

Machine Intelligence 2

4.1 K-means Clustering

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

SS 2017

K-means Clustering

Projection methods vs. clustering

observations:
$$\{\underline{\mathbf{x}}^{(\alpha)}\}, \alpha = 1, \dots, p; \quad \underline{\mathbf{x}} \in \mathbb{R}^N$$

- ightarrow high-dimensional
- → groups, categories, hidden causes
- → interesting directions
- → "informative" manifolds

What is the relevant "structure"?

- \Rightarrow projection methods: search for "interesting" directions in feature space
- ⇒ clustering methods: grouping & categorization (and prototypes)

Central clustering

- \Rightarrow unsupervised formation of categories (partitions, clusters) according to predefined criteria
- \Rightarrow description of clusters by prototypes \leftarrow "central" clustering
- \Rightarrow goal: partitioning of observations $\underline{\mathbf{x}}^{(\alpha)}, \ \alpha = 1, \dots, p; \ \underline{\mathbf{x}}^{(\alpha)} \in \mathbb{R}^N$ according to similarity.

Cluster model

 \Rightarrow prototypes: $\underline{\mathbf{w}}_q, \;\; q=1,\ldots,M$

(M: number of clusters)
/Groups

 \Rightarrow binary assignment variables $m_q^{(\alpha)}$:

$$m_q^{(\alpha)} = \begin{cases} 1, & \text{if } \underline{\mathbf{x}}^{(\alpha)} \text{ belongs to cluster } q \\ 0, & \text{else} \end{cases}$$

 \Rightarrow normalization: $\sum\limits_{q}m_{q}^{(lpha)}=1$

Cost function

Quality Criteria:

ightarrow average quadratic distance between observations and prototypes

$$E_{\left[\left\{m_q^{(\alpha)}\right\},\left\{\underline{\mathbf{w}}_q\right\}\right]}^T = \frac{1}{p} \sum_{q,\alpha} m_q^{(\alpha)} (\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_q)^2 \quad \square$$

 $\,\,
ightarrow\,\,$ cost function implicitly quantifies our prior knowledge about the data

Model selection

Cost function:

- ⇒ cluster-centers: continuous variables
- cluster-assignment: binary variables.
- ⇒ dissimilarity measure: squared Euclidean distance.

included in the cost function E^T

Batch K-means

Algorithm 1: batch K-means

random initialization of prototypes, e.g. $\underline{\mathbf{w}}_q = \langle \underline{\mathbf{x}} \rangle + \underline{\eta}_q$, $\underline{\eta}_q$ small random vector center of mass begin loop

(1) choose $m_q^{(\alpha)}$ such that E^T is minimal for the given prototypes

$$\bigcap_{q} m_q^{(\alpha)} = \begin{cases} 1, & \text{if } q = \operatorname{argmin}_{\gamma} \left| \underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_{\gamma} \right| \\ 0, & \text{else} \end{cases}$$

- ⇒ assign every data point to its nearest prototype
- (2) choose $\underline{\mathbf{w}}_q$ such that E^T is minimal for the -new- assignments

$$\underline{\mathbf{w}}_{q} = \frac{\sum_{\alpha} m_{q}^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}}{\sum_{\alpha} m_{q}^{(\alpha)}}$$

 \Rightarrow set $\underline{\mathbf{w}}_a$ to the center of mass of its assigned data

end

Model selection - batch K-means

Cost function:

$$E_{\left[\left\{m_q^{(\alpha)}\right\},\left\{\underline{\mathbf{w}}_q\right\}\right]}^T = \frac{1}{p} \sum_{q,\alpha} m_q^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_q\right)^2$$

⇒ "Center of mass is optimal" why is it optimal?

$$\frac{\partial}{\partial \underline{\mathbf{w}}_q} \left\{ \frac{1}{2p} \sum_{q',\alpha} m_{q'}^{(\alpha)} (\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_{q'})^2 \right\} = -\frac{2}{p} \sum_{\alpha} m_q^{(\alpha)} (\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_q) \stackrel{!}{=} 0$$

$$ightsquigar \mathbf{\underline{w}}_q = rac{\sum\limits_{lpha} m_q^{(lpha)} \mathbf{\underline{x}}^{(lpha)}}{\sum\limits_{lpha} m_q^{(lpha)}}$$
 numer of data points in group

