Lee Introduction To Manifolds Exercises

DerpZ

February 2023

1 Exercise 2.4

Definition 1.1. Let (X, d) be a metric space.Md

Then, $B_r(r) dx = \{ y \in M : d(y, x) < r \}$ is the **open ball** of radius r around x

Definition 1.2. Let (M, d) be a metric space.

Then, $B_r^{(d)}[x] = \{ y \in M : d(y,x) \le r \}$ is the **closed ball** of radius r around x

Definition 1.3. Let (M, d) be a metric space. Then, we call \mathcal{T}_d the metric topology generated by d (the set of all possible unions of open sets in M) ^a

1.1 Exercise 2.4 (a)

Theorem 1.1. Let M be a metric space with metrics d and d'. Then, the metric topologies generated by d, denoted as \mathcal{T}_d and d', denoted as $\mathcal{T}_{d'}$ are equivalent, $\mathcal{T}_d = \mathcal{T}_{d'}$ iff for every $x \in M$ and every r > 0 there exists $r_1, r_2 > 0$ such that $B_r(r_1) d'x \subseteq B_r(r) dx$ and $B_r(r_2) dx \subseteq B_r(r) d'x$

Proof. (\Rightarrow) Suppose $\mathcal{T}_d = \mathcal{T}_{d'}$. Let $x \in M$ and r > 0 be arbitrary. Since $\mathcal{T}_d = \mathcal{T}_{d'}$, we have that $B_r(r) dx \in \mathcal{T}_{d'}$. So, $B_r(r) dx$ is the union of open balls in $\mathcal{T}_{d'}$. But this means we must have some $r_1 > 0$ such that $B_r(r_1) d'x \subseteq B_r(r) dx$. It's trivial to see that $B_r(r) d'x \in \mathcal{T}_d$ which again means it is the union of open balls in \mathcal{T}_d , thus implying we must have some $r_2 > 0$ such that $B_r(r_2) dx \subseteq B_r(r) d'x$. This completes the proof of the forward direction.

(\Leftarrow) Suppose that for every $x \in M$ and every r > 0 there exists r_1, r_2 such that $B_r(r_1) d'x \subseteq B_r(r) dx$ and $B_r(r_2) dx \subseteq B_r(r) d'x$. Suppose for contradiction

^aIt is important to note that in metric spaces, all open sets are unions of open balls

that $\mathcal{T}_d \neq \mathcal{T}_{d'}$. So, either we have an $O^{(d)}$ such that $O^{(d)} \notin \mathcal{T}_{d'}$ or we have $O^{(d')}$ such that $O^{(d')} \notin \mathcal{T}_{d}$. Let's do case 1 first, that $O^{(d)} \notin \mathcal{T}_{d'}$. Since $O^{(d)}$ is not open in $\mathcal{T}_{d'}$, there is an $x_0 \in O^{(d)}$ such that

$$\forall j > 0, \quad B_r(j) \, d' x_0 \not\subseteq O^{(d)} \tag{1}$$

Since $O^{(d)}$ is open in \mathcal{T}_d , for this particular x_0 , we have $r_0 > 0$ such that $B_r(r_0) dx_0 \subseteq O^{(d)}$. By hypothesis, we now have an $r_1 > 0$ such that $B_r(r_1) d'x_0 \subseteq B_r(r_0) dx_0$. But now, we have that $B_r(r_1) d'x_0 \subseteq B_r(r_0) dx_0 \subseteq O^{(d)}$, but this contradicts ??. The argument for the other case is similar and left out because it is tedious.

