Higher-order Cheeger Inequalities

Spectral Graph Theory

Matt Taylor
University of Bristol

March 31, 2022

•
$$G = (V, E)$$

G = (V, E)
e.g: V = {a, b, c, d}
E = {{a, c}, {b, c}, {c, d}}

- G = (V, E)
- e.g: $V = \{a, b, c, d\}$ $E = \{\{a, c\}, \{b, c\}, \{c, d\}\}$

- G = (V, E)
- e.g: $V = \{a, b, c, d\}$ (Let n = |V|.)

 $E = \{\{a,c\},\{b,c\},\{c,d\}\}$

$$A = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ c & 1 & 1 & 0 & 1 \\ d & 0 & 0 & 1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} a & b & c & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ c & 1 & 1 & 0 & 1 \\ d & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$D = \begin{matrix} a \\ b \\ c \\ d \end{matrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{matrix}$$

$$L = D - A = \begin{pmatrix} a & b & c & d \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ d & 0 & 0 & -1 & 1 \end{pmatrix}$$

$$L = D - A = \begin{pmatrix} a & b & c & d \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ c & -1 & -1 & 3 & -1 \\ d & 0 & 0 & -1 & 1 \end{pmatrix}$$

Normalized: $\mathcal{L} = D^{-1/2}LD^{-1/2}$

Spectrum of a Graph

Interested in the Eigenvalues of *L*.

Spectrum of a Graph

Interested in the Eigenvalues of *L*.

Eigenvalues of L
$$0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$$

Spectrum of a Graph

Interested in the Eigenvalues of *L*.

Eigenvalues of L
$$0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$$

Eigenvectors of L $f_1 \quad f_2 \quad \dots \quad f_n$

Eigenvalues of Laplacian

$$L = \begin{matrix} a & b & c & d \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{matrix}$$

Eigenvalues of Laplacian

$$L = \begin{matrix} a & b & c & d \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ d & 0 & 0 & -1 & 1 \end{matrix}$$

$$\lambda_2 = 0 \iff G$$
 is disconnected.

Eigenvalues of Laplacian

$$L = \begin{matrix} a & b & c & d \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ 0 & 0 & -1 & 1 \end{matrix}$$

 $\lambda_2 = 0 \iff G$ is disconnected.

Eigenvectors as an Optimization Problem

Relationship between λ_2 and arbitrary $f \in \mathbb{R}^n$ (i.e $f : V \to \mathbb{R}$).

Eigenvectors as an Optimization Problem

Relationship between λ_2 and arbitrary $f \in \mathbb{R}^n$ (i.e $f : V \to \mathbb{R}$).

Courant-Fischer Theorem:

$$\lambda_2 = \min_{\mathbf{1} \perp f \in \mathbb{R}^n} \frac{\displaystyle\sum_{\{x,y\} \in E} (f(x) - f(y))^2}{\displaystyle\sum_{v \in V} f(v)^2}$$

 f_2 is the vector which minimizes the above.

For a general graph, how can we draw it? (map $V o \mathbb{R}^2$)

For a general graph, how can we draw it? (map $V \to \mathbb{R}^2$) One way: Map each $v \in V$ to random point in \mathbb{R}^2

For a general graph, how can we draw it? (map $V \to \mathbb{R}^2$) One way: Map each $v \in V$ to random point in \mathbb{R}^2

Algebraic Connectivity

$$\lambda_2 = 0 \iff G$$
 is disconnected

Algebraic Connectivity

$$\lambda_2 = 0 \iff G$$
 is disconnected $\lambda_2 \approx 0 \iff G$ is *nearly* disconnected?

Cheeger Constant

$$h = \min_{S \subseteq V} \max\{\phi(S), \phi(S^c)\}$$
 where $\phi(S) = \frac{\{\# \text{ edges leaving } S\}}{\{\# \text{ vertices in } S\}}$

h tells us how 'hard' the Graph is to bisect.

First-order Cheeger inequality (\mathcal{L})

First-order Cheeger inequality (\mathcal{L})

$$\frac{\lambda_2}{2} \le h \le \sqrt{2\lambda_2}$$

Continuous case: [Cheeger'70].

Discrete case: [Alon, Milman'85].

First-order Cheeger inequality (\mathcal{L})

$$\frac{\lambda_2}{2} \le h \le \sqrt{2\lambda_2}$$

Continuous case: [Cheeger'70].

Discrete case: [Alon, Milman'85].

$$\lambda_2 \approx 0 \iff h \approx 0 \iff G$$
 is 'nearly disconnected'

Higher-order Cheeger Inequalities

Does this generalize for k > 2?

Higher-order Cheeger Inequalities

Does this generalize for k > 2? Yes!

$$\frac{\lambda_k}{2} \le h_k \le O(k^2) \sqrt{\lambda_k}$$

[Lee, Oveis Gharan, Trevisan'14]

k-clustering Problem

Proof Overview (k = 3)

Proof Overview (k = 3)

Consider spectral embedding $F: V \to \mathbb{R}^2$ given by $F(v) = (f_2(v), f_3(v))$.

Proof Overview (k = 3)

Consider spectral embedding $F: V \to \mathbb{R}^2$ given by $F(v) = (f_2(v), f_3(v))$.

Proof Overview

Goal: Split graph into k clusters to form upper bound on h_k

Spectral embedding:
$$F(v) = (f_2(v), f_3(v), \dots, f_k(v))$$

1. Regions of diameter Δ contain less than $\frac{1}{k(1-\Delta^2)}$ fraction of vertices

$$\sum_{v \in V} \langle \hat{x}, F(v) \rangle^2 = 1$$

Proof Overview

Goal: Split graph into k clusters to form upper bound on h_k

Spectral embedding:
$$F(v) = (f_2(v), f_3(v), \dots, f_k(v))$$

1. Regions of diameter Δ contain less than $\frac{1}{k(1-\Delta^2)}$ fraction of vertices

$$\sum_{v \in V} \langle \hat{x}, F(v) \rangle^2 = 1$$

2. Apply random partitioning [Gupta, Krauthgamer, Lee. '03] to achieve well-separated regions

Proof Overview

Goal: Split graph into k clusters to form upper bound on h_k

Spectral embedding:
$$F(v) = (f_2(v), f_3(v), \dots, f_k(v))$$

1. Regions of diameter Δ contain less than $\frac{1}{k(1-\Delta^2)}$ fraction of vertices

$$\sum_{v \in V} \langle \hat{x}, F(v) \rangle^2 = 1$$

- 2. Apply random partitioning [Gupta, Krauthgamer, Lee. '03] to achieve well-separated regions
- 3. Form the clustering from vertices within each region

Applications of Spectral Clustering

Applications of Spectral Clustering

[Shi, Malik'00]

Thank you for listening.

James Lee, Shayan Oveis Gharan, Luca Trevisan (2014)

Multi-way spectral partitioning and higher-order Cheeger inequalities

Journal of the ACM