Tensor categories

Ingo Blechschmidt

8th February 2014

1 Basics

Example 1.1. The category Mod_R of modules over a commutative ring R is the archetypical example of a tensor category.

Definition 1.2. A tensor category (\mathcal{C}, \otimes) (i. e. a monoidal category with symmetric braiding) consists of

- a category C,
- a functor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ (the tensor operation),
- an object $1 \in \mathcal{C}$ (the unit object),
- natural isomorphisms $X \otimes (Y \otimes Z) \xrightarrow{\phi_{XYZ}} (X \otimes Y) \otimes Z$ (the associator),
- natural isomorphisms $X \otimes Y \xrightarrow{\psi_{XY}} Y \otimes X$ (the braiding),
- natural isomorphisms $1 \otimes X \xrightarrow{\lambda_X} X$ and $X \otimes 1 \xrightarrow{\rho_X} X$ (the unitors),

such that

- the braiding is symmetric: $\psi_{YX} \circ \psi_{XY} = \mathrm{id}_{X \otimes Y}$ and
- the following coherence conditions are satisfied:

The definitions mimics the definition of a monoid, only "one level up". Demanding that the tensor operation is associative and commutative on the nose (e.g. $X \otimes (Y \otimes Z) = (X \otimes Y) \otimes Z$) would be *evil* in the technical sense, i.e. not invariant under equivalence of categories. The isomorphism classes of a tensor category form a commutative monoid.

Example 1.3. In Mod_R, ϕ_{XYZ} is given by

$$x \otimes (y \otimes z) \longmapsto (x \otimes y) \otimes z.$$

If $-1 \neq 1 \in R$, introducing a sign here will cause the pentagon diagram to fail to commute by a sign.

Example 1.4. Let \mathcal{C} be a category with finite products. Then (\mathcal{C}, \times) is a tensor category, with $\phi, \psi, \lambda, \rho$ given by the universal property of the product. In particular, (Set, \times) is a tensor category.

Example 1.5. Let C be a tensor category. Then C^{op} is in a natural way a tensor category, by using the inverses of the given natural isomorphisms.

Remark 1.6. In a general tensor category, there is no natural morphism $X \to X \otimes X$.

The coherence conditions in the definition are needed for the following reason: In the category of modules, we are used to dropping all parentheses when dealing with iterated tensor products. This is justified because between any two given groupings, e.g.

$$X \otimes ((Y \otimes Z) \otimes (T \otimes U))$$
 and $((X \otimes Y) \otimes (Z \otimes T)) \otimes U$,

we have a *canonical* isomorphism. A classical theorem of Mac Lane guarantees that the stated coherence conditions suffice to render any "reasonable" diagram commutative:

Theorem 1.7 (Mac Lane). Any (formal) diagram in a tensor category built by

$$\otimes$$
, id, ϕ , ψ , λ , ρ , ϕ^{-1} , ψ^{-1} , λ^{-1} , ρ^{-1}

(in which both sides have the same permutation) commutes.

The two caveats are the following: Firstly, in a given tensor category, there may hold certain *identities* between objects for no general abstract reason. For example, for some totally unrelated objects X, Y, A, B, it might hold that $X \otimes Y = A \otimes B$. Using those identities we can form diagrams which we do *not* expect to commute. Mac Lane's coherence theorem does not make any statement about those diagrams.

To understand the restriction about permutations, consider the diagram

$$\psi_{XX} \stackrel{?}{=} \mathrm{id}_{X \otimes X}.$$

We do not expect this diagram to be commutative; the permutations associated to both sides are not equal: $(1,2) \neq id$.

Theorem 1.8 (Joyal, Street). If the graphical depictions of given morphisms of a tensor category are "the same" (in 4D space), the morphisms are equal.

Example 1.9. XXX

Theorem 1.10 (Mac Lane). Any tensor category may be strictified, i. e. is equivalent as a tensor category to a strict tensor category: a category in which ϕ, λ, ρ (but not ψ) are identities.

