## Логика и алгоритмы

#### Лев Дмитриевич Беклемишев

Факультет математики НИУ ВШЭ, 2-й курс, весна 2021 г.

9.02.2020

# Кризис оснований математики рубежа XIX - XX веков

- К концу XIX века математика прочно встала на теоретико-множественную основу.
- В самой теории множеств Кантора обнаружились противоречия: парадоксы Рассела, Кантора, Бурали-Форти.
- Кризис оснований математики заставил многих выдающихся ученых той эпохи (Пеано, Фреге, Рассел, Гильберт, Пуанкаре, Брауэр, Вейль и др.) задуматься о философских вопросах.

## Философские вопросы

- Что означает доказать математическую теорему? Какие средства при этом законно использовать?
- Что значит дать определение тому или иному математическому понятию?
- Правомерно ли рассуждать об актуально бесконечных множествах?
- Когда мы говорим об истинности и о доказуемости какого-либо математического утверждения, имеется ли в виду одно и то же?
- Противоречива ли математика? И если нет, то каким образом это можно установить?

# Направления философии математики

- Логицизм (Фреге, Рассел, Уайтхед)
- Интуиционизм (Брауэр, Вейль)
- Формализм (Гильберт)
- Платонизм (Гёдель)

• . . .

Читай: С. Клини. Введение в метаматематику (начало).

# Формальные аксиоматические теории

Аксиоматический метод Гильберта предполагает явную формулировку всех предположений теории и допускает лишь чисто логические выводы из этих посылок (в частности, запрещены опора на зрительную интуицию, рассуждения по аналогии и т.д.)

Логический вывод может быть записан в символьном виде, 1 что превращает его в вычислительный процесс: «игру» в переписывание логических выражений по определенным правилам. Это привело к созданию формальных аксиоматических теорий в начале 20-го века (Frege, Peano, Russell, Whitehead).

 $<sup>^{1}</sup>$ используя логические связки  $\rightarrow$  (влечет), & (и), ¬ (не) и кванторы ∃ (существует),  $\forall$  (для всех).

# Стандартные теории

Арифметика Пеано РА: формализует «математику конечного»; основана на аксиомах для натуральных чисел с операциями + и  $\cdot$ .

Теория множеств Цермело – Френкеля ZFC: формализует *всю* обычную математику; основана на аксиомах для множеств и отношения принадлежности.

Арифметика второго порядка  $PA^2$ : формализует бо́льшую часть анализа. Основана на аксиомах для натуральных чисел и подмножеств  $\mathbb{N}$ .

## Компьютерная реализация

Формальные теории реализованы в различных системах автоматического и интерактивного поиска вывода, таких как Coq, HOL или Mizar.

- В системе Соq была получена формальная верификация гипотезы четырех красок (Gonthier).
- В системе HOL получено формальное доказательство гипотезы Кеплера об оптимальной упаковке шаров (Hales).

Бурно развивающаяся область CS.

## Программа Гильберта

- Формализовать математику (теорию множеств) в рамках формальной аксиоматической теории T.
- Формальные доказательства в Т представляют собой конечные объекты (строки символов), строящиеся по вполне определенным правилам.
- Их следует проанализировать элементарными комбинаторными средствами («финитными средствами», не опирающимися на актуально бесконечные множества) и установить, что противоречие в T не доказуемо.
- Тем самым мы сведем использование теоретико-множественных методов к заведомо надежным элементарным методам.

## О чем математическая логика?

Математическая логика — построение и исследование формальных языков математическими методами. (Формальные языки могут быть самыми разными, в том числе не имеющими отношения к формализации математики.)

- *Метаязык* язык, на котором мы описываем изучаемый нами (формальный) язык.
- *Метатеория* теория, в рамках которой мы рассуждаем об исследуемой нами теории.
- Синтаксис правила построения выражений языка.
- *Семантика* значение (смысл) выражений языка; то, что этот язык описывает.

# План дальнейшего в этом модуле

- **1** Логика высказываний (связки  $\land$ ,  $\lor$ ,  $\rightarrow$ ,  $\neg$ )
- ② Логика предикатов (кванторы  $\forall$ ,  $\exists$ )
- Основы теории моделей

# Предикаты и функции

Пусть M — непустое множество.

- *п-арный предикат на М*: функция  $Q:M^n \to \{0,1\}$  (Интуитивно:  $Q(x_1,\ldots,x_n)$  есть высказывание, зависящее от выбора параметров  $x_1,\ldots,x_n\in M$ . Предикаты можно также понимать как *п*-арные отношения на M, то есть подмножества  $M^n$ .)
- ullet n-арная функция на M: функция  $f:M^n o M$
- константа: элемент М

## Onp.

*Сигнатурой* называется некоторая совокупность имён функций, предикатов и констант. Сигнатура  $\Sigma$  задаётся:

- Рred<sub>∑</sub> предикатные символы;
- Func<sub>Σ</sub> функциональные символы;
- Const<sub>∑</sub> символы констант;
- функция валентности (число аргументов):

$$\operatorname{Pred}_{\Sigma} \cup \operatorname{Func}_{\Sigma} \to \mathbb{N} \setminus \{0\}.$$

## Модели

## Onp.

Mодель сигнатуры  $\Sigma$  есть непустое множество M вместе с отображением (uнтерпретацией), сопоставляющим

- ullet каждому  $P\in\operatorname{Pred}_{\Sigma}$  некоторый предикат  $P_M$  на M той же валентности;
- каждому  $f \in \text{Func}_{\Sigma}$  функцию  $f_M$  на M той же валентности;
- каждому  $c \in \text{Const}_{\Sigma}$  константу  $c_M \in M$ .

- Модели называют также алгебраическими системами или интерпретациями.
- Множество M называют носителем или универсумом данной интерпретации (модели).
- Модель сигнатуры  $\Sigma$  с носителем M обозначается  $(M; \Sigma)$  (если интерпретация символов сигнатуры известна).

# Примеры

## $\Pi$ ример.

#### Стандартная модель арифметики:

$$(\mathbb{N};=,S,+,\times,0)$$

- $S(x) \rightleftharpoons x+1$  есть одноместная функция следования;
- + бинарная функция сложения;
- х бинарная функция умножения;
- 0 константа ноль.

#### $\Pi$ ример.

#### Кольцо целых чисел:

$$(\mathbb{Z}; =, +, -, \times, 0, 1)$$

Здесь «-» есть одноместная функция  $x \mapsto -x$ .

## Пример.

Любое другое кольцо может рассматриваться как модель той же сигнатуры, например:

- $\mathbb{Q}[X]$  кольцо многочленов над полем  $\mathbb{Q}$ ;
- $\mathbb{Z}_n$  кольцо вычетов по модулю n;
- $M_n(\mathbb{R})$  кольцо матриц порядка n над  $\mathbb{R}$ .

#### $\Pi$ ример.

#### Элементарная геометрия плоскости:

$$(\mathbb{R}^2;=,\cong,B)$$
, где

- $\mathbb{R}^2$  множество точек евклидовой плоскости;
- B(a,b,c) трёхместный предикат «точка b лежит на прямой ас между точками a и c»;
- $\cong$  четырёхместный предикат  $ab \cong cd$  «отрезки, задаваемые парами точек ab и cd, имеют равные длины».

#### Пример.

Модель Пуанкаре геометрии Лобачевского:

$$(H^2; =, \cong, B)$$
, где

- $H^2 \rightleftharpoons \{z \in \mathbb{C} : \text{Im}(z) > 0\}$  множество точек верхней евклидовой полуплоскости;
- B(a,b,c) трёхместный предикат «точка b лежит между точками a и c на полуокружности (или полупрямой), проходящей через a, c и ортогональной вещественной оси»;

ullet  $\cong$  — четырёхместный предикат (записываемый  $ab\cong cd$ )

«пару точек ab можно перевести в cd последовательностью инверсий (отражений) относительно окружностей (прямых), ортогональных вещественной оси»

#### $\Pi$ ример.

#### Частично упорядоченные множества

- **①** ( $\mathcal{P}(U)$ ; ⊆), где U любое множество;
- $(\mathbb{Z}; |)$ , где  $a \mid b$  бинарное отношение «быть делителем».

## $\Pi$ ример.

Графы можно рассматривать как модели (V; E, =), где V — множество вершин, а E — симметричное бинарное отношение «смежности».

#### $\Pi$ ример.

Упорядоченное поле действительных чисел:

$$(\mathbb{R};=,<,+,-,\times,0,1)$$

#### Пример.

Векторное пространство над полем F можно рассматривать как модель  $(V; =, +, 0, (f_{\lambda})_{\lambda \in F})$ , где  $f_{\lambda}(x) \rightleftharpoons \lambda x$  для всех  $x \in F$ .

## Синтаксис логики первого порядка

```
Алфавит языка \mathcal{L}_{\Sigma} содержит:

Символы сигнатуры: \Sigma;

Свободные переменные: \mathsf{FrVar} = \{a_0, a_1, a_2, \dots\},

Связанные переменные: \mathsf{BdVar} = \{v_0, v_1, v_2, \dots\},

Булевы связки: \to, \neg, \land, \lor;

Кванторы: \forall (квантор всеобщности, «для всех»);

\exists (квантор существования, «существует»);

Знаки пунктуации: «(», «)» и «,».
```

# Термы

#### Onp.

Множество *термов*  $\mathsf{Tm}_{\Sigma}$  есть наименьшее множество, замкнутое относительно следующих правил:

- Свободные переменные и константы суть термы.
- **②** Если  $f \in \operatorname{Func}_{\Sigma}$  валентности n и  $t_1, \ldots, t_n$  термы, то выражение  $f(t_1, \ldots, t_n)$  есть терм.

## Пример.

Если  $f \in \operatorname{Func}_{\Sigma}$  — бинарный функциональный символ, то  $f(a_0, a_1)$  и  $f(f(a_5, a_0), a_1)$  — термы, а  $f(v_0, a_1)$  — не терм.

# Формулы

#### Onp.

Множество формул  $Fm_{\Sigma}$  есть наименьшее множество, замкнутое относительно следующих правил:

- Если  $P \in \operatorname{Pred}_{\Sigma}$  валентности n и  $t_1, \ldots, t_n$  термы, то  $P(t_1, \ldots, t_n)$  есть формула (называемая *атомарной* формулой).
- Если A, B формулы, то формулами являются  $(A \to B)$ ,  $\neg A, (A \land B), (A \lor B)$ .

 Если A — формула, и a — свободная переменная, то для любой связанной переменной x, не входящей в A, выражения  $(\forall x A[a/x])$  и  $(\exists x A[a/x])$  — формулы.

(3десь A[a/x] означает результат замены всех вхождений a в A

на **х**.)

## $\Pi$ ример.

$$P(f(a_0, a_1))$$
 и  $(\forall v_0(\forall v_1 P(f(v_0, v_1))))$  — формулы,  $(\forall v_0(\forall v_0 P(f(v_0, v_0))))$  — не формула.

## Onp.

- Формулы, в которые не входят кванторы, называются *бескванторными*.
- Формулы и термы, в которые не входят свободные переменные, называются *замкнутыми*.
- Замкнутые формулы также называются предложениями.

## Сокращения

- соглашения об опускании скобок;
- сокращения для логических связок;
- пишут a, b, c вместо  $a_0$ ,  $a_1$ ,  $a_2$  и т.д.; x, y, z вместо  $v_0$ ,  $v_1$ ,  $v_2$  и т.д.;
- пишут  $\forall x_1 ... x_n A$  вместо  $(\forall x_1(\forall x_2(...(\forall x_n A)...)))$  и аналогично для последовательностей кванторов  $\exists$ .
- пишут a = b вместо = (a, b),
- a + b вместо +(a, b);
- и т.д.

## Семантика логики первого порядка

Пусть M — модель сигнатуры  $\Sigma$ . Обозначим через  $\Sigma(M)$  сигнатуру, получаемую из  $\Sigma$  добавлением новых символов констант для всех элементов M, то есть  $\{\underline{c}: c \in M\}$ .

# Значение терма в модели

## Onp.

Пусть t — замкнутый терм сигнатуры  $\Sigma(M)$ . Значение t в модели M есть элемент  $t_M \in M$ , определяемый индукцией по построению t.

- **1** Если  $a \in M$ , то  $\underline{a}_M \rightleftharpoons a$ .
- $lacksymbol{\circ}$  Если t есть  $f(t_1,\ldots,t_n)$ , где  $f\in \mathrm{Func}_{\Sigma}$ , то  $t_M \rightleftharpoons f_M((t_1)_M,\ldots,(t_n)_M).$

# Истинность формулы в модели

Onp.

Пусть A — замкнутая формула сигнатуры  $\Sigma(M)$ . Отношение  $M \vDash A \ll \phi$ ормула A истинна в модели M» определяется индукцией по построению A.

•  $M \vDash P(t_1, \ldots, t_n) \stackrel{\text{def}}{\iff} P_M((t_1)_M, \ldots, (t_n)_M)$ , если  $A = P(t_1, \ldots, t_n)$  — атомарная формула;

Стандартные определения для булевых связок:

• 
$$M \vDash (B \to C) \stackrel{\mathsf{def}}{\Longleftrightarrow} (M \nvDash B)$$
 или  $M \vDash C$ ;

• 
$$M \vDash \neg B \iff M \nvDash B$$
;

• 
$$M \vDash (A \land B) \stackrel{\text{def}}{\iff} (M \vDash A \bowtie M \vDash B);$$

• 
$$M \vDash (A \lor B) \iff (M \vDash A$$
или  $M \vDash B);$ 

#### Кванторы:

- ullet  $M dash (orall xA[a/x]) \stackrel{\mathsf{def}}{\Longleftrightarrow} \mathsf{для} \ \mathsf{всеx} \ c \in M \ M dash A[a/\underline{c}];$
- $M \vDash (\exists x A[a/x]) \stackrel{\mathsf{def}}{\Longleftrightarrow}$  существует  $c \in M$   $M \vDash A[a/\underline{c}]$ .

# Логика предикатов лекция 2

Лев Дмитриевич Беклемишев

lbekl@yandex.ru

16.02.2021

# Синтаксис логики первого порядка

```
Алфавит языка \mathcal{L}_{\Sigma} содержит: 

Символы сигнатуры: \Sigma; 

Свободные переменные: FrVar = \{a_0, a_1, a_2, \dots\}, 

Связанные переменные: BdVar = \{v_0, v_1, v_2, \dots\}, 

Булевы связки: \rightarrow, \neg, \wedge, \vee; 

Кванторы: \forall (квантор всеобщности, «для всех»); 

\exists (квантор существования, «существует»); 

Знаки пунктуации: «(», «)» и «,».
```

# Термы

## Onp.

Множество *термов*  $\mathsf{Tm}_{\Sigma}$  есть наименьшее множество, замкнутое относительно следующих правил:

- Свободные переменные и константы суть термы.
- $oldsymbol{2}$  Если  $f\in \mathrm{Func}_{\Sigma}$  валентности n и  $t_1,\ldots,t_n$  термы, то выражение  $f(t_1,\ldots,t_n)$  есть терм.

## Пример.

Если  $f \in \operatorname{Func}_{\Sigma}$  — бинарный функциональный символ, то  $f(a_0, a_1)$  и  $f(f(a_5, a_0), a_1)$  — термы, а  $f(v_0, a_1)$  — не терм.

## Формулы

#### Onp.

Множество формул  $Fm_{\Sigma}$  есть наименьшее множество, замкнутое относительно следующих правил:

- Если  $P \in \operatorname{Pred}_{\Sigma}$  валентности n и  $t_1, \ldots, t_n$  термы, то  $P(t_1, \ldots, t_n)$  есть формула (называемая *атомарной* формулой).
- Если A, B формулы, то формулами являются  $(A \to B)$ ,  $\neg A, (A \land B), (A \lor B)$ .

• Если A — формула, и a — свободная переменная, то для любой связанной переменной x, не входящей в A, выражения  $(\forall x \ A[a/x])$  и  $(\exists x \ A[a/x])$  — формулы.

(Здесь A[a/x] означает результат замены всех вхождений a в A на x.)

- Формулы, в которые не входят кванторы, называются *бескванторными*.
- Формулы и термы, в которые не входят свободные переменные, называются *замкнутыми*.
- Замкнутые формулы также называются предложениями.

## Семантика логики первого порядка

Пусть M — модель сигнатуры  $\Sigma$ . Обозначим через  $\Sigma(M)$  сигнатуру, получаемую из  $\Sigma$  добавлением новых символов констант для всех элементов M, то есть  $\{\underline{c}: c \in M\}$ .

# Значение терма в модели

## Onp.

Пусть t — замкнутый терм сигнатуры  $\Sigma(M)$ . Значение t в модели M есть элемент  $t_M \in M$ , определяемый индукцией по построению t.

- **1** Если  $a \in M$ , то  $\underline{a}_M \rightleftharpoons a$ .
- $\mathbf{Q}$  Если  $\mathbf{C} \in \mathrm{Const}_{\Sigma}$ , то  $\mathbf{C}_M \in M$  есть данная нам интерпретация  $\mathbf{C}$ .
- lacktriangle Если t есть  $f(t_1,\ldots,t_n)$ , где  $f\in \mathrm{Func}_{\Sigma}$ , то  $t_M \rightleftharpoons f_M((t_1)_M,\ldots,(t_n)_M).$

### $\Pi$ ример.

Значение терма S(S(0)) + S(S(0)) в стандартной модели арифметики есть 4.

Значение терма  $\sqrt{2}\cdot\sqrt{2}$  в поле  $\mathbb R$  есть 2.

# Истинность формулы в модели

Onp.

Пусть A — замкнутая формула сигнатуры  $\Sigma(M)$ . Отношение  $M \vDash A \ll \phi$ ормула A истинна в модели M» определяется индукцией по построению A.

$$ullet$$
  $M Dash P(t_1,\ldots,t_n) \stackrel{\mathsf{def}}{\Longleftrightarrow} P_M((t_1)_M,\ldots,(t_n)_M) = 1$ , если  $A = P(t_1,\ldots,t_n)$  — атомарная формула;

#### Стандартные определения для булевых связок:

- $M \vDash (B \to C) \stackrel{\text{def}}{\iff} (M \nvDash B)$  или  $M \vDash C$ ;
- $M \vDash \neg B \stackrel{\mathsf{def}}{\iff} M \nvDash B$ ;
- $M \vDash (A \land B) \stackrel{\text{def}}{\iff} (M \vDash A \bowtie M \vDash B);$
- $M \vDash (A \lor B) \stackrel{\mathsf{def}}{\iff} (M \vDash A \mathsf{ или } M \vDash B);$

#### Кванторы:

- ullet  $M \vDash (\forall x A[a/x]) \stackrel{\mathsf{def}}{\Longleftrightarrow} \mathsf{для} \mathsf{ всех } c \in M \ M \vDash A[a/\underline{c}];$
- $M \vDash (\exists x A[a/x]) \stackrel{\text{def}}{\iff} \text{существует } c \in M \ M \vDash A[a/\underline{c}].$

#### Замечание.

Нельзя говорить об истинности или ложности незамкнутых формул, поскольку их истинностные значения зависят от выбора значений параметров — входящих в формулу свободных переменных.

*Пример:* формула a+1=b в стандартной модели арифметики может быть как истинна, так и ложна, в зависимости от значений a и b.

#### Сокращение: вместо

$$M \vDash A[a_1/\underline{c}_1, \dots a_n/\underline{c}_n]$$

пишут

$$M \vDash A[a_1/c_1, \dots a_n/c_n]$$

или даже

$$M \vDash A[c_1, \dots c_n]$$

# Примеры

#### $\Pi$ ример.

В модели 
$$(\mathbb{N}; =, S, +, \cdot, 0)$$
 истинна формула

$$\exists x, y, z \, (\neg x = 0 \land \neg y = 0 \land x \cdot x + y \cdot y = z \cdot z)$$

и ложна формула

$$\exists x, y, z \, (\neg x = 0 \land \neg y = 0 \land x \cdot x \cdot x + y \cdot y \cdot y = z \cdot z \cdot z)$$

#### Пример.

В модели  $(\mathbb{R}^2;=,\cong,B)$  истинна формула

$$\forall x,y,y',z \ (B(x,y,z) \land B(x,y',z) \rightarrow B(x,y,y') \lor B(x,y',y)).$$

Эта же формула верна и в модели  $(H^2; =, \cong, B)$ .

## Определимость в модели

Любая формула A от свободных переменных  $b_1, \ldots, b_n$  определяет n-местный предикат  $A_M$  в модели M:

$$A_M(x_1,\ldots,x_n)=1 \iff M \vDash A[b_1/x_1,\ldots,b_n/x_n].$$

## Пример.

В модели  $(\mathbb{N}; =, +)$  формула  $\exists x (x + x = a)$  определяет предикат «a чётно», т.е. множество чётных чисел.

## Onp.

Предикат  $P(x_1,\ldots,x_n)$  называется *определимым в модели*  $(M;\Sigma)$ , если  $P=A_M$  для некоторой формулы A языка  $\mathcal{L}_{\Sigma}$ .

Onp.

Функция f называется *определимой в модели M*, если определим её график, то есть предикат

$$G_f(x_1,\ldots,x_n,y) \iff f(x_1,\ldots,x_n)=y.$$

### $\Pi$ ример.

В модели  $(\mathbb{Z};\leq)$  предикат b=a+1 определим формулой

$$\neg b \leq a \land \forall x (x \leq a \lor b \leq x).$$

Следовательно, функция  $s(x) \rightleftharpoons x+1$  определима в  $(\mathbb{Z}; \leq)$ .

## Аксиома о параллельных

## Определим следующие предикаты в $(\mathbb{R}^2;=,\cong,B)$

- $a \neq b \rightleftharpoons \neg a = b$
- $c \in ab$  «c лежит на прямой ab»  $c \in ab \rightleftharpoons (B(c,a,b) \lor B(a,c,b) \lor B(a,b,c))$
- $ab\|cd$  «прямые ab и cd параллельны»  $ab\|cd \rightleftharpoons a \neq b \land c \neq d \land \neg \exists x \ (x \in ab \land x \in cd)$

## Аксиома о параллельных

«Через точку z вне прямой ху можно провести не более одной прямой, параллельной данной.»

$$\forall x, y, z \ (x \neq y \land \neg z \in xy \rightarrow \forall u, v \ (zu || xy \land zv || xy \rightarrow v \in zu))$$

Верно в  $\mathbb{R}^2$ , но не в  $\mathbb{H}^2$ .

## Выполнимость и общезначимость

### Onp.

Формула  $A(b_1,\ldots,b_n)$  сигнатуры  $\Sigma$  выполнима в модели  $(M,\Sigma)$ , если для некоторых констант  $c_1,\ldots,c_n\in M$  предложение  $A[b_1/\underline{c}_1,\ldots,b_n/\underline{c}_n]$  (сигнатуры  $\Sigma(M)$ ) истинно.

Формула A сигнатуры  $\Sigma$  выполнима, если она выполнима в некоторой модели  $(M, \Sigma)$ .

## Onp.

Формула A общезначима (тождественно истинна), если  $\neg A$  не выполнима.

## Onp.

Формула A тождественно ложна, если A не выполнима.

## Пример.

Формулы  $P(a) \vee \neg P(a)$ ,  $\exists x \forall y A(x,y) \to \forall y \exists x \ A(x,y)$  общезначимы. Формула  $P(a_0) \to P(a_1)$  выполнима, но не общезначима.

## Важность понятия общезначимости

- Общезначимые формулы представляют собой универсальные законы логики, истинные вне зависимости от предметной области и интерпретации входящих в них предикатных символов.
- Логическое следование утверждения B из утверждений  $A_1, \ldots, A_n$  сводится к проверке общезначимости формулы  $A_1 \wedge A_2 \wedge \cdots \wedge A_n \to B$ .
- Entscheidungsproblem: найти алгоритм, определяющий по данной формуле A, общезначима ли она. Гильберт считал этот вопрос важнейшей математической проблемой.

## Важность понятия общезначимости

- Общезначимые формулы представляют собой универсальные законы логики, истинные вне зависимости от предметной области и интерпретации входящих в них предикатных символов.
- Логическое следование утверждения B из утверждений  $A_1, \ldots, A_n$  сводится к проверке общезначимости формулы  $A_1 \wedge A_2 \wedge \cdots \wedge A_n \to B$ .
- Entscheidungsproblem: найти алгоритм, определяющий по данной формуле A, общезначима ли она. Гильберт считал этот вопрос важнейшей математической проблемой.

## Важность понятия общезначимости

- Общезначимые формулы представляют собой универсальные законы логики, истинные вне зависимости от предметной области и интерпретации входящих в них предикатных символов.
- Логическое следование утверждения B из утверждений  $A_1, \ldots, A_n$  сводится к проверке общезначимости формулы  $A_1 \wedge A_2 \wedge \cdots \wedge A_n \to B$ .
- Entscheidungsproblem: найти алгоритм, определяющий по данной формуле *A*, общезначима ли она. Гильберт считал этот вопрос важнейшей математической проблемой.

## Теория алгоритмов и теория доказательств

- А. Чёрч (1935) и А. Тьюринг (1936) независимо показали, что такого алгоритма не существует. Для этого потребовалось сначала дать точное определение понятия алгоритма.
- Тем не менее, конструктивное описание множества общезначимых формул можно дать: *исчисление предикатов*. Это исчисление даёт формальную модель математического *доказательства*.

- Пропозициональные переменные:  $Var = \{P_0, P_1, \dots\}$ .
- Связки: ¬,∧,∨,→; константы  $\bot$  (ложь),  $\top$  (истина).
- Формулы Fm строятся по правилам:
  - $lacksymbol{0}$  Если  $P \in \mathrm{Var}$  или  $P \in \{\top, \bot\}$ , то P формула;
  - igoplus EСли A и B формулы, то  $(\neg A)$ ,  $(A \land B)$ ,  $(A \lor B)$ ,  $(A \lor B)$  формулы.
- Fm есть наименьшее множество, удовлетворяющее условиям 1 и 2.

- Пропозициональные переменные:  $Var = \{P_0, P_1, \dots\}$ .
- Связки: ¬,∧,∨,→; константы  $\bot$  (ложь),  $\top$  (истина).
- Формулы Fm строятся по правилам:
  - **①** Если  $P \in \operatorname{Var}$  или  $P \in \{\top, \bot\}$ , то P формула;
  - ② Если A и B формулы, то  $(\neg A)$ ,  $(A \land B)$ ,  $(A \lor B)$ ,  $(A \lor B)$  формулы.
- Fm есть наименьшее множество, удовлетворяющее условиям 1 и 2.

- Пропозициональные переменные:  $Var = \{P_0, P_1, \dots\}$ .
- Связки: ¬,∧,∨,→; константы  $\bot$  (ложь),  $\top$  (истина).
- Формулы Fm строятся по правилам:
  - **①** Если  $P \in \text{Var}$  или  $P \in \{\top, \bot\}$ , то P формула;
  - **②** Если A и B формулы, то  $(\neg A)$ ,  $(A \land B)$ ,  $(A \lor B)$ ,  $(A \to B)$  формулы.
- Fm есть наименьшее множество, удовлетворяющее условиям 1 и 2.

- Пропозициональные переменные:  $Var = \{P_0, P_1, \dots\}$ .
- Связки: ¬,∧,∨,→; константы  $\bot$  (ложь),  $\top$  (истина).
- Формулы Fm строятся по правилам:
  - **1** Если  $P \in \text{Var}$  или  $P \in \{\top, \bot\}$ , то P формула;
  - **②** Если A и B формулы, то  $(\neg A)$ ,  $(A \land B)$ ,  $(A \lor B)$ ,  $(A \lor B)$  формулы.
- Fm есть наименьшее множество, удовлетворяющее условиям 1 и 2.

# Лемма об однозначном прочтении

#### Лемма.

Любая формула F, отличная от переменной или константы, однозначно представляется в виде  $(A \wedge B)$ ,  $(A \vee B)$ ,  $(A \to B)$  или  $(\neg A)$  для некоторых формул A,B.

#### Доказательство.

Соображения баланса скобок в формуле.

- А и В называются непосредственными подформулами F;
- $G noд \phi op мула F$ , если  $G \stackrel{{}_{\circ}}{=} F$  или  $G noд \phi op мула одной из непосредственных под формул <math>F$ .

# Лемма об однозначном прочтении

#### Лемма.

Любая формула F, отличная от переменной или константы, однозначно представляется в виде  $(A \wedge B)$ ,  $(A \vee B)$ ,  $(A \to B)$  или  $(\neg A)$  для некоторых формул A, B.

#### Доказательство.

Соображения баланса скобок в формуле.

- А и В называются непосредственными подформулами F;
- G подформула F, если  $G \stackrel{\text{\tiny $\circ$}}{=} F$  или G подформула одной из непосредственных подформул F.

# Лемма об однозначном прочтении

#### Лемма.

Любая формула F, отличная от переменной или константы, однозначно представляется в виде  $(A \wedge B)$ ,  $(A \vee B)$ ,  $(A \to B)$  или  $(\neg A)$  для некоторых формул A, B.

#### Доказательство.

Соображения баланса скобок в формуле.

- А и В называются непосредственными подформулами F;
- G nodpopmyлa F, если  $G \stackrel{\circ}{=} F$  или G nodpopmyлa одной из непосредственных подформул <math>F.

## Соглашения об опускании скобок

- Опускаем внешние скобки;
- Приоритет связок:  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ;  $\neg P \wedge Q \rightarrow R$  читается как  $(((\neg P) \wedge Q) \rightarrow R)$ ;
- Кратные  $\land$  и  $\lor$  ассоциируем влево:  $A \land B \land C$  читается как  $((A \land B) \land C)$ .

## Семантика логики высказываний

```
Onp.
```

```
Истинностные значения: \mathbb{B} \rightleftharpoons \{\Pi, \mathsf{M}\} \rightleftharpoons \{0, 1\}. Булевы функции: f: \mathbb{B}^n \to \mathbb{B}.
```

## Таблицы истинности

Функции  $f:\mathbb{B}^n o \mathbb{B}$  принято задавать *таблицами истинности* вида

|   |   |       | $f(x_1,x_2,\ldots,x_n)$             |
|---|---|-------|-------------------------------------|
| 0 | 0 | <br>0 | $f(0,0,\ldots,0)$                   |
| 0 | 0 | <br>1 | $f(0,0,\ldots,0)$ $f(0,0,\ldots,1)$ |
|   |   | <br>  |                                     |
| 1 | 1 | <br>1 | $f(1,1,\ldots,1)$                   |

В такой таблице  $2^n$  строк.

## Оценка и значение формулы

## Onp.

Oценка переменных: функция  $f: Var \to \mathbb{B}$ .

Любая оценка продолжается естественным образом до отображения  $f: \mathsf{Fm} \to \mathbb{B}$ .

#### Onp.

f(A) =значение формулы A при оценке f. Определяется индукцией по построению A:

Значение f(A) определяется индукцией по построению A:

$$f(\top) = 1; \ f(\bot) = 0;$$
  
 $f(\neg A) = 1 - f(A);$   
 $f(A \land B) = \min(f(A), f(B));$   
 $f(A \lor B) = \max(f(A), f(B));$   
 $f(A \to B) = \max(1 - f(A), f(B)).$ 

B частности, 
$$f(A o B) = 1 \iff f(A) \le f(B)$$
.

Значение f(A) определяется индукцией по построению A:

$$f(\top) = 1; \ f(\bot) = 0;$$
  
 $f(\neg A) = 1 - f(A);$   
 $f(A \land B) = \min(f(A), f(B));$   
 $f(A \lor B) = \max(f(A), f(B));$   
 $f(A \to B) = \max(1 - f(A), f(B)).$ 

B частности, 
$$f(A \rightarrow B) = 1 \iff f(A) \le f(B)$$
.

То же самое другими словами:

$$f(\neg A) = \mathbb{N} \iff f(A) = \Pi;$$
  
 $f(A \land B) = \mathbb{N} \iff f(A) = \mathbb{N} \text{ и } f(B) = \mathbb{N};$   
 $f(A \lor B) = \mathbb{N} \iff f(A) = \mathbb{N} \text{ или } f(B) = \mathbb{N};$   
 $f(A \to B) = \mathbb{N} \iff f(A) = \Pi \text{ или } f(B) = \mathbb{N}.$ 

### Утверждение.

Пусть  $Var = \{P_1, \dots, P_n\}.$ 

Тогда существует взаимно-однозначное соответствие между оценками  $f: \mathrm{Var} \to \mathbb{B}$  и наборами  $\vec{x} = (x_1, \dots, x_n) \in \mathbb{B}^n$ .

$$f \longmapsto (f(P_1), \ldots, f(P_n)) \in \mathbb{B}^n$$

 $ec{x} = (x_1, \dots, x_n) \longmapsto f_{ec{x}}$ , где оценка  $f_{ec{x}}$  определена таблицей

$$\begin{array}{c|cccc} P_1 & P_2 & \dots & P_n \\ \hline x_1 & x_2 & \dots & x_n \end{array}$$

### Утверждение.

Пусть  $Var = \{P_1, \dots, P_n\}.$ 

Тогда существует взаимно-однозначное соответствие между оценками  $f: \mathrm{Var} \to \mathbb{B}$  и наборами  $\vec{x} = (x_1, \dots, x_n) \in \mathbb{B}^n$ .

$$f \longmapsto (f(P_1), \ldots, f(P_n)) \in \mathbb{B}^n$$

$$ec{x} = (x_1, \dots, x_n) \longmapsto f_{ec{x}}$$
, где оценка  $f_{ec{x}}$  определена таблицей

$$\begin{array}{c|ccccc} P_1 & P_2 & \dots & P_n \\ \hline x_1 & x_2 & \dots & x_n \end{array}$$

# Таблицы истинности формул

## Onp.

Tаблица истинности формулы A от n переменных есть булева функция  $\varphi_A:\mathbb{B}^n\to\mathbb{B}$  такая, что

$$\varphi_A(\vec{x}) = f_{\vec{x}}(A),$$

для всех  $\vec{x} \in \mathbb{B}^n$ .

# Функциональная полнота

### Теорема.

Для любой функции  $\varphi: \mathbb{B}^n \to \mathbb{B}$  найдётся такая формула A от n переменных, что  $\varphi = \varphi_A$ . При этом можно считать, что A содержит лишь связки  $\neg$  и  $\lor$ .

### Доказательство.

### Для $x \in \mathbb{B}$ положим

$$P^{x} = \left\{ egin{array}{ll} P, & \mbox{если } x = \mbox{\ensuremath{\mathsf{N}}}; \\ 
ensuremath{\neg P}, & \mbox{если } x = \mbox{\ensuremath{\mathsf{J}}}. \end{array} 
ight.$$

Для  $\vec{x} = (x_1, \dots, x_n) \in \mathbb{B}^n$  обозначим

$$A_{\vec{x}} \rightleftharpoons \bigwedge_{i=1}^n P_i^{x_i},$$

где 
$$\bigwedge_{j=1}^m B_j \Longrightarrow ((B_1 \wedge B_2) \wedge \cdots \wedge B_m).$$

### Доказательство.

### Для $x \in \mathbb{B}$ положим

$$P^{x} = \left\{ egin{array}{ll} P, & ext{если } x = \mathsf{M}; \\ \neg P, & ext{если } x = \mathsf{J}. \end{array} 
ight.$$

Для  $\vec{x} = (x_1, \dots, x_n) \in \mathbb{B}^n$  обозначим

$$A_{\vec{X}} \rightleftharpoons \bigwedge_{i=1}^n P_i^{x_i},$$

где 
$$\bigwedge_{j=1}^m B_j \Longrightarrow ((B_1 \wedge B_2) \wedge \cdots \wedge B_m).$$

### Доказательство.

### Для $x \in \mathbb{B}$ положим

$$P^{x} = \left\{ egin{array}{ll} P, & ext{если } x = \mathsf{M}; \\ \neg P, & ext{если } x = \mathsf{J}. \end{array} 
ight.$$

Для  $\vec{x} = (x_1, \dots, x_n) \in \mathbb{B}^n$  обозначим

$$A_{\vec{x}} \rightleftharpoons \bigwedge_{i=1}^n P_i^{x_i},$$

где 
$$\bigwedge_{j=1}^m B_j \rightleftharpoons ((B_1 \wedge B_2) \wedge \cdots \wedge B_m).$$

### *Имеем:* для любой оценки *f*

$$f(A_{\vec{x}}) = \mathsf{V} \iff f = f_{\vec{x}}. \tag{1}$$

Пусть список  $\vec{x}_1,\dots,\vec{x}_m$  исчерпывает все  $\vec{x}\in\mathbb{B}^n$  для которых  $\varphi(\vec{x})=\mathsf{N}$ , то есть

$$\varphi(\vec{x}) = \mathsf{M} \iff \exists j \ \vec{x} = \vec{x}_j. \tag{2}$$

Положим

$$A \Longrightarrow \bigvee_{i=1}^{m} A_{\vec{x}_{j}}.$$

*Имеем:* для любой оценки *f* 

$$f(A_{\vec{x}}) = \mathsf{V} \iff f = f_{\vec{x}}. \tag{1}$$

Пусть список  $\vec{x}_1,\ldots,\vec{x}_m$  исчерпывает все  $\vec{x}\in\mathbb{B}^n$  для которых  $\varphi(\vec{x})=\mathsf{N}$ , то есть

$$\varphi(\vec{x}) = \mathsf{M} \iff \exists j \ \vec{x} = \vec{x}_j. \tag{2}$$

Положим

$$A \rightleftharpoons \bigvee_{j=1}^m A_{\vec{x}_j}.$$

$$f_{\vec{x}}(A) = \mathbb{N} \iff \exists j \ f_{\vec{x}}(A_{\vec{x}_j}) = \mathbb{N}$$
 $\iff \exists j \ \vec{x} = \vec{x}_j \mod (1)$ 
 $\iff \varphi(\vec{x}) = \mathbb{N} \mod (2)$ 

Значит, 
$$arphi_A(ec{x}) = f_{ec{x}}(A) = arphi(ec{x})$$
.  $oxtimes$ 

$$f_{\vec{x}}(A) = \mathbb{N} \iff \exists j \ f_{\vec{x}}(A_{\vec{x}_j}) = \mathbb{N}$$
  
 $\iff \exists j \ \vec{x} = \vec{x}_j \mod (1)$   
 $\iff \varphi(\vec{x}) = \mathbb{N} \mod (2)$ 

Значит, 
$$\varphi_A(\vec{x}) = f_{\vec{x}}(A) = \varphi(\vec{x})$$
.  $\boxtimes$ 

$$\begin{array}{cccc} f_{\vec{x}}(A) = \mathbb{N} & \Longleftrightarrow & \exists j \ f_{\vec{x}}(A_{\vec{x}_j}) = \mathbb{N} \\ & \Longleftrightarrow & \exists j \ \vec{x} = \vec{x}_j & \text{no (1)} \\ & \Longleftrightarrow & \varphi(\vec{x}) = \mathbb{N} & \text{no (2)}. \end{array}$$

Значит, 
$$\varphi_A(\vec{x}) = f_{\vec{x}}(A) = \varphi(\vec{x})$$
.  $\boxtimes$ 

$$\begin{array}{cccc} f_{\vec{x}}(A) = \mathbb{V} & \iff & \exists j \ f_{\vec{x}}(A_{\vec{x}_j}) = \mathbb{V} \\ & \iff & \exists j \ \vec{x} = \vec{x}_j & \text{no (1)} \\ & \iff & \varphi(\vec{x}) = \mathbb{V} & \text{no (2)}. \end{array}$$

Значит, 
$$\varphi_A(\vec{x}) = f_{\vec{x}}(A) = \varphi(\vec{x})$$
.  $\boxtimes$ 

# Выполнимые формулы и тавтологии

```
Onp.
```

Формула A выполнима, если  $\exists f: f(A) = V$ .

Onp.

Формула A — тавтология, если  $\forall f \ f(A) = \mathsf{V}$ .

Onp.

Формула A — тождественно ложна, если  $\forall f \ f(A) = J$ .

### Предложение.

Следующие условия равносильны.

- Формула А тождественно ложна.
- Формула A не выполнима.
- **3** Формула  $\neg A$  тавтология.

## Пример.

 $\neg(P \to P)$  тождественно ложна (и не выполнима);  $P \to P$  тавтология;  $P \to Q$  выполнима, но не тавтология.

# Проверка формулы на выполнимость

Очевидный алгоритм — перебор всех  $2^n$  возможных оценок.

Открытый вопрос: существует ли алгортм, проверяющий формулу на выполнимость за полиномиальное число шагов (от длины формулы).

Проверка формулы на выполнимость — стандартный пример NP-полной задачи, поэтому этот вопрос эквивалентен знаменитой проблеме P=NP?.

# Логика предикатов лекция 3

Лев Дмитриевич Беклемишев

lbekl@yandex.ru

22.02.2021

# Эквивалентность формул

Onp.

Формула  $A(b_1,\ldots,b_n)$  сигнатуры  $\Sigma$  *общезначима*, если для любой модели  $(M;\Sigma)$  и любых констант  $c_1,\ldots,c_n\in M$   $M \vDash A[b_1/\underline{c}_1,\ldots,b_n/\underline{c}_n].$ 

Onp.

Формулы A и B сигнатуры  $\Sigma$  равносильны (обозначение  $A\equiv B$ ), если в любой модели  $(M;\Sigma)$  они определяют один и тот же предикат, то есть если  $A_M=B_M$ .

Утверждение

 $A \equiv B \iff \phi$ ормула  $A \leftrightarrow B$  общезначима.

# Эквивалентность формул

## Onp.

Формула  $A(b_1,\ldots,b_n)$  сигнатуры  $\Sigma$  *общезначима*, если для любой модели  $(M;\Sigma)$  и любых констант  $c_1,\ldots,c_n\in M$   $M \vDash A[b_1/\underline{c}_1,\ldots,b_n/\underline{c}_n].$ 

## Onp.

Формулы A и B сигнатуры  $\Sigma$  равносильны (обозначение  $A \equiv B$ ), если в любой модели  $(M; \Sigma)$  они определяют один и тот же предикат, то есть если  $A_M = B_M$ .

### Утверждение

 $A \equiv B \iff$  формула  $A \leftrightarrow B$  общезначима.  $A \leftrightarrow B$  есть сокращение для  $(A \to B) \land (B \to A)$ 

# Эквивалентность формул

## Onp.

Формула  $A(b_1,\ldots,b_n)$  сигнатуры  $\Sigma$  общезначима, если для любой модели  $(M;\Sigma)$  и любых констант  $c_1,\ldots,c_n\in M$   $M \vDash A[b_1/\underline{c}_1,\ldots,b_n/\underline{c}_n].$ 

### Onp.

Формулы A и B сигнатуры  $\Sigma$  равносильны (обозначение  $A \equiv B$ ), если в любой модели  $(M; \Sigma)$  они определяют один и тот же предикат, то есть если  $A_M = B_M$ .

### Утверждение.

 $A \equiv B \iff$  формула  $A \leftrightarrow B$  общезначима.

 $A \leftrightarrow B$  есть сокращение для  $(A \rightarrow B) \land (B \rightarrow A)$ .

# Основные равносильности логики высказываний (тождества булевой алгебры)

|                         |                                  | $A \lor B$            |                                |
|-------------------------|----------------------------------|-----------------------|--------------------------------|
| $A \wedge (B \wedge C)$ | $(A \wedge B) \wedge C$          | $A \vee (B \vee C)$   | $(A \vee B) \vee C$            |
| $A \wedge A$            | A                                | $A \lor A$            | A                              |
| $A \wedge (B \vee C)$   | $(A \wedge B) \vee (A \wedge C)$ | $A \vee (B \wedge C)$ | $(A \vee B) \wedge (A \vee C)$ |
| $A \vee (A \wedge B)$   | A                                | $A \wedge (A \vee B)$ | A                              |
| $\neg(A \land B)$       | $\neg A \lor \neg B$             | $\neg(A \lor B)$      | $\neg A \wedge \neg B$         |
|                         |                                  |                       |                                |
|                         |                                  |                       |                                |

# Основные равносильности логики высказываний (тождества булевой алгебры)

$$A \wedge B \equiv B \wedge A$$

$$A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$$

$$A \wedge A \equiv A$$

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$A \vee (A \wedge B) \equiv A$$

$$\neg (A \wedge B) \equiv \neg A \vee \neg B$$

$$\bot \equiv A \wedge \neg A$$

$$\neg \neg A \equiv A$$

$$A \vee B \equiv B \vee A$$

$$A \vee (B \vee C) \equiv (A \vee B) \vee C$$

$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

$$A \wedge (A \vee B) \equiv A$$

$$\neg (A \vee B) \equiv \neg A \wedge \neg B$$

$$\bot \equiv A \wedge \neg A$$

$$A \rightarrow B \equiv \neg A \vee B$$

# Основные равносильности с кванторами

```
 \forall x \ A[a/x] \equiv \forall y \ A[a/y] 
 \exists x \ A[a/x] \equiv \exists y \ A[a/y] 
 (\forall x \ A[a/x] \lor B) \equiv \forall x \ (A[a/x] \lor B) 
 (\exists x \ A[a/x] \lor B) \equiv \exists x \ (A[a/x] \lor B) 
 (\forall x \ A[a/x] \land B) \equiv \forall x \ (A[a/x] \land B) 
 (\exists x \ A[a/x] \land B) \equiv \exists x \ (A[a/x] \land B) 
 \neg \forall x \ A[a/x] \equiv \exists x \ \neg A[a/x] 
 \neg \exists x \ A[a/x] \equiv \forall x \ \neg A[a/x]
```

# Подстановка в логике предикатов

### Стандартные факты:

- Допустимость правил подстановки и замены подформулы на эквивалентную
- Переименование связанных переменных
- Теорема о предварённой нормальной форме

Скучные детали смотри в записках лекций, учебниках и проходи на семинарских занятиях.

# Подстановка в логике предикатов

### Стандартные факты:

- Допустимость правил подстановки и замены подформулы на эквивалентную
- Переименование связанных переменных
- Теорема о предварённой нормальной форме

*Скучные детали* смотри в записках лекций, учебниках и проходи на семинарских занятиях.

# Расширение языка пропозициональными переменными

- Обогатим язык логики первого порядка пропозициональными переменными. Можно считать переменную *Р* нульместным предикатным символом.
- Распространим на расширенный язык все синтаксические понятия, включая понятие формулы.
- Пропозициональные переменные считаются атомарными формулами.

### Подстановка

Onp.

C[P/A] означает результат замены всех вхождений P в формулу C на формулу A.

Замечание.

C[P/A] не всегда является формулой. Если  $C=orall x\left(Q(x)\wedge P
ight)$  и  $A=\exists xR(x)$ , то

$$C[P/A] = \forall x (Q(x) \land \exists x R(x)).$$

### Подстановка

### Onp.

C[P/A] означает результат замены всех вхождений P в формулу C на формулу A.

#### Замечание.

$$C[P/A]$$
 не всегда является формулой. Если  $C = \forall x \, (Q(x) \land P)$  и  $A = \exists x R(x)$ , то

$$C[P/A] = \forall x (Q(x) \land \exists x R(x)) .$$

### Лемма.

C[P/A] — формула, если и только если любое вхождение P в формулу C не находится в области действия квантора по переменной  $x \in \mathsf{BdVar}$ , входящей в A.

## Onp

Говорим, что *разрешена подстановка формулы А вместо Р в С*, если выполнено условие предыдущей леммы.

#### Лемма.

C[P/A] — формула, если и только если любое вхождение P в формулу C не находится в области действия квантора по переменной  $x \in \mathsf{BdVar}$ , входящей в A.

## Onp.

Говорим, что *разрешена подстановка формулы А вместо Р в С*, если выполнено условие предыдущей леммы.

# Замена подформулы на эквивалентную

### Теорема.

Если  $A \equiv B$  и разрешена подстановка формул A, B вместо P в C, то  $C[P/A] \equiv C[P/B]$ .

Доказательство: индукция по построению формулы C. Шаг индукции на основе леммы:

### Лемма.

Если  $A \equiv A'$  и  $B \equiv B'$ , то

- ②  $\forall x A[a/x] \equiv \forall x A'[a/x]$  (если x не входит в A и A'),
- $\exists x \ A[a/x] \equiv \exists x \ A'[a/x]$  (если x не входит в A и A').

## Семантика расширенного языка

- Пропозициональная переменная P в модели M интерпретируется как логическая константа, то есть  $P_M \in \mathbb{B}$ .
- Считается  $M \models P_M$ , если  $P_M = V$  и  $M \not\models P_M$ , если  $P_M = J$ .
- Понятие общезначимой формулы распространяется на формулы расширенного языка.

# Теорема о подстановке

### Теорема.

Пусть формула A общезначима и разрешена подстановка формулы C вместо P в A, тогда общезначима формула A[P/C].

Доказательство.

- ullet Допустим, M 
  ot = f(A[P/C]) при некоторой оценке f.
- Расширим M до модели (M,P) сигнатуры с переменной P:  $P_M = V \iff M \models f(C)$ .

# Теорема о подстановке

### Теорема.

Пусть формула A общезначима и разрешена подстановка формулы C вместо P в A, тогда общезначима формула A[P/C].

### Доказательство.

- Допустим,  $M \nvDash f(A[P/C])$  при некоторой оценке f.
- Расширим M до модели (M,P) сигнатуры с переменной P:  $P_M = V \iff M \models f(C)$ .

• Индукцией по построению формулы В проверим, что

$$(M,P) \models B \iff M \models B[P/C]$$

для любой замкнутой формулы B, в которую разрешена подстановка C вместо P.

• Отсюда получаем (M, P)  $\nvDash$  f(A).

#### Следствие

Если  $A \equiv B$  и разрешена подстановка C вместо P в A и B, то  $A[P/C] \equiv B[P/C].$ 

• Индукцией по построению формулы В проверим, что

$$(M, P) \models B \iff M \models B[P/C]$$

для любой замкнутой формулы B, в которую разрешена подстановка C вместо P.

• Отсюда получаем (M, P)  $\nvDash$  f(A).

#### Следствие.

Если  $A \equiv B$  и разрешена подстановка C вместо P в A и B, то  $A[P/C] \equiv B[P/C]$ .

# Замена связанной переменной

#### Лемма.

Пусть  $y \in \mathsf{BdVar}$  не входит в формулу B. Тогда B[x/y] есть формула и  $B[x/y] \equiv B$ .

Доказательство.

Применяем индукцию по числу вхождений кванторов по переменной x в B. Каждая подформула  $\forall x C[a/x]$  или  $\exists x C[a/x]$  заменяется на эквивалентную  $\forall y C[a/y]$  или  $\exists y C[a/y]$ .

# Замена связанной переменной

#### Лемма.

Пусть  $y \in \mathsf{BdVar}$  не входит в формулу B. Тогда B[x/y] есть формула и  $B[x/y] \equiv B$ .

#### Доказательство.

Применяем индукцию по числу вхождений кванторов по переменной x в B. Каждая подформула  $\forall x C[a/x]$  или  $\exists x C[a/x]$  заменяется на эквивалентную  $\forall y C[a/y]$  или  $\exists y C[a/y]$ .

# Предварённая нормальная форма

## Onp.

Формула A называется npeдварённой, если A имеет вид  $Qx_1Qx_2\dots Qx_nA_0[b_1/x_1,\dots,b_n/x_n]$ , где Q означает квантор  $\forall$  или  $\exists$ , а формула  $A_0$  бескванторная.

#### Теорема.

Для каждой формулы A можно указать эквивалентную ей предварённую формулу A' от тех же свободных переменных.

#### Доказательство.

Последовательно выносим кванторы наружу, используя основные эквивалентности и леммы о замене связанных переменных и о подстановке. Разбор алгоритма на семинарских занятиях

# Предварённая нормальная форма

## Onp.

Формула A называется *предварённой*, если A имеет вид  $Qx_1Qx_2\dots Qx_nA_0[b_1/x_1,\dots,b_n/x_n]$ , где Q означает квантор  $\forall$  или  $\exists$ , а формула  $A_0$  бескванторная.

#### Теорема.

Для каждой формулы A можно указать эквивалентную ей предварённую формулу A' от тех же свободных переменных.

#### Доказательство.

Последовательно выносим кванторы наружу, используя основные эквивалентности и леммы о замене связанных переменных и о подстановке. Разбор алгоритма на семинарских занятиях.

## Teopuu

### Onp.

Tеорией сигнатуры  $\Sigma$  называем произвольное множество T замкнутых формул языка  $\mathcal{L}_{\Sigma}$ . Элементы  $A \in T$  называем нелогическими аксиомами T.

#### Пример.

Теория отношения эквивалентности:

- $\forall x R(x,x)$ ;
- $\forall x, y (R(x, y) \rightarrow R(y, x));$
- $\forall x, y, z \ (R(x, y) \land R(y, z) \rightarrow R(x, z)).$

## Teopuu

### Onp.

*Теорией* сигнатуры  $\Sigma$  называем произвольное множество T замкнутых формул языка  $\mathcal{L}_{\Sigma}$ . Элементы  $A \in T$  называем нелогическими аксиомами T.

#### Пример.

Теория отношения эквивалентности:

- $\forall x R(x,x)$ ;
- $\forall x, y (R(x, y) \rightarrow R(y, x));$
- $\forall x, y, z (R(x, y) \land R(y, z) \rightarrow R(x, z)).$

## Модель теории

Onp.

Модель  $(M; \Sigma)$  есть *модель теории T* (обозначение  $M \models T$ ), если для любой  $A \in T$   $M \models A$ .

Пример.

R есть отношение эквивалентности на множестве M, если и только если  $(M;R) \models T$ , где T — теория отношения эквивалентности.

## Модель теории

#### Onp.

Модель  $(M; \Sigma)$  есть *модель теории T* (обозначение  $M \models T$ ), если для любой  $A \in T$   $M \models A$ .

#### Пример.

R есть отношение эквивалентности на множестве M, если и только если  $(M;R) \models T$ , где T — теория отношения эквивалентности.

#### Пример.

Модель (M;<) есть *строгий частичный порядок*, если в (M;<) истинны следующие предложения:

#### $\Pi$ ример.

Простой граф — это модель вида (V; E), где E — бинарный предикат смежности, причём отношение E симметрично и иррефлексивно:

- $\forall x \neg E(x,x)$
- $\forall x, y (E(x, y) \rightarrow E(y, x))$



#### $\Pi$ ример.

 $(M; =, \cdot, 1)$  есть *группа*, если M есть модель следующей теории (при условии, что «=» в M понимается как равенство):

#### Равенство

Пусть  $\Sigma$  — сигнатура, содержащая выделенный предикатный символ =.

