Senior 2 Math Part I

Melvin Chia

October 7, 2022

Chapter 1

Sequence and Series

1.1 Sequence and Series

1.1.1 Practice 1

1. Find the first 5 terms of the sequence $a_n = \frac{2^n}{n+1}$.

Sol.
$$a_1 = \frac{2}{2} = 1, a_2 = \frac{4}{3}, a_3 = \frac{8}{4}, a_4 = \frac{16}{5}, a_5 = \frac{32}{6}$$

2. Write the general term of the sequence 1, 8, 27, $64, \ldots$

Sol.
$$a_n = n^3$$

1.1.2 Practice 2

1. Express the series $\sum_{n=1}^{10} n^2 + 1$ in the form of numbers

Sol.
$$\sum_{n=1}^{10} n^2 + 1$$

$$= (1^2 + 1) + (2^2 + 1) + (3^2 + 1) + (4^2 + 1)$$

$$+ (5^2 + 1) + (6^2 + 1) + (7^2 + 1)$$

$$+ (8^2 + 1) + (9^2 + 1) + (10^2 + 1)$$

$$= 2 + 5 + 10 + 17 + 26 + 37 + 50 + 65$$

$$+ 82 + 101$$

2. Write the first term, last term and the number of terms of the series $\sum_{n=1}^{10} (3^n - 2^n)$.

Sol. First
$$term = (3^{1} - 2^{1}) = 1$$

Last $term = (3^{10} - 2^{10}) = 59049$
Number of $terms = 10$

3. Express the series $2 \times 5 + 3 \times 7 + 4 \times 9 + \ldots + 15 \times 31$ in the form of \sum .

Sol. $a_1 = 2 \times 5 = 10$ $a_2 = 3 \times 7 = 21$ $a_3 = 4 \times 9 = 36$ $a_4 = 5 \times 11 = 55$ \vdots $a_{15} = 15 \times 31 = 465$ $\therefore 2 \times 5 + 3 \times 7 + 4 \times 9 + \dots + 15 \times 31$ $= \sum_{n=1}^{15} a_n$

1.1.3 Exercise 12.1

- 1. Find the general term of the following sequences.
 - (a) 5, 8, 11, 14, ... **Sol.** $a_n = 3n + 2$
 - (b) $2, 4, 8, 16, \dots$ **Sol.** $a_n = 2^n$
 - (c) $\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots$ **Sol.** $a_n = \frac{n+1}{n}$
 - (d) $\frac{2}{5}, \frac{4}{7}, \frac{6}{9}, \frac{8}{11}, \dots$ **Sol.** $a_n = \frac{2n}{2n+1}$
- 2. Find the first 5 terms of the following sequences.
 - (a) $a_n = 2n + 3$ **Sol.** $a_1 = 2 \times 1 + 3 = 5, a_2 = 2 \times 2 + 3 = 7, a_3 = 2 \times 3 + 3 = 9, a_4 = 2 \times 4 + 3 = 11, a_5 = 2 \times 5 + 3 = 13$
 - (b) $a_n = n(n-2)$ **Sol.** $a_1 = 1 \times (-1) = -1, a_2 = 2 \times 0 = 0, a_3 = 3 \times 1 = 3, a_4 = 4 \times 2 = 8, a_5 = 5 \times 3 = 15$
 - (c) $a_n = \frac{n}{2n+1}$ Sol. $a_1 = \frac{1}{2 \times 1+1} = \frac{1}{3}, a_2 = \frac{2}{2 \times 2+1} = \frac{2}{5}, a_3 = \frac{3}{2 \times 3+1} = \frac{3}{7}, a_4 = \frac{4}{2 \times 4+1} = \frac{4}{9}, a_5 = \frac{5}{2 \times 5+1} = \frac{5}{2 \times 5+1}$
 - (d) $a_n = (-3)^n$ **Sol.** $a_1 = (-3)^1 = -3, a_2 = (-3)^2 = 9, a_3 = (-3)^3 = -27, a_4 = (-3)^4 = 81, a_5 = (-3)^5 = -243$
- 3. Express the following series in the form of numbers.

