Mission

Contribution à la réalisation d'un tableau de bord permettant de visualiser et traiter un temps réel différentes données émanant d'un ou plusieurs fichiers de type CSV se remplissant continuellement durant une acquisition afin d'afficher différents paramètres calculés (HR, BR, ...) sur les signaux acquis.

Encadrant: Dr. Sylvain feruglio LIP6 29/09/2024

<u>Photopléthysmographie</u>

La **photopléthysmographie** est une technique d'exploration fonctionnelle vasculaire non invasive. C'est aussi une technologie utilisée notamment par les montres et bracelets connectés pour mesurer la fréquence cardiaque du porteur de la montre.

Les capteurs PPG transmettent des formes d'ondes infrarouges à la peau et détectent les signaux qui sont renvoyés au capteur par la peau. La peau absorbe partiellement les signaux transmis et les signaux réfléchis sont fonction de cette absorption de la lumière, qui est elle-même fonction de la perfusion sanguine locale. Par conséquent, les formes d'ondes PPG reflètent les variations locales et relativement superficielles du flux sanguin au niveau de la peau.

Le photo-pléthysmographe détecte les variations locales du volume sanguin et génère une forme d'onde pulsatile, qui est très similaire aux formes d'onde de l'<u>enregistrement du volume d'impulsion (PVR)</u>. Cependant, la technologie PPG est basée sur la technologie optique, tandis que la technologie PVR est basée sur la mesure d'un capteur de pression.

Les examinateurs utilisent généralement les mesures PPG soit pour étayer le diagnostic vasculaire complet, soit dans le cadre d'autres tests physiologiques tels que les <u>examens de l'indice brachial des orteils (TBI)</u>, le <u>test de reflux veineux</u>, l'<u>évaluation TOS</u>, le <u>test de l'arcade palmaire</u>, les <u>examens de Raynaud</u>, et bien d'autres encore.

Électrocardiographie

L'électrocardiographie (ECG) est une représentation graphique de l'activité électrique du cœur. Cette activité électrique est liée aux variations de <u>potentiel électrique</u> des cellules spécialisées dans la contraction (myocytes) et des cellules spécialisées dans l'automatisme et la conduction des influx. Elle est recueillie par des <u>électrodes</u> à la surface de la <u>peau</u>.

L'électrocardiogramme est le tracé papier de l'activité électrique dans le cœur. L'électrocardiographe est l'appareil permettant de faire un électrocardiogramme. L'électrocardioscope, ou scope, est un appareil affichant le tracé sur un écran.

C'est un examen rapide ne prenant que quelques minutes, indolore et non invasif, dénué de tout danger. Il peut être fait en cabinet de <u>médecin</u>, à l'<u>hôpital</u>, voire à domicile. Son interprétation reste cependant complexe et requiert une analyse méthodique et une certaine expérience du clinicien. Il permet de mettre en évidence diverses anomalies

cardiaques et a une place importante dans les examens <u>diagnostiques</u> en <u>cardiologie</u>, comme pour la <u>maladie coronarienne</u>.

-Pour créer un tableau de bord en temps réel pour visualiser et traiter les signaux PPG et ECG à l'aide de Streamlit, nous pouvons commencer par simuler le processus d'acquisition des données, et pour cela les étapes conçues est comme ceci:

Étapes conçues :

- Simulation de l'acquisition des données : Nous allons créer une fonction qui simule les signaux PPG et ECG, générant de nouvelles données et les écrivant dans un fichier csv en continu.
- Construction de l'interface web(UI): Nous utiliserons <u>Streamlit</u> pour afficher les signaux en temps réel, en mettant à jour le graphique à mesure que de nouvelles données arrivent, les données affichées sont les dernières 2min de données du fichier csv à chaque lecture.
- Traitement des signaux en temps réel : en utilisant la librairie <u>HeartPy</u> et Scipy pour filtrer le bruit et faire une détection de peaks meilleure.
- Calcul des biométriques: HR, BR, spO2 et Température moyenne (valeurs instantanées toutes les 10 sec.
- Mise à jour en temps réel : Le tableau de bord se met à jour toutes les 10s minutes pour les valeurs des biométriques.

