Qu7. (7.1)	Find out the successor of the set $A = {\emptyset, {\emptyset}}$.	[1]
(7.2)	prove that additive group of complex numbers(C,+) is isomorphic to multiplicative group of positive reals $(R^+,.)$ under the mapping $(a+ib)=2^a\cdot 3^b$	[1.5]
(7.3)	Draw the binary search tree of the following sequence of entries 60, 17, 50, 20, 18, 9, 14, 35, 70, 62, 58, 1, 13, 45, 11, 0, 92, 7 and traverse the resultant binary search tree using preorder method.	[2]
7.4	Count the number of n -bit (digit 0 and 1) strings with exactly k zeros, with no two consecutive zeros.	[1]
Ou8.	Choose the correct option from the following with appropriate justification.	[3.5]

- 8.1 Which of the following is not valid

 i) $(x) \wedge (x) \rightarrow P \Leftrightarrow (\exists x) (\wedge (x) \rightarrow P)$ ii) $(\exists x) \wedge (x) \rightarrow P \Leftrightarrow (x) (\wedge (x) \rightarrow P)$
 - i) $(x)A(x) \rightarrow B \Leftrightarrow (\exists x)(A(x) \rightarrow B)$ iii) $A \rightarrow (x) B(x) \Leftrightarrow (x)(A(x) \rightarrow B)$ iii) $A \rightarrow (\exists x) B(x) \Leftrightarrow (\exists x)(A(x) \rightarrow B)$ iii) $A \rightarrow (\exists x) B(x) \Leftrightarrow (\exists x)(A(x) \rightarrow B)$
 - (a) only i) (b) only ii) (c) ii) and iv) (d) i) and iii) (e) none of the above
- 8.2 Which of the following is not a logical implication
 (i) $(\exists y) (\forall x) P(x,y) \rightarrow (\forall x) (\exists y) P(x,y)$ (ii) $(\exists x) (\forall y) P(x,y) \rightarrow (\forall y) (\exists x) P(x,y)$ (iii) $(\forall y) (\exists x) P(x,y) \rightarrow (\exists x) (\forall y) P(x,y)$ (iv) $(\forall x) (\exists y) P(x,y) \rightarrow (\exists y) (\exists x) P(x,y)$
- How many relations ate there on a set with n elements that are reflexive and symmetric?

 (a) $2^{n(n-1)/2}$ (b) $2^{n(n+1)/2}$ (c) $2^{n(n-1)}$ (d) $2^{n(n+1)}$

SECTION B

- Qu1. X, an engineer, puts a proposition "All engineers lie all the time". Decide [3] the truth value, if any, of X's proposition and justify.
- Qu2. Calculate the number of graphs of n labeled vertices which are *surely* [2] connected?
- Qu3. A chain in a partially ordered set S is a subset A of S such that every two elements of A are related by the partial order. Set $S = \{1,2,3,..., p^{10}q^{20}\}$ where p and q are odd primes and p < q, has a partial order relation R of

Qu4. 4.1	divisibility defined on S, such that for any a, b in S aRb if and only if a divides b. Find the size of the longest chain containing p ¹⁰ q ²⁰ .	
	Give a combinatorial argument proof for below identity, where n> 3. $n(n-1)(n-2) {}^{n}C_{n} + (n-1)(n-2)(n-3) {}^{n}C_{n-1} + + 3! {}^{n}C_{3} = n(n-1)(n-2) 2^{n-3}$	[3]
	Note: Strictly combinatorial proof is needed. No marks for algebraic proof	
4.2	Show that exactly one of any k consecutive integers is divisible by k	[2]
4.1	OR Count how many positive integral solutions exist of the following linear equation of p variables? Clearly explain the method of counting. $x_1+x_2+x_3+\ldots+x_p=q$, where $q>p$ is a positive integer and $\forall x_i$, $x_i>=1$	[3]
4.2	Prove that in any non-empty group $(G, *)$ where * is a binary operator over G , equations $a*x=b$ and $y*b=a$ have unique solutions $x \in G$, $y \in G$, $\forall a \in G$, $b \in G$.	[2]
Qu5.	Prove that a relation R on set S is an equivalence relation if and only if it partitions the set S into disjoint subsets such that union of these subsets is S.	[2]
Qu6.	Let $G=(V,E)$ be an undirected simple graph with k components and $ V =n$, $ E =m$. Prove that $m>=n-k$.	[3]
Qu7.	Prove that, for any non-empty group G under binary operator *, if $A=\{G_1, G_2,\}$ is any collection of subgroups of G then $\cap G_i$, is a subgroup.	[2
Qu8.	Every tree has the chromatic number 2. Prove or disprove that every undirected simple graph of n vertices having chromatic number 2 is isomorphic to a tree of n vertices.	[1
Qu9.	Prove or disprove that every acyclic connected directed graph of n vertices has n-1 edges.	[1
Qu10.	Prove that every first-order logic expression has an equivalent propositional logic expression.	[3