

MEJORA DEL CONTRASTE DE IMÁGENES A COLOR UTILIZANDO UN FRAMEWORK DE OPTIMIZACIÓN MULTIOBJETIVO

Luis Guillermo Moré Rodríguez

Orientador: Prof. Diego Pedro Pinto Roa, Dr.

Tesis presentada a la Facultad Politécnica de la Universidad Nacional de Asunción, como requisito para la obtención del Grado de Máster en Ciencias de la Computación.

ASUNCIÓN - PARAGUAY Noviembre - 2017

MEJORA DEL CONTRASTE DE IMÁGENES A COLOR UTILIZANDO UN FRAMEWORK DE OPTIMIZACIÓN MULTIOBJETIVO

Luis Guillermo Moré Rodríguez

Aprobado en Agosto de 2017 por:

,

Datos internacionales de Catalogación en la Publicación (CIP) DE BIBLIOTECA CENTRAL DE LA UNA

Moré Rodríguez,Luis Guillermo

Mejora del contraste de imágenes a color utilizando un framework de optimización multiobjetivo/Luis Guillermo Moré Rodríguez. – Asunción, 2017. 56 p. : il.

Tesis (Maestría en Ciencias de la Computación) – Facultad Politécnica , 2017.

Bibliografía.

1. Mejora de contraste. 2. Optimización Por Ejambre de Partículas. 3. Imágenes a color. I. Título.

CDD 519.4

Agradecimientos

Agradezco profundamente a Dios y a la Virgen María por todas las gracias que me han brindado, entre ellas mi gran familia, amigos, orientadores, profesores y colaboradores que hicieron posible este trabajo.

Agradezco al NIDTEC por brindarme la oportunidad.

Agradezco al CONACYT por la beca otorgada.

MEJORA DEL CONTRASTE DE IMÁGENES A COLOR UTILIZANDO UN FRAMEWORK DE OPTIMIZACIÓN MULTIOBJETIVO

Autor: Luis Guillermo Moré

Rodríguez

Orientador: Diego Pedro Pinto Roa, Dr.

RESUMEN

La mejora del contraste es una función de transformación aplicada a una imagen digital cuya finalidad es la de obtener una imagen cuyas características de contraste sean más adecuadas para una aplicación posterior de procesamiento. Existen diversas técnicas de Mejora del contraste de imágenes, de entre las que resaltan las técnicas basadas en enfoques Metaheurísticos; los mismos fueron probados extensivamente en la literatura, para imágenes en escala de grises. La finalidad es la de obtener parámetros de un algoritmo de mejora del contraste que sean adecuados para la imagen digital cuyo problema de mejora del contraste se está abordando. Sin embargo, aparecen nuevas dificultades cuando se trabaja con imágenes digitales a color, en el contexto de la Mejora del Contraste basada en Metaheurísticas puras: no solamente es necesario mejorar el contraste de uno o más objetos con respecto al fondo, sino que además es necesario considerar la información de color que también se ve afectada.

Éste trabajo aborda el problema de Mejora del Contraste en imágenes a color con un enfoque multiobjetivo puro. El algoritmo propuesto aplica una Metaheurística bien conocida a los parámetros de un algoritmo de mejora del contraste, lo cual resulta en imágenes potencialmente adecuadas para ser consideradas como soluciones. Éstas se evaluan teniendo en cuenta el balance entre contraste obtenido y distorsión de la información contenida dentro de la imágenes (en términos de intensidad y de información de color). Los resultados obtenidos muestras imágenes con el contraste mejorado, pero cuyos coeficientes de métrica no dominados muestran una relación inversa de compromiso entre contraste y similaridad estructural (distorsión).

CONTRAST ENHANCEMENT OF COLOR IMAGES USING A MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

Author: Luis Guillermo Moré Rodríguez

Advisor: Diego Pedro Pinto Roa, Dr.

SUMMARY

Contrast Enhancement is a transformation function applied over a digital image, with the aim to obtain another image whose characteristics of contrast are more suitable for further image proccessing steps. There are several techniques for Contrast Enhancement of Digital Images, among them stand out the techniques of Contrast Enhancement based on Methaheuristics; those are well proven methods for grayscale images. The main objective is to obtain parameters for a constrast enhancement algorithm which are suitable for a digital image, which contrast problem is being addressed. Nevertheless, new difficulties arise when working with colored digital images, in the context of Contrast Enhancement based in pure Metaheuristics: not only is neccesary to achieve better contrast of one or more object in regard of the background, but also is neccesary to consider color information, which is also affected.

This work addresses the problem of Contrast Enhancement of color images based in an pure Multiobjective approach. The proposal applies a well-known Metaheuristic to the input parameters of a Contrast Enhancement Algorithm, which results in images potentially suitable as solutions of the problem. Those are evaluated taking into account balance between contrast achieved and distortion of information whithin images (in terms of intensity and color information). The results obtained show images with better contrast, and non-dominated metric coefficients that show an inverse relation between contrast and structural similarity (distortion).

ÍNDICE GENERAL

LI	STA	DE F	IGURAS	X
LI	STA	DE T	ABLAS	XII
LI	STA	DE S	ÍMBOLOS	ΧIV
LI	STA	DE A	BREVIATURAS	XV.
1.	INT	RODU	UCCIÓN	1
	1.1.	Objeti	vos	2
		1.1.1.	Objetivo General	2
		1.1.2.	Objetivos específicos	2
	1.2.	Estruc	etura de la tesis	9
2.	MA	RCO '	TEÓRICO	4
	2.1.	Ecuali	zación del Histograma	4
		2.1.1.	Implementación Básica	5
		2.1.2.	Ejemplo de aplicación	5
	2.2.	Contra	ast Limited Adaptive Histogram Equalization (CLAHE) $$	8
		2.2.1.	Adaptive Histogram Equalization	8
		2.2.2.	Contrast Limited AHE	S
	2.3.	Espaci	ios de Color Adoptados	10
		2.3.1.	El espacio de colores Red, Green, Blue	10
		2.3.2.	El espacio de colores $YCbCr$	11
	2.4.	Multi-	Objective Particle Swarm Optimization (MOPSO)	14
	2.5.	Métric	as de Optimización	15
		2.5.1.	Entropía de la imagen	15
		2.5.2.	Índice de Similaridad Estructural	16

3.	FOI	RMULACION DEL PROBLEMA PLANTEADO Y PRO-	
	\mathbf{PU}	ESTA	19
	3.1.	Formulación del problema planteado	19
	3.2.	Propuesta	21
4.	RES	SULTADOS Y DISCUSIÓN	23
	4.1.	Ambiente de Pruebas experimentales	23
5.	CO	NCLUSIONES Y TRABAJOS	
	\mathbf{FU}	ΓUROS	28
	5.1.	Trabajos futuros	29
$\mathbf{R}\mathbf{I}$	EFEI	RENCIAS BIBLIOGRÁFICAS	30
	.1.	Imagen de prueba calhouse_230.jpg	33
	.2.	Imagen de prueba calhouse_231.jpg	38
	.3.	Imagen de prueba calhouse_233.jpg	42
	.4.	Imagen de prueba calhouse_234.jpg	46
	.5.	Imagen de prueba calhouse_236.jpg	50
	6	Imagen de prueba calhouse 237, ing	54

LISTA DE FIGURAS

1.1.	Imagen en escala de grises e imagen con contraste mejorado para posterior utilización	2
2.1.	Imagen original (sin procesar) y su correspondiente histograma y $CDF \dots \dots$	7
2.2.	Imagen con contraste mejorado (luego de la aplicación de la ecua-	
	lización del histograma) con su correspondiente histograma y CDF	7
2.3.	Imágenes original y resultante luego de la aplicación de la ecua-	
	lización del histograma. A la izquierda de cada una se observa el	
	histograma y el CDF respectivo a cada imagen	7
2.4.	Redistribución de niveles de intensidad dentro del histograma de	
	una región de una imagen, como paso previo al cálculo del CDF .	
	Ésto tiene como efecto la suaviación del proceso de mejora del	
	contraste	Ĉ
2.5.	Diagrama esquemático del cubo que representa al espacio de colo-	
	res RGB . Se pueden apreciar algunos colores notables	11
2.6.	Imagen de ejemplo con las representaciones de intensidad (Y) y	
	de color (Cb, Cr) . Nótese que el mapa de intensidades Y es una	
	representación en escala de grises de la imagen digital	13
2.8.	Datos de ${\mathcal H}$ para una imagen de ejemplo. A la derecha ${\mathcal H}$, a la	
	izquierda $\mathcal{H} = \dots \dots$	16
2.9.	Datos de $SSIM$ para una imagen de ejemplo. A la derecha $SSIM$,	
	a la izquierda $SSIM$	17
2.7.	Comportamiento de partículas en PSO monobjetivo a través de la	
	serie de iteraciones	18
4.1.	Imágenes original y resultantes para la imagen de prueba calhouse	
	230.jpg	25

4.2.	Frente Pareto dibujado utilizando datos de referencia métricas de	
	la imagen de prueba calhouse_230.jpg	26
1.	${\bf Im\'agenes\ visualmente\ relevantes\ obtenidas\ mediante}\ {\it CMOPSO-}$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 1	37
2.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 1	38
3.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 2	41
4.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 2	42
5.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 3	45
6.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 3	46
7.	${\bf Im\'agenes\ visualmente\ relevantes\ obtenidas\ mediante}\ {\it CMOPSO-}$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 4	49
8.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 4	50
9.	Imágenes visualmente relevantes obtenidas mediante $CMOPSO-$	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 4	53
10.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 5	54
11.	Imágenes visualmente relevantes obtenidas mediante CMOPSO –	
	CLAHE. Las variables y decisión y métricas de las imágenes se	
	muestran en la tabla 6	55

12.	Frente pareto que contrasta los objetivos de las soluciones no do-	
	minadas. para los resultados de imágenes que se muestran en la	
	tabla 6	56

LISTA DE TABLAS

2.1.	Proceso de ecualización de histograma básica. La columna r_k re-	
	presenta los niveles de gris de la imagen original, y la columna s_k	
	muestra los niveles de gris que se mapean a partir del proceso, y	
	que reemplazarán a los valores de r_k en la imagen procesada	6
4.1.	Parámetros de entrada para $MOPSO$	24
4.2.	Parámetros de entrada para MOPSO	26
1.	Resultados no dominados para la imagen de prueba calhouse	
	230.jpg	36
2.	Resultados no dominados para la imagen de prueba calhouse	
	231.jpg	40
3.	Resultados no dominados para la imagen de prueba calhouse	
	233.jpg	44
4.	Resultados no dominados para la imagen de prueba calhouse	
	234.jpg	48
5.	Resultados no dominados para la imagen de prueba calhouse	
	236.jpg	52
6.	Resultados no dominados para la imagen de prueba calhouse	
	237.jpg	54

LISTA DE SÍMBOLOS

f	Imagen original	. ??
\mathbb{Z}	Conjunto de números enteros	??
\mathbb{R}	Conjunto de números racionales	??
m	Valor asociado a un píxel dentro de un espacio de color	??
c	Componentes del valor asociado a un píxel	. ??
j	Nivel de intensidad	??
f_k	Componentes de f	
L	Máximo nivel de intensidad de una imagen	.??
$h_{f_k}(j)$	Histograma del canal f_k	??
n_{j}	Cantidad de ocurrencia de la intensidad j en $f_k \dots \dots$. ??
g	Elemento estructurante	??
(u,v)	Coordenada espacial que representa un pixel de la imagen	.??
(s,t)	Coordenada espacial del elemento estructurante	
$(f \oplus g)$	Dilatación de la imagen original f por un elemento estructura	
(, ,	$g \dots \dots$.?? e g
$(f \ominus g)$ $(f \circ g)$?? Apertura de la imagen original f por un elemento estructura	nte
	$g \dots g \dots$	
$(f \bullet g)$	Cierre de la imagen original f por un elemento estructurante g	
WTH	Transformada de top-hat por apertura	
BTH	Transformada de top-hat por cierre	
f_E	Imagen con mejora de contraste	
f_1	Componente R de f	
f_2	Componente G de f	
f_3	Componente B de f	
w	Función de pesos	
T	Transformada escalar de una imagen	
n	Número de iteraciones	
i	Índice de iteraciones	. ??

WTH_i	<i>i</i> -escalas de brillos
BTH_i	<i>i</i> -escalas de oscuridad
WTH_{i-1}^S	(i-1)-diferencias en cascada de las escalas de brillo ??
BTH_{i-1}^{S}	(i-1)-diferencias en cascada de las escalas de oscuridad ??
WTH_M	Valores máximos de todas las escalas de brillos??
BTH_{M}	Valores máximos de todas las escalas de oscuridad??
WTH_M^S	Valores máximos de todas las escalas de brillos por sustracción??
BTH_M^S	Valores máximos de todas las escalas de oscuridad por sustracción ??
E(f)	Intensidad media de la imagen f ??
P(j)	Probabilidad de ocurrencia del valor j ??
ho	Valor del pixel central dentro de una ventana??
ι	Valor medio de los vecinos de ρ ??
ω	Contraste local??
D	Dominio de una imagen??
γ	Diferencia entre los canales f_1 y f_2 de una imagen??
β	Diferencia entre un medio de $(f_1 + f_2)$ y f_3 ??
σ_{γ}	Desviación estándar de γ
σ_{eta}	Desviación estándar de β
μ_{γ}	Media aritmética de γ ??
μ_{eta}	Media aritmética de β ??

LISTA DE ABREVIATURAS

RGB: Espacio de color RGB.

HSI: Espacio de color HSI.

HSV: Espacio de color HSV.

HE: Histogram Equalization.

 ${\it CLAHE: Contrast-Limited Adaptive \ Histogram \ Equalization.}$

 ${\bf MMCE:}\ Multiscale\ Morphological\ Contrast\ Enhancement.$

C: Contrast.

 ${\it CIR:}\ Contrast\ Improvement\ Ratio.$

CEF: Color Enhancement Factor.

Capítulo 1

INTRODUCCIÓN

En el Procesamiento Digital de Imágenes, la Mejora del Contraste es un proceso que consiste en la transformación de pixeles de una imagen, con la finalidad de realizar cambios de manera tal a resaltar uno o más objetos dentro de la imagen tratada. El objetivo principal del proceso de Mejora del Contraste es la de obtener una nueva imagen cuyo Contraste sea más adecuado para la aplicación específica que se utilizará después [GW02a]

La Mejora del Contraste es un paso de preprocesamiento fundamental para varias aplicaciones. Algunas de las aplicaciones que más se benefician de éste proceso se detallan a continuación:

- Imágenes Médicas (como ejemplos es posible tomar: el Diagnóstico Asistido por Computadora [Doi07], Imágenes de Tomografía Computarizada [EW93], y otros).
- Sensoreamiento Remoto [LKC14],
- Imágenes aéreas,
- Imágenes astronómicas,
- Imágenes biométricas,
- Otras.

