	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERS			
	Regular/Supplementary Winter Examination – 202	3		
	Course: B. Tech. Branch : Computer and Allied			
	Semester:V			
	Subject Code & Name: Theory Of Computation (BTCOC502)			
	Max Marks: 60 Date:03/01/2024 D	uration: 3 Hrs.		
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 			
		(Level/CO)	Marks	
Q. 1	Solve Any Two of the following.		12	
A)	Find the string set for following regular expressions. (i)00* (ii)a*b* (iii) (0+1)*	Create	6	
B	What are the elements of Deterministic Finite Automaton? How it is	Remember	6	
	represented?			
C)	Design Non Deterministic Finite Automaton that accepts set of all	Design	(
	strings over {0,1} that start with 0 or 1 and end with 01 or 10.			
Q.2	Solve Any Two of the following.		1	
A)	Distinguish between Mealy machine and Moore machine.	Remember		
B)	Apply subset construction algorithm to convert following Non	Apply		
	Deterministic Finite Automaton to Deterministic Finite Automaton a, b q0 b q1			
es	Consider the following production rules.	Apply		
	S→ aAB			
	A→bBb			
	$B \rightarrow A \epsilon$			
	Obtain leftmost and rightmost derivation for string "abbbh"			

0.0			12	
Q. 3	Solve Any Two of the following.	Apply	12	-
A)	Show that the given grammar is ambiguous grammar	Apply	6	
	E→E+E 55°			
	E→E*E			
BY	E > a	Remember	6	-
Victor Control	Explain Chomsky classification of grammar.	Apply		1
C)	Find Context Free Grammar without ϵ - productions equivalent to the	Apply	. 6	
	following grammar . S→ABaC			
	A→BC			
	B→b €			
	C → D €			
	$D \rightarrow d$			
Q.4	Solve Any Two of the following.		12	
A)	Reduce the following grammar to Chomsky Normal Form(CNF).	Apply	6	,
	S→aAD			
	A→aB bAB			
	B→b			
	D→d			
B)	Design Push down Automata (PDA) to accept language L=(a,b)* where	Design	6	,
	$\mathbf{n}_{a} = \mathbf{n}_{b}$.			
C)	Distinguish between Deterministic and Non Deterministic PDA.	Remember		6
Q. 5	Solve Any Two of the following.		1	2
A)	What are the different components of Turing machine?	Remember		6
B)	What is halt state of Turing machine? Explain Church Turing thesis.	Understand		6
C)	Design Turing machine that erases all non-blank symbols from its tape .	Design		6
	*** End ***			S. Section S.

