FCC PART 22/24/27 TEST REPORT

FCC Part 22/24/27

Testing Laboratory Name Shenzhen LCS Compliance Testing Laboratory Ltd.

Bao'an District, Shenzhen, Guangdong, China

Applicant's name...... Shenzhen KVD Communication Equipment Limited

Address Lenovo R&D Center 2F-B, South First Road, High-tech Park,

Nanshan District, Shenzhen, Guangdong, China

Test specification:

FCC CFR Title 47 Part 2, Part 22, Part 24, Part 27

Standard EIA/TIA 603-D: 2010

KDB 971168 D01

Test Report Form No...... LCSEMC-1.0

TRF Originator...... Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF...... Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description LTE GSM/WCDMA Smartphone

Listed Models /

Modulation Type QPSK, 16QAM

Rating DC 3.8V by Li-ion Battery(4300mAh)

Charging parameter: Input: 100~240V AC, 50/60Hz, 0.3A;

Adapter output:DC 5V, 2000mA

Hardware version DK9FA23WTAF

Frequency...... FDD band 2, FDD band 4, FDD band 5, FDD band 7, FDD band 17

Result..... PASS

Compiled by:

Supervised by:

Approved by:

Calvin Weng/ Administrators

Glin Lu/ Technique principal

Gavin Liang/ Manager

TEST REPORT

Test Report No. : LCS170516130AE Jul 05, 2017
Date of issue

Equipment under Test : LTE GSM/WCDMA Smartphone

Model /Type : Y6 MAX

Listed Models : /

Address

Applicant : Shenzhen KVD Communication Equipment Limited

Address : Lenovo R&D Center 2F-B, South First Road, High-tech

Park, Nanshan District, Shenzhen, Guangdong, China

Manufacturer : Shenzhen KVD Communication Equipment Limited

: A, 3rd floor, Building A2, Silicon valley Digital Industrial

Park, 22nd of Dafu industrial area, Aobei Community,

Guanlan town, Longhua District, shenzhen 518000,

China

Factory : Shenzhen KVD Communication Equipment Limited

: A, 3rd floor, Building A2, Silicon valley Digital Industrial

Address Park, 22nd of Dafu industrial area, Aobei Community,

Guanlan town, Longhua District, shenzhen 518000,

China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000 Jul 05, 2017		Initial Issue	Gavin Liang

Contents

<u>1</u>	TEST STANDARDS	<u>5</u>
2	<u>SUMMARY</u>	6
_		
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	8
2.4	Short description of the Equipment under Test (EUT)	8
2.5	Internal Identification of AE used during the test	8
2.6	Normal Accessory setting	8
2.7	EUT configuration	8
2.8	Related Submittal(s) / Grant (s)	9
2.9	Modifications	9
2.10	General Test Conditions/Configurations	9
<u>3</u>	TEST ENVIRONMENT	. 10
3.1	Address of the test laboratory	10
3.2	Test Facility	10
3.3	Environmental conditions	10
3.4	Test Description	10
3.5	Equipments Used during the Test	13
3.6	Measurement uncertainty	14
<u>4</u>	TEST CONDITIONS AND RESULTS	<u>. 15</u>
4.1	Output Power	15
4.2	Peak-to-Average Ratio (PAR)	24
4.3	Occupied Bandwidth and Emission Bandwidth	25
4.4	Band Edge compliance	26
4.5	Spurious Emssion on Antenna Port	27
4.6	Radiated Spurious Emssion	29
4.7	Frequency Stability under Temperature & Voltage Variations	52
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	<u>. 55</u>
<u>6</u>	EXTERNAL PHOTOS OF THE EUT	<u>. 55</u>
<u>7</u>	INTERNAL PHOTOS OF THE EUT	. 55

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22 (10-1-15 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-15 Edition): PUBLIC MOBILE SERVICES

FCC Part 27(10-1-15 Edition): MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<u>TIA/EIA 603 D June 2010:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

ANSI C63.4:2014: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

FCCKDB971168D01 Power Meas License Digital Systems

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	May 26, 2017
Testing commenced on	:	May 26, 2017
Testing concluded on	:	Jul 05, 2017

2.2 Product Description

The **Shenzhen KVD Communication Equipment Limited**'s Model: Y6 MAX or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

SHENZHEN LCS COMPLIANCE TESTING I	LABORATORY LTD. FCC ID:2ADTE-Y6MAX Report No.: LCS170516130AE			
Name of EUT	LTE GSM/WCDMA Smartphone			
Model Number	Y6 MAX			
Modulation Type	GMSK for GSM/GPRS, 8-PSK for EDGE,QPSK for UMTS, QPSK, 16QAM for LTE			
Antenna Gain	0 dBi (max.) For GSM 850, GSM 900, DCS 1800, PCS 1900; 0 dBi (max.) For WCDMA Band II, V; 0 dBi (max.) For LTE Band 2, 4, 5, 7, 17; -1 dBi (max.) For BT and WLAN			
Hardware version	DK9FA23WTAF			
Software version	DK9FA23WTAF.DGE.D7.HB.FHD.SCS8.0118.V3.07			
GSM/EDGE/GPRS Operation Frequency Band	GSM850/PCS1900/GPRS850/GPRS1900/EDGE850/EDGE1900			
UMTS Operation Frequency Band	UMTS FDD Band II/V			
LTE Operation Frequency Band	LTE Band 2, 4, 5, 7, 17			
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE			
GSM Release Version	R99			
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/ PCS1900:Power Class 1			
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12			
GPRS operation mode	Class B			
WCDMA Release Version	R99			
HSDPA Release Version	Release 9			
HSUPA Release Version	Release 6			
DC-HSUPA Release Version	Not Supported			
LTE Release Version	Release 9			
LTE/UMTS Power Class	Class 3			
WLAN FCC Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20/40: OFDM (64QAM, 16QAM, QPSK,BPSK)			
WLAN FCC Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz IEEE 802.11n HT40:2422-2452MHz			
Antenna Type	PIFA Antenna			
BT Modulation Type	GFSK,8-DPSK,π/4DQPSK(BT V4.1)			
Extreme temp. Tolerance	-30°C to +50°C			
GPS function	Support and only RX			
NFC Function	Not Supported			
Extreme vol. Limits	3.40VDC to 4.35VDC (nominal: 3.80VDC)			

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V/ 60 Hz	0	115V/60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below)		

DC 3.80V

2.4 Short description of the Equipment under Test (EUT)

2.4.1 GeneralDescription

Y6 MAX is subscriber equipment in the LTE/WCDMA/GSM system. The HSPA/UMTS frequency band is Band II/V, LTE frequency band isband 2,band 4,band 5,band 7, band 17. The GSM/GPRS/EDGE frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only GSM850 and PCS1900 bands test data included in this report. The LTE GSM/WCDMA Smartphone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service and etc. Externally it provides micro SD card interface and SIM card interface.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Adapter

AE1

Model: HJ-0502000W2-US

INPUT: AC100-240V, 50/60Hz, 0.3A ADAPTER OUTPUT:DC 5V, 2000mA

2.6 Normal Accessory setting

Fully charged battery was used during the test.

2.7 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	1
		Shield :	1
		Detachable :	1
0	Multimeter	Manufacturer:	1
		Model No.:	1

^{*}AE ID: is used to identify the test sample in the lab internally.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2ADTE-Y6MAX Report No.: LCS170516130AE

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID:2ADTE-Y6MAX filing to comply with FCC Part 22, Part 24&FCC Part 27 Rules

2.9 Modifications

No modifications were implemented to meet testing criteria.

2.10 General Test Conditions/Configurations

2.10.1 Test Environment

EnvironmentParameter	SelectedValuesDuringTests				
Relative Humidity	Ambient				
Temperature	TN	Ambient			
	VL	3.40V			
Voltage	VN	3.80V			
	VH	4.35V			

NOTE:VL=lower extreme testvoltageVN=nominalvoltage VH=upperextreme testvoltageTN=normaltemperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS Registration Number. is L4595. FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

3.4.1 PCSBand (1850-1910MHz pairedwith 1930-1990MHz)(band 2)

Test Item FCC Rule No.		Requirements	Verdict	
Effective(Isotropic) Radiated Output Power	§2.1046, §24.232	EIRP ≤ 2W	Pass	
Peak-Average Ratio	§2.1046, §24.232	FCC:Limit≤13dB	Pass	
Modulation Characteristics	§2.1047	Digital modulation	N/A	
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass	
Band Edges §2.1051, Compliance §24.238		≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass	
Spurious Emission at \$2.1051, Antenna Terminals \$24.238		≤-13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass	
Field Strength of \$2.1053, \$24.238		≤ -13dBm/1MHz.	Pass	
Frequency Stability	§2.1055, §24.235	FCC: within authorized frequency block.	Pass	

3.4.2 AWS Band (1710-1755MHz pairedwith 2110-2155MHz)(band 4)

Test Item	FCC RuleNo.	Requirements	Verdict
Effective(Isotropic)Radiate dPowerOutputData	§2.1046, §27.50(d)	EIRP ≤ 1W;	Pass
Peak-AverageRatio	§2.1046, §27.50(d)	Limit≤13dB	Pass
ModulationCharacteristics	§2.1047	Digitalmodulation	N/A
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	Pass
BandEdgesCompliance	§2.1051, §27.53(h)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
SpuriousEmissionatAnten naTerminals	§2.1051, §27.53(h)	≤ -13dBm/1MHz, from9kHzto10thharmonicsbutoutsideauthorized operatingfrequency ranges.	Pass
Frequency Stability	§2.1055, §27.54	Withinauthorizedbands of operation/frequency block.	Pass
Radiatedspurious emission	§2.1053, §27.53(h)	≤ -13dBm/1MHz.	Pass
NOTE 1: For the verdict, the	e "N/A" denotes	"not applicable", the "N/T" de notes "not tested"	

3.4.3 CellularBand (824-849MHz pairedwith 869-894MHz)(band 5)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §22.913	FCC: ERP ≤ 7W.	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §22.917	≤-≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §22.917	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass

3.4.4 Band 7 (2500-2570MHz pairedwith 2620-2690MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §27.50(h)	FCC: ERP ≤ 3W.	Pass
Peak-AverageRatio	§2.1046, §27.50(a)	Limit≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §27.53(m4)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §27.53(m)	FCC: ≤ -25dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §27.53(m)	FCC: ≤ -25dBm/100kHz.	Pass
Frequency Stability	§2.1055, §27.53(g)	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	

3.4.5 Band 17(704-716MHz pairedwith 734-746MHz)

Test Item	FCC Rule	Requirements	Verdict
	No.		
Effective(Isotropic)	§2.1046,	FCC: ERP ≤ 3W.	Pass
Radiated Output Power	§27.50c(10)		. 400
Peak-AverageRatio	§2.1046,	Limit≤13dB	Pass
reak-AverageRatio	§27.50(c)	LIIIIL2 130D	F 455
Modulation	\$0.4047	Digital mandulation	NI/A
Characteristics	§2.1047	Digital modulation	N/A
D 1 : W	00.4040	OBW: No limit.	-
Bandwidth	§2.1049	EBW: No limit.	Pass
D 151	00.4054	≤ -13dBm/1%*EBW,	
Band Edges	§2.1051,	In1MHzbandsimmediatelyoutsideandadjacentto	Pass
Compliance	§27.53(g)	Thefrequency block.	. 5.55
		FCC: ≤ -13dBm/100kHz,	
Spurious Emissionat	§2.1051,	from 9kHz to 10th harmonics but outside authorized	Pass
AntennaTerminals	§27.53(g)	operating frequency ranges.	. 400
Field Strength of		oporating nequency ranges.	
Spurious	§2.1051,	FCC: ≤ -13dBm/100kHz.	Pass
Radiation	§27.53(g)	1 00. <u>3</u> -100bm/100km2.	1 033
Naulation	\$2.40EE		
Frequency Stability	§2.1055,	≤ ±2.5ppm.	Pass
. , ,	§27.53(g)	ot applicable",the"N/T"de notes "not tested".	

3.5 Equipments Used during the Test

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Cal Date	Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Jun 18, 2017	Jun 17, 2018
Signal analyzer	Agilent	E4448A(External mixers to 40GHz)	US44300469	9kHz~40GHz	Jul 16, 2016	Jul 15, 2017
LISN	MESS Tec	NNB-2/16Z	99079	9KHz-30MHz	Jun 18, 2017	Jun 17, 2018
LISN	EMCO	3819/2NM	9703-1839	9KHz-30MHz	Jun 18, 2017	Jun 17, 2018
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9KHz-30MHz	Jun 18, 2017	Jun 17, 2018
ISN	SCHAFFNER	ISN ST08	21653	9KHz-30MHz	Jun 18, 2017	Jun 17, 2018
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30M-18GHz	Jun 18, 2017	Jun 17, 2018
Amplifier	SCHAFFNER	COA9231A	18667	9kHz-2GHzz	Apr 18, 2017	Apr 17, 2018
Amplifier	Agilent	8449B	3008A02120	1GHz-26.5GHz	Apr 18, 2017	Apr 17, 2018
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz-40GHz	Apr 18, 2017	Apr 17, 2018
Loop Antenna	R&S	HFH2-Z2	860004/001	9k-30MHz	Apr 18, 2017	Apr 17, 2018
By-log Antenna	SCHWARZBECK	VULB9163	9163-470	30MHz-1GHz	Apr 18, 2017	Apr 17, 2018
Horn Antenna	EMCO	3115	6741	1GHz-18GHz	Apr 18, 2017	Apr 17, 2018
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz-40GHz	Apr 18, 2017	Apr 17, 2018
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz-1GHz	Jun 18, 2017	Jun 17, 2018
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1GHz-40GHz	Jun 18, 2017	Jun 17, 2018
Power Meter	R&S	NRVS	100444	DC-40GHz	Jun 18, 2017	Jun 17, 2018
Power Sensor	R&S	NRV-Z51	100458	DC-30GHz	Jun 18, 2017	Jun 17, 2018
Power Sensor	R&S	NRV-Z32	10057	30MHz-6GHz	Jun 18, 2017	Jun 17, 2018
AC Power Source	HPC	HPA-500E	HPA-9100024	AC 0~300V	Jun 18, 2017	Jun 17, 2018
DC power Source	GW	GPC-6030D	C671845	DC 1V-60V	Jun 18, 2017	Jun 17, 2018
Temp. and Humidigy Chamber	Giant Force	GTH-225-20-S	MAB0103-00	N/A	Jun 18, 2017	Jun 17, 2018
RF CABLE-1m	JYE Bao	RG142	CB034-1m	20MHz-7GHz	Jun 18, 2017	Jun 17, 2018
RF CABLE-2m	JYE Bao	RG142	CB035-2m	20MHz-1GHz	Jun 18, 2017	Jun 17, 2018
Signal Generator	R&S	SMR40	10016	10MHz~40GHz	Jul 16, 2016	Jul 15, 2017
Universal Radio Communication Tester	R&S	CMU200	112012	N/A	Oct 27, 2016	Oct 26, 2017
Wideband Radia Communication Tester	R&S	CMW500	1201.0002K50	N/A	Nov 19, 2016	Nov 18, 2017
PSG Analog Signal Generator	Agilent	N8257D	MY46520521	250KHz~20GHz	Nov 19, 2016	Nov 18, 2017
MXA Signal Analyzer	Agilent	N9020A	MY50510140	10Hz~26.5GHz	Oct 27, 2016	Oct 26, 2017
RF Control Unit	Tonscend	JS0806-1	1	1	Nov 19,2016	Nov 18, 2017
LTE Test Software	Tonscend	JS1120-1	1	Version: 2.5.7.0	N/A	N/A
Test Software	Ascentest	AT890-SW	20141230	Version: 20160630	N/A	N/A
Splitter/Combiner(Qty: 2)	Mini-Circuits	ZAPD-50W 4.2- 6.0 GHz	NN256400424	1	Oct 27, 2016	Oct 26, 2017
Splitter/Combine(Qty: 2)	MCLI	PS3-7	4463/4464	1	Oct 27, 2016	Oct 26, 2017
ATT (Qty: 1)	Mini-Circuits	VAT-30+	30912	1	Oct 27, 2016	Oct 26, 2017
EMC Test Software	Audix	E3	1	1	1	1

3.6 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	-	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4 TEST CONDITIONS AND RESULTS

4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.1
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.1
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.1
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.1
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.1

4.1.2. Radiated Output Power

<u>LIMIT</u>

This is the test for the maximum radiated power from the EUT.

Per §22.913(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Per Part 27.50(d) (4) specifies, Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band are limited to 1W EIRP. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in this band must employ a means for limiting power to the minimum necessary for successful communications.

According to § 27.50 C(10): Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP."

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).

- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)= P_{Mea} P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2,LTE FDD Band 4,LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17; recorded worst case for each Channel Bandwidth of LTE FDD Band 2,LTE FDD Band 4,LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We test the H direction and V direction recorded worst case

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Ī	1850.70	-19.20	4.03	8.38	35.51	20.66	33.01	-12.35	V
Ī	1880.00	-19.75	4.08	8.33	35.56	20.06	33.01	-12.95	V
I	1909.30	-19.50	4.14	8.26	35.63	20.25	33.01	-12.76	V

LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.50	-20.27	4.03	8.38	35.51	19.59	33.01	-13.42	V
1880.00	-19.80	4.08	8.33	35.56	20.01	33.01	-13.00	V
1908.50	-19.86	4.14	8.26	35.63	19.89	33.01	-13.12	V

LTE FDD Band 2 Channel Bandwidth 5MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.50	-20.16	4.03	8.38	35.51	19.70	33.01	-13.31	V
1880.00	-20.53	4.08	8.33	35.56	19.28	33.01	-13.73	V
1907.50	-20.92	4.14	8.26	35.63	18.83	33.01	-14.18	V

LTE FDD Band 2 Channel Bandwidth 10MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1855.00	-20.51	4.03	8.38	35.51	19.35	33.01	-13.66	V
1880.00	-20.76	4.08	8.33	35.56	19.05	33.01	-13.96	V
1905.00	-20.77	4.14	8.26	35.63	18.98	33.01	-14.03	V

<u>SHENZHEN L</u>	<u>CS COMPLIA.</u>	NCE TESTINO	<u>G LABORATOR</u>	Y LTD. FO	CC ID:2ADTE-	Y6MAX	Report No.: LC	<u> S170516130AE</u>
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 15MHz_C	QPSK			T	1
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	${\sf P}_{\sf Ag} \ (\sf dB)$	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1857.50	-20.24	4.03	8.38	35.51	19.62	33.01	-13.39	V
1880.00	-20.60	4.08	8.33	35.56	19.21	33.01	-13.80	V
1902.50	-20.20	4.14	8.26	35.63	19.55	33.01	-13.46	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 20MHz_C	QPSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1860.00	-20.53	4.03	8.38	35.51	19.33	33.01	-13.68	V
1880.00	-20.61	4.08	8.33	35.56	19.20	33.01	-13.81	V
1900.00	-21.37	4.14	8.26	35.63	18.38	33.01	-14.63	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 1.4MHz_	16QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.70	-19.60	4.03	8.38	35.51	20.26	33.01	-12.75	V
1880.00	-19.94	4.08	8.33	35.56	19.87	33.01	-13.14	V
1909.30	-19.88	4.14	8.26	35.63	19.87	33.01	-13.14	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 3MHz_16	QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.50	-20.63	4.03	8.38	35.51	19.23	33.01	-13.78	V
1880.00	-20.56	4.08	8.33	35.56	19.25	33.01	-13.76	V
1908.50	-20.03	4.14	8.26	35.63	19.72	33.01	-13.29	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 5MHz_16	QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.50	-20.83	4.03	8.38	35.51	19.03	33.01	-13.98	V
1880.00	-20.65	4.08	8.33	35.56	19.16	33.01	-13.85	V
1907.50	-20.75	4.14	8.26	35.63	19.00	33.01	-14.01	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 10MHz_1	6QAM			.	
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1855.00	-20.16	4.03	8.38	35.51	19.70	33.01	-13.31	V
1880.00	-20.20	4.08	8.33	35.56	19.61	33.01	-13.40	V
1905.00	-20.01	4.14	8.26	35.63	19.74	33.01	-13.27	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 15MHz_1	6QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
(1711 12)	(dBiii)	, ,	Gain(dB)		(abiii)			
1857.50	-19.75	4.03	8.38	35.51	20.11	33.01	-12.90	V
, ,	, ,			35.51 35.56		33.01 33.01	-12.90 -12.82	V V V

