#### AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

#### 1. (Original) A compound having the structure:

$$R_{2}$$
 $R_{3}$ 
 $R_{4}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{9a}$ 
 $R_{9b}$ 
 $R_{7}$ 
 $R_{7}$ 
 $R_{9}$ 
 $R_{8}$ 
 $R_{9}$ 
 $R_{9}$ 
 $R_{9}$ 
 $R_{9}$ 

or pharmaceutically acceptable derivative thereof;

wherein  $R_1$  and  $R_2$  are independently hydrogen, halogen, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

R<sub>3</sub> and R<sub>4</sub> are independently hydrogen, -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, wherein at least one of R<sub>3</sub> and R<sub>4</sub> is -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, or R<sub>3</sub> and R<sub>4</sub> taken together with the carbon to which they are attached form a -C(=O)- or =NR<sup>3c</sup> moiety; wherein R<sup>3a</sup> and R<sup>3b</sup>, for each occurrence, is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety; and R<sup>3c</sup> is an aliphatic, alicyclic, heteroaliphatic, heteroaliphatic, heteroaliphatic, heteroaliphatic, alicyclic, heteroaliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $R_5$  and  $R_6$  are independently hydrogen, halogen, -CN, an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); or  $R_5$  and  $R_6$ , taken together, form an alicyclic or heteroalicyclic moiety; wherein the carbon atoms to which  $R_5$  and  $R_6$  are attached may be connected by a single or double bond, as valency permits; and wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a

Page 3 of 44

prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heteroalicyclic or heteroaryl moiety; or R<sub>6</sub>, taken together with a substituent present on K, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

 $R_7$  and  $R_8$  are independently absent, hydrogen, halogen, -CN, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or  $R_7$  and  $R_8$ , taken together, form an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached may be connected by a single, double or triple bond, as valency permits;

 $R_{9a}$  and  $R_{9b}$  are independently absent, hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or one of  $R_{9a}$  and  $R_{9b}$ , taken together with  $X_1$ , forms an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $R_{10}$  is hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

**X**<sub>0</sub> is CR<sup>X0a</sup>R<sup>X0b</sup>, O or NR<sup>X0a</sup>; wherein R<sup>X0a</sup> and R<sup>X0b</sup> are independently hydrogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aryl or heteroaryl moiety;

 $X_1$  is O, S or NR<sup>X1</sup>, or  $X_1$ , taken together with one of  $R_{9a}$  and  $R_{9b}$ , forms an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; wherein  $R^{X1}$  is hydrogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

Z is O, NR<sup>Z1</sup>, CR<sup>Z1</sup>R<sup>Z2</sup> or S, wherein R<sup>Z1</sup> and R<sup>Z2</sup> are independently hydrogen, halogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

K, L and M are independently absent, or a substituted or unsubstituted C<sub>1-6</sub>alkylidene or C<sub>2-6</sub>alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO<sub>2</sub>, COCO, CONR<sup>P1</sup>, OCONR<sup>P1</sup>, NR<sup>P1</sup>NR<sup>P2</sup>, NR<sup>P1</sup>NR<sup>P2</sup>CO, NR<sup>P1</sup>CO, NR<sup>P1</sup>CO<sub>2</sub>, NR<sup>P1</sup>CONR<sup>P2</sup>, SO, SO<sub>2</sub>, NR<sup>P1</sup>SO<sub>2</sub>, SO<sub>2</sub>NR<sup>P1</sup>, NR<sup>P1</sup>SO<sub>2</sub>NR<sup>P2</sup>, O, S, or NR<sup>P1</sup>; wherein each occurrence of R<sup>P1</sup> and R<sup>P2</sup> is independently hydrogen, aliphatic, heteroaliphatic,

Page 4 of 44

aromatic, heteroaromatic or acyl, or a substitutent present on K, when present, and taken together with R<sub>6</sub>, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

A, B, D, E, G and J are independently connected by either a single or double bond, as valency permits, or A-B-D-E-G-J together represents an aromatic or heteroaromatic moiety; wherein B and J are independently N or CR<sup>Q1</sup>; and A, D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, O, N or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is independently absent, hydrogen, halogen, an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heteroalicyclic or heteroaryl moiety; or any two adjacent substituents on A, B, D, E, G and J, taken together, may represent an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; and

q and t are independently 0-2; wherein the sum q+t is 1-3; with the proviso that the compound is not one of:

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

or any one of the compounds depicted on pages 107-111 and 114 of WO 03/076445.

#### 2. (Original) The compound of claim 1 wherein:

 $R_1$  and  $R_2$  are independently hydrogen, halogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

R<sub>3</sub> and R<sub>4</sub> are independently hydrogen, -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, wherein at least one of R<sub>3</sub> and R<sub>4</sub> is -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, or R<sub>3</sub> and R<sub>4</sub> taken together with the carbon to which they are attached form a a -C(=O)- or =NR<sup>3c</sup> moiety; wherein R<sup>3a</sup> and R<sup>3b</sup>, for each occurrence, is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heteroaryl, arylalkyl or heteroarylalkyl moiety; and R<sup>3c</sup> is an alkyl, cycloalkyl, heteroalkyl, heteroacyclic, aryl or heteroaryl moiety, or OR<sup>3d</sup>; wherein R<sup>3d</sup> is hydrogen or an alkyl, cycloalkyl, heteroalkyl, heteroacyclic, aryl or heteroaryl moiety;

 $R_5$  and  $R_6$  are independently hydrogen, halogen, -CN, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); or  $R_5$  and  $R_6$ , taken together, form a cycloalkyl or heterocyclic moiety; wherein the carbon atoms to which  $R_5$  and  $R_6$  are attached may be connected by a single or double bond, as valency permits; and wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or

heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R<sub>6</sub>, taken together with a substituent present on K, forms an alicyclic, heterocyclic, aryl or heteroaryl moiety;

