

Using our formula from part @, this becomes: $(\hat{X}_i T \hat{X}_i + 1)^2 - \frac{2}{n_j} \sum_{\vec{X}_n \in C_j} (\hat{X}_i T \hat{X}_n + 1)^2 + \frac{1}{n_j^2} \sum_{\vec{X}_n \in C_j} (\hat{X}_n T \hat{X}_m + 1)^2$

Therefore, distance $\left\|\phi(\vec{x}_i) - \mathcal{M}_j\right\|_2^2 = \left(\vec{x}_i^T \vec{X}_i + 1\right)^2 - \frac{2}{n_j} \sum_{\vec{x}_n \in C_j} \left(\vec{x}_i^T \vec{X}_n + 1\right)^2 + \frac{1}{n_j^2} \sum_{\vec{x}_n \in C_j} \left(\vec{x}_n^T \vec{X}_n + 1\right)^2$

- 1. Initialize K clusters of the data: C(0), C(0), C(0), C(0) and set t=0
 - 2. For each point x; find its now cluster index as

i*(x) = argmin | $\phi(\vec{x}_i) - \mathcal{U}_j |_2^2 \leftarrow use equation found in part (b)$

3. Update the new dusters.:

 $C_{i}^{(4+1)} = \left\{ \overrightarrow{x} \mid i^{*}(\overrightarrow{x}) = i \right\}$

- 4. If not converged, t=t+1 and return to step 2. Otherwise, stop.
- (d) For regular k-means (in original space), the bandary between (, +C₂ is given by the set of points \vec{x} such that $\|\vec{x} \vec{m}_1\|^2 = \|\vec{x} \vec{m}_2\|^2$, which is the same as $2(\vec{m}_2 \vec{m}_1)^T \vec{x} + (\vec{m}_1^T \vec{m}_1 \vec{m}_2^T \vec{m}_2) = 0$ which has a form like $\vec{w} \cdot \vec{x} + \vec{b}$. This is why k-means has linear decision bandaries.

In the mapped space, we have $\|\phi(\vec{x}) - \vec{m}_1\|^2 = \|\phi(\vec{x}) - \vec{m}_2\|^2$ as the decision boundary. The decision boundary has form $\vec{w} \cdot \vec{\phi}(\vec{x}) + \vec{b} = 0$.

From part Θ , we found that $\phi(\vec{x})$ is $1 + d + \frac{1}{2}d(d-1) + d$ dimensions when d-dimensional. Therefore, $\vec{w} \cdot \vec{\phi}(\vec{x}) + \vec{b}$ is a polynomial and the decision bandarres will be a polynomial decision Surface. In the case where d=2, the decision surface in mapped space is graduatic.