# Miniaturized Air-to-Refrigerant Heat Exchangers

2015 Building Technologies Office Peer Review





Reinhard Radermacher raderm@umd.edu
University of Maryland College Park

## **Project Summary**

#### Timeline:

Start date: 3/1/2013

Planned end date: 2/29/2016

**Key Milestones** 

1. Design optimization, 3/30/14

2. Fabrication/testing, 1kW prototype, 1/30/2015

3. Fabrication/testing, 10kW prototype, 9/30/2015

#### **Budget**:

Total Budget: \$1500K

Total UMD: \$1050K

Total DOE \$ to date for UMD: \$881K

Total future DOE \$ for UMD: \$169K

### **Target Market/Audience**:

Residential and commercial heat pump systems with various capacity scales.

Condenser as first choice of application

#### **Key Partners**:

Oak Ridge National

Laboratory

**Burr Oak Tool** 

**Heat Transfer Technologies** 

International Copper

Association

Luvata

Wieland













#### **Project Goal**:

**Purpose**: Develop next generation heat exchangers for heat pumps and air-conditioners

**Target Performance**: Miniaturized air-to-refrigerant heat exchangers with at least

- 20% lower volume
- 20% less material
- 20% higher performance

**Target Market**: To be in production within five years



## **Purpose and Objectives**

**Problem Statement**: Develop miniaturized air-to-refrigerant heat exchangers that are 20% better, in size, weight and performance, than current designs **AND** In production within 5 Years

#### **Target Market and Audience:**

- Residential and commercial heat pumps and air-conditioners
- US Shipment of residential air-source equipment in 2011: 5.5 Million units
- US EIA 2009 Energy Consumption: 41.5% for space heating, 6.2% for AC
- Proposed heat exchanger technology will readily compete with current condenser designs for AC systems (3.7 M).

#### **Impact of Project:**

- Project deliverables include analyses tools and heat transfer correlations
- Heat exchangers (1 kW and 10 kW) that are at-least 20% better (size, weight and performance) than current designs, based on measured performance; a minimum of 3 prototypes to be fabricated and tested
- Manufacturing guidelines to facilitate production within 5 years



## **Future of Heat Exchangers**



## **Approach**

- Developed a comprehensive multi-scale modeling and optimization approach for design optimization of novel heat exchangers
  - Parallel Parameterized CFD
  - Approximation Assisted Optimization
- Build a test facility for air side performance measurement of heat exchangers
- Design, optimize and test 1 kW and 10 kW air-to-water and air-torefrigerant heat exchangers
- Investigate conventional and additive manufacturing techniques
- Analyze and test system level performance of novel heat exchangers
  - Evaporator and condenser of a system based on same design



### Approach : Key Issues

- Lack of basic heat transfer and fluid flow data for design and analyses of air-to-refrigerant heat exchangers with small flow channels
- Availability for small diameter tubes
- Joining/manufacturing challenges
- Face area constraints
- Fouling and flow mal-distribution
- Wetting
- Noise and vibrations



## **Approach: Distinctive Characteristics**

- Developed a comprehensive multi-scale modeling and optimization approach for design optimization of novel heat exchangers
  - Allows for rapid and automated CFD evaluation of geometries with topology change
  - More than 90% reduction in engineering and computation time
- Focus on small hydraulic diameter flow channels
  - Bridging the research gaps
  - Heat transfer, pressure drop correlations and design tools
- Prototype fabrication and testing is in progress, with target production within 5 years
  - Initial tests show, <10% deviation against predicted</li>
- 20% size and weight reduction
  - Retrofit applications, limited load carrying capacity of roofs
  - Potential savings in logistics costs



## **Progress and Accomplishments**

- Analyzed 8+ heat exchanger geometries
- Developed a new methodology for optimizing tube shapes no longer constrained by circular/rectangular tubes
- Fabricated and tested three 1kW prototypes
  - Measured data agree within 10% of predicted performance
- Wind tunnel facility at UMD now online
- Work in progress
  - Design and prototyping of 10kW (nominal 3TR) heat exchangers
  - System-test facility is being developed, equipment donated by sponsors of UMD-CEEE Consortium



## **Accomplishments**

#### Fixed flow rates; $\Delta T=50K(MCHX / NGHX13)$ ; $\Delta T=42K (BTHX / FTHX)$ ; $\Delta T=40K (NTHX)$





## **Accomplishments (non-Animated)**

Fixed flow rates;  $\Delta T=50K(MCHX / NGHX13)$ ;  $\Delta T=42K (BTHX / FTHX)$ ;  $\Delta T=40K (NTHX)$ 



