PATENT ABSTRACTS OF JAPAN

(11) Publication number: 56163447 A

(43) Date of publication of application: 16.12.81

(51) Int. CI

G01N 27/30 C12Q 1/00 G01N 27/40

(21) Application number: 55068348

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

LTD

(22) Date of filing: 22.05.80

(72) Inventor:

NANKAI SHIRO

NAKAMURA KENICHI IIJIMA TAKASHI

(54) ENZYME ELECTRODE

COPYRIGHT: (C)1981,JPO&Japio

(57) Abstract:

PURPOSE: To obtain the enzyme electrode having quick response by providing a platinum layer on a conductive substrate as an electrode for detecting hydrogen and directly fixing enzyme on said electrode.

CONSTITUTION: The pellet shaped conductive substrate 3 is formed by compressing the mixture of 10pts.wt. of fluororesin powder as a binding agent and 90pts.wt. of graphite. Then the platinum layer 2 is provided on the surface of said conductive substrate 3 by the electrolysis of aqueous rolution of chloroplatinic acid and the electrode for detecting hydrogen peroxide is obtained. On said electrode, is applied aqueous solution of glucose oxidase. After it has been dried, the device is reacted at 25°C for about one hour in the vapor of alutaric aldehyde, and bridging and fixing are made. Thereafter, the device is well washed, the material not reacted is removed, and an enzyme fixed layer 1 is formed. The enzyme electrode obtained in this way indicates quick response, and its characteristics will not change for a long time even though it is repeatedly measured and washed.

(1) 日本国特許庁 (JP)

①特許出願公開

⑩公開特許公報(A)

昭56—163447

⑤ Int. Cl.³
G 01 N 27/30
C 12 Q 1/00
G 01 N 27/40

識別記号

庁内整理番号 7363—2G 7349—4B 7363—2G ❸公開 昭和56年(1981)12月16日

発明の数 1 審査請求 未請求

(全 3 頁)

50酵素電極

20特

顧 昭55-68348

②出 願 昭55(1980)5月22日。

70発 明 者 南海史朗

門真市大字門真1006番地松下電

器產業株式会社內

四発 明 者 中村研一

門真市大字門真1006番地松下電器産業株式会社内

四発 明 者 飯島孝志

門真市大字門真1006番地松下電

器産業株式会社内

⑪出 願 人 松下電器産業株式会社

門真市大字門真1006番地

⑩代 理 人 弁理士 中尾敏男 外1名

明 細 雷

1、発明の名称

酵素電極

2、特許請求の範囲

- (1) 導電性基体上に白金層を設けてなる過酸化水 素検知用の電極と、この電板上に直接固定化して なる酸化還元酵素層とを傭えたことを特徴とする 酵素電極。
- (2) 導電性基体が、カーボンを主成分とする加圧 成型体あるいは導電性被膜形成体からなる特許請 求の範囲第1項記載の酵素電極。

3、発明の詳細な説明

本発明は、酵素の特異的触媒作用を利用し、基質濃度を迅速かつ簡便に測定することができ、しかも連続使用、繰り返し使用の可能な高速択性の 酵素電優を得ることを目的とする。

近年、酵素固定化技術の進歩に伴い、酵素反応 と電気化学反応を組み合わせることにより、酵素 と特異的に反応する物質である基質の濃度を検出 することが各種試みられている。その一例として、 酵素反応で生成した過酸化水素(H₂O₂)を電気化学的に検知する方式がある。すなわち以下の(1)、(2)式に例を示す様に、まず酸素を水素受容体とする酸化還元酵素(例えばグルコースオキンターゼ)の作用により基質(グルコース)が酸化されてH₂O₂が生成する。次に、この生成したH₂O₂を白金電極などを用いて酸化し、この時得られる酸化電流値から基質(グルコール)の濃度を知ることができる。

グルコース+0₂

 $\frac{\mathcal{I}(\mathcal{N}) - \mathcal{I}(\mathcal{I}) + \mathcal{I}(\mathcal{I})}{\mathcal{I}(\mathcal{I})} = \mathcal{I}(\mathcal{I}) + \mathcal{I}(\mathcal{I}) + \mathcal{I}(\mathcal{I})$

. (1)

H₂O₂ → 2H⁺ + 2e + O₂ ······(2) しかしながら酵素は水溶性であるので、高価な 酵素の繰り返し使用を可能ならじめるためには、 適当な方法により酵素を過酸化水素検知用電極の 近傍に固定化(不溶化)する必要がある。従来、 過酸化水素検知方式の酵素電極の構成としては、 検知用電極として白金板を用い、この電極近傍 に酵素を固定化した膜を配置している。このような膜を用いるととにより酵素の固定化は容易となるが、被検報中の蒸質は膜中の拡散することになり、これに基づく応答の遅れが生ずる。この様な応答の遅れが生ずる。この様な応答の遅れば、特に多数の被検物を連続的に分析する際に問題となる。基質優度変化に対し迅速な応答を示す酵素電優を得るためには、白金板上に酵素を直接固定化する方法が考えられる。しかし、白金板上への酵素の固定化が困難であることや、高価な白金板の再使用などに課題が残る。

