Monday, February	8,2021 2:08 PM Linear Earth/0~5 $AX = 5$
	Example 5 of 1-ea-Systems
	Optimization Problems
	* Quantum Mechanics (Hamiltonian Systems) -> H 4 = E4 - 2 7 (Coupled) 5pring Systems C
	(Coupled) Spring Systems (first-order) -> Tiz y = p F = ma Stochastic Processes Ay
	Stochastic Precesses A4
	Solution Meshods () Garss-Jurdan Elimination (2) LU decomposition (3) Matrix Inversion (4) SVD - Friday
	0 G.J. Elmnation Ax = 6
	A= (10 -7 1) b= (8) (1) (A/b) Augmented Makrix 5 -15 (2) take Inear combinations of rows to get upper-triangular form
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Rz (10-71/8) Rz (0-(63/64) Rz (0-(63/64) Rz (0-(63/64) Rz (0-(63/64)
May a town Precision. Keep rows w large $R_3 \rightarrow \frac{1}{324} \left(\frac{10}{324} - \frac{1}{324} \right) \left(\frac{10}{324} - \frac{1}{324} \right)$ Logs $R_3 \rightarrow \frac{1}{324} \left(\frac{10}{324} - \frac{1}{324} \right) \left(\frac{10}{324} - \frac{1}{324} \right)$ H X = #
$R_{i} \rightarrow \frac{1}{10} \left[R + 7R_{z} - R_{3} \right] \left(\begin{array}{c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \end{array} \right)$
$X = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$
DL-U decomposition
$A = L \cdot U$ $\begin{pmatrix} 10 & -7 & 1 \\ -3 & 2 & 6 \end{pmatrix} = \begin{pmatrix} 1_{11} & 0 & 0 \\ 1_{21} & 1_{22} & 0 \\ 1_{31} & 1_{32} & 1_{33} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ 0 & U_{22} & U_{23} \\ 0 & U_{33} \end{pmatrix}$
are a free choice (under-determined System)
$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
$der(A) = det(L \cdot u) = detL)det(u) = det(u) = T_1 u_1$

