

Bioinformatics 1

Assignment 2

Henrique Manuel Martins Ferrolho s1683857 - henrique.ferrolho@gmail.com

November 24, 2016

Contents

1	Que	Question					
	1.1	Use a BLAST query to find orthologues of your gene. Describe what this query returned, and how you selected potential orthologues.	3				
	1.2	Compare your result with a query for homologues. To find these, select 'HomoloGene' in NCBI instead of 'Gene' as search option.	4				
	1.3	How well do the results match when you consider e-value, percentage overlap, or score from your BLAST search?					
	1.4	.4 List those results from your initial query that you think are tru orthologues, and explain why					
2	Que	estion	7				
	2.1	Now consider the phylogenetic implications of your results. First, create a BLAST tree (using the function 'Distance tree of results').	7				
	2.2 2.3	Describe the result and its relevance	7				
	2.4 2.5	Are there known orthologues in mouse, fruit fly or yeast? Using the information under 'General gene information', discuss	7				
		whether mouse, fruit fly or yeast (or any of these for which an orthologue exists) are suitable models to study the disease	7				
3	Question						
	3.1	Select four orthologues, and create a rooted phylogenetic tree using the UPGMA algorithm as shown in class	8				
	3.2	Does it match the BLAST result from Q1/2?	8				
4	Sou	wang.	O				

1 Question

Homologues are two genes from a common ancestor DNA sequence which are related to each other. Furthermore, homologues can be classified as **Orthologues** or as **Paralogues**, whether they have been separated by the event of *speciation* or by the event of *genetic duplication*, respectively.

1.1 Use a BLAST query to find orthologues of your gene. Describe what this query returned, and how you selected potential orthologues.

I have run a Protein BLAST for the $huntingtin\ [Homo\ sapiens]\$ protein (NCBI Reference Sequence: NP_002102.4) - figure 1 is a screenshot of some of the query results.

Figure 1: Some of the htt Protein BLAST results.

The Protein BLAST query returned a list of sequences producing significant alignments, and a graphic summary with their alignment scores.

From this list we can select potential orthologues like: Pan troglodytes, Macaca nemestrina, Gorilla gorilla gorilla, etc.

1.2 Compare your result with a query for homologues. To find these, select 'HomoloGene' in NCBI instead of 'Gene' as search option.

HomoloGene huntingtin query: https://www.ncbi.nlm.nih.gov/homologene/

The query linked above identifies the list below as being putative homologue genes:

- H. sapiens
- B. taurus
- G. gallus

- ullet P. troglodytes
- M. musculus
- X. tropicalis

- C. lupus
- R. norvegicus
- D. rerio

1.3 How well do the results match when you consider evalue, percentage overlap, or score from your BLAST search?

The following table contains the homologues returned by the HomoloGene query, and their respective $E\ value,\ query\ cover,$ and score, obtained by cross referencing their proteins accession with the Protein BLAST results.

Species	E value	Query cover	Score
H. sapiens	0.0	100%	6455
P. troglodytes	0.0	100%	6383
C. lupus	0.0	97%	5700
B. taurus	0.0	97%	5579
M. musculus	0.0	97%	5665
R. norvegicus	0.0	97%	5671
G. gallus	0.0	100%	5295
X. tropicalis	0.0	99%	4949
D. rerio	0.0	99%	4467

E value

From the BLAST Frequently Asked questions: The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance when searching a database of a particular size. It decreases exponentially as the Score (S) of the match increases. Essentially, the E value describes the random background noise.

Concerning our search results, all the results from the HomoloGene have a E value of 0.0, meaning they are all significant. Nonetheless, this indicator is no good for any comparison between the results.

Percentage overlap

By inspecting the table above, we can see that only three species - *H. sapiens*, *P. troglodytes*, and *G. gallus* - have a total percentage overlap, i.e. query cover of 100%.

Score

H. sapiens is unsurprisingly the Species with the greatest score because we used it to run the HomoloGene query.

P. troglodytes follows it, having a score of 6383.

The species which has the next greatest score is *R. norvegicus* - **5671**. Even though its query cover is only 97%, its *identity percentage* is greater than that of the other species of the table, which explains the higher score.

1.4 List those results from your initial query that you think are true orthologues, and explain why.

Note that NCBI BLAST has a useful view called 'Taxonomy Reports'. In addition to the NCBI service, you can also try the Ensembl database at http://www.ensembl.org/Homo_sapiens/Tools/Blast?db=core.

Figure 2 shows the lineage tree obtained from the Protein BLAST search.

The following organisms are listed under Homininae:

 $\bullet \ \ Homo \ sapiens$

• Pan paniscus

• Pan troglodytes

• Gorilla gorilla gorilla

They constitute what I consider to be true orthologues for the *huntingtin* gene.

