TRƯỜNG ĐẠI HỌC CẦN THƠ KHOA CNTT & TRUYỀN THÔNG BỘ MÔN KHOA HỌC MÁY TÍNH

TOÁN RÒI RẠC (DISCRETE MATHEMATICS)

GV: Trần Nguyễn Minh Thư (tnmthu@ctu.edu.vn)

Dịnh nghĩa: Mệnh đề là một câu khẳng định có giá trị chân lý xác định

đúng (True) hoặc sai (False).

Ví dụ:

True > 2+3=5

> Tam giác đều có 3 cạnh bằng nhau True

Toronto là thủ đô của Canada
False

> 3*4=10 False

- □ P, Q, R, S,...: các ký hiệu mệnh đề
- □ Ký hiệu giá trị chân lý của mệnh đề:
 - T: Đúng
 - □ F: Sai
- □ **Bảng chân trị:** biểu diễn mối quan hệ giữa những giá trị chân lý của các mệnh đề

Các phép tính mệnh đề

□ Phép phủ định: Cho P là một mệnh đề, câu "không phải là P" là một mệnh đề được gọi là phủ định của mệnh đề P. Kí hiệu: ¬P hay P

□ Bảng chân trị

P	¬P
T	F
F	T

- Phép hội (conjunction): Cho hai mệnh đề P, Q.
 "P và Q" là một mệnh đề được gọi là hội của 2 mệnh đề P và Q.
- □ Kí hiệu: **P**∧**Q**
- □ Bảng chân trị:

P	Q	P∧Q
T	T	Т
T	F	F
F	T	F
F	F	F

□ **Phép tuyển (disjunction): "P hay Q"** là một mệnh đề được gọi là tuyển của 2 mệnh đề P và Q.

Kí hiệu: P∨Q

□ Bảng chân trị:

P	Q	P∨Q
T	T	T
T	F	T
F	T	T
F	F	F

- □ *Phép XOR*: "loại trừ P hoặc loại trừ Q", nghĩa là "hoặc là P đúng hoặc Q đúng".
- □ Bảng chân trị

P	Q	P⊕Q
T	T	F
T	F	T
F	T	Т
F	F	F

$$P \oplus Q = (P \lor Q) \land \neg (P \land Q)$$

- □ *Phép kéo theo:* "Nếu P thì Q" là một mệnh đề kéo theo của hai mệnh đề P, Q.
- □ Bảng chân trị:

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

$$P \rightarrow Q = \neg P \lor Q$$

Mênh đề

□ Mệnh đề đảo và mệnh đề phản đảo

- \blacksquare Các mệnh đề kéo theo khác của mệnh đề $P \to Q$:
 - $\mathbf{Q} \rightarrow \mathbf{P}$: mệnh đề đảo
 - $\blacksquare \neg Q \rightarrow \neg P$: mệnh đề phản đảo

- □ *Phép tương đương:* "P nếu và chỉ nếu Q" là một mệnh đề được gọi là P tương đương Q.
- □ Bảng chân trị:

P	Q	P↔Q
T	T	T
T	F	F
F	T	F
F	F	Т

$$P \leftrightarrow Q = (P \rightarrow Q) \land (Q \rightarrow P)$$

Cho P, Q, R,... là các mệnh đề. Nếu các mệnh đề này liên kết với nhau bằng các phép toán thì ta được **một biểu thức mệnh** đề.

Chú ý:

- Một mệnh đề cũng là một biểu thức mệnh đề.
- Nếu P là một biểu thức mệnh đề thì ¬P cũng là biểu thức mệnh đề
- Chân trị của biểu thức mệnh đề là kết quả nhận được từ sự kết hợp giữa các phép toán và chân trị của các biến mệnh đề.

□ Hằng đúng: là một mệnh đề luôn có chân trị là đúng

Ví dụ: $\neg P \lor P$

P	$\mathbf{P} \mid \neg \mathbf{P} \mid \neg \mathbf{P} \vee \mathbf{P}$	
T	F	T
F	T	\mathbf{T}

□ Hằng sai: là một mệnh đề luôn có chân trị là sai

Ví dụ: $\neg P \wedge P$

P	¬Р	$\neg P \wedge P$
T	F	\mathbf{F}
F	T	\mathbf{F}

□ *Tiếp liên:* là một mệnh đề **không** phải là hằng đúng và **không** phải là hằng sai.

