Categorical variables inference

The **point estimate** for a sample of size n from a population with a true proportion p, is

$$\hat{p} = \frac{\text{\# of "successes"}}{\text{\# of cases}}$$

What is the sampling distribution of \hat{p} ?

Conditions for the sampling distribution of $\hat{\rho}$ being nearly normal

- 1. the sample observations are independent and
- 2. successes-failure condition
 - ▶ $np \ge 10$,
 - ▶ $n(1-p) \ge 10$.

If these conditions are met, then the sampling distribution of \hat{p} is nearly normal with mean p and standard error

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

TOP TENTED E 990

Confidence interval:

$$\hat{p} \pm z^* SE$$

Hypothesis testing

$$H_0$$
: $p = p_0$.
 H_A : $\begin{cases} p > p_0 & \text{(upper-tail alternative)} \\ p \neq p_0 & \text{(two-tailed alternative)} \\ p < p_0 & \text{(lower-tail alternative)} \end{cases}$

Test statistic: $z = \frac{\hat{p} - p_0}{SE}$ We reject H_0 when:

- $P(Z > z) < \alpha$ (upper-tail alternative)
- $P(|Z| > z) < \alpha$ (two-tailed alternative)
- ▶ $P(Z < -z) < \alpha$ (lower-tail alternative)

Conditions for the sampling distribution of $\hat{p}_1 - \hat{p}_2$ to be normal

- each proportion separately follows a normal model
- the two samples are independent of each other.

The standard error of the difference in sample proportions is

$$SE_{\hat{p}_1-\hat{p}_2} = \sqrt{SE_{\hat{p}_1}^2 + SE_{\hat{p}_2}^2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

where p_1 and p_2 represent the population proportions, and n_1 and n_2 represent the sample sizes.

Confidence interval:

$$\hat{p}_1 - \hat{p}_2 \pm z^* SE$$

Hypothesis testing

$$H_0: p_1 = p_2$$

Which value should we select for the SE?

$$SE = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Pooled estimate of a proportion For the null hypothesis $p_1 = p_2$, use the **pooled estimate** of the shared proportion:

$$\hat{p} = \frac{\text{number of "successes"}}{\text{number of cases}} = \frac{\hat{p}_1 n_1 + \hat{p}_2 n_2}{n_1 + n_2},$$

where $\hat{p}_1 n_1$ represents the number of successes in sample 1

$$\hat{p}_1 = rac{ ext{number of successes in sample 1}}{n_1}$$

Similarly, $\hat{p}_2 n_2$ represents the number of successes in sample 2.

Hypothesis testing

$$H_0$$
: $p_1 = p_2$.
 H_A : $\begin{cases} p_1 > p_2 & \text{(upper-tail alternative)} \\ p_1 \neq p_2 & \text{(two-tailed alternative)} \\ p_1 < p_1 & \text{(lower-tail alternative)} \end{cases}$

Test statistic: $z = \frac{\hat{p}}{SE}$, where

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n_1} + \frac{\hat{p}(1-\hat{p})}{n_2}}$$

Number of juror-Racial bias

Race	White	Black	Hispanic	Other	Total
Representation in juries	205	26	25	19	275
Registered voters	0.72	0.07	0.12	0.09	1.00

Q:Are the jurors racially representative of the population?

Testing for goodness of fit using chi-square

- H₀: The jurors are a random sample, i.e. there is no racial bias in who serves on a jury, and the observed counts reflect natural sampling fluctuation.
- ▶ H_A : The jurors are not randomly sampled, i.e. there is racial bias in juror selection.

Hypothesis testing (up to this point):

point estimate — null value SE of point estimate

1. Evaluate the Expected counts

Race	White	Black	Hispanic	Other	Total
Observed data	205	26	25	19	275
Expected counts	198	19.25	33	24.75	275

2. Calculate the X^2 -statistic

$$X^{2} = \frac{(\text{observed count}_{1} - \text{expected count}_{1})^{2}}{\text{expected count}_{1}} + \dots$$

$$+ \frac{(\text{observed count}_{4} - \text{expected count}_{4})^{2}}{\text{expected count}_{4}}$$

$$= 5.89$$

 $X^2 \sim \text{Chi-square distribution}$

Degrees of freedom: df = k - 1, where k is the number of bins.

- $X^2 = 5.89$
- ▶ df = 3 1 = 2
- ightharpoonup p value =
- ► The data do not provide convincing evidence of racial bias in the juror selection.

Chi-Square distributions

Chi-square test

- k categories
- ▶ Observed counts O_1 , O_2 , ..., O_k
- ▶ Expected counts *E*₁, *E*₂, ..., *E*_k

Test statistic

$$x^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{2} - E_{2})^{2}}{E_{2}} + \dots + \frac{(O_{k} - E_{k})^{2}}{E_{k}},$$

where X^2 follows the Chi-square distribution with df = k - 1. $p - value = P(X^2 > x^2)$

Conditions

- ► Independence.
- ► Sample size / distribution. Each particular scenario (i.e. cell count) must have at least 5 expected cases.
- ▶ Degrees of freedom: $df \ge 2$

Google Experiment

- ► Test three algorithms using a sample of 10,000 google.com search queries.
- Breakdown of test subjects into three search groups.

Search algorithm	current	test 1	test 2	Total
Counts	5000	2500	2500	10000

Q: Do the results align with the user's interest? **Quantifying the result**

- 1. The user clicked one of the links provided and did not try a new search or
- 2. The user performed a related search.

Results of the Google search algorithm experiment.

Search algorithm	current	test 1	test 2	Total
No new search	3511	1749	1818	7078
New search	1489	751	682	2922
Total	5000	2500	2500	10000

Testing for independence

 H_0 : The algorithms each perform equally well.

 H_A : The algorithms do not perform equally well.

- r × c categories, r and c are number of rows and columns respectively
- ▶ Observed counts O_1 , O_2 , ..., $O_{r \cdot c}$
- ▶ Expected counts E_1 , E_2 , ..., $E_{r \cdot c}$

Test statistic

$$x^{2} = \frac{(O_{1} - E_{1})^{2}}{E_{1}} + \frac{(O_{2} - E_{2})^{2}}{E_{2}} + \cdots + \frac{(O_{r \cdot c} - E_{r \cdot c})^{2}}{E_{r \cdot c}},$$

where X^2 follows the Chi-square distribution with df = (r-1)(c-1).

$$p - value = P(X^2 > x^2)$$

Computing expected counts in a two-way table

To identify the expected count for the i^{th} row and j^{th} column, compute

$$\mathsf{Expected} \ \mathsf{Count}_{\mathsf{row} \ i, \ \mathsf{col} \ j} = \frac{\left(\mathsf{row} \ i \ \mathsf{total}\right) \times \left(\mathsf{column} \ j \ \mathsf{total}\right)}{\mathsf{table} \ \mathsf{total}}$$

The observed counts and the (expected counts).

Search algorithm	current	test 1	test 2	Total
No new search	3511 (3539)	1749 (1769.5)	1818 (1769.5)	7078
New search	1489 (1461)	751 (730.5)	682 (730.5)	2922
Total	5000	2500	2500	10000

- $X^2 = 6.120$
- $df = (2-1) \times (3-1) = 2$
- ▶ *p* − *value* < 0.05
- ► The data provide convincing evidence that there is some difference in performance among the algorithms.