

### KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

# Lösungsblätter zur Klausur

Robotik I: Einführung in die Robotik

am 16. März 2018, 14:00 – 15:00 Uhr

| Name:           | Vorname: |       | Matrikelnum | mer:      |
|-----------------|----------|-------|-------------|-----------|
|                 |          |       |             |           |
|                 |          |       |             |           |
|                 |          |       |             |           |
| Aufgabe 1       |          |       | von         | 4 Punkten |
| Aufgabe 2       |          |       | von         | 6 Punkten |
| Aufgabe 3       |          |       | von         | 8 Punkten |
| Aufgabe 4       |          |       | von         | 7 Punkten |
| Aufgabe 5       |          |       | von         | 6 Punkten |
| Aufgabe 6       |          |       | von         | 8 Punkten |
| Aufgabe 7       |          |       | von         | 6 Punkten |
|                 |          |       |             |           |
| Gesamtpunktzahl | :        |       |             |           |
|                 |          |       |             |           |
|                 |          | Note: |             |           |

2

## Aufgabe 1 Rotationen

1. RPY-Winkel von R:

2. Homogene Transformations matrix  ${}^{WKS}T_{OKS}$ :

3. Transformation von p in das Weltkoordinatensystem  $WKS\colon$ 

# Aufgabe 2 Kinematik

#### 1. DH-Parameter des Roboters:

| Gelenk | $	heta_i \ [^\circ]$ | $d_i \ [mm]$ | $a_i \ [mm]$ | $lpha_i$ [°] |
|--------|----------------------|--------------|--------------|--------------|
| G1     |                      |              |              |              |
| G2     |                      |              |              |              |
| G3     | $\theta_3$           | 0            | 160          | 0            |
| G4     |                      |              | 0            | 0            |

#### 2. Arbeitsraum:

### 3. DH-Parameter ungleich 0:

Name: Vorname: Matr.-Nr.: 4

## Aufgabe 3 Regelung

1. Vervollständigen Sie die Tabelle:

| Regelkreisgröße | Name          |
|-----------------|---------------|
| Block 1         |               |
| Block 2         |               |
| w               |               |
| $x_d$           |               |
| y               | Stellgröße    |
| x               |               |
| r               | Rückführgröße |
| z               |               |

2. Vervollständigen Sie das Blockschaltbild:



3. Gleichungen für den PI-Regler im Zeit und Frequenzbereich:

• 
$$u(t) =$$

• 
$$U(s) =$$

### Aufgabe 4 Bewegungsplanung

1.  $A^*$ -Schritte:

**Schritt 1:**  $O = \{7\}$   $C = \{\}$  g(7) = 0

$$C = \{\}$$

$$q(7) = 0$$

- Expandierter Knoten:
- Neues Closed Set:  $C = \{$

- Neues Open Set:

| Knoten | Kosten (g) | Heuristik (h) |
|--------|------------|---------------|
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |
|        |            |               |

}

}

Schritt 2: - Expandierter Knoten:

– Neues Closed Set:  $C = \{$ 

– Neues Open Set:

| Knoten | Kosten (g) |  |
|--------|------------|--|
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |
|        |            |  |

2. Manhattan-Distanz zulässige Heuristik in  $\mathbb{R}^2$ :

3. Heuristik für Dijkstra's Algorithmus:

$$h(x) =$$

4. Zwei Eigenschaften des bei zulässiger Heuristik:

1)

## Aufgabe 5 Greifplanung

1. (a) Projektion auf die  $(f_x, f_y)$ –Ebene:



(b) Projektion auf die  $(f_y,\tau)$ –Ebene:



2. Kraftgeschlossenheit:

## Aufgabe 6 Bildverarbeitung

1. Projektion des Szenenpunktes:

2. Ergebnis der Mittelwert-Filterung:

3. Ergebnis der Erosion:

### Aufgabe 7 Symbolisches Planen

1. Minimale Aktionssequenz:

2. Wieso keine negierten Prädikate benötigt?

3. Kann das modfizierte Planungsproblem gelöst werden?