Συναρτήσεις Μέθοδοι Ολοκλήρωσης

Κωνσταντίνος Λόλας

Σιγά τα ολοκληρώματα!

Τι μπορούμε να ολοκληρώσουμε

- ① Πολυώνυμα
- ② Εκθετικές
- Τριγωνομετρικές
- Φητές με πρωτοβάθμιο διαιρέτη
- ⑤ Πρωτοβάθμιες άρρητες
- Ετοιμες από σύνθεση και φυσικά
- κάθε πρόσθεση ή αφαίρεση αυτών MONO

Τι γίνεται με τον πολλαπλασιασμό? Διαίρεση? Ακόμα και την απλή $\ln x$?

Λόλας Συναρτήσεις 2/27

Ιστορία

Ξέρουμε να παραγωγίζουμε γινόμενο

$$(f\cdot g)' = f'g + fg'$$

$$f'g = (f\cdot g)' - fg'$$

$$\int f'g \, dx = \int (f \cdot g)' \, dx - \int fg' \, dx$$
$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

Ιστορία

Ξέρουμε να παραγωγίζουμε γινόμενο

$$(f\cdot g)' = f'g + fg'$$

$$f'g = (f\cdot g)' - fg'$$

Αρα

$$\int f'g \, dx = \int (f \cdot g)' \, dx - \int fg' \, dx$$
$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

- \bigcirc $\int xe^x dx$
- $3 \int x \ln x \, dx$

- $3 \int x \ln x \, dx$

- $\Im \int x \ln x \, dx$

- \bigcirc $\int xe^x dx$
- $\Im \int x \ln x \, dx$

Και στα εντός ύλης!

Κατά παράγοντες

$$\int_{a}^{b} f'(x)g(x) \, dx = \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f(x)g'(x) \, dx$$

Συναρτήσεις 6/27

- ο ρητέο
- άρρητες
- τριγωνομετρικές
- από σύνθεση?????

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση?????

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση??????

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση??????

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση?????

Δοκιμές σύνθεσης

Δοκιμές σύνθεσης

Δοκιμές σύνθεσης

Ναι, αλλά... τύπο έχουμε?

Μέθοδος Αντικατάστασης

$$\int_{a}^{b} f(x) \, dx$$

Θέτω x = g(u), άρα

- \bullet yia $x = a \implies u = k$
- \bullet yia $x = b \implies u = l$
- $\bullet dx = g'(u)du$

$$\int_a^b f(x) \, dx = \int_k^l f(g(u))g'(u) \, du$$

Λόλας Συναρτήσεις 9/27

Να υπολογίσετε τα ολοκληρώματα

Λόλας Συναρτήσεις 10/27

- $\int_0^1 \ln(x+1) \, dx$

- $\int_0^1 \ln(x+1) \, dx$

- $\int_0^1 \ln(x+1) \, dx$

Να υπολογίσετε τα ολοκληρώματα

Λόλας Συναρτήσεις 12/27

Να υπολογίσετε τα ολοκληρώματα

Λόλας Συναρτήσεις 12/27

Να υπολογίσετε το ολοκλήρωμα $\int_0^{\frac{0}{4}} \frac{x}{\sigma v \nu^2 x} dx$

Λόλας Συναρτήσεις 13/27

Εστω F μία παράγουσα στο $\mathbb R$ της συνάρτησης $f(x)=e^{x^2}$, με F(1)=0. Να υπολογίσετε το ολοκλήρωμα $\int_0^1 F(x)\,dx$

Λόλας Συναρτήσεις 14/27

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση με f(0)=0 και συνεχή δεύτερη παράγωγο για την οποία ισχύει $\int_0^\pi \left(f(x)+f''(x)\right)\eta\mu x\,dx=\pi.$ Να δείξετε ότι $f(\pi) = \pi$

> Λόλας Συναρτήσεις 15/27

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση, η οποία παρουσιάζει τοπικό ακρότατο στο $x_0 = 2$, έχει συνεχή f'' και ισχύει

$$\int_0^2 (xf''(x) + 2f'(x)) \ dx = 0$$

- Nα δείξετε ότι f(0) = f(2)

Λόλας Συναρτήσεις 16/27

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση, η οποία παρουσιάζει τοπικό ακρότατο στο $x_0 = 2$, έχει συνεχή f'' και ισχύει

$$\int_0^2 (xf''(x) + 2f'(x)) \ dx = 0$$

- Nα δείξετε ότι f(0) = f(2)
- Να δείξετε ότι υπάρχει $\xi \in (0,2)$, τέτοιο ώστε $f'(\xi)=0$

Λόλας Συναρτήσεις 16/27

Δίνεται η συνάρτηση f(x) = 4x - 2x + 1. Να υπολογίσετε τα ολοκληρώματα:

- $\int_{-1}^{0} f(x+1) dx$

Λόλας Συναρτήσεις 17/27

Δίνεται η συνάρτηση f(x) = 4x - 2x + 1. Να υπολογίσετε τα ολοκληρώματα:

- **1** $\int_{-1}^{0} f(x+1) dx$

Λόλας Συναρτήσεις 17/27

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής. Να δείξετε ότι

$$\int_2^4 f\left(\frac{2}{x}\right)\,dx = 2\int_{\frac{1}{2}}^1 \frac{f(x)}{x^2}\,dx$$

