#### Interior-point methods

Lecture 13, Nonlinear Programming

National Taiwan University

January 3, 2017

#### Table of contents

- 1 Inequality constrained minimization problems
  - Inequality constrained minimization problems
- 2 Logarithmic barrier function and central path
  - Logarithmic barrier
  - Central path
  - Interpretations of central path conditions
- The barrier method
  - The barrier method
  - Choices of parameters
  - Examples
  - Newton step for modified KKT equations

# Inequality constrained minimization problems (1/4)

 In this lecture, we discuss interior-point methods for solving convex optimization problems that include inequality constraints,

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \leq 0, \quad i=1,...,m$   
 $Ax=b,$ 

- where  $f_0, ..., f_m : \mathbb{R}^n \to \mathbb{R}$  are convex and twice continuously differentiable, and  $A \in \mathbb{R}^{p \times n}$  with rank A = p < n.
- We assume that an optimal  $x^*$  exists and denote the optimal value  $f_0(x^*)$  as  $p^*$ .

### Inequality constrained minimization problems (2/4)

• We also assume that the problem is strictly feasible, i.e., there exists  $x \in \text{relint } \mathcal{D}$  that satisfies Ax = b and  $f_i(x) < 0$  for i = 1, ..., m. (i.e., Slater's constraint qualification holds), so there exist dual optimal  $\lambda^* \in \mathbb{R}^m$ ,  $\nu^* \in \mathbb{R}^p$ , which together with  $x^*$  satisfy the KKT conditions

$$Ax^* = b, \quad f_i(x^*) \leq 0, \quad i = 1, ..., m$$

$$\lambda^* \geq 0$$

$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + A^T \nu^* = 0$$

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, ..., m.$$

# Inequality constrained minimization problems (3/4)

- Interior-point methods solve the optimization problem (or the corresponding KKT conditions) by applying Newton's method to a sequence of equality constrained problems, or to a sequence of modified versions of the KKT conditions.
- We will concentrate on a particular interior-point algorithm, the barrier method.
- We can view interior-point methods as another level in the hierarchy of convex optimization algorithms.
- Linear equality constrained quadratic problems are the simplest. For these problems the KKT conditions are a set of linear equations, which can be solved analytically.

# Inequality constrained minimization problems (4/4)

- Newton's method is the next level in the hierarchy. We can think of Newton's method as a technique for solving a linear equality constrained optimization problem, with twice differentiable objective, by reducing it to a sequence of linear equality constrained quadratic problems.
- Interior-point methods form the next level in the hierarchy:
   They solve an optimization problem with linear equality and inequality constraints by reducing it to a sequence of linear equality constrained problems.

# Examples (1/2)

- Many problems are already in the form of a convex optimization problem, and satisfy the assumption that the objective and constraint functions are twice differentiable.
- Obvious examples are LPs, QPs, QCQPs, and GPs in convex form; another example is linear inequality constrained entropy maximization,

minimize 
$$\sum_{i=1}^{n} x_i \log x_i$$
  
subject to 
$$Fx \leq g$$
  
$$Ax = b,$$

with domain  $\mathcal{D} = \mathbf{R}_{++}^n$ .

# Examples (2/2)

- Many other problems do not have the required form with twice differentiable objective and constraint functions, but can be reformulated in the required form.
- We have already seen many examples of this, such as the transformation of an unconstrained convex piecewise-linear minimization problem

minimize 
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

(with nondifferentiable objective), to the LP

minimize 
$$t$$
  
subject to  $a_i^T x + b_i \le t, i = 1, ..., m$ 

(having twice differentiable objective and constraint functions).

# Eliminating Inequality Constraints (1/2)

- Goal: approximately formulate the inequality constrained problem as an equality constrained problem to which Newton's method can be applied.
- Our first step is to rewrite the problem

minimize 
$$f_0(x)$$
  
subject to  $f_i(x) \le 0$ ,  $i = 1, ..., m$   
 $Ax = b$ ,

making the inequality constraints implicit in the objective.

