Programmazione e Strutture Dati (PR&SD)

I° ANNO – Informatica

Prof. V. Fuccella

ADT Alberi binari di ricerca

- Utilizzati per la realizzazione di insiemi ordinati
- Operazioni efficienti di
 - ricerca
 - inserimento
 - cancellazione

Alberi binari di ricerca: definizione

- Se l'albero non è vuoto
 - ogni elemento del sottoalbero di sinistra precede (<) la radice
 - ogni elemento del sottoalbero di destra segue (>) la radice
 - i sottoalberi sinistro e destro sono alberi binari di ricerca

ADT: Binary Search Tree

Sintattica	Semantica
Nome del tipo: BST Tipi usati: Item, boolean	Dominio: T= nil T = <n, t1,="" t2=""> N ∈ NODO, T1 e T2 sono BST</n,>
newBST() → BST	newBST() \rightarrow T • Post: T = nil
isEmpty(BST) \rightarrow boolean getLeft(BST) \rightarrow BST getRight(BST) \rightarrow BST	isEmpty(T) → b • Post: se T=nil allora b = true altrimenti b = false
search(BST, Item) → Item min(BST) → Item max(BST) → Item	search(T, e) → e' • Pre: e!= nil • Post: e'= e se e ∈ T; e' = nil altrimenti
/ insert(BST, Item) → BST	insert(T, e) \rightarrow T' • Post: T' contiene i nodi di T con l'aggiunta di e
delete(BST, Item) → BST	delete(T, e) → T' • Pre: T non è vuoto • Post: T' = T – {e}

Operazioni: search

- Se l'albero è vuoto allora restituisce null
- Se l'elemento cercato coincide con la radice dell'albero restituisce l'item della radice
- Se l'elemento cercato è minore della radice restituisce il risultato della ricerca dell'elemento nel sottoalbero sinistro
- Se l'elemento cercato è maggiore della radice restituisce il risultato della ricerca dell'elemento nel sottoalbero destro

Operazioni: min (max)

- Algoritmo ricorsivo:
 - Se l'albero è vuoto allora restituisci null
 - Se non esiste un sottoalbero sinistro (destro), ritorna l'item associato alla radice
 - Se esiste un sottoalbero sinistro (destro) effettua la ricerca del minimo (massimo) nel sottoalbero sinistro (destro)
- Pseudocodice versione iterativa:

```
Tree_minimum(x)
   while(x.left != NULL)
        x = x.left;
   return x;
```

Operazioni: insert

- ■Inserimento di un elemento
 - Se l'albero è vuoto allora crea un nuovo albero con un solo elemento
 - ■Se l'albero non è vuoto
 - se l'elemento coincide con la radice non si fa niente (elemento già presente)
 - se l'elemento è minore della radice allora lo inserisce nel sottoalbero sinistro
 - se l'elemento è maggiore della radice allora lo inserisce nel sottoalbero destro

Esempio: inserimento di 13

Operazioni: delete Si cerca ricorsivamente il nodo da rimuovere Trovato il nodo Caso 1: se il nodo ha al più un solo sottoalbero di radice r Si bypassa il nodo da rimuovere agganciando direttamente il suo unico sottoalbero al padre Si rimuove il nodo

Operazioni: delete

- Caso 2: il nodo ha entrambi i sottoalberi
 - Si sostituisce l'elemento da eliminare con il max nel sottoalbero sinistro (da notare che tale elemento non ha sottoalbero destro, la cui radice altrimenti sarebbe maggiore)
 - Alternativamente si cerca sostituisce con l'elemento minimo nel sottoalbero destro
 - Si chiama ricorsivamente la delete sul sottoalbero sinistro del nodo contenente l'elemento max
- ►L'albero risultante è un ABR

Complessità delle operazioni

- Le operazioni sull'albero binario di ricerca hanno complessità O(h), dove h è l'altezza dell'albero.
 - Nel caso peggiore, il nodo da cercare (inserire o eliminare) si troverà a distanza h dalla radice
 - In un albero <u>bilanciato</u> con n nodi l'altezza dell'albero è log₂ n
- Purtroppo la nostra implementazione non garantisce che l'albero sia bilanciato
 - Es: creare l'albero e inserire i nodi le cui etichette sono ordinate in modo crescente (10, 20, 30, 40, 50)

Alberi bilanciati e alberi Δ-bilanciati

- Un albero binario di ricerca si dice ∆bilanciato se per ogni nodo la differenza (in valore assoluto) tra le altezze dei suoi due sottoalberi è minore o uguale a ∆
- Per ∆ = 1 si parla di alberi bilanciati

Alberi A-bilanciati

- Le operazioni sull'albero binario di ricerca hanno complessità logaritmica se l'albero è Λ bilanciato
- Si può dimostrare che l'altezza dell'albero è Δ + log₂ n

Alberi AVI

- Un esempio di alberi bilanciati sono gli alberi AVL
 - Dal nome dei suoi ideatori (Adel'son, Vel'skii e Landis)
- Per prevenire il non bilanciamento bisogna aggiungere un marcatore ad ogni nodo, che può assumere i seguenti valori:
 - → -1, se l'altezza del sottoalbero sinistro è maggiore (di 1) dell'altezza del sottoalbero destro
 - 0, se l'altezza del sottoalbero sinistro è uguale all'altezza del sottoalbero destro
 - +1, se l'altezza del sottoalbero sinistro è minore (di 1) dell'altezza del sottoalbero destro

Ribilanciamento di alberi AVL

- Un inserimento di una foglia può provocare uno sbilanciamento dell'albero
 - Per almeno uno dei nodi l'indicatore non rispetta più uno dei tre stati precedenti
- In tal caso bisogna ribilanciare l'albero con operazioni di rotazione (semplice o doppia) agendo sul nodo x a profondità massima che presenta un non bilanciamento
 - Tale nodo viene detto <u>nodo critico</u> e si trova sul percorso che va dalla radice al nodo foglia inserito
- Considerazioni simili si possono fare anche per la rimozione di un nodo ...

Ribilanciamento con Rotazioni

- Rotazione semplice
 - Inserimento nel sottoalbero sinistro del figlio sinistro del nodo critico
 - Inserimento nel sottoalbero destro del figlio destro del nodo critico
- Rotazione doppia
 - Inserimento nel sottoalbero destro del figlio sinistro del nodo critico
 - Inserimento nel sottoalbero sinistro del figlio destro del nodo critico

Heap

- Un heap è un albero binario bilanciato con le seguenti proprietà
 - Le foglie (nodi a livello h) sono tutte addossate a sinistra
 - ogni nodo v ha la caratteristica che l'informazione ad esso associata è la più grande tra tutte le informazioni presenti nel sottoalbero che ha v come radice
- Usato per realizzare code a priorità
 - Le operazioni sono inserimento di un elemento e rimozione del max

Realizzazione di un heap

- Per le sue caratteristiche un heap può essere realizzato con un array
 - ■I nodi sono disposti nell'array per livelli
 - La radice occupa la posizione 0
 - ■Se un nodo occupa la posizione i, il suo figlio sinistro occupa la posizione 2*i+1 e il suo figlio destro occupa la posizione 2*i+2