Batch K-means

Assumption: All Clusters have same size

Cost function:

$$E_{\left[\left\{m_q^{(\alpha)}\right\},\left\{\underline{\mathbf{w}}_q\right\}\right]}^T = \frac{1}{p} \sum_{q,\alpha} m_q^{(\alpha)} \big(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_q\big)^2 \\ \text{cost function enspricht variance}$$

⇒ condition for minimum: taking second derivatives of cost function

$$\begin{array}{ll} \underset{\text{derivative}}{\operatorname{second}} & \frac{\partial^2}{\partial \mathbf{w}_{qi}\partial \mathbf{w}_{q'j}} \left\{ \frac{1}{p} \sum_{q'',\alpha} m_{q''}^{(\alpha)} \big(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_{q''}\big)^2 \right\} \\ & = \frac{\partial}{\partial \mathbf{w}_{q'j}} \left\{ -\frac{2}{p} \sum_{\alpha} m_{q}^{(\alpha)} \big(\mathbf{x}_i^{(\alpha)} - (\underline{\mathbf{w}})_{qi}\big) \right\} & = \left(\frac{2}{p} \sum_{\alpha} m_{q}^{(\alpha)}\right) \delta_{ij} \delta_{qq'} \end{aligned}$$

- \Rightarrow Diagonal matrix with all positive entries \rightarrow condition for minimum is always satisfied.
- \Rightarrow Note: Minimizing E^T is not convex optimization problem.

Batch K-means (continued)

$$E_{\left[\left\{m_q^{(\alpha)}\right\},\left\{\underline{\mathbf{w}}_q\right\}\right]}^T = \frac{1}{p} \sum_{q,\alpha} m_q^{(\alpha)} \left(\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_q\right)^2$$

- \Rightarrow If $\underline{\mathbf{w}}_q$ is center of mass $\Longrightarrow E^T = \text{variance}$.
- $\Rightarrow E^T$ is non-increasing in every step and E^T is bounded from below \to K-means clustering converges to a (local) optimum of E^T .
- $\Rightarrow E^T$ at the solution can be interpreted as the "size" (variance) of the clusters.

On-line K-means

Algorithm 2: on-line k-Means

random initialization of prototypes, e.g.

$$\underline{\mathbf{w}}_q = <\underline{\mathbf{x}}> +\underline{\eta}_q, \ \ \underline{\eta}_q \ \mathrm{small} \ \mathrm{random} \ \mathrm{vector} \ \left[\ \mathrm{select} \ \mathrm{learning} \ \mathrm{step} \ 0< \varepsilon << 1 \right]$$

begin loop

choose a data point $\mathbf{x}^{(\alpha)}$ assign data point to its closest prototype q

$$q = \underset{\gamma}{\operatorname{argmin}} \left| \underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_{\gamma} \right|$$

change corresponding prototype according to

change ε

On-line K-means

- more robust than batch-learning w.r.t convergence to local minima
- useful for streaming data
- lacktriang quality of the found solution depends on choosing an appropriate "annealing" schedule for arepsilon: Robbins-Monro conditions

Number of prototypes

■ *M*: hyperparameter

Choice of resolution

Number of Prototypes: Choice of resolution

- $lackbox{ }E_{\min}^{T}$: average size of cluster (in terms of variance)
 - → large for few clusters small for many clusters
 - \rightarrow zero, if number of cluster $\hat{=}$ number of data points
 - \rightarrow E_{\min}^T goes down if M increases.
- choice of resolution

 $E_{ ext{min}}^T \geq \sigma_{ ext{noise}}^2$ which is a natural boundary on $E_{ ext{min}}^T$

