

柏京大溪

本科毕业论文

院	系_	电子	了科学与	万工程学	学院		
专	亚_	电子信息科学与技术					
题	目_	毕业论文模板					
年	级_	2014 级	_学	号_]	141100000		
学生	姓名_		张	Ξ			
指导	老师_	李四	_ 职	称_			
提交	日期	20	18年5	5月20	日		

南京大学本科生毕业论文(设计、作品)中文摘要

题目: 毕业论文模板

院系: 电子科学与工程学院 专业: 电子信息科学与技术

本科生姓名: 张三

指导老师(姓名、职称): 李四教授

摘要:

模板。

手写中文文本的多样性、差异性让它的识别成为一个富有前景但又充满挑 战的计算机视觉问题。

关键词: 手写中文; 文本识别; 深度学习

南京大学本科生毕业论文(设计、作品)英文摘要

THESIS: Thesis paper template

DEPARTMENT: School of Electronic Science and Engineering

SPECIALIZATION: Electronic Information Science and Technology

UNDERGRADUATE: San Zhang

MENTOR: Professor Si Li

ABSTRACT:

The diversity of handwritten Chinese text make it a promising but challenging computer vision problem.

KEY WORDS: Handwritten Chinese, Text recognition, Deep learning

目 录

1	绪论	1
	1.1 研究背景 · · · · · · · · · · · · · · · · · · ·	1
	1.2 相关工作 · · · · · · · · · · · · · · · · · · ·	1
	1.3 本文主要工作 · · · · · · · · · · · · · · · · · · ·	1
	1.4 本文结构 · · · · · · · · · · · · · · · · · · ·	2
2	系统	3
	2.1 图片 · · · · · · · · · · · · · · · · · ·	3
	2.2 公式 · · · · · · · · · · · · · · · · · ·	4
	2.3 表格 · · · · · · · · · · · · · · · · · ·	5
	2.4 算法 · · · · · · · · · · · · · · · · · ·	5
3	实验·····	7
	3.1 实现细节 · · · · · · · · · · · · · · · · · · ·	7
	3.2 文本分行结果 · · · · · · · · · · · · · · · · · · ·	7
	3.3 识别结果 · · · · · · · · · · · · · · · · · · ·	7
	3.3.1 准确率 · · · · · · · · · · · · · · · · · · ·	7
4	总结与讨论·····	9
参	考文献1	1
致	谢1	3

第一章 绪论

1.1 研究背景

在过去的 40 年中,手写中文文本识别(HCTR)的研究获得了很大的进展,效果得到了很大的提升^[1]。但是,由于手写中文文本的多样性,它依然是一个具有研究意义和挑战性的问题^[2]。不同的文本有不同的书写风格,如图 1-1。

2002年以来,国内企业家包括许多著名分企业家在内2002年以来,国内企业家包括许多著名企业家在内涉嫌违法犯罪被抗狱2002年以来,国内企业家包括许多普多企业家在内涉嫌违法犯罪被2002年以来,国内企业家包括许多著名企业家在内涉嫌违法2002年以来,国内企业家包括许多著名企业家在内涉嫌违法2002年以来,国内企业家包括许多著名企业家在内涉嫌违法

图 1-1: 不同的书写风格。对于同一句话,有不同的书写风格:倾斜,写错字,工整,潦草等。

1.2 相关工作

作为深度神经网络中处理序列的一个重要模型,循环神经网络,如图,在训练和测试过程中不需要知道视觉序列对象中每个元素的位置。但是,对于循环神经网络,非常重要的一点是将输入图片通过图片预处理转化为一串图片特征^[3,4]。但是通常的基于循环卷积神经网络的网络,因为预处理不在系统训练流程之内,所以无法用从头到尾的方式进行训练,不是很方便。

1.3 本文主要工作

本文旨在对图片级手写中文文本做出识别分类。主要工作如下:

- 1. 在标准公开数据集里获得了一定的识别准确度。
- 2. 在标准公开数据集上击败了一些相关工作的结果。

3. 建立分本分行规划表格,很好地处理了文本的分行,降低了训练开销。

1.4 本文结构

本文的各章节组织结构如下:

第一章: 绪论。简要说明了手写中文文本识别的研究来由及相关工作。并概括地描述了这篇文章的工作,总结了本文结构。

第二章: 识别系统

第三章:实验。介绍了实验进行的配置环境,文中使用的测度,文本分行的结果,识别的结果并分析了得到这种结果背后的缘由。

第四章: 总结与讨论。总结全文工作,讨论存在的问题和今后可以继续研究的方向。

第二章 系统

怎么使用这个模板

2.1 图片

一行一图,如图2-1

300年以来,国际产业包括符为普加产业家长用选择的证 犯罪被 3次的认数不断简为,此为面的旅遊也越见 窗板端,不是明月被 3 哪斤被判3,或者是这个牵子开起3,那个举子判决3。是之 几乎 则都有

全业家居马、利利、入谷、基里及无罪被执行之间了,群众这样的往往不是法律问处,而更多的主业家在营和营业上的问题,在媒体上不正常的就教。在生活等最高过至家、开发与有达得这些来多的对话。这个不正常的就教。企业家不管在任营、管理上有或并上问题。最终的有关是正在世龄状,就是你活心如果是任由总院出处有罪,那里是而正论是这种问题!

