CX 4803 CML - Spring 2022

Assignment 1

There are three questions. Please show your work as if you were explaining your solution to another student. You can use any programming language you like. Submit your solutions as a single pdf file on Canvas. Include your program listings in your pdf file. For example, if you use latex, you can use the listings package.

1. Multiple linear regression with p = 2 features means that x_i is a vector with two components, x_{i1} and x_{i2} . Suppose data is generated by an unknown process

$$y_i = \beta_0^* + \beta_1^* x_{i1} + \beta_1^* x_{i2} + u_i$$

where u_i comes from a noise distribution with mean 0. Here is the data for 10 observations (you can use cut-and-paste to transfer it to a file). The columns are x_{i1} , x_{i2} , and y_i , in order.

0.5434	0.8913	0.7472
0.2784	0.2092	-0.8393
0.4245	0.1853	-0.3166
0.8448	0.1084	0.4929
0.0047	0.2197	-2.6323
0.1216	0.9786	-0.6593
0.6707	0.8117	0.6880
0.8259	0.1719	0.3795
0.1367	0.8162	-0.6517
0.5751	0.2741	-0.5952

- (a) Estimate β_0^* , β_1^* , and β_2^* . (Show your program that computes these estimates.)
- (b) For x = [0.1, 0.2], what is your predicted value for y?
- (c) What is an estimate of the variance of the noise, $\hat{\sigma}^2$?
- (d) What is an estimate of the variance, $Var(\hat{\beta}_1)$?
- (e) You can check your code for the above by testing it with data for known answers. Choose values for β_0^* , β_1^* , β_2^* , and the noise variance σ^2 . Then generate data. Then use your code to check that it produces values that you expect.
- 2. Write a program that demonstrates

$$\frac{\mathrm{RSS}(\hat{\beta})}{\sigma^2} \sim \chi^2_{n-(p+1)}$$

where RSS is the residual sum of squares for linear regression with Gaussian noise. Assume a mean noise of 0. Use the number of features p = 2. You can choose the number of observations n and the noise variance $\sigma^2 \neq 1$.

Generate RSS for many instances of linear regression problems. Plot a histogram of RSS/ σ^2 and the chi-squared distribution on top of your histogram to show that they match closely.

1

3. For Gaussian noise, we saw that

$$\frac{\hat{\beta}_0 - \beta_0^*}{\sqrt{\operatorname{Var}(\hat{\beta}_0)}} \sim N(0, 1)$$

where the calculated estimate $\hat{\beta}_0$ is different for different samples. (Each sample corresponds to data for one linear regression problem, and assume that model β^* that generates the data is the same.)

Suppose that many samples are available and that we compute q as the average of $\text{Var}(\hat{\beta}_0)$ for the different samples. Use a numerical experiment to show whether or not the following is true:

$$\frac{\hat{\beta}_0 - \beta_0^*}{\sqrt{q}} \sim N(0, 1).$$