Introdução à Topologia - Resoluções de exercícios Capítulo 1

Exercício nº5 (alíneas 3. e 4.)

É imediato, directamente a partir da definição, que, dados $r,s\in\mathbb{Q}$, $d_p(r,s)\geqslant 0$ e que $d_p(r,s)=0$ se e só se r=s. Para demonstrar que $d_p(r,s)=d_p(s,r)$, observe-se que esta igualdade é trivial se r=s; caso contrário, se se escrever:

$$r-s = p^{\nu_p(r-s)} \cdot \frac{a}{b}$$

com (a,p) = (b,p) = 1, então tem-se:

$$s - r = p^{\nu_p(r-s)} \cdot \frac{-a}{b}$$

e $(-\alpha,p)=(b,p)=1$. Sendo assim, é claro que $\nu_p(s-r)=\nu_p(r-s)$ e, portanto, que $d_p(r,s)=d_p(s,r)$. Finalmente, pretende-se demonstrar que se $t\in\mathbb{Q}$, então

$$d_{p}(r,t) \leqslant \max\{d_{p}(r,s),d_{p}(s,t)\}. \tag{1}$$

Antes de se passar à demonstração desta afirmação, observe-se que ela implica que se tem $d_p(r,t) \leqslant d_p(r,s) + d_p(s,t)$. Por outro lado, ao demonstrar-se (1), pode-se supor que r, s e t são distintos dois a dois. De facto, se r=t, então (1) reduz-se a $0 \leqslant \max\{d_p(r,s),d_p(s,t)\}$ e se r=s ou s=t, então (1) reduz-se a $d_p(r,t) \leqslant d_p(r,t)$. Será então suposto que r, s e t são dois a dois distintos; pretende-se provar que

$$|r-t|_p\leqslant \max\{|r-s|_p,|s-t|_p\},$$

ou seja, mostrar que

$$v_p(r-t) \geqslant min\{v_p(r-s), v_p(s-t)\}.$$

Sejam $\alpha=r-s$ e $\beta=s-t$. Com esta notação, pretende-se mostrar que $\nu_p(\alpha+\beta)\geqslant \min\{\nu_p(\alpha),\nu_p(\beta)\}$. Sejam $\alpha,b,c,d\in\mathbb{Z}$ números primos com p tais que:

$$\alpha = p^{\nu_\mathfrak{p}(r-s)} \cdot \frac{\alpha}{b} \ e \ \beta = p^{\nu_\mathfrak{p}(s-t)} \cdot \frac{c}{d} \cdot$$

Vai-se supor que $\nu_p(\alpha) \leqslant \nu_p(\beta)$; a demonstração é análoga se $\nu_p(\alpha) \geqslant \nu_p(\beta)$. Tem-se então:

$$\alpha + \beta = p^{\nu_{p}(\alpha)} \cdot \frac{a}{b} + p^{\nu_{p}(\beta)} \cdot \frac{c}{d}$$

$$= p^{\nu_{p}(\alpha)} \frac{a + p^{\nu_{p}(\beta) - \nu_{p}(\alpha)} c}{b \cdot d}.$$
(2)

Sejam $\mathfrak{n} \in \mathbb{Z}_+$ e $e \in \mathbb{Z}$ tais que $(e,\mathfrak{p})=1$ e que

$$a + p^{\nu_{\mathfrak{p}}(\beta) - \nu_{\mathfrak{p}}(\alpha)} c = \mathfrak{p}^{\mathfrak{n}}.e; \tag{3}$$

seja f = b.d. Então (f, p) = 1 e deduz-se de (2) e de (3) que:

$$\alpha + \beta = p^{\nu_p(\alpha) + n} \cdot \frac{e}{f};$$

 $logo, \nu_p(\alpha+\beta) = \nu_p(\alpha) + n = min\{\nu_p(\alpha), \nu_p(\beta)\} + n \geqslant min\{\nu_p(\alpha), \nu_p(\beta)\}.$

Exercício nº9

Sejam $x,y \in E$; pretende-se mostrar que $d(x,y) \ge 0$. Basta observar que $0 = d(x,x) \le d(x,y) + d(y,x) = 2d(x,y)$.

Exercício nº18

1. A função não é contínua; de facto, vai ser visto que é descontínua em todos os pontos do domínio. Seja $f \in \mathcal{C}([0,1])$; pretende-se demonstrar que:

$$(\exists \epsilon > 0)(\forall \delta > 0)(\exists g \in \mathfrak{C}([0,1])): d_1(f,g) < \delta \ e \ |f(0) - g(0)| \geqslant \epsilon.$$

Seja $\epsilon=1$ e seja $\delta>0$. Se se encontrar uma função $h\in \mathfrak{C}([0,1])$ tal que

$$\int_{0}^{1} |h| (= d_{1}(h, 0)) < \delta$$

e que $|h(0)|\geqslant 1$, então a função g=f+h será claramente tal que $d_1(f,g)<\delta$ e que $|f(0)-g(0)|\geqslant 1$. Basta escolher h com um gráfico como o da figura 1. Mais precisamente, considere-se:

$$h(t) = \begin{cases} 1 - t/d & \text{se } t < d \\ 0 & \text{se } t \geqslant d. \end{cases}$$

Figura 1

com d \in]0,1]. Então h(0) = 1 e $\int_0^1 |h| = d/2$. Basta então escolher d tal que $d/2 < \delta$.

2. Sim, a função é contínua e é mesmo uniformemente contínua, ou seja, dado $\epsilon \in \mathbb{R}_+^*$ existe algum $\delta \in \mathbb{R}_+^*$ tal que

$$(\forall f, g \in \mathcal{C}([0,1])) : d_{\infty}(f,g) < \delta \Longrightarrow |f(0) - g(0)| < \varepsilon.$$

Com efeito, basta tomar $\delta=\epsilon$, pois se $d_{\infty}(f,g)<\epsilon$ então

$$|f(0)-g(0)|\leqslant \sup_{x\in[0,1]}|f(x)-g(x)|=d_{\infty}(f,g)<\varepsilon.$$

Exercício nº21

1. Afirmar que a função é descontínua em todos os pontos do domínio equivale a afirmar que:

$$(\forall r \in \mathbb{Q})(\exists \varepsilon > 0)(\forall \delta > 0)(\exists r' \in \mathbb{Q}) : d_{\mathfrak{p}}(r, r') < \varepsilon \text{ e } d(r, r') \geqslant \varepsilon.$$

Sejam então $r \in \mathbb{Q}$, $\varepsilon = 1$ e $\delta > 0$; pretende-se encontrar um número racional r' tal que $d_p(r,r') < \delta$ e $|r-r'| \geqslant 1$. Para tal basta encontrar um número racional h tal que $|h|_p (=d_p(h,0)) < \delta$ e $|h| \geqslant 1$; uma vez encontrado um tal h, bastará considerar r' = r + h. Seja $n \in \mathbb{N}$ tal que $p^{-n} < \delta$. Então $|p^n|_p = p^{-n} < \delta$ (por escolha de n) e $|p^n| = p^n \geqslant 1$.

2. Sim; basta considerar a função que envia $r \in \mathbb{Q}$ em $|r|_p$. Que esta função é contínua é uma consequência imediata do exercício 14, pois, para cada $r \in \mathbb{Q}$, $|r|_p = d_p(r,0)$.

Exercício nº25

Que as aplicações $f: \mathbb{C} \longrightarrow \mathbb{C}$ da forma $f(z) = \omega z + \beta$ ou $f(z) = \omega \overline{z} + \beta$, em que $\omega, \beta \in \mathbb{C}$ e $|\omega| = 1$, são isometrias é óbvio; o problema consiste em saber se há ou não outras isometrias. De facto não há. Para demonstrar esta afirmação, seja $f: \mathbb{C} \longrightarrow \mathbb{C}$ uma isometria; sejam $\beta = f(0)$ e $\omega = f(1) - f(0)$. É claro que $|\omega| = 1$, pois $|\omega| = |f(1) - f(0)| = |1 - 0| = 1$. Seja

g:
$$\mathbb{C} \longrightarrow \mathbb{C}$$

z \rightsquigarrow $(f(z) - \beta)/\omega$;

é claro que g é uma isometria, que g(0)=0 e que g(1)=1. Pretendese demonstrar que g é a identidade ou a conjugação; no primeiro caso ter-se-á então que, para qualquer $z\in\mathbb{C}$, $f(z)=\omega z+\beta$ e no segundo caso ter-se-á, para qualquer $z\in\mathbb{C}$, $f(z)=\omega \bar{z}+\beta$.

Primeira resolução: Vai-se começar por mostrar que:

$$(\forall z \in \mathbb{C}) : g(z) = z \text{ ou } g(z) = \overline{z}.$$

Seja então $z \in \mathbb{C}$ e seja w = g(z). Sabe-se que |w| = |z| e que |w - 1| = |g(z) - g(1)| = |z - 1|. Mas também se sabe que:

$$|z-1|^2 = |w-1|^2 \iff |z|^2 - 2\operatorname{Re} z + 1 = |w|^2 - 2\operatorname{Re} w + 1$$
$$\implies \operatorname{Re} z = \operatorname{Re} w$$

pois |z| = |w|. Logo, tem-se:

$$(\operatorname{Im} z)^2 = |z|^2 - (\operatorname{Re} z)^2 = |w|^2 - (\operatorname{Re} w)^2 = (\operatorname{Im} w)^2$$

e, portanto, $\operatorname{Im} z = \pm \operatorname{Im} w$; $\operatorname{logo}, z = w$ ou $z = \overline{w}$.

Falta mostrar que se tem sempre g(z)=z ou se tem sempre $g(z)=\overline{z}$. Suponha-se, por redução ao absurdo, que existe algum $z\in\mathbb{C}$ tal que $g(z)=z\neq\overline{z}$ e que existe algum $w\in\mathbb{C}$ tal que $g(w)=\overline{w}\neq w$. Então $|z-\overline{w}|=|g(z)-g(w)|=|z-w|$. Mas tem-se

$$|z - \overline{w}| = |z - w| \iff (\operatorname{Re} z - \operatorname{Re} w)^{2} + (\operatorname{Im} z + \operatorname{Im} w)^{2} =$$

$$= (\operatorname{Re} z - \operatorname{Re} w)^{2} + (\operatorname{Im} z - \operatorname{Im} w)^{2}$$

$$\iff \operatorname{Im} z + \operatorname{Im} w = \pm (\operatorname{Im} z - \operatorname{Im} w)$$

$$\iff \operatorname{Im} z = 0 \text{ ou } \operatorname{Im} w = 0$$

$$\iff z = \overline{z} \text{ ou } w = \overline{w}$$

o que é absurdo.

Segunda resolução: Tem-se

$$|g(i)| = |g(i) - g(0)| = |i - 0| = 1$$

 \mathbf{e}

$$|g(i) - 1| = |g(i) - g(1)| = |i - 1| = \sqrt{2},$$

pelo que g(i) está na intersecção das circunferências S(0,1) e $S(1,\sqrt{2})$; logo, $g(i)=\pm i$.

Suponha-se que g(i)=i; pretende-se demonstrar que g é então a identidade. Seja $z\in\mathbb{C}$. Sabe-se que |g(z)|=|z|, que |g(z)-1|=|z-1| e que |g(z)-i|=|z-i|, ou seja que g(z) esta situado simultaneamente nas três circunferências de centros 0, 1 e i e de raios respectivamente |z|,|z-1| e |z-i|. Mas três circunferências com centros não colineares só possuem, no máximo, um ponto comum e z pertence a cada uma delas; $\log g(z)=z$.

Se g(i) = -i, define-se, para cada $z \in \mathbb{C}$, $\hat{g}(z) = g(z)$. A função \hat{g} é uma isometria, $\hat{g}(0) = 0$, $\hat{g}(1) = 1$ e $\hat{g}(i) = i$. Como já foi visto, \hat{g} é a função identidade, pelo que g é a conjugação.

Exercício nº28

Se I for um intervalo aberto de \mathbb{R} e se $\mathfrak{a} \in I$, existem $r_1, r_2 \in \mathbb{R}_+^*$ tais que $]\mathfrak{a} - r_1, \mathfrak{a} + r_2[\subset I$. Se $r = \min\{r_1, r_2\}$, então $]\mathfrak{a} - r, \mathfrak{a} + r[\subset I$. Mas $]\mathfrak{a} - r, \mathfrak{a} + r[= B(\mathfrak{a}, r)$. Está então provado que

$$(\forall \alpha \in \mathbb{R})(\exists r \in \mathbb{R}_+^*) : B(\alpha, r) \subset I$$

ou seja, que I é um aberto.

Exercício nº31.1 (métrica p-ádica)

O conjunto em questão não é nem aberto nem fechado em $\mathbb Q$ relativamente à métrica p-ádica. Para ver que não é aberto, observe-se que se $\epsilon>0$, então a bola $B(0,\epsilon)$ não está contida em $[-1,1]\cap\mathbb Q$; de facto, se $n\in\mathbb N$ for tal que $p^{-n}<\epsilon$, então $p^n\in B(0,\epsilon)$ mas $p^n\not\in [-1,1]\cap\mathbb Q$. Para ver que $[-1,1]\cap\mathbb Q$ não é fechado em $\mathbb Q$ será demonstrado que nenhuma bola aberta $B(r,\epsilon)$ com $r\in\mathbb Q$ e $\epsilon>0$ está contida no complementar de $[-1,1]\cap\mathbb Q$. Sejam $k,\alpha,b\in\mathbb Z$ tais que $r=p^k\frac{\alpha}{b}$ e que $(\alpha,p)=(b,p)=1$. Se se tomar $n\in\mathbb N$ tal que $p^{-n-k}<\epsilon$, então $r-r\frac{p^n}{p^n-1}\in B(r,\epsilon)$; basta então escolher n tal que $\left|r-r\frac{p^n}{p^n-1}\right|\leqslant 1$ para que se tenha $r-r\frac{p^n}{p^n-1}\in [-1,1]\cap\mathbb Q$.

Exercício nº35

- 1. Por hipótese, $b \in B(\alpha,r)$, ou seja, $d(\alpha,b) < r$. Basta então provar que $B(\alpha,r) \subset B(b,r)$; por simetria, a inclusão oposta ficará também demonstrada. Seja então $c \in B(\alpha,r)$; pretende-se mostrar que $c \in B(b,r)$, ou seja, mostrar que $c \in B(c,r)$, $c \in B(c,r)$, $c \in B(c,r)$, $c \in B(c,r)$, $c \in B(c,r)$, ou seja, mostrar que $c \in B(c,r)$, $c \in B($
- **2.** Seja $c \in B(a,r)$; pretende-se demonstrar que $c \in B(b,s)$. Seja $x \in B(a,r) \cap B(b,s)$. Tem-se:

$$d(c,b) \leqslant \max\{d(c,x),d(x,b)\} \leqslant \max\{d(c,a),d(a,x),d(x,b)\}.$$

Mas $d(c, a) < r \le s$, $d(a, x) < r \le s$ e d(x, b) < s; deduz-se então que d(c, b) < s.

3. Sejam $a \in E$ e $r \in]0, +\infty[$; pretende-se demonstrar que B(a, r) é um fechado de E, ou seja, que o conjunto $\{x \in E \mid d(x, a) \ge r\}$ é um aberto. Seja então $x \in E$ tal que $d(x, a) \ge r$. A bola B(x, r) não intersecta B(a, r) pois se a intersecção não fosse vazia deduzir-se-ia da alínea anterior que B(a, r) = B(x, r), o que é absurdo porque $x \notin B(a, r)$.

Pretende-se agora demonstrar que $B'(\alpha, r)$ é um aberto. Seja $x \in B'(\alpha, r)$; vai-se mostrar que $B(x, r) \subset B'(\alpha, r)$. De facto, se $y \in B(x, r)$, então $d(y, \alpha) \le \max\{d(y, x), d(x, \alpha)\} \le r$.

Exercício nº41 (relativamente ao exercício 32)

Observe-se que a topologia induzida pela métrica d_{∞} é mais fina do que a topologia induzida pela métrica d_1 . De facto, a função identidade de $(\mathcal{C}([0,1]),d_{\infty})$ em $(\mathcal{C}([0,1]),d_1)$ é contínua, porque se $f,g\in\mathcal{C}([0,1])$, então:

$$d_1(f,g) = \int_0^1 |f-g| \le \int_0^1 \sup |f-g| = \sup |f-g| = d_\infty(f,g).$$

Logo, qualquer aberto (respectivamente fechado) de $(\mathcal{C}([0,1]),d_1)$ é um aberto (resp. fechado) de $(\mathcal{C}([0,1]),d_\infty)$. Deduz-se que se $A\subset\mathcal{C}([0,1])$, então a aderência de A relativamente a d_∞ está contida na aderência de A relativamente a d_1 e o interior de A relativamente a d_∞ contém o interior de A relativamente a d_1 .

1. Seja $A = \{ f \in \mathcal{C}([0,1]) \mid f(0) = 0 \}$. Foi visto, no exercício 18, que a função

$$\begin{array}{ccc}
\mathbb{C}([0,1]) & \longrightarrow & \mathbb{R} \\
f & \leadsto & f(0)
\end{array}$$
(4)

é contínua relativamente à métrica d_{∞} ; logo, o conjunto A é fechado (relativamente à métrica d_{∞}), pois é a imagem recíproca de $\{0\}$ pela função (4) e, portanto, é igual à sua aderência.

A aderência de A relativamente a d_1 é o espaço $\mathcal{C}([0,1])$. De facto, sejam $f \in \mathcal{C}([0,1])$ e $\varepsilon > 0$; quer-se mostrar que existe $g \in B(f,\varepsilon)$ tal que g(0) = 0. Seja $\varepsilon' \in]0,1]$ e seja

vejam-se os gráficos de f (a cheio) e de g (a tracejado) na figura 2. Então

Figura 2

tem-se:

$$\begin{aligned} d_1(f,g) &= \int_0^1 |f-g| \\ &= \int_0^{\epsilon'} |f-g| \text{ (pois } f(x) = g(x) \text{ se } x > \epsilon' \text{)} \\ &\leq 2M\epsilon'. \end{aligned}$$

sendo M o máximo de |f|. Basta então escolher $\varepsilon' < \varepsilon/(2M)$.

O interior de A relativamente a d_{∞} é vazio. De facto, se $f \in \mathcal{C}([0,1])$ é tal que f(0) = 0 e se $\epsilon > 0$, então a função $g \in \mathcal{C}([0,1])$ definida por $g(x) = f(x) + \epsilon/2$ está na bola $B(f,\epsilon)$, mas $g(0) \neq 0$. Deduz-se das observações feitas no início da resolução que o interior de A relativamente a d_1 também é vazio.

2. Seja $A = \{ f \in \mathcal{C}([0,1]) \mid (\forall t \in [0,1]) : |f(t)| < 1 \}$. O conjunto A é, relativamente à métrica d_{∞} , a bola B(0,1), sendo 0 a função nula. Logo, é aberto e, portanto, igual ao seu interior. Relativamente à métrica d_1 , o conjunto A tem o interior vazio. Para o demonstrar, tome-se f tal que $(\forall t \in [0,1]) : |f(t)| < 1$ e tome-se f considere-se a função:

$$\begin{array}{cccc} h\colon \ [0,1] & \longrightarrow & \mathbb{R} \\ & \chi & \leadsto & \begin{cases} 2-4x/\epsilon & \text{se } x < \epsilon/2 \\ 0 & \text{caso contrário.} \end{cases} \end{array}$$

Então $d_1(f, f + h) = \varepsilon/2 < \varepsilon$ pelo que $f + h \in B(f, \varepsilon)$, mas (f + h)(0) = f(0) + 2 > 1, pelo que $f + h \notin A$.

Sejam A' a aderência de A relativamente à métrica d_1 e A^* a aderência relativamente à métrica d_{∞} . Sabe-se que

$$A^{\star} \subset \{ \ f \in \mathfrak{C}([0,1]) \mid (\forall t \in [0,1]) : |f(t)| \leqslant 1 \, \},\$$

pois este último conjunto é, relativamente à métrica d_{∞} , a bola B'(0,1) e, portanto, um fechado. De facto, este conjunto é igual a A^{\star} , pois se $(\forall t \in [0,1]): |f(t)| \leqslant 1$ e se $\epsilon > 0$, então a função

pertence a A e $d_{\infty}(f,g) < \epsilon$. Deduz-se então das observações feitas no início da resolução que $\{f \in \mathcal{C}([0,1]) \mid (\forall t \in [0,1]) : |f(t)| \leqslant 1\} \subset A'$. Finalmente, vai-se demonstrar que esta inclusão é uma igualdade. Seja $f \in \mathcal{C}([0,1]) \setminus \{f \in \mathcal{C}([0,1]) \mid (\forall t \in [0,1]) : |f(t)| \leqslant 1\}$; pretende-se mostrar que $f \notin A'$. Existe algum $f \in [0,1]$ tal que f(f) > 1 ou que f(f) < -1. Vamos supor que estamos no primeiro caso; o outro caso é análogo. Seja

$$r = \int_{0}^{1} \max\{f(t), 1\} - 1 dt$$

e seja $g \in B(f,r)$; pretende-se mostrar que $g \notin A$. De facto, se se tivesse $g \in A$, então, em particular, ter-se-ia $g(t) \leqslant 1$ para qualquer $t \in [0,1]$. Logo, para cada $t \in [0,1]$ ter-se-ia:

- se
$$f(t) > 1$$
, $|f(t) - g(t)| = f(t) - g(t) \ge f(t) - 1 = \max\{f(t), 1\} - 1$;

$$-\text{ se }f(t)\leqslant 1,\, \text{max}\{f(t),1\}-1=0\leqslant |f(t)-g(t)|.$$

Em ambos os casos tem-se então $max\{f(t),1\}-1\leqslant |f(t)-g(t)|,$ pelo que:

$$d_1(f,g) = \int_0^1 |f - g| \geqslant \int_0^1 \max\{f(t), 1\} - 1 dt = r$$

o que é absurdo pois, por hipótese, $g \in B(f, r)$.

3. Seja $A = \{f \in \mathcal{C}([0,1]) \mid \int_0^1 f = 0\}$. Relativamente à métrica d_1 , A é fechado e, portanto, idêntico à sua aderência. De facto, se $f \in A^C$, então a bola $B\left(f,|\int_0^1 f|\right)$ não intersecta A, pois se $d_1(f,g) < \left|\int_0^1 f\right|$, então

$$\int_0^1 g = \int_0^1 (g - f) + \int_0^1 f; \tag{5}$$

mas

$$\left| \int_0^1 (g - f) \right| \leqslant \int_0^1 |g - f| < \int_0^1 f.$$

Visto que a relação (5) exprime $\int_0^1 g$ como a soma de dois números com valores absolutos distintos, este número não pode ser igual a 0. Deduz-se das observações feitas no início da resolução que A é fechado relativamente à métrica d_∞ e que, portanto, também neste caso é igual à sua aderência.

