Electromagnetics (I) Final Examination

June 20, 2014

= otime Pa=jnm

1. In Fig. 1, media 1 and 3 extend to infinity, and medium 2 is a dielectric slab with finite width l. For a uniform plane wave having the electric field $V = \sqrt{\int \omega \mu \phi (\tau + j \omega \xi)}$

$$\vec{E}_i = E_0 \cos(3 \times 10^8 \pi t - \pi z) \hat{a}_x \quad \text{V/m},$$

X=0 B=TV T= JjwA4(T+jwE)

incident from medium 1 onto the interface z=0.

- (1) Please write down the phasor form electric- and magnetic-fields in all three media. (15%)
- (2) Please write down the boundary conditions at z=0 and z=1. (5%)
- (3) To reduce the reflection (-) wave in medium 1 to zero, please find the suitable ε_r and l for medium 2. (10%)

(4) Please find the time-average Poynting vectors in all the three media and explain the physical meaning of the results briefly. (10%)

(5) Please calculate the wavelengths in media 1 and 2 and compare them with *l* obtained in (2). Please briefly explain the physical reason of antireflection (i.e. reflection=0) at the boundary based on the interference of waves and the power density flow. (10%)

Medium 1	Medium 2	Medium 3	(E1=E2	E = Eie + Ere
(μ_0, ε_0)	$(\mu_0, \mathcal{E}_r \mathcal{E}_0)$	$(\mu_0, 4\varepsilon_0)$	H1-Hz= P0	
$ \begin{array}{c} \bar{E}_i \\ (+) \rightarrow \\ (-) \leftarrow \end{array} $	$(+) \rightarrow$ $(-) \leftarrow$	(+)→	$\begin{vmatrix} B_1 - B_2 = 0 \\ B_1 - B_2 = J_5 \end{vmatrix}$	n = Jsw
$T = \frac{1 - \sqrt{\epsilon_2/\epsilon_1}}{1 + \sqrt{\epsilon_2/\epsilon_1}} = \frac{1 - \sqrt{\epsilon_1}}{1 + \sqrt{\epsilon_2}}$ $T = \frac{1 + \sqrt{\epsilon_2}}{1 + \sqrt{\epsilon_2}} = \frac{1 + \sqrt{\epsilon_2}}{1 + \sqrt{\epsilon_2}}$	$=0=\left(\frac{z}{H\sqrt{z}\gamma}\right)=z$	=1 ==1	y Z	
(= (+)= (+) Fig. 1 for Problem 1			40= 4TVX 10	

- 2. The space between two parallel square conducting plates each having an area S is filled with two different lossy dielectrics as shown in Fig. 2, where the thicknesses d_1 , $d_2 \ll S^{1/2} = l$ (the length) so that the fringe effect can be neglected. A battery of dc voltage V is applied across the plates. Please determine
 - (1) The steady current densities in both dielectrics (5%)

 - (3) If σ_1 =0, please find the potential on the interface x=d₂. (8%)
 - If σ₁=0, please find the electric force F_e for the (ε₁, μ₁) dielectric in the situation shown as the dashed square in Fig. 2. (8%)
 If = = 0 start for 1 the situation shown as the dashed square for 1 the situation shown as the dashed square in Fig. 2. (8%)
 - (5) If $\sigma_1 = \sigma_2 = 0$, please find the capacitance of the system. (8%)
 - (6) If $\sigma_1 = \sigma_2 = 0$ and the voltage source V is changed to a current source I and short-circuited at the other end, please find the external inductance L_e of the system. (8%)
 - (7) Continued from (6), if both conductor plates are of finite $(\varepsilon, \sigma, \mu)$ and thickness d $(d << S^{1/2} = l)$, please find the internal inductance L_i of the system. (8%)