 $R_7$  and  $R_8$  are independently absent, hydrogen, halogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached may be connected by a single, double or triple bond, as valency permits;

 $\mathbf{R}_{9n}$  and  $\mathbf{R}_{9b}$  are independently absent, hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

 $R_{10}$  is hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

 $X_0$  is  $CR^{X0a}R^{X0b}$ , O or  $NR^{X0a}$ ; wherein  $R^{X0a}$  and  $R^{X0b}$  are independently hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

 $X_1$  is O, S or NR<sup>X1</sup>; wherein R<sup>X1</sup> is hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

**Z** is O, NR<sup>Z1</sup>, CR<sup>Z1</sup>R<sup>Z2</sup> or S, wherein R<sup>Z1</sup> and R<sup>Z2</sup> are independently hydrogen, halogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

K, L and M are independently absent, CR<sup>P1</sup>R<sup>P2</sup>, CR<sup>P1</sup> or C=O, wherein each occurrence of R<sup>P1</sup> is independently hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or a substitutent present on K, when present, and taken together with R<sub>6</sub>, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety; and

A, B, D, E, G and J are independently connected by either a single or double bond, as valency permits, or A-B-D-E-G-J together represents an aryl or heteroaryl moiety; wherein B

Page 9 of 44

and J are independently N or CR<sup>Q1</sup>; and A, D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, O, N or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is independently absent, hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent substituents on A, B, D, E, G and J, taken together, may represent an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety.

3. (Original) The compound of claim 1, wherein q and t are each 1 and the compound has the structure:

$$R_{2}$$
 $R_{3}$ 
 $R_{4}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{9a}$ 
 $R_{9b}$ 
 $R_{7}$ 
 $R_{7}$ 

wherein  $R_1$  and  $R_2$  are independently hydrogen, halogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

R<sub>3</sub> and R<sub>4</sub> are independently hydrogen or OR<sup>3a</sup>, wherein at least one of R<sub>3</sub> and R<sub>4</sub> is -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, or R<sub>3</sub> and R<sub>4</sub> taken together with the carbon to which they are attached form a a -C(=O)- or =NR<sup>3c</sup> moiety; wherein R<sup>3a</sup> and R<sup>3b</sup>, for each occurrence, is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heteroaryl, arylalkyl or heteroarylalkyl moiety; and R<sup>3c</sup> is an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or OR<sup>3d</sup>; wherein R<sup>3d</sup> is hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

R<sub>5</sub> and R<sub>6</sub> are independently hydrogen, halogen, -CN, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>WI</sup> wherein W is O, S,

NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); or R<sub>5</sub> and R<sub>6</sub>, taken together, form a cycloalkyl or heterocyclic moiety; wherein the carbon atoms to which R<sub>5</sub> and R<sub>6</sub> are attached may be connected by a single or double bond, as valency permits; and wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R<sub>6</sub>, taken together with a substituent present on K, forms an alicyclic, heterocyclic, aryl or heteroaryl moiety;

 $R_7$  and  $R_8$  are independently absent, hydrogen, halogen or an alkyl, cycloalkyl, heteroalkyl, heteroayl, arylalkyl or heteroarylalkyl moiety, wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached may be connected by a single, double or triple bond, as valency permits;

 $\mathbf{R}_{9a}$  and  $\mathbf{R}_{9b}$  are independently absent, hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

 $R_{10}$  is hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

X<sub>0</sub> is CR<sup>X0a</sup>R<sup>X0b</sup>, O or NR<sup>X0a</sup>; wherein R<sup>X0a</sup> and R<sup>X0b</sup> are independently hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

X<sub>1</sub> is O, S or NR<sup>XI</sup>; wherein R<sup>XI</sup> is hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

Z is O, NR<sup>Z1</sup>, CR<sup>Z1</sup>R<sup>Z2</sup> or S, wherein R<sup>Z1</sup> and R<sup>Z2</sup> are independently hydrogen, halogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

**K**, **L** and **M** are independently absent,  $CR^{PI}R^{P2}$ ,  $CR^{PI}$  or C=O, wherein each occurrence of  $R^{PI}$  is independently hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is  $WR^{WI}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O),  $-SO_2$ , -C(=O)O-, -OC(=O),  $-C(=O)NR^{W2}$ ,  $-NR^{W2}C(=O)$ ; wherein each occurrence of  $R^{WI}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is

NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or a substitutent present on K, when present, and taken together with R<sub>6</sub>, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety; and

A, B, D, E, G and J are independently connected by either a single or double bond, as valency permits, or A-B-D-E-G-J together represents an aryl or heteroaryl moiety; wherein B and J are independently N or CR<sup>Q1</sup>; and A, D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, O, N or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is independently absent, hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent substituents on A, B, D, E, G and J, taken together, may represent an alkyl, cycloalkyl, heteroalkyl, heteroalkyl, heteroaryl, arylalkyl or heteroarylalkyl moiety.

