1. All Pair Shortest Path:

Every nodes single source shortest path. For this we need Floyd - Warshall Algorithm. It is an Incremental Algorithm.

For this we will use Adjacency-Matrix.

Intermediate node = not using the direct edge, by using other bypassable nodes from u to v node are the intermediate nodes.

2. Floyd-Warshall Simulation part 1:

$$d[u][v] = d[u][k] + d[k] + d[v]$$
 // k is the intermediate node.

$$k$$

$$/ \quad \setminus$$

$$u \rightarrow v$$

$$d[u][v] = min(d[u][v], d[u][k] + d[k][v]$$

3. Floyd-Warshall Simulation part 2:

Increasing the intermediate nodes number will produce the more shortest distance of each node.

4. Pseudocode & Complexity:

- Input \rightarrow A weighted graph as an adjacency matrix.
- Output → All pair shortest path/distance.
- Create a distance matrix, d. Where d[i][j] = x, where there is a direct edge from i to j which cost is x.
- for all node "i" d[i][i] = 0.
- for all nodes i & j where there isn't any direct edge from $i \rightarrow j$: d[i][j] = INF
- for all node "k":
 - for all node u:
 - for all node v:

$$-d[u][v] = min(d[u][v], d[u][k] + d[k][v])$$

- output all pair shortest distance, 'd'

Time Complexity : O(V³) Space Complexity : O (V²) 5. Floyd Warshall Code: Implementation

6. Problem Solving : From CSES

Shortest Routes II: https://cses.fi/problemset/task/1672