\mathbb{K} est un corps commutatif et E un \mathbb{K} -espace vectoriel.

1 L'espace dual E^*

Définition 1 Une forme linéaire sur E est une application linéaire de E dans \mathbb{K} .

On note $E^* = \mathcal{L}(E, \mathbb{K})$ l'ensemble de toutes les formes linéaires sur E.

Exercice 1 Montrer qu'une forme linéaire φ sur E non identiquement nulle est surjective.

Si E est de dimension n et $\mathcal{B}=(e_j)_{1\leq j\leq n}$ est une base de E, alors les projections relativement à \mathcal{B} :

$$e_j^*: x = \sum_{i=1}^n x_i e_i \mapsto x_j$$

sont des formes linéaires.

De manière plus générale pour tous scalaires $\alpha_1, \alpha_2, \cdots, \alpha_n$, l'application :

$$\ell = \sum_{i=1}^{n} \alpha_i e_i^* : x = \sum_{i=1}^{n} x_i e_i \mapsto \sum_{i=1}^{n} \alpha_i x_i$$

est une forme linéaire.

Exercice 2 Montrer que pour E de dimension finie égale à n, l'espace E^* de toutes les formes linéaires sur E est de dimension n, de base $\mathcal{B}^* = (e_i^*)_{1 \le i \le n}$, où les e_i^* sont les projections relativement à une base \mathcal{B} donnée.

Le théorème 2 a une réciproque, c'est-à-dire que toute base de E^* est la duale d'une base de E.

Exercice 3 Étant donnée une base $\mathcal{B}' = (\ell_i)_{1 \leq i \leq n}$ de E^* , montrer qu'il existe une base $\mathcal{B} = (f_i)_{1 \leq i \leq n}$ de E telle que \mathcal{B}' soit la base duale de \mathcal{B} .

Avec les notations de l'exercice précédent, on dit que \mathcal{B} est la base anté-duale de \mathcal{B}' .

Exercice 4 Soient E, F deux espaces vectoriels. Montrer que $u \in \mathcal{L}(E, F) \setminus \{0\}$ est de rang r si, et seulement si, il existe des formes linéaires $\varphi_1, \dots, \varphi_r$ linéairement indépendantes dans E^* et des vecteurs y_1, \dots, y_p linéairement indépendants dans F tels que :

$$\forall x \in E, \ u(x) = \sum_{i=1}^{r} \varphi_i(x) y_i.$$

Dans ce cas, on a:

$$\ker(u) = \bigcap_{i=1}^{r} \ker(\varphi_i).$$

Exercice 5 On suppose que E est de dimension finie. Montrer que si $\varphi_1, \dots, \varphi_p, \varphi$ sont des formes linéaires sur E qui vérifient $\bigcap_{i=1}^p \ker(\varphi_i) \subset \ker(\varphi)$, alors φ est combinaison linéaire des φ_i .

2 Exemples dans $\mathbb{K}_n[x]$

Exercice 6 Vérifier que la base duale de la base canonique de $\mathbb{K}_n[x]$ est définie par :

$$\forall P \in E, \ e_j^*(P) = a_j = \frac{P^{(j)}(0)}{j!} \ (1 \le j \le n)$$

Exercice 7 Soient $E = \mathbb{K}_n[x]$ et n+1 scalaires deux à deux distincts x_0, x_1, \dots, x_n dans \mathbb{K} .

1. Vérifier que la famille $\mathcal{L} = (L_i)_{0 \le i \le n}$ de polynômes définis par :

$$L_{i}(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} \ (1 \le i \le n)$$

est une base de E et la base duale de \mathcal{L} est définie par $L_i^*(P) = P(x_i)$.

2. Pour $\mathbb{K} = \mathbb{R}$ et les points x_i dans un intervalle [a,b], en déduire qu'il existe des constantes réelles uniquement déterminées $\alpha_0, \alpha_1, \dots, \alpha_n$ telles que :

$$\forall P \in \mathbb{R}_n [x], \int_a^b P(t) dt = \sum_{j=0}^n \alpha_j P(x_j)$$

3. Détailler le cas où $n=2, x_0=a, x_1=\frac{a+b}{2}$ et $x_2=b$.

Dans le cas où E est de dimension infinie, le procédé utilisé dans l'exercice 2 pour construire une base de E^* à partir d'une base de E n'est plus valable.

Exercice 8 Soit $E = \mathbb{K}[x]$ muni de sa base canonique $\mathcal{B} = (e_j)_{j \in \mathbb{N}}$, où $e_j(X) = X^j$.

