

# Allegato Tecnico

### Jawa Druids

Versione | 1.0.0

Data approvazione ??-??-???

Responsabile | Nome Cognome

Redattori | Nome Cognome

Nome Cognome

Verificatori | Nome Cognome

Nome Cognome

Nome Cognome

Stato | Approvato

Lista distribuzione | Jawa Druids

Prof. Tullio Vardanega

Prof. Riccardo Cardin

Uso | Esterno

#### Sommario

Il presente documento contiene le scelte architetturali che il gruppo Jawa Druids ha effettuato ai fini realizzativi del progetto. Contiene i design pattern e i diagrammi di attività, sequenza, classi e package.



# Indice

| 1 | Intr                  | roduzione                    |  |  |  |  |
|---|-----------------------|------------------------------|--|--|--|--|
|   | 1.1                   | Scopo del documento          |  |  |  |  |
|   | 1.2                   | Scopo del prodotto           |  |  |  |  |
|   | 1.3                   | Glossario                    |  |  |  |  |
| 2 | Arc                   | chitettura del prodotto      |  |  |  |  |
|   | 2.1                   | Descrizione generale         |  |  |  |  |
|   | 2.2                   | Architettura Acquisition     |  |  |  |  |
|   | 2.3                   | Architettura Prediction      |  |  |  |  |
|   | 2.4                   | Architettura Web-App         |  |  |  |  |
| 3 | Requisiti soddisfatti |                              |  |  |  |  |
|   | 3.1                   | Tabella requisiti funzionali |  |  |  |  |
|   | 3.2                   | Grafici requisiti funzionali |  |  |  |  |



# Elenco delle tabelle



# Elenco delle figure



#### 1 Introduzione

#### 1.1 Scopo del documento

Lo scopo del documento è quello di elencare e motivare le scelte architetturali fatte dal gruppo Jawa Druids, per quanto riguarda il progetto GDP: Gathering Detection Platform.

#### 1.2 Scopo del prodotto

In seguito alla pandemia del virus COVID-19 è nata l'esigenza di limitare il più possibile i contatti fra le persone, specialmente evitando la formazione di assembramenti. Il progetto GDP: Gathering Detection Platform di Sync Lab ha pertanto l'obiettivo di creare una piattaforma in grado di rappresentare graficamente le zone potenzialmente a rischio di assembramento, al fine di prevenirlo. Il prodotto finale è rivolto specificatamente agli organi amministrativi delle singole città, cosicché possano gestire al meglio i punti sensibili di affolamento, come piazze o siti turistici. Lo scopo che il software intende raggiungere non è solo quello della rappresentazione grafica real-time ma anche quella di poter riuscire a prevedere assembramenti in intervalli futuri di tempo.

Al tal fine il gruppo Jawa Druids si prefigge di sviluppare un prototipo software in grado di acquisire, monitorare ed analizzare i molteplici dati provenienti dai diversi sistemi e dispositivi, a scopo di identificare i possibili eventi che concorrono all'insorgere di variazioni di flussi di utenti. Il gruppo prevede inoltre lo sviluppo di un'applicazione web da interporre fra i dati elaborati e l'utente, per favorirne la consultazione.

#### 1.3 Glossario

All'interno della documentazione viene fornito un Glossario, con l'obiettivo di assistere il lettore specificando il significato e contesto d'utilizzo di alcuni termini strettamente tecnici o ambigui, segnalati con una G a pedice.



## 2 Architettura del prodotto

#### 2.1 Descrizione generale

In fase di progettazione, il gruppo  $Jawa\ Druids$  ha deciso di suddividere la modellazione architetturale di Gathering-Detection-Platform in tre distinti moduli, tutti indipendenti tra loro. Il primo modulo si occupa solamente di leggere, tramite file  $JSON_G$ , tutte le webcam disponibili per poi effettuare il riconoscimento persone tramite i frame scaricati. Successivamente i dati estrapolati verranno invitati al database. Il secondo modulo, il machine-learning $_G$ , si occupa di recuperare questi dati dal database per lavorarli producendo predizioni per le ore future. Infine il terzo modulo, la web-app $_G$  vera e propria, si occuperà di rappresentare graficamente i dati all'interno del database mediante una heat-map $_G$  e farli visualizzare all'utente.