2 Structure in tensor categories

Definition 2.1. An internal Hom between objects X, Y of a tensor category C consists of

- an object $\underline{\mathrm{Hom}}(X,Y) \in \mathcal{C}$ and
- a morphism $\underline{\mathrm{Hom}}(X,Y)\otimes X\xrightarrow{\mathrm{ev}}Y$ (evaluation morphism)

such that this pair is terminal among such pairs, i. e. such that for any object $T \in \mathcal{C}$ and a [fake] evaluation morphism $T \otimes X \xrightarrow{\widetilde{\operatorname{ev}}} Y$ there exists an unique morphism $f: T \to \operatorname{\underline{Hom}}(X,Y)$ such that the following diagram commutes:

$$\operatorname{ev} \circ (f \otimes \operatorname{id}_X) = \widetilde{\operatorname{ev}}.$$

Example 2.2. In (Set, \times), the internal Homs are given by the usual Hom sets. The evaluation morphism is given by $(f, x) \mapsto f(x)$.

Example 2.3. In Mod_R , the internal Homs are given by the Hom sets equipped with the usual module structure.

Remark 2.4. If an internal Hom $\underline{\text{Hom}}(X,Y)$ exists for all objects $Y \in \mathcal{C}$ (and if appropriate choice principles are available), the internal Hom can be made into a functor $\underline{\text{Hom}}(X,\underline{\ })$: $\mathcal{C} \to \mathcal{C}$ which is right adjoint to taking tensor product with X:

$$_ \otimes X \dashv \underline{\operatorname{Hom}}(X, _)$$

Remark 2.5. The relation with the usual Hom (which is only a set) is the following:

$$\operatorname{Hom}(1, \operatorname{\underline{Hom}}(X, Y)) \cong \operatorname{Hom}(1 \otimes X, Y) \cong \operatorname{Hom}(X, Y).$$

Remark 2.6. In (Set, II), internal Homs do not exist in general: This is because in general, $\underline{\ }$ If X does not preserve colimits and so cannot be a left adjoint.

Definition 2.7. 1. A dual of an object X is an internal Hom $X^{\vee} := \text{Hom}(X, 1)$.

2. The dual of a morphism $f: X \to Y$ is the unique morphism $f^t: Y^{\vee} \to X^{\vee}$ rendering the diagram commutative (if X^{\vee} and Y^{\vee} exist).

Example 2.8. In Mod_R, $f^t: \theta \mapsto \theta \circ f$.

Proposition 2.9. In any tensor category, the set End(1) = Hom(1,1) is a commutative monoid with respect to composition of morphisms.

Proof. The results holds even if there would be no braiding: On End(1), the tensor product induces a second binary operation. By the coherence conditions, this operation commutes with the operation given by composition, so by the famous Eckmann-Hilton theorem, both operations coincide and are commutative.

Example 2.10. In Mod_R , $End(1) \cong R$.

Example 2.11. In (Set, Π) , $End(1) = \{id\}$.

3 Tensor functors

Definition 3.1. A tensor functor $F:(\mathcal{C},\otimes)\to(\mathcal{C}',\otimes')$ consists of

- 1. a functor $F: \mathcal{C} \to \mathcal{C}'$,
- 2. natural isomorphisms $FX \otimes' FY \xrightarrow{c_{XY}} F(X \otimes Y)$ and
- 3. an isomorphism $1' \xrightarrow{e} F1$

such that the following coherence conditions are satisfied:

Example 3.2. The forgetful functor $\operatorname{Rep}_k(G) \to \operatorname{Vect}_k$ of the category of finite-dimensional k-linear representations of a group (or group scheme) G is a tensor functor.

Example 3.3. Extension of scalars defines a tensor functor $Mod_R \to Mod_S$.

Example 3.4. A quantum field theory determines a tensor functor $Cob_d \to Vect_k$.