1.2 Exercise 2.4 (b)

Claim 1.2.1. Let (M,d) be a metric space, let c>0 and define $d'(x,y)=c\cdot d(x,y)$. Then, $\mathcal{T}_d=\mathcal{T}_d'$

Proof. Let $O \in \mathcal{T}_d$. Let $\Lambda \subseteq \mathbb{R} \times M$ be the radius-point pairs such that $O = \bigcup_{(r,x)\in\Lambda} B_r(r) dx$. Let $(r,x)\in\Lambda$ be arbitrary. Expanding the definition of $B_r(r) dx$, we get that

$$B_r(r) dx = \{ y \in M : d(y, x) < r \}$$

$$= \{ y \in M : c \cdot d(y, x) < cr \}$$

$$= \{ y \in M : d'(y, x) < cr \}$$

$$= B_r(cr) d'x$$

So, $O = \bigcup_{(r,x)\in\Lambda} B_r(cr) d'x \in \mathcal{T}_{d'}$. This shows that $\mathcal{T}_d \subseteq \mathcal{T}_{d'}$. The argument $\mathcal{T}_d \supseteq \mathcal{T}_{d'}$ is similar and tedious and so skipped.

Alternative proof by using ??

Proof. Since $d'(x,y) = c \cdot d(x,y)$, we have $\frac{d'(x,y)}{c} = d(x,y)$ Pick $r_1 = \frac{r}{c}$. Then $B_r(r_1) d'x \subseteq B_r(r) dx$ Now, for $r_2 = cr$, it is immediately obvious that $B_r(r_2) dx \subseteq B_r(r) d'x$ \Box

1.3 Exercise 2.4 (c)

This is exercise B.1 but I included it here because it's useful.

Lemma 1.3.1 (Textbook Exercise B.1). For $x \in \mathbb{R}^n$ such that $x = (x_1, x_2, \dots, x_n)$, we have

$$\max \{ |x_1|, |x_2|, \dots, |x_n| \} \le |x| \le \sqrt{n} \max \{ |x_1|, |x_2|, \dots, |x_n| \}$$

¹the balls are actually equal but whatever

Proof. Suppose $|x_i| = \max\{|x_1|, |x_2|, \dots, |x_n|\}$ for $1 \le i \le n$. Then, $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_i^2 + \dots + x_n^2} \ge \sqrt{x_i^2} = |x_i|$. For the next bit, we have that $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_i^2 + \dots + x_n^2} \le \sqrt{n \cdot x_i^2} = \sqrt{n} \cdot |x_i|$

Claim 1.3.2. Let (\mathbb{R}^n, d) be Euclidean n-space with the Euclidean metric $d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \cdots + (x_n - y_n)^2}$

Let $d'(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n|\}$ be defined for \mathbb{R}^n . Then, $\mathcal{T}_d = \mathcal{T}_{d'}$

Note: This proof is incomplete since I am confused by my justification

Proof. We will make use of $\ref{eq:condition}.$ Let $x \in \mathbb{R}^n$ and r > 0. Then, choose $r_1 = r$. Now, let $y \in B_r(r_1) d'x$. So, from $\ref{eq:condition}.$ we have $d'(y,x) < r_1 = r \le d(y,x)$. So, $y \in B_r(r) dx$ and thus $B_r(r_1) d'x \subseteq B_r(r) dx$. Choose $r_2 = r\sqrt{n}$. Let $y \in B_r(r_2) dx$. Now

$$d'(y,x) < r$$

$$\implies \sqrt{n} \cdot d'(y,x) < r\sqrt{n}$$

$$\implies d(x,y) \le \sqrt{n} \cdot d'(y,x) < r\sqrt{n}$$

$$\implies \frac{d(x,y)}{\sqrt{n}} \le d'(y,x) < r$$

Again, by ??, $d(y,x) < r_2 \le d'(y,x) < r$ Thus $B_r(r_2) dx \subseteq B_r(r) d'x$

2 Exercise 2.5

Claim 2.0.1. Let X be a topological space and Y be an open subset of X. Then, the collection of all open subsets of X in Y is a topology on Y.

