Cours de Physique: Dynamique

A. Arciniegas N. Wilkie-Chancellier

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

Contexte historique

2 Lois de Newton

Première application : Gravitation universelle

Copernic : Théorie de l'héliocentrisme.

Copernic : Théorie de l'héliocentrisme.

Kepler : Lois du mouvement des planètes autour du Soleil.

Copernic : Théorie de l'héliocentrisme.

Kepler : Lois du mouvement des planètes autour du Soleil.

Galilée : Chute libre des corps.

Copernic : Théorie de l'héliocentrisme.

Kepler : Lois du mouvement des planètes autour du Soleil.

Galilée : Chute libre des corps.

Newton : Loi de la gravitation universelle et les lois de la dynamique.

Copernic : Théorie de l'héliocentrisme.

Kepler : Lois du mouvement des planètes autour du Soleil.

Galilée : Chute libre des corps.

Newton: Loi de la gravitation universelle et les lois de la dynamique.

La **dynamique** est l'étude des relations entre les mouvements d'un corps solide et leurs causes.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

1

2

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

Première loi (principe d'inertie): si aucune force extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme ².

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

Première loi (principe d'inertie): si aucune force¹ extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme².

¹Force: influence qui peut modifier l'état de mouvement d'un corps.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

Première loi (principe d'inertie): si aucune force¹ extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme².

¹ Force: influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

- Première loi (principe d'inertie): si aucune force 1 extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme 2.
- 2 Deuxième loi (principe fondamental de la dynamique, PFD): l'accélération d'un objet de masse constante est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à la masse de celui-ci.

¹ Force : influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

- Première loi (principe d'inertie): si aucune force¹ extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme².
- Deuxième loi (principe fondamental de la dynamique, PFD): l'accélération d'un objet de masse constante est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à la masse de celui-ci.
- Troisième loi (principe des actions réciproques): pour toute action, il existe une réaction de même norme, de même direction mais de sens opposé.

¹ Force: influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

- Première loi (principe d'inertie): si aucune force of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme of extérieure.
- Deuxième loi (principe fondamental de la dynamique, PFD): l'accélération d'un objet de masse constante est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à la masse de celui-ci.
- Troisième loi (principe des actions réciproques): pour toute action, il existe une réaction de même norme, de même direction mais de sens opposé.

Formalisme

① Principe d'inertie: $\sum \vec{F}_i = 0$

avec :

F: force en newton (N)

¹Force: influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

- Première loi (principe d'inertie): si aucune force¹ extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme².
- Deuxième loi (principe fondamental de la dynamique, PFD): l'accélération d'un objet de masse constante est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à la masse de celui-ci.
- Troisième loi (principe des actions réciproques): pour toute action, il existe une réaction de même norme, de même direction mais de sens opposé.

Formalisme

① Principe d'inertie: $\sum \vec{F}_i = 0$

2 PFD: $\sum \vec{F}_i = m \cdot \vec{a}$

avec :

F: force en newton (N)

m : masse en kilogramme (kg)

a: accélération en (m.s⁻²)

¹Force: influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

- Première loi (principe d'inertie): si aucune force extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme 2.
- Deuxième loi (principe fondamental de la dynamique, PFD): l'accélération d'un objet de masse constante est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à la masse de celui-ci.
- Troisième loi (principe des actions réciproques): pour toute action, il existe une réaction de même norme, de même direction mais de sens opposé.

Formalisme

- Principe d'inertie: $\sum \vec{F}_i = 0$
- 2 PFD: $\sum \vec{F}_i = m \cdot \vec{a}$
- 3 Principe des actions réciproques : $\vec{F}_{1,2} = -\vec{F}_{2,1}$

avec :

F: force en newton (N)

m: masse en kilogramme (kg)

a: accélération en (m.s⁻²)

¹ **Force**: influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

En 1687, Isaac Newton énonça les lois suivantes à partir de son observation des mouvements :

- Première loi (principe d'inertie): si aucune force¹ extérieure ne s'applique à un objet, il reste au repos ou conserve un mouvement rectiligne uniforme².
- Deuxième loi (principe fondamental de la dynamique, PFD): l'accélération d'un objet de masse constante est proportionnelle à la résultante des forces qu'il subit, et inversement proportionnelle à la masse de celui-ci.
- Troisième loi (principe des actions réciproques): pour toute action, il existe une réaction de même norme, de même direction mais de sens opposé.

Formalisme

• Principe d'inertie: $\sum \vec{F}_i = 0$

2 PFD: $\sum \vec{F}_i = m \cdot \vec{a}$

3 Principe des actions réciproques : $\vec{F}_{1,2} = -\vec{F}_{2,1}$

avec :

F: force en newton (N)

m: masse en kilogramme (kg)

a : accélération en (m.s⁻²)

https://www.youtube.com/watch?v=JGO_zDWmkvk

¹ Force: influence qui peut modifier l'état de mouvement d'un corps.

