LAB1: Sensors

Objectives

- เพื่อให้เข้าใจหลักการทำงาน, ขอบเขตการใช้งาน ของ Sensor ชนิดต่างๆ
- เพื่อให้เข้าใจวิธีการใช้งานโปรแกรม MATLAB และ Simulink ในการสั่งงานและเก็บค่าของเซ็นเซอร์จาก Nucleo

Description

ใน LAB1 นี้จะประกอบไปด้วย sensor ทั้งหมด 4 ชนิด ได้แก่ Potentiometer, Incremental encoder, Magnetic Sensor และ Load cell ในรายงานการทดลองของแต่ละ sensor กวรประกอบไปด้วยหัวข้อดังนี้

- สมมติฐานการทคลอง
- วัตถุประสงค์การทดลอง
- ขั้นตอนการทดลอง
- ผลการทดลอง
- สรุปผลการทดลอง

สามารถใส่หัวข้ออื่น ๆ เพิ่มได้ตามเหมาะสม

การส่งงาน

ส่งเป็นไฟล์ .zip ด้วยชื่อ FRA231_aa_bb_cc_dd_LABX โดยที่ aa, bb, cc, dd คือรหัสสองตัวท้าย และ X คือ LAB ที่โดยใน zip จะต้องประกอบด้วย ไฟล์การทดลอง ผลการทดลอง และเอกสารทั้งหมดที่ต้องใช้ในการทำ LAB ที่เป็น version ล่าสดเท่านั้น

ส่งงานใน MS TEAM ตาม SEC ของตัวเอง <u>แต่ละ SEC จะมี Deadline ไม่เท่ากัน!!!(A:11/10/23, B:10/10/23) หากส่งผิดจะไม่ทำการตวจให้</u>โดยส่งแค่ ตัวแทนกลุ่มเท่านั้น

1.)Potentiometer

การทดลองมี2 แบบ โดยแบบที่ 1 คือการทดลองพฤติกรรมของ Potentiometer แบบ A และ B ว่ามีความแตกต่างกันอย่างไร ส่วนในการทดลองที่ 2 เป็นการทดลองเขียน โปรแกรม Matlab Simulink ในการ threshold ค่า Potentiometer ให้ออกมาเป็นสัญญาณ Digital ด้วย Schmitt-trigger

การทดลองที่ 1 หาคุณสมบัติของ Potentiometer แบบ A และ แบบ B

ในการทดลองนี้เราจะทดลองหากุณสมบัติของ Potentiometer แบบ A และ แบบ B โดยขั้นตอนการทดลองมีดังนี้

1.1) จ่ายไฟขนาด 3.3 V เข้าที่ขา 1 และต่อ GND ที่ขา 3 ของ Potentiometer ตามรูปที่ 1

ร**ูปที่ 1** การต่อ potentiometer(<u>https://www.digikey.co.th/th/articles/the-fundamentals-of-digital-potentiometers</u>)

- 1.2) ทำการหมุนลูกบิด Potentiometer โดยเริ่มจากซ้ายสุด แล้วหมุนตามเข็มนาฬิกาไปจนสุด โดยหมุนเพิ่ม 10% ขององศาที่หมุนได้ทั้งหมดในการหมุนแต่ละครั้ง ให้ ทำการวัดค่าแรงดันที่ ขา 2 (เทียบกับ ground ขา 3) และทำการบันทึกผลในรูปแบบองศาที่เปลี่ยนไปเทียบกับแรงดันที่ วัดได้
- 1.3) ให้ทำการทดลองกับ Potentiometer ทั้งสองแบบ
- 1.4) ให้ทำการ plot ค่าแรงคันเทียบกับองศาการหมุน และเขียนสรุปผล

การทดลองที่ 2 Schmitt-trigger

ในการทดเรียนนี้ผู้ทำการทดลองจะต้องทำการแปลงสัญญาณ Analog ที่อ่านได้จาก potentiometer ไปเป็นสัญญาณ Digital โดยใช้ simulink หลักการคือเมื่อหมุน potetiometer ถึงค่า ๆ หนึ่งจะให้สัญญาณ HIGH และเมื่อถึงค่าๆหนึ่งในทิศทางตรงข้ามจะให้สัญญาณ LOW

2.)Incremental encoder(HW-040)

ในการทดลองนี้เราจะทำการทดลองหากุณสมบัติในการหาตำแหน่งเชิงมุมของ Incremental encoder โดยใช้สัญญาณ Digital Phase A และ B ที่ความต่าง Phase กัน 90 องศาทางไฟฟ้าโดยมีขั้นตอนในการทดลองดังนี้

2.1) จ่ายไฟเข้าบอร์คดังรูปที่ 2 โดยใช้แรงคัน 3.3 V

ร_{ูปที่} **2** การต่อ Incremental encoder(https://www.arduino4.com/product/202/arduino-rotary-encoder-module-hw-040-%E0%B8%AD%E0%B8%B8%E0%B8%9B%E0%B8%81%E0%B8%A3%E0%B8%93%E0%B9%8C%E0%B8%97%E0%B8%B5%E0%B9%88%E0%B8%B8%E0%B8%9B%E0%B8%A5%E0%B8%87%E0%B8%81%E0%B8%B8%E0%B8%A5%E0%B8%B8%E0%B8%81%E0%B8%B8%E0%B8%B8%E0%B8%B8%E0%B8%B99)