Definition 3.5. A morphism of tensor functors $\eta:(F,c,e)\to(\tilde{F},\tilde{c},\tilde{e})$ consists of a natural transformation $\eta:F\to\tilde{F}$ which is compatible with the coherence isomorphisms:

4 Rigid tensor categories

Definition 4.1. A tensor category C is *rigid* iff

- all internal Homs exist,
- the natural morphisms

$$\underline{\operatorname{Hom}}(X_1,Y_1)\otimes\underline{\operatorname{Hom}}(X_2,Y_2)\longrightarrow\underline{\operatorname{Hom}}(X_1\otimes Y_1,X_2\otimes Y_2)$$

are isomorphisms and

• all objects $X \in \mathcal{C}$ are reflexive (i. e. the natural map $X \to X^{\vee\vee}$ is an isomorphism).

Example 4.2. The category $Vect_k^{fd}$ of finite-dimensional is rigid.

Example 4.3. More generally, the category $Mod_R^{fin.\,free}$ of finitely free R-modules is rigid.

Example 4.4. Changing toposes, the category of locally free $\mathcal{O}_{\operatorname{Spec} R}$ modules is rigid. (This category is equivalent to category of finitely generated projective R-modules, by the tilde construction.)

Example 4.5. The category $Rep_k(G)$ is rigid.

Remark 4.6. Let \mathcal{C} be a rigid category. Then the functor $\mathcal{C} \to \mathcal{C}^{op}, X \mapsto X^{\vee}$ is an equivalence of tensor categories.

In a rigid tensor category, we can define the notion of traces:

Definition 4.7. 1. The *trace* of an endomorphism $f: X \to X$ in a rigid tensor category is the following element of End(1):

$$f \in \operatorname{Hom}(X,X) \cong \operatorname{Hom}(1,\underline{\operatorname{Hom}}(X,X)) \cong \operatorname{Hom}(1,X^{\vee} \otimes X) \to \operatorname{Hom}(1,1) \ni :\operatorname{tr} f.$$

2. The rank (or $Euler\ characteristic$) of an object X is the trace of the identity morphism on X.

Trace and rank satisfy the relations you expect:

Lemma 4.8. 1.
$$\operatorname{tr}(f \otimes f') = \operatorname{tr}(f) \circ \operatorname{tr}(f'), \quad \operatorname{tr}(f \circ g) = \operatorname{tr}(g \circ f).$$

2.
$$\operatorname{rk}(X \otimes X') = \operatorname{rk}(X) \circ \operatorname{rk}(X'), \quad \operatorname{rk}(1) = \operatorname{id}_1.$$

Lemma 4.9. In a rigid tensor category, a pair $(Y, Y \otimes X \xrightarrow{\text{ev}} 1)$ is a dual of X iff there exists a morphism $1 \xrightarrow{\varepsilon} X \otimes Y$ such that the following triangle identities hold:

Proof. Given a pair $(T, T \otimes X \xrightarrow{\widetilde{ev}} 1)$, construct $f: T \to Y$ as follows:

Then the relevant diagram commutes, since

$$XXX$$
.

Use the second triangle identity to show uniqueness.

For the converse direction, construct ε by dualizing ev.

Remark 4.10. Rigidity is only necessary for the converse direction: A pair $(Y, Y \otimes X \xrightarrow{\text{ev}} 1)$ which satisfies the condition stated in lemma is always a dual—and in fact, because the condition is symmetric, the coevaluation morphism exhibits X as a dual of Y. In particular, X is reflexive.

Proposition 4.11. Let $F: \mathcal{C} \to \mathcal{C}'$ be a tensor functor, with \mathcal{C} rigid. Let $X, Y \in \mathcal{C}$. Then an internal Hom(FX, FY) exists in \mathcal{C}' and the natural morphism

$$F(\underline{\operatorname{Hom}}(X,Y)) \longrightarrow \underline{\operatorname{Hom}}(FX,FY)$$

is an isomorphism.

Proof. It is enough to show that in \mathcal{C}' a dual of FX exists and that the natural morphism

$$F(X^{\vee}) \longrightarrow (FX)^{\vee}$$

is an isomorphism. This is obvious by the lemma, as the given condition is preserved by F.

