Time series analysis

Example

Objectives of time series analysis

- 1. Compact description of data.
- 2. Interpretation.
- 3. Forecasting.
- 4. Control.
- 5. Hypothesis testing.
- 6. Simulation.

Classical decomposition: An example

Monthly sales for a souvenir shop at a beach resort town in Queensland.

(Makridakis, Wheelwright and Hyndman, 1998)

Transformed data

Trend

Residuals

Trend and seasonal variation

Objectives of time series analysis

Compact description of data.

Example: Classical decomposition:

$$X_t = T_t + S_t + Y_t.$$

2. Interpretation.

Example: Seasonal adjustment.

3. Forecasting.

Example: Predict sales.

- 4. Control.
- 5. Hypothesis testing.
- Simulation.

Unemployment data

Monthly number of unemployed people in Australia. (Hipel and McLeod, 1994)

Trend

Trend plus seasonal variation

Objectives of time series analysis

Compact description of data:

$$X_t = T_t + S_t + f(Y_t) + W_t.$$

Interpretation. Example: Seasonal adjustment.

Forecasting. Example: Predict unemployment.

Control. Example: Impact of monetary policy on unemployment.

Hypothesis testing. Example: Global warming.

6. Simulation. Example: Estimate probability of catastrophic events.

Time series models

A time series model specifies the joint distribution of the sequence $\{X_t\}$ of random variables.

For example:

$$P[X_1 \leq x_1, \ldots, X_t \leq x_t]$$
 for all t and x_1, \ldots, x_t .

Notation:

 X_1, X_2, \ldots is a stochastic process.

 x_1, x_2, \ldots is a single realization.

We'll mostly restrict our attention to second-order properties only:

$$\mathrm{E}X_t,\mathrm{E}(X_{t_1},X_{t_2}).$$

Time series models

Example: White noise: $X_t \sim WN(0, \sigma^2)$.

i.e., $\{X_t\}$ uncorrelated, $EX_t = 0$, $VarX_t = \sigma^2$.

Example: i.i.d. noise: $\{X_t\}$ independent and identically distributed.

$$P[X_1 \le x_1, \dots, X_t \le x_t] = P[X_1 \le x_1] \cdots P[X_t \le x_t].$$

Not interesting for forecasting:

$$P[X_t \le x_t | X_1, \dots, X_{t-1}] = P[X_t \le x_t].$$

Gaussian white noise

Time series models

Example: Binary i.i.d.

$$P[X_t = 1] = P[X_t = -1] = 1/2.$$

Random walk

$$S_t = \sum_{i=1}^t X_i$$
.

Differences: $\nabla S_t = S_t - S_{t-1} = X_t$.

Random walk

 ES_t ? $VarS_t$?

Random walk

Differences:

$$\nabla S_t = S_t - S_{t-1} = X_t.$$

Trend and seasonal models

$$X_t = T_t + S_t + E_t = \beta_0 + \beta_1 t + \sum_i (\beta_i \cos(\lambda_i t) + \gamma_i \sin(\lambda_i t)) + E_t$$

Trend and seasonal models

$$X_t = T_t + E_t = \beta_0 + \beta_1 t + E_t$$

Trend and seasonal models

$$X_t = T_t + S_t + E_t = \beta_0 + \beta_1 t + \sum_i (\beta_i \cos(\lambda_i t) + \gamma_i \sin(\lambda_i t)) + E_t$$

Time series modeling

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

- 2. Transform data so that residuals are stationary.
 - (a) Estimate and subtract T_t, S_t .
 - (b) Differencing.
 - (c) Nonlinear transformations (log, $\sqrt{\cdot}$).
- Fit model to residuals.

Nonlinear transformation

Recall: Monthly sales. (Makridakis, Wheelwright and Hyndman, 1998)

Differencing

Recall: S&P 500 data.

Differencing and trend

Define the lag-1 difference operator,

(think 'first derivative')

$$\nabla X_t = X_t - X_{t-1} = (1 - B)X_t,$$

where B is the **backshift** operator, $BX_t = X_{t-1}$.