Las técnicas basadas en Ecualización del Histograma se mostraron extensivamente válidas para enfocar los problemas de Mejora del Contraste [PAA+87, Zui94, Kim97]. Las Meta-Heurísticas tales como la Optimización Mono-Objetivo, y también la Optimización Multi-Objetivo fueron testeadas satisfactoriamente de manera a resolver problemas de Mejora del Contraste en imágenes en escala de

gris [MB, MBA⁺15, Sai99, HS13]. Sin embargo, la Optimización Multi-Objetivo aplicada a la Mejora del Contraste en imágenes a color supone dificultades adicionales, debido a que es necesario preservar la información de color presente dentro de dichas imágenes.

Figura 1.1: Imagen en escala de grises e imagen con contraste mejorado para posterior utilización.

Ésta propuesta consiste en realizar pruebas de Mejora del Contraste con imágenes a color transformadas desde el espacio de colores RGB al espacio de colores YCbCr de manera a realizar la Mejora de Contraste basada en Optimización Multi-Objetivo. Contrast Limited Adaptive Histogram Equalization (CLAHE) se aplica sobre el canal Y de la imagen de prueba, de manera a modificar el contraste, y la imagen resultante se transforma nuevamente a RGB de forma a evaluar la Mejora del Contraste lograda, además de la similaridad entre canales de color.

1.1. Objetivos

1.1.1. Objetivo General

Desarrollar un algoritmo de mejora de contraste para imágenes a color, utilizando un enfoque de Metaheurística Multi-Objetiva pura. El mismo debe de entrenar al algoritmo de Mejora del Contraste para la obtención de variables de decisión que logren mejorar el contraste de imágenes digitales.

1.1.2. Objetivos específicos

 Desarrollar un nuevo algoritmo de Mejora del Contraste de imágenes a color basado en Metaheurísticas Multi-Objetivo.

- Demostrar la factibilidad del enfoque de Mejora de Contraste de imágenes a color basado en Metaheurísticas Multi-Objetivo puras.
- Entrenar al algoritmo de Mejora del contraste para la obtención de variables de decisión para un conjunto de imágenes de prueba tipo.
- Encontrar alternativas de implementación que ayuden a subsanar problemas inherentes a los enfoques basados en Metaheurísticas Multi-Objetivo, cuando la cantidad de objetivos sobrepasa a tres.

1.2. Estructura de la tesis

El trabajo, en las secciones siguientes se organiza de la siguiente manera: en el capítulo 2, los conceptos fundamentales de éste trabajo se presentan; en el capítulo 3.2 se presenta el problema de Mejora de Contraste, y el enfoque de éste trabajo se muestra; en el capítulo 4 se discute en detalle los resultados obtenidos, y finalmente en el capítulo 5 se hacen algunos comentarios finales.

Capítulo 2

MARCO TEÓRICO

Éste capítulo presenta una introducción a los conceptos principales utilizados en éste trabajo. Solamente se busca presentar los conceptos fundamentales, necesarios para comprender los detalles técnicos del mismo.

Primeramente se muestran conceptos relacionados al procesamiento de la imagen, y luego se enfoca en los conceptos fundamentales necesarios para comprender la metaheurística asociada.

2.1. Ecualización del Histograma

La Ecualización del Histograma es un método de transformación de los pixeles de la imagen digital, cuya finalidad es ajustar el contraste de la misma. En general, la implementación básica de la Ecualización del Histograma toma todos los pixeles de la imagen, realiza una transformación del histograma de intensidades, e incrementa el contraste global de manera a tener una mejor distribución de intensidades dentro de la imagen. Una ventaja importante de esta técnica es que es una transformación directa y además un operador invertible; además los cálculos necesarios no son intensivos en el sentido computacional.

Existen modificaciones de la técnica básica, que abordan el problema utilizando múltiples histogramas (llamados subhistogramas), cuyo efecto importante es que logran mejoras en el contraste a nivel local. Los ejemplos más importantes son Adaptive Histogram Equalization [PAA+87], Contrast Limited Adaptive Histogram Equalization [Zui94], MultiPeak Histogram Equalization (MPHE) [WKC+98], y Multipurpose Beta Optimized Bihistogram Equalization (MBOBHE). Con éstos algoritmos se busca principalmente la mejora en el contraste sin que ocurra desplazamiento en el brillo medio o artefactos que produzcan pérdidas en detalles a consecuencia de las transformaciones ocurridas.

2.1.1. Implementación Básica

Si se considera una imagen digital discreta en escala de grises I, sea la probabilidad de ocurrencia de un nivel de gris r_k dentro de la imagen una aproximación de la forma:

$$p_r(r_k) = \frac{n_k}{n}$$
 $k = 0, 1, 2, ..., L - 1$ (2.1)

donde n es es el número total de pixeles de la imagen, n_k es el número de pixeles que poseen el nivel de gris r_k , y L es número de pixeles representables en la imagen. Se busca una función de transformación de los niveles de intensidad de los pixeles de la forma:

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$

$$= \sum_{j=0}^k \frac{n_j}{n} \qquad k = 0, 1, 2, ..., L - 1$$
(2.2)

Entonces, una imagen resultante se obtiene a partir del mapeo de cada pixel de nivel de intensidad r_k de la imagen de entrada con un pixel correspondiente de nivel de intensidad s_k utilizando la ecuación 2.2.

2.1.2. Ejemplo de aplicación

Mediante un ejemplo es posible clarificar el concepto presentado arriba. Por lo tanto, si asumimos una imagen digital de 4096 pixeles con L=8 niveles de gris. La tabla siguiente muestra de manera resumida el proceso correspondiente a la ecualización del histograma básica:

r_k	n_i	n_i/N	$cdf(r_k)$	s_k
0	790	0,19	0,19	$0,19\times7\approx1$
1	1023	0,25	0,44	$0,44\times7\approx3$
2	850	0,21	0,65	$0,65 \times 7 \approx 5$
3	656	0,16	0,81	$0.81 \times 7 \approx 6$
4	329	0,08	0,89	$0,89 \times 7 \approx 6$
5	245	0,06	0,95	$0,95 \times 7 \approx 7$
6	122	0,03	0,98	$0,98\times7\approx7$
7	81	0,02	1,00	$1,00\times7=7$

Tabla 2.1: Proceso de ecualización de histograma básica. La columna r_k representa los niveles de gris de la imagen original, y la columna s_k muestra los niveles de gris que se mapean a partir del proceso, y que reemplazarán a los valores de r_k en la imagen procesada.

La Tabla 2.1 muestra el proceso de ecualización de una imagen de ejemplo. Si se representa una imagen digital con 3 bits (lo cual permite representar 8 niveles de intensidad en la imagen digital), y se tiene el conteo de pixeles para cada nivel como se muestra en la columna n_i , entonces el proceso de normalización será como se ve en la columna n_i/N , el CDF se calcula como se muestra en la columna $cdf(r_k)$ y finalmente el nivel de gris mapeado será el que se muestra en la columna s_k .

Figura 2.1: Imagen original (sin procesar) y su correspondiente histograma y CDF

Figura 2.2: Imagen con contraste mejorado (luego de la aplicación de la ecualización del histograma) con su correspondiente histograma y CDF

Figura 2.3: Imágenes original y resultante luego de la aplicación de la ecualización del histograma. A la izquierda de cada una se observa el histograma y el CDF respectivo a cada imagen.

La Figura 2.1 muestra una imagen sin procesar, con su correspondiente histograma y CDF previos al proceso de ecualización; en la Figura 2.2 se muestra la imagen obtenida luego de aplicar el proceso de ecualización, y los correspondientes

histograma y CDF resultantes luego de éste proceso.

2.2. Contrast Limited Adaptive Histogram Equalization (CLAHE)

El algoritmo presentado en la sección anterior toma la imagen completa para realizar la tarea de ecualización del histograma. Ésto en general no es adecuado cuando se trabaja con imágenes cuyos detalles son cruciales para la posterior utilidad de la imagen transformada (imágenes aéreas, médicas, biométricas, y otras); es por éste motivo que se estudian (y en éste trabajo en particular se adoptan) algoritmos de mejora de contraste basados en ecualización del histograma por regiones, o algoritmos de ecualización locales.

En particular, Contrast Limited Adaptive Histogram Equalization (CLAHE) [Zui94] es un algoritmo bien conocido para la Mejora del Contraste, diseñado para ser aplicado de manera amplia en el contexto del procesamiento digital de imágenes. CLAHE es una variación del algoritmo de Mejora del Contraste denominado Adaptive Histogram Equalization (AHE) [PAA+87]. Ambas técnicas se explican en las subsecciones siguientes debido a la cercanía existente por la similaridad en cuanto a la implementación.

2.2.1. Adaptive Histogram Equalization

El problema con la ecualización del histograma ordinaria, es que la imagen digital podría tener regines significativamente más oscuras o claras que el resto de la imagen, por lo que el contraste en esas regiones podría no mejorar significativamente.

En AHE, una imagen es procesada transformando cada pixel utilizando una función basada en el histograma de los pixeles que lo rodean; en principio éste algoritmo se desarrolló para su uso en displays de cabina de aviones de guerra [KLW74]. En su forma más simple, cada pixel se transforma en base al histograma de la región que envuelve al pixel. La derivación de las funciones de transformación de los histogramas locales es exactamente el mismo que en la ecualización del histograma ordinaria: La función de transformación es proporcional a la función de distribución acumulativa CDF de los valores de pixeles de la vecindad.

Propiedades de AHE

• El tamaño de la región de vecindad es un parámetro del método.

Cuando una región de la imagen que contiene a un vecindario de pixeles es relativamente homogénea en cuanto a intensidades, el histograma resultante posee picos fuertes, y la función de transformación mapea un rango de intensidades corto a todo el rango de la imagen resultante. Ésto causa que AHE amplifique porciones pequeñas de ruido en regiones de la imagen con intensidades homogéneas.

2.2.2. Contrast Limited AHE

Contrast Limited AHE (CLAHE) es diferente a la ecualización adaptativa del histograma descrita arriba debido al esquema de limitación del contraste impuesto. CLAHE se desarrolló para prevenir la sobre-amplificación de ruido que se percibe en AHE.

Éste problema se supera limitando la mejora del contraste realizada por AHE. La amplificación del contraste en la vecindad de un pixel de intensidad dada está relacionada a la pendiente de la función de transformación. Ésto significa que la amplificación es proporcional a la pendiente de la CDF del vecindario y por tanto al valor del histograma a partir de ese valor de pixel. CLAHE limita la amplificación recortando el histograma de acuerdo a un coeficiente predefinido, denominado $Clip\ Limit$ antes de computar el CDF. Ésto limita la pendiente del CDF y por tanto la función de transformación.

Es importante no descartar la parte del histograma que excede a *Clip Limit* sino que se redistribuye de manera igualitaria entre todas las columnas del histograma, como se muestra en la Figura 2.4.

Figura 2.4: Redistribución de niveles de intensidad dentro del histograma de una región de una imagen, como paso previo al cálculo del CDF. Ésto tiene como efecto la suaviación del proceso de mejora del contraste.

2.3. Espacios de Color Adoptados

Los Espacios de Color [GW02a] son representaciones de color de las imágenes digitales, que por lo general se aceptan mediante convención o por estándar de hecho. Por lo general, los Espacios de Color consisten en sistemas de coordenadas donde cada punto es un color representable dentro del Espacio.

En éste trabajo se utilizan dos espacios de color importantes dentro de la literatura, los cuales son analizados en las subsecciones siguientes: RGB y YCbCr.

2.3.1. El espacio de colores Red, Green, Blue

El primer espacio importante a analizar en este trabajo es RGB (del inglés Red, Green, Blue). RGB es un modelo de color aditivo en el cual las luces de color rojo, verde, y azul se agregan de varias maneras de forma a reproducir un conjunto amplio de clolores. El propósito principal de éste modelo es la percepción, representación y muestra de imágenes en sistemas electrónicos tales com televisores y computadoras, a pesar de que también se utilizó en la fotografía convencional.

En el modelo RGB, cada color aparece como un componente primario del Rojo, Verde y Azul. Éste modelo sencillo se basa en el sistema de coordenadas Cartesianas. En la Figura 2.5 se pueden apreciar algunos colores notables representados en el espacio RGB: por ejemplo, el azul puro se representa como (0,0,1), el verde puro como (0,1,0) y el rojo puro como (1,0,0); mientas que el negro se representa como (0,0,0) y el blanco como (1,1,1). Se puede apreciar la ventaja de usar ese sistema de representación de colores, el cual es sencillo. Se asume un sistema de coordenadas normalizado.

Figura 2.5: Diagrama esquemático del cubo que representa al espacio de colores RGB. Se pueden apreciar algunos colores notables.

En este trabajo, las imágenes originales se representan utilizando el espacio de colores RGB; en éste caso se tiene un arreglo de pixeles de color de tamaño $N \times M \times 3$. Cada pixel de color está representado por un elemento $\begin{bmatrix} z_r & z_g & z_b \end{bmatrix}$ del arreglo previamente mencionado, donde z_r, z_g, z_b son los componentes rojo, verde y azul de un pixel de color en una ubicación específica.

2.3.2. El espacio de colores YCbCr

Las imágenes originales son luego transformadas al espacio de colores YCbCr [GW02b], el cual es una representación ampliamente utilizada en el video digital. En esta representación Y representa la información de luminancia de la imagen, mientras que el componente Cb representa la diferencia entre el componente azul y un valor de referencia, mientras que el componente Cr es la diferencia entre el componente rojo y un valor de referencia. Otra ventaja importante de ésta representación es que la conversión desde RGB, y nuevamente hacia RGB es directa:

$$\begin{bmatrix} Y \\ C_b \\ C_r \end{bmatrix} = \begin{bmatrix} 16 \\ 128 \\ 128 \end{bmatrix} + \begin{bmatrix} 65,481 & 128,553 & 24,966 \\ -37,797 & -74,203 & 112,000 \\ 112,000 & -93,786 & -18,214 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
(2.3)

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} Y + 1,402 \cdot (C_r - 128) \\ Y - 0,34414 \cdot (C_b - 128) - 0,71414 \cdot (C_r - 128) \\ Y + 1,772 \cdot (C_b - 128) \end{bmatrix}$$
(2.4)

En la Figura 2.6 se muestra cómo se separan los planos de Y (intensidad) de los planos de color Cb y Cr respectivamente. Ésta separación pone en evidencia la conveniencia de ésta representación de colores, considerando que utilizar un canal de intensidades es adecuado para el algoritmo de mejora de contraste descripto en la Sección 2.2.

Figura 2.6: Imagen de ejemplo con las representaciones de intensidad (Y) y de color (Cb,Cr). Nótese que el mapa de intensidades Y es una representación en escala de grises de la imagen digital.

2.4. Multi-Objective Particle Swarm Optimization (MOPSO)

En este trabajo se aplica un enfoque Metaheurístico al problema de encontrar parámetros adecuados para el algoritmo de Mejora del Contraste, con miras a lograr una buena correlación entre objetivos de contraste y distorsión.

Particle Swarm Optimization (PSO) es una Metaheurística computacional que optimiza un problema buscando mejorar soluciones candidatas de manera iterativa, moviendo las partículas dentro de un espacio de búsqueda definido por los parámetros de entrada del algoritmo sobre el que se aplica, y moviendo las partículas de acuerdo a fórmulas matemáticas simples de velocidad y posición.

