

Probabilidades e Estatística

TODOS OS CURSOS

2º semestre – 2020/2021 09/07/2021 – **15:00**

Duração: 60+15 minutos

Justifique convenientemente todas as respostas

Teste 2C

Pergunta 1 4 valores

Considere a variável aleatória X, que representa o número de nascimentos por hora em determinado hospital e que se admite ter uma distribuição de Poisson de parâmetro $\lambda > 0$ (desconhecido).

Seja $(X_1,...,X_n)$ uma amostra aleatória de dimensão n proveniente de X e denote-se por \bar{X} a média da amostra aleatória. Sabe-se que $T = \bar{X}(1+\bar{X})$ é um estimador enviesado de $E(X^2)$.

Calcule o valor do enviesamento de T na estimação de $E(X^2)$, quando n = 19 e $\lambda = 1.4$.

• V.a. de interesse

X = número de nascimentos por hora durante um dia em determinado hospital

 $X \sim \text{Poisson}(\lambda)$

$$E(X) = V(X) = \lambda$$
 DESCONHECIDO

Outro parâmetro desconhecido

$$E(X^2) = V(X) + E^2(X) = \lambda + \lambda^2 = \lambda(1 + \lambda), \quad \lambda > 0$$

• Estimador de $E(X^2)$

$$T = \bar{X}(1 + \bar{X})$$

• Valor esperado de T

Ao notarmos que $E(\bar{X}) = E(X) = \lambda$, $V(\bar{X}) = \frac{V(X)}{n} = \frac{\lambda}{n}$, segue-se, para qualquer $\lambda > 0$,

$$E(T) = E[\bar{X}(1+\bar{X})]$$

$$= E(\bar{X}) + E(\bar{X}^2)$$

$$= E(\bar{X}) + [V(\bar{X}) + E^2(\bar{X})]$$

$$= \lambda + \left(\frac{\lambda}{n} + \lambda^2\right)$$

$$= \lambda(1+\lambda) + \frac{\lambda}{n}.$$

[Uma vez que $E(T) \neq \lambda(1+\lambda)$, $\forall \lambda > 0$, T é, efectivamente, um estimador enviesado de λ .]

• Enviesamento de T

$$E(T) - E(X^{2}) = \left[\lambda(1+\lambda) + \frac{\lambda}{n}\right] - \lambda(1+\lambda)$$

$$= \frac{\lambda}{n}$$

$$= \frac{1.4}{19}$$

$$\approx 0.073684.$$

Pergunta 2 4 valores

Admita que X_1 (resp. X_2) representa a idade de um indivíduo que teve pelo menos um evento coronário em 2020 (resp. em 2019). Para estimar a diferença de idades esperadas entre doentes coronários em 2020 e 2019,

 $\mu_1 - \mu_2$, foram recolhidas duas amostras independentes com dimensões $n_1 = 7$ e $n_2 = 14$ (respetivamente), tendo-se obtido os seguintes resultados: $\bar{x}_1 = 51$ e $s_1 = 0.8$; $\bar{x}_2 = 49$ e $s_2 = 0.6$.

Suponha que X_1 e X_2 são variáveis aleatórias normalmente distribuídas com variâncias desconhecidas mas iguais. Obtenha um intervalo de confiança a 95% para $\mu_1 - \mu_2$.

· V.a. de interesse

 X_1 = idade de um indivíduo que teve pelo menos um evento coronário em 2020

 X_2 = idade de um indivíduo que teve pelo menos um evento coronário em 2019

• Situação

 X_1 e X_1 v.a. independentes com distribuições normais

 $(\mu_1 - \mu_2)$ DESCONHECIDO

 σ_1^2 e σ_2^2 desconhecidas mas iguais

• Obtenção do IC para $\mu_1 - \mu_2$

Passo 1 — Seleção da v.a. fulcral para $(\mu_1 - \mu_2)$

$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \times \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} \sim t_{(n_1 + n_2 - 2)}$$

Passo 2 — Obtenção dos quantis de probabilidade

Uma vez que $(1 - \alpha) \times 100\% = 95\%$ e $n_1 = 7$ e $n_2 = 14$, temos $\alpha = 0.05$ e

$$\begin{cases} a_{\alpha} = F_{t_{(n_1 + n_2 - 2)}}^{-1}(\frac{\alpha}{2}) = -F_{t_{(19)}}^{-1}(0.975) \stackrel{tabelas, calc.}{=} -2.093 \\ b_{\alpha} = F_{t_{(n_1 + n_2 - 2)}}^{-1}(1 - \frac{\alpha}{2}) = F_{t_{(19)}}^{-1}(0.975) \stackrel{tabelas, calc.}{=} 2.093 \end{cases}$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \le Z \le b_{\alpha}$

