PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-094124

(43)Date of publication of application: 07.04.1995

(51)Int.CI.

HO1J 31/12

(21)Applicat on number : 05-261936

(71)Applicant: YAMAHA CORP

(22)Date of filing:

25.09.1993

(72)Inventor: SUZUKI TOSHINAO

(54) DISPLAY DEVICE

(57)Abstrac:

PURPOSE: To provide a diode type display structure small in size, of low power and easy for manufacturing in a display de/ice having a field emission negative

el ctrode

CONSTITUTION. A number of negative electrode tips 10a are formed on a main surface of a substrate 10 and a positive electrode layer 18 is formed so as to surround those tips, while a phosphor layer 20 is formed on the positive electrode layer 18. A transparent plate 16 is provided on the main surface of the substrate 10 via spacers 22 in order to vacuum—seal the negative electrode tips 10a, the positive electrode layer 18, the phosphor layer 20 and the like. When a specified voltage is applied by a power source VA across the negative electrode tips 10a and the positive electrode layer 18, electrons are emitted by an electric field from the in gative electrode tips 10a. Emitted electrons are attracted by the positive electrode layer 18 to collide against the phosphor layer 20 to make it emit light.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of fine! disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of fin.il disposal for application]

[Patent nuniber]

[Date of registration]

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japan Patent Office

(19) 日本與明新庁 (JP) (12) 公開特許公報 (A)

庁内整理番号

(11)特許出職公開番号

特開平7-94124

(43)公開日 平成7年(1995)4月7日

(51) Int.Cl.⁶

識別記号

P1

技術表示國所

HO1J 31/12

В

香査請求 未請求 請求項の数3 FD (全 13 頁)

(21)出願署年

特赛平5-281936

(22) 山頭日

平成5年(1993)9月25日

(71)出版人 000004075

ヤマハ株式会社

备周渠浜松市中沢町10番1号

(72) 死明者 鈴木 利尚

静岡県武松市中沢町10番1 号ヤマハ株式会

社内

(74)代理人 弁理士 伊沢 敷昭

(54)【発明0.名称】 表示委員

(57) 【要約】

【目的】 自界放出陰極を有する表示装置において、小 型且つ低電人の製作容易な2個管型表示構造を実現す

【構成】 月板10の一方の主表面に多数の陰極チップ 101を形成すると共に、これらのチップを取囲むよう に陽極層1をを形成し、陽極層1との上には蛍光材層2 0を形成する。基板10の一方の主表面には、防極チッ プ10a、単極層18、蛍光材層20等を英空封止すべ くスペーサミ2を介して透明板16を設ける。陰極チッ ブ10 a と関極圏18との間に電源 Vx により所定の電 圧を印加すると、陰極チップ10aから電界により電子 が放出される。放出電子は、脇極層18に引き寄せら れ、蛍光材度20に衝突し、これを発光させる。

(2)

特別平7-94124

【特許請決い範囲】

【調水項1】基板と、

この系板の一方の主要而に形成された陰極であって、電 界により電子を放出可能なものと、

1

削記基板の一方の主表面において削記陰極に電界を及ぼ すべくその正傍に設けられた陽極と、

この陽極の上に形成された蛍光材層と、

前記陰極、正記陽極及び前記蛍光材層を真空封止する封 止手段であって、前記基板の一方の主表面に向かって前 記蛍光材層を透視可能に構成されたものとを備えた表示 10 【0004】透明板16は、陰極チップ10gを其空封 灰霞。

【訪永坂と】巫板と、

この基板の一方の主表面に形成された陰極であって、電 界により電子を放出可能なものと、

前記基板の・方の主表面において前記陰極に電界を及ぼ すべく前記記板上に積層された陽極と、

この陽極の抑部の少なくとも 部を覆うように前記器極 上に積層された蛍光材層と、

前記陸極、fi記陽極および前記蛍光材層を英空封止する 前記蛍光材刷を透視可能に構成されたものとを備えた表 示装置。

【請水頂3】基板と、

この基板の一方の主表面上に鋭い頂点を有する形状に形 成された陰極であって、理界により電子を放出可能なも ひと、

前記基板の一方の主表面において前記陰極に電界を及ば すべく設けられた陽極であって、前記基板上に前記陰極 を取り囲むように且つ前記陰極に対応した位置に開孔部 を有するように形成されたものと、

前記陽極の対部の少なくとも一部を覆うように前記陽極 上に積層された蛍光材層と、

所記除極、引記陽極および前記蛍光材層を真空封止する 對止手段であって、前記基板の一方の主義面に向かって 前記蛍光材料を透視可能に構成されたものとを備えた変

【発明の詳細な説明】

[0001]

