Devoir surveillé n°05

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

Partie I -

I.1 I.1.a Les points P, Q et R ont pour coordonnées respectives (1,0), $\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$ et $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$. On trouve sans difficulté les équations des droites suivantes :

(PQ):
$$y = -\frac{1}{\sqrt{3}}(x-1)$$
 (PR): $y = \frac{1}{\sqrt{3}}(x-1)$ (QR): $x = -\frac{1}{2}$

I.1.b Le point d'affixe x + iy i.e. de coordonnées (x, y) appartient à T si et seulement si

$$x > -\frac{1}{2}$$
 $y < -\frac{1}{\sqrt{3}}(x-1)$ $y > \frac{1}{\sqrt{3}}(x-1)$

c'est-à-dire

$$2x + 1 > 0 x + \sqrt{3}y - 1 < 0 x - \sqrt{3}y - 1 < 0$$

- **I.2 I.2.a** On a clairement $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ donc 1 est valeur propre de A.
 - **I.2.b** Comme A est trigonalisable, sa trace est la somme de ses valeurs propres i.e. $tr(A) = 1 + \lambda + \overline{\lambda}$. Les valeurs propres de A² sont 1, λ^2 et $\overline{\lambda}^2$ donc $tr(A^2) = 1 + \lambda^2 + \overline{\lambda}^2$. Puisque $\lambda = a + ib$ et $\overline{\lambda} = a ib$,

$$tr(A) = 1 + 2a$$
 $tr(A^2) = 1 + 2(a^2 - b^2)$

I.2.c Les coefficients de A sont tous strictement positifs donc tr(A) > 0. Pour la même raison

$$(A^{2})_{1,1} = a_{1,1}^{2} + a_{1,2}a_{2,1} + a_{1,3}a_{3,1} > a_{1,1}^{2}$$

$$(A^{2})_{2,2} = a_{2,1}a_{1,2} + a_{2,2}^{2} + a_{2,3}a_{3,2} > a_{2,2}^{2}$$

$$(A^{2})_{3,3} = a_{3,1}a_{1,3} + a_{3,2}a_{2,3} + a_{3,3}^{2} > a_{3,3}^{2}$$

Par conséquent, $tr(A^2) > a_{1,1}^2 + a_{2,2}^2 + a_{3,3}^2$.

I.2.d D'après l'inégalité de Cauchy-Schwarz

$$\operatorname{tr}(\mathbf{A})^2 = \left(\sum_{k=1}^3 1 \cdot a_{k,k}\right)^2 \le \left(\sum_{k=1}^3 1^2\right) \left(\sum_{k=1}^3 a_{k,k}^2\right) = 3(a_{1,1}^2 + a_{2,2}^2 + a_{3,3}^2) < 3\operatorname{tr}(\mathbf{A}^2)$$

1

I.2.e D'une part,

$$1 + 2a = tr(A) > 0$$

D'autre part,

$$0 < 3\operatorname{tr}(A^2) - \operatorname{tr}(A)^2 = 2\left(1 + a^2 - 3b^2 - 2a\right) = 2(a - \sqrt{3}b - 1)(a + \sqrt{3}b - 1)$$

I.2.f Remarquons que $a - \sqrt{3}b - 1$ et $a + \sqrt{3}b - 1$ sont de même signe. Si l'on avait $a - \sqrt{3}b - 1 > 0$ et $a + \sqrt{3}b - 1 > 0$, on aurait a > 1 en additionant ces inégalités. Il s'ensuivrait que $|\lambda|^2 = a^2 + b^2 > 1$, ce qui n'est pas. Ainsi $a - \sqrt{3}b - 1 < 0$ et $a + \sqrt{3}b - 1 < 0$ et $a + \sqrt{3}b - 1 < 0$. D'après la question **I.1.b**, le point d'affixe λ appartient à T.

I.3 I.3.a D'après une relation d'Euler, $\lambda + \overline{\lambda} = 2r\cos(\theta)$ donc $\alpha = \frac{1 + \lambda + \overline{\lambda}}{3}$.

