# Finite Element Simulation of Wafer Laser Heating

Using COMSOL Multiphysics



# Project Report

Author: Aishwary Prakash Singh M.Tech, Department of Chemical Engineering Indian Institute of Technology Kanpur

August 30, 2025

## Introduction

Laser heating of silicon wafers is widely used in **semiconductor fabrication**, **annealing**, **and surface treatments**. A key challenge is capturing the **transient thermal response** under moving, localized heat sources.

In this project, I replicated and extended the official *COMSOL Application Library* model. My personal aim was to understand **temperature evolution**, **hotspot formation**, **and smoothing due to wafer rotation**, while also studying the effects of varying emissivity and laser power.

### Model Definition

#### **Model Setup**

- Geometry: 2-inch diameter, 275 µm thick silicon wafer.
- Laser: 10 W Gaussian beam, 2 mm spot radius.
- Motion: Wafer rotation at 10 RPM, laser scans radially with a 20 s period.
- Physics: Heat Transfer in Solids with Gaussian heat flux.
- Boundary Conditions: Surface radiation ( $\epsilon = 0.8$ ), ambient T = 293 K.
- Mesh: Swept triangular mesh, single element in thickness.
- Solver: FEM, time-dependent transient solver.

## Results and Discussion

#### **Temperature Evolution**

The wafer's maximum, minimum, and average temperatures were tracked over time. Results showed that localized heating quickly creates hotspots, while wafer rotation helps distribute heat.

#### **Hotspot Distribution**

Surface plots confirmed **Gaussian-shaped hotspots** under the laser. Rotation smoothed the overall profile, yet **thermal gradients remained** at the beam focus.

#### Thermal Gradients and Stresses

The difference  $(T_{max} - T_{min})$  indicated sharp **thermal stresses**, important for predicting crack initiation in semiconductor wafers.

1

#### My Personal Extensions

Beyond the COMSOL example, I performed additional studies:

- Varied emissivity ( $\epsilon = 0.6$  to 0.9) to analyze radiation effects.
- $\bullet$  Increased laser power from 10 W  $\rightarrow$  20 W, showing steeper heating and faster hotspot growth.
- Compared cases with vs without wafer rotation, highlighting the importance of mechanical motion for thermal uniformity.

# Conclusion

This project demonstrated how the **Finite Element Method (FEM)** in COMSOL Multiphysics can simulate laser heating of wafers.

Key takeaways:

- Gaussian laser flux produces strong localized heating.
- Wafer rotation reduces but does not fully remove hotspots.
- Emissivity and laser power significantly alter wafer thermal behavior.

Such studies are vital for semiconductor process design, defect minimization, and laser-based material processing.

2