POWERED BY Dialog

X-RAY STEPPER, AND SEMICONDUCTOR-DEVICE MANUFACTURING EQUIPMENT USING THE SAME

Publication Number: 10-070058 (JP 10070058 A), March 10, 1998

Inventors:

MIYAKE AKIRA

TSUKAMOTO MASAMI

Applicants

• CANON INC (A Japanese Company or Corporation), JP (Japan)

Application Number: 08-223614 (JP 96223614), August 26, 1996

International Class (IPC Edition 6):

- H01L-021/027
- G03F-007/20
- G21K-005/02

JAPIO Class:

- 42.2 (ELECTRONICS--- Solid State Components)
- 23.1 (ATOMIC POWER--- General)
- 29.1 (PRECISION INSTRUMENTS--- Photography & Cinematography)

JAPIO Keywords:

- R002 (LASERS)
- R004 (PLASMA)
- R115 (X-RAY APPLICATIONS)

Abstract:

PROBLEM TO BE SOLVED: To eliminate the loss of quantity of light and shorten its exposure time and improve its throughput, by using it a reflection type convex cylindrical surface integrator the shape of whose reflection surface is the one-dimension arrangement of many fine convex cylindrical surfaces.

SOLUTION: An X-ray 2 radiated from a luminescent point 1 of a laser plasma X-ray light source 13 transmits through a filter 3 for preventing the sputtering of a target, and it is reflected by a first revolutionary-paraboloid mirror 4 to be a parallel beam. By a reflection type convex cylindrical integrator 5 comprising a total reflection mirror whose shape is the one-dimension arrangement of many fine convex cylindrical surfaces, that beam is reflected to form many secondary light sources. By a second revolutionary-paraboloid mirror 6, the X-rays radiated from these secondary light sources are

Dialog Results Page 2 of 2

reflected to be projected on a mask 7. Each of the distance between the integrator 5 and the second revolutionary-paraboloid mirror 6 and the distance between the second revolutionary-paraboloid mirror 6 and the mask 7 is equal to the focal length of the revolutionary-paraboloid mirror 6 to satisfy Koehler illumination condition.

JAPIO

© 2003 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 5786958

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-70058

(43)公開日 平成10年(1998) 3月10日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ			技術表示箇所
HO1L 21/027			H01L	21/30	531A	
G03F 7/20	503		G03F	7/20	503	
G 2 1 K 5/02			G 2 1 K	5/02	X	
•						
,						

審査請求 未請求 請求項の数9 OL (全 8 頁)

(21)出願番号	特願平8-223614	(71)出顧人	000001007
			キヤノン株式会社
(22)出願日	平成8年(1996)8月26日		東京都大田区下丸子3丁目30番2号
		(72)発明者	三宅 明
		, ,,,,,,,	東京都大田区下丸子3丁目30番2号 キヤ
			ノン株式会社内
		(72) 発明者	塚本 雅美
		,	東京都大田区下丸子3丁目30番2号 キヤ
			ノン株式会社内
		(74)代理人	

(54) 【発明の名称】 X線縮小投影露光装置及びこれを用いた半導体デバイス製造装置

(57)【要約】

【課題】 光量の損失がなく、露光時間が短縮され、ス ループットを高めることができるX線縮小投影露光装置 及びこれを用いた半導体デバイス製造装置を提供する。

【解決手段】 スキャン露光によるX線縮小投影露光に おいて、複数の微小な円筒面が平行に配列した反射面を もつ斜入射反射インテグレータ5によって円弧状の領域 をケーラー照明する。円弧状の領域のみにX線が照射さ れるので、光量の損失がなく露光時間が短縮する。