- 1. Montrer que le système dual $\mathcal{B}^* = (e_j^*)_{j \in \mathbb{N}}$ défini par $e_i^* (e_j) = \delta_{ij}$ pour tous i, j dans \mathbb{N} , n'est pas une base de E^* .
- 2. Montrer que E^* est isomorphe à l'espace $\mathbb{K}^{\mathbb{N}}$ des suites à coefficients dans \mathbb{K} .

3 Exemples dans $\mathcal{M}_n(\mathbb{K})$

Pour les résultats relatifs à $\mathcal{M}_n(\mathbb{K})$, on désigne par $(e_i)_{1 \leq i \leq n}$ la base canonique de $E = \mathbb{K}^n$ et par $(E_{ij})_{1 \leq i,j \leq n}$ celle de $\mathcal{M}_n(\mathbb{K})$.

Exercice 9 On se place dans $\mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que pour $i \neq j$ dans $\{1, \dots, n\}$ on a :
 - (a) $E_{ij}E_{ji}=E_{ii}$.
 - (b) $E_{ij}E_{jj} = E_{ij}$ et $E_{jj}E_{ij} = 0$.
- 2. Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ telle que $\varphi(AB) = \varphi(BA)$ pour toutes matrices A, B dans $\mathcal{M}_n(\mathbb{K})$.
 - (a) Donner un exemple de telle forme linéaire.
 - (b) Montrer que $\varphi(E_{ii}) = \varphi(E_{jj})$ pour tous i, j compris entre 1 et n. On note λ cette valeur commune.
 - (c) Montrer que $\varphi(E_{ij}) = 0$ pour tous $i \neq j$ dans $\{1, \dots, n\}$.
 - (d) Montrer que $\varphi(A) = \lambda \operatorname{Tr}(A)$ pour toute matrice A dans $\mathcal{M}_n(\mathbb{K})$.
- 3. Soit u un endomorphisme de $\mathcal{M}_n(\mathbb{K})$ tel que $u(I_n) = I_n$ et u(AB) = u(BA) pour toutes matrices A, B dans $\mathcal{M}_n(\mathbb{K})$. Montrer que u conserve la trace.

On peut remplacer $\mathcal{M}_n(\mathbb{K})$ par $\mathcal{L}(E)$, où E est de dimension n.

Exercice 10

- 1. Montrer que le centre de $\mathcal{M}_n(\mathbb{K})$ (c'est-à-dire l'ensemble des matrices $A \in \mathcal{M}_n(\mathbb{K})$ qui commutent avec toute matrice) est formé des homothéties.
- 2. On désigne par θ l'application linéaire qui associe à toute matrice $B \in \mathcal{M}_n(\mathbb{K})$ la forme linéaire $\theta(B)$ définie sur $\mathcal{M}_n(\mathbb{K})$ par :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \ \theta(B)(A) = \operatorname{Tr}(BA).$$

- (a) Montrer que θ est injective.
- (b) En déduire que si φ est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$, il existe alors une unique matrice $B \in \mathcal{M}_n(\mathbb{K})$ telle que :

$$\forall A \in \mathcal{M}_n(\mathbb{K}), \ \varphi(A) = \text{Tr}(BA).$$

(on peut remplacer $\mathcal{M}_n(\mathbb{K})$ par $\mathcal{L}(E)$, où E est de dimension n).

3. En utilisant le résultat précédent, montrer que si φ est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$ telle que $\varphi(AB) = \varphi(BA)$ pour toutes matrices A, B dans $\mathcal{M}_n(\mathbb{K})$, il existe alors un scalaire λ tel que $\varphi(A) = \lambda \operatorname{Tr}(A)$ pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ (résultat de l'exercice précédent).

Exercice 11 Soit $E = \mathbb{K}^n$. Pour $x \in E$ et $\varphi \in E^*$, on désigne par $\varphi \otimes x$ la matrice définie par :

$$\varphi \otimes x = (\varphi(e_1) x, \cdots, \varphi(e_n) x) = ((\varphi(e_j) x_i))_{1 \le i,j \le n}$$

- 1. Calculer $(\varphi \otimes e_i)$ z pour tout vecteur $z \in E$, toute forme linéaire $\varphi \in E^*$ et tout i compris entre 1 et n.
- 2. Calculer $e_i^* \otimes x$ pour tout vecteur $x \in E$ et tout j compris entre 1 et n.
- 3. Calculer $(\varphi \otimes e_i) A(e_j^* \otimes y)$ pour tout vecteur $y \in E$, toute forme linéaire $\varphi \in E^*$, toute matrice $A \in \mathcal{M}_n(\mathbb{K})$ et tous i, j compris entre 1 et n.
- 4. Montrer que les idéaux bilatères de $\mathcal{M}_n(\mathbb{K})$ sont $\{0\}$ et $\mathcal{M}_n(\mathbb{K})$ (on peut remplacer $\mathcal{M}_n(\mathbb{K})$ par $\mathcal{L}(E)$, où E est de dimension n).

4 Hyperplans

Définition 2 On appelle hyperplan de E, le noyau d'une forme φ linéaire non nulle sur E.

Si $H = \ker(\varphi)$ est un hyperplan de E, on dit alors que φ (ou $\varphi(x) = 0$) est une équation de E.

Exercice 12 Montrer que si H est un hyperplan d'un espace vectoriel E, il existe alors une droite D telle que $E = H \oplus D$.

Un hyperplan de E est donc un sous-espace de E supplémentaire d'une droite.

Le résultat précédent est valable que E soit de dimension finie ou non.

Deux formes linéaires non nulles définissent le même hyperplan si, et seulement si, elles sont proportionnelles (que E soit de dimension finie ou non).

Dans un espace vectoriel E de dimension n un hyperplan est un sous-espace de E de dimension n-1.

Exercice 13 Soient $\varphi, \psi \in E^*$ telles que $\ker(\varphi) \subset \ker(\psi)$.

- 1. Montrer que φ et ψ et sont proportionnelles.
- 2. $Si \ \psi \neq 0$, montrer alors que $\ker(\varphi) = \ker(\psi)$.

Exercice 14 Montrer que pour tout hyperplan H de $\mathcal{M}_n(\mathbb{K})$, où $n \geq 2$, on a $H \cap GL_n(\mathbb{K}) \neq \emptyset$.

5 Orthogonalité

Définition 3 On dit que $\varphi \in E^*$ et $x \in E$ sont orthogonaux si $\varphi(x) = 0$.

Définition 4 L'orthogonal dans E^* d'une partie non vide X de E est l'ensemble :

$$X^{\perp} = \{ \varphi \in E^* \mid \forall x \in X, \ \varphi(x) = 0 \}.$$

L'orthogonal dans E d'une partie non vide Y de E^* est l'ensemble :

$$Y^{\circ} = \{x \in E \mid \forall \varphi \in Y, \ \varphi(x) = 0\}.$$

On vérifie facilement que X^{\perp} est un sous-espace vectoriel de E^* et que Y° est un sous-espace vectoriel de E. Pour $X = \emptyset$, on pose $X^{\perp} = E^*$ et pour $Y = \emptyset$, $Y^{\circ} = E$.

Exercice 15 Montrer que pour toute partie Y non vide de E^* , on a $Y^\circ = \bigcap_{\varphi \in Y} \ker(\varphi)$.

Exercice 16 Soient A, B des parties non vides de E et U, V des parties non vides de E^* . Montrer que :

- 1. Si $A \subset B$, alors $B^{\perp} \subset A^{\perp}$.
- 2. Si $U \subset V$, alors $V^{\circ} \subset U^{\circ}$.
- 3. $A \subset (A^{\perp})^{\circ}$, l'égalité n'étant pas réalisée en général.
- 4. $U \subset (U^{\circ})^{\perp}$, l'égalité n'étant pas réalisée en général.
- 5. $A^{\perp} = (\text{Vect}(A))^{\perp}$.
- 6. $U^{\circ} = (\operatorname{Vect}(U))^{\circ}$.
- 7. $\{0\}^{\perp} = E^*, E^{\perp} = \{0\}, \{0\}^{\circ} = E \text{ et } (E^*)^{\circ} = \{0\}.$

Exercice 17 Montrer que si H est un sous-espace vectoriel de E, on a alors $H = \{0\}$ si, et seulement si, $H^{\perp} = E^*$.

Exercice 18 On suppose que E est de dimension finie $n \ge 1$. Montrer que :

1. Pour tout sous-espace vectoriel F de E, on a :

$$\dim(F) + \dim(F^{\perp}) = \dim(E)$$

2. Pour tout sous-espace vectoriel G de E^* , on a:

$$\dim (G) + \dim (G^{\circ}) = \dim (E)$$

3. Pour tout sous-espace vectoriel F de E et tout sous-espace vectoriel G de E*, on a :

$$F = (F^{\perp})^{\circ} \ et \ G = (G^{\circ})^{\perp}$$

4. Pour toute partie X de E, on a:

$$(X^{\perp})^{\circ} = \operatorname{Vect}(X)$$
.

