

On the Effect of Pruning on Adversarial Robustness

Artur Jordão and Hélio Pedrini Institute of Computing, University of Campinas (UNICAMP), Brazil

MobileNetV2

Research Question

Do pruned (\mathcal{F}') networks inherit the vulnerability to adversarial images of their unpruned (\mathcal{F}) counterpart?

$$Acc_{adv}(\mathcal{F}') > Acc_{adv}(\mathcal{F}), Acc_{clean}(\mathcal{F}') \approx Acc_{clean}(\mathcal{F})$$

Are pruned networks capable of improving robustness while preserving generalization?

Methodology

Pruning Strategy – Only Clean Images

Experiments

Table 1. Robustness and Generalization from Pruning								
Architecture	Structure	Semantic	Occlusion	FGSM	Clean	Average		
	Filters	(+) 1.58	(+) 2.76	(+) 3.68	(+) 0.60	(+) 2.15		
ResNet56	Layers	(+) 1.05	(+) 1.06	(+) 3.20	(+) 0.84	(+) 1.53		
	Both	(-) 4.13	(+) 4.62	(+) 0.36	(-) 0.60	(+) 0.06		
	DUIII	(-) 4.13	(+) 4.02	(+) 0.30	(-) 0.00	(+		

(+) 3.35

(+) 2.12

(+) 2.56

(-) 0.60

(-) 0.49

(+) 0.07

	Table 2. Adjustment					
	Semantic	Occlusion	FGSM	Average		
Scratch-E	(+) 1.72	(-) 0.60	(+) 1.64	(+) 0.92		
Scratch-B	(+) 1.25	(-) 0.71	(+) 3.64	(+) 1.39		
W-Ticket	(+) 1.13	(-) 5.41	(+) 1.40	(-) 0.96		
Fine-Tuning	(+) 1.58	(+) 2.76	(+) 3.68	(+) 2.67		

Filters

Layers

Both

Pruning Criterion Semantic Occlusion FGSM Clean Average ℓ_1 -norm (+) 1.64 (-) 0.80 (+) 3.75 (+) 0.38 (+) 1.24

(+) 0.37

(+) 0.15

(+) 0.17

(+) 0.94

(+) 0.80

(+) 0.96

(+) 0.64

(+) 1.44

(+) 1.05

 ℓ_1 -norm (+) 1.64 (-) 0.80 (+) 3.75 (+) 0.38 (+) 1.24 ExpectedABS (+) 0.96 (-) 0.09 (+) 4.29 (+) 0.51 (+) 1.41 HRank (+) 0.93 (+) 2.92 (+) 3.18 (+) 0.39 (+) 1.85 KIDivergence (+) 0.82 (+) 0.73 (+) 3.00 (+) 0.34 (+) 1.22 PLS (+) 1.58 (+) 2.76 (+) 3.68 (+) 0.60 (+) 2.15

Table 4. Comparison with Competing Defense Mechanisms

Robustness	Generalization	Average
(-) 2.29	(-) 16.20	(-) 9.24
(-) 4.77	(+) 1.10	(-) 1.83
(+) 1.39	(+) 0.75	(+) 1.06
(+) 1.71	(+) 2.07	(+) 1.89
(+) 7.50	(+) 0.50	(+) 4.00
(+) 1.14	(+) 3.15	(+) 2.14
(+) 1.20	(+) 3.03	(+) 2.11
	 (-) 2.29 (-) 4.77 (+) 1.39 (+) 1.71 (+) 7.50 (+) 1.14 	(-) 2.29

Conclusion

- We empirically show that pruning structures of convolutional networks increase their adversarial robustness
- We demonstrate that pruning preserves generalization; thus, it efficiently satisfies the dilemma between robustness and generalization
- We confirm these findings considering **only clean images** during the pruning process, which enables us to design an effective defense mechanism that ignores the settings and additional assumptions of the attack