Jeu de données utilisé:

- Pulse Transit Time PPG Dataset: Disponible sur PhysioNet, cette base de données contient des enregistrements synchronisés de PPG et ECG obtenus à partir du doigt de sujets sains pendant qu'ils étaient assis, marchaient et couraient. Cette base de données inclut également des mesures de pression artérielle, de température et de données d'accéléromètre, ce qui peut être utile pour des analyses multimodales.(PhysioNet)
 - Le csv utilisé est dans le format suivant :
- 6 signaux ppg et un ecg + données de température

\mathbf{A}	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N
1	time	ecg	peaks	pleth_1	pleth_2	pleth_3	pleth_4	pleth_5	pleth_6	lc_1	lc_2	temp_1	temp_2	temp_3
2	33:22.2	31978	0	83324	87262	6070	85787	99285	7017	5864032	5405674	28.5	30.13	30.26408
3	33:22.2	32078	0	83324	87262	6070	85794	99281	7022	5864032	5405674	28.5	30.13	30.26109
4	33:22.2	32148	0	83324	87277	6063	85782	99269	7015	5864032	5405674	28.5	30.13	30.26408
5	33:22.2	32257	0	83319	87281	6070	85782	99269	7015	5857118	5405173	28.5	30.13	30.27008
6	33:22.2	32380	0	83314	87258	6073	85787	99281	7015	5857118	5405173	28.5	30.13	30.26408
7	33:22.2	32460	0	83311	87265	6071	85784	99285	7015	5857118	5405173	28.5	30.13	30.26109
8	33:22.2	32560	0	83311	87265	6071	85791	99292	7017	5857118	5405173	28.5	30.13	30.26109
9	33:22.2	32737	0	83313	87265	6062	85787	99293	7016	5857118	5405173	28.5	30.13	30.27008
10	33:22.2	32899	0	83318	87255	6073	85787	99293	7016	5857118	5405173	28.5	30.13	30.27008
11	33:22.2	33035	0	83324	87259	6061	85780	99291	7012	5848698	5409194	28.5	30.13	30.26708
12	33:22.3	33157	0	83311	87259	6064	85811	99304	7009	5848698	5409194	28.5	30.13	30.27008
13	33:22.3	33298	0	83311	87259	6064	85797	99298	7012	5848698	5409194	28.5	30.13	30.26408
14	33:22.3	33574	0	83311	87254	6069	85797	99298	7012	5848698	5409194	28.5	30.13	30.2551
15	33:22.3	33832	0	83301	87265	6068	85789	99293	7015	5848698	5409194	28.5	30.13	30.26109
16	33:22.3	34024	0	83306	87237	6067	85792	99311	6988	5840604	5411274	28.5	30.13	30.26109
17	33:22.3	34151	0	83301	87251	6064	85794	99319	7016	5840604	5411274	28.5	30.13	30.26708
18	33:22.3	34210	0	83301	87251	6064	85792	99328	7014	5840604	5411274	28.5	30.13	30.2581
19	33:22.3	34280	0	83299	87265	6061	85792	99328	7014	5840604	5411274	28.5	30.13	30.2521
20	33:22.3	34410	0	83293	87262	6075	85798	99322	7017	5840604	5411274	28.5	30.13	30.26109
21	33:22.3	34596	0	83295	87247	6061	85790	99321	7013	5840604	5411274	28.5	30.13	30.27307
22	33:22.3	34794	0	83278	87253	6061	85799	99307	7008	5832105	5408499	28.5	30.13	30.26408
23	33:22.3	34992	0	83278	87253	6061	85788	99324	7009	5832105	5408499	28.5	30.13	30.2551
24	33:22.3	35145	0	83290	87252	6068	85788	99324	7009	5832105	5408499	28.5	30.13	30.2551
25	33:22.3	35233	0	83280	87235	6067	85796	99310	7012	5832105	5408499	28.5	30.13	30.26708
26	33:22.3	35355	0	83273	87245	6066	85797	99326	7008	5832105	5408499	28.5	30.13	30.26408
27	33:22.3	35610	0	83276	87247	6061	85788	99310	7015	5832105	5408499	28.5	30.13	30.2551
28	33:22.3	35889	0	83276	87247	6061	85787	99319	7020	5825142	5406203	28.5	30.13	30.26109
29	33:22.3	36160	0	83268	87248	6056	85787	99319	7020	5825142	5406203	28.5	30.13	30.26109
30	33:22.3	36344	0	83271	87247	6060	85786	99324	7016	5825142	5406203	28.5	30.13	30.2581
31	33:22.3	36460	0	83282	87240	6067	85789	99319	7014	5825142	5406203	28.5	30.13	30.24911
32	33:22.3	36536	0	83275	87241	6078	85787	99319	7008	5825142	5406203	28.5	30.13	30.24911
33	33:22.3	36476	0	83275	87241	6078	85782	99316	7008	5825142	5406203	28.5	30.13	30.24312
34	33:22.3	36475	0	83277	87247	6058	85782	99316	7008	5824511	5405800	28.5	30.13	30.24312
35	33:22.3	36538	0	83279	87239	6050	85797	99320	7007	5824511	5405800	28.5	30.13	30.2521
36	33:22.3	36598	0	83271	87259	6060	85788	99312	7015	5824511	5405800	28.5	30.13	30.26408
37	33:22.3	36639	0	83271	87259	6060	85769	99302	7005	5824511	5405800	28.5	30.13	30.26109
	< >	s1_ru	n^	+	07011	2007	05700	2224	7040		- 40-000	^^ -	22.42	00.0504

