- 1. Which of these are propositions? What are the truth values of those that are propositions?
 - (a) Either Smith or Sara will do the homework.
 - (b) There is no Chinese or Korean player on this basketball team.
 - (c) What is your favourite team?
 - (d) I would like coffee with cream and sugar.
 - (e) 3 + 5 = 7.
 - (f) Put on your jacket or youll catch a cold.
 - (g) Do you like my new shoes?
 - (h) The sky is purple.
 - (i) There is a number that is larger than infinity.
- 2. Evaluate the following:
 - (a) $(T \vee T) \wedge F$
 - (b) $T \vee T \wedge F$
 - (c) $T \vee \neg T \wedge F$
 - (d) $(T \oplus \neg F) \to F$
 - (e) $(F \lor \neg F) \leftrightarrow (T \land F)$
- 3. Construct truth tables for the following.
 - (a) $\neg p \lor \neg q$
 - (b) $(p \lor \neg q) \to r$
- 4. Let p and q be the propositions

p: It is below freezing.q: It is snowing.

Write these propositions using p and q and logical connectives (including negations).

- (a) It is below freezing and snowing.
- (b) It is below freezing but not snowing.
- (c) It is not below freezing and it is not snowing.
- (d) It is either snowing or below freezing (or both).
- (e) If it is below freezing, it is also snowing.
- (f) Either it is below freezing or it is snowing, but it is not snowing if it is below freezing.

- (g) That it is below freezing is necessary and sufficient for it to be snowing.
- 5. Let p and q be the propositions

p: I bought a lottery ticket this week.

q: I won the million dollar jackpot.

Express each of these propositions as an English sentence.

- (a) $\neg p$
- (b) $p \lor q$
- (c) $p \rightarrow q$
- (d) $p \wedge q$
- (e) $\neg p \rightarrow \neg q$
- (f) $p \leftrightarrow q$
- (g) $\neg p \rightarrow \neg q$
- (h) $\neg p \lor (p \land q)$
- 6. Using the truth table show the following:
 - (a) $p \oplus q \equiv \neg(p \leftrightarrow q)$
 - (b) $(p \rightarrow q) \rightarrow r \not\equiv p \rightarrow (q \rightarrow r)$
 - (c) $(p \lor q) \land r \equiv (p \land r) \lor (q \land r)$.
 - (d) $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r) \equiv True$ (tautology)