1 Логика предикатов

1.1 Алфавит сигнатуры σ

Соглашение

Если из контекста понятно, какие символы являются предикатными, а какие - функциональными., тогда разделение на P и F можно пропустить: $\sigma_{\mathbb{R}} = \{+^2, \cdot^2, 0^0, 1^0\}$, $\sigma_{set} = \{\in^2\}$. Если используемые символы имеют стандартную арность, например, $+, \cdot, 0, 1, \in$, то верхние индексы, показывающие эту арность, можно пропустить: $\sigma_{\mathbb{R}} = \{+, \cdot, 0, 1\}$, $\sigma_{set} = \{\in\}$.

Определение

Пусть $\sigma = (P, F, \mu)$ - некоторая сигнатура. Тогда **алфавит** логики предикатов (или логики первого порядка) сигнатуры σ - это множество:

$$\mathcal{A}_{FOL}(\sigma) \rightleftharpoons \{\land, \lor, \rightarrow, \neg, (,) \top, \bot, \forall, \exists, =\} \cup P \cup F \cup \{x_i | i \in \omega\} \cup \{,\}\}$$

Здесь $V = \{x_i | i \in \omega\}$ - бесконечное множество **предметных** переменных.

1.2 Термы сигнатуры σ

Определение

Пусть $\sigma=(P,F)$ - сигнатура. Тогда **язык термов** $T(\sigma)$ сигнатуры σ можно определить как множество слов алфавита $\mathcal{A}_{FOL}(\sigma)$ по индукции:

- 1. если $x \in V$ предметная переменная, то $x \in T(\sigma)$ является термом
- 2. если $f^n \in F$ функциональный символ, $t_1, \ldots, t_n \in T(\sigma)$ термы, то слово $f(t_1, \ldots, t_n) \in T(\sigma)$, т.е. является термом

Слова из $T(\sigma)$ называются **термами** сигнатуры σ .

Соглашение

Из определения следует, что если $c^0 \in F$ - константа, то $c() \in T(\sigma)$. В этом случае будем пропускать пустые скобки и вместо c() писать просто c.

Соглашение

Далее будем предполагать, что набор переменных V содержит все стандартные символы для обозначения переменных, такие как x, y, z, x_1, y_j^i и так далее.

1.3 Примеры термов

Термы сигнатуры $\sigma_{\mathbb{R}}$

Следующие слова являются термами сигнатуры $\sigma_{\mathbb{R}}$:

- 0, 1, x, x_1 , y, z
- \bullet +(0,1), +(x,1), +(y,y), \cdot (y,z)
- $+(1,+(x,y)), +(\cdot(x,y),\cdot(x,z)), \cdot(+(x,1),\cdot(y,y))$

Те же термы, записанные в инфиксной форме:

- 0+1, x+1, y+y, $y \cdot z$
- 1 + (x + y), $(x \cdot y) + (x \cdot z)$, $(x + 1) \cdot (y \cdot y)$

1.4 Глубина и множество всех переменных терма

Определение

Для каждого терма $t \in T(\sigma)$ определим его **глубину** d(t) и **множество переменных** V(t) индукцией по построению:

- ullet если $t=x\in V$ предметная переменная, то
 - -d(t) = 0
 - $-V(t) = \{x\}$
- если $t=f(t_1,\ldots,t_n)\in T(\sigma),$ где $f^n\in F$ функциональный символ, то
 - $d(t) = \max\{d(t_i)|1 \le i \le n\} + 1$
 - $V(t) = \cup \{V(t_i) | 1 \le i \le n\}$

Глубина и переменные термов сигнатуры $\sigma_{\mathbb{R}}$

- d(0+1) = 1, $V(0+1) = \emptyset$
- d(x+1) = 1, $V(x+1) = \{x\}$
- $d((x \cdot y) + (x \cdot z)) = 2$, $V((x \cdot y) + (x \cdot z)) = \{x, y, z\}$

1.5 Формулы сигнатуры σ

Определение

Пусть $\sigma = (P, F)$ - сигнатура. Тогда **язык формул** $F(\sigma)$ сигнатуры σ можно определить как множество слов алфавита $\mathcal{A}_{FOL}(\sigma)$ по индукции:

- 1. если $t_1, t_2 \in T(\sigma)$ два терма, то $(t_1 = t_2) \in F(\sigma)$
- 2. если $p^n\in P$ предикатный символ, $t_1,\ldots,t_n\in T(\sigma)$ термы, то $p(t_1,\ldots,t_n)\in F(\sigma)$
- 3. если $\phi \in F(\sigma)$, то $\neg \phi \in F(\sigma)$
- 4. если $\phi, \psi \in F(\sigma)$, то $(\phi \bullet \psi) \in F(\sigma)$ для любого $\bullet \in \{\land, \lor, \to\}$
- 5. если $\phi \in F(\sigma), x \in V$ предметная переменная, то $Qx\phi \in F(\sigma)$, где $Q \in \{\forall, \exists\}$ кванторы.

Слова из множества $F(\sigma)$ называются формулами сигнатуры σ . Формулы, полученные по 1 и 2 называются атомарными.

1.6 Примеры формул

Формулы сигнатуры $\sigma_{\mathbb{R}}$

Следующие слова являются формулами сигнатуры $\sigma_{\mathbb{R}}$:

- $0 = 0, 1 = 0, x = (x+1), x = y + (x \cdot z)$
- $\bullet \ (1=0) \land (x+y=y+x)$
- $\exists x(x=1)$
- $\forall y ((y+y=0) \rightarrow (y=0))$
- $\forall x \forall y \ (x \cdot (y+1) = (x \cdot y) + x)$

Формулы сигнатуры σ_{set}

Символ \in будем записывать в инфиксной форме, т.е. вместо $\in (x,y)$ запишем $x \in y$.

- $x \in y$, $(x \in y) \land (x \in z)$
- $\exists x \forall y \neg (y \in x)$
- $\forall x \forall y ((x \in y) \lor (y \in x))$
- $\forall x \exists y \forall z ((z \in y) \to \exists t \in x (z \in t))$

1.7 Глубина и множество свободных переменных формулы

Определение

Для любой формулы $\phi \in F(\sigma)$ определим её **глубину** d(t) и множество **свободных переменных** FV(t) индукцией по построению:

- ullet если $\phi=(t_1=t_2),$ то $d(\phi)=0$ и $FV(\phi)=V(t_1)\cup V(t_2)$
- если $\phi = p(t_1, \dots, t_n) \in T(\sigma)$, то $d(\phi) = 0$ и $FV(\phi) = \bigcup \{V(t_i) | 1 \le i \le n\}$
- если $\phi = \neg \psi$, то $d(\phi) = d(\psi) + 1$ и $FV(\phi) = FV(\psi)$
- если $\phi = (\psi_1 \bullet \psi_2)$, то $d(\phi) = \max(d(\psi_1), d(\psi_2)) + 1$ и $FV(\phi) = FV(\psi_1) \cup FV(\psi_2)$
- если $\phi = Qx\psi$, то $d(\phi) = d(\psi) + 1$ и $FV(\phi) = FV(\psi) \setminus \{x\}$.

