## Nichtlineare Gleichungssysteme

## Funktionen mit mehreren Variablen

auch multivariat gennant, hier nur skalarwertige Funktionen (keine Komplexen Zahlen). Definition:

Explizite Darstellung Funktionsgleichung ist nach einer variablen aufgelöst.

$$y = f(x_1, x_2, ..., x_n)$$

Implizite Darstellung nicht nach einer Variablen aufgelöst(nur n-1 unabhängige Variablen)

$$F(x_1, x_2, ..., x_n) = 0$$

für vektorwertige funktionen

$$\vec{f}(x_1, ..., x_n) = \begin{pmatrix} y_1 = f_1(x_1, ..., x_n) \\ ... \\ y_m = f_m(x_1, ..., x_n) \end{pmatrix}$$

Graphische Darstellungsformen -

Funktionen mit 2 Variablen können 3D dargestellt werden. Interpretieren als z=f(x,y)





## Partielle Ableitungen

Nur eine der Variablen wird abgeleitet, der Rest als Konstante behandelt. Visuell entspricht dies der Steigung an einer Flächentangente.





Partielle Ableitungen 1. Ordnung -

Beispiel nach  $\times$  abgeleitet(normale Ableitungsregeln, andere Variablen als Konstanten betrachten):

$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$f(x,y) = 3xy^{3} + 10x^{2}y + 5y + 3y * sin(5xy)$$
$$\frac{\partial f}{\partial x} = 3 * 1 * y^{3} + 10 * 2x + 0 + 3y * cos(5xy) * 5 * 1 * y$$

## Linearisierung

Repetition Tangentengleichung

Dient als Annäherung für eindimensionale f(x) in der Nähe von  $x_0$  (Linearisierung):  $g(x) = f(x_0) + f'(x_0)(x - x_0)$ 

#### Jacobi-Matrix

Sozusagen wie Tangentengleichung aber für mehrere Variablen

$$\vec{y} = \vec{f}(\vec{x}) = \begin{pmatrix} y_1 = f_1(x_1, ..., x_n) \\ ... \\ y_m = f_m(x_1, ..., x_n) \end{pmatrix}$$

Die Jacobi-Matrix enthält sämtliche Partielle Ableitungen 1. Ordnung von  $\vec{f}$ . Auf jeder Spalte bleibt die funktion  $f_j$  die gleiche und in den Zeilen  $x_i o rac{\partial f_j}{\partial x_i}$ 

$$D\vec{f}(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_1}{\partial x_2}(x) & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \frac{\partial f_m}{\partial x_2}(x) & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

verallgemeinerte Tangentengleichung

$$\vec{g}(\vec{x}) = \vec{f}(\vec{x}^{(0)}) + D\vec{f}(\vec{x}^{(0)}) * (\vec{x} - \vec{x}^{(0)})$$

ist eine lineare Funktion und für  $\vec{x}$  in der Umgebung von  $\vec{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})$ gilt  $\vec{f}(\vec{x}) \approx \vec{q}(\vec{x})$ 

Df entspricht der obigen Funktion zur Erzeugung einer Jacobi-Matrix.

Hochgestellte Zahlen in Klammern  $(x^{(n)})$  stehen wie zuvor für eine Variable nach nIterationsschritten.

## **Tangentialebene**

• Für den speziellen Fall  $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$  mit  $y = f(x_1, x_2)$  und  $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)})^T \in \mathbb{R}^2$  ist die Jacobi-Matrix nur ein Zeilenvektor mit zwei Elementen, nämlich

$$Df(x^{(0)}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_1^{(0)}, x_2^{(0)}) & \frac{\partial f}{\partial x_2}(x_1^{(0)}, x_2^{(0)}) \end{pmatrix}$$