# Eliminating Inequality Constraints (2/2)

• As a result, we obtain the following equivalent problem:

minimize 
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x))$$
  
subject to  $Ax = b$ ,

where  $I_-: R \to R$  is the indicator function for the nonpositive reals.

$$I_{-}(u) = \begin{cases} 0 & u \leq 0 \\ \infty & u > 0. \end{cases}$$

 The reformulated problem has no inequality constraints, but its objective function is not (in general) differentiable, so Newton's method cannot be applied.

# Logarithmic barrier (1/4)

• We approximate the indicator function  $I_{-}$  by the function

$$\hat{l}_{-}(u) = -(1/t)\log(-u), \text{ dom } \hat{l}_{-} = -\mathbf{R}_{++},$$

where t > 0 is a parameter for the approximation accuracy.



• Like  $I_-$ , the function  $\hat{I}_-$  is convex and nondecreasing, and takes on the value  $\infty$  for u > 0. However, unlike  $I_-$ ,  $\hat{I}_-$  is differentiable and closed: it increases to  $\infty$  as u increases to 0.

# Logarithmic barrier (2/4)

- As t increases, the approximation becomes more accurate.
- Substituting  $\hat{l}_{-}$  for  $l_{-}$  gives the approximation

minimize 
$$f_0(x) + \sum_{i=1}^m -(1/t) \log(-f_i(x))$$
  
subject to  $Ax = b$ .

• The objective here is convex, since  $-(1/t)\log(-u)$  is convex and increasing in u, and differentiable. So, Newton's method can be used to solve it, assuming an appropriate closedness condition holds.

# Logarithmic barrier (3/4)

- The function  $\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x))$ , with dom  $\phi = \{x \in \mathbb{R}^n \mid f_i(x) < 0, i = 1, ..., m\}$ , is called the logarithmic barrier (or log barrier) for the original problem.
- Its domain is the set of points that strictly satisfy the inequality constraints of the original problem. The logarithmic barrier,  $\phi(x)$ , grows without bound if  $f_i(x) \to 0$ , for any i.
- Note that the problem

minimize 
$$f_0(x) + \sum_{i=1}^m -(1/t) \log(-f_i(x))$$
  
subject to  $Ax = b$ .

is just an approximation of the original problem. But it can be shown that the quality of the approximation improves as the parameter t grows.

# Logarithmic barrier (4/4)

- On the other hand, when the parameter t is large, the function  $f_0 + (1/t)\phi$  is difficult to minimize by Newton's method, since its Hessian varies rapidly near the boundary of the feasible set.
- We will see that this problem can be circumvented by solving a sequence of approximated problems, increasing the parameter t at each step, and starting each Newton minimization at the solution of the problem for the previous value of t.

#### Gradient and Hessian of the logarithmic barrier function

• For future reference, we note that the gradient and Hessian of the logarithmic barrier function  $\phi$  are given by

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x)$$

and

$$\nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla^2 f_i(x).$$

#### Central path (1/3)

• We now consider in more detail the minimization problem

minimize 
$$f_0(x) + \sum_{i=1}^m -(1/t) \log(-f_i(x))$$
  
subject to  $Ax = b$ .

 To simplify notation, we multiply the objective by t, and consider the equivalent problem

minimize 
$$tf_0(x) + \phi(x)$$
  
subject to  $Ax = b$ ,

which has the same minimizers.

### Central path (2/3)

• We assume that the problem

minimize 
$$tf_0(x) + \phi(x)$$
  
subject to  $Ax = b$ ,

can be solved via Newton's method, and that it has a unique solution for each t > 0.

- For t > 0 we define  $x^*(t)$  as the solution of the above problem.
- The central path associated with the original problem is defined as the set of points  $x^*(t)$ , t > 0, which we call the central points.

