Modeling Sleep Related Physiological Response Variables

Samuel Kwon

Background

Reference Paper: SaYoPillow: Blockchain Integrated Privacy Assured IoMT Framework for Stress Management Considering Sleeping Habits

- E-Textile pillow that measures sleep and physiological variables.
 - hours of sleep, snoring range (dB), respiration rate (bpm), heart rate (bpm), blood oxygen levels, eye movement rate (REM), limb movement rate, body temperature, and stress state
- Generated data will be utilized for machine learning to determine stress level.
 - Experimental data

Goal and Methods

- Explore dataset given and the nine measured variables
- Explore relationships between physiological variables
- Generate a linear regression model for respiration rate

Question: How does sleep related physiological variables relate to each other?

Methods:

- Criterion Based Selection Methods: AIC and BIC
- Multicollinearity: VIF and Condition Constant
- Linear regression model summary: Exploration of p-values

Initial Data Exploration

- Stress is a discrete variable
- hours of sleep, snoring range (dB), respiration rate (bpm), heart rate (bpm), blood oxygen levels, eye movement rate (REM), limb movement rate, and body temperature are continuous variables
- Nonlinearity present between some variables.
 - Stress is discontinuous (Step Function)
- Negative correlations present between some variables

Initial Attempt (General Linear Model)

- Poisson Regression and Binomial Regression
- Errors present cause of variable property

Respiration Model

- Normalized dataset
- Four predictors taken into consideration: Heart Rate, Eye Movement, Limb Movement Rate, and Snoring Range
- Linear Regression Assumptions
 - Linearity: Residuals V Fitted Plot
 - Independence: Durbin Watson Test (p value=0.234) thus no correlations present
 - Normality: QQ Plot
 - Constant Variance: Residuals V Fitted Plot
- General Model Summary
 - P-value of limb movement rate and snoring rate are greater than 0.05

Criterion Based Methods: AIC and BIC

AIC

- Should use three predictors. They are heart rate, limb movement rate, eye movement.
- P-value for limb movement rate is greater than 0.05

BIC

- Should use two predictors. They are heart rate and limb movement rate.
- P value for limb movement rate is greater than 0.05

Both models are insignificant and rely on limited variables.

Multicollinearity: VIF and Condition Number

VIF

 VIF for heart rate is 105.92, the snoring range is 28.44, the limb movement rate is 183.05, and the eye movement rate is 24.86

Condition Number (kappa)

Constant kappa is 25.60

AIC Adjusted and BIC Adjusted Models both have similar VIF and Kappa values.

Final Model

- Final model will have two predictors. They are heart rate and eye movement.
 - Eye movement p-value is less than 0.05
- VIF for heart rate is 8.01 and for eye movement is 8.01
- Constant kappa is 5.52
- Heavy reliance on heart rate (shown by strong linear relationship in pairs plot)

Conclusion and Discussion

- Multicollinearity still present
 - Heart rate and eye movement can be linear combinations of each other
- Model states an error: Regression fit is perfect and summary might be inaccurate
- Clear that all variables utilized in this model have some type of relationship.
 - Heart rate is a significant physiological variable that controls the body's response during sleep, it would be safe to say that the heart rate impacts eye movement, limb movement, and snoring range.
- Importance of thinking about how the variables might be related before performing linear regression
- Exploring and generating a model for stress.
 - Generate a stress variable that is not discrete but continuous.
 - Non parametric methods of modeling: Additive Modeling

Thank You

For any questions, please email

samkwon150@gmail.com