Category O Learning Seminar Fall 2021

Notes by Patrick Lei

Lectures by Various

Columbia University

Disclaimer

These notes were taken during the seminar using the vimtex package of the editor neovim. Any errors are mine and not the speakers'. In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of my mathematical style and that of the lecturers. If you find any errors, please contact me at plei@math.columbia.edu.

Seminar Website:

https://math.columbia.edu/~plei/f21-CO.html

Contents

Contents • 2

- 1 Kevin (Sep 29): Review of semisimple Lie algebras and introduction to category 0 \bullet 3
 - 1.1 Review of semisimple Lie algebras 3
 - 1.2 Introduction to category 0 5

Kevin (Sep 29): Review of semisimple Lie algebras and introduction to category \circ

1.1 Review of semisimple Lie algebras

Throughout this lecture, we will work over C.

Definition 1.1.1. A Lie algebra g is *semisimple* if any of the following equivalent conditions hold:

- 1. g is a direct sum of simple Lie algebras (those with no nonzero proper ideals).
- 2. The Killing form $\kappa(x,y) := \operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(y))$ is nondegenerate.
- 3. The radical (maximal solvable ideal) of $\mathfrak g$ is zero.

Some examples of semisimple Lie algebras include $\mathfrak{sl}_n, \mathfrak{so}_n, \mathfrak{sp}_{2n}$, and in some sense (the classification of simple Lie algebras), these are essentially all semisimple Lie algebras.

Now given a semisimple Lie algebra \mathfrak{g} , we will fix a *Cartan subalgebra* $\mathfrak{h} \subset \mathfrak{g}$, which is just a maximal abelian subalgebra of semisimple elements. This gives us a root decomposition

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\mathfrak{h}^*\setminus\{0\}}\mathfrak{g}_lpha$$
 ,

where \mathfrak{g}_{α} is the subspace of \mathfrak{g} where \mathfrak{h} acts with weight α . Some important facts about these root systems are the following:

- For all α , we have dim $\mathfrak{g}_{\alpha} = 1$.
- For all roots α , β , we have $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subset \mathfrak{g}_{\alpha+\beta}$.
- If α is a root, so is $-\alpha$.

In addition, the α are required to form a (reduced) *root system* (denoted Φ), the precise definition of which is deliberately omitted. Given a choice of Borel subalgebra containing \mathfrak{h} , we obtain a set Φ^+ of positive roots and a set Δ of simple roots. In addition, given a root system Φ , there is a dual root system Φ^\vee , whose roots are

$$\alpha^{\vee} = \frac{2\alpha}{(\alpha, \alpha)}, \alpha \in \Phi.$$

Now suppose that \mathfrak{g} is a semisimple Lie algebra with root system Φ . For every $\alpha \in \Phi^+$, we may choose $x_{\alpha} \in \mathfrak{g}_{\alpha}$ and $y_{\alpha} \in \mathfrak{g}_{-\alpha}$, and these determine some $h_{\alpha} = [x_{\alpha}, y_{\alpha}] \in \mathfrak{h}$. This choice can be made such that $\alpha(h_{\alpha}) = 2$.

Recall that the Lie algebra \mathfrak{sl}_2 is spanned by the matrices

$$x = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then the choice of x_{α} , y_{α} , h_{α} gives an embedding $\mathfrak{sl}_2 \to \mathfrak{g}$. These maps, ranging over all α , cover all of \mathfrak{g} . Now a basis of \mathfrak{g} is given by x_{α} , y_{α} , $\alpha \in \Phi$ and h_{α_i} for the **simple** roots α_i . Therefore, to specify \mathfrak{g} , we only need to give commutation relations for the basis elements.

Now suppose that Φ is some root system. We would like to construct a semisimple Lie algebra $\mathfrak g$ with root system Φ . We want to build a semisimple Lie algebra. To do this, choose a set of simple roots α_i , and consider the Lie algebra

$$\langle x_{\alpha_i}, y_{\alpha_i}, h_{\alpha_i} \rangle$$
 /relations,

where the relations are as follows:

- $[h_{\alpha_i}, h_{\alpha_i}] = 0.$
- We have $[x_{\alpha_i}, y_{\alpha_i}] = h_{\alpha_i}$ if i = j and this commutator vanishes otherwise.
- $[h_{\alpha_i}, x_{\alpha_i}] = \langle \alpha_i, \alpha_i^{\vee} \rangle x_{\alpha_i}$.
- $[h_{\alpha_i}, y_{\alpha_j}] = -\langle \alpha_j, \alpha_i^{\vee} \rangle y_{\alpha_j}$.
- $ad(x_{\alpha_i})^{1-\langle \alpha_j, \alpha_i^{\vee} \rangle}(x_{\alpha_j}) = 0 \text{ if } i \neq j.$
- $ad(y_{\alpha_i})^{1-\langle \alpha_j, \alpha_i^{\vee} \rangle}(y_{\alpha_i}) = 0 \text{ if } i \neq j.$

The first four relations are called the *Weyl relations* and the last two are called the *Serre relations*. Given this data, we end up with a semisimple Lie algebra \mathfrak{g}_{Φ} with root system Φ . In addition, if \mathfrak{g} is any other semisimple Lie algebra with root system Φ , there is an isomorphism $\mathfrak{g}_{\Phi} \stackrel{\sim}{\to} \mathfrak{g}$. Moreover, we have a bijection between semisimple Lie algebras and reduced root systems, which restricts to a bijection between simple Lie algebras and irreducible root systems.

Table 1.1: Root systems and Lie algebras

Irreducible root systems	simple Lie algebras		
A_n	\mathfrak{sl}_{n+1}		
B_n	\mathfrak{so}_{2n+1}		
C_n	\mathfrak{sp}_{2n}		
$D_{\mathfrak{n}}$	\mathfrak{so}_{2n}		
E_6, E_7, E_8, F_4, G_2	exceptional Lie algebras		

We will now discuss the finite-dimensional representation theory of semisimple Lie algebras g.

Theorem 1.1.2 (Weyl's complete reducibility theorem). *Any finite-dimensional representation of* \mathfrak{g} *is decomposes as a direct sum of simple representations.*

Now suppose that M is a finite-dimensional g-representation. Then M has a weight decomposition

$$M=\bigoplus_{\lambda\in \mathfrak{h}^*} M_{\lambda}.$$

These λ are *integral weights*, which simply means that $\langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}$ for all roots α . For any root α , $x_{\alpha}(M_{\lambda}) \subset M_{\lambda+\alpha}$ and $y_{\alpha}(M_{\lambda}) \subset M_{\lambda-\alpha}$. We would like to think that the x_{α} raise the weights and y_{α} lower the weights, so we introduce a partial order. We say that $\lambda \geqslant \mu$ if $\lambda - \mu \in \mathbb{Z}_{\geqslant 0}\Phi^+$.

By Weyl's complete reducibility theorem, it remains to classify the irreducible representations of \mathfrak{g} . These are in bijection with the *dominant* integral weights, which in particular means that $\langle \lambda, \alpha^{\vee} \rangle \geqslant 0$ for all $\alpha \in \Phi^+$. For any dominant weight λ , there is a unique highest-weight representation $L(\lambda)$. Here, $L(\lambda)$ is generated by a single *maximal vector* ν of weight λ . This means that for all positive roots α , $x_{\alpha}\nu = 0$.

1.2 Introduction to category O

We would now like to study infinite dimensional representations of g. Of course, this is impossibly complicated in general, so we will impose some finiteness conditions on our representations.

Definition 1.2.1. The category \emptyset is the full subcategory of $U(\mathfrak{g})$ -modules M satisfying:

- 1. M is finitely generated as a $U(\mathfrak{g})$ -module.
- 2. M is \mathfrak{h} -semisimple and has a weight decomposition $M = \bigoplus_{\lambda \in \mathfrak{h}^*} M_{\lambda}$.
- 3. M is locally \mathfrak{n} -finite, where $\mathfrak{n} = \bigoplus_{\alpha \in \Phi^+} \mathfrak{g}$. Precisely, this means that the $U(\mathfrak{n})$ generated by any $v \in M$ is finite-dimensional.

Here are some facts about category 0, which are stated without proof.

- For all M in our category and weights λ , the weight space M_{λ} is finite-dimensional.
- 0 is a Noetherian (everything satisfies the descending chain condition) abelian category.

We will now describe some infinite-dimensional objects in category 0.

Definition 1.2.2. For any weight λ , the *Verma module* $M(\lambda)$ associated to λ is the module

$$M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$$
,

where $\mathfrak{b} = \mathfrak{h} + \mathfrak{n}$ is the Borel subalgebra associated to our choice of positive roots and \mathbb{C}_{λ} is the \mathfrak{b} -module associated to the 1-dimensional representation of \mathfrak{h} with weight λ and the identification $\mathfrak{b}/\mathfrak{n} = \mathfrak{h}$.