4. (Original) The compound of claim 1, wherein K and R<sub>6</sub>, taken together, form a tetrahydrofuryl ring and the compound has the structure:

$$R_{3}$$
 $R_{4}$ 
 $X_{0}$ 
 $X_{0$ 

wherein  $R_1$  and  $R_2$  are independently hydrogen, halogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

 $R_3$  and  $R_4$  are independently hydrogen or  $OR^{3a}$ , wherein at least one of  $R_3$  and  $R_4$  is -  $OR^{3a}$  or  $-NR^{3a}R^{3b}$ , or  $R_3$  and  $R_4$  taken together with the carbon to which they are attached form a a - C(=O)- or  $=NR^{3c}$  moiety; wherein  $R^{3a}$  and  $R^{3b}$ , for each occurrence, is independently

hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety; and R<sup>3c</sup> is an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or OR<sup>3d</sup>; wherein R<sup>3d</sup> is hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

R<sub>5</sub> is hydrogen, halogen, -CN, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); or R<sub>5</sub> and R<sub>6</sub>, taken together, form a cycloalkyl or heterocyclic moiety; wherein the carbon atoms to which R<sub>5</sub> and R<sub>6</sub> are attached may be connected by a single or double bond, as valency permits; and wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R<sub>6</sub>, taken together with a substituent present on K, forms an alicyclic, heterocyclic, aryl or heteroaryl moiety;

 $R_7$  and  $R_8$  are independently absent, hydrogen, halogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached may be connected by a single, double or triple bond, as valency permits;

 $\mathbf{R}_{9a}$  and  $\mathbf{R}_{9b}$  are independently absent, hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

 $R_{10}$  is hydrogen or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

X<sub>0</sub> is CR<sup>X0a</sup>R<sup>X0b</sup>, O or NR<sup>X0a</sup>; wherein R<sup>X0a</sup> and R<sup>X0b</sup> are independently hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety;

 $X_1$  is O, S or NR<sup>XI</sup>; wherein R<sup>XI</sup> is hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

**Z** is O, NR<sup>Z1</sup>, CR<sup>Z1</sup>R<sup>Z2</sup> or S, wherein R<sup>Z1</sup> and R<sup>Z2</sup> are independently hydrogen, halogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety;

4061665v1

Express Mail No.: EV 782612902 US

K, L and M are independently absent, CR<sup>PI</sup>R<sup>P2</sup>, CR<sup>PI</sup> or C=O, wherein each occurrence of R<sup>PI</sup> is independently hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>WI</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>WI</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>WI</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or a substitutent present on K, when present, and taken together with R<sub>6</sub>, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

A, B, D, E, G and J are independently connected by either a single or double bond, as valency permits, or A-B-D-E-G-J together represents an aryl or heteroaryl moiety; wherein B and J are independently N or CR<sup>Q1</sup>; and A, D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, O, N or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is independently absent, hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl, heteroaryl, arylalkyl or heteroarylalkyl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent substituents on A, B, D, E, G and J, taken together, may represent an alkyl, cycloalkyl, heteroalkyl, heteroalkyl, heteroarylalkyl moiety; and

q and t are independently 0-2; wherein the sum q+t is 1-3.

5. (Currently Amended) The compound of claim 1-or-3 claim 1, wherein -(A)<sub>q</sub>-B-D-E-(G)<sub>t</sub>-J- together represent a heterocyclic moiety having the structure:

wherein at least one of Dand E, and E and G are connected by a double bond; and D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, N, O or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is

independently absent, hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or any two adjacent substituents on D, E and G, taken together, may represent a cycloalkyl, heterocyclic, aryl or heteroaryl moiety.

6. (Original) The compound of claim 5, wherein the heterocyclic moiety has the following stereochemistry:

7. (Currently Amended) The compound of elaim 1 or 3 claim 1, wherein –(A)<sub>q</sub>-B-D-E-(G)<sub>t</sub>-J- together represent a heterocyclic moiety having the structure:

wherein R<sup>W1</sup> is hydrogen, a protecting group, a prodrug moiety, -C(=O)R<sup>y3</sup>, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety; wherein R<sup>y3</sup> is hydrogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.

8. (Original) The compound of claim 7, wherein the heterocyclic moiety has the following stereochemistry:

9. (Currently Amended) The compound of claim 1 or 3 claim 1, wherein –(A)<sub>q</sub>-B-D-E-(G)<sub>t</sub>-J-together represent a heterocyclic moiety having the structure:

wherein R<sup>W1</sup> is hydrogen, a protecting group, a prodrug moiety, -C(=O)R<sup>y3</sup>, or an alkyl, cycloalkyl, heterocyclic, aryl or heteroaryl moiety; wherein R<sup>y3</sup> is hydrogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.

10. (Original) The compound of claim 9, wherein the heterocyclic moiety has the following stereochemistry:

11. (Currently Amended) The compound of claim 1-or 3 claim 1, wherein -(A)<sub>q</sub>-B-D-E-(G)<sub>1</sub>-J-together represent a heterocyclic moiety having the structure:

12. (Original) The compound of claim 11, wherein the heterocyclic moiety has the following stereochemistry:

- 13. (Original) The compound of any one of claims 5-10 wherein R<sup>W1</sup> is hydrogen, an oxygen protecting group or lower alkyl.
- 14. (Original) The compound of claim 13 wherein R<sup>W1</sup> is methyl.
- 15. (Currently Amended) The compound of elaim-1-or-3 claim 1, wherein -(A)<sub>q</sub>-B-D-E-(G)<sub>1</sub>-J-together represent a heterocyclic moiety having the structure:

wherein  $X_2$  is CH or N; r is an integer from 0 to 3; and each occurrence of  $R^{Q1}$  is independently hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or is  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O),  $-SO_2$ ,  $-C(=O)O_2$ , -OC(=O),  $-C(=O)NR^{W2}$ ,  $-NR^{W2}C(=O)$ ; wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

16. (Original) The compound of claim 1 wherein  $X_1$  is O; one of  $R_3$  and  $R_4$  is  $OR^{3a}$ , the other is hydrogen;  $R_{9a}$  and  $R_{9b}$  are each hydrogen; and the compound has the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{6}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{8}$ 

wherein  $R_1$ ,  $R_2$ ,  $R_5$ ,  $R_6$ ,  $R_7$ ,  $R_8$ ,  $R_{10}$ , Z, K, L and M are as defined in claim 1;  $R^{Q1}$  is hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or is  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O),  $-SO_2$ , -C(=O)O-, -OC(=O),  $-C(=O)NR^{W2}$ ,  $-NR^{W2}C(=O)$ ; wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; and  $R^{3a}$  is hydrogen, an oxygen protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.