PSO se atribuye originalmente a Kennedy, Eberhart y Shi [KE95, SE98]

En la Figura 2.7 se puede ver como unas soluciones candidatas se mueven dentro de un espacio de búsqueda, de manera de optimizar un objetivo.

En PSO, cada solución potencial del problema que se trata se denomina particle y la población actual de soluciones se llama swarm. Cada partícula \overrightarrow{x} realiza una búsqueda dentro de un espacio de búsqueda Ω , y para cada generación t, cada solución \overrightarrow{x} se actualiza de acuerdo a:

$$\vec{x}_i(t) = \vec{x}_i(t-1) + \vec{v}_i(t) \tag{2.5}$$

Aquí, \overrightarrow{v} es un factor conocido como la velocidad, y está dado por:

$$\overrightarrow{v}_i(t) = w \cdot (t-1) + C_1 \cdot r_1 \cdot (\overrightarrow{x}_{p_i} - \overrightarrow{x}_i) + C_2 \cdot r_2 \cdot (\overrightarrow{x}_{g_i} - \overrightarrow{x}_i), \qquad (2.6)$$

donde \vec{x}_{p_i} es la mejor solución que \vec{x}_i encontró hasta ahora, \vec{x}_{g_i} es la mejor solución que el enjambre completo encontró durante una iteración, w es un coeficiente conocido como el peso de la inercia, que controla la tasa de velocidad de la búsquda de PSO; r_1 y r_2 son números aleatorios entre [0,1]. Finalmente, C_1 Y C_2 son los coeficientes que controlan la ponderación entre partículas globales y locales durante la búsqueda.

Multi-Objective Particle Swarm Optimization (MOPSO) [NDGN⁺09] es la versión de PSO para enfoques de optimización con más de un objetivo. Se añaden determinadas características para lograr cierta eficiencia durante el proceso de optimización definido arriba, y se basa en el concepto de Dominancia Pareto para determinar las soluciones que se proponen como óptimas en el contexto de optimización Multi-Objetivo.

En MOPSO se añaden algunas características a PSO, a saber: un coeficiente

de constricción χ se adopta de manera a controlar la velocidad de la partícula, como se describe abajo:

$$\chi = \frac{2}{2 - \varphi - \sqrt{\varphi^2 - 4\varphi}} \tag{2.7}$$

donde

$$\varphi = \begin{cases} C_1 + C_2 & \text{if } C_1 + C_2 > 4\\ 0, & \text{if } C_1 + C_2 \le 4 \end{cases}$$
 (2.8)

Además, la velocidad en *MOPSO* se acota con la siguiente ecuación de constricción de velocidad:

$$v_{i,j}(t) = \begin{cases} delta_j & \text{if } v_{i,j}(t) > delta_j \\ -delta_j, & \text{if } v_{i,j}(t) \le delta_j \\ v_{i,j}(t), & \text{otherwise} \end{cases}$$
(2.9)

donde

$$delta_j = \frac{upper_limit_j - lower_limit_j}{2}$$
 (2.10)

2.5. Métricas de Optimización

2.5.1. Entropía de la imagen

La entropía de la imagen [KBD91] es una métrica que mide cuánta información está representada dentro de la imagen. La entropía y el contraste se relacionan de manera muy cercana a la distribución de intensidad de las imágenes, por lo que esta métrica es capaz de verificar las variaciones de contraste como consecuencia de las transformaciones de la imagen.

Primero, es necesario definir el Histograma de intensidades de una imagen H como sigue: Sea $c_1, c_2, ..., c_n$ el conteo de pixeles con intensidades $i_1, i_2, ..., i_n$ respectivamente, y sea también:

$$p_i = \frac{c_i}{N}, \qquad \sum_{i=1}^n c_i = N, \qquad i = 1, 2, ..., n,$$
 (2.11)

donde N es la suma total de pixeles mostrados en una imagen I y n es cada nivel de intensidad representable por el espacio de colores de I. Entonces, H se define como la distribución de probabilidad en el que cada p_i representa la pro-

babilidad de ocurrencia de una intensidad i. Entonces, la Entropía de la Imagen se define de la siguiente manera:

$$\mathcal{H} = -\sum_{i=0}^{n-1} p_i \log_2(p_i) \qquad \mathcal{H} \in \{0, ..., \log_2(n)\}$$
 (2.12)

Figura 2.8: Datos de ${\mathscr H}$ para una imagen de ejemplo. A la derecha ${\mathscr H},$ a la izquierda ${\mathscr H}=$

2.5.2. Índice de Similaridad Estructural

El Índice de Similaridad Estructural (SSIM) [WBSS04] es una métrica bien conocida que mide atributos importantes de la imagen tales como la Luminancia, Contrastey la Estructura. SSIM tiene como objetivo principal medir la distorsión agregada a la imagen como consecuencia del proceso de Mejora del Contraste. SSIM es calculado por regiones, por lo tanto, dadas dos imágenes I_x y T_y que representan una imagen original y una mejorada, respectivamente, el índice SSIM se define como se muestra abajo:

$$SSIM(I,T) = \frac{(2\mu_{I_x}\mu_{T_y} + E_1)(2\sigma_{I_xT_y} + E_2)}{(\mu_{I_x}^2 + \mu_{T_y}^2 + E_1)(\sigma_{I_x}^2 + \sigma_{T_y}^2 + E_2)} \qquad SSIM \in [0,1] \quad (2.13)$$

donde μ_{I_x} , μ_{T_y} son los promedios de intensidad de I_x y T_y , respectivamente; $\sigma_{I_x}^2$ y $\sigma_{T_y}^2$ son las varianzas de intensidad para I_x y T_y , respectivamente; $\sigma_{I_xT_y}$ es la covarianza entre las intensidades I_x y T_y . $E_1 = (K_1L^2)$, donde L es el rango dinámico de intensidades de los pixeles de la imagen, y $K_1 \ll 1$ es una constante pequeña; $E_2 = (K_2L)^2$, y $K_2 \ll 1$; tanto E_1 como E_2 son constantes utilizadas para estabilizar la división cuando el denominador se acerca a cero.

Figura 2.9: Datos de SSIM para una imagen de ejemplo. A la derecha SSIM,a la izquierda SSIM

Figura 2.7: Comportamiento de partículas en PSO monobjetivo a través de la serie de iteraciones.

Capítulo 3

FORMULACIÓN DEL PROBLEMA PLAN-TEADO Y PROPUESTA

El problema de Mejora de Contraste es considerado en este trabajo como un Problema de Optimización Multiobjetivo, el cual tiene las siguientes funciones objetivo a optimizar:

- 1. La entropía del canal Y de la imagen resultante, en su representación YCbCr,
- 2. El Índice de Similaridad Estructural SSIM medido para los canales R de las imágenes original y resultante, ambos en representación de colores RGB,
- 3. El Índice de Similaridad Estructural SSIM medido para los canales G de las imágenes original y resultante, ambos en representación de colores RGB,
- 4. El Índice de Similaridad Estructural SSIM medido para los canales B de las imágenes original y resultante, ambos en representación de colores RGB.

Sujeto a la restricción siguiente: las ventanas representables serán desde 2×2 hasta $M/2 \times N/2$, donde M y N son la cantidad de filas y columnas de pixeles de la imagen digital. Ésta restricción se plantea debido a que no se considera relevante realizar pruebas con ventanas más grandes.

3.1. Formulación del problema planteado

Dada una imagen a color I, con $M \times N$ pixeles, y una serie de vectores de decisión, $\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_{\Omega}\}$, donde cada vector $\vec{x}_i = (\mathscr{R}_x, \mathscr{R}_y, \mathscr{C})$ $(\mathscr{R}_x \ y \ \mathscr{R}_y \ son$

regiones contextuales y \mathscr{C} es el *Clip Limit*) se busca un conjunto de soluciones no dominadas \mathscr{X} , que simultáneamente maximicen las funciones objetivo f_1, f_2, f_3, f_4 :

$$\mathscr{F} = (\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_{\Omega}\}, CLAHE) \longrightarrow \max[f_1(T_y), f_2(I_R, T_R), f_3(I_G, T_G), f_4(I_B, T_B)];$$

$$f_1, f_2, f_3, f_4 \in [0, 1]$$
(3.1)

donde:

- I es la imagen a la que se aplica el proceso de Mejora del Contraste, y T es una de las imágenes resultantes del proceso,
- T_y es el mapa de intensidades mejoradas, al aplicar \vec{x} a I_y ; ésto es: $T_y = CLAHE(\vec{x}, I_y)$. T_y e I_y son los canales Y de la representación YCbCr de las imágenes I y T, respectivamente,
- $f_1(T_y) = \frac{\mathscr{H}(T_y)}{\log_2 L}$ es la Entropía Normalizada del mapa de intensidades mejoradas T_y , como se describió arriba,
- $f_2(I_R, T_R) = SSIM(I_R, T_R)$ es la medición del SSIM entre $I_R y T_R$. $I_R y T_R$ son los canales R de las representaciones RGB de I y T, respectivamente,
- $f_2(I_G, T_G) = SSIM(I_G, T_G)$ es la medición del SSIM entre I_G y T_G . I_G y T_G son los canales G de las representaciones RGB de I y T, respectivamente,
- $f_2(I_B, T_B) = SSIM(I_B, T_B)$ es la medición del SSIM entre I_B y T_B . I_B y T_B son los canales G de las representaciones RGB de I y I, respectivamente,

Acotados por:

- $\mathcal{R}_x \in [2, ..., M]$ dentro de \mathbb{N} ,
- $\mathcal{R}_y \in [2, ..., N]$ dentro de \mathbb{N} ,
- $\mathscr{C} \in (0,...,1]$ dentro \mathbb{R} .

3.2. Propuesta

Algorithm 1 MOPSO-CLAHE

```
Require: Imagen de entrada I, cantidad de partículas \Omega, iteraciones t_{max}
1: Inicializar \omega, c_1, c_2, t=0, lower_limit<sub>1</sub>, lower_limit<sub>2</sub>, lower_limit<sub>3</sub>, upper_limit<sub>1</sub>, upper_limit<sub>2</sub>,
     upper\_limit_3, \mathscr{X}
2: while t < t_{max} do
3:
          {\bf for}cada i\text{-}{\rm\acute{e}sima} partícula {\bf do}
4:
                Calcular nuevas velocidades \overrightarrow{v_i}^t de partículas utilizando las ecuaciones (2.6) and (2.9)
5:
                Calcular nuevas posiciones de partículas \overrightarrow{x_i}^{t} en base a la expresión (2.5)
6:
                I_{RGB} \longrightarrow I_{YCbCr}
               T_{(y,i)} = \text{CLAHE}(\overrightarrow{x_i}^t, I_y)
7:
8:
                f_i^t = f_1(T_{(y,i)}), f_2(I_{(R,i)}, T_{(R,i)}), f_3(I_{(G,i)}, T_{(G,i)}), f_4(I_{(B,i)}, T_{(B,i)})
                if \overrightarrow{x_i} \succ \overrightarrow{x_{p_i}} then
9:
10:
                      replace \overrightarrow{x}_{p_i} by \overrightarrow{x}_i^t
11:
                end if
12:
                if \overrightarrow{x_i} \succ \overrightarrow{x_{g_i}} then
13:
                      Update the Pareto set {\mathscr X}
14:
15:
                t = t + 1
16:
           end for
17: end while
Ensure: \mathscr{X}
```

El Algoritmo 1 muestra cómo PSO-CLAHE Color Multi-Objetivo (*CMOPSO-CLAHE*) es implementado, de manera a lograr la Mejora del Contraste basada en Metaheurísticas.

Los parámetros recibidos por CLAHE son almacenados por un conjunto de partículas $(\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_\Omega\}) = (\mathcal{R}_x, \mathcal{Y}_x, \mathcal{E})$, las cuales representan soluciones candidatas al problema de Mejora de Contraste; la imagen original I se transforma a su representación YCrCb, y $(\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_\Omega\})$ son aplicados al canal Y de la imagen digital original, de manera a obtener un grupo de mapas de intensidades $T_i(y,i)$, el cual es utilizado para realizar la transformación inversa hacia RGB, para así obtener un conjunto de imágenes resultantes T_i . Las imágenes resultantes son evaluadas de acuerdo a las métricas \mathcal{H}_Y , $SSIM_R$, $SSIM_G$, $SSIM_B$, que son la entropía de las imágenes resultantes medidas en el canal Y de la representación YCrCb de dichas imágenes, y $SSIM_R$, $SSIM_G$, $SSIM_B$ son las medidas SSIM de las imagénes original y resultantes utilizando los canales R, G, B de las representaciones RGB de las imágenes. Éstas evaluaciones determinan cuáles soluciones candidatas se pueden considerar no dominadas con respecto al conjunto completo Ω de soluciones obtenidas en una iteración del enfoque Metahuerístico. Las soluciones no dominadas se almacenan finalmente en el conjunto Pareto. El proceso de CMOPSO - CLAHE se repite hasta que se alcanza un criterio de parada.

El resultado final del proceso es un conjunto de parámetros de CLAHE no dominados entre sí \mathscr{X} , los cuales aplicados sobre la imagen deben dar imágenes con distintos niveles de de compromiso entre contraste obtenido y distorsión producida por el algoritmo de Mejora del Contraste.

Capítulo 4

RESULTADOS Y DISCUSIÓN

En éste apartado se muestran los resultados obtenidos a partir de las pruebas experimentas, y las características más resaltantes que pudieron analizarse a partir de la serie de pruebas.

4.1. Ambiente de Pruebas experimentales

El conjunto de pruebas se realizó sobre el siguiente hardware disponible: Una PC HP Proliant ML 110 Gen9 con las siguientes características:

- Procesador Xeon E7 v3/Xeon E5 v3/Core i7,
- 8GB de memoria del sistema,
- Disco duro de 2TB MB2000GCWDA,
- Sistema Operativo CentOS 7 (centos-release-7-3.1611.el7.centos.x86_64).

Tabla 4.1: Parámetros de entrada iniciales para CMOPSO-CLAHE.

Parámetro	Valor	Parámetro	Valor
M	256	N	163
$lower_limit_{\mathscr{R}_x}$	2	$upper_limit_{\mathscr{R}_x}$	M/2
$lower_limit_{\mathscr{R}_y}$	2	$upper_limit_{\mathscr{R}_y}$	N/2
$lower_limit_{\mathscr{C}}$	0	$upper_limit_{\mathscr{C}}$	0.5
Ω	100	t_{max}	100
$c_1 \ min$	1.5	$c_1 \ max$	2.5
$c_2 min$	1.5	$c_2 max$	2.5
$r_1 min$	0.0	$r_1 max$	1.0
$r_2 min$	0.0	$r_2 max$	1.0

Se realizaron pruebas utilizando 8 imágenes a color a partir del conjunto de datos disponible en http://www.vision.caltech.edu/archive.html. La tabla 4.1 muestra cómo SMPSO fué configurada para la ejecuciónde prueba experimentales. Los detalles de implementación de SMPSO está disponible en [DNA10], mientras que los detalles de implementación para CLAHE, \mathscr{H} y SSIM están disponibles en [Bra00].

