## **Hand Bone Image Segmentation**

#### **CV-17**

# 김기수 김유경 김준현 여희진 이은아 정권희

## I. 프로젝트 개요

# 1. 프로젝트 주제

뼈는 우리 몸의 구조와 기능에 중요한 영향을 미치기 때문에, 정확한 뼈 분할은 의료 진단 및 치료 계획을 개발하는 데 필수적임.

딥러닝 기술을 이용한 뼈 Segmentation은 많은 연구가 이루어지고 있으며, 다양한 목적으로 도 움을 줄 수 있음.

모델은 29개 클래스를 분류하며, 손가락 뼈 (finger-1 ~ finger-19)와 손목 및 팔뼈(Trapezium, Trapezoid, Capitate, Hamate, Scaphoid, Lunate, Triquetrum, Pisiform, Radius, Ulna)로 구성됨.

# 2. 프로젝트 팀 구성 및 역할

- 김기수 : 데이터 시각화, WandB 셋팅, 모델학습 시간 실험, 증강 실험, mmesegmentation 셋팅 및 코드 작성/모델 학습
- 김유경 : EDA, Loss 실험, Augmentation 실험, smp 모델 실험, 후처리, 앙상블
- **김준현** : Git, Encoder Test, Augmentation, 앙상블
- 여희진 : EDA, smp model 실험,
  Augmentation, 앙상블
- 이은아 : Scheduler/Optimzer 실험, Curriculum Learning, Yolo 실험
- 정권희 : 베이스라인 코드, Swin-Unet

# 3. 베이스라인 구축

제공받은 베이스라인 코드를 모듈화를 통해 재 사용성과 유지보수를 개선, 팀의 개발 환경과 요 구사항에 최적화된 구조로 재구성하는 작업을 체계적으로 진행.

모델링 진행 시 파라미터 및 변경점을 손쉽게 변경할 수 있도록 코드 내 config 수정 방식과 argparse 두가지 방식 모두 적용.



[그림 1-1] 베이스라인 구조

#### 4. 협업 툴

#### 4.1 Git 활용

main을 기본 브랜치로 설정 후 각자 작업에 대한 Issue 생성 후 해당 Issue에 대한 브랜치를 만들어 main에 merge하는 방식으로 설정.

### 1) Branch Convention

| main    | 개발이 완료된 산출물이 저장될 공간  |
|---------|----------------------|
| feat    | 기능을 개발하는 브랜치, 이슈별/작업 |
|         | 별로 생성                |
| setting | 기본 설정, 기타 설정 시       |
| bugfix  | 버그를 수정하는 브랜치         |

[丑 1-1] Branch Convention

## 2) Commit Convention

| feat     | 새로운 기능 구현             |
|----------|-----------------------|
| fix      | 버그, 오류 해결, 코드 수정      |
| add      | Feat 이외의 부수적인 코드 추가,  |
|          | 라이브러리 추가, 새로운 View 생  |
|          | 성                     |
| del      | 쓸모없는 코드, 주석 삭제        |
| refactor | 전면 수정이 있을 때 사용        |
| remove   | 파일 삭제                 |
| chore    | 그 이외의 잡일/버전 코드 수정,    |
|          | 패키지 구조 변경, 파일 이동, 파일  |
|          | 이름 변경                 |
| docs     | README나 WIKI 등의 문서 개정 |
| merge    | #이슈번호                 |
| setting  | 코드 세팅 관련              |

[丑 2-1] Commit Convention

# П. 프로젝트 수행 내용

## 1. EDA (Exploratory Data Analysis)

#### 1.1 Meta Data

주어진 데이터셋에 대해 메타데이터(나이, 성별, 키, 체중)의 분포 및 비율을 분석한 결과는 다음 과 같음.

