Ingegneria del Software

Requisiti del Software (II parte)

Antonino Staiano

e-mail: antonino.staiano@uniparthenope.it

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Requisiti e progetti

- In teoria, i requisiti di sistema dovrebbero descrivere il comportamento esterno e i vincoli operativi
 - Non dovrebbero descrivere come il sistema dovrebbe essere progettato o implementato
- In realtà, requisiti e progettazione sono inseparabili poiché:
 - □ Può essere progettata un'architettura iniziale del sistema per strutturare i requisiti
 - □ Il sistema può interagire con altri sistemi che generano requisiti di progettazione
 - □ L'uso di una progettazione specifica può derivare da un requisito di dominio

Requisiti di sistema

- Versioni espanse e più dettagliate, rispetto ai requisiti utente, delle specifiche delle funzioni del sistema, dei servizi e dei vincoli
- Sono utilizzati come base di partenza per la progettazione del sistema
- Possono far parte del contratto stipulato per il sistema

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Problemi con la specifica in linguaggio naturale

- Ambiguità
 - □ I lettori e gli scrittori del requisito devono interpretare le stesse parole nello stesso modo. Il linguaggio naturale è inerentemente ambiguo pertanto ciò è molto difficile
- Eccessiva flessibilità
 - □ La stessa cosa può essere detta in una varietà di modi differenti nella specifica
- Mancanza di modularità
 - □ Le strutture del linguaggio naturale sono inadeguate per strutturare i requisiti di sistema

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Alternative alle specifiche in linguaggio naturale

Notazione	Descrizione
Linguaggio naturale strutturato	Quesat tecnica dipende dalla definizione di moduli o modelli standard per esprimere le specifiche dei requisiti.
Linguaggi per la descrizione della progettazione	Questa tecnica usa un linguaggio simile al linguaggio di programmazione ma con funzioni più astratte, per specificare i requisiti definendo un modello operativo del sistema. Non è molto usata, sebbene sia utile per le specifiche dell'interfaccia.
Notazioni grafiche	Un linguaggio grafico, aiutato da annotazioni testuali, viene usato per definire i requisiti funzionali del sistema. Vengono comunemente usate descrizioni degli use-case e diagrammi di sequenze
Specifiche matematiche	Sono notazioni basate su concetti matematici, come per esempio insieme o macchine a stati finiti. Queste specifiche non ambigue riducono i contrasti tra il cliente e l'appaltatore sulle funzionalità del sistema, ma la maggior parte dei clienti non capisce le specifiche formali e sono riluttanti ad accettarle come parte del contratto.

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Specifiche basate su moduli

- E' necessario definire uno o più moduli standard per esprimere i requisiti di sistema
 - Le specifiche possono essere strutturate intorno agli oggetti manipolati dal sistema, alle funzioni che svolge o agli eventi che elabora
- Le slide seguenti mostrano le specifiche basate su moduli per un sistema di pompaggio dell'insulina
 - La pompa calcola la richiesta di insulina dell'utente in base al tasso di cambiamento del livello degli zuccheri nel sangue. I tassi sono calcolati usando la lettura corrente e quella precedente

Specifiche in linguaggio strutturato

- Il linguaggio naturale strutturato definisce i requisiti di sistema scrivendoli in modo uniforme e limitando la libertà dell'autore
- Vantaggio: mantiene l'espressività e la comprensibilità del linguaggio naturale assicurando un certo grado di uniformità nelle specifiche
- Limita la terminologia che può essere usata e utilizza dei modelli (o moduli) per specificare i requisiti di sistema

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Esempio: Una pompa per l'insulina controllata dal software

- Usato per persone diabetiche per simulare le operazioni del pancreas che produce insulina, un ormone essenziale che metabolizza il glucosio del sangue
- Misura il glucosio usando un micro-sensore e calcola la dose di insulina richiesta per metabolizzare

Organizzazione della pompa di insulina

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Specifiche dei requisiti di sistema con modulo standard

Pompa dell'insulina/Software di Controllo/SRS/3.3.2

Funzione Calcolo della dose di insulina: livello sicuro degli zuccheri.

