TP4 - Codage et compression multimédia

Compression basée sur une Transformée en Ondelettes

Léa Serrano M1 IMAGINE

Table des matières

1	$\mathbf{Ex} \ 1$	
2	<u>Ex 2</u>	:
3	<u>Ex 3</u>	
4	<u>Ex 4</u>	10
5	<u>Ex 5</u>	13

$1 \quad \underline{\text{Ex } 1}$

Pour ce premier exercice, le but va être d'appliquer une transformée en ondelettes sur une image. On obtiendra alors 4 images qui sont des sous-bandes de notre image.

Pour chaque groupe de 4 pixels A, B, C et D on va calculer :

$$BF = (A+B+C+D)/4$$

$$MFH = (A+B-C-D)/2$$

$$MFV = (A-B+C-D)/2$$

$$HF = A-B-C+D$$

Voici notre image de base ainsi que les 4 sous-bandes obtenues (regroupées en une seule image) :

On va ensuite reconstruire une image à partir des 4 sous-bandes et calculer le PSNR entre l'image originale et l'image reconstruite :

Donnees-TP4\$./PSNR chat.pgm chat_reconstruction_QU1.pgm

$2 \quad \underline{\text{Ex } 2}$

Pour ce second exercice, on va appliquer une quantification sur chaque sous-bande qu'on a obtenue à l'exercice précédent. On va donc diviser les valeurs de MFH et MFV par 4 et les valeurs de HF par 16.

On va donc appliquer cette quantification et appliquer une quantification inverse :

On va ensuite reconstruire l'image de base avec nos 4 sous-bandes inversées et calculer son PSNR :

Donnees-TP4\$./PSNR chat.pgm chat_reconstruction_QU2.pgm
PSNR : 29.7123

$3 \quad \underline{\text{Ex } 3}$

On va maintenant appliquer notre transformée en onde lettes en choisissant le nombre N de décompositions (avec N de 1 à 6).

On va devoir diminuer les valeurs des quantifications pour chaque sous-image.

On va faire les transformations avec et sans quantification :

PSNR, N = 6, non quantifiée	$\operatorname{PSNR}, \operatorname{N}=6, \operatorname{quantifi\'ee}$
Donnees-TP4\$./PSNR chat.pgm chat_reconstruction_QU3_N6.pgm	Donnees-TP4\$./PSNR chat.pgm chat_reconstruction_QU3_N6_Q_inverse.pgm
PSNR : 29.5585	PSNR : 27.7869

On voit que le PSNR est toujours plus grand lorsque l'image n'est pas quantifiée, cela est lié au fait qu'avec la quantification on a une perte d'informations.

On voit aussi que pour N allant de 1 à 6, Le PSNR des images diminue puis ré-augmente.

$4 \quad \underline{\text{Ex } 4}$

Maintenant, nous allons montrer l'effet du codage de Huffman sur nos images. J'ai appliqué ce codage sur BF quantifié avec N=1 et N=6, MFH quantifié avec N=1 et N=6, MFV quantifié avec N=1 et N=6.

Taux de compression de BF, $N=1$, quantifié	Taux de compression de BF, $N=6$, quantifié
Donnees-TP4\$./huffman c QBF.pgm QBF_c.pgm Compression en cours Compactage terminé. Taux de compression : 1.22	Donnees-TP4\$./huffman c QBF6.pgm QBF6_c.pgm Compression en cours Compactage terminé. Taux de compression : 0.24
Taux de compression de MFH, $N=1$, quantifié	Taux de compression de MFH, N = 6, quantifié
Donnees-TP4\$./huffman c QMFH.pgm QMFH_c.pgm Compression en cours Compactage terminé. Taux de compression : 4.31	Donnees-TP4\$./huffman c QMFH6.pgm QMFH6_c.pgm Compression en cours Compactage terminé. Taux de compression : 0.27
Taux de compression de MFV, $N=1$, quantifié	Taux de compression de MFV, N = 6, quantifié
Donnees-TP4\$./huffman c QMFV.pgm QMFV_c.pgm Compression en cours Compactage terminé. Taux de compression : 4.44	Donnees-TP4\$./huffman c QMFV6.pgm QMFV6_c.pgm Compression en cours Compactage terminé. Taux de compression : 0.28

```
Taux de compression de HF, N=1, quantifié

Donnees-TP4$ ./huffman c QHF.pgm QHF_c.pgm
Compression en cours...
Compactage terminé. Taux de compression : 5.39

Taux de compression de HF, N=6, quantifié

Donnees-TP4$ ./huffman c QHF6.pgm QHF6_c.pgm
Compression en cours...
Compactage terminé. Taux de compression : 0.39
```

On voit que le taux de compression est beaucoup plus petit lorsque N est grand.

5 Ex 5

Enfin on va tracer une courbe pour voir l'influence de N et Q.

On va mettre sur l'axe des abscisses le PSNR et sur celui des ordonnées, le taux de compression. Les points sont triés en fonction de la valeur de leur PSNR.