MHz	ization V V V V ization V V V
Fiequency Phea Cannot Cannot	ization V V V
1880.00	ization V V ization
1900.00	ization V V V v
1900.00	ization V V V v
Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) G _a Antenna Gain(dB) P _{Ag} (dB) Peak EIRP (dBm) Limit (dBm) Margin (dBm) Polar (dBm) 1710.7 -18.97 3.93 9.05 34.96 21.11 30.00 -8.89 31.732.5 -18.73 3.93 8.89 35.01 21.24 30.00 -8.76 30.00 -9.24 30.00 <t< td=""><td>V V V</td></t<>	V V V
Frequency (MHz)	V V V
1732.5 -18.73 3.93 8.89 35.01 21.24 30.00 -8.76 1754.3 -19.14 3.94 8.76 35.08 20.76 30.00 -9.24 LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK Frequency (MHz) P _{Mea} (dBm) P _{CI} (dBm) P _{Ag} (dB) Peak EIRP (dBm) Limit (dBm) Margin (dB) Polar (dBm) 1711.50 -19.74 3.93 9.05 34.96 20.34 30.00 -9.66 30.00 1732.50 -19.86 3.93 8.89 35.01 20.11 30.00 -9.89	V V
1754.3 -19.14 3.94 8.76 35.08 20.76 30.00 -9.24 LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK Frequency (MHz) P _{Mea} (dBm) P _{Cl} (dBm) Ga (Antenna (GBm) (dBm) Peak (BRP) (dBm) (dBm) Limit (dBm) (dBm) Margin (dBm) Polar (dBm) Polar (dBm) 1711.50 -19.74 3.93 9.05 34.96 20.34 30.00 -9.66 30.00 -9.89 35.01 20.11 30.00 -9.89 30.00<	vization
LTE FDD Band 4_Channel Bandwidth 3MHz_QPSK Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) G _a Antenna Gain(dB) P _{Ag} (dB) Peak EIRP (dBm) Limit (dBm) Margin (dBm) Polar 1711.50 -19.74 3.93 9.05 34.96 20.34 30.00 -9.66 1732.50 -19.86 3.93 8.89 35.01 20.11 30.00 -9.89	ization
Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) G _a Antenna Gain(dB) P _{Ag} (dB) Peak EIRP (dBm) Limit (dBm) Margin (dBm) Polar (dBm) 1711.50 -19.74 3.93 9.05 34.96 20.34 30.00 -9.66 1732.50 -19.86 3.93 8.89 35.01 20.11 30.00 -9.89	
(MHz) (dBm) (dB) (dB) (dB) (dBm) (dBm) (dBm) (dBm) 1711.50 -19.74 3.93 9.05 34.96 20.34 30.00 -9.66 30.00 -9.66 30.00 -9.89 30.00	
1711.50 -19.74 3.93 9.05 34.96 20.34 30.00 -9.66 1732.50 -19.86 3.93 8.89 35.01 20.11 30.00 -9.89	V
1753.40 -19.58 3.94 8.76 35.08 20.32 30.00 -9.68	V
	V
LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ization
	V
1732.50 -19.14 3.93 8.89 35.01 20.83 30.00 -9.17	V
1752.50 -18.64 3.94 8.76 35.08 21.26 30.00 -8.74	V
LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK	
Frequency P_{Mea} P_{cl} G_a P_{Ag} P_{eak} Limit Margin P_{eal}	
(MHz) (dBm) (dB) Afterna (dB) EIRP (dBm) (dB) Polar	ization
Gain(db) (dbin)	
	V
	V
1750.00 -19.28 3.94 8.76 35.08 20.62 30.00 -9.38 1750.00 19.28 1750.00 19.28	V
LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ization
1717.50 -19.27 3.93 9.05 34.96 20.81 30.00 -9.19	V
	V
1747.50 -19.26 3.94 8.76 35.08 20.64 30.00 -9.36	V
LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK	
(MHZ) (dBm) (dB) (dBm) (dBm) (dBm) (dBm)	ization
	V
	V
1745.00 -19.00 3.94 8.76 35.08 20.90 30.00 -9.10 1745.00	V

<u>SHENZHEN L</u>	CS COMPLI	ANCE TEST	TING LABOI	<u>RATORY</u>	LTD.	FCC ID:2	ADTE-	Y6MAX	Re	port No.: LC	<u>S170516130AE</u>
LTE FDD B	and 4_Cha	nnel Band			6QAM						T
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Ante Gain	nna	P _{Ag} (dB)	EI	eak RP 3m)	Limit (dBm		Margin (dB)	Polarization
1710.70	-19.33	3.93		` '	34.96		.75	30.00)	-9.25	V
1732.50	-19.76	3.93			35.01		.21	30.00		-9.79	V
1754.30	-18.96	3.94			35.08		.94	30.00		-9.06	V
LTE FDD Ba	and 4 Cha	nnel Band	dwidth 3MI	Hz_160	Q <i>AM</i>						
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G Ante	nna	P _{Ag} (dB)	EI	eak RP Bm)	Limit (dBm		Margin (dB)	Polarization
1711.50	-19.17	3.93		` '	34.96		.91	30.00)	-9.09	V
1732.50	-19.16	3.93		39	35.01		.81	30.00		-9.19	V
1753.40	-19.14	3.94			35.08		.76	30.00		-9.24	V
LTE FDD Ba	and 4 Cha	nnel Band	dwidth 5MI	Hz 160	D <i>AM</i>						
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G Ante	i _a nna	P _{Ag} (dB)	EI	eak RP Bm)	Limit (dBm		Margin (dB)	Polarization
1712.50	-19.50	3.93		` '	34.96		.58	30.00)	-9.42	V
1732.50	-19.83	3.93	8.8	39	35.01	20	.14	30.00)	-9.86	V
1752.50	-19.68	3.94	<u>'</u>		35.08		.22	30.00	<u>' </u>	-9.78	V
LTE FDD Ba			<i>Gwiath Tol</i> k			Pe	eak				
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Δnte	nna	P _{Ag} (dB)	EI	RP Bm)	Limit (dBm		Margin (dB)	Polarization
1715.00	-18.83	3.93	9.0)5	34.96	21	.25	30.00)	-8.75	V
1732.50	-18.67	3.93	8.8	39	35.01	21	.30	30.00		-8.70	V
1750.00	-19.48	3.94	8.7	76	35.08	20	.42	30.00)	-9.58	V
TE FDD Ba	and 4 Cha	nnel Band	dwidth 15N	1Hz 16	QAM						
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Ante Gain	nna	P _{Ag} (dB)	EI	eak RP 3m)	Limit (dBm)	Margin (dB)	Polarizatio
1717.50	-19.43	3.93			34.96		.65	30.00		-9. 35	V
1732.50	-19.00	3.93			35.01		.97	30.00		-9.03	V
1747.50	-19.24	3.94	8.7	76	35.08	20	.66	30.00)	-9.34	V
TE FDD Ba	and 4_Cha	nnel Band			<i>QAM</i>	l Da	ook				Ī
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Gairi	nna	P _{Ag} (dB)	EI	eak RP 3m)	Limit (dBm)	Margin (dB)	Polarizatio
1720.00	-19.24	3.93			34.96		.84	30.00		-9.16	V
1732.50	-19.21	3.93			35.01		.76	30.00		-9.24	V
1745.00	-19.37	3.94	8.7	76	35.08	20	.53	30.00)	-9.47	V
TE FDD Ba	and 5_Cha	nnel Band	dwidth 1.4i	MHz_Q	PSK						
	_		Ga				Pea				

	<u> </u>	arrice Dar	iavviatii i. ii	<u> </u>					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.70	-16.20	3.45	8.45	2.15	33.79	20.44	38.45	-18.01	V
836.50	-16.41	3.49	8.45	2.15	33.85	20.25	38.45	-18.20	V
848.30	-16.04	3.55	8.36	2.15	33.88	20.50	38.45	-17.95	V

<u>SHENZHEN L</u>					FCC ID:2	<u> 2ADTE-Y6M</u>	'AX Re _i	port No.: LC	<u>S170516130AE</u>			
LTE FDD B		annel Bai	ndwidth 3MI G _a	Hz_QPSK		Peak	I	I	<u> </u>			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
825.50	-16.22	3.45	8.45	2.15	33.79	20.42	38.45	-18.03	V			
836.50	-15.73	3.49	8.45	2.15	33.85	20.93	38.45	-17.52	V			
847.50	-15.63	3.55	8.36	2.15	33.88	20.91	38.45	-17.54	V			
LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK												
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
826.50	-15.82	3.45	8.45	2.15	33.79	20.82	38.45	-17.63	V			
836.50	-15.91	3.49	8.45	2.15	33.85	20.75	38.45	-17.70	V			
846.50	-16.37	3.55	8.36	2.15	33.88	20.17	38.45	-18.28	V			
LTE FDD B	and 5_Cha	annel Bai	ndwidth 10N	//Hz_QPSK								
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
829.00	-16.08	3.45	8.45	2.15	33.79	20.56	38.45	-17.89	V			
836.50	-15.55	3.49	8.45	2.15	33.85	21.11	38.45	-17.34	V			
844.00	-16.27	3.55	8.36	2.15	33.88	20.27	38.45	-18.18	V			
LTE FDD B	and 5 Cha	annel Bai	ndwidth 1.41	MHz_16QAM								
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
824.70	-17.42	3.45	8.45	2.15	33.79	19.22	38.45	-19.23	V			
836.50	-16.67	3.49	8.45	2.15	33.85	19.99	38.45	-18.46	V			
848.30	-16.75	3.55	8.36	2.15	33.88	19.79	38.45	-18.66	V			
LTE FDD B	and 5 Cha	annel Bai	ndwidth 3MI	Hz 16QAM								
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
825.50	-16.92	3.45	8.45	2.15	33.79	19.72	38.45	-18.73	V			
836.50	-17.21	3.49	8.45	2.15	33.85	19.45	38.45	-19.00	V			
847.50	-16.58	3.55	8.36	2.15	33.88	19.96	38.45	-18.49	V			
LTE FDD B	and 5_Cha	annel Bai		Hz_16QAM			T	T	T			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
826.50	-16.80	3.45	8.45	2.15	33.79	19.84	38.45	-18.61	V			
836.50	-16.94	3.49	8.45	2.15	33.85	19.72	38.45	-18.73	V			
846.50	-17.47	3.55	8.36	2.15	33.88	19.07	38.45	-19.38	V			
			•	1Hz_16QAM	00.00	10.01	7 00.10	10.00				
Frequency	P_{Mea}	P _{cl}	G _a Antenna	Correction	P_{Ag}	Peak ERP	Limit	Margin	Polarizatio			

	TE T DD Band 6_Channel Bandwidth Town 12_TOQAW											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
829.00	-16.89	3.45	8.45	2.15	33.79	19.75	38.45	-18.70	V			
836.50	-17.33	3.49	8.45	2.15	33.85	19.33	38.45	-19.12	V			
844.00	-17.34	3.55	8.36	2.15	33.88	19.20	38.45	-19.25	V			

LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-18.25	4.32	6.8	36.14	20.37	33.01	-12.64	V
2535.0	-18.99	4.32	6.61	36.17	19.47	33.01	-13.54	V
2567.5	-18.11	4.33	6.57	36.22	20.35	33.01	-12.66	V

LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505.0	-18.10	4.32	6.8	36.14	20.52	33.01	-12.49	V
2535.0	-18.51	4.32	6.61	36.17	19.95	33.01	-13.06	V
2565.0	-18.11	4.33	6.57	36.22	20.35	33.01	-12.66	V

LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-18.46	4.32	6.8	36.14	20.16	33.01	-12.85	V
2535.0	-18.40	4.32	6.61	36.17	20.06	33.01	-12.95	V
2562.5	-18.92	4.33	6.57	36.22	19.54	33.01	-13.47	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK

ı	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	2510.0	-18.29	4.32	6.8	36.14	20.33	33.01	-12.68	V
	2535.0	-18.71	4.32	6.61	36.17	19.75	33.01	-13.26	V
	2560.0	-18.61	4.33	6.57	36.22	19.85	33.01	-13.16	V

LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-18.90	4.32	6.8	36.14	19.72	33.01	-13.29	V
2535.0	-19.31	4.32	6.61	36.17	19.15	33.01	-13.86	V
2567.5	-19.28	4.33	6.57	36.22	19.18	33.01	-13.83	V

LTE FDD Band 7 Channel Bandwidth 10MHz 16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505.0	-19.58	4.32	6.8	36.14	19.04	33.01	-13.97	V
2535.0	-18.95	4.32	6.61	36.17	19.51	33.01	-13.50	V
2565.0	-19.82	4.33	6.57	36.22	18.64	33.01	-14.37	V

LTE FDD Band 7_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-19.15	4.32	6.8	36.14	19.47	33.01	-13.54	V
2535.0	-19.55	4.32	6.61	36.17	18.91	33.01	-14.10	V
2562.5	-19.42	4.33	6.57	36.22	19.04	33.01	-13.97	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM

F	requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	2510.0	-19.44	4.32	6.8	36.14	19.18	33.01	-13.83	V
	2535.0	-19.82	4.32	6.61	36.17	18.64	33.01	-14.37	V
	2560.0	-19.79	4.33	6.57	36.22	18.67	33.01	-14.34	V

LTE FDD Band 17_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
706.5	-16.45	3.02	8.29	2.15	33.52	20.19	34.77	-14.58	V
710.0	-15.70	3.06	8.29	2.15	33.52	20.90	34.77	-13.87	V
713.5	-15.95	3.06	8.29	2.15	33.52	20.65	34.77	-14.12	V

LTE FDD Band 17_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
709.0	-16.07	3.06	8.29	2.15	33.52	20.53	34.77	-14.24	V
710.0	-15.99	3.06	8.29	2.15	33.52	20.61	34.77	-14.16	V
711.0	-15.69	3.06	8.29	2.15	33.52	20.91	34.77	-13.86	V

LTE FDD Band 17 Channel Bandwidth 5MHz 16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
706.5	-16.87	3.02	8.29	2.15	33.52	19.77	34.77	-15.00	V
710.0	-16.30	3.06	8.29	2.15	33.52	20.30	34.77	-14.47	V
713.5	-16.36	3.06	8.29	2.15	33.52	20.24	34.77	-14.53	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
709.0	-16.37	3.06	8.29	2.15	33.52	20.23	34.77	-14.54	V
710.0	-17.04	3.06	8.29	2.15	33.52	19.56	34.77	-15.21	V
711.0	-16.66	3.06	8.29	2.15	33.52	19.94	34.77	-14.83	V

4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function:
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.2
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.2
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.2
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.2
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.2

4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.3
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.3
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.3
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.3
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.3

4.4 Band Edge compliance

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- ○43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- \bigcirc 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.Translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.4
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.4
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.4
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.4
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.4

4.5 Spurious Emssion on Antenna Port

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- \bigcirc 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- ○55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.	FCC ID:2ADTE-Y6MAX	Report No.: LCS170516130AE

Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 2	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 4	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 5	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 7	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto
	0.000009~0.000015	1KHz	3KHz	Auto
LTE FDD Band 17	0.000015~0.03	10KHz	30KHz	Auto
	0.03~26	1 MHz	3 MHz	Auto

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.5
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.5
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.5
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.5
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.5

4.6 Radiated Spurious Emssion

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- \bigcirc 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- ○55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]
- In addition, the attenuation factor (fixed limit) shall not be less than:
- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated

- <u>SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.</u> FCC ID:2ADTE-Y6MAX Report No.: LCS170516130AE emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: Power(EIRP)= P_{Mea} P_{Ag} P_{cl} + G_a
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
11040000	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
LTE EDD David 0	2~5	1 MHz	3 MHz	3
LTE FDD Band 2	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
LTE FDD Band 4	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 5	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~9	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 7	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3

SH	ENZHEN LCS COMPLIAN	CE TESTING LABORATO	RY LTD. FCC ID:2A	DTE-Y6MAX Report	: No.: LCS170516130AE
		11~14	1 MHz	3 MHz	3
		14~18	1 MHz	3 MHz	3
		18~20	1 MHz	3 MHz	2
		20~26	1 MHz	3 MHz	2
		0.00009~0.15	1KHz	3KHz	30
		0.00015~0.03	10KHz	30KHz	10
	LTE FDD Band 17	0.03~1	100KHz	300KHz	10
	LIE FDD Balld 17	1~2	1 MHz	3 MHz	2
		2~5	1 MHz	3 MHz	3
		5~8	1 MHz	3 MHz	3

TEST LIMITS

According to 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -20GHz	PASS
LTE FDD Band 2	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS
	Low	9KHz -18GHz	PASS
LTE FDD Band 4	Middle	9KHz -18GHz	PASS
	High	9KHz -18GHz	PASS
	Low	9KHz -9GHz	PASS
LTE FDD Band 5	Middle	9KHz -9GHz	PASS
	High	9KHz -9GHz	PASS
	Low	9KHz -26GHz	PASS
LTE FDD Band 7	Middle	9KHz -26GHz	PASS
	High	9KHz -26GHz	PASS
	Low	9KHz -8GHz	PASS
LTE FDD Band 17	Middle	9KHz -8GHz	PASS
	High	9KHz -8GHz	PASS

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band
- 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = EIRP Limit

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3701.4	-38.24	5.26	3.00	9.88	-33.62	-13.00	-20.62	Н
5552.1	-44.74	6.11	3.00	11.36	-39.49	-13.00	-26.49	Н
3701.4	-30.38	5.26	3.00	9.88	-25.76	-13.00	-12.76	V
5552.1	-35.27	6.11	3.00	11.36	-30.02	-13.00	-17.02	V

LTE FDD Band 2_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-39.46	5.32	3.00	10.03	-34.75	-13.00	-21.75	Н
5640.0	-45.82	6.19	3.00	11.41	-40.60	-13.00	-27.60	Н
3760.0	-31.03	5.32	3.00	10.03	-26.32	-13.00	-13.32	V
5640.0	-35.74	6.19	3.00	11.41	-30.52	-13.00	-17.52	V