Ví dụ: $(P \land Q) \lor (\neg Q)$

P	Q	¬Q	$P \wedge Q$	(P∧Q)∨(¬Q)
T	T	F	T	T
T	F	T	F	T
F	T	F	F	F
F	F	T	F	T

■ Mệnh đề hệ quả: Cho F và G là 2 biểu thức mệnh đề. G là mệnh đề hệ quả của F hay G được suy ra từ F nếu F → G là hằng đúng.

Kí hiệu:
$$F \mapsto G$$

- Tương đương logic:
 - Định nghĩa 1: Mệnh đề P và Q được gọi là tương đương logic nếu phép tương đương của P và Q là hằng đúng.
 - Định nghĩa 2: Hai mệnh đề P và Q được gọi là tương đương logic nếu và chỉ nếu chúng có cùng chân trị.

Các quy tắc tương đương logic:

Đặt
$$T = h \text{àng dúng}$$
, $F = h \text{àng sai}$

$$\begin{cases} P \lor T = T \\ P \land F = F \end{cases} \quad \text{Luật thống trị} \\ \begin{cases} P \land T = P \\ P \lor F = P \end{cases} \quad \text{Luật trung hòa} \\ \begin{cases} P \lor P = P \\ P \land P = P \end{cases} \quad \text{Luật lũy đẳng} \\ \\ P \Rightarrow P \end{cases} \quad \text{Luật phủ định của phủ định}$$

Các quy tắc tương đương logic:

Đặt T= hằng đúng, F = hằng sai

$$\begin{cases} P\vee\overline{P}=T\\ P\wedge\overline{P}=F \end{cases} \text{ Luật về phần tử bù }\\ P\wedge Q=Q\vee P\\ P\wedge Q=Q\wedge P \end{cases} \text{ Luật giao hoán }\\ \begin{cases} (P\vee Q)\vee R=P\vee (Q\vee R)\\ (P\wedge Q)\wedge R=P\wedge (Q\wedge R) \end{cases} \text{ Luật kết hợp }\\ (P\wedge Q)\wedge R=P\wedge (Q\wedge R) \end{cases}$$

$$\begin{cases} P\vee (Q\wedge R)=(P\vee Q)\wedge (P\vee R)\\ P\wedge (O\vee R)=(P\wedge O)\vee (P\wedge R) \end{cases} \text{ Luật phân phối }\\ \begin{cases} P\wedge (O\vee R)=(P\wedge O)\vee (P\wedge R)\\ P\wedge (O\vee R)=(P\wedge O)\vee (P\wedge R) \end{cases} \end{cases}$$

Các quy tắc tương đương logic:

Đặt
$$T = h \dot{a} ng \, dung$$
, $F = h \dot{a} ng \, sai$

$$\begin{cases} P \lor (P \land Q) = P \\ P \land (P \lor O) = P \end{cases}$$
 Luật hấp thụ

$$P \rightarrow Q = \overline{P} \vee Q$$
 Luật về phép kéo theo

□ Vị Từ

- □ **Định nghĩa:** Một vị từ là một khẳng định P(x,y,...) trong đó có chứa một số biến x, y,... lấy giá trị trong những tập hợp A, B,... cho trước, sao cho:
 - Bản thân P(x,y,...) **không phải** là mệnh đề.
 - Nếu thay x, y,... bằng những **giá trị cụ thể** thuộc tập hợp A, B,... cho trước ta sẽ được một mệnh đề P(x, y,...). Các biến x, y,... được gọi là các biến tự do của vị từ.
- □ Ví dụ: $P(n) = \{n \text{ là ch} \tilde{a}n\}$
 - n = 2: {2 là chẵn}: True
 - $\mathbf{n} = 5$: $\{5 \text{ là chẵn}\}$: False