Λόλας Συναρτήσεις 18/27

ΔΝα υπολογίσετε τα ολοκληρώματα

$$2 \int_0^1 \frac{1}{2x+1} dx$$

ΔΝα υπολογίσετε τα ολοκληρώματα

$$2 \int_0^1 \frac{1}{2x+1} \, dx$$

Λόλας Συναρτήσεις 19/27

ΔΝα υπολογίσετε τα ολοκληρώματα

$$2 \int_0^1 \frac{1}{2x+1} \, dx$$

$$\oint_{1}^{e} \frac{\sqrt{\ln x}}{x} \, dx$$

Λόλας Συναρτήσεις 19/27

ΔΝα υπολογίσετε τα ολοκληρώματα

$$2 \int_0^1 \frac{1}{2x+1} \, dx$$

Λόλας Συναρτήσεις 19/27

Δίνεται η συνάρτηση $f(x) = e^x + x - 1$

- ① Να δείξετε ότι ορίζεται η αντίστροφη συνάρτηση f^{-1} και να βρείτε το πεδίο ορισμού της
- ② Να υπολογίσετε το $\int_0^e f^{-1}(x) \, dx$

Λόλας Συναρτήσεις 20/27

Δίνεται η συνάρτηση $f(x) = e^x + x - 1$

- ① Να δείξετε ότι ορίζεται η αντίστροφη συνάρτηση f^{-1} και να βρείτε το πεδίο ορισμού της
- ② Να υπολογίσετε το $\int_0^e f^{-1}(x)\,dx$

Λόλας Συναρτήσεις 20/27

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι παραγωγίσιμη και ισχύει

$$f^3(x)+f(x)=x$$
, για κάθε $x\in\mathbb{R}$

- f Q Να δείξετε ότι η συνάρτηση f αντιστρέφεται και να βρείτε την f^{-1}
- ② Να υπολογίσετε το $\int_0^2 f(x) dx$

Λόλας Συναρτήσεις 21/27

Εστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση με $f(\mathbb{R})=\mathbb{R}$, η οποία είναι παραγωγίσιμη και ισχύει

$$f^3(x)+f(x)=x$$
, για κάθε $x\in\mathbb{R}$

- $oldsymbol{0}$ Να δείξετε ότι η συνάρτηση f αντιστρέφεται και να βρείτε την f^{-1}
- ② Να υπολογίσετε το $\int_0^2 f(x) \, dx$

Λόλας Συναρτήσεις 21/27

Εστω $f:[-a,a] o \mathbb{R}$ μία συνάρτηση, η οποία είναι συνεχής. Να δείξετε ότι:

- - ② Να υπολογίσετε το ολοκλήρωμα $J = \int_{-1}^{1} \frac{x}{2 + \sigma v \nu x} dx$
- ② Αν η f είναι άρτια, τότε $\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$

Λόλας Συναρτήσεις 22/27

Εστω $f:[-a,a] o \mathbb{R}$ μία συνάρτηση, η οποία είναι συνεχής. Να δείξετε ότι:

- - ② Να υπολογίσετε το ολοκλήρωμα $J = \int_{-1}^1 \frac{x}{2 + \sigma \upsilon \nu x} \, dx$
- ② Αν η f είναι άρτια, τότε $\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$

Λόλας Συναρτήσεις 22/27

Εστω $f:[-a,a] o \mathbb{R}$ μία συνάρτηση, η οποία είναι συνεχής. Να δείξετε ότι:

- - ② Να υπολογίσετε το ολοκλήρωμα $J = \int_{-1}^{1} \frac{x}{2 + \sigma v \nu x} \, dx$
- ② Αν η f είναι άρτια, τότε $\int_{-a}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$

Λόλας Συναρτήσεις 22/27

Εστω μία συνεχής συνάρτηση $f:[0,2] \to \mathbb{R}$ για την οποία ισχύει

$$f(1-x)+f(1+x)=2$$
 για κάθε $x\in[-1,1]$

Να υπολογίσετε το ολοκλήρωμα $\int_0^2 f(x) \, dx$

Λόλας Συναρτήσεις 23/27

Να υπολογίσετε το ολοκλήρωμα $\int_{\rm l}^{e^2} |\ln x - 1| \, dx$

Λόλας Συναρτήσεις 24/27

Να υπολογίσετ το ολοκλήρωμα $\int_1^e \eta \mu(\ln x)\,dx$

Λόλας Συναρτήσεις 25/27

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής και ισχύει:

$$f(x) = e^x + \int_0^1 x f(x) \, dx \,, x \in \mathbb{R}$$

Nα βρείτε την f

Λόλας Συναρτήσεις 26/27

Αν η συνάρτηση f είναι συνεχής στο $[\alpha,\beta]$ και ισχύει $f(x)=f(\alpha+\beta-x)$, για κάθε $x\in [\alpha,\beta]$, να δείξετε ότι:

$$\int_{\alpha}^{\beta} x f(x) dx = \frac{\alpha + \beta}{2} \int_{\alpha}^{\beta} f(x) dx$$

Λόλας Συναρτήσεις 27/27