图 2-1: 待分行文本

一行两个图

图 2-2: (a) 一个长短时记忆单元模块。(b) 深度双向长短时记忆的结构。

多行多图

((a)) 全局损失切割

((b)) 局部损失切割

图 2-3: 分行结果比较。(a) 全局损失切割;(b) 局部损失切割;(c) 局部水平投影切割;(d) 投影损失切割

2.2 公式

$$\frac{\partial L}{\partial a_k^t} = d(s)^2 \left(y_k^t - \frac{\sum_{lab(\mathbf{l},k)} \alpha_t(s) \beta_t(s)}{y_k^t} \right)$$
 (2-1)

$$d_{0j} = \sum_{k=1}^{j} w_{\text{ins}}(a_k), \qquad \text{for } 1 \le j \le n$$

$$d_{ij} = \begin{cases} d_{i-1,j-1} & \text{for } a_j = b_i \\ d_{i-1,j} + w_{\text{del}}(b_i) \\ d_{i,j-1} + w_{\text{ins}}(a_j) & \text{for } a_j \ne b_i \end{cases} \qquad \text{for } 1 \le i \le m, 1 \le j \le n.$$

$$(2-2)$$

$$\beta_{T}(|l'|) = y_{b}^{T}$$

$$\beta_{T}(|l'| - 1) = y_{l|l|}^{T}$$

$$\beta_{T}(s) = 0, \forall s < |l'| - 1$$
(2-3)

递归公式

$$\beta_{t}(s) = \begin{cases} (\beta_{t+1}(s)d(s) + \beta_{t+1}(s+1))d(s+1)y_{l_{s'}}^{t}, & if \ l_{s}' = b \ or \ l_{s+2}' = l_{s}' \\ (\beta_{t+1}(s)d(s) + \beta_{t+1}(s+1)d(s+1) + \beta_{t+1}(s+2)d(s+2))y_{l_{s'}}^{t}, & otherwise \end{cases}$$
(2-4)

2.3 表格

		国	内	企	业	包	括	许	多
	0	1	2	3	4	5	6	7	8
玉	1	0	1	2	3	4	5	6	7
著	2	1	1	2	2	3	4	5	6

表 2-1: 编辑距离(乐文斯汀距离计算过程示例表格。字符串"国内企业包括许多"与"国著名括许多"乐文斯汀距离是 3。

2.4 算法

算法 2.1 Beam Search

- 1: 将初始节点插入到集束中。
- 2: while 遍历未结束 do
- 遍历集束中所有节点的后续节点。
- 4: if 该节点是目标节点 then
- 5: 算法结束。
- 6: else
- 7: 扩展该节点,取集束宽度的节点入堆。
- 8: end if
- 9: end while

集束宽度可以在搜索过程中保持为一个定值,也可以根据搜索的进行而变化。搜索算法可以根据搜索的结果进行调整,比如,当以一个小的集束宽度搜索解却无法找到适合解的时候,可以增大集束宽度重新进行一次搜索。

第三章 实验

3.1 实现细节

我们在 Tensorflow 框架上实现了我们的网络系统。实验在一个搭载 2.40GHz 英特尔志强 Xeon E5-2673 CPU,32GB RAM 和一块英伟达 1080Ti 12GB 显存的服务器电脑上运行。网络系统使用 Adam 训练算法。

3.2 文本分行结果

尽管如此,在局部损失切割和局部水平投影切割之后,每一个竖直段的分行结果的对应关系却很难处理。在一些特殊情况下,无法做到每一竖直段分行关系的对应。所以这两个方法不适用。

3.3 识别结果

3.3.1 准确率

我们根据数据集中人的笔迹将数据集分为了 **HWDB1-HWDB3**,并实现了 Wang 等人^[5] 和 Mishra 等人^[6] 的方法,通过调用百度的文字识别系统^[7],进行对比实验得到以下结果。

	HWDB1	HWDB2	HWDB3
Wang 等人 ^[5] Mishra 等人 ^[6] 百度通用文字识别 ^[7]	74.0	60.0	68.0
	80.8	63.6	73.5
	64.8	36.8	60.8
我们的方法(没有字典信息)	81.5	67.5	73.6
我们的方法	81.8	67.8	73.9

表 3-1: 识别准确率

3.3.1.1 测试

1234

第四章 总结与讨论

在本文中,我们使用预处理层-卷积层-循环卷积层-转录层网络来处理手写中文文本识别的问题。这种网络很好地结合了卷积网络和循环网络各自的优势。

参考文献

- [1] FUJISAWA H. Forty years of research in character and document recognition: an industrial perspective[J]. Pattern Recognition, 2008, 41(8): 2435 2446.
- [2] XU L, YIN F, WANG Q-F, et al. A touching character database from Chinese handwriting for assessing segmentation algorithms[C] // Frontiers in Handwriting Recognition (ICFHR), 2012 International Conference on. 2012: 89–94.
- [3] GRAVES A, LIWICKI M, FERNÁNDEZ S, et al. A novel connectionist system for unconstrained handwriting recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(5): 855–868.
- [4] SUB, LUS. Accurate scene text recognition based on recurrent neural network[C] // Asian Conference on Computer Vision. 2014: 35–48.
- [5] WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks[C] // Pattern Recognition (ICPR), 2012 21st International Conference on. 2012: 3304 3308.
- [6] MISHRA A, ALAHARI K, JAWAHAR C. Scene text recognition using higher order language priors[C] // BMVC 2012-23rd British Machine Vision Conference. 2012.
- [7] BAIDU. BAIDU Text Recognition[EB/OL]. BAIDU, 2018 (2018/05/10) [2018/05/10]. https://cloud.baidu.com/product/ocr.html.

致 谢

感谢在实验室度过的两年时光,老师无论在学术还是人生的指导上都对 我起到了很大的帮助;师兄师姐小伙伴们的鼓励支持和陪伴是我坚持下去的 动力。