1

Control Systems

G V V Sharma*

	Contents		11	Root Locus	3
1	Signal Flow Graph 1.1 Mason's Gain Formula 1.2 Matrix Formula				
2	Bode Plot2.1Introduction				
3	Second order System 3.1 Damping	. 2			
4	Routh Hurwitz Criterion4.1Routh Array4.2Marginal Stability4.3Stability	. 2			
5	State-Space Model 5.1 Controllability and Observability	. 2	syster	stract—This manual is an inns based on GATE problems.I are available in the text.	
6	5.2 Second Order SystemNyquist Plot6.1 Introduction	2	Do	ownload python codes usin	g
7	Compensators 7.1 Phase Lead				
8	Gain Margin 8.1 Introduction	. 2 . 2 . 2	ave a	oo bitma.//aithab aam/aadam	oll/sobool/tmynls/
9	Phase Margin 9.1 Intoduction	. 3	1	co https://github.com/gadep control/codes	ani/school/trunk/
10	Oscillator 10.1 Introduction	. 3			
*The	e author is with the Department of Electrical Eng	ineering,			

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1 SIGNAL FLOW GRAPH

- 1.1 Mason's Gain Formula
- 1.2 Matrix Formula

2 Bode Plot

- 2.1 Introduction
- 2.2 Phase
- 3 SECOND ORDER SYSTEM
- 3.1 Damping
- 3.2 Peak Overshoot
- 3.3 Settling Time

4 ROUTH HURWITZ CRITERION

- 4.1 Routh Array
- 4.2 Marginal Stability
- 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System

6 Nyouist Plot

6.1 Introduction

7 Compensators

- 7.1 Phase Lead
- 7.2 Lag Lead

8 GAIN MARGIN

- 8.1 Introduction
- 8.2 Example
- 8.1. Plot the Bode magnitude and phase plots for the following system

$$G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$$
(8.1.1)

Also compute gain margin and phase margin. **Solution:** Substituting $s = j\omega$ in (8.1.1) Initially assuming K = 1

$$G(j\omega) = \frac{(j\omega)^2}{(1 + 0.2j\omega)(1 + 0.02j\omega)}$$
 (8.1.2)

The corner frequencies are

$$\omega c1 = 1/0.2 = 5rad/sec$$
 (8.1.3)

$$\omega c2 = 1/0.02 = 50 rad/sec$$
 (8.1.4)

8.2. Magnitude Plot Calculation.

Solution:

$$20logG(j\omega) = 20log(j\omega)^{2} - 20log(1 + 0.2j\omega) - 20log(1 + 0.02j\omega)$$
(8.2.1)

The various values of $G(j\omega)$ are below TABLE 8.2, in the increasing order of their corner frequencies also slope contributed by each term and the change in slope at the corner frequency.

TERM	Corner Freq	Slope	Slope change
$(j\omega)^2$		+40	
$\frac{1}{1+j0.2}$	$\omega c 1 = \frac{1}{0.2}$	-20	40-20=20
$\frac{1}{1+j0.02}$	$\omega c 2 = \frac{1}{0.02}$	-20	20-20=0

TABLE 8.2: Magnitude

8.3. Phase Angle Calculation

Solution:

$$\phi = \angle Gj\omega = 180^{\circ} - tan^{-1}(0.2\omega) - tan^{-1}(0.02\omega)$$
(8.3.1)

The phase angle of $G(i\omega)$ are calculated for various value of ω TABLE 8.3.

ω	$tan^{-1}(0.2\omega)$	$tan^{-1} (0.02\omega)$	$\phi = \angle G(j\omega)$
0.5	5.7	0.6	174
1	11.3	1.1	168
2	21.8	2.3	156
5	45	5.7	130
10	63.4	11.3	106
50	84.3	45	50

TABLE 8.3: Phase

The magnitude and phase plot are as follows:

The python code to obtain the graphs:

codes/es17btech11002.py

8.4. Calculation for K

Solution: The gain crossover frequency is 2rad/sec,

Fig. 8.3: Graphs

At $\omega = 2$, gain= 13db

$$20logK = -13db$$
 (8.4.1)

$$Log K = -13/20 \implies K = 0.65$$
 (8.4.2)

8.5. Finding the Phase Margin (PM) where ω_{gc} is frequency when gain = 1. This is known as phase margin(PM).

Solution:

$$G(j\omega) = \frac{(j\omega)^2}{(1 + 0.2j\omega)(1 + 0.02j\omega)}$$
 (8.5.1)

Solving (8.5.1) or from Fig 8.3 frequency at which gain = 1 ,is gain crossover frequency ω_{gc} .

$$\omega_{gc} = 1.2 \tag{8.5.2}$$

$$\implies PM = 344.8$$
 (8.5.3)

8.6. Find $-G(j\omega)$ db , where ω is frequency when phase = -180° . This is known as *gain margin* (GM)

Solution: From Fig 8.3 ,we can say that phase never crosses -180° . So , the gain margin is *infinite*. Which means we can add any gain , and the equivalent closed loop system never goes unstable.

9 Phase Margin

9.1 Intoduction

10 OSCILLATOR

10.1 Introduction

11 Root Locus