Лабораторная работа 2. (4 часа. Защита лабораторной 04.10.24)

Лабораторная работа 2 состоит из двух заданий А и В.

Вариант выбирается согласно номеру по списку группы.

Задание

- 1. Выполнить задание А.
 - 2. Выполнить задание В.
 - 3. Составить отчет.
 - 4. Загрузить в MOODLE.
 - 5. Защитить лабораторную работу.

Отчет должен содержать следующие пункты

- 1. Титульный лист.
- 2. Постановка задачи к заданию А.
- 3. Решение задания А.
- 4. Постановка задачи к заданию В.
- 5. Решение задания В.
- 6. Выводы.

Варианты заданий А

1. Разработайте модель и выполните оценку показателей ускорения и эффективности параллельных вычислений для задачи скалярного произведения двух векторов

$$y = \sum_{i=1}^{N} a_i b_i$$

2. Разработайте модель и выполните оценку показателей ускорения и эффективности параллельных вычислений для задачи

$$y = \prod_{i=1}^{N} a_i b_i$$

3. Разработайте модель и выполните оценку показателей ускорения и эффективности параллельных вычислений для задачи поиска максимального значений для заданного набора числовых данных

$$y_{max} = \max_{1 \le i \le N} a_i$$

4. Разработайте модель и выполните оценку показателей ускорения и эффективности параллельных вычислений для задачи поиска минимального значений для заданного набора числовых данных

$$y_{min} = \min_{1 \le i \le N} a_i$$

5. Разработайте модель и выполните оценку показателей ускорения и эффективности параллельных вычислений для задачи поиска среднего значений для заданного набора числовых данных

$$y_{cpeднee} = \text{CPE3H_3HAЧ } a_i$$
 $1 \le i \le N$

6. Выполните в соответствии с *законом Амдаля* оценку максимально достижимого ускорения для задачи скалярного произведения двух векторов

$$y = \sum_{i=1}^{N} a_i b_i$$

7. Выполните в соответствии с *законом Амдаля* оценку максимально достижимого ускорения для задачи

$$y = \prod_{i=1}^{N} a_i b_i$$

8. Выполните оценку ускорения масштабирования для задачи скалярного произведения двух векторов

$$y = \sum_{i=1}^{N} a_i b_i$$

9. Выполните оценку ускорения масштабирования для задачи

$$y = \prod_{i=1}^{N} a_i b_i$$

10. Выполните построение функций изоэффективности для задачи произведения двух векторов

$$y = \sum_{i=1}^{N} a_i b_i$$

11. Выполните построение функций изоэффективности для задачи

$$y = \prod_{i=1}^{N} a_i b_i$$

12. Выполните построение функций изоэффективности для задачи поиска минимального значений для заданного набора числовых данных

$$y_{min} = \min_{1 \le i \le N} a_i$$

13. Выполните построение функций изоэффективности для задачи поиска максимально значений для заданного набора числовых данных

$$y_{max} = \max_{1 \le i \le N} a_i$$

14. Выполните построение функций изоэффективности для задачи поиска максимально значений для заданного набора числовых данных

$$y_{cpeднee} = \text{СРЕЗН_3НАЧ } a_i$$
 $1 \le i \le N$

15. Выполните оценку ускорения масштабирования для задачи поиска минимального значений для заданного набора числовых данных

$$y_{min} = \min_{1 \le i \le N} a_i$$

16. Выполните оценку ускорения масштабирования для задачи поиска максимально значений для заданного набора числовых данных

$$y_{max} = \max_{1 \le i \le N} a_i$$

17. Выполните оценку ускорения масштабирования для задачи поиска максимально значений для заданного набора числовых данных

$$y_{cpeднee} = \text{CPE3H_3HAЧ } a_i$$
 $1 \le i \le N$

- 18. Разработайте модель и выполните полный анализ эффективности параллельных вычислений (ускорение, эффективность, максимально достижимое ускорение, ускорение масштабирования, функция изоэффективности) для задачи умножения матрицы на вектор
- 19. Разработайте модель и выполните полный анализ эффективности параллельных вычислений (ускорение, эффективность, максимально достижимое ускорение, ускорение масштабирования, функция изоэффективности) для задачи умножения матрицы двух матриц.
- 20. Разработайте модель и выполните оценку показателей ускорения и эффективности параллельных вычислений для задачи нахождения среднего значения для заданного набора числовых данных:

$$y = \frac{1}{N} \sum_{i=1}^{N} a_i$$

21. Выполните в соответствии с *законом Амдаля* оценку максимально достижимого ускорения для задачи нахождения среднего значения для заданного набора числовых данных:

