 для любого $oldsymbol{x}\in C\}=igcap_{oldsymbol{x}\in C}H_+(oldsymbol{x},1).$

также является выпуклым компактом и $C^{**} = C$ (следствие 5.23).

Теорема 5.30. Пусть F — грань выпуклого компакта C, $\mathbf{0} \in \text{int } C$. Положим

$$F^\circ := \{ {\pmb a} \in C^* \colon \langle {\pmb a}, {\pmb x}
angle + 1 = 0 \quad$$
 для любого ${\pmb x} \in F \} = \bigcap_{{\pmb x} \in F} C^* \cap H({\pmb x}, 1).$

Tог ∂a

а)
$$F^{\circ}$$
 — грань C^{*} .

- б) Если F, G грани C и $F \subset G$, то $F^{\circ} \supset G^{\circ}$.
- B) $F^{\circ \circ} = F$.

Доказательство. а) Каждая точка $x \in F$ лежит на границе $C \setminus \text{int } C$ множества C, а потому H(x,1) является опорной гиперплоскостью для C^* (задача). Поэтому $C^* \cap H(x,1)$ является гранью C^* , а $F^\circ = \bigcap_{x \in F} C^* \cap H(x,1)$ также является гранью как пересечение граней.

- б) Очевидно.
- в) Имеем $F^{\circ\circ} = \bigcap_{\boldsymbol{a} \in F^{\circ}} C \cap H(\boldsymbol{a},1)$. Из определения F° следует, что \boldsymbol{a} лежит в F° тогда и только тогда, когда $H(\boldsymbol{a},1)$ опорная гиперплоскость для C, содержащая F. Поэтому $F^{\circ\circ}$ есть пересечение всех граней множества C, содержащих F. Это пересечение есть сама грань F.

Рассмотрим множество граней выпуклого компакта C, частично упорядоченное отношением включения. Добавим к этом множеству наименьший элемент \varnothing и наибольший элемент C (их иногда называют несобственными гранями). Полученное частично упорядоченное множество называется решёткой граней выпуклого компакта C. (В теории частично упорядоченных множеств решёткой называется частично упорядоченное множество с наименьшим и наибольшим элементом, в котором для любых двух элементов существует единственная точная верхняя грань и точная нижняя грань.)

Следствие 5.31. Для выпуклого компакта C, $\mathbf{0} \in \text{int } C$, решётка граней полярного компакта C^* получается из решётки граней C обращением включения.

Решётка граней выпуклого многогранника P конечна. Если $\mathbf{0} \in \operatorname{int} P$, то P^* — также выпуклый многогранник, который называется $\partial soйcmsehhым$ к P. В этом случае можно доказать, что если F — грань многогранника P, то $\dim F + \dim F^\circ = \dim P - 1$ (задача). Так, вершины P соответствуют гиперграням P^* и наоборот. Двойственным многогранником к правильному тетраэдру является правильный тетраэдр, двойственным к кубу — октаэдр, а двойственным к додекаэдру — икосаэдр.

5.5. Задачи линейного программирования. Многие прикладные задачи оптимизации сводятся к следующей постановке: найти максимум (или минимум) линейной функции $f(x) = \langle a, x \rangle$ при ограничениях, заданных линейными неравенствами. Система линейных неравенств задаёт полиэдральное множество, на котором и максимизируется линейная функция. Данная постановка называется задачей линейного программирования.

В случае, когда полиэдральное множество является выпуклым многогранником (т.е. ограничено), имеет место

Предложение 5.32. Максимум линейной $f(x) = \langle a, x \rangle$ на выпуклом многограннике P достигается в одной из его вершин.

Доказательство. Имеем $P=\mathrm{conv}(\pmb{x}_1,\ldots,\pmb{x}_s)$, где $\pmb{x}_1,\ldots,\pmb{x}_s$ — вершины P. Для любой точки $\pmb{x}\in P$ имеем $\pmb{x}=\sum_{i=1}^s\lambda_i\pmb{x}_i,\sum_{i=1}^s\lambda_i=1,\,\lambda_i\geqslant 0$. Тогда

$$f(\boldsymbol{x}) = \sum_{i} \lambda_{i} f(\boldsymbol{x}_{i}) \leqslant \max_{i} f(\boldsymbol{x}_{i}).$$

Вот два примера оптимизационных задач, сводящихся к задаче линейного программирования.

Пример 5.33 (задача о максимизации прибыли). Предприятие располагает ресурсами R_1, \ldots, R_m в количестве b_1, \ldots, b_m соответственно и планирует произвести продукцию типов P_1, \ldots, P_n в количестве x_1, \ldots, x_n соответственно. Пусть a_{ij} — количество ресурса R_i , нужное для производства единицы продукции P_j , и c_j — цена единицы продукции P_j . Тогда мы имеем систему линейных неравенств

$$\sum_{i=1}^{n} a_{ij} x_{j} \leqslant b_{i}, \quad i = 1, \dots, m, \quad x_{j} \geqslant 0, \quad j = 1, \dots, n,$$

которые задают полиэдральное множество Q в пространстве \mathbb{R}^n с координатами x_1,\ldots,x_n . Для получения максимальной прибыли нужно выбрать точку $(x_1,\ldots,x_n)\in Q$, в которой линейная функция $\sum_{j=1}^n c_j x_j$ (стоимость произведённой продукции) максимальна.

Пример 5.34 (транспортная задача). Имеются поставщики A_1, \ldots, A_m , располагающие неким продуктом в количестве a_1, \ldots, a_m соответственно, и потребители B_1, \ldots, B_n , которые должны получить этот продукт в количестве b_1, \ldots, b_n соответственно, причём $\sum_{i=1}^m a_i = \sum_{j=1}^n b_j$. Пусть x_{ij} — количество продукта, которое предполагается доставить от A_i к B_j , и c_{ij} — стоимость доставки единицы продукта от A_i к B_j . Мы имеем условия

$$\sum_{j=1}^{n} x_{ij} = a_i, \quad \sum_{i=1}^{m} x_{ij} = b_j, \quad x_{ij} \geqslant 0,$$

которые задают полиэдральное множество Q в пространстве \mathbb{R}^{mn} с координатами x_{ij} . Задача состоит в минимизации линейной функции $\sum_{i,j} c_{ij} x_{ij}$ (общей стоимости транспортировки) на Q.

Основным алгоритмом решения задач линейного программирования является $cumnne\kappa c$ -memod. Его суть состоит в движении по рёбрам многогранника P в направлении возрастания функции f до тех пор, пока это возможно. Движение заканчивается в одной из вершин, в которых достигается максимум функции f.

Задачи и упражнения.

- **5.35.** Пусть C матрица перехода от базиса e_1, \ldots, e_n к базису e'_1, \ldots, e'_n пространства V. Найдите матицу перехода от сопряжённого базиса $\varepsilon_1, \ldots, \varepsilon_n$ к сопряжённому базису $\varepsilon'_1, \ldots, \varepsilon'_n$ пространства V^* .
- **5.36.** Докажите, что если V бесконечномерно, то пространства V и V^* неизоморфны.
- **5.37.** Докажите, что множество $C \subset A(V)$ выпукло тогда и только тогда, когда вместе с любыми точками x_1, \ldots, x_k оно содержит симплекс $\Delta(x_1, \ldots, x_k)$.
- 5.38. Убедитесь явно, что относительная внутренность симплекса непуста.
- 5.39. Верно ли, что выпуклая оболочка замкнутого множества замкнута?
- **5.40** (сумма Минковского). Для множеств $S_1, S_1 \subset A(V)$ множество

$$S_1 + S_2 := \{ \boldsymbol{x}_1 + \boldsymbol{x}_2 \colon \boldsymbol{x}_1 \in S_1, \ \boldsymbol{x}_2 \in S_2 \}$$

называется их суммой Минковского. Докажите следующие свойства:

а)
$$conv(S_1 + S_2) = conv S_1 + conv S_2$$
 для любых S_1, S_2 ;

- б) если C_1, C_2 выпуклые множества, то $C_1 + C_2$ также выпукло;
- в) если C_1, C_2 выпуклые множества, то $\mathrm{ri}(C_1 + C_2) = \mathrm{ri}\,C_1 + \mathrm{ri}\,C_2$.
- **5.41** (теорема Каратеодори). Для любого подмножества $S \subset A(V)$ с dim aff S = k его выпуклая оболочка conv S совпадает с множеством всех выпуклых комбинаций не более чем k+1 точек из S.
- **5.42** (теорема Радона). Пусть $S = \{x_1, \dots, x_k\}$ множество из $k \geqslant n+2$ точек пространства A(V), где $\dim V = n$. Тогда S можно представить в виде несвязного объединения непересекающихся подмножеств, $S = S_1 \sqcup S_2$, таких что $\operatorname{conv} S_1 \cap \operatorname{conv} S_2 \neq \emptyset$.
- **5.43** (теорема Хелли). Пусть $(C_i)_{i \in I}$ набор из $|I| \ge n+1$ выпуклых множеств в A(V), dim V = n. Рассмотрим следующие утверждения:
 - а) любые n+1 из множеств C_i имеют непустое пересечение;
 - б) все множества C_i имеют непустое пересечение.

Докажите, что если $|I| < \infty$, то а) \Rightarrow б). (Указание: проведите индукцию по |I|, применяя теорему Радона.)

Покажите на примере, что в случае $|I| = \infty$ импликация а) \Rightarrow б) уже неверна.

Докажите, что если все множества C_i замкнуты и хотя бы одно из них компактно, то импликация $a)\Rightarrow b$ справедлива без ограничений на I.

