

View Interpolation With Structured Depth From Multiview Video

Pravin Kumar Rana and Markus Flierl

ACCESS Linnaeus Center School of Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

Outline

- Motivation
- Depth Consistency Testing
- Inter-view Connection Information
- Structured Depth Maps
- Virtual View Interpolation
- Experimental Results
- Conclusions

Imaging

Classical Imaging

Newspaper

Slide 1

Imaging

Multiview Imaging

Newspaper

Slide 1

Application

Free Viewpoint TV

Application

User

Free Viewpoint TV

Application

User

•

Free Viewpoint TV

Virtual View

Virtual View

Virtual View Rendering

(Example: MPEG View Synthesis Reference Software)

Reference Texture

Depth Estimation

Reference Textures

Estimated Depth Map
Slide 5

 $view_{n+1}$

 $view_n$

 $view_{n-1}$

 $view_{n+1}$

 $view_n$

 $view_{n-1}$

view 2

view n

3D Warping to a principal viewpoint p

3D Warping to a principal viewpoint p

Warped Depth Maps at a principal viewpoint p

Connection Evidence

view1

view 2

view n

Absolute Difference Matrix (ADM) per pixel

$$e = \begin{bmatrix} 0 & \Delta_{1,2} & \cdots & \Delta_{1,n} \\ \Delta_{2,1} & \ddots & \Delta_{1,n} \\ \Delta_{n,2} & 0 & \cdots & \Delta_{1,n} \\ \Delta_{2,1} & 0 & \cdots & \Delta_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{n,2} & \Delta_{n,2} & \cdots & 0 \end{bmatrix}$$

$$= \begin{vmatrix} d_i - d_j \end{vmatrix} \text{ and is a measure of depth consistency}$$

where, $\Delta_{i,j} = \left| d_i - d_j \right|$ and is a measure of depth consistency between the corresponding depth pairs (d_i, d_j) at a principal pixel.

Connection Evidence

view1

view 2

view n

where, $\Delta_{i,j} = \left| d_i - d_j \right|$ and is a measure of depth consistency between the corresponding depth pairs (d_i, d_j) at a principal pixel.

Connection Evidence Testing

- Connection evidence is a measure of inter-view consistency.
- The connection threshold (T_f) relates to the quality of the connectivity and defines a criterion for depth consistency testing for each frame f according to

$$T_f = \mu_f + \lambda \sigma_f, \ \lambda \in [0, 1]$$

Testing Rules:

- $\Delta_{i,j} < T_f$: Accept the connection evidence and assume that the corresponding depth values have a consistent depth representation.
- $\Delta_{i,j} \ge T_f$: Reject the connection evidence.

Inter-View Connection Information

Example for inter-view connection information with three reference views, n=3.

Inter-View Connection Information

Example for inter-view connection information with three reference views, n=3.

Inter-View Connection Information

Possible cases of inter-view connectivity for n = 3:

Principal Depth Map

Depth Consistency Testing Algorithm

Extraction of Auxiliary Depth

Structured Depth Map

Cardinality of the set of auxiliary depth information:

$$|d'| = \begin{cases} (n-1) & \text{if } p = r, \forall r, \\ n & \text{if } p \neq r, \forall r, \end{cases}$$

where, *n* is the number of reference views used in the depth consistency testing.

Structured-Depth-Image-Based Rendering

 $view_{n+2}$

 $view_{n+1}$

 $view_{n-1}$

virtual view_n

 $view_{n+2}$

 $view_{n+1}$

 $view_{n-1}$

 $view_{n+2}$

 $view_{n+1}$

 $view_{n-1}$

 $view_{n+2}$

 $view_{n+2}$

3D Warping

 $view_{n+1}$

3D Warping

Masked Inter-view Connection Information

3D Warping

Connection-Adaptive Pixel Intensity Estimation

virtual view_n

Experimental Results

Experimental Results

Original

VSRS 3.5

Proposed Method

VSRS 3.5

Pantomime

Proposed Method

Conclusions

- It exploits the inter-view connectivity information among multiview video and takes advantage of a consistent principal depth map
- It addresses the problems of inter-view depth inconsistencies and varying illumination conditions
- Structured depth maps permit an appealing 3D scene representation on the encoder side by avoiding depth consistency testing for each interpolated pixel on the decoder side.
- It improves the subjective visual quality as well as the objective quality of rendered views

Thank You