Social Networks & Recommendation Systems

IV. Network metrics.

Grzegorz Siudem

Warsaw University of Technology

Warsaw University of Technology

MSc program in Data Science has been developed as a part of task 10 of the project "NERW PW. Science - Education - Development - Cooperation" co-funded by European Union from European Social Fund.

Before classes

Remind yourself

How we measure distance in graphs?

$$d(i,j) = ?$$

Already known network metrics

· mean vertex degree

$$\langle k \rangle = \frac{1}{N} \sum_{i=1}^{N} k_i,$$

· mean length of paths

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j).$$

Handshaking lemma

Lecture

What network characteristics can we measure?

How big is the network?

What network characteristics can we measure?

- · How big is the network?
- · How dense it is?

What network characteristics can we measure?

- How big is the network?
- · How dense it is?
- What is the structure of the connections (topology of the network)?

?

Warning!

In complex network science topology has different meaning than in mathematics!

Natural/naive metrics:

· number of vertices N (size),

Natural/naive metrics:

- number of vertices N (size),
- number of edges E (size, density),

Natural/naive metrics:

- number of vertices N (size),
- number of edges E (size, density),
- why $\langle k \rangle = 2E/N$? (density)

Natural/naive metrics:

- number of vertices N (size),
- · number of edges E (size, density),
- why $\langle k \rangle = 2E/N$? (density)
- · degree of the biggest hub (celebrities?),

Natural/naive metrics:

- number of vertices N (size),
- · number of edges E (size, density),
- why $\langle k \rangle = 2E/N$? (density)
- · degree of the biggest hub (celebrities?),
- · another?

Natural/naive metrics:

- number of vertices N (size),
- number of edges E (size, density),
- why $\langle k \rangle = 2E/N$? (density)
- · degree of the biggest hub (celebrities?),
- · another?

In the previous classes, we already talked about

· degree distribution $\mathcal{P}(k)$,

In the previous classes, we already talked about

- degree distribution $\mathcal{P}(k)$,
- \cdot particularly power law distributions with parameter lpha

$$\mathcal{P}(k) \propto k^{-\alpha}$$
,

• How estimate α ?

In the previous classes, we already talked about

- degree distribution $\mathcal{P}(k)$,
- \cdot particularly power law distributions with parameter lpha

$$\mathcal{P}(k) \propto k^{-\alpha}$$

• How estimate α ?

Who did the homework?

• M.E.J. Newman, *Power laws, Pareto distributions and Zipf's law,* Contemporary Physics, **46**, 323-351 (2005).

In the previous classes, we already talked about

- degree distribution $\mathcal{P}(k)$,
- \cdot particularly power law distributions with parameter lpha

$$\mathcal{P}(k) \propto k^{-\alpha}$$
,

• How estimate α ?

Who did the homework?

• M.E.J. Newman, *Power laws, Pareto distributions and Zipf's law,* Contemporary Physics, **46**, 323-351 (2005).

More on this topic in the project part.

Measures of node correlation

We already know:

Two-nodes correlations $\mathcal{R}(k_i, k_j)$ i.e. probability that randomly chosen edge connects vertices with degrees k_i and k_j

$$\mathcal{R}(k_i, k_j) = \frac{P(k_i, k_j)}{P_u(k_i, k_j)},$$

and P_u correspondes to uncorrelated network with the same distribution.

Unfortunately it is not very practical tool.

Measures of node correlation

We already know:

Two-nodes correlations $\mathcal{R}(k_i, k_j)$ i.e. probability that randomly chosen edge connects vertices with degrees k_i and k_j

$$\mathcal{R}(k_i, k_j) = \frac{P(k_i, k_j)}{P_u(k_i, k_j)},$$

and P_u correspondes to uncorrelated network with the same distribution.

Unfortunately it is not very practical tool.

We also talked about:

Conditional probability

$$\mathcal{P}(k_i|k_j) = \frac{\mathcal{P}(k_i,k_j)}{k_j \mathcal{P}(k_j)/\langle k \rangle}$$

Is this can be well estimated? Unfortunately not...

How to lower the correlation?

Random switch:

It preserves vertices degrees.

Why are we doing this?

