$$\Gamma_{1} = \frac{\overline{W}_{1}}{\sum_{i=1}^{n} w_{i} \phi_{il}}$$
 (18.5-4)

where

 h_i = the height above the base to Level i

 h_r = the height of the structure above the base to the roof level

 w_i = the portion of the total effective seismic weight, W, located at or assigned to Level i

The fundamental period, T_1 , shall be determined either by dynamic analysis using the elastic structural properties and deformational characteristics of the resisting elements, or using Eq. 18.5-5 as follows:

$$T_{1} = 2\pi \sqrt{\frac{\sum_{i=1}^{n} w_{i} \delta_{1}^{2}}{g \sum_{i=1}^{n} f_{i} \delta_{i}}}$$
 (18.5-5)

where

 f_i = lateral force at Level i of the structure distributed in accordance with Section 12.8.3

 δ_i = elastic deflection at Level i of the structure due to applied lateral forces f_i

18.5.2.4 Fundamental Mode Seismic Response Coefficient

The fundamental mode seismic response coefficient, C_{S1} , shall be determined using Eq. 18.5-6 or 18.5-7:

For $T_{1D} < T_S$,

$$C_{S1} = \left(\frac{R}{C_d}\right) \frac{S_{D1}}{\Omega_0 B_{1D}}$$
 (18.5-6)

For $T_{1D} \geq T_S$,

$$C_{S1} = \left(\frac{R}{C_d}\right) \frac{S_{D1}}{T_{1D}\left(\Omega_0 B_{1D}\right)}$$
 (18.5-7)

where

 S_{DS} = the design spectral response acceleration parameter in the short period range

 S_{D1} = the design spectral response acceleration parameter at a period of 1 s

 B_{1D} = numerical coefficient as set forth in Table 18.6-1 for effective damping equal to β_{mD} (m = 1) and period of the structure equal to T_{1D}

18.5.2.5 Effective Fundamental Mode Period Determination

The effective fundamental mode period at the design earthquake, T_{1D} , and at the maximum consid-

ered earthquake, T_{1M} , shall be based on explicit consideration of the post-yield force deflection characteristics of the structure or shall be calculated using Eqs. 18.5-8 and 18.5-9:

$$T_{1D} = T_1 \sqrt{\mu_D} \tag{18.5-8}$$

$$T_{1M} = T_1 \sqrt{\mu_M} \tag{18.5-9}$$

18.5.2.6 Residual Mode Base Shear

Residual mode base shear, V_R , shall be determined in accordance with Eq. 18.5-10:

$$V_R = C_{SR} \overline{W}_R \tag{18.5-10}$$

where

 C_{SR} = the residual mode seismic response coefficient as determined in Section 18.5.2.8

 \overline{W}_R = the effective residual mode effective weight of the structure determined using Eq. 18.5-13

18.5.2.7 Residual Mode Properties

Residual mode shape, ϕ_{iR} , participation factor, Γ_R , effective residual mode seismic weight of the structure, \overline{W}_R , and effective period, T_R , shall be determined using Eqs. 18.5-11 through 18.5-14:

$$\phi_{iR} = \frac{1 - \Gamma_1 \phi_{i1}}{1 - \Gamma_1} \tag{18.5-11}$$

$$\Gamma_R = 1 - \Gamma_1 \tag{18.5-12}$$

$$\bar{W}_R = W - \bar{W}_1$$
 (18.5-13)

$$T_R = 0.4T_1 \tag{18.5-14}$$

18.5.2.8 Residual Mode Seismic Response Coefficient

The residual mode seismic response coefficient, C_{SR} , shall be determined in accordance with Eq. 18.5-15:

$$C_{SR} = \left(\frac{R}{C_d}\right) \frac{S_{DS}}{\Omega_0 B_R} \tag{18.5-15}$$

where

 B_R = numerical coefficient as set forth in Table 18.6-1 for effective damping equal to β_R , and period of the structure equal to T_R

18.5.2.9 Design Lateral Force

The design lateral force in elements of the seismic force-resisting system at Level i due to fundamental mode response, F_{i1} , and residual mode