Talleres 1 y 2

Federico Banoy, Juan David Rengifo y Salomón Cardeño Luján Ingeniería Matemática Universidad EAFIT

Marzo 2023

Índice

Punto 1.1 Considere las normas $\|\cdot\|_1$ y $\|\cdot\|_{\infty}$ en \mathbb{R}^n .

- a) Pruebe que $||u|| = \frac{1}{3}||u||_1 + \frac{2}{3}||u||_{\infty}$ define una norma en \mathbb{R}^n . Basta con probar que cumple con las propiedades de una norma.
 - I) $||u|| \ge 0$ y $||u|| = 0 \Leftrightarrow u = 0$ Veamos que $||u|| \ge 0$. Como $||u||_1$ y $||u||_\infty$ son normas $\Rightarrow ||u||_1 \ge 0 \land ||u||_\infty \ge 0$ $\Rightarrow ||u|| = \frac{1}{3}||u||_1 + \frac{2}{3}||u||_\infty \ge 0$

Por otra parte, tenemos que

$$||u|| = 0 \Rightarrow \frac{1}{3}||u||_1 + \frac{2}{3}||u||_{\infty} = 0$$

$$\Rightarrow ||u||_1 = 0 \land ||u||_{\infty} = 0$$

$$\Rightarrow u = 0 \land u = 0 \quad \text{pues } ||u||_1, ||u||_{\infty} \text{ son normas}$$

$$\therefore u = 0$$

Finalmente,

$$u = 0 \Rightarrow ||u||_1 = 0 \land ||u||_{\infty} = 0$$
 pues $||u||_1, ||u||_{\infty}$ son normas $\Rightarrow \frac{1}{3}||u||_1 + \frac{2}{3}||u||_{\infty} = 0$ $\therefore ||u|| = 0.$

II) $\|\alpha u\| = |\alpha| \|u\|, \forall \alpha \in \mathbb{R}$

$$\begin{split} \|\alpha u\| &= \frac{1}{3} \|\alpha u\|_1 + \frac{2}{3} \|\alpha u\|_{\infty} \\ &= \frac{1}{3} |\alpha| \|u\|_1 + \frac{2}{3} |\alpha| \|u\|_{\infty} \quad \text{pues } \|u\|_1, \|u\|_{\infty} \text{ son normas} \\ &= |\alpha| \left(\frac{1}{3} \|u\|_1 + \frac{2}{3} \|u\|_{\infty}\right) \quad \text{factor común} \\ &\therefore \|\alpha u\| = |\alpha| \|u\| \quad \text{por definición} \end{split}$$

III) $||u+v|| \le ||u|| + ||v||$

Sean u, v elementos de un espacio vectorial V, entonces

$$\begin{split} \|u+v\| &= \frac{1}{3}\|u+v\|_1 + \frac{2}{3}\|u+v\|_1 \\ &\leq \frac{1}{3} \bigg(\|u\|_1 + \|v\|_1 \bigg) + \frac{2}{3} \bigg(\|u\|_\infty + \|v\|_\infty \bigg) \quad \text{pues } \|u\|_1, \|u\|_\infty \text{ son normas} \\ &\leq \bigg(\frac{1}{3} \|u\|_1 + \frac{2}{3} \|u\|_\infty \bigg) + \bigg(\frac{1}{3} \|v\|_1 + \frac{2}{3} \|v\|_\infty \bigg) \\ \therefore \|u+v\| &\leq \|u\| + \|v\| \quad \text{por definición de } \|\cdot\| \end{split}$$

Así, ||u|| es una norma

b) Pruebe que $\|\cdot\|_p \to \|\cdot\|_{\infty}$, cuando $p \to \infty$. Veamos que $\|fm\|_{x}\|_{x} = \|x\|_{x}$ para todo x de un espacio vectori

Veamos que $\lim_{p\to\infty} ||x||_p = ||x||_\infty$ para todo x de un espacio vectorial V. Note que

$$\begin{split} \|x\|_p &= \bigg(\sum_{i=1}^n |x_i|^p\bigg)^{1/p} \leq \bigg(\sum_{i=1}^n \max_{1 \leq i \leq n} |x_i|^p\bigg)^{1/p} \quad \text{pues } |X_i|^p \leq \max_{1 \leq i \leq n} |x_i|^p \\ &= \bigg(n \max_{1 \leq i \leq n} |x_i|^p\bigg)^{1/p} \\ &= n^{1/p} \max_{1 \leq i \leq n} |x_i| \quad \text{pues } g(x) = x^{1/p} \text{ es monótona en } [0, \infty) \text{ y } \max g(f(x)) = g(\max f(x)) \end{split}$$

$$\therefore \|x\|_p \le n^{1/p} \|x\|_{\infty}$$

Por otra parte

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \ge \left(\max_{1 \le i \le n} |x_i|^p\right)^{1/p}$$

$$\ge \max_{1 \le i \le n} |x_i| \quad \text{pues } g(x) = x^{1/p} \text{ es monótona en } [0, \infty) \text{ y } \max g(f(x)) = g(\max f(x))$$

$$\therefore \|x\|_p \ge \|x\|_{\infty}$$

Entonces, tenemos que

$$||x||_{\infty} \le ||x||_{p} \le n^{1/p} ||x||_{\infty}$$

$$\lim_{p \to \infty} ||x||_{\infty} \le \lim_{p \to \infty} ||x||_{p} \le \lim_{p \to \infty} n^{1/p} ||x||_{\infty}$$

$$||x||_{\infty} \le \lim_{p \to \infty} ||x||_{p} \le ||x||_{\infty}$$

$$\therefore \lim_{p \to \infty} ||x||_{p} = ||x||_{\infty} \blacksquare$$

c) Para $0 , la función <math>\|\cdot\|_p$ (ver presentación) define una norma para \mathbb{R}^n ? Sean x = (0,1) y y = (1,0) elementos de un espacio vectorial $V = \mathbb{R}^2$. Suponga que $\|\cdot\|_p$ define una norma para \mathbb{R}^2 . Esto quiere decir que cumple la propiedad de la desigualdad triangular

$$\begin{aligned} \|x+y\|_p &\leq \|x\|_p + \|y\|_p \\ (|0+1|^p + |1+0|^p)^{1/p} &\leq (|0|^{1/p} + |1|^{1/p})^{1/p} + (|1|^{1/p} + |0|^{1/p})^{1/p} \quad \text{por definición de } \|\cdot\|_p \\ (1+1)^{1/p} &\leq 1^{1/p} + 1^{1/p} \\ & \therefore 2^{1/p} \leq 2 \end{aligned}$$

Lo cual es absurdo pues $2^{1/p} \nleq 2$, $\forall p \in (0,1)$, lo que implica que la hipótesis es falsa y $\|\cdot\|_p$ no define una norma en \mathbb{R}^2 , por lo tanto, no define una norma en \mathbb{R}^n

d) Pruebe que $|x_i| \leq \|x\|_2 \leq \sqrt{n} \|x\|_{\infty}$. Por definición, sabemos que $\|x\|_2 = (\sum_{i=1}^n |x_i|^2)^{1/2}$. Ahora, note que

$$\left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2} \ge \left(|x_i|^2\right)^{1/2} = |x_i|$$

$$\therefore ||x||_2 \ge |x_i|$$

Por otro lado, note que $\sum_{i=1}^{n} |x_i|^2 \leq \sum_{i=1}^{n} \max_{1 \leq i \leq n} |x_i|^2$, entonces

$$\begin{split} \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} & \leq \left(\sum_{i=1}^n \max_{1 \leq i \leq n} |x_i|^2\right)^{1/2} \\ & = \left(n \max_{1 \leq i \leq n} |x_i|^2\right)^{1/2} \quad \text{pues el máximo es único} \\ & = n^{1/2} \max_{1 \leq i \leq n} |x_i| \quad \text{pues } g(x) = x^{1/p} \text{ es monótona en } [0, \infty) \text{ y máx } g(f(x)) = g(\max f(x)) \\ & = n^{1/2} \|x\|_{\infty} \end{split}$$

 $\therefore \|x\|_2 \le \sqrt{n} \|x\|_{\infty}$

Así,
$$|x_i| \leq ||x||_2 \leq \sqrt{n} ||x||_{\infty}$$
 para todo $i \in [1, n], n \in \mathbb{N}$

Punto 1.2 Verifique que $\|f\|_{\infty} = \max_{a \le t \le b} |f(t)|$, es una norma en el espacio vectorial C([a,b]). Basta con probar que $\|f\|_{\infty}$ cumple con las propiedades de una norma.

I)
$$||f||_{\infty} \ge 0$$
 y $||f||_{\infty} = 0 \Leftrightarrow f = 0$

Como $|f(t)| \ge 0 \ \forall t \in [a,b] \Rightarrow \max_{t \in [a,b]} |f(t)| = ||f||_{\infty} \ge 0$. Por otra parte

$$\|f\|_{\infty} = 0 \Rightarrow \max_{t \in [a,b]} |f(t)| = 0$$
 por definición
$$\Rightarrow |f(t)| = 0$$

$$\Rightarrow f(t) = 0, \ \forall t \in [a,b]$$

Ahora

$$\begin{split} f(t) &= 0 \Rightarrow |f(t)| = 0 \\ &\Rightarrow \max_{t \in [a,b]} |f(t)| = 0 \\ &\Rightarrow \|f\|_{\infty} = 0 \quad \text{por definición} \end{split}$$

II) $\|\alpha f\|_{\infty} = |\alpha| \|f\|_{\infty}, \forall \alpha \in \mathbb{R}$

$$\begin{aligned} \|\alpha f(t)\|_{\infty} &= \max_{t \in [a,b]} |\alpha f(t)| \\ &= \max_{t \in [a,b]} |\alpha| |f(t)| \\ &= |\alpha| \max_{t \in [a,b]} |f(t)| \\ &\therefore \|\alpha f(t)\|_{\infty} = |\alpha| \|f(t)\|_{\infty} \end{aligned}$$

III) $\frac{\|f+g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty}}{\text{Sean } f,g \in C([a,b]). \text{ Entonces}}$

$$||f + g||_{\infty} = \max_{t \in [a,b]} \{|f(t) + g(t)|\}$$

Ahora, observe que

$$\begin{split} |f(t)+g(t)| &\leq |f(t)| + |g(t)| \quad \text{por propiedad del valor absoluto} \\ \max_{t \in [a,b]} \left\{ |f(t)+g(t)| \right\} &\leq \max_{t \in [a,b]} \left\{ |f(t)| + |g(t)| \right\} \\ &\leq \max_{t \in [a,b]} \left\{ |f(t)| \right\} + \max_{t \in [a,b]} \left\{ |g(t)| \right\} \quad \text{por propiedad del máximo} \\ &= \|f\|_{\infty} + \|g\|_{\infty} \quad \text{por definición de } \|\cdot\|_{\infty} \\ & \therefore \|f+g\|_{\infty} \leq \|f\|_{\infty} + \|g\|_{\infty} \quad \text{por definición de } \|\cdot\|_{\infty} \end{split}$$

Así, $||f||_{\infty}$ es una norma en C([a,b])

Punto 1.3 Discutir la posibilidad de que la desigualdad triangular para la norma de la suma en \mathbb{R}^n sea la igualdad, es decir, encontrar la condición necesaria y suficiente que deben cumplir los vectores $x, y \in \mathbb{R}^n$ para verificar que

$$||x + y||_1 = ||x||_1 + ||y||_1.$$

 (\Rightarrow)

Que $||x + y||_1 = ||x||_1 + ||y||_1$ implica que

$$\sum_{i=1}^{n} |x_i + y_i| = \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |y_i|$$

Lo cual implica que para todo i = 1, ..., n se cumple que $|x_i + y_i| = |x_i| + |y_i|$. Observe que

$$|x_i + y_i| = |x_i| + |y_i|$$

$$|x_i + y_i|^2 = (|x_i| + |y_i|)^2$$

$$(x_i + y_i)^2 = |x_i|^2 + 2|x_i||y_i| + |y_i|^2$$

$$x_i^2 + 2x_iy_i + y_i^2 = x_i^2 + 2|x_i||y_i| + y_i^2$$

$$\Rightarrow x_iy_i = |x_i||y_i| \ge 0$$

$$\therefore x_iy_i \ge 0, \forall i = 1, ..., n$$

Así $\forall x, y \in \mathbb{R}^n$, se tiene que $||x+y||_1 = ||x||_1 + ||y||_1 \Leftrightarrow x_i y_i \geq 0, \forall i = 1, ..., n$

Punto 1.4 Sea X un espacio vectorial y sean $u, v: X \to [0, \infty)$ dos normas en X. En cada uno de los siguientes casos, probar que la función $\|\cdot\|: X \to \mathbb{R}$ definida para todo $x \in X$ en la forma que se indica, es una norma en X:

$$||x|| = u(x) + v(x)$$

$$||x|| = \max\{v(x), u(x)\}$$

$$||x|| = (u(x)^2 + v(x)^2)^{1/2}$$

a)
$$||x|| = u(x) + v(x)$$

Basta con probar que ||x|| cumple con las propiedades de una norma.

i) $||x|| \ge 0$ y $||x|| = 0 \Leftrightarrow x = 0$

Note que $u, v \ge 0$ pues son normas $\Rightarrow u(x) + v(x) = ||x|| \ge 0$. Ahora

$$\|x\| = 0 \Rightarrow u(x) + v(x) = 0$$

 $\Rightarrow u(x) = 0 \land v(x) = 0 \text{ pues } u, v \ge 0$
 $\Rightarrow x = 0 \land x = 0 \text{ pues } u, v \text{ son normas}$
 $\therefore x = 0$

Por otro lado, si $x = 0 \Rightarrow u, v = 0$ por ser normas, luego u(x) + v(x) = ||x|| = 0.

ii) $||ax|| = |a|||x||, \forall a \in \mathbb{R}$

$$||ax|| = u(ax) + v(ax) = |a|u(x) + |a|v(x)$$
 pues son normas
= $|a|(u(x) + v(x))$
 $\therefore ||ax|| = |a|||x||$

iii) $||x + y|| \le ||x|| + ||y||, \ \forall x, y \in X$

$$\begin{aligned} \|x+y\| &= u(x+y) + v(x+y) \leq (u(x) + u(y)) + (v(x) + v(y)) & \text{pues } u,v \text{ son normas} \\ &= (u(x) + v(x)) + (u(y) + v(y)) \\ & \therefore \|x+y\| \leq \|x\| + \|y\| \end{aligned}$$

Así, ||x|| es una norma en $X \blacksquare$

b)
$$||x|| = \max\{u(x), v(x)\}$$

Basta con probar que ||x|| cumple con las propiedades de una norma.

i) $||x|| \ge 0$ y $||x|| = 0 \Leftrightarrow x = 0$

Note que $u, v \ge 0$ pues son normas $\Rightarrow \max\{u(x), v(x)\} = ||x|| \ge 0$. Ahora

$$\begin{split} \|x\| &= 0 \Rightarrow \max\{u(x), v(x)\} = 0 \\ &\Rightarrow u(x) = 0 \lor v(x) = 0 \quad \text{pues } u, v \ge 0 \\ &\Rightarrow x = 0 \lor x = 0 \quad \text{pues } u, v \text{ son normas} \\ &\therefore x = 0 \end{split}$$

Por otro lado, si $x = 0 \Rightarrow u, v = 0$ por ser normas, luego máx $\{u(x), v(x)\} = ||x|| = 0$.

ii) $||ax|| = |a|||x||, \forall a \in \mathbb{R}$

$$\begin{split} \|ax\| &= \max\{u(ax),v(ax)\} = \max\{|a|u(x),|a|v(x)\} \quad \text{pues son normas} \\ &= |a|\max\{u(x),v(x)\} \quad \text{por propiedad del máx.} \\ &\therefore \|ax\| = |a|\|x\| \end{split}$$

iii) $||x + y|| \le ||x|| + ||y||, \ \forall x, y \in X$

$$||x + y|| = \max\{u(x + y), v(x + y)\} \le \max\{u(x) + u(y), v(x) + v(y)\}\$$

Sean a = u(x), b = u(y), c = v(x), d = v(y). Entonces

$$\max\{a+b,c+d\} \leq \max\{a+b,a+d,c+b,c+d\} \quad \text{pues } \{a+b,c+d\} \subseteq \{a+b,a+d,c+b,c+d\} \\ \leq \max\{a,c\} + \max\{b,d\} \quad \text{pues se consideran todos los casos anteriores de máx sum} \leq \text{sum máx}$$

Lo que implica que

$$\max\{u(x+y), v(x+y)\} \le \max\{u(x), v(x)\} + \max\{u(y), v(y)\}$$
$$\therefore ||x+y|| \le ||x|| + ||y||$$

