Assignment 2 Part 1

- Implement the bicycle model in Matlab, with skid-slip and with two distinct sampling intervals (Euler integration dt & controller DT).
- Input: control vector $\mathbf{u} = [\gamma_d \, v_d]$, state vector \mathbf{q} , and all parameters (e.g., dt, DT, L, s, δ_1 , δ_2), control and state constraints.
 - Note: input for turning could also be ω, or R.
- Assume zero slip and skid
- Tractor wheel radius = 0.5m; Wheelbase = 2.5 m; $|\gamma_{max}| \le 45^{\circ}$; $|v_{max}| \le 5$ m/s
- Assume dt=DT=0.01 s.
- Apply input to turn at headland from one row to the next; rowcenter distance = 2 m.
- Does it work? Why? Try row-center distance = 3 m. Show traces.

Assignment 2 Part 2

- Non zero slip and skid
- Use same parameters as before.
- Add small slip angles $\delta 1$ and $\delta 2$ (e.g., 4°)
- Apply input to turn at headland from one row to the next; row-center distance =3 m.
- What happens as slip angles $\delta 1$ and $\delta 2$ (skidding) increase? (Assume zero slip, s, for rear driven wheel).
- What if skidding is zero ($\delta 1 = \delta 2 = 0$) and only slipping affects the rear wheel?

Assignment 2 Part 3

- Augment bicycle model with 1st order closed-loop steering and speed dynamics.
- Plot vehicle path for γ_d step function (0 to γ_{max}) and:
- 1. Speed lag: $\tau_{v} = 0$ s; τ_{γ} from 0 to 2 s (same plot). – (How will you implement τ_{v} or $\tau_{\gamma} = 0$?)
- 2. Speed lag: $\tau_v = 1 \text{ s}; \tau_v \text{ from 0 to 2 s (same plot)}.$
- Comment on these plots.