Corollary 4.12. trF(f) = F(trf), rkFX = F(rkX).

Proposition 4.13. In a rigid category, $_ \otimes X$ is not only a left, but also a right adjoint:

$$\underline{\operatorname{Hom}}(X,\underline{\ })\dashv\underline{\ }\otimes X\dashv\underline{\operatorname{Hom}}(X,\underline{\ }).$$

Corollary 4.14. In a rigid category, the tensor operation is continuous and cocontinuous.

5 Abelian tensor categories

Definition 5.1. An abelian tensor category is a tensor category (C, \otimes) such that C is abelian and \otimes is bi-additive.

Remark 5.2. In an abelian category, End(1) is a commutative ring.

Lemma 5.3. Let C be an abelian tensor category. Let $X \in C$.

1. Assume that the unit 1 is a simple object and that C is rigid. Then:

$$X \not\cong 0 \implies X^{\vee} \otimes X \to 1 \text{ is epic.}$$

2. Assume that $1 \ncong 0 \in \mathcal{C}$. Then:

$$X \not\cong 0 \iff X^{\vee} \otimes X \to 1 \text{ is epic.}$$

Proof. 1. Because the unit is simple, the natural morphism $X^{\vee} \otimes X \to 1$ is either zero or epic. (This follows by considering the image of the morphism.) Under the correspondence

$$\operatorname{Hom}(X^{\vee} \otimes X, 1) \cong \operatorname{Hom}(X, X^{\vee \vee}),$$

the morphism corresponds to the natural morphism $X \to X^{\vee\vee}$. If this was zero, X were zero as well.

2. Assume $X \cong 0$. Then we have an epic morphism $0 \to 1$. By terminality of the zero object, this is an isomorphism.

Remark 5.4. The rigidity is necessary: In $\operatorname{Mod}_{\mathbb{Z}}$, the object $\mathbb{Z}/(2)$ is not isomorphic to the zero object, but the morphism $(\mathbb{Z}/(2))^{\vee} \otimes \mathbb{Z}/(2) \to \mathbb{Z}$ has zero codomain.

Proposition 5.5. Let C be a rigid abelian tensor category with $1 \in C$ simple. Let C' be an abelian tensor category with $1 \not\cong 0$. Then any exact tensor functor $F: C \to C'$ is faithful.

Proof. Let Ff = 0. If $f \neq 0$, then $\operatorname{im}(f) \ncong 0$. So by the lemma, the natural morphism $\operatorname{im}(f)^{\vee} \otimes \operatorname{im}(f) \to 1$ is epic. Because F is exact and preserves duals, the natural morphism $\operatorname{im}(Ff)^{\vee} \otimes \operatorname{im}(Ff) \to 1$ is epic as well. Again by the lemma, it follows that $\operatorname{im}(Ff) \ncong 0$. This is a contradiction.

Remark 5.6. The simpleness of the unit is necessary: Let \mathcal{C} and \mathcal{D} be rigid abelian categories. Then the projection functor $\mathcal{C} \times \mathcal{D} \to \mathcal{C}$ is exact, but in general not faithful.

Corollary 5.7. Let k be a field and R be a ring with $1 \neq 0 \in R$. Let $\varphi : k \to R$ be a ring homomorphism. Then φ is injective.

Proof. By the proposition, the functor $F: \operatorname{Vect}_k^{\operatorname{fd}} \to \operatorname{Mod}_R$ (extension of scalars) is faithful. Let $\varphi(x) = 0$. Then the image of the map $k \to k$, multiplication by x, is zero in Mod_R . So by faithfullness, the map is already zero on k, so x = 0.

Proposition 5.8. Let C be a rigid abelian tensor category. Let $U \hookrightarrow 1$ be a subobject. Then the unit object decomposes as the direct sum

$$1 \cong U \oplus U^{\perp}$$
.

where $U^{\perp} = \ker(1 \to U^{\vee})$.