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3806.6	-37.84	5.36	3.00	9.62	-33.58	-13.00	-20.58	Н
5709.9	-45.03	6.24	3.00	11.46	-39.81	-13.00	-26.81	Н
3806.6	-29.23	5.36	3.00	9.62	-24.97	-13.00	-11.97	V
5709.9	-35.62	6.24	3.00	11.46	-30.40	-13.00	-17.40	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID:2ADTE-Y6MAX Report No.: LCS170516130AE LTE FDD Band 2 Channel Bandwidth 3MHz QPSK Low Channel Peak G_a P_{cl} Frequency Limit Margin P_{Mea} Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) 3703.0 -40.38 5.26 -13.00 -22.76 3.00 9.88 -35.76Η -44.13 -25.88 5554.5 6.11 3.00 11.36 -38.88 -13.00 Н 3703.0 -29.34 5.26 3.00 9.88 -24.72 -13.00 -11.72 V 5554.5 -36.58 6.11 3.00 11.36 -31.33 -13.00 -18.33 V LTE FDD Band 2 Channel Bandwidth 3MHz QPSK Middle Channel Peak G_a Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Diatance Antenna **EIRP** Polarization (dBm) (dB) (dBm) (MHz) (dB) (dBm) Gain(dB) 3760.00 -39.09 5.32 3.00 10.03 -34.38-13.00 -21.38 Н 5640.00 -46.92 6.19 3.00 11.41 -41.70-13.00-28.70Η 3760.00 -29.31 5.32 3.00 10.03 -24.60 -13.00 -11.60 V 5640.00 3.00 11.41 -28.41 -13.00 -15.41 V -33.63 6.19 LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK_ High Channel Peak G_a Frequency Limit P_{Mea} P_{cl} Margin Diatance Antenna **EIRP** Polarization (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3817.0 -40.49 5.36 -13.00 -23.23 3.00 -36.23Н 9.62 5725.5 -46.64 6.24 3.00 11.46 -41.42-13.00-28.42Н V 3817.0 -31.51 5.36 3.00 9.62 -27.25 -13.00 -14.255725.5 -34.58 6.24 3.00 11.46 -29.36 -13.00 -16.36 V LTE FDD Band 2 Channel Bandwidth 5MHz QPSK Low Channel G_{a} Peak P_{cl} Limit Frequency P_{Mea} Margin Polarization Diatance Antenna **EIRP** (dB) (dBm) (MHz) (dBm) (dB) Gain(dB) (dBm) 3705.0 -37.70 -13.00 -20.08 5.26 3.00 9.88 -33.08Н 5557.5 -46.88 6.11 3.00 11.36 -41.63 -13.00 -28.63 Н 3705.0 -29.36 5.26 3.00 9.88 -24.74 -13.00 -11.74 V 5557.5 -33.30 6.11 3.00 11.36 -28.05 -13.00 -15.05 V LTE FDD Band 2 Channel Bandwidth 5MHz QPSK Middle Channel Peak G_a Frequency P_{cl} Limit Margin P_{Mea} **EIRP** Antenna Polarization Diatance (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3760.0 -21.39 -39.10 5.32 3.00 10.03 -34.39-13.00 Н 5640.0 -46.85 6.19 3.00 11.41 -41.63 -13.00 -28.63 Н -25.31 -12.31 3760.0 -30.02 5.32 3.00 10.03 -13.00 V -17.23 V 5640.0 -35.45 6.19 3.00 11.41 -30.23-13.00 LTE FDD Band 2_Channel Bandwidth 5MHz_QPSK_ High Channel G_a Peak $\mathsf{P}_{\mathsf{Mea}}$ Frequency Limit Margin **EIRP** Polarization Diatance Antenna (MHz) (dBm) (dB) (dB) (dBm) Gain(dB) (dBm) 3815.0 -38.62 5.36 3.00 -13.00 -21.36 Н 9.62 -34.365722.5 -44.01 6.24 3.00 11.46 -38.79 -13.00 -25.79Η -29.27 3815.0 5.36 3.00 9.62 -25.01 -13.00 -12.01 ٧ 5722.5 -36.06 6.24 3.00 -30.84-13.00 -17.84V 11.46 LTE FDD Band 2 Channel Bandwidth 10MHz QPSK Low Channel G_a Peak Frequency P_{Mea} P_{cl} Limit Margin Diatance Antenna **EIRP** Polarization (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) 3710.0 -39.92 5.26 -13.00 -22.30

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.
Page 33 of 55

9.88

11.36

9.88

11.36

-35.30

-39.33

-24.04

-31.15

-13.00

-13.00

-13.00

-26.33

-11.04

-18.15

Н

Н

٧

3.00

3.00

3.00

3.00

5565.0

3710.0

5565.0

-44.58

-28.66

-36.40

6.11

5.26

SHENZHEN L					CC ID:2ADTE-	Y6MAX I	Report No.: LC	S170516130AE
LIE FUU Ba	and 2_Chan	nei Bandwid	ath Tumhz_C	QPSK_ Middl	e Channei Peak			1
Frequency	P_{Mea}	P_{cl}	Dietopos	Ga	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarizatio
,		` '		Gain(dB)	(dBm)	, ,	` ′	
3760.0	-39.74	5.32	3.00	10.03	-35.03	-13.00	-22.03	Н
5640.0	-45.24	6.19	3.00	11.41	-40.02	-13.00	-27.02	Н
3760.0	-30.64	5.32	3.00	10.03	-25.93	-13.00	-12.93	V
5640.0	-34.57	6.19	3.00	11.41	-29.35	-13.00	-16.35	V
	and 2 Chan	nal Bandwi	dth 101/14- (DOK High	Channal			
LIE FUU D	and Z_Chan	riei bariuwii	10101112_C	QPSK_ High			1	
Frequency	P_{Mea}	P_{cl}	Distance	Ga	Peak	Limit	Margin	Dalari- dia
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ,		` '		Gain(dB)	(dBm)	` ′	` ′	
3810.0	-37.09	5.36	3.00	9.62	-32.83	-13.00	-19.83	H
5715.0	-43.48	6.24	3.00	11.46	-38.26	-13.00	-25.26	Н
3810.0	-30.37	5.36	3.00	9.62	-26.11	-13.00	-13.11	V
5715.0	-36.69	6.24	3.00	11.46	-31.47	-13.00	-18.47	V
37 13.0	-30.03	0.24	3.00	11.40	-51.41	-13.00	-10.47	V
TE FDD Ba	and 2_Chan	nel Bandwid	dth 15MHz_C	QPSK_ Low (
requency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3715.0	-40.34	5.26	3.00	9.88	-35.72	-13.00	-22.72	Н
5572.5	-43.22	6.11	3.00	11.36	-37.97	-13.00	-24.97	H
3715.0	-31.63	5.26	3.00	9.88	-27.01	-13.00	-14.01	V
5572.5	-36.19	6.11	3.00	11.36	-30.94	-13.00	-17.94	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	QPSK_ Middl G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
, ,		` '		Gain(dB)	(dBm)		` ′	
3760.0	-37.88	5.32	3.00	10.03	-33.17	-13.00	-20.17	Н
5640.0	-46.34	6.19	3.00	11.41	-41.12	-13.00	-28.12	Н
3760.0	-30.02	5.32	3.00	10.03	-25.31	-13.00	-12.31	V
5640.0	-36.41	6.19	3.00	11.41	-31.19	-13.00	-18.19	V
	and 2 Chan	nal Bandwi	dth 15MU= (DOK High	Channal			
	anu Z_Chan	nei banuwii T	 	QPSK_ High	Peak		1	
Frequency	P_{Mea}	P_{cl}	Dietaria	Ga		Limit	Margin	Dolowi-st'-
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	. ,	` ,		Gain(dB)	(dBm)	` ′	` '	
	20.44	E 26					20.05	
3805.0	-38.11	5.36	3.00	9.62	-33.85	-13.00	-20.85	Н
3805.0 5707.5	-38.11 -45.57	6.24	3.00	9.62 11.46	-33.85 -40.35	-13.00 -13.00	-20.65	H
5707.5	-45.57	6.24	3.00	11.46	-40.35	-13.00	-27.35	
								Н
5707.5 3805.0 5707.5	-45.57 -31.86 -33.62	6.24 5.36 6.24	3.00 3.00 3.00	11.46 9.62 11.46	-40.35 -27.60 -28.40	-13.00 -13.00	-27.35 -14.60	H V
5707.5 3805.0 5707.5	-45.57 -31.86 -33.62 and 2_Chan	6.24 5.36 6.24	3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low 0	-40.35 -27.60 -28.40 Channel	-13.00 -13.00	-27.35 -14.60	H V
5707.5 3805.0 5707.5 LTE FDD Ba	-45.57 -31.86 -33.62 and 2_Chan	6.24 5.36 6.24 nel Bandwid	3.00 3.00 3.00 3th 20MHz_0	11.46 9.62 11.46 QPSK_ Low 0 G _a	-40.35 -27.60 -28.40 Channel Peak	-13.00 -13.00	-27.35 -14.60 -15.40	H V V
5707.5 3805.0 5707.5 <i>TE FDD Ba</i>	-45.57 -31.86 -33.62 and 2_Chan P _{Mea}	6.24 5.36 6.24 nel Bandwid	3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low 0 G _a Antenna	-40.35 -27.60 -28.40 Channel Peak EIRP	-13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin	H V V
5707.5 3805.0 5707.5	-45.57 -31.86 -33.62 and 2_Chan	6.24 5.36 6.24 nel Bandwid	3.00 3.00 3.00 3th 20MHz_0	11.46 9.62 11.46 QPSK_ Low 0 G _a	-40.35 -27.60 -28.40 Channel Peak	-13.00 -13.00 -13.00	-27.35 -14.60 -15.40	H V V
5707.5 3805.0 5707.5 TE FDD Ba	-45.57 -31.86 -33.62 and 2_Chan P _{Mea}	6.24 5.36 6.24 nel Bandwid	3.00 3.00 3.00 3th 20MHz_0	11.46 9.62 11.46 QPSK_ Low 0 G _a Antenna	-40.35 -27.60 -28.40 Channel Peak EIRP	-13.00 -13.00 -13.00 Limit (dBm)	-27.35 -14.60 -15.40 Margin	H V V
5707.5 3805.0 5707.5 -TE FDD Barrequency (MHz) 3720.0	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26	3.00 3.00 3.00 6th 20MHz_0 Diatance	11.46 9.62 11.46 QPSK_ Low 0 G _a Antenna Gain(dB) 9.88	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89	-13.00 -13.00 -13.00 Limit (dBm) -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89	H V V Polarizatio
5707.5 3805.0 5707.5 -TE FDD Barrequency (MHz) 3720.0 5580.0	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11	3.00 3.00 3.00 3.00 bith 20MHz_0 Diatance 3.00 3.00	11.46 9.62 11.46 QPSK_ Low (G _a Antenna Gain(dB) 9.88 11.36	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77	H V V V Polarization H H H
5707.5 3805.0 5707.5 -TE FDD Barrequency (MHz) 3720.0 5580.0 3720.0	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02 -28.85	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11 5.26	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low 0 Ga Antenna Gain(dB) 9.88 11.36 9.88	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77 -24.23	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77 -11.23	Polarization H
5707.5 3805.0 5707.5 -TE FDD Barrequency (MHz) 3720.0 5580.0	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11	3.00 3.00 3.00 3.00 bith 20MHz_0 Diatance 3.00 3.00	11.46 9.62 11.46 QPSK_ Low (G _a Antenna Gain(dB) 9.88 11.36	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77	H V V V Polarization H H H
5707.5 3805.0 5707.5 LTE FDD Bate of the second of the se	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02 -28.85 -35.10	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11 5.26 6.11	3.00 3.00 3.00 3.00 bith 20MHz_0 Diatance 3.00 3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low 0 Ga Antenna Gain(dB) 9.88 11.36 9.88	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77 -24.23 -29.85	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77 -11.23	Polarization H
5707.5 3805.0 5707.5 LTE FDD Bate Prequency (MHz) 3720.0 5580.0 3720.0 5580.0	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02 -28.85 -35.10 and 2_Chan	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11 5.26 6.11	3.00 3.00 3.00 3.00 bith 20MHz_0 Diatance 3.00 3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low 0 G _a Antenna Gain(dB) 9.88 11.36 9.88 11.36	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77 -24.23 -29.85	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77 -11.23 -16.85	Polarization H
5707.5 3805.0 5707.5 LTE FDD Barrequency (MHz) 3720.0 5580.0 3720.0 5580.0 LTE FDD Barrequency	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02 -28.85 -35.10 and 2_Chan P _{Mea}	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11 5.26 6.11 nel Bandwid P _{cl}	3.00 3.00 3.00 3.00 bith 20MHz_0 3.00 3.00 3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low G G _a Antenna Gain(dB) 9.88 11.36 9.88 11.36 QPSK_ Middl G _a	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77 -24.23 -29.85 de Channel Peak	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77 -11.23 -16.85	Polarizatio H H V
5707.5 3805.0 5707.5 TE FDD Bate of the second of the s	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02 -28.85 -35.10 and 2_Chan	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11 5.26 6.11	3.00 3.00 3.00 3.00 bith 20MHz_0 Diatance 3.00 3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low (Ga Antenna Gain(dB) 9.88 11.36 9.88 11.36 QPSK_ Middl Ga Antenna	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77 -24.23 -29.85 The Channel Peak EIRP	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77 -11.23 -16.85	Polarization H
5707.5 3805.0 5707.5 LTE FDD Barrequency (MHz) 3720.0 5580.0 3720.0 5580.0 LTE FDD Barrequency	-45.57 -31.86 -33.62 and 2_Chan P _{Mea} (dBm) -40.51 -44.02 -28.85 -35.10 and 2_Chan P _{Mea}	6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 5.26 6.11 5.26 6.11 nel Bandwid P _{cl}	3.00 3.00 3.00 3.00 bith 20MHz_0 3.00 3.00 3.00 3.00 3.00	11.46 9.62 11.46 QPSK_ Low G G _a Antenna Gain(dB) 9.88 11.36 9.88 11.36 QPSK_ Middl G _a	-40.35 -27.60 -28.40 Channel Peak EIRP (dBm) -35.89 -38.77 -24.23 -29.85 de Channel Peak	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-27.35 -14.60 -15.40 Margin (dB) -22.89 -25.77 -11.23 -16.85	Polarizatio H H V

10.03

11.41

-40.55

-24.12

-28.67

-13.00

-13.00

-13.00

-27.55

-11.12

-15.67

Н

٧

٧

5640.0

3760.0

5640.0

-45.77

-28.83

-33.89

6.19

5.32

6.19

3.00

3.00

			G LABORATOR		CC ID:2ADTE-	Y6MAX	Report No.: LC	CS170516130AE
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 20MHz_C	QPSK_ High			T	T
Frequency	P_{Mea}	P_{cl}	5	Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ,	` ,	, ,		Gain(dB)	(dBm)	, ,	` ′	
3800.0	-37.45	5.36	3.00	9.62	-33.19	-13.00	-20.19	Н
5700.0	-45.49	6.24	3.00	11.46	-40.27	-13.00	-27.27	Н
3800.0	-28.11	5.36	3.00	9.62	-23.85	-13.00	-10.85	V
5700.0	-36.02	6.24	3.00	11.46	-30.80	-13.00	-17.80	V
I TE EDD Ba	and 2 Chan	nel Randwid	dth 1.4MHz	16QAM Lo	w Channel			
	_			G _a	Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarioc	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
2704.4	44.05	F 06	2.00			12.00	24.22	- 11
3701.4	-41.85	5.26	3.00	9.88	-37.23	-13.00	-24.23	H
5552.1	-47.98	6.11	3.00	11.36	-42.73	-13.00	-29.73	Н
3701.4	-31.62	5.26	3.00	9.88	-27.00	-13.00	-14.00	V
5552.1	-41.00	6.11	3.00	11.36	-35.75	-13.00	-22.75	V
TE EDD Ba	and 2 Chan	nel Bandwid	dth 1 4MHz	16QAM Mi	ddle Channe	e/		
	_			G _a	Peak			
requency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
,	, ,	` ′		Gain(dB)	(dBm)	, ,	, ,	
3760.0	-42.30	5.32	3.00	10.03	-37.59	-13.00	-24.59	Н
5640.0	-49.00	6.19	3.00	11.41	-43.78	-13.00	-30.78	Н
3760.0	-31.57	5.32	3.00	10.03	-26.86	-13.00	-13.86	V
5640.0	-41.22	6.19	3.00	11.41	-36.00	-13.00	-23.00	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
3806.6	-41.89	5.36	3.00	9.62	-37.63	-13.00	-24.63	Н
5709.9	-47.18	6.24	3.00	11.46	-41.96	-13.00	-28.96	H
3806.6	-33.46	5.36	3.00	9.62	-29.20	-13.00	-16.20	V
5709.9	-41.13	6.24	3.00	11.46	-35.91	-13.00	-22.91	V
_TE FDD Ba	and 2_Chan	nel Bandwid	dth 3MHz_16	6QAM _ Low	Channel			
_				Ga	Peak	,		
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	2 1011011100	Gain(dB)	(dBm)	(dBm)	(dB)	
3703.0	-40.37	5.26	3.00	9.88	-35.75	-13.00	-22.75	Ц
								H
5554.5	-47.90	6.11	3.00	11.36	-42.65	-13.00	-29.65	Н
3703.0	-33.53	5.26	3.00	9.88	-28.91	-13.00	-15.91	V
5554.5	-40.44	6.11	3.00	11.36	-35.19	-13.00	-22.19	V
.TE FDD Ba	and 2_Chan	nel Bandwid	dth 3MHz_16	6QAM _ Midd	lle Channel			
		Б	_	Ga	Peak	1 1 14	Managira	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	2.3(3)100	Gain(dB)	(dBm)	(dBm)	(dB)	. Sianzano
2760.00	42.00	E 22	2.00		. ,	12.00	25.24	1.1
3760.00	-43.02	5.32	3.00	10.03	-38.31	-13.00	-25.31	H
5640.00	-46.34	6.19	3.00	11.41	-41.12	-13.00	-28.12	Н
3760.00	-31.38	5.32	3.00	10.03	-26.67	-13.00	-13.67	V
5640.00	-38.44	6.19	3.00	11.41	-33.22	-13.00	-20.22	V
TE FDD Ba	and 2 Chan	nel Bandwid	dth 3MHz 16	6QAM_ High	Channel			
	_			G _a	Peak		1	
requency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	i Gianzallo
3817.0	40.57	F 30	2.00			40.00	05.04	11
381/U	-42.57	5.36	3.00	9.62	-38.31	-13.00	-25.31	Н
5725.5 3817.0	-49.17	6.24 5.36	3.00	11.46	-43.95 -27.37	-13.00 -13.00	-30.95 -14.37	H

9.62

11.46

-27.37

-36.17

-13.00

-13.00

-14.37

-23.17

٧

٧

3817.0

5725.5

-31.63

-41.39

5.36

6.24

3.00

Gain(dB) Clash C				GLABORATOR		CC ID:2ADTE-	Y6MAX I	Report No.: LC	S170516130AE
Polarization		_		ILIT SIVITIZ_TO					
Margin M				Diatance					Polarizatio
3705.0	(MHz)	(dBm)	(dB)	Biatarioo			(dBm)	(dB)	1 Glarizatio
S557.5	3705.0	-/11 32	5.26	3.00	. ,		-13.00	-23.70	Н
3705.0 33.08 5.26 3.00 9.88 2.8.46 13.00 -15.46 V 5557.5 -41.91 6.11 3.00 11.36 -36.66 -13.00 -23.66 V V V V V V V V V V V									
Section Column									
Temple									
Frequency P _{Meas} P _{cl} (dB) Diatance C _s Peak Climit (dBm) (dBm)	5557.5	-41.91	6.11	3.00	11.36	-30.00	-13.00	-23.00	V
Fequency P_Mea (dB) Diatance Antenna EIRP (dBm)	TE FDD Ba	and 2 Chan	nel Bandwi	dth 5MHz 16	QAM Midd	lle Channel			
Polarization			Б		Ga	Peak	Linait	Namein	
Gain(dB) Calin(dB) Calin		Mea (alDaa)		Diatance	Antenna	EIRP			Polarizatio
3760.0	(MHZ)	(aBm)	(aB)				(aBm)	(aB)	
Search S	3760.0	-41 72	5 32	3.00	. ,		-13 00	-24 ∩1	н
3760.0									
Terpon Page									
TEFDD Band 2									
Frequency (MHz)	5640.0	-41.63	6.19	3.00	11.41	-36.41	-13.00	-23.41	V
Frequency (MHz)	TE FDD Ba	and 2 Chan	nel Bandwi	dth 5MHz 16	SQAM Hiah	Channel			
Place Plac				·					
Column C	requency			Diatance			-		Polarizatio
3815.0	(MHz)	(dBm)	(dB)	Diatarice			(dBm)	(dB)	i Gianzallo
ST22.5	3815 A	13 10	E 36	3 00			12.00	26.14	Ы
3815.0									
Temporary Temp									
TE FDD Band 2									
Pack (dBm)	5722.5	-40.69	6.24	3.00	11.46	-35.47	-13.00	-22.47	V
Pack	LTE FDD Ba	and 2 Chan	nel Bandwi	dth 10MHz 1	16QAM Lov	v Channel			
Polarization				_					
GBM	requency	P_{Mea}		Diatanco			Limit	Margin	Polarizatio
3710.0	(MHz)	(dBm)	(dB)	Diatarice			(dBm)	(dB)	1 Glarizatio
Temporary Temp	2710.0	41.10	5.26	2.00			12.00	22.40	ш
3710.0									
Temporary Page Polarization Temporary Temporary Polarization Temporary Temporary Polarization Temporary									
TE FDD Band 2_Channel Bandwidth 10MHz_16QAM_Middle Channel Frequency (MHz) (dBm) (dB) Diatance (Antenna (dBm) (dBm									
Pack	5565.0	-38.30	6.11	3.00	11.36	-33.05	-13.00	-20.05	V
Pack	TE EDD B	and 2 Chan	nel Randwii	Hth 10MHz 1	160AM Mic	dde Channe	I		
Part		_		1011112_1				Manada	
Gain(dB) Gain(dB) (dBm)				Diatance					Polarizatio
3760.0	(MHz)	(dBm)	(dB)	Biatario			(dBm)	(dB)	. Glanzano
Seedon	2760.0	12.70	F 22	2.00			12.00	25.00	ш
3760.0	3700.0								
Tequency P Mea (dBm) Margin Polarization Polarizatio	5640 O	-4//4	0.19	J.UU	1141	-41 / 71 /	- 15.00	-29.52	_ п
TE FDD Band 2_Channel Bandwidth 10MHz_16QAM_ High Channel Frequency (MHz) Poli (dB) Diatance Antenna EIRP (dBm) Gain(dB) Gain(dB) Gain(dB) Gain(dB) Gain(dB) Gain(dB) Gain(dB) Gain(dBm) Tequency (dBm) Strip (dBm) Tequency (dBm) Tequency (dBm) Tequency (dBm) Tequency (dBm) Polarization Gain(dB) Tequency (dBm) Tequency (dBm) Polarization Gain(dB) Tequency (dBm) Tequency (dBm) Tequency (dBm) Polarization Gain(dB) Tequency (dBm)			E 00	0.00				40.45	١,,
Pack	3760.0	-33.86			10.03	-29.15	-13.00		
Pack	3760.0	-33.86			10.03	-29.15	-13.00		
Polarization	3760.0 5640.0	-33.86 -38.94	6.19	3.00	10.03 11.41	-29.15 -33.72	-13.00		
(MHz) (dBm) (dB) Gain(dB) (dBm) (dBm) (dBm) 3810.0 -40.43 5.36 3.00 9.62 -36.17 -13.00 -23.17 H 5715.0 -47.77 6.24 3.00 11.46 -42.55 -13.00 -29.55 H 3810.0 -32.71 5.36 3.00 9.62 -28.45 -13.00 -15.45 V 5715.0 -38.68 6.24 3.00 11.46 -33.46 -13.00 -20.46 V LTE FDD Band 2_Channel Bandwidth 15MHz_16QAM_Low Channel Ga Peak Limit Margin Margin Margin (dB) Polarization Frequency (MHz) PMea (dBm) PMea (dBm) Diatance Gain(dB) EIRP (dBm) Limit (dBm) Margin (dB) Polarization	3760.0 5640.0 LTE FDD Ba	-33.86 -38.94 and 2_Chan	6.19 nel Bandwid	3.00	10.03 11.41 6QAM _ Hig	-29.15 -33.72 h Channel	-13.00 -13.00	-20.72	
3810.0 -40.43 5.36 3.00 9.62 -36.17 -13.00 -23.17 H 5715.0 -47.77 6.24 3.00 11.46 -42.55 -13.00 -29.55 H 3810.0 -32.71 5.36 3.00 9.62 -28.45 -13.00 -15.45 V 5715.0 -38.68 6.24 3.00 11.46 -33.46 -13.00 -20.46 V TE FDD Band 2 Channel Bandwidth 15MHz_16QAM Low Channel Ga Peak Limit Margin Margin Margin (dBm) Polarization Frequency (MHz) PMea (dBm) Polarization Polarization Polarization Polarization Polarization	3760.0 5640.0 <i>LTE FDD Ba</i> requency	-33.86 -38.94 and 2_Chan	6.19 nel Bandwid P _{cl}	3.00 dth 10MHz_1	10.03 11.41 (6QAM_ Hig G _a	-29.15 -33.72 th Channel Peak	-13.00 -13.00	-20.72 Margin	V
5715.0 -47.77 6.24 3.00 11.46 -42.55 -13.00 -29.55 H 3810.0 -32.71 5.36 3.00 9.62 -28.45 -13.00 -15.45 V 5715.0 -38.68 6.24 3.00 11.46 -33.46 -13.00 -20.46 V TE FDD Band 2 Channel Bandwidth 15MHz 16QAM Low Channel Frequency (MHz) P _{Mea} (dBm) P _{cl} (dB) Diatance (dB) Peak EIRP (dBm) Limit (dBm) Margin (dB) Polarization	3760.0 5640.0 <i>TE FDD Ba</i> requency	-33.86 -38.94 and 2_Chan	6.19 nel Bandwid P _{cl}	3.00 dth 10MHz_1	10.03 11.41 6QAM_ Hig G _a Antenna	-29.15 -33.72 th Channel Peak EIRP	-13.00 -13.00	-20.72 Margin	V
3810.0	3760.0 5640.0 TE FDD Barrequency (MHz)	-33.86 -38.94 and 2_Chan P _{Mea} (dBm)	6.19 nel Bandwid P _{cl} (dB)	3.00 oth 10MHz_1 Diatance	10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB)	-29.15 -33.72 th Channel Peak EIRP (dBm)	-13.00 -13.00 Limit (dBm)	-20.72 Margin (dB)	V
TE FDD Band 2_Channel Bandwidth 15MHz_16QAM_ Low Channel Compared to the c	3760.0 5640.0 -TE FDD Barrequency (MHz) 3810.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43	6.19 nel Bandwid P _{cl} (dB) 5.36	3.00 ath 10MHz_1 Diatance 3.00	10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17	-13.00 -13.00 Limit (dBm) -13.00	-20.72 Margin (dB) -23.17	V Polarizatio
TE FDD Band 2_Channel Bandwidth 15MHz_16QAMLow Channel Frequency PMea (dBm) (dB) Diatance Gan(dB) (dBm) (dBm) (dBm) Margin (dBm) Polarization	3760.0 5640.0 -TE FDD Barrequency (MHz) 3810.0 5715.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77	6.19 nel Bandwid P _{cl} (dB) 5.36 6.24	3.00 ath 10MHz_1 Diatance 3.00 3.00	10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55	-13.00 -13.00 Limit (dBm) -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55	Polarizatio
Frequency (MHz) (Bm)	3760.0 5640.0 -TE FDD Barrequency (MHz) 3810.0 5715.0 3810.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71	6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36	3.00 ath 10MHz_1 Diatance 3.00 3.00 3.00 3.00	10.03 11.41 (6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55 -15.45	Polarizatio H H V
Frequency (MHz) (Bm) $(Bm$	3760.0 5640.0 -TE FDD Barrequency (MHz) 3810.0 5715.0 3810.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71	6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36	3.00 ath 10MHz_1 Diatance 3.00 3.00 3.00 3.00	10.03 11.41 (6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55 -15.45	Polarizatio H H V
requency P_{Mea} (dBm) (dB) Diatance Antenna $EIRP$ (dBm) (dBm) (dB) Polarization	3760.0 5640.0 LTE FDD Barrequency (MHz) 3810.0 5715.0 3810.0 5715.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71 -38.68	6.19 nel Bandwid Pcl (dB) 5.36 6.24 5.36 6.24	3.00 ath 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00	10.03 11.41 6QAM _ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45 -33.46	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55 -15.45	Polarizatio H H V
(MHz) (dBm) (dB) Blatance Antenna Lind (dBm) (dBm) (dB) Tolanzation	3760.0 5640.0 LTE FDD Barrequency (MHz) 3810.0 5715.0 3810.0 5715.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71 -38.68 and 2_Chan	6.19 nel Bandwid Pcl (dB) 5.36 6.24 5.36 6.24	3.00 ath 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00	10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45 -33.46 w Channel	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55 -15.45 -20.46	Polarizatio H H V
Gain(ub) (ubin)	3760.0 5640.0 -TE FDD Barrequency (MHz) 3810.0 5715.0 3810.0 5715.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71 -38.68 and 2_Chan	6.19 nel Bandwid Pcl (dB) 5.36 6.24 5.36 6.24 nel Bandwid	3.00 ath 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00 ath 15MHz_1	10.03 11.41 6QAM _ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45 -33.46 w Channel Peak	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55 -15.45 -20.46	Polarizatio H H V V
3/15.0 -43.52 5.26 3.00 9.88 -38.90 -13.00 -25.90 H	3760.0 5640.0 	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71 -38.68 and 2_Chan P _{Mea}	6.19 nel Bandwid Pcl (dB) 5.36 6.24 5.36 6.24 nel Bandwid Pcl	3.00 ath 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00 ath 15MHz_1	10.03 11.41 16QAM _ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 (6QAM _ Lov G _a Antenna	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45 -33.46 w Channel Peak EIRP	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	-20.72 Margin (dB) -23.17 -29.55 -15.45 -20.46 Margin	Polarizatio H H V
	3760.0 5640.0 LTE FDD Barrequency (MHz) 3810.0 5715.0 3810.0 5715.0	-33.86 -38.94 and 2_Chan P _{Mea} (dBm) -40.43 -47.77 -32.71 -38.68 and 2_Chan P _{Mea} (dBm)	6.19 nel Bandwid Pcl (dB) 5.36 6.24 5.36 6.24 mel Bandwid Pcl (dB)	3.00 th 10MHz_1 Diatance 3.00 3.00 3.00 3.00 3.00 Oth 15MHz_1 Diatance	10.03 11.41 (6QAM _ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 (6QAM _ Low G _a Antenna Gain(dB)	-29.15 -33.72 th Channel Peak EIRP (dBm) -36.17 -42.55 -28.45 -33.46 w Channel Peak EIRP (dBm)	-13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm)	-20.72 Margin (dB) -23.17 -29.55 -15.45 -20.46 Margin (dB)	Polarizatio H H V V V

9.88

11.36

-41.03

-27.40

-33.18

-13.00

-13.00

-13.00

-28.03

-14.40

-20.18

Н

٧

٧

3.00

3.00

3.00

5572.5

3715.0

5572.5

-46.28

-32.02

-38.43

6.11

5.26

			G LABORATOR		CC ID:2ADTE-		Report No.: LC	<u> S170516130AE</u>
LIE FDD Ba	and 2_Chan	nel Bandwi	dth 15MHz_1		ldle Channe	<i> </i>		1
Frequency	P_{Mea}	P _{cl}		Ga	Peak	Limit	Margin	1
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(1011 12)	(dDIII)	(ub)		Gain(dB)	(dBm)	(dDIII)	(db)	
3760.0	-42.73	5.32	3.00	10.03	-38.02	-13.00	-25.02	Н
5640.0	-49.37	6.19	3.00	11.41	-44.15	-13.00	-31.15	Н
3760.0				10.03			-15.13	V
	-32.84	5.32	3.00		-28.13	-13.00		
5640.0	-41.11	6.19	3.00	11.41	-35.89	-13.00	-22.89	V
TE FDD Ba	and 2_Chan	nel Bandwi	dth 15MHz_1	16QAM_ Hig	h Channel			
		Б		G_a	Peak	Lingit	Marain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3805.0	-41.44	5.36	3.00	9.62	-37.18	-13.00	-24.18	Н
5707.5	-46.22	6.24	3.00	11.46	-41.00	-13.00	-28.00	Н
3805.0	-31.96	5.36	3.00	9.62	-27.70	-13.00	-14.70	V
5707.5	-41.33	6.24	3.00	11.46	-36.11	-13.00	-23.11	V
	and O Chan	nal Dandui	-141- OOMALI- 1	160444 1	Channal			
I E FUU B	anu ∠_∪nan	nei Bandwii	uti ∠UIVIHZ_1 T	16QAM_Lov			1	T
requency	P_{Mea}	P _{cl}	[Ga	Peak	Limit	Margin	1
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 12)	(40111)	(ub)	<u> </u>	Gain(dB)	(dBm)	(dDill)	(45)	<u> </u>
3720.0	-42.72	5.26	3.00	9.88	-38.10	-13.00	-25.10	Н
5580.0	-48.43	6.11	3.00	11.36	-43.18	-13.00	-30.18	Н
3720.0	-34.74	5.26	3.00	9.88	-30.12	-13.00	-17.12	V
5580.0	-39.48	6.11	3.00	11.36	-34.23	-13.00	-21.23	V
TE FDD Ba	and 2 Chan	nel Bandwid	dth 20MHz 1	16QAM_ Mid	ldle Channe	I		
	_		_	Ga	Peak			
requency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice			(dBm)	(dB)	Folarizatio
· ·	·			Gain(dB)	(dBm)			
3760.0	-42.96	5.32	3.00	10.03	-38.25	-13.00	-25.25	Н
5640.0	-47.62	6.19	3.00	11.41	-42.40	-13.00	-29.40	Н
3760.0	-33.14	5.32	3.00	10.03	-28.43	-13.00	-15.43	V
5640.0	-38.93	6.19	3.00	11.41	-33.71	-13.00	-20.71	V
TE EDD D		and Dometri	-141- 001411- 4	100 444 115-	de Observati			
. I E FUU Ba	ana z_Cnan	riei Banawii	um 20141HZ_1	16QAM_ Hig		T		1
requency	P_{Mea}	P _{cl}		Ga	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3800.0	-43.47	5.36	3.00	9.62	-39.21	-13.00	-26.21	Н
5700.0	-47.90	6.24	3.00	11.46	-42.68	-13.00	-29.68	Н
3800.0	-31.21	5.36	3.00	9.62	-26.95	-13.00	-13.95	V
5700.0	-40.37	6.24	3.00	11.46	-35.15	-13.00	-22.15	V
.TE FDD Ba	and 4 Chan	nel Bandwi	dth 1.4MHz	QPSK Low	Channel			
	·			G _a	Peak		F	
requency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatalice			(dBm)	(dB)	i Giarizatio
` ,	, ,	` '	0.00	Gain(dB)	(dBm)	` ′	` '	
3421.4	-41.86	4.62	3.00	9.81	-36.67	-13.00	-23.67	Н
5132.1	-45.04	5.94	3.00	10.86	-40.12	-13.00	-27.12	Н
3421.4	-36.55	4.62	3.00	9.81	-31.36	-13.00	-18.36	V
5132.1	-39.67	5.94	3.00	10.86	-34.75	-13.00	-21.75	V
5.52.1	50.01	<u> </u>		1 .0.00	J-1.70	10.00		<u> </u>
TE FDD B	and 4_Chan	nel Bandwi	dth 1.4MHz_	QPSK_ Mida		T	1	Т
requency	P.,	P _{cl}		G _a	Peak	Limit	Margin	1
	P _{Mea}		Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	1
3465.0	-41.03	4.63	3.00	9.84	-35.82	-13.00	-22.82	Н
							1	
C407 C		, 6 U/I	3.00	10.86	-41.07	-13.00	-28.07	Н
5197.5 3465.0	-45.99 -33.85	5.94 4.63	3.00	9.84	-28.64	-13.00	-15.64	\ \/

10.86

-28.64

-33.94

-13.00

-13.00

-15.64

-20.94

٧

3465.0

5197.5

-33.85

-38.86

4.63

5.94

3.00

			GLABORATOR Hth 1 4MHz	<u>Y LTD. </u>	<u>CC ID:2ADTE-</u> Channel	Y6MAX I	Report No.: LC	<u>S170516130AE</u>
				G _a	Peak		l	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3508.6	-40.82	4.65	3.00	9.9	-35.57	-13.00	-22.57	Н
5262.9	-48.60	5.95	3.00	10.91	-43.64	-13.00	-30.64	Н
3508.6	-36.57	4.65	3.00	9.9	-31.32	-13.00	-18.32	V
5262.9	-40.04	5.95	3.00	10.91	-35.08	-13.00	-22.08	V
LTE FDD Ba	and 4_Chan	nel Bandwid	dth 3MHz Qi	PSK_ Low C	hannel			
Frequency		D		Ga	Peak	Limit	Margin	
(MHz)	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		_	Polarization
(IVITZ)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3423.0	-43.78	4.62	3.00	9.81	-38.59	-13.00	-25.59	Н
5134.5	-48.61	5.94	3.00	10.86	-43.69	-13.00	-30.69	Н
3423.0	-35.09	4.62	3.00	9.81	-29.90	-13.00	-16.90	V
5134.5	-39.24	5.94	3.00	10.86	-34.32	-13.00	-21.32	V
TE EDD Ra	and 4 Chan	nel Randwii	oth 3MHz O	PSK_ Middle	Channel			
			101 01011 12_Q1	G _a	Peak			
requency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diataile		(dBm)	(dBm)	(dB)	Folanzatio
3465.00	-43.21	` ,	3.00	Gain(dB)		-13.00	-25.00	LJ
3465.00		4.63		9.84	-38.00			H
5197.50	-48.42	5.94	3.00	10.86	-43.50	-13.00	-30.50	Н
3465.00	-34.97	4.63	3.00	9.84	-29.76	-13.00	-16.76	V
5197.50	-38.45	5.94	3.00	10.86	-33.53	-13.00	-20.53	V
.TE FDD Ba	and 4_Chan	nel Bandwid	dth 3MHz Qi	PSK_ High C	hannel			
		Б		Ga	Peak	Limeit	Marain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3507.0	-40.80	4.65	3.00	9.9	-35.55	-13.00	-22.55	Н
5260.5	-47.55	5.95	3.00	10.91	-42.59	-13.00	-29.59	Н
3507.0	-35.80	4.65	3.00	9.9	-30.55	-13.00	-17.55	V
5260.5	-39.76	5.95	3.00	10.91	-34.80	-13.00	-21.80	V
TE EDD R	and 1 Chan	nel Bandwii	oth 5MHz O	PSK Low C	hannel			
	and t_Onan		 	G _a	Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
2405.0	40.05	4.00	2.00	Gain(dB)	(dBm)	40.00	00.40	
3425.0	-40.65	4.62	3.00	9.81	-35.46	-13.00	-22.46	H
5137.5	-46.16	5.94	3.00	10.86	-41.24	-13.00	-28.24	Н
3425.0	-35.98	4.62	3.00	9.81	-30.79	-13.00	-17.79	V
5137.5	-39.86	5.94	3.00	10.86	-34.94	-13.00	-21.94	V
TE FDD Ba	and 4_Chan	nel Bandwid	dth 5MHz_Qi	PSK_ Middle	Channel			
Frequency	D	D		G_a	Peak	Limit	Margin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3465.0	-41.73	4.63	3.00	9.84	-36.52	-13.00	-23.52	Н
5197.5	-46.60	5.94	3.00	10.86	-41.68	-13.00	-28.68	H
3465.0	-33.32	4.63	3.00	9.84	-28.11	-13.00	-15.11	V
5197.5	-40.35	5.94	3.00	10.86	-35.43	-13.00	-22.43	V
			•					•
_i ⊏ FDD Ba	anu 4_Chan	riei Bandwii	ıtrı ⊃MHZ_QI T	PSK_ High C				
requency	P_{Mea}	P_{cl}	D:-4	Ga	Peak	Limit	Margin	Date: "
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ′	. ,	` '	<u> </u>	Gain(dB)	(dBm)	` ′	, ,	
3505.0	-40.96	4.65	3.00	9.9	-35.71	-13.00	-22.71	Н
5257.5	-48.34	5.95	3.00	10.91	-43.38	-13.00	-30.38	Н
3505.0	-36 50	4 65	3 00	99	-31 25	-13 00	-18 25	V