(a)
$$\sum_{n=1}^{5} n(n+3)$$

Sol.
$$\sum_{n=1}^{5} n(n+3)$$

$$= (1 \times 4) + (2 \times 5) + (3 \times 6) + (4 \times 7)$$

$$+ (5 \times 8)$$

$$= 4 + 10 + 18 + 28 + 40$$

(b)
$$\sum_{n=2}^{6} \frac{1}{3^n}$$

Sol.
$$\sum_{n=2}^{6} \frac{1}{3^n}$$
$$= \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5} + \frac{1}{3^6}$$
$$= \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \frac{1}{729}$$

(c)
$$\sum_{n=1}^{6} \frac{1}{n(2n+1)}$$

Sol.
$$\sum_{n=1}^{6} \frac{1}{n(2n+1)}$$

$$= \frac{1}{1(2\times 1+1)} + \frac{1}{2(2\times 2+1)}$$

$$+ \frac{1}{3(2\times 3+1)} + \frac{1}{4(2\times 4+1)}$$

$$+ \frac{1}{5(2\times 5+1)} + \frac{1}{6(2\times 6+1)}$$

$$= \frac{1}{3} + \frac{1}{10} + \frac{1}{21} + \frac{1}{36} + \frac{1}{55} + \frac{1}{78}$$

(d)
$$\sum_{n=2}^{5} \frac{1}{n^2+2}$$

Sol.
$$\sum_{n=2}^{5} \frac{1}{n^2 + 2}$$

$$= \frac{1}{4+2} + \frac{1}{9+2} + \frac{1}{16+2} + \frac{1}{25+2}$$

$$= \frac{1}{6} + \frac{1}{11} + \frac{1}{18} + \frac{1}{27}$$

4. Find the first term, last term and the number of terms of the following series.

(a)
$$\sum_{n=3}^{10} 2^2$$

Sol. $a_3 = 2^2 = 4, a_{10} = 2^2 = 4, n = 10 - 3 + 1 = 8$

(b)
$$\sum_{n=1}^{8} \frac{n+2}{n}$$

Sol. $a_1 = \frac{1+2}{1} = \frac{3}{1} = 3, a_8 = \frac{8+2}{8} = \frac{10}{8} = \frac{5}{4}, n = 8 - 1 + 1 = 8$

(c)
$$\sum_{n=1}^{10} 3n^2 - n$$

Sol. $a_1 = 3 \times 1^2 - 1 = 2, a_{10} = 3 \times 10^2 - 10 = 290, n = 10 - 1 + 1 = 10$

(d)
$$\sum_{n=9}^{14} n^2(n-7)$$

Sol. $a_9 = 9^2(9-7) = 9^2 \times 2 = 162, a_{14} = 14^2(14-7) = 14^2 \times 7 = 2744, n = 14-9+1 = 6$

5. Express the following series in the form of \sum .

(a)
$$1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{30}$$

Sol.

$$a_{1} = 1$$

$$a_{2} = \frac{1}{2}$$

$$a_{3} = \frac{1}{3}$$

$$\vdots$$

$$a_{30} = \frac{1}{30}$$

$$\therefore 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{30} = \sum_{n=1}^{30} \frac{1}{n}$$

(b)
$$1^3 + 2^3 + 3^3 + \ldots + 50^3$$

$$a_{1} = 1^{3}$$

$$a_{2} = 2^{3}$$

$$a_{3} = 3^{3}$$

$$\vdots$$

$$a_{50} = 50^{3}$$

$$\therefore 1^{3} + 2^{3} + 3^{3} + \dots + 50^{3} = \sum_{n=1}^{50} n^{3}$$

(c)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16}$$

$$a_{1} = \left(-\frac{1}{2}\right)^{1-1}$$

$$a_{2} = \left(-\frac{1}{2}\right)^{2-1}$$

$$a_{3} = \left(-\frac{1}{2}\right)^{3-1}$$

$$a_{4} = \left(-\frac{1}{2}\right)^{4-1}$$

$$a_{5} = \left(-\frac{1}{2}\right)^{5-1}$$

$$\therefore 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16}$$

$$= \sum_{n=1}^{5} \left(-\frac{1}{2}\right)^{n-1}$$

(d)
$$2 \times 4 + 4 \times 7 + 6 \times 10 + 8 \times 13 + 10 \times 16$$

Sol.