O interior de A relativamente à métrica d_{∞} é vazio. Para ver isso, basta observar que se $f \in A$ e $\epsilon > 0$ e se se definir $g \in B(f,\epsilon)$ por $g(x) = f(x) + \epsilon/2$, então $\int_0^1 g = \epsilon/2$, pelo que $g \notin A$. Pelas observações feitas no início da resolução, sabe-se que o interior de A relativamente à métrica d_1 também é vazio.

Exercício nº42

Cada conjunto M(I) é fechado por ser a intersecção de todos os conjuntos da forma

$$\{ f \in \mathcal{C}([0,1]) \mid f(y) - f(x) \ge 0 \}$$
 (6)

ou da forma

$$\{ f \in \mathcal{C}([0,1]) \mid f(y) - f(x) \le 0 \}$$
 (7)

com $x, y \in I$ e x < y. Cada conjunto do tipo (6) (respectivamente (7)) é fechado por ser a imagem recíproca de $[0, +\infty[$ (resp. $]-\infty, 0]$) pela função contínua $F_{x,y}: \mathcal{C}([0,1]) \longrightarrow \mathbb{R}$ definida por $F_{x,y}(f) = f(y) - f(x)$.

O interior de M(I) é vazio, pois se $f \in \mathcal{C}([0,1])$ for crescente em I e se $\varepsilon \in \mathbb{R}_+^*$, então, dado $\alpha \in I$, seja $\delta \in \mathbb{R}_+^*$ tal que

$$(\forall x \in [0,1]): |x-\alpha| < \delta \Longrightarrow |f(x)-f(\alpha)| < \varepsilon.$$

Seja $g \in \mathcal{C}([0,1])$ uma função que se anula fora de $]\alpha - \delta, \alpha + \delta[$, que toma o valor ϵ em α e que só toma valores entre 0 e ϵ nos restantes pontos do domínio. Seja h = f - g (vejam-se, na figura figura 3, os gráficos das restrições a I de f e de h). Então $h|_I$ não é monótona, pois não é crescente ($h(\alpha - \delta) = f(\alpha - \delta) > f(\alpha) - \epsilon = h(\alpha)$), nem decrescente ($h(\alpha) < f(\alpha) \leqslant f(\alpha + \delta) = h(\alpha + \delta)$), mas $d_{\infty}(f,h) = \epsilon$, pelo que f não pertence ao interior de M(I).

Figura 3

Analogamente, se $f \in \mathcal{C}([0,1])$ for decrescente, então f não pertence ao interior de M(I).

Exercício nº48

Seja $a \in E_1$ e seja $(a_n)_{n \in \mathbb{N}}$ uma sucessão que converge para a; quer-se prover que a sucessão $(f(a_n))_{n \in \mathbb{N}})$ converge para f(a). Por hipótese, esta sucessão converge para algum $b \in E_2$. Considere-se a sucessão $a_1, a, a_2, a, a_3, a, \ldots$, que converge para a. Logo, a sucessão das suas imagens pela função f converge. Como a sub-sucessão dos termos de ordem par das imagens converge para f(a) e a dos termos de ordem ímpar converge para b, f(a) = b.

Exercício nº49

1. Seja $(x_n,f(x_n))_{n\in\mathbb{N}}$ uma sucessão de pontos do gráfico e suponhase que converge para $(x,y)\in\mathbb{R}^2$; vai-se mostrar que (x,y) também pertence ao gráfico, i. e. que y=f(x). Tem-se $x=\lim_{n\in\mathbb{N}}x_n$ e resulta então da continuidade de f que $f(x)=\lim_{n\in\mathbb{N}}f(x_n)=y$.

2. Sim. Considere-se, por exemplo a função

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$x \sim \begin{cases}
1/x & \cos x \neq 0 \\
0 & \cos x = 0,
\end{cases}$$

cujo gráfico está representado na figura 4.

Figura 4

Exercício nº55

Seja $(a_n)_{n\in\mathbb{N}}$ uma sucessão de Cauchy de um espaço métrico discreto (E,d). Então existe algum $p\in\mathbb{N}$ tal que, para cada $m,n\in\mathbb{N}$,

$$m, n \geqslant p \Longrightarrow d(a_m, a_n) < 1.$$

Mas afirmar que $d(a_m, a_n) < 1$ é o mesmo que afirmar que $a_m = a_n$. Posto de outro modo, se $n \ge p$, $a_n = a_p$. Logo, $\lim_{n \in \mathbb{N}} a_n = a_p$.

Exercício nº58

1. Se $m,n\in\mathbb{N}$, então $d_1(f_m,f_n)$ é a área da região a sombreado da figura 5. Aquela região é formada por dois triângulos congruentes, pelo que a sua área é igual ao dobro da do triângulo de baixo. Este último tem por base o segmento que une (1/2-1/2n,0) a (1/2-1/2m,0), cujo comprimento é |1/2n-1/2m|, e a altura é 1/2. Logo, a área da região a sombreado é |1/n-1/m|/4.

Então, dado $\varepsilon \in \mathbb{R}_+^*$, se $\mathfrak{p} \in \mathbb{N}$ for tal que $1/\mathfrak{p} < 4\varepsilon$, tem-se, sempre $\mathfrak{m}, \mathfrak{n} \in \mathbb{N}$ forem tais que $\mathfrak{m}, \mathfrak{n} \geqslant \mathfrak{p}$:

$$d_1(f_m,f_n) = \frac{\left|\frac{1}{n} - \frac{1}{m}\right|}{4} \begin{cases} <\frac{1}{4n} \leqslant \frac{1}{4p} < \epsilon & \text{ se } m > n \\ = 0 < \epsilon & \text{ se } m = n \\ <\frac{1}{4m} \leqslant \frac{1}{4p} < \epsilon & \text{ se } m < n, \end{cases}$$

Figura 5

pelo que a sucessão $(f_{\mathfrak{n}})_{\mathfrak{n}\in\mathbb{N}}$ é de Cauchy.

2. Vai-se provar, por redução ao absurdo, que a sucessão da alínea anterior não converge. Suponha-se então que a sucessão $(f_n)_{n\in\mathbb{N}}$ converge para uma função $f\in \mathcal{C}([0,1])$.

Primeiro método: Vai-se provar que caso a sucessão da alínea anterior convergisse para uma função $f\in \mathfrak{C}([0,1]),$ então tinha-se necessariamente

$$f(x) = \begin{cases} 0 & \text{se } x < 1/2 \\ 1 & \text{se } x > 1/2. \end{cases}$$

Como não há nenhuma função contínua de [0,1] em $\mathbb R$ nestas condições, isto prova que $(f_n)_{n\in\mathbb N}$ não converge.

Seja $\alpha \in [0, 1/2[$ e seja $\epsilon \in \mathbb{R}_+^*$. Se $n \in \mathbb{N}$ for suficientemente grande, então $d_1(f, f_n) < \epsilon$ e $1/2 - 1/2n > \alpha$. Logo, para um tal n tem-se:

$$\begin{split} \left| \int_0^\alpha f \right| &\leqslant \int_0^\alpha |f| \\ &= \int_0^\alpha |f - f_n| \text{ (pois } f_n \text{ anula-se em } [0, \alpha] \text{)} \\ &\leqslant \int_0^1 |f - f_n| \\ &= d_1(f, f_n) \\ &< \epsilon. \end{split}$$

Como se tem $\left|\int_0^\alpha f\right|<\epsilon$ para cada $\alpha\in[0,1/2[$ e para cada $\epsilon\in\mathbb{R}_+^*,$ a função

$$\begin{array}{ccc}
[0, \frac{1}{2}[& \longrightarrow & \mathbb{R} \\
\alpha & \leadsto & \int_{0}^{\alpha} f
\end{array}$$

é a função nula, pelo que a sua derivada também se anula. Mas a derivada é a restrição a [0, 1/2[de f.

Analogamente, a função f -1 anula-se em $]^{1/2}$, 1], ou seja f(x) = 1 sempre que x > 1/2.

Segundo método: Seja R_- : $\mathcal{C}([0,1]) \longrightarrow \mathcal{C}([0,1/2])$ a função definida por $R_-(f) = f|_{[0,1/2]}$; analogamente, seja R_+ : $\mathcal{C}([0,1]) \longrightarrow \mathcal{C}([1/2,1])$ a função definida por $R_+(f) = f|_{[1/2,1]}$. Cada uma destas funções é contínua pois, se $g, h \in \mathcal{C}([0,1])$,

$$d_1(R_-(g), R_-(h)) = \int_0^{1/2} |g - h| \leqslant \int_0^1 |g - h| = d_1(g, h)$$

e, pelo mesmo argumento, $d_1(R_+(g), R_+(h)) \le d_1(g, h)$; logo, basta tomar $\delta = \varepsilon$ na definição de continuidade. Então, pela proposição 1.4.5,

$$R_{-}(f) = R_{-}\left(\lim_{n \in \mathbb{N}} f_n\right) = \lim_{n \in \mathbb{N}} R_{-}(f_n).$$

Mas $(\forall n \in \mathbb{N})$: $d_1(R_-(f_n),0) = \frac{1}{8n}$, pelo que $R_-(f) \equiv 0$. Pelo mesmo argumento, $R_+(f) \equiv 1$. Isto é absurdo, pois f(1/2) não pode ser simultaneamente 0 e 1.

3. Primeira resolução: Seja $(f_n)_{n\in\mathbb{N}}$ uma sucessão de Cauchy em $(\mathfrak{C}([0,1]),d_\infty)$; quer-se provar que converge. Visto que, por hipótese, se tem

$$(\forall \epsilon \in \mathbb{R}_+^*)(\exists p \in \mathbb{N})(\forall m,n \in \mathbb{N}): m,n \geqslant p \Longrightarrow \sup |f_m - f_n| < \epsilon,$$

então, para cada $x \in [0, 1]$ tem-se

$$(\forall \varepsilon \in \mathbb{R}_{+}^{*})(\exists p \in \mathbb{N})(\forall m, n \in \mathbb{N}) : m, n \geqslant p \Longrightarrow |f_{m}(x) - f_{n}(x)| < \varepsilon,$$

ou seja, a sucessão $(f_n(x))_{n\in\mathbb{N}}$ é uma sucessão de Cauchy de números reais. Logo, converge para algum $f(x)\in\mathbb{R}$. Falta ver que $f\in\mathcal{C}([0,1])$ e que $\lim_{n\in\mathbb{N}}f_n=f$.