【特許請求の範囲】

【請求項1】 X線ビームを放射する光源と、

回路パターンが形成されたマスクと、

前記光源からの前記X線ビームを前記マスク面上に照明する照明光学系と、

前記マスクからの反射ビームをウエハ面上に収束させて 前記回路パターンの像を縮小投影する投影光学系とから なるX線縮小投影露光装置において、

前記照明光学系は、

前記X線ビームを平行X線ビームにする第1の凹面ミラーと

前記平行X線ビームを反射する複数円筒面をもつ反射型 インテグレータと、

反射された前記平行X線ビームを更に反射して前記マスク面上に照明する第2の凹面ミラーとを備えていることを特徴とするX線縮小投影露光装置。

【請求項2】 請求項1に記載のX線縮小投影露光装置において、

前記反射型インテグレータの前記円筒面の軸と入射する 前記平行X線ビームの光軸とが同一平面上にあることを 特徴とするX線縮小投影露光装置。

【請求項3】 請求項1又は請求項2に記載のX線縮小投影露光装置において、

前記マスク面上の照明領域が円弧状の形状をしていることを特徴とするX線縮小投影露光装置。

【請求項4】 請求項1から請求項3の何れか1項に記載のX線縮小投影露光装置において、

前記反射型インテグレータの反射面には多層膜が形成されていることを特徴とするX線縮小投影露光装置。

【請求項5】 請求項1から請求項3の何れか1項に記載のX線縮小投影露光装置において、

前記反射型インテグレータの反射面には単層膜が形成されていることを特徴とするX線縮小投影露光装置。

【請求項6】 請求項1から請求項5の何れか1項に記載のX線縮小投影露光装置において、

前記マスク面上の照明は、ほぼケーラー照明の条件を満たしていることを特徴とするX線縮小投影露光装置。

【請求項7】 請求項1から請求項6の何れか1項に記載のX線縮小投影露光装置において、

光源はレーザープラズマX線光源であることを特徴とするX線縮小投影露光装置。

【請求項8】 請求項1から請求項6の何れか1項に記載のX線縮小投影露光装置において、

光源はアンジュレータ×線光源であることを特徴とする ×線縮小投影露光装置。

【請求項9】 請求項1から請求項8の何れか1項に記載のX線縮小投影露光装置から成ることを特徴とする半導体デバイス製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はX線縮小投影露光装置及びこれを用いた半導体デバイス製造装置に関する。 【0002】

【従来の技術】微細パターンをもつ半導体回路素子などを製造する方法として、X線縮小投影露光方法がある。この方法では、回路パターンが形成されたマスクをX線で照明し、マスク上のパターンの像をウエハ面に縮小投影し、その表面のレジストを露光し、パターンを転写する。

【0003】従来のX線縮小投影露光のための装置としては図10にて示す構成のものが採用されていた。即ち図10は従来のX線縮小投影露光装置の模式的構成図、図11は従来の反射型インテグレータの模式的斜視図、図12は従来のマスク面上の照明領域を示す図である。図中、符号1001で示されるものはX線の発光点、1002はX線、1003はフィルタ、1004は第1の回転放物面ミラー、1007はマスク、1008は投影光学系、1009はウエハ、1010はマスクステージ、1011はウエハステージ、1012は円弧状アパーチャ、1013はレーザー光源、1014はレーザー集光光学系、1015はマスク面上の照明領域、1016は露光が行われる円弧状領域、1017は真空容器である。

【0004】従来のX線縮小投影露光装置は、X線光源、照明光学系、マスク1007、投影光学系1008、ウエハ1009、マスク又はウエハを搭載したステージ1010、1011、マスクやウエハの位置を精密にあわせるアライメント機構、X線の減衰を防ぐために光学系全体を真空に保つための真空容器1017と排気装置、などからなる。

【0005】X線光源としてはレーザープラズマやアンジュレータなどが用いられる。照明光学系では光源からのX線を第1の回転放物面ミラー1004で集光し、反射型インテグレータ1005に照射し、2次光源を形成し、さらにこの2次光源からのX線を第2の回転放物面ミラー1006で集光しマスク1007を照明する。

【0006】マスク1007は多層膜反射鏡の上にX線吸収体などからなる非反射部を設けた転写パターンが形成されたものである。マスク1007で反射されたX線は投影光学系1008によってウエハ1009面上に結像する。投影光学系1008では軸外の細い円弧状の領域が良好な結像性能をもつように設計されている。露光はこの細い円弧状領域のみが利用されて行われるようにウエハ1009直前に円弧状の開口をもったアパーチャ1012が設けられている。矩型形状をしたマスク全面のパターンを転写するため、マスク1007とウエハ1009が同時にスキャンして露光が行われる。

