Bài 14: Đồ thị (2/2)

Khoa Công nghệ Thông tin – Đại học Công Nghệ

Cấu trúc dữ liệu và giải thuật

HKI, 2015-2016

Nội dung chính

- Đồ thị và các khái niệm liên quan
- 2. Cài đặt đồ thị
- Một số bài toán tiêu biểu
 - Đi qua/duyệt đồ thị
 - BFS, DFS
 - Sắp xếp topo trên đồ thị định hướng không có chu trình

- Tìm đường đi ngắn nhất
 - Từ một đỉnh nguồn
 - Giữa mọi cặp đỉnh

Đồ thị định hướng không chu trình

- Thuật ngữ
 - directed acyclic graph (DAG)
 - acyclic digraph
- Nhiều dạng quan hệ trên một tập đối tượng có thể biểu diễn bởi DAG. Ví dụ:
 - Quan hệ thứ tự bộ phận trên một tập A
 - Quan hệ thứ tự thời gian giữa các nhiệm vụ trong một đề án
 - Quan hệ thứ tự thời gian giữa các môn học trong một chương trình học

Sắp xếp topo (topological sort)

- Cho G = (V,E) là một DAG, ta cần sắp xếp các đỉnh của đồ thị thành một danh sách
 - sao cho n\u00e9u c\u00f3 cung (u,v) thì u c\u00e3n phải đứng trước v trong danh sách đ\u00f3.

Dùng kĩ thuật tìm kiếm theo độ sâu?

Ý tưởng toposort dựa trên DFS

```
Algorithm DFS(v)
// Tìm kiếm theo độ sâu xuất phát từ v.
Input: Đỉnh v chưa được thăm
for (mỗi đỉnh u kề v)
     if ( u chưa được thăm)
          Đánh dấu u đã được thăm;
          DFS(u)
Algorithm DFSTraversal(G)
// Đi qua đồ thị G=(V, E) theo độ sâu
for (mỗi v ∈ V) Đánh dấu v chưa được thăm;
for (mỗi v ∈V)
     if (v chưa được thăm)
          Thăm v và đánh dấu v đã được thăm;
          DFS(v);
```

- Thực hiện
 DFSTraversal trên đồ
 thị G, thêm lệnh
 L.append(v) vào cuối
 hàm DFS(v)
- Đảo ngược L

[Tác giả: Tarjan]

Minh họa TopoSort(G)


```
DFS(a)
   DFS(c)
      DFS(e)
         L = (e)
      L = (e, c)
   DFS(d)
      DFS(f)
         L = (e, c, f)
      L = (e, c, f, d)
   L = (e, c, f, d, a)
DFS(b)
   L = (e, c, f, d, a, b)
   L = (b, a, d, f, c, e)
```

3.3. Tìm đường đi ngắn nhất

Tổng quan

- Tìm đường đi ngắn nhất trong đồ thị
 - Không trọng số: Dùng BFS
 - Có trọng số
 - Trọng số có thể âm: Không xét
 - Bellman-Ford
 - Trọng số không âm
 - dộ dài cung (u, v) là c(u,v)
 - □ không có cung từ u tới v thì c(u,v) = $+\infty$
- Xét hai vấn đề
 - Tìm đường đi ngắn nhất từ một đỉnh nguồn tới các đỉnh còn lại.
 - single-source shortest path problem
 - Tìm đường đi ngắn nhất giữa mọi cặp đỉnh của đồ thị.
 - all-pairs shortest path problem

Thuật toán Dijkstra cho bài single-source

- Ví dụ: tìm đường đi ngắn nhất từ đỉnh nguồn là đỉnh o
- Thiết kế dựa vào kỹ thuật tham ăn
- Xác định đường đi ngắn nhất từ đỉnh nguồn a tới các đỉnh còn lại qua các bước
 - Mỗi bước ta xác định đường đi ngắn nhất từ a tới một đỉnh
 - Lưu các đỉnh đã xác định đường đi ngắn nhất từ a tới chúng vào tập S
 - Ban đầu tập S chỉ chứa một đỉnh nguồn
 a

Thuật toán Dijkstra ...

