## Pràctica 2. Neteja i anàlisi de dades. Universitat Oberta de Catalunya. DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

J. de Curtò i DíAz.

I. de Zarzà i Cubero.

04-01-2022.





De Curtò i DíAz. De Zarzà i Cubero.

https://github.com/decurtoidiaz/cyz

https://github.com/decurtoidiaz/drcyz



0 21



De Curtò i DíAz. De Zarzà i Cubero.

#### K-means Clustering with PCA(2)

from sklearn.decomposition import PCA

features = np.array(features)
pca = PCA(2)

#Transform the data
df = pca.fit\_transform(features)

n\_cams = 8
kmeans = MiniBatchKMeans(n\_clusters=n\_cams)

#predict the labels of clusters.
label = kmeans.fit\_predict(df)

#Getting unique labels
u labels = np.unique(label)

c@decurto.be z@dezarza.be











**Perseverance** 

# t-SNE with PCA (explaining 99% of variance)

from sklearn.decomposition import PCA

features = np.array(features)
pca = PCA(n\_components=0.99, svd\_solver='full')
pca.fit(features)
pca.features = pca.transform(features)

print(pca.explained\_variance\_print(pca.explained\_variance\_ratio\_)
print(pca.explained\_variance\_ratio\_cumsum())
print



De Curtò i DíAz. De Zarzà i Cubero.

#### Curiosity

#### Perseverance

t-SNE with PCA (explaining 99% of variance)









De Curtò i DíAz. De Zarzà i Cubero.



Curiosity



Perseverance



De Curtò i DíAz. De Zarzà i Cubero.

Stylegan2-ada training with subset of samples (drcyz - 5025 corresponding terrain pictures to ease convergence) from Perseverance.

```
training_path = project_path / 'training' / dataset_name
     if not training_path.is_dir():
        %mkdir "{training path}"
    #how often should the model generate samples and a .pkl file
    snapshot count = 2
    #should the images be mirrored left to right?
    mirrored = True
    #should the images be mirrored top to bottom?
    mirroredY = False
    Amatrice?
    metric list = None
    #augments
    augs = 'bgc
    !python "{stylegan2_repo_path / 'train.py'}" --outdir="{training_path}" \
        --data="{local_dataset_path}" --resume="{resume_from}" \
        --snap={snapshot_count} --augpipe={augs} \
        --mirror={mirrored} --mirrory={mirroredY} --cfg={'auto'} \
        --metrics={metric_list} #--dry-run
```

c@decurto.be
z@dezarza.be



Grid of 100 synthetic samples.





De Curtò i DíAz. De Zarzà i Cubero.

Stylegan2-ada training with subset of samples from Perseverance.

1 x NVIDIA Tesla P-100 around 48h.



c@decurto.be
z@dezarza.be



Two frames exploring Z-sphere latent space.





De Curtò i DíAz. De Zarzà i Cubero.

Statistical comparison of the samples by mean intensity (rgb and

gray scale).

```
for filename in os.listdir(folder):
    image = cv2.imread(os.path.join(folder,filename))
    if image is not None:
        #image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        image = cv2.resize(image, (64,64))
        image = image.flatten()
        data.append([image, folder + filename])

for filename2 in os.listdir(folder2):
    image2 = cv2.imread(os.path.join(folder2,filename2))
    if image2 is not None:
        #image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
        image2 = cv2.resize(image2, (64,64))
        image2 = image2.flatten()
        data2.append([image2, folder2 + filename2])
```

Comparison at size 64x64.

mean\_features = []
for c in features:
 mean\_features.append(c.mean())

mean\_features2 = []
for c2 in features2:
 mean\_features2.append(c2.mean())

print(mean\_features)
print(mean\_features2)

# We propose to compute mean of pixel intensity for statistics

c@decurto.be z@dezarza.be

[36.9560546875, 153.189208984375, 132.62744140625, 109.865478515625, 151.930908203125, 147.08154296875, 158.233642578125, 175.22705078125, 135.7158203125, [163.289306640625, 182.438720703125, 174.16552734375, 164.75390625, 160.764892578125, 160.10498046875, 158.564697265625, 187.696533203125, 157.413330078125



De Curtò i DíAz. De Zarzà i Cubero.

#### Statistical comparison of the samples by mean intensity (rgb and gray scale).



Homogeneity of variance

Normality

Goodness of fit (non-parametric)

De Curtò i DíAz.

De Zarzà i Cubero.

Stylegan2-ada training with subset of samples from Perseverance.

1 x NVIDIA Tesla P-100 around 48h.



c@decurto.be
z@dezarza.be



We release: subset of data used to train the networks, in png and TFRecords.

Sets of 100, 1000 and 10000 synthetic samples.

Network checkpoint to sample from.

And notebooks in python to reproduce the experiments.



De Curtò i DíAz. De Zarzà i Cubero.

Example of instance segmentation using Deeplab on a sample from Perseverance.



Example of Instance Segmentation using Deeplab on CityScapes.

De Curtò i DíAz. De Zarzà i Cubero.

Example of instance segmentation using Deeplab on a sample from Perseverance.



input image

segmentation map





<u>c@decurto.be</u> <u>z@dezarza.be</u>



De Curtò i DíAz. De Zarzà i Cubero.

Dataset Open Access

https://github.com/decurtoidiaz/cyz

https://doi.org/10.5281/zenodo.5655473

DOI 10.5281/zenodo.5655473

https://github.com/decurtoidiaz/drcyz

https://doi.org/10.5281/zenodo.5816858

DOI 10.5281/zenodo.5816858

<u>c@decurto.be</u> <u>z@dezarza.be</u> January 4, 2022



de Curtò, J.; de Zarzà, I.

DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

Samples from NASA Perseverance and set of GAN generated synthetic images from Neural Mars.

Repository: https://github.com/decurtoidiaz/drcyz

Subset of samples from (includes tools to visualize and analyse the dataset):

CyZ: MARS Space Exploration Dataset. [https://doi.org/10.5281/zenodo.5655473]

Images from NASA missions of the celestial body.

Repository: https://github.com/decurtoidiaz/cyz

Authors:

J. de Curtò c@decurto.be

I. de Zarzà z@dezarza.be

File Information from DrCyZ-1.0

- $\bullet \ \text{Subset of samples from Perseverance (drcyz/c)}.$
- · png (drcyz/c/png).

PNG files (5025) selected from NASA Perseverance (CyZ-1.1) after t-SNE and K-means Clustering.



De Curtò i DíAz. De Zarzà i Cubero.

#### https://github.com/decurtoidiaz/drcyz



