

UNIVE Fun

RSIDADE FEDERAL DA GRANDE DOURADOS	2	
ndamentos de Matemática III — Avaliação P1	3	
Prof. Adriano Barbosa	4	
tica 16/11/2017	5	
	Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

1. Determine $x, y \in \mathbb{R}$ tais que

$$(a) \left(x + yi\right)^2 = 2i$$

(b)
$$(3-i)(x+yi) = 20$$

- 2. Calcule $z \in \mathbb{C}$ tal que $z \overline{z} + z \overline{z} = 13 + 6i$.
- 3. Determine, se possível, o menor valor de $n \in \mathbb{N}$ tal que $\left(\sqrt{3}+i\right)^n$ seja um número real.
- 4. Resolva a equação binômia $x^3 + 1 = 0$.
- 5. Determine o quociente e o resto da divisão de $f = x^3 + x^2 + x + 1$ por $g = 2x^2 + 3$.

(1) a)
$$(x+yi)^2 = (x+yi)(x+yi) = x^2 + xyi + xyi - y^2 = (x^2-y^2) + (2xy)i$$

$$(x+yi)^{2} = 2i \qquad \Rightarrow \begin{cases} x^{2}-y^{2}=0 & \square \\ 2xy = 2 & \square \end{cases}$$

Se
$$y=0$$
, em (II) temos $2.2.0=2$, Absurdo! Assim, $y\neq 0$.

Supondo y + 0:

Portanto, as soluções sau x=1 e y=1 ou x=-1 e y=-1.

b)
$$(3-i)(x+yi) = 3x + 3yi - xi + y = (3x+y) + (-x+3y)i$$

$$(3-i)(x+yi) = 20 \implies \begin{cases} 3x+y = 20 & \text{ } \\ -x+3y = 0 & \text{ } \end{pmatrix} \times = 3y \text{ }$$

Substituindo @ em @:

$$3(3y) + y = 20 \Rightarrow 10y = 20 \Rightarrow y = 2$$

$$x = 3.2 = 6$$
.

Portanto, x=6 e y=2.

$$3\overline{3} = \alpha^2 + 6^2$$
 $2 3 - \overline{3} = 26$

$$23-\overline{3}=26i$$

$$\Rightarrow 3\overline{3} + (3-\overline{3}) = (a^2 + b^2) + (2b)i$$

logo,

$$3\overline{3} + 3 - \overline{3} = 13 + 6i \implies \begin{cases} a^2 + b^2 = 13 \\ 2b = 6 \implies b = 3 \implies a^2 + 3^2 = 13 \end{cases}$$

$$\Rightarrow \alpha^2 = 4 \Rightarrow \alpha = 2 \text{ on } \alpha = -2$$

Assim,
$$3 = 2 + 3i$$
 ou $3 = -2 + 3i$.

$$\rho = \sqrt{(\sqrt{3})^2 + \Lambda^2} = \sqrt{4} = 2$$

$$e \int \cos \theta = \frac{\sqrt{3}}{2}$$

$$\int \cos \theta = \frac{1}{2}$$

$$\int \cos \theta = \frac{1}{2}$$

Logo,
$$3 = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$
.

$$\Rightarrow (\sqrt{3}+i)^n = 3^n = 2^n \left[\cos \left(\frac{\pi}{6} \cdot n \right) + i \sin \left(\frac{\pi}{6} \cdot n \right) \right].$$

Para que zⁿ sijo real, precisamos que

$$2^{n} \operatorname{sun}(\overline{\xi}^{n}) = 0 \Rightarrow \operatorname{sun}(\overline{\xi}^{n}) = 0 \Rightarrow \overline{\xi}^{n} = KT, \text{ com } K \in \mathbb{Z}.$$

$$\Rightarrow$$
 n = 6k, com k $\in 2L$.

Portanto, o menor nEIN tal que 3ºER é n=6.

4 Temos que

$$\chi^3 + 1 = 0 \Rightarrow \chi^3 = -1 \Rightarrow \chi = \sqrt[3]{-1}$$

Mas,
$$3=-1=1\left(\cos\pi+i\sin\pi\right)$$

$$:. \quad \mathfrak{Z}_{K} = 1 \left[\cos \left(\frac{\pi + 2k\pi}{3} \right) + i \sin \left(\frac{\pi + 2k\pi}{3} \right) \right], \quad K = 0, 1, 2, \quad \text{saw as raizes arbitrary of the sum of$$

$$3_1 = \cos \pi + i \sin \pi = -1$$

$$z_2 = \cos \frac{5}{3}\pi + i \sin \frac{5}{3}\pi = \frac{1}{2} - \frac{13}{2}i$$

Portanto,

$$x = \frac{1}{2} + \frac{\sqrt{3}}{2} i \quad \text{ou} \quad x = -1 \quad \text{ou} \quad x = \frac{1}{2} - \frac{\sqrt{3}}{2} i$$

Verificando:

$$qq+r = \left(\frac{1}{2}x + \frac{1}{2}\right)\left(2x^{2} + 3\right) + \left(-\frac{1}{2}x - \frac{1}{2}\right)$$

$$= x^{3} + \frac{3}{2}x + x^{2} + \frac{3}{2} - \frac{1}{2}x - \frac{1}{2}$$

$$= x^{3} + x^{2} + x + 1 = f.$$