Sejam $\alpha\in[0,1]$ e $\epsilon\in\mathbb{R}_+^*;$ quer-se mostrar que existe algum $\delta\in\mathbb{R}_+^*$ tal que

$$(\forall x \in [0,1]): |x-\alpha| < \delta \Longrightarrow |f(x)-f(\alpha)| < \varepsilon.$$

Seja $p \in \mathbb{N}$ tal que

$$(\forall m,n \in \mathbb{N}): m,n \geqslant p \Longrightarrow \sup |f_m - f_n| < \frac{\epsilon}{2} \cdot$$

Então

$$(\forall x \in [0,1]): |f(x) - f_p(x)| = \lim_{m \in \mathbb{N}} |f_m(x) - f_p(x)| \leqslant \frac{\varepsilon}{2}. \tag{8}$$

Como f_p é contínua, existe $\delta \in \mathbb{R}_+^*$ tal que

$$(\forall x \in [0,1]): |x-\alpha| < \delta \Longrightarrow |f_p(x) - f_p(\alpha)| < \frac{\varepsilon}{4}.$$

Logo, se $x \in [0, 1]$ for tal que $|x - a| < \delta$, então

$$\begin{split} |f(x) - f(\alpha)| &\leqslant |f(x) - f_{p}(x)| + |f_{p}(x) - f_{p}(\alpha)| + |f_{p}(\alpha) - f(\alpha)| \\ &< \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} \\ &= \varepsilon. \end{split}$$

Finalmente, o argumento usando para demonstrar (8) pode ser usado para mostrar que, mais geralmente,

$$(\forall n \in \mathbb{N})(\forall x \in [0,1]) : n \geqslant p \Longrightarrow |f(x) - f_n(x)| \leqslant \frac{\varepsilon}{2} < \varepsilon,$$

ou seja, que

$$(\forall n \in \mathbb{N}) : n \geqslant p \Longrightarrow d_{\infty}(f, f_n) < \varepsilon.$$

Isto é afirmar que $(f_n)_{n\in\mathbb{N}}$ converge para f.

Segunda resolução: O espaço métrico $(\mathfrak{C}([0,1]),d_\infty)$ é um sub-espaço de $(\mathcal{F}_l([0,1]),d_\infty)$, que é um espaço métrico completo (exemplo 1.5.4). Logo, para mostrar que $(\mathfrak{C}([0,1]),d_\infty)$ é completo basta, pela proposição 1.5.2, que se mostre que $\mathfrak{C}([0,1])$ é um fechado de $(\mathcal{F}_l([0,1]),d_\infty)$. Mas isso foi visto no exemplo 1.3.11. Para além do método empregue neste exemplo, também é possível demonstrar directamente que $\mathfrak{C}([0,1])$ é um fechado de $(\mathcal{F}_l([0,1]),d_\infty)$, i. e. que o seu complementar é um aberto de $(\mathcal{F}_l([0,1]),d_\infty)$. Para tal, seja $f\in\mathcal{F}_l([0,1])$ uma função descontínua. Então f é descontínua em algum $a\in[0,1]$, pelo que, para algum $a\in[0,1]$, pelo que, para algum $a\in[0,1]$, pelo que, para

$$(\forall \delta \in \mathbb{R}^*)(\exists x \in [0,1]) : |x-\alpha| < \delta \land |f(x)-f(\alpha)| \geqslant \varepsilon.$$

Seja $g \in B(f, \varepsilon/3)$. Se $\delta \in \mathbb{R}_+^*$, seja $x \in [0, 1]$ tal que $|x - \alpha| < \delta$ e que $|f(x) - f(\alpha)| \ge \varepsilon$. Então, se se tivesse $|g(x) - g(\alpha)| < \varepsilon/3$, tinha-se

$$\begin{aligned} |f(x) - f(\alpha)| &\leq |f(x) - g(x)| + |g(x) - g(\alpha)| + |g(\alpha) - f(\alpha)| \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\ &= \varepsilon, \end{aligned}$$

o que não se verifica. Logo, g também é descontínua em a. Está então provado que se $f \in \mathcal{C}([0,1])^{\complement}$, então existe alguma bola aberta centrada em f contida em $\mathcal{C}([0,1])^{\complement}$.

Exercício nº61

1. Basta aplicar o teorema do ponto fixo de Banach à função

$$\begin{array}{ccc} \mathsf{E} & \longrightarrow & \mathsf{E} \\ \mathsf{x} & \leadsto & \mathsf{F}(\mathsf{i},\mathsf{x}) \end{array}$$

para cada $i \in I$.

2. Seja $i \in I$; quer-se mostrar que a função

$$\begin{array}{ccc} I & \longrightarrow & E \\ i & \leadsto & \varphi_i \end{array}$$

é contínua. Se $j \in I$ tem-se:

$$\begin{split} d_E(\varphi_i, \varphi_j) &= d_E(F(i, \varphi_i), F(j, \varphi_j)) \\ &\leqslant d_E(F(i, \varphi_i), F(j, \varphi_i)) + d_E(F(j, \varphi_i), F(j, \varphi_j)) \\ &\leqslant d_E(F(i, \varphi_i), F(j, \varphi_i)) + Kd_E(\varphi_i, \varphi_i), \end{split}$$

pelo que

$$d_{E}(\phi_{i},\phi_{j}) \leqslant \frac{1}{1-K}d_{E}(F(i,\phi_{i}),F(j,\phi_{i})). \tag{9}$$

Seja $\varepsilon > 0$. Como F é contínua em (i, ϕ_i) , existe $\delta > 0$ tal que

$$d_{I\times E}((i, \phi_i), (j, \phi_k)) < \delta \Longrightarrow d_E(F(i, \phi_i), F(j, \phi_k)) < (1 - K)\varepsilon.$$

Logo, se $d_I(i,j) < \delta$, tem-se $d_{I \times E}((i,\varphi_i),(j,\varphi_i)) < \delta$ e então

$$d_{E}(F(i, \phi_{i}), F(j, \phi_{i})) < (1 - K)\varepsilon.$$

Deduz-se então de (9) que $d_E(\phi_i, \phi_i) < \epsilon$.

Exercício nº66

- 1. Se não existesse nenhuma função nas condições do enunciado, então tinha-se $\mathcal{C}([0,1]) = \bigcup_{n \in \mathbb{N}} M(I_n)$. Mas como, relativamente à métrica do supremo, cada $M(I_n)$ é um fechado com interior vazio e como $(\mathcal{C}([0,1],d_\infty)$ é completo (terceira alínea do exercício 58), a reunião dos conjuntos $M(I_n)$ ($n \in \mathbb{N}$) tem interior vazio, pela versão do teorema de Baire enunciada na página 40; em particular, não pode ser igual a $\mathcal{C}([0,1])$.
- **2.** Seja $f \in \mathcal{C}([0,1])$ uma função que não pertença a nenhum conjunto da forma $M(I_n)$ ($n \in \mathbb{N}$). Então f está nas condições do enunciado: se I for um intervalo de [0,1] com mais do que um ponto, então $I \supset I_n$, para algum $n \in \mathbb{N}$. Mas f não é monótona em I_n , pelo que não é monótona em I.

Capítulo 2

Exercício nº4

1. Pela definição de $\mathbb T$ sabe-se que $\emptyset, \mathbb R \in \mathbb T$; falta então ver que $\mathbb T$ é estável para a reunião e para a intersecção finita.

Seja $(A_i)_{i\in I}$ uma família de elementos de \mathfrak{T} e seja $A=\bigcup_{i\in I}A_i$; pretende-se mostrar que $A\in \mathfrak{T}$. Se algum A_i for igual a \mathbb{R} , então $A=\mathbb{R}\in \mathfrak{T}$; pode-se pois supor que todos os A_i são diferentes de \mathbb{R} . Também se pode supor que todos os A_i são diferentes de \emptyset , pois caso contrário tem-se duas possibilidades.

- Qualquer A_i é vazio; então $A = \emptyset \in \mathfrak{I}$.
- Existe algum $i \in I$ tal que $A_i \neq \emptyset$; seja $I' = \{i \in I \mid A_i \neq \emptyset\}$. É então claro que $A = \bigcup_{i \in I'} A_i$.

Está-se então a supor que cada A_i é da forma $]-\infty, \alpha_i[$. Mas é então claro que $A=]-\infty, \sup\{\alpha_i \mid i \in I\}[\in \mathcal{T}.$

Sejam agora $A_1, A_2 \in \mathcal{T}$; pretende-se mostrar que $A_1 \cap A_2 \in \mathcal{T}$. Mais uma vez, pode-se (e vai-se) supor que cada A_i ($i \in \{1,2\}$) é da forma $]-\infty, \alpha_i[$. É então claro que $A_1 \cap A_2 =]-\infty, \min\{\alpha_1, \alpha_2\}[\in \mathcal{T}$.

Nota: Pelo mesmo motivo atrás apresentado, dado um conjunto X e um conjunto $\mathcal{T} \subset \mathcal{P}(X)$ tal que \emptyset , $\mathbb{R} \in \mathcal{T}$, se se pretender demonstrar que \mathcal{T} é estável para a reunião e para a intersecção finita, pode-se sempre supor que se está a trabalhar com elementos de \mathcal{T} distintos de \emptyset e de X.

- **2.** Se (E,d) é um espaço métrico e $x,y\in E$, há abertos que contêm x mas não contêm y; basta considerar, por exemplo, B(x,d(x,y)). Logo, se a topologia $\mathcal T$ fosse metrizável, então dados $x,y\in \mathbb R$ haveria algum $A\in \mathcal T$ tal que $x\in A$ e $y\not\in A$. Mas isto é falso: tome-se x=1 e y=0. É claro, pela definição de $\mathcal T$, que qualquer elemento de $\mathcal T$ que contém x também contém y.
- **3.** Suponha-se, por redução ao absurdo, que a topologia \mathbb{T} é pseudo-metrizável; existe então uma pseudo-métrica $\rho \colon \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ tal que os abertos correspondentes são os elementos de \mathbb{T} . Sabe-se, pela alínea anterior, que ρ não pode ser uma métrica, ou seja, que existem $x,y\in\mathbb{R}$ tais que $x\neq y$ e $\rho(x,y)=0$. Então qualquer aberto A que contenha x contém y e reciprocamente. De facto, se $x\in A$, então existe algum $\varepsilon>0$ tal que $B(x,\varepsilon)\subset A$. Mas $y\in B(x,\varepsilon)$, pelo que $y\in A$. Isto é absurdo, pois se x< y, o aberto $]-\infty,y[$ contém x mas não contém y e se y< x, então o aberto $]-\infty,x[$ contém y mas não contém x.

Exercício nº6

1. Vai-se resolver o problema desta alínea recorrendo ao exercício 5. Quer-se então provar que $\mathcal{F} = \{V(I) \mid I \subset \mathbb{C}[x_1,\dots,x_n]\}$ contém o conjunto vazio, contém \mathbb{C}^n e é estável para reuniões finitas e para intersecções arbitrárias.

Tem-se $\emptyset \in \mathcal{F}$ porque $\emptyset = V(\{1\})$. Analogamente, $\mathbb{C}^n \in \mathcal{F}$ porque $\mathbb{C}^n = V(\{0\})$ (e também é igual a $V(\emptyset)$).

Se $(I_j)_{i\in I}$ for uma família de partes de $\mathbb{C}[x_1,\ldots,x_n]$ então, para cada $w\in\mathbb{C}^n$, tem-se

$$w \in \bigcap_{j \in I} V(I_j) \iff (\forall j \in I) : w \in V(I_j)$$
$$\iff (\forall j \in I)(\forall P \in I_j) : P(w) = 0$$
$$\iff \left(\forall P \in \bigcup_{j \in I} I_j\right) : P(w) = 0,$$

pelo que $\bigcap_{j\in I} V(I_j) = V(\bigcup_{j\in I} I_j)$.

