ST518, Analysis of Covariance

Jason A. Osborne

N.C. State University

November 7, 2019

- Introduction
- General Linear ANCOVA Model
- Exercise
- Partial test for treatment effect
- Adjusted means
 - SE of adj. mean
- 6 LSMEANS statement for adjusted means
- Assumptions
- 8 ANCOVA plot

Analysis of covariance, ANCOVA

Covariates are ______. Associations between covariates z and main response variable of interest y can be used to reduce unexplained variation σ^2 . An nutrition example

Nutrition scientist conducted expt. to evaluate effects of four vitamin supplements on weight gain of lab animals. Experiment conducted in a CRD with N=20 animals randomized to a=4 supplement groups, each with sample size $n\equiv 5$. Response variable of interest is weight gain, but calorie intake z measured concomitantly.

Diet	<i>y</i> (<i>g</i>)	Diet	У	Diet	У	Diet	У
1	48	2	65	3	79	4	59
1	67	2	49	3	52	4	50
1	78	2	37	3	63	4	59
1	69	2	75	3	65	4	42
1	53	2	63	3	67	4	34
1	$\overline{y}_{1.} = 63$	2	$\overline{y}_{2.} = 57.8$	3	$\overline{y}_{3.} = 65.2$	4	$\overline{y}_{4.} = 48.8$
1	$s_1 = 12.3$	2	$s_2 = 14.9$	3	$s_3 = 9.7$	4	$s_4 = 10.9$

Q: Is there evidence of a vitamin supplement effect?

```
proc glm ;
  class diet;
  model y=diet;
run;
```

```
The GLM Procedure
Class
            Levels Values
                      1 2 3 4
diet.
Dependent Variable: y
                           Sum of
Source
                 DF
                          Squares
                                   Mean Square F Value Pr > F
                 3 797.800000
Model
                                    265.933333
                                                  1.82
                                                        0.1836
Error
                16 2334.400000
                                    145.900000
Corrected Total
                 19
                      3132.200000
```

But calorie intake z was measured of	concomitantly:
--	----------------

Diet	У	Z									
1	48	350	2	65	400	3	79	510	4	59	530
1	67	440	2	49	450	3	52	410	4	50	520
1	78	440	2	37	370	3	63	470	4	59	520
1	69	510	2	73	530	3	65	470	4	42	510
1	53	470	2	63	420	3	67	480	4	34	430

Q: How and why could these new data be incorporated into analysis?

A: ANCOVA can be used to reduce unexplained variation.

Model, given z_i ,

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_z z_i + E_i$$
 for $i = 1, \dots, 20$

where x_{ij} is an indicator variable for subject *i* receiving vitamin supplement *j*:

$$x_{ij} = \begin{cases} 1 & \text{subject } i \text{ receives supplement } j \\ 0 & \text{else} \end{cases}$$

and errors $E_i \stackrel{iid}{\sim} N(0, \sigma^2)$.

Exercise: specify the parametric mean weight gain for the first subject in each treatment group, conditional on their caloric intakes.

Exercise

$$E(Y_1) = ?$$

$$E(Y_6) = ?$$

$$E(Y_{11}) = ?$$

$$E(Y_{16}) = ?$$

Proceeding with MLR analysis of this general linear model:

```
The GLM Procedure
                         Class Level Information
                                   Levels
                                             Values
                                             1 2 3 4
                    diet.
Dependent Variable: y
                                    Sum of
Source
                                    Squares
                                              Mean Square F Value Pr > F
Model
                               1951.680373
                                              487.920093
                                                              6 20 0 0038
Error
                               1180.519627
                                               78 701308
Corrected Total
                           19
                               3132 200000
            R-Square
                        Coeff Var
                                       Root MSE
                                                       v Mean
            0.623102
                         15 11308
                                        8.871376
                                                      58.70000
Source
                           DF
                                 Type I SS
                                             Mean Square F Value Pr > F
diet
                           3
                                797.800000 265.933333
                                                              3.38 0.0463
                               1153.880373 1153.880373 14.66 0.0016
Source
                           DF
                               Type III SS Mean Square F Value Pr > F
diet
                           3
                               1537.071659 512.357220
                                                              6.51
                                                                    0.0049
                               1153 880373
                                             1153 880373
                                                          14 66 0 0016
```

To test for a diet effect: $H_0: \beta_1=\beta_2=\beta_3=0$, use the type III F-ratio, on 3 and 15 numerator and denominator degrees of freedom. (Note that this is a comparison of nested models.)

Q: Conclusion?

FYI: model was fit with the following code:

```
proc glm;
  class diet;
  model y=diet z;
  means diet;
  lsmeans diet/stderr;
run;
```

NOTE: the drop in $\sqrt{\textit{MSE}}$ (was $\hat{\sigma} \approx 12g$ is $\hat{\sigma} \approx 9g$)

Adjusted and unadjusted means

Recall the sample mean weight gains for the four diets (generated by the means diet; statement in proc glm):

		Т	he GLM Procedu	re	
Level	of	у		z	
diet	N	Mean	Std Dev	Mean	Std Dev
1	5	63.0000000	12.2678441	442.000000	58.9067059
2	5	57.8000000	14.8727940	434.000000	61.0737259
3	5	65.2000000	9.6540147	468.000000	36.3318042
4	5	48.8000000	10.8949530	502.000000	40.8656335

These means y are computed without taking z into account, so they are called _____ means.

