Probabilistic Artificial Intelligence

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. Probabilistic Computing
- 2. Third wave of Al
- 3. Ex: Driving a car
- 4. Role in Explainable AI (XAI)
- 5. Role of probability in machine learning

Role of Probability in Al

- Probabilistic computing allows us to
 - 1. Deal with uncertainty in natural data around us
 - 2. Predict events in the world with an understanding of data and model uncertainty
- Predicting what will happen next in a scenario, as well as effects of our actions, can only be done if we know how to model the world around us with probability distributions

Role with XAI

- Augmenting deep learning with probabilistic methods opens door to understanding why Al systems make the decisions they make,
- Will help with issues like tackling bias in Al systems.

Next wave of Al

 Research into probabilistic computing is really about establishing a new way to evaluate the performance of the next wave of Al —one that requires real-time assessment of "noisy" data.

Current Al Models

Shaded boxes indicate components that can learn from data

Next step for Al

- First AI systems focused on logic:
 - Pre-programed rules.
- Second wave of AI concerns ability to sense and perceive information
 - Leveraging neural networks to learn over time.
- But, neither solution can do things that human beings do naturally as we navigate the world.
 - They can't think through multiple potential scenarios based on data that you have on-hand while conscious of potential data that you don't have.

Driving a Car and Soccer Ball

- If you are driving a car and see a soccer ball roll into the street,
- Your immediate and natural reaction is to stop the car since we can assume a child is running after the ball and isn't far behind.

Role of Probabilistic System

- Driver reaches the decision to stop the car based on experience of natural data and assumptions about human behavior.
 - But, a traditional computer likely wouldn't reach the same conclusion in real-time, because today's systems are not programmed to mine noisy data efficiently and to make decisions based on environmental awareness.
 - You would want a probabilistic system calling the shots—one that could quickly assess the situation and act (stop the car) immediately.

PGMs in Explainable Al

Why did you do that?
Why not something else?
When do you succeed?
When do you fail?
When can I trust you?

How do I correct an error?

User

Anecdote: Medical Al
Decisions can be worse with Al
e.g., Patient discharge to a nursing home

Role of Probability in ML

- In neural networks (discriminative models)
 - 1. Output is a probability distribution over *y*
 - 2. Instead of error as loss function we use a surrogate loss function, viz., log-likelihood, so that it is differentiable (which is necessary for gradient descent)
- In probabilistic AI (generative models)
 - We learn a distribution over observed and latent variables whose parameters are determined by gradient descent as well

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \, \tilde{p}(\mathbf{x}, \boldsymbol{\theta})$$

$$Z(\boldsymbol{\theta}) = \sum_{x} \tilde{p}(\boldsymbol{x}, \boldsymbol{\theta})$$

Importance of Probabilistic Al

- Intel's new architectures for 2019*
- With end of Moore's law, focus is on
 - 1. Quantum computing
 - Manufactured 49-qubit supercomputing chip
 - 2. Neuromorphic computing
 - Implement aspects of biological neural networks as analog or digital copies on electronic circuits
 - 3. Probabilistic computing
 - Extend Al solutions to include novel and efficient implementations that enable calculations with probability distributions