本発明者らは、上記諸点について種々検討した 結果、優れた特性を有する酵素電標を見出した。 本発明による酵素電極の一構成例の断面模式図を 第1図に示す。図中、1はグルコースオキンター ゼなどの酸化還元酵素を固定化してなる層、2は 過酸化水素検知用の白金層、3は例えばグラファイト等のカーボンを主体とする加圧成型体からを る導電性基体である。

本発明の特徴は、導電性基体上に自金層を設け て過酸化水素検知用の電極を構成し、この電極上

定化することにより、応答特性に優れ、かつ連続 使用,繰り返し使用の可能な酵素電極を得ること ができる。

以下、本発明の一実施例について説明する。

まず、グラファイト90重量部に結着剤としてフッ集樹脂粉末10重量部を混合したものを加圧 成型してペレット状の導電性基体を構成し、次に 塩化白金酸水溶液から電解法で前記基体表面に 金層を設けて過酸化水素検知用電極とした。この 電極上にグルコースオキンダーゼ水溶液を塗布し、 少し乾燥した後、グルタルアルデヒド蒸気中にて 26℃で約1時間反応させて架橋間定化し、この 後、十分水洗して来反応物を除去した。こうして 得られた本発明の酵業電極をAとする。

比較のための従来の酵素電優として次のものを作製した。酵素固定化用担体膜として、ポリカーポネート多孔膜(膜厚Bum , 孔径1〇μm , 孔密度1×10⁵個/cd)を用い、この膜にグルコースオキンダーゼ水溶液を塗布し、少し乾燥させた・後、前記と同様にして架橋固定化した。得られた

に酵素を直接固定化した点にある。 すなわち、本発明の酵素電板においては、必要最小限の白金屑を設けることにより過酸化水素を検知し、かつ導催性基体は白金層に対する電気的接続を得るとともに、酵素固定化用担体をも兼ねるものである。この様に構成することにより、酵素の密着固定化は容易となり、膜を用いないため迅速な応答が得られる。

酵素固定化膜を白金板からなる過酸化水素検知用 電板に密着固定し、酵素電医とした。この電極を Bとする。

上記で得られたA、Bの酵素電優を用いて、第 2 図に示す測定系により、グルコースの濃度変化 に対する応答特性を測定した。第2 図において、 4 は記録計、5 はポテンショスタット、6 は飽和 カロメル参照優、ては下端部に酵素電極を装着し た樹脂製の電優ホルダーであり、リードを介して ポテンショスタットに接続されている。8 は基質 を含むリン酸緩衝液、9 は塩橋、1 0 は対義であ

酵素電極を液中に浸液し、 H_2O_2 を酸化するに十分を電位に設定した後、提拌しながらグルコースを添加して所定の優度とし、このときの電流変化を測定した。

・グルコースを添加し、濃度を 1 × 10⁻⁴モル/ 2 としたときのA , B 各群素電極の応答の経時変化 を第3図に示す。本発明の酵素電極Aは電流の増 加量も大きく、しかも5 砂程度で定常値に選する など迅速な応答を示しており、優れた特性を有す ることがわかる。さらに、第4回に示すごとく、 グルコース濃度変化に対しても、 直線性を失うこ となく大きな応答が得られるなど、 その応答特性 の向上は著しい。また、本発明の酵素電極は、 側 定洗浄の繰り返し使用に対しても 長期間その応答 特性を維持するなど優れたものであった。

適用可能な酵素としては、グルコースオキシダーゼの他に、キサンチンオキシダーゼ、アミノ酸オキンダーゼ、コレステロールオキシダーゼ、アルコールオキンダーゼなど酵素反応でH₂O₂を生成する酸化量元酵素であれば良い。さらにはこれらの酵素を含む複合酵素系にも適用できる。

以上述べたどとく、本発明の酵素電像は応答の 迅速性, 感度に優れ、繰り返し使用が可能である など、その工業的価値は大である。

4、図面の簡単な説明

第1図は本発明の酵素電痕の一構成例を示す断 面模式図、第2図は側定系を示す図、第3図はグ ルコース能加に対する応答の経時変化を示す図、 第4図はグルコース機度に対する応答特性を示す 図である。

代理人の氏名 弁理士 中 尾 敏 男 ほか1名

第 1 図

第 2 図

第 3 図

第 4 图

特別選第17条の2の規程による維正の損収

l n t . C l ³ .	識別記号	产内整理带号
GOIN 27/30		7 3 6 3 - 2 G
C124 1/00		8213-4B
GOIN 27/40		7 3 6 3 - 2 6
		1

手統補正哲

胸侧69年 1 月 6 日

特許庁長官段

圖

」事件の設示

昭和 5 5 年 特 許 顧 第 6 8 3 4 8 分

2 発明の名称

推紧电极

3 補正をする者

4. 代 理 人 〒 571

在一班 大阪府門真市大学門真1006番地 框下電器 藍雲 抹式 急往内

5 補正の対象

明細書の発明の評細な説明の詞

6 補正の内容 明細数第3頁第3行の(上記事の)全「順中を」 と訂正します。 (59.1.) (69.7.) (69.7.) (79.7.) (4.1.)