10.91

4.65

5.95

3.00

3.00

-36.50

-41.98

3505.0

5257.5

-31.25

-37.02

-13.00

-13.00

-18.25

-24.02

٧

			GLABORATOR	YLTD. FO	CC ID:2ADTE-	Y6MAX	Report No.: LC	CS170516130AE
LIE FUU BE	_		<i>xtn 10lvi⊓z_</i> 0 	G _a	Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatance	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarization
3430.0	-42.00	4.62	3.00	9.81	-36.81	-13.00	-23.81	Н
	- 4 2.00	5.94			-42.97			H
5145.0			3.00	10.86		-13.00	-29.97	
3430.0	-36.81	4.62	3.00	9.81	-31.62	-13.00	-18.62	V
5145.0	-41.50	5.94	3.00	10.86	-36.58	-13.00	-23.58	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 10MHz_0	QPSK_ Middl	e Channel			
		Б	_	G _a	Peak	Lineit	Manain	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3465.0	-42.48	4.63	3.00	9.84	-37.27	-13.00	-24.27	Н
5197.5	-46.22	5.94	3.00	10.86	-41.30	-13.00	-28.30	H
3465.0	-35.54	4.63	3.00	9.84	-30.33	-13.00	-17.33	V
5197.5	-41.07	5.94	3.00	10.86	-36.15	-13.00	-23.15	V
3191.3	- 4 1.07	J.3 4	3.00	10.00	-30.13	-13.00	-23.13	V
LTE FDD Ba	and 4_Chan	nel Bandwid	dth 10MHz_C	QPSK_ High		1	,	
Frequency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
	г _{меа} (dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(MHz)	(ubiii)	(uD)	<u> </u>	Gain(dB)	(dBm)	(ubili)	(ub)	<u> </u>
3500.0	-43.14	4.65	3.00	9.9	-37.89	-13.00	-24.89	Н
5250.0	-46.65	5.95	3.00	10.91	-41.69	-13.00	-28.69	Н
3500.0	-33.17	4.65	3.00	9.9	-27.92	-13.00	-14.92	V
5250.0	-38.43	5.95	3.00	10.91	-33.47	-13.00	-20.47	V
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
` '	` ′	, ,	2.00	Gain(dB)	(dBm)	, ,	, ,	1
3435.0	-41.22	4.62	3.00	9.81	-36.03	-13.00	-23.03	Н
5152.5	-45.40	5.94	3.00	10.86	-40.48	-13.00	-27.48	Н
3435.0	-35.88	4.62	3.00	9.81	-30.69	-13.00	-17.69	V
5152.5	-38.69	5.94	3.00	10.86	-33.77	-13.00	-20.77	V
LTE FDD Ba	and 4 Chan	nel Bandwi	dth 15MHz(QPSK_Middl	e Channel			
		В	_	G _a	Peak	Linait	Marain	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3465.0	-40.92	4.63	3.00	9.84	-35.71	-13.00	-22.71	Н
5197.5	-45.33	5.94	3.00	10.86	-40.41	-13.00	-27.41	H
3465.0	- 4 5.33	4.63	3.00	9.84	-30.97	-13.00	-17.97	V
5197.5	-39.83	5.94	3.00	10.86	-34.91	-13.00	-21.91	V
			•					<u>. </u>
LTE FDD Ba	and 4_Chan	nel Bandwi	oth 15MHz_0	QPSK_ High			1	_
Frequency	P_{Mea}	P_{cl}	Dietaras	G _a	Peak	Limit	Margin	Dolori-oti-
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ,	, ,	, ,		Gain(dB)	(dBm)	` ′	` ′	
3495.0	-41.85	4.65	3.00	9.9	-36.60	-13.00	-23.60	Н
5242.5	-45.88	5.95	3.00	10.91	-40.92	-13.00	-27.92	Н
3495.0	-35.33	4.65	3.00	9.9	-30.08	-13.00	-17.08	V
5242.5	-41.18	5.95	3.00	10.91	-36.22	-13.00	-23.22	V
LTE FNN Ra	and 4 Chan	nel Bandwii	dth 20MHz (QPSK_Low(Channel			
	<u></u>	= 4.14.01		G _a	Peak			
	_	1						
Frequency	P _{Mea}	P _{cl}	Diatance			Limit	Margin	Polarization
	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Antenna	EIRP	Limit (dBm)	Margin (dB)	Polarizatio
Frequency			Diatance 3.00					Polarizatio H

9.81

10.86

-41.15

-31.18

-36.51

-13.00

-13.00

-13.00

-28.15

-18.18

-23.51

Н

٧

٧

5160.0

3440.0

5160.0

-46.07

-36.37

-41.43

5.94

4.62

5.94

3.00

3.00

			G LABORATOR		CC ID:2ADTE-	Y6MAX	Report No.: LC	CS170516130AE
LIE FDD Ba	ana 4_Chan	nei Banawi	ath 20MHZ_C	QPSK_ Middl				T
Frequency	P_{Mea}	P_{cl}	Distance	Ga	Peak	Limit	Margin	Dalariantin
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
, ,	` ,	. , ,		Gain(dB)	(dBm)	, ,	` ′	
3465.0	-40.41	4.63	3.00	9.84	-35.20	-13.00	-22.20	Н
5197.5	-47.00	5.94	3.00	10.86	-42.08	-13.00	-29.08	Н
3465.0	-36.31	4.63	3.00	9.84	-31.10	-13.00	-18.10	V
5197.5	-39.79	5.94	3.00	10.86	-34.87	-13.00	-21.87	V
			•	2504 111 1			•	
LIE FDD Ba	and 4_Chan	nei Bandwi	ath 20MHz_C	QPSK_ High				1
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1411 12)	(dDIII)	(GD)		Gain(dB)	(dBm)	(dDill)	(dD)	
3490.0	-42.83	4.65	3.00	9.9	-37.58	-13.00	-24.58	Н
5235.0	-46.12	5.95	3.00	10.91	-41.16	-13.00	-28.16	Н
3490.0	-34.40	4.65	3.00	9.9	-29.15	-13.00	-16.15	V
5235.0	-39.29	5.95	3.00	10.91	-34.33	-13.00	-21.33	V
5235.0	-39.29	ე.ყე	3.00	10.91	-34.33	-13.00	-21.33	V
TE FDD Ba	and 4_Chan	nel Bandwi	dth 1.4MHz_	16QAM_Lo				
requency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	1
			Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3421.4	-46.46	4.62	3.00	9.81	-41.27	-13.00	-28.27	Н
5132.1	-48.32	5.94	3.00	10.86	-43.40	-13.00	-30.40	H
3421.4	-39.11	4.62	3.00	9.81	-33.92	-13.00	-20.92	V
5132.1	-42.03	5.94	3.00	10.86	-37.11	-13.00	-24.11	V
TE EDD Ba	and 4 Chan	nel Randwii	Hth 1 AMHz	16QAM_ Mid	ddle Channe	اد		
11210000	and +_Onam	ner Barrawi			Peak	,,		
requency	P_{Mea}	P_{cl}	Distance	Ga		Limit	Margin	Dalaman
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
, ,	, ,			Gain(dB)	(dBm)		` ′	
3465.0	-43.66	4.63	3.00	9.84	-38.45	-13.00	-25.45	Н
5197.5	-51.00	5.94	3.00	10.86	-46.08	-13.00	-33.08	Н
3465.0	-37.02	4.63	3.00	9.84	-31.81	-13.00	-18.81	V
5197.5	-44.56	5.94	3.00	10.86	-39.64	-13.00	-26.64	V
	1 1 Ob	nal Danahui	-141- 4 4841 1-	460414 115	nda Ola a mara a l			
. TE FUU Ba	and 4_Chan	nei Bandwid	<i>XIN 1.4IVI⊓Z_</i> │	16QAM_ Hig				T
requency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP			
(/						(dBm)	(dB)	Polarization
	(dBiii)	(GB)		Gain(dB)	(dBm)	(dBm)	(dB)	Polarizatio
3508.6	-44.17	4.65	3.00		(dBm)		(dB) -25.92	Polarizatio
3508.6 5262.9	-44.17	4.65		Gain(dB) 9.9	(dBm) -38.92	-13.00	-25.92	Н
5262.9	-44.17 -51.09	4.65 5.95	3.00	Gain(dB) 9.9 10.91	(dBm) -38.92 -46.13	-13.00 -13.00	-25.92 -33.13	H
5262.9 3508.6	-44.17 -51.09 -38.97	4.65 5.95 4.65	3.00 3.00	Gain(dB) 9.9 10.91 9.9	(dBm) -38.92 -46.13 -33.72	-13.00 -13.00 -13.00	-25.92 -33.13 -20.72	H H V
5262.9	-44.17 -51.09	4.65 5.95	3.00	Gain(dB) 9.9 10.91	(dBm) -38.92 -46.13	-13.00 -13.00	-25.92 -33.13	H
5262.9 3508.6 5262.9	-44.17 -51.09 -38.97 -44.28	4.65 5.95 4.65 5.95	3.00 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low	(dBm) -38.92 -46.13 -33.72 -39.32 Channel	-13.00 -13.00 -13.00	-25.92 -33.13 -20.72	H V
5262.9 3508.6 5262.9	-44.17 -51.09 -38.97 -44.28	4.65 5.95 4.65 5.95 nel Bandwid	3.00 3.00 3.00 3th 3MHz_16	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga	(dBm) -38.92 -46.13 -33.72 -39.32 <i>Channel</i> Peak	-13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32	H H V V
5262.9 3508.6 5262.9 TE FDD Ba	-44.17 -51.09 -38.97 -44.28 and 4_Chan	4.65 5.95 4.65 5.95 mel Bandwid	3.00 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low	(dBm) -38.92 -46.13 -33.72 -39.32 Channel	-13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin	H H V V
5262.9 3508.6 5262.9	-44.17 -51.09 -38.97 -44.28	4.65 5.95 4.65 5.95 nel Bandwid	3.00 3.00 3.00 3th 3MHz_16	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP	-13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32	H H V V
5262.9 3508.6 5262.9 TE FDD Bater (MHz)	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm)	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB)	3.00 3.00 3.00 3.00 ath 3MHz_16 Diatance	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB)	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm)	-13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm)	-25.92 -33.13 -20.72 -26.32 Margin (dB)	H H V V
5262.9 3508.6 5262.9 TE FDD Barrequency (MHz) 3423.0	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62	3.00 3.00 3.00 3.00 3.00 Diatance	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78	-13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78	H H V V V Polarizatio
5262.9 3508.6 5262.9 TE FDD Barrequency (MHz) 3423.0 5134.5	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95	4.65 5.95 4.65 5.95 nel Bandwid P _{cl} (dB) 4.62 5.94	3.00 3.00 3.00 3.00 bith 3MHz_16 Diatance 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03	-13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78 -33.03	H H V V V Polarizatio
5262.9 3508.6 5262.9 TE FDD Bate of the second of the s	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95 -36.06	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86 9.81	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03 -30.87	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 -26.32 Margin (dB) -26.78 -33.03 -17.87	H H V V V
5262.9 3508.6 5262.9 -TE FDD Barrequency (MHz) 3423.0 5134.5	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95	4.65 5.95 4.65 5.95 nel Bandwid P _{cl} (dB) 4.62 5.94	3.00 3.00 3.00 3.00 bith 3MHz_16 Diatance 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03	-13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78 -33.03	H H V V V Polarizatio
5262.9 3508.6 5262.9 	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95 -36.06 -41.64	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94	3.00 3.00 3.00 3.00 bith 3MHz_16 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86 9.81 10.86	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03 -30.87 -36.72	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 -26.32 Margin (dB) -26.78 -33.03 -17.87	H H V V V
5262.9 3508.6 5262.9 TE FDD Barrequency (MHz) 3423.0 5134.5 3423.0 5134.5	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95 -36.06 -41.64 and 4_Chan	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 mel Bandwid	3.00 3.00 3.00 3.00 bith 3MHz_16 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86 9.81 10.86	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03 -30.87 -36.72	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78 -33.03 -17.87 -23.72	H H V V V
5262.9 3508.6 5262.9 TE FDD Barrequency (MHz) 3423.0 5134.5 3423.0 5134.5	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95 -36.06 -41.64	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94	3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00 3.00 3.00 3.00 3th 3MHz_16	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86 9.81 10.86 6QAM_Mido Ga	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03 -30.87 -36.72 //le Channel Peak	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78 -33.03 -17.87 -23.72 Margin	H H V V V
3508.6 5262.9 .TE FDD Barrequency (MHz) 3423.0 5134.5 3423.0 5134.5	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95 -36.06 -41.64 and 4_Chan	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 mel Bandwid	3.00 3.00 3.00 3.00 bith 3MHz_16 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86 9.81 10.86 GAM_Middle Ga Antenna	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03 -30.87 -36.72 Ile Channel Peak EIRP	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78 -33.03 -17.87 -23.72	H H V V V
5262.9 3508.6 5262.9 TE FDD Barrequency (MHz) 3423.0 5134.5 3423.0 5134.5	-44.17 -51.09 -38.97 -44.28 and 4_Chan P _{Mea} (dBm) -44.97 -50.95 -36.06 -41.64 P _{Mea}	4.65 5.95 4.65 5.95 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 mel Bandwid P _{cl}	3.00 3.00 3.00 ath 3MHz_16 Diatance 3.00 3.00 3.00 3.00 3th 3MHz_16	Gain(dB) 9.9 10.91 9.9 10.91 6QAM_Low Ga Antenna Gain(dB) 9.81 10.86 9.81 10.86 6QAM_Mido Ga	(dBm) -38.92 -46.13 -33.72 -39.32 Channel Peak EIRP (dBm) -39.78 -46.03 -30.87 -36.72 //le Channel Peak	-13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	-25.92 -33.13 -20.72 -26.32 Margin (dB) -26.78 -33.03 -17.87 -23.72 Margin	H H V V V

9.84

10.86

-43.26

-33.52

-39.47

-13.00

-13.00

-13.00

-30.26

-20.52

-26.47

Н

٧

٧

5197.50

3465.00

5197.50

-48.18

-38.73

-44.39

5.94

4.63

5.94

3.00

3.00

			GLABORATOR	YLTD. FO	CC ID:2ADTE-	Y6MAX	Report No.: LC	S170516130AE
LIE FUU D	anu 4_Chan	nei banuwii			Peak			1
Frequency	P_{Mea}	P _{cl}	Diatance	G _a Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
` ,	` ,	` '		Gain(dB)	(dBm)	` '	` '	
3507.0	-45.31	4.65	3.00	9.9	-40.06	-13.00	-27.06	Н
5260.5	-51.35	5.95	3.00	10.91	-46.39	-13.00	-33.39	Н
3507.0	-36.18	4.65	3.00	9.9	-30.93	-13.00	-17.93	V
5260.5	-44.49	5.95	3.00	10.91	-39.53	-13.00	-26.53	V
LTE FDD Ba	and 4 Chan	nel Bandwi	dth 5MHz 16	6QAM_Low	Channel			
			_	Ga	Peak	1		
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	2.0.0	Gain(dB)	(dBm)	(dBm)	(dB)	. 0.0
3425.0	-45.22	4.62	3.00	` '	-40.03	-13.00	-27.03	
				9.81				H
5137.5	-48.92	5.94	3.00	10.86	-44.00	-13.00	-31.00	Н
3425.0	-39.65	4.62	3.00	9.81	-34.46	-13.00	-21.46	V
5137.5	-44.44	5.94	3.00	10.86	-39.52	-13.00	-26.52	V
TE FDD Ba	and 4 Chan	nel Bandwi	dth 5MHz 16	6QAM_ Mida	lle Channel			
	_	_	_	Ga	Peak	,		
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarioc	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
2465.0	46.25	4.60	2.00	` ,	. ,	42.00	20.44	11
3465.0	-46.35	4.63	3.00	9.84	-41.14	-13.00	-28.14	Н
5197.5	-49.31	5.94	3.00	10.86	-44.39	-13.00	-31.39	Н
3465.0	-39.31	4.63	3.00	9.84	-34.10	-13.00	-21.10	V
5197.5	-41.08	5.94	3.00	10.86	-36.16	-13.00	-23.16	V
LTE FDD B	and 4_Chan	nel Bandwi	dth 5MHz_16	QAM_ High			,	
Frequency	P_{Mea}	P _{cl}		G_a	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3505.0	-45.37	4.65	3.00	9.9	-40.12	-13.00	-27.12	Н
5257.5	-50.38	5.95	3.00	10.91	-45.42	-13.00	-32.42	H
	-36.34			9.9		-13.00	-18.09	V
3505.0		4.65	3.00		-31.09			
5257.5	-41.78	5.95	3.00	10.91	-36.82	-13.00	-23.82	V
LTE FDD B	and 4_Chan	nel Bandwi	dth 10MHz_1	6QAM_Lov				
Fragueno.	D	В		G_a	Peak	Limit	Morgin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3430.0	-45.52	4.62	3.00	9.81	-40.33	-13.00	-27.33	Н
			1					
5145.0	-50.42	5.94	3.00	10.86	-45.50	-13.00	-32.50	Н
3430.0	-38.17	4.62	3.00	9.81	-32.98	-13.00	-19.98	V
5145.0	-43.50	5.94	3.00	10.86	-38.58	-13.00	-25.58	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 10MHz_1	6QAM_ Mid	ldle Channe	I		
	_		_	Ga	Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice			(dBm)	(dB)	i Jianzalic
0.405.3	44.01	4.00	0.00	Gain(dB)	(dBm)	40.00	00.10	
3465.0	-44.64	4.63	3.00	9.84	-39.43	-13.00	-26.43	Н
5197.5	-49.82	5.94	3.00	10.86	-44.90	-13.00	-31.90	Н
3465.0	-37.03	4.63	3.00	9.84	-31.82	-13.00	-18.82	V
	-41.69	5.94	3.00	10.86	-36.77	-13.00	-23.77	V
5197.5				160AM Hig	h Channel			
	and 4 Chan	nel Bandwii	11TN 1(JIMI 117 1					
	and 4_Chan	nel Bandwid I	ατη ΤΟΙΜΠ2 <u>_</u> Ι 					1
LTE FDD Bá			_	Ga	Peak	Limit	Margin	Dolowi4'-
LTE FDD Bá	and 4_Chan P _{Mea} (dBm)	nel Bandwid P _{cl} (dB)	Diatance	G _a Antenna	Peak EIRP	Limit (dBm)	Margin (dB)	Polarizatio
LTE FDD Ba Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	(dBm)	(dB)	Polarizatio
<i>LTE FDD Ba</i> Frequency	P _{Mea}	P _{cl}	_	G _a Antenna	Peak EIRP			Polarizatio

