Forms of Energy

First Law of Thermodynamics

(Law of Conservation of Energy)

The energy in the universe is constant

"Energy cannot be created or destroyed, it can only be transformed from one form to another"

Energy Transfer

Unib of energy

KE = 12mv2 very often use leg (ms-1)2 10000 = 120 12Wh = 3.60.106J 1 leg m²s-2 = 13 (Joule) another unit: 1 cal = 4.1847 Gericke eats 48000 les recommended intake 2550 Cal (Cal Cnutitional) = 1000 cal food intake = 48000l). Ical 1000 = 11472 275 cal Muhihoual Cal = 11472275 cal. 1000cal = 11472 leal

Internal Energy

Internal energy is the sum of the kinetic and potential energies of all particles that compose the system

Inkrual energy is a state function

state function: value depends only on the state of the system and not on how it arrived at the state

change in altitude:
611 in - 159 m = 452 m

wachisett
Mrs. 611m

611 m

159 m

Pot. E. change = pot. E. wach. - pot. E. wp)

= m. g. h

= 60 kg . 9.81 us-2. 452m

= 26604 kg w²s-2 = 266042 = 26.6 kd

lubrual energy change:

chemical system:

final state: products initial state: reactants

$$\Delta E = E_{final} - E_{in.'Hal}$$
 $E_{final} < E_{in/hal} => \Delta E_{is} negative$

When does the energy go lost by the reactants?

Septem Flows surroundings
$$AE_{syp.} < 0 \qquad AE_{surr} > 0$$

$$U$$

$$DE_{syp.} = -\Delta E_{surr}$$

Cos;
$$O_2(g)$$
 product

 $AE>0 \Rightarrow possitive$
 $Co_2(g)$ reactart

Sign Conventions for Heat, Work and Internal Energy Change

TABLE 6.3 Sign Conventions for q, w, and ΔE

q (heat)

w (work)

 ΔE (change in internal energy)

+ system gains thermal energy

+ work done on the system

+ energy flows into the system

- system *loses* thermal energy

- work done by the system

- energy flows *out* of the system

© 2011 Pearson Education, Inc.

Exothermic Process: q is negative **Endothermic Process:** q is positive

Boal: Colenlate work associated with a volume change

$$\begin{aligned}
\omega &= F \times D \\
P &= \frac{F}{A} \quad \text{or} \quad F &= P \cdot A \\
\Rightarrow \omega &= P \cdot A \cdot D \\
\omega &= P \cdot A \cdot \Delta h \\
\omega &= P \cdot A \cdot \Delta V
\end{aligned}$$

Pressure –Volume Work: Moving of a Piston against External Pressure

$$w = F \cdot D$$

$$P = F/A$$
 or $F = P \cdot A$

$$=> w = P \cdot A \cdot D$$

$$w = P \cdot A \cdot \Delta h$$

$$w = P \cdot \Delta V$$

The system is "doing" work, i.e., w must be negative

$$w = -P \cdot \Delta V$$