Así, ||x|| es una norma en $X \blacksquare$

c)
$$||x|| = (u(x)^2 + v(x)^2)^{1/2}$$

Basta con probar que ||x|| cumple con las propiedades de una norma.

i)
$$||x|| \ge 0$$
 y $||x|| = 0 \Leftrightarrow x = 0$

Note que $u, v \ge 0$ pues son normas $\Rightarrow u(x)^2 + v(x)^2 \ge 0$ luego $(u(x)^2 + v(x)^2)^{1/2} = ||x|| \ge 0$. Ahora

$$||x|| = 0 \Rightarrow (u(x)^2 + v(x)^2)^{1/2} = 0$$

$$\Rightarrow u(x)^2 + v(x)^2 = 0$$

$$\Rightarrow u(x) = 0 \land v(x) = 0 \quad \text{pues } u, v \ge 0$$

$$\Rightarrow x = 0 \land x = 0 \quad \text{pues } u, v \text{ son normas}$$

$$\therefore x = 0$$

Por otro lado, si $x=0 \Rightarrow u,v=0$ por ser normas, luego $u(x)^2+v(x)^2=0$ y así $(u(x)^2+v(x)^2)^{1/2}=\|x\|=0$.

ii) $||ax|| = |a|||x||, \forall a \in \mathbb{R}$

$$\begin{aligned} \|ax\| &= (u(ax)^2 + v(ax)^2)^{1/2} = ((|a|u(x))^2 + (|a|v(x))^2)^{1/2} & \text{pues son normas} \\ &= \left(|a|^2 \left(u(x)^2 + v(x)^2\right)\right)^{1/2} \\ &= |a| \left(u(x)^2 + v(x)^2\right)^{1/2} \\ &\therefore \|ax\| = |a| \|x\| \end{aligned}$$

iii) $||x + y|| \le ||x|| + ||y||, \ \forall x, y \in X$

$$\begin{split} \|x+y\|^2 &= u^2(x+y) + v^2(x+y) \\ &\leq \Big(u(x) + u(y)\Big)^2 + \Big(v(x) + v(y)\Big)^2 \quad \text{pues } u,v \text{ son normas} \\ &= \Big(u^2(x) + 2u(x)u(y) + u^2(y)\Big) + \Big(v^2(x) + 2v(x)v(y) + v^2(y)\Big) \\ &= \Big(u^2(x) + v^2(x)\Big) + 2\Big(u(x)u(y) + v(x)v(y)\Big) + \Big(u^2(y) + v^2(y)\Big) \\ &= \|x\|^2 + 2\Big(u(x)u(y) + v(x)v(y)\Big) + \|y\|^2 \end{split}$$

Sea $a = (a_1, a_2) = (u(x), v(x))$ y $b = (b_1, b_2) = (u(y), v(y))$, entonces

$$= \|x\|^2 + 2\left(\sum_{i=1}^n a_i b_i\right) + \|y\|^2$$

$$\leq \|x\|^2 + 2\left|\sum_{i=1}^n a_i b_i\right| + \|y\|^2$$

$$\leq \|x\|^2 + 2\|x\| \|y\| + \|y\|^2 \quad \text{por la designaldad de Cuachy-Schwarz}$$

$$= (\|x\| + \|y\|)^2$$

$$\therefore \|x + y\| = \|x\| + \|y\|$$

Así, ||x|| es una norma en $X \blacksquare$

Punto 1.5 Probar que la función $\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por

$$\rho(x,y) := |y - x|^{1/2}$$

es una distancia en \mathbb{R} .

Basta con probar que ρ cumple con las propiedades de una distancia.

i)
$$\rho(x,y) \ge 0 \land \rho(x,y) = 0 \Leftrightarrow x = y$$

Note que $|y-x| \ge$ por definición del valor absoluto, lo cual implica que $|y-x|^{1/2} = \rho(x,y) \ge 0$. Ahora, si $\rho(x,y) = 0 \Rightarrow |y-x|^{1/2} = 0 \Rightarrow |y-x| = 0 \Rightarrow |y-x| = 0 \Rightarrow |y-x|^{1/2} = \rho(x,y) = 0$.

ii) $\rho(x,y) = \rho(y,x)$

$$\begin{split} \rho(x,y) &= |y-x|^{1/2} = |-(x-y)|^{1/2} \\ &= (|-1||x-y|)^{1/2} \quad \text{por propiedad del valor absoluto} \\ &= |x-y|^{1/2} \\ &\therefore \rho(x,y) = \rho(y,x) \quad \text{por definición de } \rho(\cdot,\cdot) \end{split}$$

iii) $\rho(x,y) \le \rho(x,z) + \rho(z,y)$

Sean $x, y, z \in \mathbb{R}$. Entonces

$$\begin{split} \rho(x,y) &= |y-x|^{1/2} \\ &= |y-x+z-z|^{1/2} \\ &= |-x+z+y-z|^{1/2} \\ &\leq (|-x+z|+|y-z|)^{1/2} \\ &= (|x-z|+|y-z|)^{1/2} \quad \text{por propiedad del valor absoluto} \end{split}$$

Ahora, sean a = |z - x| y b = |y - z|. Observe que

$$\sqrt{a} + \sqrt{b} = \sqrt{(\sqrt{a} + \sqrt{b})^2}$$

$$= \sqrt{a + 2\sqrt{ab} + b}$$

Lo cual implica que $\sqrt{a} + \sqrt{b} \ge \sqrt{a+b}$, entonces

$$\rho(x,y) \le (|x-z| + |y-z|)^{1/2}$$

$$\le |x-z|^{1/2} + |y-z|^{1/2}$$

$$\therefore \rho(x,y) \le \rho(x,z) + \rho(z,y)$$

Así, ρ es una distancia en \mathbb{R}

Punto 1.6 Sean X un espacio normado, Y un espacio vectorial y $f:X\to Y$ una aplicación lineal e inyectiva. Probar que, definiendo

$$||y|| = ||f(x)||, \quad \forall y \in Y$$

se obtiene una norma en Y. Establecer un resultado análogo para espacios métricos.

Para espacios normados

Basta probar que ||y|| cumple con las propiedades de una norma.

i)
$$||y|| \ge 0$$
 y $||y|| = 0 \Leftrightarrow y = 0$

Note que $||f(x)|| \ge 0$ pues es precisamente la norma del espacio normado $(X, ||\cdot||)$, entonces $||y|| \ge 0$ por definición. Ahora, si $||y|| = 0 \Rightarrow ||f(x)|| = 0 \Rightarrow f(x) = 0$ pues $||\cdot||$ es una norma. Por otro lado, si $f(x) = 0 \Rightarrow ||f(x)|| = 0$ pues $||\cdot||$ es una norma, luego ||y|| = 0 por definición.

ii) $||ay|| = |a|||y||, \forall a \in \mathbb{R}$

$$\begin{aligned} \|ay\| &= \|f(ax)\| \\ &= \|af(x)\| \quad \text{por propiedad de una función lineal } f \\ &= |a|\|f(x)\| \quad \text{pues } \|\cdot\| \text{ es la norma del espacio normado } X \\ \therefore \|ay\| &= |a|\|y\| \quad \text{por definición} \end{aligned}$$

iii) $||y + z|| \le ||y|| + ||z||, \ \forall y, z \in Y$

Sean $x_1, x_2 \in X$ tal que $||y|| = ||f(x_1)|| y ||z|| = ||f(x_2)||$. Entonces

$$||y+z|| = ||f(x_1 + x_2)||$$

= $||f(x_2) + f(x_2)||$ por propiedad de una función lineal $f \le ||f(x_1)|| + ||f(x_2)||$ pues $||\cdot||$ es una norma
 $\therefore ||x_1 + x_2|| \le ||x_1|| + ||x_2||$ por definición

Así, ||y|| es una norma en $Y \blacksquare$

Para espacios métricos

Sea X un espacio métrico, Y un espacio vectorial y $f: X \to Y$ una aplicación lineal e inyectiva. Probar que definiendo $d(a,b) = ||f(b-a)||, \forall a,b \in Y$ se obtiene una distancia en Y.