# 1) 성별 분포

| 성별 | 인원수  | 비율 (%) |
|----|------|--------|
| 여성 | 288명 | 52.36% |
| 남성 | 262명 | 47.64% |
| 총합 | 550명 | 100%   |

[표 2-2] 성별 통계

meta\_data.xlsx 파일에 기록된 인원 수(550명)를 통해 전체 이미지가 1,100장임을 추정할 수 있 으나, 이번 대회에서는 Train 이미지 800개와 Test 이미지 288개로 구성된 총 1,088개의 이미 지만 제공됨. 이를 기반으로 보면, 544명이 참여 한 것으로 보이며, 주어진 메타데이터가 이전 데 이터셋에서 파생된 것으로 추정됨.

## 2) 나이 분포

- 20-30세: 294명으로 가장 많은 비중 차지
- 10-20세: 3명으로 가장 적은 비중 차지

### 3) 성별별 데이터 분포

- 남성: 20대 중반에서 30대 중반의 데이터가 집중적으로 분포
- 여성: 연령대가 비교적 고르게 분포

# 4) Train/Test 데이터셋의 성별 비율 비교

| 데이터셋  | 남성 비율(%) | 여성 비율(%) |
|-------|----------|----------|
| Train | 45.5%    | 54.5%    |
| Test  | 52.8%    | 47.2%    |

[표 2-3] train/validation 별 성별 통계

Train과 Test 데이터셋 모두 성별이 비교적 균등 하게 분포되어 있음을 확인.

#### 1.2 Image Data

## 1) Train 및 Test 데이터에서의 특이 이미지

- Train 및 Test 데이터를 살펴본 결과, 다음과
  같이 특이 이미지를 확인할 수 있었음.
- 추가적인 강조 요소가 포함된 이미지 : 손 톱,네일, 반지, 붕대 등이 강조된 소량의 이 미지
- 손목이 꺾인 이미지 : Train 데이터의 약 11%, Test 데이터의 약 57%가 손목이 꺾인 이미지를 포함하고 있음.

## 2) 손목 회전 각도 분석



[그림 3-1] train 이미지 손목 각도 분석

손목이 꺾인 이미지를 분석하기 위해 팔목 뼈 (Ulna)와 중지 손가락(Finger-11) 사이의 각도를 계산.

- 대부분의 이미지에서 양손의 회전 각도는 -20~20도 사이에 분포
- 일부 이미지는 40~60도로 회전된 경우가 확인됨.

Train 데이터와 Test 데이터에서 손목이 꺾인 이미지의 비율이 차이나는 점(Train: 11%, Test: 57%)과 이러한 이미지가 많은 점을 고려할 때, 이미지 회전(Rotate)을 활용한 데이터 증강 실험의가능성을 제안.

## 3) 좌우 이미지 대칭 유사도 분석



[그림 3-2] SSIM 및 MAE

해당 데이터셋은 왼손과 오른손이 쌍을 이루는 구조로, 좌우 이미지 대칭 유사도를 확인함. • SSIM : 평균적으로 0.5 부근에 분포

• MAE: 대부분 123~130에 분포

이를 통해, 일부 유사한 특징이 있지만 구조적 차이가 존재함을 확인했고, 이를 기반으로 Horizontal Flip을 활용한 데이터 증강 실험의 가 능성을 제안.

# 2. 학습 최적화 실험

## 2.1 학습 시간 실험

주어진 baseline 코드 중 validation시 Dice 계산을 CPU로 계산하였고 이를 GPU로 변경한 후에도 validation time이 줄지 않는 문제 확인함. 문제를 해결하기 위해 batch size와 num workers, pin memory에 대한 값을 변경하여 실험을 진행함.

| Batch size | num     | pin    | time   |
|------------|---------|--------|--------|
|            | workers | memory |        |
| 1          | 0       | False  | 3m 10s |
| 1          | 0       | True   | 3m 5s  |
| 1          | 2       | False  | 3m 30s |
| 1          | 4       | False  | 1m 53s |
| 1          | 8       | False  | 1m 16s |
| 2          | 0       | False  | 3m 10s |
| 2          | 8       | True   | 1m 20s |
| 4          | 0       | False  | 3m 7s  |
| 4          | 8       | True   | 1m 20s |
| 4          | 8       | False  | 1m 18s |

[그림 3-3] 요소 간 validation time 비교

Validation Dataloader의 batch size를 키우면 특정 클래스의 수렴속도가 매우 느린 현상도 존재하였기에 batch size 1, num workers 8이 가장 좋아보였고 이를 활용하여 다양한 실험을 하는데 시간을 줄일 수 있었음.