Proof. Let (X,\mathcal{T}) denote the topological space of X. Let \mathcal{O}_Y denote the collection of all open subsets of X in Y. To do so, we just need to check the properties of a topology on Y, namely, that $\varnothing,Y\in\mathcal{O}_Y$, if $O_1,O_2\subseteq Y$ are open, then $O_1\cap O_2$ is open in Y (aka, $O_1\cap O_2\in\mathcal{O}_Y$), and the arbitrary union $\bigcup_{\lambda\in\Lambda}O_\lambda$ is also open in Y.

Firstly, since \varnothing and Y are obviously open in Y by definition, $\varnothing, Y \in \mathcal{O}_Y$. Now, let $O_1, O_2 \subseteq Y$ be arbitrary open subsets of Y. Since Y is open in X, any subset of Y must also be open in X, so this means that $O_1, O_2 \in \mathcal{T}$. And since \mathcal{T} is a topology, $O_1 \cap O_2 \in \mathcal{T}$. Of course, $O_1 \cap O_2 \subseteq Y$, so $O_1 \cap O_2 \in \mathcal{O}_Y$. (The inductive case is trivial)

Now, let Λ be some indexing set such that for each $\lambda \in \Lambda$, O_{λ} is open in Y. Of course, this means that $\bigcup_{\lambda \in \Lambda} O_{\lambda} \subseteq Y$ and so the arbitrary union is open in Y. And since $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{T}$, $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{O}_{Y}$.

Since \mathcal{O}_Y is demonstrated to have the properties of a topology on Y, the proof is complete.

Claim 3.0.1. Let X be a set, and let $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in A}$ be a collection of topologies on X. Then, $\mathcal{T}=\bigcap_{{\alpha}\in A}\mathcal{T}_{\alpha}$ is a topology on X.

Proof. Obviously, $\emptyset, X \in \mathcal{T}$.

Let $O_1, O_2 \in \mathcal{T}$. So, $\forall \alpha \in A O_1, O_2 \in \mathcal{T}_{\alpha}$. But since each \mathcal{T}_{α} is a topology, we know that $O_1 \cap O_2 \in \mathcal{T}_{\alpha}$. So obviously, $O_1 \cap O_2 \in \mathcal{T}$.

Let Λ be an indexing set such that $O_{\lambda} \in \mathcal{T}$ for $\lambda \in \Lambda$. Now, this means each $O_{\lambda} \in \mathcal{T}_{\alpha}$. But of course, since each \mathcal{T}_{α} is a topology, $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{T}_{\alpha}$. And since \mathcal{T}_{α} was arbitrary, $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \mathcal{T}$.

4 Exercise 2.9

Prove proposition 2.8

Notation 4.1. Let (X, \mathcal{T}) be a topological space. Let $x \in X$. Then U_x is a neighborhood of x meaning that $U_x \in \mathcal{T}$ (or that it is an open subset of X)

Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. Let $A^c = X \setminus A$

Proposition 4.0.1 (Textbook Proposition 2.8a). $x \in \text{Int } A \text{ iff there exists } U_x \subseteq A$

Proof. (\Rightarrow) Let $x \in \text{Int } A$. Then, by definition of Int A, we have some $C \subseteq X$ such that $C \subseteq A$ and $C \in \mathcal{T}$ (C is open). Then C will serve as U_x .

$$(\Leftarrow)$$
 trivial

Proposition 4.0.2 (Textbook Proposition 2.8b). $x \in \text{Ext } A$ iff there exists $U_x \subseteq A^c$

Proof. (\Rightarrow)

$$\overline{A}^c = \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right)^c$$
 Each B_{λ} is closed
$$= \bigcup_{\lambda \in \Lambda} (B_{\lambda})^c$$
 And now each $(B_{\lambda})^c$ is open

The rest is trivial

 (\Leftarrow) trivial

Proposition 4.0.3 (Textbook Proposition 2.8c). $x \in \partial A$ iff for every U_x , some $y_1 \in A \cap U_x$ and some $y_2 \in A^c \cap U_x$

Proof. THIS PROOF IS INCOMPLETE (\Rightarrow) Let $x \in \partial A$. Let $U_x \in \mathcal{T}$ be arbitrary.