Onp.

*Нормальной моделью* называем модель  $(M; \Sigma)$ , в которой = интерпретируется как равенство  $\{\langle x, x \rangle \mid x \in M\}$ .

### Onp.

Аксиомы равенства для  $\Sigma$  — универсальные замыкания следующих формул:

- аксиомы отношения эквивалентности для =
- $a_1 = b_1 \wedge a_2 = b_2 \wedge \cdots \wedge a_n = b_n \rightarrow$  $(P(a_1, \ldots, a_n) \leftrightarrow P(b_1, \ldots, b_n))$

$$a_1 = b_1 \wedge a_2 = b_2 \wedge \cdots \wedge a_n = b_n \rightarrow (f(a_1, \ldots, a_n) = f(b_1, \ldots, b_n))$$

для всех  $f \in \operatorname{Func}_{\Sigma}$  and  $P \in \operatorname{Pred}_{\Sigma}$ .

#### Предложение.

Если  $(M; \Sigma)$  — нормальная модель, то в M истинны все аксиомы равенства.

Onp

*Теорией с равенством* называем теорию сигнатуры  $\Sigma$  с равенством, содержащую все аксиомы равенства.

#### Предложение.

Если  $(M; \Sigma)$  — нормальная модель, то в M истинны все аксиомы равенства.

## Onp.

*Теорией с равенством* называем теорию сигнатуры  $\Sigma$  с равенством, содержащую все аксиомы равенства.

#### Теорема.

Пусть T — теория с равенством. Если T выполнима, то T имеет нормальную модель.

Доказательство.

Пусть  $M \models T$ . Предикат  $=_M$  есть отношение эквивалентности на M. Положим  $M' \rightleftharpoons M/=_M$  — множество классов эквивалентности и  $\varphi: M \to M'$  сопоставляет любому  $x \in M$  его класс  $\varphi(x) \in M'$ .

#### Теорема.

Пусть T — теория с равенством. Если T выполнима, то T имеет нормальную модель.

#### Доказательство.

Пусть  $M \models T$ . Предикат  $=_M$  есть отношение эквивалентности на M. Положим  $M' \rightleftharpoons M/=_M$  — множество классов эквивалентности и  $\varphi: M \to M'$  сопоставляет любому  $x \in M$  его класс  $\varphi(x) \in M'$ .

Интерпретируем предикатные и функц. символы в M':

$$P_{M'}(\varphi(x_1),\ldots,\varphi(x_n)) \stackrel{\text{def}}{\iff} P_M(x_1,\ldots,x_n);$$
  
$$f_{M'}(\varphi(x_1),\ldots,\varphi(x_n)) := \varphi(f_M(x_1,\ldots,x_n)).$$

В силу аксиом равенства в M, определение корректно и M' — нормальная модель.

Индукцией по построению формулы А проверяем

$$M \vDash A[x_1,\ldots,x_n] \iff M' \vDash A[\varphi(x_1),\ldots,\varphi(x_n)].$$

Отсюда следует  $M' \models T$ .

## Формальная арифметика Пеано

Сигнатура 
$$\Sigma = \{0, S, +, \cdot, =\}.$$

- lacktriangle аксиомы равенства для  $\Sigma$ ;
- 3 a + 0 = a, a + S(b) = S(a + b),
- **(Схема аксиом индукции)**

$$A[a/0] \wedge orall x \left( A[a/x] o A[a/S(x)] 
ight) o orall x \, A[a/x],$$
для любой формулы  $A$ .

## Teopus множеств ZFC

Сигнатура  $\Sigma = \{=, \in\}.$ 

- (Аксиомы равенства)
- $\bigcirc$  (Экстенсинальность)  $a = b \leftrightarrow \forall x (x \in a \leftrightarrow x \in b)$
- (Пара)  $\exists z \ \forall x \ (x \in z \leftrightarrow (x = a \lor x = b))$
- lacktriangle (Объединение)  $\exists z \ \forall x \ (x \in z \leftrightarrow \exists y \ (x \in y \land y \in a))$
- (Степень)  $\exists z \ \forall x \ (x \in z \leftrightarrow \forall y \ (y \in x \rightarrow y \in a))$
- $\odot$  (Схема выделения)  $\exists z \ \forall x \ (x \in z \leftrightarrow (x \in a \land \varphi[b/x]))$  для всех формул  $\varphi$  сигнатуры  $\Sigma$
- lacktriangle (Бесконечность)  $\exists z \ (\varnothing \in z \land \forall x \ (x \in z \to x \cup \{x\} \in z))$
- ullet (Регулярность)  $\exists z \ (z \in a \land \forall x \ (x \in a \rightarrow x \notin z))$
- (Схема подстановки)
- (Аксиома выбора)

## Элементарная геометрия

#### Аксиоматика Тарского:

- $G1. ab \cong ba$
- $G2. \ ab \cong pq \land ab \cong rs \rightarrow pq \cong rs$
- $G3. \ ab \cong cc \rightarrow a = b$
- $G4. \; \mathsf{Babd} \wedge \mathsf{Bbcd} \to \mathsf{Babc}$
- $G5. \ \exists x (Bqax \land ax \cong bc)$

# G6. (пять отрезков) $(a \neq b \land Babc \land Ba'b'c' \land ab \cong a'b' \land bc \cong b'c' \land ad \cong a'd' \land bd \cong b'd') <math>\rightarrow cd \cong c'd'$



## G7. (аксиома Паша) $Bapc \wedge Bqcb \rightarrow \exists x \ (Baxq \wedge Bbpx)$



## Аксиомы размерности

*G8.* 
$$\exists x, y, z (\neg Bxyz \land \neg Byzx \land \neg Bzxy)$$

*G9.* 
$$(dim \le 2)$$
  $(p_1 \ne p_2 \land ap_1 \cong ap_2 \land bp_1 \cong bp_2 \land cp_1 \cong cp_2) \rightarrow a \in bc$ 



## G10. (аксиома Евклида) $Badt \wedge Bbdc \wedge a \neq d \rightarrow \exists x,y \ (Babx \wedge Bacy \wedge Bytx)$



#### G11. (схема аксиом непрерывности)

$$\exists u \forall x, y \ (C[a/x] \land D[a/y] \rightarrow Buxy) \rightarrow \\ \exists v \forall x, y \ (C[a/x] \land D[a/y] \rightarrow Bxvy)$$

Здесь x, y, u, v не входят в C, D.

## G11'. (аксиома непрерывности 2-го порядка)

$$\forall X, Y (\exists u \forall x, y (x \in X \land y \in Y \rightarrow Buxy) \rightarrow \exists v \forall x, y (x \in X \land y \in Y \rightarrow Bxvy))$$

D

C v

u

## Теорема Тарского о полноте

#### Теорема.

Для любого предложения A языка элементарной геометрии, если  $(\mathbb{R}^2;=,B,\cong) \vDash A$ , то A логически следует из аксиом G1-G11.

#### Теорема.

Существует алгоритм проверки формулы A на выполнимость в  $\mathbb{R}^2$ .

# Логика предикатов лекция 4

Лев Дмитриевич Беклемишев http://lpcs.math.msu.su/vml2020

lbekl@yandex.ru

02.03.2021

## Исчисление предикатов

Исчисление предикатов сигнатуры  $\Sigma$  задаётся след. аксиомами и правилами вывода.

#### Аксиомы:

- A1. Подстановочные примеры тавтологий,
- $A2. \ \forall x A[a/x] \rightarrow A[a/t],$
- $A3. A[a/t] \rightarrow \exists x A[a/x].$

Подстановочным примером тавтологии A мы называем результат замены всех пропозициональных переменных A на некоторые формулы сигнатуры  $\Sigma$ .

Пример:  $B \vee \neg B$ , где B — любая формула.

В А2 и А3 A — любая формула сигнатуры  $\Sigma$  и t — любой терм (x не входит в A).

#### Правила вывода:

R1. 
$$\frac{A \quad A \rightarrow B}{B}$$
 (modus ponens)

$$R2. \ \frac{A \to B}{A \to \forall x B[a/x]}$$

$$R3. \ \frac{B \to A}{\exists x B[a/x] \to A}$$

Здесь a не входит в A (и x не входит в B).

Правила R2 и R3 называются правилами Бернайса.

#### Выводимость

#### Onp.

Выводом в исчислении предикатов называется конечная последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул по одному из правил вывода R1-R3.

Пример.

$$\forall x A[a/x] \rightarrow A$$
 (A2)  
 $\forall x A[a/x] \rightarrow \forall y A[a/y]$  (R2)

#### Onp.

Формула A называется выводимой в исчислении предикатов или *теоремой* исчисления предикатов (обозначение  $\vdash A$ ), если существует вывод, в котором последняя формула есть A.

#### Пример.

 $\vdash orall x A[a/x] 
ightarrow orall y A[a/y]$  для любой формулы A.

