Given a bank customer, build a neural network-based classifier that can determine whether they will leave or not in the next 6 months.

Dataset Description: The case study is from an open-source dataset from Kaggle. The dataset contains 10,000 sample points with 14 distinct features such as Customerld, CreditScore, Geography, Gender, Age, Tenure, Balance, etc. Link to the Kaggle project: https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling Perform following steps:

- 1. Read the dataset.
- 2. Distinguish the feature and target set and divide the data set into training and test sets.
- 3. Normalize the train and test data.
- 4. Initialize and build the model. Identify the points of improvement and implement the same.
- 5. Print the accuracy score and confusion matrix.

```
In [46]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt #Importing the Libraries
In [47]: df = pd.read_csv("Churn_Modelling.csv")
```

Preprocessing.

In [48]:	df.	head()								
Out[48]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	E
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	83
	2	3	15619304	Onio	502	France	Female	42	8	159
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	12!
	4									•
In [49]:	df.	shape								

Out[49]: (10000, 14)

In [50]: df.describe()

Out[50]:

		RowNumber	CustomerId	CreditScore	Age	Tenure	Balanc
co	ount	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.00000
n	nean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.88928
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.40520
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.00000
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.00000
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.54000
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.24000
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.09000

In [51]: df.isnull()

Out[51]:

•	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
•••								
9995	False	False	False	False	False	False	False	False
9996	False	False	False	False	False	False	False	False
9997	False	False	False	False	False	False	False	False
9998	False	False	False	False	False	False	False	False
9999	False	False	False	False	False	False	False	False

10000 rows × 14 columns

In [52]: df.isnull().sum()

```
Out[52]: RowNumber
                            0
         CustomerId
         Surname
                            0
         CreditScore
                            0
         Geography
         Gender
         Age
         Tenure
                            0
         Balance
                            0
         NumOfProducts
                            0
         HasCrCard
         IsActiveMember
         EstimatedSalary
                            0
         Exited
                            0
         dtype: int64
In [53]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10000 entries, 0 to 9999
        Data columns (total 14 columns):
            Column
                             Non-Null Count Dtype
            -----
                             -----
             RowNumber
                             10000 non-null int64
         1
            CustomerId
                             10000 non-null int64
         2
            Surname
                             10000 non-null object
         3
            CreditScore
                             10000 non-null int64
         4
            Geography
                             10000 non-null object
            Gender
                             10000 non-null object
         6
                             10000 non-null int64
            Age
         7
            Tenure
                             10000 non-null int64
         8
            Balance
                             10000 non-null float64
            NumOfProducts
                             10000 non-null int64
         10 HasCrCard
                             10000 non-null int64
         11 IsActiveMember
                             10000 non-null int64
         12 EstimatedSalary 10000 non-null float64
```

13 Exited 10000 non-null int64 dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

In [54]: df.dtypes

```
Out[54]: RowNumber
                                int64
          CustomerId
                                int64
          Surname
                               object
          CreditScore
                                int64
                               object
          Geography
          Gender
                               object
                                int64
          Age
          Tenure
                                int64
          Balance
                              float64
          NumOfProducts
                                int64
          HasCrCard
                                int64
          IsActiveMember
                                int64
          EstimatedSalary
                              float64
          Exited
                                int64
          dtype: object
In [55]: df.columns
Out[55]: Index(['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
                  'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
                  'IsActiveMember', 'EstimatedSalary', 'Exited'],
                dtype='object')
         df = df.drop(['RowNumber', 'Surname', 'CustomerId'], axis= 1) #Dropping the unneces
In [56]:
         df.head()
In [57]:
Out[57]:
             CreditScore Geography Gender Age Tenure
                                                            Balance NumOfProducts HasCrCard
          0
                    619
                             France
                                     Female
                                               42
                                                        2
                                                                0.00
                                                                                   1
                                                                                              1
                    608
          1
                              Spain
                                     Female
                                               41
                                                        1
                                                            83807.86
                                                                                   1
                                                                                              0
                    502
          2
                             France
                                     Female
                                               42
                                                        8
                                                          159660.80
                                                                                   3
                                                                                              1
          3
                                                                                   2
                    699
                              France
                                     Female
                                               39
                                                                0.00
                                                                                              0
          4
                    850
                                               43
                                                        2 125510.82
                                                                                   1
                                                                                              1
                              Spain
                                    Female
```

