Data Acquisition Prototype: Project & System Requirements

Phoenix Ambulatory Blood Pressure Monitoring System

10 August 2008

© 2008 Christopher J. Adams
Copying and distribution of this document is permitted in any medium, provided this notice is preserved

1

Agenda

- Project Vision
- System Vision & Scope (Business Requirements)
- User Requirements
 - Use Cases
 - Algorithms (Business Rules)
- System Requirements
 - Functional Requirements
 - Major Nonfunctional Requirements
- Requirements Work Outstanding

10 August 2008 2

Project Vision

- Acquire community knowledge about
 - Data acquisition devices
 - Hardware and software co-design
 - Partitioning systems into subsystems
 - Allocating system requirements to subsystems
 - Embedded software architecture options (round robin, round robin w/ interrupts, ..., RTOS)
 - Hardware options (gates, clocks, memory, MP, buses, DMA, interrupts, ports, ...)
 - Acquiring hardware components
 - Testing embedded software
- Document results so they can be reproduced

10 August 2008

3

Project Vision

- Architecture basic technology
 - Hardware architecture
 - Hardware component selection
 - Embedded software architecture
 - Software language selection
 - Cross-platform development tools
- Prototype
 - Learning is primary
 - Expect subsequent evolution
 - Willing to abandon device based on lessons learned
- Computing device is primary
 - Sensing is secondary
 - Acquired data may be simulated

10 August 2008 4

System Vision

- Data acquisition device (next slides)
- Embedded analytics (next slides)
- Embedded data storage (next slides)
- Device allows ambulation during use
 - At least carriable
- Electrically self-contained
 - Does not rely on external power source

10 August 2008 5

System Vision

- Data acquisition device
 - Collects continuous analog signals from two sensors
 - · At least one is piezoelectric film sensor
 - Measurement Specialties SDT1-028K
 - Collects up to 40 samples per second from piezoelectric film sensor
 - Converts analog signals to digital signals
 - Collects discrete signals from wearer-pressable push-button
 - Button down
 - Button up
 - Turns on and off a human-perceivable device-mounted light

10 August 2008 6

System Vision Embedded analytics

- - Identifies / marks peak of each continuous waveform
 - Voltage
 - Identifies / marks trough of each continuous waveform
 - Voltage
 - Calculates biometrics
 - · Heart rate
 - Beats per minute
 - · Systolic blood pressure
 - mmHg
 - · Diastolic blood pressure
 - mmHg
 - Performs calculations over 5 cardiac cycles every 30 minutes
 - Translates different combinations of button-down and button-up signals into events

10 August 2008

7

System Vision

- Embedded data storage
 - Timestamps each acquired & calculated value
 - Preserves three days of acquired & calculated data
 - Preserves all acquired values
 - See "Data acquisition device"
 - Preserves all calculated values
 - · See "Embedded analytics"

10 August 2008 8

System Vision Major Out-of-Scope Capabilities

- Capacity for 7 days of data
- Device calibration
- Patient alerts
- Localization outside of U.S.
 - Production
 - Use
- Analog signal processing
 - As alternative to digital signal processing
 - Separate research topic

10 August 2008

9

Use Cases

- Wearer signals the device to log an event
 - Assures data-acquisition logic despite sensor failure
- Technician confirms device functions
- Technician confirms data acquisition
- Technician connects device to wearer
- System collects data
- Wearer confirms device is working
- Wearer restarts data collection
- Technician downloads data to a file

10 August 2008

Use Cases

Wearer Signals Device to Log Event

- 1. Wearer pushes button
- 2. System activates status light
- 3. System logs button-down
- 4. Wearer observes status light
- 5. Wearer may pause
- 6. Wearer releases button
- 7. System logs button-up
- 8. System de-activates status light
- 9. Wearer may pause
- 10. Wearer repeats sequence according to predefined code

10 August 2008 12

<u>Use Cases</u> Technician Confirms Device Functions

10 August 2008 13

<u>Use Cases</u> Technician Confirms Data Acquisition

10 August 2008 14

<u>Use Cases</u> Technician Connects Device to Wearer

- 1. Technician confirms power supply
- 2. Technician signals device-start event
 - Use case "Wearer Signals Device to Log Event"
- 3. Technician confirms device functions
 - Use case
- 4. Technician places and fastens device on wearer
- 5. Wearer confirms device is comfortable
- 6. Technician confirms data acquisition
 - Use case
- 7. Technician signals acquisition-start event
 - Use case "Wearer Signals Device to Log Event"

10 August 2008 15

<u>Use Cases</u> System Collects Data

- 1. System waits for configured duration
- 2. Systems periodically reads data from each sensor
 - Periodicity configured sensor-by-sensor
- 3. System timestamps and stores each reading
- 4. System continues reading data for configured duration
- 5. System calculates embedded analytics
- 6. System timestamps and stores each calculated value
- 7. Above sequence repeats

10 August 2008 16

<u>Use Cases</u> Wearer Confirms Device is Working

- 1. Wearer signals device-check event
 - Use case "Wearer Signals Device to Log Event"
- 2. Wearer observes status light to confirm device function

10 August 2008 17

<u>Use Cases</u> Wearer Restarts Data Collection

- 1. Wearer places and fastens device on self
- 2. Wearer confirms data acquisition
 - Use case "Technician Confirms Data Acquisition"
- 3. Wearer signals acquisition-start event
 - Use case "Wearer Signals Device to Log Event"

10 August 2008 18

<u>Use Cases</u> Technician Downloads Data to File

- 1. Technician connects device to storage system
- 2. Technician signals download-initiation event
 - Use case "Wearer Signals Device to Log Event"
- 3. System transforms data into transmission format and downloads transformed data to file, while manipulating status light to signal download progressing
- 4. System signals completion of download with status light

10 August 2008

Algorithms

- Waveform peak
- Waveform trough
- Heart rate
- Systolic blood pressure
- Diastolic blood pressure

10 August 2008 20

Functional Requirements

- Downloaded Data
 - ::=
 - Head
 - Device ID
 - (Absolute base time)
 - Timestamp of download initiation
 - Body
 - { Acquired/calculated Item }*
 - » Sensor ID/Data Source ID
 - » Timestamp of acquisition/calculation
 - » Information type
 - » Value
 - Tail
 - Timestamp of download completion
 - End of data marker
 - If timestamps are relative

 $_{10\; August\; 2008}^{\bullet}$ then download must include absolute base time

21

22

Functional Requirements

- Acquired/calculated information type
 - Acquisition control event
 - · Start device
 - Stop device
 - · Start acquisition
 - · Stop acquisition
 - Wearer event
 - Acquired continuous value
 - mV
 - Acquired discrete value
 - On/off, down/up, yes/no

- Acquired/calculated information type
 - Calculated values
 - Heart rate
 - Beats per minute
 - · Systolic blood pressure
 - mmHg
 - · Diastolic blood pressure
 - mmHg

10 August 2008

Major Nonfunctional Requirements

- Interfaces
 - Outgoing
 - Downloaded data is well-formed XML
 - Physical Connectors
 - Device downloads data via a USB device
- Physical Constraints
 - Wearer wears or carries device during operation
- Legal Requirements
 - All software to be publicly licensed

10 August 2008 23