$$a_1 = 2 \times 1 \times (3 \times 1 + 1)$$

$$a_2 = 2 \times 2 \times (3 \times 2 + 1)$$

$$a_3 = 2 \times 3 \times (3 \times 3 + 1)$$

$$a_4 = 2 \times 4 \times (3 \times 4 + 1)$$

$$a_5 = 2 \times 5 \times (3 \times 5 + 1)$$

$$\therefore 2 \times 4 + 4 \times 7 + 6 \times 10 + 8 \times 13$$

$$+ 10 \times 16 = \sum_{n=1}^{5} 2n(3n+1)$$

1.2 Arithmetic Progression

General term of an Arithmetic Progression (AP) is given by

$$a_n = a_1 + (n-1)d$$

where a_1 is the first term, d is the common difference and n is the number of terms.

1.2.1 Practice 3

1. Find the number of terms of the AP $-4-2\frac{3}{4}-1\frac{1}{2}-\frac{1}{4}+\ldots+16$.

$$a_{1} = -4$$

$$a_{n} = 16$$

$$d = -2\frac{3}{4} - (-4)$$

$$= -2\frac{3}{4} + 4$$

$$= \frac{5}{4}$$

$$16 = -4 + (n-1)\frac{5}{4}$$

$$20 = \frac{5}{4}(n-1)$$

$$80 = 5(n-1)$$

$$n - 1 = 16$$

$$n = 17$$

2. Given that $a_2 = 4$ and $a_6 = -8$, find the 10th term of the AP.

Sol.

$$a_{2} = 4$$

$$a + (2 - 1)d = 4$$

$$a_{6} = -8$$

$$a + (6 - 1)d = -8$$

$$\begin{cases} a + d = 4 \\ a + 5d = -8 \end{cases}$$

$$(1.1)$$

$$(2) - (1) : 4d = -12$$

$$d = -3$$

$$a + (-3) = 4$$

$$a = 7$$

$$\therefore a_{10} = 7 + (10 - 1)(-3)$$

$$= 7 - 27$$

3. How many multiples of 7 are there between 50 and 500?

= -20

$$a_{1} = 56$$

$$a_{n} = 497$$

$$d = 7$$

$$497 = 56 + (n - 1)7$$

$$441 = 7(n - 1)$$

$$n - 1 = 63$$

$$n = 64$$

4. Find 5 numbers between 30 and 54 such that these numbers form an AP.

Sol.

$$a_1 = 30$$

 $a_7 = 54$
 $54 = 30 + (7 - 1)d$
 $24 = 6d$
 $d = 4$

:. These 5 numbers are 34, 38, 42, 46, and 50.

Arithmetic mean

If A is in between x and y, and x, A, y are in AP, then

$$A = \frac{x+y}{2}$$

1.2.2 Practice 4

1. If 9, x, 17 are in AP, find x.

Sol.

$$x = \frac{9+17}{2}$$
$$= \frac{26}{2}$$
$$= 13$$

2. Find the arithmetic mean of 26 and -11.

Sol.

$$A = \frac{26 - 11}{2}$$
$$= \frac{15}{2}$$

3. Find x and y when 3, x, 12, y, 21 are in AP.

Sol.

$$x = \frac{3+12}{2}$$

$$= \frac{15}{2}$$

$$y = \frac{12+21}{2}$$

$$= \frac{33}{2}$$

Summation of Arithmetic Progression

The summation formula for AP is given by

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

or

$$S_n = \frac{n}{2}(a_1 + a_n)$$

1.2.3 Practice 5

1. Find the sum of the first 16 terms of the AP $22+18+14+10+\ldots$

Sol.