Замечание

Формула ϕ является атомарной $\Leftrightarrow d(\phi) = 0$.

1.8 Примеры множеств свободных переменных

Свободные переменные формул сигнатуры $\sigma_{\mathbb{R}}$

- $FV(1=0) = \emptyset$, $FV(x=(x+1)) = \{x\}$
- $FV((1=0) \land (x+y=y+x)) = \{x,y\}, FV(\exists x(x=1)) = \emptyset$
- $FV(\forall y \ ((y+y=0) \rightarrow (y=0))) = \emptyset$
- $FV(\forall y \ (x \cdot (y+1) = (x \cdot y) + x)) = \{x\}$

Свободные переменные формул сигнатуры σ_{set}

- $FV(x \in y) = \{x, y\}, FV((x \in y) \land (x \in z)) = \{x, y, z\}$
- $FV(\exists x \forall y \neg (y \in x)) = \emptyset$
- $FV(\forall x \forall y ((x \in y) \lor (y \in x))) = \emptyset$
- $FV(\forall x \forall z ((z \in y) \to \exists t \in x (z \in t))) = \{y\}$

1.9 Предложения сигнатуры σ

Обозначение

Пусть ϕ - формула сигнатуры σ . Тогда запись $\phi(x_1,\ldots,x_n)$, где $x_1,\ldots,x_n\in V$ - множество предметных переменных, означает, что $FV(\phi)\subseteq \{x_1,\ldots,x_n\}$, а переменные x_i упорядочены по индексам своего первого вхождения. Вместо $\phi(x_1,\ldots,x_n)$ можно также писать $\phi(\bar{x})$ где \bar{x} - кортеж переменных. Аналогичное обозначение может использоваться при записи термов.

пример

Если $\phi = p(y,x) \land \forall z (q(z,y) \to (p(z,x) \land \neg r(t,z)))$, то для такой формулы напишем $\phi(y,x,t)$ чтобы показать, что $FV(\phi) = \{x,y,t\}$

Определение

Формула ϕ называется **предложением** или **замкнутой формулой**, тогда и только тогда, когда $FV(\phi) = \emptyset$.

1.10 Мощность множества формул сигнатуры σ

Определение

мощность сигнатуры $\sigma = (P, F, \mu)$ - это мощность множества $P \cup F$. В дальнейшем будем писать $|\sigma|$ для обозначения мощности сигнатуры σ .

Теорема (мощность множества формул)

Для любой сигнатуры $\sigma = (P, F, \mu)$ выполнено следующее $|F(\sigma)| = \max(\omega, |\sigma|)$.

Доказательство

Отметим, что $|\mathcal{A}_{FOL}(\sigma)| = \max(|\sigma|, \omega)$. поскольку $F(\sigma) \subseteq \mathcal{A}_{FOL}^*(\sigma), |F(\sigma)| \le |\mathcal{A}_{FOL}^*(\sigma)| = \max(\omega, |\sigma|)$. Для любой сигнатуры σ в $F(\sigma)$ существуют формулы вида

$$\underbrace{\neg\neg\dots\neg}_{n}(x=x)$$

следовательно, $|F(\sigma)| \geq \omega$. Чтобы показать, что $|\sigma| \leq |F(\sigma)|$, построим инъективное отображение $f: P \cup F \to F(\sigma)$ следующим образом. Для любых $s \in P \cup F$, таких, что $\mu(s) = n$, определим

$$f(s) = \begin{cases} (x = s(x, \dots, x)), & \text{if } s \in F, \\ s(x, \dots, x) & \text{if } s \in P \end{cases}$$

1.11 Обогащение/обеднение сигнатур

Определение

Пусть $\sigma_1 = (P_1, F_1, \mu_1), \, \sigma_2 = (P_2, F_2, \mu_2)$ - две сигнатуры. Тогда σ_2 является **обогащением** сигнатуры σ_1 (а σ_1 является **Обеднением** сигнатуры σ_2), тогда и только тогда, когда

- $P_1 \subseteq P_2$
- \bullet $F_1 \subseteq F_2$
- ullet для любого символа $s \in P_1 \cup F_1$ верно, что $\mu_1(s) = \mu_2(s)$

Это отношение обозначается как $\sigma_1 \subseteq \sigma_2$

пример

- $\{+^2\} \subseteq \{+^2, \cdot^2\} \subseteq \{+^2, \cdot^2, \le^2\}$
- $\{+^2, \cdot^2\} \not\subseteq \{+^1, \cdot^2, \le^2\}$

1.12 Означивание предметных переменных

Определение

Пусть $\mathcal{M}=(M,\sigma)$ - некоторая структура, V_0 - некоторое множество предметных переменных. Отображение $\gamma:V_0\to M$ называется означиванием переменных V_0 в структуре M.

Замечание

В отличие от означивания *пропозициональных переменных*, значение означивания предметных переменных не является *истинным* значением (истиналожь), а является, скорее, *объектным* значением - некоторый элемент (объект) в структуре.

Обозначение

Пусть $\gamma: V_0 \to M$ - означивание переменных V_0 в структуре \mathcal{M}, v - некоторые предметные переменные и $a \in M$. Тогда

$$\gamma_a^v = \left\{ \begin{array}{ll} (\gamma \setminus \{(v,\gamma(v))\}) \cup \{(v,a)\}, & \text{если } v \in V_0, \\ \gamma \cup \{(v,a)\} & \text{если } v \notin V_0 \end{array} \right.$$

1.13 Значение терма

Определение

Дана структура \mathcal{M} сигнатуры σ , для каждого терма $t \in T(\sigma)$, множество переменных V_0 , таких, что $V(t) \subseteq V_0$ и означивание $\gamma: V_0 \to M$, определим **значение терма** t в структуре \mathcal{M} при означивании γ . Обозначается как $t^{\mathcal{M}}[\gamma]$.

- ullet если t=v переменная, то $t^{\mathcal{M}}[\gamma] \rightleftharpoons \gamma(v)$
- если $t = f(t_1, \dots, t_n)$, где $t_1, \dots, t_n \in T(\sigma)$, то $t^{\mathcal{M}}[\gamma] \rightleftharpoons f^{\mathcal{M}}(t_1^{\mathcal{M}}[\gamma], \dots, t_n^{\mathcal{M}}[\gamma])$

Обозначение

Пусть \mathcal{M} - структура, $t(x_1, \ldots, x_n)$ - терм, a_1, \ldots, a_n - некоторый кортеж элементов из M. Тогда $t^{\mathcal{M}}(a_1, \ldots, a_n)$ можно определить как значение t в структуре \mathcal{M} при означивании $\gamma: x_i \mapsto a_i$ для всех $1 \leq i \leq n$. Верхний индекс \mathcal{M} для краткости можно пропустить, и вместо $f^{\mathcal{M}}(a_1, \ldots, a_n)$ написать просто $t(a_1, \ldots, a_n)$.

утверждение

- 1) Пусть \mathcal{M} структура сигнатуры $\sigma, \emptyset \neq X \subseteq M$. Тогда носитель $\mathcal{M}(X)$ определяется как множество $\{t(\bar{a})|t\in T(\sigma),\ \bar{a}\in X\}$
- 2) Пусть $\phi: \mathcal{M} \to \mathcal{N}$ гомоморфизм структур сигнатуры σ . Тогда для любого терма $t \in T(\sigma)$ и для любого кортежа $\bar{a} \in M$ верно, что $\phi(t(\bar{a})) = t(\phi(\bar{a}))$. Здесь $\phi((a_1, \ldots, a_n)) \rightleftharpoons (\phi(a_1), \ldots, \phi(a_n))$.

Доказательство

1) Покажем включение $X' = \{t(\bar{a})|t \in T(\sigma), \ \bar{a} \in X\} \subseteq \mathcal{M}(X)$. Пусть $t \in T(\sigma), \ \bar{a} \in X$. Индукцией по глубине t нетрудно показать, что $t(\bar{a}) \in \mathcal{N}'$ для любой подструктуры $\mathcal{N}' \subseteq \mathcal{M}$, следовательно, $t(\bar{a}) \in \mathcal{M}(X)$. Обратное включение. Отметим, что множество X' замкнуто относительно операций из σ , следовательно, X' порождает подструктуру, содержащую X. Тогда по минимальности $\mathcal{M}(X)$ верно, что $\mathcal{M}(X) \subseteq X'$. 2) Индукцией по глубине терма t.

1.14 Истинность формул

Определение

Пусть $\mathcal{M} = (M, \sigma)$ - структура сигнатуры σ , $\phi(\bar{x})$ - некоторая формула сигнатуры σ , γ - означивание переменных \bar{x} в структуре \mathcal{M} . Определим отношение **истинности** \models формулы ϕ в структуре \mathcal{M} при означивании γ :

- $\mathcal{M} \models (t_1 = t_2)[\gamma] \stackrel{def}{\Leftrightarrow} t_1^{\mathcal{M}}[\gamma] = t_2^{\mathcal{M}}[\gamma]$
- $\mathcal{M} \models p(t_1, \dots, t_n)[\gamma] \stackrel{def}{\Leftrightarrow} (t_1^{\mathcal{M}}[\gamma], \dots, t_n^{\mathcal{M}}[\gamma]) \in p^{\mathcal{M}}$
- $\mathcal{M} \models (\phi \land \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \land (\mathcal{M} \models \psi[\gamma])$

- $\mathcal{M} \models (\phi \lor \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \lor (\mathcal{M} \models \psi[\gamma])$
- $\mathcal{M} \models \neg \phi[\gamma] \stackrel{def}{\Leftrightarrow} \mathcal{M} \not\models \phi[\gamma] \Leftrightarrow \neg(\mathcal{M} \models \phi[\gamma])$
- $\mathcal{M} \models (\phi \to \psi)[\gamma] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \phi[\gamma]) \to (\mathcal{M} \models \psi[\gamma])$
- $\mathcal{M} \models \forall x \phi[\gamma] \stackrel{def}{\Leftrightarrow} \forall a \in M \ (\mathcal{M} \models \phi[\gamma_a^x])$
- $\mathcal{M} \models \exists x \phi[\gamma] \stackrel{def}{\Leftrightarrow} \exists a \in M \ (\mathcal{M} \models \phi[\gamma_a^x])$

1.15 Зависимость значения терма t от V(t)

Лемма

Пусть \mathcal{M} - структура, t - терм, V_0 - множество переменных, таких, что $V(t) \subseteq V_0$, и $\gamma_1, \gamma_2 : V_0 \to M$ - два означивания. Тогда если для любой переменной $v \in V(t)$ верно, что $\gamma_1(v) = \gamma_2(v)$, то $t^{\mathcal{M}}[\gamma_1] = t^{\mathcal{M}}[\gamma_2]$.

Доказательство

Индукция по глубине терма t. Основание индукции: d(t) = 0. Тогда t = v некоторая предметная переменная, следовательно, $V(t) = \{v\}$, тогда $\gamma_1(v) = \gamma_2(v)$ и по определению $t^{\mathcal{M}}[\gamma_1] = t^{\mathcal{M}}[\gamma_2]$. Шаг индукции. Пусть $t = f(t_1, \ldots, t_n)$, и утверждение верно для термов t_1, \ldots, t_n . поскольку $V(t) = \bigcup \{V(t_i) | 1 \le i \le n\}$, по предположению индукции $t_i^{\mathcal{M}}[\gamma_1] = t_i^{\mathcal{M}}[\gamma_2]$. Тогда

$$t^{\mathcal{M}}[\gamma_1] \stackrel{def}{=} f^{\mathcal{M}}(t_1^{\mathcal{M}}[\gamma_1], \dots, t_n^{\mathcal{M}}[\gamma_1]) \stackrel{ind}{=} f^{\mathcal{M}}(t_1^{\mathcal{M}}[\gamma_2], \dots, t_n^{\mathcal{M}}[\gamma_2]) \stackrel{def}{=} t^{\mathcal{M}}[\gamma_2]$$

1.16 Зависимость истинности формулы

Лемма

Пусть \mathcal{M} - структура, ϕ - формула, V_0 - множество переменных, таких что $FV(\phi)\subseteq V_0$, и $\gamma_1,\gamma_2:V_0\to M$ - два означивания. Тогда если для любой переменной $v\in FV(\phi)$ верно, что $\gamma_1(v)=\gamma_2(v)$, то $\mathcal{M}\models\phi[\gamma_1]\Leftrightarrow \mathcal{M}\models\phi[\gamma_2]$.

