Lecture 4

Chapter 3: Functional Dependencies, Section 3.1 — 3.2.5

John Connor

August 20, 2019

Functional Dependency

A functional dependency f on a relation R is a statement of the form

$$f = A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m$$
.

which is read " $A_1A_2\cdots A_n$ functionally determine $B_1B_2\cdots B_m$."

Functional Dependency

A functional dependency f on a relation R is a statement of the form

$$f = A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m$$
.

which is read " $A_1A_2\cdots A_n$ functionally determine $B_1B_2\cdots B_m$."

This statement means that if two tuples of R have the same values for the attributes A_1, A_2, \dots, A_n then they must also have the same values for the attributes B_1, B_2, \dots, B_m .

Functional Dependency

A functional dependency f on a relation R is a statement of the form

$$f = A_1 A_2 \cdots A_n \rightarrow B_1 B_2 \cdots B_m$$
.

which is read " $A_1 A_2 \cdots A_n$ functionally determine $B_1 B_2 \cdots B_m$."

This statement means that if two tuples of R have the same values for the attributes A_1, A_2, \dots, A_n then they must also have the same values for the attributes B_1, B_2, \dots, B_m .

If f is true of every pair of tuples of **every instance** of R then R is said to satisfy f.

Definition: Key

A set of attributes $A = \{A_1, A_2, \cdots, A_n\}$ is a key for a relation if

Definition: Key

A set of attributes $A = \{A_1, A_2, \cdots, A_n\}$ is a *key* for a relation if

1. the set functionally determines all other attributes of the relation;

Definition: Key

A set of attributes $A = \{A_1, A_2, \cdots, A_n\}$ is a *key* for a relation if

- 1. the set functionally determines all other attributes of the relation;
- 2. A is minimal. That is, no proper subset of A functionally determines all of the other attributes of the relation.

Key: Question

Can a relation have more than one key?

Key: Question

Can a relation have more than one key?

Yes!

Key: Question

Can a relation have more than one key?

Yes!

As an example, just take any relation R with a key k, and then create a new relation R' by adding an attribute k' to the relation and assign to each tuple of R' a unique value for k'. Now k and k' are keys of R'.

Super Keys

A set of attributes that contains a key is called a *superkey*.

Super Keys

A set of attributes that contains a key is called a *superkey*. Note that a key is also a superkey.

Suppose R is a relation with attributes A_1, A_2, \dots, A_n . As a function of n, tell how many superkeys R has

1. The only key is A_1 .

Suppose R is a relation with attributes A_1, A_2, \cdots, A_n . As a function of n, tell how many superkeys R has

- 1. The only key is A_1 .
- 2. The only keys are A_1 and A_2 .

Suppose R is a relation with attributes A_1, A_2, \dots, A_n . As a function of n, tell how many superkeys R has

- 1. The only key is A_1 .
- 2. The only keys are A_1 and A_2 .
- 3. The only keys are $\{A_1, A_2\}$ and $\{A_3, A_4\}$.

Suppose R is a relation with attributes A_1, A_2, \dots, A_n . As a function of n, tell how many superkeys R has

- 1. The only key is A_1 .
- 2. The only keys are A_1 and A_2 .
- 3. The only keys are $\{A_1, A_2\}$ and $\{A_3, A_4\}$.
- **4**. The only keys are $\{A_1, A_2\}$ and $\{A_1, A_3\}$.

If the relation R(A,B,C) satisfies the functional dependency $A\to B$ and the functional dependency $B\to C$ then does R satisfy $A\to C$?

If the relation R(A,B,C) satisfies the functional dependency $A\to B$ and the functional dependency $B\to C$ then does R satisfy $A\to C$?

Yes!

If the relation R(A, B, C) satisfies the functional dependency $A \to B$ and the functional dependency $B \to C$ then does R satisfy $A \to C$?

Yes!

Given two tuples $(a_1, b_1, c_1), (a_2, b_2, c_2)$

If the relation R(A, B, C) satisfies the functional dependency $A \to B$ and the functional dependency $B \to C$ then does R satisfy $A \to C$?

Yes!

```
Given two tuples (a_1, b_1, c_1), (a_2, b_2, c_2)
if a_1 = a_2 then b_1 = b_2, since R satisfies A \rightarrow B;
```

If the relation R(A,B,C) satisfies the functional dependency $A\to B$ and the functional dependency $B\to C$ then does R satisfy $A\to C$?

Yes!

```
Given two tuples (a_1, b_1, c_1), (a_2, b_2, c_2)
if a_1 = a_2 then b_1 = b_2, since R satisfies A \to B;
but if b_1 = b_2 then c_1 = c_2, since R satisfies B \to C.
```

If the relation R(A,B,C) satisfies the functional dependency $A \to B$ and the functional dependency $B \to C$ then does R satisfy $A \to C$?

Yes!

Given two tuples $(a_1, b_1, c_1), (a_2, b_2, c_2)$ if $a_1 = a_2$ then $b_1 = b_2$, since R satisfies $A \to B$; but if $b_1 = b_2$ then $c_1 = c_2$, since R satisfies $B \to C$.

From the assumption that $a_1 = a_2$ we derived $c_1 = c_2$, therefore R satisfies $A \to C$.

Functional Dependency: Question

If *R* satisfies the functional dependency

$$A_1A_2\cdots A_n\to B_1B_2\cdots B_m$$
.

is this equivalent to satisfying the set of functional dependencies

$$A_1 A_2 \cdots A_n \to B_1$$

$$A_1 A_2 \cdots A_n \to B_2$$

$$\vdots$$

$$A_1 A_2 \cdots A_n \to B_m?$$

Functional Dependency: Question

If *R* satisfies the functional dependency

$$A_1A_2\cdots A_n\to B_1B_2\cdots B_m$$
.

is this equivalent to satisfying the set of functional dependencies

$$A_1 A_2 \cdots A_n \to B_1$$

$$A_1 A_2 \cdots A_n \to B_2$$

$$\vdots$$

$$A_1 A_2 \cdots A_n \to B_m$$
?