【正業上の利用分野】この発明は、電界放出陰極を有す る表示装置に関し、特に蛍光材層を堆積した陽極を基板 上で陰極近低に配置したことにより小型且つ低電力の製 作容易な2机管型表示構造を実現したものである。

[0002]

【従来の技行】従来、電界放出陰極を有する表示装置と しては、図:5,5%に示すような3極管型表示構造の ものが知られている(図55の姿置については「電子材 料」199 年1月号第35貝又は第40回応用物理学 関係連合講社会予稿集No. 2第526月29a-52 E-17等を参照、図56の装置については特開平2-46636行公報等を参照)。

【U003】図55において、例えば半導体からなる店 板 10の一方の主要面には絶縁膜12が形成されると共 に、絶縁膜12の複数の孔内にはそれぞれ電界放出電子 歴としての陰極チップ10aが形成されている。 通常、 陰極チップ103は1画素当り100個程度設けられ、 チップ毎の電流変動や特性は6つきを発展するようにな - つている。 絶縁膜12の上にはゲート電極層14が設け られ、ゲート電極層14において陸極チップ10aに対 向する部分には孔が形成されている。

止すべくスペーサ22を介して基板10の一方の主表面 に設けられたもので、透明板16において基板10に対 向する面には陽極層18が形成されると共に、陽極層1 8を覆って蛍光材屑20が形成されている。

【0005】グート運樫層14と陰極チップ10gとの 間に電源Va により比較的低い常圧(例えば100

[V]) を印加すると、陰極チップ1Uaの先端が鋭く とがっていて、しかもゲート電磁層14との距離が知い ため質界の作用により陰極チップ10 a から真空中に電 對止手段であって、前記基板の一方の主表面に向かって 20 子が放出される。この場合、腸極層18と感極チップ1 Oaとの間に電源Vx により比較的高い電圧 (例えば2) 00 [V]) を印加しておくと、陰極チップ10 a から 放出された電子は、正電位に引かれて蛍光材度20に衝 突し、これを発光させる。

> 【0006】画像表示装置を構成する場合は、多数の陰 極ラインと多数の陽極ラインとをマトリクス状に配列す ると共にマトリクスの各交点毎に図55に示したような 多数の陰極チップを含む画案を構成することによりいわ ゆるドットマトリクス型の表示構造にするのが通例であ 30 ろ。

【0007】図56において、例えば絶縁体からなる基 板10の一方の主表面には陰極配線層32を介して絶縁 膜34か形成されると共に、絶縁膜34の上には接続孔 を介して配線層32につながるように陰極層36が形成 されている。陰極層36は、図57に平面パターンの 例を示すように両側に多数の突起が形成されている。絶 縁膜34の上には、陰極層36を取団むようにゲート電 極層38が設けられており、絶縁膜34には、陰極層3 6とゲート電極届38との間に凹部が形成されている。

40 【0008】 基板10の一方の土表面側には、図55で 述べたと同様にしてቈ極層18及び蛍光材層20を有す る透明板16が設けられ、基板10との間の空間を真空 に維持している。

【0009】図56,57の表示装置は、陰極を縦方向 ではなく横方向にとからせた点で図55の装置と異なる ものである。ゲート電極層38と陰極層36との間に電 源Vc により所定の電圧を印加すると、险極層36から 放出された電子の照射によりゲート電極層38から破線 矢印で示すように2次配子が放出される。このとき、陽 50 極層18と陰極層36との間に電源V_Λにより比較的高

(3)

特開半7-94124

い電圧を印加しておくと、放出されたと大電子は、正の 電位に引かれて蛍光材層20に衝突し、これを発光させ

[0010]

【会明が解決しようとする課題】上記した従来の表示装置によると、2つの電源VA、Vi. が必要であり、しかも電源VAの電圧は、ゲートー場種間の簡陽が数10 [μm]以上必要なため陰極チップ又は陰極層から電子を放出させるためには電源Vcに比べ相当に高く設定する必要がある。また、蛍光材屑20の発光面を層20を通して反対側から観察する構成であるため輝度の低下が大きく、ことような輝度の低下を補うためにも電源VAの電圧をある程度高く設定する必要がある。従って、低電圧化乃至返電力化を選成するのが困難である。

【0011】その上、除極チップ103又はゲート電極 商38からが出された電子が蛍光材層20に達するまで に真空中でががり、となりの画素と下歩するおそれがあ るため、となり合う画素間の関隔を干渉が生じない程度 に大きくする必要がある。従って、表示而の小型化力至 高精細化を対成するのが困難である。

【0012】さらに、スペーサ22を用いて基板10と 透明板16との間隔を構度よく調整する必要がある。特 に、フルカラー化のために蛍光材をR. G. Bの3程類 用窓した場合には、系板10と透明板16との間隔を構 密に調整する必要がある。従って、表示装置を振留りよ く製作する0 か困難である。

【0013】この発明の月的は、小型且つ低電力の製作 容易な2極能型表示構造を有する新規な表示装置を提供 することにある。

[0014]

【課題を解むするための手段】この発明に係る表示装置は、系板と、この基板の一方の主要面に形成された陰極であって、貧界により電子を放出可能なものと、前記基板の一方の主要面において前記陰極に電界を及ぼすべくその近傍に配けられた陽極と、この陽極の上に形成された拡光材層と、前記陰極、前記陽極及び前記蛍光材層を異で封止する対止手段であって、前記系板の一方の主要面に向かって前記弦光材層を透視可能に構成されたものとを備えたものである。

[0015]

【作用】この発明の構成によれば、陽極と陰極との間に 所定の確圧も印加すると、陰極から離界により電子が放 出される。4 して、放出電子は、陽極に引き寄せられ、 陽極上の電)材層に衝突し、これを発光させる。

[0016]

【実施例】 111は、この免明の一実施例に係る表示装置

を示すものである。

【0017】例えばらに等の半導体からなる基板10の一方の主表面には5.0。等の絶縁膜12が形成されると共に、絶縁膜12の複数の孔21内にはそれぞれ電界放出電子線としての陰塩チップ10aが図2に示すような平面配置で形成されている。陰極チップ10aは、鋭い頂点を有していれば、円錐型であっても、三角錐、四角錯等の多角観型であってもよい。陰極チップ10aには最極層18が横層して形成されている。陰極層18には、各陰極チップ10aの近傍で陰極チップ10aを取開むような開孔部が形成されている。陽極層18のよには蛍光材層20が積層して形成されている。また、蛍光材層20には陰極チップ10aの近傍で陰極チップ10aを取開むような開孔部が形成されている。また、蛍光材層20には陰極チップ10aの近傍で陰極チップ10aを取囲むような開孔部が形成されてい

【0018】透明板16は、陰極チップ10a、出光材 層20及びその下の陽極層部分を真空封止すべくスペー サ22を介して基板10の一方の主表面に設けられたも のである。透明板16において基板10に対向する面に は電極、出光材層等が設けられていないから、基板10 に対して透明板16を装者するときは間隔調整に高精度 を要求されない。

【0019】 一例として、陰極チップ10a間の距離3 は、7.5 [μm]、孔21の開口直径dは、4 |μ m]、蛍光材層20の厚さιは、1 [μm] とすること ができる。従って、蛍光材層20と陰極チップ10aと の距離は、ほぼ2 [μm] となり、開口半径とほぼ等し い。蛍光材層20は、所型の発光効率が得られるように 30 厚くするとよい。

【0020】陽極層18と陰極チップ10aとの間に電源VAにより所定の電圧を印加すると、破源矢印で示すように陰極チップ10aから電子が放出される。そして、放出電子は、陰極チップ近傍の陽極層部分に引き寄せられ、その上の蛍光材層20に衝突し、これを発光させる。

【0021】図3は、上記のような表が装置における陽極電圧・陽極電流科性の一例を示すものである。図3によれば、陽極電圧を制御することで電子放出をオンノオフ制御可能であることがわかる。

【0022】次の変1は、各種蛍光材の発光特性を示す ものであり、図4は、各種蛍光材の加速適助:一球度特性 を示すものである。

[0023]

【夜1】

(4)

特開平7-94124

蛍光材	色調	しきい 値電圧 (V)	Vp = 30V		発光効率
			Br (ft – L.)	lp (mA∕c m²)	(lm/W)
(ZnCd) S: Ag + In _z O _z	赤	4	58	0.5	0.88
ZnO : Zn	育緑	2	465	1.0	6.0
ZnS: AuAl + In ₂ O ₃	黄緑	4	80	1.0	1.2
ZnS: Ag + In ₂ O ₅	青	8	16	0.7	0.26
SnOz : Eu	橙	4	37	0.3	0.56

表1及び図らによれば、肖を除く各種蛍光材は、50 [V] 程度で実用解度を示すことがわかる。従って、陽 極層18上に蛍光材層20を堆積しておくことで放出電子により容易に発光させることができる。

【0024】図1の表示装置は、2極管構造であるため、構造が簡単であり、対向電極も不要であるため製作しやすい。また、確原は、1つで足り、比較的低い電圧でよいので、低電力化が可能である。さらに、電子がとなりの画素まで飛ぶ確率は非常に小さいので、ホトリングラフィ技術の構度で高精細化が可能である。さらにまた、透明板16側からは、宝光材磨20を介きずに層20の発光面を透視することができるので、輝度の低下が少なく、低音圧でも明るい面面を実現することができる。

【0025】図5は、図1に示したような2極管型表示 構造を用いてドットマトリクス型の画像表示装置を構成 する例をがすものである。

【0026】 基板10上には、多数n個のデークラインD. へDn と、多数m個の走在ラインS1~S-とがマトリクス状に配列され、マトリクスの各交点毎に図1に示したような陰極チップを100個程度含む画素PEが形成される。データラインD1~Dnは、図1の陰極チップ10aにつながる陰極配線層に相当する。

【0027】図1の装置においては、半導体基板10の 表面に導理3 決定不純物を選択的に拡散して基板10と の間にPN1合 Jを定めるように不純物拡散領域を形成 し、この小*物拡散領域を陰極配線層として用いること ができる。この場合、陰極配線層(走査ライン)間は、 逆方向にバイアスされた状態のPN接合により電気的に 分階される。

【0028】図5の装置において、所望の画素PEを発光させるには、該画素に関連したデータライン(例えば D_1)と定義ライン(例えば S_1)との向に電源 V_A により所定の制圧を印加すればよい。

【0029】図6は、図5の装置の駆動回路を示すもので、この回路では、D1~Dnの各データラインがスイッチ素子により重位Vo又はVo/3に切換えられると共に、S1~Suの各定至ラインがスイッチ素子以により電位2Vo/3又は接地器位に切換えられるようになっている。ここで、電位Voは、図3に示したような電圧一電流特性において、電流が立ち上がりを開始するしさい値電圧より高い所定の電圧に相当するものである。

【0030】画像表示にあたっては、走査ラインS、へ Sm を例えば左から右に順次に且つ反復的に接地電位に 切換えることにより走査が行なわれると共に、このよう な走査に同期してデータラインD、へ D. のうち発光す べき画案に関連したものを電位 Vo とし且つ他のものを 電位 Vo / 3とする。国示のように、走査ラインS・に 接地電位が与えられるタイミングでデータラインD・に 電位 Vo が与えられると、ラインS・及びD・の交点の 画素 P Eが発光する。なお、国 3に示したような電圧一 電流特性において、電流の立ち上がりが急峻であれば、図6の Vo / 3、2 Vo / 3は、いずれも Vo / 2にすることができる。

【0031】図7~12は、この発明に係る表示装置を構成する電界放出電子原及び電界放出電子原 (陸極) と 陽極と蛍光材とからなる発光素子の第1の製法を示すも 40 のである。

【0032】図7のT程では、例えばSiからなる系板 10の一方の主表面にSiOoからなるマスク40を形成する。そして、図8の工程では、マスク40を用いる 異方性エッチングにより基板表面を選択的にエッチング して陰極チップ10aを形成する。

【0033】 次に、図9の工程では、基板表面を終験化 して3:02 膜42を形成する。そして、図10の工程 では、基板上面に絶縁材及び電極材を順次に蒸者して絶 縁期12及び陽極層18を順次に形成する。さらに、図 90 11の工程では、基板上面に蛍光材を蒸着することによ (5)

将開平7-94124

り陽極層18上に出光材層20を形成する。絶縁膜 1 2、腸極層18及び蛍光材層20の積層には、順次の落 滑によりマスク40に対応した孔21が形成される。

【0034】この後、図12の工程では、SiOoのエッチング処理を行なうことによりマスク40を除去すると共にSiOz 版42を孔21内にて除去する。この結果、マスク40上の絶縁材、電極材及び強光材が除上されると共に、陰極チップ10aが終呈された状態となる。陰極チップ10aから放出される電子は、矢印で示すように蛍光材層20に衝突し、これを発光させる。

【0035】図13~15は、この発明に係る表示装置を構成する電界放出電子原及び電界放出電子原(陰極)と陽極と蛍光材とからなる発光素子の第2の製法を示すものである。

【0036】図13の工程は、図9の工程に続く工程であり、図10で述べたと同様に絶縁膜12及び陽極層18を順次に形成する。 絶縁膜12及び陽極層18の積層には、順次の蒸着によりマスク40に対応した孔21が形成される。

【0037】次に、図14の工程では、SiO2のエッチング処理を行なうことによりマスク40を除去すると共にSiO2 展42を孔21内にて除むする。この結果、マスク40上の絶縁材及び電極材が除去されると共に、陰極チェブ10aが露呈された状態となる。

【0038】この後、図15の工程では、巫板上面に対して破線矢印で示すように斜め方向から蛍光材を添着することにより一部が孔21の開口部において露出している陽極層18上に形別する。除極チップ10aから放出される電子は、実線を印で示すように蛍光材層20に衝突し、これを発光させる。

【0039】第2の製法による発光素子にあっては、生 光材層20m 陰極チップ10mに一層近づくことになる ため、蛍光を層20に衝突する電子の製が増加すると共 に発光の輝度を上げることが可能となる。

【0040】図16~20は、この発明に係る表示装置を構成する資界放出電子原及び電界放出電子原(陰極)と関極と蛍光材とからなる発光素子の第3の製法を示すものである。

【0041】図16の工程では、図7、8で述べたと同様にして基準10の一方の主要面に陰極チップ10aを形成する。そして、図17の工程では、基板上面に絶縁材及び電極をを順次にスパッタリングすることにより記録膜12及び陽極層18を順次に形成する。このとき、絶縁膜12岁び陽極層18の積層は、陰極チップ10aに対応したも分か隆起した形になる。

【0042】次に、図18の工程では、基板上面に蛍光材をスパッタリングすることにより蛍光材層20を陽極層18上に形成する。このとき、蛍光材層20は、陰極チップ108に対応した部分が隆起した形になる。

【0043】次に、国19の工程では、基板上面にボリイミド樹脂を平現状に被者した後、樹脂層44を蛍光材層20の隆起部分が露呈するまでエッチバックし、樹脂層44を該隆起部分の周囲に残存させる。

【0044】この後、図20の工程では、役存する樹脂層44をマスクとして東光材層20、陽極層18及び絶縁吸12を順次に選択的にエッチングすることにより陰極チップ10aを露呈させる。この後は、樹脂層44を除去する。陰極チップ10aから放出される電子は、矢10 印で示すように蛍光材層20に衝突し、これを発光させる。

【0045】図21~23は、この免明に係る姿示装置を構成する電界放出電子原及び電界放出電子原(陰極) と陽極と蛍光材とからなる発光索子の第4の製法を示す ものである。

【0046】国21の工程では、水晶等からなる絶縁性の基板10の一方の主表面にW(タンクステン)等の電極材を被着した後、その電極材層をレジスト層46a、46bをマスクとしてパターニングすることにより陰極20層36a、36bを形成する。そして、陰極層36a及びレジスト層46aの積層と、陰極層36b及びレジスト層46bの積層とをマスクとして基板表面を選択的にエッテングすることにより突出部11a、11bを形成する。この後、基板上面に電極材を蒸着して陽極層18を形成する。

【0047】次に、図22の工程では、レジスト層46 a、46bをその上の電極材と共に除去する。そして、 系板10上に残存する陽極層18を適宜バターニングす る。さらに、陰極層36a、36bにおいて陽極層18 30 に対向する部分を価値状等にバターニングする。

【0048】この後、図23の工程では、基板上面に金 光材を蒸着した後、その蛍光材層の不要部を除去するこ とにより蛍光材層20を陽極層18及び陰極層36a、 36bの上に形成する。陰極層36a、36b上の蛍光 材層20は、除去してもよい。陰極層36a、36bか 6放出される電子は、矢印で示すように蛍光材層20に 衝突し、これを発光させる。

【0049】図24~27は、この発明に係る表示装置を構成する電界放出電子源及び電界放出電子源(陰極) も関極と流光材とからなる発光素子の第5の製法を示す ものである。

【0050】図24の工程では、水晶等からなる絶縁性の系板10の一方の主表面にW等の電極材を被者した後、その電極材層をレジスト層46をマスクとしてバターニングすることにより陰極層36を形成する。そして、陰極層36及びレジスト層46の積層をマスクとして基板表面を選択的にエッチングすることにより突出部11を形成する。

【0051】次に、図25の工程では、基板上面に電極 30 材を蒸着して陽極層18を形成する。そして、図26の (0)

特朗平7-94124

工程では、基板上面に蛍光材を蒸着して蛍光材層20を 腸極層18上に形成する。

【0052】この後、図27の工程では、レジスト層46をその上の関係材及び蛍光材と共に除去する。 腔極層36において陽極層18に対向する部分を樹歯状等にパターニングしてもよい。 陰極層36から放出される電子は、矢印で示すように蛍光材層20に衝突し、これを発光させる。

【0053】図28~33は、この発明に係ろ表示装置を構成する部界放出電子原及び電界放出電子原(陰極) と関極と蛍光材とからなる発光素子の第6の製法を示す ものである。

【0054】図28の工程では、Siからなる基板10の一方の土ま面にSin Niからなるマスク48a, 48bを形成した後、マスク48a, 48bを用いる異方性エッチンクにより基板装面を避択的にエッチングすることにより9山部11A, 11Bを形成する。そして、図29の工程では、マスク48a, 48bを用いて基板表面を選択的に無酸化することによりSiOz膜42を形成する。SiOz 版42は、後述の陽極層18を垂板10から電気的に分離するためのものである。

【0055】次に、図30の工程では、基板上面に電極材及び蛍光を版次に蒸着して陽極層18及び蛍光材層20を形成する。そして、図31の工程では、マスク48a、48bをその上の蛍光材と共に除去し、突出部11A、11Eの上端部を鶴草させる。

【0056】次に、図32の工程では、斜め蒸者処理により次出部11A, 11Bの上端部に陰極層38a, 36bを形成する。そして、図33の工程では、陰極層36a, 36bと陽極層18と蚩光材層20とをマスクとする選択エッチング処理により5;0。 腺42を突出部11A, 11Bの周辺部にて除去する。 陰極層36a, 36bから見出される電子は、矢印で示すように蛍光材層20に衝突し、これを発光させる。

【0057】図34~40は、この発明に係る表示装置を構成する電界放出電子線及び電界放出電子線(陰極)と陽極と蛍光材とからなる発光素子の第7の製法を示すものである。

【0058】図34の工程では、絶縁性の基板10の一方の主表面に陰極層36、絶縁膜50及びレジスト層52を順次に形成する。そして、図35の工程では、レジスト層52をマスクとする選択エッチング処理により絶縁膜50をスクとする選択に、レジス1層52及び絶縁膜50をマスクとする選択エッチングにより陰極層36をパターニングする。

【0059】次に、図37の工程では、レジスト層5 2、絶縁膜50及び陰極層36をマスクとする選択エッチング処理により基板10の表面に凹部Rを設ける。そして、図38の工程では、基板上面に電極材を蒸着して 陽極層18を凹部R内に形成する。 【0060】この後、図39の工程では、レジスト層52をその上の電極材と共に除去し、絶縁膜50を調量させる。そして、図40の工程では、基板上回に蛍光材を蒸着することにより蛍光材層20を陽極層18及び絶縁膜50の上に形成する。この際に腔極層36と対向する陽極層18の端部の一部を覆うように蛍光材層20を形成する。絶縁膜50上の蛍光材層20は、除去してもよい。陰極層36から放出される電子は、矢印で示すように蛍光材層20に衝突し、これを発光させる。

「【0061】第7の製法による発光索子にあっては、陽 極層18上の蛍光材層20が陰極層36に一層近つくことになるため、蛍光材層20に衝突する電子の数が増加 すると共に発光の郵度を上げることが可能となる。

【0062】図41~45は、この免明に係る及ぶ装置を構成する電界放出電子源及び電界放出電子源(陰極) と陽極と蛍光材とからなる発光素子の第8の製法を示す ものである。

【UU 63】図41の工程では、Siからなる馬板10の一方の主装面に金属を蒸煮して陰極層36を形成した20後、その上にSiO2からなるマスク54を形成する。そして、図42の工程では、マスク54を用いる延択エッチングにより陰極層36をバターニングする。

【0064】次に、図43の工程では、マスク54を用いる異方性エッチングにより基板表面を選択的にエッチングして突出部10Aを形成する。そして、図44の工程では、基板上面に絶縁材、電極材及び蛍光材を順次に蒸着して絶縁膜12、陽極層18及び蛍光材層20を順次に形成する。

【0065】この後、図45の工程では、3102のエッチング処理を行なうことによりマスク54をその上の絶縁材、電極材及び電光材と共に除去する。絶縁膜12をSiO2で形成した場合は、突出即10人の近傍で絶縁原12がエッチングされるため、賜極届18において陸極周36から放出される電子は、矢印で示すように電光材層20に衝突し、これを発光させる。

【0066】図46~50は、この発明に係る表示装置を構成する電界放出電子研及び電界放出電子研(除極)と陽極と蛍光材とからなる発光素子の第9の製法を示すものである。

【0067】図46の工程では、Sinらなる基板10の方の主表面にマスク56を形成する。そして、図47の工程では、マスク56を用いてSiの界方性エッチング(ドライエッチング)を行なうことにより陰極チップ10aを形成する。

【0068】次に、図48の工程では、マスク56を用いて51の等方性エッチング(ドライエッチング)を行なうことにより陰極チップ101の上部を横方回にとが5せる。そして、図49の工程では、基板上面に絶縁

50 材、電極材及び蛍光材を順次に蒸着して絶縁膜12、腸

(7)

