Let F be a field and let $A, B \in M_{mn}(F)$ such that $\forall v \in F^n$ we have Av = Bv. Prove that A = B

Problem Solving - What are the terms/strategies I may need? What do I know?

Showing two matrices are equal:

You must show that each corresponding entry in both matrices are the same.

Alternatively, you can show that every column of A is the same as every column of B.

Hint:

 Ae_i is the j'th column of A.

Let F be a field and let $A, B \in M_{mn}(F)$ such that $\forall v \in F^n$ we have Av = Bv. Prove that A = B

Steps & Process – Try to answer the question writing in many steps to avoid small errors.

Our goal will be to show that each column of A is the same as the corresponding column of B:

Let A_i represent the ith column of A, and let B_i represent the ith column of B. Then we have:

$$A_i$$
 = Ae_i (from hint)
= Be_i (as $Bv = Av$ for all $v \in F^n$ and $e_i \in F^n$)
= B_i (from hint)

Thus we have shown that A = B as all of the columns of A are the same as the columns of B.

Let F be a field and let $A, B \in M_{mn}(F)$ such that $\forall v \in F^n$ we have Av = Bv. Prove that A = B

Solidify Understanding – Explain why the steps makes sense by connecting to math you know.

Can you prove the hint?

For Video Please click the link below:

<u>Video</u>