### Central path (3/3)

• Points on the central path are characterized by the following necessary and sufficient conditions:  $x^*(t)$  is strictly feasible, i.e., satisfies

$$Ax^*(t) = b$$
,  $f_i(x^*(t)) < 0$ ,  $i = 1, ..., m$ ,

and there exists a  $\hat{\nu} \in \mathbb{R}^p$  such that

$$0 = t \nabla f_0(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\nu}$$
  
=  $t \nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^T \hat{\nu}$ 

holds.

### Example – Inequality form linear programming (1/4)

• The logarithmic barrier function for an LP in inequality form,

minimize 
$$c^T x$$
  
subject to  $Ax \leq b$ ,

is given by

$$\phi(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \operatorname{dom} \ \phi = \{x \mid Ax \prec b\},\$$

where  $a_1^T, ..., a_m^T$  are the rows of A.

### Example – Inequality form linear programming (2/4)

• The gradient and Hessian of the barrier function are

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x} a_i, \quad \nabla^2 \phi(x) = \sum_{i=1}^{m} \frac{1}{(b_i - a_i^T x)^2} a_i a_i^T.$$

• By defining  $d_i = 1/(b_i - a_i^T x)$ , we reach a more compact form

$$\nabla \phi(x) = A^T d, \quad \nabla^2 \phi(x) = A^T \text{diag } (d)^2 A,$$

where  $d \in \mathbb{R}^m$ .

• Since x is strictly feasible, we have  $d \succ 0$ , so the Hessian of  $\phi$  is nonsingular if and only if A has rank n.

### Example – Inequality form linear programming (3/4)

The centrality condition

$$0 = t \nabla f_0(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\nu}$$
  
=  $t \nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^T \hat{\nu}$ 

implies

$$tc + \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x} a_i = tc + A^T d = 0.$$

 We can give a simple geometric interpretation of the centrality condition as in the next slide.

#### Example – Inequality form linear programming (4/4)

- At a point  $x^*(t)$  on the central path the gradient  $\nabla \phi(x^*(t))$ , which is normal to the level set of  $\phi$  through  $x^*(t)$ , must be parallel to -c.
- In other words, the hyperplane  $c^T x = c^T x^*(t)$  is tangent to the level set of  $\phi$  through  $x^*(t)$ .



# Dual points from central path (1/3)

- We can derive an important property of the central path:
   Every central point yields a dual feasible point, and hence a lower bound on the optimal value p\*.
- Specifically, define

$$\lambda_i^*(t) = -\frac{1}{tf_i(x^*(t))}, \quad i = 1, ..., m, \quad \nu^*(t) = \hat{\nu}/t.$$

- We claim that the pair  $(\lambda^*(t), \nu^*(t))$  is dual feasible (i.e.,  $g(\lambda^*(t), \nu^*(t)) > -\infty$  and  $\lambda^*(t) \succeq 0$ ).
- First, it is clear that  $\lambda^*(t) \succ 0$  because  $f_i(x^*(t)) < 0, \quad i = 1, ..., m.$

# Dual points from central path (2/3)

Next, note that the centrality condition can be expressed as

$$\nabla f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) \nabla f_i(x^*(t)) + A^T \nu^*(t) = 0.$$

• We see that  $x^*(t)$  minimizes the Lagrangian

$$L(x,\lambda,\nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \nu^T (Ax - b),$$

for  $\lambda = \lambda^*(t)$  and  $\nu = \nu^*(t)$ , which means that  $(\lambda^*(t), \nu^*(t))$  is a dual feasible pair.

# Dual points from central path (3/3)

• Therefore, the dual function  $g(\lambda^*(t), \nu^*(t))$  is finite, and

$$g(\lambda^*(t), \nu^*(t)) = f_0(x^*(t)) + \sum_{i=1}^m \lambda_i^*(t) f_i(x^*(t)) + \nu^*(t)^T (Ax^*(t) - b)$$
  
=  $f_0(x^*(t)) - m/t$ .