$$a_1 = 22$$

$$n = 16$$

$$d = -4$$

$$S_n = \frac{16}{2}(2 \times 22 + (-4)(16 - 1))$$

$$= \frac{16}{2}(44 + (-4)(15))$$

$$= \frac{16}{2}(44 - 60)$$

$$= \frac{16}{2}(-16)$$

$$= -128$$

2. If the sum of AP $23 + 19 + 15 + \dots$ is 72, find the number of terms.

$$a_{1} = 23$$

$$S_{n} = 72$$

$$d = -4$$

$$72 = \frac{n}{2}(2 \times 23 + (-4)(n-1))$$

$$72 = \frac{n}{2}(46 + (-4)(n-1))$$

$$144 = n(46 + (-4)(n-1))$$

$$144 = n(46 - 4n + 4)$$

$$144 = n(50 - 4n)$$

$$144 = 50n - 4n^{2}$$

$$72 = 25n - 2n^{2}$$

$$2n^{2} - 25n + 72 = 0$$

$$(n-8)(2n-9) = 0$$

$$n = 8$$

3. Given that $S_n = 2n + 3n^2$, find the first term and the common difference of the AP.

Sol.

$$S_n = 2n + 3n^2$$

$$2n + 3n^2 = \frac{n}{2}(2a + (n-1)d)$$

$$4n + 6n^2 = n(2a + (n-1)d)$$

$$4n + 6n^2 = 2na + (n-1)nd$$

$$4n + 6n^2 = 2na + n^2d - nd$$

$$4n + 6n^2 = (2a - d)n + dn^2$$

Comparing both sides,

$$2a - d = 4$$

$$a = 6$$

$$d = 2$$

1.2.4 Exercise 12.2

1. Find the 10th terms of the AP $5, 13, 21, \ldots$

Sol.

$$a_1 = 5$$

 $n = 10$
 $d = 8$
 $a_{10} = 5 + (10 - 1) \times 8$
 $= 5 + 72$
 $= 77$

2. Find the 8th term of the AP $5, 4\frac{1}{4}, 3\frac{1}{2}, 2\frac{3}{4}, \dots$

Sol.

$$a_{1} = 5$$

$$n = 8$$

$$d = -\frac{3}{4}$$

$$a_{8} = 5 + (8 - 1) \times -\frac{3}{4}$$

$$= 5 - \frac{3}{4} \times 7$$

$$= 5 - \frac{21}{4}$$

$$= -\frac{1}{4}$$

3. Find the number of terms of the following AP.

(a)
$$4, 9, \ldots, 64$$

Sol.

$$a_1 = 4$$
 $a_n = 64$
 $d = 5$
 $64 = 4 + (n - 1) \times 5$
 $60 = 5(n - 1)$
 $12 = n - 1$
 $n = 13$

(b)
$$4\frac{1}{3}, 3\frac{2}{3}, 3, \dots, -10\frac{1}{3}$$

Sol.

$$a_{1} = 4\frac{1}{3}$$

$$a_{n} = -10\frac{1}{3}$$

$$d = -\frac{2}{3}$$

$$-10\frac{1}{3} = 4\frac{1}{3} + (n-1) \times -\frac{2}{3}$$

$$-\frac{31}{3} = \frac{13}{3} - \frac{1}{3}(n-1)$$

$$-31 = 13 - 2n + 2$$

$$-46 = 2n$$

$$n = 23$$

4. The 6th term of an AP is 43, and its 10th term is 75. Find the first term and common difference of this AP.

Sol.

$$a_{6} = 43$$

$$a_{10} = 75$$

$$43 = a + (6 - 1)d$$

$$75 = a + (10 - 1)d$$

$$32 = 4d$$

$$d = 8$$

$$43 = a + 5 \times 8$$

$$43 = a + 40$$

$$3 = a$$

$$a = 3$$

$$\therefore a_{1} = 3, d = 8$$

5. The 7th term of an AP is -10, and the 12th term -25, find the 15th term of this AP.

$$a_7 = -10$$

$$a_{12} = -25$$

$$-10 = a + (7 - 1)d$$

$$-25 = a + (12 - 1)d$$

$$-15 = 5d$$

$$d = -3$$

$$-10 = a + 6 \times -3$$

$$-10 = a - 18$$

$$a = 8$$

$$a_{15} = 8 + (15 - 1) \times -3$$

$$= 8 - 42$$

$$= -34$$

6. How many multiples of 7 are there between 100 and 200?

Sol.

$$a = 105$$

$$d = 7$$

$$a_n = 196$$

$$196 = 105 + (n - 1) \times 7$$

$$91 = 7(n - 1)$$

$$13 = n - 1$$

$$n = 14$$

- 7. Find the arithmetic mean of the following number pairs.
 - (a) (8,20)

Sol.

$$\frac{8+20}{2} = 14$$

(b) (-9, 17)

Sol.

$$\frac{-9+17}{2} = 4$$

8. Find 5 numbers between 22 and 58 such that these 7 numbers are in AP.

Sol.

$$a_1 = 22$$

 $a_7 = 58$
 $58 = 22 + (7 - 1)d$
 $36 = 6d$
 $d = 6$
 $\therefore These 5 numbers are 22, 28, 34, 40, 46$

9. Find the sum of first 20 terms of AP 12 + 15 + 18 + \dots

Sol.

$$a_1 = 12$$

$$n = 20$$

$$d = 3$$

$$S_{20} = \frac{20}{2}(2 \times 12 + (20 - 1) \times 3)$$

$$= 10(24 + 57)$$

$$= 10(81)$$

$$= 810$$

10. Find the sum of first 12 terms of the AP $18 + 10 + 2 - 6 - \dots$

Sol.

$$a_1 = 18$$

$$n = 12$$

$$d = -8$$

$$S_{12} = \frac{12}{2}(2 \times 18 + (12 - 1) \times -8)$$

$$= 6(36 - 88)$$

$$= 6(-52)$$

$$= -312$$

11. Find the sum of first 14 terms of the AP $\frac{1}{6} + \frac{4}{3} + \frac{5}{2} + \dots$

$$a_{1} = \frac{1}{6}$$

$$n = 14$$

$$d = \frac{7}{6}$$

$$S_{14} = \frac{14}{2} (2 \times \frac{1}{6} + (14 - 1) \times \frac{7}{6})$$

$$= 7(\frac{1}{3} + \frac{91}{6})$$

$$= 7 \times \frac{93}{6}$$

$$= 7 \times \frac{31}{2}$$

$$= \frac{217}{2}$$

12. Find the sum of all the multiples of 13 in between 200 and 800.

Sol.

$$a_1 = 208$$

$$a_n = 793$$

$$d = 13$$

$$793 = 208 + (n - 1) \times 13$$

$$585 = 13(n - 1)$$

$$45 = n - 1$$

$$n = 46$$

$$S_{46} = \frac{46}{2}(2 \times 208 + (46 - 1) \times 13)$$

$$= 23(416 + 585)$$

$$= 23(1001)$$

$$= 23023$$

13. If the sum of first n terms of the AP $-3, -7, -11, \ldots$ is -903, find the value of n.

Sol.

$$a_{1} = -3$$

$$d = -4$$

$$-903 = \frac{n}{2}(2 \times (-3) - 4(n-1))$$

$$-1806 = -2n - 4n^{2}$$

$$4n^{2} + 2n - 1806 = 0$$

$$2n^{2} + n - 903 = 0$$

$$(n-21)(2n+43) = 0$$

$$n = 21, -43(invalid)$$

$$\therefore n = 21$$

- 14. Given that the first 3 terms of an AP are x, 3x 4, 2x + 7, find:
 - (a) The value of x