• If $X_t = \beta_0 + \beta_1 t + Y_t$, then

$$\nabla X_t = \beta_1 + \nabla Y_t.$$

• If $X_t = \sum_{i=0}^k \beta_i t^i + Y_t$, then

$$\nabla^k X_t = k! \beta_k + \nabla^k Y_t,$$

where $\nabla^k X_t = \nabla(\nabla^{k-1} X_t)$ and $\nabla^1 X_t = \nabla X_t$.

Differencing and seasonal variation

Define the lag-s **difference operator**,

$$\nabla_{s} X_{t} = X_{t} - X_{t-s} = (1 - B^{s}) X_{t},$$

where B^s is the backshift operator applied s times, $B^sX_t = B(B^{s-1}X_t)$ and $B^1X_t = BX_t$.

If $X_t = T_t + S_t + Y_t$, and S_t has period s (that is, $S_t = S_{t-s}$ for all t), then

$$\nabla_s X_t = T_t - T_{t-s} + \nabla_s Y_t.$$

$$\{X_t\}$$
 is **strictly stationary** if for all $k, t_1, \ldots, t_k, x_1, \ldots, x_k$, and h ,
$$P(X_{t_1} \leq x_1, \ldots, X_{t_k} \leq x_k) = P(x_{t_1+h} \leq x_1, \ldots, X_{t_k+h} \leq x_k).$$

i.e., shifting the time axis does not affect the distribution.

We shall consider **second-order properties** only.

Mean and Autocovariance

Suppose that $\{X_t\}$ is a time series with $\mathrm{E}[X_t^2] < \infty$.

Its mean function is

$$\mu_t = \mathrm{E}[X_t].$$

Its autocovariance function is

$$\gamma_X(s,t) = \text{Cov}(X_s, X_t)$$
$$= \text{E}[(X_s - \mu_s)(X_t - \mu_t)].$$

Weak stationarity

We say that $\{X_t\}$ is (weakly) stationary if

- 1. μ_t is independent of t, and
- 2. For each h, $\gamma_X(t+h,t)$ is independent of t.

In that case, we write

$$\gamma_X(h) = \gamma_X(h,0).$$

The autocorrelation function (ACF) of $\{X_t\}$ is defined as

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)}$$

$$= \frac{\text{Cov}(X_{t+h}, X_t)}{\text{Cov}(X_t, X_t)}$$

$$= \text{Corr}(X_{t+h}, X_t).$$

Example: i.i.d. noise, $E[X_t] = 0$, $E[X_t^2] = \sigma^2$. We have

$$\gamma_X(t+h,t) = \left\{ egin{array}{ll} \sigma^2 & ext{if } h=0, \ 0 & ext{otherwise.} \end{array}
ight.$$

Thus,

- 1. $\mu_t = 0$ is independent of t.
- 2. $\gamma_X(t+h,t) = \gamma_X(h,0)$ for all t.

So $\{X_t\}$ is stationary.

Similarly for any white noise (uncorrelated, zero mean), $X_t \sim WN(0, \sigma^2)$.

Example: Random walk, $S_t = \sum_{i=1}^t X_i$ for i.i.d., mean zero $\{X_t\}$. We have $E[S_t] = 0$, $E[S_t^2] = t\sigma^2$, and

$$\gamma_S(t+h,t) = \operatorname{Cov}(S_{t+h},S_t)$$

$$= \operatorname{Cov}\left(S_t + \sum_{s=1}^h X_{t+s}, S_t\right)$$

$$= \operatorname{Cov}(S_t,S_t) = t\sigma^2.$$

- 1. $\mu_t = 0$ is independent of t, but
- 2. $\gamma_S(t+h,t)$ is not.

So $\{S_t\}$ is not stationary.

