

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Centre de la Imatge i la Tecnologia Multimèdia

Central Perspective Imaging Model

Julen Cayero

What is the representation of p on the camera plane?

What is the representation of p on the camera plane?

What is the representation of p on the camera plane?

What is the representation of p on the camera plane?

Thales theorem or similar triangles says that

$$\frac{X}{Z} = \frac{x}{f}; \quad \frac{Y}{Z} = \frac{y}{f}$$

Which implies that

$$^{cp}\boldsymbol{p} = \begin{pmatrix} \frac{X}{Z}f \\ \frac{Y}{Z}f \end{pmatrix}$$

Perspective transformation

$$^{cp}\mathbf{p} = \begin{pmatrix} \frac{X}{Z}f\\ \frac{Y}{Z}f \end{pmatrix}$$
 is a transformation, known as perspective transformation which has the next properties:

- Is a mapping from 3-dimensional space to 2-dimensional space
- Straight lines in the world are projected to straight lines in the camera plane
- Parallel lines in the world are translated to lines that intersect at a vanishing point*
- Conics (circles, ellipses, parabolas and hyperbolas) are translated to other conics.
- The transformation does not preserve angles between lines*
- The mapping in general has not a unique inverse. Since any point in the form ${}^{C}p = \begin{pmatrix} \lambda X \\ \lambda Y \\ \lambda Z \end{pmatrix}$ with different lambdas is mapped to the same ${}^{cp}p$

Exercises

Mock Exam

Exercise 4

Re-evaluation Exam

• Exercise 5