• In particular, the duality gap associated with  $x^*(t)$  and the dual feasible pair  $(\lambda^*(t), \nu^*(t))$  is simply m/t. As an important consequence, we have

$$f_0(x^*(t)) - p^* \leq m/t,$$

- i.e.,  $x^*(t)$  is no more than m/t-suboptimal.
- This confirms the intuitive idea that  $x^*(t)$  converges to an optimal point as  $t \to \infty$ .

# Example – Inequality form linear programming (1/2)

• Let us revisit the inequality form LP

minimize 
$$c^T x$$
  
subject to  $Ax \leq b$ .

• The dual problem the inequality form LP is

maximize 
$$-b^T \lambda$$
  
subject to  $A^T \lambda + c = 0$   
 $\lambda \geq 0$ .

# Example – Inequality form linear programming (2/2)

From the optimality conditions

$$tc + \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x} a_i = tc + A^T d = 0,$$

it is clear that

$$\lambda_i^*(t) = \frac{1}{t(b_i - a_i^T x^*(t))}, \quad i = 1, ..., m,$$

is dual feasible, with dual objective value

$$-b^{T}\lambda^{*}(t) = c^{T}x^{*}(t) + (Ax^{*}(t) - b)^{T}\lambda^{*}(t) = c^{T}x^{*}(t) - m/t.$$

# Interpretation via KKT conditions (1/2)

We can interpret the centrality conditions

$$0 = t \nabla f_0(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\nu}$$
  
=  $t \nabla f_0(x^*(t)) + \sum_{i=1}^m \frac{1}{-f_i(x^*(t))} \nabla f_i(x^*(t)) + A^T \hat{\nu}$ 

as a continuous deformation of the KKT optimality conditions.

• A point x equals  $x^*(t)$  if and only if there exists  $\lambda, \nu$  such that

$$Ax = b,$$

$$f_i(x) \leq 0, \quad i = 1, ..., m$$

$$\lambda \geq 0$$

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

$$-\lambda_i f_i(x) = 1/t, \quad i = 1, ..., m.$$

# Interpretation via KKT conditions (2/2)

- The only difference between the KKT conditions and the centrality conditions is that the complementarity condition  $-\lambda_i f_i(x) = 0$  is replaced by the condition  $-\lambda_i f_i(x) = 1/t$ .
- In particular, for large t,  $x^*(t)$  and the associated dual point  $\lambda^*(t)$ ,  $\nu^*(t)$  'almost' satisfy the KKT optimality conditions.

# Force field interpretation (1/3)

- We can give a simple mechanics interpretation of the central path in terms of potential forces acting on a particle in the strictly feasible set C.
- For simplicity we assume that there are no equality constraints.
- We associate with each constraint the force

$$F_i(x) = -\nabla(-\log(-f_i(x))) = \frac{1}{f_i(x)}\nabla f_i(x)$$

acting on the particle when it is at position x.

Now we imagine another force acting on the particle, given by

$$F_0(x) = -t \nabla f_0(x),$$

when the particle is at position x.

### Force field interpretation (2/3)



- This objective force field acts to pull the particle in the negative gradient direction (i.e., toward smaller  $f_0$ ).
- The central point  $x^*(t)$  is the point where the constraint forces exactly balance the objective force felt by the particle.

# Force field interpretation (3/3)

 As the parameter t increases, the particle is more strongly pulled toward the optimal point, but it is always trapped in C by the barrier potential, which becomes infinite as the particle approaches the boundary.

# The barrier method (1/5)

- We have seen that the point  $x^*(t)$  is m/t-suboptimal, and that a certificate of this accuracy is provided by the dual feasible pair  $\lambda^*(t), \nu^*(t)$ .
- This suggests a very straightforward method for solving the original problem with a guaranteed specified accuracy  $\epsilon$ : We simply take  $t=m/\epsilon$  and solve the equality constrained problem

minimize 
$$(m/\epsilon)f_0(x) + \phi(x)$$
  
subject to  $Ax = b$ 

using Newton's method.

