Теоретическая информатика IV

15 февраля

Задачи с этого листочка — теоретический материал, который входит в программу экзамена.

- 1. Показать, что следующие функции являются примитивно рекурсивными:
 - (а) Все нульместные всюду определенные функции;
 - (b) f(x,y) = x + y;
 - (c) $f(x,y) = x \cdot y$;
 - (d) $f(x,y) = x^y$;

(e)
$$sg(x) = \begin{cases} 0, & x = 0, \\ 1, & x > 0; \end{cases}$$

(f)
$$\overline{\text{sg}(x)} = \begin{cases} 1, & x = 0, \\ 0, & x > 0; \end{cases}$$

(g)
$$f(x) = x - 1 = \begin{cases} 0, & x = 0, \\ x - 1, & x > 0; \end{cases}$$

(h)
$$f(x,y) = x - y = \begin{cases} 0, & x \le y, \\ x - y, & x > y; \end{cases}$$

(i)
$$f(x,y) = |x - y|$$
.

- 2. Доказать, что если функция $g(\overline{x},y)$ является ч.р.ф. (п.р.ф.), то функции $f(\overline{x},y) = \sum_{i=0}^{y} g(\overline{x},i)$ и $h(\overline{x},y) = \prod_{i=0}^{y} g(\overline{x},i)$ тоже являются ч.р.ф. (п.р.ф.).
- 3. Доказать, что если функции g и h примитивно рекурсивны и функция f получена из g и h с помощью ограниченной минимизации, то f тоже примитивно рекурсивна.
- 4. Доказать, что если отношения $P(\overline{x})$ и $Q(\overline{x})$ рекурсивны (примитивно рекурсивны), то отношения $P(x) \land Q(x), P(x) \lor Q(x), \neg P(x), P(x) \to Q(x)$ тоже общерекурсивны (примитивно рекурсивны).
- 5. Доказать, что бинарные отношения =, \neq , <, >, \leq , \geq являются примитивно рекурсивными.
- 6. Доказать, что если отношение $R(\overline{x},i)$ общерекурсивно (примитивно рекурсивно), то отношения $\exists i \leq y R(\overline{x},i), \, \forall i \leq y R(\overline{x},i), \, \exists i < y R(\overline{x},i), \, \forall i < y R(\overline{x},i)$ тоже общерекурсивны (примитивно рекурсивны).
- 7. Доказать, что:
 - (а) Функция $[\frac{x}{y}]$, равная целой части от частного $\frac{x}{y}$, примитивно рекурсивна (по определению считаем, что $[\frac{x}{0}]=x$).

- (b) Отношение $\mathrm{Div}(x,y)$, истинное тогда и только тогда, когда x делит y, примитивно рекурсивно.
- (c) Отношение Prime(x), истинное тогда и только тогда, когда x простое число, примитивно рекурсивно.
- 8. Показать, что следующие функции являются примитивно рекурсивными:
 - (a) $f(x) = p_x$, где $p_0 = 2, p_1 = 3, p_2 = 5, \dots$ перечисление всех простых чисел в порядке возрастания;
 - (b) ex(i, x), равная показателю степени p_i в каноническом разложении числа x на простые множители, является примитивно рекурсивной (здесь ex(i, 0) = 0).
- 9. Канторовская функция это примитивно рекурсивная функция

$$\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
,

определяемая как

$$\pi(x,y) := \frac{1}{2}(x+y)(x+y+1) + y.$$

- (a) Показать, что для всякого значения z существуют единственные x,y, такие что $z=\pi(x,y);$
- (b) Найти левые и правые обратные функции x(z), y(z);
- (с) Показать, что они примитивно рекурсивны.