HUMAN ROBOTICS

- muscle mechanics and control
- single-joint neuromechanics
- multi-joint multi-muscle kinematics
- multi-joint dynamics and control
- motor learning and memory
- interaction control
- motion planning and online control
- integration and control of sensory feedback
- applications in neurorehabilitation and robotics

MOTOR LEARNING

- in humans, learning and adaptability is the rule
- learning new behaviours i.e. during infancy
- improve behaviours with practice
- we do not understand how humans/animals can learn complex behaviours
- similarities between rehabilitation and motor learning in healthy subjects as a tool to develop efficient rehabilitation strategies

WHY DO HUMANS ADAPT MOTION?

to manipulate objects we have to interact with the environment

• reaching, grasping: 150-600*ms*, delay of visual feedback: 100-250*ms*, stretch reflex delay > 30*ms*

 skilled actions require that humans learn to compensate for the environmental forces and instability in a feedforward way

- 10cm horizontal reaching movements
- in any of 8 directions
- interacting with velocity dependent force field (VF) produced by a robotic manipulandum (force in N, velocity in m/s):

$$\begin{bmatrix} F_x \\ F_y \end{bmatrix} = \begin{bmatrix} -10.1 & -11.2 \\ -11.2 & 11.1 \end{bmatrix} \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$$

free point-to-point movements in 8 directions

VF: velocity dependent force field

with learning the movements become similar to free movements

free point-to-point movements in 8 directions

after-effects of learning:
when the force field
disappears the
trajectories are deformed
by the memory of the
learned dynamics

[Shadmehr&Mussa-Ivaldi, J Neuroscience 1994]

CONTROL OF HUMAN ARM

- muscle impedance provides stability
- reflexes generally also contributes to stability
- neural feedback is too slow and weak to explain fast motion
- -> feedforward controller using an inverse model, which allows suitable commands to be executed

GENERALIZATION?

movements are trained in the right workspace and tested in the left workspace

test in the left workspace whether the CNS has generalised, and if yes in which coordinates

EVIDENCE OF GENERALIZATION

NF trials in left workspace

... after training VF in right workspace

GENERALIZATION?

left workspace

$$\mathbf{W} = \mathbf{J}^T \mathbf{B} \mathbf{J} = \begin{bmatrix} 1.66 & 0.64 \\ 0.64 & -1.54 \end{bmatrix} \frac{Nms}{rad}$$

right workspace

CODING IN JOINT RATHER THAN IN TASK SPACE

force field transformed in

1. evidence for generalisation

force field transformed in

2. in joint rather than in Cartesian coordinates

INVERSE MODEL IS STATE DEPENDENT

the CNS does not learn by rote memorisation, but forms a state dependent internal model

[Conditt et al., J Neurophysiology 1997]

IMPORTANCE OF KINEMATIC ERROR FOR MOTOR LEARNING (1)

 20cm long reaching movement in forward direction

• learning a lateral force:
$$\left[\begin{array}{c} F_x \\ F_y \end{array} \right] = \left[\begin{array}{c} -15\,\dot{y} \\ 0 \end{array} \right]$$

 after learning trajectory constrained to a channel:

$$\left[\begin{array}{c} F_x \\ F_y \end{array}\right] = \left[\begin{array}{c} -6000 \, x - 60 \, \dot{x} \\ 0 \end{array}\right]$$

IMPORTANCE OF KINEMATIC ERROR FOR MOTOR LEARNING (2)

IMPORTANCE OF KINEMATIC ERROR FOR MOTOR LEARNING (3)

- the force learned to compensate for the VF decreases much slower with than without channel
- this indicates that force cannot guide learning, but kinematic error

LEARNING STABLE TASKS

The experimental results suggest that:

- an feedforward model is formed during learning
- this model is coded in joint coordinates q rather than in Cartesian coordinates
- it is a function of the state: τ_{FF} = f(q,q,q)
- the kinematic error is used to adapt this internal model to changing conditions

ITERATIVE CONTROL IN ROBOTS (1)

- for tasks such as welding or milling, robots have to follow a trajectory
- nonlinear control to perform good trajectory tracking
- compensating for the task dynamics by using a feedforward term: $\tau = \tau_{FF} + \tau_{FB}$
- start with $\tau_{FF}(t) = 0$
- robot already follows the trajectory, thus the feedback is indicative of the task dynamics
- $\tau_{FF}^{k+1}(t) = \tau_{FF}^{k}(t) + \alpha \tau_{FB}^{k}(t)$, $0 < \alpha < 1$

ITERATIVE CONTROL IN ROBOTS (2)

- robot already follows the trajectory, thus the feedback is indicative of the task dynamics
- $\tau_{FF}^{k+1}(t) = \tau_{FF}^{k}(t) + \alpha \tau_{FB}^{k}(t)$, $0 < \alpha < 1$

ITERATIVE CONTROL IN ROBOTS (3)

- (integrated) tracking error decreases
- feedback is reduced to almost 0

ITERATIVE CONTROL IN HUMANS

- an efficient computational model of motor learning with good predictions
- valid for a single repeated movement

NONLINEAR ADAPTIVE CONTROL

an efficient computational model of motor learning

ADAPTIVE CONTROL IN ROBOTS

 robots can learn their dynamics in a similar way: (adaptive control: Craig, Slotine, Wen, Horowitz, etc)

SUMMARY (1)

- to investigate human motor control, one can study the adaptation of movements to novel dynamics produced by a haptic interface
- the experimental results suggest that a feedforward model of the task is formed during learning using mainly the kinematic error
- this model is coded in intrinsic coordinates of the joint or muscles, and is a function of a state space rather than the result of rote memorization

SUMMARY (2)

- iterative learning algorithms incorporating feedback into the feedforward trial after trial reproduces well the experimental results, suggesting that this is a plausible model of motor adaptation
- this is also an efficient algorithm to learn compensating for nonlinear robot dynamics in trajectory tracking tasks