Page	No.		
Date	,		

poisson Probability distribution
The poisson Probability distribution is often
The poisson Probability distribution is often used to model random arrivals in waiting
line situations.
- A discrete random of variable is often uselv) in estimating the number of occurance over a specified interval of time or space.
in Estimating the number of occurance
over a specified interval of time or space.
Properties of a Poisson Experiment
1. The Porobability of an Occurrence is the Same for any two interval of equal length
Same for any two interval of equal length
2. The occurrence of non occurrence in any
non occupence in any other interval
non occurrence in any other Interval
Poisson probability function
$f(x) = \frac{u^2(e^{-4x})}{x!}$
χ !

Page	No.	:		
Date				

89)	consider a posssion distorbation with a mean of two occurrence per time period.
	of two occurrence is now penda,
	-> Given: le = 2 per time period.
	Durite the appropriate Possion Probability
	f(x) = 42'e-4
	X!
	x -2
	$= \frac{2^{x}e^{-2}}{x!}$
	χ'
	B) 1/1 t is apposited a sheet of Danners
	(b) What is expected number of occurrences
	-> Expected no. of occurrence in there
	tire Persiods 13 6.
	Dunite the appropriate poisson probability function to determine the probability of x occurrence in three time periods.
	function to determine the probability of
	X occurrence in three time periods.
	A - A - A - A - A - A - A - A - A - A -
	$\Rightarrow f(x) = b^{2}e^{-b}$
	St >6

Page	No.	:	
Date			

O compute the probability of two occurance in one time period.

7 Given: 451 X22

 $f(2) = 2^{\frac{1}{2}} = \frac{10.1353}{2} = 0.2706$

Compute the probability of six occurance in three time geniods.

-> Given: For Three time periods 426

A(0) = \$ e^-6 - 46856 (0.0025) = 0.1606 6! 720

De Compute the probability of fine occurance intwo time periods.

7 Given: 424 X25

 $f(s) = 4^{5}e^{-4} = 1024(0.0183) - 0.1863$

Page	No.	*	
Date			

Phone Calls armive at the sate of his per hour at the reservation desk for Regional
Nirways.
-> Given: 4= 48 per hour.
alls in a 5 minute interval of sime. -> for 5-minutes M=h
$f(3) = \frac{3}{3!} = \frac{64(0.0183)}{6} = 0.1952$
3!
B) Co Dicto Ha D A I CICI. of social and and H
6) Compute the probability of receiving exactly
7) for 15 minutes 112 2 2 10
X 2 10
$f(10) = 12^{10} e^{-12} = 0.1048$
to suppose no rates a
@ for 5-minutes 12=4
which means Regional Nixways deceive
h Calls every 5-minutes
if the against 11 C , does to a good
If the agent takes 5-minutes to complete the current Calls nests 3 callers are
Figure 20, Salest Floridae ©

Page	No.:		
Date			

in waiting. So 36 callers and washing per hour Probability that none will be vaiting 220 424 f(0) = h° e 7 = 0.0183 @ for 3-minute h=2-4 Probability for personal time without being interpted by a call. $f(0) = 2.40 e^{-2.7} = 0.0907/$

Page	No.	*	
Date :			

(m3)	Midline passengers agrive randomly and
	independently at the passenger gereening
	facility at a major international girport.
	The mean arrival gate is to passengers per
	minute.
	> Given: 11 = 10 per minute.
	@ de=10 perminute.

$$f(2) = 10^{2} e^{-10} = 0.0023$$

$$f(3) = 10^{3} e^{-10} = 0.0076$$

$$P(x(\zeta_3) = f(0) + f(0) + f(2) + f(3)$$

= 0.00000454+ 0.000454+ 0.0023+
0.0076
 $P(x(\zeta_3) = 0.0104$

1	Page	No.:
-	Date	:

@ for 18-seconds 12-205

f(0) = 2-5° e⁻²⁻⁵ = 0-0821/

12 (x(Z1) = 1 - f(0)

= 1-0.0821

P(x 71) = 0.9179/