On remarque que $j^2 = \bar{j}$ donc, toujours d'après une relation d'Euler,

$$j\lambda + j^2\overline{\lambda} = j\lambda + \overline{j\lambda} = re^{i\left(\theta + \frac{2\pi}{3}\right)} + re^{-i\left(\theta + \frac{2\pi}{3}\right)} = 2\cos\left(\theta + \frac{2\pi}{3}\right)$$

$$\text{puis } \beta = \frac{1+j\lambda+j^2\overline{\lambda}}{3}.$$
 Enfin,

$$j^{2}\lambda + j\overline{\lambda} = \overline{j}\lambda + \overline{\overline{j}\lambda} = re^{i\left(\theta - \frac{2\pi}{3}\right)} + re^{-i\left(\theta - \frac{2\pi}{3}\right)} = 2\cos\left(\theta - \frac{2\pi}{3}\right)$$

puis
$$\gamma = \frac{1 + j^2 \lambda + j \overline{\lambda}}{3}$$

I.3.b Puisque $1 + j + \bar{j} = 1 + j + j^2 = \frac{j^3 - 1}{j - 1} = 0$, il est clair que $\alpha + \beta + \gamma = 1$.

Par ailleurs, en posant $\lambda = a + ib$ avec $(a, b) \in \mathbb{R}^2$,

$$\alpha = \frac{2a+1}{3} > 0 \qquad \qquad \beta = \frac{1-a-\sqrt{3}b}{3} \qquad \qquad \gamma = \frac{1-a+\sqrt{3}b}{3}$$

Comme le point d'affixe λ appartient à T, α , β et γ sont strictement psositifs d'après la question **I.1.b**. On en déduit que A vérifie bien la propriété (\mathcal{S}).

Comme $r \in]0,1[$, et $|\cos| \le 1$, il est clair que α , β et γ sont strictement positifs. On en déduit que A vérifie la propriété (S).

- **I.3.c** Un calcul immédiat montre que $J^2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$. On a clairement $A = \alpha I_3 + \beta J + \gamma J^2$.
- **I.3.d** Un calcul immédiat donne $\chi_J = X^3 1$. Les valeurs propres de J sont les racines de $X^3 1$, à savoir 1, j et j^2 .
- **I.3.e** Comme χ_I est scindé à racines simples, J est diagonalisable. Il existe donc $P \in GL_3(\mathbb{C})$ tel que $J = PDP^{-1}$

avec D =
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}$$
. On en déduit que

$$\mathbf{A} = \mathbf{P} \left(\alpha \mathbf{I}_3 + \beta \mathbf{D} + \gamma \mathbf{D}^2 \right) \mathbf{P}^{-1} = \mathbf{P} \left(\begin{array}{ccc} \alpha + \beta + \gamma & 0 & 0 \\ 0 & \alpha + \beta j + \gamma j^2 & 0 \\ 0 & 0 & \alpha + \beta j^2 + \gamma j \end{array} \right) \mathbf{P}^{-1}$$

Les valeurs propres de A sont donc $\alpha + \beta + \gamma$, $\alpha + \beta j + \gamma j^2$ et $\alpha + \beta j^2 + \gamma j$. En utilisant les expressions de α , β et γ trouvées à la question **I.3.a** et le fait que $1 + j + j^2 = 0$, on trouve

$$\alpha + \beta + \gamma = 1$$
 $\alpha + \beta i + \gamma j^2 = \overline{\lambda}$ $\alpha + \beta i^2 + \gamma j = \lambda$

Les valeurs propres de A sont donc bien 1, λ et $\overline{\lambda}$.

Partie II –

II.1 Pour tout $i \in [1, n]$,

$$(AU)_i = \sum_{j=1}^n a_{i,j} = 1$$

donc AU = U. Comme U n'est pas nul, 1 est bien valeur propre de A.

II.2 II.2.a II.2.a.i Comme det(B) = 0, B n'est pas inversible. Il existe donc $X \in \mathcal{M}_{n,1}(\mathbb{C})$ non nul tel que BX = 0.

II.2.a.ii On a notamment

$$0 = (BX)_k = \sum_{j=1}^n b_{k,j} x_j$$

et donc

$$b_{k,k}x_k = -\sum_{j \neq k} b_{k,j}x_j$$

Par inégalité triangulaire

$$|b_{k,k}||x_k| \le \sum_{j \ne k} |b_{k,j}||x_j| \le \sum_{j \ne k} |b_{k,j}||x_k|$$

Remarquons que $|x_k| > 0$ car sinon $0 \le |x_i| \le |x_k| = 0$ pour tout $i \in [1, n]$ puis X = 0, ce qui n'est pas. On en déduit donc que

$$|b_{k,k}| \le \sum_{j \ne k} |b_{k,j}|$$

II.2.b Comme $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$, $\det(B) = \det(A - \lambda I_n) = (-1)^n \chi_A(\lambda) = 0$. D'après la question précédente, il existe $k \in [1, n]$ tel que

$$|b_{k,k}| \le \sum_{j \ne k} |b_{k,j}| |x_j| \le \sum_{j \ne k} |b_{k,j}|$$

c'est-à-dire

$$|a_{k,k} - \lambda| \le \sum_{j \ne k} |a_{k,j}|$$

Mais comme les $a_{k,j}$ sont positifs

$$|a_{k,k} - \lambda| \le \sum_{j \ne k} a_{k,j}$$

De plus, $\sum_{j=1}^{n} a_{k,j} = 1$ donc $\sum_{j \neq k} a_{k,j} = 1 - a_{k,k}$. Finalement,

$$|a_{k,k} - \lambda| \le 1 - a_{k,k}$$

Par inégalité triangulaire,

$$|\lambda| = |(a_{k,k} - \lambda) + a_{k,k}| \le |a_{k,k} - \lambda| + |a_{k,k}| \le 1 - a_{k,k} + a_{k,k} = 1$$

 $\operatorname{car} a_{k,k} > 0.$

II.2.c D'après la question précédente,

$$|a_{k,k} - e^{i\theta}| \le 1 - a_{k,k}$$

puis

$$|a_{k,k} - e^{i\theta}|^2 \le (1 - a_{k,k})^2$$

ou encore

$$(a_{k,k} - e^{i\theta})(a_{k,k} - e^{-i\theta}) \le (1 - a_{k,k})^2$$

En développant, on obtient

$$a_{k,k}^2 - 2a_{k,k}\cos\theta + 1 \le 1 - 2a_{k,k} + a_{k,k}^2$$

ou encore

$$a_{k,k}\cos\theta \ge a_{k,k}$$

Or $a_{k,k} > 0$ donc $\cos \theta \ge 1$. Mais $\cos \theta \le 1$ donc $\cos \theta = 1$. Ainsi $\theta \equiv 0[2\pi]$ puis $\lambda = e^{i\theta} = 1$.

II.3 II.3.a Comme $1 \in \operatorname{Sp}_{\mathbb{C}}(A)$, $\chi_A(1) = \det(\operatorname{I}_n - A) = 0$ donc $\det((\operatorname{I}_n - A)^{\mathsf{T}}) = 0$ ou encore $\det(\operatorname{I}_n - A^{\mathsf{T}}) = 0$. Par conséquent, $\chi_{A^{\mathsf{T}}}(1) = 0$ et $1 \in \operatorname{Sp}_{\mathbb{C}}(A^{\mathsf{T}})$. De plus, $\operatorname{rg}(A - \operatorname{I}_n) = \operatorname{rg}((A - \operatorname{I}_n)^{\mathsf{T}}) = \operatorname{rg}(A^{\mathsf{T}} - \operatorname{I}_n)$. D'après le théorème du rang, $\dim \operatorname{Ker}(A - \operatorname{I}_n) = \dim \operatorname{Ker}(A^{\mathsf{T}} - \operatorname{I}_n)$ i.e. $\dim \operatorname{E}_1(A) = \dim \operatorname{E}_1(A^{\mathsf{T}})$.

II.3.b.i Pour tout $i \in [1, n]$, $(A^TV)_i = V_i$ et donc

$$\sum_{j=1}^{n} a_{j,i} v_j = v_i$$

Par inégalité triangulaire,

$$|v_i| \le \sum_{j=1}^n |a_{j,i}| |v_j| = \sum_{j=1}^n a_{j,i} |v_j|$$

II.3.b.ii En additionnant ces inégalités,

$$\sum_{i=1}^{n} |v_i| \le \sum_{i=1}^{n} \sum_{j=1}^{n} a_{j,i} |v_j| = \sum_{j=1}^{n} |v_j| \sum_{i=1}^{n} a_{j,i} = \sum_{j=1}^{n} |v_i|$$

En notant $S_i = \sum_{j=1}^n a_{j,i} |v_j|$, on a donc $|v_i| \le S_i$ pour tout $i \in [1,n]$ et $\sum_{i=1}^n S_i - |v_i| = 0$. Une somme de termes positifs,n'étant nulle que si chacun des termes est nul,

$$\forall i \in [[1, n]], |v_i| = S_i = \sum_{j=1}^n a_{j,i} |v_j|$$

Ces égalités se traduisent par le fait que $A^T|V| = |V|$.

II.3.b.iii Supposons qu'il existe $i \in [1, n]$ tel que $|v_i| = 0$. Alors

$$\sum_{j=1}^{n} a_{j,i} |v_j| = |v_i| = 0$$

Comme il s'agit à nouveau d'une somme de termes positifs, on aurait $a_{j,i}|v_j|=0$ pour tout $j\in [1,n]$ et donc $|v_j|=0$ pour tout $j\in [1,n]$ car les $a_{j,i}$ ne sont pas nuls. Finalement, on aurait V=0n ce qui est exclus.

II.3.c. I D'après la question précédente, les y_i ne sont pas nuls. On peut donc considérer la matrice colonne $Z = X - \frac{x_1}{y_1} Y$ qui appartient encore à $E_1(A^T)$ (c'est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{C})$). Par construction $z_1 = 0$, mais d'après la question précédente, Z = 0: si Z n'était pas nul, toutes ses composantes seraient non nulles. On en déduit que tous les vecteurs de $E_1(A^T)$ sont colinéaires à X i.e. dim $E_1(A^T) = 1$.

II.3.c.ii Soit V un vecteur non nul de $E_1(A^T)$. D'après la question précédente, $|V| \in E_1(A^T)$. Posons $\Omega = \frac{1}{\sum_{i=1}^n |v_i|} |V|$. A nouveau, $\Omega \in E_1(A^T)$. Par construction, $\sum_{i=1}^n \omega_i = 1$. On a vu que $|v_i| > 0$ pour tout $i \in [\![1,n]\!]$ donc $\omega_i > 0$ pour tout $i \in [\![1,n]\!]$. Supposons qu'il existe un vecteur Ω' vérifiant les mêmes conditions. Alors Ω' est colinéaire à Ω puisque dim $E_1(A^T) = 1$. Il existe donc $\lambda \in \mathbb{C}$ tel que $\Omega' = \lambda \Omega$. En fait, $\lambda \in \mathbb{R}_+^*$ car les coordonnées de Ω' et Ω sont strictement positives. De plus,

$$1 = \sum_{i=1}^{n} \omega_i' = \lambda \sum_{i=1}^{n} \omega_i = \lambda$$

puis $\Omega' = \Omega$.

II.3.c.iii Enfin, puisque $A^T\Omega = \Omega$,

$$\forall i \in \llbracket 1, n \rrbracket, \ \sum_{i=1}^{n} a_{j,i} \omega_j = \omega_i$$

II.3.d On a donc montré que

- les valeurs propres de A sont de module inférieur ou égal à 1;
- la seule valeur propre de A de module 1 est 1;
- $E_1(A)$ est engendré par $U = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$;
- les valeurs propres de A^T sont de module inférieur ou égal à 1;
- la seule valeur propre de A^T de module 1 est 1;
- aucune coordonnée d'un vecteur propre de A^T associé à la valeur propre 1 n'est nulle;

• il existe un vecteur propre de A^T associé à la valeur propre 1 dont les coordonnées sont strictement positives et de somme 1.

II.4 II.4.a Montrons que N est une norme.

Positivité Comme les ω_i sont positifs, N est bien à valeurs dans \mathbb{R}_+ .

Homogénéité Soient $\lambda \in \mathbb{C}$ et $X \in \mathcal{M}_{n,1}(\mathbb{C})$. Alors

$$N(\lambda X) = \sum_{i=1}^{n} \omega_i |\lambda x_i| = |\lambda| \sum_{i=1}^{n} \omega_i |x_i| = |\lambda| N(x)$$

Séparation Soit $X \in \mathcal{M}_{n,1}(\mathbb{C})$ tel que N(X) = 0. Alors $\sum_{i=1}^{n} \omega_i |\lambda x_i| = 0$. Mais comme il s'agit d'une somme de termes positifs, $\omega_i |x_i| = 0$ pour tout $i \in [1, n]$. Les ω_i ne sont pas nuls donc $x_i = 0$ pour tout $i \in [1, n]$ i.e. X = 0.