Доказательство

Индукция по глубине ϕ . Основание индукции. Пусть ϕ - атомарная формула. Рассмотрим варианты построения ϕ . Если $\phi = (t_1 = t_2)$, то $FV(\phi) = V(t_1) \cup V(t_2)$, следовательно

$$\mathcal{M} \models (t_1 = t_2)[\gamma_1] \stackrel{def}{\Leftrightarrow} (t_1^{\mathcal{M}}[\gamma_1] = t_2^{\mathcal{M}}[\gamma_1]) \Leftrightarrow$$

$$(t_1^{\mathcal{M}}[\gamma_2] = t_2^{\mathcal{M}}[\gamma_2]) \stackrel{def}{\Leftrightarrow} \mathcal{M} \models (t_1 = t_2)[\gamma_2]$$

Если $\phi = p(t_1, \ldots, t_n)$, то $FV(\phi) = V(t_1) \cup \ldots \cup V(t_n)$, следовательно

$$\mathcal{M} \models p(t_1, \dots, t_n)[\gamma_1] \stackrel{def}{\Leftrightarrow} (t_1^{\mathcal{M}}[\gamma_1], \dots, t_n^{\mathcal{M}}[\gamma_1]) \in p^{\mathcal{M}} \Leftrightarrow$$

$$(t_1^{\mathcal{M}}[\gamma_2], \dots, t_n^{\mathcal{M}}[\gamma_2]) \in p^{\mathcal{M}} \stackrel{def}{\Leftrightarrow} \mathcal{M} \models p(t_1, \dots, t_n)[\gamma_2]$$

Шаг индукции. Рассмотрим все возможные способы построения ϕ . Случай, когда $\phi = (\psi_1 \bullet \psi_2)$, где $\bullet \in \{\land, \lor, \rightarrow\}$. Тогда $FV(\phi) = FV(\psi_1) \cup FV(\psi_2)$, и, по предположению индукции, утверждение верно для ψ_1 и ψ_2 .

$$\mathcal{M} \models (\psi_1 \bullet \psi_2)[\gamma_1] \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \psi_1[\gamma_1]) \bullet (\mathcal{M} \models \psi_2[\gamma_1]) \stackrel{ind}{\Leftrightarrow} (\mathcal{M} \models \psi_1[\gamma_2]) \bullet (\mathcal{M} \models \psi_2[\gamma_2]) \stackrel{def}{\Leftrightarrow} \mathcal{M} \models (\psi_1 \bullet \psi_2)[\gamma_2]$$

Случай, когда $\phi = \neg \psi$ следует из предположения индукции и определения истинности. Остался только один случай с кванторами $\phi = Qx\psi$, где $Q \in \{\forall, \exists\}$.

$$\mathcal{M} \models Qx\psi[\gamma_1] \stackrel{def}{\Leftrightarrow} Qa \in M \ (\mathcal{M} \models \psi[(\gamma_1)_a^x]) \stackrel{ind}{\Leftrightarrow}$$
$$Qa \in M \ (\mathcal{M} \models \psi[(\gamma_2)_a^x]) \stackrel{def}{\Leftrightarrow} \mathcal{M} \models Qx\psi[\gamma_2]$$

Предположение индукции верно, поскольку для всех $v \in FV(\psi)$ выполнено следующее $(\gamma_1)_a^v(v) = (\gamma_2)_a^v(v)$. \square

Следствие

Если ϕ - предложение, т.е. $FV(\phi) = \emptyset$, \mathcal{M} - структура, тогда для любых двух означиваний $\gamma_1, \gamma_2 : V_0 \to M$ верно, что $\mathcal{M} \models \phi[\gamma_1] \Leftrightarrow \mathcal{M} \models \phi[\gamma_2]$.

Обозначение

По следствию, для предложений ϕ вместо $\mathcal{M}\models\phi[\gamma]$ будем писать просто $\mathcal{M}\models\phi$

Обозначение

Если $\phi(\bar{x})$ - формула, \mathcal{M} - структура, \bar{a} - кортеж элементов M длины $l(\bar{x})$, то $\mathcal{M}\models\phi(\bar{a})$ означает, что $\mathcal{M}\models\phi[\gamma]$, где $\gamma:x_i\mapsto a_i$ для всех $1\leq i\leq l(\bar{x})$. Это обозначение корректно по лемме. Запись $\bar{a}\in M$ означает, что $\bar{a}\in M^{l(\bar{a})}$.

1.17 Примеры истинности значений формул

Примеры

Возьмём $\mathbb{N} = (\omega, \{+^2, \cdot^2, 0^0, s^1\})$, где $+1^{\mathbb{N}}(n) \rightleftharpoons n+1$. Тогда

- $\mathbb{N} \models \forall x \forall y \ (x + (y+1)) = (x+y) + 1$
- $\mathbb{N} \not\models \forall x \exists y \ (x = y + 1)$
- $\mathbb{Z} \models \forall x \exists y \ (x + y = 0)$
- $\mathbb{Z} \not\models \forall x \exists y \ (x \cdot y = 1)$
- $\mathbb{R} \models \forall x \exists y \ (x \cdot y = 1)$
- $\mathbb{R} \not\models \forall x \exists y \ (y \cdot y = x)$
- $S_3 \models \exists x \ (x \cdot x \cdot x = 1)$
- $S_3 \not\models \exists x \ (x \cdot x = 1)$
- $\mathbb{Z} \models \forall x \ (\exists y \ (x = y + y) \lor \exists y \ (x = y + y + 1))$

1.18 Истинность множества формул

Определение

Пусть Φ - множество формул сигнатуры σ , тогда **множество свободных переменных** Φ - это объединение $FV(\Phi) = \bigcup \{FV(\phi) | \phi \in \Phi\}.$

Определение

Пусть Φ - множество формул сигнатуры σ , \mathcal{M} - структура сигнатуры σ и $\gamma: FV(\Phi) \to M$ - означивание свободных переменных Φ . Тогда Φ является **истиной** на \mathcal{M} при означивании γ , записывается как $\mathcal{M} \models \Phi[\gamma]$, тогда и только тогда, когда $\mathcal{M} \models \phi[\gamma]$ для всех $\phi \in \Phi$.