特開平7-94124

極層18及び蛍光材層20を順次に形成する。

【0069】この後、図50の下程では、マスク56をその上の絶縁材、電極材及び蛍光材と共に除去する。陰極チップ10aから放出される電子は、矢印で示すように蛍光材層20に衝突し、これを発光させる。

【0070】図51は、図21~23、図24~27又は図34~40の製法を用いてドットマトリクス型表示装置を製作する場合に使用するに好適な絶縁性の基板10を示すもので、この基板10の 方の主表面には、陽極配験層60が絶縁膜62、64により埋込まれた形で形成されている。

【0071】図51の基板を用いて表示装置を製作する場合、図52,53に例示するように陽極配線層60上に陽極層1を形成する。すなわち、図52の工程では、絶縁膜64上に電極材を蒸着した後、その電極材層をレジスト届46a,46bをマスクとして避快的にエッチングすることにより陰極層36a,36bを形成する。そして、図53の工程では、陰極層36a及びレジスト層46aの積層とをマスクとして絶縁膜64を逆状的にエッチングすることにより突出部64a,64bを形成すると共に陽極5線層60を露呈させる。この後、基板上面に電極材を発着して陽極層18を形成する。この後の工程は、図21,23で述べたと同様にすることができる。

【0072】図3に示したような電圧〜電流将性において、電流の1.5上がりが急峻すざる場合には、陸極チップ又は陰極尾が過酸流により破壊されることがある。このような破場を防止するためには、図54に示すような絶縁性の基本10を用いるとよい。この基板10は、図51のものと同様の構成において、陽極配線層60のにに抵抗層60を設け、抵抗層60により陽極電流の増大を抑制するようにしたものである。

【0073】なお、上記のように2極管型表示構造が形成された基準と、駆動回路等を含む信号処理回路とを例えばプリン!配線等で接続する構成にすると、画素数が多くなるほど接続線の本数が多くなり且つビッチも狭くなる。この場合には、2極管型表示構造と信号処理回路とを1つの割板上に形成することもできる。

[0074]

【発明の効果】以上のように、この発明によれば、蛍光材層を堆積した腸極を基板上で陰極近傍に配置して2極管型表が構造を実現したので、次の(イ)~(ハ)のような効果が补られる。

【0075】(イ)2極管標道であるため、電源が1つで足りる。また、蛍光材層を発光面側から観察する構成であるため、輝度の低下が少ない。従って、低電圧化乃至低電力化を容易に建成できる。

【0076】(ロ) 陰極からの放出電子を陰極近傍の陽極に引き寄せるようにしたので、例えば除極を取開むよ

うに陽極を配置することにより放出電子がとなりの画案 と干渉する確率を非常に小さくすることができる。従っ て、画素開闢の低減が可能であり、表示面を小型化乃至 高精細化するのが容易となる。

【0077】(ハ) 基板に陽柳を設けたので、基板に対向する透明板に陽極を設けなくてよい。このため、基板と透明板との間の間隔調整は、従来の場合のように高裕度を要求されることがなくなり、表示装置の製作必留りが向上する。

10 【0078】 (二) 陽極上に直接蛍光材を設けているので、陰極と陽極と蛍光材とからなる発光素子 (発光の1 単位) を小型化することが容易となる。

【0079】(ホ) 第2、第7の製法による構造を有する要が装置においては、盆光材を陰極に近づけたことにより蛍光材に衝突する電子の数を増加させ、また発光の輝度を向上させることができる。

【図面の簡単な説明】

【図1】 この発明の一実施例に係る表示装置を示す断面図である。

20 【図2】 図1の装置の除極チップ配置を示す上面図である。

【図3】 図 t の装置の路極電圧- 脇極電流特性の一例を示すグランである。

【図4】 各種蛍光材の加速電圧-- 即度特性を示すグラフである。

【図5】 図1の表示構造を用いた画像表示装置のデー クライン及び走査ラインの配置を示す上面図である。

【図6】 図5の装置の駅動回路を示す回路図である。

【図7】 この発明に係る表示装置の第1の製法におけ 30 るマスク形成工程を示す基板断面図である。

【図8】 図7の工程に続くエッチング工程を示す基板 断面図である。

【図9】 図8の工程に続く酸化工程を示す基板断面図である。

【図10】 図9の工程に続く絶縁材被者及び陽極屠形成工程を示す基板断面図である。

【図11】 図10の工程に続くは光材被着工程を示す 基板断面図である。

【図12】 図11の工程に続くエッチング工程を示す 40 系板断面図である。

【図13】 この発明に係る表示装置の第2の製法における絶縁材被者及び陽極層形成工程を示す基板断面図である

【図14】 図13の工程に続くエッチング工程を示す 基板断面図である。

【図15】 図14の工程に続く蛍光材被者工程を示す 系板断面図である。

【図16】 この発明に係る表示装置の第3の製法における陰極チップ形成工程を示す基板断面図である。

極に引き寄せるようにしたので、例えば陰極を取開むよ 50 【図17】 図16の工程に続く絶縁材被着及び賠極層

(8)

