邯郸市 2024-2025 学年第一学期高二年级期末质量检测

数学参考答案及评分标准

- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. C 【解析】抛物线 $y^2 = 2024x$ 开口向右,p = 1012,准线方程是 x = -506,故选 C.
- 2. B 【解析】因为 $m \cdot n = 3$, $|m| = \sqrt{6}$, $|n| = \sqrt{5}$,所以 m 与 n 的夹角的余弦值是 $\frac{m \cdot n}{|m| |n|} = \frac{3}{\sqrt{30}} = \frac{\sqrt{30}}{10}$,故选 B.
- 3. D 【解析】因为 y 轴的倾斜角为 $\frac{\pi}{2}$,所以直线 l 的倾斜角为 $\frac{\pi}{2}$ + $\frac{\pi}{6}$ = $\frac{2\pi}{3}$,所以直线 l 的方程为 $y = -\sqrt{3}x$,故选 D.
- 4. C 【解析】因为 A, B, C 成等差数列,则 A+C=2B. 又 $A+B+C=\pi$,解得 $B=\frac{\pi}{3}$,所以 $2A+B+2C=5B=\frac{5\pi}{3}$,故选 C.
- 5. B 【解析】设该种水溶液的原浓度为 a,倒 1 次后浓度变为 $\frac{a}{2}$,倒 2 次后浓度变为 $\frac{a}{2^2}$,…,倒 n 次后浓度变为 $\frac{a}{2^n}$,令 $\frac{a}{2^n}$ < $\frac{a}{10}$ (n 为正整数),所以 $n \ge 4$,故选 B.
- 6. D 【解析】由题可知 $|PF_1| |PF_2| \leqslant 2c$,所以 $b \leqslant c$. 又因为 $a^2 = c^2 + b^2$,所以 $a^2 \leqslant 2c^2$, $\frac{\sqrt{2}}{2} \leqslant \frac{c}{a}$, 所以 C 的离心率的取值范围是 $\left[\frac{\sqrt{2}}{2},1\right)$,故选 D.
- 7. A 【解析】过点 O 分别作 AB, CD 的垂线,垂足为 M, N, 则四边形 OMPN 为矩形,所以 $|OM|^2 + |ON|^2 = |OP|^2 = 2$. 设 $|OM| = d_1$, $|ON| = d_2$, 则 $0 \leqslant d_1 \leqslant \sqrt{2}$, $0 \leqslant d_2 \leqslant \sqrt{2}$, 所以 $|AB| = 2\sqrt{4-d_1^2}$, $|CD| = 2\sqrt{4-d_2^2}$, 所以 $|AB| + |CD| = 2(\sqrt{4-d_1^2} + \sqrt{4-d_2^2})$. 因为 $(\sqrt{4-d_1^2} + \sqrt{4-d_2^2})^2 = 6 + 2\sqrt{4-d_1^2} \cdot \sqrt{4-d_2^2} \leqslant 6 + 4 d_1^2 + 4 d_2^2 = 12$ (当且仅当 $d_1^2 = d_2^2 = 1$ 时取得最大值),所以 |AB| + |CD| 的最大值为 $4\sqrt{3}$,故选 A.

高二数学参考答案及评分标准 第1页(共7页)