9.9

10.91

-46.49

-33.46

-39.92

-13.00

-13.00

-13.00

-33.49

-20.46

-26.92

Н

٧

٧

5250.0

3500.0

5250.0

-51.45

-38.71

-44.88

5.95

4.65

5.95

3.00

3.00

			G LABORATOR dth 15MHz 1		CC ID:2ADTE- v Channel	Y6MAX	Report No.: LC	CS170516130AE
	_			G _a	Peak			
Frequency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3435.0	-44.06	4.62	3.00	9.81	-38.87	-13.00	-25.87	Н
5152.5	-51.92	5.94	3.00	10.86	-47.00	-13.00	-34.00	H
3435.0	-38.52	4.62	3.00	9.81	-33.33	-13.00	-20.33	V
5152.5	-42.77	5.94	3.00	10.86	-37.85	-13.00	-24.85	V
	and A Chan	nal Dandui		ICOANA Mic	Idla Chama	ı		
LIE FUU B	and 4_Cnan	nei Bandwi	15 VIHZ_1	6QAM _ Mia	Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance	G _a Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	Polarization
2465.0	44.07	4.62	3.00	` '		12.00	26.06	Ш
3465.0	-44.27	4.63		9.84	-39.06	-13.00	-26.06	H
5197.5	-48.45	5.94	3.00	10.86	-43.53	-13.00	-30.53	Н
3465.0	-38.72	4.63	3.00	9.84	-33.51	-13.00	-20.51	V
5197.5	-41.42	5.94	3.00	10.86	-36.50	-13.00	-23.50	V
TE FDD Ba	and 4_Chan	nel Bandwi	dth 15MHz_1	6QAM_ Hig	h Channel			
Eroguenes	D	D	_	Ga	Peak	Limit	Morain	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3495.0	-44.38	4.65	3.00	9.9	-39.13	-13.00	-26.13	Н
5242.5	-51.41	5.95	3.00	10.91	-46.45	-13.00	-33.45	Н
3495.0	-37.58	4.65	3.00	9.9	-32.33	-13.00	-19.33	V
5242.5	-41.93	5.95	3.00	10.91	-36.97	-13.00	-23.97	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
3440.0	-46.74	4.62	3.00	9.81	-41.55	-13.00	-28.55	Н
5160.0	-50.99	5.94	3.00	10.86	-46.07	-13.00	-33.07	Н
3440.0	-39.68	4.62	3.00	9.81	-34.49	-13.00	-21.49	V
5160.0	-44.97	5.94	3.00	10.86	-40.05	-13.00	-27.05	V
TE EDD P	and 1 Chan	nal Pandwii	Hh 20111- 1	ISOAM Mic	Idla Channa	ı		
	anu 4_Chan	nei banuwi	20 2 <u> </u>	6QAM _ Mia	Peak	!	1	
Frequency	P_{Mea}	P_{cl}		G_{a}				
requericy			Diotopoo			Limit	Margin	Dolorizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	Limit (dBm)	Margin (dB)	Polarizatio
(MHz)	, ,	(dB)		Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	
(MHz) 3465.0	-46.43	(dB) 4.63	3.00	Antenna Gain(dB) 9.84	EIRP (dBm) -41.22	(dBm) -13.00	(dB) -28.22	Н
(MHz) 3465.0 5197.5	-46.43 -48.08	(dB) 4.63 5.94	3.00 3.00	Antenna Gain(dB) 9.84 10.86	EIRP (dBm) -41.22 -43.16	(dBm) -13.00 -13.00	(dB) -28.22 -30.16	H
(MHz) 3465.0 5197.5 3465.0	-46.43 -48.08 -39.76	(dB) 4.63 5.94 4.63	3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84	EIRP (dBm) -41.22 -43.16 -34.55	(dBm) -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55	H H V
(MHz) 3465.0 5197.5	-46.43 -48.08	(dB) 4.63 5.94	3.00 3.00	Antenna Gain(dB) 9.84 10.86	EIRP (dBm) -41.22 -43.16	(dBm) -13.00 -13.00	(dB) -28.22 -30.16	H
(MHz) 3465.0 5197.5 3465.0 5197.5	-46.43 -48.08 -39.76 -42.73	(dB) 4.63 5.94 4.63 5.94	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel	(dBm) -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55	H H V
(MHz) 3465.0 5197.5 3465.0 5197.5 LTE FDD Ba	-46.43 -48.08 -39.76 -42.73	(dB) 4.63 5.94 4.63 5.94 nel Bandwid	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81	H H V V
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Ba	-46.43 -48.08 -39.76 -42.73 and 4_Chan	(dB) 4.63 5.94 4.63 5.94 mel Bandwid Pcl	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin	H H V V
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Batering (MHz)	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm)	(dB) 4.63 5.94 4.63 5.94 nel Bandwid Pcl (dB)	3.00 3.00 3.00 3.00 3.00 3.00 Diatance	Antenna Gain(dB) 9.84 10.86 9.84 10.86 GQAM_ Hig Ga Antenna Gain(dB)	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 -1dmit (dBm)	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB)	H H V V
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Batering (MHz) 3490.0	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57	(dB) 4.63 5.94 4.63 5.94 mel Bandwid P _{cl} (dB) 4.65	3.00 3.00 3.00 3.00 3.00 bith 20MHz_1 Diatance	Antenna Gain(dB) 9.84 10.86 9.84 10.86 GQAM_Hig Ga Antenna Gain(dB) 9.9	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32	H V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Batering (MHz)	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67	(dB) 4.63 5.94 4.63 5.94 nel Bandwid P _{cl} (dB)	3.00 3.00 3.00 3.00 3.00 3.00 Diatance	Antenna Gain(dB) 9.84 10.86 9.84 10.86 GQAM_ Hig Ga Antenna Gain(dB)	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71	H H V V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Batering (MHz) 3490.0	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57	(dB) 4.63 5.94 4.63 5.94 mel Bandwid P _{cl} (dB) 4.65	3.00 3.00 3.00 3.00 3.00 bith 20MHz_1 Diatance	Antenna Gain(dB) 9.84 10.86 9.84 10.86 GQAM_Hig Ga Antenna Gain(dB) 9.9	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32	H H V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Bases requency (MHz) 3490.0 5235.0	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67	(dB) 4.63 5.94 4.63 5.94 mel Bandwid Pcl (dB) 4.65 5.95	3.00 3.00 3.00 3.00 3.00 th 20MHz_1 Diatance 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86 Gaa Antenna Gain(dB) 9.9 10.91	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71	H H V V V Polarization
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Barrequency (MHz) 3490.0 5235.0 3490.0 5235.0	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67 -36.11 -41.19	(dB) 4.63 5.94 4.63 5.94 mel Bandwid Pcl (dB) 4.65 5.95 4.65 5.95	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86 6QAM_ Hig Ga Antenna Gain(dB) 9.9 10.91 9.9 10.91	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71 -30.86 -36.23	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71 -17.86	H H V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 LTE FDD Barrequency (MHz) 3490.0 5235.0 3490.0 5235.0	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67 -36.11 -41.19 and 5_Chan	(dB) 4.63 5.94 4.63 5.94 mel Bandwid P _{cl} (dB) 4.65 5.95 4.65 5.95 mel Bandwid	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86 6QAM_ Hig Ga Antenna Gain(dB) 9.9 10.91 9.9 10.91 QPSK_ Low	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71 -30.86 -36.23 Channel	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71 -17.86 -23.23	H H V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 LTE FDD Barrequency (MHz) 3490.0 5235.0 3490.0 5235.0 LTE FDD Barrequency	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67 -36.11 -41.19 and 5_Chan P _{Mea}	(dB) 4.63 5.94 4.63 5.94 mel Bandwid P _{cl} (dB) 4.65 5.95 4.65 5.95 mel Bandwid P _{cl}	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86 6QAM_Hig Ga Antenna Gain(dB) 9.9 10.91 9.9 10.91 QPSK_Low Ga	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71 -30.86 -36.23 Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71 -17.86 -23.23 Margin	H H V V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Barrequency (MHz) 3490.0 5235.0 3490.0 5235.0	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67 -36.11 -41.19 and 5_Chan	(dB) 4.63 5.94 4.63 5.94 mel Bandwid P _{cl} (dB) 4.65 5.95 4.65 5.95 mel Bandwid	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86 6QAM_Hig Ga Antenna Gain(dB) 9.9 10.91 9.9 10.91 QPSK_Low Ga Antenna	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71 -30.86 -36.23 Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71 -17.86 -23.23	H H V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Barrequency (MHz) 3490.0 5235.0 3490.0 5235.0 TE FDD Barrequency (MHz)	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67 -36.11 -41.19 and 5_Chan P _{Mea} (dBm)	(dB) 4.63 5.94 4.63 5.94 mel Bandwid Pcl (dB) 4.65 5.95 4.65 5.95 mel Bandwid Pcl (dB)	3.00 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 Diatance	Antenna Gain(dB) 9.84 10.86 9.84 10.86 6QAM_Hig Ga Antenna Gain(dB) 9.9 10.91 9.9 10.91 QPSK_Low Ga Antenna Gain(dB)	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71 -30.86 -36.23 Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71 -17.86 -23.23 Margin (dB)	H H V V V Polarizatio
(MHz) 3465.0 5197.5 3465.0 5197.5 TE FDD Barrequency (MHz) 3490.0 5235.0 3490.0 5235.0 TE FDD Barrequency	-46.43 -48.08 -39.76 -42.73 and 4_Chan P _{Mea} (dBm) -43.57 -50.67 -36.11 -41.19 and 5_Chan P _{Mea}	(dB) 4.63 5.94 4.63 5.94 mel Bandwid P _{cl} (dB) 4.65 5.95 4.65 5.95 mel Bandwid P _{cl}	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.84 10.86 9.84 10.86 6QAM_Hig Ga Antenna Gain(dB) 9.9 10.91 9.9 10.91 QPSK_Low Ga Antenna	EIRP (dBm) -41.22 -43.16 -34.55 -37.81 h Channel Peak EIRP (dBm) -38.32 -45.71 -30.86 -36.23 Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -28.22 -30.16 -21.55 -24.81 Margin (dB) -25.32 -32.71 -17.86 -23.23 Margin	H H V V V

6.98

-30.26

-33.47

-13.00

-13.00

-17.26

-20.47

1649.40

2474.10

-34.96

-36.16

3.86

4.29

3.00

3.00

٧

			G LABORATOR		CC ID:2ADTE	Y6MAX	Report No.: LC	<u>S170516130AE</u>
LTE FDD Ba	and 5_Chan	nei Bandwi	ath 1.4MHz_	QPSK_ Midd	<u>lle Channel</u> Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance	G _a Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatance	Gain(dB)	(dBm)	(dBm)	(dB)	Folanzation
1673.00	-39.88	3.9	3.00	8.58	-35.20	-13.00	-22.20	Н
2509.50	-39.66 -45.33	4.32	3.00	6.8	-42.85	-13.00	-22.20	Н
1673.00	-33.26	3.9			-42.65 -28.58	-13.00	-15.58	V
2509.50	-36.40	4.32	3.00	8.58 6.8	-33.92	-13.00	-20.92	V
2509.50	-30.40	4.32	3.00	0.0	-33.92	-13.00	-20.92	V
LTE FDD B	and 5_Chan	nel Bandwi	dth 1.4MHz_	QPSK_ High			1	
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
, ,	, ,	` '		Gain(dB)	(dBm)	` ′	` ′	
1696.60	-41.14	3.91	3.00	9.06	-35.99	-13.00	-22.99	Н
2544.90	-45.22	4.32	3.00	6.65	-42.89	-13.00	-29.89	Н
1696.60	-36.26	3.91	3.00	9.06	-31.11	-13.00	-18.11	V
2544.90	-39.20	4.32	3.00	6.65	-36.87	-13.00	-23.87	V
I TE EDD Ba	and 5 Chan	nel Bandwii	dth 3MHz O	PSK_ Low C	hannel			
				G _a	Peak		1	1
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
1651.00	-40.26	3.86	3.00	8.56	-35.56	-13.00	-22.56	Н
2476.50	-47.85	4.29	3.00	6.98	-45.16	-13.00	-32.16	H
1651.00	-36.26	3.86	3.00	8.56	-31.56	-13.00	-18.56	V
2476.50	-38.53	4.29	3.00	6.98	-35.84	-13.00	-22.84	T v
requency	P _{Mea}	P _{cl}	Diatance	PSK_ Middle G _a Antenna	Peak EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1673.00	-39.74	3.9	3.00	8.58	-35.06	-13.00	-22.06	Н
2509.50	-47.83	4.32	3.00	6.8	-45.35	-13.00	-32.35	Н
1673.00	-36.94	3.9	3.00	8.58	-32.26	-13.00	-19.26	V
2509.50	-37.69	4.32	3.00	6.8	-35.21	-13.00	-22.21	V
LTE FDD Ba	and 5_Chan	nel Bandwi	dth 3MHz_Qi	PSK_ High C	hannel			
Frequency	D	D		Ga	Peak	Limit	Morgin	
(MHz)	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin	Polarizatio
(IVITZ)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1695.00	-39.75	3.91	3.00	9.06	-34.60	-13.00	-21.60	Н
2542.50	-46.03	4.32	3.00	6.65	-43.70	-13.00	-30.70	Н
1695.00	-35.93	3.91	3.00	9.06	-30.78	-13.00	-17.78	V
2542.50	-39.44	4.32	3.00	6.65	-37.11	-13.00	-24.11	V
TE EDD Ba	and 5 Chan	nel Randwii	dth 5MHz O	PSK_Low C	hannel			
	_			G _a	Peak			
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	. 5.62410
1653.00	-41.40	3.86	3.00	8.56	-36.70	-13.00	-23.70	Н
2479.50	-45.35	4.29	3.00	6.98	-42.66	-13.00	-29.66	H
1653.00	-35.16	3.86	3.00	8.56	-30.46	-13.00	-17.46	V
2479.50	-39.44	4.29	3.00	6.98	-36.75	-13.00	-23.75	V
•			1					· ·
LTE FDD Ba	and 5_Chan	nel Bandwid	dth 5MHz_Qi	PSK_ Middle			1	
Frequency	P_{Mea}	P_{cl}	Dietores	G _a	Peak	Limit	Margin	Dolorizotic
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ,	, ,	` ,	0.00	Gain(dB)	(dBm)	` ′	` '	
1673.00	-38.62	3.9	3.00	8.58	-33.94	-13.00	-20.94	H
	-47.77	4.32	3.00	6.8	-45.29	-13.00	-32.29	Н
2509.50 1673.00	-33.72	3.0	3.00	8 58	-29 04	-13.00	-16.04	\ \/

8.58

6.8

-29.04

-37.41

-13.00

-13.00

-16.04

-24.41

1673.00

2509.50

-33.72

-39.89

3.9

4.32

3.00

3.00

٧

SHENZHEN L					CC ID:2ADTE-	Y6MAX	Report No.: LC	S170516130AE
LTE FDD B	and 5_Chan	nel Bandwid	dth 5MHz_Qi	PSK_ High C	hannel			
Eroguenov	D	D		G_a	Peak	Limit	Morgin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1693.00	-41.45	3.91	3.00	9.06	-36.30	-13.00	-23.30	Н
2539.50	-45.31	4.32	3.00	6.65	-42.98	-13.00	-29.98	H
							1	
1693.00	-35.21	3.91	3.00	9.06	-30.06	-13.00	-17.06	V
2539.50	-38.42	4.32	3.00	6.65	-36.09	-13.00	-23.09	V
LTE FDD B	and 5_Chan	nel Bandwid	dth 10MHz_C	QPSK_ Low (
Frequency	D	P_{cl}		G_a	Peak	Limit	Margin	
	P _{Mea}		Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1658.00	-40.05	3.86	3.00	8.56	-35.35	-13.00	-22.35	Н
2487.00	-44.85	4.29	3.00	6.98	-42.16	-13.00	-29.16	H H
1658.00	-36.03	3.86	3.00	8.56	-31.33	-13.00	-18.33	V
2487.00	-39.70	4.29	3.00	6.98	-37.01	-13.00	-24.01	V
LTE FDD Ba	and 5 Chan	nel Bandwid	dth 10MHz (QPSK_Middl	e Channel			
		-	_	G _a	Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	i Gianzall
1070.00	10.00	0.0	0.00		. ,	40.00	00.50	
1673.00	-40.26	3.9	3.00	8.58	-35.58	-13.00	-22.58	Н
2509.50	-47.69	4.32	3.00	6.8	-45.21	-13.00	-32.21	Н
1673.00	-35.23	3.9	3.00	8.58	-30.55	-13.00	-17.55	V
2509.50	-38.81	4.32	3.00	6.8	-36.33	-13.00	-23.33	V
LTE FDD Ba	and 5_Chan	nel Bandwid	dth 10MHz_0	QPSK_ High	Channel			
F=====================================	Ь	Г		G_a	Peak	Linait	Marain	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1688.00	-39.51	3.91	3.00	9.06	-34.36	-13.00	-21.36	Н
2532.00	-46.18	4.32	3.00	6.65	-43.85	-13.00	-30.85	Н
1688.00	-35.22	3.91	3.00	9.06	-30.07	-13.00	-17.07	V
2532.00	-36.90	4.32	3.00	6.65	-34.57	-13.00	-21.57	V
LTE FDD Ba	and 5 Chan	nel Bandwid	dth 1.4MHz	16QAM_Lo	w Channel			
				G _a	Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polarizatio
` ,	. ,	, ,		Gain(dB)	(dBm)	, ,	, í	
1649.40	-41.45	3.86	3.00	8.56	-36.75	-13.00	-23.75	Н
2474.10	-49.80	4.29	3.00	6.98	-47.11	-13.00	-34.11	Н
1649.40	-36.33	3.86	3.00	8.56	-31.63	-13.00	-18.63	V
2474.10	-39.67	4.29	3.00	6.98	-36.98	-13.00	-23.98	V
								<u> </u>
	_		dth 1.4MHz_ 	16QAM_ Mid G _a	ddle Channe Peak			
Frequency	P_{Mea}	P_{cl}	Dietaria			Limit	Margin	Dolowi-sti-
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(···· · - /	(==::)	. ,		Gain(dB)	(dBm)	` ′	()	
1673.00	-42.69	3.9	3.00	8.58	-38.01	-13.00	-25.01	Н
2509.50	-48.79	4.32	3.00	6.8	-46.31	-13.00	-33.31	Н
1673.00	-39.96	3.9	3.00	8.58	-35.28	-13.00	-22.28	V
2509.50	-39.36	4.32	3.00	6.8	-36.88	-13.00	-23.88	V
2008.00	-38.30	4.04	3.00	0.0	-30.00	-13.00	-23.00	V
LTE FDD Ba	and 5_Chan	nel Bandwid	dth 1.4MHz_		gh Channel		1	
		_		G_a	Peak	Limit	Margin	
Frequency	P	ν,						
	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP			Polarization
Frequency (MHz)	P _{Mea} (dBm)	(dB)	Diatance	Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	Polarizatio
Frequency (MHz) 1696.60			Diatance 3.00					Polarizatio