Para cada imagen de prueba, se realizaron 50 ejecuciones, y en promedio se encontraron 100 soluciones no dominadas. De la figura (4.1) se puede verificar que es notable la manera en que las variables de decisión entrenadas logran la Mejora del Contraste en las imágenes de prueba; además de que se puede evidenciar también la existencia una relación de compromiso con respecto a la variación de coeficientes entre \mathscr{H} y $SSIM_R$, $SSIM_G$, $SSIM_B$. Es también notable a partir de la Figura (4.1)(c) cómo los valores más altos de \mathscr{H} degradan severamente a la imagen, mientras que los valores altos de $SSIM_R$, $SSIM_G$, $SSIM_B$ no logran el Contraste suficiente, en ocasiones siendo apenas perceptible; por lo que es necesario encontrar el balance correcto entre \mathscr{H} y $SSIM_R$, $SSIM_G$, $SSIM_B$.

En el Anexo se puede apreciar el detalle de coeficientes obtenidos para las métricas utilizadas en el trabajo.

(a) Imagen Original. $\mathcal{H}_{\mathcal{Y}} = 0.207231$, $SSIM_R=1,\,SSIM_G=1,\,SSIM_B=1$

(b) Imagen mejorada. $\mathcal{H}_{\mathcal{Y}} = 0.611275$, $SSIM_R = 0.00897331, SSIM_G =$ $0,\!00823064,\,SSIM_B=0,\!00851013$

 $SSIM_R = 0.416776, \ SSIM_G = 0.403636, \ SSIM_R = 0.000204143, \ SSIM_G$ $SSIM_B = 0,417654$

(c) Imagen mejorada. $\mathscr{H}_{\mathscr{Y}}=0.0350595,$ (d) Imagen mejorada. $\mathscr{H}_{\mathscr{Y}}=0.788927,$ $0,\!0000526475,\,SSIM_B=0,\!0000518143$

Figura 4.1: Imágenes original y resultantes para la imagen de prueba calhouse_-230.jpg

Figura 4.2: Frente Pareto dibujado utilizando datos de referencia métricas de la imagen de prueba calhouse_230.jpg

Tabla 4.2: Tabla de correlación entre métricas. Los datos fueron tomados de la Tabla de Anexo para la imagen calhouse_230.jpg

Metrics	$\mathcal{H}_{\mathcal{Y}}$	$SSIM_R$	$SSIM_G$	$SSIM_{B}$
$\mathcal{H}_{\mathcal{Y}}$	1			
$SSIM_R$	-0.9826	1		
$SSIM_G$	-0.9823	0.9999	1	
$SSIM_{B}$	-0.9826	0.9999	0.9999	1

La Figura (4.2) muestra el Frente pareto creado a partir de los datos de coeficientes de métricas de la imagen de prueba calhouse_230.jpg, y también la Tabla 4.2 muestra la correlación entre métricas, analizadas a partir de los resultados de coeficientes de métricas de dicha imagen. Es notable cómo hay una correlación positiva muy fuerte entre $SSIM_R$, $SSIM_G$ y $SSIM_B$; también existe una correlación negativa entre las métricas previamente mencionadas y $\mathcal{H}_{\mathscr{Y}}$. Éstas correlaciones indican que los canales R, G, B de las imágenes se ven afectadas directamente por el proceso que modifica el canal Y (véase el Algoritmo (1)). Ésto también indica que la Mejora del Contraste de las imágenes a color se puede plantear como un problema de optimización bi-objetivo, utilizando simplemente $\mathcal{H}_{\mathscr{Y}}$ y SSIM aplicados sobre el canal Y, o posiblemente tomando como métrica de distorsión alguna métrica relacionada a la medición de variación de color.

Finalmente, se puede mencionar que los tiempos de ejecución de las pruebas (las cuales se detallan en el Anexo), muestran que es temporalmente factible realizar entrenamientos que posibilitan la obtención de variables de decisión adecuadas para el algoritmo de Mejora del Contraste, cuya aplicación posterior garantiza la posibilidad de resaltar distintos detalles de la imagen de acuerdo al contraste aplicado.

Capítulo 5

CONCLUSIONES Y TRABAJOS FUTUROS

Se presentó un enfoque de Mejora de Contraste Basada en Optimización Multi-objetivo, el cual toma en cuenta la intensidad y la información de color como métricas Multi-Objetivo. Éste enfoque logra un grupo de imágenes resultantes, con diferentes niveles de compromiso entre contraste y similaridad estructural, de manera a maximizar la información disponible para el análisis posterior.

Se realizó una comparación de la propuesta con una implementación Mono-Objetivo similar del estado del arte, basado solamente en la optimización del canal de intensidades de la imagen, como si se tratara de una imagen en escala de grises. Se puede verificar que el enfoque Mono-Objetivo es insuficiente debido a que no provee información adecuada para obtener variables de decisión útiles para la Mejora del Contraste en Imágenes a Color.

Se demostró de manera satisfactoria la factibilidad del enfoque, con vistas a obtener variables de decisión adecuadas para la Mejora del Contraste de imágenes a color. Futuros experimentos podrían demostrar que las variables de decisión obtenidas son adecuadas para la mejora del contraste en imágenes de cierta categoría, además de encontrar aproximaciones de tiempo de entrenamiento más eficientes.

Los principales aportes encontrados en este trabajo de Maestría pueden resumirse en lo siguiente:

- Se demostró la factibilidad de la aplicación de Metaheurísticas para la obtención de variables de decisión adecuadas para la Mejora del Contraste de Imágenes a Color que permitan contrastar imágenes con distintos niveles de compromiso entre contraste y distorsión por introducción de ruido,
- Se muestra una forma de cambiar el enfoque de la metaheurística de manera

a reducir la cantidad de objetivos utilizados sin comprometer los resultados de los entrenamientos de Mejora del Contraste.

5.1. Trabajos futuros

Los trabajos futuros considerados a partir de los resultados obtenidos se detallan a continuación.

- Utilizar métricas más adecuadas para la Mejora del Contraste, considerando que se tienen en cuenta imágenes a color,
- Considerar experimentos utilizando solamente dos objetivos basados en el canal de luminancia de la imagen a color, considerando algún canal que separe la información de intensidad de la información de color de la imagen,
- Considerar experimentos con Metaheurísticas diferentes y métricas diferentes, de manera a realizar comparaciones con la finalidad de alcanzar una posible generalización del trabajo de Mejora de Contraste basada en Metaheurísticas,
- Considerar restricciones de tiempo, cantidad de resultados no dominados, e inclusive considerar información de soluciones no dominadas entre corridas, de manera a buscar mejorar la eficiencia de tiempo y recursos de los enfoques de Mejora del Contraste basados en Metaheurísticas,
- Realizar experimentos relacionados a implementaciones de Metaheurísticas Robustas para la Mejoras de Contraste para imágenes a color,
- Considerar otras categorías de imágenes para realizar experimentos, además de buscar enfoques adecuados para el entrenamiento de variables de decisión, considerando imágenes de tamaño relativamente grande,
- Buscar algoritmos de mejora del contraste que entrenados con Metaheurísticas eviten el efecto 'halo' que se aprecia en algunas imágenes resultantes no dominadas.

REFERENCIAS BIBLIOGRÁFICAS

- [Bra00] Gary Bradski. The opency library. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 25(11):120–123, 2000.
- [DNA10] Juan J Durillo, Antonio J Nebro, and Enrique Alba. The jmetal framework for multi-objective optimization: Design and architecture. In Evolutionary Computation (CEC), 2010 IEEE Congress on, pages 1–8. IEEE, 2010.
- [Doi07] Kunio Doi. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. *Computerized medical imaging and graphics*, 31(4):198–211, 2007.
- [EW93] Robert R Edelman and Steven Warach. Magnetic resonance imaging. New England Journal of Medicine, 328(10):708–716, 1993. PMID: 8433731.
- [GW02a] Rafael C. Gonzalez and Richard E. Woods. *Digital Image Processing* (2nd Ed). Prentice Hall, 2002.
- [GW02b] Rafael C Gonzalez and Richard E Woods. Processing, 2002.
- [HS13] Pourya Hoseini and Mahrokh G. Shayesteh. Efficient contrast enhancement of images using hybrid ant colony optimisation, genetic algorithm, and simulated annealing. *Digital Signal Processing*, 23(3):879 893, 2013.
- [KBD91] A. Khellaf, A. Beghdadi, and H. Dupoisot. Entropic contrast enhancement. IEEE Transactions on Medical Imaging, 10(4):589–592, Dec 1991.
- [KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948 vol.4, Nov 1995.
- [Kim97] Yeong-Taeg Kim. Contrast enhancement using brightness preserving bihistogram equalization. IEEE Transactions on Consumer Electronics, 43(1):1–8, Feb 1997.

- [KLW74] David J Ketcham, Roger W Lowe, and J William Weber. Image enhancement techniques for cockpit displays. Technical report, HUGHES AIRCRAFT CO CULVER CITY CA DISPLAY SYSTEMS LAB, 1974.
- [LKC14] Thomas Lillesand, Ralph W Kiefer, and Jonathan Chipman. Remote sensing and image interpretation. John Wiley & Sons, 2014.
- [MB] LG Moré and MA Brizuela. Pso applied to parameter tuning of clahe based on entropy and structural similarity index.
- [MBA+15] Luis G More, Marcos A Brizuela, Horacio Legal Ayala, Diego P Pinto-Roa, and Jose Luis Vazquez Noguera. Parameter tuning of clahe based on multi-objective optimization to achieve different contrast levels in medical images. In *Image Processing (ICIP)*, 2015 IEEE International Conference on, pages 4644–4648. IEEE, 2015.
- [NDGN⁺09] Antonio J Nebro, Juan José Durillo, Jose Garcia-Nieto, CA Coello Coello, Francisco Luna, and Enrique Alba. Smpso: A new pso-based metaheuristic for multi-objective optimization. In Computational intelligence in miulti-criteria decision-making, 2009. mcdm'09. ieee symposium on, pages 66–73. IEEE, 2009.
- [PAA+87] Stephen M Pizer, E Philip Amburn, John D Austin, Robert Cromartie, Ari Geselowitz, Trey Greer, Bart ter Haar Romeny, John B Zimmerman, and Karel Zuiderveld. Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3):355– 368, 1987.
- [Sai99] F. Saitoh. Image contrast enhancement using genetic algorithm. In Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE International Conference on, volume 4, pages 899–904 vol.4, 1999.
- [SE98] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pages 69-73, May 1998.
- [tim] time(1) Linux User's Manual.

- [WBSS04] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
- [WKC⁺98] K. Wongsritong, K. Kittayaruasiriwat, F. Cheevasuvit, K. Dejhan, and A. Somboonkaew. Contrast enhancement using multipeak histogram equalization with brightness preserving. In *IEEE. APCCAS 1998*. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242), pages 455–458, Nov 1998.
- [Zui94] Karel Zuiderveld. Contrast limited adaptive histogram equalization. In Graphics gems IV, pages 474–485. Academic Press Professional, Inc., 1994.

ANEXO A: Resultados extendidos

En este capítulo se muestra el detalle numérico de las métricas componentes de CMOPSO-CLAHE. además de valores resultantes de las variables de decisión y tiempos de ejecución para las imágenes de prueba. para los resultados no dominados. Los tiempos de ejecución detallados corresponden a time()) [tim].

.1. Imagen de prueba calhouse_230.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	Е	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\vec{x})$	$f_4(I.\overrightarrow{x})$
0	23	3	57,3732575144	0,0292377	0,425724	0,412724	0,426577
97	24	3	25,5610737092	0,0314603	0,420266	0,408046	0,421692
145	17	3	54,6437033238	0,0318866	0,421223	0,40784	0,422096
264	17	3	42,5351753326	0,0320687	0,421165	0,407786	0,422038
597	15	3	37,8604544159	0,0324335	0,418419	0,405284	0,41951
95	17	3	27,3747341617	0,0327239	0,417424	0,404622	0,418723
384	15	3	34,674710421	0,0327873	0,417622	0,404595	0,418776
897	16	3	31,9268872897	0,0329156	0,417416	0,40472	0,418845
976	16	3	31,5996434554	0,0329747	0,417346	0,404664	0,418797
173	15	3	30,4868378039	0,0330629	0,41647	0,403624	0,417737
795	15	3	29,9099187121	0,0331659	0,416189	0,403386	0,417492
216	15	3	27,1861226943	0,033587	0,414587	0,401996	0,416016
41	12	3	0	0,0340767	0,413031	0,399763	0,414117
191	12	3	38,2465814367	0,0345759	0,412369	0,399186	0,413501
601	12	3	37,3130362909	0,034658	0,412267	0,3991	0,413406
876	12	3	35,7290324923	0,0346832	0,412014	0,398878	0,413172
271	12	3	28,5029445185	0,0361695	0,409605	0,396861	0,41102
284	12	3	23,1372286768	0,036273	0,405213	0,393055	0,40713
7	8	3	86,3634576987	0,0365424	0,401675	0,388628	0,402692
873	8	3	33,7323253391	0,0368686	0,401169	0,388217	0,402252
993	12	3	18,9568817854	0,0396409	0,398886	0,387114	0,40115
715	8	3	19,8981950651	0,0398903	0,392763	0,380737	0,394642
681	8	3	19,3046814893	0,0401602	0,391976	0,379959	0,393811
182	8	3	18,4173409642	0,0407586	0,390247	$0,\!378278$	0,392203
94	8	3	17,2658511178	0,0412259	0,387277	0,375334	0,389189
155	8	3	16,8016243684	0,0418453	0,386054	0,374126	0,387956
452	8	3	16,0485725832	0,0422859	0,383705	0,371776	0,385579
590	8	3	15,2693772644	0,0425038	0,38073	0,368762	0,382451
499	8	3	15,143110873	0,0434661	0,379937	0,367978	0,381609
883	8	3	14,7557345894	0,0436602	0,378519	0,366529	0,380116
558	8	3	14,6161046175	0,044045	0,377828	0,365838	0,379343
393	8	3	14,5404305449	0,0456548	0,377069	0,365055	0,378529
219	8	3	14,1441311249	0,0458689	0,375535	$0,\!363518$	0,376908
158	8	3	14,0764285691	0,048008	0,374861	0,362849	0,376142
877	8	3	13,7858094069	0,0481968	0,373455	0,361449	0,374686
378	7	3	13,3843934032	0,0489759	0,37131	0,359071	0,372745