- 8. A 【解析】易得|AB|=2, $|AC|=|BC|=2\sqrt{3}$. $(\overrightarrow{OA}-\overrightarrow{OD})$ $(\overrightarrow{OB}-\overrightarrow{OD})=0$ 等价于 $\overrightarrow{DA}\perp\overrightarrow{DB}$, $\overrightarrow{OE}^2-(\overrightarrow{OA}+\overrightarrow{OC})$ $\overrightarrow{OE}+\overrightarrow{OA}$ $\overrightarrow{OC}=0$ 等价于 $(\overrightarrow{OE}-\overrightarrow{OA})$ $(\overrightarrow{OE}-\overrightarrow{OC})=0$, 即 $\overrightarrow{AE}\perp\overrightarrow{CE}$, 因此, 点 D, E 分别在以AB, AC 为直径的球面上, 两个球的半径分别为 $r_1=1$, $r_2=\sqrt{3}$. 设点 O_1 , O_2 分别是AB, AC 的中点,则 $|O_1O_2|=\sqrt{3}$,所以|DE|的最大值为 $|O_1O_2|+r_1+r_2=2\sqrt{3}+1$, 故选 A.
- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. AC 【解析】若 P(3,4),则|OP|=5,又 PA_OA , PB_OB ,|OA|=|OB|=1,所以 $|AP|=|BP|=2\sqrt{6}$,所以 $S_{\text{四边} \mathcal{B}OAP} = S_{\triangle OAP} + S_{\triangle OBP} = 2\sqrt{6}$,A 正确;四边形 OAPB 的外接圆直径是 OP,若 P(6,8),则|OP|=10,故外接圆方程是 $(x-3)^2 + (y-4)^2 = 25$,B 不正确;因为原点 O 到直线 4x + 3y 12 = 0 的距离为 $\frac{12}{5}$,垂足为 P,此时以 OP 为直径的圆的直径最小,为 $\frac{12}{5}$,C 正确;若点 P 到圆心 O 的距离为 $\sqrt{2}$,则四边形 OAPB 是正方形,此时 \overrightarrow{PA} , \overrightarrow{PB} 显然不是最小,D 不正确,故选 AC.
- 10. ACD 【解析】因为等差数列 $\{\frac{1}{a_n}\}$ 的公差为 2, $a_1 = 1$, 所以 $\frac{1}{a_n} = 2n 1$, 即 $a_n = \frac{1}{2n 1}$, A 正确, B 不正确;因为 $b_n = a_n \cdot a_{n+1} = \frac{1}{(2n 1)(2n + 1)} = \frac{1}{2} \left(\frac{1}{2n 1} \frac{1}{2n + 1}\right)$, 所以 $T_n = \frac{1}{2} \left(1 \frac{1}{3} + \frac{1}{3} \frac{1}{5} + \dots + \frac{1}{2n 1} \frac{1}{2n + 1}\right) = \frac{1}{2} \left(1 \frac{1}{2n + 1}\right) = \frac{n}{2n + 1}$, $T_n = \frac{1}{2} \left(1 \frac{1}{2n + 1}\right)$ 单调递增,所以 $\frac{1}{3} \leqslant T_n < \frac{1}{2}$, C, D 都正确,故选 ACD.

高二数学参考答案及评分标准 第2页(共7页)

 $4(\sqrt{3}+\sqrt{2})$,设内切球的半径为 r,所以由等积法可得 $V_{\text{四面体}A-BCD}=\frac{1}{3}Sr$,解得 $r=\sqrt{6}-2$,D 正确,故选 ACD.

- 三、填空题:本题共3小题,每小题5分,共15分.
- 12. $\frac{2}{5}$ 【解析】易知 $a^2 = 20$, $b^2 = 4$,设椭圆中心为 O,则 OM 的斜率 $k_{CM} = -\frac{1}{2}$,由 $k_{CM} \cdot k_{AB} = -\frac{b^2}{a^2} = -\frac{1}{5}$,解得 $k_{AB} = \frac{2}{5}$.
- 13. $n \cdot 3^n$ 【解析】因为当 $n \ge 2$ 时, $a_n 3a_{n-1} = 3^n$,两边同时除以 3^n 得 $\frac{a_n}{3^n} \frac{a_{n-1}}{3^{n-1}} = 1$,则数列 $\{\frac{a_n}{3^n}\}$ 是 首项为 $\frac{a_1}{3^1} = 1$,公差为 1 的等差数列,所以 $\frac{a_n}{3^n} = n$,即 $a_n = n \cdot 3^n$.
- 14. $\sqrt{2}$ 【解析】点 M 在侧面 BCC_1B_1 内的轨迹是以 B_1 为圆心,2 为半径的圆弧 \widehat{BC}_1 . 以点 D 为原点,DA 为 x 轴,DC 为 y 轴, DD_1 为 z 轴建立空间直角坐标系,设 $\angle MB_1B = \theta \left(0 \leqslant \theta \leqslant \frac{\pi}{2}\right)$,则 $M(2-2\sin\theta,2,2-2\cos\theta)$. 因为 $B_1N = \frac{\sqrt{2}}{2}B_1D$,所以 $N(2-\sqrt{2},2-\sqrt{2},2-\sqrt{2})$,所以 $\overline{MN} = (2\sin\theta-\sqrt{2},-\sqrt{2},2\cos\theta-\sqrt{2})$,所以 $|\overline{MN}| = \sqrt{10-4\sqrt{2}(\sin\theta+\cos\theta)} = \sqrt{10-8\sin\left(\theta+\frac{\pi}{4}\right)}$. 当 $\theta = \frac{\pi}{4}$ 时, $|\overline{MN}|$ 最小,最小值为 $\sqrt{2}$.

