1.

$$\rho(s) = \frac{s}{1 + exp(-s)}$$

$$\rho'(s) = \frac{(1 + exp(-s)) - s(-exp(-s))}{(1 + exp(-s))^2}$$

$$= \frac{exp(-s)(s+1) + 1}{(1 + exp(-s))^2}$$

- 2. • Maximum: 5% of class-4 examples are mislabeled as class-3. And its cost is 20N
 - Minimum: 5% of class-1 examples are mislabeled as class-2. And its cost is 0.05N
- 3. • Maximum total number of weights: $L = 2, d^{(0)} = 10, d^{(1)} = 50, d^{(2)} = 50$ total number of weights = 3000Feed-Forward Neural network
 - Minimum total number of weights: $L = 2, d^{(0)} = 10, d^{(1)} = 1, d^{(2)} = 99$ total number of weights = 109Feed-Forward Neural network
- 4. $u(\mathbf{x}) = 1 2|\theta_{\mathbf{w}}(\mathbf{x}) \frac{1}{2}|$, and $0 < \theta_{\mathbf{w}}(\mathbf{x}) < 1$. To maximize $u(\mathbf{x})$, we have to make $\theta_{\mathbf{w}}(\mathbf{x})$ as close to $\frac{1}{2}$ as possible. Let $f(z) = \frac{1}{1+e^{-z}}$. The problem is to find $\arg\min_{z} |f(z) - \frac{1}{2}|$.

$$f(z) + f(-z) = \frac{1}{1 + e^{-z}} + \frac{1}{1 + e^{z}}$$

$$= \frac{e^{z} + 1}{1 + e^{z}} = 1$$

$$\Rightarrow |f(z) - \frac{1}{2}| = |f(-z) - \frac{1}{2}| = |f(|z|) - \frac{1}{2}|$$

In addition, $|f(|z|) - \frac{1}{2}|$ increases as |z| becomes larger.

$$\Rightarrow \arg\min_{z} |f(z) - \frac{1}{2}| = \arg\min_{z} |z|$$
$$\Rightarrow \arg\max_{n=1,2,\dots,N} u(\mathbf{x}_n) = \arg\min_{n=1,2,\dots,N} |f(\mathbf{w}^T \mathbf{x}_n) - \frac{1}{2}| = \arg\min_{n=1,2,\dots,N} |\mathbf{w}^T \mathbf{x}_n|$$

5. PCA fit:

Figure 1: Mean Face

Figure 2: Eigenface 1

Figure 4: Eigenface 3

Figure 3: Eigenface 2

Figure 5: Eigenface 4

6. Autoencoder fit loss:

7. DenoisingAutoencoder fit loss:

8. (a) sample_architecture

• Architecture:

• Original image v.s. Reconstructed image

- Mean Square Error (MSE) and Validation Accuracy (VA) MSE: 0.0017002755, VA: 0.7
- Findings and discussion

 This is the original model provided in the sample code. The model performs well, with 0.0017 mean square error.

(b) architecture2

• Architecture:

• Original image v.s. Reconstructed image

- Mean Square Error (MSE) and Validation Accuracy (VA) MSE: 0.011790511, VA: 0.6
- Findings and discussion Initially, I expected that it would result in a better image. But it turned out that the deeper model did not have a better outcome. The MSE is about 0.0118, and the image is quite blurry. It was probably because the model overfit the noise.

(c) architecture3

• Architecture:

• Original image v.s. Reconstructed image

• Mean Square E rror (MSE) and Validation Accuracy (VA) MSE: 0.008102858, VA: 0.5333333333333333

何碩宸

deeper model (0.0118). That was out of my expectation.

• Findings and discussion I expected that the shallower model would have a worse reconstruction image than the original model. The result showed that my expectation was right. But the MSE of the shallower model (0.0081) is better than the MSE of the

9. Original image v.s. Reconstructed image

Mean Squared Error (MSE)= 0.0023547083

• Autoencoder

Mean Squared Error (MSE)= 0.0029266474

ullet Denoising Autoencoder

Mean Squared Error (MSE)= 0.0017002755

10. Validation accuracy:

• PCA: 0.9

 \bullet Autoencoder: 0.733333333333333

• DenoisingAutoencoder: 0.7