Finalmente se $I_1, I_2, \ldots, I_n \subset \mathbb{C}^n[x_1, \ldots, x_n]$, seja $I = I_1.I_2 \ldots I_n$; posto de outro modo, I é o conjunto dos polinómios $P \in \mathbb{C}^n[x_1, \ldots, x_n]$ que são da forma $\prod_{k=1}^n P_k$, com, para cada $k \in \{1, 2, \ldots, n\}$, $P_k \in I_k$. Então, se $w \in \mathbb{C}^n$,

$$\begin{split} w \in \bigcup_{k=1}^n V(I_k) &\iff (\exists k \in \{1,2,\ldots,n\}) : w \in V(I_k) \\ &\iff (\exists k \in \{1,2,\ldots,n\}) (\forall P \in I_k) : P(w) = 0 \\ &\iff (\forall P \in I) : P(w) = 0. \end{split} \tag{10}$$

Esta última implicação é uma equivalência, pois se não se tiver (10), então, para cada $k \in \{1,2,\ldots,n\}$, existe algum $P_k \in I_k$ tal que $P_k(w) \neq 0$, de onde resulta que $P_1.P_2...P_n(\in I)$ não se anula em w. Está então provado que $\bigcup_{k=1}^n V(I_k) = V(I)$.

2. A afirmação que se pretende demonstrar equivale a esta: os conjuntos da forma V(I) ($I \subset \mathbb{C}[x]$) são \mathbb{C} e as partes finitas de \mathbb{C} .

Se $I \subset \mathbb{C}[x]$ então $I \subset \{0\}$ ou I contém algum $P(x) \in \mathbb{C}[x]$ não nulo. No primeiro caso, $V(I) = \mathbb{C}$ e, no segundo, $V(I) \subset \{\text{zeros de } P(x)\}$. Este último conjunto é finito, pelo que V(I) também é finito.

Reciprocamente, seja $F \subset \mathbb{C}$ um conjunto que seja igual a \mathbb{C} ou que seja finito. No primeiro caso, $F = V(\{0\})$ e, no segundo, se $F = \{z_1, \ldots, z_n\}$, então $F = V(\{\prod_{k=1}^n (z - z_k)\})$.

3. Se F é um fechado de $(\mathbb{C}^n, \mathfrak{T})$ então, para algum $I \subset \mathbb{C}[x_1, \dots, x_n]$,

$$F=V(I)=\bigcap_{P\in I}\{\text{zeros de }P\}=\bigcap_{P\in I}P^{-1}(\{0\}).$$

Isto exprime F como uma intersecção de fechados de \mathbb{C}^n relativamente à topologia usual (pois as funções polinomiais de \mathbb{C}^n em \mathbb{C} são contínuas para a topologia usual), pelo que F é um fechado de \mathbb{C}^n relativamente à topologia usual.

Exercício nº8

Seja \mathcal{T} a topologia gerada por \mathcal{B} . Visto que \mathcal{T} é uma topologia, sabese que \emptyset , $\mathbb{R} \in \mathcal{T}$ e, por outro lado, $\mathcal{B} \subset \mathcal{T}$. No entanto, $\{\emptyset, \mathbb{R}\} \cup \mathcal{B}$ não é uma topologia; de facto, se $\mathfrak{a} \in \mathbb{R}$, então

$$]-\infty, \alpha [=\bigcup_{n\in\mathbb{N}}]-\infty, \alpha-1/n],$$

ou seja,] $-\infty$, a[, que não é um elemento de $\mathcal{B} \cup \{\emptyset, \mathbb{R}\}$, é reunião de elementos de $\mathcal{B} \cup \{\emptyset, \mathbb{R}\}$. Deduz-se que os conjuntos da forma] $-\infty$, a[pertencem a \mathcal{T} . Verifica-se facilmente que

$$\mathcal{B} \cup \{\emptyset, \mathbb{R}\} \cup \{] - \infty, \alpha[\mid \alpha \in \mathbb{R} \}$$

é uma topologia. Trata-se então necessariamente da topologia gerada por ${\mathfrak B}.$

Exercício nº15

1. Seja $\mathcal{V} = \{V_n \mid n \in \mathbb{N}\}$ um conjunto numerável de vizinhanças de um ponto a de \mathbb{R} ; vai-se mostrar que não é um sistema fundamental de vizinhanças, i. e. vai-se mostrar que existe alguma vizinhança de a que não contém nenhum elemento de \mathcal{V} . Por definição de vizinhança, cada $V_n \in \mathcal{V}$ contém algum aberto A_n do qual a é um elemento. Em particular, $A_n \neq \emptyset$, pelo que o conjunto $\mathbb{R} \setminus A_n$ é finito e, por maioria de razão, $\mathbb{R} \setminus V_n$ é finito. Logo, o conjunto $\bigcup_{n \in \mathbb{N}} (\mathbb{R} \setminus V_n)$ é finito ou numerável; em particular, não é igual a $\mathbb{R} \setminus \{a\}$. Mas

$$\begin{split} \bigcup_{n \in \mathbb{N}} \left(\mathbb{R} \setminus V_n \right) \neq \mathbb{R} \setminus \{ \mathfrak{a} \} &\iff \mathbb{R} \setminus \bigcap_{n \in \mathbb{N}} V_n \neq \mathbb{R} \setminus \{ \mathfrak{a} \} \\ &\iff \bigcap_{n \in \mathbb{N}} V_n \neq \{ \mathfrak{a} \}. \end{split}$$

Existe então algum $x \in \mathbb{R}$ tal que $x \neq a$ e que pertence a todos os elementos de \mathcal{V} . O conjunto $\mathbb{R} \setminus \{x\}$ é então uma vizinhança de a que não contém nenhum elemento de \mathcal{V} .

2. Se $(\mathbb{R}, \mathcal{T})$ fosse metrizável, então seria 1-numerável, pela proposição 2.2.3.

Exercício nº17

Nas cinco primeiras alíneas, apenas serão demonstrados os resultados referentes à topologia \mathcal{T}_e ; as demonstrações são análogas no caso da topologia \mathcal{T}_d .

1. Seja $a \in \mathbb{R}$ e seja

$$\mathcal{V}_{a} = \{ V \subset \mathbb{R} \mid (\exists b \in]-\infty, a[) :]b, a] \subset V \}.$$

Vejamos que estes conjuntos satisfazem as condições do teorema 2.2.1. Isto é trivial para as três primeiras condições. Quanto à quarta, basta tomar W=]b,a] para algum $b\in]-\infty,a[$ tal que $]b,a]\subset V$. Então, para cada $w\in W,$ $]b,a]\in \mathcal{V}_w,$ visto que $]b,w]\subset W.$

2. Pelo que foi visto na alínea anterior e pelo teorema 2.2.1 tem-se

$$\mathcal{T}_e = \{ A \subset \mathbb{R} \mid (\forall \alpha \in A) : A \in \mathcal{V}_{\alpha} \}$$

= \{ A \cap \mathbb{R} \ | (\forall \alpha \in A)(\forall b \in] - \infty, \alpha[) :]b, \alpha] \subseteq A \}.

Logo, os intervalos da forma]b, a] pertencem a \mathcal{T}_e .

- **3.** Seja $A \in \mathcal{T}$. Então para cada $a \in A$ existe algum $\varepsilon > 0$ tal que $]a \varepsilon, a + \varepsilon[\subset A]$. Em particular, $]a \varepsilon, a] \subset A$ e, portanto, A é vizinhança de a relativamente à topologia \mathcal{T}_e . Como A é vizinhança de todos os seus pontos, $A \in \mathcal{T}_e$.
- **4.** O conjunto $]-\infty,0]$ é aberto e fechado para a topologia \mathcal{T}_e . Que é aberto resulta do facto de que, para cada $\alpha \in]-\infty,0]$, $]\alpha-1,\alpha] \subset]-\infty,0]$. Que é fechado resulta do facto de que, para cada $\alpha \in]0,+\infty[$, $]0,\alpha] \subset]0,+\infty[$.
 - **5.** Considere-se

f:
$$\mathbb{R} \longrightarrow \mathbb{R}$$
 $x \rightsquigarrow \begin{cases} 0 & \text{se } x \leq 0 \\ 1 & \text{caso contrário.} \end{cases}$

Esta função é descontínua como função de $(\mathbb{R}, \mathcal{T})$ em $(\mathbb{R}, \mathcal{T})$. Para ver que é contínua se entendida como função de $(\mathbb{R}, \mathcal{T}_e)$ em $(\mathbb{R}, \mathcal{T})$, basta

ver que é contínua em cada $x \in \mathbb{R}$. Se V for uma vizinhança de f(x), então $f^{-1}(V)$ só pode ser igual a $]-\infty,0]$, a $]0,+\infty[$ ou a \mathbb{R} . Todos estes conjuntos são elementos de \mathcal{T}_e , pelo que f é contínua.

- 6a. O exemplo anterior também serve neste caso.
- **6b.** Basta tomar f(x) = -x. O conjunto]0,1] pertence a \mathcal{T}_e , mas $f^{-1}(]0,1]) = [-1,0[$ e este conjunto não pertence a \mathcal{T}_e , pois não é vizinhança de -1.
- **7.** A topologia mais fina contida simultaneamente em \mathcal{T}_e e em \mathcal{T}_d é a topologia usual \mathcal{T} . Por um lado, já foi visto que tanto \mathcal{T}_e quanto \mathcal{T}_d contêm \mathcal{T} . Por outro lado, se $A \in \mathcal{T}_e \cap \mathcal{T}_d$, então, para cada $a \in A$, existe b < a tal que $]b,a] \subset A$ (pois $A \in \mathcal{T}_e$) e existe c > a tal que $[a,c[\subset A \text{ (pois } A \in \mathcal{T}_d); \log o,]b,c[\subset A, \text{ pelo que } A \text{ é vizinhança de a relativamente à topologia } \mathcal{T}$. Como $A \text{ é vizinhança de todos os seus pontos, } A \in \mathcal{T}$.

A topologia menos fina que contém \mathcal{T}_e e \mathcal{T}_d é a topologia discreta, ou seja, $\mathcal{P}(\mathbb{R})$. De facto, seja \mathcal{T}' uma topologia mais fina do que \mathcal{T}_e e do que \mathcal{T}_d e seja $\alpha \in \mathbb{R}$. Visto que $\{\alpha\} =]\alpha - 1$, $\alpha \in \mathbb{R}$, $\alpha \in \mathbb{R}$. Se $\alpha \in \mathbb{R}$, então $\alpha \in \mathbb{R}$.

Exercício nº20

1. Suponha-se que f é contínua em $b \in \mathbb{R}$; pretende-se demonstrar que f é semi-contínua superiormente e inferiormente em b. Afirmar que f é semi-contínua superiormente em b significa que se V for uma vizinhança de f(b) (relativamente à topologia do exercício 4), então $f^{-1}(V)$ é uma vizinhança de b. Visto que $V(\subset \mathbb{R})$ é uma vizinhança de f(b) sse V contém algum intervalo da forma $]-\infty$, a[com a>f(b), então para mostrar que f é semi-contínua superiormente em b bastará mostrar que $f^{-1}(]-\infty$, a[) é uma vizinhança de b quando a>f(b). Mas isto é óbvio, pois f é contínua e $]-\infty$, a[é um aberto para a topologia usual de \mathbb{R} . Mostra-se de maneira análoga que f é semi-contínua inferiormente.