四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

16. 解:(I)若 $p=q$,则点 M 到直线 l_1 , l_2 的距离相等, · · · · · · · · 2 分
点 M 的轨迹是 $\angle POQ$ 的平分线所在直线,轨迹方程为 $y = \frac{\sqrt{3}}{3}x$ 和 $y = -\sqrt{3}x$
(\blacksquare)当 $p=1$ 时,点 M 在与直线 $l_1:y=\sqrt{3}x$ 平行且距离为 1 的两条平行线 $y=\sqrt{3}x+c$ 上,易得
$c=\pm 2$,所以方程为 $y=\sqrt{3}x\pm 2$
同理,当 $q=2$ 时,点 M 在与直线 l_2 平行的两条直线 $y=\pm 2$ 上.
综上所述, $y=\sqrt{3}x\pm2$ 与 $y=\pm2$ 的交点有 4 个,即"距离坐标"为(1,2)的点 M 共有 4 个,其坐
标为 $(0,2)$, $(\frac{4\sqrt{3}}{3},2)$, $(0,-2)$, $(-\frac{4\sqrt{3}}{3},-2)$
(Ⅲ)"距离坐标"为(2,2)的点 M 满足 $ MP = MQ =2$,
若 $\angle POQ = 60^{\circ}$,则 $\angle PMQ = 120^{\circ}$,由余弦定理得 $ PQ = \sqrt{2^2 + 2^2 - 2 \times 2 \times 2 \times \cos 120^{\circ}} = 0$
$2\sqrt{3}$, OM 是四边形 $OPMQ$ 外接圆的直径,由正弦定理得 $ OM = \frac{ PQ }{\sin 120^{\circ}} = 4$
同理,当 $\angle POQ = 120^{\circ}$ 时, $\angle PMQ = 60^{\circ}$, $ PQ = \sqrt{2^2 + 2^2 - 2 \times 2 \times 2 \times \cos 60^{\circ}} = 2$, $ OM = \frac{ PQ }{\sin 60^{\circ}} = 2$
$\frac{4\sqrt{3}}{3}$
综上所述,"距离坐标"为 $(2,2)$ 的点 M 到原点 O 的距离 $ OM $ 为 4 或 $\frac{4\sqrt{3}}{3}$ 15 分
17. ([)解:原点 $O(0,0)$,焦点 $F(\frac{p}{2},0)$,因为 $ PO = PF $,所以点 P 在线段 OF 的垂直平分线
上,故 $P\left(\frac{p}{4},\sqrt{2}\right)$,
代入抛物线方程可得 $p^2=4$. 又 $p>0$,所以 $p=2$,
所以抛物线方程为 $y^2 = 4x$ 4 分
($\ \)$ ($\ \)$ 证明:设直线 AB 的方程为 $x = my + t, A(x_1, y_1), B(x_2, y_2),$
与 $y^2 = 4x$ 联立可得 $y^2 - 4my - 4t = 0$,且 $4x_1 = y_1^2$, $4x_2 = y_2^2$,
由韦达定理可得 $y_1 y_2 = -4t$.
所以 $t^2-4t+4=0$,解得 $t_1=t_2=2$,所以直线 $AB: x=my+2$ 经过定点 $Q(2,0)$, 8 分
同理,直线 CD 也经过定点 Q(2,0) 9 分