- · to get rid of unwanted correlations,
- · to determine their significance for a given network,
- to obtain a reference model with the same distribution.

NARS :

Let's introduce:

Average degree of the nearest node (for node of degree k_i)

$$\langle k \rangle_{nn}(k_i) = \frac{1}{k_i} \sum_{j=1}^N a_{ij} k_j = \sum_{\ell} \ell \mathcal{P}(\ell | k_i).$$

We ask about the relationship between $\langle k \rangle_{nn}$ and the degree k_i .

Let's introduce:

Average degree of the nearest node (for node of degree k_i)

$$\langle k \rangle_{nn}(k_i) = \frac{1}{k_i} \sum_{j=1}^N a_{ij} k_j = \sum_{\ell} \ell \mathcal{P}(\ell | k_i).$$

We ask about the relationship between $\langle k \rangle_{nn}$ and the degree k_i .

What does this measure measure?

• if $\langle k \rangle_{nn}(k_i)$ is an increasing function then network is assortative.

Let's introduce:

Average degree of the nearest node (for node of degree k_i)

$$\langle k \rangle_{nn}(k_i) = \frac{1}{k_i} \sum_{j=1}^N a_{ij} k_j = \sum_{\ell} \ell \mathcal{P}(\ell | k_i).$$

We ask about the relationship between $\langle k \rangle_{nn}$ and the degree k_i .

What does this measure measure?

- if $\langle k \rangle_{nn}(k_i)$ is an increasing function then network is assortative.
- if $\langle k \rangle_{nn}(k_i)$ is a decreasing function then network is dissassortative.

Let's introduce:

Average degree of the nearest node (for node of degree k_i)

$$\langle k \rangle_{nn}(k_i) = \frac{1}{k_i} \sum_{j=1}^N a_{ij} k_j = \sum_{\ell} \ell \mathcal{P}(\ell | k_i).$$

We ask about the relationship between $\langle k \rangle_{nn}$ and the degree k_i .

What does this measure measure?

- if $\langle k \rangle_{nn}(k_i)$ is an increasing function then network is assortative.
- if $\langle k \rangle_{nn}(k_i)$ is a decreasing function then network is dissassortative.
- if function is constant the network is uncorrelated.

Let's introduce:

Average degree of the nearest node (for node of degree k_i)

$$\langle k \rangle_{nn}(k_i) = \frac{1}{k_i} \sum_{j=1}^N a_{ij} k_j = \sum_{\ell} \ell \mathcal{P}(\ell | k_i).$$

We ask about the relationship between $\langle k \rangle_{nn}$ and the degree k_i .

What does this measure measure?

- if $\langle k \rangle_{nn}(k_i)$ is an increasing function then network is assortative.
- if $\langle k \rangle_{nn}(k_i)$ is a decreasing function then network is dissassortative.
- if function is constant the network is uncorrelated.
- · what in the case of non-monotonic behavior?

In practice, all the measures learned are too complex...

So it remains for us to calculate the correlation coefficient

$$r = \frac{\sum_{jk} jk(e_{jk} - q_j q_k)}{\sigma_q^2}$$

with the following notation

- e_{ik} joined probability distribution of the others vertices.
- degree distribution for other vertices $q_k = \sum_j e_{jk}$, but from the other hand $q_k = \frac{(k+1)p_{k+1}}{\sum_{j>1}jp_j}$

the above leads to

$$r = \frac{\frac{1}{M} \sum_{i} k_{i} j_{i} - \left[\frac{1}{2M} \sum_{i} (j_{i} + k_{i})\right]^{2}}{\frac{1}{2M} \sum_{i} (j_{i}^{2} + k_{i}^{2}) - \left[\frac{1}{2M} \sum_{i} (j_{i} + k_{i})\right]^{2}},$$

where i = 1, 2, ..., M are indices of edges, and j_i , k_i are degrees of SNARS the vertices attached to i.

Clustering coefficient

Homophily phenomenon

Source: gazeta.pl

P-O-X Heider model in a nutshell:

P-O-X Heider model in a nutshell:

• Friend of my friend is my friend.

P-O-X Heider model in a nutshell:

- · Friend of my friend is my friend.
- · Friend of my enemy is my enemy.

