1 Bestimmung des Untergrundes

Zur Bestimmung des Untergrundes wurden 7 Messungen durchgeführt. Für die Messungen wurde das Zählrohr eingeschaltet ohne eine Probe auf das Zählrohr zu stecken. Die Messungen liefen jeweils 300s.

Die enstanden Werte dieser Messungen sind in Tabelle 1 zu finden.

Aus diesen Werten wird nun ein arithmetischer Mittelwert berechent. Dieser wird dann noch auf ein Zeitintervall von 30s skaliert, damit dieser Mittelwert in den Folgenden Aufgaben ohne weitere Anpassung verwendet werden kann.

Es ergibt sich eine Untergrundrate von $13.9 \approx 14[N_U/30s]$.

2 Bestimmung der Halbwertszeit von Vanadium

In diesem Teil wurde die aktivierte Vanadiumprobe umgehend auf das Geiger-Müller-Zählrohr gesteckt und es wurden die Impulse in einem Zeitintervall von 30s abgelesen. Diese Messdaten sind in Tabelle 2 zu finden. Von diesen Werten wird der im letzten Teil berechnete Mittelwert abgezogen. Anschließend werden die entstehenden Werte mit Fehler in eimen halblogarithmischen Diagramm dargestellt.

Figure 1: Bestimmung der Halbwertszeit von Vanadium

Als Ausgleichsfunktion wurde das Zerfallsgesetz verwendet. Dieses wurde für die Bestimmung der Halbwertszeit dann noch umgestellt.

$$N(t) = N_0 * e^{-\lambda t}$$
$$\frac{1}{2}N_0 = N_0 * e^{-\lambda T}$$
$$T = \frac{\ln(2)}{\lambda}$$

Für die erste Ausgleichsrechnung wurden alle gemessenen Werte verwendet. Mit der Python-Funktion " $scipy.optimizecurve_fit$ " ergibt sich:

$$N_0 = 208.761825 \pm 6.069003$$

 $\lambda = 0.002657 \pm 0.000106$ (1)

Daraus lässt sich die Halbwertszeit berechnen zu:

$$T_1 = 261 \pm 10s$$

Bei der zweiten Ausgleichrechnung werden nun nur die Werte bis zur doppelten Halbwertszeit für die Ausgleichsrechnung verwendet. Also alle Messwerte bis zu einer Zeit von maximal 520s. Für die Parameter ergeben sich diesmal die Werte:

$$N_0 = 218.126931 \pm 7.601301$$

 $\lambda = 0.002937 \pm 0.000170$ (2)

Die etstehende Halbwertszeit hat nun den Wert:

$$T_2 = 236 \pm 14s$$

3 Halbwertszeit von Rhodium

Analog zu der Vorgehensweise bei Vanadium wird auch bei der Halbwertszeit zunächst ein halblogarithmisches Diagramm erstellt. Diesmal wird die Ungergrundrate wieder angepasst, da das Zeitintervall nun nur 15s beträgt. Die gemessenen Werte für Rhodium sind in Tabelle 3 zu sehen.

Das entstehende Diagramm mit dem angepassten Untergrund und dem Fehler \sqrt{N} sieht folgendermaßen aus:

Figure 2: Bestimmung der Halbwertszeit von Rhodium

In diesem Diagramm sind bereits die benötigten Ausgleichsrechnunhen eingetragen. Zu erkennen sind die verschiedenen Steigungen der beiden Zerfälle. Für die Ausgleichsrechnung des langsamen Zerfalls muss der Zeitpunkt bestimmt werden, ab dem nur noch der langlebige Zerfall stattfindet. Dieser Zeitpunkt wurde auf $t*\approx 250s$ geschätzt. Um sicher zu sein, dass der exponentielle Zerfall möglichst keinen Einfluss mehr hat wurden bei der Ausgleichsrechnung alle Daten verwendet, die nach 300s oder später aufgenommen wurden.

Mit dem Zerfallsgesetz als Ausgangsfunktion ergeben sich folgende Parameter:

Parameter	Wert	\pm Unsicherheit
$A_0 = 72.317788$	16.092044	4 ±
$\lambda = 0.002646$	0.000501	\pm

Mit diesen Parametern entsteht die langlebige Ausgleichsgerade. Dann wird das Intervall betrachtet, in dem der kurzlebige Zerfall stattfindet. Um sicher zu gehen, dass der Einfluss des kurzlebigen Zerfalls wird das Intervall [0s;165s] betrachtet. Dann werden auf dem Intervall für alle Zeitpunkte des Intervall die zugehörigen Werte der Ausgleichsfunk-

tion des langlebigen Zerfalls berechnet. Anschließend werden von den Werten, die im Diagramm aufgetragen sind die entsprechenden werte der Ausgleichsfunktion abgezogen. Mit den entstehenden Werten wird nun die Ausgleichsrechnung für den kurzlebigen Zerfall durchgeführt.

Mit dem Zerfallsgesetz als Ausgangsfunktion ergeben sich folgende Parameter:

Parameter	Wert	\pm Unsicherheit
$A_0 = 772.987833$	20.71701	19 ±
$\lambda = 0.015228 \pm 0.000551$		

Der dritte Graph im Diagramm ist die Summme aus beiden Ausgleichsfunktionen. Nun lassen sich die Verschiedenen halbwertszeiten berechnen

$$T = \frac{\ln(2)}{\lambda}$$

Mit den Parametern lassen sich folgende Halbwertszeiten berechnen:

Halbwertszeit	Wert [$[s] \pm Unsicherheit [s]$
$T_{kurz} \\ T_{lang}$	260 45.5	± 5 ± 1.6

4 Diskussion

4.1 Vanadium

Die berechneten Halbwertszeiten für Vanaium betragen:

$$T_1 = 261 \pm 10s \tag{3}$$

$$T_2 = 236 \pm 14s$$
 (4)

5 Tabellen

$N_U \text{ [Imp/300s]}$
129
143
144
136
139
126
158

Table 1: Messung zur Bestimmung des Untergrundes

t [s]	N [Imp]
30	189
60	197
90	150
120	159
150	155
180	132
210	117
240	107
270	94
300	100
330	79
360	69
390	81
420	46
450	49
480	61
510	56
540	40
570	45
600	32
630	27
660	43
690	35
720	19
750	28
780	27
810	36
840	25
870	29
900	18
930	17
960	24
990	21
1020	25
1050	21
1080	24
1110	25
1140	17
1170	20
1200	19
1230	20
1260	18
1290	16
1320	17

Table 2: Messwerte zur Bestimmfung der Halbwertszeit von Vanadium

t [s]	N [Imp]
15	667
30	585
45	474
60	399
75	304
90	253
105	213
120	173
135	152
150	126
165	111
180	92
195	79
210	74
225	60
240	52
255	56
270	53
285	41
300	36
315	37
330	32
345	36
360	38
375	34
390	40
405	21
420	35
435	33
450	36
465	20
480	24
495	30
510	30
525	26
540	28
555	23
570	20
585	28
600	17
615	26
630	19
645	13
660	17

Table 3: Messwerte zur Bestimmung der Halbwertszeit von Rhodium