- Gọi đường đi từ a tới đỉnh b là đường đi đặc biệt nếu đường đi đó chỉ đi qua các đỉnh trong S
- Dùng mảng D: Độ dài đường đi đặc biệt từ a tới b lưu trong D[b]
 - Ban đầu S = {a}, D[a] = 0, D[b] = c(a, b) với b≠a

Thuật toán Dijkstra ...

- Dùng mảng D: Độ dài đường đi đặc biệt từ a tới b lưu trong D[b]
 - Ban đầu S = {a}, D[a] = 0, D[b] = c(a, b) với b≠a
 - Tại mỗi bước
 - Chọn một đỉnh u không thuộc S mà D[u] nhỏ nhất và thêm u
 vào S
 - xem D[u] là độ dài đường đi ngắn nhất từ a tới u
 - Sau đó, xác định lại các D[b] với b ở ngoài S
 D[b] = min(D[b], D[u] + c(u, b))
 - Lặp lại cho tới khi S gồm tất cả các đỉnh của đồ thị

Minh họa thuật toán Dijkstra: Ban đầu

- $S = \{0\}$
- \bullet D[o] = o
- $D[1] = \infty$
- D[2] = 9
- D[3] = 2
- D[4] = 5

Minh họa thuật toán Dijkstra: Thêm 3 vào S

•
$$S = \{0, 3\}$$

$$\bullet$$
 D[o] = o

•
$$D[1] = min(\infty, D[3] + 1) = 3$$

•
$$D[2] = min(9, D[3] + \infty) = 9$$

•
$$D[3] = 2$$

•
$$D[4] = min(5, D[3] + \infty) = 5$$

Minh họa thuật toán Dijkstra: Thêm 1 vào S

$$S = \{0, 3, 1\}$$

- \bullet D[o] = o
- D[1] = 3
- D[2] = min(9, D[1] + 4) = 7
- D[3] = 2
- $D[4] = min(5, D[1] + \infty) = 5$

Minh họa thuật toán Dijkstra: Thêm 4 vào S

$$S = \{0, 3, 1, 4\}$$

- \bullet D[o] = o
- D[1] = 3
- D[2] = min(7, D[4] + 1) = 6
- D[3] = 2
- D[4] = 5

Minh họa thuật toán Dijkstra: Thêm 2 vào S

- $S = \{0, 3, 1, 4, 2\}$
- \bullet D[o] = o
- D[1] = 3
- D[2] = 6
- D[3] = 2
- D[4] = 5
- D[b] lưu độ dài đường đi ngắn nhất từ a=0 tới b, với mọi b∈V

Các vấn đề khác

- Ghi lại vết đường đi ngắn nhất từ nguồn tới các đỉnh khác
- Tính đúng đắn của thuật toán Dijkstra
- Dùng hàng ưu tiên lưu tập đỉnh ngoài S để tăng hiệu quả
 - $\square O(|V|\log|V| + |E|\log|V|)$

Thuật toán Floyd cho bài all-pairs

- Thiết kế dựa trên kỹ thuật quy hoạch động
- Ký hiệu S_k là tập các đỉnh từ o đến k
 - $S_k = \{0,1,\ldots,k\}, k <= n-1$
- Gọi A_k(i,j) là độ dài đường đi ngắn nhất từ đỉnh i tới đỉnh j nhưng chỉ đi qua các đỉnh trong tập S_k
 - Khi k = n-1 thì $S_{n-1} = V \square A_{n-1}(i,j)$ chính là đường đi ngắn nhất từ i tới j trong đồ thị đã cho
 - Khi k = -1, S_k rỗng $\Box A_{-1}(i,j) = c(i,j)$