	261	7	3	13,3087797253	0,049448	0,370623	0,358357	0,371994
İ	169	7	3	13,0394378321	0,0503712	0,369149	0,356901	0,370396
	98	7	3	12,8029702226	0,0510101	0,368531	0,356287	0,369703
İ	498	7	3	12,6957022278	0,0528369	0,367707	0,355457	0,368871
İ	80	2	9	21,9803739685	0,0547318	0,370092	0,356346	0,365551
	571	2	9	20,4860987136	0,0552111	0,364453	0,350672	0,359591
İ	112	2	9	19,3139636962	0,0559449	0,360188	0,346436	0,355058
İ	595	2	9	19,0134812321	0,0573258	0,35901	0,345286	0,353856
	59	2	9	18,5934827218	0,058104	0,357468	0,343791	0,352303
İ	703	9	3	10,3704185678	0,058908	0,353311	0,341212	0,352759
İ	356	2	9	17,7548394545	0,0595813	0,353595	0,339995	0,348171
	684	2	9	17,3893954221	0,0602002	0,3522	0,338654	0,346685
İ	252	2	8	17,6230811316	0,0627446	0,351647	0,337268	0,345823
İ	257	2	8	16,7109381832	0,0634542	0,347473	0,333111	0,341571
	675	2	6	15,8882552359	0,0646944	0,338878	0,323731	0,333939
İ	171	2	6	15,1222111273	0,0647807	0,33565	0,320533	0,330537
İ	842	2	6	14,9422383356	0,0650434	0,334494	0,319402	0,329289
	226	2	6	14,1038613626	0,0651598	0,329654	0,314756	0,32418
١	447	2	6	14,0672893813	0,0653296	0,329272	0,314427	0,323857
İ	79	2	6	13,8222357099	0,065599	0,327786	0,313001	0,322367
	267	2	6	13,6608515318	0,0656133	0,326686	0,311935	0,321176
	440	2	6	13,6386821722	0,0658236	0,326186	0,311441	0,320633
١	194	2	6	13,4347941328	0,0669374	0,325037	0,31032	0,319386
	121	2	6	12,6219742475	0,067328	0,319971	0,305368	0,313821
١	92	2	6	12,5297988526	0,0685897	0,319044	0,304494	0,312819
١	251	2	6	12,1896188914	0,0698447	0,317086	0,302623	0,310927
	493	2	6	12,0368364323	0,070735	0,316246	0,301833	0,310161
١	887	2	6	11,8321497111	0,07126	0,314152	0,299831	0,307934
İ	487	2	6	11,4967623408	0,0735698	0,311168	0,296897	0,304725
	542	5	3	7,67162409306	0,0749698	0,302866	0,290854	0,30122
١	860	2	4	10,0745018143	0,0750613	0,293276	0,279185	0,290037
İ	539	2	6	8,79684436462	0,0769367	0,286597	0,272788	0,279622
	3	2	4	8,4270921169	0,0777197	0,276049	0,262486	0,271559
İ	514	2	4	8,40696827132	0,0793753	0,275258	0,26177	0,270849
İ	46	2	6	8,04438716466	0,0799718	0,277158	0,263589	0,269992
	102	2	6	7,9997365178	0,0802989	0,276266	0,262741	0,269098
İ	471	2	9	7,85180043792	0,0813022	0,275397	0,2635	0,269108
İ	1	2	5	7,96548201272	0,0814872	0,265061	0,252916	0,259859
	777	2	5	7,76557035058	0,0815563	0,262488	0,250409	0,257194
İ	405	2	5	7,68016122536	0,0819216	0,261172	0,249146	0,255847
İ	4	2	5	7,61629934678	0,082098	0,260247	0,24825	0,254892
	195	2	6	6,91195209853	0,0828915	0,25947	0,246359	0,252558
İ	234	2	5	7,48778556584	0,0837178	0,258099	0,246136	0,252683
İ	373	2	5	7,38351544203	0,0844555	0,257442	0,245512	0,252009
	387	2	6	6,78716478421	0,0847569	0,257979	0,244931	0,251067
İ	771	2	5	6,81921566464	0,0854425	0,250546	0,238638	0,245117
İ	407	2	3	5,43138516175	0,0869789	0,22301	0,212148	0,220494
	723	2	3	5,38666052144	0,0883751	0,222193	0,21133	0,219583
	140	2	3	5,13363566992	0,0900288	0,217382	0,206558	0,214437
	298	2	3	4,96763010595	0,0916071	0,214828	0,203994	0,211862
	319	2	3	4,85799070096	0,0932822	0,212195	0,201372	0,20903
	526	2	3	4,81280333702	0,0940423	0,210808	0,200041	0,207624
	45	2	3	4,79323134445	0,0968609	0,210167	0,199387	0,206933
	178	2	3	4,7385206072	0,0980654	0,209276	0,198493	0,205957
	10	2	3	4,57184432088	0,0981712	0,205247	0,194535	0,20186
	34	2	3	4,08287385715	0,0981765	0,193293	0,182853	0,189571
	992	2	3	4,01884732714	0,101047	0,19153	0,181147	0,187812

	396	2	3	3,9856954397	0,103705	0,189877	0,179515	0,1861
İ	722	2	3	3,95811781426	0,108743	0,188735	0,178423	0,184941
	743	2	3	3,85270193874	0,115116	0,184883	0,174711	0,181106
İ	43	2	3	3,63456542103	0,115272	0,177589	0,167514	0,173726
İ	82	2	3	3,54014931968	0,116835	0,174949	0,164953	0,171076
	103	2	3	3,49753256142	0,120246	0,172834	0,162913	0,168983
İ	228	2	3	3,42655439329	0,124204	0,170172	0,160381	0,166356
İ	89	2	3	3,39144518636	0,12493	0,168913	0,159211	0,165154
	77	2	3	3,32844054002	0,126974	0,164821	0,155251	0,1611
İ	506	2	3	3,28422335333	0,128863	0,163309	0,153766	0,159582
İ	73	2	3	3,25004004447	0,132968	0,161921	0,152441	0,158221
	127	2	3	3,22486879942	0,133743	0,160163	0,150728	0,156419
İ	17	2	3	3,15511690905	0,135205	0,158179	0,148785	0,154395
İ	106	2	3	3,11964708745	0,137987	0,15621	0,146931	0,152445
	131	2	3	3,03190160963	0,141845	0,151186	0,142191	0,147534
İ	86	2	3	2,9958936312	0,14586	0,149059	0,140118	0,145438
İ	747	2	3	2,95322617574	0,146119	0,147605	0,138739	0,144015
	78	2	3	2,89801274365	0,15009	0,145706	0,136892	0,142111
	72	2	3	2,75980332202	0,15052	0,138807	0,130323	0,135222
İ	42	2	3	2,67749869778	0,151622	0,134534	0,126169	0,130984
	122	2	3	2,64758257343	0,159517	0,133691	0,12534	0,130156
	57	2	3	2,59888888505	0,160515	0,132057	0,123734	0,128521
١	138	2	3	2,55647560654	0,168326	0,130234	0,121997	0,126759
	68	2	3	2,5461703968	0,170373	0,128765	0,120523	0,125241
١	55	2	3	2,45672191039	0,17349	0,124533	0,116481	0,121125
İ	411	2	3	2,43629302451	0,178669	0,122601	0,114592	0,119211
	23	2	3	2,37596020068	0,179921	0,120637	0,112692	0,117259
١	84	2	3	2,36363878304	0,188776	0,11819	0,110339	0,11481
İ	19	2	3	2,27289241865	0,198626	0,113849	0,106283	0,110508
	16	2	3	2,18556239805	0,203667	0,110207	0,102788	0,106933
١	156	2	4	2,10433011343	0,216118	0,10871	0,101138	0,10519
İ	85	2	3	2,13869778413	0,224032	0,106717	0,0993644	0,103488
	752	2	4	2,05457006729	0,228357	0,106082	0,0985937	0,10263
İ	185	4	3	1,92864636694	0,22998	0,105569	0,0977002	0,101977
İ	778	2	3	2,05250835305	0,234032	0,102608	0,0954123	0,0994415
	53	2	3	1,99410562164	0,234408	0,0996483	0,0925625	0,096537
İ	58	2	4	1,88120768276	0,240396	0,0963653	0,0894962	0,0931382
İ	25	2	3	1,80998124098	0,244	0,0905206	0,083824	0,0875545
	33	2	3	1,76706016276	0,258499	0,0886514	0,081945	0,0856682
İ	31	2	3	1,73836884281	0,264974	0,0864215	0,0797893	0,0834688
İ	69	2	3	1,6346154359	0,267809	0,0797979	0,0735224	0,0769657
	6	2	2	1,58883205633	0,287121	0,0769226	0,0706469	0,0743688
İ	671	2	2	1,58000196605	0,297476	0,0754181	0,0692956	0,0729723
İ	125	2	2	1,55504131254	0,300763	0,0734292	0,0672904	0,0708546
	52	2	3	1,49227705544	0,302547	0,071479	0,0655913	0,0687843
İ	128	2	3	1,44254540392	0,305737	0,0695817	0,0637585	0,0670127
İ	40	2	2	1,48516948564	0,312282	0,0694599	0,0635634	0,0670315
	47	2	3	1,42160592761	0,315582	0,065621	0,0601788	0,0631188
	38	2	3	1,32792087783	0,334522	0,0620888	0,0567531	0,0596328
	24	2	3	1,29923171946	0,341866	0,0589225	0,0539354	0,0566711
	37	2	3	1,27108655802	0,357528	0,0561818	0,051234	0,0539629
	21	2	3	1,20977573123	0,366692	0,0537357	0,0489777	0,0515024
	63	2	3	1,1432088483	0,379826	0,0495673	0,0451854	0,0476049
	51	2	3	1,11385295247	0,392391	0,0460724	0,042059	0,0443428
	83	2	3	1,07038368204	0,405484	0,0433605	0,0395519	0,041603
	497	2	3	1,03487871597	0,416443	0,0415171	0,0378856	0,0398424
	74	2	3	0,983928616331	0,422673	0,0391384	0,0356485	0,0375976

28	2	3	0,962874904331	0,441196	0,0358967	0,0326292	0,0344847
49	2	3	0,911749739956	0,452317	0,0334806	0,0305298	0,0321478
64	2	3	0,886742609153	0,460282	0,0313939	0,0285593	0,0301892
35	2	3	0,841926825957	0,472741	0,0288693	0,0262626	0,0277464
296	2	2	0,850876965902	0,490974	0,0271727	0,0247413	0,0262711
27	2	3	0,770359000241	0,494502	0,0247892	0,0225578	0,0238702
48	2	3	0,728620775766	0,505156	0,0216592	0,0196863	0,0208914
12	2	3	0,683879333277	0,516532	0,0201843	0,0183705	0,0194163
13	2	3	0,647342056838	0,530366	0,0177617	0,0161534	0,0170947
8	2	2	0,67282423446	0,555373	0,017341	0,0157395	0,0167658
90	2	3	0,574015551604	0,567288	0,0141571	0,0127951	0,0135701
62	2	3	0,559771230579	0,571877	0,0115625	0,0105159	0,011121
196	2	3	0,510407911789	0,588363	0,0108908	0,00987159	0,0104669
26	2	3	0,479204318984	0,59779	0,00906811	0,00822819	0,00867055
748	2	6	0,506610195732	0,611275	0,00897331	0,00823064	0,00851013
11	2	3	0,419813717968	0,614437	0,00742514	0,00670994	0,00714773
720	2	3	0,398756230509	0,628389	0,00650833	0,00588966	0,00621115
29	2	4	0,387786121852	0,631133	0,00581047	0,00528148	0,00556787
197	2	2	0,357960602073	0,658577	0,00551113	0,00494194	0,00529456
899	2	6	0,353321285556	0,66153	0,0046932	0,00427781	0,00440184
279	3	4	0,3207766409	0,679144	0,00471416	0,00426083	0,00437535
183	2	2	0,30109252741	0,682264	0,00351253	0,00309252	0,00331002
60	2	3	0,237441707296	0,698645	0,00224598	0,00200366	0,00205784
209	2	3	0,190721779561	0,708029	0,00164594	0,0014135	0,00148235
797	2	4	0,172919850592	0,72584	0,00141331	0,00116224	0,00118492
96	3	2	0,181018832469	0,747324	0,00127895	0,00107993	0,00111729
585	7	2	0,0797504187823	0,750825	0,00109182	0,000858648	0,000898873
295	2	4	0,141131526683	0,753901	0,000827484	0,000614913	0,000645663
299	2	7	0,0924395774583	0,774405	0,000670587	0,000486303	0,000501837
594	2	3	0,068058618312	0,775049	0,000299272	0,000143607	0,000141378
30	2	2	0,00496512848939	0,788927	0,000204143	5,26E-05	5,18E-05
	Tie	empos	de ejecución: real	:70m10.567s	.user:207m55.5	83s.sys:95m37	.939s

Tabla 1: Resultados no dominados para la imagen de prueba ${\tt calhouse_230.jpg}$

Figura 1: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 1.

Figura 2: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 1.

.2. Imagen de prueba calhouse_231.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	Е	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
0	2	2	0,528280568019	0,421322	0,011292	0,010746	0,0111554
1	2	2	1	0,282013	0,038501	0,036779	0,0381451
2	38	2	0	0,0125856	0,204869	0,200071	0,20363
3	2	2	0	0,0431004	0,13865	0,136192	0,138648
4	2	2	0,536034010196	0,41398	0,0131499	0,0124833	0,0130018
5	2	2	0,198562769367	0,52922	0,00135061	0,00127997	0,00130769
6	2	2	0,161635695061	0,540966	0,000784735	0,000735661	0,000749385
7	2	2	0,00570221243692	0,573629	0,000103816	7,67837E-05	7,85741E-05
8	3	2	0,716133888765	0,354162	0,0228098	0,0218175	0,0225493
9	2	2	0,714396209779	0,359465	0,0228153	0,0216203	0,0225292
10	3	2	0,593631709269	0,402347	0,0145436	0,0138748	0,0143605
11	5	2	0,71780427577	0,3623	0,0212484	0,0204049	0,0209322
12	17	2	0,699132537035	0,367131	0,0189012	0,0183635	0,0186746
13	35	2	0,00864485180463	0,42346	0,0107601	0,0102734	0,0104956
14	2	3	0,0577348012518	0,565069	0,000189286	0,000165373	0,000167802
15	2	2	0,246783623874	0,513605	0,00194255	0,00184685	0,00190236
16	10	2	0,888254299467	0,306106	0,0327387	0,0317938	0,032341
17	8	2	0,811016594367	0,319267	0,0277445	0,0268512	0,0273699
18	3	2	0,114333158176	0,549775	0,00055956	0,00050608	0,000516374
19	8	2	0,492304222024	0,460667	0,00621708	0,00592585	0,00603826
20	13	2	0	0,0130296	0,188019	0,183258	0,186758
21	2	6	0,386888624299	0,471886	0,00573421	0,00559339	0,0057057
22	4	2	0,579865472882	0,411112	0,013378	0,0127763	0,0131599
23	9	2	1	0,298885	0,0334443	0,0324061	0,0330044
24	5	2	0,834278139123	0,325659	0,0279524	0,0268406	0,0275564
25	10	2	0,520833889993	0,428904	0,0107733	0,0101945	0,0103729
26	8	2	0,624195274315	0,37555	0,0169599	0,0164014	0,016725