P-O-X Heider model in a nutshell:

- · Friend of my friend is my friend.
- · Friend of my enemy is my enemy.
- · Enemy of my friend is my enemy.

P-O-X Heider model in a nutshell:

- · Friend of my friend is my friend.
- · Friend of my enemy is my enemy.
- · Enemy of my friend is my enemy.
- Enemy of my enemy is my friend.

P-O-X Heider model in a nutshell:

- · Friend of my friend is my friend.
- · Friend of my enemy is my enemy.
- · Enemy of my friend is my enemy.
- · Enemy of my enemy is my friend.

However, this applies to directed social networks...

Let us simplify our consideration and limit them to undirected networks.

5NARS 11

Clustering coefficient

Definition

The (vertex) clustering coefficient is the ratio of the number of E_i existing edges between the neighbors of the vertex to all possible edges between these neighbors

$$C_i = \frac{2E_i}{k_i(k_i - 1)}.$$

Coefficient of the whole network is an average of the coefficient for every vertex

$$C = \langle C_i \rangle$$
.

Clustering coefficient

Definition

The (vertex) clustering coefficient is the ratio of the number of E_i existing edges between the neighbors of the vertex to all possible edges between these neighbors

$$C_i = \frac{2E_i}{k_i(k_i - 1)}.$$

Coefficient of the whole network is an average of the coefficient for every vertex

$$C = \langle C_i \rangle$$
.

Alternative definition of the clustering coefficient:

$$C_{\triangle} = \frac{3 \times \text{number of triangles}}{\text{number of paths of length 2}}.$$

Motifs

We are counting motifs in networks

usually comparing *Z-score* with the ansamble of uncorrelated networks

$$Z = \frac{p - \langle p \rangle}{\sigma}.$$

How to measure how small the world in the network is?

Mean distance

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

Efficiency

$$\mathcal{E} = \frac{1}{N(N-1)} \sum_{i \neq j} [d(i,j)]^{-1}.$$

How to measure how small the world in the network is?

Mean distance

$$\ell = \frac{1}{N(N-1)} \sum_{i \neq j} d(i,j)$$

Efficiency

$$\mathcal{E} = \frac{1}{N(N-1)} \sum_{i \neq i} [d(i,j)]^{-1}.$$

Question:

What are the differences between these two metrics? Which one is better?

(Vertices) betweenness centrality

Which vertex is the most important in the network?

We are looking for the most important transfer stations.

Notation:

- δ_{jk} is the number of shortest paths connecting the nodes j and k,
- $\delta_{jk}^{(i)}$ is the number of shortest paths connecting the nodes j and k through the node i.

Definition

$$B_i = \frac{2}{(N-1)(N-2)} \sum_k \sum_{i>k} \frac{\delta_{jk}^{(i)}}{\delta_{jk}}.$$

(Edges) betweenness centrality

What changes if one ask about the mose important edge? We are looking for the most important *line*.

Notation:

• $\delta_{jk}^{(e)}$ is the number of shortest paths connecting the nodes j and k through the edge e.

Definition

$$B_i = \frac{2}{N(N-1)} \sum_k \sum_{j>k} \frac{\delta_{jk}^{(e)}}{\delta_{jk}}.$$

Do we need more metrics?

It is one of the goals in complex network science:

• the whole network is too complex so we need a simplification,

Do we need more metrics?

It is one of the goals in complex network science:

- · the whole network is too complex so we need a simplification,
- different people are interested in different networks features,

Do we need more metrics?

It is one of the goals in complex network science:

- the whole network is too complex so we need a simplification,
- · different people are interested in different networks features,
- often certain specific measures are needed to describe certain particular types of networks...

5NARS 17

· Hirsch index – in citation networks,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,
- · Bacon number in actor networks,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,
- · Bacon number in actor networks,
- · PageRank in the www network,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,
- · Bacon number in actor networks,
- · PageRank in the www network,
- · epidemic threshold in epidemiology,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,
- · Bacon number in actor networks,
- · PageRank in the www network,
- · epidemic threshold in epidemiology,
- · immunity to attacks/failures in engineering,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,
- · Bacon number in actor networks,
- · PageRank in the www network,
- · epidemic threshold in epidemiology,
- · immunity to attacks/failures in engineering,
- · community detection,

- · Hirsch index in citation networks,
- · Erdős number in citation networks,
- · Bacon number in actor networks,
- · PageRank in the www network,
- · epidemic threshold in epidemiology,
- · immunity to attacks/failures in engineering,
- · community detection,
- and many others...

How to measure scientific success?

Let us count number of citations (vertices degrees).

J.E. Hirsch, PNAS 102, (2005).

$$h$$
-index = max $\{h = 1, ..., n : X_{(n-h+1)} \ge h\},$
 $X_{(1)} \le X_{(2)} \le \cdots \le X_{(n)}.$

Erdős number

Source: wikipedia

Paul Erdős 1913-1996

- · hungarian mathematician,
- · in the next class we will learn about Erdős-Rényi graphs.

Erdős number

Source: wikipedia

Definition

- · Paul Erdős has Erdős number equal to 0.
- Erdős number of every scientists is equal to minimum of the Erdős numbers of his/her coauthors +1.

Bacon number

Source: wikipedia

Kevin Bacon ur. 1958

 $\boldsymbol{\cdot}$ american actor, director and movie producer.

Bacon number

Equivalent of the Erős number in actor network.

Examples:

- · Elvis Preasley: 2,
- · Ronald Reagan: 2,
- · Andrzej Grabowski: 3,
- · Andrzej Lepper: 3,
- · Zdzisław Maklakiewicz: 3,
- · Jan Himilsbach: 3,

Erdős-Bacon number

The sum of Erdősa and Bacon numbers:

- Steven Strogatz $E = 3 B = 1 \Rightarrow EB = 4$,
- Richard Feynman $E = 3 B = 3 \Rightarrow EB = 6$,
- Stephen Hawking $E = 4 B = 2 \Rightarrow EB = 6$,
- Natalie Portman $E = 5 B = 2 \Rightarrow EB = 7$,
- Colin Firth $E = 6 B = 1 \Rightarrow EB = 7$,
- Kristen Stewart $E = 5 B = 2 \Rightarrow EB = 7$,
- Mayim Bialik $E = 5 B = 2 \Rightarrow EB = 7$.

Erdős-Bacon number

The sum of Erdősa and Bacon numbers:

- Steven Strogatz $E = 3 B = 1 \Rightarrow EB = 4$,
- Richard Feynman $E = 3 B = 3 \Rightarrow EB = 6$,
- Stephen Hawking $E = 4 B = 2 \Rightarrow EB = 6$,
- Natalie Portman $E = 5 B = 2 \Rightarrow EB = 7$,
- Colin Firth $E = 6 B = 1 \Rightarrow EB = 7$,
- Kristen Stewart $E = 5 B = 2 \Rightarrow EB = 7$,
- Mayim Bialik $E = 5 B = 2 \Rightarrow EB = 7$.

Fun fact

Read about Erdős-Bacon-Black Sabath number...

PageRank

- $\boldsymbol{\cdot}$ method of selecting the most important websites,
- $\boldsymbol{\cdot}$ we will deal with it during the 11th class.

PageRank

- method of selecting the most important websites,
- we will deal with it during the 11th class.

Epidemic threshold

- the minimum number of infected people in the social network that results in an epidemic,
- · we will deal with it during the 12th class.

NARS 28

PageRank

- method of selecting the most important websites,
- we will deal with it during the 11th class.

Epidemic threshold

- the minimum number of infected people in the social network that results in an epidemic,
- we will deal with it during the 12th class.

Resistance to accidental failures and intentional attacks

• we will deal with it during the 7th class.

5NARS 28

PageRank

- method of selecting the most important websites,
- · we will deal with it during the 11th class.

Epidemic threshold

- the minimum number of infected people in the social network that results in an epidemic,
- we will deal with it during the 12th class.

Resistance to accidental failures and intentional attacks

• we will deal with it during the 7th class.

Community detection

• we will deal with it during the 8th class.

Summary

Summary

Warsaw University of Technology

MSc program in Data Science has been developed as a part of task 10 of the project "NERW PW. Science - Education - Development - Cooperation" co-funded by European Union from European Social Fund.

Thank you for your attention!