Práctica 1: Porcentaje de modulación de una señal modulada en amplitud con portadora de alta potencia y medición del espectro de frecuencia de la señal modulada

Juan Carlos Cabrera Cardenas **Código:** 258197 juccabreraca@unal.edu.co Diego Alexander Huerfano Villalba **Código:** 258267 dahuerfanov@unal.edu.co David Ricardo Martínez Hernández **Código:** 261931 drmartinezhe@unal.edu.co

Cuadro 1: Porcentaje de modulación con señal modulante interna y sin circuito de carga.

Valor medido de la	Valor medido de la	M_1 %	M_2 %	M_3 %
señal E_{max}	señal E_{min}			
4	4	0	0	0
5	2,93	141,54	41,54	26,1
6	1,97	48,88	51,11	50,56
7	1,13	19,25	80,75	72,2
8	0	0	100	100

Cuadro 2: Valores de frecuencias.

Frecuencia de la portadora	Frecuencia de la señal	Frecuencia de la señal	
	lateral superior	lateral inferior	
10,052~KHz	$10,4089\ KHz$	9,6049 KHz	

Cuadro 3: Amplitudes espectrales.

Valor medido de la	Valor medido de la	Amplitud espectral	Amplitud espectral	Amplitud espectral
señal E_{max} (V)	señal E_{min} (V)	de la portadora	de la señal lateral	de la señal lateral
		modulada (dB)	superior (dB)	inferior (dB)
4	4	9,01	0	0
5	2,64	8,65	-6,95	-7,35
6	1,68	9,05	-2,15	-2,15
7	0,68	8,23	-0,169	-0,169
8	0,16	7,83	1,43	1,43

Figura 1: Señal Modulada obtenida en el osciloscopio con un μ =50 %.

Figura 2: Representación espectral obtenida en el osciloscopio.

Figura 3: Representación espectral obtenida en el osciloscopio de la señal con un índice de modulación de $\mu=50\,\%$.

Conclusiones

- Como se puede observar en los archivos adjuntados las ganancias obtenidas del analizador de espectros de Multisim, no son las mismas en las diferentes configuraciones suponemos que es debido a las pérdidas que tiene el simulador de forma intrínseca, porque matemáticamente las funciones son las mismas, la única diferencia es que se han añadido una mayor cantidad de cables y de fuentes.
- A medida que se varía el índice de modulación μ , se pudo observar como la señal modulada cambiaba su forma, es decir desde tener una envolvente senoidal la cual cruzaba por cero con $\mu=100$ hasta una envolvente constante con $\mu=0$, además se pudo observar como varían las amplitudes de la señal lateral superior e inferior.
- Se evidenció claramente de acuerdo a los resultados teóricos desarrollados en clase tanto la presencia como su valor en amplitud espectral de las frecuencias laterales que surgen en el proceso de modulación.