#### 2.2 Loss 실험

Segmentation task는 픽셀 단위의 분류 문제로, 사용하는 Loss Function에 따라 모델 성능이 크 게 달라질 수 있다는 가설을 기반으로 다양한 Loss Function에 대한 실험을 진행 (Unet++ Resnet50 backbone과 ImageNet pre-trained weight로 고정)

| Loss            | Val_Dice | LB_Dice |
|-----------------|----------|---------|
| BCE Loss        | 0.9497   | 0.9492  |
| Dice Loss       | 0.9436   | -       |
| IoU Loss        | 0.3953   | -       |
| Tversky Loss    | 0.2652   | -       |
| BCE + Dice Loss | 0.9558   | 0.9533  |
| BCE + IoU Loss  | 0.9421   | 0.9231  |

[표 4-1] Loss function 별 Dice 값

BCE + Dice Loss가 가장 우수한 성능을 기록했으며, 이는 BCE Loss의 픽셀별 차이를 명확히 계산하는 특성과 Dice Loss의 클래스 간 균형을 고려하는 특성이 결합된 결과로 판단됨.

# 2.3 Optimizer 실험

Unet++ 모델에서 ConsineAnneling를 사용하여 실험 진행

| Optimizer | Val_Dice |
|-----------|----------|
| adam      | 0.9495   |
| adamw     | 0.9491   |
| adamp     | 0.9513   |

[표 4-2] Optimizer 별 Dice 값

- AdamP: 가장 높은 val dice 0.9513을 기록하며, Adam과 AdamW보다 우수한 성능을 보임.
- Adam과 AdamW: 비슷한 성능을 보였으나,
  Adam이 소폭 우위를 점함.

#### 2.4 Scheduler 실험

Unet++ 모델에서 scheduler 변경하여 실험 진행.

| Scheduler                      | Val_Dice |
|--------------------------------|----------|
| Х                              | 0.9416   |
| MultiStepLR                    | 0.9030   |
| Cosine Anealing LR             | 0.9514   |
| ReduceLROnPlateau              | 0.9504   |
| Cosine Annealing Warm Restarts | 0.9495   |
| GradualWarmUp                  | 0.9497   |
| +ConsineAnnealing              |          |

[표 4-3] Scheduler 별 Dice 값

- MultiStepLR: 학습 과정에서 최적점을 찾지 못하고 가장 낮은 성능을 보임.
- CosineAnnealingLR: 가장 높은 val dice
  0.9514를 기록하며 학습을 극대화.
- RedisceLROnPlateau,
  ConsineAnnealingWarmRestarts,
  GradualWarmup+ConsineAnnealing: 성능이
  비슷한 것을 확인.

## 3. 모델 실험

## 3.1 smp (segmentation\_models\_pytorch)

## 1) smp 내 모델 실험

SMP(segmentation models pytorch) 라이브러리 내 모든 모델들 실험 진행.

기본 설정값 : 인코더 resnet 50, 50 epoch, BCEDiceLoss, adamp, 1e-3, Consine Annealing, resize 512

| Model        | Val_Dice | LD_Dice |
|--------------|----------|---------|
| UnetPlusPlus | 0.9447   | -       |
| Unet         | 0.9243   | -       |
| FPN          | 0.9523   | 0.9461  |

| UperNet       | 0.9553 | 0.9502 |
|---------------|--------|--------|
| DeepLabV3Plus | 0.9536 | 0.9500 |
| DeepLabV3     | 0.9483 | -      |
| PSPNet        | 0.9239 | -      |
| PAN           | 0.9516 | 0.9480 |
| MAnet         | 0.9264 | -      |
| Linknet       | 0.9267 | -      |

[표 5-1] 모델 별 Dice 값

DeepLabV3와 UperNet 모델의 성능이 우수했으므로, 이후 UperNet을 기준으로 추가 Encoder 실험 진행.

#### 2) Encoder 실험

1) 모델 실험을 바탕으로 UperNet 기준으로 실험 진행.

| Encoder         | Val_Dice | LD_Dice |
|-----------------|----------|---------|
| mobilenet_v2    | 0.9513   | -       |
| efficientnet-b0 | 0.9515   | -       |
| vgg19           | 0.9545   | -       |
| resnet152       | 0.9540   | -       |
| hrnet_w64       | 0.9553   | 0.9534  |
| timm-           | 0.9519   | -       |
| resnest14d      |          |         |

[표 5-2] Encoder 별 Dice 값 1

Encoder로 hrnet\_64를 활용할 때 가장 우수한 성능을 보였으며, 해당 모델을 바탕으로 추후 실 험 계획 수립.

| Encoder         | LD_Dice<br>(Private) | LD_Dice<br>(Public) |
|-----------------|----------------------|---------------------|
| Efficientnet-b0 | 0.9453               | 0.9459              |
| Efficientnet-b7 | 0.9489               | 0.9514              |

[표 5-3] Encoder 별 Dice 값 2

b7의 성능이 public 기준 0.0036 높게 나온 것을 확인할 수 있었음. 하지만, b7의 경우 모델사이지가 커 batch size 2로 설정해야 서버 환경

에서 학습을 진행할 수 있었음.

따라서, 추후에 이미지 사이즈를 키워 학습시킬 때 제한사항이 생겨 Efficientnet-b0을 사용.

## 3.2 MMSegmatation

# 1) Segformer(mit\_b3/ImageNet1k)

| Image_siz Augmentati |   | Los   | Epoc | Val_Dic | LD_Dic |        |
|----------------------|---|-------|------|---------|--------|--------|
| e                    |   | on    | S    | h       | е      | е      |
| 102                  | 4 | CLAHE | CE   | 100     | 0.9714 | 0.9685 |

[표 5-4] Segformer 실험 결과

Segformer은 Multi-scale feature map을 사용하여 transformer의 낮은 작은 물체 검출 성능과 큰 이미지의 높은 연산량의 단점을 개선한 모델.

Radius, Ulna와 같은 큰 크기의 객체와 trapezoid, pisiform과 같은 작은 객체가 존재했으면 2048x2048의 크기의 이미지의 input에 적합하다고 생각하여 모델을 선택함.

#### 3.3 Swin-Unet

EDA 결과, 다음과 같은 이유로 Swin-Unet이 효 과적일 것이라 판단 후 진행함.

- Swin Transformer 기반의 Hierarchical 구조
  가 2048크기의 데이터셋에 적합
- U-Net의 skip connection을 활용하여 low-level feature를 보존하면서, high-level feature와 결합하여 예측의 디테일을 강화
- Swin-Unet은 멀티스케일 윈도우 attention을 활용해, 손 뼈 이미지에 있는 다양한 크기 와 형태의 객체를 효과적으로 처리
- Transformer 기반의 모델은 CNN에 비해 더 풍부한 특징 표현을 학습하기에 추후 앙상 블에 유리

smp, MMSegmentation 라이브러리에 Swin-Unet을 구현할 자료들이 부족하여 논문과 공식 깃허

브를 바탕으로 직접 모델을 구현함.

모델을 구성하는 checkpoint의 window size가 7 이므로 그 가중치를 활용하기 위해 이미지 사이 즈를 1120으로 resize하여 점진적으로 가까운 사이즈로 키우는 것을 목표 설정.

| Model     | Augmentation | LD_Dice   | LD_Dice  |
|-----------|--------------|-----------|----------|
|           |              | (Private) | (Public) |
| Swin-Unet | -            | 0.9462    | 0.9498   |
| Swin-Unet | CLAHE        | 0.9499    | 0.9522   |

[표 6-1] Swin-Unet 실험 결과

증강없이 Swin Unet을 실험하였을 때, 리더보드 기준 Public 0.9462, Private 0.9498 정도로 예상보 다 저조한 성적을 보임.

추가로 CLAHE 증강을 적용해본 결과, 리더보드 기준 Public 0.9499, Private 0.9522 정도로 약 3% 정도 증가.

#### 3.4 YOLO-Seg

| Model       | Val_Dice |
|-------------|----------|
| YOLOv8x-seg | 0.9421   |
| YOLOv9e-seg | 0.9380   |
| YOLO11I-seg | 0.9392   |

[표 6-2] YOLO 버전 별 실험 결과

실험 결과, YOLOv8x-seg가 가장 우수한 성능을 보임.

# 4. 증강 실험

#### 4.1 Resize

원본 이미지의 해상도가 (2048, 2048)이므로 해상도에 따라 정보 손실 가능성이 존재하고 성능차이가 발생할 것이라는 가설을 세우고 Resize실험 진행.

| Resolution | n Model               | Val.   | LB     |
|------------|-----------------------|--------|--------|
|            |                       | Dice   | Dice   |
| 512 x 512  | DeepLabv3Plus         | 0.9536 | 0.9500 |
|            | (resnet350/ imagenet) |        |        |
| 1024 x     | DeepLabV3Plus         | 0.9690 | 0.9658 |
| 1024       | (resnet152/Imagenet)  |        |        |
| 1536 x     | DeepLabV3Plus         | 0.9723 | 0.9689 |
| 1536       | (resnet152/Imagenet)  | )      |        |

[표 6-3] 해상도 별 실험 결과

실험 결과, 이미지 사이즈가 클수록 좋은 성능을 보임.

#### 4.2 CLAHE

Image Data EDA에서 손등뼈가 겹치는 이슈를 개 선하기 위한 방법으로 CLAHE 적용

| CLAHE                 | Val_Dice |
|-----------------------|----------|
| baseline              | 0.9459   |
| clip_limit=2,         | 0.9150   |
| tile_grid_size=(8, 8) |          |
| clip_limit=3.5,       | 0.9491   |
| tile_grid_size=(8, 8) |          |
| clip_limit=4.5,       | 0.9420   |
| tile_grid_size=(8, 8) |          |
| clip_limit=[3.0, 3.0] | 0.9369   |
| tile_grid_size=(8, 8) |          |

[표 6-4] CLAHE 실험 결과

전체적인 성능 0.0048 향상. 상대적으로 낮은 score을 보였던 손등뼈 중 하나인 Pisiform의 성능이 0.05 향상

#### 4.3 Horizontal Flip

한 사람의 양 손을 쌍으로 가지고 있었기에 Horizontal Flip을 적용.

|                        | Val_Dice | LD_Dice |
|------------------------|----------|---------|
| baseline               | 0.9442   | 0.9210  |
| <b>Horizontal Flip</b> | 0.9526   | 0.9418  |

[표 6-5] Horizontal flip 실험 결과

실험 결과, 0.0208정도 유의미한 성능 향상

#### 4.4 Canny

뼈를 검출하는 task는 경계선을 가지고 충분히 학습할 수 있어 오히려 경계선 내부의 픽셀은 학습하는데 방해할 것이라는 가설을 세움.

|          | Val_Dice | LD_Dice |
|----------|----------|---------|
| baseline | 0.9442   | 0.9210  |
| Canny    | 0.9296   | 0.8860  |

[표 7-1] Canny 실험 결과

이에, Canny Edge 검출 기법을 적용하여 학습하였으나 성능이 감소하는 결과를 보임.

#### 4.5 Gray Scale

X-ray 이미지에서 1 channel gray scale image로 변환하는 것이 효과적이기에 Gray Scale 적용.

#### 4.6 Index별 손목 Rotate 실험

손목 회전 데이터를 시각적으로 분석한 결과, 왼 손은 왼쪽으로, 오른손을 오른쪽으로 회전되는 특징을 확인.

이를 기반으로, 손목이 돌아가지 않은 데이터에 대해 손 방향별 Rotate 증강 실험을 진행.

• 왼손 : 왼쪽으로 회전 → limit = (10, 30)

 오른손 : 오른쪽으로 회전 → limit = (-30, -10)

| Model         | Loss          | Augmen   | ImageSize | Val_   |
|---------------|---------------|----------|-----------|--------|
|               |               | tation   |           | Dice   |
| DeepLabV3Pl   | BCEDic        | -        | 1024      | 0.9690 |
| us(resnet152/ | eLoss         |          |           |        |
| Imagenet)     |               |          |           |        |
| DeepLabV3Pl   | <b>BCEDic</b> | Rotate   | 1024      | 0.9670 |
| us(resnet152  | eLoss         | (p=0.3)  |           |        |
| /Imagenet)    |               | . ,      |           |        |
| 11-11 -1 -1 - | 7             | 5 7L TLO | <u> </u>  |        |

실험 결과, Rotate 증강 적용 후, 0.2% 성능 소폭 하락 확인하였음.

### 4.7 Curriculum Learning

커리큘럼 러닝을 도입하여 손목 회전 데이터에 대한 모델의 학습 성능을 개선하고자 실험을 진 행.

모델이 학습하기 쉬운 데이터로 시작해, 점진적 으로 학습 난이도가 높은 데이터를 추가하도록 설계.



[그림 7-1] Curriculum Learning 실험 결과

데이터 증강 : 손목 회전 데이터에 HorizonFlip 증강 기법을 적용하여 데이터를 추가 생성.

- 첫 번째 단계 : 원본 데이터만 사용하여 모 델의 기본 학습 진행
- 두 번째 단계 : 원본 학습 모델을 기반으로, HorizonFlip 증강된 손목 회전 데이터만을 추가 학습.

커리큘럼 러닝과 데이터 증강을 결합한 학습 전략은 손목 회전 데이터에 대한 성능 개선에 효과적임을 확인.

## 5. 후처리

Inference 를 시각화한 결과, 29개의 class가 각 각 하나의 Contour로 Segmentation 되어야 하 지만, 일부 class가 여러개의 Contour로 분리되 는 경우를 확인함.

이를 해결하기 위해, 불필요한 영역을 제거하는 Negative Sample Masking 기법을 도입함

Polygon으로 영역을 연결 후, 가장 면적이 큰 Contour만을 선택하고 나머지는 제거함.

| 적용 전 LB | 적용 후 LB   | 변경된   | 변경된    |
|---------|-----------|-------|--------|
| Dice    | Dice      | row 수 | row 비율 |
| 0.9658  | 0.9660    | 686   | 8%     |
|         | (+0.0002) |       |        |
| 0.9688  | 0.9692    | 281   | 3.4%   |
|         | (+0.0004) |       |        |

[표 8-1] 후처리 결과

후처리 적용 후 약 0.02%-0.04% 성능 향상 확 인함.

## 6. 앙상블 실험

앙상블은 Hard Voting, Soft Voting 방법으로 진행.

#### 6.1 다른 Fold 앙상블

K-Fold Cross Validation의 장점을 활용하여 K개의 Fold에 대해 각기 다른 증강 실험을 진행한 후 앙상블 수행.

