# PROJECT REPORT

# UNDERSTANDING CONGESTED TRAFFIC IN URBAN AREAS:

Aim:To suggest routes for the users, which reduces congestion for the system.

During these days congestion of traffic is increasing rapidly, the cause for the congestion is **rapid urbanisation** and increasing **demand for transportation** 

Level of congestion: It is the interplay between the number of vehicles and available road capacities.

The possible limits of congestion allivation by only modifing route capacities have notbeen studied systematically.

# **Challenges**:

- 1.To know about the user equilibrium which is based on wardrops first principle.
- **2**.To know about the system optimal which is based on wardrops second principle.
- 3.Introducing the social good ( $\lambda$ ).
- **4**.Differentiating between user equilibrium and system optimal.

#### User equilibrium:

 Users choose the route that minimizes their own travel time

- Travellers cannot improve their travel times by unilaterally changing routes.
  - Travel time between two zones on all used routes will be equal.
- When determining travel route choice, two assumptions are usually made:
  - Travellers will select a route on basis of travel times.
  - Travellers know the travel times that would be encountered on all available routes.

Explaining using an example:

# Example:

Vehicle flow is 4500 V/hr, travel time in the routes are  $T_1 = 6 + 4x_1$  and  $T_2 = 4 + x_2^2$  where  $x_1$  and  $x_2$  are the flows in the respective routes.

Time is taken in min and flow is expressed as 1000s of vehicle/hour



- As  $T_1 = T_2$ 6 +  $4x_1 = 4 + x_2^2$
- From the flow conservation, $x_1 + x_2 = 4.5$

- Solving we get  $x_1$ = 1.601, $x_2$  = 2.899. And travel time in any of the route is  $T_1 = T_2 = 12.4$ min
- Total system travel time is
- $S(x)=x_1t(x_1)+x_2t(x_2)$ =1601veh (12.4 min)+2899 veh(12.4 min) =930 veh-hr

### System Optimal:

- Users distribute themselves on the network in such a way that the average travel time for all users is minimized.
- Solving the previous problem

$$S(x) = x_1(6+4x_1)+x_2(4+x_2^2)$$
  

$$S(x) = 6x_1+4x_1^2+4x_2+x_2^3$$

• From flow conservation,  $x_1 = 4.5 - x_2$ 

$$S(x)=x_2^3+4x_2^2-38x_2+108$$
  
 $dS(x)/dx_2=3x_2^2+8x_2-38=0$   
Which gives  $x_2=2.467$   
 $x_1=4.5-2.467=2.033$ .

System Optimal Travel Time is

$$T_1 = 6 + 4(2.033) = 14.13$$
min  
 $T_2 = 4 + (2.467)^2 = 10.08$ min

#### Total travel time is

$$S(x) = x_1T_1(x_1) + x_2T_2(x_2)$$
  
= 2033(14.13min) + 2467(10.08min)  
= 893.2 veh-hr.

Hence System Optimal results in System wide **travel savings** of 36.8 veh-hr

Another example by considering social good  $(\lambda)$ 



In this example 100 users are travelling from A to D User equilibrium allocates the flows between paths as (ABD)=(ACD)=25,(ABCD)=50, average travel time is 3.75 min for all drivers.

System optimum allocates flows between paths as (ABD)=(ACD)=50, decreasing the travel time to 3.50 and making the path BC unused.

Comparision of cost findings in morning peak areas



San Fansisco, USA

Porto, Portugal

| UserEquilibrium | : | 33.6 | 19.3 |
|-----------------|---|------|------|
| Social Optimal  | : | 31.0 | 18.2 |
| Benefit         | : | 2.6  | 1.1  |



Potential savings increases with increasing values of weight of social good ( $\lambda$ ).

# Limitations in the existing maps:

Only provide the approximate travel time based on

- Maps provide travel time by taking the previous travel time records in to consideration.
- They also provide average time by taking motion of users i.e. by GPS



A depiction of three route alternatives with corresponding travel times for

λ=0,

λ=0.2,

λ=1.



# Proposed Solution: Set of users have a particular route which has high $\lambda$ (weight of social good).

| Number of users | user equilibrium | System Optimal |
|-----------------|------------------|----------------|
| 100             | 375              | 360            |
| 120             | 468              | 458            |
| 130             | 516.75           | 503.8          |
| 150             | 618.75           | 612.5          |
|                 |                  |                |
|                 |                  |                |

Table showing the travel times of whole system in veh-hrs.

# Implementation in Java:

Showing the available routes ,users,travel time in respective routes.

For particular set users have a set of  $\lambda$  values with one route having  $\lambda=1$ .

and remaining routes having lesser  $\lambda$  values i.e 0.1,0.2... depending on the routes.

#### Conclusion:

Hence the individual may get benefitted or may not get benefitted but the system gets benefitted by reducing the system travel time, there by reducing the congestion.

#### **REFERENCES:**

Sedar Colak, Antonio Lima & Marta

C.Gonalez,"Understanding congested travel in urban areas",2016.

Tom V. Mathew and K V Krishna Rao," TRAFFIC ASSIGNMENT",2007.

# -S.Naren.Ritvik 1501053.