SECTION 7.5 Repetitions

QUESTION: How many ways are there to put ridentical marbles into n boxes, if you are allowed to put more than one marble per box?

First try 3 marbles into 10 boxes. Case 1: All in same box $\binom{10}{1}$ Case 2: Two in one box, one in another 10.9 Case 3: All different boxes $\binom{10}{3}$ =120 Addition rule \sim 120+90+10 = 220.

What about 10 marbles in 3 boxes?

Lots of cases!

What to do?

STARS AND BARS

Can answer the last question by looking at it the right way:

The number of ways of putting 10 marbles into 3 boxes is the same as:

the number of binary strings with 10 Zeros, 2 ones (or 10 stars, 2 bars)

How many such strings are there?

QUESTION: How many ways are there to put r identical marbles into n boxes, if you are allowed to put more than One marble per box?

ANSWER: This is the same as the number of strings with r stars and n-1 bars:

$$\binom{n+r-1}{r} = \binom{n+r-1}{n-1}$$

REPETITIONS, PERMUTATIONS, AND COMBINATIONS

How many ways to put r marbles in n boxes if ...

	the marbles are indistinguishable	the marbles are distinguishable
at most one marble is allowed per box	$\binom{n}{r}$	P(n,r)
any number of marbles is allowed in a box	(n+r-1) (r)	nr

EXAMPLE: How many ways are there to choose 15 cans of Soda from a cooler with (lots of) Coke, Dr. Pepper, Mtn Dew, RC cola, and Mr. Pibb?

Idea: Put 15 marbles in 5 boxes
$$\longrightarrow (19) = (19) = 3876$$

FURTHER: What if I insist on at least 3 Cokes and exactly one Mr. Pibb?

EXAMPLE. In how many ways can we choose 4 nonnegative integers a, b, c, and d so that a+b+c+d=100?

100 marbles in 4 boxes:
$$\binom{103}{3} = 176,851$$

What if a,b,c, and d are natural numbers?

4 marbles used
$$\sim$$
 $\binom{99}{3} = 156,849$

EXAMPLE. How many ways are there to choose 4 integers a, b, c, and d so that: a+b+c+d=15 $a \ge -3, b \ge 0, c \ge -2, d \ge -1$?

Set a' = a+3, c' = c+2, d' = d+1

 \rightarrow a'+b+c'+d = 21 where a',b,c',d>0.

 \rightarrow 21 marbles, 4 boxes: $\binom{24}{3} = 2024$

GENERALIZED PERMUTATIONS

EXAMPLE. How many ways are there to arrange the letters of SYZYGY?

Method 1: Choose 3 spots for y: (3)
Then order the other letters: 3!

Method 2: Arrange 5Y, ZY2GY3 in 6! ways Divide by 3! 120.

EXAMPLE. What about MISSISSIPPI?

34,650

GENERALIZED PERMUTATIONS

In general, say we have n objects that fall into k groups, with ni objects in the ith group. Two objects in the same group are indistinguishable, but objects in different groups are distinguishable. In how many ways can we order the objects?

$$P(n; n_1, ..., n_k) = \frac{n!}{n_1! n_2! \cdots n_k!}$$

This is also the coefficient of
$$x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$$
 in $(x_1+x_2+\cdots+x_k)^n$

GENERALIZED PERMUTATIONS

EXAMPLE. Suppose there are 100 spots in the showroom of a car dealership. There are 15 (identical) sports cars, 25 compact cars, 30 station wagons, and 20 vans. In how many ways can the cars be parked?

 $P(100; 15, 25, 30, 20, 10) = \frac{100!}{15!} 25! 30! 20! 10!$ blanks