# The barrier method (2/5)

- This method could be called the unconstrained minimization method, since it allows us to solve the inequality constrained problem to a guaranteed accuracy by solving an unconstrained, or linearly constrained, problem.
- Although this method can work well for small problems, good starting points, and moderate accuracy (i.e.,  $\epsilon$  not too small), it does not work well in other cases. As a result, it is rarely used.

# The barrier method (3/5)

- A simple extension of the unconstrained minimization method does work well.
- It is based on solving a sequence of unconstrained (or linearly constrained) minimization problems, using the last point found as the starting point for the next unconstrained minimization problem.
- In other words, we compute  $x^*(t)$  for a sequence of increasing values of t, until  $t \ge m/\epsilon$ , which guarantees that we have an  $\epsilon$ -suboptimal solution of the original problem.

# The barrier method (4/5)

- A simple version of the method is as follows. Algorithm 11.1 Barrier method. given strictly feasible  $x, t := t^{(0)} > 0, \mu > 1$ , tolerance  $\epsilon > 0$ . repeat
  - 1. Centering step. Compute  $x^*(t)$  by minimizing  $tf_0 + \phi$ , subject to Ax = b, starting at x.
  - 2. *Update.*  $x := x^*(t)$ .
  - 3. Stopping criterion. **quit** if  $m/t < \epsilon$ .
  - 4. Increase t.  $t := \mu t$ .
- At each iteration (except the first one) we compute the central point  $x^*(t)$  starting from the previously computed central point, and then increase t by a factor  $\mu > 1$ .

#### The barrier method (5/5)

- The algorithm can also return  $\lambda = \lambda^*(t)$ , and  $\nu = \nu^*(t)$ , a dual  $\epsilon$ -suboptimal point, or certificate for x.
- We refer to each execution of step 1 as a centering step (since a central point is being computed) or an outer iteration.
- Although any method for linearly constrained minimization can be used in step 1, we will assume that Newton's method is used.
- We refer to the Newton iterations or steps executed during the centering step as inner iterations.
- At each inner step, we have a primal feasible point; we have a dual feasible point, however, only at the end of each outer (centering) step.

# Accuracy of centering (1/2)

- We should make some comments on the accuracy to which we solve the centering problems.
- Computing  $x^*(t)$  exactly is not necessary since the central path has no significance beyond the fact that it leads to a solution of the original problem as  $t \to \infty$ ; inexact centering will still yield a sequence of points  $x^{(k)}$  that converges to an optimal point.
- Inexact centering, however, means that the points  $\lambda^*(t), \nu^*(t)$ , computed from

$$\lambda_i^*(t) = -\frac{1}{tf_i(x^*(t))}, \quad i = 1, ..., m, \quad \nu^*(t) = \hat{\nu}/t,$$

are not exactly dual feasible.

# Accuracy of centering (2/2)

- The cost of computing an extremely accurate minimizer of  $tf_0+\phi$ , as compared to the cost of computing a good minimizer of  $tf_0+\phi$ , is only marginally more, i.e., a few Newton steps at most.
- So it is usually reasonable to assume exact centering.

# Choice of $\mu$ (1/3)

- ullet The choice of the parameter  $\mu$  involves a trade-off in the number of inner and outer iterations required.
- If μ is small (i.e., near 1) then at each outer iteration t increases by a small factor. As a result, the initial point for the Newton process, i.e., the previous iterate x, is a very good starting point, and the number of Newton steps needed to compute the next iterate is small.
- Thus for small  $\mu$  we expect a small number of Newton steps per outer iteration, but a large number of outer iterations.
- In this case the iterates (and indeed, the iterates of the inner iterations as well) closely follow the central path.
- This explains the alternate name path-following method.

