

Statistical Evaluation II: Dealing with Context Windows

Let's start from the beginning

LL =
$$\log L(c_{12}, c_1, p) + \log L(c_2-c_{12}, N-c_1, p)$$

- $\log L(c_{12}, c_1, p_1) - \log L(c_2-c_{12}, N-c_1, p_2)$

 c_1 = occurrences of word 1 in the text

 c_2 = occurrences of word 2 in the text

 $c_{12} = co$ -occurrences of word 1 with word 2 in the text

N = number of tokens in the text

$$p = c_2/N$$

 $p_1 = c_{12}/c_1$
 $p_2 = (c_2-c_{12})/(N-c_1)$

Let's start from the beginning

```
LL = \log L(c_{12}, c_1, p) + \log L(c_2-c_{12}, N-c_1, p)
- \log L(c_{12}, c_1, p_1) - \log L(c_2-c_{12}, N-c_1, p_2)
```

 c_1 = occurrences of word 1 in the **t e x t**

 c_2 = occurrences of word 2 in the **t e x t**

 $c_{12} = co$ -occurrences of word 1 with word 2 in the **text**

N = number of tokens in the**text**

$$p = c_2/N$$

 $p_1 = c_{12}/c_1$
 $p_2 = (c_2-c_{12})/(N-c_1)$

Let's start from the beginning

LL =
$$\log L(c_{12}, c_1, p) + \log L(c_2-c_{12}, N-c_1, p)$$

- $\log L(c_{12}, c_1, p_1) - \log L(c_2-c_{12}, N-c_1, p_2)$

 c_1 = occurrences of word 1 in the **d a t a**

 c_2 = occurrences of word 2 in the **d a t a**

 $c_{12} = co$ -occurrences of word 1 with word 2 in the **d a t a**

N = number of tokens in the d a t a

$$p = c_2/N$$

 $p_1 = c_{12}/c_1$
 $p_2 = (c_2-c_{12})/(N-c_1)$

Data, not Text!

- We have abstracted data from the text
- We should no longer refer to the text
- But, instead, to the data
- The DataFrames we have constructed have everything we need

Counts for the target word (word 1)

$$f(t) = \frac{1}{W} \sum_{c} n(c,t)$$

t =the target word (word 1)

c = the co-occurrent (word 2)

W =the size of the window

This equation from Bullinaria and Levy, "Extracting Semantic Representations from Word Co-Occurrence Statistics", 2007,

What does this mean?

$$f(t) = \frac{1}{W} \sum_{c} n(c,t)$$

Word counts depend on co-occurrence counts!

$$\sum_{c} n(c,t)$$

n(c,t)

Sum all co-occurrence counts for t

What does this mean (cont.)?

$$f(t) = \frac{1}{W} \sum_{c} n(c,t)$$

$$\frac{1}{W}\sum_{c}n(c,t)$$

• Finally, divide by the total window size (L + R)

Counts for the co-occurrent and N

$$f(c) = \frac{1}{W} \sum_{t} n(c,t)$$

Sum of the co-occurrences of c with every t

$$N = \frac{1}{W} \sum_{t} \sum_{c} n(c,t)$$

Sum of the counts for every t