Suponha-se agora que f é semi-contínua superiormente e inferiormente em $b \in \mathbb{R}$. Quer-se mostrar que f é contínua em b, ou seja, quer-se mostrar que, para cada vizinhança V de f(b), $f^{-1}(V)$ é uma vizinhança de b. Se V for uma vizinhança de f(b), existe algum $\varepsilon > 0$ tal que $V \supset]f(b) - \varepsilon$, $f(b) + \varepsilon$ [. Então tem-se:

$$\begin{split} f^{-1}(V) \supset f^{-1}(]f(b) - \epsilon, f(b) + \epsilon[) \\ &= f^{-1}(] - \infty, f(b) + \epsilon[\cap]f(b) - \epsilon, +\infty[) \\ &= f^{-1}(] - \infty, f(b) + \epsilon[) \cap f^{-1}(]f(b) - \epsilon, +\infty[). \end{split}$$

Este conjunto é um aberto, pois é a intersecção de dois abertos, e contém b. Logo, é uma vizinhança de b, pelo que $f^{-1}(V)$ também o é.

2. Suponha-se que χ_A é uma função semi-contínua superiormente. Então, em particular, $\chi_A^{-1}(]-\infty,1[)$ é um aberto de $\mathbb R$. Mas

$$\chi_A^{-1}(]-\infty, 1[=A^C.$$

pelo que A é fechado.

Suponha-se agora que A é fechado. Pretende-se mostrar que, para cada $a \in \mathbb{R}$, o conjunto $\chi_A^{-1}(]-\infty, a[)$ é um aberto de \mathbb{R} . Mas tem-se:

$$\chi_A^{-1}(]-\infty,\alpha[) = \left\{ \begin{array}{ll} \mathbb{R} & \text{ se } \alpha > 1 \\ A^C & \text{ se } 0 < \alpha \leqslant 1 \\ \emptyset & \text{ se } \alpha \leqslant 0 \end{array} \right.$$

e os conjuntos \mathbb{R} , A^C e \emptyset são abertos de \mathbb{R} .

3. Tem-se:

f semi-contínua superiormente \iff

$$\iff (\forall \alpha \in \mathbb{R}) : f^{-1}(] - \infty, \alpha[) \text{ \'e um aberto}$$

$$\iff (\forall \alpha \in \mathbb{R}) : (-f)^{-1}(] - \alpha, +\infty[) \text{ \'e um aberto}$$

$$\iff (\forall \alpha \in \mathbb{R}) : (-f)^{-1}(]\alpha, +\infty[) \text{ \'e um aberto}$$

$$\iff -f \text{ semi-contínua inferiormente.}$$

4. Suponha-se que, para cada $\lambda \in \Lambda$, f_{λ} é semi-contínua superiormente; pretende-se demonstrar que $\inf_{\lambda \in \Lambda} f_{\lambda}$ é semi-contínua superiormente, ou seja, que, para cada $\alpha \in \mathbb{R}$, $(\inf_{\lambda \in \Lambda} f_{\lambda})^{-1}(]-\infty,\alpha[)$ é um aberto de \mathbb{R} . Observe-se que, para cada $x \in \mathbb{R}$:

$$x \in \left(\inf_{\lambda \in \Lambda} f_{\lambda}\right)^{-1} (]-\infty, \alpha[) \iff \inf_{\lambda \in \Lambda} f_{\lambda}(x) < \alpha$$
$$\iff (\exists \lambda \in \Lambda) : f_{\lambda}(x) < \alpha$$

e, portanto, que se tem:

$$\left(\inf_{\lambda\in\Lambda}f_{\lambda}\right)^{-1}(]-\infty,\alpha[)=\bigcup_{\lambda\in\Lambda}f_{\lambda}^{-1}(]-\infty,\alpha[).$$

Este conjunto é claramente um aberto.

Exercício nº24

Seja $x \in M$. Tem-se então $f(x) \Re x$ (por ii.), mas

$$f(x) \mathcal{R} x \Longrightarrow g(f(x)) \mathcal{R} g(x) \text{ (por iii.)}$$

$$\iff \psi(x) \mathcal{R} g(x)$$

$$\implies g(\psi(x)) \mathcal{R} g(g(x)) \text{ (por iii.)}$$

$$\iff g(\psi(x)) \mathcal{R} g(x) \text{ (por i.)}$$

$$\implies f(g(\psi(x))) \mathcal{R} f(g(x)) \text{ (por iii.)}$$

$$\iff (\psi \circ \psi)(x) \mathcal{R} \psi(x). \tag{11}$$

Por outro lado, tem-se $x \Re g(x)$ (por ii.), mas

$$x \mathcal{R} g(x) \Longrightarrow f(x) \mathcal{R} g(f(x)) \text{ (por iii.)}$$
 $\iff f(x) \mathcal{R} \psi(x)$
 $\Longrightarrow f(f(x)) \mathcal{R} \psi(f(x)) \text{ (por iii.)}$
 $\iff f(x) \mathcal{R} \psi(f(x)) \text{ (por i.).}$

Como isto acontece para cada $x \in M$ então, em particular, tem-se

$$f(g(x)) \mathcal{R} \psi(f(g(x))) \iff \psi(x) \mathcal{R} (\psi \circ \psi)(x))$$
 (12)

para cada $x \in M$. Então, uma vez que \Re é anti-simétrica, deduz-se de (11) e de (12) que $\psi = \psi \circ \psi$. Mostra-se de maneira análoga que $\varphi = \varphi \circ \varphi$.

Se X é um espaço topológico, então sejam $M=\mathcal{P}(X)$, \mathcal{R} a relação «inclusão» e f e g as funções de M em M definidas por $f(A)=\mathring{A}$ e por $g(A)=\overline{A}$. Então \mathcal{R} , f e g satisfazem as condições da primeira parte do exercício.

Exercício nº28

- **1.** Se $A \subset B$, então $\alpha(B) = \alpha(A \cup (B \setminus A)) = \alpha(A) \cup \alpha(B \setminus A) \supset \alpha(B)$.
- **2.** Se $A \subset B$ e $B \in \mathcal{F}$, então, pela primeira alínea e pela definição de \mathcal{F} , $\alpha(A) \subset \alpha(B) = B$. Está então provado que, para qualquer $B \in \mathcal{F}$ que contenha A, $\alpha(A) \subset B$. Como $\alpha(A) \in \mathcal{F}$ (pois $\alpha(\alpha(A)) = \alpha(A)$) e como $\alpha(A) \supset A$, isto prova que $\alpha(A)$ é o menor elemento de \mathcal{F} (relativamente à inclusão) que contém A.
- **3.** Basta ver que \mathcal{F} satisfaz as condições do exercício 5. Visto que por hipótese, $\alpha(\emptyset) = \emptyset$, é claro que $\emptyset \in \mathcal{F}$. Como $X \subset \alpha(X) \subset X$, temse que $\alpha(X) = X$ e, portanto, $X \in \mathcal{F}$. Se $(A_i)_{i \in I}$ for uma família de

elementos de \mathcal{F} , então, para cada $i \in J$, $\bigcap_{i \in J} A_i \subset A_i$, pelo que

$$\alpha\left(\bigcap_{j\in J}A_j\right)\subset\alpha(A_i)=A_i.$$

Como isto tem lugar para cada $i \in J$,

$$\alpha\left(\bigcap_{j\in J}A_j\right)\subset\bigcap_{j\in J}A_j\tag{13}$$

e então, como a inclusão inversa tem sempre lugar, a inclusão (13) é, de facto, uma igualdade, ou seja, $\bigcap_{j\in J}A_j\in \mathcal{F}$. Finalmente, resulta da última condição do enunciado que se $n\in \mathbb{N}$ e se $A_1,\ldots,A_n\in X$, então

$$\alpha(A_1 \cup \cdots \cup A_n) = \alpha(A_1) \cup \cdots \cup \alpha(A_n).$$

Resulta desta igualdade que se $A_1, \ldots, A_n \in \mathcal{F}$, então $\bigcup_{i=1}^n A_i \in \mathcal{F}$.

4. Se $A \subset X$ então, pela proposição 1.3.1, \overline{A} é o menor elemento de \mathcal{F} que contém A. Pela segunda alínea, o menor elemento de \mathcal{F} que contém A é $\alpha(A)$.

Exercício nº34

1. Se f fosse um homeomorfismo, então, em particular, se V fosse uma vizinhança de 0, f(V) seria uma vizinhança de f(0) = (0,0). Considera-se a vizinhança]-1,1[de 0. Se $x\in]-1,1[\setminus \{0\},$ então $\frac{x^2-1}{x^2+1}$ é negativo e $\frac{2x}{x^2+1}$ tem o mesmo sinal que x, pelo que f(x) está no quarto quadrante (se x>0) ou no segundo (se x<0). Por outro lado, tem-se

$$\lim_{x\to +\infty} f(x) = (0,0),$$

pelo qualquer vizinhança de (0,0) possui elementos da forma f(x) com x > 1. Mas se x > 1, então f(x) pertence ao primeiro quadrante, pelo que $f(x) \notin f(]-1,1[)$; logo, f(]-1,1[) não é uma vizinhança de (0,0).

2. A função

$$\begin{array}{ccc} \phi \colon & \mathbb{R} & \longrightarrow & S^1 \setminus \{(0,1)\} \\ & x & \leadsto & \left(\frac{2x}{x^2-1}, \frac{x^2-1}{x^2+1}\right) \end{array}$$

é um homeomorfismo cuja inversa é

$$\begin{array}{cccc} S^1 \setminus \{(0,1)\} & \longrightarrow & \mathbb{R} \\ (x,y) & \leadsto & \frac{x}{1-y}. \end{array}$$

Deduz-se então que se $(\mathfrak{u}, \mathfrak{v}) \in \mathbb{R}^2$ é tal que

$$(u, v) = f(x) = \left(\frac{2x}{x^2 + 1}, \frac{2x}{x^2 + 1} \cdot \frac{x^2 - 1}{x^2 + 1}\right)$$

para algum $x \in \mathbb{R} \setminus \{0\}$, então $(u, v/u) = \varphi(x)$, pelo que

$$x = \frac{u}{1 - v/u} = \frac{u^2}{u - v}$$

Isto mostra que a função inversa de $f|_{\mathbb{R}\setminus\{0\}}$ é a função:

$$\begin{array}{ccc} L\setminus\{(0,0)\} &\longrightarrow & \mathbb{R}\setminus\{0\}\\ (u,v) &\leadsto & \frac{u^2}{u-v}. \end{array}$$

Visto que esta função é claramente contínua, $f|_{\mathbb{R}\setminus\{0\}}$ é um homeomorfismo.

3. Considere-se a função:

$$\begin{array}{cccc} h\colon & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \leadsto & \begin{cases} x^{-1} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

É claro que h é descontínua relativamente à topologia usual. Seja h_L a função $f \circ h \circ f^{-1}$; pretende-se mostrar que h_L é contínua. Se $(\mathfrak{u}, \mathfrak{v}) \in L$, então $(\mathfrak{u}, \mathfrak{v}) = f(x)$ para algum $x \in \mathbb{R}$, pelo que se tem, quando $(\mathfrak{u}, \mathfrak{v}) \neq (0, 0)$:

$$\begin{split} h_L(u,v) &= f(h(x)) \\ &= f(1/x) \\ &= \frac{2/x}{(1/x)^2 + 1} \left(1, \frac{(1/x)^2 - 1}{(1/x)^2 + 1} \right) \\ &= \frac{2x}{x^2 + 1} \left(1, -\frac{x^2 - 1}{x^2 + 1} \right) \\ &= (u, -v). \end{split}$$

A igualdade $h_L(u,v)=(u,-v)$ é também válida quando (u,v)=(0,0). Logo, h_L é contínua.

