TODO: Implement methods and functions in `my_air_cargo_problems.py` Done.

Part 1 - Planning problems

TODO: Experiment and document metrics for non-heuristic planning solution searches

*Run uninformed planning searches for `air_cargo_p1`, `air_cargo_p2`, and `air_cargo_p3`; provide metrics on number of node expansions required, number of goal tests, time elapsed, and optimality of solution for each search algorithm. Include the result of at least three of these searches, including breadth-first and depth-first, in your write-up (`breadth_first_search` and `depth_first_graph_search`).

breadth_first_search (guarantees optimal solution):

P1:

```
Solving Air Cargo Problem 1 using breadth_first_search...

Expansions Goal Tests New Nodes
43 56 180

Plan length: 6 Time elapsed in seconds: 0.05210347892716527
Load(C2, P2, JFK)
Load(C1, P1, SF0)
Fly(P2, JFK, SF0)
Unload(C2, P2, SF0)
Fly(P1, SF0, JFK)
Unload(C1, P1, JFK)
```

P2:

```
Solving Air Cargo Problem 2 using breadth_first_search...
Expansions
             Goal Tests
                          New Nodes
   3343
               4609
                          30509
Plan length: 9 Time elapsed in seconds: 23.430756394052878
Load(C2, P2, JFK)
Load(C1, P1, SFO)
Load(C3, P3, ATL)
Fly(P2, JFK, SF0)
Unload(C2, P2, SF0)
Fly(P1, SFO, JFK)
Unload(C1, P1, JFK)
Fly(P3, ATL, SFO)
Unload(C3, P3, SF0)
```

```
Solving Air Cargo Problem 3 using breadth_first_search...
Expansions
             Goal Tests
                          New Nodes
  14491
              17947
                          128184
Plan length: 12 Time elapsed in seconds: 189.12639948003925
Load(C2, P2, JFK)
Load(C1, P1, SF0)
Fly(P2, JFK, ORD)
Load(C4, P2, ORD)
Fly(P2, ORD, SF0)
Unload(C2, P2, SF0)
Unload(C4, P2, SF0)
Fly(P1, SFO, ATL)
Load(C3, P1, ATL)
Fly(P1, ATL, JFK)
Unload(C1, P1, JFK)
Unload(C3, P1, JFK)
```

Depth_first_graph_search (Does not guarantee optimal solution) P1:

```
Solving Air Cargo Problem 1 using depth_first_graph_search...
             Goal Tests
                          New Nodes
Expansions
    12
                13
                            48
Plan length: 12 Time elapsed in seconds: 0.015370022971183062
Fly(P1, SF0, JFK)
Fly(P2, JFK, SF0)
Load(C1, P2, SF0)
Fly(P2, SF0, JFK)
Fly(P1, JFK, SF0)
Unload(C1, P2, JFK)
Fly(P2, JFK, SF0)
Fly(P1, SF0, JFK)
Load(C2, P1, JFK)
Fly(P2, SF0, JFK)
Fly(P1, JFK, SF0)
Unload(C2, P1, SF0)
```

P2:

```
Solving Air Cargo Problem 2 using depth_first_graph_search...

Expansions Goal Tests New Nodes
1669 1670 14863

Plan length: 1444 Time elapsed in seconds: 20.891731776995584
```

Plan length 1444!

P3:

```
Solving Air Cargo Problem 3 using depth_first_graph_search...

Expansions Goal Tests New Nodes
3491 3492 29322

Plan length: 3335 Time elapsed in seconds: 92.66610987810418
```

Interesting, the first time I ran P3 on depth_first_graph_search it took around 3 hours to find a solution. This time it has only taken minute and a half. I suppose it depends on which of the branches decides to dig into, until finding a solution.