Visualization

```
In [101... def visualization(x, y, xlabel):
    plt.figure(figsize=(10,5))
    plt.hist([x, y], color=['red', 'green'], label = ['exit', 'not_exit'])
    plt.xlabel(xlabel,fontsize=20)
    plt.ylabel("No. of customers", fontsize=20)
    plt.legend()
In [102... df_churn_exited = df[df['Exited']==1]['Tenure']
    df_churn_not_exited = df[df['Exited']==0]['Tenure']
```

In [103... visualization(df_churn_exited, df_churn_not_exited, "Tenure")


```
In [105...
df_churn_exited2 = df[df['Exited']==1]['Age']
df_churn_not_exited2 = df[df['Exited']==0]['Age']
```

In [106... visualization(df_churn_exited2, df_churn_not_exited2, "Age")

Converting the Categorical Variables

```
In [59]: X = df[['CreditScore','Gender','Age','Tenure','Balance','NumOfProducts','HasCrCard'
    states = pd.get_dummies(df['Geography'],drop_first = True)
    gender = pd.get_dummies(df['Gender'],drop_first = True)
```

```
In [61]: df = pd.concat([df,gender,states], axis = 1)
```

Splitting the training and testing Dataset

In [62]:	df.h	nead()							
Out[62]:	(CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
	0	619	France	Female	42	2	0.00	1	1
	1	608	Spain	Female	41	1	83807.86	1	0
	2	502	France	Female	42	8	159660.80	3	1
	3	699	France	Female	39	1	0.00	2	0
	4	850	Spain	Female	43	2	125510.82	1	1
	4								>
In [63]:	X =	df[['Credi	tScore','Ag	e','Tenu	re','	Balance'	,'NumOfPro	ducts','HasCrCar	rd','IsActiv
In [64]:	y =	df['Exited	']						
In [65]:			odel_select ,y_train,y_					t_size = 0.30)	

Normalizing the values with mean as 0 and Standard Deviation as 1

```
In [66]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()

In [67]: X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)

In [68]: X_train
```

```
Out[68]: array([[ 4.56838557e-01, -9.45594735e-01, 1.58341939e-03, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
                 [-2.07591864e-02, -2.77416637e-01, 3.47956411e-01, ...,
                  -1.09507222e+00, -5.81969145e-01, 1.74334114e+00],
                 [-1.66115021e-01, 1.82257167e+00, -1.38390855e+00, ...,
                  -1.09507222e+00, -5.81969145e-01, -5.73611200e-01],
                 [-3.63383654e-01, -4.68324665e-01, 1.73344838e+00, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
                 [ 4.67221117e-01, -1.42286480e+00, 1.38707539e+00, ...,
                  9.13181783e-01, -5.81969145e-01, 1.74334114e+00],
                 [-8.82511636e-01, 2.95307447e-01, -6.91162564e-01, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01]])
In [69]: X_test
Out[69]: array([[ 3.63395520e-01, 1.99853433e-01, 1.58341939e-03, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
                 [-4.15243057e-02, 4.86215475e-01, 1.58341939e-03, ...,
                  -1.09507222e+00, -5.81969145e-01, 1.74334114e+00],
                 [-1.87923736e+00, -3.72870651e-01, -1.38390855e+00, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
                 [-6.02182526e-01, -5.63778679e-01, -1.73028154e+00, ...,
                 -1.09507222e+00, -5.81969145e-01, -5.73611200e-01],
                 [ 1.51585964e+00, -6.59232693e-01, 1.73344838e+00, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01],
                 [-5.19122049e-01, 1.04399419e-01, 1.73344838e+00, ...,
                  9.13181783e-01, -5.81969145e-01, -5.73611200e-01]])
```

