Problem Set 2

3.20 Let X be a space with basepoint x_0 , and let $\{U_j : j \in J\}$ be an open cover of X by path connected subspaces such that:

- (i) $x_0 \in U_j$ for all j;
- (ii) $U_i \cap U_k$ is path connected for all j, k.

Prove that $\pi_1(X, x_0)$ is generated by the subgroups im i_{j*} where $i_j: (U_j, x_0) \to (X, x_0)$ is the inclusion.

Proof. The set $\{f^{-1}(U_j)\}_j$ is an open cover of I. Let δ be its Lebesgue number. Pick N such that $1/N < \delta$.

For each $1 \leq i \leq N$, there exists U_{j_i} such that $f([(i-1)/N), i/N]) \subset U_{j_i}$ by the definition of Lebesgue number. For $1 \leq i < N$, the point f(iN) lies in $U_i \cap U_{i+1}$, a path connected space. Let p_i be a path from x_0 to f(iN) in $U_i \cap U_{i+1}$. If i = 0 or i = N, let p_i be the constant path at x_0 . Then for $1 \leq i \leq N$ Then $g_i := p_{i-1} * f_{[[(i-1)/N),i/N]} * p_i^{-1}$ defines a path in U_i with endpoints at x_0 . The fact that $[f] = [g_1] * [g_2] * \dots * [g_N]$ proves the desired result.

3.21 If $n \geq 2$, prove that S^n is simply connected.

Proof. Let $U_1, U_2 \subset S^n$ be the complements of the north and south poles, respectively. By Exercise 3.20, it suffices to show that both U_1 and U_2 are simply connected. However, the stereographic projection from the north pole defines a homeomorphism from U_1 to \mathbb{R}^n which is simply connected. Thus U_1 is simply connected. A similar argument works for U_2 .

3.24 Let G be a simply connnected topological group and let H be a discrete closed normal subgroup. Prove that $\pi_1(G/H, 1) \simeq H$.

Proof. Let $\nu: G \to G/H$ be the canonical quotient map. Let f and (X, x_0) be defined as in Lemma 3.14 with codomain (G/H, 1) instead of $(S^1, 1)$. I will prove the analog of Lemma 3.14 with ν replacing exp and G replacing \mathbb{R} .

Since H is discrete, there exists an open $U \subset G$ with $U \cap H = 1$.

I claim that there exists $V \subset U$, a symmetric open neighborhood of 1 with $V*V \subset U$. Indeed, there exists open neighborhoods A,B of 1 with $A*B \subset U$ by the continuity of group multiplication. Therefore $W:=A\cap B$ is an open neighborhood of 1 with $W*W \subset U$. Moreover W^{-1} is an open neighborhood of 1. Hence $V:=W\cap W^{-1}$ works.

Note that Vg is the inverse image of V under multiplication by g^{-1} on the right, so is open for all $g \in G$. Therefore $\{f^{-1}(Vg)\}_g$ is an open cover of X. Let ϵ be the Lebesgue number of this cover. It follows that if $||x - x'|| < \epsilon$ then $f(x)f(x')^{-1} \in Vgg^{-1}V = V$.

The rest of the proof of Lemma 3.14 follows with V replacing $(-\frac{1}{2}, \frac{1}{2})$ and $\nu(V)$ replacing $S^1 - \{-1\}$. The only sticky part is showing that $\nu_{|V|}$ is a homeomorphism onto its image.

First $\nu_{|V|}$ is injective since $H \cap V = \{1\}$. Thus $\nu_{|V|}$ is a continuous bijection onto its image, so it suffices to show that ν is an open map. Suppose $U \subset G$ is open. Then $\nu^{-1}(\nu(U)) = \bigcup_{h \in H} Vh$ is the union of open sets, hence open. Hence $\nu(U)$ is open since ν is a quotient map. Thus $\nu_{|V|}$ is a homeomorphism onto its image.

The rest of the proof follows with the obvious modifications (replacing + with the group multiplication, and exp with ν).

4

Proof. The new naturality condition is

$$(\sigma \times 1)_{\#} P_{n-1}^{\Delta^n} = P_{n-1}^X \sigma_{\#}.$$

This still holds for n=0 since $P_{-1}^X=0$ by definition for all X. The key formula on p. 77 remains unchanged. To verify that the new naturality condition holds for $P_n^{\Delta^{n+1}}$, the same argument as in the text works, except we choose $\tau:\Delta^n\to\Delta^{n+1}$ and $\sigma:\Delta^{n+1}\to X$.

5.14

(i) Proof. Since i_{n-1} is injective, we have $0 = \ker A_{n-1} = \operatorname{im}(C_n \to A_{n-1})$ by the exactness of the long sequence at A_{n-1} . Hence, by the exactness at C_n in the long sequence, we have im $p_n = C_n$.

The exactness at B_n in the long sequence implies exactness at B_n in the short sequence. Since i_n is injective, we get exactness at A_n in the short sequence.

(ii) If A is a retract of X, prove that for all $n \geq 0$,

$$H_n(X) \simeq H_n(A) \oplus H_n(X,A)$$
.

Proof. Since A is a retract of X, the s.e.s $0 \to A \to X \to X/Ato0$ splits.

Therefore $0 \to S_*(A) \xrightarrow{i} S_*(X) \xrightarrow{p} S_*(X/A)to0$ also splits.

Applying Theorem 5.6, we get an exact sequence

$$\dots \to H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{p_*} H_n(X,A) \to H_{n+1}(A) \to \dots$$

Since i has a left inverse, so does i_* for all n since H_n is a functor. In particular, i_* is invertible for all n.

Thus by (i), we have the split exact sequence

$$0 \to H_n(A) \to H_n(X) \to H_n(X,A) \to 0.$$

(iii) if A is a deformation retract of X, then $H_n(X, A) = 0$ for all $n \ge 0$.

Proof. Since A is a deformation retract of X, the inclusion $i:A\to X$ is a homotopy equivalence. Since H_n factors through **hTop**, the map $i_*:=H_n(i)$ is an isomorphism, and in particular surjective. The map p_* in the s.e.s.

$$0 \to H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{p_*} H_n(X,A) \to 0,$$

is must be the 0-map and also be surjective. Hence $H_n(X,A)=0$.