Here, note that C_{λ} are open in X and are subsets of A. And that B_{γ} are closed in X and contain A

$$\partial A = (\operatorname{Int} A \cup \operatorname{Ext} A)^{c}$$

$$= \left(\bigcup_{\lambda \in \Lambda} C_{\lambda} \cup \overline{A}^{c}\right)^{c}$$

$$= \left(\bigcup_{\lambda \in \Lambda} C_{\lambda}\right)^{c} \cap \overline{A}$$

$$= \bigcap_{\lambda \in \Lambda} \left(C_{\lambda}\right)^{c} \cap \overline{A}$$

$$= \bigcap_{\lambda \in \Lambda} \left(C_{\lambda}\right)^{c} \cap \bigcap_{\gamma \in \Gamma} B_{\gamma}$$

Proposition 4.0.4 (Textbook Proposition 2.8d). $x \in \overline{A}$ iff every U_x has $y \in A \cap U_x$

Proof. (\Rightarrow) Let $x \in \overline{A}$. Let $\mathcal{F} = \{B_{\lambda} : \lambda \in \Lambda\}$ be a collection of every closed set in X that contains A, so $\overline{A} = \bigcap \mathcal{F}$. Suppose for contradiction that $U_x \in \mathcal{T}$ is a neighborhood that contains no points of A, or in other words, $U_x \cap A = \emptyset$. Since U_x is open and disjoint from A, $A \subseteq X \setminus U_x$. So, $X \setminus U_x$ is a closed set that contains A. Thus, $X \setminus U_x \in \mathcal{F}$. But since $x \in \overline{A} = \bigcap \mathcal{F}$, $x \in X \setminus U_x$. And by hypothesis, $x \in U_x$. This is obviously absurd.

(\Leftarrow) Suppose x is such that every U_x has a $y \in A \cap U_x$. Let $\mathcal{F} = \{B_\lambda : \lambda \in \Lambda\}$ be a collection of every closed set in X that contains A, so $\overline{A} = \bigcap \mathcal{F}$.

THIS IS INCOMPLETE (the converse direction) \Box

Proposition 4.0.5 (Textbook Proposition 2.8e). $\overline{A} = A \cup \partial A = \text{Int } A \cup \partial A$

Proof. THIS IS INCOMPLETE

$$\partial A = X \setminus \operatorname{Int} A \cap$$

Proposition 4.0.6 (Textbook Proposition 2.8f). The interior and exterior are open sets, while the closure and the boundary and closed sets. Int A, Ext $A \in \mathcal{T}$ and \overline{A}^c , $(\partial A)^c \in \mathcal{T}$.

Proof. Int A is the union of open sets which is an open set.

 \overline{A} is the intersection of closed sets, which is a closed set.

Ext $A = X \setminus \overline{A}$ is an open set because \overline{A} is closed.

 $\partial A = X \setminus (\operatorname{Int} A \cup \operatorname{Ext} A)$ is closed because $\operatorname{Int} A \cup \operatorname{Ext} A$ is open.

Proposition 4.0.7 (Textbook Proposition 2.8g). The following are equivalent:

- 1. A is open in X
- 2. $A = \operatorname{Int} A$
- 3. A contains none of its boundary points (aka, $\partial A \cap A = \emptyset$)
- 4. For all $x \in A$, there exists $U_x \subseteq A$

Proof. We will prove 1 implies 2, 2 implies 3, 3 implies 4 and 4 implies 1 (in that order)

Suppose A is open in X. Then $A \in \mathcal{T}$. Obviously, Int $A \subseteq A$. $A \subseteq \text{Int } A$ follows from the definition of Int A, namely, since, $A \subseteq A$ and A is open in X.

Suppose A = Int A. Then by definition of $\partial A = X \setminus (\text{Int } A \cup \text{Ext } A), \ \partial A \cap A = \emptyset$ immediately follows.

Suppose that $\partial A \cap A = \emptyset$. Let $x \in A$ be arbitrary. This means that $x \notin \partial A$, so $x \in \text{Int } A \cup \text{Ext } A$. Of course, $x \notin \text{Ext } A$. So, $x \in \text{Int } A$. So, Int A can be a neighborhood of x, and obviously since Int $A \subseteq A$ we are done.

Suppose that every point of A has a neighborhood contained in A. Then, we know $\bigcup_{x \in A} U_x \subseteq A$. Now, let $x \in A$. Then we have some U_x , so $U_x \subseteq \bigcup_{y \in A} U_y$. And so $\bigcup_{y \in A} U_y = A$. Since the union of open sets is open, A is open. \square

Proposition 4.0.8 (Textbook Proposition 2.8h). The following are equivalent:

- A is closed in X
- $A = \overline{A}$
- A contains all of its boundary points (aka, $\partial A \subseteq A$)
- For all $x \in A^c$, there exists $U_x \subseteq A^c$

Proof. Observe that A is closed iff A^c is open, and apply ??

Proposition 5.0.1 (Book Exercise 2.10). Let (X, \mathcal{T}) be a topological space and let $A \subseteq X$. Then, A is closed iff it contains all of its limit points

- *Proof.* (\Rightarrow) Suppose A is closed. Let p be a limit point of A. Suppose for contradiction that $p \notin A$, so $p \in A^c$. Since A^c is open, p must have some neighborhood in A^c , call it V. Since p is a limit point, we must have some point $a_0 \in A$ such that $a_0 \in V$ and $a_0 \neq p$. But then, $V \subseteq A^c$, so $a_0 \in A$ and $a_0 \in A^c$, which is absurd.
- (\Leftarrow) Suppose A contains all of its limit points. Let L denote the set of all limits point of A. Suppose for contradiction that we have $x_0 \in A^c$ with no neighborhood contained in A^c . Let V_{x_0} be an arbitrary neighborhood of x_0 . So, V_{x_0} contains a point in A, say y_0 , and clearly $y_0 \neq x_0$. But now this means that x_0 is a limit point of A (since every neighborhood of x_0 contains a point of A that is not x_0) that is not contained in A. This is obviously absurd.

6 Exercise 2.11

Definition 6.1. Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then, A is dense in X if $\overline{A} = X$

Proposition 6.0.1 (Book Exercise 2.11). Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then, A is dense iff every nonempty open subset of X contains a point of A.

Proof. (\Rightarrow) Suppose A is dense in X. Then we have that $\overline{A} = X$. Now, let $O \subseteq X$ be an arbitrary nonempty open subset of X. Let $k \in O$ be some point, and so O is a neighborhood for k. By ??, O must contain a point of A, so we are done.

(\Leftarrow) Suppose every nonempty open subset of X contains a point of A. Let $x \in X$ be arbitrary and let O_x be an arbitrary neighborhood of x. By ??, $x \in A$ so $X \subseteq A$. Obviously, $A \subseteq X$ so A = X and thus A is dense in X. □

Recall (Convergence in metric spaces). Let (X,d) be a metric space. Let $(x_n) \subseteq X$. Then, $\lim_{n \to \infty} (x_n) = x$ if for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that when $n \geq N$, $d(x_n, x) < \varepsilon$

Proposition 7.0.1. Let (X, d) be a metric space. Let \mathcal{T} be the topological space on X. Let $(x_n) \subseteq X$ be a convergent sequence with limit x of the metric space. Then, for every neighborhood U of x, we have an $N \in \mathbb{N}$ such that when $n \geq N$, $x_n \in U$

TL;DR: metric space convergence and topological convergence are equivalent

Proof. Let U be an arbitrary neighborhood of x. Now, let B be the largest open ball contained in U. Suppose that B has radius r. Then, we have $N \in \mathbb{N}$ such that when $n \geq N$, $d(x_n, x) < r$. This means that when $n \geq N$, $x_n \in B \subseteq U$.