Minh họa: k = -1 S_{-1} rỗng, $A_{-1}(i,j)$ cho trong bảng

0	1	2	3
0	5	∞	∞
50	0	15	5
30	8	0	15
15	∞	5	0

0

2

3

Công thức tính A_k từ A_{k-1}

- Nhận xét quan trọng
 - Nếu đỉnh k nằm trên đường đi ngắn nhất từ đỉnh i tới đỉnh j thì đoạn đường từ i tới k và đoạn đường từ k tới j phải là đường đi ngắn nhất từ i tới k và từ k tới j tương ứng
 - Nếu A_k(i,j) là độ dài đường đi không qua đỉnh k, tức là đường đi này chỉ đi qua các đỉnh trong S_{k-1} thì

$$A_{k}(i,j) = A_{k-1}(i,j)$$

- Nếu A_k(i,j) là độ dài của đường đi qua đỉnh k thì trên đường đi này đoạn từ i tới k có độ dài là A_{k-1}(i,k), còn đoạn đường từ k tới j có độ dài là A_{k-1}(k,j)
- Do đó

$$A_{k}(i,j) = \min(A_{k-1}(i,j), A_{k-1}(i,k) + A_{k-1}(k,j))$$

		0	1	2	3
7	0	0	5	8	∞
	1	50	0	15	5
`-1	2	30	8	0	15
	3	15	8	5	0

		0	1	2	3
	0	0	5	8	∞
A _o	1	50	0	15	5
	2	30	35	0	15
	3	15	20	5	0

		O	1	2	3
1	0	0	5	8	∞
	1	50	0	15	5
` o	2	30	35	0	15
	3	15	20	5	0

		0	1	2	3
	0	0	5	20	10
A ₁	1	50	0	15	5
	2	30	35	0	15
	3	15	20	5	0

		0	1	2	3
	0	0	5	20	10
4	1	50	0	15	5
1	2	30	35	0	15
	3	15	20	5	0

		U	ı	2	5
	0	0	5	20	10
A ₂	1	45	0	15	5
	2	30	35	0	15
	3	15	20	5	0

		0	1	2	3
4	0	0	5	20	10
	1	45	0	15	5
2	2	30	35	0	15
	3	15	20	5	О

		U	I	2	3
	0	0	5	15	10
A ₃	1	20	0	10	5
	2	30	35	0	15
	3	15	20	5	0

3.4. Tìm cây bao trùm ngắn nhất

Bài toán

- G = (V,E) là đồ thị vô hướng liên thông
- G' = (V,T) có $T \subseteq E$, liên thông và không có chu trình được gọi là cây bao trùm của G
 - Cây này có |V| 1 cạnh
- Ta cần tìm cây bao trùm ngắn nhất của một đồ thị G vô hướng liên thông có trọng số không âm
 - tức là cây bao trùm có tổng độ dài các cạnh là nhỏ nhất
 - Thuật ngữ: minimum spanning tree (MST)

Minh họa một cây bao trùm ngắn nhất

Ý tưởng

- Thiết kế theo kỹ thuật tham ăn
- Xây dựng tập T các cạnh dần từng bước xuất phát từ T rỗng
- Trong mỗi bước lặp, ta sẽ chọn cạnh (u,v) ngắn nhất trong các cạnh còn lại để đưa vào tập T
 - Prim: T U (u, v) phải liên thông, không có chu trình
 - Kruskal: T U (u, v) không có chu trình
 - Sử dụng KDLTT họ các tập con không cắt nhau (disjoint set ADT) [chương 13]

Minh họa

Các vấn đề khác

- Độ phức tạp thời gian
- Tính đúng đắn

Tóm tắt

- 3.2. Sắp xếp topo trên DAG: Thuật toán của Tarjan
- 3.3. Tìm đường đi ngắn nhất
 - Single-source: Thuật toán tham ăn Dijsktra
 - All-pairs: Thuật toán quy hoạch động Floyd
- 3.4. Tìm cây bao trùm ngắn nhất
 - Thuật toán tham ăn Prim
 - Thuật toán tham ăn Kruskal