

East West University Department of Computer Science and Engineering Course Outline of CSE303 Spring 2023 Semester

Course: CSE303 Statistics for Data Science

Credits and Teaching Scheme

	Theory	Laboratory	Total
Credits	3	1	4
	3 Hours/Week for 13 Weeks		5 Hours/Week for 13 Weeks
Hours	+ Final Exam in the 14 th	13 Weeks	+ Final Exam in the 14 th
	Week		Week

Prerequisite

STA102 – Statistics and Probability

Instructor Information

Instructor: Dr Md Rifat Ahmmad Rashid

Assistant Professor, Department of Computer Science and Engineering

Office: 635

E-mail: <u>rifat.rashid@ewubd.edu</u>

Course Objective

The objective of the course is to introduce the statistical methods, techniques and tools that are essential for Data science domain. The course focuses on examining descriptive and inferential statistics and analyzing the output of these methods. The course also focuses on relevant linear algebra methods which are necessary for understanding Data Science. The course also emphasizes techniques for result estimation and anomaly detection. Statistical machine learning methods that "learn" from data will be also introduced such as Linear Regression, Logistic Regression, Support Vector Machine and so on.

Course Outcomes (COs) with Mappings

After completion of this course students will be able to:

CO1	
	understanding the dataset and analyze the outcomes to explore interesting
	characteristics of the dataset.
CO2	
	for smoothing and cleaning the dataset as well as to understand the correlation among
	attributes.
CO3	Apply different statistical learning models for classification of datasets to solve real-
	life problems and also analyze and compare their performance.
CO4	Choose and justify appropriate algorithms and tools for exploratory data analysis;
	perform and demonstrate skills and write report to design and implement statistical
	learning models using realistic data sets.

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching-	CO		of Cog		CO	Assessment
	Learning			ning Le		Mark	(Mark)
Introduction to Data	Method Lectures	CO1	C3	C4	C5		Midterm
Science and Basic	and						Exam I
Statistical Concepts	discussions						(20)
Statistical Concepts	inside and						
	outside the						
	class						
Exploratory Data	Do						_
Analysis							
Different Data	Do						
Distributions and							
Sampling Methods							
Inferential Statistics	Do	CO1					
and Hypothesis							
Testing							
Linear Algebra	Do	CO2					Midterm
Basics, Different							Exam II
Matrix and Vector							(20)
Operation							
Linear Regression	Do						
and its variants	D	002					
Predictive analysis	Do	CO3					
with Logistic							
Regression	Do						<u> </u>
Concepts of Bias and Variance,	Do						
Support Vector							
Machine							Final
Model Validation	Do						Exam
and Evaluation	Do						(20)
Metrics							
Dimensionality	Do						1
Reduction using							
Principal							
Component Analysis							

Laboratory Experiments and Assessment Scheme

Experiment	Teaching- Learning Method	СО	Mark of Cognitive Learning Levels		Mark of Psychomo- tor Learning Levels		CO Mark	
			C3	C4	C6	P2	P3	
Introduction to Python Programming	Lab Experiment and Result Analysis	CO4						
Intermediate Python Programming	Do	CO4						
Pandas for Data Analysis	Do	CO4						
Exploratory Data Analysis and Data Visualization using Pandas	Do	CO4						
Introducing Numpy and Matplotlib Libraries for Data Wrangling and Visualization	Do	CO4						
Intermediate Data Visualization using Matplotlib Libraries	Do	CO4						
Linear Algebra in Numpy	Do	C04						
Linear Regression using Python	Do	CO4						
Logistic Regression and Support Vector Machine using Python								

Mini Projects and Presentations

Item	Teaching- Learning Method	СО	Cogr Lear	ck of nitive ming vel	Mark of Psychomotor Learning Levels		Mark of Affective Learning Level	CO Mark
			С3	C4	Р3	P4	A2	
Presentations	Group-based, Relevant topics on	CO4	2	1			2	5

	Regression Analysis							
Lab-based Mini Project including Report and Presentation	Group-based moderately complex design project with report writing and oral/poster presentation	CO4	2	3	2	2	1	10

Overall Assessment Scheme

	СО				Assessment Area Mark
Assessment Area	CO1	CO2	CO3	CO4	
Class Participation					5
Class Test/Quizzes					10
Midterm Exam – I	20.0				20
Midterm Exam – II		20.0			20
Final Exam			20.0		20
Lab Performance, Lab Assignments or				10.0	10
Lab Exam					
Presentations, Mini Project				15.0	15
Total Mark	20.0	20.0	20.0	25.0	100

Teaching Materials/Equipment

Books:

- Data Science from Scratch (DSS) by Joel Grus
- Python for Data Analysis (PDA) by Wes McKinney
- Think Stats (TS) by Allen B. Downey.
- Optional: Python Data Science Handbook (PDSH) by Jake VanderPlas

Software/Tools:

- Anaconda Distribution https://www.anaconda.com/products/individual
- Google Colab https://colab.research.google.com/
- Other appropriate tools for data wrangling

^{*} Lecture Slides and Lab Manuals will be made available to the students during the class in electronic form.

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
97-100	A+	4.00	73-76	C+	2.30
90-96	A	4.00	70-72	С	2.00
87-89	A-	3.70	67-69	C-	1.70
83-86	B+	3.30	63-66	D+	1.30
80-82	В	3.00	60-62	D	1.00
77-79	B-	2.70	Below 60	F	0.00

Exam Dates

As per the schedule provided by the university.

Academic Code of Conduct

Academic Integrity:

Any form of cheating (physical/online), plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 10 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be NO make-up exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor within 48 hours of the exam time. Proper supporting documents in favor of the reason of missing the exam have to be presented with the application.
- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.