Cognome e nome :

Codice Persona:

DOMANDE A RISPOSTA MULTIPLA. Per ogni quesito, indicare con una croce l'unica risposta corretta. Per annullare una risposta data, racchiudere la croce in un cerchio.

1. [punti 1] $\lim_{x\to 0^-} e^{\frac{1}{x}}$

(Soluzioni CANDELLATE)

- (a) = 1;
- (b) non esiste;
- (c) = 0;
- (d) $= +\infty$;
- (e) Nessuna delle altre risposte è corretta.
- 2. [punti 1] Sia $f(x) = \sin(x^2)$. E' vero che
 - (a) f è periodica di periodo 2π ;
 - (b) f è periodica di periodo $\sqrt{2\pi}$;
 - (c) f è periodica di periodo $(2\pi)^2$;
 - (d) f non è periodica;
 - (e) Nessuna delle altre risposte è corretta.
- 3. [punti 1] Dire che una funzione $f: \mathbb{R} \to \mathbb{R}$ è limitata equivale a dire che
 - (a) $\sup\{f(x)\mathbb{R}: x \in \mathbb{R}\} < +\infty$;
 - (b) $\exists K \in \mathbb{R}$ tale che $|f(x)| < K \quad \forall x \in \mathbb{R}$;
 - (c) $\lim_{x\to x_0} f(x)$ esiste finito $\forall x_0 \in \mathbb{R}$;
 - (d) $\lim_{x\to+\infty} f(x)$ e $\lim_{x\to-\infty} f(x)$ esistono entrambi finiti;
 - (e) Nessuna delle altre risposte è corretta.
- 4. [punti 1] La serie $\sum_{1}^{+\infty} \frac{(-1)^n}{n^{(\frac{3}{2})}}$
 - (a) diverge con somma $+\infty$;
 - (b) converge semplicemente ma non assolutamente;
 - (c) non converge semplicemente ne diverge a $\pm \infty$;
 - (d) converge assolutamente
 - (e) Nessuna delle altre risposte è corretta.

- 5. [punti 2] Sia f definita da $f(x) = \frac{1}{\log(1+e^x)}$. E' vero che
 - (a) f non è definita su tutto \mathbb{R} ;
 - (b) $f(x) > \frac{1}{e^x}$ definitivamente per $x \to +\infty$;
 - (c) f è integrabile su $(0, +\infty)$;
 - (d) f cambia segno in x = 0;
 - (e) f è integrabile su $(-\infty, 0)$:
- 6. [punti 1] Sia F una primitiva, su $(0, +\infty)$, della funzione f definita da $f(x) = x \log x$. E' vero che, su $(0, +\infty)$,
 - (a) F ha un punto di massimo ma non ha punti di minimo;
 - (b) F ha un punto di minimo ma non ha punti di massimo;
 - (c) F ha un punto di flesso a tangente orizzontale;
 - (d) F ha un punto di massimo e uno di minimo;
 - (e) Nessuna delle altre risposte è corretta.
- 7. [punti 2] Sia f definita su $(0, +\infty)$ da $f(x) = (\log x)^7$. La funzione inversa f^{-1} di f
 - (a) è $f^{-1}(x) = (\log x)^{\frac{1}{7}}$;
 - (b) è $f^{-1}(x) = e^{(\frac{x}{7})}$
 - (c) è $f^{-1}(x) = e^{x^{(\frac{1}{7})}};$
 - (d) è $f^{-1}(x) = e^{(x^7)}$;
 - (e) non esiste.
- 8. [punti 1] Il luogo dei punti $z \in \mathbb{C}$ tali che $z = i\bar{z}$ è
 - (a) una semiretta;
 - (b) una retta;
 - (c) una circonferenza;
 - (d) un punto;
 - (e) Nessuna delle altre risposte è corretta.
- 9. [punti 2] Per $\alpha > 0$, l'integrale

$$\int_0^1 \frac{\arctan\left(x^\alpha\right)}{x^2 - \sin x^2} \, dx$$

- (a) converge se e solo se $\alpha > 0$;
- (b) converge se e solo se $\alpha < 3$
- (c) converge se e solo se $\alpha > 5$;
- (d) non converge per alcun $\alpha > 0$;
- (e) Nessuna delle altre risposte è corretta.

Cognome e nome :
ESERCIZI
Esercizio 1. [punti 5] Data la funzione definita da $f(x) = e^{\sqrt[3]{(x-1)(3-x)}}$
 determinarne il dominio, i limiti agli estremi del dominio e la continuita'; determinarne la derivata prima e il carattere dei punti di non derivabilita'; determinarne monotonia ed estremi; disegnarne un grafico qualitativo con le informazioni ottenute (non è richiesto lo studio di f"); dimostrare poi che l'equazione e ³√(x-1)(3-x) = e(x-1) + 1 ha almeno tre soluzioni distinte.

$I := \int_0^3 \arctan \sqrt{x} dx.$

Esercizio 2. [punti 4] Dopo aver giustificato l'integrabilita' della funzione $f(x) := \arctan \sqrt{x}$, calcolare

Svolgimento.

Poiche' per $n \to +\infty$ si ha $a_n := \frac{n+(-1)^n \log n}{2n^{\alpha}+3n} \sim \frac{n}{2n^{\alpha}+3n} =: b_n$, la serie converge se e solo se la serie $\sum_{n\geq 1} b_n$ converge. Poiche' per $\alpha \leq 1$ esiste $\lim_{n\to +\infty} b_n > 0$, la Condizione Necessaria per la Convergenza non e' soddisfatta e la serie non converge. Poiche' per $\alpha > 1$ si ha $b_n \sim \frac{1}{2n^{\alpha-1}}$, con un confronto con al serie armonica generalizzata si deduce che la serie converge se e solo se $\alpha > 2$.

Cognome e nome :

TEORIA

 ${\bf T1.}$ (5 punti) Enunciare e dimostrare il Teorem degli
 Zeri. Vedi testo. **T2.** (3 punti) Fornire la definizione di continuita' di una funzione $f: D \to \mathbb{R}$ in un punto $x_0 \in D$. Svolgimento.

fe' continua in $x_0 \in D$ se x_0 e' anche di accumulazione per il dominio De se

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Affermare che esistono e sono finiti i limiti $\lim_{x\to x_0^\pm} f(x)$ e che sono uguali, $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$ non e' equivalente in quanto f potrebbe avere una discontinuita' di salto.