$$\begin{split} &P(a_{\alpha} \leq Z \leq b_{\alpha}) = 1 - \alpha \\ &P(a_{\alpha} \leq \frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}}} \leq b_{\alpha}) = 1 - \alpha \\ &P\left[(\bar{X}_{1} - \bar{X}_{2}) - F_{t_{(n_{1} + n_{2} - 2)}}^{-1} (1 - \alpha/2) \times \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}} \times \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \leq \mu_{1} - \mu_{2} \right] \\ &\leq (\bar{X}_{1} - \bar{X}_{2}) + F_{t_{(n_{1} + n_{2} - 2)}}^{-1} (1 - \alpha/2) \times \sqrt{\frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}} \times \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \right] = 1 - \alpha \end{split}$$

Passo 4 — Concretização

Tendo em conta os quantis acima, as dimensões amostrais n_1 e n_2 , bem como as concretizações de \bar{X}_1 , \bar{X}_2 , S_1^2 e S_2^2 e a expressão geral do IC,

$$IC_{(1-\alpha)\times 100\%}(\mu_1-\mu_2) = \left[(\bar{x}_1-\bar{x}_2) \pm F_{t_{(n_1+n_2-2)}}^{-1}(1-\alpha/2) \times \sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}} \times \left(\frac{1}{n_1}+\frac{1}{n_2}\right) \right],$$

segue-se

$$IC_{95\%}(\mu_1 - \mu_2) = \left[(51 - 49) \pm 2.093 \times \sqrt{\frac{(7 - 1) \times 0.8^2 + (14 - 1) \times 0.6^2}{7 + 14 - 2}} \times \left(\frac{1}{7} + \frac{1}{14}\right) \right]$$

= $[2 \pm 2.093 \times 0.309984]$
= $[1.3512, 2.6488].$

Pergunta 3 4 valores

Uma engenheira biomédica conjetura que o número esperado de mutações em determinadas regiões de um cromossoma é igual a $\lambda_0=101$. Considere que o número X dessas mutações segue uma distribuição de Poisson.

Supondo que entre n=78 cromossomas observados se identificaram 8255 mutações, teste a conjetura da engenheira biomédica contra a alternativa $H_1: E(X) \neq \lambda_0$. Decida com base no valor-p aproximado.

• V.a. de interesse

X = número de mutações em determinadas regiões de um cromossoma

• Situação

 $X \sim \text{Poisson}(\lambda)$

 λ desconhecido

Hipóteses

$$H_0: \lambda = \lambda_0 = 101$$

$$H_1: \lambda \neq \lambda_0$$

• Estatística de teste

$$T = \frac{\bar{X} - \lambda_0}{\sqrt{\frac{\lambda_0}{n}}} \stackrel{a}{\sim}_{H_0} \text{normal}(0, 1)$$

• Região de rejeição de H_0

Teste bilateral $(H_1: \lambda \neq \lambda_0)$, logo a região de rejeição de H_0 é do tipo $W = (-\infty, -c) \cup (c, +\infty)$.

• Decisão (com base no valor-p)

O valor observado da estatística de teste é igual a

$$t = \frac{\frac{8255}{78} - 101}{\sqrt{\frac{101}{78}}}$$
$$\approx 4.2475$$

e

$$valor - p = 2 \times P(|T| > |t| | H_0)$$

 $\simeq 2 \times [1 - \Phi(|t|)]$
 $\simeq 2 \times [1 - \Phi(4.2475)]$
 $\simeq 2 \times [1 - \Phi(4.25)],$

onde $\Phi(4.25) > \Phi(4.09)$ **\text{tabelas, calc} \text{ 0.999978. Consequentemente,}

$$valor - p \simeq 2 \times [1 - \Phi(4.25)]$$

< $2 \times (1 - 0.999978)$
= 0.000044,

pelo que devemos rejeitar H_0 a qualquer n.s. $\alpha_0 > 0.0044\%$, designadamente a qualquer dos n.u.s. (1%, 5%, 10%).

[Altervativamente e usando uma calculadora, conclui-se que $valor - p \simeq 2 \times [1 - \Phi(4.2475)] \simeq 0.0000216169$, pelo que:

- não devemos rejeitar H_0 a qualquer n.s. α_0 ≤ 0.00216169%;
- devemos rejeitar H_0 a qualquer n.s. $\alpha_0 > 0.00216169\%$, nomeadamente a qualquer dos n.u.s. (1%, 5%, 10%).]