Inégalité triangulaire Soit $(X, Y) \in \mathcal{M}_{n,1}(\mathbb{C})^2$. Alors, par inégalité triangulaire dans \mathbb{C}

$$N(X + Y) = \sum_{i=1}^{n} \omega_i |x_i + y_i| \le \sum_{i=1}^{n} \omega_i (|x_i| + |y_i|) = N(X) + N(Y)$$

II.4.b Soit $X \in \mathcal{M}_{n,1}(\mathbb{C})$. Alors, par inégalité triangulaire,

$$N(AX) = \sum_{i=1}^{n} \omega_i \left| \sum_{j=1}^{n} a_{i,j} x_j \right| \le \sum_{i=1}^{n} \omega_i \sum_{j=1}^{n} a_{i,j} |x_j| = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} a_{i,j} \omega_i \right) |x_j|$$

Mais on a vu à la question II.3.c que

$$\forall j \in \llbracket 1, n \rrbracket, \sum_{i=1}^{n} a_{i,j} \omega_i = \omega_j$$

de sorte que

$$N(AX) \le \sum_{j=1}^{n} \omega_j |x_j| = N(X)$$

II.4.c En particulier, soit $\lambda \in \operatorname{Sp}_{\mathbb{C}}(A)$ et X un vecteur propre associé. Alors $N(AX) \leq N(X)$ donne $|\lambda|N(X) \leq N(X)$ puis $|\lambda| \leq 1$ car N(X) > 0 (X n'est pas nul en tant que vecteur propre).

II.5 II.5.a Remarquons que $\Phi(X) = \Omega^T X$. Ainsi

$$\Phi(AX) = \Omega^T AX = (A^T \Omega)^T X$$

Or $\Omega \in E_1(A^T)$, donc $A^T\Omega = \Omega$ puis $\Phi(AX) = \Omega^TX = \Phi(X)$.

II.5.b $E_1(A) = \text{vect}(U)$ est une droite et $\text{Ker } \Phi$ est un hyperplan de $\mathcal{M}_{n,1}(\mathbb{C})$ en tant que noyau d'une forme linéaire non nulle. Pour montrer que $E_1(A)$ et $\text{Ker } \Phi$ sont supplémentaires dans $\mathcal{M}_{n,1}(\mathbb{C})$, il suffit donc de montrer

que U ∉ Ker Φ. Or Φ(U) = $\sum_{i=1}^{n} \omega_i = 1 \neq 0$ donc U ∉ Ker Φ. On en déduit que $\mathcal{M}_{n,1}(\mathbb{C}) = E_1(A) \oplus \text{Ker } \Phi$.

II.5.c D'après la question II.5.a,

$$\Phi(X) = \Phi(AX) = \Phi(\lambda X) = \lambda \Phi(X)$$

Or $\lambda \neq 1$ donc $\Phi(X) = 0$ i.e. $X \in \text{Ker } \Phi$.

II.5.d Notons u l'endomorphisme de \mathbb{C}^n canoniquement associé à A et φ la forme linéaire canoniquement associée à Φ . D'après ce qui précède, $\varphi \circ u = \varphi$ et $\mathbb{C}^n = E_1(u) \oplus \operatorname{Ker} \varphi$. L'égalité $\varphi \circ u = \varphi$ donne notamment $\operatorname{Ker} \varphi \circ u = \operatorname{Ker} \varphi$ de sorte que $\operatorname{Ker} \varphi$ est stable par u. Dans une base adaptée à la décomposition en somme directe $\mathbb{C}^n = E_1(u) \oplus \operatorname{Ker} \varphi$,

la matrice de u est donc $\begin{pmatrix} \lambda & 0 & \cdots & 0 \\ \hline 0 & & & \\ \vdots & & B \\ 0 & & & \end{pmatrix}$ avec $B \in \mathcal{M}_{n-1}(\mathbb{C})$. On en déduit que $\chi_A = \chi_u = (X - \lambda)\chi_B$. Si 1 était

racine de χ_B , 1 serait valeur propre de l'endomorphisme $u_{|\operatorname{Ker} \phi}$ de Ker ϕ induit par u. Notamment $u_{|\operatorname{Ker} \phi}$ admettrait un vecteur propre $x \in \operatorname{Ker} \phi$ associé à la valeur propre 1. Ce vecteur x serait également un vecteur propre de u associée à la même valeur propre 1. On aurait donc $x \in E_1(u) \cap \operatorname{Ker} \phi = \{0\}$, ce qui contredit que x est un vecteur propre. Ainsi 1 n'est pas racine de χ_B : 1 est donc une racine simple de χ_A i.e. la multiplicité de la valeur propre de 1 dans χ_A vaut 1.