CHANNEL SELECTION FOR DISTANT AUTOMATIC SPEECH RECOGNITION

on the CHiME-5 dataset

Hannes Unterholzner, BSc

Supervisor:

Assoc.Prof. Dipl.-Ing. Dr. Franz Pernkopf

Graz, March 15th, 2019

- ► **Topic**: Distant multi-microphone conversational speech recognition in everyday home environments
- ► Dataset: train, dev, and eval set
- ▶ 20 sessions duration of \sim 2h, 4 participants, three rooms (kitchen, dining, living), 6 Kinect arrays, 4 binaural mic's $\rightarrow \underbrace{(6 \times 4)}_{\text{for}} + \underbrace{(4 \times 2)}_{\text{train/dev}} = 32 \text{ ch.}$
- ► Floor plan: Conventional and open-space apartments (e.g. session S09)

- ► Characteristics: noise, far-field recordings, simultaneous and spontaneous speech, deviations within/among session/s
- ► Simultaneous speech (dev):

LIVING

Unit 5

Unit 1 KITCHEN Uni

- ► **Topic**: Distant multi-microphone conversational speech recognition in everyday home environments
- ► Dataset: train, dev, and eval set
- ▶ 20 sessions duration of \sim 2h, 4 participants, three rooms (kitchen, dining, living), 6 Kinect arrays, 4 binaural mic's $\rightarrow \underbrace{(6 \times 4)}_{\text{for}} + \underbrace{(4 \times 2)}_{\text{train/dev}} = 32 \text{ ch.}$

transcript.

► Floor plan: Conventional and open-space apartments (e.g. session S09)

train/dev/eval

► Baseline: GMM-HMM, DNN-HMM, End-to-End

Baseline	Dev (ref. Kinect)	Dev (Binaural)
GMM-HMM	91.0	71.9
DNN-HMM	82.5	48.9
E2E	94.7	67.2

- ► Characteristics: noise, far-field recordings, simultaneous and spontaneous speech, deviations within/among session/s
- ► Simultaneous speech (dev):

LIVING

Unit 5

Unit 1 KITCHEN Un

♣ DNN-HMM Baseline System

Three stages:

- ► Array synchronisation (correct clock drifts)
- ► Speech enhancement (beamforming)
- ► ASR system
 - several AM retraining stages
 - ► feature and model transformations

DNN-HMM BL: WER = 82.5%

◆ Oracle analysis

WER [%] performance of the dev-set among channels (variance, gain):

- ► Ref. Kinect channels U_ref (4): min = 82.36%, $max = 82.72\% \rightarrow 0.36\%/0.26\%$
- ▶ Beamformed Kinects U+Bflt (5): min = 82.61%, $max = 85.32\% \rightarrow 2.74\%/-0.09\%$
- ► Kinect channels U (20): min = 83.39%, $max = 85.68\% \rightarrow 2.29\%/-0.87\%$

On utterance-level \rightarrow Oracle WER [%] results:

Channels S	Dev 02 S09	Overall
U_ref (4) 76 U + Bflt (5) 70 U (20) 66 U + Bflt, U (25) 65	3.4 81.1 5.1 72.8 0.8 68.2 5.3 63.3 6.5 62.3 4.6 62.2	82.5 74.8 69.3 65.1 64.3 63.6

Performance gain: 18.9%

20 single ch. (WER/ranks):

Channel selection:

- ► Method: Deep Neural Network to classify "oracle channels"
- lacktriangle Labels: Oracle results ightarrow multi-label, multi-class problem
- ► Features: Signal-based and/or decoder-based features correlating with oracle results

Signal-based features:

► Signal energy:

$$x_m^u[n] = \frac{1}{N_e - N_s + 1} \sum_{n=N_s}^{N_e} |s_m^u[n]|^2$$

► Peak of GCC-PHAT:

$$\hat{R}_{i,ref}(d) = \mathcal{F}^{-1}\left(\frac{X_i(f)X_{ref}^*(f)}{|X_i(f)X_{ref}^*(f)|}\right)$$

► Envelope variance:

$$C^* = \underset{m}{\operatorname{argmax}} \sum_{k} w_m[k] \frac{V_m[k]}{\underset{m}{\operatorname{max}}(V_m[k])}$$

► Mel-filterbank

Decoder-based features:

Average posterior entropy:

$$H_t^m = -\sum_{s} p_{s,t}^m \cdot log_2\left(p_{s,t}^m\right)$$

$$H_{\text{avg}}^{m} = \frac{1}{T} \sum_{t=1}^{T} H_{t}^{m}$$

Average posterior moments: mean, variance, skewness, kurtosis

Channel selection:

- ► Method: Deep Neural Network to classify "oracle channels"
- lacktriangle Labels: Oracle results ightarrow multi-label, multi-class problem
- ► Features: Signal-based and/or decoder-based features correlating with oracle results

Signal-based features:

► Signal energy:

$$x_m^{u}[n] = \frac{1}{N_e - N_s + 1} \sum_{n=1}^{N_e} |s_m^{u}[n]|^2$$

► Peak of GCC-PHAT:

$$\hat{R}_{i,ref}(d) = \mathcal{F}^{-1}\left(\frac{X_i(f)X_{ref}^*(f)}{|X_i(f)X_{ref}^*(f)|}\right)$$

► Envelope variance:

$$C^* = \underset{m}{\operatorname{argmax}} \sum_{k} w_m[k] \frac{V_m[k]}{\underset{m}{\operatorname{max}}(V_m[k])}$$

► Mel-filterbank

Decoder-based features:

Average posterior entropy:

$$H_t^m = -\sum_{s} p_{s,t}^m \cdot log_2 \left(p_{s,t}^m \right)$$

$$H_{\text{avg}}^{\text{m}} = \frac{1}{T} \sum_{t=1}^{T} H_{t}^{\text{m}}$$

► Average posterior moments: mean, variance, skewness, kurtosis

Channel Selection – Results

Feature direct classification:

Channels	Feature	S02	Dev S09	Overall
U+Bflt (5)	Energy	81.2	81.6	81.3
	GCC-PHAT	81.1	81.7	81.4
U (20)	Energy	82.2	82.0	82.1
	Avg. Entropy	81.1	81.8	81.4

DNN classification:

Channels	Feature	S02	Dev S09	Overall
U (20)	Energy	82.2	82.7	82.8
	EV	83.7	82.6	82.7
	Fbank	83.8	83.5	83.7
	Avg. Entropy	81.7	82.8	82.1
	Avg. Moments	82.8	81.3	82.3
	Stacked	82.3	82.3	82.3
U+Bflt (5)	Avg. Entropy	80.8	80.1	80.5
	Avg. Moments	81.1	80.7	81.0

Hypothesis fusion:

- ► ROVER combination of the {3, 5, 10, 20}-best hypothesis as determined from the DNN-classifier
- ► Combination for all features
- ► Upper baseline: combine hypothesis from oracle ranking
- ► Lower baseline: random combination of N hypothesis

# Channels	3	5	10	20
Energy	82.00	81.08	79.96	79.65
EV	80.02	79.21	79.08	79.54
Avg. Entropy	79.36	78.25	78.10	79.40
Avg. Moments	79.73	78.53	78.17	79.51
Stacked	79.99	78.89	78.63	79.49
Fbank	81.71	80.41	79.56	79.52
Oracle	67.67	68.81	72.46	78.82
Random	81.92	80.90	79.88	79.67

Summary:

utterance-level based channel selection.

▶ The oracle results show a high possible theoretical performance gain from a on

ightharpoonup Channel selection does not deliver notable improvements in WER ightharpoonup Informative value of the extracted features, difficulty of the dataset, bad network generalisation.

Ideas:

- ► Investigation on a curated dataset to trace back the problem to the channel selection stage rather conflicting with a difficult dataset.
- ► Application of other/more informative features, having a stronger correlation with the oracle labels.

-∕M-Thank you!

♣ ASR principle

Let's define:

$$\mathbf{w} = w_1.w_2, w_3, ..., w_n \leftarrow \text{sequence of words}$$

$$\boldsymbol{Y} = \boldsymbol{y}_1, \boldsymbol{y}_2, \boldsymbol{y}_3, ..., \boldsymbol{y}_n \leftarrow \text{sequence of observation vectors}$$

$$P(\boldsymbol{w}|\boldsymbol{Y}) = \frac{P(\boldsymbol{Y}|\boldsymbol{w})P(\boldsymbol{w})}{P(\boldsymbol{Y})}$$
$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{Y}|\boldsymbol{w})P(\boldsymbol{w})$$

 $Illustration \ of \ the \ ROVER \ procedure \ with \ three \ different \ initial \ transcriptions/hypotheses:$

Final hypothesis: @ b d d e @

Reference: a b c d e

train-set, dev-set, eval-set

Figure: Normalized avg. posterior entropy.

Figure: Oracle channels in red.