HUDK 4051: ANAIYTICS: PROCESS & THORY

Events

https://www.eventbrite.com/e/wids-columbia-university-new-york-tickets-92889798889

Date And Time

Fri, March 6, 2020 3:00 PM – 6:00 PM EST

Date And Time

Sat, March 7, 2020 9:00 AM – 6:00 PM EST

Smart Cities Center

https://www.eventbrite.com/e/nyc-school-of-data-2020-tickets-92389440303

March 11 | 7:00PM-9:00PM

Mudd: Room 407

https://www.eventbrite.com/e/poster-session-smart-cities-center-tickets-92729280775? utm_source=sendinblue&utm_campaign=Events_Weekly_February_18_2020&utm_medium=email

March 10-11
OECD Event on the Future of Data in Ed
Volunteer, email me

Today

- Artificial Neural Networks
 - Perceptron
 - Sigmoid Function
 - Back propagation

Frank Rosenblatt, 1957

Bias (Threshold)

- Another way to describe the threshold
- Negative threshold
- More convenient for notation
- Describes how easy it is to get make the perceptron "fire"

Logic

- From the perceptron we can create a NAND gate
- From a NAND gate can create all other logic units (AND, NOR, etc.)
- See Nielson 2016*

Notation Example

inputs	weights
1	0
\mathcal{X}	1
y	0.5

= 1 x 0 + 1 x
$$x$$
 + 0.5 x y
= x + 0.5 y
= x -2 y

Updating

inputs	weights
1	0
$\mathcal X$	1
y	0.5

= 1 x 0 + 1 x
$$\times$$
 + 0.5 x y
= \times + 0.5 y
= \times -2 y

For each misclassified point update w:

Updating

inputs	weights	new w
1	0	-0.2
\mathcal{X}	1	0.6
y	0.5	0.9

$$= -2/3x + 2/9$$

For each misclassified point update w:

WNEW = WOLD +
$$Ndx$$

Learning inputs

Rate Re-classification (1 or -1)

Notation

Inputs Bias Output

$$(1)^*-2 + (1)^*-2 + (0)^*-2 + 3 = -1$$

Activity

- Want to build a learning algorithm
- Could change b or w
- BUT that will cause very large changes
- Network will never "fix"
- Solution: "smooth" the output

- Sigmoid function
 "smooths" the output
- Makes changing w
 and b less sudden and
 more predictable
- Could use lots of other functions...

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}.$$

- Perceptrons have 0/1 output
- Sigmoid neurons have
 0 1 output (eg. 0.1,
 0.6778, etc.)
- How to interpret sigmoid neuron output?

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}.$$

Complete Feedfoward Network

How many Hidden Layers?

- No foolproof method
- The only method is really trial and error
- Heuristics:
 - Theory based starting point?
 - Number of inputs and outputs?

Exercise

Back Propagation

- Need a way to minimize error
- Error is defined by a cost function
- Then we imagine error as a surface that needs to be "searched" for the minimum

Weight