Part 2 - Domain-independent heuristics

TODO: Experiment and document: metrics of A* searches with these heuristics

astar search h 1

P1:

```
Solving Air Cargo Problem 1 using astar_search with h_1...

Expansions Goal Tests New Nodes
55 57 224

Plan length: 6 Time elapsed in seconds: 0.07825361797586083
```

P2:

```
Solving Air Cargo Problem 2 using astar_search with h_1...

Expansions Goal Tests New Nodes
4761 4763 43206

Plan length: 9 Time elapsed in seconds: 19.40385899809189
```

P3:

```
Solving Air Cargo Problem 3 using astar_search with h_1...

Expansions Goal Tests New Nodes
17783 17785 155920

Plan length: 12 Time elapsed in seconds: 92.83498301403597
```

astar_search h_ignore_preconditions

P1:

Solving Air Cargo Problem 1 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes
41 43 170

Plan length: 6 Time elapsed in seconds: 0.0936009120196104

P2

Solving Air Cargo Problem 2 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes
1450 1452 13303

Plan length: 9 Time elapsed in seconds: 11.26468390203081

P3:

Solving Air Cargo Problem 3 using astar_search with h_ignore_preconditions...

Expansions Goal Tests New Nodes
5003 5005 44586

Plan length: 12 Time elapsed in seconds: 37.80623276298866

astar_search h_pg_levelsum

P1:

Solving Air Cargo Problem 1 using astar_search with h_pg_levelsum...

Expansions Goal Tests New Nodes
11 13 50

Plan length: 6 Time elapsed in seconds: 1.2093116089235991

P2:

Solving Air Cargo Problem 2 using astar_search with h_pg_levelsum...

Expansions Goal Tests New Nodes
86 88 841

Plan length: 9 Time elapsed in seconds: 129.71877331403084

P3:

```
Solving Air Cargo Problem 3 using astar_search with h_pg_levelsum...

Expansions Goal Tests New Nodes
311 313 2863

Plan length: 12 Time elapsed in seconds: 503.4098467959557
```

Part 3: Written Analysis

TODO: Include the following in your written analysis.

- Provide an optimal plan for Problems 1, 2, and 3.

breadth_first_search always guarantees an optimal solution. We see the steps required for each of the problems are 3/6/12. Solutions provided in Part1

- Compare and contrast non-heuristic search result metrics (optimality, time elapsed, number of node expansions) for Problems 1,2, and 3. Include breadth-first, depth-first, and at least one other uninformed non-heuristic search in your comparison; Your third choice of non-heuristic search may be skipped for Problem 3 if it takes longer than 10 minutes to run, but a note in this case should be included.

Non-heuristic:greedy_best_first_graph_search P1:

```
Solving Air Cargo Problem 1 using greedy_best_first_graph_search with h_1...

Expansions Goal Tests New Nodes
7 9 28

Plan length: 6 Time elapsed in seconds: 0.01054584514349699
```

```
Solving Air Cargo Problem 2 using greedy_best_first_graph_search with h_1...
Expansions
             Goal Tests
                          New Nodes
               552
                            4950
   550
Plan length: 9 Time elapsed in seconds: 2.3386169329751283
Load(C1, P1, SF0)
Load(C2, P2, JFK)
Load(C3, P3, ATL)
Fly(P1, SF0, JFK)
Fly(P2, JFK, SF0)
Fly(P3, ATL, SFO)
Unload(C3, P3, SF0)
Unload(C2, P2, SF0)
Unload(C1, P1, JFK)
```

P3:

```
Solving Air Cargo Problem 3 using greedy_best_first_graph_search with h_1...

Expansions Goal Tests New Nodes
4031 4033 35794

Plan length: 22 Time elapsed in seconds: 20.138448597164825
```

Breadth_first_search: optimal finding the solution, expands more nodes than the other two **Depth_first_graph_search:** non-optimal solutions, fast, expands the least nodes of all, same times as before.

Greedy_best_first_graph_search: optimal finding the solution for P1 and P2 but not for P3 (22 vs 12), expands similar nodes than depth_first, and less than breadth_first, fast, specially for P3.

- Compare and contrast heuristic search result metrics using A* with the "ignore preconditions" and "level-sum" heuristics for Problems 1, 2, and 3.

astar_search h_1: optimal finding the solution, expands more nodes than the other two, and is second in speed.

astar_search h_ignore_preconditions: optimal finding the solution, second in expanding nodes, fastest of the three.

astar_search h_pg_levelsum optimal finding the solution, winner in least expanding nodes, slowest.

- What was the best heuristic used in these problems? Was it better than non-heuristic search planning methods for all problems? Why or why not?

I think the best heuristic is "astar_search h_ignore_preconditions" since it is fast and does not expand too many nodes. If speed was not a concern, I'd use astar_search h_pg_levelsum

although it might be the case that the complexity of the planning graph or its implementation plays a big role in it being really slow, in terms of nodes expanded is the best of all A*.

There is one non-heuristic search that is superior to ignore_preconditions, that is 3-greedy_best_first_graph_search with h_1

After this comparative and having checked all possible search functions for P2, I think astar_search h_pg_levelsum demonstrates that using heuristics helps reducing the number of nodes explored for all problems; and although it might have a penalty on computational cost, if the heuristic is admissible and consistent, we'll have optimal solutions too. In most of the cases, since there are fewer nodes expanded, this means that the search is shorter, so faster to find a solution (except in the already commented case of PG).

Comparative chart:

NOTE:

'breadth_first_tree_search'

'depth_limited_search'

'recursive best first search'

Are not present, since even for P2 problems they were taking longer than 1 hour to complete.

	•	,	_	0		•
Global results			55 - 11 - Apr		19 d 11 op 170	2.6 1/10 mm/s
Search-Problem		Expansions	Goals	New Nodes	Plan lenght	Time Elapsed
Air Cargo Problem	1-breadth_first_search	43	56	180	6	0.05665080202743411
Air Cargo Problem	1-depth_first_graph_search	12	13	48	12	0.012953563127666712
Air Cargo Problem	1-uniform_cost_search	55	57	224	6	0.06628095963969827
Air Cargo Problem	1-greedy_best_first_graph_search with h_1	7	9	28	6	0.012290739919990301
Air Cargo Problem	1-astar_search with h_1	55	57	224	6	0.08033474627882242
Air Cargo Problem	1-astar_search with h_ignore_preconditions	41	43	170	6	0.0643903617747128
Air Cargo Problem	1-astar_search with h_pg_levelsum	11	13	50	6	1.114807927981019
Air Cargo Problem	2-breadth_first_search	3343	4609	30509	9	24.770511573180556
Air Cargo Problem	2-depth_first_graph_search	1669	1670	14863	1444	24.158565250691026
Air Cargo Problem	2-uniform_cost_search	4761	4763	43206	9	21.927996010985225
Air Cargo Problem	2-greedy_best_first_graph_search with h_1	550	552	4950	9	2.352442105766386
Air Cargo Problem	2-astar_search with h_1	4761	4763	43206	9	21.258179971016943
Air Cargo Problem	2-astar_search with h_ignore_preconditions	1450	1452	13303	9	7.806141233071685
Air Cargo Problem	2-astar_search with h_pg_levelsum	86	88	841	9	106.16469939192757
Air Cargo Problem	3-breadth_first_search	14491	17947	128184	12	188.24099823320284
Air Cargo Problem	3-depth_first_graph_search	3491	3492	29322	3335	95.84076651418582
Air Cargo Problem	3-uniform_cost_search	17783	17785	155920	12	96.7542014438659
Air Cargo Problem	3-greedy_best_first_graph_search with h_1	4031	4033	35794	22	20.24258102942258
Air Cargo Problem	3-astar_search with h_1	17783	17785	155920	12	96.95214396715164
Air Cargo Problem	3-astar_search with h_ignore_preconditions	5003	5005	44586	12	29.733329590875655
Air Cargo Problem	3-astar_search with h_pg_levelsum	311	313	2863	12	539.2586630298756