

LD19 LiDAR

Principle of DTOF

Ultimate small size, low cost

High reliability, long working life

Datasheet v1.1

目录

1.	原理-	与系统简介	3			
		电气与机械参数				
	2.2.	光学参数	4			
	2.3.	性能参数	5			
3.	数据接口					
	3.1.	通讯与接口	5			
	3.2.	坐标系定义	6			
4.	光学	窗口与机械尺寸	7			
5.	安全-	与适用范围	8			
6	修订	구 경	۵			

1. 原理与系统简介

LD19 主要由激光测距核心,无线传电单元,无线通讯单元,角度测量单元、电机驱动单元和机械外壳组成。

LD19 测距核心采用 DTOF 技术,可进行每秒 4500 次的测距。每次测距时,LD19 朝前发射出红外激光,激光遇到目标物体后被反射到单光子接收单元。由此,我们获取到了激光的发出时间和单光子接收单元收到激光的时间,两者的时间差即光的飞行时间,飞行时间再结合光速即可解算出距离。

获取到距离数据后,LD19 会融合角度测量单元测量到的角度值组成点云数据,然后通过无线通讯将点云数据发送到外部接口。同时外部接口提供PWM,使电机驱动单元驱动电机。外部控制单元获取到转速后,通过PID 算法闭环控制到指定的转速,从而使LD19 稳定工作。LD19 点云数据形成的环境扫描图意图如下:

2. 规格参数

2.1. 电气与机械参数

参数名称	单位	最小值	典型值	最大值	备注
输入电压	V	4.5V	5V	5.5V	
PWM 控制频率	KHz	20	30	50	方波信号
PWM 高电平	V	3.0	3.3	5.0	
PWM 低电平	V	-0.3	0	0.5	
PWM 占空比	%	0	40	100	40% 占空比扫描频率为 10Hz
启动电流	mA	-	300	-	
工作电流	mA	-	180	-	
整机尺寸	整机尺寸 mm 54*46.29*34.8 (长宽高)				
整机重量	g	-	47	-	不含连接线
通讯接口	-	UART @ 230400			
UART 高电平	V	2.9	3.3	3.5	
UART 低电平	V	-0.3	0	0.4	
驱动电机	-	BLDC			无刷电机
工作温度	℃	-10	25	40	
存储温度	°C	-30	25	70	

2.2. 光学参数

参数名称	单位	最小值	典型值	最大值	备注
激光波长	nm	895	905	915	红外波段
激光功率	W	-	25	-	激光二极管峰值功率,实际使用功率远低于此值
激光脉宽	ns	-	1	-	
激光安全等级	-	IEC-60825 Class 1			
俯仰角	0	0	0.5	2	

2.3. 性能参数

参数名称	单位	最小值	典型值	最大值	备注
测距范围	m	0.02	-	12	70%目标反射率
扫描频率	Hz	5	10	13	外部提供 PWM 控速
测距频率	Hz	-	4500	-	固定频率
测距精度	mm	-	-	-	测距小于 0.3m 时,有数据输出。测 距数据变化趋势与实际距离变化趋势 一致
/ 炒	mm	-45	-	45	测距范围在300mm 到 12000mm 时,测量 100 次的平均值(70% 漫反射 面)
测距标准差	mm	-	10	-	测距范围在 300mm 到 12000mm 时
测量分辨率	mm	-	15	-	
角度误差	0	-	-	2	
角度分辨率	0	-	1	-	
抗环境光	KLux	-	-	30	
整机寿命	h	10000	-	-	

3. 数据接口

3.1. 通讯与接口

LD19 使用 ZH1.5T-4P 1.5mm 连接器与外部系统连接,实现供电和数据接收,具体接口定义 和 参 数 要 求 见 下 图 / 表:

序号	信号名	类型	描述	最小值	典型值	最大值
1	Tx	输出	雷达数据 输出	0V	3.3V	3.5V
2	PWM	输入	电机控制 信号	0V	-	3.3V
3	GND	供电	电源负极	-	0V	-
4	P5V	供电	电源正极	4.5V	5V	5.5V

LD19 具有可无级调速的电机驱动器,支持内部控速和外部控速。在 PWM 引脚不接或者接入高阻信号时,默认为内部调速,默认转速为 10Hz。外部控速需要在 PWM 引脚接入方波信号,可通过 PWM 信号占空比控制电机的启、停和转速。由于每个产品电机的个体差异,占空比设置为典型值时实际转速可能会有差异,如要精确控制电机转速,需根据接收数据中的转速信息进行闭环控制。

LD19 的数据通讯采用标准异步串口(UART)单向发送,其传输参数如下表所示:

波特率	数据长度	停止位	奇偶校验位	流控制
230400	8 Bits	1	无	无

LD19 采用单向通讯、稳定旋转后、即开始发送测量数据、不需要发送任何指令。

3.2. 坐标系定义

LD19 常用遵循左手法则的坐标体系,传感器的正前方定义位坐标系的 X 轴(即 0 角度位置),坐标系原点为测距单元的旋转中心,旋转角度沿着顺时针方向旋转增大,如下图所示:

4. 光学窗口与机械尺寸

LD19 的测距单元中的激光发射与接收,需要一个光学窗口,在结构上需要露出。外部系统对该窗口的部分遮挡,将在一定程度上影响 LD19 的测距性能。下图为光学窗口尺寸(单位:mm)。

其他安装尺寸见下图, 公差为±0.2 (单位: mm):

5. 安全与适用范围

LD19 采用低功率的红外激光器作为发射光源,因而可以确保对人类及宠物的安全,目前本产品已测试通过 Class I 级别的激光器安全标准。

LD19 符合 21 CFR 1040.10 和 1040.11, 但 2007 年 6 月 24 日激光通告第 50 号的偏差除外。

注意: 自行调整或改装本产品可能会导致危险的辐射暴露。

6. 修订记录

版本	修订日期	修订内容		
1.0	2021-4-02	初始创建		
1.1	2021-05-21	更新了测距精度的备注		