²Inertie : caractéristique représentative de la difficulté à modifier l'état de mouvement d'un corps. Plus un corps possède une grande inertie, plus il est difficile de modifier son mouvement.

Interactions fondamentales

Interactions	Caractéristiques	Théorie
Gravitationnelle	Attractive, portée infinie.	Mécanique classique (1687)
	Notion de masse.	Relativité générale (1917)
Électromagnétique	Attractive/répulsive, portée infinie. Notion de charge électrique.	Électromagnétisme classique (1864) Électrodynamique quantique (1949)
Interaction forte	Interaction de très courte portée entre quarks. Notion de charge de couleur.	Chromodynamique quantique (1970)
Interaction faible	Interaction de très courte portée.	Théorie électrofaible (1961-1967)

Interactions fondamentales

Interactions	Caractéristiques	Théorie
Gravitationnelle	Attractive, portée infinie.	Mécanique classique (1687)
	Notion de masse.	Relativité générale (1917)
Électromagnétique	Attractive/répulsive, portée infinie. Notion de charge électrique.	Électromagnétisme classique (1864) Électrodynamique quantique (1949)
Interaction forte	Interaction de très courte portée entre quarks. Notion de charge de couleur.	Chromodynamique quantique (1970)
Interaction faible	Interaction de très courte portée.	Théorie électrofaible (1961-1967)

Chronologie des différentes théories.

Attention

- masse: manifestation de l'inertie d'un corps
- opids: force due à l'attraction que la Terre exerce sur un corps (cas particulier de la gravitation universelle)

 $\mathsf{masse} \neq \mathsf{poids}$

Attention

- masse: manifestation de l'inertie d'un corps
- opoids: force due à l'attraction que la Terre exerce sur un corps (cas particulier de la gravitation universelle)

masse \neq poids

La force d'attraction entre deux masses M et m séparées d'une distance r :

$$F = G \frac{M \cdot m}{r^2}$$

Attention

- masse : manifestation de l'inertie d'un corps
- opoids: force due à l'attraction que la Terre exerce sur un corps (cas particulier de la gravitation universelle)

masse \neq poids

La force d'attraction entre deux masses M et m séparées d'une distance r :

$$F = G \frac{M \cdot m}{r^2}$$

avec G: constante de gravitation universelle

- Valeur de 6,67.10⁻¹¹ N.m².kg⁻².
- Mesurée par la première fois par Henry Cavendish à la fin du 18ème siècle.

Attention

- masse : manifestation de l'inertie d'un corps
- opids: force due à l'attraction que la Terre exerce sur un corps (cas particulier de la gravitation universelle)

$\mathsf{masse} \neq \mathsf{poids}$

La force d'attraction entre deux masses M et m séparées d'une distance r :

$$F=G\frac{M\cdot m}{r^2}$$

avec G: constante de gravitation universelle

- Valeur de 6,67.10⁻¹¹ N.m².kg⁻².
- Mesurée par la première fois par Henry Cavendish à la fin du 18ème siècle.

L'expérience de Cavendish (balance de torsion) d'après le cours de Feynman.

Henry Cavendish.

Attention

- masse : manifestation de l'inertie d'un corps
- opoids: force due à l'attraction que la Terre exerce sur un corps (cas particulier de la *gravitation universelle*)

masse \neq poids

La force d'attraction entre deux masses M et m séparées d'une distance r :

$$F = G \frac{M \cdot m}{r^2}$$

avec G : constante de gravitation universelle

- Valeur de 6,67.10-11 N.m².kg-2.
 - Mesurée par la première fois par Henry Cavendish à la fin du 18ème siècle.

Henry Cavendish.

On donne le rayon de la Terre R_T = 6370 km et sa masse M_T = 5,98.10²⁴ kg.

- Exprimer l'accélération de la pesanteur g ressentie par un corps à l'altitude h.
- Calculer sa valeur pour h = 0 m et h = 1000 km.

La station spatiale internationale, de masse m, est en orbite circulaire autour de la Terre à une altitude de h = 350 km. Calculer :

- sa vitesse linéaire v
- ullet sa vitesse angulaire ω
- sa période de révolution T

Station spatiale internationale. Crédit : NASA/Roscosmos

La station spatiale internationale, de masse m, est en orbite circulaire autour de la Terre à une altitude de h = 350 km. Calculer :

- sa vitesse linéaire v
- ullet sa vitesse angulaire ω
- sa période de révolution T

La station spatiale internationale, de masse m, est en orbite circulaire autour de la Terre à une altitude de h = 350 km. Calculer :

- sa vitesse linéaire v
- ullet sa vitesse angulaire ω
- sa période de révolution T

La Lune est le satellite de la Terre et on suppose que seule la Terre influence le mouvement de la Lune. Sachant que ce mouvement est circulaire uniforme de période T = 27 jours, 7 heures, 33 minutes, calculer la distance entre la Terre et la Lune.