Chapitre 1 : Le second degré (partie 1)

- Approche

Un fermier possède un terrain carré. Il désire poser une clôture à $1 \in \mathbb{N}$ mètre linéaire et souhaite également amender son terrain avec un engrais qui lui revient à $1 \in \mathbb{N}$ mètre carré. \mathbb{N} Quel est la taille du terrain sachant qu'il dépense $140 \in \mathbb{N}$?

1 Fonction polynôme du second degré

1.1 Définitions et vocabulaire

Définition 1.1

Une fonction polynôme de degré 2 est une fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où a, b et c sont des réels, avec a non nul.

Vocabulaire

- Les réels a, b et c sont appelés coefficients de la fonction f.
- Une fonction polynôme du second degré est aussi appelé fonction *trinôme du second degré*.
- Les solutions (si elles existent) de $ax^2+bx+c=0$ sont appelées **racines** de ax^2+bx+c

Remarque

Une équation de parabole est donc du type $y = ax^2 + bx + c$ où a, b et c sont des réels, avec a non nul.

Exemples

- La fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 2x \sqrt{7}$ est-elle une fonction polynôme du second degré? Si oui, donner les coefficients.
- La fonction f définie sur \mathbb{R} par $f(x) = -3x^2 + 2x$ est-elle une fonction polynôme du second degré? Si oui, donner les coefficients.
- La fonction f définie sur \mathbb{R} par $f(x)=-3x^2+1$ est-elle une fonction polynôme du second degré? Si oui, donner les coefficients.

♦Savoir-Faire 1.1

SAVOIR DÉTERMINER SI UNE FONCTION EST UNE FONCTION TRINÔME DU SECOND DEGRÉ

La fonction f définie sur \mathbb{R} par f(x) = 2(x-2)(x+3) est-elle une fonction du second degré?

Exercices

exercice 12 page 50

1.2 La forme canonique

Vocabulaire

f(x) = 2(x+1)(x-3) est une écriture sous forme factorisée de la fonction f.

 $f(x) = 2x^2 - 4x - 6$ est une écriture sous forme développée de la fonction f.

On cherche à déterminer une autre forme d'écriture, où la variable x n'apparaîtrait qu'une seule fois...

Propriété 1.1 (admise)

Pour toute fonction polynôme du second degré de la forme $f(x) = ax^2 + bx + c$, avec a non nul, on peut trouver des réels α et β , tels que pour tout réel $x: f(x) = a(x-\alpha)^2 + \beta$. L'écriture $a(x-\alpha)^2 + \beta$ est la forme canonique du trinôme $ax^2 + bx + c$. On a $\alpha = -\frac{b}{2a}$ et $\beta = f(\alpha)$.

Remarque

Ce n'est pas une formule à connaître par cœur, il faut savoir déterminer la forme canonique sans la formule

Exercices

20 page 51

79 page 53

Savoir-Faire 1.2

SAVOIR DÉTERMINER LA FORME CANONIQUE D'UNE EXPRESSION DU SECOND DEGRÉ.

- $x^2 + 4x 1$
- $2x^2 4x + 6$
- $-x^2 + 2x + 5$
- $f(x) = 25x^2 150x + 209$
- $3x^2 x + 1$

Exercices 48, 49, 50 page 52

2 Variation de la fonction trinôme

Propriété 1.2 (admise)

La fonction trinôme f définie par $f(x) = ax^2 + bx + c$ admet les variations suivantes, suivant les valeurs de a:

• $\sin a > 0$:

x	$-\infty$	$\frac{-b}{2a}$	$+\infty$
$f(x) = ax^2 + bx + c$		$f(-\frac{b}{2a})$	

• si a < 0:

x	$-\infty$ $\frac{-b}{2a}$ +	∞
$f(x) = ax^2 + bx + c$	$f(-\frac{b}{2a})$	

Savoir-Faire 1.3

SAVOIR ÉTUDIER LES VARIATIONS D'UNE FONCTION TRINÔME DU SECOND DEGRÉ

Exercices

28 page 50 100 page 55 114, 115 page 56

• Exercice Python

• On considère la fonction polynôme définie sur \mathbb{R} par $f(x)=ax^2+bx+c$. Écrire un programme qui demande à l'utilisateur de rentrer les valeurs de a,b et c, et qui fournit ensuite la nature de l'extremum, la valeur de α et celle de β , comme le montre l'image suivante : ***

```
Entrer la valeur de a : 5
Entrer la valeur de b : 6
Entrer la valeur de b : 10
minimum
-0.6
8.2
```

• Écrire cet algorithme sous la forme d'une fonction extrem; cette fonction a pour paramètres a,b et c et retourne un triplet (nature de l'extremum, valeur de alpha, valeur de béta)***

Exercices
120, 121, 122 page 56

3 Courbe représentative

Vocabulaire

La courbe représentative d'une fonction polynôme du second degré est appelée une parabole

Propriété 1.3 (admise)

La courbe représentative de f est une parabole de sommet $S(\alpha; \beta)$.

Si a>0, la parabole est orientée vers le haut, avec la droite d'équation $x=\alpha$ comme axe de symétrie :

Si a<0, la parabole est orientée vers le bas, avec la droite d'équation $x=\alpha$ comme axe de symétrie :

Savoir-Faire 1.4

SAVOIR DÉTERMINER LE SOMMET D'UNE PARABOLE.

Énoncé : Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 3x - 1$.

Déterminer les coordonnées du sommet de la parabole représentant la fonction f.

Savoir-Faire 1.5

SAVOIR DÉTERMINER GRAPHIQUEMENT UNE ÉQUATION DE PARABOLE.

Énoncé : Déterminer graphiquement l'équation de la parabole ci-contre.

Méthode:

- On lit les coordonnées du sommet S... On trouve donc α et β , car $S(\alpha; \beta)$.
- On utilise un autre point pour déterminer a.

Exercices

105 page 55 106, 107, 108 page 55

Savoir-Faire 1.6

SAVOIR CHOISIR QUELLE FORME (DÉVELOPPÉE, FACTORISÉE, CANONIQUE) UTILISER POUR RÉSOUDRE UN PROBLÈME

- Quelle forme est la plus pertinente pour démontrer qu'une fonction est une fonction trinôme?
- Quelle forme est la plus pertinente pour donner le tableau de variations d'une fonction trinôme ?
- Quelle forme est la plus pertinente pour donner les coordonnées du sommet?
- Quelle forme est la plus adaptée pour étudier le signe d'une fonction polynôme du second degré?

4 Résoudre des équations et des inéquations lorsque le polynôme est sous forme factorisée

Savoir-Faire 1.7

SAVOIR RÉSOUDRE DES ÉQUATIONS DU SECOND DEGRÉ EN UTILISANT LES MÉTHODES VUES EN SECONDE

Résoudre:

- (x-1)(x+5) = 0
- $x^2 + 4x = 0$
- $x^2 + 2x + 1 = 0$
- $x^2 + 9 = 6x$
- $(2x+1)^2 = (x-3)^2$
- $x^2 36 = 0$

Exercices

13 page 50

62, 63, 64 page 53

Savoir-Faire 1.8

SAVOIR RÉSOUDRE DES INÉQUATIONS DU SECOND DEGRÉ EN UTILISANT LES MÉTHODES VUES EN SECONDE

Résoudre :

- $\bullet \quad (x-1)(x+5) \le 0$
- $x^2 + 4x > 0$
- $x^2 + 2x + 1 \ge 0$
- $x^2 + 9 < 6x$
- $(2x+1)^2 \le (x-3)^2$
- $x^2 36 > 0$

Exercices

1 41, 42 page 52

Exercices
43 page 52