Sample Solution for Problem Set 1

Data Structures and Algorithms, Fall 2022

September 23, 2022

Contents

6	Problem 6	7
3	5.1 Complexity	6
5	Problem 5	6
4	Problem 4	5
3	Problem 3	4
2	Problem 2	3
1	Problem 1	2

- Loop invariant: After the i-th loop, subarray A[1...i] is sorted and A[i] is the smallest element of A[i...n].
- Proof:
 - Initialization: There is only one element, A[1], when i = 1.
 - Maintain: A[i-1] is the smallest element of A[i-1...n]. After exchange, A[i] is the smallest one of A[i...n] and A[1...i] is still sorted, when $i \leftarrow i+1$.
 - Termination: A[1...n] is sorted, when i = n.
- Correctness: Elements are exchanged only and A[1...n] is sorted.

Without loss of generality, we assume $x \leq y$.

Algorithm

```
Input: two non-negative integers x \le y
Output: \gcd(x,y)
if x=0 then
| return y;
else
| return \gcd(y \mod x, x);
end
```

Algorithm 1: gcd(x,y)

Correctness

Note that x strictly decreases. Therefore, the process will terminate in finite time. By using $gcd(x,y) = gcd(y \mod x, x)$, we can prove the correctness of our algorithm by induction on x.

Challenge

In fact, this algorithm is efficient. It only uses $O(\log \max(x,y))$ times of modulo operation!

(a)

Counterexample: let $f(n) = 2^n$, when c > 1

$$\lim_{n\to\infty}\frac{f(cn)}{f(n)}=2^{(c-1)n}\to\infty$$

(b)

Counterexample: let

$$g(n) = \begin{cases} f(n) & n \text{ is odd} \\ f(n) \cdot e^{-n} & n \text{ is even} \end{cases}$$

It's easy to prove that $g \in O(f), g \not\in \Theta(f)$ but $g \not\in o(f)$

$$1 = n^{1/\lg n} \ll \log(\lg^* n) \ll \log^* n = \lg^*(\lg n) \ll 2^{\lg^* n} \ll \sqrt{\lg \lg n} \ll \ln \ln n \ll \ln n \ll \log^2 n \ll 2^{\sqrt{2 \lg n}} \ll (\sqrt{3})^{\lg n} \ll (\sqrt{3})^{\lg n} \ll n = 2^{\lg n} \ll n \log n = \lg(n!) \ll n^2 = 4^{\lg n} \ll n^3 \ll (\lg n)! \ll (\lg n)! \ll (\lg n)! \ll (9/8)^n \ll 2^n \ll n \cdot 2^n \ll n! \ll (n+1)! \ll 2^{2^n} \ll 2^{2^{n+1}}$$

Overview

Suppose there are two stacks S_1 and S_2 .

- ENQUEUE(x): directly push element x into stack S_1 .
- DEQUEUE(): pop all the elements in S_1 and push them into S_2 . Then, the element at the top of S_2 is the element we have to dequeue. Pop all the elements in S_1 and push them into S_2 (for further operations).

Pseudocode

```
1
   function ENQUEUE(x):
2
       S1.push(x)
3
4
   function DEQUEUE():
       while not S1.empty(): // for i from 1 to S1.size() is incorrect.
5
6
           S2.push(S1.pop())
7
       res = S2.pop()
8
       while not S2.empty():
9
           S1.push(S2.pop())
10
       return res
```

5.1 Complexity

Obviously, each ENQUEUE operation takes $\Theta(1)$ time.

Consider the DEQUEUE operation. Suppose there are at most n elements in the stack simultaneously, then the DEQUEUE operation takes O(n) time.

Overview

We can maintain two stacks S_1 and S_2 which have equal size. S_1 stores the original elements. S_2 stores prefix maximum of S_1 .

Pseudocode

```
1
   function PUSH(x):
2
        S1.push(x)
3
        if S2.empty() or x < S2.top():
4
            S2.push(x);
5
6
            S2.push(S2.top())
7
   function POP():
8
9
        S2.pop()
10
        return S1.pop()
11
12
   function MIN():
13
        return S2.top()
```

Complexity

Obviously, each operation takes $\Theta(1)$ time.

Suppose there are at most n elements in the stack simultaneously, we use two stacks of size n. Therefore, space complexity is $\Theta(n)$ in the whole process.

Alternate Solution

There are many different implementations, here's another example. We can maintain a stack S_1 for original elements and a non-strictly decreasing stack S_2 for possible minimums.

```
1
   function PUSH(x):
2
       S1.push(x)
       if S2.empty() or x \le S2.top(): // x < S2.top() is incorrect!(why?)
3
4
            S2.push(x);
5
6
   function POP():
7
       if S1.top() == S2.top():
8
           S2.pop()
9
       return S1.pop()
10
11
   function MIN():
12
       return S2.top()
```

Remark

- Pseudocode should be precise and concise.
- Pay attention to the interface of data structure. Generally, top(), pop(), empty() are common stack operations.