【0007】投影光学系1008は複数の多層膜反射鏡によって構成され、マスク1007上のパターンをウエ

ハ1009表面に縮小投影する。投影光学系1008は 通常、テレセントリック系が用いられている。

【0008】照明光学系は、レーザープラズマX線光 源、第1の回転放物面ミラー1004、反射型インテグ レータ1005、第2の回転放物面ミラー1006で構 成される。反射型インテグレータ1005には、図11 のような微小な凸または凹球面を2次元に多数配列した フライアイミラーが用いられる。レーザープラズマX線 光源1013の発光点1001から放射されたX線10 02は第1の回転放物面ミラー1004で反射して平行 なビームとなる。このビームが反射型インテグレータ1 005で反射して、多数の2次光源を形成する。この2 次光源からのX線は第2の回転放物面ミラー1006で 反射してマスク1007を照明する。2次光源から第2 の回転放物面ミラー1006、第2の回転放物面ミラー 1006からマスク1007までの距離は第2の回転放 物面ミラー1006の焦点距離に等しく設定されてい る。すなわち、2次光源の位置に第2の回転放物面ミラ -1006の焦点が位置しているので2次光源の1つか ら出たX線はマスク1007を平行光で照射する。投影 光学系1008はテレセントリック系が用いられている ので2次光源の像が投影光学系1008の入射瞳面に投 影されることになり、ケーラー照明の条件が満たされて いる。マスク1007上のある1点を照明するX線は全 ての2次光源から出たX線の重なったものである。

【0009】2次光源群の空間広がりの大きさをd、各 2次光源から出る X線の角度広がりを θ、第2の回転放 物面ミラー1006の焦点距離をfとすれば、マスク1 007面上の照明領域1015の大きさは $f \times \theta$ 、マス ク上の1点を照明するX線の角度広がりはd/fとな る。

【0010】照明光学系の特性を表わすパラメータとし てコヒーレンスファクタσがある。投影光学系1008 のマスク側開口数をNAp1、照明光学系のマスク側開 口数をNAiとしたとき、コヒーレンスフアクタは $\sigma = NAi/NAp1$

と定義される。最適なσの値は、必要な解像度とコント ラストによって決定される。一般に、σが小さすぎる と、ウエハ1009上に投影された微細なパターンの像 のエッジ部に干渉パターンが現われ、σが大きすぎる と、投影された像のコントラストが低下する。

【0011】
のが0の場合にはコヒーレント照明と呼ば れ、光学系の伝達関数OTFは投影光学系のウエハ10 09側開口数をNAp2、X線の波長を入としてNAp 2/入で与えられる空間周波数までは一定値を示すが、 それを越える高周波数については0となってしまい、解 像出来ない。

【0012】一方、σが1の場合にはインコヒーレント 照明と呼ばれ、OTFは空間周波数が大きくなるに従っ て小さくなるが、2×NAp2/Aで与えられる空間周 波数までは0とならない。従ってより微細なバターンま で解像することが出来る。X線露光においては、転写す るパターンの形状や大ぎさ、適用するレジストプロセス の特性などに応じて最適なσの値が選択され、通常σ= 0.1~1.0の値となるように設定される。

[0013]

【発明が解決しようとする課題】しかしながら、従来の X線縮小投影露光装置には次の様な欠点があった。即 ち、図12に示すように、マスク面上の照明領域101 5の形状は実際に露光が行われる円弧状領域1016を 含むほぼ矩型形状や惰円形の領域であり、露光領域以外 の部分に多くのX線が照射される。このX線は露光に寄 与せず、無駄になる。このようにX線光量の損失が非常 に大きく、そのため、露光時間が長くかかり、スループ ットを高めることができないという欠点があった。

【0014】上記従来技術の問題点に鑑み、本発明の目 的は、光量の損失がなく、露光時間が短縮され、スルー プットを高めることができるX線縮小投影露光装置及び これを用いた半導体デバイス製造装置を提供することに ある.

[0015]

【課題を解決するための手段】本発明のX線縮小露光方 法は、X線ビームを放射する光源と、回路パターンが形 成されたマスクと、光源からのX線ビームをマスク面上 に照明する照明光学系と、マスクからの反射ビームをウ エハ面上に収束させて回路パターンの像を縮小投影する 投影光学系とからなるX線縮小投影露光装置において、 照明光学系は、X線ビームを平行X線ビームにする第1 の凹面ミラーと、平行X線ビームを反射する複数円筒面 をもつ反射型インテグレータと、反射された平行X線ビ ームを更に反射してマスク面上に照明する第2の凹面ミ ラーとを備えている。

【0016】また、反射型インテグレータの円筒面の軸 と入射する平行X線ビームの光軸とが同一平面上にあっ てもよい。また、マスク面上の照明領域が円弧状の形状 をしていてもよい。また、反射型インテグレータの反射 面には多層膜または単層膜が形成されていてもよい。ま た、マスク面上の照明は、ほぼケーラー照明の条件を満 たしていてもよい。また、光源はレーザープラズマX線 光源またはアンジュレータX線光源であってもよい。 【0017】本発明の半導体デバイス製造装置は、上述

のX線縮小投影露光装置から成る。

【0018】即ち、多数の円筒面を平行に多数並べた広 い面積の反射鏡からなる反射型インテグレータを用いる ことによって、マスク上の円弧状領域のみが照明され る。マスクの照明領域の形状は実際に露光が行われる円 弧領域に限定され、露光領域以外の部分にX線が無駄に 照射されることがない。 従って光量の損失がなく、 露光 時間が短縮され、スループットを高めることができる。 [0019]

【発明の実施の形態】マスク面上の露光領域以外の広い 領域が照明されるために光量の損失が非常に大きく、露 光時間が長くかかり、スループットを高めることができ ない、という従来の技術の欠点は複数の円筒面をもった 反射型インテグレータを用いることによって以下のよう にして解決される。

【0020】図1は複数の凸円筒面をもった反射型凸円 筒面インテグレータに平行光が入射した場合の模式的斜 視図、図2は反射型凸円筒面インテグレータの模式的断 面図、図3は反射型凸円筒面インテグレータの円筒面で のX線反射の説明図、図4は反射型凸円筒面インテグレ ータの円筒面で反射したX線の角度分布図である。

【0021】図中、符号5は反射型凸円筒面インテグレータである。

【0022】すなわち、X線光源から放射されるほぼ平行なX線ビームを複数の円筒面をもった反射型インテグレータに入射し、このインテグレータによって2次光源を形成するとともに、この2次光源から放射されるX線の角度分布を円錐面状とし、2次光源位置を焦点とする反射鏡でこのX線を反射してマスクを照明する。

【0023】複数の円筒面をもった反射型インテグレータの作用を説明するため先ず、一つの円筒面反射鏡に平行光が入射した場合の反射光の振る舞いについて図3を基に述べる。一つの円筒面にその中心軸に垂直な面に対しての角度で平行光を入射する場合を考える。平行な入射光の光線ベクトルを

R1=(0、 $-\cos\theta$ 、 $\sin\theta$) 円筒面形状の反射面の法線ベクトルを n=($-\sin\alpha$ 、 $\cos\alpha$ 、0) とすると、反射光の光線ベクトルは

R2= $(\cos \theta \times \sin 2\alpha, \cos \theta \times \cos 2\alpha, \sin \theta)$

となる。このとき反射光の光線ベクトルを位相空間にプロットすれば、図4に示すように×y平面上で半径cosの円となる。即ち、反射光は円錐面状の発散光になる。この円錐面の頂点の位置に2次光源が存在することになる。円筒面が凹面であれば反射面の外部に、凸面であれば反射面の内部に、2次光源が存在することになる。また、図2に示すように反射面が円筒面の一部に限られていて、その中心角が2々であるときには、図4に示すように反射光の光線ベクトルは×y平面上で中心角4々の円弧となる。

【0024】次に、円筒面の一部からなる反射鏡に平行光が入射し、この2次光源の位置に焦点をもつ焦点距離 fの反射鏡と、さらにこの反射鏡からfだけ離れた位置 にマスクを配置した場合を考える。2次光源から出た光は円錐面状の発散光になり焦点距離fの反射鏡で反射したのち、平行光となる。このときの反射光は半径f×cos &で中心角4 ゆの円弧状断面のシートビームになる。従ってマスク上の半径f×cos &で中心角4 ゆの

円弧状領域のみが照明されることになる。

(4)

【0025】これまでは1つの円筒面反射鏡について説明してきたが、次に、図1に示すように円筒面インテグレータ即ち、多数の円筒面を平行に多数並べた広い面積の反射鏡に太さDの平行光が入射した場合を考える。先の例と同様に反射鏡とマスクを配置したとすれば、円筒面を平行に多数並べた反射鏡で反射された光の角度分布は先の例と変わらないので、マスク上では半径 $f \times c \circ s$ ので中心角4 ϕ の円弧状領域が照明される。また、マスク上の一点に入射する光は円筒面を平行に多数並べた反射鏡の照射領域全域から到達するので、その角度広がりはD/fとなる。即ち、照明系の開口数をNAp1としたとき、コヒーレンスフアクタは

 $\sigma = D/(2fNAp1)$

となる。したがって平行光の太さによって最適なコヒー レンスファクタσに設定することができる。

【0026】次に、上述の複数の円筒面をもった反射型 インテグレータを用いた本発明の実施の形態について図 面を参照して説明する。

【0027】(発明の第1の実施の形態)図5は本発明の第1の実施の形態のX線縮小投影露光装置の模式的構成図、図6は本発明の第1の実施の形態の反射型凸円筒面インテグレータの模式的斜視図、図7は本発明の第1の実施の形態のマスク面上の照明領域を示す図である。【0028】図中、符号1で示されるものはX線の発光点、2はX線、3はフィルタ、4は第1の回転放物面ミラー、5は反射型凸円筒面インテグレータ、6は第2の回転放物面ミラー、7はマスク、8は投影光学系、9はウエハ、10はマスクステージ、11はウエハステージ、12は円弧状アパーチャ、13はレーザープラズマX線光源、14はレーザー集光光学系、15はマスク面上の照明領域、16は露光が行われる円弧状領域、17は真空容器である。

【0029】本発明の第1の実施の形態のX線縮小投影 露光装置は、レーザープラズマX線光源13、照明光学 系、マスク7、投影光学系8、ウエハ9、マスク又はウ エハを搭載したステージ10、11、マスクやウエハの 位置を精密にあわせるアライメント機構、X線の減衰を 防ぐために光学系全体を真空に保つための真空容器17 と排気装置、などからなる。

【0030】照明光学系は、第1の回転放物面ミラー4、反射型凸円筒面インテグレータ5、第2の回転放物面ミラー6で構成される。マスク7は多層膜反射鏡の上にX線吸収体からなる非反射部による転写パターンが形成されたものである。マスク7で反射されたX線は投影光学系8によってウエハ9面上に結像する。投影光学系8では軸外の細い円弧状の領域が良好な結像性能をもつように設計されている。例えば、縮小倍率1/5、マスク7面で軸外200mm、ウエハ9面状で軸外40m

m、幅1mmの領域で高い結像性能が確保されている。 露光はこの細い円弧状領域のみが利用されて行われるようにウエハ9直前に円弧状の開口をもったアパーチャ1 2が設けられている。矩形状をしたマスク7全面のパターンを転写するため、マスク7とウエハ9が同時にスキャンして露光が行われる。投影光学系8は2枚の多層膜反射鏡によって構成され、マスク7上のパターンをウエハ9表面に縮小投影する。投影光学系8はテレセントリック系が用いられている。

【0031】レーザープラズマX線光源13の発光点1から放射されたX線2はターゲットの飛散物防止のフィルタ3を透過し、第1の回転放物面ミラー4で反射して平行なビームとなる。このビームが反射型凸円筒面インテグレータ5で反射して、多数の2次光源を形成する。この2次光源からのX線は第2の回転放物面ミラー6で反射してマスク7を照明する。2次光源から第2の回転放物面ミラー6、及び第2の回転放物面ミラー6からマスク7までの距離はいずれも第2の回転放物面ミラー6の焦点距離に等しく設定されていて、ケーラー照明の条件が満たされている。

【0032】反射型凸円筒面インテグレータ5は、図6に示すように微小な凸円筒面を1次元に多数配列した形状の反射面をもつ全反射ミラーである。反射型凸円筒面インテグレータ5の断面の円弧の半径は0.5mm、中心角は30°である。これに平行光を入射した場合には反射面から0.25mm内部に入った平面上に平行に並んだ線分状の2次光源すなわちレーザープラズマX線光源13の虚像が形成される。

【0033】本実施の形態では平行X線ビームの太さD は20mm、反射型凸円筒面インテグレータ5への平行 X線ビームの入射角θは85°である。反射型凸円筒面 インテグレータ5に平行光を入射した場合には反射面か ら0.25mm離れた平面上に平行に並んだ線分状の2 次光源が形成される2次光源の位置に焦点をもつ焦点距 離f=2300mmの第2の回転放物面ミラー6とさら にこの第2の回転放物面ミラー6から2300mmだけ 離れた位置にマスク7を配置してある。2次光源上の1 点から出た光は円錐面状角度分布をもつ発散光になり、 焦点距離f=2300mmの第2の回転放物面ミラー6 で反射したのち、平行光となる。そして図7に示すよう にマスク7上の半径2300mm×cos85°=20 0mmで中心角30°×2=60°の円弧状領域16が 照明される。このとき、照明光学系の開口数は20/ (2×2300)=0.0043となる。投影光学系の 開口数がマスク側0.01、ウエハ側0.05とすれ ば、コヒーレンスファクタσは0.43となる。マスク 7面ではマスク7上の半径200mmで中心角60°の 円弧状領域16が照明され、この領域のパターンが投影 光学系8によってウエハ9上のレジスト面に縮小投影さ れる。縮小倍率を1/5とすれば、ウエハ9上の半径4 0mmで中心角60°の円弧状領域が一度に露光され、マスク7とウエハ9を同時にスキャンすることで、例えば40mm角の正方形領域が高い精度で露光される。

【0034】このように、本実施の形態では微小な凸円 筒面を1次元に多数配列した形状の反射面をもつ反射型 凸円筒面インテグレータ5を用いることによって、マス ク7を照明する領域を円弧状にし、同時に照明光学系の コヒーレンスファクタを最適値に設定することができ る。またマスク7面上の照明領域15の形状は実際に露 光が行われる円弧状領域16に限定され、露光領域以外 の部分にX線が無駄に照射されることがない。従って光 量の損失がなく、露光時間が短縮され、スループットを 高めることができる。

【0035】(発明の第2の実施の形態)図8は本発明の第2の実施の形態のX線縮小投影露光装置の摸式的構成図、図9は本発明の第2の実施の形態の反射型凹円筒面インテグレータの摸式的斜視図である。

【0036】図中、符号801で示されるものはアンジュレータX線光源、802はX線、803は凸面ミラー、804は第1の凹面ミラー、805は反射型凹円筒面インテグレータ、806は第2の凹面ミラー、807はマスク、808は投影光学系、809はウエハ、810はマスクステージ、811はウエハステージ、812は円弧状アパーチャ、817は真空容器である。

【0037】本発明の第2の実施の形態のX線縮小投影 露光装置は、アンジュレータX線光源801、照明光学 系、マスク807、投影光学系808、ウエハ809、 マスク又はウエハを搭載したステージ810、811、 マスクやウエハの位置を精密にあわせるアライメント機 構、X線の減衰を防ぐために光学系全体を真空に保つた めの真空容器817と排気装置、などからなる。

【0038】本実施の形態の照明光学系は、アンジュレータX線光源801、凸面ミラー803、第1の凹面ミラー804、反射型凹円筒面インテグレータ805、第2の凹面ミラー806で構成される。

【0039】マスク807は多層膜反射鏡の上にX線吸収体などからなる非反射部を設けた転写パターンが形成されたものである。マスク807で反射されたX線は投影光学系808によってウエハ809面上に結像する。投影光学系808では軸外の細い円弧状の領域が良好な結像性能をもつように設計されている。露光はこの細い円弧状領域のみが利用されて行われるようにマスク807直前に円弧状の開口をもったアパーチャ812が設けられている。矩型形状をしたマスク807全面のパターンを転写するため、マスク807とウエハ809が同時にスキャンして露光が行われる。投影光学系808は3枚の多層膜反射鏡によって構成され、マスク807上のパターンをウエハ809表面に縮小投影する。

