Pràctica virtual: SIMULACIÓ DE CIRCUITS DE CORRENT CONTINU

Grup: 12 Cognoms: Díez Apolo

Nom: Èric

Data: 03/10/2022

Qualificació:

Podeu afegir més fulls si us falta per algun dels exercicis

2.1 Divisor de tensió

Resolució del problema previ (apartat 1.3)

Rt =
$$100 \Omega + 200 \Omega = 300 \Omega$$

$$I = \frac{5 V}{300 \Omega} = 16,666 \cdot 10^{-3} A = 16,666 mA$$

$$V_{R1} = 16,666 \cdot 10^{-3} A \cdot 100 \Omega = 1,6666 V$$

$$V_{R2} = 16,666 \cdot 10^{-3} A \cdot 200 \Omega = 3,3332 V$$

Valors mesurats

valors "aleatoris" de les resistències, $R_1^* = R_1 + n_1 - 5$, $R_2^* = R_2 + n_2 - 5$

DNI : 20577070M $R_1(100\Omega) = 97 \Omega$ $R_2(200\Omega) = 195 \Omega$

Intensitats teòriques i experimentals (els valors teòrics són els que resulten al problema previ, on heu utilitzat els valors nominals)

te / = 16,666 mA	ex / = 17,123 mA
VAB = 1,6666 V	<i>V</i> AB ex = 1,6609 V
<i>V</i> BC ^{te} = 3,3332 V	V _{BC} = 3,33904 V

Captura de pantalla del circuit implementat amb una eina de simulació

2.2 Resistència equivalent: Circuit 1

Resolució del problema previ (apartat 1.4)

$$R_{12} = R_{34} = 100 \Omega + 100 \Omega = 200 \Omega$$

$$R_t = (200^{-1} + 200^{-1})^{-1} = 100 \Omega$$

$$I_t = \frac{1 V}{100 \Omega} = 0,01 A$$

$$I_{R12} = I_{R34} = \frac{1 V}{200 \Omega} = 0,005 A$$

$$V_c = V_D = 0.005 A \cdot 100 \Omega = 0.5 V$$

Valors mesurats

Resistència equivalent

valors "aleatoris" de les resistències

DNI: 20577070M

$R_1(100Ω) = 97 Ω$	R4(100Ω) = 102 Ω
$R_2(100Ω) = 95 Ω$	$R_5(100\Omega) = 102 \Omega$
$R_3(100Ω) = 100 Ω$	

Circuit 1

<i>V</i> C ^{te} = 0,5 V	VC ex = 0.507614 V
<i>V</i> D te = 0,5 V	<i>V</i> D ex = 0.517766 V
/1 ^{te} = 0,005 A	/1 ex = 0.00507614 A
/2 ^{te} = 0,005 A	/2 ex = 0.00507614 A
$I_{\varepsilon}^{\text{te}}$ = 0,01 A	$l_{\varepsilon}^{\text{ex}} = 0.0101523 \text{ A}$
$R_{\varepsilon q}^{\text{te}} = 100 \Omega$	$R_{\mathcal{E}q}^{\text{ex}} = 98,4998 \Omega$

Captura de pantalla del circuit implementat amb una eina de simulació

2.3 Resistència equivalent: Circuit 2

Resolució del problema previ (apartat 1.5)

Valors mesurats

Circuit 2

<i>V</i> C ^{te} = 0,5 V	<i>V</i> C ^{ex} = 0.510108 V
<i>V</i> _D ^{te} = 0,5 V	V _D ex = 0.515275 V
/1 ^{te} = 0,005 A	/1 ex = 0.00505043 A
/2 ^{te} = 0,005 A	/2 ex = 0.00510237 A
$I_{\varepsilon}^{\text{te}}$ = 0,01 A	$l_{\varepsilon}^{\text{ex}} = 0.0101528 \text{ A}$
$R_{\varepsilon q}^{\text{te}}$ = 100 Ω	$R_{\mathcal{E}q}^{\text{ex}} = 98,495 \Omega$

Captura de pantalla del circuit implementat amb una eina de simulació