모델은 DeepLabV3+ (resnet152, imagenet)로 진행.

| K-fold   | Augmentation   | Val Dice | LB Dice |
|----------|----------------|----------|---------|
|          | Augmentation   | vai_bicc | LD_DICC |
| fold0    | X              | 0.9690   | 0.9658  |
| fold1    | HorizontalFlip | 0.9692   | -       |
| fold2    | CLAHE          | 0.9717   | 0.9681  |
| fold3    | CLAHE,         | 0.9696   | -       |
|          | HorizontalFlip |          |         |
| fold4    | Sharpen        | 0.9674   | -       |
| 5-Fold   |                |          | 0.9698  |
| Ensemble | •              |          |         |

[표 8-2] Fold 실험 결과

실험 결과, 각 Fold의 Val\_Dice 값보다 높은 LB\_Dice(0.9698) 값을 관찰.

# 6.2 같은 실험, 다른 Epoch 앙상블

| Epoch               | fold | voting | LD_Val |
|---------------------|------|--------|--------|
| 100                 | 0    |        | 0.9685 |
| 80, 85, 90, 95, 100 | 0    | hard   | 0.9687 |

[표 8-3] Epoch 별 실험 결과

Segformer (mit\_b3/ImageNet1k) 모델을 사용해이미지 크기 1024로 실험한 결과, Epoch 100에서 가장 높은 Val\_Dice를 기록. 이와 비교해Val\_Dice 상위 5개 Epoch의 결과를 앙상블한 결과는 0.0002 더 높은 LD\_Dice를 달성.

# 6.3 같은 모델, 다른 증강 앙상블

RGB로 학습한 모델과 Gray로 학습하 모델을 Soft Voting으로 앙상블 진행.

실험 결과, 한 종류의 모델로 LD\_Dice 0.9697의 스코어를 얻음.

## 6.4 각 클래스 별 다른 모델 앙상블

29개의 클래스 각각에 대해 Validation Dice 성능이 가장 높은 모델들의 에측 결과를 선택적으로 결합하여 최종 앙상블 결과를 생성하는 방법.

클래스별로 가장 적합한 모델의 예측을 활용하

여 전반적인 성능을 극대화하고자 함.

# Ⅲ. 결론

# 1. 최종 모델

| ① DeepLabV3Plus   | kfold1: 0.9677(LD)  |
|-------------------|---------------------|
| (Resnet152)       | kfold2: 0.9677(LD)  |
|                   | kfold2: 0.9689(LD)  |
|                   | kfold3: 0.9696(Val) |
|                   |                     |
| ② Uper            | kfold0: 0.9608(LD)  |
| (HRNet-w64)       |                     |
| ③ Unet            | kfold0: 0.9680(LD)  |
| (efficientnet-b0) |                     |
|                   |                     |

[표 9-1] 최종 모델

# 2. 앙상블 결과

| Candidates | LB score |  |  |
|------------|----------|--|--|
| 1 + 2      | 0.9707   |  |  |
| 1 + 2 + 3  | 0.9709   |  |  |

[표 9-2] 앙상블 결과 1

Class별 최고점을 포함한 모델들을 soft voting 진행

최종적으로 앙상블을 통하여 단일모델 리더보드 최고점이었던 0.9689 대비 0.002 성능 향상

| No. | Class      | 14_unet++ | 75_unper_30e | 75_unper_40e | 83_DeepLabV3 | 91_fold2 | 97_unet | 103_DLv3 |
|-----|------------|-----------|--------------|--------------|--------------|----------|---------|----------|
| 1   | finger-1   | 0.963     | 0.9659       | 0.9651       | 0.9659       | 0.9674   | 0.9638  | 0.9666   |
| 2   | finger-2   | 0.979     | 0.9817       | 0.9818       | 0.9809       | 0.9811   | 0.9808  | 0.9817   |
| 3   | finger-3   | 0.9825    | 0.9849       | 0.9853       | 0.9858       | 0.9854   | 0.9847  | 0.986    |
| 4   | finger-4   | 0.967     | 0.9709       | 0.971        | 0.9723       | 0.9753   | 0.971   | 0.9747   |
| 5   | finger-5   | 0.9722    | 0.9739       | 0.9742       | 0.9737       | 0.9766   | 0.9747  | 0.9757   |
| 6   | finger-6   | 0.984     | 0.9853       | 0.9853       | 0.9854       | 0.9864   | 0.9846  | 0.9862   |
| 7   | finger-7   | 0.9813    | 0.9823       | 0.9816       | 0.9836       | 0.9841   | 0.9819  | 0.9843   |
| 8   | finger-8   | 0.9724    | 0.9751       | 0.9758       | 0.9655       | 0.9767   | 0.9739  | 0.9769   |
| 9   | finger-9   | 0.9765    | 0.9788       | 0.9786       | 0.9727       | 0.9805   | 0.9772  | 0.98     |
| 10  | finger-10  | 0.9844    | 0.9867       | 0.9867       | 0.9861       | 0.9874   | 0.9861  | 0.9875   |
| 11  | finger-11  | 0.9754    | 0.9769       | 0.9766       | 0.9771       | 0.9779   | 0.9766  | 0.9784   |
| 12  | finger-12  | 0.9652    | 0.9751       | 0.9749       | 0.97         | 0.9754   | 0.9731  | 0.9755   |
| 13  | finger-13  | 0.9747    | 0.9781       | 0.9776       | 0.9748       | 0.9789   | 0.9771  | 0.9784   |
| 14  | finger-14  | 0.9808    | 0.9848       | 0.9847       | 0.9847       | 0.9864   | 0.9833  | 0.9862   |
| 15  | finger-15  | 0.9752    | 0.9793       | 0.9787       | 0.9793       | 0.9801   | 0.9785  | 0.9808   |
| 16  | finger-16  | 0.9661    | 0.9697       | 0.9693       | 0.9678       | 0.9704   | 0.9673  | 0.9705   |
| 17  | finger-17  | 0.966     | 0.9684       | 0.9678       | 0.9667       | 0.9708   | 0.9684  | 0.97     |
| 18  | finger-18  | 0.9819    | 0.9825       | 0.9825       | 0.9826       | 0.9838   | 0.982   | 0.9837   |
| 19  | finger-19  | 0.9822    | 0.9842       | 0.9845       | 0.9841       | 0.9842   | 0.9833  | 0.9839   |
| 20  | Trapezium  | 0.9352    | 0.9482       | 0.9495       | 0.9487       | 0.9543   | 0.9475  | 0.9536   |
| 21  | Trapezoid  | 0.8934    | 0.9144       | 0.918        | 0.9187       | 0.9216   | 0.9207  | 0.9228   |
| 22  | Capitate   | 0.9526    | 0.9668       | 0.9658       | 0.9645       | 0.9667   | 0.9629  | 0.9678   |
| 23  | Hamate     | 0.9412    | 0.9532       | 0.9533       | 0.9532       | 0.9495   | 0.9502  | 0.9507   |
| 24  | Scaphoid   | 0.9639    | 0.9689       | 0.9708       | 0.9712       | 0.9705   | 0.9724  | 0.9734   |
| 25  | Lunate     | 0.946     | 0.9622       | 0.9607       | 0.9604       | 0.9592   | 0.9599  | 0.9619   |
| 26  | Triquetrum | 0.9382    | 0.9527       | 0.951        | 0.95         | 0.9551   | 0.9553  | 0.9585   |
| 27  | Pisiform   | 0.9081    | 0.9083       | 0.9053       | 0.8985       | 0.9144   | 0.9138  | 0.9237   |
| 28  | Radius     | 0.9897    | 0.9894       | 0.9901       | 0.9897       | 0.9899   | 0.9894  | 0.99     |
| 29  | Ulna       | 0.9891    | 0.9882       | 0.9882       | 0.9872       | 0.9884   | 0.988   | 0.9881   |
| Va  | l-dice avg | 0.9651    | 0.9702       | 0.9702       | 0.969        | 0.9717   | 0.9699  | 0.9723   |
| l   | _D dice    | 0.9614    | 0.9608       | -            | 0.9658       | 0.9681   | 0.968   | 0.9689   |

[표 9-3] 모델 및 클래스 별 성능 비교