

第十二讲 几何计算问题

练1. 设半径为 r.

由勾股定理
$$AB = \sqrt{30^2 + 16^2} = 34$$
,故 $\sin \angle BAC = \frac{8}{17}$,

$$\cos \angle BAC = \frac{15}{17}.$$

于是
$$\cot \angle BAP = \tan \frac{\angle BAC}{2} = \frac{\frac{8}{17}}{1 + \frac{15}{17}} = \frac{1}{4}$$
,

类似可求得 cot $\angle ABQ = \frac{3}{5}$. 于是 $\frac{1}{4}r + 2r + \frac{3}{5}r = 34$,从而 $r = \frac{680}{57}$.

练2. 设 $\triangle APE$ 、 $\triangle BPF$ 、 $\triangle CPD$ 的面积分别为 x、y、z.

利用面积关系可得
$$\frac{x}{1} = \frac{1+y}{1+z}$$
, $\frac{y}{1} = \frac{1+z}{1+x}$, $\frac{z}{1} = \frac{1+x}{1+y}$

于是
$$xyz=1$$
.

不妨
$$x$$
最小, 若 $x < 1$, 则 $1 + y < 1 + z$,

从而
$$y < z$$
, $(1+z)(1+y) < (1+x)^2$, 矛盾.

故
$$x = y = z = 1$$
.

$$S_{\triangle ABC} = 6$$
.

练3. 设O为圆心,若O与K重合,则结论显然成立.

若 O 与 K 不重合,从 O 分别向弦 AA_1, BB_1, CC_1 作垂线 OM, OP, OT.

记
$$\angle OKT = \alpha$$
, 则 $KM = KO\cos(60^{\circ} + \alpha)$,

$$KP = KO \cos(60^{\circ} - \alpha)$$
, $KT = KO \cos \alpha$.

$$\pm \mp \cos(60^{\circ} - \alpha) + \cos(60^{\circ} + \alpha) = \cos \alpha$$

于是可得
$$KM+KP=KT$$
 ①

$$\mathbb{X} KM = \frac{1}{2} (KA - KA_1)$$
 2

将②③④代入①即得 $KA+KB+KC=KA_1+KB_1+KC_1$.