- 5. Pour tous sous-espaces vectoriels F_1 et F_2 de E, on a $(F_1 + F_2)^{\perp} = F_1^{\perp} \cap F_2^{\perp}$.
- 6. Pour tous sous-espaces vectoriels F_1 et F_2 de E, on a $(F_1 \cap F_2)^{\perp} = F_1^{\perp} + F_2^{\perp}$.
- 7. Pour tous sous-espaces vectoriels G_1 et G_2 de E^* , on a $(G_1 + G_2)^{\circ} = G_1^{\circ} \cap G_2^{\circ}$.
- 8. Pour tous sous-espaces vectoriels G_1 et G_2 de E^* , on a $(G_1 \cap G_2)^{\circ} = G_1^{\circ} + G_2^{\circ}$.

Remarque 1

- 1. L'égalité $F = (F^{\perp})^{\circ}$ est toujours vraie, que la dimension soit finie ou non.
- 2. L'égalité $(F_1 + F_2)^{\perp} = F_1^{\perp} \cap F_2^{\perp}$ est toujours vraie, que la dimension soit finie ou non, la démonstration étant celle qui a été faite.
- 3. L'égalité $(F_1 \cap F_2)^{\perp} = F_1^{\perp} + F_2^{\perp}$ est encore vraie, que la dimension soit finie ou non, mais la démonstration est plus délicate dans le cas général (on utilise l'axiome du choix).

Remarque 2 Si F_1, F_2 sont deux sous-espaces supplémentaires dans E, alors F_1^{\perp} et F_2^{\perp} sont supplémentaires dans E^* .

Exercice 19 On suppose que E est de dimension n.

Montrer que $(\varphi_i)_{1 \leq i \leq n}$ est une base de E^* si, et seulement si, $\bigcap_{i=1}^n \ker(\varphi_i) = \{0\}$.

6 Équations des sous-espaces d'un espace de dimension finie

On suppose ici que E est de dimension $n \geq 2$.

Exercice 20 Montrer que si $(\varphi_1, \varphi_2, \dots, \varphi_p)$ est une famille de formes linéaires sur E de rang r, alors le sous-espace vectoriel $F = \bigcap_{i=1}^p \ker(\varphi_i)$ de E est de dimension n-r.

Réciproquement, montrer que si F est un sous-espace vectoriel de E de dimension m, il existe une famille $(\varphi_1, \varphi_2, \cdots, \varphi_r)$ de formes linéaires sur E de rang r = n - m, telle que $F = \bigcap_{i=1}^r \ker(\varphi_i)$.

7 Transposition

E, F sont deux K-espaces vectoriels.

Définition 5 La transposée de l'application linéaire $u \in \mathcal{L}(E, F)$ est l'application tu de F^* dans E^* définie par :

$$\forall \varphi \in F^*, \quad {}^t u (\varphi) = \varphi \circ u$$

Exercice 21 Montrer que l'application de transposition $u \mapsto {}^tu$ est linéaire et injective de $\mathcal{L}(E,F)$ dans $\mathcal{L}(F^*,E^*)$.

Remarque 3 Dans le cas où E et F sont de dimension finie, les espaces $\mathcal{L}(E,F)$ et $\mathcal{L}(F^*,E^*)$ sont de même dimension finie et l'application de transposition est un isomorphisme.

Théorème 1 Soient u dans $\mathcal{L}(E,F)$ et v dans $\mathcal{L}(F,G)$. Montrer que :

- 1. ${}^{t}(v \circ u) = {}^{t}u \circ {}^{t}v;$
- 2. pour F = E, ${}^{t}Id_{E} = Id_{E^{*}}$;
- 3. si u est un isomorphisme de E sur F, alors tu est un isomorphisme de F^* sur E^* et $({}^tu)^{-1} = {}^tu^{-1}$;
- 4. $\ker({}^{t}u) = (\operatorname{Im}(u))^{\perp}$;
- 5. u est surjective si, et seulement si, ^tu est injective;
- 6. Im $({}^{t}u) = (\ker(u))^{\perp}$;
- 7. u est injective si, et seulement si, ^tu est surjective;
- 8. si E et F sont de dimension finie, alors u et ^tu ont même rang.

