Claims

1. A compound of formula I

$$R^{1}$$
— $(CH_{2})_{m}$ — T — $(CH_{2})_{n}$ — U — $(CH_{2})_{p}$
 $(CH_{2})_{p}$
 $(CH_{2})_{q}$
 $(CH$

wherein

5

R¹ represents aryl optionally substituted by a heterocyclic group or a heterocyclic group optionally substituted by aryl wherein each aryl or heterocyclic group is optionally substituted by one or more of the following groups:

10 a C₁₋₆alkyl group;

a C₁₋₆acyl group;

 $arylC_{1\text{-}6}alkyl$, wherein the alkyl, aryl, or alkylaryl group is optionally substituted by one or more R^b ;

halogen,

15 -CN and NO₂,

-NR°COOR^a;

-NR°COR^a;

-NR°Ra;

-NR°SO₂R^d;

20 -NR°CONR^kR°;

-NR°CSNR*Rk;

-ORa;

-OSO₂R^d;

-SO₂R^d;

25 -SOR^d;

-SR°;

-SO₂NR^aR^f;

-SO₂OR^a;

5

15

20

-CONR°R°:

-OCONR^fR^a:

wherein R^a represents H, a C₁₋₆alkyl group, aryl or arylC₁₋₆alkyl group wherein the alkyl, aryl or arylC₁₋₆alkyl group is optionally substituted one or more times by R^b, wherein R^b represents C₁₋₆alkyl, aryl, arylC₁₋₆alkyl, cyano, -NR°R^d, =O, halo, -OH, -SH, -OC₁₋₄alkyl, -Oaryl, -OC_{1.4}alkylaryl, -COR^c, -SR^d, -SOR^d, or -SO₂R^d, wherein R^c represents H, C₁. 4alkyl, aryl, arylC_{1.4}alkyl and R^d represents C_{1.4}alkyl, aryl, arylC_{1.4}alkyl; wherein R^f represents hydrogen, C_{1.4}alkyl, C_{1.4}acyl, aryl, arylC_{1.4}alkyl and R^a is as defined above; and 10

R^k represents hydrogen, C_{1.4}alkyl, aryl, arylC_{1.4}alkyl;

the group -(CH₂)_m-T-(CH₂)_n-U-(CH₂)_p- is attached at either the 3 or 4 position in the phenyl ring as indicated by the numbers in formula I and represents a group selected from one or more of the following: O(CH₂)₂, O(CH₂)₃, NC(O)NR⁴(CH₂)₂, CH₂S(O₂)NR⁵(CH₂)₂, $CH_2N(R^6)C(O)CH_2$, $(CH_2)_2N(R^6)C(O)(CH_2)_2$, $C(O)NR^7CH_2$, $C(O)NR^7(CH_2)_2$, and CH₂N(R⁶)C(O)CH₂O;

V represents O, S, NR⁸, or a single bond;

q represents 1, 2 or 3;

W represents O, S, N(R⁹)C(O), NR¹⁰, or a single bond;

R² represents halo, a C_{1.4}alkyl group which is optionally substituted by one or more fluoro, 25 a C₁₋₄alkoxy group which is optionally substituted by one or more fluoro, a C₁₋₄acyl group, aryl, an arylC₁₋₄alkyl group, CN or NO₂;

r represents 0, 1, 2 or 3;

R³ represents represents halo, a C₁₋₄alkyl group which is optionally substituted by one or more fluoro, a C₁₋₄alkoxy group which is optionally substituted by one or more fluoro, a C₁₋₄acyl group, aryl, an arylC₁₋₄alkyl group, or CN;

s represents 0, 1, 2 or 3; and

 R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} independently represent H, a C_{1-10} alkyl group, aryl or an aryl C_{1-4} alkyl group or when m is 0 and T represents a group $N(R^6)C(O)$ or a group $(R^5)NS(O_2)$ then R^1 and R^6 or R^1 and R^5 together with the nitrogen atom to which they are attached represent a heteroaryl group;

and pharmaceutically acceptable salts thereof;

with the provisos that when

- 1) when R¹ is phenyl optionally substituted by one or two groups independently selected from halo, a C₁₋₄alkyl group which is optionally substituted by one or more fluoro, a
- 15 C₁₋₄alkoxy group which is optionally substituted by one or more fluoro;

m is 1;

