Математический Анализ - 2

Серёжа Рахманов | telegram, website Максим Николаев | telegram

Версия от 01.09.2020 16:08

Содержание

L	Лек	щия 1 - 01.09.2020 - Ряды	2
	1.1	Определение ряда	4
	1.2	Необходимое условие сходимости	4
	1.3	Критерий Коши	4
	1.4	Положительные ряды	4
	1.5	Признаки сравнения	•
	1.6	Отсутствие универсального ряда сравнения	

1 Лекция 1 - 01.09.2020 - Ряды

1.1 Определение ряда

Определение 1. Пусть a_n – последовательность, т.е. $\mathbb{N} \to \mathbb{R}$. Формальная бесконечная сумма: $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$ называется рядом. $S_n = \sum_{n=1}^{N} a_n$ – частичная сумма, сумма ряда: $S = \lim_{n \to \infty} S_n$

Возможны 3 случая:

- 1. $\exists S \in \mathbb{R}$
- 2. $\exists S = \infty$
- 3. *∄S*

Пример.

- 1. $\sum_{n=1}^{\infty} 0 = 0 + 0 + \dots + 0 = 0$
- 2. $\sum_{n=1}^{\infty} 1 = 1 + 1 + \dots + 1 = \infty$
- 3. $\sum_{n=1}^{\infty} (-1)^n = -1 + 1 + \dots$ не существует

Определение 2. Если ряд сходится, т.е. $S_N \to S$ при $n \to \infty$, то $S - S_N = r_N$ – остаток ряда

1.2 Необходимое условие сходимости

Замечание. Если ряд сходится, то $a_n \to 0$

Доказательство. $a_n=S_n-S_{n-1}\to 0,$ т.к. $S_n\to S$ и $S_{n-1}\to S$

1.3 Критерий Коши

Определение 3. a_n называется фундаментальной, если $\forall \varepsilon > 0 \ \exists N : \forall n > m > N, |S_n - S_m| < \varepsilon$

Теорема 1.1. S_n – $cxodumcs \Leftrightarrow S_n$ – $\phi y н даментальная$

Доказательство. $S_n - S_m = \sum_{k=m+1}^n a_k$ Тогда $\sum a_n$ – сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n > m > N \ |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon$

 Π ример.

$$1. \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Заметим, что
$$S_n = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots = 1 - \frac{1}{N+1} \to 1$$

2.
$$z \in \mathbb{C}, z = |z| \cdot (\cos \varphi + i \sin \varphi)$$

Рассмотрим ряд
$$\sum_{n=0}^{\infty}z^{n}=1+z+z^{2}+\ldots$$

$$S_n = 1 + z + z^2 + \dots + z^n = \frac{1 - z^{N+1}}{1 - z}$$

Ряд сходится $\Leftrightarrow |z| < 1$

$$|z| < 1 \Rightarrow z^n \to 0, S_n \to S = \frac{1}{1-z}$$

1.4 Положительные ряды

 $\sum_{n=1}^{\infty} a_n, a_n \geqslant 0, S_n \uparrow$, т.к. $S_{n+1} \geqslant S_n$ Возможны 2 случая:

- 1. $\exists S \in \mathbb{R}$
- 2. $\exists S = \infty$

Обозначение 1. $\sum_{n=1}^{\infty} a_n < \infty$ – ряд сходится, $\sum_{n=1}^{\infty} a_n = \infty$ – ряд расходится.

1.5 Признаки сравнения

1. Сравнение с помощью неравенства.

$$a_n \leqslant b_n$$
 при всех $n \geqslant n_0$

Из сходимости ряда $\sum b_n \implies$ сходимость $\sum a_n$

Из расходимости $\sum a_n \implies$ расходимость $\sum b_n$

2. Сравнение отношений.

$$\frac{a_{n+1}}{a_n} \leqslant \frac{b_{n+1}}{b_n}$$

Из сходимости ряда $\sum b_n \implies$ сходимость $\sum a_n$

Из расходимости $\sum a_n \implies$ расходимость $\sum b_n$

Доказательство.

$$a_{n_0+1} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+1}$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+1}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+2}$$

$$a_{n_0+k} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+k} \implies \sum_{n=n_0}^{N} a_n \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot \sum_{n=n_0}^{N} b_n$$

3. Сравнение с помощью предела.

$$\lim_{n\to\infty}\frac{a_n}{b_n}\in(0;+\infty)\implies$$
 сходимость $\sum a_n\iff$ сходимости b_n

Доказательство.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

$$\forall \varepsilon \ \exists n_0: \ c-\varepsilon \leqslant rac{a_n}{b_n} \leqslant c+\varepsilon,$$
 при $n \geqslant n_0$

Возьмём
$$c-\varepsilon>0 \implies (c-\varepsilon)\cdot b_n\leqslant a_n\leqslant (c+\varepsilon)\cdot b_n$$

Сходимость следует из правой части неравенства, а расходимость из левой.

Отсутствие универсального ряда сравнения 1.6

Предложение. Не существует ряда $\sum c_n, c_n > 0$:

- 1) $\frac{a_n}{c_n} \to 0 \implies \sum a_n$ сходится. 2) $\frac{b_n}{c_n} \to \infty \implies$ ряд $\sum b_n$ расходится.

Доказательство

1. Если ряд $\sum c_n$ расходится, тогда пусть $S_N = \sum_{n=1}^N c_n \to \infty, S_0 = 0$, то ряд $\sum_{n=1}^\infty (\sqrt{S_n} - \sqrt{S_{n-1}})$, где $\sqrt{S_n} - \sqrt{S_n} = 0$ $\sqrt{S_{n-1}} = a_n$ расходится, так как

(a)
$$\sum_{n=1}^{N} (\sqrt{S_n} - \sqrt{S_{n-1}}) = \sqrt{S_N} - \sqrt{S_0} = \sqrt{S_N} \to \sqrt{S}$$

(b)
$$\frac{\sqrt{S_n} - \sqrt{S_{n-1}}}{c_n} = \frac{\sqrt{S_n} - \sqrt{S_{n-1}}}{S_n - S_{n-1}} = \frac{1}{\sqrt{S_n} + \sqrt{S_{n-1}}} \implies \frac{a_n}{c_n} \to 0$$

Ряд расходится, но по предположению сходится, получили противоречие

2. Если ряд $\sum_{n=1}^{\infty} c_n$ сходится, то рассмотрим r_n - его n' остаток, то ряд $\sum_{n=1}^{\infty} (\sqrt{r_{n-1}} - \sqrt{r_n})$, где $\sqrt{r_{n-1}} - \sqrt{r_n} = b_n, r_0 = S = \sum_{n=1}^{\infty} c_n$ - сходится, так как

(a)
$$\sum_{n=1}^{\infty} (\sqrt{r_{n-1}} - \sqrt{r_n}) = \sqrt{r_0} - \sqrt{r_1} + \sqrt{r_1} - \sqrt{r_2} + \dots = \sqrt{r_0} - \sqrt{r_n} = \sqrt{S} - \sqrt{r_n} \to \sqrt{S}$$

(b)
$$\frac{\sqrt{r_{n-1}} - \sqrt{r_n}}{c_n} = \frac{\sqrt{r_{n-1}} - \sqrt{r_n}}{r_{n-1} - r_n} = \frac{1}{\sqrt{r_{n-1}} + \sqrt{r_n}} \to \infty$$

Ряд сходится, но по предположению расходится, получили противоречие.