Remarque 4 Pour le point 8. on peut montrer de manière plus générale que si u est de rang fini, il en est alors de même de tu et rg (tu) = rg (u). La démonstration de ce résultat n'est pas très simple (voir Gostiaux, algèbre 1).

On suppose maintenant que E est de dimension n, F de dimension m et on se donne une base $\mathcal{B}=(e_i)_{1\leq i\leq n}$ de E et $\mathcal{B}'=(f_j)_{1\leq j\leq m}$ une base de F. Les bases duales correspondantes sont notées respectivement \mathcal{B}^* et \mathcal{B}'^* .

Exercice 22 Montrer que si $A \in \mathcal{M}_{m,n}(\mathbb{K})$ est la matrice de $u \in \mathcal{L}(E,F)$ dans les bases \mathcal{B} et \mathcal{B}' , alors la matrice de tu dans les bases \mathcal{B}'^* et \mathcal{B}^* est la transposée ta.

Une application importante de la transposition est la réduction de Jordan des matrices carrées à coefficients dans \mathbb{C} ou, plus généralement dans un corps algébriquement clos.

Exercice 23 Montrer que si $u \in \mathcal{L}(E)$ est nilpotent d'ordre p > 0 alors ${}^tu \in \mathcal{L}(E^*)$ est aussi nilpotent d'ordre p.

Exercice 24 Soit $u \in \mathcal{L}(E)$ nilpotent d'ordre p > 0. Montrer qu'il existe x dans E tel que le système $\{x, u(x), \dots, u^{p-1}(x)\}$ soit libre dans E.

Exercice 25 Soit u un endomorphisme de E nilpotent d'ordre p > 0. Montrer qu'il existe $\varphi \in E^*$ et $x \in E$ tels que l'espace vectoriel $F = \text{Vect}\left\{x, u\left(x\right), \cdots, u^{p-1}\left(x\right)\right\}$ et l'orthogonal G dans E de $H = \text{Vect}\left\{\varphi, t u\left(\varphi\right), \cdots, (t u)^{p-1}\left(\varphi\right)\right\}$ sont stables par u avec $E = F \oplus G$.

Exercice 26 Montrer que si $u \in \mathcal{L}(E)$ est nilpotent d'ordre p > 0, alors il existe une base de E:

$$\mathcal{B} = \mathcal{B}_1 \cup \cdots \cup \mathcal{B}_r$$

telle que chaque sous espace vectoriel $E_i = \text{Vect}(\mathcal{B}_i)$ soit stable par u et la matrice de la restriction de u à E_i est :

$$J_{i} = \begin{pmatrix} 0 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 0 & 0 \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \in M_{p_{i}}(\mathbb{C}),$$

avec $p_i = \dim(E_i) \ (1 \le i \le r).$

Exercice 27 Soit $u \in \mathcal{L}(E) - \{0\}$ tel que son polynôme caractéristique s'écrive :

$$P_u(X) = (-1)^n \prod_{k=1}^p (X - \lambda_k)^{\alpha_k},$$

avec $\alpha_k > 0$ et les λ_k distincts deux à deux.

Montrer qu'il existe une base $\mathcal B$ de E dans laquelle la matrice de u est de la forme :

$$A = \begin{pmatrix} J_1 & 0 & \cdots & 0 \\ 0 & J_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_p \end{pmatrix}, \tag{1}$$

avec :

$$\forall k \in \{1, 2, \cdots, p\}, J_k = \begin{pmatrix} \lambda_k & 0 & 0 & \cdots & 0 \\ \varepsilon_{k,2} & \lambda_k & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \varepsilon_{k,\alpha_k-1} & \lambda_k & 0 \\ 0 & \cdots & 0 & \varepsilon_{k,\alpha_k} & \lambda_k \end{pmatrix} \in M_{\alpha_k}(\mathbb{C})$$

où $\varepsilon_{k,i} \in \{0,1\}$ (forme réduite de Jordan).

Exercice 28 Montrer que toute matrice non nulle A d'ordre n à coefficients dans un corps commutatif algébriquement clos est semblable à une matrice triangulaire de la forme (1).

Exercice 29

- 1. Montrer que $u \in L(E)$ est une homothétie si et seulement si u laisse stable toutes les droites de E.
- 2. On suppose que E est de dimension n. Que dire de $u \in L(E)$ qui laisse stable tous les sous espace vectoriel de dimension r de E où r est un entier donné dans $\{1, 2, \cdots, n-1\}$?