华东理工大学 2021-2022 学年第一学期

《数学分析(上)》课程期末考试试卷 A 2021.12

 开课学院:
 数学学院
 专业:
 数、信计
 考试形式:
 闭卷
 所需时间:
 120 分钟

 姓
 名:
 学号:
 班级:
 任课教师:
 靳勇飞

题序	 =	=	四	五	六	七	八	九	+	总分
得分										
评卷人										

注意事项:

- 1. 考试过程中不可以使用计算器,也不可以使用任何其他机械或电子辅助计算工具。
- 3. 使用任何没有在课本或者课堂上证明过的结论前,都必须先证明该结论。
- 4. 所有题目的解答都需写出主要步骤。

 以下为试券内容	

一、 (每小题 6 分, 共 12 分) 计算。

1.
$$\lim_{n \to +\infty} \frac{(-3)^n + 2^n}{3^n - 2^n}$$

$$2. \lim_{n \to +\infty} \left(n - n^2 \ln \left(1 + \frac{1}{n} \right) \right)$$

二、 (每小题 6 分, 共 12 分) 计算。

1.
$$\lim_{x \to 1} \left(\frac{2022}{1 - x^{2022}} - \frac{2021}{1 - x^{2021}} \right)$$

$$2. \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$

三、 (每小题 6 分, 共 12 分) 计算。

1.
$$\int \frac{1}{(x+1)(x^2+x+1)} dx$$
;

$$2. \int 2x^3 e^{x^2} dx$$

四、(本题 10 分)徐汇校区某温度测量站几日的实际温度测量值如下表所示,请用插值多项式近似表示温度随时间变化的函数,并求记录缺失的 12 月 20 日温度的近似值。

日期	12月17日	12月18日	12月19日	12月21日
温度	10	7	11	17

五、 (本题 10 分) 请写出用牛顿 (Newton) 迭代法求函数 $f(x) = \ln x + x - 2$ 的零点的迭代公式,并说明以 $x_0 = 1$ 为初值时,这个迭代过程是否是收敛的。

六、 (本题 10 分) 求函数 $e^x \sin x$ 在 0 处的带皮亚诺 (Peano) 余项的 5 次泰勒 (Taylor) 公式,并求 $e^{0.5} \sin 0.5$ 的近似值。

七、 (本题 10 分) 已知关于 x 二阶可导的函数 y = y(x) 满足方程

$$\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}},$$

求
$$\frac{d^2y}{dx^2}$$
.

八、 (本题 10 分) 简述从波尔查诺 (Bolzano)-维尔斯特拉斯 (Weierstrass) 定理出发证明柯西 (Cauchy) 收敛原理的思路。

九、 (本题 8 分) 设函数 f 在 $(-\infty, +\infty)$ 上连续,且 $\lim_{x\to -\infty} f(x)$ 存在, $\lim_{x\to +\infty} f(x)$ 存在,证明: f 在 $(-\infty, +\infty)$ 上一致连续。

十、 (本题 6 分) 设函数 f 在闭区间 [a,b] 上连续,在 (a,b) 内可导, $f(b) \ge f(a)$,且 f 不是线性函数。求证: 存在 $\xi_1, \xi_2 \in (a,b)$,使得 $\left| \frac{f(\xi_2) - f(\xi_1)}{\xi_2 - \xi_1} \right| > \frac{f(b) - f(a)}{b - a}$.