

Universidade Federal do Ceará – UFC

Campus de Sobral

ATIVIDADE - Engenharia da Computação

Disciplina: Computação Gráfica.

Professor: Iális Cavalcante.

Desenvolvimento de Animação de Sistema Solar

Data de entrega: 15/07/2022

Prezados(as), em razão da dificuldade em que algumas equipes estão tendo com o trabalho do sistema solar, defino que o trabalho final deve conter uma ampliação do projeto anterior com a implementação de uma iluminação simples nos elementos do sistema solar. As equipes podem ser mantidas e incorporadas uma atualização em seu repositório no GitHub com as atualizações da implementação anterior.

O que será avaliado?

- Descrição do que foi implementado, desde a montagem do Sistema Solar, até a implantação de iluminação, no README do repositório.
- Essa mesma descrição deve conter explicações sobre os avanços e dificuldades encontradas pela equipe em toda a implementação desenvolvida até esse trabalho
- Além do resultado da implementação computacional, serão avaliados a participação dos membros da equipe no projeto e o quanto foi possível desenvolver o projeto.

Reforço que para mim, o mais importante é o ganho de aprendizado dos estudantes e avaliar até que ponto a turma conseguiu desenvolver uma aplicação em Computação Gráfica.

Para auxiliar no seu desenvolvimento, recomendo aplicar os conceitos do livro Learn OpenGL, disponível em https://learnopengl.com e também com PDF disponível na turma do SIGAA. No capítulo sobre iluminação, o código-fonte disponível sobre o assunto está acessível neste link: https://github.com/JoeyDeVries/LearnOpenGL/tree/master/src/2.lighting. Dentre os códigos disponíveis, recomendo avaliar os que seguem:

☐ 2.1 - basic lighting
☐ 2.2 - basic lighting specular
□ 3.1 - materials
☐ 4.1 lighting_maps_diffuse_map
4.2 lighting_maps_specular_map
☐ 6 multiple_lights
E ao utilizar incluir a biblioteca stb_image.h em sua implementação, inclua o seguinte comando na linha anterior em seu código-fonte:
#define STB_IMAGE_IMPLEMENTATION

Fico à disposição para eventuais esclarecimentos e dúvidas das equipes e desejo um bom trabalho!