Goal of this worksheet: find the wavelength dependent flux (the spectrum!) predicted by our analytical estimate for the temperature structure of a star (with a given effective temperature.

.....

$$F_{\lambda}(\tau) = -2\pi \int_{\tau'=0}^{\tau} S_{\lambda}(\tau') E_2(\tau-\tau') d\tau' + 2\pi \int_{\tau'=\tau}^{\infty} S_{\lambda}(\tau') E_2(\tau'-\tau) d\tau'$$

We know that that $S_{\lambda}(\tau)=B_{\lambda}(T(\tau))$, that $B_{\nu}(T)=\frac{2h}{c^2}\nu^3\frac{1}{\mathrm{e}^{h\nu/kT}-1}$, and that $T^4(\tau_z)=\frac{3T_{\mathrm{eff}}^4}{4}(\tau_z+q(\tau_z))$.

.....

Step1: We will do a change of variable where $\alpha=\frac{h\nu}{kT_{\rm eff}}=\frac{hc}{\lambda kT_{\rm eff}}$. Find an expression for $B_{\alpha}(T)$ (remember that $B_{\alpha}d\alpha=B_{\nu}d\nu$).

Step2: Replace the source function in the equation for the flux by your expression for B_{α} in Step 1. This means that the resulting quantity will be $F_{\alpha}(\tau)$. Make an additional substitution so that $p(\tau) = T_{\rm eff}/T(\tau)$. Pull all of the constant quantities outside of the integrals.

Step3: Check your answer with the solution, and replace the term in [] with $C(\alpha, \tau)$.

Step4: In the notebook, we will be interested to make a graph of F_{λ}/\tilde{F} (at a given optical depth). First, let's find \tilde{F} . We know what the wavelength-integrated flux will be $\sigma T_{\rm eff}^4$ at all layers. Find the definition of σ in terms of fundamental constants (see the BB lecture — there will be some cs, hs, π s, etc in there).

Step 5: Now find F_{α}/\tilde{F} by dividing your expression for F_{α} from Step 3 by the expression for $\sigma T_{\mathrm{eff}}^4$ from Step 4 (a whole bunch of stuff should cancel out!)

Step 6: Now, we need to convert F_{α}/\tilde{F} into F_{λ}/\tilde{F} . Find the factor you need to multiply F_{α}/\tilde{F} by to do this.

Step7: Check your answer on the solution.

Worksheet L16: Grey atmospheres

Step 8: I lied a bit — in fact we will actually graph F_{λ} , and not F_{λ}/\tilde{F} . If you have already calculated F_{λ}/\tilde{F} in your code (after all the expression you found in Step7 is very neat to type in python!), how can you quickly transform an array containing F_{λ}/\tilde{F} into an array containing F_{λ} ? (Hint: in the astropy python package, σ is const.sigma_sb; 'SB' stands for Stefan-Boltzmann).