Suppose that (x_n) converges topologically. Let $\varepsilon > 0$ be arbitrary and consider the open ball B_{ε} around x with radius ε . Since B_{ε} is a neighborhood of x, we have some $N \in \mathbb{N}$ such that whenever $n \geq N$, $x_n \in B_{\varepsilon}$. The rest is obvious. The obviousness completes the proof.

8 Exercise 2.14

Proposition 8.0.1 (Textbook Exercise 2.14). Let (X, \mathcal{T}_X) be a topological space. Let $A \subseteq X$. Let $(x_i) \subseteq A$ such that $(x_i) \to x \in X$. Then, $x \in A$

Proof. Notice that since (x_i) is convergent each neighborhood U of x will have some $x_i \in A$ such that $x_i \in U$. Now apply ?? to complete the proof

Alternative proof: trivial, obvious, exercise

9 Exercise 2.16

Proposition 9.0.1 (Book Proposition 2.15). A map between topological spaces is continuous if and only if the preimage of every closed subset is closed.

Proof. (\Rightarrow) Let X and Y be topological spaces and suppose $f: X \to Y$ is a continuous map. Let $K \subseteq Y$ be closed. Then, $f^{-1}(Y \setminus K)$ is open. So, $X \setminus f^{-1}(Y \setminus K)$ is closed. We claim that $X \setminus f^{-1}(Y \setminus K) = f^{-1}(K)$. Obviously, $f^{-1}(K) \subseteq X \setminus f^{-1}(Y \setminus K)$. To show $f^{-1}(K) \supseteq X \setminus f^{-1}(Y \setminus K)$, suppose not. Then, there must be some $x_0 \in f^{-1}(K)$ such that $x_0 \notin X \setminus f^{-1}(Y \setminus K)$. This means $x_0 \in f^{-1}(Y \setminus K)$. So, $f(x_0) \in Y \setminus K$, so $f(x_0) \notin K$. But however, we said $x_0 \in f^{-1}(K)$. This is absurd.

(\Leftarrow) This is trivial and tedious and so skipped. The argument is similar as to (\Rightarrow)

Proposition 10.0.1 (Book Proposition 2.17). Let X, Y, Z be topological spaces. Then,

- (a) Every constant map $f: X \to Y$ is continuous.
- (b) The identity map $\epsilon: X \mapsto X$, $\epsilon(x) = x$ is continuous
- (c) If $f: X \to Y$ is continuous, the restriction of f to any open subset of X is also continuous.

Proof. For a), observe that the preimage of any open subset of Y is either the empty set or X (if it contains the point y_0 which everything in X is mapped to).

For b), notice that the preimage of any open set is itself.

c) is obviously true. \Box

11 Exercise 2.20

Proposition 11.0.1. Let $X \approx Y$ denote that X is homeomorphic to Y. Then, \approx is an equivalence relation on the class of all topological spaces.

Recall. An equivalence relation must be reflexive, transitive and antisymmetric.

Trivial Proof. The proof is trivial

Proper proof. For reflexivity, observe that any topological space is homeomorphic to itself.

For transitivity, suppose X,Y,Z are topological spaces and $\varphi:X\to Y$ and $\psi:Y\to Z$ are homeomorphisms. Define $\xi=\psi\circ\varphi$. Then ξ is bijective, and of course since the composition of continuous functions is continuous, ξ and ξ^{-1} are both continuous so ξ is a homeomorphism from X to Z.

For antisymmetry, notice that homeomorphism is a symmetric relation. \Box

12 Exercise 2.21

Proposition 12.0.1. Let (X_1, \mathcal{T}_1) and (X_2, \mathcal{T}_2) be topological spaces and let $f: X_1 \to X_2$ be a bijective map. Then, f is a homeomorphism iff $f(\mathcal{T}_1) = \mathcal{T}_2$ (aka, if $U \in \mathcal{T}_1$, $f(Y) \in \mathcal{T}_2$

Proof. This proof is left as an exercise to the viewer. That's right, kiameimon \Box