See the HiHW grading rubric posted on Carmen

Name: Cage farmer

Recitation Instructor: Chris

Thompson

Due Date: 10/9/2022

Diedre rides her sled down an icy, frictionless hill. When she reaches level ground at the bottom, she is traveling at $v_i = 4.0 \,\mathrm{m/s}$ and has a glancing collision with her sledding buddy Brynn, who is initially at rest. Both sledders have the same mass, and they are using identical sleds. The collision causes Diedre's velocity vector to deflect by an angle of $\theta = 21^{\circ}$, and the velocity vectors of both sledders are perpendicular to each other after the collision. What is Brynn's speed v_2 after the collision? For the limits check, investigate what happens to Brynn's speed v_2 as Diedre's initial speed $v_i \to 0$.

Representation:	0	1	2
Physics Concept(s):	0	1	2
Initial Equation(s):	0	0.5	1
Symbolic Answer:	0		1
Units Check:	0	0.5	1
Limits Check:	0	0.5	1
Neatness:	-2	-1	0
Total:			
Correct Answer:	Y	N	

Representation

Physics Concept(s) (Refer to the list posted on Carmen)

Initial Equations

- (1) Conservation of Momentum
- (2) Collisions

Algebra Work (Symbols only. Don't plug in any numbers yet.)

$$P_{+:} = P_{D:} + P_{B:} = M_{VD:}$$

$$P_{+f} = P_{0:} + P_{B:} = M[V_0 + V_8]$$

$$P_{+f} = M_{V_0} \cos(21) + M_{V_0} \cos(69)$$

$$P_{+f} = M_{V_0} \sin(21) + M_{V_8} \sin(69)$$

$$M_{V_0:} = M_{V_0} \cos(21) + M_{V_8} \cos(69) = 0$$

$$V_{D:} = -V_0 \cot(21) \cos(21) + V_8 \sin(21)$$

$$V_8 = \frac{V_0 \sin(21)}{\cos^2(21) + \sin^2(21)} = V_{D:} \sin(21)$$

Symbolic Answer: $V_{\mathcal{R}} = V_0$; Sin(21)

Units Check

Limits Check

a) As $v_i \to 0$, what limit does v_2 approach?

b) Why does the result make physical sense?

If
$$V:=0$$
, no collision

will occur, so V_2 will

always = 0

(Obtain this by plugging numbers into your symbolic answer.) Numerical Answer: