Statistic Formulas

Robin Bader

Juli 2015

1 Hallo

asdfasdf

1.1 T-Test

$$t = \frac{\bar{x_D} - 0}{s_D/\sqrt{n}}$$

Table 1: My caption

Name	Population Symbol	Sample Symbol	Sample Calculation
Mean		$ar{x}$	$\bar{x} = \frac{\sum x}{N}$
Variance	σ_x^2	s_x^2	$s_x^2 = \frac{\sum_{x=0}^{N} (x - \bar{x})^2}{N - 1}$
Standard Dev	σ_x	s_x	$s_x = \sqrt{s_x^2}$
Covariance	$\sigma_x y$	$s_x y$	$s_x y = \frac{\sum (x - \bar{x})(y - \bar{y})}{N - 1}$
Correlation	$ ho_x y$	$r_x y$	$r_x y = \frac{s_x y}{s_x s_y}$ $r_x y = \frac{\sum (z_x z_y)}{N-1}$
z-score	z_x	z_x	$z_x = \frac{x - \bar{x}}{s_x}; \bar{z} = 0; s_x^2 = 1$

Beschreibung

Durchschnitt aller Daten Abweichung