Descrizione Calcola

Calcola la dose di insulina che deve essere fornita quando il livello attuale degli zuccheri è nella zona sicura tra 3 e

7 unità.

Input La lettura attuale degli zuccheri (r2) e le due letture precedenti (r0 e r1).

Sorgente La lettura attuale degli zuccheri fatta dal sensore. Altre letture memorizzate.

Output CompDose – la dose di insulina che deve essere fornita.

Destinazione Ciclo di controllo principale.

Azione: CompDose è zero se il livello degli zuccheri è stabile o sta scendendo, o se il livello sta crescendo ma il tasso di crescita è in diminuzione. Se il livello sta crescendo e anche il tasso di crescita sta aumentando, allora CompDose è calcolato dividendo per 4 la differenza tra il livello attuale degli zuccheri e il precedente, e arrotondando il risultato. Se il risultato è arrotondato a zero, allora CompDose viene impostato alla minima dose che può essere fornita.

Richiede Due precedenti letture in modo da poter calcolare il tasso di variazione del livello degli zuccheri.

Pre-condizione La riserva di insulina deve contenere almeno la quantità massima permessa per una singola dose.

Post-condizione r0 viene sostituito da r1, poi r1 viene sostituito da r2.

Effetti collaterali Nessuno.

Flusso dati nella pompa di insulina

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Specifiche basate su moduli

- E' necessario includere le seguenti informazioni
 - Descrizione della funzione o dell'entità che si sta specificando
 - Descrizione dei suoi input e da dove questi provengono
 - □ Descrizione dei suoi output e dove questi verranno utilizzati
 - □ Indicazione di quali altre entità sono utilizzate (sezione **Richiede**)
 - □ Descrizione dell'azione da eseguire
 - □ Pre e post condizioni (se necessario)
 - □ Descrizione effetti collaterali (se vi sono)

Specifiche Tabulari

- Le tabelle sono particolarmente utili quando c'è una serie di possibili situazioni alternative
 - Necessario descrivere per ognuna le azioni da intraprendere

Condizione	Azione
Livello degli zuccheri in discesa (r2 <r1)< td=""><td>CompDose = 0</td></r1)<>	CompDose = 0
Livello degli zuccheri stabile (r2=r1)	CompDose = 0
Livello degli zuccheri in salita e tasso di crescita in diminuzione ((r2-r1)<(r1-r0))	CompDose = 0
Livello degli zuccheri in salita e tasso di crescita in aumento ((r2-r1)>(r1-r0))	CompDose = arrotondamento((r2-r1)/4) Se il risultato arrotondato = 0, allora CompDose = MinimumDose

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Diagramma delle sequenze di uno sportello

Modelli grafici

- Sono utili quando è necessario mostrare come cambiano gli stati o descrivere una sequenza di azioni
- I diagrammi di sequenza mostrano la sequenza di eventi che si verificano quando l'utente interagisce con il sistema
- Si leggono dall'alto in basso per vedere l'ordine delle azioni che hanno luogo
- Esempio: prelievo da sportello Bancomat
 - Verifica carta
 - □ Gestione della richiesta
 - □ Completamento della transazione

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Specifica delle interfacce

- Quasi tutti i sistemi software devono operare insieme a sistemi esistenti
 - □ le interfacce del sistema esistente devono essere specificate con precisione come parte dei requisiti
- Possono essere definiti tre tipi di interfacce
 - Interfacce procedurali
 - □ Strutture dati
 - □ Rappresentazione dei dati
- Le notazioni formali sono un metodo efficace