【0040】アンジュレータX線光源801の発光点から放射されたX線802はほぼ平行な細いビームであ

る。これが凸面ミラー803と第1の凹面ミラー804 とで反射され、太い平行なビームとなる。このビームが 表面にX線反射率を高めるための多層膜を設けた凹円筒 面を平行に配列した反射型凹円筒面インテグレータ80 5で反射して、多数の2次光源を形成する。2次光源上 の1点から出た光は円錐面状の発散光になり第2の凹面 ミラー806で反射したのち、平行光となる。このと き、マスク807上の円弧状領域が照明される。

【0041】このように、本実施の形態では微小な凹円 筒面を1次元に多数配列した形状の反射面をもつ反射型 凹円筒面インテグレータ805を用いることによってマ スク807を照明する領域を円弧状にし、同時に照明光 学系のコヒーレンスファクタを最適値に設定することが できる。またマスク807面上の照明領域の形状は実際 に露光が行われる円弧状領域に限定され、露光領域以外 の部分にX線が無駄に照射されることがない。従って光 量の損失がなく、露光時間が短縮され、スループットを 高めることができる。

[0042]

【発明の効果】以上説明したように本発明のX線縮小投影露光装置は、多数の円筒面を平行に多数並べた広い面積の反射鏡からなる反射型インテグレータを用いることによって、マスク上の円弧状領域のみが照明される。また照明系のコヒーレンスファクタのが最適値となるように照明系の開口数を設定することができる。

【0043】即ち、マスクの照明領域の形状は実際に露 光が行われる円弧領域に限定され、露光領域以外の部分 にX線が無駄に照射されることがない。従って光量の損 失がなく、露光時間が短縮され、スループットを高める ことができるという効果がある。

【0044】また、反射型インテグレータの反射面に多層膜を形成することにより、X線反射率を高めることができる。

【図面の簡単な説明】

【図1】反射型凸円筒面インテグレータに平行光が入射 した場合の摸式的斜視図である。

【図2】反射型凸円筒面インテグレータの摸式的断面図 である。

【図3】反射型凸円筒面インテグレータの円筒面でのX 線反射の説明図である。

【図4】反射型凸円筒面インテグレータの円筒面で反射

したX線の角度分布図である。

【図5】本発明の第1の実施の形態のX線縮小投影露光 装置の摸式的構成図である。

【図6】本発明の第1の実施の形態の反射型凸円筒面インテグレータの摸式的斜視図である。

【図7】本発明の第1の実施の形態のマスク面上の照明 領域を示す図である。

【図8】本発明の第2の実施の形態のX線縮小投影露光 装置の模式的構成図である。

【図9】本発明の第2の実施の形態の反射型凹円筒面インテグレータの摸式的斜視図である。

【図10】従来のX線縮小投影露光装置の摸式的構成図である。

【図11】従来の反射型インテグレータの摸式的斜視図 である。

【図12】従来のマスク面上の照明領域を示す図である。

【符号の説明】

1、1001 X線の発光点

2、802、1002 X線

3、1003 フィルタ

4、1004 第1の回転放物面ミラー

5 反射型凸円筒面インテグレータ

6、1006 第2の回転放物面ミラー

7、807、1007 マスク

8、808、1008 投影光学系

9、80.9、10.09 ウエハ 10、810、1010 マスクステージ

11、811、1011 ウエハステージ

12、812、1012 円弧状アパーチャ

13、1013 レーザー光源

14、1014 レーザー集光光学系

15、1015 マスク面上の照明領域

16、1016 露光が行われる円弧状領域

17、817、1017 真空容器

801 アンジュレータX線光源

803 凸面ミラー

804 第1の凹面ミラー

805 反射型凹円筒面インテグレータ

806 第2の凹面ミラー

1005 反射型インテグレータ

(図2) (図6) (図7)

【図8】

【図9】

【図10】

【図11】

【図12】