# Choice of $\mu$ (2/3)

- ullet On the other hand, if  $\mu$  is large we have the opposite situation.
- After each outer iteration t increases a large amount, so the current iterate is probably not a very good approximation of the next iterate.
- Thus we expect many more inner iterations.
- This 'aggressive' updating of t results in fewer outer iterations, since the duality gap is reduced by the large factor  $\mu$  at each outer iteration, but more inner iterations.
- With  $\mu$  large, the iterates are widely separated on the central path; the inner iterates veer way off the central path.

# Choice of $\mu$ (3/3)

- In practice, small values of  $\mu$  (i.e., near one) result in many outer iterations, with just a few Newton steps for each outer iteration.
- ullet For  $\mu$  in a fairly large range, from around 3 to 100 or so, the two effects nearly cancel, so the total number of Newton steps remains approximately constant.
- This means that the choice of  $\mu$  is not particularly critical; values from around 10 to 20 or so seem to work well.

# Choice of $t^{(0)}$ (1/2)

- Another important issue is the choice of initial value of t.
- If  $t^{(0)}$  is chosen too large, the first outer iteration will require too many iterations. If  $t^{(0)}$  is chosen too small, the algorithm will require extra outer iterations, and possibly too many inner iterations in the first centering step.
- Since  $m/t^{(0)}$  is the duality gap that will result from the first centering step, one reasonable choice is to choose  $t^{(0)}$  so that  $m/t^{(0)}$  is approximately of the same order as  $f_0(x^{(0)}) p^*$ .
- For example, if a dual feasible point  $\lambda$ ,  $\nu$  is known, with duality gap  $\eta = f_0(x^{(0)}) g(\lambda, \nu)$ , then we can take  $t^{(0)} = m/\eta$ . Thus, in the first outer iteration we simply compute a pair with the same duality gap as the initial primal and dual feasible points.

# Choice of $t^{(0)} (2/2)^{-1}$

Another possibility is suggested by the central path condition

$$0 = t \nabla f_0(x^*(t)) + \nabla \phi(x^*(t)) + A^T \hat{\nu}.$$

We can interpret

$$\inf_{\nu} \left| \left| t \nabla f_0(x^{(0)}) + \nabla \phi(x^{(0)}) + A^T \nu \right| \right|_2$$

as a measure for the deviation of  $x^{(0)}$  from the point  $x^*(t)$ , and choose for  $t^{(0)}$  the value that minimizes the above expression (This value of t and  $\nu$  can be found by solving a least-squares problem).

#### Linear programming in inequality form (1/7)

Consider an example of a small LP in inequality form,

minimize 
$$c^T x$$
  
subject to  $Ax \leq b$ 

with  $A \in \mathbb{R}^{100 \times 50}$ .

- The data were generated randomly, so that the problem is strictly primal and dual feasible, with optimal value  $p^* = 1$ .
- The initial point  $x^{(0)}$  is on the central path, with a duality gap of 100.
- The barrier method is terminated when the duality gap is less than  $10^{-6}$ .
- The centering problems are solved by Newton's method with backtracking, using parameters  $\alpha = 0.01, \beta = 0.5$ .

## Linear programming in inequality form (2/7)

- The stopping criterion for Newton's method is  $\lambda(x)^2/2 \leq 10^{-5}$ , where  $\lambda(x)$  is the Newton decrement of the function  $tc^Tx + \phi(x)$ .
- The progress of the barrier method, for three values of the parameter  $\mu$ , is shown below.



## Linear programming in inequality form (3/7)



- Each of the plots has a staircase shape, with each stair associated with one outer iteration.
- The width of each stair tread (i.e., horizontal portion) is the number of Newton steps required for that outer iteration.
- The height of each stair riser (i.e., the vertical portion) is exactly equal to (a factor of)  $\mu$ , since the duality gap is reduced by the factor  $\mu$  at the end of each outer iteration.