17. (Original) The compound of claim 16 wherein R<sub>5</sub> and R<sub>6</sub> and the carbon atoms to which they are attached form a 3-membered cyclic moiety; and the compound has the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{7}$ 
 $R_{8}$ 

wherein  $X_3$  is  $CR^{X3a}R^{X3b}$ , O or  $NR^{X3a}$ ; wherein  $R^{X3a}$  and  $R^{X3b}$  are independently hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.

18. (Original) The compound of claim 17 wherein the carbon atoms to which R<sub>7</sub> and R<sub>8</sub> are attached are connected with a single bond; and the compound has the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{10}$ 
 $R_{10}$ 

19. (Original) The compound of claim 17 wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached are connected with a *cis*-double bond; and the compound has the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{10}$ 
 $R_{10}$ 

Page 18 of 44

20. (Original) The compound of claim 17 wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached are connected with a *trans*-double bond; and the compound has the structure:

$$R_{2}$$
  $R_{1}$   $R_{2}$   $R_{3}$   $R_{4}$   $R_{10}$   $R_{10}$   $R_{2}$   $R_{3}$   $R_{4}$   $R_{10}$   $R_{2}$   $R_{3}$   $R_{4}$   $R_{10}$   $R_{2}$   $R_{3}$   $R_{4}$   $R_{4}$ 

21. (Original) The compound of claim 17 wherein R<sub>7</sub> and R<sub>8</sub> are absent; the carbon atoms to which R<sub>7</sub> and R<sub>8</sub> are attached are connected with a triple bond; and the compound has the structure:

$$R_{2n_{n_{1}}}$$
 $R_{10}$ 

22. (Original) The compound of claim 16 wherein the carbon atoms to which  $R_5$  and  $R_6$  are attached are connected with a double bond; and the compound has the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{3}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{8}$ 

23. (Original) The compound of claim 22 wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached are connected with a single bond; and the compound has the structure:

$$R_{2}$$
 $R_{10}$ 
 $R_{2}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 

24. (Original) The compound of claim 22 wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached are connected with a *cis*-double bond; and the compound has the structure:

$$R_{2}$$
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 

25. (Original) The compound of claim 22 wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached are connected with a *trans*-double bond; and the compound has the structure:

$$R_{2} = R_{8}$$
 $R_{10}$ 
 $R_{2} = R_{8}$ 
 $R_{10}$ 

26. (Original) The compound of claim 22 wherein R<sub>7</sub> and R<sub>8</sub> are absent; the carbon atoms to which R<sub>7</sub> and R<sub>8</sub> are attached are connected with a triple bond; and the compound has the structure:

$$R_{2}$$
  $M_{R_{10}}$   $R_{10}$   $R_{2}$   $M_{R_{10}}$   $M_{R_{10}}$ 

27. (Original) The compound of claim 1 wherein  $X_1$  is O; one of  $R_3$  and  $R_4$  is -NR<sup>3a</sup>R<sup>3b</sup>, the other is hydrogen;  $R_{9a}$  and  $R_{9b}$  are each hydrogen; and the compound has the structure:

$$R_{2}$$
 $R_{3}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{5}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{7}$ 
 $R_{8}$ 

wherein  $R_1$ ,  $R_2$ ,  $R_5$ ,  $R_6$ ,  $R_7$ ,  $R_8$ ,  $R_{10}$ , Z, K, L and M are as defined in claim 1;  $R^{Q1}$  is hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or is  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O),  $-SO_2$ , -C(=O)O-, -OC(=O),  $-C(=O)NR^{W2}$ ,  $-NR^{W2}C(=O)$ ; wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; and  $R^{3a}$  and  $R^{3b}$  are independently hydrogen, a nitrogen protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, acyl, aryl or heteroaryl moiety.

28. (Original) The compound of claim 1 wherein  $X_1$  is O; one of  $R_3$  and  $R_4$  is =NR<sup>3a</sup>, the other is hydrogen;  $R_{9a}$  and  $R_{9b}$  are each hydrogen; and the compound has the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{5}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{8}$ 

wherein  $R_1$ ,  $R_2$ ,  $R_5$ ,  $R_6$ ,  $R_7$ ,  $R_8$ ,  $R_{10}$ , Z, K, L and M are as defined in claim 1;  $R^{Q1}$  is hydrogen, halogen, an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or is  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O),  $-SO_2$ ,  $-C(=O)O_7$ , -OC(=O),  $-C(=O)NR^{W2}$ ,  $-NR^{W2}C(=O)$ ; wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; and  $R^{3a}$  is hydrogen, a nitrogen protecting group, a prodrug moiety, an alkyl, cycloalkyl, heteroalkyl, heterocyclic, acyl, aryl or heteroaryl moiety; or  $OR^{3b}$  wherein  $R^{3b}$  is hydrogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.

29. (Original) The compound of claim 27 or 28, wherein R<sub>5</sub> and R<sub>6</sub> and the carbon atoms to which they are attached form a 3-membered cyclic moiety having the structure:

wherein  $X_3$  is  $CR^{X3a}R^{X3b}$ , O or  $NR^{X3a}$ ; wherein  $R^{X3a}$  and  $R^{X3b}$  are independently hydrogen, a nitrogen protecting group, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, acyl, aryl or heteroaryl moiety.

