# 1 Некоторые определения из теории множеств. Прямое произведение, разбиение множеств. Мощность объединения

## Опр

Пустое множество ( $\varnothing$ ) - мно-во, которому  $\not\in$  ни один элемент

## Опр

Число элементов мн-ва A - мощность |A|

## Опр

Множество чисел от k до l обозначается k:l

## Опр

М<br/>н-во А - подмн-во мн-ва В  $(A\subset B),$  если каждый элемент из А принадлежит В



#### Опр

C - объединение A и B  $(A \cup B)$ , если оно состоит из всех элементов A и B  $(C = \{x | x \in A \text{ и } x \in B\})$ 



## Опр

 $\bigcup_{i=1}^n A_i$ ,  $\bigcap_{i=1}^n A_i$  - объединение и пересечение конечного числа мн-в

$$ig(igcup_{i\in I} A_i, \quad \bigcap_{i\in I} A_iig)$$
 - аналогично



## Опр

Если пересечение мн-в пусто, то они называются дизъюнктивными



## Опр

Мн-во C называется разностью мн-в A и B ( $C=A \setminus B$ ), если оно состоит из всех эл-в, принадлежащих A и не принадлежащих B



## Опр

 $A\triangle B=A\setminus B\cup B\setminus A$  - симметрическая разность



## Опр

Мн-во упорядоченных пар (i,j), где  $i\in A,\ j\in B$  называется прямым произведением мн-в A и B

$$A \times B = \{(i, j) \mid i \in A, \quad j \in B\}$$



#### Замечание

Мощность прямого произведения  $|A \times B| = |A| \cdot |B|$ . Аналогично произведение  $\forall$  конечного числа множеств

## Опр

Пусть  $A_1, ..., A_k$  - ненулевые и попарно дизъюнктивные,  $M = A_1 \cup ... \cup A_k$ , тогда мн-во  $\{A_1, ..., A_k\}$  называется разбиением М (если они попарно не дизъюнктивные, тогда это покрытие)



#### Опр

Разбиение A мн-ва M называется измельчением B, если  $\forall A_i \in A$  содержится в некотором  $B_i \in B$ 



## Опр

Пусть A, B - размельчения мн-ва M, разбиение C называется произведением A и B, если оно является из измельчением, причем самым крупным  $C = A \cdot B$ 



## Замечание

На картинке это будет

#### Теорема

Произведение двух разбиений существует

## Док-во

Предъявим разбиение, которое будет пересечением  $A = \{A_1, ..., A_k\}$  и  $B = \{B_1, ..., B_l\}$ , точнее  $D_{ij} = A_i \cup B_j$ ,  $i \leqslant k$ ,  $j \leqslant l$  и  $\mathcal{P} = \cup D_{ij}$  (т.е. без пустых строк). Покажем, что тогда оно самое крупное.

Пусть  $\exists F = \{F_1, ..., F_t\}$  - измельчение A и B, тогда  $\forall F_k \ \exists A_{i_k}, \ B_{i_k} : F_k A_{i_k}, \ B_{i_k} \Rightarrow F_k \subset (A_{i_k} \cup B_{i_k}) = D_{i_k j_k} \Rightarrow$  мельче F