

MSc in Computational Software Techniques in Engineering

Video Vision Transformer-based Method for Visualising Scene Perception

Background:

- Vision Transformers (ViT) have revolutionised computer vision, particularly excelling in image classification tasks.
- The success of ViT has sparked interest in extending its application to more complex domains, such as video analysis.
- Video Vision Transformers (ViViT) offer significant advantages in capturing both spatial and temporal information in videos.
- ViViT overcomes the limitations of traditional Convolutional Neural Networks (CNNs) in capturing long-term dependencies and reducing computational demands.

Aim & Objectives:

- Develop a ViViT-based methodology for effective video classification, integrating 3D CNNs for spatiotemporal feature capture.
- Implement the Swin Transformer to leverage hierarchical and global feature extraction capabilities.
- Enhance model explainability through visualisation techniques such as key frame identification and feature importance analysis.
- Compare the performance of the developed method with state-ofthe-art techniques to identify strengths and potential improvements.
- Apply the model to diverse real-world scenarios, demonstrating its practical applicability across various domains.

Methodology:

♦ Research Process Overview

This research involved a structured approach to video classification, focusing on the The model was comprehensively evaluated using metrics such as accuracy, inference time,

◆ Data Collection and Preprocessing

- Video Data: Raw video data from the single-pilot flight simulation was preprocessed into the model input format.
- Data Augmentation: Techniques such as horizontal flipping, rotation, and color jittering were applied to increase model robustness.
- Dataset Split: The dataset was divided into 80% for training and 20% for testing, 2.3D Grad-CAM: ensuring validation on unseen data.

♦ Evaluation and Comparison

integration of Conv3D and the Swin Transformer within the proposed Dual Encoder model. | and parameter count, and compared with baseline models to validate the proposed model's advantages.

Visualisation Techniques

1. Attention Rollout:

Aimed at visualising how attention is distributed across layers in the model, helping to understand the internal decision-making process[1].

Identify key spatial-temporal regions in the video, further validating the reasonableness of the model's predictions[2].

♦ Model Architecture

◆ Training Strategy

The model was initialised with pre-trained weights, with appropriate learning rates, optimizers, and regularisation techniques to ensure effective convergence and prevent overfitting.

Result:

Model Comparison

The Dual Encoder model outperformed the Single Encoder and ResNet3D18 models, achieving higher accuracy in video classification.

Identified key frames and calculated

their Importance Scores, showing these

critical

for

accurate

3D Grad-CAM & Importance Scores

Model	GMac	Parameters (M)	Running Time	Accuracy (%)
Dual Encoder	99.47	95.15	49 min 17 s	87.50
Single Encoder	99.2	86.75	43 min 4 s	80.03
ResNet3D18	13.87	33.14	44 min 22 s	86.66
Daul Encoder: Frame Importance Over Time Frame 11 Frame 12 Frame 13				
0.03336 Main Frame		A .	Truffic 12	Trulle 15

Attention Rollout Maps

Visualised spatial attention shifts around key frames,

highlighting regions of focus in the model's decision-

♦Overall Findings

frames are

predictions.

- Successfully developed a Dual Encoder model integrating Conv3D and the Swin Transformer for enhanced video classification.
- Demonstrated superior performance over traditional models, effectively capturing both spatial and temporal features.
- Utilised 3D Grad-CAM and Attention Rollout to gain deep insights into the model's decision-making process, emphasizing key frames and spatial attention in video analysis.

Future Work

https://doi.org/10.1016/j.jneumeth.2021.109098

Conclusion:

- Model Expansion: Experiment with larger and more diverse datasets to enhance the model's generalization capabilities.
- Architectural Enhancements: Investigate hybrid models that incorporate additional elements, such as RNNs, for capturing even more intricate temporal dependencies.
- Advanced Visualisation: Develop new or enhanced visualisation techniques to further improve interpretability and provide deeper insights into model decisions.
- Robustness Improvement: Address variability in video data by introducing advanced data augmentation techniques and novel training strategies to improve model robustness in diverse real-world scenarios.

Author: Chung-Yueh Cheng

Supervisors: Dr Lichao Yang, Prof Yifan Zhao

www.cranfield.ac.uk

[1] Abnar, S., & Zuidema, W. (2020, May 2). Quantifying attention flow in transformers. ArXiv (Cornell University); Cornell University. https://doi.org/10.48550/arxiv.2005.00928 [2] Zhang, Y., Hong, D., McClement, D., Oladosu, O., Pridham, G., & Slaney, G. (2021). Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. Journal of Neuroscience Methods, 353, 109098.

Individual Research Project 2023/2024