30. (Original) The compound of claim 29, wherein  $X_3$  is  $CH_2$  or O.

- 31. (Original) The compound of claim 27 or 28, wherein the carbon atoms to which R<sub>7</sub> and R<sub>8</sub> are attached are connected with a single bond, a *cis*-double bond a *trans*-double bond a triple bond.
- 32. (Currently Amended) The compound of any one of claims 1-4 and 16-28 claim 1, wherein R<sub>1</sub> and R<sub>2</sub> are independently hydrogen or lower alkyl.
- 33. (Currently Amended) The compound of any one of claims 1-4 and 16-28 claim 1, wherein  $R_1$  and  $R_2$  are each hydrogen.
- 34. (Currently Amended) The compound of any one of claims 1-4 and 16-28 claim 1, wherein  $R_1$  and  $R_2$  are each methyl.
- 35. (Currently Amended) The compound of any one of claims 16-26 claim 16, wherein R<sup>3a</sup> is hydrogen, an oxygen protection group or a prodrug moiety.
- 36. (Currently Amended) The compound of any one of claims 16-26 claim 16, wherein R<sup>3a</sup> is hydrogen or Ac.
- 37. (Currently Amended) The compound of any one of claims 1-4 and 16-28 claim 1, wherein Z is O, NH or NR<sup>Z1</sup>, wherein R<sup>Z1</sup> is a nitrogen protecting group, alkyl, aryl or heteroaryl.
- 38. (Currently Amended) The compound of any one of claims 1-4 and 16-28 claim 1, wherein Z is O.
- 39. (Currently Amended) The compound of any one of claims 1-4, 16-20, 22-25 and 27-28 claim 1, wherein R<sub>7</sub> and R<sub>8</sub> are independently hydrogen, halogen or lower alkyl.
- 40. (Currently Amended) The compound of any one of claims 1-4, 16-20, 22-25 and 27-28 claim 1, wherein R<sub>7</sub> and R<sub>8</sub> are each hydrogen.

Page 23 of 44

- 41. (Currently Amended) The compound of any one of claims 16-28 claim 16, wherein R<sup>Q1</sup> is hydrogen or OR<sup>W1</sup>; wherein R<sup>W1</sup> is hydrogen, a protecting group, a prodrug moiety, C(=O)R<sup>y3</sup>, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety; wherein R<sup>y3</sup> is hydrogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.
- 42. (Currently Amended) The compound of any one of claims 16-28 claim 16, wherein R<sup>Q1</sup> is hydrogen or OR<sup>W1</sup>; wherein R<sup>W1</sup> is hydrogen or lower alkyl.
- 43. (Currently Amended) The compound of any one of claims 16-28 claim 16, wherein R<sup>Q1</sup> is hydrogen or OMe.
- 44. (Currently Amended) The compound of any one of claims 1-4 and 16-28 claim 1, wherein -K-L-M-R<sub>10</sub> is a moiety having one of the following structures:

wherein n is an integer from 0 to 3; each occurrence of  $R^{10A}$  is independently hydrogen, halogen, -CN, or  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;  $R^{P1}$  is hydrogen or lower alkyl; and each occurrence of  $R^{P2}$  is independently hydrogen, a protecting group, a prodrug moiety, -C(=O) $R^y$ , or an alkyl, cycloalkyl, heteroalkyl, heterocyclyl, aryl or heteroaryl moiety; wherein  $R^y$  is hydrogen, or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety.

- 45. (Original) The compound of claim 44, wherein R<sup>P1</sup> is hydrogen or methyl.
- 46. (Original) The compound of claim 44, wherein R<sub>10</sub> is one of:

$$(R^{10A})_{n} \stackrel{i}{ \downarrow \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow} \qquad (R^{10A})_{n} \stackrel{i}{ \downarrow} \qquad (R$$



wherein n and p are each independently integers from 0 to 3; q is an integer from 1 to 6; and each occurrence of R<sup>10A</sup> is independently hydrogen, halogen, -CN, or WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

### 47. (Original) The compound of claim 46, wherein $R_{10}$ is one of:

$$(R^{10A})_{n} \stackrel{\text{II}}{=} N \qquad (R^{10A})_{n} \stackrel{\text{O}}{=} \stackrel{\text{Viz}}{=} \qquad (R^{10A})_{n} \stackrel{\text{N}}{=} N \qquad \qquad N$$

$$\mathbf{d} \qquad \mathbf{q}\text{-}(\mathbf{i}) \qquad \mathbf{x}$$

#### 48. (Original) The compound of claim 1 having the structure:

$$R_{2}$$
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 

wherein Z is O, NH or NR<sup>Z1</sup>, wherein R<sup>Z1</sup> is a nitrogen protecting group, alkyl, aryl or heteroaryl;  $R_1$  and  $R_2$  are independently hydrogen or lower alkyl;  $R^{3a}$ ,  $R^{W1}$  and  $R^{P2}$  are independently hydrogen, an oxygen protecting group, a prodrug moiety, lower alkyl, aryl or heteroaryl;  $R_7$  and  $R_8$  are independently hydrogen, halogen, lower alkyl, aryl, heteroaryl, or,  $R_7$  and  $R_8$ , taken together, form a cycloalkyl, heterocyclyl, aryl or heteroaryl moiety.

