ICEACE Agent-based Simulation Model

(Adaptive monetary and fiscal policies to promote investment in an agent-based model)

Bülent Özel

Reykjavik University School of Science and Engineering bulent@ru.is

Einar Jon Erlingsson, Marco Raberto, Hlynur Stefansson

November 8, 2013

EAEPE 2013, Paris, France

Slide 1 of 35

ICEACE Project

- Home: http://iceace.github.io/home
- Matlab: http://iceace.github.io/MATLAB
- FLAME: http://iceace.github.io/FLAME

ICEACE Model

- Agent Types:
 - Household
 - Firm
 - Bank
 - Equity Fund
 - Central Bank
 - Government
- Markets:
 - Labour Market
 - Production Markets (Consumption Goods, Housing Units)
 - Consumption Goods Market
 - Housing Market
 - Credit Market
- Communication Schemes:
 - Direct Messaging
 - Balance Sheet Flows
 - Agent-Agent Links

Multi-agent Design Challanges

- Agents
 - Role Multiplicity
 - Beliefs, Desires, Intentions
 - Autonomity
- Environment
 - Context
 - Influence
- Communication
- Scalability
- Initialization

ICEACE Implementation Choices (FLAME)

- Distributed Computing
 - -> XMachine
- Object Oriented Programming Paradigm
 - -> XMachine Markup Language (XMML)
- Message Passing
 - -> Message Boards (Broadcasting)
 - -> Message Filtering (Links)
- Synchronization
 - -> Time Units: Day (1), Week (5xD), Month (4xW), Quarter (3xM), Year (12xM)
- Acyclic Dependencies
 - -> Exclusive State Transitions
- High Performance Computing
 - -> MPI Protocal
- Initialization
 - Pythonic Agent Initialization Description Language (PyAIDL)

FLAME Multi-agent Design Frame Framework

XMachine - A Single Design Unit

State Transitions

ICEACE Model v0.9.0

Overall state transition and communication graph of ICEACE model:

Conceptual Design Vs Implementation

- Pseudo Agents
 - Real Estate Agency
 - Job Placement Office
 - Mall
- Agent Subtypes
 - Households: Capitalist, Non-capitalist
 - Firm: Constructor, Regular
- Mortgage Durations & Annuity

ICEACE Reference Manual

```
https://github.com/ICEACE/FLAME/blob/master/
docs/summary.pdf
```

- State Variables (memory)
- Functions (behaviours)
- Messages (communication)

Modular and Iterative Design

Model Descriptions:

```
https://github.com/ICEACE/FLAME/blob/master/
model_iceace.xml
```

Labour Market

- Monthly
- Market opens first day of the month
- Payments are done at last day of the month
- Market closes either when all positions are filled or all households are employed.
- Employment turnover is possible
- Skilled households are given priority
- Firing, new hiring, and wage adjustment is possible

Production Market

- Monthly
- Regular products are produced monthly
- A housing unit is completed in 12 months
- Production function
- Pricing
- Production planning
- Labour requirements

Consumption Market

- Weekly
- Limited yet monthly adjustable disposable consumption budget
- Unspent budget maybe used in subsequent weeks
- Wealth effect as a mean of shock transmission mechanism from housing markets
- Arrival to mall is random
- Cheaper products have a higher probability to be consumed first

Housing Market

- Monthly
- Housing units or homogenous
- Constructor firms, buyers, sellers
- Fire sale cases
- Pricing
- Mortgage requirements
- Annuity

Credit Market

- Monthly
- Loans
- Mortgage annuity adjustment
- Equity Fund
- Illiquidity
- Insolvency

Policy Making

- Quarterly, monthly, weekly
- Interest rates
- Tax rates and taxing
- Inflation, unemployment
- General benefits, unempoylemt benefits

Computational Challanges

- Initialization
- Load Balancing
- ullet Time Performance, worst case: O(|AgentCount|)
- Memory Management

ICEACE Iterative Design Process

- Theoretical Design
- Prototyping
- Iterative Multi Agent Design Cycle:
 - Model Description (XMML):
 - Memory
 - Action Description
 - State Transitions
 - Activation Conditions
 - Inputs: (filtering, sorting, randomizing)
 - Outputs
 - Behaviors (C Functions)
 - Unit Testing

Validation Experiments

- Modular Verificatation
- Initialization (via PyAIDL):
 - Setting policy parameters
 - Instantiating agents
 - Initializing agent memories

Validation

- Calibration
- Randomness
- Paramater sensivity
- Empirical Tests

Serial Run Time

- Households: 8000, Firms: 120(regular) + 30(constructor),
 Banks:2, Central Bank, Government, Job Placement Office,
 Real Estate Agency, Mall
- Dual Core MacPro OS 10.8.4, CPU 2.26 GHz, RAM 4G 1067MHz
- Data Collection Mode
- 3600 iterations (15 years)
- Wall clock time $\approx 9min 16min$

A Crises Scenerio: Hyper-inflation and Defaults

Simulation Setup

- Free market price mechanism
- Initial high consumption demand
- A 'socialistic' government fiscal and social policies regarding taxes, benefits, and defaults

Experiment

- Households: 8000, Firms: 120(regular) + 30(constructor), Banks:2, Central Bank, Government, Job Placement Office, Real Estate Agency, Mall
- 20 runs
- 3600 iterations (15 years)

Consumption Goods Prices

Average Goods Prices

Inflation

Interest Rate

Central Bank Interest Rates

Sale Revenues

Regular Firm Sale Revenues

Goods Transactions

Weekly Consumption Goods Sales

Housing Transactions

Monthly Housing Unit Sales

Loans

Iterations (quarters)

Mortgages

Write-offs

Iterations (quarters)

Firm Size

Constructor Firm Size

Constructor Firm Size

Unemployment