Organism	Blast Name	Score	Number of Hits	Description
oot			<u>524</u>	
. Bilateria	animals		523	
<u>Deuterostomia</u>	animals		495	
Chordata	chordates		494	
<u>Gnathostomata</u>	vertebrates		489	
<u>Euteleostomi</u>	vertebrates		486	
Sarcopterygii	<u>vertebrates</u>		346	
<u>Tetrapoda</u>	<u>vertebrates</u>		345	
Amniota	<u>vertebrates</u>		334	
	mammals		192	
<u>Eutheria</u>	placentals		188	
<u>Boreoeutheria</u>	placentals		180	
<u>Euarchontoglires</u>	placentals		107	
<u>Primates</u>	primates		<u>50</u>	
<u>Haplorrhini</u>	primates		44	
<u>Similformes</u>	primates		42	
	primates		34	
	primates		<u>18</u>	
	primates		<u>17</u>	
	primates		16	
	primates	6455	<u>11</u>	Homo sapiens hits
	primates	6383	<u>3</u>	Pan troglodytes hits
	primates	6376	1	Pan paniscus hits
	primates	6155	1	Gorilla gorilla gorilla hits
Pongo abelii	primates	6064	1	Pongo abelii hits
	primates	6118	1	Nomascus leucogenys hits
	primates	6338	3	Macaca nemestrina hits
	primates	6330	1	Chlorocebus sabaeus hits
Cercocebus atys	primates	6326	2	Cercocebus atys hits
	primates	6246	2	Macaca fascicularis hits
Macaca mulatta	primates	6237	2	Macaca mulatta hits
	primates	6222	1	Papio anubis hits
	primates	6099	1	Mandrillus leucophaeus hits
	primates	6091	2	Rhinopithecus bieti hits
	primates	6021	1	Colobus angolensis palliatus hits
Rhinopithecus roxellana	primates	5102	1	Rhinopithecus roxellana hits
	primates	6296	4	Aotus nancymaae hits
	primates	6238	2	Callithrix jacchus hits
	primates	6104	1	Cebus capucinus imitator hits
Saimiri boliviensis boliviensis	primates	6057	1	Saimiri boliviensis boliviensis hits
	primates	2092	2	Carlito syrichta hits
Microcebus murinus	primates	5811	3	Microcebus murinus hits
Propithecus coquereli	primates	5787	2	Propithecus coquereli hits
Otolemur garnettii	primates	4776	1	Otolemur garnettii hits
	placentals	5819	2	Tupaia chinensis hits
	rodents	5713	3	
Peromyscus maniculatus bairdii				Peromyscus maniculatus bairdii hits
Chinchilla lanigera	rodents	5692	2	Chinchilla lanigera hits
Microtus ochrogaster	rodents	5686	2	Microtus ochrogaster hits
<u>Cricetulus griseus</u>	rodents	5685	9	Cricetulus griseus hits
<u>Ictidomys tridecemlineatus</u>	rodents	5681	1	Ictidomys tridecemlineatus hits
Jaculus jaculus	rodents	5676	1	Jaculus jaculus hits
	rodents	5671	7	Rattus norvegicus hits
	placentals	5670	<u>3</u>	Galeopterus variegatus hits

Figure 2: Screenshot of the taxonomy reports view from the htt Protein BLAST results.

2 Question

- 2.1 Now consider the phylogenetic implications of your results. First, create a BLAST tree (using the function 'Distance tree of results').
- 2.2 Describe the result and its relevance.
- 2.3 How can this be used to study the disease in another model organism?
- 2.4 Are there known orthologues in mouse, fruit fly or yeast?
- 2.5 Using the information under 'General gene information', discuss whether mouse, fruit fly or yeast (or any of these for which an orthologue exists) are suitable models to study the disease.

Note: To give an example, if the gene is implicated in cell cycle, yeast may well be a good model because it is easier to study than mice. But if the gene is relevant for brain function, yeast may of course be less relevant even if an orthologue exists.

3 Question

- 3.1 Select four orthologues, and create a rooted phylogenetic tree using the UPGMA algorithm as shown in class.
- 3.2 Does it match the BLAST result from Q1/2?

4 Sources

Ensembl genome browser

http://www.ensembl.org/Homo_sapiens/Tools/Blast?db=core

Genetics Home Reference

https://ghr.nlm.nih.gov/condition/huntington-disease

National Center for Biotechnology Information

https://www.ncbi.nlm.nih.gov/

Wikipedia

https://en.wikipedia.org/wiki/Huntington%27s_disease