Basta probar que d(a, b) cumple con las propiedades de una distancia.

i)
$$d(a,b) \ge 0 \land d(a,b) = 0 \Leftrightarrow a = b$$

d(a,b) = 0 ssi f(b-a) = 0 pues d(a,b) es la norma de f(b-a). Por linealidad de f, f(b-a) = f(b) - f(a) = 0. Además, como f es inyectiva, entonces cada imagen está asociada a una única preimagen, luego f(a) = f(b) ssi a = b.

ii) d(a,b) = d(b,a)

$$d(a,b) = ||f(b-a)||$$

$$= \|f(-(a-b))\|$$

$$= \|-f(a-b)\| \quad \text{por propiedad de una función lineal } f$$

$$= |-1|\|f(a-b)\| \quad \text{pues } \|\cdot\| \text{ es una norma}$$

$$= \|f(a-b)\|$$

$$\therefore d(a,b) = d(b,a) \quad \text{por definición}$$

iii)
$$d(a,b) \le d(a,c) + d(c,b)$$

Sean $a, b, c \in Y$. Entonces

$$\begin{split} d(a,b) &= \|f(b-a)\| \\ &= \|f(b-a+c-c)\| \\ &= \|f(-a+c+b-c)\| \\ &= \|f(-a+c) + f(b-c)\| \quad \text{por propiedad de una función lineal } f \\ &\leq \|f(-a+c)\| + \|f(b-c)\| \quad \text{pues } \|\cdot\| \text{ es una norma} \\ &= \|f(c-a)\| + \|f(b-c)\| \\ &\therefore d(a,b) \leq d(a,c) + d(c,b) \quad \text{por definición} \end{split}$$

Así, ||y|| es una distancia en $Y \blacksquare$

Punto 1.7 Consideremos en $L^2([a,b] \times [a,b])$ la aplicación

$$||f|| := \sqrt{\int_a^b \int_a^b |f(t,s)|^2 dt ds}.$$

Mostrar que $(L^2([a,b] \times [a,b]), \|\cdot\|)$ es una norma.

Basta con probar que ||f|| cumple con las propiedades de una norma. Sin embargo, por facilidad considere primero este cambio de notación

$$\int_{a}^{b} \int_{a}^{b} |f(t,s)|^{2} dt ds = \int_{[a,b] \times [a,b]} |f(t,s)|^{2} dL = \int_{L^{2}} |f(t,s)|^{2} dL$$

Lo cual implica que la norma se puede reescribir como

$$||f|| = \sqrt{\int_{L^2} |f(t,s)|^2 dL}$$

i) $||f|| \ge 0$ y $||f|| = 0 \Leftrightarrow f = 0$

Observe que, por definición del valor absoluto, $|f(t,s)| \ge 0 \Rightarrow |f(t,s)|^2 \ge 0$ lo cual implica que $\int_{L^2} |f(t,s)|^2 dL \ge \int_{L^2} 0 dL = 0$ pues por propiedad la integral preserva la desigualdad y así, $\sqrt{\int_{L^2} |f(t,s)|^2 dL} = ||f|| \ge 0$. Ahora

$$\begin{split} \|f\| &= 0 \Rightarrow \sqrt{\int_{L^2} |f(t,s)|^2 dL} = 0 \\ &\Rightarrow \int_{L^2} |f(t,s)|^2 dL = 0 \quad \text{al derivar en ambos lados} \\ &\Rightarrow |f(t,s)|^2 = 0 \\ &\Rightarrow |f(t,s)| = 0 \\ &\Rightarrow f(t,s) = 0 \end{split}$$

Por otro lado

$$f(t,s) = 0 \Rightarrow |f(t,s)| = 0$$
$$\Rightarrow |f(t,s)|^2 = 0$$

$$\Rightarrow \int_{L^2} |f(t,s)|^2 dL = 0 \quad \text{al integrar en ambos lados}$$

$$\Rightarrow \therefore \sqrt{\int_{L^2} |f(t,s)|^2 dL} = ||f|| = 0$$

ii) $||af|| = |a|||f||, \forall a \in \mathbb{R}$

$$\begin{split} \|af\| &= \sqrt{\int_{L^2} |af(t,s)|^2 dL} \\ &= \sqrt{\int_{L^2} (|a||f(t,s)|)^2 dL} \\ &= \sqrt{\int_{L^2} |a|^2 |f(t,s)|^2 dL} \\ &= \sqrt{|a|^2 \int_{L^2} |f(t,s)|^2 dL} \quad \text{por propiedad de la integral} \\ &= |a| \sqrt{\int_{L^2} |f(t,s)|^2 dL} \\ &\therefore \|af\| = |a| \|f\| \end{split}$$

iii) $||f + g|| \le ||g|| + ||g||, \ \forall f, g \in L^2$

Por facilidad considere la notación $f=f(t,s),\,g=g(t,s),$ entonces

$$||f+g||^2 = \int_{L^2} |f+g|^2 dL$$

$$= \int_{L^2} (f+g)^2 dL$$

$$= \int_{L^2} (f^2 + 2fg + g^2) dL$$

$$= \int_{L^2} f^2 dL + \int_{L^2} 2fg dL + \int_{L^2} g^2 dL$$

$$= \int_{L^2} |f|^2 dL + 2 \int_{L^2} fg dL + \int_{L^2} |g|^2 dL$$

$$= ||f||^2 + 2 \int_{L^2} fg dL + ||g||^2$$

Ahora, observe que $-|fg| \leq fg \leq |fg| \Rightarrow -\int_{L^2} |fg| dL \leq \int_{L^2} fg dL \leq \int_{L^2} |fg| dL$, lo cual implica que

$$||f+g||^2 \le ||f||^2 + 2 \int_{L^2} |fg| dL + ||g||^2$$

Ahora, considere la desigualdad de Hölder

$$\int_{L^2} \lvert fg \rvert dL \leq \bigg(\int_{L^2} \lvert f \rvert^p dL\bigg)^{1/p} \bigg(\int_{L^2} \lvert g \rvert^q dL\bigg)^{1/q}$$

para todo $p,q>1,\frac{1}{p}+\frac{1}{q}=1.$ Note que si p=q=2 se obtiene la desigualdad

$$\begin{split} \int_{L^2} &|fg| dL \leq \bigg(\int_{L^2} &|f|^2 dL \bigg)^{1/2} \bigg(\int_{L^2} &|g|^2 dL \bigg)^{1/2} \\ &= \|f\| \|g\| \end{split}$$

Entonces

$$||f + g||^2 \le ||f||^2 + 2 \int_{L^2} |fg| dL + ||g||^2$$

$$\leq \|f\|^2 + 2\|f\|\|g\| + \|g\|^2 \quad \text{por la desigualdad de h\"older con } p = q = 2$$

$$= (\|f\| + \|g\|)^2$$

$$\therefore \|f + g\| \leq \|f\| + \|g\| \quad \text{al aplicar ra\'iz cuadrada a ambos lados}$$

Así, ||f|| es una norma en $L^2([a,b]\times[a,b])$

Punto 1.8 Sea $\mathcal{C}^1([0,1]) := \{ f \in \mathcal{C}([0,1]) : \exists f' \in \mathcal{C}([0,1]) \}$. Mostrar que la siguiente función sobre $\mathcal{C}^1([0,1])$ es una norma

$$||f|| := \left(\int_0^1 |f'(t)|^2 dt + \int_0^1 |f(t)|^2 dt\right)^{1/2} = \sqrt{||f||_2^2 + ||f'||_2^2}.$$

Basta con probar que ||f|| cumple con las propiedades de una norma. Por facilidad, se usará la notación f = f(t) y f' = f'(t) para cuando se trate con la definición de la norma.

i) $||f|| \ge 0$ y $||f|| = 0 \Leftrightarrow f = 0$

Como $|f|^2 \ge 0 \land |f'|^2 \ge 0 \Rightarrow \int_0^1 |f|^2 dt \ge 0 \land \int_0^1 |f'|^2 dt \ge 0$ pues por propiedades de la integral se preserva la designaldad, y esto implica que $\int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt \ge 0 \Rightarrow (\int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt)^{1/2} = ||f|| \ge 0$. Ahora

$$\begin{split} \|f\| &= 0 \Rightarrow \left(\int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt\right)^{1/2} = 0 \\ &\Rightarrow \int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt = 0 \\ &\Rightarrow \int_0^1 |f|^2 dt = \int_0^1 |f'|^2 dt = 0 \\ &\Rightarrow |f|^2 = |f'|^2 = 0 \quad \text{al derivar a ambos lados de cada ecuación} \\ &\Rightarrow \therefore f = 0 \land f' = 0 \quad \text{al aplicar raíz cuadrada y usar la definición de } |\cdot| \end{split}$$

Por otro lado

$$\begin{split} f &= 0 \wedge f' = 0 \Rightarrow |f|^2 = 0 \wedge |f'|^2 = 0 \quad \text{al elevar al cuadrado y usar la definición de } |\cdot| \\ &\Rightarrow \int_0^1 |f|^2 dt = 0 \wedge \int_0^1 |f'|^2 dt = 0 \quad \text{al integrar a ambos lados de cada ecuación} \\ &\Rightarrow \int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt = 0 \\ &\Rightarrow \left(\int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt \right)^{1/2} = 0 \\ &\Rightarrow \therefore \|f\| = 0 \end{split}$$

ii) $||af|| = |a|||f||, \forall a \in \mathbb{R}$

$$\begin{aligned} \|af\| &= \left(\int_0^1 |af|^2 dt + \int_0^1 |af'|^2 dt\right)^{1/2} \\ &= \left(\int_0^1 (|a||f|)^2 dt + \int_0^1 (|a||f'|)^2 dt\right)^{1/2} \\ &= \left(\int_0^1 |a|^2 |f|^2 dt + \int_0^1 |a|^2 |f'|^2 dt\right)^{1/2} \\ &= \left(|a|^2 \int_0^1 |f|^2 dt + |a|^2 \int_0^1 |f'|^2 dt\right)^{1/2} \\ &= \left(|a|^2 \left(\int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt\right)\right)^{1/2} \\ &= |a| \left(\int_0^1 |f|^2 dt + \int_0^1 |f'|^2 dt\right)^{1/2} \end{aligned}$$

$$|af| = |a||f|$$

iii)
$$||f + g|| \le ||f|| + ||g||, \ \forall f, g \in \mathcal{C}^1([0, 1])$$

$$\begin{split} \|f+g\|^2 &= \|f+g\|_2^2 + \|f'+g'\|_2^2 \\ &\leq (\|f\|_2 + \|g\|_2)^2 + (\|f'\|_2 + \|g'\|_2)^2 \quad \text{pues } \|\cdot\|_2 \text{ cumple la desigualdad triangular} \\ &= (\|f\|_2^2 + 2\|f\|_2\|g\|_2 + \|g\|_2^2) + (\|f'\|_2^2 + 2\|f'\|_2\|g'\|_2 + \|g'\|_2^2) \\ &= (\|f\|_2^2 + \|f'\|_2^2) + 2(\|f\|_2\|g\|_2 + \|f'\|_2\|g'\|_2) + (\|g\|_2^2 + \|g'\|_2^2) \quad \text{asociativa} \\ &= \|f\|^2 + 2(\|f\|_2\|g\|_2 + \|f'\|_2\|g'\|_2) + \|g\|^2 \quad \text{por definición} \end{split}$$

Por facilidad, se propone el siguiente cambio de notación $\mathbf{f} = (\|f\|_2, \|f'\|_2)$ y $\mathbf{g} = (\|g\|_2, \|g'\|_2)$, entonces reescribiendo de esta forma, tenemos que

$$\begin{split} \|f+g\|^2 &= \|f\|^2 + 2\sum_{i=1}^n \mathbf{f}_i \mathbf{g}_i + \|g\|^2 \\ &\leq \|f\|^2 + 2\left|\sum_{i=1}^n \mathbf{f}_i \mathbf{g}_i\right| + \|g\|^2 \\ &\leq \|f\|^2 + 2\sqrt{(\sum_{i=1}^n \mathbf{f}_i^2)(\sum_{i=1}^n \mathbf{g}_i^2)} + \|g\|^2 \text{por la designaldad de Cauchy-Schwarz} \\ &= \|f\|^2 + 2\sqrt{(\|f\|_2^2 + \|f'\|_2^2)(\|g\|_2^2 + \|g'\|_2^2)} + \|g\|^2 \\ &= \|f\|^2 + 2\sqrt{(\|f\|_2^2 + \|f'\|_2^2)}\sqrt{(\|g\|_2^2 + \|g'\|_2^2)} + \|g\|^2 \\ &= \|f\|^2 + 2\|f\|\|g\| + \|g\|^2 \\ &= (\|f\| + \|g\|)^2 \end{split}$$

 $\|f + g\| \le \|f\| + \|g\|$ al aplicar raíz cuadrada a ambos lados

Así, ||f|| es una norma en $C^1([0,1])$

Punto 1.9 Sea (V, \langle , \rangle) un espacio con producto interno. Demostrar que para $x, y \in V$ se tiene

a) La ley del paralelogramo: $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$

$$\|u+v\|^2 + \|u-v\|^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle + \langle u, u \rangle - 2\langle u, v \rangle + \langle v, v \rangle = 2\|u\|^2 + 2\|v\|^2$$

b) La ley de Pitagoras: $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

 $[\Rightarrow]$

Supongamos que $x \perp y$, es decir que $\langle x,y \rangle = 0$, y veamos que $\|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$. En efecto $\|x+y\|^2 = \langle x+y, x+y \rangle = \langle x,x \rangle + 2\langle x,y \rangle + \langle y,y \rangle = \|x\|^2 + \|y\|^2$ [\Leftarrow]

Supongamos que $||x+y||^2 = ||x||^2 + ||y||^2$ y veamos que $u \perp v$, $||x+y||^2 = \langle u+v, u+v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2$ $||x||^2 + ||y||^2 = \langle u, u \rangle + \langle v, v \rangle$, claramente $||x+y||^2 = ||x||^2 + ||y||^2$ ssi $\langle u, v \rangle = 0$, es decir, $u \perp v$.

c) i) La identidad polar: $\langle x,y\rangle = \frac{\|x+y\|^2 - \|x-y\|^2}{4}$

Observe que

$$\begin{split} \|x+y\|^2 - \|x-y\|^2 &= \langle x+y, x+y \rangle - \langle x-y, x-y \rangle \\ &= (\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle) - (\langle x, x \rangle - \langle x, y \rangle - \langle y, x \rangle + \langle y, y \rangle) \quad \text{linealidad y simetria} \\ &= 2\langle x, y \rangle + 2\langle y, x \rangle \\ &= 4\langle x, y \rangle \quad \text{simetria} \end{split}$$

Entonces

$$\therefore \frac{\|x+y\|^2 - \|x-y\|^2}{4} = \langle x, y \rangle$$

c) ii)
$$\langle x, y \rangle = \frac{\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2}{4}$$

como estamos sobre el conjunto $\mathbb C$ recuerde que $\langle x,y\rangle=\Re\langle x,y\rangle+i\Im\langle x,y\rangle$. Por el inciso anterior sabemos que $\Re\langle x,y\rangle=\frac{\|x+y\|^2-\|x-y\|^2}{4}$. Veamos que $i\Im\langle x,y\rangle=\frac{i\|x+iy\|^2-i\|x-iy\|^2}{4}$.

$$\begin{split} i\|x+iy\|^2 - i\|x-iy\|^2 &= i\big(\langle x+iy,x+iy\rangle - \langle x-iy,x-iy\rangle\big) \\ &= i\left[\big(\langle x,x\rangle + \langle x,iy\rangle + \langle iy,x\rangle + \langle iy,iy\rangle\big) - \big(\langle x,x\rangle - \langle x,iy\rangle - \langle iy,x\rangle + \langle iy,iy\rangle\big)\right] \\ &= i\big(2\langle x,iy\rangle + 2\langle iy,x\rangle\big) \\ &= i\big(-2i\langle x,y\rangle + 2i\langle y,x\rangle\big) \quad \text{propiedad ii'}), \ \bar{i} = -i, \ \overline{-i} = i + simetria \\ &= -2i^2\big(\langle x,y\rangle - \overline{\langle x,y\rangle}\big) \quad \text{propiedad iii'}) \text{ simetria} \\ &= 2\big(\Re\langle x,y\rangle + i\Im\langle x,y\rangle - \Re\langle x,y\rangle + i\Im\langle x,y\rangle\big) \quad \langle x,y\rangle, \overline{\langle x,y\rangle} \in \mathbb{C} \\ &= 2\big(2i\Im\langle x,y\rangle\big) = 4i\Im\langle x,y\rangle \\ &\Rightarrow i\Im\langle x,y\rangle = \frac{i\|x+iy\|^2 - i\|x-iy\|^2}{4} \end{split}$$

Entonces

$$\therefore \frac{\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2}{4} = \Re\langle x+y\rangle + i\Im\langle x+y\rangle = \langle x,y\rangle$$

d) $||x+y|| = ||x|| + ||y|| \Leftrightarrow x = ay$ o y = ax para alguna constante $a \ge 0$.

 (\Leftarrow)

$$\begin{aligned} \|x+y\|^2 &= \langle x,y \rangle \\ &= \langle x+y,x+y \rangle \quad \text{linealidad y simetr\'ia} \\ &= \langle x,x \rangle + \langle x,y \rangle + \langle y,x \rangle + \langle y,y \rangle \\ &= \|x\|^2 + 2\langle x,y \rangle + \|y\|^2 \quad \|\cdot\|^2 = \langle \cdot, \cdot \rangle \text{ y simetr\'ia} \\ &= \|x\|^2 + 2\langle x,ax \rangle + \|ax\|^2 \quad y = ax \\ &= \|x\|^2 + 2a\langle x,x \rangle + (|a|\|x\|)^2 \\ &= \|x\|^2 + 2a\|x\|^2 + a^2\|x\|^2 \\ &= (\|x\| + a\|x\|)^2 \\ &= (\|x\| + |a|\|x\|)^2 \quad \text{pues } a \geq 0 \\ &= (\|x\| + \|ax\|)^2 = (\|x\| + \|y\|)^2 \\ \Rightarrow \therefore \|x+y\| = \|x\| + \|y\| \end{aligned}$$

 (\Rightarrow)

Sabemos que ||x + y|| = ||x|| + ||y||. Por el caso anterior tenemos que

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$

Por otro lado,

$$(\|x\| + \|y\|)^2 = \|x\|^2 + 2\|x\|\|y\| + \|y\|^2$$

Por otro lado, considere la ley de cosenos

$$||x \pm y||^2 = ||x||^2 \pm 2||x|| ||y|| \cos\theta + ||y||^2$$

Por hipótesis estas 3 ecuaciones deben de ser iguales cuando se considera la ley de cosenos para $||x + y||^2$. Esto implica que (EN REALIDAD ESTO ES UNA DEFINICIÓN, mentiras)

$$\langle x, y \rangle = ||x|| ||y|| = ||x|| ||y|| \cos \theta$$

Considere el caso no trivial en el que ||x||, ||y|| > 0. Esto quiere decir que

$$||x|||y|| = ||x|||y|| \cos \theta$$

$$\Rightarrow \cos \theta = 1$$

$$\theta = \cos^{-1}(1) = 0, \ \pi$$

Lo cual ocurre ssi x=ay o y=ax para alguna constante $a\geq 0$, para todo $x,y\in V$. Note que este caso incluye el caso trivial en el que x=0 o y=0. Así, se cumple que $\|x+y\|=\|x\|+\|y\|\Leftrightarrow x=ay$ o y=ax para alguna constante $a\geq 0$

Punto 1.10 Sea V = C([a, b]).

- a) Pruebe que V es un espacio de Banach con la norma $||f||_{\infty} = \max_{a \le t \le b} |f(t)|$ para todo $f \in V$ y para todo $t \in [a,b]$.
- b) Pero con la norma $||f||_1 = \int_a^b |f(t)| dt$, no lo es. Ayuda: Considere la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ definidas por

$$f_n(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{2} \\ (t - \frac{1}{2})^{1/n}, & \frac{1}{2} \le t \le 1. \end{cases}$$

Siga estos pasos:

I) Pruebe que $\{f_n\}_n$ es una sucesión de Cauchy.

II) Sea
$$f(t) = \lim_{n \to \infty} f_n(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{2}, \\ 1, & \frac{1}{2} \le t \le 1 \end{cases}$$
 verifique que $f \notin V$.

Recuerde que una sucesión $\{x_n\}_{n=1}^{\infty}$ en V, es una sucesión de Cauchy si

$$\lim_{m,n\to\infty} ||x_n - x_m|| = 0$$

Veamos que $\{f_n\}_{n=1}^{\infty}$ es una sucesión de Cauchy.

$$\lim_{m,n\to\infty} \|x_n - x_m\| = \begin{cases} \lim_{m,n\to\infty} \|0 - 0\| = 0, & 0 \le t \le \frac{1}{2} \\ \lim_{m,n\to\infty} \|(t - \frac{1}{2})^{1/n} - (t - \frac{1}{2})^{1/m}\| = \|1 - 1\| = 0, & \frac{1}{2} \le t \le 1. \end{cases}$$

$$\therefore \lim_{m \to \infty} \|x_n - x_m\| = 0$$

Sea $f(t) = \lim_{n \to \infty} f_n(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{2}, \\ 1, & \frac{1}{2} \le t \le 1 \end{cases}$. Veamos que f no es una función continua en [a, b], es decir, que $f \notin V = ([0, 1])$.

Respuesta.

- 1. ESTÁ EN LAS DIAPOSITIVAS (59 en adelante). Nota: está con el sup A, pero sup $A = \max A$ cuando $\max A \in A$.
- 2. ESTÁ EN LAS NOTAS DE CAMILO COSSIO PERO TIENE ERRORES (ESTÁN CORREGIDOS).

Punto 1.11 Sea $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$ vectores de \mathbb{R}^n . Determine si $\langle x, y \rangle$ es o no un producto interno, en caso de no serlo, indicar qué propiedades no se cumplen.

a)
$$\langle x, y \rangle = \sum_{k=1}^{n} x_k |y_k|$$

b)
$$\langle x, y \rangle = \left| \sum_{k=1}^{n} x_k y_k \right|$$

c)
$$\langle x, y \rangle = \left(\sum_{k=1}^{n} x_k^2 y_k^2 \right)^{1/2}$$

Punto 1.12 Sea V=C[0,1], determine si $\langle f,g\rangle$ es o no un producto interno, en caso de no serlo, indicar qué propiedades no se cumplen.

a)
$$\langle f, g \rangle = f(1)g(1)$$

b)
$$\langle f, g \rangle = \int_0^1 f'(t)g'(t)df$$
, donde $f' = \frac{df}{dt}$ y lo mismo para g' .

c)
$$\langle f, g \rangle = \left(\int_0^1 f(t)dt \int_0^1 g(t)dt \right)$$

Punto 1.13 En el espacio vectorial V = C(1, e), se define un producto interno por

$$\langle f, g \rangle = \int_{1}^{e} (\ln t) f(t) g(t) dt.$$

- a) Si $f(t) = \sqrt{t}$, calcular ||f||.
- b) Encontrar un polinomio de primer grado g(t) = a + bt que sea ortogonal a la función constante f(t) = 1.

Punto 1.14 En el espacio C(-1,1), sea $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)dt$. Considere las tres funciones $u_1,\,u_2$ y u_3 dadas por $u_1(t)=1,\quad u_2(t)=t,\quad u_3(t)=1+t$.

Pruebe que dos de ellas son ortogonales, dos forman entre sí un ángulo de $\pi/3$, y dos forman entre sí un ángulo de $\pi/6$.

Punto 1.15 En el espacio vectorial \mathcal{P}_n de todos los polinomios reales de grado $\leq n$, se define

$$\langle f, g \rangle = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right)$$

- a) Demostrar que $\langle f, g \rangle$ es un producto interno de para \mathcal{P}_n .
- b) Calcular $\langle f, g \rangle$ cuando f(t) = t y g(t) = at + b.
- c) Si f(t) = t, hallar todos los polinomios g ortogonales a f.

Punto 1.16 Sea H un subespacio de \mathbb{R}^n . El complemento ortogonal de H, denotado por H^{\perp} , se define como

$$H^{\perp} = \{ x \in \mathbb{R}^n : \langle x, y \rangle = 0, \ \forall h \in H \}.$$

- a) Pruebe que H^{\perp} es un subespacio cerrado de \mathbb{R}^n .
- b) Para $V = \mathbb{R}^3$ y $H = \{(x, y, z) : 4x y + 6z = 0\}$
 - I) Encuentre H^{\perp} .

$$\begin{split} H &= \{(x,y,z): 4x - y + 6z = 0\} \\ &= \{(x,y,z): y = 4x + 6z\} \\ &= \{(x,4x + 6z,z): \ \forall x,z \in \mathbb{R}\} \\ &= \{x(1,4,0) + z(0,6,1): \ \forall x,z \in \mathbb{R}\} \\ &= \gcd\{(1,4,0),(0,6,1)\} \end{split}$$

Sea $h=(a,b,c)\in H^{\perp}$. Entonces, por definición de H^{\perp} , se tiene que $\langle h,u_1\rangle=0$ y $\langle h,u_2\rangle=0$ donde $u_1=(1,4,0)$ y $u_2=(0,6,1)$.

$$\langle h, u_1 \rangle = a + 4b = 0, \quad \langle h, u_2 \rangle = 6b + c = 0$$

Entonces a = -4b y c = -6b. Luego (a, b, c) = (-4b, b, -6b) = b(-4, 1, -6) y así $H^{\perp} = \text{gen}\{(-4, 1, -6)\}$

II) Muestre que $\mathbb{R}^3 = H \bigoplus H^{\perp}$, es decir, $\mathbb{R}^3 = H + H^{\perp}$ y $H \cap H^{\perp} = \{0\}$.

$$\begin{split} H &= \{x(1,4,0) + z(0,6,1): \ \forall x,z \in \mathbb{R}\} \\ H^\perp &= \{y(-4,1,-6): \ \forall y \in \mathbb{R}\} \\ H + H^\perp &= \{x(1,4,0) + y(-4,1,-6) + z(0,6,1): \ \forall x,y,z \in \mathbb{R}\} = \mathbb{R}^3 \end{split}$$

Como $\mathbb{R}^3 = H + H^\perp$ (VER NOTAS JUAN, PARA QUE ESTO SEA CIERTO TENEMOS QUE VER QUE LA MA cada vector en $V = \mathbb{R}^3$ es una suma de un vector en H y un vector en H^\perp . Suponga que $H \cap H^\perp \neq \{0\}$ y sea $u \in H \cap H^\perp$. Entonces u = u + 0 con $u \in H$ y $0 \in H^\perp$, pero también u = 0 + u con $0 \in H$ y $u \in H^\perp$. Lo cual es una contradicción pues, por definición del complemento ortogonal H^\perp , si $u \in H^\perp$ entonces $u \notin H$ y viceversa. Luego u = 0, entonces $H \cap H^\perp = \{0\}$. Como $H + H^\perp = \mathbb{R}^3 \wedge H \cap H^\perp = \{0\}$, así $H \bigoplus H^\perp = \mathbb{R}^3$

III) Exprese el vector v = (2, 1, 3) como h + u, donde $h \in H$ y $u \in H^{\perp}$.

Si $h \in H$ entonces es de la forma $h = \alpha(1,4,0) + \gamma(0,6,1)$. Si $u \in H^{\perp}$ entonces es de la forma $u = \beta(-4,1,-6)$. Entonces h + u

$$(2,1,3) = \alpha(1,4,0) + \beta(-4,1,-6) + \gamma(0,6,1)$$

Lo cual resulta en el sistema de ecuaciones

$$\alpha - 4\beta = 2$$
$$4\alpha + \beta + 6\gamma = 1$$
$$-6\beta + \gamma = 3$$

Resolviendo el sistema de ecuaciones en Wolfram Alpha se obtiene $\alpha = 6/53, \beta = -25/53, \gamma = 9/53.$

Punto 1.17 Sea V = C[-1, 1] y $H = \{f \in V : f(-t) = f(t), \forall t \in [-1, 1]\}$ el conjunto de las funciones pares.

a) Pruebe que el complemento ortogonal H^{\perp} es el conjunto de todas las funciones impares.

Punto 1.18 Sea H y K subespacios de \mathbb{R}^n .

a) Pruebe que si $H \subset K$, entonces $K^{\perp} \subset H^{\perp}$.

Sea cualquier vector $v \in \mathbb{R}^n$ tal que $v \in K^{\perp}$ esto significa que $\langle v, k \rangle = 0$ para $\forall k \in K$ y como por hipótesis H es un subespacio de K, también tenemos que $\langle v, h \rangle = 0$ para $\forall h$ donde $h \in H$, lo que quiere decir que $v \in H^{\perp}$. con esto podemos decir que $K^{\perp} \subset H^{\perp}$ ya que todo elemento de K^{\perp} esta contenido en H^{\perp} .

b) Pruebe que $(H+K)^{\perp} = H^{\perp} \cap K^{\perp}$.

Claramente H+K es un subespacio pues es la suma de subespacios de \mathbb{R}^n , y por tanto, su complemento ortogonal también. Sea cualquier vector $v \in (H+R)^{\perp}$ esto significa que $\langle v, k+h \rangle = 0$ para $\forall k \in K$ y $\forall h \in H$, si aplicamos propiedades del producto interno tenemos que $\langle v, k \rangle + \langle v, h \rangle = 0$, esto significa que tanto $\langle v, k \rangle = \langle v, h \rangle = 0$, es decir, $h \in H^{\perp}$ y $k \in K^{\perp}$. Por tanto $v \in H^{\perp} \cap K^{\perp}$ entonces $(H+K)^{\perp} = H^{\perp} \cap K^{\perp}$.

c) Pruebe que $H^{\perp\perp} = H$, donde $H^{\perp\perp} = (H^{\perp})^{\perp}$.

Razonando por el absurdo, supongamos $H^{\perp\perp} \neq H$, es decir, existe un $v \in \mathbb{R}^n$ tal que $v \in H$ y $v \notin (H^\perp)^\perp$, ahora por definición del complemento ortogonal tenemos que $\langle v, h \rangle = 0$ para $\forall h \in H^\perp$, pero $(H^\perp)^\perp := \{v \in \mathbb{R}^n : \langle v, h \rangle = 0, \quad \forall h \in H^\perp \}$, lo cual implica que $v \in (H^\perp)^\perp$ y hallamos una contradicción. Siendo así las cosas, concluimos que $H^{\perp\perp} = H$.

Punto 1.19 Sea $V = \mathcal{M}_{nn}$ el espacio de las matrices de orden $n \times n$.

- a) Definamos $\langle A, B \rangle = \operatorname{tr} A B^T$, donde $\operatorname{tr} A = \sum_{i=1}^n a_{ii}$ es la traza de la matriz $A = (a_{ij})$ y B^T es la transpuesta de B. Pruebe que V es un espacio con producto interno.
- b) Pruebe que tr(AB) = tr(BA).

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} \quad \text{por definición de tr}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} b_{ji} a_{ij} \quad \text{pues } a_{ii} \neq b_{ii} \text{ son números arbitrarios}$$

$$\therefore \operatorname{tr}(AB) = \operatorname{tr}(BA) \quad \blacksquare \quad \text{por definición de tr}$$

c) Si P es una matriz invertible de orden $n \times n$, pruebe que

$$\operatorname{tr}(P^{-1}AP) = \operatorname{tr} A.$$

Que P sea una matriz invertible de orden $n \times n$ quiere decir que $P^{-1}P = PP^{-1} = I$ donde I es la matriz identidad de dimensión $n \times n$ o la matriz diagonal diag $(a_1 = 1, ..., a_n = 1)$. Sean $P^{-1} = (p'_{ij}), A = (a_{ij})$ y $P = (p_{ii})$ la notación para denotar cada matriz para todo $i, j \in [1, n]$ con $n \in \mathbb{N}$. Entonces

$$\operatorname{tr}((P^{-1}A)P) = \operatorname{tr}(P(P^{-1}A))$$
 por la propiedad anterior
$$= \operatorname{tr}(IA) \quad \text{pues } P^{-1}P = I$$

$$= \operatorname{tr}(A)$$

Punto 1.20 Sean $x_1, ..., x_n, y_1, ..., y_n$ números reales, 1 y <math>q definido por $\frac{1}{p} + \frac{1}{q} = 1$. Probar las siguientes designaldades:

a) Desigualdad de Hölder

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/q}.$$

Prueba:

Si $(\sum_{k=1}^n |x_k|^p)^{1/p} = 0$ o $(\sum_{k=1}^n |y_k|^q)^{1/q} = 0$ la desigualdad es verdadera. Esto es equivalente a decir que $(\sum_{k=1}^n |x_k|^p) = 0$ o $(\sum_{k=1}^n |y_k|^q) = 0$, y por estar en valor absoluto sería cero solo si cada uno de sus términos es cero, esto es $|x_k|^p = 0$ o $|y_k|^q = 0$ para $\forall k$. Entonces $|x_k|^p |y_k|^q = 0$ para $\forall k$.

Ahora, consideremos el caso en el que ambos sean diferentes de cero. Podemos definir z_k, w_k como

$$\sum_{k=1}^{n} |z_k w_k| \le \sum_{k=1}^{n} \left(\frac{|z_k|^p}{p} + \frac{|w_k|^q}{q} \right)$$

ahora

$$z_k = \frac{x_k}{\left(\sum_{l=1}^n |x_l|^p\right)^{\frac{1}{p}}}, \quad w_k = \frac{y_k}{\left(\sum_{l=1}^n |y_l|^q\right)^{\frac{1}{q}}}$$

por la desigualdad de Young

$$\sum_{l=1}^{n} |z_l|^p = \sum_{l=1}^{n} \frac{|x_l|^p}{|(\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}}|^p} = \frac{\sum_{l=1}^{n} |x_l|^p}{|(\sum_{k=1}^{n} |x_k|^p)^{\frac{1}{p}}|^p} = 1$$

y se le aplica lo mismo a w_l , entonces

$$\sum_{k=1}^{n} \left(\frac{|z_k|^p}{p} + \frac{|w_k|^q}{q} \right) = \frac{1}{p} + \frac{1}{q} = 1$$

Entonces $\sum_{k=1}^{n} |z_k w_k| \le 1$. Multiplicando a ambos lados de la desigualdad por el valor positivo $(\sum_{l=1}^{n} |x_l|^p)^{\frac{1}{p}})(\sum_{l=1}^{n} |y_l|^q)$ se obtiene la desigualdad de Hölder

b) Desigualdad de Minkowski

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{1/p} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}.$$

Prueba:

Observe que, para todo k = 1, ..., n, se cumple que

$$|x_k + y_k|^p = |x_k + y_k||x_k + y_k|^{p-1}$$

$$\leq (|x_k| + |y_k|)|x_k + y_k|^{p-1} \quad \text{por la designaldad triangular}$$

$$\therefore |x_k + y_k|^p \leq |x_k||x_k + y_k|^{p-1} + |y_k||x_k + y_k|^{p-1} \quad \text{distributiva}$$

Lo cual implica que la desigualdad se mantiene al considerar la sumatoria

$$\sum_{k=1}^{n} |x_k + y_k|^p \le \sum_{k=1}^{n} (|x_k||x_k + y_k|^{p-1} + |y_k||x_k + y_k|^{p-1})$$

$$\sum_{k=1}^{n} |x_k + y_k|^p \le \sum_{k=1}^{n} |x_k||x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k||x_k + y_k|^{p-1}$$

Sea $q=\frac{p}{p-1}$. Observe que $\frac{1}{p}+\frac{1}{q}=\frac{1}{p}+\frac{p-1}{p}=1$, entonces al aplicar la desigualdad de Hölder a cada uno de los términos de la derecha de la desigualdad, se obtiene

$$\sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q}\right)^{1/q}$$

$$\sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1} \le \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q}\right)^{1/q}$$

Luego, al sumar ambas desigualdades

$$\sum_{k=1}^{n} |x_k + y_k|^p \leq \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q}\right)^{1/q} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q}\right)^{1/q} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/q} \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/q} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/q} \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/q} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/q} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{1/q} + \left(\sum_{k=1$$

$$= \left[\left(\sum_{k=1}^{n} |x_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p \right)^{1/p} \right] \left(\sum_{k=1}^{n} |x_k + y_k|^{(p-1)q} \right)^{1/q}$$

Note que como $q = \frac{p}{p-1} \Rightarrow p = (p-1)q$. Entonces

$$\sum_{k=1}^{n} |x_k + y_k|^p \le \left[\left(\sum_{k=1}^{n} |x_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p \right)^{1/p} \right] \left(\sum_{k=1}^{n} |x_k + y_k|^p \right)^{1/q}$$

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p \right)^{1-1/q} \le \left(\sum_{k=1}^{n} |x_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p \right)^{1/p}$$

Ahora, como $\frac{1}{p}+\frac{1}{q}=1\Rightarrow 1-\frac{1}{q}=\frac{1}{p},$ así

$$\therefore \left(\sum_{k=1}^{n} |x_k + y_k|^p \right)^{1/p} \le \left(\sum_{k=1}^{n} |x_k|^p \right)^{1/p} + \left(\sum_{k=1}^{n} |y_k|^p \right)^{1/p} \blacksquare$$

Punto 1.21 Sea $\{v_k\}_{k=1}^{\infty}$ una sucesión de puntos de \mathbb{R}^n . Supongamos que existe $\alpha \in (0,1)$, tal que

$$||v_{k+1} - v_k|| \le \alpha ||v_k - v_{k-1}||, \quad \forall k \in \mathbb{N}.$$

Probar que la sucesión $\{v_k\}_{k=1}^\infty$ es de Cauchy y, por tanto, convergente en \mathbb{R}^n .

Punto 1.22 Pruebe que todo espacio vectorial finito-dimensional normado es de Banach.

Punto 1.23 Pruebe que $l_p = \left\{ x = (x_n)_{n \in \mathbb{N}} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$ para $p \ge 1$, es un espacio de Banach con la norma definida por:

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p}$$

donde $x + y = (x_n) + (y_n) = (x_n + y_n)_{n \ge 1}$ y $ax = (ax_n)_{n \ge 1}$, a un escalar real.

Prueba:

Debemos ver que la sucesión es de Cauchy en l_p y convergente en l_p (lím $\in l_p$).

Punto 1.24 Sea M un subespacio cerrado de un espacio de Hilbert V. Pruebe que $V = M \bigoplus M^{\perp}$, es decir, hay que demostrar:

- I) $V = M + M^{\perp}$.
- II) Todo $v \in V$ se puede expresar como v = m + p de manera única, donde $m \in M$ y $p \in M^{\perp}$.

Punto 1.25 Sea M un subespacio de un espacio de Hilbert V. Entonces

- a) M es completo si y sólo si M es cerrado en V.
- b) $M^{\perp} = \{0\}$ si y sólo si M es denso en V.
- c) Si M es cerrado y $M^{\perp} = \{0\}$, entonces M = V.
- d) $M^{\perp \perp} = \overline{M}$, donde \overline{M} es la clausura de M.
- e) Si M es cerrado, entonces $M^{\perp \perp} = M$.

Punto 1.26 Supongamos que $\{v_j\}_{j=0}^{\infty}$ un conjunto ortonormal en un espacio de Hilbert V. Las siguientes afirmaciones son equivalentes:

- a) $\{v_k\}_{k=0}^{\infty}$ es una base ortonormal para V.
- b) $\langle u,v\rangle=\sum_{j=0}^{\infty}\langle u,v_j\rangle\overline{\langle v,v_j\rangle}$ para cada $u,v\in V.$
- c) La igualdad de Parseval se tiene: $||u||^2 = \sum_{j=0}^{\infty} |\alpha|^2$, donde $\alpha_j = \langle u, v_j \rangle$, para todo $u \in V$.
- d) El subespacio generado por $\{v_j\}_{j=0}^\infty$ es denso en V.
- e) Para cada $u \in V$, si $\langle u, v_j \rangle = 0$, para $j = 0, 1, 2, \dots$ entonces u = 0.

Afirmaciones equivalentes significa que $a)\Rightarrow b)\Rightarrow \cdots \Rightarrow a$.

Taller 2

Punto 2.6 Supongamos que $\{u_n\}_{=1}^{\infty}$ es una sucesion ortonormal en un espacio de Hilbert H y sea $x \in H$ tal que

$$||x||^2 = \sum_{n \in \mathbb{N}} |\langle x, u_n \rangle|^2$$

Entonces

$$x = \sum_{n \in \mathbb{N}} \langle x, u_n \rangle u_n$$

$$\begin{split} \|x\|^2 &= \sum_{n \in \mathbb{N}} |\langle x, u_n \rangle|^2 \\ &= \sum_{n \in \mathbb{N}} \langle x, u_n \rangle \langle x, u_n \rangle \\ &= \sum_{n \in \mathbb{N}} \langle x, u_n \rangle \sum_{k \in \mathbb{N}} \langle x, u_k \rangle \langle u_n, u_k \rangle \quad \text{Por ser ortonormales} \\ &= \sum_{n \in \mathbb{N}} \langle x, u_n \rangle \langle u_n, \sum_{k \in \mathbb{N}} \langle x, u_k \rangle u_k \rangle \quad \text{Por Cauchy-Schwarz} \\ &= \langle \sum_{n \in \mathbb{N}} \langle x, u_n \rangle u_n, \sum_{k \in \mathbb{N}} \langle x, u_k \rangle u_k \rangle \end{split}$$

y esto es

$$\begin{split} \langle x, x \rangle &= \langle \sum_{n \in \mathbb{N}} \langle x, u_n \rangle u_n, \sum_{k \in \mathbb{N}} \langle x, u_k \rangle u_k \rangle \\ x &= \sum_{n \in \mathbb{N}} \langle x, u_n \rangle u_n \end{split}$$