27	3	2	0,627466735378	0,391768	0,0161627	0,0153941	0,0159548
28	25	2	0,874755787269	0,372819	0,0186476	0,0180095	0,0183297
29	2	2	0,870667176693	0,309887	0,0325293	0,0309195	0,0322076
30	9	2	0,732234332042	0,365558	0,0191753	0,0185399	0,0188855
31	2	2	0,444876042398	0,446127	0,00810596	0,00772429	0,00801587
32	2	2	0,951954860788	0,289546	0,0364327	0,0347045	0,0360937
33	19	2	1	0,271006	0,0385725	0,0376188	0,0381991
34	19	2	0,618896353293	0,397269	0,0143794	0,0139211	0,0141685
35	4	2	0,389600336216	0,475316	0,00536055	0,00515606	0,00529048
36	10	2	0,425558569531	0,45027	0,00668378	0,00648114	0,00659949
37	2605	2395	0,5	0,426877	0,0107589	0,0102665	0,0106218
38	6	2	0,66522415478	0,383322	0,0160663	0,0154653	0,0158211
39	7	2	0,599492521867	0,414094	0,0120755	0,0115387	0,0117838
40	7	2	0,998931803013	0,276454	0,0381787	0,0368181	0,0376312
41	8	2	0,771688109697	0,362255	0,0220707	0,0212203	0,0216666
42	3	3	0,307589614694	0,49718	0,00289651	0,00277638	0,00282767
43	13	2	0,944305010388	0,315595	0,029047	0,0281777	0,0286568
44	5	2	0,966050230549	0,288689	0,0362972	0,0349026	0,0357714
45	2	3	0,326108560547	0,491558	0,00390371	0,00373161	0,00387131
46	2	3	0,15384887064	0,534519	0,00114637	0,00109067	0,00111032
47	9	2	0,422208490979	0,462861	0,00579699	0,00562394	0,00572817
48	7	2	0,497297664006	0,435993	0,00828631	0,00795353	0,00813127
49	7	2	0,850549249493	0,328166	0,0265695	0,0256397	0,0261868
50	2	4	0,223357597768	0,521675	0,00161956	0,00153988	0,00158018
51	4	2	0,9930943249	0,284309	0,0371586	0,0357552	0,0367035
52	12	2	1	0,307615	0,032043	0,0310592	0,0315852
53	3	2	0,556872320691	0,414029	0,0125525	0,0119757	0,0123731
54	2	3	0,0786234714955	0,561146	0,000201883	0,000166411	0,000174052
55	3	2	0,421807093009	0,447001	0,00778622	0,00745209	0,00769754
56	10	2	0	0,0134821	0,183211	0,178539	0,181995
57	3	2	0,339142986519	0,47558	0,00452605	0,004307	0,00443858
58	3	2	0	0,026926	0,160205	0,156303	0,159384
59	6	2	0	0,0163016	0,174128	0,168903	0,172582
60	5	2	0,364819047309	0,479774	0,00435225	0,00410036	0,00418851
61	13	2	0,5	0,431454	0,00965356	0,00927182	0,0094467
62	14	2	1	0,299743	0,0334014	0,0323744	0,0329796
63	7	2	0	0,014287	0,177174	0,172057	0,1757
64	3	3	0,0523409614263	0,573604	0,000167373	0,000136933	0,000144334
65	4	3	0,228471662856	0,520381	0,00166707	0,00158428	0,0016109
66	6	2	1	0,282743	0,0378731	0,0366182	0,0374679
67	4	2	0,234783211652	0,516483	0,00166633	0,0015921	0,00162961
68	20	2	1	0,270889	0,0385879	0,0376327	0,0382134
69	6	3	0	0,0116286	0,242855	0,23726	0,242463
70	3	2	0,206960598509	0,525156	0,00144721	0,00138333	0,00141691
71	6	2	0,95332290819	0,295335	0,0347202	0,0334983	0,0342668
72	18	2	0	0,012713	0,194229	0,189516	0,193111
73	11	2	0	0,0133905	0,185665	0,180876	0,184348
74	5	2	0,489580647303	0,442431	0,00817965	0,00780437	0,0080066
75	4	2	0,30868061553	0,482928	0,00426761	0,00405113	0,00415045
76	5	2	0	0,0177784	0,168074	0,162957	0,166491
77	15	2	0,787845727898	0,338436	0,0232717	0,0226148	0,0229894
78	7	2	0,255764762828	0,536006	0,00110823	0,00103223	0,00105307
80	19	3	0,200104102020	0,00900173	0,267205	0,261971	0,266923
81	11	3	0	0,00997639	0,256986	0,251503	0,256516
82	4	2	0	0,0226231	0,1636	0,159053	0,162368
83	3	3	0,119503378494	0,546799	0,000724879	0,000653544	0,000674347
84	4	2	0,286221733555	0,506126	0,000124013	0,00033344	0,000074547
1 04	1 4	1 -	0,200221133333	0,500120	0,00223212	0,00211140	0,00221400

							1
85	5	2	0,304026322185	0,506628	0,00222147	0,00211851	0,00215494
86	2	7	0,0291606107902	0,551463	0,0005087	0,000484928	0,000491999
87	3	2	0,31452246049	0,488762	0,00401598	0,00385289	0,00397122
88	13	3	0	0,00985956	0,259264	0,253973	$0,\!258887$
89	8	2	0,323020952705	0,475386	0,00529207	0,00510996	0,00520481
90	3	2	0,950501160671	0,293769	0,0358847	0,0344679	0,0355097
91	4	3	0,168281492455	0,530389	0,00119938	0,00115064	$0,\!00116924$
92	3	2	0,79846119005	0,333691	0,0265783	0,0254337	0,0262778
93	7	2	0,946888627685	0,312944	0,0307703	0,0297033	0,0303923
94	9	3	0	0,0106044	0,253247	0,248009	$0,\!252956$
95	8	3	0	0,0108852	0,248894	0,243521	0,248512
96	5	2	0,204602199258	0,514978	0,00176819	0,00169965	0,00173187
97	3	5	0,134621506197	0,55715	0,000453264	0,000428699	$0,\!000432725$
98	6	2	0,441422354939	0,456932	0,00627423	0,00605903	0,00619215
99	10	3	0	0,0104213	0,255358	0,250056	$0,\!255104$
100	6	2	0,386927837815	0,456932	0,00627423	0,00605903	0,00619215
101	2	2	0,451039281438	0,446127	0,00810596	0,00772429	0,00801587
102	2	2	0	0,0431004	0,13865	0,136192	0,138648
103	2	2	0,0445039999308	0,573629	0,000103816	7,67837E-05	7,85741E-05
104	13	2	0,52911179301	0,431454	0,00965356	0,00927182	0,0094467
105	2	2	1	0,282013	0,038501	0,036779	0,0381451
106	10	2	0,905695427534	0,306106	0,0327387	0,0317938	0,032341
107	6	2	0,976654715651	0,282743	0,0378731	0,0366182	0,0374679
108	7	2	0,509946635219	0,435993	0,00828631	0,00795353	0,00813127
109	5	2	0,970354083766	0,288689	0,0362972	0,0349026	0,0357714
110	7	2	0	0,014287	0,177174	0,172057	0,1757
	Tie	empos	de ejecución: real:	70m26.492s. ı	ser:209m3.921	s. sys:95m37.3	357s

Tabla 2: Resultados no dominados para la imagen de prueba calhouse_231.jpg

Figura 3: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 2.

Figura 4: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 2.

.3. Imagen de prueba calhouse_233.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	C	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\vec{x})$
0	2	3	0,295837914265	0,923925	0,00292607	0,00257795	0,00266449
1	3	4	0,249135180036	0,92028	0,00292439	0,00261397	0,00266665
2	4	3	0,214858343706	0,972543	0,00121931	0,00104515	0,00106603
3	3	2	0	0,162343	0,36439	0,343949	0,35654
4	2	2	0	0,166749	0,35221	0,33188	0,347256
5	2	3	0,38662765211	0,864988	0,00550206	0,00480986	0,00499557
6	2	2	0,00255100600277	1,09149	0,000183402	7,04854E-05	6,21437E-05
7	5	2	0	0,0629735	0,391495	0,37163	0,381356
8	2	4	0,618630059019	0,721047	0,0169986	0,0162408	0,0165372
9	4	2	0	0,0834117	0,383713	0,363361	0,373847
10	4	2	0,00239439320878	1,08964	0,000295689	0,000153393	0,000162248
11	11	2	0	0,0619745	0,418598	0,398414	0,406889
12	3	2	0,0778353881482	1,08786	0,000329964	0,000184893	0,000199624
13	12	3	0,0239139002456	0,870766	0,00350392	0,00310311	0,00316902
14	2	6	0,0389644204129	1,03646	0,000641662	0,000514385	0,000524924
15	2	6	0	0,0455046	0,470176	0,461747	0,47771
16	2	10	0	0,0359039	0,511722	0,502448	0,518851
17	2	3	0,048680029034	1,05839	0,000302083	0,000187229	0,00018095
18	8	3	0,0151713221581	1,03239	0,00102858	0,000843436	0,000877847
19	2	3	0,184395984383	0,993392	0,00117745	0,00100106	0,00102251
20	2	3	0,929331197893	0,664923	0,0280842	0,0260755	0,0268696
21	40	4	0,466234114886	0,585286	0,0791404	0,0724312	0,0744605
22	9	3	0	0,0462856	0,470122	0,456474	0,466522
23	2	4	0,265528630888	0,919652	0,00348043	0,00316849	0,00322916
24	5	3	0,5	0,810249	0,00887391	0,00800675	0,00821064
25	2	4	0,822931346255	0,682197	0,0278131	0,0267008	0,0271825
26	2	3	0,670636359678	0,758248	0,0146595	0,013324	0,0137805

27	2	4	0,721496626868	0,697186	0,0211379	0,0202178	0,0205842
28	2	4	0,578789027009	0,759783	0,0134854	0,0128619	0,0130943
29	2	3	0,556768992896	0,798087	0,0102274	0,00910215	0,00944354
30	2	9	0	0,0408697	0,499463	0,490757	0,507241
31	6	3	0,757745094249	0,742439	0,016272	0,014948	0,0152924
32	5	3	0,580904513711	0,785827	0,011758	0,0105297	0,010857
33	2	3	1	0,638068	0,0319237	0,0297923	0,0307026
34	2	4	0,76472395896	0,690287	0,0242775	0,023289	0,0236959
35	2	3	0,621920299683	0,763786	0,0131498	0,0117422	0,0121901
36	2	3	0,245737809351	0,95589	0,00235641	0,002009	0,00206351
37	5	3	0,743495138096	0,75186	0,0155433	0,0142944	0,0146168
38	8	3	0,5	0,819552	0,00842425	0,0076944	0,00785632
39	2	4	0,37734382186	0,830931	0,00598392	0,00560268	0,0056997
40	6	3	0	0,0475216	0,459573	0,445796	0,456496
41	12	3	0,7551988051	0,715111	0,0179455	0,0167202	0,0170063
42	43	3	0,517774282985	0,597537	0,0430642	0,0399363	0,0405722
43	3	3	0,890204069895	0,694649	0,024789	0,0230342	0,0236651
44	24	3	0,0161818033484	0,745152	0,024789	0,0140341	0,0143124
45	2	4	0,544526000725	0,743132	0,0130444	0,0140341	0,0143124
	3	4	· ·	l '	-	0,0100403	'
46	8		0,534810140769	0,770255	0,0127545	,	0,0122763
47	_	3	0,920940317282	0,682212	0,027619	0,026095	0,0265493
48	11		0	0,0443048	0,475939	0,462247	0,471704
49	3	3	0,715853976382	0,740592	0,0161852	0,0148598	0,015301
50	10	3	0,69733899482	0,753103	0,0148294	0,0134841	0,0137764
51	16	3	0,0168842090118	0,826457	0,00687623	0,00604448	0,00619402
52	27	2	0	0,0599365	0,437032	0,417224	0,424583
53	3	3	0,902217373237	0,688406	0,027186	0,0254119	0,0260424
54	2	5	0,269495632959	0,938972	0,00280239	0,00262648	0,0026463
55	46	3	0,143991202349	0,597537	0,0430642	0,0399363	0,0405722
56	24	3	0,170169909589	0,745152	0,0156444	0,0140341	0,0143124
57	2	3	0,243769872469	0,95589	0,00235641	0,002009	0,00206351
58	4	2	0,100252601793	1,08964	0,000295689	0,000153393	0,000162248
59	2	3	0,269440484107	0,923925	0,00292607	0,00257795	0,00266449
60	2	2	0	0,166749	0,35221	0,33188	0,347256
61	2	3	0,000678839983702	1,05839	0,000302083	0,000187229	0,00018095
62	5	2	0	0,0629735	0,391495	0,37163	0,381356
63	11	2	0	0,0619745	0,418598	0,398414	0,406889
64	2	2	0,0137941023249	1,09149	0,000183402	7,04854E-05	6,21437E-05
65	2	6	0	0,0455046	0,470176	0,461747	0,47771
66	2	9	0	0,0408697	0,499463	0,490757	0,507241
67	2	4	0,385219809226	0,830931	0,00598392	0,00560268	0,0056997
68	2	10	0	0,0359039	0,511722	0,502448	0,518851
69	4	2	0	0,0834117	0,383713	0,363361	0,373847
70	2	4	0,608920213197	0,721047	0,0169986	0,0162408	0,0165372
71	2	6	0,028621417168	1,03646	0,000641662	0,000514385	0,000524924
72	3	2	0	0,162343	0,36439	0,343949	0,35654
73	26	2	0	0,0599365	0,437032	0,417224	0,424583
74	2	4	0,571638357607	0,759783	0,0134854	0,0128619	0,0130943
75	2	4	0,295806477535	0,919652	0,00348043	0,00316849	0,00322916
76	2	3	0,619162564166	0,763786	0,0131498	0,0117422	0,0121901
77	11	3	0	0,0443048	0,475939	0,462247	0,471704
78	2	3	0,923012222054	0,664923	0,0280842	0,0260755	0,0268696
79	38	4	0,331480387773	0,585286	0,0791404	0,0724312	0,0744605
80	2	3	0,586610008172	0,787139	0,0791404	0,0124312	0,0111113
81	2	3	0,53060297987	0,787139	0,0119147	0,0107109	0,0111113
82	2	5	0,288960146772	0,798087	0,0102274	0,00910213	0,00944334
83	16	3	0,546573397577		0,00280239	0,00202048	0,0020403
00	10) 3	0,040010091011	0,826457	0,00087023	0,00004448	0,00019402