Sol.

$$3x - 4 = \frac{x + 2x + 7}{2}$$
$$6x - 8 = 3x + 7$$
$$3x = 15$$
$$x = 5$$

(b) The common difference

Sol.

$$a_1 = x = 5$$

 $a_2 = 3x - 4 = 3 \times 5 - 4 = 11$
 $d = 11 - 5$
 $= 6$

(c) The sum of first 10 terms.

$$a_1 = x = 5$$

$$n = 10$$

$$d = 6$$

$$S_{10} = \frac{10}{2}(2 \times 5 + (10 - 1) \times 6)$$

$$= 5(10 + 54)$$

$$= 5(64)$$

$$= 320$$

- 15. Let the sum of the first n terms of an AP to be $S_n = \frac{n(n+1)}{4}$, find:
 - (a) The first term

$$\frac{n(n+1)}{4} = \frac{n}{2}(2a + (n-1)d)$$
$$n(n+1) = 2n(2a + dn - d)$$
$$n^2 + n = 4na + 2dn^2 - 2nd$$
$$n^2 + n = 2dn^2 + (4a - 2d)n$$

Comparing both sides,

$$2d = 1$$

$$d = \frac{1}{2}$$

$$4a - 2d = 1$$

$$4a - 1 = 1$$

$$4a = 2$$

$$a = \frac{1}{2}$$

(b) The common difference

Sol.

$$d = \frac{1}{2}$$

gg

(c) The 6th terms

Sol.

$$a_{1} = \frac{1}{2}$$

$$n = 6$$

$$d = \frac{1}{2}$$

$$a_{6} = \frac{1}{2} + (6 - 1) \times \frac{1}{2}$$

$$= \frac{1}{2} + \frac{5}{2}$$

$$= 3$$

(d) The sum from 6th term to 10th term

Sol.

$$d = \frac{1}{2}$$

$$S_{10} = \frac{10}{2} (2 \times \frac{1}{2} + (10 - 1) \times \frac{1}{2})$$

$$= \frac{10}{2} (1 + \frac{9}{2})$$

$$= 5 \times \frac{11}{2}$$

$$= \frac{55}{2}$$

$$S_5 = \frac{5}{2}(2 \times \frac{1}{2} + (5 - 1) \times \frac{1}{2})$$
$$= \frac{5}{2}(1 + 2)$$
$$= \frac{15}{2}$$

$$S_{10} - S_6 = \frac{55}{2} - \frac{15}{2}$$
$$= \frac{40}{2}$$
$$= 20$$

 $a = \frac{1}{2}$

16. Given three numbers in an AP, the sum of these three numbers is 30, and the sum of square of these numbers is 318, find these three numbers.

$$a_{1} + a_{2} + a_{3} = 30$$

$$a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 318$$

$$a_{2} - a_{1} = a_{3} - a_{2}$$

$$a_{1} - 2a_{2} + a_{3} = 0$$

$$3a_{2} = 30$$

$$a_{2} = 10$$

$$a_{1} - 20 + a_{3} = 0$$

$$a_{1} + a_{3} = 20$$

$$a_{3} = 20 - a_{1}$$

$$a_{1}^{2} + 100 + (20 - a_{1})^{2} = 318$$

$$a_{1}^{2} + 100 + 400 + a_{1}^{2} - 40a_{1} = 318$$

$$2a_{1}^{2} - 40a_{1} + 182 = 0$$

$$a_{1}^{2} - 20a_{1} + 91 = 0$$

$$(a_{1} - 7)(a_{1} - 13) = 0$$

$$a_{1} = 7ora_{1} = 13$$

- :. These three numbers are 7, 10, and 13
- 17. Find the sum of all the numbers between 100 and 200 that are both the multiples of 2 and 3.

Sol.

$$a_{1} = 102$$

$$d = 6$$

$$a_{n} = 198$$

$$198 = 102 + (n - 1) \times 6$$

$$96 = 6(n - 1)$$

$$6n - 6 = 96$$

$$6n = 102$$

$$n = 17$$

$$S_{17} = \frac{17}{2}(2 \times 102 + (17 - 1) \times 6)$$

$$= \frac{17}{2}(204 + 96)$$

$$= \frac{17}{2}(300)$$

$$= 150 \times 17$$

$$= 2550$$

- 18. Given an AP $-100 96 92 \ldots$
 - (a) Find the term where the number become positive.

Sol.

$$a_1 = -100$$

$$d = 4$$

$$a_n = -100 + (n-1) \times 4 > 0$$

$$-100 + 4n - 4 > 0$$

$$4n > 104$$

$$n > 26$$

$$\therefore n = 27$$

(b) Find the term where the sum of this AP becomes positive.

Sol.

$$S_n = \frac{n}{2}(2(-100) + (n-1) \times (4)) > 0$$

$$\frac{n}{2}(-200 + 4n - 4) > 0$$

$$\frac{n}{2}(-204 + 4n) > 0$$

$$n(2n - 102) > 0$$

$$n(n - 51) > 0$$

$$n > 51$$

$$\therefore n = 52$$

19. Find the first negative term of the AP $20, 19\frac{1}{5}, 18\frac{2}{5}, \dots$

Sol.

$$a_1 = 20$$

$$d = -\frac{4}{5}$$

$$a_n = 20 + (n-1) \times (-\frac{4}{5}) < 0$$

$$100 - 4n + 4 < 0$$

$$4n > 104$$

$$n > 26$$

$$n = 27$$

20. Given an AP $10 + 9\frac{1}{5} + 8\frac{2}{5} + \dots$, what is the first negative term? When will the sum of the terms become negative, and what's the value of it?

$$a_1 = 10$$

$$d = -\frac{4}{5}$$

$$a_n = 10 + (n-1) \times (-\frac{4}{5}) < 0$$

$$10 - \frac{4}{5}(n-1) < 0$$

$$50 - 4n + 4 < 0$$

$$-4n < -54$$

$$n > 13\frac{1}{2}$$

 $\therefore n = 14$

$$S_n = \frac{n}{2}(2 \times 10 + (n-1) \times (-\frac{4}{5})) < 0$$

$$\frac{n}{2}(20 - \frac{4}{5}(n-1)) < 0$$

$$20n - \frac{4}{5}(n^2 - n) < 0$$

$$100n - 4n^2 + 4n < 0$$

$$25n - n^2 + n < 0$$

$$26n - n^2 < 0$$

$$n(n-26) > 0$$

$$n > 26$$

n = 27

$$S_{27} = \frac{27}{2}(2 \times 10 + (27 - 1) \times (-\frac{4}{5}))$$

$$= \frac{27}{2}(20 - \frac{4}{5}(27 - 1))$$

$$= \frac{27}{2}(20 - \frac{4}{5}(26))$$

$$= \frac{27}{2} \times (-\frac{4}{5})$$

$$= -\frac{54}{5}$$

- \therefore The first negative term is the 14th term
- :. The first term where the sum of the terms becomes negative is the 27th term
- \therefore The value of the sum of the terms when it becomes negative is $-\frac{54}{5}$
- 21. Given a polygon which all their internal angles are in AP. The common difference of this AP is 6°, the largest angle is 135°. How many sides does this polygon have?

Sol.

$$a_{1} = 135$$

$$d = -6$$

$$\frac{n}{2}(2 \times 135 + (n-1) \times (-6)) = 180(n-2)$$

$$n(270 - 6(n-1)) = 360(n-2)$$

$$n(276 - 6n) = 360n - 720$$

$$276n - 6n^{2} = 360n - 720$$

$$46n - n^{2} = 60n - 120$$

$$n^{2} + 14n - 120 = 0$$

$$(n+20)(n-6) = 0$$

$$n = -20 \ (invalid)$$

$$n = 6$$

: The number of sides is 6