Матрица на линейно изображение на крайномерни пространства. Смяна на базиса. Трансформация на матрицата на линейно изображение при смяна на базисите. Подобни матрици.

Лема 1. (Матричен запис на линейността на изображение:) $He \kappa a \varphi : U \to V$ е линейно изображение, $u = (u_1, \ldots, u_m)$ е наредена m-торка вектори $u_1, \ldots, u_m \in U$ и $A = (a_{i,j})_{i=1}^m {}_{j=1}^n \in M_{m \times n}(F)$ е матрица. Тогава

$$\varphi(uA) = \varphi(u)A$$

3a

$$v_j := (u_1, u_2, \dots, u_m) \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix} = \sum_{i=1}^m a_{ij} u_i,$$

$$\varphi(uA) = \varphi(v_1, \dots, v_n) = (\varphi(v_1), \dots, \varphi(v_n)) \ u \ \varphi(u) = (\varphi(u_1), \dots, \varphi(u_n)).$$

 $\ensuremath{\mathcal{A}\xspace}$ оказателство. Достатъчно е да забележим, че за всяко $1 \leq j \leq n$ е в сила равенството

$$\varphi(v_j) = \varphi\left(\sum_{i=1}^m a_{ij}u_i\right) = \sum_{i=1}^m a_{ij}\varphi(u_i) = (\varphi(u_1), \dots, \varphi(u_m)) \begin{pmatrix} a_{1j} \\ \dots \\ a_{mj} \end{pmatrix}$$

на j-тия стълб на $\varphi(uA)$ с j-тия стълб на $\varphi(u)A$.

Определение 2. Нека $\varphi: U \to V$ е линейно изображение на крайномерни пространства, $e = (e_1, \dots, e_n)$ е базис на U, а $f = (f_1, \dots, f_m)$ е базис на V. Матрицата

$$A = (\varphi(e_1), \dots, \varphi(e_n)) \in M_{m \times n}(F),$$

образувана по стълбове от координатите на векторите $\varphi(e_1), \ldots, \varphi(e_n) \in V$ спрямо базиса $f = (f_1, \ldots, f_m)$ на V се нарича матрица на φ спрямо базисите e и f.

 $Е \kappa в u в a л e н m н o$,

$$\varphi(e) = fA$$

$$зa \varphi(e) := (\varphi(e_1), \ldots, \varphi(e_n)).$$

Линейното изображение $\varphi: U \to V$ се определя еднозначно от образите $\varphi(e_1), \ldots, \varphi(e_n)$ на базис e_1, \ldots, e_n на U. Затова матрицата на φ спрямо базис e на U и базис f на V определя еднозначно φ . Всяка матрица $A \in M_{m \times n}(F)$ се реализира като матрица на линейно изображение $\varphi: U \to V$ от n-мерно пространство U в m-мерно пространство V над F. По-точно, за произволен базис $e = (e_1, \ldots, e_n)$ на U и произволен базис

 $f=(f_1,\ldots,f_m)$ на V определяме φ като единственото линейно изображение $\varphi:U o V$ с

$$arphi(e_j) = \sum_{i=1}^m a_{ij} f_i$$
 за всяко $1 \leq j \leq n.$

Ако $u \in U$ има координати

$$x = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \in M_{n \times 1}(F)$$

спрямо базиса $e = (e_1, \ldots, e_n)$, то

$$u = \sum_{i=1}^{n} x_i e_i = (e_1, \dots, e_n) \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = ex.$$

Действайки с φ върху u=ex получаваме

$$\varphi(u) = \varphi(e)x = (fA)x = f(Ax).$$

Ако

$$y = \begin{pmatrix} y_1 \\ \dots \\ y_n \end{pmatrix} \in M_{m \times 1}(F)$$

са координатите на $\varphi(u)$ спрямо базиса $f=(f_1,\ldots,f_m)$ на V, то $\varphi(u)=fy$, откъдето

$$fy = \varphi(u) = f(Ax).$$

Следователно $f(y-Ax) = \overrightarrow{\mathcal{O}}$ и $y-Ax = \mathbb{O}_{n\times 1}$. Това доказва

$$y = Ax$$
.

