Bestemmelse av energitapsrate og luftmotstandskoeffesient i U-formet bane

V. Levitin^a, O. A. Liadal^a, T. S. Sindre^a

 a Institutt for fysikk, Norges teknisk-naturvitenskapelige universitet, 7491 Trondheim.

1. Eksperiment

Vi har en U-formet bane og en kule (figur 1), og ønsker å måle energitapsraten til kula i det den oscillerer i banen. Etter dette kan vi videre beregne hva luftmotstandskoeffisienten, k, for kula er.

I ethvert punkt i banen er den mekaniske energien til kula gitt ved

$$E_m = E_{pot} + E_{kin} = E_{pot} + E_{rot} + E_{trans}.$$
 (1)

Den kinetiske energien er

$$E_{kin} = \frac{1}{2}mv^2 + \frac{1}{2} \cdot \frac{2}{5}mr^2 \cdot \omega^2 = \frac{7}{10}mv^2, \qquad (2)$$

og vi får dermed

$$E_m = mgh + \frac{7}{10}mv^2. (3)$$

I likevektspunktet i bunnen av banen vil den potensielle energien være lik 0. Det gir

$$E_m = \frac{7}{10}mv^2. (4)$$

Klarer vi å gjennomføre flere målinger av farten til kula i likevektspunktet, vil vi kunne bestemme energitapet til kula ved å se på endringen i fart. Dette energitapet vil være en følge av luftmotstand.

La v_k , i=1,2,3,... være etterfølgende målinger av farten til kula i likevektspunktet i banen. Energitapet mellom tidspunktene til to målinger, t_i og t_j , vil da være

$$\Delta W = W(t_i) - W(t_j) = \frac{7}{10} m v_i^2 - \frac{7}{10} m v_j^2, \qquad (5)$$

der $W(t_k)$, k = 0, 1, 2, 3, ... er arbeidet utført av luftmotstanden mellom t_1 (tidspunktet for den første fartsmålingen) og t_k . Nå kan vi finne k:

$$\vec{L} = -k\vec{v}
dW = \vec{L} d\vec{s}
= -k\vec{v} d\vec{s}
= -kv^2 dt
\Rightarrow \int_{t_i}^{t_j} dW dt = -k \int_{t_i}^{t_j} v(t)^2 dt
\Rightarrow W(t_j) - W(t_i) = -kQ, \quad Q = \int_{t_i}^{t_j} v(t)^2 dt
\Rightarrow k = \frac{\Delta W}{Q}$$
(6)

En alternativ fremgangsmåte for å finne energitap er å finne endring i potensiell energi ut i fra ulike høydemålinger i kulas toppunkter i banen.

Newtons andre lov gir oss for normalkraften:

$$N = mg\cos\alpha(x) + \frac{mv^2}{R(x)},\tag{7}$$

der R(x) er krumningsradiusen til banen.

Blant de kjente størrelsene i eksperimentet finner vi kulas masse, m, og tyngdeakselerasjon, g. Størrelser som må bestemmes er farten til kula i likevektspunktet over flere perioder. Friksjonskraften på kula kan utledes ut ved hjelp av formel for kulas treghetsmoment.

Vi antar at dynamisk friksjon har neglisjerbar effekt på systemet.

2. Praktisk utførelse

Utstyr:

- stativ til U-formet bane
- utskiftbare rulleunderlag
- meterstav
- stålkule
- høyhastighetskamera m/stativ
- Tracker (på PC)

Vi må bestemme farten til kula i likevektspunktet over flere perioder. Fartsmålingene, som gjøres vha. en tidsposisjons-graf i Tracker, gir oss det utgangspunktet vi trenger for å finne energitapet.

Figur 1: Kule som ruller i U-formet bane. Banen har en helningsvinkel α som endrer seg med x. Friksjonskraftens retning (mot eller med rulleretningen) vil være avhengig av om kula ruller opp- eller nedover.

- 1. Vi tar opp en film av kula oscillerende i banen.
- 2. Filmen importeres i Tracker, hvor vi setter opp en lengdeskala ved å definere lengden til meterstaven med en *Calibration Stick*.
- 3. Vi genererer en tids-posisjons-graf vha. *Autotracker*-funksjonen.
- 4. Vi bestemmer farten til kula hver gang den befinner seg i likevektspunktet ved å gjøre en regresjonstilpasning mot posisjonsdataene.
- 5. Settet av fartsmålinger lar oss regne ut et gjennomsnittlig energitap og et standadavvik.
- 6. Det gjennomsnittlige energitapet kan brukes til å bestemme k.

3. Usikkerhetsanalyse

Systematiske feilkilder er bla. usikkerhet i metermåler og usikkerhet i høyhastighetskameraets bilderate. En annen potensiell feilkilde er en for bratt bane; noe som vil føre til at kula glir og ikke ruller, og noe energi vil gå tapt i form av varme.

Andre feilkilder er generelle menneskelige feil. Vi må være nøyaktige når vi skal kalibrere metermålet i Trackerprogrammet.

Vi kan bruke bl.a. gjennomsnitt,

$$k = \frac{1}{N} \sum_{i=1}^{N} k_i = \frac{k_1 + k_2 + \dots + k_n}{N},$$
 (8)

standardavvik,

$$s = \sqrt{\frac{\sum_{i=1}^{N} (k_i - \overline{k})^2}{N - 1}},$$
(9)

og Gauss' feilforplantningslov,

$$s_f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 s_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 s_y^2 + \left(\frac{\partial f}{\partial z}\right)^2 s_z^2 + \cdots}, \quad (10)$$

til å måle usikkerheten.

4. Numerisk modellering

Vi antar et lineært forhold mellom friksjonskraften og farten til kula. Den dynamiske ligningen til systemet er da

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = mg\sin\alpha(x) - f - k\frac{\mathrm{d}x}{\mathrm{d}t},\tag{11}$$

der friksjonen grunnet underlaget, $f = \frac{2}{5}m \, d^2x/dt^2$. Ved å innføre v = dx/dt kan vi skrive om denne ligningen til to førsteordens diff.ligninger:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v, \quad \frac{\mathrm{d}v}{\mathrm{d}t} = g\sin\alpha(x) - \frac{f+kv}{m}.$$
 (12)

Dette settet kan løses numerisk med Eulers metode,

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(t_n, \mathbf{y}_n), \tag{13}$$

der $\mathbf{y}_n = (x_n, v_n)$, $\mathbf{f}(t_n, \mathbf{y}_n) = (v_n, g \sin \alpha(x) - (f + k v_n)/m)$, og h er steglengden. Ved bruk av initialbetingelsene $x_0 = -0.3$ (vilkårlig valgt punkt i banen) og $v_0 = 0$ får vi en tids-posisjons-graf som kan sammenlignes med de eksperimentelt oppnåde resultatene.

Eulers metode gir oss

$$x_{n+1} = x_n + hv_n, (14)$$

$$v_{n+1} = v_n + \frac{h}{m}(mg\sin\alpha(x) - \frac{2}{5}ma - kv_n).$$
 (15)