1	ı		I	1	1	I	ı			
84	12	3	0,0599093328487	0,870766	0,00350392	0,00310311	0,00316902			
85	2	3	1	0,638068	0,0319237	0,0297923	0,0307026			
86	2	4	0,516903002911	0,778071	0,0115198	0,0108465	0,0110746			
87	3	4	0,300588244554	0,92028	0,00292439	0,00261397	0,00266665			
88	2	4	0,816027236114	0,682197	0,0278131	0,0267008	0,0271825			
89	2	3	0,388266931502	0,864988	0,00550206	0,00480986	0,00499557			
90	12	3	0,872070781736	0,715111	0,0179455	0,0167202	0,0170063			
91	2	3	0,15845824826	0,993392	0,00117745	0,00100106	0,00102251			
92	4	3	0,214639357232	0,972543	0,00121931	0,00104515	0,00106603			
93	8	3	0,0863610173808	1,03239	0,00102858	0,000843436	0,000877847			
94	5	3	0,5	0,810249	0,00887391	0,00800675	0,00821064			
95	3	2	0,0882649269638	1,08786	0,000329964	0,000184893	0,000199624			
96	2	3	0,673309867537	0,758248	0,0146595	0,013324	0,0137805			
97	3	3	0,675600484061	0,740592	0,0161852	0,0148598	0,015301			
98	2	4	0,715592882128	0,697186	0,0211379	0,0202178	0,0205842			
99	5	3	0,691433319604	0,75186	0,0155433	0,0142944	0,0146168			
100	2	4	0,781038459568	0,690287	0,0242775	0,023289	0,0236959			
101	10	3	0,669395730455	0,753103	0,0148294	0,0134841	0,0137764			
102	3	3	0,573629042383	0,791412	0,0117933	0,0106632	0,0109955			
103	7	3	0	0,054872	0,462664	0,448778	0,459163			
104	3	4	0,57587859188	0,770255	0,0127545	0,0120351	0,0122763			
105	8	3	0,462590720779	0,819552	0,00842425	0,0076944	0,00785632			
106	3	3	1	0,662133	0,0302244	0,0283526	0,0290769			
107	8	3	0	0,0524292	0,466468	0,452746	0,463048			
108	6	3	0,977038740921	0,688181	0,027246	0,025366	0,0259008			
109	6	3	0,775674597529	0,742439	0,016272	0,014948	0,0152924			
110	9	3	0	0,0462856	0,470122	0,456474	0,466522			
111	38	4	0,628700727825	0,585286	0,0791404	0,0724312	0,0744605			
112	2	3	1	0,638068	0,0319237	0,0297923	0,0307026			
113	46	3	0,583476418714	0,597537	0,0430642	0,0399363	0,0405722			
114	12	3	0,797834935051	0,715111	0,0179455	0,0167202	0,0170063			
115	2	3	0,528084525906	0,798087	0,0102274	0,00910215	0,00944354			
116	2	4	0,517088638415	0,778071	0,0115198	0,0108465	0,0110746			
117	2	2	0,0172455393781	1,09149	0,000183402	7,04854E-05	6,21437E-05			
118	2	3	0,642160540603	0,758248	0,0146595	0,013324	0,0137805			
119	2	5	0,264991284514	0,938972	0,00280239	0,00262648	0,0026463			
120	2	2	0	0,166749	0,35221	0,33188	0,347256			
121	2	4	0,649144466259	0,721047	0,0169986	0,0162408	0,0165372			
122	3	3	0,920362895033	0,688406	0,027186	0,0254119	0,0260424			
123	5	3	0,5	0,810249	0,00887391	0,00800675	0,00821064			
	Tiempos de ejecución: real:67m22.885s.user:207m13.352s.sys:94m57.439s									

Tabla 3: Resultados no dominados para la imagen de prueba ${\tt calhouse_233.jpg}$

Figura 5: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 3.

Figura 6: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 3.

.4. Imagen de prueba calhouse_234.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	C	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\vec{x})$
0	3	2	0,818377249473	0,527355	0,0266691	0,0245697	0,0257519
1	59	3	0,348404050444	0,41236	0,10348	0,0946411	0,0973958
2	2	2	0,839606904816	0,515146	0,029663	0,0272264	0,0286435
3	13	2	0,858950496855	0,524695	0,0260812	0,024745	$0,\!0255167$
4	11	2	1	0,494054	0,034029	0,032038	0,0331011
5	2	2	0,738264702174	0,548753	0,0229975	0,0211807	0,0222653
6	27	6	0,665067465025	0,445776	0,0921568	0,0871899	0,0896835
7	40	4	0,515435272603	0,445821	0,0866204	0,0792098	0,0816776
8	3	3	0,802799465668	0,511109	0,0287218	0,0274117	0,0284403
9	3	2	0,131123269978	0,793742	0,000731432	0,000664557	$0,\!000679274$
10	10	2	0,707716171361	0,580588	0,0168114	0,0159317	$0,\!0165228$
11	4	2	0,819304542919	0,519737	0,027535	0,0255765	0,0267492
12	2	2	0	0,138669	0,231124	0,221532	0,228493
13	18	2	0,5	0,62303	0,00889421	0,00828233	0,00854233
14	14	2	0,973685974855	0,502234	0,0314391	0,0298899	0,0308901
15	9	2	0,5	0,640419	0,00871692	0,00817691	0,00844283
16	17	2	0,705975808503	0,574325	0,0167192	0,0159348	0,0164249
17	8	2	0,376325532835	0,675727	0,00441494	0,00421142	0,00434589
18	11	2	0,909204773465	0,513048	0,0288726	0,0272513	0,0282724
19	12	2	0,5	0,601996	0,0103419	0,00983332	0,010186
20	7	2	0	0,0413656	0,289774	0,282049	0,285934
21	4	2	0,0881709349719	0,832464	0,000183395	0,000143403	0,000147903

1	1 .	i .	l	i	l	1	1
22	6	2	0,67190050469	0,564373	0,0195332	0,0183163	0,019096
23	3	2	0,419925814383	0,664902	0,00713225	0,00668782	0,00695413
24	4	2	0,293584223893	0,730788	0,00268251	0,00253008	0,00260924
25	2	2	0,727267809131	0,553606	0,021385	0,0196689	0,0206698
26	5	2	0,200766112685	0,738358	0,00171736	0,0016441	0,00168794
27	11	2	0,35822182698	0,723333	0,00331185	0,00315496	0,00324682
28	2	2	0,0155329642123	0,835548	0,000142314	0,000115598	0,000110237
29	3	2	0,306795075516	0,710093	0,00364066	0,0034385	0,00355669
30	2	3	0,893874350908	0,492458	0,0341363	0,0321934	0,0336531
31	3	2	0,199177359771	0,755389	0,00142469	0,00136878	0,00139945
32	6	2	0,769196682286	0,547824	0,0229913	0,0213657	0,0222196
33	2	2	0,759973896268	0,54257	0,0246297	0,0226156	0,0237819
34	2	2	0,91299851085	0,493326	0,0350073	0,032038	0,0337141
35	6	2	0,185206673924	0,78611	0,000841764	0,00080091	0,000816869
36	3	2	0	0,0846047	0,245215	0,237309	0,244065
37	15	2	0,5	0,666303	0,00554846	0,00524035	0,00540413
38	5	2	0,445174122796	0,66294	0,00827245	0,00775234	0,00802141
39	7	2	0,236480112225	0,773407	0,00121588	0,00114323	0,00117378
40	11	2	0	0,0396638	0,306313	0,297956	0,302221
41	4	2	0,805472933679	0,530471	0,0249754	0,0230687	0,0241613
42	24	2	0,950997765336	0,448877	0,0337654	0,0325268	0,0334449
43	5	2	0	0,0519104	0,273498	0,265907	0,270653
44	3	2	0,720115798569	0,551425	0,0215359	0,0198995	0,0208231
45	6	2	0	0,0493283	0,277246	0,269315	0,27368
46	3	3	0,634646330157	0,571977	0,0180757	0,0172713	0,0179017
47	14	2	0,524848751778	0,58597	0,01286	0,0122675	0,0126854
48	3	3	0,685028650384	0,553035	0,0211689	0,0201818	0,0209119
49	3	2	0,463959307137	0,650707	0,00852852	0,00796836	0,00830184
50	3	2	0,679025114903	0,557746	0,0203147	0,0187927	0,0196922
51	23	3	0	0,0277634	0,406696	0,400567	0,40603
52	7	3	0	0,0321503	0,363205	0,357271	0,362161
53	19	3	0	0,0294476	0,401875	0,395903	0,401497
54	3	2	0,0883240061534	0,829471	0,000258416	0,000220973	0,000231715
55	2	3	0,105680467779	0,831217	0,000254231	0,000202246	0,000220666
56	11	3	0	0,0296307	0,381211	0,374829	0,380207
57	6	2	0,899388322835	0,496642	0,0326795	0,0303633	0,0316357
58	4	2	0,864534440051	0,502655	0,0311266	0,0287067	0,03005
59	2	3	0,050929948535	0,836594	0,000146742	0,000117982	0,000110062
60	18	2	0,804145499558	0,533793	0,0238637	0,022623	0,0232914
61	20	3	0	0,0284328	0,402012	0,396043	0,401629
62	4	2	0,287960717289	0,730788	0,00268251	0,00253008	0,00260924
63	2	2	0,0453845246446	0,835548	0,000142314	0,000115598	0,000110237
64	7	2	0	0,0413656	0,289774	0,282049	0,285934
65	2	2	0	0,138669	0,231124	0,221532	0,228493
66	60	3	0,00140994587414	0,41236	0,10348	0,0946411	0,0973958
67	7	3	0	0,0321503	0,363205	0,357271	0,362161
68	5	2	0	0,0519104	0,273498	0,265907	0,270653
69	7	2	0,206906460129	0,773407	0,00121588	0,00114323	0,00117378
70	3	2	0,322271985499	0,710093	0,00364066	0,0034385	0,00355669
71	2	3	0,029768001776	0,836594	0,000146742	0,000117982	0,000110062
72	3	2	0	0,0846047	0,245215	0,237309	0,244065
73	15	2	0,547945552478	0,666303	0,00554846	0,00524035	0,00540413
74	3	2	0,0853731927042	0,829471	0,000258416	0,000220973	0,000231715
75	2	2	0,72869127062	0,553606	0,021385	0,0196689	0,0206698
76	3	2	0,136800145681	0,793742	0,000731432	0,000664557	0,000679274
77	4	2	0,0163575505064	0,832464	0,000183395	0,000143403	0,000147903
78	3	2	0,217635951343	0,755389	0,00142469	0,00136878	0,00139945

79 18 2 0,636800145681 0,62303 0,00889421 0,00828233 0,00854233 80 2 2 0,769040550106 0,54257 0,0246297 0,0226156 0,0237819 81 8 2 0,323462111002 0,675727 0,00441494 0,00421142 0,00434589 82 3 2 0,64549637561 0,577425 0,0167192 0,0159348 0,0164249 84 6 2 0 0,0493283 0,277246 0,269315 0,27368 85 3 2 0,459463481702 0,650707 0,00852852 0,00796836 0,308221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222633 90 14 2 1 0,502234 <th< th=""><th>1</th><th></th><th></th><th></th><th></th><th>1</th><th></th><th>i</th></th<>	1					1		i
81 8 2 0,323462111002 0,675727 0,00441494 0,00421142 0,00434589 82 3 2 0,685598343219 0,557746 0,0203147 0,0187927 0,0196922 83 17 2 0,645496357561 0,574325 0,0167192 0,0159348 0,0164249 84 6 2 0 0,0493283 0,277246 0,269315 0,27368 85 3 2 0,459463481702 0,650707 0,00852852 0,00796836 0,00830184 86 11 2 0 0,0396638 0,306313 0,297956 0,302221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,7476767674116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391<	79	18	2	0,636800145681	0,62303	0,00889421	0,00828233	0,00854233
82 3 2 0,685598343219 0,557746 0,0203147 0,0187927 0,0196922 83 17 2 0,645496357561 0,574325 0,0167192 0,0159348 0,0164249 84 6 2 0 0,0493283 0,277246 0,269315 0,27368 85 3 2 0,459463481702 0,650707 0,00852852 0,00796836 0,00830184 86 11 2 0 0,0396638 0,306313 0,297956 0,302221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 <	80	2	2	0,769040550106	0,54257	0,0246297	0,0226156	0,0237819
83 17 2 0,645496357561 0,574325 0,0167192 0,0159348 0,0164249 84 6 2 0 0,0493283 0,277246 0,269315 0,27368 85 3 2 0,459463481702 0,650707 0,00852852 0,00796836 0,00830184 86 11 2 0 0,0396638 0,306313 0,297956 0,302221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829<	81	8	2	0,323462111002	0,675727	0,00441494	0,00421142	0,00434589
84 6 2 0 0,0493283 0,277246 0,269315 0,27368 85 3 2 0,459463481702 0,650707 0,00852852 0,00796836 0,00830184 86 11 2 0 0,0396638 0,306313 0,297956 0,302221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331185 0,00315496	82	3	2	0,685598343219	0,557746	0,0203147	0,0187927	0,0196922
85 3 2 0,459463481702 0,650707 0,00852852 0,00796836 0,00830184 86 11 2 0 0,0396638 0,306313 0,297956 0,302221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934	83	17	2	0,645496357561	0,574325	0,0167192	0,0159348	0,0164249
86 11 2 0 0,396638 0,306313 0,297956 0,302221 87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331485 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,58058 0,0168114	84	6	2	0	0,0493283	0,277246	0,269315	0,27368
87 20 3 0 0,0284328 0,402012 0,396043 0,401629 88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654	85	3	2	0,459463481702	0,650707	0,00852852	0,00796836	0,00830184
88 36 4 0,277432850843 0,445821 0,0866204 0,0792098 0,0816776 89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,012	86	11	2	0	0,0396638	0,306313	0,297956	0,302221
89 2 2 0,747676874116 0,548753 0,0229975 0,0211807 0,0222653 90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,4448877 0,0337654 0,0325268 0,0331449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029	87	20	3	0	0,0284328	0,402012	0,396043	0,401629
90 14 2 1 0,502234 0,0314391 0,0298899 0,0308901 91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,0031185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,83539892861 0,515146 0,029663 <t< td=""><td>88</td><td>36</td><td>4</td><td>0,277432850843</td><td>0,445821</td><td>0,0866204</td><td>0,0792098</td><td>0,0816776</td></t<>	88	36	4	0,277432850843	0,445821	0,0866204	0,0792098	0,0816776
91 12 2 0,5 0,601996 0,0103419 0,00983332 0,010186 92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,835398992861 0,515146 0,029663 0,0272264 0,0286435 100 4 2 0,898296732518 0,502655 0,0311266<	89	2	2	0,747676874116	0,548753	0,0229975	0,0211807	0,0222653
92 11 3 0 0,0296307 0,381211 0,374829 0,380207 93 11 2 0,377393429315 0,723333 0,00331185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,835398992861 0,515146 0,029663 0,0272264 0,0286435 100 4 2 0,898296732518 0,502655 0,0311266 0,0287067 0,03005 101 18 2 0,793770605476 0,533793	90	14	2	1	0,502234	0,0314391	0,0298899	0,0308901
93 11 2 0,377393429315 0,723333 0,00331185 0,00315496 0,00324682 94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,835398992861 0,515146 0,029663 0,0272264 0,0286435 100 4 2 0,898296732518 0,502655 0,0311266 0,0287067 0,03005 101 18 2 0,793770605476 0,533793 0,0238637 0,022623 0,0232914 102 9 2 0,514620698238 0,640419 <td>91</td> <td>12</td> <td>2</td> <td>0,5</td> <td>0,601996</td> <td>0,0103419</td> <td>0,00983332</td> <td>0,010186</td>	91	12	2	0,5	0,601996	0,0103419	0,00983332	0,010186
94 2 3 0,893352619616 0,492458 0,0341363 0,0321934 0,0336531 95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,835398992861 0,515146 0,029663 0,0272264 0,0286435 100 4 2 0,898296732518 0,502655 0,0311266 0,0287067 0,03005 101 18 2 0,793770605476 0,533793 0,0238637 0,022623 0,0232914 102 9 2 0,514620698238 0,640419 0,00871692 0,00817691 0,00844283 103 3 2 0,671980206361 0,564373 <td>92</td> <td>11</td> <td>3</td> <td>0</td> <td>0,0296307</td> <td>0,381211</td> <td>0,374829</td> <td>0,380207</td>	92	11	3	0	0,0296307	0,381211	0,374829	0,380207
95 10 2 0,644314916717 0,580588 0,0168114 0,0159317 0,0165228 96 24 2 1 0,448877 0,0337654 0,0325268 0,0334449 97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,835398992861 0,515146 0,029663 0,0272264 0,0286435 100 4 2 0,898296732518 0,502655 0,0311266 0,0287067 0,03005 101 18 2 0,793770605476 0,533793 0,0238637 0,022623 0,0232914 102 9 2 0,514620698238 0,640419 0,00871692 0,00817691 0,00844283 103 3 2 0,671980206361 0,564373 0,0195332 0,0183163 0,019096 105 4 2 0,816463208942 0,519737 <td>93</td> <td>11</td> <td>2</td> <td>0,377393429315</td> <td>0,723333</td> <td>0,00331185</td> <td>0,00315496</td> <td>0,00324682</td>	93	11	2	0,377393429315	0,723333	0,00331185	0,00315496	0,00324682
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94	2	3	0,893352619616	0,492458	0,0341363	0,0321934	0,0336531
97 14 2 0,537105312897 0,58597 0,01286 0,0122675 0,0126854 98 11 2 1 0,494054 0,034029 0,032038 0,0331011 99 2 2 0,835398992861 0,515146 0,029663 0,0272264 0,0286435 100 4 2 0,898296732518 0,502655 0,0311266 0,0287067 0,03005 101 18 2 0,793770605476 0,533793 0,0238637 0,022623 0,0232914 102 9 2 0,514620698238 0,640419 0,00871692 0,00817691 0,00844283 103 3 2 0,723171113862 0,551425 0,0215359 0,0198995 0,0208231 104 6 2 0,671980206361 0,564373 0,0195332 0,0183163 0,019096 105 4 2 0,816463208942 0,519737 0,027535 0,0255765 0,0267492 106 2 2 0,929927397784	95	10	2	0,644314916717	0,580588	0,0168114	0,0159317	0,0165228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	96	24	2	1	0,448877	0,0337654	0,0325268	0,0334449
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97	14	2	0,537105312897	0,58597	0,01286	0,0122675	0,0126854
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	11	2	1	0,494054	0,034029	0,032038	0,0331011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	2	2	0,835398992861	0,515146	0,029663	0,0272264	0,0286435
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	4	2	0,898296732518	0,502655	0,0311266	0,0287067	0,03005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	18	2	0,793770605476	0,533793	0,0238637	0,022623	0,0232914
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102	9	2	0,514620698238	0,640419	0,00871692	0,00817691	0,00844283
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103	3	2	0,723171113862	0,551425	0,0215359	0,0198995	0,0208231
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	6	2	0,671980206361	0,564373	0,0195332	0,0183163	0,019096
107 23 3 0 0,0277634 0,406696 0,400567 0,40603 108 13 3 0 0,0292034 0,390222 0,383769 0,389344 109 5 2 0,231161071546 0,738358 0,00171736 0,0016441 0,00168794	105	4	2	0,816463208942	0,519737	0,027535	0,0255765	0,0267492
108 13 3 0 0,0292034 0,390222 0,383769 0,389344 109 5 2 0,231161071546 0,738358 0,00171736 0,0016441 0,00168794	106	2	2	0,929927397784	0,493326	0,0350073	0,032038	0,0337141
109 5 2 0,231161071546 0,738358 0,00171736 0,0016441 0,00168794	107	23	3	0	0,0277634	0,406696	0,400567	0,40603
	108	13	3	0	0,0292034	0,390222	0,383769	0,389344
110 4 2 0,76242369505 0,530471 0,0249754 0,0230687 0,0241613	109	5	2	0,231161071546	0,738358	0,00171736	0,0016441	0,00168794
	110	4	2	0,76242369505	0,530471	0,0249754	0,0230687	0,0241613
Tiempos de ejecución: real:69m51.735s, user:207m51.484s, sys:94m33.030s		Tie	mpos	de ejecución: real:	69m51.735s,	user:207m51.4	184s, sys:94m3	3.030s

