Klausur "Elektrische Messtechnik" Mess-, Steuer-, Regelungstechnik PT (IIB) Studiengang Physikalische Technik

Name: Matrikel-Nr: Studienrichtung:		Unterschrift:
Aufgabe:	Punkte:	
1.1	3	
1.2	3	
1.3	3	
1.4	3 3 3	
1.5	3	
1.6	3 3	
1.7	3	
1.8	3	
2a	2	
2b	6	
2c	4	
2d	8	
3a	4	
3b	4	
3c 34	4	
4a	8	
4b	4	
4c	4	
4d	4	
Summe:	80	
80 Punkte = 1,0 40 Punkte = 4,0		
Datum:		Prüfer:

Aufgabe 1

1.	Welche der genannten Fehlerursachen führen zu systematischen Messabweichungen ?			
	(a) Nichtlinearitäten(b) Rauschen(c) falsches Ablesen(d) Nullpunktfehler			
2.	Was versteht man unter "Schalterprellen" ?			
	 (a) Häufiges manuelles Umschalten eines Schalters (b) Mehrfaches Kontaktöffnen und -schließen bei einer einzigen Schalterbetätigung durch federnde Bauteile (c) Nichtbezahlen eines Lichtschalters im Baumarkt (d) Zerstörung eines Schalters durch zu hohe Ströme 			
3.	Wodurch werden bei einem Digital-Analog-Umsetzer so genannte "Monotoniefehler" verursacht?			
	 (a) Durch zu schnelles Umschalten der Eingangsbits (b) Durch Übertragungsverluste auf den Zuleitungen (c) Durch mangelnde Gleichheit der für die Umsetzung verwendeten Widerstände (d) Durch eine zu niedrige Versorgungsspannung 			
4.	Wozu wird bei der Messung mit einem Oszilloskop ein Tastkopf eingesetzt ?			
	 (a) Um die Eingangsspannung z.B. im Verhältnis 1:10 zu teilen. (b) Um sich an das richtige Messergebnis heranzutasten. (c) Um die Frequenz der Eingangsspannung herabzusetzen. (d) Um die Tiefpasswirkung, die durch den Innenwiderstand der Quelle und die Kapazität des Kabels entsteht, zu kompensieren. 			

5.	Was versteht man unter der Auflösung eines Messgeräts?	
	 (a) die vollständige Zerstörung bei einem durch Kurzschluss verursachten Brand (es löst sich in Rauch auf) (b) die Fähigkeit, zwischen zwei nahe beieinander liegenden Messwerten eindeutig unterscheiden zu können (c) das Verhältnis aus der Änderung der Ausgangsgröße zu der sie verursachenden Änderung der Eingangsgröße (d) die Abweichung der Kennlinie vom linearen Verlauf 	
6.	Welche Materialien eignet sich zur Abschirmung von Magnetfeldern, die durch Wechselströme mit einer Frequenz von $f=16{}^2\!/_3$ Hz hervorgerufen werden? (a) dünne Aluminiumfolie (b) Speziallegierungen (MU-Metall) (c) dickes Eisenblech (d) dickes Kupferblech	
7.	Welches einfache elektromechanische Messgerät misst auf Grund seine Messprinzips den Effektivwert des durch das Messwerk fließenden Strotal (a) Drehspulmessgerät (b) Dreheisenmessgerät (c) Digitales "True-RMS-Multimeter" (d) Elektrodynamisches Messgerät	
8.	 Wovon hängt die Geschwindigkeit ab, mit der sich ein hochfrequentes Signal (eine Welle) auf einer Koaxialleitung bewegt ? (a) von der Leitungslänge (b) Es gibt keine Abhängigkeit. Die Welle breitet sich immer mit Lichtgeschwindigkeit aus. (c) von der relativen Dielektrizitätskonstante des Isolationsmaterials (d) vom Material des Innen- bzw. Außenleiters 	

Aufgabe 2

Mit einem einfachen Digitalmultimeter soll ein Strom mit dem im folgenden dargestellten zeitlichen Verlauf gemessen werden.

- a) Wie groß ist die Frequenz dieses Stroms?
- b) Wie groß ist der Effektivwert dieses Stroms?
- c) Welchen Wert zeigt das Messinstrument bei diesem Strom in der Betriebsart "Gleichstrommessung" an ?
- d) Welchen Wert zeigt das Messinstrument bei diesem Strom in der Betriebsart "Wechselstrommessung" an ?

Aufgabe 3

Zur Messung des Kurzschlussstroms einer Gleichspannungsquelle mit einer Leerlaufspannung von $U_0=$ 10 V soll ein Shunt-Widerstand verwendet werden. Der Innenwiderstand der Quelle liegt zwischen 0,2 $\Omega< R_O<$ 0,5 Ω .

- a) Welchen maximalen Wert darf der Shunt-Widerstand $R_{\scriptscriptstyle S}$ aufweisen, wenn der Kurzschlussstrom durch ihn auch im ungünstigsten Fall um nicht mehr als 1 % verfälscht werden soll ?
- b) Welche Spannung stellt sich bei einem Innenwiderstand der Quelle von $R_{\mathcal{O}}=$ 0,3 Ω am Shunt-Widerstand ein ?
- c) Wie groß ist die in diesem Fall am Shunt-Widerstand umgesetzte Leistung?
- d) Wie beeinflusst diese Leistung möglicherweise die Messung?

Aufgabe 4

Zur Unterdrückung hochfrequenter Störungen werden in der Messtechnik Tiefpass-Schaltungen eingesetzt. Das Bild zeigt zwei Schaltungsvarianten, einen mit Hilfe eines Operationsverstärkers realisierten aktiven Tiefpass und einen passiven Tiefpass.

$$R_I = 10 \text{ k}\Omega$$

- a) Geben Sie für beide Schaltungen den Frequenzgang $\underline{G}(j\omega) = \frac{\underline{U}_2(j\omega)}{\underline{U}_1(j\omega)}$ an.
- b) Wie groß muss der Widerstand R_2 gewählt werden, damit der aktive Tiefpass (Operationsverstärkerschaltung) das Eingangssignal um 26 dB verstärkt.
- c) Wie groß muss bei diesem Wert von R_2 die Kapazität C_2 gewählt werden, damit beide Tiefpassschaltungen eine 3dB-Grenzfrequenz von f_g = 100 Hz aufweisen.
- d) Nennen Sie zwei Vorteile, die die aktive Schaltung gegenüber der passiven besitzt.