良序原理

良序原理: 正整数集的每个非空子集均有最小元素(无需证明)

应用 1: 求证 $\sqrt{2}$ 是无理数

证明(反证法): 假设 $\sqrt{2} = \frac{a}{b}, a, b \in N^+$

考虑集合 $S=\{y:\sqrt{2}=\frac{x}{y},x,y\in N^+\}$

由良序原理, S 包含最小元素, 不妨设为 d, 则 $\sqrt{2} = \frac{c}{d}$

$$\therefore 2 = \frac{c^2}{d^2}$$

 $\mathbb{P}^{2} 2d^{2} = c^{2}$

$$2d^2 - cd = c^2 - cd$$

$$d(2d - c) = c(c - d)$$

故有
$$\frac{2d-c}{c-d} = \frac{c}{d} = \sqrt{2}$$

由
$$1 < \sqrt{2} < 2$$
 知 $1 < \frac{c}{d} < 2$

即 d < c < 2d

故
$$2d-c > 0, c-d > 0, c-d < d$$

这说明 $c-d \in S$, 这与 $d \in S$ 中最小元素矛盾

- : 假设不成立
- $\therefore \sqrt{2}$ 是无理数

应用 2 (定理 1): 带余除法是正确的

证明: 对 a = qb + r, 考虑集合 $S = \{a - xb | a - xb \ge 0\}$

由良序原理, S 包含最小元素, 不妨设为 d, 则 d = a - xb

假设 d > b, 那么 d - b > 0, 显然 $d - b \in S$

又由 d-b < d 与 d 为 S 最小元素矛盾

因此 0 < d < b - 1

这就说明了带余除法的正确性