- **Không gian của vị từ:** có thể xem vị từ như là một ánh xạ P, \forall x∈E ta được một ảnh $P(x) \in \{0, 1\}$. Tập hợp E này được gọi là không gian của vị từ.
- Trọng lượng của vị từ: số biến của vị từ
- □ Ví dụ:
 - $P(a,b) = \{ c \breve{a}p \ s \acute{o} \ nguy \^{e}n \ tương \ \'{u}ng \ thỏa \ a + b = 5 \}$
 - Không gian của vị từ: Số nguyên
 - Trọng lượng: 2

- □ Cho trước các vị từ P(x), Q(x) theo một biến $x \in A$. Ta có **các phép toán vị từ** tương ứng như trên phép tính mệnh đề.
 - Phủ định $\neg P(x)$
 - Phép hội $P(x) \wedge Q(x)$
 - Phép tuyển $P(x) \vee Q(x)$
 - □ Phép XOR $P(x) \oplus Q(x)$
 - Phép kéo theo $P(x) \rightarrow Q(x)$
 - Phép tương đương $P(x) \leftrightarrow Q(x)$

- □ **Định nghĩa:** Cho P(x) là một vị từ có không gian là A. Các mệnh đề **lượng tử** hóa (quantified statement) của P(x) như sau:
 - Mệnh đề "Với mọi x thuộc A, P(x)", kí hiệu bởi

"
$$\forall x \in A, P(x)$$
",

là mệnh đề đúng \Leftrightarrow P(a) luôn đúng với mọi giá trị a \in A.

■ Mệnh đề "Tồn tại một x thuộc A, P(x))" kí hiệu bởi:

"
$$\exists x \in A, P(x)$$
",

là mệnh đề đúng khi và chỉ khi có một giá trị x = a nào đó sao cho mệnh đề P(a) đúng.

Không lập bảng chân trị, sử dụng các tương đương logic để chứng minh rằng :

 $(P \land Q) \rightarrow Q$ là hằng đúng.

$$(P \land Q) \rightarrow Q = \overline{P} \land \overline{Q} \lor Q$$

$$= (\overline{P} \lor \overline{Q}) \lor Q$$

$$= \overline{P} \lor (\overline{Q} \lor Q)$$

$$= \overline{P} \lor T$$

$$= T$$

 Bàng biến đổi tương đương, chứng minh các biểu thức mệnh đề sau là hàng đúng

- Bàng biến đổi tương đương, chứng minh các biểu thức mệnh đề sau là hàng đúng
- $\square P \rightarrow (Q \rightarrow (P \land Q))$

$$P \rightarrow (\neg Q \lor (P \land Q) = P \rightarrow ((\neg Q \lor P) \land (\neg Q \lor Q))$$

$$= P \rightarrow ((\neg Q \lor P) \land T$$

$$= P \rightarrow ((\neg Q \lor P))$$

$$= \neg P \lor (\neg Q \lor P)$$

$$= \neg P \lor \neg Q \lor P$$

$$= \neg P \lor P \lor \neg Q$$

$$= T \lor \neg Q = T \text{ (hằng đúng)}$$

□ Chứng minh biểu thức mệnh đề $(\neg((r \lor q) \land q) \lor q)$ $\neg p) \land ((\neg p \lor \neg q) \rightarrow (p \land q \land r))$ là hằng sai $\neg ((r \lor q) \land q) \lor \neg p \equiv \neg q \lor \neg p \equiv \neg (p \land q)$ $(\neg p \lor \neg q) \rightarrow (p \land q \land r) \equiv \neg(\neg p \lor \neg q) \lor (p \land q \land r)$ $\equiv (p \land q) \lor (p \land q \land r)$ $\equiv p \wedge q$ $(\neg((r \lor q) \land q) \lor \neg p) \land ((\neg p \lor \neg q) \rightarrow (p \land q \land r))$ $\equiv \neg (p \land q) \land (p \land q) \equiv F$