# 49. (Original) The compound of claim 48 having the following stereochemistry:

$$R_{2}$$
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 

### 50. (Original) The compound of claim 48 having the structure:

$$R_{2/l_{l_{1}}}$$
 $R^{WI}O$ 
 $OR^{P2}$ 
 $OR^{P2}$ 
 $OR^{R10A}$ 
 $OR^{$ 

wherein n is an integer from 0 to 3; and each occurrence of  $R^{10A}$  is independently hydrogen, halogen, -CN, or  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently

hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

#### 51. (Original) The compound of claim 50 having the following stereochemistry:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

#### 52. (Original) The compound of claim 48 having the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

wherein n is an integer from 0 to 3; and each occurrence of R<sup>10A</sup> is independently hydrogen, halogen, -CN, or WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

#### 53. (Original) The compound of claim 52 having the following stereochemistry:

Attorney Docket No.: 2003946-0230 Client Reference: LIFT/US Customer No. 24280

Express Mail No.: EV 782612902 US 4061665v1

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

#### 54. (Original) The compound of claim 48 having the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 

wherein n is an integer from 0 to 3; and each occurrence of R<sup>10A</sup> is independently hydrogen, halogen, -CN, or WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

## 55. (Original) The compound of claim 54 having the following stereochemistry:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

### 56. (Original) The compound of claim 48 having the structure:

$$R_{2}$$
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 

57. (Original) The compound of claim 56 having the following stereochemistry:

58. (Original) The compound of claim 1 having the structure:

$$R_{2}$$
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 
 $R_{10}$ 

wherein Z is O, NH or  $NR^{Z1}$ , wherein  $R^{Z1}$  is a nitrogen protecting group, alkyl, aryl or heteroaryl;  $R_1$  and  $R_2$  are independently hydrogen or lower alkyl;  $R^{3a}$ ,  $R^{W1}$  and  $R^{P2}$  are independently hydrogen, an oxygen protecting group, a prodrug moiety, lower alkyl, aryl or heteroaryl;  $R_7$  and  $R_8$  are independently hydrogen, halogen, lower alkyl, aryl, heteroaryl, or,  $R_7$  and  $R_8$ , taken together, form a cycloalkyl, heterocyclyl, aryl or heteroaryl moiety.

59. (Original) The compound of claim 58 having the following stereochemistry:

### 60. (Original) The compound of claim 58 having the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

wherein n is an integer from 0 to 3; and each occurrence of  $R^{10A}$  is independently hydrogen, halogen, -CN, or  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

# 61. (Original) The compound of claim 60 having the following stereochemistry:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

### 62. (Original) The compound of claim 58 having the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

wherein n is an integer from 0 to 3; and each occurrence of R<sup>10A</sup> is independently hydrogen, halogen, -CN, or WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

#### 63. (Original) The compound of claim 62 having the following stereochemistry:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 

# 64. (Original) The compound of claim 58 having the structure:

$$R_{2}$$
 $R_{1}$ 
 $R_{2}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{8}$ 
 $R_{7}$ 

wherein n is an integer from 0 to 3; and each occurrence of  $R^{10A}$  is independently hydrogen, halogen, -CN, or  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -

OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

65. (Original) The compound of claim 64 having the following stereochemistry:

66. (Original) The compound of claim 58 having the structure:

67. (Original) The compound of claim 66 having the following stereochemistry:

68. (Original) The compound of claim 1 having the structure:

Page 34 of 44

$$R_{3}$$
 $R_{4}$ 
 $R_{10}$ 
 $R_{10}$ 

wherein q,  $R_1$ - $R_5$ ,  $R_7$ - $R_8$ ,  $R_{10}$ , A, B, D, E, G, J, L, M and Z are as defined in claim 1.

69. (Original) The compound of claim 68 having the following stereochemistry:

$$R_{2}$$
 $R_{10}$ 
 $R_{10}$ 

70. (Original) The compound of claim 68 having the structure:

71. (Original) The compound of claim 68 or 69, wherein -L-M-R<sup>10</sup> is one of:

$$(R^{10A})_n$$
  $(R^{10A})_n$   $(R^{10A})_n$   $(R^{10A})_n$ 

Page 35 of 44

xiv xvi

wherein n is an integer from 0 to 3; and each occurrence of  $R^{10A}$  is independently hydrogen, halogen, -CN, or  $WR^{W1}$  wherein W is O, S,  $NR^{W2}$ , -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of  $R^{W1}$  and  $R^{W2}$  is independently hydrogen, a protecting group, a prodrug moiety or an alkyl, cycloalkyl, heteroalkyl, heterocyclic, aryl or heteroaryl moiety, or, when W is  $NR^{W2}$ ,  $R^{W1}$  and  $R^{W2}$ , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety.

- 72. (Currently Amended) The compound of any one of claims 48-70 claim 48, wherein  $R_1$  is methyl and  $R_2$  is hydrogen.
- 73. (Currently Amended) The compound of any one of claims 48-70 claim 48, wherein  $R_1$  and  $R_2$  are each methyl.
- 74. (Currently Amended) The compound of any one of claims 48-67 claim 48, wherein R<sup>3a</sup> is hydrogen, methyl or acetyl.
- 75. (Currently Amended) The compound of any one of claims 48-67 claim 48, wherein R<sup>P2</sup> is hydrogen, methyl or acetyl.
- 76. (Currently Amended) The compound of any one of claims 48-68 claim 48, wherein R<sub>7</sub> and R<sub>8</sub> are each hydrogen.
- 77. (Currently Amended) The compound of any one of claims 48-67 claim 48, wherein R<sup>W1</sup> is hydrogen or methyl.
- 78. (Currently Amended) The compound of any one of claims 48-68 claim 48, wherein Z is O or NR<sup>Z1</sup> wherein R<sup>Z1</sup> is hydrogen, lower alkyl or aryl.