10

T is $N(R^6)C(O)$ wherein R^6 represents a C_{2-8} alkyl group which is optionally interrupted by oxygen;

n is 1;

20 U is absent or represents methylene;

p is 0;

r is 0;

V is O or S;

q is 1; and

- W is a single bond attached to the position ortho to the carboxylic acid group; then s does not represent 0; and
 - 2) when R¹ is phenyl optionally substituted by one or two groups independently selected from halo, a C₁₋₄alkyl group which is optionally substituted by one or more fluoro, a C₁₋₄alkoxy group which is optionally substituted by one or more fluoro:

m is 1;

30

T is N(R⁶)C(O) wherein R⁶ represents an unbranched C₂₋₇alkyl group;

```
n is 1;
U is O;
p is 0;
r is 0 or 1;
and when r is 1 R<sup>2</sup> is attached at the 3 position and is OCH<sub>3</sub>;
V is a single bond;
q is 2; and
W is O or S attached to the position ortho to the carboxylic acid group;
then s does not represent 0.
```

10

15

20

- 2. A compound according to claim 1 in which R¹ represents phenyl which is optionally substituted by one or more of the following: halo, hydroxy, a C₁₋₄alkyl group which is optionally substituted by one or more fluoro, a C₁₋₄alkoxy group which is optionally substituted by one or more fluoro, benzyloxy, a C₁₋₄alkylsulphonyloxy group, phenyl or a heteroaryl group, or R¹ represents heteroaryl which is optionally substituted by one or more of the following: halo, a C₁₋₄alkyl group which is optionally substituted by one or more fluoro, a C₁₋₄alkoxy group which is optionally substituted by one or more fluoro or phenyl optionally substituted by one or more fluoro, a C₁₋₄alkyl group which is optionally substituted by one or more fluoro, a C₁₋₄alkoxy group which is optionally substituted by one or more fluoro.
- 3. A compound according to any previous claim in which the group $-(CH_2)_m$ -T- $(CH_2)_n$ -U- $(CH_2)_p$ is attached at the 4 position in the phenyl ring as indicated by the numbers in formula I, that is para to the group V.

25

30

- 4. A compound according to any previous claim in which the group -V-(CH₂)_q-W-represents a group selected from : OCH₂, SCH₂, NHCH₂, CH₂CH₂S or CH₂CH₂O.
- 5. A compound according to any previous claim in which the group -V-(CH₂)_q-W-represents the group OCH₂.

- 6. A compound according to any previous claim in which the group $-V-(CH_2)_q-W$ is joined at the ortho position with respect to the carboxylic acid group.
- 7. A compound according to any previous claim in which R² is halo, a C₁₋₄alkyl group or a C₁₋₄alkoxy group and r is 0 or 1.
 - 8. A compound according to any previous claim in which s is 0.
 - 9. A compound selected from one or more of the following:
- 3-{[(3-{[(1,1'-biphenyl-4-ylcarbonyl)amino]methyl}phenyl)amino]methyl}benzoic acid;
 - 2-{[4-(2-oxo-2-{[4-(trifluoromethyl)benzyl]amino}ethyl)phenoxy]methyl}benzoic acid;
 - 2-[(3-{2-[benzyl(hexyl)amino]-2-oxoethyl}phenoxy)methyl]benzoic acid;
 - 2-{[3-(2-oxo-2-{[4-(trifluoromethyl)benzyl]amino}ethyl)phenoxy]methyl}benzoic acid;
 - 2-[(4-{3-[[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino]-3-oxopropyl}phenoxy)-
- methyl]benzoic acid;
 - 2-[(4-{2-[({4-methyl-2-[4-(trifluoromethyl)phenyl]-1,3-thiazol-5-yl}carbonyl)amino]-ethyl}phenoxy)methyl]benzoic acid;
 - $2-(\{4-[2-(\{[(2,4-difluorophenyl)amino]carbonyl\}amino)ethyl]phenoxy\}methyl)benzoicacid;\\$
- 2-[(4-{2-[(2-methyl-5-phenyl-3-furoyl)amino]ethyl}phenoxy)methyl]benzoic acid;
 - 2-[(4-{2-[(benzylsulfonyl)amino]ethyl}phenoxy)methyl]benzoic acid;
 - 2-[(4-{2-[benzyl(hexyl)amino]-2-oxoethyl}-2-fluorophenoxy)methyl]benzoic acid;
 - 2-[(4-{2-[benzyl(hexyl)amino]-2-oxoethyl}-2-methoxyphenoxy)methyl]benzoic acid;
 - $2-(\{4-[3-(3,4-dihydroisoquinolin-2(1H)-yl)-3-oxopropyl] phenoxy\} methyl) benzoic acid;\\$
- 25 2-[(4-{2-[4-(1*H*-imidazol-1-yl)phenoxy]ethyl}-phenoxymethyl]benzoic acid;
 - 2-{[4-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenoxy]methyl}benzoic acid;
 - 2-[(3-{2-[4-(benzyloxy)phenoxy]ethyl}phenoxy)methyl]benzoic acid;
 - 2-{[3-(2-{4-[(methylsulfonyl)oxy]phenoxy}ethyl)phenoxy]methyl}benzoic acid;
 - 2-({3-[2-(4-hydroxyphenoxy)ethyl]phenoxy}methyl)benzoic acid;
- 2-[(4-{3-[4-(benzyloxy)phenoxy]propyl}phenoxy)methyl]benzoic acid;
 - 2-{[4-(3-{4-[(methylsulfonyl)oxy]phenoxy}propyl)phenoxy]methyl}benzoic acid;
 - 2-({4-[3-(4-hydroxyphenoxy)propyl]phenoxy}methyl)benzoic acid;

5

15

25

- 2-{[4-(3-{[2-(2-ethoxyphenyl)ethyl]amino}-3-oxopropyl)phenoxy]methyl}benzoic acid;
- 2-[(4-{3-[ethyl(2-pyridin-2-ylethyl)amino]-3-oxopropyl}phenoxy)methyl]benzoic acid;
- 2-{[2-(3-{2-[benzyl(hexyl)amino]-2-oxoethoxy}phenyl)ethyl]thio}benzoic acid;
- 2-{[4-(2-{heptyl[2-(2-methoxyphenyl)ethyl]amino}-2-oxoethyl)phenoxy]methyl}benzoic acid:
- 2-[(4-{2-[[2-(4-chlorophenyl)ethyl](heptyl)amino]-2-oxoethyl}phenoxy)methyl]benzoic acid;
- 2-[(4-{2-[heptyl(2-phenylethyl)amino]-2-oxoethyl}-phenoxy)methyl]benzoic acid;
- 2-[(4-{2-[ethyl(2-fluorobenzyl)amino]-2-oxoethoxy}phenoxy)methyl]benzoic acid;
- 2-[(4-{2-[ethyl(2-fluorobenzyl)amino]-2-oxoethyl}benzyl)oxy]benzoic acid;
 - 2-[(4-{2-[heptyl(2-phenylethyl)amino]-2-oxoethyl}benzyl)oxy]benzoic acid;
 - 2-{2-[4-(2-{isobutyl[4-(trifluoromethyl)benzyl]amino}-2-oxoethoxy)phenyl]ethoxy}-benzoic acid; and
 - 2-[(4-{2-[[2-(4-chlorophenyl)ethyl](heptyl)amino]-2-oxoethyl}benzyl)oxy]benzoic acid and pharmaceutically acceptable salts thereof.
 - 10. A pharmaceutical formulation comprising a compound according to any preceding claim in admixture with pharmaceutically acceptable adjuvants, diluents and/or carriers.
- 20 11. A method of treating or preventing insulin resistance comprising the administration of a compound according to any one of claims 1 to 9 to a mammal in need thereof.
 - 12. The use of a compound according to any one of claims 1 to 9 in the manufacture of a medicament for the treatment of insulin resistance.
 - 13. A process to prepare compounds of formula I comprising reacting a compound of formula II

$$R^{1}$$
— $(CH_{2})_{m}$ — T — $(CH_{2})_{n}$ — U — $(CH_{2})_{p}$
 $(CH_{2})_{q}$
 $(CH$

П

in which R¹, T, U, V, W, R², R³, m, n, p, q, r and s are as previously defined and PG represents a protecting group for a carboxylic hydroxy group with a de-protecting agent.

5 14. Compounds of formula II as described in claim 13.