Tabla 4: Resultados no dominados para la imagen de prueba ${\tt calhouse_234.jpg}$

Figura 7: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 4.

Figura 8: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 4.

.5. Imagen de prueba calhouse_236.jpg

ID	<i>a</i>	<i>a</i>	8	$r / r \rightarrow$	$f(T \rightarrow)$	$f(T \rightarrow)$	$r (T \rightarrow)$
	\mathscr{R}_x	\mathscr{R}_y	0	$f_1(I.\vec{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$
0	3	2	0,818377249473	0,527355	0,0266691	0,0245697	0,0257519
1	59	3	0,348404050444	0,41236	0,10348	0,0946411	0,0973958
2	2	2	0,839606904816	0,515146	0,029663	0,0272264	0,0286435
3	13	2	0,858950496855	0,524695	0,0260812	0,024745	0,0255167
4	11	2	1	0,494054	0,034029	0,032038	0,0331011
5	2	2	0,738264702174	0,548753	0,0229975	0,0211807	0,0222653
6	27	6	0,665067465025	0,445776	0,0921568	0,0871899	0,0896835
7	40	4	0,515435272603	0,445821	0,0866204	0,0792098	0,0816776
8	3	3	0,802799465668	0,511109	0,0287218	0,0274117	0,0284403
9	3	2	0,131123269978	0,793742	0,000731432	0,000664557	0,000679274
10	10	2	0,707716171361	0,580588	0,0168114	0,0159317	0,0165228
11	4	2	0,819304542919	0,519737	0,027535	0,0255765	0,0267492
12	2	2	0	0,138669	0,231124	0,221532	0,228493
13	18	2	0,5	0,62303	0,00889421	0,00828233	0,00854233
14	14	2	0,973685974855	0,502234	0,0314391	0,0298899	0,0308901
15	9	2	0,5	0,640419	0,00871692	0,00817691	0,00844283
16	17	2	0,705975808503	0,574325	0,0167192	0,0159348	0,0164249
17	8	2	0,376325532835	0,675727	0,00441494	0,00421142	0,00434589
18	11	2	0,909204773465	0,513048	0,0288726	0,0272513	0,0282724
19	12	2	0,5	0,601996	0,0103419	0,00983332	0,010186
20	7	2	0	0,0413656	0,289774	0,282049	0,285934

			i	1			
21	4	2	0,0881709349719	0,832464	0,000183395	0,000143403	0,000147903
22	6	2	0,67190050469	0,564373	0,0195332	0,0183163	0,019096
23	3	2	0,419925814383	0,664902	0,00713225	0,00668782	0,00695413
24	4	2	0,293584223893	0,730788	0,00268251	0,00253008	0,00260924
25	2	2	0,727267809131	0,553606	0,021385	0,0196689	0,0206698
26	5	2	0,200766112685	0,738358	0,00171736	0,0016441	0,00168794
27	11	2	0,35822182698	0,723333	0,00331185	0,00315496	0,00324682
28	2	2	0,0155329642123	0,835548	0,000142314	0,000115598	0,000110237
29	3	2	0,306795075516	0,710093	0,00364066	0,0034385	0,00355669
30	2	3	0,893874350908	0,492458	0,0341363	0,0321934	0,0336531
31	3	2	0,199177359771	0,755389	0,00142469	0,00136878	0,00139945
32	6	2	0,769196682286	0,547824	0,0229913	0,0213657	0,0222196
33	2	2	0,759973896268	0,54257	0,0246297	0,0226156	0,0237819
34	2	2	0,91299851085	0,493326	0,0350073	0,032038	0,0337141
35	6	2	0,185206673924	0,78611	0,000841764	0,00080091	0,000816869
36	3	2	0	0,0846047	0,245215	0,237309	0,244065
37	15	2	0,5	0,666303	0,00554846	0,00524035	0,00540413
38	5	2	$0,\!445174122796$	0,66294	0,00827245	0,00775234	0,00802141
39	7	2	0,236480112225	0,773407	0,00121588	0,00114323	0,00117378
40	11	2	0	0,0396638	0,306313	0,297956	0,302221
41	4	2	0,805472933679	0,530471	0,0249754	0,0230687	0,0241613
42	24	2	0,950997765336	0,448877	0,0337654	0,0325268	0,0334449
43	5	2	0	0,0519104	0,273498	0,265907	0,270653
44	3	2	0,720115798569	0,551425	0,0215359	0,0198995	0,0208231
45	6	2	0	0,0493283	0,277246	0,269315	0,27368
46	3	3	0,634646330157	0,571977	0,0180757	0,0172713	0,0179017
47	14	2	0,524848751778	0,58597	0,01286	0,0122675	0,0126854
48	3	3	0,685028650384	0,553035	0,0211689	0,0201818	0,0209119
49	3	2	0,463959307137	0,650707	0,00852852	0,00796836	0,00830184
50	3	2	0,679025114903	0,557746	0,0203147	0,0187927	0,0196922
51	23	3	0	0,0277634	0,406696	0,400567	0,40603
52	7	3	0	0,0321503	0,363205	0,357271	0,362161
53	19	3	0	0,0294476	0,401875	0,395903	0,401497
54	3	2	0,0883240061534	0,829471	0,000258416	0,000220973	0,000231715
55	2	3	0,105680467779	0,831217	0,000254231	0,000202246	0,000220666
56	11	3	0	0,0296307	0,381211	0,374829	0,380207
57	6	2	0,899388322835	0,496642	0,0326795	0,0303633	0,0316357
58	4	2	0,864534440051	0,502655	0,0311266	0,0287067	0,03005
59	2	3	0,050929948535	0,836594	0,000146742	0,000117982	0,000110062
60	18	2	0,804145499558	0,533793	0,0238637	0,022623	0,0232914
61	20	3	0	0,0284328	0,402012	0,396043	0,401629
62	2	2	0,0609928161487	0,787766	0,000256124	0,000197123	0,000228562
63	4	2	0,52223536612	0,569097	0,0147406	0,0145173	0,0152212
64	9	2	0,505589934566	0,576457	0,014684	0,0144162	0,015154
65	15	2	0,594417852291	0,523629	0,0229587	0,0225117	0,0233318
66	3	2	0,716236838749	0,483283	0,0287522	0,027986	0,0294905
67	2	2	0	0,0819087	0,255368	0,251915	0,257656
68	3	2	0,269677482952	0,68885	0,00352479	0,00343585	0,00363311
69	4	2	0,177913813107	0,737098	0,0013308	0,00132604	0,00137942
70	3	2	0,256319244386	0,699975	0,00309802	0,00307773	0,00326212
71	2	2	0,572082014846	0,566152	0,0173144	0,0169155	0,0180509
72	17	2	0,501908060793	0,56284	0,0182472	0,017877	0,018825
73	3	2	0,470797316063	0,601152	0,0117493	0,0114363	0,0120534
74	2	2	0,28762897403	0,684397	0,00417191	0,00409187	0,00435506
75	2	2	0,319001035677	0,676598	0,00467596	0,00454571	0,00490102
76	2	2	0,0467344262764	0,791656	0,000155317	0,000121572	0,000128309
77	2	2	0,806851045046	0,449825	0,0362412	0,0352132	0,0377132

78	3	2	0,706400893583	0,496626	0,0260506	0,02529	0,0266687		
79	2	2	0,22026142931	0,724546	0,00201504	0,00198291	0,00209202		
80	3	2	0,134385763543	0,748132	0,00104085	0,000998748	0,00106332		
81	2	2	0,264811557652	0,697151	0,00318869	0,00307715	0,00330749		
82	2	2	0,789976935473	0,461123	0.0335764	0.032814	0.0350383		
83	2	2	0,132666358022	0,758529	0,000769288	0,000722369	0,000767623		
84	3	2	0,996037935634	0,384975	0,0502797	0,0486287	0,051306		
85	2	2	0,192442273151	0,728299	0,00148275	0,00144158	0,00152957		
86	2	2	0,721958245867	0,494555	0,0270831	0,0264682	0,0282887		
87	4	2	0,5	0,596839	0,0131762	0,0129074	0,0136321		
88	2	2	0,871233788733	0,431905	0,0403448	0,0392149	0,0419863		
89	2	2	0,384270287837	0,648621	0,007755	0,00755259	0,00805606		
90	41	4	0,863744583938	0,297561	0,107656	0,103902	0,105838		
91	3	2	0	0,0501919	0,282841	0,280242	0,285594		
92	4	2	0,229943686198	0,71229	0,00263194	0,00250156	0,00264687		
93	6	2	0,55477863176	0,564425	0,0178416	0,0174361	0,0182652		
94	3	2	0,940781652341	0,389108	0,0487418	0,0471518	0,0496774		
95	53	3	0,274034660606	0,276232	0,127112	0,120837	0,125981		
96	15	2	0,0848652779147	0,684746	0,00401761	0,00395017	0,00417073		
97	3	2	0,903800468918	0,409682	0,0439377	0,0424819	0,044889		
98	2	2	0,948583037555	0,407068	0,0475321	0,0460638	0,0492886		
99	3	2	0,0936325288752	0,777003	0,000383461	0,000322487	0,00035059		
100	2	2	0,0822339049711	0,775215	0,000484727	0,000458843	0,000490921		
101	3	2	0,669535264594	0,516613	0,0230328	0,0225424	0,0237412		
102	3	2	0,000663482307116	0,780215	0,0003251	0,000293507	0,000313995		
103	9	2	0,309579061915	0,671622	0,00477057	0,00471242	0,00498622		
104	4	2	0,905279192884	0,420893	0,0414817	0,0404199	0,0424878		
105	3	2	0,78506628645	0,46783	0,0316	0,0307277	0,0323041		
106	5	2	0,579659528424	0,542229	0,0191408	0,0188228	0,0197266		
107	5	2	0,696056694267	0,494868	0,0275482	0,0270448	0,0282753		
108	3	2	0,833889686802	0,434412	0,0382984	0,0371935	0,0391734		
109	3	2	0,5	0,578231	0,0139116	0,0136808	0,0144633		
110	4	2	0,41014792752	0,615799	0,0091199	0,00902098	0,00947175		
111	2	2	0,116924112842	0,767094	0,000488963	0,000461673	0,000486079		
	Tiempos de ejecución: real:70m14.144s,user:208m40.536s,sys:94m45.105s								

Tabla 5: Resultados no dominados para la imagen de prueba calhouse_236.jpg

Figura 9: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 4.

Figura 10: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 5.

.6. Imagen de prueba calhouse_237.jpg

ID	\mathscr{R}_x	\mathscr{R}_y	\mathscr{C}	$f_1(I.\overrightarrow{x})$	$f_2(I.\overrightarrow{x})$	$f_3(I.\overrightarrow{x})$	$f_4(I.\overrightarrow{x})$		
	Tiempos de ejecución:								

Tabla 6: Resultados no dominados para la imagen de prueba ${\tt calhouse_237.jpg}$

Figura 11: Imágenes visualmente relevantes obtenidas mediante CMOPSO-CLAHE. Las variables y decisión y métricas de las imágenes se muestran en la tabla 6.

Figura 12: Frente pareto que contrasta los objetivos de las soluciones no dominadas. para los resultados de imágenes que se muestran en la tabla 6.