1 [7 marks]Let

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & \text{if } x > 0, \\ ax + b, & \text{if } x \le 0. \end{cases}$$

Find a and b such that f(x) is differentiable everywhere and compute f'(x).

- 2 [12 marks, 4 marks each] Evaluate the following limits:
 - (a) $\lim_{x\to 0^+} (1+\sin 4x)^{\cot x}$
 - (b) $\lim_{x\to 0} \frac{x^2 \sec^{1131}(1130x)}{\arcsin(x)}$
 - (c) $\lim_{x \to -\infty} \frac{2x+1}{\sqrt{x^2+5}}$
- 3 [7 marks] Find all the local maxima and minima of f, hence find its global maximum and minimum, where $f(x) = x^3 - 3x^2 + 1$ on interval $\left[-\frac{1}{2}, 4\right]$.
- 4 [7 marks] Show that the equation $e^x = \frac{1}{2} + \cos(2x) 2\sin x$ has a UNIQUE solution in the interval $\left(0, \frac{\pi}{4}\right)$.
- 5 [7 marks] Let $f(x) = 2x + \arcsin(x)$.

 - (a) Show that f(x) is one-to-one on the closed interval [0,1]. (b) Use the linear approximation of f^{-1} around 0 to estimate $f^{-1}(0.05)$.
- 6 [15 marks, 5 marks each] Evaluate the following definite integrals:

(a)
$$\int_{2}^{4} \frac{x+2}{x^{2}+3x-4} \, dx$$

(b)

$$\int x \tan^2(x) \, dx$$

(c)

$$\int_{1}^{\sqrt{3}} \tan^{-1} \left(\frac{1}{x}\right) dx$$

7 [5 marks] Evaluate the definite integral

$$\int_0^1 \ln\left(x^2+1\right) dx$$

8 [10 marks] Evaluate the definite integral

$$\int_{1}^{\sqrt{2}} \frac{1}{x\sqrt{4x^2+1}} \, dx$$

3

9 [5 marks] Find the definite integral

$$\int_0^{\frac{\pi}{2}} x^2 \sin(x) \, dx$$

10 [5 marks] Find the definite integral

$$\int_{-1}^{1} \frac{x^2}{\sqrt{4-x^2}} \, dx$$

- 11 [10 marks] Find the length of the arc of the parabola $y^2 = x$, $0 \le x \le 1$.
- 12 [10 marks] Find the values of c that satisfy the mean value theorem for integrals for the function $f(x) = \cos(2x \pi)$ on the interval $\left[\frac{3\pi}{4}, \pi\right]$.

***** End *****

Table of Trigonometric Formulas

Basic formulas (n is an integer)

$$\begin{array}{lll} \cos(2n\pi + A) = \cos A, & \sin(2n\pi + A) = \sin A, & \tan(n\pi + A) = \tan A \\ \cos(-A) = \cos A, & \sin(-A) = -\sin A, & \tan(-A) = -\tan A \\ \cos(\pi - A) = -\cos A, & \sin(\pi - A) = \sin A, & \tan(\pi - A) = -\tan A \\ \cos\left(\frac{\pi}{2} - A\right) = \sin A, & \sin\left(\frac{\pi}{2} - A\right) = \cos A, & \tan\left(\frac{\pi}{2} - A\right) = \cot A \\ \sin^2 A + \cos^2 A = 1, & 1 + \tan^2 A = \sec^2 A, & 1 + \cot^2 A = \csc^2 A \\ \cos 0 = 1, & \cos(\pi/3) = 1/2, & \cos(\pi/2) = 0 \\ \sin 0 = 0, & \sin(\pi/3) = \sqrt{3}/2, & \sin(\pi/2) = 1 \end{array}$$

Compound angle formulas

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A-B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Double angle formulas

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 1 - 2\sin^2 A = 2\cos^2 A - 1$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

$$\cos^2 A = \frac{1 + \cos 2A}{2}, \quad \sin^2 A = \frac{1 - \cos 2A}{2}$$

Conversion formulas

$$\sin A + \sin B = 2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

$$\sin A - \sin B = 2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$$

$$\cos A + \cos B = 2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$$

$$\cos A - \cos B = -2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)$$

$$\cos (x+y) + \sin(x-y) = 2 \sin x \sin y$$

$$\cos (x+y) + \cos(x-y) = 2 \cos x \cos y$$

$$\cos (x+y) + \cos(x-y) = -2 \sin x \sin y$$

Table of Differentiation Formulas

f(x)	f'(x)	Remark
\overline{c}	0	c is a constant
x^n	nx^{n-1}	n is a real number
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$\sec^2 x$	
$\cot x$	$-\csc^2 x$	
$\sec x$	$\sec x \tan x$	
$\csc x$	$-\csc x \cot x$	
e^x	e^x	
a^x	$a^x \ln a$	a > 0, real constant
$\ln x$	1/x	x > 0
$\log_a x$	$(\log_a e)/x$	a > 0, real constant
$\sin^{-1} x$	$1/\sqrt{1-x^2}$	-1 < x < 1
$\cos^{-1} x$	$-1/\sqrt{1-x^2}$	-1 < x < 1
$-\tan^{-1}x$	$1/(1+x^2)$	

Table of Integrals

ē-		
	f(x)	$\int f(x) \mathrm{d}x$
1	\ /	$\frac{x^{n+1}}{n+1} + C$
2	$\frac{1}{x} (x \neq 0)$	$\ln x + C$
3		$e^x + C$
4	$\sin x$	$-\cos x + C$
5	$\cos x$	$\sin x + C$
6	$\tan x$	$-\ln \cos x = \ln \sec x + C$
7	$\cot x$	$\ln \sin x + C$
8	$\sec x$	$\ln \sec x + \tan x + C$
9	$\csc x$	$-\ln \csc x + \cot x + C$
10	$\sec x \tan x$	$\sec x + C$
11	$\csc x \cot x$	$-\csc x + C$
	f(x)	$\int_{a}^{b} f(x) dx$ $\frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C$
12	$\frac{1}{a^2 + x^2} (a \neq 0)$	$\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right) + C$
13	$\frac{1}{a^2-a^2}$ $(a\neq 0)$	$\frac{1}{2a}\ln\left \frac{a+x}{a-x}\right + C$
14	$\frac{1}{\sqrt{a^2 - x^2}} (a > 0)$	$\sin^{-1}\left(\frac{x}{a}\right) + C$
15	$\frac{1}{\sqrt{x^2 + a^2}} (a \neq 0)$	$\ln\left x + \sqrt{x^2 + a^2}\right + C$
16	$\frac{1}{\sqrt{x^2 - a^2}} (a \neq 0)$	$\ln\left x + \sqrt{x^2 - a^2}\right + C$
17	$\sqrt{x^2 + a^2}$	$\frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\ln\left x + \sqrt{x^2 + a^2}\right + C$
18	$\sqrt{x^2-a^2}$	$\frac{x}{2}\sqrt{x^2 - a^2} - \frac{a^2}{2}\ln x + \sqrt{x^2 - a^2} + C$
19	$\sqrt{a^2 - x^2} (a > 0)$	$\frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C$