Chứng minh biểu thức mệnh đề sau là hằng sai

$$\neg p \land \neg (p \land q) \land \neg (p \land \neg r) \land (((\neg q \rightarrow r) \lor \neg (q \lor (r \land s) \lor (r \land \neg s))) \land p)$$

$$\neg p \land \neg (p \land q) \land \neg (p \land \neg r) \equiv \neg (p \lor (p \land q) \lor (p \land \neg r))$$

$$\equiv \neg p$$

$$((\neg q \rightarrow r) \lor \neg (q \lor (r \land s) \lor (r \land \neg s))) \land p$$

$$\equiv ((q \lor r) \lor \neg (q \lor (r \land (s \lor \neg s)))) \land p$$

$$\equiv ((q \lor r) \lor \neg (q \lor r)) \land p \equiv p$$

$$\neg(p \lor (p \land q) \lor (p \land \neg r)) \lor (p \land ((\neg q \rightarrow r) \lor \neg(q \lor (r \land s) \lor (r \land \neg s)))) \equiv \neg p \land p \equiv F$$

Chứng minh biểu thức mệnh đề sau là hằng sai $(((p \lor q) \land (p \lor \neg q)) \lor q \lor (\neg r \land q)) \land ((p \to q) \land q)$ $(\neg q \wedge (r \vee \neg q)))$ $((p \lor q) \land (p \lor \neg q)) \lor q \lor (\neg r \land q) \equiv (p \lor (q \land \neg q)) \lor q$ $\equiv \mathbf{p} \vee \mathbf{q}$ $(p \rightarrow q) \land (\neg q \land (r \lor \neg q)) \equiv (\neg p \lor q) \land \neg q$ $\equiv (\neg p \land \neg q) \lor (q \land \neg q)$ $\equiv \neg p \land \neg q \equiv \neg (p \lor q)$ $(((p \lor q) \land (p \lor \neg q)) \lor q) \land ((p \to q) \lor (\neg q \land (r \lor \neg q)))$ $\equiv (p \lor q) \land \neg (p \lor q) \equiv F$

Chứng minh biểu thức mệnh đề $\neg (p \lor q) \lor (\neg p \land q) \land \neg q$ tương đương với biểu thức $(p \to q) \land (\neg q \land (r \lor \neg q))$

$$\neg (p \lor q) \lor (\neg p \land q) \land \neg q \equiv (\neg p \land \neg q) \lor (\neg p \land q) \land \neg q$$

$$\equiv (\neg p \land (\neg q \lor q)) \land \neg q$$

$$\equiv \neg p \land \neg q \ \mathbf{1})$$

$$(p \to q) \land (\neg q \land (r \lor \neg q)) \equiv (\neg p \lor q) \land \neg q$$

$$\equiv (\neg p \land \neg q) \lor (q \land \neg q)$$

$$\equiv (\neg p \land \neg q) \lor F \equiv \neg p \land \neg q \ \mathbf{2})$$

$$(1) \& (2) \Rightarrow \neg (p \lor q) \lor (\neg p \land q) \land \neg q \text{ turong đương}$$

$$(p \to q) \land (\neg q \land (r \lor \neg q))$$

Chứng minh biểu thức mệnh đề $\neg(\neg((r \lor q) \land q) \lor \neg p)$ tương đương với biểu thức $(\neg p \lor \neg q) \rightarrow (p \land q \land r)$ $\neg(\neg((\mathbf{r} \lor \mathbf{q}) \land \mathbf{q}) \lor \neg \mathbf{p}) \equiv \neg(\neg \mathbf{q} \lor \neg \mathbf{p})$ $\equiv p \wedge q$ (1) $(\neg p \lor \neg q) \rightarrow (p \land q \land r) \equiv \neg(\neg p \lor \neg q) \lor (p \land q \land r)$ $\equiv (p \land q) \lor (p \land q \land r)$ $\equiv p \wedge q \qquad (2)$ (1)& (2) $\Rightarrow \neg(\neg((r \lor q) \land q) \lor \neg p)$ turing đương $(\neg p \lor \neg q) \rightarrow (p \land q \land r)$

Chứng minh biểu thức mệnh đề p \vee ((p \wedge q) \vee (p \wedge \neg r)) tương đương với biểu thức mệnh đề p \wedge ((\neg q \rightarrow r) \vee \neg (q \vee (r \wedge s) \vee (r \wedge \neg s)))

$$\mathbf{p} \vee ((\mathbf{p} \wedge \mathbf{q}) \vee (\mathbf{p} \wedge \neg \mathbf{r})) \equiv \mathbf{p} \vee (\mathbf{p} \wedge (\mathbf{q} \vee \neg \mathbf{r})) \equiv \mathbf{p} \quad (1)$$

$$p \wedge ((\neg q \rightarrow r) \vee \neg (q \vee (r \wedge s) \vee (r \wedge \neg s)))$$

$$\equiv p \wedge ((q \vee r) \vee \neg (q \vee (r \wedge (s \vee \neg s))))$$

$$\equiv p \wedge ((q \vee r) \vee \neg (q \vee r)) \equiv p \quad (2)$$

(1) & (2) \Rightarrow hai mệnh đề là tương đương

33

QUY TẮC SUY LUẬN

Các quy tắc suy luận:

Quy tắc	Hằng đúng	Tên
$\frac{P}{P \vee Q}$	$P \rightarrow (P \lor Q)$	Cộng
$\frac{P \wedge Q}{P}$	$P \wedge Q \rightarrow P$	Rút gọn
$\frac{P, P \to Q}{Q}$	$(P \land (P \rightarrow Q)) \rightarrow Q$	Modus ponens
$\frac{\neg Q, P \to Q}{\neg P}$	$(\neg Q \land (P \rightarrow Q)) \rightarrow \neg P$	Modus tollens
$\frac{P \to Q, Q \to R}{P \to R}$ $P \to R$	$((P \to Q) \land (Q \to R)) \to (P \to R)$	Tam đoạn luận giả định
$\frac{\neg P, P \lor Q}{Q}$	$(\neg P \land (P \lor Q)) \to Q$	Tam đoạn luận tuyển

QUY TẮC SUY LUẬN

□ Ví dụ: Dùng các quy tắc suy luận chứng minh rằng:

$$(P \rightarrow (Q \rightarrow R)) \land (Q \lor P) \land P \Rightarrow R$$

□ Giải:

$$1.P \rightarrow (Q \rightarrow R)$$

$$2.Q \vee \overline{P}$$

3.P

 $4.Q \rightarrow R$: Modus Ponens của 1 và 3

5.Q : Tam đoạn luận tuyển của 2 và 3

6.R : Modus Ponens của 4 và 5

Dùng quy tắc suy luận chứng minh rằng

$$(p \rightarrow (q \rightarrow r)) \land \neg (t \lor r) \land (s \rightarrow (p \land q)) \land (\neg p \rightarrow t) \land (s \lor u) \Rightarrow u$$

$$(p \to (q \to r)) \land \neg (t \lor r) \land (s \to (p \land q)) \land (\neg p \to t) \land (s \lor u)$$

$$\equiv (p \to (q \to r)) \land \neg t \land \neg r \land (s \to p) \land (s \to q) \land (\neg p \to t) \land (s \lor u)$$

- 1. $p \rightarrow (q \rightarrow r)$
- 2. ¬t
- $3. \qquad \neg r$
- 4. $s \rightarrow p$
- 5. $s \rightarrow q$
- 6. $\neg p \rightarrow t$
- 7. $S \vee u$

1.
$$p \rightarrow (q \rightarrow r)$$

- \mathbf{z} . $\mathbf{\neg t}$
- 3. ¬r
- 4. $s \rightarrow p$
- 5. $s \rightarrow q$
- 6. $\neg p \rightarrow t$
- 7. $\mathbf{S} \vee \mathbf{u}$
- 8. **p**
- 9. $q \rightarrow r$
- 10. ¬q
- **11.** ¬S
- 12. U

modus tollens của 2. & 6.

modus ponens của 8. & 1.

modus tollens của 9. & 3.

modus tollens của 10. & 5

tam đoạn luận tuyến 11. & 7.

37

Dùng quy tắc suy luận chứng minh rằng

$$((p \land q) \rightarrow \neg r) \land s \land t \land p \land (p \rightarrow (u \rightarrow q)) \land (s \rightarrow (r \lor \neg t)) \Rightarrow \neg u$$

- 1. $(p \land q) \rightarrow \neg r$
- 2. S
- 3. t
- 4. p
- 5. $p \rightarrow (u \rightarrow q)$
- 6. $s \rightarrow (r \lor \neg t)$

BÀI TÂP

1. $(p \land q) \rightarrow \neg r$

2. s

3. T

4. p

5. $p \rightarrow (u \rightarrow q)$ 6. $s \rightarrow (r \lor \neg t)$

9. **r**

12. **¬q**

13. **¬u**

7. $u \rightarrow q$ modus ponens của 4. & 5.

