Veritasium combinatorics problem

Othman SLASSI

I. INTRODUCTION

We will find the probability p of success in the procedure explained in Veritasium for the general case: 2n boxes and 2n prisoners. I tried to be as thorough as possible by not omitting any detail but I did not present a proof of the number of cyclic permutations of p elements among N elements (equals to $\frac{A_N^p}{p}$) which is a will known result.

II. SOLUTION

A. Definitions

Definition 1 (Cycle) Let $a \in \{1, 2 \cdots 2n\}$ the cycle of a is the set $C(a) = \{\sigma^k(a) \mid k \in \mathbb{N}\}$ The number l(a) = |C(a)| is the length of the cycle.

Definition 2 (Measure) Let $\sigma \in S_{2n}$ the number $\mu(\sigma) = \max_{1 \leq a \leq 2n} (|C(a)|)$ is the measure of permutation σ

B. A better description

Every way of distributing the cards in the boxes is a permutation $\sigma \in S_{2n}$ so opening the box number a will show the card number $\sigma(a)$. The probability p that "the procedure described in Veritasium will work" is actually the number of permutations σ such that: $\mu(\sigma) \leq n$ divided by (2n)!. The complement q = 1 - p, which is the probability of having at least an element a such that $l(a) \geq n + 1$, is easier to calculate, we will call such an element long.

C. Lemmas

Lemma 1 If a permutation σ has a long element a then it has l(a) long elements and they have the same length. **Proof:** If there exists a long element a then every element of the cycle C(a) is long and has the same length. Furthermore the set $A := \overline{C(a)}$ has at most n-1 elements. So obviously: $\forall b \in A$ we have $l(b) \leq n-1$ thus only the elements of C(a) are long. \square

Lemma 2 let $1 \le k \le n$ and the set $E_k := \{ \sigma \in S_{2n} \mid \mu(\sigma) = n + k \}$ We have : $|E_k| = \frac{(2n)!}{n+k}$ **Proof:** Let $\sigma_k \in E_k$ be permutation since it has a long

Proof: Let $\sigma_k \in E_k$ be permutation since it has a long element, then according to lemma 1 there is a unique cycle C_k with all the long elements (Note that: $|C_k| = n + k$ in this case).

So every permutation in E_k determined by the choice of a cyclic permutation of n+k elements (representing C_k) among 2n and a random permutation of the remaining

$$n-k$$
 elements. So: $|E_k| = (n-k)! \frac{A_{2n}^{n+k}}{n+k} = \frac{(2n)!}{n+k}$

D. The final proof

 $(E_k)_{1 \le k \le n}$ is a partition of the set E of permutations with at least one long element.

$$q = P(\sigma \in E) = \frac{|E|}{(2n)!} = \frac{1}{(2n)!} \sum_{k=1}^{n} |E_k| = \frac{1}{(2n)!} \sum_{k=1}^{n} \frac{(2n)!}{n+k} = \sum_{k=1}^{n} \frac{1}{n+k}$$

$$p = 1 - \sum_{k=1}^{n} \frac{1}{n+k}$$