

Deep Learning

Adversarial Machine Learning

U Kang Seoul National University

In This Lecture

- Adversarial machine learning
- Generating adversarial examples
 - Fast gradient sign method (FGSM)
 - Momentum iterative FGSM (MI-FGSM)
 - One-step target class method (OTCM)
- Implementations
 - Attacking trained models by adv. examples
 - Training models robust to the adv. attacks

Outline

- **→** □ Adversarial Machine Learning
 - ☐ Practice: CNN

Adversarial Machine Learning

Adversarial machine learning

 A technique that attempts to fool (trained) models through malicious input

Why is it important?

- Trained ML models are used in various applications
 - Autonomous driving, factory automation, etc.
- Attacking trained models may ruin a whole system
- ML models should be safe from malicious attacks

Adversarial Examples (1)

Adversarial examples

- Inputs to machine learning models that an attacker has intentionally designed to cause a mistake
- The following is a famous example of classification

U Kang

Adversarial Examples (2)

 We can fool a classifier by taking a picture of a washer and using the captured screen

U Kang

Adversarial Attacks

- We introduce three simple attack methods
 - Fast gradient sign method (FGSM)
 - Momentum iterative FGSM (MI-FGSM)
 - One-step target class method (OTCM)
- All three approaches are white-box methods
 - The structure of a model is fully visible
 - An attacker can compute the gradient of the model

FGSM (1)

- Fast gradient sign method (FGSM)
 - A simple but powerful technique for adv. attacks
 - Described in [Goodfellow et al., ICLR 2015]
- **FGSM** works as follows for an input image x:
 - \Box Computes the gradient of the loss with respect to x
 - Creates a new image that locally maximizes the loss
 - This new image becomes an adversarial image

FGSM (2)

FGSM is summarized as follows:

$$x' = x + \epsilon \cdot \operatorname{sign}(\nabla_x J_{\theta}(x, y))$$

- $\neg x'$: Adversarial image
- x, y: Original image and label
- \blacksquare ϵ : Multiplier to ensure the perturbations are small
- $\ \ \ \ \theta$: Model parameters
- □ *J*: Loss function

MI-FGSM (1)

Momentum Iterative FGSM (MI-FGSM)

- Proposed in [Dong et al., CVPR 2018]
- FGSM is easily defended as it is a one-step approach
 - lacksquare An adversarial example x' is derived easily from x
- \Box Iterative methods naturally make x' far from x
 - Not far by the Euclidean distance
- MI-FGSM adds a momentum to iterative methods

MI-FGSM (2)

MI-FGSM keeps track of two kinds of variables:

$$g_{t+1} = \mu g_t + \frac{\nabla_{x} J_{\theta}(x'_t, y)}{\|\nabla_{x} J_{\theta}(x'_t, y)\|}$$

$$x'_{t+1} = x'_t + \alpha \cdot \operatorname{sign}(g_{t+1})$$

- \square μ is a decay factor and normally set to 1
- $\alpha = \epsilon/T$ with T being the number of iterations

MI-FGSM (3)

The algorithm in the original paper:

Algorithm 1 MI-FGSM

Input: A classifier f with loss function J; a real example x and ground-truth label y;

Input: The size of perturbation ϵ ; iterations T and decay factor μ .

Output: An adversarial example x^* with $||x^* - x||_{\infty} \le \epsilon$.

- 1: $\alpha = \epsilon/T$;
- 2: $\mathbf{g}_0 = 0$; $\mathbf{x}_0^* = \mathbf{x}$;
- 3: **for** t = 0 to T 1 **do**
- 4: Input x_t^* to f and obtain the gradient $\nabla_x J(x_t^*, y)$;
- 5: Update g_{t+1} by accumulating the velocity vector in the gradient direction as

$$\boldsymbol{g}_{t+1} = \mu \cdot \boldsymbol{g}_t + \frac{\nabla_{\boldsymbol{x}} J(\boldsymbol{x}_t^*, y)}{\|\nabla_{\boldsymbol{x}} J(\boldsymbol{x}_t^*, y)\|_1}; \tag{6}$$

6: Update x_{t+1}^* by applying the sign gradient as

$$\boldsymbol{x}_{t+1}^* = \boldsymbol{x}_t^* + \alpha \cdot \operatorname{sign}(\boldsymbol{g}_{t+1}); \tag{7}$$

- 7: end for
- 8: return $\boldsymbol{x}^* = \boldsymbol{x}_T^*$.

U Kang

OTCM (1)

One-step target class method (OTCM)

- FGSM and MI-FGSM are non-targeted methods
 - They fool a classifier but not for a specific label
- OTCM, however, takes a specific label as input
 - It produces different results for different input labels

OTCM (2)

OTCM is summarized as follows:

$$x' = x - \epsilon \cdot \operatorname{sign}(\nabla_x J_{\theta}(x, y'))$$

- y' is a target class that given as input
- Note that the gradient is subtracted from x
 - FGSM adds the gradient to increase the loss
 - $lue{}$ OTCM tries to minimize the loss for the target y'

Outline

Machine Learning

Implementing a CNN

- We quickly implement a CNN for a practice
- Import essential libraries and download MNIST

```
import tensorflow as tf
from tensorflow.keras.models import Sequential
import tensorflow.keras.layers as ly
from tensorflow.keras.utils import to_categorical
import numpy as np
import matplotlib.pyplot as plt
```

```
# Load dataset
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Preprocess dataset
train_images = train_images.reshape((-1, 28, 28, 1))
test_images = test_images.reshape((-1, 28, 28, 1))
train_images, test_images = train_images / 255.0, test_images / 255.0
train_labels = to_categorical(train_labels, 10)
test_labels = to_categorical(test_labels, 10)
```


Convolutional Layers

- Define convolutional layers of 3×3 kernels
 - \square ReLU and max-pooling of size 2 \times 2 are used
 - The number of channels increases by layers

U Kang

Dense Layers

Add two dense layers to the end of the network

Model Structure

Check model structure

model.summary()

Model: "sequential"			
Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 32)	288
max_pooling2d (MaxPooling2D)	(None,	14, 14, 32)	0
conv2d_1 (Conv2D)	(None,	14, 14, 64)	18432
max_pooling2d_1 (MaxPooling2	(None,	7, 7, 64)	0
flatten (Flatten)	(None,	3136)	0
dense (Dense)	(None,	256)	803072
dense_1 (Dense)	(None,	10)	2570
Total params: 824,362 Trainable params: 824,362 Non-trainable params: 0			

Compiling and Training

- Define cost and optimizer tensors for training
 - We use the typical cross-entropy loss function
 - We use the SGD optimizer
 - \square We train the network for N=3 epochs

Evaluation

- Evaluate the performance of trained model
 - We use test dataset for evaluation

```
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f"Test_loss: {test_loss:.4f}, accuracy: {test_acc*100:.2f}")
```

313/313 - 1s - Loss: 0.0684 - accuracy: 0.9781

Test loss: 0.0684, accuracy: 97.81

Questions?