8. $r \lor \neg t$ modus ponens của 2. & 6.

tam đoạn luận tuyển của 8. & 3.

10. $\neg (p \land q)$ modus tollens của 9. & 1.

11. $\neg p \lor \neg q$ de Morgan của 10.

tam đoạn luận tuyển của 4. & 11.

modus tollens của 12. & 7.

Phương pháp chứng minh:

- \blacksquare n, n₀ là số tự nhiên.
- Kiểm chứng P(n) đúng với $n=n_0$

Phương pháp chứng minh:

- \blacksquare n, n₀ là số tự nhiên.
- Kiểm chứng P(n) đúng với $n=n_0$
- Giả sử P(n) đúng với n: $n_0 \le n \le k$
- Chứng minh P(n) đúng với n=k+1

Phương pháp chứng minh

- \blacksquare n, n₀ là số tự nhiên.
- Kiểm chứng P(n) đúng với $n=n_0$
- Giả sử P(n) đúng với n: $n_0 \le n \le k$
- Chứng minh P(n) đúng với n=k+1
- 4. Kết luận $\forall n \geq n_0 P(n)$ là đúng

□ Ví dụ 1: $n \ge 1$ là số nguyên. CMR:

P(n):
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

1- Kiểm chứng với n=1

$$VT = 1$$

Vậy P(n) đúng với n = 1

$$VP = \frac{n(n+1)}{2} = \frac{1(1+1)}{2} = 1$$

2- Giả sử P(n) đúng với n = k > 1

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$

3- CM P(n) đúng với n = k + 1

$$1+2+3+...+k+(k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$1+2+3+...+k+(k+1) = \frac{k(k+1)+2(k+1)}{2}$$
$$1+2+3+...+k+(k+1) = \frac{(k+1)(k+2)}{2}$$

□ Ví dụ 2: $n \ge 1$ là số nguyên. Tìm công thức tính tổng n số lẻ đầu tiên và chứng minh công thức đó.

$$\sum_{i=1}^{n} (2i-1) = 1+3+5+\ldots+(2n-1) = n^{2}$$

1- Kiểm chứng với n=1

$$VT = 1$$

$$VP = n^2 = 1^2 = 1$$
Vậy P(n) đúng với n = 1

2- Giả sử P(n) đúng với n = k > 1

$$1+3+5+....+(2k-1)=k^2$$

3-CM dúng với n = k+1

$$1+3+5+.....+(2k-1)+(2k+1)=k^2+(2k+1)$$
$$1+3+5+.....+(2k-1)+(2k+1)=(k+1)^2$$

$$\Rightarrow$$
 P(k+1) đúng

Bài tập

Bằng phương pháp chứng minh quy nạp, chứng minh rằng : với mọi số nguyên dương : $n, 7^n + 3n - 1$ chia hết cho :

```
\mathbf{n} = \mathbf{1}: 7 + 3 - 1 = 9 chia hết cho 9

\mathbf{giả} \ \mathbf{sử} \ \mathbf{với} \ \mathbf{n} = \mathbf{k} > \mathbf{1}: 7^k + 3k - 1 chia hết cho 9

\mathbf{phải} \ \mathbf{CM}: 7^{k+1} + 3(k+1) - 1 chia hết cho 9

\mathbf{thật} \ \mathbf{vậy}:

7^{k+1} + 3(k+1) - 1 = 7(7^k + 3k - 1) - 18k + 9 chia hết cho 9
```

Bài tập

Bằng phương pháp chứng minh quy nạp, chứng minh rằng : với mọi số nguyên dương : $7^n + 3n - 1$ chia hết cho :

```
n = 1: 7 + 3 − 1 = 9 chia hết cho 9

giả sử với n = k ≥ 1: 7^k + 3k - 1 chia hết cho 9

phải CM: 7^{k+1} + 3(k+1) - 1 chia hết cho 9

thật vậy:

7^{k+1} + 3(k+1) - 1 = 7(7^k + 3k - 1) - 18k + 9 chia hết cho 9
```