Домашняя работа к занятию 5

1.1 Найдите второе приближение решения задачи Коши $\begin{cases} y' = 1 + x \sin(y^2) \\ y(0) = 0 \end{cases}$

На каком интервале теорема Пикара гарантирует существование решения, если правая часть рассматривается в области $|x| \leq 1, |y| \leq 1/2$?

На каком интервале теорема Пикара гарантирует существование решения, если $|t|\leqslant 10,\, |x|\leqslant 2,\, |y|\leqslant 1?$

- ${f 1.3}$ Найдите второе приближение решения задачи Коши $y'''=(y'')^2+y$ y(0)=0; y'(0)=1; y''(0)=0
- **2.1** Найдите интегральную линию уравнения $x^2y'\sin y = xy' y$, проходящую через точку $(\pi/2;\pi/2)$. Покажите, что непродолжаемое решение задачи Коши для этого уравнения с начальными условиями $y(\pi/2) = \pi/2$ определено на интервале $(\frac{1}{\sin \tau}; +\infty)$, где τ корень уравнения $tg\frac{\tau}{2} = \tau$ на интервале $(0;\pi)$.
- 3.1 Доказать, что если f(x) четная непрерывная функция, то решение задачи Коши $\begin{cases} y''+f(x)y=0\\ y(0)=0;\ y'(0)=a \end{cases}$ является нечетной функцией.
- 3.2 При каких значениях y_0 решение задачи Коши $\begin{cases} y'=y^2\cos x\\ y(0)=y_0 \end{cases}$ определено при всех x? Какой интервал существования решения гарантирует теорема Пикара, если $y_0=1/2,\,|x|\leqslant a$ и $|y-1/2|\leqslant 1$?

Ответы и указания

1.1
$$y^{[2]} = x + \frac{1 - \cos x^2}{2}$$
; $h = 1/4$

1.2
$$x^{[2]} = t$$
, $y^{[2]} = 1 - \cos t$; $h = 1$

1.3
$$y^{[4]} = x + \frac{1}{24}x^4$$

2.1 Поделив обе части уравнения на x^2 , легко привести его к виду $\left(\frac{y}{x} + \cos y\right)' = 0$. Отсюда общий интеграл $\frac{y}{x} + \cos y = C$, или $x = \frac{y}{C - \cos y}$.

Из условия $y(\pi/2) = \pi/2$ получаем, что C = 1, то есть $x = \frac{y}{1 - \cos y}$, где $y \in (0; \pi)$. На всем этом интервале x остается положительным, причем $x \to +\infty$ при $y \to 0$ и $y \to \pi$. Следовательно, функция x(y) имеет положительный минимум на этом интервале.

Разрешим исходное дифференциальное уравнение относительно производной: $y' = \frac{y}{x-x^2\sin y}$. Условия теоремы Пикара нарушаются в тех точках кривой $x = \frac{y}{1-\cos y}$, в которых $x-x^2\sin y = 0$, то есть $x = \frac{1}{\sin y}$. Отсюда $\frac{1-\cos y}{y} = \sin y$, то есть $y = \operatorname{tg} \frac{y}{2}$. Учитывая выпуклость функции $\operatorname{tg} t$, легко показать, что это уравнение имеет единственное решение на интервале $(0;\pi)$.

- 3.1 Указание: Покажите, что если функция $\varphi(x)$ является решением задачи Коши $\begin{cases} y''+f(x)y=0\\ y(0)=0;\ y'(0)=a \end{cases}$, то функция $\psi(x)=-\varphi(-x)$ удовлетворяет тому же уравнению и тем же начальным условиям, что и функция $\varphi(x)$. Далее воспользуйтесь единственностью решения задачи Коши.
- **3.2** Решение задачи Коши определено при всех x, если $|y_0| < 1$. Теорема Пикара гарантирует существование решения с начальными данными $y_0 = 1/2$ на интервале |x| < h, где $h = \min\{a; 4/9\}$, хотя непродолжаемое решение, удовлетворяющее начальным условиям $y_0 = 1/2$, определено при всех x.