Pergunta 4 4 valores

Seja X a massa (em gramas) de um carapau médio. Uma bióloga defende a hipótese H_0 de esta variável aleatória ter distribuição normal com valor esperado e desvio padrão iguais a 100 e 31 gramas (respetivamente). Numa amostra casual de 200 desses peixes, foram registadas as seguintes frequências por intervalos de massa:

Intervalo de massa]60,80]]80,120]]120,140]	> 140
Frequência absoluta observada		26	96	33	25
Frequência absoluta esperada sob H_0		32.2	96.2	32.2	E_5

Calcule as frequências absolutas esperadas sob H_0 omissas E_1 e E_5 (aproximando-as às décimas). Serão os dados consistentes com H_0 ? Decida com base no valor-p aproximado.

• V.a. de interesse

X =massa (em gramas) de um carapau médio

Hipóteses

$$H_0: X \sim \text{normal}(\mu = 100, \sigma^2 = 31^2)$$

$$H_1: X \not\sim \text{normal}(\mu = 100, \sigma^2 = 31^2)$$

• Estatística de teste

$$T = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \stackrel{a}{\sim}_{H_0} \chi_{(k-\beta-1)},$$

onde:

- \circ k = no. de classes = 5;
- O_i = freq. abs. observável da classe i;
- E_i = freq. abs. esperada sob H_0 da classe i;
- $\circ \ \beta = 0.$

• Frequência esperadas sob H_0 omissas

$$E_{1} = n \times P(X \le 60 \mid H_{0})$$

$$= 200 \times \Phi\left(\frac{60 - 100}{31}\right)$$

$$\approx 200 \times \Phi(-1.29)$$

$$tabelas, calc. = 200 \times (1 - 0.9015)$$

$$= 19.7$$

$$E_{5} = n - \sum_{i=1}^{4} E_{i}$$

$$\approx 200 - (19.7 + 32.2 + 96.2 + 32.2)$$

$$= 19.7.$$

• Região de rejeição de H₀ (para valores de T)

Tratando-se de um teste de ajustamento do qui-quadrado, a região de rejeição de H_0 escrita para valores observados de T é o intervalo à direita $W = (c, +\infty)$.

• Decisão (com base no valor-p)

	Classe i	Freq. abs. obs.	Freq. abs. esp. sob H_0	Parcelas valor obs. estat. teste
i		o_i	E_i	$\frac{(o_i - e_i)^2}{e_i}$
1	≤ 60	20	19.7	$\frac{(20-19.7)^2}{19.7} = 0.0046$
2]60,80]	26	32.2	1.1938
3]80,120]	96	96.2	0.0004
4]120,140]	33	32.2	0.0199
5	> 140	25	19.7	1.4259
		$\sum_{i=1}^k o_i = n$	$\sum_{i=1}^{k} e_i = n$	$t = \sum_{i=1}^{k} \frac{(o_i - e_i)^2}{e_i}$
		= 200	= 200	≈ 2.6445

Dado que o valor observado da estatística de teste é $t=\sum_{i=1}^k \frac{(o_i-E_i)^2}{E_i} \simeq 2.6445$ e $W=(c,+\infty)$, obtemos

$$\begin{array}{rcl} valor - p & = & P\left(T > t \mid H_0\right) \\ & \simeq & 1 - F_{\chi^2_{(k-1)}}(t) \\ & = & 1 - F_{\chi^2_{(4)}}(2.6445) \\ & \simeq & 0.618954 \end{array}$$

e devemos

- não rejeitar de H_0 a qualquer n.s. $\alpha_0 \le valor p = 61.8954\%$, designadamente aos n.u.s. (1%,5%,10%);
- rejeitar de H_0 a qualquer n.s. $\alpha_0 > valor p = 61.8954\%$.

Alternativamente e recorrendo às tabelas de quantis da distribuição do qui-quadrado, podemos obter um intervalo para o valor-p deste teste:

$$\begin{split} F_{\chi^2_{(4)}}^{-1}(0.30) &= 2.195 &< t = 2.6445 < 2.753 = F_{\chi^2_{(4)}}^{-1}(0.40) \\ 0.30 &< F_{\chi^2_{(4)}}(2.6445) < 0.40 \\ 0.60 &= 1 - 0.40 &< valor - p &\simeq 1 - F_{\chi^2_{(4)}}(2.6445) < 1 - 0.30 = 0.70. \end{split}$$

Logo:

- não devemos rejeitar H_0 a qualquer n.s. α_0 ≤ 60%, nomeadamente aos n.u.s. (1%,5%, 10%);
- devemos rejeitar H_0 a qualquer n.s. $\alpha_0 \ge 70\%$.