Unadjusted means do not make any adjustment for the facts that

- caloric intake may vary by diet (presumably by chance, not because of diet)
- 2 weight gain depends on caloric intake

Adjusted means

Adjusted means are estimated mean weight gains at a common reference value (sample mean, \bar{z}) of the covariate, z.

Here, $\bar{z} = (442 + 434 + 468 + 502)/4 = 461.5$. The adjusted means are then just

$$\bar{y}_{1,a} = \hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_z (461.5)$$

$$\bar{y}_{2,a} = \hat{\beta}_0 + \hat{\beta}_2 + \hat{\beta}_z (461.5)$$

$$\bar{y}_{3,a} = \hat{\beta}_0 + \hat{\beta}_3 + \hat{\beta}_z(461.5)$$

$$\bar{y}_{4,a} = \hat{\beta}_0 + \hat{\beta}_z(461.5)$$

"means adjusted to the average calorie intake, $\overline{z} = 461.5$ "

SOLUTION option in MODEL statement of PROC GLM produces (nonuniquely estimable) parameter estimates that correspond to parameterization with diet 4 effect set to 0:

Paramet	er	Estimate		Standard Error	t Value	Pr > t
Interce diet	1	-35.66310108 24.29519136	В	22.41252629 6.19932022	-1.59 3.92	0.1324 0.0014
diet	2	20.44121688	В	6.35678835	3.22	0.0058
diet	3	22.12060844	В	5.80625371	3.81	0.0017
diet	4	0.0000000	В			
z		0.16825319		0.04394140	3.83	0.0016

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Substitution of $\hat{\beta}$ into the expressions for adjusted means yields

$$\bar{y}_{1,a} = -35.7 + 24.3 + 0.17(461.5) = 66.3$$
 $\bar{y}_{2,a} = -35.7 + 20.4 + 0.17(461.5) = 62.4$
 $\bar{y}_{3,a} = -35.7 + 22.1 + 0.17(461.5) = 64.1$
 $\bar{y}_{4,a} = -35.7 + +0.17(461.5) = 42.0$

Standard errors of $\bar{y}_{j,a}$

Consider $\bar{y}_{2,a}$. What vector c is needed so that $c'\hat{\beta} = \bar{y}_{2,a}$?

What is the standard error of $c'\hat{\beta}$?

To get SAS to produce the adjusted means and estimated standard errors, use an LSMEANS statement for the factor diet and a STDERR option:

The GLM Procedure Least Squares Means									
diet	Standard diet y LSMEAN Error Pr > t								
1	66.2809372	4.0588750	<.0001						
2	62.4269627	4.1473443	<.0001						
3	64.1063543	3.9776677	<.0001						
4	41.9857458	4.3482563	<.0001						

Concerns:

Aside from the usual residual-based checks for model adequacy, does treatment affect the covariate? To check this, one could carry out a one-way ANOVA treating z as a response variable and check for a diet effect on the mean of z:

		The GLM Proc	edure		
Dependent Variable: z					
		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr >
Model (diet)	3	14095.00000	4698.33333	1.84	0.179
Error	16	40760.00000	2547.50000		
Corrected Total	19	54855.00000			

A: No evidence that treatment affects covariate.

Q: Among the diets, which we've concluded are different, what are the differences? (Look at the means, have a guess.)

Q: If you are a lab animal and you want to gain weight, which diet(s) would you choose?

Q: Why are the standard errors for the adjusted means different?

Q: Which adjusted means require the most adjustment?

Vitamin supplement ANCOVA


```
vitsupp.dat <- read.table("vitsupp.txt",header=TRUE)</pre>
vitsupp.dat$z <- 10*vitsupp.dat$z
pdf(file="vitsupp1.pdf")
par(cex=1.2)
attach(vitsupp.dat)
plot(z,y,pch=Diet,main="Vitamin supplement ANCOVA",xlab="z: calories",
     vlab="v: grams", xlim=c(330,550), vlim=c(30,90))
legend(330,90,legend=c("Diet 1","Diet 2","Diet 3","Diet 4"),pch=1:4,
     ltv=1:4.lwd=2)
vitsupp.fit <- lm(y~as.factor(Diet)+z)</pre>
betahat <- coef(vitsupp.fit)</pre>
abline(betahat[1],betahat[5],lwd=2)
abline(sum(betahat[1:2]),betahat[5],lwd=2,lty=2)
abline (sum (betahat [c(1,3)]), betahat [5], 1wd=2, 1ty=3)
abline (sum (betahat [c(1,4)]), betahat [5], lwd=2, lty=4)
```

dev.off()