Например, нулевото линейно изображение $\mathbb{O}: U \to V, \, \mathbb{O}(u) = \overrightarrow{\mathcal{O}}_V, \, \forall u \in U$ на n-мерно пространство U в m-мерно пространство V има нулевата матрица $\mathbb{O}_{m \times n} \in M_{m \times n}(F)$ спрямо произволен базис $e = (e_1, \dots, e_n)$ на U и произволен базис $f = (f_1, \dots, f_m)$ на V.

Диференцирането $\frac{d}{dx}:\mathbb{R}[x]^{(n+1)}\to\mathbb{R}[x]^{(n)}$ има матрица

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix} \in M_{n \times (n+1)}(\mathbb{R})$$

спрямо базиса $1, x, \frac{x}{2!}, \dots, \frac{x^n}{n!}$ на $\mathbb{R}[x]^{(n+1)}$ и базиса $1, x, \frac{x}{2!}, \dots, \frac{x^{n-1}}{(n-1)!}$ на $\mathbb{R}[x]^{(n)}$.

Определение 3. Ако $\varphi: U \to U$ е линеен оператор в n-мерно пространство U и $e = (e_1, \ldots, e_n)$ е базис на U, то матрицата

$$A = (\varphi(e_1), \dots, \varphi(e_n)) \in M_{n \times n}(F),$$

образувана по стълбове от координатите на $\varphi(e_1), \dots, \varphi(e_n)$ спрямо e_1, \dots, e_n се нарича матрица на φ спрямо базиса e.

Еквивалентно, А се определя от равенството

$$\varphi(e) = eA.$$

Матрицата A на $\varphi: U \to U$ спрямо произовлен базис $e = (e_1, \dots, e_n)$ на U определя еднозначно φ . Всяка квадратна матрица $A \in M_{n \times n}(F)$ се реализира като матрица на линеен оператор в n-мерно линейно пространство. Ако u = ex е вектор с координати $x \in M_{n \times 1}(F)$ спрямо базиса e на U, то

$$\varphi(u) = \varphi(ex) = \varphi(e)x = (eA)x = e(Ax)$$

е векторът с координати Ax спрямо същия базис.

Например, тъждественият линеен оператор $\mathrm{Id}:U\to U,\,\mathrm{Id}(u)=u,\,\forall u\in U$ има единична матрица E_n спрямо произволен базис $e=(e_1,\ldots,e_n)$ на U.

единична матрица E_n спрямо произволен базис $e=(e_1,\dots,e_n)$ на U. Ако разглеждаме диференцирането $\frac{d}{dx}:\mathbb{R}[x]^{(n+1)}\to\mathbb{R}[x]^{(n+1)}$ като линеен оператор в пространството $\mathbb{R}[x]^{(n+1)}$ на полиномите на x от степен $\leq n$ с реални коефициенти, то матрицата на $\frac{d}{dx}$ спрямо базиса $1,x,\frac{x^2}{2!},\dots,\frac{x^n}{n!}$ на $\mathbb{R}[x]^{(n+1)}$ е

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 0 & 1 \\ 0 & 0 & 0 & \dots & 0 & 0 & 0 \end{pmatrix} \in M_{(n+1)\times(n+1)}(\mathbb{R}).$$

Лема 4. (Матрична форма на линейната независимост на вектори:) *Нека* u_1, \ldots, u_m са линейно независими вектори от линейно пространство $U, u = (u_1, \ldots, u_m), A = (a_{i,j})_{i,j=1}^n \in M_{m \times n}(F)$ u

$$uA = (\overrightarrow{\mathcal{O}}, \dots, \overrightarrow{\mathcal{O}}).$$

 $Tora \, aa \, A = \mathbb{O}_{m \times n} \, e \, нулевата \, матрица.$

Доказателство. За всяко $1 \leq j \leq n$, сравняването на j-тите компоненти на двете страни на

$$uA = (\overrightarrow{\mathcal{O}}, \dots, \overrightarrow{\mathcal{O}})$$

дава

$$(u_1 \ldots u_m)\begin{pmatrix} a_{1,j} \\ \ldots \\ a_{m,j} \end{pmatrix} = \overrightarrow{\mathcal{O}}.$$

Но равенството

$$\sum_{s=1}^{m} a_{s,j} u_s = \overrightarrow{\mathcal{O}}$$

за линейно независимите вектори u_1,\ldots,u_m изисква $a_{s,j}=0$ за $\forall 1\leq s\leq m$. Това доказва $a_{s,j}=0$ за всички $1\leq s\leq m,\,1\leq j\leq n$ и $A=\mathbb{O}_{m\times n}$.