Proof. 1. Consider the cokernel V of $U \hookrightarrow 1$; we then have a short exact sequence

$$0 \longrightarrow U \longrightarrow 1 \longrightarrow V \longrightarrow 0$$
.

2. By rigidity, tensoring is exact; so we obtain the diagram

with exact rows. Because the morphism $U \to V \otimes U \to V$ is zero, $V \otimes U$ is zero; and by exactness of the bottom row, $U \otimes U$ is zero.

3. For any subobject $T \hookrightarrow X$ the following chain of equivalences holds:

$$T \otimes U \cong 0 \iff T \otimes U \hookrightarrow T \text{ is zero} \iff T \twoheadrightarrow U^{\vee} \otimes T \to U^{\vee} \otimes X \text{ is zero.}$$

The first " \Leftarrow " is because $T \otimes U \hookrightarrow T$ is a monomorphism (by exactness of tensoring with T) and the second " \Leftrightarrow " is by the isomorphisms

$$\underline{\operatorname{Hom}}(T\otimes U,T)\cong U^{\vee}\otimes T^{\vee}\otimes T\cong \underline{\operatorname{Hom}}(T,U^{\vee}\otimes T).$$

So the largest such subobject $T \hookrightarrow X$ is given by

$$T = \ker(X \to U^{\vee} \otimes X) \cong U^{\perp} \otimes X.$$

(The isomorphism is by exactness of tensoring with X.)

4. Applying this observation to X = V, it follows that $U^{\perp} \otimes V \cong V$.

Applying it to X = U, it follows that $U^{\perp} \otimes U \cong 0$: Let $T \hookrightarrow U$ with $T \otimes U \cong 0$. By exactness of tensoring with T, the sequence

$$0 \longrightarrow T \otimes U \longrightarrow T \longrightarrow T \otimes V \longrightarrow 0$$

is exact. Since $T \otimes U \cong 0$, we have

$$T \cong T \otimes V \hookrightarrow U \otimes V \cong 0.$$

The " \hookrightarrow " is—again—by exactness of tensoring (with V).

5. By exactness of tensoring with U^{\perp} , the sequence

$$0 \longrightarrow U^{\perp} \otimes U \longrightarrow U^{\perp} \longrightarrow U^{\perp} \otimes V \longrightarrow 0$$

is exact. By the previous observation, this shows $U^{\perp} \cong V$.

6. By applying the five lemma to the diagram

$$XXX$$
,

it follows that $1 \cong U \oplus U^{\perp}$.

Remark 5.9. Rigidity is necessary: In $Mod_{\mathbb{Z}}$, the unit object is not simple but admits to non-trivial decompositions.

Corollary 5.10. In a rigid abelian category, the unit object is simple iff $\operatorname{End}(1)$ is a field.

Proof. For the "only if" direction, let $f \in \text{End}(1)$. As the unit object is simple, f is either zero or an isomorpism (i. e. invertible in the ring End(1)). This follows by considering kernel and image of f.

For the "if" direction, let $U \hookrightarrow 1$. By the lemma, there exists a projection operator $P: 1 \to 1$ with $\operatorname{im}(P) = U$. If P is zero in $\operatorname{End}(1), U = 0$; if P is invertible, U = 1 (as subojects of 1).

6 The Tannaka reconstruction theorem

Theorem 6.1. Let C be a rigid abelian tensor category. Let $k := \operatorname{End}(1)$ be a field. Let $\omega : C \to \operatorname{Vect}_k^{fd}$ be an exact faithful k-linear tensor functor. Then:

1. The functor $\underline{\mathrm{Aut}}^{\otimes}(\omega)$: $\mathrm{Alg}_k \to \mathrm{Set}$, given by

$$R \longmapsto set \ of \ tensor \ automorphisms \ of \ (_ \otimes_k R) \cdot \omega,$$

is the functor of points of an affine group scheme G.

2. A certain functor $\mathcal{C} \to \operatorname{Rep}_k(G)$ induced by ω is an equivalence of tensor categories.