- 2.2) ต่อสัญญาณ Digital Phase A และ B เข้าบอร์ค RMX
- 2.3) ให้ทำการหมุน encoder ด้วยมือและเก็บผลโดยการ plot สัญญาณที่ได้จาก Digital Phase A และ B เทียบกับองศาการเปลี่ยนแปลงของ Sensor
- 2.4) ให้ทำการออกแบบโปรแกรม Simulink ในการนับขึ้นลงของ encoder โดยใช้ Phase A และ B ในการนับ

3.) Magnetic Sensor

ในการทดลองนี้เราจะทำการทดลองหาตำแหน่งตุ้มแม่เหล็กถาวรด้วย magnetic sensor โดยมีขั้นตอนการทดลองดังนี้

3.1) ให้นำแท่งแม่เหล็กถาวรติดไว้กับขายึด และ นำแท่นยึด มาวางให้แม่เหล็กถาวรตรงกับตำแหน่งของ

magnetic sensor โดยดำแหน่งของ sensor สามารถหาได้จาก https://gitlab.com/cyyth/rmxplorer A

- 3.2) เลื่อนแม่เหล็กถาวรให้ติดกับ Magnetic sensor ทำการตั้งค่าที่ตำแหน่งนี้เป็นตำแหน่งเริ่มต้น ทำการเก็บผล
- 3.3) เลื่อนแม่เหล็กถาวรขึ้นครั้งละ 5 มิลลิเมตร และทำการเก็บผลจนถึงตำแหน่ง 5 เซนติเมตร

- 3.4) ให้ทำการนำ แผ่นเหล็กมาทำการ shield แม่เหล็กถาวร และทำการทดลองขั้นตอนที่ 3.2 และ 3.3
- 3.5) ให้ทำการ plot graph ความสัมพันธ์ระหว่าง ระยะห่างจาก magnetic sensor และ แรงดันที่วัดได้ จาก sensor จากผลที่เก็บได้ทั้งแบบ shield และ no shield

4.)Load cell

ในการทคลองนี้จะเป็นการทำการทคลองวัคน้ำหนักด้วย load cell ซึ่ง load cell ที่นำมาทคลองนี้ใช้ strain gauge โดยถูกต่อมาเป็น Wheatstone Bridge ซึ่งนักศึกษาจะต้องต่อ วงจร เพื่อจ่ายไฟและรับสัญญาณจาก load cell ผ่านบอร์ค RMX และต่อ trim pot (potentiometer) เพื่อใช้ในการหาค่า gain ที่เหมาะสมใน การชั่งน้ำหนัก ดังแสดงในรูปที่ 3

ร**ูปที่ 3** แสดงการต่อ อุปกรณ์ load cell และ trim pot เข้ากับบอร์ด RMX บนบอร์ดทดลอง

โดยการบันทึกค่า load cell ที่อ่านได้จะทำการอ่านก่าผ่าน analog pin ของ stm32 โดยใช้โปรแกรม Simulink ในการเขียนอ่านค่า ซึ่งนักศึกษาจะต้องต่อ jumper 2 ที่ คือ PC1 - LC-S (สีดำ), 2.5V(สีเหลือง) ต่อเข้าด้วยกันดังที่แสดงในรูปที่ 3

โดยขั้นตอนในการทดลองมีดังนี้

- 4.1) ทำการติดตั้งload cell ที่ขอบโต๊ะ โดยยึดด้านหนึ่งของ load cell
- 4.2) ให้ทำการหาค่า gain ที่เหมาะสมของตัว instrument amplifier โดยการปรับค่า trim pot ดังนี้
- 4.2.1)นำน้ำหนักที่หนักที่สุดที่ต้องการซั่งวัด คือ 1kg ขึ้นชั่งและทำการอ่านค่าแรงคันที่อ่านได้จาก amplifier

ว่าเกิดการ saturate หรือไม่ ถ้าเกินช่วงให้ปรับค่า trim pot ลงมาจนอยู่ในช่วงที่แรงดันไม่ saturate

4.2.2)ถ้าค่าน้ำหนักสูงสุดสามารถวัดได้ตลอดช่วงแรงคันให้บันทึกค่าความต้านทานที่ได้จาก trim pot

แล้วให้เริ่มทำการทดลอง ถ้าค่าที่ได้ไม่สามารถวัดได้ตลอดช่วงให้ทำขั้นตอนที่ 4.2.1 ใหม่

- 4.3) ให้ทำการชั่งน้ำหนักจากน้อยที่สุด 100 g จนถึง 1000 g โดยเพิ่มค่าน้ำหนักครั้งละ 100g และทำการบันทึกค่าด้วยโปรแกรม MATLAB
- 4.4) ให้ทำการ plot graph ความสัมพันธ์ระหว่าง น้ำหนัก และ แรงคันที่วัดได้จาก load cell จากผลที่เก็บได้
- 4.5) (optional) ให้ลองปรับ trim pot ให้ความด้านทานมากขึ้นประมาณ 2 รอบ แล้วบันทึกค่าความด้านทานไว้ แล้วทำการทดลองซ้ำ 4.4 4.5 แล้วทำการเปรียบเทียบ ผลที่ได้ของค่า qain ที่แตกต่างกัน
- 4.6) (optional) ให้ลองตรวจสอบค่าความละเอียดสูงที่สุดที่เซ็นเซอร์สามารถจับได้

Resources

- RMXploler Guide : https://gitlab.com/cyyth/rmxplorer_A
- Simulink coder: https://www.mathworks.com/help/rtw/referencelist.html? type=block&s_tid=CRUX_topnav