Chapter 1

Myhill-Nerode

The last characterization we consider is given by the Myhill-Nerode theorem.

1.1 Definition

The following definitions (taken from ?) will lead us to the statement of the Myhill-Nerode theorem. We assume \equiv to be an equivalence relation on Σ^* , and L to be a language over Σ .

(i) \equiv is **right congruent** if and only if for all $x, y \in \Sigma^*$ and $a \in \Sigma$,

$$x \equiv y \Rightarrow x \cdot a \equiv y \cdot a$$
.

(ii) \equiv **refines** L if and only if forall $x, y \in \Sigma^*$,

$$x \equiv y \Rightarrow (x \in L \Leftrightarrow y \in L).$$

(iii) \equiv is of **finite index** if and only if it has finitely many equivalence classes, i.e.

$$\{[x]|x\in\Sigma^*\}$$
 is finite

Definition 1.1.1. A relation is Myhill-Nerode if and only it satisfies properties ??, ?? and ??.

Fix everything below this line

Given a language L, the Myhill-Nerode relation \approx_L is defined such that

$$\forall u, v \in \Sigma^*. \ u \approx_L v \iff \forall w \in \Sigma^*. \ u \cdot w \in L \Leftrightarrow v \cdot w \in L.$$

Listing 1.1: Myhill-Nerode relation

Definition MN w1 w2 := forall w3, w1++w3 \in L == (w2++w3 \in L).

Theorem 1.1.1. Myhill-Nerode Theorem. A language L is regular if and only if \approx_L is of finite index.

1.2 Finite Partitionings and Equivalence Classes

CoQ does not have quotient types. We pair up functions and proofs for certain properties of those functions to emulate quotient types.

A finite partitioning is a function from Σ^* to some finite type F. We use this concept to model equivalent classes in CoQ. A finite partitioning of the Myhill-Nerode relation is a finite partitioning f that also respects the Myhill-Nerode relation, i.e.,

$$\forall u, v \in \Sigma^*. f(u) = f(v) \Leftrightarrow u \approx_L v.$$

Listing 1.2: Finite partitioning of the Myhill-Nerode relation **Definition** MN_rel (f: Fin_eq_cls) := forall w1 w2, f w1 == f w2 <-> MN w1 w2.

Theorem 1.2.1. \approx_L is of finite index if and only if there exists a finite partitioning of the Myhill-Nerode relation.

Proof. If \approx_L is of finite index, we use the set equivalence classes as a finite type and construct f such that

$$\forall w. f(w) = [w]_{\approx}.$$

f is a finite partitioning of the Myhill-Nerode relation by definition.

Conversely, if we have a finite partitioning of the Myhill-Nerode relation, we can easily see that \approx_L must be of finite index since f's values directly correspond to equivalence classes. The image of f is finite. Therefore, \approx_L is of finite index.

A more general concept is that of a refining finite partitioning of the Myhill-Nerode relation:

$$\forall u, v \in \Sigma^*. f(u) = f(v) \Rightarrow u \approx_L v.$$

Listing 1.3: Refining finite partitioning of the Myhill-Nerode relation **Definition** MN_ref (f: Fin_eq_cls) := forall w1 w2, f w1 == f w2 -> MN w1 w2.

We require all partitionings to be surjective. Therefore, every equivalence class x has at least one class representative which we denote cr(x). Mathematically, this is not a restriction since there are no empty equivalence classes. In our constructive setting we would have to give a procedure that builds a minimal finite type F' from F and a corresponding function f' from Σ^* to F' such that f' is surjective and extensionally equal to f.

1.3 Minimizing Equivalence Classes

We will prove that refining finite partitionings can be converted into finite partitionings. For this purpose, we employ the table-filling algorithm to find indistinguishable states under the Myhill-Nerode relation (?). However, we do not rely on an automaton. In fact, we use the finite type F, i.e., the equivalence classes, instead of states.

Given a refining finite partitioning f, we construct a fixed-point algorithm. The algorithm initially outputs the set of equivalence classes that are distinguishable by the inclusion of their class representative in L. We denote this initial set $dist_0$.

$$dist_0 := \{(x, y) \in F \times F \mid cr(x) \in L \Leftrightarrow cr(y) \notin L\}.$$

To find more distinguishable equivalence classes, we have to identify equivalence classes that lead to distinguishable equivalence classes.

Definition 1.3.1. We say that a pair of equivalence classes (x, y) transitions to (x', y') with a if and only if

$$f(cr(x) \cdot a) = x' \wedge f(cr(y) \cdot a) = y'.$$

We denote (x', y') by $ext_a(x, y)$.

The fixed-point algorithm tries to extend the set of distinguishable equivalence classes by looking for a so-far undistinguishable pair of equivalence classes that transitions to a pair of distinguishable equivalence classes.

Definition 1.3.2.

$$unnamed(dist) := dist_0 \cup dist \cup \{(x,y) \mid \exists a. \, ext_a(x,y) \in dist\}$$

Lemma 1.3.1. unnamed is monotone and has a fixed-point.

Proof. Monotonicity follows directly from the monotonicity of \cup . The number of sets in $F \times F$ is finite. Therefore, unnamed has a fixed point.

Let *distinct* be the fixed point of *unnamed*. Let *equiv* be the complement of *distinct*.

Theorem 1.3.1. f_m in is a finite partitioning of the Myhill-Nerode relation on L.

Finish construction

Add formalization

1.4 Finite Automata and Myhill-Nerode

We prove theorem $\ref{eq:condition}$ by proving it equivalent to the existence of an automaton that accepts L.

1.4.1 Finite Automata to Myhill-Nerode

Given DFA A, for all words w we define f(w) to be the last state of the run of w on A.

Lemma 1.4.1. f is a refining finite partitioning of the Myhill-Nerode relation on $\mathcal{L}(A)$.

Proof. The set of states of A is finite. For all u, v and w we that if f(u) = f(v) = x, i.e., the runs of u and v on A end in the exact same state x. From this, we get that for all w, runs of $u \cdot w$ and $v \cdot w$ on A also end in the same state. Therefore, $u \cdot w \in \mathcal{L}(A)$ if and only if $v \cdot w \in \mathcal{L}(A)$.

Theorem 1.4.1. If L is accepted by DFA A, then there exists a finite partitioning of the Myhill-Nerode relation on L.

Proof. From lemma ?? we get a refining finite partitioning f of the Myhill-Nerode relation on $\mathcal{L}(A)$. Since L is accepted by A, $L = \mathcal{L}(A)$. Therefore, f is a refining finite partitioning of the Myhill-Nerode relation on L. By theorem ?? there also exists a finite partition of the Myhill-Nerode relation on L.

1.4.2 Myhill-Nerode to Finite Automata