Yes!

Functional Dependency: Splitting Rule

If *R* satisfies the functional dependency

$$A_1A_2\cdots A_n\to B_1B_2\cdots B_i\cdots B_m.$$

It satisfies

$$A_1A_2\cdots A_n \to B_1B_2\cdots B_m$$

 $A_1A_2\cdots A_n \to B_i$

Functional Dependency: Combining Rule

If R satisfies the functional dependencies

$$A_1 A_2 \cdots A_n \to B_1 B_2 \cdots B_m$$

$$A_1 A_2 \cdots A_n \to B_i$$

It satisfies

$$A_1A_2\cdots A_n \to B_1B_2\cdots B_i\cdots B_m$$
.

If R satisfies the functional dependency

$$A_1A_2 \rightarrow B_1$$

does it satisfy

$$A_1 \rightarrow B_1$$

 $A_2 \rightarrow B_1$?

If R satisfies the functional dependency

$$A_1A_2 \rightarrow B_1$$

does it satisfy

$$A_1 \rightarrow B_1$$

 $A_2 \rightarrow B_1$?

No!

If R satisfies the functional dependency

$$A_1A_2 \rightarrow B_1$$

does it satisfy

$$A_1 \rightarrow B_1$$

 $A_2 \rightarrow B_1$?

No!

Consider title, year \rightarrow length.

If *R* satisfies the functional dependency

$$A_1A_2 \rightarrow B_1$$

does it satisfy

$$A_1 \rightarrow B_1$$

 $A_2 \rightarrow B_1$?

No!

Consider title, year \rightarrow length. Does year \rightarrow length seem likely?

Functional Dependency: Closure

Given a set $A = \{A_1, \dots, A_n\}$ of attributes and a set S of functional dependencies, the closure of A under S is the set of attributes $B = \{B_1, \dots, B_m\}$ such that every relation that satisfies S satisfies $A \to B$.

Functional Dependency: Closure

Given a set $A = \{A_1, \dots, A_n\}$ of attributes and a set S of functional dependencies, the closure of A under S is the set of attributes $B = \{B_1, \dots, B_m\}$ such that every relation that satisfies S satisfies $A \to B$.

We denote the closure of A as A^+ .

Functional Dependency: Closure Algorithm (3.7)

INPUT: A set of attributes $A = \{A_1, \dots, A_n\}$ and a set S of functional dependencies.

OUTPUT: The closure of A under S.

- 1. Split the functional dependencies in S so each functional dependency has a single attribute on the right.
- 2. Let X be the set of attributes which will eventually become the closure. Initialize X = A.
- 3. Repeatedly search for some functional dependency

$$B_1B_2\cdots B_m\to C$$

such that all $B_i \in X$ but $C \notin X$. If such an attribute C is found, add C to X and repeate step 3. Otherwise return X.

Closure Algorithm: Example 1 (3.8)

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

Closure Algorithm: Example 1 (3.8)

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

1. Split *S*.

Closure Algorithm: Example 1 (3.8)

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

1. Split S. Let $S' = \{BC \rightarrow D,$

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B,$

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, CD \rightarrow E$

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F,$

Let

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$
- 5. $CD \rightarrow E \in S'$ and $C, D \in X$ so add E to X. $(X = \{B, C, D, E\})$

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$
- 5. $CD \rightarrow E \in S'$ and $C, D \in X$ so add E to X. $(X = \{B, C, D, E\})$
- 6. $E \rightarrow F \in S'$ and $E \in X$ so add F to X. $(X = \{B, C, D, E, F\})$

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$
- 5. $CD \rightarrow E \in S'$ and $C, D \in X$ so add E to X. $(X = \{B, C, D, E\})$
- 6. $E \rightarrow F \in S'$ and $E \in X$ so add F to X. $(X = \{B, C, D, E, F\})$
- 7. Are we done yet?

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$
- 5. $CD \rightarrow E \in S'$ and $C, D \in X$ so add E to X. $(X = \{B, C, D, E\})$
- 6. $E \rightarrow F \in S'$ and $E \in X$ so add F to X. $(X = \{B, C, D, E, F\})$
- 7. Are we done yet? Yes!

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$
- 5. $CD \rightarrow E \in S'$ and $C, D \in X$ so add E to X. $(X = \{B, C, D, E\})$
- 6. $E \rightarrow F \in S'$ and $E \in X$ so add F to X. $(X = \{B, C, D, E, F\})$
- 7. Are we done yet? Yes! Are there any functional dependencies in S that we did not use?

$$A = \{B, C\}$$

$$S = \{BC \to D, CD \to BE, E \to F, DG \to C\}$$

- 1. Split S. Let $S' = \{BC \rightarrow D, CD \rightarrow B, CD \rightarrow E, E \rightarrow F, DG \rightarrow C\}$
- 2. $X = A = \{B, C\}$
- 3. $BC \rightarrow D \in S'$ and $B, C \in X$ so add D to X. $(X = \{B, C, D\})$
- 4. $CD \rightarrow B \in S'$ and $C, D \in X$ so add B to X. $(X = \{B, C, D\})$
- 5. $CD \rightarrow E \in S'$ and $C, D \in X$ so add E to X. $(X = \{B, C, D, E\})$
- 6. $E \rightarrow F \in S'$ and $E \in X$ so add F to X. $(X = \{B, C, D, E, F\})$
- 7. Are we done yet? Yes! Are there any functional dependencies in S that we did not use? Yes! We did not use $DG \rightarrow C$.