Определение 5. Ако $e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ са базиси на линейно пространство V над поле F, то матрицата $T \in M_{n \times n}(F)$, образувана по стълбове от координатите на f_1, \ldots, f_n спрямо базиса e_1, \ldots, e_n се нарича матрица на прехода от базиса e към базиса f. Еквивалентно, матрицата на прехода $T \in M_{n \times n}(F)$ от базиса e към базиса f е единствената матрица, изпълняваща равенството

$$f = (f_1, \dots, f_n) = (e_1, \dots, e_n)T = eT.$$

 ${f Задача}\ {f 6}.\ {\it Д} a\ ce\ намери\ матрицата\ на\ прехода\ om\ базис\ e_1,e_2,e_3\ на\ {\Bbb R}^3\ към базисa$

$$f_1 = e_1 + 3e_2 + e_3$$
, $f_2 = -e_1 + e_2 + 2e_3$, $f_3 = 2e_1 - e_2 + 3e_3$

 $\mu a \mathbb{R}^3$.

Доказателство. Първият стълб на $T \in M_{3\times 3}(\mathbb{R})$ е

$$\begin{pmatrix} 1\\3\\1 \end{pmatrix}$$
,

вторият стълб е

$$\begin{pmatrix} -1\\1\\2 \end{pmatrix}$$
,

е третият стълб е

$$\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
.

С други думи, матрицата на прехода $T \in M_{3\times 3}(\mathbb{R})$ от e_1, e_2, e_3 към f_1, f_2, f_3 е

$$T = \left(\begin{array}{ccc} 1 & -1 & 2 \\ 3 & 1 & -1 \\ 1 & 2 & 3 \end{array}\right).$$

Твърдение 7. Нека $e=(e_1,\ldots,e_n)$ е базис на линейно пространство V, а $T\in M_{n\times n}(F)$ е квадратна матрица. В такъв случай, T е матрица на прехода от базиса e към базиса $f=(f_1,\ldots,f_n)=eT$ тогава и само тогава, когато матрицата T е неособена.

Доказателство. Векторите $(f_1,\ldots,f_n)=f=eT$ образуват базис на V тогава и само тогава, когато са линейно независими. Това е еквивалентно на $\mathrm{rk}(f_1,\ldots,f_n)=n$ за вектор-стълбовете f_1,\ldots,f_n на T е в сила точно когато матрицата T има ранг $\mathrm{rk}(T)=n$. Вземайки предвид, че $T\in M_{n\times n}(F)$ е квадратна матрица от ред n и единственият минор на T от ред n е нейната детерминанта, стигаме до извода, че f=eT е базис на V тогава и само тогава, когато $\det(T)\neq 0$

Твърдение 8. Нека $e = (e_1, \ldots, e_n)$ и $f = (f_1, \ldots, f_n)$ са базиси на линейно пространство V с матрица на прехода $T \in M_{n \times n}(F)$ от e към f. Тогава координатите $x \in M_{n \times 1}(F)$ на вектор $v \in V$ спрямо базиса e и координатите $y \in M_{n \times 1}(F)$ на същия вектор v спрямо базиса f са свързани c равенството

$$x = Ty$$
.

Доказателство. Съгласно f=eT и ex=v=fy имаме ex=(eT)y=e(Ty), откъдето $e(x-Ty)=\overrightarrow{\mathcal{O}}$. Прилагаме Лема 4 към линейно независимите вектори e_1,\ldots,e_n и получаваме $x-Ty=\mathbb{O}_{n\times 1}$, откъдето

$$x = Ty$$
.

Твърдение 9. Нека $\varphi: U \to V$ е линейно изображение с матрица A спрямо базис $e = (e_1, \ldots, e_n)$ на U и базис $f = (f_1, \ldots, f_m)$ на V, e' = eT е друг базис на U с матрица на прехода T от е към e' и f' = fS е друг базис на V с матрица на прехода S от f към f'. Тогава матрицата на φ спрямо базиса e' на U и базиса f' на V е

$$B = S^{-1}AT$$
.