Covariances

$$Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z),$$

 $Cov(aX, Y) = a Cov(X, Y),$

Also if X and Y are independent (e.g., X = c), then

$$Cov(X, Y) = 0.$$

Example: MA(1) process (Moving Average):

$$X_t = W_t + \theta W_{t-1}, \qquad \{W_t\} \sim WN(0, \sigma^2).$$

We have $E[X_t] = 0$, and

$$\begin{split} \gamma_X(t+h,t) &= \mathrm{E}(X_{t+h}X_t) \\ &= \mathrm{E}[(W_{t+h} + \theta W_{t+h-1})(W_t + \theta W_{t-1})] \\ &= \left\{ \begin{array}{ll} \sigma^2(1+\theta^2) & \text{if } h = 0, \\ \sigma^2\theta & \text{if } h = \pm 1, \\ 0 & \text{otherwise.} \end{array} \right. \end{split}$$

Thus, $\{X_t\}$ is stationary.

Stationarity

Example: AR(1) process (**AutoRegressive**):

$$X_t = \phi X_{t-1} + W_t, \qquad \{W_t\} \sim WN(0, \sigma^2).$$

Assume that X_t is stationary and $|\phi| < 1$. Then we have

$$E[X_t] = \phi E X_{t-1}$$

$$= 0 \quad \text{(from stationarity)}$$
 $E[X_t^2] = \phi^2 E[X_{t-1}^2] + \sigma^2$

$$= \frac{\sigma^2}{1 - \phi^2} \quad \text{(from stationarity)},$$

Stationarity

Example: AR(1) process, $X_t = \phi X_{t-1} + W_t$, $\{W_t\} \sim WN(0, \sigma^2)$. Assume that X_t is stationary and $|\phi| < 1$. Then we have

$$\begin{split} \mathbf{E}[X_t] &= 0, \qquad \mathbf{E}[X_t^2] = \frac{\sigma^2}{1 - \phi^2} \\ \gamma_X(h) &= \mathrm{Cov}(\phi X_{t+h-1} + W_{t+h}, X_t) \\ &= \phi \mathrm{Cov}(X_{t+h-1}, X_t) \\ &= \phi \gamma_X(h-1) \\ &= \phi^{|h|} \gamma_X(0) \qquad \text{(check for } h > 0 \text{ and } h < 0) \\ &= \frac{\phi^{|h|} \sigma^2}{1 - \phi^2}. \end{split}$$

Linear process

An important class of stationary time series:

$$X_t = \mu + \sum_{j=-\infty}^\infty \psi_j W_{t-j}$$
 where
$$\{W_t\} \sim WN(0,\sigma_w^2)$$
 and
$$\mu, \psi_j \text{ are parameters satisfying}$$

$$\sum_{j=-\infty}^\infty |\psi_j| < \infty.$$

Examples:

- White noise: $\psi_0 = 1$.
- MA(1): $\psi_0 = 1, \psi_1 = \theta$.
- AR(1): $\psi_0 = 1$, $\psi_1 = \phi$, $\psi_2 = \phi^2$, ...

AR(1) \$\phi\$:0.95

AR(1) \$\phi\$:0.5

AR(2): 0.9, 0.2

Sample ACF

Sample autocovariance function:

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-|h|} (x_{t+|h|} - \bar{x})(x_t - \bar{x}).$$

 \approx the sample covariance of $(x_1, x_{h+1}), \ldots, (x_{n-h}, x_n)$, except that

- \bullet we normalize by n instead of n-h, and
- we subtract the full sample mean.

Sample ACF for Gaussian noise

Summary for sample ACF

We can recognize the sample autocorrelation functions of many non-white (even non-stationary) time series.

Time series: Sample ACF:

White zero

Trend Slow decay

Periodic Periodic

MA(q) Zero for |h| > q

AR(p) Decays to zero exponentially

Trend

Sample ACF: Trend

Periodic

Sample ACF: Periodic

ACF: MA(1)

ACF: AR

ARMA

An **ARMA(p,q) process** $\{X_t\}$ is a stationary process that satisfies

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = W_t + \theta_1 W_{t-1} + \dots + \theta_q W_{t-q},$$
 where $\{W_t\} \sim WN(0, \sigma^2).$

Also, ϕ_p , $\theta_q \neq 0$ and $\phi(z)$, $\theta(z)$ have no common factors.