18. $\mathbf{M}_{:}(1)(1)$ h $\mathbf{M}_{:}(AB = AP = A_{1}B_{1} = A_{1}P = 2, AA_{1} = BB_{1} = 4,$

 $\angle BAA_1 = 60^{\circ}$,

所以 $\triangle ABP$ 为等边三角形, $\angle AA_1B_1=120^\circ$,所以 BP=2,所以 $\triangle BPC$ 为等边三角形. …… 1 分在 $\triangle ACP$ 中,由余弦定理,得 $\cos \angle CAP=\frac{6+4-4}{2\times\sqrt{6}\times2}=\frac{\sqrt{6}}{4}$,故 $\cos \angle PA_1C_1=-\frac{\sqrt{6}}{4}$, …… 3 分在 $\triangle PA_1C_1$ 中,由余弦定理,得 $PC_1=A_1C_1^\circ+PA_1^\circ-2A_1C_1$ • $PA_1\cos \angle PA_1C_1=16$,所以 $PC_1=4$. 4 分(ii)直线 PB_1 上平面 BCP. …… 5 分证明如下:在 $\triangle PA_1B_1$ 中,由余弦定理,得 $PB_1=2\sqrt{3}$.

由 $BB_1^2 = BP^2 + PB_1^2$ 可得 $BP \perp PB_1$,

由 $PC_1^2 = B_1C_1^2 + PB_1^2$ 得 $B_1C_1 \perp PB_1$.

$$\left\{ \begin{array}{l} \overrightarrow{PC} \bullet \mathbf{n_1} \!=\! 0 \,, \\ \overrightarrow{PA_1} \bullet \mathbf{n_1} \!=\! 0 \,, \end{array} \right. \left\{ \begin{array}{l} y_1 \!+\! \sqrt{3} \, z_1 \!=\! 0 \,, \\ \sqrt{3} \, x_1 \!-\! y_1 \!=\! 0 \,, \end{array} \right.$$

当 $\theta = \frac{\pi}{2}$ 时, O_1 , O_2 到右顶点 B 的距离之差为 0.

 $\angle CF_2F_1$, $\angle DF_2F_1$.易知 $\angle CF_2F_1 = \pi - \theta$, $\angle DF_2F_1 = \theta \left(\frac{\pi}{3} < \theta < \frac{2\pi}{3}\right)$.

当 $\theta \neq \frac{\pi}{2}$ 时,在 Rt $\triangle BO_1F_2$,Rt $\triangle BO_2F_2$ 中,因为 $|BF_2|=2$,所以 $\frac{|O_1B|}{|BF_2|}=\tan\frac{\pi-\theta}{2}$, $\frac{|O_2B|}{|BF_2|}=\tan\frac{\theta}{2}$,

则
$$|O_1B| = 2\tan \frac{\pi - \theta}{2}$$
, $|O_2B| = 2\tan \frac{\theta}{2}$, 所以 $|O_1B| - |O_2B| = 2\left(\tan \frac{\pi - \theta}{2} - \tan \frac{\theta}{2}\right)$.

因为
$$\tan \frac{\pi - \theta}{2} - \tan \frac{\theta}{2} = \frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} - \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}}{\sin \frac{\theta}{2} \cos \frac{\theta}{2}} = \frac{2\cos \theta}{\sin \theta}$$
,所以 $|O_1B| - |O_2B| = \frac{4\cos \theta}{\sin \theta}$.

又
$$\frac{\pi}{3}$$
< θ < $\frac{2\pi}{3}$,且 θ = $\frac{\pi}{2}$,即 tan θ > $\sqrt{3}$ 或 tan θ < $-\sqrt{3}$,所以 $-\frac{4\sqrt{3}}{3}$ < $\frac{4\cos\theta}{\sin\theta}$ < 0 或 0 < $\frac{4\cos\theta}{\sin\theta}$ < $\frac{4\sqrt{3}}{3}$.

综上所述, O_1 , O_2 到右顶点 B 的距离之差的取值范围是 $\left(-\frac{4\sqrt{3}}{3},\frac{4\sqrt{3}}{3}\right)$. …… 17 分