Доказателство. По определение, $\varphi(e)=fA$ и $\varphi(e')=f'B$. Замествайки e'=eT и f'=fS и прилагайки Лема 1 получаваме

$$f(AT) = (fA)T = \varphi(e)T = \varphi(eT) = \varphi(e') = f'B = (fS)B = f(SB).$$

Базисът $f = (f_1, \dots, f_m)$ на V се състои от линейно независими вектори, така че от

$$f(AT - SB) = (\underbrace{\overrightarrow{\mathcal{O}}_V, \dots, \overrightarrow{\mathcal{O}}_V}_n)$$

следва $AT-SB=\mathbb{O}_{m\times n}$. Оттук, AT=SB и $B=S^{-1}AT$, съгласно обратимостта на матрицата на прехода S от базиса f на V към базиса f' на V.

Задача 10. Нека $\varphi:U\to V$ е $\mathbb R$ -линейното изображение с матрица

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 2 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix} \in M_{4 \times 3}(\mathbb{R})$$

спрямо базис $e=(e_1,e_2,e_3)$ на U и базис $f=(f_1,f_2,f_3,f_4)$ на V. Да се намери матрицата $B\in M_{4\times 3}(\mathbb{R})$ на φ спрямо базиса

$$e'_1 = e_1 + 2e_2 + 3e_3, \quad e'_2 = e_2 + 2e_3, \quad e'_3 = e_3$$

на U и базиса

$$f_1' = f_1$$
, $f_2' = 2f_1 + f_2$, $f_3' = 3f_1 + 2f_2 + f_3$, $f_4' = 4f_1 + 3f_2 + 2f_3 + f_4$

на V.

Решение: Матрицата на прехода от базиса $e=(e_1,e_2,e_3)$ към базиса $e'=(e'_1,e'_2,e'_3)$ на U е

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \in M_{3\times 3}(\mathbb{R}),$$

а матрицата на прехода от базиса $f=(f_1,f_2,f_3,f_4)$ към базиса $f'=(f_1',f_2',f_3',f_4')$ на V е

$$S = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R}).$$

С елементарни преобразувания по редове към $(S|E_4)$ свеждаме S към единичната матрица E_4 . Матрицата, получена от E_4 под действие на същите елементарни преобразувания по редове е S^{-1} . По-точно,

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 0 & 1 & 0 & 0 & -4 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 0 & 1 & 0 & 0 & -4 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix},$$

така че

$$S^{-1} = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \in M_{4 \times 4}(\mathbb{R})$$

и матрицата на φ спрямо e' и f' е

$$B = S^{-1}AT = \begin{pmatrix} 3 & -2 & 3 \\ -3 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 4 & 3 \\ -5 & -1 & 0 \\ 5 & 3 & 1 \\ -2 & -2 & -1 \end{pmatrix}.$$

От Твърдение 10 следва, че ако линеен оператор $\varphi: U \to U$ има матрица A спрямо базис $e = (e_1, \ldots, e_n)$ на U и e' = eT е друг базис на U, то матрицата на φ спрямо e' е $B = T^{-1}AT$.

Определение 11. Квадратни матрици $A, B \in M_{n \times n}(F)$ с един и същи размер са подобни, ако съществува обратима матрица $T \in M_{n \times n}(F)$, така че $B = T^{-1}AT$.

Твърдение 12. Квадратни матрици $A, B \in M_{n \times n}(F)$ са подобни тогава и само тогава, когато съществува линеен оператор в n-мерно линейно пространство над F с матрици A и B спрямо подходящи базиси.

Доказателство. От Твърдение 10 следва, че ако $\varphi: U \to U$ е линеен оператор с матрица $A \in M_{n \times n}(F)$ спрямо някакъв базис e на U, то матрицата на φ спрямо базиса e' = eT с матрица на прехода $T \in M_{n \times n}(F)$ от e към e' е подобна на A и равна на $B = T^{-1}AT$.

Нека A и $B=T^{-1}AT$ са подобни матрици. Избираме базис $e=(e_1,\ldots,e_n)$ на n-мерно линейно пространство U над F и разглеждаме линейния оператор $\varphi:U\to U$ с матрица A спрямо базиса e. Матрицата T е неособена, така че e'=eT е базис на U и матрицата на φ спрямо e' е $T^{-1}AT=B$.