WebShaper: Agentically Data Synthesizing via **Information-Seeking Formalization**

Zhengwei Tao*, Jialong Wu*, Wenbiao Yin (), Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li, Liwen Zhang, Xinyu Wang, Yong Jiang (), Pengjun Xie, Fei Huang, Jingren Zhou

Tongyi Lab 🔯 , Alibaba Group

https://github.com/Alibaba-NLP/WebAgent

https://huggingface.co/datasets/Alibaba-NLP/WebShaper

https://modelscope.cn/datasets/iic/WebShaper

本文提出WebShaper,一种新颖的信息检索任务训练数据构造方法,不同于之前读过的WebDancer、 WebSailor "先收集web信息、再围绕这些信息生成问题"的方法,WebShaper采用"先定义检索任务结 构,再据此检索信息并生成问题",确保每个问题背后有清晰的推理逻辑和结构控制。

那么如何定义检索任务呢?WebShaper引入了集合论(set theory)、交并集操作,形式化定义信息检索任 务的推理路径,在真正创建数据集时用一个具备搜索、总结、验证能力的Expander Agent进行基于知识 图谱的分层扩展策略,逐步构建出结构更复杂、逻辑也清晰的更大的图谱。

注意:本文用集合论形式化定义检索任务,我觉得可以简单理解为三元组、知识图谱,没必要想的很复杂

背景

对于Web Agent任务来说,如何构造高质量 高难度的信息检索(Information-Seeking, IS) 训练数据,始终是一个关键难题。本文是之前 读过的WebDancer、WebSailor续作,作者 继续发力如何构建IS训练集,这一次采用了一 种形式化(formalization)驱动的方法,先定义 好结构化的任务公式,再通过agent去构建问 题和answer信息。

典型的TIR工作

两个tool:搜索引擎和网页访问

• 实验对象: Qwen2.5 系列 训练: sft+GRPO两阶段 木文重占具构造训练售

	4	` -	×	3	=	<i>γ</i>	77	.)	U	=	1	_	IJ	Y	_	J	<i>/</i>	=	小	Ż	木							
															Oį	рe	n-s	501	ırcı	ed	Ą	ger	tic	c F	ran	ne	wa	r
							_			-		-											_			_	_	

	O	pen-source	d Agentic F	ramework	is .				
	Search-o1	33.3	25.0	0.0	28.2	-	-	-	-
Qwen-2.5-32B	WebDancer	46.1	44.2	8.3	40.7	44.3	46.7	29.2	38.4
	WebShaper	61.5	53.8	16.6	52.4	58.1	51.4	47.0	51.4
	Search-o1	53.8	34.6	16.6	39.8	43.1	35.0	27.1	34.1
	WebThinker-Base	53.8	44.2	16.6	44.7	47.2	41.1	39.2	41.9
O 22P	WebThinker-RL	56.4	50.0	16.6	48.5	58.8	44.6	40.4	46.5
QwQ-32B	Simple DS	-	-	-	50.5	-	-	-	-
	WebDancer	61.5	50.0	25.0	51.5	52.5	59.6	35.4	47.9
	WebShaper	69.2	50.0	16.6	53.3	55.8	49.2	45.4	49.7
Qwen-2.5-72B	WebShaper	69.2	63.4	16.6	60.1	56.2	52.1	49.5	52.2
	WebSailor				55.4				

WebShaper描述

我在阅读这篇论文的时候,由于作者用了一种比较新颖的形式化定义:集合、交并集。稍微有些阅读门 槛,但是我发现,只要把所谓的知识投影(knowledge projection)看作抽象版的三元组(实体1,关 系,实体2)就顺畅了,剩下的就是如何构建"知识图谱"。

我们重新组织下简单的语言,看看本文在做什么:对于webagent的训练集,目前普遍采用(query, answer)的方式,其中answer是query的明确检索答案。当然了,你可能会想,不是所有的问题都有明 确答案啊?OK恭喜你,你已经思考的很深入了,这个问题目前似乎没有人去尝试解决。切回正题,对 于那些有明确答案的query,是不是可以把答案用"实体"描述呢?那么query是不是可以拆解为多个实体 之间的关系呢?这似乎就是作者的insight,这里可能有些抽象,比如query是"一个参加过2002年世界 杯并且在皇马待过的意大利球员是?"我们可以从中提取实体和关系吧?然后构成一个小图谱,所谓的找 answer就是在找一个满足query的实体。这就是本文的KP和KP Representation。 @机器爱学习