- **5.44.** Пусть $(C_i)_{i \in I}$ набор выпуклых множеств в A(V). Докажите, что $\operatorname{conv}(\bigcup_{i \in I} C_i)$ совпадает с множеством всех выпуклых комбинаций $\lambda_1 x_{i_1} + \ldots + \lambda_k x_{i_k}$, где $x_{i_j} \in C_{i_j}$.
- **5.45.** Пусть C_1, C_2 выпуклые множества. Говорят, что гиперплоскость H разделяет C_1 и C_2 , если $C_1 \subset H_-$, $C_2 \subset H_+$ и хотя бы одно из множеств C_1, C_2 не содержится в H. Докажите, что гиперплоскость, разделяющая C_1 и C_2 , существует в том и только том случае, когда $\mathrm{ri}\,C_1 \cap \mathrm{ri}\,C_2 = \varnothing$. (Указание: рассмотрите выпуклое множество $C = C_1 C_2$ и используйте задачу 5.40.)
- **5.46.** Пусть C_1, C_2 выпуклые множества. Говорят, что гиперплоскость $H(\boldsymbol{a}, b)$ сильно разделяет C_1 и C_2 , если для некоторого $\varepsilon > 0$ обе гипеплоскости $H(\boldsymbol{a}, b \varepsilon)$ и $H(\boldsymbol{a}, b + \varepsilon)$ разделяют C_1 и C_2 . Докажите, что гиперплоскость, сильно разделяющая C_1 и C_2 , существует тогда и только тогда, когда $\mathbf{0} \notin \overline{C_1 C_2}$. (Указание: вначале рассмотрите случай, когда C_2 точка.) Выведите отсюда, что для любых двух непересекающихся замкнутых выпуклых множеств, одно из которых компактно, существует сильно разделяющая гиперплоскость.
- **5.47.** Пусть

$$Q = \{ \boldsymbol{x} \in A(V) : \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle + 1 \geqslant 0, \quad i = 1, \dots, m \} = \bigcap_{i=1}^m H_+(\boldsymbol{a}_i, 1)$$

- ограниченное полиэдральное множество. Скажем, что неравенство $\langle \boldsymbol{a}_j, \boldsymbol{x} \rangle + 1 \geqslant 0$ является лишним, если удаление его из системы неравенств не меняет множество Q, т. е. $Q = \bigcap_{i \neq j} H_+(\boldsymbol{a}_i, 1)$. Докажите, что неравенство $\langle \boldsymbol{a}_j, \boldsymbol{x} \rangle + 1 \geqslant 0$ является лишним тогда и только тогда, когда $\boldsymbol{a}_j \in \text{conv}(\boldsymbol{a}_i \colon i \neq j)$, т. е. точка \boldsymbol{a}_j является «лишней» в записи $Q^* = \text{conv}(\boldsymbol{a}_1, \dots, \boldsymbol{a}_m)$.
- **5.48.** Пусть F и G грани замкнутого выпуклого множества C, причем $F \subsetneq G$. Докажите, что $\dim F < \dim G$.

- **5.49.** Докажите, что непустое пересечение любого набора граней замкнутого выпуклого множества является гранью. (Указание: сначала докажите утверждение для конечного набора граней, а затем воспользуйтесь предыдущей задачей.)
- **5.50.** Докажите, что всякая грань полиэдрального множества является пересечением содержащих её гиперграней.
- **5.51.** Докажите, что каждая крайняя точка выпуклого многогранника является его вершиной.
- **5.52.** Пусть C выпуклый компакт, $\mathbf{0} \in \text{int } C$. Докажите, что $\mathbf{x} \in C \setminus \text{int } C$ тогда и только тогда, когда $H(\mathbf{x}, 1)$ опорная гиперплоскость полярного множества C^* .
- **5.53.** Пусть P выпуклый многогранник, $\mathbf{0} \in \operatorname{int} P$, пусть F грань многогранника P, а F° соответствующая грань полярного (двойственного) многогранника P^{*} . Докажите, что $\dim F + \dim F^{\circ} = \dim P 1$.
- **5.54.** Выпуклым многогранным конусом σ в пространстве V называется множество неотрицательных линейных комбинаций некоторого конечного набора векторов v_1, \ldots, v_s :

$$\sigma = \{\lambda_1 \mathbf{v}_1 + \ldots + \lambda_s \mathbf{v}_s \colon \lambda_i \geqslant 0\}.$$

Докажите, что множество является выпуклым многогранным конусом тогда и только тогда, когда оно является пересечением конечного числа полупространств вида $H_+(\boldsymbol{u},0)$ (проходящих через **0**).

5.55. Пусть σ — выпуклый многогранный конус. Рассмотрим множество

$$\sigma^{\mathsf{v}} := \{ \boldsymbol{u} \in V^* \colon \langle \boldsymbol{u}, \boldsymbol{v} \rangle \geqslant 0 \quad$$
для любого $\boldsymbol{v} \in \sigma \}.$

Докажите, что

- а) σ^{v} выпуклый многогранный конус (он называется двойственным к σ);
- б) $(\sigma^{\mathsf{v}})^{\mathsf{v}} = \sigma$
- в) $\dim \sigma < \dim V$ тогда и только тогда, когда σ^{v} содержит прямую.
- **5.56.** Пусть σ , σ' два выпуклых многогранных конуса, причем их пересечение $\tau := \sigma \cap \sigma'$ является гранью каждого из них. Докажите, что существует такая гипер-плоскость H, что $\sigma \subset H_+$, $\sigma' \subset H_-$ и $H \cap \sigma = H \cap \sigma' = \tau$.