

Cambridge International AS & A Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

MATHEMATICS

February/March 2020

1 hour 50 minutes

9709/32

Paper 3 Pure Mathematics 3

You will need: List of formulae (MF19)

You must answer on the question paper.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

JC20 03_9709_32/FP © UCLES 2020

[Turn over

(a) Sketch the graph of y = |x - 2|.

1

[1]

(b)	Solve the inequality $ x-2 < 3x - 4$.	

1	(,	(,).	,	a simplified exact for	m. [4
					•••••
					•••••
					•••••
					•••••
					••••••
•••••			•••••	•••••	•••••
					•••••
			•••••		•••••
					••••••
					•••••
					•••••

(a)	By sketching a suitable pair of graphs, show that the equation $\sec x = 2 - \frac{1}{2}x$ has exactly one in the interval $0 \le x < \frac{1}{2}\pi$.	root [2]
(b)	Verify by calculation that this root lies between 0.8 and 1.	[2]
		•••••
		•••••
		•••••
		•••••
(c)	Use the iterative formula $x_{n+1} = \cos^{-1}\left(\frac{2}{4-x_n}\right)$ to determine the root correct to 2 decimal plan	ces.
	Give the result of each iteration to 4 decimal places.	[3]
		•••••
		•••••
		•••••
		•••••

Find $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} x \sec^2 x dx$. Give your answer in a simplified exact form.	[7]

5	(a)	Show that $\frac{\cos 3x}{\sin x} + \frac{\sin 3x}{\cos x} = 2 \cot 2x$.	[4]

(b)	Hence solve the equation	$\frac{\cos 3x}{\sin x} +$	$\frac{\sin 3x}{\cos x}$	$= 4$, for $0 < x < \pi$.	[3]
		•••••			
		•••••			
		•••••	•••••		
		•••••			
		•••••	••••••		
		•••••			
		•••••			
		•••••			
		•••••			
		•••••	•••••		
		•••••			

6	The variables	r and v	satisfy	the d	ifferential	equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 + 4y^2}{\mathrm{e}^x}.$$

It is given that y = 0 when x = 1.

[7]	the differential equation, obtaining an expression for y in terms of x .

.	
(b)	State what happens to the value of y as x tends to infinity. [1]

•	The	equation of a curve is $x^3 + 3xy^2 - y^3 = 5$.
	(a)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^2 + y^2}{y^2 - 2xy}.$

(b)	Find the coordinates of the points on the curve where the tangent is parallel to the <i>y</i> -axis. [5]

In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 3 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively. The point M on AB is such that MB = 2AM. The midpoint of FG is N.

(a)	Express the vectors \overrightarrow{OM} and \overrightarrow{MN} in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[3]
		•••••
		•••••
		•••••
		•••••
(b)	Find a vector equation for the line through M and N .	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

F	Find the position vector of P , the foot of the perpendicular from D to the line through M and M
•	
•	

9	Let $f(x) =$	$2 + 11x - 10x^2$
9	Let $I(x) =$	$\frac{2+11x-10x}{(1+2x)(1-2x)(2+x)}.$

(b)	Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in x^2 . [5]

10 (a) The complex numbers v and w satisfy the equations		The complex numbers v and w satisfy the equations
		v + iw = 5 and $(1 + 2i)v - w = 3i$.
		Solve the equations for v and w , giving your answers in the form $x + iy$, where x and y are real. [6]

(b)

|z - 2 - 3i| = 1.

(i) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying

(ii)	Calculate the least value of arg z for points on this locus.	
		•••••
		•••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

老师微信: liuxue119118 (题目有修改过,请加微信确认是否完整,以免影响您的学习!