4. Considere-se a função:

$$g\colon \begin{tabular}{ll} \mathbb{R} & \longrightarrow & \mathbb{R} \\ $x & \leadsto & $\min\{1,|x|\}.$ \end{tabular}$$

Esta função é claramente contínua relativamente à topologia usual. Afirmar que g é descontínua relativamente à topologia $\mathfrak T$ é o mesmo que afirmar que

$$g_L = f \circ g \circ f^{-1} \colon L \longrightarrow L$$

é descontínua relativamente à topologia usual em L. Cálculos simples mostram que:

$$(\forall (u,\nu) \in L): g_L(u,\nu) = \left\{ \begin{array}{ll} (u,\nu) & \text{se } u \geqslant 0 \text{ e } \nu \leqslant 0 \\ (-u,-\nu) & \text{se } u \leqslant 0 \text{ e } \nu \geqslant 0 \\ (1,0) & \text{nos restantes casos.} \end{array} \right.$$

Esta função é descontínua pois, por um lado, $g_L(0,0) = (0,0)$ e, por outro, lado qualquer vizinhança de (0,0) contém pontos da forma (u,v) com u,v>0, pontos estes que são enviados por g_L em (1,0).

Exercício nº38

Se $\mathbb Q$ fosse topologicamente completo, resultaria do teorema de Baire que qualquer intersecção de uma família numerável de abertos densos de $\mathbb Q$ teria intersecção densa. Mas a família $(\mathbb Q\setminus \{q\})_{q\in\mathbb Q}$ é uma família numerável de abertos densos de $\mathbb Q$ com intersecção vazia.

Exercício nº47

Considere-se a função

$$\begin{array}{cccc} f \colon & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \leadsto & \frac{x}{1+|x|} \cdot \end{array}$$

Pela definição de d tem-se que $(\forall x,y \in \mathbb{R}): d(x,y) = |f(x)-f(y)|$ pelo que, se $I=f(\mathbb{R})$, f é uma bijecção de (\mathbb{R},d) em I (relativamente à topologia usual em I). É claro que $I\subset]-1,1[$, pois se $x\in \mathbb{R},$ então $|f(x)|=\frac{|x|}{1+|x|}<1$. Por outro lado, se $y\in]-1,1[$, então $y=f\left(\frac{y}{1-|y|}\right)$. Isto mostra que I=]-1,1[e que f é uma bijecção de \mathbb{R} em]-1,1[cuja inversa é

$$\begin{array}{cccc} f^{-1}\colon &]-1,1[& \longrightarrow & \underset{x}{\mathbb{R}} \\ & & \leadsto & \frac{x}{1-|x|}. \end{array}$$

Está então visto que f é uma isometria de (\mathbb{R}, d) em]-1, 1[. Como este último espaço não é completo, (\mathbb{R}, d) também não é completo.

Para ver que a topologia induzida por d é a usual basta provar que a função id: $\mathbb{R} \longrightarrow (\mathbb{R},d)$ é um homeomorfismo se se considerar no domínio a topologia usual. Visto que f é um homeomorfismo de (\mathbb{R},d) em]-1,1[, isto é o mesmo que provar que f \circ id é um homeomorfismo de \mathbb{R} em]-1,1[, ambos munidos da topologia usual. Mas isto é óbvio, pois f é contínua e f^{-1} também.

Exercício nº49

A condição (a) do enunciado significa que, para cada $\varepsilon \in \mathbb{R}_+^*$,

$$(\exists p \in \mathbb{N})(\forall m, n \in \mathbb{N}) : m, n \geqslant p \Longrightarrow d(x_m, x_n) < \varepsilon, \tag{14}$$

enquanto que a condição (b) significa que, para cada $\varepsilon \in \mathbb{R}_+^*$,

$$(\exists \delta \in \mathbb{R}_+^*)(\forall m, n \in \mathbb{N}) : \left| \frac{m}{1+m} - \frac{n}{1+n} \right| < \delta \Longrightarrow d(x_m, x_n) < \epsilon. \quad \textbf{(15)}$$

Logo, basta provar que, para cada $\varepsilon \in \mathbb{R}_+^*$, as condições (14) e (15) são equivalentes. Seja então $\varepsilon \in \mathbb{R}_+^*$. Convém observar que a sucessão $\left(\frac{n}{n+1}\right)_{n \in \mathbb{N}}$ é crescente e converge para 1.

Se se tiver (14), ou seja, se existir algum $p\in\mathbb{N}$ tal que, para cada $m,n\in\mathbb{N},\,m,n\geqslant p\Longrightarrow d(x_m,x_n)<\epsilon,$ seja

$$\delta = \inf \left\{ \left| \frac{m}{m+1} - \frac{n}{n+1} \right| \mid m \neq n \land (m$$

Como a sucessão $\left(\frac{n}{n+1}\right)_{n\in\mathbb{N}}$ é crescente,

$$\delta = \frac{p}{p+1} - \frac{p-1}{p} = \frac{1}{p^2 + p} \neq 0.$$

Se $m,n\in\mathbb{N}$ forem tais que $\left|\frac{m}{m+1}-\frac{n}{n+1}\right|<\delta$ então, pela definição de δ , m=n ou $m,n\geqslant p$. Em qualquer dos casos, $d(x_m,x_n)<\epsilon$.

Se se tiver (15), ou seja, se existir algum $\delta \in \mathbb{R}_+^*$ tal que, para cada $m,n\in\mathbb{N},$ se $\left|\frac{m}{m+1}-\frac{n}{n+1}\right|<\delta,$ então $d(x_m,x_n)<\epsilon,$ seja $p\in\mathbb{N}$ tal que $1-\delta<\frac{p}{p+1}.$ Se $m,n\in\mathbb{N}$ forem tais que $m,n\geqslant p,$ então os números $\frac{m}{m+1}$ e $\frac{n}{n+1}$ estão em $\left[\frac{p}{p+1},1\right[\ \subset]1-\delta,1[.\ Logo,\ \left|\frac{m}{m+1}-\frac{n}{n+1}\right|<\delta$ e, portanto, $d(x_m,x_n)<\epsilon.$

Exercício nº53

Vai-se mostrar que o complementar do gráfico de f, ou seja, o conjunto $A = \{(x,y) \in E^2 \mid y \neq f(x)\}$ é um aberto de E^2 . Seja $(x,y) \in A$; vai-se mostrar que A é vizinhança de (x,y). Resultará daqui que A é aberto, pois é vizinhança de todos os seus pontos.

Como $(x,y) \in A, y \neq f(x)$. Logo, como E é separado, existem abertos $A_{f(x)}$ e A_y de E tais que $f(x) \in A_{f(x)}, y \in A_y$ e $A_{f(x)} \cap A_y = \emptyset$. Seja $A_x = f^{-1}(A_{f(x)})$. Então $x \in A_x$ e, como f é contínua, A_x é um aberto de E, pelo que $A_x \times A_y$ é um aberto de E². Se $(z,w) \in A_x \times A_y$, então $w \neq f(z)$, pois $z \in A_x \Longrightarrow f(z) \in A_{f(x)}$ e então, como $w \in A_y$ e $A_{f(x)}$ e A_y não se intersectam, $w \neq f(z)$, ou seja, $(z,w) \in A$. Está então provado que A contém um aberto que contém (x,y), nomeadamente $A_x \times A_y$.

Exercício nº64

1. Sejam

$$Y_{+} = \{ (x, sen(1/x)) \mid x \in]0, +\infty[\};$$

$$Y_{-} = \{ (x, sen(1/x)) \mid x \in]-\infty, 0[\};$$

$$Y_{0} = \{ (0, y) \mid -1 \leq y \leq 1 \}.$$

Vai-se mostrar que $Y_0 \subset \overline{Y_+}$. De facto, seja $(0,y) \in Y_0$. Sabe-se que a equação $\operatorname{sen}(x) = y$ possui alguma solução x_0 e que todos os números reais da forma $x_0 + 2n\pi$ ($n \in \mathbb{Z}$) são soluções da equação. Seja $k \in \mathbb{Z}$ tal que $n \geqslant k \Rightarrow x_0 + 2n\pi > 0$; então a sucessão

$$\left(\frac{1}{x_0 + 2n\pi}, \operatorname{sen}(x_0 + 2n\pi)\right)_{n \geqslant k} = \left(\frac{1}{x_0 + 2n\pi}, y\right)_{n \geqslant k}$$

é uma sucessão de elementos de Y_+ que converge para (0,y), pelo que $(0,y) \in \overline{Y_+}$. Deduz-se então que $Y_+ \subset Y_0 \cup Y_+ \subset \overline{Y_+}$, pelo que $Y_0 \cup Y_+$ é conexo, pela proposição 2.4.2. Analogamente, pode-se mostrar que $Y_0 \cup Y_-$ é conexo, pelo que Y é a reunião de dois conexos (nomeadamente, $Y_0 \cup Y_+$ e $Y_0 \cup Y_-$) cuja intersecção não é vazia, pelo que Y é conexo.

2. Nesta resolução, a única topologia que se vai considerar em subconjuntos de \mathbb{R} ou de \mathbb{R}^2 é a topologia usual.

Vai-se mostrar que Y_+ , Y_0 e Y_- são componentes conexas por arcos de Y. Que cada um é conexo por arcos é óbvio, pois Y_0 é homeomorfo ao intervalo [-1,1], a função

$$\begin{array}{ccc}]0,+\infty[& \longrightarrow & Y_+ \\ x & \leadsto & (x,sen(1/x)) \end{array}$$

é um homeomorfismo de $]0, +\infty[$ em Y_+ e de maneira análoga, $]-\infty, 0[$ é homeomorfo a Y_- .

Vai-se agora mostrar que não existe nenhuma função contínua f de [0,1] em Y tal que $f(0) \in Y_0$ e $f(1) \in Y_+$. Suponha-se, por redução ao absurdo, que uma tal função f existe. Seja $A = \{t \in [0,1] \mid f(t) \in Y_0\}$ e seja s = sup A; a definição de s faz sentido pois A não é vazio, visto que $0 \in A$. É claro que $s \in [0, 1]$ e que $s \in A$; mas então, visto que $f(A) \subset Y_0, f(s) \in f(\overline{A}) \subset \overline{f(A)} \subset \overline{Y_0} = Y_0, \text{ pois } Y_0 \text{ \'e fechado. Deduz-se}$ da definição de s que $f(]s,1]) \cap Y_0 = \emptyset$; de facto, $f(]s,1]) \subset Y_+$, pois que $f(1) \in Y_+$ e f(]s,1]) é uma parte conexa de $Y_+ \cup Y_-$. Seja agora V uma vizinhança de f(s) que não contenha nenhum ponto de \mathbb{R}^2 da forma (x, 1) (naturalmente, não será possível encontrar uma tal vizinhança se f(s) = (0, 1), mas nesse caso bastará considerar uma vizinhança de f(s) que não contenha nenhum ponto de \mathbb{R}^2 da forma (x, -1) e proceder de maneira análoga). Visto que f é contínua em s, existe algum intervalo aberto U tal que $s \in U \subset [0, 1]$ e tal que $f(U) \subset V$. Seja $t \in]s, 1] \cap U$; então f(t) = (x, sen(1/x)) para algum $x \in]0, +\infty[$. Seja $y \in]0, x[$ tal que sen(1/y) = 1. Sabe-se que $(y, sen(1/y)) \notin V$, pelo que f(U) contém pelo menos um elemento de Y com primeira coordenada nula (por exemplo, f(s)) e pelo menos um elemento de Y com primeira coordenada maior do que y (por exemplo, f(t)), mas não contém nenhum elemento cuja primeira coordenada seja igual a y. Logo f(U) não é conexo, o que é absurdo, pois U é conexo e f é contínua.