Pergunta 5 4 valores

Os dados relativos à produção de trigo (x, em toneladas) e ao preço do quilo de farinha de trigo (Y, em cêntimos de euro) em 7 anos consecutivos conduziram a

$$\sum_{i=1}^{7} x_i = 34, \quad \sum_{i=1}^{7} x_i^2 = 190, \quad \sum_{i=1}^{7} y_i = 440, \quad \sum_{i=1}^{7} y_i^2 = 30150, \quad \sum_{i=1}^{7} x_i y_i = 2365.$$

Admita que as variáveis x e Y estão relacionadas de acordo com o modelo de regressão linear simples: $Y = \beta_0 + \beta_1 x + \varepsilon$.

Após ter enunciado as hipóteses de trabalho que entender convenientes, obtenha um intervalo de confiança a 95% para β_1 e a amplitude deste intervalo de confiança, tirando partido dos resultados acima.

· Modelo de RLS

Y = preço do quilo de farinha (v.a. resposta)

x = produção de trigo (variável explicativa)

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n$$

• Hipóteses de trabalho

$$\varepsilon_i \stackrel{i.i.d.}{\sim} \text{normal}(0, \sigma^2), \quad i = 1, ..., n$$

• Estimativas de MV de β_0 e β_1 ; estimativa de σ^2

Importa notar que

$$\circ$$
 $n=7$

$$\circ \sum_{i=1}^{n} x_i = 34$$

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{34}{7} \simeq 4.857143$$

$$\sum_{i=1}^{n} x_i^2 = 190$$

$$\sum_{i=1}^{n} x_i^2 - n \,\bar{x}^2 \simeq 190 - 7 \times 4.857143^2 \simeq 24.857133$$

$$\circ \sum_{i=1}^{n} y_i = 440$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{440}{7} \approx 62.857143$$

$$\sum_{i=1}^{n} y_i^2 = 30150$$

$$\sum_{i=1}^{n} y_i^2 - n \,\bar{y}^2 = 30150 - 7 \times 62.857143^2 \simeq 2492.857143$$

$$\circ \sum_{i=1}^{n} x_i y_i = 2365$$

$$\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \approx 2365 - 7 \times 4.857143 \times 62.857143 \approx 227.857075$$

Logo,

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2}}$$

$$\approx \frac{227.857075}{24.857133}$$

$$\approx 9.166668$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

$$\approx 62.857143 - 9.166668 \times 4.857143$$

$$\approx 18.333326$$

$$\hat{\sigma}^{2} = \frac{1}{n-2} \left[\left(\sum_{i=1}^{n} y_{i}^{2} - n \bar{y}^{2} \right) - (\hat{\beta}_{1})^{2} \left(\sum_{i=1}^{n} x_{i}^{2} - n \bar{x}^{2} \right) \right]$$

$$\approx \frac{1}{7-2} (2492.857017 - 9.166668^{2} \times 24.857133)$$

$$\approx 80.833352.$$

• Obtenção do IC para β_1

Passo 1 — Seleção da v.a. fulcral

$$Z = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n \bar{x}^2}}} \sim t_{(n-2)}$$

Passo 2 — Obtenção dos quantis de probabilidade

$$\begin{cases} a_{\alpha} = F_{t_{(n-2)}}(\alpha/2) = -F_{t_{(7-2)}}(1 - 0.05/2) = -F_{t_{(5)}}(0.975) & \stackrel{tabelas, calc.}{=} -2.571 \\ b_{\alpha} = F_{t_{(n-2)}}(1 - \alpha/2) = F_{t_{(7-2)}}(1 - 0.05/2) = F_{t_{(5)}}(0.975) & \stackrel{tabelas, calc.}{=} 2.571 \end{cases}$$

Passo 3 — Inversão da desigualdade $a_{\alpha} \le T \le b_{\alpha}$

$$P(a_{\alpha} \leq Z \leq b_{\alpha}) = 1 - \alpha$$

$$P\left[a_{\alpha} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}}} \leq b_{\alpha}\right] = 1 - \alpha$$

$$P\left[\hat{\beta}_{1} - b_{\alpha} \times \sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}} \leq \beta_{1} \leq \hat{\beta}_{1} - a_{\alpha} \times \sqrt{\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}}}\right] = 1 - \alpha$$

Passo 4 — Concretização

Tendo em conta a expressão geral do IC para β_1 ,

$$IC_{(1-\alpha)\times 100\%}(\beta_1) = \left[\hat{\beta}_1 \pm F_{t_{(n-2)}}^{-1}(1-\alpha/2) \times \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n x_i^2 - n\bar{x}^2}} \right],$$

e os resultados anteriores, o IC pretendido e a sua amplitude são iguais a

$$IC_{95\%}(\beta_1) \simeq \left[9.166668 \pm 2.571 \times \sqrt{\frac{80.833352}{24.857133}} \right]$$

 $\simeq [9.166668 \pm 2.571 \times 1.803307]$
 $\simeq [4.530365, 13.802971]$
 $13.802971 - 4.530365 \simeq 9.27261.$