1.19 Истинность и изоморфизм

Теорема

Пусть $f: \mathcal{M} \xrightarrow{\simeq} \mathcal{N}$ - изоморфизм структур \mathcal{M} и \mathcal{N} сигнатуры σ , $\phi(\bar{x})$ - формула сигнатуры σ . Тогда для любого кортежа $\bar{a} \in M$ верно следующее $\mathcal{M} \models \phi(\bar{a}) \Leftrightarrow \mathcal{N} \models \phi(f(\bar{a}))$

Доказательство

Индукция по глубине ϕ . Основание индукции: ϕ - атомарная формула. случай 1). Пусть $\phi = (t_1 = t_2)$. Тогда $\mathcal{M} \models (t_1 = t_2)(\bar{a}) \Leftrightarrow t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a})$. По утверждению, так как f является гомоморфизмом, $t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a}) \Leftrightarrow t_1^{\mathcal{N}}(f(\bar{a})) = t_2^{\mathcal{N}}(f(\bar{a})) \Leftrightarrow \mathcal{N} \models (t_1 = t_2)(f(\bar{a}))$ Случай 2). Пусть $\phi = p(t_1, \ldots, t_n)$. Тогда $\mathcal{M} \models p(t_1, \ldots, t_n)(\bar{a}) \Leftrightarrow (t_1^{\mathcal{M}}(\bar{a}), \ldots, t_n^{\mathcal{M}}(\bar{a})) \in p^{\mathcal{M}}$. Так как f является изоморфизмом, по определению $f(t_1^{\mathcal{M}}(\bar{a}), \ldots, t_n^{\mathcal{M}}(\bar{a})) = (t_1^{\mathcal{N}}(f(\bar{a})), \ldots, t_n^{\mathcal{N}}(f(\bar{a}))) \in p^{\mathcal{N}} \Leftrightarrow \mathcal{N} \models p(t_1, \ldots, t_n)(f(\bar{a}))$ Шаг индукции. Пусть $\phi = (\psi_1 \bullet \psi_2)$, где $\bullet \in \{\wedge, \vee, \to\}$ Тогда

$$\mathcal{M} \models (\psi_1 \bullet \psi_2)(\bar{a}) \stackrel{def}{\Leftrightarrow} (\mathcal{M} \models \psi_1(\bar{a})) \bullet (\mathcal{M} \models \psi_2(\bar{a})) \stackrel{ind}{\Leftrightarrow} (\mathcal{N} \models \psi_1(f(\bar{a}))) \bullet (\mathcal{N} \models \psi_2(f(\bar{a}))) \stackrel{def}{\Leftrightarrow} \mathcal{N} \models (\psi_1 \bullet \psi_2)(f(\bar{a}))$$

Случай отрицания $\phi = \neg \psi$ рассматривается аналогично:

$$\mathcal{M} \models \neg \psi(\bar{a}) \stackrel{def}{\Leftrightarrow} \mathcal{M} \not\models \psi(\bar{a}) \stackrel{ind}{\Leftrightarrow}$$

$$\mathcal{N} \not\models \psi(f(\bar{a})) \stackrel{def}{\Leftrightarrow} \mathcal{N} \models \neg \psi(f(\bar{a}))$$

Случай с кванторами $\phi = Qx\psi,$ где $Q \in \{\forall,\exists\}$:

$$\mathcal{M} \models Qx\psi(\bar{a}, x) \stackrel{def}{\Leftrightarrow} Qb \in M \ \mathcal{M}\psi(\bar{a}, b) \stackrel{ind}{\Leftrightarrow}$$

$$Qc \in N \ \mathcal{N} \models \psi(f(\bar{a}), c) \stackrel{def}{\Leftrightarrow} \mathcal{N} \models Qx\psi(f(\bar{a}), x)$$

1.20 Корректные, выполнимые и невыполнимые формулы

Определение

Формула $\phi(\bar{x})$ сигнатуры σ называется

- корректной, тогда и только тогда, когда для любой структуры \mathcal{M} сигнатуры σ и любого кортежа элементов $\bar{a} \in M$, верно, что $\mathcal{M} \models \phi(\bar{a})$
- выполнимой, тогда и только тогда, когда существует некоторая структура \mathcal{M} сигнатуры σ и некоторый кортеж $\bar{a} \in M$, такие, что $\mathcal{M} \not\models \phi(\bar{a})$
- невыполнимой, тогда и только тогда, когда для любой структуры \mathcal{M} сигнатуры σ и любого кортеж $\bar{a} \in M$ верно, что $\mathcal{M} \not\models \phi(\bar{a})$

Факт того, что ϕ является тождественно истинной обозначается как $\models \phi$.

Определение

Множество формул Φ называется **выполнимым**, тогда и только тогда, когда существует такая структура \mathcal{M} и означивание $\gamma: FV(\Phi) \to M$, что $\mathcal{M} \models \Phi[\gamma]$.

1.21 Семантическая импликация формул

Определение

Пусть Φ - множество формул, ψ - некоторая формула сигнатуры σ . Тогда ψ семантически следует из Φ , тогда и только тогда, когда для любой структуры сигнатуры σ и любого означивания $\gamma: FV(\Phi) \cup FV(\psi)$ из истинности $\mathcal{M} \models \Phi[\gamma]$ следует истинность $\mathcal{M} \models \psi[\gamma]$. Это отношение записывается как $\Phi \models \psi$.

Замечание

Из определения ясно, что $\models \phi \Leftrightarrow \emptyset \models \phi$

1.22 Семантическая эквивалентность формул

Определение

Пусть $\phi(\bar{x}), \psi(\bar{x})$ - формулы сигнатуры σ . Тогда ϕ и ψ называются **семантически эквивалентными**, обозначается как $\phi \sim \psi$, тогда и только тогда, когда для любой структуры \mathcal{M} сигнатуры σ и для любого кортежа $\bar{a} \in M$, верно, что

$$\mathcal{M} \models \phi(\bar{a}) \Leftrightarrow \mathcal{M} \models \psi(\bar{a})$$

Обозначение

Введем следующие обозначения:

$$(\phi \leftrightarrow \psi) \leftrightharpoons ((\phi \to \psi) \land (\psi \to \phi))$$

утверждение

Для любых формул $\phi(\bar{x}), \psi(\bar{x})$ верно, что

$$\phi \sim \psi \iff \models \forall x_1 \dots \forall x_n (\phi \leftrightarrow \psi)$$

Замечание

Отношение \sim на множестве формул $F(\sigma)$ сигнатуры σ является отношением эквивалентности.

Доказательство

Следует из определения.

2 Исчисление предикатов

2.1 Определение секвенции

Определение

Расширим алфавит логики предикатов сигнатуры σ , добавив в него символ \vdash : $\mathcal{A}_{PredC}(\sigma) = \mathcal{A}_{FOL}(\sigma) \cup \{\vdash\}$. Полученный алфавит $\mathcal{A}_{PredC}(\sigma)$ называется алфавитом $\operatorname{PredC}_{\sigma}$ - исчисления предикатов сигнатуры σ (первого порядка).

Определение

Секвенция сигнатуры σ в исчислении предикатов - это слово алфавита $\mathcal{A}_{PredC}(\sigma)$, имеющее вид $\phi_1, \phi_2, \dots, \phi_n \vdash \phi_0$ где ϕ_i - формулы сигнатуры σ для всех $0 \le i \le n$, и $n \ge 0$.

2.2 Обозначение подстановок

Определение

Пусть ϕ - формула, v - предметная переменная. Тогда вхождение v в ϕ называется **связанным**, тогда и только тогда, когда существует такая подформула $Qv\psi \sqsubseteq \phi$, что вхождение v попадает в $Qv\psi$. Если вхождение v не является связанным, оно называется **свободным**.

Обозначение

Пусть ϕ - формула, v - предметная переменная и t - терм. Тогда запись $(\phi)_t^v$ обозначает формулу, полученную из ϕ подстановкой терма t на место всех свободных вхождений переменной v. При этом ни одна свободная переменная x из V(t) не становится связанной каким-либо квантором из ϕ .

Запись $[\phi]_y^x$ означает, что $(\phi)_y^x$ и дополнительно выполнено $y \notin FV(\phi)$.

2.3 Аксиомы и правила вывода для PredC_{σ}

Аксиомы

1) $\phi \vdash \phi$ 3) $\vdash (x = x)$ 4) $(x = y), (\phi)_x^z \vdash (\phi)_y^z$ для любых переменных x, y, z и формулы ϕ

Правила вывода

$1) \; rac{\Gamma \vdash \phi \; \Gamma \vdash \psi}{\Gamma \vdash (\phi \land \psi)} \; ig(ext{введение } \wedge ig)$	8) $\frac{\Gamma, \neg \phi \vdash \bot}{\Gamma \vdash \phi}$ (исключение \neg)
$2) \frac{\Gamma \vdash (\phi \land \psi)}{\Gamma \vdash \phi} $ (исключение \land)	9) $\frac{\Gamma \vdash \phi}{\Gamma \vdash \psi} \stackrel{\Gamma \vdash (\phi \to \psi)}{\Gamma \vdash \psi}$ (исключение \to)
$3) \frac{\Gamma \vdash (\phi \land \psi)}{\Gamma \vdash \psi}$ (исключение \land)	$10) \frac{\Gamma, \phi \vdash \dot{\psi}}{\Gamma \vdash (\phi \rightarrow \psi)}$ (введение \rightarrow)
$4) \frac{\Gamma \vdash \phi}{\Gamma \vdash (\phi \lor \psi)}$ (введение \lor)	11) $\frac{\Gamma \vdash \phi, \ \Gamma \vdash \neg \phi}{\Gamma \vdash \bot}$ (введение \bot)
$5) \frac{\Gamma \vdash \psi}{\Gamma \vdash (\phi \lor \psi)}$ (введение \lor)	12) $\frac{\Gamma \vdash \bot}{\Gamma \vdash \phi}$ (исключение \bot)
6) $\frac{\Gamma, \phi \vdash \chi}{\Gamma \vdash \chi} \frac{\Gamma, \psi \vdash \chi}{\Gamma \vdash \chi} \frac{\Gamma \vdash (\phi \lor \psi)}{\Gamma \vdash \chi}$ (исключение \lor)	13) $\frac{\Gamma \vdash \phi}{\Gamma, \psi \vdash \phi}$ (расширение)
7) $\frac{\Gamma,\phi\vdash\bot}{\Gamma\vdash\neg\phi}$ (введение ¬)	14) $\frac{\Gamma_1, \phi, \psi, \Gamma_2 \vdash \chi}{\Gamma_1, \psi, \phi, \Gamma_2 \vdash \chi}$ (перестановка)
8) $\frac{\Gamma \vdash \phi}{\Gamma \vdash \forall x \phi}$, $x \notin FV(\Gamma)$	16) $\frac{\Gamma, (\phi)_t^x, \vdash \psi}{\Gamma, \forall x \phi \vdash \psi}$
9) $\frac{\Gamma \vdash (\phi)_t^x}{\Gamma \vdash \exists x \phi}$	18) $\frac{\Gamma, \phi, \vdash \psi}{\Gamma, \exists x \phi \vdash \psi}, \ x \notin FV(\Gamma, \psi)$

2.4 Линейное доказательство

Введем следующие обозначения: $A_{PredC}(\sigma)$ - множество всех аксиом и $R_{PredC}(\sigma)$ - множество всех правил вывода исчисления предикатов сигнатуры σ .

Определение

Линейное доказательство (или линейный вывод) из множества секвенций H в PredC_{σ} - это последовательность секвенций (s_1, s_2, \ldots, s_n) такая, что каждая секвенция s_i :

- аксиома, т.е. $s_i \in A_{PredC}(\sigma)$
- предпосылка, т.е. $s_i \in H$
- получена из секвенций $s_{j_1}, s_{j_2}, \dots, s_{j_k}$, где $j_1, j_2, \dots, j_k < i$, по одному из правил вывода PredC_σ , т.е.

$$\frac{s_{j_1}, s_{j_2}, \dots, s_{j_k}}{s_i} \in R_{PredC}(\sigma)$$

Множество H называется множеством **предпосылок** или **предположений**, и если не указано, то будем считать, что $H = \emptyset$.

2.5 Выводимые секвенции

Определение

Секвенция s называется **выводимой** (или **доказуемой**, **допустимой**) в $\operatorname{PredC}_{\sigma}$ из множества предпосылок H, тогда и только тогда, когда существует линейное доказательство (s_1, \ldots, s_n) из множества H, такое, что $s = s_n$. Обозначается следующим образом:

$$H \triangleright s$$

Если $H = \emptyset$, то можно писать просто $\triangleright s$.

Определение

Формула ϕ называется **выводимой** (или **доказуемой**, **допустимой**) в $\operatorname{PredC}_{\sigma}$, тогда и только тогда, когда секвенция $\vdash \phi$ может быть выведена из пустого множества предпосылок, т.е. $\triangleright \vdash \phi$. Обозначается как $\triangleright \phi$.

2.6 Дерево вывода

Определение

Дерево секвенций T называется **деревом вывода** секвенции s из множества предпосылок H в PredC_{σ} , тогда и только тогда, когда:

- 1. r(T) = s
- 2. все секвенции из множества листьев l(T) являются аксиомами $\operatorname{PredC}_{\sigma}$ или элементами H, т.е. $l(T) \subseteq H \cup A_{\operatorname{PredC}}(\sigma)$
- 3. все переходы $\frac{s_1 \ s_2 \ \dots \ s_n}{s_0}$ из T являются правилами вывода, т.е.

$$\frac{s_1 \ s_2 \ \dots \ s_n}{s_0} \in R_{PredC}(\sigma)$$

2.7 Характеризация вывода

Теорема (эквивалентность выводимости)

Для любого множества секвенций H и секвенции s, $H \rhd s \Leftrightarrow$ для s существует дерево вывода из предпосылок H.

Доказательство

Аналогично тому, что приведено в логике высказываний.

2.8 Тождественно истинные секвенции

Определение

Секвенция s называется **тождественно истинной**, тогда и только тогда, когда она получена из выводимой секвенции s' логики высказываний, заменой всех пропозициональных переменных $\{p_1, \ldots, p_n\} = V(s')$ некоторыми формулами ψ_1, \ldots, ψ_n логики предикатов.

Предложение

Каждая тождественно истинная секвенция является выводимой в $\operatorname{PredC}_{\sigma}$.

Доказательство

Возьмем дерево вывода T секвенции логики высказываний s'. Заменив в этом дереве все вхождения переменных p_i формулами ϕ , получим дерево вывода для s в PredC_{σ} .

Лемма

Пусть ϕ - формула, x_1, \ldots, x_n - переменные и t_1, \ldots, t_n - термы. Тогда:

1.
$$\triangleright \forall x_1 \dots \forall x_n \phi \vdash (\phi)_{t_1,\dots,t_n}^{x_1,\dots,x_n}$$

$$2. \rhd (\phi)_{t_1,\dots,t_n}^{x_1,\dots,x_n} \vdash \exists x_1 \dots \exists x_n \phi$$

Доказательство

Пусть y_1, \ldots, y_n - это n некоторых новых переменных, которых нет в ϕ, t_1, \ldots, t_n и которые отличаются от x_1, \ldots, x_n . Тогда отметим, что для любого 1 < i < n верно следующее

$$(\forall x_{i+1} \dots \forall x_n (\phi)_{y_1,\dots,y_{i-1}}^{x_1,\dots,x_{i-1}})_{y_i}^{x_i} = \forall x_{i+1} \dots \forall x_n (\phi)_{y_1,\dots,y_i}^{x_1,\dots,x_i}$$

Рассмотрим следующий вывод:

$$\frac{(\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n} \vdash (\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n}}{\forall x_n(\phi)_{y_1,\dots,y_{n-1}}^{y_1,\dots,x_{n-1}} \vdash (\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n}}{\cdots}}{\forall x_1 \dots \forall x_n \phi \vdash (\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n}}$$

Теперь, n раз использовав правило введения квантора \forall , получим $\forall x_1 \dots \forall x_n \phi \vdash \forall y_1 \dots \forall y_n (\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n}$. Пусть $\psi = (\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n}$. Тогда для любого 1 < i < n верно следующее

$$(\forall y_{i+1} \dots \forall y_n(\psi)_{t_1,\dots,t_{i-1}}^{y_1,\dots,y_{i-1}})_{t_i}^{y_i} = \forall y_{i+1} \dots \forall y_n(\psi)_{t_1,\dots,t_i}^{y_1,\dots,y_i}$$

Следовательно, можно вывести секвенцию $\forall y_1 \dots \forall y_n \psi \vdash (\psi)_{t_1,\dots,t_n}^{y_1,\dots,y_n}$ аналогично выводу $\forall x_1 \dots \forall x_n \phi \vdash (\phi)_{y_1,\dots,y_n}^{x_1,\dots,x_n}$. поскольку $(\psi)_{t_1,\dots,t_n}^{y_1,\dots,y_n} = (\phi)_{t_1,\dots,t_n}^{x_1,\dots,x_n}$

$$\frac{\forall x_1 \dots \forall x_n \phi \vdash \forall y_1 \dots \forall y_n \psi \quad \frac{\forall y_1 \dots \forall y_n \psi \vdash (\phi)_{t_1,\dots,t_n}^{y_1,\dots,y_n}}{\vdash \forall y_1 \dots \forall y_n \psi \rightarrow (\phi)_{t_1,\dots,t_n}^{y_1,\dots,y_n}}}{\forall x_1 \dots \forall x_n \phi \vdash (\phi)_{t_1,\dots,t_n}^{x_1,\dots,x_n}}$$

Вторая секвенция доказывается аналогично..

2.9 Допустимые правила вывода

Лемма

Следующие правила вывода допустимы в $\operatorname{Pred} C_{\sigma}$:

$$\begin{array}{c} 2) \rhd \frac{\Gamma \vdash \phi}{\Gamma \vdash \psi} \quad 3) \rhd \frac{\Gamma_{1}, \phi, \psi, \Gamma_{2} \vdash \chi}{\Gamma_{1}, (\phi \land \psi), \Gamma_{2} \vdash \chi} \quad 4) \rhd \frac{\Gamma_{1}, (\phi \land \psi)}{\Gamma_{1}, \phi, \psi, \Gamma_{2} \vdash \chi} \\ 1) если \left\{\phi_{1}, \ldots, \phi_{n}\right\} \subseteq \left\{\psi_{1}, \ldots, \psi_{m}\right\}, \text{ то } \rhd \frac{\phi_{1}, \ldots, \phi_{n} \vdash \chi}{\psi_{1}, \ldots, \psi_{n} \vdash \chi} \quad 5) \rhd \frac{\Gamma \vdash (\phi \land \neg \phi)}{\Gamma \vdash \bot} \\ 8) \rhd \frac{\Gamma \vdash \phi}{\Gamma, \neg \phi \vdash \neg \psi} \\ 8) \rhd \frac{\Gamma \vdash \phi}{\Gamma, \neg \phi \vdash \neg \psi} \\ 9) \rhd \frac{\phi_{1}, \ldots, \phi_{n} \vdash \phi_{0}}{(\phi_{1})_{t_{1}, \ldots, t_{k}}^{x_{1}, \ldots, x_{k}} \vdash (\phi_{0})_{t_{1}, \ldots, t_{k}}^{x_{1}, \ldots, x_{k}}}{(\phi_{0})_{t_{1}, \ldots, t_{k}}^{x_{1}, \ldots, x_{k}} \vdash (\phi_{0})_{t_{1}, \ldots, t_{k}}^{x_{1}, \ldots, x_{k}}} \end{array}$$

Доказательство

Доказательства выводимости правил 1-8 аналогичны приведённым в логике высказываний. Докажем 9. Начиная с секвенции $\phi_1, \ldots, \phi_n \vdash \phi_0, n-1$ раз применим правило введения импликации и получим секвенцию

 $\vdash \phi_1 \to (\phi_2 \to \dots (\phi_n \to \phi_0)\dots)$. Затем, k раз использовав правило введения квантора \forall , получим секвенцию $\vdash \forall x_1 \dots \forall x_k (\phi_1 \to (\phi_2 \to \dots (\phi_n \to \phi_0)\dots))$

$$\vdash \forall x_1 \dots \forall x_k (\phi_1 \to (\phi_2 \to \dots (\phi_n \to \phi_0) \dots))$$

По лемме выводимой является также секвенция

$$\forall x_1 \dots \forall x_k (\phi_1 \to \dots (\phi_n \to \phi_0) \dots) \vdash (\phi_1 \to \dots (\phi_n \to \phi_0) \dots)_{t_1,\dots,t_k}^{x_1,\dots,x_k}$$

Тогда по правилу сечения

$$\vdash (\phi_1 \to (\phi_2 \to \dots (\phi_n \to \phi_0) \dots))_{t_1,\dots,t_k}^{x_1,\dots,x_k}$$

n раз использовав аксиомы $(\phi_i)_{t_1,\dots,t_k}^{x_1,\dots,x_k} \vdash (\phi_i)_{t_1,\dots,t_k}^{x_1,\dots,x_k}$ и правило исключения импликации, получим искомую секвенцию

$$(\phi_1)_{t_1,\dots,t_k}^{x_1,\dots,x_k},\dots,(\phi_n)_{t_1,\dots,t_k}^{x_1,\dots,x_k}\vdash(\phi_0)_{t_1,\dots,t_k}^{x_1,\dots,x_k}$$

2.10 Свойства равенство

Лемма (свойства равенства)

В PredC_{σ} следующие секвенции являются выводимыми

- 1. \vdash (*t* = *t*)
- 2. $(t = s) \vdash (s = t)$
- 3. $(t = s), (s = r) \vdash (t = r)$
- 4. $(r_1 = s_1), \dots, (r_n = s_n) \vdash (t)_{r_1,\dots,r_n}^{x_1,\dots,x_n} = (t)_{s_1,\dots,s_n}^{x_1,\dots,x_n}$
- 5. $(r_1 = s_1), \dots, (r_n = s_n), (\phi)_{r_1,\dots,r_n}^{x_1,\dots,x_n} \vdash (\phi)_{s_1,\dots,s_n}^{x_1,\dots,x_n}$

где t,s,r,t_i,s_i - термы, а ϕ - формула.

Доказательство

1) Секвенция $\vdash (t = t)$ выводится из аксиомы $\vdash (x = x)$ по предыдущей лемме. 2) Пусть x, y, z - попарно разные переменные. Тогда возможно построить дерево вывода:

$$\frac{\vdash (x=x) \quad (x=y), (z=x)_x^z \vdash (z=x)_y^z}{(x=y) \vdash (y=x)} (cut)$$
$$(t=s) \vdash (s=t)$$

3) Пусть x, x_1, y, z - попарно разные переменные. Рассмотрим дерево вывода секвенции $(t = s), (s = r) \vdash (t = r)$:

$$\frac{(y=z), (x=x_1)_y^{x_1} \vdash (x=x_1)_z^{x_1}}{(x=y), (y=z) \vdash (x=z)}$$
$$\frac{(t=s), (s=r) \vdash (t=r)}{(t=t)}$$

Пусть $y_1,\ldots,y_n,\ z_1,\ldots,z_n$ - попарно разные переменные, также отличные от x_1,\ldots,x_n и не входящие в термы t,t_1,\ldots,t_n и формулу ϕ .

4) Отметим, что $(t)_{y_i}^{x_i} = ((t)_{z_i}^{x_i})_{y_i}^{z_i}$. В дальнейшем внешние скобки, для краткости, будем опускать. Тогда

$$\frac{\vdash (t)_{y_1}^{x_1} = (t)_{y_1}^{x_1} \quad y_1 = z_1, (t)_{y_1}^{x_1} = ((t)_{z_1}^{x_1})_{y_1}^{z_1} \vdash (t)_{y_1}^{x_1} = (t)_{z_1}^{x_1}}{y_1 = z_1 \vdash (t)_{y_1}^{x_1} = (t)_{z_1}^{x_1}}$$

По лемме при n > 1 следующая секвенция является выводимой:

$$y_1 = z_1 \vdash (t)_{y_1, y_2}^{x_1, x_2} = (t)_{z_1, y_2}^{x_1, x_2}$$

Выводимость секвенции $y_1=z_1\vdash (t)_{y_1,y_2}^{x_1,x_2}=(t)_{z_1,z_2}^{x_1,x_2}$ Существует аксиома $y_2=z_2, (t)_{x_1,y_2}^{x_1,x_2}=((t)_{z_1,z_2}^{x_1,x_2})_{y_2}^{z_2}\vdash (t)_{y_1,y_2}^{x_1,x_2}=(t)_{z_1,z_2}^{x_1,x_2}$ затем по правилу сечения может быть выведена секвенция $y_1=z_1,y_2=z_2\vdash (t)_{y_1,y_2}^{x_1,x_2}=(t)_{z_1,z_2}^{x_1,x_2}$. n раз произведя эту операцию, получим вывод секвенции $y_1=z_1,\ldots,y_n=z_n\vdash (t)_{y_1,\ldots,y_n}^{x_1,\ldots,x_n}=(t)_{z_1,\ldots,z_n}^{x_1,\ldots,x_n}$. Применяя лемму к этой секвенции, получим вывод искомой секвенции $(r_1=s_1),\ldots,(r_n=s_n)\vdash (t)_{r_1,\ldots,r_n}^{x_1,\ldots,x_n}=(t)_{s_1,\ldots,s_n}^{x_1,\ldots,x_n}$. 5) Поскольку $(\phi)_{y_1,\ldots,y_n}^{x_1,\ldots,x_n}=((\phi)_{z_1,\ldots,z_n}^{x_1,\ldots,x_n})_{y_1,\ldots,y_n}^{z_1,\ldots,z_n}$, существует аксиома $y_1=z_1,(\phi)_{y_1,\ldots,y_n}^{x_1,\ldots,x_n}\vdash (\phi)_{z_1,y_2,\ldots,y_n}^{x_1,x_2,\ldots,x_n}\vdash (\phi)_{z_1,y_2,\ldots,y_n}^{x_1,x_2,x_3,\ldots,x_n}$ по правилу сечения получим секвенцию $y_1=z_1,y_2=z_2,(\phi)_{y_1,y_2,\ldots,y_n}^{x_1,x_2,x_3,\ldots,x_n}\vdash (\phi)_{z_1,z_2,y_3,\ldots,y_n}^{x_1,x_2,x_3,\ldots,x_n}\vdash (\phi)_{z_1,z_2,y_3,\ldots,y_n}^{x_1,x_2,x_3,\ldots,x_n}\vdash (\phi)_{z_1,\ldots,z_n}^{x_1,\ldots,x_n}$, затем по лемме получим искомую секвенцию $(r_1=s_1),\ldots,(r_n=s_n),(\phi)_{r_1,\ldots,r_n}^{x_1,\ldots,x_n}\vdash (\phi)_{r_1,\ldots,r_n}^{x_1,\ldots,x_n}$.