Dann liefert die Linearisierung

$$\begin{array}{lll} g(x_1,x_2) & = & f(x_1^{(0)},x_2^{(0)}) + \left( \begin{array}{cc} \frac{\partial f}{\partial x_1}(x_1^{(0)},x_2^{(0)}) & \frac{\partial f}{\partial x_2}(x_1^{(0)},x_2^{(0)}) \end{array} \right) \cdot \left( \begin{array}{cc} x_1 - x_1^{(0)} \\ x_2 - x_2^{(0)} \end{array} \right) \\ & = & f(x_1^{(0)},x_2^{(0)}) + \frac{\partial f}{\partial x_1}(x_1^{(0)},x_2^{(0)}) \cdot \left( \begin{array}{cc} x_1 - x_1^{(0)} \\ \end{array} \right) + \frac{\partial f}{\partial x_2}(x_1^{(0)},x_2^{(0)}) \cdot \left( \begin{array}{cc} x_2 - x_2^{(0)} \end{array} \right) \end{array}$$

die Gleichung der Tangentialebene

• Sie enthält sämtliche im Flächenpunkt  $P=(x_1^{(0)},x_2^{(0)},f(x_1^{(0)},x_2^{(0)}))$  an die Bildfläche von  $y=f(x_1,x_2)$  angelegten Tangenten.

Graphische Darstellung der Fläche  $x_3 = f(x_1, x_2) = x_1^2 + x_2^2$  sowie Tangentialebene durch den Flächenpunkt  $(x_1^{(0)} = 1, x_2^{(0)} = 2, f(x^{(0)}) = 5)$ 



# Nullstellenbestimmung für nichtlineare Systeme

- Gegeben:  $n \in \mathbb{N}$  und eine Funktion  $\vec{f} : \mathbb{R}^n \to \mathbb{R}^n$
- Gesucht:  $\vec{x} \in \mathbb{R}^n \quad \text{mit} \quad \vec{f}(\vec{x}) = 0$

$$\vec{f}(x_1,...,x_n) = \begin{pmatrix} f_1(x_1,...,x_n) \\ \vdots \\ f_n(x_1,...,x_n) \end{pmatrix} = \vec{0}$$

### Newton-Verfahren für Systeme

Repetition 1-Dimensional: (nur für  $f: \mathbb{R} \to \mathbb{R}$ )

Aus der Linearisierung der Funktion f mittels der Tangente g an der Selle xn

$$f(x) \approx g(x) = f(x_n) + f'(x_n)(x - x_n)$$

folgte die Iteration

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
  $(n = 0, 1, 2, 3, ...).$ 

Mit der Jacobi-Matrix Df(x) kann das analog für Vektor-wertige Funktionen f:  $\mathbb{R}^n \to \mathbb{R}^n$  angewendet werden.

$$\vec{x}^{(n+1)} = \vec{x}^{(n)} - (Df(\vec{x}^{(n)}))^{-1} * \vec{f}(\vec{x}^{(n)})$$

Das Inverse der Jacobi-Matrix wird aber nie berechnet sondern die obige Gleichung via Substitution als lineares Gleichungsystem aufgefasst.

$$\delta^{(n)} := -\left(\mathbf{D}\mathbf{f}(\mathbf{x}^{(n)})\right)^{-1} \cdot \mathbf{f}(\mathbf{x}^{(n)})$$

als lineares Gleichungssystem auffasst gemäss

$$\mathbf{D}\mathbf{f}(\mathbf{x}^{(n)})\delta^{(n)} = -\mathbf{f}(\mathbf{x}^{(n)})$$

und so  $\delta^n$  bestimmen und anschliessend

$$\mathbf{x}^{(n+1)} := \mathbf{x}^{(n)} + \delta^{(n)}$$

#### Quadratisch-konvergentes Newton-Verfahren

Gesucht: Nullstellen von  $\vec{f}: \mathbb{R}^n \to \mathbb{R}^n$  mit Startvektor  $\vec{x}^{(0)}$  Nahe der Nullstelle

für 
$$n = 0, 1, ...$$
:

1. Berechne  $\delta^{(n)}$  als Lösung des linearen Gleichungsystems

$$D\vec{f}(\vec{x}^{(n)})\delta^{(n)} = -\vec{f}(\vec{x}^{(n)})$$

2. Setze

$$\vec{x}^{(n+1)} = \vec{x}^{(n)} + \delta^{(n)}$$

mögliche Abbruchkriterien

- $\begin{array}{ll} \bullet & n \geq n_{max}, \ n_{max} \in \mathbb{N} \\ \bullet & ||x^{(n+1)} x^{(n)}|| \leq \epsilon & \leftrightarrow \\ \bullet & ||x^{(n+1)} x^{(n)}|| \leq \epsilon * ||x^{(n+1)}|| \end{array}$
- $|\vec{f}(x^{(n+1)})|| < \epsilon$