$$y = \frac{1}{N} \sum_{i=1}^{N} a_i$$

22. Выполните оценку ускорения масштабирования для задачи нахождения среднего значения для заданного набора числовых данных:

$$y = \frac{1}{N} \sum_{i=1}^{N} a_i$$

23. Выполните построение функций изоэффективности для задачи нахождения среднего значения для заданного набора числовых данных:

$$y = \frac{1}{N} \sum_{i=1}^{N} a_i$$

Варианты заданий В

- 1. Разработайте алгоритмы выполнения основных *операций передачи данных* для топологии сети в виде 3-мерной решетки.
- 2. Разработайте алгоритмы выполнения основных *операций передачи данных* для топологии сети в виде двоичного дерева.
- 3. Разработайте алгоритмы логического представления двоичного дерева для топологии типа решетка-тор.
- 4. Разработайте алгоритмы логического представления двоичного дерева для кольцевой топологии.
- 5. Разработайте алгоритмы выполнения основных *операций передачи данных* для топологии сети в виде 2-мерной решетки
- 6. Погрешность моделей трудоемкости *операций передачи данных* (по результатам вычислительных экспериментов) представлена в таблицы

Объем сообщения (байт)		Погрешимость теоретической оценки времени передачи данных,		
		Модель А	Модель В	Модель С
2000	495	33,45	7,93	34,80
10000	1184	13,91	1,70	14,48
20000	2055	8,44	0,44	8,77
30000	2874	4,53	-1,87	4,76
10000	3758	4,04	-1,38	4,22
50000	4749	5,91	1,21	6,05
60000	5730	6,97	2,73	7,09

Определить

- Среднее значение погрешности для каждой модели
- Определить модель с минимальной погрешностью
- Определить модель с максимальной погрешностью
- 7. Разработайте алгоритмы выполнения основных *операций передачи данных* для топологии сети в виде 4-мерной решетки.
- 8. Разработать алгоритм передачи сообщений для **кольцевой** топологии. Определить трудоемкость выполнения операции рассылки для разных значений параметров $t_{\rm H}$, m, p, $t_{\rm k}$.
- 9. Разработать алгоритм передачи сообщений для решетка-тор.
- 10. Определить трудоемкость выполнения операции рассылки для разных значений параметров t_{н.} m, p, t_k для алгоритма передачи сообщений для **решетка-тор.**
- 11. Разработать алгоритм для множественной рассылки сообщений для топологии решетка-тор. Рассчитать время выполнения этапа передачи сообщений по горизонталях решетки.
- 12. Разработать алгоритм для множественной рассылки сообщений для топологии **решетка-тор**. Рассчитать время выполнения этапа передачи сообщений по вертикалям решетки
- 13. Разработать алгоритм передачи сообщений для **гиперкуба**. Определить трудоемкость выполнения операции рассылки для разных значений параметров $t_{\rm H}$, $m,\,p,\,t_{\rm k}$.
- 14. Разработать алгоритм передачи пакетов для **гиперкуба**. Определить трудоемкость выполнения операции рассылки для разных значений параметров t_н, m, p, t_k.

- 15. Разработать алгоритм передачи пакетов для **решетка-тор**. Определить трудоемкость выполнения операции рассылки для разных значений параметров t_{H} , m, p, t_{k} .
- 16. Разработать алгоритм передачи пакетов для **кольцевой** топологии. Определить трудоемкость выполнения операции рассылки для разных значений параметров t_{H} , $m,\,p,\,t_{\text{k}}$.
- 17. Определить длительность выполнения операции рассылки сообщений для кольцевой топологии при разных значений параметров t_н, m, p, t_k.
- 18. Определить длительность выполнения операции рассылки сообщений для топологии решетки-тор при разных значений параметров t_н, m, p, t_k.
- 19. Разработать алгоритм для множественной рассылки сообщений для топологии решетка-тор.
- 20. Разработать алгоритм для множественной рассылки сообщений для топологии гиперкуб (размерность гиперкуба N).
- 21. Определить время операции рассылки для множественной рассылки сообщений для топологии гиперкуб (размерность гиперкуба N).
- 22. Погрешность моделей трудоемкости *операций передачи данных* (по результатам вычислительных экспериментов) представлена в таблицы

Объем сообщения (байт)		Погрешимость теоретической оценки времени передачи данных, 9		
		Модель А	Модель В	Модель С
2000	495	33,45	7,93	34,80
10000	1184	13,91	1,70	14,48
20000	2055	8,44	0,44	8,77
30000	2874	4,53	-1,87	4,76
40000	3758	4,04	-1,38	4,22
50000	4749	5,91	1,21	6,05
60000	5730	6,97	2,73	7,09

• Провести сравнительную характеристику погрешностей для моделей А и В.