How to answer questions

Examples...

Evaluate the trigonometric functions of the quadrant angle, if possible

- Radians

Reference Angle

- Degrees/Radians will be specified
- Always acute
- Always positive
- Between x-axis and terminal side

Find two solutions of the equation. Give your answers in degrees $(0^{\circ} \le \theta < 360^{\circ})$ and in radians $(0 \le \theta < 2\pi)$. Do not use a calculator. $\sin(\theta) = -\frac{1}{2}$

- Always positive
- Two answers
- Exact values, draw circle

Find the value of the expression, possible $\sin^{-1}(-\frac{\sqrt{3}}{2}) \operatorname{or} \arcsin(-\frac{\sqrt{3}}{2})$

- Radians assumed, unless specified otherwise
- Exact = Picture, Round = Calculator
- Positive or negative

Basic Trigonometric Functions

$$sin = \frac{y}{r}$$
 $csc = \frac{r}{y}$ $csc = \frac{r}{x}$ $tan = \frac{y}{x}$ $cot = \frac{x}{y}$

Graphing Trigonometric Functions

Assume...

$$-y = d + a * trig(bx - c)$$

- Amplitude =
$$|a|$$

- Vertical Shift
$$= d$$

– Phase Shift =
$$\frac{c}{b}$$

- X-Scale (change between critical points) = $\frac{\text{period}}{4}$
- Period depends on what functions
- $-\sin, \cos, \csc, \sec = \frac{2\pi}{h}$
- \tan , $\cot = \frac{\pi}{h}$

For deriving from a word problem

$$-c = b * \text{shift}$$

- b depends on what functions sin, cos, csc, sec = $\frac{2\pi}{\text{period}}$ tan, cot = $\frac{\pi}{\text{period}}$

Figure 1: $y = \sin(x), y = \csc(x)$

Figure 2: $y = \cos(x), y = \sec(x)$

Figure 3: $y = \tan(x)$

Figure 4: $y = \cot(x)$

Trigonometric Identities

$$\sin = \frac{1}{\csc} \qquad \csc = \frac{1}{\sin}$$

$$\cos = \frac{1}{\sec} \qquad \sec = \frac{1}{\cos}$$

$$\tan = \frac{\sin}{\cos} \qquad \cot = \frac{\cos}{\sin}$$

$$\sin^2 + \cos^2 = 1$$

$$1 + \tan^2 = \sec^2$$

$$1 + \cot^2 = \csc^2$$

Arcs

In **radians** unless specified otherwise

 $\operatorname{Exact} \implies \operatorname{picture}$

Round \Longrightarrow calculator (\sin^{-1})

$$\sin(\theta) = -\frac{\sqrt{3}}{2}$$
$$\sin^{-1}(-\frac{\sqrt{3}}{2})$$
$$\arcsin(-\frac{\sqrt{3}}{2})$$

