

Câmpus Venâncio Aires

Arquitetura e Organização de Computadores

Professor: Fernando Luís Herrmann

E-mail: fernandoherrmann@ifsul.edu.br

Tecnólogo em Análise e Desenvolvimento de Sistemas 2022

Material de aula:

https://github.com/herrmannfl/tads-aoc-2022

Simulador Neander

Características gerais

- Largura de dados e endereços de 8 bits
- Dados representados em complemento de 2
- 1 acumulador de 8 bits (AC)
- 1 apontador de programa de 8 bits (PC)
- 1 registrador de estado com 2 códigos de condição: negativo (N) zero (Z)
- Memória de 256 posições (endereços) x 8 bits

Conjunto de Instruções NEANDER

código	instrução	comentário
0000	NOP	Nenhuma operação
0001	STA end	MEM(end) ← AC
0010	LDA end	AC ← MEM(end)
0011	ADD end	AC ← MEM(end) + AC
0100	OR end	AC ← MEM(end) OR AC
0101	AND end	AC ← MEM(end) AND AC
0110	NOT	AC ← NOT AC
1000	JMP end	PC ← end
1001	JN end	IF N=1 THEN PC ← end
1010	JZ end	IF Z=1 THEN PC ← end
1111	HLT	para processamento

Instruções com um byte: NOP, NOT

Instruções com dois bytes: STA, LDA, ADD, OR, AND, JMP, JN, JZ