Building the Classifier Model using Keras

```
In [70]: import keras #Keras is the wrapper on the top of tenserflow
    #Can use Tenserflow as well but won't be able to understand the errors initially.

In [71]: from keras.models import Sequential #To create sequential neural network
    from keras.layers import Dense #To create hidden layers

In [72]: classifier = Sequential()

In [74]: #To add the layers
    #Dense helps to contruct the neurons
    #Input Dimension means we have 11 features
    # Units is to create the hidden layers
    #Uniform helps to distribute the weight uniformly
    classifier.add(Dense(activation = "relu",input_dim = 11,units = 6,kernel_initialize

In [75]: classifier.add(Dense(activation = "relu",units = 6,kernel_initializer = "uniform"))

In [76]: classifier.add(Dense(activation = "sigmoid",units = 1,kernel_initializer = "uniform"))
```

classifier.compile(optimizer="adam",loss = 'binary_crossentropy',metrics = ['accura In [79]: classifier.summary() #3 Layers created. 6 neurons in 1st,6neurons in 2nd Layer and Model: "sequential_1" Layer (type) Output Shape Param # ______ dense_3 (Dense) (None, 6) 72 dense_4 (Dense) 42 (None, 6) dense_5 (Dense) (None, 1) Total params: 121

Total params: 121
Trainable params: 121
Non-trainable params: 0

In [89]: classifier.fit(X_train,y_train,batch_size=10,epochs=50) #Fitting the ANN to training

```
Epoch 1/50
0.7947
Epoch 2/50
0.7947
Epoch 3/50
0.8067
Epoch 4/50
0.8260
Epoch 5/50
0.8287
Epoch 6/50
0.8310
Epoch 7/50
0.8317
Epoch 8/50
0.8306
Epoch 9/50
0.8331
Epoch 10/50
0.8326
Epoch 11/50
0.8337
Epoch 12/50
0.8339
Epoch 13/50
0.8341
Epoch 14/50
0.8331
Epoch 15/50
0.8341
Epoch 16/50
0.8356
Epoch 17/50
0.8366
Epoch 18/50
0.8343
Epoch 19/50
```

```
0.8363
Epoch 20/50
0.8337
Epoch 21/50
Epoch 22/50
0.8370
Epoch 23/50
0.8374
Epoch 24/50
0.8356
Epoch 25/50
0.8366
Epoch 26/50
0.8367
Epoch 27/50
0.8366
Epoch 28/50
0.8366
Epoch 29/50
0.8374
Epoch 30/50
0.8373
Epoch 31/50
0.8370
Epoch 32/50
0.8376
Epoch 33/50
0.8367
Epoch 34/50
0.8364
Epoch 35/50
0.8379
Epoch 36/50
0.8370
Epoch 37/50
Epoch 38/50
```

```
0.8373
   Epoch 39/50
   0.8384
   Epoch 40/50
   0.8361
   Epoch 41/50
   0.8366
   Epoch 42/50
   0.8369
   Epoch 43/50
   0.8369
   Epoch 44/50
   0.8366
   Epoch 45/50
   0.8376
   Epoch 46/50
   0.8373
   Epoch 47/50
   0.8371
   Epoch 48/50
   0.8371
   Epoch 49/50
   0.8383
   Epoch 50/50
   0.8370
Out[89]: <tensorflow.python.keras.callbacks.History at 0x1fb1eb93df0>
In [90]: y_pred =classifier.predict(X_test)
   y_pred = (y_pred > 0.5) #Predicting the result
In [97]: from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
In [92]: cm = confusion_matrix(y_test,y_pred)
In [93]: cm
Out[93]: array([[2328,
         72],
      [ 425, 175]], dtype=int64)
In [94]: accuracy = accuracy_score(y_test,y_pred)
```

```
In [95]: accuracy
Out[95]: 0.83433333333334

In [98]: plt.figure(figsize = (10,7))
    sns.heatmap(cm,annot = True)
    plt.xlabel('Predicted')
    plt.ylabel('Truth')
```

Out[98]: Text(69.0, 0.5, 'Truth')

In [100	print(c	lass	ification_rep	port(y_te	st,y_pred))	
			precision	recall	f1-score	support
		0	0.85	0.97	0.90	2400
		1	0.71	0.29	0.41	600
	accur	асу			0.83	3000
	macro	avg	0.78	0.63	0.66	3000
	weighted	avg	0.82	0.83	0.81	3000

In []: