第9章 可判定性

- 1. 可判定语言
- 2. 不可判定性 (Diagonalization & A_{TM})
- 3. 可规约性(HALT_{TM})
 - · 调用可规约(Call Reducibility)
 - · 映射可规约(Mapping Reducibility)
 - · 图灵可规约(Turing Reducibility)

第9章 可判定性

Review

- 1. Computer Models (Automatas)
 - ① FA ⇔ RL(Regular Language)&RE
 - ② PDA ⇔ CFL(Context-free language)&CFG
 - ③ TM → TM-Recognizable ,TM-Decidable
 - 4 Recursion Theorem
- 2. Church-Turing Thesis

Decide(判定) 与 Recognize(识别)有何区别?

Decidable: accept, reject (halting machine)

Recogniable: accept, reject, loop

Decidable languages

Recognizable languages

Decidability

We are now ready to tackle the question 问题:

What can computers do and what not? 计算机 能做什么,不能作什么? 不容易直接回答

转化为 考虑下列问题

Which languages are TM-decidable, Turing-recognizable, or neither?
那些是图灵可识别,可判定或都不是? 容易多了

Assuming the Church-Turing thesis, these are fundamental properties of the languages.

Deciding Regular Languages

The <u>acceptance problem</u> for deterministic finite automata is defined by:

 $A_{DFA} = \{ \langle B, \omega \rangle \mid B \text{ is a DFA that accepts w } \}$

注意,A_{DFA}是 DFA 和字符串的对子的集合,判定是指能对其一分为二,对子可编码成01串,所以,A_{DFA}是语言。

问题 "DFA B 是否接受输入 ω "与问题 "<B, ω >是否是 A_{DFA} 的元素是相同的。

一些<mark>计算问题</mark>也可表示成检查<mark>语言的隶属问题</mark>,证明 一个语言是否可判定的与证明一个计算问题是否可判定的 是同一回事。

A_{DFA} is Decidable (Thm. 9.1)

Thm. 9.1 证明A_{DFA}是可判定的,即证明了问题"一个给定的有穷自动机是否接受一个给定的串"是可判定的。

Proof: Let the input $\langle B, w \rangle$ be a DFA with $B=(Q, \Sigma, \delta, q_{start}, F)$ and $w \in \Sigma^*$.

The TM performs the following steps:

- Check if B and w are 'proper', if not: "reject"
- 2) Simulate B on w with the help of two pointers: $P_q \in Q$ for the internal state of the DFA, and $P_w \in \{0,1,...,|w|\}$ for the position on the string. While we increase P_w from 0 to |w|, we change P_q according to the input letter w_{Pw} and the transition function value $\delta(P_q, w_{Pw})$.

形式审查 内容审查

> 造TM,模拟 DFA状态转 移,放弃写 功能和左移 动功能,模拟 DFA

3) If B accept w, then M accepts; otherwise M reject.

Deciding NFA 定理9.2

Thm.9.2 The acceptance problem for nondeterministic FA $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \} \text{ is a TM decidable language}$

注意,A_{NFA}是 NFA 和 语言的对子 的集合,TM 能对其一分为二,对子可编码成01串,所以 问题 是 语言。

```
Proof: Let the input <B,w> be an NFA with B=(Q, \Sigma, \delta, q<sub>start</sub>, F) and w\in \Sigma^*. 造TM M2如下: bool M2(A<sub>NFA</sub>) { 把 A<sub>NFA</sub> 转换成 //调用自动机确定化程序 A<sub>DFA</sub> ={ <C,w> | C is an DFA that accepts w } return ( M1(A<sub>DFA</sub>); // 调用上页结果的TM M1 }
```


Regular Expressions 定理9.3

Thm.9.3 The acceptance problem

A_{REX} = { <R,w> | R is a regular expression that can generate w } is a Turing-decidable language.
语言与正则表达式对子的集合 是 识别与被识别 的关系

Proof Theorem 9.3. On input <R,w>:

- 1. Check if R is a proper regular expression and w a proper string //形式检查
- 2. Convert R into a DFA B // RE→DFA
- 3. Run earlier TM for A_{DFA} on <B,w>//调用上页结果

Emptiness Testing 空集合问题 Thm. 9.4

Thm.9.4 emptiness problem is decidable. $E_{DFA} = \{<A> \mid A \text{ is a DFA with } L(A) = \emptyset \}$ E-Empty 识别空语言的DFA(编码后)的集合,定出它的边界 在 E_{DFA} 之中的不识别任何语言,之外的识别一个语言。

意义: 作为引理,用于证明相等问题是可判定的。

Proof Idea:

 $L(A) = \emptyset$, DFA A不接受字符串,也就是,从起始状态出发,到达不了可接受状态。

Proof for DFA-Emptiness

- Algorithm for E_{DFA} on input $A=(Q,\Sigma,\delta,q_{start},F)$:
- 1) If A is not proper DFA: "reject" //形式审查
- Make set S with initially S={ q_{start}}
- 3) Repeat |Q| times:
 - a) If S has an element in F then "reject"
 - //传递到了接受态,传递路径被接受,接受集非空
 - b) Otherwise, add to S the elements that can be δ -reached from S via:
 - "If $\exists q_i \in S$ and $\exists x \in \Sigma$ with $\delta(q_i, x) = q_j$, then q_i goes into S"
 - //从S起,滚雪球或传销式地发展下家,发展进入S中
 - If final $S \cap F = \emptyset$ "accept"
 - //始终没发展接受态,不接受任何语言,则是空的

DFA-Equivalence Thm9.5

A problem that deals with two DFAs A and B:

Theorem 9.5: EQ_{DFA} is TM-decidable. 可判定

Proof: Look at the *symmetric difference* between the two languages:二者相等←→对称差为空

$$(L(A) \cap \overline{L}(B)) \cup (\overline{L}(A) \cap L(B))$$

对称差由RE的交补并合成,因而是RE. 问题转化为对称差的空问题判定(已经证明是可判定的).

Proof Theorem 9.5 (cont.)

上页给了思想,这里还是给出算法(比TM说起来简单)

Algorithm on given <A,B>:

- 1) If A or B are not proper DFA: "reject"//形式审查
- 2) Construct a third DFA C that accepts the language (with standard transformations).

$$(L(A) \cap \overline{L}(B)) \cup (\overline{L}(A) \cap L(B))$$

- Decide with the TM of the previous theorem whether or not C∈E_{DFA}
- 4) If C∈E_{DFA} then "accept"; //对称差空,相等 If C∉E_{DFA} then "reject" "; //对称差不空,不等

Context-Free Languages

Similar languages for context-free grammars:

A_{CFG} = { <G,w> | G is a CFG that generates w } 生成与被生成关系 问题 A--Accept

E_{CFG} = { <G> | G is a CFG with L(G)=∅ } 空问题 E--Empty EQ_{CFG} = { <G,H> | G and H are CFGs with L(G)=L(H) } 相等问题

The problem with CFGs and PDAs is that they are inherently nondeterministic. 天生不确定

Chomsky NF

A context-free grammar $G = (V,\Sigma,R,S)$ is in Chomsky normal form if every rule is of the form $A \to BC(- D \to \Box)$ or $A \to x(终止符)$ with variables $A \in V$ and $B,C \in V \setminus \{S\}$, and $x \in \Sigma$ For the start variable S we also allow "S $\to \varepsilon$ " 简单而不失威力,理论推导时方便

Chomsky NF grammars are easier to analyze.

The derivation $S \Rightarrow^* w$ requires 2|w|-1 steps (apart from $S \Rightarrow \epsilon$). 重要:派生w的派生式长度固定。易检查。派生时步数虽多,但简单

Deciding CFGs (1)

Theorem 9.6: The language

 A_{CFG} = { <G,w> | G is a CFG that generates w } is TM-decidable. CFG生成关系 是可判定的

Proof: Perform the following algorithm:

- 1) Check if G and w are proper, if not "reject" //形式检查 //下面作内容检查:
- 1) Rewrite G to G' in Chomsky normal form //简化
- 2) Take care of w=ε case via S→ε check for G'//先处理特例
- 3) List all G' derivations of length 2|w|-1//按长度检查派生式
- 4) Check if w occurs in this list; //是否有一个能派生出w if so "accept"; if not "reject" //定出受拒

Deciding CFGs (2)

Theorem 9.7: The language $E_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG with } L(G) = \emptyset \}$ is TM-decidable. CFG的空问题是可判定的

现在可用算法代替TM,等价但比TM简洁

Proof: Perform the following algorithm:

- 1) Check if G is proper, if not "reject"//形式审查
- 2) Let G=(V,T,R,S), define set $\Sigma = T // 从叶子开始倒查$
- 3) Repeat |V| times:
 - Check all rules $B \rightarrow X_1 ... X_k$ in R
 - If B $\not\in$ T and $X_1...X_k$ ∈ Σ then add B to Σ //倒传销,找上家
- 4) If S∈T then "reject", otherwise "accept" //根是上家,拒绝

Equality CFGs 意料之外的结果: 相等问题不可判定

What about the equality language

EQ_{CFG} = { <G,H> | G and H are CFGs with L(G)=L(H) }? 相等问题

复习: DFA: 空问题→对称差→相等问题 可判定

为什么这次不灵了?对称差用了 RL 对补、交 封闭。 而CFL 对补、交 不封闭,导致的不同。

Thm 9.8 each CFL is decidable

Thm. 9.8 每个上下文无关语言都是可判定的。

Proof // TM M2 调用TM S 设G是识别CFL A 的 CFG, 由定理9.6 , 可以造TM S, 对w in A, S 可判定集合 { <G,w>IG是识别w 的 CFG}, 即 S(<G,w>) 一定停机且返回 true 或 false. (不死循环)

```
造TM M2如下:
Bool M2(w)
{ return( S ( <G,w> ); }
```


Decidable

复习:

- 1. 本章研究的主题是:算法求解问题的能力。结论是:有些问题是不可解的,即有些计算问题是不可判定的。
- 2. 计算问题可以用语言来描述
 - ① 计算问题:检测一个特定的DFA B是否接受一个给定的串W。
 - ② 语言A_{DFA},包含了所有DFA及其接受的串的编码,其中 A_{DFA} ={<B,W>|B is DFA, w is string, B accept w}。
 - ③ 上述的计算问题可以用语言A_{DFA}来描述。
- 3. 证明一个计算问题是可判定的,与证明一个语言是可判 定的是等价的。

Halting Problem

下列问题可判定

 $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}$ $A_{CFG} = \{ \langle G, w \rangle \mid G \text{ is a CFG that generates } w \}$ are TM decidable.

问题是:

- 1. $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \} \text{ is TM-Decidable or TM-Recognizable?}$
- 2. Is one TM U capable of simulating all other TMs?(Universal TM)

A_{TM} 又称为接受问题或停机问题,接受问题可被识别,但不能被判定。

Universal TM

引入通用图灵机的直观概念

Win中模拟DOS上的dir WinExec("command.com/C","dir");

Win 是TM, Dos 是TM, Dos可以编码成为串"M"

仿真时,Win相当于通用图灵机

Win("M","dir")

{分配M所需的空间S,

把"M"复制到S上去;

在Win的监控下,在S上运行DOS,运行 dir,

善后,退出;

- } 用3带机
- 1. Win 仿真控制带
- 2. 被模拟机带S: Dos
- 3. 演算带,Buff当前内容

Universal TM

Given a description <M,w> of a TM M and input w, can U simulates M on w?

We can do so via a universal TM U (2-tape):

- 1) Check if M is a proper TM Let M = $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
- 2) Write down the starting configuration $< q_0 w >$ on the second tape
- 3) Repeat until halting configuration is reached:
 - Replace configuration on tape 2 by next configuration according to δ
- 4) "Accept" if q_{accept} is reached; "reject" if q_{reject}

```
简言之: bool U(M,w)
{ return( M (w) ) ;} //如果M不死循环, U也不死循环
```


A_{TM} is decidable?

A_{TM} = {<M,w> | M is a TM that accepts w } is TM-recognizable, but can we also *decide* it ?

The problem lies with the cases when M does not halt on w. In short: the halting problem.

问题焦点:M 死循环的判断。所以A_{TM}又称*停机问题* 精确的停机问题应该是:

 $HALT_{TM} = \{ \langle M, w \rangle | TM M halts for w \}$

We will see that this is an insurmountable problem: in general, one cannot decide if a TM will halt on w or not, hence A_{TM} is undecidable.

先揭谜底: 停机问题不可判定, 从而A_{TM}不可判定 为证明它, 先补充一系列预备知识,

Mappings and Functions 用映射比较集合大小

The function F:A→B maps one set A to another set B:

F is <u>one-to-one</u> (injective 内射,不同源有不同像,源<一像) if every x∈A has a unique image F(x): If F(x)=F(y) then x=y.

F is <u>onto</u> (surjective满射) if every $z \in B$ is 'hit' by F:If $z \in B$ then there is an $x \in A$ such that F(x)=z.

F is a <u>correspondence</u> (bijection双射) between A and B if it is both one-to-one and onto. 规模相同

Cardinality

A set S has k elements if and only if there is a bijection possible between S and {1,2,...,k}.

S and {1,...,k} have the same <u>cardinality (集的势)</u>.

If there is a surjection possible from $\{1,...,n\}$ to S, then $n \ge |S|$.

We can generalize this way of comparing the sizes of sets to infinite ones.

Countable Infinite Sets

A set S is <u>infinite</u> if there exists a surjective(满射) function F:S→N. 基数>=自然数集数

"The set N has not more elements than S."

A set S is <u>countable</u> if there exists a surjective function F:N→S "The set S has <u>not more</u> elements than N."

有限集可数,与自然数集合等势可数

A set S is <u>countable infinite</u> if there exists a bijective function F:N→S. 可数无穷,与N 等势 "The sets N and S are of equal size."

Countable Infinite Sets

有理数集合可数 每个 n/m 都能被数到

Diagonalization 对角线方法

Theorem 9.9 R is uncountable

n	f(n)	
1	3.14159	
2	55.55555	
3	0.12345	x = 0.4641
4	0.50000	
	*	
•		
:	:	
100	53539	

x is not f(n) for any n because it differs from f(n) in the nth fractional digit.

Counting TMs 有多少图灵机

Corollary 9.18 Some languages are not Turing-recognizable.

Observation: Every TM has a finite description; there is only a countable number of different TMs. (A description <M> can consist of a finite string of bits, and the set {0,1}* is countable.) C语言程序,只有可数个,文章只有可数篇,同理,图灵机由有限个字符描述,编码后按字典序排,只有可数个。

Our definition of Turing recognizable languages is a mapping between the set of TMs $\{M_1, M_2, ...\}$ and the set of languages $\{L(M_1), L(M_2), ...\} \subseteq \mathcal{P}(\Sigma^*)$.

Counting Languages

There are uncountable many different languages over the alphabet Σ ={0,1} (the languages L \subseteq {0,1}*). With the lexicographical ordering ε ,0,1,00,01,... of Σ *, every L coincides with an infinite binary sequence via its characteristic sequence (特征序列) χ_L .

Example for L= $\{0,00,01,000,001,...\}$ with χ_L = 0101100...

Counting TMs and Languages

There is a bijection between the set of languages over the alphabet Σ ={0,1} and the uncountable set of infinite bit strings {0,1} N . There are uncountable many different

languages $L \subseteq \{0,1\}^*$. 语言 不可数

➤ Hence there is no surjection (满射) possible from the countable set of TMs to the set of languages.

Specifically, the mapping L(M) is not surjective.

但图灵机(程序、系统)只有可数个

Conclusion: There are languages that are not Turing-recognizable. (A lot of them.) 不可识别的的语言 不但存在, 而且占了绝大部分。

停机问题A_{TM} 不可判定 (A - Accept, 应称为接受问题)

停机问题: Consider again the acceptance language $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts } w \}$. 这里,集合: 一切合乎条件的元素,包括 A_{TM} 自己,自己判定自己, 突破点就在就在这里,

Proof that A_{TM} is not TM-decidable (Thm. 9.19)

(反证法) Assume that TM H decides A_{TM}:

$$H\langle M, w \rangle = \begin{cases} \text{"accept" if M accepts w} \\ \text{"reject" if M does not accept w} \end{cases}$$

用C语言描述: bool H(M,w) { return(M(w); } //组件调用

From H we construct a new TM D that will get us into trouble... 拟造D,导出矛盾

Proving Undecidability

窍门: 把M自己搅进去, 让他自己判定自己, 导出矛盾 The TM D works as follows on input <M> (a TM):

- 1) Run H on <M,<M>> //让M的编码串作自己的输入
- 2) Disagree with the answer of H //相当于对角线反码 (The TM D always halts because H always halts.)

In short:
$$D\langle M \rangle = \begin{cases} \text{"accept" if } H \text{ rejects } \langle M, \langle M \rangle \rangle \\ \text{"reject" if } H \text{ accepts } \langle M, \langle M \rangle \rangle \end{cases}$$

Hence:
$$D\langle M \rangle = \begin{cases} \text{"accept" if M does not accept } \langle M \rangle \\ \text{"reject" if M does accept } \langle M \rangle \end{cases}$$

D也是一切中的一个,Now run D on <D> ("on itself")...

Proving Undecidability

Result:矛盾

$$D\langle D\rangle = \begin{cases} \text{"accept" if D does not accept } \langle D\rangle \\ \text{"reject" if D does accept } \langle D\rangle \end{cases}$$

This does not make sense: D only accepts if it rejects, and vice versa. (Note again that D always halts.)

Contradiction: A_{TM} is not TM-decidable.

This proof used diagonalization implicitly...

Review of Proof (1)

'Acceptance behavior' of M_i on <M_j>

图灵	見机 输入	. 串		-	
	$\left \left\langle M_{1} \right\rangle \right $	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	• • •
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3					• • •
M_4	accept	accept			
•			•		••

Review of Proof (2)

	$\left\langle M_{1} \right angle$	$\langle {\sf M_2} \rangle$	$\langle M_3 \rangle$	$\left\langle M_4 \right angle$	• • •
$\overline{M_1}$	accept	reject	accept	reject	
M_2	accept	accept	$accept \setminus$	accept	
M_3	reject	reject	reject	∖reject	• • •
M_4	accept	accept	reject	reject	
•			•		•

'Deciding behavior' of H on <M_i,<M_j>>,拟用对角线上反码构造图灵机D

Review of Proof (3)

Review of Proof (3)

TM-Unrecognizable

A_{TM} is not TM-decidable, but it is TM-recognizable. What about a language that is not recognizable?

Theorem 9.20: If a language A A 可判定 → A and Ā is TM recognizable

Proof: Run the recognizing TMs for A and Ā in parallel on input x. Wait for one of the TMs to accept. If the TM for A accepted: "accept x"; if the TM for Ā accepted: "reject x". 并行或分时并发识别A和Ā,其中之一结束就结束

TM-Unrecognizable

```
Theorem 9.20: If a language A
Proof: □ 显然。
     → 并行或分时并发 识别A和Ā,有一个结束就结束
给定TM M1 定义 步进图灵机
Bool Step_M1(w,n)
 { 在M1运行n步的基础上(状态,带位置)再运行一步
  if M1到达终止状态 return(true); else return false;
                               A接受W,则
设M2是识别补集的TM 类似地定义 Step_M2(w,n)
                               Step_M1(w,n)为
下面是 判定A的并行TM M:
                               真
bool M(w)
 { n=0; stop=false; while (1 stop)
    { stop=Step_M1(w,n) || !Step_M2(w,n)); n++;}
```

TM-Unrecognizable

```
Theorem 9.20: If a language A
 Proof: □ 显然。
      ← 并行或分时并发 识别A和Ā,有一个结束就结束
给定TM M1 定义 步进图灵机
Bool Step M1(w,n)
 {在M1运行n步的基础上(状态,带位置)再运行一步
  if M1到达终止状态 return(true); else return false;
                                A拒绝W,则
设M2是识别补集的TM 类似地定义 Step_M2(w,n)
下面是 判定A 的并行TM M:
                                ! Step_M1(w,n)
                               为真
bool M(w)
 { n=0; stop=false; while (! stop)
    { stop=Step_M1(w,n) || !Step_M2(w,n)); n++;}
   return stop;
```

Ā_{TM} is not TM-Recognizable

停机问题的补问题是不可识别的

反证法: 已知 A_{TM} 可识别,如果其补集可识别,则由上面定理。推出停机问题可判定,与前面结果矛盾。

直观:语言总集不可数,可识别的集合A是可数集合,其补集是不可数的,集合太大,当然不可识。

We call languages like Ā_{TM} <u>co-TM recognizable</u> 它不一定 是可识别的

TM-recognizable 语言族B

TM decidable

co-TM recognizable 语言族B~

Things that TMs Cannot Do:

The following languages are also unrecognizable:

To be precise:

- E_{TM} is co-TM recognizable
- EQ_{TM} is not even co-Turing recognizable

小结与回顾

- 1. Deciding RL properties
- 2. Deciding context-free languages
- 3. The Halting Problem
- 4. Countable and uncountable infinities
- 5. Diagonalization arguments

Reducibility 可归约性

```
归约的直观解释:调用问题
A官, B兵, 对应C程序(TM): Prog_官(w), Prog_兵(w)
如果官调兵 如下:
 Prog 官(w)
            //简单计算
  Prog 兵(w)
            //简单计算
则称官规约为兵,从计算能力比较有官>=兵
        被调
 主调
■ 如果 B兵能识别语言 L则A官也能
```

■ 逆否定理 如果A官不能识别L,则B兵也不能

Halting Problem Revisited

原来把_ A_{TM} = { <M,w> | the TM M 识别 w } 称为 停机问题 是因为它与下列名副其实的停机问题很近 A_{TM} 应该称为接受问题, A—Accept 名副其实的停机问题:

Theorem 9.21: The 'halting problem' language $HALT_{TM} = \{ \langle M, w \rangle \mid \text{ the TM M halts on input w } \}$ is undecidable (but of course recognizable).

接受问题分界线 停机问题分界线

Halting Problem Revisited

Theorem 9.21: The 'halting problem' language $HALT_{TM} = \{ \langle M, w \rangle \mid \text{ the TM M halts on input w } \}$ is <u>undecidable</u> (but of course recognizable).

Proof: 反证法

反设存在判定器 Deter_Halt 判定 HALT_{TM},则可证明: TM Deter_Accept decides A_{TM}。

bool **Deter_Accept**(< M,w>) <u>//接受问题</u>
{ if (**Deter_Halt**(<M, w>)) <u>//停机问题</u>
 return (M (w)) //M接受W,返回true, 否则 false
} 以前已证明接受问题不可判定(对某些w,会死循环),
如<u>停机问题</u>能判定,则与以前结论矛盾,证毕。

Halting Problem Revisited

Theorem 9.21: The 'halting problem' language $HALT_{TM} = \{ \langle M, w \rangle \mid \text{ the TM M halts on input w } \}$ is undecidable (but of course recognizable).

<u>Proof:</u> Let R be a TM that decides $HALT_{TM}$. The following TM S decides A_{TM} :

On input <M,w> run R to decide halting

- 1. If R rejected <M,w>, then "reject".
- 2. If R accepted <M,w> then copy (reject/accept) output of M on w.

(Note that this TM S always produces an output.)

A_{TM} is undecidable, hence such a R cannot exist.

问题:规约体现在哪里?

Deciding Equality

Theorem 9.22: The language of non-accepting TMs $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM with } L(M) = \emptyset \}$ is not decidable (but co-TM recognizable). 空接受问题不可判定(上课板书)

Theorem 9.23: $EQ_{TM} = \{ <M1,M2 > | M1,M2 TMs, L(M1)=L(M2) \}$ is undecidable 相等问题不可判定(上课板书)

Deciding Equality

Almost any language property of Turing machines is undecidable:

Theorem 9.24

Regular_{TM} = { <M> | L(M) is a regular language } 一切识别正则语言的图灵机集合

Finite_{TM} = { <M> | L(M) is a finite language } 一切识别有限语言的图灵机集合

CFG_{TM} = { <M> | L(M) is a CFG language } 一切识别CFG语言的图灵机集合

Are undicidable

Review

1、归约的目的在于:

将一个问题转化为另一个问题;且用第二个问题的解来解决第一个问题。比如:在城市中 认路可归约为得到一张地图的问题。

2、归约的应用(A问题可归约到B问题):

- •如果B是可判定的,则A也是可判定的;
- •如果A是不可判定的,则B也是不可判定的;(主要的应用)

Reveiw

3、A_{TM}是不可判定的,但, A_{TM}是可识别的:

U="对于输入<M,w>,其中M是TM,w是字符串:

- ① 在输入w上模拟M:
- ② 如果M接受,则接受;如果M拒绝,则拒绝。"
- 一旦M在w上死循环,U无法预知,且只能陷入死循环,所以A_{TM} 是可以识别的,但不可判定(采用对角化方法可证明)。

4、HALT_{TM}是不可判定的:

设HALT_{TM}是可判定的,则可证明A_{TM}是可判定的,出现矛盾。所以HALT_{TM}是不可判定的。

5、E_{TM},EQ_{TM},REGULAR_{TM}都是不可判定的。