Iterative refinement

Algorithm 3: iterative refinement

$$\text{initialization: } \underline{\mathbf{w}}_1 = \frac{1}{p} \sum_{\alpha} \underline{\mathbf{x}}^{(\alpha)}, \quad \underbrace{\left(E_{\min}^T\right)^*}_{\text{desired minimal variance}} \quad, \quad M = 1$$

begin loop

if
$$E_{\min}^T < \left(E_{\min}^T\right)^*$$
 then STOP

select partition $q \in \{1, \dots, M\}$ with largest variance

$$q = \underset{\gamma}{\operatorname{argmax}} \left(\frac{\sum_{\alpha} m_{\gamma}^{(\alpha)} (\underline{\mathbf{x}}^{(\alpha)} - \underline{\mathbf{w}}_{\gamma})^{2}}{\sum_{\alpha} m_{\gamma}^{(\alpha)}} \right)$$

add a new prototype:
$$\underline{\mathbf{w}}_{M+1} = \underline{\mathbf{w}}_q + \underbrace{\varepsilon_q}_{\substack{\text{small random vector}}}$$

$$M \leftarrow M + 1$$

do K-means clustering with these M prototypes

whole k means clustering for every iteration

Robustness of the clustering solution

Solution should capture meaningful structure in the data

Multiple runs with different initializations should yield similar solutions.

Caveat: Permutation of labels does neither change cost nor character of the solution.

$$1,2,3,\ldots,M$$
 Siehe Aufschrieb onenote $9,1,M,\ldots,7$

- M! trivially equivalent optima \rightarrow robustness-criterion has to be adapted.
- Avoid "instability": many structurally different clustering solutions with equal cost

Validation measures

- Model free approaches: Stability based validation
- Idea: taking to many or too few clusters leads to unstable partitions
- $\mathbf{X} = \{\underline{\mathbf{x}}^{(\alpha)}\}, \alpha = 1, \dots, p; \quad \underline{\mathbf{x}} \in \mathbb{R}^N \text{ ; A solution of the clustering algorithm is } \mathbf{Y} = (y_1, \dots, y_p) \text{ where } y_i \in L := \{1, \dots, M\}$
- Comparing clustering solutions Y_1 and Y_2 :

$$d := \frac{1}{|\mathbf{Y_1}|} \sum_{\alpha} \mathbf{1} \left\{ Y_{1,\alpha} \neq Y_{2,\alpha} \right\}$$

Caveats: Permutation, optimal classifier (e.g. KNN, see Lange et. al., 2004)

Validation measure

Algorithm 4: Validation measure

begin for each $M \in \{M_{min}, \dots, M_{max}\}$

split data X into $X_1^{(i)}$ and $X_2^{(i)}$ and find corresponding clustering solution $Y_1^{(i)}$ and $\mathbf{Y}_{2}^{(i)}$ by applying clustering algorithm

use $(\mathbf{X}_1^{(i)},\mathbf{Y}_1^{(i)})$ to train a nearest neighbor classifier ϕ and compute $\phi[X_2]$ compute distance $d_i := \frac{1}{|\mathbf{X}_2|} \sum_{\alpha} \mathbf{1} \left\{ \mathbf{Y_2}^{(\alpha)} \neq \phi[\mathbf{X}_2^{(\alpha)}] \right\}$ (but considering the permutations)

end

Average distance between partitions: $\hat{S}_{clustering} = \frac{1}{r} \sum_{r} d_i$

Sample s random clustering assignments and compute empirical average of the distances to estimate \hat{S}_{random}

Calculate stability index: $\bar{S}_M = \frac{S_{clustering}}{\hat{S}_{clustering}}$

end

Return $\hat{M} = \operatorname{argmin}_{M}(\bar{S}_{M})$

K-means: Gaussian data

Caveats: Permutation, optimal classifier (e.g. KNN, see Lange et. al., 2004)

Further remarks

Alternative clustering approaches

- distribution based models ("model-based" ⇒ Gaussian Mixture algorithm)
- density based models
- hierarchical (connectivity based) clustering
 - single linkage (~ nearest neighbor)
 - complete linkage
 - average linkage / within group ssq (Ward criterion)
 - agglomerative vs. divisive clustering

Current issues

- "big data": pre-processing (e.g. preselect spatial methods & KD-trees)
- Graph-based approaches & spectral clustering

Applications

Image segmentation & compression

- k-means for pixels (e.g. RGB)
- segmentation via cluster-assignment (naive: context, smoothness ...)
- \blacksquare compression: $(N_{\text{pix}} \times S(R, G, B) \rightarrow N_{\text{pix}} \times k + \text{codebook})$

Neuroscience (fMRI, connectomics)

Seung lab

Litvak et.al(2001)