9.06

6.65

-44.39

-32.88

-39.34

-13.00

-13.00

-13.00

-31.39

-19.88

-26.34

Н

٧

٧

2544.90

1696.60

2544.90

-46.72

-38.03

-41.67

4.32

3.91

4.32

3.00

3.00

			G LABORATOR		CC ID:2ADTE-	Y6MAX	Report No.: LC	<u>CS170516130AE</u>
LIE FUU B	and 5_Chan	nei Banawi	dth 3MHz_16	_	Channel Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	G _a Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	Folalization
1651.00	-43.73	2.06	2.00	` '		12.00	-26.03	Ш
1651.00		3.86	3.00	8.56	-39.03	-13.00		H
2476.50	-47.91	4.29	3.00	6.98	-45.22	-13.00	-32.22	Н
1651.00	-37.94	3.86	3.00	8.56	-33.24	-13.00	-20.24	V
2476.50	-39.30	4.29	3.00	6.98	-36.61	-13.00	-23.61	V
LTE FDD Ba	and 5_Chan	nel Bandwi	dth 3MHz_16	QAM _ Midd	lle Channel			
	П	Б		Ga	Peak	Linait	Marain	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1673.00	-42.58	3.9	3.00	8.58	-37.90	-13.00	-24.90	Н
2509.50	-49.46	4.32	3.00	6.8	-46.98	-13.00	-33.98	Н
1673.00	-39.79	3.9	3.00	8.58	-35.11	-13.00	-22.11	V
2509.50	-42.87	4.32	3.00	6.8	-40.39	-13.00	-27.39	V
2509.50	-42.01	4.32	3.00	0.0	-40.38	-13.00	-21.38	V
LTE FDD B	and 5_Chan	nel Bandwi	dth 3MHz_16	QAM _ High				
Frequency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
(MHz)	г _{меа} (dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1711 12)	(ubiii)	(ub)		Gain(dB)	(dBm)	(ubiii)	(UD)	
1695.00	-41.06	3.91	3.00	9.06	-35.91	-13.00	-22.91	Н
2542.50	-46.99	4.32	3.00	6.65	-44.66	-13.00	-31.66	Н
1695.00	-37.00	3.91	3.00	9.06	-31.85	-13.00	-18.85	V
2542.50	-41.05	4.32	3.00	6.65	-38.72	-13.00	-25.72	V
LTE FDD Ba	and 5 Chan	nel Bandwi	dth 5MHz 16	QAM_Low	Channel			
	_		_	Ga	Peak	1		
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1653.00	-41.08	3.86	3.00	8.56	-36.38	-13.00	-23.38	Н
2479.50	-48.05	4.29	3.00	6.98	-45.36	-13.00	-32.36	H
1653.00	-39.98	3.86	3.00	8.56	-35.28	-13.00	-22.28	V
2479.50	-40.51	4.29	3.00	6.98	-37.82	-13.00	-24.82	V
			П			10.00		
LTE FDD B	and 5_Chan	nel Bandwi	dth 5MHz_16	QAM _ Midd		T		T
Frequency	P_{Mea}	P_{cl}	Dietassa	G _a	Peak	Limit	Margin	Doloni
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ′	. ,	. ,		Gain(dB)	(dBm)	, ,	` ,	
1673.00	-43.44	3.9	3.00	8.58	-38.76	-13.00	-25.76	Н
2509.50	-48.91	4.32	3.00	6.8	-46.43	-13.00	-33.43	Н
1673.00	-39.86	3.9	3.00	8.58	-35.18	-13.00	-22.18	V
2509.50	-40.98	4.32	3.00	6.8	-38.50	-13.00	-25.50	V
	and 5 Chan	nel Bandwi	dth 5MHz 16	6QAM_ High	Channel			
LIEFDD B				Ga	Peak	1		
	1	1				Limit	Margin	Polarizatio
Frequency	P _{Mea}	P_{cl}	Diatance		FIRP			
	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	Antenna	EIRP (dBm)	(dBm)	(dB)	1 Glarizatio
Frequency (MHz)	(dBm)	(dB)		Antenna Gain(dB)	(dBm)	(dBm)	` ,	
Frequency (MHz) 1693.00	(dBm) -44.83	(dB) 3.91	3.00	Antenna Gain(dB) 9.06	(dBm) -39.68	(dBm) -13.00	-26.68	Н
Frequency (MHz) 1693.00 2539.50	(dBm) -44.83 -49.00	(dB) 3.91 4.32	3.00 3.00	Antenna Gain(dB) 9.06 6.65	(dBm) -39.68 -46.67	(dBm) -13.00 -13.00	-26.68 -33.67	H
Frequency (MHz) 1693.00 2539.50 1693.00	(dBm) -44.83 -49.00 -37.38	(dB) 3.91 4.32 3.91	3.00 3.00 3.00	Antenna Gain(dB) 9.06 6.65 9.06	(dBm) -39.68 -46.67 -32.23	(dBm) -13.00 -13.00 -13.00	-26.68 -33.67 -19.23	H H V
Frequency (MHz) 1693.00 2539.50	(dBm) -44.83 -49.00	(dB) 3.91 4.32	3.00 3.00	Antenna Gain(dB) 9.06 6.65	(dBm) -39.68 -46.67	(dBm) -13.00 -13.00	-26.68 -33.67	H
Frequency (MHz) 1693.00 2539.50 1693.00 2539.50	(dBm) -44.83 -49.00 -37.38 -42.15	(dB) 3.91 4.32 3.91 4.32	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.06 6.65 9.06 6.65	(dBm) -39.68 -46.67 -32.23 -39.82	(dBm) -13.00 -13.00 -13.00	-26.68 -33.67 -19.23	H H V
Frequency (MHz) 1693.00 2539.50 1693.00 2539.50 LTE FDD Ba	(dBm) -44.83 -49.00 -37.38 -42.15 and 5_Chan	(dB) 3.91 4.32 3.91 4.32 nel Bandwin	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.06 6.65 9.06 6.65	(dBm) -39.68 -46.67 -32.23 -39.82	(dBm) -13.00 -13.00 -13.00 -13.00	-26.68 -33.67 -19.23 -26.82	H H V
Frequency (MHz) 1693.00 2539.50 1693.00 2539.50 LTE FDD Ba	(dBm) -44.83 -49.00 -37.38 -42.15 and 5_Chan	(dB) 3.91 4.32 3.91 4.32 nel Bandwin P _{cl}	3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.06 6.65 9.06 6.65	(dBm) -39.68 -46.67 -32.23 -39.82 v Channel	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00	-26.68 -33.67 -19.23 -26.82 Margin	H H V
Frequency (MHz) 1693.00 2539.50 1693.00 2539.50 LTE FDD Ba	(dBm) -44.83 -49.00 -37.38 -42.15 and 5_Chan	(dB) 3.91 4.32 3.91 4.32 nel Bandwin	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.06 6.65 9.06 6.65	(dBm) -39.68 -46.67 -32.23 -39.82 v Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00	-26.68 -33.67 -19.23 -26.82	H H V V
Frequency (MHz) 1693.00 2539.50 1693.00 2539.50 <i>LTE FDD Ba</i> Frequency	(dBm) -44.83 -49.00 -37.38 -42.15 and 5_Chan	(dB) 3.91 4.32 3.91 4.32 nel Bandwin P _{cl}	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 9.06 6.65 9.06 6.65 6.65	(dBm) -39.68 -46.67 -32.23 -39.82 v Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00	-26.68 -33.67 -19.23 -26.82 Margin	H H V V

8.56

6.98

-46.71

-33.29

-39.56

-13.00

-13.00

-13.00

-33.71

-20.29

-26.56

Н

٧

٧

2487.00

1658.00

2487.00

-49.40

-37.99

-42.25

4.29

3.86

4.29

3.00

3.00

			G LABORATOR		CC ID:2ADTE-		Report No.: LC	S170516130A
LTE FDD Ba	and 5_Chani		dth 10MHz_1	G _a G _a	laie Channe. Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
1673.00	-41.91	3.9	3.00	8.58	-37.23	-13.00	-24.23	Н
2509.50	-47.95	4.32	3.00	6.8	-45.47	-13.00	-32.47	H
1673.00	-39.99	3.9	3.00	8.58	-35.31	-13.00	-32.47	V
2509.50	-41.81	4.32	3.00	6.8	-39.33	-13.00	-26.33	V
2509.50	-4 1.01	4.32	3.00	0.0	-39.33	-13.00	-20.55	V
LTE FDD Ba	and 5_Chani	nel Bandwi	dth 10MHz_1					
Frequency	P_{Mea}	P_{cl}	Distance	Ga	Peak	Limit	Margin	Dalaminatio
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
1000.00	, ,	` '	2.00	Gain(dB)	(dBm)	` '	` ′	
1688.00	-44.75	3.91	3.00	9.06	-39.60	-13.00	-26.60	H
2532.00	-46.11	4.32	3.00	6.65	-43.78	-13.00	-30.78	Н
1688.00	-36.03	3.91	3.00	9.06	-30.88	-13.00	-17.88	V
2532.00	-40.20	4.32	3.00	6.65	-37.87	-13.00	-24.87	V
TE FDD Ba	and 7_Chani	nel Bandwi	dth 5MHz_QI	PSK_Low C	hannel			
			·	- G _a	Peak		Manailla	
requency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5005.0	-38.40	5.88	3.00	10.77	-33.51	-25.00	-8.51	Н
7507.5	-45.92	7.12	3.00	12.26	-40.78	-25.00	-15.78	H
5005.0	-33.52	5.88	3.00	10.77	-28.63	-25.00	-3.63	V
7507.5	-36.77	7.12	3.00	12.26	-31.63	-25.00	-6.63	V
7307.3	-30.77	1.12	3.00	12.20	-01.00	-23.00	-0.00	l v
TE FDD Ba	and 7_Chani	nel Bandwi	dth 5MHz_QI	PSK_ Middle	Channel			
-roguenou.	Ъ			Ga	Peak	Limit	Morgin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP		Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5070.0	-40.00	5.9	3.00	10.81	-35.09	-25.00	-10.09	Н
7605.0	-46.40	7.19	3.00	12.32	-41.27	-25.00	-16.27	Н
5070.0	-35.23	5.9	3.00	10.81	-30.32	-25.00	-5.32	V
7605.0	-36.98	7.19	3.00	12.32	-31.85	-25.00	-6.85	V
7 000.0	00.00	7.10	0.00	12.02	01.00	20.00	0.00	
TE FDD Ba	and 7_Chani	nel Bandwi	dth 5MHz_QI					
	D	P_{cl}	Distance	Ga	Peak	Limit	Margin	Dalarianti
requency	∟ F _{Mea}							Polarizati
	P _{Mea} (dBm)		Diatance	Antenna	EIRP	(dBm)	(dB)	· olalizati
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
(MHz) 5135.0	(dBm) -38.81	(dB) 5.94	3.00	Gain(dB) 10.86	(dBm) -33.89	-25.00	-8.89	Н
(MHz) 5135.0 7702.5	(dBm) -38.81 -45.54	(dB) 5.94 7.25	3.00 3.00	Gain(dB) 10.86 12.98	(dBm) -33.89 -39.81	-25.00 -25.00	-8.89 -14.81	H
(MHz) 5135.0 7702.5 5135.0	(dBm) -38.81 -45.54 -33.43	(dB) 5.94 7.25 5.94	3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86	(dBm) -33.89 -39.81 -28.51	-25.00 -25.00 -25.00	-8.89 -14.81 -3.51	H H V
(MHz) 5135.0 7702.5	(dBm) -38.81 -45.54	(dB) 5.94 7.25	3.00 3.00	Gain(dB) 10.86 12.98	(dBm) -33.89 -39.81	-25.00 -25.00	-8.89 -14.81	H
(MHz) 5135.0 7702.5 5135.0 7702.5	(dBm) -38.81 -45.54 -33.43 -38.74	(dB) 5.94 7.25 5.94 7.25	3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98	(dBm) -33.89 -39.81 -28.51 -33.01	-25.00 -25.00 -25.00	-8.89 -14.81 -3.51	H H V
5135.0 7702.5 5135.0 7702.5	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chan	(dB) 5.94 7.25 5.94 7.25 nel Bandwid	3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98	(dBm) -33.89 -39.81 -28.51 -33.01	-25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01	H H V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Ba	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Channer P _{Mea}	(dB) 5.94 7.25 5.94 7.25 mel Bandwid	3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga	(dBm) -33.89 -39.81 -28.51 -33.01 Channel	-25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01	H H V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Ba	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chan	(dB) 5.94 7.25 5.94 7.25 nel Bandwid	3.00 3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga Antenna	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP	-25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01	H H V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Baterequency (MHz)	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm)	(dB) 5.94 7.25 5.94 7.25 nel Bandwid P _{cl} (dB)	3.00 3.00 3.00 3.00 3.00 dth 10MHz_0	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low G Ga Antenna Gain(dB)	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm)	-25.00 -25.00 -25.00 -25.00 -25.00 Limit (dBm)	-8.89 -14.81 -3.51 -8.01 Margin (dB)	H H V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Bater Frequency (MHz) 5010.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43	(dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl (dB) 5.88	3.00 3.00 3.00 3.00 3.00 dth 10MHz_0 Diatance	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga Antenna Gain(dB) 10.77	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54	-25.00 -25.00 -25.00 -25.00 -25.00 Limit (dBm) -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54	H H V V V Polarizatio
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Batering (MHz) 5010.0 7515.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49	(dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low G Ga Antenna Gain(dB) 10.77 12.26	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35	-25.00 -25.00 -25.00 -25.00 -25.00 Limit (dBm) -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35	H H V V V Polarization
MHz) 5135.0 7702.5 5135.0 7702.5 -TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56	(dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12 5.88	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low (Ga Antenna Gain(dB) 10.77 12.26 10.77	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67	H H V V Polarization H H V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Batering (MHz) 5010.0 7515.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49	(dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low G Ga Antenna Gain(dB) 10.77 12.26	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35	-25.00 -25.00 -25.00 -25.00 -25.00 Limit (dBm) -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35	H H V V V Polarization
(MHz) 5135.0 7702.5 5135.0 7702.5 	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08	(dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl (dB) 5.88 7.12 5.88 7.12	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low (Ga) Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_ Middl	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67	H H V V Polarization H H V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08	(dB) 5.94 7.25 5.94 7.25 nel Bandwid P _{cl} (dB) 5.88 7.12 5.88 7.12 nel Bandwid	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_Middl Ga	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94 The Channel Peak	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67 -5.94	H H V V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0 TE FDD Barrequency	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08 and 7_Chann P _{Mea}	(dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12 5.88 7.12 nel Bandwid Pcl	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low (Ga) Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_ Middl	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67 -5.94 Margin	H H V V V Polarization
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08	(dB) 5.94 7.25 5.94 7.25 nel Bandwid P _{cl} (dB) 5.88 7.12 5.88 7.12 nel Bandwid	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_Middl Ga	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94 The Channel Peak	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67 -5.94	H H V V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0 TE FDD Barrequency	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08 and 7_Chann P _{Mea}	(dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12 5.88 7.12 nel Bandwid Pcl	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_Middl Ga Antenna	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94 E Channel Peak EIRP (dBm)	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67 -5.94 Margin	H H V V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0 TE FDD Barrequency (MHz) 5070.0	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08 and 7_Chann P _{Mea} (dBm) -38.03	(dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12 5.88 7.12 nel Bandwid Pcl (dB) 5.9	3.00 3.00 3.00 3.00 3.00 dth 10MHz_0 Diatance 3.00 3.00 3.00 3.00 3.00 Diatance Diatance	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low G Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_ Middl Ga Antenna Gain(dB) Ga Antenna Gain(dB) 10.77	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94 Ee Channel Peak EIRP (dBm) -33.12	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67 -5.94 Margin (dB)	H H V V V Polarization H H H V V V
(MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Bate of the second of the	(dBm) -38.81 -45.54 -33.43 -38.74 and 7_Chann P _{Mea} (dBm) -41.43 -46.49 -35.56 -36.08 and 7_Chann P _{Mea} (dBm)	(dB) 5.94 7.25 5.94 7.25 nel Bandwid P _{cl} (dB) 5.88 7.12 5.88 7.12 nel Bandwid P _{cl} (dB)	3.00 3.00 3.00 3.00 3.00 dth 10MHz_0 Diatance 3.00 3.00 3.00 3.00 dth 10MHz_0 Diatance	Gain(dB) 10.86 12.98 10.86 12.98 QPSK_Low G Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_Middl Ga Antenna Gain(dB)	(dBm) -33.89 -39.81 -28.51 -33.01 Channel Peak EIRP (dBm) -36.54 -41.35 -30.67 -30.94 E Channel Peak EIRP (dBm)	-25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00 -25.00	-8.89 -14.81 -3.51 -8.01 Margin (dB) -11.54 -16.35 -5.67 -5.94 Margin (dB)	H H V V V Polarization

SHENZHEN L					CC ID:2ADTE-	Y6MAX	Report No.: LC	S170516130AE
LTE FDD Ba	and 7_Chan	nel Bandwid	dth 10MHz_C	QPSK_ High	Channel		-	
Fraguenay	В	D		Ga	Peak	Limit	Morgin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5130.0	-39.74	5.94	3.00	10.86	-34.82	-25.00	-9.82	Н
7695.0	-46.43	7.25	3.00	12.98	-40.70	-25.00	-15.70	H
5130.0	-33.56	5.94	3.00	10.86	-28.64	-25.00	-3.64	V
7695.0	-37.47	7.25	3.00	12.98	-31.74	-25.00	-6.74	V
LTE FDD B	and 7_Chan	nel Bandwid	dth 15MHz_C	PSK_ Low		T	_	1
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
(1411 12)	(dDill)	(GD)		Gain(dB)	(dBm)	(dDIII)	(GD)	
5015.0	-41.17	5.88	3.00	10.77	-36.28	-25.00	-11.28	Н
7522.5	-45.29	7.12	3.00	12.26	-40.15	-25.00	-15.15	Н
5015.0	-35.79	5.88	3.00	10.77	-30.90	-25.00	-5.90	V
7522.5	-39.66	7.12	3.00	12.26	-34.52	-25.00	-9.52	V
7322.3	-39.00	7.12	3.00	12.20	-34.32	-25.00	-9.52	V
TE FDD Ba	and 7_Chan	nel Bandwid	dth 15MHz (QPSK_Middl	le Channel			
			_	G _a	Peak	,		
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	i Gianzallo
, ,	<u> </u>	, ,	0.00	` '		, ,	` ′	
5070.0	-40.45	5.9	3.00	10.81	-35.54	-25.00	-10.54	Н
7605.0	-45.08	7.19	3.00	12.32	-39.95	-25.00	-14.95	Н
5070.0	-33.84	5.9	3.00	10.81	-28.93	-25.00	-3.93	V
7605.0	-37.52	7.19	3.00	12.32	-32.39	-25.00	-7.39	V
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
5125.0	-38.07	5.94	3.00	10.86	-33.15	-25.00	-8.15	Н
7687.5	-44.89	7.25	3.00	12.98	-39.16	-25.00	-14.16	H
5125.0	-36.98	5.94	3.00	10.86	-32.06	-25.00	-7.06	V
7687.5	-36.71	7.25	3.00	12.98	-30.98	-25.00	-5.98	V
LTE FDD B	and 7_Chan	nel Bandwid	dth 20MHz_C	QPSK_ Low				
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5020.0	-39.01	5.88	3.00	10.77	-34.12	-25.00	-9.12	Н
7530.0	-44.01	7.12	3.00	12.26	-38.87	-25.00	-13.87	Н
	-33.52	5.88		10.77		-25.00		V
5020.0			3.00		-28.63		-3.63	V
7530.0	-36.94	7.12	3.00	12.26	-31.80	-25.00	-6.80	l V
TE FDD B	and 7_Chan	nel Bandwid	dth 20MHz_C	QPSK_ Middl	le Channel	T		
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
			Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5070.0	-39.87	5.9	3.00	10.81	-34.96	-25.00	-9.96	Н
7605.0	-46.59	7.19	3.00	12.32		-25.00	-16.46	H
					-41.46			
5070.0	-35.45	5.9	3.00	10.81	-30.54	-25.00	-5.54	V
7605.0	-39.82	7.19	3.00	12.32	-34.69	-25.00	-9.69	V
LTE FDD 7_	Channel Ba	ndwidth 20	MHz_QPSK_	_ High Chanı	nel			
	-	-		Ga	Peak	1.224	N.4 ·	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	1 SidiiZatio
E100.0	40.00	E 0.4	2.00			05.00	44.07	11
5120.0	-40.99	5.94	3.00	10.86	-36.07	-25.00	-11.07	H
7680.0	-47.87	7.25	3.00	12.98	-42.14	-25.00	-17.14	Н
5120 O	26 57	5.04	3 00	10.96	21.65	25.00	6.65	\/

10.86

12.98

-31.65

-31.02

-25.00

-25.00

-6.65

-6.02

٧

٧

3.00

3.00

5120.0

7680.0

-36.57

-36.75

5.94

			G LABORATOR dth 5MHz 16		CC ID:2ADTE- Channel	Y6MAX	Report No.: LC	CS170516130AE
	_		1011 3111112_10	G _a	Peak			
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5005.0	-44.21	5.88	3.00	10.77	-39.32	-25.00	-14.32	Н
7507.5	-46.62	7.12	3.00	12.26	-41.48	-25.00	-16.48	Н
5005.0	-38.90	5.88	3.00	10.77	-34.01	-25.00	-9.01	V
7507.5	-40.03	7.12	3.00	12.26	-34.89	-25.00	-9.89	V
I TE END R	and 7 Chan	nel Randwii	dth 5MHz 16	SOAM Midd	lle Channel			
	_		1011 51411 12_10	G _a	Peak			
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
5070.0	-44.17	5.9	3.00	10.81	-39.26	-25.00	-14.26	Н
7605.0	-47.76	7.19	3.00	12.32	-42.63	-25.00	-17.63	H
5070.0		5.9	3.00		-34.09	-25.00	-9.09	V
7605.0	-39.00 -42.12	7.19	3.00	10.81 12.32	-34.09 -36.99	-25.00	-11.99	V
7003.0	-4 2.12	7.13	3.00	12.52	-30.99	-23.00	-11.99	l v
TE FDD Ba	and 7_Chan	nel Bandwid	dth 5MHz_16	QAM _ High			1	
Frequency	P _{Mea}	P_{cl}		Ga	Peak	Limit	Margin	1
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	` ,	. ,		Gain(dB)	(dBm)		` '	
5135.0	-42.25	5.94	3.00	10.86	-37.33	-25.00	-12.33	Н
7702.5	-46.91	7.25	3.00	12.98	-41.18	-25.00	-16.18	Н
5135.0	-37.81	5.94	3.00	10.86	-32.89	-25.00	-7.89	V
7702.5	-41.26	7.25	3.00	12.98	-35.53	-25.00	-10.53	V
LTE FDD B	and 7_Chan	nel Bandwid	dth 10MHz_1	6QAM_Lov				
Frequency	P _{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
,	` ,			Gain(dB)	(dBm)	, ,	` '	
5010.0	-42.79	5.88	3.00	10.77	-37.90	-25.00	-12.90	Н
7515.0	-48.12	7.12	3.00	12.26	-42.98	-25.00	-17.98	Н
5010.0	-38.29	5.88	3.00	10.77	-33.40	-25.00	-8.40	V
7515.0	-41.74	7.12	3.00	12.26	-36.60	-25.00	-11.60	V
LTE FDD Ba	and 7 Chani	nel Bandwid	dth 10MHz 1	6QAM_Mid	ldle Channe	I		
	_		_	Ga	Peak		Margin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5070.0	-42.60	5.9	3.00	10.81	-37.69	-25.00	-12.69	Н
7605.0	-47.66	7.19	3.00	12.32	-42.53	-25.00	-17.53	Н
5070.0	-36.29	5.9	3.00	10.81	-31.38	-25.00	-6.38	V
7605.0	-39.39	7.19	3.00	12.32	-34.26	-25.00	-9.26	V
				6QAM Hig			•	•
	_			G _a	Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice			(dBm)	(dB)	Folalizatio
E120.0	42.27	F 04	2.00	Gain(dB)	(dBm)	25.00	10 45	11
5130.0	-43.37	5.94	3.00	10.86	-38.45	-25.00	-13.45	H
7695.0	-48.31	7.25	3.00	12.98	-42.58	-25.00	-17.58	H
5130.0	-38.18	5.94	3.00	10.86	-33.26	-25.00	-8.26	V
7695.0	-40.01	7.25	3.00	12.98	-34.28	-25.00	-9.28	V
LTE FDD Ba	and 7_Chan	nel Bandwid	dth 15MHz_1	6QAM_Lov			_	
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(IVII I <i>L.)</i>	(upiii)	(UD)		Gain(dB)	(dBm)	(upill)	(ub)	
, ,				Carri(ab)	(abiii)			
5015.0	-43.29	5.88	3.00	10.77	-38.40	-25.00	-13.40	Н

10.77

12.26

-42.45

-33.77

-34.05

-25.00

-25.00

-25.00

-17.45

-8.77

-9.05

Н

٧

٧

7522.5

5015.0

7522.5

-47.59

-38.66

-39.19

7.12

5.88

7.12

3.00

3.00

			GLABORATOR		CC ID:2ADTE-		Report No.: LC	<u>CS170516130AE</u>
LIE FDD Ba	and /_Chan	nei Bandwi	dth 15MHz_1	_	ldle Channe	<i> </i>		1
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(1711 12)	(dDIII)	(GD)		Gain(dB)	(dBm)	(dDill)	(GD)	
5070.0	-43.26	5.9	3.00	10.81	-38.35	-25.00	-13.35	Н
7605.0	-47.89	7.19	3.00	12.32	-42.76	-25.00	-17.76	Н
5070.0	-37.30	5.9	3.00	10.81	-32.39	-25.00	-7.39	V
7605.0	-39.21	7.19	3.00	12.32	-34.08	-25.00	-9.08	V
7000.0	00.21	7.10	0.00	12.02	04.00	20.00	0.00	v
LTE FDD B	and 7_Chan	nel Bandwi	dth 15MHz_1	6QAM_ Hig		T	_	1
Frequency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(IVITIZ)	(ubiii)	(ub)		Gain(dB)	(dBm)	(ubiii)	(ub)	
5125.0	-44.38	5.94	3.00	10.86	-39.46	-25.00	-14.46	Н
7687.5	-49.78	7.25	3.00	12.98	-44.05	-25.00	-19.05	Н
5125.0	-38.65	5.94	3.00	10.86	-33.73	-25.00	-8.73	V
					-34.82		1	V
7687.5	-40.55	7.25	3.00	12.98	-34.82	-25.00	-9.82	V
TE FDD Ba	and 7 Chan	nel Bandwi	dth 20MHz 1	6QAM_Lov	v Channel			
			_	Ga	Peak	1.2	N 4 '	
requency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
5020.0	-44.72	5.88	3.00	10.77	-39.83	-25.00	-14.83	ш
								H
7530.0	-48.94	7.12	3.00	12.26	-43.80	-25.00	-18.80	Н
5020.0	-38.78	5.88	3.00	10.77	-33.89	-25.00	-8.89	V
7530.0	-39.50	7.12	3.00	12.26	-34.36	-25.00	-9.36	V
TE EDD Ra	and 7 Chan	nel Randwii	dth 20MHz 1	6QAM_ Mid	ldle Channe	ı		
				G _a	Peak		I	
requency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
5070.0	-41.36	5.9	3.00	10.81	-36.45	-25.00	-11.45	Н
			1				1	
7605.0	-46.10	7.19	3.00	12.32	-40.97	-25.00	-15.97	Н
5070.0	-39.51	5.9	3.00	10.81	-34.60	-25.00	-9.60	V
7605.0	-41.56	7.19	3.00	12.32	-36.43	-25.00	-11.43	V
TE EDD Ba	and 7 Chan	nel Bandwii	dth 20MHz 1	6QAM_Hig	h Channel			
				G _a	Peak			
requency	P_{Mea}	P_{cl}	Dietones		EIRP	Limit	Margin	Dolorizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarizatio
	` ,	` '		Gain(dB)	(dBm)	` '	` '	
5120.0	-41.33	5.94	3.00	10.86	-36.41	-25.00	-11.41	Н
7680.0	-48.82	7.25	3.00	12.98	-43.09	-25.00	-18.09	Н
5120.0	-38.18	5.94	3.00	10.86	-33.26	-25.00	-8.26	V
7680.0	-39.25	7.25	3.00	12.98	-33.52	-25.00	-8.52	V
TE 500 5			:.III. E.A. : :	20016	<u> </u>			
	and 1/_Cha		riatn 5MHz_(QPSK_ Low (G _a	Channel Peak			1
requency	P_{Mea}	P_{cl}	Dietoras		EIRP	Limit	Margin	Dolori-oti-
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarizatio
` ,	, ,	` '		Gain(dB)	(dBm)	` '	` '	
1413.0	-41.88	3.72	3.00	9.04	-36.56	-13.00	-23.56	Н
2118.9	-47.85	4.23	3.00	8.6	-43.48	-13.00	-30.48	Н
	-34.63	3.72	3.00	9.04	-29.31	-13.00	-16.31	V
1413.0		4.23	3.00	8.6	-35.49	-13.00	-22.49	V
1413.0 2118.9	-39.86			i	-			•
2118.9								
2118.9			vidth 5MHz_C	QPSK_ Middl				1
2118.9 TE FDD Ba	and 17_Cha	nnel Bandw	_	G _a	Peak	Limit	Margin	
2118.9 TE FDD Ba	and 17_Cha P _{Mea}	nnel Bandw P _{cl}	vidth 5MHz_0 Diatance			Limit	Margin (dB)	Polarizatio
2118.9 .TE FDD Ba	and 17_Cha	nnel Bandw	_	G _a	Peak	Limit (dBm)	Margin (dB)	Polarizatio
2118.9 TE FDD Barrequency (MHz)	end 17_Cha P _{Mea} (dBm)	nnel Bandw P _{cl}	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	(dBm)	(dB)	
2118.9 LTE FDD Ba	and 17_Cha P _{Mea}	nnel Bandw P _{cl} (dB)	_	G _a Antenna	Peak EIRP			Polarizatio H H

8.26

-29.90

-33.76

-13.00

-13.00

-16.90

-20.76

٧

1420.0

2130.0

-34.03

-37.77

4.78

4.25

3.00

			GLABORATOR	<u>YLTD. FC</u> QPSK_ High	Channel	Y6MAX	Report No.: LC	<u> S170516130AE</u>
				G _a	Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarioc	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glanzation
1427.0	-38.77	4.78	3.00	8.91	-34.64	-13.00	-21.64	Н
2140.5	-47.78	4.25	3.00	8.26	-43.77	-13.00	-30.77	H
1427.0	-36.71	4.78	3.00	8.91	-32.58	-13.00	-19.58	V
2140.5	-36.48	4.25	3.00	8.26	-32.47	-13.00	-19.47	V
I TE EDD Ra	and 17 Cha	nnel Randu	idth 10MHz	QPSK Low	Channel			
			10111 10111112_	G _a	Peak			
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Biatarioo	Gain(dB)	(dBm)	(dBm)	(dB)	1 Glarizatio
1418.0	-41.68	3.72	3.00	9.04	-36.36	-13.00	-23.36	Н
2127.0	-44.18	4.23	3.00	8.6	-39.81	-13.00	-26.81	H
1418.0	-33.27	3.72	3.00	9.04	-27.95	-13.00	-14.95	V
2127.0	-36.48	4.23	3.00	8.6	-32.11	-13.00	-19.11	V
2127.0	-30.40	7.20	3.00	0.0	-52.11	-13.00	-13.11	V
LTE FDD Ba	and 17_Cha	nnel Bandw	ridth 10MHz	QPSK_ Midd		T	T	
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	1
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarizatio
` ′	, ,	, ,		Gain(dB)	(dBm)	, ,	, ,	
1420.0	-40.89	4.78	3.00	8.91	-36.76	-13.00	-23.76	Н
2130.0	-45.07	4.25	3.00	8.26	-41.06	-13.00	-28.06	Н
1420.0	-34.92	4.78	3.00	8.91	-30.79	-13.00	-17.79	V
2130.0	-36.24	4.25	3.00	8.26	-32.23	-13.00	-19.23	V
LTE FDD Ba	and 17 Cha	nnel Bandw	ridth 10MHz	_QPSK High	n Channel			
			_	Ga	Peak	1,		
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1422.0	-39.70	4.78	3.00	8.91	-35.57	-13.00	-22.57	Н
2133.0	-46.70	4.25	3.00	8.26	-42.69	-13.00	-29.69	Н
1422.0	-33.47	4.78	3.00	8.91	-29.34	-13.00	-16.34	V
2133.0	-37.02	4.25	3.00	8.26	-33.01	-13.00	-20.01	V
<u>"</u>	and 17 Cha		П			l		.
	inu II_CIIa		'IGUT SIVI∏Z_ I 	GAM _ Lov	Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance		EIRP	Limit	Margin	Dolorizatio
(MHz)	(dBm)	(dB)	Diatance	Antenna		(dBm)	(dB)	Polarizatio
1412.0	-40.45	2.70	2.00	Gain(dB)	(dBm)	12.00	00.40	11
1413.0		3.72	3.00	9.04	-35.13	-13.00	-22.13	H
2118.9	-46.43	4.23	3.00	8.6	-42.06	-13.00	-29.06	H
1413.0	-36.56	3.72	3.00	9.04	-31.24	-13.00	-18.24	V
2118.9	-39.07	4.23	3.00	8.6	-34.70	-13.00	-21.70	V
LTE FDD Ba	and 17_Cha	nnel Bandw	ridth 5MHz_1	6QAM_ Mid		<i>I</i>		
Frequency	P_{Mea}	P_{cl}	Dietara	Ga	Peak	Limit	Margin	Delemines.
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	, ,	, ,		Gain(dB)	(dBm)	` ,	, ,	
1420.0	-40.89	4.78	3.00	8.91	-36.76	-13.00	-23.76	H
2130.0	-46.10	4.25	3.00	8.26	-42.09	-13.00	-29.09	Н
1420.0	-36.28	4.78	3.00	8.91	-32.15	-13.00	-19.15	V
2130.0	-37.47	4.25	3.00	8.26	-33.46	-13.00	-20.46	V
LTE FDD Ba	and 17_Cha	nnel Bandw	ridth 5MHz_1	6QAM_ Hig	h Channel			
Eroguese	D	D		Ga	Peak	Limit	Marcin	
Frequency	P _{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB))
1427.0	-38.81	4.78	3.00	8.91	-34.68	-13.00	-21.68	Н
2140.5	-46.02	4.25	3.00	8.26	-42.01	-13.00	-29.01	Н
Z 17U.U								

8.26

-30.49

-32.82

-13.00

-13.00

-17.49

-19.82

1427.0

2140.5

-34.62

-36.83

4.78

4.25

3.00

3.00

٧

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-Y6MAX Report No.: LCS1/0516130AE								
LTE FDD B	and 17_Cha	nnel Bandw	idth 10MHz_	16QAM_ Lo	ow Channel			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1418.0	-41.80	3.72	3.00	9.04	-36.48	-13.00	-23.48	Н
2127.0	-44.58	4.23	3.00	8.6	-40.21	-13.00	-27.21	Н
1418 0	-34 17	3 72	3.00	9.04	-28 85	-13 00	-15.85	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ Middle Channel

3.00

4.23

2127.0

-39.94

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1420.0	-38.16	4.78	3.00	8.91	-34.03	-13.00	-21.03	Н
2130.0	-47.01	4.25	3.00	8.26	-43.00	-13.00	-30.00	Н
1420.0	-33.60	4.78	3.00	8.91	-29.47	-13.00	-16.47	V
2130.0	-38.47	4.25	3.00	8.26	-34.46	-13.00	-21.46	V

8.6

-35.57

-13.00

-22.57

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1422.0	-40.61	4.78	3.00	8.91	-36.48	-13.00	-23.48	Н
2133.0	-45.95	4.25	3.00	8.26	-41.94	-13.00	-28.94	Н
1422.0	-34.38	4.78	3.00	8.91	-30.25	-13.00	-17.25	V
2133.0	-39.43	4.25	3.00	8.26	-35.42	-13.00	-22.42	V

4.7 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 4, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° increments from -30° to +50°. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing. 6. Subject the EUT to overnight soak at +50°C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17;

LTE Band 2, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

		LTE FDI	D Band 2		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-4	-0.002	2.50	PASS
3.80	20	-10	-0.005	2.50	PASS
4.35	20	-15	-0.008	2.50	PASS
3.80	-30	2	0.001	2.50	PASS
3.80	-20	-1	-0.001	2.50	PASS
3.80	-10	2	0.001	2.50	PASS
3.80	0	-1	-0.001	2.50	PASS
3.80	10	-19	-0.010	2.50	PASS
3.80	20	10	0.005	2.50	PASS
3.80	30	19	0.010	2.50	PASS
3.80	40	-11	-0.006	2.50	PASS
3.80	50	5	0.003	2.50	PASS

LTE Band 4, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

		LTE FDI	D Band 4		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-2	-0.001	2.50	PASS
3.80	20	-10	-0.006	2.50	PASS
4.35	20	-8	-0.005	2.50	PASS
3.80	-30	-11	-0.006	2.50	PASS
3.80	-20	1	0.001	2.50	PASS
3.80	-10	1	0.001	2.50	PASS
3.80	0	-4	-0.002	2.50	PASS
3.80	10	-1	-0.001	2.50	PASS
3.80	20	-6	-0.003	2.50	PASS
3.80	30	-9	-0.005	2.50	PASS
3.80	40	-9	-0.005	2.50	PASS
3.80	50	-8	-0.005	2.50	PASS

LTE Band 5. 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

		LTE FDI	D Band 5		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-18	-0.022	2.50	PASS
3.80	20	4	0.005	2.50	PASS
4.35	20	9	0.011	2.50	PASS
3.80	-30	16	0.019	2.50	PASS
3.80	-20	-13	-0.016	2.50	PASS
3.80	-10	3	0.004	2.50	PASS
3.80	0	18	0.022	2.50	PASS
3.80	10	18	0.022	2.50	PASS
3.80	20	8	0.010	2.50	PASS
3.80	30	12	0.014	2.50	PASS
3.80	40	-1	-0.001	2.50	PASS
3.80	50	1	0.001	2.50	PASS

LTE Band 7, 5MHz bandwidth(worst case of all bandwidths and modulation type)

	•	LTE FD	D Band 7		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-5	-0.002	2.50	PASS
3.80	20	14	0.006	2.50	PASS
4.35	20	-11	-0.004	2.50	PASS
3.80	-30	1	0.000	2.50	PASS
3.80	-20	-2	-0.001	2.50	PASS
3.80	-10	-3	-0.001	2.50	PASS
3.80	0	9	0.004	2.50	PASS
3.80	10	-3	-0.001	2.50	PASS
3.80	20	-2	-0.001	2.50	PASS
3.80	30	-9	-0.004	2.50	PASS
3.80	40	7	0.003	2.50	PASS
3.80	50	18	0.007	2.50	PASS

LTE Band 17, 5MHz bandwidth (worst case of all bandwidths and modulation type)

		LTE FDI	D Band 17		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	4	0.006	2.50	PASS
3.80	20	-3	-0.004	2.50	PASS
4.35	20	-7	-0.010	2.50	PASS
3.80	-30	-12	-0.017	2.50	PASS
3.80	-20	-4	-0.006	2.50	PASS
3.80	-10	2	0.003	2.50	PASS
3.80	0	-12	-0.017	2.50	PASS
3.80	10	-11	-0.015	2.50	PASS
3.80	20	-10	-0.014	2.50	PASS
3.80	30	-7	-0.010	2.50	PASS
3.80	40	-6	-0.008	2.50	PASS
3.80	50	-7	-0.010	2.50	PASS

<u>SH.</u> 5	VENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-Y6MAX Report No.: LCS170516130. Test Setup Photos of the EUT
	easerefer to separated files for Test Setup Photos of the EUT.
6	External Photos of the EUT
Ple	easerefer to separated files for External Photos of the EUT.
7	Internal Photos of the EUT
Ple	easerefer to separated files for Internal Photos of the EUT.
	End of Report