#### Linear programming in inequality form (4/7)

- The following comments are noted.
- First of all, the method works very well, with approximately linear convergence of the duality gap.
- The plots clearly show the trade-off in the choice of  $\mu$ . For  $\mu=2$ , the treads are short; the number of Newton steps required to re-center is around 2 or 3. But the risers are also short, since the duality gap reduction per outer iteration is only a factor of 2.
- At the other extreme, when  $\mu=150$ , the treads are longer, typically around 7 Newton steps, but the risers are also much larger, since the duality gap is reduced by the factor 150 in each outer iteration.

## Linear programming in inequality form (5/7)

• The trade-off in choice of  $\mu$  is further examined in the following figure.



#### Linear programming in inequality form (6/7)

- We use the barrier method to solve the LP, terminating when the duality gap is smaller than  $10^{-3}$ , for 25 values of  $\mu$  between 1.2 and 200. The plot shows the total number of Newton steps required to solve the problem, as a function of the parameter  $\mu$ .
- This plot shows that the barrier method performs very well for a wide range of values of  $\mu$ , from around 3 to 200.
- One interesting observation is that the total number of Newton steps does not vary much for values of  $\mu$  larger than around 3. Thus, as  $\mu$  increases over this range, the decrease in the number of outer iterations is offset by an increase in the number of Newton steps per outer iteration.

#### Linear programming in inequality form (7/7)

• For even larger values of  $\mu$ , the performance of the barrier method becomes less predictable (i.e., more dependent on the particular problem instance). Since the performance does not improve with larger values of  $\mu$ , a good choice is in the range 10-100.

#### Geometric programming (1/4)

• We consider a geometric program in convex form,

$$\begin{aligned} & \text{minimize} & & \log \left( \sum_{k=1}^{K_0} \exp(a_{0k}^T x + b_{0k}) \right) \\ & \text{subject to} & & \log \left( \sum_{k=1}^{K_i} \exp(a_{ik}^T x + b_{ik}) \right) \leq 0, i = 1, ..., m, \end{aligned}$$

with variable  $x \in \mathbb{R}^n$ , and associated logarithmic barrier

$$\phi(x) = -\sum_{i=1}^{m} \log \left( -\log \sum_{k=1}^{K_i} \exp(a_{ik}^T x + b_{ik}) \right).$$

## Geometric programming (2/4)

- The problem instance we consider has n = 50 variables and m = 100 inequalities.
- The objective and constraint functions all have  $K_i = 5$  terms.
- The problem instance was generated randomly, in such a way that it is strictly primal and dual feasible, with optimal value one. We start with a point  $x^{(0)}$  on the central path, with a duality gap of 100.
- The barrier method is used to solve the problem, with parameters  $\mu=2, \mu=50$ , and  $\mu=150$ , and terminated when the duality gap is less than  $10^{-6}$ . The centering problems are solved using Newton's method, with the same parameter values as in the LP example, i.e.,  $\alpha=0.01, \beta=0.5$ , and stopping criterion  $\lambda(x)^2/2 \le 10^{-5}$ .

#### Geometric programming (3/4)

 The following figure shows the duality gap versus cumulative number of Newton steps.



#### Geometric programming (4/4)

- We see an approximately constant number of Newton steps required per centering step, and therefore approximately linear convergence of the duality gap.
- The variation of the total number of Newton steps required to solve the problem, versus the parameter  $\mu$ , is very similar to that in the LP example.
- For this GP, the total number of Newton steps required to reduce the duality gap below  $10^{-3}$  is around 30 (ranging from around 20 to 40 or so) for values of  $\mu$  between 10 and 200. So here, too, a good choice of  $\mu$  is in the range 10-100.

#### A family of standard form LPs (1/2)

- We examine the performance of the barrier method as a function of the problem dimensions.
- We consider LPs in standard form,

minimize 
$$c^T x$$
  
subject to  $Ax = b, x \succeq 0$ 

with  $A \in \mathbb{R}^{m \times n}$ , and explore the total number of Newton steps required as a function of the number of variables n and number of equality constraints m, for a family of randomly generated problem instances.