## Выводы в теории

#### Onp.

Выводом в теории T называется конечная последовательность формул, каждая из которых либо принадлежит множеству T, либо является логической аксиомой вида A1-A3, либо получается из предыдущих формул по одному из правил вывода R1-R3.

## Доказуемость, опровержимость

#### Onp.

Формула A называется выводимой (доказуемой) в теории T или теоремой T (обозначение  $T \vdash A$ ), если существует вывод в T, в котором последняя формула есть A.

#### Onp.

Формула A опровержима в T, если  $T \vdash \neg A$ .

#### Onp.

Формула A независима от T, если  $T \nvdash A$  и  $T \nvdash \neg A$ .

#### Свойства выводимости

- Если  $T \subseteq U$  и  $T \vdash A$ , то  $U \vdash A$  (монотонность).
- Если  $T \vdash A$ , то существует такое конечное множество  $T_0 \subseteq T$ , что  $T_0 \vdash A$  (компактность).
- Если  $T \vdash A$  и для каждой аксиомы  $B \in T$  имеет место  $U \vdash B$ , то  $U \vdash A$  (*транзитивность*).

## Теорема о дедукции

## Onp.

Tеорией сигнатуры  $\Sigma$  называем произвольное множество T замкнутых формул языка  $\mathcal{L}_{\Sigma}$ .

Теорию  $T \cup \{A\}$  обозначаем также T, A или T + A.

## Теорема.

Для любой теории T и замкнутой формулы A

$$T, A \vdash B \iff T \vdash A \rightarrow B.$$

#### Доказательство.

Индукция по длине вывода  $T, A \vdash B$ . Если B является логической аксиомой или B

Если B является логической аксиомой или  $B \in \mathcal{T}$ , то в  $\mathcal{T}$  выводимо:

$$egin{aligned} B \ B 
ightarrow (A 
ightarrow B) & ext{(тавтология)} \ A 
ightarrow B & ext{(MP)} \end{aligned}$$

Если B = A, то используем тавтологию  $A \rightarrow A$ .

Пусть B получена из C и  $C \rightarrow B$  по modus ponens.

Имеем  $T \vdash (A \to C)$  и  $T \vdash (A \to (C \to B))$  по предположению индукции.

Соединяем эти два вывода и достраиваем так:

$$(A o (C o B)) o ((A o C) o (A o B))$$
 (тавтология)  $(A o C) o (A o B)$  (МР)  $A o B$ 

Допустим B=(C o orall xD[a/x]) получена из C o D по R2. По пр. индукции

$$T \vdash A \rightarrow (C \rightarrow D).$$

Надо построить вывод

$$T \vdash A \to (C \to \forall x D[a/x]).$$

### Достраиваем вывод $A \rightarrow (C \rightarrow D)$ в T:

$$A o (C o D)$$
  $(A o (C o D)) o (A hinspace C o D)$  (тавтология)  $(A hinspace C) o D$  (MP)  $(A hinspace C) o \forall x D[a/x]$  (R2,  $A$  замкнута)  $A o (C o \forall x D[a/x])$  (аналогично)

Правило R3 рассматривается аналогично.

## Непротиворечивость теории

Onp.

Теория T противоречива, если существует A такая, что  $T \vdash A$  и  $T \vdash \neg A$ . В противном случае теория T называется непротиворечивой.

Следствие.

 $T \cup \{A\}$  противоречива  $\iff T \vdash \neg A$ .

# *Теорема о корректности* исчисления предикатов

Теорема.

Если  $M \models T$  и  $T \vdash A$ , то  $M \models A$ .

Доказательство.

Индукция по длине вывода A в T.

Следствие.

Если  $\vdash A$ , то A общезначима.

# Доказательства непротиворечивости

#### Следствие.

Если теория T имеет модель, то T непротиворечива.

#### Следствие.

Следующие теории непротиворечивы:

- исчисление предикатов (пустая теория);
- теория групп;
- элементарная геометрия;
- формальная арифметика.

Теория множеств?

# Доказательства независимости

#### Следствие.

Если существует модель M теории T для которой  $M \nvDash A$ , то  $T \nvdash A$ .

## Пример.

Модель Пуанкаре  $H^2$  показывает, что аксиома Евклида независима от остальных аксиом элементарной геометрии.

## Теорема Гёделя о полноте

#### Теорема.

- Всякая непротиворечивая теория T выполнима, то есть имеет модель  $M \models T$ .
- **②** Если  $T \nvdash A$ , то найдётся модель  $M \vDash T$  для которой  $M \nvdash A$ .

Покажем равносильность этих утверждений.

- $(1\Rightarrow 2)$ : Если  $T \nvdash A$ , то  $T \cup \{\neg A\}$  непротиворечива. Действительно, если  $T, \neg A$  противоречива, то  $T \vdash \neg \neg A$ , а значит  $T \vdash A$  (используем тавтологию  $\neg \neg A \to A$ ). Следовательно,  $T \cup \{\neg A\}$  имеет модель M.
- $(2 \Rightarrow 1)$ : Пусть T непротиворечива. Возьмём  $A = (B \land \neg B)$ . Тогда  $T \nvdash A$ , следовательно у теории T должна быть модель (опровергающая A).

# Теорема Гёделя-Мальцева о компактности

#### Теорема.

Теория T выполнима  $\iff$  любое конечное подмножество  $T_0 \subseteq T$  выполнимо.

#### Доказательство.

Если T невыполнима, то существует вывод противоречия в T, использующий лишь конечное число аксиом T.

# Нестандартные модели арифметики

## Пример.

Пусть ( $\mathbb{N}$ ; =, S, +, ·, 0) — стандартная модель арифметики и  $Th(\mathbb{N})$  есть множество *всех* истинных в  $\mathbb{N}$  предложений.

Добавим к сигнатуре новую константу c и рассмотрим теорию

$$T \rightleftharpoons Th(\mathbb{N}) \cup \{\neg c = 0, \neg c = S0, \neg c = SS0, \dots\}.$$

Терм  $\bar{n} \rightleftharpoons SS \dots SO(n)$  раз) называем *нумералом*. Нумералы служат именами натуральных чисел.

Утверждение.

Каждая конечная подтеория  $T_0 \subseteq T$  выполнима.

Доказательство.

 $T_0$  содержит лишь конечное число аксиом вида  $c \neq \bar{n}_1, \ldots, c \neq \bar{n}_k$ . Интерпретируем константу c в стандартной модели как любое число  $m > n_1, \ldots, n_k$ .

По теореме о компактности существует (нормальная) модель  $M \models T$ . Модель M обладает следующими свойствами:

- $\mathbb N$  изоморфна начальному сегменту M; вложение  $\mathbb N \to M$  задаётся функцией  $\varphi: n \longmapsto \bar n_M$ .
- $M \models Th(\mathbb{N})$ ;
- $M \ncong \mathbb{N}$ , в частности  $c_M \in M$  есть «бесконечно большое число», поскольку  $c_M$  отлично от всякого  $n \in \mathbb{N}$ .



# Порядок на модели М

Формула  $a < b \Longrightarrow \exists x \ (x \ne 0 \land a + x = b)$  определяет порядок в  $\mathbb N$ . Для данной формулы в  $\mathbb N$  выполнены аксиомы строгого линейного порядка и следующие предложения:

- $\forall x (0 < x \lor 0 = x);$
- $\forall x \exists y \ (x < y \land \forall z \ (z < y \rightarrow z = x \lor z < x));$
- $\forall y (y \neq 0 \rightarrow \exists x (x < y \land \forall z (z < y \rightarrow z))$

$$\to z = x \lor z < x))).$$

Следовательно, те же аксиомы выполнены и в M. Поэтому предикат  $<_M$  на M представляет собой строгий линейный порядок с наименьшим элементом 0. При этом каждый элемент имеет последователя, и каждый элемент, кроме 0, имеет непосредственного предшественника.



## Onp.

Элементы  $x, y \in M$  близки, если для некоторого  $n \in \mathbb{N}$  выполнено  $y = SS \dots S(x)$  или  $x = SS \dots S(y)$  (n символов S).

Классы эквивалентности по отношению близости называем *галактиками*.

Утверждение.

Если G — галактика в M,  $G \neq \mathbb{N}$ , то порядок  $(G, <_M)$  изоморфен  $(\mathbb{Z}, <)$ .

Пусть  $\mathcal G$  есть множество всех галактик в M. Определим  $G_1 <_M G_2$ , если для любых  $x \in G_1$ ,  $y \in G_2$   $x <_M y$ .

Теорема.

Порядок  $(\mathcal{G}, <_M)$  есть плотный порядок без наибольшего элемента и с наименьшим элементом  $\mathbb{N}$ .

#### Доказательство.

Если  $G_1 < G_2$ , возьмём чётные  $x_1 \in G_1$  и  $x_2 \in G_2$  и рассмотрим  $y = (x_1 + x_2)/2$  (функция g(x) = x/2 определима в  $\mathbb{N}$ , а значит и в M).

Если 
$$y \in G_1$$
, то  $(x_1+x_2)/2=x_1+\bar{n}$  для некоторого  $n \in \mathbb{N}$ . Тогда  $2x_1+2\bar{n}=x_1+x_2$ , откуда  $x_1+2\bar{n}=x_2$ , то есть  $x_2 \in G_1$ .

Аналогично показываем  $y \notin G_2$ .