Express Mail No.: EV 782612902 US

4061665v1

- 79. (Currently Amended) The compound of any one of claims 48-49, 56-59 and 66-69 claim 48, wherein  $R_{10}$  is selected from the groups a through pp.
- 80. (Currently Amended) The compound of any one of claims 50-55 and 60-65 claim 50, wherein n is 0.
- 81. (Currently Amended) The compound of any one of claims 50-55 and 60-65 claim 50, wherein n is 1 and R<sup>10A</sup> is lower alkyl.
- 82. (Currently Amended) A pharmaceutical composition comprising:
  - a compound of any one of claims 1-81 claim 1; and a pharmaceutically acceptable carrier or diluent.
- 83. (Original) The pharmaceutical composition of claim 82 wherein the compound is present in an amount effective to inhibit the growth of multidrug resistant cells.
- 84. (Original) The composition of claim 82, further comprising an additional cytotoxic agent.
- 85. (Original) The composition of claim 84, wherein the cytotoxic agent is an anticancer agent.
- 86. (Original) The composition of claim 85, wherein the anticancer agent is paclitaxel.
- 87. (Original) A method of inhibiting the growth of multidrug resistant cells in:
  - (a) a subject; or
  - (b) a biological sample;

which method comprises administering to said subject, or contacting said biological sample with:

- a) a composition according to claim 82; or
- b) a compound having the structure:

Page 37 of 44

4061665v1

Express Mail No.: EV 782612902 US

$$R_{2}$$
 $R_{3}$ 
 $R_{4}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{9a}$ 
 $R_{9b}$ 
 $R_{7}$ 
 $R_{7}$ 
 $R_{10}$ 
 $R_{10}$ 

or pharmaceutically acceptable derivatives thereof;

wherein  $R_1$  and  $R_2$  are independently hydrogen, halogen, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

R<sub>3</sub> and R<sub>4</sub> are independently hydrogen, -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, wherein at least one of R<sub>3</sub> and R<sub>4</sub> is -OR<sup>3a</sup> or -NR<sup>3a</sup>R<sup>3b</sup>, or R<sub>3</sub> and R<sub>4</sub> taken together with the carbon to which they are attached form a -C(=O)- or =NR<sup>3c</sup> moiety; wherein R<sup>3a</sup> and R<sup>3b</sup>, for each occurrence, is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety; and R<sup>3c</sup> is an aliphatic, alicyclic, heteroaliphatic, heteroaliphatic, heteroaliphatic, heteroaliphatic, alicyclic, heteroaliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

R<sub>5</sub> and R<sub>6</sub> are independently hydrogen, halogen, -CN, an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); or R<sub>5</sub> and R<sub>6</sub>, taken together, form an alicyclic or heteroalicyclic moiety; wherein the carbon atoms to which R<sub>5</sub> and R<sub>6</sub> are attached may be connected by a single or double bond, as valency permits; and wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heteroalicyclic or heteroaryl moiety; or R<sub>6</sub>, taken together with a substituent present on K, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

 $R_7$  and  $R_8$  are independently absent, hydrogen, halogen, -CN, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or  $R_7$  and  $R_8$ , taken together, form an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached may be connected by a single, double or triple bond, as valency permits;

 $R_{9a}$  and  $R_{9b}$  are independently absent, hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or one of  $R_{9a}$  and  $R_{9b}$ , taken together with  $X_1$ , forms an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $R_{10}$  is hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $X_1$  is O, S or NR<sup>X1</sup>, or  $X_1$ , taken together with one of  $R_{9a}$  and  $R_{9b}$ , forms an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; wherein  $R^{X1}$  is hydrogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

Z is O, NR<sup>Z1</sup>, CR<sup>Z1</sup>R<sup>Z2</sup> or S, wherein R<sup>Z1</sup> and R<sup>Z2</sup> are independently hydrogen, halogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

**K**, **L** and **M** are independently absent, or a substituted or unsubstituted C<sub>1-6</sub>alkylidene or C<sub>2-6</sub>alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO<sub>2</sub>, COCO, CONR<sup>PI</sup>, OCONR<sup>PI</sup>, NR<sup>PI</sup>NR<sup>P2</sup>, NR<sup>PI</sup>NR<sup>P2</sup>CO, NR<sup>PI</sup>CO, NR<sup>PI</sup>CO<sub>2</sub>, NR<sup>PI</sup>CONR<sup>P2</sup>, SO, SO<sub>2</sub>, NR<sup>PI</sup>SO<sub>2</sub>, SO<sub>2</sub>NR<sup>PI</sup>, NR<sup>PI</sup>SO<sub>2</sub>NR<sup>P2</sup>, O, S, or NR<sup>PI</sup>; wherein each occurrence of R<sup>PI</sup> and R<sup>P2</sup> is independently hydrogen, aliphatic, heteroaliphatic, aromatic, heteroaromatic or acyl, or a substitutent present on K, when present, and taken together with R<sub>6</sub>, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

A, B, D, E, G and J are independently connected by either a single or double bond, as valency permits, or A-B-D-E-G-J together represents an aromatic or heteroaromatic moiety; wherein B and J are independently N or CR<sup>Q1</sup>; and A, D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, O, N or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is independently absent, hydrogen, halogen, an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -SO<sub>2</sub>, -C(=O)O-,

-OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heteroalicyclic or heteroaryl moiety; or any two adjacent substituents on A, B, D, E, G and J, taken together, may represent an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; and

q and t are independently 0-2; wherein the sum q+t is 1-3;

provided that the method excludes contacting a hyperproliferative mammalian cell having a multiple drug resistant phenotype with a laulimalide compound, as defined in U.S. Patent No. 6,414,015.

- 88. (Original) A method of treating or lessening the severity of a disease or condition associated with cell hyperproliferation in a subject, said method comprising a step of administering to said subject:
  - a) a composition according to claim 82; or
  - b) a compound having the structure:

$$R_{2}$$
 $R_{3}$ 
 $R_{4}$ 
 $R_{6}$ 
 $R_{7}$ 
 $R_{9a}$ 
 $R_{9b}$ 
 $R_{7}$ 
 $R_{8}$ 
 $R_{10}$ 
 $R_{10}$ 

or pharmaceutically acceptable derivative thereof;

wherein  $R_1$  and  $R_2$  are independently hydrogen, halogen, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $R_3$  and  $R_4$  are independently hydrogen,  $-OR^{3a}$  or  $-NR^{3a}R^{3b}$ , wherein at least one of  $R_3$  and  $R_4$  is  $-OR^{3a}$  or  $-NR^{3a}R^{3b}$ , or  $R_3$  and  $R_4$  taken together with the carbon to which they are attached form a -C(=O)- or  $=NR^{3c}$  moiety; wherein  $R^{3a}$  and  $R^{3b}$ , for each occurrence, is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic,

heteroalicyclic, aromatic or heteroaromatic moiety; and R<sup>3c</sup> is an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or OR<sup>3d</sup>; wherein R<sup>3d</sup> is hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

R<sub>5</sub> and R<sub>6</sub> are independently hydrogen, halogen, -CN, an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); or R<sub>5</sub> and R<sub>6</sub>, taken together, form an alicyclic or heteroalicyclic moiety; wherein the carbon atoms to which R<sub>5</sub> and R<sub>6</sub> are attached may be connected by a single or double bond, as valency permits; and wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heteroalicyclic or heteroaryl moiety; or R<sub>6</sub>, taken together with a substituent present on K, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

 $R_7$  and  $R_8$  are independently absent, hydrogen, halogen, -CN, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or  $R_7$  and  $R_8$ , taken together, form an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; wherein the carbon atoms to which  $R_7$  and  $R_8$  are attached may be connected by a single, double or triple bond, as valency permits;

 $R_{9a}$  and  $R_{9b}$  are independently absent, hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or one of  $R_{9a}$  and  $R_{9b}$ , taken together with  $X_1$ , forms an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $R_{10}$  is hydrogen or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

 $X_1$  is O, S or NR<sup>X1</sup>, or  $X_1$ , taken together with one of  $R_{9a}$  and  $R_{9b}$ , forms an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; wherein  $R^{X1}$  is hydrogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

Page 41 of 44

Z is O, NR<sup>Z1</sup>, CR<sup>Z1</sup>R<sup>Z2</sup> or S, wherein R<sup>Z1</sup> and R<sup>Z2</sup> are independently hydrogen, halogen, a nitrogen protecting group, or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety;

K, L and M are independently absent, or a substituted or unsubstituted C<sub>1-6</sub>alkylidene or C<sub>2-6</sub>alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO<sub>2</sub>, COCO, CONR<sup>P1</sup>, OCONR<sup>P1</sup>, NR<sup>P1</sup>NR<sup>P2</sup>, NR<sup>P1</sup>NR<sup>P2</sup>CO, NR<sup>P1</sup>CO, NR<sup>P1</sup>CO<sub>2</sub>, NR<sup>P1</sup>CONR<sup>P2</sup>, SO, SO<sub>2</sub>, NR<sup>P1</sup>SO<sub>2</sub>, SO<sub>2</sub>NR<sup>P1</sup>, NR<sup>P1</sup>SO<sub>2</sub>NR<sup>P2</sup>, O, S, or NR<sup>P1</sup>; wherein each occurrence of R<sup>P1</sup> and R<sup>P2</sup> is independently hydrogen, aliphatic, heteroaliphatic, aromatic, heteroaromatic or acyl, or a substitutent present on K, when present, and taken together with R<sub>6</sub>, forms an alicyclic, heterocyclic, aromatic or heteroaromatic moiety;

A, B, D, E, G and J are independently connected by either a single or double bond, as valency permits, or A-B-D-E-G-J together represents an aromatic or heteroaromatic moiety; wherein B and J are independently N or CR<sup>Q1</sup>; and A, D, E and G are independently C=O, CR<sup>Q1</sup>R<sup>Q2</sup>, NR<sup>Q1</sup>, O, N or S; wherein each occurrence of R<sup>Q1</sup> and R<sup>Q2</sup> is independently absent, hydrogen, halogen, an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or is WR<sup>W1</sup> wherein W is O, S, NR<sup>W2</sup>, -C(=O), -S(=O), -SO<sub>2</sub>, -C(=O)O-, -OC(=O), -C(=O)NR<sup>W2</sup>, -NR<sup>W2</sup>C(=O); wherein each occurrence of R<sup>W1</sup> and R<sup>W2</sup> is independently hydrogen, a protecting group, a prodrug moiety or an aliphatic, alicyclic, heteroaliphatic, heteroalicyclic, aromatic or heteroaromatic moiety, or, when W is NR<sup>W2</sup>, R<sup>W1</sup> and R<sup>W2</sup>, taken together with the nitrogen atom to which they are attached, form a heteroalicyclic or heteroaryl moiety; or any two adjacent substituents on A, B, D, E, G and J, taken together, may represent an alicyclic, heteroalicyclic, aromatic or heteroaromatic moiety; and

q and t are independently 0-2; wherein the sum q+t is 1-3.

89. (Original) The method of claim 88, comprising a further step of administering to said patient an additional therapeutic agent selected from a chemotherapeutic or anti-proliferative agent, an anti-inflammatory agent, or an agent for treating psoriasis and/or dermatitis, wherein:

said additional therapeutic agent is appropriate for the disease being treated; and

said additional therapeutic agent is administered together with said composition as a single dosage form or separately from said composition as part of a multiple dosage form.

90. (Original) The method of claim 89, wherein the chemotherapeutic agent is paclitaxel.

Page 43 of 44