Interfaccia server di stampa in pseudo-Java

```
interface PrintServer {

// definisce un server di stampa astratto

// requires: interface Printer, interface PrintDoc

// provides: initialize, print, displayPrintQueue,
cancelPrintJob, switchPrinter

    void initialize ( Printer p ) ;
    void print ( Printer p, PrintDoc d ) ;
    void displayPrintQueue ( Printer p ) ;
    void cancelPrintJob (Printer p, PrintDoc d) ;
    void switchPrinter (Printer pl, Printer p2, PrintDoc d) ;
}
```

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Utenti di un documento dei requisiti

- Clienti: specificano i requisiti e li leggono per essere sicuri che soddisfano le loro richieste. Definiscono i cambiamenti ai requisiti
- Manager: usano il documento dei requisiti per pianificare l'offerta del sistema e il suo processo di sviluppo
- Ingegneri di sistema: utilizzano i requisiti per capire che sistema deve essere sviluppato
- Ingegneri del test di sistema: utilizzano i requisiti per sviluppare i test di controllo del sistema
- Ingegneri della manutenzione del sistema: utilizzano i requisiti per capire come'è strutturato il sistema e le relazioni che intercorrono tra i suoi componenti.

Documento dei requisiti

- E' una dichiarazione ufficiale di quello che gli sviluppatori del sistema dovrebbero implementare (specifica dei requisiti del software)
- Deve includere sia i requisiti utente che una specifica dettagliata dei requisiti di sistema

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Standard IEEE dei requisiti

- Struttura generica per il documento dei requisiti
 - 1. Introduzione
 - 1.1 Scopo del documento dei requisiti
 - 1.2 Scopo del prodotto
 - 1.3 Definizioni, acronimi e abbreviazioni
 - 1.4 Riferimenti
 - 1.5 Descrizione del resto del documento
 - 2. Descrizione generale
 - 2.1 Prospettiva del prodotto
 - 2.2 Funzioni del prodotto
 - 2.3 Caratteristiche utente
 - 2.4 Vincoli generali
 - 2.5 Presupposti e dipendenze
 - 3. Requisiti specifici
 - 4. Appendici
 - 5. Indice

Standard IEEE

- Sebbene non ideale, contiene buone linee guida per evitare problemi
- Troppo generale per diventare uno standard di per sé, ma adattabile alle necessità di una particolare organizzazione
- Ad esempio, lo si può estendere per includere informazioni sulle evoluzioni previste dal sistema
 - □ Aiuta i manutentori e permette ai progettisti di includere il supporto per future funzioni del sistema

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Sommario (I)

- I requisiti descrivono cosa il sistema dovrebbe fare e definiscono i vincoli sulle operazioni e sull'implementazione
- I requisiti funzionali descrivono i servizi che il sistema deve fornire
- I requisiti non funzionali vincolano il sistema da sviluppare o il processo di sviluppo
- I requisiti utente sono rivolti alle persone coinvolte nell'uso e nella creazione del sistema. Dovrebbero essere scritti usando il linguaggio naturale, con tabelle e diagrammi semplici da capire

Struttura di un documento dei requisiti

- Prefazione
- Introduzione
- Glossario
- Definizione dei requisiti utente
- Architettura del sistema
- Specifica dei requisiti di sistema
- Modelli del sistema
- Evoluzione del sistema
- Appendici
- Indice

Ingegneria del Software, a.a. 2008/2009 - A. Staiano

Sommario (II)

- I requisiti di sistema devono comunicare, in maniera precisa, le funzioni che il sistema deve fornire. Per ridurre l'ambiguità possono essere scritti in linguaggio naturale strutturato integrato da tabelle e modelli del sistema
- Il documento dei requisiti è una dichiarazione accettata dei requisiti del sistema. Dovrebbe essere organizzato in modo che sia i clienti che gli sviluppatori del sistema possano usarlo
- Lo standard IEEE per il documento dei requisiti è un utile punto di partenza per standard più precisi delle specifiche dei requisiti