Additional exercises

- 1. A mass spectrometer has a radius of 0.3 m and an acceleration voltage of 10 000 V. The magnetic field is adjusted to the various masses to be measured. Calculate the atomic mass corresponding to a field of 0.5 T.
- 2. What types of radioactivity are involved in the following reactions: $^{146}_{62}\mathrm{Sm} \to ^{142}_{60}\mathrm{Nd}, ^{53}_{25}\mathrm{Mn} \to ^{23}_{23}\mathrm{Cr}, ^{230}_{90}\mathrm{Th} \to ^{226}_{88}\mathrm{Ra}?$
- 3. Rb has two isotopes, 85 Rb and 87 Rb, which exist in a constant ratio in our Solar System: 85 Rb/ 87 Rb = 2.5933. The molar mass of Rb is 85.4678. A rock contains 10pm of Rb. How many mol/g of 87 Rb does that correspond to?
- 4. Following up from the previous question: ${}^{87}\text{Rb}$ is radioactive with a half-life $t_{1/2} = 48.8$ Gyr. What was the ${}^{85}\text{Rb}/{}^{87}\text{Rb}$ -ratio 2 billion years ago?
- 5. The half-life of 14 C is 5730 years. The 14 C content of the atmosphere is 13.2 disintegrations per minute and per gram (dpm g⁻¹) of carbon (initial activity A_0). We wish to date an Egyptian artefact dating from approximately 2000 BC. What is the approximate activity (A) of this artefact? If our method can measure 1 dpm, what mass of the (probably precious) sample will have to be destroyed?
- 6. Consider the Rb-Sr composition of three aliquots from the same sample:

	$^{87}\mathrm{Rb}/^{86}\mathrm{Sr}$	$^{87}\mathrm{Rb}/^{86}\mathrm{Rb}$
mineral A	0.05	0.70108
mineral B	0.10	0.70215
mineral C	0.20	0.70431

How old is the sample?

- 7. What is the expected $^{207}\text{Pb}/^{206}\text{Pb}$ -ratio of a 4.57 billion year old meteorite? Assume that the meteorite contained no initial Pb. The half-lives of ^{238}U and ^{235}U are 4.468 and 0.704 Gyr, respectively. The present-day $^{238}\text{U}/^{235}\text{U}$ -ratio is 137.818. What is the expected $^{207}\text{Pb}/^{206}\text{Pb}$ -ratio for modern uranium-ores?
- 8. ^{210}Pb is a short lived ($t_{1/2}$ =22.3 yr) intermediate daughter of the ^{238}U decay chain. This natural radioactive lead is incorporated into ice deposited in Greenland by forming successive layers of ice which can be studied like sedimentary strata. The activity of ^{210}Pb is measured at four levels in disintegrations per hour per kilogram of ice.

	1	2	3	4
depth (m)	0	1	1.5	2.5
210 Pb (dph/k)	75	32	24.0	10.0

Calculate the sedimentation rate of the ice. Assuming a constant rate and a compaction factor of 5, how thick will the glacier be in 5000 years? Calculate the ²¹⁰Pb-content of fresh ice (in mol/kg or atoms/kg).

9. ¹²⁹I is an extinct nuclide of Iodine with a half-life of 15.7 million years. It decays (or rather: decayed!) to the noble gas ¹²⁹Xe. Although there is no (natural) ¹²⁹I in the Solar System today, the nuclide did

exist during its earliest stages. Iodine-rich meteorites that within the first few 10s of millions of years of Solary System history contain measurable amounts of excess of 129 Xe.

Consider two meteorites with $^{129}\mathrm{Xe}/^{127}\mathrm{I}$ ratios of 13×10^{-5} and 8×10^{-5} , respectively. What is the age difference between the two meteorites? Assume that all the $^{129}\mathrm{Xe}$ is radiogenic, and that the early Solar System had a homogeneous $^{129}\mathrm{I}/^{127}\mathrm{I}$ -composition.

10. The silicate Earth weighs approximately 4×10^{24} kg and contains 250 ppm potassium. How much $^{40}\mathrm{Ar}$ is created in 4.5 billion years? Given that $^{40}\mathrm{Ar}$ cannot escape from the Earth and the quantity of $^{40}\mathrm{Ar}$ in the atmosphere is 66000 Gt, what is the "K–Ar age of the Earth's atmosphere"? K has three isotopes with $^{39}\mathrm{K}/^{40}\mathrm{K} = 7771$ and $^{41}\mathrm{K}/^{40}\mathrm{K} = 561$. $^{40}\mathrm{K}$ is radioactive and undergoes branched decay to $^{40}\mathrm{Ar}$ (10.72%) and $^{40}\mathrm{Ca}$ (89.28%) with a half-life of 1.248 billion years. The molar mass of K is 39.1 g/mol.