Subject Name: Statistical Foundation of Machine Learning, Date: 15/6/25 Class Test/Quiz Exam, 20 Points, Time: 2 hrs exam. (All questions are compulsory)

Q1 : (10 Points)

Q1: In a Gaussian Naïve Bayes classifier, we typically assume that the standard deviation σ_i of $P(X_i|Y=k)$ is the same for all class values k. Now, suppose we relax this assumption and allow σ_{ik} to vary depending on both the feature index i and the class k. Given that $P(X_i|Y=k)$ follows a Gaussian distribution $N(\mu_{ik},\sigma_{ik})$, derive the new form of P(Y|X). Does this modified Naïve Bayes classifier still result in a logistic regression-like form for P(Y|X)? Justify your answer with a derivation.

Q2: (10 Points)

- a) [5 Points]: Write the Pseudo-code for NaveBayes theorem for classification of IRIS dataset where you have 3 categories of flower (setosa, virginia, versicolor). Please use the features petal width as an input.
- b) [5 Points] Suppose you have been asked to develop a perceptron And Gate with threshold (final activation function) of 0.5 (i.e when predicted output is above 0.5, perceptron output is 1 otherwise 0). Use initial weights to be w_1 =0.9 and w_2 =0.9. Update the final weights (using the steepest descent process) during the misclassification (i.e error=actual-predicted). Run this process when no further change is possible in the predicted output compared to actual output.

X1	X2	Y (actual)
0	0	0
0	1	0
1	0	0
1	1	1