• We take n = 2m, i.e., twice as many variables as constraints, and compare performance plots with various values of m.

#### A family of standard form LPs (2/2)





Left The duality gap v.s. iteration number for three problem instances, with dimensions m = 50, m = 500, and m = 1000.

Right The mean and standard deviation in the number of Newton steps, for each value of m.

#### Newton step for modified KKT equations (1/5)

• In the barrier method, the Newton step  $\Delta x_{\rm nt}$ , and associated dual variable are given by the linear equations

$$\left[\begin{array}{cc} t \nabla^2 f_0(x) + \nabla^2 \phi(x) & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} \Delta x_{\rm nt} \\ \nu_{\rm nt} \end{array}\right] = - \left[\begin{array}{c} t \nabla f_0(x) + \nabla \phi(x) \\ 0 \end{array}\right].$$

 Here we show how these Newton steps for the centering problem can be interpreted as Newton steps for directly solving the modified KKT equations

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$
$$-\lambda_i f_i(x) = 1/t, \quad i = 1, ..., m$$
$$Ax = b$$

in a particular way.

## Newton step for modified KKT equations (2/5)

• To solve the modified KKT equations in the previous page, which is a set of n+p+m nonlinear equations in the n+p+m variables  $x, \nu$ , and  $\lambda$ , we first eliminate the variables  $\lambda_i$ , using  $\lambda_i = -1/(tf_i(x))$ . This yields

$$\nabla f_0(x) + \sum_{i=1}^m \frac{1}{-tf_i(x)} \nabla f_i(x) + A^T \nu = 0, \quad Ax = b,$$

which is a set of n+p equations in the n+p variables x and  $\nu$ .

#### Newton step for modified KKT equations (3/5)

• For v small, we have the Taylor approximation

$$\nabla f_0(x+v) + \sum_{i=1}^m \frac{1}{-tf_i(x+v)} \nabla f_i(x+v)$$

$$\approx \nabla f_0(x) + \sum_{i=1}^m \frac{1}{-tf_i(x)} \nabla f_i(x) + \nabla^2 f_0(x)v$$

$$+ \sum_{i=1}^m \frac{1}{-tf_i(x)} \nabla^2 f_i(x)v + \sum_{i=1}^m \frac{1}{tf_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T v.$$

#### Newton step for modified KKT equations (4/5)

 The Newton step is obtained by replacing the nonlinear term in the modified KKT conditions by this Taylor approximation, which yields the linear equations

$$Hv + A^T \nu = -g, \quad Av = 0,$$

where

$$H = \nabla^{2} f_{0}(x) + \sum_{i=1}^{m} \frac{1}{-t f_{i}(x)} \nabla^{2} f_{i}(x) + \sum_{i=1}^{m} \frac{1}{t f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}$$

$$g = \nabla f_{0}(x) + \sum_{i=1}^{m} \frac{1}{-t f_{i}(x)} \nabla f_{i}(x).$$

Now we observe that

$$H = \nabla^2 f_0(x) + (1/t)\nabla^2 \phi(x), \quad g = \nabla f_0(x) + (1/t)\nabla \phi(x).$$

ullet So, the Newton steps  $\Delta x_{
m nt}$  and  $u_{
m nt}$  in the barrier method centering step satisfy

$$tH\Delta x_{\rm nt} + A^T \nu_{\rm nt} = -tg$$
,  $A\Delta x_{\rm nt} = 0$ .

#### Newton step for modified KKT equations (5/5)

Comparing this with

$$Hv + A^T \nu = -g$$
,  $Av = 0$ 

shows that

$$v = \Delta x_{\rm nt}, \quad \nu = (1/t)\nu_{\rm nt}.$$

This shows that the Newton step for the centering problem

minimize 
$$tf_0(x) + \phi(x)$$
  
subject to  $Ax = b$ 

can be interpreted, after scaling the dual variable, as the Newton step for solving the modified KKT equations.