Principaux points:

- Le tableau de bord doit afficher des tracés linéaires balayants pour tous les signaux PPG disponibles.
- Un PPG pour une longueur d'onde différente sera disponible dans le fichier CSV, ainsi que l'ECG pour afficher les signes vitaux du patient.
- Les signaux doivent être traités en temps réel pour mesurer les biométriques, y compris la fréquence cardiaque (battements par minute), l'oxygénation du sang, la pression artérielle et le rythme respiratoire, et les afficher.

- Sur l'écran, l'utilisateur doit pouvoir choisir quel signal PPG il souhaite visualiser, avec un PPG et l'ECG affichés par défaut.
- Le style des signaux doit être en balayage et s'estomper progressivement au fur et à mesure que le tracé se déplace sur l'écran.

Calcul des biométriques :

-HR: Fréquence cardiaque

La fréquence cardiaque est obtenue après traitement du signal PPG sélectionné par l'utilisateur, en utilisant la fonction process de HeartPy et en traitant le signal morceau par morceau

-BR : Taux respiratoire

Calculé en utilisant la fonction process de HeartPy, de la même manière que HR

-SPO2 : Saturation périphérique en oxygène.

Sélection des signaux PPG:

-Choix deux signaux PPG : un à une **longueur d'onde rouge** (environ 660 nm) et un autre à une **longueur d'onde infrarouge** (environ 940 nm). Pour ce dashboard les signaux considérés sont:

- pleth_1 (depuis la phalange distale).
- pleth 2 (depuis la phalange distale).

Filtration des PPG:

Les signaux PPG (pleth_1 et pleth_2) sont filtrés en passe-haut pour éliminer la composante continue et extraire le signal pulsatile (CA).

Calcul du Ratio des Ratios (RoR):

- Calculez les composantes AC (pulsatile) et DC (non-pulsatile) des deux signaux.
 - La composante AC est la partie oscillante du signal PPG (due aux battements cardiaques).
 - La composante DC est la ligne de base du signal.

La formule générale pour le Ratio des Ratios (RoR) est :

$$ext{RoR} = rac{\left(rac{ ext{AC}_{ ext{rouge}}}{ ext{DC}_{ ext{rouge}}}
ight)}{\left(rac{ ext{AC}_{ ext{infrarouge}}}{ ext{DC}_{ ext{infrarouge}}}
ight)}$$

Conversion du RoR en SpO₂:

En utilisant la relation empirique entre le RoR et la SpO₂:

$$\mathrm{SpO}_2(\%) = 110 - 25 imes \mathrm{RoR}$$

-Température

Temp_1 (température du capteur PPG de la phalange distale) : Ce relevé de température est important car il mesure la température de la peau directement à l'emplacement du capteur PPG sur la phalange distale du doigt. Elle est très utile pour surveiller les changements potentiels dans les performances du capteur dus au contact avec la peau, et elle est la plus proche de la source du signal PPG.

Temp_2 (température du capteur PPG de la phalange proximale) : Il s'agit de la température à la base du doigt. Bien qu'elle puisse fournir un contexte utile (par exemple, si le doigt est froid dans l'ensemble), elle est légèrement moins importante que la lecture distale, étant donné que le capteur PPG est positionné au niveau de la phalange distale.

Temp_3 (température du capteur IMU) : Cette valeur mesure la température interne de l'IMU (InvenSense MPU-9250) et est principalement liée aux performances de l'IMU elle-même. Elle est moins pertinente pour la surveillance PPG.

la colonne considérée est Temp_1 pour ce dashboard

Allure du Tableau de bord final :

Références:

https://fr.wikipedia.org/wiki/%C3%89lectrocardiographie https://viasonix.com/fr/vasculaire-angiologie/lecture-de-la-photo-plethysmographie/

Lien utile : https://archive.physionet.org/cgi-bin/atm/ATM pour visualiser les données(signaux, etc) de physionet.