#### 2.2 Architettura Acquisition

L'architettura riguardante il modulo di acquisizione, ovvero il primo modulo del software, è basata sul fatto che è creata sul paradigma della codifica procedurale. Inoltre non presenta alcuna classe in quanto non crea oggetti, crea esclusivamente un array con i dati che estrapola dai frame e dalle informazioni del tempo.

#### 2.3 Architettura Prediction

L'architettura del modulo del machine-learning si può semplificare ad un modulo unico con all'interno i metodi necessari per prelevare dati dal database per poi reinviarli da lavorati. Non necessita classi interne in quanto svolge esclusivamente operazioni funzionali

#### 2.4 Architettura Web-App

Per il modulo relativo al front-end<sub>G</sub>, si è deciso di utilizzare il pattern Model-View-Controller(MVC). Questa scelta è dovuta al fatto che, essendo la web-app sviluppata con spring, il pattern è quello che più si adatta alla tipologia sia di modellazione sia di scopo.



# 3 Requisiti soddisfatti

In questo capitolo vengono illustrati attraverso grafici a torta e tabelle i requisiti funzionali che sono stati implementati all'interno della demo sviluppata per la Revisione di qualifica. Utilizzando la codifica descritta all'interno delle Norme 3.0.0

### 3.1 Tabella requisiti funzionali

| Codice Requisito | Soddisfatto     |
|------------------|-----------------|
| RSFO1            | Soddisfatto     |
| RSFF2            | Non soddisfatto |
| RSFO3            | Soddisfatto     |
| RSFO4            | Soddisfatto     |
| RSFO4.1          | Soddisfatto     |
| RSFO4.2          | Soddisfatto     |
| RSFO5            | Soddisfatto     |
| RSFD5.1          | Non soddisfatto |
| RSFD6            | Non soddisfatto |
| RSFO7            | Soddisfatto     |
| RSFO8            | Non soddisfatto |
| RSFO9            | Soddisfatto     |
| RSFO10           | Soddisfatto     |
| RSFO11           | Non soddisfatto |
| RSFF12           | Non soddisfatto |
| RSFD13           | Non soddisfatto |
| RSFD14           | Non soddisfatto |
| RSFF15           | Non soddisfatto |
| RSFF16           | Non soddisfatto |
| RSFO17           | Non soddisfatto |



| RSFO18     | Soddisfatto     |
|------------|-----------------|
| RSFO18.1   | Soddisfatto     |
| RSFO19     | Soddisfatto     |
| RSFO20     | Soddisfatto     |
| RSFO21     | Soddisfatto     |
| RSFO22     | Soddisfatto     |
| RSFO22.1   | Soddisfatto     |
| RSFO22.2   | Soddisfatto     |
| RSFF23     | Non soddisfatto |
| RSFO24     | Soddisfatto     |
| RSFO25     | Non soddisfatto |
| RSFO26     | Non soddisfatto |
| RSFO27     | Soddisfatto     |
| RSFO28     | Soddisfatto     |
| RSFD29     | Non soddisfatto |
| RSFO30     | Soddisfatto     |
| RSFF31     | Non soddisfatto |
| RSFO32     | Soddisfatto     |
| RSFO32.1   | Soddisfatto     |
| RSFO32.1.1 | Soddisfatto     |
| RSFO32.1.2 | Soddisfatto     |
| RSFO32.1.3 | Soddisfatto     |
| RSFO32.2   | Soddisfatto     |
| RSFD33     | Non soddisfatto |
| RSFD33.1   | Soddisfatto     |
| RSFD33.2   | Non soddisfatto |
| RSFD34     | Non soddisfatto |



| RSFD35   | Non soddisfatto |
|----------|-----------------|
| RSFD36   | Non soddisfatto |
| RSFD36.1 | Non soddisfatto |
| RSFD36.2 | Non soddisfatto |
| RSFD37   | Non soddisfatto |
| RSFD37.1 | Non soddisfatto |
| RSFD38   | Non soddisfatto |
| RSFD39   | Non soddisfatto |
| RSFD40   | Non soddisfatto |
| RSFD41   | Soddisfatto     |

Tabella 3.1: Requisiti funzionali soddisfatti

## 3.2 Grafici requisiti funzionali