A method for treating or preventing cardiovascular pathologies by administering a compound of the formula (I):

$$(R^1)(R^2)N(CH_2)_2O$$
 (Z)
 R^3
 (I)

wherein Z is C= O or a covalent bond; Y is H or O(C₁-C₄)alkyl, R¹ and R² are individually (C₁-C₄)alkyl or together with N are a saturated heterocyclic group, R³ is ethyl or chloroethyl, R⁴ is H, R⁵ is I, O(C₁-C₄)alkyl or H and R⁶ is I, O(C₁-C₄)alkyl or H with the proviso that when R⁴, R⁵, and R⁶ are H, R³ is not ethyl; or a pharmaceutically acceptable salt thereof, effective to elevate the level of TGF-beta to treat and/or prevent conditions such as atherosclerosis, thrombosis, myocardial infarction, and stroke is provided. Useful compounds include idoxifene, toremifene or salts thereof. Further provided is a method for identifying an agent that elevates the level of TGF-beta. Another embodiment of the invention is an assay or kit to determine TGF-beta *in vitro*. Also provided is a therapeutic method comprising inhibiting smooth muscle cell proliferation associated with procedural vascular trauma employing the administration of tamoxifen or structural analogs thereof, including compounds of formula (I).