## **Progress and Accomplishments**

Novel multi-scale approach for tube shape optimization



Renewable Energy

## **Accomplishments: Measured Capacity**



Renewable Energy

## **Accomplishments: Measured Performance**



## **Accomplishments: Performance Comparison**









Round Bare Tubes (BTHX)



NURBS-based Tubes (NTHX)





## **Accomplishments: Performance Comparison**









Round Bare Tubes (BTHX)



NURBS-based Tubes (NTHX)





## **Accomplishments: Design tools for industry**

Air-side performance correlations for:



- Plain Fins
- Wavy Fins



| Heat Exchanger                                 | Fin and T                   | `ube             |
|------------------------------------------------|-----------------------------|------------------|
| Air side performance metrics                   | $\mathbf{h}_{\mathbf{air}}$ | $\Delta P_{air}$ |
| 10% absolute deviation                         | 63.58%                      | 79.52%           |
| 15% absolute deviation                         | 82.49%                      | 93.17%           |
| 20% absolute deviation                         | 91.55%                      | 95.98%           |
| 30% absolute deviation                         | 96.98%                      | 98.39%           |
| Absolute relative mean deviation               | 9.51%                       | 6.40%            |
| Mean GCI <sup>21</sup>                         | 4.20%                       | 4.30%            |
| Coefficient of determination (R <sup>2</sup> ) | 95.67%                      | 98.53%           |



## **Project Integration and Collaboration**

#### **Project Integration**

- Collaboration with key project partners to identify and solve manufacturing and deployment challenges
- Collaboration with ORNL for performance testing
- First-hand feedback from industry partners of UMD Consortium

#### Partners, Subcontractors, and Collaborators

- ORNL: Subcontractor; design, advanced manufacturing and testing
  - Omar Abdelaziz: Group Leader, PI; Patrick Geoghegan: Scientist
- Luvata: Industry partner; manufacturing, system integration and marketing
  - Mike Heidenreich: VP of Product Engg; Russ Cude: Director of Engg., Americans; Randy Weaver: R&D Engineer
- ICA / Heat Transfer Technologies: Industry partner; heat exchanger manufacturing process development
  - Yoram Shabtay: President; John Black: VP of Market Development
- Wieland: Industry Partner; tube manufacturer
  - Steffen Rieger, Technical Marketing Manager
- Burr Oak Tool Inc.: Specializing in machines, tools and services for HX mfg. Roger
   Tetzloff, Innovations Manager

Renewable Energy

### **Project Communications**

### **Kick-off Meeting:**

- Kick-off Meeting & Brainstorming Workshop, 22-Apr-2013, University of Maryland
- Semi-annual in-person progress review meetings (Mar and Sep), every year

**IP:** Provisional patent application in progress

### Publications (2014 – 4, 2015 – 3)

- 1. Bacellar, D., Ling, J., Abdelaziz, O., Aute, V., Radermacher, R., **Design of Novel Air-to-Refrigerant Heat Exchangers Using Approximation Assisted Optimization**, ASME 2014 Verification & Validation Symposium, May 7-9, 2014 Las Vegas, Nevada.
- 2. Bacellar, D., Aute, V., Radermacher, R., **CFD-Based Correlation Development for Air Side Performance of Finned and Finless Tube Heat Exchangers with Small Diameter Tubes**, 15th International Refrigeration and Air Conditioning Conference at Purdue, July 14-17, 2014.
- 3. Bacellar, D., Ling, J., Abdelaziz, O., Aute, V., Radermacher, R., **Multi-scale modeling and approximation assisted optimization of bare tube heat exchangers**, Proceedings of the 15th International Heat Transfer Conference, IHTC-15, August 10-15, 2014, Kyoto, Japan.
- 4. Saleh, K., Bacellar, D., Aute, V., Radermacher, R., **An Adaptive Multiscale Approximation Assisted Multiobjective Optimization Applied to Compact Heat Exchangers**, 4<sup>th</sup> International Conference on Engineering Optimization, EngOpt 2014, September 8-11, Lisbon, Portugal.
- 5. Bacellar, D., Abdelaziz, O., Aute, V., Radermacher, R., **Novel Heat Exchanger Design using Computational Fluid Dynamics and Approximation Assisted Optimization**, ASHRAE 2015, Winter Conference, January 24-28, 2015 Chicago, IL.
- 6. Bacellar, D., Aute, V., Radermacher, R., A Method for Air-To-Refrigerant Heat Exchanger Multi-Scale Analysis and Optimization with Tube Shape Parameterization, 24<sup>th</sup> IIR International Congress of Refrigeration, August 16 22, 2015 Yokohama, Japan. (MANUSCRIPT SUBMITTED)
- 7. Bacellar, D., Aute, V., Radermacher, R., **CFD-Based Correlation Development for Air Side Performance on Finned Tube Heat Exchangers with Wavy Fins and Small Tube Diameters**, 24<sup>th</sup> IIR International Congress of Refrigeration, August 16 22, 2015 Yokohama, Japan. **(MANUSCRIPT SUBMITTED)**



## **Next Steps and Future Plans**

- Conduct air-side performance measurements (in progress)
- Design and fabricate 10kW Radiators (in progress)
- Test radiators and update models as required
  - Conduct noise/vibrations analysis
- Design and fabricate evaporators and condensers for 3 Ton system (inprogress)
- Test evaporators and condensers in wind tunnel
- System Testing
  - Set up system test facility (HP system acquisition in progress)
  - Test evaporators and condensers as a part of complete system
- Develop and disseminate tools for heat exchanger analyses (12/30/2015)
- Develop and disseminate manufacturing guidelines and lessons learned (1/30/2016)



# REFERENCE SLIDES



## **Project Budget**

**Project Budget**: DOE Total \$1050K, FY13-17 (3/1/2013 to 2/29/2016)

Variances: No change in overall budget; Higher spending in Year-2, due to

prototype fabrication and test facility setup

Cost to Date: \$881K

Additional Funding: No additional funding for DOE is expected. Various in-kind

contribution from industry partners

| Budget History            |            |        |              |                     |            |  |  |  |  |  |
|---------------------------|------------|--------|--------------|---------------------|------------|--|--|--|--|--|
| FY2013 — FY2014<br>(past) |            |        | 015<br>rent) | FY2016<br>(planned) |            |  |  |  |  |  |
| DOE                       | Cost-share | DOE    | Cost-share   | DOE                 | Cost-share |  |  |  |  |  |
| \$751                     | NA         | \$130K | NA           | \$169K              | NA         |  |  |  |  |  |



# **Project Plan and Schedule**

| Project Schedule                                                               |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
|--------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------|-----------------------------------------|--------------|--------------|
| Project Start: 03/01/2013                                                      |              | Completed Work                                                             |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Projected End: 02/29/2016                                                      |              | Active Task (in progress work)  Milestone/Deliverable (Originally Planned) |              |              |              |              |              |              |              | $\neg$       |              |              |                   |                                         |              |              |
|                                                                                | •            |                                                                            |              |              |              |              |              |              |              | $\neg$       |              |              |                   |                                         |              |              |
|                                                                                | •            | Milestone/Deliverable (Actual)                                             |              |              |              |              |              |              |              |              | $\neg$       |              |                   |                                         |              |              |
|                                                                                |              | FY2013                                                                     |              |              | FY2014       |              |              | FY2015       |              |              |              | FY2016       |                   |                                         |              |              |
| Task                                                                           | Q1 (Oct-Dec) | Q2 (Jan-Mar)                                                               | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec) | Q2 (Jan-Mar) | Q3 (Apr-Jun) | Q4 (Jul-Sep) | Q1 (Oct-Dec)      | Q2 (Jan-Mar)                            | Q3 (Apr-Jun) | Q4 (Jul-Sep) |
| Past Work                                                                      |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Project kick-off                                                               |              | ◆                                                                          |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Finalize best designs for various materials                                    |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Manufacture sample tubes, headers and investigate joining options              |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Select most promising materials and techniques                                 |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Identify preferred design andmanufacturing methods                             |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Current/Future Work                                                            |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Complete pressure tests on prototype heat exchangers                           |              |                                                                            |              |              |              |              | <b>•</b>     |              |              |              |              |              |                   |                                         |              |              |
| Commission the air-side test facility                                          |              |                                                                            |              |              |              |              | •            |              |              |              |              |              |                   |                                         |              |              |
| Fabricate multiple (radiator and condenser) 1 kW prototypes for testing        |              |                                                                            |              |              |              |              | •            |              |              |              |              |              |                   |                                         |              |              |
| Test of 1kW Heat Exchangers                                                    |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Analyze system level performance benefits                                      |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Improve designs and propose optimal designs for 10 kW capacity                 |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Analyze system performance of 10kW designs for diff. applications              |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Fabricate 10 kW capacity prototypes for testing                                |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   |                                         |              |              |
| Test 10 kW propotype                                                           |              |                                                                            |              |              |              |              |              |              |              |              |              |              | •                 |                                         |              |              |
| Develop and disseminate tools for heat exchanger analyses                      |              |                                                                            |              |              |              |              |              |              |              |              |              |              | N. S. S. S. S. S. |                                         |              |              |
| Develop and disseminate manufacturing guidelines for miniature heat exchangers |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   | 100000000000000000000000000000000000000 |              |              |
| Closure                                                                        |              |                                                                            |              |              |              |              |              |              |              |              |              |              |                   | •                                       |              |              |



## **Accomplishments: Measured Performance**