特別平7-94124

形成工程をデオ基板断面図である。

【図18】 図17の工程に続く蛍光材被者工程を示す **基板断面図である。**

13

【図19】 図18の工程に続くポリイミド層形成工程 を示す基板は面図である。

【図20】 図19の工程に続くエッチング工程を示す。 耳板断面図である。

【図21】 この発明に係る表示装置の第4の製法にお ける陽假層形成工程を示す基板断面図である。

【図22】 図21の工程に続くレジスト除去及びバタ 10 盃板断面図である。 ーニング工社:を示す:基板断面図である。

【図23】 図22の工程に続く蛍光材被者下程を示す 基依断面図である。

【図24】 この発明に係る表示装置の第5の製法にお けるエッチング工程を示す系板断面図である。

【図25】 図24の工程に続く陽極層形成工程を示す **系板断面図である。**

【図26】 図25の丁程に続く蛍光材破岩工程を示す 基板断面図である。

【図27】 図26の工程に続くレジスト除去工程を示 20 を示す基板断面図である。 す基板断而別である。

【図28】 この発明に係る表示装置の第6の製法にお けるエッチング工程を示す基板断面図である。

【図29】 図28の工程に続く酸化工程を示す系板断 面図である。

【M30】 図29の工程に続く陽極層形成及び蛍光材 被者工程を示:す基板断面図である。

【図31】 図30の工程に続くマスク除去工程を示す **基板断面図である。**

【図32】 図31の工程に絞く陰極層形成工型を示す 30 形成工程を示す基板断面図である。 **基板断面図**である。

【図33】 図32の工程に続くエッチング工程を示す 基板断面図である。

【図34】 この発明に係る表示装置の第7の製造にお けるレジスト階形成工程を示す基板断面図である。

【図35】 図34のT程に続くエッチング工型を示す 基板断面図である。

【図36】 図35の工程に続くエッチング工程を示す 基板断面図である。

基板断面図である。

【図38】 図37の工程に続く陽極層形成工程を示す 基板断面図である。

【図39】 図38の工程に続くレジスト除去工程を示 す基板断面図である。

【図40】 図39の工程に続く蛍光材被着工程を示す 基板断面図である。

【図41】 この発明に係る表示装置の第8の製法にお けるマスク形成工程を示す基板断面図である。

【図42】 図41の工程に続くエッチング工程を示す **基板断面図である。**

【図43】 図42の工程に続くエッチング工程を示す

【図44】 図43の工程に続く絶縁材被者、腸極層形 成及び蛍光材被者工程を示す系板断面図である。

【図45】 図44の工程に続くマスク除去工程を示す **系板断面図である。**

【図46】 この発明に係る表示装置の第9の製法にお けるマスク形成工程を示す基板断面図である。

【図47】 図46の工程に続く異方性エッチング工程 を示す系板断面図である。

【図48】 図47の工程に続く等方性エッチング工程

【図49】 図48の工程に続く絶縁材板者、陽極階形 成及び蛍光材被着工程を示す基板断面図である。

【図50】 図49の工程に続くマスク除去工程を示す **若板断面図である。**

【図51】 陽極配線層を有する絶縁性の基板を示す断 面図である。

【図52】 図51の基板を用いる表示装置の製法にお ける陰極層形成工程を示す基板断面図である。

【図53】 図52の工程に続くエッチング及び陽極層

【図54】 陽極配線層上に抵抗層を有する絶縁性の基 板を示す断而図である。

【図55】 従来の表示装置の一例を示す断面図であ

【図56】 従来の表示装置の他の例を示す断面図であ

【図57】 図56の装置の陰極層及びゲート電極層の 配置を示す上面図である。

【符号の説明】

【図37】 図36の工程に続くエッチング工程を示す 40~10・基板、10a・陰極チップ、12.絶縁腕、1 6 透明板、18・腸極層、20・蛍光材層、22 ス ベーサ。

(y)

特開平7-94124

(10)

特開平7-94124

符開平7-94124 (11) [図24] [図23] [闰22] -10 [[25] [図27] [図26] 【図29】 [M28] 【图31】

(12)

特開平7-94124

特別平7-94124