Pode-se mostrar de maneira análoga que não existe nenhuma função contínua $f\colon [0,1] \longrightarrow Y$ tal que $f(0) \in Y_0$ e $f(1) \in Y_+$. Finalmente, se existisse alguma função $f\colon [0,1] \longrightarrow Y$ contínua tal que $f(0) \in Y_-$ e $f(1) \in Y_+$, então, pelo teorema dos valores intermédios, existiria algum $t_0 \in]0,1[$ tal que a primeira coordenada de $f(t_0)$ seria nula, pelo que se teria $f(t_0) \in Y_0$. Mas então a função

$$\begin{array}{cccc} g \colon & [0,1] & \longrightarrow & Y \\ & t & \leadsto & f(t_0 + t(1-t_0)) \end{array}$$

seria contínua e ter-se-ia $g(0) = f(t_0) \in Y_0$ e $g(1) = f(1) \in Y_+$, o que é absurdo, conforme já foi visto.

Exercício nº73 (alíneas 1., 2., 3. e 4.)

1. Se A for um aberto de E, então $A \setminus \{\infty\}$ é um aberto de E pois é igual a A. Caso contrário, $E \setminus (A \setminus \{\infty\}) = A^{\complement}$, que é compacto e, portanto, uma vez que E é separado, é um fechado de E, pela proposição 2.5.2. Logo, $A \setminus \{\infty\}$) é um aberto de E.

2. É claro que $\emptyset \in \mathcal{T}$ (pois $\emptyset \subset E$ e é um aberto de E) e que $\overline{E} \in \mathcal{T}$ (pois $\infty \in \overline{E}$ e $\overline{E}^{\complement} = \emptyset$, que é um compacto).

Se $(A_j)_{j\in I}$ for uma família de elementos de \mathfrak{T} , quer-se provar que $\bigcup_{j\in I}\in \mathfrak{T}$. Caso ∞ não pertença a nenhum A_j $(j\in I)$, então tem-se uma família de abertos de E e, portanto, a sua reunião é um aberto de E, pelo que pertence a \mathfrak{T} . Caso contrário, seja $i\in I$ tal que $\infty\in A_i$. Então $\infty\in \bigcup_{i\in I}A_i$ e, por outro lado, A_i^{\complement} é um compacto de E. Mas então

$$\left(\bigcup_{\mathbf{j}\in\mathbf{I}}A_{\mathbf{j}}\right)^{\mathbf{C}}=\bigcap_{\mathbf{j}\in\mathbf{I}}A_{\mathbf{j}}^{\mathbf{C}}\subset A_{\mathbf{i}}^{\mathbf{C}}.$$

Como $\infty \notin A_i^\complement$, $\bigcap_{j \in I} A_j^\complement = \bigcap_{j \in I} \left(A_j^\complement \setminus \{\infty\} \right)$. Mas cada conjunto do tipo $A_j^\complement \setminus \{\infty\}$ ($j \in I$) é um fechado de E, pois $E \setminus (A_j^\complement \setminus \{\infty\}) = A_j \setminus \{\infty\}$ e, pela primeira alínea, $A_j^\complement \setminus \{\infty\}$ é um aberto de E. Logo, $\bigcap_{j \in I} \left(A_j^\complement \setminus \{\infty\} \right)$ é um fechado do compacto A_i^\complement e, portanto, é compacto, pela proposição 2.5.1. Está então provado que o conjunto $\bigcup_{j \in I} A_j$ contém ∞ e que o seu complementar é compacto, pelo que pertence a \Im .

Finalmente, seja $(A_j)_{j\in I}$ uma família finita de elementos de \mathfrak{T} ; quer-se mostrar que $\bigcap_{j\in I} A_j \in \mathfrak{T}$. Se ∞ pertencer a todos os A_j ($j\in I$), então também pertence à intersecção e

$$\left(\bigcap_{j\in I}A_j\right)^{\complement}=\bigcup_{j\in I}A_j^{\complement}.$$

Como cada A_j^{\complement} $(j \in I)$ é compacto e I é finito, a reunião anterior é compacta, pelo exercício 70. Logo, pertence a \Im . Caso ∞ não pertença a A_i , para algum $i \in I$, então ∞ não pertence à intersecção e

$$\bigcap_{j \in I} A_j = \bigcap_{j \in I} (A_j \setminus \{\infty\}). \tag{16}$$

Pela primeira alínea, cada conjunto da forma $A_j \setminus \{\infty\}$ $(j \in I)$ é um aberto de E. Portanto, o membro da direita de (16) é um aberto de E, por I ser finito.

- **3.** Quer-se provar que, se $A \subset E$, então A é um aberto de E se e só se $A = A^* \cap E$ para algum $A^* \in \mathcal{T}$. Caso A seja um aberto de E, basta tomar $A^* = A$. Reciprocamente, seja $A^* \in \mathcal{T}$. Então $A^* \cap E = A \setminus \{\infty\}$ e já foi visto que $A \setminus \{\infty\}$ é um aberto de E.
- **4.** Primeira resolução: Seja $(A_j)_{j\in I}$ uma cobertura aberta de \overline{E} ; quer-se mostrar que tem alguma sub-cobertura finita. Existe algum

 $i_0 \in I \ tal \ que \ \infty \in A_i \ e \ então \ A_i^\complement \ é \ compacto. \ Como \ A_i^\complement \subset \overline{E} = \bigcup_{j \in I} A_j, \ (A_i^\complement \cap A_j)_{j \in I} \ é \ uma \ cobertura \ aberta \ de \ A_i^\complement. \ Mas \ então, uma \ vez \ que \ A_i^\complement \ é \ compacto, existe uma \ parte finita \ F \ de \ I \ tal \ que \ A_i^\complement \subset \bigcup_{j \in F} (A_j \cap A_i^\complement) \ e, \ portanto,$

$$\overline{E} = A_i \cup A_i^{\complement} = A_i \cup \bigcup_{j \in F} A_j = \bigcup_{j \in F \cup \{i\}} A_j.$$

Segunda resolução: Pode-se mostrar que \overline{E} é compacto recorrendo à proposição 2.5.4. Seja então $\mathcal F$ uma família de partes não vazias de \overline{E} tal que a intersecção de qualquer número finito de elementos de $\mathcal F$ contenha algum elemento de $\mathcal F$; quer-se mostrar que algum elemento de \overline{E} adere a todos os elementos de $\mathcal F$.

Comece-se por supor que existe algum sub-espaço compacto K de E que contenha algum $F_0 \in \mathcal{F}$. Então seja $\mathcal{F}_K = \{F \cap K \mid F \in \mathcal{F}\}$. Se $F \in \mathcal{F}_K$ então $F \neq \emptyset$, pois $F = F^* \cap K$, para algum $F^* \in \mathcal{F}$, $F^* \cap K \supset F^* \cap F_0$ e este último conjunto não é vazio, pois contém algum elemento de \mathcal{F} . Por outro lado, se $F_1, F_2, \ldots, F_n \in \mathcal{F}_K$ $(n \in \mathbb{N})$, então, para cada $j \in \{1, \ldots, n\}$, $F_j = F_j^* \cap K$, para algum $F_j^* \in \mathcal{F}$. Então

$$\bigcap_{j=1}^{n} F_{j} = \bigcap_{j=1}^{n} (F_{j}^{\star} \cap K) \supset \bigcap_{j=0}^{n} F_{j}$$

e este último conjunto é uma parte de K que contém algum elemento de \mathcal{F}_K ; logo, contém algum elemento de \mathcal{F}_K . Sendo assim, visto que K é compacto, a proposição 2.5.4 garante que algum elemento de K adere a todos os elementos de \mathcal{F}_K ; logo, adere a todos os elementos de \mathcal{F}_K .

Suponha-se agora que nenhum sub-espaço compacto de E contém um elemento de \mathcal{F} . Vai-se ver que, neste caso, ∞ adere todos os elementos de \mathcal{F} . Seja V uma vizinhança de ∞ . Então V contém algum $A \in \mathcal{T}$ tal que $\infty \in A$, pelo que A^{\complement} é um sub-espaço compacto de E. Por hipótese, A^{\complement} não contém nenhum elemento de \mathcal{F} , pelo que A intersecta todos os elementos de \mathcal{F} e, por maioria de razão, V intersecta todos os elementos de \mathcal{F} , o que é o mesmo que dizer que ∞ adere a todos os elementos de \mathcal{F} .

Exercício nº76

Seja $(x_n)_{n\in\mathbb{N}}$ a sucessão de elementos de E definida na sugestão. Se $m,n\in\mathbb{N}$ e $m\neq n$, então tem-se, para cada $k\in\mathbb{N}$, que

$$|x(m)_k - x(n)_k| =$$

$$\begin{cases} 1 & \text{se } k = m \text{ ou } k = n \\ 0 & \text{caso contrário} \end{cases}$$

pelo que d(x(m), x(n)) = 1. Sendo assim, nenhuma sub-sucessão de $(x(n))_{n \in \mathbb{N}}$ pode ser de Cauchy, pelo que $(x(n))_{n \in \mathbb{N}}$ não tem sub-sucessões convergentes. Logo, (E, d_{∞}) não é compacto, pelo teorema 2.5.5.

Exercício nº80

(a) \Rightarrow (b) Seja ι uma função que preserva as distâncias de (E,d) num espaço métrico completo (F,d'). Como ι preserva as distâncias e \underline{L} é totalmente limitado, $\iota(L)$ também é totalmente limitado. Seja $K = \overline{\iota(L)}$. Então K é totalmente limitado. Como também é fechado e (F,d') é completo, K é completo. Visto que K também é totalmente limitado, é compacto.

(b) \Rightarrow (a) Se existir uma isometria f naquelas condições, então $\overline{f(L)}$ é totalmente limitada, pois é compacta. Logo, f(L) é totalmente limitado, por ser um subconjunto do anterior. Como f preserva as distâncias, L também é totalmente limitado.

Capítulo 3

Exercício nº6

Quem examinar a demonstração do teorema de Stone-Weierstrass apercebe-se de que a única passagem onde poderá ser necessário usar a condição do enunciado com λ real mas não necessariamente racional é a passagem na qual se usa implicitamente que se f pertence a uma álgebra de funções $\mathcal F$ e P é uma função polinomial de $\mathbb R$ em $\mathbb R$, então P o f também pertence a $\mathcal F$. No entanto, as funções polinomiais que surgem no decorrer da demonstração são as que resultam de se aplicar o teorema de Weierstrass a uma restrição da função módulo. Mas sabese, pela terceira alínea do exercício 43 do capítulo 1, que o teorema de Weierstrass continua válido se se considerarem apenas os polinómios com coeficientes racionais.