SS 2024 Marc Kegel

Differentialtopologie

Blatt 2

Aufgabe 1.

Berechnen Sie das Jones-Polynom des Achterknotens auf zwei Arten:

- (a) mittels des Kauffman-Polynoms, und
- (b) direkt mit der Flechtrelation.

Folgern Sie, dass der Achterknoten nicht-trivial ist.

Aufgabe 2.

Ein Knoten K heißt **amphichiral** falls K isotop ist zu seinem Spiegelbild \overline{K} . Sind der Kleeblatt-knoten und der Achterknoten amphichiral?

Aufgabe 3.

Sei L eine orientiert Verschlingung mit einer ungeraden (bzw. geraden) Anzahl von komponenten. Dann besteht das Jones-Polynom V(L) nur aus Termen der Form q^k (bzw. $q^{k+1/2}$) für ganze Zahlen $k \in \mathbb{Z}$.

Aufgabe 4.

- (a) Für orientierte Knoten K_1 und K_2 gilt $V(K_1 \# K_2) = V(K_1)V(K_2)$. Was gilt für Verschlingungen?
- (b) Für die disjunkte Vereinigung $L_1 \sqcup L_2$ von orientierten Verschlingungen L_1 und L_2 gilt

$$V(L_1 \sqcup L_2) = -(q^{-1/2} + q^{1/2})V(L_1)V(L_2).$$

(c) Konstruieren Sie nicht-isotope Verschlingungen mit dem selben Jones-Polynom.

Knobelaufgabe: Konstruieren Sie nicht-isotope Knoten mit dem selben Jones-Polynom. *Hinweis:* Die Konstruktion ist ähnlich wie für Verschlingungen. Aber im Moment wird es schwer sein die Knoten zu unterscheiden.