Fluid Flow Simulation Project Report **Experimental Wing Flow Simulation** Report

Table of Contents

1	Gen	eral Information	1
	1.1	Analysis Environment	1
	1.2	Model Information	1
	1.3	Project Comments:	1
	1.4	Size of Computational Domain	1
	1.5	Simulation Parameters	1
	1.5.	1 Mesh Settings	1
	1.5.	2 Material Settings	2
	1.5.	3 Initial Conditions	2
	1.5.	4 Boundary Conditions	2
	1.5.	5 Volumetric Heat Sources	2
	1.5.	6 Engineering Goals	2
	1.6	Analysis Time	3
2	Res	ults	5
	2.1	Analysis Goals	5
	2.2	Global Min-Max-Table	5
3	App	endix	7
	2 1	Material Data	7

1 General Information

Objective of the simulation: To determine the sheer stress exerted on the experimental wing, and to identify the inefficiency of the design

1.1 Analysis Environment

Software Product:

CPU Type:

CPU Speed:

RAM:

Operating System:

1.2 Model Information

Model Name: X-Wing-assembly.SLDASM

Project Name: X-wing

1.3 Project Comments:

Unit System: SI (m-kg-s)

Analysis Type: External (exclude internal spaces)

1.4 Size of Computational Domain

Size

X min	0.207 m
X max	0.405 m
Y min	0.324 m
Y max	0.409 m
Z min	0.247 m
Z max	0.820 m
X size	0.197 m
Y size	0.085 m
Z size	0.573 m

1.5 Simulation Parameters

1.5.1 Mesh Settings

1.5.1.1 Basic Mesh

Basic Mesh Dimensions

Number of cells in X	77
Number of cells in Y	32
Number of cells in Z	228

1

Fluid Flow Simulation Report

1.5.1.2 Analysis Mesh

Total Cell count: 548862
Fluid Cells: 548862
Solid Cells: 62670
Partial Cells: 30812
Trimmed Cells: 0

1.5.1.3 Additional Physical Calculation Options

Heat Transfer Analysis: Fluid Flow: OnConduction: Off

Flow Type: Laminar and turbulent

Time-Dependent Analysis: Off Gravity: On

Radiation:

Humidity: Off

Default Wall Roughness: 0 micrometer

1.5.2 Material Settings

Material Settings

Fluids

Air

1.5.3 Initial Conditions

Ambient Conditions

Thermodynamic parameters	Static Pressure: 101325.00 Pa	
	Temperature: 293.20 K	
Velocity parameters	Velocity vector	
	Velocity in X direction: 292.000 m/s	
	Velocity in Y direction: 0 m/s	
	Velocity in Z direction: 0 m/s	
Turbulence parameters	Turbulence intensity and length	
	Intensity: 0.10 %	
	Length: 1.218e-04 m	

1.5.4 Boundary Conditions

1.5.5 Volumetric Heat Sources

1.5.6 Engineering Goals

Goals

Global Goals

GG Maximum Velocity (X) 1

Fluid Flow Simulation Report

Туре	Global Goal
Goal type	Velocity (X)
Calculate	Maximum value
Coordinate system	Global Coordinate System
Use in convergence	On

GG Maximum Turbulence Intensity 2

Туре	Global Goal
Goal type	Turbulence Intensity
Calculate	Maximum value
Coordinate system	Global Coordinate System
Use in convergence	On

GG Maximum Turbulent Energy 3

Туре	Global Goal
Goal type	Turbulent Energy
Calculate	Maximum value
Coordinate system	Global Coordinate System
Use in convergence	On

GG Force (X) 4

Туре	Global Goal
Goal type	Force (X)
Coordinate system	Global Coordinate System
Use in convergence	On

GG Force (Y) 5

Туре	Global Goal
Goal type	Force (Y)
Coordinate system	Global Coordinate System
Use in convergence	On

GG Force (Z) 6

Туре	Global Goal
Goal type	Force (Z)
Coordinate system	Global Coordinate System
Use in convergence	On

GG Average Shear Stress (Y) 7

Туре	Global Goal
Goal type	Shear Stress (Y)
Calculate	Average value
Coordinate system	Global Coordinate System
Use in convergence	On

1.6 Analysis Time

Calculation Time: 3407 s Number of Iterations: 656

Warnings: Fluid Subdomain is applied to external domain Fluid Subdomain : Fluid Subdomain 1

Fluid Flow Simulation Report	_	

2 Results

2.1 Analysis Goals

Goals

Name	Unit	Value	Progress	Criteria	Delta	Use in
						convergence
GG	m/s	385.552	72	2.55183332	3.53017992	On
Maximum						
Velocity (X)						
1						
GG	%	1000.00	100	1e-05	0	On
Maximum						
Turbulence						
Intensity 2						
GG	J/kg	3927.347	100	252.584029	90.9292134	On
Maximum						
Turbulent						
Energy 3						
GG Force	N	113.797	100	16.5008835	0.285243549	On
(X) 4						
GG Force	N	368.146	100	11.4787051	1.60726815	On
(Y) 5						
GG Force	N	0.004	14	0.00357430577	0.0257219459	On
(Z) 6						
GG Average	Pa	0.09	100	0.341377658	0.0909761067	On
Shear Stress						
(Y) 7						

2.2 Global Min-Max-Table

Min/Max Table

Name	Minimum	Maximum
Density (Fluid) [kg/m^3]	0.73	1.81
Pressure [Pa]	62924.86	170674.13
Temperature [K]	261.28	335.36
Temperature (Fluid) [K]	261.28	335.36
Velocity (X) [m/s]	-101.118	385.322
Velocity (Y) [m/s]	-128.774	173.100
Velocity (Z) [m/s]	-130.866	126.332
Mach Number []	0	1.19
Velocity RRF (X) [m/s]	-101.118	385.322
Velocity RRF (Y) [m/s]	-128.774	173.100
Velocity RRF (Z) [m/s]	-130.866	126.332
Relative Pressure [Pa]	-38400.14	69349.13
Bottleneck Number []	1.1344072e-10	1.0000000
Heat Transfer Coefficient	0	0

Fluid Flow Simulation Report

[W/m ² /K]		
ShortCut Number []	2.0585686e-10	1.0000000
Surface Heat Flux [W/m^2]	0	0
Surface Heat Flux (Convective)	0	0
[W/m ²]		
Total Enthalpy Flux [W/m^2]	-1.246e+08	1.197e+08
Acoustic Power [W/m^3]	0	5107.901
Acoustic Power Level [dB]	0	157.08

3 Appendix

3.1 Material Data

Engineering Database

Gases

Air

Path: Gases Pre-Defined

Specific heat ratio (Cp/Cv): 1.399 Molecular mass: 0.0290 kg/mol

Dynamic viscosity

Specific heat (Cp)

Thermal conductivity

