제2장 결정 기하학

2-1 서언

결정의 X선 회절 → 결정기하학과 구조

2-2 격자

Crystal (결정)

원자, 이온, 또는 분자가 주기적인 방식으로 3차원 공간에서 배열하고 있는것.

:단결정(singlecrystalline)

다결정(polycrystalline)-접촉면이 많은 결정

모든 고체는 다 결정질이 아니다 : (예)유리 (비정질, amorphous)

X-ray Diffraction Patterns

결정격자(crystal lattice)- 점(lattice point)의 3 차원적인 배열

- Unit Cell (단위세포)
 - Space lattice를 구성하는 가장 해석이 용이한 최소 repeating unit.
 - Unit cell은 세 crystallographic axes로 정의되며, 이 세 vector 들의 길이(a, b, c)와 이들이 서로 이루는 각(α , β , γ)을 unit cell의 lattice parameter(격자계수)라 한다.

Fig. 2. X-ray diffraction patterns of (a) calculated Sr_3AlO_4F host lattice, experimentally observed (b)-(e) $Sr_3_xCa_xAl_{0.9}In_{0.1}O_4F$ (x = 0.1, 0.3, 0.5, 0.7), (f) $Sr_{2.5}Ca_{0.5}Al_{0.9}In_{0.1}O_4-\alpha F_{1-\delta}$, and (g)-(j) $Sr_3_xBa_xAl_{0.9}In_{0.1}O_4F$ (x = 0.1, 0.3, 0.5, 0.7) oxyfluorides.

2-3 점, 선, 평면의 표기

(*h k l*) : 괄호, 면이 결정축과 만드는 분율 절편(fractional intercept)의 역수로 정의

: Miller 지수

(hkl) → 면은 축과 분율절편의 1/h, 1/k, 1//절편
 축 길의가 a, b, c → 실제절편 a/h, b/k, c/l

축길이	4 Å	8 Å	3 Å
절편길이	1 Å	4 Å	3 Å
분율절편	1/4	$(4/8) \rightarrow \frac{1}{2}$	1
Miller 지수	4	2	1

Example : 다음 면의 Miller Index를 구하라.

Solution

1. 원점인 (0,0,0)을 정한다.

2. 결정면이 x, y, z축과 만나는 접 점을 조사한다.

> 즉, *x*=1, *y*=2, z=∞ 이다. *z*축은 만나는 점이 없다.

Solution

3. 역수를 취한다. x=1, y=1/2, z=0

4. Miller index 결정면은 (210)

[h k l] :꺾쇠괄호안, 선의 방향지수one direction

<h k l>: 모난괄호안, 결정형의 방향
<100>≡[100], [010], [001], [100], [010], [001]

음의 지수는 숫자위에 가로줄(bar)을 그어 반대방향 (예) [120]

Examples

• $\{h \ k \ l\}$: planes of a form

(ex) equivalent planes for cubic symmetry

$$\{100\} = (100) + (010) + (001) + (\overline{1}00) + (0\overline{1}0) + (00\overline{1})$$

• Hexagonal의 경우: $(h k (\overline{h+k}) l)$ 로 표시 가능함.

예)
$$(11\overline{2}\ 0) = (110)$$
 Miller plane

2-5 대칭

대칭요소와 대칭조작

대칭요소(symmetry element):

거울면 (mirror plane)

반전중심(inversion axis)

회전축(rotation axis)

대 칭조작(symmetry operation):

실질적인 거울면, 반사, 축과 점을 중심으로 한 움직임.

Mirror Plane, σ 거울면

oh: horizontal 수평면, 거울면이 주축에 대하여 수직이다.

ov :vertical 수직면, 거울면이 주축을 포함한다.

od: 주축에 수직인 C2축 사이의 각을 반으로 나누는 반사면.

대칭중심, i 반전중심(inversion center)

: 각 점은 분장의 중심점에 대하여 시작점이 반대 방향의 같은 거리로 이동된다.

(c)에만 대칭중심

의전축, Cn (rotation operation, proper rotation)

: 분자를 360%n 만큼 회전시켜,그 전과 구별이 불가능한

원자의 배열이 되는 경우, 그 분자는 n겹(n-fold) 회전축을 갖는다.

n의 order가 제일 높은 것을 z축의 잡는다.

C4축을 principal axis로 잡음!

그림 3.7 n겹축이 있는 또 다른 분자들 : (a) 암모니아, (b) pentacarbonyliron, (c) hexacarbonyltungsten.

