

ICE – Institutos de Ciências Exatas DEMAT – Departamento de Matemática

CÁLCULO 1 - SEMANA 1

Componente Curricular:

IC241 - CÁLCULO I (90h) - Turma: 02 (2020.1) IC241 - CÁLCULO I (90h) - Turma: 07 (2020.1)

Prof. Roseli Alves de Moura

Funções: Resumo teórico e exercícios

1. <u>Definição</u> — Sejam A e B subconjuntos dos reais, não vazios. Chama-se função de A em B, indica-se por $f: A \rightarrow B$, a toda lei ou correspondência f que associa cada elemento x de A um único valor y de B.

Define-se ainda:

- 2. **<u>Domínio</u>** $A = D_f$: quando não aparecer indicado supõe-se que seja o mais amplo do subconjunto dos reais onde f(x) tenha sentido ou existência. Como $D_f \subseteq \Re$, diz-se f é uma função de uma variável real, sendo x a variável independente.
- 3. <u>Contradomínio</u> $B = CD_f$: quando não indicado será, por convenção, sempre igual \Re . Como $CD_f \subseteq \Re$, diz-se f é uma função real, sendo y a variável dependente.

Exemplos: No nosso dia a dia encontramos muitos exemplos de funções

- I) A área y de quadrado é função da medida x de seus lados: $y = f(x) = x^2$.
- II) A área y de uma circunferência é função da medida x de seu raio: $y = f(x) = \pi x^2$.
- III) O volume y de um cubo é função da medida x de suas arestas: $y = f(x) = x^3$.
- 4. <u>Conjunto-Imagem</u>: É o conjunto dos valores y que estão associados a algum elemento x do domínio da função. Im $f = \{y \in \Re \mid y = f(x), para \ x \in D_f\}$.
- 5. <u>Gráfico de uma função</u>: É o seguinte conjunto: $G_f = \{(x, y) | y = f(x), para \ x \in D_f\}$. Um modo útil de utilizá-lo é representando-o no plano cartesiano.

Observações:

- i) Uma curva no plano é o gráfico de uma função de x se, e somente se, toda reta paralela ao eixo y o intercepta em no máximo um ponto.
- ii) O conjunto imagem de f é a projeção de seu gráfico no eixo y, enquanto que o domínio de f é a projeção do mesmo gráfico no eixo x.

- iii) No momento não dispomos de técnica eficaz para traçar um gráfico. Usaremos a técnica rudimentar de marcar uma seqüência de pontos. As interseções com os eixos coordenados, quando existirem, estarão eles.
- iv) Simetria Descobrir se uma função possui algum tipo de simetria ajuda muito na hora traçar o gráfico. Diz-se que f tem **simetria par** quando f(-x) = f(x), isto é, é simétrica em relação ao eixo y; tem **simetria ímpar** quando f(-x) = -f(x), isto é, é simétrica em relação à origem do sistema de coordenadas. Quando definida em toda a reta.

Exercícios:

1) Dê o domínio das funções abaixo:

a)
$$f(x) = \frac{\sqrt{2x+1}}{x \cdot (x-2)}$$
 Resp.: $\left[-\frac{1}{2}, 0\right] \cup \left[0, 2\right] \cup \left[2, +\infty\right]$

b)
$$f(x) = \sqrt{2 - \frac{4}{x}}$$
 Resp.: $]-\infty,0[\cup [2,+\infty[$

- 2) O conjunto imagem de $f: \Re \to \Re \mid y = x^2$ é Resp.: Im $f = [0, +\infty[$.
- 3) Esboce o gráfico das funções $f: \Re \to \Re \mid y = f(x)$ sendo
- a) f(x) = x (função identidade ou a primeira bissetriz)
- b) $f(x) = x^2$ (parábola simétrica em relação ao eixo y)

c)
$$f(x) = \begin{cases} x \text{ se } x \ge 1 \\ x^2 \text{ se } x < 1 \end{cases}$$

4) Seja
$$f(x) = \frac{x^2}{x^2 + 1}$$
.

- a) Mostre que f(-x) = f(x)
- b) Calcule $\frac{f(x+h)-f(x)}{h}$. Resp.: $\frac{2x+h}{[(x+h)^2+1](x^2+1)}$
- 5) Deseja-se construir uma caixa reta de base quadrada de lado x e altura y (x e y em dm) com um volume fixado em 12 dm³. A base da caixa custa R\$ 2,00 por dm² para se construída, a tampa e as demais faces custam R\$ 1,00 por dm², cada uma.
- a) escreva o custo total C para a confecção da caixa em função do lado x da base. Resp.

$$C = 3x^2 + \frac{48}{x}$$

b) quanto custaria uma caixa cuja base tivesse o lado da base igual a 2 dm? Resp. R\$ 36,00.

Resolução:

1) a)
$$\begin{cases} 2x+1 \ge 0 \Rightarrow x \ge -\frac{1}{2} \\ x.(x-2) \ne 0 \Rightarrow \begin{cases} x \ne 0 \\ x \ne 2 \end{cases} \end{cases}$$

b)
$$\begin{cases} x \neq 0 \\ 2 - \frac{4}{x} = \frac{2x - 4}{x} \ge 0 \end{cases}$$

O quociente acima será nulo quando x = 2 e positivo quando o numerador e denominador apresentarem o mesmo sinal: $(\frac{+}{+}; \frac{-}{-})$. Isto vai ocorrer para x > 2 (ambos positivos) ou para x < 0 (ambos negativos).

2)
$$y = x^2 = x.x \Rightarrow \begin{cases} se \ x \ge 0, \ ent\tilde{a}o \ y = x^2 \ge 0 \\ se \ x < 0, \ ent\tilde{a}o \ y = x^2 > 0 \end{cases}$$
. Portanto sempre $y \ge 0$.

3)

4) a)
$$f(-x) = \frac{(-x)^2}{(-x)^2 + 1} = \frac{x^2}{x^2 + 1} = f(x)$$

b))
$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \left(\frac{(x+h)^2}{(x+h)^2 + 1} - \frac{x^2}{x^2 + 1} \right) = \frac{1}{h} \left(\frac{(x+h)^2 (x^2 + 1) - x^2 [(x+h)^2 + 1]}{[(x+h)^2 + 1](x^2 + 1)} \right) = \frac{2x + h}{[(x+h)^2 + 1](x^2 + 1)} .$$

5) a)

y

Custo da base: $2.x^2$

Custo da tampa: $1.x^2$

Custo das laterais: 1.x.y4 = 4x.y

Volume: $12 = x^2 \cdot y \Rightarrow y = \frac{12}{x^2}$

Custo total $C = 3x^2 + \frac{48}{x}$

b) $C(2) = 3.4 + \frac{48}{2} = 36$

5)